

# INDR 450/550

Spring 2022

Lecture 12: Regression for Time Series (4)

March 23, 2022

Fikri Karaesmen

### Announcements

- Class Exercise at the end of lecture today. If you are participating online, please upload your document under Course Contents/Class Exercises
- HW 2 available with a deadline of April 4 (Labs 3 and 4).
- Exam scheduled.

- The first four labs were uploaded. Please follow them.
  - Next HW based on lab2 and lab3

- Comparison to a non-parametric method: k-nearest neigbours (KNN) regression
- Let's say we would like to make a prediction for the point  $x_{1t}$  using the data available up to time t-1.
- We identify the K-nearest points to  $x_{1t}$  among  $\{x_{11}, x_{12}, ... x_{1,t-1}\}$ . Let us say that the nearest points are those in the set  $\mathcal{N}_t$ . Then our prediction is simply:

$$\hat{y}_t = \frac{\sum_{x_{i\tau} \in \mathcal{N}, \ Y_{\tau+1}}}{K}$$

- If we take K = 1, our prediction is given by the response to the nearest predictor in the training set.
- If we take K = 10 we are smoothing the prediction over the 10 nearest predictors.

```
• To implement 5-nn we search in months 1 to 46, the 5 nearest
                                                                                         0
                                                                              10
                                                                                  190
                                                                                  192
                                                                              11
 neigbours of 190.
                                                                               12
                                                                                  192
   • Month 10: 190, Month 11: 192
                                                                              13
                                                                                  147
                                                                                        43
                                                                              14
                                                                                  133
                                                                                        57
   • Month 11: 192, Month 12: 192
                                                                              15
                                                                                  163
                                                                                        27

    Month 12: 192, Month 13: 147

                                                                              16
                                                                                  150
                                                                                        40

    Month 24: 188, Month 25: 139

                                                                              17
                                                                                  129
                                                                                        61
                                                                              18
                                                                                  131
                                                                                        59

    Month 36: 184, Month 37: 151

                                                                              19
                                                                                        45
                                                                                  145
                                                                              20
                                                                                  137
                                                                                        53
                                                                              21
                                                                                  138
                                                                                        52
• The 5-NN prediction is then (192+192+147+139+151)/5 =
                                                                                        22
                                                                              22
                                                                                  168
                                                                              23
                                                                                  176
                                                                                        14
  164.2
                                                                              24
                                                                                  188
```

- Note that the similarity could be based on a vector of features.
- For instance, we note that the demand in periods (45,46,47) was (143, 160, 190)
- We look for the nearest neighbour of (143, 160, 190) in the past data measured in terms of Euclidean distance (there could be other distance measures).
- The nearest neigbour in terms of Euclidean distance is months (33,34,35). The production in those months was (143, 151, 177). The production in month 36 is: 184.
  - This becomes our prediction for month 48:

$$\hat{y}_{48} = 184$$

- We could take distance-based weights for different neighbours
- Let us consider 2-NN
  - The nearest neigbour is months (33,34,35), with a Euclidean distance of: 19.72. Production in month 36 is 184
  - The next nearest neigbour is months (8,9,10) with a Euclidean distance of 22.20. The production in month 11 is 192.
  - We then take as our prediction for month 48:

$$\hat{y}_{48} = \frac{\left(\frac{1}{19.72}\right)184 + \left(\frac{1}{22.20}\right)192}{\left(\frac{1}{19.72}\right) + \left(\frac{1}{22.20}\right)}$$

- Note that there are many options, the number of neighbours is a parameter, the weighting function is a parameter. For time series, the feature set itself is a parameter (previous month, previous three months, previous six-months etc.)
- Sometimes rather than averaging over a fixed number of neighbours, it's more sensible to average over only those neighbours that are within a reasonable distance.
  - The threshold distance then becomes a parameter.
  - Nadaraya-Watson Kernel Regression is an example.

- I simulated an AR(1) process:  $Y_t = c + \phi_1 Y_{t-1} + \epsilon_t$ 
  - c=100;  $\sigma=100$ ;  $\phi_1=-0.9$ .



- Let's experiment with K=1, K=5 and K=10 and perform some one step ahead forecasts.
- Training set first 400 observations, test set: last 100 observations
- K=1 forecasts (in red)



SE KNN (1) = 19135.90MSE KNN (1) = 138.33AE KNN (1) = 106.27APE KNN (1) = 0.059

K=10 forecasts (in yellow)



MSE KNN (10) = 9525.89RMSE KNN (10) = 97.60MAE KNN (10) = 78.12MAPE KNN (10) = 0.093

• And now an AR(1) process with a positive coefficient:

$$Y_t = c + \phi_1 Y_{t-1} + \epsilon_t$$
  
•  $c=100$ ;  $\sigma=100$ ;  $\phi_1=0.9$ .



$$Y_t = c + \phi_1 Y_{t-1} + \epsilon_t$$
  
•  $c=100$ ;  $\sigma=100$ ;  $\phi_1=0.9$ .

#### • K=10 forecasts



MSE KNN (10) = 19876.23RMSE KNN (10) = 140.98MAE KNN (10) = 84.56MAPE KNN (10) = 0.076

- Some trials with Australian Beer data: seasonal series with insignificant trend.
- Train data: first 40 months, test data last 16 months



```
MSE KNN (1) = 445.9375

RMSE KNN (1) = 21.117232299712004

MAE KNN (1) = 15.9375

MAPE KNN (1) = 0.01938820577666877

MSE KNN (5) = 20834.570871089654

RMSE KNN (5) = 144.34185419028555

MAE KNN (5) = 87.75288308560324

MAPE KNN (5) = 0.1250975894701112

MSE KNN (10) = 19876.233190335715

RMSE KNN (10) = 140.9830954062781

MAE KNN (10) = 84.56145649098855

MAPE KNN (10) = 0.11581031328187803
```

- May work surprisingly well but a lot of parametrization to check.
- Validation is crucial.
- Here's some useful property for later.
  - If we take K to be not too small, our prediction is an average (or a distance weighted average) of some predictors (the K-nearest neighbour responses). This gives us a discrete probability distribution to work with.

```
With 5-nn, we had found:
Month 10: 190, Month 11: 192
Month 11: 192, Month 12: 192
Month 12: 192, Month 13: 147
Month 13: 147
```

• Month 36: 184, Month 37: 151

Month 24: 188, Month 25: 139

- The 5-NN prediction is then (192+192+147+139+151)/5 = 164.2
- We can also postulate that  $P(Y_{48}=192)=2/5$ ,  $P(Y_{48}=139)=P(Y_{48}=147)=P(Y_{48}=151)=1/5$ .

- Linear regression is great tool but it is not appropriate for certain qualitative responses.
- For a slow selling item, the sales would likely be zero or one (Y = 0 or 1).
- Based on credit card usage data, a customer may default or not (Y = 0 or 1).
- The state of a patient is categorized as high risk, medium risk or low risk (Y = 1, 2 or 3).
- The appropriate question is typically of the form:

P(no sale in given period|past observations)



FIGURE 4.2. Classification using the Default data. Left: Estimated probability of default using linear regression. Some estimated probabilities are negative! The orange ticks indicate the 0/1 values coded for default (No or Yes). Right: Predicted probabilities of default using logistic regression. All probabilities lie between 0 and 1.

### Regression

• We'll then try to predict the probability of an event P(Y=1|X). We use the shortcut:

$$p(X) = P(Y = 1|X)$$

and we use a logistic function to express this probability:

$$p(X) = rac{e^{eta_0 + eta_1 X}}{1 + e^{eta_0 + eta_1 X}}$$

• After some algeabric manipulation, we can write:

$$\frac{p(X)}{1-p(X)}=e^{\beta_0+\beta_1X}$$

Taking logs on both sides we get:

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X$$

• The left hand side is known as the log-odds ratio also known as logit. The logistic regression model has a logit that is linear in the predictor X.

Regression

• To estimate the parameters  $\beta_0$  and  $\beta_1$  in:

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

we use maximum likelihood estimation.

• Once we find the maximum likelihood estimators  $\hat{\beta_0}$  and  $\hat{\beta_1}$ , we can estimate the probability:

$$p(X) = rac{e^{\hat{eta_0}+\hat{eta_1}X}}{1+e^{\hat{eta_0}+\hat{eta_1}X}}$$

#### Regression

Let's take a look at the default prediction example from ISL



FIGURE 4.2. Classification using the Default data. Left: Estimated probability of default using linear regression. Some estimated probabilities are negative! The orange ticks indicate the 0/1 values coded for default (No or Yes). Right: Predicted probabilities of default using logistic regression. All probabilities lie between 0 and 1.

There is a clear relationship between the credit card balance of the customer and the probability of default.

#### Regression

Let's take a look at the default prediction example from ISL

|           | Coefficient | Std. error | z-statistic | <i>p</i> -value |
|-----------|-------------|------------|-------------|-----------------|
| Intercept | -10.6513    | 0.3612     | -29.5       | < 0.0001        |
| balance   | 0.0055      | 0.0002     | 24.9        | < 0.0001        |

TABLE 4.1. For the Default data, estimated coefficients of the logistic regression model that predicts the probability of default using balance. A one-unit increase in balance is associated with an increase in the log odds of default by 0.0055 units.

For instance, for a customer with a balance of \$1000, we predict the probability of default as:

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 1,000}}{1 + e^{-10.6513 + 0.0055 \times 1,000}} = 0.00576,$$

#### Regression

 We can also use binary (dummy) predictors. Let's check whether the card holder being a student has any effect on the probability of default.

|              | Coefficient | Std. error | z-statistic | <i>p</i> -value |
|--------------|-------------|------------|-------------|-----------------|
| Intercept    | -3.5041     | 0.0707     | -49.55      | < 0.0001        |
| student[Yes] | 0.4049      | 0.1150     | 3.52        | 0.0004          |

**TABLE 4.2.** For the Default data, estimated coefficients of the logistic regression model that predicts the probability of default using student status. Student status is encoded as a dummy variable, with a value of 1 for a student and a value of 0 for a non-student, and represented by the variable student [Yes] in the table.

$$\begin{split} \widehat{\Pr}(\texttt{default=Yes}|\texttt{student=Yes}) &= \frac{e^{-3.5041 + 0.4049 \times 1}}{1 + e^{-3.5041 + 0.4049 \times 1}} = 0.0431, \\ \widehat{\Pr}(\texttt{default=Yes}|\texttt{student=No}) &= \frac{e^{-3.5041 + 0.4049 \times 0}}{1 + e^{-3.5041 + 0.4049 \times 0}} = 0.0292. \end{split}$$

# Regression for Time Series: Logistic Regression

• We can extend the model directly to p predictors  $X_1$ ,  $X_2$ , ,,,,  $X_p$ . Let  $\mathbf{X} = (X_1, X_2, ..., X_n)$ :

$$p(\mathbf{X}) = rac{e^{eta_0 + eta_1 X_1 + eta_2 X_2 + \ldots + eta_p X_p}}{1 + e^{eta_0 + eta_1 X_1 + eta_2 X_2 + \ldots + eta_p X_p}}$$

• And use maximum likelihood estimation to find  $\hat{\beta}_0$  and  $\hat{\beta}_1$ , ... $\hat{\beta}_p$ .

|              | Coefficient | Std. error | z-statistic | <i>p</i> -value |
|--------------|-------------|------------|-------------|-----------------|
| Intercept    | -10.8690    | 0.4923     | -22.08      | < 0.0001        |
| balance      | 0.0057      | 0.0002     | 24.74       | < 0.0001        |
| income       | 0.0030      | 0.0082     | 0.37        | 0.7115          |
| student[Yes] | -0.6468     | 0.2362     | -2.74       | 0.0062          |

TABLE 4.3. For the Default data, estimated coefficients of the logistic regression model that predicts the probability of default using balance, income, and student status. Student status is encoded as a dummy variable student [Yes], with a value of 1 for a student and a value of 0 for a non-student. In fitting this model, income was measured in thousands of dollars.

# Regression for Time Series: Logistic Regression

- There are versions of logistic regressions for multiple categories of responses (i.e. Not only 1 or 0 but 0 or 1 or 2, good, medium, bad, terrible etc.)
- But the better tool for multiple categories of responses is linear discriminant analysis (LDA)
  - Better stability properties with multiple predictors.
- For our purposes, we'll stick to logistic regression (and to binary classification)
  - The principles are similar when there are more than two categories

# Regression for Time Series: Logistic Regression – Classification Errors

- At the end of the day, we are usually asked to classify the data (label it 0 or 1). The probabilities must be converted to 0's and 1's.
- This does not appear to be hard to do. If p(X)>1/2, we convert it to 1 and otherwise we convert it to 0.
  - But we don't have take a threshold of 1/2. Depending on the decision we might prefer 9/10 or ¼ or anything else.
- There are two types of classification errors
  - An individual who defaults is incorrectly classified as 'non-default'.
  - An individual who does not default is incorrectyl classified as 'default'
- For decision making purposes, it's important to determine the rates of both errors.