Overlapping with language modelling

Hold experiments on 3 models using the overlapping:

- simple-lstn, a very basic lstm
- awd-lstm, AWD ASGD Weight-Dropped LSTM
- mos-lstm, MOS Mixture of Softmaxes

To specify which model to run, use --main-model {simple-lstm | awd-lstm | mos-lstm} argument. There are additional common paramaters, as well as specific parameters for each model. Those can be found in main_run.py.

Set-up

Download the data (PTB, WT2, WT103):

```
chmod +x get_data.sh
./get_data.sh
```

For emotions, add in data/IEMOCAP/ the all_features_cv files.

Install dependencies:

```
python3.6 -m virtualenv venv
source venv/bin/activate
pip3 install -r requirements.txt
```

About the structure

Each model is in its corresponding folder. The main_py is responsible of handling the params and the common stuff among the models. It then loads the corresponding model, which means importing the right main.py file.

Simple Istm

Basic run:

```
python3 main_run.py --main-model simple-lstm --epochs 1000
```

MOS Istm

Basic run:

```
python3 main_run.py --main-model mos-lstm --data data/penn --dropouti 0.4 --dropoutl 0.29 --dropouth 0.225 --seed 28 --batch-size 12 --lr 20.0 -- epochs 1000 --nhid 960 --nhidlast 620 --emsize 280 --n-experts 15
```

AWD Istm

Basic run:

```
python3 main_run.py --main-model awd-lstm --batch-size 20 --data data/penn
--dropouti 0.4 --dropouth 0.25 --seed 141 --epochs 500
```

Emotions (WIP)

Simple run with no order:

```
python3 main_run.py --main-model emotions-simple-lstm --order
complete_random
```

Commands to reproduce the experiments

AWD PTB

No order:

```
python3 main_run.py --main-model awd-lstm --batch-size 20 --data data/penn
--dropouti 0.4 --dropouth 0.25 --seed 141 --seed-shuffle 141 --epoch 1000
--shuffle-full-seq
```

Local order:

```
python3 main_run.py --main-model awd-lstm --batch-size 20 --data data/penn
--dropouti 0.4 --dropouth 0.25 --seed 141 --seed-shuffle 141 --epoch 1000
--shuffle-row-seq
```

Standard order:

```
python3 main_run.py --main-model awd-lstm --batch-size 20 --data data/penn
--dropouti 0.4 --dropouth 0.25 --seed 141 --epoch 1000
```

Overlapping {2,5,7,10}:

```
overlaps=(2 5 7 10)
epochs=1000
for k in "${overlaps[@]}"
do
    :
    python3 main_run.py --main-model awd-lstm --batch-size 20 --data
data/penn --dropouti 0.4 --dropouth 0.25 --seed 141 --epoch
"$(($epochs/$k))" --init-seq "overlapCN_${k}"
    sleep 10
done
```

AWD WT2

No order

```
python3 main_run.py --main-model awd-lstm --epochs 750 --data
/data/noemien.kocher/datasets/wikitext-2 --dropouth 0.2 --seed 1882 --
batch-size 80 --shuffle-full-seq
```

Local order

```
python main_run.py --main-model awd-lstm --epochs 750 --data
/data/noemien.kocher/datasets/wikitext-2 --dropouth 0.2 --seed 1882 --
batch-size 80 --shuffle-row-seq
```

Standard order

```
python3 main_run.py --main-model awd-lstm --epochs 750 --data
/data/noemien.kocher/datasets/wikitext-2 --dropouth 0.2 --seed 1882 --
batch-size 80
```

Overlapping {2,5,7,10}

```
overlaps=(2 5 7 10)
epochs=750
for k in "${overlaps[@]}"
do
    :
    python3 main_run.py --main-model awd-lstm --data
/data/noemien.kocher/datasets/wikitext-2 --dropouth 0.2 --seed 1882 --
batch-size 80 --epochs "$(($epochs/$k))" --init-seq "overlapCN_${k}"
```

```
sleep 10
done
```

AWD WT103

No order

```
python3 -u main_run.py --main-model awd-lstm --epochs 14 --nlayers 4 --
emsize 400 --nhid 2500 --alpha 0 --beta 0 --dropoute 0 --dropouth 0.1 --
dropouti 0.1 --dropout 0.1 --wdrop 0 --wdecay 0 --bptt 140 --batch-size 60
--optimizer adam --lr 1e-3 --data /data/noemien.kocher/datasets/wikitext-
103 --when 12 --model QRNN --shuffle-full-seq
```

Local order

```
python3 -u main_run.py --main-model awd-lstm --epochs 14 --nlayers 4 --emsize 400 --nhid 2500 --alpha 0 --beta 0 --dropoute 0 --dropouth 0.1 --dropouti 0.1 --dropout 0.1 --wdrop 0 --wdecay 0 --bptt 140 --batch-size 60 --optimizer adam --lr 1e-3 --data /data/noemien.kocher/datasets/wikitext-103 --when 12 --model QRNN --shuffle-row-seq
```

Standard order

```
python3 -u main_run.py --main-model awd-lstm --epochs 14 --nlayers 4 --emsize 400 --nhid 2500 --alpha 0 --beta 0 --dropoute 0 --dropouth 0.1 --dropouti 0.1 --wdrop 0 --wdecay 0 --bptt 140 --batch-size 60 --optimizer adam --lr 1e-3 --data /data/noemien.kocher/datasets/wikitext-103 --when 12 --model QRNN
```

Overlapping {2,5,7,10}

```
sleep 10
done
```

Simple PTB

No order:

```
python3 main_run.py --main-model simple-lstm --epochs 100 --batch-size 20
--dropout 0.15 --nlayers 2 --bptt 70 --nhid 1500 --lr-decay 1 --shuffle-
full-seq
```

Local order:

```
python3 main_run.py --main-model simple-lstm --epochs 100 --batch-size 20
--dropout 0.15 --nlayers 2 --bptt 70 --nhid 1500 --lr-decay 1 --shuffle-
row-seq
```

Standard order:

```
python3 main_run.py --main-model simple-lstm --epochs 100 --batch-size 20 --dropout 0.15 --nlayers 2 --bptt 70 --nhid 1500 --lr-decay 1
```

Overlapping {2,5,7,10}:

```
overlaps=(2 5 7 10)
epochs=100
for k in "${overlaps[@]}"
do
    :
    python3 main_run.py --main-model simple-lstm --epochs
"$(($epochs/$k))" --batch-size 20 --dropout 0.15 --nlayers 2 --bptt 70 --
nhid 1500 --lr-decay 1 --init-seq "overlapCN_${k}"
    sleep 10
done
```

Simple WT2

No order

```
python3 main_run.py --main-model simple-lstm --epochs 100 --batch-size 80
--dropout 0.15 --nlayers 2 --bptt 70 --nhid 1150 --lr-decay 1 --data
/data/noemien.kocher/datasets/wikitext-2 --shuffle-full-seq
```

Local order

```
python3 main_run.py --main-model simple-lstm --epochs 100 --batch-size 80
--dropout 0.15 --nlayers 2 --bptt 70 --nhid 1150 --lr-decay 1 --data
/data/noemien.kocher/datasets/wikitext-2 --shuffle-row-seq
```

Standard order

```
python3 main_run.py --main-model simple-lstm --epochs 100 --batch-size 80
--dropout 0.15 --nlayers 2 --bptt 70 --nhid 1150 --lr-decay 1 --data
/data/noemien.kocher/datasets/wikitext-2
```

Overlapping {2,5,7,10}

```
overlaps=(2 5 7 10)
epochs=100
for k in "${overlaps[@]}"
do
    :
    python3 main_run.py --main-model simple-lstm --epochs
"$(($epochs/$k))" --batch-size 80 --dropout 0.15 --nlayers 2 --bptt 70 --
nhid 1150 --lr-decay 1 --data /data/noemien.kocher/datasets/wikitext-2 --
init-seq "overlapCN_${k}"
    sleep 10
done
```

MOS PTB

Standard order:

```
python main.py --main-model mos-lstm --data data/penn --dropouti 0.4 --dropoutl 0.29 --dropouth 0.225 --seed 28 --batch_size 12 --lr 20.0 --epoch 1000 --nhid 960 --nhidlast 620 --emsize 280 --n_experts 15
```

Overlapping {2,5,7,10}:

```
python main.py --main-model mos-lstm --data data/penn --dropouti 0.4 --dropoutl 0.29 --dropouth 0.225 --seed 28 --batch_size 12 --lr 20.0 --epoch 1000 --nhid 960 --nhidlast 620 --emsize 280 --n_experts 15 --init-seq overlapCN_7
```

Acknowledgements

Code is heavily borrowed from the following sources:

• simple-lstm: https://github.com/deeplearningathome/pytorch-language-model

• awd-lstm: https://github.com/salesforce/awd-lstm-lm

• mos-lstm: https://github.com/zihangdai/mos