(NASA-CR-187507) SYSTEMS INTEGRATION AND BEMONSTRATION OF ADVANCES REUSARLE STRUCTURE FOR ALL (LOGING CO.) 132 p CSCL 723

N91-27179

Unclus 65/15 00308Pl

NASA Contractor Report 187509

Systems Integration and Demonstration of Advanced Reusable Structure for ALS

Martin N. Gibbins

Boeing Defense & Space Group Seattle, Washington

Contract NAS1-18560, Task 7: Technology for Hypersonic Vehicles June 1991

This page intentionally left blank

FOREWORD

Systems Integration and Demonstration of Advanced Allowable Structures for Advanced Launch System (SIDARS) program (Contract No. NAS1-18560, Task Assignment 7) was performed by the Boeing Defense & Space Group, Aerospace & Electronics Division for the Langley Research Center, NASA, Hampton Virginia, under ALS Advanced Development Program (ADP) 3201 Materials for Propulsion/Avionics Modules. Mr. Dick Royster from Langley Research Center (LaRC) was the NASA Contract Monitor. Mr. Allen Taylor was the ALS ADP 3201 Task Manager, and Mr. Thomas Bales was the Structures and Materials Area ADP Manager, both from LaRC.

Mr. Curt. C. Chenoweth was the program manager and Mr. John H. Laakso was the task manager. Peter Rimbos and Martin Gibbins were the principal investigators. Bill Westre was the structural designer. The following organizations also provided significant contributions: BP Chemicals (HITCO), Inc.; Rohr Industries, Inc; the ASTECH Division of Alcoa/TRE; and Aeronca, Inc.

This page intentionally left blank

CONTENTS

		Page
FOR	EWORD	iii
SUM	IMARY	xi
1.0	INTRODUCTION	1
2.0	OBJECTIVES	4
3.0	PROGRAM PLAN	7
4.0	TECHNICAL DISCUSSION	9
	4.1 Task 1: Concept Development	10
	4.1.1 System and Structural requirements	10
	4.1.2 Candidate Systems	13
	4.1.3 Candidate Materials and Materials Selection	14
	4.1.4 Maintenance Operations Policy	20
	4.2 Task 2: Concept Definition and Evaluation	21
	4.2.1 Thrust Structure Design Concepts	21
	4.2.2 Aeroshell Design Concepts	25
	4.2.3 Aft Bulkhead Design Concepts	46
	4.2.4 Cost Analysis	48
	4.2.5 Concept Scoring and Ranking	55
	4.3 Task 3: Technology Development Plan	61
	4.3.1 Phase II: Technology Validation	61
	4.3.2 Phase III: Hardware Demonstration	65
5.0	CONCLUSIONS	69
6.0	REFERENCES	70
	APPENDIX A	71
	APPENDIX B	81
	APPENDIX C	107

This page intentionally left blank

FIGURES

		Page
1.0-1	ALS Liquid Booster Configuration Incorporating Three Common P/A	
1.0 1	Module structural Systems; ~150,000 lb to LEO	2
1.0-2	ALS Mission Profile	3
3.0-1	Propulsion/Avionics System Components; Primary Structural Members	
5.0 1	Are Identified	7
4.0-1	Concept Development and Evaluation Procedure	9
4.1-1	Strategies for Low-Cost Structure on the ALS P/A Module	10
4.1-2	Trajectories of the ALS P/A Modules During Atmospheric Reentry	11
4.1-3	Thrust Structure Critical Loads - Main Engine Maximum Thrust	12
4.1-4	Aeroshell Critical Load Case - Water Impact	12
4.1-5	Bulkhead Critical Loads Parachute Deployment and Pressure Differential	13
4.1-6	Candidate P/A Module Materials and Structures for Evaluation and	15
	Trade Study	
4.1-7	SIDARS structural Materials Screening	17
4.1-8	Maximum Surface Temperatures During P/A Module Reentry at Two	
	Aeroshell Locations	18
4.1-9	Specific properties Comparison for Candidate Aeroshell Materials	19
4.2-1	Critical Design Conditions	21
4.2-2	Structural Materials Design Criteria	21
4.2-3	Thrust Structure Truss Configuration	22
4.3-4	Thrust Structure Truss Concepts Qualitative Analysis	23
4.2-5	Relative Weight Comparison for Shear-Panel Thrust Structure Concepts	23
4.2-6	Tube End Attachment	24
4.2-7	Overall Aeroshell Configuration, Elements, and Features	25
4.2-8	Graphite/Polyimide Aeroshell	27
4.2-9	Fabrication Scenarios for Gr/PI Honeycomb Sandwich P/A Module	
	Aeroshell Structure	29
4.2-10	Aeroshell Dome Bond Tool	29
4.2-11	Materials Available for Gr/PI Aeroshell	29
4.2-12	Titanium Aeroshell	31
4.2-13	Fabrication Scenarios for Titanium Honeycomb Sandwich P/A Module	
	Aeroshell Structure	33
4.2-14	Candidate Materials for Titanium Aeroshell	33
4.2-15	High-Temperature Aluminum Aeroshell	3.
4.2-16	Candidate Materials for High-Temperature Aluminum Aeroshell	3

FIGURES (Continued)

		<u>Page</u>
4.2-17	High-Temperature Aluminum Face Sheet Splice Concept Thermal and	
	Stress Analysis Result	37
4.2-18	High-Temperature Aluminum Fabrication Scenario	39
4.2-19	Aeroshell FEM Loads Application	40
4.2-20	Aeroshell Locations of Maximum Stress, Strain, and Deflection	40
4.2-21	Aeroshell FEM Analysis Results and Face Sheet Sizing Summary	41
4.2-22	Thermal Analysis Model for ALS P/A module Aeroshell at Stagnation Point	42
4.2-23	Booster Aeroshell Sandwich Temperatures from 1-Dimensional Thermal	
	Analysis	43
4.2-24	Maximum Titanium Surface Temperatures During Booster P/A Module	
	Reentry at 10-deg Angle of Attack	44
4.2-25	Aeroshell Door Seal Concept Showing TPS Attachments	45
4.2-26	Aeroshell TPS Materials	45
4.2-27	Bulkhead Geometry and Features	46
4.2-28	Bulkhead TPS and Insulation Alternatives	46
4.2-29	Temperature Profiles of Aft Bulkhead Structure Protected with HCA	
	Paper TPS	47
4.2-30	Manufacturing and Cost Analysis Procedure	48
4.2-31	Cost Estimating Learning Curve	48
4.2-32	Relative Cost Breakdown for Thrust Structure	49
4.2-33	Thrust Structure Quality Assurance Summary	50
4.2-34	Procedure for Calculating Delta LCC	52
4.2-35	Reuse Sensitivity of Discounted LCC for Welded Titanium Truss Thrust	
	Structure	5 3
4.2-36	Thrust Structure Cost Breakdown and LCC Analysis	54
4.2-37	Aeroshell Cost Breakdown and LCC Analysis	56
4.2-38	Bulkhead Cost Breakdown and LCC Analysis	58
4.2-39	Thrust Structure Trade Study Analysis Summary	59
4.2-40	Aeroshell Concepts Trade Study Analysis Summary	59
4.2-41	Bulkhead Concepts Trade Study Analysis Summary	59
4.3-1	Phase II Lap Shear Test Matrix	62
4.3-2	Phase II Sandwich Specimen Test Matrix	62
4.3-3	High-Temperature Aluminum Materials and Processes Evaluation Specimens	63
4.3-4	High-Temperature Joint Concept Validation Test`	64
4.3-5	Phase III Hardware Demonstration P/A Module Aeroshell Door Test	65
4.3-6	Phase II Technology Validation Tier II Schedule	67

Nomenclature

Al Aluminum

Al-Li Aluminum Lithium

ALS Advanced Launch System

ANSYS A structural finite element code

BMI Bismaleimide matrix material or adhesive

C-C Carbon-Carbon

dSiC discontinuous silicon carbide

DB Diffusion Bond

DDT&E Design, Development, Test & Evaluation

FEM Finite Element Model

Gr/Ep Graphite/Epoxy composite material

Gr/PI Graphite/Polyimide composite material

H/C Honeycomb

HSA Standard Oil registered trademark for ceramic fiber paper insulation

HTA High Temperature Aluminum

LaRC Langley Research Center

LCC Life Cycle Cost

LID Liquid Interface Diffusion

MMC Metal Matrix Composite

NC Numerically Controlled

OMS Orbital Maneuvering System

P/A Propulsion/Avionics

PDT Product Development Team

PI Polyimide

PT Polymer Triazine

QA Quality Assurance

Nomenclature (Continued)

RCS Reaction Control System

SCS/Al Silicon Carbide/Aluminum

TDP Technology Development Plan

TFU Theoretical First Unit

Tg Glass Transition Temperature

Ti Titanium

TPS Thermal Protection System

SUMMARY

This report covers Phase I of Contract NAS1-18560, Task Assignment 7. Objectives were to investigate the potential of advanced materials to achieve life cycle cost benefits for reusable structure on the advanced launch system. Three structural elements were investigated-all components of a reusable propulsion/avionics module: (1) aeroshell, (2) thrust structure, and (3) aft bulkhead. Structural concept definitions were prepared using a variety of configurations and materials. Preliminary analysis indicated the most promising concepts for further analysis. Manufacturing cost estimates, weight statements, and life cycle cost estimates were prepared for each of these concepts. Based on the concepts showing the greatest benefits, a technology development plan was prepared to validate the applicable structural technology.

This page intentionally left blank

1.0 INTRODUCTION

The U.S. Advanced Launch System (ALS) targets routine access to space at improved launch cost effectiveness over current systems. One method to keep system launch costs (life cycle cost) to a minimum is recovering and reusing the higher-cost launch vehicle hardware such as the main engines and avionics hardware. This is especially important if main engine costs remain a high percentage of the total vehicle cost, as is the case in current launch systems. One approach to accomplishing this is with a propulsion/avionics (P/A) module.

The baseline ALS vehicle configuration for this study is shown in figure 1.0-1. The expendable structure represents the majority of the launch vehicle structural weight. The P/A modules represent the structure that would be reused. These modules contain the highest cost-per-unit mass items: the main engines and the avionics hardware. This baseline ALS vehicle configuration represents a relatively high level of reusability; however, other configurations are possible. One variation involves replacing the liquid fuel booster and its two booster P/A modules with solid-rocket boosters. P/A module structural technology is still applicable to the remaining core P/A module. In this way the P/A module concept investigated herein represents and supports a family of launch vehicles.

Two types of P/A modules are included in the baseline vehicle: the core elements and the booster elements. The missions for these modules are illustrated in figure 1.0-2. Some minutes after launch, the six engines contained in the two booster P/A modules exhaust their fuel supply. The booster element is jettisoned and the booster P/A modules (1) fly a suborbital, low-velocity reentry profile; (2) deploy parachutes; and (3) splash down for recovery. The core P/A module continues to orbit, deploys the payload, and reenters at high velocity from an optimum orbital position to either splashdown or land by parachutes. Landing attenuation is provided by air bags for both the water and land operation.

This study examines advanced materials in the structure of a reusable P/A module on a baseline ALS vehicle, and evaluates usage on the basis of system life cycle cost (LCC) benefit.

By exploiting new lightweight, high-strength materials and efficient manufacturing processes, P/A module structural performance and cost effectiveness are maximized. Nevertheless, development is required to apply these materials in the P/A module structure. Only a limited database and experience base on advanced materials performance and applications are available, and the raw material costs are

Figure 1.0-1. ALS Liquid Booster Configuration Incorporating Three Common P/A Module Structural Systems; \approx 150,000 lb to LEO.

Figure 1.0-2. ALS Mission Profile.

currently high because of the relatively recent emergence of these materials for use in primary structures. Technology development priorities depend on system evolution timing, necessity to resolve critical issues, and ultimate life cycle cost (LCC) payoffs and objectives. Several commonalties exist between respective types of system components that affect cost and weight. Consequently, technology development efforts in one area can benefit another area, if properly planned. This program applies appropriate structural design and analysis techniques to the most promising materials for application on the ALS P/A module.

This page intentionally left blank

2.0 OBJECTIVES

The objective of this program is to identify and demonstrate the potential of advanced materials and processes, internal insulation, and thermal protection systems for cost-effective, reusable structures for an ALS reusable element such as the P/A module. The major premise of the P/A module is that the main engines and avionics computers are valuable enough that reusing them reduces overall launch system costs. The specific objective for Phase I is a structural concept design and analysis study on a selected ALS recoverable P/A module system. Whenever possible, system definition for this study relied on a systems study performed under contract to NASA Marshall Space Flight Center (ref. 1). The primary output of Phase I is a technology development plan to guide technology validation and demonstration in Phases II and III.

This page intentionally left blank

3.0 PROGRAM PLAN

The overall program is divided into three phases: Phase I: System Design Study, Phase II: Technology Validation, and Phase III: Hardware Demonstration.

During the Phase I System Design Study, preliminary structural designs for the ALS recoverable P/A module structural elements were developed and evaluated, and a technology development plan was prepared. The major P/A module system components (shown in figure 3.0-1), which represent the baseline P/A module system design. The four primary structural components are: aeroshell dome, aeroshell sidewall, thrust structure, and bulkhead.

Figure 3.0-1. Propulsion/Avionics Module System Components; Primary Structural Members Are Identified

Three major tasks were performed in the first phase. These are:

Task 1. Concept Development: (1) defined a candidate structural system; (2) identified system and structural requirements that guide structural concept definition; and (3) identified a policy for ensuring the design concepts are compatible with system recovery.

Task 2. Concept Definition and Evaluation: (1) prepared a variety of design concept options for the key structural components; (2) evaluated those concepts for structural efficiency and manufacturability; (3) conducted LCC analysis of the structural concepts; and (4) identified the most promising structural concepts for planning the technology validation and hardware demonstration tasks in phases II and III.

Task 3. Technology Development Plan: (1) prepared technology development plans leading to technology validation and hardware demonstration during phases II and III, respectively; (2) identified and prioritized materials, processes, and manufacturing for further development that would enhance reusable structural design and provide significant cost benefits; (3) prepared cost estimates and schedules for phase II and III implementation, which include the required structural and material allowable data, manufacturing development tasks, structural element tests, and demonstration tests.

4.0 TECHNICAL DISCUSSION

This section describes the entire phase I effort. Structural concept development and evaluation, including material evaluation, generally followed the flow chart shown in figure 4.0-1. The numbers

Figure 4.0-1. Concept Development and Evaluation Procedure

included in each box represent the report section describing the box activity. Some reevaluation and iteration through this procedure occurred as we increased our understanding of the structural requirements and material limitations. Design, analysis, manufacturing, quality control, and cost analysis personnel from the Boeing ALS program provided support to maintain consistency with the ALS system model.

4.1 TASK 1 - CONCEPT DEVELOPMENT

ALS cost and operability goals suggest the benefits in using structure common for both the core and the booster P/A module vehicles. Common structure reduces the cost of engineering development, tooling, inventories, and speeds progress down the manufacturing learning curve. Our structural concepts have been developed to accommodate both P/A module vehicles, i.e., a common P/A module.

4.1.1 System and Structural Requirements

ALS system requirements serve as a basis to ensure that structural concept development fully supports ALS goals. Strategies for achieving low cost by reusing main engines and avionics hardware which affect the structure are listed as requirements in figure 4.1-1. These requirements ensure system operability. The P/A module mission defined in figure 1.0-2 implies additional structural requirements; for example, the structure must provide strength for main-engine thrust, Orbital Maneuvering System (OMS) thrust, reentry aerodynamic pressures and accelerations, parachute deployment, and landing impact. Various structural elements must support all the subsystems. The aeroshell dome, sidewall, and bulkhead must maintain acceptable internal temperatures during main-engine burn and reentry heating. External environments include lightning strike during pad operations and flight, thrust plume-induced heating from the main engines, heating on the external structure during reentry, salt water effects from splashdown, and the effects of impact during landing.

Requirement	Approach	
Structure must support the P/A module role of returning the high cost components for reuse.	Provide volume and support for main engines and avionics hardware.	
Structure must be applicable to a family of launch vehicles of varying payload capacities.	Common interfaces to core and booster expendable elements.	
Structure must reliably perform up to 50 flights.	Structurally robust. Corrosion resistant.	
Structure must not hinder quick system recycling after each flight to ensure system availability (provide ready access to subsystems during all preparation phases so repairs and checkout can be quickly made).	Doors in aeroshell sidewall permit access during all operations phases.	
Maximize commonality between booster and core structure to enhance system cost effectiveness.	Accommodate airbags to permit both splashdown and landing.	

Figure 4.1-1. Strategies For Low-Cost Structure On The ALS P/A Module.

The reentry trajectories for the booster and core P/A modules, diagrammed in figure 4.1-2, define the aeroheating environment on the aeroshell. The booster P/A module reentry trajectory begins at booster separation, about 300,000-ft altitude. The booster P/A modules accelerate as they fall toward Earth, but aerodynamic friction begins slowing them below 200,000-ft altitude. The core P/A module trajectory begins as the module passes through 400,000-ft altitude after the deorbit engine burn. A depressed trajectory is illustrated which provides enhanced targeting capability for a possible landing near the launch site, but also increases surface temperatures. Conversely, a lofted trajectory would reduce external temperatures, but decrease targeting accuracy. These trajectories are used directly in calculating structural temperatures as described in following sections.

Figure 4.1-2. Trajectories of the ALS P/A Modules During Atmospheric Reentry.

The loads that drive the structural design include main-engine thrust, aerodynamic reentry, parachute deployment, water impact, and landing impact (if this recovery option is used). The magnitudes for these loads are consistent with the P/A Module Definition Study (ref. 1). This external load environment has been used with detailed finite element models (FEM) of major structural components to determine load distribution throughout the P/A module structure.

The primary design requirements for the thrust structure include react main-engine thrust loads, access subsystems during maintenance operations, and provide attachments and access for subsystems (fig. 4.1-3) Parachute loads and water/land impact loads are not critical and are secondary design influences. The interface fittings are considered expendable hardware (they are exposed to the reentry environment); therefore, for these, only attachment provisions were accounted for.

The limit load case on the truss the feasible but off-normal case of all main engines at maximum thrust = 525,000 lb each. (Altitude= 200,000 ft).

Figure 4.1-3. Thrust Structure Critical Loads - Main Engine Maximum Thrust.

The most severe aeroshell structure loading condition is water impact after one of the three main parachutes fail, and with a drift velocity due to high winds as shown in figure 4.1-4. Pitch angle varies somewhat randomly with wave orientation and parachute swing amplitude. Roll angle can also vary. (Roll is defined by the flight direction axis of the entire launch vehicle.) Nominal values were used to define the aeroshell critical loads.

Figure 4.1-4. Aeroshell Critical Load Case—Water Impact.

Nominal parachute deployment (three good chutes) applies a 3g load to the bulkhead beams at three attachment points (fig. 4.1-5). This load is primarily reacted by the parachute risers (attached to the thrust structure), but the bulkhead must resist the resulting shear load. Pressure loads across the bulkhead during altitude change and main engine start are 1 to 3 psi. The bulkhead and support beams must also support the OMS engines, however these loads do not drive the design.

Triple chute, 37 deg. hanging angle, deceleration= 3g's

Figure 4.1-5. Bulkhead Critical Loads Parachute Deployment and Pressure Differential

The above described requirements, loads, and environments are sufficient to proceed with identification of candidate P/A module structural systems and assessments of preliminary concept designs for LCC assessment.

4.1.2 Candidate Systems

The structural elements shown in figure 3.0-1 representing the baseline structural definition are described below. The thrust structure provides the primary load path from the main engines through to the expendable upper stages of the launch vehicle. It also provides for subsystem mounting locations and support to the aeroshell during landing operations. Both truss and shear-panel designs were evaluated. Due to the large thrust structure loads, joints and fittings generally dominate truss weight. Structural concept development addressed joint size and weight to minimize overall thrust structure cost, complexity, and weight.

The aeroshell dome takes the primary reentry heating and the landing loads on both the core and booster P/A modules. The aeroshell dome contains covers for the airbag landing attenuation system. The dome shape accommodates a volume for landing bag stowage, and accommodates access and propellant line doors. The sidewall provides an aerodynamic surface during reentry and protects interior components from heat. Access doors are required in the sidewall for subsystem access during launch preparation. Additional doors may be required for a flotation collar system. A combined dome and sidewall structure has been considered and may be integrated or may be separately joined elements depending on the fabrication approach.

The bulkhead protects internal subsystems from the plume heating environment and supports external subsystems such as orbital maneuvering system engines and parachutes. This structure is initially defined as a stiffened panel with additional beams for the point loads. The structure must be either thermally resistant or insulated from the plume heating environment.

4.1.3 Candidate Materials and Materials Selection

The high performance usually required of launch vehicle structure leads to materials balancing structural efficiency with reasonable fabrication cost. Candidate material types as they apply to the identified structural elements are listed in figure 4.1-6. A detailed mechanical and physical property database across appropriate operating temperatures was compiled and is included in Appendix A. Graphite/epoxy (Gr/Ep) was specified by the ALS reference P/A module configuration (ref. 1). Specific material formulations, alloys, and heat treatments are selected to the level the design detail requires. During full-scale development, material specifications would be selected including strengthening treatments, precise fiber and matrix, and reinforcement fractions.

Because the main engines produce high loads in the thrust structure, candidate materials should have high specific compressive strength and stiffness. Since it is in a moderate thermal environment, high-temperature strength is not a benefit to thrust structure materials. If the access requirements are reduced and shear web structure is feasible, materials with high specific shear stiffness and strength are beneficial to reducing weight.

Figure 4.1-6. Candidate P/A Module Materials And Structures For Evaluation And Trade Study.

The aeroshell dome is subject to high bending and compression loads from splashdown, therefore a highly stiffened shell structure is beneficial. Materials should have high specific stiffness and moderate temperature capability. The aeroshell sidewall experiences less severe loading and temperatures, therefore lower cost materials and structures may be viable there.

A qualitative assessment of candidate materials for application on the aeroshell and bulkhead structure is displayed in figure 4.1-7. Typical aerospace fabrication methods are listed for 2024, 7075, and 2219 aluminums to cover the low-cost and low-risk spectrum of concepts. In this context, risk is proportional to the cost of fully developing a concept for flight hardware. Aluminum-lithium (Al-Li) is included as a less developed but potentially higher performance material. A common drawback of these materials is the requirement of applying a thermal protection system (TPS) to the external surface to survive the reentry environment for the aeroshell and the main engine plume heating environment for the bulkhead. A list of candidate TPS materials with quantitative and qualitative attributes is included in Appendix A.

Titanium can potentially perform under the heating environment indicated by preliminary thermal analysis, and is considered a robust material, which is an important attribute for reusable structure with a mission profile that includes launch and recovery. Graphite/polyimide (Gr/PI) composite materials are resistant to the temperatures indicated by the preliminary thermal analyses for the booster P/A module, and can be laid up and cured in the desired aeroshell dome compound curvature. Potentially, large structural members are feasible, thereby requiring few structural splices, although process and structural development would be needed. Graphite/epoxy was specified by the Boeing ALS program as the baseline material for the aeroshell and bulkhead, and can also be laid up in the required complex contours. The Inconel alloys are robust, have greater high-temperature resistance than Ti, and can be fabricated in similar ways to Ti, but have comparatively low specific properties. The high-temperature aluminum (HTA) alloys have potential in hot area applications, but are relatively undeveloped, as are the discontinuous silicon carbide-reinforced aluminum (dSiC/Al) MMCs. Silicon carbide-fiber-reinforced metals (titanium or aluminum) were considered only for the thrust structure tubes due to their high compressive strength and stiffness and limited level of development for large sheets.

Material	Fabrication Candidates	Potential Payoff	Risks/Disadvantages	Winning Strategy
Aluminum 2024 7075	Sandwich - bonded Stringer stiffened fastened	• Low cost • Mature materials	TPS required on booster at additional cost & weight	Inexpensive materials Known fab techniques
Aluminum 2219	Machined and welded built-up structure	Temp. stability (50% of RT Fty @ 500°F) Weldability	 TPS required on booster at additional cost & weight 	Inexpensive materials Known fab techniques
AL-Li 2090	Laser VPPA welding Super plastic forming (SPF)	 Higher specific strength stiffness than conven- tional aluminum alloys 	TPS required on booster Less mature aluminum alloy	High specific strength and stiffness
Weldalite	Laser VPPA welding Super plastic forming (SPF)	Higher specific strength than 2090	TPS required on booster Less mature aluminum alloy	High specific strength and stiffness
Titanium	Welding, LID bonding, brazing, DB, SPF	Short exposure temp capability up to 1000°F Mature materials & fab Corrosion performance	High fabrication costs for large structure	Low risk design & fab Fab options
Gr/PI	Sandwich - large structure co-cured Skin stringer	Short exposure temp capability up to 900°F Conform to complex contour	Fabrication scaleup Damage/defect potential Processing sensitivity Incorporating fasteners Material cost	Low LCC potential for aeroshell Low weight potential
Gr/Ep	• Filament winding • Sandwich co-cured • Skin-stringer	Lower risk than Gr/PI High specific properties	TPS required on booster at additional cost & weight Material cost	Baseline ALS material
Super-Alloy Inconel 625	Brazing Welded built-up structure Explosive bonding (with Ti)	High temperature capability and stability	Low specific properties (relative to other materials) at aeroshell temperatures	Robust struc- ture for aero- shell
High Temp Al Allied 8-12 Allied 12-12 Alcoa CU78 Alcoa CZ42	High temp bond Fastening Machining Forging	Higher stiffness than Al Short exposure temp capability up to 800 °F and possibly higher ⁽¹⁾ Corrosion performance	No aerospace service experience Few low-cost fabrication approaches Material availability, cost	Potential to combine low cost features of Ti and Gr/PI concepts
dSiCp/Al	Fastening, bonding	High specific stiffness and strength	Material cost and avail- ability	

Reference:

(1) Rapidity Solidified Aluminum Transition Metal Alloys for Aerospace Applications, P.S. Gilman, et.al. AIAA 88-4444

Figure 4.1-7 SIDARS Structural Materials Screening

Preliminary thermal analyses of the reentry profiles, summarized in figure 4.1-8, indicate that aeroshell surface temperatures for the core P/A module reach temperatures too high for the candidate materials, even for carbon-carbon. An expanded egg crate structural concept using Incoloy MA 956 high-temperature steel on the outer surface (ref. 2) was inadequate without active cooling. Therefore, reasonable aeroshell structural materials must be protected (with a TPS) from the temperatures experienced during atmospheric reentry upon return from orbit.

Figure 4.1-8. Maximum Surface Temperatures During P/A Module Reentry at Two Aeroshell Locations.

Temperature performance of materials influenced material selection. Specific strength properties of selected materials are plotted against temperature in figure 4.1-9. These properties were drawn from the materials database in Appendix A. On this basis the most attractive aeroshell materials were Gr/PI (Celion 6000/PMR-15) and Ti (Ti-6-4). The HTA alloy 8009 is also attractive based on its specific compression yield strength. The Gr/PI and HTAs have sparse data in the maximum temperature range, however these maximum temperatures are experienced for under 2 min each flight and do not occur during maximum loads which occur at splashdown.

Figure 4.1-9. Specific Properties Comparison For Candidate Aeroshell Materials.

The above review demonstrates that a good range of candidate materials applicable to the P/A module environment are available for structural concept development. Precise specification of alloy heat treatments and reinforcement material identification await full-scale development when all system issues can be thoroughly considered.

4.1.4 Maintenance Operations Policy

A low-cost, routine launch system requires structure that is maintainable, reliable, and operable as described in figure 4.1-1. Our designs reflect this policy. For instance, the aeroshell contains three large doors for launch pad access to the internal subsystems, such as avionics computers. In other cases direct adherence to these requirements is difficult because design concepts and procedures are not well enough developed. Other system details and procedures enhancing operability may not be well defined and therefore cannot be incorporated into structural concept definition.

Because the thrust structure is completely encapsulated within the P/A module, inspection between flights is difficult at best without disassembly. Consequently, our design approach emphasizes a robust structure.

The most extensive of maintenance operations involves the TPS. Upon reentry from orbit, the core P/A module flight profile is depressed for targeting accuracy increasing temperatures on the aeroshell surface. The extremely high temperatures near the stagnation point (fig. 4.1-8) drives the configuration toward an ablative layer in that region. This ablator must be replaced often and perhaps for each mission. Conversely, for the booster P/A module, system operability is enhanced by eliminating the TPS because temperatures are less and can be resisted by high-temperature materials.

4.2 TASK 2: CONCEPT DEFINITION AND EVALUATION

A multidiscipline product development team (PDT) approach was used so that involved personnel would be cooperatively familiar with details of the design prior to conducting analyses (e.g., structural, manufacturing, QA, cost). Concepts were then effectively defined to the extent required for equivalent structural, manufacturing, and cost analysis. Appendix B contains summaries of all structural concepts defined and discussed in the PDT. The leading concepts, based on qualitative assessment by the PDT, were provided with additional design and analysis definition.

All flight trajectories, loads, and design criteria were obtained from the Boeing ALS program. After evaluating the overall P/A module load and thermal environment, critical design conditions were selected for each major structural component as summarized in figure 4.2-1. Only the bulkhead endures

maximum loading (main engine acoustic environment) at maximum temperatures (plume heating), requiring the use of a TPS for all concepts—on the booster

as well as the core P/A modules.

Structural Component	Thermal ① Environment	Structural Loads ①
Aeroshell	Reentry	Water impact upon splashdown
Thrust structure	Reentry	Launch loads (main engine start)
Bulkheads	Plume heating	Parachute deployment
56		Pressure (altitude and main engine start)

1 Do not occur simultaneously

Figure 4.2-1. Critical Design Conditions

For the structural materials considered, a set of design criteria consistent with ALS program philosophy and common aerospace practice was used, as shown in figure 4.2-2.

	Metals	Composites
Factor of safety	1.25	1.40
Failure criteria, tension	ultimate	ultimate
Failure criteria, compression	yield	4800με

Figure 4.2-2. Structural Materials Design Criteria

4.2.1 Thrust Structure Design Concepts

Primary emphasis was given to a truss design approach that would (1) spread the high main engine loads relatively far apart (to the expendable structure interface points) and (2) maintain good access (for operations and maintenance) to subsystems. Bolted joints provided capability of disassembly and individual strut replacement, as required. The thrust structure truss configuration is shown in figure 4.2-3. The outboard thrust wing members are most highly loaded. The geometry is defined by the aeroshell shape and the interface point locations.

Figure 4.2-3. Thrust Structure Truss Configuration

Initial truss concept definitions using various materials are qualitatively evaluated in figure 4.2-4. Filament-wound Gr/Ep tubes with titanium end fittings are lightweight but may be sensitive to impact damage. An all-welded titanium truss is low risk, but would weigh more than the Gr/Ep concept. An all-aluminum truss is also low risk, but is sensitive to corrosion in salt water. Metal-matrix composite (MMC) tube concepts are quite structurally efficient, but are higher risk and also are corrosion sensitive.

Strut Material	Joint Material	Relative Cost	Relative Weight	Relative Risk
Gr/Ep	Ti Ti	med low	low med	med low
7075-T6	7075-T6	low med	high med	lo w high
dSiC/Al SCS/Al	dSiC/Al Ti	high	low	high
Al-Li	7075-T6	med	med	med

Figure 4.2-4. Thrust Structure Truss Concepts Qualitative Analysis

Shear web thrust structure concepts were later added to the trade study for completeness including integrally stiffened (shear resistant and diagonal tension) and sandwich structure. Shear web concepts were not originally included because the point-to-point load paths seemed to favor truss concepts, and a P/A module systems analysis report (ref 1) indicated a preference for truss thrust structure for subsystem accessibility. For initial screening structural weights were estimated and compared for a single thrust wing as shown in figure 4.2-5. The only concept competitive with the truss concepts was a sandwich with high-shear-strength Ti facesheets and low-density Al honeycomb core (H/C).

Figure 4.2-5. Relative Weight Comparison for Shear-Panel Thrust Structure Concepts

The key detail of our Gr/Ep tube concept is the tube end fitting attachment concept shown in figure 4.2-6. The tube end attachment uses two-piece titanium fittings integrally wound onto the Gr/Ep tube for low cost and structural efficiency. The tube ends consist of two identical Ti investment castings terminating in a bolted interface. The two-piece construction was chosen to allow the halves to conform with the Gr/Ep. The spacing of the lugs and bolt holes would be controlled during winding or machined after curing.

Figure 4.2-6. Tube End Attachment (2-piece Ti ends integrally wound onto Gr/Ep tube)

A potentially low-risk option is an all-welded Ti truss. Conventional Ti tubing is used for struts or tapered struts superplasticity formed (SPF) from a smaller-diameter, thick-walled tube. SPF tubes provide the option of integral longitudinal stiffening. All struts are assembled to high-strength Ti 15-3-3-3 cast nodal fittings with matching circular flanges. Center line congruence is maintained at the nodal points to minimize local moments. Strut-to-fitting joints are automatically welded with tube welders that reduce stress and distortion. Stress relief is accomplished locally at the nodal points in ceramic holders with embedded nichrome heating elements. Positive pressure argon gas is pumped through the holder and down the length of the strut. An internal passage in the cast fittings supplies argon to the entire inside diameter of the assembly. Excess material is left on the surfaces at the interfaces. Light machining, using a laser reference system for location, completes the assembly.

A stress analysis was performed to size the truss tube members. The thrust structure was modeled as a space frame to determine load distribution in truss tube members. Detailed joint FEMs were not constructed and must be considered in any future truss definition. An optimization routine was coupled with ANSYS to reduce member weight where practical. Calculated weights for the thrust structure concepts are listed in section 4.2.4, because they are incorporated into the trade study through LCC analysis.

Using Gr/Ep, Ti, or SCS/Al tube members in the baseline truss structure configuration is a feasible approach to thrust structure design. Time limitations prevented full consideration of shear web thrust structure, which, in the highly loaded areas, may have cost benefits due to simpler construction.

4.2.2 Aeroshell Design Concepts

A potential LCC reduction stems from using common dome structure for both the core and booster P/A modules. For a common aeroshell scheme, the core module requires an ablative TPS to resist the high temperatures encountered during reentry from orbit, while passive approaches are feasible on the booster P/A module since the temperatures are lower. An aeroshell concept was defined to withstand the booster trajectory temperatures, but incorporate structural features permitting attachment of an ablative TPS for flight as a core P/A module aeroshell. This provides a common aeroshell structure between core and booster modules leading to lower fabrication and maintenance costs.

The aeroshell primary structural elements are shown in figure 4.2-7. Sandwich structure is an attractive approach due to the pressure loads encountered during reentry and especially splashdown. As

a point of reference, sandwich structure was used to support the heat shield of the Apollo capsule (ref 3).

Outer surface elements, the dome, and the sidewall have somewhat different environments. The dome is exposed to the highest temperatures during reentry and to the highest loads during landing or splashdown. Three access doors in the sidewall permit efficient servicing of the internal systems. The propellant line doors are required to permit routing the fuel lines efficiently from the tanks

to the main engines. Attachments to Figure 4.2-7. Overall Aeroshell Configuration, Elements, and Features

the aeroshell dome are designed to prevent water ingress. The interface between the expendable tank module structure and reusable P/A module occurs at six expendable fittings integral with the P/A module thrust structure and attach to hard points in the aeroshell. These exposed fittings are degraded during reentry and are replaced between flights. The thrust structure also is fastened to the aeroshell at eight interior fittings. There is no penetration of the sandwich in these locations. For non-water landings, airbags are incorporated between the structural shell and the TPS, which separates after reentry, eliminating the need for airbag doors in both the shell and TPS. Corner radii flats in the dome provide the volume required.

Graphite/Epoxy Aeroshell. The baseline aeroshell concept selected by the ALS project used Gr/Ep sandwich construction. Fabricating with Gr/Ep is well suited to conforming to the complex shape of the dome structure, and an experience base exists for building large structural components. Nevertheless, Gr/Ep cannot endure even the booster module reentry profile, and therefore requires a TPS on both booster and core modules. A preliminary assumption is that fabricating and replacing TPS shields contributes significantly to life cycle cost as well as increases system weight.

Graphite/Polyimide Aeroshell. The Gr/PIH/C sandwich concept is similar to the Gr/Ep approach, but requires no TPS to endure the booster reentry trajectory environment due to the high temperature capability of polyimide. This feature potentially lowers the operations cost because removal of the used TPS shell and replacement with a new one would not be required. The Gr/PI concept is illustrated in figure 4.2-8. The moderate heat conduction rate of the composite sandwich means that only the outer surface must have high temperature capability. Therefore, the inner surface is Gr/Ep for reduced fabrication cost and risk. It is bonded in place after the Gr/PI has been cured. Titanium honeycomb core is employed for durability over composite core material and to avoid corrosion between aluminum core and the graphite fibers. Blind inserts installed in a closed-cell foam-filled box stiffener provide triple-redundant protection against water ingestion into or through the sandwich.

Titanium Aeroshell. The titanium sandwich concept (fig. 4.2-12) features welded frame inserts with tapped holes at attachment locations for the external airbags. Circular inserts are embedded at the truss interface attachment locations. The access doors have the same stiffness as the shell and transfer pressure loads through structural panel fasteners on the outer face sheet. These fasteners are locked through small Allen-wrench holes in the TPS (see the section on Thermal Protection System below). The door is sealed with redundant pressurized bulb seals. A door frame limits deflections from splashdown around the door periphery. Similar seals can be applied to the doors in other aeroshell concepts.

The Gr/PI fabrication sequence is listed in figure 4.2-9 steps for inspection and panel joining have been included. Figure 4.2-10 shows a concept of the aeroshell dome tool and part in a 25-ft diameter autoclave demonstrating the feasibility of curing the dome in one piece if desired. Such facilities are

available at Boeing. Candidate materials are listed in figure 4.2-11. New formulations of high temperature resin matrix composites continue being developed and evaluated such as PMR-II (ref. 7), and may provide better performance.

- available at Boeing. Candidate materials 1. Layup exterior face sheet in female mold dome, sidewall panels.
 - 2. Bag and cure in autoclave: 200 psi max, 550-600°F max.
 - 3. Post cure in oven to 650-700°F.
 - 4. Inspect face sheet for delaminations, porosity.
 - 5. Apply high-temperature film adhesive to face sheet.
 - 6. Lay in honeycomb core segments; apply foaming adhesive at splices.
 - 7. Apply upper caul plate, bag, and cure at 600°F.
 - 8. Layup interior Gr/Ep face sheets over core.
 - 9. Bag and cure in autoclave at 50 psi, 350°F.
 - 10. Inspect bond lines.
 - 11. Join panels together mechanically and join to thrust structure.

Figure 4.2-9. Fabrication Scenerio for Gr/PI Honeycomb Sandwich P/A Module Aeroshell Structure.

SECTION VIEW AUTOCLAVE

Figure 4.2-10. Aeroshell Dome Bond Tool

Structural Component	Material	Supplier
Exterior face sheet	Celion 6000/PMR 15	BASF American Cyanamid Ferro
Honeycomb core	Ti, 0.003 foil, 0.375 cell, 4 pcf Glass/Pl, 4 pcf	Hexcel, Rohr Hexcel
Bonding adhesive	FM 35 FM 680 PT Resin	American Cyanamid American Cyanamid Allied-Signal / YLA
Interior face sheet	IM6/3501-6	
PI structural foam	Under development Fluorocore 3A3	Imi-Tech/ Ethyl Corp. Furon – Aerospace Comp. Div.
PI foaming adhesive	HT 424 Type II Phenolic Epoxy FM 30 Modified Polyimide	American Cyanamid American Cyanamid

Figure 4.2-11. Materials Available for Gr/PI Aeroshell.

(

DETAIL LANG

	•	

The second secon

-- BULKHEAD

ACCESS DOOR & PANEL 36 II-6AL-4V DUTER SKIN 04 TI-6AL-4V INHER SKIN 290 II-3AL-25V FORE 3 PLACES

TETAIL a-G

ORIGINAL PAGE IS OF POOR QUALITY

omputer generated arawing 31

Figure 4.2-12. Titanium Aeroshell

(32 reverse page is blank)

FOLDOUT FRAME

IS TY

	-	

Two candidate fabrication approaches were defined, as outlined in figure 4.2-13, based on discussions with ASTECH Division of Alcoa/TRE (ref. 4), published reports prepared by Rohr Industries, Inc. (refs. 5, 6) and Boeing inhouse capability. In approach A, the sandwich panels are built up in the required shapes with brazing or liquid interface diffusion (LID) bonding. Potential fabricators include Rohr and Aeronca. In approach B, flat panels are fabricated by resistance welding, then diffusion bonding (DB) the core to the face sheets.

A potential fabricator is Astech. In both approaches, contoured subpanels are welded together into the final aeroshell configuration. Candidate materials are listed in figure 4.2-14.

Concept A

- 1. Cut and hot form skin segments to required contours.
- Extrude/machine panel edge members and fittings.
- 3. Prepare skin surfaces and core for LID bonding or brazing clean
 - plate with braze alloy.
- 4. Assemble segments in steel tooling.
- 5. LID bond or braze contoured panel segments.
- 6. Drill and weld-in inserts for attachments.
- 7. Weld panel segments into complete aeroshell structure.
- 8. Inspect welds.
- 9. Join aeroshell to thrust structure.

Concept B

- 1. Fabricate preform panels
 - resistance weld skins to core
 - diffusion bond at resistance welds in vacuum furnace.
- 2. Extrude/machine door and frame fittings.
- 3. Creep form panels to required contours.
- 4. Trim preform panels to shape.
- 5. Drill and weld-in inserts for attachments.
- 6. Weld panel segments into complete aeroshell structure.
- 7. Inspect welds.
- 8. Join aeroshell to thrust structure.

Figure 4.2-13. Fabrication Scenerios For Titanium Honeycomb Sandwich P/A Module Aeroshell Structure.

Structure	Material	Fabrication Process
Dome face sheets	Ti-6AI-4V	1) Hot form (concept A) 2) Creep form (concept B)
Side wall face sheets	Ti-6Al-4V	1) Hot form (concept A) 2) Creep form (concept B)
Dome honeycomb core	Ti-3Al-2.5V 4-8 lb/ft ³	 Braze to face sheets Diffusion bond to face sheets
Sidewall honeycomb core	Ti-3Al-2.5V 4 lb/ft ³	 Braze to face sheets Diffusion bond to face sheets

Figure 4.2-14. Candidate Materials For Titanium Aeroshell

High Temperature Aluminum Aeroshell. After completing preliminary designs and cost analyses of the Gr/PI and Ti aeroshell concepts, additional benefits of employing HTA alloys became apparent. The defined concept, illustrated in figure 4.2-15, combines the most attractive attributes of the Gr/PI and Ti aeroshells. Specific materials incorporated are listed in figure 4.2-16. FVS 1212 alloy has superior properties also, but is harder to work than 8009 alloy (FVS 0812). FVS 1212 is specified for the dome cap because it appears to be spin formable in the required size. The more severe compound contours at the shoulder require the more workable 8009 which can be stretch formed cold. Stretch forming cold is expected to incur no spring-back, which simplifies tool design and fabrication.

This page intentionally left blank

	· · · · · · · · · · · · · · · · · · ·

• ;

BMI FOAMS-2 PLACED - ALT475-T6 EXTRUSION No green and the B 71.0:012 - BMI FIBAM ta at 115 4 PESITAWOL URUL WASER WEUD Section 18 1241 - 1244 L FMI AIRESILE P ORIGINAL PAGE IS ORIGINAL PAGE IS

FOLDOUT FRAME

OF POOR QUALITY

OF POOR QUALITY

-

FOLDOUT FRAME

|--|

ORIGINAL PAGE IS OF POOR QUALITY

<u></u>		

FOLDOUT FRAME

Figure 4.2-15. High-Temperature Aluminum Aeroshell 35 (36 reverse page is blank)

Structure	Material	Supplier	Fabrication Process
Dome cap face sheets	1) FVS 1212	Allied Signal	Spin form
Dome and shoulder face sheets	1) 8009 Al	Allied Signal	Stretch form cold
Side wall face sheets	1) FVS 1212	Allied Signal	Bonded in place to required contour
High-temperature adhesive	1) FM35 2) PT resin 3) FM 680	American Cyanamide Allied Signal/YLA,Inc. American Cyanamide	Cure at 600°F Cure at 300°F Cure at 600°F
Honeycomb core	1) 5000 Al resistance welded 2) 8009 Al resistance welded 0.002 foil, 0.1875 cell 3) Ti-3-2-2.5 0.002 foil, 0.1875 cell	Allied Signal/TI/Rohr	Bond at 300°F Bond at 600°F

Figure 4.2-16. Candidate Materials for High-Temperature Aluminum Aeroshell

The side walls, although cooler than the dome, are cylindrical shaped and can therefore employ the higher strength of the FVS 1212 material. The honeycomb sandwich is structurally bonded because fusion welding and brazing techniques do not yet look promising for these alloys. Bonding also allows fabricating large sandwich panels in a single autoclave run, thereby reducing joining requirements. A detail of the splice joint between face sheet panels is shown in figure 4.2-17. Splice plates provide load continuity, but are bonded about 1 in from the butted face sheet edges so the nonstructural seal weld does not degrade the bond. A thermal analysis indicates the temperatures listed in the figure. The welds are used only to maintain a water tight seal in the outer face sheet. Shear stress due to weld shrinkage is expected to be insignificant.

Figure 4.2-17. High Temperature Aluminum Face Sheet Splice Concept Thermal and Stress Analysis Results

A HTA alloy is desired for the honeycomb core because a conventional aluminum core would be annealed to low strength during the time at bonding temperatures. The higher thermal conductivity of aluminum makes it a better core material than titanium for this concept because it conducts heat away from the external face sheet better, keeping the external temperature within material limits. HTA honeycomb core is under development. We understand Allied-Signal is supplying Texas Instruments with material for rolling into foil down to 2 mils thick, which is then formed and resistance welded into core at Rohr Industries.

Propellant line door frames in the dome will be 8009 Al for its thermal capability and so it can be bonded with high-temperature adhesives. Door frames in the sidewalls, which are cooler, will be 7475 Al which can be superplastic formable from sheet for reduced cost and bonded in place with bismaleimide (BMI) adhesive at a lower cure temperature for further cost reduction.

Several candidate bonding adhesives are listed in figure 4.2-16. The PT resin has the benefit of curing at a lower temperature than the others but achieves similar glass transition temperature (Tg) values. This resin is in development, but research quantities are expected to be available. FM 680 is a well established polyimide adhesive.

Dome

- 1. Spin form center section skins.
- 2. Stretch-form gore skins.
- 3. Stretch-form splice plates and attachment members.
- 4. Machine interface fittings.
- 5. Prefit external skin details in Bonding Assembly Jig (BAJ).
- 6. Trim core (use flex or pro-clastic cell design).
- 7. Clean, phosphoric acid anodize, and prime details with BR680 and bake at 400°F.
- Install bleeder system and bag.
- 9. Bond using FM680-1 adhesive and FM30 foam at full vacuum, 100 psi, ramping temperature to 600°F.
- 10. Remove bugging and prefit inner skin details.
- 11. Clean, prime with BMI primer and bake details.
- 12. Assemble inner skin details and bag.
- 13. Bond using BMI adhesive at full vacuum.
- 14. Remove bagging and release from BAJ.
- 15. Inspect bonded structure with TTU and selected areas with other NDE methods.
- 16. Scrape skin-splice gaps and seal-weld.
- 17. Penetrant inspect welds.

Sidewall Door Panels

- 1. Weld door frames and superplastic form.
- 2. Prefit details (Note: Skins drape-form) and trim core.
- 3. Clean, phosphoric anodize, prime with BMI primer and bake.
- 4. Fill edge members with P.I. foam and cure.
- 5. Assemble all details, bond with BMI adhesive (single stage).
- 6. NDE with TTU.

Side Panels W/O Doors

- 1. Stretch edge members.
- 2. Prefit details and trim core.
- 3. Clean, anodize, prime and bake (BMI).
- 4. Assemble, bond (BMI) (single stage).
- 5. NDE with TTU.

Mechanical Assembly

- 1. Position aeroshell dome (dome up) in fixture.
- 2. Raise door panels into position, drill and bolt splice plates using drill jig.
- 3. Install inter-panels similarly.
- Proceed with P.A. module assembly from same orientation.

Figure 4.2-18. High Temperature Aluminum Fabrication Scenario.

Aeroshell Stress Analysis. An FEM was composed in ANSYS for the aeroshell, which was then integrated with the thrust structure and bulkhead FEMs to obtain a complex three-dimensional representation of the P/A module structure having 11,064 degrees of freedom and 2122 elements. Masses representing subsystems, such as the main engines, were added to this integrated model enabling complete definition of stresses in the aeroshell.

Because the critical loading on the aeroshell structure occurs during splashdown, we concentrated our analysis efforts there. Water impact presents a nonlinear, dynamic condition, which we addressed using steady-state, static analysis techniques. This is considered conservative, but should be reevaluated as ALS program P/A module water drop tests proceed. Figure 4.2-19 depicts the load application for the FEM. The ANSYS FEM code does not have free-body modeling ca-

pabilities, therefore masses and accelerations were included in the model to reduce the reaction forces at the constraint points. This enabled the simulation of an instantaneous free-body impact.

The FEM representation is shown in figure 4.2-20 along with locations of maximum deflection, strain, and stress for the two primary load conditions. Splashdown loads require adequate support of the aeroshell by the thrust structure, but does result in deflections (exaggerated in the figure) that can be confined to a local area at the center of the pressure distribution. Detailed FEM stress analysis results are summarized in figure 4.2-21. Should the impact point, (i.e., the center of pressure location) change within several degrees of impact angle, similar stresses, strains, and deflections are expected.

Figure 4.2-20. Aeroshell Locations of Maximum Stress, Strain, and Deflection

Results From or Scaled From Finite Element Model

Aeroshell dome concept	Maximum Tension, ksi	Maximum Compression, ksi
Gr/PI sandwich,	19.4 [2942 με] (inner)	29.1 [4162 με] (inner)
0.10 in. face sheets	18.3 [2346 με] (outer)	51.4 [5650 με] (outer)
Ti sandwich,	38.8 (inner)	58.2 (inner)
0.05 in. face sheets	36.6 (outer)	102.8 (outer)
Hi-temp Al sandwich, 0.13	14.9 (inner)	22.4 (inner)
in. face sheets	14.1 (outer)	39.5 (outer)

Final Aeroshell Face Sheet Thicknesses

Figure 4.2-21. Aeroshell FEM Analysis Results and Face Sheet Sizing Summary.

Aeroshell dome face sheet thicknesses are sized for the water impact loads, while those for the sidewall are close to minimum gage. In general, H/C sandwich thickness (approximately 3-in) is sized by deflection limitations to preclude aeroshell buckling and to protect internal equipment. Additional sandwich face sheet thickness in the areas of high stress or strain are required, which affects relative weights of all concepts approximately equally. However, locally increasing outer face sheet thicknesses may not be cost effective; therefore, we recommend other design solutions be pursued such as providing additional thrust structure support points for the aeroshell.

Thermal Analysis. Thermal analyses were conducted with the Boeing-developed Convection Heating and Ablation Program (CHAP). It is a one-dimensional thermal analyzer which automatically accounts for aerodynamic heating using a given flight profile. Thermal analysis accounts for ablation, structural gaps, energy absorption, radiation, and convection. The boundary layer analysis is coupled with the thermal response analysis to account for wall temperature influence on heat transfer coefficients. Analysis results, such as erosion rates and structural temperatures at surfaces and interfaces, were used to aid aeroshell TPS and structure sizing.

Diagrams of the thermal models are shown in figure 4.2-22. The Ti sandwich was analyzed with both single and multi node 1-D CHAP models to determine if Ti thermal conductivity affected inner and outer face sheet temperatures. Results showed no significant differences. Since Al has a higher thermal conductivity than Ti, the single node approach was also used for analyzing HTA concepts also. The multi node Gr/PI model did identify a lower temperature on the inside of the outer face sheet. A 2-D model of the 44-in radius area of the Ti aeroshell dome, the area experiencing stagnated flow, was used to

identify possible effects of inplane conduction away from the stagnation zone. Results also showed no significant differences between the 1-D and 2-D models throughout the 330 second trajectory.

Figure 4.2-22. Thermal Analysis Model For ALS P/A Module Aeroshell at Stagnation Point (see figure 4.1-8)

Temperature plots for the booster P/A module titanium, Gr/PI, and HTA aeroshell sandwich structure concepts are shown in figure 4.2-23. Outer face sheet temperatures peak near 900°F for Ti and 750°F, for Gr/PI, but remain above 600°F for less than 1.5 min per flight for these concepts. Outer surface temperatures (at point A) are sensitive to face sheet thicknesses; thicker sandwich face sheets result in lower temperatures. Although Ti and Gr/PI sandwich face sheet thicknesses are primarily driven by the splashdown loads, increasing the face sheet thickness in the areas of highest temperature can reduce temperatures there. Figure 4.2-24 provides an indication of the areas experiencing the peak temperatures (the stagnation point) for one aeroshell dome configuration. Just slightly off the stagnation point the temperature falls by 60°F, and at the base of the flat sidewall falls by over 370°F to 480°F. For the Ti

sandwich aeroshell the maximum structural temperature could be reduced by increasing the outer face sheet thickness in a limited area, thereby avoiding a significant weight penalty. (Note that these temperatures may vary slightly from other temperatures reported for the Ti aeroshell due to adjustments made in the trajectory. These adjustments do not significantly change conclusions.)

Figure 4.2-23. Booster Aeroshell Sandwich Temperatures From 1 -Dimensional Thermal Analysis

Figure 4.2-24. Maximum Titanium Surface Temperatures During Booster P/A Module Reentry at 10-deg Angle of Attack.

The HTA concept (8009 Al) depends on the outer face sheet thickness and conduction of the honeycomb core to maintain temperatures below 600°F, near the upper limit of a short-term service temperature. The dome door frames, locations B and C in the 8009 Al diagram, are at lower temperatures due to their thermal mass.

Aeroshell Thermal Protection System. For the core P/A module, an attachment clamp secures the replaceable TPS ablator shell onto the dome. For the booster, the TPS is not required; instead, a fairing maintains an aerodynamic surface at the joint. The TPS is designed for simple replacement on the core vehicle. TPS on the dome is in a single piece consisting of cork/phenolic ablative material bonded to a composite substrate. The substrate is stretched over the dome and fastened to an annular ring on the structure with a marmon clamp. This clamp is ejected after reentry allowing the TPS to separate. Five pieces of sidewall TPS are held similarly by clamps and are stretched around the cylindrical surface. These clamps are released during maintenance operations when new interchangeable TPS panels are installed. A concept for securing the TPS at the sidewall access doors is shown in figure 4.2-25. Access for the door closure fasteners are through the ablator; the holes are filled with a trowelable ablator after securing the door.

Figure 4.2-25. Aeroshell Door Seal Concept Showing TPS Attachment.

Figure 4.2-26 contains rationale for TPS material selection. Due to the severe reentry environment experienced by the core P/A module, cork/phenolic may be the best choice for the core TPS; although it is not optimum from a manufacturing cost perspective. The other TPS candidates are applicable to the booster aeroshell should it require protection as would the Gr/Ep concept. A test program is required to determine if low density Silastic-E is usable on the core vehicle.

Description	Benefit/Rationale	Application
Cork Phenolic (bonded on substrate in layers)	 High shear resistance at temperature Known performance Best combination of insulation and ablative properties at high temperature Durable 	Core
Filled Silicone - MA25S (sprayable) MA25T (trowelable)	 Low shear resistance (maybe to low for core) Development required forcore application Fabrication advantage (sprayable) Shear erosion not known Sole source: expensive 	Booster
Filled Epoxy - MSA-2 (sprayable)	 Development required for this application Fabrication advantage Test data available: relatively inexpensive to model 	Booster
Low-Density Silastic-E (microballoon filled)	 Development required for this application Fabrication advantage Some test data available: relatively inexpensive to model Test program required 	Core/Booster

Figure 4.2-26. Aeroshell TPS Materials

Aeroshell Weights. Detailed weight estimates were made keyed to the indentured parts lists developed for the concept manufacturing plans (discussed in sec. 4.2.4.2). These weight statements are included in Appendix C, and the results are used in the life cycle costing analysis.

4.2.3 Aft Bulkhead Design Concepts

System definition studies (ref. 1) have called for a flat bulkhead which supports subsystems, parachutes, OMS engines, main engine gimbal boots, and contains cutouts for main engines as illustrated

in figure 4.2-27. Primary structural attachments include the joint to the aeroshell and crossing beams. Nine structural concepts were defined and preliminarily sized (as shown in Appendix B) for loads due to differential pressure of 1 psi, OMS engines thrust against the support beams, and parachute deployment. Four structural concepts were studied in additional detail: (1) formed corrugated aluminum, (2) bonded aluminum H/C sandwich, (3) superplasticity formed and laser-welded aluminum-lithium (Al-Li) truss-core sandwich, and (4) bonded

Figure 4.2-27. Bulkhead Geometry and Features

Gr/Ep H/C sandwich. Potential TPS/
insulation concepts required due to
plume heating are shown in figure
4.2-28. The Fiberfrax HSA alumina-silica fiber insulation system
from Standard Oil Engineered Materials was selected for the thermal
analysis to ensure an insulation was
available that could protect the
bulkhead from the main engine
plume heating. This is verified in

TPS/Insulation Description	Density, pcf	Conductivity at 1000°F, BTU in/hr ft ² °F	Selection Criteria
Protecal (Bronzavia Aeronautique) Quartz wool between metal sheets (stainless or Ti)	3.6	0.56	Durable due to metallic face sheets
Q-Fiber Felt (Manville) Silica fiber (SiO2); continuous temperatures to 1800° F	6	0.60	Unaffected by moisture
Fiberfrax HSA Paper (Standard Oil) continuous temperatures to 2300° F	8	0.50	Good vibration resistance
Fiberform/Microform (Boeing); continuous temperatures to 2000° F	10-24	xx	Potential for low cost

Figure 4.2-28. Bulkhead TPS and Insulation Alternatives

the Thermal Analysis section that follows.

Stress Analysis. A two-dimensional representation was used for the bulkhead FEM. Both differential pressure and parachute deployment loads, shown in figure 4.1-5, were evaluated. Out-of-plane deflections due to differential pressure were restricted to 1 in, and disctated the required bulkhead stiffness.

Thermal Analysis. A one-dimensional thermal analysis, illustrated in figure 4.2-29, showed that 0.50 in of HSA paper insulation maintains a Gr/Ep bulkhead below 200°F during main engine thrust. This is sufficient to maintain all the materials under consideration below their maximum operating temperature. Approximately 330 ft² is required to cover the bulkhead, representing approximately 110 lb of HSA paper (0.33 lb/ft²), not counting mounting hardware. Two of the other insulations listed in figure 4.2-29 could total less weight if used.

Figure 4.2-29. Temperature Profiles of Aft Bulkhead Structure Protected With HCA Paper TPS

The above design concepts for P/A module structure conform to the preliminary requirements, and provide a basis for further analysis, design definition, and development.

4.2.4 Cost Analysis

A flow chart for the cost analysis approach is shown in figure 4.2-30. This procedure proceeds from the structural concept definition, through a manufacturing cost assessment using historic cost data when relevant and available, and finally into a defined LCC model incorporating factors of learning curve, time value of money, and cost/weight trade-off. The explicit cost estimates are combined with weight factors to define a figure of merit, the LCC. The LCC can be used to compare concepts, but should not be used to estimate a development program or ultimate hardware costs.

Figure 4.2-30. Manufacturing and Cost Analysis Procedure

Manufacturing Costs and Quality Assurance. Detailed manufacturing costs were estimated using a bottoms-up cost procedure which proceeds from the individual structural elements and fabrication steps, and builds up to the complete structure as follows. Each structural concept was broken down into components with an indentured parts list. This served as a framework for a detailed manufacturing process breakdown which accounted for: materials, tooling, numerically controlled (NC) machine programming, and labor.

Using process standards and judgement (standards are often lacking for innovative concepts) costs (recurring and non-recurring) were developed for the 100th unit representing a fairly mature operation. The 30th unit and theoretical first unit (TFU) costs were calculated by applying an inverse learning curve (fig. 4.2-31) to the 100th unit cost. Figure 4.2-32 shows a relative cost breakdown for 30 thrust structure ship sets.

Figure 4.2-31. Cost Estimating Learning Curve

30 ship sets; 85 percent learning curve applies only to recurring and sustaining costs.

Figure 4.2-32. Relative Cost Breakdown for Thrust Structure

Strut end fittings are a substantial portion of the total cost for each concept. The expected high cost of SCS/Al tubes results in high material costs for that concept. This analysis indicates thrust structure cost will benefit most from developing better designs and fabrication techniques for the titanium fittings. Revising the designs to incorporate shear web thrust wings (fig. 4.2-5) could be a strategy for reducing the fitting cost. Time limitations prevented study of this approach.

Due to the large size and complexity of the aeroshell, cost estimates were obtained from Rohr Industries, Inc., ASTECH Division of ALCOA/TRE, Aeronca, Inc., and BP Chemicals (HITCO Inc.) for the Ti and Gr/PI honeycomb sandwich concepts. Each company worked from the design drawings revised to accommodate their favored fabrication approach. These custom revisions were not significant to the stress or thermal analysis, and for all operational purposes can be considered equivalent.

Quality assurance (QA) provisions were addressed during manufacturing concept and plan development to ensure that concepts were easy to inspect to reduce impact on schedule and costs. Specifically, QA concerns for concept critical details were developed, along with methods to minimize or eliminate the concern, as shown in figure 4.2-33 for the thrust structure concepts. Provisions for standard QA are included in the recurring costs.

Concept	Critical Detail	Concern	QA Method	Advanced Method
Gr/Ep tube	Tubes	Tube wall consolidation, integrity, and nonvisible impact damage	Automated pulse-echo ultrasonics on completed tube	Monitor AE during tube cure and cool down
Ti fittings	Tube/fitting bond	Bond line integrity	Pulse-echo ultrasonics on completed bond	Monitor AE during bond cure and cool down Monitor AE during proof loading
All Titanium	Fitting casting	Cracking	X-ray radiography. Dye penetrant	-
	Joint integrity	Welds	Eddy current Ultrasonics	Monitor AE during welding . Monitor AE during proof loading
SCS/6061	Tubes	Fiber-matrix bonding; dimensions	X-ray radiography Ultrasonics	Monitor AE during proof loading
w/ Ti fittings	Bolted fitting attachment	Fastener alignment	X-ray radiography	
All 7075 aluminum	Tube/fitting bond	Bond line integrity	Pulse-echo ultrasonics on completed bond	Monitor AE during bond cure and cool down. Monitor AE during proof loading
Ali	Tubes	Quality of extruded tube material	Automated pulse-echo ultrasonics on completed tube	
dSiC/6061	Tube/fitting bond	Tube to fitting attachment	Pulse-echo ultrasonics on completed bond	

Acoustic Emission (AE) will not detect lack of adhesion, improper wetting, or lack of epoxy All bond joints prefered over bolted and bonded joints when employing AE Flat tube sides prefered for ultrasonic inspection

Figure 4.2-33. Thrust Structure Quality Assurance Summary

Life-Cycle Cost Analysis. LCC analyses were conducted to assess the system effects of cost and performance variations in the design concepts. The structural concept options were evaluated based on their benefit to launch system LCC. Because a full launch-system cost analysis is not only very costly, but not necessary for this study, our analysis is incremental. System LCC sensitivities (cost model factors) were calculated from the system LCC model. Weight enters as a debit to the cost estimates (i.e., structural weight higher than the reference configuration incurs an increased cost; structural weight lower than the reference configuration incurs a reduced cost). The cost and weight (mass) estimates for the structural concepts result in LCC differentials from the reference configuration (i.e., a delta LCC). For comparison purposes, the delta LCCs (differences between the concept LCC and the reference configuration) are the significant result, not the absolute LCC values derived.

The process for calculating LCC, outlined in figure 4.2-34, can be performed on a desktop computer spreadsheet. Elements in shaded boxes represent data calculated or estimated during structural concept definition. Elements in rounded boxes are model factors, and represent assumptions based on launch-system economics. Therefore, LCC results depend on cost and weight estimates for each structural concept compared, and on the LCC model factors assumed. These factors are:

Recurring cost:weight ratio: break-even between cost of hardware and resulting mass saved; numerically determined partial derivative calculated from the mission model for the entire launch system.

<u>Design</u>, <u>development</u>, <u>test</u>, <u>and evaluation</u> (<u>DDT&E</u>) <u>cost:weight ratio</u>: breakeven between cost of development and resulting mass saved; numerically determined partial derivative calculated from the mission model for the entire launch system.

Reusable hardware (H/W) ratio: number of times hardware is reused.

<u>Units/flight adjustment</u>: number of common structures on the launch vehicle determined from the ALS mission model (2 or more P/A modules fly on each launch).

Flight rate adjustment: number of flights in the mission model.

<u>Discount factors</u>: the time value of money; near term costs (non-recurring) are weighted higher than far term costs (recurring).

Figure 4.2-34. Procedure for Calculating Delta LCC.

Material, fabrication, and tooling costs are taken from the bottoms-up cost analyses. To determine values for DDT&E and maintenance costs, reference values are taken from ALS parametric cost models and subjectively adjusted for the attributes of the structural concepts. Reference DDT&E costs are based on such inputs as expected weight, complexity, and technical maturity. Then deltas are subjectively estimated from the reference values. For instance, due to their complexity, composite material concepts are typically allocated greater DDT&E and maintenance costs than monolithic materials. Since estimating DDT&E costs is typically more difficult than estimating fabrication costs, using parametric values is most efficient and appropriate approach for this study.

In general, the results of LCC analysis are relatively insensitive to the model factors such as learning curve and discount factors (e.g., the relative rankings of the concepts by LCC does not change). Notable exceptions are the cost: weight ratios, because the greater the premium on reducing mass, the more one

is willing to pay in development and fabrication costs. Nevertheless, cost-to-weight ratios within ±50% of their baseline values produce similar concept rankings. For example, the thrust structure LCC (and discounted LCC) is sensitive to reusability involving fewer than 10 reuse cycles (flights), as shown in figure 4.2-35. Fewer reuse cycles implies more modules produced. Above 10 reuse cycles the LCC benefits of reusability flattens as the fixed costs dominate the total costs.

Figure 4.2-35. Reuse Sensitivity of Discounted LCC for Welded Titanium Truss Thrust Structure

Life Cycle Cost Results. Trade study sum-

maries based on LCC for the thrust structure, aeroshell, and bulkhead are shown in figures 4.2-36 through -38 respectively. The cost model factors listed above the tabulations on the figures are consistent across all concepts. The cost analysis tabulations show the theoretical first unit (TFU) cost components, DDT&E and maintenance allocations, and recurring and non-recurring cost summaries. The LCC and discounted LCC results are listed below the tabulated cost elements along with the LCC deltas from the reference concept. Below the matrix, a bar chart is included for visualizing the cost tabulation breakdown.

The dominant cost component for the thrust structure (fig. 4.2-36) is DDT&E which reflects the expected configuration and component complexity assumed in the ALS parametric cost model. Fabrication cost drivers include the high part count (tubes, fittings, and joints); joint complexity; use of multiple/dissimilar materials in the composite concepts; and welding restraint tooling required in the Ti concept. Nevertheless, the LCC and discounted LCC are virtually indistinguishable among these concepts. The additional SCS/Al tube cost, over the Ti and Gr/Ep concepts, is offset by the reduced weight.

Number produced	32
Number of flights	25
Maint learning curve	85%
Discount rate	10%
\$ per refurb hour	100

Cost Model Factors (from miss	ion model)
Recurring cost : weight	150
Fixed cost : weight	14000
Reusable hardware ratio	0.04
Units / flight adjustment	2.5065
Flight rate adjustment	310
Recurring discount factor	0.2424
Nonrecurring discount factor	0.535

Cost Analysis Matrix for Thrust Structure (\$M)

OUSL Allalysis illa	(11X 101 11110	31 01.0010.0	(Ψ)
	Ref	Concept	Concept
	Welded Ti	SCS/AI	Gr/Ep
Learning curve	85%	85%	85%
Weight (lb)	1351	1176	1246
Delta weight	0	-175	-105
DDT&E	18.0	27.0	23.0
Tooling	4.9	3.2	4.3
Debit for weight	0.0	-2.5	-1.5
Total non-recurring cost	22.9	27.8	25.8
TFU - material	0.01	0.18	0.02
TFU - fabrication	1.0	0.9	1.0
TFU - maint per flight (hr)	25.0	100.0	100.0
Material	0.3	5.7	0.5
Fabrication	18.5	16.7	18.6
Maintenance	0.5	2.1	2.1
Debit for weight	0.0	-8.1	-4.9
Total recurring cost	19.3	16.5	16.3
LCC (\$M)	42.2	44.2	42.1
Discounted LCC (\$M)	16.9	18.8	17.8
Delta LCC (\$M)	0.0	2.0	-0.1
Delta Disc. LCC (\$M)	0.0	1.9	0.8
• • •			

Figure 4.2-36. Thrust Structure Cost Breakdown and LCC Analysis

The LCC summary for the aeroshell concepts is shown in figure 4.2-37. A total of eight cost estimates are included. Four are Boeing estimates developed by the above described procedure, including the Ref Welded Ti concept in the left hand column. The Boeing Gr/PI summary includes the cost of fabricating individual dome and three sidewall panels, then joining them mechanically. In addition, the material and fabrication TFU values have been increased 25% over manufacturing estimated values to reflect a potential scrap rate. For the vendor estimates, no additional factors were applied. Fabrication is the dominant cost component for the aeroshell due to its large size and complex contours. The aeroshell cost bar chart shows averaged values for the Ti and Gr/PI concepts.

The dominant cost component for the bulkhead (fig. 4.2-38) results from the potential for large weight savings and associated LCC savings. Tooling and DDT&E costs are relatively low for the bulkhead because it is a relatively simple component being flat and having few difficult joints.

4.2.5 Concept Scoring and Ranking

Concepts developed for each of the major structural components were cost estimated and weighed, and their relative impact on LCC was determined. Concept scoring and ranking is based on LCC relative impact, as this takes into account concept mass, DDT&E costs, fabrication costs, and maintenance costs. Concept attributes for the thrust structure, aeroshell, and bulkhead are summarized in figures 4.2-39, -40, and -41, respectively. Included are advantages and disadvantages, and technology validation requirements identified for each.

The discounted LCCs for the thrust structure concepts (fig. 4.2-39) are very close. An all-Ti thrust structure was originally conceived as a low-cost, robust approach due to expected lower development costs, and most joints could be welded. Our manufacturing analysis showed that the size of this structure creates difficulties during stress relief of large subassemblies. Since it is not yet clear that the high durability of the welded Ti joints is significant, bonded joints could reduce LCC and still exploit the low cost and low risk features of Ti. The composite tube concepts have a higher expected DDT&E cost due to unknowns in such details as developing effective joints. Nevertheless, the expected weight benefit of high performance composite materials overshadows potential high material costs. Most of the thrust structure cost is in the joints.

TRADE STUDY COST EVALUATOR — Common P/A Module

Number produced	32	Exchange ratio matrix (from mission model)	on model)
Number of flights	52	Recurring cost : weight	150
Refurb learning curve	85%	Fixed cost : weight	14000
Discount rate	10%	Reusable hardware ratio	0.04
\$ per refurb hour	100	Units / flight adjustment	2.5065
		Flight rate adjustment	310
		Recurring discount factor	0.2424
		Nonrecurring discount factor	0.535

Ξ	l
Sell (\$	
c for Aeroshell	
₫	
ysis Matrix	
/sis	
Anal	
Cost Analysis	

	Ref	Roeina	ASTECH	HTCO	BOHB	Apronos Ti	Booing	Booing
	Welded Ti	Gr/PI	ij	Gr/P!	<u>a</u> /2	= 3000 -	J. (1)	Hi-Temp Al
Learning curve	85%	85%	85%	85%	85%	85%	85%	85%
Weight (Ib)	3950	3820	4940	3820	3820	5038	5820	4634
nt	0	-130	066	-130	-130	1088	1870	684
	12.0	14.0	12.0	14.0	14.0	12.0	12.0	13.0
Tooling	6.2	2.1	4.0	3.2	3.7	7.5	1.4	1.4
weight	0.0	-1.8	13.9	-1.8	-1.8	15.2	26.2	9.6
Total non-recurring cost	18.2	14.3	29.9	15.4	15.9	34.7	39.6	24.0
TFU - material	2.38	0.22	1.60	0.20	0.20	0.35	0.14	0.35
TFU - fabrication	1.01	5.04	1.80	1.10	2.00	4.65	1.20	1.20
TFU - refurb per flight (hr)	120.0	150.0	120.0	150.0	150.0	120.0	250.0	130.0
Material	76.2	6.9	51.2	6.4	6.4	11.2	4.5	11.2
	18.1	36.7	32.4	19.8	36.0	83.7	21.6	21.6
Refurbishment	5.6	3.2	2.6	3.2	3.2	2.6	5.3	2.8
Debit for weight	0.0	-6.0	46.0	-6.0	-6.0	50.6	87.0	31.8
Total recurring cost	6.96	40.7	132.2	23.3	39.5	148.0	118.3	67.4
	. !	,						
CC (\$M)	115.1	22.0	162.0	38.7	55.4	182.8	157.9	91.3
Discounted LCC (\$M)	33.2	17.5	48.0	13.9	18.1	54.5	49.9	29.2
Delta LCC (\$M)	0.0	-60.1	47.0	-76.3	-59.6	67.7	42.9	-23.7
Delta Disc. LCC (\$M)	0.0	-15.7	14.8	-19.3	-15.1	21.3	16.7	4.

Figure 4.2-37. Aeroshell Cost Breakdown and LCC Analysis (sheet 1 of 2)

Figure 4.2-37. Aeroshell Cost Breakdown and LCC Analysis (sheet 2 of 2)

Number produced	32
Number of flights	25
Maint learning curve	85%
Discount rate	10%
\$ per refurb hour	100

Cost Model Factors (from mission	modell
	IIIOGEI/
Recurring cost: weight	150
Fixed cost : weight	14000
Reusable hardware ratio	0.04
Units / flight adjustment	2.5065
Flight rate adjustment	310
Recurring discount factor	0.2424
Nonrecurring discount factor	0.535

Cost Analysis Matrix for Bulkhead (\$M)

Oost Analysis	J Matrix 101 t	Santilodd (yn	·· <i>y</i>
	Ref	Aluminum	Aluminum
	Gr/Ep	Corrugation	Sandwich
Learning curve	85%	85%	85%
Weight (lb)	565	859	899
Delta weight	0	294	334
DDT&E	9.4	4.0	5.0
Tooling	2.0	1.7	1.8
Debit for weight	0.0	4.1	4.7
Total nonrecurring cost	11.4	9.8	11.5
TFU - material	0.04	0.02	0.02
TFU - fabrication	0.6	0.5	0.6
TFU - maint per flight (hr)	20.0	4.0	4.0
Material	1.4	0.6	0.5
Fabrication	10.8	8.4	11.3
Maintenance	0.4	0.1	0.1
Debit for weight	0.0	13.7	15.5
Total recurring cost	12.7	22.8	27.4
LCC (\$M)	24.1	32.6	38.8
Discounted LCC (\$M)	9.2	10.8	12.8
Delta LCC (\$M)	0.0	8.5	14.7
Delta Disc. LCC (\$M)	0.0	1.6	3.6

Figure 4.2-38. Bulkhead Cost Breakdown and LCC Analysis

Concept	Advantages	Disadvantages	Technology Validation Requirements	Disc LCC
All Titanium All welded subassemblies (thrust wings and inter truss) bolted together in final assembly.	Corrosion-resistant. Maintains high welded strength.	Weight penalty. Must prevent distortion during welding.	Validate acceptance parameters for automated Class B or C welds.	16.9
Gr/Ep tubes; Ti joints Filament wound strut tubes; Ti end fittings integrally wound; bolted final assembly.	Corrosion resistant materials. Hi-temp metals are alternatives. Low risk fabrication approach.	Fitting attachment development required. Damage tolerance concerns.	Validate low-cost integrally wound end joint concept. Develop investment cast fittings fabricated from dSiC/Al. Validate damage tolerance.	18.8
SCS/Al tubes: Ti joints Pultruded strut tubes bonded and bolted to Ti end fittings; bolted final assembly.	1. Low weight tubes.	1. Availability of tube material. 2. Tube fabrication scale up. 3. Tube to joint attachment development required.	Validate end fitting concept to transfer high tube stresses into strut end fittings. Develop investment cast fittings fabricated from dSiC/Al.	17.8
Shear Web; Ti & Al,Bonded honey- comb sandwich shear panels; Ti thrust wings, Al inter panels; bonded and/or bolted assembly.	Low weight. Low cost potential.	1. Access to subsystems hindered. 2. Many cutouts in shear webs may be required.	Validate damage tolerance and joining techniques of thinner and higher performance dSiC/Al face sheets.	

Figure 4.2-39. Thrust Structure Trade Analysis Summary

Concept	Advantages	Disadvantages	Technology Validation Requirements	Disc LCC
Gr/Ep Honeycomb Sandwich Co-cured assembly .	Complete aeroshell cured in one piece. Few joints required. Corrosion resistant. Low mass structure. Layup conforms to complex contour.	Large autoclave required (25' dia). Extensive QA required. TPS required on both core and booster vehicles.		49.9
Gr/Pl Honeycomb Sandwich Co-cured assembly .	Low mass concept. Few joints required. Corrosion resistant. Layup conforms to complex contour.	Large autoclave required. (25' dia). Extensive QA may be reqd. Toxic compounds in prepreg. Impact damage sensitive.	Panel joint strength under repeated heat and stress cycles. Joint seal under repeated heat and stress cycles.	16.5 (avg)
Titanium sandwich Honey comb panels creep formed and welded, or stretch formed skins, braze to honeycomb core, and weld.	Damage tolerant compared to other concepts. Corrosion resistant. Material cost lower than other concepts.	Costly tooling. Extensive QA required. Complex welding procedures Fabricate in relatively small panels.	Acceptance parameters for class B or C welds.	45.2 (avg)
High Temperature Aluminum Sandwich Stretch formed skins bonded with high temp. adhesives.	Large panel bonding performed in autoclave reducing cost. Thermal conductivity of aluminum reduces surface temperatures More durable than composites.	Cost of alloys currently high. Unknown performance of alloy in honeycomb core and bonded construction.	Strength of high temp. Al alloy bonded joint. Strength of bonded high temp. Al honeycomb core. Integrity of bonded joint concept.	29.2

Figure 4.2-40. Aeroshell Concepts Trade Study Analysis Summary.

Concept	Advantages	Disadvantages	Technology Validation Requirements	Disc LCC
Gr/Ep Honeycomb Sandwich Co-cured assembly with integral support beams.	Complete bulkhead cured in one piece. Stiffening beams are integral. Fair acoustic attenuation capability. Low corrosion susceptibility.	1. Large autoclave required (>26 ft dia). 2. Extensive QA required. 3. Fasteners required at aeroshell attachment.	Validate integration of stiffening beams with panels. Validate acoustic response and capability.	9.2
Aluminum Corrugated Hydroformed subassemblies bonded into quadrants. Quadrant panels fastened to support beams.	Low risk materials can be used . Hi-temp metals are alternatives. Low-risk fabrication approach.	Insulation required on exterior surface. Corrugations interrupted for panel splices and cutouts. Poor acoustic attenuation.	Validate structural capability of bonded joints and cutout doublers. Validate acoustic response and capability.	10.8
Aluminum Sandwich, Bonded	Established (low risk) fabrication procedures. Resistant to sonic fatigue. Non precision fabrication is feasible. Low cost-risk.	Fabricating a one piece bulkhead difficult. Fab. may be labor intensive. Must protect against corrosion at faying surfaces.	Validate structural capability of bonded joints and splices. Validate edge-of-panel seals and corrosion resistance.	12.8
Truss core, Al-Li Laser Welded	Low production cost potential. Panel geometry optimization is simplified.	Material strength loss at welds. Must protect against corrosion at faying surfaces.	Validate structural capability of welded joints and splices. Validate treatment at faying surfaces for corrosion resistance.	

Figure 4.2-41. Bulkhead Concepts Trade Study Analysis Summary.

The cost differences between the aeroshell concepts are more significant as shown in figure 4.2-40. The Ti sandwich concept primary cost driver is fabricating the panel subassemblies. The Ti sandwich face sheets must be hot formed, and this drives up the cost of both tooling and processing. Vacuum furnaces for diffusion bonding or brazing core to face sheets limits panel size. In the large aeroshell, many panels are required in a variety of contours. Maintaining fit-up tolerance for welding so many panels is also costly. The Gr/PI sandwich concept has the lowest discounted LCC, however the costing procedures used cannot fully account for the high risks associated with fabricating this type of material, and with impact damage durability during operation.

A potentially low-risk option is to fabricate a one piece Gr/Ep sandwich aeroshell and use a TPS to protect the booster as well as the core. However, the increased weight and per flight maintenance of the TPS required for booster module trajectory reentry increases the LCC over the Gr/PI concepts.

The bonded HTA aeroshell concept combines the positive features of both the metallic and composite concepts. Large panel segments, including the dome, can be co-bonded in existing autoclaves reducing the amount of joining required. The metal face sheets, although bonded, should diminish the damage tolerance concerns of the composite concepts. Given an appreciation for the uncertainties in cost estimating, the HTA aeroshell may provide a low cost alternative to the Ti concepts, and a more robust alternative to the Gr/Ep and Gr/PI concepts. The uncertainties in applying HTAs to integrated, large structure requires that the HTA concept be validated in continuing research and development. In particular the performance of HTA face sheets bonded to honeycomb core requires investigating. Joints are also critical on the aeroshell from cost and performance perspectives.

Weight differences are most significant for the bulkhead concepts as shown in figure 4.2-41. The corrugated aluminum concept was proposed as potentially the low-cost option, but is penalized by high weight. The bonded aluminum sandwich concept was unexpectedly heavy due to minimum gage limitations. Upon reflection, we feel a Gr/Ep truss core bulkhead is potentially a structurally efficient concept for the bulkhead, and should be considered in future trade studies.

In summary, the aeroshell exceeds both the thrust structure and aft bulkhead in overall LCC impact. This is due to its large weight, cost of tooling, and complex fabrication involving such details as access doors and compound contours. Additional development effort would find the largest payoff if concentrated on the aeroshell structure.

4.3 TASK 3: TECHNOLOGY DEVELOPMENT PLAN

The aeroshell structural concept selected for further development employs HTA alloys and composites. Honeycomb panel construction provides stiffness against water impact (splash-down). For cost effectiveness the honeycomb structure will be bonded. Four candidate adherend alloys for the face sheets are included below.

Candidate Alloy	Advantage	Supplier
8009	High-temperature Al alloy	Allied-Signal
Weldalite	Al-Li alloy with high-temperature capability	Reynolds
SiCp/8009	Reinforcement increases strength and stiffness and may increase temperature capability	Allied-Signal
SiCp/8090	Reinforcement increases strength and stiffness and may increase temperature capability	DWA

Candidate adhesives have been selected to correspond with the temperature capability of the face sheet materials. EA 9674, supplied by Hysol, is a modified bismaleimide film adhesive with structural capability up to 550°F. FM 680 is a well established polyimide adhesive. The PT Resin is an adhesive under development at Allied-Signal. It is a modified phenolic system developed for use in high temperature and high performance applications. Curing is through a total addition reaction, eliminating the generation of volatiles. AF-191 cures at 350°F and is supplied by 3M. It is included for use with the materials that would anneal at the high bonding temperatures required by the other adhesives.

4.3.1 Phase II: Technology Validation

This phase develops the technologies required for successful reusable structures demonstration. A down selection of materials and structural concepts shall be made so that a specific reusable concept can be demonstrated in Phase III.

Task 1: Lap Shear Testing. The first portion of the Phase II test program is to screen candidate adhesives. Lap shear testing will verify the preparation and bonding processes using these advanced adherends and adhesives. Figure 4.3-1 shows the test matrix. Testing will be performed over the temperature range consistent with the material capabilities. The three high temperature adhesives will be fully assessed with 8009 alloy adherends across the representative temperature range. Verification of adhesive capability will be made with the SiCp/8009 material in the high temperature regime.

Adherends	Test		Adhesi		
Adriefelias	Temp, °F	EA 9674 (BMI)	FM 680 (PI)	PT Resin	AF191 Epoxy
1 - 8009 Al sheet	-67	5	5	5	
	72	5	5	5	
	250	5	5	5	
	300	5	5	5	_
2 - Weldalite sheet -T8	-67		_	_	5
	72	_	_		5
	200	_	-	_	5
	250	_		_	5
3 - SiCp/8009	-67	_	_		
·	72	_	_		
	250	5	5	5	_
	300	5	5	5	
4 - SiCp/8090	-67	_	_	_	5
·	72		_		5
	200	_	_	_	5
	250		_	_	5
			Total lap she	ear specime	ns = 130

Surface treat adherends per BAC 5555 (Phosphoric acid anodizing of aluminum for structural bonding) Test Specifications - ASTM D1002 & D2295

Figure 4.3-1. Phase II Lap Shear Test Matrix.

Task 2: Sandwich Sub-Element Testing. Subelement testing (matrix shown in fig. 4.3-2) will evaluate the aluminum alloy and adhesive combination in configurations more structurally representative than lap shear specimens, and include flatwise tension and edgewise compression. The best adhesive as indicated from lap shear testing will be chosen for each adherend material. Sandwich element configurations are shown in figure 4.3-3. Selected specimens will be thermal cycled and damaged to assess long-term performance in the structural configuration. Testing will be performed between R.T.

250° or 300°F.	Face sheet	Adhesive	Therma	l cycling	Tes	t Temper	ature	
	materials	materials	Yes	No	72°F	250°F	300°F	Total
Flatwise tension	1	best	√	V	3		3	12
	2	4	√	1	3	3		12
	3	best	√	1	3		3	12
	4	4	√	1	3	3		12
Edgewise compression	1	best	1	V	3		3	12
	2	4	√	√	з	3		12
	3	best	√	√	3		3	12
	4	4	√	V	3	3		12
Edgewise compression	1	best		V			3	3
Damaged	2	4		√		3		3
	3	best		V			3	3
	4	4		√		3		3
Joint element (welded)	1	best	√	V	3		3	12
(unwelded)	1	best	√	√			3	6
Face sheet materials	Adhesives				Total s	andwich s	specimens	- 126

1 - 8009 Al sheet

1 - EA 9674 (BMI)

2 - Weldalite sheet -T8 3 - SiCp/8009

2 - FM 680 (PI) [Alternative - LARC TPI]

4 - SiCp/8090

and

3 - PT Resin 4 - AF 191 Epoxy

50 cycles -67° to 250 or 300°F

Thermal Cycle

Honeycomb core — Ti 3-2.5 perforated, 1" thick, 6.5 lb/cu ft

Figure 4.3-2. Phase II Sandwich Specimen Test Matrix.

Lap Shear Test (ASTM D1002 & D2295)

<u>Objective</u>: Validate adhesive strength and surface treatment of high temp Al adherends.

Flatwise Tension Test (ASTM C 297) (2"X2")

<u>Objective:</u> Validate capability of high-temp adhesives and aluminums in sandwich structure.

Edgewise Compression Test (ASTM C 364)

Objective: Validate capability of high-temp adhesives and aluminums in sandwich structure.

Figure 4.3-3 High-Temperature Aluminum Materials and Processes Evaluation Specimens.

Task 3: Joint Element Testing. Joints are a critical detail in applying and using the proposed advanced materials. The joint element sandwich specimen represents an innovative joint concept in the high-temperature aluminum aeroshell design developed in Phase 1. A joint element, as shown in figure 4.3-4, will be configured, fabricated, and tested. Selected specimens will be thermally cycled to assess long-term performance, and testing will be performed at R.T. and 300°F as shown in figure 4.3-2.

Figure 4.3-4. High-Temperature Bonded Joint Concept Validation Test.

4.3.2 Phase III: Hardware Demonstration

During this phase, a hardware demonstration shall be conducted of a reusable structural concept employing the materials validated in Phase II. This shall entail design, fabrication, test, and evaluation of a panel representative of a significant structural component.

Task 1: Design. The selected demonstration hardware component shall be a panel, such as depicted in figure 4.3-5. This test panel would demonstrate the capability of an access door frame in carrying representative structural loads. A test plan will be prepared for NASA LaRC approval that will include as a minimum panel attached to a boiler plate substructure, attachments for test load introduction, instrumentation, and data collection systems.

Figure 4.3-5. Phase III Hardware Demonstration P/A Module Aeroshell Door Test.

Task 2 - Fabrication. A fabrication plan will be prepared for NASA LaRC approval that shall include as a minimum detail drawings, material requirements, tool designs, assembly techniques, and quality assurance provisions. Upon approval from NASA LaRC, demonstration panel detail parts will be fabricated and assembled.

Task 3 - Testing and Evaluation. The approved NASA LaRC plan will be executed for testing the demonstration panel. Data will be obtained to validate and possibly refine earlier structural models and analyses. The test data will be evaluated to assess the applicability of the advanced technologies studied here to future reusable structures. Following test and evaluation, the tested panel will be delivered to NASA LaRC.

Schedule:

The schedule for Phase II is shown in figure 4.3-6. Phase II is expected to require approximately 10 months to complete.

Begin Fabrication Adhesive Effectiveness Data Begin Fabrication Adhesive Effectiveness Data Begin Fabrication Begin Fabrication Begin Testing Element Strength Data Begin Fabrication Begin Testing Complete Testing Lity Monthly Monthl	TASKS		SYSTEMS	SINTEGRA	FION AND C	DEMONSTRA TECHNOLO 1991	GY VALIDA	FION AND DEMONSTRATION OF ADVANCED REUSABLE ST PHASE II - TECHNOLOGY VALIDATION TIER II SCHEDULE 1991	JSABLE ? SCHEDUL	INTEGRATION AND DEMONSTRATION OF ADVANCED REUSABLE STRUCTURE FOR ALS PHASE II - TECHNOLOGY VALIDATION TIER II SCHEDULE 1991 1992	JH ALS 1992
Adhesive Effectiveness Data Order Materials Begin Fabrication Adhesive Effectiveness Data Begin Fabrication Adhesive Effectiveness Data Element Strength Data Begin Fabrication Begin Fabrication Begin Fabrication Begin Fabrication Element Strength Data Monthly Monthly Monthly Monthly Monthly Wonthly Wont	_	-	2	3	4	- 5	9	7	8	6	10
Order Materials Begin Fabrication Adhesive Effectiveness Data Begin Testing Element Strength Data Element Strength Data Begin Fabrication Begin Testing Complete Testing Abouthly Monthly Monthly Monthly Monthly Monthly Monthly Monthly Page Joint Strength Data		ا کo Ahead ک	Beç	jin Testing ▽	Complete To	esting					
Begin Fabrication Begin Testing Complete Testing Element Strength Data Begin Fabrication Begin Testing Complete Testing Begin Fabrication Begin Testing Complete Testing Monthly A	TESTING	Order Materials	Begin F	abrication	*	 dhesive Effecti	veness Data				
Begin Fabrication Begin Testing Complete Testing Monthly Monthly Monthly Monthly Monthly Monthly To all the standard Complete Testing Comple	TASK 2—SANDWICH ELEMENT TESTING		ma .	egin Fabricatk		Begin Testing	Complete	Testing			
Monthly Monthly Monthly Monthly Monthly Monthly Wonthly Wonthl	TASK 3—JOINT ELEMENT					Begin F	abrication	Element Begin Testin	Streng	hata pplete Testing	
Monthly Monthly Monthly Monthly Monthly Monthly ∇	TESTING								Join	t Strength Data	
2 3 4 5 6 7 8 9 10	REPORTING	Monthly	Monthly		uthly Z	Monthly \bigcirc	Monthly	Monthly		Aonthly	
		-	8	6	4	s	9	7	60	თ	Final 10

Figure 4.3-6. Phase II Technology Validation Tier II Schedule

This page intentionally left blank

5.0 CONCLUSIONS

Preliminary requirements, loads, and environments are defined for reusable structure on the ALS P/A module.

Design concepts and candidate materials are defined for P/A module structure (thrust structure, aft bulkhead, and aeroshell) that conforms to the preliminary requirements, and these concepts are available for further specification and development. Stress analysis indicates that all structural concepts analyzed can perform to the identified loading conditions.

The baseline thrust structure truss configuration using Gr/Ep, Ti, or SCS/Al tube members is feasible. LCCs are virtually indistinguishable among these concepts. Time limitations prevented full consideration of shear web thrust structure, which may have cost benefits in the highly loaded areas.

Several bulkhead concepts and material applications are available for further development. Cost analysis indicates that lower structural weight provides the Gr/Ep sandwich concept a lower LCC than the Al corrugation or the Al sandwich concepts.

Thermal analysis indicates that mature aeroshell structural materials must be protected (with a TPS) from the temperatures experienced by the core P/A module when reentering the atmosphere upon return from orbit.

The aeroshell has the highest LCC impact of the three structural elements studied, and is dominated by fabrication cost. Therefore, further efforts should concentrate on developing the aeroshell structural elements to offset high-cost features.

The Ti aeroshell LCC is driven by the requirement to hot form or creep form the compound curvatures, and to braze many sandwich structural panels of limited size.

The HTA aeroshell combines the durability of metallic structure with bonded construction permitting large panel fabrication in existing autoclaves. HTA alloys and fabrication methods are less mature than those for Ti and Gr/PI, therefore Phase II of this contract should concentrate on developing HTA technology.

6.0 REFERENCES

- 1. "Definition of Propulsion/Avionics Module for Advanced Launch Vehicles," Final Report, Contract NAS8-36623, Marshall Space Flight Center, DPD-669, February 1988.
- 2. M. N. Gibbins, "Reusable Structure for the Advanced Launch System," IAF-90-180, 41st International Astronautical Congress, October 1990.
- 3. B. Erb, et. al., "Apollo Thermal-Protection System Development," <u>Journal of Spacecraft and Rockets</u>, Vol. 7, No. 6, June 1970.
- 4. ASTECH Design Manual ADM-300, TRE Corporation, April 1977.
- 5. J. Anderson, et. al., "Development of Reusable Metallic Thermal Protection System Panels for Entry Vehicles," NASA CR 181783, August 1989.
- 6. W. Blair, et. al., "Fabrication of Prepackaged Superalloy Honeycomb Thermal Protection System (TPS) Panels," NASA CR 3755, October 1985.
- R.D. Vannucci and D. Cifani, "700°F Properties of Autoclave Cured PMR-II Composites," NASA TM 100923, September 1988.

APPENDIX A - DESIGN DATABASE

1 Structural Materials

72

These charts list the properties for the structural materials we used in performing our trade studies, design concept preparation, and analyses. A-basis allowables were used when possible. Reduced vendor or typical properties were used otherwise.

2 Thermal Protection System Materials

76

These charts show our survey of feasible TPS materials for application to the aeroshell ablator. We feel that reliable data for key ablative properties such as maximum heat flux capability are currently unavailable, and testing is required for further TPS concept definition, performance analysis, and concept optimization.

	Temp	Exposure			1		Ec	CTE	9	K1c (ksi-	density	Source & Notes
MATERIAL	(F)	(hr) (ksi)	1 1	(KSI)	(ksi)	(msi)	<u></u>	μ in/in/ºF	(%)	1	(Ib/in3)	
	1											
Aluminum												
2024-T81	F					10.5	10.7		5(Lt)		0.1	BDM (plate) A basis
	320	10	2	46	4	9.3	9.5					
	\$	2	4		\$	68	6					
	1											
2219-T81			- 1	47	₩	10.5	10.8				0.102	BDM (sheet & plate, 0.02" - 0.249") A basis
	320	10	1			9.5	9.7					
	8	10	38.4		30.7	6	9.3					
0110	E		7	1	0							
8167	Ē		8			T						
6061	Ä		42		35	66	9		L 1/8			ROM (shoot) A basis
	300		33.8	30	1	ĺ	9.6	15.1				
	400		56.9		24	8.9	9.1	15.1	L			
A STATE OF THE PROPERTY OF THE	900		8.82				7.1	15.1				
7075-T6	Æ		78		69	10.3	10.5		8		0 101	BOM (plate) A basis 0.04- 125"
	300	10		İ	5	9.5	9.3	14.9				
7	320	10		40	1	8.8	8.9	14.9				
	400	10	25.4		22.8		8.4	14.9				
Aluminum-Lithium	i		į			:						
2090-T83	H		65.5		22	11.5	11.8		က		0.093	AMS draft D88AC spec sheet (85% of S basis)
	8	0.5	- 1	54					14			
	\$	0.5	- [18			
	200	0.5	23.8						21			
2090-T8E41	H		67.2	64	na Pa	ā			6.5		0.093	Alcoa 17th SAMPE, 85% of typicals
ADDO TR	Ta		63	22					4		6	A CAN HITAI COEC - 6
01-0600	2		3				1		,		0.092	ALCAIN LITAL (65% of reported typicals)
	3					T						
8090-T6	H		88	46					5.7			ALCAN "LITAL" Sept 1988 (85% 0f typ)
	į		3						;			
Weldalife-U49	Ē		0						5.2		0.099	16hr age at 160C, 0.2" sheet (85% of typ) M.M. 1988
	8			72								
	8			19								
High Temp Al					- 1							
Al-Fe-V-S 0812	F				- 1	- 1	- 1	12.2	5	23.8	0.105	Allied Signal, extrusions & sheet (85% of reported)
	8	0.5	- 1	45	55.3	10.2	10.2		7			
	\$	0.5	42		- 1				8			
	009	0.5	- 1			6	6		6			

MATERIAL AI-Fe-V-S 1212 3 4 AI-Fe-Ce CU78	(hr)	ksi	i) (ksi)	(ksi)	(msi)	(msii)	- i - i - mT	(%)		10.0	
		-				Т	ח ווויוויג	/2,		(EUI/QI)	
		_	+	\perp	_						
		1		75 78.2	1 1	1 1	12	-		0.109	Allied Signal, extrusions & sheet (85% of reported)
		1 1				. 1					
	450	0.5	53.8	53 48.5		-					
				=	9.4	9.4		-			
	RT	9	ļ	57	-			9.5			Alcoa gas atomized PM
	009	2	22.4	12				5.5			
		- 1			_						I CALLES AT DOLLES ON ONE STATE OF THE COMP.
Al-Fe-Ce CZ42	Ŧ	P		20				= ;			Locuredo Lh31430 (0.043 Sheet, Ilotti r.m)
,	450	(2)		္က :				χ. Ο 0		1	
	8	+	1/.5	4	+			2			
Titanium	-	+	-	-							
11-6-4	RI		134	126 132	32 16	5 16.4				0.16	BDM A basis, anealed plate <= 1875*
		0.5 111.2		97 103		15.09					
		0.5 10			7 14.24						
		0.5 95.14		78 83.2							and production of the state of
	800	0.5 E			.9 11.84						
-		0.5 68		54 59.4		2 8.528		1			
		+				,		_		7	0001 - 1000 - 10
11-15-3-3-3			021	1_	118 13.2			_		0.172	DUM SHEET & SUID (83% OF 3 08%)
	3	2 (100	- 1						
			107	96.7	C.	1		-			
Ti-6-2-4-2	HT	+	135 1	125 13	132 16.5	5 18				0.164	BDM sheet & strip 0.047*093*
	300			L .	L	3 16.7					
	94	0.5				1					
	009	İ		81 8	88 14.3	3 15.7					
	800				~						
	8	0.5			70 12	13.1		_			
T. 6.6.9	TA	+		45 0/a	+	16 16 4				0 164	BDM A basis annealed sheet <=0.1875*
	300		135	120	-			<u> </u>			
and a service	400	0.5		112	-						
	2009			66	13.4	4 13.8					
	800		110	8	12.5	5 12.8					
15 1100	Li Li	+		130	1	-	14	10.3	19		Timet Com 6-87 heat V6563
	2 5		3 5	30				-			200E formed - 1100E/8br
	3 6	+	5 8	8 2				=			
	006	-	8 8	75				-			
	200	<u> </u>	11	64							

Fig. (Fig.) (Kes) (Kes		Temo	Exposure	먑			Et		CTE	е	K1c (ksi-	density	Source & Notes
HT TO 180 147 147 284 284 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MATERIAL	Œ	(hr)	(SS)	1	1	4	Т	1 in/in/°F	(%)	sqrt(in))	(Ib/in3)	
HT 180 147 147 284 284 9.0 0 297 80MA basis, treated 600 0.5 173 141 285 28.5 28.3 28.3 1.2 2.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0						1	ĺ						
High High													
400 0.5 173 141 2.8.5 2.8.5 9 173 2.7.2	Inconel 718	F		180			29.4	29.4				0.297	BDM A basis, treated & aged per BAC-5616
Mathematical Color 156 158 138 1		900						28.5					sheet 0.01"-0.187"
600 0.5 166 135 13.2 27.2 8.7 14.0 15.0		9						28.1					·
1400 0.6 160 131 131 25.3 25.3	171day 407 (401 to	9						27.2					A PRINCIPLE OF THE PRIN
HT 120 56 52 298 228 298 2		1000		1		i		25.3					
HT 120 56 52 268 2		1400				L	l l	22.3					
RT 120 56 52 28 B 29 B 29 B 20 B </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
300 0.6 11.3 4.7 26.8 6.6 6.0 6.0 6.0 6.0 10.7 41 4.5 26.2 26.2 6.0 6.0 6.0 6.0 10.7 41 4.5 26.2 26.2 6.0 6.0 6.0 6.0 6.0 10.7 41 4.5 26.2 26.2 6.0 <td< td=""><td>conel 625</td><td>F</td><td></td><td>120</td><td></td><td></td><td></td><td>29.8</td><td></td><td></td><td></td><td>0.305</td><td>BDM A-basis annealed 0.06"-0.1" sheet</td></td<>	conel 625	F		120				29.8				0.305	BDM A-basis annealed 0.06"-0.1" sheet
400 0.5 110 44 45 26.2 26.2 8.2 8.3 8.5.3 9.5.3		300		1				26.8					
600 0.5 107 41 43 25.3 25.3 1200 0.5 46.8 29 30 18.1 18.1 24.7 24.7 1200 0.5 46.8 29 30 18.1 18.8		400					ŀ	26.2					
900 0.5 102 38 41 24.7 24.7 1200 0.5 94.8 38 40 24.1 24.1 1500 0.5 46.8 29 30 18.8 18.8 300 0.5 16.2 13.3 30.7 30.7 30.7 400 0.5 15.6 12.1 127 29.7 30.7 400 0.5 15.6 11.9 127 29.7 30.7 1200 0.5 14.5 11.4 26.2 22.3 30.7 30.2 1500 0.5 14.5 14.5 14.5 12.2 22.7 30.0 30.		009						25.3					
1200 0.5 948 38 40 241 241		006		l	ł		1	24.7					
1500 0.5 46.8 29 30 18.8 18.8		1200		L			24.1	24.1					
RT 170 123 131 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 30.7 30.0 0.5 160 121 128 30.7 30.0 30.2 121 128 30.7 30.0 30.2 129.1 30.2		1500					18.8	18.8					
RT 170 123 316 316 316 316 316 316 316 316 316 316 316 316 316 316 316 316 316 317 317 318				1		L							
300 0.5 162 122 130 30.7 90 90 121 128 30 90	ne' 41	RT		170			31.6	31.6				0.298	BDM A basis, .002"187" sheet treated & aged
400 0.5 160 121 128 30 600 6.5 156 119 127 28.7 600 6.5 156 119 127 28.7 60 60 6.5 118 124 27.8 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 7 1 6 6 8 1 7 6 8 1 6 8 1 7 8 8 8 8 1 8 8 8 8 8 9 8 9 8 9 8 9 8 9 8 9 9 8 9 <th< td=""><td></td><td>300</td><td></td><td></td><td></td><td>Ш</td><td>30.7</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		300				Ш	30.7						
600 0 5 156 119 127 29.7 600 65 153 118 124 27.8 6 6 6 6 6 6 6 6 6 6 7 6 6 7 6 6 7 6 7 7 1 6 6 7 7 1 7 6 6 7 1 6 7 7 1 7 8 6 8 1 9 1 7 1 9 1 7 1 2 2 1 2 2 1 2 2 2 2 </td <td></td> <td>400</td> <td></td> <td></td> <td></td> <td></td> <td>30</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		400					30						
900 0.5 153 118 124 27.8 Control		909					29.7						
1200 0.5 145 114 117 26.2 3.1 117 26.2 3.2 3.1 117 26.2 3.2		900					27.8						
1500 0.5 81.6 76 82.5 22.1 9 19.7 13.3 9 19.7 13.3 9 19.7 13.3 9 19.7 13.3 10 0.26 IncoMAP data sheet. 750 67.0 52.1 35.5 6.8 11 0.26 IncoMAP data sheet. 1110 33.9 24.1 35.5 6.8 11 0.26 IncoMAP data sheet. 1470 17.2 15.0 30.2 7.7 12 0.26 IncoMAP data sheet. 1650 14.2 13.3 29.1 8.0 8 0.26 IncoMAP data sheet. 2000 1650 13.2 29.1 7.7 12 0.26 IncoMAP data sheet. 2000 12.3 12.0 28.0 8.0 8 3.5 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13		1200											
1800 0.5 11.9 9 19.7 13.3 6.8 10 0.26 IncoMAP data sheet. 750 6.70 52.1 35.5 6.8 11 0.26 IncoMAP data sheet. 1470 33.9 24.8 33.1 7.2 21 0.26 IncoMAP data sheet. 1470 33.2 24.8 33.4 7.2 21 0.26 IncoMAP data sheet. 1470 33.2 24.8 36.2 7.7 12 12 12 12 12 12 12 12 12 12 12 12 13 29.1 8.0 8 </td <td></td> <td>1500</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		1500		1									
RT 79.5 68.2 39.0 6.3 10 0.26 IncoMAP data sheet. 750 67.0 52.1 35.5 6.8 11 0.26 IncoMAP data sheet. 1110 33.9 24.8 33.1 7.2 21 6.8 11 0.26 IncoMAP data sheet. 1470 17.2 15.0 30.2 7.7 12		1800											
THI 79.5 68.2 35.5 6.8 11 0.20 IncomAP data sneet. 1110 33.9 24.8 33.1 7.2 21 0.20 IncomAP data sneet. 1110 33.9 24.8 33.1 7.2 21 0.20 1.2 1.2 0.2 1.2 0.20 0.2 1.2 0.20 0.2<	24 AAA OEO	1		F	ı		0					000	
1110 37.0 32.1 33.1 7.2 21 1470 17.2 15.0 30.2 7.7 12 1650 14.2 13.3 29.1 8.0 8 1650 12.2 28.0 8.3 4.5 2000 11.2 10.5 8.6 3.5 2000 11.2 10.5 8.6 3.5 2000 11.2 10.5 8.6 3.5 2000 9.8 9.4 2.2 2.2 RT 21.2 35.4 24.2 240.8 3 0.137 750 184 26.5 24.1 24.5 7.7 2.2 0.106 RT 183 445 20.7 23.2 3.2 0.106 400 100 345 26.2 21.4 0.106 700 83 23.1 23.2 0.106	COIDY MA 930	F 032) (S			0.00		٥			0.70	
1170 35.9 24.0 35.1 7.7 2.1 1650 14.2 15.0 29.1 8.0 8.3 4.5 1800 12.3 12.0 28.0 8.3 4.5 2000 11.2 10.5 8.0 8.3 4.5 2200 9.8 9.4 2 2 2 2200 9.8 9.4 2 2 2 RT 21.2 35.4 24.2 2408 3 0.137 750 184 26.5 24.1 24.5 4.7 0.106 RT 183 445 20.7 23.2 3.2 0.106 400 100 345 26.1.4 20.9 4.7 0.106 700 83 23.1 23.2 3.2 0.106		8/4		6	-1		200		0.0			+	
1650 17.2 13.3 29.1 8.0 18.0		277		3 5	- 1		3 6	\dagger	1.7		 	+	
1800 12.3 12.0 28.0 8.3 4.5 2000 11.2 10.5 8.6 3.5 2.0 2200 9.8 9.4 28.0 8.6 3.5 RT 21.2 35.4 24.2 24.08 3 0.137 750 184 265 24.1 24.5 7.7 0.137 RT 1200 136 336 21.3 20.9 4.7 0.106 RT 183 445 20.7 23.2 3.2 0.106 400 100 345 26.2 21.4 0.106 700 83 23.1 23.1 0.106	TOTAL STATE	1650		14.5	- 1		20.6		, a			+	
2000 11.2 10.5 8 6 3.5 2200 9.8 9.4 2 2 2 RT 212 354 24.2 2408 3 0.137 750 184 265 24.1 24.5 4.7 0.137 RT 183 445 20.7 23.2 3.2 0.106 400 100 345 26 21.4 0.106 700 83 23.1 23.1 23.1 0.106		1800		2	1		280	T	6				The state of the s
2200 9.8 9.4 2 2 RT 212 354 24.2 2408 3 0.137 750 184 265 24.1 24.5 6 4.7 0.137 RT 183 445 20.7 23.2 3.2 0.106 400 100 345 26.4 21.4 0.106 700 83 23.1 23.1 23.1 0.106		2002		11.2				Ī	8.6				
RT 212 354 24.2 2408 3 0.137 750 184 265 24.1 24.5 4.7 0.136 1200 136 36 21.3 20.9 4.7 0.106 RT 183 445 20.7 23.2 3.2 0.106 400 100 345 26 21.4 0.106 700 83 23.1 23.1 0.106		2200		3.6				†					
RT 212 354 24.2 2408 3 0.137 750 184 265 24.1 24.5 4.7 0.136 1200 136 36 21.3 20.9 4.7 0.106 RT 183 445 20.7 23.2 3.2 0.106 400 100 345 26 21.4 0.106 700 83 23.1 23.1 0.106													
RT 212 354 24.2 2408 3 0.137 750 184 265 24.1 24.5 9 4.7 0.137 1200 136 336 21.3 20.9 4.7 0.106 RT 183 445 20.7 23.2 3.2 0.106 400 100 345 26 21.4 0.106 700 83 23.1 23.1 0.106	omposites	_]		1	· ·				
750 184 265 24.1 24.5 4.7 7 1200 136 336 21.3 20.9 4.7 20.9 4.7 RT 183 445 20.7 23.2 3.2 0.106 400 100 345 26 21.4 0.106 700 83 23.1 23.1 23.1	CS-6/Ti-15-3-3-3	H			212		24.2	2408	``J			0.137	ACMDG unidirectional prop. (1-dir)
1200 136 336 21.3 20.9 4.7		750			184		24.1	24.5					(35% fiber vol)
RT 183 445 20.7 23.2 3.2 0.106 400 100 345 .26 21.4 .26 .20.7 .2		1200			136		21.3	20.9	4.,				85% of typ
RT 183 445 20.7 23.2 3.2 0.106 400 100 345 .26 21.4 .20 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
100 345 .26 21.4 83 23.1	CS-2/AI 6061-F	RT			183	ı		23.2	3.5			0.106	ACMDG unidirectional prop. (1-dir)
83 23.1		400			18			21.4		_			(50% fiber vol)
		700			83		23.1						85% of typ

	Temp	Temp Exposure Ftu		ΕŢ	Fcy	ü	Ec	CTE	0	K1c (ksi-	density	Source & Notes
MATERIAL	(F)	(hr)		اچ		(3)	=	μ in/in/°F	(%)	sqrt(in))	(Eui/ql)	
												The state of the
FVS0812/SiCp	RT		74			12.4						Allied-Signal, report by Zedalls, et al
(10% vol SiCp)	300		53			==						values are 85% of reported
	450		49.3			10.5						
	009		35.7	34		9.7						
FVS0812/SiCo	R		74.8	29		13.3		6	9.5		0.106	Allied-Signal, report by Zedalis, et al
(15% vol SiCp)	300		59.5	61		12.2						values are 85% of reported
	450		50.5			11.5						
	009		9.98	35		10.4						
ACIC/ALEDED TE	Ţ			89	63.8	14	12.8		7.5		0.103	ACMDG. 85% of typicals, 20% fiber vol
2 200					1		1					
dSiC/Al 2124	Æ			84	65.4	13.3	14.1				0.103	ACMDG, 85% of typicals, 15% fiber vol
	900			72	65.4	11.2	14.1					
							l				-	
dSiC/Al 7090-T6	FR			94							0.103	ACMDG, 85% of typicals, 20% tiber vol
	009			6	18.7	5.18	10.3					
dSiC/8090-T6	RT		66.81	99		15			3.5	2	0.96098	BP data sheet, 85% of typicals, 1 /% fiber vol
Celion 6000/PMR-15	RT			186	125	1	15.7	-0.4	4		0.058	ACMDG, 85% of typicals, 63% fiber vol
	009			197	69.4	17.2	18	3 0.14	4			unidirectional lamina properties
	1								+			ACHIO OF CONTROL FEO Chartel Initiationing
P75S/93 Gr/Ep	Ŧ		8			35.8			-			ACMUCI, 63% of 1831, 30% fibel Vol, unfallecucing
P100/Al 6061	RT			83	3 45.8	36.8	32.3		0.7		980.0	ACMDG, 85% of typ, 45% fiber vol, unidirectional
						\downarrow			-			201 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Celion 6000/PMR-15	H.		64 69		67.2				_		90.0	85% of typ. test data; 65.3% fiber voi, [0/+45/90/-45]zs
	900		83.55		46.8	3 6.7			-	1	90.0	
						-			+			
NOTES:					_				-			
ACMDG = Advanced Composite Material Design Guide, typicals	mposite !	Material Des	ign G	lide, tyr	sicals							
BDM = Boeing Design Manual	annal											
						_			_			

Candidate P/A Module TPS Materials

		l			
Attachment Methods	Direct bond to Gr/Ep structure with RTV. Imbedded honeycomb - solid metal (Ti, stainless sieel or super alloy) - metal mesh. Ceramic matrix composites. Bonding to metallic structures may require a strain isolation pad because of CTE mismatch.	Direct bond to structure with RTV (if structure is Gr/Ep). Topcoat with TUF. Bonding to metallic structures may require a strain isolation pad because of CTE mismatch.	Bond premolded sheets and machined shapes to structure or to mechanically attached support substrate.	Bond to structure. Mechanical attachments, using molded-in fittings or internal machined threads.	1. & 2. Same as for Phenolic/Carbon.
Maintenance Procedures	Depending on attachment method: 1. Replace or patch* tile. 2. Cut and replace section of honeycomb or patch* damage. 3. Replace module or patch* *Patch procedure - fabric reinforced thick paste, heat gun cure.	 Replace tile. Repair small chip/minor surface damage with alumina cement. 	 Removed damaged material with conventional hand, machine tools. Bond patch with RT cure adhesive Repair small areas with trowelable silicone or rubber. 	Machine matching surfaces of undamaged material and patch. Bond patch with min. exposed bond line.	1. Same as for Phenolic/Carbon.
Fabrication Approach	Water sturry, vacuum felting of shapes or boards, binder infiltration, cure (repeat to required density), final heat treatment to use temperature.	Water stury with alumina, silica, alumino borosilicate fibers→V blender→ 2 press out water→ dry 180°F overnight → fire 2400°F→ machine→ topcoat by spraying with toughened unipiece fibrous insulation (TUFI)→ dry→ sinter→ finished tile.	Premolded sheets, machined shapes. Spray protective seal coating.	Tape-wind or hand lay-up to near net shape. Autoclave cure. Machine mating surfaces.	Tape-wind, hand lay-up of cloth, or mold with chopped fibers or chopped fabric, to near net shape. Machine mating surfaces.
Max. Heat Flux Capability (BTU/ft2-sec)		33	TBD	>300	ТВО
Density (lb/ft3)		12	30	. 06	109*
Material	Boeing Fibrous Ceramic (MEFC) - microballon and whisker enhanced fibrous ceramic - All fiber	AETB alumina enhanced thermal barrier	Phenolic/Cork	Phenolic/Carbon	Phenolic/Silica

*Fillers may be added for lower density, lower conductivity, but also lower ablative shear resistance.

Candidate P/A Module TPS Materials

	Maint.					
Cost	Manuf.					
	Material	Lowest - \$25/ft ³ Highest \$200/ft ³ Most likely - \$75/ft ³				
	Vendor	Boeing Boeing icensed choice of: Hexcel Babcock & Wilcox Carborundum	Material - NASA Ames Research Center Tiles - Lockheed Missile Systems			
	Drawbacks	Shuttle tile qualification testing needed for material and attachment concepts.	 Labor intensive. Not a production process. TUFI may exhibit bubbling at temperatures in excess of 1400°C. One manufacture. 	. 1. Damage susceptible. 2. Moisture protection required. 3. Poor aero. shear resistance.	Rigid-requires machining of bond surface. Limited Boeing experience Poorer insulator than lower density ablators.	Rigid-requires machining of bond surface. Difficult to machine. Poorer insulator than lower density ablators. Heavy.
	Advantages	MEFC - low density • more isotropic* • Higher compression strength* • former processing costs* • good thermal properties • reusable • As compared to shuttle tiles	Light weight. Reusable. Greatly improved impact resistance with TUFI topcoat system.	1. Good thermal properties. 2. Extensive expenence. 3. Easily bonded. 4. Easily repaired. 5. Conforms to complex shapes by moderate bending of sheets, or easy machining. 6. Low cost.	Best ablator in extreme environments (high heat, high shear). Tough, damage and weather resistant. Well characterized properties.	Heat flux and shear capability nearly as good as Phenolic/Carbon. Better insulator than Phenolic/Carbon. Tough, damage and weather resistant. Well characterized properties. Extensive experience (BMS Spec.)
	Material	Boeing Fibrous Ceramic (MEFC) - microballon and whisker enhanced fibrous ceramic - All fiber	AETB alumina enhanced thermal barrier	Phenolic/Cork	Phenolic/Carbon	Phenolic/Silica

Candidate P/A Module TPS Materials

Attachment Methods	Bond premolded sheets to structure. Apply uncured over achesive by spray application, molding or hand compacting. Can be applied to metallic or composite skin and mechanically fastened to structure.	at. 1. Bond premolded sheets to structure. 2. Spray on structure (primed), no adhesive 2. Spray on structure (primed), no adhesive 2. Spray on structure (primed), no adhesive 2. Spray on structure (primed), no adhesive 3. Bond premolded sheets or spray. Apply on composite skin and mechanically fasten to structure. Can also be brushed or troweled. 3. Bond premolded sheets to structure. Can also be brushed or troweled. 4. Bond premolded sheets to structure also be brushed or troweled. 5. Spray on structure. 5. Spray on structure. 6. Spray on struc	Same as MA 25S	1. Bond premolded sheets to structure. 2. Bond premolded sheets or spray. Apply on composite/metal skin and mechanically fasten to structure. (Brush and trowel application also possible). 3. Spray, brush or trowel directly to primed structure.	Spray onto warmed structure. 1.22-65 May not lend itself to prefabrication on composite or metal skins to be attached to structure d material, at some later time. This option may require some further investigation.
Maintenance Procedures	 Bond plug of cured material. Using trowelable material, fill or cover damaged area. Sand smooth. 	 Bond plug of cured material topcoat. Mechanically remove coating down to good coating surface, prime, spray MA255, sand smooth and topcoat. Slight abrasion/minor damage - use trowelable material or topcoat material. Damage exposing base structure - remove damaged coating, prepare surface per original process, fill void with trowelable material or topcoat. Sand smooth. 	Same as MA 25S	Bond plug of cured material. Remove damaged coating; apply uncured rubber to good cured rubber surface; cure. For damage exposing base structure fill void with uncured rubber; cure.	Mechanically remove foam from damaged area, sand blast surface. Reapply a trowelable foam. NCFI 22-65 is not trowelable. Mechanically abrade foam to good material, prime, and reapply NCFI foam. Note: Best way to repair damaged NCFI is to completely remove it and fill with different trowelable foam.)
Fabrication Approach	 Premolded sheets. Spray apply, then cure. Mold in place on structure, by vacuum bagging. Hand compact on structure without vacuum bagging. Machine (all structure must be primed). 	Fabricate in accordance with BAC 5892. Spray application. Trowel or brush application. Premolded sheets.	Same as MA 25S	Spray application Premolded sheets Trowel or brush application Bonding surfaces must be primed.	Spray directly onto structure. Structure must be 120°F or more for good adhesion. Process should be automated with structure on turntable for even material thickness.
Max. Heat Flux Capability (BTU/ft2-sec)	.09	75*		TBO	180
Density (Ib/ft3)	17	27	15	28	2.5
Material	SLA 561 Highly filled silicone elastomer	MA25S filled silicone (MA25T-trowelable)	MI-15 filled silicone	Silicone with microballoons - low density syntactic foam	NCFI 22-65 isocyanurate foam

*Max heating rate tested - capability may be higher.

Candidate P/A Macdule TPS Materials

					Cost	
Material	Advantages	Drawbacks	Vendor	Material	Manuf.	Maint.
SLA 561 Highly filled silicone elastomer	Can be prefabricated. Low density. Good thermal properties. More durable than MA-25S or MI-15. Does not require topcoat.	Material costs are high. Brittle. For moisture resistance and improved weatherability topcoat is required.	Martin Marietta			
MA25S filled silicone (MA25T-trowelable)	Self adhering, no adhesive required. All processing and rework procedures detailed in BAC 5892. Highest heat of ablation of MI 15, SLA 561 or NCFI 22-65.	Porous material, requires topcoat. Topcoat may require reinforcement with Kevlar fabric to improve impact resistance labor intensive topcoat system.	Martin Mariertta			
MI-15 filled silicone	1. Lower thermal conductivity than MA 25S. 2. Toughened topcoat system does not require addition of fiber reinforcement. 3. Can withstand higher temps than SLA 561 & MA 25S. 4. Lower material and manufacturing costs than MA 25S.	Not as good an ablator as MA 25S. Brittle, requires topcoat for durability.	Martin Marietta			
Silicone with microballoons - low density syntactic foam	 Self adhering, no adhesive required. Can be prefabricated. Good thermal properties. 	Topcoat (reinforced) may be required to improve erosion resistance.	Dow Corning			
NCFI 22-65 isocyanurate foam	Self adhering. Saves weight, topcoat not required. Saves weight, topcoat not required. Tack free in less than 10 sec. subsequent layers can be processed immediately. Most heat resistant foam for this application. Porosity negligible. 92% minimum closed cells.	Requires application to warm structure (>120°F). Warm air temperature and foam also required for successful application. May be too light for this application.	North Carolina Foam Industries, Inc.	\$2.40/lb.		

This page intentionally left blank

APPENDIX B - STRUCTURAL DESIGN CONCEPTS

The following charts summarize the initial structural concept definitions for the truss, aeroshell, and bulkhead. Summaries include: a) technical details - geometries and materials, that serve as a starting place for concept comparison and development; b) advantages and drawbacks - preliminarily identified issues in fabrication and performance; c) materials options - the various materials applicable to the concept; d) fabrication approach - briefly described process for manufacturing the concept; and e) design features - the features that set the concept apart.

1 Aeroshell	82
2 Thrust Structure	91
3 Bulkhead	98

Material Options

Structure

- Very durable metal structure Simple reinspection-visual
- Other titanium alloy
 - combinations
 SiC/Ti doublers

TPS

Good corrosion properties

and 1 TPS

Phenolic/Silica Glass/BMI

Fabrication Approach

Structure

- Laser weld SPF packs
 - SPF panels
- Fabricate splice beam members

Drawbacks

 Assemble dome with bolts

TPS

- Layup glass/phenolic on male tool
 - · Bond phenolic cork

Process developmentd and scale-

development required

Inspection technology

up required

Compression joints in primary

load path

deformation than composite

More thermal stress and

Design Features

- TPS clamps to structure
- SPF sandwich simultaneously expanded and turned to contour

Material Options

Structure Tape

- Lower cost composite than Gr/PI
- TPS interchangeable between uses

Stitched preforms Forms

Filament wound

Many Fiber/resin options

- Sandwich structure reduces complexity
 - Structure helps insulate
- Low thermal stress or distortion
- No joining required, 1 piece cure

Glass/Ep substrate Glass/phenolic substrate

Phenolic/Silica ablator

Fabrication Approach

Structure

- Laminate outer skin in female bond tool and cure
- Laminate outer skin Bond in core

Requires 3 designs (1 aeroshell.

Less durable than metal

Drawbacks

2 thermal production systems) Additonal inspection required

Process scale-up required

- Layup substrate on
- Bond phenolic cork male tool
- tool for Booster TPS glass cloth on male Spray silicone over

Design Features

- - TPS has substrate which clamps to structure

CIDADO NIACA AOFEO

Material Options

- Only two designs-1 structure and 1 TPS (reduced DDT&E)
- Supral **TPS**

Lower temperature than composite

Durable metal structure

other high-temp alum.

Al-Li, Al-Fe-V-S, or

Structure

Glass/Phenolic substrate Phenolic/Silica ablator Glass/BMI substrate

Fabrication Approach

Structure

- Weld core pattern in SPF packs
- Roll form 44.00in rad. SPF panels
 - Machine splice beam members
- Assemble dome with bolts or rivets

· More thermal deformation than

composite

Intermediate beams required

Multiple panels required

Drawbacks

- · Layup substrate
- · Bond phenolic cork

3 sheet SPF panels subject to skin

superplastic

Some process development

required

dimpling problems

High-temperature alloys are not

Fastening or welding required

for assembly

Design Features

- SPF sandwich simultaneously expanded and formed to contour
 - · TPS clamps to structure
- No TPS required for booster

Material Options

Only two designs-1 structure and 1 TPS (reduced DDT&E)

BMI skin

Structure

Polyimide core Titanium core Single-piece structure- -no joining Sandwich structure reduces

complexity

Phenolic/Silica Glass/BMI TPS

Potential lowest life cycle cost

polyimide

Structure helps insulate

Easier to manufacture than all

required

Fabrication Approach Structure

- Laminate Gr/PI in fullsize female tool
 - · Bond in core-flexcore in radiused areas
 - Post-cure
- · Layup Gr/Ep inner skin over core and cure

TPS

More difficult to manufacture than

post-cure tool required

Probably requires Q. I. layups

all Gr/Ep

Additional inspection required

· Process scale-up required

(potential weight penalty)

High-temperature BAJ or separate

Multiple stage layup and bond

process

Drawbacks

- Layup Glass/Phenolic on male tool
 - Bond Phenolic cork

Design Features

Repair technique development

required

- Low thermal stress with low CTE structure
- No TPS required for booster

TPS clamps to structure

DIDADO NIACA 40000

Material Options

- Allows off site fabrication of structure
- Simplifies mounting to truss

directional stiffened

caps TPS

Q. I. layup with uni-

Structure

- Identical TPS for core and
- booster
- · Less tooling cost identical panels More durable composite design

Fabrication Approach

Phenolic/Silica ablator

Glass/BMI substrate

Glass/Ep or

Structure

- · Laminate panel in female tool
- Ship to site Assemble in fixture

TPS

Weight penalty for booster TPS

Drawbacks

Weight penalty for panel

constructuion

- · Layup substrate on male tool
- · Bond ablator

Additional inspection required

splashdown pressures

· Design specification process

development required

Joints in the primary load path · Biaxial stiffening required for

More assembly time due to

fasteners

- · Fabricate in panels-ship to site and assemble
- · Uses booster TPS (identical to core TPS) for multiple launches

Design Features

Material Options

Outer

Ti-6Al-4V

Structure

skin

Ti-15-3-3-3

Ti-3-2.5

Core

Polyimide

- Joining simpler than Ti SPF panel Durable metallic exterior
- Phenolic silica ablator TPS

Fabrication Approach

Structure

- · Form Ti outer sins
- Cold form
- polyimide adhesive · Join outer skins and bond core with

· Requires 1 high-temperature and

Drawbacks

· Layup inner skin and core

· Joints in the primary load paths Poor aerodynamic smoothness

composite

Higher thermal stress than all

1 low-temperature cure

 Layup Glass/phenolic substrate

Inspection technique development

Process development required

required

Bond phenolic cork

- TPS clamps to structure
- Some skins SPF, some cold formed Ti-15-3-3-3

Design Features

COLOR FORIN CON CIO

Material Options

 Low thermal stress and mismatch Tough resin system

Gr/KIII **Gr/PPS**

Torlon

Structure

- - Simpler joining than titanium concepts

Fabrication Approach

Phenolic silica ablator

TPS

Structure

- Form skins
- · Form and fusion bond stiffeners
- Fusion bond assembly in female tool

TPS

· Layup substrate on male tool

Skins probably sized by maximum

High cost tooling for small Temperature critical joints

production run

Drawbacks

· Bond ablator

High-cost material and processing

temperature

Biaxial stiffening required for

splashdown load

Additional inspection required Process development required

- · Radial stiffener pattern
- Fusion bond joints

Design Features

- Very durable metal structure Simple reinspection-visual
- Material Options Skins
 Ti6-4 • Ti 15-3-3-3
- Core Ti3-2.5
- New alloy TPS

Fully developed panel technology

Good corrosion properties

and 1 TPS

Phenolic/Silica Glass/BMI

Fabrication Approach

Structure (options) LID bonding

- creep form detailsLID bond panels
 - laser weld assy
 - Weld/DB panel
- creep form contour

- weld flat panels

- weld assembly

- fitup precision required

Difficult welding panel joints

than composite

deformation during hot flight

Drawbacks

stress relieve

TPS

stress relief mismatch

- · Layup glass/phenolic on male tool
- · Bond phenolic cork

- TPS has substrate which clamps to structure
- Structure is a single piece

COLOR FORIA CON CIO

Material Options

Skins (HTA)

- Fabrication cost less than titanium Material cost less than composite
- Al 8009 (FVS 812) • FVS 1212
- X8019 (CZ42) nternal Fittings

Bonding less cost and risk than

brazing or welding

Seal-weld option

Durable metal structure

- HTA Al (aeroshell)
 - 7475 Al (sidewall) Aeroshell Core

Cold stretch formed skins vs. hot-

Aluminum core lower cost than

formed titanium

Good corrosion properties Repair less complex than

titanium

composite

- Al coated titanium Al 8009 (welded)
 - Sidewall Core Titaninm
- FM35, FM680, PT Adhesive

Fabrication Approach

 Spin form center section skins

Thermal distortion mismatch

of shell and truss

Drawbacks

Polyimide adhesive required

· Weight penalty over other

leading concepts

- Stretch form "gore" skins
- Stretch form internal members ઌ૽
- Bond outer skins and 4
- Bond internal members splice members Ś
- Bond inner skins and and core ø.
- Remove from tool and seal (weld) gaps splice members
- Mechanically assemble
 - **Design Features** High-temperature aluminum (HTA) skins, core and internal members
 - All HTA parts cold formed, sidewall internal members SPF
- Bonded panel fabrication

Low cost, well characterized materials and processes.

7075-T6 extrusions and

orgings

Materials

- Variety of tube sizes available off
 - he shelf.

Options

- Established inspection echniques
- Established repair techniques

Fabrication Approach

- ends (bond or bolt + bond Attach tubes to tube
 - Machine joint interface Subassemble main trusses & corners
 - Bolt up final assy.

Joining limited to fastening and

Corrosion suseptability.

Expected weight of forgings is

Drawbacks

Features

High-strength- aluminum tubes and fittings.

 Lighter structure than AL-7075-T6

Al-li 2090 extruded

Materials

Al-Li 2090 forged

tubes

corner joints

- Materials & process development proceeding rapidly
 - Moderate cost

Coated steel fasteners

at bolted joints

- Good machinability
- Near-term inspection capability expected

Fabrication Approach

- Attach tubes to tube ends (bond or bolt + bond
 Machine joint interface
- Subassemble main trusses & corners
 - Bolt up final assy.

Current availability of extrusions

Drawbacks

is poor, should improve though

Corrosion of Al-Li

Toughness or Al-Li an issue

Surface requires corrosion protection coating.

Features
High specific stiffness tube material

(Continous siliconcarbide fiber reinforced aluminum) Aeroshell Ti Forging Thrust Structure Design Concept SCS/6061 Aluminum Truss Engine thrust interface node (Ti) SCS/Al tube Pultruded Tube and doublers bonded and fastened to end fitting High load strut end fittings

Advantages

SCS/6061 pultruded

Materials

tubes • Ti fittings & joints

dSiC/6061 forged

Options

joints + tube ends

 Lightweight (probably the lightest of all options)

Fabrication Approach

- Pultrude tube members.
 - Cast & machine joints and fittings.
 - High load members bolt & bond tubes to members - bond. littings; low load

Drawbacks

· Drill bolt holes in member ends.

 Inspection of SCS/Al requires No standard sizes available. Tube material cost is high

development

- Machine joint castings.
 - Bolt together subassembly.
- Bolt together final assembly.

Features

Very high specific stiffness tube material.

dSiC/6061 exturded

Materials

•dSiC/6061 forgings

ube members

(tube ends + joints)

Coated steel

fasteners at bolted

oints

- Better specific compression modulus than aluminum
- Aluminum bonding processes well developed
- Moderate cost compared to other composites
- Near-term inspection expected

Fabrication Approach

- Extrude tube shapes
 - littings from forgings Machine joints and
 - Attach tube ends
- Bolt up subassemblies, main trusses & corners

Drawbacks

Bolt up final assembly

High specific stiffness tube material. Features

Potential difficulty achieving development Aeroshell Ti Forging Thrust Structure Design Concept Gr/Ep Tube Truss with Ti Fittings Expendable structure interface node (Ti) Filement wound **Engine thrust** Gr/Ep tube Tube and doublers bonded and fastened to end fitting Integrally wound clevis Highly loaded joints bolted and bonded. High load strut joint attachment. end fittings

Advantages

· Strong joints & member ends Structure is light overall

IM6/Ep round tubes

• Ti 6-4 joints

Materials

(machined interfaces) Other high strength graphite RMC Options

Fabrication Approach

- Filament wind tube members
- · Cast & machine joints and fittings
- ends (ti) (bolt & bond for Integrally wind tube high load members)
 - Drill bolt holes in member ends

precision joint attachments

Inspection requires

Drawbacks

- Machine joint castings Bolt together
 - Bolt together final subassembly assembly

Features

- Low corrosion risk
- · Fittings integrally attached to tubes

Strategic material Material cost Aeroshell Thrust Structure Design Concept Welded Titanium Tube Truss Expendable structure interface node (Ti) **Engine thrust** Ti tubes welded to end fittin Ti Forging Tube and doublers bonded and fastened to end fitting High load strut end fittings Ti tube

Advantages

· Ti provides excellent as-welded properties

Ti 6-4 extruded tubes

Materials

Ti 6-4 investment

(bolted joint version)

casting or forings

- Corrosion resistant
- Established inspection Low risk fabrication
- Established repair techniques techniques

Fabrication Approach

- · Cast or forge member Extrud tube members
 - All welded approach fittings and joints
- Weld up subassys
 - Stress relief
- Weld up final assy - Stress relief

 Welding restraint tools costly Stress relief of welds costly

Drawbacks

welded tube ends - bolted Welded + bolted linal assy.

Features

- · Monolithic material, well characterized
 - Low corrosion

Many heavy fittings eliminated

Ti 6-4 face sheets

Aluminum

Materials

- Low risk fabrication approach
 - Established inspection techniques

dSiC/Al or Al-Li face

sheets

honeycomb core Options

Fabrication Approach

- sandwich members Adhesively bond
 - members for final Bond and bolt assembly

accomodate subsystems

Cut-outs required to

Drawbacks

- Shear web load transfer from engines to
- All metallic with bonded & bolted joints.

expendable structure.

2. Insulation required on exterior on facility size (autoclave dia. critical design detail. surface. >26 ft). Reinforcement in beam at riser Septum 0-deg planks, 0.10" thick 94" dia Stiffening beam ool side Gr/Ep Honeycomb Sandwich, Co-cured **Bulkhead Design Concept-1** attach with velcro bonded to bulkhead Insulation blanket, **Parachute** -302" Attach edge to aero shell riser Nomex core > 4 pcf Pan-down Frame segments Co-cured panel attachment 237

Advantages

Materials

Gr/Ep

- 1. Complete bulkhead cured in one piece.
- 2. Stiffening beams are integral. 3. Fair acoustic attenuation
 - capability.

Gr/thermoplastic

Gr/Polyimide

Options

4. Low corrosion susceptibility.

Fabrication Approach

- 1. Place tool side skin and 2. Machine tapers in core pad-up strips with ALTM.
 - 3. Place and splice core segments. material.
- 4. Place bag side skin and pad-up strips with ALTM. 5. Place beam core and doublers.

bulkhead (if desired) dependent

1. Fabricating a one piece

Drawbacks

- 6. Bag and cure in autoclave.

Features

5. Extensive QA increases cost.

4. Transportation.

3. Attachment to aeroshell is

- Light-weight
- Integral stiffening beams
- Co-cured or bonded details

0.072" AI 0.092" Gr/Ep BAC B30FM8 1/4 inch bolt Fasten frame to beam with Beam Bulkhead Frame segments & BACC30M collar Flat-top corrugation (easier fit-up for bonding) Beam > **Bulkhead Design Concept-2** Frame / TPS/insulation, attach R=4.14" Corrugated Aluminum Round corrugation with velcro Alternative joint: butt weld 3/16 Rivet BACR15BB6DD Bonded lap splice plus Beam & panel splice Installed per BAC 5047

Advantages

Aluminum (2024, 7075 bondable; 2219, 6061 are

Materials

- Low risk materials can be used when they are thermally insulated.
- 2. Low risk fabrication approach (schedule and economic).3. Thermal expansion capability

Hi-temp aluminum

Al-Li (weld) Gr/Ep

weidable)
Options

in one direction.
4. Forgiving processing.

Fabrication Approach

Ti (superplastic form)

- 1. Hydroform corrugations and edge pan-downs.
 - 2. Trim to shape.
- 3. Bond corrugated segments into full panels. 4. Bond frame segments
- around edges. 5. Paint/coat.

Insulation required on exterior

Drawbacks

Corrugations interrupted for

surface.

3. Poor acoustic attenuation.

panel splices and cutouts.

corrosion at faying surfaces.

5. Must protect against

4. High tooling cost.

- 6. Extrude beam shapes and trim to length.
- Fasten panels to beams.
 Attach TPS/insulation.

Features

- · Two corrugation geometries possible
- 4 panels make up the complete bulkhead
- Multiple fabrication approaches

Materials

Titanium

- 1. TRE METAL panels available prefabricated (44" X 120")
 - 2. Welded design concepts are established.
- High temperature metals can be incorporated.
 Inspection techniques

established.

weld development required)

Hi-temp aluminum

Superalloys

Fabrication Approach

- Purchase Astech TRE METAL resistance welded sandwich panels.
- 2. Trim to length and splice (weld).
- 3. Crush TRE METAL at beam and perimeter edges, and drill for attachment; *OR* Form frame segments and weld to bulkhead edges.

Panel cut-outs reduce cost

Drawbacks

2. Panels will expand during

 Beam section is extruded.
 Make attachments with standard fasteners.

plume heating if uninsulated.

3. High QA costs.

4. Expensive welding details.

Features

- Construction similar to aeroshell
 - High temperature capability

237 Roll form truss Frame segments attached with velcro TPS, insulation Bulkhead Design Concept-4 Truss Core (double-faced) Fasten frame to bulkhead with BAC B30FM8 1/4 inch bolt Parachute 302" riser & BACC30M collar 3/16 Rivet BACR15BB6DD Installed per BAC 5047

Advantages

1. Low production cost potential.

Aluminum-Lithium

Materials

2. Large panels feasible.

(weld development required) **Fabrication**

Titanium, Aluminum

Superalloys

Options

Hi-temp aluminum

- Roll form center truss. Approach
 - 2. Laser (or resistance) weld face sheets.
- 3. Trim finished panel to desired curvature.
- attachment to beams and 5. Prepare edges for 4. Attach frames. sidewall.

4. Insulation required externally corrosion at faying surfaces.

or internally.

2. Material strength loss at

3. Must protect against

welds.

1. Attaching curved frame

introduces complexity.

Drawbacks

- Laser welded construction
- High temperature capability with proper

Features

- material selection

Laser or resistance weld truss to face sheets.

Stagger face sheet and corrugation splices

237 Braze dimpled sheets Frame segments Expansion joint to septum sheets **Bulkhead Design Concept-5** Beam Metallic Multi-wall **Parachute** Fasten frame to bulkhead 302 riser Superalloy for external layers, Titanium internal layers and shell skirt

Advantages

Materials

- 1. Structure acts as TPS (no extra weight or complexity)
- 2. Durable insulation (low refurb costs.)

Hi-temp aluminum **Fabrication** Options Superalloys Titanium Inconel

Approach

- Hot form dimpled sheets. 2. Trim dimpled sheets and septum sheets to required shape.
 - 3. Prepare sheets for 4. Braze sheets into brazing.
 - multiwall sandwich. 5. Attach frames.

panel size. (braze fumace 10' dia max)

4. Beams required at each

thermal expansion mismatch.

development required. 6. Design & process

5. External/internal surface

panel joint.

3. Fabrication approach limits

intensive fabrication techniques. 2. Complex, precise, and labor

High tooling/capital cost

Drawbacks

Features

 TPS/Insulation for plume heating may not be required

Materials

Aluminum

- 2. Low risk approach (like 1. Low-cost tooling
- commercial airplane structure)

 3. Established inspection and repair techniques.

Fabrication Approach

Titanium (welding feasible)

AI-Li

Hi-temp aluminum

Options

Superalloys (weld)

- 1. Extrude stiffener & edge shapes
 - required curvature 3. Cut skin sheet to size 2. Form edge shapes to
- 4A. Rivet/fasten stiffeners 4B. Alternative-Bond to skin

Drawbacks

stiffeners to skin. 4C. Bond and fasten.

Features

Airplane structure approach

2. Attaching curved frames may 1. Insulation required externally corrosion at faying surfaces. 4. Material strength loss at 3. Must protect against add complexity. or internally. Bulkhead Design Concept-7 Alternative Configuration Beam hydroformed and laser welded to skin Truss Panel (single faced) **Parachute** Laser weld riser Insulation blanket, Frame segments attach with velcro Flat for welding

Advantages

Materials

Low-cost tooling
 Automation potential

Al; Ti (corrosion resistant)

developed)

(welding techniques must be

Options Hi-temp aluminum

Fabrication Approach

- 1. Break/roll form corrugations.
- Hydroform beams.
 Laser-weld corrugated panels and beams to flat panel.

Drawbacks

4. Trim panels to shape Attach frames with lasteners or welds.

Features

- Laser welded construction
- Several stiffening geometries feasible
 - Integral stiffening beam

Bulkhead Design Concept-8

Orthogrid Stiffened

1. Automated fabrication

Advantages

2. Support and attachment details easily incorporated.

3. Existing fabrication approach applicable (low risk). 4. Shear stiffness superior to

5. Established inspection stringer stiffened.

6. Stiffener geometry is techniques.

tailorable to requirements. 7. Cost risk is low.

(material in required thickness Al-Li (can't recycle chips) Hi-temp aluminum not currently available) Options Aluminum

Materials

Fabrication

and attachments in panels. 2. Attach insulation. orthogrid pockets, frames, 1. Machine from plate Approach

Drawbacks

 Extensive machining required may penalize some materials. 2. Poor acoustic attenuation.

> attach with velcro TPS, insulation,

BAC B30FM8 1/4 inch bolt

& BACC30M collar

Robust structure

Integrally machined stiffening

Features

SIDARS NAS1-18560

Materials

Aluminum

Options

2024 7075

- Established (low risk) fabrication procedures.
- 3. Non precision fabrication is 2. Resistant to sonic fatigue. feasible.
 - 4. Low cost-risk.

Fabrication

- Approach

 1. Vacuum bag or autoclave bond face sheets and doublers to core.
- segments; bond to segments 2. Stretch form angle frame to panels staggering the gaps.

Drawbacks

- 3. Fasten to beams through high density core.
 - barrel nut or at frame flange. 4. Fasten to sidewall with

Features

- High performance / low risk
- · Mostly bonded construction feasible

APPENDIX C - WEIGHTS ANALYSIS

The following weights statements of selected structural concepts were prepared by the Boeing ALS Project weights staff. These analyses serve as a check on the weights estimates used during concept definition and comparison during preliminary trade studies.

Structure	Description	Page
Aeroshell	Composite sandwich, Gr/PI outer skin 0.10" thick	108
Aeroshell	Composite sandwich, Gr/PI outer skin 0.20" thick	109
Aeroshell	Metallic sandwich, 4 pcf Ti core, Ti outer skin 0.10" thick	110
Aeroshell	Metallic sandwich, 8 pcf Ti core, Ti outer skin 0.10" thick	111
Aeroshell	Metallic sandwich, 8 pcf Ti core, Ti outer skin 0.08" thick	112
Aeroshell	Metallic sandwich, 8 pcf Ti core, Ti outer skin 0.05" thick	113
Aeroshell	Metallic sandwich, 4 pcf Ti core, Ti outer skin 0.05" thick	114
Ablator	Phenolic/cork over phenolic/glass substrate	115
Aft bulkhead	Graphite/Epoxy sandwich	116
Aft bulkhead	Bonded aluminum honeycomb sandwich	117
Thrust structure	Metallic sandwich shear web, Ti and Al	118
Aeroshell	Metallic sandwich, 4 pcf HTA core, HTA outer skin 0.12" thick	119

AEROSHELL WERGHT SUMMARY POLYMADE HONEYCOMB SANDWICH CONCEPT DRAWING NO. \$K691230

29.03 €	2.48													-2.26		.,																	5.06									20.00		3.53
UNIT WEICHT (LB/FT2)		2.98				2.98			,	,				80 6	2.98	, i	Ę.																						ć) F				
					0.17				0.1			0 17	-	4				_	_								<u> </u>						ম	-							_	4	L	6
L	2683					•								-284			~	461	-			_		•		•		_		•			512	0		G.			~ .	o 🕶 (N.	7		3816
WEIGHT (LB)		758				622			*		_	~ ~		٦	9 8	7 5	Ņ	:	•		60			24	ρσ	29	ro K	1,		- 00		6		9	36	199	۰.		on 5	2.5	-			
			220	27.	4	•	<u></u>	225	ਲ 	35	213	665	<u> </u>						ç	168		7	190		ቀ ፸	•	T 6	,	9	~	ψ	<u>ო</u>		•	N C	, 	<u>ب</u>	8					L	
(LB/FT3)				4.70	68.00			4.70	68.00			4 g	3						4.70	30.00		4.70	30.00	į	30.00	8	4.70 5	30.00	4.70	30.00	4.70	30.00					4.70	36.06						
DENSITY (LB/IN3)] (LB/FT3)			0.060	9.5	0.039	90	0.060		0.038	0.060	0.060	950	3						0.003	0.017		0.003	0.017		0.003		0.003	200	0.003	0.017	0.003	0.017		000	090		0.003	0.060	0.060					
LENGTH (N)																			878	878		1659	1659	,	2 5	i	305	306	180	180	291	291					747	747	730					
XAREA (INZ)																			-11.00	11.00		9.60	6.60	ć	9 9	}	9.60	3	9.60	09.9	-6.60	6.60					10.00	2.8	0.50					
THICKNESS (N)	Γ		8 5	2.750	0.030	5	9 5	2.750	0.030	0.060	0.040	2.750	3																					0,00	0.060									
(FT2)		522				508			247	5				-125	? 우	-2.1	5																101	2					Ç	2		22		1081
APEA (IN2)	155680	36704				30116			02000	2000				-18050	1470	-300	06641-																14550	10020					0000	246		3200		
MBII	SANDWICH PANELS (EXCL CUTOUTS, DOUBLERS, INSERTS)	CAP	OUTER SKIN (GR / POLYMADE)	CORE(TITANIUM)	ADHESIVE (PA-36 FOR OUTER SKIN, BAKS 5-80 FOR INIVER SKIN)	DOME SHOULDER PANELS	INNER SKIN (GR) EPOXY)	CORE (TITANIUM)	SIDE WALL DANS STANCE AST EXTENSIONS:	OUTER SKIN (GR./ POLYMADE)	INNER SKIN (GR / EPOXY)	COHE (III AND M) A DHESNE (BLACK ROB OF THE SKIN BLACK BO FOR INNER SKIN)		CUTOUTS		IERFACE CUTOUTS (6)		STIFFENERS, CLOSEOUTS, AND FASTENER INSERTS STIFFENED THE CALVE DED TO CIDE WAT I HAVING	CORE REMOVAL	TUBE INSTALLATION	CLOSEOUTS - THRUST STRUCTURE INTERFACE CUTOUTS (6)	CORE REMOVAL	TUBEINSTALLATION	FASTENER INSERT TUBES DOME SUPPORT (8)	TUBE INSTALLATION	FASTENER INSERT TUBES - THRUST STRUCTURE INTERFACES (6)	CORE REMOVAL TIRE INSTALLATION	FASTENER INSERT TUBES- HEAT SHIELD ATTACH - LONGITUDINAL (2)		TUBE INSTALLATION FASTENER INSERT IT BES, AFT BUT KHEAD ATTACH - AET / CIBCLIM CA	CORE REMOVAL	TUBE INSTALLATION	ACCESS DOOR INSTALLATIONS (3)	SANDWICH PANEL DOUBLERS - BODY SIDE (6)	INNER SKIN DOUBLERS (3)	DOOR FRAMES - BODY SIDE (3)	CORE REMOVAL THIS INSTALLATION	STIFFENER FRAME	DOOR FRAMES - DOOR SIDE (3)	DOOR FASTERIAL (9)	DOOM SEALS (3)	PROPELLANT LINE DOOR INSTALLATIONS (2)		AEROSHELL WEIGHT

NOTE: DOOR INSTALLATION AREA AND UNIT WEIGHT ARE REFERENCED TO THE EQUIVALENT DOOR CUTOUT AREA PRIOR TO FRAMING.

AEROSHELL WEKSHT SUMMARY
POLYIMIDE HONEYCOMB SANDWICH CONCEPT OUTER SKIN - 0.20" THICK
DRAWING NO. SK891230

H	2.85		-2.42					5.62		20.00	3.94
UNIT WEIGHT	3.84	3.84 2.11	3.84 3.84 11.5 11.5						3.84		
Ď		0.17	0.17						· · · · · ·		
	3084		-303	194				268		444	4254
WEIGHT	626	1303	34 39 4 513	141	160	53	17	9 661	22 251 24 12		
>	440 220 275	361 181 181 225 36 320 213	 86 100 100 100 100 100 100 100 100 100 10	-26 168	06. 061	, g, 4, &	2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,	4.8 5.5 2.5	<u> </u>		
DENSITY 3) [(LB/FT3)]	6.78	68.00 68.00	5.48 8.00 8.00	4.70 30.00	30.00	30.08 5.00 5.00	30.00 30.00 30.00	£.3			
(LB/N3)	0.060	09000	0.039	0.003	0.003	0.003	0.003 0.017 0.003 0.017	0.060	0.00		
				87.8 87.8	1659	36 38	180 180 291 291	747	747 730		
XAREA (IN2)				11.00	6.60	09.9 09.9 09.9 09.9	6.60 6.60 6.60 6.60	-10.00	0.50		
THICKNESS XAREA LENGTH	0.200 0.100 2.750	0.030 0.200 0.100 2.750 0.030 0.060	2.750 0.030					0.040			
(FT2)		209	-125 -12 -10 -2.1					10	65	z	1081
AREA (IN2)	155680 36704	30116	-18050 -1730 -1470 -300 -14550					14550 10020	9420	3200	
ПЕМ	SANDWICH PANELS (EXCL CUTOUTS, DOUBLERS, INSERTS) DOME PANELS, INCLUDING CAP OUTER SKIN (GR / POLYIMIDE) INNERS SKIN (GR / POXY) CORE (TITANIUM)	ADHESIVE (FM-35 FOR OUTER SKIN, BIMS 5-80 FOR INNER SKIN) DOME SHOULDER PANELS OUTER SKIN (GAY POLYMIDE) INNER SKIN (GAY EPOXY) CORE (TITANIUM) ADHESIVE (FM-35 FOR OUTER SKIN, BIMS 5-80 FOR INNER SKIN) SIDE WALL PANELS (INCL ATT EXTENSIONS) OUTER SKIN (GAY POLYMIDE) INNER SKIN (GAY EPOXY)	CORE (TITANIUM) ADHESIVE (FM-36 FOR OUTER SKIN, BMS 5-80 FOR INNER SKIN) CUTOUTS LOZ LINE DOOR CUTOUT LHZ LINE DOOR CUTOUT THRUST STRUCTURE INTERFACE CUTOUTS (6) ACCESS DOOR CUTOUT (3)	STIFFENERS, CLOSEOUTS, AND FASTENER INSERTS STIFFENER TUBE - SHOULDER TO SIDE WALL JUNCTION CORE REMOVAL TUBE INSTALLATION CLOSEOUTS - THRUST STRUCTURE INTERFACE CUTOUTS (8)	FASTENER INSERT TUBES - AIR BAG ATTACH (2) CORE REMOVAL TUBE INSTALLATION FASTENER INSERT TUBES- DOME SUPPORT (8)	CURE HEMOTAL TUBE INSTALLATION FASTENER INSERT TUBES - THRUST STRUCTURE INTERFACES (6) CORE REMOTAL TUBE INSTALLATION	FASTENER INSERT TUBES- HEAT SHIELD ATTACH - LONGITUDINAL (2) CORE REMOVAL: TUBE INSTALLATION FASTENER INSERT TUBES- AFT BULKHEAD ATTACH - AFT / CIRCUM (3) CORE REMOVAL TUBE INSTALLATION	ACCESS DOOR INSTALLATIONS (3) SANDWICH PANEL DOUBLERS - BODY SIDE (6) OUTER SKIN DOUBLERS (3) INNER SKIN DOUBLERS (3) DOOR FRAMES - BODY SIDE (3) CORE REMOVAL	TUBE INSTALLATION STIFFENER FRAME DOOR FRAMES - DOOR SIDE (3) DOOR SANDWICH PANILS (3) DOOR FASTENERS (TBD) DOOR SEALS (3)	PROPELLANT LINE DOOR INSTALLATIONS (2)	AEROSHELL WEIGHT

NOTE: DOOR INSTALLATION AREA AND UNIT WEIGHT ARE REFERENCED TO THE EQUIVALENT DOOR CUTOUT AREA PRIOR TO FRAMING.

file; B. Ti Sand Wt Sum. Alt 4

(NESS = 3.0 INCHES SKNESS = 0.100 INCHES ORE DENSITY = 4.0 PCF	A TANIUM HC	AEROSHEI ONE YCOM DRAW	AEROSHELL WEIGHT SUMMARY TANIUM HONEYCOMB SANDWICH CONCEPT (ASTECH) DRAWING NO. SK891226	UMMARY I CONCEI 91226	PT (ASTE							
ITEM	(IN2)	(FT2)	THICKNESS XAREA (IN2)	XAREA	LENGTH (IN)	(LB/NN3)	DENSITY (LB/FT3)	₹	WEIGHT (LB)		UNIT WEIGHT (LB/FT2)	ا ا
SANDWICH PANELS (EXCL CUTOUTS, DOUBLERS, INSERTS) DOME PANELS, INCLUDING CAP OUTER SKIN INNER SKIN	155680 36704	1081 255	0.100			0.160		236 236	1067	3120	4.19	2.89
COME DOME SHOULDER PANELS OUTER SKIN INNER SKIN	30116	90	2.880 0.100 0.040			0.160	8 8	25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	875	<u> </u>	4.19	
SIDE WALL PANELS (INCL AFT EXTENSIONS) OUTER SKIN INNER SKIN CORE	09888	617	2.880 0.020 2.960			0.160	8. 8.	80 8 8 B	1178		1.91	
CUTOUTS LO2 LINE DOOR CUTOUT LHZ LINE DOOR CUTOUT THRUST STRUCTURE WITEFFACE CUTOUTS (6) ACCESS DOOR CUTOUTS: 3) FASTENER INSERT CUTOUTS · DOME (462) FASTENER INSERT CUTOUTS · SIDE WALL (328)	-19019 -1730 -1470 -300 -14550 -567 -402	-132 -12 -10 -2.1 -101 -2.8							လို <u>နေ့ မွန်</u> ခုံ လု	ن ه	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-2.40
STIFFENERS, CLOSEOUTS, AND FASTENER INSERTS STIFFENER FRAME - FORWARD FACE TO SHOULDER STIFFENER FLOSEOUT FRAME - SHOULDER TO SUE WALL STIFFENER / CLOSEOUT FRAME - BULKHEAD ATTACH AFT EXTENSION REGIONS AFT EXTENSION REGIONS AFT EXTENSION REGIONS (3) CLOSEOUTS - THRUST STRUCTURE INTERFACE CUTOUTS (6) FASTENER NISERTS - THRUST STRUCTURE (10) FASTENER NISERTS - DOME SUPPORT (80) FASTENER NISERTS - THRUST STRUCTURE INTERFACES (102) FASTENER NISERTS - HEAT SHIELD ATTACH (328)	432	3.0	0.080	0.10 0.70 0.11 1.15	666 846 291	0.160 0.160 0.160 0.160 0.160		8 3	116 123 6 6 6 45 13	950		
ACCESS DOOR INSTALLATIONS (3) SANDWICH PANEL DOUBLERS - BODY SIDE (6) DOOR FRAMES - BODY SIDE (3) DOOR FRAMES - BOOR SIDE (3) DOOR SANDWICH PANELS (3) DOOR SANDWICH PANELS (3) DOOR SALDWICH (18D)	14550 10020 9420	101 70	0.060	1.19	747	0.160 0.160 0.160			292 292 133 135 125 127 127	678	1.91	F. 9
PROPELLANT LINE DOOR INSTALLATIONS (2)	3200	22								44		20.00
AEROSHELL WEIGHT		1901				=				4446		4.11

-2.40

NOTE: DOOR INSTALLATION AREA AND UNIT WEIGHT ARE REFERENCED TO THE DOOR CUTOUT AREA PRIOR TO FRAMING.

20.00

4.1

6.71

BASELINE: SANDWICH TOTAL THICKNESS = 3.0 INCHES DOME OUTER SKIN THICKNESS = 0.100 INCHES DOME AND SIDEWALL CORE DENSITY = 8.0 PCF

AEROSHELL WEIGHT SUMMARY TANIUM HONEYCOMB SANDWICH CONCEPT (ASTECH) DRAWING NO. SK891226

ITEM	AREA (IN2)	(FT2)	THICKNESS XAREA LENGTH	XAREA (IN2)	LENGTH (IN)		DENSITY (LB/N3) (LB/FT3)	WEIGHT (LB)		UNIT WEIGHT (LB/FT2)	
SANDWICH PANELS (EXC. CUTOUTS, DOUBLERS, INSERTS) DOME PANELS, INCLUDING CAP OUTER SKIN INNER SKIN	36704	1061	0.000			0.160 0.160		1312 587 235	4174	5.15	3.86
CORE DOME SHOULDER PANELS OUTER SKIN	30116	508	2.880 0.100 0.040	<u>-</u>		0.160	80 80	489 1076 482 193 402	"	5.15 3.15	
SIDE WALL PANELS (INCL AFT EXTENSIONS) OUTER SKIN INNER SKIN CORE	88860	617	0.020			0.160	8 00	284 284 284 1218	60	2.89	
CUTOUTS LOZ LINE DOOR CUTOUT LH2 LINE DOOR CUTOUT LH2 LINE DOOR CUTOUTS HAUST STRUCTORE WITEFFACE CUTOUTS (6) ACCESS DOOR CUTOUTS (3) FASTENER INSERT CUTOUTS - DOME (462) FASTENER INSERT CUTOUTS - SIDE WALL (328)	-19019 -1730 -1470 -300 -14550 -567 -402	-132 -12 -10 -2.1 -101 -2.8						62 11: 12: 12: 13: 14: 14: 14: 14: 14: 14: 14: 14: 14: 14	20 - E 0 8	સ્ટ્રે	-3.38
STIFFENERS, CLOSEOUTS, AND FASTENER INSERTS STIFFENER FRAME - FORWARD FACE TO SHOULDER STIFFENER FRAME - SHOULDER TO SIDE WALL STIFFENER / CLOSEOUT FRAME - BULKHEAD ATTACH				65.	846	0.160		116	520 9 3		
AFT EDGE EXCLUDING AFT EXTENSION REGIONS AFT EXTENSION REGIONS (3) CLOSEOUTS - THRUST STRUCTURE INTERFACE CUTOUTS (6) FASTENER INSERTS - AIR BAG ATTRO80) FASTENER INSERTS - DOME SUPPORT (80) FASTENER INSERTS - THRUST STRUCTURE INTERFACES (102) FASTENER INSERTS - HEAT SHIELD ATTACH (328)	432	3.0	0.080	0.70	291	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		3 Y 4 n	6 13 13 52		· · ·
ACCESS DOOR INSTALLATIONS (3) SANDWICH PANEL DOUBLERS - BODY SIDE (6) DOOR FRAKES - BODY SIDE (3)	14550 10020	⊉ 8	0.080	4.	747	0.160		37 8X	743		7.35
DOOR FRANKS - DOOR SIDE (3) DOOR SANDWICH PANELS (3) DOOR FASTENERS (TBD) DOOR SEALS (3)	94.20	92		1.19	<u>8</u>	0.0. 0.0. 0.0.		<u>π</u>	130 124 12	2.89	
PROPELLANT LINE DOOR INSTALLATIONS (2)	3200	22							4		20.00
AEROSHELL WEIGHT		1081							5435		5.03

NOTE: DOOR INSTALLATION AREA AND UNIT WEIGHT ARE REFERENCED TO THE DOOR CUTOUT AREA PRIOR TO FRAMING.

BASELINE: SANDWICH TOTAL THICKNESS = 3.0 INCHES DOME OUTER SKIN THICKNESS = 0.080-IN DOME AND SIDEWALL CORE DENSITY = 8.0 PCF

AEROSHELL WEIGHT SUMMARY TTANUM HONEYCOMB SANDWICH CONCEPT (ASTECH) DRAWING NO. SK891228

			000000000000000000000000000000000000000			1			1000	-	TI COLUMN TOWN	
	(INZ)	(FT2)	(N) (NZ) (N)		2	(LB/NO) (LB/FT3)	(LB/FT3)		(B)		(LB/FT2)	_
SANDWICH PANELS (EXCL CUTOUTS, DOUBLERS, INSERTS)	155680	1081							m	3960		3.66
DOME PANELS, INCLUDING CAP	36704	255							1194		4.68	
OCTER SKIN			0.080			0.160		420				
NAMES STON			0.040			0.160		235				
COPE			2.880				8.0	489			,	
DOME SHOULDER PANELS	30116	508	1			,		į	096		4.68	
OUTER SKIN			0.080			0.160		383				
			5 6			2	8.00	402				
SIDE WALL PANELS INCLAFT EXTENSIONS)	88860	617						!	1786		2.89	
OUTER SKIN			0.020			0.160		284				
INNER SIGN			0.020			0.160	90	284 1218				
			}							- ;		
CUTOUTS	-19019	-132							. 93	-433	4	-3.28
LOS LINE DOOR CUITOR	1470	7 5							3 4		4.68	
THRUST STRUCTURE INTERFACE CUTOUTS (6)	8	-2.1							?		-4.68	
ACCESS DOOR CUTOUTS (3)	-14550	5							-293		-2.89	
FASTENER INSERT CUTOUTS - DOME (462)	-567	3.9							1		4.6	
FASTENEH INSERT CUTOUTS - SIDE WALL (328)	¥04-	-7.0							P	_	50.7	
STIFFENERS, CLOSEOUTS, AND FASTENER INSERTS										520		
STIFFENER FRAME - FORWARD FACE TO SHOULDER				5.5	999	0.160			116			
STIFFENER CLOSEOUT FRAME - BUIKHEAD ATTACH				<u> </u>	}	3			123			
AFT EDGE EXCLUDING AFT EXTENSION REGIONS				0.70	616	0.160		69				
AFT EXTENSION REGIONS (3)	733	ç	080	ç:-	Z9.	9 5		Š	Œ			
CLUSECULOS - ITANOS I STRUCTURE INTERPRETADE COLOGIO (9) FASTEMER INSERTS - AIR RAS ATTACH (280)	700	9	3			3			4.5			
FASTENER INSERTS - DOME SUPPORT (80)									13			
									16			
FASTENER INSERTS - HEAT SHIELD ATTACH (328)									25			
ACCESS DOOR INSTALLATIONS (3)	14550	101							ć	743		7.35
SANDWICH PAREL DOUBLERS - BODY SIDE (6) DOOR FRAMES - RODY SIDE (3)	02001	₹	0.060	2.44	747	3 3			29.5 80.8			
DOOR FRAMES - DOOR SIDE (3)				1.19	681	0.160			130			
DOOR SANDWICH PANELS (3)	9420	65				0.160			189		2.83	
DOOR FASTENEHS (18U) DOOR SEALS (3)									\$ 2			
PROPELLANT LINE DOOR INSTALLATIONS (2)	3200	2 2								4 4 4		20.00
										-		
AEROSHELL WEIGHT		1081							•,	5234		4.84
										1		

NOTE: DOOR INSTALLATION AREA AND UNIT WEIGHT ARE REFERENCED TO THE DOOR CUTOUT AREA PRIOR TO FRAMING.

ALTERNATE 1: SANDWICH TOTAL THICKNESS = 3.0 INCHES DOME OUTER SIGN THICKNESS = 0.050-IN DOME AND SIDEWALL CORE DENSITY = 8.0 PCF

AEROSHELL WEIGHT SUMMARY TTANUM HONEYCOMB SANDWICH CONCEPT (ASTECH) DRAWING NO. SK891228

N.H.	ABEA		THICKNESS YABEA I ENGTH	YAREA	FNGTH		VE L	WEIGHT		UNITWEIGHT	F
	(JNS)	(FT2)	S.	(INZ)	2		(LB/IN3) (LB/FT3)	(LB)		(LB/FT2)	
											•
SANDWICH PANELS (EXCL CUTOUTS, DOUBLERS, INSERTS)	155680	1081						4000	300	5	 • ? .
DOME PANELS, INCLUDING CAP	36/04	662	0.060			0 1 60			,	5	
OCIEN SKIN			0000			3 5		235			
NAME THE PARTY OF			2.910			3	8.00	464			
DOME SHOULDER PANELS	30116	509						839	o	4.01	_
OUTER SKIN			0.050			0.160		241			
INVERSIONAL COLORS			2.910			3	8.00	406			
SIDE WALL PANELS (INCL AFT EXTENSIONS)	88860	617						1786	9	2.89	
OUTER SKIN			0.020			0.160		284 284			
CORE			2.960				8.00	1218			
STIOTIO	.19019	-132							-414		-3.13
LO2 LINE DOOR CUTOUT	-1730	-12						Υ `	8 7 :	10.4	
	-1470	우 :						Υ	- 4	4 4	
INFORM STRUCTURE WIENFACE CUTOUTS (6)	-300	101						-293	2	-2.89	
FACTONIE INSERT CLITICALIS. DOME (462)	295	6.6						, T	9-	-4.01	
FASTENER INSERT CUTOUTS - SIDE WALL (328)	-402	-2.8							89	-2.89	
STIFFENERS, CLOSEOUTS, AND FASTENER INSERTS									520		
STIFFENER FRAME - FORWARD FACE TO SHOULDER				1.10	98	0.160		F	116		
STIFFENER FRAME - SHOULDER TO SIDE WALL				0r.r	£	5			123		
STIFFENERY (CLOSECUL) PHAME - BULNHEAU ALTACH AFT ENGE EXCLINNA AFT EXTENSION REGIONS				0.70	616	0.160			?		
AFT EXTENSION REGIONS (3)				1.15	28	0.160		54			_
CLOSEOUTS - THRUST STRUCTURE INTERFACE CUTOUTS (6)	432	3.0	0.080			0.160					
FASTENER INSERTS - AR BAG ATTACH (280)									. e		
FASTEMEN INSERTS - DOME SOFT ON (89)					_				16		
FASTENER INSERTS - HEAT SHIELD ATTACH (328)									52		
	9								743		7.35
ACCESS DOOR INSTALLATIONS (3)	10020	2 8	0.060			0.160			96		
DOOR FRAMES - BODY SIDE (3)	2	?		2.44	747	0.160		8	292		
DOOR FRAMES - DOOR SIDE (3)		ţ		-19	<u>8</u>	0.160			130	2.89	
DOOR SANDWICH PANELS (3)	9420	2				<u>.</u>			24.		٠
DOOR SEALS (3)									12		
PROPELLANT LINE DOOR INSTALLATIONS (2)	3200	22							444		20.00
ACDAGUE: MEIOUT		1081							4942		4.57
AEHOSHELL WEIGH!											

NOTE: DOOR INSTALLATION AREA AND UNIT WEIGHT ARE REFERENCED TO THE DOOR CUTOUT AREA PRIOR TO FRAMING.

ALTERNATE 2: SANDWCH TOTAL THCKNESS = 3.0 INCHES DOME OUTER SKIN THCKNESS = 0.050-IN DOME AND SIDEWALL COPE DENSITY = 4.0 PCF

AEROSHELL WEIGHT SUMMARY
11ANUM HONEYCOMB SANDWICH CONCEPT (ASTECH)
DRAWING NO. SK891226

ΛEII	AREA		THICKNESS XABEA I ENGTH	XAREA	LENGTH	_	MSTV	×	WEIGHT	UNTWEIGHT	
	(A)	(FT2)	£	SZ.	Ź	_	(LBAIN3) (LBAFT3)		(LB)	(LB/FT2)	
SANDWICH PANELS (EXCL CUTOUTS, DOUBLERS, INSERTS)	155680	1081							2590	5	2.40
OUTER SKIN	<u> </u>	}	0.050			0.160		294	2		
INNEH SKIN CORE	, .		2.910				6.00	235			
DOME SHOULDER PANELS	30116	508	1			,		į	637	3.04	
OUTER SKIN INNER SKIN		-	0.050			0.0 0.0 0.0 0.0 0.0 0.0		241 193			
CORE SONS AFT EXTENSIONS	88860	617	2.910				8.		1178	5	
OCIER SKIN		}	0.020			0.160					
INNER SKIN CORE			0.020 2.960			0.160	8.4	284 609			
CUTOUTS	-19019	-132							-284		-2.15
LOZ LINE DOOR CUTOUT UH2 LINE DOOR CUTOUT	-1730	- P							ने न	90.6. 90.6.	
THRUST STRUCTURE INTERFACE CUTOUTS (6)	300	-2.1							φ	-3.04 -3.04	
ACCESS DOOR CUTOUTS (3) FASTENER INSERT CITOUTS - DOARS (482)	-14550	5 %							<u>. 1</u>	19.L.	
FASTENER INSERT CUTOUTS - SIDE WALL (328)	405	8.							i vò	1.91	
STIFFENERS, CLOSEOUTS, AND FASTENER INSERTS									520		
STIFFENER FRAME - FORWARD FACE TO SHOULDER STIFFENER FRAME - SHOULDER TO SHOW WIL				5.5	946	9 9 8 8			116		
STIFFENER / CLOSEOUT FRAME - BULKHEAD ATTACH				!					123		
AFT EDGE EXCLUDING AFT EXTENSION REGIONS AFT EXTENSION REGIONS (3)				0.70	616 291	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		69 45			
CLOSEOUTS - THRUST STRUCTURE INTERFACE CUTOUTS (6)	432	3.0	0.080			0.160			9 45		
FASTENER INSERTS - DOME SUPPORT (80)		-							5 5 5		
FASTEMEN INSENTS - HEAT SHIELD ATTACH (328)									25		
ACCESS DOOR INSTALLATIONS (3)	14550	101							678		6.71
SANDWICH PANEL DOUBLERS - BODY SIDE (6) DOOR FRANES - BODY SIDE (3)	10020	۶	0.060	2.44	747	0.160			96 292		
DOOR FRAMES - DOOR SIDE (3) DOOR SANDWICH PANELS (3)	9420	55		1.19	189	0.160			130	16.1	
DOOR FASTENERS (TBD) DOOR SEALS (3)		}				<u> </u>			12 24	•	
PROPELLANT LINE DOOR INSTALLATIONS (2)	3200	22							444		20.00
AEROSHELL WEIGHT		1081							3948		3.65

NOTE: DOOR INSTALLATION AFEA AND UNIT WEIGHT AFE REFERENCED TO THE DOOR CUTOUT AFEA PROR TO FRAMING.

TPS WEIGH., SUBMARY PHEONLIC / CORK ABLATOR OVER PHEONLIC / GLASS SUBSTRATE DRAWING NO. SK891240

ITEM	APEA	100	THICKNESS XAREA LENGTH	XAREA		DENSITY A BANSI (1 B/FTS)	NSTY 1 B/FT30	W.	WEGHT	3	UNIT WEIGHT	
											•	3
DOME TPS - INFLIGHT JETTISONABLE ABLATOR (PHEONLIC / CORK)	68114	473							1428	8	•	5
OVER DOME FORWARD FACE, EXCLUSIVE OF DOORS	34802	242	0.750			0.018	8 8 8 8	463				
OVER MARMON CLAMP	3081	12	0.00			0.018	80.50	9	ä			
ABLATOR (PHEONLIC / SILICA) ALONG EDGE OF THRIST STRUCTURE INTERFACE DOOR CUTOUT (6)	498	6	1.00			0.063	109.00	31	<u>,</u>	_		
SUBSTRATE (PHENOLIC / GLASS) RACK CHEET	64614	440	0 040			0.070	121.00	181	200			
EDGE BUILDUP AT MAGMON CLAMP		!	!	9.30	883	0.070	121.00	2	<u>.</u>			
ADHESIVE ABLATOR TO SUBSTRATE	61523	427	0.005			0.030	68 .00	12	2	0.0283		
ABLATOR TO MARMON CLAMP	3081	2	0.005			0.039	88.8	-	971	0.0283		
CORE (ALLUMINUM)	26741	98	0.500				8.8	8	!			
INNER SKIN (PHEONLIC / GLASS) ADHESIVE (CORE TO SUBSTRATE + CORE TO INNER SKIN)	26741	8 5	0.040 0.030			0.052	8 8 8 8	88		0.1700		
MAPMON CLAMP - FWD / CIPCLMFERINTAL			0.000	5	ŝ	0.003		ř	09			
STAMP SEGMENTS(s), WITH END THI INGS (19) INTERCONNECTING BOLTS, EXPLOSIVE TYPE (5)			8	2	3	2070		3 40				
DOME TPS - FIXED TO AEROSHELL									247	<u>~</u>		
ABLATOR (PHEONLIC / CORK)		•	5			•	ş	8	35			
OVER LIVE LINE DOOR, EXCLUSIVE OF EDGE OVER LIVE LINE DOOR, EXCLUSIVE OF EDGE	0501	۰,	0.750			0.01	8	12	i			
ABLATOR (PHEONLIC / SILICA) ALONG LOS LINE DOOR ETGE	510	•	1 000			0.063	100.00		5			
ALONG LHZ LINE DOOR EDGE	\$	· m (0.750			0.063	200	8				
OVER THEUST STRUCTURE INTERFACES DOORS (6) DOOR THERMAL SEALS (SUICON)	8	N	98			200	8		0			
LOZ LINE DOOR				8 8	25	0.052	88	• •				
THRUST STRUCTURE INTERFACE DOORS (6)				0.25	8	0.052	8	N				•
ADHESIVE ABLATOR TO DODORS	3500	24	0.005			0.030	8	-	-	0.0283	_	
MARAMON CLAMP EJECTOR SPRING INSTALLATIONS (20) THREIST STRUCTURE INTERFACE DOOR INSTALLATIONS (6)									120 120			
	000								1012	•		79.
SIDEWALL 173 - UNDOWN REMOVEABLE ABLATOR (PHEONLIC / CORIX)		;							647			
OVER SUBSTRATE OVER MARMON CLAMP	70263 2949	20 gg	0.50 0.40			0.0	8 8 8 8	8 2				
OVER RETENTION CLAMPS	1098	•	0.300			0.018		.	569			
BASIC SHEET	74310	516	0.040		2007	0.070	121.00	208	}			
EDGE BUILDUP AT CLAMPS / AT ACCESS DOORS ADHESIVE				3	À CO	200	_		5			
ABLATOR TO SUBSTRATE AN ATOM TO MADIAN CLAND	70263	4.88 00	0.00			0.030	8 8	‡ -		0.0283	••	
ABLATOR TO RETENTION STRAPS	1098	•	0.005			0.039	_	۰	g	0.0283	•	
MACHION CLAMP - AFT / CHCUMFERENTAL STRAP SEGMENTS (5), WITH END FITTINGS (10)			0.050	0.20	907	0.283		8	ñ			
INTERCONNECTING BOLTS (5) RETENTION CLAMPS - LONGITUDINAL (2)								•	23			
STRAP SEGMENTS (2) FASTENERS (20)			0.200	2.	<u>\$</u>	9.18		8-				
SIDEWALL TPS - ATTACHED TO AEROSHELL									Ä	234		
ABLATOR (PHENOLIC / CORK)	44660	Ş	9				8	128	128			
MARIMON CLAMP PROVISIONS - AFT / CIRCUMPERENTIAL	000	5	} 			-			63			
CLAMP POSITIONING FING (ALUMINUM) FASTENERS - RING ATTACHMENT (150)				0.65	6	6 8		g v				
RETENTION CLAMP PROVISIONS - LONGITUOINAL (2)				9	,	2		•	12			
CLAMP POST INMINIS PLATE EXCLUDING PASTENER INSERTS (PLUM) RETENTION STRAP FASTENER INSERTS (75)				3		3						
FASTENERS - PLATE ATTACHMENT (150) SUBSTIDATE TENSIONING PROMISIONS AT ACCESS DOORS								~	90			
TPS WEIGHT		1090							5	2018		2.68
										-		

AFT BULKHEAD WEIGHT SUMMARY GRAPHITE/EPOXY SANDWICH CONCEPT

XEIJ	AREA		THICKNESS XAREA (LENGTH)	XAREA	LENGTH	Ð	CENSITY	WEIGHT		CAST WEIGH
	(INZ)	(FT2)	Z	(N2)	Ę	(LB/NR3)	(LBAINS) (LBAFT3)	(B)	(LB	(LB/FT2)
SANDWICH PANEL (EXCLUDING CUTOUTS, EDGE FRAMING, INSERTS)	59728	415						554	-	1.33
INNER SKIN (GR / EPOXY)			0.040			0.060		143		-
OUTER SKIN (GR/EPOXY)			0.040			090.0	8	196		
OCHE (MANEX) ADHESINE			0:030			0.039	00.89	7.	o.	0.170
MAIN ENGINE CUTOUTS - 94.0 IN DIA (3)	-20820	-145						-192	8	-1.33
MAIN ENGINE CUTOUT EDGE FRAMING INCREMENT (3)								8	25	
EDGE				1.42	895	000	6.0	٠, <u>ر</u>		
HAMES ADHESIVE INCREMENT - FRAMES TO CORE	1285	6	0.015	20.5	c R	0.039	68.00	-1	· ·	0.085
								•		
PERIMETER EDGE FRAMING INCREMENT				5.80	883		4.00	- 12	n	
FRAME				09.0	888	0.060		27	-	
PARACHUTE RISER INSERTS (3)								-	<u> </u>	
CTIESCHING DEANG INCOGNENT (2)									132	
SANDWICH PANEL INNER SKIN REDUCTION (0.040-IN TO 0.010-IN)	6095		-0.030			090.0	-	÷		
SANDWICH PANEL CORE THIM ALONG OUTER SKIN				-1.15	230		4.00	7		
BEAM COVER SKIN	10600		0.040			0.060		25		
BEAM PLANK. INNER	2120		001.0	0.40	88	0.060				
BEAM PLANK: OUTER	CROA		3	. 5. 5. 5.	2 2	90.0	00 7	, ce		
BEAM ADHESIVE INCREMENT - 5 MIL	8745	61	0.005	3	3	0.039	68.00	; ~	0	0.028
BEAM ADHESIVE INCREMENT -15 MIL.	10070	20	0.015			0.039	68.00	9	·	082
FASTENERS - BULKHEAD TO AEROSHELL								•	8	
AFT BULKHEAD WEIGHT		415						98	565	1.36
									4	

AFT BULKHEAD WEIGHT SUMMARY BONDED ALUMINUM SANDWICH CONCEPT

MEM	APEA	П	THICKNESS XAREA LENGTH	XAREA		DENSITY		WEIGH	UNII WEIGH	
	(MZ)	12	(A)	2				-		Т
SANDWICH PANELS (FXCLUDING CUTOUTS, EDGE FRAMING, INSERTS) (4)	59728	415						612	1.47	_
PINER SKIN			0.032			0.10		191		
OUTER SKIN			1 436	•		3	3.10	<u> </u>		_
CONE (ALLMINUM)			0.030			0.039	68.00	7	0.170	
ANHENNE CORE TO CORE	345	8	0.100			0.039	68.00	-	0.567	
SPLICE STRAPS	720	သ	0.050	0.15	240	0.100		♥ (000	
ADHESIVE - SPLICE STRAPS TO SKINS	20	2	0.005			0.039	00.89	0	0.028	
							,			
MAIN ENGINE CUTOUTS - 94.0 IN DIA (3)	-20820	-145						-213	-1.47	7
A CHINAD TOOL THAT						-		*	9	
MAIN ENGINE COLOC: EDGE TRAMING (3)				0.50	895	0.100		45		
ADHESINE - FRAMES TO SANDWICH PANEL CORE	1285	6	0.015			0.039	68.00	-	0.085	
ADHESIVE - FRAMES TO SANDWICH PANEL SKINS	2685	19	0.005			0.039	00.89	-	0.028	
THE PROPERTY OF THE PROPERTY O								7.4	•	
CANDAMIC DAME CORE CHANGE ALONG PERIMETER (DELETTE 3.1 PCF CORE)				4.31	883		3.10	-1		
SANDWICH PANEL CORE CHANGE ALONG PERIMETER (ADD 12.0 PCF CORE)				+4.31	883		12.00	26		
FRAME		,		09.0	888	0.100	3	8.	0.085	
ADHESIVE - FRAME TO SANDWICH PANEL CORE	1275	თ 5	0.015			0.039	68.00		0.028	
ALMENIVE -THAME TO DANDWICH SHIPS	<u> </u>	?	} i							
PARACHUTE RISER INSERTS (3)								-	<u></u>	
								347		
STIFFENING BEAMS INCREMENT (INCL. PANEL TO PANEL SPLINES) (4)				-8.62	530		3.10	æ		
SANDWICH PANEL CORE CHANGE ALONG BEAMS (DELETE 3.1 FOR CARE) SANDWICH PANEL CORE CHANGE ALONG BEAMS (ADD 12.0 PCF CORE)				+8.62	230		12.00	32		
I-BEAMS				5.20	530	0.100		276		
SPLICE STRAPS - PANEL TO PANEL (OUTER SURFACE ONLY)	2650	18	0.100	0.50	230	0.100		27		
FASTENERS - BEAMS TO SANDWICH PANEL								5		
								_	-	
FASIENERS - BULNHEAD IO AEMOSHELL										- 1
AFT BULKHEAD WEIGHT		415						668	9 2.17	_
										ļ

THRUST STRUCTURE WEIGHT SUMMARY COMBINED TITANIUM SANDWICH / ALUMINUM SANDWICH CONCEPT

ПЕМ	AREA (INZ)	(FT2)	THICKNESS (N)	XAREA LENGTH	ENGTH (N)	(LB/IN3) (LB/F	(LB/FT3)	*	WEIGHT (LB)	\vdash	UNIT WEIGHT (LB/FT2)	EIGHT T2)	
MID CENTER PANEL (174.0-IN X 63.7-IN, 2219 ALUMINUM) SANDWICH WEB (174.0-IN X 62.9-IN) FACE SKINS CORE(174.0-IN X 57.9-IN X 1.0-IN, 5052 ALUM)	11084 10945 21890 10075	77 76 152 70	0.024			0.102	3.10	54 8	2	201	1.0	2.62	
ADHESINE - SKINS TO CORE CHORDS (2) POTTING BOND - CHORDS TO SANDWICH	20150	140	0.015	2.70	348 348	0.039 0.102 0.039	68.00	12	96	<u>ö</u>	0.085		
MID SIDE PANEL NO.1 (123.0-IN X 63.7-IN, 2219 ALUMINUM) SANDWICH WEB (123.0-IN X 62.9-IN) FACE SKINS	7835 7737 15474	54 54 107	0.024			0.102	(38	. 83	142	9.1	2.62	
COHE(123,0-IN X 5/2+IN X 1,0-IN, 5052 ALUM) ADHESINE - SKINS TO CORE CHORDS (2) POTTING BOND - CHORDS TO SANDWICH	14244	4 Q Q Q	0.015	2.70	246 246	0.039 0.102 0.039	68.00 68.00	<u> </u>	68 15	ő	0.085		
MID SIDE PANEL NO.2					.,.					142		2.62	-
WING PANEL NO.1 (57.6-IN X 63.7-IN, 6AL-4V TITANIUM) SANDWICH WEB (57.2-IN X 62.9-IN)	3598	25 25 25 25	0					ğ		172	2.6	6.75 2.835	
FACE SNINS CORE(54.7-IN X 57.9-IN X 1.00-IN, 5052 AL) ADMESINE - SKINS TO CORE	3167 6334	22 4 22 4	0.000	9 70		0.039	5.20 68.00	8 5 4	ç	6	0.085		
EDGE MEMBER POTTING BOND - CHORDS TO SANDWICH POTTING BOND - EDGE MEMBER TO SANDWICH				1.60	63 115 63	0.039	68.00		0 r 4	-			
WING PANELS NO.2 THRU NO.6	18345	127								960		6.75	
PANEL TO PANEL SPLICES / THRUST POSTS (6AL-4V TITANIUM) (3) WEB TO WEB SPLICE ANGLES (12) (4 PER THRUST POST) CHORD TO CHORD SPLICE PLATES (6) CHORD TO CHORD SPLICE FITTINGS (24) BOND - SPLICE ANGLES TO SANDWICH WEBS	3822 1500 600 3822	27 10 4 27	0.200 0.400 0.400 0.010	12.00	49	0.160 0.160 0.039	68.00		122 96 38 2	2 5 8			
TANK MODULE INTERFACE FITTINGS (TITANIUM) (6)										180			
MAIN ENGINE INTERFACE FITTINGS (TITANIUM) (3)			· · · · · ·				· · · · · · · · · · · · · · · · · · ·			450			
MAIN ENGINE ACTUATOR SUPPORTS (TITANIUM) (6)				,						360			
AEROSHELL SUPPORT TRUSSES (TITANIUM) (2)										150			
AEROSHELL LOCAL INTERFACE STRUCTURES (TITANIUM) (8)										120			
SECONDARY STRUCTURES, FASTENERS, ETC										200			
THRUST STRUCTURE WEIGHT									e e	3237			

ALTERNATE 2: SANDWICH TOTAL THICKNESS = 3.0 INCHES DOME OUTER SKIN THICKNESS = 0.125-IN

UNIT WEIGHT (LB/FT2)	3.31	,	8	2.48	4.4.4.4.4.4.4.3.5.4.3.5.4.8.8.4.3.5.4.8.8.8.8.8.8.9.8.8.9.9.8.8.8.8.8.8.8.8			19.5	2.48	20.00	
UNIT V	4	•	,	Q.							
=	3582	 8	=	1533	-382 -54 -44 -9 -251 -17	422 87 111	2 4 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4	52 52 63 567	162 12 12	#	
WEIGHT (LB)	1139		379 253	•	•	-	λ 6				
(LB/IN3) (LB/FT3)		5. č	Ę	8,							
	0,0	9 6	0.18 81.0	0.108		0.10	801.0 801.0	0.168 80.108	81.0 80.10		
LENGTH						88 28	5 8	74			
XAREA (IN2)						<u>អ</u> អ	1.30	2.	<u> </u>		
THICKNESS XAREA LENGTH		0.080 2.800	0.120	0.080			0.080	0.060			
(FT2)	1061 255	1	88	617	25 5 5 5 6 6 6 6 6 7 8 8 8	8 7.	3.0	⊉ 8	&	ឧ	
AREA (IN2)	155680 36704		30116	98860	-19019 -1730 -1470 -300 -14550 -567	Ş	25	14550 10020	9420	3200	
ITEM	SANDWICH PANELS (EXCL CUTOUTS, DOUBLERS, INSERTS) DOME PANELS, INCLUDING CAP	OUTER SKIN - FVS 1212 INNER SKIN CORE - 0.002" foll, 3116" cell	DOME SHOULDER PANELS OUTER SKIN - 8009 AL INNER SKIN	CORE - 0.002" foil, 3/16" call SIDE WALL PANELS (INCL AFT EXTENSIONS) OUTER SKIN INNER SKIN	CUTOUTS LO2 LINE DOOR CUTOUT LHZ LINE DOOR CUTOUT THRUST STRUCTURE NITERFACE CUTOUTS (6) ACCESS DOOR CUTOUTS (3) FASTENER INSERT CUTOUTS - DOME (462)	FASTENER INSERT COTOUTS - SIDE WALL (328) STIFFENERS, CLOSEOUTS, AND FASTENER INSERTS STIFFENER FRAME - FORWARD FACE TO SHOULDER STIFFENER FRAME - SHOULDER TO SIDE WALL	STIFFENER / CLOSEOUT FRAME - BULKHEAD ATTACH AFT EDGE EXCLUDING AFT EXTENSION REGIONS AFT EXTENSION REGIONS (3) CLOSEOUTS - THENST STRUCTURE INTERFACE CUTOUTS (6) FASTENEN INSERTS - AIR BAG ATTACH (280) FASTENER INSERTS - DOME SUPPORT (80)	FASTENER INSERTS - THRUST STRUCTURE INTERFACES (102) FASTENER INSERTS - HEAT SHIELD ATTACH (328) ACCESS DOOR INSTALLATIONS (3) SANDWICH PARKEL DOLIBLERS - BODY SIDE (6) DOOR FRAMES - RODY SIDE (7)	DOOR FIAMES - DOOR SIDE (3) DOOR SANDWICH PANELS (3) DOOR FASTENERS (TBD) DOOR FEALS (3)	PROPELLANT LINE DOOR INSTALLATIONS (2)	

NOTE: DOOR INSTALLATION AREA AND UNIT WEIGHT ARE REFERENCED TO THE DOOR CUTOUT AREA PRIOR TO FRAMING.

NASA Nalional Aeronautics and Scace Agrinistration	F	Report Docume	ntation Page				
1. Report No. NASA CR-187509		2. Government Accession	No.	3. Recipient's Catalog	No.		
4. Title and Subtitle				5. Report Date			
System Integration an Reusable Structure fo	d Demo	anced System	Jufa: 1991				
neususie sur usur s		6. Performing Organization Code					
7. Author(s)				8. Performing Organiz	ation Report No.		
Martin N. Gibbins							
narem n. arbbins	<u> </u>	10. Work Unit No.					
		505-63-01-22					
9. Performing Organization Name at	nd Addres	is					
Boeing Defense & Spac		11. Contract or Grant No.					
P.O. Box 3999 Seattle, WA 98124		NAS1-18560 Task 7					
·				13. Type of Report and Period Covered			
12. Sponsoring Agency Name and A	ddress			Contractor	Report		
National Aeronautics Washington, DC 20546 Langley Research Cent	n	14. Sponsoring Agency Code					
The objective of this to achieve life cycle with a chieve life cycle action by the Advanced Launch System figurations included (Gr/PI), or high-temp concepts used titanium aft bulkhead concepts	cost struc m reus sandw eratu m, gra	(LCC) benefits foctural elements we sable propulsion/ ich structure usione aluminum (HTA)	for reusable st were investigat wavionics modul ng titanium, g face sheets. silicon carbio	cructure on the sed - all compo e. Leading as graphite/polyin Thrust struct de/aluminum str	e advanced onents of an eroshell con- nide ture truss		
The technical effort expected there. Ther operation. Finite elstatements and manufaeach design. The Grashell was judged to validate the applications.	emal ament ement cturing PI aem be lo	nalyses show the analyses show st ng cost estimates roshell showed th ower risk. A tec	structural tem cresses during were prepared ne lowest poter chnology develo	mperature prof splash-down. I for calculat ntial LCC, but	iles during Weight ion of LCC fo the HTA aero		
17. Key Words (Suggested by Auth	or(s))		18. Distribution Statem	nent			
High Temperature Alum Thermal Protection Sy Graphite Polyimide,	stem,		Unclassifie subject cat	ed - Unlimited tegory 15			
19. Security Classif. (of this report)		20. Security Classif. (of the	nis page)	21. No. of pages	22. Price		
Unclassified		Unclassifie	_	130			
OHERASSITIEA		0.,0,000,000		1.50	I		

