자율주행 프로젝트

1조 2015111905 배윤호 2014111918 김정재 01 하드웨어

02 Flow Chart

03 주묘 포민트

04 장-단점

05 시도해본 코드

06 완성코드

01 하드웨어

1. 하드웨어

〈위에서 내려다 본 차체 〉

〈정면에서 바라 본 차체〉

1. 하드웨어

차체 전방에 거리센서 5개 배치

차체 전방에 거리센서 3개 배치 후방에 거리센서 2개 배치 02 Flow Chart

2. FLOW CHART

❖기존 알고리즘

2. FLOW CHART

03 주묘 포민트

3. 주묘포인트

- ❖ LINE UP 함수
- * 가속 함수
- ***** Timer Interrupt
- ❖ Sensor 값 구체화 matlab 사용

❖ LINE UP 함수

L-lineup(void)

```
462 void L lineup(void)
463 {
464
       if(ADC12MEM3>(S[3]+100)) //왼쪽 앞쪽이 벽이랑 가깝다.
465
466
           P20UT |= BIT0; //right DIR reverse
467
           while(1)
468
469
                if(ADC12MEM4<(S[4]-100)) //왼쪽 뒷 센서가 평행이 될 수준까지 돌아간다.
470
471
                   TA2CCR1 = 400;
                   TA2CCR2 = 600;
473
474
                else if(ADC12MEM4>(S[4]+100)) //왼쪽 뒷 센서도 벽이랑 가까울 때
475
476
                    P2OUT &= ~BIT0; //right DIR forward
                    while(1)
478
479
                        if(ADC12MEM3>S[3]+100)
480
481
                            TA2CCR1 = 800;
482
                        else
483
484
485
                             break;
486
487
488
                    while(1)
489
490
                        if(ADC12MEM4>(S[4]+100))
491
492
                            TA2CCR2 = 800;
493
494
                        else
495
496
                             break:
```

❖ LINE UP 함수

L-lineup(void)

```
498
                   P20UT |= BIT0; //right DIR reverse
499
500
                else
501
502
503
                   P20UT &= ~BIT0; //right DIR forward
                  TA2CCR1 = 0;
504
505
                  TA2CCR2 = 0;
506
                   break;
507
508
       }
509
510
511
       else if(ADC12MEM3<(S[3]-100)) //왼쪽 앞쪽이 벽이랑 멀다.
512
513
          P20UT |= BIT2; //left DIR reverse
514
          while(1)
515
516
              if(ADC12MEM4>(S[4]+100)) //왼쪽 뒷쪽이 벽이랑 가깞다.
517
518
                  TA2CCR1 = 800;
519
                  TA2CCR2 = 400;
520
521
              else if(ADC12MEM4<(S[4]-100)) //왼쪽 뒷벽도 벽이랑 멀다.
522
523
                   P2OUT &= ~BIT2; //left DIR forward
524
                  while(1)
525
526
                       if(ADC12MEM3<S[3]-100) //왼쪽 앞쪽이 기준값에 가까워 질때까지 오른쪽 바퀴만 회전
527
528
                          TA2CCR2 = 800;
529
530
                       else
531
```

❖ LINE UP 함수

L-lineup(void)

```
}
533
534
535
                   while(1)
536
537
                       if(ADC12MEM4<S[4]-100) //
538
539
                           TA2CCR1 = 800;
540
                       }
541
                       else
542
543
                           break;
544
545
                   P2OUT |= BIT2; //left DIR reverse
546
547
548
               else if(ADC12MEM1>(S[1]+100))
549
550
                   TA2CCR1 = 400;
551
                   TA2CCR2 = 800;
552
553
               else
554
555
                   TA2CCR1 = 0;
556
                   TA2CCR2 = 0;
557
                   P2OUT &= ~BIT2; //left DIR forward
558
                   break;
559
560
561
562}
```

3. 주묘포민트

❖가속 함수를 이용한 가속 구현

```
509 void accel(int L, int R)
                                          526
                                                  if(R>now_pwm_R)
510 {
                                          527
511
       if(L>now pwm L)
                                          528
                                                       now pwm R += 3;
512
                                          529
                                                       TA2CCR2=now pwm R;
513
            now_pwm_L += 3;
                                          530
514
            TA2CCR1=now_pwm_L;
                                          531
                                                  else if(R<now pwm_R)</pre>
515
                                          532
       else if(L<now pwm L)</pre>
516
                                          533
                                                       now_pwm_R -= 3;
517
                                          534
                                                       TA2CCR2=now_pwm_R;
518
            now pwm L -= 3;
                                          535
519
           TA2CCR1=now pwm L;
                                                  else
                                          536
520
                                          537
521
       else
                                          538
                                                       TA2CCR2 = now pwm R;
522
                                          539
523
            TA2CCR1 = now pwm L;
                                          540 }
524
```

+3 씩 값을 조정해 주어 부드러운 가속이 가능하게끔 구현

3. 주묘포민트

❖ Sensor값 구체화

- ❖ 정지 시 정면 거리 센서 값 측정 및 보정
- ❖ 직진 시 자세 보점_Sensor값 구체화
- ❖ 거리 센서 값 구체화 _matlab이용

3, 주묘포민트

❖ 정지 시 정면 거리 센서 값 측정_Sensor값 구체화

3, 주묘포민트

❖ 정지 시 정면 거리 센서 값 측정_Sensor값 구체화

< Matlab+excel () 용_sensor값 추출 >

65	66	67	68	69
1888	1856	1857	1857	1886
1748	1774	1770	1767	1772
821	792	783	792	795
106	121	126	97	123
1969	1999	1991	1999	1992
	경우1	790.5		

ı	75	76	77	78	79	
ı	1808	1808	1812	1808	1783	
ı	1723	1736	1727	1729	1719	
ı	1051	1051	1056	1051	1060	
ı	103	122	100	116	112	
ı	2063	2076	2080	2078	2067	
ı						
				경우2	1054.6	

88	89	90	91	92	
1823	1831	1827	1833	1822	
1799	1793	1799	1798	1802	
272	274	262	250	255	
2048	2080	2051	2062	2064	
2051	2048	2051	2039	2049	
			경우3	264	

1 차체가 장애물약 24cm 앞에위치한 경우

790.5 1054.6

2 차체가 장애물약 21cm 앞에위치한 경우

③ 차체가 벽면

30cm이삼 으로 멀어진 경우

264

3. 주묘포인트

❖ 직진 시 자세 보점_Sensor값 구체화

3. 주묘포민트

❖ 직진 시 자세 보점_Sensor값 구체화

< Matlab()]용_sensor값 추출 >

66	67	68
1895	1904	1 903
1803	1795	1816
369	366	371
1917	1923	1 911
1911	1904	1911

83	84	85
1427	1427	1 528
2128	2144	2063
300	293	323
1496	1 500	1 588
2334	2339	2255

93	94	95		
2508	2480	2481		
1580	1559	1569		
400	395	395		
2083	2073	2 076		
1407	1407	1416		

1 차체가 일직선으로 놓여진 경우

② 차체가 우측으로 틀어진 경우

③ 차체가 작측으로 틀어진 경우

3. 주묘포인트

❖ 회전 후 자세 보정_(후면 거리 센서 부착 이유)

3. 주묘포민트

❖ 거리센서 값 구체화 _matlab이용

3. 주묘포민트

❖ 거리센서 값 구체화 _matlab이용

< Matlab()]용_sensor값 추출 >

92	93	94	95	96	97	98	99	100
1976	1966	1976	1978	1967	1952	1980	1974	1974
1934	1939	1948	1948	1946	1935	1944	1935	1935
546	563	566	563	571	567	567	564	564
1895	1887	1878	1904	1879	1872	1883	1878	1878
1876	1870	1876	1835	1843	1859	1859	1856	1856

< excel 이용_sensor 값 평균값 추출 >

1976	1978	1967	1952	1980	1974	1974	1983	오른쪽 뒤
1948	1948	1946	1935	1944	1935	1935	1938	오른쪽 앞
566	563	571	567	567	564	564	624	정면
1878	1904	1879	1872	1883	1878	1878	1879	왼쪽 앞
1876	1835	1843	1859	1859	1856	1856	1951	왼쪽 뒤

04 장 - 단점

4. 장단점

장점

정밀한 자세 보정이 이루어 지고,
Timer Interrupt 로
엔코더 값을 비교해서
pwm값을 추가 보정하였다.
Accel 함수를 이용해서
가/감속을 만들었다.

4. 장단점

05 시도해본 코드

5. 시도해본 코드

* PMH

```
want_L = L;
      want R = R;
      if(want_L > L0) → 가속 코드
          now_pwm_L = now_pwm_L + (want_L-L0)/5; //(want_velo + velo)/5
          TA2CCR1 = now pwm L;
                                                 Kp = 500
          if(now_pwm_R >= 2000)
             TA2CCR1 = 2000;
      else if(want_L < L0) → 감속 코드
          now_pwm_L = now_pwm_L - (L0-want_L)/5;
          TA2CCR1 = now pwm L;
          if(now_pwm_L <= 50)
                                           제어량
             TA2CCR1 = 0;
                               = Kp *(목표속도 - 현재속도)
       else
                                        Kp: 비례상수
          TA2CCR1 = now_pwm_L;
       }
```

5. 시도해본 코드

❖ 센서 값의 유효범위 설정

타이머 인터럽트로 센서 값 메모리를 읽어와서 변수에 저장 해놓고, 센서 메모리 값이 특정 값 (4센치) 이하가 되면 (너무 가까우면 센서 값에 오류가 생기는 점 보완하기 위해) 센서 변수 값에 메모리 값이 아닌 고정된 상수를 입력해 사용 그리고 다시 4센치 이상 떨어졌을 때는 센서변수에 센서 메모리 값 입력

ADC 값을 를 반복 순차로 읽음

→기대했던 반응 속도보다 떨어져서 사용하지 못함 06 완성 코드

❖ 주행 전, 거리 센서 값 측정

```
void main(void)
   int i;
   WDTCTL = WDTPW | WDTHOLD; // stop watchdog timer
   switchset(); //switch no = 1.1/2.1
   motorset(); //motor setting
   pwmset(); //pwm setting
   adcset(); //ADC setting
   timerieset(); //timer interrupt setting
   d inputset(); //load ADC
   encoderset(); //encoder setting
   ledset(); //led setting for logical debugging
   bis_SR_register(GIE); //global interrupt en
   S[0] = ADC12MEM0;
  S[1] = ADC12MEM1; 주행전 거리센서 5개
  S[2] = ADC12MEM2;
  S[3] = ADC12MEM3; 모두 값을 측정
   S[4] = ADC12MEM4;
```



```
if(ADC12MEM3 <= S[3]-1000) //왼쪽이 비어있을 경우
   L_turn();
   R lineup();
else if(ADC12MEM1 <= S[1]-1000) //오른쪽이 비
   R_turn();
   L lineup();
else if((ADC12MEM1 > (S[1]-1000)) && (ADC12MEM3 > (S[3]-1000)))
   TA2CCR1 = 0;
   TA2CCR2 = 0;
    __bis_SR_register(LPM0);
```

❖ 주행 중 직진, ACCEL 함수 적용

```
352
       menu = 1;
353
       if(ADC12MEM1>(S[1]+100)) //오른쪽 가까워짐
354
355
           if(ADC12MEM1>(S[1]+200))
                                            L,R 값 지정하여
356
357
               accel(3000,3400);
358
359
           else
360
361
               accel(3000,3200);
362
363
       else if(ADC12MEM3 > (S[3]+100)) //왼쪽 가까워짐
364
365
366
           if(ADC12MEM3 > (S[3]+200))
367
368
               accel(3400,3000);
369
370
           else
371
372
               accel(3200,3000);
373
374
375
       else
376
           accel(3000,3000);
                              //default
377
378
```

❖ 주행 중 회전, ENCODER 이용

```
87 void L_turn(void)
88 {
       P2OUT |= BIT2; //left DIR reverse
189
       R count = 0;
290
291
       while(1)
292
293
           if(R_count <= 290)
294
295
                TA2CCR1 = 2500;
296
                TA2CCR2 = 2500;
297
           else
198
199
100
                TA2CCR1 = 0;
101
                TA2CCR2 = 0;
802
                P20UT &= ~BIT2; //left DIR forward
803
                break;
804
805
806 }
```

6, 완성코드

❖ 주행 중 유턴, ENCODER 이용

ADC값 그대로 적용 → ENCODER 이용

4번 센서 ADC값에 일정값 이상이 측정되야 이동

❖ 주행 후 점지, LPM모드

```
if(ADC12MEM3 <= S[3]-1000) //왼쪽이 비어있을 경우
   L_turn();
   R_lineup();
else if(ADC12MEM1 <= S[1]-1000) //오른쪽이 비어있을경우
   R_turn();
   L_lineup();
else if((ADC12MEM1 > (S[1]-1000)) && (ADC12MEM3 > (S[3]-1000))) //비어있는 곳이 없을 경우
   TA2CCR1 = 0;
   TARCORR — e; — — — — LPM모드 적용 (주차)
```

Thank you