<u>Dashboard</u> / <u>My courses</u> / <u>PSPP/PUP</u> / <u>Searching techniques: Linear and Binary</u> / <u>Week10 Coding</u>

Started on	Friday, 7 June 2024, 10:14 PM
State	Finished
Completed on	Monday, 10 June 2024, 11:59 PM
Time taken	3 days 1 hour
Marks	4.00/5.00
Grade	80.00 out of 100.00

```
Question 1
Correct
Mark 1.00 out of 1.00
```

Write a Python program for binary search.

For example:

Input	Result
1,2,3,5,8	False
3,5,9,45,42 42	True

Answer: (penalty regime: 0 %)

```
1 ⋅ def binary_search(arr,x):
2
        arr.sort()
3
        left,right=0,len(arr)-1
        while left <=right:</pre>
4
5
            mid=(left+right)//2
            if arr[mid]==x:
6 ₹
7
                 return True
8 •
            elif arr[mid]<x:</pre>
9
                 left=mid+1
10
            else:
11
                 right=mid-1
12
13
        return False
14
15
    numbers=list(map(int,input().split(',')))
    target=int(input())
16
    result=binary_search(numbers,target)
17
18 print(result)
```

	Input	Expected	Got	
~	1,2,3,5,8	False	False	~
~	3,5,9,45,42 42	True	True	~
~	52,45,89,43,11 11	True	True	~

Passed all tests! ✓

Correct

Marks for this submission: 1.00/1.00.

```
Question 2
Correct
Mark 1.00 out of 1.00
```

Given an listof integers, sort the array in ascending order using the Bubble Sort algorithm above. Once sorted, print the following three lines:

- <u>List</u> is sorted in numSwaps swaps., where numSwaps is the number of swaps that took place.
- 2. First Element: firstElement, the *first* element in the sorted <u>list</u>.
- 3. Last Element: lastElement, the *last* element in the sorted <u>list</u>.

For example, given a worst-case but small array to sort: a=[6,4,1]. It took 3 swaps to sort the array. Output would be

```
Array is sorted in 3 swaps.

First Element: 1

Last Element: 6
```

Input Format

The first line contains an integer, n, the size of the <u>list</u> a. The second line contains n, space-separated integers a[i].

Constraints

- · 2<=n<=600
- \cdot 1<=a[i]<=2x10⁶.

Output Format

You must print the following three lines of output:

- 1. <u>List</u> is sorted in numSwaps swaps., where numSwaps is the number of swaps that took place.
- 2. First Element: firstElement, the *first* element in the sorted <u>list</u>.
- 3. Last Element: lastElement, the *last* element in the sorted <u>list</u>.

Sample Input 0

3

123

Sample Output 0

<u>List</u> is sorted in 0 swaps.

First Element: 1 Last Element: 3

For example:

Input	Result
3 3 2 1	List is sorted in 3 swaps. First Element: 1 Last Element: 3
5 1 9 2 8 4	List is sorted in 4 swaps. First Element: 1 Last Element: 9

Answer: (penalty regime: 0 %)

```
1 def bubble_sort(arr):
2    num_swaps=0
3    n=len(arr)
4   for i in page (n):
```

```
TOP 1 in range (n):
5
            swapped= False
6 ▼
            for j in range (0,n-i-1):
7 🔻
                if arr[j]>arr[j+1]:
8
                    arr[j], arr[j+1]=arr[j+1],arr[j]
                    num_swaps += 1
9
                    swapped= True
10
            if not swapped:
11 •
12
                break
13
        return num_swaps
14
   n=int(input())
15
    arr=list(map(int,input().split()))
   num_swaps=bubble_sort(arr)
16
   print("List is sorted in", num_swaps,"swaps.")
17
18
   print("First Element:",arr[0])
19 print("Last Element:",arr[-1])
```

	Input	Expected	Got	
~	3 3 2 1	List is sorted in 3 swaps. First Element: 1	List is sorted in 3 swaps. First Element: 1	~
		Last Element: 3	Last Element: 3	
~	5 1 9 2 8 4	List is sorted in 4 swaps. First Element: 1 Last Element: 9	List is sorted in 4 swaps. First Element: 1 Last Element: 9	~

Passed all tests! ✓

Correct

Marks for this submission: 1.00/1.00.

10

Question **3**Correct

Mark 1.00 out of 1.00

Bubble Sort is the simplest <u>sorting</u> algorithm that works by repeatedly swapping the adjacent elements if they are in wrong order. You read an <u>list</u> of numbers. You need to arrange the elements in ascending order and print the result. The <u>sorting</u> should be done using bubble sort.

Input Format: The first line reads the number of elements in the array. The second line reads the array elements one by one.

Output Format: The output should be a sorted <u>list</u>.

For example:

Input	Result
6 3 4 8 7 1 2	1 2 3 4 7 8
5 4 5 2 3 1	1 2 3 4 5

Answer: (penalty regime: 0 %)

	Input	Expected	Got	
~	6 3 4 8 7 1 2	1 2 3 4 7 8	1 2 3 4 7 8	~
~	6 9 18 1 3 4 6	1 3 4 6 9 18	1 3 4 6 9 18	~
~	5 4 5 2 3 1	1 2 3 4 5	1 2 3 4 5	~

Passed all tests! ✓

Correct

Marks for this submission: 1.00/1.00.

Question 4
Correct
Mark 1.00 out of 1.00

Write a Python program to sort a list of elements using the merge sort algorithm.

For example:

Input	Result
5	3 4 5 6 8
6 5 4 3 8	

Answer: (penalty regime: 0 %)

	Input	Expected	Got	
~	5 6 5 4 3 8	3 4 5 6 8	3 4 5 6 8	~
~	9 14 46 43 27 57 41 45 21 70	14 21 27 41 43 45 46 57 70	14 21 27 41 43 45 46 57 70	~
~	4 86 43 23 49	23 43 49 86	23 43 49 86	~

Passed all tests! 🗸

Correct

Marks for this submission: 1.00/1.00.

Question **5**Not answered

Mark 0.00 out of 1.00

An <u>list</u> contains N numbers and you want to determine whether two of the numbers sum to a given number K. For example, if the input is 8, 4, 1, 6 and K is 10, the answer is yes (4 and 6). A number may be used twice.

Input Format

The first line contains a single integer n, the length of <u>list</u>

The second line contains n space-separated integers, <u>list[i]</u>.

The third line contains integer k.

Output Format

Print Yes or No.

Sample Input

7

0124653

-

Sample Output

Yes

For example:

Input	Result
5 8 9 12 15 3 11	Yes
6 2 9 21 32 43 43 1 4	No

Answer: (penalty regime: 0 %)

■ Week10_MCQ

Jump to...

Sorting ►

1.