

工程经济学

练习

1. 资金时间价值及 其等值计算

资金等值计算公式

- 一次支付终值公式
- 一次支付现值公式
- 等额分付终值公式
- 等额分付偿债基金公式
- 等额分付现值公式
- 资金回收公式

TO UNIVERSITY OF TECHNI					
类别	求解	已知	复利系数	系数代数式	公式
一次支	F	P	(F/P, i, n)	$(1+i)^n$	F=P(F/P, i, n)
付系列	P	F	(P/F, i, n)	$\frac{1}{(1+i)^n}$	P=F(P/F, i, n)
等额分付系列	F	A	(F/A, i, n)	$\frac{(1+i)^{n}-1}{i}$	F=A(F/A, i, n)
	A	F	(A/F, i, n)	$\frac{i}{(1+i)^{n}-1}$	A = F(A/F, i, n)
	Р	A	(P/A, i, n)	$\frac{(1+i)^{n}-1}{i(1+i)^{n}}$	P = A(P/A, i, n)
	Α	Р	(A/P, i, n)	$ (\mathbf{I} + \boldsymbol{\iota}) - \mathbf{I} $	A=P(A/P, i, n)
	F	G	(F/G, i, n)	$\frac{1}{i} \left[\frac{(1+i)^{n}-1}{i} - n \right]$	F=G(F/G, i, n) - · 技术经济学科 ·

经济效果

1. 一次支付终值公式

计算公式: F=P (1 + i)ⁿ F = P (F/P, i, n)

2. 一次支付现值公式

现金流量构成

3. 等额分付终值公式

$$F = A(1+i)^{n-1} + A(1+i)^{n-2} + \dots + A(1+i) + A$$

$$F = A \times \frac{(1+i)^{n} - 1}{i} = A(F/A, i, n)$$

4. 等额分付偿债基金公式

$$A = F \Box \frac{i}{(1+i)^{n}-1}$$
 $A = F (A / F, i, n)$

5. 等额分付现值公式

$$P = A \Box \frac{(1+i)^n - 1}{i(1+i)^n}$$

$$P=A\times(P/A, i, n)$$

$$F = A \Box \frac{(1+i)^{n} - 1}{i}$$

$$P = \frac{F}{(1+i)^{n}}$$

$$P = A \Box \frac{(1+i)^{n} - 1}{i(1+i)^{n}}$$

技术经济等系数术经济学科

6、资金回收公式

$$A = P = \frac{i(1+i)^n}{(1+i)^n-1}$$

 $A=P\times(A/P, i, n)$

5. 等额分付现值公式

例: 一位; 12000; 益形式; 投资者; 第1年年末到第n年年末,有一个等额的现金流序列,每年的金额均为A,利率为i。

55年里每年收到 方式是将前种收 求年收益率10%, 5少?

解: P前5年= A1(P/A,10%,5)=45492元

P后7年=A2(P/A,10%,7)(P/F,10%,5)=18135元

P= P前5年+P后7年=63627 元

6、资金回收公式

例: 几个大学生合资建设一家废旧金属回收公司,期初投资100万元,建设期1年,第二年投产,如果年利率为10%,打算投产后5年内收回全部投资,问该厂每年应最少获利多少?

解: A = P(F/P,10%,1)(A/P,10%,5)

=100×1.100×0.2638=29.018万元

A = 100(F/P,10%,6)(A/F,10%,5)

= 100×1.722×0.1638 = 29.016万元

学习通练习

第一题

例:某企业拟购买一设备,预计该设备有效使用寿命为5年,在寿命期内每年能产生纯收益6.5万元,若该企业要求的最低投资收益率为15%,问该企业可接受的设备价格为多少?

解: P = 6.5(P/A, 15%, 5)=21.8万元 所以,企业可接受的最高价格为21.8万元。

经济效果

第二题

例:某投资者5年前以200万元价格买入一房产,在过去的5年内每年获得年净现金收益25万元,现在该房产能以250万元出售,若投资者要求的年收益率为20%,问此项投资是否合算?

解: 将收益折算成现值:

P = 25(P/A,20%,5) + 250(P/F,20%,5)

=175.25(万元)

获得i=20%的收益投资175.25万即可,因此不合算

第三题

例: 某人从25岁参加工作起至59岁,每年存入养老金5000元,若利率为6%,则他在60-74岁间每年可以等额领到多少钱?

解: F_{59岁末} = 5000(F/A,6%,35) = 5000×111.435=557175元 A_{60-74岁}=P(A/P,6%,15) =5571735×0.10296=57366.7元

第四题

例: 某设备除每年发生5万元运行费用外,每隔3年需大修一次,每年费用为3万元,若设备的寿命为15年,资金利率为10%,求其在整个寿命期内设备费用现值为多少?

解: $PC = 5 \times (P/A, 10\%, 15) + 3 \times (P/F, 10\%, 3)$

 $+3 \times (P/F, 10\%, 6) + 3 \times (P/F, 10\%, 9) + 3 \times$

(P/F,10%,12)+3×(P/F,10%,15)=44.9万元

第五题

例: 某投资项目,现在投资1000万元,则自第一年年末开始,每年年末都 将有均等的净收益240万元,若i = 5%,经营期可以看作是无限,则该项目相 当于现时点的净收益是()万元。

年

解: P=-1000+240/5%=3800

第六题

例: 某公司想使用一办公楼,现有两种方案可供选择。

方案一、永久租用办公楼一栋,每年年初支付租金10万,一直到无穷。

方案二、一次性购买,支付120万元。

目前存款利率为10%,问从年金角度考虑,哪一种方案更优?

年

经济效果

解:

方案一

 $P = 10 \times (1+10\%) \div 10\% = 110$

方案二

P = 120

所以方案一更优。

2.经济性评价基本 指标

经济性评价

<mark>经济性评价</mark> 投资回收期法<mark>现值法 IRR法 其它指标评价法</mark>备选方案与经济性评价方法 不确定性评价法

- ■经济性评价——按照自定的决策目标,通过项目(或方案)的各项费用和投资效益分析,对项目*是否具有投资*价值作出估计与决断。
- ■经济性评价方法主要包括确定性评价方法与不确定性评价方法两类。
- ■对同一个项目必须同时进行确定性评价和不确定性评价。

经济性评价基本方法概况

经济性评价 投资回收期法现值法 IRR法 其它指标评价法备选方案与经济性评价方法 不确定性评价法

确定性评	静态评价方法	投资回收期法、借款偿 还期法、投资效果系数 法等	不重视资金 时间价值		
价方法	动态评价方法	净现值法、费用现值法、 费用年值法、内部收益 率法等	重视资金时间价值		
不确定性	风险评价方法	盈亏平衡分析法、敏感 性分析法	方案风险的 大小		
评价方法	完全不确定性 评价方法	概率分析法	评价各类不 确定因素变 动的概率		

经济性评价基本指标

经济性评价 投资回收期法现值法 IRR法 其它指标评价法备选方案与经济性评价方法 不确定性评价法

指标类型	具体指标	备注			
	投资回收期	静态、动态			
时间型指标	增量投资回收期	静态、动态			
	固定资产投资借款偿还期	静态			
价值型指标	净现值、费用现值、费用年值	动态			
	投资利润率、投资利税率	静态			
┷ ┯╖┼┖┼二	内部收益率、外部收益率	动态			
效率型指标	净现值率	动态			
	费用一效益比	动态			

定义: 投资方案所产生的净现金收入回收初始全部投资所需的时间。

分类

静态投资回收期:不考虑资金时间价值因素

动态投资回收期:考虑资金时间价值

投资回收期

反映了风险的 大小。 计算

一般从工程 -项目开始投 入之日算起 ,即应包括 项目的建设 静态投资回收期: 投资回收期 T=累计净现金流量开始出现正值的年份-1

+ 上年累计净现金流量 当年净现金流量

动态投资回收期:

Tp=累计净现金流量折现值开始出现正值的年份-1

+ L年累计净现金流量折现值 | 当年净现金流量折现值

判据

TP ≤ Tb 该方案是合理的,说明方案投资利用效率高于行业基准收益率。

TP > Tb 该方案是不合理的,说明方案投资利用效率低于行业基准收益

优点、缺点:

定义: 指项目 (或方案) 在寿命期内各年的净现金流量 (CI - CO) t, 按照一定的折现率i, 折现到期初时点的现值之和

计算 NPV =
$$\sum_{t=0}^{n} (CI - CO)_t \square (1+i)^{-t}$$

净现值 NPV 方案NPV > 0, 意味着方案除能达到要求的基准收益率之外, 还能得到超额收益, 方案可行;

判据

方案NPV=0,意味着方案正好达到了要求的基准收益率水平,方案经济上 合理,方案一般可行;

方案NPV < 0 ,则表示方案达不到要求的基准收益率水平,方案经济上不合理,不可行。

净现值率: $NPVR = \frac{NPV(i_0)}{K_p}$

优点、缺点:

定义:净现值NPV为零时的折现率。

计算 NPV =
$$\sum_{t=0}^{n} (CI - CO)_t (1 + IRR)^{-t} = 0$$
 试算内差法

内部收益率 IRR

判据

若IRR≥ i0 ,则项目在经济效果上可以接受; 若IRR < i0 ,则项目应予否定。 一般情况下,当IRR ≥ i0 时,NPV (i0) ≥0 当IRR < i0 时,NPV (i0) < 0

对于<mark>单个</mark>方案的评价,内部收益率IRR准则与净现值NPV准则,其评价结论是一致的。

优点、缺点:

练习

投资回收期——投资方案所产生的净现金收入回收初始全部投资所需的时间。

例1:某企业投资5000万元生产可降解塑料制品,预计年净收益(利润+折旧)为1000万元,若基准收益率为10%,预计项目寿命为10年,则静态投资回收期和动态回收期各是多少年?

解:

静态回收期=5000/1000=5年

年份	0			3		5	6	7			10
净现金流量	-5000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
折现值	-5000	909	826	751	683	620	565	513	467	424	386
	-5000	-4091	-3265	-2514	-1831	-1211	-646	-133	334	758	1144

动态回收期=8-1+133/467=7.29年

净现值 (NPV)

经济性评价 投资回收期法 现值法 IRR法 其它指标评价法备选方案与经济性评价方法 不确定性评价法

例2: 一位朋友想投资于一家小饭馆,向你借款1000元。他提出在前4年的 每年年末还给你300元,第5年末再还给你500元。假若你可以在银行定期存 款中获得10%的利率,按照他提供的偿还方式,你应该借给他钱吗?

P = 300(P/A,10%,4) + 500(P/F,10%,5) = 1261.42

用NPV法求解上例

经济性评价 投资回收期法 现值法 IRR法 其它指标评价法备选方案与经济性评价方法 不确定性评价法

NPV法求解过程

经济性评价 投资回收期法 现值法 IRR法 其它指标评价法备选方案与经济性评价方法 不确定性评价法

例3:假定投资每天4000瓶生产能力的新型无醇消毒用品项目,购买生产设备和技术专利等所需投资(或收购企业成本)是3000万元,平均每瓶价格35元,每瓶生产成本18元(不含折旧0.6元),管理费、营销费占收入的20%,税费占5%,项目寿命预计8年,生产能力利用率90%,若投资报酬率要求15%,问此项目经济上是否可行?

解: 年净收益=0.4*365*35*90%(1-20%-5%)-0.4 *365*18=822万元

$$\mathbf{NPV} = \sum_{t=0}^{n} (\mathbf{CI - CO})_t \ \Box (1+i)^{-t}$$

如果项目寿命为8年,则净现值=822 (P/A, 15%, 8) -3000=688万元≥0

如果项目寿命为5年,则净现值=822 (P/A, 15%, 5) -3000= -244万元≤0

例题

经济性评价 投资回收期法现值法

RR法 其它指标评价法备选方案与经济性评价方法 不确定性评价法

例: 一个项目的初始投资为10000元,以后每年均等地获得净收益2000元,项目寿命期为10年。试求内部收益率。

$$NPV(10\%) = -10000 + 2000 (P/A, 10\%, 10) = 2289.2$$

$$NPV(15\%) = -10000 + 2000 (P/A, 15\%, 10) = 37.6$$

$$NPV(20\%) = -10000 + 2000 (P/A, 20\%, 10) = -1615$$

$$\frac{IRR - 15\%}{20\% - 15\%} = \frac{37.6}{1615 + 37.6}$$