Berechung von Differentialgleichungen

Vorwort

Dieses kurze Skript soll anschaulich und schrittweise erläutern, wie lineare Differentialgleichungen erster Ordnung sowie lineare Differentialgleichungen beliebiger Ordnung mit konstanten Koeffizienten gelöst werden.

Vorkenntnisse

Im Folgenden wird angenommen, dass der Leser mit einigen Konzepten vertraut ist. Diese beinhalten:

- Differential rechnung
- Integralrechnung
- Komplexe Zahlen

Differentialgleichungen identifizieren

Differentialgleichungen sind Gleichungen, für die keine Zahl, sondern eine Funktion gesucht wird.

Es werden folgende Notationen verwendet:

$$f(x) = y$$

 $f(x)' = y' = y^{(1)}$
 $f(x)'' = y'' = y^{(2)}$
...

Ein Beispiel einer Differentialgleichung:

$$y' = y$$

Es muss also gelten, das die erste Ableitung unserer gesuchten Funktion der Funktion selbst gleicht. Wer sich bereits mit Ableitungen beschäftigt hat, weiss dass $f(x) = e^x$ diese Voraussetzung erfüllt und somit unsere Lösung für die obige Gleichung ist.

Differentialgleichungen klassifizieren

Zunächst sollten wir die Differentialgleichung klassifizieren, indem wir sie auf Linearität und Ordnung untersuchen.

Gewöhnlichkeit

Der erste Schritt besteht darin, zu erkennen ob die Differentialgleichung eine gewöhnliche Differentialgleichung (Ordinary Differential Equation, ODE) ist. Diese hat die allgemeine Form.

$$f(x, y, y', ..., y^{(n)}) = 0$$

Falls es nicht möglich ist, die Differentialgleichung in diese Form zu bringen, ist es eine partielle Differentialgleichung. Partielle Differentialgleichungen werden hier nicht betrachtet.

Ordnung

Die Ordnung der Differentialgleichung wird bestimmt durch die höchste vorkommende Ableitung der zu findenden Funktion. In der obigen allgemeinen Form ist die Ordnung somit n.

Linearität

Als Nächstes untersuchen wir die Differentialgleichung auf Linearität. Dazu bringen wir sie in folgende Form:

$$y^{(k)} + a_{(k-1)}(x)y^{(k-1)} + \dots + a_1(x)y' + a_0(x)y = b(x)$$

Wobei $b, a_0, ..., a_{(k-1)}$ differenzierbar sind.

Falls es möglich ist, die Differentialgleichung in diese Form zu bringen, nennen wir sie eine *lineare Differentialgleichung*.

Homogenität

Wenn für die lineare Differentialgleichung gilt, dass b(x)=0, ist die Differentialgleichung homogen, ansonsten is Nein, da $-e^{x^2}$ in der Gleichung vorkommt.
t sie inhomogen.

Beispiele

Gleichung	Gewöhnlich	Linear	Linear homogen
f'(x) = f(x+1)	Nein, da f und f' an verschieden Punkten ausgewertet werden.	Nein, da nicht gewöhnlich.	Nein, da nicht liLösennear.

Gleichung	Gewöhnlich	Linear	Linear homogen
$y^2 = y'y''$	Ja	Nein, da y^2 in der Gleichung vorkommt.	Nein, da nicht linear.
$y'' + \cos(y)y' + y = x^2$	Ja	Nein, da $cos(y)$ in der Gleichung vorkommt.	Nein, da nicht linear.
$y'' + 2y = -e^{x^2}$	Ja	Ja	Nein, da $-e^{x^2}$ in der Gleichung vorkommt.
$y^{(3)} + 6y' + y = 0$	Ja	Ja	Ja

Differentialgleichungen berechnen

Lineare Differentialgleichungen erster Ordnung

Sämtliche lineare Differentialgleichungen erster Ordung können in die folgende Form gebracht werden:

$$y' + a(x)y = b(x)$$

Schritt 1: Homogene Differentialgleichung lösen

Betrachten wir die entsprechende homogene Gleichung und versuchen wir, diese zu lösen:

$$y' + a(x)y = 0$$

$$y' = -a(x)y$$

$$\frac{y'}{y} = -a(x)$$

$$log(|y|)' = -a(x)$$

$$log(|y|) = -\int a(x)dx + c$$

$$log(|y|) = -A(x)$$

$$y = ze^{-A(x)}$$

Wobei z und z konstant sind. Somit ist $y=ze^{-A(x)}$ unsere allgemeine Lösung für homogene lineare Differentialgleichungen erster Ordnung. Diese Lösung nennen wir die homogene Lösung.

Zu beachten ist, dass die triviale Lösung y=0immer eine Lösung der homogenen Gleichung ist.

Schritt 2: Inhomogene Differentialgleichung lösen

Um inhomogene Differentialgleichungen erster Ordnung zu Lösen, verwenden wir eine Methode namens *Variation der Konstanten*. Dazu setzen wir die homogene Lösung in die inhomogene Differentialgleichung ein, ersetzen aber die Konstante z mit einer Funktion z(x), wir setzen also $y = z(x)e^{-A(x)}$ ein:

$$y' + a(x)y = b(x)$$

$$(z(x)e^{-A(x)})' + a(x)z(x)e^{-A(x)} = b(x)$$

$$z(x)'e^{-A(x)} + z(x)(-a(x))e^{-A(x)} + a(x)z(x)e^{-A(x)} = b(x)$$

$$z(x)'e^{-A(x)} - a(x)z(x)e^{-A(x)} + a(x)z(x)e^{-A(x)} = b(x)$$

$$z(x)'e^{-A(x)} = b(x)$$

$$y^{(k)} + a_{(k-1)}(x)y^{(k-1)} + \dots + a_1(x)y' + a_0(x)y = b(x)$$

$$z(x)' = b(x)e^{A(x)}$$

$$z(x) = \int b(x)e^{A(x)}dx$$

Wenn wir jetzt diese Lösung in $y = z(x)e^{-A(x)}$ einsetzen, erhalten wir unsere allgemeine Lösung für lineare Differentialgleichungen erster Ordnung:

$$y = (\int b(x)e^{A(x)}dx)e^{(-A(x))}$$

Tipps und Tricks

Ein Trick, den man anwenden kann für Differentialgleichungen mit der Form:

$$y' + a(x)y = b_1(x) + b_2(x)$$

Wenn wir die Lösungen y_1 für $y' + ay = b_1$ und y_2 für $y' + ay = b_2$ kennen, dann ist die Lösung der obigen Gleichung $y = y_1 + y_2$.

Ein anderes hilfreiches Mittel ist, eine Substitution vorzunehmen. Ist beispielsweise eine Differentialgleichung der Form y'' + a(x)y' = b(x) gegeben, kann y' = u(x) gesetzt werden, um die Differentialgleichung wie oben gegeben zu lösen. Um anschliessend das Resultat für y zu erhalten, gilt $y = \int u(x)dx$.

Beispiel

Lineare Differentialgleichungen mit konstanten Koeffizienten

Lineare Differentialgleichungen mit konstanten Koeffizienten haben die Form:

$$y^{(k)} + a_{(k-1)}y^{(k-1)} + \dots + a_1y' + a_0y = b(x)$$

Zu beachten ist, dass $a_i, i \in \{0, ..., (k-1)\}$ keine Funktionen, sondern Konstanten sind, b(x) aber immer noch eine Funktion sein kann.

Schritt 1: Charachteristisches Polynom herleiten

Zunächst lösen wir wieder die entsprechende homogene Gleichung:

$$y^{(k)} + a_{(k-1)}y^{(k-1)} + ... + a_1y' + a_0y = 0$$

Wir nehmen an, dass die Lösung die Form $y=e^{bx}$ hat. Somit hat die k-te Ableitung die Form $y^{(k)}=b^ke^{bx}$ hat. Wenn wir diese Lösungsform in die allgemeine homogene Gleichung einsetzen, erhalten wir:

$$y^{(k)} + a_{(k-1)}y^{(k-1)} + \dots + a_1y' + a_0y = 0$$

$$b^k e^{bx} + a_{(k-1)}b^{(k-1)}e^{bx} + \dots + a_1be^{bx} + a_0e^{bx} = 0$$

$$(b^k + a_{(k-1)}b^{(k-1)} + \dots + a_1b + a_0)e^{bx} = 0$$

Wie vorher ist die triviale Lösung y=0 immer eine Lösung der homogenen Gleichung.

Wir können die obige Gleichung weiter vereinfachen:

$$b^k + a_{(k-1)}b^{(k-1)} + \dots + a_1b + a_0 = 0$$

Diese Gleichung nennen wir die *charakteristische Gleichung* der gewöhnlichen Differentialgleichung. Einige Beispiele:

Differentialgleichung	Charakteristische Gleichung
y'' + 2y' - 3y = 0	$b^2 + 2b - 3 = 0$
y''' - 2y'' - 4y' + 8y = 0	$b^3 - 2b^2 - 4b + 8 = 0$

Schritt 2: Charakteristisches Polynom lösen

Nach dem Fundamentalsatz der Algebra hat das entsprechende *charakteristische Polynom* im Bereich der komplexen Zahlen mindestens eine Nullstelle. Um die

Lösung der charakteristischen Gleichung zu finden, bringen wir es in die folgende Form:

$$(b - \alpha_1)...(b - \alpha_k) = 0$$

Zu bemerken ist, falls $\alpha=\beta+i\gamma$ eine Lösung des charakteristischen Polynoms ist, ist $\overline{\alpha}$ immer auch eine Lösung.

Fall (a): Keine gemeinsamen Nullstellen

Falls $\alpha_i \neq \alpha_j$ für alle $i \neq j$ gilt, hat das charakteristische Polynom keine gemeinsamen Nullstellen. Die Lösungen der homogenen Differentialgleichung sind $y_i = e^{\alpha_i x}, 1 \leq i \leq k$. Die allgemeine Lösung der homogenen Differentialgleichung ist folgendermassen:

$$y = z_1 y_1 + \dots + z_k y_k$$

Wobei $z_i, i \in \{1, ..., k\}$ beliebige komplexe Zahlen sind.

Schritt 2: Inhomogene Differentialgleichung lösen

Als nächstens lösen wir die eigentliche inhomogene lineare Differentialgleichung.

Beispiele

(a)

Gegeben ist die Differentialgleichung y' - 2y = 0 und f(0) = 4.

- 1. Bestimme die charakteristische Gleichung b-2=0.
- 2. Bestimme das charakteristische Polynom $(b \alpha_1) = 0$, wobei $\alpha_1 = 2$.
- 3. Die homogene Lösung hat die Form $y = z_1 e^{2x}$.
- 4. Da nach Aufgabenstellung f(0) = 4, gilt $f(0) = z_1 e^{2x} = 4$, woraus folgt, dass $z_1 = 4$. Somit ist die gesuchte Lösung $y = 4e^{2x}$.

(b)