

Computer Graphics

Class 28. Geometry Processing

Professor: Eric Biagioli

Today

- General Ideas about Texture mapping.
- Mesh Parametrization.
- Topological operators and simplification
- G20 awards.
- Activity (to upload to canvas)

References for the class of today: (part of the second partial exam)

- Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., and Lévy, B. Polygon Mesh Processing. A K Peters, 2010. →
 CHAPTERS 5 (Parametrization), 6 (Remeshing) and 7 (Simplification & Approximation).
- Hughes, J. F., van Dam, A., McGuire, M., Sklar, D. F., Foley, J. D., Feiner, S., and Akeley, K. Computer Graphics:
 Principles and Practice, 3 ed. Addison-Wesley, Upper Saddle River, NJ, 2013. → CHAPTERS 25 (Meshes), 9
 (Functions on Meshes)
- https://en.wikipedia.org/wiki/Texture_mapping
- Vieira, Antonio & Velho, Luiz & Lopes, Hélio & Tavares, Geovan & Lewiner, Thomas. (2003). Fast Stellar Mesh Simplification. Brazilian Symposium of Computer Graphic and Image Processing. 2003. 27 - 34. 10.1109/SIBGRA.2003.1240988.

Texture mapping

3D Object Textured Object Texture Map

Computing the texture coordinates

Figure 9.12: The point P of the triangle $T = \triangle ABC$ has its color determined by a texture map. The points A, B, and C have been assigned to points in the checkerboard image, as shown by the arrows; the point P corresponds to a point in a white square, so its texture color is white.

Figure 9.13: Texture-mapping a globe.

Parametrization

- We saw that we can use a texture to color the surface of a 3d model.
- How do we assign 2d coordinates to the vertices of a 3d model?
 - LSCM (Least Squares Conformal Maps)
 - ABF (Angle Based Flattening)

Challenges:

- where should we cut the mesh in order to represent it in a planar way?
- distortions!

Topological operators and simplification

Triangulated surfaces

- Each face may occur no more than once, that is, no two faces of the mesh can share more than two vertices.
- The degree of each vertex is at least three.
- If V is a vertex, then the vertices that share an edge with V can be ordered
 U₁, U₂,..., U_n so that {V, U₁, U₂}, {V, U₂, U₃},..., {V, U_{n-1}, U_n} are all
 triangles of the mesh, and
 - (a) {V, U_n, U₁} is a mesh triangle (in which case V is said to be an interior vertex), or
 - (b) {V, Un, U1} is not a mesh triangle (in which case V is said to be a boundary vertex),

and there are no other triangles containing the vertex V (see Figure 25.4).

In the event that such a mesh has no boundary vertices, it's called a **closed** surface; if it has boundary vertices, it's called a surface with boundary.

Figure 25.5: Each of these fails to be a surface mesh in some way.

Terminology

- star of a vertex V→ the vertex V and all the edges and faces containing it.
- link of vertex V → boundary of the star of V
- 1-ring of V: vertices at distance "1 edge" from V
- 2-ring of V: vertices at distance "2 edges" from V

Figure 25.10: The star of the top vertex is drawn in brown; the 1-ring, which forms an octagon in the middle level, in red. The 2-ring, at the bottom drawn in bright green, is connected into a figure-eight shape.

Figure 25.9: The 1-ring of V is drawn in large red dots; the 2ring in smaller green dots.

Embedding

With this terminology, we'll define an **embedding** of a surface mesh as an assignment of distinct locations to the vertices, extended to edges and faces by linear interpolation and satisfying one property: The triangles $T_1 = C(P_i, P_j, P_k)$ and $T_2 = C(P_p, P_q, P_r)$ intersect in \mathbb{R}^3 only if the vertex sets $\{i, j, k\}$ and $\{p, q, r\}$ intersect in the abstract mesh. If the intersection is a single vertex index s, then $T_1 \cap T_2$ must be P_s ; if the intersection has two vertices s and t, then $T_1 \cap T_2 = C(P_s, P_t)$; and if the intersection is all three vertex indices, then T_1 must be identical to T_2 . (Note that we're assuming that i, j, and k are distinct and p, q, and r are distinct; otherwise, either T_1 or T_2 would not be a triangle.)

Figure 25.11: (Top) A mesh with bad self-intersections. (Middle) A mesh in which a vertex of the pink face at the right lies in the middle of an edge of the green face at the top right. (Bottom) The red vertex marked with a dot is a T-junction.

Topological operators in meshes

Figure 7.3. Euler operations and inverses for incremental mesh decimation: vertex removal (top), general edge collapse (middle), and halfedge collapse (bottom).

Topological operators in meshes

- If both p and q are boundary vertices, then the edge (p, q) has to be a boundary edge.
- For all vertices r incident to both p and q there has to be a triangle (p, q, r). In other words, the intersection of the one-rings of p and q consists of vertices opposite the edge (p, q) only.

Figure 7.4. Two examples for topologically illegal (half-)edge collapses $\mathbf{p} \to \mathbf{q}$. Collapsing two boundary vertices through the interior leads to a non-manifold pinched vertex (top). The one-rings of \mathbf{p} and \mathbf{q} intersect in more than two vertices, which after collapsing results in a duplicate fold-over triangle and a non-manifold edge (bottom).

Simplification: what is?

Fig. 2. Two examples of mesh simplification.

Fast stellar mesh simplification

Operations:

Figure 3. Edge-Flip.

Figure 2. Edge-Collapse.

Figure 4. Edge-Weld.

Fast stellar mesh simplification

Operations:

Algorithm 1: Edge-Flip (c_0)

// Label incident corners

$$c_2 = prev(c_0); c_1 = next(c_0);$$

 $c_3 = O[c_0]; c_4 = next(c_3); c_5 = prev(c_3);$
 $a = O[c_5]; b = O[c_2]; c = O[c_4]; d = O[c_1];$
// Label incident vertices
 $t = V[c_0]; v = V[c_1]; s = V[c_3];$
// Perform swap
 $V[c_1] = s; V[c_3] = v; V[c_4] = s; V[c_5] = t;$
// Reset opposite corners
 $O[c_2] = c_3; O[c_0] = a; O[c_3] = c_2; O[c_4] = d;$

 $O[c_5] = c$; $O[a] = c_0$; $O[c] = c_5$; $O[d] = c_4$;

Algorithm 2: Edge–Weld (c_0)

// Assign incidences

$$c_1 = next(c_0); c_2 = prev(c_0);$$

 $c_4 = next(O[c_1]); c_5 = prev(O[c_1]);$
 $a = O[next(O[c_5])]; b = O[prev(O[c_2])];$
// Perform vertex removal
 $V[c_0] = V[O[c_2]]; V[c_4] = V[c_0];$
// Reset opposite corners
 $O[c_5] = a; O[a] = c_5; O[b] = c_2; O[c_2] = b;$

Luiz Velho proved in [11] that the *Edge–Collapse* operation can be decomposed into a sequence of *Edge–Flips* operations, followed by one *Edge–Weld* operation. The Figure 5 illustrates this process.

Figure 5. Edge-Collapse decomposition

Fast stellar mesh simplification

```
Algorithm 4: SimplifyFS(M, n)
 assign quadrics;
 for (j = 1 \text{ to } n) do
    mark vertices as valid for removal
    while (exist a valid vertex) do
      for (i = 1 \text{ to } 8) do
         v_i =valid random vertex
         if E(v_i) < E(v) then v = v_i
      perform edge swaps to bring v to valence 4
      unmark the vertices w \in link(v)
      remove vertex (v)
      re-compute quadrics Q_u and Q_w
```


G20 AWARDS

ACTIVITY (TO UPLOAD IN CANVAS)

Activity (in groups)

- Implement a program to model a sphere, a cylinder and a cube. Find different textures and apply each of them to all the 3 models created.
- Your code should generate OFF files that show a sphere with texture, a cylinder with texture, etc.
- Example:

Summary of today

- Texture mapping.
- Mesh parametrization.
- Mesh simplification.

Thank you

