Deep Learning

Exercise 9: Convolutional Auto-Encoder

Room: **BIN-1-B.01**

Instructor: Manuel Günther

Email: guenther@ifi.uzh.ch

Office: AND 2.54

Friday, May 6, 2022

Outline

- PyTorch
- Convolutional Auto-Encoder

Outline

- PyTorch
 - Fractionally-Strided Convolution
 - Network Implementation

Fractionally-Strided Convolution

Convolution by Multiplication

Implemnentation

• Implemented: torch.nn.Conv2d

Transposed Convolution

Input

8

Deep **Feature**

Kernel

Fractionally-Strided Convolution

Implementation

- Inverts Conv2d
- torch.nn.ConvTranspose2d
- Parameters
 - ightarrow stride: fractional stride
 - ightarrow padding: same as Conv2d
 - ightarrow output_padding

Output Padding

- For stride=2, output dimensions always odd
- Add output padding of 1

Fractionally-Strided Convolution

Implementation

- Inverts Conv2d
- torch.nn.ConvTranspose2d
- Parameters
 - → stride: fractional stride
 - \rightarrow padding: same as Conv2d
 - \rightarrow output padding

Output Padding

- For stride=2, output dimensions always odd
- Add output padding of 1

Network Implementation

Reminder: Modules in PvTorch

- A module can be
 - → A separate layer (e.g. Linear, ReLU, ...)
 - → A block of layers (e.g. ResNet Block)
 - → A complete network (e.g. LeNet, ResNet)
- \Rightarrow A network is a module

Building Cascaded Modules

- Submodules can be networks
- Auto-encoder: two networks
 - \rightarrow Encoder network $\vec{\varphi} = \mathcal{E}(\mathcal{X})$
 - ightarrow Decoder network $\mathcal{Y} = \mathcal{D}(\vec{\varphi})$
- Creating auto-encoder:
 - → Implement encoder module
 - → Implement decoder module
 - → Instantiate both in __init__
 - → Cascade both in forward
 - \rightarrow Access through variable

Network Implementation

Encoder Network

```
class Encoder (torch.nn.Module):
def __init__(self, ...):
  self.conv1 = torch.nn.Conv2d(...)
```

Decoder Network

```
class Decoder (torch.nn.Module):
 def __init__(self, ...):
     self.deconv1 = torch.nn.ConvTranspose2d(...)
```

Auto-Encoder Network

```
class AutoEncoder (torch.nn.Module):
 def __init__(self, ...):
     self.encoder = Encoder(...)
     self.decoder = Decoder(...)
```

Network Implementation

Encoder Network

- ① 2D convolution: Q_1 channels, 5×5 kernel, stride 2, padding 2
- activation function
- 3 2D convolution: Q_2 channels, 5×5 kernel, stride 2, padding 2
- flatten layer
- activation function
- lacktriangle fully-connected layer: K outputs

Decoder Network

- lacktriangledown fully-connected layer: K inputs
- activation function
- reshaping
- ② 2D fractionally strided-convolution: Q_2 channels, 5×5 kernel, stride 2, padding 2
- activation function
- lacktriangledown 2D fractionally strided-convolution: Q_1 channels, 5×5 kernel, stride 2, padding 2

Decoder goes backward through encoder layers

Outline

- Convolutional Auto-Encoder
 - Dataset
 - Auto-Encoder
 - Training and Evaluation

Dataset

Task 1: Dataset

- Rely on MNIST dataset, ignore labels
 - ightarrow Except for evaluation Task 7 where we need labels
- Create training and validation/test sets
 - → Simple ToTensor transform
- DataLoaders: B=32 for training, B=100 for validation
- Nothing special.

Auto-Encoder

Task 2: Encoder Network

- Implement convolutional Encoder network
- Provide constructor __init__(self, ...)
- Provide forward(self, x) implementation

Task 3: Decoder Network

- Implement fractionally strided-convolutional Decoder network
- Provide constructor __init__(self, ...)
- Provide forward(self, x) implementation
- Output values should be in range [0,1]

Auto-Encoder

Task 4: Joint Auto-Encoder Network

- Implement AutoEncoder
- Combine Encoder and Decoder
- Implement __init__(self, ...) and forward(self, x)

Test 1: Output Sizes

- Instantiate auto-encoder network: $Q_1 = 32, Q_2 = 32, K = 10$
- Define input X for network
- Compute output of network and check its size and value range
- Check network.encoder and network.decoder separately

Task 5: Training and Validation Loop

- ullet Use \mathcal{J}^{L_2} loss function <code>torch.nn.MSELoss</code>
 - ightarrow Compare output ${f Y}$ with input ${f X}$
- Use Adam optimizer with learning rate $\eta = 0.001$ (or lower)
- Train for 10 epochs
 - → Compute training set loss during training
 - → Compute and report validation set loss after epoch

When losses stagnate after epoch 2, reduce η !

Task 6: Reconstruction Result

- Take batch of images from test set
- Run batch through auto-encoder
- Plot input and output next to each other
 - \rightarrow 10 rows with 10 pairs of images

Task 7: Mean Vector per Class

- Use encoder to extract deep feature for validation samples
- Split them by class label
- ullet Compute average feature $ec{\mu}_o$ for each class o

Task 8: Decode Mixtures of Classes

- Iterate over all possible pairs (o_1, o_2) of classes
- Compute mixed deep feature $\frac{\vec{\mu}_{o_1} + \vec{\mu}_{o_2}}{2}$ of the two classes \rightarrow If $o_1 = o_2 = o$, we get the class average $\vec{\mu}_o$
- Use decoder to generate output for deep feature
- Plot in a grid with 10 rows and 10 columns

