1

Let $\{a_n\}_{n\geq 1}$ be a Cauchy sequence of real numbers. Show that $\{a_n^2\}_{n\geq 1}$ is also a Cauchy sequence.

Proof. Since $\{a_n\}_{n\geq 1}$ is Cauchy, we know that it is bounded by $A\in\mathbb{R}$. Additionally, for all $\epsilon>0$ there exists $N_{\epsilon}\in\mathbb{N}$ s.t.

$$|a_n - a_m| < \frac{\epsilon}{2A}$$
 for all $n, m \ge N_{\epsilon}$.

Then we have for all $n, m \geq N_{\epsilon}$

$$|a_n^2 - a_m^2| = |a_n + a_m||a_n - a_m| < 2A \cdot \frac{\epsilon}{2A} = \epsilon$$

This work for all $\epsilon > 0$ so the sequence $\{a_n^2\}_{n \geq 1}$ is also Cauchy.

 $\mathbf{2}$

Let $\{a_n\}_{n\geq 1}$ be a sequence defined by the following rule:

$$a_1 = 3$$
 and $a_{n+1} = \frac{a_n}{2} + \frac{1}{a_n}$ for all $n \ge 1$. (1)

(2.a) Show that the sequence is bounded below by $\sqrt{2}$.

Proof. It is clear that the sequence is positive. Then we see

$$a_{n+1} - \sqrt{2} = \frac{a_n}{2} + \frac{1}{a_n} - \sqrt{2} = \frac{a_n^2 + 2 - 2\sqrt{2}a_n}{2a_n} = \frac{(a_n - \sqrt{2})^2}{2a_n} > 0.$$

Therefore $a_n > \sqrt{2}$ for all n.

(2.b) Show that this is a sequence of rational numbers.

Proof. The set \mathbb{Q} is a field and has the closure property. Therefore $a_n \in \mathbb{Q}$ for all n.

(2.c) Prove that the sequence is monotonically decreasing.

Proof. For all $n \in \mathbb{N}$

$$a_{n+1} - a_n = \frac{-a_n}{2} + \frac{1}{a_n} = \frac{-a_n^2 + 2}{2a_n} < 0$$

where we used the fact that $a_n > \sqrt{2}$. $\{a_n\}_{n \in \mathbb{N}}$ is monotonically decreasing.

(2.d) Deduce that $\{a_n\}_{n\geq 1}$ converges and find its limit.

Proof. $\{a_n\}_{n\in\mathbb{N}}$ is bounded and monotonically decreasing therefore it converges.

We name $\lim_{n\to\infty} a_n = a$. By the recurrence relation a needs to satisfy

$$a = \frac{a}{2} + \frac{1}{a} \tag{2}$$

which has positive solution $\sqrt{2}$. Thus, $\lim_{n\to\infty} a_n = \sqrt{2}$.

Remark: This is an example of Cauchy sequence of rational numbers converging to an irrational number.

3

Let $\{a_n\}_{n\geq 1}$ and $\{b_n\}_{n\geq 1}$ be two bounded sequences. Show that

$$\limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n.$$
(3)

Proof. By definition,

$$\limsup_{n \to \infty} (a_n + b_n) = \lim_{N \to \infty} \sup\{(a_n + b_n), n \ge N\}$$
$$\limsup_{n \to \infty} a_n = \lim_{N \to \infty} \sup\{a_n, n \ge N\}$$
$$\limsup_{n \to \infty} b_n = \lim_{N \to \infty} \sup\{b_n, n \ge N\}.$$

We name $A_N = \sup\{a_n, n \geq N\}$ and $B_N = \sup\{b_n, n \geq N\}$. Then for all $n \geq N$, $A_N \geq a_n$, $B_N \geq b_n$, and thus $A_N + B_N \geq a_n + b_n$. $A_N + B_N$ is an upper bound of $\{a_n + b_n, n \geq N\}$. Since $\sup\{a_n + b_n, n \geq N\}$ is the least upper bound

$$A_N + B_N \ge \sup\{a_n + b_n, n \ge N\}$$

$$\Rightarrow \sup\{a_n, n \ge N\} + \sup\{b_n, n \ge N\} \ge \sup\{a_n + b_n, n \ge N\}.$$

We can take the limit to infinity of both sides and we have

$$\lim_{N \to \infty} \sup\{(a_n + b_n), n \ge N\} \le \lim_{N \to \infty} (\sup\{a_n, n \ge N\} + \sup\{b_n, n \ge N\}).$$

Because both sup are bounded

$$\lim_{N \to \infty} \left(\sup\{a_n, n \ge N\} + \sup\{b_n, n \ge N\} \right) = \lim_{N \to \infty} \sup\{a_n, n \ge N\} + \lim_{N \to \infty} \sup\{b_n, n \ge N\}$$

$$\Rightarrow \lim_{n \to \infty} \sup(a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n.$$

4

Let $\{a_n\}_{n\geq 1}$ be a sequence of real numbers that is bounded above. Prove that $L=\limsup a_n$ has the following properties:

(4.a) For every $\epsilon > 0$ there are only finitely many n for which $a_n > L + \epsilon$.

Proof. Name $v_N = \sup\{a_n, n \geq N\}$. Then by definition $L = \limsup a_n = \lim_{N \to \infty} v_N$. We also know that if $\{v_N\}_{N>1}$ is a decreasing sequence and $v_n \geq L$.

For all $\epsilon > 0$, there exists $N \in \mathbb{N}$ s.t. for all $n \geq N$,

$$|v_n - L| < \epsilon$$

$$\Rightarrow v_n < L + \epsilon$$

$$\Rightarrow \sup\{a_m, m \ge n\} < L + \epsilon$$

$$\Rightarrow a_n < L + \epsilon.$$

This leaves only some or all $a_n, n < N$ (only finitely amount) that could have

$$a_n > L + \epsilon$$
.

(4.b) For every $\epsilon > 0$ there are infinitely many n for which $a_n > L - \epsilon$.

Proof. We know there exists a subsequence $\{a_{k_n}\}_{n\geq 1}$ that converges to L. Then for all $\epsilon>0$, $\exists N\in\mathbb{N} \text{ s.t. for all } n\geq N$

$$|a_{k_n} - L| < \epsilon \Rightarrow L - \epsilon < a_{k_n}$$

This means there are infinitely many a_{k_n} thus a_n larger than $L - \epsilon$.

Remark: It is also true that there can be at most one real number with both of the above two properties.

5

Show that a sequence $\{a_n\}_{n\geq 1}$ is bounded if and only if $\limsup_{n\to\infty} |a_n| < \infty$.

Proof. " \Rightarrow ": We know

$$\limsup_{n \to \infty} |a_n| \le \sup\{|a_n|, n \ge 1\}.$$

However the RHS is bounded because $\{a_n\}_{n\geq 1}$ is bounded.

" \Leftarrow ": We know from Problem (4.a) that for $\epsilon=1$ there are only finitely many n for which $|a_n|>\limsup_{n\to\infty}|a_n|+1$. Then for some finite N

$$\sup_{n}\{|a_n|\} \le \max\{a_1,\dots,a_N,\limsup_{n\to\infty}|a_n|+1\}. \tag{4}$$

This is finite because it is a maximum over finite elements. Finally, $\sup_n\{|a_n|\}<\infty$ implies the sequence is bounded.