

LPC Bridge Core Specification

Author: Howard M. Harte hharte@opencores.org

Document rev. 0.1 March 1, 2008

Revision History

Rev.	Date	Author	Description
0.1	03/01/2008	Howard M. Harte	First Draft

Table of contents

INTRODUCTION	1
LPC HOST IO PORTS	2
LPC PERIPHERAL IO PORTS	,4
OPERATION	6
ARCHITECTURE	7

Introduction

The

The core features an 32-bit wishbone interface.

FEATURES:

- Compliant to Intel(r) Low Pin Count (LPC) Interface Specification Revision 1.1
- Wishbone Slave to LPC Host Module
 - Memory Read and Write (1-byte)
 - o I/O Read and Write (1-byte)
 - o Firmware Memory Read and Write (1-, 2- and 4-byte)
- Wishbone Master to LPC Peripheral Module
 - o Memory Read and Write (1-byte)
 - o I/O Read and Write (1-byte)
 - o Firmware Memory Read and Write (1-, 2- and 4-byte)
- Fully static synchronous design with one clock domain
- Technology independent Verilog
- Fully synthesizable

LPC Host IO ports

2.1 WISHBONE Slave to LPC Host Interface Connections

Port	Width	Direction	Description
clk_i	1	Input	Master clock input
rst_i	1	Input	Asynchronous active low reset
inta_o	1	Output	Interrupt request signal
cyc_i	1	Input	Valid bus cycle
stb_i	1	Input	Strobe/Core select
adr_i	2	Input	Lower address bus bits
we_i	1	Input	Write enable
dat_i	8	Input	Data input
dat_o	8	Output	Data output
ack_o	1	Output	Normal bus termination

2.1.1 clk i

All internal WISHBONE logic is registered to the rising edge of the [clk_i] clock input.

2.1.2 rst i

The active low asynchronous reset input [rst_i] forces the core to restart. All internal registers are preset and all state-machines are set to an initial state.

2.1.3 inta_o

The interrupt request output is asserted when the core needs service from the host system.

2.1.4 cyc_i

When asserted, the cycle input [cyc_i] indicates that a valid bus cycle is in progress. The logical AND function of [cyc_i] and [stb_i] indicates a valid transfer cycle to/from the core.

2.1.5 stb i

The strobe input [stb_i] is asserted when the core is being addressed. The core only responds to WISHBONE cycles when [stb_i] is asserted, except for the [rst_i], which always receive a response.

2.1.6 adr_i

The address array input [adr_i] is used to pass a binary coded address to the core. The most significant bit is at the higher number of the array.

2.1.7 we i

When asserted, the write enable input [we_i] indicates that the current bus cycle is a write cycle. When negated, it indicates that the current bus cycle is a read cycle.

2.1.8 dat i

The data array input [dat_i] is used to pass binary data from the current WISHBONE Master to the core. All data transfers are 8 bit wide.

2.1.9 dat o

The data array output [dat_o] is used to pass binary data from the core to the current WISHBONE Master. All data transfers are 8 bit wide.

2.1.10 ack_o

When asserted, the acknowledge output [ack_o] indicates the normal termination of a valid bus cycle.

2.2 External (LPC Host Port) Connections

Port	Width	Direction	Description
lpc_clk_o	1	Output	LPC clock
lframe_o	1	Output	LPC LFRAME Signal
lad_o	4	Output	LPC Address/Data Bus Out
lad_i	4	Input	LPC Address/Data Bus In
lad_oe	1	Output	LPC Address/Data Output Enable

2.2.1 lpc_clk_o

Lpc_clk_o is generated by the master device and synchronizes data movement on the LPC Bus.

2.2.2 Iframe_o

Frame: Indicates start of a new cycle, termination of broken cycle.

2.5.3 lad o

The multiplexed LPC Command, Address, and Data Bus output.

2.5.4 lad i

The multiplexed LPC Command, Address, and Data Bus input.

2.5.5 lad_oe

The multiplexed LPC Command, Address, and Data Bus output enable.

LPC Peripheral IO ports

3.1 WISHBONE Master to LPC Peripheral Interface Connections

Port	Width	Direction	Description
clk_i	1	Input	Master clock input
rst_i	1	Input	Asynchronous active low reset
inta_i	1	Output	Interrupt request signal
cyc_o	1	Input	Valid bus cycle
stb_o	1	Input	Strobe/Core select
adr_o	2	Input	Lower address bus bits
we_o	1	Input	Write enable
dat_ii	8	Input	Data input
dat_o	8	Output	Data output
ack_i	1	Output	Normal bus termination

3.1.1 clk_i

All internal WISHBONE logic is registered to the rising edge of the [clk_i] clock input.

3.1.2 rst i

The active low asynchronous reset input [rst_i] forces the core to restart. All internal registers are preset and all state-machines are set to an initial state.

3.1.3 inta_i

The interrupt request output is asserted when the core needs service from the host system.

3.1.4 cyc o

When asserted, the cycle input [cyc_i] indicates that a valid bus cycle is in progress. The logical AND function of [cyc_i] and [stb_i] indicates a valid transfer cycle to/from the core.

3.1.5 stb o

The strobe input [stb_i] is asserted when the core is being addressed. The core only responds to WISHBONE cycles when [stb_i] is asserted, except for the [rst_i], which always receive a response.

3.1.6 adr o

The address array input [adr_i] is used to pass a binary coded address to the core. The most significant bit is at the higher number of the array.

3.1.7 we_o

When asserted, the write enable input [we_i] indicates that the current bus cycle is a write cycle. When negated, it indicates that the current bus cycle is a read cycle.

3.1.8 dat i

The data array input [dat_i] is used to pass binary data from the current WISHBONE Master to the core. All data transfers are 8 bit wide.

3.1.9 dat o

The data array output [dat_o] is used to pass binary data from the core to the current WISHBONE Master. All data transfers are 8 bit wide.

3.1.10 ack i

When asserted, the acknowledge output [ack_o] indicates the normal termination of a valid bus cycle.

2.2 External (LPC Peripheral Port) Connections

Port	Width	Direction	Description
lpc_clk_i	1	Input	LPC Clock
lframe_i	1	Input	LPC LFRAME Signal
lad_o	4	Output	LPC Address/Data Bus Out
lad_i	4	Input	LPC Address/Data Bus In
lad_oe	1	Output	LPC Address/Data Output Enable

2.2.1 lpc_clk_i

Lpc_clk_o is generated by the master device and synchronizes data movement on the LPC Bus.

2.2.2 Iframe i

Frame: Indicates start of a new cycle, termination of broken cycle.

2.5.3 lad o

The multiplexed LPC Command, Address, and Data Bus output.

2.5.4 lad i

The multiplexed LPC Command, Address, and Data Bus input.

2.5.5 lad oe

The multiplexed LPC Command, Address, and Data Bus output enable.

Operation

4.1 LPC Transfers

Architecture