Preliminary migrate analysis of M. californianus

MIGRATION RATE AND POPULATION SIZE ESTIMATION using the coalescent and maximum likelihood or Bayesian inference Migrate-n version 3.7.2 [April-12-18]

Program started at Tue Jun 1 10:52:05 2021 Program finished at Tue Jun 1 17:23:52 2021

Options

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 413365844

Start parameters:

Theta values were generated from guessed values

Theta = 0.01000

M values were generated from guessed values

M-matrix:

100000.00 [all are the same]

Connection type matrix:

where m = average (average over a group of Thetas or M,

s = symmetric M, S = symmetric 4Nm, 0 = zero, and not estimated,

* = free to vary, Thetas are on diagonal

Population	1	2	3	4	5	6	7	8	9	10	11	12
1 ElfinCo	*	*	0	0	0	0	0	0	0	0	0	0
2 Bamfiel	*	*	*	0	0	0	0	0	0	0	0	0
3 PortRen	0	*	*	*	0	0	0	0	0	0	0	0
4 WalkOnB	0	0	*	*	*	0	0	0	0	0	0	0
5 BodegaH	0	0	0	*	*	*	0	0	0	0	0	0
6 Davenpo	0	0	0	0	*	*	*	0	0	0	0	0
7 VistaDe	0	0	0	0	0	*	*	*	0	0	0	0
8 HazardR	0	0	0	0	0	0	*	*	*	0	0	0
9 Refugio	0	0	0	0	0	0	0	*	*	*	0	0
10 Carpint	0	0	0	0	0	0	0	0	*	*	*	0

11 WhitePo		0			0		0		0		*	*	*		
		0	0	0		0		0		0		*	*		
12 LaJolla		0	0	0	0	0	0	0	0	0	0	^	•		
Order of never															
Order of param								اء.	مامد:	ام میں					
1	Θ_1								ispla	-					
2	Θ_2								ispla						
3	Θ_3^2								ispla						
4	Θ_4^{3}								ispla						
5	Θ_5^{T}								ispla						
6	Θ_6								ispla						
7	Θ_7°								ispla						
8	Θ_8								ispla						
9	Θ_9								ispla						
10	Θ_{10}								ispla						
11	Θ_{11}^{10}								ispla						
12	Θ_{12}^{11}								ispla						
13	M _{2->}	>1							ispla						
24	N/I								ispla						
25 36	5->								ispla						
37	L /								ispla ispla						
48	4->								ispla						
49	N/I								ispla						
60	N / 3->								ispla						
61	4->								ispla						
72	N / O->								ispla						
73	N / 3->								ispla						
84	\								ispla						
85	M _{8->}								ispla						
96	M _{7->}								ispla	-					
97	M _{9->}								ispla	-					
108	M _{8->}								ispla	-					
109	M 10-								ispla	-					
120	M _{9->}								ispla	-					
121	N / 9-/	>10 ->1()						ispla	-					
132	N/I	->10 ->11						<d< td=""><th>ispla</th><td>yed:</td><td>></td><td></td><td></td><td></td><td></td></d<>	ispla	yed:	>				
133	R A	->11 ->11						<d< td=""><th>ispla</th><td>yed:</td><td>></td><td></td><td></td><td></td><td></td></d<>	ispla	yed:	>				
144	N/I	->12						<d< td=""><th>ispla</th><td>yed:</td><td>></td><td></td><td></td><td></td><td></td></d<>	ispla	yed:	>				
	11-	/12	-												
Mutation rate an	nong loci:													Mutation rate is consta	ant
Analysis strate														Dayasian inform	200
Analysis strategy	y.													Bayesian infere	ice

Proposal distributions for parameter

Parameter Proposal
Theta Metropolis sampling
M Slice sampling

Prior distribution for parameter

Parameter Prior Delta Bins Minimum Mean* Maximum Theta Exp window 0.000010 0.010000 10.000000 1.000000 500 0.000100 100000.000000 1000000.000000 100000.000000 Μ Exp window 500

Markov chain settings: Long chain

Number of chains

Recorded steps [a]1000Increment (record every x step [b]100Number of concurrent chains (replicates) [c]3Visited (sampled) parameter values [a*b*c]300000Number of discard trees per chain (burn-in)1000

Multiple Markov chains:

Static heating scheme 4 chains with temperatures

100000.00 3.00 1.50 1.00

Swapping interval is 1

Print options:

Data file: ../../mcalifornianus_210528.mig

Output file:

Posterior distribution raw histogram file:

Print data:

Outfile.txt

bayesfile

No

Print genealogies [only some for some data type]:

Data summary

Datatype: Sequence data
Number of loci: 1

Population	Locus	Gene copies
1 ElfinCo	1	19
2 Bamfiel	1	23
3 PortRen	1	15
4 WalkOnB	1	16
5 BodegaH	1	7
6 Davenpo	1	17
7 VistaDe	1	19
8 HazardR	1	23
9 Refugio	1	16
10 Carpint	1	19
11 WhitePo	1	11
12 LaJolla	1	8
Total of all populations	1	193

Bayesian Analysis: Posterior distribution table

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	0.00001	0.00001	0.01001	0.06001	0.18001	0.07001	0.03129
1	Θ_2	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.02131
1	Θ_3^-	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01846
1	Θ_4	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01706
1	Θ_5	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01588
1	Θ_6	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01810
1	Θ_7	0.00001	0.00001	0.01001	0.06001	0.18001	0.07001	0.02449
1	Θ_8	0.00001	0.00001	0.01001	0.06001	0.18001	0.07001	0.02683
1	Θ_9	0.00001	0.00001	0.01001	0.06001	0.18001	0.07001	0.02710
1	Θ_{10}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01987
1	Θ_{11}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00714
1	Θ_{12}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01400
1	M _{2->1}	18000.0	26000.0	39000.0	52000.0	60000.0	49000.0	65944.8
1	M _{1->2}	78000.0	94000.0	109000.0	122000.0	132000.0	105000.0	72518.7
1	$M_{3->2}$	0.0	8000.0	23000.0	36000.0	44000.0	33000.0	43060.1
1	M _{2->3}	56000.0	66000.0	79000.0	90000.0	100000.0	81000.0	90542.6
1	M _{4->3}	28000.0	74000.0	87000.0	102000.0	114000.0	79000.0	74018.7
1	$M_{3->4}$	10000.0	18000.0	31000.0	44000.0	74000.0	41000.0	40812.8
1	M _{5->4}	0.0	36000.0	51000.0	64000.0	68000.0	45000.0	38789.8
1	M _{4->5}	58000.0	68000.0	85000.0	100000.0	156000.0	95000.0	100962.4
1	M _{6->5}	42000.0	54000.0	69000.0	82000.0	96000.0	65000.0	49194.6
1	M _{5->6}	0.0	0.0	7000.0	18000.0	26000.0	65000.0	62693.1
1	M _{7->6}	26000.0	38000.0	55000.0	74000.0	108000.0	65000.0	65956.7
1	M _{6->7}	12000.0	22000.0	35000.0	46000.0	72000.0	41000.0	40946.6
1	M _{8->7}	18000.0	26000.0	39000.0	54000.0	0.00088	49000.0	50961.1
1	M _{7->8}	2000.0	12000.0	21000.0	56000.0	68000.0	51000.0	62915.0
1	M _{9->8}	4000.0	28000.0	53000.0	60000.0	76000.0	45000.0	42694.5
1	M _{8->9}	0.0	32000.0	49000.0	62000.0	70000.0	43000.0	36939.4
1	M _{10->9}	0.0	0.0	7000.0	18000.0	26000.0	55000.0	54259.8
1	M _{9->10}	0.0	10000.0	21000.0	30000.0	40000.0	79000.0	78288.3
1	M _{11->10}	0.0	14000.0	25000.0	36000.0	48000.0	27000.0	25134.5
1	M _{10->11}	0.0	0.0	17000.0	32000.0	48000.0	33000.0	62082.0
1	M _{12->11}	20000.0	32000.0	45000.0	56000.0	82000.0	49000.0	48947.3
1	M _{11->12}	0.0	0.0	13000.0	26000.0	32000.0	73000.0	87548.2

Migrate 3.7.2: (http://popgen.sc.fsu.edu) [program run on 10:52:05]

Citation suggestions:

Migrate 3.7.2: (http://popgen.sc.fsu.edu) [program run on 10:52:05]

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:

BF = Exp[ln(Prob(D | thisModel) - ln(Prob(D | otherModel) or as LBF = 2 (ln(Prob(D | thisModel) - ln(Prob(D | otherModel)) shows the support for thisModel]

Method	In(Prob(D Model))	Notes
Thermodynamic integration	-2215.587889	(1a)
	-2142.929006	(1b)
Harmonic mean	-1883.649766	(2)

(1a, 1b and 2) are approximations to the marginal likelihood, make sure that the program run long enough! (1a, 1b) and (2) should give similar results, in principle.

But (2) is overestimating the likelihood, it is presented for historical reasons and should not be used (1a, 1b) needs heating with chains that span a temperature range of 1.0 to at least 100,000.

(1b) is using a Bezier-curve to get better approximations for runs with low number of heated chains

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio
Θ_1	1142/4383	0.26055
Θ_2^{-}	923/4433	0.20821
$\Theta_3^{}$	1601/4507	0.35523
Θ_4°	566/4464	0.12679
Θ_5	2217/4491	0.49365
Θ_6°	1992/4494	0.44326
Θ_7°	1219/4493	0.27131
$\Theta_8^{'}$	1184/4363	0.27137
Θ_9°	810/4470	0.18121
Θ_{10}	1440/4417	0.32601
9 ₁₁	1578/4318	0.36545
Θ_{12}^{11}	2154/4372	0.49268
M ¹² _{2->1}	4316/4316	1.00000
$M_{1->2}^{2->1}$	4494/4494	1.00000
$M_{3\rightarrow 2}^{1\rightarrow 2}$	4421/4421	1.00000
$M_{2->3}^{3->2}$	4442/4442	1.00000
$M_{4->3}^{2->3}$	4437/4437	1.00000
$M_{3->4}^{4->3}$	4339/4339	1.00000
A _{5−>4}	4480/4480	1.00000
A 4->5	4420/4420	1.00000
M _{6->5}	4388/4388	1.00000
$M_{5->6}^{0->3}$	4595/4595	1.00000
A 7->6	4347/4347	1.00000
$M = \frac{7-80}{6-87}$	4476/4476	1.00000
VI 8->7	4474/4474	1.00000
$VI_{7->8}^{8->7}$	4412/4412	1.00000
/->o	4378/4378	1.00000
$M_{8->9}$	4403/4403	1.00000
8->9 M	4433/4433	1.00000
M _{10->9} M _{9->10}	4444/4444	1.00000
9->10	4438/4438	1.00000
11->10	4370/4370	1.00000
10->11	4535/4535	1.00000
12->11 M	4295/4295	1.00000
vi _{11->12} Genealogies	35212/149458	0.23560

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1	0.81246	327.22
Θ_2	0.85757	236.43
Θ_3	0.73017	487.55
Θ_A	0.91651	133.05
9_5^{-1}	0.64473	664.61
06	0.62869	697.60
)7	0.80670	322.59
) ₈	0.85194	246.21
) _o	0.89123	178.64
) ₁₀	0.80678	323.22
) ₁₁	0.74858	466.03
12	0.63609	779.75
M ¹² _{2->1}	0.78524	366.46
1->2	0.79873	338.82
1 3->2	0.84663	250.49
1 2->3	0.81660	304.67
1 4->3	0.80272	336.79
1 3->4	0.79864	338.45
1 5->4	0.80471	326.04
1 4->5	0.78466	367.07
1 6->5	0.78021	388.54
1 5->6	0.75734	417.27
1 7->6	0.77209	388.95
1 6->7	0.84730	247.80
1 8->7	0.80358	327.00
1 7->8	0.69222	551.97
1 9->8	0.76864	398.72
1 8->9	0.78674	360.30
1 10->9	0.77546	384.83
10->9 9->10	0.74318	455.35
11->10	0.77514	380.29
10->11	0.75648	421.61
10->11	0.83892	267.31
11->12	0.77852	376.06
n[Prob(D G)]	0.96981	46.07

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysis, it is very common that some parameters for some loci will not be very

informative, triggering suggestions (for example to increase the prior range) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are flagged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for macroscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration routes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations.
No warning was recorded during the run