STAT 4100 Lecture Note

Week Seven (Oct 17, 19, & 21, 2022)

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca, zhiyanggeezhou.github.io)

2022/Oct/15 22:12:38

Hypothesis Testing

Binary classification

- Assume $\mathbf{X} = [X_1, \dots, X_n]^\top \sim f(\boldsymbol{x} \mid \boldsymbol{\theta}^*) \in \{f(\boldsymbol{x} \mid \boldsymbol{\theta}) : \boldsymbol{\theta} \in \boldsymbol{\Theta}\}$
 - Fixed unknown $\boldsymbol{\theta}^*$ to be inferred
- Make a decision on θ^* between two hypotheses $H_0: \theta^* \in \Theta_0$ and $H_1: \theta^* \in \Theta_1$
 - $\Theta_0 \cup \Theta_1 = \Theta$
 - $\Theta_0 \cap \Theta_1 = \emptyset$
- Decision and correctness
 - True positive (TP) = H_0 correctly rejected
 - False positive (FP, type I error) = H_0 incorrectly rejected
 - True negative (TN) = H_0 is correctly accepted
 - False negative (FN, type II error) = H_0 incorrectly accepted
- E.g., H_0 : healthy vs H_1 : sick
 - TP: sick people identified as sick
 - FP: healthy people identified as sick
 - TN: healthy people identified as healthy
 - FN: sick people identified as healthy

	Accept H_0	Reject H_0
H_0 is true H_0 is false	True negative (TN) False negative (FN, type II error)	False positive (FP, type I error) True positive (TP)

- Misclassification rate = Pr(FP) + Pr(FN)
- False discovery rate (FDR) = $Pr(FP)/\{Pr(FP) + Pr(TP)\}$
 - FDR controlling for sequential/simultaneous testing
- Receiver operating characteristic curve (ROC curve): plot of TPR vs FPR
 - True positive rate (TPR, sensitivity) = $Pr(TP)/\{Pr(TP) + Pr(FN)\}$
 - False positive rate $(FPR) = Pr(FP)/\{Pr(FP) + Pr(FN)\}$

- Area under the ROC curve (AUC)
- True negative rate (TNR, specificity) = $Pr(TN)/\{Pr(TN) + Pr(FP)\}$
- The optimal hypothesis testing seeking to minimize Pr(FN) subject to capped Pr(FP), i.e.,

 $\min \Pr(\text{type II error}) \text{ subject to } \Pr(\text{type I error}) \leq \alpha$

Power function

- Rejection/critical region: $R = \{x : \text{data } x \text{ corresponding to the rejection of } H_0\}$
 - Typically specified in terms of a function of the sample (called the *test statistic*); e.g., if $R = \{x : \bar{x} \geq 3\}$, then \bar{X} is the test statistic.
- Test function $\phi : \text{supp}(\mathbf{X}) \to \{0,1\}$ defined as $\phi(\mathbf{x}) = \mathbf{1}_R(\mathbf{x})$
 - $-\phi(\mathbf{x}) = 1$ implying the rejection of H_0
- Each test function ϕ corresponds to a unique rejection region $R_{\phi} = \{x : \phi(x) = 1\}$
 - Two tests considered to be equivalent if they correpond to the same rejection region/test function
- Power function (for ϕ): $\beta_{\phi}(\boldsymbol{\theta}) = \Pr(\mathbf{X} \in R_{\phi} \mid \boldsymbol{\theta}) = \mathrm{E}\{\phi(\mathbf{X}) \mid \boldsymbol{\theta}\}$
 - Pr(type I error) = $\beta_{\phi}(\boldsymbol{\theta}^*)$ if H_0 is correct $(\boldsymbol{\theta}^* \in \boldsymbol{\Theta}_0)$
 - Pr(type II error) = $1 \beta_{\phi}(\boldsymbol{\theta}^*)$ if H_1 is correct $(\boldsymbol{\theta}^* \in \boldsymbol{\Theta}_1)$
- Prefer larger $\beta_{\phi}(\boldsymbol{\theta})$ for all $\boldsymbol{\theta} \in \boldsymbol{\Theta}_1$ and smaller $\beta_{\phi}(\boldsymbol{\theta})$ for all $\boldsymbol{\theta} \in \boldsymbol{\Theta}_0$ (because $\boldsymbol{\theta}^*$ is unknown)

Example Lec14.2

- iid $X_1, \ldots, X_n \sim N(\theta, \sigma_0^2)$ with known σ_0 . Consider a test for $H_0: \theta = \theta_0$ vs $H_1: \theta \neq \theta_0$ with rejection region $\{x: \sqrt{n}|\bar{x} \theta_0|/\sigma_0 > c\}$.
 - a. Elaborate the power function.
 - b. Find sample size n and threshold c if one desires that the type I error rate is 5% and the maximal type II error rate is 25% and attained at $\theta = \theta_0 + \sigma_0$.

Uniformly most powerful (UMP) level α test (CB Sec 8.3.2)

- ϕ is of level α iff $\sup_{\theta \in \Theta_0} \beta_{\phi}(\theta) \leq \alpha$
 - $-\phi$ is of size α iff $\sup_{\boldsymbol{\theta}\in\boldsymbol{\Theta}_0}\beta_{\phi}(\boldsymbol{\theta})=\alpha$
- Let ϕ is a level α test for $H_0: \boldsymbol{\theta}^* \in \boldsymbol{\Theta}_0$ vs $H_1: \boldsymbol{\theta}^* \in \boldsymbol{\Theta}_1$. If $\beta_{\phi}(\boldsymbol{\theta}) \geq \beta_{\phi'}(\boldsymbol{\theta})$ for all $\boldsymbol{\theta} \in \boldsymbol{\Theta}_1$ and all ϕ' of level α , then ϕ is a UMP level α test.
- If ϕ is a UMP level α test, then $\beta_{\phi}(\boldsymbol{\theta}) \geq \alpha \geq \sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}_0} \beta_{\phi}(\boldsymbol{\theta})$ for all $\boldsymbol{\theta} \in \boldsymbol{\Theta}_1$ (unbiasedness for testing, CB Def 8.3.9)

UMP level α test for simple hypotheses $(H_0: \theta^* = \theta_0 \text{ vs } H_1: \theta^* = \theta_1)$

- To maximize $\beta_{\phi}(\boldsymbol{\theta}_1)$ with respect to ϕ subject to $\beta_{\phi}(\boldsymbol{\theta}_0) \leq \alpha$
- Neymann-Pearson (NP) Lemma (CB Thm 8.3.12): ϕ is the UMP test of level α for simple hypotheses $\iff \exists k > 0$ such that $\beta_{\phi}(\boldsymbol{\theta}_0) = \mathbb{E}\{\phi(\mathbf{X}) \mid \boldsymbol{\theta} = \boldsymbol{\theta}_0\} = \alpha$, where

$$\phi(\boldsymbol{x}) = \begin{cases} 1, & f(\boldsymbol{x} \mid \boldsymbol{\theta}_1) > kf(\boldsymbol{x} \mid \boldsymbol{\theta}_0), \\ 0, & f(\boldsymbol{x} \mid \boldsymbol{\theta}_1) < kf(\boldsymbol{x} \mid \boldsymbol{\theta}_0). \end{cases}$$

In practice (especially for discrete distributions), k is the largest real number such that

$$\Pr\{f(\mathbf{X} \mid \boldsymbol{\theta}_1)/f(\mathbf{X} \mid \boldsymbol{\theta}_0) \ge k \mid \boldsymbol{\theta} = \boldsymbol{\theta}_0\} \ge \alpha$$

and

$$\Pr\{f(\mathbf{X} \mid \boldsymbol{\theta}_1)/f(\mathbf{X} \mid \boldsymbol{\theta}_0) \le k \mid \boldsymbol{\theta} = \boldsymbol{\theta}_0\} \ge 1 - \alpha.$$

• What shall we do if $\Pr\{f(\mathbf{X} \mid \boldsymbol{\theta}_1) = kf(\mathbf{X} \mid \boldsymbol{\theta}_0) \mid \boldsymbol{\theta} = \boldsymbol{\theta}_0\} \neq 0$? Take a randomized test! Specifically, if $f_{\theta_1}(\mathbf{X})/f_{\theta_0}(\mathbf{X}) = k$, let $\phi(\boldsymbol{x}) = \gamma \in [0,1]$ such that

$$\Pr\{f(\mathbf{X} \mid \boldsymbol{\theta}_1) / f(\mathbf{X} \mid \boldsymbol{\theta}_0) > k \mid \boldsymbol{\theta} = \boldsymbol{\theta}_0\} + \gamma \Pr\{f(\mathbf{X} \mid \boldsymbol{\theta}_1) / f(\mathbf{X} \mid \boldsymbol{\theta}_0) = k \mid \boldsymbol{\theta} = \boldsymbol{\theta}_0\} = \alpha.$$

That is, we reject H_0 with probability γ .

- For simple hypotheses, UMP test at level $\alpha \iff$ UMP test at size α .
- UMP test and sufficiency (CB Coro 8.3.13): sufficient statistics can be taken as test statistics for UMP ϕ .

UMP level α test for one-sided hypotheses $(H_0: \theta^* \leq \theta_0 \text{ (or } \theta^* = \theta_0) \text{ vs } H_1: \theta^* > \theta_0)$

- Consider cases with only one unknown parameter
- Monotone likelihood ratio (MLR, CB Def 8.3.16): fixing $\theta_1 > \theta_2$, $g(t \mid \theta_1)/g(t \mid \theta_2)$ is monotonic with respect to t for $\{g(t \mid \theta) : \theta \in \Theta \subset \mathbb{R}\}$
 - E.g., one-parameter exponential family bears MLR
- Karlin-Rubin (CB Thm 8.3.17): Suppose T is sufficient for θ and $T \sim g(t \mid \theta)$ bearing MLR. A UMP level α test for $H_0: \theta^* \leq \theta_0$ (or $\theta^* = \theta_0$) vs $H_1: \theta^* > \theta_0$ is

$$\phi(\boldsymbol{x}) = \begin{cases} 1, & T(\boldsymbol{x}) > t_{\alpha}, \\ 0, & T(\boldsymbol{x}) < t_{\alpha}, \end{cases}$$

where t_{α} is a real number such that $\beta_{\phi}(\theta_0) = \mathbb{E}\{\phi(\mathbf{X}) \mid \theta = \theta_0\} = \Pr(T > t_{\alpha} \mid \theta = \theta_0) = \alpha$.

Example Lec14.1

- iid $X_1, \ldots, X_n \sim N(\mu, 1)$. Construct UMP level α test for following hypotheses.
 - a. $H_0: \mu = \mu_0 \text{ vs } H_1: \mu = \mu_1 \text{ with } \mu_0 < \mu_1;$
 - b. $H_0: \mu = \mu_0 \text{ vs } H_1: \mu > \mu_0;$
 - c. $H_0: \mu \ge \mu_0 \text{ vs } H_1: \mu < \mu_0;$
 - d. $H_0: \mu = \mu_0 \text{ vs } H_1: \mu \neq \mu_0.$