

Latar Belakang

Tujuan Penelitian

Melihat dampak yang disebabkan oleh kebijakan PSBB dan New Normal berdasarkan sisi perekonomian masyarakat sehingga dapat dijadikan sebagai acuan pertimbangan dalam membuat keputusan kebijakan selanjutnya

Berfokus kepada perbandingan kinerja algoritma klasifikasi dengan penggunaan Teknik Hyperparameter Tuning dan pemodelan visualisasi frekuensi kata dari respon masyarakat berupa wordcloud untuk bahan evaluasi atas kebijakan yang diterapkan

Metodologi Penelitian

- Pengambilan Data
- Pembersihan dan Preprocessing Data
- Pelabelan Data
- Pembagian Data
- Pembelajaran Model Klasifikasi
- Validasi Model
- Pengujian Model
- Evaluasi Model

		created_at	id	id_str	full_text	truncated	display_text_range	source
	0	Fri Oct 09 03:58:23 +0000 2020	1314414883320987649	1314414883320987649	@Mutmainah07I Maka dari itu, \nSemoga dg kejad	False	[14, 89]	<a <="" href="http://twitter.com/download/android" th="">
	1	Fri Oct 09 03:38:58 +0000 2020	1314409996071837696	1314409996071837696	RT @asboediono_id: Saya Sepakat dengan tulisan	False	[0, 140]	<a href="http://twitter.com/download/iphone" r<="" th="">
	2	Fri Oct 09 03:32:38 +0000 2020	1314408403838533632	1314408403838533632	Saya Sepakat dengan tulisan mas @iwanpiliang7	False	[0, 271]	<a href="http://twitter.com/download/iphone" r<="" th="">
	3	Fri Oct 09 03:09:42 +0000 2020	1314402632358719488	1314402632358719488	RT @asboediono_id: Sifat Sengkuni yang nyata t	False	[0, 140]	<a <="" href="http://twitter.com/download/android" th="">
	4	Fri Oct 09 03:04:10 +0000 2020	1314401240743202816	1314401240743202816	Sifat Sengkuni yang nyata terlihat didepan Mat	Data		
		1240	2228	Dir.		(O'	· ·	gambilan data twitter menggunal dengan Bahasa pemrograman Pyt
8	389	Tue Sep 22 11:54:21 +0000 2020	1308374071009107973	1308374071009107973	RT @CNNIndonesia: Menkeu Ramal Efek Ekonomi PS	(02	Rentang w	aktu pengumpulan <i>dataset</i> dari 10
8	390	Tue Sep 22 11:49:29 +0000 2020	1308372844342996993	1308372844342996993	RT @CNNIndonesia: Menkeu Ramal Efek Ekonomi PS		Data yang kebijakan p	diambil berisi kata kunci yang ber pemerintah dalam lingkup pereko
8	391	Tue Sep 22 11:47:16 +0000 2020	1308372288320933889	1308372288320933889	RT @CNNIndonesia: Menkeu Ramal Efek Ekonomi PS	(03	"dampak ek	omi psbb", "dampak ekonomi psbb", onomi new normal".

bilan data twitter menggunakan tools IDE Jupyter an Bahasa pemrograman Python 3.6.

source in_reply_to_:

1.314

1.314

pengumpulan dataset dari 10 April - 25 Juli 2020.

bil berisi kata kunci yang berkaitan dengan rintah dalam lingkup perekonomian masyarakat osbb", "dampak ekonomi psbb", "ekonomi new normal", ni new normal".

Skenario Pembahasan

- Proporsi Data Terbaik
- Model Klasifikasi Terbaik
- Kriteria Pemilihan Nilai Pembobot Kata dalam Teknik Grid
- Kriteria Pemilihan Nilai Hyperparameter dengan Asumsi Kondisi Sama
- Visualisasi WordCloud

Hasil pengujian pada kedua dataset setelah proses tuning ditemukan pemilihan parameter alpha menghasilkan nilai (0,1), C (1 dan 1,5), kernel (linier dan rbf), n_neighbours (3, 7, 8, dan 10), metrik (Minkowski), dan pembobotan kata dominan pada n-gram unigram dan kombinasi dari unigram-bigram.

	Propors i Data	Tanpa	Hyperpa	rameter	Tuning	Hyperparameter Tuning			
Model		Dataset 1		Dataset 2		Dataset 1		Dataset 2	
		Nilai Evaluasi (%)				Nilai Evaluasi (%)			
		Train	Test	Train	Test	Train	Test	Train	Test
BNB	80:20	92.50	89.00	94.81	91.25	99.5	95.5	97.43	93.75
DIND	70:30	92.85	89.33	94.35	91.66	99.57	94.17	99.35	95.00
SVM	80:20	99.12	94.50	99.75	97.75	99.75	96.5	99.87	97.25
20101	70:30	99.57	94.50	99.64	94.16	99.85	94.34	99.57	95.00
K-NN	80:20	90.18	83.00	88.00	88.00	100	93.00	100	96.00
IX-ININ	70:30	90.07	85.34	85.50	79.16	100	93.00	100	88.50

KNN	Dataset 1					
	80:20	70:30				
n_neighbors	8	7				
metric	minkowski	minkowski				

KNN	Dataset 2					
	80:20	70:30				
n_neighbors	10	3				
metric	minkowski	minkowski				

Berdasarkan tabel diatas, menunjukkan bahwa proporsi data 80% dataset pelatihan dan 20% dataset pengujian memiliki hasil yang lebih baik karena memberikan nilai evaluasi yang mendekati keseimbangan setelah proses tuning

Percobaan kedua digunakan untuk melihat algoritma klasifikasi apa yang menghasilkan akurasi terbaik antara kedua pendekatan dengan proporsi data 80% dataset pelatihan dengan 20% dataset pengujian.

	Model	Tanpa Hyperparameter Tuning					Hyperparameter Tuning				Vi-		
Dataset		Metrik Performa (%)			Waktu	Waktu Metrik Performa (%)					Waktu		
Dataset	Model	CV	Acc	Prec	Rec	F1- Score	Pelatih an (s)	CV	Acc	Prec	Rec	F1- Score	Waktu pencarian dalam grid (s 6,614 134,800 172,884 6.390 131.899 159,700
	BNB	86.94	89.00	87.59	80.14	83.70	0.007	92.88	95.50	92.41	95.03	93.70	The second secon
1	SVM	92.56	94.50	94.73	89.36	91.97	0.585	93.06	96.50	94.40	95.74	95.07	134,800
	K-NN	81.44	83.00	73.85	80.14	76.87	0.003	90.81	93.00	90.64	89.36	90.00	172,884
	BNB	90.87	91.25	90.15	96.35	93.15	0.007	92.44	93.75	95.49	94.33	94.90	6.390
2	SVM	94.31	97.75	97.60	98.78	98.18	0.915	94.38	97.25	97.20	98.38	97.78	131.899
	K-NN	81.38	88.00	86.71	95.14	90.73	0.003	89.94	96.00	94.59	99.19	96.83	159.700

Tabel diatas menunjukkan bahwa nilai parameter dari hasil teknik tuning meningkatkan nilai performansi masing-masing metrik pada kedua dataset. Dari segi akurasi klasifikasi, hasil antara ketiga model SVM+Tuning mengungguli model lainnya pada dataset 1 dan 2 yaitu masing-masing 96,50% dan 97,25%.

Grafik Hasil Percobaan 2

Gambar Perbandingan Nilai Akurasi Tanpa dan Dengan Hyperparemeter Tuning Proporsi Data 80:20, (a) grafik perbandingan dataset 1, (b) grafik perbandingan dataset 2.

(a)

Algoritma	Nama	Nilai Hyper	parameter	Hasil Pengujian N-Gram		
	Hyperpatemeter	Dataset 1	Dataset 2	Dataset 1	Dataset 2	
BNB	alpha	0.1	0.1	(1,2)	(1,1)	
SVM	C	1.5	1.5	(1.2)	(1.1)	
SVIVI	kernel	linear	rbf	(1,3)	(1,1)	
	n_neighbors	8	7	7		
KNN	metric	minkowski	minkowski	(1,3)	(1,1)	
	weights	distance	distance			

Dari tabel (b) menghasilkan beberapa asumsi yang sama seperti percobaan sebelumnya yaitu hasil kombinasi pembobotan kata yang terpilih setelah proses tuning secara teknik grid pada Tabel (a) bukan berdasarkan evaluasi nilai akurasi maupun AUC, melainkan ditentukan berdasarkan nilai validasi silang yang tertinggi walaupun nilai akurasi yang terpilih lebih kecil dibandingkan hasil nilai akurasi fitur pembobot kata yang lain. Fitur pembobot kata yang menghasilkan nilai akurasi tinggi (berwarna biru) terdapat pada gabungan unigram-bigram.

(b)

			Data		Dataset 2		
Model	Parameter		TF-IDF		TF-IDF Vectorizer		
Klasifikasi	rarameter	UNI	UNI BI	UNI TRI	UNI	UNI BI	UNI TRI
	CV Score	0.906	0.928	0.927	0.924	0.921	0.914
BNB	Accuracy	0.910	0.955	0.950	0.937	0.967	0.952
	AUC	0.903	0.953	0.950	0.935	0.961	0.942
	CV Score	0.908	0.928	0.930	0.943	0.927	0.917
SVM	Accuracy	0.925	0.952	0.965	0.972	0.967	0.955
	AUC	0.924	0.924	0.963	0.969	0.961	0.946
	CV Score	0.902	0.906	0.908	0.889	0.896	0.893
KNN	Accuracy	0.920	0.942	0.930	0.960	0.945	0.937
	AUC	0.917	0.932	0.921	0.950	0.930	0.922

Gambar (a) hasil kombinasi n-gram dari metode penyetelan parameter secara grid, (b) hasil nilai pengujian setiap pembobotan kata secara keseluruhan.

Percobaan 4 menjelaskan kriteria pemilihan nilai hyperparameter pada pengujian grid pada model SVM. Terdapat empat pilihan nilai C berbeda yang menghasilkan nilai akurasi yang sama. Oleh karena itu, penjabaran ini dilakukan untuk menentukan faktor-faktor kriteria pemilihan nilai yang diambil dengan teknik GridSearch dengan asumsi kondisi yang sama.

	Param	eter	Hasil Pengujian		
Dataset	kernel	С	Nilai rata rata Validasi Silang	Akurasi	
		1.0	0.9281	0.965	
1	linear	1.5	0.9306	0.965	
1		2.5	0.9294	0.965	
		3.0	0.9288	0.965	
		1.5	0.9438	0.9725	
2	rbf	2.0	0.9419	0.9725	
<u> </u>		2.5	0.9406	0.9725	
		3.0	0.9412	0.9725	

Hasil pengujian empat nilai C yang berbeda menghasilkan nilai akurasi yang sama. Nilai C 1,5 dipilih karena memberikan nilai validasi silang yang tinggi meskipun nilai akurasi yang diperoleh sama. Hal ini membuktikan bahwa kriteria kombinasi nilai hyperparameter yang dipilih dengan proses algoritma GridSearchCV didasarkan pada nilai Mean Cross-Validation (CV) yang tertinggi.

Visualisas

Grafik Dataset dan Pemodelan Kata

Analisa Pemodelan

Berdasarkan hasil pengujian, ada beberapa analisa setiap pemodelan yang menunjukkan bahwa

- 1. Penyebab utama model SVM menjadi unggul dibandingkan kedua model lain dikarenakan adanya pengaturan nilai C dan pemilihan tipe kernel pada proses pemodelan SVM yang sangat berpengaruh.
- 2. Nilai pengujian yang dihasilkan model BNB bergantung pada cara kerja algoritma dengan mengandalkan probabilitas dari setiap *record* data pada variabel independen, yaitu data teks *tweet*. BNB mendapatkan hasil akurasi lebih tinggi dari K-NN karena tahapan klasifikasinya dilakukan dengan memproses satu persatu data atribut.
- 3. Algoritma K-NN sangat sensitif terhadap pencilan (data yang terletak jauh dari pusat data/sekumpulan data). Oleh karena itu, nilai K mempengaruhi hasil test. Cara memilih hyperparameter K di algoritma K-NN harus mengetahui sebaran data.

Kesimpulan

Berdasarkan hasil analisa dan pengujian menunjukkan bahwa

- Proporsi data 80% dataset latih dengan 20% dataset uji merupakan proporsi data terbaik pada ketiga model.
- Penggunaan metode Hyperparameter Tuning dengan teknik GridSearch dapat meningkatkan performansi nilai uji ketiga model, khususnya model K-NN+Tuning dengan peningkatan hingga 10%. Namun, ini tidak terlalu efisien dan menghabiskan banyak daya komputasi. Proses ini dilakukan dengan memilih nilai akurasi berdasarkan nilai validasi silang tertinggi. Peningkatan akumulasi nilai ketiga algoritma pada dataset 1 dan 2 berturut turut sebesar 16.75% dan 10.05%.
- Algoritma klasifikasi yang menghasilkan kinerja klasifikasi terbaik berdasarkan nilai akurasi dari penerapan metode Hyperparameter Tuning adalah SVM+Tuning pada dataset 1 dan 2 secara berturut-turut sebesar 96.50% dan 97.25%, kemudian diikuti oleh BNB+Tuning pada dataset 1 dan 2 secara berturut-turut sebesar 95.50% dan 93.75%, dan K-NN+Tuning pada dataset 1 dan 2 secara berturut-turut sebesar 93.00% dan 96.00%.

Penutup.

Terima Kasih.

Disusun oleh: Niken Amelia

