Lineaire Algebra en differentiaalvergelijkingen

College 13: Projecteren in inwendig product ruimtes, Fourrier analyse.

J. Vermeer Les 13

Faculteit EWI

Inwendig product ruimten

Herinner: we hebben het begrip inwendig product $\langle \mathbf{u}, \mathbf{v} \rangle$ op een vectorruimte V geïntroduceerd. Een vectorruimte met gefixeerd inwendig product heet een "inwendig product ruimte" Standaard inwendigproductruimte: $C([a,b],\mathbb{R})$ met

$$\langle f,g\rangle=\int_{\bf a}^{\bf b}f(x)g(x)\,dx.$$
 (Geeft ook standaard I.P. op deelruimtes.)

$$C([a,b],\mathbb{C}) \ \mathrm{met} \ \langle \mathbf{f},\mathbf{g} \rangle = \int_{\mathbf{a}}^{\mathbf{b}} \overline{\mathbf{f}(\mathbf{x})} \mathbf{g}(\mathbf{x}) \, \mathbf{dx}.$$
 (Geeft ook standaard

Les 13

Projecteren op een vector

Definitie: Laat V een i.p.ruimte zijn met vectoren \mathbf{x} en \mathbf{a} in V. Die vector $c\mathbf{a}$ in $\mathrm{Span}\,a$ met $\mathbf{x}-c\mathbf{a}\bot\mathbf{a}$ heet de (orthogonale) projectie van \mathbf{x} op \mathbf{a} en wordt genoteerd met:

$$\operatorname{proj}_{\mathbf{a}}(\mathbf{x}).$$

De vector $\mathbf{x} - \mathrm{proj}_{\mathbf{a}}(\mathbf{x})$ heet de component van \mathbf{x} loodrecht op \mathbf{a} .

Stelling: Er geldt:

$$\operatorname{proj}_{\mathbf{a}}(\mathbf{x}) = \left(\frac{\langle \mathbf{a}, \mathbf{x} \rangle}{\langle \mathbf{a}, \mathbf{a} \rangle}\right) \mathbf{a}.$$

Het getal $\frac{\langle \mathbf{a}, \mathbf{x} \rangle}{\langle \mathbf{a}, \mathbf{a} \rangle}$ heet de Fourriercoëfficient.

Les 13

Faculteit EWI

Decompositiestelling

Stelling: Laat V een i.p.ruimte zijn, reëel of complex, met eindig dimensionale deelruimte W. Stel $\mathbf{x} \in V$. Er geldt:

- 1. ${\bf x}$ is te schrijven als ${\bf x}={\bf w}+{\bf w}^{\sharp}$ met ${\bf w}\in W$, ${\bf w}^{\sharp}\in W^{\perp}$ en dit op unieke wijze.
- 2. Er geldt: als $\{\mathbf{b}_1,\ldots,\mathbf{b}_k\}$ een orthogonale basis W, dan:

$$\mathbf{w} = \left(\frac{\langle \mathbf{b}_1, \mathbf{x} \rangle}{\langle \mathbf{b}_1, \mathbf{b}_1 \rangle}\right) \mathbf{b}_1 + \dots + \left(\frac{\langle \mathbf{b}_n, \mathbf{x} \rangle}{\langle \mathbf{b}_n, \mathbf{b}_n \rangle}\right) \mathbf{b}_n.$$

Stelling: In de decompositiestelling (met W eindig dimensionaal)

is w de unieke vector in W met kleinste afstand tot x. \square

Les 13

Orthogonaal projecteren

Definitie: Laat V een i.p.ruimte zijn, reëel of complex, met eindig dimensionale deelruimte W. Stel $\mathbf{x} \in V$. Als $\mathbf{x} = \mathbf{w} + \mathbf{w}^\sharp$ met $\mathbf{w} \in W$, $\mathbf{w}^\sharp \in W^\perp$ dan:

$$\operatorname{proj}_W(\mathbf{x}) = \mathbf{w}.$$

Stelling: Als $\{\mathbf{b}_1, \dots, \mathbf{b}_k\}$ een orthogonale basis W, dan:

$$\operatorname{proj}_{W}(\mathbf{x}) = \left(\frac{\langle \mathbf{b}_{1}, \mathbf{x} \rangle}{\langle \mathbf{b}_{1}, \mathbf{b}_{1} \rangle}\right) \mathbf{b}_{1} + \dots + \left(\frac{\langle \mathbf{b}_{n}, \mathbf{x} \rangle}{\langle \mathbf{b}_{n}, \mathbf{b}_{n} \rangle}\right) \mathbf{b}_{n}.$$

Het vervelende van deze stelling is dat men een een orthogonale basis nodig heeft.

Definitie: De vector $\mathbf{w}^{\sharp} = \mathbf{x} - \operatorname{proj}_{W}(\mathbf{x})$ heet de component van \mathbf{x} loodrecht op W.

Notatie boek:

$$\mathsf{perp}_W(\mathbf{x}).$$

Les 13

Faculteit EWI

Gram-Schmidt proces

Het Gram-Schmidt proces levert weer een orthogonale basis op een eindig dimensionale deelruimte.

Stelling: (Het Gram–Schmidt proces) Als $\{v_1, \dots, v_n\}$ een basis is van W dan vormen de vectoren:

$$\mathbf{w}_1 = \mathbf{v}_1$$

$$\mathbf{w}_2 = \mathbf{v}_2 - \left(\frac{\langle \mathbf{w}_1, \mathbf{v}_2 \rangle}{\langle \mathbf{w}_1, \mathbf{w}_1 \rangle}\right) \mathbf{w}_1$$

$$\mathbf{w}_3 = \mathbf{v}_3 - \left(\frac{\langle \mathbf{w}_1, \mathbf{v}_3 \rangle}{\langle \mathbf{w}_1, \mathbf{w}_1 \rangle}\right) \mathbf{w}_1 - \left(\frac{\langle \mathbf{w}_2, \mathbf{v}_3 \rangle}{\langle \mathbf{w}_2, \mathbf{w}_2 \rangle}\right) \mathbf{w}_2$$

:

$$\mathbf{w}_n = \mathbf{v}_n - \left(\frac{\langle \mathbf{w}_1, \mathbf{v}_n \rangle}{\langle \mathbf{w}_1, \mathbf{w}_1 \rangle}\right) \mathbf{w}_1 - \dots - \left(\frac{\langle \mathbf{w}_{n-1}, \mathbf{v}_n \rangle}{\langle \mathbf{w}_{n-1}, \mathbf{w}_{n-1} \rangle}\right) \mathbf{w}_{n-1}$$

een orthogonale basis voor W.

6

Les 13

"Beste lineaire benadering I"

Bepaal de "beste lineaire benadering" ax + b van de functie $f(x) = \sin(x)$ op het interval $[0, \pi/2]$. (?).

D.w.z. bepaal die functie ax+b, (dit zijn de functies uit $W=\operatorname{Span}\{1,x\}$ (!)), met minimale afstand tot $f(x)=\sin(x)$. (Hierbij wordt de afstand bepaald door het standaard inwendig product op $C([0,\pi/2],\mathbb{R})$!)

M.a.w. de vraag wordt dus: bepaal de projectie van f in $C([0,\pi/2],\mathbb{R})$ op deelruimte $W=\operatorname{Span}\{1,x\}!$

Evenzo de vraag: Bepaal de beste kwadratische benadering ax^2+bx+c van de functie $f(x)=\sin(x)$ op het interval $[0,\pi/2]$ is de vraag: bepaal de projectie van f in $C([0,\pi/2],\mathbb{R})$ op deelruimte $W=\operatorname{Span}\{1,x,x^2\}!$

Les 13

Faculteit EWI

"Beste lineaire benadering II"

Nodig: orthogonale basis op deelruimte

$$W = \operatorname{Span}\{1, x\} \subset C([0, \pi/2], \mathbb{R}).$$

De standaardbasis $\{1,x\}$ van W in $C([0,\pi/2],\mathbb{R})$ is NIET orthogonaal, want $\int_0^{\pi/2}xdx\neq 0$.

GramSchmidt dus.

$$w_1 = 1$$

$$w_2 = x - \left(\frac{\langle 1, x \rangle}{\langle 1, 1 \rangle}\right) 1 = x - \left(\frac{\int_0^{\pi/2} x dx}{\int_0^{\pi/2} 1 dx}\right) 1$$

= $x - \left(\frac{(\pi/2)^2/2}{\pi/2}\right) 1 = x - \pi/4.$

Levert $\{1, x - \pi/4\}$ als orthogonale basis van $W = \text{Span}\{1, x\}$.

Les 13

8

Faculteit EWI

"Beste lineaire benadering III"

De projectie van $f(x) = \sin(x)$ op W wordt dus:

$$\frac{\left(\frac{\langle 1, \sin(x) \rangle}{\langle 1, 1 \rangle}\right) 1 + \left(\frac{\langle x - \pi/4, \sin(x) \rangle}{\langle x - \pi/4, x - \pi/4 \rangle}\right) (x - \pi/4)}{\left(\frac{\int_0^{\pi/2} \sin(x) dx}{\int_0^{\pi/2} 1 dx}\right) 1 + \left(\frac{\int_0^{\pi/2} (x - \pi/4) \sin(x) dx}{\int_0^{\pi/2} (x - \pi/4)^2 dx}\right) (x - \pi/4) = \left(\frac{1}{\pi/2}\right) 1 + \left(\frac{1 + \pi/4}{(2/3)(\pi/4)^3}\right) (x - \pi/4) = \frac{2}{\pi} + \frac{3}{2} (\frac{4}{\pi})^3 (1 + \pi/4) (x - \pi/4)$$

We hebben de beste lineaire benadering van $\sin(x)$ op $[0,\pi/2]$ gevonden.

Les 13

9

Faculteit EWI

"Beste lineaire benadering IV"

- 1. De beste lineaire benadering van $f(x) = \sin(x)$ op $[0, \pi]$ zal anders zijn dan die op $[0, \pi/2]$.
- 2. Vraag: wat verandert er dan in de berekening?
- 3. We zeiden: de basis van $\{1,x\}$ is niet orthogonaal. Ook dit hangt af van het interval waarop je werkt! Op het interval [-1,1] is $\{1,x\}$ wel een orthogonale basis voor $\mathrm{Span}\{1,x\}$. Want daar gebruiken we het inwendig product $\langle f,g\rangle=\int_{-1}^1 f(x)g(x)dx$ en inderdaad: $\int_{-1}^1 xdx=0$.
- 4. Als $g(x) = \operatorname{proj}_W(f)(x)$ dan: $\sqrt{\int_0^{\pi/2} (f(x) g(x))^2 dx}$ $= \|f g\|$ heet de "Root mean square error". De root mean square error bij de beste kwadratische benadering van f(x) kleiner zal zijn dan bij de beste lineaire benadering.

TUDelft

Een beroemde orthogonale familie functies

Stelling Op het interval $[-\pi, +\pi]$ zijn de functies $\{1, \cos(x), \sin(x), \dots, \cos(nx), \sin(nx), \dots\}$

onderling orthogonaal.

Bovendien geldt:

Stelling Als f een continue functie op $[-\pi,\pi]$ met $f\bot 1$, $f\bot \cos(nx)$ en $f\bot \sin(nx)$, voor alle $n\ge 1$, dan moet gelden: f(x)=0, voor alle $x\in [-\pi,\pi]$

We noemen zo'n verzameling een "maximaal orthogonale familie".

Les 13

11

Faculteit EWI

TUDelft

De n^{de} Fourrierbenadering op $[\pi, \pi]$.I

Definitie De projectie van $f \in C([-\pi,\pi],\mathbb{R})$ op de eindig dimensionale deelruimte

 $W = \operatorname{Span}\{1, \cos(x), \sin(x), \dots, \cos(nx), \sin(nx)\}$ wordt de n^{de} Fourrierbenadering F_n van f genoemd.

Dus:
$$F_n(x) = a_0 + \sum_{k=1}^{n} (a_k \cos(kx) + b_k \sin(kx))$$
 met:

$$a_0 = \frac{\langle 1, f \rangle}{\langle 1, 1 \rangle} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$$

$$a_k = \frac{\langle \cos(kx), f \rangle}{\langle \cos(kx), \cos(kx) \rangle} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx$$

$$b_k = \frac{\langle \sin(kx), f \rangle}{\langle \sin(kx), \sin(kx) \rangle} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx$$

TUDelft

De $n^{\mbox{de}}$ Fourrierbenadering op [-L,L]. II

Stelling Op het interval [-L, L] vormen de functies $\{1, \cos(\frac{\pi x}{L}), \sin(\frac{\pi x}{L}), \ldots, \cos(\frac{n\pi x}{L}), \sin(\frac{n\pi x}{L}), \ldots\}$

een maximaal orthogonale verzameling.

Definitie De projectie van $f \in C([-L,L],\mathbb{R})$ op

$$W = \operatorname{Span}\{1, \cos(\frac{\pi x}{L}), \sin(\frac{\pi x}{L}), \dots, \cos(\frac{n\pi x}{L}), \sin(\frac{n\pi x}{L})\}$$
 wordt

de n^{de} Fourrierbenadering F_n van f op [-L, L] genoemd.

In §10.2 van Boys and DuPrima wordt in de maximaal orthogonale famile 1 vervangen door $\frac{1}{2}.$

Les 13

10

Faculteit EWI

De n^{de} Fourrierbenadering op [-L, L].III

Dus:
$$F_n(x) = a_0 + \sum_{k=1}^{n} (a_k \cos(\frac{k\pi x}{L}) + b_k \sin(\frac{k\pi x}{L}))$$
 met:

$$a_0 = \frac{\langle 1, f \rangle}{\langle 1, 1 \rangle} = \frac{1}{2L} \int_{-L}^{L} f(x) dx$$

$$a_k = \frac{\left\langle \cos(\frac{k\pi x}{L}), f \right\rangle}{\left\langle \cos(\frac{k\pi x}{L}), \cos(\frac{k\pi x}{L}) \right\rangle} = \frac{1}{L} \int_{-L}^{L} f(x) \cos(\frac{k\pi x}{L}) dx$$

$$b_k = \frac{\left\langle \sin(\frac{k\pi x}{L}), f \right\rangle}{\left\langle \sin(\frac{k\pi x}{L}), \sin(\frac{k\pi x}{L}) \right\rangle} = \frac{1}{L} \int_{-L}^{L} f(x) \sin(\frac{k\pi x}{L}) dx$$

De formule voor a_k geldt niet voor k=0.

Les 13 14

Stuksgewijs continue functies

Een functie f op domein D heet stuksgewijs continu als:

- $\mathbf{1}.f$ is in slechts eindig veel punten van D discontinu.
- 2. Als f discontinu in c, dan bestaan $\lim_{x\to c^-} f(x)$ en $\lim_{x\to c^+} f(x)$ en zijn eindig.

De stuksgewijs continue functies f en g heten hetzelfde, als:

- 1.domein f=domein g, op eindig veel punten na.
- 2. f(x) = g(x) voor alle x in domein, op eindig veel x na.

Stelling Als f en g stuksgewijs continu en "hetzelfde", dan

1.
$$\int_{p}^{q} f(x)dx$$
 bestaat en 2. $\int_{p}^{q} f(x)dx = \int_{p}^{q} g(x)dx$.

Stelling Als f (stuksgewijs) continu op [-L, L] dan heeft f een periodiek (=?) stuksgewijs continue voortzetting tot [-kL, kL]. \square

Les 13

15

Faculteit EWI

De Fourrierreeks van f op [-L, L]. I

Definitie De Fourrierreeks van de functie f is:

$$F(x) = \lim_{n \to \infty} F_n(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos\left(\frac{k\pi x}{L}\right) + b_k \sin\left(\frac{k\pi x}{L}\right)\right)$$

Waarbij weer geldt: $a_k = \frac{1}{L} \int_{-L}^{L} f(x) \cos(\frac{k\pi x}{L}) dx$ en

$$b_k = \frac{1}{L} \int_{-L}^{L} f(x) \sin(\frac{k\pi x}{L}) dx.$$

Hoewel f alleen op [-L,L] is gedefinieerd, is F(x) voor alle $x\in\mathbb{R}$ gedefinieerd. F(x) is een periodieke functie met periode 2L.

Les 13 16

De Fourrierreeks van f op [-L, L]. II

Stelling Laat f een functie zijn op [-L, L] met f en afgeleide f'stuksgewijs continu. De stuksgwijs continue voorzetting van ftot [-kL, kL] wordt ook f genoemd.

- 1. Als f continu in $c \in (-kL, kL)$, dan geldt: F(c) = f(c).
- 2. Als f niet continu in $c \in (-kL, kL)$, dan geldt:

$$F(c) = \frac{\lim_{x \to c^{+}} f(x) + \lim_{x \to c^{-}} f(x)}{2}.$$

Faculteit EWI

Even en/of oneven functies op [-L, L]

Definitie: 1. Een even functie $f:[-L,L]\to\mathbb{R}$ is functie met f(-x) = f(x), voor alle $x \in [-L, L]$, (op eindig veel x na.)

2. Een oneven functie $f: [-L, L] \to \mathbb{R}$ is functie met f(-x) = -f(x), voor alle $x \in [-L, L]$, (op eindig veel x na.)

Stelling 1. f even functie dan $\int_{-L}^{L} f(x) = 2 \int_{0}^{L} f(x) \, dx$.

2. f oneven functie dan $\int_{-L}^{L} f(x) = 0$.

Stelling 1. f, g even functies dan ook fg even

2. f even en g oneven functie dan fg oneven.

Stelling: 1. 1 en $\cos(\frac{k\pi x}{L})$ zijn even functies op [-L, L].

2. De functies $\sin(\frac{k\pi x}{L})$ zijn oneven functies op [-L,L].

TUDelft

Functies op [0, L] I

Gevolg 1. f even functie op [-L,L] dan $b_k=0$ (alle k) in Fourrierreeks

2. f oneven functie op [-L,L] dan $a_k=0$ (alle k) in Fourrierreeks

Stelling Stel f stuksgewijs continue functie op [0, L]

- 1. f heeft stuksgewijs continue even uitbreiding tot [-L, L].
- 2. f heeft stuksgewijs continue oneven uitbreiding tot [-L, L].

Gevolg 1. $\{1, \cos(\frac{\pi x}{L}), \dots, \cos(\frac{n\pi x}{L}), \dots\}$ is een maximaal orthogonale familie functies op [0, L].

2.
$$\{\sin(\frac{\pi x}{L}),\ldots,\sin(\frac{n\pi x}{L}),\ldots\}$$
 is maximaal orthogonale familie functies op $[0,L]$.

Les 13

Faculteit EWI

19

De cosinusreeks van f op [0, L]

Definitie Stel f een stuksgewijs continue functie op [0,L]. De projectie van f op de eindig dimensionale deelruimte

 $W = \operatorname{Span}\{1, \cos(x), \dots, \cos(nx)\}$ wordt de n^{de} orde cosinus benadering van f op [0, L] genoemd.

Dit is dus:

$$a_0 + \sum_{k=1}^n (a_k \cos(kx) \text{ met: } a_0 = \frac{\langle 1, f \rangle}{\langle 1, 1 \rangle} = \frac{1}{L} \int_0^L f(x) dx$$

en
$$a_k = \frac{\langle \cos(kx), f \rangle}{\langle \cos(kx), \cos(kx) \rangle} = \frac{2}{L} \int_0^L f(x) \cos(kx) dx$$

Merk op: De n^{de} cosinus benadering van f is gelijk aan de n^{de} orde Fourrier benadering van de even uitbreiding van f tot [-L, L].

Les 13

20

% TUDelft

Faculteit EWI

De sinusreeks van f op [0, L]

Evenzo: de $n^{\mbox{de}}$ orde cosinus benadering van f op [0,L] is de projectie van f op deelruimte

$$W = \operatorname{Span}\{1, \cos(x), \dots, \cos(nx)\}.$$

Dit is dus:

$$\sum_{k=1}^{n} (b_k \sin(kx) \text{ met: }$$

$$b_k = \frac{\langle \sin(kx), f \rangle}{\langle \sin(kx), \sin(kx) \rangle} = \frac{2}{L} \int_0^L f(x) \sin(kx) dx$$

Merk op: De n^{de} sinus benadering van f is gelijk aan de n^{de} orde Fourrier benadering van de oneven uitbreiding van f tot [-L, L].

Les 13 21

Faculteit EWI

Aanbevolen opgaven

College 3	behandeld	aanbevolen opgaven
	§7.3 OVERGESLAGEN	
	§7.5	
	§10.2	
	§10.3	
	§10.4	

Les 13 22

