Functional Data Regression

Madhur Bansal (210572)

2024 - 03 - 14

Simulating the data

We construct a random variable $X_{(t)}$ from $L^2_{[0,1]}$ space using the following:

$$X_{(t)} = (c_1 * e^t) + \sin(c_2 * 10t) + (c_3 * 2t)$$

where c_1 , c_2 , c_3 are random variables drawn from uniform(0,2). We generate (n = 100) samples of $X_{(t)}$ as our given data. Here is the plot of 5 samples from the generated data.

Generated Data (5 samples)

We simulate real Y using the following:

$$Y = m(X_{(t)}) + \epsilon$$

where $m(X_{(t)}) = \int_0^1 X_{(t)}^2 (sin(t) + cos(t)) dt$ and $\epsilon \sim N(0,1)$

Here are the real values of y_i for above $X_{(t)}^i$ in respective order:

[1] 8.204814 41.079967 33.139107 1.021508 26.661513 25.103260

Proposed Estimator (Based on Nadaraya-Watson Estimator)

I am using something similar to Nadaraya-Watson estimator for estimating m. The proposed estimator is as follows:

$$\hat{m}(X_{(t)}) = \frac{\sum_{i=1}^{n} K(||X - X_{(t)}^{i}||_{L_{2}}/h)y_{i}}{\sum_{i=1}^{n} K(||X - X_{(t)}^{i}||_{L_{2}}/h)}$$

where:

K(.) is a valid kernel. I have used standard Normal N(0,1)

h is the band-width

||.|| is the norm on $L_{2[0,1]}$ space

Choosing the Bandwidth (h)

In order to choose the appropriate band-width for the simulated sample data, I am using K-fold cross validation.

Here are the steps I followed:

- 1. I generate a grid of band-width containing 21 values $h = \{0.05, 0.075, ...0.55\}$
- 2. Then I perform K-fold cross validation (with K = 4), and calculate the sum of the MSE obtained from cross-validation, for every h in the grid.
- 3. Chose the h which gives the lowest sum of MSE from the K cross validation results.

sum of MSE vs Band-width

[1] "Chosen Band-width: 0.4"

Estimation for new data

Now, we generate 100 new $(X_{(t)}, y)$ in order to evaluate the performance of our estimator.

Here are some of the estimates made for the newly generated data:

```
##
          Real y Estimated y
                                    Error
## [1,] 25.039944
                   25.519573 -0.47962918
## [2,] 21.278169
                   20.465545 0.81262407
## [3,]
        1.686397
                     2.611027 -0.92463012
## [4,]
        8.952435
                    9.773870 -0.82143463
## [5,] 18.974028
                   18.906697 0.06733104
## [6,] 14.837879
                    14.011128 0.82675184
## [1] "MSE = 1.08949042918219"
## [1] "R2 = 0.989799998756462"
```

Conclusion

The implementation of the Nadaraya-Watson estimator for functional regression was successful, with the model achieving a Mean Squared Error (MSE) of 1.09 and an R-squared (R²) score of 0.98. These results show that the model performs very well in terms of accuracy and explains almost all of the variability in the data.