

Class: 32A

FLUID MECHANICS

Tutorials

BY A GREAT PROFESSOR

1 Viscous fluid flows

1.1 Shear stress of olive oil

A large agrifood group is studying in its laboratory the steady, fully developed flow of a new olive oil on a flat plate. The fluid has a density d of 0.92 and a kinematic viscosity $v = 1.09 \times 10^{-4} \, m^2 \, s^{-1}$.

Figure 1. Boundary layer flow (sketch made with T_EX_{MACS})

Figure 2. Boundary layer flow (sketch made with Tikz code rendered inside $T_{\text{FX}_{\text{MACS}}}$)

The velocity profile near the plate was measured in the laboratory and tests show that for $y \le \delta$ the latter can be approximated by:

$$u(y) = U_0 \sin(\pi y/2 \delta) \tag{1}$$

1. Determine the expression of the shear stress developed on the plate as a function of U_0 and d.

2. Compute the value of the viscous stress for $U_0 = 5 \text{ m.s}^{-1}$ at a distance x = 1 m from the leading edge of the plate.

Laboratory tests show that the thickness δ is related to the local Reynolds number Re_x by: $\delta(x) = 4,92 \, x/\sqrt{Re_x}$ with $Re_x = U_0 \, x/v$.

1.2 Viscous friction in a cylindrical pipe

We consider here the steady and laminar flow of an incompressible viscous fluid in a cylindrical pipe of radius *R*.

Figure 3. Velocity profile in the cylindrical pipe (Tikz code rendered in $T_E X_{MACS}$)

The velocity field is carried by the axis of the tube and the velocity profile is given by:

$$u(r) = U_{max} \left(1 - \frac{r^2}{R^2} \right)$$

where U_{max} is the maximum velocity at the center, r is the radial distance taken from the axis of the tube.

- 1. Write a relation giving the friction force exerted by the fluid on the wall per unit length of the tube.
- 2. Give the relation between the mean velocity U_0 of the flow in the tube and the maximum velocity $U_{\rm max}$ at the center.

2 Some laminar solutions of the Navier-Stokes equations