### Optimal Location of Safety Landing Sites

#### Liding Xu Claudia D'Ambrosio, Leo Liberti, Sonia Vanier

OptimiX, LIX, École polytechnique

liding.xu@polytechnique.edu

April 28, ROADEF 2021



# Urban air mobility

- Urban air mobility (UAM) is driven by advancements in battery, distributed electric propulsion, and autonomy technologies.
- Electric vertical takeoff and landing (eVTOL) aircraft, are expected to be safer, quieter, and less expensive to operate than helicopters.
- We study the safety design of UAM networks: install safety landing sites (SLSs) for eVTOLs.

#### **Outline**

- Problem description.
- Mathematical models and formulations.
- Algorithms.
- Numerical experiments.
- Conclusion.

# Background

- eVTOLs would exploit the vertical space i.e., to alleviate congestion on the ground.
- Safety is the primary consideration in network planning.

## Space networks

- The 3d continuous sky is discretized into a 2d grid network.
- Vertiports are subset of nodes of the network.
- SLSs are located outside the grid, their covering areas are balls.
- Demands are transportation in eVTOLs among vertiports.
- SLSs allow eVTOLs to land in their neighborhoods.



Figure: A path from vertiport s to vertiport t (in red)

#### Mathematical formulations

- Mathematical formulations are derived from multi-commodity flow (MCF) problem.
- Unsplittable MCF is known to be  $\mathcal{NP}-$ hard, but integer programming approach is efficient in practice.

#### Mathematical formulations

- Two representations, edge and path formulations.
- Compact Edge formulation: every node has flow conservation constraints and variables, and their size grows linearly w.r.t. network size.
- Path formulation: edge variables are aggregated into path variables i.e. incident vectors. Exponential number of path variables.

# SLS location problem

- Decision variables are the routing of eVTOLs and the selection of SLSs to install.
- Objective: the cost of eVTOL transportation.
- Cover constraints: every route is covered by SLSs.
- Capacity constraints: each edge can have a limited number of eVTOLs.
- **Budget constraints:** the number of installed SLSs is less than *b*.
- Unsplittable constraints.

#### **Notations**

- The network G = (V, A, c, m) where V and A is the set of nodes and edges.
- $c_{ij}$ : The cost of moving 1 eVTOL on edge,  $(i, j) \in A$ .
- $m_{ij}$ : The capacity of eVTOLs on edge,  $(i, j) \in A$ .
- D demands, demand h ∈ D requires transportation of a eVTOL from a source vertiport s<sub>h</sub> ∈ V to a destination vertiport t<sub>h</sub> ∈ V.
- $\bar{\ell}$  is the number of available SLSs.
- $A_{\ell}$  is the set of edges covered by SLS  $\ell \in \{1, \ldots, \bar{\ell}\}$ .
- $A_0$  is the set of edges covered by all vertiports.

### **Edge formulation**

$$\min_{x,y} \sum_{h \in D} \sum_{(i,j) \in A} c_{ij} x_{ij}^{h}$$

$$\sum_{(j,i) \in A} x_{ji}^{h} - \sum_{(i,j) \in A} x_{ij}^{h} = \begin{cases} -1 \text{ if } i = s^{h} \\ +1 \text{ if } i = t^{h} \end{cases} \quad \forall i \in N, h \in D$$

$$\sum_{h \in D} x_{ij}^{h} \leq m_{ij} \quad \forall (i,j) \in A,$$

$$x_{ij}^{h} \leq \sum_{\ell=1, (i,j) \in A_{\ell}}^{\ell} y_{\ell} \quad \forall (i,j) \in A \setminus A_{0}, h \in D$$

$$\sum_{\ell=1}^{\ell} y_{\ell} \leq b$$

$$x_{ij} \in \{0,1\} \quad \forall (i,j) \in A, y_{\ell} \in \{0,1\} \quad \forall \ell = 1, \dots, \ell \}$$

#### Path formulation

$$\begin{split} \min \sum_{(i,j) \in \mathcal{A}} c_{ij} \sum_{h=1}^{D} \sum_{p \in P^h, (i,j) \in p} x_p^h \\ \sum_{h=1}^{D} \sum_{p \in P^h, (i,j) \in p} x_p^h \leq m_{ij} & \forall (i,j) \in \mathcal{A}, \\ \sum_{p \in P^h} x_p^h = 1 & \forall h = [1,D], \end{split}$$

#### Path formulation

$$\begin{split} \min \sum_{(i,j) \in A} c_{ij} \sum_{h=1}^{D} \sum_{p \in P^h, (i,j) \in p} x_p^h \\ \sum_{h=1}^{D} \sum_{p \in P^h, (i,j) \in p} x_p^h \leq m_{ij} & \forall (i,j) \in A, \\ \sum_{p \in P^h} x_p^h = 1 & \forall h = [1,D], \\ \sum_{p \in P^h, (i,j) \in p} x_p^h \leq \sum_{\ell=1, (i,j) \in A_{\ell}}^{\ell} y_{\ell} & \forall h = [1,D], \forall (i,j) \in A \setminus A_0, \\ \sum_{\ell=1}^{\ell} y_{\ell} \leq b & \\ x_p^h \in \{0,1\} & \forall h = [1,D], \forall p \in P^h, \\ y_{\ell} \in \{0,1\} & \forall \ell = \{1,\dots,\bar{\ell}\} \end{split}$$

Its linear relaxation is solved by the column generation.

# **Algorithms**

- Column generation is an efficient method for solving large scale linear programming.
- Column generation progressively solves master problem (MP) from the restricted master problem (RMP).
- Efficient when column size is exponential to row size (LP relaxation of path formulation!).
- Branch-and-bound: implicitly enumerates solutions for combinatorical problems.
- Branch-and-price: embeds column generation into branch-and-bound.

# Column generation

#### How does reduce cost pricing work?

Answer: Look at the dual problem of LP relaxation.

#### LP relaxation:

$$\begin{split} \min \sum_{(i,j) \in A} c_{ij} \sum_{h=1}^{D} \sum_{p \in P^h, (i,j) \in p} x_p^h \\ \sum_{h=1}^{D} \sum_{p \in P^h, (i,j) \in p} x_p^h \leq m_{ij} & \forall (i,j) \in A, (\gamma_{ij} \geq 0) \\ \sum_{p \in P^h} x_p^h = 1 & \forall h = [1,D], (\mu_h \in R) \\ \sum_{p \in P^h: (i,j) \in p} x_p^h \leq \sum_{\ell=1: (i,j) \in A_\ell}^{\ell} y_\ell & \forall h = [1,D], \forall (i,j) \in A \setminus A_0, \\ & (\eta_{ij}^h \geq 0) \\ \sum_{\ell=1}^{\ell} y_\ell \leq b & (\xi \geq 0) \\ x_p^h \in [0,\infty) & \forall h = [1,D], \forall p \in P^h, \\ y_\ell \in [0,\infty) & \forall \ell = \{1,\dots,\bar{\ell}\} \end{split}$$

## Pricing problem

#### The dual is:

 $\xi > 0$ .

$$\begin{split} \max & - \sum_{(i,j) \in A} \gamma_{ij} m_{ij} - \sum_{h=1}^D \mu_h - \xi \sum_{\ell=1}^\ell b \\ & \sum_{(i,j) \in p} (c_{ij} + \gamma_{ij}) + \mu_h + \sum_{(i,j) \in p: (i,j) \notin A_0} \eta_{ij}^h \geq 0, \quad \forall h = [1,D], \forall p \in P^h \\ & - \sum_{h=1}^D \sum_{(i,j) \in A_\ell} \eta_{ij}^h + \xi \geq 0, \qquad \forall \ell in \{1,\dots,\bar{\ell}\} \\ & \gamma_{ij} \geq 0, \qquad \forall (i,j) \in A \\ & \mu_h \in R, \qquad \forall h = [1,D] \\ & \eta_{ij}^h \geq 0, \qquad \forall (i,j) \in A \setminus A_0 \end{split}$$

- Reduced cost of  $p \in P^h$ :  $RC(p) = \sum_{(i,j) \in p} (c_{ij} + \gamma_{ij}) + \mu_h + \sum_{(i,j) \in p: (i,j) \notin A_0} \eta_{ii}^h$ .
- The column with the least reduced cost is found by a shortest path algorithm.



# Numerical experiments: instances

| Instance | Nodes | Edges | Demands | SLSs | vertiports |
|----------|-------|-------|---------|------|------------|
| 1        | 36    | 120   | 3       | 16   | 4          |
| 2        | 48    | 164   | 6       | 20   | 6          |
| 3        | 63    | 220   | 7       | 20   | 6          |
| 4        | 100   | 360   | 11      | 36   | 16         |
| 5        | 225   | 840   | 17      | 49   | 36         |
| 6        | 324   | 1224  | 20      | 64   | 49         |
| 7        | 400   | 1520  | 25      | 81   | 64         |
| 8        | 529   | 2024  | 25      | 100  | 81         |

Table: Instances

## Numerical experiments: a visual example



Figure: A template city

## Numerical experiments: computational results

| ı | В  | Edge formulation |        |        |       | Path formulation |        |      |        |
|---|----|------------------|--------|--------|-------|------------------|--------|------|--------|
|   |    | <u>Z</u> *       | Gap(%) | t      | Nodes | <u>Z</u> *       | Gap(%) | t    | Nodes  |
| 1 | 5  | 175.98           | 0      | 0.02   | 1     | 175.98           | 0      | 0.53 | 4      |
| 2 | 5  | 355.92           | 0      | 0.05   | 1     | 355.92           | 0      | 0.2  | 23     |
| 3 | 5  | 591.19           | 0      | 4.74   | 1538  | 591.19           | 0      | 3600 | 128920 |
| 4 | 5  | 300.05           | 0      | 0.05   | 1     | 300.05           | 0      | 0.56 | 1      |
| 5 | 9  | 1512.13          | 0      | 22.83  | 1446  | 1512.18          | 0.31   | 3600 | 64666  |
| 6 | 20 | 2290.75          | 0      | 790.37 | 20861 | -                | -      | 3600 | 33192  |
| 7 | 25 | 3025.70          | 0.35   | 3600   | 30341 | -                | -      | 3600 | 10635  |
| 8 | 29 | -                | -      | 3600   | 20861 | -                | -      | 3600 | 10829  |

- Compact edge formulation is solved by Cplex 12.10.0 single thread mode.
- Path formulation is solved by Scip 7.0.1 with Cplex as a LP solver.
- Time limit is 3600 seconds.

# Experiments: discussions

| ı | В  | Edge formulation |        |        |       | Path formulation |        |      |        |
|---|----|------------------|--------|--------|-------|------------------|--------|------|--------|
|   |    | $\overline{Z}^*$ | Gap(%) | t      | Nodes | <u>Z</u> *       | Gap(%) | t    | Nodes  |
| 1 | 5  | 175.98           | 0      | 0.02   | 1     | 175.98           | 0      | 0.53 | 4      |
| 2 | 5  | 355.92           | 0      | 0.05   | 1     | 355.92           | 0      | 0.2  | 23     |
| 3 | 5  | 591.19           | 0      | 4.74   | 1538  | 591.19           | 0      | 3600 | 128920 |
| 4 | 5  | 300.05           | 0      | 0.05   | 1     | 300.05           | 0      | 0.56 | 1      |
| 5 | 9  | 1512.13          | 0      | 22.83  | 1446  | 1512.18          | 0.31   | 3600 | 64666  |
| 6 | 20 | 2290.75          | 0      | 790.37 | 20861 | -                | -      | 3600 | 33192  |
| 7 | 25 | 3025.70          | 0.35   | 3600   | 30341 | -                | -      | 3600 | 10635  |
| 8 | 29 | -                | -      | 3600   | 20861 | -                | -      | 3600 | 10829  |

- Cplex indeed separates cuts to strengthen the edge formulation.
- The scip's branch and price deactives cut separation.
- SLS variable y makes the network design problem harder than the routing problem.

#### Conclusion

#### Summary

- We propose an model for SLS location problem.
- We propose 2 formulations for the model.
- We devise algorithms to solve 2 formulations.

#### Future work

- Combine with Bender decomposition.
- Improve the stability of column generation.
- Valid inequalities.