TC 4 parte II Entrega única com as demais partes em 29/10/19

- 1. Ajuste os dados apresentados na tabela abaixo, utilizando o Método dos Mínimos Quadrados, por:
- a) Uma reta.
- b) Uma parábola y=a+bx+cx²
- c) Como você compararia as duas curvas com relação aos dados? Calcule a soma do erro quadrático para cada ponto.

х	1	2	3	4	5	6	7	8
f(x)	0,5	0,6	0,9	0,8	1,2	1,5	1,7	2,0

2. Use o método dos quadrados mínimos para ajustar uma curva aos dados da população brasileira entre os anos de 1872 e 1996. Estime a população no ano 2000 e compare com os dados reais do IBGE.

Ajuste uma curva na forma de um polinômio de segundo grau y=a+bx+cx² onde y denota a população e x o ano.

Tabela da população brasileira (em milhões):

ano	1872	1890	1900	1920	1940	1950	1960	1970	1980	1991	1996
população	9.9	14.3	17.4	30.6	41.2	51.9	70.2	93.1	119.0	146.2	157.1

3. Seja os valores da função apresentados na tabela abaixo. Use o Método de Mínimos Quadrados para determinar a equação da curva que melhor ajusta os pontos dados. Antes, faça um gráfico com os pontos para escolha da melhor curva a se ajustar aos pontos.

f(x) 2,0 1,153 0,45 0,4 0,5 0,0 0,2 0,6 0,512 1,2 2,05

4. [Do livro Análise Numérica - R. Burden e D. Faires] Em um artigo tratando da eficiência da utilização de energia das larvas das mariposas (*Pachysphinx modesta*), L. Schroeder utilizou os seguintes dados para determinar a relação entre W, o peso das larvas vivas em gramas, e R, o consumo de oxigênio das larvas em mililitros por hora. Por razões biológicas, suponha que exista uma relação da forma R = bW^α entre W e R.

Encontre o polinômio de mínimos quadrados linear logarítmico utilizando

ln R = lnb + a ln W.

Veja dica postada no classroom.

AMPROXIMATION	W	R	W	R	W	R	W	R	W	D
	0,017	0,154	0,025	0,23	0,020	0,181		0,180		R
(0,087	0,296	0,111	0,357	0,085		0,020		0,025	0,234
(0,174	0,363	0,211	0,366		0,334		0,299	0,233	0,537
	1,11	0,531	0,999	0,771	1,29		0,210	0,428	0,783	1,47
	1,74	2,23	3,02			0,87	1,32	1,15	1,35	2,48
	4,09			2,01	3,04	3,59	3,34	2,83	1,69	1,44
		3,58	4,28	3,28	4,29	3,40	5,48	4,15	2,75	1,84
	5,45	3,52	4,58	2,96	5,30	3,88			4,83	4,66
	5,96	2,40	4,68	5,10					5,53	6,94