AULA 3 – ANÁLISE DA COMPLEXIDADE DE ALGORITMOS

1 - Seja uma dada sequência (*array*) de n elementos inteiros. Pretende-se determinar quantos elementos da sequência são diferentes do seu elemento anterior. Ou seja:

array [i]
$$\neq$$
 array [i-1], para i > 0

• Implemente uma **função eficiente** e **eficaz** que determine quantos elementos (resultado da função) de uma sequência com n elementos (sendo n > 1) respeitam esta propriedade.

Depois de validar o algoritmo apresente-o no verso da folha.

• Determine experimentalmente a **ordem de complexidade do número de comparações** efetuadas pelo algoritmo e envolvendo elementos da sequência. Considere as seguintes 10 sequências de 10 elementos inteiros, todas diferentes, e que cobrem as distintas situações possíveis de execução do algoritmo. Determine, para cada uma delas, o número de elementos que obedecem à condição e o número de comparações efetuadas.

3	3	3	3	3	3	3	3	3	3	Resultado	N° de operações
4	3	3	3	3	3	3	3	3	3	Resultado	N° de operações
4	5	3	3	3	3	3	3	3	3	Resultado	N° de operações
4	5	1	3	3	3	3	3	3	3	Resultado	N° de operações
4	5	1	2	3	3	3	3	3	3	Resultado	N° de operações
4	5	1	2	6	3	3	3	3	3	Resultado	N° de operações
4	5	1	2	6	8	3	3	3	3	Resultado	N° de operações
4	5	1	2	6	8	7	3	3	3	Resultado	N° de operações
4	5	1	2	6	8	7	9	3	3	Resultado	N° de operações
4	5	1	2	6	8	7	9	3	0	Resultado	N° de operações

Depois da execução do algoritmo responda às seguintes questões:

- Em termos do número de comparações efetuadas, podemos distinguir alguma variação na execução do algoritmo? Ou seja, existe a situação de melhor caso e de pior caso, ou estamos perante um algoritmo com caso sistemático?
- Qual é a ordem de complexidade do algoritmo?
- Determine formalmente a ordem de complexidade do algoritmo. Tenha em atenção que deve obter uma expressão matemática exata e simplificada. **Faça a análise no verso da folha.**
- Calcule o valor da expressão para N = 10 e compare-o com os resultados obtidos experimentalmente.

Nome: N° MeC:

Guião das Aulas Práticas	DE ALGORITMOS E COMPLEXIDADE	12
	Apresentação do Algoritmo	
	Análise Formal do Algoritmo	
	ANALISE FORMAL DO ALGORITMO	
E(N) =		

Nome: N° MEC: **2 -** Seja uma dada sequência (*array*) de n elementos inteiros e não ordenada. Pretende-se determinar qual é o primeiro elemento da sequência que tem mais elementos menores do que ele atrás de si, e indicar a posição (índice do *array*) onde esse elemento se encontra.

Por exemplo, na sequência { 1, 9, 2, 8, 3, 4, 5, 3, 7, 2 } o elemento 7, que está na posição de índice 8 da sequência, é maior do que 6 elementos seus predecessores. Na sequência { 1, 7, 4, 6, 5, 2, 3, 2, 1, 0 } o elemento 6, que está na posição de índice 3 da sequência, é maior do que 2 elementos seus predecessores. Mas, na sequência { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 } nenhum elemento é maior do que qualquer um dos seus predecessores, pelo que deve ser devolvido -1 como resultado.

• Implemente uma **função eficiente** e **eficaz** que determine o índice do primeiro elemento (resultado da função) de uma sequência com n elementos (sendo n > 1) que tem o maior número de predecessores menores do que ele.

Depois de validar o algoritmo apresente-o no verso da folha.

• Determine experimentalmente a **ordem de complexidade do número de comparações** efetuadas envolvendo elementos da sequência. Considere as sequências anteriormente indicadas de 10 elementos inteiros e outras sequências diferentes à sua escolha. Determine, para cada uma delas, o índice do elemento procurado e o número de comparações efetuadas.

Depois da execução do algoritmo responda às seguintes questões:

- Em termos do número de comparações efetuadas, podemos distinguir alguma variação na execução do algoritmo? Ou seja, existe a situação de melhor caso e de pior caso, ou estamos perante um algoritmo com caso sistemático?
- Qual é a ordem de complexidade do algoritmo?
- Determine formalmente a ordem de complexidade do algoritmo. Tenha em atenção que deve obter uma expressão matemática exata e simplificada. **Faça a análise no verso da folha.**
- Calcule o valor da expressão para N = 10 e compare-o com os resultados obtidos experimentalmente.

Nome: N° mec:

Nome:

	APRESENTAÇÃO DO ALGORITMO
	Análise Formal do Algoritmo
]	E(N) =

 N° MEC: