Principal Component Analysis

or

Dimensionality Reduction

or

n_components = 6

Feature Reduction/Column Reduction

Step by Step Breakdown of PCA

- 1. Scale the data using standardization technique. 🗸
- 2. Calculates the Variance.
- 3. Calculates the Co Variance ~
- 4. Reduces the data in a Covariance Matrix.
- 5. Calculates the Eigen Values of the reduced Cov. Matrix <

$$Variance(x) = \left(\begin{array}{c} \\ \\ \end{array} \right)$$

Formula for Co variance

Joint variance measure of two different features

Cov(y,x) & Cov(x,y) remain the same

Population Covariance means calculating co variance of the entire dataset.

Sample Covariance Formula

Covariance Matrix

Diff b/w Corelation and Covariance

Correlation ranges from -1 to +1

Step 5_

$$a = [1,1,1]$$

b = np.diag(a)

