TABLE OF CONTENTS

CHAPTER No.			TITLE	PAGE No.
	ABS	TRACT		
	ACK	NOWLI	EDGEMENT	
	LIST	r of ta	BLES	
	LIST	r of fig	GURES	
	LIST	r of ab	BREVIATIONS	
1	INT	RODUC	ΓΙΟΝ	1
	1.1	OVER	VIEW	1
	1.2	DATA	MINING	1
	1.3	EDUC	ATIONAL DATA MINING (EDM)	3
		1.3.1	Brief History of EDM	6
		1.3.2	Lifecycle/ Process involved in EDM	7
		1.3.3	An EDM Example	9
		1.3.4	EDM in HE	11
	1.4	APPLI	CATIONS OF EDM IN HIGHER EDUCATION	13
		1.4.1	Prediction the student's performance	15
		1.4.2	Detection Behavior of students	15
		1.4.3	Profiling and Clustering students	16
		1.4.4	Social networking analysis	16
	1.5	EDM I	N DECISION SUPPORT SYSTEM	17
		1.5.1	Providing reports	17
		1.5.2	Raising alarms for stake holders	18
		1.5.3	Educational Scheduling process	18

		1.5.4 Generation of courseware	19
		1.5.5 Concept Map Creation	19
		1.5.6 Providing recommendations	19
	1.6	IMPACT OF DIFFERENT FACTORS ON STUDENT'S PERFORMANCE	20
	1.7	METHODS INVOLVED IN EDM PROCESS	22
		1.7.1 Feature Selection	22
		1.7.2 Clustering Process	24
		1.7.3 Classification Process	25
	1.8	MACHINE LEARNING	27
	1.9	METAHEURISITCS	29
	1.10	MOTIVATION AND RESEARCH CONTRIBUTIONS	31
	1.11	THESIS ORGANIZATION	32
	1.12	SUMMARY	32
2	LITE	CRATURE SURVEY	34
	2.1	OVERVIEW	34
	2.2	REVIEW OF EXISTING EDM TECHNIQUES FOR HE STUDENTS	34
	2.3	REVIEW OF EXISTING EDM TECHNIQUES FOR STUDENT PERFORMANCE ASSESSMENT	36
		2.3.1 Other Methods	39
	2.4	REVIEW OF FS BASED EDM TECHNIQUES	42
	2.5	REVIEW OF CLUSTERING BASED EDM TECHNIQUES	45
	2.6	RESEARCH GAP	48
	2.7	SUMMARY	48
3		DICTIVE ANALYSIS OF STUDENTS ACADEMIC FORMANCE USING MACHINE LEARNING DELS	50

3.1	OVER	/IEW		
3.2	PERFO		ALGORITHM FOR STUDENT'S AND EMPLOYABILITY	50
	3.2.1	Preproces	sing	51
	3.2.2	Linear Ve	ctor Quantization (LVQ)	52
	3.2.3	AdaBoost		54
	3.2.4	Working l	Principle of HLVQ Model	55
	3.2.5	Pseudo Co	ode of HLVQ Model	56
3.3		R BASED F SIFICATION	FEATURE SELECTION AND MODEL	58
	3.3.1	Preproces	sing	59
	3.3.2	ACO base	ed Feature Selection	59
		3.3.2.1	Need of Feature Selection	59
		3.3.2.2	Overview of ACO algorithm	60
		3.3.2.3	Process involved in ACO-FS algorithm	60
	3.3.3	LR based	Classification	64
	3.3.4	Pseudo co	de of ACO-FS algorithm	66
3.4	CLUST	TERING WI	F DENSITY BASED ГН OPITMAL MULTILAYER BC-OMLP) MODEL	67
	3.4.1	Preproces	sing	67
	3.4.2	DBC base	d Clustering	68
		3.4.2.1	Overview of DBC	68
		3.4.2.2	DBC based Clustering Process	69
		3.4.2.3	Pseudocode of DBC model	71
	3.4.3	OMLP ba	sed Classification	72
		3.4.3.1	Overview of MLP	72

			3.4.3.2	Overview of BBO	74
			3.4.3.3	FSCBBO algorithm for training MLP	75
		3.4.4	Pseudocoo	de of OMLP Model	77
		3.4.5	SUMMAI	RY	79
4	RES	ULTS AN	ND DISCUS	SION	80
	4.1	OVERV	/IEW		80
	4.2	PERFO	RMANCE N	METRICS	80
	4.3	PERFO	RMANCE I	EVALUATION OF HLVQ MODEL	81
		4.3.1	Im	plementation Data	81
		4.3.2	Predictive Students	Results analysis of Graduated	81
		4.3.3	Predictive	Results analysis of Placed Students	83
		4.3.4	Cla and HLV	assification results analysis of LVQ Q models	83
		4.3.5	Complexi models	ty analysis of LVQ and HLVQ	84
	4.4	PERFO MODE		EVALUATION OF ACO-LR	85
		4.4.1	Dataset us	ed	85
		4.4.2	Results an Selection	alysis of ACO-LR based Feature Process	88
		4.4.3		alysis of ACO-LR based tion Process	90
	4.5	PERFO MODE		EVALUATION OF DBC-OMLP	95
		4.5.1	Dataset us	ed	95
		4.5.2	Results an Clustering	alysis of DBC-OMLP based Process	95
		4.5.3		alysis of DBC-OMLP based tion Process	97
	4.6	SUMM	ARY		102

5	CONCLUSION	103
6	SUMMARY	105
7	FUTURE ENHANCEMENTS	106

LIST OF TABLES

TABLE No.	TITLE	PAGE No.
3.1	Data Transformed Values in the dataset	52
4.1	Sample visualization of the training dataset	82
4.2	Details of the dataset	85
4.3	Class Variable Distribution (0-20)	86
4.4	Analysis of FS results	89
4.5	Confusion matrix of Proposed ACO-LR with Existing Methods	91
4.6	Comparative analysis of diverse models under several measures	92
4.7	Details of the clustered dataset	96
4.8	Confusion Matrix of DBC-OMLP model with Existing Methods	98
4.9	Performance of Proposed Method	99

LIST OF FIGURES

FIGURE No.	TITLE	PAGE No
1.1	An illustration of DM use in HE	5
1.2	Workflow of EDM	8
1.3	Main areas involved in Educational data mining	11
1.4	Classification of different EDM Applications	14
1.5	Process involved in data classification	26
1.6	Types of machine learning	28
1.7	Overview of metaheuristics	30
3.1	Working Process of HLVQ based Predictive model	51
3.2	Block diagram of ACO-LR model	58
3.3	Flowchart of ACO-FS technique	63
3.4	Process involved in LR based classification	64
3.5	Sample Representation of LR	65
3.6	Overall process of DBC-OMLP model	68
3.7	Flowchart of DBC technique	70
3.8	An MLP with one hidden layer	74
4.1	Predictive analysis of the students to be graduated	82
4.2	% of students predicted to be placed	83
4.3	Performance Analysis of LVQ and HLVQ	84
4.4	Time and Space Complexities of LVQ and HLVQ	85
4.5	List of features	87
4.6	Attributes Description	88
4.7	Feature selection results in ACO-FS model	89
4.8	Confusion Matrix of LR and ACO-LR	90
4.9	Confusion Matrix analysis of different models	91
4.10	Precision and recall analysis	93
4.11	F-measure and kappa analysis	93
4.12	Accuracy analysis of various methods	94
4.13	Visualization of Clustering Results using DBC	96
4.14	Confusion Matrix of OMLP and DBC-OMLP	97
4.15	Confusion matrix	98

4.16	Precision and recall analysis of diverse models	100
4.17	F-measure and Kappa analysis of diverse models	100
4.18	Accuracy analysis of diverse models	101

LIST OF ABBREVIATIONS

AAAI - Association for the Advancement of Artificial Intelligence

ACO - Ant Colony Optimization

AI - Artificial Intelligence

ANN - Artificial Neural Network

BBO - Biogeography-Based Optimization

BP - Back Propagation

CAL - Computer-Assisted Learning

CAR - Coursework Assessment Ratio

CBT - Computer-Based Training

CGPA - Cumulative Grade Point Average

CMS - Content Management System

CO - Combinatorial Optimization

CRISP - Cross-Industry Standard Process for Data Mining

CS - Cuckoo Search

DA - Discriminant Analysis

DBC - Density Based Clustering

DBN - Deep Belief Network

DM - Data Mining

DSS - Decision Support System

DT - Decision Tree

EA - Evolutionary Algorithm

EDC - Educational Data Clustering

EDM - Educational Data Mining

EM - Expectation-Maximisation

FA - Firefly Algorithm

FCBF - Fast Correlation-Based Filter

FCM - Fuzzy C-Means

FN - False Negative

FP - False Positive

FS - Feature Selection

FSC - Fitness Scaling Chaotic

FSCBBO - Fitness Scaling Chaotic Biogeography-Based Optimization

GA - Genetic Algorithm

GPA - Grade Point Average

HE - Higher Education

HEI - Higher Education Institution

HLVQ - Hybridization of Linear Vector Quantization

ITS - Intelligent Tutoring System

KNIME - Konstanz Information Miner

KNN - K-Nearest Neighbor

LA - Learning Analytics

LMS - Learning Management System

LR - Logistic Regression

LVQ - Linear Vector Quantization

ML - Machine Learning

MLP - Multilayer Perception

MOOC - Massive Open Online Courses

NB - Naïve Bayes

NN - Neural Network

OMLP - Optimal Multilayer Perceptron

PCA - Principal Component Analysis

PPL - Placement Performance Level

PSC - Particle Swarm Classification

PSO - Particle Swarm Optimization

RA - Rocchio Algorithm

RAR - Relational Association Rule

RecPart - Recursive Partitioning

REPTree - Reduced Error Pruning Decision Tree

RF - Random Forest

RR - Robust Regression

RS - Recommender System

SA - Simulated Annealing

SAP - Student Academic Performance

SI - Swarm Intelligence

SIV - Suitability Index Variable

SMO - Sequential Minimal Optimization

SMOTE - Synthetic Minority Oversampling Technique

SNA - Social Network Analysis

SOM - Self-Organizing Maps

SPL - Student Performance Level

SVM - Support Vector Machine

SVR - Support Vector Regression

TN - True Negative

TP - True Positive

TS - Tabu Search

TSP - Travelling Salesman Problem

UL - Unsupervised Learning

VLE - Virtual Learning Environment

WebCT - WEB-Based Course Development Tools

WEKA - Waikato Environment for Knowledge Analysis

WWW - World Wide Web