Universidad del Valle de Guatemala

Departamento de Matemática Licenciatura en Matemática Aplicada

Estudiante: Rudik Roberto Rompich

Correo: rom19857@uvg.edu.gt

Carné: 19857

MM2033 - Teoría de Conjuntos - Catedrático: Nancy Zurita 15 de agosto de 2021

HT 5

Instrucciones: Del libro de Set Theory de Charles Pinter, resuelva los ejercicios 3, 6, 8, 9 de la sección 1.5 del Capítulo 1.

1. Problemas

Problema 1.1. (Ejercicio 3) Probar el teorema 1.38. Sean G y H los gráficos. Si ran $H \subseteq \text{dom } G$ entonces $\text{dom}(G \circ H) = \text{dom } H$.

Demostración. Sean G y H gráficas.

- $(\Longrightarrow) \ \text{Sup\'ongase} \ x \in \text{dom}(G \circ H) \implies \exists y \ni (x,y) \in G \circ H \implies \exists z \land \exists y \ni (x,z) \in H \land (z,y) \in G \implies \text{dom} \ H \land \text{ran} \ G \implies \text{dom} \ H. \ \text{Por lo tanto,} \ \text{dom}(G \circ H) \subseteq \text{dom} \ H$
- (\iff) Supóngase $x \in \text{dom } H \implies \exists u \ni (x,u) \in H$. Por hipótesis, $(u \in \text{ran } H \implies u \in \text{dom } G) \iff (\exists v \ni (v,u) \in H \implies \exists w \ni (u,w) \in G)$, entonces tenemos $\exists u \land \exists w \ni (x,u) \in H \land (u,w) \in G \iff \exists w \ni (x,w) \in G \circ H \iff x \in \text{dom}(G \circ H) \implies (x \in H \implies x \in \text{dom}(G \circ H)) \implies \text{dom } H \subseteq \text{dom}(G \circ H)$.

Por lo tanto, $dom(G \circ H) = dom H$.

Problema 1.2. (Ejercicio 6) Si G, H, J, y K son gráficos, probar:

- 1. Si $G \subseteq H$ y $J \subseteq K$, entonces $G \circ J \subseteq H \circ K$,
- 2. $G \subseteq H$ si y solo si $G^{-1} \subseteq H^{-1}$.

Problema 1.3. (Ejercicio 8) Sean G y H gráficos, probar:

Si $G \subseteq A \times B$, entonces $G^{-1} \subseteq B \times A$.

Si $G \subseteq A \times B$ y $H \subseteq B \times C$, entonces $H \circ G \subseteq A \times C$.

Problema 1.4. (Ejercicio 9) Si G y H son gráficos, probar:

1. $\operatorname{dom}(G \cup H) = (\operatorname{dom} G) \cup (\operatorname{dom} H)$.

- 2. $\operatorname{ran}(G \cup H) = (\operatorname{ran} G) \cup (\operatorname{ran} H)$.
- 3. $\operatorname{dom} G \operatorname{dom} H \subseteq \operatorname{dom}(G H)$.
- 4. $\operatorname{ran} G \operatorname{ran} H \subseteq \operatorname{ran}(G H)$.