Análisis Matemático I,

2º Doble Grado Informática-Matemáticas

Capítulo I: ESTRUCTURA EUCLÍDEA Y TOPOLOGIA DE \mathbb{R}^N

Tema 6: CONTINUIDAD DE APLICACIONES LINEALES

María D. Acosta

Universidad de Granada

25-10-2020

Aplicaciones lineales en \mathbb{R}^N

Proposición

Toda aplicación lineal de \mathbb{R}^N en \mathbb{R}^M es continua.

Demostración:

Por la caracterización de funciones continuas valuadas en \mathbb{R}^M , basta probar que si $T: \mathbb{R}^N \longrightarrow \mathbb{R}^M$ es lineal, cada componente de T es continua.

Sea $1 \le k \le M$ y $T_k = P_k \circ T$. Como P_k es lineal, entonces T_k también lo es.

Sabemos que las proyecciones canónicas en \mathbb{R}^N son continuas. Por la estabilidad algebraica de las funciones continuas, entonces T_k es continua, por ser combinación lineal de las proyecciones en \mathbb{R}^N .

Aplicaciones lineales en \mathbb{R}^N

Observación: Todo espacio normado X de dimensión N es isométrico a \mathbb{R}^N , dotado de una conveniente norma. Es decir, existe una aplicación biyectiva y lineal $\Phi: \mathbb{R}^N \longrightarrow X$ tal que

$$\|\Phi(y)\| = \|y\|, \quad \forall y \in \mathbb{R}^N,$$

donde $\|\ \|$ es la norma de X y $\|\ \|$ es la norma en \mathbb{R}^N . Basta elegir una aplicación biyectiva y lineal Φ de \mathbb{R}^N en X y definir la aplicaciónn $\|\ \|$ en \mathbb{R}^N dada por

$$||y|| = ||\Phi(y)||, \quad \forall y \in \mathbb{R}^N,$$

Como Φ es lineal y biyectiva y $\| \ \|$ es una norma en X, entonces es inmediato comprobar que $\| \ \|$ es ua norma en \mathbb{R}^N y para esa norma Φ es una isometría.

Como consecuencia del Teorema de Hausdorff y la observación anterior, todo espacio vectorial finito-dimensional tiene una única topología asociada a una norma.

Continuidad de aplicaciones lineales en \mathbb{R}^N

Corolario

Si X es un espacio normado, toda aplicación lineal de \mathbb{R}^N en X es continua.

Notemos que si $T: R^N \longrightarrow X$ es lineal, entonces T(X), dotado de la norma inducida por la de X es un espacio normado de dimensión finita, luego isométrico a \mathbb{R}^M , para conveniente M dotado de una norma. Además sabemos que las aplicaciones lineales de \mathbb{R}^N en R^M son continuas.

En realidad, usando el mismo argumento en el dominio puede probarse el siguiente resultado más general.

Corolario

Sean X e Y espacios normados y supongamos que X tiene dimensión finita. Entonces toda aplicación lineal de X en Y es continua.

Más adelante veremos un ejemplo sencillo que prueba que el resultado anterior no es cierto en general para espacios infinito-dimensionales.

El siguiente resultado caracteriza la continuidad de aplicaciones lineales. En lo que sigue, si X es un espacio normado, notaremos por B_X y S_X a los conjuntos dados por

$$B_X = \{x \in X : ||x|| \le 1\}, \quad S_X = \{x \in X : ||x|| = 1\}.$$

Proposición

Sean X e Y espacios normados y $T: X \longrightarrow Y$ una aplicación lineal. Equivalen las siguientes afirmaciones:

- 1) T es continua.
- 2) T es continua en 0.
- 3) T está acotada en la bola unidad, es decir, existe $M \in \mathbb{R}$ tal que $||T(x)|| \leq M, \forall x \in B_X$.
- 4) Existe una constante $K \in \mathbb{R}$ que verifica

$$||T(x)|| \le K||x||, \quad \forall x \in X.$$

Demostración: 1) \Rightarrow 2) Trivial 2) \Rightarrow 3) Como T es continua en 0

$$\exists r > 0 : ||x|| < r \Rightarrow ||T(x)|| < 1.$$

 $\mathsf{Sea}\ x \in \mathcal{B}_X \backslash \{0\}, \ \mathsf{entonces}\ \left\|\frac{r}{2}\frac{x}{\|x\|}\right\| = \frac{r}{2} < r, \ \mathsf{luego}\ \left\|T\left(\frac{r}{2}\frac{x}{\|x\|}\right)\right\| < 1.$

Usando que T es lineal y la homogeneidad de la norma de Y obtenemos

$$||T(x)|| \le \frac{2}{r}||x|| \le \frac{2}{r},$$

desigualdad que es cierta también para x=0. Hemos probado que T está acotada en la bola unidad.

3) \Rightarrow 4) Suponemos que existe $M \in \mathbb{R}$ tal que

$$||T(x)|| \leq M, \quad \forall x \in B_X.$$

Sea $x \in X \setminus \{0\}$, entonces $\frac{x}{\|x\|} \in S_X$, luego

$$\left\| T\left(\frac{x}{\|x\|}\right) \right\| \leq M.$$

Usando de nuevo la linealidad de $\mathcal T$ y la homogeneidad de la norma de $\mathcal Y$ deducimos que

$$||T(x)|| \leq M||x||,$$

designaldad que es trivial para x=0. Hemos probado que se verifica 3). 4) \Rightarrow 1) Por hipótesis, existe $K \in \mathbb{R}$ tal que

$$||T(x)|| \le K||x||, \quad \forall x \in X.$$

Como T es lineal, tenemos entonces que

$$||T(x) - T(z)|| = ||T(x - z)|| < K||x - z||, \quad \forall x, z \in X.$$

Hemos probado que T es lipschitziana, luego continua.

Como consecuencia de la prueba se obtiene que para aplicaciones lineales, la continuidad y la continuidad uniforme coinciden.

Es inmediato comprobar que si X e Y son espacios normados y $T \in L(X, Y)$, entonces

$$\{M \in \mathbb{R} : ||T(x)|| \le M||x||, \forall x \in X\} =$$
$$\{M \in \mathbb{R} : ||T(x)|| \le M, \forall x \in B_X\}.$$

Por tanto, tomando ínfimos en los conjuntos anteriores se tiene

$$\inf\{M \in \mathbb{R} : \|T(x)\| \le M\|x\|, \forall x \in X\} = \sup\{\|T(x)\| : x \in B_X\}.$$

Definimos ||T|| como la constante anterior.

Además si $X \neq \{0\}$, y $x \in B_X \setminus \{0\}$, entonces

$$||T(x)|| = \left| ||x||T\left(\frac{x}{||x||}\right) \right| = ||x|| \left| |T\left(\frac{x}{||x||}\right) \right| \le \left| |T\left(\frac{x}{||x||}\right) \right|.$$

Como $\frac{x}{\|x\|} \in S_X$, como consecuencia de la desigualdad anterior tenemos

$$||T|| = \sup\{||T(x)|| : x \in B_X\} = \sup\{||T(x)|| : x \in S_X\}.$$

Dado que

$$\{M \in \mathbb{R} : ||T(x)|| \le M||x||, \forall x \in X\} =$$
$$\{M \in \mathbb{R} : ||T(x) - T(z)|| \le M||x - z||, \forall x, z \in X\},$$

entonces $\|T\|$ coincide con la constante de Lipschitz de T. Además es inmediato comprobar que

$$\inf\{M \in \mathbb{R} : \|T(x)\| \le M\|x\|, \forall x \in X\} = \min\{M \in \mathbb{R} : \|T(x)\| \le M\|x\|, \forall x \in X\}.$$

Para comprobar la igualdad anterior, basta usar que $\|T\| = \lim\{M_n\}$ y se verifica que

$$||T(x)|| \leq M_n ||x||, \quad \forall x \in X.$$

Fijado $x \in X$, tomando límite en la desigualdad anterior $(n \to \infty)$, se obtiene que

$$||T(x)|| \le ||T|| ||x||, \quad \forall x \in X.$$

Es inmediato probar que la aplicación $T \mapsto ||T||$ es una norma en L(X, Y). Es la llamada **norma de operadores** en L(X, Y).

A continuación daremos un ejemplo que prueba que en espacios normados infinito-dimensionales puede haber aplicaciones lineales que no son continuas.

Ejemplo

Sea c_{00} el espacio dado por

$$c_{00} = \{x : \mathbb{N} \longrightarrow \mathbb{R} : \exists N \in \mathbb{N}, x(k) = 0, \forall k \geq N \}.$$

Es claro que el conjunto anterior es un espacio vectorial y la aplicación dada por

$$||x|| = \max\{|x(k)| : k \in \mathbb{N}\}$$

es una norma en c_{00} .

La aplicación $f: c_{00} \longrightarrow \mathbb{R}$ dada por

$$f(x) = \sum_{k=1}^{\infty} x(k)$$

está bien definida en c_{00} y es lineal.

Conjuntos conexos

Sin embargo, no es continua, ya que, para cada natural n, el elemento u_n dado por

$$u_n(k) = 1$$
 si $k \le n$ y $u_n(k) = 0$ si $k > n$,

pertenece a c_{00} , verifica que $||u_n|| = 1$ y $f(u_n) = n$, para cada natural n. Como f no está acotada en la bola unidad de c_{00} , no es continua.

Por último, probaremos el siguiente resultado sobre la norma de la composición de dos aplicaciones lineales y continuas.

Proposición

Sean X, Y, Z espacios normados. Si $S \in L(X, Y)$ y $T \in L(Y, Z)$, entonces $T \circ S \in L(X, Z)$ y además

$$||T \circ S|| \le ||T|| \, ||S||.$$

Demostración: Si $x \in X$ se verifica que

$$||(T \circ S)(x)|| = ||T(S(x))|| \le ||T|| \, ||S(x)|| \le ||T|| \, ||S|| \, ||x||.$$

Hemos probado que

$$||(T \circ S)(x)|| \le ||T|| \, ||S|| \, ||x||.$$

Como $||T \circ S|| = \inf\{M \in \mathbb{R} : ||(T \circ S)(x)|| \le M||x||, \forall x \in X\},$ obtenemos que

$$||T \circ S|| \le ||T|| \, ||S||.$$

