Eco 213: Basic Data Analysis and

Econometrics

Lecture 4 : Dummy Variables

February 23, 2019

Dr. Garima Malik

Department of Economics

Shiv Nadar University

- Question: How can we incorporate nominal variables (e.g., race, gender) into regression?
- Option 1: Analyze each sub-group separately
 - Generates different slope, constant for each group
- Option 2: Dummy variables
 - "Dummy" = a dichotomous variables coded to indicate the presence or absence of something
 - Absence coded as zero, presence coded as 1.

- Strategy: Create a separate dummy variable for all nominal categories
- Ex: Gender make female & male variables
 - ▶ DFEMALE: coded as 1 for all women, zero for men
 - DMALE: coded as 1 for all men
- Next: Include all but one dummy variables into a multiple regression model
 - ▶ If two dummies, include 1; If 5 dummies, include 4.

- Question: Why can't you include DFEMALE and DMALE in the same regression model?
- Answer: They are perfectly correlated (negatively): r = -1
 - Result: Regression model "blows up"
- For any set of nominal categories, a full set of dummies contains redundant information
 - DMALE and DFEMALE contain same information
 - Dropping one removes redundant information.

Consider the following regression equation:

$$Y_i = a + b_1 INCOME_i + b_2 DFEMALE_i + e_i$$

- Question: What if the case is a male?
- Answer: DFEMALE is 0, so the entire term becomes zero.
 - Result: Males are modeled using the familiar regression model: a + b₁X + e.

Consider the following regression equation:

$$Y_i = a + b_1 INCOME_i + b_2 DFEMALE_i + e_i$$

- Question: What if the case is a female?
- Answer: DFEMALE is 1, so b₂(1) stays in the equation (and is added to the constant)
 - Result: Females are modeled using a different regression line: $(a+b_2) + b_1X + e$
 - Thus, the coefficient of b₂ reflects difference in the constant for women.

- Remember, a different constant generates a different line, either higher or lower
 - Variable: DFEMALE (women = 1, men = 0)
 - A positive coefficient (b) indicates that women are consistently higher compared to men
 - A negative coefficient indicated women are lower
- ► Example: If DFEMALE coeff = 1.2:
 - "Women are on average 1.2 points higher than men".

Visually: Women = blue, Men = red

Overall slope for all data points

Note: Line for men, women have same slope... but one is high other is lower. The constant differs!

If women=1, men=0: The constant (a) reflects men only. Dummy coefficient (b) reflects increase for women (relative to men)

- What if you want to compare more than 2 groups?
- Example: Race
 - Coded 1=white, 2=black, 3=other
 - Make 3 dummy variables:
 - "DWHITE" is 1 for whites, 0 for everyone else
 - ▶ "DBLACK" is 1 for Af. Am., 0 for everyone else
 - ▶ "DOTHER" is 1 for "others", 0 for everyone else
- Then, include **two** of the three variables in the multiple regression model.

Ex: Job Prestige Coefficients^a

		Unstandardized Coefficients		Standardi zed Coefficien ts		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	9.666	1.672		5.780	.000
	EDUC	2.476	.111	.517	22.271	.000
	INCOM16	6.282E-02	.397	.004	.158	.874
	DBLACK	-2.666	1.117	055	-2.388	.017
	DOTHER	1.114	1.777	.014	.627	.531

a. Dependent Variable: PRESTIGE

- Negative coefficient for DBLACK indicates a lower level of job prestige compared to whites
 - T- and P-values indicate if difference is significant.

- Comments:
- ▶ 1. Dummy coefficients shouldn't be called slopes
 - Referring to the "slope" of gender doesn't make sense
 - Rather, it is the difference in the constant (or "level")
- ▶ 2. The contrast is **always** with the nominal category that was **left out** of the equation
 - ▶ If DFEMALE is included, the contrast is with males
 - If DBLACK, DOTHER are included, coefficients reflect difference in constant compared to whites.

- Question: What if you suspect that a variable has a totally different slope for two different sub-groups in your data?
- Example: Income and Happiness
 - Perhaps men are more materialistic -- an extra dollar increases their happiness a lot
 - If women are less materialistic, each dollar has a smaller effect on income (compared to men)
- Issue isn't men = "more" or "less" than women
 - Rather, the slope of a variable (income) differs across groups

- Issue isn't men = "more" or "less" than women
 - Rather, the slope of a variable coefficient (for income) differs across groups
- Again, we want to specify a different regression line for each group
 - We want lines with different slopes, not parallel lines that are higher or lower.

Visually: Women = blue, Men = red

Overall slope for all data points

Note: Here, the slope for men and women differs.

The effect of income on happiness (X1 on Y) varies with gender (X2). This is called an "interaction effect"

INCOME

- Interaction effects: Differences in the relationship (slope) between two variables for each category of a third variable
- Option #1: Analyze each group separately
- Option #2: Multiply the two variables of interest: (DFEMALE, INCOME) to create a new variable
 - Called: DFEMALE*INCOME
 - ▶ Add that variable to the multiple regression model.

Consider the following regression equation:

$$Y_i = a + b_1 INCOME_i + b_2 DFEM * INC_i + e_i$$

- Question: What if the case is male?
- Answer: DFEMALE is 0, so b₂(DFEM*INC) drops out of the equation
 - Result: Males are modeled using the ordinary regression equation: $a + b_1X + e$.

Consider the following regression equation:

$$Y_i = a + b_1 INCOME_i + b_2 DFEM * INC_i + e_i$$

- Question: What if the case is male?
- Answer: DFEMALE is 1, so b₂(DFEM*INC)
 becomes b₂*INCOME, which is added to b₁
 - Result: Females are modeled using a different regression line: $a + (b_1+b_2) X + e$
 - Thus, the coefficient of b₂ reflects difference in the slope of INCOME for women.

- Interpreting interaction terms:
- A positive b for DFEMALE*INCOME indicates the slope for income is higher for women vs. men
 - A negative effect indicates the slope is lower
 - Size of coefficient indicates actual difference in slope
- ▶ Example: DFEMALE*INCOME. Observed b's:
 - \rightarrow Income: b = .5
 - ▶ DFEMALE * INCOME: b = -.2
- ▶ Interpretation: Slope is .5 for men, .3 for women.

- Continuous variable can also interact
- ► Example: Effect of education and income on happiness
 - Perhaps highly educated people are less materialistic
 - As education increases, the slope between between income and happiness would decrease
- Simply multiply Education and Income to create the interaction term "EDUCATION*INCOME"
 - And add it to the model

- ▶ How do you interpret continuous variable interactions?
 - ▶ Example: EDUCATION*INCOME: Coefficient = 2.0
- Answer: For each unit change in education, the slope of income vs. happiness increases by 2
 - Note: coefficient is symmetrical: For each unit change in income, education slope increases by 2
 - Dummy interactions result in slopes for each group
 - Continuous interactions result in many slopes
 - ▶ Each category of education*income has a different slope.

- ▶ 1. If you make an interaction you should also include the component variables in the model:
 - A model with "DFEMALE * INCOME" should also include DFEMALE and INCOME
 - ▶ There is some debate on this issue... but that is the safest course of action
- 2. Sometimes interaction terms are highly correlated with its components

