Number Theory

Martina Tscheckl

November 12, 2015

Please send feedback to martina@tscheckl.eu.

Contents

tugraz.at/~kreso

0	Basics 2					
	0.1	Divisibility .			2	
	0.2	Primes			4	
	0.3	Congruences			5	
	0.4	Arithmetic for	unctions	3	6	
	0.5	Structure of	\mathbb{Z}_n^{\times}		8	
		0.5.2 Case	$2: \alpha \ge 2$	$p \geq 3$	8	
1	Diophantine Approximation					
	1.1	Dirichlet's T	heorem		10	
	1.2	Continued fr	actions		11	
	1.3	Liouville's T	heorem		19	
2	4 Theorems of Thue- Siegel and Poth				21	
	2.1 5 Simultaneous Diophantine approximation and the Subset The-					
		orem			25	
	2.2	6. Further ge	eneraliza	ations and open problems	30	
C	rga	nizatoria	ıl stu	ff		
Da	ates (in TUGrazOn	line):			
Ŋ	Mon	14:15-15:45	C208	Exercises (starting 19.10. first exercise class	s)	
	Tue	14:15-15:45	C307	Lecture (starting 20.10. first (real) lecture)	/	
7	Ved	08:15-09:45	C208	Lecture		
	Fror	n now until 15	5.12 lect	tures by Martin Widmer. Then C. Frei.		
		: oral exams		varios of marini manion. Then of their		
			etails or	n website of the instructor Dijana Kreso. m	ath.	
	Energiase. I ma actual on website of the instructor Dijuna itios. math.					

0 Basics

$$\mathbb{N} = \{1, 2, \dots\} \tag{1}$$

$$\mathbb{N}_0 = \mathbb{N} \cup \{0\} \tag{2}$$

$$\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$$
 (3)

0.1 Divisibility

Definition 0.1.1. Let $a, b \in \mathbb{Z}$. a divides b (written $a \mid b$) if $\exists q \in \mathbb{Z} : b = qa$. Some properties: Let $a, b, c \in \mathbb{Z}$. Then the following statements hold:

$$a \mid b \Rightarrow ac \mid bc$$
 (4)

$$a \mid b \land b \mid c \Rightarrow a \mid c \tag{5}$$

$$a \mid b \wedge b \mid a \Leftrightarrow a = b \tag{6}$$

$$a \mid b \land a \mid c \Rightarrow a \mid (b+c) \tag{7}$$

Definition 0.1.2 (Remainder). Let $a \in \mathbb{Z}$, $b \in \mathbb{N}$. Then there are unique $q, r \in \mathbb{Z}$ such that

$$a = qb + r$$
 and $0 \le r < b$.

Remark. 1. $b \mid a \Leftrightarrow r = 0$

- 2. $q = \lfloor \frac{a}{b} \rfloor$ (largest integer $\leq \frac{q}{b}$)
- 3. we will somtimes write: $a \mod b := c$

Definition 0.1.3. Let $a_1, a_2, \ldots, a_n, d \in \mathbb{Z}$. d is a greatest common divisor (gcd) of a_1, \ldots, a_n if $d \mid a_i \ \forall 1 \le i \le n$, and for every $e \in \mathbb{Z}$ with $e \mid a_i \ \forall 1 \le i \le n$, $e \mid d$.

Remark. 1. a gcd of a_1, \ldots, a_n is unique up to sign

- 2. we write $d = \gcd(a_1, \ldots, a_n)$ if d is a \gcd of a_1, \ldots, a_n
- 3. for $a_1, \ldots, a_n \in \mathbb{Z}$, a gcd exists and can be written as a linear combination of a_1, \ldots, a_n , i.e., $\exists x_1, \ldots, x_n \in \mathbb{Z}$ such that

$$\gcd(a_1,\ldots,a_n)=x_1a_1+\cdots+x_na_n$$

- 4. $gcd(a_1,...,a_n) = gcd(gcd(a_1,...,a_{n-1}),a_n)$
- 5. if $a \mid bc \text{ and } gcd(a,b) = 1 \text{ then } a \mid c$.
- 6. let $a' := \frac{a}{\gcd(a,b)}$, $b' = \frac{b}{\gcd(a,b)}$. Then $\gcd(a',b') = 1$

The algorithm is correct, since $gcd(a, b) = gcd(b, a \mod b)$. The algorithm terminates because b decreases in each step. The algorithm is fast: $(\mathcal{O}(\log b))$

The Euclidean algorithm also allows us to find x, y such that gcd(a, b) = ax + by by doing all computations backwards.

Hier verwendest du :=, sonst aber nur =, evtl. einheitlich machen für alle Defini-

sollte ausgebessert werden, 1. $O(\log n)$ steps, 2. stimmt nur wenn $|r| \le b/2$

Algorithm 1 Compute the gcd of two integers: Euclidean algorithm

```
Given: a, b \in \mathbb{Z}. |a| \ge |b|

Find: a := \gcd(a, b)

replace a by |a|, b by |b|

while b \ne 0 do

write a = qb + r, 0 \le r < b

a := b

b := r

end while

return a
```

Example. gcd(56, 22) = ?

$$a = 56, b = 22$$

$$56 = 2 \cdot 22 + 12$$

$$a = 22, b = 12 \neq 0$$

$$22 = 1 \cdot 12 + 10$$

$$a = 12, b = 10 \neq 0$$

$$12 = 1 \cdot 10 + 2$$

$$a = 10, b = 2 \neq 0$$

$$10 = 5 \cdot 2 + 0$$

$$a = 2, b = 0$$

$$\Rightarrow \gcd(56, 22) = 2$$

Doing the computations backwards:

$$2 = 12 - 10 = 12 - (22 - 12) = -22 + 2 \cdot 12 = -22 + 2(56 - 2 \cdot 22) = 2 \cdot 56 - 5 \cdot 22$$

 $x = 2, y = -5$

Application (linear diophantine equations). Let $a, b, c \in \mathbb{Z}$, $a, b, c \neq 0$. Find all $(x, y) \in \mathbb{Z}^2$ which satisfy

$$ax + by = c. (8)$$

Existence of solution let $d = \gcd(a, b)$.

$$(d \mid a \Rightarrow d \mid xa) \land (d \mid b \Rightarrow d \mid yb)$$
$$\Rightarrow d \mid xa + yb = c$$
$$\Rightarrow eq. (8)$$

can have solutions only if $d \mid c$.

Solution in case d = 1 Let $x_0, y_0 \in \mathbb{Z}$ such that $ax_0 + by_0 = 1$ using the Euclidean algorithm. Then from $acx_0 + bcy_0 = c$ the solution (cx_0, cy_0) of (eq. (8)) follows: for all $n \in \mathbb{Z} : (x, y) := (cx_0 + nb, cy_0 + na)$ is a solution. Indeed,

$$ax + by = acx_0 + anb + bcy_0 - bna = c$$

These (x,y) are all solutions: let (x,y) be a solution. Then

$$ax + by = c$$

$$acx_0 + bcy_0 = c$$

$$\Rightarrow a(x - cx_0) = b(cy_0 - y)$$

$$\gcd(a, b) = 1 \Rightarrow b \mid x - cx_0 \Rightarrow x = cx_0 + nb, n \in \mathbb{Z}$$

$$\Rightarrow a \mid cy_0 - y \Rightarrow y = cy_0 + ma, m \in \mathbb{Z}$$

$$c = ax + by = acx_0 + anb + bcy_0 + bma$$

$$= c + (n + m)ab \Rightarrow (n + m)ab = 0 \Rightarrow m = -n$$

Solutions in the general case Assume d = gcd(a, b) and $d \mid c$, let

$$a' = \frac{a}{d}$$
 $b' = \frac{b}{d}$ $c' := \frac{c}{d}$

Then gcd(a',b') = 1 and the solution to (eq. (8)) is exactly the solution of a'x + b'y = c'.

0.2 Primes

Definition 0.2.1. $p \in \mathbb{N}, \ p > 1$ is a prime number if the only positive divisors of p are 1 and p, i.e., $a \in \mathbb{N}, \ a \mid p \Rightarrow a \in \{1,p\}$. $\mathbb{P} \coloneqq \{primes\} \subset \mathbb{N}, \mathbb{P} = \{2,3,5,7,11,13,\ldots\}$. p prime and $p \mid ab \Rightarrow p \mid a$ or $p \mid b$

1. Beistriche für bessere Lesbarkeit 2. faustregel, vor und nach "i.e." gehört eigentlich beistrich

Theorem 0.2.2 (Fundamental theorem of arithmetic). Every $n \in \mathbb{N}$ can be written uniquely (up to reordering) as a product of primes. i.e. there are distinct primes p_1, \ldots, p_l , and $\alpha_1, \ldots, \alpha_l \in \mathbb{N}$ such that $n = p_1^{\alpha_1} \ldots p_l^{\alpha_l}$ Sketch.

Existence let $p_0 > 1$ be the smallest divisor > 1 of n. Then p_0 is prime. $n = p_0 n_0$, induction \checkmark

Uniqueness let $p_1 \dots p_m = q_1 \dots q_l = n$, p_i, q_j primes. $p_1 \mid q_1 \dots q_l \Rightarrow \exists i : p_1 \mid q_i$, both prime $\Rightarrow p_1 = q_i$, wlog: i = 1. $p_1 \dots p_m = q_1 \dots q_l$, induction \checkmark

Theorem 0.2.3 (Euclid). There are ∞ -many primes.

Proof. Given primes $p_1, \ldots, p_n \in \mathbb{P}$. We construct one more prime

$$N \coloneqq p_1 \cdot \dots \cdot p_n + 1.$$

Assume P is a prime factor of N. If $P \in \{p_1, \dots, p_n\}$ then $P \mid N$ and $P \mid p_1 \dots p_n \Rightarrow P \mid 1$ $\mbox{\em } f$

Remark (prime factors and gcds). Let $a_1, \ldots, a_n \in \mathbb{Z}$, write

$$a_i = \prod_{p \in \mathbb{P}} p^{\alpha_{p,i}}, \ \alpha_{p,i} \in \mathbb{N}_0,$$

almost all $a_i = 0$, then

$$\gcd(a_1,\ldots,a_n) = \prod_{p \in \mathbb{P}} p^{\min_{1 \le i \le n} \{\alpha_{p,i}\}}$$

0.3 Congruences

All rings are commutative with 1.

Definition 0.3.1. Let $a, b \in \mathbb{Z}$, $n \in \mathbb{N}$. Then a is congruent to $b \pmod{n}$, $a \equiv b \pmod{n}$, if $n \mid a - b$. We write $\bar{a} = [a]_n := \{b \in \mathbb{Z} : b \equiv a \pmod{n}\}$

Remark. 1. Congruence mod n is an equivalence relation

2.
$$\bar{0}, \bar{1}, \ldots, \overline{n-1}$$
 is a partition of \mathbb{Z} .

3. if
$$a \equiv b \pmod{n}$$
, $c \equiv d \pmod{n}$, then $-a \equiv -b \pmod{n}$, $a \stackrel{+}{\underline{}} d \pmod{n}$.

Definition 0.3.2. $\mathbb{Z}/n\mathbb{Z} = \mathbb{Z}_n := \{[a]_n : a \in \mathbb{Z}\} = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$ residue class ring modulo n

Remark. \mathbb{Z}_n is a ring with operation $\bar{a} \stackrel{\cdot}{:} \bar{b} := \overline{a \stackrel{\cdot}{:} b}$ (well defined due to item 3 of section 0.3) $\mathbb{Z}_n^{\times} = \{\bar{a} \in \mathbb{Z}_n : \exists \bar{b} \in \mathbb{Z}_n : \exists \bar{b} = \bar{1}\}$... group of units $\mod n$

Lemma 0.3.3. Let $a \in \mathbb{Z}$. Then $\bar{a} \in \mathbb{Z}_n^{\times} \Leftrightarrow \gcd(a, n) = 1$.

Proof.

"
$$\Rightarrow$$
" $\bar{a}\bar{b} = \bar{1} \Leftrightarrow ab \equiv 1 \pmod{n} \Leftrightarrow n \mid ab - 1$
 \Rightarrow no prime factor of n divides a
 $\Rightarrow \gcd(a, n) = 1$.

"\(= \)"
$$1 = \gcd(a, n) = ax + ny \Rightarrow \bar{1} = \bar{a}\bar{x}$$

Remark. The inverse of \bar{a} can be computed by the Euclidean algorithm.

Example (Simultaneous congruences). Find $x \in \mathbb{Z}$ such that

$$x \equiv 2 \pmod{3} \tag{9}$$

$$x \equiv 1 \pmod{5} \tag{10}$$

$$x \equiv 0 \pmod{7} \tag{11}$$

Theorem 0.3.4 (Chinese remainder theorem (CRT)). Let

$$n_1, \ldots, n_l \in \mathbb{N}$$
 subject to $\gcd(n_i, n_j) = 1 \ \forall i \neq j$

$$x_1,\ldots,x_l\in\mathbb{Z}$$
.

Then

$$\exists x \in \mathbb{Z} \text{ such that } x \equiv x_i \pmod{n_i} \ \forall 1 \le i \le l$$

where x is unique modulo $n_1 \cdot \cdot \cdot \cdot \cdot n_l$.

Proof. How to compute x? For $i \in \{1, ..., l\}$, let

$$N_i\coloneqq\prod_{j\neq i}n_j=n_1\dots n_{i-1}n_{n+1}\dots n_l$$

and let

$$N\coloneqq\prod_i n_i$$
 = n_1N_1 = n_2N_2 = \cdots = n_lN_l

because $gcd(n_i, N_i) = 1 \Rightarrow N_i$ in invertible $mod n_i$. Let

$$m_i N_i \equiv 1 \pmod{n_i}$$

and let

$$x \coloneqq N_1 m_1 x_1 + \dots + N_l m_l x_l.$$

We have $N_i m_i x_i \equiv 0 \pmod{n_i, j \neq i}$

Example.

$$n_1 = 3,$$
 $n_2 = 5,$ $n_3 = 7$
 $x_1 = 2,$ $x_2 = 1,$ $x_3 = 0$
 $N_1 = 35,$ $N_2 = 21,$ $N_3 = ?$
 $\overline{m}_1 = \overline{35}^{-1} \pmod{3} = \overline{2}^{-1} \pmod{3} = \overline{2} \pmod{3} \Rightarrow m_1 = 2$
 $\overline{m}_2 = \overline{21}^{-1} \pmod{5} = \overline{1}^{-1} \pmod{5} = \overline{1} \pmod{5} \Rightarrow m_2 = 1$
 $x = 35 \cdot 2 \cdot 2 + 21 \cdot 1 \cdot 1 + 0$
 $= 140 + 21$
 $= 161$
 $= 56 \pmod{105}$

Example (more abstract CRT). Let $n_1, \ldots, n_l \in \mathbb{N}$, with $\gcd(n_i, n_j) = 1 \ \forall i \neq j$. There is a ring isomorphism $f : \mathbb{Z}_{n_1 \ldots n_l} \stackrel{\sim}{\mapsto} \mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_l}$ that satisfies $f([a]_{n_1 \ldots n_l}) = ([a]_{n_1}, \ldots, [a]_{n_l}) \ \forall a \in \mathbb{Z}$. In particular: $\mathbb{Z}_{n_1 \ldots n_l}^{\times} \cong \mathbb{Z}_{n_1}^{\times} \times \cdots \times \mathbb{Z}_{n_l}^{\times}$ (restrict f to $\mathbb{Z}_{n_1 \ldots n_l}^{\times}$)

0.4 Arithmetic functions

Definition 0.4.1. $f: \mathbb{N} \to \mathbb{C}$ is an arithmetic function. f is multiplicative if $\forall m, n$ it holds that $\gcd(m, n) = 1$. We have f(mn) = f(m)f(n). f is completely multiplicative if $\forall m, n : f(mn) = f(m)f(n)$. Let $f: \mathbb{N} \to \mathbb{C}$. Its summatory function is $S_f(n) := \sum_{d \mid n} f(d)$.

Proof. If gcd(m,n) = 1 and $d \mid mn$, then \exists unique d_1, d_2 such that $d = d_1 \cdot d_2$ with $d_1 \mid m, d_2 \mid n$.

$$S_f(mn) = \sum_{d \mid mn} f(d) = \sum_{d_1 \mid m} \sum_{d_2 \mid n} f(d_1 d_2) = \sum_{d_1 \mid m} f(d_1) \sum_{d_2 \mid n} f(d_2) = S_f(m) S_f(n)$$

Example.

$$au(n) \coloneqq S_1(n) = \sum_{d \mid n} 1$$
 ... number of divisors of n

$$\sigma(n) \coloneqq S_{id}(n) = \sum_{d \mid n} d$$
 ... divisor sum of n

Definition 0.4.2. The function $\phi(n) := |\mathbb{Z}_n^{\times}|$ is called Euler's ϕ -function.

Remark. 1. $\phi(n) = |\{0 \le a < n : \gcd(a, n) = 1\}|$

2.
$$\phi$$
 is multiplicative (CRT: $gcd(m, n) = 1$. $\mathbb{Z}_{nm}^{\times} \cong \mathbb{Z}_{n}^{\times} \times \mathbb{Z}_{m}^{\times}$)

3.
$$\phi(p) = p - 1$$
 (\mathbb{Z}_p is a field)

Lemma 0.4.3. $\phi(p^n) = p^n - p^{n-1}$

Proof.

$$\phi(p^n) = |\{0 \le a < p^n\}| - |\{0 \le a < p^n : \gcd(a, p^n) \ne 1\}|$$

$$= p^n - |\{0 \le a < p^n : p|a\}|$$

$$= p^n - p^{n-1}$$

Proposition 0.4.4. If $n = p_1^{\alpha_1} \dots p_l^{\alpha_l}$ with $p_i \neq p_j$ primes, $\alpha_i \in \mathbb{N}$. Then

$$\phi(n) = \prod_{i=1}^{l} p_i^{\alpha_i} (1 - \frac{1}{p_i}) = n \prod_{p \mid n} (1 - \frac{1}{p})$$

Theorem 0.4.5 (Euler-Fermat). Then $a^{\phi(n)} \equiv 1 \mod n$. In particular: $a^{p-1} \equiv 1 \mod p \ \forall p \nmid a \ (little \ Fermat)$.

Proof 1. Lagrange's Theorem,
$$G = \mathbb{Z}_n^{\times}, \bar{a} \in G \Rightarrow \bar{a}^{|G|} = \bar{1}, |G| = \phi(n).$$

Proof 2.
$$\prod_{x \in \mathbb{Z}_n^{\times}} x = \prod_{x \in \mathbb{Z}_n^{\times}} (\bar{a}x) = \bar{a}^{\phi(n)} \prod_{x \in \mathbb{Z}_n^{\times}} x \Rightarrow a^{\phi(n)} \equiv 1 \mod n$$

Definition 0.4.6. The Möbius function $\mu : \mathbb{N} \to \{-1,0,+1\}$ is defined as

$$\mu(n) = \begin{cases} (-1)^l & n = p_1 \dots p_l, p_i \neq p_j, i \neq j, p_i \text{ primes} \\ 0 & \text{otherwise i.e. if } \exists p : p^2 \mid n \end{cases}$$

Remark.

1.
$$\mu(1) = 1$$
, $\mu(2) = -1$, $\mu(3) = -1$, $\mu(4) = 0$, $\mu(5) = -1$, $\mu(6) = 1$, ...

2. μ is multiplicative

Lemma 0.4.7.

$$S_{\mu}(n) = \begin{cases} 1 & \text{if } n = 1\\ 0 & \text{if } n > 0 \end{cases}$$

Proof.

$$S_{\mu}(1) = \sum_{d \in I} \mu(d) = \mu(1) = 1$$

By multiplicativity, it suffices to prove $S_{\mu}(p^n) = 0 \ \forall p, n$.

$$S_{\mu}(p^{n}) = \sum_{d \mid p^{n}} \mu(d)$$

$$= \sum_{i=0}^{n} \mu(p^{i})$$

$$= \mu(1) + \mu(p) + 0 + \dots + 0$$

Theorem 0.4.8 (Möbius inversion formula). Let $f : \mathbb{N} \to \mathbb{C}$. Then

$$f(n) = \sum_{d|n} \mu(d) S_f(\frac{n}{d}).$$

Proof.

$$\sum_{d|n} \mu(d) S_f\left(\frac{n}{d}\right) = \sum_{d|n} \mu(d) \sum_{e \mid \frac{n}{d}} f(e)$$
$$= \sum_{e \mid n} f(e) \sum_{\substack{d \mid n \\ s.t.e \mid \frac{n}{d}}} \mu(d)$$

For the next step we use $d \mid n \land e \mid \frac{n}{d} \Leftrightarrow ed \mid n \Leftrightarrow e \mid n \land d \mid \frac{n}{e}$ $= \sum_{e \mid n} f(e) \sum_{d \mid \frac{n}{e}} \mu(d)$ = f(n) = 1

since $\sum_{d \mid \frac{n}{e}} \mu(d) = \begin{cases} 1 & \frac{n}{e} = 1 \\ 0 & \text{otherwise} \end{cases}$

0.5 Structure of \mathbb{Z}_n^{\times}

 $n = p_1^{\alpha_1} \dots p_l^{\alpha_l}$ with $p_i \neq p_j, i \neq j, \alpha_i \in \mathbb{N}$ where p_i are primes

From the CRT it follows that $\mathbb{Z}_n^{\times} \cong \mathbb{Z}_{p_1^{\alpha_1}}^{\times} \times \cdots \times \mathbb{Z}_{p_l^{\alpha_l}}^{\times}$. So we only consider prime powers p^{α} , $p \in \mathbb{P}$, $\alpha \in \mathbb{N}$

0.5.1 Case 1: $\alpha = 1$

Theorem 0.5.1. \mathbb{Z}_p^{\times} is cyclic, i.e. $\mathbb{Z}_p^{\times} \cong \mathbb{Z}_{(p-1)}$

Proof. Use structure theorem for finite abelian groups. If G is a finite abelian group then $\exists d_1, \ldots d_l \in \mathbb{N}$ such that $1 < d_1 \mid d_2 \mid d_3 \mid \cdots \mid d_l$, and $G \cong \mathbb{Z}_{d_1}^{\times} \times \cdots \times \mathbb{Z}_{d_l}^{\times}$ thus, $\mathbb{Z}_p^{\times} \cong \mathbb{Z}_{d_1}^{\times} \times \cdots \times \mathbb{Z}_{d_l}^{\times}$ (every element $x \in \mathbb{Z}_{d_1}^{\times} \times \cdots \times \mathbb{Z}_{d_l}^{\times}$ satisfies $d_l x = 0 \Rightarrow$ every $x \in \mathbb{Z}_p^{\times}$ satisfies $x^{d_l} = 1$). $x^{d_l} - 1$ is a polynomial of degree d_l over the field $\mathbb{Z}_p \Rightarrow x^{d_l} - 1$ has $\leq d_l$ roots $\Rightarrow p - 1 \leq d_l$, but $p - 1 = d_1 \ldots d_l \Rightarrow l = 1, p - 1 = d_l$

Remark. The same proof shows: Let F be a field, $G \leq F^{\times}$, $|G| < \infty$. Then G is cyclic.

0.5.2 Case 2: $\alpha \ge 2$; $p \ge 3$

Denote |x| as the order of x in $\mathbb{Z}_{p^{\alpha}}^{\times}$; i.e. $|x| = \min \{l \in \mathbb{N} : x^{l} \equiv 1 \mod p^{\alpha} \}$ $|\mathbb{Z}_{p^{\alpha}}^{\times}| = \phi(p^{\alpha}) = p^{\alpha-1}(p-1)$, find $x, y \in \mathbb{Z}_{p^{\alpha}}^{\times}$ such that $|x| = p^{\alpha-1}$, |y| = p-1 then $|xy| = |x||y| = p^{\alpha-1}(p-1)$, since $\gcd(|x|, |y|) = 1$

Lemma 0.5.2.

$$(1+p)^{p^{n-1}} \begin{cases} \equiv 1 \mod p^n \\ \not\equiv 1 \mod p^{n+1} \end{cases}$$

Proof. Proof by induction

$$n = 1 \checkmark$$

 $n \rightarrow n + 1$

$$(1+p)^{p^{n-1}} = 1 + ap^n, p \nmid a$$

$$(1+p)^{p^n} = (1+ap^n)^p$$

$$= 1 + pap^n + \sum_{i=2}^{p-1} \binom{p}{i} (ap^n)^i + (ap^n)^p$$

$$p^{np} \mid \bullet, \quad np \ge n+2, \quad (\text{or } p \ge 3), \quad p^{2n+1} \mid \bullet, \quad 2n+1 \ge n+2$$

$$p \mid \binom{p}{i} = \frac{p!}{i!(p-i)!}, 1 \le i$$

 $2 \times$ Lemma: x = 1 + p satisfies $|x| = p^{\alpha - 1}$, now find y.

- 1. $\exists z \in \mathbb{Z} : |\bar{z}| = p 1 \text{ is } \mathbb{Z}_p^{\times}$
- 2. let l := |E| is $\mathbb{Z}_{p^{\alpha}}^{\times}$
- 3. Then $p^{\alpha} \mid z^l 1 \Rightarrow z^l \equiv 1 \mod p$
- $4. \Rightarrow p-1 \mid l.$
- 5. Let $y := z^{\frac{l}{p-1}}$, then $|\bar{y}| = p 1$.

We have proven: Theorem: $\mathbb{Z}_{p^{\alpha}}^{\times}$ is cyclic, i.e. $\mathbb{Z}_{p^{\alpha}}^{\times} \cong \mathbb{Z}_{p^{\alpha-1}(p-1)}$, if $p \geq 3, \alpha \geq 1$. p = 2: $\mathbb{Z}_{2^{\alpha}}^{\times} \cong \left\{0, \alpha = 1 \quad \mathbb{Z}_{2}, \alpha = 2 \quad \mathbb{Z}_{2} \times \mathbb{Z}_{p^{\alpha-2}}, \alpha \geq 3\right\}$

Corollary 0.5.3. Let $m \in \mathbb{N}$. Then \mathbb{Z}_m^{\times} is cyclic iff m has one of the following forms:

- m = 2
- m = 4
- $m = p^{\alpha}, p \ge 3, \alpha \in \mathbb{N}$
- $m = 2p^{\alpha}, p \ge 3, \alpha \in \mathbb{N}$

In these cases a generator of \mathbb{Z}_m^{\times} is called a primitive root modulo m.

New Lecturer

Chapter 1:

- 1. Approximation to algebraic numbers; Wolfgang M. Schmidt, 1972 L'Ehseignement Mathématique
- 2. Lectures Notes in Mathematics 785; W.M.Schmidt, Springer
- 3. LNM 1467, W.M.S., Springer
- 4. For section 2 (continued fractions) he will strictly follow the lecture notes of MT421 of Professor James McKee

1 Diophantine Approximation

Dirichlet's Theorem 1.1

Let $\alpha \in \mathbb{R}$. As \mathbb{Q} is dense in \mathbb{R} any $\alpha \in \mathbb{R}$ can be approximated arbitrarily well, by rational numbers p/q $(p \in \mathbb{Z}, q \in \mathbb{N} = \{1, 2, 3, \dots\}).$

The question is how well can we approximate α in terms of the denominator q, e.g., is it true that for every $\alpha \in \mathbb{R}$ there exist infinitly many $p/q \in \mathbb{Q}$ $q \in \mathbb{N}$) such that $\left|\alpha - \frac{p}{q}\right| < \frac{1}{q^2}$?

The answer is no!

Take $\alpha = r/s(s \in \mathbb{N})$ a rational number. Then

$$\left|\alpha - \frac{p}{q}\right| = \left|\frac{r}{s} - \frac{p}{q}\right| = \left|\frac{qr - ps}{sq}\right| \text{provided } \alpha \neq \frac{p}{q} \frac{1}{sq} > \frac{1}{q^2} \text{ provided } q > s.$$

This shows that we have only finitly many solutions $p/q \in \mathbb{Q}$ for $|\alpha - \frac{p}{q}| < \frac{1}{a^2}$.

Theorem 1.1.1 (Dirichlet's Theorem). Suppose $\alpha, Q \in \mathbb{R}$ and Q > 1. Then $\exists p, p \in \mathbb{Z} s.t.0 < q < Q \ and \ |q\alpha - p| \leq \frac{1}{Q}.$

Proof. for $\xi \in \mathbb{R}$ put $\{\xi\} = \xi - \lfloor \xi \rfloor$. so $0 \le \{\xi\} \le 1$. First suppose $Q \in \mathbb{Z}$. Consider the Q + 1 numbers $0, 1, \{\alpha\}, \{2\alpha\}, \dots, \{(Q-1)\alpha\}.$ They all lie in [0,1]. We split it up in Q subintervals:

$$[0,1] = \left[0, \frac{1}{Q}\right] \cup \left[\frac{1}{Q}, \frac{2}{Q}\right] \cup \dots \cup \left[\frac{Q-1}{Q}, 1\right]$$

By the pigeon hole principle two of the previous numbers lie in the same subinterval. Thus $\exists r_1, r_2, s_1, s_2 \in \mathbb{Z}$ with $0 \le r_1 < r_2 \le Q - 1$ such that $|(r_1\alpha - s_1) - s_2| \le |r_1| \le |r_2| \le |r_$ $(r_2\alpha - s_2)| \le \frac{1}{Q}$. Then with $q = r_2 - r_1$ and $p = s_2 - s_1$ we get $|q\alpha - p| \le \frac{1}{Q}$ and 0 < q < Q. This proves the Theorem when $Q \in \mathbb{Z}$. Now suppose $Q \notin \mathbb{Z}$. We apply the previous with Q' = [Q] + 1 > 1. Hence, $\exists p, q \in \mathbb{Z}$ with $|q\alpha - p| \leq \frac{1}{Q'}$ and 0 < q < Q', and so $|q\alpha - p| \le \frac{1}{Q}$ and 0 < q < Q.

Corollary 1.1.2. Suppose $\alpha \in \mathbb{R}/\mathbb{Q}$. Then there exist infinitly many solutions $p/q \in \mathbb{Q} \ (q \in \mathbb{N}) \ of \left|\alpha - \frac{p}{q}\right| < \frac{1}{q^2}.$

Proof. Take $Q_1 > 1$. By Theorem 1.1.1 we get $(p_1, q_1) \in \mathbb{Z}^2$ with $0 < q_1 < Q$, and $|q_1\alpha - p_1| \le \frac{1}{Q_1}$. Thus $|\alpha - \frac{p_1}{q_1}| \le \frac{1}{q_1Q_1} < \frac{1}{q_1^2}$ Next take $Q_2 = |\alpha - \frac{p_1}{q_1}|^{-1} + 1$. Then Thm 1.1.1 again yields $\frac{p_2}{q_2} \in \mathbb{Q}$ with $|\alpha - \frac{p_2}{q_2}| < \frac{1}{q^2}$ and $|\alpha - \frac{p_2}{q_2}| \le \frac{1}{q_1Q_2} \le \frac{1}{Q_2} < |\alpha - \frac{p_1}{q_1}|$. So $\frac{p_2}{q_2}$ is a better approx then $\frac{p_1}{q_1}$. Repeating this process indefinitely proves the claim.

Theorem 1.1.3 (Pell-equation). Suppose $m \in \mathbb{N}$ is not a square (i.e., $m \neq 0$ $n^2 \forall n \in \mathbb{Z}$).

Then

$$x^2 - my^2 = 1$$

has infinitely many solutions $(x,y) \in \mathbb{Z}^2$.

Proof. Apply Corollary 1.1.2 with $\alpha = \sqrt{m}$. So $\alpha \in \mathbb{R}/\mathbb{Q}$. We get $|\alpha - \frac{p}{q}| < \frac{1}{q^2}$ and $|\alpha + \frac{p}{q}| triangle inequality 1 + 2\alpha$. Thus

$$|p^2 - mq^2| = q^2 |\alpha - \frac{p}{q}| \cdot |\alpha + \frac{p}{q}| < 1 + 2\sqrt{m}.$$

Hence, there exists $k \in \mathbb{Z}$ with $|k| < 1 + 2\sqrt{m}$. such that $p^2 - mq^2 = k$ for infinitly many $(p,q) \in \mathbb{Z}^2$ and p/q all distinct.

As m is not a square we have $k \neq 0$.

Let S be the set of solutions $(p,q) \in \mathbb{Z}^2$ of $p^2 - mq^2 = k$. The map $S \to (\mathbb{Z}/k\mathbb{Z}) \times (\mathbb{Z}/k\mathbb{Z})$. This map is not injective $(S = \infty)$ hence, $\exists (p_1, q_1) \neq (p_2, q_2)$ both in S such that $p_1 \cong p_2, q_1 \cong q_2 \pmod{k}$. (MOD) Now we compute

$$k^{2} = (p_{1}^{2} - mq_{1}^{2})(p_{2}^{2} - mq_{2}^{2})$$
(12)

$$= (p_1 + \sqrt{m}q_1)(p_2 - \sqrt{m}q_2) \tag{13}$$

$$= (r - \sqrt{m}s)(r + \sqrt{m}s) = r^2 - ms^2$$
 (14)

where
$$r = p_1 p_2 - m q_1 q_2$$
 (15)

$$s = p_1 q_2 - q_1 p_2 = \frac{1}{q_1 q_2} \left(\frac{p_1}{q_1} - \frac{p_2}{q_2} \right) \neq 0.$$
 (16)

because of (MOD) $k\mid s$. Hence, $k^2\mid s^2$. Thus $k^2\mid r^2$. Hence $k\mid r$. Then $x=\frac{r}{k}$ and $y=\frac{s}{k}$ are both integers and

$$x^2 - my^2 = 1.$$

We have one solution but we need infinitely many! To this end we replace m by md^2 $(d \in \mathbb{N})$. The above argument yields a solution $(x',y') \in \mathbb{Z}^2$ of $x'^2 - md^2y'^2 = 1$. Thus, (x,y) = (x',dy') is a new lolution of $x^2 - my^2 = 1$. (Critical: $s \neq 0$)

1.2 Continued fractions

Let $\theta \in \mathbb{R}$. Put $a_0 = [\theta]$. If $a_0 \neq \theta$ then we find $\theta_1 > 1$ such that

$$\theta = a_0 + \frac{1}{\theta_1}$$

and we put $a_1 = \lfloor \theta_1 \rfloor$. If $a_1 \neq \theta_1$ then we can find $\theta_2 > 1$ such that

$$\theta_1 = a_1 + \frac{1}{\theta_2}$$

and we put $a_{=}[\theta_{2}]$. This process can be continued indefinitely, unless $a_{n} = \theta_{n}$ for some n. Note that a_{0} can be zero or negative but $a_{1}, a_{2}, a_{3}, \ldots$ are all positive integers.

We call this process the continued fraction process. The a_i are called partial quatients of θ .

Example.

$$\theta = \frac{19}{11}$$

Then
$$a_0 = \lfloor \theta \rfloor = 1$$

Then
$$a_0 = \lfloor \theta \rfloor = 1$$

 $Now \ \theta = \frac{19}{11} = a_0 + \frac{1}{\theta_1} = 1 + \frac{8}{11} = 1 + \frac{1}{\frac{11}{8}}$

So
$$\theta_1 = \frac{11}{9}$$

So
$$\theta_1 = \frac{11}{8}$$
.
Thus $a_1 = \lfloor \theta_1 \rfloor = 1$.

$$\theta_1 = \frac{11}{8} = a_1 + \frac{1}{\theta_2} = 1 + \frac{3}{8} = 1 + \frac{1}{\frac{8}{3}}$$

Thus $\theta_2 = \frac{2}{3}$ and $a_2 = \lfloor \theta_2 \rfloor = 2$ and so on...

If the continued fraction process terminates then we have

$$\theta = a_0 + \frac{1}{\theta_1} \tag{17}$$

$$= a_0 + \frac{1}{a_2 + \frac{1}{\theta_2}} \tag{18}$$

$$= a_0 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{\theta_3}}} \qquad \dots = a_0 + \frac{1}{a_1 + \frac{1}{\dots}}$$
 (19)

In this case we write $\theta = [a_0, \dots, a_n]$.

We use the same notation when the a_i are any real numbers, not necessarily integers.

In particular

$$\theta = [a_0, \ldots, a_i, \theta_{i+1}]$$

where $a \le i < n$.

If the continued fraction process does not terminate then we write θ = $[a_0, a_1, a_2, \dots].$

Note that in this case, for every $n \ge 0$, we have

$$\theta = [a_0, \ldots, a_n, \theta_{n+1}]$$

where a_0, \ldots, a_n are integers but θ_{n+1} is not! For $n \ge 0$ we set

$$\frac{p_n}{q_n} = [a_0, \dots, a_n]$$

where $\gcd(p_n,q_n)=1$. We shall say that $\frac{p_n}{q_n}$ is the *n*-th convergent of θ . We will prove that $\frac{p_n}{q_n} \to \theta$ as $n \to \infty$. Next we shall see that $p_n,q_n>0$ both satisfy the same simple recurrence relation $x_n=a_nx_{n-1}+x_{n-2}$ with different starting values.

Lemma 1.2.1. Let a_0, a_1, a_2, \ldots be a sequence of integers with $a_i > 0$ (i > 0).

Define p_n, q_n :

$$p_0 = a_0 \tag{20}$$

$$q_0 = 1 \tag{21}$$

$$p_1 = a_0 a_1 + 1 \tag{22}$$

$$q_1 = a_1 \tag{23}$$

$$p_n = a_n p_{n-1} + p_{n-2} \text{ for } n \ge 2$$
 (24)

$$q_n = a_n q_{n-1} + q_{n-2} \text{ for } n \ge 2.$$
 (25)

Then:

- 1. $p_n q_{n+1} p_{n+1} q_n = (-1)^{n+1}$
- 2. $gcd(p_n, q_n) = 1$
- 3. $p_n/q_n = [a_0, \dots, a_n]$
- 4. If the a_i are produced by the continued fraction process for θ , then, for every $n \ge 1$, $\frac{p_n}{q_n}$ is the n-th convergent of θ and

$$\theta = \frac{p_n \theta_{n+1} + p_{n-1}}{q_n \theta_{n+1} + q_{n-1}}$$

Proof. 1. We use induction on n. For n = 0 we note that

$$p_0q_1 - p_1q_0 = a_0a_1 - a_0a_1 - 1 = -1.$$

So the result holds for n = 0.

Now suppose result holds for n = m - 1.

consider case n = m. Using the recurrence relation, we set

$$p_m q_{m+1} - p_{m+1} q_m = p_m (a_m q_m + q_{m-1}) - q_m (a_m p_m + p_{m-1})$$
 (26)

$$= p_m q_{m-1} - p_{m-1} q_m = -(-1)^m = (-1)^{m+1}.$$
 (27)

This proves claim for n = m.

- 2. Immedate from (a)
- 3. (c) + (d):

Remark about $\frac{p_n}{q_n}$ in (d) follows directly from (c). We prove the rest of (d), along with (c), using induction on n. Remember that (c) a priori does not require that the a_i are produced by the continued fraction process. Consider base case n = 1. For (c) note that $\frac{p_1}{q_1} = a_0 + \frac{1}{a_1} = [a_0, a_1]$. For (d) we note that

$$\frac{p_1\theta_2+p_0}{q_1\theta_2+q_0} = \frac{\left(a_0a_1+1\right)\theta_2+a_0}{a_1\theta_2+1} = a_0 + \frac{\theta_2}{a_1\theta_2+1} = a_0 + \frac{1}{a_1+\frac{1}{\theta_2}} = \theta$$

Next suppose (c) and (d) both hold for n = m - 1, and consider n = m. Using (d) with n = m - 1 we get

$$[a_0, \dots, a_m] = \frac{p_{m-1}a_m + p_{m-2}}{q_{m-1}a_m + q_{m-2}} = \frac{p_m}{q_m}$$
 by recurrence ralation.

This proves (c) for n = m.

To prove (d) with n = m we observe that

$$\theta = [a_0, \dots, a_m, \theta m + 1] \tag{28}$$

$$= [a_0, \dots, a_m + \frac{1}{\theta_{m+1}}] \tag{29}$$

$$(d) forn = m - 1 \frac{p_{m-1}(a_m + \frac{1}{\theta_{m+1}}) + p_{m-2}}{q_{m-1}(a_m \frac{1}{\theta_{m-1}}) + q_{m-2}}$$
(30)

$$rec.rel \frac{p_m + p_{m-1}(\frac{1}{\theta_{m+1}})}{q_m + q_{m-1}(\frac{1}{\theta_{m+1}})}$$
(31)

$$=\frac{p_m\theta_{m+1}+p_{m-1}}{q_m\theta_{m+1}+q_{m-1}}\tag{32}$$

which is (d) for n = m.

Next we deduce some properties of continued fraction convergents.

Theorem 1.2.2. Let $\theta = [a_0, a_1, a_2, \dots]$ with convergents $\frac{p_n}{q_n}$. For (a) - (d) we assume that the continued fraction proves does not terminate

- 1. For all $n \in \mathbb{N}_0$, θ lies between $\frac{p_n}{q_n}$ and $\frac{p_{n+1}}{q_{n+1}}$.
- 2. For all $n \in \mathbb{N}_0 : |\theta \frac{p_n}{q_n}| \le \frac{1}{q_n q_{n+1}}$
- 3. For $n \ge 1$ we have $q_{n+2} \ge 2 \cdot q_n$
- 4. $\frac{p_n}{q_n} \to \theta \text{ as } n \to \infty$
- 5. The continued fraction process terminates if and only if θ is rational.

Proof. 1. Note $\theta = [a_0, \dots, a_n, \theta_{n+1}] = [a_0, \dots, a_n + \frac{1}{\theta_{n+1}}]$ where $0 < \frac{1}{\theta_{n+1}} < \frac{1}{a_{n+1}}$. So that θ lies between $[a_0, \dots, a_n]$ and $[a_0, \dots, a_n + \frac{1}{a_{n+1}}]$. But $[a_0, \dots, a_n + \frac{1}{a_{n+1}}] = [a_0, \dots, a_{n+1}]$. This shows (a).

- 2. By (a) we have $|\theta \frac{p_n}{q_n}| \le |\frac{p_n}{q_n} \frac{p_{n+1}}{q_{n+1}}| = |\frac{p_n q_{n+1} p_{n+1} q_n}{q_n q_{n+1}}| Lemma 1.2.1(a) \frac{1}{q_n q_{n+1}}$
- 3. Follws from the fact that $a_i > 0 (i > 0)$ using Lemma 1.2.1.
- 4. Follows from (b) and (c)
- 5. Only if part is obvious. Conversely suppose $\theta=\frac{a}{b}\in\mathbb{Q}$ but the process does *not* terminate. Taking n such that $q_n>b$ yields

$$|\theta - \frac{p_n}{q_n}| \frac{a}{b} \neq \frac{p_n}{q_n} asq_n > band \gcd(p_n, q_n) = 1 \frac{1}{bq_n} > \frac{1}{q_n q_{n+1}}$$

contradicting (b).

Example. Take $\theta = \frac{16}{9}$. We have $a_0 = 1$. Then $\theta = 1 + \frac{7}{9}$ so $\theta_1 = \frac{9}{7}$ and $a_1 = 1$. From $\theta_1 = \frac{9}{7} = 1 + \frac{2}{7}$ we get $\theta_2 = \frac{7}{2}$ and $a_2 = 3$. Form $\theta_2 = \frac{7}{2} = 3 + \frac{1}{2}$ we get $\theta_3 = 2$ and $a_3 = 2$. Thus $\theta = \frac{16}{9} = \begin{bmatrix} 1, 1, 3, 2 \end{bmatrix}$ and the convergents are $\frac{p_0}{q_0} = \frac{1}{1}, \frac{p_1}{q_1} = 1 + \frac{1}{1} = \frac{2}{1}, \frac{p_2}{q_2} = 1 + \frac{1}{1+\frac{1}{3}} = 1 + \frac{1}{\frac{4}{3}} = \frac{7}{4}$ and $\frac{p_3}{q_3} = \frac{16}{9}$. Let's check some of the properties claimed. $p_1q_2 + p_2q_1 = 2 \cdot 4 - 7 \cdot 1 = 1 \checkmark, p_2q_3 - p_3q_2 = 7 \cdot 9 - 16 \cdot 4 = -1 \checkmark, \frac{p_2\theta_3 + p_1}{q_2\theta_3 + q_1} = \frac{7 \cdot 2 + 2}{4 \cdot 2 + 1} = \frac{16}{9} = \theta \checkmark$

$$p_1q_2 + p_2q_1 = 2 \cdot 4 - 7 \cdot 1 = 1 \checkmark, p_2q_3 - p_3q_2 = 7 \cdot 9 - 16 \cdot 4 = -1 \checkmark, \frac{p_2\theta_3 + p_1}{q_2\theta_3 + q_1} = \frac{7 \cdot 2 + 2}{4 \cdot 2 + 1} = \frac{16}{9} = \theta \checkmark$$

We now show that convergents give best-possible rational approximations.

Theorem 1.2.3. Let θ be an irrational real number, and let $\frac{p_n}{q_n}$ be the convergents $(n \ge 0)$ with partial quotients $a_n (n \ge 0)$.

- 1. $|\theta \frac{p_n}{q_n}|$ strictly decreases as n increases.
- 2. the convergents give successively closer approximations to θ .

3.
$$\frac{1}{(a_{n+1}+2)q_n^2} < |\theta - \frac{p_n}{q_n}| < \frac{1}{a_{n+1}q_n^2} \le \frac{1}{q_n^2}$$

4. If $p, q \in \mathbb{Z}$ with $0 < q < q_{n+1}$ then

$$|q\theta - p| \ge |q_n\theta - p_n|$$

Moreover, "=" only if $(p,q) = (p_n, q_n)$. (In this sense convergents are best-possible approximations.)

5. If $(p,q) \in \mathbb{Z} \times \mathbb{N}$ and $|\theta - \frac{p}{q}| < \frac{1}{2 \cdot q^2}$ then $\frac{p}{q}$ is a convergent to θ .

Proof. 1. From Lemma 1.2.1(d) we have $\theta = \frac{p_n \theta_{n+1} + p_{n-1}}{q_n \theta_{n+1} + q_{n-1}}$. Using Lemma 1.2.1(a) we get

$$|q_n\theta - p_n| = \left| \frac{q_n p_n \theta_{n+1} + q_n p_{n-1} - p_n q_n \theta_{n+1} - p_n q_{n-1}}{q_n \theta_{n+1} + q_{n-1}} \right|$$

$$= \frac{1}{q_n \theta_{n+1} + q_{n-1}}$$
(33)

$$=\frac{1}{q_n\theta_{n+1}+q_{n-1}}\tag{34}$$

$$< \frac{1}{q_n + q_{n-1}}$$

$$= \frac{1}{(a_n + 1)q_{n-1} + q_{n-2}}$$
(35)

$$=\frac{1}{(a_n+1)q_{n-1}+q_{n-2}}\tag{36}$$

$$<\frac{1}{\theta_n q_{n-1} + q_{n-2}}$$
 (37)

$$= |q_{n-1}\theta - p_{n-1}| \tag{38}$$

This shows (a) and (b) because the q_n are increasing.

c We use $a_{n+1}q_n^2 < \theta_{n+1}q_n^2 + q_nq_{n-1} < (a_{n+1}+2)q_n^2$ and combine it with the equation (proof part (a)),

$$|\theta - \frac{p}{q}| = \frac{1}{q_n^2 \theta_{n+1} + q_n q_{n-1}}$$

d) By Lemma 1.2.1(a) we can find
$$\begin{pmatrix} u \\ v \end{pmatrix}$$
 $in\mathbb{Z}^2$ such that

$$\begin{pmatrix} p_n & p_{n+1} \\ q_n & q_{n+1} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} p \\ q \end{pmatrix}.$$

As $0 < q < q_{n+1}$ we have $u \neq 0$. If v = 0 then $(p,q) = u \cdot (p_n, q_n)$ and the claim is trivial. $(u = 1 \Rightarrow \text{equality}, u > 1 \Rightarrow \text{strictly } i$.)

So let's assume $v \neq 0$. Then u and v cannot both be negative (as q > 0) nor both be positive (as $q < q_{n+1}$). So they have opposite signs.

By Theorem 1.2.2(a) also $q_n\theta - p_n$ and $q_{n+1}\theta p_{n+1}$ have opposit signs. Hence, $|q\theta - p| = |u(q_n\theta p_n) + v(q_{n+1}\theta - p_{n+1}) > |q_n\theta - p_n|$.

e) Take n with $q_n \le q < q_{n+1}$. Then

$$\begin{aligned} \left| \frac{p}{q} - \frac{p_n}{q_n} \right| &\leq \left| \theta - \frac{p}{q} \right| + \left| \theta - \frac{p_n}{q_n} \right| \\ &= \frac{\left| q\theta - p \right|}{q} + \frac{\left| q_n \theta - p_n \right|}{q_n} \\ &\qquad (\stackrel{\leq}{d}) \left(\frac{1}{q} + \frac{1}{q_n} \right) \left| q\theta - p \right| \\ &\leq \frac{2}{q_n} \frac{1}{2q} \\ &= \frac{1}{qq_n} \end{aligned}$$

Hence, $\frac{p}{q} = \frac{p_n}{q_n}$.

Remark. • (d) implies that if $p, q \in \mathbb{Z}$, $0 < q \le p_n$ then

$$|\theta - \frac{p}{q}| \ge |\theta - \frac{p_n}{q_n}| \cdot \frac{p_n}{q}$$
$$\ge |\theta - \frac{p_n}{q_n}|$$

with "=" only if $\frac{p}{q} = \frac{p_n}{q_n}$.

• We say $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ is badly approximable if

$$\exists c > 0 \ such \ that \ |\alpha - \frac{p}{q}| > \frac{c}{q^2} \forall (p,q) \in \mathbb{Z} \times \mathbb{N}$$

- By (c) and (d) we see that $\theta = [a_0, a_1, a_2, \dots]$ is badly approximable if and only if the partial quotients a_i are uniformly bounded, i.e., $\exists M > 0$ such that $a_i < M \forall i$.
- (c) suggests that the "worst-approximable" number is $\theta = [1, 1, 1, ...]$. That's indeed the case c.f Exercise sheet 2 # 5,6 (using that $\theta = 1 + \frac{1}{1 + \frac{1}{1 + ...}} = 1 + \frac{1}{\theta}$. So $\theta^2 \theta 1 = 0$. So $\theta = \frac{1 \pm \sqrt{5}}{2}$ but $a_0 = 1$ so $\theta = \frac{1 + \sqrt{5}}{2}$.

Counting Diophantine approximations 1:

Let $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ and let $\phi : [1, \infty) \to (0, \infty)$ be decreasing. Consider the number of " ϕ -good" approximations:

$$N_{\alpha}(\phi, Q) = \#\left\{\frac{p}{q} \in \mathbb{Q}; |\alpha - \frac{p}{q}| < \phi(q), 1 \le q \le Q\right\}$$

We put $S_{\alpha}(\phi, Q) = \{(x, y) \in \mathbb{R}^2 : |\alpha - \frac{x}{y}| < \phi(y), 1 \le y \le Q\}$. Then

$$N_{\alpha}(\phi, Q) = \#\{(p, q) \in \mathbb{Z} \times \mathbb{N} : \gcd(p, q)\} \cap S_{\alpha}(\phi, Q)$$

Note that by Corollary 1.1.2 we have $N_{\alpha}(\phi, Q) \to \infty$ as $Q \to \infty$ provided $\phi(y) \ge \frac{1}{y^2}$, and by Exercise sheet 2, even when $\phi(y) \ge \frac{1}{\sqrt{5}y^2}$. If ϕ decays slowly enough

$$N_{\alpha}(\phi, Q) = 2 \cdot \underbrace{\int_{1}^{Q} y \phi(y) dy \, VolS_{\alpha}(\phi, Q)}_{\alpha}(\text{It } \underline{o(1)} \text{ tends to 0 as } Q \to \infty) \text{ as } Q \to \infty$$

More specifically, using tools we develo in Chapter 3, one can easily show that

$$\#\mathbb{Z}^2 \cap S_{\alpha}(\phi, Q) = 2 \cdot \int_1^Q y \phi(y) dy + \mathcal{O}(Q),$$

using Möbius-inversion, one can show that

$$N_{\alpha}(\phi, Q) = \frac{2}{S(2)} \cdot \int_{1}^{Q} y \phi(y) dy + \mathcal{O}(Q \log Q).$$

So we get an asymptotic formula

$$N_{\alpha}(\phi, Q) \sim \frac{2}{S(2)} VolS_{\alpha}(\phi, Q)$$

provided

$$\frac{Q\log Q}{\int_1^Q y\phi(y)dy}\to 0 \text{ as } Q\to\infty.$$

So, e.g., if $\phi(y) \ge \frac{(\log y)^2}{y}$. However, the case when $\phi(y)$ decays much quicker is more interesting. Serge Lang in 1967 proved that if α is reals quadratic then

$$N_{\alpha}(\frac{1}{x^2}, Q) = c_{\alpha} \cdot \log(Q) + \mathcal{O}(1). \ (c_{\alpha} > 0).$$

He mentioned that it would seem quite difficult to prove an asymptotic result por algebraic α , let alone transcendend.

Adams showed

$$N_e(\frac{1}{x^2}, Q) = c_e \cdot \frac{\log Q}{\log \log Q} + \mathcal{O}(1)(c_e > 0)$$

where e = 2.7122...

Lang and Adams both used continuous fractions expansion. How can one prove asymptotics for $N_{\alpha}(\phi, Q)$? Here is an example.

Example. Suppose $\phi(x) = \frac{1}{2x^2}$. Consider the continuous fraction expansion $\alpha = [a_0, a_1, a_2, \dots]$. By Theorem 1.2.3 we know $|\alpha - \frac{p}{q}| < \phi(q) \Rightarrow \frac{p}{q}$ is a convergent. Moreover, if $\frac{p}{q} = \frac{p_n}{q_n}$ is the n-th convergent then $|\alpha - \frac{p}{q}| < \frac{1}{a_{n+1}q^2}$. So if all $a_i > 1$ then $|\alpha - \frac{p}{q}| < \phi(q) \forall$ convergent $\frac{p}{q}$. Hence, $N_{\alpha}(\phi, Q) = \#\{n : q_n \leq Q\}$.

So, we need to compute the number of convergents $\frac{p_n}{q_n}$ with $q_n \leq Q$. We shall soon see that this is rather simple if $\alpha = [b, a, b, a, b, a, \dots]$ with $a \mid b$. We will get back to this after Theorem 1.2.5.

A continued fraction $[a_0, a_1, a_2, ...]$ is called *periodic* if

 $\exists k \in \mathbb{N} \text{ and } L \in \mathbb{N}_0 \text{ such that } a_{k+l}a_l \forall l \geq L.$

In this case we write $[a_0, a_1, a_2, \dots] = [a_0, \dots, a_L, a_{L+1}, \overline{\dots}, a_{L+k-1}].$

Theorem 1.2.4. $\theta = [a_0, a_1, a_2, \dots]$ is periodic $\iff \theta$ is real quadratic (θ is real quadratic means $\exists D \in \mathbb{Z}[x] \setminus 0$ with $D(\theta) = 0$, but $\theta \notin \mathbb{Q}$ and $\theta \in \mathbb{R}$)

See Ex Sheet 2 #3 for a special instance.

A proof can be found, e.g., in Hardy & Wright "The Theory of numbers", Oxford University press

Let's go back to the problem of computing p_n, q_n of the n-th convergent. The general recursion formula is unhandy. But in certain cases there is a simple explicit formula. Consider $\theta = [b, a, b, a, \dots] = [b, a]$ and suppose $b = a \cdot c$ for some $c \in \mathbb{N}$. Now $\theta = b + \frac{1}{a + \frac{1}{b + \perp}} = b + \frac{1}{a + \frac{1}{\theta}}$. Thus $\underline{a\theta^2 - ab\theta - b}\theta^2 - b\theta - c = 0$, so

 $\theta = \frac{b + \sqrt{b^2 + 4c}}{2}$ and we put $\bar{\theta} = \frac{b - \sqrt{b^2 + 4c}}{2}$.

Theorem 1.2.5. The p_n and q_n of the n-th convergent $\frac{p_n}{q_n}$ of $\theta = [b, a](b = ac)$ are give by

$$p_n = c^{-\left \lfloor \frac{n+1}{2} \right \rfloor} \cdot U_{n+2}, q_n = c^{-\left \lfloor \frac{n+q}{2} \right \rfloor} \cdot u_{n+1}$$

where

$$u_n = \frac{\theta^n - \bar{\theta}^n}{\theta - \bar{\theta}}.$$

(Recall: $\theta = \frac{b+\sqrt{b^2+4c}}{2}$, $\bar{\theta} = \frac{b-\sqrt{b^2+4c}}{2}$, so $\theta - b\theta - c = 0$, $\bar{\theta}^2 - b\bar{\theta} - c = 0$)

Proof. For n = 0, 1 we note that

$$q_0 = q = u_1 \tag{39}$$

$$q_1 = a = \frac{b}{c} = \frac{u_2}{c} \tag{40}$$

$$p_0 = b = \theta + \bar{\theta} = u_2 \tag{41}$$

$$p_1 = ab + 1 = \frac{b^2 + c}{c} = \frac{(\theta + \bar{\theta})^2 - \theta \bar{\theta}}{c} = \frac{u_3}{c}$$
 (42)

Put $\omega_{n+2} = c^{-\lfloor \frac{n+1}{2} \rfloor} u_{n+2}$.

So we need to show that $p_n = \omega_{n+2}$.

Using that $\theta^{n+2} = b\theta^{n+1} + c\theta^n$ and $\bar{\theta}^{n+2} = b\bar{\theta}^{n+1} + c\bar{\theta}^n$ and hence $u_{n+2} = \frac{\theta^{n+2} - \bar{\theta}^{n+2}}{\bar{\theta}^{n}} = 0$ $bu_{n+1} + cu_n$.

Moreover, $u_{2m+2} = c^m \omega 2m + 2$, $u_{2m+1} = c^m \omega_{2m+1}$. Inserting this into the above, distinguishing n even or odd yields:

$$\omega_{2m+2} = b\omega_{2m+1} + \omega_{2m} \tag{43}$$

$$\omega_{2m+1} = a\omega_{2m} + \omega_{2m-1} \tag{44}$$

Hence, p_n and ω_{n+2} satisfy the same recurrence relation. and here the same two starting values, so p_n = ω_{n+2} .

Similar for q_n .

Counting Diophantine Approximation 2:

We can use Theorem 1.2.5 to show that if $\theta = [b, a]$ with b = ac, a > 1 then

$$N_{\theta}(\frac{1}{2x^2}, Q) = \frac{\log Q}{\log(\frac{Q}{\sqrt{c}})} + \mathcal{O}(1)$$

Indeed, we have already seen, that

$$N_{\theta}(\frac{1}{2x^2}, Q) = \#\{n : q_n \le Q\}$$

By Theorem 1.2.5 we know

$$q_n \leq Q \iff c^{-\left\lfloor \frac{n+1}{2} \right\rfloor} \frac{\theta^n - \bar{\theta}^n}{\theta - \bar{\theta}} = \left(\frac{\theta}{\sqrt{c}}\right)^n \left(1 - \left(\frac{\bar{\theta}}{\theta}\right)^n\right) \epsilon \leq Q$$

where
$$\epsilon = \begin{cases} \frac{1}{\theta - \bar{\theta}} & 2 \mid n \\ \frac{1}{\sqrt{c}(\theta - \bar{\theta})} & 2 \nmid n \end{cases}$$

$$\iff n\log\left(\frac{\theta}{\sqrt{c}}\right) + \log\left(1 - \left(\frac{\bar{\theta}}{\theta}\right)^n\right) + \log\epsilon \le \log Q$$

Using Taylor series expansion we see that

$$|\log\left(1-\left(\frac{\bar{\theta}}{\theta}\right)^n\right)| \le |\frac{\bar{\theta}}{\theta-\bar{\theta}}|$$

This proves the claim.

1.3 Liouville's Theorem

Let $\alpha \in \mathbb{C}$. If $\exists D(x) \in \mathbb{Z}[x]$, $D \neq 0$ and $D(\alpha) = 0$ then we say α is algebraic. In this case $\exists D(x) = a_0 x^d + \cdots + a_d \in \mathbb{Z}[x]$ with

- $D(\alpha) = 0$
- $a_0 > 0$
- $gcd(a_0,\ldots,a_d)=1$
- $\deg D(x)$ minimal

Imposing all these condition renders D unique; We write $D_{\alpha}(x)$ and call this the *minimal polynomial* of α . If α is algebraic then we say $\deg D_{\alpha}$ is the *defree* of α .

Example. $\bullet \ \alpha = 0, D_{\alpha}(x) = x$

•
$$\alpha = \sqrt{2} + 1$$
, $D_{\alpha}(x) = (x - 1)^2 - 2 = x^2 - 2x - 1$

•
$$\alpha = \frac{1}{\sqrt{2}}, D_{\alpha}(x) = 2x^2 - 1$$

Theorem 1.3.1 (1.3.1 Liouville's Theorem). Suppose α is a real, algebraic number of degree d. Then $\exists c(\alpha) > 0$ such that

$$\left|\alpha - \frac{p}{q}\right| > \frac{c(\alpha)}{q^d}$$

for every $(p,q) \in \mathbb{Z} \times \mathbb{N}$ with $\alpha \neq \frac{p}{q}$.

Proof. Suppose $|\alpha - \frac{p}{q}| > 1$ then the claim holds for every $c(\alpha) > 1$. Now suppose $|\alpha - \frac{p}{q}| \le 1$. Taylor series expansion at D_{α} about α gives:

$$D_{\alpha}(x) = \sum_{i=1}^{d} (x - \alpha)^{i} \frac{1}{i!} D_{\alpha}^{(i)}(\alpha)$$

Hence,

$$|D_{\alpha}\left(\frac{p}{q}\right)| = |\sum_{i=1}^{d} \left(\frac{p}{q} - \alpha\right)^{i} \frac{1}{i!} D_{\alpha}^{(i)}(\alpha) |(D)^{\leq} |abel| \frac{p}{q} - \alpha |\frac{1}{c(\alpha)}|$$

where

$$c(\alpha) = \left(1 + \sum_{i=1}^{d} \frac{1}{i!} |D_{\alpha}^{(i)}(\alpha)|\right)^{-1}$$

Now if D_{α} has a rational root then it must have degree one, so have only one root. Thus $D_{\alpha}\left(\frac{p}{q}\right) \neq 0$ unless $\alpha = \frac{p}{q}$. Hence, if $\alpha \neq \frac{p}{q}$ we get

$$|D_{\alpha}\left(\frac{p}{q}\right)| = \left|\frac{\text{non-zero integer}}{q^d} \ge \frac{1}{q^d}.$$

Combing this with (D)label yields

$$\left|\alpha - \frac{p}{q}\right| > \frac{c(\alpha)}{q^d}.$$

We say a real number α is a *Liouville number* if for every $n \in \mathbb{N}$

$$0<|\alpha-\frac{p}{q}|<\frac{1}{q^n}$$

has a solution. $p, q \in \mathbb{Z}$ with q > 1.

Example. $\alpha = \sum_{k=1}^{\infty} 10^{-k^k}$ is a Liouville number. Let $n \in \mathbb{N}$ and put $p = \sum_{k=1}^{n} 10^{n^n - k^k}$ and $q = 10^{n^n}$. Then $0 < |\alpha - \frac{p}{q}| = \sum_{k>n} 10^{-k} \le 2 \cdot 10^{-(n+1)^{(n+1)}} < 10^{-n^{(n+1)}} = q^{-n}$

Corollary 1.3.2 (1.3.2). Every Liouville number is trancendental (i.e., not algebraic).

Proof. Immediate from Theorem 1.3.1 (Liouville's Theorem).

Algebraic numbers are enumerable and thus have Lebesgue measure zero. It's not difficlut to show that the set of Liouville numbers, while *not* enumberable, also has measure zero. In fact "most" real numbers are "not very far" from badly approximable as the following theorem shows.

Theorem 1.3.3 (Khintchine). Suppose $\psi : \mathbb{N} \to (0, \infty)$ is monotone decreasing (not necessarily strictly). The set

$$A_{\psi} = \{ \alpha \in \mathbb{R} : |\alpha - \frac{p}{q}| < \frac{\psi(q)}{q} \text{ has } \infty \text{-many solutions } (p, q) \in \mathbb{Z} \times \mathbb{N} \}$$

has a Lebesgue measure zero of $\sum_{q=1}^{\infty} \psi(q)$ converges and has full Lebesgue measure (i.e. the complement has measure zero) if $\sum_{q=1}^{\infty} \psi(q)$ diverges.

We will not prove this Theorem. (For a proof see e.g. Glyn Harman "Metric number theory".)

Example. • Take $\psi(q) = \frac{1}{q}$. We already know that $A_{\psi} = \mathbb{R} \setminus \mathbb{Q}$. And indeed $\sum \psi(q)$ divergers...

- $\psi(q) = \frac{1}{q \log(q-1)}$. Then $\sum \psi(q)$ diverges and thus A_{ψ} has full measure.
- $\psi(q) = \frac{1}{q(\log(q+1))^{1+\epsilon}} (\epsilon > 0)$ then $\sum \psi(q)$ converges, so A_{ψ} has measure zero.

1.4 4 Theorems of Thue- Siegel and Poth

In Section 1 we have seen that ∞ -many solutions $\frac{p}{q}$ to $\left|\sqrt{2}-\frac{p}{q}\right|<\frac{1}{q^2}$ leads to ∞ -many solutions $(x,y)\in\mathbb{Z}^2$ of $x^2-2y^2=1$. What about $x^3-2y^3=1$? Starting as for x^2-2y^2 we get

$$y^3 \left| \frac{x}{y} - 2^{1/3} \right| \underbrace{\left| \frac{x}{y} - 2^{1/3} \omega \right|}_{\geq \operatorname{Im} \omega} \underbrace{\left| \frac{x}{y} - 2^{1/3} \omega^2 \right|}_{\geq (\operatorname{Im} \omega)^2}$$

where $\omega = e^{\frac{2\pi i}{3}}$.

So to get boundedness of $x^3 - 2y^3$ for ∞ -many (x, y) we need $\exists c > 0$ such that

$$\left| \frac{x}{y} - 2^{1/3} \right| < \frac{c}{y^3}$$

has ∞ -many solutions $(x, y) \in \mathbb{Z} \times \mathbb{N}$.

Theorem 1.3.3 tells us that we would be extremely lucky if that were the case. And erven if so, we still would lack the group structure for $\mathbb{Z}+\sqrt{2}\mathbb{Z}$ (closed under multiplication but $\mathbb{Z}+2^{1/3}\mathbb{Z}$ is not). On the other hand, suppose we could show that

$$\left|\frac{x}{y}-2^{1/3}\right|<1/y^{\lambda}$$

has only finitely many solutions $(x,y) \in \mathbb{Z} \times \mathbb{N}$ for some fixed $\lambda < 3$. As $x^3 - 2y^3 = 1$, and $y \neq 0$ yields:

$$\left| \frac{x}{y} - 2^{1/3} \right| < \frac{1}{2^{1/3} (\operatorname{Im} \omega)^2 y^3}$$

We would conclude that $x^3 - 2y^3 = 1$ has only finitely many solutions $(x, y) \in \mathbb{Z}^2$. Note that "deg" $2^{1/3} = 3(D(x) = x^3 - 2)$ and so Liouville's Theorem yields only $\lambda = 3$ not $\lambda < 3$. So the big challenge is to improve Liouville's Theorem. After Liouville it has taken 65 years until the first breakthrough was obtained by Axel Thue in 1909.

Theorem 1.4.1 (1.4.1 Thue). Let α be a real algebraic number of degree $d \ge 2$, and let $\lambda > \frac{d}{2} + 1$. Then $\exists c = c(\alpha, \lambda) > 0$ such that

$$\left|\alpha - \frac{p}{q}\right| > \frac{c}{q^{\lambda}}, \quad \forall (p,q) \in \mathbb{Z} \times \mathbb{N}.$$

- Note that for d = 2 Liouville is stronger
- Given α and λ there is no method to determine a feasible value for c. This is in stark contrast to Liouville's Theorem.

Just as for $x^3 - 2y^2 = 1$ one can now very easily show that if $f(X,Y) = a_0(X - \alpha_1 Y) \cdots (X - \alpha_d Y) \in \mathbb{Q}[X,Y]$ with $a_0 \neq 0, d \geq 3$, and $\alpha_1, \ldots, \alpha_d$ pairwise distinct, and $b \in \mathbb{Q} \setminus \{0\}$, then

$$f(x,y) = b$$

has only finitely many solutions $(x, y) \in \mathbb{Z}^2$. Wrong if d = 2:

$$X^2 - 2Y^2 = 1$$

or b = 0:

$$X^3 - Y^3 = 0$$

or $\alpha_1, \ldots, \alpha_d$ not pairwise distinct:

$$(X - Y)^5 = 1$$

We will show that Theorem 1.4.1 implies even the following stronger result.

Theorem 1.4.2 (1.4.2 Generalized Thue equations). Let $f(X,Y) = a_0(X - \alpha_1 Y) \cdots (X - \alpha_d Y) \in \mathbb{Q}[X,Y]$ with $a_0 \neq 0, d \geq 3$ and $\alpha_1, \dots, \alpha_d$ pairwise distinct. Let $g(X,Y) \in \mathbb{Q}[X,Y]$ of total degree $<\frac{d}{2}-1$.

Then there are only finitely many $(X,Y) \in \mathbb{Z}^2$ with

$$f(x,y) = g(x,y)$$

and $g(x,y) \neq 0$.

Example.

$$x^5 - 2y^5 = x - y$$

has only finitely many solutions $(x,y) \in \mathbb{Z}^2$. Indeed if x-y=0 then $x^5-2y^5=0$ thus x=y=0. Note Theorem can go wrong if $\alpha_1=\alpha_2$:

$$(X^2 - 2Y^2)^2 = 1.$$

(assuming Theorem 1.4.1). If y=0 then we have at most d possibilities for x. So we can assume $y \neq 0$. We claim that

$$|x| \le c_1 |y|$$

for some $c_1 = c_1(f, g)$. Clearly true when $|x| \le |y|$, so let's assume |x| > |y|. Then we write

$$f(x,y) = \sum_{i=0}^{d} a_i x^{d-i} y^i = \sum_{j+k \le d-1} b_{jk} x^j y^k = g(x,y)$$

Dividing by x^{d-i} yields

$$a_0 x = -\sum_{i=0}^{d} a_i \frac{y^i}{x^{i-1}} + \sum_{j+k \le d-1} b_{jk} x^{j-d+1} y^k$$

We have

$$\left| \frac{y^i}{x^{i-1}} \right| \le |y|$$

and

$$\left| \frac{y^k}{x^{d-1-j}} \right| \le |y|^{j+k-(d-1)} \le 1$$

Therefore $|x| \le c_1 |y|$, e.g. with $c_1 = \frac{1}{|a_0|} \left(\sum |a_i| + \sum |b_{jk}| \right) + 1$. From

$$f(x,y) = g(x,y), (\star)$$

we get

$$\left|\alpha_0\right| \prod_{i=1}^d \left|\frac{x}{y} - \alpha_i\right| \le c_2 \left|y\right|^{e-d}$$

where $c_2 = c_2(c_1, g)$ and $e < \frac{d}{2} - 1$. So assume (\star) has ∞ -many solutions $(x, y) \in \mathbb{Z}^2$. Then $\exists i$, say i = 1, such that $\left| \frac{x}{y} - \alpha_1 \right| \le \mu := \frac{1}{2} \min_{j \neq i} \left\{ |\alpha_j - \alpha_1| \right\} > 0$ for ∞ -many (x, y) of these solutions of (\star) . Now

$$\left| \frac{x}{y} - \alpha_j \right| \ge \left| |\alpha_j - \alpha_i| - \left| \frac{x}{y} - \alpha_1 \right| \right| \ge 2\mu - \mu = \mu > 0$$

Hence, we conclude

$$\left|\frac{x}{y} - \alpha_1\right| \le \frac{c_2}{|a_0|} \mu^{1-d} |y|^{e-d}, (\star\star)$$

for these solutions (x,y). Here we can assume y > 0 (just replace x by -x). Now let d_1 be the degree of α_1 . As $f(x,1) \in \mathbb{Q}[x]$, $f(x,1) \neq 0$ and $f(\alpha_1,1) = 0$. Thus $d_1 \leq d$. Moreover, $d - e > \frac{d}{2} + 1$ and this $\exists \lambda$ such that

$$d - e > \lambda > \frac{d_1}{2} + 1.$$

If $d_1 \ge 2$ then Theorem 1.4.1 implies that (\star) has only finitely many solutions $(x,y) \in \mathbb{Z}^2$. Finally suppose $d_1 = 1$. Then $\alpha_1 = \frac{p}{q}$, and $(\star\star)$ yields:

$$\left| x - \frac{p}{a} y \right| \le c_3 y^{e-d+1} \le c_3 y^{-\frac{d}{2}}.$$

Thus $x = \frac{p}{q}y = \alpha_1 y$ for y large enough. But then 0 = f(x,y) = g(x,y) a contradiction.

After Thue came Siegel (1921) who improved the exponent $\frac{d}{2} + 1$ to $2\sqrt{d}$. This was slightly improved by Dyson and Gelfand (1947) to $\sqrt{2d}$. Finally in 1955 came Roth:

Theorem 1.4.3 (1.4.3 (Roth)). Let α be a real, algebraic irrational number, and $\lambda > 2$. Then $\exists c = c(\alpha, \lambda) > 0$ such that

$$\left|\alpha - \frac{p}{q}\right| \ge \frac{c}{q^{\lambda}}, \quad \forall (p,q) \in \mathbb{Z} \times \mathbb{N}.$$

By Corollary 1.1.2 $\lambda > 2$ is best-possible. But if we allow more general functions $\phi(q)$, not only powers of q, then an improvement might be possible. However, since 1955 nobody was able to replace $q^{-\lambda}$ by a function $\phi(q)$ that decays more slowly, e.g. $\phi(q) = q^{-2} (\log q)^{-1}$.

However, back to the case where $\phi(q)$ is a power of q.

From Theorem 1.3.3. we know that for a generic real α

$$\left| \frac{p}{q} - \alpha \right| < q^{-\lambda}$$

has only finitely many solutions $p, q \in \mathbb{Z} \times \mathbb{N}$ provided $\lambda > 2$. Any by Corollary 1.1.2 every irrational real number has ∞ -many solutions when $\lambda = 2$. And so from Roth's Theorem we see an algebraic irrational behaves "essentially" like a generic number.

Roth's Theorem has various new applications to, e.g., Diophantine equations

and transcendence. Let's consider just one now transcendence result: Take
$$\alpha = \sum_{k=1}^{\infty} 2^{-3^k}$$
; put $q_n = 2^{3^n}$ and $p_n = q_n \sum_{k=1}^n 2^{-3^k}$. Then $0 < \left| \alpha - \frac{p_n}{q_n} \right| = \sum_{k=n+1}^{\infty} 2^{-3^k} < 2 \cdot 2^{-3^{n+1}} = 2 \cdot 2 \cdot q_n^{-1}$ so by Roth's Theorem α is transcendental.

How does one prove results like Roth's Theorem of the kind

$$\left|\alpha - \frac{p}{q}\right| \ge \phi(q)$$
?

The idea is to find good rational approximations.

$$\left|\alpha - \frac{p_n}{q_n}\right| \le \delta_n$$

with δ_n "pretty small". Then

$$\left|\alpha - \frac{p}{q}\right| \ge \left|\frac{p_n}{q_n} - \frac{p}{q}\right| - \left|\alpha - \frac{p_n}{q_n}\right|$$

If

$$\frac{p_n}{q_n} \neq \frac{p}{q} \tag{45}$$

then

$$\left|\alpha - \frac{p}{q}\right| \ge \frac{1}{qq_n} - \delta_n.$$

If we are lucky then $\delta_n < \frac{1}{qq_n}$ and we get a positive lower bound. How do we find these $\frac{p_n}{q_n}$?

Usually this is a difficult task, but sometimes one can easily see these approximations $\frac{p_n}{q_n}$. Here is an example.

Take again $\alpha = \sum_{k=1}^{\infty} 2^{-3^k}$. Then we can take again $q_n = 2^{3^n}$, $p_n = q_n \sum_{k=1}^n 2^{-3^k}$; so $\left|\alpha - \frac{p_n}{q_n}\right| < 2 \cdot q_n^{-3}$. Hence, if

$$\frac{p_n}{q_n} \neq \frac{p}{q}$$

then

$$\left|\alpha - \frac{p}{q}\right| \ge \frac{1}{qq_n} - \frac{2}{q_n^3}$$

If $q_n^2 > 4 \cdot q$ then

$$\frac{1}{qq_n} - \frac{2}{q_n^3} \ge \frac{q}{2 \cdot qq_n}$$

As $\frac{p_n}{q_n}$ tends strictly monotonously to α , we have $\frac{p_n}{q_n} \neq \frac{p}{q}$ or $\frac{p_{n+1}}{q_{n+1}} \neq \frac{p}{q}$ Let m be minimal with $q_m > 4 \cdot q$. Hence

$$q_m^{\frac{2}{3}} = q_{m-1}^2 \le 4 \cdot q < q_m^2$$

If $\frac{p_m}{q_m} \neq \frac{p}{q}$ we take n = m and n = m + 1 else. We conclude

$$\left|\alpha - \frac{p}{q}\right| \ge \frac{1}{2qq_m} \ge \frac{1}{2qq_{m+1}} \ge \frac{1}{2q} \frac{1}{q_m^3} \ge \frac{1}{2q} \frac{1}{(4q)^{\frac{9}{2}}} = 2^{-10} q^{-\frac{11}{2}}$$

In this example everything works out nicely, e.g., (ref*) could easily be guaranteed by using $\frac{p_n}{q_n}$ tending strictly monotonously to α . However, in Roth's Theorem (ref*) becomes the major-problem.

1.5 5 Simultaneous Diophantine approximation and the **Subset Theorem**

Suppose $\alpha_1, \ldots, \alpha_n$ are real numbers. Theorem 1.1.1 can be generated to yield a solution $(x_1, \ldots, x_n, y) \in \mathbb{Z}^n \times \mathbb{N}$ at the system

$$\left| \frac{x_i}{y} - \alpha \right| \le \frac{1}{y \cdot Q} (1 \le i \le n), 0 < y < Q.$$

(c.f. Exercise sheet 4). This in turn yields ∞ -many solutions $(x_1,\ldots,x_n,y) \in$ $\mathbb{Z}^n \times \mathbb{N}$ of the system

$$\left|\frac{x_i}{y} - \alpha_i\right| < \frac{1}{y^{1 + \frac{1}{n}}} (1 \le i \le n).$$

provided at least one of the α_i 's is irrational. So Corollary 1.1.2 extends to simultaneous approximation. A much deeper fact is that Roth' Theorem also extends to simultanious approximation. For $\underline{x} \in \mathbb{R}^n$ we write $\|\underline{x}\| = (\sum_{i=1}^n x_i^2)^{\frac{1}{2}}$ for the Euclidean length.

Theorem 1.5.1 (Subspace Theorem, Schmidt). Suppose $L_i(\underline{x}) = \sum_{j=1}^n a_{ij}x_j (1 \le x_j)$ $i \leq n$) are linearly independent linear forms with algebraic coefficients a_{ij} . Let $\delta > 0$. Then the solutions $\underline{x} \in \mathbb{Z}^n \setminus \underline{0}$ of

$$|L_1(\underline{x})\dots L_n(\underline{x})| < ||\underline{x}||^{-\delta}$$

lie in finitely many proper subspaces of \mathbb{Q}^n .

Remark. linearly independent linear forms means the coefficient vectors (a_{i1}, \ldots, a_{in}) are linearly independent over \mathbb{C} .

Corollary 1.5.2 (1.5.2). Let $\delta > 0$, suppose $\alpha_1, \ldots, \alpha_n$ are algebraic and $1, \alpha, \ldots, \alpha_n$ are linearly independent over \mathbb{Q} . Then there are only finitely many $(x_1, \ldots, x_n, y) \in \mathbb{Z}^n \times \mathbb{N}$ with

$$(5.1)\left|\frac{x_i}{y} - \alpha_i\right| < \frac{1}{y^{1 + \frac{1}{n} + \delta}} \left(1 \le i \le n\right) \tag{46}$$

Proof. (assuming Theorem 1.5.1) Put $\underline{X} = (X_1, \dots, X_n, Y)$, $L_i(\underline{X}) = \alpha_i Y - X_i(1 \le i \le n)$, $L_n(\underline{X}) = Y$. These n+1 linear forms in n+1 unknowns are linarly independet. With $\underline{x} = (x_1, \dots, x_n, y)$ the solutions of (5.1) yield

$$|L_1(\underline{x}) \dots L_{n+1}(\underline{x})| < \frac{1}{y^{\delta}} < \frac{1}{\|x\|^{\frac{\delta}{2}}}$$

if y is large enough. so by Theorem 1.5.1 (in n+1 dimensions), we set that the solutions lie in finitely many prober subspeced at \mathbb{Q}^{n+1} . Pick one of these (of codimension I say). It is giben by an equation $c_1x_1 + \cdots + c_nx_n + c_{n+1}y = 0$ where $c_i \in \mathbb{Q}$ not all zero. On this subspace we have

$$(c_1\alpha_1 + \dots + c_n\alpha_n + c_{n+1})y = c_1(\alpha_1y - x_1) + \dots + c_n(\alpha_ny - x_n).$$

Put $\gamma = c_1 \alpha_1 + \dots + c_n \alpha_n + c_{n+1}$. By \mathbb{Q} -linearly independence of $1, \alpha_1, \dots, \alpha_n$ we have $\gamma \neq 0$. Hence,

$$|\gamma||y| \le |c_1||\alpha_1 y - x_1| + \dots + |c_n||\alpha_n y - x_n| \le (|c_1| + \dots + |c_n|) \frac{1}{y^{1 + \frac{1}{n} + \delta}} \le |c_1| + \dots + |c_n|$$

So |y| is bounded and we are done.

In applications one sometimes needs a "p-adic" version of the subspace Theorem in which one approximates with respect to also the so called p-adic absolute values.

Definition (Absolute values). An absolute value on a field K is a map $|\bullet|$: $K \to [0, \infty)$] such that

- $|x| = 0 \iff x = 0$
- $|x \cdot y| = |x| \cdot |y|$
- $|x + y| \le |x| + |y|$

Example. • K arbitrary. $|x| = \begin{cases} 0 & x = 0 \\ 1 & x \neq 0 \end{cases}$ the trivial absolute value.

- $K = \mathbb{Q}$, $|\bullet| = \text{standatd}$ absolute value on \mathbb{Q} . To distinguish it from other absolute values let's write it as $|\bullet| = |\bullet|_{\infty}$.
- $K = \mathbb{Q}$ and let $p \in \mathbb{N}$ be a prime number. If $x \in \mathbb{Q}, x \neq 0, \pm 1$, then \exists a unique prime factoriation $x = \pm p_1^{a_1} \dots p_s^{a_s}$ where p_1, \dots, p_s primes and $a_i \in \mathbb{Z} \setminus 0$. For any prime $p \in \mathbb{N}$ write $ord_p(x)$ for the exponent of p in the

primfractorisation of x (e.g. $ord_{p_i}x = a_i$). For $x = \pm 1$ we put $ord_px = 0 \forall p_i$. The p-adic absolute value $1 \cdot 1_p$ on \mathbb{Q} is defined by

$$|x|_p = \begin{cases} 0 & : x = 0\\ p^{-ord_p(x)} & : x \neq 0 \end{cases}$$

 $The \ multiplicativity \ is \ clear. \ Note \ that \ ord_p(x_1+x_2) \geq \min\{ord_p(x_1), ord_p(x_2)\}.$ $Hence, \ |x_1+x_2|_p = p^{-ord_p(x_1+x_2)} \leq p^{-\min\{ord_p(x_1), ord_p(x_2)\}} = strongtriangle inequality \max |x_1|_p, |x_2|_p\}$

 $|x_1|_p + |x_2|_p$ An absolute value that satisfies the srtong triange inequality is called non-Archimedean.

Definition 1.5.3. We set $M_{\mathbb{Q}} = \{primes \ in \ \mathbb{N}\} \cup \{\infty\}$. Then for each $v \in M_{\mathbb{Q}}$ we get an absolute value $|\cdot|_v$. Note that if $v \in M_{\mathbb{Q}}$ and p a prime, $a \in \mathbb{Z}$, then

$$\begin{split} \left| \pm p^a \right|_v = \begin{cases} p & : v = p \\ p^a & : v = \infty \\ 1 & : v \neq p, v \neq \infty \end{cases} \end{split}$$

Hence

$$\prod_{v \in M_{\mathbb{Q}}} |1 \pm p^a|_v = 1$$

and so vy multiplicativity we conclude

$$\prod_{v \in M_{\mathbb{Q}}} |x|_v = 1$$

for all $x \in \mathbb{Q}$, $x \neq 0$. (PF) This is the so-called product formula (PF) on \mathbb{Q} .

Next, we want to introduce a notion of "arithmetic complexity" on elements in \mathbb{Q}^{n+1} , the so-called projective height:

$$H_{\mathbb{P}^n}:\mathbb{Q}^{n+1}\to[1,\infty)$$

defined by

$$H_{\mathbb{P}^n}(\underline{x}) = \prod_{v \in M_{\mathbb{Q}}} |\underline{x}|_v$$

where $|\underline{x}|_{v} = \max\{|x_{0}|_{v}, \dots, |x_{n}|_{v}\}.$

Example. If $\underline{x} = (x_0, ..., x_n)$ where $x_0, ..., x_n \in \mathbb{Z}$ and $gcd(x_0, ..., x_n) = 1$. Then $|x|_p = 1$ for all primes p. Hence,

$$H_{\mathbb{P}^n}(\underline{x}) = \max\{|x_0|_{\infty}, \dots, |x_n|_{\infty}\}.$$

Note that $H_{\mathbb{P}^n}(\lambda \cdot \underline{x}) = H_{\mathbb{P}^n}(\underline{x}) \forall \lambda \in \mathbb{Q} \setminus 0$.

Theorem 1.5.4 (1.5.3 p-adic Subspace Theorem, Schlickewei and Schnidt). Let $\delta > 0$ and let $S \subset M_{\mathbb{Q}}$ be finite and with $\infty \in S$. For $v \in S$ let L_{v_1}, \ldots, L_{v_n} be n linearly independent linear forms in n variables with coefficients in \mathbb{Q} . Then the set of solutions $\underline{x} \in \mathbb{Q}^{n+1} \setminus 0$ of

$$\prod_{v \in S} \prod_{i=1}^{n} \frac{\left| L_{v_i}(\underline{x})_v \right|}{\left| \underline{x} \right|_v} < H_{\mathbb{P}^{n-1}}(\underline{x})^{-n-\delta}$$

lie in finitely many proper subsaced of \mathbb{Q}^n .

An interesting consequence is a finiteness result for S-unit equations. S-integers and S-units:

Let v be a non-Archimedean absolute value or a field K. Then

$$O_v = \{x \in K : |x|_v \le 1\}$$

is called the valuation ring of v. It is indeed a ring, e.g., $|x|_v, |y|_v \le 1$ then

$$|x + y|_v \le \max\{|x|_v, |y|_v\} \le 1.$$

In particular, if $K = \mathbb{Q}$ and v = p then O_v is a subring of \mathbb{Q} .

Now let $S \subset M_{\mathbb{Q}}$ be finite and $\infty \in S$. We define the set of S-integers O_S to be

$$O_S = \cap_{v \notin S} O_v.$$

As $\infty \in S$, this is an intersection of rings, hence a ring.

Example. If $S = \{\infty\}$, then $O_S = \mathbb{Z}$. If $S = \{\infty, p_1, \dots, p_s\}$ then

$$O_S = \{\frac{m}{p_1^{a_1} \dots p_s^{a_s}} : m \in \mathbb{Z}, a_1, \dots, a_s \in \mathbb{N}_0\}$$

We say $x \in \mathbb{Q}$ is an S-unit if $x \neq 0$ and x, x^{-1} are both in O_S . So if $S = \{\infty\}$, then ± 1 are the only S-units. If $S = \{\infty, p_1, \dots, p_s\}$ then x is an S-unit $\iff x = \pm \prod_{p \in S \setminus \infty} p_p^a$ (and $ap \in \mathbb{Z}$).

Theorem 1.5.5 (1.5.4 S-unit equation). Let $S \subset M_{\mathbb{Q}}$ be finite, and $\infty \in S$. Let $\alpha_0, \ldots, \alpha_n$ be non-zero and in \mathbb{Q} . Then

$$\alpha_0 x_0 + \dots + \alpha_n x_n = 0$$

has only finitely many solutions $\underline{x} = (x_0, \dots, x_n)$ if:

- $x_0, \ldots x_n$ are S-units
- we identify proportional solutions (i.e., $\underline{x} = \lambda \underline{x}$ for $\lambda \in \mathbb{Q} \setminus 0$).
- no proper subsum vanishes, i.e., $\sum_{I} \alpha_{i} x_{i} \neq 0$ for all $\emptyset \subseteq I \subseteq \{0, 1, ..., n\}$.

Remark. $S = \{\infty, p\}$ $x_0 + x_1 + x_2 + x_3 = 0$ then $x_0 = -x_1 = 1$, $x_2 = -x_3 = p^a$ $(a \in \mathbb{Z})$ are solutions in S-units. So non-vanishing condition is needed!

Example. The exponential Diophantine equation

$$3^x + 5^y - 7^z = 1$$

has solutions, e.g., (x,y,z) = (0,0,0) or (x,y,z) = (1,1,1). However, with $S = \{\infty,3,5,7\}$ each solution (x,y,z) yields a solution $u_0 = 3x$, $u_1 = 5y$, $u_2 = -7z$, $u_3 = -1$ of the S-unit equation $u_0 + u_1 + u_2 + u_3 = 0$. These solutions are all non-proportional. Moreover, no subsum vanishes unless xyz = 0 but then we easily see that x = y = z = 0. Hence, Theorem 1.5.4 yields finiteness.

assuming Theorem 1.5.3. Induction on n. If n=1 then $\alpha_0x_0+\alpha_1x_1=0$, so all solutions are proportional to $(1,-\frac{\alpha_0}{\alpha_1})$. Now suppose the claim holds for all S-unit equations in $\leq n$ variables. As x_i are S-units we have

$$|x_i|_v = 1 \forall v \notin S.$$

By the product formula (PF)

$$1 = \prod_{v \in M_{\mathbb{Q}}} \lvert x_i \rvert_v = \prod_{v \in S} \lvert x_i \rvert_v,$$

and thus

$$\prod_{v \in S} \prod_{i=0}^{n} |x_i|_v = 1.$$

Let $\underline{\tilde{x}} = (x_0, \dots, x_{n-1})$. For each $v \in S$ pick i(v) with $0 \le i(v) \le n-1$. So we get $n^{\#S}$ such tuples $(i(v))_{v \in S}$. Choose one of those tuples and condider all solutionss of $\alpha_0 x_0 + \dots + \alpha_n x_n = 0$ with

$$\left| \underline{\tilde{x}} \right|_v = \left| x_{i(v)} \right|_v$$

Choose the set of linear forms

$$\{L_{v_j}: 1 \le j \le n\} = \{X_0, X_1, \dots, X_{n-1}, \frac{\alpha_0}{\alpha_n} X_0 + \dots + \frac{\alpha_{n-1}}{\alpha_n} X_{n+1}\} \setminus \{X_{i(v)}\}$$

Then

$$\prod_{v \in S} \prod_{j=1}^n \frac{\left| L_{v_j} (\underline{\tilde{x}}) \right|_v}{\left| \underline{\tilde{x}} \right|_v} = \frac{1}{H_{\mathbb{P} n+1} (\underline{\tilde{x}}) n + 1}$$

By Theorem 1.5.3 the solutions $\underline{\tilde{x}}$ lie in finitely many proper subspaces. Take one of these then all elements in this subspace satisfy an equation

$$c_0x_0 + \dots c_{n-1}x_{n-1} = 0 (c_i \in \mathbb{Q}, \text{ not all } = 0!)$$

Let J_0 be the set of i with $c_i \neq 0$. Then

$$\sum_{i \in J_0} c_i x_i = 0 \text{ marker(S)}$$
(47)

is an S-unit equation in $\leq n$ unknowns. For every solution of "marker(S)" there is a set $J \subset J_0, \ J \neq \emptyset$, such that

$$\sum_{i \in I} c_i x_i = 0$$

and <u>no</u> subsum vanishes. By the induction hypotheses, up to proportionality, we get only finitely many solutions. Moreover, the number of possible choices J is finite. Therefore it suffices to consider solutions $\{x_i\}_{i\in J}$ that are proportional to a fixed $\{u_i\}_{i\in J}$, i.e., $x_i = \xi u_i (i \in J)$. Returning to our initial equation $\sum_{i=0}^{n} \alpha_i x_i = 0$ we get

$$\xi(\sum_{i\in I}\alpha_i u_i) + \sum_{i\notin I}\alpha_i x_i) = 0$$

If $\sum_{i\in J} \alpha_i x_i \neq 0$ then the above is an S-unit equation in $1 + (n+1) - \#J \leq n$ unknowns, namely $\xi, x_i (i \notin J)$. By the induction hypothesis we get only finitely many non-proportional solutions $\{x_i\}_{i=0}^n$ for which no subsum vanishes. Finally, if $\sum_{i\in J} \alpha_i x_i = 0$ then $\sum_{i\notin J} \alpha_i x_i = 0$ and we ignore these solutions by assumption of the Theorem.

1.6 6. Further generalizations and open problems

Let $\alpha, \beta \in \mathbb{R} \setminus \mathbb{Q}$ and consider the linearly independent linear forms $L_1\underline{\mathbf{x}} = x_0\alpha - x_1$, $L_2(\underline{\mathbf{x}}) = x_0\beta - x_2$, $L_3(\underline{\mathbf{x}}) = x_0$ If α, β are algebraic then Theorem 1.5.1 implies that the solutions $\underline{\mathbf{x}} \in \mathbb{Z}^3 \setminus \underline{\mathbf{0}}$ of

$$|L_1(\underline{\mathbf{x}}) \cdot L_2(\underline{\mathbf{x}}) \cdot L_3(\underline{\mathbf{x}})| < ||\underline{\mathbf{x}}||^{-\delta} (\delta > 0)$$

lie in finitely many proper subspaces of \mathbb{Q}^3 .

However, in the following is a long-standing conjecture.

Conjecture 1.6.1 (Littlewood-conjecture, around 1920). Let $\alpha, \beta \in \mathbb{R} \setminus \mathbb{Q}$ and $\varepsilon > 0$. Then $\exists x \in \mathbb{Z}^3$ such that

$$0 < |L_1(\underline{x})L_2(\underline{x})L_3(\underline{x})| < \varepsilon$$

Remark. Note that the conjecture is obviously true if $\alpha = \beta$ (by Corollary 1.1.2) or if α or β are <u>not</u> badly approximable.

Let's consider again approximations to <u>one</u> real α . So far our approximations were $\frac{p}{q} \in \mathbb{Q}$. If we replace \mathbb{Q} ba a smaller or larger set then we get now interesting problems.

Open Problem 1.6.2 (1.6.2). Let $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ and $\lambda < 2$. Does $\left| \alpha - \frac{p}{q} \right| < q^{-\lambda}$ have ∞ -many solutions $(p,q) \in \mathbb{Z} \times \mathbb{N}$ with:

- p and q are both square-free. Best-result (Hoath-Brown 1984): Yes, if $\lambda < \frac{5}{3}$.
- q is prime? Best-restult (Matomaki, 2009): Yes, if $\lambda < \frac{4}{3}$.

Let's now consider problems in which \mathbb{Q} is replaced by a certain subset A of

$$\overline{\mathbb{Q}} = \{ \alpha \in \mathbb{C} : \alpha \text{ algebraic} \}.$$

If we assume that $A \subset \mathbb{R}$ then we still can use the (usual) absolute value on \mathbb{R} to measure

$$|\alpha - x| \ (x \in A).$$

But usually we have no "natural denominators" for $x \in A$. But there is a natural way to interpret the original setting that easily generalizes from $A = \mathbb{Q}$ to $A = \overline{\mathbb{Q}} \cap \mathbb{R}$. To this end we introduce the so-called multiplicative absolute Weil height:

$$H: \mathbb{Q} \to [1, \infty)$$

defined by

$$H(\alpha) = M(D_{\alpha}(x))$$

where $D_{\alpha}(x) = a_0(x - \alpha_1) \dots (x - \alpha_d) \in \mathbb{Z}[x]$ is the minimal polynomial of α and

$$M(D_{\alpha}(x)) = |a_0| \cdots \prod_{i=1}^{n} \max\{1, |\alpha_i|\}$$

M is called the Mahler-measure.

Example. • $\alpha = \frac{p}{q} \in \mathbb{Q} \ (q > 0, \gcd(p, q) = 1).$ $\deg(\alpha) = 1, \ D_{\alpha} = qx - p. \ So \ H(\alpha) = M(D_{\alpha}) = q \max\{1, \left\lfloor \frac{p}{q} \right\rfloor\} = \max\{q, |p|\} = H_{\mathbb{P}^1}((1, \alpha)).$

• $\alpha = 2^{\frac{1}{d}}$, $D_{\alpha} = x^{d} - 2$ (2-Eisenstein), $\deg \alpha = d$, $H(\alpha) = M(D_{\alpha})^{\frac{1}{d}} = \prod_{i=1}^{d} \max\{1, \left|\xi_{d}^{i-1} 2^{\frac{1}{d}}\right|\} = 2^{\frac{1}{d}}$

One can easily show (cf. sheet 4) that

$$\#\{\alpha \in \overline{\mathbb{Q}} : \deg d \le d, H(\alpha) \le X\} < \infty \ \forall d \in \mathbb{N} \ X \ge 1.$$
 (48)

Back to Diophantine approximation with $A = \mathbb{Q}$. As

$$a+m-\frac{p}{q}=a-\left(\frac{p-mq}{q}\right)$$

we can assume $\alpha \in (0,1)$ So all good enough approximations $\frac{p}{q}$ lie also in (0,1). Now if $\frac{p}{q} \in (0,1)$ then

$$H\left(\frac{p}{q}\right) = q.$$

So

$$\left|\alpha - \frac{p}{q}\right| < \phi(q) \iff \left|\alpha - \frac{p}{q}\right| < \phi\left(H\left(\frac{p}{q}\right)\right).$$

So now the denominator plays <u>no</u> role anymore and we can write more easily:

$$|\alpha - x| < \phi(H(x)) \tag{49}$$

(49) makes sense as long as $x - \alpha \in \mathbb{R}$, so $x \in \mathbb{R}$, and $x \in \overline{\mathbb{Q}}$. So let's assume $A \subset \overline{\mathbb{Q}} \cap \mathbb{R}$. However, if x_1, x_2, x_3, \ldots is a sequence of pairwise distinct solutions of (49) then we want to conclude that $x_i \to \alpha$ (with respect to $|\bullet|$). Now as $\phi(t) \to 0$ as $t \to \infty$ but we don't know a priori that $H(x_i) \to \infty$. So cannot conclude from (49) that $x_i \to \alpha$. But if $A \subset \mathbb{Q}_{(d)} = \{\alpha \in \overline{\mathbb{Q}} : \deg \alpha \leq d\}$ then (48) rells us that $H(x_i) \to \infty$ and so $x_i \to \alpha$.

More generally this is true if

$$\#\{\alpha \in A : H(\alpha) \le X\} < \infty \ \forall X \ge 1.$$

In this case we say A has Property N.

Theorem 1.6.3 (1.6.3 Wirsing 1961). Let $d \in \mathbb{N}$, d > 1 and $\alpha \in \mathbb{R} \setminus \mathbb{Q}_{(d)}$. Then $\exists \infty$ -many $x \in \mathbb{Q}_{(d)}$ with

$$|\alpha - x| < H(x)^{-(\frac{d+3}{2})}$$

Conjecture 1.6.4 (1.6.4 Wirsing's Conjecture, around 1961). Suppose $\alpha \in \mathbb{R} \setminus \mathbb{Q}_{(d)}$, $(d \in \mathbb{N})$ and $\lambda < d+1$ then $\exists \infty$ -many $x \in \mathbb{Q}_{(d)}$ with

$$|\alpha - x| < H(x)^{-\lambda}.$$

Theorem 1.6.5 (1.6.5 Davenport and Schmidt). Wirsing's conjecture (2.2.4) holds for $d \le 2$.

Instead of taking $A = \mathbb{Q}_{(d)} \cap \mathbb{R}$ let's replace $\mathbb{Q}_{(d)}$ with the smalles field that contains $\mathbb{Q}_{(d)}$; let's call this field $\mathbb{Q}^{(d)}$. Unfortunately, nobody knows whether $\mathbb{Q}^{(d)}$ has Propery (N), except when $d \leq 2$.

Theorem 1.6.6 (1.6.6 Bombien-Zannier, 2001). $\mathbb{Q}^{(2)}$ has Property (N).

Open Problem 1.6.7 (1.6.7). Find an analog of Corollary 1.1.2 for $A = \mathbb{Q}(2) \cap \mathbb{R}$. How quickly can $\phi : [1, \infty) \to (0, \infty)$ decay if for every $\alpha \in \mathbb{R} \setminus A$

$$|\alpha - x| < \phi(H(x))$$

has ∞ -many solutions $x \in A$? It is not difficult to show an inequality in the other direction provided α is algebraic, e.g., if $\alpha \in \overline{\mathbb{Q}} \setminus \mathbb{Q}^{(2)}$ then

$$|\alpha - x| > (2 \cdot H(\alpha)H(x))^{-\deg \alpha \cdot 2^{(2H(x))}}$$

How much can this be improved?