# МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра Информационных систем

#### ОТЧЕТ

по лабораторной работе №7
по дисциплине «Цифровая обработка информации»
Тема: Дискретные сигналы.

| Студенты гр. 8374 | Пихтовников К. С<br>Хохрин С. С.<br>Чертков Н. Д. |
|-------------------|---------------------------------------------------|
| Преподаватель     | Клионский Д. М.                                   |

Санкт-Петербург 2020

# Цель работы:

Изучить математическое описание дискретных сигналов и овладеть программными средствами их моделирования в MATLAB.

# ТАБЛИЦА ИСХОДНЫХ ДАННЫХ

| Перемен<br>ная                                               | Назначение                                              | Значение                                                                                                                                                        | Идентифика<br>тор                            |
|--------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| N <sub>бр</sub>                                              | Номер бригады                                           | N <sub>бр</sub>                                                                                                                                                 | Nb = 6                                       |
| N                                                            | Длина<br>последовательности                             | $N = 30 + N_{6p} mod 5$                                                                                                                                         | N = 31                                       |
| Т                                                            | Период<br>дискретизации                                 | $T = 0.0005 * (1 + N_{6p} mod 3)$                                                                                                                               | T = 0.0005                                   |
| a                                                            | Основание<br>экспоненты                                 | $a = (-1)^{N_{6p}} * (0.8 + 0.005N_{6p})$                                                                                                                       | a = 0.830                                    |
| С                                                            | Амплитуда<br>гармонического<br>сигнала                  | $C = 1 + N_{6p} mod5$                                                                                                                                           | C = 2                                        |
| ω̂(рад)                                                      | Частота<br>гармонического<br>сигнала                    | $\widehat{\omega} = \frac{\pi}{6 + N_{6p} \mod 5}$                                                                                                              | w0 = 0.4488                                  |
| m                                                            | Задержка                                                | $m = 5 + N_{6p} mod 5$                                                                                                                                          | m = 6                                        |
| U                                                            | Амплитуда импульса                                      | $U = N_{6p}$                                                                                                                                                    | U = 6                                        |
| $n_0$                                                        | Начальный момент импульса                               | $n_0 = N_{6p} mod5 + 3$                                                                                                                                         | n0 = 4                                       |
| n <sub>imp</sub>                                             | Длина импульса                                          | $n_{imp} = N_{6p} mod 5 + 5$                                                                                                                                    | n_imp = 6                                    |
| B <sub>1</sub> , B <sub>2</sub> , B <sub>3</sub>             | Амплитуды гармонических сигналов                        | $B_1 = 1.5 + N_{6p} \mod 5$ $B_2 = 5.7 - N_{6p} \mod 5$ $B_3 = 2.2 + N_{6p} \mod 5$                                                                             | Вектор<br>В =<br>[2.5, 4.7, 3.2]             |
| $\widehat{\omega}_1, \widehat{\omega}_2, \widehat{\omega}_3$ | Частоты<br>гармонических<br>сигналов                    | $\widehat{\omega_1} = \frac{\pi}{4 + N_{6p} \mod 5}$ $\widehat{\omega_2} = \frac{\pi}{8 + N_{6p} \mod 5}$ $\widehat{\omega_1} = \frac{\pi}{16 + N_{6p} \mod 5}$ | Вектор<br>w =<br>[0.6283,0.349<br>1, 0.1848] |
| a <sub>1</sub> , a <sub>2</sub> , a <sub>3</sub>             | Коэффициенты линейной комбинации гармонических сигналов | $a_1 = 1.5 - N_{6p} \mod 5$ $a_2 = 0.7 + N_{6p} \mod 5$ $a_3 = 1.4 + N_{6p} \mod 5$                                                                             | Вектор<br>A =<br>[0.5, 1.7, 2.4]             |

| mean | Математическое<br>ожидание | $mean = N_{6p}mod5 + 3$ | Mean = 4 |
|------|----------------------------|-------------------------|----------|
| var  | Дисперсия                  | $var = N_{6p}mod5 + 5$  | Var = 6  |

# Выполнение работы:

1. Цифровой единичный импульс.



Рис. 1. Графики цифрового единичного импульса на интервале дискретного времени nT и дискретного нормированного времени n.

#### Пояснение:

• Взаимосвязь между дискретным и дискретным нормированным временем.

При анализе дискретных сигналов удобно пользоваться нормированным временем  $t^{\sim}=\frac{t}{T}$ , откуда при t=nT(дискретное время)  $t^{\sim}=\frac{t}{T}=\frac{nT}{T}=n.$ 

Таким образом, номер п дискретного сигнала является нормированным временем: иначе говоря, номер п означает, что отсчет взят в момент nT.

• Различие между цифровым единичным импульсом и дельта-функцией.

Различие между цифровым единичным импульсом и  $\delta$ -функцией состоит в том, что цифровой единичный импульс является физически реализуемым сигналом, тогда как аналоговый единичный импульс  $\delta(t)$  рассматривается только как обобщённая функция.

# 2. Цифровой единичный скачок.



Рис. 2. Графики цифрового единичного скачка на интервале дискретного времени nT и дискретного нормированного времени n.

#### Пояснение:

• Соответствие между цифровым и аналоговым единичными скачками.

Цифровой единичный скачок представляет собой последовательность, равную нулю при отрицательных значениях аргумента и единице для положительных:

$$U(nT) = \begin{cases} 1, n \ge 0 \\ 0, n < 0 \end{cases}$$

А в аналоговом же случае данный сигнал называют функцией Хевисайда или единично-ступенчатой функцией.

И в том и в другом случае эти сигналы являются физически реализуемыми.

• Чему равна частота дискретизации цифрового единичного скачка.

$$f_{\rm A} = \frac{1}{T} = \frac{1}{0.0005} = 2000$$

# 3. Дискретная экспонента.



Рис. 3. Графики дискретной экспоненты на интервале дискретного времени nT и дискретного нормированного времени n.

5

• Соответствие между дискретной и аналоговой экспонентами.

Вид дискретной экспоненты определяется величиной и знаком параметра *а*. Дискретная экспонента является аналогом вещественной показательной функции для дискретных систем.

Формула дискретной экспоненты в общем виде и со своими исходными данными.

$$x(n) = \begin{cases} a^n, n \ge 0 \\ 0, n < 0 \end{cases}$$

$$x(n) = \begin{cases} 0.83^n, n \ge 0 \\ 0, n < 0 \end{cases}$$

4. Дискретный комплексный гармонический сигнал.



Рис. 4. Графики вещественной и мнимой частей дискретного комплексного гармонического сигнала на интервале дискретного нормированного времени п.

#### Пояснение:

• Сигнал в виде комбинации двух вещественных последовательностей.

В общем виде:

$$x(nT) = x(n) = Ce^{j\omega nT}$$
$$x(n) = C\cos(\omega nT) + jC\sin(\omega nT)$$

Со своими данными:

$$x(n) = 2e^{j*0.4488*n*0.0005} = 2e^{0.0002jn}$$
$$x(n) = 2cos(0.0002n) + 2jsin(0.0002n)$$

5. Задержанные последовательности.



Рис. 5. Графики задержанных последовательностей на интервале дискретного нормированного времени n.

#### Пояснение:

• Формулы задержанных последовательностей.

$$U_0(n-m) = \begin{cases} 1, n = m \\ 0, n \neq m \end{cases}$$

$$U_1(n-m) = \begin{cases} 1, n \geq m \\ 0, n < m \end{cases}$$

$$x(n-m) = \begin{cases} 1, n \ge m \\ 0, n < m \end{cases}$$

### 6. Дискретный прямоугольный импульс.



Рис. 6. График дискретного прямоугольного импульса на интервале дискретного нормированного времени n.

#### Пояснение:

• Формат функции rectpuls.

Функция rectpuls формирует одиночный прямоугольный импульс с единичной амплитудой. Формат функции: y = rectpuls(t, width), где t — вектор значений времени, width — ширина (длительность) импульса.

• Как выполняется моделирование импульса в обоих случаях.

В первом случае импульс моделируется путём создания одиночного прямоугольного импульса с заданной амплитудой и шириной при помощи функции rectpuls.

Во втором случае используется цифровой единичный скачок, задержанный до начала импульса и повторенный в соответствии с его шириной.

# 7. Дискретный треугольный импульс.



Рис. 7. График дискретного треугольного импульса на интервале времени, равном длине свертки L.

#### Пояснение:

• Аналитическая запись свёртки.

$$y(n) = \Sigma(x_1(m)x_2(n-m)) = \Sigma(x_2(m)x_1(n-m)).$$

Длина свёртки L.

Свёртка двух прямоугольных импульсов от  $-x_0$  до  $x_0$  будет находиться на интервале от  $-2x_0$  до  $2x_0$ . Таким образом, длина свёртки и соответствующего ей треугольного импульса — это двойная длина исходного прямоугольного импульса  $6\times2=12$ , что соответствует значению, найденному по графику 19-7=12.

# 8. Линейная комбинация дискретных гармонических сигналов.



Рис. 8. Графики линейных комбинаций дискретных гармонических сигналов.

 $mean_x5 = 0.82514$ 

E = 9493.5926

P = 61.249

Пояснение:

• Операции при моделировании линейной комбинации сигналов.

Линейная комбинация дискретных сигналов является суммой произведений коэффициентов и соответствующих им дискретных гармоник. Дискретные гармоники зависят от значений амплитуды, частоты и времени.

• Как определяют указанные характеристики.

Среднее значение последовательности — сумма её значений, отнесённая к длине.

Энергия последовательности — сумма квадратов её значений.

Средняя мощность последовательности — энергия, отнесённая к длине последовательности.

9. Дискретный гармонический сигнал с экспоненциальной огибающей.



Рис. 9. График дискретного гармонического сигнала с экспоненциальной огибающей на интервале дискретного нормированного времени n.

• Аналитическая формула дискретного сигнала:

$$x(n) = \Sigma(x(m)U_0(n - m)),$$

• Операции при моделировании гармонического дискретного сигнала.

n = 0:(N - 1); — задаётся время действия сигнала;

x = C.\*sin(w0.\*n); — задаются параметры гармонического сигнала: амплитуда, частота и зависимость от времени;

 $x6 = x.*(abs(a).^n);$  — дискретный сигнал приводится к экспоненциальной огибающей — функции, соответствующей основным точкам сигнала. От модуля основания экспоненты зависит её вид: при |a| < 1 экспонента убывает, при |a| > 1 экспонента возрастает, и при |a| = 1 экспонента является последовательностью единиц.

10. Периодическая последовательность дискретных прямоугольных импульсов.



Рис. 10. График пяти периодов периодической последовательности дискретных прямоугольных импульсов амплитуды U и длительности nimp с периодом, вдвое большим длительности импульса.

• Операции при моделировании периодической последовательности.

 $xp = [U.u1 \ (1:n_imp) \ zeros(1, n_imp)];$  — формирование импульса с периодом n\_imp и амплитудой U при помощи цифрового единичного скачка;

р = 5; — указание числа периодов;

x7 = repmat (xp, 1, p); — создание массива из р импульсов xp при помощи функции repmat.

# 11. Равномерный белый шум.



Рис. 11. График оценки автоковариационной функции шума, центрированной относительно  $\mathbf{m}=\mathbf{0}.$ 

# Пояснение:

• Истинные значения математического ожидания и дисперсии: mean\_uniform = 0.49956;

 $var\_uniform = 0.08291$ 

• Вид истинной автоковариационной функции

Истинная автоковариационная функция имеет вид цифрового единичного импульса.

• Длина оценки автоковариационной функции  $L=2N-1 \label{eq:L}$ 

# 12. Нормальный белый шум.



Рис. 12. График АКФ шума, центрированной относительно m=0. Пояснение:

• Истинные значения математического ожидания и дисперсии:

 $mean\_norm = 0.0018848;$ 

$$var_norm = 0.97502$$

• Вид истинной автоковариационной функции.

Истинная автоковариационная функция имеет вид цифрового единичного скачка.

• Чему равна длина оценки АКФ.

$$L = 2N - 1$$

13. Аддитивная смесь дискретного гармонического сигнала с нормальным белым шумом.



Рис. 13. График аддитивной смеси дискретного гармонического сигнала с нормальным белым шумом на интервале дискретного нормированного времени n.

#### Пояснение:

• Аддитивная смесь сигнала с шумом

Аддитивная смесь сигнала с шумом — это сумма шума с полезным сигналом.

14. Оценка АКФ последовательности с выводом графика АКФ, центрированной относительно  $\mathbf{m}=\mathbf{0}$ .



Рис. 14. График АКФ, центрированной относительно m = 0.

$$var_x8 = 3.63$$

$$R(N) = 3.5136$$

Пояснение:

- Свойства АКФ.
- 1) При  $\tau = 0$  автокорреляционная функция становится равной энергии сигнал  $B_{\mu}(0) = E_{\mu}$
- 2) АКФ функция чётная

$$B_{\rm u}(\tau) = B_{\rm u}(-\tau)$$

3) Важное свойство автокорреляционной функции состоит в следующем: при любом значении временного сдвига модуль АКФ не превосходит энергии сигнала:

$$\left|B_{\mathbf{u}}(\tau)\right| \leq B_{\mathbf{u}}(0) = E_{\mathbf{u}}$$

- 4) Обычно, АКФ представляется симметричной линей с центральным максимумом, который всегда положителен. При этом в зависимости от вида сигнала автокорреляционная функция может иметь как монотонно убывающей, так и колеблющийся характер.
- Соответствие между дисперсией последовательности и значением R(N) Выведенные значения близки друг к другу. Также максимальное значение функции автокорреляции достигается при r=0 и равно дисперсии случайного процесса  $\sigma_{\chi}^2$ .

# 15. Нормальный белый шум с заданными статистическими характеристиками.



Рис. 15. Графики четырех разновидностей нормального белого шума длины 10000.



Рис. 16. Гистограммы четырех разновидностей нормального белого шума.

• К каким изменениям шума приводит изменение его математического ожидания и дисперсии.

Изменения шума при изменении его математического ожидания и дисперсии.

$$U_x = \sum_{n=0}^{N-1} x(n)$$

$$\delta^{2} = \frac{1}{N} * \sum_{n=0}^{N-1} [x(n) - M(x)]^{2}$$

Изменение математического ожидания и дисперсии приводит к изменению размаха и отклонению по оси х.

• Что отображает гистограмма и как она изменяется при изменении математического ожидания и дисперсии шума.

Гистограмма отражает нормальное распределение, при изменении математического ожидания и дисперсии шума происходит изменения высоты и отклонения по оси х.