```
Exit[]
```

\$Assumptions = $\mu > 0 & & \sigma > 0 & & a \in \text{Reals & } 1 > k1 \ge 0 & & k0 \ge 0 & & s0 > 0 & & k > 0 & & k \ge 0 & & k \le rf \ge 0 & & rf \ge 0$

xx[W_, mpr_, t_] := Exp[tW + (mpr - 1 / 2) t²];
put[k_, t_] := BlackScholesPut[1, k, 1, 0, t, 0]

 $\gamma = .1; mpr = 0.1; t = 1;$

NIntegrate [Max [0, 1.1 - xx [w, 0, .1]] Exp [-w²/2], {w, - ∞ , ∞ }] $/\sqrt{2\pi}$ - put [1.1, .1]

pr[a_, k_] := $-\log\left[\operatorname{NIntegrate}\left[\operatorname{Exp}\left[-\operatorname{a}\operatorname{Max}\left[0,k-\operatorname{xx}\left[w,\operatorname{mpr},t\right]\right]-w^{2}\right/2\right],\left\{w,-\infty,\infty\right\}\right]\right/\sqrt{2\pi}\right]-$ a put[k,t];

 -5.88141×10^{-14}

mpr = -.15; $Plot[{pr[a, 2], pr2[a, 2]}, {a, -1, 1}, PlotRange <math>\rightarrow {-.1, .1}$]

Quiet [FindRoot [pr2[a, 1.9] = 0, $\{a, -1, 1\}$]]

 $\{a \rightarrow 0.23679\}$

 $Plot3D[pr[a, k], \{a, -1, 1\}, \{k, 0, 3\}, PlotRange \rightarrow \{-.2, .2\}]$

Normal [Series [df[a, w, 0, t], {t, 0, 3}]]

$$-e^{-\frac{w^{2}}{2}} t w + \frac{1}{2} e^{-\frac{w^{2}}{2}} t^{2} (1 - 2 mpr - w^{2} + 2 a w^{2}) - \frac{1}{6} e^{-\frac{w^{2}}{2}} t^{3} w (-3 + 6 a + 6 mpr - 12 a mpr + w^{2} - 6 a w^{2} + 3 a^{2} w^{2})$$

Integrate [, $\{w, -\infty, \infty\}$]

$$\sqrt{\frac{\pi}{2}}$$
 (2+at (2b+3(-1+a) b²t+(a-2mpr)t))

MinValue
$$\left[\sqrt{\frac{\pi}{2}} \left(2 + a t \left(2 b + 3 \left(-1 + a\right) b^2 t + (a - 2 mpr) t\right)\right), \{a\}\right]$$

$$\begin{cases} \sqrt{2 \, \pi} & \text{ (b > 0 \&\& t == 0) || (b < 0 \&\& t == 0)} \\ \frac{1}{4} \left(4 \, \sqrt{2 \, \pi} \, - 2 \, \text{mpr}^2 \, \sqrt{2 \, \pi} \, t^2 \right) & \text{ b = 0} \\ \frac{1}{4 + 12 \, \text{b}^2} \left(4 \, \sqrt{2 \, \pi} \, + 10 \, \text{b}^2 \, \sqrt{2 \, \pi} \, t \right) & \text{True} \end{cases}$$

$$\begin{cases} 6 \, \text{b}^3 \, \sqrt{2 \, \pi} \, t + 4 \, \text{b mpr} \, \sqrt{2 \, \pi} \, t - 9 \, \text{b}^4 \, \sqrt{\frac{\pi}{2}} \, t^2 - 1 \\ 6 \, \text{b}^2 \, \text{mpr} \, \sqrt{2 \, \pi} \, t^2 - 2 \, \text{mpr}^2 \, \sqrt{2 \, \pi} \, t^2 \right) \end{cases}$$

Series[%, {t, 0, 2}]

$$\sqrt{2\pi}$$
 + a b $\sqrt{2\pi}$ t + (a² - 3 a b² + 3 a² b² - 2 a mpr) $\sqrt{\frac{\pi}{2}}$ t² + O[t]³

 $Integrate \Big[Series Coefficient \Big[df \Big[a,w,b \sqrt{t},t \Big], \{t,0,2\} \Big], \{w,-\infty,\infty\} \Big] \\$

$$\frac{1}{4} \; \left(8\; a + 35\; \left(-1 + 2\; \left(-1 + a \right)\; a\; \left(-7 + 2\; a \right) \right) \; b^4 - 8\; mpr \right) \; \sqrt{\frac{\pi}{2}}$$

SeriesCoefficient[df[a, w, b, t], {t, 0, 2}]

$$\begin{array}{l} \text{a } \mathbb{e}^{\,a\,\left(1\,-\,e^{\,-\,2.\,4\,\,w^{\,2}}\,\right)\,-\,5.\,3\,\,w^{\,2}}\,\,w^{\,2}\,-\,\frac{1}{2}\,\,\mathbb{e}^{\,a\,\left(1\,-\,e^{\,-\,2.\,4\,\,w^{\,2}}\,\right)\,-\,2.\,9\,\,w^{\,2}}\,\,\left(-\,1\,+\,2\,\,\text{mpr}\,+\,w^{\,2}\right)\,+\\ \\ \frac{1}{2}\,\,\mathbb{e}^{\,a\,\left(1\,-\,e^{\,-\,2.\,4\,\,w^{\,2}}\,\right)\,-\,\frac{w^{\,2}}{2}}\,\,\left(1\,-\,e^{\,-\,2.\,4\,\,w^{\,2}}\,\right)\,\,\left(a^{\,2}\,\,\mathbb{e}^{\,-\,4.\,8\,\,w^{\,2}}\,\,w^{\,2}\,-\,a\,\,\mathbb{e}^{\,-\,2.\,4\,\,w^{\,2}}\,\,\left(-\,1\,+\,2\,\,\text{mpr}\,+\,w^{\,2}\right)\,\right) \end{array}$$

$$\frac{1}{2} (-1 + 2 a) e^{-\frac{w^2}{2}} t^2 w^2 - \frac{1}{6} (1 - 6 a + 3 a^2) e^{-\frac{w^2}{2}} t^3 w^3$$

$$\frac{1}{2} \; \left(-1 + 2 \; a \right) \; e^{-\frac{w^2}{2}} \; t^2 \; w^2 - \frac{1}{6} \; \left(1 - 6 \; a + 3 \; a^2 \right) \; e^{-\frac{w^2}{2}} \; t^3 \; w^3$$

ost = .01; mpr = 0.5; b = 2.4; o = -0 3; p = 3; Plot[$\{g[Max[0,a],\infty],g[a,b]\},\{a,o,p\}\}$

ost = .0001; b = 2.4; o = -1 0; p = 3; Plot[$\{dg[Max[0,a],\infty]\}$, $\{a,o,p\}$]

 $b = .1; o = -3; p = 3; Plot[{dg[Max[0,a],0], dg[a,b]}, {a,o,p}]$

 $h[b_{-}] := Quiet[FindRoot[dg[a, b] == 0, {a, -5, 5}][[1, 2]]]$

ListLinePlot [Table [h[1/n/2], $\{n, 10, 30\}$]]

fcs = Quiet[Table[fc2[n], {n, 650}]];

ListLinePlot[

 $\label{eq:transpose} \texttt{Transpose} \Big[\texttt{Table} \Big[\Big\{ \texttt{Abs} [\texttt{fcs}[[n]]]^{1/n}, \, \texttt{Abs} [\texttt{fcs}[[n+1]] \, / \, \texttt{fcs}[[n]]] \Big\}, \, \{n, 1, 600\} \Big] \Big] \Big]$

