CSP lecture 25/26 – Problem Set 1

 $\mathbb{A} = (A; R_1, R_2, \dots)$ is called a relational structure if

- A is a set, called domain,
- R_1, R_2, \ldots are relations on A, i.e. $R_i \subseteq A^{n_i}$ for some finite arity $n_i \ge 1$.

Definition: CSP(A)

Given a list of constraints $R_i(x_{i_1}, \ldots, x_{i_r})$, $R_j(x_{j_1}, \ldots, x_{j_s})$, $R_k(x_{k_1}, \ldots, x_{k_t})$, ... **Decide** whether they are satisfiable.

Consider the following relations on $\{0,1\}$:

- $C_i := \{i\}, \text{ for } i \in \{0, 1\}$
- $R := \{(0,0), (1,1)\}$
- $N := \{(0,1), (1,0)\}$
- $S_{ij} := \{0,1\}^2 \setminus \{(i,j)\}, \text{ for } i,j \in \{0,1\}$
- $H := \{0,1\}^3 \setminus \{(1,1,0)\}$
- $\bullet \ G_1:=\{(0,0,0),(0,1,1),(1,0,1),(1,1,0)\},\ G_2:=\{(0,0,1),(0,1,0),(1,0,0),(1,1,1)\}$

Problem 1. Find a polynomial–time algorithm for CSP(A), where

- 1. $\mathbb{A} = (\{0,1\}; R)$
- 2. $\mathbb{A} = (\{0,1\}; R, C_0, C_1)$
- 3. $\mathbb{A} = (\{0,1\}; S_{10})$
- 4. $\mathbb{A} = (\{0,1\}; S_{10}, C_0, C_1)$
- 5. $\mathbb{A} = (\{0,1\}; S_{01}, S_{10}, C_0, C_1)$
- 6. $\mathbb{A} = (\{0,1\}; N)$
- 7. $\mathbb{A} = (\{0,1\}; R, N, C_0, C_1)$
- 8. $\mathbb{A} = (\{0,1\}; R, N, C_0, C_1, S_{00}, S_{01}, S_{10}, S_{11})$
- 9. $\mathbb{A} = (\{0,1\}; \text{all unary and binary relations})$

Problem 2. Find a polynomial–time algorithm for $CSP(\{0,1\}; H, C_0, C_1)$.

Problem 3. Find a polynomial-time algorithm for $CSP(\{0,1\}; C_0, C_1, G_1, G_2)$.

Problem 4. Find a polynomial–time algorithm for $CSP(\mathbb{Q};<)$.

Problem 5. Prove that $CSP(\mathbb{Q}; <) \neq CSP(\mathbb{A})$, for every finite relational structure $\mathbb{A} = (A; R)$.