Regularization properties of adversarially-trained linear regression

Antônio H. Ribeiro^{1,*}, Dave Zachariah¹, Francis Bach², Thomas B. Schön¹

¹Uppsala University, Sweden ²INRIA / PSL research university, France *Presenting

NeurIPS 2023

▶ Linear regression:

$$\min_{\beta} \sum_{i=1}^{\#train} (y_i - \beta^\top x_i)^2$$

▶ Linear regression:

$$\min_{\beta} \sum_{i=1}^{\# train} \left(\underbrace{y_i}_{\text{observed}} - \underbrace{\beta^{\top} x_i}_{\text{linear prediction}} \right)^2$$

▶ Linear regression:

$$\min_{\beta} \sum_{i=1}^{\# train} (y_i - \beta^{\top} \mathbf{x}_i)^2$$

► Adversarial training in linear regression:

$$(y_i - \beta^{\top}(x_i + \Delta x_i))^2$$

► Linear regression:

$$\min_{\beta} \sum_{i=1}^{\# train} (y_i - \beta^{\top} \mathbf{x}_i)^2$$

► Adversarial training in linear regression:

$$\max_{\|\Delta x_i\| \le \delta} (y_i - \beta^\top (x_i + \Delta x_i))^2$$

▶ Linear regression:

$$\min_{\beta} \sum_{i=1}^{\# train} (y_i - \beta^{\top} \mathbf{x}_i)^2$$

► Adversarial training in linear regression:

$$\min_{\beta} \sum_{i=1}^{\# train} \max_{\|\Delta x_i\| \leq \delta} (y_i - \beta^\top (x_i + \Delta x_i))^2$$

$$\sum_{i=1}^{\text{\#train}} \max_{\|\Delta x_i\| \le \delta} (y_i - (x_i + \Delta x_i)^\mathsf{T} \beta)^2$$

$$\sum_{i=1}^{\# train} \max_{\|\Delta x_i\| \le \delta} (y_i - (x_i + \Delta x_i)^\mathsf{T} \beta)^2$$

It can be rewritten as:

$$\sum_{i=1}^{\# train} \left(|\boldsymbol{y}_i - \boldsymbol{x}_i^\mathsf{T} \boldsymbol{\beta}| + \delta \|\boldsymbol{\beta}\|_* \right)^2$$

where $\|\cdot\|_*$ is the dual norm.

$$\sum_{i=1}^{\# train} \max_{\|\Delta x_i\|_{\infty} \le \delta} (y_i - (\mathbf{x}_i + \Delta x_i)^{\mathsf{T}} \beta)^2$$

It can be rewritten as:

$$\sum_{i=1}^{\# train} \left(|y_i - \mathbf{x}_i^\mathsf{T} \boldsymbol{\beta}| + \delta \|\boldsymbol{\beta}\|_1 \right)^2$$

where $\|\cdot\|_1$ is the dual norm.

 \blacktriangleright ℓ_{∞} -adversarial attacks:

$$\sum_{i=1}^{\# train} \left(|\mathbf{y}_i - \mathbf{x}_i^\mathsf{T} \boldsymbol{\beta}| + \delta \|\boldsymbol{\beta}\|_1 \right)^2$$

► Lasso:

$$\sum_{i=1}^{\# train} \left(|y_i - \mathbf{x}_i^\mathsf{T} \boldsymbol{\beta}| \right)^2 + \lambda \|\boldsymbol{\beta}\|_1.$$

 $ightharpoonup \ell_{\infty}$ -adversarial attacks:

$$\sum_{i=1}^{\# train} \left(|y_i - \boldsymbol{x}_i^\mathsf{T} \boldsymbol{\beta}| + \boldsymbol{\delta} \|\boldsymbol{\beta}\|_1 \right)^2$$

► Lasso:

$$\sum_{i=1}^{\# \text{train}} \left(|y_i - \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta}| \right)^2 + \lambda \|\boldsymbol{\beta}\|_1.$$

 \blacktriangleright ℓ_{∞} -adversarial attacks:

$$\sum_{i=1}^{\# train} \left(|y_i - \boldsymbol{x}_i^\mathsf{T} \boldsymbol{\beta}| + \boldsymbol{\delta} \|\boldsymbol{\beta}\|_1 \right)^2$$

► Lasso:

$$\sum_{i=1}^{\# train} \left(|\mathbf{y}_i - \mathbf{x}_i^\mathsf{T} \boldsymbol{\beta}| \right)^2 + |\lambda||\boldsymbol{\beta}||_1.$$

Main results:

#1. Map $\lambda \leftrightarrow \delta$ for which they yield the same result.

▶ ℓ_{∞} -adversarial attacks:

$$\sum_{i=1}^{\# train} \left(|y_i - \boldsymbol{x}_i^\mathsf{T} \boldsymbol{\beta}| + \boldsymbol{\delta} \|\boldsymbol{\beta}\|_1 \right)^2$$

► Lasso:

$$\sum_{i=1}^{\# train} \left(|\mathbf{y}_i - \mathbf{x}_i^\mathsf{T} \boldsymbol{\beta}| \right)^2 + \lambda \|\boldsymbol{\beta}\|_1.$$

Main results:

- #1. Map $\lambda \leftrightarrow \delta$ for which they yield the same result.
- #2. More parameters than data: abrupt transition into interpolation.

▶ ℓ_{∞} -adversarial attacks:

$$\sum_{i=1}^{\# train} \left(|y_i - \boldsymbol{x}_i^\mathsf{T} \boldsymbol{\beta}| + \boldsymbol{\delta} \|\boldsymbol{\beta}\|_1 \right)^2$$

Lasso:

$$\sum_{i=1}^{\# train} \left(|\mathbf{y}_i - \mathbf{x}_i^\mathsf{T} \boldsymbol{\beta}| \right)^2 + |\lambda||\boldsymbol{\beta}||_1.$$

Main results:

- #1. Map $\lambda \leftrightarrow \delta$ for which they yield the same result.
- #2. More parameters than data: abrupt transition into interpolation.
- #3. **Optimal choice** of δ independent on noise level.

1. Equivalence with Lasso

 $\mathbf{Map}\ \lambda \leftrightarrow \delta \ \text{for which they yield the same result.}$

1. Equivalence with Lasso

Map $\lambda \leftrightarrow \delta$ for which they yield the same result.

The that yield the same result are not necessarily the same, i.e.: $\delta \neq \lambda$

Lasso: transition only in the limit

$$\lambda \to 0^+ \Rightarrow \text{Mean square error} \to 0$$

Lasso: transition only in the limit

$$\lambda \to 0^+ \Rightarrow \text{Mean square error} \to 0$$

$$\delta \in (0, \text{threshold}] \Rightarrow \text{Mean square error} = 0$$

Lasso: transition only in the limit

$$\lambda \to 0^+ \Rightarrow \text{Mean square error} \to 0$$

$$\delta \in (0, \text{threshold}] \Rightarrow \text{Mean square error} = 0$$

Lasso: transition only in the limit

$$\lambda \to 0^+ \Rightarrow \text{Mean square error} \to 0$$

$$\delta \in (0, \text{threshold}] \Rightarrow \text{Mean square error} = 0$$

Lasso: transition only in the limit

$$\lambda \to 0^+ \Rightarrow \text{Mean square error} \to 0$$

$$\delta \in (0, \text{threshold}] \Rightarrow \text{Mean square error} = 0$$

2. Equivalence with minimum norm interpolator

For $\delta \in (0, \mathrm{threshold}]$, the minimum-norm interpolator is the solution to adversarial training.

2. Equivalence with minimum norm interpolator

For $\delta \in (0, \mathrm{threshold}]$, the minimum-norm interpolator is the solution to adversarial training.

Relevance

Connect adversarial training with double descent and benign overfitting

3. Invariance to noise levels

To obtain near-oracle performance.

Lasso:

$$\lambda \propto \sigma \sqrt{\log(\# extit{params})/\# extit{train}}$$

 \blacktriangleright ℓ_{∞} -adversarial attack:

$$\delta \propto \sqrt{\log(\# extit{params})/\# extit{train}}$$

3. Invariance to noise levels

To obtain near-oracle performance.

Lasso:

$$\lambda \propto \sigma \sqrt{\log(\# extit{params})/\# extit{train}}$$

 \triangleright ℓ_{∞} -adversarial attack:

$$\delta \propto \sqrt{\log(\# extit{params})/\# extit{train}}$$

Data model

$$y = \underbrace{\mathbf{x}^{\top} \boldsymbol{\beta}^{*}}_{\text{signal}} + \underbrace{\boldsymbol{\sigma}}_{\text{noise std.}} \varepsilon$$

arXiv:2310.10807

 \triangleright ℓ_2 -adv. attacks and ridge regression.

arXiv:2310.10807

- \triangleright ℓ_2 -adv. attacks and ridge regression.
- ► Generalization to **other loss** functions

arXiv:2310.10807

- \blacktriangleright ℓ_2 -adv. attacks and ridge regression.
- ► Generalization to **other loss** functions
- ightharpoonup Connection to robust regression and $\sqrt{\rm Lasso}$.