

GLASSES: Relieving The Myopia Of Bayesian Optimisation

Javier González^{1,*} Michael Osborne² Neil D. Lawrence¹

¹University of Sheffield, ²University of Oxford

MOTIVATION AND SUMMARY

- ▶ We present GLASSES: Global optimisation with Look-Ahead through Stochastic Simulation and Expected-loss Search.
- ► GLASSES is a non-myopic loss for Bayesian Optimisation that permits the consideration of dozens of evaluations into the future.
- ► We show that the far-horizon planning thus enabled leads to substantive performance gains in empirical tests.
- ► Code available in the GPyOpt package (https://github.com/SheffieldML/GPyOpt).

GLOBAL OPTIMISATION PROBLEMS

Let $f: \mathcal{X} \to \mathfrak{R}$ be well behaved function defined on a compact subset $\mathcal{X} \subseteq \mathfrak{R}^q$. Find

$$\mathbf{x}_M = \arg\min_{\mathbf{x} \in \Upsilon} f(\mathbf{x}).$$

f is a *black-box*: only evaluations of the type $y_i = f(\mathbf{x}_i) + \epsilon_i$, with $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$ are available.

BAYESIAN OPTIMISATION WITH A MYOPIC EXPECTED LOSS

Figure: Two evaluations: if the first evaluation is made myopically, the second must be sub-optimal.

- $\mathcal{D}_0 = \{(\mathbf{x}_i, y_i)\}_{i=1}^N = (\mathbf{X}_0, \mathbf{y}_0)$: Available dataset.
- $p(f) = \mathfrak{GP}(\mu; k)$: Gaussian process (GP) using \mathfrak{D}_0 .
- ▶ \mathcal{I}_0 : conjunction of \mathcal{D}_0 , the model parameters and the model likelihood type.
- $\eta = \min\{y_0\}$: current best found value.
- ▶ One remaining evaluation before we need to report our inferred location of the minimum.

The *loss* of evaluating f this last time at \mathbf{x}_* assuming it is returning y_* is

$$\lambda(y_*) \triangleq \left\{ \begin{array}{l} y_*; & \text{if } y_* \leqslant \eta \\ \eta; & \text{if } y_* > \eta. \end{array} \right.$$

The *expectation of the loss*:

$$\Lambda_1(\mathbf{x}_*|\mathcal{I}_0) \triangleq \mathbb{E}[\min(y_*, \eta)] = \int \lambda(y_*) p(y_*|\mathbf{x}_*, \mathcal{I}_0) dy_* = \eta + (\mu - \eta) \Phi(\eta; \mu, \sigma^2) - \sigma^2 \mathcal{N}(\eta, \mu, \sigma^2)$$

- We have abbreviated $\sigma^2(y_*|\mathcal{I}_0)$ as σ^2 and $\mu(y_*|\mathcal{I}_0)$ as μ .
- ▶ The subscript in Λ refers to the fact that we are considering one future evaluation.
- ▶ The next evaluation is located where $\Lambda_1(\mathbf{x}_*|\mathcal{I}_0)$ gives the minimum value [1].

 $\Lambda_1(\mathbf{x}_*|\mathcal{I}_0)$ is myopic: doesn't take into account the number of remaining evaluations.

IDEAL NON-MYOPIC EXPECTED LOSS

Figure: A Bayesian network describing the *n*-step lookahead problem.

The *ideal long-sight* loss is defined as:

$$\Lambda_n(\mathbf{x}_*|\mathfrak{I}_0) = \int \lambda(y_n) \prod_{j=1}^n p(y_j|\mathbf{x}_j,\mathfrak{I}_{j-1}) p(\mathbf{x}_j|\mathfrak{I}_{j-1}) dy_* \dots dy_n d\mathbf{x}_2 \dots d\mathbf{x}_n$$

- $p(y_i|\mathbf{x}_i, \mathcal{I}_{i-1}) = \mathcal{N}(y_i; \mu(\mathbf{x}_i; \mathcal{I}_{i-1}), \sigma^2(\mathbf{x}_i|\mathcal{I}_{i-1}))$: predictive distribution of the GP at \mathbf{x}_i
- $p(\mathbf{x}_{j}|\mathcal{I}_{j-1}) = \delta(\mathbf{x}_{j} \arg\min_{\mathbf{x}_{*} \in \mathcal{X}} \Lambda_{n-j+1}(\mathbf{x}_{*}|\mathcal{I}_{j-1}))$: optimisation step required to obtain \mathbf{x}_{j} .

This long-sight loss is extremely expensive to compute

GLASSES

Figure: A Bayesian network describing our approximation to the *n*-step lookahead problem. Compare with the figure above: the sparser structure renders our approximation computationally tractable.

Take $\mathcal{F}_n(\mathbf{x}_*)$ is an oracle function able to predict the n future locations starting at \mathbf{x}_* :

$$\Lambda_n(\mathbf{x}_* \mid \mathfrak{I}_0, \mathfrak{F}_n(\mathbf{x}_*)) = \mathbb{E}[\min(\mathbf{y}, \mathbf{\eta})] = \mathbf{\eta} \int_{\mathbb{R}^n} \prod_{i=1}^n h_i(\mathbf{y}) \mathcal{N}(\mathbf{y}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{y} + \sum_{j=1}^n \int_{\mathbb{R}^n} y_j \prod_{i=1}^n t_{j,i}(\mathbf{y}) \mathcal{N}(\mathbf{y}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{y},$$

where $h_i(\mathbf{y}) = \mathbb{I}\{y_i > \eta\}$ and $t_{j,i}(\mathbf{y}) = \mathbb{I}\{y_j \leqslant \eta\}$ if i = j and $t_{j,i}(\mathbf{y}) = \mathbb{I}\{0 \leqslant y_i - y_j\}$ otherwise.

- \wedge $\Lambda_n(\mathbf{x}_* \mid \mathcal{I}_0, \mathcal{F}_n(\mathbf{x}_*))$ can be computed with Expectation Propagation [2].
- ▶ A batch BO method [3] is used as a surrogate for $\mathcal{F}_n(\mathbf{x}_*)$.
- \wedge $\Lambda_n(\mathbf{x}_* \mid \mathcal{I}_0, \mathcal{F}_n(\mathbf{x}_*))$ is optimised using a gradient-free method (DIRECT).

First non-myopic loss able to take into account dozens of future evaluations

RESULTS

Figure: Expected loss for different number of steps ahead in an example with 10 data points and the Six-hump Camel function.

Increasing the number of steps-ahead increased exploration in GLASSES

	MPI	GP-LCB	EL	EL-2	EL-3	EL-5	EL-10	GLASSES
SinCos	0.7147	0.6058	0.7645	0.8656	0.6027	0.4881	0.8274	0.9000
Cosines	0.8637	0.8704	0.8161	0.8423	0.8118	0.7946	0.7477	0.8722
Branin	0.9854	0.9616	0.9900	0.9856	0.9673	0.9824	0.9887	0.9811
Sixhumpcamel	0.8983	0.9346	0.9299	0.9115	0.9067	0.8970	0.9123	0.8880
Mccormick	0.9514	0.9326	0.9055	0.9139	0.9189	0.9283	0.9389	0.9424
Dropwave	0.7308	0.7413	0.7667	0.7237	0.7555	0.7293	0.6860	0.7740
Powers	0.2177	0.2167	0.2216	0.2428	0.2372	0.2390	0.2339	0.3670
Ackley-2	0.8230	0.8975	0.7333	0.6382	0.5864	0.6864	0.6293	0.7001
Ackley-5	0.1832	0.2082	0.5473	0.6694	0.3582	0.3744	0.6700	0.4348
Ackley-10	0.9893	0.9864	0.8178	0.9900	0.9912	0.9916	0.8340	0.8567
Alpine2-2	0.8628	0.8482	0.7902	0.7467	0.5988	0.6699	0.6393	0.7807
Alpine2-5	0.5221	0.6151	0.7797	0.6740	0.6431	0.6592	0.6747	0.7123

Table: Results for the average 'gap' measure (5 replicates) across different functions. EL-k: expect loss with *k* steps ahead. MPI: maximum probability of improvement. GP-LCB: lower confidence bound criterion.

Non-myopic losses improve the results in practice

CONCLUSIONS AND FUTURE WORK

- First non-myopic loss that allows taking into account dozens of future evaluations.
- ▶ The loss compares well with current myopic acquisitions.
- ► Challenge: making the optimisation of the loss more efficient.

REFERENCES

- 1 Michael Osborne. Bayesian Gaussian Processes for Sequential Prediction, Optimisation and Quadrature. PhD thesis, University of Oxford, 2010.
- 2 John P. Cunningham, Philipp Hennig, and Simon Lacoste-Julien. Gaussian probabilities and expectation propagation. arXiv:1111.6832 [stat], Nov 2011. arXiv: 1111.6832.
- 3 Javier González, Zhenwen Dai, Philipp Hennig, and Neil D Lawrence. Batch Bayesian optimization via local penalization. arXiv preprint arXiv:1505.08052, 2015.