

AND IS DEET QUALITY PRACTI OF THE CHEST POWESTED TO LOC CONTAIN MONITORE WINES OF PASED WEEK CWS Tech. ALL ROLDING BRIDERY Project No: Al3 E Copy No. Info. Div., CWS Tech. Comd., The Use of Dye APR 13 1979 2-anisole-azo-beta-naphthol, 45511 in colored smoke granades Object: The object of project Al3 is to develop colored smoke mixtures for use in colored smoke munitions. The object of this work is to develop a formula for a red smoke hand grenade in which the dye 2-anisole-azo-beta-naphthol, or a similar dye could be used. 10) T. H./GuION Authority: This project is authorized by the project specifications for the fiscal year 1945. 14) EA-1CIR-357 III. Results: The dye 2-anisole-azo-beta-naphthol, Colour Index No. 113, was one of the first to be tested where work was initiated on modification of the solored Smoke Pot, M3. The results were promising enough to warrant an extensive and protected study of this dye, but it never produced a colored smoke cloud as good as that from 1-methylamine anthraquinone, the red dye edapted for use in the colored Smoke Grenade, M16, and all colored smoke munitions subsequently developed. Cleared Clept of Commerce CONTROL NUMBER 5005 By authority of C. D. . OWS Tech . Comd . Div., CKS Tech. Comi EDGEW00D

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DDC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

- RESTRICTED

In common with other azo dyes this dye is thermally unstable. When mixed with a fuel and burned in a grenade, it has a sendency to burst into flamed, and produce a mixture of colorless, gaseous products and carbon, instead of a cloud of colored smoke. Even when this does not occur, the dye undergoes appreciable decomposition in the process of volatilization, so that the smoke varies in color from a light red, to white.

It was thought that the decolorization of the dye might be due to the passage of dye vapors over the hot carbonaceous residue that is always found in colored smoke munitions. It was further thought that the gases formed from the burning fuel, which act as a "carrier" for the dye vapors in expelling them from the grenade, might in themselves be inflammable. Their combustion with the oxygen of the air on emission from the grenade might ignite the dye vapors intermixed with them and cause the excessive fleming often observed with azo dyes.

Recent experiments, the object of which was to prevent from flaming a fast-burning colored smoke mixture containing beta-naphthol-azo-dimethylaniline, led to the discovery that certain ammonium salts also prevented the decolorization of azo dyes. Most ammonium salts decompose at relatively low temperatures, and their products are wholly gaseous. It was thought that the gaseous products formed on decomposition of these salts might expel the dye vapors from the grenade before decomposition could occur and dilute the effluent gases sufficiently to prevent ignition. Such, indeed, was the result, regardless of whether this be the true explanation.

The addition of ammonium sulfame markedly improved the color, while the addition of ammonium sulfamete, NH₄SO₃NH₂, produced a smoke whose color equalled and, under available conditions, even surpassed that from 1-methyl amino anthraquinone. The color, which was excellent initially faded some as the burning progressed. This was largely eliminated by the addition of an inert diluent such as kaolin, floated silica, or precipitated tricalcium phosphate. The addition of a very bulky substance such as kieselguhr, asbestos shorts, magnesium carbonate, or sodium or ammonium lignin sulfonate, had the opposite effect. Ammonium sulfate, when mixed with potassium chlorate, was too unstable to be used in a colored smoke munition without deterioration in storage. Other salts, ammonium exalate, ammonium thiosulfate, ammonium chloride, ammonium sulfate, ammonium phosphate, urea, diphenylamine, and aniline hydrochloride were found unsatisfactory.

It was found that the intensity of the color produced was proportional to the rate of burning, and that the best color was produced with a burning time of less than sixty seconds. This dye would seem to be especially suitable for use in such fast burning munitions as the streaming type rifle grenade, M23, (T.D.M.R. No. 806), the 60 mm. morter shell, TlO, (T.D.M.R. No. 357), and the colored smoke trail bombs, M37 and E13R2, (T.D.M.R. No. 861). It has also been found very satisfactory in the 4.2" C.M. colored smoke shell, E72, in which the explosive filling consists of a mixture of EC powder, U.S. Army Specification No. 50-13-8B, and dye, and when the time of exposure of the dye vapor to high temperature is very short.

- RESTRICTED

Earlier experiments with other dyes showed that decreasing the particle size of the KClO3ddecreased the burning time of colored smoke munitions. It was found that with this dye decreasing the particle size also improved the color. Experiments in which the effect of fine particle size in decreasing the burning time was offset by decreasing the quantity of chlorate by the addition of a "cooler", such as NaHCO3, KHCO3, Urea, or Epsom Salt, resulted in an inferior smoke.

Adamoke mixture having the following composition was found to give the best smoke in the M18 grenade:

	Parts by weight:
Dye, 2-anisole-azo-beta-naphthol	40
Potassium Chlorate, Micropulverized	20
Sucrose , Micro, pulverized	20
Ammonium Sulfamate	10
Tricalcium phosphate, precipitated	10

The hue of the smoke produced by this dye differs from that produced by 1-methylamino anthraquinone, being a yellowish red, or scarlet, (8R, see Note on Munsell Color System at end of Report), instead of red (3R), Attempts to make the hue redder by the addition of another dye to the mixture met with little success, resulting either in deterioration of the color, or flaming. A more satisfactory method of changing the hue is to alter the composition of the dye, by the addition of other substituents in the aromatic rings. The dyes, 2,5-dimethoxy benzene -azo-beta-naphthol and 5-methyl-2-anisole-azo-beta-naphthol, have been found to produce red smokes of hues 3R and 5R, respectively.

It is customary to oil the dyes used in colored smoke munitions to decrease dustiness during mixing and filling. The addition of Petroleum 011, C.W.S. apec. No. 196-131-168, Kerosene, or Halowax oil #1000, a chlorinated hydrocarbon, to the colored smoke mixtures containing this dye produced smoke of inferior color and increased the tendency to flame. This tendency can be largely eliminated by insulating the smoke filling from the ends of the grenade body with washers of fibre board or asbestos. Leaving a small air space, one-fourth to one-half inch, between the smoke filling and the top of the grenade body, was also found beneficial. Promising results in eliminating flaming were obtained by adding to the smoke mix a cold-setting plastic such as Resinous Products Co.'s Uformite, (urea, - formaldehyde) or Pittsburgh Plate Glass Company's Selectron (alkyd-type). The semi-fluid mix thus formed is poured into the grenade body and allowed to set. However, acidic constituents of the resin react with components of this smoke mix resulting in the evolution of gases and causing the mix to swell and become porous.

The tables appended to this report contain a list of the experiments involving the use of this dye in burning type colored smoke munition performed by the undersigned. For each experiment the notebook and experiment or page number of the original entry is listed for reference purposes.

RESTRICTED

Tables I and 2 list the experiments in which ammonium sulfamate was used. Table 3 summarizes experiments in which other dyes were added to colored smoke mixtures containing this dye in an attempt to alter the hue. Table 4 lists experiments with other azo dyes similar in structure to 2-anisole-azo-beta-naphthol.

Tables 5, 6, and 7 summarize early experiments with a potassium chlorate-sugar fuel, and those with a potassium chlorate-sulfur fuel. A colored smoke mixture containing dye, potassium chlorate, sulfur, and sodium bicarbonate produces excellent clouds with anthraquinone dyes, but is unsatisfactory with dyes of other types.

EC Powder, U.S. Army Specification No. 50-13-8B, consisting essentially of a mixture of nitrocellulose, barum nitrate and potassium nitrate, was tried as a fuel. It gave satisfactory results in the Aerial Smoke Puff (T.D.M.R. No. 679) and 4.2" C.M. Shell, E72, but not in a burning-type munition. Other fuels-lead dioxide and sulfur or lactose, potassium chlorate and charcoal, potassium nitrate with sulfur, sugar, or charcoal - were tried without success.

The Germans and Italians use azo dyes, and this dye in particular (CMTR 40), in colored smoke munitions, but only in the form of small pellets, which burn in 10 to 12 seconds, or extruded granules. When the filling is in this form, the dye vapors are in contact a very short time with the hot carbonaceous residue which may catalyze thermal decomposition of the dye. Colored smoke mixtures containing dye, chlorate and lactose were pressed to a depth of only one inch into grenades having diameters of 3-1/4 to 5-1/2 inches, to give a greater burning surface and more rapid burning. The results were not promising. This type of construction has apparently, enabled the British to use this dye in the colored smoke Generator, No. 26.

Samples have been received from several different manufacturers under different trade names. Most of the experiments were made with lots of dye from Calco Designated as Oil Scarlet OBN, and from Federal Color Laboratories, designated as Signal Red.

Since the characteristics and performances of the various samples differed slightly, the particular sample used in each experiment is stated in the tables.

IV. Recommendations:

It is recommended that:

Charles Albert State of the Control of the Control

- (1) This dye be considered for use in the Grenade, Smoke, Colored (Fast Burning) E8, in the event that a grenade burning faster than the M18 grenade is desired.
- (2) The performance of this dye in other burning-type munitions be investigated.

RESTRICTED

3. That because of the special composition in which this dye is to be used, and the extra precautions necessary in mixing and filling, it be considered not to replace, or as a substitute for the two dyes specified at present, 1-methylamino anthraquinone and 9-dithylamino rosindone, but only to supplement them in the event of a shortage of these two latternamed dyes.

RESTRICTED

A Note on the Munsell System of Color

Color can be described in terms of three attributes, or characteristics: (1) Rue; (2) Value, also called lightness, intensity, or brilliance; and (3) Chroma, also called strength or saturation. The Munsell System of Color represents these attributes as the dimensions of a color sphere. The central vertical axis of the color solid represents the neutral value scale with black at the bottom and increasing in brightness through ten readily distinguished steps to white at the top. Colors in this central axis possess neither Hue nor Chroma. Chroma is represented by a radial distance away from the neutral axis, while hue corresponds to angular distances around the axis. The hue circle is divided into five principal hues - red, yellow, green, blue, and purple - and five intermediate hues evenly spaced between each two of these - yellow-red, green-yellow, bluegreen, purple-blue, and red-purple. To facilitate identification of hues intermediate between these ten major hues, each is divided into ten numerical divisions, with the number 5 falling directly on the hue itself. In describing a color by Munsell notation, the hue is given first and is followed by a symbol written in fraction form, the numerator indicating the value and the denominator indicating the chroma. Examples are given on the tables appended to this report.

Compositions for 1118 Grenade centaining Ameenium Sulfamate

				Compo	STOTOTO TOL M	TO CLEUNCE C	comprehensing for gate drenate containing amountum sultainance	
Nete-	Expt.	Composition	noi	(Parts	by "t.)	BT*	Color and Performance	
book	No.	Dye	KO103	Sucrose	ucrose NH4803NH2 etc.	.c. 80c.		
2016	6/12-11	35(1)	25(2)	8	25	47	bad flaming	
2016	6/12-12	35	र स	50	જ	33	bad flaming from one end of grenade	
1782	5/25-5	35	30	25	8	ຸ	72/8/4)	
1782	5/29-1	9	20	50	8	75	flaming from one end, color uniform, no fading alightly dull	lng
1782	5/29-3	54	8	80	20	<i>A</i>	flaming from one end after 12 sec.	
1782	5/27-1	45	8	20	K	ı.	786/12, slightly pale and variable	
1782	5/89-5	74	20	20	77	4	flaming from one end, somewhat pale and dull	_
1782	5/26-12	29	8	8	10	免	786/14, fading last few sec., excellent volume	ane.
1782	5/21-3	29	20	8	10	₹.	some fading at last	
1782	2/29-11	20	8	50	01	4	color generally good, fading at last	
2016	6/3-3	50	8	8	10	54	bad flaming, hand pressed, filled solid	
1782	5/21-5	45	8	33	10	32	color slightly variable, fading at last, good	9
	N .						volume	
1782	5/26-2	04	35	23	10	27	785.5/12	
5016	6/9-4	04	33	501	ខ	12	pale, no fading,	
2016	6/9-12	64	25/47	55	20	ጸ	color very good, fading last 10 sec.	
*Burni	Burning Time							

1. Dye - Signal Red A om 0.1 Scarlet OMN in all experiments 2 & 3. Samples of RCIO3 having particle size different from that specified in CMS Specification No. 196-111-92

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2 (Wax.)	15 (lax.)	30-60	40-70
0 % 4 %	o £ 45	0	0	28	69
	*	0	32	47	5

CITS Spec.

3

(2)

4. Notation used in Mansell Color System.

Held on 60 Hesh Held on 100 Mesh Held on 200 Mesh Held on 200 Hesh

			ading bedly				od at		d fading		variable		1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×	c. fading	then turning	last 5 sec.	t 15 - 20	e, some		
	Color and Performance	color pale, variable	color generally good, finally rading bedly	color uniform, rather pale	solor bright but variable	color pale	flaming after 15 sec., color good at	color good, very little fading	color variable, rather pale, bad fading	at last last 10 sec. fading	color slightly pale, dull, and variable	slight fading	color pale, fading	color generally good, last 5 sec. fading	initially excellent,	duller, linally lading bright, uniform, except	fading disc at top (6), bad fading last 15	good, slightly pale and variable, some	rading somewhat pale, good volume	
(per	BT Sec.	&	47	41	, 2	135	53	27	38	Š	38	38	35	38	ટ્ડ	8	. 09	49	38	
TABLE 1 (continued)	NI 393 MH2 otc.	10 10 FFF	10	10 May 3	10 ma or	10 Wm4/2004	10 (M4/2°2°4	10 10	10 Ures	10 08 (011/2) 10	15 case 4	10 cm 4	10 soap (2)		2 KL9891gunr 10		10 Kieselguhr 10 H			10 Kieselguhr
	(parts by wt.)	8	80	50	8	8	83	8	8	20	50	8	8	20	. 02	20	23	.00	8	
1	Composition (parts bye KC103 Suero	80	50	8	8	8	82	25	82	20	8	83	क्ष	22	50	50	8	20	10(1)	
**	Compo	35	64	33	33	35	33	04	\$	9	, X	4	35	38	4	40	9	40	3	
	No.			1												4 3				
*	Note	1782	1782	1782	1782	1782	2016	2016	1782	1782	1782	1782	1782	1782	1782	1782	11782	2016	2016	

Table I (continued)

Color and Performance	bad flaming	generally good, last 5 sec. fading	bright, uniform, slight fading	flaming from one end, pale smoke from other	725/14	initially good color, Then so Inding	7:5+/12+
IASO3NH2 Sec.	40	10 Kieselguhr 5 KHCO3	50 50	10 8502	10 50	10 15 15	10 Juliers Earth
Composition (parts by wt.) Dye KC103 Sucrose NH4SO3NH2	8	8	20 10	8	8	8	8
Toolition KC103	8	35 .		R	18(7)	18(7)	18(7)
	10 40	2 .	8	8	4	9	9
Expt.	6/2-1	6/2-	1-1/9				
Note- book	1782	1782	1782	1782	2016	2016	2016

Detergent, Eand, Federal Specification No. P-D-221, containing 60 - 76% siliceous material Smoke charge insulated from ends of grenade body with asbestos discs Mioropulverized Precipitated, or Floated

Color and Performance	excellent except fading at last	776/14, slight fading at last	616/14, fading last 5 sec.	III, (9) slightly pale, fading at last	786/11, last 10 - 15 sec. fading	color good, volume fair, fading last 10 - 15 sec.	725/12, fading after 40 sec., 3 sec. flaming	MS, slightly pale, fading at last	color good, slightly pale	slightly dull, fading last 10 - 15 sec.	slightly pale, some fading from one end	G26/12	6R6/12, fading at last	
BT 890.	35	51	64	8	35	63	09	9	84	63	25	42	35	
(parts by wt.) Sucrose NH SO NH2	10 701	10	IO Kaolin	10 Kaolin 10	10 Kaolin	10 Eaclin	10 Eablin 10	10 Kaolin 10	10 Kaolin 10	10 Kaolin 10	10 Kaolin 10	10 Enolin	10 Kaolin 3.3 NaHCO ₃ 10	10 Reolin 4 Dextrine
(parts by Sucrose	8	8	8	8	8	8	8	8	, 8	23	8	8	8	
Composition Dye KC103	8			(1)02	(10)20(2)	6/16-8 40(11)20	38(11)22	18(7)			(1)	36.7 20	20(2)	
	4	4	64	8	\$	4	38		8	8	4	38	4	
	6/13-8 40	6/15-6 40	6/16-1 40	1028	1-91/9	8-91/9	101	1039			1021	6/15-2		
Note- book	2016	9102	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	

9. no hole in bottom of grenade body 10. Dye blended with 4% by wt. Halowax Gil # 1000, a chlorinated hydrocarbon containing 23% chlorina 11. Dye blended with 4% by wt. Petroleum Oil, CWB Specification No. 196-131-168

CALL RESIDENCE THE WAS A STORE THE

2016		+	Kelle,	Suerose	Dye EC103 Sucrose NH4SO3NH2 etc. sec.	800.		
9	1003	8	8	8	10	42	very good ex	very good except some fading at last
	1022	8	8	8	10 m3(ro4)2	53	good, slight	good, slight fading at last
91	1021	4	20(1)	8	10 cm / 104/2	30	wery good, no fading	o fading
6	1507	8	20(1)	. 02	10 (43(F04)2	47	SR 6/10, pale, Flaming	le, Flaming
64	1507	8	20(1)	20	10 Ca (PO 4) 2	75	6R 5 4/12 Flaming	guime
64	1510	9	(1)02	83	10 Ca3 (F04/2	11	68 5.5/10, H	63 5.5/10, Flaming, Discs (6)
6	1510	04	20(1)	8	10 Ce3 (PO4)2	58	6R 5.5/12	•
6	1726	8	20(1)	8	10 0m3 (P04)2	1 %	8R 5.5/12, d	SR 5.5/12, discs. very little fading
2149	1791	4	20(1)	50	10 Ca3 (PO 1)2	33	78 5.5/12, 1	72 5.5/12, Flaming, discs
6	1971	4	(1)02	8	10 cay (P04)2		TR 5.5/12, 1	TR 5.5/12, Discs, no flaming
6	1801	8	20(1)	50	10 043 (P04)2	09	68.16/10 +.	6R.16/10 +, discs, flaming
5	1801	64	20(1)	50	10 cm3 (r04)2	59	72 5.5/12,	72 5.5/12, discs, some fading
2149	1801	4	(1)02	8	10 013(104)2	20	7R 5 4/12,	: :
2149	1302	4	20(1)	8	10 083(F04)2	47	8R 6/10	" flaming
2149	1802	8	20(2)	8	10 Ca ₃ (F04)2	47	7R 6/12	
2149	1302	40	.20(1)	50	10 043(FC 1)2	52	TR 5.5/12	
					10 CB3 (FO)			

TABLE I (continued)

					load filling					,						
Color and Performance	disos	" flaming		" slight Fading		pressure (12) some fading, 5000 lb, d.l.	TR 5.5/12 +, some fading, 5000 lb. d.l.		8R 5.5/12 + 5000 lb. dead load		+ feding	TR 5.5/12 + 5000 lb. dead load		+ fading	-	
Color and	8R 5.5/12 disos	TR 5.5/12 "	7R 5.5/14	72 5/12	8R 5 4/13	8R 5/14	TR 5.5/12	7R 5 4/13	82 5.5/12	TR 5.5/12	73 5.5/10 + fading	R 5.5/12	TR 5.5/12	7R 5.5/10 + fading	TR 5.5/10 +	
Br.	57	99	1	94	19	64	4	75	1	32	59	1	32	23	31	
(parts by wt.) BT Sucrose NH ₄ SO ₃ HH ₂ etc. sec.	10	10 Ca (PC)2	10 3 4/2	10 ca (Po / 2	10 cm3(r04/2	10 3 (704/2	10 G (P04)2	10 02 (704)2	10 Ca3 (P04)2	10 Ca (PO4 2	10 cm ₃ (F0 ₄) ₂	10 083 (F04)2	10 ce ₃ (P0 ₄) ₂	10 Ca3(P04)2	10 Cm3 (PO4)2	10 ca3 (F04)2
(parts by Sucrose	S.	20	8	8	2	8	8	8	8	8	8	20	8	82	8	
Composition Dye KClO3		20(1)	20(1)	20(1)	8	8	20(1)	20(1)	20(1)	20(1)	20(1)	20(1)	20(1)	20(1)	20(1)	
Сощро	4	9	4	8	8	8	9	8	4	8	8	9	9	5	9	
Expt.	1802	0181	1810	1810	1769	1169	1784	1784	1790	1790	1792	1790	1790	1792	1792	
Note- book	2149	2149	2149	2149	2149	2149	2149	1 2149	2149	2149	2149	2149	2149	2149	2149	

TABÉE I (continued)

Color and Performance	good, fading from one end after 35 sec.	excellent	wery good, no fading	7.516/14	6R, no void (13)	elightly pale	slightly pale, fading at very last	slightly pale, fading at very last	7.516/12, flaming:	slightly pale, some fading
BT Bec.	62	4	51	5	8	8	25	52	04	20
HClO3 Sucrose NH SO3 NH2 etc. sec.	10	10 m3 (r04)2	10 cm3 (r04/2	10 m3(rv4/2	10 083(F04/2	10 cm 3 (r04/2	10 cm3(r04/2	10 cg (rv4/2	10 c (20)	10 Ca, (PO,)
(parts by Sucrose	8	8	20	20	8	8	8	50	50	8
Composition Dye KCLO3	Ω Ot	40 18 ⁽⁷⁾	40 18(7)	40 18 ⁽⁷⁾	to 18(1)	to (14) 18(1)	40 (14) 18 (1)	(10) ₁₈ (7)	(10) ₁₈ (7)	40 \ 16 ⁽⁷⁾
Expt. 0										
Note- book			2016							

grenade body filled completely instead of leaving inch space between top of filling and top of body, as in other experiments

Dye blended with 4% by mt. No. 2 fuel oil, from Euntsville Arsenal 14.

											g last 15 sec.	,		
Color and Performance	4R 5/12-14, volume good	4R 5/12-14, volume poor	bad flaming	TA 5.5/10 4 fading	TR 5.5/10. discs flaming	72 5.5/12, fading	7B 5.5/12 fading	72 6/10 +, turning paler	m 6/10 +	Slightly pale, no fading	Excellent color at first, bad fading last 15 sec.	TR 5/14	78 5/12-14, no fading	55, we bear fluenting
BT Sec.	09	46	34	04	31	35	47	91	62	52		. 09	49	55.
(parts by rt.) Sucrose NH SO JH etc. sec.	10	10 043(104)2	10 (m3 (F04)2	10 0 0 0 0 0	10 043(204)2	10 3 (74/2	10 (FO)2	10 (23/104/2	10 % (PQ)	10 (m) (m)	3 Na 300 4/2 10 0a. (20.)	5 med 4'2 10 cm (PC.)	3 Ures 4/2 10 Ca. (PO.)	5 urea 4'2
(part Suer	8	8	8	8	8	8	8	8	8	8	8	8	8	8
KCIO3	18(7)	13(1)	22(1)	22 (1)	22(1)	24(1)	24(1)	8	3 0	(2)88	40 20(7)	18(1)	18(1)	20(1)
Soup Pre-	4	9	04	8	8	4	8	09	S.	4	8	8	4	40
Expt.	1474	1474	1206	1753	1753	1754	1754	1783	1789	1049	1058	1136	1201	1205
Mote-	2149	2149	2016	2149	2149	2149	2149	2149	, 2149	2016	2016	2016	2016	9102

contid)
) 1
ABIE.

									ding last 15			+				
Color and Performance	bad fleming	7R 5.5/10 + feding	78 5.5/10. discs flaming	78 5.5/12, fading	72 5.5/12 fading	72 6/10 f. turning paler	TR 6/10 +	Slightly pale, no fading	Excellent color at first, bad fading last 15	7R 5/14	78 5/12-14, no fading	bad flaming	4.5 R 5/12 +	78 5/14, fading		
Sucrose NH, SO, NH, etc. sec.	10 (80) 46	10 3 74 2 40	10 3 (704)2 31	10 43 (104)2 35	10 ca ₃ (PO ₄) ₂ 47	10 3 104/2 91	10 3 4 2 62	10 03 (F64)2 52	3 margo ₃ 56	5 KH03 10 60	3 Ures 64 10 (20.1)	5 Urda 55	5 Ures 4,2 10 (PO.)	3 Mg304(159 10 Ca (100,1)	5 013 (15)2	
		8	8	82	20	8	02	50	50	80	8	20	8	8		
Composition Dye EC103	22(7)	25(1)	22(1)	24(1)	24(1)	8	20	(1)02	20(1)	18(1)	13(1)	20(1)	118(7)	20(1)		40
	8	04	4	4	4	8	20	40	8	8	4	. 64	8	8	*	Mtra
Expt.	1206	1753	1753	1754	1754	1788	1789	1049	1053	1185	1201	1205	2475	8897	75. Epsom Salt	Guanidine Mitrate
Note- book	2016	2149	2149	2149	2149	2149	2149	9102.	. 2016	2016	2016	2016 €	2149	2149	15. E	16. Gu

sec.

Note-	Expt.	Source	Compo	KCID3	Suorose	***) NII.4303/IIH.,	Cay(P62),	BT.	Color and Performance
149	1495	R(2)	64	13	8	. 01	10	9	78 5/12 t. slight fading
149	1495	2	9	18	8	10	10	89	68 5/12 +
140	1512	R	6	8	8	10	. 01	28	68 6/10 t
149	1512	Res	8	8	8	S	20	120	73 5 + 10 +
149	1518	KG)	\$	20	8	9	9	137	7R 6/10 +
149	1520	K.	8	8	50	10	10	132	TR 5.5/10 + Flaming
149	1533	G(4)	8	8	8	10	10	09	5/14. good
149	1533	9	4	8	8	10	01	×	7R 5/14, slight flaming
149	1091	•	40	20	20	10	20	69	68 5.5/10 + discs (5) fleming
149	1091	•	9	8	8	10	9	11	pale color " "
149	1660	•	9	8	8	10	10	28	TR 5/14 fading discs
149	0991	•	8	8	8	10	2	8	7R 5/12 + " Volume good
149	0991	5	8	20	8	10	9	22	78 5/14 - "
149	1691	C	8	2	8	10	10	37	78 5/+ /12
199	1691	9	8	8	8	10	9	29	735/14 fading
149	1692	•	8	20	8	10	30	38	775 4/12 fléming
2149	1692	5	4	8	8	10	9	94	flaming
# M H & 6	Micropulverized Reichold Chemicals H. Kohnstamm and C General Dyestuff C	Micropulverized Reichold Chemicals H. Kohnstamm and Co. General Dysstuff Corp.							

Compositions for MAS Grenade in which other dyes were added to alter the hue of the smoke

Compositions for Mid Grenade in which other dyes were added to alter the nue of the smoke	Color and Performance	MIG. flamed 30 sec., good red color MIG. buring OK 6R 5/12 (6), good color except slight fading at last	color pale, fading flaming, color pale, fading	flaming after 20 sec., color pale, bad decolorization 7.5R5/12, Color slightly pale, dull, fading at last	3 - 48, flaming	flaming, color rather pale	good volume, Color rather pale, fading	5R5 4/12 4, fading
dyes were added	Cooler BT	19 Na.HCO ₃ 20 Na.HCO ₃ 197 20 Na.HCO ₃ 197 10 ML 4 ^{SO} ₃ 58 NH2 10 Laolin	10 NH 803 51 10 Keelin	- 60 10 NH 803 66 10 Keolin	10 MH SO 30 MH 20 (POL) 2	10 MH SO 39 10 Ca2 (PO ₄)2	20 (MIL) 30,350 10 23 (PC4)2	10 cd3 (F04)2
ALO GENEGO IN WILCH OTHER	Composition (parts by wt.) Of 113 (1) Other Dye XC103 Sucrose	Alco (2) 29.5 11.5 8(3) Alco 20 20 L (5) Alco 20 20 L (5) Alco 20 20 L	27 Rosindone (7)23 23 10 Rosindone 20(9) 20	25 011 Red (9) 25 25 6.7 Orange R (10) 20	8 Thodamine 18 ⁽¹¹⁾ 20	8 Thodamine 20 ⁽¹¹⁾ 20		8 Rhodemire 18 20
celtions for	Composition (25 25 25 36 36 36 4 86 4 86 4 86 4 86 4 86 4 86		25 25 0 33.3 6.7	32 8 gh	32 ° 8 m	28 7 Rh	32 8 Rh
3	Expt.	3/20-1 9. 19 3/22-2 1014	4/29-11 27 6/16-5 30	5/1-1	1044	1062	1063	1476
	No te-	1185 1083 2016 2016	2016	1782	2016	2016	2016	2149
		THE R. L. LEWIS CO.			1		A P E	

Color and Performance	5R 5 4/12, 4, fading	5x 5.5/10 4. feding	SR 5 4/12, feding
BT.	2 %	67 It	89
Gooler	10 NH4SO ₃ 59 IN Ca3 (PO ₄)2	10 mH ₂ SO ₃ 67 10 Ca ₂ (PO ₄) 3 Dpsom Saft	10 NH45C3 68 NH2 10 Cm3(FO4)2 3 Epicom Salt
Sucrose			8
t.) KC103	18 20	81	18 20
Composition (parts by wt.) CI 113 (Other Dye RC103 Suarose Gooler	8 Rhodamine	8 Rhodandre	8 Rhodemine
Composi CI 113	8	33	8
Expt.	1476	1477 32	1411
Note-	2149	2149	2149

2-anisole-azo-beta-naphthol I-methyl amino anthraquinone, CWS Specification No. 196-111-78

Sulfur

Grenade, Smoke, Colored, MA

Lactose

Mansell Color Notation 9-diethyl andno rosindone, CWE Specification No. 196-111-100 See Note 2, Table 1 1444666869

o-toluene-arc-o-toluene-arc-beta-naphthol alpha-amino anthrequinone, CWS Specification No. 196-111-97

Meropulverised

**************************************	775		197-199		10				10.30	
Color and Performance	M16(4), no flaming, color thin, poor,	pink 4R6/11(6) 5R6/10, color pale, no fading color dull, pale, variable	color dull, slightly pale and variable	6R6/11, color good 6R5/11, duller without Blue B	4.5R4/6, dull reddish-brown, fading at last	dull, reddish-brown, pale, fading	626/9, pale fading	5.5R6/10, pale	8R5/10, no fading	color pale, flaming
BT	165	285	53	8E	55	51	39	41	. 83	18
Cooler	28 KHICO3	25 (NEA) 2803 25 (NEA) 2803 10 NEA) 303 NE2 10 Ke 011n	10 NH SO3NH2	25 (NH,) 203 10 NH, 50 NH2	10 NH SO3 NH2	10 ma SCAME	10 TH SO THE	10 NH SO NH 2	10 ma so m	10 ca (Pd)2
KElO3 Suerose Cooler	8.4(3)	& &&	ล	88	8	82	82	8	8	8
re103	21.6	8 35 (3) 8 (3)	8	(B) (S)	(g) (g	20(8)	50	8	20(11)	18
Composition (parts by wt.)	21 Indigo	157 Indigo 3.3 Indigo	8 Blue 2B (12)	1.7 Blue B (13) 3.3 Blue B	6.7 Blue B	6.7 Blue MA (14)	3.3 Green B (15)	6/16-4 36.7 3.3 Louco-(16)	8 Tiolet 2 (17)	5 Mon. Blue (18) 18
Composti CI 113	12	33.3	32	8.7.3	33.3	33.3	7.96	36.7	32	8
Expt.	6/4-6	6/14-10 33.3 6/14-11 32 6/15-8 36.7	1023	6/15-7 33.3 6/16-2 36.7	6/16-10 33.3	6/16-11 33.3	6/16-3 36.7	6/16-4	1040	1224
Nota- book	1185	2016 2016 2016	2016	2016	2016	2016	5 2016	2016	2016	2016

12. 5.7.5. 7.-tetrabrom indigo
13. 1,4-dimethylamino anthraquinone, CWS Specification No. 196-111-101
14. 1,4-di-n-amylamino anthraquinone, CWS Specification No. 196-111-80
15. 1,4-di-p-toluidino anthraquinone, CWS Specification No. 196-111-81
16. 1,4-diamino-2,3-dihydro anthraquinone, CWS Specification No. 196-111-81
17. p chlorbenzene-azo-alpha-naphthylamine + 3% Indigo
18. honastral Fast Blue, a:phthalocyanine

TABLE 4 Part I

Compositions for 1.16 Grenade containing dyes similar in structure to 2-anisole-azo-beta-naphthol

compositions for all dremade dentaining ayes similar in structure to 2-anisole-azo-beta-naphthol	Color and Performance	very light pink color, poor burning, very slow	color light red, variable, burning even			of smoke good, flamed	good color, slightly blue, flamed after 20 sec.	color almost as good as 1-methyl amino anthraquinone.	flaming after 30 wac.						anthraquinone or Rhodamine	color pink to red, slightly blue, good volume	flamed, poor color	flamed, color poor	color blue-red, considerable decomposition	poor, dirty crange coler, volume good	good evolution of blue-red smoke	fairly good red color		good volume, ilumed alter 15 sec.	2,5-dimethoxybenzene-azc-beta-naphthylamine 2,5-diethoxybenzene-azo-beta-naphthol	
niar in	ET.		180	217	180			180		l	175	150	145			!	1	1	1	1	!	!	100	772	800	
dyes sim	by wt.)	88	78	28	10 MIACL	1	7.7 HIACI	10 IU 01		28.	28	55	30		4	15	15	28	28	23	28	28	7	ct	200 200	phthol
Laining	(varts	14.5				,	200	14				9.8				8.				8.4		8.4	7		lol hthol	-beta-na
nade cor	Composition Dye KC103	18.5	21.6	19.4	21.6		76.01	21.6		21.6	21.6	25.2	25.2				21.6						Anrenine	0./1	nisole-azo-beta-naphthol nlor-2-anisole-azo-beta-naphth dimethoxybenzene-azo-beta-nap containing ammonium sulfamate containing 50% camphor	ene-e.20-
or or			5.4		9		24	96		42	45	40	35			3		25	45	42	42	31.8	4.5	2	oeta-naphtho le-aro-beta nzene-azo-b emmonium su 50% camphor	campho
NE TOL	Dye	777(1)	760(2)	160	(119(3)	011	110	719		119	719	719	719		(4)	787	7887	789/5/	773/67	762\0)	1110	111	111	111	nisole- xybenze ing em	uing 20%
1318000	Expt.	p. 14		00	n. 71		j. c	· ·		p. 95		2. 95	96 · d			p. 10	p. 10	5. 10	p.116	p, 115	0,115	p.116	01	7		719 containing 20% camphor 4-chlor-2,5-dimethoxybenzene-azo-beta-naphthol
	Note-	1083	1033	1083	988	000	988	983		988	988	986		20	-	1083	1083	2802	386	988	986	386	1083	Coot	2. 2. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	

0	Nurtee by wt. Nurtee by	## Color and Perform (Nurthalby web.) ## Color and Perfo	Composition (Parts by wt.) 10 20 20 10 10 57 385.5/10 # 444. 10 20 20 10 10 57 385.5/10 # 444. 10 20 20 10 10 57 2.585.5/10 # 444. 10 20 20 10 10 57 2.585.5/10 # 444. 10 20 20 10 10 58 58.5/14 # 114. 10 20 20 10 10 58 58.5/14 # 114. 10 20 20 10 10 58 58.5/14 # 114. 10 20 20 10 10 58 58.5/14 # 114. 10 20 20 10 10 58 58.5/14 # 114. 10 20 20 10 10 58 58.5/12 # 114. 10 20 20 10 10 58 58.5/12 # 114. 10 20 20 10 10 58 58.5/12 # 114. 10 20 20 10 10 58 58.5/12 # 114. 10 20 20 10 10 58 58.5/12 # 114. 10 20 20 10 10 58 58.5/12 # 114. 10 20 20 10 10 58 58.5/12 # 114. 10 20 20 10 10 58 58.5/12 # 114. 10 20 20 20 20 20 20 20 20 20 20 20 20 20	Composition (Parts by Wt.) Dye KCDO Berrose HESO, NH Ca. (194)2 sec. 40 20 20 10 10 57 3855/10 + faddy 40 20 20 10 10 57 40 20 25/10 + faddy 40 20 20 10 10 57 40 20 20 10 10 28 20 10 10 28 20 10 10 20 20 20 20 10 10 20 20 20 20 10 10 20 20 20 20 20 10 10 20 20 20 20 20 20 20 20 20 20 20 20 20	Composition (Parts by 4.) BT Color and Perform by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Color and Parts by 4. Col
	10 10 10 10 10 10 10 10 10 10 10 10 10 1	11	Composition (Narth by 1.1) December 15 on 10 (100) December 15 on 10	Composition (Partie by wt.) 40 40 20 20 20 20 20 20 20 20	719 40 20 20 10 10 5 61101 40 11 20 10 10 10 10 10 10 10 10 10 10 10 10 10
		200 200 200 200 200 200 200 200 200 200	Composition (Print) by 1.5 Decontist on (Pri	Composition (Parts by Te.) 50. 40. 40. 40. 40. 40. 40. 40.	7. 9. Seportton (Prince) (1) (12) (12) (13) (13) (14) (15) (15) (15) (15) (15) (15) (15) (15
	୍ଷ୍ଟି <mark>ରଥ ଅଧରଣଣର</mark> ଅଧରର ଅଧରର ଅଧରର ଅଧର		20	Composition (P. 14) by 12) 50 40 40 40 40 40 40 40 40 40	719 40 20 20 20 61101 40 (13) 20 20 61101 40 (13) 20 20 61101 40 (13) 20 20 61101 40 (13) 20 20 61101 40 (14) 21.5 20 61101 40 (14) 21.5 20 61101 40 (14) 21.5 20 61101 40 (14) 21.5 20 61101 40 (14) 21.5 20 61101 40 (14) 21.5 20 61101 40 (14) 21.5 20 61101 40 (14) 20 61101 40 (17) 20 61101 40 (1
	ରର 	28	20	20	119 40 17 20 20 20 20 20 20 20 20 20 20 20 20 20

TABLE 4 Fart 2 (cont's)

Color and Performance	SRE/12. volume fair, persistency poor 685/4/12 + 525/4/10 +
tion (parts by wt.) EC103 Surcose NE4SO3 NH Ca3 (PO4)2 sec. Co	22.8
TE Ca3	113
mt.)	(6) (6) (6) (9) (9)
(parts by	888
ition	422
Composition (ps	4%4
9%	10119
Expt.	1302
Note- book	2016 2016 2016

Micropulverized See Note 6, Table I 5-methyl -2-enisole-aro-beta-naphthol dye blended with 4% by weight Helowax Oil # 1000 dye blended with 4% by weight kerosene tested after I and 3 months storage at 65°C.

Armonium Cxalate Armonium Thiosulfate

Fullers Sarth

81224XX223

Kaolin

61102 (20) 60 61102 4
61102 (20) 65 20 17 (51102 40 17 17 17 17 17 17 17 17 17 17 17 17 17

5-Ethyl-2-Anisole-Azo-Beta-Mapthol
2000# Dead load filling pressure used in other experiments in this table
Ammonium formate
ManGO₃ ន្តដន្តន

TABLE 4 Part 2 (continued)

Color and Performance	7.05/10, fading, flaming 7.86 4/12, flaming 7.85/14, slight fading 7.85/12 7.875/12 7.875/12 7.87/14, some fading, good volume 7.86/12, flaming 7.86/12, flaming 7.86/12, flaming
BT.	88824845 8X
Ca3(PO4)2 BT sec.	
NH4503 NH2	
3	
Composition (parts by wt.) Dye KCl03(10) Sucress	22 2222 22 22
#1 tron KC1	8888888888
Oction Oction	38445444 48 ED 9
Dye	69001 (24) 60 69001 60 (13) 60001 40 (13) 69001 40 (25) 69001 40 (25) 69001 40 (25) 69001 40 69001 60
Expt.	1345 1287 1266-4 1312 1322 1219 1219 1231
Note- book	2016 2016 2016 2016 2016 2016 2016 2016

24. 4-chlor-2-anisole-azo-beta-naphthol 25. dye blended with 10% by weight sods ash

Compositions containing potessium chlorate - sugar as fuel

Color and Performance	flamed, fair red color, some decomposition color good, too much flaming flamed, poor volume, color white to red volume small, golor good, persistency poor hand pressed, good smoke, negligible flaming 1300 lb, dead load, mix mioropulverized good smoke, mix mioropulverized good smoke, mix mioropulverized no flaming, best yet, not comparable with l-methyl amino anthraquinone flamed a short time, good red cloud, some white in it, oxcellent bright cloud bad flaming last 40 sec. filled solid, flamed first 55 sec. then good, slightly pink cloud bad flaming. 20 sec. flaming, color good intermittent flaming good mixing, color pale, intermittent flaming	
Muni-(3)	M18 M18 M18 105 105 105	
BT sec.	2000 000 000 000 000 000 000 000 000 00	
Composition (parts by wt.) Dye KClO ₃ Sugar	201 (2) 201 (2) 201 (3) 201 (4) 201 (4) 202 (6) 203 (6) 209 (9) 209 (9) 209 (10)	
ition (jr. KC103	88888888 8 888 888 8 4 4	
Compos	38888888888888888888888888888888888888	
Expt.	7.13 4.13	
Hote-	1185 1185 1185 1185 1232 1232 1232 1232	

Dye - Signal Red

I- Lactose, Technical Wilk Sugar M16 unless otherwise indicated

Meropulverized

total filling pressure, see Par. E-4a, GNS specification No. 196-111-926 S - Sucrose, micropulverized with 3% Cornstarch Enister, Smoke, Colored, M2 (for 105 MM. Base Ejection Chemical Shell, M84), CMS Specification 196-131-162A

D - Dextrose

Sugar damp Sugar anhydrous

Color and Performance	mix micropulverized, color very bad dye not micropulverized, also bad slow starting, good cloud volume good, color good at first, flamed after 100 sec.	surging. color variable, fair to good filled solid, bad flaming discs (13), color variable, no flaming color good, but variable mix micropulverized, good snoke, smooth burning	min micropulverised, good color, flamed 60 sec. after first 30 mec.	color good when not flaming color pale, bad after 25 sec. color pale, bad after 25 sec.
Muni-	75(11)	105 (7)		
BT.	112 150 150	. 250 200 210 210	120	14)
(parts by wt.) Sugar	200 200 143 18L	225 22.5 22.5 30L 19L(10) 181 19L	2 Sulfur 6.61 4.4 Sulfur 6.71	2.4 Sulfur 10S 15 Tall 0il(
sposition relog	ន្តនន	55 55 46 (12) 22.5 62 13 60 13	19.8	(12) 20
Expt. Con	1/27-6% 60 1/27-6% 60 1/4-19 66 P- 75 60	P. 99 1/22-57 11/10-10 46 2/1-82 62 P. 104 60	p. 105 69 p. 105 70,	4/7-4 55
Kote- book	1232 1232 1232 1083	1083 1532 1532 1083	1083	1782

Canister, Smoke, Colored, M2 (for 75 mm. Base Ejection Chemical Shell, 719), CMS Specification No. 196-111-23 Dye - 011 Scarlet OBN 43.54 43.54

smoke filling insulated from ends of grenade body by asbestos discs Tall Oil, a by-product of the sulfite pulp industry, has the following approximate composition:

Resin Acids 47 - 50%, Fatty Acids 43 - 47%, Unsaponifiable Material 5 - 8%

-
d.
nue
H
nti
F
O
8
-
20
ABLE
F
4

	Color and Performance	caught fire after 80 sec.	surging, no flaming, much white smoke	color fair to poor	no flaming, bad decolorization	no flaming, but fading	slight flaming, excellent red cloud	large volume of red smoke, too much	White in it	bad flaming, mostly white smoke	much white smolbe	flamed badly	bad flaming, practically no red smoke	flaming thret 20 sec., bad decoloriza-	tion	istr cloud, color slightly pale	color pale, fading	DEG I LONGING	flamed badly, poor volume	· · · · · · · · · · · · · · · · · · ·	slight flaming, color good		bad Maming	
	Muni-	105(1)	M18	1018 1018	21 3									1118		74	MIC							
(p)	Br.	110	4	52	45 54 5	5.72	99	3	120	S.	20	•	. }	22	076	3	45	217	300		210		210	
ratio > (continued)	Cooler	2	6.7 Shorts (15)	15 KIOO3	,	10 08803	10 CaSO4. 2H20	10 CaSO 4. 2H20	. 01	. 01	10 " (16)		10 811-0-001	5 Dicalite(11)			10 52016	7 (IE.) SO.	9.6 Dextrine	10.2 (NH4)2504	13.2 Dextrine	7.2 (NH ₄) ₂ SO ₄ 6.0 B-Naphthol	13.2 Dextrine	
	(parts by wt.) Sugar	191	251	255	258 201	201	201	Z0I	20L	151	70T	151	in the	252		151	3,52	707			70T		201	
	Composition Dye KC103	50 24 50 13 13		12)	45 (12) 25 50 (12) 25	12)	77	177	12)	50(12) 20	17)	20	74 (22) 18			4	36		36 20		33.6 20	·\	33.6 20	
	Sapt.	p. 75 1/25-61	11/10-11	4/27-6	4/10-2 7/12-5	5/12-4	5/12-3.	5/14-3	1-11/9	5/15-2	5/15-3	5/5-1	2/6-1	4/10-1	1/07 67	10-17/7	0/15-0	1.00	3/21-1		4/28-2a		4/28-2b	
	Nota- book	1083	1582	1782	1185	181	1185	1185	11.5	1185	2011 2		1185	70/1	1333	1636	1910	(m)	1185		1185		1135	

Johns Manville Asbestos Shorts #352 Cuanidine Nitrate a kind of siliosous earth 1.85.

TABLE 5 (continued)

Surne carre furne laures
I'TO
2
To orea
653
o
3
6/9-10 40
2010

18. Signal, Ground, Parachute, M17

	Color and Performance	vigorous flaming	flamed extensively	slight flaming at last	good color, flamed at start color pink, trensparent,	burning sporadio pinkish color, good volume,	pink color, some decomposition good cloud, pink color, burning	sparking color fair, too white, no	color pinkish, no flaming color pinkish, too white, no	color too pinkish, alight	color pinkish, no flaming no flaming, bad fading,	good color at first, later turn- ing white grenade 2 full	color good in spots, extensive decomposition	good only in parts, appreciable decomposition	sone decolorization, slight	flamed some, color pink
ir as fuel	Muni-(2) tion	91%		· MB(5)					35	80%	1218 1218					
28% Sulfi	BT(1)	11	: ;	10 Min.	310	1	240	270	270	92	25.5	&	25	145	170	95
Compositions ocntaining a mixture of 72% EC103 - 28% Sulfur as fuel	Cooler	11	11	28 NeIICO3	25 25 25 25 25 25	30	28 " 28		23 " "	28 "	238	33 "	28 "	50	18	20 Matted 3
aining a mixtur	parts by wt.)								4.8							
positions ocut	Compositions (parts by Dyo KC103 S	66 (3) 28.6 65 (3) 25.3							42 21.6 42 21.6			34(6) 23.		40(3) 28.	42 28.8	42 21.6
Cont	Expt.							6/2-10	6/3-1	6/2-8	6/3-2			p. 75	6/2-5	1/21-3
	Note- book					988			1185 1185		1185		1083	1083		1232

TABLE 6 (centinued)

Color and Performance	flamed, partially decolorized	no flaming, color pink	
Br(1) Muni-(2) sec. tion			
BT(1)	120	170	
Cooler	20 Na HCO3	29 NaHCO3	
Composition (parts by mt.) Dye KClO3 S	8.4	8.4	
ition (par- KClO ₃	21.6	21.6 8.4	
Compos	42	45	
Note- Expt. Composit	1/21-8	6/3-4	
Note- book	1232	1185	

Burning Time Granade, Smoke, Colored, M16, CWS Specification No. 196-111-61, unless otherwise indicated bye - Signal Red B

Dye - Cil Scarlet OBN, unless otherwise indicated Grenade, Smoke, Colored, M18, CWS Specification No. 196-111-92

Dye - AD 779

Munsell Coordinates 40.44.40°

Color and Performance	poor volume, flamed, intermit	small volume, color white and	no flaming, good smoke oaught fire color better than with NaHOO	slight flaming, no flaming or fading, orange-	god orenge-red cloud, hand	proused color fair, hand pressed bad flaming, color bad, hand	pressed 4000 lb. Dead Load (11), no	sight flaming, pretty good	color, but variable color good but variable, no	100	chaiderable white smoke slight flaming, good red smol good color and volume, flamed disce(14), slight flaming
Mond- tion								8118	M18	T8 (12) 75 mm (13)	118
# 8	240	260	1888	130	ÄÆ	2.00 2001	58	37	099	125	121
	ę,	e de la companya de l			(6)				, ar		
Cooler	25 MIGOS	.	### #%%	28 "	888	888	- 82	28	28 "	58 28 28	888
i i b											
or to by	1	_	7.6 8.8 8.8	8.4	4.4	8 8 4 4	8.4	8.	8.4	80 80 4 4	8 8 8 4 4 4
Tigg .	. 38	18	18.02 20.02 20.03	21.6	21.5	21.6	21.6	21.6	21.6	21.6	21.6
	(E) 05	(e) 05	#2(B)	42	33	42(10)	42	42	42	42	GR.G.
, .	p. 78	p. 78	6/5-6	6/3-1				5-8/6	11/4-2	6/14-3	675-1 p.///-
14	Seg Seg	1063	1695	1185	1232	1582	1582	1582	1582	1232	1185 1083 1582

better than with NaHOO3.

Dye - Signal Red A

Micropulverized

t flaming, good red smoke (14), slight flaming

containing 4% by weight Oil, Fetroleum, CWS Specification No. 196-131-168
total filling pressure, see Par. E-4a, CWS Specification No. 196-111-926
60 mm. Norter Shell, T8, Crd. Drawing No. GA 2204
Canister, Smoke, Colored, M2 (for 75 mm. Dase Ejection Chemical Shell, T19), CWS Specification No. 196-111-223
Smoke filling insulated from ends of grenade body with asbestos discs *********

-
P
2
G
t
H
8
-
9
1
=
-
TABLE

7/	FTB8.D 06	plete decolor-	or fair red to	cod evolution	olor pale, good	volume color not good, no flaming slight flaming and decolorization	good color, considerable flaming	d volume, good r, no white	even much white		olorication ght flaming	fleming, volume	ry pale
	Gelor and Ferfermance	no flaming, complete decolor-	no flaming, color fair red to	some flaming, good evolution of red smale	some flaming, color pale, good	volume color not good, no flaming elight flaming and decolori	good color, con	no flaming, good volume, good orange-red color, no white	smoke, burning even no flaming, too much white	flamed	flaming and decolorization good color, slight flaming	386/10, 3 sec. fleming, volume	lair bad flaming, vory pale
	Muni- tion	M18							8118			ятв	11 8
	BT.	35	128	8 5	101	210	195	120	23	175	110 13 min.	8	9 1
	Cooler	28 XIIOO3	28 m	. 8	15 "	18 " 30 Jis 2003	18 17	25 KH03 5 Lactose	30 EUCO3	28 Licos	28 Ma26204	Cxalate 22 Amon.	21.7 Aumon. Sulfemate
	Composition (parts by wt.) Dyo KClo ₃ S	ΟN	6	3.6	9.8	11.2	8.4	8.4	4.0	8.4	& & 4 4	11.7	11.7
	ion (par	ຄ	23	25.2	25.2	28.8	21.6	21.6	20.1	21.6	21.6	25	30
	Composit	9	40	45(3)	દુ	42	42	§	42	42	42	36.7(8)	36.7(8)
	Zant.	4/8-1	4/21-4	5. 77	6/4-5	6/4-4	6/13-2	6/3-5	11/11-6	1-81/9	6/17-5	2/6-7	9-6/9
	Note-	1782	1792	363	1185	1135	1232	5811	1582	1232	1232	1782	2016

Compositions containing a fuel mixture consisting of RC103 and excess sulfur

	ance	color, slight	t flamed bealy	Al Cor 14 sec.	gular evolution,	ing after 130	mes, light pink	• 8 a		fair at times	ots of white	fter 60 sec.
	Color and Performance	good pinkish-red color, slight	good red color but flamed bdaly good red color, good evolution	or smoke, reming wron 14 sec. flaming flamed	good snoke, irregular evolution,	good smoke, flaming after 130	light pink color color fair at times, light pink	mostly white smoke	Flamed	light pink color, fair at times	little red, the lots of white	smoke all white smoke after 60 sec.
	Tuni-(2) tion	м16					•					
E	BBC.	240	135	141	202	215	9 è mi n.	255. 7. 7. 7.		195	2 20 180	195
Compared to the contraction of the state of	Cooler	28 MAECO3	10 "	10 "	22 "	22 "		: F	6.1 TaH 3	Sulfamate	, 888	30
E a treat make	s by wt.)	12.7	17.15.4	15.4	14.5	13.6	14.1	77.	16.1	11.5	12.6	13.7
OII CALLELL	ion (part	17.3.	23.64	19.6	18.5	17.4	17.9	101	20.5	20.5	22.8	8
iposi crons	Composition (parts by w	42(1)	88	সুঙ্	A	47	04 85	38	51.2	38	¥%	32
3	Expt.	p. 11	p. 11	5 5	3.5	p. 13	* ; 77.	0.17	p. 16		45.	
	Note-	1083	• •		•	•	33	• •	•	•	••	•

1. Dye - AD 779 (duPont) Grenade 2. Assumed to be MAS unless otherwise indicated Submitted:

Supervised:

Approved:

WPMumo

W. P. MUNRO Captain, CWS J. C. DRISKELL
Captain, CWS
Chief, Smokes Branch

C. B. DREWNON, JR.

Lt. Colonel, CWS
Chief, Pyrotechnics Division

Captain, CWS

* Author

S. J. Magram

RESTRICTED

Notebook No.	988	1232
	1083	1582
	1.185	1782
	1231	2016
		2149

Distribution:

Copies 1-7 Technical Library

" 8 Technical Division, OCCWS Wash. D.C.

. 9 Technical Command file

" 10 Munitions Division