第六次程序作业

PB18010496 杨乐园

2022年1月1日

1 问题介绍

对如下一维偏微分方程:

$$\begin{cases} -\epsilon u'' + u' = x & 0 \le x \le 1 \\ u(0) = 0 & u(1) = 0 \end{cases}$$

分别基于一次与二次有限元空间,采取 uniform mesh、Shinshikin mesh 划分,进行数值求解,并计算相应的误差收敛阶进行比较。

2 实现方法

我们依据代码求解思路顺序给出求解实现程序以及方法的简述:

2.1 有限元变分格式

由等价的弱解形式:

Find
$$u_h \in V_h$$
, $s.t.a(u_n, v) = F(v)$, for any $v \in V_h$.

其中

$$a(u,v) = \int_{0}^{1} \epsilon u^{'}v^{'} + u^{'}(v + \delta v^{'}), \qquad F(v) = \int_{0}^{1} f(v + \delta v^{'}), \qquad \delta|_{I_{j}} = h_{j}$$

当我们假设对 [0,1] 进行 N 等分时,即 $h_e = \frac{1}{N}, x_i = ih_e, i = 0,1,2,...,N$,对于 u_h 在有限元空间内进行系数展开 $u_h = \sum_{i=1}^{N-1} u_i \phi_i(x)$,并依次取有限元空间的基函数 $v = \phi_i, i = 1,2,...,N-1$,从而得到如下方程组:

$$a(u_h, \phi_i) = \sum_{j=1}^{N-1} u_j a(\phi_j, \phi_i) = F(\phi_i), \quad i = 1, ..., N-1$$

将其写成刚度矩阵的形式:

$$K \cdot U = F$$

其中
$$K = (a(\phi_j, \phi_i))_{i,j=N-1}, \ U = (u_1, ..., u_{N-1})^T, \ F = (f_1, ..., f_{N-1})^T, f_i = F(\phi_i)$$
。

2.2 有限元空间的基函数以及刚度矩阵的构建

2.2.1 Uniform mesh 划分下的一次函数有限元空间

对于一次函数空间,其基函数如下定义:

$$\phi_i = \begin{cases} \frac{x - x_{i-1}}{h_e} & x \in [x_{i-1}, x_i] \\ \frac{x_{i+1} - x}{h_e} & x \in (x_i, x_{i+1}], & i = 1, ..., N - 1 \\ 0 & else \end{cases}$$

基于如上基函数定义, 有如下刚度矩阵:

$$K = \left(\frac{\epsilon}{h_e} + 1\right) \begin{pmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{pmatrix} + \begin{pmatrix} 0 & \frac{1}{2} & & & \\ -\frac{1}{2} & 0 & \frac{1}{2} & & \\ & \ddots & \ddots & \ddots & \\ & & -\frac{1}{2} & 0 & \frac{1}{2} \\ & & & & -\frac{1}{2} & 0 \end{pmatrix}$$

2.2.2 Uniform mesh 划分下的二次函数有限元空间

对于二次函数空间, 我们考虑其 Lagrange 基函数:

$$\varphi_{j}(x) = \begin{cases} \frac{(2x - x_{j} - x_{j-1})(x - x_{j-1})}{h_{e}^{2}} &, & x \in (x_{j-1}, x_{j}) \\ \frac{(2x - x_{j} - x_{j+1})(x - x_{j+1})}{h_{e}^{2}} &, & x \in [x_{j}, x_{j+1}) &, & j = 1, ..., N - 1 \\ 0 &, & else \end{cases}$$

$$\psi_{i+\frac{1}{2}} = \begin{cases} \frac{4(x - x_{i})(x_{i+1} - x)}{h_{e}^{2}} &, & x \in (x_{i}, x_{i+1}) \\ 0 &, & else \end{cases} , \quad i = 0, 1, ..., N - 1$$

基于如上基函数定义, 我们按照如下顺序对二次基函数排序:

$$\{\varphi_1, \varphi_2, ..., \varphi_{N-1}, \psi_{\frac{1}{2}}, \psi_{1+\frac{1}{2}}, ..., \psi_{N-1+\frac{1}{2}}\}$$

从而依据上述排序,有如下刚度矩阵:

其中矩阵 M 为

其中左上角为大小是 $(N-1) \times (N-1)$ 的三对角方阵,右下角为大小是 $N \times N$ 的对角阵。

2.2.3 Shinshkin mesh 划分

定义 $\tau = 1 - 2\epsilon ln(N)$,在区间 $(0,\tau)$ 与区间 $(\tau,1)$ 上分别采用 N 等分的 $uniform\ mesh$ 划分,(也即将 [0,1] 区间划分为 2N 个非均匀网格),进而构造相对应的一次与二次有限元函数空间,这里不再重复上述步骤。

2.3 右侧系数向量的构建

对于右侧向量,通过采用复化 3 点 Gauss 积分公式计算相关数值积分:

$$\int_{a}^{b} f(x)dx = A_{1}f(x_{1}) + A_{2}f(x_{2}) + A_{3}f(x_{3})$$

其中系数为:

$$A_1 = \frac{5}{18}(b-a)$$
 $A_2 = \frac{4}{9}(b-a)$ $A_3 = \frac{5}{18}(b-a)$

节点值为:

$$x_1 = \frac{a+b}{2} - \frac{\sqrt{15}}{10}(b-a)$$
 $x_2 = \frac{a+b}{2}$ $x_3 = \frac{a+b}{2} + \frac{\sqrt{15}}{10}(b-a)$

本此实验将积分区间 16 等分。

2.4 方程组求解方法

本次实验考虑到精度需要以及后续实验需要,利用共轭梯度迭代方法求解方程组,其中迭代的 初始向量选择为 (1,1,....,1),终止计算精度为 10^{-16} 。

2.5 误差收敛阶计算公式

设我们有 [0,1] 划分区间个数为 N_{old} ,对其加密后有划分区间个数为 N_{new} ,从而其误差收敛阶计算公式为:

$$order = \frac{ln(Error_{old}/Error_{new})}{ln(N_{new}/N_{old})}$$

3 程序测试结果与讨论

3.1 取 $\epsilon = 10^{-1}$ 测试结果

首先我们选取 $\epsilon=0.1$,仅采用 $Uniform\ mesh$ 测试程序,给出相应误差与误差收敛阶表格如下:

n	L无穷误差	Order	L1误差	Order	L2误差	Order
10	0.151468	0	0.0555673	0	0.075802	0
20	0.0898226	0.75386	0.029111	0.932672	0.0421028	0.848321
40	0.0494663	0.860634	0.0147814	0.977779	0.0222727	0.91864
80	0.0260647	0.924347	0.00743272	0.991822	0.0114746	0.956832
160	0.0133965	0.960247	0.00372524	0.996558	0.00582738	0.977524
320	0.00679379	0.979564	0.0018647	0.99839	0.00293708	0.988463
640	0.0034214	0.98963	0.000932895	0.999157	0.00147458	0.994079
1280	0.00171691	0.994776	0.000466628	0.999442	0.000738896	0.99686

图 1: $Uniform\ mesh: k = 1, \epsilon = 0.1.$

图 2: $Uniform\ mesh: k=2, \epsilon=0.1.$

n	L无穷误差	Order	L1误差	Order	L2误差	Order
10	0.148156	0	0.0559552	0	0.0754399	0
20	0.0885135	0.743145	0.0292626	0.935215	0.0420659	0.842676
40	0.0490557	0.851477	0.0148259	0.980939	0.0222776	0.917058
80	0.0259508	0.918641	0.00744448	0.993876	0.0114785	0.956664
160	0.0133666	0.957145	0.00372818	0.997699	0.00582863	0.9777
320	0.00678617	0.977965	0.00186536	0.999021	0.0029373	0.988666
640	0.00341948	0.988822	0.000932969	0.99955	0.00147448	0.994284
1280	0.00171642	0.99437	0.000466554	0.999785	0.000738709	0.997129

由于该方法是牺牲精度换取稳定性的一种妥协,而 $\epsilon=0.1$ 时,求解结果还是稳定的,所以该方法的优势不是很明显,出于简洁考虑,我们呢也不在此展示所绘制相应的数值求解图像了;甚至相较于一般的弱解形式,其本该在 k=1 时有 2 阶误差收敛阶、在 k=2 时有 3 阶误差收敛阶,但通过数值结果可以看出,此方法均都只有 1 阶误差收敛阶,造成了精度的下降。

3.2 取 $\epsilon = 10^{-7}$ 测试结果

3.2.1 Uniform mesh 求解结果

其次我们选取 $\epsilon=10^{-7}$,分别采用 $Uniform\ mesh$ 于与 $Shinshkin\ mesh$ 测试程序,并给出相应误差与误差收敛阶表格如下:

n	L无穷误差	Order	L1误差	Order	L2误差	Order
10	0.499932	0	0.0497077	0	0.116012	0
20	0.499866	0.000190951	0.0250426	0.989083	0.0822227	0.496666
40	0.499733	0.00038415	0.0125283	0.999192	0.0581735	0.499174
80	0.499467	0.000769687	0.00626084	1.00077	0.0411452	0.49964
160	0.498933	0.00154114	0.00312877	1.00076	0.0290888	0.500261
320	0.497867	0.00308744	0.00156803	0.996643	0.0206144	0.496812
640	0.495734	0.00619471	0.000785194	0.997831	0.0146904	0.488776
1280	0.491467	0.0124691	0.000409575	0.938921	0.0103997	0.498339

图 3: $Uniform\ mesh: k = 1, \epsilon = 10^{-7}$.

图 4: Uniform mesh: $k = 2, \epsilon = 10^{-7}$.

n	L无穷误差	Order	L1误差	Order	L2误差	Order
10	0.499953	0	0.049977	0	0.11187	0
20	0.499905	0.000136675	0.025	0.999335	0.0791076	0.499934
40	0.499811	0.000273374	0.0125	0.999996	0.0559377	0.499997
80	0.499621	0.000546792	0.00624996	1.00002	0.0395535	0.500015
160	0.499243	0.00109376	0.00312472	1.00012	0.0279676	0.500051
320	0.498486	0.0021882	0.00156229	1.00007	0.019775	0.500074
640	0.496975	0.00437915	0.00078501	0.992877	0.0140213	0.496062
1280	0.493964	0.00876928	0.000387767	1.01752	0.00948789	0.563459

除此之外,我们以 N=160 时为例,给出数值解的函数图像,并与第三次数值解结果做对比:(注: N 为其他情况下的数值解图像参见 draft.nb 文件即可,这里不做展示。)

我们可以看到,与第三次数值求解的结果相比,本次若解形式的求解结果更加稳定,避免了振荡现象;在求解精度上,我们观察到,无论是 k=1 还是 k=2,其 L^{∞} 误差均在 0.5 左右,并未减少,而 L^1 误差下其收敛阶为 1, L^2 误差下其收敛阶为 0.5 左右。可以明显的看到,此次的弱解求解结果,在牺牲精度的条件下,换取了数值求解的稳定性。

3.2.2 Shinshkin mesh 求解结果

其次我们在 $\epsilon=10^{-7}$ 下,采用 $Shinshkin\ mesh$ 测试程序,并给出相应误差与误差收敛阶表格如下:

n	L无穷误差	Order	L1误差	Order	L2误差	Order
10	0.0199998	0	0.00219954	0	0.00438095	0
20	0.00466582	2.09978	0.000363498	2.59718	0.000758041	2.5309
40	0.000921132	2.34065	0.0000660325	2.4607	0.000221907	1.77232
80	0.000171261	2.42721	0.0000142584	2.21136	0.000210159	0.078475
160	0.0000323706	2.40344	3.5074×10^{-6}	2.02334	0.000225314	-0.100459
320	6.44718 × 10 ⁻⁶	2.32795	1.01358×10^{-6}	1.79095	0.000240175	-0.0921446
640	1.36069 × 10 ⁻⁶	2.24433	4.20805×10^{-7}	1.26823	0.000254194	-0.081845
1280	3.01093×10^{-7}	2.17605	2.90924×10^{-7}	0.532508	0.00026748	-0.0735052

图 5: *Uniform mesh*: $k = 1, \epsilon = 10^{-7}$.

图 6: Uniform mesh: $k = 2, \epsilon = 10^{-7}$.

n	L无穷误差	Order	L1误差	Order	L2误差	Order
10	0.499861	0	0.013138	0	0.0583738	0
20	0.499719	0.000407901	0.00631997	1.05576	0.0409153	0.512682
40	0.499445	0.000793899	0.00313191	1.01287	0.0288802	0.502558
80	0.498905	0.0015587	0.00156343	1.00233	0.0204151	0.500447
160	0.497845	0.00306946	0.000782055	0.999373	0.014436	0.499963
320	0.495761	0.00605216	0.00039116	0.99951	0.0102087	0.499874
640	0.49167	0.0119523	0.000199089	0.974343	0.00720931	0.501864
1280	0.483666	0.0236795	0.000104277	0.932989	0.00518144	0.476509

4 Computer Code

代码部分请参见附件。