Clase 4. Expresiones Regulares.

Definición.

Equivalencias entre Expresiones Regulares y Autómatas Finitos.

Expresiones Regulares

- Definen los mismos lenguajes que describen los autómatas finitos: los lenguajes regulares.
- Las expresiones regulares ofrecen una forma declarativa para expresar las cadenas que se desea aceptar.

Definición de Expresiones Regulares.

Construcción Recursiva:

Dado un alfabeto Σ , los símbolos \varnothing , λ y los operadores + (unión), . (concatenación) y * (clausura) y los paréntesis (y), definimos una Expresión Regular (ER) sobre el alfabeto Σ como:

BASE:

- El símbolo Ø es una ER.
- El símbolo λ es una ER.
- Cualquier símbolo a ∈ Σ es una ER

PASO INDUCTIVO:

- Si α y β son ER, entonces $\alpha + \beta$ es una ER.
- Si α y β son ER, entonces α · β es una ER.
- Si α es una ER, entonces α * es una ER.
- Si α es una ER, entonces (α) es una ER.

Precedencia de los operadores.

- 1. El operador *
- 2. El operador de concatenación.
- 3. El operador de unión +

Lenguaje descripto por las ER.

BASE:

- Si $\alpha = \emptyset$, entonces $L(\alpha) = \emptyset$
- Si $\alpha = \lambda$, entonces $L(\alpha) = {\lambda}$
- Si $\alpha = a$ y $(a \in \Sigma)$, entonces $L(\alpha) = \{a\}$

PASO INDUCTIVO:

- Si α y β son ER, entonces L(α + β) = L(α) ∪ L(β)
- Si α y β son ER, entonces $L(\alpha \cdot \beta) = L(\alpha) \cdot L(\beta)$
- Si α es una ER, entonces $L(\alpha *) = (L(\alpha)) *$
- Si α es una ER, entonces $L((\alpha))=L(\alpha)$

Equivalencia de Expresiones Regulares.

Dos expresiones regulares r1 y r2 son equivalentes si describen el mismo lenguaje.

$$r1 = r2 \Leftrightarrow L(r1) = L(r2)$$

Propiedades de Expresiones Regulares.

1. Asociativa de + y de.

$$\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$$

 $\alpha(\beta\gamma) = (\alpha\beta)\gamma$

2. Conmutativa e idempotencia de +

$$\alpha + \beta = \beta + \alpha$$
$$\alpha + \alpha = \alpha$$

3. Distributiva

$$\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$$
$$(\alpha + \beta)\gamma = \alpha\gamma + \beta\gamma$$

4. Elementos neutros de + y.

$$\alpha + \emptyset = \emptyset + \alpha = \alpha$$
$$\alpha \lambda = \lambda \alpha = \alpha$$

5.
$$\emptyset \alpha = \alpha \emptyset = \emptyset$$

6. Si
$$\lambda \in L(\alpha) \Rightarrow \alpha + \lambda = \alpha$$

7.
$$\alpha^* = \lambda + \alpha \alpha^*$$

8.
$$\lambda^* = \lambda$$

9.
$$\emptyset^* = \lambda$$

10.
$$\alpha^* \alpha^* = \alpha^*$$

11.
$$\alpha \alpha^* = \alpha^* \alpha$$

12.
$$(\alpha^*)^* = \alpha^*$$

13.
$$(\alpha^* + \beta^*)^* = (\alpha^* \beta^*)^* = (\alpha + \beta)^* = (\alpha^* \beta)^* \alpha^*$$

14.
$$(\alpha\beta)^*\alpha = \alpha(\beta\alpha)^*$$

Demostración de algunas propiedades...

Propiedad Asociativa de +.

Si
$$\alpha$$
, β γ γ son ER, $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$

Demostración:

Si α , β $y \gamma$ son ER:

$$L((\alpha + \beta) + \gamma) = L(\alpha + \beta) \cup L(\gamma) = L(\alpha) \cup L(\beta) \cup L(\gamma)$$

Por asociatividad de la unión de conjuntos:

$$L(\alpha) \cup L(\beta) \cup L(\gamma) = L(\alpha) \cup (L(\beta) \cup L(\gamma)) = L(\alpha) \cup (L(\beta + \gamma))$$

Por lo tanto:
$$(L(\alpha + \beta) + \gamma) = L(\alpha + (\beta + \gamma))$$

Es decir,
$$(\alpha + \beta) + \gamma$$
 = $(\alpha + (\beta + \gamma))$

Demostración de algunas propiedades...

Neutro de concatenación.

Si α , es una ER, α . $\lambda = \alpha$

Demostración:

Si α es una ER:

$$L(\alpha.\lambda) = L(\alpha).L(\lambda) = L(\alpha).\{\lambda\}$$

Por definición de concatenación de lenguajes:

$$L(\alpha).\{\lambda\} = \{\omega = \omega_1.\omega_2 | \omega_1 \in L(\alpha) \land \omega_2 \in \{\lambda\}\}$$

Eso equivale
$$a: (L(\alpha\lambda)) = \{\omega = \omega_1\lambda = \omega_1 \in L(\alpha)\} = L(\alpha)$$

Es decir,
$$(\alpha\lambda) = \alpha$$

Demostración de algunas propiedades...

Clausura * de Ø .

Demostración:

Si α es una $ER: L(\alpha^*) = (L(\alpha))^*$

 $\overline{En\ este\ caso: L(\emptyset^*)} = (L(\emptyset))^* = \emptyset^*$

Por definición de clausura de Kleene $*: L^* = \bigcup_{i=0}^{\infty} L^i$

En este caso: $\emptyset^* =$

$$\bigcup_{i=0}^{\infty} \emptyset^i = \emptyset^0 \cup \emptyset^1 \cup \emptyset^2 \cup \dots = \{\lambda\} \cup \emptyset \cup \emptyset \dots = \{\lambda\}$$

Es decir, $\emptyset^* = \lambda$

Autómatas Finitos y Expresiones Regulares

- Teorema de Análisis de Kleene.
 Todo lenguaje definido mediante un AFD también se define mediante una expresión regular.
- Teorema de Síntesis de Kleene.
 Todo lenguaje definido por una expresión regular puede definirse mediante un AFND-λ

Conversión de autómata finito a expresión regular.

- Método de las R_{ij}^n (Hopcroft).
- Eliminación de estados (Hopcroft, Linz)
- Ecuaciones características (Alfonseca, Isasi)

· Veremos el Método de Ecuaciones Características.

Conversión de autómata finito a expresión regular.

- Para obtener la expresión regular a partir de un AF:
- 1. Obtener las ecuaciones características del autómata.
- 2. Resolver el sistema de ecuaciones.
- 3. Obtener la solución para el estado inicial.

Ecuaciones de expresiones regulares.

Es una ecuación del tipo $x_i = \alpha_{io} + \alpha_{i1}x_1 + \cdots + \alpha_{in}x_n$ donde cada coeficiente α_{ij} es una expresión regular.

Una solución para x_i es una expresión regular.

A una ecuación de la forma $X = \alpha X + \beta$ donde α y β son expresiones regulares se la llama ecuación fundamental.

La solución para la ecuación fundamental $X = \alpha X + \beta$ es $\alpha^* \beta$ y es única si $\lambda \notin L(\alpha)$

Lema de Arden.

Lema de Arden.

$$X = \alpha X + \beta \Leftrightarrow X = \alpha^* \beta$$
 y es única si $\lambda \notin L(\alpha)$

$$X = \alpha^* \beta \Rightarrow X = \alpha X + \beta$$

$$X = \alpha^* \cdot \beta \Rightarrow X = (\alpha^+ + \lambda) \cdot \beta \Rightarrow X = \alpha^+ \cdot \beta + \beta \Rightarrow X = (\alpha \cdot \alpha^*) \cdot \beta + \beta$$

Eso equivale a: $X = \alpha \cdot (\alpha^* \cdot \beta) + \beta$
Es decir, $X = \alpha \cdot X + \beta$

Algoritmo para obtener la ER a partir del AF

Entrada: $M = \langle Q, \Sigma, q_o, \delta, F \rangle$

Salida: α , tal que $L(\alpha) = L(M)$

1. Obtener las ecuaciones características del autómata.

 $\forall q_i \in \mathcal{Q}$, la ecuación tiene en el primer miembro el estado q_i y en el segundo miembro una suma de términos aq_j por cada $\mathcal{S}(q_i,a)=q_j$. Si $q_i \in F$, agregar el término λ al segundo miembro.

- 1, , , ,
- 2. Resolver el sistema de ecuaciones.

 Usando lema de Arden y las propiedades
- 3. $\alpha \leftarrow$ solución para la ecuación correspondiente al estado inicial.

Ejemplo:

Lema de Arden:

La solución de una ecuación $X=\alpha X+\beta$

Es:

$$X=\alpha^*\beta$$

```
q0 = 0.q0 + 1.q1(1)
q1 = 0.q0 + 1.q2 + \lambda (2)
q2 = 0.q2 + 1.q1(3)
q2 = 0* 1.q1 por Lema de Arden (4)
q0 = 0* 1.q1 por Lema de Arden (5)
q0 = q2 \text{ por } (4) \text{ y } (5) \rightarrow (6)
q1 = 0.q0 + 1.q0 + \lambda \text{ por } (6) \rightarrow (7)
q0 = 0.q0 + 1.(0.q0 + 1.q0 + \lambda) \text{ por } (1) \text{ y } (7) \rightarrow (8)
q0 = 0.q0 + 1.0.q0 + 1.1.q0 + 1 por (8) y Distributiva
q0 = (0+1.0+1.1).q0 + 1 por Distributiva
q0 = (0+1.0+1.1)^* . 1 por Lema de Arden
```

Conversión de expresión regular a autómata finito.

• Método de composición de autómatas

Si L es un lenguaje asociado a la expresión regular α , existe un autómata finito M, tal que L=L(M)=L(α). Este autómata tiene un único estado de aceptación y ningún arco que entre al estado inicial, o que salga del estado de aceptación.

Demostración: Por inducción estructural en R.

Conversión de expresión regular a autómata finito. (cont.)

BASE:

• Si $\alpha=\lambda$, entonces $L(\alpha)=\{\lambda\}$, por lo que existe un autómata finito

$$\rightarrow q_0$$
 $\xrightarrow{\lambda} q_f$

$$M = \langle \{q_0, q_f\}, \Sigma, q_0, \delta, \{q_f\} \rangle$$
 ya que $L(M) = \{\lambda\}$

• Si $\alpha=\varnothing$, entonces $L(\alpha)=\varnothing$, por lo que existe un autómata finito

$$\rightarrow$$
 q_0 q_f

$$M = \langle \{q_0, q_f\}, \Sigma, q_0, \delta, \{q_f\} \rangle_{\text{Va que}} L(M) = \emptyset$$

• Si $\alpha = a_1$ y $a_1 \in \Sigma$, entonces $L(\alpha) = \{a_1\}$, por lo que existe un autómata finito

$$q_0$$
 a_1 q_f^*

$$M = \langle \{q_0, q_f\}, \Sigma, q_0, \delta, \{q_f\} \rangle_{\text{ya que}} L(M) = \{a_1\}$$

Conversión de expresión regular a autómata finito.(cont.)

Paso Inductivo: Suponemos que el teorema es verdadero para las subexpresiones inmediatas de una ER dada.

1. La expresión regular R = R1+R2. Se cumple el teorema, y M1 es el AFN- λ que existe para R1 y M2 es el el AFN- λ que existe para R2. L(M)=L(R1)U L(R2) para el M de la figura:{

$$\begin{split} M = < Q_1 \cup Q_2 \cup \{q_0, f_0\}, \Sigma, \delta, q_0, \{f_0\} > \\ \delta(q_0, \lambda) = q_1 \\ \delta(q_0, \lambda) = q_2 \\ \forall q_i \in F_1 \cup F_2 : \delta(q_i, \lambda) = f_0 \end{split}$$

Conversión de expresión regular a autómata finito.(cont.)

2. La expresión regular R = R1.R2. Se cumple el teorema, y M1 es el AFN- λ que existe para R1 y M2 es el el AFN- λ que existe para R2. L(M)=L(R1). L(R2) para el M de la figura:

$$M = \langle Q_1 \cup Q_2, \Sigma, \delta, q_1, \{f_2\} \rangle$$

$$\delta(f_1, \lambda) = q_2$$

Conversión de expresión regular a autómata finito.(cont.)

3. La expresión regular R = R1*. Se cumple el teorema, y M1 es el AFN- λ que existe para R1. L(M)=L(R1)* para el M de la figura:

$$M = < Q_1 \cup \{q_0, f_0\}, \Sigma, \delta, q_0, \{f_0\} > \\ \delta(q_0, \lambda) = q_1 \\ \delta(q_0, \lambda) = f_0 \\ \delta(f_1, \lambda) = q_1$$

Ejemplo:

Ejemplo (cont.)

• ER=a.a*.b+b

δ	a	b
I	{B}	{E}
Α	{B}	{}
В	{B}	{C}
*C	{}	{}
D	{}	{E}
*E	{}	{}

δ	a	b
I	В	*E
В	В	*C
*E	{}	{}
*C	{}	{}
{}	{}	{}

- Q/E0= {{E,C},{I,B,T}}
- Q/E1= {{E,C},{I,B},{T}}
- Q/E2= {{E,C},{I,B},{T}}

Ejemplo:

- ER=a.a*.b+b
- Por distributiva: ER=(a.a*+λ).b
- Por propiedad (7) y conmutativa: ER= a*.b

