ESC201T : Introduction to Electronics

Lecture 13: Sinusoidal Steady State Analysis

B. Mazhari Dept. of EE, IIT Kanpur

Sinusoidal Signals are widely used In Electrical Systems

Any periodic signal can be expressed as sum of sinusoids

$$f(t) = \frac{4}{\pi} \sum_{1,3,5}^{\infty} \frac{1}{n} \sin(n \frac{2\pi t}{T})$$

Sum of 5 sinusoids

Sinusoids have interesting mathematical property that their derivatives and integrals are sinusoids too

$$\frac{d(Sin x)}{dx} = Cos x = Sin(90 - x)$$

$$i_c = C \frac{dv_c}{dt}$$

$$\int Sin \ x \ dx = -Cos \ x = Sin(x - 90)$$

$$v = L \frac{di}{dt}$$

So as a sinusoidal signal goes through a linear circuit, it remains a sinusoid

This makes analysis easier

Voltage everywhere in the circuit is sinusoidal

Transient and Forced Response

$$v_C(t) = V_S - V_S \times e^{-\frac{t}{RC}}$$

Steady-state/forced response

Transient response

Transient and Forced Response

Transient and Forced Response

Sinusoidal Steady-State

When the excitation is sinusoidal, the response (voltage or currents) in linear circuit will be sinusoidal as well. If input persists, the response persist and is called steady state response

$$V_S = 1 \times \cos(\omega t)$$
 $V_O = A_O(\omega) \times \cos(\omega t + \theta(\omega))$

 $A_O(\omega)$ and $\theta(\omega)$ determine the complete characteristics of the system

Sinusoidal Voltages and Currents

$$v(t) = V_M \times \cos(\omega t + \theta)$$

 V_m is the peak value

 ω is the angular frequency in radians per second

T is the period, where $f = \frac{1}{T}$ is the frequency

$$\omega = \frac{2\pi}{T}$$
, $\omega = 2\pi f$; θ is the phase angle

Example-1

$$5 \sin(4\pi t - 60^{\circ})$$

What is the amplitude, phase, angular frequency, time period, frequency?

$$v(t) = V_m \cos(\omega t + \theta)$$

$$\sin(z) = \cos(z - 90^\circ)$$

$$v(t) = 5 \cos(4\pi t - 60^{\circ} - 90^{\circ})$$

Amplitude = 5; Phase = -150°

Phase in radians: $360^{\circ} = 2 \pi$ $\theta = \frac{-150}{360} \times 2\pi = -2.618 \, Radians$

$$\omega = 4\pi r/s$$
 $\omega = \frac{2\pi}{T} = 4\pi \Rightarrow T = 0.5s$ $f = \frac{1}{T} = 2Hz$

Example-2

Find the phase difference between the two currents

$$i_1 = 4\sin(377t + 25^\circ)$$
 $i_2 = -5\cos(377t - 40^\circ)$ $x(t) = x_m \cos(\omega t + \theta)$

$$i_{1} = 4\cos(377t + 25^{\circ} - 90^{\circ})$$

$$\theta_{1} = -65^{\circ}$$

$$\sin(\omega t \pm 180^{\circ}) = -\sin \omega t$$

$$i_{2} = 5\cos(377t - 40^{\circ} + 180^{\circ})$$

$$\theta_{2} = 140^{\circ}$$

$$\cos(\omega t \pm 180^{\circ}) = -\cos \omega t$$

$$\sin(\omega t \pm 90^{\circ}) = \pm \cos \omega t$$

$$\cos(\omega t \pm 90^{\circ}) = \mp \sin \omega t$$

$$\theta_1 - \theta_2 = -205^\circ$$

$$\theta_1 - \theta_2 = -205 + 180 = -25^{\circ}$$

Linear Systems

$$x(t) = a_1 x_1(t) + a_2 x_2(t)$$

$$y(t) = a_1 y_1(t) + a_2 y_2(t)$$

$$x_1(t) = A\cos(\omega t + \theta)$$

$$x_2(t) = Asin(\omega t + \theta)$$

Linear System

$$y_2(t)$$

$$x(t) = x_1(t) + jx_2(t)$$

$$j = \sqrt{-1}$$
$$x(t) = Ae^{j\theta} \times e^{j\omega t}$$

$$e^{j\omega t} = \cos(\omega t) + j\sin(\omega t)$$

$$y(t) = y_1(t) + jy_2(t)$$

 $y_1(t)$

$$y_1(t) = Re(y(t))$$

$$y_2(t) = Im(y(t))$$

$$a_n \frac{d^n y}{dt^n} + a_{n-1} \frac{d^{n-1} y}{dt^{n-1}} + \dots + a_o y = Ae^{j\theta} \times e^{j\omega t}$$

Solution: $y(t) = Yo \times e^{j\omega t}$

$$a_n(j\omega)^n Y_O + a_{n-1}(j\omega)^{n-1} Y_O + \dots + a_o Y_O = A \times e^{j\theta}$$

Solve an algebraic equation in complex variables

 $A \angle \theta$

Different Representations of a complex Number

Rectangular form: Z = 4 + j3

Polar form:
$$Z = \sqrt{4^2 + 3^2} \angle \tan^{-1} \left(\frac{3}{4}\right) = 5 \angle 36.87^\circ$$

Exponential form: $Z = 5 \times e^{j36.87}$

$$Z1 = 4 \angle 30^{\circ}$$
 $Z2 = 6 \angle 60^{\circ}$

$$Z2 \times Z1 = 6 \times 4 \angle 60^{\circ} + 30^{\circ} = 24 \angle 90^{\circ}$$

$$\frac{Z2}{Z1} = \frac{6}{4} \angle 60^{\circ} - 30^{\circ} = 1.5 \angle 30^{\circ}$$

Example-1

$$v_S(t) = 5 \times \cos(314.16t + 30^\circ)$$

$$v_R(t) = 2.5 \times \cos(314.16t - 30^\circ)$$

$$v_L(t) = v_S(t) - v_R(t)$$

$$V_S = 5 \times e^{j30} \qquad V_R = 2.5 \times e^{-j3}$$

$$V_L = V_S - V_R$$

$$V_S - V_R = 2.165 + j3.75 = 4.33 \times e^{j60}$$

$$v_L(t) = Re(4.33 \times e^{j60} \times e^{j\omega t})$$

$$v_L(t) = 4.33 \times \cos(314.16t + 60^\circ)$$

$$v_S(t) = 5 \times \cos(314.16t + 30^\circ)$$

$$v_R(t) = 2.5 \times \cos(314.16t - 30^\circ)$$

$$v_S(t) - v_R(t) = ?$$

Strategy

$$V_S = 2.16 - j1.25$$

$$V_R = 4.33 + j2.5$$

$$V_S - V_R = 4.33 + j2.5 - 2.16 + j1.25$$

= 2.165 + j3.75

Transform complex variable Back to sinusoid

$$v_L(t) = Re(4.33 \times e^{j60} \times e^{j\omega t})$$

 $v_L(t) = 4.33 \times \cos(314.16t + 60^\circ)$

$$v(t) = V_m \cos(\omega t + \theta)$$

$$v(t) = \operatorname{Re}(V_m \times e^{j(\omega t + \theta)}) \qquad \qquad \operatorname{Re}(V_m \angle \omega t + \theta)$$

$$v(t) = V_m \cos(\omega t + \theta)$$

$$V_m \angle \theta$$

Phasor

$$V_M \angle \theta \rightarrow V_m \times e^{j\theta}$$

Phasor Analysis

$$v(t) = 3 \cos(\omega t + 45) \longrightarrow 3 \angle 45 \longrightarrow 3 \cos(45) + j3\sin(45)$$

$$v(t) = 5 \cos(\omega t - 60)$$
 5 $\angle -60$