Clustering Techniques

Version 2 (2023)

Cluster Analysis

- Unsupervised(unlabeled data) machine learning technique
- Aims to find patterns(e.g., many sub-groups, size of each group, common characteristics, data cohesion...) while gathering data samples
- Group them into similar records using predefined distance measures like the Euclidean distance and such

Usage

- can be considered the initial step when dealing with a new dataset
 - to extract insights and understand the data distribution.
- can also be used to perform dimensionality reduction (e.g. encoding)
- might also serve as a preprocessing or intermediate step for others algorithms like classification, prediction, and other data mining applications.

Types of Clustering: based on the area of overlap

Hard clustering:

- Clusters do not overlap: k-means, kmeans++.
- A data point belongs to one cluster only.

Soft clustering:

- Clusters can overlap: Fuzzy c-means, EM (Expectation Maximization).
- A data object can exist in more than one cluster with a certain probability or degree of membership.

Hard vs Soft Clustering

Hard Clustering

Soft Clustering

Type of Clustering: based on the purpose

Monothetic:

- Exists some common properties between cluster members(e.g., 25% of patients show side effects due to vaccine A)
- the data are divided on values generated by a single feature.

Polythetic:

- Exists some degree of similarity between cluster members without having a common property (e.g., dissimilarity measure):
- the data are divided on values generated by all features.

Some common categories of clustering alg's

k-means or Lloyd's Algorithm

- A centroid-based algorithm
- One of the most popular partitioning algorithms
- n data objects are split into k partitions (k << n) where each partition represents a cluster.
- Each data object must belong to one group only.
- maximize the distance between each pair of clusters' centers
- minimize the distance between observations within each cluster (SSE: sum of squared errors)

k-means or Lloyd's Algorithm

works well if the following conditions are met:

- The distribution's variance of each attribute is spherical.
- Clusters are linearly separable.
- Clusters have similar numbers of observations.
- Variables present the same variance.

Elbow Method

The standard approach to determine k :

- The algorithm ran for different values of k (e.g., k= 1, 2, 3, 4...).
- Calculates the sum of distances between each cluster member and its centroid: WCSS - Within-Cluster Sum of Square.
 - Ex. optimum k = 3 in this graph

Silhouette Analysis

another method for choosing the right value of k by computing the Silhouette coefficient for each cluster

from sklearn.metrics import silhouette_samples

sample_silhouette_values =
silhouette_samples(X, cluster_labels)

← Silhouette scores for k = [2,3,4,5,6,7]

Silhouette Score

Silhouette Score(n=2): 0.8062146115881652

Silhouette Score(n=3): 0.5969732708311737

- 1: Means clusters are well apart from each other and clearly distinguished.
- 0: Means clusters are indifferent, or we can say that the distance between clusters is not significant.
- -1: Means clusters are assigned in the wrong way.

Silhouette Score = (b-a)/max(a,b)

- a = average intra-cluster distance i.e. the average distance between each point within a cluster.
- b = average inter-cluster distance i.e. the average distance between all clusters.

k-means or Lloyd's Algorithm

- Pick k random centroids from the dataset.
- Compute the distances between each data point w.r.t clusters' centroids
 - using a proper dissimilarity measure(e.g., Euclidean distance).
- 3. Assign each data point to the nearest cluster
- 4. Reposition the centroids by computing the mean of the data points.
- 5. Repeat until clusters become stable or the WCCS reaches its minimum.

(H) Therefore k-means works only on numerical data!

k-means or Llyod's Algorithm

Advantages

- The learning curve is relatively steep
- Widely implemented by a variety of packages
- Fast convergence for clustering small datasets.
- Easy to implement.

Drawbacks

- Computationally expensive for large datasets (k becomes large.).
- Sometimes difficult to choose an initial value for k.
- Sensitive to the centroids' initialization.
- Strong sensitivity to outliers.
- Works only on numerical data.
- Fails to give good quality of clustering for non-convex shaped groups.

Example results

k-means++

The idea is that to try to spread out the centers while allocating a new center per iteration.

compute the probability for each data point by dividing its distance by the total distance.

assign a new cluster center to the point that has the highest probability or the highest distance.

the likelihood of a data object being the center of a new cluster is proportional to the distance squared.

converge much faster since the centroids have been chosen carefully and far away from each other.

k-means++

Fuzzy Cmeans (FCM)

- Various shades of clusters (e.g., disjoint, non disjoints...) are allowed to form
 - A data point can exist in one or more clusters.
- A membership degree function is used to measure the degree of belonging of a data point to each cluster.
 - It describes the probability that a data point belongs to a certain cluster.
- The FCM aims to minimize an objective function: n c

$$rg\min_{C} \sum_{i=1}^{n} \sum_{j=1}^{c} w_{ij}^{m} \|\mathbf{x}_i - \mathbf{c}_j\|^2$$

FCM Algorithm

- 1. Select a number of initial fuzzy pseudo centroids and hyper-parameter *m*. The higher *m* is, the fuzzier the cluster.
- 2. Update the cluster centers (c_k for cluster k) using a fuzzy partition.
- 3. Updates the weights
- 4. Compute the objective function J.
- 5. Repeat until stabilizing the centroids ($\Delta I < \varepsilon$)

$$c_k = rac{\sum_x w_k(x)^m x}{\sum_x w_k(x)^m}.$$

$$w_{ij} = rac{1}{\sum_{k=1}^{c} \left(rac{\|\mathbf{x}_i - \mathbf{c}_j\|}{\|\mathbf{x}_i - \mathbf{c}_k\|}
ight)^{rac{2}{m-1}}}$$

Fuzzy C-means (FCM)

Advantages

- Better results for overlapped data in contrast to k-means.
- Low time complexity.
- Convergence is guaranteed.

Drawbacks

- Sensitive to the initial values of number of clusters and hyperparameter m.
- Sensitive to outliers.

Densitybased Clustering -DBSCAN

- Dense regions in the data space are separated from those with lower density.
- Observations are assigned to a given cluster if its density in a certain location is larger than a predefined threshold.
- The local density is defined by two parameters:
 - 1. the radius ϵ of the circle that contains a certain number of neighbors around a given point
 - 2. a minimum number of points around that radius : minPts

DBSCAN

• Core Points: A data point p is a core point if $|\mathbf{Nbhd}(p,\varepsilon)| >= minPts$.

- Border Points: A data point q is a border point if $\mathbf{Nbhd}(q, \varepsilon)$ contains less than minPts data points, but q is reachable from some core point p.
- Outlier: A data point o is an outlier if it is neither a core point nor a border point. Essentially, this is the "other" class.

Density-reachable Concepts

DBSCAN Algorithm

- 1. Pick a point at random that has not been assigned to a cluster or been designated as an *outlier*.
 - Compute its neighborhood to determine if it's a core point.
 - If yes, start a cluster around this point.
 - If no, label the point as an *outlier*.
- 2. For a *core point* (and thus a cluster):
 - expand the cluster by adding all directly-reachable points to the cluster.
 - Perform "neighborhood jumps" to find all densityreachable points
 - add them to the cluster (reachable = same cluster).
 - If an *outlier* is added, change that point's status from *outlier* to *border point*.
- 3. Repeat until all points are either assigned to a cluster or designated as an *outlier*.

DBSCAN Algorithm

Self-Organizing Map (SOM)

- an unsupervised neural network
- produces a low dimensional, discretized representation from the input space of the training samples, known as a map
- utilizes competitive learning techniques
 - unlike others using error-correction learning methods
- maintains the structural information from the training data.

Feature Mapping

- The neuron with the lowest distance will be the winner of the competition.
- The Euclidean metric is commonly used to measure distance.

Neighborhood

- Winning neuron's weights is to be updated.
 - So are its neighbors
- Neighborhood is dependent on
 - time (time incremented each new input data)
 - distance between the winner neuron and the other neuron (How far is the neuron from the winner neuron).

Adaptation

SOM Example: Economic wellbeing

A	A	8	C	D	. E
1	Country	Country C	Health Ex	Education E	Inflation
2	Aruba	ABW	9.418971	5.92467022	-2.13637
3	Afghanist	AFG	4.371774		-8.28308
4	Angola	AGO	5.791339		13.73145
5	Albania	ALB	6.75969		2.280502
6	Andorra	AND	4.57058	3.1638701	
7	Arab Wor	ARB	4.049924		3.524814
8	United Ar	ARE	7.634758		
9	Argentine	ARG	4.545323	4.88997984	6.282774
10	Armenia	ARM		3.84079003	3,406767
11	American	ASM	4.862062		
12	Antigua a	ATG	9.046056	2.55447006	-0.55016
13	Australia	AUS	11.19444	5.09262991	1.820112
14	Austria	AUT	5.85024	5.7674098	0.506313
15	Azerbaija	AZE	6.964187	3.22430992	1.401056
16	Burundi	801	10.39434	6.3197999	10.98147
17	Belgium	BEL	4.46431	6.41535997	-0.05315
18	Benin	BEN	7.405431	4.22204018	2.15683

SOM Pros and Cons

Pros

- Data can be easily interpreted and understood
 - with the help of techniques like reduction of dimensionality and grid clustering.
- Self-Organizing Maps are capable of handling several types of classification problems
 - providing a useful, and intelligent summary from the data at the same time.

Cons

- It does not create a generative model for the data
 - therefore the model does not understand how data is being created.
- Self-Organizing Maps do not perform well while working with categorical data and even worse for mixed types of data.
- The model preparation time is comparatively very slow and hard to train against the slowly evolving data.