CSE 250a. Assignment 9

Out: Wed Nov 30

Due: Wed Dec 07 (by 11:59 PM, Pacific Time, via gradescope)

Grace period: none.

Reading: Sutton & Barto, Chapters 3.1-4.4

9.1 Effective horizon time

Consider a Markov decision process (MDP) whose rewards $r_t \in [0, 1]$ are bounded between zero and one. Let $h = (1 - \gamma)^{-1}$ define an *effective* horizon time in terms of the discount factor $0 \le \gamma < 1$. Consider the approximation to the (infinite horizon) discounted return,

$$r_0 + \gamma r_1 + \gamma^2 r_2 + \gamma^3 r_3 + \gamma^4 r_4 + \dots,$$

obtained by neglecting rewards from some time t and beyond. Recalling that $\log \gamma \leq \gamma - 1$, show that the error from such an approximation decays exponentially as:

$$\sum_{n>t} \gamma^n r_n \le h e^{-t/h}.$$

Thus, we can view MDPs with discounted returns as similar to MDPs with finite horizons, where the finite horizon $h = (1 - \gamma)^{-1}$ grows as $\gamma \to 1$. This is a useful intuition for proving the convergence of many algorithms in reinforcement learning.

9.2 Three-state, two-action MDP

Consider the Markov decision process (MDP) with three states $s \in \{1, 2, 3\}$, two actions $a \in \{\uparrow, \downarrow\}$, discount factor $\gamma = \frac{2}{3}$, and rewards and transition matrices as shown below:

s	R(s)
1	-15
2	30
3	-25

s	s'	$P(s' s, a = \uparrow)$	
1	1	$\frac{3}{4}$	
1	2	$\frac{1}{4}$	
1	3	0	
2	1	$\frac{1}{2}$	
2	2	$\frac{1}{2}$	
2	3	0	
3	1	0	
3	2	$\frac{3}{4}$	
3	3	$\frac{1}{4}$	

s	s'	$P(s' s, a = \downarrow)$
1	1	$\frac{1}{4}$
1	2	$\frac{3}{4}$
1	3	0
2	1	0
2	2	$\frac{1}{2}$
2	3	$\frac{1}{2}$
3	1	0
3	2	$\frac{1}{4}$
3	3	$\frac{3}{4}$

(a) Policy evaluation

Consider the policy π that chooses the action shown in each state. For this policy, solve the linear system of Bellman equations (by hand) to compute the state-value function $V^{\pi}(s)$ for $s \in \{1, 2, 3\}$. Your answers should complete the following table. (*Hint:* the missing entries are integers.) **Show your work for full credit.**

s	$\pi(s)$	$V^{\pi}(s)$
1	↑	-18
2	↑	
3	+	

(b) Policy improvement

Compute the greedy policy $\pi'(s)$ with respect to the state-value function $V^{\pi}(s)$ from part (a). Your answers should complete the following table. Show your work for full credit.

s	$\pi(s)$	$\pi'(s)$
1	↑	
2	↑	
3	+	

9.3 Value function for a random walk

Consider a Markov decision process (MDP) with discrete states $s \in \{0, 1, 2, ..., \infty\}$ and rewards R(s) = s that grow linearly as a function of the state. Also, consider a policy π whose action in each state either leaves the state unchanged or yields a transition to the next highest state:

$$P(s'|s, \pi(s)) = \begin{cases} \frac{2}{3} & \text{if } s' = s \\ \frac{1}{3} & \text{if } s' = s+1 \\ 0 & \text{otherwise} \end{cases}$$

Intuitively, this policy can be viewed as a right-drifting random walk. As usual, the value function for this policy, $V^{\pi}(s) = \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t) \middle| s_0 = s\right]$, is defined as the expected sum of discounted rewards starting from state s, with discount factor $0 \le \gamma < 1$.

- (a) Assume that the value function $V^{\pi}(s)$ satisfies a Bellman equation analogous to the one in MDPs with finite state spaces. Write down the Bellman equation satisfied by $V^{\pi}(s)$.
- (b) Show that one possible solution to the Bellman equation in part (a) is given by the linear form $V^{\pi}(s) = as + b$, where a and b are coefficients that you should express in terms of the discount factor γ . (*Hint*: substitute this solution into both sides of the Bellman equation, and solve for a and b by requiring that both sides are equal for all values of s.)
- (*) Challenge (optional, no credit): justify that the value function $V^{\pi}(s)$ has this linear form. In other words, rule out other possible solutions to the Bellman equation for this policy.