Experimentalphysik I im Wintersemester 13/14 Übungsserie 13

Abgabe am 30.01.14 bis 08:15 (vor der Vorlesung)

Alle Aufgaben (!) müssen gerechnet werden. Die mit * gekennzeichneten Aufgaben sind schriftlich abzugeben. Zu jeder Lösung gehören eine oder im Bedarfsfalle mehrere Skizzen, die den Sachverhalt verdeutlichen.

46.* Ein Fahrzeug, auf dem sich eine Schallquelle (v $_0$ =880 Hz) und ein Empfänger befinden, bewegt sich mit v_1 =60 km $h^{\text{-}1}$ nach Norden. Der Ton wird an einer senkrechten, ebenen Fläche reflektiert, die sich mit der Geschwindigkeit v_2 in Nord-Süd-Richtung bewegt. Wie groß ist v_2 , wenn der am Empfänger des Fahrzeuges registrierte reflektierte Ton bezüglich der ursprünglichen Frequenz v_0

a) 123 Hz höher, b) 52 Hz höher, c) gleich hoch ist? (Schallgeschwindigkeit in Luft c=340 ms⁻¹

47.* Man berechne die Wellenfunktion $U(x,t) = u(x)e^{i\omega t}$ sowie die möglichen Wellenlängen bzw. Eigenfrequenzen einer an beiden Enden eingespannten Saite der Länge l aus der Wel-

lengleichung
$$\frac{\partial^2 U}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 U}{\partial t^2}$$
!

Eine der Randbedingungen lautet dabei $\frac{\partial u}{\partial x} = \frac{n\pi}{l}$

48. Verkehrsgericht in Los Angeles:

Cop: Dieser Kerl fuhr mindestens 80 miles per hour, wo nur 50 erlaubt waren.

Richter: Wie hatten Sie das festgestellt, hatten Sie Radar?

Cop: Nein, aber seine Reifen gaben ein singendes Geräusch, und als er an mir vorbeifuhr, klang es genau wie ein Kuckuck.

Richter: Machen Sie mal einen Kuckuck nach!

Cop: (Singt sehr sauber): "Ku-Kuck"!

Würden Sie den Autofahrer zur Kasse bitten?

49. Ein mit H_2O gefüllter Behälter hat 80 cm unter dem H_2O -Spiegel eine seitliche, kreisförmige Öffnung von $A_1 = 12 \text{ mm}^2$ Querschnitt.

Mit welcher Geschwindigkeit v₁ (als Funktion der Zeit!) fließt das H₂O aus?

Mit welcher Geschwindigkeit v_2 (als Funktion der Zeit!) sinkt der H_2O -Spiegel im Behälter? (Der Querschnitt des Behälters betrage $A_2 = 300$ cm².)

c) Wie groß ist die durch das ausfließende H_2O verursachte Rückstoßkraft (als Funktion der Zeit!)?

Kontakt: <u>malte.kaluza@uni-jena.de</u>

michael.duparre@uni-jena.de