

Generative Adversarial Nets

Ian J. Goodfellow, Jean Pouget-Abadie*, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair†, Aaron Courville, Yoshua Bengio‡

Presented by: Kithdara Hansamal

Generative Adversarial Nets

Minmax Game

Value Function

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1 - D(G(\boldsymbol{z})))].$$

Theoretical Results

Algorithm

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z (1), ..., z (m)\}$ from noise prior $p_{a}(z)$.
- Sample minibatch of m examples $\{x (1), ..., x (m)\}$ from data generating distribution $p_{data}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

end for

- Sample minibatch of m noise samples $\{z(1), \ldots, z(m)\}$ from noise prior pa(z).
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D \left(G \left(\boldsymbol{z}^{(i)} \right) \right) \right).$$

Global Optimality

Proposition

For G fixed, the optimal discriminator D is

$$D_G^*(\boldsymbol{x}) = \frac{p_{data}(\boldsymbol{x})}{p_{data}(\boldsymbol{x}) + p_g(\boldsymbol{x})}$$

For any
$$(a,b)\in\mathbb{R}^2\setminus\{0,0\}$$

$$y\to a\log(y)+b\log(1-y)$$
 maximum in $[0,1]$ at $\frac{a}{a+b}$

$$V(G, D) = \int_{\boldsymbol{x}} p_{\text{data}}(\boldsymbol{x}) \log(D(\boldsymbol{x})) dx + \int_{z} p_{\boldsymbol{z}}(\boldsymbol{z}) \log(1 - D(g(\boldsymbol{z}))) dz$$
$$= \int_{\boldsymbol{x}} p_{\text{data}}(\boldsymbol{x}) \log(D(\boldsymbol{x})) + p_{g}(\boldsymbol{x}) \log(1 - D(\boldsymbol{x})) dx$$

Global Optimality

$$C(G) = \max_{D} V(G, D)$$

$$= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} [\log D_G^*(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}} [\log (1 - D_G^*(G(\boldsymbol{z})))]$$

$$= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} [\log D_G^*(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{x} \sim p_g} [\log (1 - D_G^*(\boldsymbol{x}))]$$

$$= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \left[\log \frac{p_{\text{data}}(\boldsymbol{x})}{P_{\text{data}}(\boldsymbol{x}) + p_g(\boldsymbol{x})} \right] + \mathbb{E}_{\boldsymbol{x} \sim p_g} \left[\log \frac{p_g(\boldsymbol{x})}{p_{\text{data}}(\boldsymbol{x}) + p_g(\boldsymbol{x})} \right]$$

Global Optimality

Theorem

The global minimum of the virtual training criterion C(G) is achieved if and only if pg = pdata. At that point, C(G) achieves the value $-\log 4$.

$$C(G) = -\log(4) + 2 \cdot JSD \left(p_{\text{data}} \| p_g \right)$$

Jensen-Shannon divergence between two distributions is always non-negative, and zero iff they are equal

Advantages	Disadvantages
 Markov chains are never needed Only backprop is used to obtain gradients No inference is needed during the learning A wide variety of functions can be incorporated into the model 	 No explicit representation of pg(x) D must be synchronized well with G during training

Conclusions

MNIST

CIFAR-10 (Fully connected model)

TFD

CIFAR-10 (convolutional discriminator and "deconvolutional" generator)

Thank You

