CURVES

- Regular Curves
- Arc Length
- Scalar Line Integrals

REGULAR CURVES

REGULAR CURVES

DEFINITION

A C^1 regular, parametrised curve is a C^1 function

$$c(t) = (x_1(t), \ldots, x_n(t))$$

with c'(t)
eq 0 and $t \in (a,b)$.

EXAMPLES

- Circle: $ec{c}(t) = (\cos(t), \sin(t))$, $0 \leq t \leq 2\pi$
- Helix: $ec{c}(t) = (\cos(t), \sin(t), t)$, $t \in \mathbb{R}$
- \overline{ullet} Parabola: $ec{c}(t)=(t,t^2)$, $t\in\mathbb{R}$
- Cardiod:

$$ec{c}(t) = ig((1-\cos(t))\cos(t), (1-\cos(t))\sin(t)ig)$$

ARC LENGTH

ARC LENGTH

DEFINITION

The length, L (or arc length) of a C^1 regular, parametrised curve $c:[a,b] o \mathbb{R}^n$ is

$$L = \int_C ds = \int_a^b ig|c'(t)ig|dt$$

where
$$ds = |c'(t)|dt$$
.

ARC LENGTH MOTIVATION

Partition [a,b] as $a=t_0 < t_1 \cdots < t_{n-1} < t_n = b$.

$$egin{align} L &\simeq \sum_{i=1}^n |c(t_i) - c(t_{i-1})| \ &= \sum_{i=1}^n \left| rac{c(t_i) - c(t_{i-1})}{t_i - t_{i-1}}
ight| (t_i - t_{i-1}) \ &= \sum_{i=1}^n \left| rac{\Delta c}{\Delta t}
ight| \Delta t
ightarrow \int_a^b |c'(t)| dt ext{ as } n
ightarrow \infty. \end{align}$$

ARC LENGTH EXAMPLES

- ullet Straight line: $c(t)=p+\overline{tV}$
- ullet Circle: $c(t)=(R\cos t,R\sin t)$
- Parabola: $c(t)=(t,t^2)$

SCALAR LINE INTEGRALS

SCALAR LINE INTEGRALS

DEFINITION

The integral of f along C is

$$\int_C f ds = \int_a^b f(c(t)) \left| c'(t)
ight| dt$$

SCALAR LINE EXAMPLES

EXAMPLE

$$c(t) = (\cos t, \sin t, t)$$

$$f(x,y,z) = x^2 + y^2 + z^2$$
.