Statistics

Statistics is a collection of procedures and principles for gaining and processing information in order to make decisions when faced with uncertainty.

- Statistics is concerned with data analysis: using data to make inferences. It is concerned with questions like 'what is this data telling me?' and 'what does this data suggest it is reasonable to believe?'
- In Probability Theory we go from the assumption of the model to the probability of the specific outcome, *i.e.* from general to particular.
- The Statistics problem goes almost completely the other way around. In statistics, a sample from a given population is observed, and the goal is to learn something about that population based on the sample.
- So while the two things—probability and statistics—are closely related, there is clearly a sharp difference.

Basic definitions

We need to introduce some important words.

- **Population** -- the entire collection of individuals or objects about which information is desired to be obtained.
- **Sample** is a subset of the population, selected for study in some prescribed manner.
- **Census** -- study of every unit, everyone or everything, in a population. Obtaining complete information from an entire population.
- **Descriptive statistics** -- the branch of statistics that includes methods for organising and summarising data.
- **Inferential statistics** -- the branch of statistics that involves generalizing from a sample to the population from which it was selected, way of making inferences about populations based on samples.

Example 1

Suppose we wish to estimate the proportion p of students in HSE who attend none of the lectures since the beginning of the module.

- Suppose time is limited and we can only interview 20 students at the campus.
- Is it important that our survey is 'random'? How can we ensure this?
- Suppose we find that 5 students have not attended any lecture. We might estimate θ by $\hat{\theta}=5/20=0.25$. But how large an error might we expect $\hat{\theta}$ to have?

Example 2

Suppose the population of registered voters in Florida is divided into two groups: those who will vote democrat in the upcoming election, and those that will vote republican. To each individual in the population is associated a number, either 0 or 1, depending on whether he/she votes republican or democrat. If a sample of n individuals is taken completely at random, then the number X of democrat voters is a binomial random variable, written $X \sim Bin(n,\theta)$, where $\theta \in \Theta = [0,1]$ is the unknown proportion of democrat voters. The statistician wants to use the data X=x to learn about θ .

Yet another part with definitions

Before we formulate statistics problems in mathematical language, we need to introduce basic V Ransom vector concepts.

• The random variables (X_1,\ldots,X_n) are called a random sample of size n from the common $X \sim \mathcal{Bir}(n, P)$ distribution (population) f(x) if X_1, \ldots, X_n are mutually independent random variables, n- λ and the marginal pdf or pmf of each X_i is the same function f(x). Alternatively, $\rho \left(\chi_{x} \right) : C_{n}^{x} \rho^{x} (x)$. Alternatively, $\rho \left(\chi_{x} \right) : C_{n}^{x} \rho^{x} (x)$. Alternatively,

pdf or pmf f(x).

• From the latter we can conclude that the joint pdf or pmf of X_1,\ldots,X_n is given by $f(x_1,\ldots,x_n)=f(x_1)\cdot\ldots\cdot f(x_n)=\prod\limits_{i=1}^n f(x_i)$ marginal PLF (PMF)

• If our distribution is a part of a parametric family, then we define its pdf as $f(x|\theta)$, and the

- joint pdf is $f(x_1,\ldots,x_n|\theta)=\prod_{i=1}^n f(x_i|\theta)$, where the same parameter θ is used for every term in the product. term in the product.
- Let X_1,\ldots,X_n be a random sample. Let $(Y=T(X_1,\ldots,X_n))$ be a function of the sample that does not depend on θ . Then Y is called a **statistic**.
- For example, statistics may give the smallest or the largest value in the sample, the average sample value, or a measure of variability in the sample observations.

The goals of statistics

Many families of probability distributions depend on a small number of parameters; for example, the Poisson family depends on a single parameter λ and the Normal family on two parameters μ and σ . Unless the values of the parameters are known in advance, they must be estimated from data.

• Throughout we will refer to θ as the parameter.. The typical problem we will encounter will begin with something like "Suppose X_1, \ldots, X_n is an independent sample from a distribution with PDF $f(x|\theta)$..."

Two kinds of inference problems

Point estimation

- Suppose X_1, \ldots, X_n are iid with PDF/PMF $f(x|\theta)$.
- The point estimation problem seeks to find a quantity $\hat{\theta}$, called an estimator, depending on the values of X_1, \ldots, X_n , which is a "good" guess, or estimate, of the unknown true θ .
- Since $\hat{ heta}$ depend on a sample, we can formally say that $\hat{ heta}=T(X_1,\dots,X_n)$, and so statistic \$ € \$ -param. space File bost quess of the true \$ T is a **point estimator** of θ .

Hypothesis testing

- Unlike the point estimation problem, the hypothesis testing problem starts with a specific question like "is θ equal to θ_0 ?," where θ_0 is some specified value.
- ullet The main idea is to construct specific decision rule based on the sample X_1,\dots,X_n by which one can say if $\theta = \hat{\theta}$ or $\theta \neq \hat{\theta}$.

Back to statistic: sampling distribution

Let us introduce some statistics that are often used and provide good summaries of the sample.

- ullet The sample mean: $ar{X}=rac{X_1+\ldots+X_n}{n}=rac{1}{n}\sum_{i=1}^nX_i;$
- The sample variance: $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2;$
- The sample standard deviation is $S = \sqrt{S^2}$;
- The sample median.

Each statistic given a new random sample $(X_1^{(2)}, \dots, X_n^{(2)})$ may take new value, so we can treat statistics as **random variables** themselves!

As random variables, they have their own distributions. We call the probability distribution of a statistic Y the sampling distribution of Y.

Statement:

Let X_1,\ldots,X_n be a random sample of population with mean μ and variance $\sigma^2<\infty$. Then:

Since every point estimator is a statistic, then estimators also have distributions.

We say that estimator is **unbiased** if $E[\hat{ heta}] = heta$.

Problem 1

Random variable assumes values 0 and 1, each with probability 1/2.

- 1. Find population mean μ and variance σ^2
- 2. You have 9 observations of $X:X_1,\ldots,X_9$. Consider the following estimators of the population mean μ : (i) $\hat{\mu}_1=0.45$, (ii) $\hat{\mu}_2=X_1$, (iii) $\hat{\mu}_3=\bar{X}$, (iv) $\hat{\mu}_4=X_1+\frac{1}{3}X_2$, (v) $\hat{\mu}_5=\frac{2}{3}X_1+\frac{2}{3}X_2-\frac{1}{3}X_3$.

Which of these estimators are unbiased? Calculate bias for each estimator. Which estimator is the most efficient in terms of MSE?

Problem 2

Let X_1, X_2, X_3 be a random sample from a population with mean μ and variance σ^2 . Consider the following estimator of variance σ^2 :

$$\hat{\sigma}^2 = c(X_1 - X_2)^2.$$

Find constant c such that $\hat{\sigma}^2$ is an unbiased estimator for σ^2 .

Problem 3

Based on a random sample of two observations, consider two competing estimators of the population mean μ :

$$ar{X}=(X_1+X_2)/2$$
 and $Y=rac{1}{3}X_1+rac{2}{3}X_2.$

- Are they unbiased?
- Which estimator is more efficient in terms of MSE?