Assignment 1

Q1. We discussed two versions of the 3-sum problem: A "naive" implementation O(n³) and a "sophisticated" implementation O(n²log n). Implement these algorithms. Your implementation should be able to read data in from regular data/text file with each entry on a separate line. Using Data provided in a .txt file, determine the run time cost of your implementations as function of input data size. Plot and analyze (discuss) your data.

File Name	Brute Force	e Algorithm	Sophisticated Algorithm		
(.txt)	Triplets	Time(s)	Triplets	Time(s)	
8int	0	0.006	0	0.002	
32int	9	0.015	9	0.005	
128int	509	0.906	509	0.046	
512int	33151	44.015	33151	0.855	
1024int	265426	348.304	265426	3.13	
4096int	Unobservable	Unobservable	17135744	61.049	
4192int	Unobservable	Unobservable	18693542	70.715	
8192int	Unobservable	Unobservable	137073412	295.38	

Figure 1: Plot of Execution times of the 3-sum algorithms (X-axis => Input file size, Y-axis => Time in seconds)

As we can see from the plot, the time taken by the 'Brute Force Algorithm' to execute increases exponentially. It tends to infinity in a sense that it becomes impossible to observe the results for input sizes above 1024 in a reasonable amount of time. As it uses three nested for loops,

one going up to (n-1), the other up to (n-2) and the third one up to (n-3), the complexity becomes $O(n^3)$.

On the other hand, the sophisticated algorithm gives much faster results. In the sophisticated algorithm, the sorting takes up $O(\log n)$ and the searching takes up $O(n^2 \log n)$, the total complexity becomes $O(n^2 \log n)$.

Q2. We discussed the Union-Find algorithm in class. Implement the three versions: (i) Quick Find, (ii) Quick Union, and (iii) Quick Union with Weight Balancing. Using Data provided in a .txt file determine the run time cost of your implementation (as a function of input data size). Plot and analyze your data. Note: The maximum value of a point label is 8192 for all the different input data set. This implies there could in principle be approximately 8192 x 8192 connections. Each line of the input data set contains an integer pair (p, q) which implies that p is connected to q. Recall: UF algorithm should

// read in a sequence of pairs of integers (each in the range 1 to N) where N=8192

// calling find() for each pair: If the members of the pair are not already connected

// call union() and print the pair.

The data and plot suggest that there is a bit improvement in time as the data size increases when we compare the three algorithms against each other. We also have to observe here that for small data sizes, the Quick Find algorithm performs better than Quick Union. But as the data size increases further, this trend reverses. This is because of the constant factor, or 'pre-factor' associated with the complexity term. The Complexity of Quick Find algorithm is O(n), that of Quick Union is O(n) and that of weighted is $O(\log_2 n)$

A.C. = Number of Already Connected pairs

File Name (.txt)	Quick Find		Quick Union		Weighted Quick Union	
	A.C.	Time(s)	A.C.	Time(s)	A.C.	Time(s)
8pair	0	0.099	0	0.05	0	0.032
32pair	0	0.19	0	0.189	0	0.078
128pair	0	0.567	0	0.66	0	0.548
512pair	0	2.477	0	2.509	0	2.54
1024pair	0	5.567	0	4.925	0	4.607
4096pair	4	21.763	4	20.503	4	17.852
8192pair	1314	35.933	1314	34.831	1314	31.077

Figure 1: Plot of Execution times of the Union-Find algorithms (X-axis => Input file size, Y-axis => Time in seconds)

Q3. Recall the definition of "Big Oh" (where F(N) is said to be in O(g(N)), when F(N) < c (g(N)), for N > Nc). Estimate the value of Nc for both Q1 and Q2. More important than the specific value, is the process and reasoning your employ.

Three-Sum Algorithm: -

1) Brute Force Algorithm has three for loops, one running for (n), other for (n-1) and the last one for (n-2). So, the time taken is like $(n)(n-1)(n-2) = n^3 - 3n^2 + 2n$. But, number of combinations of selecting 3 numbers out of n is $nC_3 = (n^3 - 3n^2 + 2n) / 6$. Thus, the complexity is $O(n^3)$.

At n=Nc, the graphs of these two equations will intersect.

Equating the two equations,
$$(f(n) = c*g(n))$$

 $(n^3 - 3n^2 + 2n)/6 = n^3$

Solving the equation, we get the value of Nc = 2/5 (Assuming C=1)

Since the data size is integral, we consider the nearest integer. So, Nc = 1.

2) Sophisticated Algorithm has two for loops, one running for (n) and the other for (n-1). We select two values from n using these loops. So it is ${}^{n}C_{2} = n(n-1)/2$. We deploy the binary search (having worst case complexity as $\log_{2}n$). There is a quicksort algorithm that runs before the for loops and it has the worst case complexity as n^{2} .

So the total becomes =
$$n^2 + (n(n-1)/2)\log_2 n$$
. And the total complexity is $n^2\log_e n$ Equating the two equations, $(f(n) = c*g(n))$

$$n^2 + (n(n-1)/2)\log_2 n = n^2\log_e n$$

Solving the equation, we get the value of Nc = 0.398. (Assuming C=1) Since the data size is integral, we consider the nearest integer. So, Nc = 1.

Union-Find Algorithm: -

1) Quick find algorithm requires n array accesses to initialize, 2 accesses for checking if there is already a connection and (2n+1) accesses to make a union. So, the total accesses in worst case will be n+2+(2n+1) and the complexity is O(n).

Equating the two equations,
$$(f(n) = c*g(n))$$

$$n+2+2n+1 = n$$

2) Quick Union algorithm takes n array access to get initialized, 2n-2 to see if there is a connection, n-1 accesses to find the root in worst case, and 2n-1 accesses to make a connection. So, the total complexity is O(n).

Equating the two equations,
$$n+(2n-2)+(2n-1)=n$$
 i.e. $5n-3=n$ i.e. $n=3/4$

Since the data size is integral, we consider the nearest integer. So, Nc = 1.

3) Weighted Quick Union takes 2n array accesses to get initialized, 2log₂n to check a connection and 2+2log₂n+1 for making a connection. So, total will be 2n+(2log₂n)+(3+2log₂n).