Математическая логика и теория алгоритмов

Сергей Григорян

25 сентября 2024 г.

Содержание

1 Лекция 3					
	1.1	Мн-ны Жегалкина			
	1.2	Препятствие 1: $C \subset P_1$			
	1.3	Препятствие 2: $C \subset P_0$			
	1.4	Препятствие 3: $C \subset M$			
2	Лекция 4				
		Системы связок			

1 Лекция 3

Пропозициональные ф-лы	\leftrightarrow	Булевы ф-ции
	\rightarrow	Семантика табл. истины
КНФ/ДНФ	\leftarrow	

1.1 Мн-ны Жегалкина

Вместо \neg , \wedge , \vee используем $*(\wedge)$, \oplus

Особенности мн-нов над булевыми переменными:

- 1) $x^2 = x$
- $2) \quad x \oplus x = 0$

Эти особенности можно отразить в определении.

Определение 1.1. Пусть x_1, \ldots, x_n - переменные.

Тогда **одночленом Жегалкина** наз-ся произведение каких-то переменных (В том числе 1 = произведению пустого мн-ва переменных).

Многочленом Жегалкина наз-ся сумма каких-то одночленов. (В том числе 0 = сумма пустого мн-ва одночленов)

(Порядок произведения и суммы не важен)

Пример. 1)

$$\neg p = p \oplus 1$$

2)

$$p \wedge q = pq$$

3)
$$p \lor q = \neg(\neg p \land \neg q) = (p \oplus 1)(q \oplus 1) \oplus 1 = p \oplus q \oplus pq$$

4)
$$p \to q = \neg p \lor q = (p \oplus 1) \oplus q \oplus (p \oplus 1)q = pq \oplus p \oplus 1$$

5)
$$maj_{3}(p,q,r) = \begin{cases} 1, p+q+r \ge 2 \\ 0, p+q+r \le 1 \end{cases} = pq \oplus qr \oplus pr$$

Теорема 1.1. Любую булеву ф-цию можно однозначно представить $\overline{\kappa}$ ак мн-н Жегалкина. (С точностью до порядка множителей и слагаемых)

Кол-во булевых ф-ций $=2^{2^n}$

Кол-во одночленов $=2^n$

Кол-во многочленов $=2^{2^n}$

Мн-н \mapsto Ф-ция (вычисл.)

Почему 2 мн-на не могут дать одну ф-цию?

Рис. 1:

Доказательство. Пусть не так, и есть 2 мн-на $P \neq Q$: $\forall x \colon P(x) = Q(x)$

Рассм. $S(x) = P(x) \oplus Q(x) \not\equiv 0$ (как мн-н)

Тогда $\forall x : S(x) = 0$

Рассм. одночлен, в кот. меньше всего множителей. Если таких несколько, то любой из них.

Б. О. О. это $x_1x_2\dots x_k$. Рассм. $a=(1,1,1,\dots,1,0,0,0,\dots,0)$ (k ед-ц, (n-k) нулей).

$$S(a) = x_1 x_2 \dots x_k \oplus (\dots)$$

 $S(a)=1*\ldots*1\oplus(\ldots)=1$ (т. к., в ост. слагаемых есть перменные, кроме $x_1\ldots x_k)$

Ho, $\forall x \colon S(x) = 0 \Rightarrow$ противоречие.

Все ф-ции можно выразить через: \neg , \wedge , \vee (КН Φ /ДН Φ). Даже можно через \neg , \wedge или \neg , \vee (используем законы Де Моргана).

Мн-н Жегалкина позволяет выразить все ф-ции через \land , \oplus и 1 А можно ли выразить всё через \land , \lor , \rightarrow ? **ОТВЕТ: НЕТ.**

Причина: т. к.:

- $1 \land 1 = 1$
- $1 \lor 1 = 1$
- $1 \to 1 = 1$

 \Rightarrow Значение такой ф-лы, на $(1,1,\dots,1)=1.$ Те ф-ции, где $f(1,1,\dots,1)=0$ выр-ть нельзя.

Обозначение. Класс ф-ций, сохр. единицу, обозначается как P_1

Определение арг-ов f) - это 1.2. Суперпозиция ф-ций f, g_1, \dots, g_k (где k - число

$$h(x_1, x_2, \dots, x_n) = f(g_1(x_1, \dots, x_n), \dots, g_k(x_1, \dots, x_n))$$
(1)

Более формально:

Суперпозиция нулевого порядка - это проекторы:

$$pr_i(x_1,\ldots,x_n)=x_i$$

Суперпозиция порядка (m+1) - это f (см. (1)), где f - одна из базовых ф-ций, g_1, g_2, \ldots, g_k - суперпозиции порядка $\leq m$.

Теорема 1.2. Все базовые ф-ции сохр. $1 \Rightarrow$ все суперпозиции тоже.

Определение 1.3. Пусть C - мн-во ф-ций. Тогда мн-во всех суперпозиций ф-ций из C наз-ся замыканием C и обозначается [C]

Когда [C] - это все функции? (Если это так, то C наз-ся полной системой)

1.2 Препятствие **1**: $C \subset P_1$

См. выше

1.3 Препятствие **2**: $C \subset P_0$

Определение 1.4. P_0 - класс ф-ций, сохр. 0, т. е. таких, что

$$f(0,\ldots,0) = 0$$

Аналогичная теорема верна для P_0 (Все баз. ф-ции, сохр. $0 \Rightarrow$ все суперпоз-ции тоже)

Пример. \wedge, \vee, \oplus

1.4 Препятствие 3: $C \subset M$

Определение 1.5. *М* - монотонная ф-ции:

$$f$$
 - монотонна, если $\forall (a_1, \ldots, a_n), \forall (b_1, \ldots, b_n) : (a_i \leq b_i), \forall i = 1, \ldots, n \Rightarrow (f(a_1, \ldots, a_n) \leq f(b_1, \ldots, b_n))$

Пример.
$$\lor$$
, \land - монот. \neg , \rightarrow , \oplus - немонот.

Утверждение 1.1. Суперпозиция монот. ф-ций монотонна.

Доказательство.
$$f(g_1(x_1, x_2, \dots, x_n), \dots, g_k(x_1, \dots, x_n))$$

 $g_i - \uparrow, \forall i = 1, \dots, k \Rightarrow f \uparrow$

2 Лекция 4

2.1 Системы связок

Бывают двух типов:

• Полные (все ф-ции выразимы)

$$\begin{array}{ll} {\bf \Piример.} & - \left\{ \neg, \wedge, \vee, \rightarrow \right\} \\ & - \left\{ \neg, \wedge \right\} \\ & - \left\{ \neg, \vee \right\} \\ & - \left\{ 1, \oplus, \wedge \right\} \\ & - \left\{ \rightarrow, 0 \right\} \end{array}$$

Доказательство.
$$\neg p = p \to 0$$
 $p \lor q = \neg p \to q$

- Неполные
 - $\{\rightarrow, \land, \lor\}$ сохраняют 1
 - $-\{\wedge,\oplus\}$ сохраняют 0
 - $-\{\wedge,\vee,0,1\}$ монотонность
 - $\{\neg, maj_3\}$ самодвойственные $(f(\neg \overline{p}) = \neg f(\overline{p}); \overline{p} = (p_1, p_2, \dots, p_n))$ Иными словами, $f = f^* \colon f^*(p_1, p_2, \dots, p_n) = \neg f(\neg p_1, \neg p_2, \dots, \neg p_n)$

Пример.

$$\wedge^* = \vee, \vee^* = \wedge \\
\neg(\neg p \wedge \neg q) = p \vee q \\
\oplus^* = \leftrightarrow \\
\neg(\neg p \oplus \neg q) = \neg(p \oplus q) = (p \leftrightarrow q) \\
h(p_1, p_2, \dots, p_n) = f(g_1(p_1, \dots, p_n), g_2(p_1, \dots, p_n), \dots, g_n(p_1, \dots, p_n)) \\
h(\neg p_1, \dots, \neg p_n) = f(g_1(\neg p_1, \dots, \neg p_2), \dots, g_n(\neg p_1, \dots, \neg p_n)) \\
h(\neg p_1, \dots, \neg p_n) = f(\neg g_1(p_1, \dots, p_n), \dots, \neg g_n(p_1, \dots, p_n)) \\
h(\neg p_1, \dots, \neg p_n) = \neg f(g_1(p_1, \dots, p_n), \dots, g_n(p_1, \dots, p_n)) = \neg h(p_1, \dots, p_n)$$

— $\{\oplus,1\}$ - Линейные (Афинные) - ф-ции, задающиеся линейными мн-нами Жегалкина

Теорема 2.1 (Критерий Поста). Система связок полна \iff она не является подмн-вом ни одного из 5-ти классов:

- P_0 coxp. 0
- P_1 coxp. 1
- M монотонные
- ullet D(S) самодвойственные
- \bullet L линейные

 \iff система содержит некот. ϕ -цию (ϕ -ции):

$$f_0 \not\in P_0, f_1 \not\in P_1, g \not\in M, h \not\in D, R \not\in L$$

Доказательство.

Шаг 1

$$f_0(0,0,\dots,0) = 1,$$
 (т. к. f_0 не сохр. 0)
$$f_0(1,1,\dots,1) = \begin{bmatrix} 0 \Rightarrow f_0(p,p,p,\dots,p) = \neg p \\ 1 \Rightarrow f_0(p,p,p,\dots,p) = 1 \end{bmatrix}$$

<u>Шаг 2</u>

$$f_1(1,\ldots,1) = 0$$

$$f_1(0,\ldots,0) = \begin{bmatrix} 0 \Rightarrow f_1(p,\ldots,p) = 0 \\ 1 \Rightarrow f_1(p,\ldots,p) = \neg p \end{bmatrix}$$

$f_1 \backslash f_0$	7	1
\neg	шаг 4	$0 = \neg 1$
0	$1 = \neg 0$	шаг 3

 $0, 1, \neg \rightarrow \text{mar } 5$

<u>Шаг 3</u> $0,1,g\not\in M\mapsto \neg$

Пример.

$$\neg p = (p \to 0)$$
$$\neg p = (p \oplus 1)$$
$$\neg p = exact_{1,3}(0, 1, p)$$

Определение 2.1. Монотонная ф-ция - ф-ция, т. ч.:

$$\forall p_1, q_1, \dots, p_n, q_n \colon (\forall i \colon (p_i \le q_i) \to f(p_1, \dots, p_n) \le f(q_1, \dots, q_n))$$

 \Rightarrow ф-ция **немонот.** \Longleftrightarrow :

$$\exists p_1, q_1, \dots, p_n, q_n (\forall i : (p_i \le q_i) \to g(p_1, \dots, p_n) = 1 \land g(q_1, \dots, q_n) = 0)$$

<u>Лемма</u> 2.2. g немонотонна \Rightarrow

$$\exists i, \exists (a_1, a_2, \dots, a_{i-1}, a_{i+1}, \dots, a_n) :$$

$$g(a_1,\ldots,a_{i-1},0,a_{i+1},\ldots,a_n)=1 \land g(a_1,\ldots,a_{i-1},1,a_{i+1},\ldots,a_n)=0$$

Тогда $\neg p = g(a_1, \dots, a_{i-1}, p, a_{i+1}, \dots, a_n)$

 $\underline{\text{IIIar } 4} \neg, h \notin D \mapsto 0, 1$

$$h \notin D \Rightarrow \exists (a_1, \dots, a_n)$$

 $h(a_1, \dots, a_n) = h(\neg a_1, \dots, \neg a_n)$

Пример.

$$\neg, \oplus \Rightarrow p \oplus \neg p = 1$$

$$\neg, \land \Rightarrow p \land \neg p = 0$$

Общий подход:

$$h(0, 1, 1, 0, 1, 0) = h(1, 0, 0, 1, 0, 1) = 1$$

$$\Rightarrow h(\neg p, p, p, \neg p, p, \neg p) = 1, p = \overline{0, 1}$$

 $\underline{\text{Шаг }5}$

$$\neg$$
, 0, 1, $k \notin L$

Б. О. О. в мн-не Жегалкина ф-ции k есть слагаемое с x_1x_2

$$k(x_1, \ldots, x_n) = x_1 x_2 \cdot A(x_3, \ldots, x_n) \oplus x_1 \cdot B(x_3, \ldots, x_n) \oplus x_2 \cdot C(x_3, \ldots, x_n) + D(x_3, \ldots, x_n)$$

Мн-н A непустой $\Rightarrow \exists (a_3,\ldots,a_n) \colon A(a_3,\ldots,a_n) = 1$

Тогда $k(x_1, x_2, a_3, \dots, a_n) = x_1x_2 \oplus x_1 \cdot B \oplus x_2 \cdot C \oplus D$

Использование орицания позволяет менять 1

$$-B=C=0 \Rightarrow$$
 выразили $x_1,x_2,$ т. е. \land . \land , $\neg \mapsto$ ВСЁ

$$-B = C = 1 \Rightarrow x_1 \oplus x_2 \oplus x_1 x_2$$
, T. e. \vee . \vee , $\neg \mapsto BC\ddot{E}$

$$-B=0, C=1 \Rightarrow 1 \oplus x_1 \oplus x_1x_2, \text{ T. e. } \rightarrow, \neg \mapsto BC\ddot{E}$$