Analisi sintattica LL(1)

Parte seconda

Parsificazione top-down: parser LL(1)

Sia $G = \langle V, \Sigma, P, S \rangle$ una grammatica LL(1), cioè tale che per ogni coppia di produzioni a partire da uno stesso simbolo non terminale A:

 $A \rightarrow \alpha e$

 $A \rightarrow \beta$, si ha

$$Gui(A \rightarrow \alpha) \cap Gui(A \rightarrow \beta) = \Phi.$$

Costruiamo a partire da G un riconoscitore che si *ispira* direttamente ad un automa a pila che accetta per stack vuoto.

Il riconoscitore scorre l'input (che sarà terminato da un simbolo di fine stringa (\$) con una testina di lettura e usa una pila, che supporremo svilupparsi da destra a sinistra per rendere più evidente il significato delle sue mosse.

L'informazione relativa alla scelta della produzione si può condensare in una *tabella* che per ogni variabile sulla pila e ogni simbolo terminale indica la produzione (se esiste) da applicare.

Parsificazione top-down: parser LL(1)

Un parser LL(1) (versione iterativa) analizza una stringa leggendola una sola volta da sinistra a destra. Utilizza una tabella derivata dalla grammatica (tabella LL(1)) e una Pila.

Input. 1) Stringa da parsificare

2) Tabella **M** che memorizza, per ogni coppia < variabile A, simbolo in input a > la produzione $A \to \alpha$ se $a \in Gui (A \to \alpha)$, ' ' se $a \notin Gui (A \to \alpha)$.

Output: Stringa accettata o segnalazione di errore

La lettura dell'input si rappresenta di solito mediante un puntatore che punta al primo simbolo non ancora analizzato (lookahead).

Grammatiche LL(1): esempio

Una grammatica per $\{0^n1^n \mid n > 0\}$

Si First(S) =
$$\{0\}$$
, First(A) = $\{0,1\}$, First(S1)=First(S)= $\{0\}$

Produzione	Ins	ieme gi	ıida	
$S \to 0A$		{0}		
$A \rightarrow S1$		{0}		
$A \rightarrow 1$		{1}		
		0	1	\$
	S	S→0A		
	A	A→S1	A→1	

La grammatica è LL(1)

Grammatiche LL(1): esempio

Input	stack	derivazione
Q011\$	S	S
Q011\$	0A	0A
0011\$	A	
0011\$	S1	0S1
0011\$	0A1	00A1
0011\$	A1	
0011\$	11	0011
0011\$	1	
0011\$		

Derivazione della stringa: $S \rightarrow 0A \rightarrow 0S1 \rightarrow 00A1 \rightarrow 0011$

Parsificazione top-down: proprietà principali di grammatiche LL(1)

ricorsioni sinistre

Una grammatica ricorsiva *sinistra*, cioè tale che per qualche non terminale A si ha una derivazione A \rightarrow ⁺ A α , *non* può essere LL(1). Il caso più tipico è quando la grammatica ha una produzione A \rightarrow A α (ricorsione sinistra *diretta*)

Per esempio
$$S \rightarrow S a \mid b$$

$$\{b\} = Gui (S \rightarrow Sa) = Gui (S \rightarrow b)$$

Derivazione tipica: per derivare la stringa ba

$$S \rightarrow S a \rightarrow ba$$

Nel primo passo si applica la produzione $S \rightarrow S$ a nel secondo quella $S \rightarrow b$.

Parsificazione top-down: proprietà principali di grammatiche LL(1)

Una grammatica LL(1) è:

- 1. Non ambigua (esiste *una sola* derivazione left-most)
- 2. Senza ricorsioni sinistre

ATTENZIONE: le proprietà 1, 2 sono *necessarie* ma **non** sufficienti.

Una grammatica può rispettarle tutte due ma non essere LL(1).

Esempio: $S \rightarrow aSb \mid a$

Parsificazione top-down: trasformazioni di grammatiche

Data una grammatica non LL(1), è qualche volta possibile ottenerne una equivalente LL(1).

In particolare si puo':

- eliminare le ricorsioni sinistre, sia immediate sia non immediate
- cercare di rendere la scelta della produzione da usare ad ogni passo deterministica posticipando, quando possibile, la scelta tra diverse alternative di riscrittura che hanno un prefisso comune: fattorizzazione sinistra

Parsificazione top-down: trasformazioni di grammatiche

Eliminazione delle ricorsioni sinistre immediate

$$\begin{array}{lll} A \rightarrow A\alpha_1 | \ A\alpha_2 | \ \dots | A\alpha_k & k \geq 1, & \alpha_i \neq \epsilon \\ A \rightarrow \beta_1 | \ \beta_2 | \ \dots | \ \beta_h & h \geq 1 \end{array}$$

$$k \ge 1$$
, $\alpha_i \ne \epsilon$
 $h \ge 1$

$$A \rightarrow \beta_1 A' | \beta_2 A' | \dots | \beta_h A'$$

$$A' \rightarrow \alpha_1 A' | \alpha_2 A' | \dots | \alpha_k A' | \epsilon$$

Infatti, per esempio:

$$\begin{array}{c} A \to A\alpha_i \to A\alpha_j\alpha_i \to^* A\alpha_l \ \ldots \ \alpha_j\alpha_i \to \beta_m\alpha_l \ \ldots \ \alpha_j\alpha_i \\ \text{si può ottenere anche da} \end{array}$$

$$\mathsf{A} \to \beta_m \mathsf{A}' \ \to \beta_m \alpha_l \ \mathsf{A}' \ \dots \ \to^* \beta_m \alpha_l \ \dots \dots \ \alpha_j \alpha_i \mathsf{A}' \ \to \beta_m \alpha_l \ \dots \ \alpha_j \alpha_i$$

Parsificazione top-down: trasformazioni di grammatiche

Eliminazione delle ricorsioni sinistre

Esempio

Fattorizzazione sinistra

Per ogni non terminale A si trova il massimo prefisso α comune a due o più alternative.

Si sostituiscono tutte le produzioni:

$$A \to \alpha \beta_1 \mid \alpha \beta_2 \mid \ldots \mid \alpha \beta_m$$

con
$$A \rightarrow \alpha A'$$

 $A' \rightarrow \beta_1 \mid \beta_2 \mid \dots \mid \beta_m$

lasciando le altre produzioni da A inalterate.

Per esempio:

$$S \to aB \mid aC \ , \ B \to b \ , C \to c$$
 diventa
$$S \to aS' \ , S' \to B \mid C \ , \ B \to b \ , C \to c$$

Calcolo di FIRST(X) (abbreviato F(X))

Un metodo per calcolare gli F(X) per una grammatica $G = \langle V, \Sigma, P, S \rangle$ dove $X \in V$:

1. Si pone inizialmente

$$F(A) = \{a \mid A \rightarrow a \ \alpha \in P\} \cup \{\epsilon \mid se \ A \rightarrow \epsilon \in P\}.$$

Altrimenti si inizializza $F(A) = \{\}$ (insieme vuoto)

- 2. *per ogni* produzione $A \rightarrow Y_1...Y_k$:
 - 1. si aggiunge $F(Y_1)$ -{ ε } a F(A).
 - 2. se $\varepsilon \in F(Y_1)$ (tipicamente se $Y_1 \rightarrow \varepsilon \in P$) si aggiunge $F(Y_2) \{\varepsilon\}$ a F(A).
 - 3. se $\varepsilon \in F(Y_1)$ e $\varepsilon \in F(Y_2)$ si aggiunge $F(Y_3) \{\varepsilon\}$ a F(A).
 - 4. e così via finchè si trovano Y_i annullabili.
 - 5. se $\varepsilon \in F(Y_1),...,F(Y_k)$ si aggiunge ε a F(A).
- 3. si ripete il passo 2, fino a che gli insiemi F(A) non cambiano più

Esempio

G =
$$\langle \{X, Y, Z\}, \{a, c, d\}, P, Z \rangle$$

P: $Z \rightarrow d \mid XYZ$
 $Y \rightarrow c \mid \mathcal{E}$
 $X \rightarrow Y \mid a$

Valori iniziali:
$$F(a) = \{a\}, F(c) = \{c\}, F\{d\} = \{d\}$$
 (non cambiano più)
$$F(Z) = \{d\}, F(Y) = \{\epsilon, c\}, F(X) = \{a\}$$

Esaminiamo le produzioni nell'ordine in cui sono scritte:

Dopo una *prima* passata: $F(Z) = \{d, c, a\}, F(Y) = \{\mathcal{E}, c\}, F(X) = \{\mathcal{E}, c, a\}$ Questi sono i valori *definitivi*.

Per esempio $c \in F(Z)$. Infatti $Z \to XYZ \to YYZ \to YZ \to cZ$ Esempio $2 : F(XYZ) = \{c, a\} \cup \{c\} \cup \{d, c, a\} = \{d, c, a\}$

FIRST: Esempio 2

1. Si pone inizialmente

$$F(A) = \{a \mid A \rightarrow a \ \alpha \in P\} \cup \{\epsilon \mid se \ A \rightarrow \epsilon \in P\}.$$

Altrimenti si inizializza $F(A) = \{\}$ (insieme vuoto)

- 2. *per ogni* produzione $A \rightarrow Y_1...Y_k$:
 - 1. si aggiunge $F(Y_1)$ -{ ε } a F(A).
 - 2. se $\varepsilon \in F(Y_1)$ (tipicamente se $Y_1 \rightarrow \varepsilon \in P$) si aggiunge $F(Y_2) \{\varepsilon\}$ a F(A).
 - 3. se $\varepsilon \in F(Y_1)$ e $\varepsilon \in F(Y_2)$ si aggiunge $F(Y_3) \{\varepsilon\}$ a F(A).
 - 4.
 - 5. se $\varepsilon \in F(Y_1),...,F(Y_k)$ si aggiunge ε a F(A).

$$E \rightarrow T E'$$

 $E' \rightarrow + T E' \mid \varepsilon$
 $T \rightarrow F T'$
 $T' \rightarrow * F T' \mid \varepsilon$
 $F \rightarrow (E) \mid a$

	passo 1	passo 2	passo 3
Е	{}	{}	$\{(, a)\}$
E'	{+,ε}	{+,ε}	{+,ε}
T	{}	/{(, a}	{(, a}
T'	{*,e}	{*,ε}	{*,ε}
F	{(, a}	{(, a}	{(, a}

FIRST di una stringa in $(\Sigma \cup V)^*$

Ricordiamo che:

1.
$$F(\varepsilon) = \{\varepsilon\}$$

Calcolo dei Follow(A) (abbreviato Fw(A))

Sia data una grammatica $G = \langle V, \Sigma, P, S \rangle$. Si eseguono i seguenti passi

- 1. Per ogni $A \in V$ Si calcolano F(A). Si suppone inizialmente $Fw(S) = \{\$\}$ e Fw(A) vuoto per ogni altra $A \in V$.
- 2. per ogni produzione $A \rightarrow \alpha B\beta \in P$, e per ogni β si *aggiunge* $F(\beta) \{\epsilon\}$ a Fw(B)
- 3. per ogni produzione $A \rightarrow \alpha B\beta \in P$ tale che $\epsilon \in F(\beta)$ (ovvero $\beta \in V^*$ è annullabile) si aggiunge Fw(A) a Fw(B);
- 4. si ripete il passo 3. fino a che gli insiemi non si cambiano più.

Note: conviene esaminare le produzioni in un ordine fisso.

Esempio

$$Z \to d \mid XYZ$$

$$Y \to c \mid \varepsilon$$

$$X \to Y \mid a$$

Ricordiamo che $F(Z) = \{d,c,a\}, F(Y) = \{\epsilon,c\}, F(X) = \{\epsilon,c,a\}$

Valori *iniziali*: $Fw(Z)=\{\$\}$, $Fw(Y)=\{\}$, $Fw(X)=\{\}$

Dopo il *passo* 2.: $Fw(Z)=\{\$\}$, $Fw(Y)=\{d,c,a\}$, $Fw(X)=\{d,a,c\}$.

Non ci sono le condizioni per eseguire il *passo 3*. quindi si salta. Questi sono i valori definitivi.

Per esempio $a \in Fw(Y)$.

Infatti $Z \rightarrow XYZ \rightarrow XYXYZ \rightarrow XYaYZ$

FOLLOW: Esempio 2

- 1. Per ogni $A \in V$ Si calcolano F(A). Si suppone inizialmente $Fw(S) = \{\$\}$ e Fw(A) vuoto per ogni altra $A \in V$.
- 2. per ogni produzione $A \rightarrow \alpha B\beta \in P$, e per ogni β si *aggiunge* $F(\beta) \{\epsilon\}$ a Fw(B)
- 3. per ogni produzione $A \rightarrow aB\beta \in P$ tale che $\varepsilon \in F(\beta)$ (ovvero $\beta \in V^*$ è annullabile) si aggiunge Fw(A) a Fw(B);
- 4. si ripete il passo 3. fino a che gli insiemi non si cambiano più.

$$E \rightarrow T E'$$

$$E' \rightarrow + T E' \mid \epsilon$$

$$T \rightarrow F T'$$

$$T' \rightarrow * F T' \mid \epsilon$$

$$F \rightarrow (E) \mid a$$

$$F(E) = F(T) = F(F) = \{ (, a) \}$$

$$F(E') = \{ +, \epsilon \}$$

$$F(T') = \{ *, \epsilon \}$$

	passo 1-2	passo 3 (prima iterazione)
Е	{\$,)}	{\$,)}
E'	{}	{\$,)}
T	{+}	{+, \$,)}
T'	{}	{+, \$,)}
F	{*}	{*,+,\$,)}

iterando il passo 3 gli insiemi non cambiano

Parsificazione top down: esempio di Grammatica LL(1)

Espressioni aritmetiche

Produzione	Insieme guida			
1. $E \rightarrow T E'$	$F(TE') = F(T) = F(F) = \{ (,$	id}		
2. E' \rightarrow + T E'	{ + }	$\left\{ \begin{array}{c} \{+\} \cap \{\}\} = \Phi \end{array} \right.$		
3. E' $\rightarrow \epsilon$	$\{ + \}$ $\Phi \cup FW(E') = \{ \}, \}$	$\int_{\mathbb{R}^{n}} \left(\left(\left(\left(\right), \psi \right) - \psi \right) \right) = 0$		
$4. T \rightarrow F T'$	$F(F) = \{(, id)\}$			
$5. T' \rightarrow * F T'$	{ * }			
6. T' $\rightarrow \epsilon$	$\{ * \}$ $\Phi \cup FW(T') = \{ +,), \$ \}$			
7. $F \rightarrow (E)$	{ (}	$\left.\begin{array}{c} \left\{ \ \left(\ \right\} \cap \left\{ \ \mathrm{id} \ \right\} = \Phi \end{array}\right.\right.$		
8. $F \rightarrow id$	{ id }	$ \left\{ \left(\right) \cap \left\{ 10 \right\} = \mathbf{\Psi} \right. $		
$FW(E') = FW(E) = \{$), \$}			
$FW(T') = FW(T) = (F(E') - \{\epsilon\}) \cup FW(E) = \{+, \}, \}$				

Nota: 'id' è considerato un unico terminale, equivale alla 'a' delle slides precedenti

Per esempio

-
$$FW(E') = {),\$} perchè$$

$$E \rightarrow TE'$$
 e

$$E \rightarrow^* (E) \rightarrow (TE')$$

- FW
$$(T') = \{+.\}$$
, \$} perché:

$$E \rightarrow TE' \rightarrow T$$

$$E \rightarrow^* (E) \rightarrow (TE') \rightarrow (T)$$

$$E \rightarrow * TE' \rightarrow T + TE'$$

Parsificazione top-down: la tabella del parser LL(1)

Si possono visualizzare le produzioni da usare in funzione delle variabili e dei simboli in input con una tabella che contiene, per ogni coppia <A, a> la produzione A $\rightarrow \alpha$ se $a \in Gui (A \rightarrow \alpha)$, ' 'se $a \notin Gui (A \rightarrow \alpha)$.

Nel caso delle espressioni aritmetiche:

	()	+	*	id	\$
E	$E \rightarrow T E'$				$E \rightarrow T E'$	
E'		$E' \to \epsilon$	$E' \rightarrow +T E'$			$E' \rightarrow \epsilon$
T	$T \rightarrow F T'$				$T \rightarrow F T$	
T'_		$T' \to \epsilon$	$T' \to \epsilon$	$T' \rightarrow *FT'$		$T' \rightarrow \epsilon$
F	$F \rightarrow (E)$				$F \rightarrow id$	

La grammatica è LL(1) in quanto in ogni elemento della tabella compare al massimo una produzione: gli insiemi guida delle riscritture di una stessa variabile sono disgiunti.

Parsificazione top-down: esempio di analisi per espressioni aritmetiche

input	stack ←	derivazione
(id+id)*id⊣	Е	Е
(id+id)*id⊣	TE'	TE'
(id+id)*id⊣	FT'E'	FT'E'
(id+id)*id⊣	(E)T'E'	(E)T'E'
(id+id)*id⊣	E)T'E'	(E)T'E'
(id+id)*id⊣	TE')T'E'	(TE')T'E'
(id+id)*id⊣	FT'E')T'E'	(FT'E')T'E'
(id+id)*id⊣	idT'E')T'E	(id T'E')T'E'
(id+id)*id⊣	T'E')T'E	(id T'E')T'E'
(id+id)*id⊣	E')T'E	(id E')T'E'
(id+id)*id⊣	+TE')T'E	(id +T E')T'E'

NOTA: leggasi \$ al posto di --|

A.A. 2014-2015

Parsificazione top-down: esempio di analisi

input	stack	derivazione
(id+id)*id⊣	TE')T'E	(id +T E')T'E'
(id+id)*id⊣	FT')T'E'	TE'
	••••	
(id+id)*id⊣	T'E'	(id + id)T'E'
(id+id)*id⊣	*FT'E'	(id + id)*FT'E'
(id+id)*id⊣	FT'E'	(id + id)* FT'E'
(id+id)*id⊣	id T'E'	(id + id)* id T'E'
(id+id)*id⊣ ↑	T'E'	(id + id)* id T'E'
(id+id)*id⊣ ↑	E'	(id + id)* id E'
(id+id)*id⊣ ↑		(id + id)* id

NOTA: leggasi \$ al posto di --|

Esercizi

1. Eliminare la ricorsione sinistra dalle grammatiche:

2. Data la seguente grammatica:

$$A \rightarrow A \times B$$

 $A \rightarrow B$
 $A \rightarrow B$

- a) Eliminare le ricorsioni sinistre
- b) Costruire sia nella grammatica data, sia nella grammatica ottenuta senza ricorsioni sinistre, l'albero di derivazione per la stringa: b m ((a s b) s b)

Parsificazione top-down: esercizi

1. Data la grammatica con il seguente insieme di produzioni:

$${S \rightarrow RA, S \rightarrow A[S], R \rightarrow E = B, B \rightarrow b, E \rightarrow bA, A \rightarrow \varepsilon}$$

- a) Calcolare gli inizi (first) e i seguiti (follow) dei simboli non terminali;
- b) Dire se la grammatica è LL(1), motivando la risposta.
- 2. Per ognuna delle seguenti grammatiche, specificate dall'insieme delle produzioni, costruire gli insiemi guida delle produzioni e, se la grammatica è LL(1), scrivere la tabella di parsificazione.