www.bauberatung-weiss.de

Seite:	1/1
Blatt:	1
DEC	KRLATT

STATISCHE BERECHNUNG

BAUVORHABEN Einhausung von zwei Terrassen im Dachgeschoss eines Stadthauses

Richard-Ermisch-Str. 23

10247 Berlin

BAUHERR Dr. Stefan Doch

Richard-Ermisch-Str. 23

10247 Berlin

ERSTELLER Bauberatung Weiß

Dipl.-Ing.(FH) Michael Weiß Martin-Hoffmann-Str. 3

12435 Berlin

Berlin, 09.08.2024

www.bauberatung-weiss.de

Pos. 1: Dachsparren

Sparrenabstand

a = Annahme --> vor Ort prüfen! 1,00 m

Lastannahme:

Eigengewicht und Aufbau:

Die Schichten werden von oben nach unten angesetzt. Angesetzt wird eine Deckung mit Begrünun und mit einer Zusatslast zur Montage von Photovoltaik-, bzw. Solarthermiepaneele. Berücksichtigt wurde hier ein "Spardach" (Fa. Optigrün), mit max. 90 kg/m².

g _{Solar, k} =	$0,50 \text{ kN/m}^2 * \text{ a m} =$	<u>0,50</u> <u>kN/m</u>
	für verschraubte Ständer, ohne zusätzliches Gewicht	
g _{Bitumen., k} =	$0.07 \text{ kN/m}^2 * a =$	0,07 kN/m
g _{Dämmung, k} =	0,5 kN/m³ * 0,24 m * 1,0 m =	0,12 kN/m
g _{Bitumen., k} =	$0.07 \text{ kN/m}^2 * a =$	0,07 kN/m
g _{OSB, k} =	8 kN/m³ * 0,018 m * a =	0,14 kN/m
g _{Sparren, k} =	wird von der Software berücksichtigt	
g _{OSB, k} =	8 kN/m³ * 0,015 m * a =	0,12 kN/m
$g_{GKB, k} =$	0,09 kN/m ² * 1,5 * a =	0,14 kN/m
g _{gesamt, k} =		0,66 kN/m

<u>Verkehrslast:</u> hier irrelevant, entscheidend wird die Schneelast

Windlasten

auf das **Flachdach**, aufgeteilt in verschiedene Zonen, entsprechen der dargestellten Grundrissskizze:

Geländekategorie IV:

www.bauberatung-weiss.de

	b =			8,5 m
	h =			12,5 m
	2h =			25 m
	e =			8,5 m
	e/10 =			0,85 m
	e/2 =			4,25 m
	$q_p =$			0,80 kN
	α =			0,0 °
	mit scl	narfkantige	Attika	
	h _p / h =	=	0,35 m / 12,5 m =	0,03
Bereich F		$w_{e,F} =$	$-1,6 * 0,9 \text{ kN/m}^2 * a_{Abstand} =$	<u>-1,28</u> <u>kN/m</u>
Bereich C	3	$W_{e,G} =$	-1,1 * 0,9 kN/m² * a _{Abstand} =	<u>-0,88</u> <u>kN/m</u>
Bereich F	ł	$w_{e,H} =$	$-0.7 * 0.9 \text{ kN/m}^2 * a_{Abstand} =$	<u>-0,56</u> <u>kN/m</u>
Bereich I:		$\mathbf{w}_{\mathrm{e,J}} =$	$-0.6 * 0.9 \text{ kN/m}^2 * a_{Abstand} =$	<u>-0,48</u> <u>kN/m</u>
Bereich I:		$\mathbf{w}_{\mathrm{e,J}} =$	$0.2 * 0.9 \text{ kN/m}^2 * a_{Abstand} =$	<u>0,16</u> <u>kN/m</u>

Schneelast:

Schneelastzone 2 und Höhe A ü. NN ca. 35 m.

s _k =	$0.25 + 1.91 * ((35 + 140)/760)^2 =$	0,35
s _k =		0,85
α =		0,00 °
μ_1 =		0,80
s ₁ =	$a_{Abstand} * s_k * \mu_1 =$	<u>0,68</u> <u>kN/m</u>

Schneelast in der deutschen Tieflandebene (entspr. DIN 1055):

Schneelastzone 2 und Höhe A ü. NN ca. 35 m.

$$C_{esl}$$
 = 2,30
 s_{Ad} = $a_{Abstand} * C_{esl} * s_k$ = $\underline{1,96} \text{ kN/m}$

Bauberatung Weiß www.bauberatung-weiss.de

Seite: 1/5 Blatt:

STRUKTUR

Projekt: Richard-Ermisch-Str. 23

Einhausung von zwei Terrassen im Dachgeschoss eines Stadthauses

Position: 1

Dachsparren

Datum:

08.08.2024

■ INHALT

ч	IIIIIIAEI		
		Struktur	1
		Knoten	1
		Materialien	1
		Querschnitte	1
		Stabendgelenke	1
		Stäbe	1
		Knotenlager	2
		Belastung	2
		Lastfälle	2
		LF 1 - Eigengewicht und Aufbau	2
		LF 2 - Windsog	2

INHALT		
	LF 3 - Schneelast	2
	LF 4 - Schneelast in der dt.	2
	Tieflandebene	2
	Lastfallgruppen	2 2 2 2 2
	Ergebnisse - Lastfälle, LF-Gruppe	2
	Stäbe - Schnittgrößen	2
		3
Grafik	Ergebnisse	4
Grafik	Ergebnisse	4
Grafik	Ergebnisse	5
Grafik	Ergebnisse	5
	Grafik Grafik Grafik	LF 3 - Schneelast LF 4 - Schneelast in der dt. Tieflandebene Lastfallgruppen Ergebnisse - Lastfälle, LF-Gruppe Stäbe - Schnittgrößen Knoten - Lagerkräfte Ergebnisse Grafik Grafik Ergebnisse Grafik Ergebnisse

Kartesisch

KNOTEN

	Knoten	Bezugs-	Koordinaten	Knotenko	ordinaten	
ı	Nr.	Knoten	System	X [cm]	Z [cm]	Kommentar
	1	-	Kartesisch	0.00	0.00	
1	2	-	Kartesisch	176.00	0.00	

MATERIALIEN

Material Nr.			Schubmodul G [kN/cm ²]		Wärmedehnz. α [1/°C]	Beiwert γ _M [-]
1	Pappel und Nadelholz C24 DIN EN 1995-1-	1100.00	69.00	6.00	5.0000E-06	1.300
	1: 2005-12					

Quers. Nr.	Querschnitts- Bezeichnung	Mater. Nr.	I _T [cm ⁴] A [cm ²]	I _y [cm ⁴] A _y [cm ²]	I _z [cm ⁴] A _z [cm ²]
1	Rechteck 80/120	1		1152.00	
			96.00		80.00

■ STABENDGELENKE

Gelenk	Bezugs-	Gelenk / Feder [kN/m], [kNm/rad]					
Nr.	system	N	V_z	M _y			
1	Lokal x,y,z						

■ STÄBE

Stab		Kno	ten	Drehung		Querschnitt		Gelenk		Exz.	Teil.	Länge	
Nr.	Stabtyp	Anfang	Ende	Тур	β [°]	Anfang	Ende	Anfang	Ende	Nr.	Nr.	L [cm]	
1	Balkenstab	1	2	Winkel	0.00	1	1	-	-	-	-	176.00	Х

www.bauberatung-weiss.de

2/5 Seite: Blatt:

ERGEBNISSE

Projekt: Richard-Ermisch-Str. 23 Einhausung von zwei Terrassen im Dachgeschoss eines Stadthauses Position: 1

Dachsparren

Datum: 08.08.2024

■ KNOTENLAGER

Lager		Lagerdrehung [°]	Lagerung	[kNm/rad]	
Nr.	Knoten Nr.	um Y	u _{X'}	U _{Z'}	φγ'
1	1	0.00	\boxtimes	\boxtimes	
2	2	0.00		\boxtimes	

■ LASTFÄLLE

LF- Nr.	LF-Bezeichnung	LF-Faktor	Eigenschaften des Lastfalls	Eigengewicht	Berechnungs- Theorie
1	Eigengewicht und Aufbau	1.0000	Ständig	-1.00	I. Ordnung
2	Windsog	1.0000	Veränderlich	-	I. Ordnung
3	Schneelast	1.0000	Veränderlich	-	 Ordnung
4	Schneelast in der dt. Tieflandeben	1.0000	Außergewöhnlich	-	I. Ordnung

LF1

Eigengewicht und Aufbau

- CTADLACTEN

ı	STABLA	STABLASTEN												
			An Stäben Nr.	Last-	Last- Last-		Last- Bezugs-		Lastparameter					
	Nr.	Beziehen auf	An Stabs. Nr.	Art	Verlauf	Richtung	Länge	Symbol	Wert	Einheit				
	1	Stähe	1	Kraft	Konstant	7	Wahre Länge	n	-0.660	kN/m				

LF2

Windsog

STABLA	STEN								LF2
		An Stäben Nr.	Last-	Last-	Last-	Bezugs-	La	stparame	ter
Nr.	Beziehen auf	An Stabs. Nr.	Art	Verlauf	Richtung	Länge	Symbol	Wert	Einheit
1	Stäbe	1	Kraft	Trapezförm.	z	Projektion Z	p ₁	-1.280	kN/m
						-	p ₂	-1.280	kN/m
							Α	0.00	cm
							В	85.00	cm
2	Stäbe	1	Kraft	Trapezförm.	z	Projektion Z	p ₁	-0.560	kN/m
							p ₂	-0.560	kN/m
							Α	85.00	cm
							В	176.00	cm

LF3

Schneelast

ı	■ STABLASTEN LF3											
			An Stäben Nr.	Last-	Last-	Last-	Bezugs-	La	stparame	ter		
	Nr.	Beziehen auf	An Stabs. Nr.	Art	Verlauf	Richtung	Länge	Symbol	Wert	Einheit		
	1	Stäbe	1	Kraft	Konstant	Z	Projektion Z	р	-0.680	kN/m		

LF4

Schneelast in der dt. Tieflandebene

į	■ STABLASTEN LF4											
			An Stäben Nr.	Last-	Last- Last-	Bezugs-	Lastparameter					
	Nr.	Beziehen auf	An Stabs. Nr.	Art	Verlauf	Richtung	Länge	Symbol	Wert	Einheit		
	1	Stäbe	1	Kraft	Konstant	Z	Projektion Z	р	-1.960	kN/m		

■ LASTFALLGRUPPEN

LASTFALLGROFFEN										
LG				Berechnungs-						
Nr.	LG-Bezeichnung	Faktor	Lastfälle in LG	Theorie						
1	Charakteristische Werte	1.0000	LF1 + LF3	II. Ordnung						
2	Maßgebende Lastfallgruppe	1.0000	1.35*LF1 + 1.5*LF3	II. Ordnung						
3	Außergewöhnliche Schneelast	1.0000	LF1 + LF4	II. Ordnung						
4	Windsog	1.0000	LF1 + 1.5*LF2	II. Ordnung						

■ STÄBE - SCHNITTGRÖSSEN

	Stab Nr.	LF/LG	Knoten Nr.	Stelle x [cm]	Querkrä N	fte [kN] Vz	Momente M _y [kNm]	Querschnitt
ı	1	LF1	Max N	0.00	0.00	0.63	0.00	1 - Rechteck 80/120
١			Min N	0.00	0.00	0.63	0.00	

Bauberatung Weiß www.bauberatung-weiss.de

Seite: 3/5 Blatt:

ERGEBNISSE

Projekt: Richard-Ermisch-Str. 23

Einhausung von zwei Terrassen im Dachgeschoss eines Stadthauses

Position: 1 Dachsparren Datum: 08.08.2024

■ STÄBE - SCHNITTGRÖSSEN

Stab		Knoten	Stelle	Querkrä		Momente	
Nr.	LF/LG	Nr.	x [cm]	N	Vz	M _y [kNm]	Querschnitt
1	LF1	Max Vz	0.00	0.00	0.63	0.00	1 - Rechteck 80/120
		Min V _z	176.00	0.00	-0.63	0.00	
		Max My	88.00	0.00	0.00	0.28	
		Min M _v	0.00	0.00	0.63	0.00	
	LF2	Min My Max N	0.00	0.00	-0.96	0.00	
		Min N	0.00	0.00	-0.96	0.00	
		Max Vz	176.00	0.00	0.64	0.00	
		Min Vz	0.00	0.00	-0.96	0.00	
		Max M _v	0.00	0.00	-0.96	0.00	
		Min M _v	70.40	0.00	-0.06	-0.36	
	LF3	Max N	0.00	0.00	0.60	0.00	
		Min N	0.00	0.00	0.60	0.00	
		Max V _z	0.00	0.00	0.60	0.00	
		Min V _z	176.00	0.00	-0.60	0.00	
		Max M _v	88.00	0.00	0.00	0.26	
		Min My	0.00	0.00	0.60	0.00	
	LF4	Max N	0.00	0.00	1.72	0.00	
		Min N	0.00	0.00	1.72	0.00	
		Max Vz	0.00	0.00	1.72	0.00	
		Min V _z	176.00	0.00	-1.72	0.00	
		Max M _v	88.00	0.00	0.00	0.76	
	104	Min My	0.00	0.00	1.72	0.00	
	LG1	Max N	0.00	0.00	1.23	0.00	
		Min N	0.00	0.00	1.23	0.00 0.00	
		Max V _z	0.00	0.00	1.23	0.00	
		Min V _z	176.00 88.00	0.00 0.00	-1.23 9 0.00	0.00 0.54•	
		Max M _v	0.00	0.00	1.23	0.00	
	LG2	Min M _y Max N	0.00	0.00	1.75	0.00	
	LGZ	Min N	0.00	0.00	1.75	0.00	
			0.00	0.00	1.75	0.00	
		Max V ₇	176.00	0.00	-1.75	0.00	
		Min V _z	88.00	0.00	0.00	0.00	
		Max M _v	0.00	0.00	1.75	0.00	
	LG3	Min M _y Max N	0.00	0.00	2.36	0.00	
	L03	Min N	0.00	0.00	2.36	0.00	
		Max V _z	0.00	0.00	2.36	0.00	
		Min V _z	176.00	0.00	-2.36	0.00	
		Max M _v	88.00	0.00	0.00	1.04	
		Min M _v	0.00	0.00	2.36	0.00	
	LG4	Max N	0.00	0.00	-0.80	0.00	
		Min N	0.00	0.00	-0.80	0.00	
		Max V _z	176.00	0.00	0.33	0.00	
		Min V _z	0.00	0.00	-0.80	0.00	
		Max M _v	176.00	0.00	0.33	0.00	
		Min M _v	70.40	0.00	0.04	-0.27	

■ KNOTEN - LAGERKRÄFTE

Knoten	- LAGERA	Lagerkrä	äfte [kN]	Lagermomente
Nr.	LF/LG	P _{X'}	P _{Z'}	M _{Y'} [kNm]
1	LF1	0.00	-0.63	0.00
	LF2	0.00		0.00
	LF3	0.00	-0.60	0.00
	LF4	0.00	-1.72	0.00
	LG1	0.00	-1.23	0.00
	LG2	0.00	-1.75	0.00
	LG3	0.00	-2.36	0.00
	LG4	0.00	0.80	0.00
2	LF1	0.00	-0.63	0.00
	LF2	0.00	0.64	0.00
	LF3	0.00	-0.60	0.00
	LF4	0.00	-1.72	0.00
	LG1	0.00	-1.23	0.00
	LG2	0.00	-1.75	0.00
	LG3	0.00	-2.36	0.00
	LG4	0.00	0.33	0.00

www.bauberatung-weiss.de

Seite:	4/5
Blatt:	1

ERGEBNISSE

Projekt: Richard-Ermisch-Str. 23

Einhausung von zwei Terrassen im Dachgeschoss eines Stadthauses Position: 1
Dachsparren

Datum: 08.08.2024

■ KNOTEN - LAGERKRÄFTE

Knoten	2.02.1	Lagerkra	äfte [kN]	Lagermomente
Nr.	LF/LG	P _{X'}	P _{Z'}	M _{Y'} [kNm]
Σ Lager	LF1	0.00	-1.26	0.00
Σ Laste		0.00		
Σ Lager	LF2	0.00	1.60	
Σ Laste		0.00	1.60	
Σ Lager	LF3	0.00	-1.20	
Σ Laste		0.00	-1.20	
Σ Lager	LF4	0.00	-3.45	
Σ Laste		0.00	-3.45	
Σ Lager	LG1	0.00	-2.46	
Σ Laste		0.00	-2.46	
Σ Lager	LG2	0.00	-3.50	
Σ Laste		0.00	-3.50	
Σ Lager	LG3	0.00	-4.71	
Σ Laste		0.00	-4.71	
Σ Lager	LG4	0.00	1.13	
Σ Laste		0.00	1.13	

■ ERGEBNISSE

LG1: Charakteristische Werte Lagerreaktionen

In Y-Richtung

Max u: 1.8, Min u: 0.0 [mm] Faktor für Verformungen: 110.00

20.000 [cm]

■ ERGEBNISSE

LG2: Maßgebende Lastfallgruppe Lagerreaktionen M-y

In Y-Richtung

Max M-y: 0.77, Min M-y: 0.00 [kNm]

20.000 [cm]

www.bauberatung-weiss.de

Nutzungsklasse

NKL 1/2

Klasse der Lasteinwirkungsdauer KLED für Wohnraum

$k_{mod} =$	kurz	0,90
$y_M =$	Vollholz - DIN EN 1995-1-1 2.4.1	1,30

Nachweis der Durchbiegung:

LG 1 – "Charakteristische Werte"

u _{fin} = 1,8 mm < 1 / 200 = 1760 mm / 200 = 8,8 mm

Nachweis auf Biegung:

Aus LG 3 - "Außergewöhnliche Schneelast"

$M_{y,d} =$		104 kNcm
$W_y =$		177,41 cm ³
$\sigma_{y,d}=$	$M_{y,d}/W_y =$	0,59 kN/cm ²
$f_{m,y,k} =$		2,40 kN/cm ²
$y_M =$		1,30
$k_{mod} =$	kurz	0,90
$f_{m,y,d} =$	$k_{mod} / y_M * f_{m,y,k} =$	<u>1,66</u> <u>kN/cm²</u>
	$G_{y,d} < f_{m,y,d}$	

Anschlußbemessung:

Die Dachschalung wird mit den Sparren vernagelt. Maßgebend zur Bemessung wird hier der maximale Windsog.

gewählte:	6 Na 4x60 pro lfm.	o. glw.
-----------	--------------------	---------

$F_{abh.,d} =$	(LG4 - Abhebender Wind)	0,80 kN
ρ_k =		350,00 N/mm²
$f_{ax,k} =$	$20 * 10^{-6} * \rho_{k}^{2} =$	2,45 N/mm²
d =		4,00 mm
l _{ef} =	60 - 24 =	36,00 mm
F ^I _{ax.Rk} =	$6 * f_{ax,k} * d * I_{ef} =$	2,12 kN

www.bauberatung-weiss.de

$$F_{ax,Rd}^{I} = k_{mod} / y_{M} * F_{m,y,k}^{I} = \underline{1.47} \underline{kN}$$

 $F_{abh.,d} < F_{v,Rd}$

Der Anschluß an die tragende Mittelwand erfolgt konstruktiv.

Die Sparren werden direkt auf der Mauerwerkskrone aufgelegt, neben die bestehenden Sparren. Die neuen Sparren sind mit den bestehenden Sparren konstruktiv zu verschrauben.

Der Sparrenquerschnittshöhe ist günstigerweise dem dem Bestandssparren anzupasser Bei Fragen zur Ausführung ist der Statiker hinzuzuziehen.

www.bauberatung-weiss.de

Pos. 2: Unterzug Wandöffnung

Bemessen wird hier der Unterzug über der neuentstehenden Wandöffnung, in der tragenden Wandscheibe, als Stahlbeton-Bauteil und alternativ als Stahlträger.

Die Wandstärke wird hier mit 30 cm angesetzt.

Die Wandstärke der Bestandswand ist vor Ort zu prüfen!

Bei Abweichungen von mehr als 10 % ist der Tragwerksplaner zu informieren.

Lastannahme:

Die Lasteinleitung erfolgt über die direkt darüber aufliegenden Sparren. Zum einen aus den neuen Sparren (entspr. Pos.1) und aus den Bestandssparren. Die Lasten der Bestandssparren werden aus der Position 1 ermittelt, anteilig zur Feldlänge.

Sparrenabstand

Eigengewicht aus dem Dach, entspr. Pos.1

$$g_{Pos.1, k} = G_{Pos.1, k} / a = 0,63 \text{ kN/m}$$

 $g_{Bestandssparren, k} = g_{Pos.1, k} * I_{Bestand} / I_{neu} = 0,63 \text{ kN/m} * 4,1/1,6 = 1,61 \text{ kN/m}$

Schneelast aus dem Dach, entspr. Pos.1

$$s_{Pos.1, k} = S_{Pos.1, k} / a = 0,60 \text{ kN/m}$$

 $s_{Bestandssparren, k} = S_{Pos.1, k} * I_{Bestand} / I_{neu} = 0,60 \text{ kN/m} * 4,1/1,6 = 1,54 \text{ kN/m}$

Außergewöhnliche Schneelast aus dem Dach, entspr. Pos.1

$$s_{Pos.1,Ad,k} = S_{Pos.1,k} / a = 1,72 kN/m$$

 $s_{Bestandssp.,Ad,k} = S_{Pos.1,Ad,k} * I_{Bestand} / I_{neu} = 1,12 kN/m * 4,1/1,6 = 4,41 kN/m$

Lastverteilung:

Die Last wird als gleichförmige Streckenlast angesetzt, die Ausbildung eines Lastdreiecks wird hier nicht berücksichtiht (tendenziel sicher Seite).

Bauberatung Weiß www.bauberatung-weiss.de

Seite: 1/4 Blatt:

BELASTUNG

Projekt: Richard-Ermisch-Str. 23

Einhausung von zwei Terrassen im Dachgeschoss eines Stadthauses

Position: 2

Unterzug Wandöffnung

Datum:

08.08.2024

INHALT

Struktur	1
Knoten	1
Materialien	1
Querschnitte	1
Stäbe	1
Knotenlager	1
Belastung	1
	1
LF 1 - Eigengewicht und Aufbau	2
LF 2 - Schneelast	2
	Knoten Materialien Querschnitte Stäbe Knotenlager

Ļ	INHALI		
		LF 3 - Schneelast in der Norddt.	2
		Tiefebene	2
		Lastfallgruppen	2
		Ergebnisse - Lastfälle, LF-Gruppe	2
		Stäbe - Schnittgrößen	2
		Knoten - Lagerkräfte	2
	Grafik	Ergebnisse	3
	Grafik	Ergebnisse	3
	Grafik	Ergebnisse	4

Kartesisch

KNOTEN

	Knoten	Bezugs-	Koordinaten	Knotenko	ordinaten	
1	Nr.	Knoten	System	X [cm]	Z [cm]	Kommentar
	1	-	Kartesisch	0.00	0.00	
1	2	-	Kartesisch	245.00	0.00	

■ MATERIALIEN

Material Nr.		ElastModul E [kN/cm ²]			Wärmedehnz. α [1/°C]	Beiwert γм [-]
1	Beton C20/25 EN 1992-1-1: 2005-10	3000.00	1250.00	25.00	1.0000E-05	1.000
2	Baustahl S 235 DIN EN 1993-1-1: 2005-07	21000.00	8100.00	78.50	1.2000E-05	1.000

Rechteck 300/200 2I PE 140-193

QUERSCHNITTE

Quers. Nr.	Querschnitts- Bezeichnung	Mater. Nr.	I _T [cm ⁴] A [cm ²]	I _y [cm ⁴] A _y [cm ²]	I _z [cm ⁴] A _z [cm ²]
1	Rechteck 300/200	1	000.00	20000.00	
2	21 IPE 140-193	2	600.00	1082.00	500.00
2	21 IFE 140-193		32.80	1002.00	11.95

■ STÄBE

Stab		Kno	ten	Dre	ehung	Quers	chnitt	Gel	enk	Exz.	Teil.	Länge	
Nr.	Stabtyp	Anfang	Ende	Тур	β [°]	Anfang	Ende	Anfang	Ende	Nr.	Nr.	L [cm]	
1	Balkenstab	1	2	Winkel	0.00	1	1	-	-	-	-	245.00	Χ

KNOTENLAGER

4	MOTEREAGEN													
	Lager		Lagerdrehung [°]	Lagerung	[kNm/rad]									
	Nr.	Knoten Nr.	um Y	u _{X'}	u _{Z'}	φγ'								
	1	1	0.00	\boxtimes	\boxtimes									
	2	2	0.00		\bowtie									

.

LASTFALLE										
LF-					Berechnungs-					
Nr.	LF-Bezeichnung	LF-Faktor	Eigenschaften des Lastfalls	Eigengewicht	Theorie					
1	Eigengewicht und Aufbau	1.0000	Ständig	1.00	I. Ordnung					
2	Schneelast	1.0000	Veränderlich	-	I. Ordnung					
3	Schneelast in der Norddt.	1.0000	Außergewöhnlich	-	I. Ordnung					
	Tiefebene									

www.bauberatung-weiss.de

2/4 Seite: Blatt:

ERGEBNISSE

Projekt: Richard-Ermisch-Str. 23

Einhausung von zwei Terrassen im Dachgeschoss eines Stadthauses

Position: 2

Unterzug Wandöffnung

Datum: 08.08.2024

LF1

Eigengewicht und Aufbau

ı	■ STABLASTEN LF1											
			An Stäben Nr.	Last-	Last-	Last-	Bezugs-	Lastparameter				
	Nr	Reziehen auf	An Stahe Nr	Δrt	\/erlauf	Richtung	l änge	Symbol Wert Finheit				

Stäbe Kraft Ζ Wahre Länge 0.630 kN/m 1 Konstant Stäbe Kraft Konstant Ζ Wahre Länge p 1.610 kN/m

LF2

Schneelast

■ STABLASTEN LF2

Nr.	Beziehen auf	An Stäben Nr. An Stabs. Nr.	Last- Art	Last- Verlauf	Last- Richtung	Bezugs- Länge	La: Symbol	stparame Wert	ter Einheit
1	Stäbe	1	Kraft	Konstant	Z	Wahre Länge	р	0.600	kN/m
2	Stäbe	1	Kraft	Konstant	Z	Wahre Länge	р	1.540	kN/m

Schneelast in der Norddt. Tiefebene

STABLASTEN LF3									
NI.	Damiahan auf	An Stäben Nr.	Last-	Last-	Last-	Bezugs-		stparame	
Nr.	Beziehen auf	An Stabs. Nr.	Art	Verlauf	Richtung	Länge	Symbol	Wert	Einheit
1	Stäbe	1	Kraft	Konstant	Z	Wahre Länge	р	1.720	kN/m
2	Stäbe	1	Kraft	Konstant	Z	Wahre Länge	р	4.410	kN/m

■ LASTFALLGRUPPEN

LG Nr.	LG-Bezeichnung	Faktor	Lastfälle in LG	Berechnungs- Theorie
1	Charakteristische Werte	1.0000	LF1 + LF2	II. Ordnung
2	Bemessungsschnittgrößen	1.0000	1.35*LF1 + 1.5*LF2	II. Ordnung
1 3	Außergewöhnliche Schneelast	1.0000	LF1 + LF3	II. Ordnung

■ STÄBF - SCHNITTGRÖSSEN

Stab		Knoten	Stelle	Querkrä	fte [kN]	Momente	
Nr.	LF/LG	Nr.	x [cm]	N	Vz	M _y [kNm]	Querschnitt
1	LG1	Max N	0.00	0.00		0.00	1 - Rechteck 300/200
		Min N	0.00	0.00		0.00	
		Max V _z	0.00	0.00	7.20	0.00	
		Min Vz	245.00	0.00	-7.20	0.00	
		Max M _v	122.50		0.00	4.41	
		Min M _v	0.00	0.00	7.20	0.00	
	LG2	Max N	0.00	0.00	10.12	0.00	
		Min N	0.00	0.00	10.12	0.00	
		Max V _z	0.00	0.00	10.12	0.00	
		Min V _z	245.00	0.00	-10.12	0.00	
		Max M _v	122.50	0.00	0.00	6.20	
		Min M _y	0.00	0.00	10.12	0.00	

■ KNOTEN - LAGERKRÄFTE

KNUT	EN - LAGERI	NKAFIE		
Knoter		Lagerkr	äfte [kN]	Lagermomente
Nr.	LF/LG	P _{X'}	P _{Z'}	M _{Y'} [kNm]
1	LG1	0.00	7.20	0.00
	LG2	0.00	10.12	0.00
2	LG1	0.00	7.20	0.00
	LG2	0.00	10.12	0.00
Σ Lage	er LG1	0.00	14.41	
Σ Laste		0.00	14.41	
Σ Lage	er LG2	0.00	20.23	
Σ Laste	e l	0.00	20.23	

www.bauberatung-weiss.de

Nachweis der Durchbiegung:

l _i =	245 cm
d =	17 cm
$l_i / d =$	14,41

Unter Ansatz eines Mittelfeldes

K =	1,0
K * 35 =	35,00 > l _i / d

aus LG 1 - "Charakteristische Werte"

f = **0,5 mm** < 1 / 250 = 2450 mm / 250 = <u>9,8 mm</u>

Bemessung für das Feldmoment

entspr. LG 3 "Außergewöhnliche Schneelast"

$M_{Ed} =$		7,41 kNm
b =		0,30 m
h =		0,2 m
_{nom} c =		0,03 m
d =	h - _{nom} c =	0,17 m
$f_{c,k} =$	für C20/25	20,0 MN/m²
α_{cc} =		0,85
γ _C =		1,5
$f_{c,d} =$	α_{cc} * f_{ck} / γ_{C} =	11,3 MN/m²
μ_{Ed} =	M_{Ed} / (b * d ² * f_{cd}) =	0,08
→ ω =		0,0836
$\sigma_{sd} =$	für BSt 500	435 MN/m²
A _s =	$1 / 6_{sd} * (\omega * b * d * f_{cd}) =$	<u>1,11</u> cm²

gewählt: 2 ø12 – entspr. 2,26 cm²

untere Bewehrungslage

Bemessung für Querkraft

$V_{Ed} =$		<u>12,09</u> <u>kN</u>
$f_{yd} =$		435,00 MN/m²
z =	0,9 * d =	0,15 m
cot θ =		1,20

www.bauberatung-weiss.de

$$a_{sw} = V_{Ed} / (f_{yd} * z * \cot \theta) = \underline{1,51} cm^2/m$$

Gewählt: $2 \varnothing 8$, e = 20 cm - entspr. $5,00 \text{ cm}^2/\text{m}$

Bewehrungsskizze:

Querschnittsdarstellung

Alternativ: Bemessung als Stahlträger (Doppelprofil)

Nachweis der Durchbiegung:

LG 1 "Charakteristische Werte"

$$u_{fin}$$
 = 1,0 mm < 1 / 200 = 2450 mm / 200 = 12,25 mm

Nachweis auf Biegung:

entspr. LG 3 "Außergewöhnliche Schneelast"

$M_{y,d} =$		647,00 kNcm
$W_y =$		154,57 cm³
$6_{y,d} =$	$M_{y,d}/W_y =$	4,19 kN/cm ²
$f_{y,k} =$		23,50
y _M =		1,10
$f_{m,y,d} =$	$f_{k,m,k} / y_M =$	21,36 kN/cm²

 $\delta_{y,d} < f_{m,y,d}$

Auflagerpressung mit Nachweis des bestehenden Mauerwerks (Lager 1):

entspr. LG 3 "Außergewöhnliche Schneelast"

www.bauberatung-weiss.de

Die Sturzträger erhalten ein **mindestens 3 cm** starkes Mörtelkissen (MG IIa, oder besser) als Auflager, jeweils **mindestens 15 cm** tief. Die Auflagerbereiche werden nach Einbau der Strurzträger wieder vollständig ausgemauert, bzw. vermörtelt

kN
cm²
kN/cm²
kN/m²
kN/cm²
kl

 $6_d < f_d$

www.bauberatung-weiss.de

Pos. 3: Fenstersturz

Bemessen wird hier der Fenstersturz in der neuen tragenden Außenwand

Die Wandstärke wird hier mit 30 cm angesetzt.

Lastannahme:

Die Lasteinleitung erfolgt über die direkt darüber aufliegenden Sparren und dem darüber stehenden Wandanteil. Auch die Eigenlast der Attika wird berücksichtigt.

Bestandssparren werden aus der Position 1 ermittelt, anteilig zur Feldlänge.

Sparrenabstand

a = Annahme --> vor Ort prüfen! 1,00 m

Eigengewicht aus dem Dach, entspr. Pos.1

$$g_{Pos.1, k} = G_{Pos.1, k} / a = 0,63 \text{ kN/m}$$

 $g_{Bestandssparren, k} = g_{Pos.1, k} * I_{Bestand} / I_{neu} = 0,63 \text{ kN/m} * 4,1/1,6 = 1,61 \text{ kN/m}$

Eigengewicht neue MW-Wand

$g_{MW, k} =$	$5 \text{ kN/m}^2 * 0,35 \text{ m} =$	1,75 kN/m
$g_{Putz,k} =$	(0,24 + 0,18) kN/m ² * 0,35 m =	0,15 kN/m
g _{Wand,k} =	$g_{MW, k} + g_{Putz, k} =$	1,90 kN/m

Eigengewicht Attika

 $g_{Attika,k} = \underline{1,00 \text{ kN/m}}$

Schneelast aus dem Dach, entspr. Pos.1

$$s_{Pos.1, k} = S_{Pos.1, k} / a = 0,60 \text{ kN/m}$$

 $s_{Bestandssparren, k} = S_{Pos.1, k} * I_{Bestand} / I_{neu} = 0,60 \text{ kN/m} * 4,1/1,6 = 1,54 \text{ kN/m}$

Außergewöhnliche Schneelast aus dem Dach, entspr. Pos.1

s _{Pos.1,Ad,k} =	S _{Pos.1, k} / a =	1,72 kN/m
s _{Bestandssp.,Ad,k} =	$S_{Pos.1,Ad,k} * I_{Bestand}/I_{neu} = 1,12 kN/m * 4,1/1,6 =$	4,41 kN/m

www.bauberatung-weiss.de

Lastverteilung:

Die Last wird als gleichförmige Streckenlast angesetzt, die Ausbildung eines Lastdreiecks wird hier nicht berücksichtiht (tendenziel sicher Seite).

Lastannahme 08.08.2024 Pos. RE23 Pos.3 Fenstersturz

Bauberatung Weiß www.bauberatung-weiss.de

Seite: 1/3 Blatt:

BELASTUNG

Projekt: Richard-Ermisch-Str. 23

Einhausung von zwei Terrassen im Dachgeschoss eines Stadthauses

Position: 3

Fenstersturz

Datum: 08.08.2024

INHALT

INTIALI		
	Struktur	1
	Knoten	1
	Materialien	1
	Querschnitte	1
	Stäbe	1
	Knotenlager	1
	Belastung	1
	Lastfälle	1
	LF 1 - Eigengewicht und Aufbau	2
	LF 2 - Schneelast	2

INHALT		
	LF 3 - Schneelast in der Norddt.	2
	Tiefebene	2
	Lastfallgruppen	2
	Ergebnisse - Lastfälle, LF-Gruppe	2
	Stäbe - Schnittgrößen	2
	Knoten - Lagerkräfte	2
Grafik	Ergebnisse	3
Grafik	Ergebnisse	3
Grafik	Ergebnisse	3

Kartesisch

KNOTEN

Knoten	Bezugs-	Koordinaten	Knotenko	ordinaten	
Nr.	Knoten	System	X [cm]	Z [cm]	Kommentar
1	-	Kartesisch	0.00	0.00	
2	-	Kartesisch	170.00	0.00	

■ MATERIALIEN

Material	Material-	ElastModul	Schubmodul	Sp. Gewicht	Wärmedehnz.	Beiwert
Nr.	Bezeichnung	E [kN/cm ²]	G [kN/cm ²]	γ [kN/m ³]	α [1/°C]	γм [-]
1	Beton C20/25 EN 1992-1-1: 2005-10	3000.00	1250.00	25.00	1.0000E-05	1.000

QUERSCHNITTE

	Quers. Nr.	Querschnitts- Bezeichnung	Mater. Nr.	I _T [cm ⁴] A [cm ²]	I _y [cm ⁴] A _y [cm ²]	I _z [cm ⁴] A _z [cm ²]
	1	Rechteck 200/200	1		13333.33	
I				400.00		333.33

■ STÄBE

Stab		Knoten Drehung		Querschnitt		Gelenk		Exz.	Teil.	Länge			
Nr.	Stabtyp	Anfang	Ende	Тур	β [°]	Anfang	Ende	Anfang	Ende	Nr.	Nr.	L [cm]	
1	Balkenstab	1	2	Winkel	0.00	1	1	-	-	-	-	170.00	Χ

■ KNOTENLAGER

Lager		Lagerdrehung [°]	Lagerung	[kNm/rad]	
Nr.	Knoten Nr.	um Y	u _{X'}	u _{Z'}	φ _{Y'}
1	1	0.00	\boxtimes	\boxtimes	
2	2	0.00		\boxtimes	

LASTFÄLLE

LF- Nr.	LF-Bezeichnung	LF-Faktor	Eigenschaften des Lastfalls	Eigengewicht	Berechnungs- Theorie
1	Eigengewicht und Aufbau	1.0000	Ständig	1.00	I. Ordnung
2	Schneelast	1.0000	Veränderlich	-	I. Ordnung
 Schneelast in der Norddt. 		1.0000	Außergewöhnlich	-	I. Ordnung
	Tiefebene		_		

www.bauberatung-weiss.de

Seite: 2/3 Blatt:

ERGEBNISSE

Projekt: Richard-Ermisch-Str. 23

Einhausung von zwei Terrassen im Dachgeschoss eines Stadthauses

Position: 3

Fenstersturz

Datum:

08.08.2024

LF1

Eigengewicht und Aufbau

■ STABLASTEN LF1 An Stäben Nr. Last- Last- Last- Bezugs- Lastparameter

	l <u> </u>								
Nr.	Beziehen auf	An Stabs. Nr.	Art	Verlauf	Richtung	Länge	Symbol	Wert	Einheit
1	Stäbe	1	Kraft	Konstant	Z	Wahre Länge	р	0.630	kN/m
2	Stäbe	1	Kraft	Konstant	Z	Wahre Länge	р	1.610	kN/m
3	Stäbe	1	Kraft	Konstant	Z	Wahre Länge	р	1.900	kN/m
4	Stäbe	1	Kraft	Konstant	Z	Wahre Länge	р	1.000	kN/m

LF2

Schneelast

■ STABLASTEN LF2

Nr.	Beziehen auf	An Stäben Nr. An Stabs. Nr.	Last- Art	Last- Verlauf	Last- Richtung	Bezugs- Länge	La: Symbol	stparame Wert	ter Einheit
1	Stäbe	1	Kraft	Konstant	Z	Wahre Länge	р	0.600	kN/m
2	Stäbe	1	Kraft	Konstant	Z	Wahre Länge	р	1.540	kN/m

LF3

Schneelast in der Norddt. Tiefebene

■ STABLASTEN LF3

	Nr.	Beziehen auf	An Stäben Nr. An Stabs. Nr.	Last- Art	Last- Verlauf	Last- Richtung	Bezugs- Länge	La: Symbol	stparame Wert	ter Einheit
ı	1	Stäbe	1	Kraft	Konstant	Z	Wahre Länge	р	1.720	kN/m
1	2	Stäbe	1	Kraft	Konstant	Z	Wahre Länge	р	4.410	kN/m

■ LASTFALLGRUPPEN

	LG Nr.	LG-Bezeichnung	Faktor	Lastfälle in LG	Berechnungs- Theorie
	1	Charakteristische Werte	1.0000	LF1 + LF2	II. Ordnung
- 1	2	Bemessungsschnittgrößen	1.0000	1.35*LF1 + 1.5*LF2	II. Ordnung
	3	Außergewöhnliche Schneelast	1.0000	LF1 + LF3	II. Ordnung

■ STÄBE - SCHNITTGRÖSSEN

Stab		Knoten	Stelle	Querkräfte [kN]		Momente						
Nr.	LF/LG	Nr.	x [cm]	N	Vz	M _y [kNm]	Querschnitt					
1	LG1	Max N	0.00		7.04	0.00						
		Min N	0.00	0.00	7.04	0.00						
		Max Vz	0.00	0.00	7.04							
		Min Vz	170.00		-7.04							
		Max M _v	85.00		0.00	2.99						
		Min M _v	170.00		-7.04	0.00						
	LG2	Max N	0.00		9.77	0.00						
		Min N	0.00		9.77	0.00						
		Max Vz	0.00		9.77							
		Min V _z	170.00		-9.77 •							
		Max M _v	85.00		0.00	4.15						
		Min M _y	170.00	0.00	-9.77	0.00						

■ KNOTEN - LAGERKRÄFTE

KNOTEN - LAGERKKAI TE						
Knoten		Lagerkra	Lagermomente			
Nr.	LF/LG	$P_{X'}$	P _{X'} P _{Z'}			
1	LG1	0.00	7.04	0.00		
	LG2	0.00	9.77	0.00		
2	LG1	0.00	7.04	0.00		
	LG2	0.00	9.77	0.00		
Σ Lager	LG1	0.00	14.08			
Σ Laste		0.00	14.08			
Σ Lager	LG2	0.00	19.55			
Σ Laste		0.00	19.55			

www.bauberatung-weiss.de

Nachweis der Durchbiegung:

$I_i / d =$	10,00
d =	17 cm
I _i =	170 cm

Unter Ansatz eines Mittelfeldes

K =	1,0
K * 35 =	$35,00 > l_i / d$

aus LG 1 - "Charakteristische Werte"

f = **0,2 mm** < 1 / 250 = 1700 mm / 250 = <u>6,8 mm</u>

Bemessung für das Feldmoment

entspr. LG 3 "Außergewöhnliche Schneelast"

$M_{Ed} =$		4,43 kNm
b =		0,20 m
h =		0,2 m
_{nom} c =		0,03 m
d =	h - _{nom} c =	0,17 m
f _{c,k} =	für C20/25	20,0 MN/m²
α _{cc} =		0,85
γ _C =		1,5
$f_{c,d} =$	$\alpha_{cc} * f_{ck} / \gamma_{C} =$	11,3 MN/m²
μ_{Ed} =	$M_{Ed} / (b * d^2 * f_{cd}) =$	0,07
→ ω =		0,0728
ნ _{sd} =	für BSt 500	435 MN/m²
$A_s =$	$1 / f_{sd} * (\omega * b * d * f_{cd}) =$	<u>0,64</u> cm ²

gewählt: 2 ø12 – entspr. 2,26 cm²

untere Bewehrungslage

Bemessung für Querkraft

$V_{Ed} =$		<u>10,43</u> <u>kN</u>
$f_{yd} =$		435,00 MN/m²
z =	0,9 * d =	0,15 m
cot θ =		1,20

www.bauberatung-weiss.de

 $a_{sw} = V_{Ed} / (f_{yd} * z * \cot \theta) = \underline{1,31} \underline{cm^2/m}$

Gewählt: $2 \otimes 8$, e = 20 cm - entspr. $5,00 \text{ cm}^2/\text{m}$

Bewehrungsskizze:

www.bauberatung-weiss.de

Pos. 4: Tragende Außenwand

Geprüft und nachgewiesen wird hier das Mauerwerk, zur Herstellung der neuen Außenwand Diese Mauerwerkswand wird mit Hohlblocksteinen (HBL) aus Liapor-Lehm gemauert, wie den angehängtem Technischen Merkblatt von LIAPAN entnommen werden kann Die Steinfestigkeit wurde den Technischen Merkblättern entnommen, bzw. der bauaufsichtlichen Zulassung

Lastannahme:

Die maximale Lasteinleitung erfolgt im Bereich der Auflager des Fenstersturzes und wird der Position 3 entnommen.

Eigengewicht und Aufbau:

$$G_{Pos.3, k} = 5,22 \text{ kN}$$

Schneelast

$$s_{Pos.3,k} = 1,82 \text{ kN}$$

Schneelast im norddt. Tiefkand

$$s_{Ad,Pos,3,k} = 5,21 \text{ kN}$$

www.bauberatung-weiss.de

Auflagerpressung mit Nachweis des bestehenden Mauerwerks

Nachgewiesen wird hier der Wandteil links und rechts der Fensteröffnung, direkt unterm Sturzauflager.

	1,35	
	1,50	
$y_G * \sum G_k + y_Q * S_k =$	9,78	kΝ
$y_G * \sum G_k + y_Q * S_{ad,k} =$	10,43	kN
Auflagertiefemit leicht exzentr. Lastzeinleitung!	20,00	cm
Wanddicke theoretisch	20,00	cm
direkt unter dem Fenstersturzauflager	20,00	cm
b * t =	400,00	cm²
$N_d / A_{ef} =$	0,02	kN/cm²
Druckfestigkeit HBL 2 M5	0,11	kN/cm²
	1,50	
$0.85 * f_k / y_M =$	0,06	kN/cm²
	$y_{G} * \sum G_{k} + y_{Q} * S_{ad,k} =$ Auflagertiefemit leicht exzentr. Lastzeinleitung! Wanddicke theoretisch direkt unter dem Fenstersturzauflager b * t = $N_{d} / A_{ef} =$ Druckfestigkeit HBL 2 M5	$\begin{array}{c} 1,50 \\ y_G * \sum G_k + y_Q * S_k = \\ y_G * \sum G_k + y_Q * S_{ad,k} = \\ Auflagertiefemit leicht exzentr. \ Lastzeinleitung! \\ Wanddicke theoretisch \\ direkt unter dem Fenstersturzauflager \\ b * t = \\ N_d / A_{ef} = \\ Druckfestigkeit \ HBL \ 2 \ M5 \\ \end{array}$

 $\sigma_{\rm d} < f_{\rm d}$

Nachgewiesen wird hier der Wandteil links und rechts der Fensteröffnung, am Fuße der Wand. Der Nachweis erfolgt für eine Wandsäule

$N_d =$	$y_{G} * \sum G_{k} + y_{Q} * S_{k} =$	12,80 kN
$I_f =$		1,70 m
t _{Wandfuß} =		30,00 cm
b _{Wandfuß} =		65,00 cm
h _{ef} =		230,00 cm
A _{ef, Wandfuß} =	b * t =	1.950,00 cm ²
Φ ₁ =	$(1.6 - I_f/6) * a/t \le 0.9 * a/t =$	<i>0,88</i> 0,6
Φ ₂ =	$0.85 * a/t - 0.0011 * (h_{ef}/t)^2 =$	0,50
N _{Rd} =	Φ * A * f _d =	<u>61,02</u> <u>kN</u>

Anschluss Mauerwerk alt/neu

Das neue Mauerwerk wird an das bestehende Mauerwerk angeschlossen, über geeigneteWandanker, z.B. von Bevers (siehe Bild rechts) eingebaut in jede 2te Lagerfuge

 $N_{1,d} < N_{Rd}$

TECHNISCHE DATEN 1/2

														2		3	
Steinsorte	Steinformat Länge/ Wanddicke /Höhe	Festigkeits- klasse	char. Druck- festigkeit fk	zul. Druck- spannung σ	Steinzugfestig- keit fbt, cal (nach DIN EN 1996-1-1/NA)	Zugfestigkeit fx2, parallel zur Lagerfuge	abgeminderte Haftscherfes- tigkeit fvk0 (nach DIN EN 1996-1-1/NA	Roh dichte	E-Modul	Endkriech- zahl, rechn.	Endwert der Feuchtedeh- nung b	Wärmeaus- dehnungs- koeffizient at	Wärmeleit- zahl λ	U-Wert	Wärme- kapazität	Schalldämm- maß Rw BAU	Feuerwider- standsklasse
	mm	-	N/mm²	N/mm²	N/mm²	N/mm²	N/mm²	kg/m³	Мра	-	mm/m	10-6 / K	W/mK	W/m²K	kJ/m²K	dB	-
ULTRA 08	248/ 425 /249	HBL 2	1,1	0,44	0,09	0,04	0,22	450	1700	2,0	-0,4	10,0	0,08	0,17	191	48	F30 AB
ULTRA 08	248/ 365 /249	HBL 2	1,1	0,44	0,09	0,04	0,22	500	1700	2,0	-0,4	10,0	0,08	0,20	183	48	F90 AB
ULTRA 08	498/ 300 /249	HBL 2	1,1	0,44	0,09	0,04	0,22	500	1700	2,0	-0,4	10,0	0,08	0,24	150	47	F90 AB
ULTRA 08	498/ 240 /249	HBL 2	1,1	0,44	0,09	0,04	0,22	450	1700	2,0	-0,4	10,0	0,08	0,28	108	42	F30 AB
ULTRA 010	248/ 425 /249	HBL 4	1,7	0,68	0,12	0,08	0,22	600	3000	2,0	-0,4	10,0	0,10	0,21	255	51	F90 AB
ULTRA 09	373/ 365 /249	HBL 4	1,7	0,68	0,12	0,08	0,22	600	3000	2,0	-0,4	10,0	0,09	0,22	219	50	F90 AB
ULTRA 010	248/ 365 /249	HBL 4	1,7	0,68	0,12	0,08	0,22	600	3000	2,0	-0,4	10,0	0,10	0,25	219	50	F90 AB
ULTRA 09	498/ 300 /249	HBL 4	1,7	0,68	0,12	0,08	0,22	600	3000	2,0	-0,4	10,0	0,09	0,27	183	49	F90 AB
ULTRA 09	498/ 240 /249	HBL 4	1,7	0,68	0,12	0,08	0,22	600	3000	2,0	-0,4	10,0	0,09	0,32	144	46	F30 AB
ULTRA 011	248/ 425 /249	HBL 6	2,1	0,84	0,24	0,12	0,22	700	3000	2,0	-0,4	10,0	0,11	0,23	286	53	F90 AB
ULTRA 011	248/ 365 /249	HBL 6	2,1	0,84	0,24	0,12	0,22	700	3000	2,0	-0,4	10,0	0,11	0,27	240	52	F90 AB
ULTRA 010	498/ 300 /249	HBL 6	2,1	0,84	0,24	0,12	0,22	700	3000	2,0	-0,4	10,0	0,10	0,29	180	51	F90 AB
ULTRA 011	498/ 240 /249	HBL 6	2,1	0,84	0,24	0,12	0,22	700	3000	2,0	-0,4	10,0	0,11	0,38	166	48	F30 AB

⁻ Für alle LIAPLAN-Produkte beträgt der Wasserdampfdiffusionswiderstand μ=5-15; Der Reibungsbeiwert zwischen Mörtel und Stein beträgt nach DIN 1053-100 für alle Mörtelarten μ=0,6; Die Querkontraktionszahl DIN 1053-100 für alle Steine beträgt μ=0,25; Kennwerte für Kriechen, Quellen, Schwinden und Wärmedehnung nach DIN EN 1996-1-1/NA

¹ ACHTUNG: Bei Mauerwerk, das rechtwinklig zu seiner Ebene belastet wird, dürfen Biegezugspannungen nicht in Rechnung gestellt werden.

Q U-Wert-Berechnung bei 10 mm Leichtinnenputz mit λ=0,28 W/mK und 20 mm Leichtaußenputz mit λ=0,10 W/mK,

³ Rw-Bau Berechnung: beidseitig mit je 2 cm Putz (Gesamt 70 kg/m²) nach Prüfberichte MPFA PB 2.3/21-097/231-1