CONSECUENCIAS DEL TEOREMA DE CONVERGENCIA MONÓTONA

JUAN FERRERA

Vamos a empezar probando la regla de la suma para la integral de funciones medibles no negativas. Pero antes necesitamos observar el siguiente hecho

Proposición: Si f es una función medible no negativa, entonces existe una sucesión no decreciente de funciones simples $\{\varphi_k\}_k$ tal que

$$f = \lim_k \varphi_k$$

Demostración: Fijo k entero positivo. Para todo entero positivo $j \le k2^k$, defino

$$E_j^k = f^{-1}([(j-1)2^{-k}, j2^{-k})).$$

Estos conjuntos son medibles por ser la imagen inversa de un intervalo a través de una función medible. Además son disjuntos dos a dos, y

$$\bigcup_{j=1}^{k2^k} E_j^k = \{x : f(x) < k\}.$$

Defino la función

$$\varphi_k = \sum_{j=1}^{k2^k} \frac{j-1}{2^k} \aleph_{E_j^k}.$$

Es evidente que $\varphi_k \leq f$ para todo k, pero no es difícil ver que también $\varphi_k \leq \varphi_{k+1}$ para todo k. Por último, para todo x se tiene que $f(x) - \varphi_k(x) < \frac{1}{2^k}$, de donde deducimos la convergencia. \clubsuit

Ya podemos aplicar este resultado y el Teorema de Convergencia Monótona para deducir que la integral de la suma es la suma de las integrales (lo sabíamos solo para funciones simples)

Proposición: Si f, y g son dos funciones medibles no negativas, entonces

$$\int_{\mathbb{R}^n} (f+g) d\mu = \int_{R^n} f d\mu + \int_{\mathbb{R}^n} g d\mu.$$

Date: February 6, 2022 (1145).

Demostración: Basta considerar dos sucesiones de funciones simples $\{\varphi_k\}_k$ y $\{\psi_k\}_k$ tal que

$$\{\varphi_k\}_k \uparrow f \qquad \{\psi_k\}_k \uparrow g$$

entonces tendremos que $\{\varphi_k + \psi_k\}_k \uparrow (f+g)$, y por tanto aplicando el TCM y el resultado conocido para funciones simples, tenemos que

$$\int_{\mathbb{R}^n} (f+g)d\mu = \int_{\mathbb{R}^n} \left(\lim_k (\varphi_k + \psi_k) \right) d\mu = \lim_k \int_{\mathbb{R}^n} (\varphi_k + \psi_k) d\mu = \lim_k \left(\int_{\mathbb{R}^n} \varphi_k d\mu + \int_{\mathbb{R}^n} \psi_k d\mu \right) = \int_{\mathbb{R}^n} f d\mu + \int_{\mathbb{R}^n} g d\mu. \quad \clubsuit$$

Teorema de Convergencia monótona para series: Si $\{f_k\}_k$ es una sucesión de funciones medibles no negativas, entonces

$$\int_{\mathbb{R}^n} \left(\sum_{k=1}^{\infty} f_k \right) d\mu = \sum_{k=1}^{\infty} \left(\int_{\mathbb{R}^n} f_k d\mu \right)$$

Demostración:

$$\int_{\mathbb{R}} \left(\sum_{k=1}^{\infty} f_k \right) d\mu = \int_{\mathbb{R}^n} \left(\lim_{m} \sum_{k=1}^{m} f_k \right) d\mu =$$

$$\lim_{m} \int_{\mathbb{R}^n} \left(\sum_{k=1}^{m} f_k \right) d\mu = \lim_{m} \sum_{k=1}^{m} \left(\int_{\mathbb{R}^n} f_k d\mu \right) = \sum_{k=1}^{\infty} \left(\int_{\mathbb{R}^n} f_k d\mu \right)$$

Donde la primera igualdad se sigue del TCM, porque como las funciones f_k son no negativas, las sumas parciales forman una sucesión monótona, mientras que la segunda igualdad se sigue de la regla de la suma que acabamos de probar. \spadesuit

Terminamos con otra consecuencia del Teorema de Convergencia Monótona.

Lema de Fatou: Si $\{f_k\}_k$ es una sucesión de funciones medibles no negativas, entonces

$$\int_{\mathbb{R}^n} \liminf_k f_k d\mu \le \liminf_k \int_{\mathbb{R}^n} f_k d\mu$$

Demostración: Definimos

$$g_k = \inf_{m \ge k} f_m$$

Es una sucesión de funciones medibles no negativas (por ser ínfimo de funciones medibles no negativas) que verifica

$$\{g_k\}_k \uparrow \liminf_k f_k,$$

luego

$$\int_{\mathbb{R}^n} \liminf_k f_k d\mu = \int_{\mathbb{R}^n} \lim_k g_k d\mu = \lim_k \int_{\mathbb{R}^n} g_k d\mu = \lim_k \inf_{\mathbb{R}^n} \int_{\mathbb{R}^n} g_k d\mu = \lim_k \inf_{\mathbb{R}^n} \int_{\mathbb{R}^n} f_k d\mu$$

donde la segunda igualdad es por el TCM y la última desigualdad se sigue de que $g_k \leq f_k$. \spadesuit

Por último vamos a observar como las funciones no negativas que tienen integral impropia de Riemann son integrables en sentido Lebesgue y ambas integrales coinciden. Lo vamos a hacer para aquellas funciones con dominio una semirrecta (el caso de la integral impropia de una función no acotada es parecido).

Sea $f:[a,+\infty)\to\mathbb{R}$ una función no negativa, integrable en el sentido de Riemann en cada intervalo [a,M]. Entonces siempre puedo intentar calcular

$$\int_0^\infty f(x)dx = \lim_{M \to \infty} \int_a^M f(x)dx.$$

Este límite o bien es un número real o infinito (por ser no negativa a función). Pero además, como sabemos que

$$\int_{a}^{M} f(x)dx = \int_{[a,M]} f d\mu,$$

tenemos que

$$\int_0^\infty f(x)dx = \lim_{M \to \infty} \int_{[a,M]} f d\mu = \lim_{M_k \to \infty} \int_{[a,M_k]} f d\mu = \int_{[0,+\infty)} f d\mu$$

donde $(M_k)_k$ es unas sucesión arbitraria de números reales, creciente, tal que $\lim_k M_k = +\infty$, y donde la última igualdad se sigue del Teorema de Convergencia Monótona, ya que

$$\int_{[a,M_k]} f d\mu = \int_{\mathbb{R}} f \aleph_{[a,M_k]} d\mu$$

У

$$\{f\aleph_{[a,M_k]}\}\uparrow f\aleph_{[a,+\infty)}$$

En resumen hemos probado

Proposición: Si $f:[a,+\infty)\to\mathbb{R}$ es una función no negativa, integrable en el sentido de Riemann en cada intervalo [a,M], entonces la

integral impropia en sentido Riemann y a integral en sentido Lebesgue coinciden.

Observad que la igualdad puede darse siendo $+\infty$ ambos valores. Además veremos que este resultado no es cierto si las funciones toman los dos signos.