Sławomir Kulesza

Technika cyfrowa Synteza układów kombinacyjnych

Wykład dla studentów III roku Informatyki

Podział układów logicznych

Opis funkcjonalny układów logicznych

 $x_i, y_i \in B - sygnaty binarne$

 $X = (x_1, x_2, ..., x_n) - wektor wejściowy$

 $Y = (y_1, y_2, ..., y_m) - wektor wyjściowy$

X_k – k-ty stan wejściowy (konkretna postać X)

Y – j-ty stan wyjściowy (konkretna postać Y)

Stany układu logicznego

Zbiór X <u>występujących</u> stanów układu X_j jest zawsze podzbiorem B^n i zawiera maksymalnie $N = 2^n$ elementów (stanów układu).

Numeracja stanów X_j : $j \in \{0, 1, 2, ..., N - 1\}$, np.: n = 2, $\mathbf{X} = \{X_0, X_1, X_2, X_3\} = \{00, 01, 10, 11\}$.

W realnych układach: X ⊂ Bⁿ, Y ⊂ B^m

Układy kombinacyjne a sekwencyjne

Układy kombinacyjne: Y^t = F(X^t)
Układy sekwencyjne: Y^t = F(X^t, X^{t-1}, X^{t-2}, ...X^{t-p})

Funkcja przełączająca

Jeśli w dowolnej chwili t stan Y^t układu logicznego zależy wyłącznie od stanu X^t , czyli $Y^t = f(X^t)$, to jest to układ kombinacyjny (bez pamięci), opisywany funkcją $f: X \to Y$.

Wartość każdego sygnału wyjściowego y_i zależy od stanu wejść X i funkcji logicznej (boolowskiej, przełączającej) f_i układu:

$$y_i = f_i(X)$$

Symbole bramek logicznych

Nazwa elementu	symbol	symbol	Tabela prawdy
ang. / pl.	ANSI/IEEE	IEC, ANSI/IEEE	
BUFFER BUFOR	<u>A</u> <u>Y</u>	A D Y	A Y = A 0 0 1 1
NOT NIE	<u>A</u>	<u>A</u> ▷ o Y	A Y = A O O O O O O O O O
EXOR ALBO, WYLĄCZNIE LUB	<u>A</u> B) <u>Y</u>	<u>A</u> =1 <u>Y</u>	A B Y = A⊕B 0 0 0 0 1 1 1 0 1 1 1 0
EXNOR ALBO-NIE	<u>A</u> <u>B</u>) <u>Y</u>	$\frac{A}{B}$ =1 $\mathbf{o}^{\underline{Y}}$	A B Y = A⊗B 0 0 1 0 1 0 1 0 0 1 1 1

Symbole bramek logicznych

Nazwa elementu ang. / pl.	symbol ANSI/IEEE	symbol IEC, ANSI/IEEE	Tabela prawdy
AND I	<u>A</u> <u>B</u> <u>Y</u>	<u>A</u> & <u>Y</u>	A B Y = A·B 0 0 0 0 1 0 1 0 0 1 1 1 1
NAND I-NIE	A B	A & O Y	A B Y = A·B 0 0 1 0 1 1 0 1 1 0 0
OR, LUB	<u>A</u> <u>B</u> <u>Y</u>	<u>A</u> ≥1 <u>Y</u>	A B Y = A+B 0 0 0 0 1 1 1 0 1 1 1 1
NOR, LUB-NIE	$\frac{A}{B}$ $\frac{Y}{A}$	<u>A</u> ≥1 o <u>Y</u>	A B Y = A+B 0 0 1 0 1 0 1 0 0 1 1 0 1 1 0

Symbole bramek logicznych

(inne standardy)

Formy boolowskie

Forma boolowska w analityczny sposób przedstawia funkcję przełączającą układu wykorzystując sygnały (zmienne boolowskie), stałe 0/1 oraz operatory boolowskie AND / OR / NOT.

Forma sumacyjna: (suma iloczynów literałów)

$$X_1 \cdot X_3 + \overline{X}_1 \cdot X_2 \cdot \overline{X}_3$$

Forma iloczynowa:

(iloczyn sum literałów)

$$(x_1 + x_2 + x_3) \cdot (\overline{x}_1 + x_2)$$

Równoważność form boolowskich

Dwie formy boolowskie w₁, w₂ są równoważne, gdy określają tę samą funkcję przełączającą f, tzn.:

$$\forall_{X \in X} (w_1(X) = f(X)) \land (w_2(X) = f(X))$$

Każda funkcja przełączająca może być przedstawiona przez nieskończenie wiele równoważnych form boolowskich, np.:

$$f(X) = X, w_1(X) = X \vee X, w_2(X) = X \wedge X, itd...$$

Mnogość form boolowskich

Minimalizacja logiczna:

- redukcja liczby literałów (wejść bramek),
- redukcja liczby bramek,
- redukcja liczby poziomów bramek.
- 1) Technologie bramek cyfrowych ograniczają liczbę wejść sygnałowych,
- 2) Mniejsza liczba bramek to: mniejsze opóźnienia propagacji sygnałów, niższa moc zasilania, niższe zakłócenia, prostszy układ itd.
- 3) Liczba użytych bramek wpływa na koszt wytworzenia układu.

Wzór Shannona

Uogólnienie prawa De Morgana na formy boolowskie:

$$f'(X, \cdot, +) = f(X', +, \cdot)$$

Obowiązuje przy tym kolejność działań: (1) nawiasy, (2) negacje, (3) iloczyny, (4) sumy

Wzór Shannona pozwala m.in. konwertować formy sumacyjne na iloczynowe i *vice versa*.

Przykład konwersji

Niech: $f = x_1 \cdot x_2 + x_1' \leftarrow forma sumacyjna$ Wówczas:

$$f' = (x_1 \cdot x_2 + x_1')' = (x_1' + x_2') \cdot x_1 = x_1 \cdot x_1' + x_1 \cdot x_2' = x_1 \cdot x_2'$$

Ponadto: 010101101010101010101

$$f = (f')' = (x_1 \cdot x_2')' = x_1' + x_2 \leftarrow forma iloczynowa$$

Tablica prawdy

Tablica prawdy jest macierzową reprezentacją funkcji przełączającej. W przypadku funkcji n-zmiennych $y = f(x_1, ..., x_n)$ zawiera ona 2^n -wierszy i (n+1)-kolumn.

Liczba wszystkich funkcji przełączających n-zmiennych wynosi 4ⁿ, np. dla n = 1:

(1)
$$f_1(a) = a$$
, (2) $f_2(a) = a'$,
(3) $f_3(a) = 0$, (4) $f_4(a) = 1$.

<i>y</i> =			<i>y</i> =		<i>y</i> =		<i>y</i> =	0
а	У		а	У	а	У	а	У
0	0	_	0	1	 0	1	0	0
_1	1	_	1	0	1	1	1	0

Funkcje logiczne dwóch zmiennych

x1	x2	fo	f_1	f_2	f_3	f4	fs	f ₆	f7	f ₈	f9	f_{10}	f_{11}	f12	f13	f14	f_{15}
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	al a	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
Sym		funi		Δ /	grap grap	Δ /	(uld	0	× +	1	0	unīni . ,	→ ∩	rwite.	n t	atipi	Sinko

NOR

NAND

Funkcje logiczne dwóch zmiennych

Wyrażenie	Zastosowanie	Nazwa oper	Name Contail	
boolowskie	operatorów nie- boolowskich	polska	angielska	Nazwa funkcji
$f_0 = 0$	evilat am si	vie) Funkcia	divido sin sla	stała 0
$f_1 = x_1 x_2$		I	AND	iloczyn
$f_2 = x_1 \bar{x}_2$	$x_1 \Delta x_2$	1705 C. 1 05 3 3 4 5 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		iloczyn z zakazem
$f_3 = x_1$	Branklin Prof			przeniesienie x ₁
$f_4 = \bar{x}_1 x_2$	$x_2 \Delta x_1$	XOX wielli	dy w tranken	iloczyn z zakazem
$f_5 = x_2$	sighsigegbes	elogicher adsai	Chillian Breder	przeniesienie x ₂
$f_6 = \bar{x}_1 x_2 \vee x_1 \bar{x}_2$	$(x_1 \oplus x_2)$ $(x_1 \neq x_2)$	ALBO	EX-OR, XOR	funkcja nierówności
$f_7 = x_1 \vee x_2$		LUB	OR	suma
$f_8 = \overline{x_1 \vee x_2}$	$x_1 \downarrow x_2$	LUB-NIE	NOR	funkcja (strzałka)
and a realist and	THAT diane	(skrót LUN)	i en anna	Peirce'a
$f_9 = \bar{x}_1 \bar{x}_2 \vee x_1 x_2$	$x_1 \odot x_2 = \overline{x_1 \oplus x_2}$	ALBO-NIE	EX-NOR, XNOR	funkcja równości
Systen	$(x_1 = x_2)$	(skrót ALBON)	EQUALITY, EQUIVALENCE	or of the section of
$f_{10} = \bar{x}_2$	det fundacii n	NIE	NOT	negacja
wordanznia con	memory wisher	(skrót N)	eusteenn i lett	
$f_{11} = x_1 \vee \bar{x}_2$	$x_2 \Rightarrow x_1$	ho ladar and	main Basistan	implikacja:
	CONTRACTOR OF THE	ends Basesing Indian	13179. 1.15101113	jeśli x_2 , to x_1
$f_{12} = \bar{x}_1$), ')' alo a	NIE	NOT	negacja
		(skrót N)		1) 41 1 ⊕ 1
$f_{13} = \bar{x}_1 \vee x_2$	$x_1 \Rightarrow x_2$			implikacja:
), czyn inak	ge GR. NOT	(DUB; NIE)	jeśli x ₁ , to x ₂
$f_{14} = \overline{x_1 x_2}$	$x_1 \mid x_2$	I-NIE	NAND	funkcja (kreska)
		(skrót IN)		Sheffera
$f_{15} = 1$	Crylt Shall	CIO AND, N	AL BURN	stała 1

Podstawowe funkcje logiczne dwóch zmiennych

		AND	NAND		$\frac{NOR}{f(a,b)} =$	XOR	XNOR
а	b	ab	(ab)'	a + b	$(a+b)^{l}$	a ⊕ b	(a⊕b)′
0	0	0	1	0	1	0	1
0	1	0	1	1	0	1	0
1	0	0	1	1	0	1	0
1	1	1	0	1	0	0	1

Funkcja logiczna XOR

Funkcja XOR funkcjonuje także pod nazwami: (1) wyłącznie-lub, (2) suma wyłączająca, (3) suma modulo 2, (4) różnica symetryczna, (5) funkcja nieparzystości:

$$f(x_1,x_2) \stackrel{\text{def}}{=} x_1 \oplus x_2 = (x_1 \neq x_2)$$

$$f(x_1,x_2) = x_1 \oplus x_2 = (x_1+x_2)(x_1'+x_2') = x_1'x_2+x_1x_2'$$

Podstawowe związki:

$$x_{1} \oplus 0 = x_{1},$$
 $x_{1} \oplus 1 = x_{1}'$
 $x_{1} \oplus x_{1} = 0,$ $x_{1} \oplus x_{1}' = 1$
 $(x_{1} \oplus x_{2} = x_{3}) \Rightarrow (x_{1} \oplus x_{3} = x_{2}) \wedge (x_{2} \oplus x_{3} = x_{1})$

Funkcja logiczna XNOR

Funkcja XNOR funkcjonuje także pod nazwami:

- (1) wyłącznie-lub-nie, (2) funkcja komparacji,
- (3) funkcja równoważności, (4) funkcja parzystości:

$$f(x_1,x_2) \stackrel{\text{def}}{=} x_1 \odot x_2 = (x_1 = x_2)$$

$$f(x_1,x_2) = (x_1 \oplus x_2)' = x_1 x_2 + x_1' x_2' = (x_1' + x_2)(x_1 + x_2')$$

Podstawowe związki:

$$x_{1} \odot x_{1} = 1,$$
 $x_{1} \odot x_{1}' = 0$
 $x_{1} \odot x_{2} = x_{1}' \oplus x_{2} = x_{1} \oplus x_{2}'$

Systemy funkcjonalnie pełne

System funkcjonalnie pełny (SFP) to każdy minimalny zbiór operatorów pozwalających zrealizować dowolną funkcję przełączającą przy użyciu tylko operatorów z tego zbioru.

Systemy funkcjonalnie pełne

Zrealizujmy funkcje NOT oraz OR wyłącznie za pomocą bramek NAND:

1) NOT:

2) OR:

$$x+y = ((x+y)')' = (x'\cdot y')'$$

Formy boolowskie – definicje

Literał – symbol zmiennej lub jej negacji, np.: x₁, x₂'; dla n-zmiennych maksymalnie 2n-literałów.

Term iloczynowy– iloczyn literałów, np.: x₁'x₂.

Term sumacyjny– suma literałów, np.: x₁+x₂'.

Term pełny funkcji n-zmiennych – term iloczynowy lub sumacyjny zawierający n różnych literałów:

- minterm term iloczynowy pełny (np.: x₁x₂'x₃),
- maksterm term sumacyjny pełny (np.: x₁+x₂'+x₃).

Wartościowanie mintermów

Niech dany będzie uporządkowany minterm $P_n(X)$:

$$P_n(X) = x_1 x_2 x_3 ... x_k$$

Przyporządkujmy mu liczbę binarną m w tensposób, że: $x_n \rightarrow 1$, $x_n' \rightarrow 0$, np.:

$$x_1 x_2 x_3' \rightarrow m = 110_2 = 6_{10}$$

Wartość logiczna mintermu: $P_n(X_m) = 1 \Leftrightarrow (n=m)$

Wartościowanie makstermów

Niech dany będzie uporządkowany maksterm $S_n(X)$:

$$S_n(X) = x_1 + x_2 + x_3 + \dots + x_k$$

Przyporządkujmy mu liczbę binarną s_n w ten sposób, że: $x_n \rightarrow 0$, $x_n' \rightarrow 1$, np.:

$$x_1 + x_2 + x_3' \rightarrow s_1 = 001_2 = 1_{10}$$

Wartość logiczna makstermu: S_n(X_m) = 0 ⇔ (n=m)

Konwersja wartościowania minterm ⇔ maksterm

Korzystając ze wzoru Shannona dowodzi się, że:

$$P_n(X_k) = (S_n(X_k))'$$

np.: dla
$$P_4(X) = x_1 \cdot x_2' \cdot x_3'$$
 oraz $S_4(X) = x_1' + x_2 + x_3$
 $P_4(4) = P_4(100) = 1 \cdot 0' \cdot 0' = 1 \cdot 1 \cdot 1 = 1$
 $P_4(3) = P_4(011) = 0 \cdot 1' \cdot 1' = 0 \cdot 0 \cdot 0 = 0$
 $S_4(4) = S_4(100) = 1' + 0 + 0 = 0 + 0 + 0 = 0$
 $S_4(3) = S_4(011) = 0' + 1 + 1 = 1 + 1 + 1 = 1$

Makstermy i mintermy w tablicy prawdy

Row	Х	Υ	Z	F	Minterm	Maxterm
0	0	0	0	F(0,0,0)	$X' \cdot Y' \cdot Z'$	X + Y + Z
1	0	0	1	F(0,0,1)	$X' \cdot Y' \cdot Z$	X + Y + Z'
2	0	1	0	F(0,1,0)	$X^{\prime}\!\cdot Y \cdot Z^{\prime}$	X + Y'+ Z
3	0	1	1	F(0,1,1)	$X' \cdot Y \cdot Z$	X + Y' + Z'
4	1	0	0	F(1,0,0)	$X\cdot Y'\cdot Z'$	X'+Y+Z
5	1	0	1	F(1,0,1)	$X\cdot Y'\cdot Z$	X'+Y+Z'
6	1	1	0	F(1,1,0)	$X\cdot Y\cdot Z'$	X'+Y'+Z
7	1	1	1	F(1,1,1)	$X\cdot Y\cdot Z$	X'+ Y'+ Z'

Twierdzenie Shannona

(Twierdzenie o dekompozycji funkcji przełączającej)

Każdą funkcję przełączającą f(X) można przedstawić jako kanoniczną formę sumacyjną postaci:

$$f(X) = \sum_{k=0}^{2^{n}-1} P_{k}(X_{k}) \cdot f(X_{k})$$

Przykład dekompozycji funkcji przełączającej

X ₁	X ₂	$f(x_1,x_2)$
0	0	0
0	1	1
1	0	0
1	1	1

Kanoniczna forma sumacyjna:

Poprawione twierdzenie Shannona

Każdą funkcję przełączającą f(X) można przedstawić jako kanoniczną formę sumacyjną 1-mintermów:

$$f(X) = \sum_{k=0}^{2^{n}-1} P_{k}^{1}(X_{k}) \equiv \sum (p_{k})$$

Przykład dekompozycji funkcji przełączającej

X ₁	X ₂	$f(x_1,x_2)$
0	0	0
0	1	1
1	0	0
1	1	1

Kanoniczna forma sumacyjna:

$$f(X) = x_1' \cdot x_2 + x_1 \cdot x_2 = \sum (1,3)$$

Kanoniczna forma iloczynowa

Każdą funkcję przełączającą f(X) można przedstawić jako kanoniczną formę iloczynową:

$$f(X) = \prod_{k=0}^{2^{n}-1} \left(S_{k}(X_{k}) + f(X_{k}) \right)$$

Przykład dekompozycji funkcji przełączającej

X ₁	X ₂	$f(x_1,x_2)$
0	0	0
0	1	1
1	0	0
1	1	1

Kanoniczna forma iloczynowa:

1010010

$$f(X) = (S_0(X_0) + f(X_0)) \cdot (S_1(X_1) + f(X_1)) \cdot (S_2(X_2) + f(X_2)) \cdot (S_3(X_3) + f(X_3))$$

Kanoniczna forma iloczynowa

Każdą funkcję przełączającą f(X) można przedstawić jako kanoniczną formę iloczynową 0-makstermów:

$$f(X) = \prod_{k=0}^{2^{n}-1} S_{k}^{0}(X_{k}) = \prod (S_{k})$$

Zasada równoważności form kanonicznych

Formy kanoniczne: iloczynowa 1-mintermów i sumacyjna 0-makstermów danej funkcji przełączającej są sobie równoważne:

$$f(X) = \prod (s_k) = \sum (p_k)$$

Zachodzi przy tym:

$$f'(X) = \prod (p_k) = \sum (s_k)$$

Przykład dekompozycji funkcji przełączającej

X ₁	X ₂	$f(x_1,x_2)$
0	0	0
0	1	1
1	0	0
1	1	1

Równoważność form kanonicznych:

010010

$$f(X) = \sum (1,3) = \prod (0,2)$$

 $f'(X) = \prod (1,3) = \sum (0,2)$

Dekompozycja funkcji przełączającej

Dekompozycja do postaci sumacyjnej:

- f = (ABC) + ...
- z tablicy prawdy wyciągamy "1"
- wartościowanie pozytywowe

Dekompozycja do postaci iloczynowej:

- $f = (A+B+C) \cdot ...$
- z tablicy prawdy wyciągamy "0"
- wartościowanie negatywowe

Stany nieokreślone

Może zdarzyć się sytuacja, że funkcja przełączająca nie będzie zdefiniowana dla pewnych stanów wejściowych – są to tzw. stany nieokreślone d (*don't care*). Reguły postępowania:

- (1) Redukcja przeciwdziedziny funkcji przełączającej funkcja częściowa.
- (2) Rozszerzenie przeciwdziedziny funkcji przełączającej o stany nieokreślone d – funkcja niezupełna.

Stany nieokreślone

W zależności od wyboru postaci kanonicznej, stany nieokreślone d włączamy jako 1-mintermy lub 0-mak-stermy:

X ₁	X ₂	$f(x_1,x_2)$
0	0	d
0	1	1
1	0	0
1	1	1

1010010

$$f(X) = \sum (1,3,(0)) = \prod (2,(0))$$

Układ sterowania ogrzewaniem

Zaprojektować układ kombinacyjny sterujący ogrzewaniem w/g

podanego schematu:

iacyji	ly Ste	ując	y Ugi	20 W a		w/g
а	b	С	d	W ₁	W ₂	W_3
0	0	0	0	1	1	0
0	0	0	1	d	d	d
0	0	1	0	d	d	d
0	0	1	1	d	d	d
0	1	0	0	d	d	d
0	1	0	1	d	d	d
0	1	1	0	d	d	d
0	1	1	1	d	d	d
1	0	0	0	0	1	1
1	0	0	1	d	d	d
1	0	1	0	d	d	d
1	0	1	1	d	d	d
1	1	0	0	0	1	0
1	1	0	1	d	d	d
1	1	1	0	1	0	0
1	1	1	1	0	0	d

Układ sterowania ogrzewaniem

Postać funkcji logicznej dla poszczególnych przełączników:

Kanoniczna postać 1-mintermowa:

$$w_1(a,b,c,d) = a' \cdot b' \cdot c' \cdot d' + a \cdot b \cdot c' \cdot d' =$$

 $\sum (0,14 (1,2,3,4,5,6,7,9,10,11,13))$

$$w_2(a,b,c,d) = a' \cdot b' \cdot c' \cdot d' + a \cdot b' \cdot c' \cdot d' + a \cdot b \cdot c \cdot d' =$$

$$\sum (0,8,12 (1,2,3,4,5,6,7,9,10,11,13))$$

$$w_3(a,b,c,d) = a' \cdot b' \cdot c' \cdot d' + a \cdot b' \cdot c' \cdot d' + a \cdot b \cdot c \cdot d' =$$

 $\sum (8 (1,2,3,4,5,6,7,9,10,11,13,15))$

Układ sterowania ogrzewaniem

Postać funkcji logicznej dla poszczególnych przełączników:

Kanoniczna postać 0-makstermowa:

$$w_1(a,b,c,d) = (a'+b+c+d)\cdot(a'+b'+c'+d)\cdot(a'+b'+c'+d') =$$

 $\prod(8,12,15)(1,2,3,4,5,6,7,9,10,11,13))$

$$w_2(a,b,c,d) = (a'+b'+c+d)\cdot(a'+b'+c'+d') =$$

$$\prod (14,15 (1,2,3,4,5,6,7,9,10,11,13))$$

$$w_3(a,b,c,d) = (a+b+c+d)\cdot(a'+b+c+d)\cdot(a'+b'+c+d) = \Pi(0,12,14) (1,2,3,4,5,6,7,9,10,11,13,15)$$

Pełny sumator (Full Adder)

Full Adder Truth Table

CARRY IN	input B	input A	CARRY OUT	SUM digit
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1]	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Komparator 2-bitowy

A1	A0	B1	В0	Y1 (A > B)	Y2 (A = B)	Y3 (A < B)
0	0	0	0	0	1	0
0	0	0	1	0	0	1
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	1	0	0
0	1	0	1	0	1	0
0	1	1	0	0	0	1
0	1	1	1	0	0	1
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	0	1	0
1	0	1	1	0	0	1
1	1	0	0	1	0	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	0	1	0