TD - 11 : Matrices

Entraînements

Calculs : opérations élémentaires sur les matrices

Exercice 1. On considère les matrices suivantes :

$$A = \begin{pmatrix} 2 & 1 \\ 0 & 2 \\ -1 & 0 \end{pmatrix}, \ B = \begin{pmatrix} 0 & 2 & 1 \\ 2 & 2 & 1 \end{pmatrix}, \ C = \begin{pmatrix} 2 & -1 & 0 \\ 0 & 2 & 0 \\ -1 & 0 & 2 \end{pmatrix}, \ X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

1. Calculer, lorsque cela est possible, $A+B,\,AB,\,BA,\,A^2,\,AC,\,^tB^tA,\,CA,\,C^2,\,(C-2I_3)^3,\,XB$ et tBX .

2. Résoudre l'équation, d'inconnue $X: CX = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$.

Exercice 2. Étudier l'inversibilité des matrices suivantes et lorsqu'elles sont inversibles, donner leur inverse :

$$1. \ A = \left(\begin{array}{cc} 4 & 5 \\ 2 & -1 \end{array}\right)$$

$$2. \ A = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{array}\right)$$

3.
$$A = \begin{pmatrix} 2 & 3 & 1 & 3 \\ 0 & 5 & -4 & 5 \\ 0 & 0 & 0 & -8 \\ 0 & 0 & 0 & 6 \end{pmatrix}$$

$$4. \ A = \left(\begin{array}{cccc} 1 & 2 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 3 \end{array}\right)$$

5.
$$A = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 1 & 3 & 3 & 2 \\ 2 & 4 & 3 & 3 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

$$6. \ A = \left(\begin{array}{ccc} 1 & 3 & -6 \\ 0 & 2 & 2 \\ 0 & 0 & -2 \end{array}\right)$$

Exercice 3. Soit
$$A = \begin{pmatrix} 1 & 2 & a \\ 2 & 1 & -4 \\ -1 & 1 & 2 \end{pmatrix}$$
 avec $a \in \mathbb{R}$.

Étudier l'inversibilité de A selon les valeurs prises par le paramètre $a \in \mathbb{R}$. Lorsque A est inversible, calculer son inverse en fonction de a.

Exercice 4. On considère le système $\begin{cases} 2x + 2y + z = 1 \\ 2x + y + 2z = 1 \\ x + 2y + 2z = 1 \end{cases}$

- 1. Écrire le système sous forme matricielle.
- 2. En notant A la matrice associée au système, montrer que A est inversible et calculer son inverse.
- 3. Résoudre le système.

Exercice 5. Calcul de rang:

Déterminer, en fonction de $\lambda \in \mathbb{R}$, le rang de $A = \begin{pmatrix} 4 - \lambda & 4 & -4 \\ -1 & 5 - \lambda & -3 \\ 1 & 7 & -5 - \lambda \end{pmatrix}$.

Exercice 6. Pour chacune des matrices suivantes, étudier si elle est inversible ou pas et lorsqu'elle est inversible, donner son inverse.

- 1. $M \in \mathcal{M}_3(\mathbb{R})$ vérifiant $M^4 4M^2 + M 5I_3 = 0_3$.
- 2. $A \in \mathcal{M}_3(\mathbb{R})$ telle que $A^5 A = 0_3$ et telle que $A^4 \neq I_3$.

Exercice 7. On considère les matrices suivantes :

$$A = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) \ B = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) \ C = \left(\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array}\right).$$

- 1. Calculer AB et BA. Conclusion?
- 2. Calculer A^2 et CB. Les matrices A et B sont-elles inversibles?
- 3. C est-elle inversible?

Exercice 8. Soit
$$A = \begin{pmatrix} 4 & -3 & 6 \\ 1 & 0 & 2 \\ -1 & 1 & -1 \end{pmatrix}$$
.

- 1. Calculer $(A I_3)^2$. En déduire que A est inversible et déterminer A^{-1} .
- 2. Calculer A^n pour tout $n \in \mathbb{N}$ puis pour tout $n \in \mathbb{Z}$.

Exercice 9. Inversibilité des matrices de rotation.

Soit
$$\mathcal{R}$$
 l'ensemble des matrices qui s'écrivent sous la forme $M_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$.

- 1. Montrer que le produit de deux éléments de \mathcal{R} est un élément de \mathcal{R} .
- 2. Montrer que deux matrices de \mathcal{R} commutent.
- 3. Montrer que $I_2 \in \mathcal{R}$.
- 4. Montrer que tout élément de \mathcal{R} est inversible et que son inverse est encore dans \mathcal{R} .

Exercice 10. Soient les deux matrices suivantes :
$$B = \begin{pmatrix} 0 & 1 & 3 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$
 et $C = \begin{pmatrix} 2 & 1 & 3 \\ 0 & 2 & 2 \\ 0 & 0 & 2 \end{pmatrix}$.

- 1. Calculer B^3 . B est-elle inversible?
- 2. Calculer les puissances n-ièmes de C.

Exercice 11. Soit
$$A = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}$$
.

1. Montrer que A^n est de la forme

$$A^n = \left(\begin{array}{ccc} a_n & b_n & b_n \\ b_n & a_n & b_n \\ b_n & b_n & a_n \end{array}\right).$$

2. Déterminer a_n et b_n en fonction de n.

Dimension n

Exercice 12. Soit $n \in \mathbb{N}^*$ et $A = (a_{ij})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$. Représenter la matrice A dans les cas suivants :

- 1. $\forall (i,j) \in \{1,\ldots n\}^2, \ a_{ij} = \max(i,j)$
- 2. $\forall (i,j) \in \{1, \dots n\}^2, \ a_{ij} = |i-j|$
- 3. $\forall (i,j) \in \{1,\ldots n\}^2, \ a_{ij} = 1 \text{ si } i \leq j, \ a_{ij} = 0 \text{ sinon.}$

Exercice 13. Pour toute matrice carrée $A = (a_{ij})_{1 \le i,j \le n}$, on appelle trace de A le nombre : $Tr(A) = \sum_{i=1}^{n} a_{ii}$.

1. Calculer la trace de la matrice nulle, de la matrice identité et de la matrice $M = \begin{pmatrix} 1 & 0 & -2 \\ 2 & 2 & 0 \\ 1 & -3 & 1 \end{pmatrix}$.

- 2. Vérifier que $\forall (\lambda, \mu) \in \mathbb{R}^2$, $\forall (A, B) \in \mathcal{M}_n(\mathbb{R})^2$, $Tr(\lambda A + \mu B) = \lambda Tr(A) + \mu Tr(B)$.
- 3. Montrer que $\forall (A, B) \in \mathcal{M}_n(\mathbb{R})^2, \ Tr(AB) = Tr(BA).$
- 4. Les matrices A et B sont dites semblables s'il existe une matrice P inversible telle que $B = P^{-1}AP$. Montrer que deux matrices semblables ont même trace.

Exercice 14. Commutant. On cherche à déterminer le commutant de $\mathcal{M}_n(\mathbb{R})$, c'est-à-dire l'ensemble des matrices A de $\mathcal{M}_n(\mathbb{R})$ qui vérifient :

$$\forall M \in \mathcal{M}_n(\mathbb{K}), \ AM = MA.$$

Cela revient à chercher les matrices A qui commutent avec toutes les autres matrices. Soit A une telle matrice.

- 1. Soit D une matrice diagonale d'ordre n. Expliciter AD et DA et en déduire que A est diagonale.
- 2. Soit $M \in \mathcal{M}_n(\mathbb{R})$. Expliciter MA et AM et en déduire que tous les coefficients de A sont égaux.
- 3. Décrire le commutant de $\mathcal{M}_n(\mathbb{R})$.

Exercice 15. Résolution d'équation matricielle.

Déterminer toutes les matrices M carrée d'ordre deux telles que $M^2 = 0$.

Type DS

Exercice 16. Méthode par diagonalisation:

- 1. Soit A une matrice carrée diagonalisable, c'est-à-dire qu'il existe P une matrice inversible telle que $P^{-1}AP = D$ où D est diagonale.
 - (a) Exprimer A en fonction de D.
 - (b) Soit $n \in \mathbb{N}$. Calculer A^n en fonction de P, P^{-1} et D^n .
 - (c) Montrer que A inversible si et seulement si D est inversible et, qu'on a alors : $A^{-1} = PD^{-1}P^{-1}$.
- 2. Application : soit $M = \begin{pmatrix} 0 & 1 \\ 2 & -1 \end{pmatrix}$ et $P = \begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix}$.
 - (a) Vérifier que P est inversible et calculer P^{-1} .
 - (b) Vérifier que M est diagonalisable et calculer la matrice diagonale associée.
 - (c) Étudier l'inversibilité de M.
 - (d) Calculer M^n pour tout $n \in \mathbb{N}$.

Exercice 17. Soient
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 2 & 1 \end{pmatrix}$$
 et $P = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$

- 1. Résoudre, pour tout $\lambda \in \mathbb{R}$, le système : $(A \lambda I_3)X = 0_{31}$ avec $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.
- 2. Montrer que P est inversible et calculer P^{-1} . Calculer $P^{-1}AP$.
- 3. En déduire A^n pour tout $n \in \mathbb{N}$.
- 4. La matrice A est-elle inversible?
- 5. On considère trois suites u, v et w définies par

$$u_0 = 0, \ v_0 = 1, \ w_0 = 0, \quad \forall n \in \mathbb{N}, \ \begin{cases} u_{n+1} = u_n - w_n \\ v_{n+1} = v_n \\ w_{n+1} = -u_n + 2v_n + w_n. \end{cases}$$

Donner l'expression explicite de chacune de ces trois suites.

Exercice 18. On considère la matrice

$$N = \left(\begin{array}{rrr} 2 & -2 & 1\\ 2 & -3 & 2\\ -1 & 2 & 0 \end{array}\right).$$

- 1. Calculer N^2 . Donner une relation entre N^2 , N et I_3 . N est-elle inversible? Si oui, donner son inverse.
- 2. Montrer qu'il existe deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ telles que

$$\forall n \in \mathbb{N}, \ N^n = u_n N + v_n I.$$

- 3. En déduire u_n et v_n en fonction de n. Puis donner l'expression de N^n pour tout $n \in \mathbb{N}$.
- 4. Soient $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ et $(z_n)_{n\in\mathbb{N}}$ trois suites de réels telles que $x_0=y_0=1$ et $z_0=0$ et pour tout $n\in\mathbb{N}$,

$$\begin{cases} x_{n+1} = 2x_n - 2y_n + z_n \\ y_{n+1} = 2x_n - 3y_n + 2z_n \\ z_{n+1} = -x_n + 2y_n. \end{cases}$$

Calculer x_n , y_n et z_n en fonction de n.

Exercice 19. Soient les deux matrices suivantes : $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ et $J = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

- 1. Déterminer des réels α et β tels que $A = \alpha I_3 + \beta J$. Calculer J^n pour tout $n \in \mathbb{N}$.
- 2. En déduire A^n pour tout $n \in \mathbb{N}$.
- 3. Soient $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ et $(z_n)_{n\in\mathbb{N}}$ trois suites de réels telles que $x_0=y_0=z_0=1$ et pour tout $n\in\mathbb{N}$,

$$\begin{cases} x_{n+1} = y_n + z_n \\ y_{n+1} = x_n + z_n \\ z_{n+1} = x_n + y_n. \end{cases}$$

Calculer x_n , y_n et z_n en fonction de n.

Exercice 20. Soit $A = \begin{pmatrix} 3 & 1 & -2 \\ 0 & 2 & 0 \\ 1 & 1 & 0 \end{pmatrix}$. On cherche à étudier l'inversibilité de A et à calculer les puissances n-ièmes de A en utilisant les diverses méthodes vues en cours et en TD.

- 1. Méthode une : Par diagonalisation :
 - (a) Résoudre $(A \lambda I_3)X = O_{31}$
 - (b) On pose $P=\left(\begin{array}{ccc} 1 & 2 & -1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right)$. Montrer que P est inversible et calculer P^{-1} .
 - (c) Calculer $P^{-1}AP$. En notant D cette matrice, exprimer A en fonction de P, P^{-1} et D.
 - (d) Calculer les puissances n-ièmes de A.
 - (e) Étudier l'inversiblité de A. Si A est inversible, calculer son inverse.
- 2. Méthode deux : Par le binôme de Newton :
 - (a) Soit $B = A 2I_3$. Calculer B^n en fonction de B pour tout $n \in \mathbb{N}$.
 - (b) En déduire alors les puissances n-ièmes de A.
- 3. Méthode trois : Lorsque l'on connaît une relation entre les puissances de la matrice :
 - (a) Montrer que : $A^2 3A + 2I_3 = 0_3$.
 - (b) Montrer qu'il existe deux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ telles que, pour tout $n\in\mathbb{N}$, on ait : $A^n=a_nA+b_nI_3$.
 - (c) Calculer les expresions explicites de $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$. En déduire les puissances n-ièmes de A.
 - (d) Montrer que A est inversible et donner son inverse en fonction de A et de I_3 .
 - (e) En reprenant la question précédente, donner l'expression de A^{-n} en fonction de A et de I_3 pour tout entier naturel $n \in \mathbb{N}$.