全国计算机技术与软件专业技术资格(水平)考试

2007 年上半年 数据库系统工程师 上午试卷

(考试时间 9:00~11:30 共150分钟)

请按下述要求正确填写答题卡

- 1. 在答题卡的指定位置上正确写入你的姓名和准考证号,并用正规 2B 铅笔 在你写入的准考证号下填涂准考证号。
- 2. 本试卷的试题中共有 75 个空格,需要全部解答,每个空格 1 分,满分 75 分。
- 3. 每个空格对应一个序号,有 A、B、C、D 四个选项,请选择一个最恰当的 选项作为解答,在答题卡相应序号下填涂该选项。
- 4. 解答前务必阅读例题和答题卡上的例题填涂样式及填涂注意事项。解答时 用正规 2B 铅笔正确填涂选项,如需修改,请用橡皮擦干净,否则会导致 不能正确评分。

例题

●2007 年上半年全国计算机技术与软件专业技术资格(水平)考试日期是 (88) 月 (89) 日。

(88) A. 4 B. 5 C. 6 D. 7 (89) A. 23 B. 24 C. 25 D. 26

因为考试日期是"5月26日",故(88)选B,(89)选D,应在答题卡序号88下对B填涂,在序号89下对D填涂(参看答题卡)。

- ▶ (1) 不属于计算机控制器中的部件。
- (1) A. 指令寄存器 IR

B. 程序计数器 PC

C. 算术逻辑单元 ALU

D. 程序状态字寄存器 PSW

- 在 CPU 与主存之间设置高速缓冲存储器 Cache, 其目的是为了 (2) 。
- (2) A. 扩大主存的存储容量

B. 提高 CPU 对主存的访问效率

C. 既扩大主存容量又提高存取速度 D. 提高外存储器的速度

- 下面的描述中, (3) 不是 RISC 设计应遵循的设计原则。
- (3) A. 指令条数应少一些
 - B. 寻址方式尽可能少
 - C. 采用变长指令, 功能复杂的指令长度长而简单指令长度短
 - D. 设计尽可能多的通用寄存器
- 某系统的可靠性结构框图如下图所示。该系统由 4 个部件组成, 其中 2、3 两部 件并联冗余,再与1、4部件串联构成。假设部件1、2、3的可靠度分别为0.90、0.70、 0.70, 若要求该系统的可靠度不低于 0.75, 则进行系统设计时, 分配给部件 4 的可靠度至 少应为 (4) 。

● 指令流水线将一条指令的执行过程分为四步,其中第1、2和4步的经过时间为△t, 如下图所示。若该流水线顺序执行50条指令共用153△t,并且不考虑相关问题,则该流 水线的瓶颈第3步的时间为 (5) △t。

- 系统响应时间和作业吞吐量是衡量计算机系统性能的重要指标。对于一个持续处 理业务的系统而言,其(6)。
 - (6) A. 响应时间越短,作业吞吐量越小 B. 响应时间越短,作业吞吐量越大
- - C. 响应时间越长,作业吞吐量越大 D. 响应时间不会影响作业吞吐量

2007年上半年数据库系统工程师 上午试卷 第 2 页 (共 11 页)

(7) A. 连续不停 B. 发送带症 C. 向多个曲	于网络攻击的是 <u>(7)</u> Ping 某台主机 局毒和木马的电子邮件 B箱群发一封电子邮件 F服务器密码	o	
(8) A. 可在反症	是 <u>(8)</u> 的计算机病毒 毒检测时隐藏自己 比不同的渠道进行传播	B. 每次感染都	
• • • • • • • • • • • • • • • • • • • •	香"病毒后的计算机不 +图标变成熊猫烧香 厅变慢	· <u>·</u>	泄漏
	的申请人分别就同样的 明的人 B. 最先申请的		
● 下列标准代号 (11)A. SJ/T	中, <u>(11)</u> 为推荐性 B. Q/T11	行业标准的代号。 C. GB/T	D. DB11/T
	素点距的规格中,最好 B. 0.33	的是 <u>(12)</u> 。 C. 0.31	D. 0.28
	印机中,将油墨进行混 B. 相加		
种不同的颜色。	辨率的图像,若每个像		
(14)A.1000 ● 结构化开发力	B. 1024 5法中,数据流图是 <u>(</u>	C. 65536 <u>15)</u> 阶段产生的成。	D. 480000 果。
	析 B. 总体设计 化开发方法的叙述中,		
(16) A. 原型化 B. 在开发 C. 原型化	化开及方法的叔还中, 方法适应于需求不明确 过程中,可以废弃不用- 方法可以直接开发出最给 方法利于确认各项系统	的软件开发 早期构造的软件原型 终产品	_

- CVS 是一种 (17) 工具。
 - (17) A.需求分析
- B. 编译
- C. 程序编码 D. 版本控制
- 通常在软件的 (18) 活动中无需用户参与。
- (18) A. 需求分析
- B. 维护
- C. 编码 D. 测试
- 进行软件项目的风险分析时,风险避免、风险监控和风险管理及意外事件计划 是(19)活动中需要考虑的问题。
 - (19) A. 风险识别 B. 风险预测 C. 风险评估 D. 风险控制

- 下面关于编程语言的各种说法中, (20) 是正确的。
- (20) A. 由于 C 语言程序是由函数构成的,因此它是一种函数型语言
 - B. Smalltalk、C++、Java、C#都是面向对象语言
 - C. 函数型语言适用于编写处理高速计算的程序,常用于超级计算机的模拟计算
 - D. 逻辑型语言是在 Client/Server 系统中用于实现负载分散的程序语言
- 在面向对象的语言中, (21)。
- (21) A. 类的实例化是指对类的实例分配存储空间
 - B. 每个类都必须创建一个实例
 - C. 每个类只能创建一个实例
 - D. 类的实例化是指对类进行初始化
- 在统一建模语言(UML)中, (22) 用于描述系统与外部系统及用户 之间的交互。
 - (22) A. 类图

- B. 用例图 C. 对象图 D. 协作图
- 某系统的进程状态转换如下图所示,图中1、2、3和4分别表示引起状态转换的 不同原因,原因4表示(23):一个进程状态转换会引起另一个进程状态转换的是(24)。

(23) A. 就绪进程被调度

- B. 运行进程执行了 P 操作
- C. 发生了阻塞进程等待的事件
- D. 运行进程的时间片到了

- $(24) A. 1 \rightarrow 2$
- B. $2\rightarrow 1$
- C. $3\rightarrow 2$ D. $2\rightarrow 4$
- 在操作系统中,虚拟设备通常采用 (25) 设备来提供虚拟设备。
 - (25) A. Spooling 技术,利用磁带
- B. Spooling 技术,利用磁盘
- C. 脱机批处理技术,利用磁盘 D. 通道技术,利用磁带

● 某虚拟存储系统采用最近最少使用(LRU)页面淘汰算法,假定系统为每个作业分配3个页面的主存空间,其中一个页面用来存放程序。现有某作业的部分语句如下:

Var A: Array[1..150,1..100] OF integer;

i,j: integer;

FOR i:=1 to 150 DO

FOR i:=1 to 100 DO

A[i,j]:=0;

设每个页面可存放 150 个整数变量,变量 i、j 放在程序页中。初始时,程序及变量 i、j 已在内存,其余两页为空,矩阵 A 按行序存放。在上述程序片段执行过程中,共产生 (26)次缺页中断。最后留在内存中的是矩阵 A 的最后 (27)。

(26)	Α.	50

● 关系数据库是 (28) 的集合,其结构是由关系模式定义的。

(28) A. 元组

● 职工实体中有职工号、姓名、部门、参加工作时间、工作年限等属性,其中,工作年限是一个 (29) 属性。

(29) A. 派生

● 诊疗科、医师和患者的 E-R 图如下所示,图中<u>***</u>、<u>1**</u>分别表示多对多、1 对多的联系:

各实体对应的关系模式如下,其中带实下划线的表示主键,虚下划线的表示外键。

诊疗科(诊疗科代码,诊疗科名称)

医师(医师代码,医师姓名,诊疗科代码)

患者(患者编号,患者姓名)

若关系诊疗科和医师进行自然连接运算,其结果集为<u>(30)</u>元关系。医师和患者之间的治疗观察关系模式的主键是 (31)。

(30) A. 5

B. 4

C. 3

D. 2

(31) A. 医师姓名、患者编号

B. 医师姓名、患者姓名

C. 医师代码、患者编号

D. 医师代码、患者姓名

● 关系 R、S 如下图所示,关系代数表达式 $\pi_{156}(\sigma_{155}(R\times S))=$ <u>(32)</u>,它与元 组演算表达式 $\{t \mid (\exists u)(\exists v)(R(u) \land S(v) \land (33))\}$ 等价。

A	В	C
1	2	3
4	2 5	6 9
7	8	9
10	11	12
	D	

A	В	С		
3	7	11		
4 5	7	6		
	12	13		
6	10	14		
S				

(32) A.	A	В	С	B.	A	В	С
	1	12	13		10	7	11
	1	10	14		10	7	6
C.	A	В	С	D.	A	В	С
	7	12	13		4	7	6
	7	10	14		4	7	11

(33) A.
$$u[1] > v[5] \wedge t[1] = u[1] \wedge t[2] = v[5] \wedge t[3] = v[6]$$

B.
$$u[1] > v[5] \land t[1] = u[1] \land t[2] = u[2] \land t[3] = u[3]$$

C.
$$u[1] > v[2] \land t[1] = u[1] \land t[2] = v[2] \land t[3] = v[3]$$

D.
$$u[1] > v[2] \land t[1] = u[1] \land t[2] = u[2] \land t[3] = u[3]$$

● 给定供应关系 SPJ(供应商号,零件号,工程号,数量), 查询至少供应了 3 项工 程(包含3项)的供应商,输出其供应商号和供应零件数量的总和,并按供应商号降序 排列。

SELECT 供应商号, SUM(数量) FROM SPJ

(34) A. ORDER BY 供应商号 DESC B. GROUP BY 供应商号 DESC

C. ORDER BY 供应商号

D. GROUP BY 供应商号

- (35) A. HAVING COUNT (DISTINCT (工程号)) > 2
 - B. WHERE COUNT (工程号) > 2
 - C. HAVING (DISTINCT (工程号)) > 2

D. WHERE 工程号> 2

(36) A. ORDER BY 供应商号 DESC B. GROUP BY 供应商号 DESC

C. ORDER BY 供应商号

D. GROUP BY 供应商号

● 企业职工和部门的关系模式如下所示,其中部门负责人也是一个职工。 职工(职工号,姓名,年龄,月薪,部门号,电话,地址) 部门(部门号,部门名,电话,负责人代码,任职时间)

2007年上半年数据库系统工程师 上午试卷 第 6 页 (共 11 页)

请将下面的 SOL 语句空缺部分补充完整。

CREATE TABLE 部门(部门号 CHAR(4) PRIMARY KEY, 部门名 CHAR(20), 电话 CHAR(13),负责人代码 CHAR(5),任职时间 DATE, FOREIGN KEY (37));

查询比软件部所有职工月薪都要少的职工姓名及月薪的 SQL 语句如下:

SELECT 姓名, 月薪 FROM 职工

WHERE 月薪 < (SELECT __(38)_ FROM 职工 WHERE 部门号 = (39));

- (37) A. (电话) REFERENCES 职工电话)
 - B. (部门号) REFERENCES 部门(部门号)
 - C. (部门号) REFERENCES 职工(部门号)
 - D. (负责人代码) REFERENCES 职工(职工号) B. ALL(月薪)
- C. MIN(月薪) (39) A. 职工,部门号 AND 部门名 = '软件部'
 - B. 职工,部门号 AND 部门,部门名 = '软件部'
 - C. 部门,部门号 AND 部门名 = '软件部'
 - D. (SELECT 部门号 FROM 部门 WHERE 部门名 = '软件部')
- 给定关系模式 R(U,F),U={A,B,C,D,E},F={B→A, D→A, A→E, AC→B},其候 选关键字为 (40)___,则分解 $\rho = \{R_1(ABCE), R_2(CD)\}$ 满足___(41)__。
 - (40) A. ABD

(38) A. 月薪

- B. ADE
- C. ACD
- D. CD

D. MAX(月薪)

- (41) A. 具有无损连接性、保持函数依赖
 - B. 不具有无损连接性、保持函数依赖
 - C. 具有无损连接性、不保持函数依赖
 - D. 不具有无损连接性、不保持函数依赖
- 若有关系模式 R(A,B,C)和 S(C,D,E),关系代数表达式 E_1 、 E_2 、 E_3 和 E_4 ,且 $E_1 = E_2 = E_3 = E_4$,如果严格按照表达式运算顺序,查询效率最高的是<u>(42)</u>。

$$E_{1} = \prod_{A,D} \left(\sigma_{B < '2007' \land R.C = S.C \land E = '80'}(R \times S) \right)$$

$$E_{2} = \prod_{A,D} \left(\sigma_{R.C = S.C} \left(\sigma_{B < '2007'}(R) \times \sigma_{E = '80'}(S) \right) \right)$$

$$E_{3} = \prod_{A,D} \left(\sigma_{B < '2007} \cdot (R) > < \sigma_{E = '80'}(S) \right)$$

$$E_4 = \prod_{A,D} (\sigma_{B < '2007' \land E = '80'} (R > S))$$

- (42) A. E_1 B. E_2 C. E_3 D. E_4

● "一旦事务成功提交,其对数据库的更新操作将永久有效,即使数据库发生故障", 这一性质是指事务的 (43) 。

(43) A. 原子性 B. 一致性 C. 隔离性 D. 持久性

● 在事务处理的过程中, DBMS 把事务开始、事务结束以及对数据库的插入、删除 和修改的每一次操作写入_____文件。

(44) A. 日志

B. 目录 C. 用户 D. 系统

● 事务 T1、T2、T3 分别对数据 D₁、 D₂和 D₃并发操作如下所示,其中 T1 与 T2 间并发操作 (45), T2与T3间并发操作 (46)。

时间	T1	Т2	Т3
t1	读 D ₁ =50		
t2	读 D ₂ =100		
t3	读 D ₃ =300		
t4	$X1 = D_1 + D_2 + D_3$		
t5		读 D ₂ =100	
t6		读 D ₃ =300	
t 7			读 D ₂ =100
t8		$D_2 = D_3 - D_2$	
t9		写 D_2	
t 10	读 D ₁ =50		
t 11	读 D ₂ =200		
t 12	读 D ₃ =300		
t 13	$X1 = D_1 + D_2 + D_3$		
t 14	验算不对		$D_2 = D_2 + 50$
t 15			写D ₂

(45) A. 不存在问题

B. 将丢失修改

C. 不能重复读

D. 将读"脏"数据

(46) A. 不存在问题

B. 将丢失修改

C. 不能重复读

D. 将读"脏"数据

● 输入数据违反完整性约束导致的数据库故障属于 (47)。

(47) A. 事务故障 B. 系统故障 C. 介质故障 D. 网络故障

● 在有事务运行时转储全部数据库的方式是 (48)。

(48) A. 静态增量转储

B. 静态海量转储

C. 动态增量转储

D. 动态海量转储

C. 事务故障恢		── □参与,由 DBMS 自 寸间顺序进行记录 □志对未完成事务进	. , , , , = , , ,
● 为防止非法用户进 (50)A. 授权机制			
C. 编写查询表	记录的行级视图, 近询权限赋予张先生	并将该视图的查询权	
C. 只允许 DBA		双限,限止登录口令	· · ·
● 需求分析阶段要生 (53) A. 数据流图			D. 功能模块图
C. 概念结构设		 设计的基础 电 关	
● 存在非主属性部分 (55)A. 1NF			D. BCNF
● <u>(56)</u> 不属于领 (56) A. 规范化			D. 创建视图
		C. 链状模式	D. 事实星状模式

- OLAP 与 OLTP 的区别是 (58)。
- (58) A. OLAP 针对数据库, OLTP 针对数据仓库
 - B. OLAP 要求处理影响时间快, OLTP 要求响应时间合理
 - C. OLAP 主要用于更新事务, OLTP 用于分析数据
 - D. OLAP 面向决策人员, OLTP 面向操作人员
- 分布式数据库的场地自治性访问的是 (59)。
- (59) A. 全局外层 B. 全局概念层 C. 局部概念层 D. 局部内层

- 针对分布式事务,要求提供参与者状态的协议是 (60)。

(60) A. 一次封锁协议

B. 两段锁协议

C. 两阶段提交协议

- D. 三阶段提交协议
- 并行数据库体系结构中具有独立处理机、内存和磁盘的是__(61)__结构。

- (61) A. 共享内存 B. 共享磁盘 C. 无共享 D. 共享内存和磁盘
- 首先提出支持面向对象数据模型的 SQL 标准是 (62) 。
- (62) A. SOL86 B. SOL89 C. SOL92

- D. SOL99

- 面向对象数据模型中不包含 (63)。
- (63) A. 属性集合 B. 方法集合 C. 消息集合 D. 对象实例

- 某高校学生管理系统的新生数据取自各省招生办公室的考生信息, 筛选出录取本 校的考生信息直接导入,再根据录取专业划分班级并生成学号(学号的前四位与所在班 级编号相同)。学校的学生管理业务多以班级和学生为单位处理,应对学生信息表(64), 以减少I/O 访问次数,提高系统性能。

设该系统的学生关系模式为:学生(学号,姓名,性别,出生日期,身份证号,籍 贯,家庭所在地),在该系统运行过程中,DBA 发现频繁访问学生关系的查询程序只涉 及到学号、姓名、性别和出生日期属性,为提高该查询程序的性能,应 (65)。

- (64) A. 建立学号的普通索引
- B. 建立学号的 UNIQUE 索引
 - C. 建立学号的 CLUSTER 索引 D. 按学号进行 HASH 分布
- (65) A. 直接修改该查询程序
 - B. 分解学生关系为学生 1 (学号,姓名,性别,出生日期)和学生 2 (学号, 身份证号,籍贯,家庭所在地),并修改该查询程序。
 - C. 分解学生关系为学生 1 (学号, 姓名, 性别, 出生日期) 和学生 2 (学号, 身份证号,籍贯,家庭所在地),并构建"学生"视图,该查询程序不做 修改
 - D. 创建学生关系上的视图 学生 1 (学号, 姓名, 性别, 出生日期), 该查询 程序不做修改

2007年上半年数据库系统工程师上午试卷第10页(共11页)

(● 关	于路由器,下列	可说法中错误的是	<u>[</u> (66) °	
	(66)	A. 路由器可以	隔离子网,抑制广	播风暴	
		B. 路由器可以	实现网络地址转换		
		C. 路由器可以	提供可靠性不同的	多条路由选择	
		D. 路由器只能	实现点对点的传输		
(● 关 ⁻	于 ARP 表,以了	下描述中正确的是_	(67) 。	
	(67)	A. 提供常用目	标地址的快捷方式	来减少网络流量	
		B. 用于建立 IP	地址到 MAC 地址	的映射	
		C. 用于在各个	子网之间进行路由	选择	
		D. 用于进行应	用层信息的转换		
	八五	的处状块包圆的	₩ ₩ ₩ ₩ 202 105 :	102.0/10 法校园网	1夕冬 (co) & c 米网
络。	● 万世	北 给 呆 仪 四 四 的	地址决定 202.105.	192.0/18,该仪四四	包含 <u>(68)</u> 个 C 类网
给。	(68)	Δ 6	B. 14	C. 30	D. 62
	(00)	71. 0	D. 14	C. 50	D. 02
(● 在	Windows 操作系	〔统中,采用 <u>(69</u>)	命令来测试到达	目标所经过的路由器数目
及 IP	地址。)			
	(69)	A. ping	B. tracert	C. arp	D. nslookup
	■ D1:	下关王 DHCD 即	g 多的说法中正确的	カ耳、(7 0)	
				5年 <u>(707</u> 。 HCP 服务器,以防	上冲忽
					ムロス 务器分配的 IP 地址
				治到这的 bitel 旅 治计算机使用固定	
					才能获得 DHCP 服务
			重时之次指列 DIK		7 RESKIN DITCE MK M
(• <u>(</u>	71) analysis e	mphasizes the drawi	ng of pictorial syster	n models to document and
valida			_		stem models become the
(72	<u>)</u> for	designing and co	onstructing an impro	oved system. (73)	_ is such a technique. The
emph	asis in	this technique	is process-centered	. Systems analysts	draw a series of process
mode	ls calle	ed <u>(74)</u>	(75) is another	such technique that	integrates data and process
conce	rns int	to constructs calle	ed objects.		
	(71)	A. Prototyping	B. Accelerated	C. Model-driven	D. Iterative
	(72)	A.image	B. picture	C. layout	D. blueprint
	(73)	A. Structured an	alysis	B. Information Eng	ineering
		C. Discovery Pro	ototyping	D. Object-Oriented	analysis
	(74)	A.PERT	B. DFD	C. ERD	D. UML
	(75)	A. Structured an	alysis	B. Information Eng	ineering
C. Discovery Prototyping		D. Object-Oriented analysis			