Rubik's Cube Solver

MUSTAFA MAHMOUD 01131919 MARTI ZACH 01430672

Overview

Goal

- Reconstruct constellation of Rubik's Cube
- Appropriate representation
- Feed into solver (or at least verify correctness)
- Input
 - Ordinary webcam video stream or input video
- ▶ Tools
 - Python
 - Image Processing and Computer Vision libraries (OpenCV)

Object Models

- Very explicit and well defined problem
- ▶ 1 cube, 6 faces, 9 facelets, 4 corners

▶ Top Down

▶ Bottom Up

Finding features

- General envisioned pipeline
 - ▶ Noise Filtering, Grayscale Conversion, Edge Detector
 - Discriminate contours using different characteristics
 - Group facelets to faces, interpolate missing values
- Alternatives
 - Region or point based segmentation
 - Implicit modeling
 - ▶ Top down approach
 - ► Hough transform, ...

Edge based approach

Problems

- ► Finding Contours
 - ► Reflections, occlusions
 - Discriminating between wanted and unwanted contours
- Grouping Facelets
 - Stable mechanisms very hard to find (centroids, relative or absolute angles, line groupings)
- Dealing with uncertainty
 - ▶ New result contradicting the other ones
- ▶ Filter Parameters
 - Very much dependent on environment

In Depth: Finding, discriminating and grouping contours

- Finding
 - All of them can never reliably be found
 - Hugely dependent of filter parameters (especially of edge detector)
- Discriminating
 - Characteristics of all facelets
 - ▶ Same size, quadratic, uniform intensity values inside, not too big, not too small
- Grouping
 - Characteristics of facelets on same face
 - ► Similar angles, pairwise similar alignment of lines
 - Projective geometry makes this a hard task