PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-294438

(43) Date of publication of application: 09.10.2002

(51)Int.CI.

C23C 14/34 C22C 9/00

C22C 9/10 H01L 21/285

(21)Application number: 2001-

(71)Applicant: MITSUBISHI

102997

MATERIALS

CORP

(22)Date of filing:

02.04.2001 (72)Inventor: MORI AKIRA

(54) COPPER ALLOY SPUTTERING TARGET

backing plate by a hot isostatic pressing method.

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a copper alloy sputtering target of which the crystal grains grow little in jointing the target and a backing plate with a hot isostatic pressing method. SOLUTION: The copper alloy sputtering target has a composition comprising one or more sort of La, Mg, Li, Si, V, Zr, Hf, and Nb of 0.005-0.5 mass% in total, 0.1-5 ppm oxygen, and the balance Fe and unavoidable impurities. The copper alloy sputtering target with the backing plate includes jointing the above sputtering target with the

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's

decision of rejection

[Kind of final disposal of

application other than the

examiner's decision of rejection or

application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号 特開2002—294438

(P2002-294438A) (43)公開日 平成14年10月9日(2002.10.9)

(51) Int. C1. 7	識別記号	F I デーマコート' (参考
C23C 14/34		C23C 14/34 A 4K029
C22C 9/00		C22C 9/00 4M104
9/10	301	9/10
H01L 21/285		H01L 21/285 S
		301 Z
		審査請求 未請求 請求項の数3 〇L (全4頁)
(21)出願番号	特願2001-102997(P2001-10299	7) (71)出願人 000006264
	•	三菱マテリアル株式会社
(22)出顧日	平成13年4月2日(2001.4.2)	東京都千代田区大手町1丁目5番1号
		(72)発明者 森 暁
		兵庫県三田市テクノパーク12-6 三菱マ
		テリアル株式会社三田工場内
		(74)代理人 100076679
		弁理士 富田 和夫 (外1名)
		Fターム(参考) 4K029 BA21 BC01 BC03 BD02 DC04
		DC08 DC22
		4M104 BB04 CC01 DD40 HH20

(54) 【発明の名称】銅合金スパッタリングターゲット

(57) 【要約】

【課題】ターゲットとバッキングプレートを熱間静水圧 プレスにより接合する際に、結晶粒成長が小さい銅合金 スパッタリングターゲットを提供する。

【解決手段】 La, Mg, Li, Si, V, Zr, Hf, Nbの内の1種以上を合計で0.005~0.5質量%を含み、酸素:0.1~5ppmを含み、残部がCuおよび不可避不純物からなる組成を有する銅合金からなるスパッタリングターゲットとパッキングプレートを熱間静水圧プレスにより接合させてなる結晶粒成長の小さいバッキングプレート付き銅合金スパッタリングターゲット。

30

2

【特許請求の範囲】

【請求項1】 La, Mg, Li, Si, V, 2r, Hf, Nbの内の1種以上を合計で0.005~0.5質量%を含み、酸素:0.1~5ppmを含み、残部がCuおよび不可避不純物からなる組成を有する銅合金からなることを特徴とする銅合金スパッタリングターゲット。

1

【請求項2】 La, Mg, Li, Si, V, Zr, Hf, Nbの内の1種以上を合計で0.005~0.5質 量%を含み、酸素:0.1~5ppmを含み、残部がC10 uおよび不可避不純物からなる組成を有する銅合金からなるスパッタリングターゲットとパッキングプレートを熱間静水圧プレスにより接合させてなることを特徴とするバッキングプレート付き銅合金スパッタリングターゲット。

【請求項3】請求項1または2記載のターゲットを用いて形成したことを特徴とする耐食性に優れた薄膜。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、銅合金スパッタリン 20 グターゲット、特にターゲットとパッキングプレートを 熱間静水圧プレスにより接合する際に、結晶粒成長が小 さい銅合金スパッタリングターゲットに関するものであ る。

[0002]

【従来の技術】一般に、半導体デバイスの配線として、スパッタリングによって形成された薄膜配線を使用することは知られており、この薄膜配線はバッキングプレートにろう付けした純度:99.9999質量%以上の高純度銅製ターゲットをスパッタリング装置に取り付け、スパッタリングを行うことにより形成することが知られている。

【0003】前記高純度銅製ターゲットは結晶粒が微細であるほどパーティクルの発生が少なく、かつ均一な薄膜が得られると言われており、結晶粒が微細な高純度銅製ターゲットを得るために、その製造過程において急冷凝固させたり、加熱と鍛造とを繰り返したり、粉末冶金法による製造方法が提案されている。

[0004]

【発明が解決しようとする課題】近年、半導体デバイス 40 の薄膜配線の成膜スピードを向上させて一層のコスト削減が求められており、このために一層の高電力によるスパッタリングが行なわれている。かかる高電力によるスパッタリングを行なうと、ターゲットが過度に加熱されてターゲットとバッキングプレートの間に形成されているろう材が溶融して溶け出し、ろう材の一部が蒸発してスパッタリング薄膜を汚染することがある。これを避けるために、近年、高純度銅製ターゲットと純銅または純アルミニウムからなるバッキングプレートを重ねた状態で熱間静水圧プレスすることにより接合することが行な 50

われている。しかし、前述の方法で結晶粒が微細な高純 度銅製ターゲットを製造しても、結晶粒が微細な高純度 銅製ターゲットとバッキングプレートを重ねた状態で熱 間静水圧プレスすると、熱間静水圧プレス中に高純度銅 製ターゲットの結晶粒が成長して粗大化し、この粗大化 した結晶粒を有する高純度銅製ターゲットを用いてスパ ッタリングを行なうと、前述のようにパーティクルの発 生が多くなり、さらに形成される薄膜の厚さが不均一と なって好ましくない。

[0005]

【課題を解決するための手段】そこで、本発明者等は、 熱間静水圧プレス中に結晶粒が成長して粗大化すること のない高純度銅製ターゲットを得るべく研究を行った。 その結果、純度:99、9999%以上の高純度銅に、 La, Mg, Li, Si, V, Zr, Hf, Nbの内の 1種以上を合計で0.005~0.5質量%添加しさ らに酸素含有量を0.1~5ppmに調整した成分組成 の銅合金スパッタリングターゲットは、これをバッキン ググプレートに熱間静水圧プレスによって接合しても、 熱間静水圧プレスによる結晶粒の成長が小さくかつ微細 な組織を維持することができると共に、この銅合金スパ ッタリングターゲットを用いて得られたスパッタリング 薄膜は従来の高純度銅製ターゲットを用いて形成したス パッタリング薄膜と比べて電気的特性上の差異はなく、 かえって耐食性に優れるという研究結果が得られたので ある。

【0006】この発明は、上記の研究結果に基づいてなされたものであって、(1) La, Mg, Li, Si, V, Zr, Hf, Nb Oho Oho 1 種以上を合計で0.00 $5 \sim 0.5$ 質量%を含み、酸素: $0.1 \sim 5$ ppm を含み、残部がCu および不可避不純物からなる組成を有する網合金からなる網合金スパッタリングターゲット、

(2) La, Mg, Li, Si, V, Zr, Hf, Nb の内の1種以上を合計で $0.005\sim0.5$ 質量%を含み、酸素: $0.1\sim5$ ppmを含み、残部がCuおよび不可避不純物からなる組成を有する銅合金からなるスパッタリングターゲットとパッキングプレートを熱間静水圧プレスにより接合させてなるバッキングプレート付き銅合金スパッタリングターゲット、に特徴を有するものである。

【0007】前記(1)または(2)記載のターゲットを用いてスパッタリングすることにより得られた薄膜は耐食性が優れており、半導体デバイスの配線として優れたものである。したがって、この発明は、(3)前記

(1)または(2)記載のターゲットを用いてスパッタリングすることにより得られた薄膜、に特徴を有するものである。

[0008] この発明の銅合金スパッタリングターゲットを製造するには、純度:99.9999%以上の高純度電解銅を、不活性ガス雰囲気中の高純度グラファイト

モールド内にて高周波溶解することにより添加成分量および酸素量を調整し、このように成分調整して得られた溶湯を急冷凝固させ、さらに冷間圧延と焼鈍を繰り返したのち最後に歪取り焼鈍を施すことにより得ることができる。このようにして得られた銅合金スパッタリングターゲットを純銅製または純アルミニウム製バッキングプレートに重ね合わせ、これを熱間静水圧プレスすることによりターゲットとバッキングプレートを接合する。この時の熱間静水圧プレスは、温度:500~550℃、圧力:140~150MPaで行なう。

【0009】次に、この発明の銅合金スパッタリングターゲットにおける成分組成の限定理由を説明する。

(イ) La, Mg, Li, Si, V, Zr, Hf, Nb これら成分は微量含有することにより銅合金スパッタリングターゲットの結晶粒の成長を抑制する作用があるが、La, Mg, Li, Si, V, Zr, Hf, Nbの内の1種以上を合計で0.005質量%未満含んでも所望の効果が得られず、一方、0.5質量%を越えて含有すると、熱間静水圧プレス中の結晶粒の成長を抑制することができても、得られたスパッタリング薄膜の抵抗を増加させるので半導体デバイスの配線として使用するには好ましくない。したがって、この発明の銅合金スパッタリングターゲットに含まれるLa, Mg, Li, Si, V, Zr, Hf, Nbの内の1種以上を合計で0.005~0.5質量%(一層好ましくは0.01~0.3質量%)に定めた。

[0010] (口)酸素

酸素は、銅合金スパッタリングターゲットの結晶粒の成長を抑制する作用があるとともに、微量含有することによりスパッタリングして得られた薄膜の耐食性を向上さ 30 せる成分であるので0.1 p p m以上含有させる必要があるが、5 p p mを越えて含有するとかえって耐食性が低下するようになるので好ましくない。したがって、この発明の銅合金スパッタリングターゲットに含まれる酸素を0.1~5 p p m に定めた。

$[0\ 0\ 1\ 1]$

【発明の実施の態様】つぎに、この発明の銅合金スパッタリングターゲットを実施例により具体的に説明する。純度:99.9999質量%の高純度電解銅を用意し、この高純度電解銅をArガス雰囲気中の高純度グラファ 40イトモールド内にて高周波溶解することにより酸素含有量を調整し、このようにして得られた溶湯にLa, Mg, Li, Si, V, Zr, Hf, Nbを添加して成分調整したのち、冷却されたカーボン鋳型に鋳造し、さらに冷間圧延と焼鈍を繰り返したのち最終的に歪取り焼鈍

し、得られた圧延体の表面を旋盤加工して外径:300 mm×厚さ:5mmの寸法を有し、表1~2に示される成分 組成を有する本発明鋼合金スパッタリングターゲット (以下、本発明ターゲットという) 1~14および比較 銅合金スパッタリングターゲット(以下、比較ターゲッ トという) 1~9を作製した。さらに高純度電解銅に元 素を添加することなく従来銅合金スパッタリングターゲ ット(以下、従来ターゲットという)を作製した。これ らターゲットを切断し、切断面における平均結晶粒径を 10 測定し、その結果を熱間静水圧プレス(以下、HIPとい う)前の平均結晶粒径(A)として表1~2に示した。 【0012】さらに、純アルミニウム製バッキングプレ ートを用意し、この純アルミニウム製バッキングプレー トに前記本発明ターゲット1~14、比較ターゲット1 ~9および従来ターゲットを重ね合わせ、温度:500 ℃、圧力:150MPaの条件でHIPを施すことによ り本発明ターゲット1~14、比較ターゲット1~9お よび従来ターゲットを純アルミニウム製バッキングプレ ートに接合してバッキングプレート付きターゲットを作 製した。得られたパッキングプレート付きターゲットを 切断し、ターゲットの断面における平均結晶粒を測定 し、その結果をHIP後の平均結晶粒径(B)として表 $1 \sim 2$ に示した。さらに、前記平均結晶粒径(A)と (B) の比: (B) / (A) を粒成長比として求め そ の結果を表1~2に示した。

【0013】本発明ターゲット1~14.比較ターゲット1~9および従来ターゲットを純アルミニウム製バッキングプレートにHIP接合して得られたバッキングプレート付きターゲットを用い、

0 電源:交流方式、

電力:4KW、

雰囲気ガス組成:A r 、 スパッタガス圧:1 P a 、

ターゲットと基体との距離:80㎜、

スパッタ時間:5分、

の高出力条件で単結晶Siウェハー(基体)の表面に、厚さ: $2\mu m$ 、幅: $100\mu m$ の寸法を有する線状薄膜を平行縞状に100本形成した。

【0014】得られた前記100本の線状薄膜を50℃に保持されたNH,Cl:1%水溶液に30分間浸漬し、100本の線状薄膜の両端に通電して導通テストを行ない、導通している線状薄膜の本数を測定し、これを表1~2に示すことにより薄膜の耐食性を評価した。

[0015]

【表1】

種別		成分組成(質量%)			平均結晶粒径(μm)		粒成長比	100本の線
		La, Mg, Li, Si, V, Zr, Hf, Nb	酸素 (ppm)	Cu	HIP前 (A)	HIP後 (B)	(B)/ (A)	状薄膜の導通 本数(本)
	1	La:0.005	0.1	残部	10	12	1.2	100
	2	Mg: 0.006	0.1	残部	5	5	1	100
	3	Li:0.005	0.5	残部	5	4	0.8	100
	4	Si:0.007	0.5	残部	8	8	1	100
本	5	V: 0.01	0.5	残部	9	8	0.89	100
発明ターゲット	6	Zr:0.009	1	残部	15	20	1.33	100
	7	H f: 0.008	2	残部	20	25	1.25	100
	8	Nb:0.01	3	残部	3	4	1.33	100
	9	Mg:0.09, Si:0,2	0.2	残部	5	8	1.6	100
	10	Si:0.1, Zr:0.2	0.2	残部	4	7	1.75	100
	11	Mg:0.3. Li:0.5	0.1	残部	15	20	1.33	100
	12	Si:0.3, Nb:0.8	5	残部	8	9	1.12	100
	13	Mg:0.1, Si:0.1, Zr:0.1	0.1	残部	4	4	1	100
	14	Mg:0.2, Si:0.1, H£0.2	0.8	残部	2	8	4	100

[0016]

20 【表2】

種別		成分組成(質量%)			平均結晶粒径(μm)		粒成長比	100本の線
		La, Mg, Li, Si, V, Zr, Hf, Nb	酸素 (ppm)	Cu	HIP前 (A)	HIP後 (B)	(B)/ (A)	状薄膜の導通 本数(本)
比較ターゲット	1	La:0.001*	0.5	残部	20	540	27	10
	2	Mg: 0. 002*	0.2	残部	30	880	29.3	4
	3	Li:0.003*	0.8	残部	15	2900	193.3	8
	4	Si:0.001*	0.2	残部	20	480	24	35
	5	V:0.003*	3	残部	35	380	10.9	· 40
	6	Zr:0.002*	5	残部	40	800	20	6
	7	Hf:0.001*	4	残部	15	1300	86.7	43
	8	Nb: 0. 002*	2	残部	80	680	8.5	20
	9	Mg: 0. 3	6*	残部	20	21	1.05	42
а	練	純度: 99. 9999%以上の純銅			110	3500	31.8	7

^{*}印は、この発明の範囲から外れた値を示す。

【0017】表1~2に示される結果から、本発明ター ゲット1~14をHIPによりバッキングプレートに接 合したターゲットは、従来ターゲットを熱間静水圧プレ スによりバッキングプレートに接合したターゲットに比 40 分かる。 べて粒成長比が小さいところから結晶粒の成長が小さ く、さらに本発明ターゲット1~14を用いて形成した 線状薄膜の導通本数は従来ターゲットを用いて形成した 線状薄膜の導通本数に比べて多いところから、本発明タ ーゲット1~14を用いて形成した薄膜は従来ターゲッ トを用いて形成した薄膜に比べて耐食性に優れているこ とが分かる。しかし、この発明の条件から外れている組

成の比較ターゲット1~9は、HIPによる粒成長比が 大きかったり、または線状薄膜の導通本数が少ないとこ ろから耐食性が劣るなど好ましくない特性を示すことが

[0018]

【発明の効果】この発明のターゲットは、従来のターゲ ットに比べて高出力のスパッタリングを行なって成膜ス ピードを向上させることができ、さらに耐食性に優れた 薄膜を提供することができるなど優れた効果を奏するも のである。