Principal Component Analysis

Max Turgeon

STAT 4690-Applied Multivariate Analysis

Population PCA i

- PCA: Principal Component Analysis
- Dimension reduction method:
 - Let $\mathbf{Y}=(Y_1,\ldots,Y_p)$ be a random vector with covariance matrix Σ . We are looking for a transformation $h:\mathbb{R}^p\to\mathbb{R}^k$, with $k\ll p$ such that $f(\mathbf{Y})$ retains "as much information as possible" about \mathbf{Y} .
- In PCA, we are looking for a linear transformation $f(y) = w^T y$ with maximal variance (where $\|w\| = 1$)

Population PCA ii

- More generally, we are looking for k linear transformations w_1, \ldots, w_k such that $w_j^T \mathbf{Y}$ has maximal variance and is uncorrelated with $w_1^T \mathbf{Y}, \ldots, w_{j-1}^T \mathbf{Y}$.
- First, note that $Var(w^T\mathbf{Y}) = w^T\Sigma w$. So our optimisation problem is

$$\max_{w} w^T \Sigma w, \quad \text{with } w^T w = 1.$$

 From the theory of Lagrange multipliers, we can look at the *unconstrained* problem

$$\max_{w,\lambda} w^T \Sigma w - \lambda (w^T w - 1).$$

Population PCA iii

• Write $\phi(w,\lambda)$ for the function we are trying to optimise. We have

$$\frac{\partial}{\partial w}\phi(w,\lambda) = \frac{\partial}{\partial w}w^T \Sigma w - \lambda(w^T w - 1)$$
$$= 2\Sigma w - 2\lambda w;$$
$$\frac{\partial}{\partial \lambda}\phi(w,\lambda) = w^T w - 1.$$

From the first partial derivative, we conclude that

$$\Sigma w = \lambda w$$
.

Population PCA iv

- From the second partial derivative, we conclude that $w \neq 0$; in other words, w is an eigenvector of Σ with eigenvalue λ .
- Moreover, at this stationary point of $\phi(w,\lambda)$, we have

$$Var(w^T \mathbf{Y}) = w^T \Sigma w = w^T (\lambda w) = \lambda w^T w = \lambda.$$

- In other words, to maximise the variance $Var(w^T\mathbf{Y})$, we need to choose λ to be the *largest* eigenvalue of Σ .
- By induction, and using the extra constraints $w_i^T w_j = 0$, we can show that all other linear transformations are given by eigenvectors of Σ .

Population PCA v

PCA Theorem

Let $\lambda_1 \geq \cdots \geq \lambda_p$ be the eigenvalues of Σ , with corresponding unit-norm eigenvectors w_1, \ldots, w_p . To reduce the dimension of \mathbf{Y} from p to k such that every component of $W^T\mathbf{Y}$ is uncorrelated and each direction has maximal variance, we can take $W = \begin{pmatrix} w_1 & \cdots & w_k \end{pmatrix}$, whose j-th column is w_j .

Properties of PCA i

- Some vocabulary:
 - $\mathbf{Z}_i = w_i^T \mathbf{Y}$ is called the *i*-th **principal component** of \mathbf{Y} .
 - w_i is the *i*-th vector of **loadings**.
- Note that we can take k = p, in which case we do not reduce the dimension of Y, but we transform it into a random vector with uncorrelated components.
- We have

$$\sum_{i=1}^{p} \lambda_i = \sum_{i=1}^{p} \operatorname{Var}(w_i^T \mathbf{Y}) = \sum_{i=1}^{p} \operatorname{Var}(\mathbf{Y}).$$

Properties of PCA ii

- Therefore, each linear transformation $w_i^T \mathbf{Y}$ contributes $\lambda_i / \sum_i \lambda_i$ as percentage of the overall variance.
- Selecting k: One common strategy is to select a threshold (e.g. c=0.9) such that

$$\frac{\sum_{i=1}^{k} \lambda_i}{\sum_{i=1}^{p} \lambda_i} \ge c.$$

Scree plot

- A scree plot is a plot with the sequence 1, ..., p on the x-axis, and the sequence $\lambda_1, ..., \lambda_p$ on the y-axis.
- Another common strategy for selecting k is to choose the point where the curve starts to flatten out.
 - Note: This inflection point does not necessarily exist, and it may be hard to identify.

Correlation matrix

- When the observations are on the different scale, it is typically more appropriate to normalise the components of Y before doing PCA.
 - The variance depends on the units, and therefore without normalising, the component with the "smallest" units (e.g. centimeters vs. meters) will be driving most of the overall variance.
- In other words, instead of using Σ , we can use the (population) correlation matrix R.
- Note: The loadings and components we obtain from Σ are **not** equivalent to the ones obtained from R.

Sample PCA

- In general, we do not the population covariance matrix Σ .
- Therefore, in practice, we estimate the loadings w_i through the eigenvectors of the sample covariance matrix S_n .
- As with the population version of PCA, if the units are different, we should normalise the components or use the sample correlation matrix.

Example i

```
C \leftarrow chol(S \leftarrow matrix(c(1, 0.5, 0.1,
                             0.5, 1, 0.5,
                             0.1, 0.5, 1),
                           ncol = 3)
set.seed(17)
X <- matrix(rnorm(300), 100, 3)</pre>
Z \leftarrow X \% * C ## ==> cov(Z) \sim= C'C = S
pca <- prcomp(Z)</pre>
```

Example ii

```
summary(pca)
## Importance of components:
                           PC1 PC2
                                        PC3
##
## Standard deviation 1.465 0.9422 0.6149
## Proportion of Variance 0.629 0.2602 0.1108
## Cumulative Proportion 0.629 0.8892 1.0000
screeplot(pca, type = 'l')
```

Example iii

Example 2 i

```
pca <- prcomp(USArrests, scale = TRUE)</pre>
summary(pca)
## Importance of components:
                                   PC2
                                          PC3
                                                    PC4
##
                             PC1
## Standard deviation 1.5749 0.9949 0.59713 0.4164
## Proportion of Variance 0.6201 0.2474 0.08914 0.0433
## Cumulative Proportion 0.6201 0.8675 0.95664 1.00000
```

Example 2 ii

```
screeplot(pca, type = 'l')
```

Example 2 iii

