

Painel ► SBL0059 ► 3 setembro - 9 setembro ► Teste de revisão

Iniciado em quinta, 1 Out 2020, 10:19

Estado Finalizada

Concluída em quinta, 1 Out 2020, 11:10
Tempo empregado 50 minutos 43 segundos

Avaliar 8,00 de um máximo de 10,00(**80**%)

Correto

Atingiu 2,00 de 2,00 Calcule $\int\limits_C x\ ds$, onde C é o segmento de reta x=t , $y=rac{t}{2}$, entre (0,0) e (4,2).

Escolha uma:

- \odot a. $2\sqrt{5}$
- \odot b. $5\sqrt{5}$
- \odot c. $4\sqrt{5}$
 - 4
- \odot d. $6\sqrt{5}$
- \odot e. $3\sqrt{5}$

Sua resposta está correta.

Sabendo que o segmento de reta é continuo sobre a curva ${\cal C}$ a integral pode ser calculada por :

$$\int\limits_{C} \, x \; ds = \int_{a}^{b} x(t) \, \parallel \vec{\mathbf{v}}(t) \parallel \, dt$$

Usando a parametrização $ec{\mathbf{r}}(t)=x\mathbf{i}+y\mathbf{j}$ temos que:

$$ec{\mathbf{r}}(t) = t\mathbf{i} + rac{t}{2}\mathbf{j}$$

Assim derivamos o $ec{\mathbf{r}}(t)$ afim de obter o vetor $ec{\mathbf{v}}(t)$:

$$ec{\mathbf{v}}(t) = \mathbf{i} + rac{1}{2}\mathbf{j}$$

Cujo o módulo é dado por:

$$\|\,ec{{f v}}(t)\,\| = \sqrt{(1)^2 + (rac{1}{2})^2}$$

Simplificando,

$$\parallel ec{\mathbf{v}}(t) \parallel = \sqrt{1 + rac{1}{4}}$$

$$\parallel ec{\mathbf{v}}(t) \parallel = rac{\sqrt{5}}{2}$$

Usando x em função de t como dado no enunciado:

$$x(t) = t$$

Substituimos então os dados encontrados na expressão inicial:

$$\int_{a}^{b} x(t) \parallel \vec{\mathbf{v}}(t) \parallel dt = \int_{0}^{4} (t) \frac{\sqrt{5}}{2} dt$$

$$= \left(\frac{\sqrt{5}}{2}\right) \left(\frac{t^{2}}{2}\right) \Big|_{0}^{4}$$

$$= \left(\frac{\sqrt{5}}{2}\right) \left(\frac{4^{2}}{2}\right) - \left(\frac{\sqrt{5}}{2}\right) \left(\frac{0^{2}}{2}\right)$$

$$= \frac{16\sqrt{5}}{4}$$

$$= 4\sqrt{5}$$

A resposta correta é: $4\sqrt{5}$

.

Correto

Atingiu 2,00 de 2,00 Encontre a integral de reta de $f\left(x,y
ight)=ye^{x^2}$ ao longo da curva $ec{\mathbf{r}}\left(t
ight)=4t\mathbf{i}-3t\mathbf{j}$, $-1\leq t\leq 2$.

Escolha uma:

$$\bigcirc$$
 a. $-12\left(rac{e^{64}-e^{16}}{32}
ight)$

$$\bigcirc$$
 b. $-13\left(rac{e^{64}-e^{16}}{32}
ight)$

$$\bigcirc$$
 c. $-11\left(rac{e^{64}-e^{16}}{32}
ight)$

$$\bigcirc$$
 d. $-14\left(rac{e^{64}-e^{16}}{32}
ight)$

$$\odot$$
 e. $-15\left(rac{e^{64}-e^{16}}{32}
ight)$

Sua resposta está correta.

Resposta:

$$f=te^{t^2}$$

Derivamos $\vec{\mathbf{r}}\left(t\right)$ e encontramos $\vec{\mathbf{v}}\left(t\right)$

$$\vec{\mathbf{v}}\left(t\right) = 4\mathbf{i} \ - \ 3\mathbf{j}$$

Calculamos o módulo de $\vec{\mathbf{v}}$:

$$\parallel ec{\mathbf{v}} \parallel = \sqrt{4^2 + \left(-3
ight)^2}$$

$$\parallel \vec{\mathbf{v}} \parallel = \sqrt{16+9}$$

$$\|\vec{\mathbf{v}}\| = 5$$

Sabendo que ds=5dt

I.L.
$$=\int_{-1}^2 y e^{x^2} \ ds$$

$$=\int_{-1}^{2}-3te^{(4t)^{2}}5dt$$

$$=-15\int_{-1}^{2}te^{16t^{2}}dt$$

Chamamos $u=e^{16t^2}$

$$du=32te^{16t^2}dx$$

$$dx = \frac{du}{32tu}$$

$$=-15\int_{-1}^2 rac{tu}{32tu}du$$

$$=-15\int_{-1}^{2}rac{1}{32}\;du$$

$$egin{align} &= -15igg[rac{1}{32}uigg]_{-1}^2 \ &= -15igg[rac{e^{16t^2}}{32}igg]_{-1}^2 \ &= -15\left(rac{e^{64}-e^{16}}{32}
ight) \end{split}$$

A resposta correta é: $-15\left(rac{e^{64}-e^{16}}{32}
ight)$

.

Correto

Atingiu 2,00 de 2,00 Encontre a integral de linha $\int\limits_C (x^2+y^2)\,ds$, onde C é dado na figura a seguir.

Resposta: 36

Solução:

 $C_1: x=t$ e y=0, $0\leq t\leq 3$, temos que dy=0;

 $C_2: x=3$ e y=t , $0 \leq t \leq 3$, temos que dy=dt ;

Calculando a integral:

$$\int\limits_{C} (x^2+y^2)\,dy \ = \int\limits_{C_1} (x^2+y^2)\,dy + \int\limits_{C_2} (x^2+y^2)\,dy$$

Como dy=0 em C_1 , ficamos apenas com:

$$\int\limits_{C_2} (x^2+y^2)\,dy \ = \int_0^3 (3^2+t^2)\,dt \ = \int_0^3 (9+t^2)\,dt \ = \left[9t+rac{1}{3}t^3
ight]_0^3 \ = 36.$$

A resposta correta é: 36.

Incorreto

Atingiu 0,00 de 2,00 Calcule $\int\limits_C \vec{\mathbf{F}} \cdot \vec{\mathbf{T}} \ ds$ para o campo vetorial $\vec{\mathbf{F}} = x^2\mathbf{i} - y\mathbf{j}$ ao longo da curva $x=y^2$ de (4,2) a (1,-1).

X

Resposta: -19,5

5

Como podemos deixar tanto o $\vec{\mathbf{F}}$ como a curva em $\vec{\mathbf{r}}$ em função de y , faremos os cálculos em relação a y:

Delimitando y temos:

$$2 \ge y \ge -1$$

Invertendo os limites de integração em relação a y para o cálculo da integral, :

$$-1 \le y \le 2$$

Substituindo os valores de x e y em \vec{r} temos:

$$\vec{\mathbf{r}} = x\mathbf{i} + y\mathbf{j}$$

$$\vec{\mathbf{r}} = y^2 \mathbf{i} + y \mathbf{j}$$

Substituindo os valores de x e y em $\vec{\mathbf{F}}$ temos:

$$ec{\mathbf{F}} = x^2 \mathbf{i} - y \mathbf{j}$$

$$ec{\mathbf{F}}=y^4\mathbf{i}\!\!-\!y\mathbf{j}$$

Podemos utilizar a integral do trabalho de Avaliação paramétrica vetorial : $\int_a^b \vec{\mathbf{F}} \cdot \frac{d\vec{\mathbf{r}}}{dy} \ dy$.

Encontrando o valor de $\vec{\mathbf{F}} \cdot \frac{d\vec{\mathbf{r}}}{dy}$.

$$rac{d ec{\mathbf{r}}}{dy} = 2y \mathbf{i} + \mathbf{j}$$

$$ec{\mathbf{F}}\cdotrac{dec{\mathbf{r}}}{dy}=(y^4,-y)\cdot(2y,1)=2y^5-y$$

Substituindo na Integral do trabalho de Avaliação paramétrica vetorial:

$$\int\limits_{C} \, {ec {f F}} \, \cdot \, {ec {f T}} \, \, ds = \int_{-1}^2 {ec {f F}} \cdot rac{d{ec {f r}}}{dy} \, \, dy = \int_{-1}^2 2y^5 - y \, \, dy$$

$$=rac{2y^6}{6}\Big|_{-1}^2-rac{y^2}{2}\Big|_{-1}^2$$

$$= 2\left(\frac{2^{6}}{6} - \frac{-1^{6}}{6}\right) - \left(\frac{2^{2}}{2} - \frac{-1^{2}}{2}\right)$$

$$= 2\left(\frac{64}{6} - \frac{1}{6}\right) - \left(2 - \frac{1}{2}\right)$$

$$= 21 - \frac{3}{2} = \frac{39}{2}$$

A resposta correta é: 19,5.

Correto

Atingiu 2,00 de 2,00 Encontre o fluxo do campo $\vec{\mathbf{F}}_1 = x\mathbf{i} + y\mathbf{j}$ atarvés da elipse $\vec{\mathbf{r}}(t) = (cos(t))\mathbf{i} + (4sen(t))\mathbf{j}$, $0 \leq t \leq 2\pi$.

Escolha uma:

- \bigcirc a. 4π
- \odot b. 7π
- \odot c. 6π
- \odot d. 5π
- \odot e. 8π

Sua resposta está correta.

Solução:

Desta vez nós vamos usar a forma escalar para o cálculo do fluxo. Seja $\vec{r}(t)=\cos(t)\mathbf{i}+4\sin(t)\mathbf{j}$, teremos que $x=\cos(t)$ e $y=4\sin(t)$. Logo $dx=-\sin(t)\,dt$ e $dy=4\cos(t)\,dt$

Agora podemos calcular o fluxo do campo $\vec{\mathbf{F}}_1$:

Teremos $M=\cos(t)$ e $N=4\sin(t)$, substituindo na fórmula:

$$egin{aligned} &\int_0^{2\pi} M dy - N dx \ &= \int_0^{2\pi} (4\cos(t)^2 + 4\sin(t)^2) \, dt \ &= \int_0^{2\pi} 4 \, dt = 8\pi \end{aligned}$$

A resposta correta é: 8π

.

O universal pelo regional.

Mais informações

UFC - Sobral

EE- Engenharia Elétrica

EC - Engenharia da Computação

PPGEEC- Programa de Pós-graduação em Engenharia Elétrica e Computação

Contato

Rua Coronel Estanislau Frota, s/n – CEP 62.010-560 – Sobral, Ceará

▼ Telefone: (88) 3613-2603

∠ E-mail:

Social

