В теории вероятностей изучались математические модели случайных явлений. Предполагается, что известны законы распределения случайных величин. В реальности эти законы неизвестны, есть только выборка наблюдений.

В теории вероятностей изучались математические модели случайных явлений. Предполагается, что известны законы распределения случайных величин. В реальности эти законы неизвестны, есть только выборка наблюдений.

Как восстановить эти законы?

В теории вероятностей изучались математические модели случайных явлений. Предполагается, что известны законы распределения случайных величин. В реальности эти законы неизвестны, есть только выборка наблюдений.

Как восстановить эти законы?

Это - задача математической статистики.

Информация берётся из наблюдений над случайными величинами.

В теории вероятностей изучались математические модели случайных явлений. Предполагается, что известны законы распределения случайных величин. В реальности эти законы неизвестны, есть только выборка наблюдений.

Как восстановить эти законы?

Это - задача математической статистики. Информация берётся из наблюдений над случайными величинами.

Цель - разработка методов сбора, описания и анализа статистических данных с целью выявления в них закономерностей.

В теории вероятностей изучались математические модели случайных явлений. Предполагается, что известны законы распределения случайных величин. В реальности эти законы неизвестны, есть только выборка наблюдений.

Как восстановить эти законы?

Это - задача математической статистики. Информация берётся из наблюдений над случайными величинами.

Цель - разработка методов сбора, описания и анализа статистических данных с целью выявления в них закономерностей.

Связь между ТВ и МС: теоретические модели используются для обоснования правильности результатов анализа статистических данных.

Нас интересуют некоторые свойства совокупности.

Идея выборочного метода: выбрать из этой совокупности сравнительно небольшое число объектов, и по свойствам этих объектов судить о свойствах всей совокупности.

Нас интересуют некоторые свойства совокупности.

Идея выборочного метода: выбрать из этой совокупности сравнительно небольшое число объектов, и по свойствам этих объектов судить о свойствах всей совокупности.

Основное требование: выборка должна быть репрезентативной, т.е. точно выражать свойства, которые имеет генеральная совокупность.

Элементы выборки должны быть независимыми и одинаково распределенными.

Нас интересуют некоторые свойства совокупности.

Идея выборочного метода: выбрать из этой совокупности сравнительно небольшое число объектов, и по свойствам этих объектов судить о свойствах всей совокупности.

Основное требование: выборка должна быть репрезентативной, т.е. точно выражать свойства, которые имеет генеральная совокупность.

Элементы выборки должны быть независимыми и одинаково распределенными.

Альтернатива – сплошное исследование

1. Построение закона распределения по опытным данным.

- 1. Построение закона распределения по опытным данным.
- 2. Статистическое оценивание.

- 1. Построение закона распределения по опытным данным.
- 2. Статистическое оценивание.
- 3. Проверка статистических гипотез.

- 1. Построение закона распределения по опытным данным.
- 2. Статистическое оценивание.
- 3. Проверка статистических гипотез.
- 4. Определение статистической взаимосвязи между случайными величинами.

- 1. Построение закона распределения по опытным данным.
- 2. Статистическое оценивание.
- 3. Проверка статистических гипотез.
- 4. Определение статистической взаимосвязи между случайными величинами.
- 5. Построение прогнозных моделей по экспериментальным данным

Генеральная совокупность объектов - те объекты, явления, события и т.п., которые входят в круг интересов исследователя

Генеральная совокупность объектов - те объекты, явления, события и т.п., которые входят в круг интересов исследователя

Выборка объектов $o_1,...,o_n$ - часть статистической совокупности; формируется в результате случайного отбора некоторых представителей совокупности.

п - объем выборки.

Генеральная совокупность объектов - те объекты, явления, события и т.п., которые входят в круг интересов исследователя

Выборка объектов $o_1,...,o_n$ - часть статистической совокупности; формируется в результате случайного отбора некоторых представителей совокупности.

п - объем выборки.

Переменная – характеризует какое-либо свойство объекта (синонимы: показатель, признак).

Два типа переменных: дискретные и непрерывные.

Рассмотрим случай одной переменной X. Пусть имеется выборка наблюдений

$$X_1, X_2, ..., X_n$$
.

Рассмотрим случай одной переменной X. Пусть имеется выборка наблюдений

$$X_1, X_2, ..., X_n$$
.

Расположим элементы выборки в порядке возрастания (неубывания):

$$X_{(1)} \le X_{(2)} \le \dots \le X_{(n)}$$
.

Рассмотрим случай одной переменной X. Пусть имеется выборка наблюдений

$$X_1, X_2, ..., X_n$$
.

Расположим элементы выборки в порядке возрастания (неубывания):

$$X_{(1)} \le X_{(2)} \le \dots \le X_{(n)}$$
.

Упорядоченная выборка называется вариационным рядом, $X_{(i)}$ называется i-й порядковой статистикой, различные элементы ряда — вариантами.

Число вариант обозначим через m, где $m \le n$.

Рассмотрим случай одной переменной X. Пусть имеется выборка наблюдений

$$X_1, X_2, ..., X_n$$
.

Расположим элементы выборки в порядке возрастания (неубывания):

$$X_{(1)} \le X_{(2)} \le \dots \le X_{(n)}$$
.

Упорядоченная выборка называется вариационным рядом, $X_{(i)}$ называется i-й порядковой статистикой, различные элементы ряда — вариантами.

Число вариант обозначим через m, где $m \le n$.

Частота варианты n_i - число, показывающее, сколько раз встречается в выборке i-я варианта a_i .

$$\mathbf{w}_i = \frac{n_i}{n} = \frac{n_i}{\sum_{i=1}^m n_i}.$$

$$\mathbf{w}_i = \frac{n_i}{n} = \frac{n_i}{\sum_{i=1}^m n_i}.$$

Пример.

Имеется выборка

$$n = 15.$$

$$\mathbf{w}_i = \frac{n_i}{n} = \frac{n_i}{\sum_{i=1}^m n_i}.$$

Пример.

Имеется выборка

$$n = 15$$
.

Вариационный ряд:

$$\mathbf{w}_i = \frac{n_i}{n} = \frac{n_i}{\sum_{i=1}^m n_i}.$$

Пример.

Имеется выборка

$$n = 15$$
.

Вариационный ряд:

Таблица вариант и их частот:

a_i	1	2	3	4	5
n_{i}	4	2	4	2	3
\mathbf{W}_i	4/15	2/15	4/15	2/15	3/15

Имеет ли случайная величина $X_{\scriptscriptstyle (i)}$ то же распределение, что и $X_{\scriptscriptstyle i}$?

Имеет ли случайная величина $X_{\scriptscriptstyle (i)}$ то же распределение, что и $X_{\scriptscriptstyle i}$?

Введем вспомогательную случайную функцию: $\mu_{_{n}}\big(x\big)\text{-} \ \text{количество наблюдений}\ X_{_{i}} < x.$

Имеет ли случайная величина $X_{\scriptscriptstyle (i)}$ то же распределение, что и $X_{\scriptscriptstyle i}$?

Введем вспомогательную случайную функцию:

 $\mu_{_{n}}\left(x\right)$ - количество наблюдений $X_{_{i}} < x$.

Найдем $P\left\{\mu_{n}\left(x\right)=k\right\}$.

Имеет ли случайная величина $X_{\scriptscriptstyle (i)}$ то же распределение, что и $X_{\scriptscriptstyle i}$?

Введем вспомогательную случайную функцию: $\mu_{_n} \big(x \big) \text{-} \ \text{количество наблюдений} \ X_{_i} < x.$

Найдем $P\left\{\mu_{n}\left(x\right)=k\right\}$.

Событие $\mu_n\left(x\right)=k$ означает, что в интервал $(-\infty,x)$ попало ровно k наблюдений, а в интервал $[x,+\infty)$ ровно $\left(n-k\right)$ наблюдений.

Имеет ли случайная величина $X_{\scriptscriptstyle (i)}$ то же распределение, что и $X_{\scriptscriptstyle i}$?

Введем вспомогательную случайную функцию: $\mu_{_{n}}\big(x\big)\text{-} \ \text{количество наблюдений}\ X_{_{i}} < x.$

Найдем $P\left\{\mu_{n}\left(x\right)=k\right\}$.

Событие $\mu_n\left(x\right)=k$ означает, что в интервал $(-\infty,x)$ попало ровно k наблюдений, а в интервал $[x,+\infty)$ ровно $\left(n-k\right)$ наблюдений.

Число способов, которыми можно выбрать k элементов из n равно C_n^k , в результате получаем:

Имеет ли случайная величина $X_{\scriptscriptstyle (i)}$ то же распределение, что и $X_{\scriptscriptstyle i}$?

Введем вспомогательную случайную функцию: $\mu_{_{n}} \big(x \big) \text{-} \ \text{количество наблюдений} \ X_{_{i}} < x.$

Найдем $P\left\{\mu_{n}\left(x\right)=k\right\}$.

Событие $\mu_n\left(x\right)=k$ означает, что в интервал $(-\infty,x)$ попало ровно k наблюдений, а в интервал $[x,+\infty)$ ровно $\left(n-k\right)$ наблюдений.

Число способов, которыми можно выбрать k элементов из n равно C_n^k , в результате получаем:

$$P\left\{\mu_n\left(x\right) = k\right\} = C_n^k F^k\left(x\right) \left(1 - F\left(x\right)\right)^{n-k}$$

Найдем теперь функцию распределения:

$$F_{\boldsymbol{X}_{\!\left(i\right)}}(\boldsymbol{x}) = P\left\{\boldsymbol{X}_{\!\left(i\right)} < \boldsymbol{x}\right\} = P\left\{\boldsymbol{\mu}_{\!\boldsymbol{n}}\left(\boldsymbol{x}\right) \geq i\right\} = P\left\{\boldsymbol{\mu}_{\boldsymbol{n}}\left(\boldsymbol{x}\right) \geq i\right\} = P\left\{\boldsymbol{\mu}_{\boldsymbol{n}}\left(\boldsymbol{x}$$

$$\begin{split} F_{X_{(i)}}(x) &= P\left\{X_{(i)} < x\right\} = P\left\{\mu_n\left(x\right) \geq i\right\} = \\ &= P\left\{\mu_n\left(x\right) = i \vee \mu_n\left(x\right) = i + 1 \vee \ldots \vee \mu_n\left(x\right) = n\right\} = \end{split}$$

$$\begin{split} F_{X_{(i)}}(x) &= P\left\{X_{(i)} < x\right\} = P\left\{\mu_n\left(x\right) \geq i\right\} = \\ &= P\left\{\mu_n\left(x\right) = i \vee \mu_n\left(x\right) = i + 1 \vee \dots \vee \mu_n\left(x\right) = n\right\} = \\ &= \sum_{k=i}^n P\left\{\mu_n\left(x\right) = k\right\} = \sum_{k=i}^n C_n^k F\left(x\right)^k \left(1 - F\left(x\right)\right)^{n-k} \end{split}$$

$$\begin{split} F_{X_{(i)}}(x) &= P\left\{X_{(i)} < x\right\} = P\left\{\mu_n\left(x\right) \geq i\right\} = \\ &= P\left\{\mu_n\left(x\right) = i \lor \mu_n\left(x\right) = i + 1 \lor \dots \lor \mu_n\left(x\right) = n\right\} = \\ &= \sum_{k=i}^n P\left\{\mu_n\left(x\right) = k\right\} = \sum_{k=i}^n C_n^k F\left(x\right)^k \left(1 - F\left(x\right)\right)^{n-k} \end{split}$$

Таким образом, распределение $X_{\scriptscriptstyle (i)}$ отличается от распределения $X_{\scriptscriptstyle i}$

$$\begin{split} F_{X_{(i)}}(x) &= P\left\{X_{(i)} < x\right\} = P\left\{\mu_n\left(x\right) \ge i\right\} = \\ &= P\left\{\mu_n\left(x\right) = i \lor \mu_n\left(x\right) = i + 1 \lor \dots \lor \mu_n\left(x\right) = n\right\} = \\ &= \sum_{k=i}^n P\left\{\mu_n\left(x\right) = k\right\} = \sum_{k=i}^n C_n^k F\left(x\right)^k \left(1 - F\left(x\right)\right)^{n-k} \end{split}$$

Таким образом, распределение $X_{\scriptscriptstyle (i)}$ отличается от распределения $X_{\scriptscriptstyle i}$

Накопленная (кумулятивная) частота $\mu_n(x)$ - число элементов выборки, меньших, чем x.

Зависимость $\mu_n(x)$ называют кумулятивной кривой.

Зависимость $w_n(x)$ называют эмпирической функцией распределения:

$$F_n(x) = \frac{\mu_n(x)}{n}.$$

/ \

Зависимость $w_n(x)$ называют эмпирической функцией распределения:

$$F_n(x) = \frac{\mu_n(x)}{n}.$$

 $\left|F_n\left(x\right)=\frac{\mu_n(x)}{n}\right|.$ $\forall x\in R,\quad F_n\left(x\right)$ — дискретная случайная величина,

принимающая значения

Зависимость $w_n(x)$ называют эмпирической функцией распределения:

$$F_n(x) = \frac{\mu_n(x)}{n}.$$

 $\forall x \in R$, $F_n\left(x\right)$ – дискретная случайная величина,

принимающая значения

$$0 = \frac{0}{n}, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, \frac{n}{n} = 1$$

Зависимость $w_n(x)$ называют эмпирической функцией распределения:

$$F_n(x) = \frac{\mu_n(x)}{n}$$

 $\forall x \in R$, $F_{n}\left(x\right)$ – дискретная случайная величина,

принимающая значения

$$0 = \frac{0}{n}, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, \frac{n}{n} = 1$$

при этом

$$P\left\{F_{n}\left(x\right) = \frac{k}{n}\right\} = P\left\{\mu_{n}\left(x\right) = k\right\} = C_{n}^{k}F^{k}\left(x\right)\left(1 - F\left(x\right)\right)^{n-k}$$

Используя варианты можно записать

$$F_{n}\left(x\right) = \begin{cases} 0, x \leq a_{1} \\ \frac{1}{n} \sum_{i=1}^{k} n_{i}, a_{k} < x \leq a_{k+1}, k = 1, ..., m-1 \\ 1, x > a_{m} \end{cases}$$

<u>Пример</u>. Построим эмпирическую функцию распределения для данных вариант:

a_{i}	2	6	10
n_i	12	18	30
W_i	0,2	0,3	0,5

<u>Пример</u>. Построим эмпирическую функцию распределения для данных вариант:

a_{i}	2	6	10
n_i	12	18	30
W_i	0,2	0,3	0,5

$$n = \sum_{i=1}^{3} n_i = 60; \sum_{i=1}^{3} w_i = 1,$$

$$F_n(x) = \begin{cases} 0; & x \le 2\\ 0,2; & 2 < x \le 6 \end{cases};$$

$$0,5; & 6 < x \le 10$$

$$1; & x > 10$$

<u>Пример</u>. Построим эмпирическую функцию распределения для данных вариант:

a_i	2	6	10
n_i	12	18	30
W_i	0,2	0,3	0,5

$$n = \sum_{i=1}^{3} n_i = 60; \sum_{i=1}^{3} w_i = 1,$$

$$F_n(x) = \begin{cases} 0; & x \le 2 \\ 0, 2; & 2 < x \le 6 \end{cases};$$

$$0,5; & 6 < x \le 10 \\ 1; & x > 10 \end{cases}$$

1)
$$\forall x \in (-\infty, \infty), \quad 0 \le F_n(x) \le 1;$$

1)
$$\forall x \in (-\infty, \infty), \quad 0 \le F_n(x) \le 1;$$

2)
$$\forall (x_1 \leq x_2) \Rightarrow F_n(x_1) \leq F_n(x_2);$$

Очевидно, что свойства эмпирической функции распределения аналогичны свойствам теоретической функции распределения:

1)
$$\forall x \in (-\infty, \infty), \quad 0 \le F_n(x) \le 1;$$

2)
$$\forall (x_1 \leq x_2) \Rightarrow F_n(x_1) \leq F_n(x_2);$$

3) $F_n(x)$ ступенчатая функция, непрерывная слева;

1)
$$\forall x \in (-\infty, \infty), \quad 0 \le F_n(x) \le 1;$$

2)
$$\forall (x_1 \leq x_2) \Rightarrow F_n(x_1) \leq F_n(x_2);$$

- 3) $F_n(x)$ ступенчатая функция, непрерывная слева;
- 4) если $x < x_{\min}$, то $F_n(x) = 0$;

1)
$$\forall x \in (-\infty, \infty), \quad 0 \le F_n(x) \le 1;$$

2)
$$\forall (x_1 \leq x_2) \Rightarrow F_n(x_1) \leq F_n(x_2);$$

- 3) $F_n(x)$ ступенчатая функция, непрерывная слева;
- 4) если $x < x_{\min}$, то $F_n(x) = 0$;
- 5) если $x > x_{\text{max}}$, то $F_n(x) = 1$.

Как меняется эмпирическая функция распределения при увеличении объема выборки?

Сходимость эмпирической функции распределения к теоретической

Теорема

Пусть $F_n\left(x\right)$ — эмпирическая функция распределения по выборке случайной величины X, имеющей функцию распределения F(x).

Сходимость эмпирической функции распределения к теоретической

Теорема

Пусть $F_n\left(x\right)$ — эмпирическая функция распределения по выборке случайной величины X, имеющей функцию распределения F(x).

Тогда $F_n(x) \stackrel{p}{\rightarrow} F(x)$:

Сходимость эмпирической функции распределения к теоретической

Теорема

Пусть $F_n\left(x\right)$ — эмпирическая функция распределения по выборке случайной величины X, имеющей функцию распределения F(x).

Тогда $F_n(x) \xrightarrow{p} F(x)$:

$$\left| \left| x \right| < \infty, \forall \varepsilon > 0 \ \lim_{n \to \infty} P\left\{ \left| F_n\left(x\right) - F\left(x\right) \right| < \varepsilon \right\} = 1$$

Пусть

$$Z_{i} = \begin{cases} 1, X_{i} < x \\ 0, uhaue \end{cases}, i = 1,...,n.$$

Пусть

$$Z_{i} = \begin{cases} 1, X_{i} < x \\ 0, uhaue \end{cases}, i = 1,...,n.$$

Пусть

$$Z_{i} = \begin{cases} 1, X_{i} < x \\ 0, uhave \end{cases}, i = 1,...,n.$$

Все Z_i независимы, одинаково распределены по закону Бернулли:

Пусть

$$Z_{i} = \begin{cases} 1, X_{i} < x \\ 0, uhave \end{cases}, i = 1,...,n.$$

Все Z_i независимы, одинаково распределены по закону Бернулли:

$$P(Z_i = 1) = P(X_i < x) = F(x),$$

Пусть

$$Z_{i} = \begin{cases} 1, X_{i} < x \\ 0, uhave \end{cases}, i = 1,...,n.$$

Все Z_i независимы, одинаково распределены по закону Бернулли:

$$P(Z_i = 1) = P(X_i < x) = F(x),$$

 $P(Z_i = 0) = 1 - F(x).$

Пусть

$$Z_{i} = \begin{cases} 1, X_{i} < x \\ 0, uhave \end{cases}, i = 1,...,n.$$

Все Z_i независимы, одинаково распределены по закону Бернулли:

$$P(Z_i = 1) = P(X_i < x) = F(x),$$

 $P(Z_i = 0) = 1 - F(x).$

Сумма $Z_1 + ... + Z_n = \mu_n(x)$.

Пусть

$$Z_{i} = \begin{cases} 1, X_{i} < x \\ 0, uhave \end{cases}, i = 1,...,n.$$

Все Z_i независимы, одинаково распределены по закону Бернулли:

$$P(Z_i = 1) = P(X_i < x) = F(x),$$

 $P(Z_i = 0) = 1 - F(x).$

Сумма $Z_1 + ... + Z_n = \mu_n(x)$.

По закону больших чисел

$$F_n(x) = \frac{\mu_n(x)}{n} = \frac{Z_1 + ... + Z_n}{n} \xrightarrow{p} EZ_i = F(x).$$

Теорема (Гливенко-Кантелли).

$$P\left\{ \lim_{n\to\infty} \sup_{x} |F_n(x) - F(x)| = 0 \right\} = 1,$$

Теорема (Гливенко-Кантелли).

$$P\left\{ \lim_{n \to \infty} \sup_{x} |F_{n}(x) - F(x)| = 0 \right\} = 1,$$

т.е. эмпирическая функция распределения равномерно сходится к истинной функции распределения.

Теорема (Гливенко-Кантелли).

$$P\left\{ \lim_{n \to \infty} \sup_{x} |F_{n}(x) - F(x)| = 0 \right\} = 1,$$

т.е. эмпирическая функция распределения равномерно сходится к истинной функции распределения.

Замечание 1. Последовательность случайных величин Y_{n} сходится к Y почти наверное, если

$$P\left\{\lim_{n\to\infty}Y_n(\omega)=Y(\omega)\right\}=1$$

Теорема (Гливенко-Кантелли).

$$P\left\{ \lim_{n \to \infty} \sup_{x} |F_{n}(x) - F(x)| = 0 \right\} = 1,$$

т.е. эмпирическая функция распределения равномерно сходится к истинной функции распределения.

Замечание 1. Последовательность случайных величин $Y_{_{n}}$ сходится к Y почти наверное, если

$$P\left\{\lim_{n\to\infty}Y_n(\omega)=Y(\omega)\right\}=1$$

Замечание 2. Из сходимости почти наверное следует сходимость по вероятности.

$$Y_n \xrightarrow{P} Y$$

Теорема (Гливенко-Кантелли).

$$P\left\{ \lim_{n \to \infty} \sup_{x} |F_{n}(x) - F(x)| = 0 \right\} = 1,$$

т.е. эмпирическая функция распределения равномерно сходится к истинной функции распределения.

Замечание 1. Последовательность случайных величин Y_{n} сходится к Y почти наверное, если

$$P\left\{\lim_{n\to\infty}Y_n(\omega)=Y(\omega)\right\}=1$$

Замечание 2. Из сходимости почти наверное следует сходимость по вероятности.

$$Y_n \xrightarrow{P} Y$$

Замечание 3. Из сходимости по вероятности следует сходимость по распределению.

$$F_{Y_n}(x) \to F_Y(x)$$

Теорема (Колмогоров).

Если функция F(x) непрерывна, то

$$P\left\{\sup_{x}\left|F_{n}\left(x\right)-F(x)\right|<\frac{z}{\sqrt{n}}\right\} \to K(z)$$
 при $n\to\infty$,

Теорема (Колмогоров).

Если функция F(x) непрерывна, то

$$P\left\{\sup_{x}\left|F_{n}\left(x\right)-F(x)\right|<\frac{z}{\sqrt{n}}\right\} \to K(z)$$
 при $n\to\infty$,

где
$$K(z) = \begin{cases} 0 \text{ при } z \le 0, \\ \sum_{\kappa = -\infty}^{+\infty} (-1)^{\kappa} \exp(-2\kappa^2 z^2), z > 0. \end{cases}$$

Теорема (Колмогоров).

Если функция F(x) непрерывна, то

$$P\left\{\sup_{x}\left|F_{n}\left(x\right)-F(x)\right|<\frac{z}{\sqrt{n}}\right\}\to K(z)$$
 при $n\to\infty$,

где
$$K(z) = \begin{cases} 0 \text{ при } z \le 0, \\ \sum_{\kappa = -\infty}^{+\infty} (-1)^{\kappa} \exp(-2\kappa^2 z^2), z > 0. \end{cases}$$

Функция K(z) называется функцией распределения Колмогорова. Её значения табулированы.

Функция распределения Колмогорова

Пусть переменная X - дискретная, тогда вариационный ряд называют дискретным.

Пусть переменная X - дискретная, тогда вариационный ряд называют дискретным.

Для дискретного ряда можно построить полигон — график зависимости n_i от i (w_i от i) или от вариант a_i .

Пусть переменная X - дискретная, тогда вариационный ряд называют дискретным.

Для дискретного ряда можно построить полигон — график зависимости n_i от i (w_i от i) или от вариант a_i .

ИЛИ

Пусть переменная X - дискретная, тогда вариационный ряд называют дискретным.

Для дискретного ряда можно построить полигон — график зависимости n_i от i (w_i от i) или от вариант a_i .

ИЛИ

Для непрерывного ряда введем интервал группирования h_i , i=1,...,m, где m - число интервалов.

Для непрерывного ряда введем интервал группирования $h_i, i=1,...,m$, где m - число интервалов.

Пусть n_i , w_i - частоты попадания вариант ряда в i-й интервал.

Для непрерывного ряда введем интервал группирования $h_i, i=1,...,m$, где m - число интервалов.

Пусть n_i , w_i - частоты попадания вариант ряда в i-й интервал.

Гистограмма — график, состоящий из прямоугольников шириной, равной величине интервала h_i и

высотой, равной $\frac{n_i}{h_i}$

Для непрерывного ряда введем интервал группирования h_i , i=1,...,m, где m - число интервалов.

Пусть n_i , w_i - частоты попадания вариант ряда в i-й интервал.

Гистограмма — график, состоящий из прямоугольников шириной, равной величине интервала h_i и высотой, равной $\frac{n_i}{h_i}$

(или
$$\frac{w_i}{h_i}$$
 - аналог

Пример. Г.Р. результатов теста по иностранному языку

функции плотности распределения).

Пример. Дан сгруппированный ряд. Требуется построить гистограмму относительных частот.

границы	10-20	20-30	30-40	40-50	50-60
интервалов					
частоты	1	2	7	18	12

--

Пример. Дан сгруппированный ряд. Требуется построить гистограмму относительных частот.

границы	10-20	20-30	30-40	40-50	50-60
интервалов					
частоты	1	2	7	18	12

Относительные частоты
$$w_i = \frac{n_i}{n}$$
, высоты прямоугольников $\frac{w_i}{h}$, где $n = \sum_{i=1}^m n_i = 1+2+7+18+12=40$,

h = 10. Таблица:

Пример. Дан сгруппированный ряд. Требуется построить гистограмму относительных частот.

границы	10-20	20-30	30-40	40-50	50-60
интервалов					
частоты	1	2	7	18	12

Относительные частоты
$$w_i = \frac{n_i}{n}$$
, высоты прямоугольников $\frac{w_i}{h}$, где $n = \sum_{i=1}^m n_i = 1+2+7+18+12=40$,

h = 10. Таблица:

границы	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60
W_i	1/40 =	2/40 =	7/40 =	18/40 =	12/40 =
·	0,025	0,05	0,175	0,45	0,3
$\underline{w_i}$	0,025/10 =	0,05/10 =	0,175/10 =	0,45/10 =	0,3/10 =
$\frac{1}{h}$	0,0025	0,005	0,0175	0,045	0,03

Гистограмма:

1.
$$g(t) = g(-t)$$
,

1.
$$g(t) = g(-t)$$
,

2.
$$\int\limits_{-\infty}^{+\infty}g(t)dt=1$$
 ,

1.
$$g(t) = g(-t)$$
,

2.
$$\int\limits_{-\infty}^{+\infty}g(t)dt=1$$
 ,

3.
$$\int_{-\infty}^{+\infty} t^2 g(t) dt = 1$$

1.
$$g(t) = g(-t)$$
,

2.
$$\int\limits_{-\infty}^{+\infty}g(t)dt=1$$
 ,

3.
$$\int_{-\infty}^{+\infty} t^2 g(t) dt = 1$$

4.
$$\int_{-\infty}^{+\infty} t^m g(t)dt < \infty; 0 \le m < \infty,$$

$$\hat{f}_n(x) = \frac{1}{n\lambda_n} \sum_{i=1}^n g\left(\frac{x - X_i}{\lambda_n}\right)$$

$$\hat{f}_n(x) = \frac{1}{n\lambda_n} \sum_{i=1}^n g\left(\frac{x - X_i}{\lambda_n}\right)$$

где λ_n - параметр размытости:

$$\lim_{n o \infty} \lambda_n = 0$$
 и $\lim_{n o \infty} n \lambda_n = \infty$,

$$\hat{f}_n(x) = \frac{1}{n\lambda_n} \sum_{i=1}^n g\left(\frac{x - X_i}{\lambda_n}\right)$$

где λ_n - параметр размытости:

$$\lim_{n o\infty}\lambda_n=0$$
 и $\lim_{n o\infty}n\lambda_n=\infty$,

а также функцию распределения:

$$\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n G\left(\frac{x - X_i}{\lambda_n}\right)$$

$$\hat{f}_n(x) = \frac{1}{n\lambda_n} \sum_{i=1}^n g\left(\frac{x - X_i}{\lambda_n}\right)$$

где $\lambda_{\scriptscriptstyle n}$ - параметр размытости:

$$\lim_{n o\infty}\lambda_n=0$$
 и $\lim_{n o\infty}n\lambda_n=\infty$,

а также функцию распределения:

$$\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n G\left(\frac{x - X_i}{\lambda_n}\right)$$

где

$$G(x) = \int_{-\infty}^{x} g(x)dt.$$

Ядерная оценка плотности

Выборка из N(0,1), n=100
 Выборка из N(0,1), n=100 (ядерная оценка)

Ядерная оценка плотности

Ядерная оценка плотности

• Гладкость оценки

- Гладкость оценки
- Быстрая сходимость к функции плотности

- Гладкость оценки
- Быстрая сходимость к функции плотности

Недостатки

• требуется подбирать функцию ядра и параметр размытости

- Гладкость оценки
- Быстрая сходимость к функции плотности

Недостатки

- требуется подбирать функцию ядра и параметр размытости
- проблема оценивания плотности распределений, определенных на отрезке или полупрямой