

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE ENGENHARIA MECÂNICA Curso de Graduação em Engenharia Aeronáutica

2ª Atividade de laboratório Aerodinâmica aplicada

Felipe josé Oliveira Ribeiro (11711EAR012)

Maximiano Schegoscheski Viotto Ferraz (11621EAR015)

Pressão Medida [Pa]	Pressão Teórica [Pa]
0	0
0	21
29	73
59	133
78	172
59	172
59	133
59	73
59	21
59	0

Tabela 1: Dados para 30% da velocidade.

Pressão Medida [Pa]	Pressão Teórica [Pa]
0	0
0	36
59	128
118	233
118	301
118	301
118	233
118	128
118	36
118	0

Tabela 2: Dados para 40% da velocidade.

Pressão Medida [Pa]	Pressão Teórica [Pa]
0	0
10	58
98	206
206	374
206	484
196	484
196	374
196	206
206	58
206	0

Tabela 3: Dados para 50% da velocidade.

Pressão Medida [Pa]	Pressão Teórica [Pa]
0	0
29	85
196	301
343	547
343	707
334	707
334	547
334	301
343	85
343	0

Tabela 4: Dados para 60% da velocidade.

Pressão Medida [Pa]	Pressão Teórica [Pa]
0	0
59	114
275	402
451	730
451	944
432	944
432	730
432	402
451	114
451	0

Tabela 5: Dados para 70% da velocidade.

Pressão Medida [Pa]	Pressão Teórica [Pa]
0	0
78	149
353	526
598	954
589	1234
579	1234
589	954
589	526
598	149
598	0

Tabela 6: Dados para 80% da velocidade.

Pressão Medida [Pa]	Pressão Teórica [Pa]
0	0
98	182
451	642
746	1165
746	1506
726	1506
726	1165
726	642
746	182
746	0

Tabela 7: Dados para 90% da velocidade.

Pressão Medida [Pa]	Pressão Teórica [Pa]
0	0
98	208
510	735
746	1334
746	1725
726	1725
736	1334
700	705

Tabela 8: Dados para 100% da velocidade.

Análise dos resultados:

A análise teórica pressupõe uma série de simplificações que não correspondem com a realidade. Um exemplo é o questão da inviscitude e da incompressibilidade. Também, efeitos de turbulência fogem completamente da fundamentação matemática que embasa o desenvolvimento teórico. Assim, tais simplificações podem ser creditadas como principal fonte de desvios entre os dados observados e os dados calculados.

A posição de que a turbulência causa problemas na análise é evidenciada pelo fato de que os maiores erros se dâ a jusante do cilindro, isto é, de trás do escoamento, que é a área onde ocorre a maior recirculação no sistema a partir dos Vórtices de von Kármán. Assim, vemos, a partir de 60 graus, somente medidas muito parecidas nos pontos de coleta de pressão.

Apesar disso, podemos ver que a pressão aumenta com o aumento da velocidade, o que faz todo o sentido físico, além de que vemos que a curva, para os pontos de pressão do front do cilindro seguem relativamente bem os dados teóricos estando pelo menos na mesma ordem de grandeza da medida teórica.

Assim, vemos que os estudos idealisados de dentro de sala de aula são limitados, tendo-se em mente as simplificações que somos obrigados a fazer para que possamos desenvolver soluções nalíticas. Isso demonstra a importância de se pautar esse estudo com análises experimentais a título de validação.