Assignment 1: CS205

Joshua Ross RUID: 185008511

Rutgers University - New Brunswick

jjr276@scarletmail.rutgers.edu

18 September 2019

1.1

32c)

Problem: Construct a truth table for $p \bigoplus (p \bigvee q)$

p	q	$p \bigvee q$	$p \bigoplus (p \bigvee q)$	
T	T	T	F	
T	F	T	F	
F	T	T	Т	
F	F	F	F	

32f)

Problem: Construct a truth table for $(p \bigoplus q) \bigwedge (p \bigoplus \neg q)$

p	q	$\neg q$	$p \bigoplus q$	$p \bigoplus \neg q$	$(p \bigoplus q) \bigwedge (p \bigoplus \neg q)$
T	T	F	F	T	F
T	F	T	T	F	F
F	T	F	Т	F	F
F	F	F	F	T	F

36c)

Problem: Construct a truth table for $(p\bigvee q)\bigvee r$

p	q	r	$p \bigvee q$	$(p \bigvee q) \bigvee r$
T	T	T	T	T
T	T	F	T	Т
T	F	Т	Т	Т
T	F	F	Т	Т
F	T	Т	Т	Т
F	T	F	Т	Т
F	F	Т	F	Т
F	F	F	F	F

36f)

Problem: Construct a truth table for $(p \land q) \lor r$

p	q	r	$\neg r$	$p \wedge q$	$(p \land q) \lor \neg r$
T	T	T	F	T	T
T	T	F	Т	Т	T
T	F	Т	F	F	F
T T T T	F	F	Т	F F F	T
F	T	Т	F	F	F
F F	T	F	T	F	T
F	F	Т	F	F	F
F	F	F	T	F	Т

1.3

26)

Problem: Use boolean algebra to show that $\neg p \to (q \to r)$ and $q \to (p \bigvee r)$ are logically equivalent

- $\neg p \to (q \to r) \equiv \neg p \to (\neg q \bigvee r) \equiv p \bigvee (\neg q \bigvee r)$ by the implication law
- $p\bigvee(\neg q\bigvee r)\equiv \neg q\bigvee(p\bigvee r)$ by the commutative and associative laws
- $\neg q \bigvee (p \bigvee r) \equiv q \rightarrow (p \bigvee q)$ by the implication law

30)

Problem: Use boolean algebra to show that $(p \lor q) \land (\neg p \lor r) \to (q \lor r)$ is a tautology

- $(p \lor q) \land (\neg p \lor r) \rightarrow (q \lor r) \equiv \neg ((p \lor q) \land (\neg p \lor r)) \lor (q \lor r)$ by the implication law
- $\neg((p \lor q) \land (\neg p \lor r)) \lor (q \lor r) \equiv \neg(p \lor q) \lor \neg(\neg p \lor r) \lor (q \lor r) \equiv (\neg p \land \neg q) \lor (p \land \neg r) \lor (q \lor r)$ by De Morgan law

- $(\neg p \land \neg q) \lor (p \land \neg r) \lor (q \lor r) \equiv ((\neg p \land \neg q) \lor q) \lor ((p \land \neg r) \lor r)$ by commutative and associative laws
- $((\neg p \land \neg q) \lor q) \lor ((p \land \neg r) \lor r) \equiv ((\neg p \lor q) \land (\neg q \lor q)) \lor ((p \lor r) \land (\neg r \lor r))$ by the distributive law
- $((\neg p \bigvee q) \land (\neg q \bigvee q)) \lor ((p \bigvee r) \land (\neg r \bigvee r)) \equiv ((\neg p \bigvee q) \land T) \lor ((p \bigvee r) \land T)) \equiv \neg p \bigvee q \bigvee p \bigvee r$ by the negation and domination laws respectively
- $\neg p \lor q \lor p \lor r \equiv (p \lor \neg p) \lor r \lor q$ by commutative and associative laws
- $(\neg p \lor p) \lor q \lor r \equiv T \lor q \lor r \equiv T$ by negation and domination laws respectively, proving that this is a tautology

1.4

36a)

Problem: Find a counterexample (if possible) to $\forall x(x^2 \neq x)$ where the domain of x is all real numbers

For x = 1, $(1)^2 = (1)$, meaning $x^2 = x$, providing a counterexample to $\forall x (x^2 \neq x)$

36b)

Problem: Find a counterexample (if possible) to $\forall x(x^2 \neq 2)$ where the domain of x is all real numbers

For $x=1, (\sqrt{2})^2=2$, meaning $x^2=2$, providing a counterexample to $\forall x(x^2\neq 2)$

36c)

Problem: Find a counterexample (if possible) to $\forall x(|x|>0)$ where the domain of x is all real numbers

For x = 0, |0| = 0, meaning |x| = 0, providing a counterexample to $\forall x(|x| > 0)$