

The State University of New York

Thomas J. Watson School of Engineering & Applied Science Department of Electrical & Computer Engineering

Neural Network & Deep Learning (EECE680C)

Homework_4

Solutions

Submitted By

Alem Haddush Fitwi
<u>afitwi1@binghamton.edu</u>
Graduate Student

Submitted To

Dr. Xiaohua Li Associate Professor xli@binghamton.edu

Submission Date

26 April 2018

Binghamton, New York

The test results of problem #3, the programming problem, are hereunder presented:

sin(0.2*np.pi*n) for n=0 upto 299 → 300 points SineSeries (num_points,xmin,xmax)=SineSeries(300,0,10) Num_samples=20 # number of samples Iteration#=2200 Single training instance before training was conducted

Testing the model for single instance of training data, and generating training instance and the target

Training the model

==========		
	Trai	ning is on progress, please wait for a while!
Iteration	0	Mean Square Error 0.875735
Iteration	100	Mean Square Error 0.0942191
Iteration	200	Mean Square Error 0.00917639
Iteration	300	Mean Square Error 0.0156673
Iteration	400	Mean Square Error 0.00335173
Iteration	500	Mean Square Error 0.00528435
Iteration	600	Mean Square Error 0.000151139
Iteration	700	Mean Square Error 0.000209462
Iteration	800	Mean Square Error 0.00440594
Iteration	900	Mean Square Error 9.25027e-05
Iteration	1000	Mean Square Error 0.000559856
Iteration	1100	Mean Square Error 0.000237966
Iteration	1200	Mean Square Error 0.000245692
Iteration	1300	Mean Square Error 0.000100152
Iteration	1400	Mean Square Error 0.000469705
Iteration	1500	Mean Square Error 0.000775393
Iteration	1600	Mean Square Error 8.64337e-05
Iteration	1700	Mean Square Error 0.000442672
Iteration	1800	Mean Square Error 9.54112e-05
Iteration	1900	Mean Square Error 0.000102052
Iteration	2000	Mean Square Error 0.000138961
Iteration	2100	Mean Square Error 5.67146e-05

Prediction and Model Testing

by Co	Orosed &
2000	V X Dim = Batele-Size * Layers * mount
0000	= 50 * 22 * 28
r from	V= 98x60x23
intoid	7
	$L_{t} = f(\chi_{t} \mathbf{N} + C_{t}, \omega)$
のか	$C_4 = 50 \times 150$
N States W	1 2 2
Company Con	C+1-550 150 08
	W = 150 x 150
	1 / 92 = C9 x W
	~
86	150 × 10
7	
1	Juse (50 * 160) (150 * 10)
2	1 1 50 × 10
Takel	1
AMON JOHOS	01×051= 12 05/1405/ 05/1405/ 05/1405/
1301	(Co) W (C1) W (C2) W W (C28) 150×10
SOUTH NOT US	
	Wisserson X 3

	(8)	delen meuras Ct-1=3xh U(i)=1xh W(f)= hxh U(5)= 1xh
4 2 m (i) m !-	(o) (c)	hidden (2-1) Luci) Lu
1. m. 1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	200 + C.	h=# f hidde 2 = 3×1 Ct Ct = 3×h yii W ^G = 1×h w ^G W ^G = 1×h w ^G W = 3×t N = 3×t N = 3×t N = 4×t
t US)	(C2) (C2) (C2)	Let h
Consessanding (Synothous of the 1 Mt) (2) + mt. 1 Mt)	02=8(x20) + m2-1W(0) C2= forh(X2U4) + m2-1W(0) C4- C2-50f + C2022 M2= tanh(C2)002	Assumption: Let h= # f hidden means form Hence M1=3xh N=3x1 C1=3xh W(1)=1xh W(1)=1xh W(1)=1xh W(1)=1xh W(1)=1xh W(1)=1xh W(1)=1xh W(1)=1xh W(1)=1xh W(1)=1xh W(1)=1xh W(1)
mades	x + C 5 6	Hence my my my me some
Show a se	80 80 80	1 1888 2 1 1 1 888
1 3 3 3		
nerated by CamScanner from intsig.c	oom.	3 2 2 3