777 必背公式宝典(高数篇)

公式是数学解题之基,背熟公式是高效解题的必要条件,在公式整理方面,过于全面或过于精炼都不是最好的方案,因此本讲义为大家精心总结梳理最有用且常考的必背公式,按照逻辑排布,大家也可以在此基础上补充做题过程中遇到的其他公式,请各位准研究生们务必熟背,常常回顾,加油! 25 专题总结购课咨询 vx: kaoyanshuxue777

高日	中必备约	知识		1
	一、	倍角	第公式	1
	<u> </u>	诱导	是公式	1
	三、	两角	角和公式	1
	四、	辅助	助角公式	1
	五、	积化	七和差公式	1
	六、	常见	见不等式 <mark></mark>	1
	七、		方公式	
	八、	一元	元二次方程	2
	九、		七数列	
			页和公式	
				
			付称性	
			亘等式	
			文三角函数	
第-	一章 函		极限 连续	
	十五、	,	等价无穷小	4
	十六、	、素	泰勒展开	4
	十七、	、肯	常考极限	4
	十八、	、	需分左右极限讨论	5
	十九、	、耳	仅整函数	5
	二十、	、名	守号函数	5
第二	二章 一	元 元	函数微分学	5
	二十一	一、	导数定义公式	5
	二十二	_,	导数公式	5
	二十章	三、	高阶导公式	6
	二十月	四、	反函数求导公式	6
	二十三	五、	泰勒公式	6
	二十元	六、	微分概念	6
	二十一	七、	中值定理	6

	二十八、	极值的判定	7
	二十九、	拐点的判定	7
	三十、自	由率、曲率半径(数一、二)	7
第三	三章 一元區	函数积分学	8
	三十一、	积分公式	8
	三十二、	拆真分式方法	9
	三十三、	定积分计算技巧	9
	三十四、	原函数存在 vs 可积 vs 变上限积分可导	10
	三十五、	祖孙三代的奇偶性、周期性	10
	三十六、	反常积分	11
	三十七、	参数方程、极坐标常考图像	11
	三十八、	平面图形面积	12
	三十九、	旋转体体积	
	四十、均	刀线、法线方程	12
	四十一、		
		旋转体侧面积(数一、二)	
	四十三、	形心坐标(数一、二)	
	四十四、	积分的物理应用(数一、二)	13
	四十五、	微分方程的物理应用(数一、二)	
第四		}方程	
		齐次型微分方程	
	四十七、	一阶线性微分方程	14
	四十八、	二阶常系数线性微分方程	14
	四十九、	二阶可降阶微分方程(数一、二)	14
	五十、 们	白努利方程(数一)	15
	五十一、	欧拉方程(数一)	15
	五十二、	差分方程(仅数三)	15
第三	丘章 多元區	函数微分学	16
	五十三、	重极限、连续、偏导、可微、偏导数连续	16
	五十四、	重极限结论	16
	五十五、	极值的充分条件	17
	五十六、	方向导数与梯度(仅数一)	17
	五十七、	经济学应用(仅数三)	17
第7	六章 二重和	只分	18
	五十八、	奇偶对称	18
	五十九、	轮换对称	18
	六十、 -	二重积分换元	18

第七章 无穷统	级数(数一、三)	18
六十一、	级数收敛+收敛	18
六十二、	常用级数	19
六十三、	级数的敛散性	19
六十四、	级数求和	20
六十五、	级数展开	20
六十六、	傅里叶系数与傅里叶级数(数一)	21
六十七、	正弦级数与余弦级数(数一)	21
第八章 空间	解析几何及向量代数(仅数一)	22
六十八、	向量	22
六十九、	平面方程	22
七十、〕	直线方程	22
	距离公式	
七十二、	常见曲面	23
	旋转曲面	
	积分(仅数一)	
	三重积分的对称性	
七十五、	第一型曲线积分(平面曲线)	25
	第一型曲线积分(空间曲线)	
七十七、	第一型曲面积分	26
七十八、	第二型曲线积分(平面曲线)	26
七十九、	平面曲线积分与路径无关的条件	26
八十、多	第二型曲线积分(空间曲线)	27
八十一、	第二型曲面积分的对称性	27
八十二、	第二型曲面积分的计算	28
八十三、	多元积分应用	28

第一部分 高等数学

高中必备知识

一、倍角公式

$$\cos^2 x = \frac{1 + \cos 2x}{2}$$

$$\sin^2 x = \frac{1 - \cos 2x}{2}$$

$$\sin 2x = 2\sin x \cos x$$

$$\cos 2x = 2\cos^2 x - 1 = \cos^2 x - \sin^2 x$$

二、诱导公式

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x$$

$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$

$$\cos\left(\frac{\pi}{2} + x\right) = -\sin x$$

$$\sin\left(\frac{\pi}{2} \pm x\right) = \cos x$$

$$\cos\left(\frac{\pi}{2} + x\right) = -\sin x$$

【记忆方法】以上四种形式,只有 $\cos(\frac{\pi}{2} + x) = -\sin x$ 需要添负号,且必须在前

三、两角和公式

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A-B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A-B) = \cos A \cos B + \sin A \sin B$$

$$\tan(A\pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

四、辅助角公式

$$a\sin x + b\cos x = \sqrt{a^2 + b^2}\sin[x + \arctan(\frac{b}{a})]$$
 ($a>0$) ①辅助角公式有 1.0 版和 2.0 版 2.0 版见课程讲述
$$a\sin x + b\cos x = \sqrt{a^2 + b^2}\cos[x - \arctan(\frac{a}{b})]$$
 ($b>0$) ②注意 $\arctan\frac{\mathrm{J} \mathrm{J} \mathrm{L}}{\mathrm{f} \mathrm{L}}$

五、积化和差公式

$$\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$$

$$\cos \alpha \sin \beta = \frac{1}{2} [\sin(\alpha + \beta) - \sin(\alpha - \beta)]$$

$$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)]$$

$$\sin \alpha \sin \beta = -\frac{1}{2} [\cos(\alpha + \beta) - \cos(\alpha - \beta)]$$

六、常见不等式

$$a+b\geq 2\sqrt{ab} \qquad a+b+c\geq 3\sqrt[3]{abc} \qquad a_1+a_2+\ldots+a_n\geq n\cdot \sqrt[n]{a_1\cdot a_2\ldots a_n} \qquad (a_i,b \text{ 非负实数})$$

$$ab\leq \frac{1}{2}(a^2+b^2) \qquad \sqrt{ab}\leq \frac{1}{2}(a+b)\leq \sqrt{\frac{a^2+b^2}{2}} \qquad (a,b \text{ 非负实数})$$

$$e^x\geq x+1$$

 $\ln x \le x - 1$

$$\frac{x}{1+x} < \ln(1+x) < x < e^x \qquad x > 0$$

$$\sin x < x < \tan x$$
 $\left(0, \frac{\pi}{2}\right)$

$$\frac{2}{\pi}x < \sin x < x \qquad \left(0, \frac{\pi}{2}\right)$$

$$x < \tan x < \frac{4}{\pi}x$$
 $\left(0, \frac{\pi}{4}\right)$

$$|a \pm b| \le |a| + |b|$$

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx$$

七、次方公式

【第一组】

$$a^{3} + b^{3} = (a+b)(a^{2} + b^{2} - ab)$$

$$a^{3} - b^{3} = (a - b)(a^{2} + b^{2} + ab)$$

$$x^{n} - 1 = (x - 1)(x^{n-1} + x^{n-2} + ... + x + 1)$$

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b^{1} + ... + b^{n-1})$$

【第二组】

$$(a+b)^2 = a^2 + b^2 + 2ab$$

$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc$$

$$(a-b+c)^2 = a^2 + b^2 + c^2 - 2ab + 2ac - 2bc$$

【第三组】

$$(a+b)^3 = a^3 + b^3 + 3a^2b + 3ab^2$$

$$(a-b)^3 = a^3 - b^3 + 3ab^2 - 3a^2b$$

$$(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}$$

八、一元二次方程

一元二次方程: $ax^2 + bx + c = 0 (a \neq 0)$

求根公式:
$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

韦达定理:
$$x_1 + x_2 = -\frac{b}{a}$$
 $x_1 x_2 = \frac{c}{a}$

九、等比数列

通项公式: $a_n = a_1 \cdot q^{n-1}$

前 n 项和:
$$S_n = \begin{cases} na_1, q = 1 \\ \frac{a_1 - a_n q}{1 - q} = \frac{a_1 \left(1 - q^n\right)}{1 - q}, q \neq 1 \end{cases}$$

十、n项和公式

$$1+2+\cdots+n=\frac{n(n+1)}{2}$$

$$1^{2} + 2^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

十一、奇偶性

1.定义: 奇函数:
$$f(-x) = -f(x)$$
 偶: $f(-x) = f(x)$

2.常见奇偶函数: (奇)
$$\sin x$$
, $\arcsin x$, $\tan x$, $\arctan x$, $\ln \left(x + \sqrt{1+x^2} \right)$, $\frac{e^x - 1}{e^x + 1}$, $f(x) - f(-x)$

(偶)
$$\cos x, x^2, |x|, f(x) + f(-x)$$

十二、对称性

①轴对称:
$$f(a+x)=f(b-x)$$
 对称轴: $\frac{a+b}{2}$ 自和定,函数等,相加除二对称轴

②中心对称:
$$f(a+x)+f(b-x)=c$$
 对称中心: $\left(\frac{a+b}{2},\frac{c}{2}\right)$ 自和定, 函和等, 对称中心对半求

十三、恒等式

$$\arctan x + \arctan \frac{1}{x} = \begin{cases} \frac{\pi}{2} & x > 0 \\ -\frac{\pi}{2} & x < 0 \end{cases}$$

$$\arcsin x + \arccos x = \frac{\pi}{2}$$

$$\arctan x + \operatorname{arccot} x = \frac{\pi}{2}$$

十四、反三角函数

1.反正弦函数
$$\arcsin x$$
 定义域 $\left[-1,1\right]$ 值域 $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$

2.反余弦函数
$$\arccos x$$
 定义域 $[-1,1]$ 值域 $[0,\pi]$

-章 函数 极限 连续

十五、等价无穷小 (x→0)

 $\sin x \sim \tan x \sim e^x - 1 \sim \arcsin x \sim \arctan x \sim \ln(1 + x) \sim x$

$$1-\cos x \sim \frac{1}{2}x^2$$

$$1-\cos^k x \sim \frac{k}{2}x^2$$

$$(1+x)^{\alpha} - 1 \sim \alpha x \quad (\alpha \neq 0)$$

$$\left[1+\alpha(x)\right]^{\beta(x)}-1\sim\alpha(x)\beta(x) \qquad \alpha(x)\to0, \alpha(x)\beta(x)\to0$$

$$\alpha^x - 1 \sim x \ln a$$

十六、泰勒展开

$$\sin x = x - \frac{x^3}{3!} + \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + o(x^{2n-1})$$

$$\cos x = 1 - \frac{x^2}{2!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n})$$

$$\ln(1+x) = x - \frac{x^2}{2} + \dots + (-1)^{n-1} \frac{x^n}{n} + o(x^n)$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

$$\tan x = x + \frac{x^3}{3} + o(x^3)$$

$$\arcsin x = x + \frac{x^3}{3!} + o(x^3)$$

$$\arctan x = x - \frac{x^3}{3} + o(x^3)$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \dots + \frac{\alpha(\alpha-1)...(\alpha-n+1)}{n!}x^n + o(x^n)$$

$$\ln\left(x + \sqrt{1 + x^2}\right) = x - \frac{1}{6}x^3 + o\left(x^3\right)$$

$$\frac{1}{1-x} = 1 + x + x^2 + ... + x^n$$

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n$$

$$\frac{1}{1+x} = 1 - x + x^2 + \dots + (-1)^n x^n$$

$$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \dots$$

十七、常考极限

$$\lim_{x \to \infty} \frac{a_{n}x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0}}{b_{m}x^{m} + b_{m-1}x^{m-1} + \dots + b_{1}x + b_{0}} = \begin{cases} \frac{a_{n}}{b_{m}} & n = m \\ 0 & n < m \\ \infty & n > m \end{cases}$$
 (其中 a_{n} 与 b_{m} 均不为零)

$$\lim_{n \to \infty} \sqrt[n]{a} = 1 \quad (a > 0)$$

$$\lim_{n \to \infty} \sqrt[n]{n} = 1$$

十八、需分左右极限讨论

$$e^{\infty}$$
, $\arctan \infty$, $\lim_{x\to 0} \frac{|x|}{x}$, $\lim_{x\to 0} [x]$

十九、取整函数

- ①[x]表示不超过x的最大整数
- ②在数轴上表现为往左取
- ③需分左右极限讨论
- ④取整函数的不等式 $x-1 < [x] \le x$

二十、符号函数

$$sgn(x) = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \\ -1 & x < 0 \end{cases}$$

第二章 一元函数微分学

二十一、导数定义公式

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

二十二、导数公式

$$(e^x)' = e^x$$

$$(a^x)' = a^x \ln a$$
 $(a > 0, a \ne 1)$

$$(x^{\alpha})' = \alpha x^{\alpha-1}$$

$$(\ln|x|)' = \frac{1}{r}$$

$$(\log_{\alpha} x)' = \frac{1}{x \ln \alpha}$$
 $(\alpha > 0, \alpha \ne 1)$

$$(\sin x)' = \cos x$$

$$(\cos x)' = -\sin x$$

$$(\tan x)' = \sec^2 x$$

$$(\cot x)' = -\csc^2 x$$

$$(\sec x)' = \sec x \cdot \tan x$$

$$(\csc x)' = -\csc x \cdot \cot x$$

$$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$$

$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$

$$(\arctan x)' = \frac{1}{1+x^2}$$

$$(\operatorname{arccot} x)' = -\frac{1}{1+x^2}$$

二十三、高阶导公式

$$(\alpha^x)^{(n)} = \alpha^x (\ln \alpha)^n \qquad (\alpha > 0, \alpha \neq 1)$$

$$(\sin x)^{(n)} = \sin(x + \frac{n}{2}\pi)$$

$$(\cos x)^{(n)} = \cos(x + \frac{n}{2}\pi)$$

$$[\sin(\alpha x + b)]^{(n)} = \sin(\alpha x + b + \frac{n}{2}\pi) \cdot \alpha^n$$

$$\left(\frac{1}{\alpha x + b}\right)^{(n)} = \frac{\left(-1\right)^{n} \cdot \alpha^{n} \cdot n!}{\left(\alpha x + b\right)^{n+1}}$$

$$[\ln(\alpha x+b)]^{(n)} = \frac{(-1)^{n-1} \cdot \alpha^n \cdot (n-1)!}{(\alpha x+b)^n}$$

$$(u \cdot v)^{(n)} = \sum_{k=0}^{n} C_{n}^{k} \cdot u^{(k)} \cdot v^{(n-k)}$$

二十四、反函数求导公式

$$\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}} = \frac{1}{f'(x)}$$

$$\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}} = \frac{1}{f'(x)} \qquad \frac{d^2x}{dy^2} = -\frac{f''(x)}{\left[f'(x)\right]^3}$$

二十五、泰勒公式

泰勒公式:
$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x)$$

麦克劳林公式 :
$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + ... + \frac{f^{(n)}(0)}{n!}x^n + R_n(x)$$

(在泰勒公式中,如果 $\mathbf{x}_0 = 0$,可得到麦克劳林公式)

二十六、微分概念

$$\begin{cases} \Delta y = f(x_0 + \Delta x) - f(x_0) \\ \Delta y = f'(x_0) \Delta x + o(\Delta x) \\ \Delta y = dy + o(\Delta x) \end{cases}$$

$$dy = f'(x_0) dx = f'(x_0) \Delta x = 微分 = 线性主部$$

二十七、中值定理

证明:
$$f'(\xi) + g(\xi)f(\xi) = 0$$
, 构造函数: 令 $F(x) = e^{\int g(x) dx} f(x)$

二十八、极值的判定

极值可能在 $\begin{cases} 1. 驻点 f' = 0 的点 \\ 2. 不可导点 \end{cases}$

- 1.用定义

2.用一阶导:一阶导变号

极值点判定 $\boxed{}$ 3.用二阶导: 二阶导不为 0 若 $f'(x_0)=0$, $f''(x_0)\neq 0$, 取得极值; $f''(x_0)<0$ 极大值

4.用 n 阶导: n 阶导不为 0 若 $f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0$, $f^{(n)}(x_0) \neq 0$, 则

①当 n 为偶数时, f(x) 在 x_0 处取得极值: 若 $f^{(n)}(x_0)$ <0 ,取得极大值, 若 $f^{(n)}(x_0)$ >0 ,取得极小值

②当 n 为奇数时, f(x) 在 x_0 处无极值

二十九、拐点的判定

拐点可能在 $\int_{2}^{1} f'' = 0$ 的点

1.用定义:两侧凹凸性变化

2.用二阶导:二阶导变号

拐点判定

3.用三阶导: 三阶导不为 0 若 $f'''(x_0) \neq 0$,则点 $(x_0, f(x_0))$ 是拐点

4.用 n 阶导: n 阶导不为 0 若 $f''(x_0) = f'''(x_0) = \dots = f^{(n-1)}(x_0) = 0$, $f^{(n)}(x_0) \neq 0$ $(n \ge 3)$,则

①当 n 为奇数时,则点 $(x_0, f(x_0))$ 是拐点

②当 n 为偶数时,则点 $(x_0, f(x_0))$ 不是拐点

【注】写答案时区分极值点和拐点。极值点 $x = ____$,拐点(,)

三十、曲率、曲率半径(数一、二)

(1) 曲率:
$$K = \frac{|y''|}{[1+(y')^2]^{\frac{3}{2}}}$$

(2) 曲率半径: $R = \frac{1}{K}$ $(K \neq 0)$

第三章 一元函数积分学

三十一、积分公式

$$\int x^{\alpha} dx = \frac{1}{\alpha + 1} x^{\alpha + 1} + C \quad (\alpha \neq -1)$$

$$\int \frac{1}{x} dx = \ln|x| + C$$

$$\int \sin x dx = -\cos x + C$$

$$\int \cos x \, dx = \sin x + C$$

$$\int \tan x \, dx = -\ln|\cos x| + C$$

$$\int \cot x \, dx = \ln \left| \sin x \right| + C$$

$$\int \sec x dx = \ln|\sec x + \tan x| + C$$

$$\int \csc x \, dx = \ln\left|\csc x - \cot x\right| + C \implies \ln\left|\tan\frac{x}{2}\right| + C$$

$$\int \tan^2 x \, dx = \tan x - x + C$$

$$\int \cot^2 x \, dx = -\cot x - x + C$$

$$\int \sec^2 x dx = \tan x + C$$

$$\int \csc^2 x dx = -\cot x + C$$

$$\int \cos^2 x \, dx = \frac{2x + \sin 2x}{4} + C$$

$$\int \sin^2 x \, dx = \frac{2x - \sin 2x}{4} + C$$

$$\int \sec x \cdot \tan x \, dx = \sec x + C$$

$$\int \csc x \cdot \cot x dx = -\csc x + C$$

$$\int \frac{1}{x^2 + \alpha^2} dx = \frac{1}{\alpha} \cdot \arctan \frac{x}{\alpha} + C$$

$$\int \frac{1}{x^2 - \alpha^2} dx = \frac{1}{2\alpha} \cdot \ln \left| \frac{x - \alpha}{x + \alpha} \right| + C$$

$$\int \frac{1}{\alpha^2 - x^2} dx = \frac{1}{2\alpha} \cdot \ln \left| \frac{\alpha + x}{\alpha - x} \right| + C$$

$$\int \frac{1}{\sqrt{x^2 + \alpha^2}} dx = \ln \left| x + \sqrt{x^2 + \alpha^2} \right| + C$$

$$\int \frac{1}{\sqrt{x^2 - \alpha^2}} dx = \ln\left| x + \sqrt{x^2 - \alpha^2} \right| + C$$

$$\int \frac{1}{\sqrt{\alpha^2 - x^2}} dx = \arcsin \frac{x}{\alpha} + C$$

$$\int \tan^2 x + 1 = \sec^2 x$$
$$\cot^2 x + 1 = \csc^2 x$$
$$\sin^2 x + \cos^2 x = 1$$

$$\sin^2 x + \cos^2 x = 1$$

$$\sec x = \frac{1}{\cos x}$$

$$- \csc x = \frac{1}{\sin x}$$

$$\cot x = \frac{1}{\tan x}$$

见到
$$\sqrt[n]{ax+b}$$
, $\sqrt[n]{\frac{x+1}{x-1}}$, $\sqrt{e^x+1}$ 用根式代换

见到
$$\sqrt{a^2 - x^2}$$
 令 $x = a \sin t$

见到
$$\sqrt{a^2 + x^2}$$
 令 $x = a \tan t$

见到
$$\sqrt{x^2 - a^2}$$
 令 $x = a \sec t$

若
$$R(-\sin x,\cos x) = -R(\sin x,\cos x)$$
 , 凑 $d\cos x$

若
$$R(\sin x, -\cos x) = -R(\sin x, \cos x)$$
 , 凑 $d\sin x$

若
$$R(-\sin x, -\cos x) = R(\sin x, \cos x)$$
 , 凑 $d \tan x$

万能代换

$$\int R(\sin x, \cos x) dx = \int R\left(\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2}\right) \cdot \frac{2}{1+t^2} dt$$

$$\tan\frac{x}{2} = t$$

$$\sin x = \frac{2t}{1+t^2}$$

$$\cos x = \frac{1 - t^2}{1 + t^2}$$

$$\int \sqrt{x^2 + \alpha^2} \, dx = \frac{x}{2} \sqrt{x^2 + \alpha^2} + \frac{\alpha^2}{2} \ln\left|x + \sqrt{x^2 + \alpha^2}\right| + C$$

$$\int \sqrt{x^2 - \alpha^2} \, dx = \frac{x}{2} \sqrt{x^2 - \alpha^2} - \frac{\alpha^2}{2} \ln\left|x + \sqrt{x^2 - \alpha^2}\right| + C$$

$$\int \sqrt{\alpha^2 - x^2} \, dx = \frac{x}{2} \sqrt{\alpha^2 - x^2} + \frac{\alpha^2}{2} \arcsin\frac{x}{\alpha} + C$$

$$\int e^{\alpha x} \cdot \sin bx \, dx = \frac{1}{\alpha^2 + b^2} \begin{vmatrix} (e^{\alpha x})' & (\sin bx)' \\ e^{\alpha x} & \sin bx \end{vmatrix} + C$$

注②: "积不出来的积分"
$$\int \frac{1}{\ln x} dx \int e^{-x^2} dx \int \frac{\sin x}{x} dx \int \frac{\cos x}{x} dx$$

三十二、拆真分式方法

分母含
$$\frac{A}{ax+b} \to \frac{A}{ax+b}$$
分母含
$$\frac{A_1}{(ax+b)^2} \to \frac{A_1}{ax+b} + \frac{A_2}{(ax+b)^2}$$
分母含
$$\frac{Ax+B}{ax^2+bx+c} (\Delta < 0) \to \frac{Ax+B}{ax^2+bx+c}$$
分母含
$$\frac{Ax+B}{(ax^2+bx+c)^2} (\Delta < 0) \to \frac{Ax+B}{ax^2+bx+c} + \frac{Cx+D}{(ax^2+bx+c)^2}$$

三十三、定积分计算技巧

$$\int_{0}^{\frac{\pi}{2}} \sin^{a}x \cdot \cos^{b}x dx = \begin{cases} \frac{(a-1)!!(b-1)!!}{(a+b)!!} & a,b \land 2 \end{pmatrix} \begin{pmatrix} a,b \land 2$$

三十四、原函数存在 vs 可积 vs 变上限积分可导

「连续 ⇒ 有原函数

f(x) 可去、跳跃、无穷 \Rightarrow 没原函数 振荡间断 \Rightarrow 可能有原函数

$$f(x)$$
 有限个第一类间断 $\Rightarrow f(x)$ 可积 $\Rightarrow \int_{a}^{x} f(t) dt$ 连续 有界+有限个间断 $\Rightarrow f(x)$ 可积 $\Rightarrow \int_{a}^{x} f(t) dt$

连续
$$\Rightarrow \int_a^x f(t)dt$$
 可导,导数值=函数值 可去 $\Rightarrow \int_a^x f(t)dt$ 可导,导数值=极限值 跳跃 $\Rightarrow \int_a^x f(t)dt$ 不可导

	连续	可去	跳跃	无穷	振荡
原函数存在	√	x	x	х	可能
定积分存在	√	√(有限个)	√(有限个)	х	可能(有界+有限)
变限积分可导性	√	√	х		

三十五、祖孙三代的奇偶性、周期性

①
$$f(x)$$
可导
$$\begin{cases} f(x) \to f'(x) \\ f(x) \to f'(x) \\ f(x) \to f'(x) \end{cases}$$
 用期 $f(x) \to f'(x)$ 用期 $f(x) \to f'(x)$ 用期 $f(x) \to f'(x)$

$$\begin{cases} f(x)$$
为可积的奇函数 $\rightarrow \begin{cases} \int_0^x f(t)dt \\ \int_a^x f(t)dt \\ dt \end{cases} \end{cases}$ ② $f(x)$ 可积
$$\begin{cases} f(x)$$
为可积的偶函数 $\rightarrow \begin{cases} \int_0^x f(t)dt \\ \int_a^x f(t)dt \\ dt \end{cases} \end{cases}$ 令 $\begin{cases} f(x)$ 为可积的偶函数 $\Rightarrow \begin{cases} \int_a^x f(t)dt \\ dt \end{cases} \end{cases}$ 令 $\begin{cases} f(x)$ 为可积的偶函数 $\Rightarrow \begin{cases} f(x) \\ f(x) \end{cases} \end{cases}$

周期性: 已知 f(x) 可积,周期为 T,若想 $\int_0^x f(t)dt$ 也以 T 为周期,当且仅当 f(x) 在一个周期上积分为 0,即 $\int_0^T f(x)dx = 0$

三十六、反常积分

$$\int_{0}^{1} \frac{1}{x^{p}} dx \begin{cases} p < 1 & \text{收敛} \\ p \ge 1 & \text{发散} \end{cases}$$

$$\int_{1}^{+\infty} \frac{1}{x^{p}} dx \begin{cases} p > 1 & \text{收敛} \\ p \le 1 & \text{发散} \end{cases}$$

$$\int_{2}^{+\infty} \frac{1}{x^{p} \cdot \ln^{q} x} dx \begin{cases} p > 1 & \text{收敛} \\ p < 1 & \text{发散} \end{cases}$$

$$p < 1 & \text{发散}$$

$$p = 1 \begin{cases} q > 1 & \text{收敛} \\ q \le 1 & \text{发散} \end{cases}$$

 $\int_{0}^{1} \ln^{777} x dx$ 收敛, $\ln x$ 趋于具体某个有限点,无论多少次均收敛

三十七、参数方程、极坐标常考图像

4.伯努利双扭线

$$r^2 = a^2 \sin 2\theta (a > 0)$$

三十八、平面图形面积

①在直角坐标系下: $S = \int_{a}^{b} |y_1(x) - y_2(x)| dx$

②在参数方程下: $S = \int_a^b f(x)dx \stackrel{\diamond_{x=x(t)}}{===} \int_a^\beta y(t)d\left[x(t)\right]$ (换元有三换)

③在极坐标系下: $S = \frac{1}{2} \int_{\alpha}^{\beta} \left| {1 \choose 1}^2(\theta) - r_2^2(\theta) \right| d\theta$ (α, β 是角度)

三十九、旋转体体积

「类型1求旋转体体积―直角坐标系 _

类型2求旋转体体积一参数方程

类型3求旋转体体积一极坐标系

绕 x 轴旋转: $V_x = \pi \int_a^b y^2(x) dx$

绕 y 轴旋转: $V_y = 2\pi \int_a^b x \cdot y(x) dx$

绕直线旋转: $V = 2\pi \iint_{D} r(x,y)d\sigma$

其中 r(x, y) 为点到直线距离, $r(x, y) = \frac{|Ax + By + C|}{\sqrt{A^2 + B^2}}$

四十、切线、法线方程

选填题常考: 过点(a,b)的切线方程: y-b=y'(x-a) 过点(a,b)的法线方程: $y-b=-\frac{1}{v'}(x-a)$

大题常考: 切线方程: Y-y=y'(X-x) 法线方程: $Y-y=-\frac{1}{v'}(X-x)$

四十一、曲线弧长(数一、二)

(1) 若曲线由直角坐标方程 $y = y(x)(a \le x \le b)$ 给出,则 $s = \int_a^b \sqrt{1 + \left[y'(x)\right]^2} dx$.

(2) 若曲线由参数方程 $\begin{cases} x = x(t), \\ y = y(t) \end{cases} (\alpha \leqslant t \leqslant \beta) 给出, 则 s = \int_{\alpha}^{\beta} \sqrt{\left[x'(t)\right]^2 + \left[y'(t)\right]^2} dt.$

(3) 若曲线由极坐标方程 $r = r(\theta)(\alpha \leqslant \theta \leqslant \beta)$ 给出,则 $s = \int_{\alpha}^{\beta} \sqrt{[r(\theta)]^2 + [r'(\theta)]^2} d\theta$.

四十二、旋转体侧面积(数一、二)

直角坐标方程
$$y = y(x)$$
 ($a \le x \le b$)

$$S = 2\pi \int_{\alpha}^{\beta} |y(t)| \sqrt{\left(x_{t}^{'}\right)^{2} + \left(y_{t}^{'}\right)^{2}} dt$$
 参数方程
$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$

$$S = 2\pi \int_{\alpha}^{\beta} |r(\theta) \sin \theta| \sqrt{r^2(\theta) + \left[r'(\theta)\right]^2} d\theta \qquad \qquad$$
极坐标方程 $r = r(\theta) \quad (\alpha \le \theta \le \beta)$

四十三、形心坐标(数一、二)

$$\overline{x} = \frac{\iint_D x \, d\sigma}{\iint_D d\sigma} = \frac{\int_a^b dx \int_0^{f(x)} x \, dy}{\int_a^b dx \int_0^{f(x)} dy} = \frac{\int_a^b x f(x) \, dx}{\int_a^b f(x) \, dx}$$

$$\overline{y} = \frac{\iint_D y \, d\sigma}{\iint_D d\sigma} = \frac{\int_a^b dx \int_0^{f(x)} y \, dy}{\int_a^b dx \int_0^{f(x)} dy} = \frac{\frac{1}{2} \int_a^b f^2(x) \, dx}{\int_a^b f(x) \, dx}$$

四十四、积分的物理应用(数一、二)

	题型考法	公式		破题点
1	抽水做功	$dW = \rho g \cdot $ 体积·移动距离	$W = \int_{a}^{b} \rho \cdot g \cdot x \cdot A(x) dx$	体积!
2	变力沿直 线做功	$dW = F \times 8$ 动距离	$W = \int_{a}^{b} F(x) dx$	力 移动距离!
3	静水压力	$dP = \rho gh \times 受力面积$	$P = \int_{a}^{b} \rho \cdot g \cdot x \cdot \left[f(x) - g(x) \right] dx$	受力面积!
4	万有引力	dm = 线密度·dx	$F = G \frac{m_1 m_2}{r^2}$	dm

四十五、微分方程的物理应用(数一、二)

	题型考法	公式	注意
1	牛顿第二定律	$F = ma \qquad a = \frac{d^2x}{dt^2} = \frac{dv}{dt} = \frac{dv}{dx}\frac{dx}{dt} = v\frac{dv}{dx}$	a天然正负
2	变化率问题	$\frac{dA}{dB}$ "A对B的变化率"	$\frac{dA}{dB}$ 天然正负
3	进出问题	含量=浓度 \mathbf{x} 体积 时间微元 $[t,t+dt]$ 含量的变化量=流入含量-流出含量 $d \Box = \Delta_{\pm} - \Delta_{\Box}$	
4	追击问题	【方程①】斜率=坐标差 $\frac{dy}{dx} = \frac{y_2 - y_1}{x_2 - x_1}$ (题给) 【方程②】弧长=路程 $s = \int_a^b \sqrt{1 + (y')^2} dx$	

第四章 常微分方程

	类型	解法	
1.可分离变量型	y' = f(x)g(y)	等式左右两边同时积分	
2.齐次型微分方程	$\frac{dy}{dx} = f\left(\frac{y}{x}\right)$	$u = \frac{y}{x}$, $\frac{dy}{dx} = u + x \frac{du}{dx}$	
2	y' + p(x)y = 0	$y = Ce^{-\int p(x)dx}$	
3.一阶线性微分方程	y' + p(x)y = Q(x)	$y = e^{-\int p(x)dx} \left[\int e^{\int p(x)dx} \cdot Q(x)dx + C \right]$	
4.伯努利方程(仅数一)	$y' + p(x)y = Q(x)y^{n} (n \neq 0,1)$	$z = y^{1-n}$, $\frac{1}{1-n} \frac{dz}{dx} + p(x)z = Q(x)$	
5. 二阶可降阶—不显含 y(数一二)	xy'' + 3y' = 0 $y' = p, y'' = p'$		
二阶可降阶—不显含 x (数一二)	$yy'' = 1 + y'^2$	$y' = p, y'' = \frac{dp}{dy}p$	
6.欧拉方程(仅数一)	$x^2y'' + pxy' + qy = f(x)$	$ \Rightarrow x = e^t \ x^2 y'' = D(D-1)y \qquad xy' = Dy $	
7.二阶常系数线性微分方程	y'' + py' + qy = f(x)	求特征根,求齐次通解,设特解	
8.差分方程(仅数三)	$y_{t+1} + ay_t = f(t)$	求特征根,求齐次通解 $y_t = C(-a)^t$ 设特解,注意 λ 与 b 是否相等	

四十六、齐次型微分方程

①形式:
$$\frac{dy}{dx} = f\left(\frac{y}{x}\right)$$
 $u = \frac{y}{x}$, $\frac{dy}{dx} = u + x\frac{du}{dx}$

四十七、一阶线性微分方程

①形式:
$$y' + p(x)y = Q(x)$$

$$y' + p(x)y = 0$$

②通解:
$$y = e^{-\int p(x)dx} [\int Q(x) \cdot e^{\int p(x)dx} dx + C]$$

$$y = Ce^{-\int p(x)dx}$$

注:一阶线性通解公式中,若e上积分结果有 \ln ,无需加绝对值,除此外一律需要加绝对值

四十八、二阶常系数线性微分方程

①形式: y'' + py' + qy = 0

②特征方程为: $\lambda^2 + p\lambda + q = 0$

- (1) 若 $\lambda_1 \neq \lambda_2$, 通解为 $y = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}$
- (2) 若 $\lambda_1 = \lambda_2 = \lambda$, 通解为 $y = (C_1 + C_2 x)e^{\lambda x}$
- (3) 若 $\lambda_{1,2} = \alpha \pm i\beta$, 通解为 $y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$

四十九、二阶可降阶微分方程(数一、二)

类型 1: 方程中不显含 y ——令 y' = p, y'' = p'

例: xy'' + 3y' = 0

类型 2: 方程中不显含 x ——令 $y' = p, y'' = \frac{dp}{dy}p$ 例: $yy'' - \frac{2}{3}(y')^2 = 0$

五十、伯努利方程(数一)

①形式: $y' + p(x)y = q(x)y^n \quad (\alpha \neq 0.1)$

②解法: 先变形为
$$y^{-n} \cdot \frac{\mathrm{d}y}{\mathrm{d}x} + p(x)y^{1-n} = Q(x)$$

令
$$z = y^{1-n}$$
 , 得 $\frac{\mathrm{d}z}{\mathrm{d}x} = (1-n)y^{-n}\frac{\mathrm{d}y}{\mathrm{d}x}$, 则 $\frac{1}{1-n}\frac{\mathrm{d}z}{\mathrm{d}x} + p(x)z = q(x)$

五十一、欧拉方程(数一)

①形式:
$$x^n y^{(n)} + \alpha_1 x^{n-1} y^{(n-1)} + \alpha_2 x^{n-2} y^{(n-2)} + ... + \alpha_{n-1} x y' + \alpha_n y = f(x)$$

 $x^2 y'' + p x y' + q y = f(x)$

五十二、差分方程(仅数三)

1.一阶差分:
$$\Delta y_t = y_{t+1} - y_t$$

二阶差分:
$$\Delta^2 y_t = \Delta y_{t+1} - \Delta y_t = y_{t+2} - 2y_{t+1} + y_t$$

形式一	$y_{t+1} + ay_t = 0$	通解 $y_t = C \cdot (-a)^t$	
14.	$y_{t+1} + ay_t = P_m(t) \cdot b^t$	若 λ ≠ b	设 $y_t^* = Q_t(m) \cdot b^t$
		若 λ = b	设 $y_{t}^{*} = t \cdot Q_{t}(m) \cdot b^{t}$
形式三	$y_{t+1} + ay_t = b_1 \cos wt + b_2 \sin wt$	若 $(a+\cos w)^2+\sin^2 w\neq 0$	设 $y_t^* = A\cos wt + B\sin wt$

第五章 多元函数微分学

五十三、重极限、连续、偏导、可微、偏导数连续

1	重极限	$\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y) = A$			
2	连续	$\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y) = f(x_0, y_0) 极限值=函数值$			
3	伯巴粉	$f_{x}'(x_{0}, y_{0}) = \lim_{x \to x_{0}} \frac{f(x, y_{0}) - f(x_{0}, y_{0})}{x - x_{0}} = \lim_{\Delta x \to 0} \frac{f(x_{0} + \Delta x, y_{0}) - f(x_{0}, y_{0})}{\Delta x} =$			
3	偏导数	$f_{y}^{'}(x_{0}, y_{0}) = \lim_{y \to y_{0}} \frac{f(x_{0}, y) - f(x_{0}, y_{0})}{y - y_{0}} = \lim_{\Delta y \to 0} \frac{f(x_{0}, y_{0} + \Delta y) - f(x_{0}, y_{0})}{\Delta y} =$			
4	可地	$\lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{\left[f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) \right] - [A\Delta x + B\Delta y]}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} = 0$			
4	可微	$\lim_{\substack{x \to x_0 \\ y \to y_0}} \frac{\left[f(x, y) - f(x_0, y_0) \right] - \left[A(x - x_0) + B(y - y_0) \right]}{\sqrt{(x - x_0)^2 + (y - y_0)^2}} = 0$			
5	偏导数 连续	$f'_{x}(x_{0}, y_{0}) = \lim_{\substack{x \to x_{0} \\ y \to y_{0}}} f'_{x}(x, y) \qquad f'_{y}(x_{0}, y_{0}) = \lim_{\substack{x \to x_{0} \\ y \to y_{0}}} f'_{y}(x, y) \tag{{4}}$			

五十四、重极限结论

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^a y^b}{x^m + y^n} \begin{cases} m, n \neq n = 0 \\ m, n \neq n = 0 \end{cases}$$

$$\begin{cases} \frac{a}{m} + \frac{b}{n} > 1 & \text{极限} = 0 \\ \frac{a}{m} + \frac{b}{n} \leq 1 & \text{极限不存在, 选路径} \\ \frac{a}{m} + \frac{b}{n} \leq 1 & \text{WRTA} \end{cases}$$

五十五、极值的充分条件

$$\operatorname{id} \left\{ \begin{aligned} &A = f_{xx}^{''} \left(x_0, y_0 \right), \\ &B = f_{xy}^{''} \left(x_0, y_0 \right), \ AC - B^2 \\ &C = f_{yy}^{''} \left(x_0, y_0 \right), \end{aligned} \right. \begin{cases} > 0 \Rightarrow \text{是极值} \left\{ \begin{aligned} &A < 0, \text{极大值} \\ &A > 0, \text{极小值} \end{aligned} \right. \\ &< 0 \Rightarrow \text{不是极值} \\ &= 0 \Rightarrow \text{该法失效, States} \end{cases}$$

五十六、方向导数与梯度(仅数一)

(1) 方向导数:
$$\frac{\partial f}{\partial l}\Big|_{(x_0,y_0)} = f'_x(x_0,y_0)\cos\alpha + f'_y(x_0,y_0)\cos\beta$$

(2) 梯度: grad
$$\mathbf{z} = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j}$$

(3) 散度:
$$\operatorname{div} \mathbf{A} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial v} + \frac{\partial R}{\partial z}$$

(4) 旋度:
$$\mathbf{rotA} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$$

五十七、经济学应用(仅数三)

弹性问题

需求对价格的弹性
$$-\frac{dQ}{dP}\frac{P}{Q}$$
 $(\eta > 0$ 时)

经济意义

边际成本为 xx,经济学意义是什么?答:在Q=处,当销售量Q改变一个单位,总成本改变____个单位 边际利润为 xx,经济学意义是什么?答:在Q=处,当销售量Q改变一个单位,总利润改变____个单位 需求弹性为 xx,经济学意义是什么?答:当价格为 P_0 时,若提价(或降价)1%,则需求量将减少(增加)___%

供给弹性为 xx,经济学意义是什么?答: 当价格为 P_0 时,若提价(或降价)1%,则供给量将增加(减少)___%

复利问题

- (1) 分期复利: n 年末本利和为 $A_n = A_0 (1+r)^n$
- (2) 连续复利: n 年末本利和为 $A_n = A_0 e^{nr}$

第六章 二重积分

五十八、奇偶对称

【若 D 关于 x 轴对称,看 y】若 f(x,y) 是关于 y 的奇函数,则积分值为 0

$$\iint_{D} f(x,y) d\sigma = \begin{cases} 2\iint_{D_{1}} f(x,y) d\sigma, & f(x,-y) = f(x,y) \\ 0, & f(x,-y) = -f(x,y) \end{cases}$$

【若 D 关于 y 轴对称,看 x】若 f(x,y) 是关于 x 的奇函数,则积分值为 0

$$\iint_{D} f(x,y) d\sigma = \begin{cases} 2\iint_{D_{1}} f(x,y) d\sigma, & f(-x,y) = f(x,y) \\ 0, & f(-x,y) = -f(x,y) \end{cases}$$

【若 D 关于 x=1 对称,看 x-1】

若被积函数是关于 x-1 的奇函数,则在 D 上积分值为 0

【若 D 关于 y=1 对称,看 y-1】

若被积函数是关于 y-1 的奇函数,则在 D 上积分值为 0

五十九、轮换对称

①将区域 D 中的 x, y 与 f(x,y) 中的 x, y 同时对调,值不变 $\iint_{D_{(x,y)}} f(x,y) d\sigma = \iint_{D_{(y,x)}} f(y,x) d\sigma$ (天然成立)

②若区域 D 关于 y=x 对称,将被积函数的 x 与 y 对调,值不变 $\iint_D f(x,y)d\sigma = \iint_D f(y,x)d\sigma$

进一步的,
$$I = \iint_D f(x,y) d\sigma = \iint_D f(y,x) d\sigma = \frac{1}{2} \iint_D [f(x,y) + f(y,x)] d\sigma$$

更进一步的,
$$\iint_D f(x,y) d\sigma = \begin{cases} 2\iint_{D_1} f(x,y) d\sigma, & f(x,y) = f(y,x) \\ 0, & f(x,y) = -f(y,x) \end{cases}$$

六十、二重积分换元

$$\iint_{D} f(x,y) dx dy \xrightarrow{\frac{x=x(u,v)}{y=y(u,v)}} \iint_{D'} f(x(u,v),y(u,v)) |J| du dv, \quad \sharp \uparrow \downarrow J = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} \neq 0.$$

例如:

$$\iint\limits_{D} f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \frac{x = r \cos \theta}{y = r \sin \theta} \iint\limits_{D} f(r \cos \theta, r \sin \theta) \, r \, \mathrm{d}r \, \mathrm{d}\theta \qquad \left\{ \begin{array}{ll} x = r \cos \theta, \\ y = r \sin \theta \end{array} \right. \quad J = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{vmatrix} = \begin{vmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{vmatrix} = r$$

第七章 无穷级数

六十一、级数收敛+收敛

收敛+收敛问题

- ①收敛+收敛=收敛
- ②收敛+发散=发散

4 绝收与条收问题

- ①绝收+绝收=绝收
- ②绝收+条收=条收
- ③条收+条收=不确定(可能绝收,可能条收)

六十二、常用级数

(1) p 级数
$$\sum_{n=1}^{\infty} \frac{1}{n^p} \begin{cases} \psi \otimes p > 1 \\ \xi \otimes 0$$

(2) 等比级数
$$\sum_{n=0}^{\infty} a \cdot q^{n} (a \neq 0)$$
 { 收敛 = $\frac{ \dot{f} \overline{y}}{1 - \text{公比}}$ | $q \mid < 1$ 发散 | $q \mid \geq 1$

(4) 交错 p 级数
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^p} \begin{cases} 绝对收敛 & p > 1 \\ 条件收敛 & 0$$

六十三、级数的敛散性

(1) 收敛,加绝对值,不一定收敛

若
$$\sum u_n$$
 收敛 $\Rightarrow \Sigma |u_n|$ 不确定

若
$$\Sigma u_n$$
 发散 $\Rightarrow \Sigma |u_n|$ 发散

(2) 收敛,平方项,看是否正项

若
$$\Sigma u_n$$
 收敛,则 Σu_n^2 ?
$$\begin{cases} \mathbb{E} \overline{y} \mathcal{Y}, \sum_{n=1}^{\infty} u_n^2 \text{也收敛} \\ \mathbb{E} \mathcal{Y}, \sum_{n=1}^{\infty} u_n^2 \text{不确定} \end{cases}$$

(3) 收敛,前后项相乘,看是否正项

若
$$\Sigma u_n$$
 收敛,则 $\Sigma u_{n+1} \cdot u_n$?
$$\begin{cases} \mathbb{E} \, \varpi_{0} \otimes \sum_{n=1}^{\infty} u_{n+1} \cdot u_n \otimes \otimes \mathbb{E} \\ \mathbb{E} \, \varpi_{0} \otimes \mathbb{E} \otimes \mathbb{E} \otimes \mathbb{E}$$

(4) 收敛, 奇偶子列, 看是否正项

(5) 发散+发散,看是否正项

若 Σu_n 发散, Σv_n 发散, 则 $\Sigma (u_n + v_n)$

(6) 收敛,(-1)"

若 Σu_n 收敛 $\Sigma (-1)^n u_n$ 不确定

(7) 收敛,
$$(-1)^n \frac{1}{n}$$

若 Σu_n 收敛 $\Sigma (-1)^n \frac{u_n}{n}$ 不确定

(8) 收敛,加括号,更收敛

若 Σu_n 收敛, $\Rightarrow \Sigma (u_{2n-1} + u_{2n})$ 收敛

$$\Rightarrow \Sigma(u_{2n-1} + u_{2n})$$
 收敛

$$\neq \Sigma(u_n + u_{n+1})$$
 收敛

六十四、级数求和

一、整式型

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \tag{-1,1}$$

$$-\sum_{n=0}^{\infty} (n+1)x^n = \frac{1}{(1-x)^2}$$
 (-1,1)

$$\sum_{n=0}^{\infty} (n+2)(n+1)x^n = \frac{2}{(1-x)^3}$$
 (-1,1)

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = \ln(1+x) \tag{-1,1}$$

$$\sum_{n=1}^{\infty} \frac{x^n}{n} = -\ln(1-x)$$
 [-1,1)

$$\sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1} = \frac{1}{2} \ln \frac{1+x}{1-x}$$
 (-1,1)

$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = \arctan x$$
 [-1,1]

三、阶乘型

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x \tag{-\infty, +\infty}$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = \sin x \tag{-\infty,+\infty}$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = \cos x \tag{-\infty,+\infty}$$

$$-\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = \cos x \qquad (-\infty, +\infty)$$

$$\sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} = \frac{e^x - e^{-x}}{2} \qquad (-\infty, +\infty)$$

$$\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} = \frac{e^x + e^{-x}}{2}$$
 $(-\infty, +\infty)$

六十五、级数展开

一、整式型

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \tag{-1,1}$$

$$\frac{1}{(1-x)^2} = \sum_{n=0}^{\infty} (n+1)x^n \tag{-1,1}$$

$$\frac{2}{(1-x)^3} = \sum_{n=0}^{\infty} (n+2)(n+1)x^n \tag{-1,1}$$

二、分式型

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$$
 (-1,1]

$$-\ln(1-x) = \sum_{n=1}^{\infty} \frac{x^n}{n}$$
 [-1,1)

$$\frac{1}{2}\ln\frac{1+x}{1-x} = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}$$
 (-1,1)

$$\arctan x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$
 [-1,1]

三、阶乘型

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \tag{-\infty,+\infty}$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \tag{-\infty,+\infty}$$

$$-\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$
 (-\infty,+\infty)

$$\frac{e^x - e^{-x}}{2} = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} \tag{-\infty, +\infty}$$

$$\left[\frac{e^x + e^{-x}}{2} = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}\right] \tag{-\infty,+\infty}$$

六十六、傅里叶系数与傅里叶级数(数一)

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi}{l} x + b_n \sin \frac{n\pi}{l} x \right)$$
 为 $f(x)$ 以 $2l$ 为周期的傅里叶级数

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi}{l} x dx \quad (n = 1, 2, ...)$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi}{l} x dx \quad (n = 1, 2, ...)$$

$$a_0 = \frac{1}{l} \int_{-l}^{l} f(x) \mathrm{d}x$$

六十七、正弦级数与余弦级数(数一)

(1)当
$$f(x)$$
为奇函数时,其展开式是正弦级数, $f(x) \sim \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{l}$

(2)当
$$f(x)$$
 为偶函数时,其展开式是余弦级数, $f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{l}$

第八章 空间解析几何及向量代数 (仅数一)

六十八、向量

设**a** = (a_1, a_2, a_3) , **b** = (b_1, b_2, b_3)

1.	数量积	$\mathbf{a} \cdot \mathbf{b} = \mathbf{a} \mathbf{b} \cos(\widehat{\mathbf{a}, \mathbf{b}}) = a_1 b_1 + a_2 b_2 + a_3 b_3$	判断向量垂直	
2.	向量积	$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} \qquad \mathbf{a} \times \mathbf{b} = \mathbf{a} \mathbf{b} \sin(\widehat{\mathbf{a}}, \widehat{\mathbf{b}})$	判断向量平行	平行四边形面积
3.	混合积	$(\mathbf{a}, \mathbf{b}, \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$	判断三向量共面	平行六面体体积

判断向量垂直: 用数量积(垂直,数量积为0)判断向量平行: 用向量积(平行,向量积为0)判断三向量共面: 用混合积(共面,混合积为0)

4.向量投影: $Prj_a \mathbf{b} =$ 向量 \mathbf{b} 在 \mathbf{a} 上的投影: $|\mathbf{b}| \cos \theta$

5. 方向余弦:
$$\cos \alpha = \frac{a}{\sqrt{a^2 + b^2 + c^2}}, \cos \beta = \frac{b}{\sqrt{a^2 + b^2 + c^2}}, \cos \gamma = \frac{c}{\sqrt{a^2 + b^2 + c^2}}$$

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$

 $(\cos \alpha, \cos \beta, \cos \gamma)$ 是单位向量

六十九、平面方程

1.点法式方程: $A(x-x_0)+B(y-y_0)+C(z-z_0)=0$

2. 一般式方程: Ax + By + Cz + D = 0 $\mathbf{n} = \{A, B, C\}$

3.截距式方程: $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ (a,b,c 是平面对 x,y,z 轴的截距)

4.三点式方程

设 $P_1(a_1,a_2,a_3)$, $P_2(b_1,b_2,b_3)$, $P_3(c_1,c_2,c_3)$ 为不在一条直线上的三点,则过这三点的平面方程为

$$\begin{vmatrix} x - a_1 & y - a_2 & z - a_3 \\ x - b_1 & y - b_2 & z - b_3 \\ x - c_1 & y - c_2 & z - c_3 \end{vmatrix} = 0.$$

5.平面束方程: 通过直线 $l: \begin{cases} A_1x + B_1y + C_1z + D_1 = 0, \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$ 的平面束方程为

 $A_1x + B_1y + C_1z + D_1 + \lambda(A_2x + B_2y + C_2z + D_2) = 0$,注意无法表示平面 $A_2x + B_2y + C_2z + D_2 = 0$

七十、直线方程

1.一般式方程:
$$L: \begin{cases} A_1x + B_1y + C_1z + D_1 = 0, \\ A_2x + B_2y + C_2z + D_2 = 0. \end{cases}$$

2.点向式方程(对称式方程): $\frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}$ ($\mathbf{s} = (l, m, n)$ 为直线 L 的方向向量)

3.参数式方程: $L: \begin{cases} x = x_0 + lt, \\ y = y_0 + mt, \\ z = z_0 + nt, \end{cases}$

4.两点式方程

设直线 L 上的两点 $P_1(x_1,y_1,z_1), P_2(x_2,y_2,z_2)$,则直线 L 的方程为 $\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}$.

七十一、距离公式

1.点到平面的距离

设 $P_0(x_0, y_0, z_0) \notin \pi$, 平面 $\pi: Ax + By + Cz + D = 0$, 则 P_0 到平面 π 的距离为 $d = \frac{\left|Ax_0 + By_0 + Cz_0 + D\right|}{\sqrt{A^2 + B^2 + C^2}}$.

2.点到直线距离

点
$$(x_0, y_0, z_0)$$
到直线 $\frac{x - x_1}{l} = \frac{y - y_1}{m} = \frac{z - z_1}{n}$ 的距离为 $d = \frac{\left| (x_1 - x_0, y_1 - y_0, z_1 - z_0) \times (l, m, n) \right|}{\sqrt{l^2 + m^2 + n^2}}$

七十二、 常见曲面

球面	1.球面	$x^2 + y^2 + z^2 = R^2$	
*УШ	2.椭球面	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	Ty y
	3.圆锥面	$x^2 + y^2 = z^2$	
锥面	4.椭圆锥面	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z^2$	x x
	5.旋转抛物面	$z = x^2 + y^2$	***
抛物面	6.椭圆抛物面	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z$	v v

曲面	7.单叶双曲面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$		
	8.双叶双曲面	$\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$	o v
马鞍面	9.马鞍面(双曲抛物面)	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = z$	y x

七十三、旋转曲面

1.坐标面上的曲线绕坐标轴旋转一周所得的曲面

设L是yOz平面上一条曲线,其方程是 $\begin{cases} f(y,z)=0 \\ x=0 \end{cases}$,则

- (1) L 绕 y 轴旋转所得旋转面方程为 $f(y,\pm\sqrt{x^2+z^2})=0$.
- (2) L 绕 z 轴旋转所得旋转面方程为 $f\left(\pm\sqrt{x^2+y^2},z\right)=0$.

2. 空间直线 L 绕坐标轴旋转一周所得的曲面

结论: 设直线 $L: \frac{x-a}{m} = \frac{y-b}{n} = \frac{z-c}{p}$, L 绕 z 轴旋转一周所得的曲面

$$x^{2} + y^{2} = \left(a + m \cdot \frac{z - c}{p}\right)^{2} + \left(b + n \cdot \frac{z - c}{p}\right)^{2}$$

第九章 多元积分

七十四、三重积分的对称性

(一) 奇偶对称性

(1)设
$$V$$
关于 yOz 面对称 \Rightarrow 看 x \Rightarrow $\iiint_{V} f(x,y,z) dV = \begin{cases} 2\iiint_{V_{1}} f(x,y,z) dV & f(x,y,z) 美于x 是偶函数 \\ 0 & f(x,y,z) 美于x 是奇函数 \end{cases}$ (2)设 V 关于 xOz 面对称 \Rightarrow 看 y \Rightarrow $\iiint_{V} f(x,y,z) dV = \begin{cases} 2\iiint_{V_{1}} f(x,y,z) dV & f(x,y,z) \xi \to x \xi \to$

(4)设V关于三个坐标面都对称,V是V位于第一卦限的部分,则

$$\iiint_{V} f(x,y,z) dV = \begin{cases} 8 \iiint_{V_{1}} f(x,y,z) dV & f(x,y,z) 美于x,y,z$$
 是偶函数
$$0 & f(x,y,z) 美于x,y,z$$
 是奇函数

(二)轮换对称

(1)设
$$V$$
关于平面 $x = y$ 对称,则 $\iiint_V f(x,y,z) dV = \iiint_V f(y,x,z) dV$

(2)设
$$V$$
关于平面 $x = z$ 对称,则 $\iiint_V f(x,y,z) dV = \iiint_V f(z,y,x) dV$

(3)设
$$V$$
关于平面 $y=z$ 对称,则 $\iiint_V f(x,y,z) dV = \iiint_V f(x,z,y) dV$.

七十五、第一型曲线积分(平面曲线)

(一) 技巧法

$$L$$
关于 x 轴对称,看 $f(x,y)$ 中的 y
 L 关于 y 轴对称,看 $f(x,y)$ 中的 x
 L 关于 $x=1$ 对称,看 $f(x,y)$ 是否是关于 $(x-1)$ 的奇函数
 L 关于 $y=1$ 对称,看 $f(x,y)$ 是否是关于 $(y-1)$ 的奇函数
 L 关于 $y=x$ 对称, $\int_L f(x,y) ds = \int_L f(y,x) ds$

(二)直接法: 化为定积分

①直角坐标
$$L: y = y(x) (a \le x \le b) \Rightarrow \int_L f(x, y) ds == \int_a^b f[x, y(x)] \sqrt{1 + [y'(x)]^2} dx$$

②参数方程
$$L: \begin{cases} x = x(t) \\ y = y(t) \end{cases} (\alpha \leqslant t \leqslant \beta) \Rightarrow \int_{L} f(x, y) ds = \int_{\alpha}^{\beta} f[x(t), y(t)] \sqrt{\left[x'(t)\right]^{2} + \left[y'(t)\right]^{2}} dt$$

③极坐标
$$L: r = r(\theta) \left(\alpha \le x \le \beta\right) \Rightarrow \int_{L} f(x, y) ds = \int_{\alpha}^{\beta} f\left(r\cos\theta, r\sin\theta\right) \sqrt{[r(\theta)]^{2} + [r'(\theta)]^{2}} d\theta$$

七十六、第一型曲线积分(空间曲线)

(一) 技巧法

曲线 Γ 关于xOz 对称,看被积函数的y 曲线 Γ 关于yOz 对称,看被积函数的x 曲线 Γ 关于xOy 对称,看被积函数的z 轮换对称(互换字母)

(二) 直接计算 $\int_{L} f(x,y,z) ds = \int_{\alpha}^{\beta} f[x(t),y(t),z(t)] \sqrt{\left[x'(t)\right]^{2} + \left[y'(t)\right]^{2} + \left[z'(t)\right]^{2}} dt$

$$L: \begin{cases} x = x(t), \\ y = y(t), (\alpha \le t \le \beta) \\ z = z(t) \end{cases}$$

七十七、第一型曲面积分

(一) 技巧法

1. 奇偶对称

S 关于 xOy 面/z=0 对称,看被积函数的 z S 关于 yOz 面/x=0 对称,看被积函数的 x S 关于 xOz 面/y=0 对称,看被积函数的 y

2. 轮换对称

(二)直接法

(1)设曲面
$$S: z = z(x, y), (x, y) \in D_{xy}$$
,则 $\iint_S f(x, y, z) dS = \iint_D f[x, y, z(x, y)] \sqrt{1 + (z_x')^2 + (z_y')^2} dxdy$.

(2) 设曲面
$$S: y = y(x,z), (x,z) \in D_{xz}$$
,则 $\iint_{S} f(x,y,z) dS = \iint_{D_{xz}} f[x,y(x,z),z] \sqrt{1 + (y'_{x})^{2} + (y'_{z})^{2}} dx dz$

(3) 设曲面
$$S: x = x(y,z), (y,z) \in D_{yz}$$
,则 $\iint_S f(x,y,z) dS = \iint_D f[x(y,z),y,z] \sqrt{1 + (x'_y)^2 + (x'_z)^2} dy dz$.

七十八、第二型曲线积分(平面曲线)

1.直接法: 写成参数方程再回代

设曲线
$$L:$$

$$\begin{cases} x = x(t), & \text{则} \int_{L} P(x,y) dx + Q(x,y) dy = \int_{\alpha}^{\beta} \left[P(x(t),y(t))x'(t) + Q(x(t),y(t))y'(t) \right] dt, \end{cases}$$

其中 α 对应曲线 L 的起点, β 对应曲线 L 的终点.

2.格林公式:

设平面闭区域 D 由分段光滑曲线 L 围成, 若 P(x,y),Q(x,y) 在 D 上有一阶连续偏导数,则

$$\oint_{L^*} P \, \mathrm{d}x + Q \, \mathrm{d}y = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \mathrm{d}x \, \mathrm{d}y$$

其中 L^+ 是D的正向边界曲线

七十九、平面曲线积分与路径无关的条件

设D是平面上的单连通区域,P(x,y),Q(x,y)在D上有一阶连续偏导数,则下列四个命题等价:

- ①对 D 内的任何光滑闭曲线 L,有 $\oint_{\mathcal{L}} P dx + Q dy = 0$
- ② $\int_{L} P dx + Q dy$ 的值在 D 内与路径无关
- ③存在u(x, y), 使得du(x, y) = Pdx + Qdy

④在
$$D$$
内, $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$

八十、第二型曲线积分(空间曲线)

法①:参数方程法

设空间曲线
$$L:$$

$$\begin{cases} x = x(t) \\ y = y(t), & \text{则} \int_{L} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz \\ z = z(t) \end{cases}$$

$$= \int_{a}^{\beta} \left[P(x(t), y(t), z(t)) x'(t) + Q(x(t), y(t), z(t)) y'(t) + Q(x(t), y(t), z(t)) y'(t) + R(x(t), y(t), z(t)) z'(t) \right] dt$$

法②: 斯托克斯公式法

$$\oint_{L} P \, dx + Q \, dy + R \, dz = \iint_{\Sigma} \begin{vmatrix} dy \, dz & dz \, dx & dx \, dy \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = \iint_{\Sigma} \begin{vmatrix} \cos \alpha & \cos \beta & \cos \gamma \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} dS$$

其中 $(\cos \alpha, \cos \beta, \cos \gamma)$ 为曲面 Σ 上与其侧方向一致的单位法向量

特一面
$$\iint_{\Sigma} \begin{vmatrix} \cos \alpha & \cos \beta & \cos \gamma \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} dS$$

斯托克斯公式
$$\iint_{\Sigma} \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = \underbrace{\frac{\partial}{\partial x} \cdot \frac{\partial}{\partial y} \cdot \frac{\partial}{\partial z}}_{D} \begin{pmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}}_{D_{xy}} dxdy$$

转二重
$$\frac{\partial}{\partial x} \cdot \frac{\partial}{\partial y} \cdot \frac{\partial}{\partial z} dxdy \qquad (第一行写正确方向的法向量)$$

八十一、第二型曲面积分的对称性

(1)设曲面 Σ 关于xOy面对称,xOy面的上半部分为 Σ_1 ,取上侧,xOy.面的下半部分为 Σ_2 .取下侧,

(2)设曲面 Σ 关于yOz 面对称,yOz 面的前半部分为 Σ , 取前侧,yOz 面的后半部分为 Σ , 取后侧,

$$\iint_{\Sigma} P(x, y, z) dydz = \begin{cases} 2\iint_{\Sigma_{1}} P(x, y, z) dydz, & P(x, y, z) 美于x 是奇函数\\ 0, & P(x, y, z) 美于x 是偶函数 \end{cases}$$

(3)设曲面 Σ 关于 xOz 面对称, xOz 面的左侧部分为 Σ , 取左侧, xOz 面的右半部分为 Σ , 取右侧,

$$\iint_{\Sigma} Q(x,y,z) dz dx = \begin{cases} 2\iint_{\Sigma_{1}} Q(x,y,z) dz dx, & Q(x,y,z)$$
 关于y 是奇函数 0,
$$Q(x,y,z)$$
 关于y 是偶函数

八十二、第二型曲面积分的计算

- (一)直接投影法一分为三段,转为二重积分
- (二) 合一投影法 (转换公式法)
- -(三)高斯公式法

直接投影法—分为三段, 转为二重

$$\iint\limits_{\Sigma}P(x,y,z)\mathrm{d}y\mathrm{d}z + Q(x,y,z)\mathrm{d}z\mathrm{d}x + R(x,y,z)\mathrm{d}x\mathrm{d}y = \iint\limits_{\Sigma}P(x,y,z)\mathrm{d}y\mathrm{d}z + \iint\limits_{\Sigma}Q(x,y,z)\mathrm{d}z\mathrm{d}x + \iint\limits_{\Sigma}R(x,y,z)\mathrm{d}x\mathrm{d}y$$

$ \iint_{\Sigma} P(x, y, z) dydz = \pm \iint_{D_{yz}} P(x(y, z), y, z) dydz $	当 Σ 取前侧/指定侧的法向量与 x 轴夹角为锐角	取正号
	当 Σ 取右侧/指定侧的法向量与 y 轴夹角为锐角	取正号
$\iint_{\Sigma} R(x, y, z) dxdy = \pm \iint_{D_{xy}} R(x, y, z(x, y)) dxdy$	当 Σ 取上侧/指定侧的法向量与 z 轴夹角为锐角	取正号

$\iint_{\Sigma} P(x, y, z) dydz = \pm \iint_{D_{yz}} P(x(y, z), y, z) dydz$	当 Σ 取 <mark>前侧</mark> /指定侧的法向量与 x 轴夹角为 <mark>锐角</mark>	取正号
$\iint_{\Sigma} Q(x, y, z) dz dx = \pm \iint_{D_{xz}} Q(x, y(x, z), z) dz dx$	当 Σ 取 <mark>右侧</mark> /指定侧的法向量与 y 轴夹角为锐角	取正号
$\iint_{\Sigma} R(x, y, z) dxdy = \pm \iint_{D_{xy}} R(x, y, z(x, y)) dxdy$	当. Σ.取 <mark>上侧</mark> /指定侧的法向量与 z 轴夹角为 <mark>锐角</mark>	取正号

- ①一代二投三正负
- ②二型面积分转为二重时,需要根据方向定正负:上正下负,前正后负,右正左负
- ③对于 $\iint_{\Sigma} (x+y+z) dy dz$
- ④如果投影过去是一条线,则积分值为0

高斯公式

$$\iint_{\Sigma} P dy dz + Q dz dx + R dx dy = \iiint_{V} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dV$$

八十三、多元积分应用

	物理意义		几何意义
定积分	细杆质量	$\int_{a}^{b} f(x) dx$	曲边梯形面积
二重积分	薄片质量	$\iint\limits_D f(x,y)d\sigma$	曲项柱体体积
三重积分	空间物体质量	$\iiint_{\Omega} f(x,y,z)dv$	
第一型曲线积分	弯细杆质量	$\int_{L} f(x, y, z) ds$	侧面积
第二型曲面积分	弯曲面质量	$\iint_{\Sigma} f(x, y, z) dS$	

	平面域	空间体	曲线段	曲面片
几何 度量	面积 $S = \iint_D d\sigma$	体积 $V = \iiint_{\Omega} dv$	弧长 $L = \int_L ds$	面积 $S = \iint_{\Sigma} dS$
质量	$m = \iint_D \rho(x, y) d\sigma$	$m = \iiint_{\Omega} \rho(x, y, z) \mathrm{d}v$	$m = \int_{L} f(x, y, z) \mathrm{d}s$	$m = \iint_{\Sigma} \rho(x, y, z) dS$
质心	$\overline{x} = \frac{\iint_D x \rho(x, y) d\sigma}{\iint_D \rho(x, y) d\sigma}$	$\overline{x} = \frac{\iiint_{\Omega} x \rho(x, y, z) dv}{\iiint_{\Omega} \rho(x, y, z) dv}$	$\overline{x} = \frac{\int_{L} x \rho(x, y, z) ds}{\int_{L} \rho(x, y, z) ds}$	$\overline{x} = \frac{\iint_{\Sigma} x \rho(x, y, z) dS}{\iint_{\Sigma} \rho(x, y, z) dS}$
转动 惯量	$I_x = \iint_D y^2 \rho(x, y) d\sigma$	$I_x = \iiint_{\Omega} (y^2 + z^2) \rho(x, y, z) dy$	$I_x = \int_L \left(y^2 + z^2 \right) \rho(x, y, z) ds$	$I_x = \iint_{\Sigma} (y^2 + z^2) \rho(x, y, z) dS$

对"1"积分

定积分	$\int_{a}^{b} 1 dx$	区间长度	质量=线密度 x 长度	$m = \int_{b}^{b} \rho(x) dx$
二重积分	$\iint\limits_{D}\operatorname{1d}\sigma$	区域 D 的面积	质量=面密度 x 面积	$m = \iint_D \rho(x, y) d\sigma$
三重积分	$\iiint_{\Omega} 1 dv$	空间体体积	质量=体密度 x 体积	$m = \iiint_{\Omega} \rho(x, y, z) dv$
第一型曲线积分	$\int_{L} 1 ds$	曲线弧长		
第二型曲面积分	$\iint_{\Sigma} 1 dS$	曲面面积		

引力公式

$$F_{x} = Gm \iiint_{\Omega} \frac{\rho(x, y, z)(x - x_{0})}{\left[(x - x_{0})^{2} + (y - y_{0})^{2} + (z - z_{0})^{2} \right]^{\frac{3}{2}}} dv$$

$$F_{y} = Gm \iiint_{\Omega} \frac{\rho(x, y, z)(y - y_{0})}{\left[(x - x_{0})^{2} + (y - y_{0})^{2} + (z - z_{0})^{2} \right]^{\frac{3}{2}}} dv$$

$$F_{z} = Gm \iiint_{\Omega} \frac{\rho(x, y, z)(z - z_{0})}{\left[(x - x_{0})^{2} + (y - y_{0})^{2} + (z - z_{0})^{2} \right]^{\frac{3}{2}}} dv$$