BAS24

Roll No.

3

3

3

3

B. Tech. (1st Year) EVEN SEMESTER MAJOR EXAMINATION 2014 - 2015

APPLIED COMPUTATIONAL METHODS

Time: 3 Hrs. Max. Marks: 40

Note: Attempt all questions.

Q.1 Attempt any three parts of the followings. Question 1(a) is compulsory.

- (a) Using Newton-Raphson's method solve: $x^3 2x 5 = 0$ to find one root between 2 and 3 correct up to 4 decimal places.
- (b) Solve $x^3 9x + 1 = 0$ using Regula-Falsi method to find a root between 2 and 3 correct up to 4 decimal places.
- (c) Solve the following system of equations by Gauss-Siedel method:

$$x + 8y + 2z = 6;$$

 $6x + y + z = 7;$
 $3x + 2y + 10z = 9.$

(d) Solve the following system by Crout's method:

$$x + y + z = 1;$$

 $3x + y - 3z = 5;$
 $x - 2y - 5z = 10.$

Q.2 Attempt any three parts of the followings. Question 2(a) is compulsory.

(a) Use Newton's divided difference method to determine f(x) as a polynomial in x from table f(x) given below:

x	-4	-1	0	2	5
f(x)	1245	33	5	9	1335

(b) Estimate the missing term from table given below and then find value of f(0.5).

х	0	1	2	3	4
f(x)	1	3	9	-	81

(c) Evaluate $\int_0^5 \frac{dx}{4x+5}$ by Simpson's one – third rule by taking h=0.5 and hence find

value of $\log_e 5$ correct upto four decimal places.

(d) Use Simpson's three – eight rule to evaluate
$$\int_0^2 \frac{dx}{1+x+x^2}$$
 by taking $h=0.2$.

Q.3 Attempt any three parts of the followings. Question 3(a) is compulsory.

(a) Use Picard's method to solve
$$\frac{dy}{dx} = \frac{y-x}{y+x}$$
; $y(0) = 1$ and find $y(0.1)$.

Page 1 P.T.O.

- **(b)** Apply Runge Kutta method to solve $\frac{dy}{dx} = x + y^2$; y(0) = 1 and find y(0.2) in steps of 0.1.
- 3

3

- (c) Solve $\frac{dy}{dx} = x y^2$; y(0) = 0 by Euler's method to find the value of y(0.2).

(d) Solve the difference equation: $(E^2 - 4E + 4)u_n = 2^n$.

3

4

Attempt any three parts of the followings. Question 4(a) is compulsory. **Q.4**

Calculate Bowley's coefficient of skewness from following table:

C.1.	0-10	10-20	20-30	30-40	40-50	50-60	60-70
frequency	3	6	11	15	11	4	2

Also, find Kurtosis of the table given below:

C. I.	0-10	10-20	20-30	30-40
frequency	1	3	4	2

- (b) Two regression lines are 20x 9y = 107 and 4x 5y = -33. Variance of x is 9. Calculate \bar{x} , correlation coefficient r and σ_{v} .
- (c) An urn contains 5 white, 7 red and 8 blue balls. If 4 balls are drawn one by one with replacement then find the probability that (i) none is white; (ii) all are white; (iii) at least one is white; and (iv) at most 3 are white.
- (d) In a sample of 1000 students, mean of a test is 14 and S.D. is 2. Assuming Normal Distribution, find (i) how many students score between 12 and 15; (ii) how many students score above 18; (iii) how many students score below 8; and (iv) how many students score 16. Given following data:

Z	0.50	0.75	1.00	1.25	2.00	3.00
Area	0.1915	0.2734	0.3413	0.3944	0.4772	0.4987