	0.1(30)2
	DELD - FINAL PRACTICAL EXAM Brogge.
(A)	Problem Statement: Design a circuit using opemp
	to
	produce V = 2 × V1 + 3 × V2 + V3
	V1, V2, V3 = three positive input voltages
	Vo = Output voltage
	In Simulation use V1=1 Volt, 112=2 Volt, V3=1 Volt
~ (B)	Tt. / - 1 1 1
(b)	Theory / concept Used:
	(I) Toxisting Ampufier
12 1	is Rf is = is (KCL at Point 0)
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Vo l R1
	Both terminals
	$(\mathbf{H}) \text{If } R_{\mathbf{C}} = R_{1} V_{0} = (-1) V_{1} \text{of opemp}$
	Opamp as a Summer
	Sparip and a summer
	Applying KCI at node a gives
	$\begin{bmatrix} i = i_1 + i_2 + i_3 \end{bmatrix}$
vision	
AISION	

kch at a,

Copamp does not accept any current]

$$\begin{bmatrix}
i = i_1 + i_2 + i_3 \\
i_1 = \frac{V_1 - V_0}{R_1}, & i_2 = \frac{V_2 - V_0}{R_2}
\end{bmatrix}$$

$$i_3 = \frac{V_3 - V_0}{R_3} \qquad \hat{i} = \frac{V_0 - V_0}{R_2}$$

Same potential

$$\frac{V_0 - V_0}{R_f} = \frac{V_1 - V_0}{R_1} + \frac{V_2 - V_0}{R_2} + \frac{V_3 - V_0}{R_3}$$

of oppmp Both terminals

$$\therefore \quad \not = \quad \frac{R_f}{R_f} = \quad \frac{R_1}{V_1} + \frac{V_2}{V_2} + \frac{V_3}{R_3}$$

comparing it with question => V = 2 V1 + 3 V2 + V3

Bhagys

RA = 12 KR

Vouput

U19CSO12

Idea -> VI -> -VI

112 - - V2

V3 → - V3

-Rr - 2 - Rr 3 - Rr - 1

 $R_1 = R_1$ $R_2 = R_2$ $R_3 = R_4$

du RF = 12 ks R = 6 ks

R2 2 4 KD

Rg = 12 KM

 $V_0 = 2(1) + 3(2) + (1)$

= 2+611 = [9 VOIF]

+ V1

I OPAMP -VI RI

1/2 P2

(OPAMP)

OPAMP 1 -13 F3

1Kr

vision

Design a circuit using OPAMPs to produce **Vo=2*V1+3*V2+V3**,

where V1 and V2 and V3 are three positive input voltages and Vo is the output. Simulate your design for *V1=1*, *V2=2*, and *V3=1*.

SIMULATION SCREENSHOTS

Circuit Diagram of OPAMP

Grapher Image

SIMULATION SCREENSHOTS

Circuit Diagram of OPAMP [Optimized]

Grapher Image [OPAMP Optimized Approach]

