cheatsheet Дискра (краткий копипаст из учебника.)

1 Вычислимость

Теорема Поста. Множество $A \subseteq \mathbb{N}$ разрешимо тогда и только тогда, когда оба множества A и $\mathbb{N} \setminus A$ перечислимы.

Определение Универсальная вычислимая функция. Функция $U: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ называется универсальной вычислимой функцией для класса вычислимых функций от одной переменной, если

- 1. U вычислима;
- 2. для всякой вычислимой функции $f: \mathbb{N} \to \mathbb{N}$ существует такое n, что для всякого x верно f(x) = U(n, x).

Она существует.

Теорема Функция без всюду определённого вычислимого продолжения. Существует вычислимая функция $f: \mathbb{N} \to \mathbb{N}$, не имеющая всюду определённого вычислимого продолжения.

Это функция f(n) = U(n, n) + 1.

Теорема Перечислимое неразрешимое множество. Существует перечислимое неразрешимое множество $K \subseteq N$. Это область определения U(n,n).

Определение Проблема остановки Рассмотрим множество $Halt \subseteq \mathbb{N} \times \mathbb{N}$, состоящее из таких пар (n, x), что U(n, x) определено. Проблема остановки состоит в выяснении того, при- надлежит ли данная пара множеству Halt.

Определение УВФ Универсальная вычислимая функция $U: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ для класса вычислимых функций от одной переменной называется главной (или гёделевой), если для любой вычислимой функции $V: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ существует такая всюду определённая вычислимая функция $s: \mathbb{N} \to \mathbb{N}$, что для всякого $n \in \mathbb{N}$ и для всякого $x \in N$ верно U(s(n), x) = V(n, x), или, другими словами, для всякого $n \in N$ верно $U_{s(n)} = V_n$.

Примеры изменения аргументов и значений:

- $U(n,x) = U(n,f(x)) \Rightarrow \exists s(n) : \forall n \in \mathbb{N}$ выполн $U_{s(n)} = V_n = U_n \circ f$
- $V(n,x) = f(U(n,x)) \Rightarrow \exists s(n) : \forall n \in \mathbb{N}$ выполн $U_{s(n)} = V_n = f \circ U_n$

Теорема Райса — **Успенского.** Пусть $U: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ — главная универсальная функция. Пусть A — нетривиальное свойство вычислимых функций. Тогда множество $N = \{n \mid U_n \in A\}$ не разрешимо

Теорема Неглавная УФ. Существует неглавная универсальная функция для класса вычислимых функций одной переменной.

Теорема Неподвижная точка. Пусть $U: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ — главная универсальная функция. Тогда для всякой всюду определённой вычислимой функции $h: \mathbb{N} \to \mathbb{N}$ существует $n \in \mathbb{N}$, при котором $U_n = U_{h(n)}$.

Определение Следствие из неп точки. Пусть $U: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ — главная универсальная функция. Тогда для всякой вычислимой функции $V: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ существует n, при котором $U_n = V_n$.

2 MT

Определение МТ МТ состоит из

- бесконечной в две стороны ленты, в ячейках которой могут быть записаны символы алфавита A (некоторого конечного множества);
- головки, которая может двигаться вдоль ленты, обозревая в каждый данный момент времени одну из ячеек;
- оперативной памяти, которая имеет конечный размер (другими словами, со- стояние оперативной памяти это элемент некоторого конечного множества, которое называется множеством состояний МТ Q);
- таблицы переходов (или программы), которая задаёт функцию

$$\delta: A \times \mathbb{Q} \to A \times \mathbb{Q} \times \{-1, 0, +1\}$$

3 Прочее

Здесь пока ничего нет, но там все изи, я верю, что вы справитесь.