

# Prijenos i distribucija električne energije

Energijske tehnologije FER 2008.



# Gdje smo:

- 1. Organizacija i sadržaj predmeta
- 2. Uvodna razmatranja
- 3. O energiji
- 4. Energetske pretvorbe i procesi u termoelektranama
- 5. Energetske pretvorbe i procesi u hidroelektranama
- 6. Energetske pretvorbe i procesi u nuklearnim el.
- 7. Geotermalna energija
- 8. Potrošnja električne energije



- 9. Prijenos i distribucija električne energije
- 10. Energija Sunca
- 11. Energija vjetra
- 12. Biomasa
- 13. Gorive ćelije i ostale neposredne pretvorbe
- 14. Skladištenje energije
- 15. Energija, okoliš i održivi razvoj

# Sadržaj

- prijenos električne energije
- distribucija električne energije
- rasklopna postrojenja

#### Dodatna informacije:

- Marijan Kalea: Prijenos električne energije, što je to?
   Kigen, 2006
- http://www.hep.hr
- http://www.ucte.org

- sustav koji obuhvaća proizvodnju, prijenos, raspodjelu i potrošnju električne energije
- osnovni zadatak pouzdana, sigurna, kvalitetna i ekonomična opskrba potrošača električnom energijom
- sustav čine:
  - elektrane
  - trošila (potrošači)
  - prijenosni vodovi
  - distribucijski vodovi
  - rasklopna postrojenja
  - transformatorske stanice
  - sustavi za upravljanje (nadzor i vođenje)
  - sustavi za telekomunikacije (prijenos podataka)
  - sustavi zaštite



# Vođenje elektroenergetskog sustava

- održavanje ravnoteže između proizvodnje i potrošnje električne energije uz:
  - što bolju ekonomičnost i sigurnost pogona
  - što bolju kvalitetu isporučene električne energije (napon i frekvencija)
- zadaci optimalnog vođenja elektroenergetskog sustava obuhvaćaju nadzor, upravljanje i optimiranje eksploatacije pogona
- vođenje pogona elektroenergetskog sustava podrazumijeva detaljno poznavanje strukture sustava, njegovih pogonskih i eksploatacijskih mogućnosti
- glavne aktivnosti vođenja su tzv. "on-line" prirode i zahtijevaju poznavanje trenutnog stanja u kojem se sustav nalazi

# Pojednostavljena shema EES-a







#### Elektrane





2008.

### Prijenosni vodovi





#### Transformatori





#### Rasklopna postrojenja





- Distribucija (TS VN/SN)





## **Prijenos**

- transport velikih količina električne energije od centara proizvodnje (elektrane) do centara potrošnje (gradovi, regije)
- pri visokom naponu
- na velike udaljenosti

# Distribucija

- razdioba električne energije unutar centara potrošnje (gradovi, regije) do krajnjih potrošača
- srednji i niski napon



# Prijenos električne energije

- za prijenos električne energije najčešće se koristi izmjenična trofazna električna prijenosna mreža koja se sastoji od visokonaponskih vodova i kabela, transformatora i druge opreme
- radi smanjenja gubitaka prijenos se vrši na visokim naponskim razinama
- visina naponskih razina određuje se prema veličini potrebe snage pri prijenosu i udaljenosti prijenosa
- u Hrvatskoj se za prijenos električne energije koriste naponske razine od 110, 220 i 400 kV
- najviše prijenosne naponske razine u svijetu su 1100 kV (u pogonu) i 1500 kV (u razvoju)

# Prijenosne ili visokonaponske mreža

- dio elektroenergetskog sustava koji električnu energiju prenosi na visokim naponskim razinama od centara proizvodnje (elektrane) od centara potrošnje (gradovi, regije)
- prijenosne mreže modernih elektroenergetskih sustava su građene tako da se međusobno povezuju i zatvaraju u povezane i međusobno zatvorene cjeline, čime se povećava pouzdanost opskrbe potrošača
- tako nastaju veliki elektroenergetski sustavi međusobno povezanih zemalja (→ UCTE = Union for the Coordination of Transmission of Electricity )
- prijenosna mreža energijom napaja razdjelnu mrežu, kojom se dalje energija prenosi do krajnjih korisnika

# Razdjelne (distribucijske) mreža

- dio elektroenergetskog sustava koji električnom energijom opskrbljuje transformatorske stanice zadnjeg stupnja transformacije i trošila (potrošače)
- sastoje se od razdjelnih vodova (kabelskih i nadzemnih), transformatora i druge električne opreme,
- prema naponskim razinama se dijele na srednjonaponske i niskonaponske mreže
- razdjelne mreže uglavnom se konstruiraju kao prostorno uzamčene (petljaste) mreže, radi mogućnosti višestranog napajanja potrošača
- u pogonu su uglavnom zrakaste (radijalne), odnosno takve da se u svakom trenutku potrošač napaja samo iz jednog smjera
- prostorna rasprostranjenost razdjelnih mreža značajno je veća od rasprostranjenosti visokonaponskih mreža, jer se razdjelne mreže prostiru do svakog potrošačkog čvorišta
- učestalost kabelskih vodova u razdjelnim mrežama znatno je veća nego kod visokonaponskih mreža

# Dio SN razdjelne mreže Zagreba



### Strukture razdjelnih mreža



# Strukture razdjelnih mreža (izvedba)

povezna struktura

prstenasta struktura





# Nazivni napon

- ime naponske razine
- napon koji se pridjeljuje električnoj opremi i dijelovima sustava za označavanje njihove naponske klase
- nazivni naponi definirani su normama, a primjeri nazivnih napona danas u primjeni u Hrvatskoj su:
  - 400 V (niski napon)
  - 10, 20, 35 kV (srednji napon)
  - 110, 220, 400 kV (visoki napon)
- električna oprema dimenzionirana je tako da u trajnom pogonu može podnijeti napon nešto veći od nazivnog (npr. 10% na prijenosnim vodovima)

# Prijenosne i distribucijske naponske razine



### Prijenosne i distribucijske naponske razine



### Električni vod

 skup jednog ili više električnih vodiča, izolacije i druge električne opreme koji zajedno služe za prenošenje električne energije

prema funkciji koju obavljaju vodovi se grubo mogu podijeliti na

prijenosne, distribucijske, instalacijske, ...

 prema mjestu postavljanja na nadzemne, podzemne, podvodne, ...

- najuobičajenija je podjela na zračne (nadzemne) i kabelske vodove
- vodiči zračnih vodova se najčešće izrađuju kao upletene niti od jednog (homogeni) ili više materijala, a postoje i posebne složenije izvedbe vodiča specijalnih namjena
- od materijala najviše se upotrebljavaju bakar i aluminij zbog svoje visoke vodljivosti, a aluminijski se vodiči često kombiniraju s čelikom zbog boljih mehaničkih svojstava



### Nadzemni vodovi

### Veličine stupova - usporedba



 $2 \times 110kV$ 

 $2 \times 220kV$ 

2 x 400kV

### Vrh čelično-rešetkastog stupa 220 kV voda u Hrvatskoj

zatezni stup

noseći stup



### Kabel

- izoliran (obložen) električni vod s jednim ili više vodiča unutar jednog zajedničkog plašta (omotača)
- kabelski vodiči izrađeni su najčešće od čistog bakra ili aluminija i sastoje se od više usukanih žica (niti)
- izolacija pojedinih vodiča i cijelog kabela ovisi o namjeni kabela i pogonskom naponu
- za izolaciju kabela se najčešće koriste guma i termoplastične mase, a u starijim izvedbama i papir natopljen uljem i/ili smolom.
- plašt kabela štiti kabel od prodora vode i vlage, a kabeli mogu imati i oklop koji ih štiti od kemijskih i mehaničkih oštećenja
- prema broju vodiča kabeli se djela na jednožilne i višežilne (dvožilni, trožilni, itd)
- prema mjestu polaganja na podzemne, podvodne, zračne, itd.



### Rasklopna postrojenja

- električna postrojenja na krajevima vodova
- u modelu mreže predstavljena su čvorištima
- sadrže
  - prekidače
  - rastavljače
  - transformatore
  - sabirnice
  - zaštitu



Energijske tehnologije: Prijenos i distribucija električne energije

### **Prekidači**

#### uključenje i isključenje vodova

- u normalnom pogonu
- u slučaju kvarova

# Rastavljači

- rastavljači vidljivo odvajaju dijelove rasklopnog postrojenja
- ne upotrebljavaju se za prekidanje struje
- isklapanje i uklapanje rastavljača provodi se kada rastavljačem ne teče struja



# Što se dogodi ako rastavljač pokušamo upotrijebiti kao prekidač?

rastav1.mpeg

• <u>rastav2.mpeg</u>





### Održavanje ravnoteže proizvodnje i potrošnje

Tijekom normalnog rada EES-a, uz nazivnu frekvenciju, ukupna proizvedena snaga jednaka je zbroju ukupne snage svih potrošača i ukupnih gubitaka snage u sustavu.

$$\sum$$
 Proizvodnja =  $\sum$  Opterećenje +  $\sum$  Gubitci

Neravnoteža između proizvodnje i potrošnje: neravnoteža djelatne snage - odstupanje frekvencije neravnoteža jalove snage - odstupanje napona

Neravnoteža proizvodnje i potrošnje moguća je samo u malim iznosima (značajno manjim od ukupne snage).

# Djelatna snaga i frekvencija

http://www.ucte.org





http://www.powerworld.com/downloads/demosoftware.asp

# Tokovi snaga i gubici u mreži

#### Električne konstante vodova

- u grani (uzdužne)
  - otpor R
  - induktivitet L
- prema zemlji (poprečne)
  - vodljivost G (zanemariva)
  - kapacitet C

R – ovisi o materijalu i presjeku vodiča L i C – ovise o prostornom rasporedu voda

 Struja koja prolazi kroz vodič grije vodič i stvara gubitke u prijenosu

#### Gubitci u vodovima

- $\sim I^2R$
- smanjuju se povećavanjem naponskih razina (smanjuje se I)
- povećanjem presjeka vodiča (smanjuje se R)

#### Gubitci u transformatorima

- "u bakru" gubici uslijed protoka struje kroz transformator
- "u željezu" gubici magnetiziranja jezgre

# Tokovi snaga i gubici u mreži

 Primjer gubitaka na jednom nadzemnom vodu



 Primjer tokova snage i gubitaka u dijelu mreže



# Gubitci u vodovima - primjer

 Zamislimo da istim vodom prenosimo istu snagu na dvije različite naponske razine (npr. 110 i 220 kv). Radi jednostavnosti razmatrat ćemo samo jednu fazu i to samo djelatnu komponentu snage i djelatni otpor na vodu.



- Snaga koju prenosimo vodom u oba je slučaja ista P=I<sub>110</sub>V<sub>110</sub>=I<sub>220</sub>V<sub>220</sub>
- Gubici snage duž voda definirani su kao  $P_{g110} = I_{110}^2 R$  $P_{g220} = I_{220}^2 R$
- Za istu snagu prijenosa jer je V<sub>220</sub> =2 V<sub>110</sub>
   → I<sub>220</sub> = 1/2 I<sub>110</sub>
- Gubitci prijenosa  $\rightarrow P_{g220} = 1/4 P_{g110}$
- Za dvostruko veći napon, pri prijenosu iste snage, gubitci snage na vodovima su četiri puta manji.

## Istosmjerni prijenos

- prijenos električne energije visokonaponskim vodovima ili kabelima kojima teče istosmjerna struja
- kod prijenosa električne energije dominantan je izmjenični prijenos električne energije, no ponekad se izmjenični sustavi i/ili njihovi dijelovi povezuju istosmjernom vezom
- primjeri istosmjernih veza uključuju prijenos dugačkim podvodnim kabelima, povezivanje sustava različitih frekvencija ili sustava čije frekvencije nisu u sinkronizmu, kao i prijenos na izrazito velike udaljenosti
- loše strane istosmjernog prijenosa su teže prekidanje strujnog kruga i potreba za pretvaračima istosmjernog u izmjenični sustav s obje strane istosmjernog voda
- dobre strane su značajno manji gubici na dugim vodovima i manje naprezanje izolacije

# Istosmjerni prijenos



### Rekordi u prijenosu

- Najviši izmjenični napon: 1150 kV vod Ekibastuz-Kokshetau, Kazakhstan
- Najviši istosmjerni napon: +/-600 kV HVDC vod Itaipu, Brazil
- Najviši stupovi: 253m i 240m, Zhu Jiang (Pearl River), Kina
- Najdulji vod: 1700km vod Inga-Shaba, Kongo
- Najveći raspon među stupovima: 5376 m, Ameralik Span, Grenland
- najdulji podvodni kabel: ukupne duljine 360 km, pod vodom 290 km, Basslink, Australia-Tasmania



Prijenosni stup blizu Disneyworlda, Orlando, Florida

### HR EES



#### **Elektrane**



# Godišnja proizvodnja (GWh)



- elektrane
- postrojenja



- elektrane
- postrojenja

#### 400 kV vodovi

 prijenosna moć 1100 MVA



- elektrane
- postrojenja

#### 400 kV vodovi

prijenosna moć
 1100 MVA

#### 220 kV vodovi

 prijenosna moć 300-600 MVA



- elektrane
- postrojenja

#### 400 kV vodovi

prijenosna moć
 1100 MVA

#### 220 kV vodovi

 prijenosna moć 300-600 MVA

#### 100 kV vodovi

prijenosna moć 60-150 MVA





### **Dalekovodi**

| Prijenosno područje |              |         | Ukupno  |         |       |         |
|---------------------|--------------|---------|---------|---------|-------|---------|
|                     |              | 400 kV  | 220 kV  | 110 kV  | s.n.  | (km)    |
| RIJEKA              | U pogonu     | 259,2   | 371,0   | 915,9   | 65,5  | 1.611,6 |
|                     | Izvan pogona | 0,0     | 0,0     | 14,3    | 0,0   | 14,3    |
|                     | Izgrađeno    | 259,2   | 371,0   | 995,7   | 0,0   | 1.625,9 |
| OSIJEK              | U pogonu     | 202,2   | 53,6    | 756,1   | 19,0  | 1.030,9 |
|                     | Izvan pogona | 0,0     | 0,0     | 0,6     | 0,0   | 0,6     |
|                     | Izgrađeno    | 202,2   | 53,6    | 748,2   | 19,0  | 1.023,0 |
| SPLIT               | U pogonu     | 169,3   | 403,5   | 1.218,6 | 0,0   | 1.791,4 |
|                     | Izvan pogona | 0,0     | 1,4     | 39,5    | 0,0   | 40,9    |
|                     | Izgrađeno .  | 169,3   | 426,7   | 1.282,0 | 38,8  | 1.916,8 |
| ZAGREB              | U pogonu     | 528,2   | 316,4   | 1.709,8 | 41,0  | 2.593,4 |
|                     | Izvan pogona | 0,0     | 65,8    | 5,5     | 0,0   | 71,3    |
|                     | Izgrađeno    | 528,2   | 382,2   | 1.756,3 | 0,0   | 2.666,7 |
| HRVATSKA            | U pogonu     | 1.158,9 | 1.144,5 | 4.600,4 | 117,0 | 7.020,8 |
|                     | Izvan pogona | 0,0     | 67,2    | 59,9    | 0,0   | 127,1   |
|                     | Izgrađeno    | 1.158,9 | 1.233,5 | 4.782,2 | 57,8  | 7.232,4 |

#### **Transformatorske stranice**

| Prijenosno područje   | Broj trafostanica (kom.) |       |       |        | Broj polja s prekidačima (kom.) |     |     |        |
|-----------------------|--------------------------|-------|-------|--------|---------------------------------|-----|-----|--------|
| Prijeliosilo podrucje | 400/x                    | 220/x | 110/x | Ukupno | 400                             | 220 | 110 | Ukupno |
| Rijeka                | 1                        | 2     | 24    | 27     | 7                               | 24  | 130 | 161    |
| Osijek                | 1                        | 1     | 16    | 18     | 9                               | 5   | 125 | 139    |
| Split                 | 1                        | 1     | 26    | 28     | 5                               | 21  | 164 | 190    |
| Zagreb                | 2                        | 2     | 35    | 39     | 17                              | 16  | 256 | 292    |
| Hrvatska              | 5                        | 6     | 101   | 112    | 38                              | 66  | 678 | 782    |

| Prijenosno | Broj transformatora (kom.) |       |       |        | Instalirana snaga (MVA) |       |       |        |
|------------|----------------------------|-------|-------|--------|-------------------------|-------|-------|--------|
| područje   | 400/x                      | 220/x | 110/x | Ukupno | 400/                    | 220/  | 110/  | Ukupno |
| Rijeka     | 2                          | 5     | 38    | 45     | 800                     | 620   | 938   | 2.358  |
| Osijek     | 2                          | 2     | 28    | 32     | 600                     | 300   | 829   | 1.729  |
| Split      | 2                          | 5     | 42    | 49     | 800                     | 750   | 1.350 | 2.900  |
| Zagreb     | 6                          | 4     | 50    | 60     | 1.900                   | 600   | 1.556 | 4.056  |
| Hrvatska   | 12                         | 16    | 158   | 186    | 4.100                   | 2.270 | 4.673 | 11.043 |

### Bilanca 2005



#### Jednofazna shema prijenosnog sustava



### Uvoz, izvoz i tranzit električne enrgije





# **Net Transfer Capacities (NTC)**

| From | То   | MW   | Value provided by | Comment              |
|------|------|------|-------------------|----------------------|
| SI   | HR   | 900  | both countries    | Sommon               |
| HR   | SI   | 900  | both countries    |                      |
|      |      |      |                   |                      |
| From | То   | MW   | Value provided by | Comment              |
| HU   | HR   | 1000 | both countries    |                      |
| HR   | HU   | 400  | HR                | HU provided 800 MW   |
|      |      |      |                   |                      |
| From | То   | MW   | Value provided by | Comment              |
| HR   | BA   | 600  | both countries    |                      |
| BA   | HR   | 600  | both countries    |                      |
|      |      |      |                   |                      |
| From | То   | MW   | Value provided by | Comment              |
| HR   | JIEL | 500  | HR                | JIEL provided 800 MW |
| JIEL | HR   | 540  | JIEL              | HR provided 700 MW   |
|      |      |      |                   |                      |

#### Model 400 i 220 kV mreže



# TS Melina 400/220/110 kV



### **TS 400/220/110 Melina**



110 kV postrojenje

#### TS 400/220/110 Melina



# Kompresorsko postrojenje



NN postrojenje

SN postrojenje

### Gubici u prijenosnoj mreži

#### u vodovima

- I<sup>2</sup>R
- smanjuju se povećavanjem naponskih razina
- povećanjem presjeka vodiča

#### u transformatorima

- "u bakru"
   gubici uslijed protoka
   struje kroz
   transformator
- "u željezu"
   gubici magnetiziranja
   jezgre





# Union pour la Coordination du Transport de l'Electricite Union for the Coordination of Transmission of Electricity

- 23 zemlje
- 500 milijuna stanovnika
- 34 operatora prijenosnih sustava
- 210.000 km vodova
- kapacitet550 GW
- max opterećenje 380 GW
- god. potrošnja2.300 TWh



# UCTE i susjedni sustavi

#### **NORDEL**

Skandinavske zemlje

#### **UKTSOA**

Velika Britanija

#### **ATSOI**

Irska (cijela)

TESIS – Trans European Synchronously Interconnected System (zajedničko sikrono područlje)

ETSO – European Transmission System Operators (udruga evropskih operatora)



### Razmjene 2005



### Prijenosni sustavi u SAD



#### Total US electricity consumption

Bn kilowatt hours



#### Declining investment in US electricity grid



# Deregulacija i liberalizacija elektroenergetskog sektora

- električna energija postaje roba na tržištu, potrošači postaju kupci
- tržište favorizira troškovno povoljnije proizvođače i isporučitelje koji nude pakete usluga
- liberalizacija pretpostavlja da će elektroenergetska prijenosna mreža biti dostupna svima bez diskriminacije
- prijelaz od tradicionalnog paušalnog obračuna za kWh na promjenjivu cijenu, koja je usmjerena na potrošnju električne energije
- za kupce deregulacija znači mogućnost izbora opskrbljivača (proizvođača i isporučitelja), ali i različite cijene električne energije.



### Tržište električne energije



# Zaključak

- prijenosna mreža prenosi velike količine električne energije od elektrana do gradova (regija)
- prijenosne mreže modernih elektroenergetskih sustava međusobno se povezuju u velike međunarodne sustave, čime se povećava pouzdanost opskrbe potrošača, mogućnost trgovanja električnom energijom kao i mogućnost optimiranja rada sustava
- prijenosna mreža energijom napaja razdjelnu mrežu, kojom se dalje energija prenosi do krajnjih korisnika
- razdjelne mreže su za razliku od prijenosnih u pogonu uglavnom zrakaste (radijalne), odnosno takve da se u svakom trenutku potrošač napaja samo iz jednog smjera
- gubici u prijenosu električne energije smanjuju se povećanjem naponskih razina koje se određuju prema veličini potrebe snage pri prijenosu i udaljenosti prijenosa

# U slobodno vrijeme...

