

Addendum to Classification of irreducible holonomies of torsion-free affine connections

By SERGEI MERKULOV and LORENZ SCHWACHHÖFER*

The real form $\text{Spin}(6, \mathbb{H}) \subset \text{End}(\mathbb{R}^{32})$ of $\text{Spin}(12, \mathbb{C}) \subset \text{End}(\mathbb{C}^{32})$ is absolutely irreducible and thus satisfies the algebraic identities (40) and (41). Therefore, it also occurs as an exotic holonomy and the associated supermanifold $\mathcal{M}_{\mathfrak{g}}$ admits a SUSY-invariant polynomial. This real form has been erroneously omitted in our paper.

Also, the two real four-dimensional exotic holonomies, whose occurrences were unknown at the time of writing, have been shown to exist very recently by R. Bryant [B].

With these corrections, Table 3 and the table in Theorem C should read as follows.

*The original article appeared in **150** (1999), 77–149.

Table 3: List of exotic holonomies

group G	representation V	restrictions/remarks
$T_{\mathbb{R}} \cdot \text{Spin}(5, 5)$	\mathbb{R}^{16}	
$T_{\mathbb{R}} \cdot \text{Spin}(1, 9)$	\mathbb{R}^{16}	
$T_{\mathbb{C}} \cdot \text{Spin}(10, \mathbb{C})$	$\mathbb{C}^{16} \simeq \mathbb{R}^{32}$	
$T_{\mathbb{R}} \cdot E_6^1$	\mathbb{R}^{27}	
$T_{\mathbb{R}} \cdot E_6^4$	\mathbb{R}^{27}	
$T_{\mathbb{C}} \cdot E_6^{\mathbb{C}}$	$\mathbb{C}^{27} \simeq \mathbb{R}^{54}$	
$T_{\mathbb{R}} \cdot \text{SL}(2, \mathbb{R})$	$\odot^3 \mathbb{R}^2 \simeq \mathbb{R}^4$	
$\text{SL}(2, \mathbb{C})$	$\odot^3 \mathbb{C}^2 \simeq \mathbb{R}^8$	
$\mathbb{C}^* \cdot \text{SL}(2, \mathbb{C})$	$\odot^3 \mathbb{C}^2 \simeq \mathbb{R}^8$	
$\mathbb{R}^* \cdot \text{Sp}(2, \mathbb{R})$	\mathbb{R}^4	
$\mathbb{C}^* \cdot \text{Sp}(2, \mathbb{C})$	$\mathbb{C}^4 \simeq \mathbb{R}^8$	
$\mathbb{R}^* \cdot \text{SO}(2) \cdot \text{SL}(2, \mathbb{R})$	$\mathbb{R}^2 \otimes \mathbb{R}^2 \simeq \mathbb{R}^4$	
$\mathbb{C}^* \cdot \text{SU}(2)$	$\mathbb{C}^2 \simeq \mathbb{R}^4$	
$H_{\lambda} \cdot \text{SU}(2)$	$\mathbb{C}^2 \simeq \mathbb{R}^4$	
$H_{\lambda} \cdot \text{SU}(1, 1)$	$\mathbb{C}^2 \simeq \mathbb{R}^4$	
$\text{SL}(2, \mathbb{R}) \cdot \text{SO}(p, q)$	$\mathbb{R}^2 \otimes \mathbb{R}^{p+q} \simeq \mathbb{R}^{2(p+q)}$	$p + q \geq 3$
$\text{Sp}(1) \cdot \text{SO}(n, \mathbb{H})$	$\mathbb{H}^n \simeq \mathbb{R}^{4n}$	$n \geq 2$
$\text{SL}(2, \mathbb{C}) \cdot \text{SO}(n, \mathbb{C})$	$\mathbb{C}^2 \otimes \mathbb{C}^n \simeq \mathbb{R}^{4n}$	$n \geq 3$
E_7^5	\mathbb{R}^{56}	
E_7^7	\mathbb{R}^{56}	
$E_7^{\mathbb{C}}$	$\mathbb{R}^{112} \simeq \mathbb{C}^{56}$	
$\text{Sp}(3, \mathbb{R})$	$\mathbb{R}^{14} \subset \Lambda^3 \mathbb{R}^6$	
$\text{Sp}(3, \mathbb{C})$	$\mathbb{R}^{28} \simeq \mathbb{C}^{14} \subset \Lambda^3 \mathbb{C}^6$	
$\text{SL}(6, \mathbb{R})$	$\mathbb{R}^{20} \simeq \Lambda^3 \mathbb{R}^6$	
$\text{SU}(1, 5)$	\mathbb{R}^{20}	
$\text{SU}(3, 3)$	\mathbb{R}^{20}	
$\text{SL}(6, \mathbb{C})$	$\mathbb{R}^{40} \simeq \Lambda^3 \mathbb{C}^6$	
$\text{Spin}(2, 10)$	\mathbb{R}^{32}	
$\text{Spin}(6, 6)$	\mathbb{R}^{32}	
$\text{Spin}(6, \mathbb{H})$	\mathbb{R}^{32}	
$\text{Spin}(12, \mathbb{C})$	$\mathbb{C}^{32} \simeq \mathbb{R}^{64}$	
Notation: $T_{\mathbb{F}}$ denotes any connected Lie subgroup of \mathbb{F}^* , $H_{\lambda} = \{e^{(2\pi i + \lambda)t} \mid t \in \mathbb{R}\} \subseteq \mathbb{C}^*, \quad \lambda > 0.$		

Table from Theorem C

Group G	Representation space	Group G	Representation space
$\mathrm{Sp}(n, \mathbb{R})$	\mathbb{R}^{2n}	E_7^5	\mathbb{R}^{56}
$\mathrm{Sp}(n, \mathbb{C})$	\mathbb{C}^{2n}	E_7^7	\mathbb{R}^{56}
$\mathrm{SL}(2, \mathbb{R})$	$\mathbb{R}^4 \simeq \odot^3 \mathbb{R}^2$	E_7^C	\mathbb{C}^{56}
$\mathrm{SL}(2, \mathbb{C})$	$\mathbb{C}^4 \simeq \odot^3 \mathbb{C}^2$	$\mathrm{Spin}(2, 10)$	\mathbb{R}^{32}
$\mathrm{SL}(2, \mathbb{R}) \cdot \mathrm{SO}(p, q)$	$\mathbb{R}^{2(p+q)}, p + q \geq 3$	$\mathrm{Spin}(6, 6)$	\mathbb{R}^{32}
$\mathrm{SL}(2, \mathbb{C}) \cdot \mathrm{SO}(n, \mathbb{C})$	$\mathbb{C}^{2n}, n \geq 3$	$\mathrm{Spin}(6, \mathbb{H})$	\mathbb{R}^{32}
$\mathrm{Sp}(1)\mathrm{SO}(n, \mathbb{H})$	$\mathbb{H}^n \simeq \mathbb{R}^{4n}, n \geq 2$	$\mathrm{Spin}(12, \mathbb{C})$	\mathbb{C}^{32}
$\mathrm{SL}(6, \mathbb{R})$	$\mathbb{R}^{20} \simeq \Lambda^3 \mathbb{R}^6$	$\mathrm{Sp}(3, \mathbb{R})$	$\mathbb{R}^{14} \subset \Lambda^3 \mathbb{R}^6$
$\mathrm{SU}(1, 5)$	\mathbb{R}^{20}	$\mathrm{Sp}(3, \mathbb{C})$	$\mathbb{C}^{14} \subset \Lambda^3 \mathbb{C}^6$
$\mathrm{SU}(3, 3)$	\mathbb{R}^{20}		
$\mathrm{SL}(6, \mathbb{C})$	$\mathbb{C}^{20} \simeq \Lambda^3 \mathbb{C}^6$		

GLASGOW UNIVERSITY, GLASGOW, UK

E-mail address: sm@maths.gla.ac.uk

MATHEMATISCHES INSTITUT, UNIVERSITÄT LEIPZIG, LEIPZIG, GERMANY

E-mail address: schwachh@mathematik.uni-leipzig.de

REFERENCES

[B] R. BRYANT, Recent advances in the theory of holonomy, Séminaire Bourbaki, 51ème année, 1998-99, n°861; xxx mathematics e-print archive: math.DG/9910059; Astérisque, to appear.