

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9

FIG. 10

FIG. 11

FIG. 12

FIG. 13

FIG. 14

FIG. 15

FIG. 16

FIG. 17

FIG. 18

FIG. 19

FIG. 20

Write Data Buffer

FIG. 21

FIG. 22

FIG. 23

FIG. 26

FIG. 27

FIG. 28

FIG. 29

FIG. 30

FIG. 31

Transaction 1: Long packet to an addressed ISISSlave

Transaction 2: Ping packet to an addressed ISISSlave. ISISSlave has nothing to send

Transaction 3: Ping packet to an addressed ISISSlave. ISISSlaveA responds with a long packet to ISISSlaveB (or the ISIMaster) and ISISSlaveB (or the ISIMaster) responds with an ACK or NAK.

FIG. 33

FIG. 34

FIG. 35

FIG. 36

FIG. 37

FIG. 38

FIG. 39

FIG. 40

FIG. 41

FIG. 42

FIG. 43

FIG. 44

FIG. 45

FIG. 46

FIG. 47

FIG. 48

FIG. 49

FIG. 50

FIG. 51

FIG. 52

FIG. 54

FIG. 53

FIG. 55

FIG. 56

FIG. 57

FIG. 58

FIG. 59

FIG. 60

FIG. 61

FIG. 62

FIG. 63

FIG. 63A

FIG. 64

FIG. 65

FIG. 66

FIG. 67

FIG. 68

Note: All FF's are clocked on bufrefclk

FIG. 69

FIG. 70

FIG. 71

FIG. 72

FIG. 73

FIG. 74

FIG. 75

FIG. 76

FIG. 77

FIG. 78

FIG. 79

FIG. 80

FIG. 81

FIG. 82

FIG. 83

FIG. 84

FIG. 85

FIG. 86

FIG. 87

FIG. 88

FIG. 89

FIG. 90

FIG. 91

FIG. 92

FIG. 93

FIG. 94

FIG. 95

FIG. 100

FIG. 96

FIG. 97

FIG. 98

FIG. 99

FIG. 101

FIG. 102

FIG. 103

FIG. 104

FIG. 105

FIG. 106

FIG. 107

FIG. 108

FIG. 109

FIG. 110

FIG. 111

FIG. 113

FIG. 114

FIG. 115

FIG. 116

FIG. 117

FIG. 118

FIG. 119

FIG. 120

FIG. 121

FIG. 122

FIG. 123

FIG. 124

FIG. 125

FIG. 126

FIG. 127

FIG. 128

FIG. 129

FIG. 130

FIG. 131

FIG. 132

FIG. 133

FIG. 134

FIG. 135

FIG. 136

FIG. 137

FIG. 138

FIG. 139

FIG. 140

FIG. 141

FIG. 142

FIG. 143

FIG. 144

FIG. 145

FIG. 146

FIG. 147

FIG. 148

FIG. 149

FIG. 150

FIG. 151

FIG. 152

FIG. 153

FIG. 154

FIG. 155

FIG. 156

FIG. 157

FIG. 158

FIG. 159

FIG. 160

FIG. 161

FIG. 162

FIG. 163

FIG. 164

FIG. 165

FIG. 166

FIG. 167

FIG. 168

FIG. 169

FIG. 170

FIG. 171

FIG. 172

FIG. 173

FIG. 174

FIG. 175

FIG. 176

FIG. 177

FIG. 178

(a) Netpage tag background pattern

(b) Netpage tag showing data area

FIG. 179

FIG. 180

FIG. 181

FIG. 182

FIG. 183

FIG. 184

FIG. 185

FIG. 186

FIG. 187

FIG. 188

FIG. 189

FIG. 191

FIG. 190

FIG. 192

FIG. 193

FIG. 194

FIG. 195

FIG. 196

FIG. 197

FIG. 198

ENCODED TAG DATA INTERFACE

- Encoded fixed data can be up to 120 bits long
- Use 2 buffers to allow for 2 simultaneous READs in one cycle.
- These stores hold the fixed tag data for 1 tag.
- Total memory = $120 \times 2 = 240$ bits

RAW TAG DATA INTERFACE

- The requested tag is READ into this 128-bit buffer.
- This buffer can be updated up to 163 times/line.
- Each tag will be loaded at least 126 times.

Have to be able to read one tag's data from the Raw Tag Data Interface, RS encode and store it in the Encoded Tag Data Interface in 63 cycles or less.

- min dots/tag 126 (specified)
- max dots/line = $1600 \times 12.8 = 20480$
- max tags/line = $20480/126 = 163$
- max variable data/tag = 120
- max amount of tag data/line = 120×164
- Split the 120 tag data bits into 2x64-bits (8 spare bits)
- Ajax memory needed for 1 line of tag data = $2 \times 64 \times 164 = 65536$
- Divide this in half to allow for simultaneous READ/WRITE
- Once all this data is loaded it will be valid for at least 126 lines.
- From the specification, we must be able to process 2 dots/cycle.
- 126 lines contains $20480 \times 126 = 2580480$ dots.
- Therefore the data will be updated at most every 1290240 cycles.
- Total memory = $164 \times 2 \times 64 = 20992$ bits
- The store uses 9-bit addressing. Bit 9 indicates which buffer.
- Once printing has started each half buffer has 1/2 a line in which to be loaded i.e. for a 12.8 inch line it has 10240 dots or 5120 cycles for an 8 inch line it has 6400 dots or 3200 cycles

- Encoded variable data can be up to 360 bits long
- Use 2 buffers to allow for 2 simultaneous READs in one cycle.
- Use 2 buffers to allow for simultaneous READ/WRITE
- Total memory = $360 \times 2 \times 2 = 1280$ bits
- Min tag width = 126 bits so the fastest that 1 tag can be read = $126/2 = 63$ cycles

FIG. 199

FIG. 200

FIG. 201

FIG. 202

FIG. 203

FIG. 204

FIG. 205

FIG. 206

FIG. 207

FIG. 208

FIG. 209

FIG. 210

FIG. 211

FIG. 212

FIG. 213

FIG. 214

FIG. 215

FIG. 216

FIG. 217

FIG. 218

FIG. 219

FIG. 220

FIG. 221

FIG. 222

FIG. 223

FIG. 224

FIG. 225

FIG. 226

FIG. 227

FIG. 228

FIG. 229

FIG. 230

FIG. 231

FIG. 232

FIG. 233

FIG. 234

FIG. 235

FIG. 237

FIG. 238

FIG. 239

FIG. 240

FIG. 241

208/331

FIG. 242

FIG. 243

FIG. 244

FIG. 245

FIG. 246

FIG. 247

FIG. 248

FIG. 249

FIG. 250

FIG. 251

FIG. 252

FIG. 254

Note: Paper passes under printhead

FIG. 255

FIG. 256

220/331

FIG. 257

FIG. 258

FIG. 259

FIG. 260

FIG. 261

FIG. 262

FIG. 263

FIG. 264

FIG. 266

228/331

FIG. 267

FIG. 268

FIG. 269

M - Midway point in dots

N - Number of dots in a line

Generate dot order (to the PHI)

FIG. 270

FIG. 271

FIG. 272

FIG. 274

FIG. 275

FIG. 276

FIG. 277

FIG. 279

FIG. 280

FIG. 281

FIG. 282

FIG. 283

FIG. 284

FIG. 285

FIG. 286

FIG. 287

FIG. 289

FIG. 290

FIG. 291

FIG. 293

FIG. 294

FIG. 295

FIG. 296

FIG. 297

FIG. 298

The printheads are facing downwards.
The ink is being shot down onto the page.

FIG. 299

FIG. 300

FIG. 301

FIG. 302

The printheads are facing downwards.
The ink is being shot down onto the page.

FIG. 303

261/331

FIG. 304

FIG. 305

FIG. 306

FIG. 307

FIG. 308

FIG. 309

FIG. 310

FIG. 311

a) Printing every n^{th} dot with all zero's in the fire select shift register

b) Printing every n^{th} dot with all one's in the fire select shift register

c) Printing every n^{th} dot with n zero's then n one's in the fire select shift registers

FIG. 312

FIG. 313

FIG. 314

FIG. 315

FIG. 316

FIG. 317

FIG. 318

FIG. 319

FIG. 320

FIG. 321

FIG. 322

FIG. 323

FIG. 324

FIG. 325

FIG. 327

FIG. 326

FIG. 328

FIG. 329

FIG. 330

FIG. 331

FIG. 332

FIG. 333

FIG. 334

FIG. 335

FIG. 336

FIG. 337

FIG. 338

FIG. 339

FIG. 340

FIG. 341

FIG. 342

FIG. 343

FIG. 344

FIG. 345

288/331

FIG. 346

FIG. 347

FIG. 348

FIG. 349

FIG. 350

FIG. 351

FIG. 352

FIG. 353

FIG. 354

FIG. 355

FIG. 356

FIG. 357

FIG. 358

FIG. 359

FIG. 360

FIG. 361

FIG. 362

297/331

FIG. 363

31	17 16		4 3	0
Type (15 bits)		Permissions (13 bits)		Size and Position (4 bits)

FIG. 364

FIG. 365

FIG. 366

FIG. 367

FIG. 368

FIG. 369

300/331

FIG. 370

FIG. 371

FIG. 372

FIG. 373

FIG. 374

FIG. 375

FIG. 376

FIG. 377

FIG. 378

FIG. 379

FIG. 380

310/331

FIG. 381

FIG. 382

FIG. 383

FIG. 384

FIG. 385

FIG. 386

FIG. 387

FIG. 388

FIG. 389

317/331

FIG. 390

FIG. 391

FIG. 392

318/331

FIG. 393

FIG. 394

FIG. 395

320/331

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PrID6	PrID5	PrID4	PrID3	PrID2	PrID1	PrID0	R/*W 0 = write 1 = read

FIG. 396

FIG. 397

321/331

FIG. 398

322/331

FIG. 399

FIG. 400

323/331

FIG. 401

324/331

FIG. 402

FIG. 403

FIG. 404

327/331

FIG. 405

FIG. 406

FIG. 407

FIG. 408

330/331

FIG. 409

FIG. 410

331/331

FIG. 411

FIG. 412

FIG. 413