USP-ICMC - Ciência da Computação

Resolução da Prova 1 - Turma C - 22/9/2009

Teoria da Computação e Linguagens Formais - SCC-0205^b

RESOLUÇÃO

- 1. Considere a seguinte linguagem $L_1 = \{a^n b^m a^n \mid n, m > 0\}$. Responda:
- $\binom{1}{2}$ (a) Qual é o tipo de menor complexidade de L_1 ? Explique.

Solução:

Tipo 2, pois pelo Lema do Bombeamento, uv^iwx^iy , $u=y=\lambda$, v=a, $w=b^m$ e x=a.

 $\binom{1}{2}$ (b) Qual é a gramática de menor complexidade que gera L_1 ?

$$\begin{array}{c} S \rightarrow aSa \mid aAa \\ A \rightarrow bA \mid b \end{array}$$

(2) (c) Escreva o processador **determinístico** de menor poder computacional (AFD ou APN) M_1 que processa L_1 .

 $\binom{1}{2}$ (d) Verifique como M_1 age com as entradas abba e abb por meio de transições entre descrições instantâneas.

Solução:

 $(*,abba,Z)\Rightarrow (*,bba,BA)\Rightarrow (*,ba,A)\Rightarrow (*,a,A)\Rightarrow (*,\lambda,\lambda)$: pilha vazia - aceita.

 $(*,abb,Z)\Rightarrow (*,bb,BA)\Rightarrow (*,b,A)\Rightarrow (*,\lambda,A)$: pilha não vazia - rejeita.

ICMC-USP Resolução P1, 22/9/2009 SCC- 0205^b (continuação)

2. Considere a seguinte linguagem:

$$L_2 = \{(ab)^n b, \ n \ge 0\}$$

(1) (a) Se possível, escreva o autômato finito mínimo que processa L_2 . Se não for possível explique o porquê.

(1) Se possível, escreva o autômato de pilha determinístico de um estado que processa L_2 . Se não for possível explique o porquê.

GLD (já na FNG):

$$S \to aA \mid b$$
$$A \to bS$$

 $\binom{1}{2}$ (c) Escreva a expressão regular E_2 equivalente à L_2 , se possível.

$$E_2 = (ab)^*b$$

ICMC-USP Resolução P1, 22/9/2009SCC- 0205^b (continuação)

- 3. Seja a linguagem $L_3 = \{w \mid w \in \{a, b\}^* \text{ e } w \text{ começa com } a \text{ e termina com } b\}$. Escreva:
- $\binom{1}{2}$ (a) o autômato finito determinístico M_3 que processa L_3 , se possível. Se não for possível explique o porquê.

Resolução

 $\binom{1}{2}$ (b) a expressão regular E_3 equivalente à L_3 , se possível. Se não for possível explique o porquê.

$$E_3 = aa^*bb^*(b^*aa^*bb^*)^* = a(a+b)^*b$$

 $\binom{1}{2}$ (c) a gramática G_3 que gera L_3 .

Solução:

$$S \to aA$$

$$A \rightarrow aA|bB$$

$$B \to bB|aA|\lambda$$

 $\binom{1}{2}$ (d) o autômato de pilha de um estado P_3 que processa a linguagem L_3 , se possível. Se não for possível explique o porquê.

Resolução:

ICMC-USP Resolução P1, 22/9/2009SCC- 0205^b (continuação)

(2) 4. Considere a seguinte linguagem:

$$L_4 = \{ w \mid w \in (0+1+2)^* \text{ e } w \text{ contém a subcadeia } 012 \}$$

Exemplo: a cadeia $00021211120 \notin L_4$, enquanto que a cadeia $002110122 \in L_4$. Se possível, escreva o autômato de pilha de um estado que processa L_4 . Se não for possível explique o porquê.

Resolução:

Autômato Finito:

Autômato de Pilha de 1 estado:

λ, C; C 1, C; C 0, C; C 2, B; A 1, B; A 2, A; B 0, A; A 0, Z; Z 1, Z; Z