Modellierung eines verallgemeinerten SEIR-Modells mit prävalenzabhängigen Kontaktraten

1 SEIDR-Modell

Das SEIDR-Modell wird durch das folgende System gewöhnlicher Differentialgleichungen beschrieben:

$$\begin{aligned} \frac{dS}{dt} &= -\beta \frac{SI}{N} \\ \frac{dE}{dt} &= \beta \frac{SI}{N} - \alpha E \\ \frac{dI}{dt} &= \alpha E - \gamma I - \delta I \\ \frac{dR}{dt} &= \gamma I + \gamma D \end{aligned}$$

$$\frac{dD}{dt} = \delta I - \gamma D$$

Übergangsrate α : Kehrwert der mittleren Latenzzeit

Transmissionsrate β : Übertragungen pro S-I Kontakt pro Zeit Erholungsrate γ : Kehrwert der mittleren infektiösen Zeit

Testrate δ : Testrate für positive Individuen \times Rate der positiven Testergebnisse

2 Verändertes Modell

Transmissionsrate β nun flexibel mithilfe von Faktoren wie Zeit β ab sofort der Form

$$\beta(t) = \beta_0[(1 - \phi)f(t, \theta) + \phi]$$

mit $\phi \in [0, 1]$ und $f(t, \theta)$ fallend von 1 nach 0. Beispiele für $f(t, \theta)$:

- exponentiell e^{-qt} mit $0 < q \le 1$
- harmonisch $(1+q\nu t)^{-1}$
- hyperbolisch $(1+q\nu t)^{-\frac{1}{\nu}}$

Auch interessant, β der Form:

- oszillierend, bspw. $\beta(t) = \beta_0(1 + \alpha \sin(\pi \omega t))[(1 \phi)f(t, \theta) + \phi]$ mit $0 < q \le 1$ (bspw. für Jahreszeitabh. β)
- Pandemiemüdigkeit $\beta(t) = \beta_0[(1-\phi)(e^{-c_1t}-e^{-c_2t}+1)+\phi]$
- abh. von I, bspw. $\beta(t) = \beta_0[(1-\phi)(1-\frac{I}{N})^{\frac{1}{\nu}} + \phi]$ oder $\beta(t) = \beta_0[(1-\phi)(\mathbf{1}(\frac{I}{N} \le q)) + \phi]$

Abbildung 1: Profile verschiedener Übertragungsraten $\beta(t)$ (links) und Infektionen (rechts) im SEIR-Modell mit $\beta_0 = 0.4, \alpha = 0.2, \gamma = 0.15, n = 1,000,000$

Vorher R_0 gegeben durch $\frac{\beta}{\gamma}$ in S(0)=N und R_t durch $\frac{\beta}{\gamma}\frac{S(t)}{N}$ in $S(t)\approx N$. Weil nun β schwankt, wird R_0 durch

$$R_0 = \int_{0}^{\infty} \beta(t) e^{-\gamma \tau} d\tau$$

approximiert. Für $S(t) \approx N$ kann R_t approximiert werden durch

$$R_t = \int_{t}^{\infty} \beta(t)e^{-\gamma(\tau-t)}d\tau.$$

3 Simulation eines Lockdowns

Problemstellung:

- Kontakte werden nicht kontinuierlich, sondern zu einem bestimmten Zeitpunkt eingeschränkt.
- Der Zeitpunkt des Sprungs ist von der Inzidenz abhängig.
- Bedingung an β : $\beta(t) = \begin{cases} \phi \beta_0 \text{ falls } I(t) > \tau N \\ \beta_0 \text{ sonst} \end{cases}$, wobei $\phi \in (0,1)$ und $\tau \in (0,1)$

Auswirkung auf den Verlauf der Epidemie:

(a) Anzahl der Infektionen bei Lockdown für (b) Epidemieverlauf bei Lockdown für I(t)>0.05N I(t)>0.05N

weitere Beobachtungen:

- mehrstufiger Lockdown
- Lockdownkriterium anhand der Fallzahlen anstatt der tatsächlichen Infektionen
- adäquate Wahl der Schranke τN notwendig
- Zeitspannen zwischen Beginn des Lockdowns und Erreichen des Peaks

4 Fallbeispiel Xi'an

- Beispiel für Chinas strikte Null-Covid-Strategie
- Einmonatiger Lockdown ab dem 23. Dezember 2021
- Annahme: nicht immunisierte Bevölkerung (plausibel aufgrund relativ wirkungsloser Vakzine)

4.1 Strategie 1: Keine Intervention

Verbleibende nicht infizierte Individuen: 0.7649229% ⇒ Durchseuchung

4.2 Strategie 2: Testen, testen, testen

Tabelle 1: Verlauf mit verstärktem Testen

δ	Verbleibende S (in %)	I und E kleiner 1, ab (in Tagen)
$\delta_{ur} \cdot 2^1$	1.252596	212 (+ 36)
$\delta_{ur} \cdot 2^2$	2.687945	196 (+ 36)
$\delta_{ur} \cdot 2^3$	7.447852	186 (+ 36)
$\delta_{ur} \cdot 2^4$	23.80182	211 (+ 36)
$\delta_{ur} \cdot 2^5$	76.87228	589 (+ 36)
$\delta_{ur} \cdot 2^6$	99.93514	60 (+ 36)

- \Rightarrow Erst ab einer Steigerung der Testeffizienz um Faktor 2^5 ist eine Eindämmung der Epidemie möglich
- \Rightarrow Bei einer Steigerung der Testeffizienz um Faktor 2^6 müssten "nur" zwei Monate lang vermehrt getestet werden

4.3 Strategie 3: Kontaktreduktion

Tabelle 2: Verlauf mit Kontaktreduktion

β	Verbleibende S (in %)	I und E kleiner 1, ab (in Tagen)
$\beta_{ur} * 2^{-1}$	11.3365	338 (+ 36)
$\beta_{ur} * 2^{-2}$	65.28979	1184 (+ 36)
1/12	99.79345	898 (+ 36)

- ⇒ Kontaktreduktion verhindert Infektionen, zieht die Epidemie aber in die Länge
- \Rightarrow Um eine Durchseuchung zu verhindern, müssten die Kontakte etwa 2.5 Jahre lang reduziert werden

4.4 Strategie 4: Kontaktreduktion und Massentests

Tabelle 3: Verlauf mit verstärktem Testen und Kontaktreduktion

δ	Verbleibende S (in %)	I und E kleiner 1, ab (in Tagen)
$\delta_{ur} \cdot 2^1$	99.88242	456 (+ 36)
$\delta_{ur} \cdot 2^2$	99.92746	230 (+ 36)
$\delta_{ur} \cdot 2^3$	99.95006	117 (+ 36)
$\delta_{ur} \cdot 2^4$	99.96137	60 (+ 36)
$\delta_{ur} \cdot 2^5$	99.96703	33 (+ 36)
$\delta_{ur} \cdot 2^6$	99.96986	20 (+ 36)

- \Rightarrow Bei extremer Kontaktreduktion wirkt sich die Testeffizienz kaum auf die Anzahl der Infektionen aus, dafür aber sehr stark auf die erforderliche Dauer der Beschränkungen
- \Rightarrow Die Testeffizienz müsste mindestens um Faktor 2^4 gesteigert werden, um die Dauer der Einschränkungen gering zu halten (ein bis zwei Monate)

4.5 Zusammenfassung

Tabelle 4: Zusammenfassung

Strategie	δ	β	Dauer	Verbleibende S (in %)
	0.01	5.5/12	8.5 Monate	0.7649229
${ m T}$	0.64	5.5/12	2 Monate	99.93514
K	0.01	1/12	2.5 Jahre	99.79345
K + T	0.32	1/12	1 Monat	99.96703
K + T	0.64	1/12	3 Wochen	99.96986

Literatur:

P. Yan, G. Chowell: Quantitative Methods for Investigating Infectious Disease Outbreaks, 2019

A. King: Ordinary differential equations in R, https://kinglab.eeb.lsa.umich.edu/480/nls/de.html, Zugriff: 03.02.2022

Plots zur Simulation für Xi'an

Abbildung 3: Verlauf mit $\delta=0.01, \beta=\frac{5.5}{12}$

Abbildung 4: Verlauf mit $\delta = 0.64, \beta = \frac{5.5}{12}$

Abbildung 5: Verlauf mit $\delta = 0.0.1, \beta = \frac{1}{12}$

Abbildung 6: Verlauf mit $\delta = 0.64, \beta = \frac{1}{12}$