Autovalores y autovectores

a) Definición 1.– Sea A una matriz cuadrada con elementos de un cuerpo conmutativo K, se llama autovector (vector propio) de A todo vector X de X^n tal que existe un escalar X de X verificando:

$$Ax = \lambda x$$

Definición 2.– "Si A es una matriz cuadrada con elementos de un cuerpo conmutativo K, se llama autovalor (valor propio) de A todo elemento de K tal que existe un vector x de Kⁿ verificando:

$$Ax = \lambda x$$

Al conjunto de todos los autovalores de A se le llama espectro de A y se escribe

$$\sigma(A)$$

Teorema 1. – Dada una matriz cuadrada A sobre K:

- A todo autovector de A corresponde un autovalor único, llamado autovalor asociado a x.
- A todo autovalor de f corresponde un subespacio vectorial $V(\lambda)$ de K^n , que está descrito por los vectores x de K^n que verifican $Ax = \lambda x$, se le llama el subespacio propio asociado a λ ".

b) Propiedades de los autovalores y de los autovectores de una matriz cuadrada. Polinomio característico y ecuación característica.

Teorema 2.– "Dado una matriz cuadrada A sobre K, para de K, las propiedades siguientes son equivalentes:

- 1.– λ es un autovalor de A.
- 2.- $A \lambda I_n$ no es invertible.
- $3.- \det(A \lambda I_n) = 0$

Definición 3.– Si A es una matriz cuadrada de orden n con elementos de un cuerpo conmutativo K, se llama polinomio característico de A al polinomio en λ de grado n

$$P_{A}(\lambda) = \det(A - \lambda I_{n})$$

Y se llama ecuación característica a la ecuación

$$\det(A - \lambda I_n) = 0$$

Teorema 3.– "Los autovalores de una matriz triangular son los elementos de la diagonal principal."

Teorema 4.– "Una matriz cuadrada A es invertible si y sólo si 0 no es autovalor de A."

Teorema 5.– "Si λ es autovalor de A y x un autovector asociado, entonces:

- a) Para n natural, λ^n es autovalor de A^n con autovector x.
- **b)** Si A es invertible, entonces es λ^{-1} autovalor de A^{-1} con autovector x
- c) Para n entero, λ^n es autovalor de A^n con autovector x.

Teorema 6.– Los subespacios vectoriales $V(\lambda_1)$ y $V(\lambda_2)$ asociados a dos autovalores distintos de una matriz cuadrada A, sólo tienen en común el vector nulo.

Teorema 7.– Siendo A una matriz cuadrada, que admite m autovalores distintos dos a dos, $\lambda_1, \lambda_2, \dots, \lambda_m$, el sistema de vectores $\{x_i\}$ (i = 1, ..., m), de autovalores no nulos asociados a λ_i es libre

Corolario. – "Toda matriz cuadrada de orden n tiene como máximo n autovalores distintos dos a dos"

Teorema 8.– "Si A es una matriz cuadrada de orden n, los autovalores de A son las raíces de su polinomio característico. Existen n como máximo. Si K es algebraicamente cerrado, A posee n autovalores distintos o confundidos"

Definición 4 (matrices semejantes). – Se dice que dos matrices A y B cuadradas de orden n son semejantes, si están asociadas a la misma aplicación lineal f pero respecto a dos bases diferentes. Es decir, existe una matriz P de cambio de base que verifica:

$$AP = PB$$
 equivalente a $P^{-1}AP = B$

Propiedades (inmediatas).-

- (1) La relación de semejanza de matrices es de equivalencia.
- (2) det(A) = det(B).
- (3) A es invertible si y sólo si B es invertible.
- (4) rg(A) = rg(B).
- (5) $P_A(\lambda) = P_B(\lambda)$.
- (6) $\sigma(A) = \sigma(B)$.

Definición 5 (matrices diagonalizables).— "Se dice que una matriz cuadrada A es diagonalizable si existe una matriz diagonal D, del mismo orden, emejante a A. Es decir, existe una matriz P de cambio de base que verifica:

$$AP = PD$$
 equivalente a $P^{-1}AP = D''$

Teorema 9.– "A es diagonalizable si y sólo si, A tiene n autovectores linealmente independientes, es decir, se puede formar una base del espacio vectorial de referencia formado por autovectores de A"

Demostración. – Sea A diagonalizable, es decir, existe una base respecto de la cual, la matriz A se puede escribir:

$$A = egin{bmatrix} \mu_1 & & & & & \\ & \ddots & & & & \\ & & \mu_i & & & \\ & & \ddots & & \\ & & & \mu_n \end{bmatrix}$$

con polinomio característico $p_A(x) = (\mu_1 - x) \cdots (\mu_i - x) \cdots (\mu_n - x)$, luego $\mu_i, i = 1, \ldots, n$ son los autovalores de A, y son las raíces de p, que están en el cuerpo K. Además, existen $a_i, i = 1, \ldots, n$, tales que:

$$Aa_i = \mu_i a_i, i = 1, \dots, n$$

o bien, en forma matricial:

$$\begin{bmatrix} Aa_1 & Aa_2 & \cdots & Aa_n \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \begin{bmatrix} \mu_1 & & & \\ & \mu_2 & & \\ & & \ddots & \\ & & & \mu_n \end{bmatrix}$$
 (*)

Es decir son n vectores propios de A (base, pues, de E)

Recíprocamente, supongamos que se puede hallar una base de E formada por vectores propios de A, es decir que se verifique

$$Aa_i = \mu_i a_i, i = 1, \dots, n$$

lo que es equivalente a la expresión (*) anterior, con matriz asociada diagonal.

Teorema 10. – "Sea A una matriz cuadrada de orden n. Si $\lambda_1, \lambda_2, ..., \lambda_k$ son k autovalores distintos ($k \le n$) de A, y B_i es una base del subespacio propio , entonces $B = B_1 \cup B_2 \cup \cdots \cup B_k$ es un sistema libre"

Teorema 11 **y definición** 6 .– "Si A es una matriz cuadrada de orden n y si su polinomio característico admite una raíz múltiple λ de orden k, se tiene $1 \le \dim V(\lambda) \le k$. El valor $\dim V(\lambda)$ recibe el nombre de multiplicidad geométrica del autovalor "

Demostración.– Supongamos que $\lambda \in K$ es una raíz del polinomio característico asociado, es decir $p_A(\lambda)=0$ y x un vector propio asociado ($Ax=\lambda x$). Sea $B=\left\{a_i\right\}_{i=1}^n$ una base del espacio vectorial de referencia E. Es decir: $x=\sum_{i=1}^n x_i a_i$ donde las \mathbf{x}_i son las coordenadas de x respecto de la base B.

Así que x_i serán las soluciones del sistema homogéneo:

$$(A - \lambda I_n) x = 0$$

con soluciones no triviales, es decir que:

$$r = rg(A - \lambda I_n) < n$$
 y $\dim V(\lambda) = n - r$

Como $V(\lambda) \neq \{0\}$, entonces $1 \leq \dim V(\lambda)$

Supongamos que $\dim V(\lambda)=h$ (multiplicidad geométrica); sea $\{a_1,\dots,a_h\}$ una base de $V(\lambda)$, que serán, por tanto, vectores propios asociados al valor propio λ .

Luego la matriz asociada a f respecto de la base será:

$$A = \begin{bmatrix} \lambda I_h & A' \\ 0 & A'' \end{bmatrix}$$

escrita por bloques, donde A' es de orden $h \times (n-h)$, y A'' es cuadrada de orden (n-h).

Luego el polinomio característico será:

$$p_{A}(x) = (\lambda - x)^{h} \det(A'' - xI_{n-h})$$

Luego
$$h \le k \implies \dim V(\lambda) \le k$$

Es decir la multiplicidad geométrica asociada a cada autovalor es menor o igual que la multiplicidad algebraica de ese autovalor.

Teorema 12 (teorema de la diagonalización). – "Los enunciados siguientes son equivalentes

- (1) Una matriz cuadrada A de orden n, es diagonalizable.
- (2) La unión B de las bases de los subespacios propios de A contiene n vectores.
- (3) Las multiplicidades algebraica y geométrica coinciden para cada autovalor, es decir:

$$m_{alg}(\lambda_i) = m_{geom}(\lambda_i)$$

Teorema 13.- "Si una matriz cuadrada de orden n sobre K, posee n autovalores distintos en K, A es diagonalizable".

Corolario. – "Siendo A una matriz cuadrada de orden n con elementos de K, si K es algebraicamente cerrado, para que A sea diagonalizable es suficiente que todas las raíces de su polinomio característico sean simples"