Recommender Systems:

Given

 $\circ\quad \text{Users:}\; \boldsymbol{U_1},\, \dots\,,\, \boldsymbol{U_n}$

Movies: M₁, ..., M_m

○ Ratings: **R**_{ij}

- Goal: Recommend movies to users
 - o Challenges:

■ Scale (millions of users, millions of movies)

■ Cold Start (change in user base, change in content)

■ Sparse Data (Not many users rank movies)

• Example: movie recommendation:

С

	M ₁	M ₂	M ₃	M ₄
		-	•	
U ₁	R ₁₁	R ₁₂	R ₁₃	R ₁₄
U ₂	R ₂₁	R ₂₂	R ₂₃	R ₂₄
U ₃	R ₃₁	R ₃₂	R ₃₃	R ₃₄

- Neighborhood Methods:
 - o (user, user) similarity measure
 - i.e. recommend same movies to similar users (requires info about users)
 - (item, item) similarity measure
 - i.e. recommend movies that are similar (requires info about movies)

Pros:

- Intuitive / easy to explain
- No training
- Handles new users/items

Challenges:

- Users rate differently (bias)
- Ratings change over time (bias)

Feature Extraction - Content-Based:

- Realistically:
- It's difficult to characterize movies and users with the right features
- Characterization of users and movies may not be accurate

- If you are using genres for example, movies with varying degree of "comedy" will get the tag "comedy".
- Goal:
 - Discover the best features in an automated way
 - Content-Based: assume you have features for movies want to learn features for users
 - o Collaborative filtering: want to learn features for both users and movies
- Suppose we have a set of features that characterizes each movie (ex: category, genre...), we could obtain the following **feature-to-movie** similarity matrix:

С

	M ₁	M ₂	M ₃	M ₄
F₁ (Romance)	.9	1	.1	0
F ₂ (Action)	0	.01	1	.9

- Given this **feature-to-movie** similarity matrix, how can we predict rating for User 2 or Movie 1 (i.e. R₁₂)?
- If we had a **user-to-feature** similarity matrix, we could multiply:
 - user-to-feature x feature-to-movie = user-to-movie = R_{ii}
- Collaborative Filtering:
 - Challenge with content-based:
 - How to get the right features $f_1, ..., f_k$ and $p^{(1)}, ..., p^{(n)}$?
 - o Can we learn these features?

 Can't use SVD because R is sparse... BUT, we can formulate an optimization problem to solve:

$$\min \sum_{i,j \in R} (r_{ij} - p_i^T q_j)^2 + \lambda (\|p\|_F^2 \|p\|_F^2)$$

- To solve, take derivatives wrt P & Q. Then, just like Expectation-Maximization Algorithm from GMM:
 - Start with random Q
 - Get P
 - Improve Q
 - Repeat 2 & 3
- Linear Regression:
 - Find the data.csv file in the regression folder of our course repo
 - Challenge:

- Every day my alarm goes off at seemingly random times...
- I've recorded the times for the past year of so (1 355 days)
- Today is day 356
- Can you predict when my alarm will ring?
- Motivation:

Given \mathbf{n} samples / data points $(\mathbf{y}_i, \mathbf{x}_i)$

- Understand/explain how y varies as a function of x (i.e. find a function y = h(x) that best fits our data)
- Suppose we are given a curve y = h(x), how can we evaluate whether it is a good fit to our data?
- o Compare $h(x_i)$ to y_i for all i.
- Goal: For a given distance function d, find h where L is smallest.

$$L(h) = \sum_{i} d(h(x_i), y_i)$$

Should **h** be the curve that goes through the most samples? I.e. do we want $h(x_i) = y_i$ for the maximum number of **i**?

- **h** may be too complex overfitting may not perform well on unseen data
- The following curves seem the most intuitive "best fit" to our samples. How can we define this best fit mathematically? Is it just about finding the right distance function?

Motivation:

- Another way to define this problem is in terms of probability.
- Define P(Y | h) as the probability of observing Y given that it was sampled from h.
- Goal: Find h that maximizes the probability of having observed our data.
 - o To sum up we can either:

$$L(h) = \sum_{i} d(h(x_i), y_i)$$

- Minimize:
- Maximize: L(h) = P(Y | h)

Assumptions:

- Let's start by assuming our data was generated by a linear function plus some noise:
- $\vec{y} = h_{\beta}(X) + \vec{\epsilon}$
- Where **h** is linear in a parameter β .
- Which functions below are linear in β ?

$$h(x) = \beta_1 x$$

Assumptions:

0

- 1.The relation between x (independent variable) and y (dependent variable) is linear in a parameter β.
- 2. ϵ_i are independent, identically distributed random variables following a **N(0, \sigma^2)** distribution. (Note: σ is constant)

Goal:

- Given these assumptions, let's try to solve the max and min problems we defined earlier!
- Q: What does solving these mean?
- A: Finding β is equivalent to finding **h**

Least Squares:

$$\beta_{LS} = \arg\min \sum_{i} d(h_{\beta}(x_{i}), y_{i})$$

$$= \arg\min \|\vec{y} - h_{\beta}(X)\|_{2}^{2}$$

$$= \arg\min \|\vec{y} - \beta X\|_{2}^{2}$$

$$\frac{\partial}{\partial \beta} (y - \beta X)^{T} (y - \beta X) = 0$$

$$\frac{\partial}{\partial \beta} (y^{T} y - y^{T} X \beta - \beta^{T} X^{T} y - \beta^{T} X^{T} X \beta) = 0$$

$$\frac{\partial}{\partial \beta} (y^{T} y - 2\beta^{T} X^{T} y - \beta^{T} X^{T} X \beta) = 0$$

$$-2X^{T} y - X^{T} X \beta = 0$$

$$X^{T} X \beta = X^{T} y$$

$$\beta_{LS} = (X^{T} X)^{-1} X^{T} y$$

Maximum Likelihood:

Since $\epsilon \sim N(0, \sigma^2)$ and $Y = X\beta + \epsilon$ then $Y \sim N(X\beta, \sigma^2)$.

$$\beta_{MLE} = \arg\max \frac{1}{\sqrt{(2\pi)^n \sigma^n}} \exp(-\frac{\|y - X\beta\|_2^2}{2\sigma^2})$$

$$= \arg\max \exp(-\|y - X\beta\|_2^2)$$

$$= \arg\max - \|y - X\beta\|_2^2$$

$$= \arg\min \|y - X\beta\|_2^2$$

$$= \beta_{LS} = (X^T X)^{-1} X^T y$$

An unbiased estimator:

• β_{LS} is an unbiased estimator of the true β . That is $E[\beta_{LS}] = \beta$.

$$E[\beta_{LS}] = E[(X^T X)^{-1} X^T y]$$

$$= (X^T X)^{-1} X^T E[y]$$

$$= (X^T X)^{-1} X^T E[X\beta + \epsilon]$$

$$= (X^T X)^{-1} X^T X \beta + E[\epsilon]$$

$$= \beta$$