ESERCIZI TUTORATO

- 1. Nello spazio vettoriale \mathbb{R}^4 sia U il sottospazio generato dal vettore u=(12,3,-2,0) e sia W il sottospazio di equazione $x_1-2x_2+3x_3-4x_4=0$.
 - Si dimostri che $U \subset W$ e si completi la base di U ad una base di W.
 - Sia $V \subset \mathbb{R}^4$ il sottospazio generato dai vettori $v_1 = (1, 2, 3, 0)$ e $v_2 = (2, 3, 4, -1)$. Si determini una base di $V \cap W$ e una base di V + W.
 - Dato il vettore $v_t = (t, 0, 1, 2)$, si determini il valore di t per cui i vettori v_1, v_2, v_t sono linearmente dipendenti.
 - Si dica se esiste una funzione lineare $f: \mathbb{R}^4 \to \mathbb{R}^4$ tale che si abbia W = Kerf e U = Imf.
- 2. Siano dati i vettori $v_1 = (4, -2, 6), v_2 = (0, 4, 4), v_3 = (-1, 2, 0) \in \mathbb{R}^3$ e si consideri la funzione lineare $f : \mathbb{R}^4 \to \mathbb{R}^3$ definita da $f(1, 0, 1, 0) = v_1, f(1, 0, -1, 0) = v_2$ e tale che i vettori (0, 1, 0, 0) e (2, 0, -1, -3) appartengano a $f^{-1}(v_3)$.
 - Si scriva la matrice A di f rispetto alle basi canoniche e si determinino delle basi di Kerf e di Imf.
 - Sia W il sottospazio di \mathbb{R} di equazione $x_1 + 3x_3 + x_4 = 0$. Si determini una base di W e una base di f(W). Si determini inoltre una base di $Ker(f) \cap W$.
 - Si scriva la matrice della funzione indotta da f, $f|_W: W \to \mathbb{R}^3$, rispetto alla base di W trovata nel punto precedente e alla base canonica del codominio.
- 3. Nello Nello spazio affine euclideo tridimensionale sono dati i punti A = (3, -1, 1), B = (2, 1, 3) e la retta r di equazioni x 3y = 2 e x + y 2z = 6.
 - Si determinino le equazioni cartesiane della retta s passante per $A \in B$.
 - Si stabilisca se le rette r e s sono incidenti, parallele oppure sghembe.
 - \bullet Si determini la distanza della retta r dalla retta s.
 - Si determini l'equazione cartesiana del piano π che passa per i punti A e B e che interseca la retta r in un punto C tale che il triangolo ABC sia rettangolo, con l'angolo retto in A.
 - Dato il punto P=(1,-3,5) se ne determini la proiezione ortogonale sul piano π .