第一章 集合与函数

1. 用区间表示满足不等式 |x| > |x-4| 的所有 x 的集合是 ().

一、单项选择题

(A) $(-2,2)$	(B) $(2,+\infty)$	$(C)(-\infty,-2)$	$(D)(-\infty,+\infty)$
2. 函数 $f(x) = \frac{\sqrt{x}}{x}$	$\frac{2-4}{2}$ 的定义域是 ().	
2. 函数 $f(x) = \frac{\sqrt{x^2 - 4}}{x - 2}$ 的定义域是 (A) $(-\infty, 2) \cup (2, +\infty)$		(B) $(-\infty, -2] \cup [2, +\infty)$	
(C) $(-\infty, -2] \cup (2, +\infty)$		(D) $(-\infty, -2) \cup (-2, 2) \cup (2, +\infty)$	
3. 函数 $f(x) = \begin{cases} x-3, & -4 \le x \le 0 \\ x^2+1, & 0 < x \le 3 \end{cases}$ 的定义域是 ().			
$(A) -4 \le x \le 0$,	(B) $0 \le x \le 3$	
(C) $[-4,3]$		(D) $\{ x -4 \le x \le 0 \}$	$\cap \{ x 0 < x \le 3 \}$
4. 设 <i>f</i> (<i>x</i>) 的定义 ¹ (A) [0,4]	或是 [0,2], 则 $f\left(x^2\right)$ 的 (B) [0,2]	定义域是 (). (C)[–2,2]	(D) $[-\sqrt{2}, \sqrt{2}]$
5. 下列各组中 $f(x)$ (A) $f(x) = \sqrt{x^2}$, $g(x)$ (C) $f(x) = \ln x^2$, $g(x)$		的是 (). (B) $f(x) = x + 1, g(x)$ (D) $f(x) = \begin{cases} 1, x \ge 0 \\ -1, x < 0 \end{cases}$	
	$x^{2}, x \le -2$ $9, -2 < x < 2$,则下列 $\stackrel{?}{=}$ $2^{x}, x \ge 2$ (B) $f(1) = f(4)$	等式中不成立的是().
	色调增加函数,则其反函 (B) 单调减少		
8. 函数 $f(x) = \arctan \frac{1}{x}$ 在其定义域上是 ().			

(A) 有界奇函数 (B) 有界偶函数 (C) 无界奇函数 (D) 无界偶函数

9. 设 $f(x) = x^2 - 2$, g(x) = 2x + 1, 则复合函数 f[g(x)] = ().

(A)
$$4x^2 + 4x + 3$$

(B)
$$4x^2 + 4x -$$

(C)
$$2x^2 - 3$$

(A)
$$4x^2 + 4x + 3$$
 (B) $4x^2 + 4x - 1$ (C) $2x^2 - 3$ (D) $x^2 + 2x + 1$

10. 下列函数必定是奇函数的是().

(A)
$$y = f(x^2)$$

(B)
$$y = \frac{1}{2}(e^x + e^{-x})$$

(C)
$$y = f(x) - f(-x)$$

(D)
$$y = 5$$

11. 函数 $v = 10^{x-1} - 2$ 的反函数是().

(A)
$$y = 1 + \lg(x+2)$$
 (B) $y = 1 + \lg(x-2)$ (C) $y = 1 + \ln(x+2)$ (D) $y = 1 - \lg(x+2)$

12. 已知 f(x) 是线性函数, 且 f(-1)=2, f(1)=-2, 则 f(x)=().

$$(A) -2x$$

(B)
$$2x$$

(C)
$$x - 3$$

(D)
$$x + 3$$

13. $f(x) = x(e^x - e^{-x})$ 在其定义域 $(-\infty, +\infty)$ 内是 ().

- (B) 单调增加函数 (C) 偶函数 (D) 奇函数

14. 设 $f(x) = p \sin x + 2qx \cos x + x^2$, 其中 p,q 为常数, 已知 f(2) = 3, 则 f(-2) = ()

(C)
$$p \sin 2 - 4q \cos 2 + 4$$

(D)
$$8q \cos 2 + 5$$

15. 设 $f(x) = \frac{x}{1-x}$, g(x) = 1-x, 则 f[g(x+1)] = ().

(A) $\frac{-x}{1+x}$ (B) $\frac{x}{1+x}$ (C) $\frac{2x}{1-x}$ (D) $\frac{1+x}{x}$

(A)
$$\frac{-x}{1+x}$$

(B)
$$\frac{x}{1+x}$$

(C)
$$\frac{2x}{1-x}$$

(D)
$$\frac{1+x}{x}$$

(A)
$$f(x) = \begin{cases} x, & |x| > 1 \\ 1, & 0 \le x \le 1 \\ 1, & -1 < x < 0 \end{cases}$$

16. 下列函数中为奇函数的是 ().

(A)
$$f(x) = \begin{cases} x, & |x| > 1 \\ 1, & 0 \le x \le 1 \end{cases}$$
; (B) $\psi(x) = \begin{cases} -1, & -1 < x < 0 \\ 1, & 0 \le x < 1 \end{cases}$; $(x) = \begin{cases} e^x, & x \ge 0 \\ -\frac{1}{e^x}, & x < 0 \end{cases}$; (D) $h(x) = \begin{cases} e^x, & x > 0 \\ 0, & x = 0 \\ -\frac{1}{e^x}, & x < 0 \end{cases}$

(C)
$$g(x) = \begin{cases} e^x, & x \ge 0 \\ -\frac{1}{e^x}, & x < 0 \end{cases}$$

(D)
$$h(x) = \begin{cases} e^x, & x > 0 \\ 0, & x = 0 \\ -\frac{1}{e^x}, & x < 0 \end{cases}$$

17. $f(x) = (\sin 3x)^2$ 在定义域 $(-\infty, +\infty)$ 上为 ().

(A) 周期是 3π 的周期函数

(B) 周期是 $\frac{\pi}{3}$ 的周期函数

(C) 周期是 $\frac{2\pi}{3}$ 的周期函数

(D) 不是周期函数

18. 函数 $f(x) = \ln \frac{a-x}{a+x} (a>0)$ 是 ().

(A) 奇函数

(B) 偶函数

(C) 非奇非偶函数

(D) 奇偶性决定于 a 的值

19. 设
$$f(x) = \begin{cases} -x^3, -3 \le x \le 0 \\ x^3, 0 < x \le 2 \end{cases}$$
, 则此函数是 ().

- (A) 奇函数
- (B) 偶函数
- (C) 有界函数
- (D) 周期函数

- 20. 下列函数中一定没有反函数的是(
- (A) 奇函数
- (B) 偶函数
- (C) 单调函数
- (D) 有界函数

21.
$$\ \ \mathcal{U} f(x) = x |x|, x \in (-\infty, +\infty), \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \).$$

- (A) 在 $(-\infty, +\infty)$ 单调减;
- (B) 在 $(-\infty, +\infty)$ 单调增;
- (C) 在 $(-\infty,0)$ 内单调增, 而在 $(0,+\infty)$ 内单调减;
- (D) 在 $(-\infty,0)$ 内单调减, 而在 $(0,+\infty)$ 内单调增.
- **22.** 设 f(x) 的定义域为 [0,1],则函数 $f\left(x+\frac{1}{4}\right)+f\left(x-\frac{1}{4}\right)$ 的定义域为 ().
- (A)[0,1]
- (B) $\left[-\frac{1}{4}, \frac{5}{4}\right]$ (C) $\left[-\frac{1}{4}, \frac{1}{4}\right]$ (D) $\left[\frac{1}{4}, \frac{3}{4}\right]$
- **23.** 函数 $f(x) = \frac{2x}{1+x^2}$ 在其定义域上是 ().
- (A) 有界奇函数
- (B) 有界偶函数
- (C) 无界奇函数 (D) 无界偶函数

二、填空题

1. 函数
$$f(x) = \arcsin(x^2 - x - 1)$$
 的定义域 $D =$

- **2.** 函数 $y = \ln \ln x$ 的定义域 D = .
- **3.** 函数 $f(x) = \arcsin(x^2 x 1)$ 的定义域 D = .
- **4.** 函数 $y = \ln \ln x$ 的定义域 D = .
- **5.** 函数 $y = \ln \sqrt[3]{\frac{1}{r} 1}$ 的定义域 $D = \underline{\hspace{1cm}}$.

6. 设
$$f(x) = \begin{cases} |\sin x|, & |x| < 1 \\ 0, & |x| \ge 1 \end{cases}$$
,则 $f\left(-\frac{\pi}{4}\right) = \underline{\qquad}$

7.
$$\[\psi f(x) = \begin{cases} x+3, & 1 \le x \le 3 \\ \cos 2, & 3 < x \le 5 \end{cases}, \ \[\iint f(x+2) \] \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x+2)| \] \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x+2)| \] \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x+2)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x+2)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x+2)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x+2)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim_{x \to \infty} \int_{-\infty}^{\infty} |f(x)| \] \[\psi f(x) = \lim$$

8. 设函数 f(x) 的定义域为 [-1,1], 则复合函数 $f(\sin x)$ 的定义域为

9. 函数
$$f(x) = \frac{x}{1+x}$$
 的反函数 $f^{-1}(x) =$.

10. 设函数
$$f(x) = e^x$$
, $g(x) = \sin x$, 则 $f[g(x)] = _____.$

11. 设
$$f(x) = \cos 2x$$
, $f[g(x)] = 1 - x^2$, 则 $g(x) =$ _______, $g(x)$ 的定义 域为______.

12.
$$f(x) = \begin{cases} 1+x, & x < 2 \\ x^2-1, & x \ge 2 \end{cases}$$
 的反函数 $f^{-1}(x) =$

13. 已知
$$f(x) = \sin x$$
, $f[\phi(x)] = 1 - x^2$, 则 $\phi(x) = \arcsin(1 - x^2)$ 的定义域为______.

14. 设
$$f(x+1) = \begin{cases} 1-x, & x \le 0 \\ 1, & x > 0 \end{cases}$$
,则 $f[f(x)] = \underline{\hspace{1cm}}$.

16. 函数
$$y = \sqrt{3-x} + \arcsin \frac{3-2x}{5}$$
 的定义域为______.

18. 设
$$f(x)$$
 的定义域为[0,1],则 $f(x+a)+f(x-a)$ 的定义域为

21. 设
$$f(x)$$
 的定义域为 [1,2], 则 $f\left(\frac{1}{x+1}\right)$ 的定义域为 .

22.
$$f(x) = \log_2(\log_2 x)$$
的定义域为_____.

三、计算题

- 3. 设 $f(x) = \arcsin \frac{2x-1}{5} + \sqrt{\sin \pi x}$,求 f(x) 的定义域.
- **4.** 设 $f(x) = \ln \frac{2-x}{2+x}$,求 $f(x) + f(\frac{1}{x})$ 的定义域.
- **5.** $f(x) = \sin x$, $f[\varphi(x)] = 1 x^2$, 求 $\varphi(x)$ 及其定义域.
- **6.** 设 $f(x) = \begin{cases} -e^x, & x \le 0 \\ x, & x > 0 \end{cases}$, $\varphi(x) = \begin{cases} 0, & x \le 0 \\ -x^2, & x > 0 \end{cases}$, 求 f(x) 的反函数 g(x) 及 $f[\varphi(x)]$.
- 7. 设 $f(x) = \begin{cases} e^x, -\infty < x < 0 \\ \sqrt{x} + 1, 0 \le x \le 4 \end{cases}$,求 f(x) 的反函数 $\varphi(x)$. $x 1, 4 < x < +\infty$

四、综合与应用题

- **1.** $\exists y = 1 + a + f(\sqrt{x} 1)$ 满足条件 $y|_{a=0} = x \not z y|_{x=1} = 2$, 求 $f(x) \not z y$.
- **2.** 设 $f(x) = \frac{\sqrt{9-x^2}}{\ln(x+2)} + \arcsin \frac{2x-1}{4}$,求 f(x) 的定义域.
- **3.** 已知 $f(x) = e^{x^2}$, $f[\varphi(x)] = 1 x$,且 $\varphi(x) \ge 0$,求 $\varphi(x)$ 并写出它的定义域.
- **4.** 求函数 y = x|x| + 4x 的反函数.
- **5.** 判定函数 $f(x) = (e^{x+|x|}-1) \cdot \ln(1+|x|-x)$ 的奇偶性.
- **6.** 设 f(x) 对一切实数 x_1 , x_2 成立 $f(x_1+x_2)=f(x_1)f(x_2)$, 且 $f(0) \neq 0$, f(1)=a, 求 f(0) 及 f(n). (n 为正整数).
- **7.** 某厂按年度计划消耗某种零件 48000 件,若每个零件每月库存费 0.02 元,采购费每次 160 元,为节省库存费,分批采购. 试将全年总的采购费和库存费这两部分的和 f(x)表示为批量 x 的函数.
- **8.** 市场中某种商品的需求函数为 $q_d = 25 p$,而该种商品的供给函数为 $q_s = \frac{20}{3}p \frac{40}{3}$,试求市场均衡价格和市场均衡数量.
- **9.** 某商品的成本函数 (单位:元)为 C = 81 + 3q,其中 q为该商品的数量. 试问:
- (1) 如果商品的售价为12元/件,该商品的保本点是多少?

- (2) 售价为12元/件时,售出10件商品时的利润为多少?
- (3) 该商品的售价为什么不应定为2元/件?
- **10.** 某商品的需求量 Q 是价格 P 的线性函数 Q = a + bP,已知该商品的最大需求量为 40000 件 (价格为零时的需求量),最高价格为 40 元/件 (需求量为零时的价格). 求该商品的需求函数与收益函数.
- **11.** 收音机每台售价为 90 元,成本为 60 元.厂方为鼓励销售商大量采购,决定凡是订购量超过 100 台以上的,每多订购 1 台,售价就降低 1 分,但最低价为每台 75元.
- (1) 将每台的实际售价 p 表示为订购量 x 的函数;
- (2) 将厂方所获的利润 l 表示为订购量 x 的函数;
- (3) 某一商行订购了1000台,厂方可获利润多少?