

1922

kauno technologijos universitetas

BALSO SIGNALO DEKOMPOZICIJA PARKINSONO LIGOS DETEKCIJAI

AIVARAS ŠIMULIS, IFM-5/4 DR. EVALDAS VAIČIUKYNAS

SPRENDŽIAMA PROBLEMA, JOS AKTUALUMAS

PARKINSONO LIGOS APTIKIMAS

Ankstyvas ligos aptikimas

Ligos eigos sušvelninimas

Šiuo metu taikomų sudėtingų diagnostinių procedūrų išvengimas

Norisi turėti neinvazinį įrankį ligos progreso stebėjimui

kauno technologijos universitetas

TYRIMO SRITIS IR OBJEKTAS

Sritis:

Balso signalo analizė, atpažinimo teorija, ekspertinės sistemos, skaitinis intelektas.

Objektas:

Sveikų ir sergančių Parkinsono liga asmenų balso įrašai.

Sritis siejasi su nurodytu objektu

DARBO TIKSLAS IR UŽDAVINIAI

Tikslas:

Ankstyvas Parkinsono ligos aptikimas iš balso signalo.

Sprendžiant šiuos uždavinius buvo pasiektas nurodytas tikslas

Uždaviniai:

Apžvelgti susijusius darbus

Aprašyti metodus signalo išskyrimui

Parengti įrašų duomenų bazę (LSMU)

Dekomponuoti signalą į komponentus

Išskirti dažninius požymius iš komponento

<u>Sukurti **ekspertinę sistemą**, jvertinti</u> tikslumą

Empiriškai rasti lango trukmę ir langų kiekį

Palyginti siūlomą sprendimą su egzistuojančiu

Vizualizuoti gautus rezultatus

Informacinės sistemos paslaugos prototipo specifikacija

ANALIZĖS REZULTATAI IR IŠVADOS

Neurologinės prigimties kalbos sutrikimų tyrimai Parkinsono liga sergančiųjų kalbos tyrimai

Extensive overview — Orozco-Arroyave et al. 2016:
Orozco-Arroyave JR, Hönig F, Arias-Londono JD, Vargas-Bonilla JF, Daqrouq K, Skodda S, Rusz J, Nöth E (2016)
Automatic detection of Parkinson's disease in running speech spoken in three different languages. The Journal of the Acoustical Society of America 139(1):481–500. doi:10.1121/1.4939739

ANALIZUOTI TYRIMAI:

- naudojami įvairūs audiopožymiai tiek globalūs iš viso įrašo, tiek lokalūs iš įrašo kadrų;
- naudojamos gana mažos duomenų imtys (maks. 88 Parkinsonai, 55 sveiki);
- dažnai atliekamas nekorektiškas tikslumo įvertinimas. Įrašai nėra atskirti nuo testavimo ir mokymo imčių;
- nebuvo sukurtas joks tyrimo rezultatus atspindintis sprendimas;

16 tyrimų

F. L. Darley, J. R. Green,
Y. T. Wang, M. O. Paja,
M. A. Little, S. Sapir,
S. Skodda, J. Rusz, Bocklet ir K.
Chenausky, J. R. Orozco, M.
Novotny, T. Tsanas

MŪSŲ TYRIMAS:

- naudojami lokalūs dažniniai PLPCC požymiai;
- naudojama gana solidi duomenų imtis (maks. 75 Parkinsonai, 308 sveiki);
- tikslumo įvertinimas yra atliekamas korektiškai: įrašai yra atskirti nuo testavimo ir mokymo imčių;
- kuriama tyrimo rezultatų informacinė sistema;

BALSO ĮRAŠŲ DUOMENŲ BAZĖ

	Balso įrašai	Sergantys	Sveiki	Iš viso
	Vyras	36 (107)	105 (312)	141 (419)
Z K	Moteris	39 (116)	203 (599)	242 (715)
Z K	lš viso:	75 (223)	308 (911)	383 (1134)

Skaičiai lentelėje: asmenų skaičius (balso įrašų skaičius).

Duomenų šaltinis: LSMU ausų, nosies ir gerklės ligų klinika.

Mikrofonas: "AKG Perception 220" – akustinis, kardioidinis.

Įrašo formatas: .wav, mono PCM, 16 bitų, 44 kHZ.

Sveikas:

Sergantis:

METODOLOGIJA

Požymiai

- dekompozicija;
- požymių išskyrimas.

Statistinės f-jos

 min., maks., vidurkis, medijana, stand. nuokrypis, kvartiliai, asimetrijos ir eksceso koeficientai.

Detekcija

- atsitiktinio miško klasifikatorius;
- klasifikatorių kolektyvas.

<u>ekspertinė sistema</u>

Validavimas

- detekcijos gerumo įvertinimas;
- gretimumų matricos iš RF vizualizavimas.

Prototipas

- prototipo kompiliavimui;
- serverio reikalavimai;
- programiniai įrankiai;
- technologijos.

informacinė sistema

TYRIMO ANALIZĖS PROCESO EIGA

TYRIMO NAUJUMAI

- naujas sprendimo apjungimo būdas <u>ekspertinei</u> sistemai:
 - sprendimai atskiriems komponentams suspaudžiami panaudojant statistines funkcijas.
- informacija iš EMD ir VMD dekompozicijos variantų yra sujungiama sprendimų lygmenyje;
- visu langu informacija palyginta su informacijos gilesniu ištraukimu iš keleto langu;

DEKOMPOZICIJA

- dekompozicija į empirinius komponentus (EMD)
 - Torres ME, Colominas MA, Schlotthauer G (2011) A complete Ensemble Empirical Mode decomposition with adaptive noise. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4144-4147.
- dekompozicija į variacinius komponentus (VMD)
 - Dragomiretskiy K, Zosso D (2014) Variational Mode Decomposition.
 IEEE Transactions on Signal Processing, 62(3), 531–544.
- dažniniai audio požymiai (PLPCC)
 - Hermansky, H. (1990) Perceptual Linear Predictive (PLP) Analysis of Speech. J. Acoust. Soc. Am, 87(4), 1738-1752.

DETEKCIJA

Atsitiktinio miško klasifikatorius (RF)

RF yra klasifikavimo ir regresijos medžių komitetas (CART). Galutinis sprendimas *k* – procentas visų (B) miško medžių, balsavusių už konkrečią klasę.

- B (medžių skaičius miške) = 5000
- mtry (požymių skaičius kiekvienam mazgui) = $\forall p, 2 \cdot \forall p, \frac{1}{2} \cdot p$
 - p objekto **x** dimensija (požymių vektoriaus dydis)

DETEKCIJOS GERUMO ĮVERTINIMAS

- lygių klaidų lygis (angl. equal error rate);
- $C_{IIr} = [0..log_2 N.. \infty]$
 - sergamumo tikėtinumo santykio kaina (angl. cost of log-likelihood-ratio)

Cllr < 1 ir EER < 50 %

kauno technologijos universitetas

EKSPERIMENTO REZULTATAI

Lango dydis (s)	Langų skaičius	Dekompozicijos tipai					
		EMD		VMD		EMD+VMD	
		Cllr	EER	Cllr	EER	Cllr	EER
0,01	1	0.718	26.23	0.237	6.65	0.215	6.10
	2	0.617	20.83	0.754	26.20	0.565	19.12
	3	0.115	3.03	0.245	6.71	0.079	2.24
0,02	1	0.448	13.96	0.682	23.03	0.375	12.42
	2	0.385	13.08	0.610	20.32	0.336	10.45
	3	0.321	9.70	0.499	16.66	0.255	7.72
0,03	1	0.456	13.92	0.100	2.65	0.085	2.22
	2	0.306	10.07	0.503	14.95	0.264	8.27
	3	0.342	11.32	0.115	3.33	0.079	2.22
0,04	1	0.419	11.77	0.586	19.08	0.359	11.51
	2	0.379	11.69	0.541	17.01	0.313	10.05
	3	0.010	2.90	0.451	13.70	0.100	2.87
0,05	1	0.355	10.71	0.583	19.02	0.303	8.53
	2	0.347	10.92	0.539	16.67	0.300	9.73
	3	0.216	5.80	0.449	13.36	0.180	5.37

VIZUALIZAVIMO REZULTATAS

meta-RF artimumų matrica → t-SNE → 2D .wavs žemėlapis

JAUTRUMO ANALIZĖ – PAKARTOTINA DETEKCIJA

19

- (5 EMD+VMD pakart.) × (5 bazinis-RF) × (5 meta-RF) = 125;
- vidurkiai labai skiriasi pagal Wilcoxon Rank-sum testus;

EKSPERTINĖS SISTEMOS INTEGRACIJA INFORMACINĖS SISTEMOS PROTOTIPE

INFORMACINĖS SISTEMOS PROTOTIPO **PROJEKTAVIMAS**

- produkto apibrėžimas;
- sistemos apribojimai;
- funkciniai ir nefunkciniai reikalavimai;

INFORMACINĖS SISTEMOS PROTOTIPO REALIZACIJA

žiniatinklio sprendimas įkelti .wav ir gauti diagnozę;

Zimatinkilo sprendimas įkeiti .wav ii gadti diagnozę,

Parkinson detector

Authors

Exploiting voice signal decomposition in expert system for Parkinson's disease detection.

🗟 Upload voice recording

Submit

The object of the research is the detection of Parkinson's disease by analyzing voice recordings. Some studies demonstrate that people suffering from this disease develop problems controlling the chest and after lingual nerve, which makes it difficult to pronounce consonants that require pressure accumulation in the mouth and the corresponding tongue movements. Here we use mathematical decomposing to create new types of audio attributes from voice recordings, which consists of vowel /a/ pronunciation. By using decomposition techniques and PLPCC frequentative characteristics of the original RF solutions for each entry component was combined in the final solution with meta-RF. In decision level it was possible.

decision level it was possible EMD, but EMD and VMD con

Parkinson detector

Recording red

- Sustaine voicing of vow
- At least 2 seconds in le

About 1

The street description of the control of t

ty to determine if certain person is susceptible to the disease or not.

Parkinson detector About Authors

Solution authors

Aivaras Simulis, IFM-5/1 group student
Department of Information Systems
Kaunas University of Technology
Kaunas, Lithuania
E-mail: aivaras.simulis@ktu.edu

Dr. lect. Evaldas Vaičiukynas
Department of Information Systems
Kaunas University of Technology
Kaunas, Lithuania
E-mail: evaldas.vaiciukynas@ktu.lt

© 2017 - Parkinson detector

IŠVADOS IR ATEITIES DARBAI

- Detekcijos sėkmingumas:
 - (iš visų kadrų, be dekompozicijos) geriausias EER = ~33%;
 - (su dekompozicija, 1 lango, 30 ms) EER vidurkis = ~12.1%;
 - (su dekompozicija, 3 langų 30 ms) EER vidurkis= ~6.5%;
- 3 langų skaičius ir EMD+VMD apjungimas yra rekomenduojamas;
- Abi dekompozicijos yra naudingos. VMD yra geriau nei EMD;
- Sprendimų sklaidos charakteristikos pasirodė svarbiausios;
- Ateities darbai:
 - kartojama modų dekompozicija dėl rezultatų nestabilumo;
 - bazinis detektorius būtų apmokamas su daugiau IMF komponentų;
 - sprendimų statistikos meta detektoriui būtų patikimesnės;
 - testai su įrašais, įrašytais mobiliuoju telefonu;
 - ištestuoti ekspertinę sistemą su kita duomenų baze;

ktu

kauno technologijos universitetas

1922

AČIŪ UŽ DĖMESĮ. KLAUSIMAI?

BALSO SIGNALO DEKOMPOZICIJA PARKINSONO LIGOS DETEKCIJAI AIVARAS ŠIMULIS, IFM-5/4 GR. DR. EVALDAS VAIČIUKYNAS