\sim 1	•
(1	aims
\sim 1	ami

What is claims is:

1. A method of dynamically adapting wireless link parameters, comprising:

determining a measure of errors occurring in communication over a wireless link;

in a case that the measure of errors corresponds to more errors than a first

predetermined threshold, changing from a first set of wireless link parameters to a second set of

wireless link parameters, the second set of wireless link parameters corresponding higher error

tolerance than the first set of wireless link parameters; and

in a case that the measure of errors corresponds to fewer errors than a second predetermined threshold, changing from the first set of wireless link parameters to a third set of wireless link parameters, the third set of wireless link parameters corresponding to lower error tolerance than the first set of wireless link parameters.

2. A method as in claim 1, wherein the measure of errors is determined by monitoring a number of NACK messages and a number of ACK messages that occur.

- 3. A method as in claim 2, wherein it is determined that the measure of errors corresponds to more errors than the first predetermined threshold when more than a predetermined number of NACK messages occur in succession.
- 4. A method as in claim 2, wherein it is determined that the measure of errors corresponds to fewer errors than the second predetermined threshold when more than a predetermined number of ACK messages occur in succession.

1	5. A method as in claim 1, wherein each set of wireless link parameters includes a
2	modulation scheme.
3	
4	6. A method as in claim 1, wherein each set of wireless link parameters includes a
5	symbol rate.
6	
7	7. A method as in claim 1, wherein each set of wireless link parameters includes
8	an error correction scheme.
9	
10	8. A method as in claim 1, wherein each set of wireless link parameters includes a
11	modulation scheme, a symbol rate, and an error correction scheme.
12	
13	9. A method as in claim 8, wherein the modulation scheme is Quadrature
14	Amplitude Modulation or Quadrature Phase Shift Keying, the symbol rate is high symbol rate or
15	low symbol rate, and the error correction scheme is high forward error correction or low forward
16	error correction.
17	
18	10. A method as in claim 1, wherein each set of wireless link parameters
19	corresponds to a relationship between throughput efficiency and error rate;
20	wherein the first predetermined threshold corresponds to where the relationship
21	for the first set of wireless link parameters intersects the relationship for the second set of
22	wireless link parameters; and
23	wherein the second predetermined threshold corresponds to where the relationship
24	for the first set of wireless link parameters intersects the relationship for the third set of wireless
25	link parameters.
26	

1	11. An apparatus that dynamically adapts wireless link parameters, comprising:
2	a wireless link interface to a wireless link;
3	a processor; and
4	a memory storing instructions executable by the process to control communication
5	over the wireless link interface, the instructions including the steps of: (a) determining a measure
6	of errors occurring in communication over the wireless link; (b) in a case that the measure of
7	errors corresponds to more errors than a first predetermined threshold, changing from a first set
8	of wireless link parameters to a second set of wireless link parameters, the second set of wireless
9	link parameters corresponding to higher error tolerance than the first set of wireless link
10	parameters; and (c) in a case that the measure of errors corresponds to fewer errors than a second
11	predetermined threshold, changing from the first set of wireless link parameters to a third set of
12	wireless link parameters, the third set of wireless link parameters corresponding to lower error
13	tolerance than the first set of wireless link parameters.
14	
15	12. An apparatus as in claim 11, wherein the measure of errors is determined by
16	monitoring a number of NACK messages and a number of ACK messages that occur.
17	
18	13. An apparatus as in claim 12, wherein it is determined that the measure of
19	errors corresponds to more errors than the first predetermined threshold when more than a
20	predetermined number of NACK messages occur in succession.
21	
22	14. An apparatus as in claim 12, wherein it is determined that the measure of
23	errors corresponds to fewer errors than the second predetermined threshold when more than a

24

25

predetermined number of ACK messages occur in succession.

1	15. An apparatus as in claim 11, wherein each set of wireless link parameters
2	includes a modulation scheme.
3	
4	16. An apparatus as in claim 11, wherein each set of wireless link parameters
5	includes a symbol rate.
6	
7	17. An apparatus as in claim 11, wherein each set of wireless link parameters
8	includes an error correction scheme.
9	
10	18. An apparatus as in claim 11, wherein each set of wireless link parameters
11	includes a modulation scheme, a symbol rate, and an error correction scheme.
12	
13	19. An apparatus as in claim 18, wherein the modulation scheme is Quadrature
14	Amplitude Modulation or Quadrature Phase Shift Keying, the symbol rate is high symbol rate or
15	low symbol rate, and the error correction scheme is high forward error correction or low forward
16	error correction.
17	
18	20. An apparatus as in claim 11, wherein each set of wireless link parameters
19	corresponds to a relationship between throughput efficiency and error rate;
20	wherein the first predetermined threshold corresponds to where the relationship
21	for the first set of wireless link parameters intersects the relationship for the second set of
22	wireless link parameters; and
23	wherein the second predetermined threshold corresponds to where the relationship
24	for the first set of wireless link parameters intersects the relationship for the third set of wireless
25	link parameters.
26	

1	21. A memory including instructions, the instructions executable by a processor
2	to dynamically adapt wireless link parameters, the instructions comprising the steps of:
3	determining a measure of errors occurring in communication over a wireless link;
4	in a case that the measure of errors corresponds to more errors than a first
5	predetermined threshold, changing from a first set of wireless link parameters to a second set of
6	wireless link parameters, the second set of wireless link parameters corresponding to higher error
7	tolerance than the first set of wireless link parameters; and
8	in a case that the measure of errors corresponds to fewer errors than a second
9	predetermined threshold, changing from the first set of wireless link parameters to a third set of
10	wireless link parameters, the third set of wireless link parameters corresponding to lower error
11	tolerance than the first set of wireless link parameters.
12	
13	22. A memory as in claim 1, wherein the measure of errors is determined by
14	monitoring a number of NACK messages and a number of ACK messages that occur.
15	
16	23. A memory as in claim 2, wherein it is determined that the measure of errors
17	corresponds to more errors than the first predetermined threshold when more than a
18	predetermined number of NACK messages occur in succession.
19	
20	24. A memory as in claim 2, wherein it is determined that the measure of errors
21	corresponds to fewer errors than the second predetermined threshold when more than a
22	predetermined number of ACK messages occur in succession.
23	
24	25. A memory as in claim 1, wherein each set of wireless link parameters
25	includes a modulation scheme.

26

1	26. A memory as in claim 1, wherein each set of wireless link parameters
2	includes a symbol rate.
3	
4	27. A memory as in claim 1, wherein each set of wireless link parameters
5	includes an error correction scheme.
6	
7	28. A memory as in claim 1, wherein each set of wireless link parameters
8	includes a modulation scheme, a symbol rate, and an error correction scheme.
9	
10	29. A memory as in claim 8, wherein the modulation scheme is Quadrature
11	Amplitude Modulation or Quadrature Phase Shift Keying, the symbol rate is high symbol rate or
12	low symbol rate, and the error correction scheme is high forward error correction or low forward
13	error correction.
14	
15	30. A memory as in claim 1, wherein each set of wireless link parameters
16	corresponds to a relationship between throughput efficiency and error rate;
17	wherein the first predetermined threshold corresponds to where the relationship
18	for the first set of wireless link parameters intersects the relationship for the second set of
19	wireless link parameters; and
20	wherein the second predetermined threshold corresponds to where the relationship
21	for the first set of wireless link parameters intersects the relationship for the third set of wireless
22	link parameters.
23	
24	31. An apparatus that dynamically adapts wireless link parameters, comprising:
25	means for determining a measure of errors occurring in communication over a
26	wireless link; and

means for changing, in a case that the measure of errors corresponds to more errors than a first predetermined threshold, from a first set of wireless link parameters to a second set of wireless link parameters corresponding to higher error tolerance than the first set of wireless link parameters, and in a case that the measure of errors corresponds to fewer errors than a second predetermined threshold, from the first set of wireless link parameters to a third set of wireless link parameters, the third set of wireless link parameters corresponding to lower error tolerance than the first set of wireless link parameters.