(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 13 November 2003 (13.11.2003)

PCT

(10) International Publication Number WO 03/094387 A1

(51) International Patent Classification7:

H04B 7/06

(21) International Application Number: PCT/EP03/04185

(22) International Filing Date: 18 April 2003 (18.04.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

02291092.1

30 April 2002 (30.04.2002) EP

(71) Applicant (for all designated States except US): MOTOROLA INC [US/US]; 1303 E.Algonquin Road, Schaumburg, IL 60196 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BULJORE, Soodesh [FR/FR]; Motorola Centre De Recherche, Parc Technologique De St Aubin, Route de l'arme Au Merisier, Immeuble Columbia, F-91190 Gif-Sur-Yvette (FR). VIALLE, Sandrine [FR/FR]; Motorola Centre De Recherche, Parc Technologique De St Aubin, Route de l'arme Au Merisier, Immeuble Columbia, F-91190 Gif-Sur-Yvette (FR). WHINNETT, Nicholas [GB/FR]; Motorola Centre De Recherche, Parc Technologique De St Aubin, Route de l'arme Au Merisier, Immeuble Columbia, F-91190 Gif-Sur-Yvette (FR).

- (74) Agent: MCCORMACK, Derek, James; Motorola European Intellectual, Property Operations, Midpoint, Alencon Link, Basingstoke, Hampshire RG21 7PL (GB).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: WIRELESS COMMUNICATION USING MULTI-TRANSMIT MULTI-RECEIVE ANTENNA ARRAYS

(57) Abstract: A method of closed-loop multi-stream wireless communication between a transmitter (1) comprising a transmit antenna array of N transmit antenna elements and a reciever (3) comprising a receive antenna array (4) of M receive antenna elements, wherein a plurality of distinct data steams (x1 X2) are transmitted from the transmit antenna array to the receive antenna array and the data streams are weighted by respective complex weighting matcices before being applied to the transit antenna array. The distinct data steams are separated and estimated at the reciever. The distinct data streams (x1 xG) are applied to respective sub-groups (6,7) of the transmit antenna elements at least one of which comprises a plurality of the transmit antenna elements each of the sub-groups comprising at least Nd transmit antenna elements, where M is greater than or equal to (N/Nd). The complex weighting matrices (v1 to vn) are functions of the respective transmission channels (hij) of the data streams (x1, to xG) including the respective sub-groupes of transmit antenna elements. Nd is preferably greater than or equal to two. Each of the complex weighting matrices is calculated to be substantially equal to the eigenvector corresponding to the largest eigenvalue of the matrix H H, where H is the matrix of the equivalent channel including the respective sub-groups of transmit antenna elements (6,7) seen by the corresponding data stream HH is the Hermitian transform of the matrix H. The number of the transmit antenna elements in each of the sub-groups is preferably re-configurable during operation as a function of channel conditions.