

Author Index—Volume 16 (1994/95)

(The issue number is given in front of the page numbers)

Akrivis, G.D., V.A. Dougalis and N.A. Kam- panis, Error estimates for finite element methods for a wide-angle parabolic equa-		Devine, K.D., see deCougny, H.L. Dougalis, V.A., see Akrivis, G.D.	(1-2) 157-182 (1-2) 81-100
tion Asarin, E., E. Gorin, M. Krasnosel'skii and N. Kuznetsov, On some algorithms for non-parametric identification of linear systems	(1-2) 81-100 (1-2) 265-269	Flaherty, J.E. and P.K. Moore, Integrated space-time adaptive hp-refinement methods for parabolic systems Flaherty, J.E., see deCougny, H.L.	(3) 317–341 (1–2) 157–182
Babuška, I., T. Strouboulis, S.K. Gangaraj and C.S. Upadhyay, $\eta\%$ -superconvergence in the interior of locally refined		Gangaraj, S.K., see Babuška, I. Gerasoulis, A., A festschrift to honor Professor Robert Vichnevetsky on his 65th birthday	(1-2) 3- 49 (1-2) 1- 2
meshes of quadrilaterals: superconver- gence of the gradient in finite element solutions of Laplace's and Poisson's equations	(1-2) 3- 49	Gerasoulis, A. and T. Yang, Performance bounds for column-block partitioning of parallel Gaussian Elimination and Gauss-Jordan methods	(1-2) 283-297
Bainov, D.D., Z. Kamont and E. Minchev, Difference methods for impulsive differ-		Gorin, E., see Asarin, E.	(1-2) 265-269
ential-functional equations	(4) 401–416	Hadjidimos, A., see Lai, YL.	(1-2) 183-200
Beauwens, R. and B. Tombuyses, Graph per- turbations	(1-2) 251-264	Houstis, E.N., see Lai, YL.	(1-2) 183-200
Berzins, M. and J.M. Ware, Positive cell- centered finite volume discretization methods for hyperbolic equations on ir- regular meshes	(4) 417–438	Jackiewicz, Z., R. Vermiglio and M. Zen- naro, Variable stepsize diagonally im- plicit multistage integration methods for	
Blom, J.G. and J.G. Verwer, VLUGR3: a vectorizable adaptive grid solver for	(4) 417-438	ordinary differential equations	(3) 343–367
PDEs in 3D, Part I: Algorithmic aspects		Kamont, Z., see Bainov, D.D.	(4) 401–416
and applications	(1-2) 129-156	Kampanis, N.A., see Akrivis, G.D. Kincaid, D.R., Stationary second-degree it-	(1-2) 81-100
Brezinski, C. and M. Redivo-Zaglia, On the kernel of sequence transformations Bwemba, R. and R. Pasquetti, On the influ-	(1-2) 239-244	erative methods Knight, D.D., A fully implicit Navier-Stokes algorithm using an unstructured grid and	(1-2) 227-237
ence matrix used in the spectral solution of the 2D Stokes problem (vorticity-		flux difference splitting	(1-2) 101-128
stream function formulation)	(3) 299–315	Kok, J., see Sommeijer, B.P. Koren, B., Condition improvement for point	(1-2) 201-225
Cuminato, J.A., On the uniform convergence		relaxation in multigrid, subsonic Euler- flow computations	(4) 457–469
of a perturbed collocation method for a class of Cauchy integral equations	(4) 439–455	Krasnosel'skii, M., see Asarin, E. Kuznetsov, N., see Asarin, E.	(1-2) 265-269 (1-2) 265-269
deCougny, H.L., K.D. Devine, J.E. Flaherty, R.M. Loy, C. Özturan and M.S. Shephard, Load balancing for the parallel adaptive solution of partial differential		Lai, YL., A. Hadjidimos, E.N. Houstis and J.R. Rice, General interior Hermite collocation methods for second-order ellip-	(1-2) 203-209
equations	(1-2) 157-182	tic partial differential equations	(1-2) 183-200

Lee, D., A high-order numerical method for		Sanz-Serna, J.M., An unconventional sym-	
solving ocean acoustic problems	(1-2) 271–281	plectic integrator of W. Kahan	(1-2) 245-250
Loy, R.M., see deCougny, H.L.	(1-2) 157–182	Shephard, M.S., see deCougny, H.L.	(1-2) 157–182
		Sommeijer, B.P., P.J. van der Houwen and	
Minchev, E., see Bainov, D.D.	(4) 401-416	J. Kok, Time integration of three-dimen-	
Moore, P.K., Comparison of adaptive meth-		sional numerical transport models	(1-2) 201-225
ods for one-dimensional parabolic sys-		Strouboulis, T., see Babuška, I.	(1-2) 3- 49
tems	(4) 471-488		
Moore, P.K., see Flaherty, J.E.	$(3)\ 317-341$	Tombuyses, B., see Beauwens, R.	(1-2)251-264
		Tull, T.A., see Pomeranz, S.B.	$(3)\ 369-381$
Özturan, C., see deCougny, H.L.	(1-2) 157–182		
		Upadhyay, C.S., see Babuška, I.	(1-2) 3-49
Pasquetti, R., see Bwemba, R.	(3) 299 - 315		
Pomeranz, S.B. and T.A. Tull, Construction		Van der Houwen, P.J., see Sommeijer, B.P.	$(1-2)\ 201-225$
of some iterative methods for solving		Vermiglio, R., see Jackiewicz, Z.	(3) 343-367
boundary element linear systems	$(3)\ 369-381$	Verwer, J.G., see Blom, J.G.	(1-2) 129-156
		Vulanović, R., A uniform convergence result	
Redivo-Zaglia, M., see Brezinski, C.	(1-2) 239-244	for semilinear singular perturbation	
Rice, J.R., see Lai, YL.	(1-2) 183 -200	problems violating the standard stability	
Richter, G.R., An explicit finite element		condition	(3) 383-399
method for the wave equation	(1-2) 65- 80		***
		Ware, J.M., see Berzins, M.	(4) 417-438
Samarskii, A.A., Theory of stability and reg-			***
ularization of difference schemes and its		Yang, T., see Gerasoulis, A.	(1-2) 283-297
application to ill-posed problems of			
mathematical physics	(1-2) 51- 64	Zennaro, M., see Jackiewicz, Z.	(3) 343-367

