## Project Design Phase-II Technology Stack (Architecture & Stack)

| Date          | 31 January 3035                                 |  |
|---------------|-------------------------------------------------|--|
| Team ID       | LTVIP2025TMID32512                              |  |
| Project Name  | Classifying fabric patterns using deep learning |  |
| Maximum Marks | 4 Marks                                         |  |

## **Technical Architecture:**

The Deliverable shall include the architectural diagram as below and the information as per the table 1 & table 2

**Example: Order processing during pandemics for offline mode** 

Reference: https://developer.ibm.com/patterns/ai-powered-backend-system-for-order-processing-during-pandemics/

## **Guidelines:**

By leveraging convolutional neural networks, it can identify and categorize patterns like stripes, florals, and geometric designs, saving time and resources in manual review processes



**Table-1 : Components & Technologies:** 

| S.No | Component                       | Description                                                      | Technology                                       |
|------|---------------------------------|------------------------------------------------------------------|--------------------------------------------------|
| 1.   | User Interface                  | Interface for uploading fabric images and displaying predictions | HTML, CSS, JavaScript, React.js                  |
| 2.   | Application Logic-1             | Handles image preprocessing, resizing, and normalization         | Python, OpenCV                                   |
| 3.   | Application Logic-2             | Deep learning model for pattern classification                   | TensorFlow / Keras                               |
| 4.   | Application Logic-3             | Defect detection in fabric patterns                              | Python, Custom CNN-based anomaly detection       |
| 5.   | Database                        | Stores user data, pattern labels, and classification results     | MySQL or MongoDB                                 |
| 6.   | Cloud Database                  | Cloud storage for scalable access to fabric images and results   | Firebase, AWS RDS                                |
| 7.   | File Storage                    | Stores raw and processed images                                  | AWS S3, Local Filesystem                         |
| 8.   | External API-1                  | API for real-time pattern suggestion or design matching          | Custom Recommendation API / Google<br>Vision API |
| 9.   | External API-2                  | Integration with fabric libraries for label reference            | FabricNet API (if available) or dummy API        |
| 10.  | Machine Learning Model          | Classifies patterns into categories                              | Convolutional Neural Network (CNN)               |
| 11.  | Infrastructure (Server / Cloud) | Hosting and deployment of the full-stack application             | Heroku, AWS EC2, Google Cloud Run                |

**Table-2: Application Characteristics:** 

| S.No | Characteristics          | Description                                              | Technology                                        |
|------|--------------------------|----------------------------------------------------------|---------------------------------------------------|
| 1.   | Open-Source Frameworks   | Frameworks used for development                          | TensorFlow, Keras, Flask, React.js                |
| 2.   | Security Implementations | Data privacy, image protection, and authentication       | SHA-256, JWT, OAuth 2.0, SSL/TLS<br>Encryption    |
| 3.   | Scalable Architecture    | Supports microservices and modular development           | Docker, Kubernetes (optional for scaling)         |
| 4.   | Availability             | Cloud-hosted with redundancy and auto-recovery           | AWS Elastic Load Balancer, Firebase<br>Hosting    |
| 5.   | Performance              | Fast classification, use of caching and optimized models | Redis Cache, Model Quantization, CDN (Cloudflare) |

## References:

https://c4model.com/

https://developer.ibm.com/patterns/online-order-processing-system-during-pandemic/

https://www.ibm.com/cloud/architecture

https://aws.amazon.com/architecture

https://medium.com/the-internal-startup/how-to-draw-useful-technical-architecture-diagrams-2d20c9fda90d