Light Nuclei Properties with ab initio No-Core Shell Model

尹鹏 河南科技大学

Collaborators:

James P. Vary, Pieter Maris (Iowa State University)
Mark Caprio (University of Notre Dame)
Andrey Shirokov (Moscow State University)
Patrick Fasano (Argonne National Laboratory)
Sonia Bacca (Johannes Gutenberg-Universität Mainz)
左维, 赵行波, 李贺 (近物所)
周波 (复旦大学)

第三届"粤港澳"核物理论坛 深圳 2024.11.15-18

Outline

No-Core Shell Model

Sum rules with NCSM

Monopole transition form factor

Ab initio No-Core Shell Model

What is *ab initio* in nuclear physics?

Few-Body Syst (2023) 64:77 https://doi.org/10.1007/s00601-023-01857-2

What is ab initio?

Nuclear structure theory at its basic level is not about fitting data to get "good" results. Fundamental nuclear structure theory is about answering the question:

Do the same nuclear forces that explain free-space scattering experiments also explain the properties of finite nuclei and nuclear matter when applied in nuclear many-body theory?

Degrees of Freedom

Energy (MeV)

constituent quarks

pion mass

proton separation energy in lead

vibrational state in tin

0.043

rotational

state in uranium

Check for updates

OPEN ACCESS

EDITED BY Paul Stevenson, University of Surrey, United Kingdom

REVIEWED BY Andreas Nogga, Helmholtz Association of German Research Centres (HZ), Germany Tobias Frederico, Instituto de Tecnologia da Aeronáutica (ITA), Brazil Richard Furnstahl,

The Ohio State University, United States

*CORRESPONDENCE

A. Ekström,

What is *ab initio* in nuclear

A. Ekström^{1*}, C. Forssén¹, G. Hagen^{2,3}, G. R. Janser and T. Papenbrock^{2,3}

¹Department of Physics, Chalmers University of Technology, Göteborg, Sweden, Ridge National Laboratory, Oak Ridge, TN, United States, ³Department of Physic University of Tennessee, Knoxville, TN, United States, ⁴National Center for Comp Ridge National Laboratory, Oak Ridge, TN, United States

Ab initio has been used as a label in nuclear theory for over two decades. Its meaning has evolved and broadened over the years. We present our interpretation, briefly review its historical use, and discuss its present-day relation to theoretical uncertainty quantification.

Non-relativistic ab initio approaches

- > Few-body methods
 - ➤ Faddeev Equation for A=3 system
 - > typically in momentum space
 - Faddeev-Yakuboski Equations for A=4 system
 - > can nowadays be pushed to A=5 and 6 (Lazauskas)
 - ➤ Hyperspherical Harmonics A=6
- Many-body methods
 - ➤ Variational Monte-Carlo (A<=12)
 - ➤ Green's Function Monte-Carlo (A<=12)
 - > Configuration Interaction (CI) methods (NCSM (A<=20), Coupled Cluster (A<=100))
 - ➤ Nuclear Lattice Simulations (A<=40)
- > Supercomputer Era
- ➤ Quantum computing Era?

No-Core Shell model

$$\hat{\mathbf{H}}_{\text{rel}} = \hat{\mathbf{T}}_{\text{rel}} + \sum_{i < j} V_{ij} + \sum_{i < j < k} V_{ijk} + \dots$$

- \triangleright Expand wavefunction in basis states $|\Psi\rangle = \sum a_i |\Phi_i\rangle$
- \triangleright Express Hamiltonian in basis $\langle \Phi_j | \hat{\mathbf{H}} | \Phi_i \rangle = H_{ij}$
- \triangleright Diagonalize Hamiltonian matrix H_{ij}
- ➤ No-Core: All *A* nucleons are treated equally
- > Complete basis: exact results (Caveat: complete basis is infinite dimensional)
- > In practice:
 - > Truncate basis
 - > Study behavior of observables as function of truncation
- > Computational challenge:
 - \triangleright Construct large (10¹⁰×10¹⁰) sparce symmetric matrix
 - > Obtain lowest eigenvalues&-vectors corresponding to low-lying spectrum and eigenstates

Main Challenges

- \triangleright Increase of basis space dimension with A and N_{max}
 - \triangleright Need calculations up to at least N_{max} =8, preferably N_{max} =10 for meaningful extrapolation and numerical error estimates
- ➤ More relevant measure for computational needs
 - > Number of nonzero matrix elements

Main Challenge

- 2x AMD EPYC 7763 (Milan) CPUs
- 64 cores per CPU
- AVX2 instruction set
- 512 GB of DDR4 memory total
- 204.8 GB/s memory bandwidth per CPU
- 1x HPE Slingshot 11 NIC
- PCIe 4.0 NIC-CPU connection
- 39.2 GFlops per core
- 2.51 TFlops per socket
- 4 NUMA domains per socket (NPS=4)

Partition	# of nodes	CPU	GPU
GPU	1536	1x <u>AMD EPYC 7763</u>	4x <u>NVIDIA A100</u> (40GB)
	256	1x <u>AMD EPYC 7763</u>	4x <u>NVIDIA A100</u> (80GB)
CPU	3072	2x <u>AMD EPYC 7763</u>	-
Login	40	1x <u>AMD EPYC 7713</u>	1x <u>NVIDIA A100</u> (40GB)

National Energy Research Scientific Computing Center

- Computationally demanding => needs new algorithms & high-performance computers
- Requires convergence assessments and extrapolation tools to retain predictive power
- Current limit 10^{14} (Perlmutter): 12 C (N_{max}=12), 6 He (N_{max}=22)
- Achievable for nuclei up to A~20 with largest computers available

LENPIC chiral EFT NN potential up to N⁴LO+

Sum rules with NCSM

Sum rules with NCSM

$$I_{M} = \sum_{\mu}^{M} |\langle \mu | \hat{O} | i \rangle|^{2} g(\omega_{\mu}) \qquad \qquad \alpha_{E} = \frac{8\pi}{9} \sum_{k} \frac{B(E1; J_{0} \to J_{k})}{E_{k} - E_{0}} = \frac{1}{2\pi^{2}} \int_{\omega_{\text{th}}}^{\infty} d\omega \frac{\sigma_{\gamma}^{\text{ud}}(\omega)}{\omega^{2}}$$

- Sum rule: response of nuclei to external field probe
- Direct techniques: only available for deuteron
- Indirect techniques: Lorentz integral transform, Lanczos sum rule method
- A>2, direct calculation?

Sum rules with NCSM

- ► ⁴He: polarizability $\alpha_E = \frac{8\pi}{9} \sum_k \frac{B(E1; J_0 \to J_k)}{E_k E_0}$
- ► E1 selection rule: 1 states
- ➤ Retain only 1⁻ states
 - \triangleright M-scheme with M=1 (1⁻,2⁻,...)
 - ightharpoonup Lagrangian multipler $H_{J^2} = \lambda \left(J^2 2 \right)$

- Up through 100 MeV
- N_{max} =15, $h\Omega$ =10 MeV 5522 1- states 30 GPU nodes, 16800 Lanczos iterations, 21 hours

- Robust convergence with respect to N_{max}
- Uncertainty due to N_{max} truncation and energy truncation

P. Yin, A. M. Shirokov, P. Maris, P. J. Fasano, M. A. Caprio, H. Li, W. Zuo, J. P. Vary, Phys. Lett. B **855**, 138857 (2024)

Monopole form factor with NCSM

Monopole transition form factor of ⁴He

- Ground state: benchmark with few-body methods
- Hiyama: Gaussian expansion, simplified force
- Bacca: HH+LIT, realistic *NN*+3*N* from chiral EFT

New experiment Mainz Status quo in 2023

Problem with chiral EFT becomes stronger

PHYSICAL REVIEW LETTERS 130, 152502 (2023)

Editors' Suggestion

Featured in Physics

Measurement of the α -Particle Monopole Transition Form Factor Challenges Theory: A Low-Energy Puzzle for Nuclear Forces?

S. Kegel[®], ¹ P. Achenbach[®], ¹ S. Bacca[®], ^{1,2} N. Barnea[®], ³ J. Beričič, ⁴ D. Bosnar[®], ⁵ L. Correa, ^{6,1} M. O. Distler[®], ¹ A. Esser, ¹ H. Fonvieille, ⁶ I. Friščić[®], ⁵ M. Heilig, ¹ P. Herrmann, ¹ M. Hoek[®], ¹ P. Klag, ¹ T. Kolar[®], ^{7,4} W. Leidemann[®], ^{8,9} H. Merkel[®], ¹ M. Mihovilovič, ^{1,4} J. Müller, ¹ U. Müller[®], ¹ G. Orlandini[®], ^{8,9} J. Pochodzalla[®], ¹ B. S. Schlimme[®], ¹ M. Schoth, ¹ F. Schulz, ¹ C. Sfienti[®], ^{1,*} S. Širca[®], ^{7,4} R. Spreckels, ¹ Y. Stöttinger, ¹ M. Thiel[®], ¹ A. Tyukin, ¹ T. Walcher[®], ¹ and A. Weber¹

Featured in Physics

Description of the Proton-Decaying 0^+_2 Resonance of the α Particle

N. Michel[®], ^{1,2,3} W. Nazarewicz[®], ⁴ and M. Płoszajczak[®]

$$\begin{aligned} \left|F(q^2)\right|^2 &= \left|\frac{4\pi}{Z} \int \rho_{\mathrm{tr}}(r) j_0(qr) r^2 dr\right|^2 f_p^2(q^2) \\ \rho_{\mathrm{tr}}(r) &= \left\langle 0_1^+ |\hat{\rho}(\vec{r})| 0_2^+ \right\rangle \end{aligned} \bullet \quad \begin{array}{l} \text{NCGSM-CC with V}_{\mathrm{lowk}} \\ E_{\mathrm{r}} &= 400 \text{ keV, fit to Exp} \end{aligned}$$

Accepted Paper

Erratum: Description of the proton-decaying 0_2^+ resonance of the α particle [Phys. Rev. Lett. **131**, 242502 (2023)]

Phys. Rev. Lett.

N. Michel, W. Nazarewicz, and M. Płoszajczak

Accepted 28 October 2024

• $E_r=120 \text{ keV}$, fit to Exp

Ab Initio Calculation of the Alpha-Particle Monopole Transition Form Factor

Ulf-G. Meißner, 1,2,3 Shihang Shen, 4,* Serdar Elhatisari, 5,1 and Dean Lee, 6

M. Viviani · A. Kievsky · L. E. Marcucci · L. Girlanda

Study of the Alpha-particle Monopole Transition form Factor

- Viviani: HH ³He+n, ³H+p, chiral *NN*+3*N*
- Two-body current
- First successful calculation with chiral EFT?

In the news

From Sonia Bacca

Transition monopole form factor of ⁴He

Summary

- ➤ Introduction to *ab initio* NCSM approach
- > Sum rules with NCSM
- > Transition monopole form factor of ⁴He

Outlook

- Photoabsorption reaction
- > Coulomb dissociation of light nuclei
- > Two-body current