Gabriella Weis

Mr. Lewis

H Applied Statistics

13 November 2023

#14 Assessment: Multiple Regression, F-Test, R-Studio

Part A:

a).

1. SSResid =
$$\sum (y - \hat{y})^{2}$$

SSResid = 390.4347

$$2. SSTo = \sum (y - \overline{y})^{2}$$

$$\overline{y} = \frac{\Sigma(y)}{14} = 21.10714286$$

3. SSReg =
$$\sum (\hat{y} - \bar{y})^2$$

$$SSReg = 1227.116129$$

b).

$$R^{2} = 1 - \frac{SSResid}{SSTotal}$$

$$R^{2} = 1 - \frac{390.4347}{1618.209286}$$

$$R^{2} = 0.7587242247$$

Adj.
$$R^2 = 1 - \left[\frac{(n-1)}{n-(k+1)}\right] \frac{SSResid}{SSTo}$$

Adj. $R^2 = 1 - \frac{(13)(390.4347)}{(8)(1618.209286)}$

Adj.
$$R^2 = 0.60793$$

I would recommend using the adjusted R^2 because it accounts for the number of predictors in the model and penalizes for excessive variables, creating a more accurate measure of the model's goodness of fit.

c).

Model Utility F-test

 \hat{y} = predicted shear strength of sandy soil

 $x_1 = \text{depth}$

 x_2 = water content

$$x_3 = (x_1)^2$$

$$x_4 = (x_2)^2$$

$$x_5 = (x_1)(x_2)$$

 β_1 = estimated increase in predicted shear strength of sandy soil when depth increases by one unit.

 β_2 = estimated increase in predicted shear strength of sandy soil when water content increases by one unit.

 β_3 = estimated increase in predicted shear strength of sandy soil when x_3 increases by one unit.

 β_{4} estimated increase in predicted shear strength of sandy soil when x_{4} increases by one unit.

 β_5 = estimated increase in predicted shear strength of sandy soil when x_5 increases by one unit.

$$H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5 = 0$$

 H_a : At least one slope $\neq 0$

$$\alpha = 0.05$$

Checks: Normality:

Probability plot appears curved. Proceed with caution.

Equal Variance:

Residual plot appears approximately normally distributed with a few major outliers and one closely clumped group of four points above the y=0 line. Proceed with caution.

Calculations:

$$F = \frac{R^2/k}{(1-R^2)/(n-(k+1))} \quad \text{w/df} = \frac{k}{n-(k+1)}$$

$$F = \frac{0.7587242247/5}{(1 - 0.7587242247)/(8)} \qquad \text{w/df} = \frac{5}{8} = 0.625$$

$$F = 5.03142$$
 w/df = 0.625

$$p$$
-value = $p(F > 5.03142) = 0.0222$

Since the p-value $(0.0222) \le \alpha$ (0.05), we reject the null hypothesis. Therefore, there is convincing evidence to suggest that at least one of the slopes is not equal to zero.

Part B:

a).

Model	Equation	R^2	$R^2(Adj.)$	S_e	F-Stat.
	$\hat{y} = -231.02 + 190.65x_1$	0.5843	0.5677	312	35.14
$\begin{array}{c} \operatorname{Max} \ \operatorname{Width}(x_1 \\) + \operatorname{Min} \ \operatorname{Width}(x_2) \end{array}$	$\hat{y} = -263.72 + 248.07x_1 - 56.99$ x_2	0.5916	0.5575	315.7	17.38
	$\hat{y} = -660.46 + 55.89x_1 + 104.08$ $x_2 + 49.95x_3$	0.7951	0.7683	228.4	29.74
$\begin{array}{c} \operatorname{Max} \operatorname{Width}(x_1 \\ \operatorname{)+Min} \operatorname{Width}(x_2 \\ \operatorname{)+Height}(x_3 \\ \operatorname{)+elongation}(x_4) \end{array}$	$\hat{y} = -75.94 - 86.02x_1 + 124.44x_2 + 95.59x_3 - 357.49x_4$	0.8437	0.8153	203.9	29.7
Min Width(x_1)+Height(x_2)+Elongation(x_3)	$\hat{y} = -216.39 - 73.21x_1 + 81.64x_2 + -276.82x_3$	0.8371	0.8158	203.7	39.39
$\begin{array}{c} \text{Height}(x_1 \\ \text{)+Elongation}(x_2) \end{array}$	$\hat{y} = 130.16 + 100.54x_1 - 459.53$ x_2	0.8087	0.7928	216	50.73

I chose the model: Predicted Volume = Min Width(x_1)+Height(x_2)+Elongation(x_3), or \hat{y} = -216.39-73.21 x_1 +81.64 x_2 +-276.82 x_3 , because it has high R^2 and adjusted R^2 values, a low standard error, and a high F-statistic.

b).

We should consider adjusted R^2 instead of R^2 when attempting to determine the quality of the fit of the data to the model because it accounts for all of the x terms.

c).

Model Utility F-test

 \hat{y} = predicted volume

 $x_1 = \min \text{ width}$

 x_2 = height

 x_3 = elongation

 β_1 = estimated increase in predicted volume when min width increases by one unit.

 β_2 = estimated increase in predicted volume when height increases by one unit.

 β_3 = estimated increase in predicted volume when elongation increases by one unit.

$$H_o: \beta_1 = \beta_2 = \beta_3 = 0$$

 H_a : At least one slope $\neq 0$

 $\alpha = 0.05$

Checks:

Normality:

Probability plot is not linear, especially on the ends where there lies extreme outliers. Proceed with caution.

Equal Variance:

Residual plot does not appear normally distributed. Proceed with caution.

Calculations:

$$F = \frac{R^2/k}{(1-R^2)/(n-(k+1))} \quad \text{w/df} = \frac{k}{n-(k+1)}$$

$$F = \frac{0.8371/3}{(1-0.8371)/(23)} \qquad \text{w/df} = \frac{3}{23} = 0.130435$$

$$F = 39.39697$$
 w/df = 0.130435

$$p$$
-value = $p(F > 39.39697) = 0.000000003155 $\approx 0$$

Since the p-value (0) $< \alpha$ (0.05), we reject the null hypothesis. Therefore, there is convincing evidence to suggest a useful linear relationship that uses Min Width, Height, and Elongation to predict volume.