

MOSFET

700V CoolMOS™ P7 Power Device

CoolMOS[™] is a revolutionary technology for high voltage power MOSFETs, designed according to the superjunction (SJ) principle and pioneered by Infineon Technologies.

The latest CoolMOS™ P7 is an optimized platform tailored to target cost sensitive applications in consumer markets such as charger, adapter, lighting, TV, etc.

The new series provides all the benefits of a fast switching Superjunction MOSFET, combined with an excellent price/performance ratio and state of the art ease-of-use level. The technology meets highest efficiency standards and supports high power density, enabling customers going towards very slim designs.

*1: Internal body diode *2: Integrated ESD diode

Features

- Extremely low losses due to very low FOM R_{DS(on)}*Q_q and R_{DS(on)}*E_{oss}
- Excellent thermal behavior
- Integrated ESD protection diode
- Low switching losses (E_{oss})
- Product validation acc. JEDEC Standard

Benefits

- · Cost competitive technology
- Lower temperature
- High ESD ruggedness
- Enables efficiency gains at higher switching frequencies
- Enables high power density designs and small form factors

(PB)

Potential applications

Recommended for Flyback topologies for example used in Chargers, Adapters, Lighting Applications, etc.

Product validation

Qualified according to JEDEC Standard

Please note: For MOSFET paralleling the use of ferrite beads on the gate or seperate totem poles is generally recommended.

Table 1 Key Performance Parameters

Parameter	Value	Unit
V _{DS} @ T _{j=25°C}	700	V
R _{DS(on),max}	0.36	Ω
$Q_{g,typ}$	16.4	nC
$I_{D,pulse}$	34	Α
E _{oss} @ 400V	1.8	μJ
$V_{(GS)th,typ}$	3	V
ESD class (HBM)	2	

Type / Ordering Code	Package	Marking	Related Links
IPA70R360P7S	PG-TO 220 FullPAK	70S360P7	see Appendix A

700V CoolMOS™ P7 Power Device IPA70R360P7S

Table of Contents

Description	. 1
Maximum ratings	. 3
Thermal characteristics	. 3
Electrical characteristics	. 4
Electrical characteristics diagrams	. 6
Fest Circuits	10
Package Outlines	
Appendix A	12
Revision History	
Frademarks	13
Disclaimer	13

700V CoolMOS™ P7 Power Device **IPA70R360P7S**

1 Maximum ratings at $T_j = 25$ °C, unless otherwise specified

Table 2 Maximum ratings

Danamatan	Oh a l		Value	s		
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Continuous drain current ¹⁾	I _D	-	-	12.5 7.5	А	T _C = 20°C T _C = 100°C
Pulsed drain current ²⁾	I _{D,pulse}	-	-	34.0	Α	T _C =25°C
Application (Flyback) relevant avalanche current, single pulse ³⁾	I _{AS}	-	-	4.5	А	measured with standard leakage inductance of transformer of 10μH
MOSFET dv/dt ruggedness	dv/dt	-	-	100	V/ns	V _{DS} =0400V
Gate source voltage	V _{GS}	-16 -30	-	16 30	V	static; AC (f>1 Hz)
Power dissipation	P _{tot}	-	-	26.5	W	T _C =25°C
Operating and storage temperature	T _j , T _{stg}	-40	-	150	°C	-
Continuous diode forward current	I _S	-	-	5.7	Α	T _C =25°C
Diode pulse current ²⁾	I _{S,pulse}	-	-	34.0	Α	T _C = 25°C
Reverse diode dv/dt ⁴⁾	dv/dt	-	-	1	V/ns	V _{DS} =0400V, I _{SD} <=I _S , T _j =25°C
Maximum diode commutation speed ⁴⁾	di _f /dt	-	-	50	A/μs	$V_{DS} = 0400 \text{V}, I_{SD} <= I_S, T_j = 25^{\circ}\text{C}$
Insulation withstand voltage	V _{ISO}	-	-	2500	V	V _{rms} , T _C =25°C, t=1min

2 Thermal characteristics

Table 3 **Thermal characteristics**

Doromotor	Symbol	Values			Unit	Note / Test Condition
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Thermal resistance, junction	R _{thJC}	-	-	4.7	°C/W	-
Thermal resistance, junction - ambient		-	-	80	°C/W	leaded
Thermal resistance, junction - ambient for SMD version	R _{thJA}	-	-	-	°C/W	n.a.
Soldering temperature, wavesoldering only allowed at leads	T _{sold}	-	-	260	°C	1.6 mm (0.063 in.) from case for 10s

 $^{^{1)}}$ DPAK / IPAK equivalent. Limited by $T_{j\,\text{max}}.$ T_{j} = 20°C. Maximum duty cycle D=0.5 $^{2)}$ Pulse width t_{p} limited by $T_{j,\text{max}}$ $^{3)}$ Proven during verification test. For explanation please read AN - CoolMOS $^{\text{TM}}$ 700V P7. $^{4)}$ V_{DClink} =400V; $V_{\text{DS,peak}}$
 $< V_{\text{(BR),DSS}}$; identical low side and high side switch with identical R_{G}

700V CoolMOS™ P7 Power Device IPA70R360P7S

3 Electrical characteristics

Table 4 Static characteristics

Danamatan	Ol	Values			N	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Drain-source breakdown voltage	V _{(BR)DSS}	700	-	-	V	V_{GS} =0V, I_D =1mA
Gate threshold voltage	$V_{(GS)th}$	2.50	3	3.50	V	$V_{\rm DS}=V_{\rm GS},\ I_{\rm D}=0.15{\rm mA}$
•	I _{DSS}	-	- 10	1	μΑ	V _{DS} =700V, V _{GS} =0V, T _j =25°C V _{DS} =700V, V _{GS} =0V, T _j =150°C
Gate-source leakage current incl. Zener diode	I _{GSS}	-	-	1	μА	V _{GS} =20V, V _{DS} =0V
Drain-source on-state resistance	$R_{\mathrm{DS(on)}}$	-	0.30 0.67	0.36	Ω	V _{GS} =10V, I _D =3.0A, T _j =25°C V _{GS} =10V, I _D =3.0A, T _j =150°C
Gate resistance	R _G	-	30	-	Ω	f=1 MHz, open drain

Table 5 Dynamic characteristics

Damamatan	Oh. a.l.		Value	s	11	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Input capacitance	C _{iss}	-	517	-	pF	V _{GS} =0V, V _{DS} =400V, f=250kHz
Output capacitance	Coss	-	11	-	pF	V _{GS} =0V, V _{DS} =400V, f=250kHz
Effective output capacitance, energy related ¹⁾	C _{o(er)}	-	27	-	pF	V _{GS} =0V, V _{DS} =0400V
Effective output capacitance, time related ²⁾	C _{o(tr)}	-	329	-	pF	I_D =constant, V_{GS} =0V, V_{DS} =0400V
Turn-on delay time	t _{d(on)}	-	19	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =2.3A, $R_{\rm G}$ =5.3 Ω
Rise time	t _r	-	8	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =2.3A, $R_{\rm G}$ =5.3 Ω
Turn-off delay time	$t_{ m d(off)}$	-	100	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =2.3A, $R_{\rm G}$ =5.3 Ω
Fall time	t _f	-	18	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =2.3A, $R_{\rm G}$ =5.3 Ω

Table 6 Gate charge characteristics

Parameter	Cumbal	Values			11	Note / Took Condition
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Gate to source charge	Q_{gs}	-	2.3	-	nC	V_{DD} =400V, I_{D} =2.3A, V_{GS} =0 to 10V
Gate to drain charge	$Q_{ m gd}$	-	6.0	-	nC	$V_{\rm DD}$ =400V, $I_{\rm D}$ =2.3A, $V_{\rm GS}$ =0 to 10V
Gate charge total	Q g	-	16.4	-	nC	$V_{\rm DD}$ =400V, $I_{\rm D}$ =2.3A, $V_{\rm GS}$ =0 to 10V
Gate plateau voltage	V _{plateau}	-	4.4	-	V	V_{DD} =400V, I_{D} =2.3A, V_{GS} =0 to 10V

 $^{^{1)}}$ $C_{\text{o(er)}}$ is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 400V $^{2)}$ $C_{\text{o(tr)}}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 400V

700V CoolMOS™ P7 Power Device

IPA70R360P7S

Table 7 Reverse diode characteristics

Parameter	Cumbal	Values			11	Nata / Tast Candition
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Diode forward voltage	V _{SD}	-	0.9	-	V	V_{GS} =0V, I_F =3.8A, T_j =25°C
Reverse recovery time	t _{rr}	-	210	-	ns	V _R =400V, I _F =2.3A, di _F /d <i>t</i> =50A/μs
Reverse recovery charge	Qrr	-	1	-	μC	V _R =400V, I _F =2.3A, di _F /dt=50A/μs
Peak reverse recovery current	I _{rrm}	-	10	-	Α	V _R =400V, I _F =2.3A, di _F /d <i>t</i> =50A/μs

4 Electrical characteristics diagrams

5 Test Circuits

Table 8 Diode characteristics

Table 9 Switching times

Table 10 Unclamped inductive load

6 Package Outlines

Figure 1 Outline PG-TO 220 FullPAK, dimensions in mm/inches

Final Data Sheet	11	Rev. 2.2, 2020-01-27

Н

L

L1 øP 28.70

12.78

2.83

3.00

3.15

29.75

13.75

3.45

3.38

700V CoolMOS™ P7 Power Device IPA70R360P7S

7 Appendix A

Table 11 Related Links

• IFX CoolMOS™ P7 Webpage: www.infineon.com

• IFX Design tools: www.infineon.com

700V CoolMOS™ P7 Power Device

Revision History

IPA70R360P7S

Revision: 2020-01-27, Rev. 2.2

Previous Revision

Tovicus Novicin						
Revision	Date	te Subjects (major changes since last revision)				
2.0	2016-10-11	Release of final version				
2.1	2018-02-12	Corrected front page text				
2.2	2020-01-27	Updated package drawing, symbol ID and product validation				

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2020 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.