# 18.650 - Fundamentals of Statistics

## 3. Methods for estimation

#### Goals

In the kiss example, the estimator was **intuitively** the right thing to do:  $\hat{p} = \bar{X}_n$ .

In view of LLN, since  $p=\mathbb{E}[X]$ , we have  $\bar{X}_n$  so  $\hat{p}\approx p$  for n large enough.

If the parameter is  $\theta \neq \mathbb{E}[X]$ ? How do we perform?

- Maximum likelihood estimation: a generic approach with very good properties
- 2. Method of moments: a (fairly) generic and easy approach
- 3. M-estimators: a flexible approach, close to machine learning

#### Total variation distance

Let  $(E,(\mathbb{P}_{\theta})_{\theta\in\Theta})$  be a statistical model associated with a sample of i.i.d. r.v.  $X_1,\ldots,X_n$ . Assume that there exists  $\theta^*\in\Theta$  such that  $X_1\sim\mathbb{P}_{\theta^*}\colon\theta^*$  is the **true** parameter.

**Statistician's goal:** given  $X_1,\ldots,X_n$ , find an estimator  $\hat{\theta}=\hat{\theta}(X_1,\ldots,X_n)$  such that  $\mathbb{P}_{\hat{\theta}}$  is close to  $\mathbb{P}_{\theta^*}$  for the true parameter  $\theta^*$ .

This means:  $\left|\mathbb{P}_{\hat{\theta}}(A) - \mathbb{P}_{\theta^*}(A)\right|$  is small for all  $A \subset E$ .

#### Definition

The total variation distance between two probability measures  $\mathbb{P}_{\theta}$  and  $\mathbb{P}_{\theta'}$  is defined by

$$\mathsf{TV}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta'}) = \max_{A \subset E} \Big| \mathbb{P}_{\theta}(A) - \mathbb{P}_{\theta'}(A) \Big|$$

## Total variation distance between discrete measures

Assume that E is discrete (i.e., finite or countable). This includes Bernoulli, Binomial, Poisson, . . .

Therefore X has a PMF (probability mass function):  $\mathbb{P}_{\theta}(X = x) = p_{\theta}(x)$  for all  $x \in E$ ,

$$p_{\theta}(x) \ge 0 \ , \quad \sum_{x \in E} p_{\theta}(x) = 1 \ .$$

The total variation distance between  $\mathbb{P}_{\theta}$  and  $\mathbb{P}_{\theta'}$  is a simple function of the PMF's  $p_{\theta}$  and  $p_{\theta'}$ :

$$\mathsf{TV}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta'}) = \frac{1}{2} \sum_{x \in E} \left| p_{\theta}(x) - p_{\theta'}(x) \right|.$$

## Total variation distance between continuous measures

Assume that E is continuous. This includes Gaussian, Exponential,  $\dots$ 

Assume that X has a density  $\mathbb{P}_{\theta}(X \in A) = \int_A f_{\theta}(x) dx$  for all  $A \subset E$ .

$$f_{\theta}(x) \ge 0, \quad \int_{E} f_{\theta}(x) dx = 1.$$

The total variation distance between  $\mathbb{P}_{\theta}$  and  $\mathbb{P}_{\theta'}$  is a simple function of the densities  $f_{\theta}$  and  $f_{\theta'}$ :

$$\mathsf{TV}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta'}) = \frac{1}{2} \int_{E} |f_{\theta}(x) - f_{\theta'}(x)| dx.$$

# Properties of Total variation

```
 \begin{array}{ll} & \mathsf{TV}(\mathbb{P}_{\theta},\mathbb{P}_{\theta'}) = \mathsf{TV}(\mathbb{P}_{\theta'},\mathbb{P}_{\theta}) & \mathsf{(symmetric)} \\ & \mathsf{TV}(\mathbb{P}_{\theta},\mathbb{P}_{\theta'}) \geq 0 & \mathsf{(positive)} \\ & \mathsf{If}\; \mathsf{TV}(\mathbb{P}_{\theta},\mathbb{P}_{\theta'}) = 0 \; \mathsf{then}\; \mathbb{P}_{\theta} = \mathbb{P}_{\theta'} & \mathsf{(definite)} \\ & \mathsf{TV}(\mathbb{P}_{\theta},\mathbb{P}_{\theta'}) \leq & \mathsf{(triangle inequality)} \end{array}
```

These imply that the total variation is a *distance* between probability distributions.

#### **Exercises**

Compute:

$$\mathbf{a)}\mathsf{TV}(\mathsf{Ber}(0.5),\mathsf{Ber}(0.1)) =$$

$$\textbf{b)} \; \mathsf{TV}(\mathsf{Ber}(0.5), \mathsf{Ber}(0.9)) =$$

$$\textbf{c)}\mathsf{TV}(\mathsf{Exp}(1),\mathsf{Unif}[0,1]) =$$

**d)** 
$$\mathrm{TV}(X,X+a) =$$
 for any  $a \in (0,1)$ , where  $X \sim \mathrm{Ber}(0.5)$ 

$$\label{eq:power_power} \begin{split} \mathbf{e)} \mathsf{TV}(2\sqrt{n}(\bar{X}_n-1/2),Z) = \\ \text{where } X_i \overset{i.i.d}{\sim} \mathsf{Ber}(0.5) \text{ and } Z \sim \mathcal{N}(0,1) \end{split}$$

# An estimation strategy

Build an estimator  $\widehat{\mathsf{TV}}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta^*})$  for all  $\theta \in \Theta$ . Then find  $\hat{\theta}$  that minimizes the function  $\theta \mapsto \widehat{\mathsf{TV}}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta^*})$ .

**problem:** Unclear how to build  $\widehat{\mathsf{TV}}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta^*})!$ 

# Kullback-Leibler (KL) divergence

There are **many** distances between probability measures to replace total variation. Let us choose one that is more convenient.

#### Definition

The Kullback-Leibler<sup>1</sup> (KL) divergence between two probability measures  $\mathbb{P}_{\theta}$  and  $\mathbb{P}_{\theta'}$  is defined by

$$\mathsf{KL}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta'}) = \left\{ \begin{array}{ll} \displaystyle \sum_{x \in E} p_{\theta}(x) \log \left(\frac{p_{\theta}(x)}{p_{\theta'}(x)}\right) & \text{if $E$ is discrete} \\ \\ \displaystyle \int_{E} f_{\theta}(x) \log \left(\frac{f_{\theta}(x)}{f_{\theta'}(x)}\right) \! dx & \text{if $E$ is continuous} \end{array} \right.$$

<sup>&</sup>lt;sup>1</sup>KL-divergence is also know as "relative entropy"

# Properties of KL-divergence

- $ightharpoonup \mathsf{KL}(\mathbb{P}_{\theta},\mathbb{P}_{\theta'}) 
  eq \mathsf{KL}(\mathbb{P}_{\theta'},\mathbb{P}_{\theta})$  in general
- $ightharpoonup \mathsf{KL}(\mathbb{P}_{\theta},\mathbb{P}_{\theta'}) \geq 0$
- ▶ If  $\mathsf{KL}(\mathbb{P}_{\theta}, \mathbb{P}_{\theta'}) = 0$  then  $\mathbb{P}_{\theta} = \mathbb{P}_{\theta'}$  (definite)
- $\blacktriangleright \ \mathsf{KL}(\mathbb{P}_{\theta},\mathbb{P}_{\theta'}) \nleq \mathsf{KL}(\mathbb{P}_{\theta},\mathbb{P}_{\theta''}) + \mathsf{KL}(\mathbb{P}_{\theta''},\mathbb{P}_{\theta'}) \ \mathsf{in} \ \mathsf{general}$

#### Not a distance.

This is is called a divergence.

Asymmetry is the key to our ability to estimate it!

# Maximum likelihood estimation

# Estimating the KL

$$\begin{aligned} \mathsf{KL}(\mathbb{P}_{\theta^*}, \mathbb{P}_{\theta}) &= \mathbb{E}_{\theta^*} \Big[ \log \Big( \frac{p_{\theta^*}(X)}{p_{\theta}(X)} \Big) \Big] \\ &= \mathbb{E}_{\theta^*} \Big[ \log p_{\theta^*}(X) \Big] - \mathbb{E}_{\theta^*} \Big[ \log p_{\theta}(X) \Big] \end{aligned}$$

So the function  $\theta \mapsto \mathsf{KL}(\mathbb{P}_{\theta^*}, \mathbb{P}_{\theta})$  is of the form:

"constant" 
$$-\mathbb{E}_{\theta^*}\big[\log p_{\theta}(X)\big]$$

Can be estimated:  $\mathbb{E}_{\theta^*}[h(X)] \leadsto \frac{1}{n} \sum_{i=1}^n h(X_i)$  (by LLN)

$$\widehat{\mathsf{KL}}(\mathbb{P}_{\theta^*}, \mathbb{P}_{\theta}) = \text{``constant''} - \frac{1}{n} \sum_{i=1}^n \log p_{\theta}(X_i)$$

## Maximum likelihood

$$\widehat{\mathsf{KL}}(\mathbb{P}_{\theta^*}, \mathbb{P}_{\theta}) = \text{``constant''} - \frac{1}{n} \sum_{i=1}^n \log p_{\theta}(X_i)$$

$$\begin{split} \min_{\theta \in \Theta} \widehat{\mathsf{KL}}(\mathbb{P}_{\theta^*}, \mathbb{P}_{\theta}) & \Leftrightarrow & \min_{\theta \in \Theta} -\frac{1}{n} \sum_{i=1}^n \log p_{\theta}(X_i) \\ & \Leftrightarrow & \max_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^n \log p_{\theta}(X_i) \\ & \Leftrightarrow & \max_{\theta \in \Theta} \sum_{i=1}^n \log p_{\theta}(X_i) \\ & \Leftrightarrow & \max_{\theta \in \Theta} \prod_{i=1}^n p_{\theta}(X_i) \end{split}$$

This is the maximum likelihood principle.

# Likelihood, Discrete case (1)

Let  $(E, (\mathbb{P}_{\theta})_{\theta \in \Theta})$  be a statistical model associated with a sample of i.i.d. r.v.  $X_1, \ldots, X_n$ . Assume that E is discrete (i.e., finite or countable).

#### Definition

The *likelihood* of the model is the map  $L_n$  (or just L) defined as:

$$L_n: E^n \times \Theta \to \mathbb{R}$$
  
 $(x_1, \dots, x_n, \theta) \mapsto \mathbb{P}_{\theta}[X_1 = x_1, \dots, X_n = x_n].$ 

## Likelihood for the Bernoulli model

**Example 1 (Bernoulli trials):** If  $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathrm{Ber}(p)$  for some  $p \in (0,1)$ :

- $E = \{0, 1\};$
- ▶  $\Theta = (0,1);$
- $\forall (x_1, \dots, x_n) \in \{0, 1\}^n, \forall p \in (0, 1),$

$$L(x_1, ..., x_n, p) = \prod_{i=1}^n \mathbb{P}_p[X_i = x_i]$$

$$= \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i}$$

$$= p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i}.$$

## Likelihood for the Poisson model

## Example 2 (Poisson model):

If  $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathsf{Poiss}(\lambda)$  for some  $\lambda > 0$ :

- $ightharpoonup E = \mathbb{N};$
- $\bullet \ \Theta = (0, \infty);$
- $\forall (x_1,\ldots,x_n) \in \mathbb{N}^n, \forall \lambda > 0,$

$$L(x_1, \dots, x_n, p) = e^{-n\lambda} \frac{\lambda^{\sum_{i=1}^n x_i}}{x_1! \dots x_n!}.$$

# Likelihood, Continuous case

Let  $(E, (\mathbb{P}_{\theta})_{\theta \in \Theta})$  be a statistical model associated with a sample of i.i.d. r.v.  $X_1, \ldots, X_n$ . Assume that all the  $\mathbb{P}_{\theta}$  have density  $f_{\theta}$ .

#### Definition

The *likelihood* of the model is the map L defined as:

$$L: E^n \times \Theta \to \mathbb{R}$$
  
 $(x_1, \dots, x_n, \theta) \mapsto \prod_{i=1}^n f_{\theta}(x_i).$ 

## Likelihood for the Gaussian model

**Example 1 (Gaussian model):** If  $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ , for some  $\mu \in \mathbb{R}, \sigma^2 > 0$ :

- $ightharpoonup E = \mathbb{R};$
- $\Theta = \mathbb{R} \times (0, \infty)$
- $\forall (x_1,\ldots,x_n) \in \mathbb{R}^n, \ \forall (\mu,\sigma^2) \in \mathbb{R} \times (0,\infty),$

$$L(x_1, ..., x_n, \mu, \sigma^2) = \frac{1}{(\sigma\sqrt{2\pi})^n} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right).$$

#### **Exercises**

Let  $(E, (\mathbb{P}_{\theta})_{\theta \in \Theta})$  be a statistical model associated with  $X_1, \dots, X_n \sim \mathsf{Exp}(\lambda)$ .

a) What is E?

**b)** What is  $\Theta$ ?

c) Find the likelihood of the model.

# **Exercise**

Let  $\left(E,(\mathbb{P}_{\theta})_{\theta\in\Theta}\right)$  be a statistical model associated with  $X_1,\ldots,X_n{\sim}\mathsf{Unif}[0,b]$  for some b>0.

a) What is E?

**b)** What is  $\Theta$ ?

c) Find the likelihood of the model.

#### Maximum likelihood estimator

Let  $X_1,\ldots,X_n$  be an i.i.d. sample associated with a statistical model  $\left(E,(\mathbb{P}_{\theta})_{\theta\in\Theta}\right)$  and let L be the corresponding likelihood.

#### Definition

The maximum likelihood estimator of  $\theta$  is defined as:

$$\hat{\theta}_n^{MLE} = \underset{\theta \in \Theta}{\operatorname{argmax}} L(X_1, \dots, X_n, \theta),$$

provided it exists.

**Remark (log-likelihood estimator):** In practice, we use the fact that

$$\hat{\theta}_n^{MLE} = \underset{\theta \in \Theta}{\operatorname{argmax}} \log L(X_1, \dots, X_n, \theta).$$

# Interlude: maximizing/minimizing functions

Note that

$$\min_{\theta \in \Theta} -h(\theta) \quad \Leftrightarrow \quad \max_{\theta \in \Theta} h(\theta)$$

In this class, we focus on maximization.

Maximization of arbitrary functions can be difficult:

Example:  $\theta \mapsto \prod_{i=1}^n (\theta - X_i)$ 

#### Concave and convex functions

#### Definition

A function twice differentiable function  $h:\Theta\subset\mathbb{R}\to\mathbb{R}$  is said to be *concave* if its second derivative satisfies

$$h''(\theta) \le 0$$
,  $\forall \theta \in \Theta$ 

It is said to be *strictly concave* if the inequality is strict:  $h''(\theta) < 0$ 

Moreover, h is said to be (strictly) *convex* if -h is (strictly) concave, i.e.  $h''(\theta) \ge 0$  ( $h''(\theta) > 0$ ).

#### Examples:

- $\Theta = \mathbb{R}, \ h(\theta) = -\theta^2,$
- $\Theta = (0, \infty), \ h(\theta) = \sqrt{\theta},$
- $\Theta = (0, \infty), h(\theta) = \log \theta,$
- $\Theta = [0, \pi], \ h(\theta) = \sin(\theta)$
- $\Theta = \mathbb{R}, h(\theta) = 2\theta 3$

# Multivariate concave functions

More generally for a *multivariate* function:  $h:\Theta\subset \mathbb{R}^d \to \mathbb{R}$ ,  $d \geq 2$ , define the

$$\qquad \qquad \textbf{\textit{gradient vector: }} \nabla h(\theta) = \left( \begin{array}{c} \frac{\partial h}{\partial \theta_1}(\theta) \\ \vdots \\ \frac{\partial h}{\partial \theta_d}(\theta) \end{array} \right) \in {\rm I\!R}^d$$

$$\textbf{Hessian matrix:} \\ \mathbf{H}h(\theta) = \begin{pmatrix} \frac{\partial^2 h}{\partial \theta_1 \partial \theta_1}(\theta) & \cdots & \frac{\partial^2 h}{\partial \theta_1 \partial \theta_d}(\theta) \\ \\ \frac{\partial^2 h}{\partial \theta_d \partial \theta_d}(\theta) & \cdots & \frac{\partial^2 h}{\partial \theta_d \partial \theta_d}(\theta) \end{pmatrix} \in \mathbb{R}^{d \times d}$$

h is concave  $\Leftrightarrow x^{\top}\mathbf{H}h(\theta)x \leq 0 \quad \forall x \in \mathbb{R}^d, \ \theta \in \Theta.$ 

h is strictly concave  $\Leftrightarrow$   $x^{\top}\mathbf{H}h(\theta)x < 0 \quad \forall x \in \mathbb{R}^d, \ \theta \in \Theta.$ 

#### Examples:

$$\Theta = \mathbb{R}^2$$
,  $h(\theta) = -\theta_1^2 - 2\theta_2^2$  or  $h(\theta) = -(\theta_1 - \theta_2)^2$ 

$$\Theta = (0, \infty), h(\theta) = \log(\theta_1 + \theta_2),$$

# Optimality conditions

Strictly concave functions are easy to maximize: if they have a maximum, then it is **unique**. It is the unique solution to

$$h'(\theta) = 0\,,$$

or, in the multivariate case

$$\nabla h(\theta) = 0 \in \mathbb{R}^d$$
.

There are many algorithms to find it numerically: this is the theory of "convex optimization". In this class, often a **closed form formula** for the maximum.

## **Exercises**

- a) Which one of the following functions are concave on  $\Theta = \mathbb{R}^2$ ?
  - 1.  $h(\theta) = -(\theta_1 \theta_2)^2 \theta_1 \theta_2$
  - 2.  $h(\theta) = -(\theta_1 \theta_2)^2 + \theta_1 \theta_2$
  - 3.  $h(\theta) = (\theta_1 \theta_2)^2 \theta_1 \theta_2$
  - 4. Both 1. and 2.
  - 5. All of the above
  - 6. None of the above
- **b)**Let  $h:\Theta\subset\mathbb{R}^d\to\mathbb{R}$  be a function whose hessian matrix  $\mathbf{H}h(\theta)$  has a positive diagonal entry for some  $\theta\in\Theta$ . Can h be concave? Why or why not?

# Examples of maximum likelihood estimators

- ▶ Bernoulli trials:  $\hat{p}_n^{MLE} = \bar{X}_n$ .
- Poisson model:  $\hat{\lambda}_n^{MLE} = \bar{X}_n$ .
- ▶ Gaussian model:  $(\hat{\mu}_n, \hat{\sigma}_n^2) = (\bar{X}_n, \hat{S}_n)$ .

# Consistency of maximum likelihood estimator

Under mild regularity conditions, we have

$$\hat{\theta}_n^{MLE} \xrightarrow[n \to \infty]{\mathbb{P}} \theta^*$$

This is because for all  $\theta \in \Theta$ 

$$\frac{1}{n}L(X_1,\ldots,X_n,\theta) \xrightarrow[n\to\infty]{\mathbb{P}} \text{"constant"} - \mathsf{KL}(\mathbb{P}_{\theta^*},\mathbb{P}_{\theta})$$

Moreover, the minimizer of the right-hand side is  $\theta^*$  if the parameter is identifiable.

Technical conditions allow to transfer this convergence to the minimizers.

#### Covariance

How about asymptotic normality?

In general, when  $\theta\subset{\rm I\!R}^d, d\geq 2$ , its coordinates are not necessarily independent.

The **covariance** between two random variables X and Y is

$$\begin{aligned} \mathsf{Cov}(X,Y) &= \mathbb{E} \big[ \big( X - \mathbb{E}(X) \big) \cdot \big( Y - \mathbb{E}(Y) \big) \big] \\ &= \mathbb{E} \big[ X \cdot Y \big] - \mathbb{E}[X] \mathbb{E}[Y] \\ &= \mathbb{E} \big[ X \cdot \big( Y - \mathbb{E}(Y) \big) \big] \end{aligned}$$

# **Properties**

- $ightharpoonup \operatorname{Cov}(X,Y) = \operatorname{Var}(X)$
- $ightharpoonup \mathsf{Cov}(X,Y) = \mathsf{Cov}(Y,X)$
- ▶ If X and Y are independent, then Cov(X,Y) = 0

In general, the **converse is not true** except if  $(X,Y)^{\top}$  is a **Gaussian vector**<sup>2</sup>, i.e.,  $\alpha X + \beta Y$  is Gaussian for all  $(\alpha,\beta) \in \mathbb{R}^{\setminus}\{(0,0)\}.$ 

Take 
$$X\sim \mathcal{N}(0,1),\ B\sim \mathrm{Ber}(1/2),\ R=2B-1\sim \mathrm{Rad}(1/2).$$
 Then 
$$Y=R\cdot X\sim \mathcal{N}(0,1)$$

But taking  $\alpha = \beta = 1$ , we get

$$X + Y = \begin{cases} 0 & \text{with prob. } 1/2 \\ 2X & \text{with prob. } 1/2 \end{cases}$$

Actually Cov(X,Y) = 0 but they are not independent: |X| = |Y|

#### Covariance matrix

The covariance matrix of a random vector  $X = (X^{(1)}, \dots, X^{(d)})^{\top} \in \rm I\!R^d$  is given by

$$\Sigma = \mathbf{Cov}(X) = \mathbb{E}[(X - \mathbb{E}(X))(X - \mathbb{E}(X))^{\top}]$$

This is a matrix of size  $d \times d$ .

The term on the ith row and jth column is

$$\Sigma_{ij} = \mathbb{E}\left[\left(X^{(i)} - \mathbb{E}(X^{(i)})\right)\left(X^{(j)} - \mathbb{E}(X^{(j)})\right)\right] = \mathsf{Cov}(X^{(i)}, X^{(j)})$$

In particular, on the diagonal, we have  $\Sigma_{ii} = \operatorname{Cov}(X^{(i)}, X^{(i)}) = \operatorname{Var}(X^{(i)})$ 

Recall that for  $X \in \mathbb{R}$ ,  $Var(aX + b) = a^2Var(X)$ . Actually, if  $X \in \mathbb{R}^d$  and A, B are matrices:

$$Cov(AX + B) = A\Sigma A^{\top}$$

## The multivariate Gaussian distribution

If  $(X,Y)^{\top}$  is a Gaussian vector then its pdf depends on 5 parameters:

$$\mathop{\mathrm{I\!E}}[X], \ \mathop{\mathrm{I\!E}}[Y], \ \mathsf{Var}(X), \ \mathsf{Var}(Y) \quad \text{and} \quad \mathsf{Cov}(X,Y)$$

More generally, a Gaussian vector<sup>3</sup>  $X \in \mathbb{R}^d$ , is completely determined by its expected value and  $\mathbb{E}[X] = \mu \in \mathbb{R}^d$  covariance matrix  $\Sigma$ . We write

$$X \sim \mathcal{N}_d(\mu, \Sigma)$$
.

It has pdf over  $\mathbb{R}^d$  given by:

$$\frac{1}{(2\pi \det(\Sigma))^{d/2}} \exp\left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)$$

<sup>&</sup>lt;sup>3</sup>As before, this means that  $\alpha^{\top}X$  is Gaussian for any  $\alpha \in \mathbb{R}^d, \alpha \neq 0$ .

#### The multivariate CLT

The CLT may be generalized to averages or random vectors (also vectors of averages).

Let  $X_1,\ldots,X_n\in {\rm I\!R}^d$  be independent copies of a random vector X such that  ${\rm I\!E}[X]=\mu$ ,  ${\rm Cov}(X)=\Sigma$ ,

$$\sqrt{n}(\bar{X}_n - \mu) \xrightarrow[n \to \infty]{(d)} \mathcal{N}_d(0, \Sigma)$$

Equivalently

$$\sqrt{n}\Sigma^{-1/2}(\bar{X}_n - \mu) \xrightarrow[n \to \infty]{(d)} \mathcal{N}_d(0, I_d)$$

## Multivariate Delta method

Let  $(T_n)_{n\geq 1}$  sequence of random vectors in  $\mathbb{R}^d$  such that

$$\sqrt{n}(T_n - \theta) \xrightarrow[n \to \infty]{(d)} \mathcal{N}_d(0, \Sigma),$$

for some  $\theta \in \mathbb{R}^d$  and some covariance  $\Sigma \in \mathbb{R}^{d \times d}$ .

Let  $g: \mathbb{R}^d \to \mathbb{R}^k$   $(k \ge 1)$  be continuously differentiable at  $\theta$ . Then,

$$\sqrt{n} \left( g(T_n) - g(\theta) \right) \xrightarrow[n \to \infty]{(d)} \mathcal{N}_k \left( 0, \nabla g(\theta)^\top \Sigma \nabla g(\theta) \right),$$

where 
$$\nabla g(\theta) = \frac{\partial g}{\partial \theta}(\theta) = \left(\frac{\partial g_j}{\partial \theta_i}\right)_{\substack{1 \leq i \leq d \\ 1 \leq j \leq k}} \in \mathbb{R}^{d \times k}.$$

#### Fisher Information

#### Definition: Fisher information

Define the log-likelihood for one observation as:

$$\ell(\theta) = \log L_1(X, \theta), \quad \theta \in \Theta \subset \mathbb{R}^d$$

Assume that  $\ell$  is a.s. twice differentiable. Under some regularity conditions, the *Fisher information* of the statistical model is defined as:

$$I(\theta) = \mathbb{E} \left[ \nabla \ell(\theta) \nabla \ell(\theta)^{\top} \right] - \mathbb{E} \left[ \nabla \ell(\theta) \right] \mathbb{E} \left[ \nabla \ell(\theta) \right]^{\top} = - \mathbb{E} \left[ \mathbf{H} \ell(\theta) \right].$$

If  $\Theta \subset \mathbb{R}$ , we get:

$$I(\theta) = \operatorname{var}[\ell'(\theta)] = -\operatorname{I\!E}[\ell''(\theta)]$$

# Fisher information of the Bernoulli experiment

Let  $X \sim \mathsf{Ber}(p)$ .

$$\ell(p) = \log(p^X(1-p)^{(1-X)}) = X\log p + (1-X)\log(1-p)$$

$$\ell'(p) = \frac{X}{p} - \frac{1-X}{1-p} \qquad \operatorname{var}[\ell'(p)] = \frac{1}{p(1-p)}$$

$$\ell''(p) = -\frac{X}{p^2} - \frac{1-X}{(1-p)^2} - \mathbb{E}[\ell''(p)] = \frac{1}{p(1-p)}$$

# Asymptotic normality of the MLE

#### **Theorem**

Let  $\theta^* \in \Theta$  (the *true* parameter). Assume the following:

- 1. The parameter is identifiable.
- 2. For all  $\theta \in \Theta$ , the support of  $\mathbb{P}_{\theta}$  does not depend on  $\theta$ ;
- 3.  $\theta^*$  is not on the boundary of  $\Theta$ ;
- **4**.  $I(\theta)$  is invertible in a neighborhood of  $\theta^*$ ;
- 5. A few more technical conditions.

Then,  $\hat{\theta}_n^{MLE}$  satisfies:

$$\qquad \qquad \sqrt{n} \left( \hat{\theta}_n^{MLE} - \theta^* \right) \xrightarrow[n \to \infty]{(d)} \mathcal{N} \left( 0, I(\theta^*)^{-1} \right) \qquad \text{w.r.t. } \mathbb{P}_{\theta^*}.$$

# The method of moments

## **Moments**

Let  $X_1,\dots,X_n$  be an i.i.d. sample associated with a statistical model  $\left(E,(\mathbb{P}_\theta)_{\theta\in\Theta}\right)$ .

- ▶ Assume that  $E \subseteq \mathbb{R}$  and  $\Theta \subseteq \mathbb{R}^d$ , for some  $d \ge 1$ .
- ▶ Population moments: Let  $m_k(\theta) = \mathbb{E}_{\theta}[X_1^k], 1 \leq k \leq d.$
- ▶ Empirical moments: Let  $\hat{m}_k = \overline{X_n^k} = \frac{1}{n} \sum_{i=1}^n X_i^k$ ,  $1 \le k \le d$ .
- ightharpoonup From LLN, for all k

$$\hat{m}_k \xrightarrow[n \to \infty]{\mathbb{P}/a.s} m_k(\theta)$$

More compactly, we say that the whole vector converges:

$$(\hat{m}_1, \dots, \hat{m}_d) \xrightarrow[n \to \infty]{\mathbb{P}/a.s} (m_1(\theta), \dots, m_d(\theta))$$

## Moments estimator

Let

$$M: \Theta \to \mathbb{R}^d$$
  
 $\theta \mapsto M(\theta) = (m_1(\theta), \dots, m_d(\theta)).$ 

Assume M is one to one:

$$\theta = M^{-1}(m_1(\theta), \dots, m_d(\theta)).$$

#### **Definition**

Moments estimator of  $\theta$ :

$$\hat{\theta}_n^{MM} = M^{-1}(\hat{m}_1, \dots, \hat{m}_d),$$

provided it exists.

# Statistical analysis

- ▶ Recall  $M(\theta) = (m_1(\theta), \dots, m_d(\theta));$
- $\blacktriangleright \text{ Let } \hat{M} = (\hat{m}_1, \dots, \hat{m}_d).$
- Let  $\Sigma(\theta) = \operatorname{Cov}_{\theta}(X_1, X_1^2, \dots, X_1^d)$  be the covariance matrix of the random vector  $(X_1, X_1^2, \dots, X_1^d)$ , which we assume to exist.
- ▶ Assume  $M^{-1}$  is continuously differentiable at  $M(\theta)$ .

# Method of moments (5)

**Remark**: The method of moments can be extended to more general moments, even when  $E \not\subset {\rm I\!R}.$ 

- ▶ Let  $g_1, \ldots, g_d : E \to \mathbb{R}$  be given functions, chosen by the practitioner.
- ightharpoonup Previously,  $g_k(x)=x^k$ ,  $x\in E=\mathbb{R}$ , for all  $k=1,\ldots,d$ .
- ▶ Define  $m_k(\theta) = \mathbb{E}_{\theta}[g_k(X)]$ , for all k = 1, ..., d.
- Let  $\Sigma(\theta) = \operatorname{Cov}_{\theta}(g_1(X_1), g_2(X_1), \dots, g_d(X_1))$  be the covariance matrix of the random vector  $(g_1(X_1), g_2(X_1), \dots, g_d(X_1))$ , which we assume to exist.
- Assume M is one to one and  $M^{-1}$  is continuously differentiable at  $M(\theta)$ .

## Generalized method of moments

Applying the multivariate CLT and Delta method yields:

#### **Theorem**

$$\sqrt{n} \left( \hat{\theta}_n^{MM} - \theta \right) \xrightarrow[n \to \infty]{(d)} \mathcal{N} \left( 0, \Gamma(\theta) \right) \quad \text{ (w.r.t. } \mathbb{P}_{\theta}),$$

where 
$$\Gamma(\theta) = \left[\frac{\partial M^{-1}}{\partial \theta} \left(M(\theta)\right)\right]^{\top} \Sigma(\theta) \left[\frac{\partial M^{-1}}{\partial \theta} \left(M(\theta)\right)\right].$$

### MLE vs. Moment estimator

Comparison of the quadratic risks: In general, the MLE is more accurate.

MLE still gives good results if model is misspecified

 Computational issues: Sometimes, the MLE is intractable but MM is easier (polynomial equations)

# **M**-estimation

## M-estimators

#### Idea:

- Let  $X_1, \ldots, X_n$  be i.i.d with some unknown distribution  $\mathbb{P}$  in some sample space E ( $E \subseteq \mathbb{R}^d$  for some  $d \ge 1$ ).
- ▶ No statistical model needs to be assumed (similar to ML).
- ▶ Goal: estimate some parameter  $\mu^*$  associated with  ${\rm I\!P}$ , e.g. its mean, variance, median, other quantiles, the true parameter in some statistical model...
- ▶ Find a function  $\rho: E \times \mathcal{M} \to \mathbb{R}$ , where  $\mathcal{M}$  is the set of all possible values for the unknown  $\mu^*$ , such that:

$$Q(\mu) := \mathbb{E}\left[\rho(X_1, \mu)\right]$$

achieves its minimum at  $\mu = \mu^*$ .

# Examples (1)

- If  $E=\mathcal{M}=\mathbbm{R}$  and  $\rho(x,\mu)=(x-\mu)^2$ , for all  $x\in\mathbbm{R},\mu\in\mathbbm{R}$ :  $\mu^*=$
- If  $E = \mathcal{M} = \mathbb{R}^d$  and  $\rho(x,\mu) = \|x \mu\|_2^2$ , for all  $x \in \mathbb{R}^d$ ,  $\mu \in \mathbb{R}^d$ :  $\mu^* =$
- ▶ If  $E = \mathcal{M} = \mathbb{R}$  and  $\rho(x,\mu) = |x \mu|$ , for all  $x \in \mathbb{R}$ ,  $\mu \in \mathbb{R}$ :  $\mu^*$  is a median of  $\mathbb{P}$ .

# Examples (2)

If  $E=\mathcal{M}=\mathbb{R}$ ,  $\alpha\in(0,1)$  is fixed and  $\rho(x,\mu)=C_{\alpha}(x-\mu)$ , for all  $x\in\mathbb{R},\mu\in\mathbb{R}$ :  $\mu^*$  is a  $\alpha$ -quantile of  $\mathbb{P}$ .

#### Check function

$$C_{\alpha}(x) = \begin{cases} -(1-\alpha)x & \text{if } x < 0\\ \alpha x & \text{if } x \ge 0. \end{cases}$$



## MLE is an M-estimator

Assume that  $(E, \{\mathbb{I}\mathbb{P}_{\theta}\}_{\theta \in \Theta})$  is a statistical model associated with the data.

#### Theorem

Let  $\mathcal{M}=\Theta$  and  $\rho(x,\theta)=-\log L_1(x,\theta)$ , provided the likelihood is positive everywhere. Then,

$$\mu^* = \theta^*,$$

where  $\mathbb{P} = \mathbb{P}_{\theta^*}$  (i.e.,  $\theta^*$  is the true value of the parameter).

## **Definition**

▶ Define  $\hat{\mu}_n$  as a minimizer of:

$$Q_n(\mu) := \frac{1}{n} \sum_{i=1}^n \rho(X_i, \mu).$$

► Examples: Empirical mean, empirical median, empirical quantiles, MLE, etc.

# Statistical analysis

Let  $J(\mu) = \frac{\partial^2 Q}{\partial \mu \partial \mu^\top}(\mu)$  (=  $\mathbb{E}\left[\frac{\partial^2 \rho}{\partial \mu \partial \mu^\top}(X_1, \mu)\right]$  under some regularity conditions).

Let 
$$K(\mu) = \text{Cov}\left[\frac{\partial \rho}{\partial \mu}(X_1, \mu)\right].$$

**Remark:** In the log-likelihood case (write  $\mu = \theta$ ),

$$J(\theta) = K(\theta) = I(\theta)$$
 Fisher Information

# Asymptotic normality

Let  $\mu^* \in \mathcal{M}$  (the *true* parameter). Assume the following:

- 1.  $\mu^*$  is the only minimizer of the function Q;
- 2.  $J(\mu)$  is invertible for all  $\mu \in \mathcal{M}$ ;
- 3. A few more technical conditions.

Then,  $\hat{\mu}_n$  satisfies:

## M-estimators in robust statistics

### **Example: Location parameter**

If  $X_1, \ldots, X_n$  are i.i.d. with density  $f(\cdot - m)$ , where:

- f is an unknown, positive, even function (e.g., the Cauchy density);
- m is a real number of interest, a location parameter;

How to estimate m?

- ▶ M-estimators: empirical mean, empirical median, ...
- Compare their risks or asymptotic variances;
- ▶ The empirical median is more *robust*.

## Recap

- Three principled methods for estimation: maximum likelihood, Method of moments, M-estimators
- ▶ Maximum likelihood is an example of *M*-estimation
- Method of moments inverts the function that maps parameters to moments
- All methods yield to asymptotic normality under regularity conditions
- Asymptotic covariance matrix can be computed using multivariate Δ-method
- For MLE, asymptotic covariance matrix is the inverse Fisher information matrix