

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos - PSI – EPUSP

PSI 3212- LABORATÓRIO DE CIRCUITOS ELÉTRICOS

Guia Experimental e Roteiro para Relatório

Versão para simulação da

Exp. 06 : Resposta em Frequência de Circuitos RC e RLC

Elaboração: Profs. W.J. Salcedo e M. Lobo, Revisão: E G./L.Y./MNPC/2020

No. USP	Nome		Nota	Bancada
Data:	Turmas:	Profs:	<u> </u>	

Objetivos: Saber analisar a resposta em frequência de quadrupolos constituídos por circuitos passivos RC e RLC, utilizando métodos de simulação computacional.

Lista de materiais

- Osciloscópio digital (DSO-X 2002A, Agilent)
- Gerador de funções
- Multímetro digital portátil Yokogawa TY720
- Medidor RLC
- Resistores: 1 kΩ e 10 kΩ
- Capacitor: 100 nFIndutor: ~3,0 mH
- Planilha Excel e Software de cálculo

Obs: Esta experiência será feita através da simulação dos circuitos elétricos propostos

- Onde diz "meça" uma variável (com voltímetro, osciloscópio, etc.) entenda que você deve obter o valor dessa variável a partir das simulações e dos recursos que o programa de simulação fornecer!
- Onde diz "dados experimentais" entenda que deve obter esses dados das simulações

1 RESPOSTA EM FREQUÊNCIA DE UM CIRCUITO RC:

1.1 Identificação e medição dos componentes passivos

Meça as resistências (R) e a capacitância (R) dos componentes da lista de materiais utilizando o multípretro portátil. Meça a i terie do indutor (R) utilizando o medidor RLO na frequência de 1 kH; Utilizar estes valores nas simulações capacitância (R) do capacitor componentes da lista de materiais utilizando o medidor a capacitância (R) utilizar estes valores nas simulações ita de 1 kHz.

Tabela 1 – Valores dos componentes R, L e C					
	Resistor 1	Resistor 2	Capacitor	Indutor (med	ido em 1kHz)
Valor	R (kΩ)	R (kΩ)	C _p (nF)	L _s (mH)	$R_s(\Omega)$
Nominal	1	10	100	3,0	8,0
Medido					

1.2 Determinação da resposta em frequência do circuito RC

Monte o circuito mostrado na Figura 1, com os valores nominais dos componentes iguais a $\mathbf{R} = \mathbf{1} \mathbf{k}$ $\mathbf{\Omega}$ e $\mathbf{C} = \mathbf{100} \ \mathbf{nF}$, respectivamente. Programe o gerador de funções para fornecer uma **onda senoidal** de amplitude de $\mathbf{10} \ \mathbf{Vpp}$. Meça os valores eficazes de entrada (\mathbf{V}_{E}) e saída (tensão no capacitor \mathbf{V}_{S}) com o osciloscópio.

Figura 1- Circuito RC.

a) Apresente as fórmulas para calcular o módulo do ganho line $\mathfrak{q} G(j\omega)$ | e a fase $\mathfrak{q}(j\omega)$ a partir dos parâmetros do circuito.

Temos que $G(j\omega) = 1/1 + \omega RCj$, portanto $|G(j\omega)| = 1/\sqrt{[1 + (\omega RC)^2]}$.

$$\varphi(j\omega) = - \arctan(\omega RC)$$

 $fc(RC)=1/2\pi RC$; $\omega c=1/RC$

- b) Apresente a fórmula para obter $|G(j\omega)|$ (módulo do ganho linear) a partir das tensões experimentais.
 - $|G(j\omega)|$ = VSef/VEef, sendo VSef e VEef as tensões eficazes da saída e da entrada respectivamente.
- c) Meça com o osciloscópio e anote na Tabela 2 os valores eficazes de V_E e de V_S , como também a defasagem entre esses sinais ($\phi_{VS_{\Pi}}$ ϕ_{VE}), para os valores de frequência f escolhidas.
- c) Dica: Medição de fase: Medir utilizando "probes" de tensão, uma na entrada e outra na saída do circuito. Para ativar o ganho e fase na probe de saída, vocês devem clicar com o botão direito na probe de saída, ir em propriedades, ir na aba "parâmetros" e verificar se o "V(gain_AC)" e o "V(phase)" estão como "yes" na columa "Show" se não estiverem, troquem para "yes". Em seguida, mudem para a aba "General" e cliquem em "Gain/phase reference probe: escolhendo a probe que está no gerador

- d) Calcule o módulo do ganho |G(f)| a partir das tensões experimentais.
- e) Indique o módulo do ganho **|G(f)|** e a defasagem ϕ , calculados previamente (efetuados na preparação do experimento) utilizando-se os valores nominais dos componentes.
 - Utilize a planilha eletrônica disponibilizada no Moodle para essa experiência para efetuar os cálculos, caso não tenha efetuado a preparação.

Tabela 2 - Resposta em frequência de um circuito RC.

	Valores ex	xperimentais (sin	าเ Dica do item 1.2	Cálculos a partir das tensões medidas
f (Hz)	V _E (CA M _M)	V _S (CA ₩ м₃)	Faseθ _{s→E} =φ _{vs,νE} (°)	Ganh¢G(f)
10	3,53 V	3,53 V	0,9°	1,00
50	3,53 V	3,53 V	-1,2°	1,00
100	3,53 V	3,52 V	-2,9°	1,00
300	3,53 V	3,46 V	-10,1°	0,98
500	3,52 V	3,35 V	-17,2°	0,95
700	3, <mark>51 V</mark>	3,20 V	-23,8°	0,91
1 k	3,48 V	2,94 V	-32,4°	0,84
1,2 k	3,47 V	2,76 V	-38,1°	0,79
1,3 k	3,46 V	2,66 V	-40,9°	0,77
1,4 k	3,45 V	2,57 V	-41,6°	0,74
1,5 k	3,45 V	2,49 V	-43,2°	0,72
1,6 k	3,44 V	2,41 V	-45,2°	0,70
1,7 k	3,44 V	2,33 V	-46,7°	0,68
1,8 k	3,43 V	2,27 V	-48,1°	0,66
2 k	3,42 V	2,12 V	-51,4°	0,62
3 k	3,39 V	1,57 V	-61,6°	0,46
6 k	3,35 V	0,86 V	-75,7°	0,26
10 k	3,36 V	0,53 V	-80,6°	0,16

- f) Anexe os gráficos de:
 - i. Módulo do ganho |G(f)| (valores experimentais);

ii. Defasagem (φ_{VS,VE}) em função da frequência f (valores experimentais).

g) Compare as curvas experimentais com as teóricas (traçadas na "preparação"). O modelo teórico foi adequado? Justifique sua resposta.

Comparando com as curvas traçadas na "preparação", temos que o modelo teórico é adequado, pois os gráficos se assemelham

h) Determine a <u>faixa de passagem</u>¹ e a <u>frequência de corte</u> (f_c) a partir das curvas experimentais. <u>Indiqueas</u> nos dois gráficos acima.

A frequência de corte equivale a frequência do ganho de 1/V2 = 0,707 -> Fc = 1,5 kHz

A faixa de passagem é a frequência abaixo da frequência de corte, ou seja, frequências abaixo de 1,5 kHz.

Faixa de passagem é a faixa de frequências onde o ganho está dentro do intervalo de 3 dB em relação ao valor máximo (patamar).

i) Calcule a frequência de corte teórica (f_c) do circuito, utilizando os valores experimentais dos componentes (Tabela 1). (Apresente seu cálculo).

A frequência de corte teórica é calculada por Fc= (1/(2* π *R*C) $\approx 1/(2*3,14*1000*100*10^-9) \approx 1592,4$

j) Compare o resultado obtido no item h (valor experimental) com o do item i (valor teórico) (indique o erro relativo!). Justifique eventuais discrepâncias.

Os valores se encontram impressionantemente próximos, já que devido a simulação, todos os elementos se comportam idealmente.

k) Quais seriam as possíveis aplicações para o circuito RC analisado neste experimento? Explique.

O circuito RC analisado pode ser usado como um filtro passa-baixas, visto que o módulo do ganho aproxima-se de 1 para valores menores que fc e aproxima-se de para valores muito maiores que fc. Logo o circuito atenua as frequências elevadas e reforça as frequências mais baixas, tratando-se de um filtro passa-baixas.

2 RESPOSTA EM FREQUÊNCIA DE UM CIRCUITO RLC PARALELO:

Monte o circuito da Figura 2, com R = 10 k Ω e os componentes L e C fornecidos. Note que R $_s$ e L $_s$ estão representando o modelo do indutor real utilizado na montagem. Programe o gerador de funções para fornecer uma **onda senoidal** com amplitude de **10 Vpp**.

Figura 2- Circuito RLC.

2.1 Determinação de resposta em frequência do circuito RLC

a) Indique o número das expressões da *Introdução Teórica* devem ser usadas para calcular $|G(j\omega)| = \varphi$ a partir dos parâmetros do circuito da Figura 2.

Devem ser utilizadas as expressões 11 e 12.

- b) Meça com o osciloscópio os valores eficazes das tensões de entrada e saída do circuito (V $_{E}$ e V $_{S}$), bem como a defasagem entre esses sinais ($\phi_{VS,VE}$) para as diferentes frequências, e preencha a Tabela 3.
- c) Calcule o módulo do ganho |G(f)| experimental a partir das tensões experimentais.
- d) Indique o módulo do ganho **|G(f)|** e a defasagemp, calculados previamente através das <u>fórmulas</u> <u>teóricas indicadas no item 2.1.a</u> (utilize a planilha disponibilizada) utilizando-se os valores nominais dos componentes.

Tabela 3 - Resposta em frequência da de circuito RLC

Valores experimentais (simulados) Dica do item 1.2			Cálculos a partir das tensões medidas	
f (Hz)	V _E (CH1) (CA Mas	V _S (CH2) (CA ¼ м₃	Fas $\Theta_{2 \to 1}$ c) = $\phi_{VS,VE}$ (°)	Ganh¢G(f)
1,0 k	3,35 V	72 mV	63°	0,002
3 k	3,36 V	217 mV	76°	0,006
5 k	3,37 V	448 mV	73°	0,013
7 k	3,39 V	832 mV	62°	0,031
8 k	3,43 V	915 mV	45°	0,061
8,5 k	3,47 V	941 mV	29°	0,102
8,8 k	3,49 V	950 mV	16°	0,161
9 k	3,50 V	953 mV	7 °	0,227
9,2 k	3,51 V	955 mV	-3°	0,273
9,3 k	3,51 V	954 mV	-8°	0,256
9,4 k	3,50 V	953 mV	-13°	0,223
9,6 k	3,49 V	950 mV	-22°	0,161
10 k	3,46 V	940 mV	-37°	0,096
11 k	3,41 V	898 mV	-57°	0,047
12 k	3,39 V	843 mV	-67°	0,032
15 k	3,37 V	576 mV	-77°	0,017
20 k	3,36 V	346 mV	-83°	0,010

- e) Utilizando a planilha eletrônica, anexe os seguintes gráficos a partir dos <u>dados experimentais</u>:
 - O gráfico de |G(f)|;
 - ii. O gráfico da fase ($\phi_{VS,VE}$) em função da frequência, f.

Anexados ao final do arquivo

f) Determine as frequências de corte inferior (f_{c1}) e superior (f_{c2}), a frequência de ressonância (f_{R}), a faixa de passagem e o índice de mérito (Q) do circuito a partir da curva experimental de |G(f)| (indique-os também no gráfico).

Pelo gráfico a Fr≈ 9kHz

g) Calcule a frequência de ressonância a partir dos parâmetros do circuito e compare com o valor obtido graficamente. Apresente seus cálculos (da frequência e do erro relativo).

fr = $1/[2\pi\sqrt{(LC)}]=1/[2*3,14*\sqrt{(0,003*0,0000001)}] \approx 9188,81 \text{ Hz}$

h) Analise o comportamento da defasagem entre o sinal de saída e o da entrada na faixa de passagem e na frequência de ressonância.

Na frequência de ressonância, a defasagem é nula. Na frequência de passagem, a desafasagem começa com um valor positivo e decresce exponencialmente até o valor negatico.

i) Analisando o comportamento da defasagem do circuito (principalmente em baixa frequência), descreva como seria a curva experimental da defasagem caso a resistência parasitária do indutor, Rs, fosse zero?

Caso Rs fosse nulo, teríamos que a fase iniciaria no valor 90° e descresceria até -90°

2.2 Aplicação de funções automáticas do *Gerador de Funções* para análise da resposta em frequência de circuitos.

Fazer uma simulação em frequência "AC SWEEP" de 5 KHz a 15 KHz com Ve = 10 Vpp

- Tecle o botão SWEEP no painel do gerador. Na sequência, tecle as seguintes funções, impondo os valores indicados:
- STARTFREQ = 5 kHz,
- STOPFREO = 15 kHz,
- SWEEPTIME = 100 ms,
- SWEEP TYPE = linear.
- SWEEP = ON.

No osciloscópio:

- Certifique-se que o modo "acquire" ou "média" do seu osciloscópio esteja desabilitado.
- Mude a escala de tempo do osciloscópio para visualizar os sinais, de modo a identificar um ponto de máximo dentro do intervalo indicado no SWEEPTIME (no seu caso é igual a 100 ms).

Para correlacionar as leituras das medições da forma da onda na escala do tempo do osciloscópio com medições na escala em frequência, utilize a seguinte correspondência: cada intervalo de 100 ms (adotado na função SWEEPTIME) corresponde a um intervalo de 10 kHz em frequência (que foi definido pela frequência final menos a frequência inicial adotadas).

Para estabilizar o sinal na tela do osciloscópio utilize o trigger externo.

□Veja o vídeo sobre a função Sweep para entender melhor esta função.

Com isso, esboce a curva obtida no osciloscópio por meio deste recurso do gerador e determine as seguintes grandezas relacionadas à tensão V_S com auxílio dos cursores:

- i. $V_{max} e V_{max} / \sqrt{2}$, respectivamente; i) Vmax = 3,45V; $Vmax/\sqrt{2} = 2,47V$
- ii. a faixa (ou banda) de passagem (em Hz); ii) fc1=8825Hz, fc2=9742Hz, logo a faixa de passagem é Δf=917Hz
- iii. a frequência de ressonância.
- iv. Determine o Q do circuito através deste esboço. frequência de ressonância equivale

iii) Pelo osciloscópio obtemos que a 9,27kHz

i. O circuito RLC acima analisado pode ser aplicado em que tipo de filtro?

Pode ser usado como filtro passa faixas

ii. Discuta como o a função Sweep observada no osciloscópio pode ajudar a caracterizar o comportamento de circuitos em frequência.

A função Sweep nos permite analisar a resposta em frequência do circuito, em um intervalo pré-determinado de frequências, desta forma é possível obter as bandas de passagem, frequência de ressonância entre outras informaçoes.