```
In [1]: import pandas as pd
        import matplotlib.pyplot as plt
        import numpy as np
        from scipy.io import arff
        from sklearn.model selection import train test split
        from sklearn.preprocessing import StandardScaler
        from sklearn.decomposition import PCA
        from sklearn.cluster import KMeans, AgglomerativeClustering
        # Wczytanie pliku ARFF
        data, meta = arff.loadarff("seismic-bumps.arff")
        # Konwersja do Pandas DataFrame
        df = pd.DataFrame(data)
        # Dekodowanie wartości kategorycznych (jeśli istnieją)
        for col in df.select dtypes([object]):
            df[col] = df[col].str.decode('utf-8')
        # Podział na cechy (X) i etykiety (y)
        X = df.iloc[:, :-1] # Wszystkie kolumny oprócz ostatniej
        y = df.iloc[:, -1] # Ostatnia kolumna jako etykieta
        # Sprawdzenie, które kolumny są tekstowe (kategoryczne)
        categorical_cols = X.select_dtypes(include=['object']).columns
        # Konwersja zmiennych kategorycznych na liczbowe (One-Hot Encoding)
        X = pd.get_dummies(X, columns=categorical_cols)
        # Standaryzacja cech
        scaler = StandardScaler()
        X_scaled = scaler.fit_transform(X)
        # Redukcja wymiarowości za pomocą PCA (2D)
        pca = PCA(n components=2)
        X reduced = pca.fit transform(X scaled)
        # K-Means (analiza skupień)
        kmeans = KMeans(n_clusters=3, random_state=42, n_init=10)
        kmeans_labels = kmeans.fit_predict(X_scaled)
        # Agglomerative Clustering (klasteryzacja hierarchiczna)
        agglo = AgglomerativeClustering(n clusters=3)
        agglo_labels = agglo.fit_predict(X_scaled)
        # Wizualizacja wyników PCA + Klasteryzacja
        plt.figure(figsize=(12, 5))
        # K-Means
        plt.subplot(1, 2, 1)
        plt.scatter(X_reduced[:, 0], X_reduced[:, 1], c=kmeans_labels, cmap='viridis', s
        plt.title('K-Means Clustering')
        plt.xlabel('PCA Komponent 1')
        plt.ylabel('PCA Komponent 2')
        # Agglomerative Clustering
        plt.subplot(1, 2, 2)
        plt.scatter(X_reduced[:, 0], X_reduced[:, 1], c=agglo_labels, cmap='viridis', s=
```

```
plt.title('Agglomerative Clustering')
plt.xlabel('PCA Komponent 1')
plt.ylabel('PCA Komponent 2')

plt.tight_layout()
plt.show()
```



```
import pandas as pd
In [2]:
        import matplotlib.pyplot as plt
        import numpy as np
        from scipy.io import arff
        from sklearn.model_selection import train_test_split
        from sklearn.preprocessing import StandardScaler
        from sklearn.decomposition import PCA
        from sklearn.cluster import KMeans, AgglomerativeClustering
        from scipy.cluster.hierarchy import dendrogram, linkage
        from sklearn.metrics import silhouette_score
        # Wczytanie pliku ARFF
        data, meta = arff.loadarff("seismic-bumps.arff")
        # Konwersja do Pandas DataFrame
        df = pd.DataFrame(data)
        # Dekodowanie wartości kategorycznych (jeśli istnieją)
        for col in df.select dtypes([object]):
            df[col] = df[col].str.decode('utf-8')
        # Podział na cechy (X) i etykiety (y)
        X = df.iloc[:, :-1] # Wszystkie kolumny oprócz ostatniej
        y = df.iloc[:, -1] # Ostatnia kolumna jako etykieta
        # Sprawdzenie, które kolumny są tekstowe (kategoryczne)
        categorical_cols = X.select_dtypes(include=['object']).columns
           Konwersja zmiennych kategorycznych na liczbowe (One-Hot Encoding)
        X = pd.get_dummies(X, columns=categorical_cols)
        # Standaryzacja cech
        scaler = StandardScaler()
        X_scaled = scaler.fit_transform(X)
        # Analiza PCA - wykres wyjaśnionej wariancji
        pca = PCA()
        X_pca = pca.fit_transform(X_scaled)
```

```
plt.figure(figsize=(8, 5))
plt.plot(range(1, len(pca.explained_variance_ratio_) + 1), np.cumsum(pca.explain
plt.xlabel('Liczba składowych')
plt.ylabel('Skumulowana wariancja')
plt.title('Analiza PCA - wyjaśniona wariancja')
plt.show()
# Redukcja wymiarowości do 2D dla wizualizacji
pca = PCA(n_components=2)
X reduced = pca.fit transform(X scaled)
# Metoda Łokcia dla K-Means
inertia = []
K_{range} = range(2, 10)
for k in K_range:
    kmeans = KMeans(n clusters=k, random state=42, n init=10)
    kmeans.fit(X scaled)
    inertia.append(kmeans.inertia_)
plt.figure(figsize=(8, 5))
plt.plot(K_range, inertia, marker='o', linestyle='--')
plt.xlabel('Liczba klastrów')
plt.ylabel('Inertia')
plt.title('Metoda łokcia dla K-Means')
plt.show()
# Wybór optymalnej liczby klastrów dla K-Means (przykładowo 3)
kmeans = KMeans(n_clusters=3, random_state=42, n_init=10)
kmeans_labels = kmeans.fit_predict(X_scaled)
# Obliczenie silhouette score dla różnych liczby klastrów
silhouette_scores = []
for k in K_range:
    kmeans = KMeans(n clusters=k, random state=42, n init=10)
    labels = kmeans.fit_predict(X_scaled)
    silhouette scores.append(silhouette score(X scaled, labels))
plt.figure(figsize=(8, 5))
plt.plot(K_range, silhouette_scores, marker='o', linestyle='--')
plt.xlabel('Liczba klastrów')
plt.ylabel('Silhouette Score')
plt.title('Silhouette Score dla K-Means')
plt.show()
# Agglomerative Clustering
agglo = AgglomerativeClustering(n clusters=3)
agglo_labels = agglo.fit_predict(X_scaled)
# Wizualizacja wyników PCA + Klasteryzacja
plt.figure(figsize=(12, 5))
# K-Means
plt.subplot(1, 2, 1)
plt.scatter(X_reduced[:, 0], X_reduced[:, 1], c=kmeans_labels, cmap='viridis', s
plt.title('K-Means Clustering')
plt.xlabel('PCA Komponent 1')
plt.ylabel('PCA Komponent 2')
# Agglomerative Clustering
```

```
plt.subplot(1, 2, 2)
plt.scatter(X_reduced[:, 0], X_reduced[:, 1], c=agglo_labels, cmap='viridis', s=
plt.title('Agglomerative Clustering')
plt.xlabel('PCA Komponent 1')
plt.ylabel('PCA Komponent 2')

plt.tight_layout()
plt.show()

# Dendrogram dla hierarchicznej klasteryzacji
linked = linkage(X_scaled, method='ward')
plt.figure(figsize=(10, 5))
dendrogram(linked, truncate_mode='level', p=5)
plt.title('Dendrogram dla Hierarchicznej Klasteryzacji')
plt.xlabel('Próbki')
plt.ylabel('Odległość')
plt.show()
```


Liczba klastrów

In []: