

Morfologia Matemática

Translação

Sejam X um <u>conjunto</u> e v um vetor
Translação de X por v:

$$X_v = \{x + v \in E, x \in X\}$$

Adição de Minkowski

 Sejam X e B <u>conjuntos</u>. Define-se a soma de Minkowski de X por B como a união das translações de X por todos os vetores de B:

$$X \oplus B = \bigcup_{b \in B} \{ x + b \in E \, , \, x \in X \}$$

Dilatação

Subtração de Minkowski

 Sejam X e B <u>conjuntos</u>. Define-se a diferença de Minkowski de X por B como

$$X \ominus B = \cap_{b \in B} \{x - b \in E \, , \, x \in X\}$$

Erosão

Erosão

Erosão

Erosão

Erosão

Dilatação e Erosão - Propriedades

- · Definições (para imagens binárias)
 - Dilatação ightarrow Adição de Minkowski $\delta_B(X) = X \oplus B = \cup_{b \in B} X_b$
 - Erosão → Subtração de Minkowski

$$\epsilon_B(X) = X \ominus B = \cap_{b \in B} X_{-b}$$

 A dilatação NÃO é a operação inversa da erosão e vice-versa

Dilatação e Erosão - Propriedades

Decomposição da erosão em relação à dilatação

$$X \ominus (A \oplus B) = (X \ominus A) \ominus B$$

 Útil para a decomposição de erosões com elementos estruturantes muito grandes

Operações de conjuntos e imagens

União

$$\cup:A\cup B=\{x\in D:x\in A\mid x\in B\}$$

Intersecção

$$\cap : A \cap B = \{x \in D : x \in A \& x \in B\}$$

max

$$\vee : (f \vee g)(x) = \max\{f(x), g(x)\}\$$

• min

$$\wedge : (f \wedge g)(x) = \min\{f(x), g(x)\}\$$

Operações aplicadas a operadores

União

$$\cup: (\Psi \cup \Phi)(A) = \Psi(A) \cup \Phi(A)$$

• Intersecção

$$\cap : (\Psi \cap \Phi)(A) = \Psi(A) \cap \Phi(A)$$

max

$$\vee : (\Psi \vee \Phi)(f) = \Psi(f) \vee \Phi(f)$$

• min

$$\wedge : (\Psi \wedge \Phi)(f) = \Psi(f) \wedge \Phi(f)$$

Outras operações

· Complemento de um conjunto

$$A^c \subset D, A \cup A^c = D$$

· Complemento de uma imagem

$$f^c(x) = K - f(x)$$

Outras operações

· Diferença de conjuntos

$$A \setminus B = A \wedge B^c$$

• Translação de uma imagem por um vetor

$$f_b(x) = f(x - b)$$

Dilatação

· Operador entre imagens definido por:

$$f \oplus B(x) = \max\{f(y) : y \in (\check{B} + x) \cap E\}$$

Dilatação

· Operador entre imagens definido por:

 $f \oplus B(x) = \max\{f(y) : y \in (\check{B} + x) \cap E\}$

Erosão

· Operador entre imagens definido por:

$$f\ominus B(x)=\min\{f(y):y\in (B+x)\cap E\}$$

Erosão

· Operador entre imagens definido por:

$$f\ominus B(x)=\min\{f(y):y\in (B+x)\cap E\}$$

Morfologia Matemática

· Transformação identidade

$$I(f)=\operatorname{id}(f)=f$$

· Composição de transformações

$$\Psi^n = \Psi^{n-1}\Psi, \quad \Psi^0 = \mathrm{id}$$

· Transformações pontuais

$$\Psi(f)(p) = \Psi(f(p))$$

Abertura

· Operador entre imagens definido por:

$$f \circ B = (f \ominus B) \oplus B$$

Abertura

· Operador entre imagens definido por:

$$f \circ B = (f \ominus B) \oplus B$$

Disco 18

Fechamento

· Operador entre imagens definido por:

$$f \bullet B = (f \oplus B) \ominus B$$

Fechamento

· Operador entre imagens definido por:

$$f \bullet B = (f \oplus B) \ominus B$$

Gradiente morfológico

· Operador de imagens dado por:

$$\nabla_{B_{dil}, B_{ero}} f = f \oplus B_{dil} - f \ominus B_{ero}$$

Gradiente morfológico

· Operador de imagens dado por:

$$\nabla_{B_{dil}, B_{ero}} f = f \oplus B_{dil} - f \ominus B_{ero}$$

Abertura top-hat

• Operador de imagens dado por:

$$f \hat{\circ} B = f - f \circ B_{dil}$$

Fechamento top-hat

• Operador de imagens dado por:

$$f \hat{\bullet} B = f \bullet B_{dil} - f$$

Dilatação condicional

• Operador de imagens dado por:

$$f \oplus_g B = f \oplus B \wedge g$$

Dilatação condicional

· Operador de imagens dado por:

$$f \oplus_g B = f \oplus B \wedge g$$

Inf-reconstrução

• Operador de imagens definido por:

$$f\triangle_{Bc}g = (g \oplus_f B_c)^{\infty}$$

Close-holes

· Operador de imagens dado por:

$$\operatorname{Fill}_{B_c}(f) = (f^c \triangle_{B_c} \partial f)^c$$

Close-holes

· Operador de imagens definido por:

$$Fill_{Bc}(f) = (f^c \triangle_{Bc} \partial f)^c$$

Abertura por reconstrução

· Operador de imagens definido por:

$$f \circ_{Bc} B_{ero} = (f \circ B_{ero}) \triangle_{Bc} f$$

Fechamento por reconstrução

• Operador de imagens definido por:

$$f \bullet_{Bc} B_{dil} = (f \bullet B_{dil}) \nabla_{Bc} f$$

Transformada Distância

$$T_d(f)(p) = d(p, \{q \in E : f(q) = 0\})$$

· Usando um elemento estruturante

$$T_{Bc}(f) = \sum_{i} f \ominus iB_c$$

Relação com erosão

$$f \ominus iB_c = i + 1 \le T_{B_c}(f)$$

Transformada Distância

$$T_{Bc}(f) = \sum_{i} f \ominus iB_{c}$$

Distância geodésica

· Operador de imagens definido por:

$$T_{B_c,g}(f) = \sum_{i=1}^{\infty} g^c \ominus_{f^c} B_c$$

Esqueleto morfológico

· Operador entre imagens definido por:

$$\sigma_B(f) = \bigvee \{ ((f \ominus iB) \hat{\circ} B) : i = 0, 1, \ldots \}$$

Alternados seqüênciais

São operadores definidos por:

nB-
$$\gamma \phi(f) = f \bullet B \circ B \dots \bullet (n-1)B \circ (n-1)B \bullet nB \circ nB$$

nB-
$$\phi\gamma(f)=f\circ B\bullet B\ldots\circ (n-1)B\bullet (n-1)B\circ nB\bullet nB$$

осо

 $\mathrm{nB-}\gamma\phi\gamma(f)=f\circ B\bullet B\circ B\ldots\circ(n-1)B\bullet(n-1)B\circ(n-1)B\circ nB\bullet nB\circ nB$

coc

 $\text{nB-}\phi\gamma\phi(f) = f\bullet B\circ B\bullet B\ldots \bullet (n-1)B\circ (n-1)B\bullet (n-1)B\bullet B\circ nB\bullet nB$

Alternados seqüênciais

oc cruz

Alternados seqüênciais

oc cruz

Abertura top-hat

• Operador de imagens dado por:

$$f \hat{\circ} B = f - f \circ B_{dil}$$

Fechamento top-hat

· Operador de imagens dado por:

$$f \hat{\bullet} B = f \bullet B_{dil} - f$$

Closerecth

· Operador entre imagens definido por:

$$f \hat{\bullet}_{B_c} B_{dil} = (f \bullet_{B_c} B_{dil}) - f$$

Area open

· Operador entre imagens definido por:

$$f \circ (a)_{B_C} = \bigvee_{B \in \mathcal{B}_{B_C,a}} f \circ B$$

$$\mathcal{B}_{B_C,a} = \{X \subset E : X \text{ is } B_C - \text{connected} \\ Area(X) \ge a\}$$

Area open

· Operador entre imagens definido por:

$$f \circ (a)_{B_C} = \bigvee_{B \in \mathcal{B}_{B_C,a}} f \circ B$$

a=500

Area open

· Operador entre imagens definido por:

$$f\circ (a)_{B_C} = igvee_{B\in \mathcal{B}_{B_C,a}} f\circ B$$
 a=500

Area close

· Operador entre imagens definido por:

$$f \bullet (a)_{B_C} = \bigwedge_{B \in \mathcal{B}_{B_C,a}} f \bullet B$$

$$\mathcal{B}_{B_C,a} = \{X \subset E : X \text{ is } B_C - \text{connected} \\ Area(X) \ge a\}$$

Area close

· Operador entre imagens definido por:

$$f \bullet (a)_{B_C} = \bigwedge_{B \in \mathcal{B}_{B_C,a}} f \bullet B$$

a=400

Area close

· Operador entre imagens definido por:

$$f \bullet (a)_{B_C} = \bigwedge_{B \in \mathcal{B}_{B_C, a}} f \bullet B$$

Sup-geradora

· Operador entre imagens definido por:

$$f \circledast \mathcal{I}_{A,B} = (f \ominus A) \wedge (f^c \ominus B^c)$$

Emagrecimento homotópico

· Operador entre imagens definido por:

$$\sigma^n_{\Delta\theta,\mathcal{I}_{A,B}}(f) = \sigma_{\Delta\theta,\mathcal{I}_{A,B}}(\sigma_{\Delta\theta,\mathcal{I}_{A,B}}(\dots\sigma_{\Delta\theta,\mathcal{I}_{A,B}}(f)))$$

$$\sigma_{\Delta\theta,\mathcal{I}_{A,B}}(f) = \begin{cases} \sigma_{315}(\sigma_{270}(\sigma_{225}(\sigma_{180}(\sigma_{135}(\sigma_{90}(\sigma_{45}(\sigma_{0}(f)))))))) \text{ if } \Delta\theta = 45\\ \sigma_{270}(\sigma_{180}(\sigma_{90}(\sigma_{0}(f)))) \text{ if } \Delta\theta = 90\\ \sigma_{180}(\sigma_{90}(f)) \text{ if } \Delta\theta = 180 \end{cases}$$

$$\sigma_{\theta} = (f - f \circledast \mathcal{I}_{A_{\theta}, B_{\theta}})$$

Emagrecimento homotópico

Segmentação de imagens

Segmentação de imagens

 Segmentar uma imagem é criar uma partição finita do domínio da imagem

Segmentação de imagens

• Partição: $\Omega = \{E_1, E_2, E_3, E_4, E_5, E_6, E_7\}$

Segmentação de imagens

• Partição: $\bigcup E_i = E$

Segmentação de imagens

• Partição: $E_i \cap E_j = \emptyset$ $i \neq j$

Segmentação de imagens

• Condição: $\forall i, E_i$ é conexo

Como criar as partições?

- Usando interfaces com canetas digitalizadoras ou mouse para demarcar as partições
- Usando operadores de imagens adequados
- Usando programas de segmentação assistida/auxiliada de imagens que mesclam as interfaces de demarcação com operadores de imagens

Segmentação manual - mouse

Segmentação manual - mouse

Segmentação manual

- Vantagens
 - Qualquer pessoa com conhecimento do que precisa ser segmentado por fazer
 - Muito IHC, pouco PDI
- Desvantagens
 - Trabalhoso e cansativo
 - Sujeito a erros
 - Pouco replicável

Segmentação por PDI

- · Normalmente categorizada em:
 - Segmentação por descontinuidades
 - Detecção de bordas
 - Detecção de atributos locais
 - ...
 - Segmentação por similaridades
 - Crescimento de regiões
 - Divisão e fusão
 - ...

Zona de Influência Geodésica

 Dada uma família de componentes Y_i em X, a Zona de influência geodésica de uma componente Y_i em X é o conjunto:

$$skiz(Y_i/X) = \{x \in X, \forall j, j \neq i, d_X(x,Y_i) \leq d(x,Y_j\}$$

Zona de Influência Geodésica

• Diagrama de Voronoi generalizado

Zona de Influência Geodésica

Diagrama de Voronoi generalizado

Watershed

 Calcula as linhas de partição de águas de uma imagem vista como um gráfico de uma função

Watershed

 Calcula as linhas de partição de águas de uma imagem vista como um gráfico de uma função

Watershed

 Calcula as linhas de partição de águas de uma imagem vista como um gráfico de uma função

Watershed

 Calcula as linhas de partição de águas de uma imagem vista como um gráfico de uma função

Watershed com marcadores

 Calcula as linhas de partição de águas a partir de marcadores

Watershed com marcadores

 Calcula as linhas de partição de águas a partir de marcadores

