# **Policy Purchasing**

A look on predicting options chosen based on a user's history

Lab Group: DS3 Group 10

**Team Members:** 

Chopra Dhruv, Krithika Jayaraman Karthikeyan, Louis Wirja, Neha Ramesh

#### Dataset at a Glance

**Dataset from Kaggle:** "Allstate Purchase Prediction Challenge" by Allstate Insurance **Source:** https://www.kaggle.com/c/allstate-purchase-prediction-challenge/data (requires login)

|   | customer_ID | shopping_pt | record_type | day | state | location | group_size | homeowner | car_age | car_value | <br>C_previous | duration_previous | A | В | C | D | E | F G | cost |
|---|-------------|-------------|-------------|-----|-------|----------|------------|-----------|---------|-----------|----------------|-------------------|---|---|---|---|---|-----|------|
| 0 | 10000000    | 1           | 0           | 0   | IN    | 10001    | 2          | 0         | 2       | g         | <br>1.0        | 2.0               | 1 | 0 | 2 | 2 | 1 | 2 2 | 633  |
| 1 | 10000000    | 2           | 0           | 0   | IN    | 10001    | 2          | 0         | 2       | g         | <br>1.0        | 2.0               | 1 | 0 | 2 | 2 | 1 | 2 1 | 630  |
| 2 | 10000000    | 3           | 0           | 0   | IN    | 10001    | 2          | 0         | 2       | g         | <br>1.0        | 2.0               | 1 | 0 | 2 | 2 | 1 | 2 1 | 630  |
| 3 | 10000000    | 4           | 0           | 0   | IN    | 10001    | 2          | 0         | 2       | g         | <br>1.0        | 2.0               | 1 | 0 | 2 | 2 | 1 | 2 1 | 630  |
| 4 | 10000000    | 5           | 0           | 0   | IN    | 10001    | 2          | 0         | 2       | g         | <br>1.0        | 2.0               | 1 | 0 | 2 | 2 | 1 | 2 1 | 630  |

Columns correspond to a customer's characteristics and the policy coverage options.

## Variable Descriptions

**customer\_ID** - A unique identifier for the customer **shopping\_pt** - Unique identifier for the shopping point of a given customer record\_type - 0=shopping point, 1=purchase point day - Day of the week (0-6, 0=Monday) time - Time of day (HH:MM) state - State where shopping point occurred **location** - Location ID where shopping point occurred group\_size - How many people will be covered under the policy (1, 2, 3 or 4) homeowner - Whether the customer owns a home or not (0=no, 1=yes) car\_age - Age of the customer's car car\_value - How valuable was the customer's car when new risk\_factor - An ordinal assessment of how risky the customer is (1, 2, 3, 4) age\_oldest - Age of the oldest person in customer's group age\_youngest - Age of the youngest person in customer's group married\_couple - Does the customer group contain a married couple (0=no, 1=yes) C previous - What the customer formerly had or currently has for product option C (0=nothing, 1, 2, 3,4) duration\_previous - how long (in years) the customer was covered by their previous issuer A,B,C,D,E,F,G - the coverage options cost - cost of the quoted coverage options

## **Objectives**

- 1. Predicting the price a customer has to pay using a **Regression** model.
- 2. Predicting the policy coverage options purchased by a customer based on their characteristics and history using **Random Forests**.

# **Exploratory Analysis**

Statistics, Observations and Inferences

## **Data Cleaning**

Rows of data with NaN values are removed from the dataset.

data.dropna(subset=["car\_value","C\_previous","duration\_previous","risk\_factor"],inplace=True)

We observe that we have large number of NAN values in risk\_factor column. Later on, we'll find that risk\_factor is a very important variable in determining what policy the customer will be purchasing and what the cost of that policy will be. Thus, it would be wrong to blindly fill in the missing values with the median as that will dilute the relationship of the risk factor with other variables.

#### **Encoding**

Categorical variables are encoded using OneHotEncoding and LabelEncoding to give them numerical values.

```
hot = OneHotEncoder()
hot.fit(data[["state"]])
OneHotEncoder()
newstate = pd.DataFrame(hot.transform(data[["state"]]).toarray(), columns=hot.get_feature_names())
```

## **Days of Viewing and Purchase**



Number of viewings on specific days



Number of purchases on specific days

## **Location of Viewing and Purchase**



Number of viewings and purchases in different states of the U.S.

#### **Timeframe of Purchase**

A weekly timeframe showing the general trend in purchasing times.



## **Group Size**

Number of people covered under the policy



## **Customer's Age**





#### **Correlation Between Variables**

A heatmap is plotted between the numerical variables to analyse the correlation between each variable.



#### **Riskiness of Customers**





Density plots of the ages of customers and their values of risk

#### **Risk Factor**



Risk factor among different group size of customers.



Car age compared with the customers' risk factor.

## **Cost of Policies Purchased**





## **Policy Coverage Options**

Different policy coverage options purchased in relation with the customer's car age.



# Modelling

Regression Analysis

## **Creating a Model for Cost**

Using a Regression model, we want to predict how much a customer has to pay based on their purchased options and their characteristics.

| customer_ID | cost |
|-------------|------|
| 10000000    | 633  |
| 10000005    | 630  |
| 10000007    | 630  |
| 10000013    | 630  |
| 10000014    | 630  |

#### **Initial Linear Model**



Goodness of Fit of Model Explained Variance (R^2) Mean Squared Error (MSE)

Goodness of Fit of Model Explained Variance (R^2) Mean Squared Error (MSE) Train Dataset

: 0.4095468292336204: 1249.4500978975996

Test Dataset

: 0.40925251749311664

: 1248.5005277652797



## Synergy Variables

Before creating the final model, extra variables were made in order to increase the accuracy of the model.

The synergy variables consist of the combination, squares, and square roots of the original variables.

```
shopping pt-group size
                                     10000 non-null
                                                     int64
shopping pt-age oldest
                                     10000 non-null
                                                     int64
shopping pt-age youngest
                                     10000 non-null
                                                     int64
shopping pt-C previous
                                     10000 non-null
                                                     float64
group size-age oldest
                                     10000 non-null
                                                     int64
group size-age youngest
                                     10000 non-null
                                                     int64
group size-duration previous
                                     10000 non-null float64
car age-car age
                                     10000 non-null
                                                     int64
car age-risk factor
                                     10000 non-null float64
car age-age oldest
                                     10000 non-null
                                                     int64
risk factor-risk factor
                                     10000 non-null float64
age oldest-age oldest
                                     10000 non-null
                                                     int64
age oldest-age youngest
                                     10000 non-null
                                                     int64
C previous-duration previous
                                     10000 non-null float64
duration previous-duration previous
                                     10000 non-null float64
sart-car age
                                     10000 non-null float64
sgrt-risk factor
                                     10000 non-null float64
sgrt-age oldest
                                     10000 non-null float64
sqrt-age youngest
                                                    float64
                                     10000 non-null
sgrt-C previous
                                     10000 non-null float64
sgrt-duration previous
                                     10000 non-null float64
```

#### **Removal of Predictors**

Predictors that did not play a significant role in the prediction of the response variable were removed from the linear regression model.



#### **Removal of Outliers**

Outliers of the dataset were removed.

Approximately 6.82% of the data was discarded.



## Final Model



Goodness of Fit of Model Explained Variance (R^2) Mean Squared Error (MSE)

Goodness of Fit of Model Explained Variance (R^2) Mean Squared Error (MSE) Train Dataset

: 0.6205012683587205

: 664.415946121879

#### Test Dataset

: 0.6187188823271186

: 665.0758580586325



## Classification

Random Forests Chi-squared Tests

## **Coverage Options**

A customer can choose a policy made up of components A,B,... G with each of the 7 different policy coverage components to purchase

**Objective:** Predict how much of each a customer would buy.

|        | customer_ID | Α | В | C | D | E | F | G |
|--------|-------------|---|---|---|---|---|---|---|
| 90854  | 10033689    | 1 | 0 | 3 | 3 | 1 | 1 | 3 |
| 166648 | 10061285    | 1 | 1 | 3 | 3 | 1 | 2 | 2 |
| 360592 | 10132248    | 0 | 0 | 2 | 2 | 0 | 0 | 1 |
| 236591 | 10086558    | 1 | 1 | 1 | 3 | 1 | 1 | 3 |
| 376648 | 10137915    | 1 | 0 | 1 | 3 | 0 | 1 | 3 |

## Prediction on concatenated strings?

| Α | В | C | D | E | F | G |
|---|---|---|---|---|---|---|
| 1 | 0 | 3 | 3 | 1 | 1 | 3 |
| 1 | 1 | 3 | 3 | 1 | 2 | 2 |
| 0 | 0 | 2 | 2 | 0 | 0 | 1 |
| 1 | 1 | 1 | 3 | 1 | 1 | 3 |
| 1 | 0 | 1 | 3 | 0 | 1 | 3 |

| Concat  |
|---------|
| 1033113 |
| 1133122 |
| 0022001 |
| 1113113 |
| 1013013 |



Too many classes!

## **Dependent on Each Other?**

The coverage options, A to G, may have some dependency on each other, e.g. A customer buying option A will also buy option G.

To test whether these variables are indeed dependent on each other, chi-squared tests are conducted on these variables.

## **Chi-squared Test**

A statistical test that determines whether there is an association between two variables.

Based on the chi-squared tests, **all** of the coverage options are **dependent** on each other.

```
X^2 = 48435.68909064619
p = 0.0
Degrees of freedom = 9
Significance level = 0.010, p = 0.000000
Dependent (reject H0)
```



Heatmap of p-values of chi-squared tests

## **Approach**

The coverage options A to G are first assumed to be independent of each other, i.e. they are not predictors of each other.

A random forest is created for each of the coverage options, a total of 7 forests.

The predicted values from 6 of the forests are then used to create another forest for each option, to implement the dependency of the variables, e.g. The predicted values of B to G are used as predictors in the prediction of A.

This iterative process can be repeated as many times as desired.



#### **Random Forests**

|          |   | A | В | С | D | E | F | G | car_value | shopping_pt | group_size | <br>x0_4 | x0_5 | x0_6 | A_new | B_new | C_new | D_new | E_new | F_new | G_new |
|----------|---|---|---|---|---|---|---|---|-----------|-------------|------------|----------|------|------|-------|-------|-------|-------|-------|-------|-------|
| Unnamed: | 0 |   |   |   |   |   |   |   |           |             |            |          |      |      |       |       |       |       |       |       |       |
| 2500     | 8 | 0 | 0 | 2 | 1 | 0 | 0 | 1 | 4         | 4           | 2          | <br>0.0  | 0.0  | 0.0  | 0     | 0     | 2     | 1     | 0     | 0     | 1     |
| 3323     | 1 | 2 | 1 | 3 | 3 | 1 | 0 | 2 | 4         | 9           | 1          | <br>0.0  | 0.0  | 0.0  | 2     | 1     | 3     | 3     | 1     | 0     | 1     |
| 15960    | 4 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 5         | 4           | 2          | <br>0.0  | 0.0  | 0.0  | 1     | 1     | 2     | 2     | 1     | 2     | 2     |
| 32520    | 5 | 0 | 1 | 2 | 2 | 0 | 0 | 2 | 4         | 6           | 1          | <br>0.0  | 0.0  | 0.0  | 0     | 0     | 2     | 2     | 0     | 0     | 2     |
| 40977    | 3 | 2 | 0 | 3 | 3 | 0 | 0 | 3 | 5         | 7           | 1          | <br>0.0  | 0.0  | 0.0  | 2     | 0     | 3     | 3     | 0     | 0     | 3     |

5 rows × 69 columns

- A: RandomForestClassifier(max depth=13, n estimators=600) 0.7973487157591026
- B: RandomForestClassifier(max depth=14, n estimators=500) 0.7150863584612732
- C: RandomForestClassifier(max depth=16, n estimators=800) 0.8689082095947471
- D: RandomForestClassifier(max depth=16, n estimators=1300) 0.8470955414380933
- E: RandomForestClassifier(max depth=17, n estimators=900) 0.8249978671132023
- F: RandomForestClassifier(max depth=17, n estimators=800) 0.8782283043165731
- G: RandomForestClassifier(max depth=17, n estimators=800) 0.8484296711690641

#### **Work Distribution**

Exploratory Data Analysis: Krithika, Neha

Dataset Cleaning: Dhruv

Modelling: Dhruv

Classification: Dhruv, Louis

Presentation Slides: Dhruv, Louis, Krithika, Neha

# Thank You!