

Accurate Biosignal Representation Starts with Processing

Accurate Biosignal Representation Starts with Processing

Workshop Objectives

OI Signal Sampling

02Time and
Frequency Domains

03 Noise 04 Filtering

Continuous System

Discrete Representation

Continuous System Discrete Representation Action Potential Graph Reconstruct the continuous signal (with infinite # of possible values) using digital signals (finite # of possible values)

Sampling Rate

- Sample the continuous signal at discrete time points at a constant rate (sampling frequency)
- Connect the discrete voltage values at the sampled times to reconstruct/represent continuous signal

Sampling Rate

How do we know if our sampling rate accurately represents our measured signal?

Sampling Rate

How do we know if our sampling rate accurately represents our measured signal?

The Nyquist Theorem!

We must sample a signal at a rate that is at least 2x higher than the highest frequency in the signal

Let's practice choosing our sampling frequency!

We must sample a signal at a rate that is at least 2x higher than the highest frequency in the signal

Example 1: We want to measure a Human ECG signal (heart activity). The clinically defined signal bandwidth is 0.05-100 Hz. What should our sampling frequency be?

We must sample a signal at a rate that is at least 2x higher than the highest frequency in the signal

Example 2: We want to measure the alpha wave activity in an EEG signal. What is the signal bandwidth? What is the minimum sampling frequency to accurately represent the signal?

We must sample a signal at a rate that is at least 2x higher than the highest frequency in the signal

What happens if we sample below the Nyquist frequency?

Aliasing and the Nyquist Theorem

Aliasing!

- 9 Hz sinusoid (black) sampled every 0.1 s (10 Hz)
- Sampled signal appears as 1 Hz sinusoid (Fs – f₀)

Practical biomedical signal analysis using Matlab, KJ Blinowska and J Zygierewicz, Boca Raton: CRC Press, 2012

Aliasing and the Nyquist Theorem

https://www.youtube.com/watch?v=yr3ngmRuGUc

Activity 1: ECG signal and Aliasing

Why not always have a high sampling frequency?

Can reconstruct the original signal accurately

Have to store a lot of data (Need more storage space)

Have to collect & save the data quickly (Need high processing power)

Time and Frequency Domains

Time and Frequency Domains

https://www.youtube.com/watch?v=fYtVHhk3xJ0

Time and Frequency Domains

How do we interpret complex signals in the frequency domain?

Time vs. Frequency Domain

Time vs. Frequency Domain

Activity 2: Identify Frequency Components using fft()

Frequency Domain

Time Domain

Aliasing in the Frequency Domain?

FIGURE 1.3 Power spectrum of an EEG signal (originally bandlimited up to 40 Hz). The presence of $50 \,\text{Hz}$ mains noise (a) causes aliasing error in the 30 Hz component (i.e., in the b diagnostic band) in the sampled signal (b) if $f_s = 80 \,\text{Hz}$.

Noise affects all parts of acquisition

Measurement noise from:

- Electrodes
 - Movement, coupling to skin changes
 - Thermal noise àcaused by thermal agitation of electrons in a conductor
- Electronic components in the measurement circuit
 - o Amplifiers, resistors, etc each contribute some noise to the signal
- Electrical sources in the surrounding environment
 - o e.g. 60 Hz AC noise from power lines, fluorescent lights

60Hz noise (Mains Hum)

White noise

Physiological Noise *e.g.* heart rate or respiration in MRI

Motion Artifact

Franz, Karly S., CMG Data in Rat

"Respiration" (Physiological) noise

Mains Hum

White Noise

Noise can easily be identified in the frequency domain

How can we remove noise?

Digital Filters can be used to eliminate noise

Notch filter....

Example: "Respiration" (Physiological) noise

Example: Mains Hum

How do Filters work?

Impulse response is the filter response in the time domain

How do Filters work?

Convolution

a. Low-pass Filter

b. High-pass Filter

Impulse Response

How do Filters work?

FIR and IIR filters

IIR Filter Equation:
$$y(n) = \sum_{k=0}^{N} a(k)x(n-k) + \sum_{j=0}^{p} b(j)y(n-j)$$

Output used recursively

	IIR	FIR
Computational Speed	Fast – Low Order	Slow – High Order
Phase / Delay	Not constant	Constant
Stability	Sometimes	Always

https://community.sw.siemens.com/ s/article/introduction-to-filters-firversus-iir

Filter Design Considerations: Filter Types

Filter Design Considerations: Filter Order

Activity 4: Let's build filters and apply them!

200

Frequency (Hz)

1.0