

DPP – 1 (Alternating Current)

Video Solution on Website :-

https://physicsaholics.com/home/courseDetails/102

Video Solution on YouTube:-

https://youtu.be/YYp0KX2mAVc

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/60

- Q 1. The electric current in a circuit is given by i = 3t Here, t is in second and i in ampere. Then rms current for the period t = 0 to t = 1 s is:
 - (a) 3 A
- (b) 9 A
- (c) $\sqrt{3}$ A
- (d) $\sqrt[3]{3}$
- Q 2. Average value of voltage from t=0 to $t=\frac{2\pi}{\omega}$ for function: $V=V_0 \sin \omega t$ for $0 \le t \le \frac{\pi}{\omega}$ and $V=-V_0 \sin \omega t$ for $\frac{\pi}{\omega} \le t \le \frac{2\pi}{\omega}$ is :
 - (a) $\frac{V_0}{\sqrt{2}}$
- (b) $\left(\frac{2}{\pi}\right)V_0$
- (c) $\frac{V_0}{2}$
- (d) zero
- Q 3. The voltage time (V -t) graph for a triangular wave having peak value V_0 is as shown in figure. The rms value of V is:

- Q 4. The current through a wire changes with time according to the equation $I = \sqrt{t}$. The correct value of the rms current within the time interval t = 2 to t = 4s will be -
 - (a) $\sqrt{3}$ A
- (b) 3 A
- (c) 3 A
- (d) None of these
- Q 5. In a circuit an A.C. current and a D. C. current are supplied together. The expression of the instantaneous current is given as i = 3 + 6 sin wt Then the rms value of the current is
 - (a) 3
- (b) 6
- (c) $3\sqrt{2}$
- (d) $3\sqrt{3}$
- Q 6. The time required for a 50Hz alternating current to increase from zero to 70.7% of its peak value is -
 - (a) 2.5 ms

(b) 10 ms

(c) 20 ms

- (d) 14.14 ms
- Q 7. Find rms value for the saw-tooth voltage of peak value V_0 as shown in figure.

Physicsaholics

- (a) V_0
- (c) $\frac{V_0}{3}$

- (b) $\frac{V_0}{2}$
- (d) none of these
- Q 8. The current 'i' through a wire varies with time t as shown in the figure. The effective (rms) value of the current is

- (a) 6A
- (c) $2 + 2\sqrt{2} A$

- (b) $2\sqrt{3}$
- (d) 3 A
- Q 9. Instantaneous current in an ac circuit is given I = i_0 Sin ωt. Average value of current from t= 0 to t= $\frac{3\pi}{\omega}$ is
 - (a) Zero
- $(b) i_0$
- (c) $\frac{i_0}{2}$
- (d) $\frac{2i_0}{3\pi}$

Answer Key

Q.1 c	Q.2 b	Q.3 d	Q.4 a	Q.5 d
Q.6 a	Q.7 d	Q.8 b	Q.9 d	