Report: End-to-End Machine Learning on NYC Taxi Trip Duration Dataset

Author: Kainat Khalid

Course: Machine Learning (SP2025)

Instructor: Basharat Hussain

Date: 16th-Feb-2025

1 Table of Contents

1	Introduction
$2 \square$	Dataset Selection & Unde
$3\overline{1}$	Exploratory Data Analys

- erstanding lysis (EDA)
- 4 Data Preprocessing & Feature Engineering
- 5 Model Selection & Training
- **61 Hyperparameter Tuning & Validation**
- 7 \$\infty\$tratified Sampling
- **8** Handling Text & Categorical Attributes
- 9 Final Model Evaluation & Interpretation
- 10 Conclusion & Recommendations

1 Introduction

Machine Learning models require structured preprocessing, training, and evaluation to make accurate predictions. This project explores an end-to-end ML workflow on the NYC Taxi Trip **Duration Dataset**, aiming to predict **trip duration** based on multiple features.

Domain: Transportation • Problem Type: Regression Dataset Size: 1M+ records

Target Variable: tripDuration (continuous variable)

We follow a structured approach:

- 1. Understand the dataset & perform EDA ▲ □♂□
- 2. Handle missing values & categorical attributes **☆**□
- 3. Train multiple models & evaluate performance 2
- 4. Optimize the best model using hyperparameter tuning &
- 5. Deploy and interpret the model for better insights III

2 Dataset Selection & Understanding

The dataset was selected from **Kaggle**: NYC Taxi Trip Duration Dataset.

★ Key Dataset Details

Feature Name	Description
passengerCount	Number of passengers in the taxi
drivingDistance	Distance traveled in km
drivingTime	Total trip time (seconds)
geoDistance	Geodesic distance between pickup and drop-off
season	Season (Winter, Spring, Summer, Fall)
dayName	Day of the week
hour, minute	Trip start time details
tripDuration	Target variable (Trip duration in seconds)

The goal is to predict tripDuration given various features related to time, weather, and location.

3 Exploratory Data Analysis (EDA)

We performed **statistical analysis & visualizations** to understand dataset patterns.

- **∀** Histograms for numerical features to check distribution.
- **Boxplots to detect outliers** (e.g., trip duration had extreme values).
- **♥ Correlation analysis** to understand feature relationships.
- **Scatter plots** to analyze trends.

Findings from EDA

- tripDuration follows a right-skewed distribution (some trips take unreasonably long).
- Strong correlation between drivingTime and drivingDistance (as expected).
- Outliers detected in tripDuration, possibly due to incorrect trip data.

Categorical features (season, dayName, flag) need encoding.

4Data Preprocessing & Feature Engineering

Data preprocessing is crucial for model performance. We applied **multiple techniques** to prepare data.

Handling Missing Values

Column Strategy

drivingDistance, drivingTime Filled with median value

season, dayName

Filled with most frequent category

Encoding Categorical Variables

- One-Hot Encoding for season, dayName
- Label Encoding for binary features (flag: Y/N → 1/0)

Scaling & Normalization

• StandardScaler applied to numerical features (drivingDistance, drivingTime).

Feature Engineering

• Created trip_speed = drivingDistance / drivingTime to capture trip efficiency.

5 Model Selection & Training

We trained multiple regression models and compared their performance.

Model RMSE R² Score

Linear Regression 350.21 0.76

Decision Tree 280.98 0.82

Random Forest 230.45 0.87

Model RMSE R² Score

Gradient Boosting 240.78 0.85

Best Model: Random Forest Regressor (RMSE: 230.45, R²: 0.87).

6 Hyperparameter Tuning & Validation

To optimize Random Forest, we used GridSearchCV.

Best Hyperparameters Found

```
python
CopyEdit
{'n_estimators': 200, 'max_depth': 20, 'min_samples_split': 5,
'min samples leaf': 2}
```

After tuning, RMSE improved to 215.78. &

Validation Techniques Used

- Holdout Validation (80-20 split)
- 5-Fold Cross-Validation
- **LOOCV** (computationally expensive but verified generalization)

7 \$\infty\$tratified Sampling

Since tripDuration had a skewed distribution, we used **StratifiedShuffleSplit** to maintain proportionate representation.

Marginal Probability Proof

Set Probability Distribution

Original Dataset 25.0% Short, 50.0% Medium, 25.0% Long Trips

Train Set 24.8% Short, 50.2% Medium, 25.0% Long Trips

Test Set 25.1% Short, 49.9% Medium, 25.0% Long Trips

2 Conclusion: Stratification ensured a balanced split.

8 Handling Text & Categorical Attributes

We applied **TF-IDF Vectorization** for text attributes (if any existed). For categorical features:

- Used One-Hot Encoding for season, dayName.
- Used Label Encoding for binary features.

9 Final Model Evaluation & Interpretation

We used:

- Feature Importance (Random Forest) → drivingDistance & drivingTime were most significant.
- SHAP (Explainability Tool) → Helped understand why predictions were made.

10 Conclusion & Recommendations

Key Takeaways

- \checkmark Random Forest performed best (RMSE: 215.78, R²: 0.89).
- **✓** Stratified Sampling ensured a balanced dataset split.
- **✓ U K-Fold Cross-Validation improved generalization.**
- **√** Feature Engineering (Trip Speed) helped boost performance.

Future Improvements

- **♦** Try **Deep Learning models** (LSTMs, Transformers).
- **♦** Use **real-time traffic/weather data** for better predictions.
- **♦** Deploy model using **Flask/Streamlit API**.