МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МЭИ»

А.Р. Сафин **Н.Н.** Удалов

ТРАНЗИСТОРНЫЕ УСИЛИТЕЛИ МОЩНОСТИ. СБОРНИК ЗАДАЧ.

Учебное пособие по курсу

«Устройства генерирования и формирования сигналов» для студентов, обучающихся по направлениям «Радиотехника», «Радиоэлектронные системы и комплексы»

Москва Издательство МЭИ 2018 УДК ББК М

Утверждено учебным управлением НИУ «МЭИ»

Подготовлено на кафедре Формирования и обработки радиосигналов

Сафин, А.Р., Удалов, Н.Н.

М Транзисторные усилители мощности. Сборник задач: учебное пособие. А.Р. Сафин, Н.Н. Удалов. / Под ред. проф. Н.Н. Удалова. – М.: Издательство МЭИ, 2018. – 65 с.

Данное учебное пособие содержит задачи по аппроксимации статических характеристик активных элементов, режимам усилителя мощности, схемам цепей согласования, усилителей мощности, а также методам получения амплитудно-модулированных колебаний. По каждому разделу даны краткие теоретические сведения, примеры решения задач и задачи для самостоятельного решения.

Пособие предназначено для студентов, обучающихся по направлениям «Радиотехника», «Радиоэлектронные системы и комплексы».

УДК ББК

© Национальный исследовательский университет «МЭИ», 2018

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	4
1. РЕЖИМЫ УСИЛИТЕЛЯ МОЩНОСТИ	5
1.1. Аппроксимация статических характеристик коллекторного тока.	6
1.2. Классификация режимов усилителя мощности	10
2. ВЛИЯНИЕ ПИТАЮЩИХ НАПРЯЖЕНИЙ И НАГРУЗКИ НА	
РЕЖИМ УСИЛИТЕЛЯ МОЩНОСТИ	16
2.1. Режим усилителя мощности	17
2.2. Влияние напряжений возбуждения и смещения	19
2.3. Влияние коллекторного напряжения	21
2.4. Влияние одновременного синфазного изменения напряжений	
возбуждения и коллекторного	22
2.5. Влияние сопротивления в цепи коллектора	
3. Цепи согласования и схемы усилителей мощности	26
3.1. Цепи согласования с нагрузкой	
3.2. Схемы усилителей мощности	
3.3. Настройка усилителя мощности	
4. АМПЛИТУДНАЯ МОДУЛЯЦИЯ	46
4.1. Общие соотношения	
4.2. Модуляция смещением	
4.3. Усиление модулированных колебаний	
4.4. Коллекторная модуляция	
4.5. Комбинированная коллекторная модуляция	
4.6. Сравнение различных видов модуляции	
СПИСОК ЛИТЕРАТУРЫ	63
ПРИ ПОЖЕНИЕ	64

ВВЕДЕНИЕ

Учебное пособие составлено в помощь студентам, изучающим курс «Устройства генерирования и формирования сигналов» специальности «Радиотехника». В своей основе оно является существенно переработанной и обновленной версией издания 1988 года [1], ставшего библиографической редкостью. Также при составлении данного пособия использовались материалы из других задачников [2,3]

Основная цель задачника — углубление и закрепление теоретических знаний, полученных на лекциях и в ходе самостоятельной подготовки, а также выработка навыков в решении практических задач. Полное изложение теоретического материала, охватываемого задачами, содержится в учебнике [4].

В современных устройствах генерирования и формирования сигналов для усиления колебаний применяются различные типы активных приборов. На частотах до 300 МГц это в основном биполярные и полевые транзисторы. В диапазоне СВЧ к ним добавляются различные электронные приборы такие, как клистроны, магнетроны, лампы бегущей и обратной волн и др. В данном учебном пособии студентам предлагаются задачи по следующим разделам: аппроксимация статических характеристик активных элементов, режимы усилителя мощности, схемы цепей согласования и усилителей мощности, а также методы получения амплитудно-модулированных колебаний. В качестве активного элемента выбран биполярный транзистор, работающий на частотах, где в первом приближении можно не учитывать его инерционные свойства.

В каждом разделе приведены теоретические сведения, примеры решения задач и задачи для самостоятельного изучения. Приведенных в задачнике теоретических сведений, формул и справочных данных вполне достаточно для решения всех задач. В пособии включены задачи различной сложности – от простейших до весьма сложных и трудоемких. В каждом подразделе задачи сгруппированы по конкретным темам и расположены в порядке нарастания сложности.

Задачи по генерированию колебаний будут даны в пособии «Транзисторные автогенераторы».

Автор благодарен рецензентам к.т.н., проф. Белову Л.А. и д.ф.-м.н., проф. Устинову А.Б. за полезные советы и замечания, способствовавшие существенному улучшению данного пособия.

1. РЕЖИМЫ УСИЛИТЕЛЯ МОЩНОСТИ

Для различных активных элементов (АЭ), применяемых при построении усилителей мощности (УМ), таких как полевые и биполярные транзисторы, радиолампы применяют одинаковые методы аппроксимации статических характеристик. Расчет режимов данных активных элементов несмотря на существенно различающиеся физические процессы осуществляется по единой методике, отличаясь лишь в деталях. Поэтому можно лишь на примере одного активного элемента изучить методы расчета основных каскадов устройств формирования радиосигналов. В данном пособии для этой цели выбран биполярный транзистор (БТ).

Принципиальная схема УМ на БТ приведена на рис 1.1. На вход УМ подаются напряжения возбуждения $e_{ex}(t)$ (усиливаемый сигнал) и смещения E_{cm} . В соответствии с направлениями напряжений, принятых за положительные, между базой и эмиттером

$$u_{69}(t) = E_{cM} + U_{g} \cdot \cos(\omega t). \tag{1.1}$$

В коллекторной цепи включены: источник питания $E_{n\kappa}$ и цепь согласования (ЦС) с нагрузкой $Z_{H}=R_{H}+jX_{H}$. Для улучшения энергетических показателей УМ входное сопротивление ЦС активное, т.е. $Z_{\kappa}=R_{\kappa}$, а напряжение на ее входе u_{κ} , благодаря фильтрующим свойствам, близко к гармоническому. Напряжение между коллектором и эмиттером

$$u_{\kappa \ni}(t) = E_n - U_{\kappa} \cdot \cos(\omega t). \tag{1.2}$$

На рис.1.1 конденсаторы $C_{\delta n1}$, $C_{\delta n2}$ являются блокировочными и обеспечивают протекание токов высокой частоты мимо источников питания.

Базовый i_{δ} и коллекторный i_{κ} токи зависят от напряжений на электродах БТ в общем случае как нелинейные функции $i_{\delta} = i_{\delta} \left(u_{\delta 9}, u_{\kappa 9} \right)$, $i_{\kappa} = i_{\kappa} \left(u_{\delta 9}, u_{\kappa 9} \right)$ и согласно (1.1), (1.2) будут меняться за период колебаний.

На низких частотах, когда инерционностью БТ можно пренебречь, расчет УМ можно вести по статическим характеристикам. Для инженерных расчетов эти характеристики аппроксимируются с целью математического упрощения задачи. Расчет основных показателей УМ (мощность, КПД, коэффициент усиления) можно выполнять, если известны формы токов $i_{\delta}(\omega t)$ и $i_{\kappa}(\omega t)$.

Рис.1.1. Принципиальная схема усилителя мощности на биполярном транзисторе

1.1. Аппроксимация статических характеристик коллекторного тока

Наиболее простой аппроксимацией статических характеристик БТ, но в тоже время достаточной для практических задач является кусочно-линейная, когда реальные статические характеристики заменяются отрезками прямых. Такая аппроксимация дает возможность записать аналитические выражения, связывающие токи и напряжения в АЭ. Для анализа режимов работы УМ на БТ используются входные, проходные и выходные статические характеристики. Рассмотрим их подробнее.

Входные и проходные характеристики БТ представляют собой зависимости $i_{\tilde{o}}(u_{\tilde{o}_{9}})$ и $i_{\kappa}(u_{\tilde{o}_{9}})$ при $u_{\kappa_{9}} = const$. Их заменяют тремя отрезками прямых (рис.1.2a):

- \triangleright Область отсечки (OO) токов, при $i_6 = 0$, $i_{\kappa} = 0$, если $u_{63} \le E'$;
- *Активная область* (AO). Токи управляются напряжением на базе и не зависят от коллекторного так

$$\begin{cases} i_{\kappa}^{I} = S \cdot (u_{\tilde{0}\tilde{9}} - E'), \\ i_{\tilde{0}}^{I} = S_{\tilde{0}} \cdot (u_{\tilde{0}\tilde{9}} - E'), \end{cases}$$

$$(1.3)$$

если $u_{\acute{o}9}^{\it kp}>u_{\acute{o}9}>E'$, $u_{\it k9}>u_{\it k9}^{\it kp}$. Токи $i_{\it k}^{\it I}$ и $i_{\acute{o}}^{\it I}$ связаны статическим коэффициентом усиления в схеме с общим эмиттером h_{219} следующим соотношением:

$$i_{\kappa}^{I}/i_{\tilde{0}} = S/S_{\tilde{0}} = h_{219}.$$
 (1.4)

> Область насыщения (OH). Коллекторный ток управляется коллекторным напряжением и не зависит от базового

$$i_{\kappa}^{I} = S \cdot \left(u_{\tilde{o}9}^{\kappa p} - E' \right), \tag{1.5}$$

если $u_{\tilde{o}_9} \ge u_{\tilde{o}_9}^{\kappa p}$, $u_{\kappa_9} \le u_{\kappa_9}^{\kappa p}$. Области активная и насыщения разделяет линия критического режима (ЛКР).

Выходные характеристики БТ представляют собой зависимости $i_{\delta}(u_{\kappa_9})$ и $i_{\kappa}(u_{\kappa_9})$ при $u_{\delta_9} = const$ (рис.1.2б). ЛКР проходит через начало координат, а ее наклон определяется крутизной $S_{\kappa p}$ так

$$i_{\kappa}^{\kappa p} = S_{\kappa p} \cdot u_{\kappa 9}^{\kappa p} \,. \tag{1.6}$$

Справа от ЛКР $(u_{\kappa_9} > u_{\kappa_9}^{\kappa p})$ активная область и справедливы уравнения (1.3). Это горизонтальные прямые.

В ОН ток i_{κ} падает при уменьшении $u_{\kappa \ni}$, совпадая с ЛКР:

$$i_{\kappa}^{II} = S_{\kappa p} \cdot u_{\kappa 9}, \tag{1.7}$$

а ток базы возрастает.

В итоге для коллекторного тока введены три основных параметра аппроксимированных статических характеристик $S, S_{\kappa p}, E'$.

На ЛКР справедливы уравнения (1.5) и (1.6), что позволяет установить связь между напряжениями $u_{\kappa_9}^{\kappa p}$ и $u_{\delta_9}^{\kappa p}$

$$u_{\kappa 9}^{\kappa p} = \frac{S}{S_{\kappa p}} \cdot \left(u_{\delta 9}^{\kappa p} - E' \right), \tag{1.8}$$

$$u_{\tilde{o}_{\vartheta}}^{\kappa p} = \frac{S_{\kappa p}}{S} \cdot u_{\kappa \vartheta}^{\kappa p} + E'. \tag{1.9}$$

Если заранее неизвестно, для какой области аппроксимированных статических характеристик заданы u_{69} и $u_{\kappa 9}$, то рекомендуется рассчитать ток, применяя оба уравнения (1.3) и (1.7). Истинный результат соответствует меньшему из двух значений токов

$$i_{\kappa} = \min \left[i_{\kappa}^{I}, i_{\kappa}^{II} \right]. \tag{1.10}$$

Рис.1.2 Проходная (a) и выходная (б) статические характеристики БТ и их кусочно-линейная аппроксимация

Примеры решения типовых задач.

1.1. Даны параметры аппроксимированной статической характеристики БТ S=5~A/B, $S_{\kappa p}=1~A/B$, E'=0.7~B. Построить $i_{\kappa}\left(u_{\kappa 9}\right)$ для $u_{\delta 9}=1~B$ и $u_{\delta 9}=1.2~B$.

Решение.

По двум точкам проводится ЛКР (рис.1.3а). Для этого выбрано начало координат ($i_{\kappa}=0$, $u_{\kappa 9}=0$) и $u_{\kappa 9}=2$ B, при этом согласно (1.6) $i_{\kappa}^{\kappa p}=2$ A. Затем рассчитываются токи для АО по (1.3): для $u_{\delta 9}=1$ B, $i_{\kappa}^{I}=1.5$ A; для $u_{\delta 9}=1.2$ B, $i_{\kappa}^{I}=2.5$ A. На уровнях $i_{\kappa}^{I}=1.5$ A и $i_{\kappa}^{I}=2.5$ A проведены горизонтальные линии до пересечения с ЛКР. В точках пересечения напряжение $u_{\kappa 9}^{\kappa p}$ определяется с помощью (1.6) $u_{\kappa 9}^{\kappa p}=i_{\kappa}^{\kappa p}/S_{\kappa p}$, $u_{\kappa 9,1}^{\kappa p}=1.5$ B, $u_{\kappa 9,2}^{\kappa p}=2.5$ B.

1.2. Даны параметры аппроксимированной статической характеристики БТ S=5~A/B, $S_{\kappa p}=1~A/B$, E'=0.7~B. Построить $i_{\kappa}\left(u_{\delta 9}\right)$ для $u_{\kappa 9}=3~B$ и $u_{\kappa 9}=5~B$.

Решение.

Если $u_{\tilde{o}_9} \leq 0.7~B$, $i_{\kappa} = 0$. Ось абсцисс (рис.1.2б). Если $u_{\tilde{o}_9} > 0.7~B$, то по (1.3) строим наклонную прямую: $i_{\kappa} = 0$, $u_{\tilde{o}_9} = E' = 0.7~B$ и, например, $u_{\tilde{o}_9} = 1~B$, тогда $i_{\kappa}^I = 1.5~A$. Эта прямая является одновременно аппроксимированной

статической характеристикой для тока в активной области i_{κ}^{I} и ЛКР. Напряжения $u_{\acute{o}9}^{\kappa p}$ для двух значений $u_{\kappa 9}^{\kappa p}$ находим по (1.9): $u_{\acute{o}9,1}^{\kappa p}=1.3~B$, $u_{\acute{o}9,2}^{\kappa p}=1.7~B$. Токи при этих значениях $u_{\acute{o}9}^{\kappa p}$ (1.5) $i_{\kappa,1}^{\kappa p}=i_{\kappa}^{I}=3~A$, $i_{\kappa,2}^{\kappa p}=5~A$. В области насыщения i_{κ} не зависит от $u_{\acute{o}9}$, и на уровнях 3A и 5A проводим горизонтальные линии правее ЛКР.

Рис.1.3 Иллюстрации к задачам 1.1 (а) и 1.2 (б)

Задачи для самостоятельного решения

- **1.3.** Даны параметры аппроксимированной статической характеристики БТ $S = 6 \, A / \, B$, $S_{\kappa p} = 1 \, A / \, B$, $E' = 0.7 \, B$, $h_{21_9} = 20$. Написать уравнения $i_{\kappa} \left(u_{\delta 9} \right)$, $i_{\delta} \left(u_{\delta 9} \right)$, $i_{\kappa} \left(u_{\kappa 9} \right)$.
- **1.4.** Дано: $S=3\,A/\,B$, $S_{\kappa p}=0.6\,A/\,B$, $E'=0.7\,B$. Построить $i_\kappa \left(u_{\delta 9}\right)$ для $u_{\kappa 9}=4\,B$ и $u_{\kappa 9}=5\,B$, а также $i_\kappa \left(u_{\kappa 9}\right)$ для $u_{\delta 9}=0.8\,B$ и $u_{\delta 9}=1\,B$.
- **1.5.** Дано: S=4 A/B, $S_{\kappa p}=0.8$ A/B, E'=0.6 B, $u_{\kappa 9}=2$ В .Определить i_{κ} для $u_{\delta 9}=0.8$ В и $u_{\delta 9}=1.2$ В.
- **1.6.** Дано: $E' = 0.6 \ B$, $u_{\widetilde{69}}^{\kappa p} = 1 \ B$ при $u_{\kappa 9}^{\kappa p} = 1.6 \ B$. Определить $u_{\kappa 9}^{\kappa p}$ для $u_{\widetilde{69}}^{\kappa p} = 1.2 \ B$ и $u_{\widetilde{69}}^{\kappa p} = 1.5 \ B$.
- **1.7.** Дано: S = 5 A/B, $S_{\kappa p} = 1 A/B$, E' = 0.7 B. Указать, какую формулу применить при расчетах и определить:
- A) i_{κ} для $u_{\tilde{6}9} = 0.6$ B; Б) $u_{\tilde{6}9}^{\kappa p}$ для $u_{\kappa 9} = 2$ B; В) $u_{\kappa 9}^{\kappa p}$ для $u_{\tilde{6}9} = 1.2$ B; Г) i_{κ} для $u_{\tilde{6}9} = 1.3$ B, $u_{\kappa 9} = 2.5$ B; Д) i_{κ} для $u_{\tilde{6}9} = 1.5$ B, $u_{\kappa 9} = 2.5$ B; Е) i_{κ} для $u_{\tilde{6}9} = 1.5$ B, $u_{\kappa 9} = 4$ B.

- **1.8.** Дано: $S=2\,A/\,B$, $S_{\kappa p}=0.5\,A/\,B$, $E'=0.7\,B$, $u_{\kappa 9}=4\,\mathrm{B}$. Определить $u_{\delta 9}$, при котором $i_{\kappa}=1\,A$.
- **1.9.** Дано: S=2.5~A/B, $S_{\kappa p}=0.5~A/B$, E'=0.7~B, $u_{\delta 9}=1.3~\mathrm{B}$; $i_{\kappa}=1~A$. Определить $u_{\kappa 9}$.
- 1.10. Дано: $S=3\,A/\,B$, $S_{\kappa p}=0.6\,A/\,B$, $E'=0.6\,B$, $u_{\delta 9}=1\,B$. Определить i_{κ} для $u_{\kappa 9}=1\,B$ и $u_{\kappa 9}=3\,B$, а также мощность, рассеиваемую коллектором $p_{\kappa}=i_{\kappa}\cdot u_{\kappa 9}$.

1.2. Классификация режимов усилителя мощности

На электродах БТ в УМ (см. рис.1.1) действуют переменные во времени напряжения (1.1) и (1.2), а выходной ток меняется во времени $i_{\kappa}(\omega t)$. Его форма зависит от того, какие участки статических характеристик захватываются за период колебаний высокой частоты. Для расчета формы тока коллектора применяют выражения аппроксимированных статических характеристик и условие (1.10). Построение импульса коллекторного тока в различных режимах приведено на рис.1.4.

Форма тока для активной области имеет вид:

$$i_{\kappa}^{I}(t) = 0$$
, при $u_{\delta \ni} \le E'$ или $E_{c_{\mathcal{M}}} + U_{g} \cos(\omega t) \le E'$; (1.11)

$$i_{\kappa}^{I}(t) = S \cdot (E_{c_{\mathcal{M}}} - E' + U_{\varepsilon} \cos(\omega t)), \text{ если } E_{c_{\mathcal{M}}} + U_{\varepsilon} \cos(\omega t) > E'.$$
 (1.12)

Коллекторный ток $i_{\kappa}^{I}(t)$ - косинусоидальный импульс с углом отсечки θ , который определяется так

$$\cos\theta = (E' - E_{CM})/U_{\rm g}. \tag{1.13}$$

Высота импульса коллекторного тока $I_{\kappa M}$ (максимальное значение тока) получается из (1.12) при $\omega t = 0$

$$I_{\kappa M} = S \cdot \left(E_{\mathcal{C}M} - E' + U_{\theta} \right) = SU_{\theta} \left(1 - \cos \theta \right). \tag{1.14}$$

Для расчета коллекторного тока в области насыщения подставим (1.2) в (1.7)

$$i_{\kappa}^{II} = S_{\kappa p} \cdot (E_{n\kappa} - U_{\kappa} \cdot \cos(\omega t)). \tag{1.15}$$

Выражение (1.15) представляет собой сумму постоянной составляющей $S_{\kappa p}E_{n\kappa}$ и первой гармоники $-U_{\kappa}S_{\kappa p}\cdot\cos\left(\omega t\right)$. При $\omega t=0$ ток имеет минимальное значение, т.е.

$$i_{\kappa,MH}^{II} = S_{\kappa D} \cdot (E_{n\kappa} - U_{\kappa}). \tag{1.16}$$

В случае, когда при $\omega t = 0$

$$I_{\kappa M} < i_{\kappa, MUH}^{II}, \tag{1.17}$$

форма импульса коллекторного тока $i_{\kappa}(t)$ косинусоидальная, так как за период высокой частоты захватываются только АО статических характеристик. Такой режим УМ называют <u>недонапряженным</u> (НР). Если хоть часть периода высокой частоты захватывается областью насыщения, то при $\omega t = 0$

$$I_{\kappa M} > i_{\kappa, MUH}^{II}, \tag{1.18}$$

то тогда в импульсе коллекторного тока появляется провал, а режим УМ называют <u>перенапряженным</u> (ПР). Ширина провала определяется верхним углом отсечки θ_1 . Для определения θ_1 необходимо воспользоваться условием $i_\kappa^{II}(\theta_1) = i_\kappa^{I}(\theta_1)$, откуда получаем

$$\cos \theta_1 = \left(E' - E_{cM} + \frac{S_{\kappa p}}{S} E_{n\kappa} \right) / \left(U_{\mathcal{B}} + \frac{S_{\kappa p}}{S} U_{\kappa} \right), \tag{1.19}$$

Если при $\omega t = 0$

$$I_{\kappa M} = i_{\kappa, M \mu H}^{II}, \tag{1.20}$$

импульс тока сохраняется косинусоидальным, а режим УМ называют критическим (КР).

Напряженность режима УМ также характеризуют коэффициентом использования коллекторного напряжения питания

$$\xi = U_{\kappa} / E_{n\kappa} \,. \tag{1.21}$$

В КР имеем

$$\xi_{\kappa p} = U_{\kappa,\kappa p} / E_{n\kappa} = 1 - \frac{I_{\kappa M}}{S_{\kappa p} E_{n\kappa}} = 1 - \frac{u_{\kappa 9,\kappa p}}{E_{n\kappa}}, \qquad (1.22)$$

где $u_{\kappa \ni, \kappa p} = E_{n\kappa} - U_{\kappa, \kappa p}$.

При $\xi < \xi_{\kappa p}$, $U_{\kappa} < U_{\kappa,\kappa p}$ - HP, а при $\xi > \xi_{\kappa p}$, $U_{\kappa} > U_{\kappa,\kappa p}$ - ПР. В пределах ПР различают, в зависимости от глубины провала в импульсах коллекторного тока, слабо и сильно перенапряженный режимы.

Рис.1.4. Построение импульса коллекторного тока в усилителе мощности на биполярном транзисторе в режимах недонапряженном (HP), критическом (KP), перенапряженном (ПР) и сильно перенапряженном (СПР).

Примеры решения типовых задач.

1.10. Параметры БТ в УМ и его режим: $S = 4 \, A/B$, $S_{\kappa p} = 0.8 \, A/B$, $E' = 0.7 \, B$, $U_e = 0.4 \, B$, $E_{cm} = 0.5 \, B$, $U_{\kappa} = 12 \, B$, $E_{n\kappa} = 14 \, B$. Определить напряженность режима УМ, рассчитать угол отсечки θ , ток i_{κ} для $\omega t = 0, \pi/2$ и π . Изобразить $u_{\kappa 9}(t)$, $u_{\delta 9}(t)$, $i_{\kappa}(t)$.

Решение

Выясним напряженность режима, определив $I_{\kappa M}$ (1.14) и $i_{\kappa, M U H}^{II}$ (1.16): $I_{\kappa M}=0.8\,A,\; i_{\kappa, M U H}^{II}=1.6\,A.$ Поскольку $I_{\kappa M}< i_{\kappa, M U H}^{II}$, то режим НР, импульс косинусоидальный. Угол отсечки (1.13): $\cos\theta=0.5,\; \theta=\pi/3$. Очевидно, что для $\omega t=0$ $i_{\kappa}=I_{\kappa M}=0.8\,A,\;$ а для $\omega t=\pi/2,\pi$ $i_{\kappa}=0$. Для построения временных зависимостей (рис.1.5а,б,в) воспользуемся выражениями (1.1), (1.2), (1.12) $u_{\kappa 9}=14-12\cdot\cos\omega t,\; u_{\delta 9}=0.5+0.4\cdot\cos\omega t,\; i_{\kappa}=1.6\cdot(-0.5+\cos\omega t).$

Рис.1.5. Иллюстрация к задаче 1.10

1.11. Параметры и режим БТ в УМ: $S = 5 \, A/B$, $S_{\kappa p} = 1 \, A/B$, $E' = 0.7 \, B$, $U_e = 0.2 \, \mathrm{B}$, $\theta = \pi/2$, $E_{n\kappa} = U_{\kappa} = 25 \, \mathrm{B}$. Рассчитать E_{c_M} , $\xi_{\kappa p}$, ξ . Определить напряженность режима УМ. Изобразить $i_{\kappa}(t)$.

Решение

Из (1.13) следует, что $\cos\theta=0$ и $E_{cM}=E'=0.7B$. Найдем $I_{\kappa M}$ и $i^{II}_{\kappa,MUH}$ из (1.14), (1.16) $I_{\kappa M}=1A$, а $i^{II}_{\kappa,MUH}=0$. Следовательно в данном случае имеем ПР. При этом из (1.21), (1.22) получаем $\xi=1$, $\xi_{\kappa p}=24/25$. График импульса коллекторного тока i_{κ} с отсечкой в ПР представлен на рис.1.6. Видим, что появляется верхний угол отсечки θ_1 в момент времени, когда $i^{II}_{\kappa}(\theta_1)=i^{I}_{\kappa}(\theta_1)$. Из (1.19) находим, что $\cos\theta_1=25/26$, $\theta_1\approx 16^\circ$.

Рис.1.6. Иллюстрация к задаче 1.11

Задачи для самостоятельного решения

- **1.12.** Параметры БТ в УМ и его режим: $S=3\,A/\,B$, $S_{\kappa p}=0.6\,A/\,B$, $E'=0.7\,B$, $U_{e}=0.2\,$ В, $E_{cm}=0.8\,$ В, $U_{\kappa}=19\,$ В, $E_{n\kappa}=20\,$ В. Определить напряженность режима УМ, рассчитать угол отсечки θ , ξ и $\xi_{\kappa p}$, ток i_{κ} для $\omega t=0,\pi/2$ и π . Изобразить $u_{\kappa 9}(t)$, $u_{\delta 9}(t)$, $i_{\kappa}(t)$.
- **1.13.** Параметры и режим БТ в УМ: S=4~A/B, $S_{\kappa p}=0.8~A/B$, E'=0.7~B, $U_{_{\it E}}=0.4~{\rm B}$, $\theta=\pi/3$, $E_{_{\it NK}}=25~{\rm B}$. Рассчитать $E_{_{\it CM}}$ и $U_{_{\it K},\kappa p}$.
- **1.14.** Параметры и режим БТ в УМ: S=2~A/B, $S_{\kappa p}=0.5~A/B$, E'=0.7~B, $U_{e}=0.5~\mathrm{B}$, $\theta=\pi/2$, $E_{n\kappa}=15~\mathrm{B}$. Рассчитать $U_{\kappa,\kappa p}$. Построить $i_{\kappa}(t)$.
- **1.15.** Как изменятся напряженность режима УМ и форма импульса тока, если в условиях задачи 1.14 принять $U_{\kappa} = 10B$? $U_{\kappa} = 15B$?

- **1.16.** Параметры и режим БТ в УМ: S=2~A/B, $S_{\kappa p}=0.5~A/B$, E'=0.7~B, $U_{\kappa}=18~\mathrm{B}$, $\theta=\pi/2$, $E_{n\kappa}=20~\mathrm{B}$. Определить $U_{g,\kappa p}$.
- **1.17.** Как изменится напряженность режима УМ, если в условиях задачи 1.16 увеличить $E_{n\kappa}$ до 23 B? Изменится ли $i_{\kappa}(t)$? При каком напряжении U_{θ} можно реализовать КР при $E_{n\kappa}=23$ В? Изменится ли $i_{\kappa}(t)$?
- **1.18.** Параметры и режим БТ в УМ: S=4~A/B, $S_{\kappa p}=1~A/B$, E'=0.7~B, $U_e=0.5~\mathrm{B}$, $E_{c_M}=0.7~\mathrm{B}$ $U_\kappa=21~B$, $E_{n\kappa}=20~\mathrm{B}$. Определить напряженность режима УМ. Рассчитать $i_\kappa(t)$ для $\omega t=0,\pi/2,\pi$. Изобразить $i_\kappa(t)$. Найти дополнительный угол отсечки θ_2 , который появляется в момент времени, когда $i_\kappa^{II}(\theta_2)=0$.
- **1.19.** Как в условиях задачи 1.18 следует изменить $E_{n\kappa}$, чтобы $\theta_2 = 0$?
- **1.20.** Какие питающие напряжения и каким образом следует изменить, чтобы в условиях задачи 1.18 реализовать KP?

2. ВЛИЯНИЕ ПИТАЮЩИХ НАПРЯЖЕНИЙ И НАГРУЗКИ НА РЕЖИМ УСИЛИТЕЛЯ МОЩНОСТИ

Для расчета основных показателей режима УМ необходимо знать составляющие коллекторного тока: постоянную составляющую $I_{\kappa 0}$, первую $I_{\kappa 1}$ и любую n-ую гармонику $I_{\kappa n}$. Разлагая коллекторный ток i_{κ} в ряд Фурье имеем

$$i_{\kappa}(t) = I_{\kappa 0} + \sum_{n=1}^{\infty} I_{\kappa n} \cdot \cos(n\omega t). \tag{2.1}$$

Аналогично разложим и базовый ток $i_{\tilde{o}}$

$$i_{\tilde{o}}(t) = I_{\tilde{o}0} + \sum_{n=1}^{\infty} I_{\tilde{o}n} \cdot \cos(n\omega t). \tag{2.2}$$

Идеальные схемы прохождения составляющих токов i_{κ} и i_{δ} представлены на рис.2.1а,б,в. Схемы УМ строят так, чтобы для каждой составляющей тока существовал замкнутый путь.

Рис.2.1. Идеальные схемы прохождения составляющих токов $I_{\kappa 1}$, $I_{\delta 1}$ (a), $I_{\kappa 0}$, $I_{\delta 0}$ (б) и $I_{\kappa n}$, $I_{\delta n}$ (в)

Расчет составляющих тока косинусоидального импульса выполняется с помощью коэффициентов разложения (см. приложение 1)

$$I_{\kappa 0,n} = \alpha_{0,n}(\theta)I_{\kappa M} = SU_{\theta}\gamma_{0,n}(\theta) = S(E' - E_{cM})\beta_{0,n}(\theta). \tag{2.1}$$

Вводится удобный на практике коэффициент формы $g_n(\theta) = I_{\kappa n}/I_{\kappa 0}$, для которого справедливо

$$g_n(\theta) = \frac{\alpha_n(\theta)}{\alpha_0(\theta)} = \frac{\gamma_n(\theta)}{\gamma_0(\theta)} = \frac{\beta_n(\theta)}{\beta_0(\theta)}.$$
 (2.2)

Основные показатели УМ: полезная мощность по первой гармонике высокой частоты P_1 , потребляемая мощность от источника питания P_0 , рассеиваемая мощность P_{pac} , электронный коэффициент полезного

действия (КПД) $\eta_{\scriptscriptstyle 9}$, коэффициент усиления по мощности K_p . Они определяются так.

Мощность в цепи коллектора:

$$P_1 = 0.5I_{\kappa 1}U_{\kappa} = 0.5I_{\kappa 1}^2 R_{\kappa} = 0.5U_{\kappa 1}^2 / R_{\kappa}, \tag{2.3}$$

$$R_{\kappa} = U_{\kappa} / I_{\kappa 1} , \qquad (2.4)$$

где R_{κ} - входное сопротивление ЦС.

Рассеиваемая и потребляемая мощности задаются так

$$P_0 = I_{\kappa 0} E_{n\kappa}; P_{pac} = P_0 - P_1. \tag{2.5}$$

Электронный КПД

$$\eta_{9} = P_{1}/P_{0} = 1 - P_{pac}/P_{0} = 0.5g_{1}(\theta)\xi.$$
(2.6)

Мощности в цепи базы: потребляемая от возбудителя $P_{\delta 1}$, от источника смещения $P_{\delta 0}$

$$P_{\delta 1} = 0.5I_{\delta 1}U_e; P_{\delta 0} = I_{\delta 0}E_{cM}. \tag{2.7}$$

Составляющие импульса базового (входного) тока в НР:

$$I_{60} = I_{60} / h_{213}. {(2.8)}$$

Коэффициент усиления по мощности:

$$K_p = P_1 / P_{61} = h_{213} U_{\kappa} / U_{\theta} = h_{213} \cdot S \gamma_1(\theta) R_{\kappa}.$$
 (2.9)

Коэффициент использования напряжения питания в КР при заданных $P_1, \theta, E_{n\kappa}$ задается удобной для расчетов формулой

$$\xi_{\kappa p} = 0.5 + 0.5 \sqrt{1 - 8P_1/\alpha_1(\theta)S_{\kappa p}E_{n\kappa}^2}.$$
 (2.10)

2.1. Режим усилителя мощности

Примеры решения типовых задач

2.1. Параметры БТ и режим УМ: $S = 5 \, A/B$, $S_{\kappa p} = 1 \, A/B$, $E' = 0.7 \, B$, $U_{\rm g} = 0.2 \, {\rm B}$, $E_{\rm CM} = 0.6 \, {\rm B}$, $U_{\kappa} = 18 \, {\rm B}$, $E_{n\kappa} = 20 \, {\rm B}$. Рассчитать $I_{\kappa 1}$, R_{κ} , $\eta_{\rm g}$.

Решение

Сначала выясним напряженность режима УМ. Из (1.14) находим $I_{\kappa M}=0.5A$ и из (1.16) $i^{II}_{\kappa, MUH}=2A$. Поскольку $I_{\kappa M}< i^{II}_{\kappa, MUH}$, то УМ работает в НР и импульс коллекторного тока $i_{\kappa}(t)$ косинусоидальный, без провала. Угол отсечки $\cos\theta=0.5$ и $\theta=\pi/3$. Из приложения находим, что $\gamma_1(\pi/3)=0.2$, $g_1(\pi/3)=1.8$. Применим (2.1), (2.4), (2.6) находим $I_{\kappa 1}=0.2A$, $R_{\kappa}=90$ OM, $\eta_9=0.81$. Здесь $\xi=0.9$.

Задачи для самостоятельного решения

- **2.2.** Как в условиях задачи 2.1 следует изменить $E_{n\kappa}$, чтобы режим УМ стал критическим? Какими станут $I_{\kappa 1}$, $\eta_{\scriptscriptstyle 9}$, если $E_{\scriptscriptstyle {\it CM}}$, $U_{\scriptscriptstyle 6}$, $R_{\scriptscriptstyle K} = const.$
- **2.3.** Как в условиях задачи 2.1 следует изменить $U_{\mathfrak{g}}$, чтобы реализовать КР? Как изменятся $I_{\kappa 1}, E_{\scriptscriptstyle {CM}}, \eta_{\scriptscriptstyle {9}}$, если $E_{\scriptscriptstyle {n\kappa}}, \theta$, $R_{\scriptscriptstyle {\kappa}} = const.$
- **2.4.** Как в условиях задачи 2.1 следует изменить смещение E_{cm} , чтобы реализовать работу УМ с $\theta = \pi/2$? $\theta = 2\pi/3$? Какой станет напряженность режима, если $U_{\it g}$, $E_{\it n\kappa}$, $U_{\it \kappa} = const$? Как изменятся $I_{\it \kappa 1}$, $\eta_{\it 9}$, $R_{\it \kappa}$?
- **2.5.** Параметры и режим БТ в УМ: S=5~A/B, $S_{\kappa p}=1~A/B$, E'=0.7~B, $h_{219}=20$, KP; $\theta=\pi/2$, $E_{n\kappa}=28~\mathrm{B}$, $R_{\kappa,\kappa p}=18~O_M$. Рассчитать E_{c_M} , U_e , P_1 , $P_{\tilde{o}1}$, K_p .
- **2.6.** Параметры и режим БТ в УМ: $S = 5 \, A/B$, $S_{\kappa p} = 1 \, A/B$, $E' = 0.7 \, B$, $E_{cM} = 0.6 \, B$, $U_{g} = 0.2 \, B$, $E_{n\kappa} = 20 \, B$, $U_{\kappa} = 18 \, B$. Определить напряженность режима УМ и рассчитать $I_{\kappa 0}$, $I_{\kappa 1}$, P_{1} , R_{κ} , η_{9} .
- **2.7.** Как изменятся $I_{\kappa 1}$, P_1 , если в условиях задачи (2.6) сделать $U_{\kappa}=20~B$? Каким должно быть R_{κ} , если $E_{c_{\mathcal{M}}}$, $U_{_{\mathcal{B}}}$, $E_{n\kappa}$, $U_{_{\mathcal{K}}}=const$?
- **2.8.** УМ работает в КР: $\theta=\pi/2$, $P_1=12~Bm$, $E_{n\kappa}=28~{\rm B}$. Параметры БТ: S=2~A/B, $S_{\kappa p}=0.5~A/B$, E'=0.7~B. Рассчитать U_{e} , R_{κ} .
- **2.9.** Как в условиях задачи 2.8 следует изменить E_{c_M} , U_e , R_{κ} , чтобы в КР реализовать $P_{1,\kappa\rho}=12$ Bm с $\theta=\pi/3$, если $E_{n\kappa}=const$? Сравнить η_{2} .
- **2.10.** УМ работает в КР: $\theta = \pi / 2$, $R_{\kappa} = 24~Om$, $E_{n\kappa} = 28~\mathrm{B}$. Параметры БТ S = 2~A/B, $S_{\kappa p} = 0.5~A/B$, E' = 0.7~B. Рассчитать P_0 , P_{pac} .
- **2.11.** УМ работает в КР: $\theta = \pi/2$, $I_{\kappa 1} = 1 A$, $E_{n\kappa} = 25 B$. Параметры БТ: S = 4 A/B, $S_{\kappa D} = 1 A/B$, E' = 0.7 B. Рассчитать U_{θ} , R_{κ} , η_{θ} .
- **2.12.** Как в условиях задачи 2.11 следует изменить E_{c_M} , U_e , R_{κ} при $E_{n\kappa}$, $I_{\kappa M} = const$, чтобы реализовать КР с $\theta = \pi/3$? $\theta = 2\pi/3$? Каким будет η_3 ?
- **2.13.** Как в условиях задачи 2.11 следует изменить E_{c_M} , $U_{_{\theta}}$, $R_{_{K}}$ при $E_{n_{K}}$, $I_{_{K}0}$ =const, чтобы релизовать КР с $\theta = \pi/3$? $\theta = 2\pi/3$? Рассчитать $\eta_{_{9}}$.

- **2.14.** УМ работает в НР: $\theta=\pi/2$, $U_{e}=1\,B$, $\xi=5/7$, $E_{n\kappa}=28\,\mathrm{B}$. Параметры БТ: $S=2\,A/B$, $S_{\kappa p}=0.5\,A/B$, $E'=0.7\,B$, $h_{219}=20$. Рассчитать P_{1} , R_{κ} , η_{9} , K_{p} .
- **2.15.** УМ работает в КР: $\theta = \pi/3$, $P_1 = 15~Bm$, $R_{\kappa} = 30~Om$. Параметры БТ: S = 4~A/B, $S_{\kappa p} = 1~A/B$, E' = 0.7~B, $h_{219} = 20$. Рассчитать U_{e} , $E_{n\kappa}$, K_{p} . Как изменится R_{κ} , чтобы реализовать КР при $E_{n\kappa} = 20~B$, если E_{cm} , $U_{e} = const$? Какими станут P_1 , K_{p} ?
- **2.16.** В УМ $P_{pac} = 10~Bm$, $\eta_3 = 0.6$. Определить P_0 , P_1 .
- **2.17.** УМ работает в КР: $\theta = \pi/2$, $P_0 = 25~Bm$, $E_{n\kappa} = 25~B$, $\xi = 0.8$, S = 5~A/B. Определить $U_{\rm g}$, P_1 .

2.2. Влияние напряжений возбуждения и смещения

Примеры решения типовых задач

2.18. УМ работает в КР: $\theta = \pi/2$, $I_{\kappa 1} = 1$ A, $E_{n\kappa} = 28$ B. Параметры БТ: S = 4 A/B, $S_{\kappa p} = 1$ A/B, E' = 0.7 B. Рассчитать U_e , E_{cM} , P_1 , P_2 . При E_{cM} , $E_{n\kappa}$, $R_{\kappa} = const$ построить зависимость $I_{\kappa 1}(U_e)$ и $P_1(U_e)$ при изменении U_e .

Решение

Имеем $\gamma_1(\pi/2)=0.5$, тогда из (2.1) получаем $U_{_{\it B}}=0.5\,B$. Из (1.13) следует $E_{_{\it CM}}=E'=0.7\,B$. В КР $SU_{_{\it B}}(1-\cos\theta)=S_{_{\it KP}}\left(E_{_{\it NK}}-U_{_{\it K}}\right)$ и отсюда $U_{_{\it K}}=E_{_{\it NK}}-\frac{SU_{_{\it B}}}{S_{_{\it KP}}}(1-\cos\theta)=26\,B$. Сопротивление коллектора $R_{_{\it K}}$ и P_1 находим из (2.3), (2.4) $R_{_{\it K}}=26\,$ Ом , $P_1=13\,$ Вт .

Зависимости $I_{\kappa 1} (U_e)$ и $P_1 (U_e)$ представлены на рис.2.2. В НР ток $I_{\kappa 1}$ пропорционален U_e согласно (2.1) имеем $I_{\kappa 1} (U_e) = 2U_e$ - прямая, а мощность $P_1 (U_e) = 52U_e^2$ - парабола. В ПР $I_{\kappa 1} (U_e) = I_{\kappa 1} (U_e^{\kappa p}) = const \approx 1~A$ и $P_1 (U_e) = P_1^{\kappa p} = 13~Bm$.

Рис.2.2. Иллюстрация к задаче 2.18

Задачи для самостоятельного решения

- **2.19.** Параметры и режим БТ в УМ: S = 2 A / B, $S_{\kappa p} = 0.5 A / B$, $\theta = \pi / 2$, $R_{\kappa} = 24 \ Om$, $E_{n\kappa} = 28 \ B$. Рассчитать P_1 , ξ , η_9 для $U_g = 0.5 \ B$ и $U_g = 1 \ B$.
- **2.20.** УМ работает в КР: $\theta = \pi/2$, $U_{\it g} = 0.5~B$, $E_{\it n\kappa} = 25~B$. Параметры БТ: S = 4~A/B, $S_{\it \kappa p} = 1~A/B$, E' = 0.7~B, $h_{219} = 15$. Рассчитать $R_{\it \kappa}$, P_1 , K_p . Как изменятся напряженность режима, P_1 , K_p , при $E_{\it cm}$, $E_{\it n\kappa}$, $R_{\it \kappa} = const$, если уменьшить $U_{\it g}$ в 2 раза? В 4 раза?
- **2.21.** УМ работает в КР: $\theta = 2\pi/3$, $E_{n\kappa} = 27~B$, $R_{\kappa} = 15~Om$. Параметры БТ: S = 5~A/B, $S_{\kappa p} = 1~A/B$, E' = 0.7~B. Рассчитать E_{cm} , U_{e} , P_{1} . Как изменятся напряженность режима, θ , $I_{\kappa 1}$, P_{1} , если при U_{e} , $E_{n\kappa}$, $R_{\kappa} = const$ сделать $E_{cm} = 0.7~B$? 0.5~B? 0.3~B?
- **2.22.** Как изменятся напряженность режима, θ , $I_{\kappa 1}$, если в условиях задачи 2.21 при U_{ε} , $E_{n\kappa}$, R_{κ} = const увеличить E_{cm} до l B? l.l B?
- **2.23.** По результатам расчета задач 2.21 и 2.22 построить зависимости $I_{\kappa 0,1}(E_{c_{\mathcal{M}}})$ при U_{e} , $E_{n\kappa}$, R_{κ} = const.
- **2.24.** УМ работает в КР с $\theta = \pi/2$. Как изменятся $I_{\kappa 1}$, P_1 , если напряжение $E_{c_{\mathcal{M}}}$ уменьшить так, что $\theta = \pi/3$ при $U_{_{\mathcal{B}}}$, $E_{n_{\mathcal{K}}}$, $R_{_{\mathcal{K}}}$ = const?
- **2.25.** УМ работает в КР: $\theta = \pi/2$, $E_{n\kappa} = 26\,B$, $P_1 = 24\,Bm$, $R_{\kappa} = 12\,Om$, $U_e = 0.5\,B$. Построить $I_{\kappa 1}\big(U_e\big)$, $P_0\big(U_e\big)$, $\xi\big(U_e\big)$ по исходным данным и для $R_{\kappa} = 24\,Om$.

- **2.26.** УМ работает в КР: $\theta = \pi/2$, $U_e = 1\,B$, $P_0 = 76.4\,Bm$, $E_{n\kappa} = 40\,B$, $R_{\kappa} = 12\,O_{\!M}$. Построить $I_{\kappa0}\big(U_e\big)$, $P_0\big(U_e\big)$ по исходным данным и для $E_{n\kappa} = 20\,B$.
- **2.27.** УМ работает в КР: $\theta = \pi/2$, $K_p = 500$, $P_1 = 10~Bm$, $U_e = 0.5~B$. Построить $P_1(U_e)$, $K_p(U_e)$, $P_{\delta 1}(U_e)$ для $U_e \leq 0.5~B$.
- **2.28.** УМ работает в КР: $\theta=\pi/3$, $E_{\scriptscriptstyle CM}=0.2~B$, $U_{\scriptscriptstyle \theta}=1~B$, $I_{\kappa 1}=1~A$. При каком значении $U_{\scriptscriptstyle \theta}$ ток $I_{\kappa 1}=0$ при $E_{\scriptscriptstyle CM}$, $E_{\scriptscriptstyle NK}$, $R_{\scriptscriptstyle K}=const$?
- **2.29.** УМ работает в КР: $\theta = 2\pi/3$, $E_{n\kappa} = 25\,B$, $U_{g} = 0.5\,B$. Параметры БТ: $S = 4\,A/B$, $S_{\kappa p} = 1\,A/B$, $E' = 0.7\,B$, $h_{219} = 15$. Рассчитать R_{κ} , $E_{c m}$, K_{p} . Как изменятся напряженность режима и K_{p} , если при U_{g} , $E_{n\kappa}$, $R_{\kappa} = const$ сделать $E_{c m} = 0.7\,B$? $E_{c m} = 0.45\,B$?

2.3. Влияние коллекторного напряжения

Примеры решения типовых задач

2.30. По результатам задачи 2.18 построить приближенно зависимости $I_{\kappa 1}(E_{n\kappa})$ и $P_1(E_{n\kappa})$ при $E_{c_M}, U_{\mathfrak{g}}, R_{\kappa} = const.$

Решение

Зависимости $I_{\kappa 1}(E_{n\kappa})$ и $P_1(E_{n\kappa})$ представлены на рис.2.3. В НР $E_{n\kappa} > E_{n\kappa}^{\kappa p}$ ток $I_{\kappa 1}$ от $E_{n\kappa}$ не зависят, т.е. $I_{\kappa 1}(E_{n\kappa}) = I_{\kappa 1}^{\kappa p}$. В ПР $E_{n\kappa} < E_{n\kappa}^{\kappa p}$ ток $I_{\kappa 1}$ меняется практически линейно с ростом $E_{n\kappa}$. Приближенную оценку находим графически из рис.2.3 $I_{\kappa 1}(E_{n\kappa}) \approx I_{\kappa 1}^{\kappa p} E_{n\kappa} / E_{n\kappa}^{\kappa p}$. Мощность $P_1(E_{n\kappa})$ представляет собой параболу.

Рис.2.3. Иллюстрация к задаче 2.30

Задачи для самостоятельного решения

- **2.31.** По результатам задачи 2.18 и 2.30 построить приближенно зависимости $P_0(E_{n\kappa})$, $\eta_{\scriptscriptstyle 9}(E_{n\kappa})$ и $K_p(E_{n\kappa})$ при $E_{c\scriptscriptstyle M}$, $U_{\scriptscriptstyle g}$, $R_{\scriptscriptstyle K}$ = const.
- **2.32.** УМ может работать в трех режимах с $\xi = 0.4$; $\xi = 0.7$; $\xi = 0.9$ при $E_{n\kappa} = 40~B$ и $u_{\kappa 9}^{\kappa p} = I_{\kappa M} / S_{\kappa p} = 4~B$. Как изменятся P_1 и η_9 для каждого из режимов, если $E_{n\kappa}$ уменьшить в 2 раза?
- **2.33.** УМ работает в КР: $\theta = \pi/2$, $U_e = 0.5\,B$, $I_{\kappa 1} = 1\,A$, $R_{\kappa} = 20\,O_{M}$, $E_{n\kappa} = 24\,B$. Построить $P_1\big(E_{n\kappa}\big)$, $P_0\big(E_{n\kappa}\big)$, $\xi\big(E_{n\kappa}\big)$ по исходным данным и для $R_{\kappa} = 10\,O_{M}$.
- **2.34**. УМ работает в КР: $\theta = \pi/2$, $U_e = 0.4~B$, $I_{\kappa 1} = 2~A$, $R_{\kappa} = 10~Om$, $E_{n\kappa} = 22~B$. Построить $I_{\kappa 1} \big(E_{n\kappa} \big)$ по исходным данным и для $R_{\kappa} = 5~Om$ и $R_{\kappa} = 12~Om$.
- **2.35.** Режим и параметры БТ в УМ: $\theta = \pi/2$, $U_e = 0.4~B$, $R_\kappa = 26~Om$, S = 5~A/B, $S_{\kappa p} = 1~A/B$. Рассчитать $I_{\kappa 1}$, P_1 , P_0 , ξ , η_9 для $E_{n\kappa} = 14~B$ и $E_{n\kappa} = 28~B$.

2.4. Влияние одновременного синфазного изменения напряжений возбуждения и коллекторного

Примеры решения типовых задач

2.36. УМ работает в КР: $\theta = \pi/2$, $P_1 = 10 \ Bm$. Как изменятся напряженность режима и P_1 , если при E_{c_M} , $R_{\kappa} = const$ одновременно уменьшить U_{ε} и $E_{n\kappa}$ в 2 раза?

Решение

Поскольку $\theta = \pi/2$, то при вариации U_{e} угол отсечки меняться не будет (см. формулу (1.13)). Напряжение $U_{e}^{\kappa p}$ можно найти из (1.20) $U_{e}^{\kappa p} = S_{\kappa p} \left(E_{n\kappa} - U_{\kappa} \right) / S \left(1 - \cos \theta \right)$. При условии, что $U_{\kappa} = SU_{e} \gamma_{1}(\theta) R_{\kappa}$ окончательно получаем

$$U_{e}^{\kappa p} = S_{\kappa p} E_{n\kappa} / S \left(1 - \cos \theta + S_{\kappa p} \gamma_{1}(\theta) R_{\kappa} \right). \tag{2.11}$$

Из (2.11) следует, что при θ , R_{κ} = const условие КР сохраняется, если U_{θ} и $E_{n\kappa}$ меняются одинаково. Импульс коллекторного тока

косинусоидальный, ток $I_{\kappa 1}$ пропорционален $U_{\mathfrak{g}}$, поэтому $I_{\kappa 1}$ падает в 2 раза, а мощность P_1 в 4 раза.

Задачи для самостоятельного решения

- **2.37.** УМ работает в КР: $\theta = \pi/2$, $\xi_{\kappa p} = 0.85$. Как изменятся напряженность режима, ξ , если при E_{c_M} , $R_{\kappa} = const$ одновременно увеличить U_{κ} и $E_{n\kappa}$ в 2 раза?
- **2.38.** УМ работает в КР: $E_{n\kappa}=30~B$, $\theta=\pi/2$, $U_{e}=0.8~B$, $I_{\kappa0}=1.6~A$, $R_{\kappa}=11~Om$. Построить $I_{\kappa0}$, U_{κ} , $P_{1}(U_{e})$ для $E_{n\kappa}=20~B$ и $E_{n\kappa}=30~B$.
- **2.39.** УМ работает в КР: $\theta = \pi/2$, $R_{\kappa} = 20~Om$, $U_{g} = 0.5~B$, $I_{\kappa 1} = 1~A$, $E_{n\kappa} = 24~B$. Построить $I_{\kappa 1}, P_{1} \big(U_{g}, E_{n\kappa} \big)$ для $R_{\kappa} = 10, 20, 40~Om$, если напряжения U_{g} и $E_{n\kappa}$ меняются одновременно так, что $U_{g}/E_{n\kappa} = 0.5/24$, а $E_{cm} = const$.
- **2.40.** По условиям задачи 2.39 построить P_0 , ξ , $\eta_{\scriptscriptstyle 9}$ от $U_{\scriptscriptstyle 6}$ и $E_{n\kappa}$ для $R_{\scriptscriptstyle \kappa}=10,20,40~O\!m$.
- **2.41.** По условиям задачи 2.39 построить $P_{\tilde{o}1}$, K_p от U_e и $E_{n\kappa}$ для $R_\kappa=10,20,40~Om$, если $h_{219}=20$.

2.5. Влияние сопротивления в цепи коллектора

Примеры решения типовых задач

2.42. УМ работает в КР: $\theta = \pi/2$, $U_e = 0.5\,B$, $R_\kappa = 25\,O\!m$. Параметры БТ: $S = 4\,A/B$, $S_{\kappa p} = 1\,A/B$. Определить $I_{\kappa 0}$, $I_{\kappa 1}$, $E_{n\kappa}$, P_0 , η_9 . Как изменится напряженность режима УМ, если R_κ уменьшить в 2 раза? Увеличить в 2 раза? U_e , E_{cm} , $E_{n\kappa} = const$. Какими станут $I_{\kappa 0}$, $I_{\kappa 1}$, P_0 , η_9 ?

Решение

А) При $R_{\kappa}=25~O$ м и KP имеем $\gamma_0\left(\pi/2\right)=0.319$, $\gamma_1\left(\pi/2\right)=0.5$, $I_{\kappa0}=0.638~A$, $I_{\kappa1}=1~A$ и $P_1=0.5I_{\kappa1}^2R_{\kappa}=12.5~B$ m . Из условия (1.20) на KP имеем $I_{\kappa M}=2~A$, $u_{\kappa 9}^{\kappa p}=2~B$, $U_{\kappa}^{\kappa p}=25~B$, $E_{n\kappa}=27~B$, $P_0=17.2~B$ m . Из (2.6) имеем $\eta_9=0.727$ при $\xi=25/27$, $g_1\left(\pi/2\right)=1.57$.

- Б) $R_{\kappa}=0.5R_{\kappa}^{\kappa p}=12.5~Om$. Согласно (2.11) $U_{g}^{\kappa p}>0.5~B$, т.е. реализуется НР. Токи $I_{\kappa 1}$, $I_{\kappa 0}$ и P_{0} не меняются, а P_{1} , U_{κ} , ξ уменьшаются в 2 раза при $g_{1}(\theta)=const$, поэтому η_{3} уменьшится в 2 раза.
- В) $R_{\kappa}=2R_{\kappa}^{\kappa p}=50~Om$. Согласно (2.11) $U_{g}^{\kappa p}<0.5~B$, т.е. реализуется ПР. Импульс тока с провалом и для расчета $I_{\kappa 1}$, $I_{\kappa 0}$ необходимо задаться некоторым количественным значением для $U_{\kappa}>25~B$, например $U_{\kappa}=E_{n\kappa}$. Получаем окончательно $I_{\kappa 1}=0.554~A$, $I_{\kappa 0}=0.4~A$, $P_{0}=10.8~Bm$, $P_{1}=7.67~Bm$, $\eta_{9}=0.71$.
- **2.43.** Построить приближенно нагрузочные характеристики УМ $I_{\kappa 0,1}(R_{\kappa}), U_{\kappa}(R_{\kappa}), P_{1}(R_{\kappa})$ при $U_{\mathfrak{g}}, E_{c_{\mathcal{M}}}, E_{n\kappa} = const.$

Решение

Соответствующие зависимости представлены на рис.2.4а,б,в. В НР токи $I_{\kappa 0,1}$ не зависят от R_{κ} и УМ ведет себя как генератор тока $I_{\kappa 0,1}(R_{\kappa}) = I_{\kappa 0,1}(R_{\kappa}^{\kappa p}) = const$. При этом напряжение U_{κ} линейно растет с ростом R_{κ} . В ПР напряжение U_{κ} незначительно меняется с ростом R_{κ} и УМ ведет себя как генератор напряжения, а токи спадают $I_{\kappa 0,1} \propto 1/R_{\kappa}$. Мощность $P_1(R_{\kappa})$ имеет четко выраженный максимум в КР.

Рис.2.4. Иллюстрации к задаче 2.43

Задачи для самостоятельного решения

2.44. Какими станут напряженность режима УМ, $I_{\kappa 0,1}$, P_0 , $\eta_{\scriptscriptstyle 9}$, если в условиях задачи 2.42 увеличить R_{κ} до 37.5 Oм, 60 Oм, при $U_{\scriptscriptstyle 6}$, $E_{\scriptscriptstyle CM}$, $E_{\scriptscriptstyle NK}$ = const.

- **2.45.** Как в условиях задачи 2.42 следует изменить R_{κ} , чтобы реализовать КР, если $E_{n\kappa}=20~B$ при $U_{\rm g}$, $E_{\rm cm}=const$? Какими станут $I_{\kappa 1}$, P_1 , η_2 ?
- **2.46.** УМ работает в КР: $E_{c_M} = E' = 0.7~B$, $U_{_{\it B}} = 0.5~B$, $I_{_{\it K}0} = 0.638~A$. Как следует изменить E_{c_M} при $U_{_{\it B}}, E_{n_{\it K}} = const$, чтобы при увеличении $R_{_{\it K}}$ в 2 раза режим остался КР? Как изменится $I_{_{\it K}0}$?
- **2.47.** УМ работает в КР: $\theta=\pi/3$, $P_1=15\ Bm$, $R_{\kappa}=30\ Om$. Параметры БТ: $S=4\ A/B$, $S_{\kappa p}=1\ A/B$, $E'=0.7\ B$. Определить U_e и $E_{n\kappa}$. Как следует изменить R_{κ} , чтобы реализовать КР при $E_{n\kappa}=20\ B$, если U_e , $E_{cm}=const$? Найти P_1 .
- **2.48.** Построить нагрузочные характеристики $I_{\kappa 0,1}(R_{\kappa})$, $U_{\kappa}(R_{\kappa})$ для $E_{n\kappa}=14~B$ и $E_{n\kappa}=28~B$, если $\theta=\pi/2$, $U_{e}=0.4~B$, S=5~A/B, $S_{\kappa p}=1~A/B$.
- **2.49.** По условиям задачи 2.48 построить нагрузочную характеристику $P_{0.1}(R_{\kappa})$.
- **2.50.** Для условий задачи 2.48 при $E_{n\kappa} = 28\,B$ построить $I_{\kappa 1}\big(R_{\kappa}\big)$ и $P_1\big(R_{\kappa}\big)$ для $U_{\varepsilon} = 0.4\,B$ и $U_{\varepsilon} = 0.6\,B$, $E_{cm} = const.$
- **2.51.** УМ работает в КР: $\theta = \pi/2$, $\xi_{\kappa p} = 0.9$, $R_{\kappa} = 20~Om$, $U_{\theta} = 0.4~B$, $E_{n\kappa} = 24~B$. Построить $\eta_{\mathfrak{I}}(R_{\kappa})$ и $\xi(R_{\kappa})$ по исходным данным и для $U_{\theta} = 0.2~B$.
- **2.52.** УМ работает в КР: $\theta = \pi/2$, $U_e = 0.5\,B$, $I_{\kappa 1} = 1\,A$, $R_{\kappa} = 20\,O_M$, $E_{n\kappa} = 24\,B$. Построить $U_{\kappa}(R_{\kappa})$ и $P_0(R_{\kappa})$ по исходным данным и для $U_{\kappa} = 0.25\,B$.
- **2.53.** УМ работает в КР: $\theta = \pi/3$, $R_{\kappa} = 20~Om$, $\xi_{\kappa p} = 0.9$. Рассчитать K_p , если S = 2~A/B, $h_{219} = 20$. Как изменятся ξ и K_p , если при U_{s} , E_{cm} , $E_{n\kappa} = const$ сопротивление R_{κ} уменьшить в 2 раза? В 4 раза?
- **2.54.** УМ работает в КР: $\theta = \pi/2$, $R_{\kappa} = 24~Om$, $U_{\theta} = 1~B$, $I_{\kappa 1} = 1~A$, $E_{n\kappa} = 28~B$. Сопротивление R_{κ} уменьшили в 2 раза. Как следует изменить $E_{n\kappa}$, чтобы восстановить КР при U_{θ} , $E_{cm} = const$? Как следует изменить U_{θ} , чтобы восстановить КР при E_{cm} , $E_{n\kappa} = const$?

3. ЦЕПИ СОГЛАСОВАНИЯ И СХЕМЫ УСИЛИТЕЛЕЙ МОЩНОСТИ

3.1. Цепи согласования с нагрузкой

Цепь согласования (ЦС) с нагрузкой выполняет две основные задачи: трансформация сопротивления нагрузки $Z_{\scriptscriptstyle H}$ в активное сопротивление коллектора $R_{\scriptscriptstyle K}$, требуемое для реализации выбранного режима, и фильтрация высших гармоник коллекторного тока.

Необходимо, чтобы при передаче мощности высокой частоты P_1 из цепи коллектора в нагрузку $Z_{\scriptscriptstyle H}$ потери в ЦС были малы, поэтому элементы ЦС выбирают реактивными.

Простые схемы ЦС обычно получают из П-образной схемы замещения четырехполюсника (рис.3.1). Его входная проводимость равна

$$Y_{\kappa} = Y_1 + Y_3 (Y_2 + Y_{H}) / (Y_2 + Y_3 + Y_{H}), \tag{3.1}$$

$$Y_{k} = g_{k} + j \cdot b_{k}; Y_{k} = 1/Z_{k}; Y_{H} = g_{H} + j \cdot b_{H}; Y_{H} = 1/Z_{H}.$$
 (3.2)

В первом приближении при расчете трансформирующих свойств ЦС не учитывают потери в ее элементах, т.е.

$$Y_1 \approx jb_1; \ Y_2 = jb_2^c; \ Y_3 = jb_3.$$
 (3.3)

В (3.1) под b_2 следует понимать параллельное соединение собственно проводимости ЦС b_2^c и нагрузки $b_{\scriptscriptstyle H}$

$$b_2 = b_2^c + b_{_H} (3.4)$$

Из (3.1) с учетом (3.2)-(3.4) получаем

$$g_{k} = \frac{b_{3}^{2}g_{H}}{g_{H}^{2} + (b_{2} + b_{3})^{2}}; b_{k} = b_{1} + \frac{b_{3}\left[g_{H}^{2} + b_{2}(b_{2} + b_{3})\right]}{g_{H}^{2} + (b_{2} + b_{3})^{2}}.$$
 (3.5)

Реализовать высокие энергетические показатели в УМ можно, если активное сопротивление ЦС соответствует оптимальному режиму работы, а реактивное равно нулю

$$R_k = R_{k,opt}; X_k = 0$$
 или $g_k = g_{k,opt}; b_k = 0.$ (3.6)

Соотношения (3.6) позволяют определить только два из трех параметров ЦС, если известны R_k , R_H , а $X_K = 0$. Приходится один из параметров выбирать, например, из конструктивных соображений, учитывая наличие междуэлектродных и паразитных емкостей, требования к фильтрации и т.д.

Рассмотрим два случая.

A) Симметричный
$$\Pi$$
-фильтр $b_2 = -b_3$. (3.7)
Решая (3.6) с учетом (3.5), (3.7), получим

$$b_3 = \pm \sqrt{g_k g_H}; \ b_1 = b_2 \ u \ b_1 = b_2 = -b_3..$$
 (3.8)

Здесь и далее под $g_k(R_k)$ следует понимать значения, известные из расчета УМ.

Вместо проводимостей (3.8) можно определить сопротивления ЦС

$$X_1 = X_2 = -X_3 = \pm \sqrt{R_k R_H} \,. \tag{3.9}$$

П-фильтр, у которого выполняются условия (3.8), (3.9), называют симметричным. Можно записывать для краткости

$$b = b_1 = b_2 = -b_3 = \pm \sqrt{g_k g_H}; X = X_1 = X_2 = -X_3 = \pm \sqrt{R_k R_H}.$$
 (3.10)

А) **Вырожденный П-фильтр** $b_2 = 0$.

(3.11)Решение (3.6) с учетом (3.5), (3.11) имеет вид:

$$b_1 = \pm \sqrt{g_k g_H (1 - g_k / g_H)}; \ b_3 = \mp \sqrt{g_k g_H / (1 - g_k / g_H)};.$$
 (3.12)

$$x_1 = \pm \sqrt{R_k R_H / (1 - R_H / R_K)}; \ x_3 = \mp \sqrt{R_k R_H (1 - R_H / R_K)}.$$
 (3.13)

Параметры ЦС при $b_2 = 0$ можно реализовать, если

$$g_k / g_H < 1, R_H / R_K < 1.$$
 (3.14)

Если выполняются неравенства

$$g_k / g_H <<1, R_H / R_K <<1,$$
 (3.15)

то приближенно
$$b_1 = -b_3 = \pm \sqrt{g_k g_H}$$
, $x_1 = -x_3 = \pm \sqrt{R_k R_H}$ (3.16)

и, как видно, это контур, настроенный в резонанс на частоту входного сигнала.

Рис.3.1. П-образные схемы цепи связи

Цепи согласования бывают широкодиапазонными или работают на фиксированной частоте. Задачи составлены для последнего, наиболее простого случая.

При расчете энергетических показателей УМ следует учитывать потери мощности P_n в элементах ЦС, их оценивают через КПД

$$\eta_{LIC} = P_{H}/P_{1}, P_{1} = P_{H} + P_{n},$$
(3.17)

где $P_{_{\! H}}$ - полезная мощность, передаваемая в нагрузку.

Для расчета $\eta_{L\!\!\!/C}$ удобно потери в элементах ЦС заменить сопротивлением r_n , включенным последовательно с $R_{_H}$ (рис.3.2a). Оба сопротивления обтекаются током $I_{_H}$. Мощности и КПД

$$P_{H} = 0.5I_{H}^{2}R_{H}; P_{n} = 0.5I_{H}^{2}r_{n}; P_{1} = 0.5I_{H}^{2}(R_{H} + r_{n}).$$
(3.18)

Из (3.17)

$$\eta_{LIC} = R_{\scriptscriptstyle H} / (R_{\scriptscriptstyle H} + r_n). \tag{3.19}$$

Можно уточнить расчет реактивных параметров ЦС с учетом потерь, при этом как бы увеличивается сопротивление нагрузки $R_{\scriptscriptstyle H}$ на $r_{\scriptscriptstyle n}$, т.е.

$$R_{\scriptscriptstyle H} + r_{\scriptscriptstyle R} = R_{\scriptscriptstyle H} / \eta_{\mathrel{L\!\!/}C} \,. \tag{3.20}$$

Для ЦС по схеме рис.3.2б ($b_2 = 0$), если выполняется (3.15)

$$X_1 = -X_3 = \pm \sqrt{R_k R_\mu / \eta_{UC}}; \ b_1 = -b_3 = \mp \sqrt{g_k g_\mu \eta_{UC}}.$$
 (3.21)

Если известны реактивные параметры ЦС, $\eta_{\mathit{L\!\!/}\!\!\!\!/}$ и $R_{\scriptscriptstyle H}$, можно рассчитать $R_{\scriptscriptstyle K}$ так

$$R_{\kappa} = X_1^2 \eta_{LIC} / R_{H} = R_{\kappa, HeH} (1 - \eta_{LIC}) = X_1^2 / (R_{H} + r_n). \tag{3.22}$$

Здесь $R_{\kappa, \text{нен}}$ - сопротивление ЦС в режиме холостого хода, когда $R_{\text{H}}=0$

$$R_{\kappa, HeH} = X_1^2 / r_n, \ r_n = R_H (1 - \eta_{UC}) / \eta_{UC}.$$
 (3.23)

Добротность нагруженного Q и ненагруженного Q_{hen} контура

$$Q = \rho / (R_H + r_n), \ Q_{HeH} = \rho / r_n, \ Q = Q_{HeH} (1 - \eta_{UC}),$$
 (3.24)

где ρ - характеристическое сопротивление,

$$\rho = \omega L_{cym} = 1/\omega C_{cym} = \sqrt{L_{cym}/C_{cym}}, \qquad (3.25)$$

 $L_{\text{сум}}, C_{\text{сум}}$ - суммарная индуктивность и емкость при круговом обходе контура.

Коэффициент включения контура в цепь коллектора

$$p = |X_1|/\rho = C_{CVM}/C_1 = L_1/L_{CVM}. \tag{3.26}$$

Выражение (3.22) с учетом (3.24), (3.25)

$$R_{\kappa} = p^2 \rho Q = p^2 \rho Q_{HeH} (1 - \eta_{LIC}).$$
 (3.27)

Ток в контуре или $I_{\scriptscriptstyle H}$ связан с током $I_{\kappa 1}$ соотношением $I_{\scriptscriptstyle H}=pQI_{\kappa 1}.$ Для симметричного П-фильтра (рис.3.1а)

$$X = \pm \sqrt{R_{\kappa}R_{H}/\eta_{LIC}}; \ b = \mp \sqrt{g_{k}g_{H}\eta_{LIC}}. \tag{3.28}$$

Расчет R_{κ} и $R_{\kappa, \text{нен}}$ выполняются согласно с (3.22), (3.28)

$$R_k = X^2 \eta_{LIC} / R_H; R_k = R_{k,HeH} (1 - \eta_{LIC}); R_k = X^2 / (R_H + r_n).$$
 (3.29)

Индуктивность L и емкость C можно рассчитать по их известным реактивным сопротивлениям $X_C = 1/\omega C$ и $X_L = \omega L$ и длине волны λ :

$$L[M\kappa\Gamma_H] = 0.53 \cdot \lambda[M] \cdot X_L[OM] \cdot 10^{-3}, \tag{3.30}$$

$$C[n\Phi] = 530 \cdot \lambda[M] / X_C[OM]. \tag{3.31}$$

Рис.3.2. П-образные схемы цепи связи с эквивалентным сопротивлением потерь r_n

Примеры решения типовых задач

3.1. Для УМ с ЦС по схеме рис. 3.2a: $X_1=X_2=-X_3=-20~O\!M$, $\eta_{L\!\!\!/C}=0.9$, $P_{\!_H}=18~B\!m$, $R_{\!_H}=90~O\!M$, $\lambda=20~M$. Определить P_1 , R_k , C_1 , L_3 .

Решение

Из (3.17) находим $P_1=P_{_H}$ / $\eta_{L\!\!/C}=20~Bm$. Далее применим (3.22), (3.30), (3.31) $R_k=X_1^2\eta_{L\!\!/C}$ / $R_{_H}=4~Om$, $L_3=0.212~m\kappa\Gamma H$, $C_1=530~n\Phi$.

3.2. Для УМ с ЦС по схеме рис.3.3 дано: $C_1 = C_3 = 530~n\Phi$, $R_{_H} = 0.8~Om$, $r_n = 0.2~Om$, $\lambda = 20~m$. Определить η_{UC} , R_k , Q, Q_{HeH} .

Решение

Согласно (3.19) $\eta_{L\!\!/C} = R_{_{\!\mathit{H}}} / \left(R_{_{\!\mathit{H}}} + r_n \right) = 0.8$. Далее применим (3.31) $\left| X_1 \right| = \left| X_3 \right| = 20 \ Om$, (3.22) $R_k = 400 \ Om$, (3.25) $\rho = \left| X_1 \right| + \left| X_3 \right| = 40 \ Om$, (3.24) $Q = \rho / \left(R_{_{\!\mathit{H}}} + r_n \right) = 40$, $Q_{_{\!\mathit{HEH}}} = \rho / r_n = 200$.

Рис.3.3. Иллюстрация к задаче 3.2

3.3. УМ работает в КР с ЦС по схеме рис.3.4а $R_k = 10 \ Om$, $I_{k1} = 2 \ A$, $\theta=\pi/2$, $R_{_{\! H}}=40~O\!m$, $\eta_{U\!C}\approx 1$. Рассчитать мощность в нагрузке $P_{_{\! H}2}$, создаваемую второй гармоникой коллекторного тока $I_{\kappa 2}$.

Решение

Если $\eta_{IIC} \approx 1$, то мощность в нагрузке от n-ой гармоники коллекторного тока равна

$$P_{Hn} = P_n = 0.5 I_{kn}^2 R_{kn}, (3.32)$$

где R_{kn} - активная составляющая входного сопротивления Π -фильтра на частоте $n\omega$ в последовательной схеме замещения

$$Z_{kn} = R_{kn} + jX_{kn}, (3.33)$$

$$R_{kn} = \frac{g_{H}X_{1}^{2}(n\omega)}{\{1 - b_{2}(n\omega)[X_{1}(n\omega) + X_{3}(n\omega)]\}^{2} + g_{H}^{2}[X_{1}(n\omega) + X_{3}(n\omega)]^{2}}.$$
 (3.34)

Коэффициент фильтрации *n*-ой гармоники определим так

$$\Phi_n = P_{Hn} / P_H = (I_{kn}/I_{k1})^2 R_{kn} / R_k.$$
 (3.35)

Причем для косинусоидального импульса тока имеем

$$I_{kn}/I_{k1} = \alpha_n(\theta)/\alpha_1(\theta). \tag{3.36}$$

Обозначим отношение сопротивлений в (3.35) следующим образом:

$$F_n = R_{kn} / R_k . ag{3.37}$$

Оно зависит от выбора схемы ЦС и ее параметров. Подставляя (3.36), (3.37) в (3.35), получаем

$$\Phi_n = \left(\alpha_n/\alpha_1\right)^2 \cdot F_n. \tag{3.38}$$

 $\Psi_n = (\alpha_n/\alpha_1) \cdot F_n. \tag{3.38}$ $(3.10) \quad |X| = \sqrt{R_k R_H} = 20 \ Om. \quad \text{На частоте } 2\omega \quad \text{имеем}$ $X_1(2\omega) = X_2(2\omega) = -10 \ O$ м, $b_2 = 0.1 \ C$ м, $X_3(2\omega) = 40 \ O$ м. Для $\theta = \pi/2$ из приложения 1 находи: $\alpha_1(\pi/2) = 0.5$, $\alpha_2(\pi/2) = 0.212$. Применим (3.34): $g_H = 1/R_H = 0.025 \ CM$, $R_{k2} = 0.548 \ OM$, $P_1 = 0.5I_{k1}^2 R_k = 20 \ Bm$, $I_{k2} = \alpha_2 I_{k1} / \alpha_1 = 0.848 A$, $P_2 = P_{\mu 2} = 0.2 Bm$.

Рис.3.4. Иллюстрация к задаче 3.3.

Задачи для самостоятельного решения

3.4. УМ с ЦС по схеме рис.3.5 работает в КР: $C_1 = C_2 = 530 \ n\Phi$, $C_3 = 265 \ n\Phi$, $\eta_{L/C} = 0.9$, $R_{_H} = 72 \ Om$, $P_{_H} = 9 \ Bm$, $\lambda = 20 \ m$. Рассчитать R_k , U_k , L_3 . Как изменятся напряженность УМ, $P_{_H}$, P_1 , R_k , U_k , если произойдет к.з. $R_{_H}$? обрыв $R_{_H}$?

Рис.3.5. Иллюстрация к задаче 3.4.

- **3.5.** Для УМ с ЦС по схеме рис.3.2a: |X|=20~Om, $\eta_{L\!\!\!/C}=0.9$, $R_{\!\!\!/H}=45~Om$, $I_{\!\!\!/H}=0.633~A$, $\lambda=20~m$. Рассчитать P_1 , U_k , L_3 .
- **3.6.** Для УМ с ЦС по схеме рис.3.5: |X|=20~Om, $1/\omega C_3=20~Om$, $\eta_{L\!\!/C}\approx 1$, $\lambda=25~m$, $P_{\!_H}=18~Bm$, $I_{\!_H}=0.6~A$. Рассчитать $I_{k1},~L_3,~C_3$.
- **3.7.** УМ работает в КРс ЦС по схеме рис.3.2a: $\eta_{L\!\!\!/C} \approx 1$, $R_{_{\!\it H}} = 100~O_{\!\it M}$, $R_{_{\!\it K}} = 28~O_{\!\it M}$, $U_{_{\!\it k}} = 28~B$, $\lambda = 20~{_{\it M}}$. Рассчитать $P_{\!\!1}$, $C_{\!\!1,2}$, $L_{\!\!3}$. Как изменятся напряженность режима УМ, $U_{_{\!\it k}}$, $P_{\!\!1}$, если $R_{_{\!\it H}} = 50~O_{\!\it M}$? $R_{_{\!\it H}} = 200~O_{\!\it M}$?

- **3.8.** Для работы УМ в КР требуется $R_{\kappa}^{\kappa p} = 100~Om$, а $R_{H} = 25~Om$. Выбрана симметричная ЦС (рис.3.2a), $\eta_{L\!\!\!/C} \approx 1$. Определить X. Следует ли изменить X для УМ, у которого $R_{\kappa}^{\kappa p} = 25~Om$, а $R_{H} = 100~Om$?
- **3.9.** УМ работает в КР с ЦС по схеме рис.3.2a: $R_{\kappa} = 25~Om$, $I_{k1} = 1~A$, $R_{\mu} = 100~Om$, $\eta_{IIC} \approx 1$. Определить I_{μ} .
- **3.10.** УМ с ЦС по схеме рис.3.3 работает в КР: $1/\omega C_1 = 20~Om$, $1/\omega C_3 = 40~Om$, $r_n = 0.5~Om$, $R_{_H} = 1.5~Om$, $P_1 = 0.5~Bm$. Рассчитать p, I_{k1}, U_k . Как изменяется напряженность режима УМ, $I_{k1}, U_{_H}, P_1$, если $R_{_H} = 0$? $R_{_H} = 2~Om$?
- **3.11.** УМ работает с ЦС по схеме рис.3.3: $I_{\scriptscriptstyle H}=1\,A,\ I_{\scriptscriptstyle K1}=0.25\,A,\ p=0.2,$ $R_{\scriptscriptstyle H}=1.6\ Om\,,\ r_{\scriptscriptstyle n}=0.4\ Om\,,\ \lambda=20\ m$. Определить $P_1,\ C_1,\ L_3$.
- **3.12.** УМ работает в КР с ЦС по схеме рис.3.6: $I_{\kappa 1}=0.2~A$, $r_n=R_{_H}=1~Om$, $L_1=0.265~m\kappa\Gamma h$, $L_3=1.06~m\kappa\Gamma h$, $\lambda=50~m$. Рассчитать ρ , $I_{_H}$, C_3 . Как изменятся напряженность режима УМ, $I_{\kappa 1}$, если произойдет к.з. L_3 ?

Рис.3.6. Иллюстрация к задаче 3.12

- **3.13.** УМ работает в КР с ЦС по схеме рис.3.6: $P_1 = 0.5 \ Bm$, $R_k = 100 \ Om$, $r_n = R_H = 2 \ Om$, $L_1 + L_3 = 0.53 \ m\kappa\Gamma H$, $\lambda = 20 \ m$. Определить U_H, U_K, C_3 . Как изменятся напряженность режима УМ, P_1, U_H, U_K , если при $L_1 + L_3 = const$ изменять $L_1: L_3 = 0.106 \ m\kappa\Gamma H$; $0.265 \ m\kappa\Gamma H$; $0.53 \ m\kappa\Gamma H$?
- **3.14.** УМ работает в КР с ЦС по схеме рис.3.6: $P_1 = 0.5$ Вт, $I_{\kappa 1} = 0.0625$ А, $I_{H} = 0.25$ А, $\eta_{LC} = 0.5$, p = 0.2, $\lambda = 32$ м. Рассчитать U_k, L_1, C_3, R_H . Как изменятся (ориентировочно) напряженность режима УМ, $I_{\kappa 1}$, P_1 , если емкость C_3 изменить на $\pm 50\%$ относительно расчетного значения.

- **3.15.** УМ работает в КР по условиям задачи 3.3, но ЦС выбрана по схеме рис.3.4б, $\eta_{UC} \approx 1$. Рассчитать мощность P_{H2} (параметры ЦС на частоте 2ω даны на рис.3.6г) и сравнить с результатами расчета задачи 3.3.
- **3.16.** УМ работает в КР по условиям задачи 3.3, но ЦС выбрана по схеме рис.3.46 и $\eta_{L/C} \approx 1$. Рассчитать P_{H2} для трех случаев: $\omega L_3 = 3X_3$, $\omega L_3 = 5X_3$, $\omega L_3 = 10X_3$. Сравнить с результатами расчета задачи 3.3.
- **3.17.** Как изменится напряженность режима УМ в условиях задачи 3.16, а также P_1, P_H , если для трех случаев значений ωL_3 учесть потери в катушке, приняв ее добротность $Q_L = 100$?
- **3.18.** УМ работает в КР: $I_{k1} = 5 \, A$, $U_k = 25 \, B$, $R_{_H} = 180 \, O\!m$, $\eta_{_{\mbox{\it ЦC}}} \approx 1$. Выбрать схему ЦС, рассчитать ее параметры и $U_{_H}$, если $\lambda = 30 \, m$.
- **3.19.** УМ работает в КР: $R_{\kappa}=10~O$ м, $R_{H}=40~O$ м, $\theta=\pi/2$. Выбрать схему ЦС и рассчитать ее параметры так, чтобы реализовать наименьший Φ_{2} при $\eta_{UC}=0.8$, если $Q_{L}=100$, $\lambda=20~{\rm M}$.
- **3.20.** УМ работает в КР: $R_{\kappa} = 500~Om$, $I_{k1} = 0.02~A$, $R_{H} = 5~Om$, $\lambda = 50~m$, $\eta_{L/C} \approx 1$. Выбрать схему ЦС, рассчитать ее параметры и I_{H} .
- **3.21.** УМ работает в КР: $\theta=\pi/2$, $X_1=-X_3=\pm 50~Om$, $R_{_H}=5~Om$, $\eta_{_{{\it L\!\!\! /}}{\it C}}\approx 1$, $P_{_H}=0.1~Bm$. Для ЦС по схеме рис.3.7а и рис.3.7б рассчитать Φ_2 и сравнить их.

Рис.3.7. Иллюстрация к задаче 3.21

3.22. УМ работает в КР с ЦС по схеме рис.3.3: $\theta = \pi/2$, $R_{\kappa} = 500~Om$, $R_{H} = 5~Om$, $\eta_{L/C} = 0.8$, $Q_{L} = 100$, $\lambda = 30~m$. Рассчитать параметры ЦС и Φ_{2} . Сравнить Φ_{2} с результатами расчета в задаче 3.21.

3.23. УМ работает в КР с ЦС по схеме рис.3.3: $\theta = \pi/2$, $R_{\kappa} = 500~Om$, $R_{H} = 2.5~Om$, $\eta_{LC} = 0.5$, p = 0.5, $\lambda = 25~m$. Рассчитать параметры ЦС и Φ_{2} , Φ_{3} . Как изменятся Φ_{2} , Φ_{3} , если реализовать в УМ КР с $\theta = \pi/3$, сохранив $R_{\kappa} = 500~Om$? Как придется изменить напряжение возбуждения U_{g} ?

3.24. УМ работает в КР с симметричной ЦС по схеме рис.3.8a: $R_{\kappa}=10~Om$, $\theta=\pi/2$, $R_{\mu}=90~Om$, $\eta_{L\!\!\!/C}\approx 1$, $\lambda=30~m$. Рассчитать параметры ЦС так, чтобы $\Phi_2=0$. Можно ли реализовать $\Phi_2=0$, если выбрать симметричную ЦС по схеме рис.3.8б? Определить $C_{1,2}, L_{2,3}$.

Рис.3.8. Иллюстрация к задаче 3.24.

3.2. Схемы усилителей мощности

Как известно, биполярные транзисторы имеют три электрода (эмиттер, база, коллектор), поэтому один из них является общим для входной и выходной цепей согласования. В общем случае, возможны три варианта схем УМ: с общим эмиттером (ОЭ) (рис.3.9а), базой (ОБ) (рис.3.9б) и коллектором (ОК) (рис.3.9в). Обычно общий электрод заземляют, чтобы ослабить влияние паразитных связей на работу УМ.

На частотах, где инерционные свойства БТ проявляются незначительно, в основном применяют УМ с ОЭ.

Рис.3.9. Три схемы УМ: с общими эмиттером (а), базой (б) и коллектором (в).

Схемы УМ строят так, чтобы для каждой составляющей тока (постоянной, первой, второй и более высоких гармоник) существовал замкнутый путь.

Рассмотрим свойства *входной цепи* УМ. Напряжение возбуждения $U_{\it g}$ создается за счет связи с предыдущим каскадом с помощью входной цепи согласования (ЦС $_{\rm Bx}$), нагрузкой которой является входное сопротивление БТ

$$R_{ex} = U_{e} / I_{\delta 1} = 1/S_{\delta} \gamma_{1}(\theta) = h_{213} / S \gamma_{1}(\theta), \tag{3.39}$$

где $S_{\delta} = S/h_{219}$ - крутизна входной характеристики БТ. Напряжение смещения E_{cm} без потерь попадает на базу, если сопротивление ЦС_{вх} для постоянного тока равно нулю $Z_{ex}(0) = 0$. Напряжение возбуждения будет гармоническим, если сопротивление ЦС_{вх} для высших гармоник тока базы $Z_{ex}(jn\omega) = 0$. Таким образом,

$$Z_{ex}(0) = 0, Z_{ex}(jn\omega) = 0.$$
 (3.40)

В цепи коллектора мощность основной гармоники P_1 создается током $I_{\kappa 1}$ на сопротивлении R_k без потерь. Для постоянной составляющей $I_{\kappa 0}$ входное сопротивление ЦС должно быть равно нулю, для высших гармоник тоже, что обеспечит $\Phi_n=0$

$$Z_{\kappa}(j\omega) = R_{k}, Z_{\kappa}(0) = 0; Z_{\kappa}(jn\omega) = 0$$
 если $n > 1$. (3.41)

Для контроля за режимом УМ можно включить приборы, измеряющие $I_{\delta 0}$ и $I_{\kappa 0}$. Обычно их и источники питания $E_{c_{\mathcal{M}}}$, $E_{n\kappa}$ шунтируют конденсаторами большой емкости ($C_{\delta n}$ на рис.3.10 а,б,в,г), чтобы уменьшить потери высокочастотной мощности. Для ослабления влияния паразитных емкостей приборов и источников на параметры ЦС и нежелательных связей между каскадами, рекомендуется включать их в участки цепей с нулевым потенциалом по высокой частоте, а один полюс источника заземлять (рис.3.10).

Рис.3.10. Источники питания (а,б) $E_{\scriptscriptstyle {\it CM}}$, $E_{\scriptscriptstyle {\it NK}}$, шунтированные конденсаторами $C_{\scriptscriptstyle {\it б\it I}}$, а также приборы, измеряющие $I_{\it б\it 0}$ и $I_{\it K\it 0}$ (в,г).

Примеры решения типовых задач

3.25. Выходной каскад УМ работает в КР: $P_{\scriptscriptstyle H} = 16~Bm$, $R_{\scriptscriptstyle H} = 72~Om$, $R_{\scriptscriptstyle K} = 10~Om$, $\eta_{\rm L/C} = 0.8$, $\theta = \pi/2$, $E_{\scriptscriptstyle HK} = 24~B$, $\lambda = 30~m$. Параметры БТ: S = 5~A/B, $S_{\scriptscriptstyle KP} = 1~A/B$, E' = 0.7~B, $h_{\rm 219} = 20$. Составить схему УМ.

Решение

Прежде всего выбираются схемы ЦС с нагрузкой и с возбудителем ЦС $_{\rm вx}$. Поскольку $R_{\kappa}/R_{\rm H}<1$, то ЦС можно реализовать, как П-фильтр. В выходном каскаде требования к фильтрации высших гармоник повышенные, поэтому следует выбрать ЦС по схеме рис.3.5.

Для выбора схемы ЦС $_{\rm BX}$ необходимо найти R_{ex} по (3.43) $R_{ex}=8~Om$, это нагрузка ЦС $_{\rm BX}$, а ее входное сопротивление R_{κ}^{np} оценим следующим образом.

Мощность от возбудителя $P_{e1}=P_1$ / K_P , где из (2.9) $K_P=500$, $P_{e1}=0.02~Bm$. Задаем КПД ЦС $_{\rm Bx}$, например, $\eta^{ex}_{L\!\!\!/C}=0.5$, тогда $P_1^{np}=P_{e1}/\eta^{ex}_{L\!\!\!/C}=0.04~Bm$. Такую мощность можно обеспечить маломощным БТ. Принимаем $E^{np}_{n\kappa}=12~B$, $U^{\kappa p}_{\kappa}\approx E^{\kappa p}_{n\kappa}=12~B$, получим $R^{np}_{\kappa}=\left(U^{np}_{\kappa}\right)^2/2P_1^{np}=900~Om$.

Поскольку $R_{\kappa}^{np}/R_{H}^{np}=900/8>>1$, то ЦС — контур по схеме рис.3.3 или рис.3.6, что упрощает подачу $E_{n\kappa}^{np}$.

Окончательная схема УМ с источниками питания дана на рис.3.11.

Для выполнения условий $Z_{ex}(0)=0$ и $Z_{\kappa}(0)=0$, то есть создания замкнутых путей для постоянных составляющих токов $I_{\kappa 0}$ и $I_{\delta 0}$, включены дополнительные элементы — блокировочные дроссели $L_{\delta n 1}$ и $L_{\delta n 2}$ - к.з. для постоянных составляющих. Это необходимо в случае емкостной связи БТ и ЦС.

Дроссель $L_{\delta n1}$ включен параллельно входу ЦС и не должен менять ее параметров на рабочей частоте, поэтому

$$\omega L_{\delta n1} = NR_k$$
 или $\omega L_{\delta n1} = N/\omega C_1$, (3.42)

$$N = 20...200. (3.43)$$

Дроссель $L_{\text{бл}2}$ включен параллельно R_{ex} , поэтому

$$\omega L_{6\pi 2} = NR_{ex}. \tag{3.44}$$

Напряжение $E^{np}_{n\kappa}$ подается на коллектор БТ предыдущего каскада через индуктивность L'_1 . В случае индуктивной связи БТ и ЦС дроссель не нужен.

Рис.3.11. Иллюстрация к задаче 3.25

3.26. По данным задачи 3.25 рассчитать индуктивность дросселей $L_{\delta n1}$, $L_{\delta n2}$ и токи, протекающие через них.

Решение

Согласно (3.28) |X|=30~Om, $1/\omega C_1>R_\kappa$. Задаемся N=50, $\omega L_{\tilde{0}\pi 1}=1500~Om$, $L_{\tilde{0}\pi 1}=23.85~m\kappa\Gamma H$ (3.30), $\omega L_{\tilde{0}\pi 2}=NR_{\rm ex}=400~Om$, $L_{\tilde{0}\pi 2}=6.36~m\kappa\Gamma H$.

В цепи коллектора: $P_1 = P_{\scriptscriptstyle H}/\eta_{\rm LC} = 20~Bm$, $I_{\kappa 1} = \sqrt{2P_1/R_{\scriptscriptstyle K}} = 2~A$, $U_{\scriptscriptstyle K} = R_{\scriptscriptstyle K}I_{\kappa 1} = 20~B$, $I_{\kappa 0} = I_{\kappa 1}/g_1(\pi/2) = 1.276~A$. Ток высокой частоты через $L_{\rm Gn1}$: $I_{L_{\rm Gn1}} = U_{\scriptscriptstyle K}/\omega L_{\rm Gn1} = 0.133~{\it mA}$, постоянная составляющая в $1.276/1.33\cdot 10^{-2} = 95.7$ раза больше, поэтому $I_{L_{\rm Gn1}} = I_{\kappa 0}$.

В цепи базы: $I_{\delta0}=I_{\kappa0}/h_{219}=0.0638\,A$, напряжение возбуждения $U_e=I_{\kappa1}/S\gamma_1(\pi/2)=0.8\,B$, ток высокой частоты $I_{L_{\delta n2}}=U_e/\omega L_{\delta n2}=2\cdot 10^{-3}\,A$, отношение токов $I_{\delta0}/I_{L_{\delta n2}}=0.0638/0.002=32$.

3.27. По результатам расчета задач 3.25, 3.26 определить емкости блокировочных конденсаторов $C_{\text{бл1,2}}$ (рис.3.11).

Решение

Блокировочные конденсаторы создают замкнутый путь для токов высокой частоты помимо источников питания, а также обеспечивают потенциал близкий к нулю. Напряжение высокой частоты на конденсаторах должно быть мало по сравнению с напряжениями источников и на соответствующих электродах БТ

$$U_{C_{\tilde{0}\eta_1}} << E_{n\kappa}, \ U_{C_{\tilde{0}\eta_1}} << U_{\kappa}, \ U_{C_{\tilde{0}\eta_2}} << E_{cM}, \ U_{C_{\tilde{0}\eta_2}} << U_{\epsilon}.$$
 (3.45)

Напряжения высокой частоты на $C_{\delta n1,2}$ создаются высокочастотными токами, протекающими соответственно через $L_{\delta n1,2}$ (рис.3.11), поэтому напряжения на конденсаторах тем меньше, чем меньше их сопротивления по сравнению с сопротивлением дросселей

$$1/\omega C_{\delta n1} = \omega L_{\delta n1} / N, \ 1/\omega C_{\delta n2} = \omega L_{\delta n2} / N. \tag{3.46}$$
 Принимаем $N=200$, тогда $1/\omega C_{\delta n1} = 7.5~Om$, из (3.31) $C_{\delta n1} = 2120~n\Phi$, $U_{C_{\delta n1}} = U_{\kappa} / 200 = 0.1~B$, условия (3.45) выполняются. Далее $1/\omega C_{\delta n2} = 2~Om$, $U_{C_{\delta n2}} = 0.8 / 200 = 4 \cdot 10^{-3}~B$, $C_{\delta n2} = 7950~n\Phi$ и условия (3.45) тоже выполняются.

Можно считать, что $U_{C_{\tilde{o}_{n}1}} \approx E_{n\kappa} = 24~B$, $U_{C_{\tilde{o}_{n}2}} \approx E_{c\scriptscriptstyle \mathcal{M}} = 0.7~B$.

В дальнейшем под идеальными блокировочными элементами следует понимать:

dpocceль — к.з. для постоянных составляющих и разрыв для токов высокой частоты;

конденсатор — к.з. для токов высокой частоты и разрыв для постоянных составляющих.

Задачи для самостоятельного решения

- **3.28.** Как в условиях задач 3.25-3.27 изменятся напряженность режима УМ, токи через $L_{\delta n1,2}$, напряжения на $C_{\delta n1,2}$, мощность P_1 , если произойдет к.з. $L_{\delta n1}$? к.з. $L_{\delta n2}$? к.з. $C_{\delta n1}$? к.з. $C_{\delta n2}$? обрыв $L_{\delta n1}$?
- **3.29.** По условиям задачи 3.25 рассчитать параметры ЦС $_{\rm Bx}$, приняв Q = 25, $C_3'' = 0$.
- **3.30.** УМ по схеме рис.3.11 работает в КР: $\theta = \pi/2$, $U_{\kappa} = 26\,B$, $E_{n\kappa} = 28\,B$, $E_{cm} = 0.7\,B$, $U_{e} = 0.5\,B$, $I_{\kappa 1} = 1\,A$, $\eta_{L\!\!\!/C} \approx 1$, $R_{H} = 50\,O_{M}$, $h_{219} = 20$. Считая блокировочные элементы идеальными, определить: А) токи через $L_{6\pi 1,2}$; Б) Максимальное значение токов $i_{3,4,5}$; В) Максимальные напряжения на $L_{6\pi 1,2}$, $u_{C_{1}}$, u_{H} ; Г) Напряжения на $C_{6\pi 1,2}$; Д) Значения токов $i_{1,6}$ при $\omega t = 0,\pi/2,\pi$.

3.31. Считая блокировочные элементы УМ по схеме рис.3.12 идеальными, определить, в каких проводах, обозначенных цифрами, протекают токи, временные зависимости которых соответствуют рис.3.12а,б,в,г? На каких элементах лежат напряжения, соответствующие рис.3.13а,б,в,г?

3.32. УМ по схеме рис.3.11 работает в КР: $\theta = \pi/2$, $P_1 = 20 \ Bm$, $R_{\kappa} = 4 \ Om$, $R_{H} = 100 \ Om$, $\eta_{L\!C} \approx 1$, $E_{n\kappa} = 15 \ B$, $\lambda = 20 \ m$. Рассчитать $L_{\delta n1}$, $C_{\delta n2}$, ток через $L_{\delta n1}$. Как изменится P_1 , если произойдет к.з. $L_{\delta n1}$? $C_{\delta n1}$? 3.33. УМ по схеме рис.3.11 работает в КР: $\theta = \pi/2$, $U_{\epsilon} = 0.5 \ B$, $I_{\kappa 1} = 1 \ A$, $E_{cm} = 0.7 \ B$, $h_{219} = 20$, $\lambda = 20 \ m$. Рассчитать $L_{\delta n2}$, $C_{\delta n2}$, напряжения на $L_{\delta n2}$ и $C_{\delta n2}$, ток через $L_{\delta n2}$. Как изменятся $I_{\kappa 1}$, U_{ϵ} при к.з. $L_{\delta n2}$? $C_{\delta n2}$? 3.34. УМ по схеме рис.3.11 работает в КР: $P_1 = 18 \ Bm$, $R_{\kappa} = 16 \ Om$, $R_{H} = 50 \ Om$, $\eta_{L\!C} \approx 1$, $E_{n\kappa} = 26 \ B$, $E_{cm} = 0.7 \ B$, $U_{\epsilon} = 0.6 \ B$. Изобразить зависимости $i_{3,4}$, u_{H} , $u_{\delta 9}$, $u_{\kappa 9}$ (ωt). Как изменятся эти зависимости, если произойдет А) к.з. $L_{\delta n1}$. Б) к.з. C_2 . В) обрыв R_{H} ?

3.35. УМ по схеме рис.3.11 работает в КР: $\theta = \pi/2$, $P_1 = 18 \ Bm$, $I_{\kappa 0} = 0.955 \ A$, $|X| = 28 \ Om$. Считая блокировочные элементы идеальными, изобразить $i_{2,8}(\omega t)$. Как изменятся P_1 и $i_{2,8}(\omega t)$, если произойдет к.з. $C_{\delta n1}$? $L_{\delta n2}$? C_2 ?

3.36. На рис.3.14 изображен УМ по схеме с ОЭ и заземленным коллектором, так как конструкция БТ такова, что коллектор соединен с корпусом. УМ работает в КР: $P_1 = 17~Bm$, $E_{n\kappa} = -28~B$, $U_{\kappa} = 25~B$, $R_{H} = 75~Om$, $\eta_{L/C} \approx 1$, $\lambda = 30~M$. Рассчитать L_{6n1} , C_{6n1} . Чему равно E_{cM} ? Как изменится P_1 при к.з. конденсатора C в контуре предыдущего каскада? Считая блокировочные элементы идеальными, определить, в каких проводах, отмеченных цифрами, протекают токи, изображенные на рис.3.12а,б,в,г? На каких элементах лежат напряжения, временные зависимости которых изображены на рис.3.13а,б,в,г?

Рис.3.12. Иллюстрация к задаче 3.31

Рис.3.13. Иллюстрация к задаче 3.31

Рис.3.14. Иллюстрация к задаче 3.36

3.37. УМ по схеме с заземленной базой рис.3.15 работает в КР: $\theta = \pi/2$, $I_{\kappa 1} = 2\,A$, $P_{\mu} = 20\,Bm$, $R_{\mu} = 40\,Om$, $\eta_{L\!\!/C} \approx 1$, $\lambda = 20\,M$. Параметры БТ: $S = 5\,A/B$, $S_{\kappa p} = 1\,A/B$, $E' = 0.7\,B$, $h_{219} = 20$. Считая блокировочные элементы идеальными, определить токи через $L_{\delta n1}$, $L_{\delta n2}$, максимальные напряжения на $C_{\delta n1}$, $C_{\delta n2}$, максимальное напряжение на емкостях C_1 и C_2 .

Рис.3.15. Иллюстрация к задаче 3.37

- **3.38.** По условиям задачи 3.37 рассчитать параметры симметричной ЦС, приняв $\omega L_3 = 3X_3$.
- **3.39.** По условиям задачи 3.37 рассчитать коэффициенты усиления по току и напряжению $K_I = I_{\kappa 1} \, / \, I_{ex1}, \; K_U = U_{ebix} \, / \, U_{ex}$, а также по мощности K_P . Принять $I_{ex1} = I_{61} + I_{\kappa 1}, \; U_{ebix} = U_{\kappa} + U_{e}$.
- **3.40.** По условиям задачи 3.37 рассчитать η_9 для $E_n=24~B$. Принять, что цепь коллектора потребляет мощность от двух источников U_g и E_n , а также $P_{nomp}=I_{\kappa 0}E_{n\kappa}+0.5I_{\kappa 1}U_g$.
- **3.41.** По условиям задачи 3.37 и результатам расчета задачи 3.39 определить R_{ex} и решить, как правильно выбрать схему ЦС $_{вx}$.
- **3.42.** Как изменятся режим УМ и P_{H} , если в условиях задачи 3.37 произойдет обрыв R_{H} ? к.з. $C_{\delta n2}$? к.з. $C_{\delta n1}$? к.з. C_{2} ?
- **3.43.** Считая блокировочные элементы идеальными, определить, в каких точках цепи, отмеченных на рис.3.15 цифрами, протекают токи, изображенные на рис.3.12а,б,в,г? На каких элементах схемы лежат напряжения, изображенные на рис.3.13 а,б,в,г?
- **3.44.** Какая полярность у напряжения E_{c_M} на схеме рис.3.16 обеспечит работу УМ с $\theta = \pi/2$?
- **3.45.** УМ по схеме с заземленным коллектором (рис.3.16) работает в КР: $\theta=\pi/2$, $I_{\kappa 1}=2$ A, $P_{_H}=20$ Bm, $R_{_H}=40$ Om, $E_{n\kappa}=24$ B, $\lambda=20$ m. Параметры БТ: S=5 A/B, $S_{\kappa p}=1$ A/B, E'=0.7 B, $h_{21_9}=20$. Считая блокировочные элементы идеальными, определить ток через $L_{\delta n1}$, напряжение на $C_{\delta n1}$. В каких проводах, отмеченных на рис.3.16 цифрами, протекают токи, изображенные на рис.3.12a,б,в,г? На каких элементах схемы лежат напряжения, изображенные на рис.3.13a,б,в,г? Полярность не учитывать.
- **3.46.** По условиям задачи 3.45 рассчитать коэффициенты усиления по току K_I , напряжению K_U и мощности K_P , η_3 , R_{ex} . Сравнить с

результатами задачи 3.39. Принять, что $I_{ex1} = I_{\tilde{o}1}$, $U_{ex} = U_e + U_{\kappa}$, $U_{eblx} = U_{\kappa}$.

3.47. УМ по схеме рис.3.11 работает в КР: $\theta=\pi/2$, $P_{_H}=20~Bm$, $I_{_{K1}}=2~A$, $R_{_H}=40~Om$, $\eta_{_{\mbox{\it LC}}}\approx 1$, $E_{_{\it nK}}=24~B$, $\lambda=20~{\it M}$. Параметры БТ: S=5~A/B, $S_{_{\it KP}}=1~A/B$, E'=0.7~B, $h_{_{\mbox{\it L19}}}=20$. Рассчитать K_I , K_U , K_P , $\eta_{_{\mbox{\it 9}}}$, $R_{_{\it 6X}}$. Результаты сравнить с аналогичными для УМ с ОБ и ОК.

Рис.3.16. Иллюстрация к задаче 3.45

3.3. Настройка усилителя мощности

Цель настройки состоит в том, чтобы подобрать параметры ЦС и питающие напряжения для получения требуемой мощности в оптимальном режиме. Чаще всего оптимальным является критический режим.

Для настройки ЦС необходимо иметь два регулируемых параметра, чтобы удовлетворить двум условиям (3.6).

Настраивают УМ по приборам, измеряющим постоянные составляющие токов $I_{\kappa 0}$, $I_{\delta 0}$, напряжения питания $E_{c_{\mathcal{M}}}$, $E_{n\kappa}$ и в.ч. напряжения U_{e} , U_{κ} , U_{μ} . Для наблюдения формы импульсов тока $i_{\kappa}(\omega t)$ пользуются осциллографом.

Если в коллекторной цепи включен контур с индуктивной связью, как в предыдущем каскаде в УМ на рис.3.12, то настроить контур в резонанс $X_{\kappa}=0$ можно емкостью C_3' , а получить нужное R_{κ} путем изменения коэффициента включения p (L_1'). Если связь коллектора с контуром емкостная, придется каждый раз при изменении коэффициента включения менять также настройку контура. Сопротивления контура R_{κ} и X_{κ} при его настройке изменяются

$$R_{\kappa} = R_{\kappa 0} / \left(1 + \alpha^2\right); \ X_{\kappa} = -\alpha R_{\kappa}; \ tg \varphi_{\kappa} = -\alpha. \tag{3.45}$$

Модуль сопротивления

$$Z_{\kappa} = \sqrt{R_{\kappa}^2 + X_{\kappa}^2} = R_{\kappa 0} / \sqrt{1 + \alpha^2},$$
 (3.46)

$$\alpha = x/r = Q(\omega/\omega_0 - \omega_0/\omega), \tag{3.47}$$

где x,r - сумма реактивных и активных сопротивлений при круговом обходе контура, ω_0 - его собственная частота, ω - рабочая частота входного сигнала.

При настройке П-фильтра вариация реактивных параметров нарушает его симметрию, сопротивления R_{κ} , X_{κ}

$$R_{\kappa} = g_{H} / \left\{ \left(b_{1} \left(X_{3} b_{2} - 1 \right) - b_{2} \right)^{2} + g_{H}^{2} \left(X_{3} b_{1} - 1 \right)^{2} \right\}; \tag{3.47}$$

$$X_{\kappa} = -R_{\kappa}R_{H} \left\{ (X_{3}b_{2} - 1) \left[b_{1}(X_{3}b_{2} - 1) - b_{2} \right] + g_{H}^{2}X_{3}(X_{3}b_{1} - 1) \right\}.$$
 (3.48)

А модуль входного сопротивления равен

$$Z_{\kappa} = \sqrt{R_{\kappa}^2 + X_{\kappa}^2} \,. \tag{3.49}$$

Задачи для самостоятельного решения

3.48. УМ по схеме рис.3.17 работает в КР: $\theta = \pi/2$, $\eta_{L\!\!/C} = 0.5$, $\lambda = 50~M$, $C_3 = 265~n\Phi$. Измерены: $I_{\kappa 0} = 0.0638~A$, $U_{\kappa}^{9\phi} = 7.07~B$, $U_{H}^{9\phi} = 0.707~B$. Параметры БТ: S = 0.5~A/B, $S_{\kappa p} = 0.1~A/B$, E' = 0.3~B. Рассчитать L_1 , L_3 , P_1 , $E_{n\kappa}$, U_{κ} .

Рис.3.17. Иллюстрация к задаче 3.48

3.49. В условиях задачи 3.48 емкость C_3 уменьшили до 212 $n\Phi$. Что покажут приборы, измеряющие $I_{\kappa 0}$, U_{κ} , U_{μ} , если E_{cm} , U_{g} , $E_{n\kappa}$, $L_1 + L_3 = const$? При расчете нового значения резонансного

сопротивления $R_{\kappa 0}$ принимать $r = r_n + R_{\kappa} = const$. Как следует изменять L_1 , L_3 , чтобы восстановить настройку контура в резонанс и КР?

- **3.50.** Для условий задачи 3.49 изобразить характер изменения $I_{\kappa 0}$, U_{κ} , U_{H} от изменения емкости C_{3} .При этом считать, что УМ в HP генератор тока, а в ПР генератор напряжения.
- **3.51.** В условиях задачи 3.48 емкость C_3 увеличили до 424 $n\Phi$. Что покажут приборы, измеряющие $I_{\kappa 0}$, U_{κ} , U_{μ} ? E_{cm} , U_{e} , $E_{n\kappa}$, L_{1} , $L_{3}=const$. Как изменить L_{1} , L_{3} , чтобы настроить контур в резонанс и восстановить КР?
- **3.52.** УМ по схеме рис.3.18 работает в КР: $\theta = \pi/2$, $P_1 = 1$ Вт, $R_H = 4$ Ом, $L_3 = 4.24$ мкГн, $E_{n\kappa} = 22$ В, $\eta_{L/C} = 0.5$, $\lambda = 40$ м. Параметры БТ: S = 0.5 А/В, $S_{\kappa p} = 0.1$ А/В, E' = 0.3 В. Рассчитать $I_{\kappa 0}$, U_{κ} , U_{μ} , C_1 , C_3 .
- **3.53**. Как изменятся режим УМ, $I_{\kappa 0}$, U_{κ} , U_{μ} , если в условиях задачи 3.52 емкость C_1 уменьшить в 2 раза? $E_{c_{\mathcal{M}}}$, U_{θ} , $E_{n\kappa}$, L_3 , $C_3=const$. Как изменить емкость C_3 , чтобы при $L_3=4.24$ $m\kappa\Gamma h$ восстановить настройку контура в резонанс? Какими станут режим УМ, $I_{\kappa 0}$, U_{κ} , U_{μ} ? $E_{c_{\mathcal{M}}}$, U_{θ} , $E_{n\kappa}=const$. Можно ли при новых значениях C_1 , C_3 меняя U_{θ} и $E_{n\kappa}\leq 28$ B, восстановить КР? Какие будут значения P_1 , $I_{\kappa 0}$, U_{κ} , U_{μ} ? Реализуется ли $P_1=1$ Bm?

Рис.3.18. Иллюстрация к задаче 3.52

3.54. УМ работает в КР по исходным данным задачи 3.52. Как изменятся режим УМ, $I_{\kappa 0}$, U_{κ} , U_{H} , P_{1} , если C_{1} увеличить в 2 раза? C_{3} , L_{3} , $E_{c_{M}}$, U_{e} , $E_{n\kappa}$ = const. Как изменить C_{3} , чтобы восстановить настройку контура в резонанс при новом значении C_{1} ? Какими станут режим УМ, $I_{\kappa 0}$, U_{κ} , U_{H} , P_{1} ? Можно ли, меняя U_{e} , $E_{n\kappa} \leq 28~B$, восстановить КР так, чтобы $P_{1}^{\kappa p} = 1~Bm$? L_{3} , $E_{c_{M}} = const$.

- **3.55.** УМ работает в КР по исходным данным задачи 3.52. Как изменятся режим УМ, $I_{\kappa 0}$, U_{κ} , U_{H} , P_{1} , если емкость C_{3} увеличить в 2 раза? C_{1} , L_{3} , $E_{c_{M}}$, U_{e} , $E_{n\kappa}$ = const. Как изменить C_{1} , чтобы восстановить настройку контура в резонанс при новом значении C_{3} ? Какими станут режим УМ, $I_{\kappa 0}$, U_{κ} , U_{H} , P_{1} ?
- **3.56.** УМ работает в КР по исходным данным задачи 2.52. Как изменятся режим УМ, $I_{\kappa 0}$, U_{κ} , U_{μ} , P_{1} , если емкость C_{3} уменьшить в 2 раза? C_{1} , L_{3} , $E_{c_{M}}$, U_{e} , $E_{n\kappa}$ = const. Как изменить L_{3} , чтобы при новом значении C_{3} восстановить настройку контура в резонанс? C_{1} = const. Какими станут режим УМ, $I_{\kappa 0}$, U_{κ} , U_{μ} , P_{1} ? $E_{c_{M}}$, U_{e} , $E_{n\kappa}$ = const.
- **3.57.** Для условий задачи 3.55, когда новые значения C_1 , C_3 соответствуют настройке контура в резонанс, изобразить характер зависимостей $I_{\kappa 0}$, U_{κ} , U_{μ} (L_3); $E_{c_{M}}$, U_{θ} , $E_{n\kappa}$ = const.

4. АМПЛИТУДНАЯ МОДУЛЯЦИЯ

4.1. Общие соотношения

Радиопередающие устройства с амплитудной модуляцией (АМ) применяют для радиосвязи, радиовещания, телевидения. Сигнал информации s(t) в общем случае меняется по сложному и неопределённому во времени закону. Его характеризуют спектром частот $F_{\min}..F_{\max}$, которые называют модулирующими или низкими. При теоретических и экспериментальных исследованиях s(t) считают однотоновым (гармоническим)

$$s(t) = U_{\Omega} \cos(\Omega t), \ \Omega = 2\pi F.$$
 (4.1)

В связных радиопередающих устройствах $F=300..3000~\Gamma y$, в вещательных $F=50..10000~\Gamma y$.

В процессе модуляции амплитуда тока высокой частоты в нагрузке меняется по закону сигнала информации вокруг некоторого среднего значения, обеспечивающего передачу мощности в режиме молчания s(t) = 0. С учетом (4.1) имеем

$$I_{H1} = I_{H1MOR} \cdot (1 + m \cdot \cos \Omega t), \tag{4.2}$$

где m - коэффициент модуляции, $m_{\max} = 1$.

Различают режим молчания (m=0), максимальный $(\cos \Omega t = 1)$ и минимальный $(\cos \Omega t = -1)$, причем:

$$I_{H1\max} = I_{H1MO\pi} \cdot (1+m), \ I_{H1\min} = I_{H1MO\pi} \cdot (1-m).$$
 (4.3)

Мгновенные значения тока $i_{\scriptscriptstyle H}(t)$ при АМ с учетом (4.2)

$$i_{H} = I_{H1,MOR} \cdot (1 + m \cdot \cos \Omega t) \cdot \cos \omega t \tag{4.4}$$

$$i_{H} = I_{H1MO\pi} \left[\cos \omega t + 0.5 \cdot \cos \left[\left(\omega + \Omega \right) t \right] + 0.5 \cdot \cos \left[\left(\omega - \Omega \right) t \right] \right]. \tag{4.5}$$

Спектр AM колебаний состоит из трех составляющих: несущей частоты ω , верхней $\omega + \Omega$ и нижней $\omega - \Omega$ боковых частот с амплитудами

$$I_{H\bar{0}} = 0.5m \cdot I_{H1_{MOZ}}.$$
 (4.6)

Мощность, усредненная за период высокой частоты равна

$$P_{H} = 0.5 \cdot I_{H1}^{2} R_{H} = 0.5 \cdot I_{H1MO\pi}^{2} R_{H} (1 + m \cdot \cos \Omega t)^{2}.$$
(4.7)

В режиме молчания
$$P_{H,MOR} = 0.5 \cdot I_{H1MOR}^2 R_H$$
 (4.8)

В режимах максимальном и минимальном:

$$P_{H,\text{max}} = P_{H,MOI} (1+m)^2, \ P_{H,\text{min}} = P_{H,MOI} (1-m)^2.$$
 (4.9)

Мощность, усредненная за период низкой частоты:

$$P_{H,MOO} = \frac{1}{2\pi} \int_{0}^{2\pi} P_{H,MOO} \left(1 + m \cdot \cos \Omega t \right)^{2} d(\Omega t) = P_{H,MOO} \left(1 + 0.5m^{2} \right). \tag{4.10}$$

Эта мощность создается несущей ($P_{H,MOR}$) и боковыми частотами

$$P_{H\tilde{0}} = 0.5m^2 P_{H,MOR}. \tag{4.11}$$

Токи в нагрузке $I_{\rm H1}$ и в цепи коллектора $I_{\kappa 1}$ связаны через линейные параметры ЦС, поэтому соотношения (4.2)-(4.11) справедливы, соответственно, для $I_{\kappa 1}$, P_1 .

Для неискаженного воспроизведения закона изменения s(t) амплитудой коллекторного тока $I_{\kappa 1}$ транзистор должен обеспечивать мощность P_1 в любом режиме, поэтому его номинальная мощность

$$P_{1\text{HOM}} \ge P_{1\text{max}} \,, \tag{4.12}$$

при m=1.

К усилителю мощности при AM, кроме обычных требований высоких КПД, K_P , хорошей фильтрации высших гармоник, добавляются требования к искажениям при воспроизведении s(t) или качеству модуляции.

О нелинейных искажениях косвенно судят по степени линейности статических модуляционных характеристик (СМХ). Частотные искажения появляются как за счет усилителя сигнала информации s(t), так и за счет прохождения боковых частот через цепь связи. В диапазонах коротких волн боковые частоты практически проходят через цепь связи без искажений, последние в основном становятся заметными в диапазонах средних и длинных волн.

Задачи для самостоятельного решения

- **4.1.** Дано: $P_{H,MOЛ} = 4.5 \; Bm$, $\eta_{L/C} = 0.9$, $R_{\kappa} = 10 \; Om$. Рассчитать $I_{\kappa 1 moЛ}$, $I_{\kappa 1 max}$ и $I_{\kappa 1 min}$ для m = 0.5 и m = 1. На какую номинальную мощность выбрать БТ?
- **4.2.** Дано: $U_{\kappa,\text{мол}}=12~B$. Рассчитать $U_{\kappa,\text{max}}$, $U_{\kappa,\text{min}}$ для m=0.5 и m=0.7.
- **4.3.** Нагрузка в УМ $R_{H} = 50~Om$, $P_{H,MON} = 5~Bm$. Рассчитать составляющие спектра высокой частоты колебания, если $f = 5~M\Gamma \mu$, $F = 3~\kappa \Gamma \mu$, m = 0.5 и m = 0.7.
- **4.4.** Дано: $P_{1 mo \partial} = 11.73 \ Bm$, m = 0.8, $R_{_H} = 25 \ Om$, $\eta_{_{\mbox{\it ЦC}}} = 0.9$. Определить мощность несущей и боковых частот в нагрузке, а также $I_{_{H,MO \mathcal{I}}}$, $I_{_{H,max}}$, $I_{_{H,MO \partial}}$.

- **4.5.** При модуляции $U_{H,MON} = 10 \, B$, $U_{H,max} = 17 \, B$. Чему равен m, если модуляция симметричная (без искажений)?
- **4.6.** В УМ при m=1: $U_{\kappa,\max}=25~B$, $R_{\kappa}=250~O$ м, $\eta_{L\!\!/C}=0.8$, $R_{\!\scriptscriptstyle H}=8~O$ м. Рассчитать $U_{\scriptscriptstyle H,\max}$, $U_{\scriptscriptstyle H,MO}$, $P_{\scriptscriptstyle H,MO}$, $P_{\scriptscriptstyle H,\max}$, $P_{\scriptscriptstyle H}$ для m=1 и m=0.7.
- **4.7.** Как по осциллограмме напряжения на нагрузке $u_{H}(\Omega t)$ (рис.4.1) рассчитать m?

Рис.4.1. Иллюстрация к задаче 4.7

4.2. Модуляция смещением

В соответствии с сигналом информации (4.1) меняется напряжение смещения на базе ($U_6, E_{n\kappa}, R_{H} = const$) по закону

$$E_{cM} = E_{cM,MOI} + U_{\Omega} \cos \Omega t, \qquad (4.13)$$

причем напряжения источника постоянного напряжения $E_{c,\text{мол}}$ и низкочастотного $u_{\Omega} = U_{\Omega} \cos \Omega t$ включают последовательно (рис.4.2).

При вариации $E_{\it cm}$ ток $I_{\it k1}$ меняется, если УМ работает в недонапряженном режиме, который характеризуется низким КПД. Для улучшения энергетических показателей усилитель мощности при АМ рекомендуется в максимальной точке выбирать КР. В НР при $U_{\it g}=const$ токи

$$I_{\kappa 1} = SU_{e} \gamma_{1}(\theta) \sim \gamma_{1}(\theta); \ I_{\kappa 0} = SU_{e} \gamma_{0}(\theta) \sim \gamma_{0}(\theta). \tag{4.14}$$

Зависимости $\gamma_1(\cos\theta), \gamma_0(\cos\theta)$ - нелинейные, участок близкий к линейному лежит в интервале $\theta = 60^\circ - 120^\circ$. Принципиально реализовать AM с m=1 без искажений не удается. Хорошие качественные показатели можно реализовать, если $m \le 0.7$, а в максимальном режиме угол отсечки $\theta = 110^\circ - 120^\circ$.

Для приближенных расчетов и оценки энергетических показателей УМ можно воспользоваться идеализированными статическими модуляционными характеристиками, когда $I_{\kappa 1}(E_{c_M}), I_{\kappa 0}(E_{c_M})$ заменяются отрезками прямых линий (рис.4.3).

Для безинерционного транзистора ток базы $i_{\delta}=i_{\kappa}$ / h_{219} , поэтому в НР зависимости $I_{\delta 1}(E_{cm}), I_{\delta 0}(E_{cm})$ повторят СМХ $I_{\kappa 1}(E_{cm}), I_{\kappa 0}(E_{cm})$. В ПР токи базы возрастают, а коллекторные $I_{\kappa 1}, I_{\kappa 0}$ почти постоянные.

Рис.4.2. Схема усилителя с амплитудной модуляцией смещением в предвыходном каскаде и усилителем модулированных колебаний в выходном каскаде

Примеры решения типовых задач

4.8. Режим в УМ в максимальной точке критический: θ = 120°, $P_{\rm l,max} = 0.5~Bm$, $E_{n\kappa} = 15~B$, m = 0.7 . Параметры БТ: S = 0.5 A / B, $S_{\kappa p} = 0.5~A$ / B, E' = 0.7 B, $h_{\rm 219} = 20$. Рассчитать $E_{c,{\it Mon}}$, U_{Ω} .

Решение:

В КР согласно (2.10) (
$$\alpha_1 \left(120^\circ\right) = 0.536$$
, $\gamma_1 \left(120^\circ\right) = 0.805$) и $\xi_{KP} = 0.91$, откуда $U_{\kappa,\max} = \xi_{KP} E_{n\kappa} = 13.6~B$, $I_{\kappa 1,\max} = 2P_{1,\max} \ / \ U_{\kappa,\max} = 0.073~A$, $U_{\kappa 1,\max} = I_{\kappa 1,\max} \ / \ (1+m) = 0.043~A$, $U_{\kappa 1,\max} = E' - U_{\kappa 1,\max} \ / \ (1+m) = 0.043~A$, $U_{\kappa 1,\max} = E' - U_{\kappa 1,\max} \ / \ (1+m) = 0.043~A$, $U_{\kappa 1,\max} = E' - U_{\kappa 1,\max} \ / \ (1+m) = 0.043~A$, $U_{\kappa 1,\max} = E' - U_{\kappa 1,\max} \ / \ (1+m) = 0.043~A$, $U_{\kappa 1,\max} = E' - U_{\kappa 1,\max} \ / \ (1+m) = 0.043~A$, $U_{\kappa 1,\max} = E' - U_{\kappa 1,\max} \ / \ (1+m) = 0.043~A$, $U_{\kappa 1,\max} = E' - U_{\kappa 1,\max} \ / \ (1+m) = 0.043~A$, $U_{\kappa 1,\max} = E' - U_{\kappa 1,\max} \ / \ (1+m) = 0.043~A$, $U_{\kappa 1,\max} = E' - U_{\kappa 1,\max} \ / \ (1+m) = 0.043~A$, $U_{\kappa 1,\max} = E' - U_{\kappa 1,\max} \ / \ (1+m) = 0.043~A$, $U_{\kappa 1,\max} = E' - U_{\kappa 1,\max} \ / \ (1+m) = 0.043~A$, $U_{\kappa 1,\max} = E' - U_{\kappa 1,\max} \ / \ (1+m) = 0.043~A$, $U_{\kappa 1,\max} = E' - U_{\kappa 1,\max} \ / \ (1+m) = 0.043~A$, $U_{\kappa 1,\max} = E' - U_{\kappa 1,\max} \ / \ (1+m) = 0.043~A$, $U_{\kappa 1,\max} = E' - U_{\kappa 1,\max} \ / \ (1+m) = 0.043~A$, $U_{\kappa 1,\max} = E' - U_{\kappa 1,\max} \ / \ (1+m) = 0.043~A$, $U_{\kappa 1,\max} = E' - U_{\kappa 1,\max} \ / \ (1+m) = 0.043~A$, $U_{\kappa 1,\max} = E' - U_{\kappa 1,\max} \ / \ (1+m) = 0.043~A$, $U_{\kappa 1,\max} = E' - U_{\kappa 1,\max} \ / \ (1+m) = 0.043~A$, $U_{\kappa 1,\max} = E' - U_{\kappa 1,\max} \ / \ (1+m) = 0.043~A$, $U_{\kappa 1,\max} = E' - U_{\kappa 1,\max} \ / \ (1+m) = 0.043~A$, $U_{\kappa 1,\max} = E' - U_{\kappa 1,\max} \ / \ (1+m) = 0.043~A$, $U_{\kappa 1,\max} = E' - U_{\kappa 1,\max} \ / \ (1+m) = 0.043~A$, $U_{\kappa 1,\max} = E' - U_{\kappa 1,\max} \ / \ (1+m) = 0.043~A$, $U_{\kappa 1,\max} = E' - U_{\kappa 1,\max} \ / \ (1+m) = 0.043~A$, $U_{\kappa 1,\max} = E' - U_{\kappa 1,\max} \ / \ (1+m) = 0.043~A$, $U_{\kappa 1,\max} = E' - U_{\kappa 1,\max} \ / \ (1+m) = 0.043~A$, $U_{\kappa 1,\max} = E' - U_{\kappa 1,\max} \ / \ (1+m) = 0.043~A$, $U_{\kappa 1,\max} = E' - U_{\kappa 1,\max} \ / \ (1+m) = 0.043~A$, $U_{\kappa 1,\max} = U_{\kappa 1,\max} \ / \ (1+m) = 0.043~A$, $U_{\kappa 1,\max} = U_{\kappa 1,\max} \ / \ (1+m) = 0.043~A$, $U_{\kappa 1,\max} = U_{\kappa 1,\max} \ / \ (1+m) = 0.043~A$, $U_{\kappa 1,\max} = U_{\kappa 1,\max} \ / \ (1+m) = 0.043~A$, $U_{\kappa 1,\max} = U_{\kappa 1,\max} \ / \ (1+m) = 0.043~A$, $U_{\kappa 1,\max} = U_{\kappa 1,\max} \ / \ (1+m) = 0.043~A$, $U_{\kappa 1,\max} = U_{\kappa 1,\max} \$

Рис.4.3. Статические модуляционные характеристики для УМ с амплитудной модуляцией смещением

4.9. По условиям и результатам расчета задачи 4.8 определить мощность, потребляемую от модулятора

$$P_{\Omega} = 0.5 I_{\Omega} U_{\Omega}. \tag{4.15}$$

Решение:

Tok
$$I_{\Omega} = I_{60, \max} - I_{60, Mo\pi},$$
 $I_{60} = I_{\kappa 0} / h_{219} = I_{\kappa 1} / g_1(\theta) h_{219},$ $I_{60, \max} = 0.073 / 1.32 \cdot 20 = 2.78 \text{ mA},$ $I_{60, \max} = 0.043 / 1.6 \cdot 20 = 1.34 \text{ mA},$ $I_{60, Mo\pi} = 0.043 / 1.6 \cdot 20 = 1.34 \text{ mA},$ $g_1(120^{\circ}) = 1.32,$ $g_1(87.5^{\circ}) = 1.6,$ $I_{\Omega} = 1.44 \text{ mA}, P_{\Omega} = 0.072 \text{ mBm}.$

4.10. По данным задачи 4.8, 4.9 рассчитать блокировочные элементы усилителя мощности при модуляции смещением (рис.4.2): $L_{\delta n1,2}, C_{\delta n1,2}$ так, чтобы они не вносили частотных искажений, если $f=10~M\Gamma u$, $F=300...3000~\Gamma u$.

Решение:

Требования к блокировочным элементам по высокой частоте такие же, как в усилителе мощности без модуляции. В цепи коллектора их расчет ничем не отличается, поэтому $L_{\delta n1}$, $C_{\delta n1}$ рассчитайте самостоятельно по (3.42)-(3.46).

В цепи базы $\omega L_{\text{бл}2} = N \cdot R_{\text{ex}}$, $I_{\text{б1,мол}} = 0.043 / 20 = 0.00215 \, A$ и $R_{\text{ex,мол}} = U_{\text{e}} / I_{\text{б1,мол}} = 85 \, O$ м. Задаемся N = 50, тогда $\omega L_{\text{бл}2} = 4250 \, O$ м, $L_{\text{бл}2} = 68 \, \text{мк} \Gamma$ н. Далее $1/\omega C_{\text{бл}2} = \omega L_{\text{бл}2} / N$, но можно задаться сопротивлением $1/\omega C_{\text{бл}2}$ или емкостью $C_{\text{бл}2}$, например, $C_{\text{бл}2} = 2000 \, n\Phi$, так чтобы удовлетворялось (3.45).

Для выяснения требований к $L_{\delta n2}$, $C_{\delta n2}$ на низкой частоте можно воспользоваться эквивалентной схемой, изображенной на рис.4.4, где

$$R_{\Omega} = U_{\Omega} / I_{\Omega} = 70 OM. \tag{4.16}$$

Если считать, что трансформатор идеальный, то на F_{\max} возможен завал частотной характеристики за счет шунтирующего влияния $C_{\delta n2}$ и падения напряжения на $L_{\delta n2}$, поэтому

$$NR_{\Omega} = 1/\Omega_{\text{max}} C_{\delta n 2},$$

$$\Omega_{\text{max}} L_{\delta n 2} = R_{\Omega} / N, N = 20...200.$$
(4.17)

На частоте F_{\min} возможно падение напряжения на $C_{\delta\pi3}$, поэтому

$$1/\Omega_{\min}C_{\tilde{\alpha}\tilde{\alpha}3} = R_{\Omega}/N. \tag{4.18}$$

Проверим, выполняются ли условия на $C_{6\pi 2}$, $L_{6\pi 2}$ по (4.17):

 $1/\Omega_{\text{max}}C_{6\pi 2} = 26.5 \ \kappa O_{M}, \ \Omega_{\text{max}}L_{6\pi 2} = 1.28 \ O_{M}.$

Видно, что (4.17) удовлетворяются. Применим (4.18) для расчета $C_{\delta n3}$. Если принять N=70 , то $C_{\delta n3}=530~{\rm M}\kappa\Phi$.

Рис.4.4. Иллюстрация к задаче 4.10

Задачи для самостоятельного решения

- **4.11.** По условиям задачи 4.8 рассчитать $I_{\delta 0, \text{мол}}, I_{\kappa 0, \text{мол}},$ а также мощности, рассеиваемые БТ $P_{pac, \text{max}}, P_{pac, \text{мол}}, P_{pac, \text{мод}}.$
- **4.12.** В усилителе мощности при симметричной модуляции смещением измерены: m=0.7, $I_{\kappa 0}=0.02$ A, $U_{\kappa, 9\phi\phi}=8$ B, $E_{n\kappa}=20$ B, а $R_{\kappa}=320$ O_{M} . Пользуясь идеализированной статической модуляционной характеристикой (рис.4.3), рассчитать $P_{0,1}$ в режимах молчания, максимальном и модуляции. Определить, максимальные напряжения на $L_{\delta n1}$, C_{1} , $C_{\delta n1}$ и токи через $L_{\delta n1}$, $L_{\delta n2}$, считая блокировочные элементы идеальными, принять $h_{21,9}=20$.
- **4.13.** В усилителе мощности при симметричной модуляции смещением измерено: $I_{\kappa 0}=0.019\,A$, $I_{H9\phi}=0.2\,A$, m=0.7, $E_{n\kappa}=15\,B$. Дано: $\eta_{L\!\!\!/C}=0.5$, $R_{\!_H}=2\,O\!m$. Рассчитать мощность источника в цепи коллектора P_{ucm} , мощности, потребляемые от него в режимах максимальном, минимальном, при модуляции. Изменится ли P_{ucm} , если m=0.3? m=0.5? m=1? Какой должна быть номинальная мощность $\rm bT$?

4.14. По условиям задачи 4.13 рассчитать $L_{\delta n1}$, $L_{\delta n2}$, $C_{\delta n1}$, $C_{\delta n2}$, $C_{\delta n3}$. Дано: p=0.15, Q=40, $\theta_{\max}=110^\circ$, S=0.5~A/B, E'=0.7~B, $h_{219}=20$, $f=6~M\Gamma \mu$, $F=0.3...3~\kappa \Gamma \mu$.

4.15. Усилитель мощности работает в режиме симметричной модуляции смещением. В каких цепях, обозначенных на рис.4.2 цифрами, протекают токи, соответствующие зависимостям $i(\Omega t)$ на рис.4.5а,б,в,г? На каких элементах схемы напряжения меняются в соответствии с рис.4.6а,б,в,г,д,е? Блокировочные элементы считать идеальными.

4.16. По статической модуляционной характеристике, изображенной на рис.4.3 выбрать $E_{cm,mon}$ для получения $m\!=\!1$. Как связаны $\eta_{\scriptscriptstyle 9}$, P_{ucm} , $I_{\kappa 0}$, $I_{\scriptscriptstyle H}$ в режимах молчания, максимальном, модуляции если $\eta_{\scriptscriptstyle 9,mon}=0.3$, $I_{\kappa 0,mon}=0.04$ A, $E_{n\kappa}=15$ B, $R_{\scriptscriptstyle H}=2$ Om, $\eta_{I\!I\!C}=0.5$?

4.17. По статической модуляционной характеристике, изображенной на рис.4.3 определить, как выбрано $E_{cm,mon}$, если при модуляции с m=1 прибор, измеряющий $I_{\kappa 0}$, покажет: $I_{\kappa 0,moo} = I_{\kappa 0,moo}$? $I_{\kappa 0,moo} > I_{\kappa 0,moo}$? $I_{\kappa 0,moo} > I_{\kappa 0,moo}$?

4.18. На рис.4.7 дана статическая модуляционная характеристика и показано, как выбраны $E_{{\scriptscriptstyle CM,MOR}}$ и U_{Ω} . В режиме молчания $I_{{\scriptscriptstyle KO,MOR}}=0.05~A,~I_{{\scriptscriptstyle KH9}\phi,{\scriptscriptstyle MOR}}=0.4~A$. Как изменятся показания $I_{{\scriptscriptstyle K}0}$, $I_{{\scriptscriptstyle H9}\phi}$, при m=1?

4.19. Статическая модуляционная характеристика для усилителя мощности дана на рис.4.8. Там же показаны выбор $E_{cm,mon}$, U_{Ω} и временные зависимости $E_{cm}(\Omega t)$ и $I_{\kappa 0}(\Omega t)$. В режиме молчания измерен ток $I_{\kappa 0,mon}=0.05\,A$. Как изменятся показания прибора при модуляции? При каком значении m ток не изменится? Как выбрать $E_{cm,mon}$, чтобы реализовать симметричную модуляцию с $m=m_{\max}$? Чему равен коэффициент m_{\max} ? Изобразить осциллограммы контурного тока $i_{H}(\Omega t)$ для трех рассмотренных случаев.

Рис.4.6. Иллюстрация к задаче 4.15

Рис.4.7. Иллюстрация к задаче 4.1

Рис.4.8. Иллюстрация к задаче 4.19

4.20. При модуляции смещением в максимальной точке выбран КР: $R_{\kappa,\kappa p}=200~Om$, $\eta_{UC}=0.5$, m=1. В режиме молчания измерены: $I_{\kappa 0, mon}=0.05~A$, $I_{H9\phi, mon}=0.35~A$. Что будут показывать приборы при

симметричной АМ? Что будут показывать приборы в режиме молчания, если произойдет: к.з. $L_{\it бл1}$? к.з. $L_{\it бл1}$? обрыв $L_{\it бл1}$? к.з. $C_{\it бл1}$?

4.21. Для условий задачи 4.20 построить зависимости $K_P(E_{\scriptscriptstyle CM})$, если $\theta_{\scriptscriptstyle MOR}=80^\circ$, S=0.5~A/~B, E'=0.7~B, $h_{219}=20$.

4.3. Усиление модулированных колебаний

На вход усилителя модулированных колебаний (УМК) (каскад на T2, рис.4.2) подается АМ-колебание. Напряжение возбуждения

$$u_{e} = U_{e,MOI} (1 + m_{e} \cos \Omega t) \cos \omega t. \tag{4.19}$$

Управлять коллекторным током за счет изменения U_{e} можно, если УМ работает в НР. Статическая модуляционная характеристика $I_{\kappa 1}(U_{e})$ линейная, если $\theta = \pi/2$, так как $\theta(U_{e}) = const$, $I_{\kappa 1} = SU_{e}\gamma_{1}(\theta) \sim U_{e}$. Для улучшения энергетических показателей в максимальной точке выбирают КР. Если $\theta < \pi/2$, то $\theta(U_{e})$ меняется и $I_{\kappa 1}(U_{e})$ отличается от линейной и можно получить углубление модуляции.

Примеры решения типовых задач

4.22. УМК в максимальной точке работает в КР, $\theta_{\max}=80^\circ$, $P_{1,\max}=20~Bm$, $U_{\kappa,\max}=20~B$, $E_{n\kappa}=25~B$. Параметры БТ: S=4~A/B, E'=0.7~B, $h_{219}=20$. Определить глубину модуляции напряжения U_{ε} , если m=1, $\eta_{\scriptscriptstyle 3}$ в максимальном режиме.

Решение

Коэффициент m_{e} определяется исходя из выражения

$$m_{e} = \left(U_{e,\text{max}} - U_{e,\text{min}}\right) / \left(U_{e,\text{max}} + U_{e,\text{min}}\right). \tag{4.20}$$

В максимальной точке $I_{\kappa 1, \max} = 2P_{1,\max}/U_{k,\max} = 40/20 = 2~A$, $U_{e,\max} = I_{\kappa 1,\max}/S\gamma_1\left(\theta_{\max}\right) = 1.28~A$, $E_{c_{\mathcal{M}}} = E' - U_e\cos\theta = 0.447~B$, $U_{e,\min} = E' - E_{c_{\mathcal{M}}} = 0.223~B$, $m_e = \left(1.28 - 0.223\right)/\left(1.28 + 0.223\right) = 0.703$, $\xi_{\max} = 20/25 = 0.8$, $\eta_{9,\max} = 0.5g_1\left(\theta_{\max}\right)\xi_{\max} = 0.66$.

Задачи для самостоятельного решения

- **4.23.** В УМК $P_{H,MO,T} = 8 \, Bm$, $\eta_{L/C} = 0.8$, $m = \hat{1}$. На какую мощность выбирать транзистор?
- **4.24.** УМК по схеме рис.4.2 работает с $\theta=\pi/2$, $R_{_{\! H}}=75$ *Ом*, $E_{n\kappa}=28$ B, $\eta_{_{\! L\!\!\!/C}}=0.9$, m=1. Измерены $I_{\kappa 1,{\scriptscriptstyle MO\!\!\!/}}=0.5$ A, $U_{{\scriptscriptstyle H},{\scriptscriptstyle 3}\phi,{\scriptscriptstyle MO\!\!\!/}}=18$ B. Статическая модуляционная характеристика дана на рис.4.9. Рассчитать P_0 , P_1 , $\eta_{_{\! 9}}$ в

режимах молчания, максимальном, модуляции, P_{ucm} в коллекторной цепи, P_{ucm} смещения $E_{cm}=E'=0.7~B$, $h_{219}=20$.

- **4.25.** Как в условиях задачи 4.24 изменятся показания приборов $I_{\kappa 0}$, $U_{\mu, 9\phi}$ при модуляции с m=1, если R_{μ} увеличили в 2 раза? Уменьшили в 2 раза? Изобразить $I_{\kappa 0}(\Omega t)$, $U_{\mu}(\Omega t)$ для трех случаев R_{μ} и m=1.
- **4.26.** В каких цепях УМК, отмеченных на рис.4.2 цифрами, протекают токи, соответствующие рис.4.5а,б,в,г? На каких элементах схемы лежат напряжения, временные зависимости которых соответствуют рис.4.6,а,б,в,г,д,е? Блокировочные элементы считают идеальными.

Рис.4.9. Иллюстрация к задаче 4.24

- **4.27.** Мощность источника коллекторного напряжения $P_{ucm}=20~Bm$, $\eta_{_{\mathfrak{I},MOJ}}=0.35$, $\theta=\pi/2$, m=1. Определить $P_{1,\max}$.
- **4.28.** По идеализированной статической модуляционной характеристике (рис.4.10) определить коэффициент модуляции напряжения возбуждения m_{g} для получения m=1, а также углы отчески коллекторного тока θ_{\max} и θ_{MOR} .

Рис.4.10. Иллюстрация к задаче 4.28

- **4.29.** В УМК коэффициенты модуляции коллекторного тока m = 0.9, а напряжения возбуждения $m_e = 0.7$. Рассчитать углы отсечки коллекторного тока в режимах максимальном и молчания.
- **4.30**. Режим в УМК в максимальной точке критический: $\theta = \pi/2$, m = 1, $\eta_{LC} = 0.8$. В режиме молчания измерены: $I_{\kappa 0, mon} = 0.5 \, A$, $U_{\kappa, 9\phi, mon} = 7.07 \, B$. Как изменятся показания приборов при модуляции? Как изменятся показания приборов в режиме молчания и при модуляции, если произойдет к.з. R_{μ} ? Обрыв R_{μ} ? Для двух случаев изобразить $I_{\kappa 0}(\Omega t)$, $U_{\kappa}(\Omega t)$.
- **4.31.** Режим УМК (рис.4.2) в максимальной точке критический $\theta = \pi/2$, $P_{1,\max} = 20~Bm$, $E_{n\kappa} = 28~B$, m=1. Параметры БТ: S=4~A/B, $S_{\kappa p} = 1~A/B$, E'=0.7~B, $h_{219} = 20$. Рассчитать K_P , R_{ex} в режимах максимальном и молчания. Как изменятся K_P , R_{ex} , если в максимальной точке выбрать $\theta_{\max} = 80^\circ$? $\theta_{\max} = 100^\circ$?
- **4.32.** По исходным условиям задачи 4.31, считая блокировочные элементы идеальными, рассчитать максимальные значения: напряжений 1) на $L_{6\pi3}$, $L_{6\pi4}$; 2) между базой и эмиттером; 3) между коллектором и эмиттером; 4) токов через $L_{6\pi3}$, $L_{6\pi4}$.

4.4. Коллекторная модуляция

В соответствии с сигналом информации (4.1) меняется напряжение питания в цепи коллектора

$$E_{n\kappa} = E_{n\kappa,MO\pi} + U_{\kappa} \cos \Omega t = E_{n\kappa,MO\pi} \cdot (1 + m \cdot \cos \Omega t). \tag{4.21}$$

Напряжение $E_{n\kappa, MOЛ}$ обеспечивает работу УМ в режиме молчания. Источники постоянного напряжения $E_{n\kappa, MOЛ}$ и сигнала информации U_{Ω} включают последовательно (4.21).

При вариации $E_{n\kappa}$ коллекторный ток $I_{\kappa 1}$ при E_{cm} , U_{6} , $R_{\kappa}=const$ будет меняться, если УМ работает в ПР, который характеризуется высоким η_{3} , но небольшим по сравнению с НР усилением K_{P} . Для увеличения K_{P} и уменьшения тока базы рекомендуют в максимальной точке выбирать КР, а в цепь базы включать сопротивление автосмещения R_{δ} . Последнее линеаризует статическую модуляционную характеристику и повышает качественные показатели УМ при модуляции. При расчетах можно принимать $I_{\kappa 1}(E_{n\kappa})$ и $I_{\kappa 0}(E_{n\kappa})$ - линейными.

Задачи для самостоятельного решения

4.33. УМ при коллекторной модуляции (рис.4.11) работает с $\eta_{UC} = 0.9$, m = 1, $P_{H,MOD} = 9$ Bm. На какую номинальную мощность выбирать БТ?

Рис.4.11. Схема усилителя мощности с коллекторной модуляцией

4.34. УМ при коллекторной модуляции с m=1, $R_{\kappa}=13~Om$, $P_{1,MON}=6.5~Bm$, $\theta=\pi/2$, $E_{n\kappa,MON}=14~B$. В максимальной точке КР. Рассчитать P_0 , P_{pac} , $\eta_{\mathfrak{I}}$, ξ в режимах молчания, максимальном и модуляции.

4.35. По условиям задачи 4.34 рассчитать мощности источников коллекторного напряжения $E_{n\kappa, \text{мол}}$ и модулятора $P_{\text{м}}$, если КПД

трансформатора $\eta_{mp}=0.85$. Принять, что $P_{_{\!M}}=P_{_{\!\Omega}}/\eta_{mp}$, $P_{_{\!\Omega}}=0.5m^2P_{_{\!0,MOЛ}}$ - мощность, потребляемая коллекторной цепью от источника сигнала информации.

- **4.36.** УМ по схеме рис.4.11 в максимальной точке работает в КР: $\theta = \pi/2$, m=1. В режиме молчания измерены: $I_{\kappa 0, \text{мол}} = 0.638 \, A$, $U_{H,9\phi,\text{мол}} = 17.1 \, B$, $E_{n\kappa,\text{мол}} = 14 \, B$, $R_{H} = 50 \, OM$, $\eta_{L\!\!\!/C} = 0.9$. Параметры БТ: $S = 5 \, A/B$, $S_{\kappa p} = 2 \, A/B$, $E' = 0.7 \, B$, $h_{219} = 20$. Рассчитать 1) E_{cM} , U_{g} , R_{g} ; 2) максимальные значения: напряжений на $L_{6\pi 1}$, $L_{6\pi 2}$, между базой и эмиттером, между коллектором и эмиттером, на $C_{6\pi 1}$, R_{H} , на C_{1} , $C_{6\pi 3}$; 3) токов через $L_{6\pi 1}$, R_{H} , $C_{6\pi 3}$.
- **4.37.** В каких цепях УМ на рис.4.11, отмеченных цифрами, протекают токи, которые изменяются в соответствии с рис.4.5а,б,в,г? На каких элементах схемы лежат напряжения, которые меняются во времени, как на рис.4.6а,б,в,г,д,е?
- **4.38.** Для условий задачи 4.36 изобразите $u_{\kappa_2}(\Omega t)$ для m=0.5 и m=1.
- **4.39.** По идеализированным статическим модуляционным характеристикам (рис.4.12) для УМ по схеме рис.4.11 изобразить $I_{\kappa 0}(\Omega t), I_{\delta 0}(\Omega t)$ для m = 0.5 и m = 1.

Рис.4.12. Иллюстрация к задаче 4.39

- **4.40.** УМ в максимальной точке работает в КР: $\theta = \pi/2$. В режиме молчания измерен $I_{\kappa 0, \text{мол}} = 0.5 \, A$. Спектр сигнала информации $F = 50...8000 \, \Gamma \mu$, $f = 10 M \Gamma \mu$. Параметры БТ: $S = 5 \, A / B$, $S_{\kappa p} = 2 \, A / B$, $E' = 0.7 \, B$, $h_{219} = 50$. Рассчитать L_{6n2} , C_{6n2} .
- **4.41.** УМ по схеме рис.4.11 в максимальной точке работал в КР при $\eta_{L\!\!/C}=0.8$, m=1. Показания приборов в режиме молчания: $I_{\kappa 0, mon}=0.5~A,~U_{\kappa, 9\phi, mon}=9.5~B$. Как изменятся показания приборов при

модуляции? Что буду показывать приборы в режимах молчания и модуляции, если у ЦС окажется $\eta_{UC} = 0.9$? $\eta_{UC} = 0.6$? Произойдет к.з. $L_{6\pi 1}$? $C_{6\pi 3}$?

- **4.42.** УМ по схеме рис.4.11 в максимальной точке работает в КР, $\theta=\pi/2$, m=1, $\eta_{L\!\!/C}\cong 1$, $R_{\!\!/H}=100~O\!\!/M$. В режиме молчания измерены: $I_{\kappa 0, mon}=0.5~A$, $U_{\mu, 9\phi, mon}=25~B$, $E_{n\kappa, mon}=14~B$. Рассчитать $L_{\delta n1}$, $C_{\delta n1}$, $C_{\delta n3}$, если $f=10M\Gamma \mu$, $F=50...10000\Gamma \mu$.
- **4.43.** По идеализированным статическим модуляционным характеристикам (рис.4.12) изобразить характер зависимостей K_P , $R_{ex}(E_{n\kappa})$ если U_e , R_{δ} , $R_{\kappa} = const$.
- **4.44.** В УМ по схеме рис.4.11 в режиме молчания $\eta_{_{9,MOЛ}}=0.7$, $I_{_{K0,MOЛ}}=1\,A$, $E_{_{NK,MOЛ}}=14\,B$. В максимальной точке при m=1 КР $\theta=\pi/2$. Рассчитать и построить $\xi\left(E_{_{NK}}\right),\,P_0\left(E_{_{NK}}\right),\,P_1\left(E_{_{NK}}\right)$.

4.5. Комбинированная коллекторная модуляция

В усилителе модулированных колебаний коллекторное напряжение меняется синфазно с АМ напряжением возбуждения

 $u_{g}=U_{g}\left(1+m_{g}\cos\Omega t\right)\cos\omega t$; $E_{n\kappa}=E_{n\kappa,Mon}\left(1+m\cos\Omega t\right),$ (4.22) поэтому управление коллекторным током возможно в любом по напряженности режиме. Хорошие качественные показатели надежность работы, высокие КПД K_{P} с $\theta=\pi/2$. В этом случае, как при коллекторной модуляции $\xi(E_{n\kappa}),\ \eta_{9}(E_{n\kappa})=const$, а как в УМК с $\theta=\pi/2$, K_{P} , $R_{gg}=const$.

Рис.4.13. Схема выходного каскада с комбинированной амплитудной модуляцией

Задачи для самостоятельного решения

- **4.45.** Выходной каскад УМ (рис.4.13) работает в КР: $\theta = \pi/2$, $E_{n\kappa, MOR} = 14~B$, $P_{H,MOR} = 5.4~Bm$, $\eta_{L\!\!\!/C} = 0.9$, $R_H = 75~Om$, m=1. Параметры БТ: S = 4~A/B, $S_{\kappa p} = 1~A/B$, E' = 0.7~B, $h_{219} = 20$. На какую номинальную мощность выбирать БТ? Определить мощность источника $E_{n\kappa,MOR}$ и P_Ω , потребляемую от модулятора.
- **4.46.** Считая блокировочные элементы идеальными, по условиям задачи 4.45 определить: максимальное напряжение на $L_{6\pi1,2}$, $C_{6\pi1,2,3}$, $C_{1,2}$, максимальный ток через $L_{6\pi1,2}$, $C_{6\pi3}$, $R_{_H}$.
- **4.47.** В каких цепях, отмеченных на рис.4.13 цифрами, протекают токи, изменяющиеся в соответствии с рис.4.5а,б,в,г? На каких элементах УМ на Т1 лежат напряжения, изображенные на рис.4.6а,б,в,г,д,е?
- **4.48.** По условиям задачи 4.45 изобразить зависимости $u_{\kappa 9}(\Omega t)$ и $u_{\delta 9}(\Omega t)$ для m = 0.5 и m = 1 в выходном каскаде рис.4.13.
- **4.49**. Выходной каскад схемы рис.4.13 работает в КР. Измерены: $I_{\kappa 0, \text{мол}} = 1\,A$, $U_{\kappa, 9\phi, \text{мол}} = 9.2\,B$, $\eta_{\text{ЦC}} = 0.9$. Как изменятся $I_{\kappa 0, \text{мол}}$, $U_{\kappa, 9\phi, \text{мол}}$, если окажется, что $\eta_{\text{ЦC}} = 0.95$? $\eta_{\text{ЦC}} = 0.8$?
- **4.50.** УМК на схеме рис.4.13 работает в КР. Измерены: $I_{\kappa 0, Mon} = 0.7~A$, $U_{\text{H}, 9}\phi_{,Mon} = 21.2~B$. Как изменятся показания приборов при симметричной модуляции с m = 0.5? m = 1? при К.З. $L_{6\pi 1.2}$?
- **4.51.** Учитывая вид статической модуляционной характеристики (рис.4.14) для УМК на рис.4.13, изобразить $I_{\delta 0}(\Omega t)$ и $I_{\kappa 0}(\Omega t)$ при $m\!=\!0.5$ и $m\!=\!1$. Сравнить с аналогичными при коллекторной модуляции. Как изменятся $I_{\delta 0}(\Omega t)$ и $I_{\kappa 0}(\Omega t)$ при К.З. $C_{\delta \pi 3}$?
- **4.52.** Выходной каскад на рис.4.13 работает в КР $\theta=\pi/2$, $\xi_{\kappa p}=0.85$, $P_{0{\scriptscriptstyle MO{\scriptstyle A}}}=10~Bm$, $\eta_{{\scriptscriptstyle U\!C}}=0.9$, $R_{{\scriptscriptstyle H}}=50~O{\scriptscriptstyle M}$, m=1. Рассчитать: 1) $P_{0{\scriptscriptstyle MO{\scriptstyle A}}}$, $P_{0{\scriptscriptstyle max}}$, P_{Ω} ; 2) $I_{{\scriptscriptstyle H,MO{\scriptstyle A}}}$, $I_{{\scriptscriptstyle H,MO{\scriptstyle A}}}$, $I_{{\scriptscriptstyle H,max}}$. Как изменятся $P_{0{\scriptscriptstyle MO{\scriptstyle A}}}$, P_{Ω} , $I_{{\scriptscriptstyle H,MO{\scriptstyle A}}}$, если $\eta_{{\scriptscriptstyle U\!C}}=0.8$? $\eta_{{\scriptscriptstyle U\!C}}=0.95$? произойдет К.З. $L_{6{\scriptscriptstyle A}1}$, $L_{6{\scriptscriptstyle A}2}$, $C_{6{\scriptscriptstyle A}1}$?
- **4.53.** В выходном каскаде на рис.4.13 $P_{H,MOЛ} = 5 \ Bm$, m = 1. Определить $P_{H,\max}$, $P_{H,MOД}$. Как изменится $P_{H,MOЛ}$, если напряжения u_6 и u_7 подать в противофазе?
- **4.54.** Для выходного каскада рис.4.13 известно: $R_{\kappa} = 12~Om$, X = 30~Om (ЦС-симметричная), $f = 10~M\Gamma u$, $F = 50...10000 \Gamma u$, m = 1, $P_{1,mox} = 6~Bm$,

 $E_{n\kappa, {\it MO}{\it N}}=14~B$. Параметры БТ: S=4~A/B , $S_{\kappa p}=1~A/B$, E'=0.7~B , $h_{219}=20$, $\theta=\pi/2$, режим КР. Рассчитать $L_{\it Gr1,2}$, $C_{\it Gr1,2,3}$.

4.55. Выходной каскад на рис.4.13 работает в КР. Измерены: $I_{\kappa 0, MON} = 0.5~A,~U_{H, 9\phi, MON} = 15.14~B,~m=1$. Что будут показывать приборы при модуляции? Как изменятся показания $I_{\kappa 0}$, если $u_7 = 0$? $u_6 = 0$?

Рис.4.14. Иллюстрация к задаче 4.51

4.6. Сравнение различных видов модуляции

Задачи для самостоятельного решения

4.56. УМК, УМ при комбинированной коллекторной модуляции и УМ при коллекторной модуляции работают на одинаковых БТ с параметрами: S=4 A/B, $S_{\kappa p}=1$ A/B, E'=0.7 B, $h_{21_9}=20$. В максимальной точке КР, $\theta=\pi/2$, $R_{\kappa}=26$ Om, $E_{n\kappa}=20$ B. Принять m=1. Рассчитать в режимах максимальном и молчания $I_{\kappa 1}$, ξ , η_{9} , K_{P} , R_{ex} . В случае коллекторной модуляции полагать, что $I_{60}(E_{n\kappa})$ соответствует рис.4.12, а $I_{60\,\text{max}}=3I_{60\kappa p}$. Сравнить $\eta_{9,mod}$, K_{P} , R_{ex} для трех видов модуляции.

4.57. По условиям задачи 4.56 рассчитать мощности источников P_{ucm} в цепи коллектора и P_{Ω} , потребляемую от модулятора для трех видов модуляции.

СПИСОК ЛИТЕРАТУРЫ

- 1. Жуховицкая В.П. Транзисторные усилители мощности. М.: Моск. энерг. ин-т, 1988. 96 с.
- 2. **Атаманцева Ф.С.** Радиопередающие устройства. Сборник задач и упражнений: Учеб. Пособие для техникумов. М.: Радио и связь, 1991. 224 с.
- 3. **Гарматюк С.С.** Задачник по устройствам генерирования и формирования радиосигналов. М.: ДМК Пресс, 2012. 672 с.
- 4. **Генерирование** колебаний и формирование радиосигналов. / В.Н. Кулешов, Н.Н. Удалов, В.М. Богачев и др.; под ред В.Н. Кулешова и Н.Н. Удалова. М.: Издательский дом МЭИ, 2008. 415 с.

ПРИЛОЖЕНИЕКоэффициенты разложения косинусоидального импульса

$oldsymbol{ heta}^{\circ}$	$\cos \theta$	α_0	α_1	α_2	α_3	γ_0	γ_1	β_0	β_1	g_1
0	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.00
5	0.906	0.018	0.037	0.037	0.000	0.000	0.000	0.000	0.000	2.00
10	0.985	0.036	0.073	0.071	0.071	0.0005	0.001	0.0005	0.001	2.0
15	0.966	0.055	0.110	0.108	0.104	0.002	0.004	0.002	0.004	2.0
20	0.940	0.074	0.146	0.141	0.132	0.0045	0.0088	0.0047	0.0093	1.98
25	0.906	0.093	0.181	0.171	0.155	0.0087	0.017	0.010	0.019	1.95
30	0.866	0.111	0.215	0.198	0.172	0.015	0.029	0.017	0.033	1.94
35	0.819	0.129	0.248	0.221	0.181	0.023	0.045	0.028	0.055	1.92
40	0.766	0.147	0.280	0.241	0.185	0.034	0.066	0.045	0.086	1.90
45	0.707	0.169	0.311	0.256	0.181	0.048	0.091	0.068	0.129	1.88
50	0.643	0.183	0.339	0.267	0.171	0.065	0.121	0.101	0.188	1.85
55	0.574	0.201	0.366	0.273	0.157	0.086	0.156	0.150	0.272	1.82
60	0.500	0.218	0.391	0.276	0.138	0.109	0.196	0.218	0.391	1.80
65	0.423	0.236	0.414	0.274	0.116	0.136	0.239	0.322	0.565	1.76
70	0.342	0.253	0.436	0.267	0.091	0.166	0.288	0.486	0.842	1.73
75	0.259	0.269	0.455	0.258	0.067	0.199	0.337	0.765	1.302	1.69
80	0.174	0.286	0.472	0.245	0.043	0.236	0.390	1.365	2.247	1.65
85	0.087	0.302	0.487	0.230	0.020	0.276	0.445	3.168	5.106	1.61
90	0.000	0.319	0.500	0.212	0.000	0.319	0.500	∞	∞	1.57
95	-0.087	0.334	0.510	0.193	0.017	0.363	0.554	-4.279	-6.356	1.53
100	-0.174	0.350	0.520	0.172	0.030	0.411	0.611	-2.366	-3.518	1.49
105	-0.259	0.364	0.526	0.152	-0.039	0.458	0.662	-1.769	-2.558	1.45
110	-0.342	0.379	0.531	0.131	-0.045	0.509	0.713	-1.488	-2.085	1.40
115	-0.423	0.392	0.534	0.111	-0.047	0.558	0.760	-1.323	-1.799	1.36
120	-0.500	0.406	0.536	0.092	-0.046	0.609	0.805	-1.218	-1.610	1.32
125	-0.574	0.419	0.536	0.074	-0.042	0.659	0.843	-1.149	-1.469	1.28
130	-0.643	0.431	0.534	0.058	-0.037	0.708	0.878	-1.101	-1.350	1.24
135	-0.707	0.443	0.532	0.044	-0.031	0.756	0.908	-1.069	-1.284	1.20
140	-0.766	0.453	0.523	0.032	-0.024	0.801	0.934	-1.046	-1.216	1.17
145	-0.815	0.463	0.525	0.022	-0.018	0.842	0.955	-1.028	-1.166	1.13
150	-0.866	0.472	0.520	0.014	-0.012	0.881	0.970	-1.017	-1.120	1.10

Формулы для расчета коэффициентов разложения:

$$\begin{split} \gamma_0(\theta) &= \frac{1}{\pi} \big(\sin \theta - \theta \cos \theta \big); \, \gamma_n(\theta) = \frac{1}{n\pi} \bigg(\frac{\sin(n-1)\theta}{n-1} - \frac{\sin(n+1)\theta}{n+1} \bigg); n > 1. \\ \gamma_1(\theta) &= \frac{1}{2\pi} \big(2\theta - \sin 2\theta \big); \, \alpha_{0,n}(\theta) = \gamma_{0,n}(\theta) \big/ \big(1 - \cos \theta \big); \\ \beta_{0,n}(\theta) &= \gamma_{0,n}(\theta) \big/ \cos \theta; \\ g_n(\theta) &= \gamma_n(\theta) \big/ \gamma_0(\theta) = \alpha_n(\theta) \big/ \alpha_0(\theta) = \beta_n(\theta) \big/ \beta_0(\theta). \end{split}$$

Учебное издание

Сафин Ансар Ризаевич **Удалов** Николай Николаевич

ТРАНЗИСТОРНЫЕ УСИЛИТЕЛИ МОЩНОСТИ СБОРНИК ЗАДАЧ

Редактор издательства М.П. Малахов Компьютерная верстка М.К. Петушкеевой

Подписано в печать	Печать офсетная	Формат 60х84/16
Физ. печ. л. 3,8 Тираж 100 экз.	Изд. №	Заказ №

Оригинал-макет подготовлен в РИО НИУ «МЭИ» 111250, г. Москва, ул. Красноказарменная, д.14 Отпечатано в типографии НИУ «МЭИ» 111250, г. Москва, ул. Красноказарменная, д.14