Crittografia

Riccardo Zanotto

7 ottobre 2019

Indice

1	NT	algs	5
	1.1	Conti di base	5
		1.1.1 Alg euclideo esteso	5
		1.1.2 Fast mod exp	5
		1.1.3 Montgomery multiplication	5
		1.1.4 Quadrati mod p	6
		1.1.5 Karatsuba	6
	1.2	Test di primalità	7
		1.2.1 Pseudoprimi	7
		1.2.2 Miller-Rabin	7
		1.2.3 Lucas e Pocklington-Lehmer	8
	1.3	Fattorizzazione di polinomi	8
		1.3.1 Polinomi su \mathbb{F}_q	8
		1.3.2 Polinomi su \mathbb{Q}^{1}	10
	1.4	Fattorizzazione in \mathbb{Z}	10
		1.4.1 Pollard's ρ	10
		1.4.2 Pollard $p-1$	10
		1.4.3 Crivello quadratico	11
	1.5	Logaritmo discreto	11
		1.5.1 Baby step-giant step	11
		1.5.2 Pollard's ρ	11
		1.5.3 Index calculus	11
	1.6	Curve ellittiche	11
2	Cod	lici	13
	2.1	Distanze ed errori	13
	2.2		14
			15
			15
	2.3		15
		2.3.1 Codifica sistematica	16
		2.3.2 Zeri di polinomi	16
	2.4		17
			17
		2.4.2 Decodifica	17
		2.4.3 Codici Reed-Solomon	18
	2.5		18
3	Crit	ttografia	19

4 INDICE

Capitolo 1

NT algs

1.1 Conti di base

Alcuni algoritmi standard e trick vari per velocizzare i conti.

1.1.1 Alg euclideo esteso

Dati $a, b \in A$ anello che possiede una divisione euclidea, posso trovare u, v tali che $ua + vb = \gcd(a, b)$.

Definisco
$$v_0 = \begin{pmatrix} a \\ 1 \\ 0 \end{pmatrix}, v_1 = \begin{pmatrix} b \\ 0 \\ 1 \end{pmatrix}$$
 e poi una successione per ricorrenza $v_{i+1} = 0$

 $v_{i-1} - q_i v_i$ dove $r_{i-1} = q_i r_i + r_{i+1}$ è la divisione con resto e r_i è la prima coordinata di v_i .

Detti s_i, t_i la seconda e la terza componente di v_i , valgono un po' di cose:

- $r_i = as_i + bt_i$
- Eventualmente $r_{k+1} = 0$ e allora $r_k = \gcd(a, b)$
- Ad ogni passo s_i, t_i sono "piccoli"

Costo computazionale: Supposto a > b, il numero di iterazioni è $O(\log a)$. Il costo totale dunque può essere stimato con $O(\log^3 a)$.

Osservazione. Questo vuol dire che trovare l'inverso modulo n costa $\log^3 n$

1.1.2 Fast mod exp

Vogliamo calcolare $b^n \pmod{m}$. Scriviamo n in base 2 e calcoliamo con quadrati ripetuti le potenze b, b^2, b^4, b^8, \ldots (sempre riducendo modulo m), moltiplicando quando ci sono gli 1 in n.

Costo computazionale: $O(\log n \cdot \log^2 m)$. Stiamo facendo $\log n$ moltiplicazioni tra numeri grossi al più m^2 .

1.1.3 Montgomery multiplication

Per calcolare $ab \pmod{m}$ si fa il conto negli interi e poi la divisione con resto per m, che è un po' lenta.

Scegliamo allora un r > m del tipo $r = 10^k$ (o comunque per cui è facile ridurre un numero).

Precalcoliamo rr' = 1 + mm' con 0 < r' < m e 0 < m' < r.

Lemma 1.1.1. Dato un x < mr so calcolare $xr' \pmod{m}$ solo con divisioni per r che sono veloci.

Sia $s = xm' \mod r$. Allora $sm \equiv xmm' \pmod{mr}$, e aggiungendo x si ha $x + sm \equiv x(1 + mm') \equiv xrr' \pmod{rm}$.

Perciò vale $z = \frac{x+sm}{r} \in \mathbb{Z}$ ed è proprio quello che cercavamo $z \equiv xr' \pmod{m}$.

A questo punto se devo fare tanti conti con a_1, \ldots, a_n modulo m, calcolo subito $w = r^2 \mod m$ (con la divisione solita); poi porto tutto in rappresentanti di Montgomery: $b_i \equiv a_i r \pmod{m}$ e questo lo faccio tramite $a_i r \equiv a_i w r' \pmod{m}$.

Il rappresentante di una somma è banalmente la somma; il rappresentante del prodotto è facile da calcolare: $xyr \equiv (xr)(yr)r' \pmod{m}$. Quindi se ho i rappresentanti di x,y grazie al lemma posso trovare in fretta il rappresentante di xy.

Finiti tutti i conti posso di nuovo ritrasformare il risultato nella sua forma standard.

1.1.4 Quadrati mod p

Simboli di Legendre/reciprocità Sono noti. Lo abbiamo fatto con il conto su $G = \sum_{i=0}^{p-1} \left(\frac{i}{p}\right) \xi^i$.

Vogliamo anche trovare le radici quadrate modulo p. Cioè risolvere $x^2 \equiv a \pmod{p}$ con a residuo quadratico.

Algoritmo di Cipolla: Prendiamo un n tale che n^2-a non sia un quadrato. Sia $w=\sqrt{n^2-a}$ nel campo \mathbb{F}_{p^2} . Allora $z=(n+w)^{\frac{p+1}{2}}\in\mathbb{F}_p$ è una radice quadrata di a.

Complessità: $O(\log^3 p)$.

Algoritmo di Tonelli-Shanks: Prendiamo n un nonresiduo. Scriviamo $p-1=2^{\alpha}\cdot s$; calcoliamo $b=n^s\mod p$ e $r=a^{\frac{s+1}{2}}\mod p$.

Osserviamo che b è una radice 2^{α}-esima primitiva dell'unità, poiché non è un quadrato.

Inoltre $(r^2a^{-1})^{2^{\alpha-1}} \equiv (a^s)^{2^{\alpha-1}} \equiv a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$, perciò $r^2a^{-1} \equiv b^{-2j} \pmod{p}$ per qualche $j < 2^{\alpha-1}$, cioè $a \equiv (rb^j)^2 \pmod{p}$.

Vogliamo allora trovare j e lo facciamo per induzione, trovandone le cifre binarie $j=j_0+2j_1+\cdots+j_{\alpha-2}2^{\alpha-2}$, in modo che $(b^{j_0+\cdots+j_{k-1}2^{k-1}}r)^2a^{-1}$ sia una radice $2^{\alpha-k-1}$ -esima.

Vale $\left((b^{j_0+\cdots+j_{k-1}2^{k-1}}r)^2a^{-1}\right)^{2^{\alpha-k-2}}\equiv b^{-j_k2^{\alpha-1}}\equiv (-1)^{j_k}\pmod{p}$, dunque calcolando LHS trovo $j_k\equiv 0,1$ a seconda se la potenza fa 1,-1.

Complessità: $O(\log^2 p(\log p + \alpha^2))$ se conosco già n.

1.1.5 Karatsuba

Finora abbiamo detto che per moltiplicare due interix, y di n cifre servono n^2 operazioni.

Tuttavia si può fare meglio: fissati un qualche B, m possiamo scrivere $x = x_1 B^m + x_0, y = y_1 B^m + y_0$ e osservare che $xy = x_1 y_1 B^{2m} + B^m (x_0 y_1 + x_1 y_0) + x_0 y_0$.

Per calcolare questo numero servono 4 moltiplicazioni (e degli shift in base B), ma è possibile farlo in 3 poiché $x_0y_1+x_1y_0=(x_0+x_1)(y_0+y_1)-x_0y_0-x_1-y_1$.

Complessità: Alla fine arriviamo a $O(n^{\log_2 3})$, scegliendo B=2 e per ricorsione m=n/2.

1.2 Test di primalità

PRIMES in P. Ma non l'abbiamo fatto :(

1.2.1 Pseudoprimi

Uno dei test più ovvi per verificare se n è primo e vedere se $b^{n-1} \equiv 1 \pmod{n}$; se la congruenza fallisce, n è composto, altrimenti diciamo che n è uno pseudoprimo rispetto a b.

Proposizione 1.2.1. Se n è uno pseudoprimo rispetto ad almeno un b, allora è uno pseudoprimo per almeno metà dei $b \in (\mathbb{Z}/n\mathbb{Z})^*$.

Definizione 1.2.2. Un intero n si dice di *Carmichael* se è uno pseudoprimo rispetto a ogni $b \in (\mathbb{Z}/n\mathbb{Z})^*$.

Chi sono i numeri di Carmichael?

Proposizione 1.2.3. Sia n un intero dispari. Se n non è squarefree, non è di Carmichael.

Se n è squarefree, n è di Carmichael se e solo se $p-1 \mid n-1 \ \forall p \mid n$

Ecco un altro tipo di pseudoprimi:

Definizione 1.2.4. Diciamo che n intero dispari è un pseudoprimo di Eulero rispetto a b se vale

$$\left(\frac{b}{n}\right) \equiv b^{\frac{n-1}{2}} \pmod{n}$$

Proposizione 1.2.5. Ogni n è pseudoprimo di Eulero per al più metà dei b coprimi con n.

Abbiamo allora l'algoritmo di **Solovay-Strassen**: scegliamo k interi 0 < b < n random. Se n non è uno pseudoprimo rispetto a un qualche b, allora n è composto. Se invece n è pseudoprimo per tutti, allora è primo con probabilità circa $1-2^{-k}$.

1.2.2 Miller-Rabin

Definizione 1.2.6. Sia n un intero dispari, e scriviamo $n-1=2^st$ con t dispari. Diciamo allora che n è un pseudoprimo forte rispetto a b se $b^t \equiv \pmod{n}$, oppure $b^{t2^r} \equiv -1 \pmod{n}$ per qualche r < s.

Proposizione 1.2.7. Se n è primo, è uno pseudoprimo forte per tutti i b. Se n è composto, allora è pseudoprimo forte per al più 1/4 dei possibili b.

Il test consiste dunque dei seguenti step:

1. Scrivo $n - 1 = 2^{s}t$.

- 2. Scelgo un b random; calcolo $a \equiv b^t \pmod{n}$. Se $a \equiv 1 \pmod{n}$, restituisco "forse primo".
- 3. Faccio $a \mapsto a^2 \pmod{n}$ finché non trovo un -1 restituendo "forse primo".
- 4. Se non ho trovato nessun -1 restituisco "composto".
- 5. Se ho ottenuto "forse primo" rifaccio dal punto 2.

A questo punto se ho eseguito il punto 2 almeno k volte e non ho mai ottenuto "composto", so che n è primo con probabilità cir a $1-4^{-k}$.

1.2.3 Lucas e Pocklington-Lehmer

Proposizione 1.2.8. Fissato un n intero positivo. Supponiamo che esista un 1 < a < n tale che $a^{n-1} \equiv 1 \pmod{n}$ e inoltre $a^{\frac{n-1}{q}} \not\equiv 1 \pmod{n}$ per ogni $q \mid n-1$ fattore primo. Allora $n \not\in primo$

La seconda condizione infatti dice che $(\mathbb{Z}/n\mathbb{Z})^*$ ha ordine n-1. Tuttavia occorre fattorizzare n-1, che può essere difficile a piacere.

Proposizione 1.2.9. Sia n un intero, e supponiamo che esistano a e p primo tali che:

- $a^{n-1} \equiv 1 \pmod{n}$
- $p \mid n-1 \ e \ p > \sqrt{n-1}$
- $\bullet \gcd(a^{\frac{n-1}{p}} 1, n) = 1$

Allora n è primo.

Anche queste condizioni sono difficili da soddisfare in realtà, perché potrebbe non esistere un p che soddisfa la seconda condizione.

Proposizione 1.2.10. Sia n un intero, e scriviamo n-1=ab con $a>\sqrt{n}$ e di cui conosciamo la fattorizzazione. Supponiamo che per ogni $p \mid a$ primo esiste un m_p tale che $m_p^{n-1} \equiv 1 \pmod{n}$ e $\gcd(m_p^{\frac{n-1}{p}} - 1, n) = 1$. Allora n è primo.

Dunque alla fine il test di Pocklington consiste nel trovare molti fattori piccoli di n-1 sperando di superare \sqrt{n} (e questa è la parte molto difficile). A quel punto si cercano degli a_p che soddisfino le condizioni; spesso $a_p=2$ basta già da solo.

1.3 Fattorizzazione di polinomi

Per i polinomi ci pensa Knuth.

1.3.1 Polinomi su \mathbb{F}_q

Algoritmo di Berlekamp

Abbiamo $f \in \mathbb{F}_q[x]$ di grado n; possiamo supporlo squarefree dividendo per $\gcd(f, f')$, ovvero $f = f_1 \cdots f_r$.

Consideriamo la mappa $\varphi: \mathbb{F}_q[x]/f(x) \to \mathbb{F}_q[x]/f(x)$ data dall'elevamento alla q. Per il teorema cinese, la mappa φ – id è un endomorfismo di $\mathbb{F}_q[x]/f_1(x) \times \mathbb{F}_q[x]/f_1(x)$

 $\ldots \times \mathbb{F}_q[x]/f_{r(x)}$ che è prodotto di campi finiti di grado potenze di q; in parti- $\operatorname{colare} \, \ker(\varphi - \operatorname{id}) = \mathbb{F}_q^r.$

D'altra parte osserviamo che $v \in \ker(\varphi - \mathrm{id})$ se e solo se $v(x)^q \equiv v(x)$ (mod f(x)); inoltre $v^q - v = \prod_{s \in \mathbb{F}_q} (v - s)$. Dato che deg $v < \deg f$, otteniamo una fattorizzazione non banale $f(x) = \prod_{s \in \mathbb{F}_q} \gcd(f(x), v(x) - s)$.

Per trovare questi v basta calcolare il nucleo di una matrice, in particolare quella data dal cambio base $x^{iq} \equiv Q_{i,n-1}x^{n-1} + \cdots + Q_{i,0} \pmod{f(x)}$.

L'algoritmo è allora dato da

- 1. Divido f per gcd(f, f').
- 2. Creo la matrice Q di cambio base
- 3. Trovo una base del nucleo di Q-I con operazioni elementari
- 4. Calcolo tutti i gcd(f, v s) con $v \in ker(\varphi id)$ e $s \in \mathbb{F}_q$.

Per q piccolo, allora i tempi di esecuzione sono di

- 1. $O(n^2)$ tramite algoritmo euclideo.
- 2. $O(qn^2)$: calcolo per ricorrenza i coefficienti di x^k per $k=1,\ldots,qn$.
- 3. $O(n^3)$ con triangolazione gaussiana.
- 4. $O(qrn^2)$: provo tutti i gcd con tutti gli $s \in \mathbb{F}_q$.

Per q grosso, le moltiplicazioni costano $\log^2 q$, e lo step 4 chiede di provare troppi valori di s. Inoltre facciamo lo step 2 con la fast-exp (per fare il quadrato ci basta tenere i coefficienti fino a x^{2n}).

Usiamo poi il seguente step 4':

Dato $v \in \ker(\varphi - \mathrm{id})$ sappiamo $f \mid v^p - v = v(v^{\frac{p-1}{2}} - 1)(v^{\frac{p-1}{2}} + 1)$; abbastanza spesso calcolando $\gcd(f, v^{\frac{p-1}{2}} - 1)$ otteniamo un fattore non banale.

In particolare se $v(x) \equiv s_j \pmod{f_j(x)}$, vediamo che $f_j \mid v^{\frac{p-1}{2}} - 1$ se e solo se s_i è un quadrato, e questo accade circa q/2 volte. La probabilità che scelto un \boldsymbol{v} a caso, il gcd scritto sopra ci dia informazioni non banali è esattamente $1 - \left(\frac{q-1}{2q}\right)^r - \left(\frac{q+1}{2q}\right)^r \ge \frac{4}{9}.$

Perciò dopo $O(\log r)$ pesche casuali di v abbiamo trovato tutti gli r fattori di f; il tempo totale di questo step 4' è di $O(n^2 \log^3 q \log r)$.

Cantor-Zassenhaus

Osserviamo che possiamo calcolare facilmente una fattorizzazione di $f = F_1 \cdots F_s$ con $F_i = \prod_{\deg j_f=i} f_j$, cioè una fattorizzazione di f in parti con fattori del-

$$F_1 = \gcd(f, x^q - x)$$
, e poi $F_{i+1} = \gcd(\frac{f}{F_1 \cdots F_i}, x^{q^{i+1}} - x)$.

L'algoritmo di Cantor-Zassenhaus fattorizza poi ciascuno degli F_i , usando la formula

$$F_i(x) = \gcd(F_i, t) \cdot \gcd(F_i, t^{\frac{q^d - 1}{2}} - 1) \cdot \gcd(F_i, t^{\frac{q^d - 1}{2}} + 1)$$

valida per ogni $t \in \mathbb{F}_q[x]$, poiché $t(\alpha)^{q^d} = t(\alpha)$ per ogni α di grado d su \mathbb{F}_q .

Scelto un t(x) random di grado $\leq 2d-1$, la formula sopra dà un fattore non banale circa il 50% delle volte

1.3.2 Polinomi su \mathbb{O}

(leggere sul Childs)

La strategia è fattorizzare $f \in \mathbb{Z}[x]$ modulo un M molto grosso, in particolare più del doppio dei possibili valori assoluti di coefficienti di fattori di f. A quel punto i fattori che abbiamo trovato o corrispondono a fattori veri in $\mathbb{Z}[x]$, oppure f è irriducibile.

Ci servono due cose: il bound e un modo per fattorizzare modulo M. Potremmo prendere M primo e usare Berlekamp, ma useremo un altro metodo.

Lemma 1.3.1 (sollevamento di Hensel). Sia $f \in \mathbb{Z}[x]$ monico tale che $f \equiv g_1h_1 \pmod{m}$, con g_1, h_1 coprimi modulo m.

Allora esistono polinomi monici $g_2, h_2 \in \mathbb{Z}[x]$ tali che $g_1 \equiv g_2 \pmod{m}, h_1 \equiv h_2 \pmod{m}$ e $f \equiv g_2h_2 \pmod{m^2}$; inoltre g_2, h_2 sono coprimi modulo m^2 e sono unici modulo m^2 .

Dimostrazione. Sappiamo che $f = g_1h_1 + mk$ con deg $k < \deg(g_1h_1)$. Cerchiamo $g_2 = g_1 + mb, h_2 = h_1 + mc$.

Mi serve $k \equiv bh_1 + cg_1 \pmod{m}$; dato che h_1, g_1 sono coprimi, trovo b, c di grado basso.

Per vedere che sono coprimi solleviamo anche la relazione $r_1g_1 + s_1h_1 \equiv 1 \pmod{m}$.

Quindi una volta fattorizzato f su \mathbb{F}_p in pochi fattori irriducibili, posso sollevare la fattorizzazione ad ogni $p^{2^{\ell}}$, finché non supero il bound sui coefficienti.

Proposizione 1.3.2 (Mignotte). *Sia*
$$f = \sum_{i=0}^{n} a_i x^i$$
 e $g = \sum_{i=0}^{d} b_i x^i$. *Allora* $se \ g \ | \ f \ vale \ \sum_{i=0}^{d} |b_i| \le \left| \frac{b_d}{a_n} \right| 2^d \sqrt{\sum_{j=0}^{n} a_j^2}$.

(serve che la misura di Mahler di un polinomio è \geq della sua norma $L^2,$ vedi qua)

1.4 Fattorizzazione in \mathbb{Z}

Sia n il numero da fattorizzare

1.4.1 Pollard's ρ

Consideriamo una funzione pseudo-random $f: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$, tipo $f(x) = x^2 + 1$.

Prendiamo allora la successione $a_{i+1} = f(a_i)$ con a_0 scelto da noi.

Se $p \mid n$ è un fattore, allora da un certo punto in poi gli a_i sono periodici modulo p, ovvero $a_i \equiv a_j \pmod p$ e in particolare $p \mid \gcd(a_i - a_j, n)$ e abbiamo trovato un fattore di n.

La cosa che si fa solitamente è calcolare la sequenza a due velocità diverse, e dunque fare $gcd(x_{2i} - x_i, n)$ ad ogni step.

Si può verificare che se $m \mid n$, allora vale $x_{2i} \equiv x_i \pmod{m}$ per i circa dell'ordine di $O(\sqrt{m})$.

Dunque la complessità dell'algoritmo (assumendo f random) è $O(\sqrt[4]{n})$.

1.4.2 Pollard p-1

Definizione 1.4.1. Dato un bound B si dice che m è B-liscio se le potenze dei primi che dividono n sono minori di B.

Se $p\mid n$ e p-1fosse B-liscio,preso $Q=\operatorname{lcm}(1,2,\ldots,B)$ avremmo che $p-1\mid Q.$

Ma allora $p \mid a^Q - 1$ per ogni a, e in particolare per trovare p si calcola $\gcd(a^Q - 1, n)$.

L'algoritmo fissa dunque B,a e calcola per potenze successive $a^Q \mod n,$ calcolando infine il gcd.

Purtroppo questo algoritmo ha molti point of failures: la scelta di B influenza moltissimo, ma ha anche un grande peso computazionale.

1.4.3 Crivello quadratico

1.5 Logaritmo discreto

- 1.5.1 Baby step-giant step
- 1.5.2 Pollard's ρ
- 1.5.3 Index calculus

1.6 Curve ellittiche

Posso anche usarle per fattorizzare e test di primalità, oltre a farci le potenze.

Capitolo 2

Codici

Un codice C è semplicemente un insieme di parole formate da lettere di un certo alfabeto.

A noi interessaranno però solo codici con una certa struttura; in particolare i nostri codici saranno sempre sottoinsiemi di un qualche \mathbb{F}_q^n .

Quello che vogliamo fare è inviare messaggi con una certa ridondanza in modo che il ricevente possa accorgersi se sono stati effettuati errori di trasmissione ed eventualmente correggerli da sè (es: comunicare con le sonde in giro per lo spazio).

2.1 Distanze ed errori

Un errore è quando una lettera della parola ricevuta è diversa dalla corssipondente nella parola inviata.

L'assunzione è che gli errori abbiano probabilità < 0.5 e siano indipendenti: quando ci arriva una parola allora vogliamo correggerla con quella del codice con cui condivide più lettere (MLD).

Definizione 2.1.1. Date $v=(a_1,\ldots,a_n)$ e $w=(b_1,\ldots,b_n)$ due parole, definiamo la distanza di Hamming $d(v,w)=\#\{i\mid a_i\neq b_i\}.$

Data una parola v, sia il suo peso wt(v) = d(v, 0).

Dato un codice C definiamo infine la distanza del codice come

$$d_C = \min_{\substack{v,w \in C \\ v \neq w}} d(v,w)$$

Definizione 2.1.2. Sia v la parola inviata e w la parola ricevuta. L'errore è e = w - v.

Diciamo che il codice C rileva l'errore e se $v+e \notin C$ $\forall v \in C$, ovvero se w non fa parte del codice.

Diciamo inoltre che il codice corregge e con v se vale d(v', v+e) > d(v, v+e) per ogni $v \neq v' \in C$.

Vediamo ora che la distanza è una quantità fondamentale di un codice:

Proposizione 2.1.3. Sia C un codice di distanza d. Allora

- il codice rileva tutti gli errori e con $wt(e) \le d-1$
- il codice corregge tutti gli errori con $wt(e) \le \left\lfloor \frac{d-1}{2} \right\rfloor$

Abbiamo dunque capito che sono molto importanti le palle centrate in parole del codice.

Osservazione. La palla $B(v,t) = \{w \in \mathbb{F}_q^n \mid d(w,v) \leq t\}$ ha cardinalità

$$B_t = \sum_{i=0}^t \binom{n}{i} (q-1)^i$$

Proposizione 2.1.4 (Hamming bound). Sia C un codice di distanza d, e $t = \left\lfloor \frac{d-1}{2} \right\rfloor$. Allora vale

$$B_t \cdot \# C < q^n$$

Definizione 2.1.5. Se vale l'uguaglianza, diciamo che C è un codice perfetto, ovvero \mathbb{F}_q^n viene partizionato completamente dalle palle di centro $v \in C$ e raggio t (che è quello di cui sappiamo correggere).

2.2 Codici lineari

Dico che un codice C è lineare di dimensione m se è un sottospazio vettoriale m-dimensionale di \mathbb{F}_q^n .

Osservazione. Se C è lineare, allora vale $d = \min_{v \neq 0} \operatorname{wt}(v)$.

Posso considerare allora una base b_1, \ldots, b_m di C, e la matrice G che ha per righe i b_i . Ogni parola $v \in C$ è perciò della forma uG con $u \in \mathbb{F}_q^m$.

Osservo poi che C è generato da G, ma anche da ogni matrice equivalente a G con operazioni elementari di riga. In particolare posso prendere G'=, in modo che $uG'=(u\,|\,uX)$. Questa scelta di G si dice codifica sistematica, perché permette la decodifica immediata.

Possiamo inoltre considerare C^{\perp} lo spazio ortogonale a C, che avrà una base w_1, \ldots, w_{n-m} , con matrice H detta $matrice\ di\ parità$.

Vale infatti $GH^t=0$, ovvero $x\in C$ se e solo se Hx=0. Data una parola ricevuta w, chiamiamo sindrome la quantità Hw, che ci dovrebbe dire dove e quali sono gli errori.

Notiamo inoltre che se $G=\begin{pmatrix}I_m\mid X\end{pmatrix}$, allora la matrice di parità corrispondente è $H=\begin{pmatrix}-X^t\mid I_{n-m}\end{pmatrix}$.

Proposizione 2.2.1. Un codice lineare ha distanza d se e solo se $\operatorname{rk} H = d - 1$, ovvero ogni d - 1 righe sono indipendenti, ma esistono d righe dipendenti.

Come correggo gli errori?

Considero \mathbb{F}_q^n/C le classi laterali di C; osservo che le sindromi sono in corrispondenza biunivoca con le classi laterali.

Se mi arriva una parola w, calcolo la sindrome Hw; tra tutte le parole in w + C trovo quella con peso minore v' (il cosiddetto $coset\ leader$), e allora traduco w con w - v' che è la parola del codice più vicina a w.

MA: ci possono essere più di un coset leader...

Proposizione 2.2.2 (Singleton bound). Se C è un codice lineare di tipo (n, m, d) allora vale $d \le n - m + 1$.

Definizione 2.2.3. Se un codice C soddisfa d = n - m + 1, viene detto MDS (maximum distance separable).

Teorema 2.2.4 (Gilbert-Varshamov). Siano n, m, d fissati. Esiste un codice lineare di lunghezza n, dimensione m e distanza d su \mathbb{F}_q se vale

$$\sum_{i=0}^{d-2} {n-1 \choose i} (q-1)^i < q^{n-m}$$

2.2.1 Codice di Hamming binario

Fissato r, sia H la matrice con r righe e che ha per colonne le rappresentazioni binarie dei numeri $1, 2, \ldots, 2^r - 1$.

Il codice di Hamming \mathcal{H}_r è il codice binario di lunghezza $n=2^r-1$ che ha H per matrice di parità.

Osservazione. Se e_i è il vettore che ha zeri ovunque e un 1 in posizione i, allora He_i è la rappresentazione di i in base 2.

Proposizione 2.2.5. Il codice \mathcal{H}_r ha distanza d=3 ed è perfetto.

Dimostrazione. La distanza si vede dall'indipendenza delle righe.

Per verificare che è perfetto deve valere $b_1 \cdot \#C = 2^n$, ovvero $\binom{n}{0} + \binom{n}{1} 2^{n-r} = 2^n$. Ma i binomiali valgono $1 + n = 2^r$, quindi l'uguaglianza è verificata.

2.2.2 Codice esteso

Se abbiamo un codice lineare con matrici G, H, possiamo considerare il codice C' ottenuto aggiungendo un'ultima riga di check alla matrice H, ovvero H' =

$$\begin{pmatrix} H & 0 \\ j & -1 \end{pmatrix}$$
 dove j è il vettore di tutti 1 (stiamo quindi aggiungendo il check dello XOR). Osserviamo che rk $H' = \text{rk } H + 1$.

La matrice G' corrispondente sarà della forma G = (G|b); imponendo $G'(H')^t = 0$ ricaviamo b = Gj, ovvero l'ultimo valore che aggiungiamo all'encoding è la somma di tutti i precedenti.

L'utilità dei codici estesi è soprattutto su \mathbb{F}_2 , poiché $\operatorname{wt}(v') = \operatorname{wt}(v) + 1$ se $\operatorname{wt}(v)$ era dispari: allora possiamo trasformare un codice di distanza d = 2m - 1 in un codice di distanza d' = 2m al prezzo di un solo bit di lunghezza in più.

2.3 Codici ciclici

Definizione 2.3.1. Un codice C di lunghezza n è ciclico se $(a_1, \ldots, a_n) \in C$ implica $(a_n, a_1, \ldots, a_{n-1}) \in C$.

Definiamo poi la mappa $\varphi: C \to \mathbb{F}_q[x]/x^n - 1$ data da $\varphi((c_0, \ldots, c_{n-1})) = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1}$.

L'operazione di shift corrisponde alla moltiplicazione per x, quindi $\varphi(C)$ è un ideale dell'anello quoziente.

Esiste quindi un polinomio $g(x) = g_0 + g_1 x + \cdots + g_m x^m$ che genera l'ideale C, il che si traduce in:

- una parola u(x) appartiene al codice se e solo se $g \mid u$ nel quoziente.
- il codice ha dimensione k = n m, e una base è data da $g, xg, \ldots, x^{k-1}g$.

Vale infine il teorema di caratterizzazione:

Teorema 2.3.2. Un polinomio g è il generatore di un codice ciclico di lunghezza n se e solo se $g(x) \mid x^n - 1$.

Un modo di codificare è prendendo un polinomio u(x) di grado < k, e codificandolo con u(x)g(x).

Questo corrisponde a prendere la matrice G della base $g, xg, \ldots, x^{k-1}g$, che si scrive tipo

$$\begin{pmatrix} g_0 & \cdots & g_m \\ & g_0 & \cdots & g_m \\ & & \ddots & \ddots & \ddots \\ & & & g_0 & \cdots & g_m \end{pmatrix}$$

Sia poi $g(x)h(x) = x^n - 1$; questo h dà esattamente la matrice di parità, poiché $f \in C$ se e solo se $h(x)f(x) \equiv 0 \pmod{x^n - 1}$.

2.3.1 Codifica sistematica

Usiamo invece un altro modo di codificare: dato un messaggio u di grado < k, considero la divisione con resto $x^{n-k}u(x) = a(x)g(x) + r(x)$. Invio allora $x^{n-k}u(x) - r(x)$, che è un elemento del codice. La decodifica avverrebbe dunque guardando le ultime k cifre, mentre le prime m sono di parità.

Per scrivere esplicitamente le matrici devo considerare la base formata dagli $u = x^i$ per i = 0, ..., k-1, ovvero scrivere $x^{n-k+i} = a_i(x)g(x) + b_i(x)$, con $b_i(x) = \sum_{j=0}^{n-k-1} b_{i,j}x^j$; le matrici sono dunque

$$G = \begin{pmatrix} -b_{0,0} & \dots & -b_{0,n-k-1} & 1 & 0 & \dots & 0 \\ -b_{1,0} & \dots & -b_{1,n-k-1} & 0 & 1 & \dots & 0 \\ \vdots & \ddots & \vdots & & \ddots & \vdots \\ -b_{k-1,0} & \dots & -b_{k-1,n-k-1} & 0 & 0 & \dots & 1 \end{pmatrix}$$

$$H = \begin{pmatrix} 1 & 0 & \dots & 0 & b_{0,0} & \dots & b_{k-1,0} \\ 0 & 1 & \dots & 0 & b_{0,1} & \dots & b_{k-1,1} \\ & \ddots & & \vdots & \ddots & \\ 0 & 0 & \dots & 1 & b_{0,n-k-1} & \dots & b_{k-1,n-k-1} \end{pmatrix}$$

Si può usare per l'encoding anche il polinomio h: sapendo che hv=0, dove v è l'encoding di u, ci sono delle equazioni che permettono di ricavare v_0,\ldots,v_{n-k-1} in funzione di $v_{n-k},\ldots,v_{n-1}=u_0,\ldots,u_{k-1}$.

Infine per la decodifica la sindrome di w è semplicemente $w \mod g$, e si procede poi a cercarne il coset leader.

2.3.2 Zeri di polinomi

Se (n,q)=1 allora il polinomio x^n-1 si spezza completamente su un \mathbb{F}_{q^m} , ovvero $x^n-1=\prod (x-\alpha^i)$ per qualche α radice primitiva dell'unità.

In particolare si avrà $g(x)=(x-\alpha^{i_1})\cdots(x-\alpha^{i_{n-k}})$ per certi indici, quindi il codice ciclico generato da g può essere visto come i polinomi $c\in \mathbb{F}_q[x]/x^n-1$ tali che $c(\alpha^{i_j})=0$ per ogni j, ovvero la matrice di parità è data semplicemente dalla valutazione negli α^{i_j} .

2.4 Codici BCH

Lemma 2.4.1 (BCH bound). Sia C un codice ciclico su \mathbb{F}_q di lunghezza n con generatore g(x) tale che esistono $b \geq 0, \delta \geq 1$ per cui $g(\alpha^b) = \cdots = g(\alpha^{b+\delta-2}) = 0$, dove α è un generatore di $\mathbb{F}_{q^r}^*$. Allora C ha distanza almeno δ .

Definizione 2.4.2. Si dice codice BCH binario di lunghezza n e sistanza designata δ il codice ciclico con generatore $g = \text{lcm}(m_b, \ldots, m_{b+\delta-2})$ dove $m_b(x)$ è il polinomio minimo di α^i (α è un generatore di \mathbb{F}_{2^r} con $n \mid 2^r - 1$)

Solitamente si usa $b = 1, n = q^r - 1$.

2.4.1 2-error correcting

Consideriamo \mathbb{F}_{2^r} e un suo generatore β ; sia $n=2^r-1$ e prendiamo $g(x)=\mu_{\beta}(x)\mu_{\beta^3}(x)\mid x^n-1$.

Allora g genera un codice ciclico di lunghezza n e dimensione n-2r, la cui matrice di parità è data da

$$\begin{pmatrix} 1 & \beta & \beta^2 & \dots & \beta^i & \dots & \beta^{2^r-2} \\ 1 & \beta^3 & \beta^6 & \dots & \beta^{3i} & \dots & \beta^{3(2^r-2)} \end{pmatrix}$$

La sindrome di una parola w è esattamente $\begin{pmatrix} w(\beta) \\ w(\beta^3) \end{pmatrix}$, e da questa possiamo correggere fino a due errori, cioè fino a $e(x) = x^i + x^j$ (è un sistema di 2 equazioni in 2 incognite).

2.4.2 Decodifica

Se riceviamo una parola w, l'errore è e=w-v e la sindrome è data da $s_i=w(\alpha^i)=e(\alpha^i)$. Assumiamo inoltre che deg $e\leq t$ dove t è la capacità di correzione del codice.

Definizione 2.4.3. Sia $L = \{i \mid e_i \neq 0\}$ l'insieme delle posizioni di errore.

Il polinomio locatore d'errore è $\sigma(x) = \prod_{\ell \in L} (1 - x\alpha^{\ell})$

Il polinomio valutatore d'errore è $\omega(x) = \sum_{\ell \in L} e_{\ell} \alpha^{\ell} \prod_{i \in L \setminus \{\ell\}} (1 - x \alpha^{i})$

Il polinomio di sindrome è $S(x) = e(\alpha) + e(\alpha^2)x + \dots + e(\alpha^{2t})x^{2t-1}$

Osservazione. I polinomi ω e σ sono coprimi.

Notiamo che c'è un errore in posizione ℓ se e solo se $\sigma(\alpha^{-\ell}) = 0$, nel qual caso troviamo l'errore tramite $e_l = -\frac{\omega(\alpha^\ell)}{\sigma'(\alpha^{-\ell})}$

La decodifica si basa sul seguente risultato, detto equazione chiave

Teorema 2.4.4. I polinomi σ, ω soddisfano

$$\sigma(x)S(x) \equiv \omega(x) \pmod{x^{2t}}$$

Inoltre sono gli unici (a meno di multipli) con $\deg \omega < \deg \sigma \leq t$

Una volta calcolato il polinomio sindrome S(x) bisogna dunque risolvere l'equazione chiave. Lo facciamo con l'algoritmo euclideo.

2.4.3 Codici Reed-Solomon

È un codice BCH con n = q - 1; in particolare $g(x) = (x - \alpha^b) \cdots (x - \alpha^{b+\delta-2})$ con α generatore di \mathbb{F}_q .

Osservazione. La distanza di un RS è esattamente $d = \delta$, quindi è MDS.

Possiamo poi ricavare dal RS di distanza d su \mathbb{F}_{p^l} un codice su \mathbb{F}_p vedendo ogni elemento di \mathbb{F}_{p^l} come una parola lunga l di \mathbb{F}_p : il nuovo codice ha dunque lunghezza $n'=ln=l(p^l-1)$.

2.5 Codici di Goppa

Definizione 2.5.1. Prendiamo un insieme $L = \{\gamma_0, \dots, \gamma_{n-1}\} \subset \mathbb{F}_{q^r}$ e un polinomio $g(x) \in \mathbb{F}_{q^r}[x]$.

$$\Gamma(L,g) = \left\{ (c_0, \dots, c_{n-1}) \in \mathbb{F}_q^n \mid \sum \frac{c_i}{x - \gamma_i} \equiv 0 \pmod{g(x)} \right\}$$

Osservazione. Con $g(x)=x^{\delta-1}$ e $L=\{\alpha^{-i}\}$ otteniamo un codice BCH di distanza designata $\delta.$

Capitolo 3

Crittografia