Database Phase 1 -- updated ver.

- 1. Members: Tianyi Lin, Yang Cao
- 2. Target domain: Our database describes the locations of crashes involving bikes and cars in the Chapel Hill Region of North Carolina. We download the data online, and the original source is "from police-reported bicycle-motor vehicle and pedestrian-motor vehicle collisions that occurred on the public roadway network, public vehicular areas and private properties (if reported)", as stated on the website.
- 3. List of queries (Note: for completion of phase 2, we also write the input & output and stored procedures name for each question)
 - 1) What kind of crash type (pedestrian AND bike) is the most frequent (top 5) around certain area?
 - a) input: city (drop down)
 - b) output:
 - i) tables (1 and 2): most frequent time of the crash, severity of ped/biker
 - ii) table 3 (legend): kind of crash type
 - c) procedures: CrashTypeRate_Bike(city VARCHAR(18)),CrashTypeRate_Ped(city VARCHAR(18)), ShowCrashTypes_Comb()
 - 2) What areas have higher accident rate (e.g. bicycle crash)? What areas have higher accident rate at night and what areas have higher accident rate at day (based on time range)?
 - a) input: time range
 - b) output: accident rate, city, crash type, severity of injury
 - c) procedures: AccidentRate_Bike(t_from NUMERIC(4,1), t_to NUMERIC(4,1)), AccidentRate_Ped(t_from NUMERIC(4,1), t_to NUMERIC(4,1))
 - 3) Does light condition correlate with bicycle/pedestrian crash rate? (light_bike, light_ped)
 - a) input:condition
 - b) output: both table with columns of: type of light condition && corresponding # of crashes, % of light condition = && crash most frequent severity
 - 4) Does road surface correlated with bicycle/pedestrian crash rate? (road_charact_bike, road_charact_ped)
 - a) input:condition
 - b) output: road surface type, count of crash, weather, severity

- 5) Does weather correlated with bicycle/pedestrian crash rate? (weather_bike,weather_ped)
 - a) input:condition
 - b) output: type of weather & # of crashes, several frequent month...
- 6) Does exceeding the speed limit (driver) correlate with crash rate? (output: coordinate with highest rate, link: other factors, navigate to corresponding pages)?
 - a) input:condition
 - b) output: percentage of exceedLim/all, percentage of belowLim/all
 - c) procedures: ExceedSp_Bike(), ExceedSp_Ped()
- 7) For bicycle crashes, does Alcohol Detected for driver correlate with crash rate?
 - a) input:
 - b) output: percentage of alco/all for biker, percentage of alco/all for driver, time of the day, location
- 8) Do bike/pedestrian crashes have higher severity of injury?
 - a) input:
 - b) output:
 - i) all types of injury
 - ii) 2 tables, percentage of severe injury (level B/C), time, weather, alcohol, county
 - c) procedures: ShowInjuryTypes(), Injury Bike(), Injury Ped()
- 9) Correlation between ambulance response and severity of injury
 - a) input: time
 - b) output:
 - i) table 1 (ped): for ambulance=yes/no, the most frequent severity level
 - ii) table 2 (bike): for ambulance=yes/no, the most frequent severity level
 - c) procedures: AmbulanceSevri_Bike(t_from NUMERIC(4,1), t_to NUMERIC(4,1)), AmbulanceSevri_Ped(t_from NUMERIC(4,1), t_to NUMERIC(4,1))
- 10) For a selected age group, show all crashes data for the victim.
 - a) variable: time
 - b) input: age group (drop down?)
 - c) output:
 - i) table 1 (bike) count, Biker.bikeage_gr, bike_injur, bike_race, bike_dir, bike_sex, bike_pos, bike_alc_d
 - ii) table 2 (ped) count, pedInjure.pedage_grp, ped_pos, ped_race, ped injury, ped sex #need to check

- d) procedures: AgeGpAccidentRate_Bike(age VARCHAR(7)), AgeGpAccidentRate_Ped(age VARCHAR(7))
- 11) correlation between time(input) and hit and run rate
 - a) input: time
 - b) output: hit and run rate, weather
 - c) procedures: HitRun_Bike(t_from NUMERIC(4,1), t_to NUMERIC(4,1)), HitRun Ped(t_from NUMERIC(4,1), t_to NUMERIC(4,1))
- 12) which type of location (rural/urban) has more frequent crashes?
 - a) input: rural/urban (drop down)
 - b) output: hit and run rate, time, alcohol detected, weather, severity
 - c) procedures: LocAccidentRate_Bike(loc VARCHAR(5)), LocAccidentRate_Ped(loc VARCHAR(5)) # need to check
- 13) driver information
 - a) input: pedestrian/bike (drop down)
 - b) output: summary of driver info: sex, race, age, crash type, driver severity
 - c) procedures: DriverInfo(type VARCHAR(10))
- 14) do crashes happen more often at intersection/non-intersection
 - a) input:
 - b) output: 1 table (union ped and bike crashes), crash rate (intersection/all, or non-intersection/all), severity, weather, light cond, num lanes
 - c) procedures: IntersectAccidentRate()
- 15) do crashes happen more often when there's no traffic control?
 - a) input:
 - b) output: 2 tables, traffic control rate, severity, weather, light cond, num_lanes
 - c) procedures: Traffic_Bike(), Traffic_Ped()

4. Relational data model:

- 1.PedCrashRdCond
 - rd_defects,rural_urba,city,locality,rd_feature,light_cond,rd_charact.
 ,rd_surface, developmen, traff_cntr,rd_conditi,region, rd_class, weather, num_lanes, rd_config

	rd_defect	rural_urb	city	locality	rd_featur	light_con	rd_chara
<u>hID</u>	S	a			e	d	ct

1	"None"	"Urban"	"Chapel	"Urban	"No	"Dark -	
			Hill"	(>70%	Special	Roadway	"Straight
				Develop	Feature"	Not	- Level"
				ed)"		Lighted"	

rd_surf ace	develop men	traff_cn tr	rd_cond iti	region	rd_class	weather	num_la nes	rd_conf ig
"Smoot h Asphalt	"Comm ercial"	"No Control Present	"Dry"	"Piedm ont"	"Public Vehicul ar Area"	"Clear"	"Unkno wn"	"Unkno wn"

- 2.PedInjure

- for injured people profile
- ped_pos,ped_race,pedage_grp,ped_age, ped_injury,ped_sex

pedInjure

PedCrashI D	ped_pos	ped_race	pedage_gr p	ped_age	ped_injury	ped_sex

- 3. DiverBiker PedCrash
 - driver/biker profile
 - speed_limi, drvr_vehty, drvr_injur, drvr_sex, drvrage_gr, drvr_race, drvr_age, drvr_estsp, drvrage_gr, drvr_alc_d

PedC rashI D	-	drvr_ vehty	_	_	drvr_ race	drvr_ age	drvra ge_gr	drvr_ estsp	drvr_al c_d

- 4. PedCrashDetail

- crash detail
- crsh_sevri, "ambulancer", crash_time, crash_year, county, longitude, latitude, crash mont, crash type, city, locality, ped pos, drvr injur, crashday, crash loc,

crash_hour,geo_shape, crash_date, crash_grp,hit_run

PedCr ashID	crsh_s evri	ambul ancer	crash_ time	crash_ year	county	longitu de	latitud e	_	crash_ type

city	localit y	ped_p os	drvr_i njur	crash day	crash _loc			hit_ru n

- 5. ReasonPed

- Bike/Pedestrian Alcohol Detected, Driver Estimated Speed, Speed Limit, Driver Alcohol Detected

PedCra shID	crashalc oh	excsspd ind	ped_po	drvr_inj ur	hit_run	drvr_est sp	exceed Speed	speed_l imi

- 6.BikeCrashTime

BikeCrashID	crash_time	crash_hour	crashday	crash_mont	crash_year
1	"10:12"	10.0	"Saturday"	"July"	2011

- 7.BikeCrashLoc

BikeCras hID	lat	lon	county	city	rural_urb a	crash_lo	develop men
1	35.91006 70923	-79.0745 027481	"Orange	"Carrbor o"	"Urban"	"Non-Int ersection	"Comme rcial

- 8.BikeCrashRdCond

Bike Cras hID	rd_d efec ts	rd_f eatu re	rd_c hara ct	rd_s urfa ce	rd_c ondi ti	spee d_li mi	traff _cnt r	weat her	rd_c onfi g	num _lan es	deve lop men	light _co nd
1	"No n"e	"No Spe cial Feat ure"	"Str aigh t - Lev el"	"Sm ooth Asp halt	"Dr y"	"20 - 25 MP H"	"No Con trol Pres ent"	"Cle ar"	"Tw o-W ay, Not Divi ded"	"Un kno wn"	"Co mm erci al"	"Da ylig ht"

- 9.BikeCrashResult

BikeCrash ID	ambulance r	crash_type	crsh_sevri	hit_run	bike_injur	drvr_injur
1	"Yes"	"Motorist Overtakin g - Bicyclist Swerved"	"K: Killed"	"No"	"K: Killed"	"O: No Injury"

- 10.Biker

BikeCr	bike_inj	bike_ra	bike_di	bikeage	bike_ag	bike_se	bike_po	bike_al
ashID	ur	ce	r	_gr	e	x		c_d
1	"K: Killed"	"White	"With Traffic"	"70+"	"70+"	"Male"	"Travel Lane"	"No"

- 11.Driver_BikeCrash

BikeCr	drvr_ve	drvr_inj	drvr_se	drvr_ra	drvr_ag	drvrage	drvr_est	drvr_al
ashID	hty	ur		ce	e	_gr	sp	c_d
1	"Passen ger Car"	"O: No Injury"	"Male"	"White	"70+"	"70+"	"11 - 15 mph"	"No"

12.BikeCrashReason

BikeCr ashID	crashalc oh	excsspd ind	drvr_al c_d	bike_al c_d	bike_po	bike_di r	drvr_est	on_rd

- 5. Sql statements are in Procedures.sql
- 6. how to load database
 - We first put the variables and their corresponding value in a java object, we populate the data into the database.

7.

- We expect the output to be table of data, and our work includes combine multiple rows of data and present it to the user in a user friendly view. Possibly some design on the table format to make the information easier to read.

8.

- Since we are in section 315, we choose to minorly focus on complex data extraction. So far, our raw data consists of both csv and json files, and we also plan to do some statistical analysis/calculation on these files before we push all of the datasets to the database.