Введение в теорию волновых процессов

В. А. Костин

18 апреля 2023 г.

1. Занятия 8 и 9 (на 20 марта 13:00 и 14:40)

1.1. Предыдущее занятие: устойчивость однородного потока транспорта

На прошлом занятии мы рассмотрели задачу об устойчивости однородного стационарного потока транспорта с учётом зависимости плотности потока q от градиента плотности ρ_x (а не только от самого значения плотности ρ) и конечности времени реакции водителя τ . Исходными уравнениями служили уравнения

$$\rho_t + (v\rho)_x = 0, \tag{1}$$

$$v_t + vv_x = -\frac{1}{\tau} \left[v - V(\rho) + v \frac{\rho_x}{\rho} \right], \tag{2}$$

где v — (гидродинамическая) скорость потока, $V(\rho)$ — зависимость скорости однородного потока от плотности (желаемая скорость, к которой стремится водитель в однородном потоке с плотностью ρ), ν — постоянный коэффициент. Линеаризованное уравнение для возмущения плотности $r=\rho-\rho_0$ относительно однородного стационарного потока с плотностью ρ_0 имеет вид

$$\frac{\partial r}{\partial t} + c_0 \frac{\partial r}{\partial x} = \nu \frac{\partial^2 r}{\partial x^2} - \tau \left(\frac{\partial}{\partial t} + v_0 \frac{\partial}{\partial x} \right)^2 r,$$

где $v_0 = V(\rho_0)$ — скорость невозмущённого однородного потока и $c_0 = v_0 + \rho_0 V'(\rho_0)$ — скорость распространения возмущения (скорость звука) в этом потоке. Соответствующий критерий устойчивости имеет вид

$$\nu > (v_0 - c_0)^2 \tau,$$

что в сущности означает, что для устойчивости потока водитель должен тем дальше смотреть вперёд, чем больше его время реакции.

1.2. Структура ударной волны

На этом занятии мы обсудим, к чему приводят эти эффекты для рассмотренных ранее ударных волн с разрывами. Начнём рассмотрение с поиска стационарных решений уравнений (1) и (2) вида

$$\rho(x,t) = \rho(\eta), \quad v(x,t) = v(\eta), \quad \eta = x - Ut,$$

где U — постоянная скорость стационарной волны (скорость перемещения профиля). Для простоты мы будем рассматривать лишь случай $\tau=0$, случай с $\tau>0$ обсуждается в книге [1], параграф 3.1. При $\tau=0$ уравнение (2) даёт $v=V(\rho)-\nu\rho_\eta/\rho$, а уравнение (1) переходит в уравнение второго порядка.

$$-U\rho_{\eta} + (v\rho)_{\eta} = 0, \tag{3}$$

Его фазовый портрет изображён на рисунке 1 для ранее использованной зависимости $Q(\rho) \equiv V(\rho)\rho = a\rho\ln(\rho_i/\rho)$, где a и ρ_i — константы. На этом портрете прямая $\rho_\eta=0$

Рис. 1: Фазовый портрет уравнения (3) для $Q(\rho)=a\rho\ln(\rho_i/\rho)$ и U/a=-0.3.

состоит из положения равновесия (соответствующих однородным стационарным потокам), а все траектории в верхней полуплоскости начинаются и заканчиваются на этой прямой, являясь, таким образом, гетероклиническими траекториями. Именно эти траектории определяют ограниченные решения уравнения (3), существующие при всех действительных η .

По смыслу задачи $0<\rho<\rho_j$, соответствующие этому условию траектории выделены на рисунке 1 красным цветом и большей толщиной линий (по сравнению с другими траекториями). Это решение (для одной из двух красных траекторий) изображено на рисунке 2. Для потока транспорта изображённое решение соответствует волне уплотнения (то есть снижения скорости) распространяющейся навстречу потоку; конкрентно для изображённого решения a=25 км/ч скорость исходного потока около 44 км/ч, скорость в пробке — всего 2 км/ч, а скорость стационарной волны U=-7.5 км/ч.

Рис. 2: Гетероклиническое движение — профиль стационарной волны $Q(\rho)=a\rho\ln(\rho_j/\rho)$ и U/a=-0.3.

Легко найти, как связаны эти скорости в общем случае. Для проинтегрируем уравнение (3) и получим

$$(U-v)\rho = A = \text{const},\tag{4}$$

где A — некоторая константа. Пусть $\rho_1=\rho(\eta\to-\infty)$ и $\rho_2=\rho(\eta\to+\infty)$, тогда, так как $\rho_\eta(\eta\to\pm\infty)=0$, этот интеграл (4) даёт

$$U\rho_1 - Q(\rho_1) = U\rho_2 - Q(\rho_2) = A$$

И

$$U = \frac{Q(\rho_2) - Q(\rho_1)}{\rho_2 - \rho_1}. (5)$$

Как видно, связь между скоростью U и параметрами состояний при $\eta \to \pm \infty$ оказалась такой же, как и в условии на разрыве в слабом решении (полученном на предыдущих занятиях)!

Это и не удивительно. В самом деле, постоянство интеграла (3) даёт уравнение первого порядка с разделяющимися переменными

$$\nu \rho_x = Q(\rho) - \rho U + A.$$

Проинтегрировав это уравнение, получим

$$\frac{\eta}{\nu} = \int \frac{d\rho}{Q(\rho) - U\rho + A}.\tag{6}$$

Как видно, изменение ν можно скомпенсировать изменением масштаба по оси η . В пределе $\nu \to 0$ (соответствующему ранее разобранному случаю, в котором получались разрывы), профиль сжимается вдоль оси η и превращается в ступечатый переход от ρ_1 к ρ_2 , перемещающийся со скоростью, определяемой равенством (5).

Описанные выше свойства присущи не только задаче о потоке транспорта, но возникают всегда при введении диффузионного слагаемого (пропорционального ρ_{xx}) в дифференциальный закон сохранения

$$\rho_t + c(\rho)\rho_x = \nu \rho_{xx} \tag{7}$$

с $c(\rho) = Q'(\rho)$. При этом резкие разрывы, присутствующие в слабых решениях без диффузии, сглаживаются и формируются плавные скачки и ступеньки, наподобие скачка, изображенного на рис. 2.

Важным моментом является знак скачка $\rho_2 - \rho_1$. Если $c'(\rho) \equiv Q''(\rho) > 0$, то волна опрокидывается вперёд и возникает ударная волна с $\rho_2 < \rho_1$ и, наоборот, при $c'(\rho)$ происходит опрокидывание назад и $\rho_2 > \rho_1$ [как на рисунке 2].

В частном случае, если $Q(\rho)$ квадратично по ρ , $Q(\rho)=\alpha\rho^2+\beta\rho+\gamma$, интеграл (6) можно вычислить аналитически,

$$\frac{\eta}{\nu} = \frac{1}{\alpha \left(\rho_1 - \rho_2\right)} \ln \frac{\rho_1 - \rho}{\rho - \rho_2}.\tag{8}$$

Характерная толщина переходной области определяется $\nu/\alpha(\rho_1-\rho_2)$. Когда эта толщина мала по сравнению с остальными длинами задачи (масштаби неоднородности), то переход можно удовлетворительно аппроксимировать разрывом, как в ранее рассмотренных решениях. Следует отметить, что хотя эта толщина стремится к 0 при $\nu\to 0$, для достаточно слабых волн при $\rho_1-\rho_2\to 0$ она становится неизбежно сколь угодно большой для любого сколь угодно малого фиксированного ν . Однако для слабых волн обычно любую зависимость можно аппроксимировать подходящей квадратичной зависимостью и применить (8). Стоит также отметить, что, как мы видели ранее, в большинстве задач $\rho_2-\rho_1\to 0$ при $t\to\infty$ и на конечной стадии волны оказываются чрезвычайно слабыми и разрывная теория становится заведомо неприменимой. Обычно эта стадия не представляет интереса, так как при этом ударные волны оказываются очень слабыми.

С этой оговоркой разобранный пример частного решения в виде стационарной волны позволяет надеяться, что в общем случае при $\nu \to 0$ непрерывные решения уравнения (7) стремятся к (ранее разобранным) разрывным слабым решениям уравнения

$$\rho_t + c(\rho)\rho_x = 0, (9)$$

для которых на разрыве выполняется условие (5), где U — скорость разрыва. Чтобы это обосновать необходимо рассмотреть более общие решения уравнения (7). Мы это сделаем для случая квадратичной зависимости $Q(\rho)$. Оказывается для такой зависимости не только можно найти аналитическое выражение для профиля стационарной волны, но и решить уравнение (7) в явном виде, что будет сделано в следующем разделе.

Перед этим сделаем ещё оговорку о системах с запаздыванием, например, системе (1) и (2) с ненулевым τ . В таких системах, запаздывание может осложнить рассмотрение и наличие диффузионного слагаемого не всегда достаточно для сглаживания разрыва, получаемого из простой теории, соответствующей уравнению (9). При этом может понадобится привлечение нескольких законов сохранения в интегральной форме или учёта эффектов более высокого порядка (для деталей, см. параграфы 3.1 и 3.2 в [1]). Для потока транспорта же не вполне ясно, какой закон сохранения соответствует уравнению запаздывания (2).

1.3. Уравнение Бюргерса

1.3.1. Замечания о применимости

Итак, рассмотрим уравнение непрерывности

$$\rho_t + q_x = 0, \quad q = Q(\rho) - \nu \rho_x.$$

Умножив дифференциальное уравнение на $c'(\rho)$, сведём его к уравнению для c. Для произвольной зависимости $Q(\rho)$ получившееся уравнение имеет вид

$$c_t + cc_x = \nu c_{xx} - \nu c''(\rho) \rho_x^2. \tag{10}$$

В случае квадратичной зависимости $Q(\rho)$ последнее слагаемое исчезает и уравнение переходит в уравнение Бюргерса

$$c_t + cc_x = \nu c_{xx}$$
.

В общем случае, можно надеяться, что слагаемое $vc''(\rho)\rho_x^2$ не приводит к существенным эффектам и уравнение Бюргерса полезно для качественного описания даже вне своей области применимости. Одной из причин является то, что отношение $vc''(\rho)\rho_x^2$ к vc_{xx} имеет порядок амплитуды возмущения и можно ожидать, что уравнение Бюргерса будет хорошим приближением для малых амплитуд, причём при пренебрежении $vc''(\rho)\rho_x^2$ не происходит ошибок накопления (например, при $t\to\infty$), приводящих к неравномерности приближения. Для сравнения, линеаризация слагаемого cc_x приводит к такой неравномерности, как обсуждалось ранее.

1.3.2. Замена Коула — Хопфа

Поэтому далее считаем $Q(\rho)$ квадратичной зависимостью и рассматриваем уравнение Бюргерса (1.3.1) вместо общего уравнения (10). Замечательное свойство этого уравнения заключается в том, что нелинейная замена, называемая заменой Коула — Хопфа,

$$c = -2\nu \frac{\varphi_x}{\varphi} \tag{11}$$

сводит его к уравнению теплопроводности. Убедиться в этом легче в два этапа. Сначала сделаем замену $c=\psi_x$, проинтегрируем уравнение Бюргерса и получим

$$\psi_t + \frac{1}{2}\psi_x^2 = \nu\psi_{xx}.$$

Теперь подставим $\psi = -2\nu \ln \varphi$, откуда

$$\varphi_t = \nu \varphi_{xx}$$
.

Нелинейное слагаемое полностью исключено. Получившееся линейное уравнение теплопроводности хорошо известно и может решаться множеством способов.

В частности, начальной задаче с начальным условием c(x,0)=F(x) при t=0 соответствует задача Коши для уравнения теплопроводности с начальным условием, следующим из замены Коула — Хопфа (11),

$$\varphi(x,0) = \exp\left[-\frac{1}{2\nu} \int_0^x F(\eta) \, d\eta\right].$$

Решение задачи Коши для уравнения теплопроводности на бесконечной прямой известно из курса «Уравнения математической физики» и имеет вид

$$\varphi(x,t) = \frac{1}{\sqrt{4\pi\nu t}} \int_{-\infty}^{\infty} \varphi(\eta,0) \exp\left[-\frac{(x-\eta)^2}{4\nu t}\right] d\eta.$$

Из него заменой Коула — Хопфа (11) получаем решение начальной задачи для уравнения Бюргерса

$$c(x,t) = \frac{\int_{-\infty}^{\infty} \frac{x-\eta}{t} e^{-G/2\nu} d\eta}{\int_{-\infty}^{\infty} e^{-G/2\nu} d\eta},$$
(12)

где

$$G(\eta) = \int_0^{\eta} F(\zeta) \, d\zeta + \frac{(x - \eta)^2}{2t}.$$
 (13)

1.3.3. Поведение при u o 0

Теперь, как и было заявлено, проверим, что при $\nu \to 0$ это решение стремится к решению уравнения $c_t + cc_x = 0$ с разрывными ударными волнами, скорость которых удовлетворяет условию $U = (c_1 + c_2)/2$, где c_1 и c_2 — значения c с двух сторон от разрыва. Для этого применим метод Лапласа к интегралам в (12). Этот метод является простейшим вариантом метода перевала и основан на том факте, что при $\nu \to 0$, основные вклады в интегралы дают окрестности стационарных точек $\eta = \xi_j(x,t)$, где ξ_j удовлетворяют условиям

$$G'(\xi_j) = F(\xi_j) - \frac{x - \xi_j}{t} = 0 \tag{14}$$

И

$$G''(\xi_j) = F'(\xi_j) + \frac{1}{t} > 0,$$

а $j\in J$ — индекс, нумерующий не более, чем счётное число стационарных точек; мы предполагаем для простоты, что начальное условие F(x) дифференцируемо хотя бы один раз. Главный член асипмтотики, получаемой по методу Лапласа в невырожденном случае, равен сумме вкладов от стационарных точек, где каждый вклад получается заменой выражения в экспоненте многочленом Тейлора второго порядка в стационарной точке, а предэкспоненциального множителя — его значением в стационарной точке. То есть при $\nu\to 0$ получаем

$$\int_{-\infty}^{\infty} g(\eta) e^{-G/2\nu} d\eta \sim \sum_{j \in J} g(\xi_j) \sqrt{\frac{4\pi\nu}{G''(\xi_j)}} e^{-G(\xi_j)/2},$$

где $g(\eta) = (x - \eta)/t$ для числителя (12) и $g(\eta) = 1$ — для знаменателя:

$$\int_{-\infty}^{\infty} \frac{x - \eta}{t} e^{-G/2\nu} d\eta \sim \sum_{j \in J} \frac{x - \xi_j}{t} \sqrt{\frac{4\pi\nu}{G''(\xi_j)}} e^{-G(\xi_j)/2\nu},$$
$$\int_{-\infty}^{\infty} e^{-G/2\nu} d\eta \sim \sum_{j \in J} \sqrt{\frac{4\pi\nu}{G''(\xi_j)}} e^{-G(\xi_j)/2\nu}.$$

В ситуации общего положения среди стационарных точек, есть только одна ξ_m , отвечающая минимуму $G(\xi_j)$, то есть $G(\xi_m) < G(\xi_j)$ при $j \neq m$. Именно она соответствует преобладающему вкладу в пределе $\nu \to 0$. Таким образом, в сумме можно оставить только вклад от ξ_m :

$$\int_{-\infty}^{\infty} \frac{x - \eta}{t} e^{-G/2\nu} d\eta \sim \frac{x - s_m}{t} \sqrt{\frac{4\pi\nu}{G''(\xi_m)}} e^{-G(\xi_m)/2\nu},$$
$$\int_{-\infty}^{\infty} e^{-G/2\nu} d\eta \sim \sqrt{\frac{4\pi\nu}{G''(\xi_m)}} e^{-G(\xi_m)/2\nu}.$$

Подставляя эти асимптотики в (12), получаем

$$c \sim \frac{x - \xi_m}{t}.\tag{15}$$

При этом в силу условия (14)

$$\frac{x-\xi_m}{t}=F(\xi_m)$$

и, таким образом, полученную асимптотику (15) для c можно переписать как

$$c \sim F(\xi_m), \quad x = \xi_m + F(\xi_m) t$$
 (16)

ИЛИ

$$c \sim F(x - ct), \tag{17}$$

что в точности совпадает с решением уравнения $c_t + cc_x = 0$, полученным ранее методом характеристик; стационарная точка соответствует характеристической переменной. Однако, мы помним, что записи (16) и (17) могут давать многозначное решение, а для устранения многозначности приходится вводить разрывы. Нужно убедиться, что ξ_m при этом всегда соответствует той ветке, которая остаётся после введения разрыва для конкретных x и t. Для этого достаточно рассмотреть ситуации, в которых может иметь место разрыв и убедиться, что на них выполняется соответствующее условие $U = (c_1 + c_2)/2$. В этих ситуациях среди стационарных точек имеется по меньшей мере две с минимальными значениями $G(\xi_j)$. Общее положение (без вырождения) соответствует двум таким точкам, пусть это ξ_1 и ξ_2 , $G(\xi_1) = G(\xi_2) < G(\xi_j)$ при $j \neq 1, 2$. В силу (13)

$$\int_0^{\xi_1} F(\zeta) \, d\zeta + \frac{(x - \xi_1)^2}{2t} = \int_0^{\xi_2} F(\zeta) \, d\zeta + \frac{(x - \xi_2)^2}{2t}.$$

Применяя условие (14), переписываем это равенство как

$$\frac{F(\xi_1) + F(\xi_2)}{2} (\xi_2 - \xi_1) = \int_{\xi_1}^{\xi_2} F(\zeta) \, d\zeta.$$

Дифференцируя это выражение по времени, получим

$$\frac{F(\xi_1) + F(\xi_2)}{2} \left(\dot{\xi}_2 - \dot{\xi}_1 \right) + \frac{F'(\xi_1) \, \dot{\xi}_1 + F'(\xi_2) \, \dot{\xi}_2}{2} \left(\xi_2 - \xi_1 \right) = \dot{\xi}_2 F(\xi_2) - \dot{\xi}_1 F(\xi_1) \,. \tag{18}$$

Исключая x из равенств

$$x = \xi_{1,2} + F(\xi_{1,2}) t, \tag{19}$$

находим $\xi_2-\xi_1=-t[F(\xi_2)-F(\xi_1)].$ Подставив последнее в (18), приведя подобные и сократив на общий множитель, запишем

$$\dot{\xi}_1 [1 + F'(\xi_1) t] + \dot{\xi}_2 [1 + F'(\xi_2) t] = 0.$$

Сравнивая последнее уравнение с временными производными тех же равенств (19),

$$U = \frac{dx}{dt} = \dot{\xi}_{1,2} \left[1 + F'(\xi_{1,2}) t \right] + F(\xi_{1,2}), \tag{20}$$

находим $U = [F(\xi_2) + F(\xi_1)]/2 = (c_2 + c_1)/2$, что и требовалось показать.

Таким образом, мы показали, что действительно в пределе $v \to 0$ решение уравнения Бюргерса переходит в слабые решения уравнения $c_t + cc_x = 0$ с условием $U = (c_2 + c_1)/2$ на разрыве. На практике, чтобы можно было пользоваться разрывными решениями нужно потребовать малость некоторой безразмерной величины пропорциональной v. Например, в задаче с одиночном горбом, возмущающем однородное состояние $c = c_0 = \lim_{x \to \pm \infty} F(x)$, в качестве такого безразмерного параметра можно рассматривать $1/\mathrm{Re}$, где

$$Re = \frac{A}{2\nu}, \quad A = \int_{-\infty}^{\infty} \left[F(\xi) - c_0 \right] dx.$$

Число Re характеризует отношение нелинейного члена $(c-c_0)c_x$ к диффузионному νc_{xx} и часто называется числом Рейнольдса.

1.3.4. Стационарная волна

Решение уравнения Бюргерса в виде стационарной волны по сути уже найдено нами и выражается (8). Осталось лишь разрешить (8) относительно ρ , которое линейно связано с $c=2\alpha\rho+\beta$:

$$c = c_2 + \frac{c_1 - c_2}{1 + \exp\left[\frac{c_1 - c_2}{2\nu}(x - Ut)\right]} \equiv U - \frac{c_1 - c_2}{2} \operatorname{th}\left[\frac{c_1 - c_2}{4\nu}(x - Ut)\right], \quad U = \frac{c_1 + c_2}{2}, \quad (21)$$

где
$$c_1=(x\to -\infty)$$
 и $c_2=(x\to +\infty).$

Это же решение может быть получено с помощью замены Коула — Хопфа из решения уравнения теплопроводности

$$\varphi = f_1 + f_2$$
, $f_j = \exp\left(-\frac{c_j x}{2\nu} + \frac{c_j^2 t}{4\nu} - b_j\right)$,

где b_j — константы, определяющие исходное положение стационарной волны; решению (21) соответствуют $b_1=b_2=0$. Выражение для c имеет вид

$$c = -2\nu \frac{\varphi_x}{\varphi} = \frac{c_1 f_1 + c_2 f_2}{f_1 + f_2}.$$

Естественным обобщением этого решения являются решения того же вида, но содержащие более двух слагаемых

$$\varphi = \sum_{j=1}^{N} f_j, \quad c = \frac{\sum_{j=1}^{N} c_j f_j}{\sum_{j=1}^{N} f_j}.$$

При достаточно малых ν такие решения описывают взаимодействие N-1 ударных волн, в ходе которого они догоняют друг друга и сливаются в более сильные волны. В результате остаётся лишь одна волна с величиной скачка, определяемой $\max_{i,k}(c_i-c_k)$.

1.3.5. Практические задания

Практическое задание 1. Найти решение уравнения Бюргерса $c_t + cc_x = \nu c_{xx}$ с начальным условием $c(x,t=0) = A\sin kx$, где ν , A и k — положительные константы. Записать главный член асимптотики решения при $t \to \infty$. Построить графики, качественно описывающие эволюцию поля c(x,t) во времени. Указания: использовать замену Коула — Хопфа, уравнение теплопроводности решать методом разделения переменных, выразить ответ через модифицированные функции Бесселя $I_n(z)$, используя их интегральное представление $I_n(z) = (1/2\pi) \int_0^{2\pi} e^{z\cos\theta} \cos n\theta \, d\theta$.

Практическое задание 2. Найти решение уравнения Бюргерса $c_t + cc_x = \nu c_{xx}$ с начальным условием $c(x,t=0) = c_1$ при x < 0 и $c(x,t=0) = c_2 < c_1$ при x > 0, где ν и $c_{1,2}$ — положительные константы. Показать, что при $t \to \infty$ решение стремится к стационарной волне (21). Построить графики, качественно описывающие эволюцию поля c(x,t) во времени. Указания: применить формулу (12); выразить ответ через функцию ошибок.

Индивидуальное задание к зачёту (для одного студента из группы). Найти аналитическое решение уравнения Бюргерса $c_t + cc_x = \nu c_{xx}$ с начальным условием $c(x,t=0) = c_0 + A\delta(x)$, где ν , c_0 и A — положительные константы, $\delta(x)$ — дельта-функция. Построить графики решений (серию зависимостей от x при разных t) для начальных чисел Рейнольдса $Re = A/2\nu = 0.1$, 1 и 10 при $c_0 = 0$. Найти зависимость числа Рейнольдса от времени. Найти масштабную временную зависимость (требуется лишь закон спадания, коэффициент находить не нужно) мощности потерь, определённой как

$$P(t) = \frac{d}{dt} \int_{-\infty}^{\infty} \frac{c^2 - c_0^2}{2} dx.$$

Найти главный член асимптотики при $t \to \infty$. Указания: использовать замену $c = c_0 + \tilde{c}$, $x = c_0 t + \tilde{x}$; применить формулу (12); выразить ответ через функцию ошибок.

Список литературы

[1] Дж. Уизем. Линейные и нелинейные волны. / М.: Мир, 1977. — 624 с.