$12n_{0042} \ (K12n_{0042})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle 18u^{38} + 107u^{37} + \dots + 16b - 35, -35u^{38} - 228u^{37} + \dots + 16a - 167, u^{39} + 6u^{38} + \dots + 6u + 1 \rangle$$

$$I_2^u = \langle -au + b, a^5 + a^4u - a^4 - 2a^3u + a^2 + au - a - u, u^2 - u + 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 49 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 18u^{38} + 107u^{37} + \dots + 16b - 35, -35u^{38} - 228u^{37} + \dots + 16a - 167, u^{39} + 6u^{38} + \dots + 6u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 2.18750u^{38} + 14.2500u^{37} + \dots + 54.5000u + 10.4375 \\ -1.12500u^{38} - 6.68750u^{37} + \dots + 2.68750u + 2.18750 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 3.31250u^{38} + 20.9375u^{37} + \dots + 51.8125u + 8.25000 \\ -1.12500u^{38} - 6.68750u^{37} + \dots + 2.68750u + 2.18750 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 3.18750u^{38} + 21.3125u^{37} + \dots + 64.1875u + 11.5000 \\ -3.12500u^{38} - 15.5625u^{37} + \dots - 3.93750u + 1.06250 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.0625000u^{37} - 0.312500u^{36} + \dots - 2.31250u + 0.937500 \\ 0.0625000u^{38} + 0.312500u^{37} + \dots + 4.31250u^{2} + 0.0625000u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.875000u^{38} + 5.18750u^{37} + \dots + 5.56250u + 1.93750 \\ 0.687500u^{37} + 3.43750u^{36} + \dots + 3.93750u + 0.812500 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{3}{4}u^{38} - 4u^{37} + \dots - \frac{17}{8}u - \frac{1}{16} \\ \frac{1}{8}u^{38} + \frac{1}{16}u^{37} + \dots - \frac{35}{16}u - \frac{14}{16} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $\frac{227}{16}u^{38} + \frac{1349}{16}u^{37} + \dots + \frac{1989}{16}u + \frac{25}{2}$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{39} + 8u^{38} + \dots - 10u - 1$
c_2, c_5	$u^{39} + 6u^{38} + \dots + 6u + 1$
<i>c</i> ₃	$u^{39} - 6u^{38} + \dots + 227832u + 23497$
c_4, c_8	$u^{39} + u^{38} + \dots + 2048u + 1024$
	$u^{39} - 9u^{38} + \dots + 179u - 17$
c_7, c_{10}, c_{11}	$u^{39} + 3u^{38} + \dots - 3u + 1$
c_9	$u^{39} - 3u^{38} + \dots - 3u + 1$
c_{12}	$u^{39} + 11u^{38} + \dots + 267u + 73$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{39} + 52y^{38} + \dots + 58y - 1$
c_2, c_5	$y^{39} + 8y^{38} + \dots - 10y - 1$
c_3	$y^{39} + 96y^{38} + \dots - 14329729890y - 552109009$
c_4, c_8	$y^{39} + 55y^{38} + \dots - 5242880y - 1048576$
c_6	$y^{39} + 9y^{38} + \dots + 2665y - 289$
c_7, c_{10}, c_{11}	$y^{39} - 35y^{38} + \dots - 3y - 1$
<i>c</i> ₉	$y^{39} - 67y^{38} + \dots - 3y - 1$
c_{12}	$y^{39} - 7y^{38} + \dots - 292543y - 5329$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.217775 + 0.986965I		
a = 0.478937 - 0.405328I	-5.08086 + 0.15570I	-9.83989 - 1.69370I
b = -0.504345 - 0.384424I		
u = 0.217775 - 0.986965I		
a = 0.478937 + 0.405328I	-5.08086 - 0.15570I	-9.83989 + 1.69370I
b = -0.504345 + 0.384424I		
u = 0.795838 + 0.548145I		
a = 0.160432 + 0.477438I	2.99441 + 1.56903I	2.04971 - 2.63058I
b = 0.134027 - 0.467904I		
u = 0.795838 - 0.548145I		
a = 0.160432 - 0.477438I	2.99441 - 1.56903I	2.04971 + 2.63058I
b = 0.134027 + 0.467904I		
u = 0.395368 + 0.848396I		
a = -0.328402 + 0.067571I	-0.32291 + 1.65676I	-2.57784 - 5.09388I
b = 0.187167 + 0.251900I		
u = 0.395368 - 0.848396I		
a = -0.328402 - 0.067571I	-0.32291 - 1.65676I	-2.57784 + 5.09388I
b = 0.187167 - 0.251900I		
u = 0.835550 + 0.682012I		
a = -0.122808 - 0.434535I	-1.08176 + 5.00495I	-4.00000 - 5.49460I
b = -0.193746 + 0.446832I		
u = 0.835550 - 0.682012I		
a = -0.122808 + 0.434535I	-1.08176 - 5.00495I	-4.00000 + 5.49460I
b = -0.193746 - 0.446832I		
u = 0.820354 + 0.374203I		
a = -0.141671 - 0.553737I	-0.79445 - 1.82967I	-2.60045 + 1.37386I
b = -0.090989 + 0.507274I		
u = 0.820354 - 0.374203I		
a = -0.141671 + 0.553737I	-0.79445 + 1.82967I	-2.60045 - 1.37386I
b = -0.090989 - 0.507274I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.516539 + 1.059320I		
a = 0.121118 - 0.354987I	1.18484 + 3.42225I	0 3.84715I
b = -0.438608 + 0.055062I		
u = 0.516539 - 1.059320I		
a = 0.121118 + 0.354987I	1.18484 - 3.42225I	0. + 3.84715I
b = -0.438608 - 0.055062I		
u = 0.639199 + 1.006420I		
a = -0.023637 + 0.351005I	-2.22349 + 0.53849I	-5.53531 + 1.24212I
b = 0.368368 - 0.200573I		
u = 0.639199 - 1.006420I		
a = -0.023637 - 0.351005I	-2.22349 - 0.53849I	-5.53531 - 1.24212I
b = 0.368368 + 0.200573I		
u = 0.463738 + 1.131070I		
a = -0.157364 + 0.415273I	-3.39936 + 6.68540I	-5.94355 - 5.90487I
b = 0.542679 - 0.014588I		
u = 0.463738 - 1.131070I		
a = -0.157364 - 0.415273I	-3.39936 - 6.68540I	-5.94355 + 5.90487I
b = 0.542679 + 0.014588I		
u = -0.146263 + 0.696408I		
a = 1.54768 - 0.36171I	-6.52633 + 3.36713I	-11.83061 - 4.84786I
b = -0.025530 - 1.130720I		
u = -0.146263 - 0.696408I		
a = 1.54768 + 0.36171I	-6.52633 - 3.36713I	-11.83061 + 4.84786I
b = -0.025530 + 1.130720I		
u = -0.887416 + 0.936488I		
a = -1.41323 - 1.17323I	2.09421 - 3.28881I	0
b = -2.35284 + 0.28232I		
u = -0.887416 - 0.936488I		
a = -1.41323 + 1.17323I	2.09421 + 3.28881I	0
b = -2.35284 - 0.28232I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.018770 + 0.851930I		
a = 1.42653 + 0.88370I	7.27711 + 5.72796I	0
b = 2.20615 - 0.31501I		
u = -1.018770 - 0.851930I		
a = 1.42653 - 0.88370I	7.27711 - 5.72796I	0
b = 2.20615 + 0.31501I		
u = -1.012200 + 0.890886I		
a = -1.38271 - 0.92662I	12.39950 + 1.53189I	0
b = -2.22509 + 0.29392I		
u = -1.012200 - 0.890886I		
a = -1.38271 + 0.92662I	12.39950 - 1.53189I	0
b = -2.22509 - 0.29392I		
u = -0.364738 + 0.539930I		
a = -2.16669 - 0.02235I	-5.82107 - 5.39582I	-8.47886 + 1.18765I
b = -0.802344 + 1.161710I		
u = -0.364738 - 0.539930I		
a = -2.16669 + 0.02235I	-5.82107 + 5.39582I	-8.47886 - 1.18765I
b = -0.802344 - 1.161710I		
u = -0.985908 + 0.935010I		
a = 1.34032 + 0.99776I	10.13770 - 2.96345I	0
b = 2.25434 - 0.26951I		
u = -0.985908 - 0.935010I		
a = 1.34032 - 0.99776I	10.13770 + 2.96345I	0
b = 2.25434 + 0.26951I		
u = -0.939008 + 1.004180I		
a = 1.25206 + 1.11303I	9.89948 - 4.09070I	0
b = 2.29337 - 0.21215I		
u = -0.939008 - 1.004180I		
a = 1.25206 - 1.11303I	9.89948 + 4.09070I	0
b = 2.29337 + 0.21215I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.894077 + 1.060480I		
a = 1.15539 + 1.20734I	6.5826 - 12.7219I	0
b = 2.31337 - 0.14581I		
u = -0.894077 - 1.060480I		
a = 1.15539 - 1.20734I	6.5826 + 12.7219I	0
b = 2.31337 + 0.14581I		
u = -0.918184 + 1.042580I		
a = -1.18777 - 1.16067I	11.8898 - 8.5952I	0
b = -2.30068 + 0.17262I		
u = -0.918184 - 1.042580I		
a = -1.18777 + 1.16067I	11.8898 + 8.5952I	0
b = -2.30068 - 0.17262I		
u = -0.304253 + 0.441278I		
a = 2.04672 + 0.15438I	-0.29697 - 2.23720I	-4.18982 + 2.52656I
b = 0.690845 - 0.856203I		
u = -0.304253 - 0.441278I		
a = 2.04672 - 0.15438I	-0.29697 + 2.23720I	-4.18982 - 2.52656I
b = 0.690845 + 0.856203I		
u = -0.035517 + 0.529752I		
a = -1.44264 - 0.17191I	-0.933124 + 0.964799I	-7.52834 - 5.01190I
b = -0.142307 + 0.758134I		
u = -0.035517 - 0.529752I		
a = -1.44264 + 0.17191I	-0.933124 - 0.964799I	-7.52834 + 5.01190I
b = -0.142307 - 0.758134I		_
u = -0.356068		
a = -2.32453	-1.93664	-5.10000
b = -0.827691		

II. $I_2^u = \langle -au + b, \ a^5 + a^4u - a^4 - 2a^3u + a^2 + au - a - u, \ u^2 - u + 1 \rangle$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a \\ au \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a \\ au \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -au + a \\ au \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -au + a \\ au \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -a^{2}u - 1 \\ -a^{2}u + a^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -a^{4} + a^{2}u - a^{2} + 1 \\ -a^{4}u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} a^{4}u - a^{4} - a^{2}u + a^{2} - 1 \\ -a^{4}u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $a^4u a^4 4a^3 5a^2u + 5a^2 + 3au + a 4u 6$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_5	$(u^2 - u + 1)^5$
c_2	$(u^2 + u + 1)^5$
c_4, c_8	u^{10}
<i>c</i> ₆	$(u^5 - 3u^4 + 4u^3 - u^2 - u + 1)^2$
	$(u^5 + u^4 - 2u^3 - u^2 + u - 1)^2$
c_9, c_{12}	$(u^5 + u^4 + 2u^3 + u^2 + u + 1)^2$
c_{10}, c_{11}	$(u^5 - u^4 - 2u^3 + u^2 + u + 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_5	$(y^2 + y + 1)^5$
c_4, c_8	y^{10}
c_6	$(y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1)^2$
c_7, c_{10}, c_{11}	$(y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1)^2$
c_9,c_{12}	$(y^5 + 3y^4 + 4y^3 + y^2 - y - 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.500000 + 0.866025I		
a = -0.881753 - 0.117510I	-0.329100 + 0.499304I	-2.53179 + 1.09027I
b = -0.339110 - 0.822375I		
u = 0.500000 + 0.866025I		
a = 0.542643 + 0.704866I	-0.32910 + 3.56046I	-5.04069 - 7.43801I
b = -0.339110 + 0.822375I		
u = 0.500000 + 0.866025I		
a = 0.383413 - 0.664091I	-2.40108 + 2.02988I	-6.62546 - 4.42764I
b = 0.766826		
u = 0.500000 + 0.866025I		
a = -0.811514 - 0.994721I	-5.87256 - 2.37095I	-6.60498 - 0.29447I
b = 0.455697 - 1.200150I		
u = 0.500000 + 0.866025I		
a = 1.267210 + 0.205431I	-5.87256 + 6.43072I	-9.19707 - 7.98272I
b = 0.455697 + 1.200150I		
u = 0.500000 - 0.866025I		
a = -0.881753 + 0.117510I	-0.329100 - 0.499304I	-2.53179 - 1.09027I
b = -0.339110 + 0.822375I		
u = 0.500000 - 0.866025I		
a = 0.542643 - 0.704866I	-0.32910 - 3.56046I	-5.04069 + 7.43801I
b = -0.339110 - 0.822375I		
u = 0.500000 - 0.866025I		
a = 0.383413 + 0.664091I	-2.40108 - 2.02988I	-6.62546 + 4.42764I
b = 0.766826		
u = 0.500000 - 0.866025I		
a = -0.811514 + 0.994721I	-5.87256 + 2.37095I	-6.60498 + 0.29447I
b = 0.455697 + 1.200150I		
u = 0.500000 - 0.866025I		
a = 1.267210 - 0.205431I	-5.87256 - 6.43072I	-9.19707 + 7.98272I
b = 0.455697 - 1.200150I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^2 - u + 1)^5)(u^{39} + 8u^{38} + \dots - 10u - 1)$
c_2	$((u^2+u+1)^5)(u^{39}+6u^{38}+\cdots+6u+1)$
c_3	$((u^2 - u + 1)^5)(u^{39} - 6u^{38} + \dots + 227832u + 23497)$
c_4, c_8	$u^{10}(u^{39} + u^{38} + \dots + 2048u + 1024)$
<i>C</i> ₅	$((u^2 - u + 1)^5)(u^{39} + 6u^{38} + \dots + 6u + 1)$
<i>c</i> ₆	$((u^5 - 3u^4 + 4u^3 - u^2 - u + 1)^2)(u^{39} - 9u^{38} + \dots + 179u - 17)$
c ₇	$((u^5 + u^4 - 2u^3 - u^2 + u - 1)^2)(u^{39} + 3u^{38} + \dots - 3u + 1)$
<i>c</i> ₉	$((u5 + u4 + 2u3 + u2 + u + 1)2)(u39 - 3u38 + \dots - 3u + 1)$
c_{10}, c_{11}	$((u5 - u4 - 2u3 + u2 + u + 1)2)(u39 + 3u38 + \dots - 3u + 1)$
c_{12}	$((u5 + u4 + 2u3 + u2 + u + 1)2)(u39 + 11u38 + \dots + 267u + 73)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y^2+y+1)^5)(y^{39}+52y^{38}+\cdots+58y-1)$
c_2, c_5	$((y^2 + y + 1)^5)(y^{39} + 8y^{38} + \dots - 10y - 1)$
<i>c</i> ₃	$((y^2 + y + 1)^5)(y^{39} + 96y^{38} + \dots - 1.43297 \times 10^{10}y - 5.52109 \times 10^8)$
c_4, c_8	$y^{10}(y^{39} + 55y^{38} + \dots - 5242880y - 1048576)$
<i>c</i> ₆	$((y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1)^2)(y^{39} + 9y^{38} + \dots + 2665y - 289)$
c_7, c_{10}, c_{11}	$((y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1)^2)(y^{39} - 35y^{38} + \dots - 3y - 1)$
<i>C</i> 9	$((y^5 + 3y^4 + 4y^3 + y^2 - y - 1)^2)(y^{39} - 67y^{38} + \dots - 3y - 1)$
c_{12}	$((y^5 + 3y^4 + 4y^3 + y^2 - y - 1)^2)(y^{39} - 7y^{38} + \dots - 292543y - 5329)$