

دانشگاه صنعتی امیرکبیر

دانشکده مهندسی کامپیوتر و فناوری اطلاعات

آزمایشگاه معماری کامپیوتر

پروژه پایانی درس

در پروژه ی نهایی این درس هدف جمعبندی مطالب ارائهشده در طول ترم و طراحی یک پردازنده ی AUT-MIPS است. در ایس پروژه یک پردازنده ۱۶ بیتی با ویژگیهایی که در ادامه می آید باید طراحی گردد. این پردازنده نسبت به پردازنده می MIPS پروژه یک پردازنده ۲۶ بیت به پردازنده ۱۶ بیت بوده و به همین دلیل در این پردازنده ۲۲ به جای آنکه با ۴ جمع تغییراتی کرده است. طول دستورات این پردازنده به به دسته کلی I-Type ،R-Type و I-Type ،R-Type یردازنده به سه دسته کلی I-Type ،R-Type و J-Type تقسیم می شود که در ادامه ویژگیهای هرکدام ذکر می شود.

۱- R-Type این دستور همانند دستور R-Type در پردازندهی MIPS است که دو ثبات مبداء و یک ثبات مقصد دریافت می کند. ساختار دستور و جدول opcode این دستور در ادامه آمده است:

| 1512   | 119      | 86       | 53          | 20       |
|--------|----------|----------|-------------|----------|
| 4-bits | 3-bit    | 3-bit    | 3-bit       | 3-bit    |
| opcode | source 1 | source 2 | destination | function |

شكل ۱: ساختار دستور R-Type

| opcode | function | operation |
|--------|----------|-----------|
| 0000   | 000      | add       |
| 0000   | 001      | sub       |
| 0000   | 010      | and       |
| 0000   | 011      | or        |
| 0000   | 100      | xor       |
| 0000   | 101      | nor       |
| 0000   | 110      | slt       |
| 0000   | 111      | jr        |

## جدول۱: مقدار opcode برای دستورات R-Type

۲- Type استورات I-Type مانند دستورات I-Type در MIPS می باشد با این تفاوت که مقدار I-Type بیتی است. چهار بیت اول (بیتهای ۱۲ الی ۱۵ می باشد. ماشین کد دستورات I-Type در شکل ۲ آورده شده است. چهار بیت اول (بیتهای ۱۲ الی ۱۵ الی ۱۵ مشخص می کند. سه بیت بعد (بیتهای ۶ الی ۱۷) شماره ثبات دوم را مشخص می کند. ۶ بیت آخر (بیتهای صفر الی ۵) مقدار immediate را مشخص می کند.

برای دستورات ori ،addi و ori ,addi بیت اول (بیتهای ۱۲ الی ۱۵ موصم می کند. سه بیت بعد (بیتهای ۹ الی ۱۸) شماره ثبات مقصد را مشخص می کند. ۶ بیت الی ۱۱) شماره ثبات مقصد را مشخص می کند. ۶ بیت آخر (بیتهای صفر الی ۵) مقدار ۱۶ مقدار ۱۶ مشخص می کند. این مقدار ۶ بیتی مقدار ۶ مقدار ۱۶ مقدار ۱۶ مقدار ۱۶ مقدار ۱۶ متو و بعد با محتوای ثبات عملیات انجام می شود. مقادیر opcode برای دستورات andi ،addi و ori، در جدول ۲ آمده ا

|   | 1512   | 119       | 86        | 50        |
|---|--------|-----------|-----------|-----------|
|   | 4-bits | 3-bit     | 3-bit     | 6-bit     |
| ĺ | opcode | register1 | register2 | Immediate |

شكل ٢- قالب دستورات I-Type

| opcode | Operation |
|--------|-----------|
| 0001   | addi      |
| 0010   | andi      |
| 0011   | ori       |

جدول ۲- مقادیر opcode برای دستورات andi ،addi و ori

برای این پردازنده دستورات شیفت جزء قالب I-Type حساب می شوند. برای دستورات (shift left logical) برای این پردازنده دستورات (shift right arithmetic) برای دستورات (shift right logical) برای در (shift right logical) برای در اینتهای ۱۲ الی ۱۲) شماره ثبات مبدأ را مشخص می کند. سه بیت بعد (بیتهای ۶ الی ۸) شماره ثبات مقصد را مشخص می کند. مقدار شیفت یک مقدار بدون علامت می مشخص می کند. ۶ بیت آخر (بیتهای صفر الی ۵) مقدار شیفت را مشخص می کند. مقدار شیفت یک مقدار بدون علامت می باشد. مقادیر opcode برای دستورات s (shift left logical) برای دستورات s (shift left logical) برای دستورات s (shift left logical) برای دستورات s (shift right logical) برای دستورات s (shift right arithmetic) برای دستورات s (میرا مشخص می کند.

| Opcode | Operation |
|--------|-----------|
| 0100   | sll       |
| 0101   | srl       |
| 0110   | sra       |

جدول ۳- مقادیر opcode برای دستورات srl ، sll و sra

برای این پردازنده دستورات (load (lhw) و store (shw) جزء قالب I-Type حساب می شوند. دستورات (lhw و lhw برتیب یک داده ۱۶ بیتی را در حافظه می نویسد. در این پردازنده مانند MIPS ترتیب یک داده ۱۶ بیتی را در حافظه می نویسد. در این پردازنده مانند MIPS آدرس دهی displacement (محتوای ثبات + offset) برای محاسبه آدرس استفاده می شود. برای دستورات lhw چهار بیت اول (بیتهای ۱۲ الی ۱۲ الی ۱۲ الی ۱۵) مهدار opcode (ا مشخص می کند. سه بیت بعد (بیتهای ۱۹ الی ۱۱) شماره ثبات پایه را مشخص می کند. سه بیت بعد (بیتهای ۶ الی ۸) مقدار offste را مشخص می کند که باید که باید sign extend شود و بعد با ثبات پایه جمع شود و آدرس را تولید کند. برای دستورات shw بیت بعد (بیتهای ۱۷ الی ۱۵) شماره ثبات پایه را مشخص می کند. سه بیت بعد (بیتهای ۱۹ الی ۱۱) شماره ثبات پایه را مشخص می کند. سه بیت بعد (بیتهای ۶ الی ۱۸) شماره ثبات پایه جمع شود و آدرس را تولید کند. مقدار علامت دار می باشد. مقادیر offste یک مقدار علامت دار می باشد. مقادیر opcode برای دستورات sign extend و امده است.

| opcode | Operation |
|--------|-----------|
| 0111   | lhw       |
| 1000   | shw       |

جدول ۴- مقادیر opcode برای دستورات lhw و shw

برای این پردازنده دستورات پرش (branch) جزء قالب I-Type حساب می شوند. دستورات پرش محتوای دو ثبات را با یکدیگر مقایسه می کنند و بر اساس نوع مقایسه، اگر نتیجه درست باشد پرش انجام می شود و در غیر اینصورت انجام نمی شود. آدرس پرش به اینصورت محاسبه می شود که مقدار ۶ بیتی immediate به مقدار ۱۶ بیتی sign extend می شود سپس در دو ضرب می گردد و بعد با PC+4 جمع می شود. نتیجه این جمع آدرس محل پرش را مشخص می کند: (PC+4+(sign extend (imm)\*2))

جدول ۵ انواع دستورات پرش و opcode آنها را نشان می دهد.

| opcode | instruction | Operation                       |
|--------|-------------|---------------------------------|
| 1001   | beq         | Branch if equal                 |
| 1010   | bne         | Branch if not equal             |
| 1011   | blt         | Branch if less than             |
| 1100   | bgt         | Branch if greater than          |
| 1101   | ble         | Branch if less than or equal    |
| 1110   | bge         | Branch if greater than or equal |

جدول ۵- مقادیر opcode برای دستورات پرش

۳- J-Type از نوع J-Type می باشد. ماشین کد دستورات J-Type در شکل ۳ آورده شده است. در این دستور ۱۲ بیت پایین دستور ۱۲ بیتی می شود) و دستور ۱۲ بیت پایین دستور (بیتهای صفر الی ۱۱) در ۲ ضرب می شود (تبدیل به یک مقدار ۱۳ بیتی می شود) و سپس سه بیت بالای PC به ابتدای آن اضافه می شود تا یک مقدار ۱۶ بیتی ایجاد گردد و سپس در PC نوشته می شود. Opcode دستور mp برابر "1111" می باشد.

PC ← PC[15..13] && (instr[11..0]) && "0"

| 1512   | 110          |
|--------|--------------|
| 4-bits | 12-bit       |
| Opcode | jump address |
| (1111) |              |

شكل ٣- قالب دستورات J-Type

موفق باشيد