

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. – 22. (Canceled)

23. (Previously presented). A compound of the following formula I, or a pharmaceutically acceptable salt thereof:

(I)

wherein:

R¹ and R² are each independently selected from the group consisting of H, F, Cl, Br, I, NO₂, CF₃, CN, OCF₃, OH, C₁-C₄alkoxy-, C₁-C₄alkylcarbonyl-, C₁-C₆ alkyl, hydroxy C₁-C₄ alkyl-, C₃-C₆ alkenyl, C₃-C₆ alkynyl, C₃-C₁₀ cycloalkyl(C₀-C₄alkyl)-, H₂N(C₀-C₄)alkyl-, R⁶HN(C₀-C₄)alkyl-, R⁶R⁷N(C₀-C₄)alkyl-, R⁷S(C₀-C₄)alkyl-, R⁷S(O)(C₀-C₄)alkyl-, R⁷SO₂(C₀-C₄)alkyl-, R⁶NSO₂(C₀-C₄)alkyl-, HSO₃, HO₂C(C₀-C₄)alkyl-, R⁶O₂C(C₀-C₄)alkyl-, and R⁶R⁷NCO(C₀-C₄)alkyl-, or R¹ and R², when on adjacent carbon atoms, and when taken together are methylenedioxy or ethylenedioxy;

R⁵ is independently selected from H, F, Cl, Br, I, NO₂, CN, CF₃, OCF₃, OH, C₁-C₄alkoxy-, hydroxyC₁-C₄ alkyl-, C₁-C₄ alkylcarbonyl-, CO₂H, CO₂R⁶, CONR⁶R⁷, NHR⁶, and NR⁶R⁷;

R⁶ is selected from H, C₁-C₈ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, C₃-C₁₀ cycloalkyl(C₀-C₄ alkyl)-, aryl(C₀-C₄ alkyl)-, and heterocyclic (C₀-C₄ alkyl)-,

wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from C₁-C₄ alkyl, C₁-C₄ alkoxy, hydroxy C₀-C₄ alkyl, oxo, F, Cl, Br, CF₃, NO₂, CN, OCF₃, NH₂, NHR⁷, NR⁷R⁸, SR⁷, S(O)R⁷, SO₂R⁷, SO₂NR⁷R⁸, CO₂H, CO₂R⁷, and CONR⁷R⁸;

R⁷ and R⁸ are each independently selected from H, C₁-C₈ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, C₃-C₁₀ cycloalkyl(C₀-C₄ alkyl)-, C₁-C₆ alkylcarbonyl, C₃-C₇ cycloalkyl(C₀-C₅ alkyl)carbonyl, C₁-C₆ alkoxy carbonyl, C₃-C₇ cycloalkyl(C₀-C₅ alkoxy)carbonyl, aryl(C₁-C₅ alkoxy)carbonyl, arylsulfonyl, aryl(C₀-C₄ alkyl)-, heterocyclic(C₁-C₅ alkoxy)carbonyl, heterocyclic sulfonyl and heterocyclic (C₀-C₄ alkyl)-, wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from the group consisting of C₁-C₄ alkyl, C₁-C₄ alkoxy, F, Cl, Br, CF₃, CN, and NO₂;

or R⁶ and R⁷, or R⁶ and R⁸, or R⁷ and R⁸, when both substituents are on the same nitrogen atom, do or do not form, with the nitrogen atom to which they are attached, a heterocycle selected from 1-aziridinyl, 1-azetidinyl, 1-piperidinyl, 1-morpholinyl, 1-pyrrolidinyl, thiamorpholinyl, thiazolidinyl, and 1-piperazinyl, said heterocycle is unsubstituted or substituted with 0-3 groups selected from oxo, C₁-C₆ alkyl, C₃-C₇ cycloalkyl(C₀-C₄ alkyl)-, C₁-C₆ alkylcarbonyl, C₃-C₇ cycloalkyl(C₀-C₅ alkyl)carbonyl, C₁-C₆ alkoxy carbonyl, C₃-C₇ cycloalkyl(C₀-C₅ alkoxy)carbonyl, aryl(C₀-C₅ alkyl), heterocyclic(C₀-C₅ alkyl), aryl(C₁-C₅ alkoxy)carbonyl, heterocyclic(C₁-C₅ alkoxy)carbonyl, C₁-C₆ alkylsulfonyl, arylsulfonyl, and heterocyclicsulfonyl,

wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from C₁-C₄ alkyl, C₁-C₄ alkoxy, F, Cl, Br, CF₃, CN, and NO₂;

K is selected from -C(=O)- and -CHR⁹-;

L is selected from -C(=O), -CHR⁹-, -CR¹⁰R¹¹-, -CR¹⁰R¹¹-(C=O), -HR¹⁵C-CHR¹⁶-, and -R¹⁵C=CR¹⁶;

R⁹ is selected from H, C₁-C₈ alkyl, C₃-C₆ alkenyl, C₃-C₁₀ cycloalkyl(C₀-C₄ alkyl)-, aryl(C₀-C₄ alkyl)-, and heterocyclic(C₀-C₄ alkyl)-,

wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from C₁-C₄ alkyl, C₁-C₄ alkoxy, F, Cl, Br, CF₃, and NO₂;

R^{10} is selected from H, F, Cl, Br, C_1 - C_6 alkoxy, C_1 - C_8 alkyl, C_3 - C_6 alkenyl, C_3 - C_{10} cycloalkyl(C_0 - C_4 alkyl)-, aryl(C_0 - C_4 alkyl)-, and heterocyclic(C_0 - C_4 alkyl)-, wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from C_1 - C_4 alkyl, C_1 - C_4 alkoxy, F, Cl, Br, CF_3 , CN, and NO_2 ;

R^{11} is selected from H, F, Cl, Br, OMe, C_1 - C_8 alkyl, C_3 - C_6 alkenyl, C_3 - C_{10} cycloalkyl(C_0 - C_4 alkyl)-, aryl(C_0 - C_4 alkyl)-, and heterocyclic(C_0 - C_4 alkyl)-, wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from C_1 - C_4 alkyl, C_1 - C_4 alkoxy, F, Cl, Br, CF_3 , CN, and NO_2 ;

or R^{10} and R^{11} , when on the same carbon atom, do or do not form, with the carbon atoms to which they are attached, a 3-7 membered carbocyclic or 3-7 membered heterocyclic non-aromatic ring system, said carbocyclic or heterocyclic ring is unsubstituted or substituted with 0-2 substituents independently selected from C_1 - C_4 alkyl, C_1 - C_4 alkoxy, hydroxy C_0 - C_4 alkyl, oxo, F, Cl, Br, CF_3 , and NO_2 ;

R^{12} is selected from H, C_3 - C_6 alkenyl, C_3 - C_{10} cycloalkyl(C_0 - C_4 alkyl)-, monocyclic or bicyclic 5-10 membered heterocyclic(C_0 - C_4 alkyl)-, and $-CZ^1Z^2Z^3$, provided $-CZ^1Z^2Z^3$ is not C_1 - C_4 alkyl,

wherein said aryl or heterocyclic groups are substituted with 0-3 substituents independently selected from R^{14} ;

Z^1 is selected from C_1 - C_8 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 hydroxyalkyl, C_1 - C_4 alkoxy C_1 - C_4 alkyl, aryl(C_0 - C_4 alkyl)-, and 4-10 membered heterocyclic (C_0 - C_4 alkyl)-,

wherein said aryl or heterocyclic groups are substituted with 0-3 substituents independently selected from R^{14} ;

Z^2 is selected from C_1 - C_8 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 hydroxyalkyl, C_1 - C_4 alkoxy C_1 - C_4 alkyl, C_1 - C_6 NR¹⁷R¹⁸, aryl(C_0 - C_4 alkyl)-, and 4-10 membered heterocyclic (C_0 - C_4 alkyl)-,

wherein said aryl or heterocyclic groups are substituted with 0-3 substituents independently selected from R¹⁴;

Z³ is selected from C₁-C₈ alkyl, R¹⁴(C₂-C₄ alkyl)-, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ hydroxyalkyl, C₁-C₄ alkoxy C₁-C₄ alkyl, aryl(C₀-C₄ alkyl)-, 4-10 membered heterocyclic (C₀-C₄ alkyl)-, R¹⁷O=C(C₀-C₄ alkyl)-, R¹⁷OO=C(C₀-C₄ alkyl)-, and R¹⁷R¹⁸ NO=C(C₀-C₄ alkyl)-,

wherein said aryl or heterocyclic groups are substituted with 0-3 substituents independently selected from R¹⁴;

or Z¹ and Z², when on the same carbon atom, may form, with the carbon atoms to which they are attached, a 3-7 membered carbocyclic or 3-7 membered heterocyclic non-aromatic ring system, said carbocyclic or heterocyclic ring may be substituted with 0-2 substituents independently selected from R¹⁴[.];

R¹³ is selected from H, C₁-C₈ alkyl, C₃-C₆ alkenyl, C₃-C₁₀ cycloalkyl(C₀-C₄ alkyl)-, C₁-C₆ alkylcarbonyl, C₁-C₆ alkylsulfonyl, C₃-C₇ cycloalkyl(C₀-C₅ alkyl)carbonyl, C₁-C₆ alkoxy carbonyl, C₃-C₇ cycloalkyl(C₀-C₅ alkoxy)carbonyl, aryl(C₀-C₄ alkyl)-, aryl(C₁-C₅ alkoxy)carbonyl, arylsulfonyl, heterocyclic(C₀-C₄ alkyl), heterocyclic(C₁-C₅ alkoxy)carbonyl, and heterocyclesulfonyl,

wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from C₁-C₄ alkyl, C₁-C₄ alkoxy, F, Cl, Br, CF₃, CN, and NO₂;

R¹⁴ is selected from H, C₁-C₁₀ alkyl, NO₂, CF₃, CN, F, Cl, Br, C₁-C₁₀ alkylcarbonyl, haloalkyl, haloalkoxy, OH, NR⁶R⁷(C₀-C₄ alkyl)-, R⁶C(=O)O(C₀-C₄ alkyl)-, R⁶OC(=O)O(C₀-C₄ alkyl)-, R⁶O(C₀-C₄ alkyl), R⁶R⁷NC(=O)O(C₀-C₄ alkyl)-, R⁶R⁷NC(=O)(C₀-C₄ alkyl)-, R⁶O(CR¹⁰R¹¹)₂₋₆R⁶NC(=O)(C₀-C₄ alkyl)-, R⁶R⁷N(CR¹⁰R¹¹)₂₋₆R⁶NC(=O)(C₀-C₄ alkyl)-, R⁶O₂C(CH₂)₁₋₄O(C₀-C₄ alkyl)-, R⁶OOC(C₁-C₄ alkoxy)-, R⁶OOC(C₀-C₄ alkyl)-, R⁶C(=O)(C₀-C₄ alkyl)-, R⁶C(=O)NR⁷(C₀-C₄ alkyl)-, R⁶OC(=O)NR⁷(C₀-C₄ alkyl)-, R⁶OC(=NCN)NR⁷(C₀-C₄ alkyl)-, R⁶R⁷NC(=O)NR⁸(C₀-C₄ alkyl)-, R⁶OC(=NC)NR⁷(C₀-C₄ alkyl)-, R⁶(CR¹⁰R¹¹)₁₋₄NR⁷C=O-, R⁶O(CR¹⁰R¹¹)₁₋₄O=CR⁷N-, NR⁶R⁷(CR¹⁰R¹¹)₁₋₄C=O R⁷N-, R⁶O(CR¹⁰R¹¹)₂₋₄R⁷N-, R⁶O₂C(CR¹⁰R¹¹)₁₋₄R⁷N, R⁶R⁷N(CR¹⁰R¹¹)₂₋₄R⁷N-, R⁶R⁷NC(=NCN)NR⁷(C₀-C₄ alkyl)-, R⁶R⁷NC(=C(H)(NO₂))NR⁷(C₀-C₄ alkyl)-, R⁷R⁸N C(=NR⁷)NR⁷(C₀-C₄ alkyl)-, R⁶R⁷N SO₂NR⁸(C₀-C₄ alkyl)-, R⁶SO₂NR⁷(C₀-C₄

alkyl)-, $R^6R^7N(C_1-C_4)CO$ - , $R^6R^7N(C_2-C_6)$ alkyl)O-, $R^6CO(CR^{10}R^{11})_{0-2}$ $R^7N(O_2)S(C_0-C_4)$ alkyl), $R^6(O_2)S R^7 NC(=O) (C_0-C_4)$ alkyl)-, $R^6S(C_0-C_4)$ alkyl)-, $R^6S(=O) (C_0-C_4)$ alkyl)-, $R^6SO_2(C_0-C_4)$ alkyl)-, $SO_2NR^6R^7$, $SiMe_3$, $R^6R^7N(C_2-C_4)$ alkyl)-, $R^6R^7N(C_2-C_4)$ alkoxy)-, HSO_3 , $HONH$ -, R^6ONH -, $R^8R^7NNR^6$ -, $HO(COR^6)N$ -, $HO(R^6O_2C)N$, C_2-C_6 alkenyl, C_3-C_{10} cycloalkyl, C_3-C_{10} cycloalkylmethyl, aryl(C_0-C_4 alkyl)-, heteroaryl(C_0-C_4 alkyl)-, aryl(C_0-C_4 alkyl)O-, and heteroaryl(C_0-C_4 alkyl)O-,

wherein said aryl groups are substituted with 0-2 substituents independently selected from C_1-C_4 alkyl, C_1-C_4 alkoxy, F, Cl, Br, CF_3 , and NO_2 ;

R^{15} is selected from H, halo, cyano, C_1-C_8 alkyl, C_3-C_6 alkenyl, and C_3-C_{10} cycloalkyl(C_0-C_4 alkyl)-, aryl(C_0-C_4 alkyl)-, and heterocyclic(C_0-C_4 alkyl)-,

wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from R^{14} ; and

R^{16} is selected from H, halo, cyano, C_1-C_8 alkyl, C_3-C_6 alkenyl, C_3-C_{10} cycloalkyl(C_0-C_4 alkyl)-, aryl(C_0-C_4 alkyl)-, and heterocyclic(C_0-C_4 alkyl)-,

wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from R^{14} ;

or when R^{15} and R^{16} are on adjacent carbon atoms, or when R^{15} and R^{16} are oriented on the same side of the double bond, as depicted in the following structure (III)

(III),

R^{15} and R^{16} do or do not form, with the carbon atoms to which they are attached, a 3-7 membered carbocyclic aromatic or nonaromatic ring system, or a 3-7 membered heterocyclic aromatic or nonaromatic ring system, said carbocyclic or heterocyclic ring is unsubstituted or substituted with 0-2 substituents independently selected from C_1-C_4 alkyl, C_1-C_4 alkoxy, F, Cl, Br, CF_3 , and NO_2 ;

R^{17} is selected from H, C_1-C_8 alkyl, C_3-C_6 alkenyl, C_3-C_{10} cycloalkyl(C_0-C_4 alkyl)-, C_1-C_6 alkylcarbonyl, C_1-C_6 alkylsulfonyl, C_3-C_7 cycloalkyl(C_0-C_5 alkyl)carbonyl, C_1-C_6 alkoxy carbonyl, C_3-C_7 cycloalkyl(C_0-C_5 alkoxy)carbonyl, hydroxy(C_2-C_4)alkyl-, C_1-C_3 alkoxy(C_2-C_4)alkyl-, (C_0-C_4 alkyl) (C_0-C_4 alkyl) amino(C_2-C_4)alkyl-, aryl(C_0-C_4 alkyl)-, aryl(C_1-C_5 alkoxy)carbonyl ,

arylsulfonyl, heterocyclic(C₀-C₄ alkyl), heterocyclic(C₁-C₅ alkoxy)carbonyl, and heterocyclicsulfonyl,

wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ alkoxy C₁-C₄ alkyl, oxo, F, Cl, Br, CF₃, CN, and NO₂; and

R¹⁸ is selected from H, C₁-C₈ alkyl, C₃-C₆ alkenyl, C₃-C₁₀ cycloalkyl(C₀-C₄ alkyl)-, aryl(C₀-C₄ alkyl)-, and heterocyclic(C₀-C₄ alkyl),

wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from C₁-C₄ alkyl, C₁-C₄ alkoxy, F, Cl, Br, CF₃, CN, and NO₂;

or R¹⁷ and R¹⁸, when both are on the same nitrogen atom, may form, with the nitrogen atom to which they are attached, a heterocycle selected from 1-aziridinyl, 1-azetidinyl, 1-piperidinyl, 1-morpholinyl, 1-pyrrolidinyl, thiamorpholinyl, thiazolidinyl, and 1-piperazinyl,

said heterocycle may be substituted with 0-3 groups selected from oxo, C₁-C₆ alkyl, C₃-C₇ cycloalkyl(C₀-C₄ alkyl)-, C₁-C₆ alkylcarbonyl, (C₁-C₆ alkylcarbonyl)(C₀-C₄ alkyl)amino-, C₃-C₇ cycloalkyl(C₀-C₅ alkyl)carbonyl, C₁-C₆ alkoxy carbonyl, C₃-C₇ cycloalkyl(C₀-C₅ alkoxy)carbonyl, aryl(C₀-C₅ alkyl), heterocyclic(C₀-C₅ alkyl), aryl(C₁-C₅ alkoxy)carbonyl, heterocyclic(C₁-C₅ alkoxy)carbonyl, C₁-C₆ alkylsulfonyl arylsulfonyl and heterocyclicsulfonyl,

wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from CH₃- , alkoxy, F, Cl, Br, CF₃, CN, and NO₂.

24. (Previously presented). A compound or pharmaceutically acceptable salt thereof of Claim 23 having the formula,

wherein

R¹ and R² are each independently selected from the group consisting of H, F, Cl, Br, I, NO₂, CF₃, CN, OCF₃, OH, C₁-C₄ alkoxy-, and C₁-C₄ alkyl-;

R^5 is selected from the group consisting of H, F, Cl, Br, I, NO₂, CN, CF₃, OCF₃, OH, C₁-C₄alkoxy, and CO₂H; and

R^7 is selected from hydrogen and C₁-C₈ alkyl.

25. (Previously presented). The compound or a pharmaceutically acceptable salt thereof of Claim 24 wherein

R^5 is H;

R^1 is selected from the group consisting of OCF₃ and C₁-C₄alkoxy;

R^2 is H; and

R^{13} is hydrogen.

26. (Previously presented). The compound or a pharmaceutically acceptable salt thereof of Claim 25 wherein:

K is C(=O); and

L is C(=O).

27. (Previously presented). The compound or a pharmaceutically acceptable salt thereof of Claim 26 having the formula,

wherein R^{12} is $-CZ^1Z^2Z^3$.

28. (Previously presented). The compound or a pharmaceutically acceptable salt thereof of Claim 27 wherein:

R^7 is hydrogen; and

R^1 is methoxy.

29. (Previously presented). The compound or a pharmaceutically acceptable salt thereof of Claim 28 wherein Z^1 and Z^2 are independently selected from C₁-C₈ alkyl.

30. (Previously presented). The compound or a pharmaceutically acceptable salt thereof of Claim 25 wherein:

K is C(=O) and

L is CHR⁹.

31. (Previously presented). A compound or a pharmaceutically acceptable salt thereof of Claim 25 wherein:

K is CHR⁹ and

L is C(=O).

32. (Previously presented). A compound or a pharmaceutically acceptable salt thereof of Claim 25 wherein:

K is C(=O) and

L is -CR¹⁰R¹¹-(C=O).

33. (Previously presented). A compound or pharmaceutically acceptable salt thereof, wherein said compound is selected from:

N-[3-Methoxy-4-(5-oxazolyl)phenyl]-N'-(phenylmethyl)ethanediamide;

N-[1,1-Bis(hydroxymethyl)propyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;

N-(2-Hydroxy-1,1-dimethylethyl)-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;

N-[[[3-Methoxy-4-(5-oxazolyl)phenyl]amino]oxoacetyl]-2-methylalanine 1,1-dimethylethyl ester;

N-(2-Hydroxy-1,1-dimethylpentyl)-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;

N-[2-[(2-Hydroxy-1,1-dimethylethyl)amino]-1,1-dimethylethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;

N-[2-(Dimethylamino)-1,1-dimethylethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;

N-(1,1-Diethyl-2-propynyl)-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;

N-[1-(Hydroxymethyl)cyclopentyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;

N-[2-(4-Fluorophenyl)-1,1-dimethylethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;

N-[[[3-Methoxy-4-(5-oxazolyl)phenyl]amino]oxoacetyl]-α -methyltyrosine methyl ester;

N-[[[3-Methoxy-4-(5-oxazolyl)phenyl]amino]oxoacetyl]-a-methyltryptophan methyl ester;

N-[1,1-Bis(hydroxymethyl)ethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]-N-methylethanediamide;

N-(1,1-Dimethyl-3-oxobutyl)-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;

N-[3-Methoxy-4-(5-oxazolyl)phenyl]-N'-(1-methyl-1-phenylethyl)ethanediamide;

N-(2-Hydroxy-1,2-dimethyl-1-phenylpropyl)-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;

N-[[[3-Methoxy-4-(5-oxazolyl)phenyl]amino]oxoacetyl]-2-methylalanine methyl ester;

-[[[[3-Methoxy-4-(5-oxazolyl)phenyl]amino]oxoacetyl]amino]cyclopropanecarboxylic acid methyl ester;

N-(1-Ethynylcyclohexyl)-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;

(R)-N-[1-(Hydroxymethyl)-1-methylpropyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]-N-methylethanediamide;

N-[[[3-Methoxy-4-(5-oxazolyl)phenyl]amino]oxoacetyl]-2-methylalanine;

N-[1,1-Dimethyl-2-oxo-2-(1-piperidinyl)ethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;

N-[1,1-Dimethyl-2-(4-methyl-1-piperazinyl)-2-oxoethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;

N-[1,1-Dimethyl-2-(4-morpholinyl)-2-oxoethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;

4-[2-[[[3-Methoxy-4-(5-oxazolyl)phenyl]amino]oxoacetyl]amino]-2-methyl-1-oxopropyl]-1-piperazinecarboxylic acid ethyl ester;

N-[2-[3-(Acetylmethylamino)-1-pyrrolidinyl]-1,1-dimethyl-2-oxoethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;

N-[1,1-Dimethyl-2-[methyl[2-(methylamino)ethyl]amino]-2-oxoethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;

N-[1,1-Dimethyl-2-(propylamino)ethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;

N-[1,1-Dimethyl-2-[[2-(methylamino)ethyl]amino]-2-oxoethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;

N-[1,1-Dimethyl-2-[[2-(4-morpholinyl)ethyl]amino]-2-oxoethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;

N-[1,1-Dimethyl-2-oxo-2-[[3-(2-oxo-1-pyrrolidinyl)propyl]amino]ethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;

N-[2-[(2-(1H-Imidazol-4-yl)ethyl]amino]-1,1-dimethyl-2-oxoethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;

N-[2-[(2-(Acetylamino)ethyl]amino]-1,1-dimethyl-2-oxoethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;

N-[2-[(2-(1H-Imidazol-1-yl)ethyl]amino]-1,1-dimethyl-2-oxoethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;

N-[1,1-Dimethyl-2-oxo-2-[[2-(4-pyridinyl)ethyl]amino]ethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;

N-[1,1-Dimethyl-2-oxo-2-[[tetrahydro-2-furanyl)methyl]amino]ethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;

N-[2-[(2-Methoxyethyl)amino]-1,1-dimethyl-2-oxoethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;

N-[2-(Dimethylamino)-1,1-dimethyl-2-oxoethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;

N-[2-[4-(2-Methoxyethyl)-1-piperazinyl]-1,1-dimethyl-2-oxoethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide; and

N-[1,1-Dimethyl-2-oxo-2-(2-pyridinylamino)ethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide.

34. (Previously presented). A pharmaceutical composition comprising a pharmaceutically acceptable carrier, adjuvant or vehicle and at least one compound of claim 23, or a pharmaceutically acceptable salt thereof, in an amount effective therefor.

35. – 39. (Canceled.)