NEURAL NETWORKS AND DEEP LEARNING

B.Tech. IV Year I Sem.

L T P C 3 0 0 3

Course Objectives:

- To introduce the foundations of Artificial Neural Networks
- To acquire the knowledge on Deep Learning Concepts
- To learn various types of Artificial Neural Networks
- To gain knowledge to apply optimization strategies

Course Outcomes:

- Ability to understand the concepts of Neural Networks
- Ability to select the Learning Networks in modeling real world systems
- Ability to use an efficient algorithm for Deep Models
- Ability to apply optimization strategies for large scale applications

UNIT-I

Artificial Neural Networks Introduction, Basic models of ANN, important terminologies, Supervised Learning Networks, Perceptron Networks, Adaptive Linear Neuron, Back-propagation Networks. Associative Memory Networks. Training Algorithms for pattern association, BAM and Hopfield Networks.

UNIT-II

Unsupervised Learning Network- Introduction, Fixed Weight Competitive Nets, Maxnet, Hamming Network, Kohonen Self-Organizing Feature Maps, Learning Vector Quantization, Counter Propagation Networks, Adaptive Resonance Theory Networks. Special Networks-Introduction to various networks.

UNIT - III

Introduction to Deep Learning, Historical Trends in Deep learning, Deep Feed - forward networks, Gradient-Based learning, Hidden Units, Architecture Design, Back-Propagation and Other Differentiation Algorithms

UNIT - IV

Regularization for Deep Learning: Parameter norm Penalties, Norm Penalties as Constrained Optimization, Regularization and Under-Constrained Problems, Dataset Augmentation, Noise Robustness, Semi-Supervised learning, Multi-task learning, Early Stopping, Parameter Typing and Parameter Sharing, Sparse Representations, Bagging and other Ensemble Methods, Dropout, Adversarial Training, Tangent Distance, tangent Prop and Manifold, Tangent Classifier

UNIT - V

Optimization for Train Deep Models: Challenges in Neural Network Optimization, Basic Algorithms, Parameter Initialization Strategies, Algorithms with Adaptive Learning Rates, Approximate Second- Order Methods, Optimization Strategies and Meta-Algorithms

Applications: Large-Scale Deep Learning, Computer Vision, Speech Recognition, Natural Language Processing

TEXT BOOKS:

- 1. Deep Learning: An MIT Press Book By Ian Goodfellow and Yoshua Bengio and Aaron Courville
- 2. Neural Networks and Learning Machines, Simon Haykin, 3rd Edition, Pearson Prentice Hall.

B.Tech. IV Year I Sem. L T P C 0 0 2 1

Course Objectives:

- 1. To Build the Foundation of Deep Learning.
- 2. To Understand How to Build the Neural Network.
- 3. To enable students to develop successful machine learning concepts.

Course Outcomes:

- 1. Upon the Successful Completion of the Course, the Students would be able to:
- 2. Learn the Fundamental Principles of Deep Learning.
- 3. Identify the Deep Learning Algorithms for Various Types of Learning Tasks in various domains.
- 4. Implement Deep Learning Algorithms and Solve Real-world problems.

LIST OF EXPERIMENTS:

- 1. Setting up the Spyder IDE Environment and Executing a Python Program
- 2. Installing Keras, Tensorflow and Pytorch libraries and making use of them
- 3. Applying the Convolution Neural Network on computer vision problems
- 4. Image classification on MNIST dataset (CNN model with Fully connected layer)
- 5. Applying the Deep Learning Models in the field of Natural Language Processing
- 6. Train a sentiment analysis model on IMDB dataset, use RNN layers with LSTM/GRU notes
- 7. Applying the Autoencoder algorithms for encoding the real-world data
- 8. Applying Generative Adversial Networks for image generation and unsupervised tasks.

TEXT BOOKS:

- 1. Deep Learning by Ian Goodfellow, Yoshua Bengio and Aaron Courville, MIT Press.
- 2. The Elements of Statistical Learning by T. Hastie, R. Tibshirani, and J. Friedman, Springer.
- 3. Probabilistic Graphical Models. Koller, and N. Friedman, MIT Press.

REFERENCES:

- 1. Bishop, C.M., Pattern Recognition and Machine Learning, Springer, 2006.
- 2. Yegnanarayana, B., Artificial Neural Networks PHI Learning Pvt. Ltd, 2009.
- 3. Golub, G.H., and Van Loan, C.F., Matrix Computations, JHU Press, 2013.
- 4. Satish Kumar, Neural Networks: A Classroom Approach, Tata McGraw Hill Education, 2004.

EXTENSIVE READING:

- 1. http://www.deeplearning.net
- https://www.deeplearningbook.org/
- 3. https://developers.google.com/machine-learning/crash-course/ml-intro
- 4. www.cs.toronto.edu/~fritz/absps/imagenet.pdf
- 5. http://neuralnetworksanddeeplearning.com/