Register Number					

Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam – 603 110

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Department of Computer Science and Engineering

Continuous Assessment Test – I Question Paper

Time: 90 minutes (8.30-10.00 AM)	A	nswer All	Maximum	: 50 Marks		
Academic Year	2021-2022	Batch	2019-2023	Date	01.04.2022	FN
Subject Code & Name	UCS1603 & INT LEARNING	ΓRODUC'	NE	Regulation:	2018	
Degree & Branch	B.E. & CSE		Semester	VI		

$Part - A (6 \times 2 = 12 Marks)$

<k1></k1>	List any four sub domains of Artificial Intelligence. Ans: Machine Reasoning, Robotics, Machine Learning, Deep Learning								
	2. Compare the characteristics of Human brain with ANN?								
		Biological Neuron Artificial Neuron							
		Dendrites	Input						
<k2></k2>		Cell Nucleus(Soma)	Node		<co2></co2>				
		Axon	Output						
		Synapse	Interconnections						
<k3></k3>	3. A ROC curve is plotted for a heart disease prediction problem. It is observed that on the plot area, we get a point instead of a curve. How will you solve this problem to get a curve? Ans: Divide the dataset into 3 sets: training, testing and validation. Perform multi fold cross validation to get the curve.								
<k3></k3>	4. "Demand for a commodity goes down when its price rises". Identify the nature of the covariance value with proper justification. Ans: If two variables are independent, then the covariance is 0 (the variables are then known as uncorrelated), while if they both increase and decrease at the same time, then the covariance is positive, and if one goes up while the other goes down then								

	5. Define Hebb's rule.	
<k1></k1>	Hebb's rule says that the changes in the strength of synaptic connections are	<co2></co2>
	proportional to the correlation in the firing of the two connecting neurons.	
	6. Write the formula for MCC and compute it for the given inputs:	
	Actual = $[1,1,1,1,1,1,1,1,1,0,0,0,0,0]$	
<k3></k3>	Predicted = [1,1,1,1,1,1,1,1,0,0,1,1,1,0,0]	<co1></co1>
	Ans: 0.2311	

$Part - B (3 \times 6 = 18 Marks)$

	on their age, in outcome for the	ncome, stude e given X. E Income = lov	ent and cre xplain the v, Student	edit rating. Apply t	y a computer or not be he Baye's rule to find that into probabilities. = excellent)				
	age	income	student	credit_rating	buys_computer				
	<=30	high	no	fair	no				
	<=30	high	no	excellent	no				
	3040	high	no	fair	yes				
	>40	medium	no	fair	yes				
<k3></k3>	>40	low	yes	fair	yes		<co1></co1>		
	>40	low	yes	excellent	no				
	3140	low	yes	excellent	yes				
	<=30	medium	no	fair	no				
	<=30	low	yes	fair	yes				
	>40	medium	yes	fair	yes				
	<=30	medium	yes	excellent	yes				
	3140	medium	no	excellent	yes				
	3140 high yes fair yes								
	>40 medium no excellent no								
	Ans: Basics of turning data into probabilities explanation: 2 mark								

Problem: 4 mark

Bayes Rule _ O Class conditional of
P(celx) = P(x; c;)P(ci) > Prior.P
Posterios p P(Xj)
P(cp) IT P(x, =ax ci).
Bissen: X = Cooper into
Bitten: X = (age 740, income = low, student = no, credit sating=excellent) P(buye competer = yes x)
= P(BC=yes) X P(Y40142) X P(low) (yes) > D() + 1 + 1
= P(BC = yes) x P(>401 yes) x P(low) yes) x P(not student yes) xP(excellent yes)
14 9 9 9 9 9 0.008
() (bc-10[N)
= P(BC=no)xP(>40(no)xP(low)no)xP(notshulent 120) xP(excellent 120)
$= \frac{5}{14} \times \frac{2}{5} \times \frac{1}{5} \times \frac{4}{5} \times \frac{3}{5} = 0.014$
14 5 5 5 5 5
Henre, the outcome for given X is Helphe does not ept
to buy computer since P(B(=holx) > P(B(=yeilx)
[: 0.014 70.008]

limitations.

Ans: Describe MPNNN

- (1) a set of weighted inputs w_i that correspond to the synapses
- (2) an adder that sums the input signals (equivalent to the membrane of the cell that collects electrical charge)
- (3) an activation function (initially a threshold f whether the neuron fires ('spikes') for the current inputs a threshold function) that decides

<K2>

<CO2>

Limitations:

- Linear summation (non linear)
- Synchronous with clock (asynch)
- Single output (spike train of output response)
- Neuron has to produce graded output in continuous way
- Changing weights between 0 and 1 (excitatory or inhibitory connections)
- Feedback loop is not available (exceptions)(available)
- 9. Make use of the following confusion matrix to compute the accuracy, sensitivity and specificity for each class of the given multi class problem and find their overall percentage.

<K3>

Actual	Predicted					
Actual	C1	C2	C3			
C1	10	5	5			
C2	2	15	3			
С3	1	1	18			

<CO1>

Ans:			
Class	Accuracy	Sensitivity	Specificity
1	78	0.5	0.93
2	82	0.75	0.85
3	83	0.9	0.8
Average	81%	72%	86%

$Part - C (2 \times 10 = 20 Marks)$

<k2></k2>	10. Explain five types of learning with appropriate diagram and state their uniqueness. List out any two applications in each type. 1. Supervised – sales forecasting, image classification 2. Unsupervised – recommendation system, anomaly detection 3. Semi supervised – speech analysis, internet content classification 4. Evolutionary – medical imaging, scheduling 5. Reinforcement - robot, game AI (OR)							<co1></co1>	
	11. Explain the importance of the curse of dimensionality and ROC curve.								
<k2></k2>	Curse o	f dime	nsion	ality –	6 mark	as.			<co1></co1>
	ROC cu	ırve -4	mark	KS					
	12. Apply the perceptron learning algorithm for the given OR network and estimate the updated weights and output of each sample for two epochs.Consider the following inputs X₁, X₂ and output T for the OR network with learning								
	$ \begin{aligned} \text{rate} &= 0.1, \text{ theta} = 1.0, \ W_0 = W_1 = W_2 = \text{bias} = 0.5. \\ \text{Output} &= 1 \text{ if } y_j >= \text{theta} \\ &-1 \text{ if } y_j < \text{theta} \end{aligned} $ $ \begin{aligned} \text{Note: } y_j &= \text{output of weighted liner function and output} = g(y_j) \end{aligned} $								
		X_1	X_2	Т	\mathbf{W}_0	\mathbf{W}_1	\mathbf{W}_2		
<k3></k3>			,		poch 1	0.5	0.5		<co2></co2>
		1	-1	1	0.5	0.5	0.5		
		-1	1	1	0.7	0.7	0.5		
		-1	-1	-1	0.7	0.5	0.5		
	Epoch 2								
		1	1	1	0.7	0.5	0.5		
		1	-1	1	0.8	0.7	0.3		
		-1	1	1	0.9	0.5	0.5		
		-1	-1	-1	0.9	0.5	0.5		

1	1	`	D	1
l	L	J	ĸ	.)

13. Explain the perceptron learning algorithm with structure and apply to model the OR network. Consider the following inputs X_1, X_2 and output T for the OR network. Ans:

Explanation of perceptron with diagram -4 marks Problem -6 marks

<K3>

X_1	X_2	Т	\mathbf{W}_0	\mathbf{W}_1	\mathbf{W}_2				
Epoch 1									
0	0	0	-0.03	-0.02	0.02				
0	1	1	0.22	-0.02	0.02				
1	0	1	-0.03	-0.02	0.27				
1	1	1	-0.03	-0.02	0.27				

Assume: $W_0 = -0.03$, $W_1 = -0.02$, $W_2 = 0.02$, bias= -1, learning rate = 0.25, theta = 0 Estimate the updated weights and the error of each sample for one epoch.

Prepared By	Reviewed By	Approved By	
Course Coordinator	PAC Team	HOD	

<CO2>