Trabajo Práctico 1

Análisis de lenguajes de programación

LCC

Erik Gimenez

Manuel Spreutels

Augusto Rabbia

Septiembre, 2023

Gimenez - Spreutels - Rabbia

1 Soluciones

1.1 Ejercicio 1

Se agrega a la categoría sintáctica intexp las siguiente reglas:

$$intexp ::= var = intexp$$

$$| intexp , intexp$$
Sintaxis abstracta
$$intexp ::= var '=' intexp$$

$$| intexp ',' intexp$$
Sintaxis concreta

1.2 Ejercicio 2

Se agregaron en el archivo AST.hs los siguientes constructores:

- EAssgn :: Variable \rightarrow Exp Int \rightarrow Exp Int
- ESeq :: Exp Int \rightarrow Exp Int \rightarrow Exp Int

1.3 Ejercicio 3

En el archivo Parser.hs

1.4 Ejercicio 4

Se agregan a la semántica operacional Big-Step para expresiones las siguientes reglas:

$$\frac{\langle e, \sigma \rangle \downarrow_{exp} \langle n, \sigma' \rangle}{\langle x = e, \sigma \rangle \downarrow_{exp} \langle n, [\sigma' | x : n] \rangle} \text{EASSIGN}$$

$$\frac{\langle e_1, \sigma \rangle \downarrow_{exp} \langle n_1, \sigma' \rangle}{\langle e_1; e_2, \sigma \rangle \downarrow_{exp} \langle n_2, \sigma'' \rangle} \text{ESEQ}$$

1.5 Ejercicio 5

Suponemos $\alpha \leadsto \beta$ y $\alpha \leadsto \gamma$. Hacemos inducción sobre $\alpha \leadsto \beta$. Supongamos que la última regla utilizada fue:

• ASS.

Luego, sabemos:

a)
$$\langle e, \sigma \rangle \Downarrow \langle n, \sigma' \rangle$$

b)
$$\alpha = \langle v = e, \sigma \rangle$$

c)
$$\beta = \langle \mathbf{skip}, [\sigma' | v : n] \rangle$$

Analizamos $\alpha \rightsquigarrow \gamma$:

La regla aplicada debe ser **ASS** por la forma de α . Es decir, $\alpha \leadsto \gamma$ tiene la forma

$$\frac{\langle e, \sigma \rangle \Downarrow_{exp} \langle n', \sigma'' \rangle}{\langle v = e, \sigma \rangle \leadsto \langle \mathbf{skip}, [\sigma'' | v : n] \rangle} \text{ASS}$$

Luego, como \Downarrow es determinista, se tiene $\langle n, \sigma' \rangle = \langle n', \sigma'' \rangle$ y por lo tanto, $\gamma = \langle \mathbf{skip}, [\sigma'' | v : n'] \rangle = \langle \mathbf{skip}, [\sigma' | v : n] \rangle = \beta$

• SEQ1.

Sabemos:

a)
$$\alpha = \langle \mathbf{skip}; c_1, \sigma \rangle$$

b)
$$\beta = \langle c_1, \sigma \rangle$$

Analizamos $\alpha \rightsquigarrow \gamma$: la regla aplicada debe ser **SEQ1** puesto que **skip** es el primer comando de la secuencia en α . Es decir, $\alpha \rightsquigarrow \gamma$ tiene la forma

$$\frac{}{\langle \mathbf{skip}; c_1, \sigma \rangle \rightsquigarrow \langle c_1, \sigma \rangle}$$
 SEQ1

Luego, $\gamma = \langle c_1, \sigma \rangle = \beta$.

• IF1.

Se tiene:

a)
$$\langle b, \sigma \rangle \Downarrow \langle \mathbf{true}, \sigma' \rangle$$

b)
$$\alpha = \langle \mathbf{if} \ b \ \mathbf{then} \ c_0 \ \mathbf{else} \ c_1, \sigma \rangle$$

c)
$$\beta = \langle c_0, \sigma' \rangle$$

Analizamos $\alpha \rightsquigarrow \gamma$: observemos que por la forma de α , solo pueden aplicarse las reglas **IF1** e **IF2** para derivar $\alpha \rightsquigarrow \gamma$. Supongamos que se aplicó **IF2**:

$$\frac{\langle b, \sigma \rangle \Downarrow \langle \mathbf{false}, \sigma'' \rangle}{\langle \mathbf{if} \ b \ \mathbf{then} \ c_0 \ \mathbf{else} \ c_1, \sigma \rangle \leadsto \langle c_1, \sigma'' \rangle} \text{ IF 2}$$

Se deduce que $\langle b, \sigma \rangle \Downarrow \langle \mathbf{false}, \sigma'' \rangle$, pero \Downarrow es determinista $\stackrel{\mathbf{a})}{\Longrightarrow}$ absurdo. Luego, debió aplicarse $\mathbf{IF1}$ para $\alpha \leadsto \gamma$:

Gimenez - Spreutels - Rabbia

$$\frac{\langle b, \sigma \rangle \Downarrow \langle \mathbf{true}, \sigma'' \rangle}{\langle \mathbf{if} \ b \ \mathbf{then} \ c_0 \ \mathbf{else} \ c_1, \sigma \rangle \leadsto \langle c_0, \sigma'' \rangle} \text{ IF1}$$

Pero como \Downarrow es determinista, así que $\sigma'' = \sigma'$, y por tanto $\gamma = \langle c_0, \sigma'' \rangle = \langle c_0, \sigma'' \rangle = \beta$

• IF2.

Análogo al caso IF1

• REPEAT.

Se tiene:

- a) $\alpha = \langle \mathbf{repeat} \ c \ \mathbf{until} \ b, \sigma \rangle$
- b) $\beta = \langle c; \text{ if } b \text{ then skip else repeat } c \text{ until } b, \sigma \rangle$

Analizamos $\alpha \leadsto \gamma$: la regla aplicada debe ser **REPEAT** por la forma de α . Es decir, $\alpha \leadsto \gamma$ tiene la forma

 $\overline{\langle \text{repeat } c \text{ until } b, \sigma \rangle} \rightsquigarrow \langle c; \text{ if } b \text{ then skip else repeat } c \text{ until } b, \sigma \rangle$

Luego, $\gamma = \langle c; \text{ if } b \text{ then skip else repeat } c \text{ until } b, \sigma \rangle = \beta.$

• SEQ2.

Sabemos entonces:

- a) $\langle c_0, \sigma \rangle \rightsquigarrow \langle c'_0, \sigma' \rangle$
- b) $\alpha = \langle c_0; c_1, \sigma \rangle$
- c) $\beta = \langle c_0'; c_1, \sigma' \rangle$

HI: Suponemos que para toda subderivación de $\alpha \leadsto \beta$, de la forma $\alpha' \leadsto \beta'$, si $\alpha' \leadsto \beta'$ y $\alpha' \leadsto \beta''$, entonces $\beta' = \beta''$.

Por la forma de α , conocemos la forma de $\alpha \leadsto \gamma$, pues sólo **SEQ2** pudo aplicarse:

$$\frac{\langle c_0, \sigma \rangle \leadsto \langle c_0'', \sigma'' \rangle}{\langle c_0; c_1, \sigma \rangle \leadsto \langle c_0''; c_1, \sigma'' \rangle} \operatorname{SEQ2}$$

Luego, $\gamma = \langle c_0''; c_1, \sigma'' \rangle \stackrel{\text{(HI)}}{=} \langle c_0'; c_1, \sigma' \rangle = \beta.$

1.6 Ejercicio 6

En el archivo Eval1.hs

Gimenez - Spreutels - Rabbia

1.7 Ejercicio 7

En el archivo Eval2.hs

1.8 Ejercicio 8

En el archivo Eval3.hs

1.9 Ejercicio 9

Se agregan las siguientes reglas de evaluación de paso chico:

$$\frac{\langle c_0, \sigma \rangle \leadsto \langle c'_0, \sigma' \rangle}{\langle \mathbf{catch} \ c_0 \ \mathbf{with} \ c1, \sigma \rangle \leadsto \langle \mathbf{catch} \ c'_0 \ \mathbf{with} \ c1, \sigma \rangle} \text{ CATCH1}$$

$$\frac{\langle \mathbf{catch} \ \mathbf{skip} \ \mathbf{with} \ c1, \sigma \rangle \leadsto \langle \mathbf{skip}, \sigma \rangle}{\langle \mathbf{catch} \ \mathbf{err}_c \ \mathbf{with} \ c1, \sigma \rangle \leadsto \langle c1, \sigma \rangle} \text{ CATCHERR}$$

Por otro lado, se añade a la sintaxis concreta la siguiente regla de producción:

comm ::= 'catch' comm 'with' comm