

IN THE CLAIMS:

Please rewrite the claims as follows:

- 1 1. (Original): A method for enabling parity declustering in a balanced parity array of a storage system, the method comprising the steps of:
 - 3 combining a plurality of unbalanced stripe arrays to form the balanced array, each unbalanced stripe array having parity blocks on a set of storage devices that are disjoint from a set of storage devices storing data blocks; and
 - 6 distributing assignment of storage devices to parity groups throughout the balanced array.
- 1 2. (Original): The method of Claim 1 further comprising the step of, after a single or double storage device failure, ensuring that all surviving data storage devices are loaded uniformly during reconstruction of the failed storage device or devices.
- 1 3. (Original): The method of Claim 1 wherein the storage system is a filer.
- 1 4. (Original): The method of Claim 1 further comprising the steps of:
 - 2 dividing each storage device into blocks; and
 - 3 organizing the blocks into stripes across the devices, wherein each stripe contains data and parity blocks from each of the devices of the balanced array.
- 1 5. (Original): The method of Claim 4 wherein the step of distributing comprises the step of selecting patterns of characters representing data storage devices of a stripe to thereby

3 change the association of the data storage devices with parity groups from stripe to stripe
4 of the balanced array.

1 6. (Original): The method of Claim 5 wherein the characters are binary numbers.

1 7. (Original): The method of Claim 5 wherein the characters are ternary numbers.

1 8. (Original): The method of Claim 1 further comprising the steps of:
2 configuring the balanced array as a RAID-4 style array;
3 initially under-populating the array with storage devices; and
4 adding storage devices until a fully populated array of predetermined size is
5 achieved.

1 9. (Original): The method of Claim 8 wherein the storage devices are disks.

1 10. (Original): A system that enables parity declustering in a balanced parity array of a
2 storage system, the system comprising:
3 a plurality of storage devices, each storage device divided into blocks that are
4 further organized into stripes, wherein each stripe contains data and parity blocks from
5 each of the devices of the balanced array;
6 a storage operating system including a storage layer configured to implement a
7 parity assignment technique that distributes assignment of devices to parity groups
8 throughout the balanced array such that all storage devices contain the same amount of
9 data or parity information; and

10 a processing element configured to execute the operating system to thereby in-
11 voke storage access operations to and from the balanced array in accordance with the
12 concentrated parity technique.

1 11. (Original): The system of Claim 10 wherein the storage layer further combines a
2 plurality of unbalanced stripe arrays to form the balanced array, each unbalanced stripe
3 array having parity blocks on a set of storage devices that are disjoint from a set of stor-
4 age devices storing data blocks.

1 12. (Original): The system of Claim 11 wherein the storage devices are disks and
2 wherein the storage layer is a RAID layer.

1 13. (Original): The system of Claim 12 wherein the RAID layer is implemented in logic
2 circuitry.

1 14. (Original): The system of Claim 10 wherein the storage system is a network-
2 attached storage appliance.

1 15. (Original): The system of Claim 10 wherein the storage devices are one of video
2 tape, optical, DVD, magnetic tape and bubble memory devices.

1 16. (Original): The system of Claim 10 wherein the storage devices are media adapted
2 to store information contained within the data and parity blocks.

1 17. (Original): Apparatus for enabling parity declustering in a balanced parity array of a
2 storage system, the apparatus comprising:

3 means for combining a plurality of unbalanced stripe arrays to form the balanced
4 array, each unbalanced stripe array having parity blocks on a set of storage devices that
5 are disjoint from a set of storage devices storing data blocks; and

6 means for distributing assignment of devices to parity groups throughout the bal-
7 anced array such that all storage devices contain the same amount of data or parity infor-
8 mation.

1 18. (Original): The apparatus of Claim 17 further comprising:

2 means for dividing each storage device into blocks; and

3 means for organizing the blocks into stripes across the devices, wherein each
4 stripe contains data and parity blocks from each of the devices of the balanced array.

1 19. (Original): The apparatus of Claim 18 wherein the means for distributing comprises
2 means for selecting patterns of characters representing data storage devices of a stripe to
3 thereby change the association of the data storage devices with parity groups from stripe
4 to stripe of the balanced array.

1 20. (Original): A computer readable medium containing executable program instructions
2 for enabling parity declustering in a balanced parity array of a storage system, the execu-
3 table program instructions comprising program instructions for:

4 combining a plurality of unbalanced stripe arrays to form the balanced array, each
5 unbalanced stripe array having parity blocks on a set of storage devices that are disjoint
6 from a set of storage devices storing data blocks; and

7 distributing assignment of devices to parity groups throughout the balanced array
8 such that all storage devices contain the same amount of data or parity information.

1 21. (Original): The computer readable medium of Claim 20 further comprising program
2 instructions for:

3 dividing each storage device into blocks; and
4 organizing the blocks into stripes across the devices, wherein each stripe contains
5 data and parity blocks from each of the devices of the balanced array.

1 22. (Original): The computer readable medium of Claim 21 wherein the program in-
2 structions for distributing comprises program instructions for selecting patterns of char-
3 acters representing data storage devices of a stripe to thereby change the association of
4 the data storage devices with parity groups from stripe to stripe of the balanced array.

Please insert new claims 23 *et seq.*

- 1 23. (New) A method for enabling parity declustering in a balanced parity array having a plurality of parity block storage devices and data block storage devices, the method comprising the steps of:
 - 4 assigning the parity blocks to one of a plurality of parity groups, each parity group having a parity assignment pattern; and
 - 6 assigning the data blocks throughout the plurality of parity groups such that recovery of a single or double storage device failure requires a substantially equal loading of all the data block storage devices during reconstruction of the failed storage device or devices.
- 1 24. (New) The method of Claim 23, further comprising: assigning the data blocks so all data storage devices are not fully accessed during reconstruction.
- 1 25. (New) The method of Claim 23, further comprising: storing substantially the same amount of data or parity information on all of the storage devices.
- 1 26. (New) The method of Claim 23, further comprising: combining a plurality of unbalanced arrays to form the balanced array.
- 1 27. (New) The method of Claim 23, further comprising: using disks as the storage devices.

1 28. (New) The method of Claim 23, further comprising: using the Corbett-Park parity
2 assignment pattern.

1 29. (New) The method of Claim 23, further comprising: using a RAID system as the
2 parity array.

1 30. (New) A declustered, balanced parity array, comprising:

2 a plurality of parity block storage devices, the parity blocks assigned to one of a
3 plurality of parity groups, each parity group having a parity assignment pattern; and

4 a plurality of data block storage devices, the data blocks assigned throughout the
5 plurality of parity groups such that recovery of a single or double storage device failure
6 requires a substantially equal loading of all the data block storage devices during recon-
7 struction of the failed storage device or devices.

1 31. (New) The declustered, balanced parity array of Claim 30, further comprising: the
2 plurality of data blocks are assigned so all data storage devices are not fully accessed
3 during reconstruction.

1 32. (New) The declustered, balanced parity array of Claim 30, further comprising: sub-
2 stantially the same amount of data or parity information on all of the storage devices.

1 33. (New) The declustered, balanced parity array of Claim 30, further comprising: a plu-
2 rality of combined unbalanced arrays to form the balanced array.

- 1 34. (New) The declustered, balanced parity array of Claim 30, further comprising: disks
- 2 as the storage devices.

- 1 35. (New) The declustered, balanced parity array of Claim 30, further comprising: the
- 2 Corbett-Park parity assignment pattern.

- 1 36. (New) The declustered, balanced parity array of Claim 30, further comprising: a
- 2 RAID system as the parity array.

- 1 37. (New) A declustered, balanced parity array, comprising:
 - 2 a plurality of parity block storage devices;
 - 3 a plurality of data block storage devices;
 - 4 means for assigning the parity blocks to one of a plurality of parity groups, each
 - 5 parity group having a parity assignment pattern; and
 - 6 means for assigning the data blocks throughout the plurality of parity groups such
 - 7 that recovery of a single or double storage device failure requires a substantially equal
 - 8 loading of all the data block storage devices during reconstruction of the failed storage
 - 9 device or devices.

- 1 38. (New) A method for declustering a parity array having a plurality of storage devices,
- 2 the method comprising the steps of:
 - 3 assigning a first plurality of data and parity blocks to a first parity group; and
 - 4 assigning a second plurality of data and parity blocks to a second parity group, the
 - 5 first and second parity groups being independent from each other and distributed
 - 6 throughout the plurality of storage devices of the parity array.

- 1 39. (New) A method for enabling parity declustering in a balanced parity array, the
- 2 method comprising the steps of:
 - 3 combining a first unbalanced array having a first parity group with a second un-
 - 4 balanced array having a second parity group to form the balanced array; and
 - 5 reorganizing the first and second parity groups to distribute the parity groups
 - 6 throughout the balanced parity array.
- 1 40. (New) A method for declustering a parity array having a plurality of storage devices,
2 the method comprising the step of:
 - 3 assigning a plurality of data and parity blocks to a plurality of parity groups, the
 - 4 plurality of parity groups being independent from each other and distributed throughout
 - 5 the plurality of storage devices of the parity array.
- 1 41. (New) A declustered parity array, comprising:
 - 2 a plurality of storage devices having a first and second parity group;
 - 3 a first plurality of data and parity blocks assigned to the first parity group; and
 - 4 a second plurality of data and parity blocks assigned to the second parity group,
 - 5 the first and second parity groups being independent from each other and distributed
 - 6 throughout the plurality of storage devices of the parity array.
- 1 42. (New) A declustered parity array, comprising:
 - 2 a first unbalanced array having a first parity group;
 - 3 a second unbalanced array having a second parity group; the first and second un-
 - 4 balanced arrays being combined to form a balanced array; and

5 a storage operating system that reorganizes the first and second parity groups to
6 distribute the parity groups throughout the balanced parity array.

1 43. (New) A declustered parity array, comprising:

2 a plurality of storage devices having a plurality of parity groups; and
3 a plurality of data and parity blocks assigned to the plurality of parity groups, the
4 plurality of parity groups being independent from each other and distributed throughout
5 the plurality of storage devices of the parity array.

1 44. (New) A declustered parity array, comprising:

2 a plurality of storage devices;
3 means for assigning a first plurality of data and parity blocks to a first parity
4 group; and
5 means for assigning a second plurality of data and parity blocks to a second parity
6 group, the first and second parity groups being independent from each other and distrib-
7 uted throughout the plurality of storage devices of the parity array.

1 45. (New) A declustered parity array, comprising:

2 means for combining a first unbalanced array having a first parity group with a
3 second unbalanced array having a second parity group to form a balanced array; and
4 means for reorganizing the first and second parity groups to distribute the parity
5 groups throughout the balanced parity array.

1 46. (New) A declustered parity array, comprising:

2 a plurality of storage devices; and
3 means for assigning a plurality of data and parity blocks to a plurality of parity
4 groups, the plurality of parity groups being independent from each other and distributed
5 throughout the plurality of storage devices of the parity array.

1 47. (New) A method of operating a data storage system, comprising:
2 distributing first data on a set of data storage devices;
3 distributing parity relating to said first data on a set of parity storage devices;
4 distributing second data on said set of data storage devices;
5 distributing parity relating to said second data on said set of parity storage de-
6 vices; and
7 arranging said first data and said second data throughout said data storage devices
8 to partially load each data storage device substantially equally during a data recovery op-
9 eration.

1 48. (New) The method of claim 47, further comprising:
2 said arranging step is accomplished by a binary counting method which substan-
3 tially uniformly distributes succeeding stripes over said set of data storage devices.

1 49. (New) The method of claim 47, further comprising:
2 distributing a third data on said set of data storage devices; and
3 distributing parity relating to said third data on said set of parity storage devices.

1 50. (New) The method of claim 49, further comprising:

2 said arranging step is accomplished by a ternary counting method which substantially uniformly distributes succeeding stripes over said set of data storage devices.

1 51. (New) A computer readable media, comprising: the computer readable media containing instructions for execution in a processor for the practice of the method of,
2 assigning the parity blocks to one of a plurality of parity groups, each parity group
3 having a parity assignment pattern; and
4 assigning the data blocks throughout the plurality of parity groups such that recovery of a single or double storage device failure requires a substantially equal loading
5 of all the data block storage devices during reconstruction of the failed storage device or
6 devices.
7
8

1 52. (New) Electromagnetic signals propagating on a computer network, comprising: the electromagnetic signals carrying instructions for execution in a processor for the practice of the method of,
2 assigning the parity blocks to one of a plurality of parity groups, each parity group
3 having a parity assignment pattern; and
4 assigning the data blocks throughout the plurality of parity groups such that recovery of a single or double storage device failure requires a substantially equal loading
5 of all the data block storage devices during reconstruction of the failed storage device or
6 devices.
7
8

1 53. (New) A computer readable media, comprising: the computer readable media containing instructions for execution in a processor for the practice of the method of,
2 distributing first data on a set of data storage devices;
3

4 distributing parity relating to said first data on a set of parity storage devices;
5 distributing second data on said set of data storage devices;
6 distributing parity relating to said second data on said set of parity storage de-
7 vices; and
8 arranging said first data and said second data throughout said data storage devices
9 to partially load each data storage device substantially equally during a data recovery op-
10 eration.

1 54. (New) Electromagnetic signals propagating on a computer network, comprising: the
2 electromagnetic signals carrying instructions for execution in a processor for the practice
3 of the method of,
4 distributing first data on a set of data storage devices;
5 distributing parity relating to said first data on a set of parity storage devices;
6 distributing second data on said set of data storage devices;
7 distributing parity relating to said second data on said set of parity storage de-
8 vices; and
9 arranging said first data and said second data throughout said data storage devices
10 to partially load each data storage device substantially equally during a data recovery op-
11 eration.