Équations différentielles - des exercices supplémentaires

Exercice 1

- 1) On cherche à déterminer les solutions $y \in \mathcal{D}(\mathbb{R}, \mathbb{R})$ de l'équation $x^2y' + xy = 1$.
 - a) Déterminer les solutions de cette équation qui sont définies et dérivables sur \mathbb{R}_+^{\star} (resp. \mathbb{R}_-^{\star}).
 - **b)** Conclure.
- 2) Même question avec l'équation $x^3y' = 2y$.

Exercice 2 Déterminer l'ensemble des $f \in \mathcal{D}(\mathbb{R}, \mathbb{C})$ telles que, pour tout $u, v \in \mathbb{R}$, f(u+v) = f(u)f(v).

Exercice 3 Résoudre l'équation $(1+x^2)^2y'' + 2x(1+x^2)y' + 4y = 0$ sur \mathbb{R} en effectuant le changement de variable $t = \arctan x$ — cela revient à poser " $z(t) = y(\tan t)$ " dans l'équation.