Lecture Notes in Measure Theory

Ashish Kujur

June 2022

Introduction

This is a set of lecture notes which I took for reviewing stuff that I typed after taking class from Professor *insert name here*. All the typos and errors are of mine. I like to take notes in LaTeXas it motivates me to drag my ass to class. The pictures that make here will be hand drawn and I will appreciate it if someone who is knowledgeable in Tikz will help me digitizing my rough hand-drawn pictures.

Contents

1	Lecture 1 - Basic Definitions	1
	1.1 Algebras and Sigma-algebras	1
	1.2 Measures	2
2	Lecture 2	2
	2.1 Lebesgue Integral	2

1 Lecture 1 - Basic Definitions

1.1 Algebras and Sigma-algebras

Definition 1.1.1 (Algebra). Let X be any arbitrary set. A collection $\mathcal{A} \subseteq \mathscr{P}(X)$ is called an algebra if

- 1. $X \in \mathcal{A}$
- 2. $\forall A \in \mathcal{A}, X \setminus A \in \mathcal{A}$
- 3. $\forall \mathcal{F} \subseteq \mathcal{A} \left(\mathcal{F} \text{ finite } \Rightarrow \bigcup \mathcal{F} \in \mathcal{A} \right)$
- 4. $\forall \mathcal{F} \subseteq \mathcal{A} (\mathcal{F} \text{ finite } \Rightarrow \bigcap \mathcal{F} \in \mathcal{A})$

Definition 1.1.2 (σ -Algebra). Let X be any arbitrary set. A collection $\mathcal{A} \subseteq \mathscr{P}(X)$ is called an *algebra* if

- 1. $X \in \mathcal{A}$
- 2. $\forall A \in \mathcal{A}, X \setminus A \in \mathcal{A}$
- 3. $\forall \{A_i\}_{i\in\mathbb{N}}\subseteq\mathcal{A}, \bigcup_{i\in\mathbb{N}}A_i\in\mathcal{A}$
- 4. $\forall \{A_i\}_{i\in\mathbb{N}} \subseteq \mathcal{A}$, $(\mathcal{F} \text{ finite } \Rightarrow \bigcap_{i\in\mathbb{N}} A_i \in \mathcal{A})$

Example 1.1.3 (Some families of sets that are algebras or σ -algebras , and some that are not). Here's a list of examples:

- 1. Let *X* be any set. Let A = P(X). Then *A* is a σ -algebra on *X*.
- 2. Let X be any set. Let A be the collection of all subsets A of X such that A or A^c is countable. Then A is σ -algebra.

Proposition 1.1.4. Let X be any set. The intersection of an arbitrary nonempty collection of σ -algebras on X is a σ -algebra on X.

1.2 Measures

Example 1.2.1.

2 Lecture 2

2.1 Lebesgue Integral