[. (a)
$$\frac{\sqrt{491}}{\sqrt{2}}$$
 or $\frac{7}{\sqrt{21}}$ or $\frac{5}{\sqrt{2}}$ or $\frac{5}{\sqrt{2}}$ MI

 $\frac{2}{\sqrt{2}}$ MI

 $\sqrt{2}$ C.a.o AI

(b)
$$\frac{\sqrt{2}(1-\sqrt{2})}{(1+\sqrt{2})(1-\sqrt{2})}$$
 B1
 $\sqrt{2}-2$ or -1 A1
 $2-\sqrt{2}$ or $-\sqrt{2}+2$ A1

3.
$$b^2 - 4ac = 0$$
 or $(2m)^2 - 4x1x(3m+4) = 0$ M
 $4m^2 - 12m - 16 = 0$ or $m^2 - 3m - 4$ Al
 $(m - 4)(m+1)$ M
 $m = 4$ Al
 $m = 4$ Al
 $m = -1$ Al $\frac{must}{4}$ Half $m = -1$
Do not Accept $2e^{-1}$

$$x = 9 - y$$
 BI

$$(9-y)^2 - 3(9-y)y + 2y^2 = 0$$
 M

$$\frac{02}{29^2} = \frac{69^2 - 459 + 81 = 0}{159 + 27 = 0}$$

$$(2y-9)(y-3)$$
 MI

$$y = \sqrt{\frac{9}{2}}$$
 Al BOTH

$$\mathcal{I} = \left(\begin{array}{c} \zeta \\ \frac{q}{2} \end{array} \right)$$
 At Both

$$a^2 - 3\alpha(9-\alpha) + 2(9-\alpha)^2$$
 M

$$62^{2} - 632 + 162 = 0$$

$$(2x-9\chi x-6)$$
 MI

$$x = \frac{6}{\frac{q}{2}}$$
 At Both

$$y = \frac{3}{9}$$
 Al Bort

5. (a) (3x±1)(3x±7) MI

$$\mathcal{I} = \sqrt{\frac{1}{3}}$$
At BOTH

(d)

BI -313 BOH CORRECTLY MARKED

BI -7 CORRECTLY MARKED

6.

BI - 1 (CORPT & INTRECEPT)

1 (welker y with copy)

- 7. (a) $y = -\frac{5}{4}x + \frac{7}{4}$ or SIGHT OF $-\frac{5}{4}$ BI $y - 7 = -\frac{5}{4}(x - 4)$ MI 5x + 4y = 48 AI
 - (b) SIGHT OF $\frac{4}{5}$ BI $y-7 = \frac{4}{5}(x-4)$ MI 5y=4x+19 O.E AI
 - CO CORPECT APPROACH SUBSTITUTION OR ELIMINATION ATTEMPT MI y=-3 OR x=12 WITH CORRECT WORKINGS AI x=12 OR y=-3 WITH CORRECT WORKINGS AI
- 8 (a) $15360 = \frac{12}{2} \left[2 \times 1500 + 11 d \right]$ O.E. MI ATTEMPT TO SOWE AT LAST TWO STIPS FROM HERE MI 3z = +40 AI (ACCRET -40)
 - (b) $T_y = \frac{y}{2} \left[2 \times 1500 + (y-1)(-40) \right] \text{ o.E. MI}$ $T_y = 20y(76-y)$ SIMPLIFIES TO THE ANSWER FIVEN IN A CONVICIONG WAY A!
 - C) ATTEMPTS SOUTION BY TRIALS OR 12-76n+1300 MI

 26 AL

 50 AI
 - (d) ATTIMPTS TO FIND $U_{26} = 500$ OR $U_{50} = -460 \text{ or } <0 \text{ MI}$ i. h = 2G Al dep

9. (a)
$$\left(\frac{dy}{dx}\right) 3x^2 - 10$$
 Al

CRADIENT = 2 \leftarrow SIGHT Al

VAUD METTER $y - y_0 = m(x - x_0)$ WI

 $y = 2x - 14$ O.E. Al

 $x + 2y + 18 = 0$ O.E. Al

(b)
$$x=7 + A(7,0) \in FA \in AI$$

 $y=-9 + B(0,-9) \in FA \in AI$
 $ALA = 31.5 \circ E$ Alfe

(b)
$$2x^{\frac{1}{2}}(4x-1)$$
 or $3x^{\frac{1}{2}}(4x-1)$ or $4x-1$ MI $9(\frac{1}{4}x^{\frac{1}{2}})$ or $\frac{1}{4}$. Al