(11) Veröffentlichungsnummer:

0 238 441

A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 87810135.1

(22) Anmeldetag: 09.03.87

(5) Int. Cl.³: **C 12 N 15/00** C 12 P 21/02, A 01 N 63/00 C 12 N 1/18, C 12 N 1/20

(30) Priorität: 15.03.86 GB 8606441

(43) Veröffentlichungstag der Anmeldung: 23.09.87 Patentblatt 87/39

(84) Benannte Vertragsstaaten: AT BE CH DE ES FR GR IT LI LU NL SE (71) Anmelder: CIBA-GEIGY AG Klybeckstrasse 141 CH-4002 Basel(CH)

(72) Erfinder: Geiser, Martin, Dr. Hauptstrasse 3A CH-4107 Ettingen(CH)

(72) Erfinder: Hinnen, Albert, Dr. Offenburgerstrasse 20 CH-4057 Basel(CH)

(72) Erfinder: Brassel, Jakob, Dr. 1157/56 Okamoto Bairin Higashinada-ku 658 Kobe(JP)

(72) Erfinder: Schweitzer-Grützmacher, Silvia, Dr. Hasenhain 16 D-6915 Dossenheim(DE)

(54) Insektizid wirksame proteinartige Substanz.

(57) Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung einer insektizid wirksamen proteinartigen Substanz einschliesslich die Entdeckung und Identifizierung der vollständigen, für das insektizid wirksame Protein MGE (1) besagter proteinartiger Substanz kodierenden DNA-Sequenz, besagte proteinartige Substanz, ein DNA-Fragment, charakterisiert durch die in Tabelle (2) wiedergegebene Nukleotid-Sequenz welches für das Protein MGE (1) kodiert, das Protein MGE (1) selbst, ein DNA-Fragment aus der Region Hpal (0) bis Pstl (4355) von B. thuringiensis var. kurstaki, das für eine insektizid wirksame proteinartige Substanz einschliesslich ausgewählter Teile davon kodiert, unter der Voraussetzung, dass die insektizide Aktivität besagter ausgewählter Teile erhalten bleibt, das Verfahren zur Herstellung von Klonierungs- und Expressions-Vehikeln, die das in Tabelle (2) widergegebene DNA-Fragment enthalten und ebenso besagte Vehikel selbst.

CIBA-GEIGY AG
Basel (Schweiz)

5-15787/=

Insektizid wirksame proteinartige Substanz

Bacillus thuringiensis (B. thuringiensis) ist ein gram-positives Bakterium, das in der Regel für Insekten pathogen ist (S. Chang¹⁾.

Es wird auf die angefügte Bibliographie verwiesen, welche somit integriert ist, und die darin detaillierter zitierten Publikationen und sonstiges Material sind mittels Bezugnahme hierin inkorporiert.

Die verschiedenen Stämme von B. thuringiensis unterscheiden sich dabei beträchtlich hinsichtlich ihrer Toxizität und ihres Wirkspektrums für Insekten. Die insektizide Aktivität von B. thurigiensis stammt im wesentlichen oder auch vollständig von einem proteinartigen parasporalen Kristallkörper, der zum Zeitpunkt der Sporulation in der Wachstumsphase gebildet wird. Das (die) Gen(e), das (die) für die toxischen Proteine (Polypeptide) des erwähnten Kristallkörpers codiert (codieren), wurde(n) auf Plasmid-DNA und/oder auf chromosomaler DNA des B. thuringiensis gefunden.

Um jegliche Nachteile zu vermeiden, die sich aufgrund der Anwesenheit anderer von B. thuringiensis produzierter Komponenten ergeben könnten, und um das insektizid wirksame Polypeptid in grosser Menge zu erhalten, ist es vorteilhaft, das entsprechende Gen, d.h. die entsprechende DNA-Sequenz, welche(s) für das gewünschte insektizid wirksame Protein codiert, unabhängig von B. thuringiensis zu verwenden.

Dennoch ist es auch möglich und unter gewissen Umständen vorteilhaft, B. thuringiensis selbst mit der erwähnten DNA-Sequenz zu transformieren.

Auf diese Weise ist es möglich ein Protein zu erhalten, das in seiner Struktur und seinen Eigenschaften dem natürlichen Produkt analog ist. Das Protein (Polypeptid), das man im Rahmen der vorliegenden Erfindung erhält, wird im Folgenden als MGE 1 bezeichnet.

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung einer insektizid wirksamen proteinartigen Substanz einschliesslich der Entdeckung und Identifizierung der vollständigen DNA-Sequenz, die für das insektizid wirksame Protein MGE 1 besagter proteinartiger Substanz codiert und sich von den bereits bekannten B. thuringiensis Genen (H.E. Schnepf et al. 4), M.J. Adang et al. 3) und Shibano et al. 30) sowie WO 86/01536) deutlich unterscheidet.

Die vorliegende Erfindung betrifft weiterhin ein DNA-Fragment, das durch die in Tabelle 2 wiedergegebene Nucleotid-Sequenz charakterisiert ist, die für das Protein MGE 1 codiert sowie das Protein MGE1 selbst; darüberhinaus betrifft die vorliegende Erfindung ein DNA-Fragment des Bacillus thuringiensis var. kurstaki aus der Region HpaI (0) bis PstI (4355), das für eine insektizid wirksame proteinartige Substanz einschliesslich ausgewählte Teile ('truncated portions') davon codiert, unter der Voraussetzung, dass die insektizide Aktivität besagter ausgewählter Teile erhalten bleibt.

Unter dem Begriff "proteinartige Substanz" soll sowohl das insektizid wirksame Protein MGE l selbst als auch in vitro erhältliche Derivate und Modifikationen davon verstanden werden, wie beispielsweise das Protein MGE l in Verbindung mit anderen Protein-Fragmenten, in erster Linie solchen, die von anderer clonierter und für andere pestizide, vorzugsweise insektizide Aktivitäten codierender DNA stammen, wobei besagte Proteinkombinationen als "Fusions-proteine" eingestuft werden.

Pestizide Aktivität beinhaltet neben insektizider Aktivität beispielsweise auch bakterizide, virizide, fungizide und herbizide
Aktivität, vorzugsweise gegenüber pflanzenpathogenen Organism n. Von
den proteinsrtigen Substanzen ist das insektizid wirksame Protein
MGE 1 für sich allein bevorzugt.

Ein weiterer Gegenstand der vorliegenden Erfindung betrifft ein Verfahren zur Konstruktion von Klonierungs- und Expressions-Vehi-keln, die das in Tabelle 2 wiedergegebene DNA-Fragment enthalten sowie besagte Vehikel selbst. Geeignete DNA-Vektoren sind beispiels-weise Plasmide wie pBR322 und pUC8 oder Phagen wie M13.

Weiterhin bezieht sich die vorliegende Erfindung auf lebende oder tote Mikroorganismen, die ein DNA-Fragment enthalten, das durch die in Tabelle 2 wiedergegebene Nukleotid-Sequenz charakterisiert ist, vorzugsweise auf einen Mikroorganismus der Spezies Saccharomyces cerevisiae.

Die Erfindung bezieht sich weiterhin auf Mikroorganismen, insbesondere auf Mikroorganismen der Spezies Saccharomyces cerevisiae, die ein DNA-Fragment enthalten, das aus der Region HpaI (0) bis PstI (4355) des Bacillus thuringiensis var. kurstaki stammt und das für eine insektizid wirksame proteinartige Substanz einschiesslich ausgewählter Teile davon, codiert, unter der Voraussetzung, dass die insektizide Aktivität besagter ausgewählter Teile erhalten bleibt. Bei besagten Mikroorganismen handelt es sich beispielsweise um Hefen, vorzugsweise Saccharomyces cerevisiae, Bakterien und auf Blattoberflächen angesiedelte Pilze, mit der Einschränkung, dass besagter Mikroorganismus, falls er zur Gruppe des Bacillus thuringiensis gehört, zuvor mit einem DNA-Fragment transformiert worden ist, wie es in Tabelle 2 wiedergegeben ist. Unter "Transformation" sollen in diesem Zusammenhang auch konjugations-ähnliche Mechanismen verstanden werden.

Die Erfindung beinhaltet ausserdem ein Bioenkapsulierungssystem, das aus einem ersten Material best ht, welches vollständig in einem zweiten Material biologischen Ursprungs eingebettet vorliegt, wob i es sich bei dem ersten Material um ein DNA-Fragment entsprechend der Beschreibung in Tabelle 2 handelt, bei dem zweiten Material um einen vollständigen Mikroorganismus mit der Einschränkung, dass besagter Mikroorganismus, falls er zur Gruppe des Bacillus thuringiensis gehört, zuvor mit dem in Tabelle 2 wiedergegebenen DNA-Fragment transformiert worden ist.

Bei dem DNA-Material kann es sich ebenso um ein DNA-Fragment handeln, das aus der Region HpaI (0) bis PstI (4355) des Bacillus thuringiensis var. kurstaki stammt und das für eine insektizid wirksame proteinartige Verbindung einschliesslich ausgewählter Teile davon codiert, unter der Voraussetzung, dass die insektizide Aktivität besagter ausgewählter Teile erhalten bleibt. Besonders geeignete Mikroorganismen sind Hefen, vorzugsweise Saccharomyces cerevisiae, wie Saccharomyces cerevisiae GRF 18.

Ein weiterer Bestandteil der vorliegenden Erfindung betrifft ein Mittel sowie ein Verfahren zur Bekämpfung von Insekten, vorzugsweise lepidopteren Insekten (Insekten der Ordnung Lepidoptera), in erster Linie Vertreter der Gattungen Pieris, Heliothis, Spodoptera und Plutella, wie z.B. Pieris brassicae, Heliothis virescens, Heliothis zea, Spodoptera littoralis, Plutella xylostella sowie verwandte Arten, mit Hilfe der proteinartigen Substanz, enthaltend das Protein MGE 1, das durch die in Tabelle 2 wiedergegebene DNA Sequenz codiert wird.

Das Verfahren ist gekennzeichnet durch die Applikation einer insektizid wirksamen Menge einer proteinartigen Substanz, die zumindest teilweise durch das DNA-Fragment codiert wird, welches für das Protein MGE 1 codiert, direkt auf die Insekten oder ihr Verbreitungsgebiet. Das Mittel beinhaltet eine insektizid wirksame Menge einer proteinartigen Substanz, die zumindest teilweise durch das DNA-Fragment codiert wird, welches für das Protein MGE 1 codiert.

Darüberhinaus betrifft die vorliegende Erfindung eine Applikationsform, die aus transformierten lebenden oder toten Hefezellen besteht, die eine insektizid wirksame Menge einer proteinartigen Substanz enthalten, die zumindest teilweise durch das DNA-Fragment codiert wird, welches für das Protein MGE 1 codiert, wobei besagt Applikationsform für das Ausbringen der aktiven Substanz in einer geschützten Form geeignet ist.

Es ist daher eine lang anhaltende insektizide Aktivität erreichbar, wenn die transformierten Hefezellen auf konventionelle Art und Weise appliziert werden, wie z.B. durch Aufsprühen auf das Feld (Boden-und Luftapplikation). Die aktive Verbindung ist gut geschützt gegen vorzeitigen Abbau aufgrund ungünstiger Bedingungen, wie beispielsweise Sonneneinstrahlung oder widrige Verhältnisse auf den Blatt-oberflächen.

Das klonierte Gen kann unter die Kontrolle eines Hefe-Promotors gestellt und exprimiert werden, wobei die insektizide Aktivität sowohl a) für den Extrakt als auch in b) für ganze Zellen nachweisbar ist.

Geeignete Hefe-Promotoren sind in der Europäischen Patentanmeldung 100 561 beschrieben. Besonders geeignet ist der PHO5 Promotor.

Zumindest von einigen der Bacillus thuringiensis Gene, die für insektizid wirksame Proteine codieren, ist bekannt, dass sie mit einem Promotor verbunden sind, der von der Escherichia coli (E.coli) RNA Polymerase erkannt werden kann, wobei besagter Promotor vor dem jeweiligen Gen lokalisiert ist (H.C. Wong et al.²⁾).

Das Verfahren zur Herstellung einer insektizid wirksamen proteinartigen Substanz im Rahmen der vorliegenden Erfindung beinhaltet die Transkription und Translation eines Gens mit identifizierter DNA-Sequenz entsprechend der vorliegenden Erfindung, in das entsprechende Protein mit Hilfe von E.coli oder Hefe.

Das hier beschriebene Verfahren zur Gewinnung von Ausgangsmaterial wird unter Verwendung von Bacillus thuringiensis var. kurstaki HD1, Stamm ETHZ 4449, durchgeführt. Dieser Stamm kann von der mikrobio-

logischen Abteilung der Eidgenössischen Technischen Hochschule in Zürich, Schweiz, bezogen werden und ist für jedermann ohne irgendwelche Beschränkung frei zugänglich.

Der Ursprung dieses Stammes ist die H. Dulmage Collection an der Cotton Insects Research Unit, US. Department of Agriculture, Agriculture Research Center, in Brownsville, Texas, wo er ebenfalls für jedermann frei zugänglich ist.

Gemäss vorliegender Erfindung kann die für das Protein MGE 1 codierende DNA erhalten werden durch

- a) Isolierung und Lyse von B. thuringiensis var. kurstaki HDl Zellen, sowie Abtrennen der Plasmide von dem auf diese Weise erhaltenen Material, mit Hilfe an sich bekannter Methoden. Das so erhaltene Plasmid-Material wird anschliessend gereinigt und dialysiert;
- b) Anfertigen eines DNA-Bibliothek der B. thuringiensis var. kurstaki HDl plasmid DNA;
- c) Klonieren der fragmentierten, entsprechend Punkt b) erhaltenen Plasmid-DNA in einem geeigneten Vektor, vorzugsweise einem Plasmid;
- d) Screening auf die Anwesenheit eines MGE 1-Proteins, was nach einem der unter den Punkten e) bis g) genannten Verfahren durchgeführt werden kann;
- e) Screening der Klone auf Anwesenheit eines Antigens mit Hilfe geeigneter Antikörper, die unter Verwendung von B. thuringiensis var. kurstaki Kristallkörper-Protein hergestellt werden (Screening auf Expression der entsprechenden Polypeptide);
- f) Auslesen der Klone, die spezifisch mit Ziegen-Antiserum reagieren; und

g) Testen der Extrakte der entsprechend Punkt f) erhaltenen Klon auf insektizide Aktivität.

Die Identifizierung der DNA kann nach an sich bekannten Methoden durchgeführt werden, wie sie beispielsweise unter den Punkten h) und i) aufgeführt sind:

- h) Kartierung der DNA positiver Klone durch Verdauung mit Restriktionsendonucleasen und Hybridisierung der so erhaltenen Fragmente mit radioaktiv markierter RNA; und
- i) Sequenzierung von DNA-Fragmenten, die für die jeweiligen Proteine codieren.

Bedeutung der im Folgenden verwendeten Abkürzungen:

Bp: Basenpaare

BSA: Rinder-Serum-Albumin (bovine serum albumin)

DEAE: Diethylaminoethyl

DFP: Diisopropylfluorphosphat

DTT: 1,4-Dithiothreitol(1,4-dimercapto-2,3-butandiol)

EDTA: Ethylendiamintetraessigsäure

IPTG: Isopropyl-β-thiogalactopyranosid (Serva)

Kb: Kilobasen

PSB¹: 0,01 M Phosphat Puffer, pH 7.4 und 0,8 % NaCl PSB²: 10 mM Natriumphosphat, pH 7.8 und 0,14 % NaCl

PEG 6000: Polyethylenglykol mit mittlerem Molekulargewicht 6000

PMSF: Phenylmethylsulfonylfluorid (Fluka)

RT: Raumtemperatur

SDS: Natriumdodecylsulfat

STE: siehe TNE

TBS: 10 mM Tris. HCl, pH 7.5 und 0,14 M NaCl

TE: Lösung enthaltend 10 mM Tris HCl (pH 7.5) und 1 mM EDTA

TES: 0,5 M Tris, pH 8.0, 0,005 M NaCl und 0,005 M EDTA

TNE: Lösung enthaltend 100 mM NaCl, 10 mM Tris. HCl (pH 7.5) und

1 mM EDTA

Tris. HCl: Tris-(hydroxymethyl)-aminomethan, pH-Einstellung mit HCl

X-GAL: 5-Brom-4-chlor-3-indoxyl-B-D-galaktosid

2xYT: 16 g Bacto Trypton,

10 g Hefe Extrakt (Bacto),

5 g NaCl

Im Folgenden verwendete Medien, Puffer und Lösungen:

20 x SSC Lösen von 175,3 g NaCl und 88,2 g Natriumcitrat in 800 ml H₂O. Einstellen des pH auf einen Wert von pH 7.0 mit einigen Tropfen einer 10 N NaOH-Lösung. Einstellen des Volumens auf 1 Liter; Aufteilen der Lösung in Aliquots; Sterilisation durch Autoklavieren.

2 x SSC 10 % von 20xSSC 6 x SSC 33 % von 20xSSC

H₂O

Denhardt's- Ficoll 70 [relative Molekülmasse ca. 700'000;

Lösung (50 x) Pharmacia 5 g

Polyvinylpyrrolidon

(Calbiochem-Behring Corp.) 5 g

BSA (Sigma) 5 g

Filtration durch einen Nalgene®-Einmalfilter (Nal-

gene®; Nalge Co. Inc., Rochester, N.Y., USA). Auftrennen in 25 ml Aliquots und Aufbewahren bei -20°C.

auf 500 ml

Lösungen

M9 Medium: Pro Liter:

a) Na₂HPO₄ 6 g

KH₂PO₄ 3 g

NaCl 0,5 g

NH₄Cl 1 g

Einstellung des pH-Wertes auf 7.4, autoklavieren, abkühlen und anschliessend hinzufügen von:

b) 1 M MgSO₄ 2 ml 20 % Glukose 10 ml 1 M CaCl₂ 0,1 ml Vitamin Bl (40 mg/10 ml) 5 ml

Die oben genannten Lösungen a) und b) sollten getrennt sterilisiert werden durch Filtration (Glukose, Vit. Bl) oder durch Autoklavieren.

LB (Luria-

Bertani) Pro Liter:

Medium Bacto-Trypton 10 g

Bacto-Hefe-Extrakt 5 g

NaCl 10 g

Einstellen des pH-Wertes auf 7.5 mit Natriumhydroxid.

L-Broth siehe LB-Medium

Für die Induktion der Sporulation bei B. thuringiensis var. kurstaki, wird ein GYS-Medium entsprechend den Angaben von Yousten und Rogoff (A.A. Yousten und M.H. Rogoff⁵⁾) (1969) verwendet $(g/1^{-1})$:

Glukose	1
Hefe-Extrakt (Difco)	2
(NH ₄) ₂ SO ₄	2
K ₂ HPO ₄	0,5
MgSO4 • 7H2O	0,2
CaCl ₂ •2H ₂ O	0,08
MnSO ₄ • H ₂ O	0,05

Vor dem Autoklavieren wird der pH-Wert mit Kaliumhydroxid auf einen Wert von 7.3 eingestellt.

Charakterisierung der im Rahmen der vorliegenden Erfindung verwendeten Mikroorganismen:

1. HD1-ETHZ 4449 ist ein Bacillus thuringiensis Stamm der Subspezies kurstaki, der zum einen durch seine immunologische Reaktion gegen sein Flagellum-Antigen charakterisiert ist - HD1-ETHZ 4449 gehört zum 3a, 3b Serotyp (A. Krieg³¹⁾) - zum anderen durch sein spezifisches Southern blot-Muster, das man bei Durchführung der Southern-blot-Experimente, wie sie unter Punkt III 5.b beschrieben sind, erhält.

Die Gesamt-DNA dieses Stammes wird isoliert und mit dem Restriktionsenzym Hind III vollständig verdaut; die so erhaltenen Fragmente werden dann nach ihrer Grösse auf einem Agarose-Gel aufgetrennt und anschliessend auf ein Nitrocellulose-Papier überführt. Das radioaktiv markierte EcoRI-Fragment Pos. 423 bis Pos. 1149 (Tabelle 2) hybridisiert spezifisch mit 3 Fragmenten, die eine Grösse von 6,6 Kb, 5,3 Kb bzw. 4,5 Kb aufweisen.

- 2. Bei HB 101 handelt es sich um ein Hybrid zwischen Escherichia coli K12 x Escherichia coli B. Dieser Stamm ist gut geeignet für gross angelegte DNA-Reinigungen. Es wird verwendet für Transformationsexperimente und CaCl₂-kompetente Zellen sind kommerziell erhältlich z.B. bei Gibco AG, Basel, Schweiz, Katalog-Nr. 530 8260 SA.
- 3. Bei JM 103 handelt es sich um ein Escherichia coli K-12, das z.B. bei Pharmacia P-L Biochemicals kommerziell erhältlich ist, Katalog-Nr. 27-1545-xx (1984).

Die E.coli-Stämme HB 101 und JM 103 sind bei Maniatis et al. (T. Maniatis et al. 6) beschrieben:

Stamm	Genotyp
нв 101	F, hsdS ₂₀ (r_B , m_B), recA ₁₃ , ara-14, proA ₂ , lacY ₁ , galK ₂ , rpsL ₂₀ (Sm ^r), xyl-5, mtl-1, supE ₄₄ , λ
JM 103	Δ (lac pro), thi, strA, supE, endA, sbcB, hsdR, F'traD36, proAB, lacI ^q , ZΔM15

Im folgenden Beispiel ist der Ausdruck "Hefe" gleichbedeutend mit Saccharomyces cerevisiae.

Beispiele

I. Plasmid-DNA Aufarbeitung:

Die Aufarbeitung der Plasmid-DNA erfolgt wie unten beschrieben entsprechend den Angaben bei White und Nester (F.F. White und E.W. Nester 7).

I.l. B. thuringiensis Plasmide

E.coli HB 101 Zellen werden in 1 Liter LB-Medium unter Schütteln 12-14 Stunden bei 37°C kultiviert und entsprechend den Angaben bei White und Nester (F.F. White und E.W. Nester 7) aufgearbeitet. Nach der Ernte werden die Zellen in einem alkalischen lysierenden Puffer resuspendiert und bei einer Temperatur von 37°C für 20-30 Minuten inkubiert. Man erhält ein klares Lysat, das durch Zugabe von 2 M Tris. HCl (pH 8) neutralisiert wird. Die chromosomale DNA wird anschliessend durch Zugabe von SDS und NaCl präzipitiert. Das Lysat wird auf Eis gepackt und die chromosomale DNA durch Zentrifugation entfernt. Die Plasmid-DNA, die sich jetzt im Ueberstand befindet, wird mit 10 % PEG 6000 präzipitiert. Nach der Aufbewahrung der Plasmid DNA über Nacht bei 4°C erfolgt die Resuspendierung in 7-8 ml TE. Die aus 1 Liter Kultur-Lösung gewonnene Plasmid DNA wird anschliessend über 2 CsCl-Gradienten weiter gereinigt. Es wird dabei festes CsCl zu der Lösung hinzugegeben (8,3 g CsCl auf 8,7 ml Ueberstand). Nach dem Hinzufügen von Ethidiumbromid (Sigma; Endkonzentration 1 mg/ml Ueberstand) wird die Lösung in 13,5 ml 'Quick Seal' Polyallomer-Röhrchen (Beckmann) überführt und in einem Beckmann Ti50-Rotor für einen Zeitraum von 40 Stunden bei 40'000 rpm zentrifugiert. Unter langwelligem UV-Licht (366 nm) werden zwei fluoreszierende Banden sichtbar gemacht. Die untere Bande enthält überspiralige Plasmid-DNA, die durch seitliches Punktieren des Zentrifugenröhrchens mit einer 2 ml Spritze (18 G Nadel) gesammelt wird. Ethidiumbromid wird durch 5-maliges Waschen mit gleichen Volumina Isopropanol (gesättigt mit CsCl) entfernt und das Produkt dann in 30 ml Corex-Röhrchen überführt. Es werden 2,5 Volumen TE hinzugefügt und anschliessend wird die DNA mit Ethanol präzipitiert. Diese Lösung wird dann für 12-15 Stunden bei -20°C aufbewahrt. Die präzipitierte DNA wird anschliessend durch Zentrifugation in einem Sorvall HB-4 Rotor über einen Zeitraum von 30 min bei 12'000 rpm und einer Temperatur von 0°C gesammelt und in 200 µl TE gelöst. (E.coli JM 103 kann ebenso extrahiert und in analoger Weise behandelt werden).

I.2. E.coli Plasmide

Die Zellen einer 100 ml Kultur (LB-Medium) werden durch Zentrifugation (Sorvall, GSA Rotor, 10 min bei 6'000 rpm, 4°C) gesammelt, in 100 ml TE (10 mM Tris·HCl, 1 mM EDTA, ph 8.0) resuspendiert und unter den gleichen Bedingungen erneut zentrifugiert. Das Zell-Pellet wird anschliessend in 3 ml Tsuc [50 mM Tris·HCl, pH 7.5, 25 % (w/v) Sucrose] resuspendiert und in SS-34 Polypropylen Sorvall Röhrchen überführt. Alle nachfolgenden Schritte werden auf Eis durchgeführt: Zunächst werden 0,3 ml einer Lysozym-Lösung (10 mg/ml, bezogen von Worthington, 11'000 U/mg) nach 5 min 1,2 ml EDTA (500 mM, pH 8.0) und nach weiteren 5 min 4,8 ml Detergenz zugegeben [0,1 % Triton X-100 (Merck), 50 mM EDTA, 50 mM Tris·HCl, pH 8,0]. Nach 5 Minuten wird das Lysat in einem vorgekühlten SS-34 Rotor für 40 Minuten bei 4°C zentrifugiert. Der Ueberstand wird vorsichtig entfernt und nach Zugabe von festem CsCl, entsprechend der für die

B. thuringiensis Plasmid DNA gemachten Angaben, über einem CsCl-Gradienten gereinigt.

Aus 100 ml Kulturlösung werden 50-100 μg Hybrid-Plasmid DNA gewonnen.

II. &-Endotoxin Antigen und Ziegen-Antikörper

II.1. Herstellung von 6-Endotoxin Kristallkörper-Antigen:

Bacillus thuringiensis (var. kurstaki HD 1, Stamm ETHZ 4449) wird in einer Fernbach-Flasche auf einem Medium nach Yousten und Rogoff, (A.A. Yousten und M.H. Rogoff⁵⁾) wie zuvor beschrieben, jedoch mit einem erhöhten Glukoseanteil (0,3 % anstatt 0,1 %), kultiviert.

Die Inkubationszeit beträgt 4-5 Tage bei einer Temperatur von 30°C. Die Kolonien werden unmittelbar nach erfolgter Sporulation (B. Trümpi⁸⁾) geerntet. Zur Trennung von Sporen und Parasporalkörpern wird die Methode von Delafield et al. (F.P. Delafield et al.⁹⁾) verwendet.

a) Trennung von Sporen und Kristallkörper:

- Suspendieren autolysierter Kulturen in lM NaCl/0.02 M Kaliumphosphat-Puffer (pH 7.0) mit 0.01 % Triton-X-100 (Merck).
- Filtrieren der Suspension zur Abtrennung particulärer Bestandteile, wie Agar-Reste u.a..
- Zentrifugieren.
- Mehrmaliges Waschen des Sediments mit der oben beschriebenen Lösung, bis nur noch Spuren von Bestandteilen, die bei 260 nm absorbieren, im Ueberstand verhanden sind.
- Waschen der particulären Bestandteile in 0.2 M NaCl 0.004 M Phosphat-Puffer (pH 7.0)/0.01 % Triton-X-100.
- Wiederholen des Waschvorgangs mit 0.01 % Triton-X-100.
- Resuspendieren der Partikel in Wasser.
- Entfernen der restlichen Zellen aus der Suspension.
- 3-maliges Zentrifugieren und anschliessendes Waschen der zurückgebliebenen Sporen und Kristalle in 0.02 M Phosphat-Puffer (pH 7.0)/0.01 % Triton-X-100.

- Ueberführen der Suspension, in 182 ml desselben Puffers, der in einen zylindrischen Scheidetrichter, der 105 g einer 20 %igen (w/w) wässrigen Natriumdextransulfat 500-Lösung (Sigma), 13.2 g festes Polyethylenglykol 6000 (Merck), 3.3 ml
 3 M Phosphat-Puffer (pH 7.0) sowie 7.5 g NaCl enthält.
- Schütteln zur Lösung der festen Bestandteile.
- Einstellen des Volumens auf 600 ml durch Zugabe einer gut durchmischten Lösung gleicher Zusammensetzung, aber ohne bakterielle Bestandteile.
- Kräftig schütteln.
- 30 Minuten bei 5°C stehen lassen.
- Nach erfolgter Phasentrennung Abziehen der oberen Phase (enthält den Grossteil der Sporen aber nur sehr wenig Kristalle).
- Zentrifugieren der oberen Phase.
- Ueberführen des Ueberstands in den Scheidetrichter zu der dort verbliebenen unteren Phase (enthält eine Mischung aus Sporen und Kristallen).
- Wiederholen des Extraktionsvorgangs.

Nach der 10ten Extraktion sind die Kristallkörper in der unteren Phase praktisch frei von Sporen und können durch Zentrifugation isoliert werden. Sowohl die Sporen, wie auch die Kristallkörper werden anschliessend 5 mal in kaltem destilliertem Wasser gewaschen. Die Kristallkörper werden als wässrige Suspension bei einer Temperatur von -5°C aufbewahrt.

b) Lösen der Kristallkörper

Ein Aliquot der kristallkörperhaltigen Suspension wird für 10 Minuten bei 12'000 g zentrifugiert. Das so gewonnene Sediment wird in 0,05 M Carbonat-Puffer und 10 mM Dithiothreitol (DTT, Sigma; die Mischungen von Carbonat-Puffer und Dithiothreitol wird im folgenden als Carbonat/DTT bezeichnet) in einer Konzentration von 5 mg Sediment/ml Carbonat/DTT-Mischung resuspendiert.

Nach 30 minütiger Inkubation bei 37°C werden die unlöslichen Partikel durch 10 minütige Zentrifugation bei 25'000 g abgetrennt. Der Ueberstand wird gegen Carbonat-Puffer dialysiert und anschliessend auf seinen Proteingehalt und seine Aktivität im Biotest hin untersucht.

Für Aufbewahrungszwecke wird die Protoxinlösung in einzelne Portionen aufgeteilt, die tiefgefroren werden. Protein, das frei von DTT ist, hat beim Auftauen eine Gel-artige Konsistenz. Ein vollständiges Lösen des Proteins wird durch Zugabe von 1 mM DTT erreicht.

c) Inaktivierung Kristallkörper-gebundener Proteasen:

Serin Proteasen und Metall-Proteasen der Kristallkörpersuspension
[Chestukhina et al. 10)] werden durch Zugabe von Diisopropylfluorphosphat (DFP, Serva) und EDTA auf die im folgenden angegebenen
Weise inaktiviert:

Die Kristallkörper werden in 0,01 M Phosphat-Puffer, pH 8,0 und 1 mM EDTA in einer Konzentration von 5-10 mg Kristallkörper/ml Puffer/EDTA-Mischung, suspendiert. Die Suspension wird dann mit Ultraschall behandelt, bis eine monodisperse Lösung vorliegt (dies wird mit Hilfe eines Lichtmikroskops überprüft).

In einem Abzug wird, unter den üblichen Sicherheitsvorkehrungen, 1 mM DFP zu der Suspension zugegeben. Das Röhrchen, das die Suspension enthält, wird luftdicht verschlossen und kräftig geschüttelt. Nach Inkubation über Nacht bei Raumtemperatur wird die inaktivierte Suspension so lange dialysiert, bis ein Gleichgewicht gegenüber H₂O und 1 mM EDTA erreicht ist.

II.2. Immunisierung von Ziegen

Das Antigen wird hergestellt aus Kristallkörpern des B. thuringiensis Serotyp H-3 durch Auflösen der Kristallkörper in Carbonat/DTT, Dialysieren der so erhaltenen Lösung gegen Carbonat-Puffer und 1 mM DTT und Reinigen des Antigens durch Steril-Filtration unter Verwendung eines 0,45 µm Millipore Filters.

Die Antigen-Lösung wird mit "komplettem Freund's Adjuvants" (Bacto) in einem Verhältnis von 1:1 gemischt und bei 4°C gelagert.

In der Versuchsstation der CIBA-GEIGY AG in St. Aubin (Fribourg, Schweiz), werden 2 Ziegen mit H-3 Protoxin immunisiert. Jede der beiden Ziegen erhält ein intracutane Injektion von 0,5 mg Antigen und eine subcutane Injektion von 1,5 ml Pertussis (Behring), letzteres zur Steigerung der Immunreaktion. Die gesamte Behandlung wird an den Tagen 0, 28 und 76 durchgeführt. Blutproben werden am 35., 40., 84. und 89. Tag abgenommen, wobei am 35. Tag 5 ml und an den übrigen Tagen je 80 ml entnommen werden.

Nach Koagulation des Blutes werden die Seren zur Inaktivierung des Komplement-Systems für 30 Minuten bei 56° C inkubiert. Die Seren werden bei -20° C aufbewahrt.

II.3. Reinigung und [125 I]-Markierung der Ziegen-H3 Antikörper

a) Reinigung des Immunglobulin:

Die IgG (Immunglobulin G) Fraktion des Ziegen H₃-Antiserums wird durch Ammoniumsulfat-Präzipitation gereinigt, gefolgt von einer Chromatographie an DEAE Cellulose und einer Analyse auf Ouchterlony Immundiffusionsplatten (O. Ouchterlony 111) entsprechend der von Huber-Lukac (H. Huber-Lukac 12) beschriebenen Methode.

Dabei werden 30 ml 3,2 M Ammoniumsulfat zu 15 ml Ziegen-H₃-Antiserum in 15 ml PBS¹ (0,01 M Phosphat-Puffer, pH 7.4 und 0,8 % NaCl) zugetropft. Die Mischung wird für 15 Minuten stehengelassen. Nach Zentrifugation der Mischung (10'000 g, 20 min), wird das Sediment in

7,5 ml PBS¹ wiederaufgenommen, dreimal bei einer Temperatur von 4°C gegen 1000 ml PBS¹ dialysiert, anschliessend gegen 1000 ml 0,01 M Phosphat-Puffer pH 7.8 dialysiert und zuletzt zentrifugiert (3000 g, 20 min).

Der Ueberstand wird auf eine 30 ml DEAE-Säule aufgetragen und bei RT mit 0,01 M Phosphatpuffer pH 7.8 eluiert (Durchflussrate: 20-80 ml/h). Die Fraktionen des ersten Peak werden gepoolt und lyophilisiert. Die durchschnittliche IgG-Ausbeute liegt bei 180 mg/15 ml Serum. Die Reinheit der IgG Fraktion wird mit Hilfe der Immundiffusion (O. Ouchterlony 11) gegen Anti-Ziegen-IgG Antikörper und gegen Anti-Ziegen-Serum Antikörper des Kaninchens (Miles Laboratories) überprüft.

Die weitere Reinigung der Antikörper erfolgt durch Absorption an einer Sepharose®(Pharmacia)Säule die H₃-Protoxin gebunden enthält. Die Bindung des Protoxin an CNBr-Sepharose® (Pharmacia) wird entsprechend der vom Hersteller gemachten Angaben durchgeführt, die sich wie folgt zusammenfassen lassen:

1 g CNBr-aktivierte Sepharose® 6MB wird für ein Gel-End-Volumen von 3 ml abgewogen. Das Gel wird gewaschen und auf einer Glasfritte unter Verwendung von 200 ml 1 mM HCl erneut gequollen. Das H₃-Antigen Protein, das man wie oben unter Punkt II.1.c beschrieben erhält, wird in 0,1 M NaHCO₃ und 0,5 M NaCl gelöst. 1 ml des Gels enthält dann 5-10 mg Protein. Die Gel-Suspension und das Antigen werden für 2 Stunden bei Raumtemperatur vermischt. Das überschüssige Protein wird durch Waschen mit 0,1 M NaHCO₃ (pH 8.3), 0,5 M NaCl und 0,5 M Ethanolamin entfernt. Ein weiterer Waschvorgang schliesst sich an mit 0,1 M NaHCO₃ (pH 8.3) und 0,5 M NaCl, gefolgt von 0,1 M CH₃COONa (pH 4) und 0,5 M NaCl. Der letzte Waschvorgang wird dann wieder mit 0,1 M NaHCO₃ und 0,5 M NaCl durchgeführt.

Das Protein-Sepharose®-Konjugat kann anschliessend in eine Pharmacia-K9-Säule (Pharmacia) gepackt werden. Das IgG kann dann an dieser Säule sehr effektiv gereinigt werden. Spezifisch gebundene Antikörper werden mit 3 M KSCN eluiert und gegen PBS² (10 mM Natrium-Phosphat pH 7.8, 0,14 M NaCl) dialysiert. Die Antikörper werden anschliessend unter Verwendung der Chloramin-T Methode (Amersham Büchler Review 13) mit 125 I radioaktiv markiert.

b) Iod-Markierung:

l m Ci Natrium-jodid-125 I wird in ein Röhrchen mit 100 μl 0,5 M Phosphat-Puffer (pH 7.2) gegeben. Unter ständigem Rühren werden 5 μg der Protein-Lösung (0,5 mg/ml in TBS), und 50 μg Chloramin T in 0,05 M Phosphat-Puffer (pH 7.2) hinzugefügt. Nach einminütiger Inkubation bei RT erfolgt die Zugabe von 120 μg Na₂S₂O₅. Freies Jod wird von dem markierten Protein über eine 0,9 x 12 cm Säule, gepackt mit Sephadex[®] G-25, abgetrennt. Um eine Absorption des markierten Proteins an die Säule zu verhindern, lässt man zunächst 0,5 ml BSA (100 mg/ml) durch die gepackte Säule laufen. Danach wird das markierte Material quantitativ auf die Säule überführt und mit Phosphatpuffer (pH 7.2) eluiert. Die Fraktionen (1 ml) werden gesammelt, bis das gesamte Protein eluiert ist.

III. Klonieren der δ-Endotoxin-Gene

Eine partielle Sau3A-DNA-Bibliothek der B. thuringiensis var. kurstaki HDl, Stamm ETHZ 4449 Plasmid DNA im wesentlichen entsprechend den Angaben bei Maniatis et al. (T. Maniatis et al. ¹⁴⁾) hergestellt und in die BamHI-Restriktionsstelle von pBR322, das als Vektor DNA fungiert, subkloniert, wie unten beschrieben:

III.1. Partielle Verdauung hochmolekularer B. turingiensis DNA
Die Verdauung mit Sau3A wird in der Weise durchgeführt, dass die
Anfärbung der DNA-Bruchstücke auf dem Agarose-Gel mit Ethidiumbromid
bevorzugt im 2-10 Kb-Bereich erfolgt. Dies wird durch Anwendung der
von Maniatis et al. (T. Maniatis et al. 14) beschriebenen Methode
erreicht.

Die Auftrennung der partiell zerstückelten DNA wird auf einem präparativen Agarose-Gel durchgeführt, wie es in Abschnitt IV.2. b schrieben ist oder vorzugsweise auf einem NaCl Salz-Gradienten. Man stellt den linearen Salz-Gradienten zwischen 5 und 20 % NaCl in

TE-Puffer ein und zentrifugiert bei 35 Krpm für 3 Stunden in einem SW 40 Ti Beckman Rotor. Die gesammelten Fraktionen werden durch Zugabe von Ethanol präzipitiert und auf einem Agarose-Gel analysiert.

10 μ g des Plasmids pBR322 werden mit 10 Einheiten der Endonuclease BamHI in 50 μ l 10 mM Tris-HCl, pH 7.4, 100 mM NaCl und 10 mM MgCl₂ bei 37°C 1-2 h verdaut.

Die Phosphatase-Behandlung der gespaltenten DNA wird folgendermassen durchgeführt:

10 μg DNA werden zunächst in 50 μl Tris·HCl, pH 8, gelöst, anschliessend erfolgt die Zugabe von alkalischer Phosphatase aus Rinderdarm (Boehringer) in einer Konzentration von 3 Einheiten/μg DNA. Nach einer 30 minütigen Inkubation bei 37°C wird die DNA zweimal mit Phenol behandelt und anschliessend mit Chloroform extrahiert. Nach erfolgter Ethanol-Prezipitation wird die DNA in 20 μl H₂O resuspendiert und für die Verknüpfungs-Reaktion mit den durch partielle Sau3A-Verdauung erhaltenen DNA-Bruchstücken verwendet. Die Reaktion wird folgendermassen durchgeführt: Zu 0,4 μg Sau3A verdauter DNA in 10 μl H₂O werden 0,1 μg des Phosphatase behandelten Vektors hinzugegeben.

Die Verknüpfungsreaktion wird erreicht durch Zugabe von 50 mM Tris·HCl, pH 7.4, 1 mM ATP, 10 mM MgCl₂ und 15 mM DTT, mit nachfolgender Applikation von 20 Einheiten T₄ DNA Ligase (Biolabs). Nach einer Inkubation bei 15°C über Nacht wird die DNA zur Transformation von kompetenten E.coli HB101 Zellen verwendet.

Alternativ zur Herstellung einer partiellen Sau3A-Bibliothek kann auch eine DNA-Bibliothek von B. thuringiensis (var. kurstaki HDl, Stamm ETH2 4449) durch vollständige BamHI und teilweise ClaI-Verdauung der Plasmid-DNA erstellt werden. Danach erfolgt die Klonierung in pBR322 zwischen den ClaI- und BamHI-Schnittstellen.

III.2. Transformation mit Hilfe des Calciumchlorid-Verfahrens:

Die Bereitstellung kompetenter Zellen erfolgt durch Behandlung von

Zellen, die bis zu einer Populationsdichte von 5 x 10⁷ Zellen/ml

herangewachsen sind, mit Calciumchlorid (Maniatis et al. 15).

Die Transformation wird erreicht durch Zugabe von DNA zu diesen

Zellen. Anschliessend werden die Zellen 3 Minuten bei 42°C inkubiert

gefolgt von einer Verdünnung mit 1 ml LB-Medium, einer Inkubation

während 60 Minuten bei 37°C sowie der Verteilung auf selektive

Medien unter Verwendung allgemein bekannter Methoden (T. Maniatis

et al 15).

III.3. Herstellen roher Zell-lysate

Die Kolonien, die das &-Endotoxin-Gen enthalten, exprimieren ein Protein mit einer ähnlichen biologischen Aktivität wie die gereinigten und gelösten Toxin-Kristalle (H.E. Schnepf et al¹⁶⁾). Sie werden daher mit Hilfe immunologischer Methoden unter Verwendung von Ziegen-Antikörpern (den H₃-Antikörpern), welche gegen B. thuringiensis var. kurstaki Kristallkörper-Protein hergestellt wurden, gescreent. Die Bakterienkolonien werden einzeln in 5 ml LB-Medium in Gegenwart von Ampicillin kultiviert. Zehn Kulturen werden jeweils gepoolt, geerntet und in 10 mM NaCl gewaschen; zuletzt werden die Zellen in 2 ml 400 mM NaCl, 0,1 M NaOH und 1 mM PMSF lysiert. Nach 20 minütiger Inkubation bei Zimmertemperatur werden die Lysate durch Zugabe von 20 µl 2 M Tris·HCl, pH 7.0, neutralisiert. Nach Zentrifugation in einem SS34 Sorvall Rotor (20 min, 10'000 rpm) werden die Lysate ausgiebig gegen TBS (10 mM Tris-HCl, pH 7.5, 0,14 M NaCl) dialysiert.

III.4. Radioimmunologisches Screening der Zellextrakte

Die Extrakte werden mit Hilfe der Plastikbecher-Methode, wie sie bei Clarke et al. (L. Clarke et al. 17) beschrieben ist, radioimmuno-logisch auf Anwesenheit von &-Endotoxin-Antigen hin untersucht. Einzelne Plastikbecher werden über Nacht mit 150 µl gereinigten H3-Gans-Antikörpern (10 µg/ml) in 10 mM Tris·HCl, pH 9.3, beschichtet und über Nacht bei 4°C aufbewahrt. Die Becher werden dreimal mit TBS/Tween (TBS + 0.5 % Tween 20) gewaschen, mit 150 µl

des Bakterienextrakts gefüllt und für 6 Stunden bei 37°C inkubiert. Nach dem Waschen werden die Becher mit 150 µl [125 I] markierten Kaninchen-Anti-Ziegen-H3-Antikörpern (60 ng, 105 cpm) in TBS, enthaltend 25 % Pferdeserum, versetzen und über Nacht bei Zimmertemperatur inkubiert. Nach erneutem Waschen mit TBS/Tween werden die einzelnen Plastikbecher in einem Szintillationszähler gemessen.

III.5. Restriktionskarte und Lokalisation des δ-Endotoxin Gens auf dem rekombinanten Plasmid pK19

a) Restriktionskartierung:

Die Restriktionskarte des DNA-Klons pK19, die man nach dem oben beschriebenen immunologischen Screening der Sau3A-Bibliothek des B. thuringiensis HDl, ETHZ 4449 erhält, ist aus den Ergebnissen einmaliger, zweimaliger und dreimaliger Verdauungen der Plasmid-DNA mit verschiedenen Restriktionsenzymen ableitbar. Die Enzymverdauungen werden alle entsprechend den Anweisungen des Herstellers durchgeführt. Kurzgesagt wird die DNA (1 µg /50 µl) zunächst in einem für die betreffenden Restriktionsendonucleasen geeigneten Puffer gelöst und anschliessend die verdaute DNA nach einer Inkubationszeit von 1-2 Stunden bei 37°C auf ein Agarose-Gel aufgetragen und einer Elektrophorese unterzogen. Falls eine weitere Behandlung mit einem zweiten Enzym nötig wird unter Bedingungen, welche inkompatibel mit dem ersten Enzym sind (beispielsweise aufgrund eines falschen Puffers), wird die DNA zunächst mit einer 1:1 Mischung von Phenol und Chloroform extrahiert, anschliessend mit Ethanol precipitiert und zuletzt unter den zuvor inkompatiblen Bedingungen (wie z.B. in einem Puffer, der für das 2. Enzym benötigt wird) inkubiert.

b) Southern transfer:

Die für das &-Endotoxin kodierende Sequenz wird mit Hilfe der Hybridisierungsreaktion radioaktiv markierter RNA aus sporulierenden B. thuringiensis-Zellen, mit spezifischen Restriktionsfragmenten von pK19 bestimmt. Dies wird durch Anwendung der bei Southern (Southern ¹⁸⁾) beschriebenen Transfer-Technik erreicht:

Entsprechend ihrer Grösse über ein Agarose-Gel elektrophoretisch aufgetrennte DNA-Fragmente werden denaturiert, auf ein Nitrozellulosefilter übertragen und immobilisiert. Die relative Lage der DNA-Fragmente im Gel wird dabei im Verlaufe ihres Transfers auf der Filter beibehalten. Die an den Filter gebundene DNA wird anschliessend mit ³²P-markierter RNA hybridisiert; durch Autoradiographie wird dann die Position jeder einzelnen Bande lokalisiert, die komplementär zu der radioaktiven Probe ist.

Der DNA-Transfer vom Agarose-Gel auf Nitrozellulose-Papier wird entsprechend den Anweisungen bei Maniatis et al. 19) durchgeführt.

c) Hybridisierung der Southern-Filter:

Die Vorhybridisierung und die eigentliche Hybridisierung werden entsprechend den Anweisungen bei Maniatis et al. (T. Maniatis et al. ²⁰⁾) mit den folgenden Modifikationen durchgeführt: Die gebakkenen Filter werden in einen durch Hitze verschweissbaren Plastikbeutel gegeben.

Pro cm² Nitrozellulosefilter werden 0,2 ml einer Prehybridisierungs-Mixtur zugegeben.

Prehybridisierungs-Mixtur: 4 x SSC

50 % Formamid

0,2 % SDS

20 mM EDTA

25 mM Kaliumphosphat (pH 7.2)

5 x Denhard's Lösung

100 µg/ml denaturierte Kalbsthymus-DNA

Die Beutel werden in der Regel für 3-4 Stunden bei 37°C inkubiert.

Die Prehybridisierungs-Mixtur wird entfernt und durch die folgende Hybridisierungs-Mixtur (50 μ l/cm² Nitrozellulosefilter) ersetzt.

Hybridisierungs-Mixtur: Gleiche Zusammensetzung wie die Prehybridisierungsmixtur, aber jetzt mit ³²P-mar-kierter denaturierter RNA Probe (10⁶-10⁷ cpm/Filter), hergestellt entsprechend den unten unter Punkt III.5.d. gemachten Angaben.

Die Beutel werden gewöhnlich bei 37°C über Nacht aufbewahrt. Nach der Hybridisierung werden die Filter 15 Minuten in 2 x SSC und 0,1 % SDS bei RT gewaschen, wobei besagter Waschvorgang zweimal wiederholt wird; anschliessend werden die Filter 60 Minuten in 0,1 x SSC und 0,1 % SDS gewaschen. Die Filter werden auf Whatman 3MM Papier getrocknet und für die Autoradiographie vorbereitet.

d) Isolation und radioaktive Markierung der B. thuringiensis var. kurstaki RNA.

B. thuringiensis var. kurstaki Zellen werden auf einem Rogoff-Medium, enthaltend 0,1 % Glucose (A.A. Yousten and M.H. Rogoff⁵⁾) kultiviert. 500 ml Kulturen werden in 2 Liter-Erlenmeier-Flaschen bei 300 rpm und 30°C geschüttelt. Während des Zellwachstums geht der pH-Wert von pH 7 auf etwa 4.8 zurück und steigt dann wieder auf Werte von pH 7 an. Zu diesem Zeitpunkt beginnen die Zellen zu verklumpen. Der Zeitpunkt, an dem der pH seinen Ausgangswert wieder erreicht, wird als Startpunkt der Sporulation angesehen. Die Zellen werden für weitere 5 bis 6 Stunden kultiviert. Man fügt dann Rifampicin (50 µg/ml) hinzu und schüttelt die Zellen für weitere 10 Minuten. Die eisgekühlten Zellen werden geerntet und in 10 ml 4 M Guanidinthiocyanat, 0,5 % Sarcosyl, 25 mM Natriumcitrat pH 7 und 0,1 M 2-Mercaptoethanol resuspendiert. Die Zellen werden bei -80°C tiefgefroren und anschliessend in einer 'French Press' aufgebrochen. Nach einer 15 minütigen Zentrifugation des Zellextraktes bei 15'000 rpm (Sorvall SS34 Rotor) werden 0,5 g/ml CsCl zu dem Ueberstand hinzugegeben, der dann in einem Beckman 60Ti Zentrifugenröhrchen auf eine aus 5,7 M CsCl, 0,1 M EDTA bestehende Unterlage aufgeschichtet wird. Nach erneuter Zentrifugation für 20 h bei

38'000 rpm wird das RNA-Pellet mit Ethanol gewaschen, getrocknet, in 7 M Guanidinhydrochlorid gelöst und mit Ethanol prezipitiert. Die Gesamt-RNA aus sporulierenden Zellen wird dephosphoryliert und mit [32P] ATP und T4 Polynukleotid-Kinase nach standardisierten Verfahren (N. Maizels²¹⁾) markiert.

RNA Markierung mit Polynukleotid-Kinase:

Etwa l μ g RNA wird durch Erhitzen in 50 mM Tris-HCl (pH 9.5) einer milden alkalischen Hydrolyse unterworfen; Zeit und Temperatur der Inkubation: 20 Minuten bei 90°C.

Die Hydrolyse liefert freie 5' Hydroxylgruppen, die als Substrate für die Polynukleotid-Kinase dienen. Die Hydrolyse wird in versiegelten Kapillarröhrchen mit einem Gesamtvolumen von 4 μ l durchgeführt. Die Kinase Markierung erfolgt in Reaktionseinheiten von 10 μ l, die 50 mM Tris-HCl (pH 9.5), 10 mM MgCl₂, 5 mM Dithiothreitol, 5 % Glycerol und 1 μ M [γ^{32} P]-ATP, markiert mit einer spezifischen Aktivität von 6000 Ci/mmol, enthalten. Jede Reaktionseinheit enthält etwa 1 μ g RNA und 2 μ l T4 Polynukleotid Kinase, die Reaktion wird bei 37°C über einen Zeitraum von 45 Minuten durchgeführt. Es entsteht auf diese Weise eine RNA mit einer spezifischen Aktivität von ca. 3 x 10⁷ Cerenkov cpm/ μ g. Die RNA wird vom [γ^{32} P]-ATP durch dreimalige Ethanol Prezipitation in Gegenwart von 5 μ g eines tRNA Carriers abgetrennt.

III.6. Identifizierung von Klonen, die für das δ-Endotoxin, in der BamHI/ClaI Plasmid DNA Bibliothek, kloniert in pBR322, codieren: Die pK 25 Serie

a) In situ Hybridisierung bakterieller Kolonien: Die Koloniehybridisierung (M. Grunstein and D. Hogness²²⁾) wird durchgeführt durch Ueberführen der Bakterien von einer die Basiskultur enthaltenden Platte ("master plate") auf einen Nitrocellulosefilter. Die auf dem Filter befindlichen Kolonien werden anschliessend lysiert und die freigesetzte DNA wird durch Erhitzen auf dem Filter fixiert. Nach Hybridisierung mit einer ³² P-markierten

Probe wird der Filter mit Hilfe der Autoradiographie kontrolliert. Eine Kolonie, deren DNA bei der Autoradiographie ein positives Ergebnis bringt, kann dann von der die Basiskultur enthaltend n Platte gewonnen werden.

Für das Screening der BamHI/ClaI Plasmid DNA Bibliothek, kloniert in pBR322, wird ein innerhalb des 6-Endotoxins gelegenes DNA-Fragment verwendet. Die Methode ist bei Maniatis et al. (T. Maniatis et al.²³⁾) beschrieben.

Die Filter werden mit einer ³²P-markierten Probe, die gemäss der nachfolgend unter Punkt III.6.b beschriebenen Methode hergestellt wird, hybridisiert.

Zur Herstellung eines Autoradiographiebildes wird der Filter in "Saran Wrap" eingeschlagen und einem Röntgenfilm ausgesetzt.

Die positiven Klone werden von der die Basiskultur enthaltenden Platte isoliert und analysiert. Sie besitzen neben einer DNA-Sequenz, die für das Toxin kodiert, die DNA flankierende Region, was anhand immunologischer Verfahren (siehe Punkt III.4. oben) sowie von Restriktionskartierungen (siehe Punkt III.5. oben) und in einem in vivo Biotest (siehe Punkt III.7. unten) nachgewiesen werden konnte. Diese Klone werden im folgenden mit pK25-i bezeichnet, wobei i für eine Zahl zwischen 1-7 steht.

b) DNA-Nick-Translation:

Eine Radionuklid-Markierung eines internen DNA-Fragments des δ-Endotoxin Gens wird nach dem im folgenden beschriebenen Verfahren durchgeführt:

Mixtur: 3 µl DNA (lµg)

- 1,5 μl Nick Translation Puffer (10-fach konzentriert: 0,5 M Tris, pH 8, 0,05 M MgCl₂)
- 1,5 µl 2,5 mM d Guanosin-5'-triphosphat (GTP)
- 1,5 μl 2,5 mM d Cytidin-5'-triphosphat (CTP)
- 1,5 µl 2,5 mM d Thymidin-5'-triphosphat (TTP)

 $2,5 \mu l H_2O$

0,75 µl BSA (1 mg/ml)

1,5 μ l 100 mM β -Mercaptoethanol

vermischen und zu 100 μCi getrocknetem [32P- α]-ATP [10 mCi/mmol] hinzugeben

gut durchmischen,

- 0,75 μ l einer 1 x 10⁻⁴-Lösung von DNAseI (1 mg/ml) in Nick Translations Puffer hinzufügen,
- l Minute bei RT inkubieren, auf Eis überführen
- l μl E.coli Polymerase I (Biolabs; Endvolumen: 15 μl) zugeben.
- 3 Stunden bei 15°C inkubieren,

bei 65°C 10 Minuten erhitzen, 35 μ l 50 mM EDTA und 10 μ l tRNA Stammlösung (100 μ g) hinzufügen.

Nicht eingebaute Nukleotide werden durch Chromatograpie an einer kleinen Sephadex-G50-Säule abgetrennt.

c) Subklonieren des kompletten 6-Endotoxin Gens im pUC8-Vektor: des pK36 Klons

Der pUC8-Vektor (New England Biolabs) wird mit den Restriktionsenzymen HincII und PstI sowie durch Behandlung mit alkalischer Phosphatase (siehe Punkt III.I. oben) vollständig verdaut. Das HpaI/PstI-Fragment von pK25-7 (siehe Punkt III.6.a) oben), das für das δ-Endotoxin-Gen kodiert (Tabelle 2) wird mit der Vektor DNA verknüpft und in E.coli HB101 Zellen transformiert. Einer der korrekt transformierten Klone erhält die Bezeichnung pK36.

III.7. Biotest zur Bestimmung des B. thuringiensis Toxins:

Zu dem gereinigten Lysat, das entsprechend den unter Punkt III.3.

gemachten Angaben erhalten werden kann, wird Ammoniumsulfat in einer

30 % Sättigungskonzentration hinzugegeben. Das Präzipitat wird in

2 ml 50 mM Natriumcarbonat, pH 9.5, gelöst und gegen den gleichen

Puffer dialysiert. Als Kontrolle werden E.coli Extrakte hergestellt,

die zwar die Vektor DNA aber ohne eingebaute B. thuringiensis DNA

enthalten. Die E.coli Zellextrakte werden zunächst mit Ultraschall

behandelt, anschliessend werden 4 Konzentrationen entsprechend dem Toxin-Gehalt in den Extrakten hergestellt und mit 0,1% (v/v) eines Benetzungsmittels vermischt.

Blattscheibchen von Baumwollpflanzen, die unter kontrollierten Bedingungen in einer Klimakammer (25°C, 60 % relative Luftfeuchtig-keit) herangezogen worden sind, werden in die E.coli Zellextrakt-Suspensionen eingetaucht. Heliothis virescens Larven im ersten Larvenstadium (30 Larven pro Konzentration), die zuvor in einem Fitnesstest standardisiert worden sind, werden dann auf die getrockneten Blattscheibchen gesetzt und einzeln für 3 Tage bei 25°C inkubiert.

Die Mortalität wird in % gemessen, wobei nur die Kriterien 'tot' oder 'lebendig' Anwendung finden. Die Extrakte, die Mortalität hervorrufen, besitzen daher bioinsektizide Aktivität, die von der klonierten B. thuringiensis DNA stammt.

IV. DNA-Sequenzierung

Beide Stränge der DNA-Fragmente, die für das 6-Endotoxin-Gen kodieren, werden nach der Methode von F. Sanger et al. 24) unter Verwendung des M13 Systems (J. Messing 25) sequenziert.

IV.1. Klonieren des 6-Endotoxin-Gens in die replikative DNA-Form des M13

Aus der Restriktionskartierung des klonierten &-Endotoxin-Gens und der Southern-Blot-Analyse lässt sich erkennen, dass das Gen auf zwei DNA Fragmenten von pK36 lokalisiert ist: HpaI (Position 0 auf der Sequenz) bis HindIII (Position 1847) und EcoRI (Position 1732) bis PstI (Position 4355). Das erste Fragment wird in M13mp8 (New England Biolabs) zwischen der einzigen HincII und der einzigen HindIII Stelle in einer Reaktion kloniert, die analog dem oben beschriebenen Verknüpfungs-Prozess abläuft.

IV.2. Herstellung einer aufeinanderfolgenden Reihe überlappender Klone

Zur Verkürzung des HpaI-HindIII DNA Fragments, das für das 5'-Ende des Gens kodiert, kommt die Bal31 Methode (M.Poncz et al. 26) zur Anwendung. Besagtes Verkürzen wird folgendermassen durchgeführt:

Das Fragment wird in M13mp8 zwischen den einzigen HincII und HindIII-Stellen kloniert. 10 mg der replikativen DNA Form wird mit der Restriktionsendonuclease HindIII linearisiert und anschliessend mit der Endonuclease Bal31 in 100 µl 600 mM NaCl, 12 mM CaCl2, 12 mM MgCl2, 20 mM Tris. HCl, pH 8 und 1 mM EDTA, behandelt. Diese Mischung wird bei 30°C für 5 Minuten vorinkubiert. Anschliessend werden 5 Einheiten Bal31 zugegeben. Unmittelbar nach dieser Zugab sowie nach 2, 4, 6, 8, 10 und 12 Minuten werden jeweils 13 µl entnommen. Um hier eine weitere Reaktion zu verhindern werden gleich nach erfolgter Entnahme 25 µl Phenol und 40 µl TE-Puffer zugesetzt. Diese Mixtur wird zentrifugiert, mit Chloroform extrahiert und mit Ethanol prezipitiert. Das so erhaltene DNA Prezipitat wird in 20 µl 100 mM NaCl, 20 mM Tris HCl und 10 mM MgCl2 resuspendiert und mit einem zweiten Enzym verdaut, das auf der anderen Seite des ursprünglich klonierten Fragments gefunden wird; im vorliegenden Fall handelt es sich dabei um BamHI. Nach Auftrennung in einem Agarose-Gel entsprechend der Grösse, werden die verkürzten Fragmente mit Ethidiumbromid gefärbt und unter langwelligem UV-Licht bei 366 nm sichtbar gemacht.

Der Teil des Agarose-Gels, der die gekürzten Fragmente enthält, wird aus dem Gel herausgeschnitten, bei 65°C verflüssigt, auf 500 mM NaCl eingestellt und bei 65°C für 20 Minuten inkubiert. Ein Volumenteil Phenol (äquilibriert mit 10 mM Tris·HCl, pH 7.5, 1 mM EDTA, 500 mM NaCl) wird zugegeben.

Die wässrige Phase wird zweimal mit Phenol und einmal mit Chloroform reextrahiert. Die DNA wird mit 2,5 Volumenteil n kalten absoluten Ethanols prezipitiert und durch Zentrifugation gesammelt. Das DNA Pellet wird mit kaltem 80%igen Ethanol gewaschen und anschliessend im Vakuum getrocknet. Die DNA wird dann in 20 µl TE resuspendiert.

Die Fragmente werden successiv um 200-300 Bp verkürzt und besitzen auf der einen Seite des Fragments eine einzelne BamHI Restriktionsstelle und ein glattes Ende auf der anderen Seite. Diese Fragmente werden in einem Ml3mp8 Vektor kloniert, der zuvor durch zweifache Verdauung mit BamHI und HincII, wie oben unter Punkt IV.1 beschrieben, linearisiert wird.

Bei dem oben beschriebenen Verfahren wird die DNA Sequenz nur eines DNA Stranges erhalten, die bei der HindIII Restriktionsstelle beginnt und in Richtung der BamHI-Stelle fortschreitet.

Die Vorgehensweise für Sequenzierung des komplementären DNA-Stranes desselben DNA-Fragments sowie die Restriktions-Schrittstellen der für die Sequenzierung verwendeten Endonucleasen, d.h. in erster Linie für die Verkürzung des zweien DNA Fragments, weiterhin das EcoRI/Pst I-Fragment und dessen Sequenzierung sind in Abbildung 1, modifiziert nach Poncz et al. 26) und in Tabelle 1 wiedergegeben.

IV.3. Transformation des E.coli Stammes JM103:

E.coli JM 103 Zellen werden auf M9 Maximal-Medium kultiviert. Die Transformation wird folgendermassen durchgeführt:

- Eine einzelne E.coli JM 103 Kolonie in 2xYT inokulieren; über Nacht bei 37°C unter ständigem Rühren aufbewahren;
- 2. 40 ml 2xYT mit 200 μl der entsprechend Schritt l erhaltenen Kultur inokulieren;

- 3. Bei 37°C unter ständigem Rühren bis zu einer OD₅₅₀ von 0,5 kultivieren;
- 4. Auf Eis 5 Minuten inkubieren;
- 5. Bei 6000 rpm 5 Minuten in einem vorgekühlten SS34 Sorvall Rotor zentrifugieren;
- 6. Die Zellen in 20 ml einer 50 mM sterilen eisgekühlten CaCl₂-Lösung (CaCl₂-Lösung sollte jeweils frisch hergestellt werden) suspendieren;
- 7. Auf Eis 40 Minuten inkubieren;
- 8. Bei 6000 rpm 5 Minuten in einem SS34 Sorvall Rotor zentrifugieren;
- 9. Die Zellen in 3 ml einer eisgekühlten CaCl2-Lösung suspendieren;
- 10. 1-5 μl DNA oder 7-15 μl einer Ligase Formulierung zu 200 μl der entsprechend Schritt 9 erhaltenen Zellen zugeben;
- 11. Auf Eis 30 Minuten inkubieren;
- 12. Bei einer Temperatur von 42°C, 3 min inkubieren;
- 13. 200 µl der entsprechend Schritt 1 erhaltenen Zellen zugeben;
- 14. Oberflächenagar aufkochen und bei 42°C aufbewahren;
- 15. Röhrchen mit 3 ml Oberflächenagar, 30 μl X-GAL (20 mg/ml Dimethylsulfoxid) und 30 μl IPTG (20 mg/ml H₂O) füllen;
- 16. Sorgfältig durchmischen und sofort in zuvor erwärmte lxYT Platten überführen;

- 17. Platten für ca 1 Stunde trocknen lassen;
- 18. Platten umdrehen und bei 37°C inkubieren.

Die auf diese Weise erhaltenen Plaques sind für die weitere Behandlung geeignet.

Kontrollen: - 200 μl kompetente Zellen ohne exogene DNA
+ 1 μl Ml3mp8 (replikative DNA-Form, 10 ng) + 200 μl
kompetenter Zellen

IV.4. Herstellung der replikativen Form einer rekombinanten Phagen DNA

- 1. Einzelne weisse Plaques vorsichtig in 9 ml 2xYT und 1 ml der nach Schritt 1 Teil IV.3 erhaltenen Kultur überführen und 7 Stunden bei 37°C inkubieren
- 2. Bei 4000 rpm 10 Minuten zentrifugieren;
- 3. Ueberstand über Nacht bei 4°C aufbewahren;
- 4. 10 ml des entsprechend Schritt 3 erhaltenen Ueberstandes sowie von 10 ml der entsprechend Schritt 1, Teil IV.3 erhaltenen Kultur in 1 1 2xYT inokulieren;
- 5. Bei 37°C 4 1/2 Stunden schütteln;
- 6. Bei 5000 rpm 15 min zentrifugieren;
- 7. Die Zellen in 10 ml einer 10 % Sucroselösung in 50 mM Tris·HCl, pH 8 suspendieren und abkühlen;
- 8. In 30 ml-Zentrifugenröhrchen überführen;
- 9. 2 ml frisch hergestellt Lysozym-Lösung (10 mg/ml 0,25 M Tris·HCl, pH 8) hinzugeben;

- 10. 8 ml 0,25 M EDTA zugeben und vorsichtig vermischen;
- 11. 10 min auf Eis inkubieren;
- 12. 4 ml 10 % SDS (oder 1,6 ml 25 % SDS) zugeben und mit einem Glasstab vermischen;
- 13. 6 ml 5 M NaCl (Endkonzentration: 1 M) zugeben und vorsichtig vermischen;
- 14. 1 Stunde auf Eis inkubieren;
- 15. 40 min bei 20'000 rpm in einem SS34 Sorvall Rotor zentrifugieren;
- 16. Ueberstand entnehmen und 1/10 Volumen 5 M NaCl und 15 ml 30 % PEG in TNE zugeben;
- 17. 2 Stunden oder über Nacht bei 4°C inkubieren;
- 18. Bei 8'000 rpm 15 Minuten zentrifugieren;
- 19. Pellets entnehmen und in 18 ml TE, pH 8 überführen;
- 20. 18 g CsCl (1 g/ml) zugeben;
- 21. Entweder in Ti-50-Röhrchen überführen und 0,4 ml Ethidiumbromid (10 mg/ml) zugeben oder in Ti-60-Röhrchen überführen unter Zugabe von 1,2 ml Ethidiumbromid (10 mg/ml).
- 22. Mit CsCl-Lösung (1 g CsCl + 1 ml TE) auffüllen;
- 23. Bei 35'000 rpm und 20°C 36-48 Stunden zentrifugieren;
- 24. Die unter UV-Licht (366 nm) sichtbaren unteren Band n entnehmen;

- 25. Mit mit Wasser gesättigtem Butanol 3-4 mal extrahier n;
- 26. Bei 4°C 3 mal jeweils gegen 1 1 steriles TE dialysieren;

IV.5. Herstellen einer Einzelstrang DNA Matrize:

- 1. E.coli-JM 103-Zellen in 5 ml 2xYT-Medium bei 37°C über Nacht schütteln;
- 2. 2 Tropfen einer entsprechend Schritt 1 erhaltenen Zellsuspension zu 25 ml 2xYT Medium zugeben;
- 3. Zwei Röhrchen mit jeweils 2 ml der gemäss Schritt 2 erhaltenen Kultur-Lösung füllen und 1 Plaque pro Röhrchen, das entsprechend den Angaben unter Punkt IV.3. oben erhalten wird, zugeben;
- 4. 5 1/2 Stunden bei 37°C schütteln;
- 5. Röhrcheninhalt in Eppendorf-Röhrchen überführen und 5 Minuten zentrifugieren;
- 6. 1 ml des Ueberstandes in frische Eppendorf-Röhrchen überführen;
- 7. 200 µl 20 % PEG 6000/2,5 M NaCl zugeben;
- 8. 15 Minuten bei RT inkubieren;
- 9. 5 Minuten zentrifugieren;
- 10. Ueberstand abheben und erneut kurzzeitig zentrifugieren;
- 11. Ueberstand vorsichtig abheben durch Ansaugen mit einer in die Länge gezogenen Pasteurpipette;
- 12. Zu dem verbleibenden Rest 100 µl TE und 50 µl Ph nol zugeben;

- 13. 10 Sekunden mischen (mit dem Vortex); 5 min stehen lassen;10 sec mischen (mit dem Vortex); 1 min zentrifugieren;
- 14. Wässrige Phase in frische Eppendorf-Röhrchen überführen;
- 15. 500 μ l Ethylenether zugeben, mischen (Vortex) und 1 min zentrifugieren;
- 16. Ether durch Ansaugen entfernen und Röhrchen für 10 Minuten unverschlossen lassen (falls die wässrige Phase nach dieser Behandlung sehr trüb ist, sollte mit der Pasteurpipette Luft durchgeblasen werden, bis die Lösung klar ist);
- 17. 10 μl 3 M Natriumacetat und 250 μl Ethanol zugeben;
- 18. 30 Minuten bei -80°C inkubieren;
- 19. 5 Minuten zentrifugieren;
- 20. Mit 80 % Ethanol waschen;
- 21. 5 Minuten zentrifugieren;
- 22. Ueberstand mit verlängerter Pasteur-Pipette abheben;
- 23. Röhrchen 15 Minuten unverschlossen lassen;
- 24. Pellet in 25 µl TE lösen;
- 25. 2 µl der Pellet-Lösung auf ein 0,6 % Agarose-Gel auftragen;

IV.6. Sequenzierungsreaktion

Die DNA Sequenzanalyse der Matrizen-DNA, die entsprechend den Angaben unter Punkt IV.5. erhalten werden kann, wird nach der im Handbuch "Ml3 Klonierungs- und DNA Sequenzierungs-System", publiziert b i New England Biolabs, beschriebenen Methode durchgeführt.

Die Analys der kompletten DNA-Sequenz zeigt, dass man lediglich einen off nen Leserahmen findet, der genügend lang ist für in Protein mit einem MG von 130.622 und der für 1155 Aminosäuren kodiert.

Der N-Terminus des Proteins befindet sich 156 Bp stromabwärts der HpaI-Restriktionsstelle, die letze Aminosäure des C-Terminus dagegen wird durch ein Kodon kodiert, das bei Nukleotid 3618 beginnt. Die DNA-Sequenz zwischen der HpaI und der PstI Schnittstelle ist in Tabelle 2, die daraus abgeleitete Aminosäuresequenz in Tabelle 3 wiedergegeben.

V. Expression des Endotoxin-Gens in Hefe-Zellen

V.1. Einführen einer NcoI Schnittstelle vor dem ersten AUG-Kodon des Gens

Um die Protein-kodierende Sequenz des B. thuringiensis Toxin-Gens mit dem PHO5 Hefe-Promotor kombinieren zu können (beschrieben in der Europäischen Patentanmeldung Nr. 100,561), wird die DNA-Sequenz in der Umgebung des Toxin Gens modifiziert. Diese Modifikation wird durch Oligonucleotid-vermittelte Mutagenese mit dem einzelsträngigen Phagen-Vektor M13mp8 erreicht, der ein 1,5 Kb BamHI-SacI Insert besitzt, das für die 5'-Region des Toxin-Gens kodiert. 200 ng des Inserts werden durch Verdauung von 3 µg Plasmid DNA des Plasmids pK36 mit BamHI und SacI und durch anschliessende Isolierung des Fragments unter Verwendung von oben beschriebenen Standardmethoden erhalten. 100 ng der replikativen Form (RF) von M13mp8 werden mit den gleichen Enzymen verdaut, die DNA wird mit Phenol behandelt und durch Ethanol-Zugabe prezipitiert und anschließend mit 200 ng der oben erwähnten Insert-DNA verknüpft. Nach Transfektion von E.coli werden sechs weisse Plaques herausgegriffen und durch Restriktionsverdauungen unter Verwendung von BamHI und SacI analysiert. Ein korrektes Isolat wird ausgewählt und als M13mp18/Bam-Sac bezeichnet.

Ein Oligonukleotid mit der Sequenz (5') GAGGTAACCCATGGATAAC (3') wird mit Hilfe an sich bekannter Methoden unter Verwendung eines 'APPLIED BIOSYSTEMS DNA SYNTHESIZER' synthetisiert. Diese Oligonucleotid ist komplementär zu einer Sequenz der M13mp18/Bam-Sac, die von Position 141 bis Position 164 des Protoxin Gens reicht (Tabelle 2) und die in den Postionen 154 und 155 falsch gepaarte Nukleotidpaare ('Mismatch') aufweisen. Die allgemeine Vorgehensweise bei der Mutagenese ist bei J.M. Zoller und M. Smith (J.M. Zoller and M. Smith²⁷⁾) beschrieben. Etwa 5 µg einzelsträngiger Ml3mpl8/Bam-Sac-Phagen-DNA wird mit 0,3 µg phosphorylierten Oligonukleotiden in einem Gesamt-Volumen von 40 µl gemischt. Diese Mischung wird für 5 Minuten auf 65°C erhitzt, dann zunächst auf 50°C abgekühlt und anschliessend allmählich auf 4°C heruntergekühlt. Danach werden Puffer, Nucleotidtriphosphate, ATP, T4-DNA-Ligase und das grosse Fragment der DNA-Polymerase hinzugefügt und über Nacht bei 15°C, wie beschrieben (J.M. Zoller and M. Smith²⁷⁾) inkubiert. Nach einer Agarose-Gel-Elektrophorese wird zirkuläre doppelsträngige DNA gereinigt und mittels Transfektion in den E.coli Stamm JM103 eingeschleust.

Die resultierenden Plaques werden auf Sequenzen hin untersucht, die mit ³²P-markiertem Oligonukleotid hybridisieren; die Phagen werden mit Hilfe der DNA Restriktionsendonukleasen-Analyse untersucht. Unter den resultierenden Phagen werden die als Klone bezeichnet, die jetzt korrekterweise an Stelle von T in der pK36 DNA ein C an Position 154 und 155 aufweisen. Diese Phagen werden als M13mp18/Bam-Sac/Nco bezeichnet.

V. 2. Verknüpfung des δ-Endotoxin-Gens mit dem PHO5-Hefe-Promotor
Das 1.5 Kb BamHI-SacI Insert des M13mpl8/Bam-Sac/Nco wird in das
Plasmid pK36 zurückkloniert, indem das Wildtyp BamHI-SacI-Fragment
von pK36 durch das mutierte 1,5 Kb Fragment unter Verwendung von
zuvor beschriebenen Standard-Klonierungs Techniken ersetzt wird.

Dadurch entsteht das Plasmid pK36/Nco, das eine NcoI Restriktionsstelle unmittelbar vor dem ATG des Protoxin-Gens aufweist Noc IGAGGTAAC/CCATGG/ATAAC.

5 μg dieses Vektors wird mit NcoI verdaut und die überhängenden 3' Enden werden mit Klenow Polymerase aufgefüllt, wie bei Maniatis et al. 28) beschrieben. Anschliessend wird das Plasmid mit AhaIII verdaut, die DNA auf einem 0,8%igen niedrig schmelzenden Agarose-Gel aufgetrennt und wie oben beschrieben eluiert. 2 µg des Plasmids p3ly (beschrieben in der Europäischen Patentanmeldung Nr. 100,561) wird mit EcoRI verdaut und die zurückgesetzten Enden werden wie zuvor beschrieben mit Klenow Polymerase aufgefüllt. Die Verknüpfung des stumpf endenden 3.6 Kb Protoxin Genfragments mit dem stumpf endenden Vektor p3ly erfolgt durch Inkubation von je 200 ng beider DNA's in 20 µl bei RT wie bei Maniatis et al. 29) beschrieben. Nach Transformation einer Ampicillin Resistenz auf E.coli HB101 werden einzelne Klone einer Restriktionsanalyse unterzogen. Ein korrektes Isolat wird herausgesucht und mit der Bezeichnung p31y/B.t. versehen. 1 µg dieser Plasmid DNA wird mit BamHI verdaut und das 4 Kb Fragment aus einem weichen Agarose Gel isoliert. Dieses Fragment wird mit dem selbst-replizierenden Hefe-Vektor pJDB207 (beschrieben in der Europäischen Patentanmeldung Nr. 100,561) verknüpft, der zuvor ebenfalls mit BamHI (0,5 µg) verdaut worden ist. Positive Klone werden mit Hilfe der E.coli Transformation und der Plasmid DNA Aufarbeitung isoliert. Korrekte Isolate lassen sich anhand einer Restriktionsanalyse unter Verwendung von BamHI ermitteln.

Die Transformation des Hefe Stammes GRF18 /(MATα, leu 2-3, leu 2-112, his 3-11, his 3-15 can. R) wird entsprechend den Angaben in der Europäischen Patentanmeldung 100,561 durchgeführt.

V.3. Ganze Hefe-Zellen mit einem rekombinanten B. thuringiensis Toxin-Gen im Biotest

Ganze Zellen mit dem B. thuringiensis Gen stellen eine Bioenkapsulierungs-Form (ein artifiziell erstelltes System, welches aus biologischem Material besteht, und wobei genetisches Material von schützendem Material umgeben ist) für das MGE1-Produkt dar, das jetzt beim Aufbringen auf die Pflanzen besser gegen Abbau durch schädliche Einflüsse, wie z.B. Licht, geschützt ist, als das kristalline Produkt, das von B. thuringiensis im Rahmen der Sporulation gebildet wird und durch Aufbrechen der Zelle ins Medium gelangt.

Hefe-Zellen mit und ohne dem B. thuringiensis Toxin werden in destilliertem Wasser bis zu einer vergleichbaren optischen Dichte resuspendiert. Von besagter Suspension werden 4 Konzentrationen bereitgestellt und 0,2 % (v/v) eines Benetzungsmittels beigemischt. Für die Beurteilung der insektiziden Aktivität dieser Hefezell-Präparate wird der oben unter Punkt III.7 bereits beschriebene Blattscheiben-Test herangezogen.

Die insektizide Aktivität von B. thuringiensis transformierten Hefe Zellen auf im ersten Larvenstadium befindliche Heliothis virescens Larven wird in der folgenden Tabelle demonstriert.

Tabelle 4

Material ·	Konzentration	Mortalität in % (N = 30)
Zellen mit Toxin	1:5 1:7,5 1:11,3 1:16,9	72 40 37 22
Zellen ohne Toxin	1:5 1:11,3	3 0
Blattstückchen ohne Hefe: Kontrolle l Kontrolle 2	 	· 0 3

Aehnliche Ergebnisse sind erhältlich, wenn man Hefeextrakte, die entsprechend der Beschreibung in der Europäischen Patentanmel-dung 100,561 hergestellt worden sind, anstelle von ganzen Hefezellen verwendet und diese im gleichen Biotest t stet.

Für die Anwendung als Insektizide werden die transformierten Mikroorganismen, die das rekombinante B. thuringiensis Toxin-Gen enthalten, vorzugsweise transformierte lebende oder tote Hefe-Zellen, einschliesslich Gemischen aus lebenden und toten Hefe-Zellen, in unveränderter Form oder vorzugsweise zusammen mit den in der Formulierungstechnik üblichen Hilfsstoffen, eingesetzt und werden daher in an sich bekannter Weise formuliert, z.B. zu Suspensionskonzentraten, streichbaren Pasten, direkt versprühbaren oder verdünnbaren Lösungen, benetzbaren Pulvern, löslichen Pulvern, Stäubemitteln, Granulaten, und auch Verkapselungen in z.B. polymeren Stoffen.

Die Anwendungsverfahren wie Versprühen, Vernebeln, Verstäuben, Verstreuen, Bestreichen oder Giessen werden gleich wie die Art der Mittel den angestrebten Zielen und den gegebenen Verhältnissen entsprechend gewählt.

Die Formulierungen, d.h. die die transformierten lebenden oder toten Hefe-Zellen oder Mischungen davon und gegebenenfalls feste oder flüssige Hilfsmittel enthaltenden Mittel oder Zubereitungen werden in bekannter Weise hergestellt, z.B. durch inniges Vermischen der Hefezellen mit festen Trägerstoffen und gegebenenfalls oberflächenaktiven Verbindungen (Tensiden).

Als feste Trägerstoffe, z.B. für Stäubemittel und dispergierbare Pulver, werden in der Regel natürliche Gesteinsmehle verwendet, wie Calcit, Talkum, Kaolin, Montmorillonit oder Attapulgit. Zur Verbesserung der physikalischen Eigenschaften können auch hochdisperse Kieselsäure oder hochdisperse saugfähige Polymerisate zugesetzt werden. Als gekörnte, adsorptive Granulatträger kommen poröse Typen wie z.B. Bimsstein, Ziegelbruch, Sepiolit oder Bentonit, als nicht sorptive Trägermaterialien z.B. Calcit oder Sand in Frage. Darüberhinaus kann eine Vielzahl von vorgranulierten Materialien anorganischer oder organischer Natur wie insbesondere Dolomit oder zerkleinerte Pflanzenrückstände verwendet werden.

Als oberflächenaktive Verbindungen kommen nichtionogene, kationund/oder anionaktive Tenside mit guten Dispergier- und Netzeigenschaften in Betracht. Unter Tensiden sind auch Tensidgemische zu verstehen.

Geeignete anionische Tenside können sowohl sog. wasserlösliche Seifen als auch wasserlösliche synthetische oberflächenaktive Verbindungen sein.

Als Seifen seien die Alkali-, Erdalkali- oder unsubstituierte oder substituierte Ammoniumsalze von höheren Fettsäuren (C₁₀-C₂₂), wie z.B. die Na- oder K-Salze der Oel- oder Stearinsäure, oder von natürlichen Fettsäuregemischen, die z.B. aus Kokosnuss- oder Talgöl gewonnen werden können, genannt. Ferner sind auch die Fettsäure-methyl-taurinsalze zu erwähnen, wie z.B. das Natriumsalz der cis-2- (methyl-9-octadecenylamino)-ethansulfonsäure (Gehalt in Formulierungen vorzugsweise etwa 3 %).

Häufiger werden jedoch sogenannte synthetische Tenside verwendet, insbesondere Fettsulfonate, Fettsulfate, sulfonierte Benzimidazolderivate oder Alkylarylsulfonate oder Fett-Alkohole, wie z.B. 2,4,7,9-tetramethyl-5-decin-4,7-diol (Gehalt in Formulierungen vorzugsweise bei etwa 2 %).

Die Fettsulfonate oder -sulfate liegen in der Regel als Alkali-, Erdalkali- oder gegebenenfalls unsubstituierte oder substituierte Ammoniumsalze vor und weisen einen Alkylrest mit 8 bis 22 C-Atomen auf, wobei Alkyl auch den Alkylteil von Acylresten einschliesst, z.B. das Na- oder Ca-Salz der Ligninsulfonsäure, des Dodecylsulfats oder eines aus natürlichen Fettsäuren hergestellten Fettalkoholsulfatgemisches. Hierher gehören auch die Salze der Schwefelsäureester und Sulfonsäuren von Fettalkohol-Ethylenoxid-Addukten. Die sulfonierten Benzimidazolderivate enthalten vorzugsweise 2 Sulfonsäuregruppen und einen Fettsäurerest mit 8-22 C-Atomen. Alkylaryl-

sulfonate sind z.B. die Na-, Ca- oder Triäthanolaminsalze der Dodecylbenzolsulfonsäure, der Dibutylnaphthalinsulf nsäure der eines Naphthalinsulfons ure-Formaldehydkondensationsprodukt s.

Ferner kommen auch entsprechende Phosphate wie z.B. Salze des Phosphorsäureesters eines p-Nonylphenol-(4 bis 14)-ethylenoxid-Adduktes in Frage.

Als nicht-ionische Tenside kommen in erster Linie Polyglykoletherderivate von aliphatischen oder cycloaliphatischen Alkoholen,
gesättigten oder ungesättigten Fettsäuren und Alkylphenolen in
Frage, die 3 bis 30 Glykolethergruppen und 8 bis 20 Kohlenstoffatom
im (aliphatischen) Kohlenwasserstoffrest und 6 bis 18 Kohlenstoffatome im Alkylrest der Alkylphenole enthalten können.

Weitere geeignete nicht-ionische Tenside sind die wasserlöslichen, 20 bis 250 Ethylenglykolethergruppen und 10 bis 100 Propylenglykolethergruppen enthaltenden Polyethylenoxid-Addukte an Polypropylenglykol, Ethylendiaminopolypropylenglykol und Alkylpolypropylenglykol mit 1 bis 10 Kohlenstoffatomen in der Alkylkette. Die genannten Verbindungen enthalten üblicherweise pro Propylenglykoleinheit 1 bis 5 Ethylenglykoleinheiten.

Als Beispiele nicht-ionischer Tenside seien Nonylphenolpolyethoxyethanole, Ricinusölpolyglykolether, Polypropylen/Polyethylenoxid-Addukte, Tributylphenoxypolyethoxyethanol, Polyethylenglykol und Octylphenoxypolyethoxyethanol erwähnt. Ferner kommen auch Fettsäureester von Polyoxyethylensorbitan wie das Polyoxyethylensorbitantrioleat in Betracht.

Bei den kationischen Tensiden handelt es sich vor allem um quartäre Ammoniumsalze, welche als N-Substituenten mindestens einen Alkylrest mit 8 bis 22 C-Atomen enthalten und als weitere Substituenten unsubstituierte oder halogenierte Nieder-Alkyl-, -Benzyl- oder niedrige Hydroxyalkylrest aufweis n. Die Salze lieg n vorzugsweis

als Halogenide, Methylsulfate oder Ethylsulfate vor, z.B. das Stearyltrimethylammoniumchlorid oder das Benzyldi(2-chlorethyl)ethylammoniumbromid.

Die in der Formulierungstechnik gebräuchlichen Tenside sind u.a. in folgenden Publikationen beschrieben:

"Mc Cutcheon's Detergents and Emulsifiers Annual"
MC Publishing Corp., Ridgewood New Jersey, 1980;
Helmut Stache "Tensid-Taschenbuch" Carl Hanser-Verlag
München/Wien 1981.

Die agrochemischen Mittel enthalten in der Regel 0,1 bis 99 %, insbesondere 0,1 bis 95 %, der transformierten, lebenden oder toten Hefezellen oder Mischungen davon, 99,9 bis 1 %, insbesondere 99,8 bis 5 %, eines festen oder flüssigen Zusatzstoffes und 0 bis 25 %, insbesondere 0,1 bis 25 %, eines Tensides.

Während als Handelsware eher konzentrierte Mittel bevorzugt werden, verwendet der Endverbraucher in der Regel verdünnte Formulierungen.

Solche Mittel können noch weitere Zusätze wie Stabilisatoren, Entschäumer, Viskositätsregulatoren, Bindemittel, Haftmittel sowie Dünger oder andere Wirkstoffe zur Erzielung spezieller Effekte enthalten.

Die transformierten lebenden oder toten Hefe-Zellen oder Mischungen davon, die die rekombinanten B. thuringiensis Toxin-Gene enthalten, sind hervorragend für die Bekämpfung von Schadinsekten geeignet. Vorzugsweise sind dabei pflanzenzerstörende Insekten der Ordnung Lepidoptera zu nennen, insbesondere solche der Gattungen Pieris, Heliothis, Spodoptera und Plutella, wie beispielsweise Pieris brassicae, Heliothis virescens, Heliothis zea, Spodoptera littoralis und Plutella xylostella.

Die Aufwandmengen, in denen die Hefezellen einges tzt werden, hängen v n den jeweiligen Bedingungen ab, wie beispielsweise d n Witterungsv rhältnissen, der Bodenbeschaffenheit, dem Pflanzenwachstum und dem Applikationszeitpunkt. Aufgrund von Vorversuchen, die im Gewächshaus durchgeführt wurden, kann davon ausgegangen werden, dass Auffwandmengen von 1 bis 10 kg, insbesondere 3 bis 9 kg, der Hefe-Zellen pro Hektar vorteilhaft sind.

Formulierungsbeispiele für B. thuringiensis-Toxin enthaltendes Material

Bei den folgenden Formulierungsbeispielen sind unter dem Begriff "Hefe-Zellen" solche zu verstehen, die das rekombinante B. thuringiensis-Gen enthalten. (Bei den Angaben handelt es sich durchgehend um Gewichstprozente.)

Fl. Granulate	a)		b)	
Hefe-Zellen	5	%	10 %	6
Kaolin	94	%	-	
Hochdisperse Kieselsäure	1	%	-	
Attapulgit	_		90 %	6

Die Hefe-Zellen werden zunächst in Methylenchlorid suspendiert, anschliessend wird die Suspension auf das Trägermaterial aufgesprüht und danach das Suspendierungsagens im Vakuum verdampft.

F2. Stäubemittel	a)		b)		
Hefe-Zellen	2	%	5	%	
Hochdisperse Kieselsäure	1	%	5	%	
Talkum	97	%	-		
Kaolin	-		90	%	

Gebrauchsfertige Stäubemittel erhält man durch inniges Vermischen der Trägerstoffe mit den Hefe-Zellen.

F3. Spritzpulver	a)	,	ь)		c)		
					-	æ	
Hefe-Zellen	25	ኤ ု	50	76	75	76	
Natrium-Ligninsulfonat	5	%	5	%	-		
Natrium-Laurylsulfat	3	%			5	%	
Natrium-Diisopropyl- naphthalinsulfonat	. ~		6	%	10	%	
Octylphenolpolyethylen- glykolether (7-8 Mole							
Ethylenoxid	-		2	%	-		
Hochdisperse Kieselsäure	5	%	10	%	10	%	
Kaolin	62	%	27	%	_		

Die Hefezellen werden sorgfältig mit den Zusatzstoffen vermischt und das erhaltene Gemisch anschliessend in einer geeigneten Mühle gut vermahlen.

Man erhält Spritzpulver, die sich mit Wasser zu Suspensionen jeder gewünschten Konzentration verdünnen lassen.

F4. Extruder Granulate

Hefe-Zellen	10	%
Natrium-Ligninsulfonat	2	%
Carboxymethylcellulose	1	%
Kaolin	8.7	%

Die Hefe-Zellen werden mit den Hilfsstoffen gemischt, sorgfältig vermahlen und mit Wasser angefeuchtet. Dieses Gemisch wird extrudiert und anschliessend in Luftstrom getrocknet.

F5. Umhüllungs-Granulat

Hefe-Zellen	3	%
Polyethylenglykol 200	3	%
Kaolin	94	%

Die homogen vermischten Hefe-Zellen werden in einem Mischer auf das mit Polyethylenglykol angefeuchtete Kaolin gleichmässig aufgetragen. Auf diese Weise erhält man staubfreie Umhüllungs-Granulate.

F6. Suspensions-Konzentrat	
Hefe-Z llen	40 %
Ethylenglykol	10 %
Nonylphenolpolyethylenglykol (15 Mole Ethylenoxid)	6 %
Alkylbenzolsulfonsäure- triethanolaminsalz* Carboxymethylcellulose Silikonöl in Form einer 75 %igen	3 % 1 %
wässrigen Emulsion	0,1 %
Wasser	39 %

* Alkyl ist vorzugsweise linear mit 10 bis 14, insbesondere 12-14 Kohlenstoffatomen wie beispielsweise n-Dodecylbenzolsulfonsäuretriethanolaminsalz.

Die homogen vermischten Hefe-Zellen werden mit den Zusatzstoffen innig vermischt. Man erhält so ein Suspensionkonzentrat, aus welchem durch Verdünnen mit Wasser Suspensionen jeder gewünschten Konzentration hergestellt werden können.

Von jedem der im folgenden aufgelisteten Mikroorganismen, die im Rahmen der vorliegenden Erfindung verwendet werden, wurde eine Kultur bei der als internationale Hinterlegungsstelle anerkannten 'Deutschen Sammlung von Mikroorganismen' in Göttingen, Bundes-republik Deutschland, entsprechen den Anforderungen des Budapester Vertrages für die Internationale Anerkennung der Hinterlegung von Mikroorganismen zum Zwecke der Patentierung, hinterlegt. Eine Erklärung zur Lebensfähigkeit der hinterlegten Proben wurde durch die besagte Internationale Hinterlegungsstelle ausgefertigt.

Mikroorganismen	Hinterlegungs- datum	Hinterle- gungs-Nummer*	Datum der Lebensfähig- keitsbeschei- nigung
HD1-ETHZ 4449 (Bacillus thuringiensis var. kurstaki HD1 Stamm ETHZ 4449)	4. März 1986	DSM 3667	7. März 1986
HB101 (pK36) (Escherichia coli HB101 transformiert mit pK36 Plasmid-DNA)	4. März 1986	DSM 3668	7. März 1986
GRF 18 (Saccharomyces cerevisiae)	4. März 1986	DSM 3665	7. März 1986

^{*} Eingangs-Nummer, ausgegeben durch die oben bezeichnete Internationale Hinterlegungsstelle.

Einschränkungen der Zugänglichkeit besagter Mikroorganismen sind seitens des Hinterlegers nicht verlangt worden.

Literatur:

1) S. Chang, Trends in Biotechnology 1 (4), 100 (1983)

- H.C. Wong, H.E. Schnepf and H.R. Whiteley, The Journal of Biological Chemistry 258 (3), 1960 (1983)
- 3) M.J. Adang, M.J. Staver, T.A. Rocheteau, J. Leighton, R.F. Bar-ker and D.V. Thompson, Gene 36, 289 (1985)
- 4) H.E. Schnepf, H.C. Wong and H.R. Whiteley, The Journal of Biological Chemistry 260 (10), 6264 (1985)
- A.A. Yousten and M.H. Rogoff, Journal of Bacteriology 100, 1229 (1969)

- T. Maniatis, E.F. Fritsch and J. Sambrook, Molekular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, USA, Appendix C: Commonly used bacterial strains, pp. 504, 506 (1982)
- 7) F.F. White and E.W. Nester, Journal of Bacteriology 141 (3), 1134 (March 1980)
- 8) B. Trümpi, Zentralblatt f. Bakteriologie Abt. II, 305 (1976)
- 9) F.P. Delafield, H.J. Sommerville and S.C. Rittenberg, Journal of Bacteriology 96, 713 (1968)
- 10) G.G. Chestukhina, I.A. Zalunin, L.I. Kostina, T.S. Kotova, S.P. Katrukha, L.A. Lyublinskaja and V.M. Stepanov, Brokliniya 43, 857 (1978)
- 0. Ouchterlony, Handbook of Immunodiffusion and Immunoelectrophoresis, Ann Arbor Science Publishers, Ann Arbor, Mich., USA (1968)
- H. Huber-Lukac, Doktorarbeit, Eidgenössisch Technische Hochschule, Zürich, Schweiz, No. 7050 (1982)
- Amersham Buchler Review No. 18, Amersham Buchler GmbH & Co. KG, Braunschweig, Bundesrepublik Deutschland (1979)
- 14) T. Maniatis, E.F. Fritsch and J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, USA, p. 282 (1982)
- T. Maniatis, E.F. Fritsch and J. Sambrook, Molecular Cloning:
 A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring
 Harbor, USA, p. 252 (1982)

- H.E. Schnepf and H.R. Whiteley, Proc.Natl.Acad.Sci. USA 78, 2893
- 17)
 L. Clarke, R. Hitzeman and J. Carbon, Methods in Enzymology 68, 436 (1979)
- 18) E.M. Southern, J. Molec.Biol. 98, 503 (1975)
- T. Maniatis, E.F. Fritsch and J. Sambrook, Molecular Cloning:
 A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring
 Harbor, USA, p. 383 (1982)
- T. Maniatis, E.F. Fritsch and J. Sambrook, Molecular Cloning:
 A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring
 Harbor, USA, p. 387 (1982)
- 21) N. Maizels, Cell 9, 431 (1976)
- 22) M. Grunstein and D. Hogness, PNAS <u>72</u>, 396 (1975)
- T. Maniatis, E.F. Fritsch and J. Sambrook, Molecular Cloning:
 A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring
 Harbor, USA, p. 318 (1982)
- F. Sanger, S. Nicklen and A.R. Coulson, Proc.Natl.Acad.Sci. USA, 74 5463 (1977)
- 25) J. Messing, Methods of Enzymology 101, 20 (1983)
- M. Poncz, D. Solowieczyk, M. Ballantine, E. Schwartz and S. Surrey, Proc.Natl.Acad.Sci. USA, 79, 4298 (1982)
- 27) M.J. Zoller and M. Smith, Nucl. Acids Res. <u>10</u>, 6487 (1982)

- T. Maniatis, E.F. Fritsch and J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, USA, p. 394 (1982)
- T. Maniatis, E.F. Fritsch and J. Sambrook, Molecular Cloning:
 A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring
 Harbor, USA, p. 392 (1982)
- Y. Shibano, A. Yamagata, N. Nakamura, T. Iizuka, H. Sugisaki and
 M. Takanami, Gene 34, 243 (1985)
- A. Krieg in: The Procaryotes, a handbook on habitats, isolation and identification of Bacteria (Eds. Starr, P.M., Stolp, H., Trueper, G.H., Balows, A. and Schlegel, H.G.), Springer Verlag New York, Heidelberg, Berlin, p. 1743 (1981)

Patentansprüche

- Ein DNA Fragment, das durch die in Tabell 2 wiedergegebene DNA Sequenz charakterisiert ist.
- 2. Ein DNA-Fragment aus Bacillus thuringiensis var. kurstaki, welches sich auf den Bereich zwischen den Schnittstellen HpaI (0) und PstI(4355) erstreckt, dadurch gekennzeichnet, dass es für eine insektizid wirksame proteinartige Substanz einschliesslich ausgewählte Teile davon kodiert, unter der Voraussetzung, dass die insektizide Aktivität besagter ausgewählter DNA Teile erhalten bleibt.
- 3. Ein DNA-Fragment gemäss Anspruch 1, dadurch gekennzeichnet, dass es für das insektizid wirksame Protein MGE 1 codiert, einschliesslich ausgewählter Teile davon, unter der Voraussetzung, dass die insektizide Aktivität besagter ausgewählter DNA Teile erhalten bleibt.
- 4. Eine proteinartige Substanz, dadurch gekennzeichnet, dass sie zumindest teilweise durch ein DNA-Fragment gemäss Anspruch 1 kodiert wird.
- 5. Eine proteinartige Substanz, dadurch gekennzeichnet, dass sie zumindest teilweise durch ein DNA-Fragment gemäss Anspruch 2 kodiert wird.
- 6. Eine proteinartige Substanz, dadurch gekennzeichnet, dass sie ein Fragment enthält, welches durch die in Tabelle 3 wiedergegebene Aminosäuresequenz charakterisiert ist.
- 7. Das Protein MGE 1, welches durch ein DNA-Fragment gemäss Anspruch 1 kodiert wird.
- 8. Das Protein MGE 1, welches durch ein DNA-Fragment gemäss Anspruch 2 kodiert wird.

- 9. Das Protein MGE 1, charkterisiert durch die in Tabelle 3 wiedergegebene Aminosäuresequenz.
- 10. Ein Fusionsprotein gemäss Anspruch 4, dadurch gekennzeichnet, dass es aus dem Protein MGE 1 und einem weiteren Protein besteht, das von dem Protein MGE 1 verschieden ist.
- 11. Ein Fusionsprotein gemäss Anspruch 10, dadurch gekennzeichnet, dass das Protein, welches von dem Protein MGE 1 verschieden ist, eine herbizide Aktivität besitzt.
- 12. Ein Fusionsprotein gemäss Anspruch 11, dadurch gekennzeichnet, dass das Protein, welches von dem Protein MGE 1 verschieden ist, eine insektizide Aktivität besitzt.
- 13. Ein Fusionsprotein gemäss Anspruch 5, dadurch gekennzeichnet, dass es aus dem Protein MGE 1 und einem weiteren Protein besteht, das von dem Protein MGE 1 verschieden ist.
- 14. Ein Fusionsprotein gemäss Anspruch 13, dadurch gekennzeichnet, was das Protein, welches von dem Protein MGE 1 verschieden ist, pestizide Aktivität besitzt.
- 15. Ein Fusionsprotein gemäss Anspruch 13, dadurch gekennzeichnet, dass das Protein, welches von dem Protein MGE 1 verschieden ist, insektizide Aktivität besitzt.
- 16. Ein DNA Vektor, der ein DNA-Fragment gemäss Anspruch 1 enthält.
- 17. Ein Vektor gemäss Anspruch 16, dadurch gekennzeichnet, dass es sich um ein Plasmid handelt.
- 18. Ein Vektor gemäss Anspruch 16, dadurch gekennzeichnet, dass es sich um einen Phagen handelt.

- 19. Ein DNA Vektor, der ein DNA-Fragment gemäss Anspruch 2 enthält.
- 20. Ein Vektor gemäss Anspruch 19, dadurch gekennzeichnet, dass es sich um ein Plasmid handelt.
- 21. Ein Vektor gemäss Anspruch 19, dadurch gekennzeichnet, dass es sich um einen Phagen handelt.
- 22. Ein Mikroorganismus, der ein DNA-Fragment gemäss Anspruch 1 enthält, dadurch gekennzeichnet, dass besagter Mikroorganismus, falls er zur Gruppe des Bacillus thuringiensis gehört, mit einem DNA-Fragment gemäss Anspruch 1 transformiert worden ist.
- 23. Ein Mikroorganismus gemäss Anspruch 22, dadurch gekennzeichnet, dass er zu der Spezies Saccharomyces cerevisiae gehört.
- 24. Ein Mikroorganismus, der ein DNA-Fragment gemäss Anspruch 2 enthält, dadurch gekennzeichnet, dass besagter Mikroorganismus, falls er zur Gruppe des Bacillus thuringiensis gehört, mit einem DNA-Fragment gemäss Anspruch 2 transformiert worden ist.
- 25. Ein Mikroorganismus gemäss Anspruch 24, dadurch gekennzeichnet, dass er zur Spezies Saccharomyces cerevisiae gehört.
- 26. Ein Bioenkapsulierungs-System, das aus einem ersten Material besteht, welches vollständig in einem zweiten Material biologischer Herkunft eingeschlossen vorliegt, dadurch gekennzeichnet, dass es sich bei dem ersten Material um ein DNA-Fragment gemäss Anspruch 1 handelt und bei dem zweiten Material um einen vollständigen Mikroorganismus, mit der Einschränkung, dass besagter Mikroorganismus, falls er zu der Gruppe des Bacillus thuringiensis gehört, mit einem DNA-Fragment gemäss Anspruch 1 transformiert worden ist.
- 27. Ein Bioenkapsulierungs-System gemäss Anspruch 26, dadurch gekennzeichnet, dass es sich bei dem Mikroorganismus um Saccharomyces cerevisiae handelt.

- 28. Ein Bioenkapsulierungs-System, das aus einem ersten Material besteht, welches vollständig in einem zweiten Material biologischer Herkunft eingeschlossen vorliegt, dadurch gekennzeichnet, dass es sich bei dem ersten Material um ein DNA-Fragment gemäss Anspruch 2 handelt und bei dem zweiten Material um einen vollständigen Mikroorganismus, mit der Einschränkung, dass besagter Mikroorganismus, falls er zu der Gruppe des Bacillus thuringiensis gehört, zuvor mit einem DNA-Fragment gemäss Anspruch 2 transformiert worden ist.
- 29. Ein Bioenkapsulierungs-System gemäss Anspruch 28, dadurch gekennzeichnet, dass es sich bei dem Mikroorganismus um Saccharomyces cerevisiae handelt.
- 30. Ein Verfahren zur Herstellung eines DNA-Fragmentes gemäss Anspruch 1, das durch die folgenden Verfahrensschritte gekennzeichnet ist:
- a) Isolierung und Lyse von Bacillus thuringiensis var. kurstaki
 HD1-Zellen, Abtrennen der Plasmide von dem so erhaltenen Material
 mit Hilfe bekannter Massnahmen und Reinigen und Dialysieren des so
 erhaltenen Plasmid-Materials;
- b) Erstellung einer DNA-Bibliothek der Bacillus thuringiensis var. kurstaki HDl Plasmid-DNA;
- c) Klonieren der gemäss Schritt b) erhaltenen fragmentierten Plasmid DNA in einem geeigneten Vektor;
- d) Screening auf Vorliegen von Protein MGE 1 mittels Antigen/Antikörper-Test.
- 31. Verfahren gemäss Anspruch 30, dadurch gekennzeichnet, dass Verfahrensschritt d) gemäss den nachfolgenden Einzelschritten durchgeführt wird:

- e) Screening der Klone auf die Anwesenheit von Antigen, das mit Antikörpern reagiert, die gegen das Kristallkörper-Protein von B. thuringiensis var. kurstaki hergestellt worden sind;
- f) Auslesen der Klone, die spezifisch mit Ziegen-Antiserum reagieren; und
- g) Prüfung der insektiziden Aktivität von Extrakten der gemäss Schritt f) erhaltenen Klone.
- 32. Verfahren gemäss Anspruch 30, dadurch gekennzeichnet, dass im Verfahrensschritt c) ein Plasmid als Vektor dient.
- 33. Ein Verfahren zur Herstellung eines DNA-Fragmentes gemäss Anspruch 2, das durch die folgenden Verfahrensschritte gekennzeichnet ist:
- a) Isolierung und Lyse von Bacillus thuringiensis var. kurstaki HD1-Zellen, Abtrennen der Plasmide von dem so erhaltenen Material mit Hilfe bekannter Massnahmen und Reinigen und Dialysieren des so erhaltenen Plasmid-Materials;
- b) Erstellung einer DNA-Bibliothek der Bacillus thuringiensis var. kurstaki HDl Plasmid-DNA;
- c) Klonieren der gemäss Schritt b) erhaltenen fragmentierten Plasmid DNA in einem geeigneten Vektor;
- d) Screening auf die Gegenwart des Proteins MGE 1, mittels Antigen/Antikörper-Test.
- 34. Verfahren gemäss Anspruch 33, dadurch gekennzeichnet, dass Verfahrensschritt d) gemäss den nachfolgenden Einzelschritten durchgeführt wird:

- e) Screening der Klone auf die Anwesenheit von Antigen, das mit Antikörpern reagi rt, die gegen das Kristallkörper-Protein von B. thuringiensis var. kurstaki hergestellt worden sind;
- f) Auslesen der Klone, die spezifisch mit Ziegen-Antiserum reagieren; und
- g) Test der insektiziden Aktivität von Extrakten, der gemäss Schritt f) erhaltenen Klone.
- 35. Verfahren gemäss Anspruch 33, worin im Verfahrensschritt c) ein Plasmid als Vektor dient.
- 36. Verfahren zur Bekämpfung von Insekten, dadurch gekennzeichnet, dass man Insekten oder ihren Lebensraum mit einer insektizid wirksamen Menge einer proteinartigen Substanz, die zumindest teilweise durch ein DNA-Fragment gemäss Anspruch 1 codiert wird, behandelt.
- 37. Verfahren zur Bekämpfung von Insekten gemäss Anspruch 36, dadurch gekennzeichnet, dass es sich um Insekten der Ordnung Lepidoptera handelt.
- 38. Verfahren zur Bekämpfung von Insekten, dadurch gekennzeichnet, dass man Insekten oder ihren Lebensraum mit einer insektizid wirksamen Menge einer proteinartigen Substanz, die zumindest teilweise durch ein DNA-Fragment gemäss Anspruch 2 kodiert wird, behandelt.
- 39. Verfahren zur Bekämpfung von Insekten gemäss Anspruch 38, dadurch gekennzeichnet, dass es sich um Insekten der Ordnung Lepidoptera handelt.

- 40. Verfahren zur Bekämpfung von Insekten, dadurch gekennzeichnet, dass man die Insekten oder ihren Lebensraum mit einer insektizid wirksamen Menge des Proteins MGE 1 behandelt, das von einem DNA-Fragment gemäss Anspruch 1 kodiert wird.
- 41. Verfahren zur Bekämpfung von Insekten gemäss Anspruch 40, dadurch gekennzeichnet, dass es sich um Insekten der Ordnung Lepidoptera handelt.
- 42. Verfahren zur Bekämpfung von Insekten, dadurch gekennzeichnet, dass man die Insekten oder ihren Lebensraum mit einer insektizid wirksamen Menge des Proteins MGE 1 behandelt, das von einem DNA-Fragment gemäss Anspruch 2 kodiert wird.
- 43. Verfahren zur Bekämpfung von Insekten gemäss Anspruch 42, dadurch gekennzeichnet, dass es sich um Insekten der Ordnung Lepidoptera handelt.
 - 44. Insektizides Mittel, dadurch gekennzeichnet, dass es eine insektizid wirksame Menge einer proteinartigen Substanz enthält, die zumindest teilweise durch ein DNA Fragment gemäss Anspruch l kodiert wird.
 - 45. Insektizides Mittel, dadurch gekennzeichnet, dass es eine insektizid wirksame Menge einer proteinartigen Substanz enthält, die zumindest teilweise durch ein DNA Fragment gemäss Anspruch 2 kodiert wird.
 - 46. Verfahren zur Bekämpfung von Insekten, dadurch gekennzeichnet, dass man die Insekten oder ihren Lebensraum mit einer insektizid wirksamen Menge eines Mikroorganismus gemäss einem der Ansprüche 22 bis 25 behandelt.

- 47. Verfahren zur Bekämpfung von Insekten, dadurch gekennzeichnet, dass man die Insekten oder ihren Lebensraum mit einer insektizid wirksamen Menge eines Bioenkapsulierungs-Systems gemäss einem der Ansprüche 26 bis 29 behandelt.
- 48. Ein Hybridvektor, enthaltend den Hefe-saure Phosphatase Promotor PHO5 und ein DNA Fragment gemäss Anspruch 1, welches durch besagten Promotor kontrolliert wird.
- 49. Ein Hybridvektor gemäss Anspruch 48, enthaltend den Hefe-saure Phosphatase Promotor PHO5 und ein DNA-Fragment gemäss Anspruch 2, welches durch besagten Promotor kontrolliert wird.
- 50. Die Hefe Saccharomyces cerevisiae GRF 18, dadurch gekennzeichnet, dass sie mit einem Hybridvektor gemäss Anspruch 48 transformiert ist.
- 51. Die Hefe Saccharomyces cerevisiae GRF 18 gemäss Anspruch 50, dadurch gekennzeichnet, dass sie mit einem Hybridvektor gemäss Anspruch 49 transformiert ist.
- 52. Der transformierte Escherichia coli-Stamm HB 101 (pK 36), von dem eine Probe unter der Hinterlegungs-Nummer DSM 3668 hinterlegt worden ist, sowie alle Abkömmlinge und Mutanten davon, die noch die charakteristischen Eigenschaften des transformierten Stammes besitzen.

FO 7.5 WB/ch*/ga*/cs*/cc*

Abb. 1 modifiziert nach M. Poncz et al. 26). Konstruktion der Deletions-Mutanten-Bibliothek. Vorgehensweise: 1, das Insert (dicke Linie) wird in die A-Stelle des Ml3, die kohesive Enden aufweist, eingespleisst; 2, nach Linearisierung an der B-Stelle wird die Phagen DNA mit Bal-31 unterschiedlich lange verdaut (die gestrichelte Linie gibt das Ausmass der Bal-31-Verdauung in bezug auf das Insert (dicke Linie) und auf Ml3 (dünne Linie) an]; 3, das Verdauungsprodukt wird an der A-Stelle gespalten und das durch Bal-31 induzierte Kontinuum des Inserts isoliert. Es entsteht auf diese Weise eine ganze Familie von Fragmenten unterschiedlicher Grösse, die jeweils ein Bal-31 induziertes glattes Ende und ein kohesives Ende an der A-Stelle aufweisen; 4, die Fragmente werden so in Ml3 subkloniert, dass das glatte Ende proximal der Primer-Stelle P zu liegen kommt, die für die DNA-Sequenzanalyse verwendet wird. X und C = glatte Enden.

Tabelle 1

		Α	В	С	M13mpi
(BamHI)	HpaI-HindIII ← a)	BamHI HindIII	HindIII BamHI	HincII SmaI	8 9
	EcoRI-PstI	EcoRI PstI	PstI EcoRI	SmaI SmaI	8 9

a) gemäss dem angegebenen Beispiel

Tabelle 2: Nukleotid-Sequenz der für das Protein MGE1 kodierenden DNA

60	120	180	240	300	360	420	480	540	600
BTGCATTTTT	TATCATAATG	AACATCAATG	66A6AAA6AA	CTTTTGAGTG	66AATTTTT6	Carabantra	CTTTATCAAA	TTNAGNGNAG	CCTCTTTTTG
50	110	170	230	290	350	410	470	530	590
GTTGCACTTT	AACAGTATTA	TAACAATCCG	AGTATTAGGT	CCTTGTCGCT AACGCAATTT	TATAATATGG	GTTAATTAAC	ACTAAGCAAT	TAATCEAGEA	AACCGCTATT
40	100	160	220		340	400	460	520	580
AGTAAAATTA	AGTAATGAAA	AACTTATGGA	CTGAAGTAGA		GACTAGTTGA	AAATTGAACA	GATTAGAAGG	CAGATCCTAC	GTGCCCTTAC
30	90	150	210	270	330	390	450	510	570
ATTGATATT	TTTAAATTGT	AGATGGAGGT	TTAAGTAACC	ATCGATATTT	TTTGTGTTAG	TTTCTTGTAC	GCCATTTCTA	GAGTGGGAAG	GACATGAACA
10 20 30 40 50 60 60 60 60 60 60 60 60 60 60 60 60 60	70 110 120 TCATAAGATG AGTCATATGT TTTAAATTGT AGTAATGAAA AACAGTATTA TATCATAATG	130 140 150 160 160 170 160 AATTGGTATC TTAAJAAAAG AGATGGAGGT AACTTATGGA TAACAATCCG AACATCAATG	190 220 210 220 AATECATTCC TTATAATTGT TTAAGTAACC CTGAAGTAGA AGTATTAGGT	250 240 270 TAGAAACTGG TTACACCCCA ATCGATATTT	310 320 330 340 350 350 ANTIGIETIC CEGIECIEGA ITIEIETIAG GACTAGITGA IATAATATEG GGAATITITE	370 380 390 420 GTCCCTCTCA ATGGGACGCA TTTCTTGTAC AAATTGAACA GTTAATTAAC CAAAGAATAG	430 440 450 460 460 460 470 480 ABBARTICGC TAGGAACCAA GCCATITCIA GATIAGAAGG ACTAAGCAAT CTITATCAAA	490 530 510 520 520 540 TTTACGCAGA ATCTTTTAGA GNGTGGGAAG CAGATCCTAC TAATCCAGCA TTAAGAGAAG	550 550 550 540 570 580 590 590 600 590 600 590 600
10	70	130	190	250	310	370	430	490	550
GTTAACACCC	TCATAAGATG	AATTGGTATC	AATGCATTCC	TAGAAACTGG	AATTTGTTCC	GTCCTCTCA	AAGAATTCGC	TTTACGCAGA	AGATGCGTAT

<u> </u>	
gun	
N	
et	
5	
Portse	
5	
••	
2	1
ē	
Tabelle 2	
ğ	
Ţ	

660	720	780	840	900	960	1020	1080	1130 1140	1200
AATTTACATT	GCCGCGACTA	CATGCTGTAC	TGGATAAGAT	CTATTTCCGA	GNAATTTATA	GGCATAGAAG	TATACGGATG	GGCTTCTCCT GTAGGGTTTT	CCACAACAAC
650 TCAAGCTGCA AATTTACATT	710 GGGATTTGAT	770 CTATACAGAT	830 TTCTAGAGAT	890 TATCGTTTCT	930 940 950 950 960 CCAATTEGAA GAAATTTATA	980 990 1020 1000 1010 1020 ATTAGAAAAT TTTGATGGTA GTTTTCGAGG CTCGGCTCAG GGCATAGAAG	1070 TATAACCATC	1130 GGCTTCTCCT	1170 1180 1190 CCGCTATATG GAACTATGGG AAATGCAGCT
640	700	760	nzo	880	940	1000	1060	1120	1180
CAGTATATGT	GACAAAGGTG	TTATTGGCAA	GGGGACCGGA	CTGTATTAGA	CAGTTTCCCA	GTTTTCGAGG	TACTTAACAG	ATCAAATAAT	GAACTATGGG
630	690	750	810	870		990	1050	1110	1170
CCTCTTTTAT	TCAGTGTTTG	TTAACTAGGC	GAGCGTGTAT	TTAACACTAA		TTTGATGGTA	TTGATGGATA	TGGTCAGGGC	CCGCTATATG
610 620 630 640 CAGTICAAAA TIATCAAGTI CCTCTITIAI CAGTATATGI	670 680 690 700 700 720 720 720 720 720 720 720 72	730 740 750 760 760 760 770 760 760 770 760 760 76	790 830 810 840 GCTGGTACAA TACGGGATTA GAGCGTGTAT GGGGACCGGA TICTAGAGAT TGGATAAGAT	850 850 870 880 890 870 880 890 870 870 870 870 870 870 870 870 870 87	920 TAGAACGTAT	980 ATTAGAAAAT	1030 1040 1050 1060 1060 1070 1089 GAAGTATTAG GAGTCCACAT TTGATGGATA TACTTAACAG TATAACCATC TATACGGATG	1090 1100 1110 1120 CTCATAGAGG AGAATATTAT TGGTCAGGGC ATCAAATAAT	1150 1160 GGGGGCAGA ATTCACTTTT
610	670	730	790	850	910	970	1030	1090	
CAGTTCAAAA	TATCAGTTTT	TCAATAGTCG	GCTGGTACAA	ATAATCAATT	ACTATGATAG	CAAACCCAGT	GAAGTATTAG	CTCATAGAGG	CGGGGCCAGA

Tabelle 2: (Fortsetzung)

1260	1320	1380	1440	1500	1560	1620	1680	1740	1800
TTATATAGAA	ACAGAATTTG	ACGGTAGATT	TTTAGTCATC	AGTATAATAA	ATTCCTTCAT	ACTTCTGTCG	GGCCAGATTT	AGAATTCGCT	ATTAATCAGG
1210 1220 1230 1240 1250 1260 GTATTGTTGC TCAACTAGGT CAGGGCGTGT ATAGNACATT ATCGTCCACT TTATATAGAA	1270 1280 1290 1300 1300 1310 1320 GACCTTTTAA TATAGGGATA AATAATCAAC AACTATCTGT TCTTGACGGG ACAGAATTTG	1330 1340 1350 1350 1360 1360 1370 1380 CTTATGGAAC CTCCTCAAAT TTGCCATCCG CTGTATACAG AAAAAGCGGA ACGGTAGATT	1390 1400 1410 1420 1430 1430 1430 CGCTGGATGA AATACCGCCA CAGAATAACA ACGTGCCACC TAGGCAAGGA TTTAGTCATC	1450 1460 1470 1400 1500 GATTAAGCCA TGTTTCAATG TTTCGTTCAG GCTTTAGTAA TAGTAGTGA AGTATAATAA	1550 1AATAATATA ATTCCTTCAT	1570 1580 1590 1600 1600 1610 1620 CACAAATTAC ACAAATACCT TTAACAAAAT CTACTAATCT TGGCTCTGGA ACTTCTGTCG	1630 1640 1650 1660 1680 1680 1680 1670 1680 IFRAAGGACC AGGATTTACA GGAGGAGATA TTCTTCGAAG AACTTCACCT GGCCAGATTT	1730 1740 ATATCGGGTA AGAATTCGCT	1750 1740 1770 1780 1790 1800 ACBCTTCTAC.CACAAATTTA CAATTCCATA CATCAATTGA CGGAAGACCT ATTAATCAGG
1240	1300	1360	1420	1480	1540	1600	1660	1720	1780
ATAGAACATT	AACTATCTGT	CTGTATACAG	ACGTGCCACC	GCTTTAGTAA	GTGCTGAATT	CTACTAATCT	TTCTTCGAAG	TATCACAAAG	CATCAATTGA
	1290	1350	1410	1470	1510 1520 1530 1540	1590	1650	1690 1700 1710 1720	1770
CAGGGGGTGT	AATAATCAAC	TTGCCATCCG	CAGAATAACA	TTTCGTTCAG	GAGCTCCTAT GTTCTTGG ATACATCGTA GTGCTGAATT	TTAACAAAT	GGAGGAGATA	CAACCTTAAG AGTAATATT ACTGCACCAT TATCACAAAG	CAATTCCATA
1220	· 1280	1340		1460	1520	1580	1640	1700	1760
TCAACTAGGT	TATAGGGATA	CTCCTCAAAT	AATACCGCCA	TGTTTCAATG	GTTCTCTTGG	ACAAATACCT	AGGATTTACA	AGTAAATATT	CACAAATTTA
1210	1270	1330	1390	1450	1510	1570	1630	1690	1750
GTATTGTTGC	GACCTTTTAA	CTTATGGAAC	CGCTGGATGA	GATTAAGCCA	GAGCTCCTAT	CACAAATTAC	TTAAAGGACC	CAACCTTAAG	ACGCTTCTAC.

Tabelle 2: (Fortsetzung)

1810 1820 1830 1840 1850 1860	1920	1980	2040	2100	2160	2220	2280	2340	2400
GENNTITIC AGCAACTATG AGTAGTGGGA GINATITACA GICCGGAAG TITAGGACTG	TTABTGCTC	CCGGCAGAAG	GAGCTGTTTA	GATCAAGTAT	GAATTGTCCG	GATCCAAACT	ATTACCATCC	TTTGATGAGT	TATACCCGTT
1850	1970 1910 1920	1970	2010 2020 2040	2070 2080 2090	2140 2150 2160	2190 2220	2260 2270	2330	2350 2360 2370 2380 2390 2390 2400
GTCCGGAAGC	TAGGITITAC TACTCCGITI AACTITICAA ATGGATCAAG TGTATITACG TTAAGTGCTC	TGAATTTGTT	GATTTAGAAA GAGCACAAAA GACGGTGAAT GAGCTGTTTA	TTAAAAACAG ATGTGACGGA TTATCATATT	TTTGTCTGGA TGAAAAAAAA GAATTGTCCG	CGACTTAGTG ATGAGCGGAA TITACTICAA GATCCAAACT	GCTGGAGAGG AAGTACGGAT	ATTGGGTACC	GCTATCCAAC GTATTTATAT CAAAAATAG ATGAGTCGAA ATTAAAAGCC TATACCCGTT
1840	1900	1960	2020	2080		2200	2260	2320	2380
GTAATTTACA	ATGGATCAAG	TAGATCGAAT	GAGCACAAAA	ATGTGACGGA		ATGAGCGUAN	GCTGGAGAGG	ACGTTACGCT	ATGAGTCGAA
1830	1090	1950	2010		2130	2190	2250	2310 2320	2370
AGTAGTGGGA	AACTTTTCAA	GAAGTTTATA	GATTTAGAAA		TCTGATGAAT	CGACTTAGTG	CTAGACCGTG	AANGAGAATT ACGTTACGCT	Caaaaaatag
1820	ופפט	1930 1940	1990 2000	2050 2060	2110 2120 2130	2180	2240		2360
AGCAACTATG	דמכדככפדדד	ATGTCTTCAA TTCAGGCAAT	TAACCTTTGA GGCAGAATAT	CTTCTTCCAA TCAAATCGGG	CCAATTTAGT TGAGTGTTTA TCTGATGAAT	ACATGCGAAG	CAATAGACAA		GTATTTATAT
1810	1870	1930	1990	2050	2110	2170 2160	2230	2290 2300	2350
GGAATTTTIC	TAGGTTTTAG	ATGTCTTCAA	TAACCTTTGA	CTTCTTCCAA	CCAATTTAGT	AGAAAGTCAA ACATGCGAAG	TTAGAGGGAT	AAGGAGGCGA TGACGTATTC	GCTATCCAAC

Tabelle 2: (Fortsetzung)

2410 2420 2430 2440 2450 2450 2460 2460 2460 2460 2460 2460 2460 246										
2410 2420 2430 2470 2470 2470 2470 2470 2470 2470 247	2460 ATTCGCTACA	2520 CTTTCAGGCC	ATTGAT	2640 AAGACGCAAG	GTAGGA	2760 AAATTGGAAT	2820 TTTGTAAACT	2000 GCAGATAAAC	бвтвтс	3000 TATGATGCGA
2410 2420 2430 2440 2470 2480 2470 2550 2530 2540 2550 2550 2550 2550 2550 2550 2570 2600 2600 2600 2600 2570 2600 2600 2600 2600 2570 2600 2600 2600 2600 2710 2720 2720 2730 2730 2740 2770 2780 2780 2780 2780 2780 2770 2780 2780 2780 2780 2770 2780 2780 2780 2780 2770 2780 2780 2780 2780 2770 2780 2780 2780 2780 2770 2780 2780 2780 2780 2770 2780 2780 2780 2780 2770 2780 2780 2780 2780 2770 2780 2780 2780 2770 2780 2780 2780 2770 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780 2780	2450 AATCTATTTA		2570 CTCCTTGGAC		2690 GAAACCATTA	2750 CAAACGTGAA	2810 AGATGCTTTA	2870 GATTCATGCG	2930 TGTGATTCCG	2990 ATTCTCCCTA
2410	2440 AAGACTTAGA	2500 BTACGGGTTC	2560 CCCATCATTT	2620 TATGGGTGAT	2680 TTCTCGANGA	2740 AATGGAGAGA	2800 AAGAATCTGT	2060 ACATCGCGAT	2920 CTGAGCTGTC	2980 TTTTCACTGC
2410 2420 ACCAATTAAG AGGGTATATC 2470 2460 ATGCCAAACAGTA 2530 2540 CAAGTCCAAT CGGAAAATGT 2550 2600 GATGTACAGA CTTAAATGAGA 2710 2720 CACTAGCTCG TGTGAAAAGA 2770 TGTGAAAAGA CTCAATATGA TAGTTTAT 2830 2840 CTCAATATGA TAGATTACAA 2890 2900 GCGTTCATAG CATTCGAGAA	2430 GAAGATAGTC	2490 AATGTGCCAG	2550 GCCCATCATT	2610 GACTTAGGTG	2670 AATCTAGAAT	2730 GCGGAGAAAA	2790 AAAGAGGCAA	2850 GCGGATACCA		2970 GAAGGGCGTA
2410 ACCAATTAAG 2470 ATGCCAAACAAT CAAGTCCAAT 2550 GATGTACAGA 2250 CACTAGCTCG 2770 GGGAAACAAA 2830 CTCAATATGA 2850	2420 AGGGTATATC	2480 CGAAACAGTA	2540 CGGAAAATGT	2600 CTTAAATGAG	2660 AAGACTAGGA	2720 TGT GAAAAGA	2780 TATTGTTTAT			2960 TGAAGAATTA
•	2410 ACCAATTAAG	2470 ATGCCANACA	2530 CAAGTCCAAT	2590 GATGTACAGA	2650 ATGGCCATGC	2710 CACTAGCȚCG	2770 GGGAAACAAA			2950 CGGCTATTT

Tabelle 2: (Fortsetzung)

•									
3060	3120	3180	3240	3300	3360	3420	3480	3540	3600
GTGAAAGGGC	GAATGGGAAG	CGTGTCACAG	AACAATACAG	ACGGTANCGT	CGTAATCGAG	TCAGCCTATG	AGAGGATATG	TTCCCAGAAA	GACAGCGTGG
3050	3070 3080 3090 3090 3100 3110 3110 3120	3170	3230	3250 3250 3270 3200 3280 3290 3300	3350	3410	3470	3510 3520 3530	3590
CTGCTGGAAC	ATBIAGATGI AGAAGAACAA AACAACCACC GITCGSICCI TGITGITCCG GAATGGGAAG	CTATATCCTT	TGAGATCGAG	ACGAACTGAA GTTTAGCAAC TGTGTAGAAG AGGAAGTATA TCCANACAAC ACGGTANCGT	GTACACTICT	TGATTATGCA	TGAATCTAAC	GCTGGCTATG TGACAAAGA ATTAGAGTAC	ATTCATCGTG
3030 3040	3100	3140	3220 3210 3220	3280	3340	3400	3460	3520	7580
GATTTTAATA ATGGCTTATC	GTTCGGTCCT	CGGGTCGTGG	GGGATATGGA GAAGGTTGCG TAACCATTCA	AGGAAGTATA	ATGAGGGTAC	CTGTACCAGC	ACAATCCTTB	TGACAAAAGA	CGGAAGGAAC
	3090	3150	3210	3270	3330	3390	3450	3510	3570
	AACAACCACC	CGTGTCTGTC	GAAGGTTGCG	TGTGTAGAAG	CAAGAAGAAT	AGCAATTCTT	GGACGAAGAG	GCTGGCTATG	ATCGGAGAAA
3020	3080			3260	3310 3320 3330 3330 3340	3380 3390	3440	3500	3540 3570
GAAATGTCAT TAAAAATGGT	AGAAGAACAA	ACAAGAAGTT		GTTTAGCAAC	GTAATGATTA TACTGCGACT CAAGAAGAAT ATGAGGGTAC	AGCCTATGAA AGCAATTCTT	ATATACAGAT	ACCACTACCA	ATGGATTGAG ATCGGAGAAA
3010	3070	3130	3190	3250	3310	3370	3430	3490	3550
GAAATGTCAT	ATGTAGATGT	CAGAAGTGTC	CGTACAAGGA	ACGAACTGAA	GTAATGATTA	GATATGACGG	AAGAAAAGC	GGGATTACAC	CCGATAAGGT

Tabelle 2: (Fortsetzung)

								·	
3650	3720	3780	3840	3900	3960	4020	4080	4140	4200
AAGGTGTGCA AATAAAGAAT	AAAACGGGCA	TTTAAATGTT	TAAGAATTTG	AAAGGATGAC	AGCTGTATCG	Taaaaagana	AACGTACAGC	TCTTATGAGT	ATATATTTT
3650	3720 3710 3690 3690 3700 3700 3710 3720	3760 3770 3780	3830	3880 3890 3900	3910 3920 3930 3940 3950 3940 3950 3960	4000 4020	4070 4080	4130	4150 4160 4170 4180 4150 4200
AAGGTGTGCA	GATTACTGAC TTGTATTGAC AGATAAATAA GGAAATTTTT ATATGAATAA AAAACGGGCA	GTATGATTTA ACGAGTGATA TTTAAATGTT	CCCATCAACT	CTITCTAAAA AGCTAGCTAG AAAGGATGAC	ATTITITATG AATCITICAA TICAAGATGA ATTACAACTA TTTICIGAAG AGCTGTAICG	CGCTAAAGAA TTAGGTTTTG TAAAAAAAAAAAAAAAAA	TGGGGCAGTC AACGTACAGC	GCCACAGCAC	CCAGAAGGAC TCAATAAACG CTTTGATAAA AAAGCGGTTG AATTTTTGAA ATATATTTT
3640	3700		3810 3820	3880	3940	4000	4060	4120	4180
TTTAAAATGT	GGAAATTTTT		TAACGGGGTA CCGCCACATG	CTTTCTAAAA	ATTACAACTA	CGCTAAAGAA	CATATGTATC	ATTACACGCC	AAAGCGGTTG
3630	3690	3750		3870	3930	3990	4050	4110	4170
TAATATATGC	AGATAAATAA	TCCGTTTTT		AAACGTTATT	TTCAAGATGA	TGGAAGAACT	AATTAGCTAC	TATGCAGTCA	CTTTGATAAA
3610 3620 3630 3640	3680	3730 3740	3790 3800	3850 3860	3920	3980	4040	4100	4160
AATTACTTCT TATGGAGGAA TAATATATGC TTTAAAATGT	TTGTATTGAC	TCACTCTTAA AAGAATGATG	TITITIGGGA AGGCITIACT	CACTACCCCC AAGTGTCAAA	AATCTTTCAA	CCTTCTCTTT	TCAEGAAATG	CTCGTTCGAC	TCAATAAACG
3610	3670	3730	3790	3850	3910	3970	4030	4090 4110	4150
AATTACTTCT	GATTACTGAC	TCACTCTTAA	TTTTTTGCGA	CACTACCCCC	ATTTTTATE	TCATTTAACC	ACGAAAGTTT	GAGTGATICT CTCGTTCGAC TATGCAGICA	CCAGAAGGAC

Tabelle 2: (Fortsetzung)

4260	ABCACTCACE	4320	ACATTTAGCA		
4250	ICIGCALIAI SGAAAAGIAA ACIIIGIAAA ACAICAGCCA IIICAAGIGC AGCACICACG	4310	TATTITCAAC GAATCCGTAT TTTAGATGCG ACGATTTTCC AAGTACCGAA ACATTTAGCA		
4240	ACATCAGCCA	4300	ACGATTTTCC	4360	CAAACTGCAG
4230	ACI I IGI AAA	4290	TTTAGATGCG	4350	TGGTTGTGCA
4220	ББААААБТАА	4280	GAATCCGTAT	4340	CTGGGTCAGG
4210	ICIECALIAI	4270	TATTTTCAAC	4330	CATGIATAIC CIGGGICAGG IGGITGIGCA CAAACIGCAG

Tabelle 3: Aminosäuresequenz des Proteins MGE1

3623

156

LIMITS:

215	275	335	395	455
GAA	TTG	CTA	ATT	TTA
G1u	Leu	Leu	Ile	Leu
CCT	TCC	66A	CAA	AGA
	Ser	61 y	G1 n	Arg
AAC	ATT	TTA	GTA	TCT
Asn	Ile	Leu	Val	Ser
AGT	GAT	GTG	CTT	ATT
Ser	Asp	Val	Leu	Ile
TTA	ATC	TTT	TTT	GCC
Leu	Ile	Phe	Phe	Ala
TGT	CCA	66A	GCA	CAA
Cys		61 y	Ala	Gln
AAT	ACC	GCT	GAC	AAC
Asn		Ala	Asp	Asn
TAT	TAC	66T	TGG	AGG
Tyr		61 y	Trp	Arg
CCT	66T	000	CAA	GCT
Pro	61 y	0 r o	Gln	Ala
ATT	ACT	GTT	TCT	TTC
Ile		Val	Ser	Fhe
185	245	305	365	425
TGC	6AA	TTT	CCC	GAA
Cys	G1u	Phe	Pro	G1u
GAA	ATA	69A	66T	69A
Glu	Ile	61u	61 y	61u
AAT	AGA	AGT	TTT	ATA
Asn	Arg	Ser	Phe	Ile
ATC	6AA	17G	ATT	AGA
Ile	61u	Leu	Ile	Arg
AAC	66A	CTT Leu	66A 61 y	CAA G1n
	66T 61 y	TTT Phe	766 Trp	AAC Asn
AAT	TTA	CAA	ATA	ATT
Asn	Leu	Gln	Ile	Ile
AAC	GTA	ACG	ATA	1TA
Asn	Val		Ile	Leu
GAT	GAA	CTA	GAT	CAG
Asp	Glu	Leu	Asp	G1n
ATG	GTA	TCG	GTT	68A
Met	Val	Ser	Val	61u

515 GAT Asp 575 GCC Ala GCA Ala CGT ATT CAA TTC AAT GAC ATG AAC AGT Arg Ile Gln Fhe Asn Asp Met Asn Ser TTT AGA GAG TGG Phe Arg Glu Trp CCT ACT AAT CCA GCA TTA AGA GAA GAG ATG Pro Thr Asn Pro Ala Leu Arg Glu Glu Met

GAA (

485 TAC GCA GAA TCT 1 Tyr Ala Glu Ser F

CAA ATT Gin Ile .

GAA GGA CTA AGC AAT CTT TAT Glu Gly Leu Ser Asn Leu Tyr

Tabelle 3: (Fortsetzung)

	•						
635	695	755	815	875	935	995	1055
6TA	CAA	ATT	GGA	GTA	6TT	TTT	ATA CTT
Val	G1n	Ile	G1 y	Val	Val	Phe	Ile Leu
TCA Ser	66A 61 y	CTT Leu	TGG Trp	ACT	ACA	AGT Ser	ATA 11e
TTA	TTT	AGG	GTA	CTA	CGA	66T	GAT
Leu	Phe		Val	Leu	Arg	61 y	Asp
CTT	GTG	ACT	CGT	ACA	ATT	GAT	ATG
Leu	Val	Thr	Arg	Thr	Ile	Asp	Met
CCT	TCA	TTA	6A6	TTA	CCA	TTT	776
Fro	Ser	Leu	61 u	Leu	Pro	Fhe	Leu
GTT Val	GTT Val	GAT Asp	TTA Leu	GAA G1u	TAT Tyr	AAT Asn	CAT His
CAA	GAT	AAT	66A	АБА	ACG	64A	CCA
Gln	Asp	Asn	61 y	Ага	Thr	61u	Pro
TAT	AGA	TAT	ACG	AGA	AGA	TTA	AGT
Tyr	Arg		Thr	Arg	Arg	Leu	Ser
AAT	TTG	CGT	AAT	TTT	AGT	GTA	AGG
Asn	Leu	Arg	Asn	Phe	Ser	Val	Arg
CAA	GTT	AGT	TAC	CAA	GAT	CCA	ATT
Gln	Val	Ser	Tyr	Gln	Asp	Pro	Ile
605	665	725	785	845	905	965	1025
677	TCA	AAT	TGG	AAT	TAT	AAC	AGT
Val	Ser	Asn	Trp	Asn	TYF	Asn	Ser
GCA	TTA	ATC	CGC	TAT	AAC	ACA	66A
Ala		Ile	Arg	Tyr	Asn	Thr	61 y
TTT ang	CAT His	ACT	GTA Val	AGA Arg	000 Pro	TAT	GAA G1 u
CTT	TTA	GCG	GCT	ATA	TTT	ATT	ATA
Leu	Leu	Ala	Ala	Ile	Phe	Ile	Ile
CC7	AAT	GCC	CAT	766	CTA	GAA	66C
	Asn	Ala	His	Trp	Leu	G1u	61 y
ATT	GCA	GAT	GAT	GAT	TCT	AGA	CAG
Ile	Ala	Asp	Asp	Asp	Ser	Arg	Gln
GCT	GCT	TTT	ACA	AGA	GTT	ACA	GCT
Ala	Ala	Fhe	Thr		Val	Thr	Ala
ACC	САА	66A	TAT	TCT	ATC	TTA	TCG
Thr	61 п	61 y	Tyr	Ser	Ile	Leu	Ser
ACA	GTT Val	TGG Trp	AAC Asn	БАТ Аѕр	GAT	CAA Gln	66C 61 y
CTT Leu	TAT	AGG	66C 61 y	SCG Pro	TTA	TCC	CGA Arg

GCT GTA Ala Val

TCC Ser

TCA AAT TTG CCA Ser Asn Leu Pro

TCC Ser

ACC

66A 61y

1325 GCT TAT Ala Tyr

TTT Phe

GAA Glu

ACA Thr

666 61 y

GAC Asp

Val

TCT

CTT Leu

1355

1115 CAT CAA His Gln 666 61 y TCA Ser TGG Trp TAT Tyr TAT Tyr 64A 61u GGA G1 y GCT CAT AGA (Ala His Arg (GAT Asp ACG 규 TAT Tyr ACC ATC 1 Thr Ile 1 ATA IIe GCT ATG Met

ATA Ile

ATG Met

ACA Thr

Tabelle 3: (Fortsetzung)

1295 CAA CTA Gln Leu TAT AGA Tyr Arg GGA ACT Gly Thr 1235 TAT GTG Val CAA Gln TTT CCG CTA Phe Pro Leu 66C 61 y AAT Asn CAG Gln GGG ATA AAT Gly Ile Asn 66T 61 y CAA CTA Gln Leu ACT Thr TTC Phe ATA Ile GAA G1 u GCT Ala AAT Asn CCA Pra TTT Phe GTT Val TCG GGG Ser G1y (CGT ATT Arg 11e 1265 AGA CCT Arg Fro I AGA Arg CAA Gln TTT Fhe 666 61y CAA Gln TAT GTA Val TTA Leu CCA CCT GCT Ala ACT TCT Ser GCA Ala TCC Ser Ala AAT Asn TCG 66A 61 y TTA Leu

AAC GTG Asn Val AAC Asn CAG AAT Gln Asn CCA CCG (ATA Ile 69A 61u GAT Asp 1385 TCG CTG (Ser Leu (GAT Asp GTA Val ACG Thr 66A 61y AGC Ser AGA AAA Arg Lys TAC Y

61y Fhe GGC TTT TCA Ser CGT Phe Arg ATG Met TCA Ser GTT Val AGC CAT (Ser His 1445 CGA TTA 6 Arg Leu 9 TTT AGT CAT Phe Ser His GGA G1 y CAA G1n

GAT Asp ATA I] e Tyr TAT GTT Val 69A 61u AAT Asn 66C 61 y TCA Ser AAT Asn TTC Fhe CAT GTC His Val Ala GCT AGT Ser TTA Leu ACG Thr Phe TT Val AGT Ser

AAT GGA Asn Gly 1955 Ser Fhe Asn CCG TTT Fro Fhe 규 Thr Fhe **61** y Val 뀨 Arg Fhe Ser G1 y Ser **61** n Leu TCA Ser

1895 TCA TTT AAC ACT ACT TTT GTA GGT 1865 ACT TTT AGG GGA AGC TCC CAG

1835 Asn AGT AAT Ser 999 G1 y AGT Ser AGT Ser ATG Met ACT Thr GCA Ala TCA Ser TTT Phe GGG AAT 1805 Gly Asn CAG 61n Asn ATT AAT I] e Pro AGA CCT Arg GGA **61** y GAC ATT

1775 ACA TCA Thr Ser CAT His TTC CAA Gln ACA AAT TTA Thr Asn Leu ACC 규 TCT Ser TAC GCT Tyr Ala CGC Arg ATT Ile AGA Arg GTA Val 993 Arg TAT Tyr AGA Arg CAA Gln

Leu Ser Pro Ala TIL Пe Asn Arg Leu 1745

1715 TTA TCA CCA GCA ATT ACT AAT GTA AGA TTA 1685 TCA ACC . Ser Thr 1 Ile ATT CAG Gln 66C 61 y Fro CCT TCA Ser ACT Thr AGA CGA Arg

1655 Ile Leu ATT CTT Азр GAT 66A 6 66A 61 y ACA Thr Fhe TTT **G1** y GGA CCA Pro 66A 61y GTT AAA Val Lys GTC Val TCT Ser ACT Thr **G1** y GGA TCT Ser **G1** y 960 Leu CTT AAT Asn

1595 ACT TH TCT Ser Lys AAA ACA Thr TTA CCT Pro ATA CAA Thr ACA Ile ATT TĊA CAA Ser Gln 1565 TCA Ser CCT Pro ATT Ile ATA Asn AAT Asn AAT Fine GAA G1 u

Ala AGT Ser CGT Arg CAT H S ATA Ile Trp TGB TCT Ser TTC Met Phe ATG Pro CCT AGA GCT Arg Ala Ile ATA ATA Ile AGT Ser GTA Val Ser AGT Ser AGT Asn AAT Ser AGT

Tabelle 3: (Fortsetzung)

6) u GAT GAG Asp Ile ATA AAA Lys CAA G1.n TAT Tyr Leu TTA Tyr TAT ACG Pro Thr CCA TGC TAT Cys Tyr GAG **61** u Asp GAT Fhe TTT Thr ACC Gly GGT TTG Leu Leu

ACG

2375 2345

2315 TAC GTT Tyr Val Asn GAG AAT **G**1 u AAA Lys TTC Fhe GTA Val GAC Asp GAT Asp 299 **G1** y CAA GGA GIN GIN G 2285 ATC Ile ACC Thr ATT Ile GAT Asp ACG Thr Ser AGT

2255 GGC TGG Gly Trp CGT Arg Asp GAC CTA Leu 61n CAA Arg ATC AAT AGA Asn Ile 999 **G**1 y 2225 TTT AGA Fhe Arg Asn CCA AAC Pro GAT Asp CTT CAA Gln Leu TTA Leu AAT Asn **CGG** Arg

2195 GAT GAG Asp Glu AGT Ser CTT Leu Arg. AAA CAT GCG AAG CGA Lys Ala His 二くら GTC Val GAG AAA 2165 Glu Lys TCC Ser TTG Leu GAA G1u AAA Lys GAA AAA Glu Lys I Lys GAT Leu

2135 Glu Phe Cys TTT TGT GAA GAT Asp Ser TTA TCT Leu Cys GAG TGT 61 u GTT Val Leu TTA Ser Asn TCC AAT 2105 GTA Val G1 n CAA GAT Аѕр ATT Ile CAT H.s TAT Tyr GAT Аѕр ACG Thr

2075 GAT GTG Asp Val ACA Thr Lys AAA TTA Gly Leu 999 ATC 11e G1n CAA Asn AAT Ser TCC 2045 ACT TCT Leu Fhe Thr Ser TTT CTG GAG Glu AAT Ala Val Asn GTG 929 AAG CAA Gln

Ala 2015 AGA GCA Arg G) L GAA TTA Leu Asp GAT Tyr TAT GAG GCA GAA Glu Ala Glu Fhe GTA ACC 1985 Val Thr GAA Glu GCA Ala Fro 900 Val Glu Phe TTT GAA Ile Arg

Tabelle 3: (Fortsetzung)

AAC ATC Asn Ile ACC Thr Аѕр GAT 909 Ala CAA **G1**n Leu TTA AGA Arg Asp TAT GAT Tyr AAC TCT CAA Asn Ser Gln GTA Val Fhe TTA Lec GCT Ala Asp Val TCT Ser

61 u Lys Ala **G**1 u Lys Tyr Val Ile Asn Thr 6AA TG6 6AA *6* 61u Trp 61u T Leu Lys GAA Glu Arg Lys Аѕр AGA Arg

AAA GAA

GCA

GAB

TAT AAA

GTT

ATT

AAT

ACA

TTG

AAA

CGT

2795 AAA TGG Lys Trp GAG Glu Ala Arg Ĺγs Arg 2765 Leu Lys

2735 AAA 929 AGA AAA GTG Val CGT GCT Ala GCA CTA (2705 GAA G1 u 66A 61y GTA Val TTA CCA Fro AAA 6A6 61 u GAA Glu

TTT CTC Phe Leu 69A 61u CTA Leu GBA AAT Gly Asn CTA AGA: Arg GCA Ala CAT His 2645 CAA GAT GGC (Gln Asp Gly H ACG ĭï AAG Lys ATT Ile AAG Lys Phe ATA TTC Ile

GTA TGG Val Trp **G1** Y GGT TTA Leu GAC Asp 6A6 **6**1 u AAT Asn TTA GAC Asp ACA Thr GGA TGT Gly Cys 2585 GTT Val Asp GAT ATT (GAC Asp TTG Leu TCC Ser TTC CAT His

Ser His TCC CAT CAT His CAT His GCC Ala TGT Cys AAA Lys ATC 66A 1 CCA Fro 2020 CCA AGT Pro Ser GCC Ala CTT TCA Ser Leu 922 Pro Trp TGG Leu Ser 66T

GGT 617 Fro GTG Val AAT Asn GTA Val ACA Thr GAA Glu CAC His AAA Lys 2465 AAT GCC Asn Ala TAC Tyr. Arg ATT Ile Leu TTA Tyr TAT ATC Ile Leu

2435 CAA GAC Gln Asp AGT Ser GAT Asp GAA Glu ATC TAT TAC CAA TTA AGA GGG Tyr Gln Leu Arg Gly Arg CGT ACC Thr TAT Tyr 900 Ala AAA Leu AAA Lys TCG

Tabelle 3: (Fortsetzung)

Tabelle 3: (Fortsetzung)

CCT GAG Pro Glu CTG Leu ATT CGA GAA GCT TAT Ala Tyr G] u Ar.g 11e AGC Ser CAT His CGC GTT 2882 Arg Val GAT AAA Lys Ala Asp GCA Ala ATT CAT GCG His Ile GCG ATG Met Ala

ATT TTC Ile Fhe 3000 AAT GGC 2002 CGT TCG Asn Gly Arg Ser Arg CGT Asn CAC S II GAT TTT AAT 644 666 (AAC Asn Fhe Asp AAC Asn CAA Gln GAA TTA 667 61 y 61u Leu GAA Glu ATT AAA AAT Ile Lys Asn GAA GAA Glu G1 u GTA TTT Fhe Val Ile GCG GCT ATT GTC GAT Asp Val AGA AAT I CAT GTA Ala Ala 2945 3005 3065 His Val 666 61 y **606** Ala AAT Asn GTC GAT Asp AAA Lys G1 y GTG Val GGT TAT Tyr ATT CCG I CTA Leu Asn TGG AAC TCC Trp Ser GTG 170 TGC Val Fhe Cys GCA TCC TCT Ser Ala Ser

CTG

Leu

TTA

Leu

ACT

3155 CCG GGT Fro Gly TGT Cys GTC Val Arg CGT GTT Val GAA G1u CAA Gln TCA Ser GTG Val GCA GAA (A) 3125 GAA Glu 76G Trp GAA Glu CCG GTT Val CTT. GTT Val Leu

GTC Val

GTA ACC Val Thr TGC GGT 617 GAA Glu TAT GGA **61** y Tyr 6A6 66A 7 GCG TAC AAG Lys 3185 Ala Tyr ACA GTC Val Arg ATC CTT CGT Ile Leu Arg TAT Tyr 299 Glγ Arg

GAG GAA Glu Glu GAA Glu GTA Val Cys TGT AAC Asn AGC Ser GAC GAA CTG AAG TTT Asp Glu Leu Lys Phe 3245 ACA Thr ATC GAG AAC AAT Ile Glu Asn Asn GAG 61 u ATT CAT H. s

Tabelle 3: (Fortsetzung)

3335	3395	3455	3515	3575	
TAT GAG	TCT GTA	GAC AAT	ACA	6AA	
Tyr Glu	Ser Val	Asp Asn	Thr	61u	
TAT	TCT Ser	GAC Asp	GTG /	ACG Thr	
GAA	TCT	AGA	TAT	6AA	
G1u	Ser	Arg	TYF	61u	
6AA	AAT	CGA	66C	66A	
61 u	Asn	Arg	61 y	61 y	
CAA Gln	AGC .	66A 61 y	A GCT GGC 1	ATC	TAA
ACT	GAF	GAT	CC6	GAG	69A
Thr	G1 L	Аsp		Glu	61u
GCG	TAT	ACA	СТА	ATT	6A6
Ala	Tyr	Thr		Ile	61 u
ACT	GCC TAT Ala Tyr	TAT Tyr	CCA CTA (Fro Leu	GTA TGG ATT Val Trp Ile	3605 GTG GAC AGC GTG GAA TTA CTT CTT ATG GAG GAA Val Aso Ser Val Glu Leu Leu Met Glu Glu
TAT	66A	GCA	ACA	GTA	CTT
Tyr	61 y	Ala	Th r	Val	Leu
GAT	GAC	AAA	TAC	AAG	CTT
Asp	Asp	Lys		Lys	Leu
3305	3365	3425	3485	3545	3605
TBT AAT	GGA TAT	6AA GAA	GGG GAT	ACC GAT (TTA
Cys Asn	Gly Tyr	61u 61u	Gly Asp	Thr Asp (Leu
76T Cys	66A 61 y	е БАА 61 и	666 61 y	ACC Thr	ера 61 ч
ACG	CGA	TAT	TAT	69A	GTG
Thr	Arg	Tyr	Tyr	61u	Val
GTA Val	AAT Asn	GCC Ala	66A 61 y	CCA	AGC
ACG	CGT	GCA TCA	AAC AGA GGA	TTC	GAC
Thr	Arg	Ala Ser	Asn Arg Gly	Phe	
AAC	TCT	GCA	AAC	TAC	GTG
Asn	Ser	Ala	Asn		Val
AAC	ACT	TAT	TCT	GAG	ATC
Asn		Tyr	Ser	G1 u	Ile
CCA Pro	TAC	GAT Asp	GAA G1u	TTA Leu	TTC
7A7 7yr	ACG	GCT Ala	TGT Cys	GAA G1u	ACA
GTA	66T	CCA	CCT	AAA	66A
Val	61 y		Pro	Lys	61 y

	ψ.			•
41				,
		,	ű	

(11) Veröffentlichungsnummer:

0 238 441

A3

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 87810135.1

(22) Anmeldetag: 09.03.87

(51) Int. Cl.³: **C** 12 N 15/00 C 12 P 21/02, A 01 N 63/00 C 12 N 1/18, C 12 N 1/20

- (30) Priorität: 15.03.86 GB 8606441
- (43) Veröffentlichungstag der Anmeldung: 23.09.87 Patentblatt 87/39
- (88) Veröffentlichungstag des später veröffentlichten Recherchenberichts: 10.08.88
- (84) Benannte Vertragsstaaten: AT BE CH DE ES FR GR IT LI LU NL SE
- (71) Anmelder: CIBA-GEIGY AG Klybeckstrasse 141 CH-4002 Basel(CH)
- (72) Erfinder: Geiser, Martin, Dr. Hauptstrasse 3A CH-4107 Ettingen(CH)
- (72) Erfinder: Hinnen, Albert, Dr. Offenburgerstrasse 20 CH-4057 Basel(CH)
- (72) Erfinder: Brassel, Jakob, Dr. 1157/56 Okamoto Bairin Higashinada-ku 658 Kobe(JP)
- (72) Erfinder: Schweitzer-Grützmacher, Silvia, Dr. Hasenhain 16 D-6915 Dossenheim(DE)
- (54) Insektizid wirksame proteinartige Substanz.
- 57) Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung einer insektizid wirksamen proteinartigen Substanz einschliesslich die Entdeckung und Identifizierung der vollständigen, für das insektizid wirksame Protein MGE 1 besagter proteinartiger Substanz kodierenden DNA-Sequenz, besagte proteinartige Substanz, ein DNA-Fragment, charakterisiert durch die in Tabelle 2 wiedergegebene Nukleotid-Sequenz welches für das Protein MGE 1 kodiert,, das Protein MGE 1 selbst, ein DNA-Fragment aus der Region Hpal (0) bis Pstl (4355) von B. thuringiensis var. kurstaki, das für eine insektizid wirksame proteinartige Substanz einschliesslich ausgewählter Teile davon kodiert, unter der Voraussetzung, dass die insektizide Aktivität besagter ausgewälter Teile erhalten bleibt, das Verfahren zur Herstellung von Klonierungs- und Expressions-Vehikeln, die das in Tabelle 2 wiedergegebene DNA-Fragment enthalten und ebenso besagte Vehikel selbst.

Abb. 1 modifiziert nach M. Poncz et al. 26). Konstruktion der Deletions-Mutanten-Bibliothek. Vorgehensweise: 1, das Insert (dicke Linie) wird in die A-Stelle des Ml3, die kohesive Enden aufweist, eingespleisst; 2, nach Linearisierung an der B-Stelle wird die Phagen DNA mit Bal-31 unterschiedlich lange verdaut (die gestrichelte Linie gibt das Ausmass der Bal-31-Verdauung in bezug auf das Insert (dicke Linie) und auf Ml3 (dünne Linie) an]; 3, das Verdauungsprodukt wird an der A-Stelle gespalten und das durch Bal-31 induzierte Kontinuum des Inserts isoliert. Es entsteht auf diese Weise eine ganze Familie von Fragmenten unterschiedlicher Grösse, die jeweils ein Bal-31 induziertes glattes Ende und ein kohesives Ende an der A-Stelle aufweisen; 4, die Fragmente werden so in Ml3 subkloniert, dass das glatte Ende proximal der Primer-Stelle P zu liegen kommt, die für die DNA-Sequenzanalyse verwendet wird. X und C = glatte Enden.

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

87 81 0135 FP

	EINCOM TOLO				
	EINSCHLAGIG	E DOKUMENTE			
Categorie	Kennzeichnung des Dokume der maßgeblic	nts mit Angabe, soweit erforderlich, hen Teile	Betrifft Anspruch	KLASSIFIKA ANMELDUN	
	Bacillus thuringien gene in Escherichia	iten 2893-2897; E. nd expression of the sis crystal protein coli" e 2, Zeile 4 - Seite	1-9,16- 22,24, 26,28, 30-43, 46,47, 52	C 12 N C 12 P A 01 N C 12 N C 12 N	15/00 21/02 63/00 1/18 1/20
Y	Idem		23,25, 27,29, 44,45, 48-51		
	Columbus, Ohio, US; al.: "Delineation o segment of a Bacill	fassung Nr. 17768z, H.E. SCHNEPF et f a toxin-encoding us thuringiensis e", & J. BIOL. CHEM. -80	10-15	RECHERCI	HIERTE
			1 0 16		TE (Int. Cl.4)
			1-9,16- 22,24, 26,28, 30-47, 52	C 12 N	
	ADANG et al.: "Char full-length and tru clones of the cryst	Amsterdam, NL; M.J. acterized ncated plasmid al protein of sis subsp. Kurstaki	1-9,16- 22,24, 26,28, 30-43, 46,47, 52		
Der voi	liegende Recherchenbericht wurd	le für alle Patentansprüche erstellt			
	Recherchenort	Abschlußdatum der Recherche		Prüfer	_
DE	N HAAG	25-04-1988	PUL/	AZZINI A.F	.R.

EPO FORM 1503 03.82 (P0403)

- anderen Veröffentlichung derselben Kategorie
 A: technologischer Hintergrund
 O: nichtschriftliche Offenbarung
 P: Zwischenliteratur

- L: aus andern Gründen angeführtes Dokument
- & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

87 81 0135

 1	I' d Delume	E DOKUMENTE	n-4-300	W COURSE TO VE
Kategorie	Kennzeichnung des Dokumer der maßgeblich	nts mit Angabe, soweit erforderl nen Teile	ch, Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.4)
D,X	WO-A-8 601 536 (WAS FOUNDATION) * Seite 29, Zeile 5 21; Figuren 2A,2B *		1-9,16- 22,24, 26,28, 30-43, 46,47, 52	
P,X	GENE, Band 48, 1986, Elsevier Science Put Amsterdam, NL; M. Gibypervariable region coding for entomopat proteins of Bacillus Nucleotide sequence of subsp. Kurstaki kan Zusammenfassung *	olishers B.V., EISER et al.: "The n in the genes thogenic crystal s thuringiensis: of the Kurhd 1 gen	1-9,16- 22,24, 26,28, 30-43, 46,47, 52	
Y	EP-A-0 093 062 (INS * Ansprüche 3,11,12		23,25, 27,29, 48-51	·
D,Y	EP-A-0 100 561 (CIE * Ansprüche *	BA-GEIGY AG)	23,25, 27,29, 48-51	RECHERCHIERTE SACHGEBIETE (Int. CI.4
E	EP-A-0 228 838 (MY0 * Ansprüche 4,5,6,7	COGEN CORP.) ,8,9,10,11 *	10-15	
P,Y	EP-A-0 200 344 (MY0 * Ansprüche 1,6 *	COGEN CORP.)	23,25, 27,29, 48-51	
		· .		
Der vo	orliegende Recherchenbericht wurd	<u> </u>		
Dŧ	Recherchemort EN HAAG	Abschlußdatum der Recherc 25-04-1988		Prüfer AZZINI A.F.R.
X : von Y : von	KATEGORIE DER GENANNTEN D besonderer Bedeutung allein betracht besonderer Bedeutung in Verbindung leren Veröffentlichung derselben Kates hnologischer Hintergrund htschriftliche Offenbarung	mit einer D: in der A gorie L: aus and	nmeldung angeführtes D ern Gründen angeführtes	

- X: von besonderer Bedeutung allein betrachtet Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie A: technologischer Hintergrund O: nichtschriftliche Offenbarung P: Zwischenliteratur

- T: der Erfindung zugrunde liegende Theorien oder Grundsätze
 E: alteres Patentdokument, das jedoch erst am oder
 nach dem Anmeldedatum veröffentlicht worden ist
 D: in der Anmeldung angeführtes Dokument
 L: aus andern Gründen angeführtes Dokument

- & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument