

Team 16.6

TOXIC COMMENTS CLASSIFICATION SYSTEM

2 0 2 5

Why is it important?

Emotional Reaction to Toxicity

10

Conversations without Toxicity 83.5%

Distribution of Conversations with and without Toxicity

Sadness, Anger, or Anxiety: Twitter Users' Emotional Responses to Toxicity in Public Conversations (Research)

Project idea

In the modern era of social media, toxicity in online comments poses a significant challenge, creating a negative atmosphere for communication. From abuse to insults, toxic behavior discourages the free exchange of thoughts and ideas among users.

What problem do we solve?

(1

2

3

10

This program uses machine learning to detect and classify toxic language in online comments, helping to create a safer and more respectful online space.

Target audience

Functionality and technology

- 2
- 3
- 4
- 5
- (6
- 7
- 8
- 9
- 10

- Python
- PyTorch
- BERT
- Kaggle
- Streamlit
- Docker

Toxic Comment Classification Challenge dataset

Datasetafter data oversempling

7

Machine learning

Model Metrics Comparison

Recall

0.96

5

6

8

10

For train the models, we used tools:

- Loss Function: Binary Cross-Entropy with Logits
- Hyperparameter Tuning with Optuna
- AdamW opimizator
- CUDA(GPU compute) and Cloud computing use Kaggle

Application user interface

Interface elements

- Ability to choose between three models
- Ability to input text from the keyboard
- Ability to upload a text file in *.txt format
- Visualization of data distribution by category

3

5

Developed by Team 16.6

Serhii Trush

Team Lead

Olena Mishchenko

Data Scientist

Oleksandr Kovalenko

SCRUM Master, Backend Developer Polina Mamchur

Creative Director,
SCRUM Master

Ivan Shkvyr

Backend Developer

Oleksii Yeromenko

Frontend Developer

Toxic Comment Classification system

