La sécurisation des messages à l'aide de la cryptographie sur les courbes elliptiques

13262 BAHOUS Youness

Épreuve de TIPE

Session 2021

Plan de l'exposé

- 1 Logarithme Discret
- 2 Courbes elliptiques sur un corps fini
- Chiffrement de Bout en Bout
 - Encodage
 - Authentification
- 4 Conclusion

Logarithme Discret

Position du problème

- L'importance de sécurité cybernétique
- Sécuriser les communications dans un canal

FIGURE – nécessité chiffrement à clé publique

Problème de Logarithme Discret

Problème du logarithme discret (PLD)

Soit G un groupe cyclique d'ordre m, $\alpha \in G$ un de ses générateurs pour tout $\beta \in G$ On cherche l'unique a défini modulo m tel que

$$\alpha^a = \beta$$

on le note $\log_{\alpha}(\beta)$

Logarithme Discret

Applications du Logarithme discret

Le problème du logarithme discret est particulièrement <u>difficile</u> sur des corps finis (Cycliques)

- L'algorithme RSA (PLD Dans $\mathbb{Z}/p\mathbb{Z}$) (corps multiplicatif fini)
- Les courbes elliptiques (PLD sur le Groupe de points d'une courbe elliptique sur un corps fini)

Logarithme Discret

FIGURE – illustration de difficulté de résolution du PLD en $\mathbb{Z}/p\mathbb{Z}$

Courbes elliptiques sur un corps fini Notion

Courbes elliptiques sur un corps fini

Une courbe elliptique sur un corps K noté $E(\mathbb{K})$ est l'ensemble des solutions (X,Y) dans \mathbb{K} à **une équation de Wieistrass** la forme $Y^2 = X^3 + AX + B$, avec $(A,B) \in \mathbb{K}$, tel que le **Descriminant** $\Delta = 4A^3 + 27B^2 \neq 0$

FIGURE
$$-y^2 = x^3 - 3x + 8 \text{ sur } \mathbb{R}$$

Loi de Groupe sur les courbes elliptiques Loi de composition des cordes-tangentes

soient $P(x_P, y_P)$, $Q(x_Q, y_Q)$ deux points d'une courbe elliptique E on définit la loi de composition interne P+Q d'élement neutre $\mathcal O$ telle que :

① Si $x_P \neq x_Q$, on pose:

$$\lambda = \frac{y_P - y_q}{x_P - x_q} \text{ et } \nu = \frac{x_P y_Q - x_Q y_P}{x_P - x_Q}$$

et on calcule $P + Q = \lambda^2 - x_P - x_Q, -\lambda(\lambda^2 - x_P x_Q) - \nu$

- 2 si $x_P = x_Q$ et $P \neq Q$: $P + Q = \mathcal{O}$

$$\lambda = \frac{3x_p^2 + a}{2y_p} \quad \text{et} \quad \mu = \frac{-x_p^3 + ax_p + 2b}{2yp}$$

et on applique la formule de sommation

 \P si P = Q et $y_P = 0$: alors

$$2P = \mathcal{O}$$

FIGURE – somme de deux points sur la courbe $y^2 = x^3 - 2x$

la loi du groupe I

```
p = int(input('donner le cardinal de votre corps cyclique de base'))
a,b = input('La courbe de la forme Y**2=X**3+A*X+B donnez (A,B)').split(',')
a=int(a)
b=int(b)
# L'element neutre Pour la loi du groupe
O='infini'
def Point(x,y):
    return (x,y)
def Appartient_courbe(P):
    return (P == 0 or ((P[1]**2 - (P[0]**3 + a*P[0] + b)) % p == 0
                        and 0 \le P[0] \le p
                        and 0 \le P[1] < p)
def inv_mod_p(x):
    if x \% p == 0:
        raise ZeroDivisionError("Impossible inverse")
    return pow(x, p-2, p)
def ec inv(P):
    0.00
    Inverse d'un point P la courbe y^2 = x^3 + ax + b.
    if P == 0.
        return P
    return Point(P[0], (-P[1])%p)
```

la loi du groupe II

```
def ec_add(P, Q):
   if not (Appartient_courbe(P) and Appartient_courbe(Q)):
       raise ValueError("Entree invalide")
   if P == 0:
       return Q
   elif Q == 0:
       return P
   elif Q == ec_inv(P):
       return O
    else:
       if P == 0:
            s = (3 * P[0]**2 + a) * inv_mod_p(2 * P[1])
       else:
            s = (Q[1] - P[1]) * inv_mod_p(Q[0] - P[0])
       x = (s**2 - P[0] - Q[0]) \% p
       y = (s * (P[0] - x) - P[1]) \% p
       somme = Point(x, y)
   assert Appartient_courbe(somme)
   return somme
```

Problème:

Soient \mathbb{K} un corps fini et E une courbe elliptique définie sur \mathbb{K} , Soit P un point de la courbe $E(\mathbb{K})$. Trouver un entier n, s'il existe, tel que

$$nA = P$$

Présentation de processus

Encryption du texte à l'aide des courbes illéptiques

Utilisation de Ascii pour écrire du texte comme entier

Soit Un message $M=(m_1,\ldots m_n)$, on associe à chaque caractère m_k son code dans le schéma Unicode a_k ainsi M est représenté par $(a_1,\ldots a_n)$ et en considérant $b=2^{16}$ la base de codage :

$$m = \sum_{k=0}^{n} a_k b^{k-1}$$

Réciproquement, sachant m on peut retrouver les a_k à l'aide de la formule :

$$a_k = \left\lfloor \frac{m}{b^{k-1}} \right\rfloor \mod b$$

Limitations techniques imposées par les prochaines étapes de chiffrement

Contraintes techniques

Pour chiffrer le message m obtenu par l'encodage on doit avoir un nombre premier p>m on trouve ainsi des contraintes sur la taille de m, on se limite aujourd'hui à des blocs de texte de ${\bf 160}$ caractères.

Code Python

```
def codage_uni(M): #M= le message texte #n nombre de blocs #l=longeur de bloc
    m.b=0.1
    for i in range(len(M)):
        m+=b*ord(M[i])
        b=b*2**16
    return m
def codage multi(M.n):
    return [codage_unibloc(M[k:k+n]) for k in range(0,len(M),n)]
def decodage(N):
    M=""
    b=1
    a=2**16
    while N//b!=0:
        M + = chr((N//b)%a)
        h=h*a
    return M
def decodage_multi(L):
    return ''.join(decodage(N) for N in L)
```

Utilisation du Codage de Koblitz Conditions

Codage de Koblitz: Les Conditions

soit E une courbe elliptique d'equation $y^2 = x^3 + Ax + B$ définie sur $\mathbb{Z}/p\mathbb{Z}$ on choisit p tel que :

- p ne divise pas $-16(4A^3 + 27B^2)$
- $p \equiv 3 \mod 4$
- 3 p est au moins de 2560 bits

Un Lemme clé

soit $n \in \mathbb{Z}$ et p premier vérifiant $p \equiv 3 \mod 4$ alors

$$y^2 \equiv s \mod p \iff s^{\frac{p+1}{2}} \equiv s \mod p \text{ et } y \equiv s^{\frac{p+1}{2}}$$

Utilisation du Codage de Koblitz

Algorithme

Codage de Koblitz : L'Algorithme

- on calcule $m = \sum_{k=0}^{n} a_k b^{k-1}$
- 2 on fixe $d \leq \frac{p}{m}$
- **3** pour $i \in \{1, \dots d-1\}$
 - On calcule l'abxisse $x_i = (dm + i) \mod p$ d'un point de la courbe avec $m = \left\lfloor \frac{x_i}{d} \right\rfloor$
 - On calcule $s_i = (x_i^3 + Ax_i + B) \mod p$
 - \bullet Si $(s_i)^{\frac{p+1}{2}} \equiv s_i \mod p$ on définit l'ordonnée $y_i = (s_i)^{\frac{p+1}{4}} \mod p$

Code Python

```
C=[A,B,p,N] #p est le cardinal du groupe de base
            #N est la cardinalité de la courbe
def koblitz_codage(C,M):
    b = 2^16
    A = C[0] # les coefficients de la courbe elliptique
    B = C[1]
    p = C[2] # Cardinalité (Nombre de Points De La Courbe)
    n = len(M)
    m = sum([ord(M[i])*b**i for i in range(n)])
    d = min(floor(p/m),100)
    for i in range (p):
        x = (d*m + j) \% p
        s = (x^3 + A*x + B) \% p
        print(s)
        if s==pow(s,int((p+1)/2),p):
            y = pow(s,int((p+1)/4), p)
            return (x,y)
def koblitz decode(P):
    b = 2^16
    d = 100
    1st = \Pi
    m = floor((P[0])/d)
    while m != 0:
        lst.append(chr(m%b)) #convertir m to en liste de caractères
        m = m//b
                             #replace Nmb by partie entière de (Nmb/b)
    return "".join(lst)
```


Massey Omura

protocole

un groupe abélien G d'un corps fini.

- 3. Bob Choisit sa clé secrete b $avec\ b \land |G| = 1,\ et$ $[ba]g = [ab]g\ et\ l'envoie\ à$ Alice
- 5. Bob calcule $b^{-1} = \beta \in G$ et calcule $|\beta b|q = q$.

- 1. représente son message sous la forme d'un élément
- 2. Alice choisit un entier secret a avec $a \land |G| = 1$, calcule |a| a
- 4. Alice Calcule $a^{-1} = \alpha \in G \text{ elle calcule}$ $[aab]g = [b]g \text{ et } l\text{'envoie } \grave{a}$ Bob

Code Python

```
def cle(C): # C désignant la un tableau représentant la courbe à 4 paramètres [p,A,B,N]
    N = C \lceil 3 \rceil
    #On choisit de manière aléatoire la clé d'encryption
    a = random()
    while (\gcd(a,N) != 1):
        a = random()
    return a
def massey_omura(C, Message):
    a = cle(C)
    #On code le message sur un point
    P = koblitz_codage(C,Message)
    Q = multipP(a,P)
    return ([a. 0])
def inverse(a, C):
    N = # nombre de points sur la courbe
    alpha = power_mod(a, -1, N)
    return alpha
```

Transmission du message 'Grandes écoles'

```
M = 'Grandes ecoles'
string = M

[a,aP]=massey_omura(E, string)
print(a)
```

885984820794478669347332578880032900035147330672432692729478815899795946078583606710520789776623587320113812541430767224938263106912691694748248601456864060

```
print(aP)
```

(4179901.32747365192186104208866071773248074487536464422529740386181093173931025663600145272628726039520291445134328978805339607 3767680663868058506236801746400 : 295908133861785067931327178675379591987792281654698426895623582496883210632344955760923789896 89383842155398855878806233123438049295289715667575884416883943 : 1)

```
b=cle(E)
print(b)
```

4511101062141242565342529544308622943636433456028304095397740398963798806973403215367167112452777738639705543466879323896879540622958838378773322264604713424

alpha=inverse(a,E)
print(a)

885984820794478669347332578880032900035147330672432692729478815899795946078583606710520789776623587320113812541430767224938263106912691694748248601456864060

beta=inverse(b,E)
print(b)

4511101062141242565342529544308622943636433456028304095397740398963798806973403215367167112452777738639705543466879323896879540622958838378773322264604713424

baP=b*aP

haP

 $(185969305435719846461157618094493991508642434958206822830809755300873349211742600663824978775386519513943769945179248185545975\\ 2185510588596110308711769575557 : 6081993022101120316675418086751073203465289387740781090862331333121876184305310323420560754391\\ 878206783980786038834488768782919572009957466083524725567505042533 : 1)$

hP

(367654534954203443342582890776789374070666342564832627937276813568265462540428723458754055514265279767858680418668792951158316 11076218200581552048936959015842 : 4773090944483514824092254399912056848012131343324673984542272393658495260982067939324980110038 8545761775104516402410288769914388604658229436941410873179279166 : 1)

P=heta*hP

E

 $(4730889002060445489644681308073808735147345385853276794143860333501:29775698249141323677718606628560252218514442199084112520\\41371667011537344074537006331543165931637754661583175786228221100898411067157755353539524635386631581:1)$

koblitz decodage(P)

'Grandes ecoles'

Conclusion

Réponse à la problématique

La manipulation de la loi de groupe sur les points d'un courbe eliptique sur un corps fini permet ainsi le chiffrement de bout en bout des messages textuels