Section 8: IV Regression with Multiple Instruments and Intrinsic Heterogeneity

Estimating Returns to School w/ Two Instruments

Recall last week's IV example that studied returns to schooling through using distance to one's closest 4-year college as an instrument for education. Further nuance could come from including a second instrument of the distance to one's closest 2-year college.

. ivregress 2sls lwage (educ=nearc2 nearc4) exper expersq black south, r

Instrumental variables (2SLS) regression Number of obs = Wald chi2(5) =

Wald chi2(5) = 405.49 Prob > chi2 = 0.0000 R-squared = .

3,010

Root MSE = .49548

Robust lwage | Coef. Std. Err. z P>|z| [95% Conf. Interval] _____ educ | .2403154 .0402514 5.97 0.000 .161424 .3192067 exper | .1517071 .0187201 8.10 0.000 expersq | -.0024099 .0004516 -5.34 0.000 black | -.0182842 .0451119 -0.41 0.685 .1883978 .1150163 -.003295 -.0015247 -.106702 .0701335 south | -.0807446 .0259706 -3.11 0.002 -.131646 -.0298432 _cons | 1.998076 .6951721 2.87 0.004 .6355635 3.360588

Instrumented: educ

Instruments: exper expersq black south nearc2 nearc4

First Stage F^{MOP} statistic

- . ssc install weakivtest
- . weakivtest
 (obs=3,010)

Montiel-Pflueger robust weak instrument test

Effective F statistic: 20.103
Confidence level alpha: 5%

Critical Values	TSLS	LIML
% of Worst Case Bias		
tau=5%	4.445	19.766
tau=10%	3.768	12.452
tau=20%	3.396	8.362
tau=30%	3.266	6.839

First Stage F MOP statistic = 20.103195

```
. display "F MOP Critical Value = " r(c_TSLS_10)
F MOP Critical Value = 3.767954
. display "First Stage F MOP statistic = " r(F_eff)
```

• What is the HR first stage F statistic?

• What conclusion can be drawn about relevance from this test?

$J\ statistic$

Terminology: with more instruments (two: nearc2 nearc4) than endogenous regressors (one: educ), we are "overidentified." In that case, we can calculate a heteroskedasticity robust (HR) or heteroskedasticity and autocorrelation robust (HAC) J -statistic known as a test of the overidentifying restrictions.

. estat overid, forcenonrobust

Tests of overidentifying restrictions:

```
Sargan chi2(1) = 1.8588 (p = 0.1728)
Basmann chi2(1) = 1.85563 (p = 0.1731)
Score chi2(1) = 1.86471 (p = 0.1721)

dis "HR J-test = " r(score) " HR p-value = " r(p_score)
HR J-test = 1.8647102 HR p-value = .17208216
```

. dis "Homoskedastic J-test = " r(basmann)" Homoskedastic $p-value = " r(p_basmann)$ Homoskedastic J-test = 1.8556251 Homoskedastic p-value = .17313058

• What is the null hypothesis of the *J*-test?

• What conclusion can be drawn about exogeneity from this test?

• What should we do if we reject the null? Are there any exceptions to this?

Intrinsic Heterogeneity

So far, we have thought about *constant* treatment effects. That is, for the regression function: $Y_i = \beta_0 + \beta_1 X_i + u_i$, we have assumed that $\beta_{1i} = Y_i(1) - Y_i(0)$ is the same for ALL individuals. Now, we no longer assume that - β_1 may vary by i - that is, X_i has a different effect on Y_i on different individuals and so we have:

$$Y_i = \beta_0 + \beta_{1i}X_i + u_i$$

Example: The return of schooling on income -

$$Income_i = \beta_{0i} + \beta_{1i}Education_i + u_i$$

• Why might individuals have different returns to education?

OLS and Average Treatment Effects

• If there are heterogenous treatment effects, X is randomly assigned, and we run OLS, we estimate the Average Treatment Effect (ATE): $E(\beta_{1i}) = E[Y_i(1) - Y_i(0)]$. How would we interpret $\hat{\beta}_1$ if Education is randomly assigned and we run OLS?

Introduction to LATE

• If X is not randomly assigned, and we decide to use IV, what happens?

In most cases we will no longer estimate the ATE and estimate the local average treatment effect (LATE) which in terms of math is:

$$LATE = \frac{E[\beta_{1i}\pi_{1i}]}{E[\pi_{1i}]}$$

where π_{1i} is the coefficient on the instrument from the first stage:

$$X_i = \pi_{0i} + \pi_{1i} Z_i + v_i.$$

What are the different terms? What do they mean?

In general, the LATE tells us that the average treatment effect for the people who are affected by the instrument (sometimes these are called the "compliers").

What does it mean that people are "affected" by the instrument? What does it mean in terms of the first stage?

Example: Returns to Schooling

Let's go back to the schooling example before, where we decided to use instruments for schooling that exploit geographical differences in accessibility of college, specifically, the distance to one's closest two/four year college.

• Who do we think will be affected by the instruments?

• How do we think their effect of the treatment (i.e. schooling) is different than the general population?

Let's contrast OLS and 2SLS:

. ivregress 2sls lwage (educ=nearc2 nearc4) exper expersq black south, r

Instrumental var	riables (2SLS)	regression	Number of obs	=	3,010
			Wald chi2(5)	=	405.49
			Prob > chi2	=	0.0000
			R-squared	=	
			Root MSE	=	.49548

 lwage 	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
 educ	.2403154	.0402514	5.97	0.000	.161424	.3192067
exper	.1517071	.0187201	8.10	0.000	.1150163	.1883978
expersq	0024099	.0004516	-5.34	0.000	003295	0015247
black	0182842	.0451119	-0.41	0.685	106702	.0701335
south	0807446	.0259706	-3.11	0.002	131646	0298432
_cons	1.998076	.6951721	2.87	0.004	.6355635	3.360588

Instrumented: educ

Instruments: exper expersq black south nearc2 nearc4

. regress lwage educ exper expersq black south, r

Number of obs =Linear regression 3,010 F(5, 3004) 222.70 Prob > F 0.0000

R-squared = 0.2651 Root MSE = .38076

lwage	 -	Coef.	Robust Std. Err.	t 	P> t	[95% Conf.	Interval]
educ	1	.078233	.0036886	21.21	0.000	.0710005	.0854655
exper		.0851268	.0068201	12.48	0.000	.0717543	.0984993
expersq	1	0023404	.000322	-7.27	0.000	0029718	001709
black	1	1780477	.017711	-10.05	0.000	2127745	1433209
south	1	150492	.0153809	-9.78	0.000	1806501	1203339
_cons	1	4.796325	.0716322	66.96	0.000	4.655872	4.936778

Last week we gave the explanation that OLS was downward biased since the IV $\hat{\beta}^{IV}$ increased compared to the OLS.

• What is another explanation?

When does LATE = ATE? There are three un-realistic conditions that are not likely satisfied in most applications which lead to LATE = ATE:

- 1. $\beta_{1i} = \beta_1$ for all i that is no heterogeneity in the effect of the treatment on the outcome OR
- 2. $\pi_{1i} = \pi_1$ for all i there is no heterogeneity in the effect of the instrument on the treatment OR
- 3. $cov(\beta_{1i}, \pi_{1i}) = 0$ there is heterogeneity in both the effect of the treatment on the outcome and the effect of the instrument on the treatment, but these are not systematically related
- Always start by explaining why each of these conditions is not plausible. Explain why each of these conditions is unlikely to hold in the returns to schooling IV example.