Dynamic Distillation Network for Cross-Domain Few-Shot Recognition with Unlabeled Data

A Islam, R Chen, R Panda, L Karlinksky, RS Feris, RJ Radke

Motivation: Few-shot Learning

Few-shot Setup

Few-shot setup Meta-train Labeled base data K=3 Meta-test Query(?) Support

Cross-domain Few-shot Learning

Existing Approaches

Our Approach

Our setup

Our Framework

Consistency Loss

$$p_i^s = Softmax(g_s(f_s(x_i^s)))$$

$$p_i^w = \operatorname{Softmax}(g_t(f_t(x_i^w))/\tau)$$

$$\mathcal{L} = \frac{1}{N_S} \sum_{(x_i, y_i) \in \mathcal{D}_S} l_{\text{CE}}(y, p) + \lambda \frac{1}{N_U} \sum_{x_i \in \mathcal{D}_U} l_U(p_i^w, p_i^s)$$

Dataset: BSCD-FSL

Dataset	Train	Test	Classes
Mini-ImageNet	38400	20000	100
CropDisease	43456	10849	38
EuroSAT	18900	8100	10
ISIC	7007	3008	7
ChestX	18090	7758	7

Results: Cross-domain

	1-shot			5-shot				
Model	EuroSAT	CropDisease	ISIC	ChestX	EuroSAT	CropDisease	ISIC	ChestX
MAML*	-	-	-	-	71.70±.72	78.05±.70	40.13±.58	23.48±.48
ProtoNet*	-	-	-	-	73.29±.71	$79.72 \pm .79$	$39.57 \pm .57$	24.05 ± 1.01
MetaOpt*	-	-	-	-	64.44±.73	$68.41 \pm .73$	$36.28 \pm .50$	$22.53 \pm .91$
$STARTUP^{\dagger}$	$63.88 \pm .84$	$75.93 \pm .80$	$32.66 \pm .60$	$23.09 \pm .43$	82.29±.60	$93.02 \pm .45$	$47.22 \pm .61$	$26.94 \pm .45$
ProtoNet	$55.32 \pm .88$	$52.94 \pm .81$	$29.58 \pm .57$	$21.32 \pm .37$	76.92±.67	$81.84 \pm .68$	$42.49 \pm .58$	$24.72 \pm .43$
MatchingNet	$54.88 \pm .90$	$46.86 \pm .88$	$27.37 \pm .51$	$20.65 \pm .29$	68.00±.68	$63.94 \pm .84$	$33.96 \pm .54$	$22.62 \pm .36$
Transfer	$58.14 \pm .83$	$68.78 \pm .84$	$32.12 \pm .59$	$22.60 \pm .39$	80.09±.61	$89.79 \pm .52$	$43.88 \pm .57$	$26.51 \pm .43$
SimCLR(Base)	$58.28 \pm .90$	$61.58 \pm .88$	$32.43 \pm .56$	$22.37 \pm .42$	80.83±.64	$83.44 \pm .61$	$44.04 \pm .55$	$26.63 \pm .46$
SimCLR	$62.63 \pm .87$	$69.22 \pm .93$	$31.45 \pm .59$	$23.59 \pm .44$	82.76±.59	$89.31 \pm .53$	$42.18 \pm .54$	$29.56 \pm .49$
STARTUP	$64.32 \pm .88$	$74.45 \pm .86$	$31.73 \pm .57$	$22.27 \pm .41$	83.58±.60	$92.41 \pm .47$	$45.73 \pm .62$	$26.21 \pm .46$
Transfer+SimCLR	$63.91 \pm .83$	$70.35 \pm .85$	$31.67 \pm .55$	$23.72 \pm .44$	85.78±.51	$91.10 \pm .49$	$45.97 \pm .54$	$29.45 \pm .10$
Ours	$73.14 \pm .84$	$82.14 \pm .78$	$34.66 \pm .58$	$23.38 \pm .43$	89.07±.47	95.54±.38	49.36±.59	$28.31 \pm .46$

Results: In-domain

	miniIm	nageNet	tieredIn	nageNet
	1-shot	5-shot	1-shot	5-shot
ProtoNet MatchingNet Transfer	51.06±.83 52.34±.81 53.40±.80	73.49±.63 67.28±.67 74.26±.64	- - 58.61±.97	- 81.42±.65
Transfer+SimCLR	51.63±.82	74.65±.60	61.33±.96	82.89±.65
STARTUP	51.68±.84	74.05±.66	60.92±.96	82.11±.64
Ours	53.71 ± .83	76.02 ± .61	69.00±.96	85.93 ± .60

Analysis: Effect of Dynamic Distillation

	EuroSAT	CropDisease	ISIC	ChestX
Transfer	57.01	62.58	14.67	2.45
SimCLR	60.06	62.02	12.12	3.84
STARTUP	62.02	69.50	14.05	2.71
Ours	69.58	73.27	14.32	3.32

Analysis: Comparison with SS Learning

- our model has similarity with self-supervised non-contrastive loss similar to BYOL or DINO
- Using a supervised classifier linear layer as the projection head can solve the issue of *trivial solution* for the self-supervised learning.

	EuroSAT	CropDisease	ISIC	ChestX
Ours	89.07	95.54	49.36	28.31
Ours (distillation head)	80.06	89.31	46.63	25.29
Ours (DINO head)	85.74	90.55	46.24	25.42
Ours + SimCLR	88.48	93.80	49.10	29.45

Experiment on Fine-grained dataset CUB

- For CUB, we found that vanilla Transfer performs surprisingly well
- Adding SimCLR with Transfer decreases the accuracy
- Our method performs best among different approaches for fine-grained few-shot classification

Model	CUB		
MatchingNet	58.23		
ProtoNet	63.19		
Transfer	68.72		
SimCLR	62.84		
Transfer+SimCLR	67.82		
STARTUP	66.10		
Ours	69.50		

Limitations

 Improvement is not significant for extreme task difference mini-ImageNet -> ChesX

 More unlabeled dataset does not necessary produce much better feature

Summary

- We introduced a novel approach to utilize unlabeled data from the target domain for cross-domain few-shot learning
- Experiments show that our method achieves state-of-the-art results in the BSCD-FSL benchmark for both 1-shot and 5-shot classification.
- Our model also outperforms other approaches in the same-domain fewshot learning.
- Future work can be focused on applying our approach in each episode during meta-testing so that the model can learn more category-specific representations.