MATH 2233 Differential Equations Chapter 7 Laplace Transform

Section 7.2 Definition of Laplace Transform

Goal of this section

• Caculate the Laplace transform of a function using the definition.

Motiviation: Many practical engineering problems involve mechanical or electrical systems acted on by *discontinuous or impulsive forcing terms*. Methods introduced in previous chapters are often rather awkward to use. In this chapter, we consider a new approach based on Laplace transform.

Definition: Laplace transform

Let f(t) be a function on $(0, \infty)$. The **Laplace transform** of a function f(t) is a function F(s) defined by the integral

Remark The integral above is an **improper** integral defined by

Example 1. Determine the Laplace transform of the constant function f(t) = 1.

Example 2. Find the Laplace transform of $f(t) = e^{at}$, where a is a constant.	
Example 3. Find $\mathcal{L}\{\sin(bt)\}$ where b is a constant.	

Example 4. Find the Laplace transform of

$$f(t) = \begin{cases} 2, & 0 \le t < 5, \\ 0, & 5 < t < 10, \\ e^{4t}, & t > 10, \end{cases}$$

A Brief Table of Laplace Transforms.

f(t)	$F(s) = \mathcal{L}\{f\}(s)$
1	
t^n	
e^{at}	
$e^{at}t^n$	
$\sin(bt)$	
$\cos(bt)$	
$e^{at}\sin(bt)$	
$e^{at}\cos(bt)$	

Linearity of Laplace Transforms.

Let f, f_1 , f_2 be functions whose Laplace transform exist. Let c be a constant. Then

•
$$\mathcal{L}\{f_1+f_2\}=$$

•
$$\mathcal{L}\{cf\} =$$

Example 5. Determine $\mathcal{L}\{11 + 5e^{4t} - 6\sin(2t)\}$ and $\mathcal{L}\{5t^2e^{-3t} - e^{12t}\cos(8t)\}$.

Existence of the Transform

There are functions for which the improper integral fails to converge for any value of s. For example, this is the case for the functions f(t)=1/t which grows too fast near zero. Similarly, function like $f(t)=e^{t^2}$ grows increase very rapidly as $t\to\infty$.

Type of discontinuity: Removable, Jump, Infinity Discontinuity

Piecewise Continuity

A function f(t) is called piecewise continuous on a finite interval [a, b] if

A function f(t) is called piecewise continuous on $[0, \infty)$ if

Example 6. Show that

$$f(t) = \begin{cases} t, & 0 < t < 1, \\ 2, & 1 < t < 2, \\ (t-2)^2, & 2 \le t < 3, \end{cases}$$

is piecewise continuous on [0,3].

Exponential Order α

A function f(t) is said to be **exponential order** α if there exist positive constants

Example 7. Determine if the following functions are of exponential order.

- (a) e^{4t} , (b) e^{t^2} , (c) $\sin(t^2) + t^3 e^{3t}$.

Conditions for Existence of the Laplace Transform

If f(t) is piecewise continuous on $[0,\infty)$ and of exponential order α , then