# (T)EE2026 Digital Fundamentals

**Number Systems** 

**Massimo ALIOTO** 

Dept of Electrical and Computer Engineering

Email: massimo.alioto@nus.edu.sg

## **Outline**

- Positional number system
- Radix conversion
- Binary arithmetic
- Binary signed representation
- Binary-coded decimal (BCD)

## Positional Number System

#### **Decimal number:**

#### Terminologies

- Radix (or base)
- Radix point
- Digits and a numeral (0 → radix-1)
- Place value (or weight) is in the power of the base (positive on the left and negative on the right side of the radix point



$$N = 1 \times 10^{3} + 2 \times 10^{2} + 6 \times 10^{1} + 0 \times 10^{0} + 2 \times 10^{-1} + 5 \times 10^{-2} = 1260.25$$

\*Weighted sum of each digit (each digit is weighted by its place value)

## **Binary number**



#### **Decimal Equivalent:**

$$N_{10} = 1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} + 0 \times 2^{-1} + 1 \times 2^{-2}$$

$$= 16 + 0 + 4 + 2 + 0 + 0 + \frac{1}{4}$$

$$= 22.25$$

$$(10110.01)_{2} = (22.25)_{10}$$

## Hexadecimal number



#### **Decimal Equivalent:**

$$N_{10} = 1 \times 16^{3} + 8 \times 16^{2} + F \times 16^{1} + 4 \times 16^{0} + 2 \times 16^{-1} + 10 \times 16^{-2}$$

$$= 4096 + 2048 + 240 + 4 + \frac{2}{16} + \frac{10}{256}$$

$$= 6388 + \frac{21}{128}$$

$$\approx 6388.16$$
(18F4.2A)<sub>16</sub> \approx (6388.16)<sub>10</sub>

| Hex | Dec |
|-----|-----|
| 0   | 0   |
| 1   | 1   |
| 2   | 2   |
| 3   | 3   |
| 4   | 4   |
| 5   | 5   |
| 6   | 6   |
| 7   | 7   |
| 8   | 8   |
| 9   | 9   |
| Α   | 10  |
| В   | 11  |
| С   | 12  |
| D   | 13  |
| E   | 14  |
| F   | 15  |

## Octal number



#### **Decimal Equivalent:**

$$N_{10} = 7 \times 8^{2} + 5 \times 8^{1} + 4 \times 8^{0} + 2 \times 8^{-1}$$
$$= 448 + 40 + 4 + \frac{2}{8}$$
$$= 492.25$$

| Oct      | Dec |
|----------|-----|
| 0        | 0   |
| 1        | 1   |
| 2        | 2   |
| 3        | 3   |
| 4        | 4   |
| 5        | 5   |
| 6        | 6   |
| 7        | 7   |
| <b>?</b> | 8   |
| ?        | 9   |
| ?        | 10  |

## General form of A Number of radix r and its Decimal Equivalent

#### General form of Number of radix r:

Radix point 
$$A_r = (a_n a_{n-1} \ldots a_o . a_{-1} \ldots a_{-m})_r$$
 where  $a_n, a_{n-1}, \ldots, a_0, \ldots a_{-m} \in \{0, \ldots (r-1)\}$  (Integer only)

#### **Decimal equivalent:**

$$A_r = (a_n a_{n-1} \dots a_o.a_{-1} \dots a_{-m})_r \qquad \qquad \text{Radix point is here}$$

$$= a_n \times r^n + a_{n-1} \times r^{n-1} + \dots a_o \times r^0 + a_{-1} \times r^{-1} + \dots a_{-m} \times r^{-m}$$

$$= \sum_{i=-m}^n a_i r^i$$

\*Weighted sum of all digits

## **Radix Conversion**

### Three types of conversions:

- Radix r (r≠10) → Decimal
- Decimal → Radix r (r≠10)
- Conversion among Binary, Octal and Hex numbers

## Radix r (r ≠ 10) → Decimal

Binary  $\rightarrow$  Decimal  $(10110.01)_2 = (??)_{10}$ 

$$(10110.01)_2 \rightarrow 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2} = (22.25)_{10}$$

Hex  $\rightarrow$  Decimal (18F4.2A)<sub>16</sub> = (??)<sub>10</sub>

$$(18F4.2A)_{16} = 1 \times 16^{3} + 8 \times 16^{2} + F \times 16^{1} + 4 \times 16^{0} + 2 \times 16^{-1} + 10 \times 16^{-2}$$
$$\approx (6388.16)_{10}$$

#### \*Compute the weighted sum of all digits

$$A_{r} = (a_{n}a_{n-1}...a_{o}.a_{-1}...a_{-m})_{r}$$

$$= a_{n} \times r^{n} + a_{n-1} \times r^{n-1} + ...a_{o} \times r^{0} + a_{-1} \times r^{-1} + ...a_{-m} \times r^{-m}$$

$$= \sum_{i=-m}^{n} a_{i}r^{i}$$

## Decimal → Radix r (r ≠ 10)

Decimal 
$$\rightarrow$$
 Binary  $(102)_{10} = (??)_2$ 

$$(102)_{10} = A_2 = (a_n a_{n-1} \dots a_o a_{-1} \dots a_{-m})_r$$

$$= a_n \times 2^n + a_{n-1} \times 2^{n-1} + \dots + a_1 \times 2^1 + a_o \qquad \text{(Assume integer)}$$

$$= (a_n \times 2^n + a_{n-1} \times 2^{n-1} + \dots + a_1 \times 2^1) + a_o$$

#### Integer multiple of 2

$$\frac{(102)_{10}}{2} \rightarrow$$

#### Continue dividing quotient by 2

$$a_{n} \times 2^{n-2} + a_{n-1} \times 2^{n-3} + \dots + a_{1}$$

$$2 \overline{a_{n} \times 2^{n-1} + a_{n-1} \times 2^{n-2} + \dots + a_{1}}$$

$$\underline{a_{n} \times 2^{n-1} + a_{n-1} \times 2^{n-2} + \dots + a_{1}}$$

Remainder is a<sub>0</sub>

Remainder is a<sub>1</sub>

## Decimal $\rightarrow$ Radix r (r $\neq$ 10) – cont.

Decimal  $\rightarrow$  Binary  $(102)_{10} = (??)_2$ 

| Division | Quotient | Remainder           |
|----------|----------|---------------------|
| 102/2    | 51       | $0 \rightarrow a_0$ |
| 51/2     | 25       | 1 → a <sub>1</sub>  |
| 25/2     | 12       | 1 → a <sub>2</sub>  |
| 12/2     | 6        | 0 → a <sub>3</sub>  |
| 6/2      | 3        | 0 → a <sub>4</sub>  |
| 3/2      | 1        | 1 → a <sub>5</sub>  |
| 1/2      | 0        | 1 → a <sub>6</sub>  |

Stop when the quotient = 0

$$(102)_{10} = (1100110)_2$$

Check:

$$N_{10} = a_6 \times 2^6 + a_5 \times 2^5 + a_4 \times 2^4 + a_3 \times 2^3$$

$$+ a_2 \times 2^2 + a_1 \times 2^1 + a_0 \times 2^0$$

$$= 1 \times 2^6 + 1 \times 2^5 + 0 \times 2^4 + 0 \times 2^3$$

$$+ 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$$

$$= 64 + 32 + 0 + 0 + 4 + 2 + 0$$

$$= 102$$

## **How about Fractional Numbers?**

Decimal  $\rightarrow$  Binary  $(0.58)_{10} = (??)_2$ 

$$(0.58)_{10} = A_2 = (0.a_{-1}a_{-2}...a_{-m+1}a_{-m})_r$$
  
=  $a_{-1} \times 2^{-1} + a_{-2} \times 2^{-2} + ... + a_{-m+1} \times 2^{-m+1} + a_{-m} \times 2^{-m}$ 

#### Multiply by 2:

$$(0.58)_{10} \times 2 = a_{-1} + a_{-2} \times 2^{-1} + \dots + a_{-m+1} \times 2^{-m+2} + a_{-m} \times 2^{-m+1}$$

Integer part is a<sub>1</sub> fractional part

## How about Fractional Numbers? – cont.

Decimal 
$$\rightarrow$$
 Binary  $(0.58)_{10} = (??)_2$ 

| Multiply<br>by 2 | Product | Integer<br>Part     |
|------------------|---------|---------------------|
| 0.58x2           | 1.16    | 1 → a <sub>-1</sub> |
| 0.16x2           | 0.32    | 0 → a <sub>-2</sub> |
| 0.32x2           | 0.64    | 0 → a <sub>-3</sub> |
| 0.64x2           | 1.28    | 1 → a <sub>-4</sub> |
| 0.28x2           | 0.56    | 0 → a <sub>-5</sub> |
| 0.56x2           | 1.12    | 1 → a <sub>-6</sub> |
| 0.12x2           | 0.24    | 0 → a <sub>-7</sub> |
| 0.24x2           | 0.48    | 0 → a <sub>-8</sub> |

$$(0.58)_{10} = (0.100101)_2$$

#### Check:

$$N_{10} = 1 \times 2^{-1} + 1 \times 2^{-4} + 1 \times 2^{-6}$$

$$= \frac{1}{2} + \frac{1}{16} + \frac{1}{64}$$

$$= 0.578125$$

$$\approx 0.58$$

- The conversion process may never end.
- Where to stop depends on the required precision
- The process only ends when fractional part = 0

## Numbers with Different Radixes: Summary

#### **Numbers with Different Radixes**

| Decimal<br>(radix 10) | Binary<br>(radix 2) | Octal<br>(radix 8) | Hexadecimal<br>(radix 16) |
|-----------------------|---------------------|--------------------|---------------------------|
| 00                    | 0000                | 00                 | 0                         |
| 01                    | 0001                | 01                 | 1                         |
| 02                    | 0010                | 02                 | 2                         |
| 03                    | 0011                | 03                 | 3                         |
| 04                    | 0100                | 04                 | 4                         |
| 05                    | 0101                | 05                 | 5                         |
| 06                    | 0110                | 06                 | 6                         |
| 07                    | 0111                | 07                 | 7                         |
| 08                    | 1000                | 10                 | 8                         |
| 09                    | 1001                | 11                 | 9                         |
| 10                    | 1010                | 12                 | A                         |
| 11                    | 1011                | 13                 | В                         |
| 12                    | 1100                | 14                 | C                         |
| 13                    | 1101                | 15                 | D                         |
| 14                    | 1110                | 16                 | E                         |
| 15                    | 1111                | 17                 | F                         |

## Conversion among Hex, Octal and Binary

- Hex ←→ Binary
  - Each Hex digit → 4 Binary bits (digits)
  - Or each 4 Binary bits → 1 Hex digit (starting from radix point)
- Octal ←→ Binary
  - Each octal digit → 3 Binary bits
  - Or each 3 Binary bits → 1 Octal digit (starting from radix point)
- Hex ←> Octal
  - Use Binary as an intermediate step
  - Hex → Binary → Octal
  - Octal → Binary → Hex

## **Examples (Hex, Octal, Binary)**

Bin 
$$\rightarrow$$
 Hex:  
(11 1010 1101 0111)<sub>2</sub>  
(3 A D 7)<sub>16</sub>

Bin 
$$\rightarrow$$
 Oct:  
(10 111 101 110)<sub>2</sub>  
(2 7 5 6)<sub>8</sub>

## More Examples



For the fractional part: very similar, just group digits by starting from the position after the radix point

Hex 
$$\rightarrow$$
 Bin:  
 $(0 . A45F)_{16}$   
 $\downarrow$   
 $(0 . 1010 0100 0101 1111)_2$ 

### Radix Conversion: Generalization

- Radix r (r≠10) → Decimal
  - Compute weighted sum of all digits
- Decimal → Radix r (r≠10)
  - Integer → Divided by r and take the remainder
  - Fraction → Multiply by r and take the integer
  - Add integer and fraction parts
- Conversion among Binary, Octal and Hex numbers
  - 1 Hex digit = 4 Binary and 1 Oct = 3 Binary, vice versa
  - Hex→Oct: Hex→Binary→Octal, and vice versa. Binary is used as an intermediate step

## **Binary Arithmetic**

- Addition
- Multiplication
- Subtraction
- Division
- MSB and LSB
- Arithmetic using computer

## **Addition**

#### Addition table:

$$0 + 0 = 0$$
  
 $0 + 1 = 1$   
 $1 + 1 = 10$ 

"1" is the carry to the next higher bit

#### Example:

## Multiplication

#### Multiplication table:

$$0 \times 0 = 0$$
  
 $0 \times 1 = 0$   
 $1 \times 1 = 1$ 

#### **Example:**

#### Multiplication:

- → Shift then Add
- → Only need "add" operation



## **Subtraction**

#### **Subtraction table:**

```
0 - 0 = 0

1 - 0 = 1

1 - 1 = 0

0 - 1 = 1 \leftarrow with a borrow from the next (higher) bit
```

#### **Example:**

### **Division**

100101/101 = ?



Check in decimal

- Set quotient to 0
- Align leftmost digits in dividend and divisor
- Repeat
  - If that portion of the dividend above the divisor is greater than or equal to the divisor
    - Then subtract divisor from that portion of the dividend and
    - Concatenate 1 to the right hand end of the quotient
    - Else concatenate 0 to the right hand end of the quotient
  - Shift the divisor one place right
- Until dividend is less than the divisor
- quotient is correct, dividend is remainder
- STOP

Division (shift and subtract)

- → Shift then subtraction
- → Only need "subtract" operation

## **Arithmetic using computer**

- Only addition and subtraction are needed for 4 binary arithmetic operations
- Subtraction needs more elements than addition in hardware
- Subtraction can be performed by adding a negative number
- Thus, a computer may only use adders to perform all binary arithmetic operations
- This requires an appropriate representation of the negative binary numbers

## Signed Binary numbers

- Three ways to represent the signed binary numbers
  - Signed binary (Sign + magnitude)
  - 1's complement
  - 2's complement

## MSB and LSB of a Binary Number

- MSB
  - Most significant bit
- LSB
  - Least significant bit

\*For integer binary number only

## **Unsigned Binary number**

#### **Unsigned binary number (***n* **bits)**



Magnitude

(No sign, always positive)

#### Range of unsigned binary number:

Max value of a 4-bit number:

$$2^{4} 2^{3} 2^{2} 2^{1} 2^{0}$$

$$1111 = 1 \ 0 \ 0 \ 0 \ -1 \ \rightarrow (2^{4})_{10} -1$$

#### Example:

| Decimal | Unsigned binary |
|---------|-----------------|
| 0       | 000             |
| 1       | 001             |
| 2       | 010             |
| 3       | 011             |
| 4       | 100             |
| 5       | 101             |
| 6       | 110             |
| 7       | 111             |

Max value of *n*-bit unsigned number in decimal  $\rightarrow$  2<sup>n</sup> – 1. Range: 0 ~ (2<sup>n</sup>-1)

## Signed Binary – Signed Magnitude (S-M)

#### Signed binary number (*n* bits)



#### **Example:**

| Decimal | S-M      |           |
|---------|----------|-----------|
| Decimal | O-IVI    |           |
| 3       | 011      |           |
| 2       | 010      |           |
| 1       | 001      | Note:     |
| +0      | 000      | Two zeros |
| -0      | 100      |           |
| -1      | 101      |           |
| -2      | 110      | Negative  |
| -3      | 111      | numbers   |
|         | <b>↑</b> |           |



"1" in MSB position for all negative numbers

## Signed Magnitude – cont.

#### **More examples:** $00111010 = +0111010 = (58)_{10}$

$$11100101 = -1100101 = (-101)_{10}$$

$$10000001 = -0000001 = (-1)_{10}$$

$$011111111 = +11111111 = (+127)_{10}$$

#### Range of binary number represented by S-M:

For a n-bit Signed binary (S-M), its magnitude is (n-1) bits

Max magnitude: 
$$(2^{n-1}-1)_{10}$$

Range: 
$$-(2^{n-1}-1)_{10}^{n-1} \sim +(2^{n-1}-1)_{10}^{n-1}$$

## Arithmetic using Binary Numbers (S-M)

- Computer performs binary arithmetic operations using only
  - Adders
  - Multipliers
- Subtraction is performed by adding a negative number

#### **Examples of subtraction using S-M binary representation:**

\*S-M representation cannot be used for addition of two number with opposite signs or subtraction when using a simple adder (dedicated hardware is needed for all possible sign combinations)

## **Complement Representation**

### Complement representations of a number

- Radix complements
- Diminished complements

#### Definitions:

- *Radix Complement* of a n-digit integer number A with radix (*r*):

$$A^* = r^n - A$$

- *Diminished radix complement* of a n-digit integer number A with radix (*r*):

$$A^* = r^n - A - 1$$

## **Diminished Radix Complement**

$$A^* = r^n - A - 1$$
 or  $A^* = (r^n - 1) - A$ 

#### **Examples:**

#### **Decimal number:**

$$A = 2375 \rightarrow A^* = (10000_{10} - 1) - 2375_{10} = 9999_{10} - 2375_{10} = 7624_{10}$$
  
 $A = 0919 \rightarrow A^* = (10000_{10} - 1) - 0919_{10} = 9080_{10}$ 

#### **Octal number:**

$$A = 406 \rightarrow A^* = (1000_8 - 1) - 406_8 = 777_8 - 406_8 = 371_8$$
  
 $A = 0671 \rightarrow A^* = (10000_8 - 1) - 0671_8 = 7777_8 - 0671_8 = 7106_8$ 

#### Hex number:

$$A = 4A09 \rightarrow A^* = (10000_{16} - 1) - 4A09_{16} = FFFF_{16} - 4A09_{16} = B5F6_{16}$$
  
 $A = 0A7F \rightarrow A^* = (10000_{16} - 1) - 0A7F_{16} = FFFF_{16} - 0A7F_{16} = F580_{16}$ 

#### **Binary number:**

$$A = 1001 \rightarrow A^* = (10000_2 - 1) - 1001_2 = 1111_2 - 1001_2 = 0110_2$$
  
 $A = 1100 \rightarrow A^* = (10000_2 - 1) - 1100_2 = 1111_2 - 1100_2 = 0011_2$ 

Diminished **radix 2** complement is found by reversing the bits

## 1's Complement

- "1's Complement" is the diminished radix complement of binary numbers
- 1's complement of a n-bit number is  $A^* = (2^n 1) A$
- 1's complement of a binary number can be obtained by reversing the bits, i.e. "1" → "0" and "0" → "1", since

$$(2^{n} - 1)_{10} = 1000...000 - 1 = 111...111$$
 $n+1 \text{ bits}$ 
 $n \text{ bits}$ 

Binary number (n=8): 01011100

1's Complement: 11111111 - 01011100 = 10100011

Reversing the bits

## 1's Complement representation of signed binary number

#### No change for positive numbers and use 1's complement for negative numbers

| Decimal         | Con | 1's<br>nplen | nent |
|-----------------|-----|--------------|------|
| 3               |     | 011          |      |
| 2               |     | 010          |      |
| 1               |     | 001          |      |
| +0              |     | 000          |      |
| -0              |     | 111          |      |
| -1              | /   | 110          |      |
| -2              | /   | 101          |      |
| -3              | /   | 100          |      |
| Still two zeros |     |              |      |

Magnitude range:  $-(2^{n-1}-1) \sim (2^{n-1}-1)$  3-2=3+(-2)=1 3-1=3+(-1)=2011 +101 +110 -----(1)000
(1)001 +----001
010

\*It has no problem to perform subtraction, but needs to shift and add the carry

## 2's Complement of a Binary Number

- "2's Complement" is the radix complement of binary numbers
- 2's complement of a n-bit number can be obtained by adding "1" to its 1's complement, i.e.,

$$A^* = 2^n - A$$
  
=  $(2^n - A - 1) + 1$   
= 1's complement + 1

## 2's Complement representation of signed binary number

No change for positive numbers and use 2's complement for negative numbers

|   | Decimal | 2's<br>Complement |
|---|---------|-------------------|
|   | 3       | 011               |
|   | 2       | 010               |
|   | 1       | 001               |
| • | 0       | 000               |
|   | -1      | 111               |
|   | -2      | 110               |
|   | -3      | 101               |
|   | -4      | 100               |

- No problem in performing subtraction
- Carry is discarded (there is NO NEED to shift and add the carry, thus more hardware efficient)

Only one zero

Magnitude range:  $-(2^{n-1}) \sim (2^{n-1}-1)$ 

## Signed Binary Number (Recap)

#### Sign+Magnitude

- Two zero representations (+/- zeros)
- It cannot correctly perform subtraction
- Magnitude range:  $-(2^{n-1}-1) \sim (2^{n-1}-1)$

#### 1's Complement (Diminished radix complement)

- Defined as:  $A^* = (2^n 1) A$
- 1's complement can be obtained by reversing the bits
- Two zero representations (+/- zeros)
- It can correctly perform subtraction, but needs to shift and add the carry
- Magnitude range:  $-(2^{n-1}-1) \sim (2^{n-1}-1)$

#### 2's Complement (Radix complement)

- Defined as: A\* = 2<sup>n</sup> A
- One zero representation
- It can correctly perform subtraction by just ignoring the carry
- 2's complement can be obtained by adding "1" to its 1's complement
- Magnitude range:  $-(2^{n-1}) \sim (2^{n-1}-1)$

Positive numbers are same in all 3 signed binary number representations

## 4-bit Signed Binary Numbers Table

#### **Signed Representations of Binary Numbers**

| Decimal | Signed-2's<br>Complement | Signed-1's<br>Complement | Signed<br>Magnitude |
|---------|--------------------------|--------------------------|---------------------|
| +7      | 0111                     | 0111                     | 0111                |
| +6      | 0110                     | 0110                     | 0110                |
| +5      | 0101                     | 0101                     | 0101                |
| +4      | 0100                     | 0100                     | 0100                |
| +3      | 0011                     | 0011                     | 0011                |
| +2      | 0010                     | 0010                     | 0010                |
| +1      | 0001                     | 0001                     | 0001                |
| +0      | 0000                     | 0000                     | 0000                |
| -0      | _                        | 1111                     | 1000                |
| -1      | 1111                     | 1110                     | 1001                |
| -2      | 1110                     | 1101                     | 1010                |
| -3      | 1101                     | 1100                     | 1011                |
| -4      | 1100                     | 1011                     | 1100                |
| -5      | 1011                     | 1010                     | 1101                |
| -6      | 1010                     | 1001                     | 1110                |
| -7      | 1001                     | 1000                     | 1111                |
| -8      | 1000                     | _                        | _                   |

## **Binary-Coded Decimal (BCD)**

- BCD is a code to represent ten decimal digits (0 – 9)
- Each decimal digit is represented by a 4-bit binary number

#### Decimal → BCD:

Decimal 
$$\rightarrow$$
 (5 9 8)<sub>10</sub>

BCD  $\rightarrow$  0101 1001 1000

#### Note:

Six numbers, from **1010 to 1111**, are not used in BCD.

#### **Binary-Coded Decimal (BCD)**

| Decimal<br>Symbol | BCD<br>Digit |
|-------------------|--------------|
| 0                 | 0000         |
| 1                 | 0001         |
| 2                 | 0010         |
| 3                 | 0011         |
| 4                 | 0100         |
| 5                 | 0101         |
| 6                 | 0110         |
| 7                 | 0111         |
| 8                 | 1000         |
| 9                 | 1001         |

## Decimal number addition with BCD

#### (Assume that BCD is used)

The result is in legitimate BCD code, but the sum is wrong

 $(17)_{10}$  in BCD representation is 0001 0111

(sum > 15)

## What is the problem?

- Decimal addition is a modulo-10 scheme and a carry is generated when the sum > 9
- 4-bit binary addition is a modulo-16 scheme and the carry is only generated when the sum > 15
- Need to generate carry when sum>9, so: what about adding 6 to the result?

The results are correct after adding 6!

### What is the Rule?

For decimal addition: S = A + B using BCD code

If 
$$S \le 9 \rightarrow Sum = S$$
 and carry = 0 (No correction is needed)

If 
$$S > 9 \rightarrow Sum = S + 6$$
 and carry = 1 (Need to be corrected by adding 6)

## **Summary of the Lecture**

- We have covered
  - Position number system (radix 10, 2, 8 and 16)
  - Conversion among decimal, binary, octal and hex)
  - Binary arithmetic
  - Signed binary number representations (S-M, 1's complement and 2's complement
  - Arithmetic using signed binary numbers
  - Binary-coded decimals
  - Decimal addition using BCD