REPORT D	OCUMENTATI	ON PAGE		Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information	is estimated to average 1 hour per	response, including the time	e for reviewing instruction	ns, searching existing data sources, gathering and
including suggestions for reducing this burden to Dens	tmont of Defense Meshington	Send comments regarding t	rus burden estimate or a	by other aspect of this collection of information.
collection of information if it does not display a currently	valid OMB control number. PLEA	vithstanding any other provis SE DO NOT RETURN YOU	ion of law, no person sh	all be subject to any penalty for failing to comply with
1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE Technical Papers		TO THE ADOL	3. DATES COVERED (From - To)
4. TITLE AND SUBTITLE	1 reclinical Papers			5a. CONTRACT NUMBER
				Sa. CONTRACT NUMBER
		,		5b. GRANT NUMBER
				5c. PROGRAM ELEMENT NUMBER
S. AUTHOR(S)				
,				2303
				5e. TASK NUMBER
				m 208
			,	5f. WORK UNIT NUMBER
. PERFORMING ORGANIZATION NAM	E(S) AND ADDRESS(FS)			9 DEDEODMINO ODGANIERA
				8. PERFORMING ORGANIZATION REPORT
Air Force Research Laboratory (AFN AFRL/PRS	1C)			
Pollux Drive				
Edwards AFB CA 93524-7048			*	. i
				i . ii
. SPONSORING / MONITORING AGEN	CY NAME(S) AND ADDRI	ESS(ES)		10. SPONSOR/MONITOR'S
				ACRONYM(S)
ir Force Research Laboratory (AFM	(C)	ė.		l , ,
AFRL/PRS	,			11. SPONSOR/MONITOR'S
Pollux Drive				NUMBER(S)
Edwards AFB CA 93524-7048				
2. DISTRIBUTION / AVAILABILITY STA	TEMENT			
	*			1
approved for public release; distribut	ion unlimited.			
				1
3. SUPPLEMENTARY NOTES				,
4. ABSTRACT				. i
				1
		*	*	
S. SUBJECT TERMS				
SECURITY CLASSIFICATION OF:		17 I IMITATION	10 NUMBER	

b. ABSTRACT

Unclassified

a. REPORT

Unclassified

c. THIS PAGE

Unclassified

17. LIMITATION

OF ABSTRACT

18. NUMBER

OF PAGES

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18

19a. NAME OF RESPONSIBLE

19b. TELEPHONE NUMBER

PERSON

Leilani Richardson

(include area code)

(661) 275-5015

TP-F499-Ø122

ERC# 99-03/ 2

v Speedshut

MEMORANDUM FOR PRS (I_{n}, μ_{vose})

FROM: PROI (TI) (STINFO)

28 May 1999

SUBJECT: Authorization for Release of Technical Information, Control Number: AFRL-PR-ED-TP-FY99-0122 Suri and Tinnirello, "Bicyclopropylidene and 1,5-Hexadiyne from Bench Scale to Pilot Scale: Problems and Solutions"

Presentation HEDM Conference

(Statement A)

20021122 014

Bicyclopropylidene and 1,5-Hexadiyne from Bench Scale to Pilot Scale: Problems and Solutions

Suresh C. Suri and Michael Tinnirello

Air Force Research Laboratory/PRS; ERC Inc.

10 East Saturn Blvd., Edwards AFB, CA 93524

E-Mail: suresh_suri@ple.af.mil

DISTRIBUTION STATEMENT A: Approved for Public Release -Distribution Unlimited

Presentation Outline

- Goal
- Criteria for Fuel Selection
- Structural Requirements and Selection for hydrocarbons
- Synthetic Results and Scale Up Challenges
- Future Efforts

Goal

- To come up with a fuel with 2-5% increase of Isp over LOX/RP-1
- LOX/RP-1(del.) = 263 sec*
- LOX/RP-1(calc.)= 300 sec*

* Determined at sea level and 1000 psi chamber pressure

Task Objective

- Survey of energetic hydrocarbons
- Selection of hydrocarbons based on improved theoretical performance
- Synthesis of target hydrocarbons at bench scale
- Easy preparation, \mathcal{C} ost effective and safe
- Translate bench-scale synthesis to pilot scale

Criteria for Fuel Selection

- Predicts Better Performance (Isp) Over LOX/RP-1 System
 - Most Desirable Physical Properties
- Lower Vapor Pressure Compared to RP-1
- Higher Dénsity (\geq RP-1 = 0.801 g/mL)
- Freezing Point ($\leq -10^{\circ}$ C; RP-1 = -41.4° C)
- Boiling Point ≥ B. P. of RP-1
- Thermally Stable
- Compatible with the Current System

Structural Requirement for High **Energy Contents**

The Energy Contents Can be Increased by Adding Unsaturation in the Molecule -(CH₂)- CH₂=CH₂ HC=CH

 $\Delta H_{\rho}/C \sim -5$

 ~ 6.25

 ~ 27.1

Kcal/mole

Heat of Formation of Saturated Hydrocarbons

$$\Delta H_f$$
 (Obs)

$$CH_3CH_3$$

Pentane

$$CH_3(CH_2)_3CH_3$$

$$\Delta H_{\varphi}/C = \sim -5 \text{ Kcal/mole}$$

Heat of Formation of Unsaturated Hydrocarbons

Structure Compound

 $\Delta H_f(Obs)$

+12.5

Ethylene

 $CH_2 = CH_2$

1,3-Butadiene CH₂=CH-CH=CH₂ +26.11 $\Delta H_{\rho}/C = \sim +6.25 \text{ Kcal/mole}$

Acetylene

HC = CH

+54.36

 $\Delta H_{\phi}/C = \sim + 27.1 \text{ Kcal/mole}$

Structural Requirement for High Energy Contents (Cont....)

The Energy Contents is Also Increased by Incorporating Strain in the Molecule

- Ring Compound

- Cyclopropane

- Cyclobutane

- Cyclopentane

 $\Lambda H_{
m f}$

+ 12.73 Kcal/mole

+ 6.78 Kcal/mole

- 18.44 Kcal/mole

Survey of Hydrocarbons

Cyclopropane $\Delta Hf = 12.7 \text{ Kcal/mole}$ = 0.3 Kcal/gIsp = 312,8ec.

[2.2] Spiropentane AHf = 44.4 Kcal/mole = 0.65 Kcal/g Isp = 311 Sec.

Bicyclopropylidene AHf = 76.1 Kcal/mole = 0.95 Kcal/g Isp = 312.5 Sec.

Cyclopropylacetylene AHf = 64.0 Kcal/mole = 0.97 Kcal/g Isp = 311.3 Sec.

Bicyclopropylacetylene $\Delta Hf = 73.4 \text{ Kcal/mole}$ = 0.69 Kcal/g

Dicyclopropylidenemethane $\Delta Hf = 104.6 \text{ Kcal/mole}$

$$= 1.13 \text{ Kcal/g}$$

Isp = 313.4 Sec.

Survey of Hydrocarbons

Quadricyclane $\Delta H_f = 72.2 \text{ Kcal/mole}$ = 0.78 Kcal/g $I_{\text{sp}} = 307 \text{ Sec}$

[3]-Triangulane $\Delta H_f = 72.3 \text{ Kcal/mole}$ = 0.77 Kcal/g $I_{sp} = 311.4 \text{ sec}$

Survey of Hydrocarbons

[1.1.1]Propellane and its Derivatives

$$\Delta Hf = 51.0 \text{ Kcal/mole}$$
$$= 0.75 \text{ Kcal/g}$$
$$Isp = 313.9 \text{ sec}$$

$$\Delta Hf = 45.0 \text{ Kcal/mole}$$
$$= 0.54 \text{ Kcal/g}$$
$$Isp = 311.2 \text{ sec}$$

$$\Delta Hf = 26.0 \text{ Kcal/mole}$$
$$= 0.21 \text{ Kcal/g}$$
$$Isp = 308.0 \text{ sec}$$

$$\Delta Hf = 95.0 \text{ Kcal/mole}$$
$$= 0.70 \text{ Kcal/g}$$

Isp = 309.9 sec

Selection of Target Molecules

Bicyclopropylidene $I_{sp} = 312.5$ 86c

Cyclopropylacetylene $I_{sp} = 311.3$, Sec

1,5-Hexadiyne $I_{sp} = 311.8$ Sec

1,7-Octadiyne $I_{sp} = 308.2$ &ec

iterature Methodology

P. LePerchec and J. M. Conia, Tetrahedron Lett. 1970, 1587

A.J. Schipperojn, Rec. Trav. Chim. Pays-Bas 1971, 90, 1110

iterature Methodology

1. A.H. Schmidt, U. Schirmer and J.-M. Conia; Chem. Ber. 1976, 109, 258 2. W. Weber and A.de Meijere; Syn. Comm. 1986, 16, 837

Kulinkovich Reaction

O. G. Kulinkovich, S. V. Sviridov, D. A. Vasilevskii; Synthesis 1991, 234

1. A.de Meijere, S. I. Kozhushkov, T. Spaeth and N. S. Zefirov; J. Org. Chem. 1993, <u>58</u>, 502 2. S.C. Suri; Technical Report PL-TR-97-3057, 1997, p 26

iterature Methodology for 1,5-Hexadiyne

AFRL/PRS Methodology

- Eliminated Use of Free Halogen
- Eliminated Use of Methylene Chloride
- Eliminated Use of Liquid Ammonia/Sodium

Hazard Characteristics of Hydrocarbons

Compound	Olin Matheson Liquid Impact*	Olin Matheson Julius Peters Liquid Impact* Sliding Friction*	NOL Card GAP At Zero Card	
RP-1	% 200 Xg/cm	>371N	Negative	
Bicyclopropylidene	>200,Kg/pm	133N	Negative	
Cyclopropylacetylene	>200, Kg/cm	78N	Neative	
1,5-Hexadiyne	56 Kg/gm	112N	Negative	
1,7-Octadiyne	148 Kg/cm	100N	Negative	

^{*} Obtained five negative results

Proposed Mechanism of Kulinkovich Reaction

Problems	Consequences	Solution
• Rise in temperature (Exothermic reaction)	 Loss of flammable 	 Perform addition of
	solvent $(F_p=45)^{\circ}C$	Grignard reagent
	 Product rearranges 	below 00°C
	to cyclopropyl	 Operation is done
	ethyl ketone	below 30 °C
Water contamination	 Decreases the 	 Purge the reactor with
	concentration of	nitrogen gas all the
	Grignard reagent	time to reduce the
		condensation of water
		vapors in the reactor.
		 Use anhydrous ether
High acid concentration while quenching	 Probability of 	• Use of low
	formation of	concentration of acid
	rearranged product	
 Gummy deposit on the wall of reactor and 	 Methylcyclopropyl 	 Decrease the size of
around cooling coil	carboxylate entraps.	the batch.
	in the gummy	 Try Continuous
	material.	Process
By Products (Isopropanol and Methanol)	 Reacts with 	Azetrope removal of
	brominating reagent	Isopropanol &
	in the second step.	methanol using
		ethylacetate at ≤ 50
		သ

Problems	Consequences	Solution
Contamination of Isopropanol/methanol	Consumption of brominating	Try to minimize IPA/methanol
•	agent to form 2-bromopropane/	contamination in step 1.
	bromomethane	After checking GC, compensate for
		IPA/Methanol by adding excess of
		reagent
Contamination of Pyridine	Carried over to next step	Wash the product in pmethylene chloride
		With aducous itel
Distill off solvent directly from reactor	Resulted in thick solid	Transfer to rotary evaporator directly and
	triphenyl phosphine oxide in	remove 2/3 of dichloromethane followed
	the reactor.	by treatment with pentane to form free
and the control		flowing solid

		• 1.		. N.S
	Problems	Consequences	Solution	• • • • • • • • • • • • • • • • • • • •
•	Exothermic Reaction	Loss of Product	 Reaction vessel is equipped with condensor hooked to chiller at ≤ -10 °C. 	
•	Direct Distillation under high vacuum at room temperature	Loss of Product	 Quenching by adding the reaction mixture into ice-water and extracted with pentane Distilling off pentane under vacuum using water aspirator at dry ice-acetone temperature. Dutting multiple cold-trane in series 	
•	Purification	•	 Using packed column It further removes traces of pentane 	
]				
٠				
•				
		*		÷

Future Target Molecules

Bicyclopropylidenemethane Isp = 313.4

Summary

- generating Grignard reagent in situ, thus avoiding handling of moisture The synthesis of 1-cyclopropylcyclopropan-1-ol was developed by sensitive and flammable preformed ethylmagnesium bromide.
- bicyclopropylidene. There is a need to find an alternative synthetic Three steps synthesis was used to prepare 7-8 lbs of route (maximum 2 steps) for it.
- About 200 g of 1,5-hexadiyne was synthesized using environmentally friendly process that eliminates the use of free bromine, controlled solvent dichloromethane and liquid ammonia, was worked out.
- Collected hazard data on bicyclopropylidene and 1,5-hexadiyne