Блочные шифры. Режимы блочных шифров

Лекция №4

БЛОЧНЫЕ ШИФРЫ - ИСТОРИЯ

- 1949 Клод Шеннон: Перестановки + замены
- 1970 Lucifer (IBM): сеть Фейстеля + SP-сеть
- 1973 Конкурс НИСТ: никто не прошел!
- 1974 2-ой конкурс: выиграл DES (IBM)
- 1977 DES признан официальным стандартом в США
- 1989 создание ГОСТ 28147-89
- **1990** публикация ГОСТ 28147-89
- 1997 взлом DES на суперкомпьютере за 3 дня
- 1997 конкурс на AES
- 2000 выигрывает Rijndael
- **2002** Rijndael признан новым официальным стандартом в США

Блочные шифры - *RC5*, *RC6*, *DES*, *3DES*, *AES*, ГОСТ 28147-89

Требования к блочным шифрам

Общие требования к блочным шифрам:

- шифр должен быть технически применим для закрытия массивов данных произвольного объема;
- шифр должен быть эффективно реализуем в виде устройства, имеющего ограниченный объем памяти.

Следовательно, криптоалгоритм, должен быть пошаговым – сообщение разбивается на блоки ограниченного размера, и за один шаг шифруется один блок:

$$P = (P_1, P_2, ..., P_n), |P_i| \le N$$
, для i от 1 до n ,

где N — максимальный размер блока.

Практически всегда размер блока полагают постоянным:

$$|P_1| = |P_2| = \dots = |P_{n-1}| = N, |P_n| \le N$$

Условия стойкости (по Шеннону)

- рассеивание один бит исходного текста должен влиять на несколько битов шифротекста, оптимально на все биты в пределах одного блока. При шифровании двух блоков данных с минимальными отличиями между ними должны получаться совершенно непохожие друг на друга блоки шифротекста. Аналогично и для зависимости шифротекста от ключа один бит ключа должен влиять на несколько битов шифротекста;
- перемешивание шифр должен скрывать зависимости между символами исходного текста и шифротекста. Если шифр достаточно хорошо «перемешивает» биты исходного текста, то соответствующий шифротекст не содержит никаких статистических, и, тем более, функциональных закономерностей.

Архитектура блочных шифров

Шифр обычно составляют из более простых шифрующих преобразований. Простое шифрующие преобразование – преобразование, которое реализуется аппаратно относительно несложной логической схемой или программно несколькими компьютерными командами.

Основные шифрующие преобразования:

- **перестановка** (permutation) перестановка структурных элементов шифруемого блока данных (битов, символов, цифр);
- **замена, подстановка** (substitution) замена группы элементов шифруемого блока на другую группу по индексной таблице;
- **функциональное преобразование** (function) различные сдвиги, логические и арифметические операций.

Шифр перестановки

Шифр замены

Замена (подстановка) может быть представлена устройство с n входами и выходами. Устройство содержит мультиплексор и демультиплексор, а также 2^n внутренних соединений их выводов, которые могут быть выполнены $2^n!$ различными способами (*ключ* блока подстановок).

Свойства блока подстановок:

- включает любые линейные и нелинейные преобразования, может заменить любой входной блок цифр на любой выходной блок;
- аппаратно реализуется с помощью запоминающих устройств, программно индексированным чтением из оперативной памяти, размером (в битах):

$$V = 2^n n$$
;

Подстановка по таблице

	1	2	3
0	15	10	2
1	3	17	9
2	8	14	1
3	0	16	45
4	•••	•••	• • •
7	20	5	38
8	•••	•••	• • •
15	12	11	4

Скремблеры

Матричное шифрование

Сообщение: ЗАБАВА = <8,1,2,1,3,1>

$$A = \begin{vmatrix} 1 & 4 & 8 \\ 3 & 7 & 2 \\ 6 & 9 & 5 \end{vmatrix}$$

$$C_1 = \begin{vmatrix} 1 & 4 & 8 & 8 & 28 \\ 3 & 7 & 2 & 1 & 35 \\ 6 & 9 & 5 & 2 & 67 \end{vmatrix}$$

$$C_2 = \begin{vmatrix} 1 & 4 & 8 & 1 & 21 \\ 3 & 7 & 2 & 3 & 26 \\ 6 & 9 & 5 & 1 & 38 \end{vmatrix}$$

Матричное шифрование

$$A^* = \begin{vmatrix} 17 & -3 & -15 \\ 52 & -43 & 15 \end{vmatrix} A^T = \begin{vmatrix} 17 & 52 & -48 \\ -3 & -43 & 22 \\ -15 & 15 & -5 \end{vmatrix}$$

$$A^{-1} = \begin{vmatrix} -17/115 & -52/115 & 48/115 \\ 3/115 & 43/115 & -22/115 \\ 15/115 & -15/115 & 5/115 \end{vmatrix}$$

$$7/1151 = -52/115 = 48/115 | |28| |8|$$

$$B_1 = \begin{vmatrix} -17/1151 & -52/115 & 48/115 & | 28 & | 8 \\ 3/115 & 43/115 & -22/115 & | 35 & | = 1 \\ 15/115 & -15/115 & 5/115 & | 67 & | 2 \end{vmatrix}$$

$$B_1 = \begin{vmatrix} -17/115 & -52/115 & 48/115 & 21 & 1 \\ 3/115 & 43/115 & -22/115 & 26 & 3 \\ 15/115 & -15/115 & 5/115 & 38 & 1 \end{vmatrix}$$

Матрица Винжера

Ключевое слово: «ЗОНД»

$$A B B \Gamma \Pi E X 3 U K Л M H O П P C T УФ X Ц Ч Ш Щ Ъ Ы Ь Э Ю Я _ A B B Г Д E X 3 U K Л M H O П P C T У Ф X Ц Ч Ш Щ Ъ Ы Ь Э Ю Я _ A B B Г Д E X 3 U K Л M H H H O П P C T УФ X Ц Ч Ш Щ Ъ Ы Ь Э Ю Я _ A B B Г Д E X 3 U K Л M H Д E X 3 U K Л M H O П P C T УФ X Ц Ч Ш Щ Ъ Ы Ь Э Ю Я _ A B B Г Д E X 3 U K Л M H O П P C T УФ X Ц Ч Ш Щ Ъ Ы Ь Э Ю Я _ A B B Г$$

ИТЕРАТИВНЫЕ БЛОЧНЫЕ ШИФРЫ

1949 – Клод Шеннон «Теория связи в секретных системах». Идея итеративных блочных шифров на основе SP-сетей (перестановки + замены)

Шифр преобразует блоки открытого текста (m) постоянной длины (n) в блоки шифротекста (C) той же длины посредством циклически повторяющихся обратимых функций, известных как раундовые функции

 $C_{i} = R_{k_{i}} (C_{i-1})$

R – раундовая функция

 k_i – подключ , где $1 \le i \le S$

і – номер раунда

S – количество раундов

С_і - значение блока после і-го раунда

n – длина блока

SP-CETИ

SP-сеть = substitution-permutation network (SPN)

Чередующиеся стадии подстановки (Substitution) и перестановки (Permutation)

S-блоки (substitution box or S-box) — таблица подстановки

Р-блоки (permutation box or P-box) — таблица перестановки

Основные критерии шифра по Шеннону:

- Рассеивание (влияние одного символа на несколько символов шифротекста)
- Перемешивание (усложнение взаимосвязей между элементами данных)

SP-CETИ

Пример SP сети с 3-мя раундами

Упрощенная SP модель (1971)

СЕТЬ ФЕЙСТЕЛЯ

1971 – Хорст Фейстель патентует Lucifer с сетью Фейстеля

Блок открытого текста

Шифрование:

li = ri-1, $ri = li-1 \oplus F(ki, ri-1)$

Расшифрование:

 $r_{i-1} = l_i$, $l_{i-1} = r_i \oplus F(k_i, l_i)$

Одну и ту же схему

можно использовать и для шифрования, и для расшифрования

Блок шифротекста

L_S R_S

DES НА ОСНОВЕ СЕТИ ФЕЙСТЕЛЯ

Блок открытого текста

DES – Data Encryption Standart

- Начальная перестановка ІР
- Расщепление блока пополам
- 16 раундов сети Фейстеля
- Соединение половин блока
- Конечная перестановка IP-1 (обратная начальной)

IP

Блок шифротекста

DES - СТРУКТУРА

- \circ Число раундов S=16
- \circ Длина блока n = 64 бита
- Размер ключа k 56 бит
- Подключи *k1*, *k2*,...по 48 битов (разворачивание из основного ключа через подстановки, перестановки и циклические сдвиги)

Действие F

- 1. Перестановка с расширением $(32 \rightarrow 48)$
- Сложение с подключом (48 + 48)
- 3. Расщепление (48 = 8 частей по 6 битов)
- 4. Подстановки через $S блок (8 * (6 \rightarrow 4) = 32)$
- 5. Перестановки через P − блок (32 → 32)

DES - СТРУКТУРА

DES – S-БЛОКИ

На вход подается 6 бит:

S-блок №1

14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
15	12	8	2	4	9	1	7	5	11	3	14	10	0	5	13

На выходе получается 4 бита

Объединение блочных шифров

Двойное шифрование

$$C = E_{k2}(E_{k1}(M)); \qquad M = D_{k1}(D_{k2}(C))$$

Тройное шифрование с двумя ключами

$$C = E_{k1}(D_{k2}(E_{k1}(M))); \qquad M = D_{k1}(E_{k2}(D_{k1}(C)))$$

Тройное шифрование с тремя ключами

$$C = E_{k1}(D_{k2}(E_{k3}(M))); \qquad M = D_{k1}(E_{k2}(D_{k3}(C)))$$

3DES (TRIPLE DES)

Использует 3 ключа по 56 бит (3*56=168)

Различные модификации 3DES:

- DES-EEE3
- o DES-EDE3
- o DES-EEE2
- o DES-EDE2

DES – РЕЖИМЫ ШИФРОВАНИЯ

Режимы шифрования:

- ECB Electronic Code Book (электронная кодовая книга)
- **CBC** Cipher Block Chaining (сцепление блоков шифротекста)
- **OFB** Output FeedBack (обратная связь вывода)
- CFB Cipher FeedBack (обратная связь шифра)

РЕЖИМЫ ШИФРОВАНИЯ - ЕСВ

• ECB (*Electronic Code Book – Режим* электронной кодовой книги) – прост в обращении, но не защищен от атак с удалением и вставками. Ошибка в одном бите влияет на целый блок в расшифрованном тексте. Можно работать с блоками независимо и даже распараллелить вычисления.

РЕЖИМЫ ШИФРОВАНИЯ - СВС

• CBC (Cipher Block Chaining-Режим сцепления блоков) — предотвращает потери при атаке со вставкой и удалением. Ошибки при шифровании и в открытом тексте дают ошибку не только в текущем блоке, но и портит следующие блоки.

РЕЖИМЫ ШИФРОВАНИЯ - CFB

• CFB (Cipher FeedBack – режим обратной связи по иифротексту) — защита от атак вставки и удаления. Ошибки в открытом тексте и при шифровании распрастраняются дальше по шифротексту.

РЕЖИМЫ ШИФРОВАНИЯ - OFB

 ○ OFB (Output FeedBack – режим обратной связи по выходу) – Ошибка в открытом тексте остается в блоке. Ошибка при шифровании распространяется по шифротексту.

FOCT 28147-89

«ГОСТ 28147-89 Системы обработки информации. Защита криптографическая. Алгоритм криптографического преобразования»

1989 – год создания

1990 – опубликован для «служебного пользования»

1994 – полностью открыт

Работает, как и DES, на основе сети Фейстеля:

- \circ Число раундов S=32
- \circ Длина блока n = 64 бита
- Размер ключа k 256 бит
- оПодключи k1, k2,..., k8 по 32 бита повторяются 4 раза

FOCT 28147-89

ГОСТ 28147-89 – РЕЖИМЫ ШИФРОВАНИЯ

- □ Простая замена (ECB electronic code book)
- Гаммирование
- Гаммирование с обратной связью (CFB Cipher FeedBack)
- *Имитовставка* (MAC message authentication code)

Простая замена (ЕСВ)

ГОСТ 28147-89 - РЕЖИМЫ РАБОТЫ

Гаммирование

Гаммирование с обратной связью (CFB)

Имитовставка (МАС)

Использование строки случайных бит

- 1. Генерируется строка случайных бит *R* того же размера, что и сообщение *M*.
- 2. R шифруется первым алгоритмом.
- 3. $M \oplus R$ шифруется вторым алгоритмом
- 4. Шифротекст сообщения является объединением результатов этапов 2 и 3.