QUÈ HEM FET FINS ARA?

El darrer que hem treballat és la inducció matemática i teoria de conjunts fins a intersecció.

CLASSE D'AVUI 26/10/2020

Continuem amb la teoria de conjunts.

EX.: La Delegació d'Estudiants de la FIB (DEFIB) ha organitzat un concurs per fer la seva nova pàgina web i algunes altres webs que porten ells mateixos. Hi ha dues modalitats de participació: a títol individual i en equip. La quantia del premis és diferent per les dues modalitats i el que es demana a la pàgina web també és diferent. Podeu consultar tots els detalls a les bases del concurs. Finalment ahir va acabar el termini per presentar propostes i s'han presentat: a títol individual els estudiants Jeremy (J), Walter (W), Gemma (G) i Maria (M); en la modalitat d'equips s'han presentat J i W formant un grup, M formant ell sol un altre grup (recordeu que per grups no es demana el mateix ni tampoc el premi és el mateix) i Roger (R) formant ell sol un altre grup.

a)Anomenem A al conjunt format per les propostes (té 7 propostes entre individuals i en equip; les individuals les entendrem com un element d'aquest conjunt A; les d'equip les entendrem com un conjunt format pels membres que formen l'equip). Digues el conjunt A per extensió.

b)Digues si són certes les afirmacions següents: $J \in A$ (*), $W \in A$, $\{W\} \in A$, $M \in A$, $\{M\} \in A$, $\{W\} \subseteq A$ (*), $\{M\} \subseteq A$, $\{J,W\} \in A$ (*), $\{J,W\} \subseteq A$ (*), $\{J,W,G\} \in A$, $\{J,W,G\} \subseteq A$, $J \in J$, $P \subseteq A$, $P \in A$,

```
a)A = \{J, W, G, M, \{J, W\}, \{M\}, \{R\}\}\b)
```

- $J \in A$ cert ja que J està a la llista d'elements amb la qual queda definit A
- $W \in A$ cert
- $\{W\} \in A$ fals
- $M \in A$ cert
- $\{M\} \in A$ cert
- $\{W\}\subseteq A$ cert perquè l'únic element de $\{W\}$ és W i per justificar la inclusió s'ha de veure que pertany a A i és cert que $W\in A$ perquè està a la llista de definició de A
- $\{M\} \subseteq A$ cert
- $\{J,W\} \in A$ cert ja que $\{J,W\}$ està a la llista d'elements amb la qual queda definit A; per tant en aquest cas podem dir que $\{J,W\}$ és un conjunt i un element a la vegada
- $\{J,W\}\subseteq A$ cert perquè el conjunt $\{J,W\}$ té dos elements, J i W, i per demostrar la inclusió ens hem de preguntar si J pertany a A i que W pertany a A; i això és cert: $J\in A$ i $W\in A$ (estan a la llista de definició de A) per tant queda justificat que $\{J,W\}\subseteq A$
- $\{J, W, G\} \in A$ fals

- $\{J, W, G\} \subseteq A$ cert
- $J \in J$ o no te sentit en el nostre problema o és fals
- $P \subseteq A$ o no te sentit en el nostre problema o és fals
- $P \in A$ fals
- $R \subseteq A$ o no te sentit en el nostre problema o és fals
- $R \in A$ fals

EX.: (10) Expresseu mitjançant quantificadors $i \in el$ fet següent: $A = \emptyset$.

La primera possibilitat és dir per la definició del conjunt buit que és "per a tot x: $x \notin A$ " o també "per a tot $x \in A$: $x \neq x$ ". La manera més formal és aquesta darrera o si es prefereix "per a tot x si $x \in A$ aleshores $x \neq x$ " ja que és aplicar directament la definició del conjunt buit $\emptyset = \{x | x \neq x\}$.

EX.: (11) Idem $\neg (A \subseteq B)$.

 $\neg (A \subseteq B)$ és el mateix que dir " \neg (per a tot x si $x \in A \Rightarrow x \in B$)" o sigui "existeix un x tal que $x \in A$ i $x \notin B$ ".

La tercera operació important és la diferència de conjunts:

DEF.: Donats dos conjunts A, B anomenem conjunt diferència de A i B al conjunt $A - B = \{x | x \in A \land x \notin B\}$ (molt sovint també s'escriu com a $A \backslash B$).

EX.: Siguin $A = \{1, 2, 3, 4\}$, $B = \{1, 2, 5, 6\}$, $C = \{\{1\}, 2, 3\}$, $D = \{\{1\}, \{2, 3\}, 5, 6\}$. Calculeu A - B, B - A, A - C, $B - \emptyset$, $\emptyset - B$, A - D, D - B.

- \bullet $A B = \{3,4\},$
- $B A = \{5, 6\},\$
- \bullet $A-C=\{1,4\},$
- $B \emptyset = \{1, 2, 5, 6\},\$
- \bullet $\varnothing B = \varnothing$,
- \bullet $A-D=\{1,2,3,4\},$
- $D-B = \{\{1\}, \{2,3\}\}.$

Les principals propietats que satisfà aquesta operació són:

PROP.: Siguin *A*, *B*, *C* conjunts. Aleshores

- **1**. $A A = \emptyset$
- **2**. $A \emptyset = A$
- **3**. $\emptyset A = \emptyset$
- **4.** $A B \subseteq A$
- **5**. $(A-B)\cap B=\emptyset$
- **6**. $A \subseteq B \Leftrightarrow A B = \emptyset$
- **7**. $C \subseteq A B \Leftrightarrow C \subseteq A \ \mathsf{i} \ C \cap B = \emptyset$

DEM.: Demostrem 1: per demostrar $A - A = \emptyset$ s'ha de demostrar dues inclusions

- $A A \supseteq \emptyset$ OK (sempre!!)
- $A-A\subseteq\varnothing$ hem de veure que si tenim $x\in A-A$ aleshores tinedrem que $x\in\varnothing$; o sigui hem de demostrar que arribem a una contradicció (perquè el buit no té elements). Sigui un $x\in A-A\Rightarrow x\in A$ i $x\notin A$ cosa impossible.

Demostrem 3: com a l'anterior:

- $\varnothing A \supseteq \varnothing$ OK
- $\varnothing A \subseteq \varnothing$ hem de veure que si tenim $x \in \varnothing A$ hem de veure que $x \in \varnothing$; o sigui hem de demostrar que arribem a una contradicció (perquè el buit no té elements). Sigui un $x \in \varnothing A \Rightarrow x \in \varnothing$ i $x \notin A \Rightarrow x \neq x$ i $x \notin A \Rightarrow x \neq x$ cosa impossible.

Demostrem 7: cal demostrar una equivalència $C \subseteq A - B \Leftrightarrow C \subseteq A$ i $C \cap B = \emptyset$ per tant dues implicacions,

- \Rightarrow : suposem que $C \subseteq A B$ i volem demostrar que $C \subseteq ???$ A i $C \cap B = ???$
 - $C \subseteq^{???} A$: sigui un $x \in C$ i vull demostrar que $x \in^{???} A$; i això és cert perquè si $x \in C \subseteq A B \Rightarrow x \in A$ i $x \notin B \Rightarrow x \in A$ com volia demostrar
 - $C \cap B = ???$ Ø: hi ha una inclusió que sempre és certa: $C \cap B \supseteq \emptyset$; per tant només queda demostrar l'altra inclusió $C \cap B \subseteq ???$ Ø per tant només caldrà suposar que tinc un $x \in C \cap B$ i arribar a una contradicció: $x \in C \cap B \Rightarrow x \in C$ i $x \in B$ i com que sé que $C \subseteq A B$ tindré que $x \in A$ i $x \notin B$ i $x \in B$ cosa impossible.
- \Leftarrow : suposem que $C \subseteq A$ i $C \cap B = \emptyset$ i vull demostrar que $C \subseteq ???$ A B, o sigui donat un $x \in C$ cal veure que serà $x \in ???$ A B; en efecte si $x \in C \subseteq A$ per tant $x \in A$; ara cal veure que també $x \notin B$; supossem per un moment que $x \in B$, com que $x \in A$ aleshores $x \in C \cap B = \emptyset$ cosa impossible, per tant ha de ser que $x \notin B$.

També tenim les següents propietats importants en les quals intervenen més d'una operació:

PROP.: Siguin A, B, C conjunts. Aleshores

- **1**. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$, $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- **2**. $A \cap (A \cup B) = A, A \cup (A \cap B) = A$
- **3**. $A (B \cup C) = (A B) \cap (A C)$
- **4**. $A \cup B = (A \cap B) \cup (A B) \cup (B A)$ i la unió és disjunta (els tres

subconjunts són disjunts dos a dos)

DEM.: Demostrem 1: surt de la distributiva de la \land respecte de la \lor i de la \lor respecte de la \land

Sigui
$$x \in A \cap (B \cup C) \Leftrightarrow x \in A \mid x \in B \cup C \Leftrightarrow x \in A \mid (x \in B \circ x \in C) \Leftrightarrow (x \in A \mid x \in B) \circ (x \in A \mid x \in C) \Leftrightarrow (x \in A \cap B) \circ (x \in A \cap C) \Leftrightarrow x \in (A \cap B) \cup (A \cap C)$$

Com que hem fet una justificació utilitzant només ⇔ llavors tinc demostrades les dues inclusions (és el principi d'extensionalitat).

Demostrem 3: Utilitzarem les lleis de De Morgan. Sigui x:

- $x \in A (B \cup C) \Leftrightarrow x \in A \mid x \notin B \cup C \Leftrightarrow x \in A \mid \text{no } x \in B \cup C \Leftrightarrow x \in A \mid \text{no}$ ($x \in B \circ x \in C$) \Leftrightarrow $\Leftrightarrow x \in A \mid (x \notin B \mid x \notin C)$
- $x \in (A B) \cap (A C) \Leftrightarrow x \in (A B) \mid x \in (A C) \Leftrightarrow x \in A \mid x \notin B \mid x \in A \mid x \notin C$

Com que totes dues expressions són equivalents, tenim provada la igualtat.

EX.: Demostreu que $(A - B) \cup (B - A) = A \operatorname{sii} B = \emptyset$. Siguin A, B conjunts:

- \Leftarrow : suposem que $B=\emptyset$ llavors veure aquesta igualtat és molt fàcil perquè $(A-\emptyset)\cup(\emptyset-A)=A\cup\emptyset=A$
- \Rightarrow : suposem que $(A B) \cup (B A) = A$ i a partir d'aquí hauríem de demostrar que B = ??? \varnothing ; fem el típic raonament per reducció a l'absurd: suposem per un moment que B tingués un element, o sigui tenim un $x \in B$ fent un dibuix de la situació indueix a pensar que podem distingir dos casos (i en tots dos arribarem a contradicció, per tant serà cert $B = \varnothing$):
 - $x \in A$ llavors per la hipòtesi tindrem que en ser $x \in B$ i $x \in A$ aleshores $x \notin A B$ i $x \notin B A$ i per tant $x \notin (A B) \cup (B A) = A \Rightarrow x \notin A$ en contradicció amb $x \in A$
 - $x \notin A$ llavors en ser $x \in B$ i $x \notin A \Rightarrow x \in B A \Rightarrow x \in (A B) \cup (B A) = A \Rightarrow x \in A$ en contradicció amb $x \notin A$

Recordeu que en tots aquests exemples i demostracions val la pena fer-se un dibuix al costat.

La quarta operació que definirem és el complementari:

DEF.: Considerem un conjunt marc o univers U (de vegades es diu Ω) i un subconjunt A dintre seu. Definirem el conjunt complementari de A de la manera següent $A^C = U - A = \{x \in U | x \notin A\}$

EX.: En el univers $U = \{1,2,3,4,\{1,2\},\{4\},5\}$ considerem $A = \{1,2,3,4\}$, $B = \{5,\{4\}\}, C = \{\{1,2\},1,2\}$. Calculeu $A^C, B^C, (A^C)^C, C \cap C^C, B \cap B^C, U^C, \varnothing^C$.

- $A^C = \{\{1,2\}, \{4\}, 5\}$
- $\bullet \quad B^C = \{1, 2, 3, 4, \{1, 2\}\}$
- $(A^C)^C = \{1, 2, 3, 4\} = A$
- $C \cap C^C = \emptyset$
- $B \cap B^C = \emptyset$
- $\bullet \quad U^C = \emptyset$
- \bullet $\varnothing^C = U$

Tenim les propietats següents del complementari:

PROP.: Siguin $A, B, C \subseteq U$ subconjunts d'un univers U. Aleshores

1.
$$(A^C)^C = A$$

2.
$$\varnothing^C = U$$
, $U^C = \varnothing$

3.
$$A \cap A^C = \emptyset$$
, $A \cup A^C = U$

4. (Lleis de De Morgan)
$$(A \cup B)^C = A^C \cap B^C$$
, $(A \cap B)^C = A^C \cup B^C$

5.
$$A - B = A \cap B^C$$

6.
$$A \subseteq B \Leftrightarrow B^C \subseteq A^C \Leftrightarrow A \cap B^C = \emptyset \Leftrightarrow A^C \cup B = U$$

7.
$$A \subseteq B^C \Leftrightarrow B \subseteq A^C \Leftrightarrow A \cap B = \emptyset \Leftrightarrow A^C \cup B^C = U$$

8.
$$A^C \subseteq B \Leftrightarrow B^C \subseteq A \Leftrightarrow A^C \cap B^C = \emptyset \Leftrightarrow A \cup B = U$$

9.
$$B = A^C \Leftrightarrow A \cap B = \emptyset, A \cup B = U$$

DEM.: Demostrem 2: per demostrar $U^C = ???? \varnothing$ mirem la doble inclusió; una es verifica sempre: $U^C \supseteq \varnothing$; l'altra ($U^C \subseteq \varnothing$) és fàcil de justificar perquè si $x \in U^C$ només caldrà arribar a una contradicció: $x \in U^C \Rightarrow x \in U$ i $x \notin U$ per tant és una contradicció, o sigui $x \in \varnothing$

Demostrem 4: $x \in (A \cup B)^C \Leftrightarrow x \notin A \cup B \Leftrightarrow \mathsf{no}(x \in A \circ x \in B) \Leftrightarrow x \notin A \mathsf{i}$ $x \notin B \Leftrightarrow x \in A^C \mathsf{i} x \in B^C$

 $\Leftrightarrow x \in A^C \cap B^C$. Com que estan connectats amb una equivalència, pel principi d'extensionalitat surt que són iguals els dos conjunts. I l'altre igual.

La família dels subconjunts és un conjunt important. El nom d'aquesta família de

subconjunts és: les parts d'un conjunt (o conjunt potència) de A:

DEF.: Per un conjunt *A* anomenem el conjunt de les parts d'aquest conjunt:

$$\mathcal{P}(A) = \{B|B \subseteq A\}$$

També podem dir equivalentment que $B \in \mathcal{P}(A) \Leftrightarrow B \subseteq A$.

EX.: Calculeu $\mathcal{P}(\emptyset)$, $\mathcal{P}(\{1\})$, $\mathcal{P}(\{1,2\})$, $\mathcal{P}(\{1,2,3\})$, $\mathcal{P}(\{1,2,3,4\})$.

- $\mathcal{P}(\emptyset) = \{\emptyset\}$
- $\bullet \quad \mathcal{P}(\{1\}) = \{\emptyset, \{1\}\}$
- $P(\{1,2\}) = \{\emptyset,\{1\},\{2\},\{1,2\}\}$
- $\bullet \quad \mathcal{P}(\{1,2,3\}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$
- $\mathcal{P}(\{1,2,3,4\}) = \{\emptyset,\{1\},\{2\},\{3\},\{4\},\{1,2\},\{1,3\},\{1,4\}, \{2,3\},\{2,4\},\{3,4\},\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\},\{1,2,3,4\}\}$

Un concepte definit pels conjunts és el seu cardinal:

DEF.: Per un conjunt finit (no hem definit què vol dir) A anomenem cardinal d'A, i l'escriurem |A|, al seu número d'elements.

EX.: Utilitzant l'exemple anterior digueu quant valen $|\emptyset|$, $|\mathcal{P}(\emptyset)|$, $|\{1\}|$, $|\mathcal{P}(\{1\})|$, $|\{1,2\}|$, $|\mathcal{P}(\{1,2\})|$, $|\{1,2,3\}|$, $|\mathcal{P}(\{1,2,3\})|$, $|\{1,2,3,4\}|$, $|\mathcal{P}(\{1,2,3,4\})|$. Si |A| = n, llavors quin és el $|\mathcal{P}(A)|$?

$$|\varnothing| = 0$$
, $|\mathcal{P}(\varnothing)| = 1$, $|\{1\}| = 1$, $|\mathcal{P}(\{1\})| = 2$, $|\{1,2\}| = 2$, $|\mathcal{P}(\{1,2\})| = 4$, $|\{1,2,3\}| = 3$, $|\mathcal{P}(\{1,2,3\})| = 8$, $|\{1,2,3,4\}| = 4$, $|\mathcal{P}(\{1,2,3,4\})| = 16$. S'observa que $|\mathcal{P}(A)| = 2^n$.

PROP.: Sigui *A* un conjunt. Aleshores:

- **1**. $\emptyset \in \mathcal{P}(A)$
- **2**. $A \in P(A)$
- **3**. $|\mathcal{P}(A)| = 2^{|A|}$

DEM.: (41) Demostrem 1: és directa perquè per definició això vol dir que $\emptyset \subseteq A$. Demostrem 2: també és directa perquè per definició això vol dir que $A \subseteq A$.

EX.: (42) Demostreu que $\{a\} \in \mathcal{P}(A) \Leftrightarrow a \in A$. Sigui un a, A:

- \Rightarrow : suposem que $\{a\} \in \mathcal{P}(A)$, o sigui $\{a\} \subseteq A$ per tant com que $a \in \{a\}$ llavors podem dir que $a \in A$.
- \Leftarrow : suposem $a \in A$ i haig de demostrar que $\{a\} \in ???$ $\mathcal{P}(A)$ que vol dir que $\{a\} \subseteq A$ i per demostrar això és molt fàcil: els elements de $\{a\}$ pertanyen a A ja que sabem que $a \in A$ (a és l'únic element que té $\{a\}$).