Lineare Algebra I - Vorlesungs-Script

Prof. Andrew Kresch

Basisjahr 08/09 Semester II

Mitschrift:

Simon Hafner

Inhaltsverzeichnis

1	Bili	nearformen	1
	1.1	Vektorprodukt in \mathbb{R}^3	3
	1.2	Skalarprodukt über \mathbb{C}^n	4
	1.3	Bilinearform	5
	1.4	Bilineare und quadratische Formen	7
		1.4.1 Polarisierungsformel	8
	1.5	Sesquilineare Form	8
	1.6	Volumen	13
		1.6.1 Spat	13
	1.7	Orthogonale und unitäre Endomorphismen	16
	1.8	Beschreibung von $SO(3)$ und $O(3)$	20
	1.9	Selbstadjugierte Endomorphismen	20
2	Kla	ssifikation von Bilinearformen auf $\mathbb{R}^n \leftrightarrow \mathbf{Signatur}$	28
3	Mu	ltilineare Algebra	32
	3.1	Dualvekttorräume	32
	3.2	Der Bidualraum $V \leadsto V^* \leadsto V^{**}$	35
	3.3	Zusammenhang zwischen Dualraum und bilinearen Abbildungen	36
	3.4	Anwendung des Dualraums	42
	3.5	Das Tensorprodukt	42
		3.5.1 Existenz vom Tensorprodukt	44
		3.5.2 Tensorprodukt von linearen Abbildungen	48
		3 5 3 Spezialfälle	40

1 Bilinearformen

Das kanonische Skalarprodukt (oder: Standardskalarprodukt) von \mathbb{R}^n ist die Abbildung

$$\langle,\rangle : \mathbb{R}^n x \mathbb{R}^n \longrightarrow \mathbb{R}$$

$$(x,y) \longmapsto \langle x,y \rangle \in \mathbb{R}$$

gegeben durch

$$\langle x, y \rangle := x_1 y_1 + \dots + x_n y_n$$

falls
$$x = (x_1, \dots, x_n)$$
 und $y = (y_1, \dots, y_n)$ sind.

Definition 1 (Konvention). eine 1x1 Matrix wird mit Eintrag indentifiziert

$$(x) \in M(1 \times 1, K) \leftrightarrow x \in K$$

Dann können wir schreiben:

$$\langle x, y \rangle = (x^t)(y)$$

$$x = \left(x_1, \vdots, x_n\right), y = \left(y_1, \vdots, \right)$$

$$(x_1, \dots, x_n) \left(y_1, \vdots, y_n\right) = (x_1 y_1 + \dots + x_n y_n)$$

Bemerkung 1 (\langle , \rangle ist bilinear)

$$\langle x + x', y \rangle = \langle x, y \rangle + \langle x', y \rangle$$
$$\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$$
$$\langle x, y + y' \rangle = \langle x, y \rangle + \langle x, y' \rangle$$
$$\langle x, \lambda y \rangle = \lambda \langle x, y \rangle$$

symmetrisch:

$$\langle x, y \rangle = \langle y, x \rangle$$

positiv definit:

$$\langle x, x \rangle \ge 0$$

 $\langle x, x \rangle = \Leftrightarrow x = 0 \in \mathbb{R}^n$

$$f\ddot{\mathbf{u}} \mathbf{r} \forall x, y, x', y' \in \mathbb{R}^n, \lambda \in \mathbb{R}$$

Bemerkung 2 (Hintergrund: euklidische Geometrie).

$$||x|| = \sqrt{\langle x, x \rangle} = \sqrt{x_1^2 + \dots + x_n^2}$$

Bemerkung 3 (Eigenschaften von $\|.\|$).

$$||x|| \ge 0, \text{ mit } ||x|| = 0 \Leftrightarrow x = 0$$
$$||\lambda x|| = |\lambda| ||x||$$
$$||x + y|| \le ||x|| + ||y||$$

Dann definieren wir den Abstand von $x, y \in \mathbb{R}^n$:

$$d(x,y) \in \mathbb{R}$$
$$d(x,y) := \|y - x\|$$

Bemerkung 4. Eigenschaften

$$d(x,y) \ge 0, \text{mit} d(x,y) = 0 \Leftrightarrow x = y$$

$$d(y,x) = d(x,y)$$

$$d(x,z) \le d(x,y) + d(y,z)$$

$$\text{für} x, y, z \in \mathbb{R}^n$$

Wir sind motiviert, Strukturen zu definieren, basierend auf diesen Eigenschaften, so z.B.

- Bilineare Formen (symetrisch, positiv definit)
- Norme
- Metriken

Beweis 1. $\|.\|$ und d: die Dreiecksungleichung folgt aus der Cauchy-Schwarzschen Ungleichung

$$||x + y||^{2} = \langle x + y, x + y \rangle$$

$$= ||x||^{2} + ||y||^{2} + 2 \langle x, y \rangle \le (?) (||x|| + ||y||)^{2}$$

$$\Leftrightarrow \langle x, y \rangle \le ||x|| ||y||$$

Cauchy-Schwarz'sche Ungleichung: für $x, y \in \mathbb{R}^n$

$$\langle x, y \rangle^2 \le \langle x, x \rangle \langle y, y \rangle$$

mit Gleichheit genau dann, wenn x und y linear abhängig sind.

$$A = \begin{pmatrix} --- & x & --- \\ --- & y & --- \end{pmatrix} \in M(2 \times n, \mathbb{R})$$

A hat $Rang \leq 1$

Beweis 2.

$$\begin{aligned} A \cdot A^t = & & = \begin{pmatrix} \langle x, x \rangle & \langle x, y \rangle \\ \langle x, y \rangle & \langle y, y \rangle \end{pmatrix} \in M(2 \times 2), \mathbb{R} \\ \det(A \cdot A^t) = & & = \langle x, x \rangle \langle y, y \rangle - \langle x, y \rangle^2 \end{aligned}$$

Es gibt eine Gleichung von Determinanten:

$$A, B \in M(k \times n, K)$$

$$\det(A \cdot B^{t}) = \sum_{1 \le s_{1} < s_{2} < \dots < s_{k} \le n} \det(A^{s_{1}, \dots, s_{k}}) \det(B^{s_{1}, \dots, s_{k}})$$

$$wobei \ A^{s_{1}, \dots, s_{k}} := (a_{i}, s_{j})_{1 \le i, j \le k}, B^{s_{1}, \dots, s_{k}} = (b_{i}, s_{j})_{1 \le i, j \le k}$$

Beweis-Skizze: Reduktion zum Fall, dass die Zeilen von A und B Standardbasiselemente sind; direkte Berechnung in diesem Fall. Es folgt:

$$\det(A \cdot A^t) = \sum_{1 \le i \le j \le n} \det(A^{i,j})^2 \ge 0$$

und $ist = 0 \Leftrightarrow alle \ 2 \times 2 \ Minoren \ von \ A \ sind \ 0 \Leftrightarrow rang(A) \leq 1$

Korollar 1. Wir können definieren

$$\angle(x,y) := \cos^{-1} \underbrace{\frac{\langle x,y \rangle}{\|x\| \|y\|}}_{\in [-1,1] \in \mathbb{R}} \in [0,\pi] \in \mathbb{R}$$

$$f\ddot{u}r$$

$$0 \neq x \in \mathbb{R}^n$$

$$0 \neq y \in \mathbb{R}^n$$

Korollar 2. x, y Vektoren, θ Winkel zwischen den beiden

$$\langle x, y \rangle = \frac{1}{2} \left(\|x\|^2 + \|y\|^2 - \|y - x\|^2 \right)$$

und deshalb:

$$\cos \theta = \frac{{{{{\left\| x \right\|}^2} + {{{\left\| y \right\|}^2} - {{\left\| y - x \right\|}^2}}}}{{2\left\| x \right\|\left\| y \right\|}}$$

⇒ Winkel eines Dreiecks ist nur von den Seitenlängen abhängig.

Beispiel 1.

$$\angle(x,y) = \frac{\pi}{2} \Leftrightarrow \langle x,y \rangle = 0$$

$$\underbrace{\{y | \langle x,y \rangle = 0\} = 0}_{\text{Untervektorraum}} \cup \{0 \neq y \in \mathbb{R}^n | \angle(x,y) = \frac{\pi}{2}\}$$

Man nennt x und y senkrecht falls $\langle x, y \rangle = 0$

Fazit 1.

$$\langle .,. \rangle \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$$
 bilinear form $\|.\| \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ Norm $d(.,.) \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_{> 0}$ Metrik

$$||x|| = \sqrt{\langle x, x \rangle} d(x, y) = ||y - x|| \langle x, y \rangle = \frac{||x||^2 + ||y||^2 - ||y - x||^2}{2}$$

1.1 Vektorprodukt in \mathbb{R}^3

$$\mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$$

$$(x,y) \mapsto x \times y$$

für $y = (y_1, y_2, y_3)$ und $y = (y_1, y_2, y_3)$ ist

$$x \times y = (x_2y_3 - x_3y_2, x_3y_1 - x_1y_2, x_1y_2 - x_2y_1)$$

oder:

$$x \times y = \det \begin{pmatrix} e_1 & e_2 & e_3 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix}$$

wobei (e_1,e_2,e_3) die Standardbasis ist. Es ist deshalb klar, dass

$$0 = \det \begin{pmatrix} x_1 & x_2 & x_3 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix} = \langle x, x \times y \rangle$$

$$0 = \det \begin{pmatrix} y_1 & y_2 & y_3 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix} = \langle y, x \times y \rangle$$

 $x \times y$ liegt auf der Gerade von Vektoren senkrecht zu x und y. weiter:

$$\det \begin{pmatrix} w_1 & w_2 & w_3 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix} = \langle x \times y, x \times y \rangle$$

$$= \|x \times y\|^2 = (x_2 y_3 - x_3 y_2)^2 + (x_3 y_1 - x_1 y_3)^2 + (x_1 y_2 - x_2 y_1)^2$$

$$= \|x\|^2 \|y\|^2 - \langle x, y \rangle^2 = \|x\|^2 \|y\|^2 \left(1 - \frac{\langle x, y \rangle^2}{\|x\|^2 \|y\|^2}\right)$$

$$= \|x\|^2 \|y\|^2 (1 - \cos^2 \angle (x, y)) = \|x\|^2 \|y\|^2 \sin^2 \angle (x, y)$$

Fazit 2. Wenn das Ergebnis = 0, folgt daraus, dass x und y linear abhängig sind. Falls x und y linear unabhängig sind, dann folgt dass $(x \times y, x, y)$ zu derselben Orientierungsklasse gehört wie (e_1, e_2, e_3) . Insgesamt bedeutet dies, dass $x \times y$ folgende Eigenschaften hat:

- \bullet ist senkrecht zu x und y
- ist $0 \Leftrightarrow x$ und y sind linear abhängig
- hat Länge $||x|| ||y|| \sin \angle(x, y)$
- und hat die Richtung, die mit x und y die gleiche Orientierungsklassse wie die Standardbasis hat.

1.2 Skalarprodukt über \mathbb{C}^n

Sei $z = (z_1, \dots, z_n)$ und $w = (w_1, \dots, w_n) \in \mathbb{C}^n$

Bemerkung 5. Der Ausdruck macht Sinn.

$$\langle z, w \rangle := z_1 w_1 + \dots + z_n w_n$$

 $\langle z, z \rangle := z_1^2 + \dots + z_n^2$

Dann kann die Länge nicht mehr interpretiert werden, z.B. für $z=(1,i,0,\cdots,0)$ haben wir $\langle z,z\rangle=1^2+i^2=0$. Isotropische Untervektorräume von \mathbb{C}^n werden nicht in in diesem Kurs behandelt. $(V\subset\mathbb{C}^n$ s.d. $\langle v,w\rangle=0\ \forall v,w\in V)$. Für die Physik, die Geometrie usw. ist eine Interpretation in Zusammenhang mit Länge wichtig, deshalb brauchen wir eine neue Definition.

Definition 2 (Das kanonische Skalarprodukt). von \mathbb{C}^n ist gegeben durch

$$\langle .,. \rangle_c : \mathbb{C}^n \mathbb{C}^n \to \mathbb{C}$$

 $(z,w) \mapsto z_1 \bar{w_1} + \dots + z_n \bar{w_n}$

Eigenschaften 1 (von $\langle ., \rangle_c$).

$$\begin{split} \langle z+z',w\rangle &= \langle z,w\rangle_c + \langle z',w\rangle_c \\ \langle \lambda z,w\rangle_c &= \lambda \, \langle z,w\rangle_c \\ \langle z,w+w'\rangle_c &= \langle z,w\rangle_c + \langle z,w'\rangle_c \\ \langle z,\lambda w\rangle_c &= \bar{\lambda} \, \langle z,w\rangle_c \end{split}$$

für $z, z', w, w' \in \mathbb{C}^n$, $\lambda \in \mathbb{C}$ $\langle ., . \rangle_c$ ist sesquilinear

$$\begin{split} \langle w,z\rangle_c &= \overline{\langle z,w\rangle_c} & \text{hermitesch} \\ \langle z,z\rangle_c &\in \mathbb{R}_{\geq 0} & \text{positiv definit} \\ \langle z,z\rangle &= 0 \Leftrightarrow z = 0 \end{split}$$

Fazit 3. $\langle ., . \rangle_c$ ist sesquilinear, hermitesch und positiv definit.

Beweis 3. Bei Bedarf sonstwo nachschauen (Zu viele Zeichen und zu wenig Sinn). Es läuft auf eine Sammlung von Quadraten heraus.

Definition 3 (Norm von \mathbb{C}^n).

$$||z|| = \sqrt{\langle z, z \rangle_c}$$

Bemerkung 6. Sei $w = (x'_1 + xy'_1, \dots, x'_n + iy'_n)$. Dann:

$$\langle z, w \rangle_c = (x_1 + iy_1)(x_1' - iy_1') + \dots + (x_n + iy_n)(x_n' - iy_n')$$
$$= (x_1x_1' + y_1y_1' + \dots + x_nx_n' + y_ny_n') + i(x_1'y_1 - x_1y_1' + \dots + x_n'x_n - x_ny_n')$$

Auf diese Weise ist $\langle.,.\rangle_c$ eine Erweiterung von reellen Skalarprodukt.

$$\mathbb{R}^{2n} \to \mathbb{C}^n$$
 \mathbb{R} -linear $e_1 \mapsto (1, 0, \dots, 0)$ $e_2 \mapsto (i, 0, \dots, 0)$ \dots $e_{2n} \mapsto (0, \dots, 0, i)$ $\langle \cdot, \cdot \rangle_c = (\langle \cdot, \cdot \rangle \text{ von } \mathbb{R}^{2n}) + i \text{(neues)}$

 $\operatorname{Re}\langle.,.\rangle_c=\langle.,.\rangle$ von \mathbb{R}^{2n} unter diesem Isomorpismus. Sei $\omega:=\operatorname{Im}\langle.,.\rangle$:

$$\omega: \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{R}$$
 oder $\mathbb{R}^{2n} \times \mathbb{R}^{2n} \to \mathbb{R}$

 $Eigenschaften~2~({\rm von}~\omega~({\rm Imagin\"{a}rteil}~{\rm des}~{\rm kanonischen}~{\rm Skalarproduktes})).$ bilinear

schiefsymmetrisch $\omega(w,z) = -\omega(z,w)$

$$\omega(z,z) = 0 \ \forall z \in \mathbb{C}^n \ (\text{oder } \mathbb{R}^{2n})$$

1.3 Bilinearform

Sei K ein Körper und V ein K-Vektorraum.

Definition 4 (Bilinearform). Eine bilineare Form auf V ist eine Abbildung

$$s: V \times V \to K$$

so dass:

$$s(v + v', w) = s(v, w) + s(v', w)$$

$$s(\lambda v, w) = \lambda s(v, w)$$

$$s(v, w + w') = s(v, w) + s(v, w')$$

$$s(v, \lambda w) = \lambda s(v, w)$$

 $\forall v, v', w, w' \in V, \lambda \in K$

Und: s heisst symmetrisch, falls s(w,v) = s(v,w) und schiefsymmetrisch, falls s(w,v) = -s(v,w).

Beispiel 2. • $\langle .,. \rangle := \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ ist eine symmetrische bilineare Form

- \bullet ω ist eine schiefsymmetrisch bilineare Form
- $(\langle .,. \rangle_c \text{ nicht})$
- $V = \{ \text{stetige Abbildung}[0,1] \to \mathbb{R} \}$ über \mathbb{R} : $f,g \in V$

$$s(f,g) = \int_0^1 f(x)g(x)dx$$

ist eine symmetrisch bilineare Form auf V

Sei K ein Körper, V ein K-Vektorraum, mit $\dim_K V < \infty$, und $s: V \times V \to K$ eine bilineare Form.

Definition 5. darstellende Matrix Ist $B = (v_i)_{1 \le i \le n}$ eine Basis von V, so setzen wir

$$M_B(s) := (s(v_i, v_j))_{1 \le i, j \le n} \in M(n \times n, K)$$

die darstellende Matrix

Korollar 3. $f\ddot{u}r \ x, y \in V$

$$x = x_1 v_1 + \dots + x_n v_n$$
$$y = y_1 v_1, + \dots + y_n v_n$$

und

$$M_B(s) = (a_{ij})_{1 \le i,j \le n}, d.h.a_{ij} = s(v_i, v_j)$$

haben wir:

$$s(x,y) = \sum_{i,j=1}^{n} x_i y_j a_{ij}$$

$$= (x_1 \cdots x_n) \cdot \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

$$= x^t M_B(s) \cdot y$$

Proposition 1. Sei V ein endlich-dim. Vektorraum über K mit Basis $B = (v_i)_{1 \leq i \leq n}$. Es gibt eine Bijektion zwischen der Menge von Bilinearformen und $M(n \times n, K)$, gegeben durch

$$(s: V \times V \to K) \mapsto M_B(s)$$

Beweis 4. Wir schreiben einen Vektor $x \in V$ als (x_1, \dots, x_n) falls $x = x_1v_1 + \dots + x_nv_n$. Ähnlich für y. Dann ist

$$A \in M(n \times n, K) \mapsto V \times V \to K$$

 $(x, y) \mapsto x^t \cdot A \cdot y$

inverses zu der obigen Abbildung.

Bemerkung 7. Sei $(s: V \times V \to K)$ eine bilineare Forum und $A = (a_{ij})_{1 \le i,j \le n}$ die darstellende Matrix. Wir erinnern uns an die Notation

$$\Phi_B: K^n \to V$$
$$e_1 \mapsto v_i$$

Dann:

$$K^n \times K^n \xrightarrow{\Phi_B \times \Phi_B} V \times V \xrightarrow{s} K$$

ist gegeben durch

$$(x,y) \longmapsto t_x A \cdot y$$

Sei $A = (u_i)_{1 \le i \le n}$ eine andere Basis.

$$T = \Phi_B^{-1} \circ \Phi_A$$

$$K^n \qquad \Phi_A \qquad V$$

$$K^n \qquad \Phi_B \qquad V$$

Proposition 2. Transforationsformel Mit dieser Notation haben wir:

$$M_A(s) = T^t \cdot M_B(s) \cdot T$$

Beweis 5.

$$K^{n} \times K^{n} \xrightarrow{\Phi_{B} \times \Phi_{B}} V \times V \xrightarrow{s} K$$

$$(x, y) \longmapsto t_{x} \cdot M_{B}(s) \cdot y$$

Es folgt:

$$= x^t T^t M_B(s) T y = (T_x)^t M_B(s) (T_y)$$

Es folgt aus der oberen Proposition (Vor der Transf.):

$$T^t M_B(s) T = M_a(s)$$

Beispiel 3. $V = K^n$, mit Standardskalaprodukt $\langle ., . \rangle$. Ist $B = (e_1, \dots, e_n)$, so ist

$$\begin{pmatrix} 1 & & 0 \\ & \ddots & \\ 0 & & 1 \end{pmatrix} = M_{\text{Standardbasis}}(\langle \cdot, \cdot, \cdot \rangle)$$

Sei

$$A = (e_1, e_2 - e_1, e_3 - e_2, \cdots, e_n - e_{n-1})$$

=: (u_1, u_2, \cdots, u_n)

Direkt aus der Definition:

$$\langle u_i, u_j \rangle = \begin{cases} 1 & i = j = 1 \\ 2 & i = j > 1 \\ -1 & |i - j| = 1 \\ 0 & \text{sonst} \end{cases}$$

oder mit der Transformationsformel

$$T = \begin{pmatrix} 1 & 1 & 0 \\ \dots & & 1 \\ 0 & & 1 \end{pmatrix}$$
 und $T^t E_N T''$

Bemerkung 8. Ist A die darstellende Matrix bezügloich einer Basis, so haben wir:

- symmetrisch $\Leftrightarrow A = A^t$
- schiefsymmetrisch $\Leftrightarrow A = -A^t$

Das stimmt überein mit (vgl. Übungsblatt 3): $A \in M(n \times n)$ ist symmetrisch $\Leftrightarrow A = A^t$. A ist schiefsymmetrisch oder antisymmetrisch (oder alternierend wenn $\operatorname{char}(K) \neq 2) \Leftrightarrow A = -A^t$

1.4 Bilineare und quadratische Formen

Eine quadratische Form $V \to K$ wird zu einer Bilinearform assoziert. Falls $\dim_K V < \infty$: "quadratische Form" bedeutet $q:V \to K$ bezüglich einem Koordinatensystem gegeben als homogenes quadratisches Polynom. Ist $s:V \times V \to K$ eine bilineare Form, dann heisst

$$\begin{split} q: &V \to K \\ v \mapsto q(v) = s(v,v) \end{split}$$

die zu s gehörige quadratische Form.

Beispiel 4. $\langle v, v \rangle = v_1^2 + \cdots + v_n^2$ für $v \in K^n$ Für $A = (a_{ij})_{1 \leq i,j \leq n}$ eine symmetrische Matrix mit $s: V \times V \to K$, $(x,y) \mapsto x^t Ay$, haben wir

$$s(x,x) = x^t A x$$

$$= (x_1 \cdots x_n) \begin{pmatrix} a_{11} \cdots a_{1n} \\ \vdots & \vdots \\ a_{n1} \cdots a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ s_n \end{pmatrix}$$

$$= \sum_{i,j=1}^n a_{ij} x_i x_j$$

$$= \sum_{i=1}^n a_{ii} x_i^2 + 2 \sum_{1 \le i < j \le n} a_{ij} x_i x_j$$

Ist $char(K) \neq 2$, so haben wir:

{symm. bilineare Formen in
$$K^n$$
} \leftrightarrow {quadr. Formen auf K^n } $s \mapsto q(v) := s(v, v)$ \leftrightarrow (Polarisierungsformel)

1.4.1 Polarisierungsformel

Ist s eine symmetrische Bilinearform und q die zu s gehörende quadratische Form über einem Vektorraum V über K mit $\operatorname{char}(K) \neq 2$, dann gilt:

$$s(v, w) = \frac{1}{2} (q(v+w) - q(v) - q(w))$$
$$= \frac{1}{2} (q(v) + q(w) - q(v+w))$$
$$= \frac{1}{4} (q(v+w) - q(v-w))$$

1.5 Sesquilineare Form

Definition 6. Sei V ein komplexer Vektorraum. Eine Abbildung

$$s: V \times V \to \mathbb{C}$$

heisst sesquilinear falls:

$$s(v + v', w) = s(v, w) + s(v', w)$$

$$s(\lambda v, w) = \lambda s(v, w)$$

$$s(v, w + w') = s(v, w) + s(v, w')$$

$$s(v, \lambda w) = \bar{\lambda}s(v, w)$$

für $v, v', w, w' \in V, \lambda \in \mathbb{C}$

Beispiel 5. $\langle .,. \rangle$ auf \mathbb{C}^n

$$s(f,g) = \int_0^1 f(x)g(x)dx$$
 and $V := \{\text{stetige Abb.}[0,1] \to \mathbb{C}\}$

Definition 7. hermitesch Eine sesquilineare Form heisst hermitesch, falls

$$s(w,v) = s(v,w) \ \forall v,w \in V$$

Beispiel 6. $\langle .,. \rangle_c$ auf \mathbb{C}^n ist hermitesch.

Bemerkung9. hermitesche Form Man spricht von hermiteschen Form, diese sind immer sesquilinear

Definition 8. darstellende Matrix Sei $\dim_{\mathbb{C}} V < \infty$, und $B := (V_i)_{1 \leq i \leq n}$ eine Basis. Ist s eine sesquilineare Form, so definieren wir

$$M_B(s) := (s(v_i, v_j))_{1 \le i \le n}$$

die darstellende Matrix. Sind $z, w \in V$

$$z = z_1 v_1 + \dots + z_n v_n$$
$$w = w_1 v_1 + \dots + w_n v_n$$

dann haben wir

$$s(z, w) = \sum_{i,j=1}^{n} z_i \bar{w_j} a_{ij} \text{wobei} a_{ij} = s(v_i, v_j)$$

$$= (z_1 \cdots z_n) \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} \bar{w_1} \\ \vdots \\ \bar{w_n} \end{pmatrix} = z^t M_B(s) \cdot \bar{w}$$

Proposition 3. Sei V ein endlich dim. \mathbb{C} Vektorraum und $B = (v_i)_{1 \leq i \leq n}$. Wir haben eine Bijektion

$$\{sesquilineare\ Form\ auf\ V\}\ \leftrightarrow\ M(n\times n,\mathbb{C})$$

Unter dieser Bijektion haben wir:

$$\{hermitesche\ Formen\} \leftrightarrow \{A \in M(n \times n, \mathbb{C}) : A^t = \bar{A}\}$$

Man sagt: eine Matrix $A \in M(n \times n, \mathbb{C})$ mit $A^t = \bar{A}$ ist <u>hermitesch</u>.

Satz 1. Transformationsformel Sei $A = (u_1, \dots, u_n)$ eine andere Basis mit Transformationsmatrix T:

TODO: hier einfügen

Dann gilt:

$$M_A(s) = T^t \cdot M_B(s) \cdot \bar{T}$$

 $Mit\ g(v) := s(v,v)\ gilt\ die\ Polarisierungsformel$

$$s(v,w) = \frac{1}{4} \left(q(v+w) - q(v-w) + iq(v+iw) - iq(v-iw) \right)$$

 $\begin{array}{ll} \textbf{Definition 9. positiv definit Sei } K = \mathbb{R} \text{ oder } \mathbb{C}, \ V \text{ ein } K\text{-Vektorraum und} \\ s: V \times V \to K \text{ eine Billinearform } \begin{cases} \text{symmetrisch} & K = \mathbb{R} \\ \text{hermitesch} & K = \mathbb{C} \end{cases} \text{ heisst positiv definit,} \\ \text{falls } s(v; v) > 0 \ \forall 0 \neq v \in V \end{cases}$

Beispiel 7. $\langle .,. \rangle$ ist positiv definit auf \mathbb{R}^n $\langle .,. \rangle_c$ ist positiv definit auf \mathbb{C}^n

Definition 10. Skalarprodukt

Ein Skalarprodukt ist $\begin{cases} \text{positiv definite symetrische bilineare Form} & K = \mathbb{R} \\ \text{eine positiv definite hermetische Form} & K = \mathbb{C} \end{cases}$

Definition 11. Skalarprodukt oft $\langle .,. \rangle$, Norm $||v|| := \sqrt{\langle v,v \rangle}$

Definition 12. Euklidischer Vektorraum Vektorraum über $\mathbb R$ mit Skalarprodukt

Definition 13. Untärer Vektorraum Vektorraum über \mathbb{C} mit Skalarprodukt

Beispiel 8.

$$V = \{f : [0,1] \to \mathbb{R} \text{ stetig}\} \min \langle f, g \rangle = \int_0^1 f(x)g(x)dx$$
$$V = \{f : [0,1] \to \mathbb{C} \text{ stetig}\} \min \langle f, g \rangle = \int_0^1 f(x)\overline{g(x)}dx$$

in beiden Fällen

$$||f|| = \sqrt{\int_0^1 |f(x)|^2 dx}$$

" L^2 -Norm"

Bemerkung 10. In einem beliebigen euklidischen bzw. unitären Vektorraum gilt die Cauchy-Schwarz'sche Ungleichtung

$$|\langle v, w \rangle| \le ||v|| \, ||w|| \, \, \forall v, w \in V$$

mit = genau dann, wenn v und w linear abhängig sind.

Beweis 6. (Skizze) klar falls v = 0 oder w = 0, also nehmen wir an, dass $v \neq 0$ und $w \neq 0$ 1. Reduktion: zum Fall ||v|| = ||w|| = 1.

$$v_1 := \frac{v}{\|v\|} w_1 := \frac{w}{\|w\|}$$
$$\|v_1\| = 1 \|w_1\| = 1$$

2. Reduktion: Es reicht aus, zu zeigen: Re $\langle v, w \rangle \leq 1 = \text{genau dann wenn } V = W$

$$\begin{split} |\langle v,w\rangle| &= \mu \, \langle v,w\rangle & \mu \in \mathbb{C}, |\mu| = 1 \\ &= \langle \mu v,w\rangle \in \mathbb{R}_{\geq} \\ &= \operatorname{Re} \, \langle v',w\rangle \; wobeiv' := \mu v \end{split}$$

Cauchy-Schwarz'sche Ungleichung \leq , Gleichheit: v, w linear unabhängig \Longrightarrow v', w linear unabhängig \Longrightarrow $v' \neq w$

 ${\it Eigenschaften \ 3.}$

Beispiel 9. Ist $T:V\to\mathbb{R}^n$ oder $T:V\to\mathbb{C}^n$ ein Isomorphismus, dann ist $s:V\times V\to\mathbb{R}$ (bzw. $s:V\times V\to\mathbb{C}$) gegeben durch

$$s(x,y) = \langle T_x, T_y \rangle$$

bzw.

$$s(x,y) = \langle T_x, T_y \rangle_c$$

ein Skalarprodukt.

Definition 14. Sei V ein exklusiver, bzw. unitärer Vektorraum

- $v, w \in V$ heisst orthogonal, falls $\langle v, w \rangle = 0$
- $U,W\subset V$ heissen orthogonal (geschrieben $U\perp V$) falls $U\perp W\ \forall u\in U,$ $w\in W$
- $U \subset W$ das orthagonale Koplement ist $U^{\perp} = \{v \in V : u \perp v \forall u \in U\}$
- v_1, \dots, v_n sind orthogonal, falls $v_i \perp v_i \ \forall i \neq j$

- v_1, \dots, v_n sind orthonormal, falls $v_i \perp v_j \ \forall i \neq j \ \text{und} \ \|v_i\| = 1 \ \forall i$
- V ist orthagonale direkte Summe von Untervektorräumen V_1, \dots, V_r falls

$$V = V_1 \oplus \cdots \oplus V_r$$
$$V_i \perp V_j \ \forall i \neq j$$

$$C([-1,1],\mathbb{R}) := \{f : [-1;1] \to \mathbb{R} \text{stetig}\}\$$

dann ist $C([-1,1]\mathbb{R})$ die orthogonale direkte Summe von $C([-1,1]\mathbb{R})_{\text{gerade}}$ und $C([-1,1]\mathbb{R})_{\text{ungerade}}$. gerade: f(-x)=f(x) und ungerade: f(-x)=-f(x)

$$f(x) = \underbrace{\frac{f(x) + f(-x)}{2}}_{\text{gerader Teil}} + \underbrace{\frac{f(x) - f(-x)}{2}}_{\text{ungerader Teil}}$$

g gerade, h ungerade $\implies gh$ ungerade $\implies \langle g,h\rangle = \int_{-1}^{1} g(x)h(x) = 0$

Bemerkung 11. Ist v_1, \dots, v_n eine orthonormale Familie mit $v_i \neq 0 \forall i$, so gilt

- 1. $(i)(v_1, \dots, v_n)$ ist linear unabhängig $(c_1v_1 + \dots + c_nv_n = 0 \implies c_i < v_i, v_i > + \dots + c_i < v_i, v_i > + \dots + c_n < v_n, v_i > = 0 \implies c_i ||v_i||^2 = 0 \implies c_i = 0)$
- 2. $\left(\frac{v_1}{\|v_i\|}, \cdots, \frac{v_n}{\|v_i\|}\right)$ ist orthonormal

Satz 2. Ist (v_1, \dots, v_n) eine orthonormale Basis von V, so gilt folgendes für beliebiges $v \in V$

$$v = \sum_{i=1}^{n} \langle v_i, v_j \rangle v_i$$

$$v = \sum_{i=1}^{b} c_i v_i$$

$$\langle v, v_j \rangle = \sum_{i=1}^{n} c_i \langle v_i, v_j \rangle$$

$$= c_j \langle v_i, v_j \rangle = c_j$$

Proposition 4. Sei $K = \mathbb{R}$ oder \mathbb{C} und (V, < .,. >) ein euklidischer bzw. unitärer Vektorraum über K

- 1. Ist $n := \dim_K V < \infty$ und (v_1, \dots, v_d) eine orthonormale Familie von Vektoren von V, so existieren v_{d+1}, \dots, v_n , so dass (v_1, \dots, v_n) eine orthonormale Basis von V ist.
- 2. Ist $U \subset V$ ein endlichdimensionaler Untervektorraum, so gilt $V = U \bigoplus U^{\perp}$, orthonormal direkte Summe.

Beweis 7. Es gibt triviale Fälle: d = n in 1., U = 0 in 2. Auch: der Fall (d = 0) in 1. $\Leftarrow d = 1$: $0 \neq v \in V$ beliebiger Vektor, wir nehmen $b_1 = \frac{v}{\|v\|}$ Beweis durch Induktion nach N mit Indunktionsannahme 1. gilt für $n \leq N$ N = 1 okay.

Plan: Wir zeigen IA \implies 2. für $\dim_K U \leq N$ und IA \implies 1. für $n \leq N+1$.

 $IA \xrightarrow{\dim U \leq N} \exists \ orthonormale \ Basis (u_1, \dots, u_d) \ von \ U \ d := \dim U. \ F\"{u}r \ beliebiges \ v \in V \ gilt:$

$$v - \sum_{i=1}^{n} \langle v_i, v_j \rangle u_i \in U^{\perp}$$

$$U: 1$$
-dimensional $U^{\perp}: 2$ -dim
 $s(e_1, e_1) = 3$ $= 24$

denn

$$\left\langle v - \sum_{i=1}^{n} \langle v_i, u_i \rangle u_i, u_j \right\rangle = \langle v, u_j \rangle - \sum_{i=1}^{n} \langle v, u_j \rangle \langle u_i, u_j \rangle = 0$$

Und: 1. für dim $V \leq N+1$ folgt aus IA und 2. für $U \leq N$

$$1 \leq d < n = \dim V \geq N+1$$

$$\implies 1 \leq d \leq N \, und 1 \leq \dim V - d \geq N$$

Sei $U := span(v_1, \dots, v_d)$ Aus 2. haben wir $V = U \bigoplus U^{\perp}$ Nach IA, \exists orthonormale Basis (v_{d+1}, \dots, v_n) von U^{\perp} Es folgt, dass (v_1, \dots, v_n) ist eine orthonormale Basis von V.

Eigenschaften 4. Praktisches Verfahren zu testen ob ein symmetrisch bilineare bzw. hermetische Form ein Skalaprodukt ist (falls $\dim_K V < \infty$). Verfahren:

- wählen $U \subset V$ nicht trivialer Untervektorraum (z.B. $U = span(v), 0 \neq v \in V$)
- Berechnen U^{\perp}
- Testen:
 - Ist $V = U \bigoplus U^{\perp}$?
 - Ist die Einschränkung von der Form auf U ein Skalarprodukt?
 - Ist die Einschränkung von der Form auf U^\perp ein Skalarprodukt?

Beispiel 10. $\mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$

$$M := \begin{pmatrix} 3 & 1 & 2 \\ 1 & 3 & -1 \\ 2 & -1 & 2 \end{pmatrix}$$

Wir betrachten die entsprechende Bilinearform

$$(x,y) \mapsto t_x \cdot M \cdot y$$

$$U = (e_1)$$

$$U^{\perp} = \{(x_1, x_2, x_3 : 3x_1 + x_2 + 2x_3 = 0\}$$

$$= ((1, -3, 0), (0, 2, -1))$$

Die darstellende Matrix:

$$s|_{U^{\perp}} \leadsto \begin{pmatrix} 24 & -21 \\ -21 & 18 \end{pmatrix}$$

$$U \cong$$
 \mathbb{R}^2 $W =$ $(e_1) \in \mathbb{R}^2$ $W^{\perp} =$ $\{(x_1, x_2) | 24x_1 - 21x_2 = 0\}$ $=$ $(21, 24)$

W 1-dim, W^{\perp} 1-dim

$$(s|_{U^{\perp}})(e_1, e_2) = 24$$
 (21 24) $\begin{pmatrix} 24 & -21 \\ -21 & 18 \end{pmatrix}$ (21 18) $= -216$

⇒ kein Skalarprodukt

1.6 Volumen

1.6.1 Spat

Definition 16. Spat u_1, \dots, u_n orthonormale Basis. Dann ist der von (u_1, \dots, u_n) aufgespannte Spat definiert als (wobei $c_i := \text{von } (u_1, \dots, u_n)$ aufgespannten Spat)

$$\left\{ \sum_{i=1}^{n} c_i u_i | 0 \le c_i \le 1 \ \forall i \right\}$$

Vol(Spat):=1

Falls $v_1, \dots, v_n \in V$ beliebig sind, dann hat der von (v_1, \dots, v_n) aufgespannte Spat

$$Vol = \left| \det \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \right| v_i = \sum_{j=1}^n a_{ij} u_i$$

Sei
$$b_i j := \langle v_i, v_j \rangle$$
 und $B := \begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & & \vdots \\ b_{n1} & \cdots & b_{nn} \end{pmatrix}$ Wir haben $b_{ij} = \sum_{k=1}^n a_{ik} a_{jk}$,

also $B = A \cdot A^t$. Es folgt:

$$Vol = \sqrt{(\det A)^2} = \sqrt{\det B}$$

Vorteile:

- keine Wahl von orthonormaler Basis nötig
- auch sinnvoll für eine Kollektion v_1, \dots, v_m evzl. $m \neq n$

Beispiel 11. m=1

$$\det B = \frac{\|v_1\|^2}{\sqrt{\det B}} = \frac{\|v_1\|^2}{\|v_1\|}$$

Definition 17. Grammsche Determinante Im m-dim Volumen := $\sqrt{G(v_1, \dots, v_m)}$ wobei

$$G(v_1, \cdots, v_m) := \det \left(\langle v_i, v_j \rangle \right)_{1 < i, j \le m}$$

die sogenannte Grammsche Determinante ist.

Bemerkung 12. Es gilt $G(v_1, \dots, v_m) = 0 \Leftrightarrow v_1, \dots, v_m$ lineare abhängig, weil

$$A = (a_{ij}) \in M(m \times n, \mathbb{R})$$

 $_{
m mit}$

$$G(v_1, \dots, v_m) = \det(A, A^t) = \sum (m \times m \text{Minor})$$

Bemerkung 13.

$$\operatorname{Vol}(v_1, \cdots, v_m) := \sqrt{G(v_1, \cdots, v_m)}$$

ist 0 falls $\exists i : v_i = 0$

sonst:

$$Vol(v_1, \dots, v_m) = ||v_1|| \dots ||v_m|| Vol(\frac{v_1}{||v_1||}, \dots, \frac{v_m}{||v_m||})$$

Satz 3. Hadamard'sche Ungleichung

$$Vol(v_1, \cdots, v_m) \le ||v_1|| \cdots ||v_m||$$

für $0 \neq v_i \in V$, $i = 1, \dots, m$. Mit Gleichheit genau dann wenn v_1, \dots, v_m orthogonal sind.

Beweis 8. Durch fallende Induktion nach

$$\max\{|I|:I\subset\{1,\cdots,m\}\,|(v_i)_{i\in I}\ orthogonal\}$$

Fall $\max \{\cdots\} = m$ das bedeutet, v_1, \cdots, v_m sind orthogonal. Dann:

$$G(v_1, \dots, v_m) = \det \begin{pmatrix} \|v_1\|^2 & 0 \\ & \ddots & \\ 0 & \|v_m\|^2 \end{pmatrix} = \|v_1\|^2 \dots \|v_m\|^2$$

Die ist der Induktionsanfang.

Sei $r \in \mathbb{N}$, $1 \le r < m$. Induktionsanahme: Ungleichung für den Fall

$$\max\{|I|: (v_i)_{i\in I} \text{ orthogonal}\} > r$$

Sei v_1, \dots, v_m , so dass $\max \{\dots\} = r$. o.B.d.A: v_1, \dots, v_r orthogonal. Wir schreiben:

$$v_m = \underbrace{v_m - \sum_{i=1}^r \frac{\langle v_m, v_i \rangle}{\langle v_i, v_i \rangle} v_i}_{\tilde{v}_m \in \operatorname{span}(v_1, \cdots, v_r)^{\perp}} + \underbrace{\sum_{i=1}^r \frac{\langle v_m, v_i \rangle}{\langle v_i, v_i \rangle} v_i}_{\tilde{v}_m \in \operatorname{span}(v_1, \cdots, v_r)}$$

$$< v_m^{\tilde{v}}, v_m^{\tilde{v}} = 0$$

- $v = \tilde{v} + \tilde{\tilde{v}}$
- $\bullet < \tilde{v}, \tilde{\tilde{v}} > = 0$
- $||v||^2 = ||\tilde{v}||^2 + ||\tilde{\tilde{v}}||^2$

Das ist eine Orthogonale Projektion Wir haben

$$G(v_1, \cdots, v_m) = G(v_1, \cdots, v_{m-1}, \tilde{v_m})$$

weil (Spalten- und Zeilenumforumgen...). Es folgt:

$$Vol(v_1, \dots, v_m) = Vol(v_1, \dots, v_{m-1}, \tilde{v_m}) \le ||v_1|| \dots ||v_{m-1}|| ||\tilde{v_m}|| < ||v_1|| \dots ||v_{m-1}|| ||\tilde{v_m}||$$

Definition 18. Gram-Schmidt-Orthagonalisierungsverfahren

$$\tilde{v_r} := v_r - \sum_{i=1}^{r-1} \frac{\langle v_r, \tilde{v_i} \rangle}{\langle \tilde{v_i}, \tilde{v_i} \rangle} \tilde{v_i}, \text{für} 1, 2, \cdots$$

gegeben: eine Kollektion (v_1, \dots, v_n) oder abzählbar unendlich (v_1, v_2, \dots) . Das Verfahren produziert $(\tilde{v_1}, \tilde{v_2}, \dots)$, mit:

$$\begin{array}{lll} (\tilde{v_1}, \tilde{v_2}, \cdots & = & (v_1, v_2, \cdots) \\ (\tilde{v_1}, \cdots, \tilde{v_m}) & = & (v_1, \cdots, v_m) \; \forall m \\ (\tilde{v_1}, \tilde{v_2}, \cdots) & \text{sind orthogonal} \end{array}$$

Beispiel 12. $C([-1,1],\mathbb{R})$ mit $< f,g> = \int_{-1}^{1} f(x)g(x) dx$

$$(1, x, x^{2}, \cdots)$$

$$\xrightarrow{\text{GS}} \frac{\langle x^{2}, 1 \rangle}{\langle 1, 1 \rangle} = \frac{2/3}{2}$$

$$(1, x, x^{2} - \frac{1}{3}, x^{3} - \frac{3}{5} \cdots)$$

Bis auf Normalisierung bekommen wir die Legendre-Polynome.

Metrik:

$$d: V \times V \to \mathbb{R}_{\leq 0}$$

$$d(x, <) = 0 \Leftrightarrow x = y$$

$$d(x, y) = d(y, x)$$

$$d(x, z) \leq d(y, y) + d(y, z)$$

Aber: nicht jede Metrik, nicht einmal jede transinvariante Metrik kommt von einer Norm.

Bemerkung 14. Eine Norm kommt von einer +def, symm Bilinearform

$$\Leftrightarrow ||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2) \forall x, y \in V$$

Definition 19. ausgeartete Bilinearform Eine Bilinearform $s: V \times V \to K$ ist ausgeartet (oder: entartet), falls eine oder beide der induzierten Abbildungen $V \to V^*$ nicht injektiv ist.

$$v \mapsto (w \mapsto s(v, w))$$

 $v \mapsto (w \mapsto s(w, v))$

Bemerkung 15. Falls $\dim_K V < \infty$, dann:

$$v\mapsto (w\mapsto s(v,w)) \qquad \qquad \text{injektiv}$$

$$\downarrow v\mapsto (w\mapsto s(w,v)) \qquad \qquad \text{injektiv}$$

$$\downarrow s \text{ ist nicht ausgeartet}$$

$$\downarrow \updownarrow$$

die darstennelde Matrix ist invertierbar

$$s(v, w) = v^{t} \cdot A \cdot w$$
$$= (A^{t} \cdot v)^{t}$$

j++i

Satz 4. Sei V ein K-Vektorraum, $s:V\times V\to K$ eine symmetrische oder schiefsymmetrische Bilinearform. Für $U\subset V$ Untervektorraum, schreiben wir noch

$$U^{\perp} := \{ v \in V : s(u, v) = 0 \ \forall u \in U \}$$

 $(s(v,u) = 0 \Leftrightarrow s(u,v) = 0 \text{ weil s symm. bzw. schiefsymm.})$

Proposition 5. Sei V ein endlich dimensionaler K-Vektorraum und $s: V \times V \to K$ eine nicht ausgeartete symmetrische oder schiefsymmetrische Bilinearform. Sei $U \subset V$ ein Untervektorraum. Dann gilt:

$$\dim U + \dim U^{\perp} = \dim V$$

Beweis 9. Sei $(v_i)_{i=1,\dots n}$ eine Basis mit $n := \dim V$, und A die darstellende Matrix von s bzw. (v_i) . Wir haben dann:

$$s(x,y) = x^t \cdot A \cdot y$$

 $und A^t = \pm A, \det A \neq 0$

$$U^{\perp} = \left\{ x \in V_i | x^t \cdot A \cdot y = 0 \ \forall y \in U \right\} = \left\{ x \in V_i | (x \cdot A)^t \cdot y = 0 \ \forall y \in U \right\}$$

Sei $F: V \rightarrow V$ lin. Abb. \leftrightarrow A. Dann:

$$F(U^{\perp}) = \left\{ Ax | (Ax)^t y = 0 \ \forall y \in U \right\} \qquad = \left\{ Ax | \tilde{x}^t y = 0 \ \forall y \in U \right\}$$

Es folgt: mit

$$B := \begin{pmatrix} | & & | \\ u_1 & \cdots & u_d \\ | & & | \end{pmatrix}$$

 (u_1, \dots, u_d) Basis von U, dann ist $F(U^{\perp}) = \text{Ker } B$. Jetzt:

$$\dim U^{\perp} = \dim F(U^{\perp}) = \dim \operatorname{Ker} B = n - \dim U$$

Korollar 4. dim $U < \infty$, $s: V \times V \to K$ nicht ausgeartet, (schief-) symm.

$$U \subset \Longrightarrow (U^{\perp})^{\perp} = U$$

Bemerkung 16. Es ist <u>nicht</u> immer der Fall, dass $V=U\bigoplus U'$, weil es ist möglich, dass $U\cup U^\perp\neq 0$. 2 Extremfälle:

- U ist isotropisch $(s|_{U'}$ ist trivial) $\Leftrightarrow U \subset \underbrace{U^{\perp}}_{\dim V \dim U}$
- $s|_U$ ist auch nicht ausgeartet $\Leftrightarrow U \cup U^\perp = 0 \Leftrightarrow V = U \bigoplus U^\perp$

Aus 1. ist klar:

$$\dim U \le \frac{1}{2} \dim V \ \forall \text{isotrop} U \subset V$$

1.7 Orthogonale und unitäre Endomorphismen

 $K = \mathbb{R} \text{ oder } \mathbb{C}$

Definition 20. orthogonaler bzw. unitärer Endomorphismus Sei V, \langle , \rangle ein ortho. bzw. unitärer Vektorraum. Ein Endomprhismus $F: V \to V$ heisst orthogonal bzw. unitär falls

$$\langle F(v), F(w) \rangle = \langle v, w \rangle \ \forall v, w \in V$$

Bemerkung 17. Das ist äquivalent zu

$$||F(v)|| = ||v|| \ \forall v \in V$$

Eigenschaften5. orthogonaler bzw. unitärer Endomorphismus Sei ${\cal F}$ ein orthobzw. unitärer Endomorphismus. Dann:

- F ist injektiv
- Falls $\dim_K V < \infty$, F ist bijektiv, und F' ist auch ortho. bzw. unitär
- Für jeden Eigenwert $\lambda \in K$ gilt $|\lambda| = 1$. Eigenvektor v:

$$||v|| = ||F(v)|| = ||\lambda v|| = |\lambda| ||v||$$

Falls $V = \mathbb{R}^n$ oder \mathbb{C}^n mit Standardskalarprodukt

$$\langle v, w \rangle = v^t w bzw$$
 $\langle v, w \rangle_c = v^t \bar{w}$

Ist F zur Matrix A entsprechend, dann

$$\langle F(v), F(w) \rangle = \langle v, w \rangle \Leftrightarrow (Av)^t Aw = v^t w$$

$$\Leftrightarrow v^t A^t Aw = v^t w \Leftrightarrow A^t A = E_n$$

$$\text{bzw} \Leftrightarrow v^t A^t \bar{A} \bar{w} = v^t \bar{w} \Leftrightarrow A^t \bar{A} = E_n$$

Definition 21. ortho. bzw. unitäre Matrix $O(n):=A\in GL_n(\mathbb{R})$ heisst orthogonal falls $A^tA=E_n$

 $U(n) := A \in GL_n(\mathbb{C})$ heisst <u>unitär</u> falls $A^t \bar{A} = E_n$

Not 1.

$$O_n := \{ A \in GL_n(\mathbb{R}) | A \text{ orthogonal} \}$$

 $O_n := \{ A \in GL_n(\mathbb{C}) | A \text{ unitär} \}$

Weil

$$A, B \in O(n) \implies (AB)^t(AB) = B^tA^tAB = B^tB = E_n \implies AB \in O(n)$$

haben wir $O(n) \subset GL_n(\mathbb{R})$ ist eine Untergruppe. Ähnlich: $U(n) \subset GL_n(\mathbb{C})$ ist eine Untergruppe.

Not 2.

$$SO(n) = O(n) \cap SL_n(\mathbb{R})$$

$$SU(n) = U(n) \cap SL_n(\mathbb{C})$$

Not 3. ortho. bzw. unitärer Vektorraum

$$O(V) = \{ F \in GL(V) | \text{ortho.} \}$$

$$U(V) = \{ F \in GL(V) | \text{unitar} \}$$

Bemerkung 18.

$$A \in O(n) \implies \det A \in \{\pm 1\}$$

$$A \in U(n) \implies \det A \in \{\pm z \in \mathbb{C} : |Z| = 1\}$$

Eigenschaften 6. Charakterisierungen von ortho. bzw. unitären Matrizen Äquivalente Charakterisierungen von orthogonalen bzw. unitären Matrizen $A \in GL_n(\mathbb{R})$:

A ist orthogonal $\Leftrightarrow A^{-1} = A^t \Leftrightarrow A^t A = E_n \Leftrightarrow AA^t = E_n \Leftrightarrow$ die Spalten von A bilden eine Orthonormalbasis von $\mathbb{R}^n \Leftrightarrow$ die Zeilen von A bilden eine Orthonormalbasis von \mathbb{R}^n .

Ähnlich:

A ist unit $\Leftrightarrow A^{-1} = \bar{A}^t \Leftrightarrow A^t \bar{A} = E_n \Leftrightarrow \bar{A}A^t = E_n \Leftrightarrow \text{die Spalten von } A$ bilden eine Orthonormalbasis von $\mathbb{C}^n \Leftrightarrow \text{die Zeilen von } A$ bilden eine Orthonormalbasis von \mathbb{C}^n .

Für n=1

$$O(1) = \{\pm 1\} \qquad \qquad U(1) = \{z \in \mathbb{C} : |z| = 1\} \cong S^1$$

$$SO(1) = \{1\} \qquad \qquad SU(1) = \{1\}$$

Für n = 2: $(a, b) \in \mathbb{R}^2$, $a^2 + b^2 = 1$

$$O(2) = \left\{ \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \middle| \theta \in \mathbb{R} \right\} \cup \left\{ \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix} \middle| \theta \in \mathbb{R} \right\}$$
$$SO(2) = \left\{ \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \middle| \theta \in \mathbb{R} \right\} \cong S^{1}$$

$$(z, w) \in \mathbb{C}^2, |z|^2 + |w|^2 = 1, (-\bar{w}, \bar{z}) \perp (z, w)$$

$$U(2) = \left\{ \begin{pmatrix} z & -\lambda \bar{w} \\ w & \lambda \bar{z} \end{pmatrix} | (z, w) \in \mathbb{C}^2, \left| z \right|^2 + \left| w \right|^2 = 1, \lambda \in \mathbb{C}, \left| \lambda \right| = 1 \right\} \cong S^3 \times S^1$$

$$SU(2) = \left\{ \begin{pmatrix} z & -\bar{w} \\ w & \bar{z} \end{pmatrix} | (z, w) \in \mathbb{C}^2, \left| z \right|^2 + \left| w \right|^2 = 1 \right\} \cong S^3$$

SO(3) eine explizite Beschreibung ist möglich (später)

Proposition 6. Sei V ein endlich dimensionaler \mathbb{C} -Vektorraum mit Skalarprodukt \langle, \rangle , und sei $F: V \to V$ ein unitärer Endomorphismus. Dann besitzt V eine Orthonormalbasis von Eigenvektoren von F.

Beweis 10. Durch Indunktion nach dim V. dim V=0,1 trivial. dim $V\geq 2$ Weil $\mathbb C$ algebraisch abgeschlossen ist, gibt es einen Eigenwert $\lambda\in\mathbb C$. Sei $v\in V$ ein Eigenvektor, mit $\|v\|=1$. Weil F untär ist, haben wir $F(v^{\perp})=v^{\perp}$. Wir haben dim $v^{\perp}=\dim V-1$

$$w \in v^{\perp} \langle v, w \rangle \Longrightarrow \langle v, w \rangle = 0$$
$$\lambda \langle v, F(w) \rangle = \langle \lambda v, F(w) \rangle = \langle F(v), F(w) \rangle = 0$$
$$\Longrightarrow F(v^{\perp}) \subset v^{\perp}$$

Aus der Induktionsannahme folgt, dass \exists Orthonormalbasis von v^{\perp} von Eigenvektoren von F. Zusammen mit $v^{V=\operatorname{span} \bigoplus v^{\perp}}$ Orthonormalbasis von V

Korollar 5. Sei $A \in U(n)$. Dann $\exists S \in U(n), \theta_1, \dots, \theta_n \in \mathbb{R}$ so dass

$$SAS^{-1} = \begin{pmatrix} e^{i\theta_1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & e^{i\theta_n} \end{pmatrix}$$

Proposition 7. Sei V ein endlich dimensionaler \mathbb{R} -Vektorraum mit Skalarprodukt \langle, \rangle , und sei $F: V \to V$ ein orthogonaler Endomorphismus. Dann besitzt V eine Orthonormalbasis $(v_1^+, \cdots, v_r^+, v_1^-, \cdots, v_s^-, w_1, w_1', \cdots, w_t, w_t')$

- $F(v_i^+) = v_i^+$
- $F(v_i^-) = -v_i^-$
- $F(w_i) = (\cos \theta_i)w_i + (\sin \theta_i)w_i'$
- $F(w_i') = (-\sin\theta w_i) + (\cos\theta_i)w_i'$

 $mit \ \theta_i \in \mathbb{R}, \ 0 < |\theta| < \phi, \ i = 1, \cdots, t$

Beweis 11. Durch Induktion nach $\dim V$: $\dim V = 0, 1, 2$ trivial. $\dim > 2$ (nächstes mal)

$$\dim_{\mathbb{R}} V$$
 $\langle .,. \rangle$ Skalarprodukt

Fazit 5. $F: V \to V$ orthogonaler Endomorphismus $\implies \exists$ orthogonale Basis

+1 oder -1 Eigenvektoren

$$F(\alpha w_i + \beta w_i') = (\alpha \cos \Theta_i - \beta \sin \Theta_i) w_i + (\alpha \sin \Theta_i \beta \cos \Theta_i) w_i', \ \Theta_i \in \mathbb{R}$$

Beweis 12. Fortsetzung Durch Induktion nach dim V, Induktionsanfang: dim $V \leq 2$ dim V = 2 bezüglich beliebiger Basis (w_1, w'_1) .

$$V:\begin{pmatrix} \cos\Theta & -\sin\Theta \\ \sin\Theta & \cos\Theta \end{pmatrix} oder \begin{pmatrix} \cos\Theta & \sin\Theta \\ -\sin\Theta & \cos\Theta \end{pmatrix}$$

Matrix 1: w_1, w_2 ist wie oben, Matrix 2: chaakteristisches Polynom $t^2 - 1 = (t-1)(t+1) \rightarrow (+1\text{-Eigenvektor}, -1\text{-Eigenvektor})$

1. Fall: ∃ reeller Eigenwert

$$\lambda \in \mathbb{R}, \ |\lambda| = 1 \ v \in V \ F(v) = \lambda v$$

wir zeigen, dass $F(v^{\perp}) = v^{\perp}$ genau wie im Fall einees unitären Endomorphismus

$$\dim(v^{\perp}) = \dim V - 1 \stackrel{IA}{\leadsto} v^{\perp} : orthonormale \ Basis$$

$$V = (v) \bigoplus v^{\perp}$$

2. Fall: \(\mathre{\pi}\) reeller Eigenwert

$$\implies P_F(t) = \prod_{i=1}^{(\dim V)/2} Q_i(t)$$

 $Q_i(t)$ irreduzibles quadratisches Polynom. Aus dem Satz von Cayley-Hamilton folgt:

$$\implies \exists \overbrace{v}^{\neq 0} \in V, \ imitQ_i(F)v = 0$$

Sei $0 \neq v_0 \in V$ beliebigen Vektor $P_F(F)v_0 = 0$

$$Q_1(F)Q_2(F)\cdots + \underline{\dim V}_2(F)v_0 = 0$$

$$\implies \exists j: Q_j(F)Q_{j+1}(F)\cdots + \underline{\dim V}_2(F)v_0 = 0$$

$$aber Q_{j+1}(F)\cdots Q_{\dim V}2(F)v_0 \neq 0$$

 \implies wir nehmen i:=j und $v:=Q_{j+1}(F)\cdots Q_{\frac{\dim V}{2}(F)v_0}$. Beh: $U:=\mathrm{span}(v,F(v))$ ist ein F-invariante Vektorraum. $Q_i(F)_v=0$ $\implies\exists a,b\in\mathbb{R}$ mit F(F(v))=av+bF(V). Es folgt: U^\perp ist auch F-invariant. $V=U\bigoplus U^\perp \stackrel{IA}{\leadsto} Basen$ von U und von U^\perp wie oben. Die Vereinigung dieser Basen ist wie erwünscht.

Korollar 6. Sei $A \in O(n)$. Dann gibt es ein $S \in O(n)$ und $r, s, t \in \mathbb{N}$, $\Theta_1, \dots, \Theta_t \in \mathbb{R}$ mit

$$SAS^{-1} = \begin{pmatrix} E_r & & & & 0 \\ & -E_s & & & \\ & & D_{\Theta_1} & & \\ & & & \ddots & \\ 0 & & & D_{\Theta_t} \end{pmatrix}$$

wobei

$$D_{\Theta} := \begin{pmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{pmatrix}$$

Beispiel 13.

$$A := \begin{pmatrix} 0 & 1 & 0 & & & 0 \\ & 0 & 1 & & & \\ & & \ddots & \ddots & & \\ & & & 0 & 1 \\ 1 & & & & 0 \end{pmatrix} \in U(n)$$

$$A(z_1, \dots, z_n) = (z_2, \dots, z_n, z_1)$$
$$A(1, S, S^2, \dots, S^{n-1}) = (S, S^2, \dots, S^{n-1}, 1)$$
$$S := e^{2\pi i/n} S^n = 1$$

 $\implies (1,S,S^2,\cdots,S^{n-1})$ ist Eigenvektor zum Eigenwert S. Ähnlich: für $0 \le j \le n-1$ haben wir $(1,S^j,S^{2j},\cdots,S^{(n-1)j})$ ist Eigenvektor zum Eigenwert S^j . $1,S,S^2,\cdots,S^{n-1}$ sind paarweise verschieden $\implies (1,S^j,S^{2j},\cdots,S^{(n-1)j})$ ist eine Basis von Eigenvektoren. Normalisierung:

$$\left(\frac{1}{\sqrt{n}}\left(1, S^{j}, S^{2j}, \cdots, S^{(n-1)j}\right)\right)_{j=0,1,\cdots,n-1}$$

ist eine orthonormale Basis von Eigenvektoren

 $(K = \mathbb{C})$ unitärer Endomorpismus von V

Fazit 6. $(K = \mathbb{R})$ orthogonaler Endormophismus von V $\Longrightarrow V = \bigoplus_{\text{Eigenwerte}\lambda} \text{Eig}(F; \lambda)$ orthogonale direkte Summe

Beispiel 14.

$$A = \begin{pmatrix} \frac{3}{13} & \frac{4}{5} & \frac{36}{65} \\ \frac{4}{13} & -\frac{3}{5} & \frac{48}{65} \\ \frac{12}{13} & 0 & -\frac{5}{13} \end{pmatrix} \in O(3)$$

 $\begin{array}{l} \det A=1\ 2\ \text{komplex konjugierte}\ +\ 1\ \text{reller oder}\ 3\ \text{reelle Eigenwerte}\ \Longrightarrow\ +1\\ \text{ist ein Eigenwert}\ \dots \leadsto \text{Eigenvektor}\ (6,3,4)\ \text{zum Eigenwert}\ 1. \to \text{v}\ \text{mit}\ \|v\|=1\\ v=\frac{1}{\sqrt{61}}(6,3,4)\ -v^\perp=\text{span}\left((1,-2,0),(2,0,-3)\right)\xrightarrow{\text{Gram-Schmidt}} \end{array}$

$$(1,-2,0), (\frac{8}{5},\frac{4}{5},-3)$$

Normalisieren:

$$\frac{1}{\sqrt{5}}(1, -2, 0), \sqrt{1}\sqrt{305}(8, 4, -15)$$

Und wir berechnen

$$S := \begin{pmatrix} \frac{6}{\sqrt{61}} & \frac{1}{\sqrt{5}} & \frac{8}{\sqrt{305}} \\ \frac{3}{\sqrt{61}} & -\frac{2}{\sqrt{5}} & \frac{4}{\sqrt{305}} \\ \frac{4}{\sqrt{61}} & 0 & -\frac{15}{\sqrt{305}} \end{pmatrix}$$

bekommen wir

$$\underbrace{S^{-1}}_{=S^t} AS = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{57}{65} & \frac{4\sqrt{61}}{65} \\ 0 & -\frac{4\sqrt{61}}{65} & -\frac{57}{65} \end{pmatrix}$$

1.8 Beschreibung von SO(3) und O(3)

Eigenschaften 7. Sei $A \in SO(3)$. Dann: entweder es gibt 1 reelle und 2 komplex konjugierte Eigenwerte oder 3 reelle Eigenwerte. $\lambda \in \mathbb{C} \implies \lambda \cdot \bar{\lambda} = 1$. Eigenwerte $+1(\times 3) \Leftrightarrow A = E_3$ oder $-1(\times 2) / +1$. Wenn $\Leftrightarrow A = E^3$, dann ist dim Eig(A, 1) = 1.

$$A: \operatorname{Eig}(A,1)^{\perp} \to \operatorname{Eig}(A,1)^{\perp}$$

ist eine Drehung durch einen Winkel $\Theta \in (0, 2\phi)$. Bezüglich Basis (v_1, v_2, v_3) , $v_1 \in \text{Eig}(A, 1), ||v_1|| = 1$ sieht A aus wie

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\Theta & -\sin\Theta \\ 0 & \sin\Theta & \cos\Theta \end{pmatrix}$$

Eigenschaften 8. Sei $A \in O(3)$ Falls det A = 1, haben wir $A \in SO(3)$ Falls det A = -1, haben wir $-A \in SO(3)$

Dann bekommen wir die folgende Beschreibung von $A \in O(3)$ mit det A = -1:

- $A = -E_3$
- oder dim $\operatorname{Eig}(A, -1) = 1$ $v_1 \in \operatorname{Eig}(A, -1), \|v_1\| = 1$ $A : \operatorname{Eig}(A, -1)^{\perp} \to \operatorname{Eig}(A, -1)^{\perp}$ ist eine Drehung um den Winkel $\Theta - \pi \in (-\pi, \pi)$ (Spiegelung oder Spiegelung mit Drehung)

1.9 Selbstadjugierte Endomorphismen

 V,\langle,\rangle , K-Vektorraum mit Skalaprodukt. (K= \mathbb{R} oder \mathbb{C}). Ist $F:V\to V$ ein Endomorphismus, so heisst $F^*:V\to V$ adjugierter Endomorphismus falls

$$\langle F(v), w \rangle = \langle v, F^*(w) \rangle \ \forall v, w \in V$$

Definition 22. $F: V \to V$ ist adjugiert falls

$$\langle F(v), w \rangle = \langle v, F(w) \rangle \ \forall v, w \in V$$

Eigenschaften 9. Falls $V = \mathbb{R}^n$ mit Standardskalarprodukt, so zu F ist eine assoziierte Matrix $A \in M(n \times n, \mathbb{R})$, dann ist A^t zu F^* assoziiert. Falls $V = \mathbb{C}^n$, dann ist

$$F \leftrightarrow A \in M(n \times n, \mathbb{C})$$
$$F^* \leftrightarrow \bar{A}^t \in M(n \times n, \mathbb{C})$$

Beweis 13.

$$\langle Av, w \rangle = (Av)^t \bar{w} = v^t A^t \bar{w} = v^t \bar{A}^t w = \langle v, \bar{w}^t w \rangle$$

Bemerkung 19. F^* ist eindeutig falls für \tilde{F}^* gilt

$$\langle F(v), w \rangle = \left\langle v, \tilde{F}^*(w) \right\rangle$$

dann ist

$$0 = \left\langle v, \tilde{F}^*(w) - F^*(w) \right\rangle$$

 \Longrightarrow

$$0 = \left\langle \tilde{F}^*(w) - F^*(w), \tilde{F}^*(w) - F^*(w) \right\rangle$$
$$= \left\| \tilde{F}^*(w) - F^*(w) \right\|^2$$
$$\implies \tilde{F}^*(w) = F^*(w)$$

Fazit 7. Im Fall $V=\mathbb{R}^n$ bzw. \mathbb{C}^n mit Standardskalarprodukt ist ein selbstadjungierter Endomorphismus durch eine symmetrische bzw. hermitesche Matrix gegeben.

Lemma 1. Jeder Eigenwert eines selbstadjugierten Endomorphismus ist reell.

Beweis 14. Ist $F(v) = \lambda v$ mit $v \neq 0$, so gilt

$$\lambda \langle v, v \rangle = \langle \lambda v, v \rangle = \langle F(v), v \rangle = \langle v, F(v) \rangle = \langle v, \lambda v \rangle = \bar{\lambda} \langle v, v \rangle \implies \lambda = \bar{\lambda}$$

Bemerkung 20. Prä-Hilbertraum bezeichnet einen K-Vektorraum ($K=\mathbb{R}$ oder \mathbb{C}) mit Skalarprodukt. Euklidische bzw. unitäre Vektorräume sind endlichdimensional,

Proposition 8. Sei V ein euklidischer bzw. unitärer Vektorraum und $F:V \to V$ ein selbstadjugierter Endomorphismus. Dann gibt es eine orthonormale Basis von Eigenvektoren.

Beweis 15. Falls V ein unitärer Vektorraum ist: durch Induktion nach dim V, \exists Eigenwert λ , Eigenvektor v, oBdA haben wir ||v|| = 1. Wir behaupten:

$$F(v^{\perp}) \in V^{\perp}$$

$$\langle v, w \rangle = 0 \implies \langle v, F(w) \rangle = \langle F(v), w \rangle = \langle \lambda v, w \rangle = \lambda \langle v, w \rangle = 0$$

 $IA \Longrightarrow \exists$ orthonormale Basis von v^{\perp} . Dies, zusammen mit v, gibt eine Basis von V. Fall eines euklidischen Vektorraums: Das gleiche Argumente ist gültig, sobald wir wissen, dass F einen Eigenwert besitzt. Man wählt eine Basis von V, so:

$$F \leftrightarrow A \in M(n \times n, \mathbb{R}) \quad [n = \dim V]$$

mit $A = A^t$. Wir betrachten A als komplexe Matrix, so dass

$$A = \bar{A} \implies \bar{A}^t = A^t = A \implies A \text{ ist hermetisch}$$

Sei λ ein (komplexer) Eigenwert von A. Weil A hermetisch ist, haben wir $\lambda \in \mathbb{R}$. Wir haben

$$\det(A - \lambda E_n) = 0$$

Dann:

$$\det(F - \lambda i d_V) = 0$$

also λ ist Eigenwert von F.

Korollar 7. Sei $A \in M(n \times n, \mathbb{R})$ symmetrisch. Dann $\exists S \in O(n)$ mit

$$S^t A S = \operatorname{diag}(\lambda_1, \dots, \lambda_n), \ \lambda_1, \dots, \lambda_n \in \mathbb{R}$$

Sei $A \in M(n \times n, \mathbb{C})$ hermetisch. Dann $\exists S \in U(n)$ mit

$$\bar{S}^t A S = \operatorname{diag}(\lambda_1, \dots, \lambda_n), \ \lambda_1, \dots, \lambda_n \in \mathbb{R}$$

Korollar 8. Sei $F: V \to V$ wie in der Proposition oben. Dann ist V die orthogonale direkte Summe von diesen Eigenräumen:

$$V = \bigoplus_{Eigenwerte\lambda} \operatorname{Eig}(F; \lambda)$$

Fazit 8. \leadsto Praktisches Verfahren: A symmetrisch bzw. hermetische Matrix \hookrightarrow berechnen Eig $(A; \lambda)$

 \hookrightarrow wählen von jedem eine orthonormale Basis

Beispiel 15.

$$A = \begin{pmatrix} 5 & 3 & 3+3i \\ 3 & 5 & -3-3i \\ 3-3i & -3+3i & 2 \end{pmatrix}$$

$$P_A(t) = \det(tE_3 - A) = (t-5)^2(t-2) + \dots = t^3 - 12t^2 + 256 = (t+4)(t-8)^2$$

$$\operatorname{Eig}(A; -4) = \operatorname{Ker} \begin{pmatrix} 9 & 3 & 3+3i \\ 3 & 9 & -3-3i \\ 3-3i & -3+3i & 6 \end{pmatrix} = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ -1 \\ -1+i \end{pmatrix} \right\}$$

$$\operatorname{Eig}(A; \delta) = \operatorname{Ker} \begin{pmatrix} -3 & 3 & 3+3i \\ 3 & -3 & -3+3i \\ 3-3i & -3+3i & -6 \end{pmatrix} = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 1-i \end{pmatrix} \right\} \rightsquigarrow \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1-i \end{pmatrix}$$

bzw.

$$\begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \end{pmatrix}, \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1-i}{2} \end{pmatrix}$$

Wir bekommen:

$$S := \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{2}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{2}}{2} & -\frac{1}{2} \\ \frac{-1+i}{2} & 0 & \frac{1-i}{2} \end{pmatrix}$$

dann:

$$\bar{S}^t AS = \operatorname{diag}(-4, 8, 8)$$

Bemerkung 21. Das Resultat von der Proposition oben im Fall eines euklidischen Vektorraums ist klar, auch aus geometrischem Grund.

symm. Matrizen \ $\mathbb{R} \iff$ quadratische Formen

(Prop aktuelle-7) $S^t A S$ aus der Transformationsformel.

...und man kann auch einen alternativen Beweis in diesem Fall geben.

$$A \in M(n \times n, \mathbb{R}), A^t = A \iff q : \mathbb{R}^n \to \mathbb{R}, q(v) := v^t A v$$

(Faktum aus der Analysis)

$$\exists x \in \mathbb{R}^n, ||x|| = 1 \text{ mit} q(x) \ge q(x') \ \forall x' \in \mathbb{R}^n, ||x'|| = 1$$

Dann für $v \in \mathbb{R}^n, v \perp x$ haben wir $Av \perp x$. In der Tat haben wir

$$(Av - q(x)v) \perp x \ \forall v \in \mathbb{R}^n$$

denn

$$\langle Av - q(x)v, v \rangle + 2\lambda \langle Av - q(x)v, x \rangle = (v + \lambda x)^t (A - q(x)E_n)(v + \lambda x) \le 0 \ \forall \lambda \in \mathbb{R}$$
(Details im Buch, 5.6.4)

Bemerkung22. Fselbstadjugiert, $\dim V < \infty \implies \exists$ orthonromale Basis von Eigenvektoren \implies

$$V = \bigoplus_{\lambda} \operatorname{Eig}(F; \lambda)$$

orthogonale direkte Summe --- orthogonalte Projektion

$$P_{\lambda}V \to \operatorname{Eig}(F,\lambda)$$

Dann können wir schreiben

$$F = \sum_{\text{Eigenwerte}\lambda} \lambda P_{\lambda}$$

 $= \{ \text{Eigenwerte von } F \} = \text{"Spektrum"}$

Geschrieben mit Matrizen:

$$A \in (n \times n, \mathbb{R})$$
 symmetrisch $\Longrightarrow \exists S \in O(n)$

so dass $S^{-1}AS$ eine Diagonalmatrix ist.

Interpretation: der zu A assoziierte Endomorphismus ist Diagonalisierbar.

 S^tAS ist eine Diagonalmatrix

Interpretation: $A \leftrightarrow s : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ Bilinearform.

$$\operatorname{diag}(\lambda_1, \dots, \lambda_n) \leftrightarrow (x, y) \mapsto x^t \operatorname{diag}(\lambda_1, \dots, \lambda_n) y$$

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \mapsto \sum_{i=1}^n \lambda_i x_i y_i$$

Fragen

- Zu einer symmetrischen Bilinearform gibt es eine bestimmte Normalform?
- Wie kann man das praktisch berechnen?

Proposition 9. Hauptachsentransofrmation symmetrischer Matrizen Sei $A \in M(n \times n, \mathbb{R})$ symmetrisch und $s : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ die entsprechende symmetrische Bilinearform. Dann:

- 1. Ist $B = (w_1, \dots, w_n)$ eine orthonormale Basis von Eigenvektoren von A, so ist $M_B(s) = \operatorname{diag}(\lambda_1, \dots, \lambda)$ wobei $\lambda_1, \dots, \lambda_n$) die Eigenwerte von A sind.
- 2. Es gibt eine Basis B' mit

$$M_{B'}(s) = \begin{pmatrix} E_k & & \\ & -E_l & \\ & & 0 \end{pmatrix}$$

Blockdiagonalmatrix, wobei

$$k = \# \{i | \lambda_i > 0\}$$

 $l = \# \{i | \lambda_i < 0\}$

Beweis 16. 1. $\Leftrightarrow \exists S \in O(n) \text{ mit } S^t A S = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$

2.
$$\Leftrightarrow \exists T \in GL_n(\mathbb{R}) \text{ mit } T^t A T = \begin{pmatrix} E_k \\ -E_l \\ 0 \end{pmatrix}$$

oBdA habe wir

$$\lambda_1, \dots, \lambda_k > 0$$

$$\lambda_{k+1}, \dots, \lambda_{k+l} < 0$$

$$\lambda_{k+l+1} = \dots = \lambda_n = 0$$

Wir nehmen $B' = (w'_1, \dots, w'_n)$ mit

$$w_i' = \begin{cases} \frac{w_i}{\sqrt{|\lambda_i|}} & i \le k+l\\ w_i, i > l+l \end{cases}$$

$$(w_i')^t A w_i' = \frac{1}{|\lambda_i|} w_i^t A w_i = \frac{1}{|\lambda_i|} \lambda_i \text{ für } i \leq k + l$$

Bemerkung 23.

$$T^t A T = \underbrace{\begin{pmatrix} E_k \\ -E_n \\ 0 \end{pmatrix}}_{\text{Sylvester-Form}}$$

... Erklärung zum Namen "Hauptachsentransformation"...

Korollar 9. Sei $s : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ eine symmetrische Bilinearform mit entsprechender Matrix A. Die folgenden Aussagen sind äquivalent:

- 1. s ist positiv definit
- 2. Alle Eigenwerte von A sind positiv
- 3. Die Koeffizienten des charakteristischen Polynoms haben alternierende Vorzeichen

Vorzeichenregel von Descartes

Beispiel 16.

$$A = \begin{pmatrix} 3 & 1 & 2 \\ 1 & 3 & -1 \\ 2 & -1 & 2 \end{pmatrix}$$

$$P_A(t) = \det(tE_3 - A) = t^3 - ut^2 + 15t + 3$$

$$P_A(-1) = -21 \ P_a(0) = 3 \implies \exists \lambda : -1 < \lambda < 0$$

Beweis 17. s ist äquivalent zu

$$(x,y) \mapsto \sum_{i=1}^{n} \lambda x_i y_i$$

 \implies s positiv definit $\Leftrightarrow \lambda_i > 0 \ \forall i$

Bemerkung 24. Weitere Begriffe $s: V \times V \to \mathbb{R}$ symmetrische Bilinearform

positiv definit positiv semidefinit negativ definit negativ semidefinit indefinit: $\exists x \in V : s(x,x) > 0 \text{ und } y \in V : s(y,y) < 0$

Tabelle 1: Weitere Begriffe

Bemerkung 25. Ausartungsraum Ausartungsraum von einer Bilinearform $s:V\times V\to K$ auf einem Vektorraum über einem beliebigen Körper K ist:

$$U := \{ v \in V | s(v, w) = 0 \ \forall w \in V \}$$

und ist ein Untervektorraum. Falls s symmetrisch oder schiefsymmetrisch ist, bekommen wir eine induzierte Bilinearform $\bar{s}: V/U \times V/U \to K$, gegeben durch

$$v + U, w + U) \mapsto s(v, w)$$

und \bar{s} ist nicht ausgeartet.

$$v' = v + u, u \in U$$
$$w' = w + \tilde{u}, \ \tilde{u} \in U$$

$$s(v',v') = s(v,w) + s(u,w) + s(v,\tilde{u}) + s(u,\tilde{u}) =$$

$$= s(v,w) + s\underbrace{(u,w)}_{=0} \pm \underbrace{s(\tilde{u},v)}_{=0} + s\underbrace{(u,\tilde{u})}_{=0}$$

$$s(v, w) = 0 \implies v \in U \implies v + U$$

ist Nullvektor von V/U

Korollar 10. Sei $n \in \mathbb{N}_{>0}$ und $s : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ eine symmetrische Bilinearform. dann gibt es eine orthogonale Zerlegung

$$\mathbb{R}^n = W_+ \oplus W_i \oplus W_0$$

mit

$$s|_{W_{+}} > 0, \ s|_{W_{-}} < 0$$

 $und W_0 = Ausartungsraum von s$

Proposition 10. Trägheitsgesetz/Signatur von Sylvester Sei V ein endlichdimensionaler reeller Vektorraum und $s: V \times V \to \mathbb{R}$ eine symmetrische Bilinearform. Sei

$$V = V_+ \oplus V_- \oplus V_0$$

eine Zerlegung als orthogonale direkte Summe, mit $s|_{V_+} > 0$, $s|_{V_-} < 0$ und $V_0 = Ausartungsraum von s. Dann sind$

$$r_{+} := \dim(V_{+}), \ r_{-} = \dim(V_{-}) \ und \ r_{0} := \dim(V_{0})$$

Invarianten von s, charakterisiert durch

$$r_{+} = \max \{ \dim W | W \subset V \ Untervektorraum, \ s|_{W} > 0 \}$$

$$r_{-} = \max \{ \dim W | W \subset V \ Untervektorraum, \ s|_{W} < 0 \}$$

Die Invarianten (r_+, r_-, r_0) heisst Trägheitsindex oder Signatur von s

Bemerkung 26. Ist A eine $n \times n$ symmetrische reelle Matrix, heisst Signatur die Signatur von der zu A entsprechender Biliniearform.

Bemerkung 27. Auch $r_+ - r_-$ heisst Signatur.

$$\begin{array}{ccc} \text{Dimension} & \dim V = r_+ + r_- + r_0 \\ \text{Rang} & r_+ + r_- & \leftrightarrow (r_+, r_-, r_0) \\ \text{Signatur in diesen Sinn} & r_+ - r_- \end{array}$$

Beweis 18. Reduktionsschritt: Es genüngt, das Resultat zu beweisen, im Fall dass s nicht ausgeartete ist.

$$V \to \bar{V} = V/V_0$$

$$V = V_+ \oplus V_- \oplus V_0$$

$$\bar{V} = \bar{V}_+ \oplus \bar{V}_-$$

wobei $\bar{V}_{\pm} = Bild \ von \ V_{\pm}$. Bew. $\bar{V} = \bar{V}_{+} + \bar{V}_{-} \ direkte \ Summe$

$$\Leftrightarrow \bar{V}_{+} \cap \bar{V}_{-} = 0$$

$$\bar{v} \leftrightarrow v \in V_+ \oplus V_0$$

und

$$v \in V_- \oplus V_0$$

 $\Leftrightarrow v \in V_0$ Behauptung: \bar{s} induzierte Bilinearform auf \bar{V}

$$\max \left\{ \dim W | s|_W > 0 \right\} = \max \left\{ \dim U | U \subset \bar{V}, \bar{s}|_U > 0 \right\}$$

und

$$\max\left\{\dim W|s|_W<0\right\}=\max\left\{\dim U|U\subset\bar{V},\bar{s}|_U<0\right\}$$

Ist $W \subset V, s|_W > 0$, und $\overline{W} := Bild \ von \ W$, so haben wir

$$\dim \bar{W} = \dim W$$

und

$$\bar{s}|\bar{W}>0$$

Dimensionsformel:

$$\dim \bar{W} = \dim W - \dim(\underbrace{W \cap V_0}_{=0}) = \dim W$$

und

$$\bar{s}(\bar{v},\bar{v}) = s(v,v)$$

wobei $v \in W \mapsto v \in \overline{W}$ Umgekehrt ist

$$U \subset \bar{V}, \ \bar{s}|_{U} > 0, \ \dim U = d$$

wählen Basis $(\bar{v}_1, \dots, \bar{v}_d)$ von \bar{U} , mit $v_i \mapsto \bar{v}_i \, \forall i \, dann \, haben \, wir \, W := \operatorname{span}(v_1, \dots, v_d)$ hat die Eigenschaft

$$\dim W = d \ s|_W > 0, \ \operatorname{Im}(W) = U$$

Beweis im Fall s nicht ausgeartet:

Behauptung: Ist

$$W_{+} \subset V, s|_{W_{+}} > 0, \ W_{-} \subset V, s|_{W_{-}} < 0$$

so haben wir

$$W_+ \cap W_- = 0$$

Es folgt:

$$\dim W_- + \dim W_+ \le \dim V$$

 $mit\ Gleicheit \Leftrightarrow V = W_+ \oplus W_-$

Deshalb

$$r_+ + r_- \le \dim V$$

 $Und\ wir\ haben=\ aus\ dem\ Korollar$

(alternativer Beweis ohne Quotientenvektorräume sehe Buch)

Bemerkung 28. Praktische Fragen:

- Wie berechnet man die Signatur einer symmetrischen Bilinearform?
- Wie findet man eine Basis, so dass die darstellden Matrix in Sylversterform ist?

In Matrixen: $A \in (n \times n, \mathbb{R})$ symm.

- Signatur?
- Finden $T \in GL_n(\mathbb{R})$ mit T^tAT in Sylvesterform

Antwort:

Aus der Hauptachsentrasformation:

$$\exists S \in O(n), S^t A S = S^{-1} A S = \operatorname{diag}(\lambda, \dots, \lambda_n)$$

⇒ Signatur

$$r_{+} = \# \{i | \lambda_{i} > 0\}$$

$$r_{-} = \# \{i | \lambda_{i} < 0\}$$

$$r_{0} = \dim \operatorname{Ker}(A)$$
S Normieren der Spaltenvektoren S'

mit $S'^t A S$ in Sylvesterform.

Alternatives, oft leicheres Verfahren:

- Ker(A) = Ausartungsraum berechnen
- Vektoren Wählen, wobei q(v)=s(v,v)verschieden von Null ist. $\leadsto q(v)\in\{\pm 1\}\leadsto v^\perp$

Beispiel 17. Silvesterform

$$A = \begin{pmatrix} 5 & 2 & 3 \\ 2 & 1 & 1 \\ 3 & 1 & 2 \end{pmatrix}$$

$$P_A(t) = t^3 - 8t^2 + 3t = t\left(t - (4 + \sqrt{13})\right)\left(t - (4 - \sqrt{13})\right)$$

Signaturen (2,0,1) Mit Halbachsentransformation

Eigenwert 0 \leadsto Eigenvektor (1, -1, 1)Eigenwert $4 + \sqrt{13}$ \leadsto Eigenvektor $(1, 4 - \sqrt{13}, -3 + \sqrt{13})$ Eigenwert $4 - \sqrt{13}$ \leadsto Eigenvektor $(1, 4 + \sqrt{13}, -3 - \sqrt{13})$

Normieren...

S' ausrechnen... (ne danke)

haben wir

$$S'^t = \begin{pmatrix} 1 & & \\ & 1 & \\ & & 0 \end{pmatrix}$$

Beispiel 18. Alternativ

$$e_2: q(e_2) = e_2^t A e_2 = 1$$

$$e_2^{\perp} = \{(x, y, z) | 2x + y + z = 0\}$$

$$(-1, 2, 0) A \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix} = 1$$

$$Ker(A) = \operatorname{span} \begin{pmatrix} 1 & -1 & -1 \end{pmatrix}$$

$$T := \begin{pmatrix} 0 & -1 & 1 \\ 1 & 2 & -1 \\ 0 & 0 & -1 \end{pmatrix}$$

mit T haben wir $T^tAT = \begin{pmatrix} 1 & & \\ & 1 & \\ & & 0 \end{pmatrix}$

2 Klassifikation von Bilinearformen auf $\mathbb{R}^n \leftrightarrow \text{Signatur}$ gnatur

Seien euklidische (V, \langle, \rangle) und symmetrische Bilinearform $s: V \times V \to \mathbb{R}$, so können wir die Bilinearform durch die Hauptachsentransormation verstehen. Seien ein endlichdimensionaler \mathbb{R} -Vektorraum V und die symmetrische Bilinearform $s: V \times V \to \mathbb{R}$, dann ist s durch die Signatur (r_+, r_-, r_0) klassifiziert.

Eigenschaften 10. dim V = 2

```
Signatur (2,0,0) q(v) := s(v,v) Quadratische Schale (positiv)
            (0,2,0)
                             Quadratische Schale (negativ)
            (1,1,0)
                                      Sattelpunkt
            (0,1,1)
                          Quadratisches halbes Rohr (positiv)
            (1,0,1)
                          Quadratisches halbes Rohr (negativ)
Eigenschaften 11. dim V = 3 \{q(v) = 1\}
 (3,0,0)
                   Sphäre
 (2,1,0)
           einschaliges Hyperboloid
                                      + Fälle s entartet
 (1,2,0)
          zweischaliges Hyperboloid
```

(0,3,0) Ø

Der Fall von Bilinearformen über Vektorräumen über \mathbb{K} , \mathbb{K} beliebiger Körper.

Proposition 11. Orthogonalisierungssatz Sei V ein endlichdimensionaler Vektorraum über einem Körper mit char $(K) \neq 2$. Sei s eine symmetrische Bilinearform über V. Dann gibt es eine Basis B von V, so dass die $M_B(s)$ eine Diagonalmatrix ist.

Beweis 19. Reduktionsschritt zum Fall s nicht ausgeartet. Sei U = Ausartungsraum. $\bar{V} := V/U$ und $\bar{s} := induzierte$ Bilinearform. Wählen wir ein Komplement $W \subset V$ zu U, so haben wir

$$V = U \oplus W$$

$$W \xrightarrow{Isomorphismus} \bar{V}$$

$$s|_{W} \text{ nicht ausgeartet}$$

Wir können deshalb behaupten, dass s
 nicht ausgeartet ist. Dann beweisen wir dies Aussage durch Induktion nach dim V. dim $V \le 1$ trivial. Induktionsschritt:

s nicht ausgeartet
$$\xrightarrow{\dim(\mathbb{K})\neq 2} \exists v \in V : s(v,v) \neq 0$$

Sei $V' := V^{\perp}$ Wir haben $\dim V' = \dim V - 1$, weil s nicht ausgeartet ist. IA \leadsto Basis B' von V' mit $M_B(s|_{V'})$ diagonal. Dann:

 $B\&v \leadsto B \ mit \ M_B(s) \ eine \ Diagonal matrix$

Korollar 11. Ist char $K \neq 2$, so gibt es zu einer symmetrischen Matrix $A \in (n \times n, \mathbb{K})$ ein $S \in GL_n(\mathbb{K})$ so dass S^tAS eine Diagonalmatrix ist.

Beispiel 19. K beliebig, chat $(K) \neq 2$ $V = K^2$

$$s(x,y) = x_1y_2 + x_2y_1$$

$$v_1 = \begin{pmatrix} 1\\1 \end{pmatrix}$$

$$s(v_1, v_1) = 2$$

$$v_1^{\perp} = \operatorname{span} \begin{pmatrix} 1\\-1 \end{pmatrix}$$

$$v_2 = \begin{pmatrix} 1\\-1 \end{pmatrix}$$

$$s(v_2, v_2) = -2$$

$$B := (v_1, v_2)$$

$$M_B(s) = \begin{pmatrix} 2&0\\0&-2 \end{pmatrix}$$

$$S \leftrightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 Standardbasis. Mit $S := \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ haben wir

$$S^tAS = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$$

Bemerkung 29. offen bleibt die Frage: Sind symmetrische Bilinearformen s und s' auf V gegeben ($\dim_{\mathbb{K}} < \infty$), können wir entscheiden ob s und s' äquivalent sind?

Oder, in Matrizen: Sind symmetrische $A, A' \in (n \times n, \mathbb{K})$ gegeben, können wir entscheiden, obes ein $S \in GL_N(\mathbb{K})$ gibt, so dass $S^tAS = A'$? Die Antwort hängt von \mathbb{K} ab.

- $\mathbb{K} = \mathbb{R}$ durch die Signatur
- $\mathbb{K} = \mathbb{C}$ durch die Rang
- andere \mathbb{K} ?

Im Allgemeinen:

- Rang
- Reduktion zum Fall einer nichtausgearteten Form

Wir behaupten: s ist nicht ausgeartet \Leftrightarrow eine darstellende Matrix A ist invertierbar.

$$\det(A) \in \mathbb{K}^*/(\mathbb{K}^*)^2$$

ist eine Invariante von s, wegen der Transformationsform.

$$T \in GL_n(\mathbb{K}) \rightsquigarrow T^tAT$$

ist eine andere darstellende Matrix. Und

$$\det(T^t A T) = \det(T^t) \det(A) \det(T) = (\det T)^2 \det(A)$$

Definition 23. Diskriminante Sei $s: V \times V \to \mathbb{K}$ eine symmetrische Bilinearform (mit $\dim_{\mathbb{K}} V < \infty$). Die Diskiminante von s ist 0 falls s ausgeartet ist, sonst ist die Klasse von $\det(A)$ in $\mathbb{K}^*/(\mathbb{K}^*)^2$, wobei A eine darstellende Matrix von s ist. Die Diskriminante ist eine Invariante von s

- Rang
- Diskriminante

Bemerkung 30. Noch offen: sind s,s' nicht ausgeartet, mit derselben Diskriminante, zu entscheiden, ob s und s' äquivalent sind.

Beispiel 20. $\mathbb{K} = \mathbb{Q}$, z.B. $V = \mathbb{Q}^2$, s Standardskalarprodukt $s(x, y) = x_1y_1 + x_2y_2$ und s' symmetrische Bilinearform mit $\operatorname{disc}(s) = +1$

$$\begin{pmatrix} a & 0 \\ 0 & a' \end{pmatrix} \xrightarrow{\text{Basiswechsel}} \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$$

mit $aa' = b^2, b \in \mathbb{Q}$

$$\implies a = \frac{b^2}{a'} = a' \left(\frac{b}{a'}\right)^2$$

$$a = 2$$

$$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$a = 3$$

$$s' \leftrightarrow q'(x) = 3x_1^2 + 3x_2^2$$

Beh:

$$q'(x) \neq 1 \ \forall x \in \mathbb{Q}^2$$

Konsequenz: s' ist nicht äquivalent zu s. Ist $3x_1^2+3x_2^2=1$ so schreiben wir $x_1=\frac{r_1}{s_1},x_2?\frac{r_2}{s_2},\,r_1,r_2,s_1,s_2\in\mathbb{Q},\,s_1,s_2\neq0$

$$3r_1^2s_2^2 + 3r_2^2s_1^2 = s_1^2s_2^2$$

oder
$$3r^2 + 3s^2 = t^2$$
 wobei $r = r_1 s_2, \ s = r_2 s_1,$ $t = s_1 s_2$ (1)

$$3^{\text{ungerade}}(3k_1+1) + 3^{\text{ungerade}}(3k_2+1)$$

 \implies Widerspruch zu (1)

Fazit 9. \mathbb{K} : Körper, char(\mathbb{K}) \neq 2 V:endlichdimensionaler \mathbb{K} -Vektorraum s: $V \times V \to \mathbb{K}$ symmetrische Bilinearform

Rang Rang i dim $V \Leftrightarrow s$ ist ausgeartet. U:=Ausartungsraum. \bar{s} induzierte Bilinearform auf $\bar{V} := V/U$ (nicht ausgeartet)

Diskriminiante für s nicht ausgeartet: $\operatorname{disc}(s) \in \mathbb{K}^*/(K^*)^2$

Beispiel 21. $\mathbb{K}=\mathbb{Q},\ V=\mathbb{Q}^2$ Bilinear entsprechend zu $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ und $\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$

- Beide: Rang 2, Diskriminante 1
- nicht äquivalent

Bemerkung 31. Die Frage, ob eine nicht ausgeartete symmetrische Bilinearform auf $V := \mathbb{Q}^2$ der Diskriminante 1 äquivalent zum Standardskalarprodukt ist, können wir nur beantworten mittels einem Resultat aus der Zahlentheorie.

Satz 5. s nicht ausgeartete symmetrische Bilinearform auf \mathbb{Q}^2 disc $(s) = 1 \implies \exists B \text{ Basis mit}$

$$M_B(s) = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}, \ a \in \mathbb{Z}, a \neq 0$$

Dann: s ist äquivalent zum Standardskalarprodukt \Leftrightarrow

$$\exists v \in V, \ s(v,v) = 1 \ d.h. \ \exists x, y \in \mathbb{Q}: \ ax^2 + ay^2 = 1$$

 \Leftrightarrow

$$\exists x, y \in \mathbb{O} \ mit \ x^2 + y^2 = a$$

Bemerkung 32. Ein Resultat aus der Zahlentheorie gibt uns eine Charakterisierung von Summen zweier Quadrate in \mathbb{Q} : für $a \in \mathbb{Z}, a \neq 0$:

$$\exists x, y \in \mathbb{O} : x^2 + y^2 = a \Leftrightarrow x, y \in \mathbb{Z} : x^2 + y^2 = a$$

 $\Leftrightarrow a>0$ und jede Primzahl $p=4k+3\ (k\in\mathbb{N})$ kommt mit gerader Vielfachheit in der Primzahlzerlegun von a vorkommen. Der Beweis nutzt

$$(x_1x_1' - x_2x_2')^2 + (x_1x_2' + x_2x_1')^2 = (x_1^2 + x_2^2)(x_1'^2 + x_2'^2)$$

Satz von Fermat: p Primzahl

$$\exists x, y \in \mathbb{Z}, x^2 + y^2 = p \iff p = 2 \vee 4 | (p-1)$$

Argument vom letzten Mal (auszuschliessen a = 3)

Fazit 10. Zurück zum Fall $\mathbb{K} = \mathbb{R}$

Wir wissen: eine symmetrische Bilinearform $s: V \times V \to \mathbb{R}$ (dim \mathbb{R} $V < \infty$) ist durch die Signatur (r_+, r_-, r_0) charaktertisiert.

$$A: M_B(s) \ P_A(t) = \prod_{i=1}^n (t - \lambda_i)$$

$$r_{+} = \# \{i | \lambda_{i} > 0\}$$

$$r_{-} = \# \{i | \lambda_{i} < 0\}$$

$$r_{0} = \# \{i | \lambda_{i} = 0\}$$

und

 $s>0 \Leftrightarrow \text{Signatur } (n,0,0) \Leftrightarrow \lambda_i>0 \forall i \Leftrightarrow \text{Koeff. } P_A(t) \text{ hat alternierende Vorzeichen}$

Definition 24. Hauptminor Sei $A = (a_{ij}) \in (n \times n, \mathbb{K})$. Wir schreiben A_k für die Teilmatrix $(A_{ij})_{1 \le i,j \le k}$, für $1 \le k \le n$. Der k-te Hauptminor von A ist $\det(A_k)$

Bemerkung 33. $\dim_{\mathbb{R}} < \infty$, $s: V \times V \to \mathbb{R}$ symmetrische Bilinearform. Wann ist s positiv? Es ist notwendig, aber nicht hinreichend, dass $\det(A) > 0$ für eine darstellende Matrix A.

Proposition 12. Hauptminorenkriterium von Jacobi-Sylvester Sei V ein endlichdimensionaler reeller Vektorraum, $s: V \times V \to \mathbb{R}$ eine symmetrische Bilinearform und A eine darstellende Matrix. Dann ist s positiv definit $\Leftrightarrow \det(A_K) > 0$, $k = 1, \dots, n$ $n = \dim V$

Beweis 20. \Rightarrow Ist s > 0, so ist $s|_W > 0$ für alle Untervektorräume $S \subset V$. Sei $B = (v_1, \dots, v_n)$ eine Basis mit $A = M_B(s)$. Sei $V_k := \operatorname{span}(v_1, \dots, v_k)$ für $1 \leq k \leq n$. Dann haben wir:

$$M_{(v_1, \dots, v_k)}(s|_{V_k}) = (s(v_i, v_j))_{1 \le i, j \le k} = (A_K)$$

Weil $s|_{V_k} > 0$, folgt: $\det(A_k) > 0$.

 \Leftarrow Durch eine Induktion nach n:

IA: n = 1

IS: Wir nehmen das Resultat an für einen Vektorraum der Dimension n-1. Seien $B=(v_1,\cdots,v_n)$ eine Basis von V und $A=(a_{ij})_{i\leq i,j\leq n}$ $A=M_B(s)$. Wir haben

- $aus \det(A) > 0$ folgt: s ist nicht ausgeartet
- $aus \det(A_1) > 0 \ folgt \ a_{11} > 0$

Wir haben $V = \operatorname{span}(v_1) \oplus V_1^{\perp}$. Es genügt zu zeigen, dass $s|_{v_1^{\perp}}$ positiv definit ist. Eine Basis von v_1^{\perp} sieht so aus: Sei $c_i := \frac{a_{1i}}{a_{11}}$ und $\tilde{v}_i := v_i - c_i v_1$ für $i = 2, \dots, n$.

$$s(v_{1}, \tilde{v}_{1}) = s(v_{1}, v_{i}) - c_{i}s(v_{1}, v_{1}) = a_{1i} - c_{i}a_{11} = 0$$

$$(\tilde{v}_{2}, \dots, \tilde{v}_{n}) \Leftrightarrow \begin{pmatrix} -c_{2} & 1 \\ -c_{3} & 1 \\ & \ddots \\ -c_{n} & 1 \end{pmatrix}$$

$$(\tilde{a}_{ij})_{2 \leq i, j \leq n} \tilde{a}_{ij} = s(\tilde{v}_{i}, \tilde{v}_{j}) = a_{ij} - c_{i}a_{i1} + c_{i}c_{j}a_{11} = a_{ij} - c_{i}a_{1j}$$

$$weil \ c_{i}c_{j}a_{11} = \frac{a_{1i}}{a_{11}}a_{1j} = c_{j}a_{i1}$$

Wir haben für $s \le k \le n$:

$$\begin{pmatrix} -c_2 & 1 \\ -c_3 & 1 \\ & & \ddots \\ -c_k & & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & & & \\ \vdots & & \ddots \\ a_{k1} & & & a_{kk} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ 0 & a_{22} - c_2 a_{12} & \cdots & a_{2k} - c_2 a_{1k} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & a_{2k} - c_k a_{12} & \cdots & a_{kk} - c_k a_{1k} \end{pmatrix}$$
$$= \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ 0 & \tilde{a}_{22} & \cdots & \tilde{a}_{2k} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \tilde{a}_{k2} & \cdots & \tilde{a}_{kk} \end{pmatrix}$$
$$\implies \det(A_k) = a_{11} \det(\tilde{a}_{ij})_{2 \leq i, j \leq k}$$

Aus $det(A_k) > 0$ und $a_{11} > 0$ folgt:

$$\det(\tilde{a}_{ij})_{2 \le i, j \le k} > 0, \text{ für } k = 2, \cdots, n$$

Aus der Induktionsvoraussetzung folgt $s|_{v_1^{\perp}} > 0$

3 Multilineare Algebra

3.1 Dualvekttorräume

Definition 25. Dualvektorraum / Linearformen Sei \mathbb{K} ein Körper und V ein \mathbb{K} -Vektorraum. Der Dualvektorraum ist $V^* := \operatorname{Hom}(V, \mathbb{K})$. Elemente vo V^* heissen Linearformen. V^* ist ein \mathbb{K} -Vektorraum, mit Addition von Abbildungen und Multiplikation durch Skalare.

Eigenschaften 12. Sei $B = (v_i)_{i \in I}$ eine Basis von V.

• Koeffizient von v_i

$$v_i^*: v = \sum_{j \in I} a_j v_j \mapsto a_i$$

• Summe von Koeffizienten

$$\sum v_i^* : v = \sum_{j \in I} a_j v_j \mapsto \sum a_i$$

wohldefiniert, weil nur endlich viele a_i sind $\neq 0$

- Operationen auf Funktionsräumen, z.B. $\{f : \mathbb{R} \to \mathbb{R} \text{ stetig}\}$
- Standardkoordinaten: $n \in \mathbb{N}_{>0}$, $V = \mathbb{K}^n$, Standardbasis e_1, \dots, e_n

$$e_i^*:(x_1,\cdots,x_n)\mapsto x_i$$

Bemerkung 34. Ist $B=(v_1,\cdots,v_n)$ eine Basis von V, so ist $B^*=(v_1^*,\cdots,v_n^*)$ eine Basis von V^* . Denn zu $f:V\to\mathbb{K}$ haben wir $c_i:=f(v_i)$, dann

$$f \text{ linear } \Longrightarrow f(\sum_{i=1}^{n} a_i v_i) = \sum_{i=1}^{n} c_i a_i$$

Das zeigt, dass V^* ist von v_1^*, \cdots, v_n^* aufgespannt. Lineare Unabhängigkeit von v_1^*, \cdots, v_n^* ist klar. Deshalb haben wir einen Isomorphismus $V \to V^*$, gegeben durch $v_i \mapsto v_i^* \ \forall i$. Falls dim $V = \infty$ mit Basis $(v_i)_{i \in I}$, dann ist V^* nicht von den $v_i^*, i \in I$ aufgespannt, z.B.

$$\sum_{i \in I} \not\in \operatorname{span}(v_i^*)_{i \in I}$$

 $\phi: V \to \mathbb{K}$ mit $\phi(v_i) \neq 0$ nur für endlich viele $i \in I$

Beispiel 22. $V = \mathbb{K}$ mit Standardbasis (e_1, \dots, e_n) . Dann hat V^* die Standardbasis (e_1^*, \dots, e_n^*) und wir haben den Isomorphismus

$$\mathbb{K}^n \to (\mathbb{K})^n$$
 $e_i \mapsto e_i^* \ \forall i$

Bemerkung 35. Es ist nicht überraschend, dass der Isomorphismus $V \to V^*$ assoziert zu einer Basis $B = (v_1, \dots, v_n)$ abhängig von der Basis ist.

Bemerkung 36. Sei $V\subset\mathbb{K}^n$ ein Untervektorraum. V kann durch eine Basis gegeben werden, oder durch Gleichungen.

$$V = \operatorname{span}\left(\begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix}\right) = \left\{\begin{pmatrix} x\\y\\z \end{pmatrix} \middle| x - y + z = 0\right\}$$

ist eine Linearform auf \mathbb{K}^n

Definition 26. orthogonaler Raum Sei W ein \mathbb{K} -Vektorraum und $V \subset W$ ein Untervektorraum. Der Untervektorraum

$$V^0 = \{ \phi \in W^* : \phi(v) = 0 \ \forall v \in V \} \subset W^*$$

heisst der zu V orthogonale Raum. Falls dim $V<\infty,$ dann haben wir dim $V^0=\dim W-\dim V.$ Basis von

$$W^* = \underbrace{W_1, \cdots, W_d, \cdots, W_n}_{\text{von } V}$$

Dann:

$$V^0 = \text{span}(w_{d+1}^*, \cdots, w_n^*)$$

Definition 27. duale Abbildung Sei $V \to W$ eine lineare Abbildung von K-Vektorräumen. Dann gibt es eine lineare Abbildung $F^*: W^* \to V^*$, die duale Abbildung, gegeben durch Komposition mit F

$$\psi: V \to K \mapsto F^*(\psi) := \psi \circ F$$

Dann

$$V^0 = \ker\left(W^* \to V^*\right)$$

Aus der Dimensionsformel bekommt man nochmals

$$\dim V^0 = \dim W^* - \dim V^*$$

Eigenschaften 13. duale Abbildung

- falls W = V, gilt $(id_V)^* = \mathrm{Id}_{V^*}$
- Ist auch $G: U \to V$ gegeben, so haben wir

$$G^*F^*\psi = (F \circ G)^*\psi$$

Das nennt man Funktorialität.

Bemerkung37. Man kann zeigen, dass zu $U\subset V$ bekommt man eine surjektive duale Abbildung $V^*\to U^*$

$$(\psi: V \to \mathbb{K}) \mapsto \psi|_U$$

Proposition 13. Seien V und W endlich dimensionale \mathbb{K} -Vektorräume mit Basen $A=(v_1,\cdots,v_n)$ und $B=(w_1,\cdots,w_m)$. Sei $F:V\to W$ eine lineare Abbildung mit darstellender Matrix M. Dann ist $F^*:W^*\to V^*$ bezüglich der dualen Basen $A^*=(v_1^*,\cdots,v_n^*), B^*=(w_1^*,\cdots,w_m^*)$ durch die Matrix M^t dargestellt. Wir schreiben $M=(a_{ij})$. Das bedeutet:

$$F(v_j) = \sum_{i=1}^{m} a_{ij} w_i$$

Es folgt

$$F^*(w_i^*)(v_j) = i$$
-te Komonent von $F(v_j) = a_{ij}$

Das ist zu sagen, die darstellende Matrix von F^* ist die Matrix (a_{ji})

$$F^*(w_i^*) = \sum_{j=1}^m a_{ij} v_j^*$$

Eigenschaften 14. $F: V \rightarrow W$

 $\underbrace{\left(\operatorname{Im} F\right)^{0}}_{\text{alle }W\xrightarrow{\phi}\mathbb{K}\text{ mit }\phi|_{\operatorname{Im} F}=0} = \underbrace{\operatorname{Ker} F^{*}}_{\text{alle }W\xrightarrow{\phi}\mathbb{K}\text{ mit }\phi\circ F=0}$

Da

$$\phi|_{\operatorname{Im} F} = 0 \iff \phi \circ F = 0$$

haben wir die Gleichung.

 $\left(\operatorname{Ker}\right)^{0} = \operatorname{Im}\left(F^{*}\right)$

 \supset offensichtlich

 \subset folgt aus der Surjektivität von $W^* \to (\operatorname{Im} F)^*$

Wir betrachten $\phi: V \to \mathbb{K}$ mit $\phi|_{\operatorname{Ker} F} = 0$

$$w \to W, w = F(v)$$
 für ein $v \in V$
$$w \leadsto \bar{\phi}(w) = \phi(v)$$

Ist

$$w = F(v')$$

dann ist

$$v' - v \in \operatorname{Ker} F$$

und

$$\phi(v') - \phi(v) = \phi(v' - v) = 0$$

$$V \xrightarrow{\phi} K$$

$$Im F$$

$$\exists \underbrace{\psi}_{\in W^*} \mapsto \underbrace{\bar{\phi}}_{\in (\operatorname{Im} F)^*}$$

d.h.

$$\psi:W\to\mathbb{K}$$

mit

$$\psi|_{\operatorname{Im} F} = \bar{\phi}$$

Das zeigt:

$$F^*(\psi) = \phi$$

Bemerkung 38. An dem Diagramm haben wir eine Bijektion zwischen $\phi \in V^*$ mit $\phi|_{\operatorname{Ker} F} = 0$ und $\bar{\phi} \in (\operatorname{Im} F)^*$

$$\xrightarrow{\dim W < \infty} \dim(\operatorname{Im} F) = \dim(\operatorname{Im} F)^* = \dim(\operatorname{Ker} F)^0 = \dim\operatorname{Im}(F^*)$$

$$\xrightarrow{\dim V, \dim W < \infty} \operatorname{rang}(F) = \operatorname{rang}(F^*)$$

Keine Überraschung! $rang(A) = rang(A^t)$

Beispiel 23.

$$\mathbb{R}[x]^{\leq 2} \xrightarrow{(ev_{-1}, ev_1)} \mathbb{R}$$

surjektiv

$$\implies (\operatorname{Im} F)^0 = 0$$

Interpretation:

$$\alpha f(-1) + \beta f(1) = 0 \ \forall f \in \mathbb{R}[x]^{\leq 2} \ \Leftrightarrow \ \alpha = \beta = 0$$
$$\operatorname{Ker}((\alpha, \beta) \mapsto (f \mapsto \alpha f(-1) + \beta f(1)))$$

$$\operatorname{Ker}(ev_{-1}, ev_1) = \operatorname{span}(x^2 - 1)$$

$$\Longrightarrow \operatorname{Ker}(ev_{-1}, ev_1)^0 = \left\{ \mathbb{R}[x]^{\leq 2} \xrightarrow{\phi} \mathbb{R}, \ \phi(x^2 - 1) = 0 \right\} = \operatorname{span}\left(\frac{1}{2}ev_0'' + ev_0, ev_0'\right)$$

und

$$= \operatorname{Im} (ev_{-1}, ev_1)^* = \operatorname{span}(ev_{-1}, ev_1)$$

weil

$$ev_{-1} = \frac{1}{2}ev_0'' - ev_0' + ev_0$$
$$ev_1 = \frac{1}{2}ev_0'' + ev_0' + ev_0$$

3.2 Der Bidualraum $V \leadsto V^* \leadsto V^{**}$

Definition 28. kanonische lineare Abbildung dim $V<\infty\Longrightarrow$ ein Isomorphismus $V\to V^*$ wird durch die Auswahl einer Basis bestimmt. Dagegen haben wir eine Abbildung $V\to V^{**}$ unabhängig von der Basis, so:

$$v \mapsto \begin{pmatrix} V^* \xrightarrow{ev_v} \mathbb{K} \\ (\phi : V \to \mathbb{K}) \mapsto \phi(v) \end{pmatrix}$$

Dies heisst kanonische lineare Abbildung und ist ein Isomorphismus falls dim $V<\infty$

Bemerkung 39. Im Allgemeinen ist die kanonische Abbildung $V \to V^{**}$ injektiv:

[Sei
$$v \in V$$
 mit $v \neq 0$] $\overset{\operatorname{span}(v) \subset V}{\leadsto} V^* \twoheadrightarrow \operatorname{span}(V)^*$ $\phi \mapsto \psi : v \mapsto 1 \text{ (d.h. } \phi(v) = 1)$ $\Longrightarrow ev_1(\phi) \neq 0$ $\dim V < \infty \implies \dim V = \dim V^* = \dim V^{**}$

Dann:

$$\implies V \to V^{**}$$
 injektiv \Leftrightarrow bijektiv

Oft schreibt man $V=V^{**}$ für V ein Vektorraum mit dim $V<\infty$. Das bedeutet immer, dass V und V^{**} identifiziert wird, durch den kanonischen Isomorphismus.

Beispiel 24. $V = \mathbb{K}^n$ mit Standardbasis e_1, \dots, e_n . $V^* = (\mathbb{K}^n)^*$ hat die duale Basis e_1^*, \dots, e_n^* $V \to V^{**}$ mit einer Abbildung

$$e_i \mapsto \begin{pmatrix} \phi : (\mathbb{K}^n)^* \to \mathbb{K} \mapsto \phi(e_i) \\ e_j^* \mapsto \delta_{ij} \end{pmatrix} = e_i^{**}$$

Bemerkung 40. Sei $F:V\to W$ eine lineare Abbildung von endlichdimensionalen Vektorräumen. Dann ist $F^**=F$, im folgenden Sinn:

Wobei \sim einen kanonischen Isomorphismus darstellt. Daraus folgt, dass

$$V \xrightarrow{F} W \leadsto W^* \xrightarrow{F^*} V^* \leadsto V^{**} \xrightarrow{F^{**}} W^{**}$$

kommutativ ist.

Bemerkung 41.

Falls $\dim W < \infty$ und $V \subset W$, dann haben wir $V^{00} = V$ im folgenden Sinn

$$\dim \dim W - \dim V$$

$$\subset W^*$$

$$\dim \dim W - (\dim W - \dim V) \dim V$$

$$\subset W^{**} \stackrel{\sim}{\leftarrow} W \supset V$$

Das Bild von V unter dem kanonischen Isomorphismus ist V^{00} . Sei $v \in V$ $ev_1 \in V^{00}$

$$\phi \in W^*, \ \phi(v)0 \ \forall \phi \in V \implies \phi(v) = 0$$

Beispiel 25.

$$W = \mathbb{R}^{3}$$

$$V = \operatorname{span}\left(\begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\-1\\1 \end{pmatrix}\right) \implies V^{0} = \operatorname{span}(e_{1}^{*} - e_{2}^{*} - e_{3}^{*}) = \operatorname{span}(e_{1} + e_{3}, -e_{2} + e_{3})$$

$$V^{00} = \operatorname{span}(e_{1}^{**} + e_{2}^{**}, e_{1}^{**} + e_{3}^{**})$$

3.3 Zusammenhang zwischen Dualraum und bilinearen Abbildungen

- schon gesehen, z.B. bei der Definition "nicht ausgeartet"
- jetzt explizit

Definition 29. bilineare Abbildung Sei \mathbb{K} ein Körper, v und W Vektorräume über \mathbb{K} . Eine Abbildung $b:V\times W\to \mathbb{K}$ heisst bilinear falls

$$w \mapsto b(v, w)$$
 ist linear $\forall v \in V$

und

$$v \mapsto b(v, w)$$
 ist linear $\forall w \in W$
$$[(w \mapsto b(v, w)) \in W^*]$$

Bemerkung42. Im Fall W=Vist dies genau zu sagen, dass beine Bilinearform ist. Also haben wir Abbildungen

$$b':V\to W^*$$

und

$$b'':W\to V^*$$

Aus der Definition folgt, dass b' und b'' sind linear.

Definition 30. nicht ausgeartet Eine bilineare Abbildung $b: V \times W \to \mathbb{K}$ ist nicht ausgeartet, falls $b': V \to W^*$ und $b'': W \to V^*$ injektiv sind.

Bemerkung 43. Falls V und W endlich dimensional sind, ist es nur möglich, eine nicht ausgeartete bilineare Abbildung zu haben, wenn dim $V = \dim W$. Falls dim $V = \dim W$: "injektiv" oben ist äquivalent zu "bijektiv".

Beispiel 26. • V beliebig, dann ist

$$V \times V^* \to \mathbb{K}$$

 $(v, \phi) \mapsto \phi(v)$

stets nicht ausgeartet.

$$b': V \to V^{**}$$
$$v \mapsto ev_v$$

ist die kanonische Abbildung, ist injektiv

$$b'': V^* \to V^*$$
$$\phi \mapsto \phi$$

ist id_{V^*} ist ein Isomorpismus

• $\mathbb{K} = \mathbb{R}, \langle, \rangle$ Skalarprodukt auf V.

$$b(v, w) := \langle v, w \rangle$$

b' und b'' sind gleich, definiert als Ψ

$$\leadsto \Psi: V \to V^*$$

injektiv

Bemerkung 44. Das zeigt, dass jedes Skalarprodukt nicht ausgeartet ist. Und: falls $\dim_{\mathbb{R}} V < \infty$ ist Ψ ein Isomorphismus. Ψ heisst kanonisch. (kanonische Abbildung bzw. kanonischer Isomorphismus)

 $\mathit{Eigenschaften}$ 15. V, dim V=n, mit Skalarprodukt, kanonischer Isomorphismus Ψ

 $\bullet \,$ Für $U \subset V \,$ Untervektorraum gilt

$$\Psi(U^{\perp}) = U^0$$

• Für $B = (v_1, \dots, v_n)$ eine orthonormal Basis haben wir

$$\Psi(v_i) = V_i^*$$

für $i=1,\cdots,n,$ wobei (v_1^*,\cdots,v_n^*) die duale Basis ist. zeigen:

$$\frac{\Psi(U^{\perp})}{\dim_{V}-\dim_{U}} \subset \underbrace{U^{0}}_{\dim_{V}-\dim_{U}} \text{ klar}$$

$$\left\langle v_{i}, \sum_{j=1}^{n} a_{j}v_{j} \right\rangle = a_{i}$$

$$v_{i}^{*} \left(\sum_{j=1}^{n} a_{j}v_{j} \right) = a_{i}$$

Beispiel 27. Graphiker gesucht;)

Bemerkung 45. Wir haben zwei kanonische Abbildungen:

$$V \to V^{**}$$
 für beliebiges V / \mathbb{K}

$$V \xrightarrow{\Psi} V^*$$
 für V/\mathbb{R} mit Skalarprodukt

Definition 31. adjugierte Abbildung V, W euklidische Vektorräume

$$F: V \to W$$
 lineare Abbildung

adjugiert: $F^{ad}: W \to V$ ist adjugiert zu F falls gilt

$$\langle F(v), w \rangle = \langle v, F^{ad}(w) \rangle \ \forall v \in V, w \in W$$

Bemerkung 46.

$$V \leftarrow F^{ad} \qquad W$$

$$\downarrow \Phi \qquad \qquad \downarrow \Psi$$

$$V^* \leftarrow F^* \qquad W^*$$

$$F^*(\Psi(w))(v) = \Psi(w) (F(v)) = \Phi (F^{ad}(w)) (v)$$

$$\implies F^*(\Phi(w)) = \Phi (F^{ad}(w)) \text{ in } V^*$$

Daraus folgt, dass das Diagramm kommutiert

Bemerkung 47. Seien v_1, \dots, v_n orthonormale Basen von V, w_1, \dots, w_m für $W \rightarrow$ duale Basen v_1^*, \dots, v_n^* und w_1^*, \dots, w_m^* Bezüglich orthonormaler Basen ist F^{ad} durch die transponierte Matrix gegeben: Sei

$$F \leftrightarrow A \in M(m \times n, \mathbb{R})$$

dann, aus Prop 49 (13?):

$$F^* \leftrightarrow A^t \in M(m \times n, \mathbb{R}) \implies F^{ad} \leftrightarrow A^t \text{ weil} \Phi(v_i) = v_i^*, \ \Psi(w_i) = w_i^* \ \forall i$$

Beispiel 28. $V = \mathbb{R}^2$ mit Skalarprodukt, $W = \mathbb{R}[x]^{\leq 2}$ mit

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) \, \mathrm{d} x$$

$$F: V \to W$$

 $(\alpha, \beta) \mapsto \alpha + \beta x + \alpha x^2$

Basis von W 1, x, x^2

$$V^* = (\mathbb{R}^2)^* \text{ mit Basis } e_1^*, e_2^*$$

$$V \longleftarrow F^{ad} \qquad W$$

$$\downarrow \Phi \qquad \qquad \Psi$$

$$V^* \longleftarrow F^* \qquad W^*$$

$$V \stackrel{\Psi}{\longrightarrow} V^*$$

$$e_1 \mapsto e_1^*$$

$$e_2 \mapsto e_2^*$$

 W^* hat die duale Basis $1^*, x^*, x^{2^*}$. Wir berechnen Ψ explizit:

$$\Psi(1) = \left(f \mapsto \int_{-1}^{1} f(x) \, \mathrm{d} \, x \right)$$

$$W \xrightarrow{\Phi} W^*$$

$$1 \mapsto 2(1^*) + \frac{2}{3} \left(x^{2^*} \right)$$

$$x \mapsto \cdots$$

$$x^2 \mapsto \cdots$$

Dann:

$$F^*\left(\psi(1)\right) = \left((\alpha,\beta)\int_{-1}^1 \alpha + \beta x + \alpha x^2 \,\mathrm{d}\,x = 2\alpha + \frac{2}{3}\alpha = \frac{8}{3}\alpha\right)$$

d.h.

$$\frac{8}{3}e_1^* \overset{\Phi^{-1}}{\mapsto} \left(\frac{8}{3}, 0\right)$$

Ähnlich:

$$F^* (\Psi(x)) = \left((\alpha, \beta) \mapsto \int_{-1}^1 \alpha x + \beta x^2 + \alpha x^3 \, \mathrm{d} \, x = \frac{2}{3} \beta \right)$$

und

$$F^* \left(\Psi(x^2) \right) = \left((\alpha, \beta) \mapsto \int_{-1}^1 \alpha x^2 + \beta x^3 + \alpha x^4 \, \mathrm{d} \, x = \frac{2}{3} \alpha + \frac{2}{5} \alpha = \frac{16}{15} \alpha \right)$$

d.h.

$$F^{ad}(1) = \left(\frac{8}{3}, 0\right)$$

$$F^{ad}(x) = \left(0, \frac{2}{3}\right)$$

$$F^{ad}(x^2) = \left(\frac{16}{15}, 0\right)$$

$$F^{ad}\left(a + bx + cx^2\right) = \left(\frac{8}{3}a + \frac{16}{5}c, \frac{2}{3}b\right)$$

Check:

$$\int_{-1}^{1} \left(\alpha + \beta x + \alpha x^{2}\right) \left(a + bx + cx^{2}\right) dx \stackrel{?}{=} \left\langle \left(\alpha, \beta\right), \left(\frac{8}{3}a + \frac{16}{15}c, \frac{2}{3}b\right) \right\rangle$$

Skalarprodukt:

$$\alpha \left(\frac{8}{3}a + \frac{16}{15}c \right) + \beta \left(\frac{2}{3}b \right)$$

Integral:

$$\int_{-1}^{1} a\alpha + (b\alpha + c\beta)x + (c\alpha + b\beta + a\alpha)x^{2} + (c\beta + \alpha b)x^{3} + c\alpha x^{4} dx =$$

$$= 2a\alpha + \frac{2}{3}(a\alpha + b\beta + c\alpha) + \frac{2}{5}c\alpha$$

stimmt

Bemerkung 48. Wir könnten F^{ad} auch durch die Wahl einer orthonormalen Basis von W berechnen.

$$\frac{1}{\sqrt{2}}, \sqrt{\frac{3}{2}}x, \sqrt{\frac{5}{2}}\sqrt{\frac{-1+3x^2}{2}}$$

Dann:

$$A = \begin{pmatrix} \frac{4}{3}\sqrt{2} & 0\\ 0 & \sqrt{\frac{2}{3}}\\ \frac{2}{3}\sqrt{\frac{2}{3}} & \end{pmatrix}$$

und so

$$A^{t} = \begin{pmatrix} \frac{4}{3} & 0 & \frac{2}{3}\sqrt{\frac{2}{3}} \\ 0 & \sqrt{\frac{2}{3}} & 0 \end{pmatrix} \to F^{ad}$$

Bemerkung 49. Jetzt betrachen wir den Fall W=V, also $b:V\times V\to \mathbb{K}$ eine Bilinearform. Da b' und b'' genau durch das "Umtauschen" von V und W unterschieden

$$b': V \to V^*, \ v \mapsto (w \mapsto b(v, w))$$

 $b'': V \to V^*, \ w \mapsto (v \mapsto b(v, w))$

haben wir Interpretation von Bedingungen über b:

- b symmetrisch $\Leftrightarrow b'' = b'$
- b schiefsymmetrisch $\Leftrightarrow b'' = -b'$

Bemerkung 50. Sei jetzt $\dim_{\mathbb{K}} < \infty$. Dann haben wir $b'' = (b')^*$ in folgendem Sinne: Dual zu $b': V \to V^*$ ist

 $(ev_V = Auswertungsabbildung an v \in V)$

Wobei:

$$ev_V \circ b'(v') = ev_V (w \mapsto b(v', w)) = b(v', v)$$

Da

$$b'':V\to V^*$$

durch

$$v \mapsto (v' \mapsto b(v', v))$$

definiert ist, haben wir Gleichheit.

Eigenschaften 16.

$$b$$
 symmetrisch $\iff b'' = b' \iff (b')^* = b'$

b schiefsymmetrisch
$$\iff b'' = -b' \iff (b')^* = -b'$$

Bemerkung 51. Falls $\dim_{\mathbb{K}} V < \infty$, s symmetrisch und nicht ausgeartet führt zu

$$b'(=b'') \ V \xrightarrow{\sim} V^*$$

Bemerkung 52. Spezialfall $\mathbb{K} = \mathbb{R}$, V euklidisch, dann ist des gerade das, was Ψ hiess:

Untevektorraum $U \subset V, U^{\perp} \subset V$ sowie $U^0 \subset V^*$

$$V \xrightarrow{\sim} V^*$$

$$| \cup \qquad | \cup$$

$$U^{\perp} \qquad U^0$$

Bemerkung 53. Was passiert, falls $K=\mathbb{C}?$ Dann sind wir an sesquilinearen Abbildungen interessiert.

$$s: V \times W \to \mathbb{C}$$

Dann gibt es immer noch eine Abbildung

$$s'': W \to V^* \ w \mapsto (v \mapsto s(v, w))$$

aber diese ist nicht mehr linear.

Beispiel 29. $V = \mathbb{C}[x], s : V \times V \to \mathbb{C}$

$$s(f,g) = \int_0^1 f(x) \overline{g(x)} \, \mathrm{d}x$$

Dann z.B.

$$1 \stackrel{s''}{\longmapsto} \left(f \mapsto \int_0^1 f(x) \, \mathrm{d} \, x \right)$$

also: Durchschnittswert auf [0,1] aber:

$$i \stackrel{s^{\prime\prime}}{\longmapsto} \left(f \mapsto -i \int_0^1 f(x) \, \mathrm{d} \, x \right)$$

also: $(-i)\cdot$ Durchschnittswert auf [0,1]

Damit ist s'' semilinear.

Definition 32. semilinear Eine Abbildung $t:V\to W$ zwischen \mathbb{C} -Vektorräumen heisst semilinear, falls:

- $t(v+v') = t(v) + t(v') \ \forall v, v' \in V$
- $t(\lambda v) = \bar{\lambda}(v) \ \forall v \in V, \ \lambda \in \mathbb{C}$

Definition 33. kanonischer Semi-Isomorphismus Falls V ein unitärer Vektorraum ist, mit Skalarprodukt

$$s: V \times V \to \mathbb{C}$$

so erhalten wir (was oben s'' heisst, nennen wir hier Ψ)

$$\Psi: V \to V^* \text{ kanonischer } \underbrace{\text{Semi}}_{\text{semilinear}} \text{-} \underbrace{\text{Isomorphismus}}_{\text{bijektiv}}$$

Bemerkung 54. Wie vorher haben wir zu einem Endomorphismus

$$F:V\to V$$

den adjugierten Endomorphismus

$$F^{ad}:V\to V$$

gegeben durch

$$F^{ad} := \Psi^{-1} \circ F^* \circ \Psi$$

Eigenschaften 17. adjugierter Endomorphismus

 $s(F(v), w) = s(v, F^{ad}(w)) \ \forall v, w \in V$

 $\operatorname{Im} F^{ad} = (\operatorname{Ker} F)^{\perp}$

 $\operatorname{Ker} F^{ad} = < (\operatorname{Im} F)^{\perp}$

• Ist B eine Orthonormalbasis von V und A die darstellende Matrix von F bezüglich B, dann ist \bar{A}^t die darstellende Matrix von F^{ad}

Satz 6.

F ist unitär diagonalisierbar $\iff F \circ F^{ad} = F^{ad} \circ F$

Definition 34. F normal F heisst normal, falls

$$F\circ F^{ad}=F^{ad}\circ F$$

3.4 Anwendung des Dualraums

das duale Polytop $\mathbb{K} = \mathbb{R}, V = \mathbb{R}^n$

Definition 35. konvexe Menge $S \subset \mathbb{R}^n$ mit der Eigenschaft $\forall s, t \in S$: s und t sind wegzusammenhängend.

Definition 36. konvexe Hülle konvexe Hülle von $\Gamma \subset \mathbb{R}^n$ ist

$$\cap_{S \subset \mathbb{R}^n, S \text{ konvex. } \Gamma \subset S} S$$

"kleinste konvexe Menge, in der Γ enthalten ist"

Definition 37. konvexes Polytop die konvexe Hülle von einer endlichen Menge in \mathbb{R}^n

Definition 38. innerer Punkt Das Polytop P hat $O \in \mathbb{R}$ als inneren Punkt falls:

- $O \in \mathbb{R}$
- $\exists \varepsilon > 0 : B_{\varepsilon}(0) \subset P$

Definition 39. Ist ein Polytop mit $O \in \mathbb{R}$ als inneren Punkt, so definieren wir

$$P^* = \{ \phi \in (\mathbb{R}^n)^* : \phi(v) \le 1 \ \forall v \in P \}$$

Definition 40. duales Polytop P^* ist ein konvexes Polytop $O \in (\mathbb{R}^n)^*$ als innerem Punkt. P^* heisst duales Polytop.

Bemerkung 55.

$$P^** = P$$

Bemerkung 56. Konstruktion des dualen Polytops: l Hyperebene, so dass P auf einer Seite von l liegt (inklusive l selbst) \leadsto Gleichung von l schreiben als

$$\alpha_1 x_1 + \cdots + \alpha_n x_n = 1$$

$$P \subset \{(x_1, \cdots, x_n) | \alpha_1 x_1 + \cdots + \alpha_n x_n \le 1\}$$

~~

$$(\alpha_1, \cdots, \alpha_n) \in P^*$$

(Skizze (Freiwilliger gesucht \}:-))

Facetten von $P \rightsquigarrow \text{Ecken in } P^*$

 (P^*) konvexe Hülle

Beispiel 30. • Der Tetraeder ist selbstdual.

- Der Würfel dual zum Oktaeder.
- Der Dodekaeder ist dual zum Ikosaeder.

3.5 Das Tensorprodukt

$$V \rightsquigarrow V^*$$
 Linearformen

Wir möchten eine Redeweise haben, genug flexibel für solche Situationen. Eine nützliche Konstruktion dafür ist das Tensorprodukt.

Definition 41. Tensorprodukt Sei \mathbb{K} ein Körper und V und W Vektorräume über \mathbb{K} . Ein \mathbb{K} -Vektorraum heisst Tensorprodukt von V und W, geschrieben $V \otimes W$, falls, eine bilineare Abbildung

$$\eta: V \times W \to V \otimes W$$

gegeben ist, die folgende universelle Eigenschaften erfüllt:

Zu jedem \mathbb{K} -Vektorraum U mit bilinearer Abbildung

$$\xi: V \times W \to U$$

gibt es eine eindeutige lineare Abbildung

$$\xi':V\otimes W\to U$$

so dass das Diagramm

kommutiert.

Bemerkung 57. Es ist noch unklar, wie die Elemente von $V \otimes W$ aussehen, oder ob $V \otimes W$ gar existiert. Auch unklar: warum.

Korollar 12. Aus der Definition folgt: $V \otimes W$, falls es existiert, ist eindeutig bis auf Isomorphismus.

Bemerkung 58. Seien

$$\eta: V \times W \to V \otimes W$$

und

$$\widetilde{\eta}: V \times W \to \widetilde{V \otimes W}$$

gegeben, beide erfüllen die universellen Eigenschaften. Wir wenden die universelle Eigenschaft an, mit $U := \widetilde{V \otimes W}$, so dass das folgende Diagramm kommutiert:

Wir wenden die universelle Eigenschaft an mit $U:=V\otimes W,$ so dass das folgende Diagramm kommutiert:

$$V \times W$$

$$\downarrow \tilde{\eta} \qquad \tilde{\zeta}$$

$$V \otimes W \xrightarrow{\tilde{\zeta}} V \otimes W$$

Wir wenden die universelle Eigenschaft an mit $U := V \otimes W$

Beide Diagramme kommutieren

$$\tilde{\zeta}\circ\zeta\circ\eta=\tilde{\zeta}\circ\tilde{\eta}=\eta$$

$$1_{V\otimes W}\circ\eta=\eta$$

Es folgt aus der universellen Eigenschaft, dass

$$\tilde{\zeta} \circ \zeta = 1_{V \otimes W}$$

Wir wenden die universelle Eigenschaft an, mit $U := \widetilde{V \otimes W}$

Beide Diagramme kommutieren

$$\zeta\circ\tilde{\zeta}\circ\tilde{\eta}=\zeta\circ\eta=\tilde{\eta}$$

$$1_{\widetilde{V \otimes W}} \circ \tilde{\eta} = \tilde{\eta}$$

Es folgt aus der universellen Eigenschaft, dass

$$\zeta\circ\tilde{\zeta}=1_{\widetilde{V\otimes W}}$$

Ergebnis:

$$V \otimes W \xrightarrow{\zeta} \widetilde{V \otimes W}$$

ist Isomorphismus, inverse zu

$$\tilde{\zeta}: \widetilde{V \otimes W} \to V \otimes W$$

Fazit11. universelle Eigenschaft \leadsto Eindeutigkeit bis auf Isomorphismus Not 4. Tensorprodukt $V\otimes W$ oder $V\otimes_{\mathbb{K}}W$

3.5.1 Existenz vom Tensorprodukt

Bemerkung 59. Es gibt zwei Methoden

- Durch Auswahl von Basen
- Beschreibung als Quotientenvektorraum

Heute: Methode 1

- braucht die Existenz von Basen
- klar fall $\dim_{\mathbb{K}} V < \infty$

oder im Allgemeinen für die, die das Auswahlaxiom gesehen haben.

Proposition 14. Sei $(v_i)_{i\in I}$ eine Basis von V und $(w_j)_{j\in J}$ eine Basis von W. Dann existiert das Tensorprodukt $V\otimes W$, mit Basis $(v_i\otimes w_j)_{(i,j)\in I\times J}$ und

$$\eta: V \times W \to V \otimes W$$

$$\left(\sum_{i \in I} a_i v_i \sum_{j \in J} b_j w_j\right) \mapsto \sum_{(i,i) \in I \times J} a_i b_j \left(v_i \otimes w_j\right)$$

mit $a_i \neq 0$ für endlich viele i und $b_j \neq 0$ für endlich viele j Das bedeutet, dass die Elemente von $V \otimes W$

$$\sum_{(i,j)\in I\times J} c_{ij} \left(v_i \otimes w_j\right) \ c_{ij} \in \mathbb{K}$$

nur endlich viele $c_{ij} \neq 0$.

Beweis 21. Zu verifizieren:

- $dass \eta \ bilinear \ ist$
- und erfüllt die universelle Eigenschaft

 η ist bilinear:

$$\eta \left(\sum_{i \in I} a_i v_i, \sum_{j \in J} b_j w_j \right) + \eta \left(\sum_{i \in I} a'_i v_i, \sum_{j \in J} b_j w_j \right) = \\
= \sum_{i \in I} a_i b_j \left(v_i \otimes w_j \right) + \sum_{(i, j) \in I \times J} a'_i b_j \left(v_i \otimes w_j \right) = \\
= \sum_{(i, j) \in I \times J} \left(a_i b_j + a'_i b_j \right) \left(v_i \otimes w_j \right) = \\
= \sum_{(i, j) \in I \times J} \left(a_i + a'_i \right) b_j \left(v_i \otimes w_j \right) = \\
= \eta \left(\sum_{i \in I} \left(a_i 1 a'_i \right) v_i, \sum_{j \in J} b_j w_j \right) \\
= \eta \left(\sum_{i \in I} a_i v_i + \sum_{i \in I} a'_i v_j, \sum_{j \in J} b_j w_j \right)$$

Beispiel 31. $V = \mathbb{K}^2$, $W = \mathbb{K}[t]$

V hat die Standardbasis (e_1, e_2)

W hat die Basis $(1, t, t^2, \cdots)$

 $\implies V \otimes W$ hat die Basis $e_1 \otimes 1, e_1 \otimes t, \dots, w_2 \otimes 1, e_2 \otimes t, \dots$

$$\eta: \mathbb{K}^2 \times K[t] \to K^2 \otimes K[t]$$

$$((1,0), t^2) \mapsto e_1 \otimes t^2$$

$$((0,1), t^3) \mapsto e_2 \otimes t^3$$

$$((2,3), t^4) \mapsto 2e_1 \otimes t^4 + 3e_2 \otimes t^4$$

Typisches Element von $\mathbb{K}^2 \otimes \mathbb{K}[t]$

$$e_1 \otimes t^2 + e_2 \otimes t^3 + 2e_1 \otimes t^4 + 3e_2 \otimes t^4$$

Mit anderer Schreibweise:

$$(t^2,0) + (0,t^3) + (2t^4,0) + (0,3t^4)$$

oder:

$$(t^2 + 2t^4, t^3 + 3t^4)$$

Definition 42. Sei U ein \mathbb{K} -Vektorraum und

$$\xi: V \times W \to U$$

eine bilineare Abbildung. Wir definieren

$$V \times W$$

$$\downarrow \eta$$

$$V \otimes W \xrightarrow{\xi'} U$$

$$\xi' : V \otimes W \to U$$

durch

$$\xi'(v_i \otimes w_j) := \xi(v_i, w_j)$$

für $i \in I, j \in J$, und deshalb:

$$\xi'\left(\sum_{(i,j)\in I\times J}c_{ij}v_i\otimes w_j\right)=\sum_{(i,j)\in I\times J}c_{ij}(v_i,w_j)$$

Das Diagram kommutiert (aus der Bilinearität von ξ)

Die Eindeutigkeit ist durch die identischen Basenvektoren gegeben.

Bemerkung 60.

$$\dim V \otimes W = (\dim V) (\dim W)$$

Not 5. Für $v \in V$, $w \in W$ schreibt man oft $v \otimes w$ für $\eta(v, w)$

Bemerkung 61. Weil

$$(v,w) \mapsto v \otimes w := \eta(v,w)$$

eine bilineare Abbildung ist, haben wir

$$v \otimes w + v' \otimes w = (v \times v') \otimes w$$
$$v \otimes w + v \otimes w' = v \otimes (w' \times w)$$
$$(\lambda v) \otimes w = \lambda (v \otimes w) = v \otimes (\lambda w)$$

Rechenregeln für Tensoren

Not6. Letztes Mal: für Basiselemente $v_i,\,w_j$ bezeichnet $v_i\otimes w_j$ ein Basiselement von $V\otimes W$

Bemerkung 62. Die Abbildung lässt sich schreiben als

$$V \times W \xrightarrow{\eta} V \otimes W$$
$$(v_i, w_j) \mapsto v_i \otimes w_j$$

Bemerkung 63. Jetzt für beliebige $v \in V$, $w \in W$ bezeichnet $v \otimes w$ das Element

$$\eta(v, w) \in V \otimes W$$

Weil in der Konstruktion wir η durch

$$\eta\left(v_i,w_j\right):=v_i\otimes w_j$$

definiert haben, stimmen die beiden Bedeutungen von $v_i \otimes w_j$ überein.

Beispiel 32. Isomorphismus von Vektorräumen über \mathbb{R}

$$\mathbb{R}^2 \otimes_{\mathbb{R}} \mathbb{R}[t] \xrightarrow{\sim} \mathbb{R}[t] \oplus \mathbb{R}[t]$$

$$e_1 \otimes t^j \mapsto (t^j, 0)$$

$$e_2 \otimes t^j \mapsto (0, t^j)$$

Ganz ähnlich

$$\mathbb{C} \otimes_{\mathbb{R}} \mathbb{R}[t] \xrightarrow{\sim} \mathbb{C}[t]$$
$$1 \otimes t^j \mapsto t^j$$
$$i \otimes t^j \mapsto it^j$$

 \implies für $\gamma \in \mathbb{C}$ gilt:

$$\gamma \otimes t^j \mapsto \gamma t^j$$

weil:

$$\gamma = \alpha + \beta i \ \alpha, \beta \in \mathbb{R}$$

haben wir

$$\gamma \otimes t' = (\alpha + \beta i) \otimes t^{j}
= \alpha \otimes t^{j} + \beta i \otimes t^{j}
= \alpha (1 \otimes t^{j}) + \beta (i \otimes t^{j})
\mapsto \alpha (t^{j}) + \beta (it^{j})
= (\alpha + \beta i) t^{j}
= \gamma t^{j}$$

Proposition 15. Sei $\mathbb{K} \to \mathbb{L}$ eine Körpererweiterung und V ein \mathbb{K} -Vektorraum. Dann hat $K \otimes_{\mathbb{K}} V$ die Struktur von L-Vektorraum, mit

$$\alpha(\beta \otimes v) = (\alpha \beta) \otimes v \quad \text{für } \alpha, \beta \in L \text{ und } v \in V$$

Beweis 22. Wir müssen verifizieren, dass

$$(\alpha, \beta \otimes v) \mapsto (\alpha\beta) \otimes v$$

eine Abbildung von $L \times (L \otimes_{\mathbb{K}} V)$ nach $L \otimes_{\mathbb{K}} V$ beschreibt. D.h. für jedes $\alpha \in L$, \exists eine Abbildung $L \otimes V \to L \otimes V$

ist bilinear:

$$(\beta + \beta', v) \mapsto (\alpha (\beta + \beta')) \otimes v =$$

$$= (\alpha \beta + \alpha \beta') \otimes v \qquad K\"{o}rpereigenschaft$$

$$= \alpha \beta \otimes v + \alpha \beta' \otimes v \qquad Rechenregeln \ f\"{u}r \ Tensoren$$

So bekommen wir

$$L \times (L \otimes V) \to L \otimes V$$
$$(\alpha, \beta \otimes v) \mapsto (\alpha\beta) \otimes v$$

Wir müssen auch die Axiome für den Vektorraum über L verifizieren, d.h.:

$$\alpha(w+w') = \alpha w + \alpha w' \qquad \qquad \text{für } \alpha \in L, \ w, w' \in L \otimes V$$

$$\alpha(\alpha'w) = (\alpha\alpha') w \qquad \qquad \text{für } \alpha, \alpha' \in L, \ w \in L \otimes V$$

Die erste Gleichung gilt weil $L \otimes V \dashrightarrow L \otimes V$ über \mathbb{K} -linear ist. Die zweite folgt aus der ersten, falls wir nur den Fall verifizieren, wobei $w = \beta \otimes v$. Dafür benutzen wir

- $L \otimes_{\mathbb{K}} V$ ist von Elementen $\beta \otimes v$ ($\beta \in L$, $v \in V$) aufgespannt, als \mathbb{K} -Vektorraum (Klar von der Konstruktion)
- Dann können wir schreiben

$$w = \beta_1 \otimes v_1 + \dots + \beta_{\gamma} \otimes v_{\gamma} \qquad \qquad \gamma \in \mathbb{N}$$

$$\alpha \left(\alpha' \left(\beta_{1} \otimes v_{1} + \dots + \beta_{\gamma} \otimes v_{\gamma} \right) \right) = \alpha \left(\alpha' \left(\beta_{1} \otimes v_{1} \right) + \dots + \alpha' \left(\beta_{\gamma} \otimes v_{\gamma} \right) \right)$$

$$= \alpha \left(\alpha' \left(\beta_{1} \otimes v_{1} \right) + \alpha \left(\alpha' \left(\beta_{\gamma} \right) \right) \right)$$

$$= (\alpha \alpha') \left(\beta_{1} \otimes v_{1} \right) + \dots + (\alpha \alpha') \left(\beta_{\gamma} \otimes v_{\gamma} \right)$$

$$= (\alpha \alpha') \left(\beta_{1} \otimes v_{1} + \dots + \beta_{\gamma} \otimes v_{\gamma} \right)$$

 $f\ddot{u}r \ w := \beta \otimes v$:

$$\alpha (\alpha' (\beta \otimes v)) = \alpha ((\alpha'\beta) \otimes v)$$
$$= (\alpha (\alpha'\beta)) \otimes v$$
$$= ((\alpha\alpha')\beta) \otimes v$$
$$= (\alpha\alpha') (\beta \otimes v)$$

Satz 7.

$$\underbrace{\mathbb{C} \otimes_{\mathbb{R}} \mathbb{R}[t]}_{\mathbb{C}-Vektorraum} \to \mathbb{C}[t]$$

Beh: dies ist ein Isomorphismus von \mathbb{C} -Vektorräumen. Nur noch zu verifzieren: die \mathbb{C} -Linearität. Im allgemeinen haben wir

$$L \otimes_{\mathbb{K}} \mathbb{K}[t] \xrightarrow{\sim} L[t]$$

L-linearer Isomorphismus

Beweis 23. $Sei \ \gamma \in \mathbb{C}$

Bemerkung 64. Ganz ähnlich

$$L \otimes \mathbb{K}^n \xrightarrow{\sim} L^n$$

L-linearer Isomorphimsus. $(n \in \mathbb{N})$ Insbesondere:

$$\mathbb{C} \otimes_{\mathbb{R}} \mathbb{R}^n \xrightarrow{\sim} \mathbb{C}^n$$

Definition 43. Komplexifizierung Ist V ein \mathbb{R} -Vektorraum, so heisst der \mathbb{C} -Vektorraum $\mathbb{C} \otimes_{\mathbb{R}} V$ die Komplexifizierung von V

3.5.2 Tensorprodukt von linearen Abbildungen

Definition 44. Tensorprodukt von linearen Abbildungen Sei $V, W, V \otimes_{\mathbb{K}} W, V \times W \xrightarrow{\eta} V \otimes_{\mathbb{K}} W$ und $V', W', V' \otimes_{\mathbb{K}} W', V' \times W' \xrightarrow{\eta'} V' \otimes_{\mathbb{K}} W'$ gegeben, mit linearen Abbildungen

$$V \xrightarrow{\phi} V'$$

$$W \xrightarrow{\psi} W'$$

Dann haben wir:

$$V \times W \xrightarrow{\phi \times \psi} V' \times W'$$

$$\downarrow \eta \qquad \qquad \downarrow \eta'$$

$$V \otimes W - \frac{\text{neu}}{-} \rightarrow V' \otimes W'$$

Beh: die Komposition ist bilinear

$$(v,w) \mapsto \psi(v) \otimes \psi(w)$$

(neu) aus der universellen Eigenschaft das Tensorprodukt von linearen Abbildungen

Not 7. Tensorprodukt von linearen Abbildungen

$$\phi \otimes \psi$$

3.5.3 Spezialfälle

Bemerkung 65. Spezialfall 1 V, V', W, W' endlichdimensional mit gegebenen Basen dim V=m Basis v_1, \cdots, v_m , dim W=n Basis w_1, \cdots, w_m , dim V'=m' Basis v'_1, \cdots, v'_m , dim W'=n' Basis w'_1, \cdots, w'_m dargestellt durch ϕ dargestellt als $A \in M(m' \times m, \mathbb{K})$, ψ durch $B \in M(n' \times n)$, \mathbb{K} . Wie wir schon gesehen haben, hat $V \otimes W$ die Basis

$$\begin{pmatrix} v_1 \otimes w_1 & \cdots & v_1 \otimes w_n \\ \cdots & \cdots & \cdots \\ v_m \otimes w_1 & \cdots & v_m \otimes w_n \end{pmatrix}$$

und $V' \otimes W'$ hat die Basis

$$\begin{pmatrix} v_1' \otimes w_1' & \cdots & v_1' \otimes w_n' \\ \cdots & \cdots & \cdots \\ v_m' \otimes w_1' & \cdots & v_m' \otimes w_n' \end{pmatrix}$$

Wir betrachten die darstellende Matrix von $\phi \otimes \psi$, Basiselement $v_i \otimes w_j$ von $V \otimes W$ geht auf was?

$$= a_{1i}b_{1j} (v'_1 \otimes w'_1) + a_{1i}b_{2j} (v'_1 \otimes w'_2) + \dots + a_{1i}b_{n'j} (v'_1 \otimes w'_{n'}) + a_{2i}b_{1j} (v'_2 \otimes w'_1) + \dots + a_{2i}b_{n'j} (v'_2 \otimes w'_{n'}) + \dots + a_{m'i}b_{1j} (v_{m'} \otimes w'_1) + \dots + a_{m'i}b_{n'j} (v'_{m'} \otimes w'_{n'})$$

 $A \otimes B$ heisst die darstellende Matrix von $\phi \otimes \psi$ und sieht so aus:

$$\begin{pmatrix} a_{11}b_{11} & a_{11}b_{12} & \cdots & a_{11}b_{1n} & \cdots & a_{1m}b_{11} & \cdots & a_{1m}b_{1n} \\ a_{11}b_{21} & a_{11}b_{22} & \cdots & a_{11}b_{2n} & \cdots & a_{1m}b_{21} & \cdots & a_{1m}b_{2n} \\ \vdots & \vdots & & \vdots & & \vdots & & \vdots \\ a_{11}b_{n'1} & a_{11}b_{n'2} & \cdots & a_{11}b_{n'n} & \cdots & a_{1m}b_{n'1} & \cdots & a_{1n}b_{n'n} \\ \vdots & \vdots & & \vdots & & \vdots & & \vdots \\ a_{m'1}b_{11} & a_{m'1}b_{12} & \cdots & a_{m'1}b_{1n} & \cdots & a_{m'm}b_{11} & \cdots & a_{m'm}b_{1n} \\ \vdots & & \vdots & & \vdots & & \vdots & & \vdots \\ a_{m'1}b_{n'1} & a_{m'1}b_{n'2} & \cdots & a_{m'1}b_{n'n} & \cdots & a_{m'm}b_{n'1} & \cdots & a_{m'm}b_{n'n} \end{pmatrix} \in M(m'n' \times mn, \mathbb{K})$$

Diese Matrix lässt sich in Blockmatrixen unterteilen:

$$\begin{pmatrix} a_{11}B & \cdots & a_{1m}B \\ a_{21}B & \cdots & a_{2m}B \\ \vdots & & \vdots \\ a_{m1}B & \cdots & a_{m'm}B \end{pmatrix} = A \otimes B$$

Beispiel 33.

$$\begin{pmatrix} 2 & 3 \\ 1 & -1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 3 & 6 \\ 6 & 8 & 9 & 12 \\ 1 & 2 & -1 & -2 \\ 3 & 4 & -3 & -4 \end{pmatrix}$$

Bemerkung 66. Spezialfall 2 V' = V und $\phi = 1_V$. Dann folgt aus $\psi : W \to W'$

$$V \otimes_{\mathbb{K}} W \xrightarrow{1_v \otimes \psi} V \otimes_{\mathbb{K}} W'$$

 $1_V \otimes \psi$ kann auch mit $V \otimes \psi$ bezeichnet werden.

Beispiel 34. $\mathbb{K}=\mathbb{R},\,V=\mathbb{C}\leadsto$ Komplexifizierung einer linearen Abbildung

$$\psi:W\to W'\leadsto\mathbb{C}\otimes\psi:\mathbb{C}\otimes_{\mathbb{R}}W\to\mathbb{C}\otimes_{\mathbb{R}}W'$$

wenn dim W, dim $W' < \infty$, darstellende Matrix $B = (b_{ij}), b_{ij} \in \mathbb{R}$, so bekommen wir $\mathbb{C} \otimes B$, mit derselben Grösse, denselben Einträgen, aber als komplexe Zahlen betrachtet. Ähnlich für eine beliebige Körpererweiterung $\mathbb{K} \to \mathbb{L}$

$$\psi: W \to W' \iff \mathbb{L} \otimes \psi: \mathbb{L}W \to \mathbb{L} \otimes W'$$

Bemerkung 67. Spezialfall 3 $V' = W' = \mathbb{K}$, und so $\phi \in V^*$, $\psi \in W^*$

$$\rightsquigarrow \ \phi \otimes \psi : V \otimes_{\mathbb{K}} W \to \underbrace{\mathbb{K} \otimes_{\mathbb{K}} \mathbb{K}}_{\text{Basis } (1 \otimes 1) \mapsto 1} \approx \mathbb{K}$$

So können wir schreiben

$$\phi \otimes \psi : V \otimes_{\mathbb{K}} W \to \mathbb{K}$$

d.h.

$$\phi \otimes \psi \in (V \otimes_{\mathbb{K}} W)^*$$

Anscheinend hat $\phi \otimes \psi$ auch eine Bedeutung als Element von $V^* \otimes_{\mathbb{K}} W^*$ Es gibt einen Zusammenhang:

$$V^* \times W^*$$

$$\downarrow \qquad (\phi, \psi) \mapsto \phi \otimes \psi$$

$$V^* \otimes W^* \quad (V \otimes W)^*$$

Satz 8.

$$V^* \times W^* \to (V \otimes W)^*$$
$$(\psi, \phi) \mapsto \phi \otimes \psi$$

ist eine bilineare Abbildung.

Beweis 24.

$$\left(\psi + \tilde{\psi}, \phi\right) \mapsto \left(\phi + \tilde{\phi}\right) \otimes \stackrel{?}{=} \phi \otimes \phi + \tilde{\phi} \otimes \psi$$

ok

• ...

Proposition 16. Sei \mathbb{K} ein Körper und V, W endlichdimensionale Vektorräume über \mathbb{K} . Die oben beschriebene lineare Abbildung

$$V^* \otimes W^* \to (V \otimes W)^*$$

ist ein Isomorphismus

Beweis 25. Wir rechnen mit Basen. Seien (v_1, \dots, v_n) Basis in V mit dualen Basen (v_1^*, \dots, v_m^*) in V^* . Seien (w_1, \dots, w_m) Basis in W mit dualen Basen (w_1^*, \dots, w_n^*) in W^* . Dann ist $(v_i^* \otimes w_j^*)_{1 \leq i \leq m, 1 \leq j \leq n}$ eine Vasis von $V^* \otimes W^*$

$$V \xrightarrow{v_i^*} \mathbb{K}$$

$$W \xrightarrow{w_j^*} \mathbb{K}$$

$$V \otimes W \xrightarrow{v_i^* \otimes w_j^*} \mathbb{K}$$
$$v_i \otimes w_j \otimes \mapsto \delta_{ik} \cdot \delta_{jl}$$

Wir erkennen das als Basiselement von $(V \otimes W)^*$. Wir können auch $\operatorname{Hom}_{\mathbb{K}}(V,W)$ interpretieren als Tensorprodukt. V,W Vektorräume über \mathbb{K}

 $(\phi, w) \longmapsto v \mapsto \psi(v)w$

$$V^* \times W \longrightarrow \operatorname{Hom}(V, W)$$

Beh: Das ist eine bilineare Abbildung ...

Proposition 17. Sei \mathbb{K} ein Körper, V, W endlichdimensionale \mathbb{K} -Vektorräume. Dann ist die lineare Abbildung

$$V^* \otimes W \to \operatorname{Hom}(V, W)$$

ist ein Isomorphismus.

Beweis 26. Eine ähnliche Berechnung mit Basen.

Beispiel 35. $V = W = \mathbb{R}^3$

$$e_2^* \otimes e_3 \mapsto \begin{pmatrix} e_1 \mapsto 0 \\ e_2 \mapsto e_3 \\ e_3 \mapsto 0 \end{pmatrix}$$

oder durch eine Matrix

$$\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}$$

$$\longrightarrow$$

$$\begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 1 & 2 & 0 \end{pmatrix} \leftrightarrow e_1^* \otimes e_1 + 2e_3^* \otimes e_1 - e_2^* \otimes e_2 + e_3^* \otimes e_2 + e_1^* \otimes e_3 + e_2^* \otimes e_3$$
$$= (e_1^* + 2e_3^*) \otimes e_1 + (-e_2^* + e_3^*) \otimes e_2 + (e_1^* + 2e_2^*) \otimes e_3$$