Interrogation écrite n°05

NOM: Prénom: Note:

1. Donner la décomposition en facteurs irréductibles de $X^4 + 1$ dans $\mathbb{C}[X]$ et dans $\mathbb{R}[X]$.

Les racines complexes de $X^4 + 1$ sont les racines quatrièmes de -1. Ainsi

$$X^{4} + 1 = \left(X - e^{\frac{i\pi}{4}}\right) \left(X - e^{-\frac{i\pi}{4}}\right) \left(X - e^{-\frac{3i\pi}{4}}\right) \left(X - e^{-\frac{3i\pi}{4}}\right) = (X^{2} - \sqrt{2}X + 1)(X^{2} + \sqrt{2}X + 1)$$

2. Donner la liste des inversibles de l'anneau $\mathbb{Z}/21\mathbb{Z}$.

On cherche donc les éléments de [[0, 20]] premiers avec 21. Ainsi

$$(\mathbb{Z}/21\mathbb{Z})^{\times} = \{\overline{1}, \overline{2}, \overline{4}, \overline{5}, \overline{8}, \overline{10}, \overline{11}, \overline{13}, \overline{16}, \overline{17}, \overline{19}, \overline{20}\}$$

3. Soit u: $\left\{ egin{array}{ll} \mathbb{K}_n[\mathbf{X}] & \longrightarrow & \mathbb{K}_n[\mathbf{X}] \\ \mathbf{P} & \longmapsto & \mathbf{P}' \end{array} \right.$. Déterminer le polynôme minimal de u.

Il est clair que $u^{n+1}=0$ donc π_u divise X^{n+1} . Mais $u^n\neq 0$ donc $\pi_u=X^{n+1}$.

4. Calculer $\varphi(360)$ où φ désigne l'indicatrice d'Euler.

Puisque
$$360 = 2^3 \cdot 3^2 \cdot 5$$
,

$$\varphi(360) = 360 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) \left(1 - \frac{1}{5}\right) = 96$$

5. Déterminer les matrices $M \in \mathcal{M}_n(\mathbb{R})$ vérifiant $M^2 - 3M + 2I_n = 0$ et tr(M) = 2n.

Soit M une telle matrice. Comme $X^2 - 3X + 2 = (X - 1)(X - 2)$ annule M, M est diagonalisable et $Sp(M) \subset \{1, 2\}$. En notant m_1 et m_2 les multiplicités respectives des valeurs propres 1 et 2, on a donc 2 annule M, M est diagonalisable et 2 annule 2 annu

6. Déterminer le polynôme minimal de la matrice
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
.

On remarque que $A^2 = 3A$ donc $X^2 - 3X = X(X-3)$ est un polynôme annulateur de A. Ainsi π_A divise X(X-3). Par conséquent, $\pi_A = X$ ou $\pi_A = X - 3$ ou $\pi_A = X(X-3)$. Mais comme $A \neq 0$, $\pi_A \neq X$ et comme $A \neq 3I_3$, $\pi_A \neq X - 3$. Par conséquent, $\pi_A = X(X-3)$.