Layer 4 – The Transport Layer

- The Transport layer provides transparent transfer of data between hosts and is responsible for end-to-end error recovery and flow control.
- Flow control is the process of adjusting the flow of data from the sender to ensure that the receiving host can handle all of it.

Session Multiplexing

Session multiplexing is the process by which a host is able to support multiple sessions simultaneously and manage the individual traffic streams over a single link.

Session Multiplexing

Layer 4 Port Numbers

- The Layer 4 destination port number is used to identify the upper layer protocol.
- For example, HTTP uses port 80, SMTP email uses port 25.
- The sender also adds a source port number to the Layer 4 header.
- The combination of source and destination port number can be used to track sessions.

Layer 4 Port Numbers

DST: 1500 SRC: 80

TCP

- TCP (Transmission Control Protocol) and UDP (the User Datagram Protocol) are the most common Layer 4 protocols.
- TCP is connection oriented once a connection is established, data can be sent bidirectionally over that connection.
- TCP carries out sequencing to ensure segments are processed in the correct order and none are missing.
- TCP is reliable the receiving host sends acknowledgments back to the sender. Lost segments are resent.
- TCP performs flow control.

The TCP Three-Way Handshake

Sender

Layer	Name	Includes	Devices
7			
6			
5			
4			
3			
2			
1			

Receiver

1

L3

L5

L3

L2

Receiver

Sender

Layer	Name	Includes	Devices
7	Application		
6	Presentation		
5	Session		
4	Transport	TCP/UDP, Port	
3	Network	IP Address	Routers
2	Data-Link	Ethernet MAC Address	Switches
1	Physical		Hubs

The TCP Header

Bit 0 Bit 15 Bit 16 Bit 31

Source Port (16)			Destination Port (16)			
Sequence Number (32)						
Acknowledgment Number (32)						
Header Length (4)	Reserved (6)	Code Bits(6)	Window (16)			
	Check	sum (16)	Urgent (16)			
Options (0 or 32 If Any)						
Data (Varies)						

UDP

- The User Datagram Protocol sends traffic best effort.
- UDP is not connection oriented. There is no handshake connection setup between the hosts.
- UDP does not carry out sequencing to ensure segments are processed in the correct order and none are missing.
- UDP is not reliable the receiving host does not send acknowledgments back to the sender.
- UDP does not perform flow control.
- If error detection and recovery is required it is up to the upper layers to provide it.

The UDP Header

TCP vs UDP

- Application developers will typically choose to use TCP for traffic which requires reliability.
- Real-time applications such as voice and video can't afford the extra overhead of TCP so they use UDP.
- Some applications can use both TCP and UDP.

Common Applications and Their Destination Ports

- TCP
- FTP (21)
- SSH (22)
- Telnet (23)
- HTTP (80)
- HTTPS (443)

- UDP
- TFTP (69)
- SNMP (161)
- TCP and UDP
 - DNS (53)

