Bayes Risk Lower Bounds

- Is $r^{(1)}$ enough to pick good $Q^{(2)}$?
- Bayes risk lower bounds:
 - Framework used by Simchowitz, El Aloui, Recht '18 to obtain matrixvector lower bounds for a related problem
- Θ be a parameter space and $\{\mathscr{P}_{\theta}:\theta\in\Theta\}$ be a set of distributions
- Suppose $\theta \sim w$ and $x \sim \mathcal{P}_{\theta}$ and x is given to us
 - Bayes risk lower bounds show how much we can say about θ

Intuition about Bayes Risk

- All \mathscr{P}_{θ} are the same \Longrightarrow Can't say anything about θ from x
 - Need to capture how different \mathcal{P}_{θ} are
- One way to capture:

$$I(\mathcal{P}, w) = \inf_{Q} E_{\theta \sim w}[d_{\mathsf{KL}}(\mathcal{P}_{\theta} \parallel Q)]$$

• If all \mathscr{P}_{θ} are "close" to some Q, then $I(\mathscr{P},w)$ is "small"