Homework 6 Solutions, MAE281A 2016

Prepared by Shumon Koga, 2/19/2016

Barbashin-Krasovskii's Theorem

Let x = 0 be an equilibrium point of $\dot{x} = f(x)$, and let V be a functional of x. Then, x = 0 is a.s. if

- V is "pdf" and $\dot{V} \leq 0$ for $\forall x \in D$.
- no solution can stay forever in $S := \{x \in D | \dot{V} = 0\}$ other than $x(t) \equiv 0$.

In addition, x = 0 is g.a.s. if V is radially unbounded.

La Salle's Invariance Principle

Let Ω be a compact positively invariant set of $\dot{x} = f(x)$, and let V be a functional of x. Suppose

- $\dot{V} \le 0$ for $\forall x \in D$.
- $E:=\left\{x\in\Omega|\dot{V}=0\right\}$, and M be the largest invariant set contained in E.

Then, $x(t) \to M$ as $t \to \infty$ if $x(0) \in \Omega$.

1

Using the Lyapunov function candidate

$$V = \frac{1}{4}x^4 + \frac{1}{2}y^2 + \frac{1}{4}z^4 \tag{1}$$

study the stability of the origin of the system

$$\dot{x} = y, \tag{2}$$

$$\dot{y} = -x^3 - y^3 - z^3,\tag{3}$$

$$\dot{z} = -z + y. \tag{4}$$

Solution

By (1), V is "pdf" and radially unbounded. Taking time derivative and from (2) (4), we obtain

$$\dot{V} = x^3 \dot{x} + y \dot{y} + z^3 \dot{z} = x^3 y + y(-x^3 - y^3 - z^3) + z^3(-z + y)$$

$$= -y^4 - z^4,$$
(5)

thus $\dot{V} \leq 0$ for $\forall (x, y, z) \in \mathbb{R}^3$.

Let $S := \{(x, y, z) \in \mathbb{R}^3 | \dot{V} = 0\} = \{y = 0, z = 0\}$. Then, substituting y = 0 and z = 0 in (3), we obtain x = 0. Therefore, no solution can stay forever in S other than the origin $(x, y, z) \equiv 0$. By Barbashin-Krasovskii's Theorem, we conclude that (x, y, z) = 0 is g.a.s.

Consider the system

$$\dot{x} = -x + yx + z\cos(x),\tag{6}$$

$$\dot{y} = -x^2,\tag{7}$$

$$\dot{z} = -x\cos(x). \tag{8}$$

- a) Determine all the equilibria of the system.
- b) Show that the equilibrium x = y = z = 0 is globally stable.
- c) Show that $x(t) \to 0$ as $t \to \infty$.
- d) Show that $z(t) \to 0$ as $t \to \infty$.

Solution

a) Let (x^*, y^*, z^*) be an equilibrium of the system. Then, by (7), we have $x^* = 0$. Substituting $x^* = 0$ into (6), we have $z^* = 0$. y^* is arbitral in this system. Therefore, the equilibria of the system is written as

$$(x^*, y^*, z^*) = (0, y^*, 0) \tag{9}$$

with an arbitral point y^* .

b) Let V(x, y, z) be a Lyapunov candidate s.t.

$$V(x,y,z) = \frac{1}{2}x^2 + \frac{1}{2}y^2 + \frac{1}{2}z^2.$$
 (10)

Then, V(0) = 0 and V > 0 for $\forall (x, y, z) \neq 0$, and thus V is "pdf". In addition, $V \to \infty$ as $|(x, y, z)| \to \infty$, thus V is radially unbounded. Taking time derivative and from (6)–(8), we obtain

$$\dot{V} = x\dot{x} + y\dot{y} + z\dot{z} = x(-x + yx + z\cos(x)) - x^2y - xz\cos(x)
= -x^2 \le 0, \quad \forall (x, y, z)$$
(11)

 \dot{V} is "nsdf". Therefore, the system is globally stable at the origin x=y=z=0.

- c) Let $E := \{(x, y, z) \in \mathbb{R}^3 | \dot{V} = 0\}$. Then, by (11), we have $E = \{x = 0\}$. By La Salle's theorem, the solution converges to the largest invariant set contained in E, which leads to at least $x(t) \to 0$ as $t \to \infty$.
- d) To obtain the largest invariant set $M \in E = \{x = 0\}$, substituting x = 0 in (6), we have z = 0. Since $(0, y^*, 0)$ is the equilibrium set by problem a), it yields $M = \{x = 0, z = 0\}$. By La Salle's theorem, we can say $x(t) \to 0$ and $z(t) \to 0$ as $t \to \infty$.

Which of the state variables of the following system are guaranteed to converge to zero from any initial condition?

$$\dot{x}_1 = x_2 + x_1 x_3,\tag{12}$$

$$\dot{x}_2 = -x_1 - x_2 + x_2 x_3,\tag{13}$$

$$\dot{x}_3 = -x_1^2 - x_2^2. \tag{14}$$

Solution

Let $x=(x_1,x_2,x_3)\in\mathbb{R}^3$, and $x^*=(x_1^*,x_2^*,x_3^*)$ be an equilibrium of the system. Then, by (14) we have $x_1^*=0$ and $x_2^*=0$. This is an equilibrium of (12)– (14) for arbitral x_3^* . Let V(x) be a Lyapunov candidate s.t.

$$V(x) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2 + \frac{1}{2}x_3^2.$$
 (15)

Taking the time derivative and from (12)– (14), we obtain

$$\dot{V} = x_1 \dot{x}_1 + x_2 \dot{x}_2 + x_3 \dot{x}_3 = x_1 (x_2 + x_1 x_3) + x_2 (-x_1 - x_2 + x_2 x_3) - x_3 (x_1^2 + x_2^2)
= -x_2^2 \le 0, \quad \forall x$$
(16)

Let $E := \{(x, y, z) \in \mathbb{R}^3 | \dot{V} = 0\}$. Then, by (16), we have $E = \{x_2 = 0\}$. To obtain the largest invariant set $M \in E$, substituting $x_2 = 0$ in (13), we have $x_1 = 0$. Since $(0, 0, x_3^*)$ is the equilibrium set, we have $M = \{x_1 = 0, x_2 = 0\}$. By La Salle's theorem, we can say $x_1(t) \to 0$ and $x_2(t) \to 0$ as $t \to \infty$.