2 Режимы работы трансформатора

Различают несколько режимов работы трансформатора:

- 1) номинальный режим работы при номинальных значениях напряжения $U_1 = U_{1HOM}$ и тока $I_1 = I_{1HOM}$ первичной обмотки трансформатора;
- 2) рабочий режим, при котором напряжение первичной обмотки близко к номинальному $U_1 \approx U_{1HOM}$, а ток I_I определяется нагрузкой трансформатора;
- 3) режим холостого хода режим ненагруженного трансформатора, при котором цепь вторичной обмотки разомкнута (I_2 =0) или подключена к приемнику с очень большим сопротивлением нагрузки (вольтметр);
- 4) режим короткого замыкания режим трансформатора, при котором его вторичная обмотка замкнута накоротко (U_2 =0) или подключена к приемнику с очень малым сопротивлением нагрузки (амперметр).

Режимы холостого хода и короткого замыкания возникают при авариях или их специально создают при опытных испытаниях трансформатора.

2.1 Режим нагрузки

В этом режиме напряжение первичной обмотки близко к номинальному $U_1 \approx U_{1HOM}$, ток первичной обмотки I_I определяется нагрузкой трансформатора, а ток вторичной обмотки ее номинальным током $I_{2H} = \frac{S}{U_{2H}}$.

По данным измерений аналитически определяют коэффициенты мощности и полезного действия трансформатора соответственно по формулам

$$\cos \varphi_1 = \frac{P_1}{S_1} = \frac{P_1}{U_1 * I_1} \quad \text{if} \quad \eta = \frac{P_2}{P_1} * 100\%, \tag{21}$$

где P_1 – активная мощность первичной обмотки трансформатора, а мощность P_2 , которая отдается в цепь питания вторичной обмоткой трансформатора определяется как P_2 = P_1 - P_{XX} - P_{K3} .

Изменением (потерей) напряжения трансформатора называется арифметическая разность между вторичным напряжением трансформатора при холостом ходе и напряжением вторичной обмотки в режиме нагрузки

$$\Delta U = U_{2XX} - U_2.$$
 Или в процентном выражении
$$\Delta U,\% = \frac{U_{2xx} - U_2}{U_{2xx}} * 100\% \,. \tag{22}$$

2.2 Опыт холостого хода

Для проведения опыта собирают электрическую цепь, в которой подводимое к первичной обмотке трансформатора напряжение изменяют в пределах от 0 до $1,1U_{1HOM}$. Вторичная обмотка разомкнута, к ее зажимам присоединен вольтметр для измерения напряжения U_{2XX} . Со стороны первичной обмотки измеряют напряжение U_{1HOM} , ток холостого хода I_{1XX} и мощность, которую потребляет трансформатор в режиме холостого хода P_{XX} .

По данным измерений можно построить зависимости $I_{XX} = f(U_1)$ и $P_{XX} = f(U_1)$ (рисунок 16).

Номинальные величины тока холостого хода и потерь мощности указываются в паспортных данных трансформатора (I_{XX} в процентах от номинального тока первичной обмотки, а потери холостого хода — в киловаттах). Значение этих параметров характеризует качество стали и сборки магнитопровода. В трансформаторах малой мощности $I_{XX} \leq 10\% I_{1HOM}$, а у трансформаторов большой мощности он уменьшается до (2,5-3)%.

Рисунок 16 – Характеристики холостого хода

На основании этого опыта по показаниям измерительных приборов определяют коэффициент трансформации $k=\frac{U_{1H}}{U_{2XX}}$ и мощности потерь в магнитопроводе трансформатора. Так как при холостом ходе ток $I_2=0$, то потери мощности, затрачиваемые на нагрев обмоток, малы. Мощность P_{XX} , потребляемая в этом случае трансформатором идет на покрытие потерь в стали магнитопровода (они пропорциональны квадрату напряжения $P_{XX}=CU_1^{\ 2}$).

Коэффициент мощности холостого хода трансформатора определяется

$$\cos \varphi_{XX} = \frac{P_{XX}}{U_{1H} * I_{1XX}}.$$
 (23)

2.3 Опыт короткого замыкания

В режиме короткого замыкания витки вторичной обмотки замкнуты токопроводом с сопротивлением Z_H =0. В условиях эксплуатации – это

аварийный режим, когда токи первичной и вторичной обмоток увеличиваются в десятки раз по сравнению с $I_{{\scriptsize HOM}}$.

В лабораторных условиях проводят испытательное короткое замыкание, при котором накоротко замыкают вторичные обмотки. К первичной обмотке подводят такое напряжение U_{K3} , при котором ток вторичной обмотки не превышает номинального тока $I_{2K3} \leq I_{2HOM} = \frac{S}{U_{2HOM}}$. Выраженное в процентах напряжение короткого замыкания — называют напряжением короткого замыкания и указывают в паспортных данных трансформатора:

$$u_K = \frac{U_{K3}}{U_{1HOM}} * 100\%. {24}$$

Напряжение короткого замыкания зависит от высшего напряжения (ВН) обмоток трансформатора: с повышением ВН напряжение короткого замыкания увеличивается.

Так как в режиме короткого замыкания $U_{K3} \approx 10\% U_{1HOM}$, то потери холостого хода в стали магнитопровода малы. Измеряемая ваттметром в этом режиме мощность — это потери мощности P_{K3} в проводах первичной и вторичной обмоток. При токе $I_1 = I_{1HOM}$ получаем номинальные потери мощности на нагрев обмоток, которые называют электрическими потерями или потерями короткого замыкания.

По показания приборов строят характеристики короткого замыкания, которые представляют собой зависимости тока I_{1K3} , мощности P_{K3} и $cos\phi$ от напряжения U_{1K3} (рисунок 17). Расчет коэффициента трансформации в опыте короткого замыкания определяется отношением токов в первичной и вторичной цепях $k=\frac{I_{2K3}}{I_{1H}}$. А коэффициент мощности трансформатора

определяется по формуле

$$\cos \varphi_{K3} = \frac{P_{K3}}{U_{1K3} * I_{1H}}.$$

Рисунок 17 – Характеристики короткого замыкания

Аппаратура и материалы

Для выполнения работы необходимы лабораторные стенды «Электротехника», включающие в себя:

- встроенный однофазный понижающий трансформатор с номинальным параметрами по напряжению 220/127 В и полной мощностью 270 ВА;
 - реостат;
- измерительные приборы (амперметры и вольтметры переменного тока, переносной ваттметр).

Указания по технике безопасности

1. Перед началом занятий в лаборатории необходимо ознакомиться с настоящими методическими указаниями и пройти инструктаж по «Технике безопасности для студентов, выполняющих учебные занятия в лабораториях кафедры теоретической и общей электротехники Северо-Кавказского государственного технического университета». Инструктаж фиксируется преподавателем в журнале. Студенты, не прошедшие инструктаж по технике безопасности, к работе не допускаются.

- 2. Перед началом сборки цепи следует убедиться в том, что стенд обесточен. Во время сборки схемы нужно прокладывать провода так, чтобы было меньше их пересечений. Неиспользованные соединительные провода убирают с лабораторного стола.
- 3. Собранная электрическая цепь должна быть проверена преподавателем может включаться только И ПО его разрешению. Преобразования схем нужно производить только при выключенном напряжении, которые проверяются преподавателем.
- 4. Все работы на установках должны производиться не менее чем двумя студентами. О включении напряжения следует предупредить всех членов бригады, совместно выполняющих эту работу.
- 5. В ходе работы запрещается оставлять включенную схему без наблюдения. После окончания испытания или при перерыве в работе схему отключают от сети переключателем, а рукоятки регулируемых источников и реостатов устанавливают в нулевое положение.
- 6. При неисправностях в аппаратах, приборах или проводах схему отключают и сообщают об этом преподавателю.
- 9. Разборку схемы осуществлять по разрешению преподавателя после предъявления ему протокола испытаний.

Методика и порядок выполнения работы

1 Экспериментальное исследование трансформатора в опытных режимах холостого хода и короткого замыкания

1.1 Опыт холостого хода

1.1.1 Ознакомиться с лабораторной установкой и измерительными приборами. Записать паспортные данные трансформатора и рассчитать номинальные токи первичной и вторичной обмоток трансформатора по формулам

$$I_{1H} = \frac{S}{U_{1H}}; \qquad I_{2H} = \frac{S}{U_{2H}},$$
 (26)

где S – номинальная полная мощность трансформатора, BA;

 U_{IHOM} , U_{2HOM} — соответственно номинальные напряжения первичной и вторичной обмоток трансформатора, В.

1.1.2 Собрать схему по рисунку 18. С помощью лабораторного автотрансформатора (ЛАТР) установить на первичной обмотке трансформатора номинальное напряжение 220В (вольтметр V_I). Показания приборов занести в таблицу, отметить, что ток холостого хода $I_{XX} \le 10\% I_{IHOM}$.

Рисунок 18 – Схема опыта холостого хода трансформатора

1.1.3 По результатам измерений рассчитать коэффициенты мощности и трансформации. Результаты вычислений занести в таблицу 13.

Таблица 13 – Испытательный режим холостого хода

Измерено					Вычислено		
U_{IH} , B	U_{2XX} , B	$I_{1 XX}, A$	P_{XX} , Bm	k	$Cos \varphi_{1 XX}$	$\frac{I_{1XX}}{I_{1HOM}}$	

1.2 Опыт короткого замыкания

1.2.1 Собрать схему по рисунку 19. Изменяя напряжение первичной обмотки с помощью ЛАТР, установить на амперметре A_2 значение тока, не превышающего номинальную величину I_{2H} . При этом напряжение короткого замыкания U_{K3} должно составлять до 10% от U_{IH} , что приблизительно равно 22В. Результаты измерений занести в таблицу 14.

Рисунок 19 – Схема опыта короткого замыкания трансформатора

1.2.2 По результатам измерений аналитически рассчитать коэффициенты мощности и трансформации в режиме короткого замыкания. Результаты вычислений занести в таблицу 14.

Таблица 14 – Испытательный режим короткого замыкания

	Измо	ерено	Вычислено			
U_{1K3} , B	I_{1H} , A	I_{2K3} , A	P_{K3} , Bm	k	$U_{\scriptscriptstyle K3}$	$Cos \varphi_{K3}$
					$\overline{U_{_{2X\!X}}}$	