Interfaz gráfica para interactuar con resultados de evaluación orientada a sistemas de recomendación

Ricardo Morato Mateos

OBJETIVO

O Desarrollar interfaz gráfica

O Entender sistemas de recomendación y evaluación

O Datos de entrada

UserId	Movield	Rating
1	192	4.0
1	195	5.0
1	9	3.5

O Datos de salida

UserId	Movield	Rating
1	318	5.0
1	902	5.0
1	475	5.0
1	405	4.0
1	306	3.94
1	872	3.19
1	597	2.96
2	•••	•••

recomendación

colaborativo

Sistema 1

Sistema N

- O Basadas en error
 - OMAE
 - **O**RMSE

- O Basadas en precisión
 - O Precisión
 - Recall
 - OF
 - **O**MRR
 - **O**MAP
 - **ONDCG**

DESARROLLO DEL PROYECTO

PATRÓN DE DISEÑO

O MVC

- OPermite abstraer cada parte de la aplicación y que, al realizar un cambio en alguna de ellas, no afecte a las demás.
- OTres partes:
 - OModelo: Se encarga del acceso y guardado de los datos en la base de datos.
 - Vista: Se encarga de la representación de los datos y de las interacciones del usuario.
 - OControlador: Se encarga de realizar la lógica de negocio.

VISTA

O Consultar, subir y borrar datasets y ejecuciones, visualizar métricas y gráficas.

- O HTML
- O CSS
- O JavaScript

VISTA - CSS

- O Librería Bulma
 - OLigera.
 - ODiseño moderno.
 - ONo utiliza jQuery.

VISTA - JAVASCRIPT

- React
 - OUtilización de un DOM virtual, aumentando la velocidad de renderizado.
 - O Desarrollada por Facebook.
 - Componentes con estado. Al cambiarlo, se renderiza ese componente.
 - OLigero: sólo 132 Kb. Angular más de 500 Kb.
 - O Añadir funcionalidad añadiendo librerías externas.
 - OTranspilar (Compilar a una versión más antigua de JavaScript).

CONTROLADOR

O Cálculo de métricas y comunicación de la vista con el modelo.

- JavaScript
 - ORazones:
 - ONo mantenimiento de dos servidores.
 - OInterés personal.

O Node.js

CONTROLADOR - NODE.JS

- O Basado en motor V8 de Chrome.
- O Asíncrono.
- Monohilo.

O Escasas librerías sobre sistemas de recomendación.

MODELO

O Acceso y guardado de datasets, ejecuciones y métricas.

- MongoDB
 - O Rapidez.
 - OBúsqueda por atributos.
 - Facilidad de integración con Node.js gracias a la librería Mongoose.

MODELO

- O Descripción de campos
 - OTipo.
 - Obligatorio.
 - OValores por defecto.

```
|const DatasetSchema = new Schema({
    name: {
        type: String,
        required: [true, 'Empty name']
    description: {
        type: String,
        required: [true, 'Empty description']
    train_file: {
        type: String,
        required: [true, 'Empty file']
    test_file: {
        type: String,
        required: [true, 'Empty file']
    timestamp: {
        type : Date,
        default: Date.now
1})_
```

PRUEBAS

PRUEBAS

- Pruebas unitarias
 - OCaja negra.
 - OCobertura de código: 94%.
- O Pruebas de integración
 - OPruebas para el API.
- O Pruebas de sistema
 - O Verificar que todos los requisitos funcionales se cumplen.

APLICACIÓN

MEJORAS

MEJORAS

- Mejoras en rendimiento
 - OGuardar las métricas en base de datos.
 - O Instanciar el objeto que calcula las métricas en la primera petición de una ejecución.
- Mejoras futuras
 - OSistema completo de recomendaciones.
 - Evaluaciones desde un fichero externo.
 - O Agregación de usuarios.

CONCLUSIONES

CONCLUSIONES

- O Este trabajo se desarrolló para dar una herramienta funcional a desarrolladores de sistemas de recomendación.
- Se ha aprendido sobre los tipos de sistemas, los algoritmos que usan estos sistemas para generar recomendaciones y, por supuesto, sobre su evaluación.
- O Se ha desarrollado todo el proyecto en JavaScript, un lenguaje que el autor no había utilizado nunca de forma exhaustiva.

PREGUNTAS

ÍNDICE

- Estado del arte
- O Estudio de las tecnologías utilizadas
- O Diseño
- O Desarrollo
- O Pruebas
- Conclusiones
- Aplicación

ESTADO DEL ARTE

- O Un sistema de recomendación es un conjunto de herramientas y software que proporcionan sugerencias que sean de utilidad para un usuario.
- O Se basan en algoritmos de predicción.

FLUJO

TIPOS DE SISTEMAS DE RECOMENDACIÓN

- O Sistemas basados en contenido: Recomiendan ítems asociados a los ítems que gustaron a un usuario en el pasado.
- O Sistemas de filtrado colaborativo: Recomiendan ítems en base a los gustos de otros usuarios similares.

EVALUACIÓN DE LOS SISTEMAS DE RECOMEDACIÓN

- Online: Es necesario la implicación de los usuarios.
- Offline:
 - Comparan ejecuciones (recomendaciones) contra los datos originales (datasets)
 - Métricas basadas en error
 - Métricas basadas en precisión

MÉTRICAS BASADAS EN ERROR

- Métodos estadísticos que se basan en el error.
- O Principal inconveniente: No hacen distinciones entre las posiciones de los ítems.
- O Métricas:
 - O MAE
 - RMSE

MÉTRICAS BASADAS EN PRECISIÓN

- Miden la cantidad de elementos recuperados relevantes y no relevantes.
- O Métricas:
 - O Precisión
 - Recall
 - O F
 - O MRR
 - O MAP
 - O NDCG
- Se suelen calcular hasta un límite (cutoff).

ESTUDIO DE LAS TECNOLOGÍAS UTILIZADAS

VISTA

- O HTML
- O CSS
- O JavaScript

REACT

- Desarrollada por Facebook.
- O Utilización de un DOM virtual, aumentando la velocidad de renderizado.
- Componentes con estado. Al cambiarlo, se renderiza ese componente.
- O Ligero: sólo 132 Kb. Angular más de 500 Kb.
- Añade funcionalidad añadiendo librerías externas.
- Transpilar (Compilar a una versión más antigua de JavaScript).

CONTROLADOR

- JavaScript
 - O Razones:
 - O No mantenimiento de dos servidores.
 - O Interés personal.
- O Node.js

NODE.JS

- O Basado en motor V8 de Chrome.
- O Asíncrono.
- Monohilo.
- O Escasas librerías sobre sistemas de recomendación.

MODELO

- O Base de datos NoSQL
 - O Rapidez.
- O MongoDB
 - O Facilidad de integración con Node.js gracias a la librería Mongoose.
 - O Búsqueda por atributos.

DISEÑO

REQUISITOS FUNCIONALES

- Almacenar, borrar, consultar y listar datasets.
- Almacenar, borrar, consultar, comparar y listar ejecuciones.
- O Cálculo métricas sobre las ejecuciones.

REQUISITOS NO FUNCIONALES

- O Diseño moderno y sencillo.
- Diseño intuitivo: El usuario debe poder navegar por la aplicación sin necesidad de la creación de un manual de usuario.
- Rapidez.

DESARROLLO

PATRÓN DE DISEÑO

O MVC

- O Permite abstraer cada parte de la aplicación y que, al realizar un cambio en alguna de ellas, no afecte a las demás.
- Tres partes:
 - O Modelo: Se encarga del acceso, recuperación y guardado de los datos en la base de datos.
 - O Vista: Se encarga de la representación de los datos y de las interacciones del usuario.
 - O Controlador: Se encarga de realizar la lógica de negocio.

MODELO

- Descripción de campos
 - O Tipo
 - Obligatorio
 - Valores por defecto

```
const DatasetSchema = new Schema({
    name: {
       type: String,
       required: [true, 'Empty name']
   description: {
       type: String,
       required: [true, 'Empty description']
   train_file: {
       type: String,
       required: [true, 'Empty file']
   test_file: {
       type: String,
       required: [true, 'Empty file']
   timestamp: {
       type : Date,
       default: Date.now
```

VISTA - CSS

- O Librería Bulma.
 - O Ligera.
 - O No utiliza jQuery.

VISTA - JAVASCRIPT

- O Cada pantalla es un componente distinto con toda la lógica de esa pantalla.
- O Google Charts.
 - O Gran variedad de gráficos.
 - O Sencilla de usar.
 - O Personalizable.
 - O Actualización en tiempo real.

CONTROLADOR

- Consideraciones generales:
 - O Devolución en formato JSON.
 - O Tratamiento de errores genérico.
- Endpoints para:
 - O Subida de datasets y ejecuciones.
 - O Consulta y listado de datasets y ejecuciones.
 - O Borrado de datasets y ejecuciones.
 - O Consulta de métricas.

MEJORAS DE RENDIMIENTO

- O Guardar las métricas en base de datos.
- O Instanciar el objeto que calcula las métricas una única vez por cada ejecución.

PRUEBAS

PRUEBAS UNITARIAS

- O Comprobar que un fragmento de código tiene el comportamiento esperado.
- O Caja negra.
- O Cobertura de código: 94%.

PRUEBAS DE INTEGRACIÓN

- O Verifican el correcto funcionamiento de varios componentes que actúan en conjunto.
- Pruebas para el API.

PRUEBAS DE SISTEMA

- O Pruebas que demuestran el funcionamiento de la aplicación de forma general.
- Verificar que todos los requisitos funcionales se cumplen.

CONCLUSIONES

CONCLUSIONES

- O Este trabajo se desarrolló para dar una herramienta funcional a desarrolladores de sistemas de recomendación.
- Se ha aprendido sobre los tipos de sistemas, los algoritmos que usan estos sistemas para generar recomendaciones y, por supuesto, sobre su evaluación.
- Se ha desarrollado todo el proyecto en JavaScript, un lenguaje que el autor no había utilizado nunca de forma exhaustiva.

APLICACIÓN

PANTALLA PRINCIPAL

PANTALLA PRINCIPAL

BÚSQUEDA DE DATASETS

LISTADO DE DATASETS

LISTADO DE EJECUCIONES DE UN DATASET

VISTA DE UNA EJECUCIÓN

VISTA DE UNA EJECUCIÓN

COMPARACIÓN DE EJECUCIONES

COMPARACIÓN DE EJECUCIONES

BOTÓN PRINCIPAL

PREGUNTAS