Projeto de Amplificadores

✓ Polarização de Amplificadores

✓ Caracterização de Amplificadores

✓ Amplificador Fonte Comum

✓ Amplificador Emissor Comum

Polarização usando V_{GS} fixo

O uso da polarização de V_{GS} (cte.) pode resultar numa variação de I_D mesmo para dispositivos "iguais".

Polarização usando uma tensão fixa na porta e um resistor de realimentação na fonte

- a) Arranjo simplificado
- b) Implementação prática usando <u>uma</u> fonte de alimentação

Polarização usando uma tensão fixa na porta e um resistor de realimentação na fonte

- d) Usando o capacitor de acoplamento (d)
- e) Implementação "prática" usando <u>duas</u> fontes de alimentação

Ex1 : Estabeleça uma corrente I_D = 0,5 mA no circuito abaixo. Use V_{DD} = 15 V, V_t = 1 V e k'_nW/L = 1 mA/V². Considere uma queda de 1/3 de V_{DD} em R_D e R_S . Despreze o efeito de modulação de canal. Qual a variação de I_D se o transistor for substituído por um outro com V_t =1,5 V ?

Polarização usando um resistor de realimentação entre porta e dreno

$$V_{DD} = V_{GS} + R_D I_D$$

Polarização usando uma fonte de corrente constante

Caracterização de Amplificadores

I - Impedância de entrada

$$R_i = \frac{v_i}{i_i}$$

II - Ganho de Tensão em malha aberta

$$A_{vo} = \frac{v_o}{v_i} \bigg|_{R_L = \infty}$$

III - Ganho de Tensão

$$A_{v} = \frac{v_{o}}{v_{i}}$$

IV - Ganho de Tensão Total

$$G_{v} = \frac{v_{o}}{v_{sig}}$$

Caracterização de Amplificadores

V - Impedância de saída (amp. apenas)

$$R_O = \frac{v_X}{i_X} \bigg|_{v_i = 0}$$

VI - Impedância de saída

$$R_{out} = \frac{v_x}{i_x} \bigg|_{v_{sig} = 0}$$

VII - Ganho de Corrente

$$A_i = \frac{i_O}{i_i}$$

VIII - Transcondutância (curto)

$$G_m = \frac{i_o}{v_i} \bigg|_{R_L = 0}$$

Caracterização de Amplificadores

Circuitos Equivalentes

$$\frac{v_i}{v_{sig}} = \frac{R_{in}}{R_{in} + R_{sig}}$$

$$A_{v} = A_{vo} \frac{R_{L}}{R_{L} + R_{o}}$$

$$A_{vo} = G_m R_o$$

Sedra 5ed – Tabela 4.3

Ver exemplo 4.11 (Sedra 5ed)

Circuito amplificador MOS fonte comum

$$\lambda = 0$$

$$A_{v} = -g_{m}R_{D}$$

$$A_{v} = \sqrt{2\mu_{n}C_{ox}\frac{W}{L}I_{D}}R_{D}$$

Circuito amplificador MOS fonte comum

Amp. FC com capacitor de passagem e de bloqueio

Circuito equivalente de pequenos sinais

Determinar as características do amplificador: R_{in} , R_{out} , G_v ...etc

Análise direta no circuito amplificador MOS (pequenos sinais)

- •Alto ganho de tensão
- •Alta impedância de entrada
- •Alta impedância de saída (contra)

Amplificador MOS FC com resistência na Fonte

Amplificador MOS FC com resistência na Fonte

Modelo T de pequenos sinais

Amplificador BJT Emissor Comum

Amplificador BJT Emissor Comum

Amplificador BJT Emissor Comum

- •Alto ganho de tensão e corrente
- •Baixa impedância de entrada (contra)
- •Alta impedância de saída (contra)

Amplificador BJT EC com resistência no Emissor

Amplificador BJT EC com resistência no Emissor

- •A impedância de entrada aumenta de $(1+g_mR_e)$
- •O ganho de tensão diminui de $(1+g_mR_e)$
- •A excursão do sinal de entrada pode ser aumentada de $(1+g_mR_e)$

Ex. 2 – Usando o amplificador fonte comum do circuito abaixo:

- a) Usando $V_t = 1$ V, $k'_n(W/L) = 2$ mA/V², verifique se o ponto de polarização encontra-se em $V_{GS} = 2$ V, $I_D = 1$ mA e $V_D = 7.5$ V;
- b) Encontre g_m e r_0 se $V_A = 100$ V;
- c) Desenhe o modelo completo de pequenos sinais do circuito considerando os capacitores como curtos-circuitos;

Ex. 3 – Projete o amplificador fonte comum do circuito abaixo para um ganho de tensão de 5 V/V, impedância de entrada de 50 k Ω e consumo máximo de 5 mW. Assuma, $\mu_n C_{ox} = 100 \ \mu\text{A/V}^2$, $V_t = 0.5 \ V$ e despreze λ . Assumir uma queda de tensão em R_S de 400 mV.

Amplificador – FC e EC

Sugestão de Estudo:

- Sedra & Smith 5ed.

Cap. 4, item 4.5

Cap. 4, item 4.7 até 4.7.4

Cap. 5, item 5.7 até 5.7.3

- Razavi. 2ed.

Cap. 5, item 5.3 até 5.3.1

Cap. 7, itens, 7.1.1, 7.1.2 e 7.2.1

Exercícios correspondentes.