

Faculty Of Computers and Artificial Intelligence Cairo University

212202.FCI.AI496.Selected Topics in Artificial intelligence-2

Assignment (3)

AYA SABRY MOHAMED

2018035

Submitted to Eng.Salah Mostafa

May 2022

Colab links

https://colab.research.google.com/drive/1UyhF-HWr7C5NzdCLgutuyIxAdEdFIVAe?usp=sharing

(finished with jupyter code and pdf)

• df.head(5)

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	car name
0	18.0	8	307.0	130	3504	12.0	70	1	chevrolet chevelle malibu
1	15.0	8	350.0	165	3693	11.5	70	1	buick skylark 320
2	18.0	8	318.0	150	3436	11.0	70	1	plymouth satellite
3	16.0	8	304.0	150	3433	12.0	70	1	amc rebel sst
4	17.0	8	302.0	140	3449	10.5	70	1	ford torino

• df1.info()

```
class 'pandas.core.frame.DataFrame'>
RangeIndex: 398 entries, 0 to 397
Data columns (total 10 columns):
    Column
                Non-Null Count Dtype
---
                -----
0
                398 non-null
                              float64
    mpg
1
    cylinders
               398 non-null
                              int64
    displacement 398 non-null
                              float64
3 horsepower
               398 non-null
                              int64
4 weight
                398 non-null
                              int64
5 acceleration 398 non-null
                            float64
6 model year
                398 non-null int64
    origin
                398 non-null
                              int64
    car name
                398 non-null
                              object
                398 non-null
                              int8
dtypes: float64(3), int64(5), int8(1), object(1)
memory usage: 28.5+ KB
```

• Use regular expression to extract only 2-3 first characters from column car name

```
df1['Type'] = df['car name'].str.extract('(.{2,3})', expand=False)
print(df1['Type'].T.value_counts())
```

df.describe().T count mean std min 25% 50% 75% max 7.815984 mpg 398.0 23.514573 9.0 17.500 23.0 29.000 46.6 cylinders 398.0 5.454774 1.701004 3.0 4.000 4.0 8.000 8.0 displacement 398.0 193.425879 104.269838 68.0 104.250 148.5 262.000 455.0 398.0 2970.424623 846.841774 2223.750 2803.5 3608.000 weight 1613.0 5140.0 15.568090 acceleration 398.0 2.757689 8.0 13.825 15.5 17.175 24.8 model year 398.0 76.010050 3.697627 70.0 73.000 79.000 82.0 76.0 origin 0.802055 2.000 398.0 1.572864 1.0 1.000 1.0 3.0

• Use Pearson correlation which represent MIC as in our book 📘 page(60)

df1.corr(method ='pearson')

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	Туре
mpg	1.000000	-0.775396	-0.804203	-0.753177	-0.831741	0.420289	0.579267	0.563450	0.288368
cylinders	-0.775396	1.000000	0.950721	0.818454	0.896017	-0.505419	-0.348746	-0.562543	-0.286512
displacement	-0.804203	0.950721	1.000000	0.873330	0.932824	-0.543684	-0.370164	-0.609409	-0.302291
horsepower	-0.753177	0.818454	0.873330	1.000000	0.841770	-0.665833	-0.397772	-0.454271	-0.236643
weight	-0.831741	0.896017	0.932824	0.841770	1.000000	-0.417457	-0.306564	-0.581024	-0.265872
acceleration	0.420289	-0.505419	-0.543684	-0.665833	-0.417457	1.000000	0.288137	0.205873	0.138012
model year	0.579267	-0.348746	-0.370164	-0.397772	-0.306564	0.288137	1.000000	0.180662	0.077134
origin	0.563450	-0.562543	-0.609409	-0.454271	-0.581024	0.205873	0.180662	1.000000	0.374745
Туре	0.288368	-0.286512	-0.302291	-0.236643	-0.265872	0.138012	0.077134	0.374745	1.000000

```
corr_matrix = df1.corr(method='pearson')

plt.figure(figsize=(25,25))
sns.clustermap(corr_matrix, annot=True, fmt = ".2f", dendrogram_ratio=0.01)

plt.title("Correlation between Features")
plt.show()
```



```
colors = sns.diverging_palette(150, 275, as_cmap=True)
sns.heatmap(df1.corr(), center=0, cmap=colors)
plt.xticks(fontsize= 15)
plt.yticks(fontsize= 15)
```


• Plot allpairwise relationship (like book p.60)

```
sns.pairplot(df1, diag_kind="kde")
plt.show()
```


Mutual information

- This is as Assignment was required
- From sklearn.feature_selection.mutual_info_regression
- The main advantage in this method that we can use continuous data with discrete data without any need to transformation but I use transformation just once when y= displacement (just for try).
- The term "discrete features" is used instead of naming them "categorical", because it describes the essence more accurately. For example, pixel intensities of an image are discrete features (but hardly categorical) and you will get better results if mark them as such. Also note, that treating a continuous variable as discrete and vice versa will usually give incorrect results, so be attentive about that.
- True mutual information can't be negative. If its estimate turns out to be negative, it is replaced by zero.

This concept based on reading from:

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_regression_html

•
$$I(X; Y) = H(X) - H(X | Y)$$

1-Mutual information between x= data and y= mpg

displacement	0.7834541975190548
weight	0.7752353889847736
horsepower	0.7173123149839054
cylinders	0.5604999092038978
model year	0.2948140934041654
origin	0.24267984255442943
Туре	0.21358315745584155
acceleration	0.1326139750195825

2-Mutual information between x=data and y= displacement

displacement	1.6402015660596843
weight	0.9357700710469548
cylinders	0.8232087633850549
horsepower	0.7304796993104103
mpg	0.6357091481272019
Туре	0.35972082899951596
origin	0.32673863209376197
acceleration	0.20017386087715394
model year	0.08556060457598846

3-Mutual information between x=data and y= cylinders

displacement	0.831562209829865
weight	0.6932003088647258
horsepower	0.6217627501276608
mpg	0.530709921545065
origin	0.2683126937944862
acceleration	0.22605598042718977
Туре	0.2027509161573695
model vesr	0 1270373808088241

4-Mutual information between x=data and y= weight

displacement	0.9403041251692796
horsepower	0.7973322375414331
mpg	0.7921481147324081
cylinders	0.6880967959844455
origin	0.26056710847805964
model year	0.1655033209732637
Туре	0.16078897503566658
acceleration	0.145596692307842

5-Mutual information between x=data and y= horsepower

weight	0.800373902571315
displacement	0.7589674911159447
mpg	0.7393965904713986
cylinders	0.6857429203371184
Туре	0.4242956334289114
acceleration	0.3250427024517828
origin	0.3191656768978477
model year	0.22309322484323513

6-Mutual information between x=data and y= acceleration

horsepower	0.3090736117985924
cylinders	0.22289051994816522
displacement	0.1955403698595577
weight	0.16818006489815485
mpg	0.14624436066256052
origin	0.08098417237763811
model year	0.04683495636948276
Туре	0.04065119711338738

7-Mutual information between x=data and y=origin

Index	V
Туре	0.8283374108821122
horsepower	0.32620246822876364
cylinders	0.32229183887743096
displacement	0.298019106108009
weight	0.2633489489397567
mpg	0.1817251913133502
acceleration	0.11576108545158359
model year	0.029941625773480124
01 05	

8-Mutual information between x=data and y= model year

mpg	0.30910819995600
horsepower	0.2338675086576336
weight	0.159126209306093
cylinders	0.0815379076875320
displacement	0.0769871229954726
acceleration	0.0570893584331573
origin	0.041788058735909
Туре	

9-Mutual information between x=data and y= Type

origin	0.8547301573971928
horsepower	0.4132377717545732
displacement	0.33500552442209086
cylinders	0.2229849025800952
mpg	0.2158539090072149
weight	0.17744422336415733
acceleration	0.02772262281742588
model year	0.023660855026222967

Ch.... 00 44