Yıldız Technical University Computer Engineering Department 2023-2024 Spring BLM3620 Digital Signal Processing

DLM3020 Digi		
Homework 4, Form:	Α	

Name:	
Surname:	
Student I.D.:	
Signature:	

Signal	FT
x(t)	X(w)
y(t)	
$\frac{1}{2\pi} \int_{-\infty}^{\infty} X(w)e^{jwt}dw$	$Y(w)$ $\int_{-\infty}^{\infty} x(t)e^{-jwt}dt$
$\delta(t)$	1
$\Pi(t) = \begin{cases} 0, & t > \frac{1}{2} \\ 1, & t \le \frac{1}{2} \end{cases}$	$sinc\left(rac{w}{2\pi} ight)$
$\Pi(t) = \begin{cases} 0, & t > \frac{1}{2} \\ 1, & t \le \frac{1}{2} \end{cases}$ $\Lambda(t) = \begin{cases} 0, & t > 1 \\ 1 - t , & t \le 1 \end{cases}$	$sinc^2\left(\frac{w}{2\pi}\right)$
	$2\pi\delta(w)$
e^{-jw_0t}	$2\pi\delta(w-w_0)$
$ \begin{array}{c c} e^{- a t}u(t) \\ e^{ a t}u(-t) \end{array} $	$\begin{array}{c c} & 1 \\ \hline a +jw \\ \hline & 1 \end{array}$
$e^{ a t}u(-t)$	$\frac{1}{ a -jw}$
$e^{- at }$	$\frac{2 a }{ a ^2+av^2}$
$e^{-\pi t^2}$	$ \begin{array}{c c} & a -jw \\ 2 a \\ & a ^2+w^2 \\ e^{-\frac{w^2}{4\pi}} \end{array} $
u(t)	$\pi\delta(w) + \frac{1}{\cdot}$
$\cos(w_0 t)$	$\pi\delta(w) + \frac{1}{jw}$ $\pi\delta(w + w_0) + \pi\delta(w - w_0)$
• / 1)	$i = \delta(\alpha_0 + \alpha_0)$ $i = \delta(\alpha_0 + \alpha_0)$
$ \frac{\sin(w_0 t)}{\sum_{n=-\infty}^{\infty} \delta(t-n)} $ $ \frac{t^n x(t)}{ t } $ $ \frac{1}{1+t^2} $ $ ax(t) + by(t) $	$\int_{n=-\infty}^{\infty} \delta(w-n)$ $\int_{n=-\infty}^{\infty} \delta(w-n)$ $\int_{n=-\infty}^{\infty} \frac{d^n X(w)}{dw^n}$ $\frac{-\frac{d^n X(w)}{dw^n}}{\pi e^{- w }}$
$t^n x(t)$	$j^n \frac{\mathrm{d}^n X(w)}{\mathrm{d}^n x}$
	$-\frac{2}{2u^2}$
$\frac{1}{1 \pm t^2}$	$\pi e^{- w }$
ax(t) + by(t)	aX(w) + bY(w)
ax(t) + by(t) $x(t-a)$	$aX(w) + bY(w)$ $X(w)e^{-jwa}$
$x(\frac{t}{a})$	a X(aw)
x(t) * y(t)	X(w)Y(w)
x(t)y(t)	$\frac{1}{2\pi}X(w)*Y(w)$
$x(t)e^{jw_0t}$	$X(w-w_0)$
$x^*(t)$	$X^*(-w)$
$\begin{array}{c} x(-t) \\ dx(t) \end{array}$	X(-w)
$\frac{\frac{\mathrm{d}x(t)}{\mathrm{d}t}}{t}$	jwX(w)
$\int_{-\infty} x(\tau)d\tau$	$\frac{1}{jw}X(w)$
x(t) is real	$X(w) = X^*(-w)$
x(t) is real and even	X(w) is real and even
x(t) is real and odd	X(w) is imaginary and odd
$\int_{-\infty}^{\infty} x(t) ^2 dt$	$\frac{1}{2\pi} \int\limits_{-\infty}^{\infty} \left X(w) \right ^2 dw$

Sequence	DTFT
x[n]	$X(e^{jw})$
y[n]	$Y(e^{jw})$
$ \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{jw}) e^{jwn} dw $	$Y(e^{jw})$ $\sum_{n=-\infty}^{\infty} x[n]e^{-jwn}$
$\delta[n]$	1
$\delta[n-a]$	e^{-jwa}
$\frac{\delta[n]}{\delta[n-a]}$ $\sum_{m=-\infty}^{\infty} \delta[n-m]$	$2\pi \sum_{k=-\infty}^{\infty} \delta(w - 2\pi k)$ $2\pi \sum_{k=-\infty}^{\infty} \delta(w + a - 2\pi k)$
e^{-jan}	$2\pi \sum_{k=-\infty}^{\infty} \delta(w + a - 2\pi k)$
u[n]	$\frac{1}{1 - e^{-jw}} + \pi \sum_{k = -\infty}^{\infty} \delta(w - 2\pi k)$
$a^n u[n], a < 1$	$\frac{1}{1-ae^{-jw}}$
$-a^n u[-n-1], a > 1$	$\frac{1}{1-ae^{-jw}}$
$(n+1)a^n u[n], a < 1$	$ \begin{array}{c c} 1-e^{-jw} & 2 & 2 & 2 \\ k = -\infty & 1 & 2 & 2 \\ \hline 1-ae^{-jw} & 1 & 2 & 2 \\ \hline 1-ae^{-jw} & 1 & 2 & 2 \\ \hline 1-ae^{-jw} & 1 & 2 & 2 \\ \hline 1-ae^{-jw} & 2 & 2$
$\cos(na)$	$\pi \sum_{k=-\infty}^{\infty} \delta(w - a - 2\pi k) + \delta(w + a - 2\pi k)$ $\frac{\pi}{j} \sum_{k=-\infty}^{\infty} \delta(w - a - 2\pi k) - \delta(w + a - 2\pi k)$
$\sin(na)$	$\frac{\pi}{j} \sum_{k=-\infty}^{\infty} \delta(w - a - 2\pi k) - \delta(w + a - 2\pi k)$
$x[n] = \begin{cases} 0, & n > N \\ 1, & n \le N \end{cases}$	$\frac{\sin\left(w\left(N+\frac{1}{2}\right)\right)}{\sin\left(\frac{w}{2}\right)}$
$\lfloor x[n] - \rfloor 1, n \leq N$	$\sin\left(\frac{w}{2}\right)$
$\frac{\sin(An)}{\pi n}$	$X(e^{jw}) = \begin{cases} 1, & w \le A \\ 0, & A < w \le \pi \end{cases}, X(e^{jw}) \text{ periodic by } 2\pi$
ax[n] + by[n]	$ \begin{array}{c} aX(e^{jw}) + bY(e^{jw}) \\ X(e^{jw})e^{-jwn_0} \\ X(e^{j(w-w_0)}) \end{array} $
$x[n-n_0]$	$X(e^{jw})e^{-jwn_0}$
$x[n]e^{jwn_0}$	$X(e^{j(w-w_0)})$
$x^*[n]$	$X^*(e^{-jw})$ $X(e^{-jw})$
x[-n]	$X(e^{-jw})$
x[n] * y[n]	$X(e^{jw})Y(e^{jw})$
x[n]y[n]	$\frac{X(e^{jw})Y(e^{jw})}{\frac{1}{2\pi}\int\limits_{2\pi}X(e^{j\theta})Y(e^{j(w-\theta)})d\theta}$
x[n] - x[n-1]	$(1 - e^{-jw}) \underbrace{X}_{\infty}(e^{jw})$
$\sum_{k=-\infty}^{\infty} x[k]$	$\frac{1}{(1-e^{-jw})} + \pi X(1) \sum_{k=-\infty}^{\infty} \delta(w - 2\pi k)$
nx[n]	$ \frac{j\frac{\mathrm{d}X(e^{jw})}{\mathrm{d}w}}{X(e^{jw}) = X^*(e^{-jw})} $
x[n] is real	$X(e^{jw}) = X^*(e^{-jw})$
x[n] is real and even	$X(e^{jw})$ is real and even
x[n] is real and odd	$X(e^{jw})$ is imaginary and odd
$\sum_{n=-\infty}^{\infty} \left x[n] \right ^2$	$\frac{1}{2\pi} \int\limits_{-\infty}^{\infty} \left X(e^{jw}) \right ^2 dw$

Sequence	DFT	
x[n]	X[k]	
y[n]	Y[k]	
$\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j2\pi \frac{kn}{N}}$	$\sum_{n=0}^{N-1} x[n] e^{-j2\pi \frac{kn}{N}}$	
$\sum_{k=-\infty}^{\infty} \delta[n+Nk]$	1 (period N)	
1 (period N)	$N\sum_{m=-\infty}^{\infty}\delta[k+Nm]$	
$e^{j2\pi k_0 n}$	$\frac{m=-\infty}{N\delta[((k-k_0))_N]}$	
$\cos\left(2\pi\frac{k_0n}{N}\right)$	$\frac{N}{2} \left(\delta[((k-k_0))_N] + \delta[((k+k_0))_N] \right)$	
ax[n] + by[n]	aX[k] + bY[k]	
$x[((n-m))_N]$	$X[k]e^{-j2\pi\frac{km}{N}}$	
X[n]	$NX[((-k))_N]$	
x[n]y[n]	$\frac{1}{N}X[k] \circledast Y[k]$	
$x[n] \circledast y[n]$	X[k]Y[k]	
$x^*[n]$	$X^*[((-k))_N]$	
$x[((-n))_N]$	$X^*[k]$	
Re $\{x[n]\}$	$\frac{\frac{1}{2}\left(X[((k))_N] + X^*[((-k))_N]\right)}{\frac{1}{2}\left(X[((k))_N] - X^*[((-k))_N]\right)}$	
$j\operatorname{Im}\left\{x[n]\right\}$	2 (1 () /)	
$\frac{1}{2} (x[((n))_N] + x^*[((-n))_N])$	$\operatorname{Re}\left\{ X[k] ight\}$	
$\frac{\frac{1}{2} (x[((n))_N] + x^*[((-n))_N])}{\frac{1}{2} (x[((n))_N] - x^*[((-n))_N])}$	$j\operatorname{Im}\left\{X[k]\right\}$	
$\sum_{n=0}^{N-1} \left x[n] \right ^2$	$\frac{1}{N} \sum_{k=0}^{N-1} \left X[k] \right ^2$	

10 0	κ-	
Sequence	ZT	Region of Convergence
x[n]	X(z)	
y[n]	Y(z)	
$a^n u[n]$	$\frac{1}{1-az^{-1}}$	z > a
$-a^n u[-n-1]$	$\frac{\frac{1}{1-az^{-1}}}{az^{-1}}$	z < a
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$ az^{-1}	z > a
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$\delta[n]$	1	All z
$\delta[n-n_0]$	z^{-n_0}	All z
u[n]	$\frac{1}{1-z^{-1}}$	z > 1
$\cos(\omega_0 n)u[n]$	$\frac{\frac{1-z^{-1}}{1-z^{-1}}}{\frac{1-z^{-1}\cos(\omega_0)}{1-2z^{-1}\cos(\omega_0)+z^{-2}}}$	z > 1
$\sin(\omega_0 n)u[n]$	$\frac{z^{-1}\sin(\omega_0)}{1-2z^{-1}\cos(\omega_0)+z^{-2}}$	z > 1
$a^n \cos(\omega_0 n) u[n]$	$\frac{1-az^{-1}\cos(\omega_0)}{1-2az^{-1}\cos(\omega_0)+a^2z^{-2}}$	z > a
$a^n \sin(\omega_0 n) u[n]$	$\frac{az^{-1}\sin(\omega_0)}{1 - a2z^{-1}\cos(\omega_0) + a^2z^{-2}}$	z > a
Ax[n] + By[n]	AX(z) + BY(z)	
$x[n-n_0]$	$X(z)z^{-n_0}$	
$a^n x[n]$	$X(a^{-1}z)$	
$x^*[n]$	$X^*(z^*)$	
x[-n]	$X(z^{-1})$	
x[n] * y[n]	X(z)Y(z)	
nx[n]	$-z\frac{dX(z)}{dz}$	
x[n] is causal	$x(0) = \lim_{z \to \infty} X(z)$	
x[n] is causal	$x(\infty) = \lim_{z \to 1} [z - 1]X(z)$	

1. Determine the fundamental period of x[n].

$$x[n] = \cos(\frac{n\pi}{10}) + \sin(\frac{n\pi}{15})$$

2. Determine whether or not the signal x[n] is periodic.

$$x[n] = \sin(\sqrt{2} + 0.2n)$$

3. Given that real valued signal $x_1[n]$ is even by definition $x_1[n] = x_1[-n]$, and real valued signal $x_2[n]$ is odd by definition $x_2[n] = -x_2[-n]$, determine symmetricality (even/odd) of y[n].

$$y[n] = x_1[n] \cdot x_2[n]$$

4. Given that the power of real valued signal x[n] is defined as $P = \sum_{n=-\infty}^{\infty} x^2[n]$, compute the power in y[n].

$$y[n] = 2^n \cdot u[-n]$$

5. Given that x[n] is the system input and y[n] is the system output, determine whether or not the following systems is time (shift)-invariant.

$$y[n] = x[n] \cdot u[n]$$

6. Given that x[n] is the system input and y[n] is the system output, determine whether or not the following systems is linear.

$$y[n] = \operatorname{Im}(x[n])$$

7. Given that x[n] is the system input and y[n] is the system output, determine whether or not the following systems is casual.

$$y[n] = x[|n|]$$

8. Given that x[n] is the system input and y[n] is the system output, determine unit sample response h[n] of the system.

$$y[n] = 0.5y[n-1] + 4x[n-2]$$

9. The responses of a linear time (shift)-invariant system to specified inputs are defined as follows:

T T			
	input		roponeo
	name	symbol	reponse
	unit sample	$\delta[n]$	h[n]
	unit step	u[n]	s[n]

calculate h[n] for the system, given that s[n] = u[n] - u[n-5].

10. Find the Fourier transform of x(t).

$$x(t) = \begin{cases} \frac{1}{2}, & -T < t < T \\ 0, & other \end{cases}$$

11. Given that the cut-off frequency of the low pass filter (LPF) is w_c evaluate the output y(t). Note: LPF allows frequency values between $-w_c < w < w_c$.

$$\cos(\omega_c + \omega_d)t$$

$$\sin \omega_c t$$
LPF
$$y(t)$$

$$x[n] = 2\delta[n+2] - \delta[n+1] + 3\delta[n] - \delta[n-1] + 2\delta[n-2]$$

12. Given that $x[n] \stackrel{DTFT}{\Longleftrightarrow} X(e^{jw})$ is a DTFT pair, evaluate $X(e^{jw})|_{w=\pi}$ without explicitly finding $X(e^{jw})$.

$$x[n] = 2\delta[n+2] - \delta[n+1] + 3\delta[n] - \delta[n-1] + 2\delta[n-2]$$

13. Given that $x[n] \stackrel{DTFT}{\Longleftrightarrow} X(e^{jw})$ and $y[n] \stackrel{DTFT}{\Longleftrightarrow} Y(e^{jw})$ are DTFT pairs, prove the convolution theorem.

$$x[n] * y[n] \stackrel{DTFT}{\Longleftrightarrow} X(e^{jw})Y(e^{jw})$$

14. Find the inverse DTFT of $X(e^{jw})$.

$$X(e^{jw}) = \cos^2(w)$$

- 15. Given the 6-point sequence x[n] = [4, -1, 4, -1, 4, -1], determine its 6-point DFT sequence X[k].
- 16. If the 4-point DFT an unknown length-4 sequence v[n] is V[k] = [1, 4+j, -1, 4-j], determine v[n].
- 17. Find z-transforms of x[n].

$$x[n] = 6\delta[n] - 7\delta[n-3] - 2\delta[n] - 9\delta[n-5]$$

18. If the region of convergence (ROC) for any $x[n] \stackrel{ZT}{\iff} X(z)$ z-transform pair includes the unit cirle in the complex plane then, $x[n] \stackrel{DTFT}{\iff} X(e^{jw})$ DTFT pair can also be calculated (converges). Given that the following X(z) includes the unit circle in its region of convergence, evaluate DTFT of x[n] at $w=\pi$.

$$X(z) = \frac{z + 2z^{-2} + z^{-3}}{1 - 3z^{-4} + z^{-5}}$$

19. Evaluate h[n] * x[n] using the convolution property of z-transform.

$$h[n] = (0.5)^n u[n]$$
$$x[n] = 3^n u[-n]$$

20. Given that $x[n] \stackrel{ZT}{\iff} X(z)$ is a z-transform pair find x[n].

$$X(z) = 2 + 5(z^2 + z^{-2})$$

21. Given that $x[n] \stackrel{ZT}{\iff} X(z)$ is a z-transform pair find x[n] for |z| > 2.

$$X(z) = \frac{1}{1 + 3z^{-1} + 2z^{-2}}$$

22. A continuous-time sinusoid $a_1(t) = \cos(w_1 t + 0.1\pi)$ is sampled at $f_{s_1} = 40Hz$ to give $a_1[n]$, and a second continuous-time sinusoid $a_2(t) = \cos(w_2 t + 0.1\pi)$ is sampled at $f_{s_2} = 50~Hz$ to give $a_2[n]$. If $w_2 = 30\pi~rad/s$, determine w_1 so that $a_1[n] = a_2[n]$. Assume there is no aliasing when sampling $a_1(t)$.

23. A complex bandpass filter is constructed by frequency shifting a running sum filter. evaluate and plot the magnitude frequency response of the complex bandpass filter $|H_B(e^{jw})|$.

$$h[n] = \sum_{k=0}^{4} \delta[n-k]$$

$$h_B[n] = h[n]e^{jw_0n}$$

$$h_B[n] \stackrel{DTFT}{\Longleftrightarrow} H_B(e^{jw})$$

24. A complex bandpass analog signal $x_a(t)$ has Fourier transform that is non-zero over the range of $[w_1, w_2]$. The signal is sampled to produce the sequence $x[n] = x_a(nT_s)$. What is the smallest sampling frequency that can be used so that $x_a(t)$ may be recovered from its samples x[n].

25. Plot STFT (Short Time Fourier Transform) representation of a 1D chirp signal with different window sizes. Compare the results with FT of the same signal. Comment on what might be an optimal window size.