Confusion and diffusion

Claude Shannon (inventor of information theory) gave design criteria for symmetric ciphers (late 1940s):

- Kerckhoff's principle: only the key should be secret, not the algorithm
- use confusion: hide local patterns in the language (simplest: digrams)
- use diffusion: spread statistical structure of plaintext in long-range statistics of ciphertext

The Vigenère cipher hides small-scale structure: digrams are encoded by different keys, but fails at diffusion: nothing is moved/spread.

Simple transposition ciphers are good at diffusion: they move around, but difficult to achieve confusion.

Modern ciphers get both confusion (small-scale) and diffusion (large-scale), e.g. by combining substitution and transposition in a product cipher.

Feistel networks

A Feistel network:

- 1 split input in two halves L_0 , R_0
- 2 perform *n* rounds:
 - $L_i \oplus F(R_i, k_i)$
 - swap halves
- 3 end with a swap

where k_i is a *subkey* for round i, generated from the main key k.

Feistel

Feistel (1970s) used Shannons ideas in designing ciphers. Standard design since then!

Make product cipher by alternating substitution and permutation:

$$c = E_k(m) = S_n \circ P_{n-1} \circ \cdots \circ S_2 \circ P_1 \circ S_1(m)$$

- Substitution: replace one (symbol/bitstring) by another but reversibly
- Permutation: change the order of (symbol/bitstring)s (reversible)

Feistel network

Feistel decryption

Same algorithm to decrypt, but keys in reverse order.

Figure 3.6 Feistel Encryption and Decryption

Feistel net parameters

- Block size (64-256 bits)
- Key size (56-256 bits)
 Larger ⇒ greater security (diffusion) but slower.
- Number of rounds (10-16)
 One is too little, more increase security, to a limit. (Depends on F.)
- Subkey generation algorithm
- Round function *F*Both should be complex to resist cryptanalysis.

Feistel decryption

Same algorithm to decrypt, but keys in reverse order. Works regardless of F!

```
\begin{array}{rcl} LE_{16} & = & RE_{15} = RD_0 = LD_1 \\ RE_{16} & = & LE_{15} \oplus F(RE_{15}, k_{16}) \\ RD1 & = & LD_0 \oplus F(RD_0, k_{16}) \\ & = & RE_{16} \oplus F(RE_{15}, k_{16}) \\ & = & LE_{15} \oplus F(RE_{15}, k_{16}) \oplus F(RE_{15}, k_{16}) \\ & = & LE_{15} \\ & \vdots \\ RD_{16} & = & LE_0 \\ LD_{16} & = & RE_0 \end{array}
```

Feistel features

- Fast implementation
 - Feistel nets can typically be implemented efficiently (fast en/decryption) in both hardware *and software*. This makes it easier to use.
- Ease of analysis
 Concise and clear description ⇒ easier to analyse ⇒ safer to trust.

Data Encryption Standard (1977)

No longer standard, but instructive example of a Feistel net.

- encrypts 64-bit blocks with 56-bit key
- hardware and software implementations
- one of the most analysed algorithms
 - unknown criteria for design (but more is known now)
 - US export control on implementations for long time (lifted now)
- based on Lucifer algorithm (Feistel/IBM, 1973) with 128-bit keys and blocks, but scaled down by NSA

DES: subkey generation

- Each round uses subkey k_i based on k, which is 64 bits
- Permuted Choice 1 (PC1) discards parity bits (so 56 remain) and permutes
- Split in two 28-bit halves C_0, D_0
- Each round:
 - $C_i = LS_i(C_{i-1})$, $D_i = LS_i(D_{i-1})$ where LS_i is a left circular shift of $(1, 1, 2, 2, \dots, 2, 1, 2, \dots, 2, 2, 1)$ bits
 - $k_i = PC2(C_i \cdot D_i)$ where PC2 is Permuted Choice 2 (permutes and discards) $56 \Rightarrow 48$ bits

DES: Overview

10

12

Properties of DES

- Decryption: like Feistel (keys in reverse order)
- Symmetry:
 - c = DES(m, k) iff $\overline{c} = DES(\overline{m}, \overline{k})$ where \overline{x} is the bitwise negation of x
 - cuts search space in half
- Weak keys:
 - key cause involution: $E_k(E_k(m)) = m$
 - four for DES: $\langle 0,0 \rangle$, $\langle -1,0 \rangle$, $\langle 0,-1 \rangle$, $\langle -1,-1 \rangle$
- Semi-weak keys:
 - such that $E_{k_1}(E_{k_2}(m)) = m$
 - 6 such pairs for DES (few enough to check for)

Breaking DES by brute force

1977: estimated breakable in 1 day by \$20M machine 1981: estimated breakable in 2 days by \$50M machine

1997: broken in 96 days by 70 000 machines, testing 7 billion keys/s (DESCHALL project)

1998: less than 56 hours by special hardware, \$250K incl design and development ("Deep Crack")

1999: 22 h 15 min, "Deep Crack" + 100 000 machines, testing 245 billion keys/s

2007: 6.4 days, \$10K hardware, 120 FPGAs (COPACOBANA project)

Avalanche effect

Small changes in m or k give big changes in c, and changes increase for each round

Example: one bit change in plaintext or key

Change in plaintext		Change in key	
Round	Bits that differ	Round	Bits that differ
0	1	0	0
1	6	1	2
2	21	2	14
3	35	3	28
4	39	4	32
÷	÷	:	÷
14	46	14	26
15	29	15	34
16	34	16	35

15

1

Feistel net design criteria

• S-box design

- very careful for DES (see below)
- in general: randomly, randomly with testing, careful hand-crafting, mathematically

• Number of rounds

- DES: brute force requires 2⁵⁵ tests
- for DES with 16 rounds, *differential cryptanalysis* requires 2^{55.1} operations due to S-box design
- with 15 rounds, differential cr.an. would beat brute force
- Differential cryptanalysis invented ca 1990 but turns out IBM and NSA had it secretly since 1974

• Round function *F*:

- strict avalance criterion: any output bit changes with p=1/2 if a single input bit changes
- bit independence criterion: any two output bits should change independently when a single input bit changes

Other modern ciphers

E.g. IDEA, Blowfish, CAST, ...

- variable key length
- mixed operations (not only xor, not distributive/associative)
- data dependent rotations instead of S-boxes
- key dependent rotations and S-boxes
- variable *F*, block length, number of rounds
- operations on both halves

but (many) are just improvements of Feistel nets!

17