Chapter 4:Physical Layer

PHYSICAL LAYER

Source coding (data compression)

- At the transmitter end, the information source is first encoded with a source encoder
 - Exploit the information statistics
 - Represent the source with a fewer number of bits,
 - → source codeword
- Performed at the application layer

Channel coding (error control coding)

- Source codeword is then encoded by the channel encoder
- channel codeword
 - Goal: address the wireless channel errors that affect the transmitted information

- The encoded channel codeword is then interleaved to combat the bursty errors
- Channel coding and the interleaving mechanism help the receiver either to
 - Identify bit errors to initiate retransmission
 - Correct a limited number of bits in case of errors.

- Then, an analog signal (or a set thereof) is modulated by the digital information to create the waveform that will be sent over the channel
- Finally, the waveforms are transmitted through the antenna to the receiver

- The transmitted waveform travels through the channel
- Meanwhile, the waveform is attenuated and distorted by several wireless channel effects

Information Processing

Wireless channel propagation

- Attenuation: As the signal wave propagates through air, the signal strength is attenuated.
 - Proportional to the distance traveled over the air
 - Results in path loss for radio waves
- Reflection and refraction: When a signal wave is incident at a boundary between two different types of material
 - a certain fraction of the wave bounces off the surface, *reflection*.
 - a certain fraction of the wave propagates through the boundary, refraction.

Wireless channel propagation

- Diffraction: When signal wave propagates through sharp edges such as the tip of a mountain or a building, the sharp edge acts as a source,
 - New waves are generated
 - Signal strength is distributed to the new generated waves.
- Scattering: In reality, no perfect boundaries. When a signal wave is incident at a rough surface, it scatters in different directions

Wireless Channel Model

- Path-loss
- Multi-path effects
- Channel errors
- Signals-to-bits
- Bits-to-packets

Overview

- Frequency bands
- Modulation
- Signal Distortion Wireless Channel Errors
- From waves to bits
- Channel models
- Transceiver design

Wireless Channel

- Wireless transmission distorts any transmitted signal
 - Wireless channel describes these distortion effects
- Sources of distortion
 - Attenuation Signal strength decreases with increasing distance
 - Reflection/refraction Signal bounces of a surface; enter material
 - Diffraction start "new wave" from a sharp edge
 - Scattering multiple reflections at rough surfaces

Attenuation

- Results in path loss
- Received signal strength is a function of the distance d between sender and transmitter
- Friis free-space model
 - Signal strength at distance d relative to some reference distance d₀ < d for which strength is known
 - do is far-field distance, depends on antenna technology

Attenuation

Friis free-space model

$$P_{\text{recv}}(d) = \frac{P_{\text{tx}} \cdot G_t \cdot G_r \cdot \lambda^2}{(4\pi)^2 \cdot d^2 \cdot L}$$

$$= \frac{P_{\text{tx}} \cdot G_t \cdot G_r \cdot \lambda^2}{(4\pi)^2 \cdot d_0^2 \cdot L} \cdot \left(\frac{d_0}{d}\right)^2 = P_{\text{recv}}(d_0) \cdot \left(\frac{d_0}{d}\right)^2$$

Non-line-of-sight

- Because of reflection, scattering, ..., radio communication is not limited to direct line of sight communication
 - Effects depend strongly on frequency, thus different behavior at higher frequencies

Non-line-of-sight

- Different paths have different lengths = propagation time
 - Results in delay spread of the wireless channel

Multi-path

- Brighter color = stronger signal
- Simple (quadratic) free space attenuation formula is not sufficient to capture these effects

Generalizing the Attenuation Formula

- To take into account stronger attenuation than only caused by distance (e.g., walls, ...), use a larger exponent $\gamma > 2$
 - γ is the path-loss exponent

$$P_{\mathsf{recv}}(d) = P_{\mathsf{recv}}(d_{\mathsf{O}}) \cdot \left(\frac{d_{\mathsf{O}}}{d}\right)^{\gamma}$$

Rewrite in logarithmic form (in dB):

$$\mathsf{PL}(d)[\mathsf{dB}] \ = \ \mathsf{PL}(d_0)[\mathsf{dB}] \ + 10\gamma \log_{10}\left(rac{d}{d_0}
ight)$$

Generalizing the Attenuation Formula

- Obstacles, multi-path, etc?
- Experiments show can be represented by a random variable
 - Equivalent to multiplying with a lognormal distributed r.v. in metric units! lognormal fading

$$\mathsf{PL}(d)[\mathsf{dB}] \ = \ \mathsf{PL}(d_0)[\mathsf{dB}] \ + 10\gamma \log_{10}\left(rac{d}{d_0}
ight) + X_\sigma[\mathsf{dB}]$$

Log-normal Fading Channel model

Overview

- Frequency bands
- Modulation
- Signal distortion wireless channels
- From waves to bits
- Channel models
- Transceiver design

Noise and interference

- So far: only a single transmitter assumed
 - Only disturbance: self-interference of a signal with multipath "copies" of itself
- In reality, two further disturbances
 - Noise due to effects in receiver electronics, depends on temperature
 - Interference from third parties
 - Co-channel interference: another sender uses the same spectrum
 - Adjacent-channel interference: another sender uses some other part of the radio spectrum, but receiver filters are not good enough to fully suppress it

Symbols and bit errors

- Extracting symbols out of a distorted/corrupted wave form is fraught with errors
 - Depends essentially on strength of the received signal compared to the corruption
 - Captured by signal to noise and interference ratio (SINR)

$$\mathsf{SINR} = \mathsf{10} \, \mathsf{log_{10}} \left(rac{P_{\mathsf{recv}}}{N_0 + \sum_{i=1}^k I_i}
ight)$$

Symbols and Bit Errors

- For WSN
 - Interference is usually low -> MAC protocols
 - SINR ~ SNR
 - $SNR = P_r P_n (in dB)$
- P_n Noise power (noise floor)

Noise Floor

- Changes with time
- Varies according to location (indoor vs. outdoor)
- Even if received power is the same, SNR varies with time!

Bit Error Rate

- p_b Probability that a received bit will be in error
 - 1 sent → 0 received
- p_b is proportional to SNR (channel quality)
 - Exact relation depends on modulation scheme

Channel Models

Channel Models

- Main goal: Stochastically capture the behavior of a wireless channel
 - Main options: model the SNR or directly the bit errors
- Simplest model
 - Transmission power and attenuation constant
 - Noise an uncorrelated Gaussian variable
 - Additive White Gaussian Noise model, results in constant SNR

Channel Models

- Non-line-of-sight path
 - Amplitude of resulting signal has a Rayleigh distribution (Rayleigh fading)
- One dominant line-of-sight plus many indirect paths
 - Signal has a *Rice* distribution (*Rice fading*)

- Typical WSN properties
 - Low power communication
 - Small transmission range
 - Implies small delay spread (nanoseconds, compared to micro/milliseconds for symbol duration)
 - ! Frequency-non-selective fading, low to negligible intersymbol interference
 - Coherence bandwidth often > 50 MHz

- Some example measurements
 - γ path loss exponent
 - Shadowing variance σ²

environment	γ (95% conf. bounds)	σ (95% conf. bounds)
outdoor	4.7 (4.30 - 5.10)	4.6 (2.80 - 6.40)
indoor	3.0 (2.67 - 3.23)	3.8 (2.60 - 5.00)

$$P_r(d) = P_t - PL(d_0) - 10\eta \log\left(\frac{d}{d_0}\right) + X_{\sigma}$$

- Log-normal fading channel best characterizes WSN channels
- Empirical evaluations for Mica2

- PRR Packet reception rate (1-p_b)^k
- Transitional region for packet reception
 - Not too good, not too bad

- PRR significantly varies in the transitional region
- d = 20m
 - PRR = [0,1]
- We cannot operate solely in the connected region
 - Communication distance too short

Channel Model for WSN

Marco Zuniga, Bhaskar Krishnamachari, "An Analysis of Unreliability and Asymmetry in Low-Power Wireless Links", ACM Transactions on Sensor Networks, Vol 3, No. 2, June 2007. (Conference version: "Analyzing the Transitional Region in Low Power Wireless Links", IEEE SECON 2004)

Channel Models - Digital

- Directly model the resulting bit error behavior (p_b)
- Each bit is erroneous with constant probability, independent of the other bits
 - Binary symmetric channel (BSC)
- Capture fading models' property that channel is in different states!

 Markov models states with different BERs
 - Example: Gilbert-Elliot model with "bad" and "good" channel states and high/low bit error rates

Channel Models - Digital

- Fractal channel models describe number of (in-)correct bits in a row by a heavy-tailed distribution
 - Burst errors (bit errors are NOT independent)

- Frequency bands
- Modulation
- Signal distortion wireless channels
- From waves to bits
- Channel models

- Frequency bands
- Modulation
- Signal distortion wireless channels
- From waves to bits
- Channel models

Radio spectrum for communication

- Which part of the electromagnetic spectrum is used for communication
 - Not all frequencies are equally suitable for all tasks e.g., wall penetration, different atmospheric attenuation (oxygen resonances, ...)

Frequency allocation

- Some frequencies are allocated to specific uses
 - Cellular phones, analog television/radio broadcasting, DVB-T, radar, emergency services, radio astronomy, ...
- Particularly interesting: ISM bands ("Industrial, scientific, medicine") license-free operation

Some typical ISM bands				
Frequency	Comment			
13,553-13,567 MHz				
26,957 – 27,283 MHz				
40,66 – 40,70 MHz				
7.33 – 464 Mi Iz	Europe			
900 – 928 MHz	Americas			
2,4 – 2,5 GHz	WLAN/WPAN			
5,725 – 5,875 GHz	WLAN			
24 – 24,25 GHz				

Example: US frequency allocation

- Frequency bands
- Modulation
- Signal distortion wireless channels
- From waves to bits
- Channel models

Transmitting Data Using Radio Waves

- Basics: Wireless communication is performed through radio waves
 - Transmitter can send a radio wave
 - Receiver can detect the wave and its parameters
- Typical radio wave = sine function:

$$s(t) = A(t)\sin(2\pi f(t)t + \phi(t))$$

- Parameters: amplitude A(t), frequency f(t), phase ϕ (t)
- Modulation: Manipulate these parameters

Modulation

- Data to be transmitted is used to select transmission parameters as a function of time
- These parameters modify a basic sine wave, which serves as a starting point for *modulating* the signal onto it
- This basic sine wave has a center frequency f_c
- The resulting signal requires a certain bandwidth to be transmitted (centered around center frequency)

Modulation (Keying)

- Use data to modify
 - Amplitude Amplitude Shift Keying (ASK)
 - Frequency Frequency Shift Keying (FSK)
 - Phase Phase Shift Keying (PSK)

Receiver: Demodulation

- Receiver tries to match the received waveform with the tx'ed data bit
 - Necessary: one-to-one mapping between data and waveform
- Problems (Wireless Channel Errors)
 - Carrier synchronization: Frequency can vary between sender and receiver (drift, temperature changes, aging, ...)
 - Bit synchronization: When does symbol representing a certain bit start/end?
 - Frame synchronization: When does a packet start/end?
- Biggest problem: Received signal is not the transmitted signal!

Bit Error Rate

Mica2 nodes use frequency shift keying (FSK)

$$p_b^{FSK} = \frac{1}{2}e^{-\frac{Eb/No}{2}}; Eb/No = SNR$$
Bandwidth
Bit rate

Bit Error Rate

CC2420 (MicaZ, Tmote, SunSPOT) use offset quadrature phase shift keying (O-QPSK) with direct sequence spread spectrum (DSSS)

$$p_b^{OQPSK} = Q(\sqrt{Eb/No)_{DS}})$$

$$(Eb/No)_{DS} = \frac{2N(Eb/No)}{N + \frac{4}{3}Eb/No(K+1)}$$
of chips per bit (16) =2 for MicaZ

Radio	RFM	Infineon	TI	TI	Zeevo
	TR1000	TDA5250	CC1000	CC2420	ZV4002
Platforms	WeC, Rene	eyesIFX	Mica2Dot, Mica2	MicaZ, TelosB	Imote
	Dot, Mica		BTNode	SunSPOT, Imote2	BTNode
Standard	N/A	N/A	N/A	IEEE 802.15.4	Bluetooth
Data Rate (kbps)	2.4-115.2	19.2	38.5	250	723.2
Modulation	OOK/ASK	ASK/FSK	FSK	OQPSK	FHSS-GFSK
Radio Frequency (MHz)	916	868	315/433/868/915	2.4GHz	2.4GHz
Supply Voltage (V)	2.7-3.5	2.1-5.5	2.1-3.6	2.1-3.6	0.85-3.3
TX Max (mA/dBm)	12 / -1	11.9 / 9	26.7 / 10	17.4 / 0	32/4
TX Min (mA/dBm)	N/A	4.9 / -22	5.3 / -20	8.5 / -25	N/A
RX (mA)	1.8-4.5	8.6-9.5	7.4-9.6	18.8	32
Sleep (µA)	5	9	0.2-1	0.02	3.3mA
Startup Time (ms)	12	0.77-1.43	1.5-5	0.3-0.6	N/A