Shape Analysis and Classification

Luciano da Fontoura Costa

Roberto M. Cesar-Jr

http://www.vision.ime.usp.br/~cesar/shape/

Shape Analysis and Classification

SHAPE ACQUISITION AND PROCESSING

Introduction

- Image acquisition
- Image formation
- Image processing
 - Enhancement
 - Noise filtering
 - Edge detection
 - Image segmentation

Image formation

Original Image

Sampling

Image formation

255	255	255	255	255	255	255	255
255	82	26	40	49	50	98	255
255	26	0	31	40	42	76	255
255	40	31	56	59	77	106	255
255	49	40	59	68	103	125	255
255	50	42	77	103	124	146	255
255	98	76	106	125	146	177	255
255	255	255	255	255	255	255	255

Sampled image

Quantization

Pixels

Image formation

$$g = \begin{bmatrix} 255 & 255 & 255 & 255 & 255 & 255 & 255 \\ 255 & 82 & 26 & 40 & 49 & 50 & 98 & 255 \\ 255 & 26 & 0 & 31 & 40 & 42 & 76 & 255 \\ 255 & 40 & 31 & 56 & 59 & 77 & 106 & 255 \\ 255 & 49 & 40 & 59 & 68 & 103 & 125 & 255 \\ 255 & 50 & 42 & 77 & 103 & 124 & 146 & 255 \\ 255 & 98 & 76 & 106 & 125 & 146 & 177 & 255 \\ 255 & 255 & 255 & 255 & 255 & 255 & 255 \end{bmatrix}$$

Digital image representation as an array

Image pyramid

Image segmentation

Image segmentation

1: Pixel value conventions.

Gray level images	Binary images
0 (dark)	0 = white = background
255 (bright)	1 = black = foreground

Shape sampling

quantization scheme (SBQ).

Shape sampling

1: The grid intersect quantization scheme (GIQ).

Shape sampling

The object boundary quantization scheme (OBQ) of a thick shape (a) and the whole quantized shape after region-filling (b).

Discrete geometry concepts

- Pixel neighborhood
- 4-neighborhood and 8-neighborhood
- Connected path
- Connected component
- Labeling algorithm

Discrete geometry concepts

(f)

(e)

Color images

Gray scale images

Gray-Level

Video sequences

Video sequences

Many other image types...

- Multispectral images
- Voxels
- Range
- 3D: geometry and texture
- 3D sequences
- Log-polar (foveal)
- ...

Image processing

SYMPLE TYPICAL PIPELINE FOR SHAPE ANALYSIS

Image processing

Simple image processing operation: adding a constant

Histogram equalization

$$f(n) = (N-1)\sum_{k=0}^{n} h(k)$$

Algorithm: Histogram Equalization

```
h = \text{histogram2}(g, N);

For n = 0 to N-1 do

f(n) = \text{round}(\text{sum}(h, n) * (N-1));

For each pixel g(p, q) do

i(p, q) = f(g(p, q));
```


Histogram equalization

Local processing

- Pixel neighborhood
- Local properties
- Scale
- Image processing:
 - Filtering
 - Feature detection
 - Edge detection

Local processing

Local processing

IMAGE

IMAGE IMAGE IMAGE

- Smoothing
- 3 X 3 window
- Weights
- Window origin
- Window size: scale
- Problems with border pixels

- Particular case: linear filtering
- Convolution:

$$f(p,q) = \frac{1}{MN} \sum_{m} \sum_{n} h(m,n)g(p-m,q-n)$$

 Many different filters may be implemented as convolutions

• Let g(t) and h(t) be two real or complex functions. The *convolution* is defined as:

$$q(\tau) = g(\tau) * h(\tau) = (g * h)(\tau) = \int_{-\infty}^{\infty} g(t)h(\tau - t)dt$$

• Example:

$$g(t) = \begin{cases} 1.5 & if -1 < t \le 0 \\ 0 & otherwise \end{cases}$$

$$h(t) = \begin{cases} 2 & if \ 0 < t \le 2 \\ 0 & otherwise \end{cases}$$

• Example:

• Example:

• Let g(t) and h(t) be two real or complex functions. The *correlation* is defined as:

$$q(\tau) = g(\tau) \circ h(\tau) = (g \circ h)(\tau) = \int_{-\infty}^{\infty} g^{i}(t)h(\tau+t)dt$$

• Let *g*(*t*) and *h*(*t*) be two real or complex functions defined on [*a*,*b*]. The *inner product* is defined as:

$$\langle g, h \rangle = \int_{a}^{b} g^{i}(t)h(t)dt$$

Similarity between vectors: pattern matching

2D cases

Convolution

$$(g*h)(\alpha,\beta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y)h(\alpha-x,\beta-y)dxdy$$

Correlation

$$(g \circ h)(\alpha, \beta) = \int_{-\infty-\infty}^{\infty} \int_{-\infty}^{\infty} g^{i}(x, y)h(x + \alpha, y + \beta)dxdy$$

Discrete cases: example

Discrete cases: example

$$g(p,q) = \exp\left(-\frac{\left(p^2+q^2\right)}{2a^2}\right)$$

• The Fourier series of a periodic function g(t), with period 2L:

$$g(t) = a_0 + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi t}{L}\right) + b_n \sin\left(\frac{n\pi t}{L}\right) \right]$$

$$a_0 = \frac{1}{2L} \int_{-L}^{L} g(t) dt$$

$$a_n = \frac{1}{L} \int_{-L}^{L} g(t) \cos\left(\frac{n\pi t}{L}\right) dt$$

$$b_n = \frac{1}{L} \int_{-L}^{L} g(t) \sin\left(\frac{n\pi t}{L}\right) dt$$

• g(t) is represented as a weighted sum of sines and cosines (ie linear combination), with frequencies defined as:

$$\frac{n\pi t}{L} = 2\pi ft \Leftrightarrow f = \frac{n}{2L}$$

$$g(t) = \begin{cases} 1 & if -a \le t < a \\ 0 & otherwise \end{cases}$$

Original (non-periodic)

Periodic version

$$a_0 = \frac{1}{2L} \int_{-L}^{L} h(t)dt = \frac{1}{4a} \int_{-2a}^{2a} h(t)dt = \frac{1}{4a} \int_{-a}^{a} 1 dt = \frac{1}{2}$$

$$a_{n} = \frac{1}{L} \int_{-L}^{L} h(t) \cos\left(\frac{n\pi t}{L}\right) dt = \frac{1}{2a} \int_{-2a}^{2a} h(t) \cos\left(\frac{n\pi t}{2a}\right) dt = \frac{1}{2a} \int_{-a}^{a} \cos\left(\frac{n\pi t}{2a}\right) dt = \frac{1}{2a} \int_{-a}^{a} \cos\left(\frac{n\pi t}{2a}\right) dt = \frac{1}{2a} \left[\frac{2a}{n\pi} \sin\left(\frac{n\pi t}{2a}\right)\right]_{-a}^{a} = \frac{1}{n\pi} \left[\sin\left(\frac{n\pi}{2}\right) - \sin\left(-\frac{n\pi}{2}\right)\right] = \frac{1}{2a} \left[\sin\left(\frac{n\pi t}{2a}\right) + \sin\left(\frac{n\pi t}{2a}\right)\right] = \frac{2}{n\pi} \sin\left(\frac{n\pi t}{2a}\right) = \operatorname{sinc}\left(\frac{n\pi t}{2a}\right)$$

$$b_{n} = \frac{1}{L} \int_{-L}^{L} h(t) \sin\left(\frac{n\pi t}{L}\right) dt = \frac{1}{2a} \int_{-2a}^{2a} h(t) \sin\left(\frac{n\pi t}{2a}\right) dt = \frac{1}{2a} \int_{-a}^{a} \sin\left(\frac{n\pi t}{2a}\right) dt = \frac{1}{2a} \left[\frac{2a}{n\pi} \cos\left(\frac{n\pi t}{2a}\right)\right]_{-a}^{a} = \frac{1}{n\pi} \left[\cos\left(\frac{n\pi}{2}\right) - \cos\left(\frac{n\pi}{2}\right)\right] = \frac{1}{2a} \left[\cos\left(\frac{n\pi}{2}\right) - \cos\left(\frac{n\pi}{2}\right)\right] = 0$$

$$g(t) = \begin{cases} 1 & if -a \le t < a \\ 0 & otherwise \end{cases}$$

$$h(t) = \frac{1}{2} + \sum_{n=1}^{\infty} \left[\operatorname{sinc}\left(\frac{n}{2}\right) \cos\left(\frac{n\pi t}{2a}\right) \right]$$

Euler formula:
$$\exp\{j\theta\} = \cos(\theta) + j\sin(\theta)$$

$$g(t) = \sum_{n=-\infty}^{\infty} \left[c_n \exp\left\{\frac{jn \pi t}{L}\right\} \right]$$

$$c_n = \frac{1}{2L} \int_{-L}^{L} g(t) \exp\left\{-\frac{jn \pi t}{L}\right\} dt$$

Continuous Fourier transform:

$$G(f) = \Im\{g(t)\} = \int_{-\infty}^{\infty} g(t) \exp\{-j2\pi ft\} dt$$

Inverse Fourier transform:

$$g(t) = \mathfrak{I}^{-1} \left\{ G(f) \right\} = \int_{-\infty}^{\infty} G(f) \exp \left\{ j2\pi ft \right\} df$$

2D Continuous Fourier transform:

$$G(u,v) = \Im\{g(x,y)\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) \exp\{-j2\pi(ux+vy)\} dxdy$$

2D Inverse Fourier transform:

$$g(x,y) = \mathfrak{I}^{-1}[G(u,v)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G(u,v) \exp\{j2\pi(ux+vy)\} dudv$$

Fourier pair

$$g(x,y) \leftrightarrow G(u,v)$$

2D Fourier transform properties

Property	Description
Separability (DFT)	The discrete Fourier transform can be computed in terms of 1D Fourier transforms of the image rows followed by 1D transforms of the columns (or vice-versa).
Spatial Translation (Shifting)	$g(x-x_0, y-y_0) \leftrightarrow \exp[-j2\pi (ux_0+vy_0)]G(u, v)$
Frequency Translation (Shifting)	$\exp[j2\pi (xu_0 + yv_0)]g(x, y) \leftrightarrow G(u - u_0, v - v_0)$
Conjugate Symmetry	If $g(x, y)$ is real, then $G(u, v) = G^*(\neg u, \neg v)$
Rotation by θ	$g^{(x\cos\theta + y\sin\theta, -x\sin\theta + y\cos\theta)} \leftrightarrow$ $\leftrightarrow G^{(u\cos\theta + v\sin\theta, -u\sin\theta + v\cos\theta)}$
Linearity – Sum	$g_1(x, y) + g_2(x, y) \leftrightarrow G_1(u, v) + G_2(u, v)$

Linearity – Multiplication by Scalars	$ag^{(x,y)} \leftrightarrow aG^{(u,v)}$
Scaling	$g^{(ax,by)} \leftrightarrow \frac{1}{ ab } \left(\frac{u}{a}, \frac{v}{b} \right)$
Average Value	The image average value is directly proportional to $G(0,0)$ (the so called DC component).
Convolution Theorem	$g^{(x, y)*} h^{(x, y)} \leftrightarrow G(u, v) H(u, v)$ and $g^{(x, y)} h^{(x, y)} \leftrightarrow G(u, v) * H(u, v)$
Correlation Theorem	$g^{(x, y)} \circ h^{(x, y)} \leftrightarrow G^{*}(u, v)H(u, v)$ and $g^{*(x, y)}h^{(x, y)} \leftrightarrow G(u, v) \circ H(u, v)$
Differentiation	$\left(\frac{\partial}{\partial x}\right)^{n} \left(\frac{\partial}{\partial y}\right)^{n} g^{(x, y)} \leftrightarrow (j2\pi u)^{n} m^{(j2\pi v)} {}^{n} G^{(u, v)}$

2D Discrete Fourier transform:

$$G_{r,s} = \Im \left\{ g_{p,q} \right\} = \frac{1}{MN} \sum_{p=0}^{M-1} \sum_{q=0}^{N-1} g_{p,q} \exp \left\{ -j2\pi \left(\frac{pr}{M} + \frac{qs}{N} \right) \right\}$$

2D Discrete Inverse Fourier transform:

$$g_{p,q} = \mathfrak{I}^{-1} \left\{ G_{r,s} \right\} = \sum_{r=0}^{M-1} \sum_{s=0}^{N-1} G_{r,s} \exp \left\{ j2\pi \left(\frac{pr}{M} + \frac{qs}{N} \right) \right\}$$

2D Discrete Fourier transform:

Algorithm: Frequency Filtering

```
1.Choose G(r,s);
2.Calculate the Fourier transform F(r,s);
3.H(r,s) = F(r,s) G(r,s);
4.Calculate the inverse Fourier Transform h(p,q);
```


Example: Box filter

$$G_{r,s} = \begin{cases} 1, & \text{if } (r^2 + s^2) \le T \\ 0, & \text{if } (r^2 + s^2) > T \end{cases}$$

Example: Gaussian filter

$$G_{r,s} = \exp\left(-\frac{\left(r^2 + s^2\right)}{2\sigma^2}\right)$$

Image Segmentation

Image Segmentation

- Image thresholding
- Region Growing
- Optimization methods
- Snakes and active models

•

Solution: numerical differentiation!

$$\vec{\nabla} g(x_0, y_0) = \left(\frac{\partial g}{\partial x} (x_0, y_0), \frac{\partial g}{\partial y} (x_0, y_0) \right)$$

$$|\vec{\nabla} g| = \sqrt{\left(\frac{\partial g}{\partial x}\right)^2 + \left(\frac{\partial g}{\partial y}\right)^2}$$

Example: finite differences

Algorithm: Simple Edge Detection

```
hx = \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}T
sk = \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix};
sg = linfilt(g, sk);
gx = linfilt(g, hx);
gy = linfilt(g, hy);
```

There are many other different convolution-based edge detectors.

$$\Delta x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

The Sobel masks are defined as

$$\Delta y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

Fourier-Based Edge Detection

$$\left(\frac{\partial}{\partial x}\right)\left(\frac{\partial}{\partial y}\right)g(x,y)\leftrightarrow (j2\pi u)(j2\pi v)G(u,v)$$

Fourier-based

Sobel

Second-order derivative: Laplacian

$$\nabla^2 g = \vec{\nabla} \cdot \vec{\nabla} g = \frac{\partial^2 g}{\partial x^2} (x, y) + \frac{\partial^2 g}{\partial y^2} (x, y)$$

Marr-Hildreth transform: Laplacian of Gaussian - LoG

$$\frac{d}{dt}(g*u) = \left(\frac{d}{dt}g\right)*u = g*\frac{d}{dt}u$$

Marr-Hildreth transform: Laplacian of Gaussian - LoG

$$\nabla^2 g = \left(1 - \frac{x^2 + y^2}{\sigma^2}\right) \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

