Methodology.....

Model Integration

- $G_f(\cdot;\theta_f)$ need to cooperate with $G_d(\cdot;\theta_d)$ to minimize the $L_d(\theta_f,\theta_d)$ to improve performance
- $G_f(\cdot;\theta_f)$ tries to fool $G_e(\cdot;\hat{\theta}_e)$ to achieve event-invariant representations by maximizing $L_e(\theta_f,\theta_e)$
- Define loss of this three-player game as
 - $L_{final}(\theta_f, \theta_d, \theta_e) = L_d(\theta_f, \theta_d) \lambda L_e(\theta_f, \theta_e)$
 - In this paper, simply set $\lambda = 1$ to without tuning the trade-off parameter.

Methodology.....

Model Integration

 parameter set we seek is the saddle point of the final objective function, use SGD to solve problem:

$$(\hat{\theta}_f, \hat{\theta}_d) = \underset{\theta_f, \theta_d}{arg \ min} \ L_{final}(\theta_f, \theta_d, \hat{\theta}_e)$$

$$\hat{\theta}_e = \underset{\theta_e}{arg\ max}\ L_{final}(\hat{\theta}_f, \hat{\theta}_d, \theta_e)$$

- Here adopt the gradient reversal layer (GRL)
 - Acts as an identity function during forward stage, and it multiplies gradient with $-\lambda$ and passes the results to the preceding layer during back-prop stage.
 - GRL easily added between $G_{\!f}(\;\cdot\;; heta_{\!f})$ and $G_{\!e}(\;\cdot\;;\hat{ heta}_{\!e})$