Horizontal and vertical distribution of mesozooplankton species richness and composition down to 2,300 m in the southwest Atlantic Ocean

Sérgio L.C. Bonecker¹, Adriana V. de Araujo^{1,5}, Pedro F. de Carvalho¹, Cristina de O. Dias¹, Luiz F.L. Fernandes², Alvaro E. Migotto³ & Otto M.P. de Oliveira⁴

ABSTRACT. We describe the species richness, distribution and composition of mesozooplankton over the continental shelf and slope, and in the water masses in the Campos Basin, southwest Atlantic Ocean. We analyzed the mesozooplankton from two oceanographic cruises (rainy and dry seasons, 2009) with samples taken in five different water masses from the surface to 2,300 m depth. In the Subsurface Water (SS), in both sampling periods, more species were recorded over the slope (rainy: 100; dry: 128) than the continental shelf (rainy: 97; dry: 104). Over the slope, species richness decreased with increasing depth: the highest values were observed in the South Atlantic Central Water (SACW), and the lowest values in the North Atlantic Deep Water (NADW), in both sampling periods. We recorded 262 species in 10 groups (Hydrozoa, Siphonophora, Ctenophora, Branchiopoda, Copepoda, Euphausiacea, Decapoda, Chaetognatha, Appendicularia e Thaliacea), with 13 new occurrences for the southwest Atlantic. Copepoda was the group with the highest species richness, containing 138 species. In both periods, the samples from SS, SACW and Antarctic Intermediate Water (AAIW)/ Upper Circumpolar Deep Water (UCDW) were clustered in different faunistic zones, based on species composition. This study confirmed that zooplankton richness in the southwest Atlantic Ocean is underestimated, and suggests that additional efforts must be directed toward a better understanding of this fairly unknown region.

KEY WORDS. Deep sea; diversity; southeastern Brazil; zooplankton.

In pelagic marine environments, biodiversity is relatively low on the continental shelf, increases in oceanic waters and, in these areas, decreases with depth (Angel 1997, Smith & Brown 2002, Lopes et al. 2006). The pattern of increasing diversity from coastal to oceanic waters is attributed to continental influence, causing large fluctuations in temperature/salinity gradients and productivity, which favors dominance by relatively few species. The vertical pattern reflects the decrease in food availability due to light-limited primary production in deeper waters, and the decrease in temperature from the surface to the meso-and bathypelagic layers (Rutherford et al. 1999). Therefore, few species are adapted to live in the pelagic realm of the deep ocean, which leads to lower species richness in these environments than in surface waters (Smith & Brown 2002).

The South Atlantic is one of the least known marine habitats, mainly with respect to some zooplankton groups

(Boltovskoy *et al.* 2003). Zooplankters play a key role in the control of phytoplankton production and are a critical food source for upper trophic levels, thus structuring pelagic ecosystems (Labat *et al.* 2009).

Investigations on the epipelagic zooplankton off Brazil only began in the last century. Björnberg (1963) provided the first detailed account of epipelagic species communities, and Bassani *et al.* (1999) reviewed the state of knowledge of planktonic biota between 21°S and 23°S. Between 1998 and 2000, surveys were carried out regarding zooplankton composition and distribution down to 200 m depth, between 12°S and 22°S (Bonecker 2006, Bonecker *et al.* 2007). Epipelagic studies in neighbouring regions were carried out by Ramirez & Sabatini 2000, Eskinazi-Sant'anna & Bjönberg 2006, and Lopes *et al.* 2006. Information on the mesopelagic and bathypelagic community is nonexistent except for copepods (Dias *et al.* 2010).

¹ Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Zoologia, Laboratório Integrado de Zooplâncton e Ictioplâncton, Prédio do CCS, Bloco A, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil.

² Universidade Federal do Espírito Santo, Departamento de Oceanografia e Ecologia. Av. Fernando Ferrari 514, 29075-910 Vitória, ES, Brazil.

³ Universidade de São Paulo, Centro de Biologia Marinha. Rodovia Manoel Hypólito do Rego, km 131.5, Praia do Cabelo Gordo, 11600-000 São Sebastião, SP, Brazil.

⁴ Universidade Federal do ABC, Centro de Ciências Naturais e Humanas. Rua São Paulo, Jardim Antares, 09606-070 São Bernardo do Campo, SP, Brazil.

⁵ Corresponding author. E-mail: adriana.valente@gmail.com, adrianavalente@biologia.ufrj.br

The Campos Basin is located on the central Brazilian coast. This region is characterized by the presence of different water masses, whose physical and chemical properties (e.g., temperature, salinity and dissolved oxygen) provide different potential habitats for many species in the pelagic realm. Due to coastal upwelling, the southern area of the Campos Basin has been the focus of most studies, mainly on circulation, nutrients, microplankton and epipelagic mesoplankton (Valentin 1984, Valentin et al. 1987). In this region, as throughout the southwest Atlantic, the vertical biodiversity pattern and the composition of mesopelagic is poorly known. Knowledge of bathyplankton is very scarce everywhere in the ocean.

In order to fill the gaps in knowledge of the species richness, distribution and composition of the mesozooplankton in deep waters in the southwest Atlantic, we describe the mesozooplankton composition from the surface to 2,300 m depth in the Campos Basin. We aimed to answer three questions: 1) Is there a horizontal gradient of mesozooplankton species richness between the continental shelf and the slope? 2) Is there a vertical gradient of mesozooplankton species richness? 3) Does each water mass, which has its own environmental characteristics, have a particular mesozooplankton species composition?

MATERIAL AND METHODS

The Campos Basin is located between 24°S and 20.5°S on the central Brazilian coast (Fig. 1). The climate is warm and humid, with a rainy season from November to February and a dry season from June to August (Lacerda *et al.* 2004). The continental shelf has a mean width of 100 km and the slope extends over a width of 40 km, with a 2.5° mean gradient (Viana *et al.* 1998).

The Brazilian coast is influenced by the Brazil Current, a warm and oligotrophic western boundary current. It flows from the northeast toward the southwest, as part of the South Atlantic western boundary current system (Stramma et al. 1990). The water-column structure and distributions of the different water masses over the continental shelf and slope of the Campos Basin are the main factors that characterize the environment, and are determined mainly by temperature and salinity (Mémery et al. 2000, Silveira & Schmidt 2000; Fig. 2). In the upper layers of the water column, the nutrient-poor Subsurface Water (SS) and the South Atlantic Central Water (SACW) are found. At deeper levels are the cold waters of the Antarctic Intermediate Water (AAIW), Upper Circumpolar Deep Water (UCDW), and North Atlantic Deep Water (NADW) (Mémery et al. 2000; Fig. 2).

Mesozooplankton (size >200 μ m) samples were collected in two oceanographic cruises in 2009: February 25 to April 13 (rainy season) and August 5 to September 17 (dry season). The stations were distributed along six transects perpendicular to the coast organized in the South-North direction (A, C, D, F,

Figure 1. Sampling stations off the central Brazilian coast surveyed in this study. Lines indicate isobaths and letters indicate transects.

H, and I). Each transect contained eight sampling stations, from the 25- to 3,000-m isobaths (25, 50, 75, 150, 400, 1,000, 1,900 and 3,000 m), four on the continental shelf and four on the slope (Fig. 1). Over the continental shelf, only Subsurface Water (SS) was collected; over the slope, samples were collected from the SS and from the other water masses, in the isobaths where they were present (Table I).

Mesozooplankton samples were collected during the night by horizontal hauls in the water-mass nuclei: Subsurface Water (SS), South Atlantic Central Water (SACW), Antarctic Intermediate Water (AAIW), and Upper Circumpolar Deep Water (UCDW; Table I). In the North Atlantic Deep Water (NADW), samples were collected by vertical hauls from the nucleus of this water mass (2,300 m) up to the limit of influence of the subjacent water mass (1,800 m), because of logisti-

Table I. Distribution of samples in water masses (continental shelf and/or slope) in the Campos Basin, central Brazilian coast, by isobaths. In parentheses, water-mass nucleus. (SS) Subsurface Water, (SACW) South Atlantic Central Water, (AAIW) Antarctic Intermediate Water, (UCDW) Upper Circumpolar Deep Water, (NADW) North Atlantic Deep Water.

Isobaths	Con	tinenta	ıl shel	f (m)		Slop	oe (m)	
isobatiis	25	50	75	150	400	1,000	1,900	3,000
SS (1 m)	х	х	х	х	х	х	х	х
SACW (250 m)					х	x	x	x
AAIW (800 m)						x	x	x
UCDW (1,200 m)							x	x
NADW (2,300 m)								x

Figure 2. Salinity and temperature of the five water masses (0-3260 m) in the Campos Basin, central Brazilian coast, according to data from Mémery *et al.* (2000) and Silveira *et al.* (2000). Solid line = temperature, dashed line = salinity. SS – Subsurface Water, SACW – South Atlantic Central Water, AAIW – Antarctic Intermediate Water, UCDW – Upper Circumpolar Deep Water, NADW – North Atlantic Deep Water.

cal problems associated with the speed of water currents (Table I). Hauls were made using a MultiNet® type midi (Hydro-Bios, 200 µm white mesh, 50 x 50 opening of frame), with digital flow meters attached to the inner net mouth and also an external meter to assess the filtration efficiency. Different set of nets were used at each depth, to prevent sample contamination. To determine the collecting depth, the MultiNet contained a depth sensor. Both the depth and water volume were transmitted to a computer simultaneously with the hauls. The horizontal hauls were made at a speed of 2 knots, during 10 minutes

or until the filtered water volume reached 50 m³. Immediately after sampling, organisms were preserved in 4% buffered formalin. The mesozooplankton samples were obtained as part of the Habitats Project – Campos Basin Environmental Heterogeneity by CENPES/PETROBRAS.

In the laboratory, samples were divided into fractions using a Folsom Plankton Splitter (Hydro-Bios; McEwen *et al.* 1957) and at least 100 individuals per taxonomic group were sorted (Frontier 1981). The mesozooplankton taxonomic groups in this subsample were identified to species under a stereoscopic microscope and optical microscope.

All the specimens collected were deposited in the collection of the Integrated Zooplankton and Ichthyoplankton Laboratory of the Federal University of Rio de Janeiro (DZUFRJ 2007-2277, DZUFRJ 3075-4178, DZUFRJ 6726-8487, DZUFRJ 12622-16893).

We tested whether the mesozooplankton species richness varied depending on the region (continental shelf and slope) in the rainy and dry seasons, using non-parametric Mann-Whitney U test. To test differences in mesozooplankton species richness among water masses present over the slope, in both sampling periods, we used the non-parametric Kruskal-Wallis test.

We used hierarchical agglomerative cluster analyses (Q-mode) based on species composition to partition the samples into discrete groups in the rainy (69 species x 105 sampling stations) and dry seasons (69 species x 94 sampling stations). For this analysis, we used the Sørensen-Dice coefficient with average linkage method. The species composition was defined as the presence or absence of each species in each sample, and only species showing occurrence frequencies above 15% in each study period (rainy and dry seasons) were used in the analysis.

To identify the species that contributed most to the similarities and dissimilarities of the sample groups previously identified in the cluster analysis, we used the SIMPER (similarity of percentages) test. The analyses were performed using the statistical package Primer 6 (Primer-E Ltd., Luton, United Kingdom).

RESULTS

In the SS, we found more species over the slope (rainy season: 100 species, dry season: 128 species) than over the continental shelf (rainy season: 97 species, dry season: 104 species; Fig. 3) in the dry season (p < 0.05). On the slope, the species richness decreased with increasing depth. During the two sampling periods, we observed the highest values of species richness in the SACW (rainy season: 154 species, dry season: 141 species), and the lowest values in the NADW (rainy season: 39 species, dry season: 72 species; Fig. 3). In the rainy season, the mesozooplankton species richness showed significant differences in the NADW in relation to the other water masses, with the exception of IAW. In the dry season, the SS was significantly different from the other water masses (p < 0.05).

Figure 3. Horizontal distribution in the Subsurface Water, over the continental shelf and slope, and vertical distribution over the slope of species richness of each mesozooplankton group in the Campos Basin, central Brazilian coast, during the rainy and dry seasons. C.S. – Continental shelf, SS – Subsurface Water, SACW – South Atlantic Central Water, AAIW – Antarctic Intermediate Water, UCDW – Upper Circumpolar Deep Water, NADW – North Atlantic Deep Water, H.V. – Horizontal variation, V.V. – Vertical variation.

We recorded 262 species belonging to 10 zooplankton groups from 0-2,300 m depths (Table II). Copepoda was the group with the highest richness (138 species), followed by Siphonophorae (34), Euphausiacea (22), Hydrozoa (18), Chaetognatha (16), Appendicularia (14), Thaliacea (10), Decapoda (4), Branchiopoda (5) and Ctenophora (1). We found 13 new records for the southwest Atlantic Ocean: 10 Copepoda species, 1 Hydrozoa species and 2 Siphonophorae species. Among the new records, except for *Lychnagalma utricularia* (Siphonophorae) and *Laodicea indica* (Hydrozoa), which occurred in the SS, all of the other species were observed in the SACW, AAIW and/or the UCDW (Table II).

Hydrozoa. *Aglaura hemistoma* was the most frequent hydrozoan species (>70% in both sampling periods), followed by *Liriope tetraphylla* (>50% in both periods). The highest frequency of these species was recorded on the slope in the dry season and on the continental shelf in the rainy season, respectively. The SS (5 species) showed the highest number of species with exclusive occurrence in one water mass (Table II).

Siphonophorae. The most frequent siphonophore species was *Diphyes bojani* (>50% in both sampling periods). *Abylopsis eschscholtzi* was the second most frequent species (>79% in the rainy season and 81% on the slope during the dry season). *Muggiaea kochi* was the most frequent species (100%)

Table II. Frequency (%) of mesozooplankton species over the continental shelf (C.S.) and slope and vertical distribution in the Campos Basin, central Brazilian coast, during the rainy and dry seasons. SS – Subsurface Water, SACW – South Atlantic Central Water, AAIW – Antarctic Intermediate Water, UCDW – Upper Circumpolar Deep Water, NADW – North Atlantic Deep Water.

	H	Iorizontal	Distributio	on	Vertical Distribution		
Taxon	Rainy			ry			
		C.S. Slope (n = 24) (n = 24)		Slope (n = 22)	Rainy	Dry	
Class Hydrozoa							
Aglaura hemistoma Péron & Lesueur, 1810	79.2	87.5	87.5	90.9	SS/SACW/AAIW/UCDW	SS/SACW/AAIW/UCDW	
Amphogona apicata Kramp, 1957	_	_	-	-	SACW/AAIW/UCDW	SACW/AAIW	
Bougainvillia niobe Mayer, 1894	-	_	4.3	_	=	-	
Corymorpha gracilis (Brooks, 1882)	37.5	12.5	17.4	9.1	=	SS	
Cunina frugifera Kramp, 1948	_	4.2	-	-	=	=	
Eucheilota duodecimalis A. Agassiz, 1862	4.2	_	_	_	_	=	
Eucheilota paradoxica Mayer, 1900	12.5	_	4.3	_	SACW	_	
Eucheilota ventricularis McCrady, 1859	4.2	_	4.5		_	_	
Laodicea indica Browne, 1905*	16.7	4.2	8.7	_	_	_	
Merga violacea (Agassiz & Mayer, 1899)	_	-	-	_	SS	_	
Proboscidactyla ornata (McCrady, 1857)	4.2	4.2	-	_	SS	_	
Rhopalonema velatum Gegenbaur, 1856	_	4.2	_	13.6	22	SS	
Sminthea eurygaster Gegenbaur, 1857	_	16.7	_	_	SS/SACW/AAIW/UCDW	SACW/AAIW/NADW	
Solmundella bitentaculata (Quoy & Gaimard, 1833)	8.3	25.0	13.0	-	SS/UCDW	_	
Tetraplatia volitans (Busch, 1851)	_	_	_	9.1	_	SS/SACW	
Turritopsis nutricula (McCrady, 1857)	_	_	13.0	40.9	_	SS/SACW	
Zanclea medusopolypata Boero, Bouillon & Gravili, 2000	-	4.2	-	-	SS/SACW/AAIW	-	
Order Siphonophorae							
Abylopsis eschscholtzi (Huxley, 1859)	79.2	87.5	21.7	81.8	SS/SACW/AAIW/UCDW	SS/SACW/UCDW	
Abylopsis tetragona (Otto, 1823)	33.3	54.2	8.7	68.2	SS/SACW/AAIW/UCDW	SS/SACW	
Bassia bassensis (Quoy & Gaimard, 1833)	58.3	58.3	13.0	63.6	SS/SACW/AAIW/UCDW	SS/SACW	
Ceratocymba sagittata (Quoy & Gaimard, 1827)	_	_	_	4.5	_	SS	
Chelophyes appendiculata (Eschscholtz, 1829)	16.7	54.2	30.4	45.4	SS/SACW/AAIW/UCDW	SS/SACW	
Chuniphyes multidentata Lens & van Riemsdijk, 1908	-	-	-	_	SACW/AAIW	AAIW	
Dimophyes arctica (Chun, 1897)	_	_	_	4.5	SACW	SS/SACW	
Diphyes bojani (Eschscholtz, 1829)	87.5	100.0	47.9	95.4	SS/SACW/AAIW/UCDW/NADW	SS/SACW/NADW	
Diphyes dispar Chamisso & Eysenhardt, 1821	_	25.0	_	_	SS/AAIW	-	
Enneagonum hyalinum Quoy & Gaimard, 1827	_	_	_	_	SACW	SACW	
Eudoxoides mitra (Huxley, 1859)	_	_	13.0	40.9	SACW	SS/SACW	
Halistemma rubrum (Vogt, 1852)	_	-	-	_	-	SACW	
Hippopodius hippopus (Forskål, 1776)	_	_	_	4.5	_	SS	
Lensia achilles Totton, 1941	_	-	-	_	SACW	_	
Lensia campanella (Moser, 1925)	12.5	8.3	-	9.1	SS/SACW/AAIW	SS/SACW	
Lensia challengeri Totton, 1954	-	_	_	_	SACW	_	
Lensia conoidea (Keferstein & Ehlers, 1860)	_	4.2	_	4.2	SS/SACW	SACW	
Lensia cossack Totton, 1941	8.3	4.2	_	13.6	SS/AAIW/UCDW	SS	
Lensia fowleri (H. B. Bigelow, 1911)	_	_	_	_	SACW	=	
Lensia grimaldi (Leloup, 1933)	_	_	_	_	_	SACW	

Table II. Continued.

	н	orizontal	Distributio	n	Vertical Distribution		
Taxon	Rainy Dry			ry			
	C.S. Slope (n = 24)		C.S. Slope (n = 24) (n = 22)		Rainy	Dry	
Lensia havock Totton, 1941	-	_	-	-	UCDW	AAIW	
Lensia hotspur Totton, 1941	_	_	_	4.5	SACW	SS	
Lensia hunter Totton, 1941	_	_	-	_	AAIW	-	
Lensia meteori (Leloup, 1934)	_	_	_	_	SACW/UCDW	SACW	
Lensia multicristata (Moser, 1925)	_	_	_	_	SACW	SACW	
Lensia subtilis (Chun, 1886)	_	_	4.3	31.8	SACW/AAIW	SS/SACW	
Lensia subtiloides (Lens & van Riemsdijk, 1908)*	_	_	_	_	SACW	SS/SACW	
Lychnagalma utricularia (Claus, 1879)*	8.3	_	_	_	_	_	
Muggiaea kochi (Will, 1844)	50.0	16.7	100.0	77.2	SS/SACW/AAIW/UCDW	SS/SACW	
Nanomia bijuga (delle Chiaje, 1841)	_	_	4.3	4.5	_	SS	
Sulculeolaria chuni (Lens & van Riemsdijk, 1908)	_	12.5	_	4.5	SS/SACW/UCDW	SS	
Sulculeolaria turgida (Gegenbaur, 1853)	_	_	_	4.5	=	SS	
Vogtia glabra H.B. Bigelow, 1918	_	_	_	_	AAIW	_	
Vogtia serrata (Moser, 1925)	_	_	_	_	_	SACW	
Phylum Ctenophora					_	SS/SACW	
Hormiphora plumosa L. Agassiz, 1860	_	_	_	_	SACW	_	
Class Branchiopoda							
Evadne spinifera P.E. Müller, 1867	20.8	8.3	4.3	22.7	SS/NADW	SS/UCDW	
Penilia avirostris Dana, 1849	37.5	4.2	91.3	63.6	SS/NADW	SS/SACW/AAIW	
Pleopis polyphemoides (Leuckart, 1859)	4.2	_	21. 7	_	=	=	
Pleopis schmackeri (Poppe, 1889)	_	_	8. 7	4.5	_	SS	
Pseudevadne tergestina (Claus, 1877)	50.0	54.2	78. 3	72.7	SS/SACW/AAIW/UCDW/NADW	SS/SACW	
Subclass Copepoda							
Acartia danae Giesbrecht, 1889	4.2	4.2	_	_	SS/SACW/AAIW/UCDW	_	
Acartia lilljeborgi Giesbrecht, 1889	_	_	8.7	4.5	AAIW	SS	
Acartia longiremis (Lilljeborg, 1853)	_	_	-	4.5	-	SS	
Acrocalanus gracilis Giesbrecht, 1888	_	_	4.3	-	UCDW	SS	
Acrocalanus longicornis Giesbrecht, 1888	79.2	95.8	39.1	59.1	SS/SACW/AAIW	SS/AAIW	
Aegisthus mucronatus Giesbrecht, 1891	79.2	-	37.1	J2.1 _			
Aetideus giesbrechti Cleve, 1904	_	_	_	_	SACW/AAIW/UCDW SACW/AAIW/UCDW/NADW	SACW/AAIW/UCDW SACW/AAIW	
Amallothrix dentipes (Vervoort, 1951)*	_	_	_	_	UCDW UCDW/NADW		
	_	_	_	_		AAIW/UCDW SACW/AAIW	
Arietellus plumifer G.O. Sars, 1905*	- 0.2	-	-			SS/SACW/AAIW/UCDW	
Calanoides carinatus (Krøyer, 1849)	8.3	4.2	69.6	27.3	SS/SACW/AAIW/UCDW/NADW		
Calcalanus contractus Farran, 1936	12.5	_	30.4	27.3	- SACW/HCDW	SS SS CW/A AIW/UCDW/NADW	
Calocalanus contractus Farran, 1926	- 20.8	- 20.2	13.0	27.3	SACW/UCDW	SS/SACW/AAIW/UCDW/NADW	
Calocalanus pavo (Dana, 1852)	20.8	29.2	-	9.1	SS/AAIW/UCDW	SS/AAIW	
Calocalanus pavoninus Farran, 1936	45.8	58.3	30.4	45.4	SS/SACW/AAIW/UCDW	SS/SACW/AAIW	
Candacia bipinnata (Giesbrecht, 1889)	4.2	_	8.7	_	SACW/AAIW/UCDW	SACW/AAIW	
Candacia bispinosa (Claus, 1863)	_	_	_	-	AAIW/UCDW	-	
Candacia ethiopica (Dana, 1849)	_	-	_	4.5	- 	SS	
Candacia longimana (Claus, 1863)	-	-	-	-	AAIW/UCDW	-	
Candacia pachydactyla (Dana, 1849)	8.3	33.3	13.0	18.2	SS/SACW/AAIW/UCDW	SS/AAIW	

Table II. Continued.

		orizontai	Distributio	n	Vertical Distribution		
Taxon	Ra	iny	C.S. Slope (n = 24) (n = 22)				
	C.S. (n = 24)	Slope (n = 24)			Rainy	Dry	
Candacia simplex (Giesbrecht, 1889)	-	4.2	-	-	SS/UCDW	-	
Candacia tenuimana (Giesbrecht, 1889)	_	_	_	-	_	SACW	
Centropages furcatus (Dana, 1852)	16.7	8.3	69.6	31.8	SS	SS/SACW/AAIW/UCDW	
Centropages violaceus (Claus, 1863)	_	8.3	_	4.5	SS	SS	
Chiridiella atlantica Wolfenden, 1911*	_	_	_	-	_	AAIW	
Chiridius gracilis Farran, 1908	_	_	_	_	UCDW	-	
Chirundina streetsii Giesbrecht, 1895	_	_	_	_	SACW/AAIW	SACW/AAIW	
Clausocalanus arcuicornis (Dana, 1849)	_	_	_	13.6	AAIW	SS/SACW/AAIW	
Clausocalanus brevipes Frost & Fleminger, 1968	_	_	_	4.5	SACW/UCDW	SS/SACW	
Clausocalanus furcatus (Brady, 1883)	100.0	95.8	95.6	100.0	SS/SACW/AAIW/UCDW/NADW	SS/SACW/AAIW/UCDW/NAI	
Clausocalanus mastigophorus (Claus, 1863)	_	_	_	_	_	SACW	
Clytemnestra scutellata Dana, 1849	4.2	4.2	17.4	_	SS/SACW/AAIW	SACW	
Conaea rapax (Giesbrecht, 1891)	_	_	_	_	SACW/AAIW/UCDW/NADW	SACW/AAIW/UCDW	
Copilia mirabilis Dana, 1849	4.2	8.3	4.3	4.5	SS/AAIW/UCDW	SS	
Corycaeus flaccus Giesbrecht, 1891	_	_	-/13.6	_	SACW	SS/SACW	
Corycaeus giesbrechti F. Dahl, 1894	75.0	66.7	60.9	63.6	SS/SACW/AAIW/UCDW/NADW	SS/SACW/AAIW	
Corycaeus latus Dana, 1849	_	_	-	-	_	SACW	
Corycaeus lautus Dana, 1849	8.3	20.8	13.0	-	SS/SACW/UCDW/NADW	SACW	
Corycaeus limbatus Brady, 1883	_	12.5	17.4	31.8	SS/SACW/AAIW/UCDW/NADW	SS/SACW/AAIW/UCDW/NAI	
Corycaeus speciosus Dana, 1849	37.5	45.8	13.0	31.8	SS/SACW/AAIW/UCDW/NADW	SS/AAIW/UCDW	
Corycaeus typicus (Krøyer, 1849)	_	_	4.3	4.5	_	SS	
Ctenocalanus citer Heron & Bowman, 1971	_	_	39.1	9.1	SACW/AAIW	SS/SACW/AAIW	
Ctenocalanus vanus Giesbrecht, 1888	_	_	4.3	9.1	SACW/AAIW/UCDW	SS/AAIW	
Euaugaptilus facilis (Farran, 1908)*	_	_	-	-	UCDW	AAIW	
Euaugaptilus hecticus (Giesbrecht, 1892)	_	_	-	-	SACW	-	
Eucalanus hyalinus (Claus, 1866)	_	_	-	-	AAIW	SACW	
Euchaeta marina (Prestandrea, 1833)	_	8.3	4.3	4.5	SS/UCDW	SS/SACW/UCDW	
Euchaeta media Giesbrecht, 1888	_	_	-	-	SS/SACW/UCDW	SACW	
Euchirella curticauda Giesbrecht, 1888	_	_	-	-	UCDW	SACW	
Euchirella messinensis messinensis (Claus, 1863)	_	_	_	_	AAIW	=	
Euchirella pulchra (Lubbock, 1856)	_	_	_	_	AAIW	AAIW/UCDW	
Euterpina acutifrons (Dana, 1849)	_	_	4.3	-	UCDW	-	
Farranula gracilis (Dana, 1849)	75.0	100.0	34.8	77.3	SS/SACW/AAIW/UCDW/NADW	SS/SACW/AAIW/UCDW/NAI	
Farranula rostrata (Claus, 1863)	_	_	_	_	UCDW	=	
Gaetanus kruppi Giesbrecht, 1903	_	_	_	_	AAIW	=	
Gaetanus miles Giesbrecht, 1888	_	_	-	-	_	SACW	
Gaetanus minor Farran, 1905	_	_	_	_	SACW/UCDW/NADW	SACW/AAIW	
Gaetanus pileatus Farran, 1903*	_	_	_	_	=	SACW	
Gaetanus tenuispinus (G.O. Sars, 1900)	_	_	_	_	SACW/AAIW/UCDW	SACW/AAIW	
Haloptilus austini Grice, 1959	_	_	_	_	SACW	=	
Haloptilus longicirrus Brodsky, 1950*	_	_	_	_	=	SACW	
- *					SACW/AAIW/UCDW/NADW		

Table II. Continued.

		Horizontal	Distribu	tion	Vertical Distribution		
Taxon	F	Rainy	Dry				
	C.S. Slope (n = 24) (n = 24)		C.S. Slope (n = 24) (n = 22)		Rainy	Dry	
Heterorhabdus austrinus Giesbrecht, 1902	-	_	_	=	AAIW	SACW/UCDW	
Heterorhabdus papilliger (Claus, 1863)	4.2	_	_	_	SACW/AAIW	SACW/AAIW/UCDW	
Heterorhabdus spinifrons (Claus, 1863)	8.3	12.5	4.3	13.6	SS/SACW/AAIW/UCDW/NADW	SS/SACW/AAIW/UCDW	
Labidocera acutifrons (Dana, 1849)	8.3	16.7	_	_	SS/SACW	_	
Lophothrix frontalis Giesbrecht, 1895	_	_	4.3	_	SACW/AAIW/UCDW	SS/SACW/UCDW	
Lophothrix latipes (T. Scott, 1894)	_	_	_	_	_	AAIW/UCDW	
Lophothrix quadrispinosa Wolfenden, 1911*	_	_	_	_	SACW	-	
Lubbockia aculeata Giesbrecht, 1891	_	_	_	_	_	SACW	
Lubbockia squillimana Claus, 1863	_	_	_	18.2	SACW/AAIW/UCDW/NADW	SS/SACW/AAIW/UCDW/NADV	
Lucicutia clausii (Giesbrecht, 1889)	_	_	_	_	SACW/UCDW	SACW/UCDW	
Lucicutia flavicornis (Claus, 1863)	12.5	25.0	17.4	72.7	SS/SACW/UCDW/NADW	SS/SACW/AAIW/NADW	
Lucicutia gaussae Grice, 1963	_	_	_	_	SACW/AAIW/UCDW	_	
Lucicutia longicornis (Giesbrecht, 1889)	-	_	_	_	UCDW	AAIW	
Lucicutia magna Wolfenden, 1903	-	_	_	_	_	UCDW	
Lucicutia ovalis (Giesbrecht, 1889)	-	_	_	_	SACW/AAIW/UCDW	_	
Lucicutia wolfendeni Sewell, 1932	_	_	_	_	UCDW	AAIW/UCDW	
Macrosetella gracilis (Dana, 1847)	37.5	75.0	_	54.5	SS/SACW/AAIW/UCDW/NADW	SS/SACW/AAIW/UCDW/NADV	
Mecynocera clausi I.C. Thompson, 1888	_	8.3	_	31.8	SS/SACW/AAIW/UCDW/NADW	SS/SACW/AAIW/UCDW	
Metridia brevicauda Giesbrecht, 1889	_	_	_	_	AAIW	AAIW	
Metridia princeps Giesbrecht, 1889	_	_	_	_	_	AAIW	
Microsetella rosea (Dana, 1849)	_	_	4.3	_	_	SACW/AAIW/UCDW/NADW	
Miracia efferata Dana, 1849	_	8.3	_	_	SS/SACW/AAIW/UCDW	_	
Nannocalanus minor (Claus, 1863)	62.5	75.0	34.8	59.1	SS/SACW/AAIW/UCDW/NADW	SS/SACW/AAIW/UCDW	
Neocalanus gracilis (Dana, 1849)	_	_	_	9.1	SACW	SS	
Neocalanus robustior (Giesbrecht, 1888)	_	_	_	9.1	=	SS	
Nullosetigera helgae (Farran, 1908)	_	_	_	_	SACW	SACW	
Oithona nana Giesbrecht, 1892	_	_	_	_	NADW	_	
Oithona plumifera Baird, 1843	25.0	25.0	43.5	45.4	SS/SACW/UCDW	SS/SACW/AAIW/UCDW/NADV	
Oithona setigera Dana, 1852	_	_	17.4	22.7	SACW/AAIW/UCDW	SS/SACW/AAIW/UCDW	
Oithona similis Claus, 1866	25.0	16.7	13.0	36.4	SS/SACW/AAIW/UCDW	SS/SACW/AAIW/UCDW	
Oithona tenuis Rosendorn, 1917	_	_	_	_	SACW	=	
Oncaea atlântica Shmeleva, 1967*	_	_	_	_	_	SACW	
Oncaea cf. media Giesbrecht, 1891	29.2	33.3	43.5	40.9	SS/SACW/AAIW/UCDW/NADW	SS/SACW/AAIW/UCDW	
Oncaea venusta Philippi, 1843	79.2	10.0	65.2	90.9	SS/SACW/AAIW/UCDW/NADW	SS/SACW/AAIW/UCDW/NADV	
Paracalanus aculeatus Giesbrecht, 1888	87.5	50.0	43.5	27.3	SS/SACW/AAIW/UCDW	SS/SACW/AAIW/UCDW	
Paracalanus nanus (G.O. Sars, 1907)	_	_	_	_	_	SACW	
Paracalanus parvus (Claus, 1863)	54.2	20.8	47.8	31.8	SS/SACW/AAIW/UCDW	SS/SACW	
Paracalanus quasimodo Bowman, 1971	75.0	58.3	91.3	77.3	SS/SACW/AAIW/UCDW/NADW	SS/SACW/AAIW	
Paraeucalanus sewelli Fleminger, 1973	_	_	_	_	AAIW/UCDW	AAIW	
Paraeuchaeta sarsi (Farran, 1908)	_	_	_	_	SACW/AAIW/UCDW	_	
Paraheterorhabdus vipera (Giesbrecht, 1889)	_	_	_	_	_	SACW	
Pleuromamma abdominalis (Lubbock, 1856)	4.2	_	_	9.1	SACW/UCDW/NADW	SS/SACW/AAIW/UCDW/NADV	
						Continue	

Table II. Continued.

	н	orizontal	Distribution	on	Vertical Distribution		
Taxon	Ra	iny	Dry				
	C.S. Slope (n = 24)		C.S. Slope (n = 24) (n = 22)		Rainy	Dry	
Pleuromamma gracilis (Claus, 1863)	_	_	17.4	31.8	SACW/AAIW/UCDW	SS/SACW/AAIW/UCDW/NADV	
Pleuromamma piseki Farran, 1929	_	12.5	_	13.6	SS/SACW/AAIW	SS/SACW/AAIW	
Pleuromamma xiphias (Giesbrecht, 1889)	_	_	_	4.5	SACW/AAIW/UCDW	SS/SACW/AAIW/UCDW	
Pontellina plumata (Dana, 1849)	_	_	_	9.1	_	SS	
Pontellopsis villosa (Brady, 1883)	_	4.2	_	_	22	-	
Racovitzanus Ievis Tanaka, 1961*	_	_	_	_	_	SACW	
Rhincalanus nasutus Giesbrecht, 1888	_	_	_	_	SACW/AAIW	UCDW	
Sapphirina nigromaculata Claus, 1863	4.2	20.8	4.3	4.5	SS/UCDW/NADW	SS/AAIW	
Scaphocalanus brevicornis (G.O. Sars, 1900)	_	_	_	_	AAIW	_	
Scaphocalanus curtus (Farran, 1926)	_	_	_	_	_	SACW	
Scaphocalanus echinatus (Farran, 1905)	_	_	_	_	SACW/AAIW	SACW	
Scaphocalanus elongatus A. Scott, 1909	_	_	_	_	_	UCDW	
Scaphocalanus magnus (T. Scott, 1894)	_	_	_	_	AAIW/UCDW/NADW	_	
Scaphocalanus subbrevicornis (Wolfenden, 1911)	_	_	_	_	_	UCDW	
Scolecithricella dentata (Giesbrecht, 1892)	_	_	_	_	SACW/AAIW	SACW/UCDW	
Scolecithricella minor (Brady, 1883)	_	_	4.3	9.1	SACW/AAIW	SS/SACW/AAIW/UCDW	
Scolecithricella ovata (Farran, 1905)	_	_	_	_	_	SACW	
Scolecithricella profunda (Giesbrecht, 1893)	_	_	_	_	_	SACW	
Scolecithricella tenuiserrata (Giesbrecht, 1892)	_	_	8.7	18.2	_	SS/SACW/UCDW	
Scolecithrix bradyi Giesbrecht, 1888			-	-	SACW/UCDW	-	
Scolecithrix danae (Lubbock, 1856)	16.7	16.7	_	18.2	SS/SACW/AAIW/UCDW	SS/SACW	
Scottocalanus securifrons (T. Scott, 1894)	10.7	10.7	_	-	SACW	SACW/AAIW	
Subeucalanus crassus (Giesbrecht, 1888)			8.7	4.5	SACTO	SS	
Subeucalanus longiceps (Matthews, 1925)	_	_	-	-	SACW/AAIW/UCDW	33	
Subeucalanus pileatus (Giesbrecht, 1888)	_	_	56.5	50.0	AAIW	SS/SACW/AAIW/UCDW	
	_	_			AAIW	SACW	
Subeucalanus subtenuis (Giesbrecht, 1888)	100.0		- 02.6	- 01 0			
Temora stylifera (Dana, 1849)	100.0	91.7	82.6	81.8	SS/SACW/AAIW/UCDW/NADW	SS/SACW/AAIW/UCDW	
Temora turbinata (Dana, 1849)	54.2	_	91.3	50.0	UCDW SACIA/AANA/UCDIA/	SS/SACW/AAIW/UCDW	
Temoropia mayumbaensis T. Scott, 1894	_	_	_	_	SACW/AAIW/UCDW	-	
Tharybis asymmetrica Andronov, 1976*	_	-	-	-	-	AAIW	
Triconia cf. conifera (Giesbrecht, 1891)	8.3	8.3	17.4	45.4	SS/SACW/AAIW/UCDW/NADW	SS/SACW/AAIW/UCDW	
Undeuchaeta major Giesbrecht, 1888	_	_	_	_	SACW/AAIW/UCDW	SACW	
Undeuchaeta plumosa (Lubbock, 1856)	_	_	_	_	_	SACW/AAIW	
Undinula vulgaris (Dana, 1849)	66.7	91.7	39.1	72.7	SS/SACW/AAIW/UCDW	SS/SACW/AAIW/UCDW	
Xanthocalanus marlyae Campaner, 1978	_	_	_	_	AAIW	-	
Order Euphausiacea							
Bentheuphausia amblyops (G.O. Sars, 1883)	-	_	_	-	AAIW	-	
Euphausia americana Hansen, 1911	20.8	91.7	4.3	77.3	SS/SACW/AAIW/UCDW	SS/SACW	
Euphausia brevis Hansen, 1905	-	37.5	_	9.1	SS/SACW/AAIW/UCDW	SS	
Euphausia pseudogibba Ortmann, 1893	-	4.2	4.3	22.7	SS/SACW/AAIW	SS/SACW	
Euphausia recurva Hansen, 1905	_	16.7	_	4.5	SS/SACW	SS	
Euphausia similis G.O. Sars, 1885	12.5	29.2	13.0	40.9	SS/SACW	SS/SACW	

Table II. Continued.

		orizontal	Distributi	on	Vertical Distribution		
Taxon		iny	Dry				
	C.S. Slope (n = 24)		C.S. Slope $(n = 24) (n = 22)$		Rainy	Dry	
Euphausia tenera Hansen, 1905	8.3	29.2	-	-	SS/SACW	_	
Nematobrachion flexipes (Ortmann, 1893)	_	_	_	-	SACW	_	
Nematobrachion sexspinosus Hansen, 1911	_	_	_	-	SACW	SACW	
Nematoscelis atlantica Hansen, 1910	33.3	37.5	13.0	59.1	SS/SACW/AAIW/UCDW	SS/SACW/UCDW	
Nematoscelis microps G.O. Sars, 1883	_	4.2	_	=	SS/SACW/AAIW/UCDW	SACW	
Nematoscelis tenella G.O. Sars, 1883	_	_	-	18.2	SACW/UCDW	SS/SACW	
Stylocheiron abbreviatum G.O. Sars, 1883	25.0	25.0	8.7	22.7	SS/SACW	SS/SACW	
Stylocheiron affine Hansen, 1910	_	4.2	_	_	SS/SACW/UCDW	_	
Stylocheiron carinatum G.O. Sars, 1883	37.5	33.3	21.7	63.6	SS/SACW/UCDW	SS/SACW	
Stylocheiron elongatum G.O. Sars, 1883	_	_	_	_	SACW	SACW	
Stylocheiron longicorne G.O. Sars, 1883	4.2	-	_	_	SACW/UCDW	SACW	
Stylocheiron suhmii G.O. Sars, 1883	-	-	_	31.8	_	SS/SACW	
Thysanopoda aequalis Hansen, 1905	8.3	20.8	26.1	50.0	SS/SACW/AAIW/UCDW	SS/SACW/AAIW	
Thysanopoda monacantha Ortmann, 1893	_	_	4.3	22.7	SACW	SS	
Thysanopoda obtusifrons G.O. Sars, 1883	_	_	_	_	SACW/AAIW	-	
Thysanopoda tricuspidata Guérin Méneville, 1837	4.2	29.2	_	9.1	SS/SACW	_	
rder Decapoda							
Janicella spinicauda (A. Milne-Edwards, 1883)	_	_	_	_	SACW	_	
Leander tenuicornis (Say, 1818)	4.2	_	_	_	_	_	
Periclimenes longicaudatus (Stimpson, 1860)	4.2	_	_	_	_	_	
Stenopus hispidus (Olivier, 1811)	4.2	8.3	_	9.1	_	SS	
hylum Chaetognatha							
Caecosagitta macrocephala (Fowler, 1904)	_	_	_	_	AAIW/UCDW	AAIW/UCDW	
Decipisagitta decipiens (Fowler, 1905)	_	_	_	_	AAIW/UCDW	SACW/UCDW	
Decipisagitta sibogae (Fowler, 1906)	_	_	_	13.6	SACW/AAIW/UCDW/NADW	SS/SACW/AAIW/UCDW	
Eukrohnia bathypelagica Alvariño, 1962	_	_	_	_	SACW/AAIW/UCDW	SACW/AAIW/UCDW	
Ferosagitta hispida (Conant, 1895)	4.2	8.3	_	_	SS/SACW	AAIW	
Flaccisagitta enflata (Grassi, 1881)	100.0	100.0	100.0	100.0	SS/SACW/AAIW/UCDW/NADW	SS/SACW/AAIW/UCDW	
Flaccisagitta hexaptera (d'Orbigny, 1836)	8.3	8.3	8.7	45.4	SS/SACW/AAIW/UCDW	SS/SACW/UCDW	
Krohnitta mutabbii (Alvariño, 1969)	66.7	50.0	91.3	90.9	SS/SACW/AAIW/UCDW	SS/SACW/AAIW	
Krohnitta subtilis (Grassi, 1881)	8.3	16.7	4.3	_	SS/SACW/AAIW/UCDW	SACW/UCDW	
Mesosagitta minima (Grassi, 1881)	4.2	_	13.0	9.1	SS/SACW/AAIW/UCDW	SS/SACW/AAIW/UCDW	
Parasagitta friderici (Ritter–Záhony, 1911)	95.8	95.8	100.0	100.0	SS/SACW/AAIW/UCDW/NADW	SS/SACW/AAIW/UCDW	
Pseudosagitta lyra (Krohn, 1853)	_	_	13.0	_	SACW/AAIW/UCDW	SACW/AAIW/UCDW	
Pterosagitta draco (Krohn, 1853)	41.7	58.3	8.7	59.1	SS/SACW/AAIW/UCDW/NADW	SS/SACW/UCDW	
Sagitta bipunctata Quoy & Gaimard, 1828	4.2	_	_	_	SACW/UCDW	-	
Sagitta helenae Ritter-Záhony, 1911	_	_	_	_	AAIW/UCDW	=	
Serratosagitta serratodentata (Krohn, 1853)	66.7	87.5	39.1	54.5	SS/SACW/AAIW/UCDW/NADW	SS/SACW	
lass Appendicularia							
Fritillaria formica Fol, 1872	37.5	20.8	21.7	45.4	SS/SACW/AAIW/UCDW	SS/SACW/AAIW/UCDW	
Fritillaria haplostoma Fol, 1872	4.2	_	8.7	9.1	SACW/AAIW/UCDW	SS/UCDW	
Fritillaria pellucida (Busch, 1851)	12.5	_	26.1	31.8	SACW/AAIW	SS/AAIW	

Table II. Continued.

	Horizontal Distribution				Vertical Distribution		
Taxon	Taxon Rainy C.S. Slope (n = 24) (n = 24)		D	ry			
			C.S. Slope (n = 24) (n = 22)		Rainy	Dry	
Fritillaria sargassi Lohmann, 1896	4.2	-	-	-	AAIW	=	
Fritillaria tenella Lohmann, 1896	-	-	-	-	SACW/UCDW	SACW	
Oikopleura albicans (Leuckart, 1853)	_	_	13.6	_	SACW/AAIW/UCDW	SS	
Oikopleura cophocerca (Gegenbaur, 1855)	_	4.2	4.3	40.9	SS/SACW/AAIW/UCDW	SS/SACW/AAIW/UCDW/NADW	
Oikopleura cornutogastra (Gegenbaur, 1855)	_	_	8.7	9.1	UCDW	SS/SACW	
Oikopleura dioica Fol, 1872	_	_	13.0	_	-	-	
Oikopleura fusiformis Fol, 1872	54.2	37.5	52.2	77.3	SS/SACW/AAIW/UCDW	SS/SACW	
Oikopleura gracilis Lohmann, 1896	_	_	_	_	SACW	-	
Oikopleura intermedia Lohmann, 1896	4.2	_	26.1	18.2	SS/SACW/AAIW/UCDW	SS/SACW/AAIW	
Oikopleura longicauda (Vogt, 1854)	100.0	100.0	100.0	100.0	SS/SACW/AAIW/UCDW/NADW	SS/SACW/AAIW/UCDW	
Oikopleura rufescens Fol, 1872	66.7	87.5	17.4	59.1	SS/SACW/AAIW/UCDW/NADW	SS/SACW	
Class Thaliacea							
Brooksia rostrata (Traustedt, 1893)	16.7	8.3	_	_	SS	-	
Dolioletta gegenbauri (Uljanin, 1884)	20.8	45.8	52.2	54.5	SS/SACW/AAIW/UCDW	SS/SACW/AAIW/UCDW	
Doliolina mülleri (Krohn, 1852)	29.2	8.3	30.4	40.9	SS/SACW/AAIW/UCDW	SS/SACW/AAIW/UCDW	
Doliolum nationalis Borgert, 1893	83.3	87.5	100.0	100.0	SS/SACW/AAIW/UCDW/NADW	SS/SACW/AAIW/UCDW	
lasis zonaria (Pallas, 1774)	_	_	_	4.5	-	SS	
Ritteriella retracta (Ritter, 1906)	-	4.2	_	-	SS	_	
Salpa fusiformis Cuvier, 1804	8.3	16.7	26.06	54.5	SS	SS	
Thalia cicar van Soest, 1973	4.2	_	_	9.1	SACW	SS	
Thalia democratica (Forskal, 1775)	50.0	41.7	56.5	86.4	SS/SACW/AAIW/UCDW	SS/SACW/AAIW/UCDW	
Weelia cylindrica (Cuvier, 1804)	_	4.2	4.3	22.7	SS	SS	

^{*} New occurrence for the southwest Atlantic.

frequency) on the continental shelf in the dry season. The SACW (8 species) and SS (5 species) contained the most species with exclusive occurrence in one water mass (Table II).

Ctenophora. Two ctenophore species were recorded in the study period. *Beroe* sp. occurred only in the AAIW, and *Hormiphora plumosa* in the SACW (Table II).

Branchiopoda. *Pseudevadne tergestina* was the most frequent branchiopod species, and peaked in frequency on the continental shelf during the dry season. *Penilia avirostris* was the second most frequent species and was most frequent on the continental shelf, during the dry season. Only *Pleopis schmackeri* was recorded exclusively in the SS (Table II).

Copepoda. Clausocalanus furcatus was the most frequent copepod species (>90%) in both sampling periods. Temora stylifera was the second most frequent species (>80% in both periods), with a peak frequency on the continental shelf in the rainy season. The SACW contained the most species exclusive to that water mass (19), followed by the AAIW (10 species, Table II).

Euphausiacea. *Euphausia americana* was the most frequent euphausiacean species, with a peak frequency on the slope, in both sampling periods (>70%). *Stylocheiron carinatum* was the

second most frequent species (>20% in both periods), with a peak frequency in the dry season, on the slope. In the SACW, we observed the highest number of species that occurred exclusively in one water mass (3 species; Table II).

Decapoda. Decapods occurred only in the SS and SACW, mostly in the rainy season. Only *Stenopus hispidus* occurred on both the continental shelf and the slope. *Leander tenuicornis* and *Periclimenes longicaudatus* were recorded only on the continental shelf, in the rainy season (Table II).

Chaetognatha. *Flaccisagitta enflata* was the most frequent chaetognath species, and occurred at all sampling stations throughout the study period. *Parasagitta friderici* was the second most frequent species. This species was found at all stations during the dry season and at 90% of the stations during the rainy season (Table II).

Appendicularia. The most frequent appendicularian species was *Oikopleura longicauda*, which occurred at all stations throughout the study period. The second most frequent species was *Oikopleura fusiformis*, which peaked in frequency on the slope during the dry season. The SACW contained the most species that occurred in only one water mass (2 species; Table II).

Thaliacea. *Doliolum nationalis* was the most frequent thaliacean, observed at all sampling stations throughout the study period. *Thalia democratica* was the second most frequent species and showed a frequency peak on the slope in the dry season. Five species occurred exclusively in the SS (Table II).

Cluster analysis indicated the formation of groups at a 55% similarity level during the rainy season (Fig. 4) and at a 40% similarity level during the dry season (Fig. 5).

During the rainy season, the arrangement of these groups indicated three faunistic areas: A) comprising mainly the samples from the SS; B) comprising the samples from the SACW, AAIW and UCDW, mainly; and C) comprising the samples of SACW, in the south and north regions of the study area (Fig. 4). The other samples were not associated with any of the large groups (over ten samples; Fig. 4). Among the species that contributed most to the similarity within the faunistic areas in the rainy season, *Oncaea venusta* (Copepoda), *Oikopleura longicauda* (Appendicularia), *Parasagitta friderici, Flaccisagitta enflata* (Chaetognatha), *Doliolum nationalis* (Doliolidae) and

Diphyes bojani (Siphonophorae) contributed to the similarity of all groups, while other species contributed to the formation of only one faunistic zone (Table III).

During the dry season, the arrangement of the groups indicated three faunistic areas: A) comprising the samples of SS; B) comprising the samples of SACW, mainly; and C) comprising the samples of AAIW and UCDW (Fig. 5). The other stations were not associated with any of the large groups (over ten samples; Fig. 5). Some species contributed to the similarity of only one faunistic area, while *Parasagitta friderici*, *F. enflata*, *O. venusta* and *O. longicauda* contributed to the similarity of all groups (Table III).

Some of the rare species (occurrence frequency below 15% in the study period) were recorded in only one faunistic zone. The SS showed 29 exclusive species, e.g., *Cunina frugifera*, *Sulculeolaria turgida*, *Hippopodius hippopus*, *Pleopis polyphemoides*, *Centropages violaceus*, *Calanopia americana* and *Pontellina plumata* (Table II). In SACW, 34 species were exclusive to this faunistic zone, e.g., *Enneagonum hyalinum*, *Lensia achilles*, *Gaetanus*

Table III. Mesozooplankton species contributing (up to a total of 50%) to the similarity of faunistic zones during the rainy and dry seasons, over the continental shelf and slope in the Campos Basin, central Brazilian coast (SIMPER). (SS) Subsurface Water, (SACW) South Atlantic Central Water, (AAIW) Antarctic Intermediate Water, (UCDW) Upper Circumpolar Deep Water.

SS Group	%	SACW/AAIW/UCDW Group	%	SACW Group	%
Rainy season					
Flaccisagitta enflata	5.40	Oncaea venusta	5.22	Decipisagitta sibogae	5.72
Oikopleura longicauda	5.40	Oikopleura longicauda	5.22	Oithona similis	5.72
Clausocalanus furcatus	5.16	Parasagitta friderici	4.77	Doliolum nationalis	5.72
Parasagitta friderici	4.99	Clausocalanus furcatus	4.41	Oncaea venusta	5.72
Temora stylifera	4.98	Flaccisagitta enflata	4.34	Flaccisagitta enflata	5.72
Diphyes bojani	4.61	Doliolum nationalis	4.01	Parasagitta friderici	5.72
Oncaea venusta	4.17	Temora stylifera	3.98	Oikopleura longicauda	4.71
Farranula gracilis	4.09	Nannocalanus minor	3.66	Lubbockia squillimana	3.97
Acrocalanus longicornis	3.92	Pterosagitta draco	3.63	Nematoscelis tenella	3.95
Doliolum nationalis	3.91	Oikopleura fusiformis	3.59	Krohnitta subtilis	3.89
Aglaura hemistoma	3.63	Farranula gracilis	3.28		
		Triconia cf. conifera	2.95		
		Diphyes bojani	2.93		
SS Group	%	SACW Group	%	AAIW/UCDW Group	%
Dry season					
Doliolum nationalis	5.54	Decipisagitta sibogae	11.15	Caecosagitta macrocephala	9.1
Oikopleura longicauda	5.54	Oncaea venusta	11.15	Parasagitta friderici	8.99
Parasagitta friderici	5.54	Parasagitta friderici	11.15	Conaea rapax	8.51
Clausocalanus furcatus	5.29	Triconia cf. conifera	8.52	Oncaea venusta	8.44
Flaccisagitta enflata	5.26	Flaccisagitta enflata	7.54	Calanoides carinatus	7.80
Krohnitta mutabbii	4.63	Heterorhabdus papilliger	5.98	Clausocalanus furcatus	6.73
Aglaura hemistoma	4.62			Rhincalanus cornutus	6.48
Muggiaea kochi	4.53				
Paracalanus quasimodo	3.84				
Penilia avirostris	3.62				
Temora stylifera	3.59				

Figure 4. Cluster analysis based on species composition in samples from the water masses in the Campos Basin, central Brazilian coast, during the rainy season. For the analysis, the Sørensen-Dice coefficient with average linkage method was used. Different groups indicate faunistic zones, defined at 55% similarity. In data labels: the first letter indicates transect, number indicates station, and the letters after station number indicate water masses (SS – Subsurface Water, SACW – South Atlantic Central Water, AAIW – Antarctic Intermediate Water, UCDW – Upper Circumpolar Deep Water, NADW – North Atlantic Deep Water).

pileatus, Candacia tenuimana, Lophothrix quadrispinosa, Nematobrachion flexipes and Stylocheiron elongatum (Table II). In the AAIW/UCDW faunistic zone, 28 species showed exclusive records, e.g., Lensia havock, Gaetanus kruppi, Euaugaptilus facilis, Lophothrix latipes, Scaphocalanus brevicornis, Scaphocalanus elongatus, and Caecosagitta macrocephala (Table II).

DISCUSSION

The species richness and the composition of the zooplankton were primarily associated with the water masses present in the region. In the southwest Atlantic, as in most plankton studies elsewhere, the plankton fauna has mainly been sur-

Figure 5. Cluster analysis based on species composition in samples from the water masses in the Campos Basin, central Brazilian coast, during the dry season. For the analysis, the Sørensen-Dice coefficient with average linkage method was used. Different groups indicate faunistic zones, defined at 40% similarity. In data labels: letters indicate transect, number indicate station, SS – Subsurface Water, SACW – South Atlantic Central Water, AAIW – Antarctic Intermediate Water, UCDW – Upper Circumpolar Deep Water, NADW – North Atlantic Central Water, AAIW – Antarctic Intermediate Water, UCDW – Upper Circumpolar Deep Water, NADW – North Atlantic Deep Water.

veyed in the upper layers (0-200 m; Björnberg 1963, Bassani *et al.* 1999, Ramírez & Sabatini 2000, Bonecker 2006, Eskinazi-Sant'Anna & Björnberg 2006, Lopes *et al.* 2006), and the mesopelagic is better studied but about the bathypelagic we know

very little (DIAS *et al.* 2010). This study showed that the increase in depth is correlated with a decrease in the number of zooplankton species. In general, a decrease in diversity is expected with increasing depth (ANGEL 1997, ROBISON 2004). DIAS

et al. (2010) observed a reduction in richness from the first few meters of the water column down to 2,300 m in the vertical distribution of copepods in the Campos Basin. In the present study, the highest species richness was observed in the first 250 m in the SACW, decreasing down to 2,300 m depth in the NADW. According to SMITH & BROWN (2002), the rapid declines of temperature and productivity associated with the increasing depth are the primary causes of this pattern of diversity decrease from 200 m depth to the deep ocean.

In SS, the slope showed higher species richness than the continental shelf in the dry season. This trend to increasing diversity toward the oceanic region was discussed by Lopes *et al.* (2006), and has been observed in many studies comparing neritic and oceanic areas (e.g., Rakhesh *et al.* 2006, Zhang *et al.* 2009). The tropical oceanic regions are oligotrophic (Boltovskoy 1981) and low concentrations of nutrients are associated with more stable environments (Angel 1993). This characteristic result higher richness in ocean regions than in neritic areas (Angel 1993).

The most frequent species of each mesozooplankton group found on the continental shelf and slope of the Campos Basin have been observed along the Brazilian coast (e.g., Gusmão *et al.* 1997, Lopes *et al.* 1999, Dias *et al.* 2010). We found 13 new records for the southwest Atlantic Ocean; until the present study, the distribution areas of these species in the Atlantic Ocean had been recognized only from the North Atlantic, central South Atlantic and/or southeast Atlantic (Bouillon 1999, Suárez & Gasca 1989, Gasca 2002, Razouls *et al.* 2000, 2013; Table IV).

In both sampling periods, the samples from SS, SACW and AAIW/UCDW were clustered in different faunistic zones. The species compositions of the AAIW and UCDW were not distinct, probably due to their similar circulation patterns (Reid 1989), salinity and temperature (Reid 1989, Mémery et al. 2000; Fig. 2). Some rare species (occurrence frequency below 15%) showed a bathymetric distribution restricted to a single faunistic zone (SS, SACW and AAIW/UCDW). The vertical distributions previously recorded for most of these species concords with the results of this study (Bradford-Grieve et al. 1999, Bouilleon 1999, Casanova 1999, Gibbons et al. 1999, Pugh 1999).

Understanding the distribution patterns of species or higher taxa is more complicated than understanding the patterns of density and biomass, since species do not react uniformly to a given environment. Water-mass characteristics and smaller-scale oceanographic features affect the habitat and bathymetric distribution of these species (Fernández-Álamo & FÄRBER-LORDA 2006). The occurrence of epipelagic species (e.g., Clausocalanus furcatus and Penilia avirostris) in the meso-bathypelagic zones can be attributed to: 1) contamination, 2) sampling of dead individuals, or 3) increase in their depth distribution. The hypothesis of contamination is unlikely because the sampling was done with a multinet, which has a robust opening-closing mechanism and is suitable for stratified depth samples (Sameoto et al. 2000). In addition, different set nets were used at each depth. Another possibility is that specimens of epipelagic species recorded in deep water masses were dead individuals in the process of settling. This hypoth-

Table IV. New records for the southwest Atlantic of the mesozooplankton species collected in this study, with the previously known distribution.

Taxon	Previously known distribution	References
Hydrozoa		
Laodicea indica	Southeast Atlantic, Pacific and Indian	Navas-Pereira & Vannucci (1991), Bouillon (1999), Cairns et al. (2009)
Siphonophorae		
Lensia subtiloides	North Atlantic and Indian	GASCA (2002), THIBAULT-BOTHA et al. (2004)
Lychnagalma utricularia	North Atlantic and Mediterranean	MILLS et al. (1996), GASCA (2002)
Copepoda		
Amalothrix dentipes	Central South Atlantic, South Pacific, Indic, Antarctic and Subantarctic regions	Bradford-Grieve et al. (1999), Razouls et al. (2000, 2013)
Arietellus plumifer	North Atlantic, Central South Atlantic, Southeast Atlantic, Pacific, Indian and Mediterranean	Suárez & Gasca (1989), Bradford-Grieve et al. (1999), Razouls et al. (2000 2013)
Chiridiella atlantica	Central South Atlantic	Bradford-Grieve et al. (1999), Razouls et al. (2013)
Euaugaptilus facilis	North Atlantic, Central South Atlantic, Southeast Atlantic, Pacific and Indian	Bradford-Grieve et al. (1999), Razouls et al. (2000, 2013)
Gaetanus pileatus	North Atlantic, Central South Atlantic, Southeast Atlantic, Pacific, Indian and Subantarctic region	THUESEN <i>et al.</i> (1998), BRADFORD-GRIEVE <i>et al.</i> (1999), RAZOULS <i>et al.</i> (2000, 2013)
Haloptilus longicirrus	North Atlantic, Central South Atlantic, Southeast Atlantic, North Pacific, Indian and Antarctic	Errhif <i>et al.</i> (1997), Bradford-Grieve <i>et al.</i> (1999), Razouls <i>et al.</i> (2000, 2013)
Lophothrix quadrispinosa	North Atlantic, South Pacific and Indian	Bradford-Grieve et al. (1999), Razouls et al. (2000, 2013)
Oncaea atlantica	Central South Atlantic, North Pacific, Indian, Mediterranean and Red Sea	Bradford-Grieve <i>et al.</i> (1999), Nishibe <i>et al.</i> (2009), Razouls <i>et al.</i> (2000, 2013)
Racovitzanus levis	North Atlantic, Pacific and Indian	Harding (1974), Razouls et al. (2000, 2013)
Tharybis asymmetrica	North Atlantic and Southeast Atlantic	Bradford-Grieve et al. (1999), Razouls et al. (2000, 2013)

esis cannot be ruled out, since we did not use any technique, such as neutral red stain for crustaceans, which could distinguish dead from living individuals (MARCUS *et al.* 2004, TANG *et al.* 2006, JESSOPP 2007). Otherwise, the extension of the depth distribution is possible, in view of the lack of studies in deep habitats in the southwest Atlantic Ocean.

Some species that contributed to the delimitation of all groups, occurring from the surface to the deep water masses, were previously classified as epipelagic until this study, e.g., Parasagitta friderici (Casanova 1999, Liang & Vega-Pérez 2001), while the other species had been recorded from the deep ocean, e.g., Oncaea venusta, Flaccisagitta enflata, and Doliolum nationalis (Ozawa et al. 2007, Weikert & Godeaux 2008, Dias et al. 2010). In the SS, during both study periods, Corycaeus giesbrechti and Liriope tetraphylla contributed to the delimitation of this group. These species are characteristic of the epipelagic region (LOPES et al. 1999, Buecher & Gibbons 2000, Benovic et al. 2005), although C. giesbrechti has been recorded in the upper 500 m of the Sargasso Sea off Bermuda (Deevey 1971), and down to 1,000 m in the Campos Basin (DIAS et al. 2010). In the SACW, Decipisagitta sibogae and Krohnitta subtilis contributed to the delimitation of this group in the two periods. These species were classified as mesopelagic by Casanova (1999). Decipisagitta sibogae has been recorded between 200-600 m in the Sargasso Sea (Pierrot-Bults & Nair 2010) and K. subtilis has been recorded at 600-800 m in the Pacific Ocean (Ozawa et al. 2007, Pierrot-Bults & Nair 2010) and at 400 m off the Chilean coast (Ulloa et al. 2000). All species that contributed most to the similarity of the group from deep water masses in both sampling periods are classified as mesopelagic or bathypelagic, except Dolioletta gegenbauri, Oikopleura fusiformis, and Rhincalanus cornutus, which are classified as epipelagic. Dolioletta gegenbauri is a common species off the Brazilian coast in areas under the influence of coastal and tropical water (Lopes et al. 2006). Oikopleura fusiformis is found in coastal and oceanic waters and is more frequent in the latter (Bonecker & Carvalho 2006). Until this study, O. fusiformis had not been recorded in the mesopelagic and bathypelagic regions. Although it has been classified as epipelagic (Bradford-Grieve et al. 1999), R. cornutus was observed below 600 m off the coast of Florida, USA (Moore & O'Berry 1957), in the upper 500 m in the Sargasso Sea off Bermuda (Deevey 1971), and below 2,000 m in the Campos Basin (Dias et al. 2010).

The sample grid and number of zooplankton groups included in this study are more extensive than any previous study in the southwest Atlantic Ocean, and helped to fill the gap in understanding mesozooplankton vertical distribution. The results of this study extended the vertical distribution of some zooplankton species previously classified as epi-mesopelagic species. We confirmed that zooplankton richness in the southwest Atlantic Ocean is currently underestimated, and we suggest that additional efforts must be directed toward a better understanding of this fairly unknown region.

ACKNOWLEDGMENTS

The authors thank the team of the Zooplankton and Ichthyoplankton Integrated Laboratory of Federal University of Rio de Janeiro, in particular Cláudio de S. Ressur and José R.S. Silva for sorting the samples. We also thank Janet W. Reid for improving the English text, and the following researchers for their help with identifications: Michele Arruda (Chaetognatha), Paulo R.F.C. Costa and Marta C.C. Quintas (Branchiopoda); Suzanna C. Vianna and Rafaela A. Nunes (Copepoda); Patrícia Alpino, Lohengrin Fernandes, Ralf Schawmborn, Cíntia Cardoso, and Ana Cecilia R. Resende (decapod larvae); and Andrea S. Freire (Euphausiacea). Finally, we thank Petrobras, which made possible the sampling and material analyses.

LITERATURE CITED

Angel, M.V. 1993. Biodiversity of the Pelagic Ocean. Conservation Biology (7): 760-772.

Angel, M.V. 1997. Pelagic biodiversity, p. 35-68. *In*: R.F.G. Ormond; J.D. Gage & M.V. Angel (Eds). **Marine Biodiversity: Patterns and processes.** New York, Cambridge University Press, 449p.

Bassani, C.; A.C.T. Bonecker; S.L.C. Bonecker; C.R. Nogueira; J.M.L. Reis & L.R. Nascimento. 1999. Plâncton do Litoral Norte do Estado do Rio de Janeiro (21°00′ a 23°30′S) – Análise e Síntese do Conhecimento. **Oecologia Brasiliensis** (7): 99-120.

Benovic, A.; D. Lucic; V. Onofri; M. Batistic & J. Njire. 2005. Bathymetric distribution of medusae in the open waters of the Middle and South Adriatic Sea during spring 2002. **Journal of Plankton Research 27**: 79-89. doi:10.1093/plankt/fbh153.

BJÖRNBERG, T.K.S. 1963. On the marine free-living copepods off Brazil. Boletim do Instituto Oceanográfico 13: 3-142.

BOLTOVSKOY, D. 1981. Atlas del Zooplancton del Atlántico Sudoccidental y Métodos de Trabajo con el Zooplancton Marino. Mar del Plata, INIDEP, 964p.

Boltovskoy, D.; N. Correa & A. Boltovskoy. 2003. Marine zooplanktonic diversity: a view from the South Atlantic. Oceanologica Acta 25: 271-278.

Bonecker, S.L.C. 2006. Atlas da Região Central da Zona Econômica Exclusiva Brasileira. Rio de Janeiro, Museu Nacional, Série Livros 21, 234p.

Bonecker, S.L.C. & P.F. Carvalho. 2006. Appendicularia, p. 185-202. *In*: S.L.C. Bonecker (Ed.). **Atlas da Região Central da Zona Econômica Exclusiva Brasileira**. Rio de Janeiro, Museu Nacional, Série Livros 21, 232p.

Bonecker, S.L.C.; C.O. Dias; L.D.A. Fernandes & L.R. Avila. 2007. Zooplâncton, p. 125-140. *In*: J.L. Valentin (Ed.). Características Hidrobiológicas da Região Central da Zona Econômica Exclusiva Brasileira (Salvador, BA, ao Cabo de São Tomé, RJ). Brasília, Ideal Gráfica e Editora, 168p.

BOUILLON, J. 1999. Hydromedusae, p. 385-465. In: D. BOLTOVSKOY.

- (Ed.). **South Atlantic Zooplankton**. Leiden, Backhuys Publishers, 1705p.
- Bradford-Grieve, J.M.; E.L. Markhaseva; C.E.F. Rocha & B. Abiahy. 1999. Copepoda, p. 869-1098. *In*: D. Boltovskoy (Ed.). **South Atlantic Zooplankton**. Leiden, Backhuys Publishers, 1705p.
- Buecher, E. & M.J. Gibbons. 2000. Interannual variation in the composition of the assemblages of medusae and ctenophores in St Helena Bay, Southern Benguela Ecosystem. Scientia Marina 64: 123-134. doi:10.3989/scimar.2000.64s1123.
- CAIRNS, S.D.; L.A. GERSHWIN; F.J. BROOK; P. PUGH; E.W. DAWSON; O.V. OCANA; W. VERVOORT; G. WILIAMS; J.E. WATSON; D.M. OPRESKO; P.P. SCHUCHERT; M. HINE; D.P. GORDON; H.J. CAMPBELL; A.J. WRIGHT; J.A. SÁNCHEZ & D.G. FAUTIN. 2009. Phylum Cnidaria corals, medusae, hydroids, myxozoans, p. 59-101. *In*: D.P. GORDON (Ed.). New Zealand Inventory of Biodiversity. Kingdom Animalia: Radiata, Lophotrochozoa, Deuterostomia. Christchurch, Canterbury University Press, 568p.
- Casanova, J.P. 1999. Chaetognatha, p. 1352-1374. *In*: D. Boltovskoy (Ed.). **South Atlantic Zooplankton.** Leiden, Backhuys Publishers, 1705p.
- Deevey, G.B. 1971. The annual cycle in quantity and composition of the zooplankton of the Sargasso Sea off Bermuda. I. The upper 500 m. Limnology and Oceanography 16: 219-240.
- DIAS, C.O.; A.V. ARAUJO; R. PARANHOS & S.L.C. BONECKER. 2010. Vertical copepod assemblages (0-2300m) off Southern Brazil. Zoological Studies 49: 230-242.
- Errhif, A.; C. Razouls & P. Mayzaud. 1997. Composition and community structure of pelagic copepods in the Indian sector of the Antarctic Ocean during the end of the austral summer. Polar Biology 17: 418-430.
- ESKINAZI-SANT'ANNA, E.M. & T.K.S. BJÖRNBERG. 2006. Seasonal dynamics of microzooplankton in the São Sebastião Channel (SP, Brazil). Brazilian Journal of Biology 66: 221-231.
- Fernández-Álamo, M.A. & J. Färber-Lorda. 2006. Zooplankton and the oceanography of the eastern tropical Pacific. Progress in Oceanography 69: 318-359. doi:10.1016/j.pocean.2006.03.003
- Frontier, S. 1981. Cálculo del error em el recuento de organismos zooplanctónicos. p. 163-167. *In*: D. Boltovskoy (Ed.). Atlas del Zooplancton del Atlántico Sudoccidental y Métodos de Trabajo com el Zooplancton Marino. Mar del Plata, INIDEP, 936p.
- GASCA, R. 2002. Lista faunística y bibliografía comentada de los sifonóforos (Cnidaria) de México. Anales del Instituto de Biología, Serie Zoología, UNAM 73: 123-143.
- GIBBONS, M.; SPIRIDONOV, V.A. & TARLING, G. A. 1999. Euphausiacea, p. 1241-1279. *In*: D. BOLTOVSKOY (Ed.). **South Atlantic Zooplankton**. Leiden, Backhuys Publishers, 1705p.
- Gusmão, L.M.O.; S. Neumann-Leitão; D.A. Nascimento-Vieira; T.A. Silva; A.P. Silva; F.F. Porto Filho & M.C.O. Moura. 1997. Zooplâncton oceânico entre os estados do Ceará e Pernambuco, Brasil. **Trabalhos de Oceanografia UFPE 25**: 17-30.

- Harding, G.C.H. 1974. The food of deep-sea copepods. Journal of the Marine Biological Association of the United Kingdom 54: 141-155.
- Jessopp, M.J. 2007. The quick and the dead: larval mortality due to turbulent tidal transport. Journal of the Marine Biological Association of the United Kingdom 86: 675-680. doi:10.1017/S0025315407055580
- Labat, J.P.; S. Gasparini; L. Mousseau; L. Prieur; M. Boutoute & P. Mayzaud. 2009. Mesoscale distribution of zooplankton biomass in the northeast Atlantic Ocean determined with an optical plankton counter: relationships with environmental structures. **Deep-Sea Research I 56**: 1742-1756. doi:10.1016/j.dsr.2009.05.013.
- LACERDA, L.D.; C.E. REZENDE; A.R. OVALLE & C.E. CARVALHO. 2004. Mercury distribution in continental shelf sediments from two offshore oil fields in southeastern Brazil. Bulletin of Environmental Contamination and Toxicology 72: 178-185. doi:10.1007/s00128-003-0257-0.
- LIANG, T.H. & L.A. VEGA-PÉREZ. 2001. Diversity, abundance, and biomass of epiplanktonic chaetognath off South Atlanctic Western sector, from Cabo Frio (23°S, 42°W) to São Pedro and São Paulo Rocks (01°N, 29°W). CICIMAR Oceánides 16: 34-48.
- LOPES, R.M.; F.P. BRANDINI & S.A. GAETA. 1999. Distribution patterns of epipelagic copepods off Rio de Janeiro (SE Brazil) in summer 1991/1992 and winter 1992. **Hydrobiologia 411**: 161-174.
- Lopes, R.M.; M. Katsuragawa; M.A. Montú; J.H. Muelbert; J.F. Dias; C. Gorri & F.P. Brandini. 2006. Zooplankton and ichthyoplankton distribution on the southern Brazilian shelf: an overview. **Scientia Marina 70**: 189-202.
- MARCUS, N.H.; C. RICHMOND; C. SEDLACEK; G.A. MILLER & C. OPPERT. 2004. Impact of hypoxia on the survival, egg production and population dynamics of *Acartia tonsa* Dana. **Journal of Experimental Marine Biology and Ecology 301**: 111-128.
- McEwen, G.F.; M.W. Johnson & T.R. Folsom. 1957. A statistical analysis of the performance of the Folsom plankton sample splitter, based upon test observations. Archiv für Meteorologie, Geophysik und Bioklimatologie/Meteorology and Atmospheric Physics 7: 502-527.
- MÉMERY, L.; M. ARHAN; X.A. ALVAREZ-SALGADO; M.J. MESSIAS; H. MERCIER; C.G. CASTRO & A.F. RIOS. 2000. The water masses along the western boundary of the south and equatorial Atlantic. **Progress in Oceanography 47**: 69-98.
- Mills, C.E.; P.R. Pugh; G.R. Harbison & S.H.D. Haddock. 1996. Medusae, siphonophores and ctenophores of the Alborán Sea, south western Mediterranean. Scientia Marina 60: 145-163.
- Moore, E.B. & D.L. O'Berry. 1957. Plankton of the Florida Current. IV. Factors influencing the vertical distribution of some common copepods. **Bulletin of Marine Science 7**: 297-315.
- Navas-Pereira, D. & M. Vannucci. 1991. The Hydromedusae and water masses of the Indian Ocean. **Boletim do Instituto Oceanográfico** 39: 25-60.

- NISHIBE, Y.; Y. HIROTA & H. UEDA. 2009. Community structure and vertical distribution of oncaeid copepods in Tosa Bay, southern Japan. **Journal of the Marine Biological Association of the United Kingdom 89**: 491-498. doi:http://dx.doi.org/10.1017/S0025315409003087.
- Ozawa, M.; A. Yamaguchi; T. Ireda; Y. Watanabe; J. Ishizaka. 2007. Abundance and community structure of chaetognaths from the epipelagic through abyssopelagic zones in the western North Pacific and its adjacent seas. **Plankton and Benthos Research 2**: 184-197. doi:10.3800/pbr.2.184
- PIERROT-BULTS, A.C. & V.R. NAIR. 2010. Horizontal and vertical distribution of Chaetognatha in the upper 1000 m of the western Sargasso Sea and the Central and South-east Atlantic. **Deep-Sea Research II 57**: 2189-2198. doi:10.1016/j.dsr2.2010.09.021.
- Pugh, P.R. 1999. Siphonophorae, p. 467-511. *In*: D. Boltovskoy (Ed.). **South Atlantic Zooplankton**. Leiden, Backhuys Publishers, 1705p.
- Rakhesh M.; A.V. Raman & D. Sudarsan 2006. Discriminating zooplankton assemblages in neritic and oceanic waters: A case for the northeast coast of India, Bay of Bengal. Marine Environmental Research 61: 93-109. doi: 10.1016/j.marenvres.2005.06.002.
- Ramírez F. & M.E. Sabatini 2000. The occurrence of Calanidae species in waters off Argentina. Hydrobiologia 439: 21-42.
- RAZOULS, S.; C. RAZOULS & F. DE BOVÉE. 2000. Biodiversity and biogeography of Antarctic copepods. Antarctic Science 12: 343-362.doi:http://dx.doi.org/10.1017/S0954102000000407.
- RAZOULS, C.; F. DE BOVÉE; J. KOUWENBERG & N. DESREUMAUX. 2013. Diversity and Geographic Distribution of Marine Planktonic Copepods. Available online at: http://copepodes.obs-banyuls.fr/en [Accessed: 15/VIII/2012].
- Reid, J.L. 1989. On the total geostrophic circulation of the South Atlantic Ocean: Flow patterns, tracers, and transports. Progress in Oceanography 23: 149-244.
- ROBISON, B.H. 2004. Deep pelagic biology. **Journal of Experimental Marine Biology and Ecology 300**: 253-272. doi:10.1016/j.jembe.2004.01.012.
- RUTHERFORD, S.; S. D'HONDT & W. PRELL. 1999. Environmental controls on the geographic distribution of zooplankton diversity. Nature 400: 749-753.
- Sameoto, D.; P.H. Wiebe; J. Runge; L. Postel; J. Dunn; C. Miller & S. Coombs. 2000. Collecting zooplankton, p. 55-81. *In*: R.P. Harris; P.H. Wiebe; J. Lenz; H.R. Skjoldal & M. Huntley (Eds). ICES Zooplankton Methodology Manual. London, Academic Press, 684p.
- SILVEIRA, I. & A. SCHMIDT. 2000. A corrente do Brasil ao largo da costa leste brasileira. **Revista Brasileira de Oceanografia** 48: 171-183.

- SMITH, K.F. & J.H. Brown. 2002. Patterns of diversity, depth range and body size among pelagic fishes along a gradient of depth. Global Ecology and Biogeography 11: 313-322.
- STRAMMA, L.; Y. IKEDA & R.G. PETERSON. 1990. Geostrophic transport in the Brazil Current region north of 20°S. Deep-Sea Research 37: 1875-1886.
- SUÁREZ, E. & R. GASCA. 1989. Copépodos epiplanctonicos (Crustacea) del Canal de Yucatán (mayo-junio, 1984). Caribbean Journal of Science 25: 220-236.
- Tang, K.W.; C.S. Freund & C.L. Schweitzer. 2006. Occurrence of copepod carcasses in the lower Chesapeake Bay and their decomposition by ambient microbes. Estuarine and Coastal Shelf Science 68: 499-508. doi:10.1016/j.ecss.2006.02.021.
- Thibault-Botha, D.; J.R.E. Lutjeharms & M.J. Gibbons. 2004. Siphonophore assemblages along the east coast of South Africa; mesoscale distribution and temporal variations. Journal of Plankton Research 26: 1115-1128. doi:10.1093/plankt/fbh104
- Thuesen, E.V.; C.B. Miller & J.J. Childress. 1998. Physiological interpretation of oxygen consumption rates and enzymatic activities of deep sea copepods. Marine Ecology Progress Series 168: 95-107.
- ULLOA, R.; S. PALMA & N. SILVA. 2000. Bathymetric distribution of chaetognaths and their association with water masses off the coast of Valparaíso, Chile. **Deep-Sea Research 47**: 2009-2027. doi:10.1016/S0967-0637(00)00020-0.
- VALENTIN, J.L. 1984. Analyse des paramètres hydrobiologiques dans la remontée de Cabo Frio (Brésil). Marine Biology 82: 259-276.
- Valentin, J.L.; M.A. Monteiro-Ribas & E. Mureb. 1987. Sur quelques zooplanctontes abondants dans l'upwelling de Cabo Frio (Brésil). **Journal of Plankton Research 9**: 1195-1226.
- VIANA, A.R.; J.C. FAUGÈRES; R.O. KOWSMANN; J.A.M. LIMA; L.E.G. CADDAH & J.G. RIZZO. 1998. Hydrology, morphology and sedimentology of the Campos continental margin, offshore Brazil. **Sedimentary Geology 115**: 133-157. doi:10.1016/S0037-0738(97)00090-0
- Weikert, H. & J.E.A. Godeaux. 2008. Thaliacean distribution and abundance in the northern part of the Levantine Sea (Crete and Cyprus) during the eastern Mediterranean climatic transient, and a comparison with the western Mediterranean basin. Helgoland Marine Research 62: 377-387. doi:10.1007/s10152-008-0126-7.
- ZHANG W.; D. TANG; B. YANG; S. GAO; J. SUN; Z. TAO; S. SUN & X. NING. 2009. Onshore-offshore variations of copepod community in northern South China Sea. **Hydrobiologia** 636: 257-269. doi:10.1007/s10750-009-9955-x.

Submitted: 28.I.2014; Accepted: 16.VIII.2014. Editorial responsibility: Rosana M. da Rocha