Maman 11

Eyal Shukrun

October 30, 2020

1 שאלה 1

(א 1.1

$$\alpha = 2*4 - 3*\frac{1}{2}$$

$$\alpha = 8 - 3 * 3$$

$$\alpha = 3 - 9$$

$$\alpha = 3 - 4$$

$$\alpha = 3 + 1$$

$$\alpha = 4$$

$$\beta = \frac{2}{3} - \frac{3}{4}$$

$$\beta = 2 * 2 - 3 * 4$$

$$\beta = 4 - 2$$

$$\beta = 2$$

(1.2

.1

$$3x^2 = 5$$

$$x^2 = 5 * 3^{-1}$$

$$x^2 = 5 * 5$$

$$x^2 = 25$$

$$x^2 = 4$$

$$x = 2$$

.2

$$6x^{2} + \frac{1}{4} = 0$$

$$6x^{2} + 2 = 0$$

$$6x^{2} = -2$$

$$x^{2} = 5 * 6^{-1}$$

$$x^{2} = 5 * 6$$

$$x^{2} = 30$$

$$x^{2} = 2$$

$$x = \sqrt{2}$$

$$x = \sqrt{9}$$

$$x = 3$$

.3

$$5x+4y+z = 0$$

$$5x = -4y-z$$

$$5x = 3y+6z$$

$$x = (3y+6z)*5^{-1}$$

$$x = (3y+6z)*3$$

$$x = 9y+18z$$

$$x = 2y+4z$$

$$x = 2(y+2z)$$

למשוואה הזאת יש 49 פתרונות, הפתרון הכללי הוא:

$$\{2t+4s, t, s|t, s \in Z_7\}$$

2 שאלה 2

(א 2.1

על מנת לבדוק האם A הוא שדה,עלינו לבדוק את הנאים האלה:

- a+b+1 אור על a+b+1 ווא a+b+1 ווא
 - 1* הן קיבוציות + ו

$$(a,1) \oplus ((b,1) \oplus (c,1)) = (a,1) \oplus (b+c,1) = (a+b+c,1)$$

 $((a,1) \oplus (b,1)) \oplus (c,1) = (a+b,1) \oplus (c,1) = (a+b+c,1)$

החיבור קיבוצית

$$(a,1)*((b,1)*(c,1)) = (a,1)*(bc,1) = (abc,1)$$

 $((a,1)*(b,1))*(c,1) = (ab,1)*(c,1) = (abc,1)$

הכפל גם קיבוצית

3. ⊕ ו∗ הן חילופיות

$$(a,1) \oplus (b,1) = (a+b,1)$$

 $(b,1) \oplus (a,1) = (b+a,1) = (a+b,1)$

החיבור חילופית

$$(a,1)*(b,1) = (ab,1)$$

 $(b,1)*(a,1) = (ba,1) = (ab,1)$

הכפל גם חילופית

4. קיימים 0_A שונים אחד מהשני

$$(a,1) \oplus (0_A,1) = (0_A,1) \oplus (a,1) = (a,1)$$

$$\Longrightarrow 0_A + a = a$$

$$\Longrightarrow 0_A = 0$$

$$(a,1)*(1_A,1) = (1_A,1)*(a,1) = (a,1)$$

$$\implies 1_A * a = a$$

$$\implies 1_A = 1$$

קיימים 0_A והם שונים אחד מהשני.

 \bigoplus מתפלג על * .5

עלינו לבדוק כי

$$((a,1) \oplus (b,1)) * (c,1) = ((a,1) * (c,1)) \oplus ((b,1) * (c,1))$$

(1)

$$((a,1) \oplus (b,1)) * (c,1) = (a+b,1) * (c,1)$$

$$= (c(a+b),1)$$

$$= (a*c+b*c,1)$$

$$((a,1)*(c,1)) \oplus ((b,1)*(c,1)) = (a*c,1) \oplus (b*c,1)$$

$$= (a*c,1) \oplus (b*c,1)$$

$$= (a*c+b*c,1)$$

מ.ש.ל

*וכל איבר פרט ל 0_A הפיך ביחס ל1וכל איבר פרט ל-6.

$$(a,1) \oplus (-a,1) = (a+(-a),1) = (0,1)$$

 $(a,1)*(a^{-1},1) = (a*a^{-1},1) = (1,1)$

R אך הוא איבר של

 $a*a^{-1}=1$ כך ש a=0 כך ש a+(-a)=0 וקיים (a=0 כך ש a+(-a)=0 כך ש $a\in R$ ולכל לכך לכל לכך לכל $a*a^{-1}=(a,1)=(-a,1)=(-a,1)=(-a,1)$ ופרט ל

הוא שדה. $(A, \oplus, *)$ לכן מעלה, לל התנאים מלה את הוכחנו

(コ 2.2

a*b=b*a כדי להוכיח שהפעולה חילופית , מספיק להוכיח שהפעולה (1

$$a*b = b*a$$

 $a+b-2 = b+a-2$
 $a+b-2 = a+b-2$

מ.ש.ל

(a*b)*c = a*(b*c) כדי להוכיח שהפעולה קיבוצית, מספיק להוכיח שהפעולה (מ*b)*c = a*(b*c)

$$(a*b)*c = a*(b*c)$$

 $(a+b-2)+c-2 = a+(b+c-2)-2$
 $a+b+c-4 = a+b+c-4$

מ.ש.ל

הפעולה * היא חילופית וקיבוצית

נוכיח שקיים $x \in R$ איבר הניטרלי (2

$$a*x = x*a = a$$

$$a+x-2 = a$$

$$x = a-a+2$$

$$x = 2$$

מ.ש.ל

.2 והוא $a \in R$ לכל לכל מיבר ניטרלי

(a 2.3

 $:Z_{9}$ המשוואה הזאת נכונה ב

$$3 * 3 = 0$$

אד משפט 1.2.6 טוען שאם b=0 אז בהכרח a=0 או a=0 אז בהכרה לתכונות של האיבר הנגדי,

3 שאלה

א 3.1

$$\begin{bmatrix} 1 & 2 & 1 & 1 & | 1 \\ 1 & 1 & 2 & 1 & | 2 \\ 1 & 1 & 1 & 0 & | 2 \\ 2 & 1 & 1 & 1 & | 2 \end{bmatrix} \quad \begin{matrix} R_2 \to R_2 - R_1 \\ R_3 \to R_3 - R_1 \\ R_4 \to R_4 - 2 * R \end{matrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 2 & 1 & 1 & 1 \\ 0 & -1 & 1 & 0 & 1 \\ 0 & -1 & 0 & -1 & 1 \\ 0 & -3 & -1 & -1 & 0 \end{bmatrix} \quad R_2 \to -R_2 \\ R_3 \to -R_3 \\ R_4 \to -R_4 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 2 & 1 & 1 & 1 \\ 0 & 1 & -1 & 0 & -1 \\ 0 & 3 & 1 & 1 & 0 \end{bmatrix} \quad R_3 \to R_3 - R_2 \\ R_4 \to R_4 - 3 * R_2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 2 & 1 & 1 & 1 \\ 0 & 1 & -1 & 0 & -1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 4 & 1 & 3 \end{bmatrix} \quad R_4 \to R_4 - 4 * R_3$$

$$\Rightarrow \begin{bmatrix} 1 & 2 & 1 & 1 & 1 \\ 0 & 1 & -1 & 0 & -1 \\ 0 & 0 & 4 & 1 & 3 \end{bmatrix} \quad R_1 \to R_1 - R_3 \\ R_4 \to -\frac{R_4}{3} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 2 & 0 & 0 & 1 \\ 0 & 0 & 0 & -3 & 3 \end{bmatrix} \quad R_1 \to R_1 - R_3$$

$$\Rightarrow \begin{bmatrix} 1 & 2 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 & -1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & -1 \end{bmatrix}$$

$$x+2y=1 \implies x=1$$

$$y-z=-1 \implies y=0$$

$$z+t=0 \implies z=1$$

$$t=-1 \implies t=-1$$

 $\begin{pmatrix} 1 \\ 0 \\ 1 \\ -1 \end{pmatrix}$ והוא R למערכת יש פתרון יחיד מעל

コ 3.2

נתחיל ישר מ:

$$\begin{bmatrix} 1 & 2 & 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & 0 & -1 & -1 \\ 0 & 1 & 0 & 1 & -1 & 0 \end{bmatrix} \mod 3$$

$$\Rightarrow \begin{bmatrix} 1 & 2 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 0 & 2 \\ 0 & 1 & 0 & 1 & 2 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 2 & 1 & 1 & 1 & 2 \\ 0 & 1 & 0 & 1 & 2 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

$$R_3 \rightarrow R_3 - R_2$$

$$\Rightarrow \begin{bmatrix} 1 & 2 & 1 & 1 & 1 \\ 0 & 1 & 2 & 0 & 2 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

$$R_4 \rightarrow R_4 - R_3$$

$$R_1 \rightarrow R_1 - R_4$$

$$\Rightarrow \begin{bmatrix} 1 & 2 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 & 2 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$x+2y=1 \implies x=2t$$
$$y+2z=2 \implies y=2+2t$$
$$z+t=0 \implies z=-t$$

יש הכללי הפתרון פתרונות, סוף אין אין הזאת על על למערכת יש למערכת על ציי על ציי

$$\{2t, 2+2t, -t, t\}$$

4 שאלה 4

$$\begin{bmatrix} 1 & 2 & a & -3-a \\ 1 & 2-a & -1 & 1-a \\ a & a & 1 & 6 \end{bmatrix} \quad \begin{array}{l} R_2 \to R_2 - R_1 \\ R_3 \to R_3 - a * R_1 \end{array}$$

$$\Rightarrow \begin{bmatrix} 1 & 2 & a & -3-a \\ 0 & -a & -1-a & 4 \\ 0 & -a & 1-a^2 & 6+ \\ 3a+a^2 \end{bmatrix} \quad R_3 \to R_3 - R_2$$

$$\Rightarrow \begin{bmatrix} 1 & 2 & a & -3-a \\ 0 & 0 & 2- & 2+ \\ a^2+a & 3a+a^2 \end{bmatrix} \quad R_2 \to \frac{-R_2}{a}(a \neq 0)$$

$$\Rightarrow \begin{bmatrix} 1 & 2 & a & -3-a \\ 0 & 0 & 2- & 2+ \\ a^2+a & 3a+a^2 \end{bmatrix} \quad R_3 \to \frac{R_3}{2-a^2+a}(2-a^2+a \neq 0 \Longrightarrow a \neq -1, a \neq 2)$$

$$\Rightarrow \begin{bmatrix} 1 & 2 & a & -3-a \\ 0 & 1 & \frac{1+a}{a} & \frac{-4}{a} \\ 0 & 0 & 1 & \frac{1+a}{a} & \frac{-4}{a} \\ 0 & 0 & 1 & \frac{1+a}{a} & \frac{-4}{a} \\ 0 & 0 & 1 & \frac{2+3a+a^2}{2-a^2+a} \end{bmatrix}$$

 $a \neq 2$, $a \neq -1$, $2 + 3a + a^2 \neq 0$ אם R_3 שורת שורת אז אז $2 + 3a + a^2 = 0$ אם a = 2

$$\begin{bmatrix} 1 & 2 & 2 & 1 \\ 0 & 1 & \frac{3}{2} & -2 \\ 0 & 0 & 1 & 12 \end{bmatrix}$$

אין פתרון a=0

$$\begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & -1 & 4 \\ 0 & 0 & 2 & 2 \end{bmatrix}$$

אין פתרון a=2

$$\begin{bmatrix} 1 & 2 & 2 & 1 \\ 0 & 1 & \frac{3}{2} & -2 \\ 0 & 0 & 0 & 12 \end{bmatrix}$$

שורת סתירה, לכן אין פתרון R_4 אם a=-1 אם

$$\begin{bmatrix} 1 & & 2 & & -1 & \begin{vmatrix} -2 & \\ 0 & & -1 & & 0 \\ 0 & & 0 & & 0 \end{bmatrix}$$

יש אין סוף פתרונות, הפתרון הכללי הוא:

$${s-10;4;s}$$

:סיכום

- $a \neq 0$, $a \neq 2$, $a \neq -1$:יש פתרון יחיד עבור
 - a=-1 :יש אין סוף פתרונות עבור
 - a=2 ,a=0 :אין פתרונות עבור •

5 שאלה 5

$$\begin{bmatrix} 1 & a & a & a & a-b & b+1 \\ 1 & a+1 & a+b & 2a-b & a+b+1 \\ 3 & 3a & 3a+b & 3a-b & 4b+3 \\ 1 & a & a & 0 & 2b \end{bmatrix} \quad \begin{matrix} R_2 \to R_2 - R_1 \\ R_3 \to R_3 - 3 * R_1 \\ R_4 \to R_4 - R_1 \end{matrix}$$

$$\Rightarrow \begin{bmatrix} 1 & a & a & a-b & b+1 \\ 0 & 1 & b & a & a \\ 0 & 0 & b & 2b & b \\ 0 & 0 & b-a & b+1 \end{bmatrix} \quad \begin{matrix} R_3 \to \frac{R_3}{b}(b \neq 0) \\ R_4 \to \frac{R_4}{b-a}(b \neq a) \end{matrix}$$

$$\Rightarrow \begin{bmatrix} 1 & a & a & a-b & b+1 \\ 0 & 1 & b & a & a \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & \frac{b+1}{b-a} \end{bmatrix}$$

b=0 עבור

$$\begin{bmatrix} 1 & a & a & a & a & 1 \\ 0 & 1 & 0 & a & a \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & a & 1 \end{bmatrix}$$

אם פתרון פתרות אורת אורת אז a=0 אם אם a=0 אז אז יש למערכת פתרון כללי, והוא:

$${a(1-s)-a^2;a-1;s;\frac{1}{a}}$$

b=-1 עבור

$$\begin{bmatrix} 1 & a & a & a+1 & 0 \\ 0 & 1 & -1 & a & a \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

יש פתרון יחיד.

a = b עבור

$$\begin{bmatrix} 1 & a & a & 0 & a+1 \\ 0 & 1 & a & a & a \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & a+1 \end{bmatrix}$$

$$\{-a^2 + 2aw + 1; aw; 1 - 2w; w\}$$

סיכום:

:אין פתרון

$$a = 01 \ b = 0$$
 •

$$a = -11 \ b = -1$$
 •

פתרון יחיד:

$$(a$$
 לכל $b=-1$

:אין סוף פתרונות

$$\{a(1-s)-a^2;a-1;s;\frac{1}{a}\}:a\neq 0,\ b=0$$

$$\{-a^2 + 2aw + 1; aw; 1 - 2w; w\}$$
 : $a = b$ 1 $a \neq -1$