Universität Ulm

Dr. Jan-Willem Liebezeit Marcus Müller Sommersemester 2019

Übungen Analysis 1 für Ingenieure und Informatiker: Blatt 11

52. Man bestimme folgende Stammfunktionen:

a)
$$\int \frac{1}{x^3 + x} \, \mathrm{d}x$$

c)
$$\int \frac{x+2}{x^3-3x^2-x+3} \, \mathrm{d}x$$

b)
$$\int \frac{x^5 + 1}{x^4 + x^2} \, \mathrm{d}x$$

d)
$$\int \frac{\log x}{x(\log^2 x + \log x - 2)} \, \mathrm{d}x.$$

53. Berechne die Ober- und Untersumme der Funktion $f:[0,1] \to \mathbb{R}$ mit $x \mapsto e^x$ für die Zerlegung $\pi_n := \left\{ \left[\frac{i-1}{n}, \frac{i}{n} \right] : 1 \le i \le n \right\}$ mit $n \in \mathbb{N}$ und bestimme dann mit diesem Ergebnis den Wert des Integrals $\int_0^1 e^x \, \mathrm{d}x$.

54. Es seien $0 < a < b < \infty$ und $\mu \in \mathbb{R}$. Berechne das Integral $\int_a^b x^{\mu} dx$ durch Zerlegung des Intervalls [a,b] mittels geometrischer Progression in n Teile und anschließendem Grenzwertübergang. Ohne Beweis darf verwendet werden, dass x^{μ} über [a,b] Riemann-integrierbar ist.

55. Zeige, dass

$$\frac{\pi}{2} = \prod_{k=1}^{\infty} \frac{4k^2}{4k^2 - 1} := \lim_{n \to \infty} \prod_{k=1}^{n} \frac{4k^2}{4k^2 - 1}.$$

Hinweis: Setze

$$A_n := \int_0^{\pi/2} \sin^n x \, \mathrm{d}x, \quad n \in \mathbb{N},$$

berechne A_0 und A_1 und leite anschließend mithilfe von Aufgabe 51 von Blatt 10 eine Rekursionsformel für $A_n, n \geq 2$ her. Berechne damit die Werte A_{2n+1} und A_{2n} für $n \geq 1$. Betrachte dann den Quotienten A_{2n+1}/A_{2n} und gehe anschließend zum Grenzwert für $n \to \infty$ über. Der Grenzwert lässt sich mithilfe des Sandwich-Lemmas abschätzen.

56. Berechne den Wert folgender Integrale

a)
$$\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \frac{\arcsin x}{\sqrt{1-x^2}} \, \mathrm{d}x$$

$$\mathrm{d}) \quad \int_1^e \frac{\log^5(x)}{x} \, \mathrm{d}x$$

b)
$$\int_{1}^{e^{\pi/2}} \cos(2\log x) \, \mathrm{d}x$$

e)
$$\int_{-1}^{1} \frac{x}{x^4 + 4} \, \mathrm{d}x$$

c)
$$\int_0^{\pi/4} \frac{\sin^3(x)}{\sqrt{\cos x}} \, \mathrm{d}x$$

f)
$$\int_0^{1/\sqrt{2}} \frac{4\sqrt{2} - 8x^3 - 4\sqrt{2}x^4 - 8x^5}{1 - x^8} \, \mathrm{d}x.$$

Hinweise: c) $\sin^2(x) = 1 - \cos^2(x)$ und Substitution $u = \cos(x)$, e) Zeige, dass das Integral punktsymmetrischer Funktionen über einen zum Ursprung symmetrischen Bereich verschwindet, f) (Ergebnis: π) Substitution $y = \sqrt{2}x$. Ohne Beweis darf verwendet werden, dass $(y-1)(y^8-16) = (y^2-2)(y^2-2y+2)(y^5+y^4+2y^3-4)$. Finde dann $A, B, C, D \in \mathbb{R}$ mit

$$\frac{y-1}{(y^2-2)(y^2-2y+2)} = \frac{Ay+B}{y^2-2} + \frac{Cy+D}{y^2-2y+2}.$$