Cours de Mathematiques en T^{ale}

Paul PLANCHON

VERSION DU 18 SEPTEMBRE 2016

Table des matières

I Les Suites, revisions de Premiere			, revisions de Premiere
	A	Les su	ites et raisonnement par recurrence
		A.1	Raisonnement par recurence
		A.2	Suites bornees
		A.3	Monotomie d'une suite
		A.4	Representation graphique des termes d'une suite recurrente
		A.5	Representation graphique d'une suite explicite
		A.6	Theoremes divers
	В	Suites	arithmetiques et geometriques
		B.1	Definitions de la suite arithmetique
		B.2	Theoreme
		B.3	Definition de la suite geometrique
		B.4	Formule importante a savoir
II	Convergence (et divergence) des suites		
	A	Conve	rgence d'une suite
		A.1	Definition de la convergence
		A.2	Autre traduction de la def

4 TABLE DES MATIÈRES

Chapitre I

Les Suites, revisions de Premiere

Les suites et raisonnement par recurrence

Définition 1. On appelle suite numerique ou suite une fonction definie sur \mathbb{N} vers \mathbb{R} (ou d'une partie de \mathbb{N} vers \mathbb{R}).

On ecrit : $U : \mathbb{N} \to \mathbb{R}$ et $n \to U(n)$ note U_n .

Exemple:

- 1. $U_n = n^2 2n + 5$ est une suite definie de maniere explicite.
- 2. $U_m = \frac{2U_n + 1}{U_n + 1}$ et $U_0 = 1$ est une suite definie de maniere recurente.

Dans le premier cas, on ecrit : " $U_n = f(n)$ "

Dnas le second cas, on ecrit : " $U_n + 1 = g(U_n)$ "

$\mathbf{A.1}$ Raisonnement par recurence

Propriété 1. Un raisonnement par recurrence ne s'applique que pour une proposition construite $sur \mathbb{N}$. Elle se passe en 2 etapes :

- 1. L'initialisation : On verifie que la proposition est vraie pour la premiere valeur de l'entier naturel. (en general, n = 0, parfois n = 1 ou n = 2).
- **2.** L'heredite : cette etape se coupe en 2 etapes :
 - **a.** L'hypothese de recurence : On suppose que la proposition est vraie pour k.
 - **b.** On demontre que la proposition est vraie pour le successeur de k, k+1.

Exemple: On pose : $S_n = \sum_{k=0}^n k = 0 + 1 + 2 + ... + n$, montrer que $S_n = \frac{n(n+1)}{2}$:

- Initialisation : pour n = 0, $S_0 = 0$ et $\frac{n(n+1)}{2} = \frac{0(0+1)}{2} = 0$, donc $S_0 = 0$.
- Heredite : On suppose qu'il existe un entier nature $p / S_p = \frac{p(p+1)}{2}$, alors :
 - $S_{p+1} = 0 + 1 + 2 + \dots + (p-1) + p + (p+1)$

 $S_{p+1} = 0 + 1 + 2 + \dots + (p - 1)$ $S_{p+1} = S_p + (p+1)$ $S_{p+1} = \frac{p(p+1)}{2} + (p+1)$ $S_{p+1} = (p+1)[\frac{p}{2} + 1]$ $S_{p+1} = (p+1)[\frac{p+2}{2}]$ $S_{p+1} = \frac{(p+1)[(p+1)+1]}{2}$ Conclusion: $\forall n \in \mathbb{N}, S_n = \frac{n(n+1)}{2}$

A.2Suites bornees

Définition 2. Soit (U_n) une suite.

1. On dit que la suite (U_n) est majoree s'il existe un reel M tel que $\forall n \in \mathbb{N}, (U_n) \leq M$

- **2.** On dit que la suite (U_n) est minoree s'il existe un reel m tel que $\forall n \in \mathbb{N}, (U_n) \geqslant m$
- 3. On dit que la suite est bornee si elle est majoree et minoree.

IMPORTANT:

```
\exists M \in \mathbb{R}/\forall n \in \mathbb{N}, U_n \leqslant M
--\exists m \in \mathbb{R}/\forall n \in \mathbb{N}, U_n \geqslant m
-\exists (m; M) \in \mathbb{R}^2 / \forall n \in \mathbb{N}, m \leqslant U_n \leqslant M
```

Remarque. $(m; M) \in \mathbb{R}^2$ signifie que $m \in \mathbb{R}$ et $M \in \mathbb{R}$

Exemple: Ces trois suites sont bornees par -1 et 1.

- $-U_n = \sin(n)$
- $-V_n = \cos(n)$ $-W_n = (-1)^n$

Preuve:

$$\Rightarrow \forall n \in \mathbb{N}, -1 \leqslant \sin(n) \leqslant 1$$

$$\Rightarrow \forall n \in \mathbb{N}, -1 \leqslant \cos(n) \leqslant 1$$

$$\Rightarrow \forall n \in \mathbb{N}, \begin{cases} (-1)^n = 1 \text{ si n est pair} \\ (-1)^n = -1 \text{ si n est impair} \\ \text{donc } \forall n \in \mathbb{N}, -1 \leqslant (-1)^n \leqslant 1 \end{cases}$$

Exemple: $U_n = \frac{2U_n+1}{U_n+2}$ et $U_0 = 0$, Montrer que la suite est bornee par 0 et 1.

- \Rightarrow Raissonement par recurrence :
- \hookrightarrow Methode 1:
- * On part de $0 \le 0 \le 1$ et $U_0 = 0$ donc, $0 \le U_0 \le 1$, donc vrai pour n = 0
- * On suppose qu'il existe un naturel k tel que $0 \le U_k \le 1$.

Montrons qu'alors on a : $0 \le U_n + 1 \le 1$

- * $U_{k+1} 0 = U_k + 1 = \frac{2U_k + 1}{U_k + 2} \ge 0$ car $U_k \ge 0$, donc $2U_k \ge 0$ puis $2U_k + 1 \ge 1 > 0$. D'apres la regle des signes, $\frac{2U_k + 1}{U_k + 2} > 0$. Donc $U_{k+1} > 0$.
- * $U_{k+1} 1 = \frac{2U_k + 1}{U_k + 2} 1 = \frac{2U_k + 1 (U_k + 2)}{U_k + 2} = \frac{U_k 1}{U_k + 2} \leqslant 0 \text{ car } U_k \leqslant 1 \text{ donc } U_k 1 \leqslant 0 \text{ et } U_k + 2 \geqslant 0,$ RDS $\Rightarrow U_{k+1} 1 \leqslant 0.$

Conclusion: $U_k \leq 1$ donc $U_{k+1} \leq 0$ et $U_{k+2} > 0$, donc on a bien $0 \leq U_{k+1} \leq 1$.

- \hookrightarrow Methode 2:
- \Rightarrow meme initialisation que pour la methode 1.
- ⇒ Dans cette methode, on introduit une fonction generatrice :

On pose alors $f(x) = \frac{2x+1}{x+2}$, alors, $U_{n+1} = f(U_n)$, puis $f'(x) = \frac{2(x+2)-(1)(2x+1)}{(x+2)^2} = \frac{3}{(x+2)^2} > 0$ car 3 > 0 et $(x+2)^2 > 0$ donc f est croissante sur $]-\infty; -2[\cup]-2; +\infty[., \text{ donc a fortiori, sur } [0;1].$ Or, $0 \leqslant U_k \leqslant 1$ alors, $f(0) \leq f(U_k) \leq f(1)$ car f croissante sur [0; 1]. or, $f(0) = \frac{1}{2}$, $f(1) = \frac{2*1+1}{1+2} = 1$ donc, $\frac{1}{2} \leq f(U_k) \leq 1$ donc $\frac{1}{2} \leq U_{k+1} \leq 1$. or, $\frac{1}{2} > 0$ donc, $0 \le U_{k+1} \le 1$.

Remarque. Faire attention:

$$--\exists M \in \mathbb{R}/\forall n \in \mathbb{N}, U_n \leqslant M$$

$$- \forall m \in \mathbb{R} / \exists n \in \mathbb{N}, U_n \geqslant m$$

Dans la ligne 1, M ne depend pas de n

Dans la ligne 2, M depend de ce qu'il y a apres.

Une erreur "classique" :

par exemple, nous arrivons a : $\forall n \in \mathbb{N}, n-1 \leq U_n \leq 2n+3$.

Ici, on ne peut pas dire que (U_n) est bornee par n-1 et 2n+3. En effet, les minorants et majorants doivent etre des nombres ne dependants pas de n. Cependant, on peut dire que (U_n) est dominee par 2n+3.

A.3 Monotomie d'une suite

Définition 3. Soit (U_n) une suite,

- 1. On dit que (U_n) est croissante ssi $\forall n \in \mathbb{N}, U_{n+1} U_n \geqslant 0$
- **2.** On dit que (U_n) est decroissante ssi $\forall n \in \mathbb{N}, U_{n+1} U_n \leq 0$

(Si les inegalites sont strictes, on dit que la suite sera, respectivement, strictement croissante et strictement decroissante).

Exemple: $U_{n+1} = \frac{2U_n+1}{U_n+2}$ et $U_0 = 0$. \Rightarrow : etudier la monotomie de la suite.

$$U_{n+1} - U_n = \frac{2U_n + 1}{U_n + 2} - U_n = \frac{(2U_n + 1) - U_n (U_n + 2)}{U_n + 2}$$
$$\frac{2U_n + 1 - U_n^2 + 2U_n)}{U_n + 2} = \frac{(1 - U_n^2)}{U_n + 2} = \frac{(1 - U_n)(1 + U_n)}{U_n + 2}$$

Or, on a vu que $\forall n \in \mathbb{N}, 0 \leq U_n \leq 1$. donc,

$$1 - U_n \geqslant 0$$

$$1 + U_n \geqslant 1 > 0$$

 $0 \leqslant U_n \leqslant 1 \text{ donc } 2 \leqslant U_{n+1} \leqslant 3 \text{ donc, } U_{n+1} > 0.$

D'apres la regle des signes,

 $U_{n+1} - U_n \geqslant 0$ donc (U_n) est croissante sur N

IMPORTANT:

Si tous les termes de la suite sont strictement positifs, alors :

- 1. $\frac{U_{n+1}}{U_n} \geqslant 1$, alors la suite est croissante
- **2.** $\frac{U_{n+1}}{U_n} \leqslant 1$, alors la suite est decroissante

Démonstration. $U_{n+1}-U_n=U_n(\frac{U_{n+1}}{U_n}-1)$, donc le signe de $UI_{n+1}-U_n$ est alors le signe de $\frac{U_{n+1}}{U_n}-1$:

- 1. si on a : $\frac{U_{n+1}}{U_n} 1 \geqslant 0$, la suite est alors croissante
- **2.** si on a : $\frac{U_{n+1}}{U_n} 1 \le 0$, la suite est alors decroissante

Exemple: $V_n = \frac{2^n}{n^2}, n \geqslant 1$, il est evident que $V_n = \frac{2^n}{n^2} \geqslant 0$ car $2^n > 0$ et $n^2 > 0$ (RDS). Donc, on pose : $U_n = \frac{2^n}{n^2}$,

$$U_n = \frac{\frac{2^{n+1}}{(n+1)^2}}{\frac{2^n}{n^2}} = \frac{2^{n+1} * n^2}{2^n * (n+1)^2} = \frac{2 * 2^n * n^2}{2^n (n+1)^2} = \frac{2n^2}{(n+1)^2}$$

Ensuite,
$$\frac{U_{n+1}}{U_n} - 1 = \frac{2n^2}{(n+1)^2} - 1 = \frac{2n^2 - (n+1)^2}{(n+1)^2} = \frac{2n^2 - n^2 - 2n - 1}{(n+1)^2} = \frac{n^2 - 2n - 1}{(n+1)^2}$$
, ici $(n+1)^2 > 0$.

 \Rightarrow Cherchons $n^2 - 2n - 1, \Delta = 4 + 4 = 8 > 0, donc,$

$$n_1 = \frac{2-\sqrt{8}}{2} = \frac{2-2\sqrt{2}}{2} = \frac{2(1-\sqrt{2})}{2} = 1 - \sqrt{2}$$

$$n_2 = \frac{2+\sqrt{8}}{2} = 1 + \sqrt{2}$$
.

puis,
$$U_1 = \frac{2^1}{1^2} = 2$$
, $U_2 = \frac{2^2}{1^2} = 1$, $U_1 = \frac{2^3}{3^2} = \frac{8}{9}$.

Ensuite, d'apres le tableau de signe, $\forall n \geqslant 3, \frac{U_{n+1}}{U_n} - 1 > 0 \text{ donc la suite est strictement croissante a partir de } n = 3,$ puis, $U_1 = \frac{2^1}{1^2} = 2, U_2 = \frac{2^2}{1^2} = 1, U_1 = \frac{2^3}{3^2} = \frac{8}{9}.$ Comme $U_3 < U_2$, la suite n'est croissante qu'a partir de n = 3. Cependant, si on avait trouve $U_3 = 1, 2$, on aurrait put dire que (U_n) etait croissante a partir de n = 2.

Representation graphique des termes d'une suite recurrente

Soit
$$U_{n+1} = \frac{2U_n+1}{U_n+2}$$

Introduction:

On introduit $f(x) = \frac{2x+1}{x+2}$, on sait que f est croissante sur $]-\infty; -2[\cup]-2; +\infty[$.

- 1. Conjecture 1 : la suite est bornee entre 0 et 1.
- 2. Conjecture 2 : la suite est croissance
- 3. Conjecture 3: la suite converge vers 1. (c'est a dire l'abscisse du point d'intersection de favec $\Delta : y = x$, support).

D'autres dessins:

A.5 Representation graphique d'une suite explicite

Définition 4. Une suite est definie de maniere explicite si (U_n) s'exprime directement en fonction de n, cad, $U_n = f(n)$.

On construit la courbe representative de f puis tous les points de cette courbe dont les abscisses sont des entiers naturels. Tous ces points vont constituer un nuage de points et leurs ordonnees seront les termes U_0 , U_1 , U_2 ... U_n .

Pour construire les termes de la suite sur l'axe des abscisses, on utilise la droite d'equation y = x.

A.6 Theoremes divers

Propriété 2. On considere une suite (U_n) qui est definie de maniere explicite, cad $U_n = f(n)$, alors :

```
si f est croissante alors (U_n) aussi.
```

si f est decroissante alors (U_n) aussi.

si f est constante alors (U_n) aussi.

ATTENTION, LES RECIPROQUES SONT FAUSSES

Démonstration. On part de $\forall n \in \mathbb{N}$ et $U_n \in Df \subset \mathbb{R}^+, n \leqslant n+1$,

- **1.** alors $f(n) \leq f(n+1)$ car f est croissante sur \mathbb{R}^+ . ($\mathbb{R}^+ \subset \mathbb{N}$), donc $U_n \leq U_{n+1}$ donc la suite est croissante.
- **2.** alors $f(n) \ge f(n+1)$ car f est decroissante sur \mathbb{R}^+ . ($\mathbb{R}^+ \subset \mathbb{N}$), donc $U_n \ge U_{n+1}$ donc la suite est decroissante.

Remarque. En effet, $\mathbb{N} \subset \mathbb{R}^+$, il faut que f soit definie sur \mathbb{R}^+ afin de calculer f(n) cad (U_n) .

Exemple: Une suite $U_n = f(n)$ qui est croissante sans pour cela avoir f croissant prendre $f(x) = \sin(2\pi x) + x$

Propriété 3. Toute suite croissante est minoree par son premier terme.

Toute suite decroissante est majoree par son premier terme.

Démonstration. 1. Prendre $U_0 \leq U_1 \leq U_2 \leq U_3 \leq ... \leq U_n$, donc $\forall n \in \mathbb{N}, U_n \geqslant U_0$.

2. Prendre $U_0 \geqslant U_1 \geqslant U_2 \geqslant U_3 \geqslant ... \geqslant U_n$, donc $\forall n \in \mathbb{N}, U_n \leqslant U_0$.

B Suites arithmetiques et geometriques

B.1 Definitions de la suite arithmetique

Définition 5. On considere une suite (U_n) , s'il existe un reel r tel que pour tout naturel, on sait que $U_{n+1} = U_n + r$ alors (U_n) sera dite arithmetique de raison r et de premier terme U_0 .

IMPORTANT:

```
\exists n \in \mathbb{R}/\forall n \in \mathbb{N}, U_{n+1} = U_n + r
```

Remarque. de part cette ecriture, r est independant de n.

 $U_{n+1} = U_n + 2n - 3$, ici on ne dit pas que la suite a une raison de 2n - 3, ici, il est dependant de n! Il doit etre constant.

Exemple:

La liste des nombres entiers est une suite arithmetique avec, r = 1 et $U_0 = 0$.

En prenant, $U_0 = 0$ et r = 2, on obtient les nombres pairs.

En prenant, $U_0 = 1$ et r = 2, on obtient les nombres impairs.

Pour r=0, la suite est constante car $U_{n+1}=U_n+0=U_n$, par recurence, on montre que $\forall n\in\mathbb{N} n, U_n=U_0$

B.2 Theoreme

Propriété 4. Soit (U_n) une suite de raison r et de premier terme U_0 .

- 1. $\forall n \in \mathbb{N}, U_n = U_0 + nr$
- **2.** $\sum_{k=0}^{n} U_k = U_0 + U_1 + U_2 + \dots + U_n = \frac{(n+1)(U_0 + U_n)}{2} = \frac{(nombre\ de\ terme)(premier\ terme\ +\ dernier\ terme)}{2}$

Démonstration. (par recurrence)

1. Methode 1 :

a. Initialisation:

pour
$$n = 0, U_n + nr = U_0 + 0r = U_0$$
 donc vrai pour U_0 .

b. Heredite:

On suppose qu'il $\forall k \in \mathbb{N}, U_k = U_0 + kr$ (HR).

$$U_{n+1} = U_k + r$$

$$U_{n+1} = (U_0 + kr) + r$$

$$U_{n+1} = U_0 + (k+1)r$$

- **c.** donc vrai pour n+1.
- **2.** Methode 2 :
 - **a.** Initialisation :

pour $\sum_{k=0}^{0} U_k = U_0$, et le terme de droite prend $\frac{(0+1)(U_0+U_0)}{2} = \frac{2U_0}{2} = U_0$. Donc vrai pour n=0.

b. Heredite :

On suppose qu'il
$$\forall p \in \mathbb{N}, \sum_{p=0}^{0} U_p = \frac{(p+1)(U_0 + U_p)}{2}$$
 (HR).

$$S_n = U_0 + U_1 + \dots + U_p + U_{p+1}$$

$$S_n = \frac{(p+1)(U_0 + U_p)}{2} + U_{p+1}$$

$$S_n = \frac{(p+1)(U_0 + U_{p+1} - r)}{2} + U_{p+1}$$

$$S_n = \frac{(p+1)(U_0 + U_{p+1} - r)(2)(U_{p+1})}{2}$$

$$S_n = \frac{(p+1)U_0 + (p+3)(U_{p+1} - (p+1))}{2}$$

$$S_n = \frac{(p+2)U_0 - U_0 + (p+2)U_{p+1} - (p+1) + U_{p+1}}{2}$$

$$S_n = \frac{(p+2)U_0 + (p+2)U_{p+1} + U_{p+1} - U_0 - (p+1)}{2}$$

$$S_n = \frac{(p+2)(U_0 + U_p + 1)}{2}$$

c. donc vrai pour n+1.

Propriété 5. Soit (U_n) une suite s.a. de raison r et de premier terme U_a alors,

1.
$$U_n = U_0 + (n-a)r$$

2.
$$U_a + U_{a+1} + \dots + U_n = \frac{(n-a+1)(U_a+U_n)}{2}$$

Démonstration. admise.

B.3 Definition de la suite geometrique

Définition 6. Soit U_n une suite s'il existe un reel q tel que pour tout entier naturel n on ait, $U_{n+1} = q * U_n$, la suite est dite geometrique de raison q (et U_0 est donn \tilde{A} \bigcirc).

$$\exists n \in \mathbb{R}/\forall n \in \mathbb{N}, U_{n+1} = q * U_n$$

Remarque. Cas particuliers:

1. q=0: la suite est constante \tilde{A} partir du second terme. U_0 puis $\forall n \in \mathbb{N}, U_n=0$

2.
$$q = 1, \forall n \in \mathbb{N}, U_n = U_0$$

Propriété 6. Soit U_n une suite geo. de raison q $(q \neq 1 \text{ et } q \neq 0)$ et de premier terme U_0 .

1.
$$U_n = U_0 * q^n$$

2.
$$\sum_{k=0}^{n} U_n = U_0 + U_1 + ... + U_n = U_0 * \frac{1-q^{n+1}}{1-q}$$

Cas particuliers:

1. pour
$$q = 1$$
, $U_n = U_0$, donc, $U_0 + U_1 + U_2 + ... + U_n = (n+1)U_0$.

2. pour
$$q = 0$$
, $U_n = 0$ avec $n \ge 1$, $U_0 + U_1 + ...U_n = U_0$

Démonstration. (par recurrence) :

1. Methode A:

a. Init : pour
$$n = 0$$
, $U_0 * q^n = U_0 * q^0 = U_0 * 1 = U_0$, donc vrai pour $n = 0$.

b. Heredite

On suppose que
$$\forall p\in\mathbb{N}/U_p=U_0*q^p$$
 alors, $U_{p+1}=q*U_p=q*U_0*q^p=U_0*q^{p+1}$, vrai pour $p+1$.

2. Methode B:

a. Initialisation : pour
$$k = 0$$
, $\sum_{k=0}^{p} U_k = U_0 * \frac{1-q^{p+1}}{1-q} = U_0 * 1 = U_0$ donc vrai pour $k = 0$

 \mathbf{b} . Heredite:

On suppose
$$\forall p \in \mathbb{N}, \sum_{k=0}^{p} = U_0 * \frac{1-q^{p+1}}{1-q}$$
 or, $U_0 + U_1 + \dots + U_n + U_{n+1}$

$$= U_0 * \frac{1-q^{p+1}}{1-q} + U_{p+1}$$

$$= U_0 * (\frac{1-q^{p+1}}{1-q}) + U_0 * q^{p+1}$$

$$= U_0 [\frac{1-q^{p+1}}{1-q} + q^{p+1}]$$

$$= U_0 [\frac{1-q^{p+1} + (1-q)(q^{p+1})}{1-q}]$$

$$= U_0 [\frac{1-q^{p+1} + q^{p+1} + q^{p+2}}{1-q}]$$

$$= U_0 [\frac{1-q^{p+1} + q^{p+1} + q^{p+2}}{1-q}]$$

$$= U_0 [\frac{1-q^{p+1} + q^{p+1}}{1-q}]$$
donc vrai pour $p + 1$.

B.4 Formule importante a savoir

Propriété 7. Soit
$$q \in \mathbb{R} \setminus \{1\}$$
 alors $1+q+q^2+q^3+...+q^n=\frac{1-q^{n+1}}{1-q}$

Démonstration. Prenons (U_n) , une suite geo. avec $U_0 = 1$ et de raison q alors

$$\forall k \in \mathbb{N}, U_k = U_0 * q^k = q^k$$

$$U_0 + U_1 + U_2 + \dots + U_n = 1 + q + q^2 + \dots + q^{n-1} + q^n$$

$$= U_0 * (\frac{1 - q^{n+1}}{1 - q})$$

$$1 * (\frac{1 - q^{n+1}}{1 - q}) = \frac{1 - q^{n+1}}{1 - q}$$

Chapitre II

Convergence (et divergence) des suites

Convergence d'une suite

Partie entiere d'une suite

Propriété 8. Soit $x \in \mathbb{R}$. On appelle partie entiere de x, notee, E(x), l'unique entier verifiant :

$$E(x) \leqslant x < 1 + E(x)$$

Exemple:

$$E(\sqrt{2}) = 1$$

$$E(-3\pi) = -10$$

$$E(-1.6) = -2$$

$$E(4) = 4$$

$$E(0) = 0$$

$$E(-2\sqrt{3}) = -4$$

$\mathbf{A.1}$ Definition de la convergence

Définition 7. Soit (U_n) une suite numerique.

On dit que (U_n) converge vers le reel l si tout interval ouvert contenant l contient tous les termes de la suite A partir d'un certain rang. On ecrit alors :

$$\lim_{n\to\infty} (U_n) = l$$

Remarque. Dessin explicatif dans le cahier de cours, flemme quoi.

A.2 Autre traduction de la def.

$$(\forall \varepsilon > 0)(\exists n_0 \in \mathbb{N}) / (\forall n \in \mathbb{N}), n \geqslant n_0) |U_n - l| < \varepsilon$$

Exemple: $U_n = \frac{2n+1}{n-1}$ avec $n \neq 1$ Montrer que (U_n) converge vers 2

On prend ε positif (au hasard). On cherche $n_0 \in \mathbb{N} / n \geqslant n_0$,

la distance entre
$$U_n$$
 et l ne depasse pas ε .
$$|U_n-2|\leqslant \varepsilon \Leftrightarrow |\frac{2n+1}{n-1}-2|\leqslant \varepsilon \Leftrightarrow |\frac{2n+1-2(n-1)}{n-1}-2|\leqslant \varepsilon \Leftrightarrow |\frac{3}{n-1}|\leqslant \varepsilon \Leftrightarrow \frac{|3|}{|n-1|}\leqslant \varepsilon \Leftrightarrow 3\leqslant \varepsilon |n-1|$$
 (car $|n-1|\geqslant 0$) $3\leqslant |n-1|$, or par necessite, $n\geqslant 2$

donc,
$$n - 1 \ge 1 > 0$$

d'ou,
$$\frac{3}{\varepsilon} < n - 1$$

d'ou, $n > \frac{3}{\varepsilon} + 1$

$$|U_n - 2| < \varepsilon \Leftrightarrow n > 1 + \frac{3}{\varepsilon}$$

Comme ε est quelquonque, a priori, $1+\frac{3}{\varepsilon}$ n'a pas de chance d'etre entier. C'est la qu'intervient la partie entiere.

$$E(1+\frac{3}{\varepsilon}) \leqslant 1+\frac{3}{\varepsilon} \leqslant 1+E(1+\frac{3}{\varepsilon})$$

Reprise de la demonstration :

Prenons le nombre $n_0 = E(1+\frac{3}{\varepsilon})+1 \in \mathbb{N}$ alors des que $n \geqslant E(1+\frac{3}{\varepsilon})+1$, on est assure d'avoir $n \geqslant 1+\frac{3}{\varepsilon}$ (car $1+\frac{3}{\varepsilon} \leqslant 1+E(1+\frac{3}{\varepsilon})$). Donc grace au travail precedent, $|U_n-2|<\varepsilon$

 $Application \ numerique:$

$$\begin{array}{l} \varepsilon = 0.00037 \\ \text{alors } 1 + \frac{3}{\varepsilon} = 8109.1... \\ \text{donc, } 1 + \frac{3}{\varepsilon} = 1 + 8109 = 8110, \text{ alors } n \geqslant 8110 \text{ on aura } : |U_n - 2| = |\frac{2n+1}{n-1} - 2| = \frac{|3|}{|n-1|} = \frac{3}{|n-1|}, \text{ or } n \geqslant 8110 \text{ alors, } n - 1 \geqslant 8109. \\ 0 < \frac{1}{n-1} \leqslant \frac{1}{8109} \Leftrightarrow \frac{3}{n-1} \leqslant \frac{3}{8109} \Leftrightarrow \frac{3}{|n-1|} \leqslant 3.6995 * 10^-4 \\ \frac{3}{|n+1|} < 0.00036995 < 0.00037 \end{array}$$