FIGURE 1

TGCAGACTAAACCAGTCATTACTTGTTTCAAGAGCGTTCTGCTAATCTACACTTTTATTTTC TGGATCACTGGCGTTATCCTTCTTGCAGTTGGCATTTGGGGCAAGGTGAGCCTGGAGAATTA CTTTTCTCTTTTAAATGAGAAGGCCACCAATGTCCCCTTCGTGCTCATTGCTACTGGTACCG TCATTATTCTTTTGGGCACCTTTGGTTGTTTTGCTACCTGCCGAGCTTCTGCATGGATGCTA AAACTGTATGCAATGTTTCTGACTCTCGTTTTTTTTGGTCGAACTGGTCGCTGCCATCGTAGG ATTTGTTTTCAGACATGAGATTAAGAACAGCTTTAAGAATAATTATGAGAAGGCTTTGAAGC AGTATAACTCTACAGGAGATTATAGAAGCCATGCAGTAGACAAGATCCAAAATACGTTGCAT TGTTGTGGTGTCACCGATTATAGAGATTGGACAGATACTAATTATTACTCAGAAAAAGGATT TCCTAAGAGTTGCTGTAAACTTGAAGATTGTACTCCACAGAGAGATGCAGACAAAGTAAACA ATGAAGGTTGTTTTATAAAGGTGATGACCATTATAGAGTCAGAAATGGGAGTCGTTGCAGGA ATTTCCTTTGGAGTTGCTTCCTTCCAACTGATTGGAATCTTTCTCGCCTACTGCCWCTCTCG TGCCATAACAAATAACCAGTATGAGATAGTGTAACCCAATGTATCTGTGGGCCTATTCCTCT CTACCTTTAAGGACATTTAGGGTCCCCCCTGTGAATTAGAAAGTTGCTTGGCTGGAGAACTG GTAGACCTAAAACTACACCAATAGGCTGATTCAATCAAGATCCGTGCTCGCAGTGGGCTGAT TCAATCAAGATGTATGTTTGCTATGTTCTAAGTCCACCTTCTATCCCATTCATGTTAGATCG TTGAAACCCTGTATCCCTCTGAAACACTGGAAGAGCTAGTAAATTGTAAATGAAGT

FIGURE 2

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA19902

><subunit 1 of 1, 245 aa, 1 stop, 1 unknown

><MW: -1, pI: 8.36, NX(S/T): 1

MASPSRRLQTKPVITCFKSVLLIYTFIFWITGVILLAVGIWGKVSLENYFSLLNEKATNVPF VLIATGTVIILLGTFGCFATCRASAWMLKLYAMFLTLVFLVELVAAIVGFVFRHEIKNSFKN NYEKALKQYNSTGDYRSHAVDKIQNTLHCCGVTDYRDWTDTNYYSEKGFPKSCCKLEDCTPQ RDADKVNNEGCFIKVMTIIESEMGVVAGISFGVACFQLIGIFLAYCXSRAITNNQYEIV

Important features of the protein:

Signal peptide:

amino acids 1-42

Transmembrane domains:

amino acids 19-42, 61-83, 92-114, 209-230.

N-glycosylation site.

amino acids 134-138

Tyrosine kinase phosphorylation site.

amino acids 160-168, 160-169

N-myristoylation site.

amino acids 75-81, 78-84, 210-216, 214-220, 226-232

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 69-80, 211-222

FIGURE 3

CCCACGCGTCCGGCGCGTGGCCTCGCGTCCATCTTTGCCGTTCTCTCGGACCTGTCACAAA GGAGTCGCCGCCGCCGCCCCCCCCCCCCCCCGGGGGGTAGAGAAAGTCAGT GCCGGGGTAGGCTCTGGAAAGGGCCCGGGAGAGAGGTGGCGTTGGTCAGAACCTGAGAAACA GCCGAGAGGTTTTCCACCGAGGCCCGCGCTTGAGGGATCTGAAGAGGGTTCCTAGAAGAGGGT GTTCCCTCTTTCGGGGGTCCTCACCAGAAGAGGTTCTTGGGGGTCGCCCTTCTGAGGAGGCT GCGGCTAACAGGGCCCAGAACTGCCATTGGATGTCCAGAATCCCCTGTAGTTGATAATGTTG GGAATAAGCTCTGCAACTTTCTTTGGCATTCAGTTGTTAAAAACAAATAGGATGCAAATTCC TCAACTCCAGGTTATGAAAACAGTACTTGGAAAACTGAAAACTACCTAA**ATG**ATCGTCTTTG GTTGGGCCGTGTTCTTAGCGAGCAGAAGCCTTGGCCAGGGTCTGTTGTTGACTCTCGAAGAG CACATAGCCCACTTCCTAGGGACTGGAGGTGCCGCTACTACCATGGGTAATTCCTGTATCTG CCGAGATGACAGTGGAACAGATGACAGTGTTGACACCCAACAGCAACAGGCCGAGAACAGTG CAGTACCCACTGCTGACAAGGAGCCAACCACGGGACCCTGTTCGGCCACCAAGGAGGGGC CGAGGACCTCATGAGCCAAGGAGAAAGAAACAAAATGTGGATGGGCTAGTGTTGGACACACT GGCAGTAATACGGACTCTTGTAGATAAGTAAGTATCTGACTCACGGTCACCTCCAGTGGAAT GAAAAGTGTTCTGCCCGGAACCATGACTTTAGGACTCCTTCAGTTCCTTTAGGACATACTCG CCAAGCCTTGTGCTCACAGGGCAAAGGAGAATATTTTAATGCTCCGCTGATGGCAGAGTAAA TGATAAGATTTGATGTTTTTGCTTGCTGTCATCTACTTTGTCTGGAAATGTCTAAATGTTTC TGTAGCAGAAAACACGATAAAGCTATGATCTTTATTAGAG

FIGURE 4

 ${\tt MIVFGWAVFLASRSLGQGLLLTLEEHIAHFLGTGGAATTMGNSCICRDDSGTDDSVDTQQQQ} \\ {\tt AENSAVPTADTRSQPRDPVRPPRRGRGPHEPRRKKQNVDGLVLDTLAVIRTLVDKO} \\$

Signal peptide:

amino acids 1-16

Casein kinase II phosphorylation site.

amino acids 22-26, 50-54, 113-117

N-myristoylation site.

amino acids 18-24, 32-38, 34-40, 35-41, 51-57

FIGURE 5

FIGURE 6

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56107

<subunit 1 of 1, 231 aa, 1 stop

<NX(S/T): 0

MEEGGNLGGLIKMVHLLVLSGAWGMQMWVTFVSGFLLFRSLPRHTFGLVQSKLFPFYFHISM GCAFINLCILASQHAWAQLTFWEASQLYLLFLSLTLATVNARWLEPRTTAAMWALQTVEKER GLGGEVPGSHQGPDPYRQLREKDPKYSALRQNFFRYHGLSSLCNLGCVLSNGLCLAGLALEIRSL

Signal peptide:

amino acids 1-24

Transmembrane domain:

amino acids 86-103, 60-75

Casein kinase II phosphorylation site.

amino acids 82-86

Tyrosine kinase phosphorylation site.

amino acids 144-151

N-myristoylation site.

amino acids 4-10, 5-11, 47-53, 170-176, 176-182

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 54-65

G-protein coupled receptors proteins.

amino acids 44-85

FIGURE 7

AATTCAGATTTTAAGCCCATTCTGCAGTGGAATTTCATGAACTAGCAAGAGGACACCATCTT $\tt CTTGTATTATACAAGAAGGAGTGTACCTATCACACACGGGGGAAAA \textbf{ATG} CTCTTTTGGGT$ GCTAGGCCTCCTAATCCTCTGTGGTTTTCTGTGGACTCGTAAAGGAAAACTAAAGATTGAAG ACATCACTGATAAGTACATTTTTATCACTGGATGTGACTCGGGCTTTGGAAACTTGGCAGCC AGAATGTCAAGAGGACTGCCCAGTGGGTGAAGAACCAAGTTGGGGAGAAAGGTCTCTGGGGT CTACAGAGAACCTATTGAAGTGAACCTGTTTGGACTCATCAGTGTGACACTAAATATGCTTC CTTTGGTCAAGAAAGCTCAAGGGAGAGTTATTAATGTCTCCAGTGTTGGAGGTCGCCTTGCA ATCGTTGGAGGGGCTATACTCCATCCAAATATGCAGTGGAAGGTTTCAATGACAGCTTAAG ACGGGACATGAAAGCTTTTGGTGTGCACGTCTCATGCATTGAACCAGGATTGTTCAAAACAA ACTTGGCAGATCCAGTAAAGGTAATTGAAAAAAAACTCGCCATTTGGGAGCAGCTGTCTCCA GACATCAAACAACAATATGGAGAAGGTTACATTGAAAAAAGTCTAGACAAACTGAAAGGCAA TAAATCCTATGTGAACATGGACCTCTCTCCGGTGGTAGAGTGCATGGACCACGCTCTAACAA GTCTCTTCCCTAAGACTCATTATGCCGCTGGAAAAGATGCCAAAATTTTCTGGATACCTCTG TCTCACATGCCAGCAGCTTTGCAAGACTTTTTATTGTTGAAACAGAAAGCAGAGCTGGCTAA TCCCAAGGCAGTGTGACTCAGCTAACCACAAATGTCTCCTCCAGGCTATGAAATTGGCCGAT TTCAAGAACACATCTCCTTTTCAACCCCATTCCTTATCTGCTCCAACCTGGACTCATTTAGA TCGTGCTTATTTGGATTGCAAAAGGGAGTCCCACCATCGCTGGTGGTATCCCAGGGTCCCTG CTCAAGTTTTCTTTGAAAAGGAGGGCTGGAATGGTACATCACATAGGCAAGTCCTGCCCTGT ATTTAGGCTTTGCCTGCTTGGTGTGATGTAAGGGAAATTGAAAGACTTGCCCATTCAAAATG ATCTTTACCGTGGCCTGCCCCATGCTTATGGTCCCCAGCATTTACAGTAACTTGTGAATGTT ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

FIGURE 8

></usr/segdb2/sst/DNA/Dnasegs.min/ss.DNA56406

><subunit 1 of 1, 319 aa, 1 stop

><MW: 35227, pI: 8.97, NX(S/T): 3

MLFWVLGLLILCGFLWTRKGKLKIEDITDKYIFITGCDSGFGNLAARTFDKKGFHVIAACLT
ESGSTALKAETSERLRTVLLDVTDPENVKRTAQWVKNQVGEKGLWGLINNAGVPGVLAPTDW
LTLEDYREPIEVNLFGLISVTLNMLPLVKKAQGRVINVSSVGGRLAIVGGGYTPSKYAVEGF
NDSLRRDMKAFGVHVSCIEPGLFKTNLADPVKVIEKKLAIWEQLSPDIKQQYGEGYIEKSLD
KLKGNKSYVNMDLSPVVECMDHALTSLFPKTHYAAGKDAKIFWIPLSHMPAALQDFLLLKQK
AELANPKAV

Important features of the protein:

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 136-152

N-glycosylation sites.

amino acids 161-163, 187-190 and 253-256

Glycosaminoglycan attachment site.

amino acids 39-42

N-myristoylation sites.

amino acids 36-41, 42-47, 108-113, 166-171, 198-203 and 207-212

FIGURE 9

GCGGGCTGTTGACGCGCTGCGATGCTGCCTGCGAGGGCAGGAGAAGCGGAGCTCTCGGTT CCTCTCAGTCGGACTTCCTGACGCCGCCAGTGGGCGGGGCCCCTTGGGCCGTCGCCACCACT GTAGTCATGTACCCACCGCCGCCGCCGCCGCCTCATCGGGACTTCATCTCGGTGACGCTGAG AGCAACTGTCGAGATTGCAGCGGAATATGATTCTCTTCCTCCTTGCCTTTCTGCTTTTCTGT GGACTCCTCTTCTACATCAACTTGGCTGACCATTGGAAAGCTCTGGCTTTCAGGCTAGAGGA AGAGCAGAAGATGAGGCCAGAAATTGCTGGGTTAAAACCAGCAAATCCACCCGTCTTACCAG CTCCTCAGAAGGCGGACACCGACCCTGAGAACTTACCTGAGATTTCGTCACAGAAGACACAA AGACACATCCAGCGGGGACCACCTCACCTGCAGATTAGACCCCCAAGCCAAGACCTGAAGGA ATCCGCAGAGGACAGTCATCAGCTGGAGGGGAGCGGTGATCGAGCCTGAGCAGGGCACCGAG CTCCCTTCAAGAAGAGCAGAAGTGCCCACCAAGCCTCCCCTGCCACCGGCCAGGACACAGGG AAGGATACCGCAAGTTTGCATGGGGCCATGACGAGCTGAAGCCTGTGTCCAGGTCCTTCAGT GAGTGGTTTGGCCTCGGTCTCACACTGATCGACGCGCTGGACACCATGTGGATCTTGGGTCT GAGGAAGAATTTGAGGAAGCCAGGAAGTGGGTGTCGAAGAAGTTACACTTTGAAAAGGACG CTGTCTGGGGACAGCCTCTTCCTGAGGAAAGCTGAGGATTTTGGAAATCGGCTAATGCCTGC CTTCAGAACACCATCCAAGATTCCTTACTCGGATGTGAACATCGGTACTGGAGTTGCCCACC CGCCACGGTGGACCTCCGACAGCACTGTGGCCGAGGTGACCAGCATTCAGCTGGAGTTCCGG GAGCTCTCCCGTCTCACAGGGGATAAGAAGTTTCAGGAGGCAGTGGAGAAGGTGACACAGCA CATCCACGGCCTGTCTGGGAAGAAGGATGGGCTGGTGCCCATGTTCATCAATACCCACAGTG GCCTCTTCACCCACCTGGGCGTATTCACGCTGGGCGCCAGGGCCGACAGCTACTATGAGTAC CTGCTGAAGCAGTGGATCCAGGGCGGGAAGCAGGAGACACAGCTGCTGGAAGACTACGTGGA AGCCATCGAGGGTGTCAGAACGCACCTGCTGCGGCACTCCGAGCCCAGTAAGCTCACCTT'TG TGGGGGAGCTTGCCCACGCCGCTTCAGTGCCAAGATGGACCACCTGGTGTGCTTCCTGCCA GCTCATGGAGACTTGTTACCAGATGAACCGGCAGATGGAGACGGGGCTGAGTCCCGAGATCG TGCACTTCAACCTTTACCCCCAGCCGGGCCGTCGGGACGTGGAGGTCAAGCCAGCAGACAGG CACAACCTGCTGCGGCCAGAGACCGTGGAGAGCCTGTTCTACCTGTACCGCGTCACAGGGGA CCGCAAATACCAGGACTGGGGGGGGGGTTCTGCAGAGCTTCAGCCGATTCACACGGGTCC CCTCGGGTGGCTATTCTTCCATCAACAATGTCCAGGATCCTCAGAAGCCCGAGCCTAGGGAC AAGATGGAGAGCTTCTTCCTGGGGGAGACGCTCAAGTATCTGTTCTTGCTCTTCTCCGATGA CCCAAACCTGCTCAGCCTGGACGCCTACGTGTTCAACACCGAAGCCCACCCTCTGCCTATCT $\tt GGACCCTGCC{\color{red}{\textbf{TAG}}} GGTGGATGGCTGCTGGTGTGGGGACTTCGGGTGGCCAGAGGCACCTTG$ CTGGGTCTGTGGCATTTTCCAAGGGCCCACGTAGCACCGGCAACCGCCAAGTGGCCCAGGCT CTGAACTGGCTCTGGGCTCCTCCTCTCTCTTTAATCAGGACACCGTGAGGACAAGTGA GGCCGTCAGTCTTGGTGTGATGCGGGGTGGGCTGGGCCGCTGGAGCCTCCGCCTGCTTCCTC CAGAAGACACGAATCATGACTCACGATTGCTGAAGCCTGAGCAGGTCTCTGTGGGCCGACCA GAGGGGGCTTCGAGGTGGTCCCTGGTACTGGGGTGACCGAGTGGACAGCCCAGGGTGCAGC TCTGCCCGGGCTCGTGAAGCCTCAGATGTCCCCAATCCAAGGGTCTGGAGGGGCTGCCGTGA CTCCAGAGGCCTGAGGCTCCAGGGCTGGCTCTGGTGTTTACAAGCTGGACTCAGGGATCCTC CTGGCCGCCGCAGGGGGCTTGGAGGGCTGGACGGCAAGTCCGTCTAGCTCACGGGCCCCTCCAGTGGAATGGGTCTTTTCGGTGGAGATAAAAGTTGATTTGCTCTAACCGCAA

FIGURE 10

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56529

><subunit 1 of 1, 699 aa, 1 stop

><MW: 79553, pI: 7.83, NX(S/T): 0

MAACEGRRSGALGSSQSDFLTPPVGGAPWAVATTVVMYPPPPPPPHRDFISVTLSFGESYDN SKSWRRSCWRKWKQLSRLQRNMILFLLAFLLFCGLLFYINLADHWKALAFRLEEEQKMRPE IAGLKPANPPVLPPAPQKADTDPENLPEISSQKTQRHIQRGPPHLQIRPPSQDLKDGTQEEAT KRQEAPVDPRPEGDPQRTVISWRGAVIEPEQGTELPSRRAEVPTKPPLPPARTQGTPVHLNY RQKGVIDVFLHAWKGYRKFAWGHDELKPVSRSFSEWFGLGLTLIDALDTMWILGLRKEFEEA RKWVSKKLHFEKDVDVNLFESTIRILGGLLSAYHLSGDSLFLRKAEDFGNRLMPAFRTPSKI PYSDVNIGTGVAHPPRWTSDSTVAEVTSIQLEFRELSRLTGDKKFQEAVEKVTQHIHGLSGK KDGLVPMFINTHSGLFTHLGVFTLGARADSYYEYLLKQWIQGGKQETQLLEDYVEAIEGVRT HLLRHSEPSKLTFVGELAHGRFSAKMDHLVCFLPGTLALGVYHGLPASHMELAQELMETCYQ MNRQMETGLSPEIVHFNLYPQPGRRDVEVKPADRHNLLRPETVESLFYLYRVTGDRKYQDWG WEILQSFSRFTRVPSGGYSSINNVQDPQKPEPRDKMESFFLGETLKYLFILFSDDPNLLSLD AYVFNTEAHPLPTWTPA

Important features of the protein:

Transmembrane domain:

amino acids 21-40 and 84-105 (type II)

FIGURE 11

GGCGCCGCGTAGGCCCGGGAGGCCGGGCCGGCCGGGCTGCGAGCGCCTGCCCCATGCGCCGC CGCCTCTCCGCACGATGTTCCCCTCGCGGAGGAAAGCGGCGCCAGCTGCCCTGGGAGGACGCC AGGTCCGGGTTGCTCTCCGGCGGCCTCCCTCGGAAGTGTTCCGTCTTCCACCTGTTCGTGGC CTGCCTCTCGCTGGGCTTCTTCTCCCTACTCTGGCTGCAGCTCAGCTGCTCTGGGGACGTGG CCGCCCCTGAGCACTGGGAAGAAGACGCATCCTGGGGCCCCCACCGCCTGGCAGTGCTGGT GCCCTTCCGCGAACGCTTCGAGGAGCTCCTGGTCTTCGTGCCCCACATGCGCCGCTTCCTGA GCAGGAAGAAGATCCGGCACCACCTCCACCTGCTCAACCAGGTGGACCACTTCAGGTTCAAC CGGGCAGCGCTCATCAACGTGGGCTTCCTGGAGAGCAGCAACAGCACGGACTACATTGCCAT GCACGACGTTGACCTGCTCCCTCTAACGAGGAGCTGGACTATGGCTTTCCTGAGGCTGGGC CCTTCCACGTGGCCTCCCCGGAGCTCCACCCTCTCTACCACTACAAGACCTATGTCGGCGGC ATCCTGCTGCTCCCAAGCAGCACTACCGGCTGTGCAATGGGATGTCCAACCGCTTCTGGGG CTGGGGCCGCGAGGACGACGTTCTACCGGCGCATTAAGGGAGCTGGGCTCCAGCTTTTCC GCCCCTCGGGAATCACAACTGGGTACAAGACATTTCGCCACCTGCATGACCCAGCCTGGCGG CCTGCACTGTCCTCAACATCATGTTGGACTGTGACAAGACCGCCACACCCTGGTGCACATTC AGCTGAGCTGGATGGACAGTGAGGAAGCCTGTACCTACAGGCCATATTGCTCAGGCTCAGGA CAAGGCCTCAGGTCGTGGGCCCAGCTCTGACAGGATGTGGAGTGGCCAGGACCAAGACAGCA AGCTACGCAATTGCAGCCACCCGGCCGCCAAGGCAGGCTTGGGCTGGGCCAGGACACGTGGG GGACCCCCCTGCCTTCCTGCTCACCCTACTCTGACCTCCTTCACGTGCCCAGGCCTGTGGG TAGTGGGGAGGCTGAACAGGACAACCTCTCATCACCCTACTCTGACCTCCTTCACGTGCCC

FIGURE 12

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56531

><subunit 1 of 1, 327 aa, 1 stop

><MW: 37406, pI: 9.30, NX(S/T): 1

MFPSRRKAAQLPWEDGRSGLLSGGLPRKCSVFHLFVACLSLGFFSLLWLQLSCSGDVARAVR GQGQETSGPPRACPPEPPPEHWEEDASWGPHRLAVLVPFRERFEELLVFVPHMRRFLSRKKI RHHIYVLNQVDHFRFNRAALINVGFLESSNSTDYIAMHDVDLLPLNEELDYGFPEAGPFHVA SPELHPLYHYKTYVGGILLLSKQHYRLCNGMSNRFWGWGREDDEFYRRIKGAGLQLFRPSGI TTGYKTFRHLHDPAWRKRDQKRIAAQKQEQFKVDREGGLNTVKYHVASRTALSVGGAPCTVL NIMLDCDKTATPWCTFS

Signal peptide:

amino acids 1-42

Transmembrane domain:

amino acids 29-49 (type II)

N-glycosylation site.

amino acids 154-158

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 27-31

Tyrosine kinase phosphorylation site.

amino acids 226-233

N-myristoylation site.

amino acids 19-25, 65-71, 247-253, 285-291, 303-309, 304-310

FIGURE 13

FIGURE 14

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56862

<subunit 1 of 1, 73 aa, 1 stop

<MW: 7879, pI: 7.21, NX(S/T): 0

 $exttt{MLLLLLLLLKGSCLEWGLVGAQKVSSATDAPIRDWAFFPPSFLCLLPHRPAMTCSQAQ}$

PRGEGEKVGDG

Important features:

Signal peptide:

amino acids 1-15

Growth factor and cytokines receptors family:

amino acids 3-18

FIGURE 15

GGGACCCATGCGGCCGTGACCCCCGGCTCCCTAGAGGCCCAGCGCAGCCGCAGCGGACAAAG GAGCATGTCCGCGCGGGGAAGGCCCGTCCTCCGGCCGCCATAAGGCTCCGGTCGCCGCTGG GCCCGCGCCGCTCCTGCCCGCCCGGGCTCCGGGGCGCCCGCTAGGCCAGTGCGCCGCCG GCCGCCGCTGTTGCTGCCGCTCTCGCTGTTAGCGCTGCTCGCGCTGCTGGGAGGCGGCGCG GCGGCGCCGCCGCCGCCGCCGCTGCAAGCACGATGGGCGGCCCCGAGGGGCTGGC AGGGCGCGGCGCCCGAGGGCAAGGTGGTGTGCAGCAGCCTGGAACTCGCGCAGGTCCT GCCCCCAGATACTCTGCCCAACCGCACGGTCACCCTGATTCTGAGTAACAATAAGATATCCG AGCTGAAGAATGGCTCATTTTCTGGGTTAAGTCTCCTTGAAAGATTGGACCTCCGAAACAAT CTTATTAGTAGTATAGATCCAGGTGCCTTCTGGGGGACTGTCATCTCTAAAAAAGATTGGATCT GACAAACAATCGAATAGGATGTCTGAATGCAGACATATTTCGAGGACTCACCAATCTGGTTC GGCTAAACCTTTCGGGGAATTTGTTTTCTTCATTATCTCAAGGAACTTTTGATTATCTTGCG TCATTACGGTCTTTGGAATTCCAGACTGAGTATCTTTTGTGTGACTGTAACATACTGTGGAT GCATCGCTGGGTAAAGGAGAAGAACATCACGGTACGGGATACCAGGTGTTTTATCCTAAGT CACTGCAGGCCCAACCAGTCACAGGCGTGAAGCAGGAGCTGTTGACATGCGACCCTCCGCTT GAATTGCCGTCTTTCTACATGACTCCATCTCATCGCCAAGTTGTGTTTTGAAGGAGACAGCCT TCCTTTCCAGTGCATGGCTTCATATATTGATCAGGACATGCAAGTGTTGTGGTATCAGGATG GGAGAATAGTTGAAACCGATGAATCGCAAGGTATTTTTGTTGAAAAGAACATGATTCACAAC TGCTCCTTGATTGCAAGTGCCCTAACCATTTCTAATATTCAGGCTGGATCTACTGGAAATTG GGGCTGTCATGTCCAGACCAAACGTGGGAATAATACGAGGACTGTGGATATTGTGGTATTAG AGAGTTCTGCACAGTACTGTCCTCCAGAGAGGGTGGTAAACAACAAAGGTGACTTCAGATGG CCCAGAACATTGGCAGGCATTACTGCATATCTGCAGTGTACGCGGAACACCCATGGCAGTGG GATATATCCCGGAAACCCACAGGATGAGAGAAAAGCTTGGCGCAGATGTGATAGAGGTGGCT TTTGGGCAGATGATGATTATTCTCGCTGTCAGTATGCAAATGATGTCACTAGAGTTCTTTAT ATGTTTAATCAGATGCCCCTCAATCTTACCAATGCCGTGGCAACAGCTCGACAGTTACTGGC TTACACTGTGGAAGCAGCCAACTTTTCTGACAAAATGGATGTTATATTTTGTGGCAGAAATGA TTGAAAAATTTGGAAGATTTACCAAGGAGGAAAAATCAAAAGAGCTAGGTGACGTGATGGTT GAGCTCACGTTTATTCAACATATTCACCCAATATTGCTCTGGAAGCTTATGTCATCAAGTCT ACTGGCTTCACGGGGATGACCTGTACCGTGTTCCAGAAAGTGGCAGCCTCTGATCGTACAGG ACTTTCGGATTATGGGAGGCGGGATCCAGAGGGAAACCTGGATAAGCAGCTGAGCTTTAAGT GCAATGTTTCAAATACATTTTCGAGTCTGGCACTAAAGGTATGTTACATTCTGCAATCATTT AAGACTATTTACAGT**TAA**ATTAGAATGCTCCAAATGTTCTGCTTCGCAAAATAACCTTATTA AAAGATTTTTTTTTGCAGGAAGATAGGTATTATTGCTTTTGCTACTGTTTTAAAGAAAACTA ACCAGGAAGAACTGCATTACGACTTTCAAGGGCCCTAGGCATTTTTGCCTTTGATTCCCTTT CTTCACATAAAAATATCAGAAATTACATTTTATAACTGCAGTGGTATAAATGCAAATATACT GATTTTAAGACAATAAGATGTTTTCATGGGCCCCTAAAAGTATCATGAGCCTTTGGCACTGC ATCAAAATTTTTGGCAGAAAACACAAATATGTCATATATCTTTTTTTAAAAAAAGTATTTCA TTGAAGCAAGCAAATGAAAGCATTTTTACTGATTTTTAAAATTGGTGCTTTAGATATATTT GACTACACTGTATTGAAGCAAATAGAGGAGGCACAACTCCAGCACCCTAATGGAACCACATT TTTTTCACTTAGCTTTCTGTGGGCATGTGTAATTGTATTCTCTGCGGTTTTTAATCTCACAG TTGAATGAATGAACGAAAAAAAAAAAAAAA

FIGURE 16

MEPPGRRGRAQPPLLLPLSLLALLALLGGGGGGGAAALPAGCKHDGRPRGAGRAAGAAEGK
VVCSSLELAQVLPPDTLPNRTVTLILSNNKISELKNGSFSGLSLLERLDLRNNLISSIDFGA
FWGLSSLKRLDLTNNRIGCLNADIFRGLTNLVRLNLSGNLFSSLSQGTFDYLASLRSLEFQT
EYLLCDCNILWMHRWVKEKNITVRDTRCVYPKSLQAQPVTGVKQELLTCDPPLELPSFYMTP
SHRQVVFEGDSLPFQCMASYIDQDMQVLWYQDGRIVETDESQGIFVEKNMIHNCSLIASALT
ISNIQAGSTGNWGCHVQTKRGNNTRTVDIVVLESSAQYCPPERVVNNKGDFRWPRTLAGITA
YLQCTRNTHGSGIYPGNPQDERKAWRRCDRGGFWADDDYSRCQYANDVTRVLYMFNQMPLNL
TNAVATARQLLAYTVEAANFSDKMDVIFVAEMIEKFGRFTKEEKSKELGDVMVDIASNIMLA
DERVLWLAQREAKACSRIVQCLQRIATYRLAGGAHVYSTYSPNIALEAYVIKSTGFTGMTCT
VFQKVAASDRTGLSDYGRRDPEGNLDKQLSFKCNVSNTFSSLALKVCYILQSFKTIYS

Signal peptide:

amino acids 1-33

Transmembrane domain:

amino acids 13-40 (type II)

N-glycosylation site.

amino acids 81-85, 98-102, 159-163, 206-210, 301-305, 332-336, 433-437, 453-457, 592-596

N-myristoylation site.

amino acids 29-35, 30-36, 31-37, 32-38, 33-39, 34-40, 51-57, 57-63, 99-105, 123-129, 142-148, 162-168, 317-323, 320-326, 384-390, 403-409, 554-560

FIGURE 17

FIGURE 18

 $\verb|MSRSSKVVLGLSVLLTAATVAGVHVKQQWDQQRLRDGVIRDIERQIRKKENIRLLGEQIILT \\ EQLEAEREKMLLAKGSQKS$

Signal peptide:

amino acids 1-21

FIGURE 19

CTGTCGTCTTTGCTTCAGCCGCAGTCGCCACTGGCTGCCTGAGGTGCTCTTACAGCCTGTTC CAAGTGTGGCTTAATCCGTCTCCACCACCAGATCTTTCTCCGTGGATTCCTCTGCTAAGACC GCTGCCATGCCAGTGACGGTAACCCGCACCACCATCACAACCACCACGACGTCATCTTCGGG CCTGGGGTCCCCATGATCGTGGGGTCCCCTCGGGCCCTGACACAGCCCCTGGGTCTCCTTCGC CTGCTGCAGCTGGTGTCTACCTGCGTGGCCTTCTCGCTGGTGGCTAGCGTGGGCGCCTGGAC GGGGTCCATGGGCAACTGGTCCATGTTCACCTGGTGCTTCTCCCGTGACCCTGATCA TCCTCATCGTGGAGCTGTGCGGGCTCCAGGCCCGCTTCCCCCTGTCTTGGCGCAACTTCCCC ATCACCTTCGCCTGCTATGCGGCCCTCTTCTGCCTCTCGGCCTCCATCATCTACCCCACCAC CTATGTCCAGTTCCTGTCCCACGGCCGTTCGCGGGACCACGCCATCGCCGCCACCTTCTTCT ATCACTGGCTATATGGCCACCGTACCCGGGCTGCTGAAGGTGCTGGAGACCTTCGTTGCCTG CATCATCTTCGCGTTCATCAGCGACCCCAACCTGTACCAGCACCAGCCGGCCCTGGAGTGGT GCGTGGCGGTGTACGCCATCTGCTTCATCCTAGCGGCCATCGCCATCCTGCTGAACCTGGGG GAGTGCACCAACGTGCTACCCATCCCCTTCCCCAGCTTCCTGTCGGGGCTTGCCTTGCTGTC TGTCCTCTCTATGCCACCGCCCTTGTTCTCTGGCCCCTCTACCAGTTCGATGAGAAGTATG GCGGCCAGCCTCGGCGCTCGAGAGATGTAAGCTGCAGCCGCAGCCATGCCTACTACGTGTGT GCCTGGGACCGCCGACTGGCCTGTGGCCATCCTGACGGCCATCAACCTACTGGCGTATGTGGC TGACCTGGTGCACTCTGCCCACCTGGTTTTTGTCAAGGTCTAAGACTCTCCCAAGAGGCTCC CGTTCCCTCTCCAACCTCTTTGTTCTTCTTGCCCGAGTTTTCTTTATGGAGTACTTCTTTCC TTCCTTCCTGTGTTTTTTTTTCCCCACATCCTGTTTTCACCCCTGAGCTGTTTCTCTTTTT CTTTTCTTTTTTTTTTTTTTTTTTAAGACGGATTCTCACTCTGTGGCCCAGGCTGGAG TGCAGTGGTGCGATCTCAGCTCACTGCAACCCCCGCCTCCTGGGTTCAAGCGATTCTCCTCC CCCAGCCTCCCAAGTAGCTGGGAGGACAGGTGTGAGCTGCCGCACCCAGCCTGTTTCTCTTT TTCCACTCTTTTTTTCTCATCTCTTTTCTGGGTTGCCTGTCGGCTTTCTTATCTGCCTGT CCCACCTCCAAAGGTGCTGAGCTCACATCCACACCCCTTGCAGCCGTCCATGCCACAGCCCC CCAAGGGGCCCCATTGCCAAAGCATGCCTGCCCACCCTCGCTGTGCCTTAGTCAGTGTGTAC GTGTGTGTGTGTGTTTTGGGGGGTGGGGGGTGGGTAGCTGGGGATTGGGCCCTCTTTCT ATTTGGAGGTCAGTAATTTCCAATGGGCGGGAGGCATTAAGCACCGACCCTGGGTCCCTAGG CCCCGCCTGGCACTCAGCCTTGCCAGAGATTGGCTCCAGAATTTTTTGCCAGGCTTACAGAACAC CCACTGCCTAGAGGCCATCTTAAAGGAAGCAGGGGCTGGATGCCTTTCATCCCAACTATTCT CTGTGGTATGAAAAAG

FIGURE 20

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58727

<subunit 1 of 1, 322 aa, 1 stop

<MW: 35274, pI: 8.57, NX(S/T): 1

MPVTVTRTTITTTTSSSGLGSPMIVGSPRALTQPLGLLRLLQLVSTCVAFSLVASVGAWTG
SMGNWSMFTWCFCFSVTLIILIVELCGLQARFPLSWRNFPITFACYAALFCLSASIIYPTTY
VQFLSHGRSRDHAIAATFFSCIACVAYATEVAWTRARPGEITGYMATVPGLLKVLETFVACI
IFAFISDPNLYQHQPALEWCVAVYAICFILAAIAILLNLGECTNVLPIPFPSFLSGLALLSV
LLYATALVLWPLYQFDEKYGGQPRRSRDVSCSRSHAYYVCAWDRRLAVAILTAINLLAYVAD
LVHSAHLVFVKV

Important features:

Transmembrane domains:

amino acids 41-60 (type II), 66-85, 101-120, 137-153, 171-192, 205-226, 235-255 and 294-312

N-glycosylation site.

amino acids 66-69

Glycosaminoglycan attachment site.

amino acids 18-21

FIGURE 21

GAACGTGCCACCATGCCCAGCTAATTTTTGTATTTTTAGTAGAGACGGGGTTTCACCATGTTGGCCAGGCTGGTC TTGAACTCGTGACCTCATGATCCGCTCACCTCGGCCTCCCAAAGTGCTGGGATTACAGGCATGAGCCACTGACGC CTGGCCAGCCTATGCATTTTTAAGAAATTATTCTGTATTAGGTGCTGTGCTAAACATTGGGCACTACAGTGACCA AAACAGACTGAATTCCCCAAGAGCCAAAGACCAGTGAGGGAGACCAACAAGAAACAGGAAATGCAAAAGAGACCCA TTATTACTCACTATGACTAAGGGTCACAAATGGGGTACGTTGATGGAGAGTGATTTGTTAAGAGACTACAGAGGG AGGACAGACTACCAAGAGGGGGGCCAGGAAAGCTCCTCTGACGAGGTGGTATTTCAGCCCAAACTGGAAGAATGA AATAGCATGGGATTGGAGGAGGCTTGGGGGAACACCACTTCTGCCGACCTGGGCAGGAGGCATTGAGGGCTTGAGA AAGGGCAATGGCAGTAGCAGTAGAAAGGACAGGGTAGGAGCAGGGACTTTGCAGGTGGAATCATTAGGTCTTATC AACAGATATGGGCAAGCAAAGCCAGGGGAGAATTGATGGTAATGCTGAGGTTTGGAGCCAGGCTAGATGGGACAG TGGTGGTGATGCAAAGGAAAGAGGTCAGGAAGCAGGCCAGACGTGGGGAGAAGGTGTGGGGGTTTGGTTTCCA AGAAGTCCTGGATGCCACACTCTTCTTCCTTCCTCCTCTCCTCCTCAGAGGTCTCACTCGTGGTTCTTCAT TTCCTGCCCTGCCTCCATCTCCTCTGGGTGCTGGGAAAGTGGAGGATTAGCTGAAGTTTTGCTTCTCGGGGCCTG TCTGAATCTCCATTGCTTTCTGGGAGGACATAATTCACCTGTCCTAGCTTCTTATCATCTTACATTTCCCTGTAG CCACTGGGACATATGTGGTGTTCCTTAGCTCCTGTCTCCTCATGCCTTTGCTGGGTATGGGCATGTTAG ${\tt GCGATGCTGCCCAAGTCCCGGCGAGCCCTAACTATCCAGGAGATCGCTGCGCTGGCCAGGTCCTCCCTGCATGGT}$ ACATGGATCCTAACTACTGCCACCCTTCCACCTCCTGCACCTGTGCTCCTTGGCCTGGTCCTTTACCAGGCTTC TCCACCCTCCCCTATCTCCAGGTATTTCCCAGGTGGTGAAGGACCACGTGACCAAGCCTACCGCCATGGCCCAGG GCCGAGTGGCTCACCTCATTGAGTGGAAGGGCTGGAGCAAGCCGAGTGACTCACCTGCTGCCCTGGAATCAGCCT TTTCCTCCTATTCAGACCTCAGCGAGGGCGAACAAGAGGCTCGCTTTGCAGCAGGAGTGGCTGAGCAGTTTGCCA TCGCGGAAGCCAAGCTCCGAGCATGGTCTTCGGTGGATGGCGAGGACTCCACTGATGACTCCTATGATGAGGACT TTGCTGGGGGAATGGACACAGACATGGCTGGGCAGCTGCCCCTGGGGCCGCACCTCCAGGACCTGTTCACCGGCC ACCGGTTCTCCCGGCCTGTGCGCCAGGGCTCCGTGGAGCCTGAGAGCGACTGCTCACAGACCGTGTCCCCAGACA CCCTGTGCTCTAGTCTGTGCAGCCTGGAGGATGGGTTGTTGGGCTCCCCGGCCCGGCTGGCCTCCCAGCTGCTGG GCGATGAGCTGCTTCTCGCCAAACTGCCCCCAGCCGGGAAAGTGCCTTCCGCAGCCTGGGCCCACTGGAGGCCC ACTGCCAGCCACTCTGCCCACCACTAACGGGCAGCTGGGAACGGCAGCGGCAAGCCTCTGACCTGGCCTCTTCTG $\tt GGGTGGTGTCCTTAGATGAGGATGAGGCAGAGCCAGAGGAACAG{\color{red}{\textbf{TGA}}} CCCACATCATGCCTGGCAGTGGCATGCA$ GGCTGGGGGCGCATGTCCTGCCCCCACTCCCGGGGCTTGCCGGGGGTTGCCCGGGGCCTCTGGGGCATGGCTACA TCTTCTCTGCTTTTCTTCTCACTTCCGAGTCCATGTGCAGTGCTTGATAGAATCACCCCCACCTGGAGGGGCTGG ATTCACCTCTCCATCGTCTCTAAATCTTCCTCTTTTTTCCTAAAGACAGAAGGTTTTTGGTCTGTTTTTTCAGTC GGATCTTCTCTCTGGGAGGCTTTGGAATGATGAAAGCATGTACCCTCCACCCTTTTCCTGGCCCCCTAATGG ATTCACGCAGAGCTCTCTGAGCGGGAGGTGGAAGAAAGGATGGCTCTGGTTGCCACAGAGCTGGGACTTCATGTT CTTCTAGAGAGGGCCACAAGAGGGCCACAGGGGTGGCCGGGAGTTGTCAGCTGATGCCTGCTGAGAGGCAGGAAT GGCTCATTAGGTGTTTATTTTGTTCTATTTAAGAATTTGTTTTATTAAATTAATATAAAATCTTTTGTAAATCTC TAAAA

FIGURE 22

MFLATLSFLLPFAHPFGTVSCEYMLGSPLSSLAQVNLSPFSHPKVHMDPNYCHPSTSLHLCS
LAWSFTRLLHPPLSPGISQVVKDHVTKPTAMAQGRVAHLIEWKGWSKPSDSPAALESAFSSY
SDLSEGEQEARFAAGVAEQFAIAEAKLRAWSSVDGEDSTDDSYDEDFAGGMDTDMAGQLPLG
PHLQDLFTGHRFSRPVRQGSVEPESDCSQTVSPDTLCSSLCSLEDGLLGSPARLASQLLGDE
LLLAKLPPSRESAFRSLGPLEAQDSLYNSPLTESCLSPAEEEPAPCKDCQPLCPPLTGSWER
QRQASDLASSGVVSLDEDEAEPEEQ

Signal peptide:

amino acids 1-15

Casein kinase II phosphorylation site.

amino acids 123-127, 128-132, 155-159, 162-166, 166-170, 228-232, 285-289, 324-328

Tyrosine kinase phosphorylation site.

amino acids 44-52

N-myristoylation site.

amino acids 17-23, 26-32, 173-179

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 11-22

FIGURE 23

GGCACCCTCCTGCTCAGTGCGACATTGTCACACTTAACCCATCTGTTTTCTCTAATGCACGA CAGATTCCTTTCAGACAGGACAACTGTGATATTTCAGTTCCTGATTGTAAATACCTCCTAAG CCTGAAGCTTCTGTTACTAGCCATTGTGAGCTTCAGTTTCTTCATCTGCAAAATGGGCATAA AAGCCTACAATGTTGGCCTTAGCCAAAATTCTGTTGATTTCAACGTTGTTTTATTCACTTCT ATCGGGGAGCCATGGAAAAGAAAATCAAGACATAAACACAACAGAACATTGCAGAAGTTT TTAAAACAATGGAAAATAAACCTATTTCTTTGGAAAGTGAAGCAAACTTAAACTCAGATAAA GAAAATATAACCACCTCAAATCTCAAGGCGAGTCATTCCCCTCCTTTGAATCTACCCAACAA CAGCCACGGAATAACAGATTTCTCCAGTAACTCATCAGCAGAGCATTCTTTGGGCAGTCTAA AACCCACATCTACCATTTCCACAAGCCCTCCCTTGATCCATAGCTTTGTTTCTAAAGTGCCT TGGAATGCACCTATAGCAGATGAAGATCTTTTGCCCATCTCAGCACATCCCAATGCTACACC TGCTCTGTCTCAGAAAACTTCACTTGGTCTTTGGTCAATGACACCGTGAAAACTCCTGATA ACAGTTCCATTACAGTTAGCATCCTCTCTCAGAACCAACTTCTCCATCTGTGACCCCCTTG ATAGTGGAACCAAGTGGATGGCTTACCACAAACAGTGATAGCTTCACTGGGTTTACCCCTTA TCAAGAAAAACAACTCTACAGCCTACCTTAAAATTCACCAATAATTCAAAACTCTTTCCAA ATACGTCAGATCCCCAAAAAGAAATAGAAATACAGGAATAGTATTCGGGGCCATTTTAGGT GCTATTCTGGGTGTCTCATTGCTTACTCTTGTGGGCTACTTGTTGTGTGGAAAAAGGAAAAC GGATTCATTTTCCCATCGGCGACTTTATGACGACAGAAATGAACCAGTTCTGCGATTAGACA ATGCACCGGAACCTTATGATGTGAGTTTTGGGAATTCTAGCTACTACAATCCAACTTTGAAT GATTCAGCCATGCCAGAAAGTGAAGAAAATGCACGTGATGGCATTCCTATGGATGACATACC TCCACTTCGTACTTCTGTATAGAACTAACAGCAAAAAGGCGTTAAACAGCAAGTGTCATCTA CATCCTAGCCTTTTGACAAATTCATCTTTCAAAAGGTTACACAAAATTACTGTCACGTGGAT TTTGTCAAGGAGAATCATAAAAGCAGGAGACCAGTAGCAGAAATGTAGACAGGATGTATCAT CCAAAGGTTTTCTTTCTTACAATTTTTGGCCATCCTGAGGCATTTACTAAGTAGCCTTAATT TGTATTTTAGTAGTATTTTCTTAGTAGAAAATATTTCTCGAATCAGATAAAACTAAAAGATT TCACCATTACAGCCCTGCCTCATAACTAAATAATAAAAATTATTCCACCAAAAAATTCTAAA ACAATGAAGATGACTCTTTACTGCTCTGCCTGAAGCCCTAGTACCATAATTCAAGATTGCAT TTTCTTAAATGAAAATTGAAAGGGTGCTTTTTAAAGAAAATTTGACTTAAAGCTAAAAAGAG GACATAGCCCAGAGTTTCTGTTATTGGGAAATTGAGGCAATAGAAATGACAGACCTGTATTC TAGTACGTTATAATTTTCTAGATCAGCACACACATGATCAGCCCACTGAGTTATGAAGCTGA CAATGACTGCATTCAACGGGGCCATGGCAGGAAAGCTGACCCTACCCAGGAAAGTAATAGCT TCTTTAAAAGTCTTCAAAAGGTTTTGGGAATTTTAACTTGTCTTAATATATCTTAGGCTTCAA TTATTTGGGTGCCTTAAAAACTCAATGAGAATCATGGT

FIGURE 24

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58732

><subunit 1 of 1, 334 aa, 1 stop

><MW: 36294, pI: 4.98, NX(S/T): 13

MLALAKILLISTLFYSLLSGSHGKENQDINTTQNIAEVFKTMENKPISLESEANLNSDKENI
TTSNLKASHSPPLNLPNNSHGITDFSSNSSAEHSLGSLKPTSTISTSPPLIHSFVSKVPWNA
PIADEDLLPISAHPNATPALSSENFTWSLVNDTVKTPDNSSITVSILSSEPTSPSVTPLIVE
PSGWLTTNSDSFTGFTPYQEKTTLQPTLKFTNNSKLFPNTSDPQKENRNTGIVFGAILGAIL
GVSLLTLVGYLLCGKRKTDSFSHRRLYDDRNEPVLRLDNAPEPYDVSFGNSSYYNPTLNDSA
MPESEENARDGIPMDDIPPLRTSV

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 235-262

N-glycosylation site.

amino acids 30-34, 61-65, 79-83, 90-94, 148-152, 155-159, 163-167, 218-222, 225-229, 298-302, 307-311

FIGURE 25

AACAGGATCTCCTCTTGCAGTCTGCAGCCCAGGACGCTGATTCCAGCAGCGCCTTACCGCGC AGCCCGAAGATTCACTATGCTGAAAATCGCCTTCAATACCCCCTACCGCCGTGCAAAAGGAGG AGGCGCGCAAGACGTGGAGGCCCTCCTGAGCCGCACGGTCAGAACTCAGATACTGACCGGC AAGGAGCTCCGAGTTGCCACCCAGGAAAAAGAGGGCTCCTCTGGGAGATGTATGCTTACTCT CTTAGGCCTTTCATCATCTTGGCAGGACTTATTGTTGGTGGAGCCTGCATTTACAAGTACT TCATGCCCAAGAGCACCATTTACCGTGGAGAGATGTGCTTTTTTGATTCTGAGGATCCTGCA AATTCCCTTCGTGGAGGAGGCCTAACTTCCTGCCTGTGACTGAGGAGGCTGACATTCGTGA GGATGACAACATTGCAATCATTGATGTGCCTGTCCCCAGTTTCTCTGATAGTGACCCTGCAG CAATTATTCATGACTTTGAAAAGGGAATGACTGCTTACCTGGACTTGTTGCTGGGGAACTGC TATCTGATGCCCCTCAATACTTCTATTGTTATGCCTCCAAAAAATCTGGTAGAGCTCTTTGG CAAACTGGCGAGTGGCAGATATCTGCCTCAAACTTATGTGGTTCGAGAAGACCTAGTTGCTG AAGTCCTTCCGCCTTCGTCGCAGAGACCTCTTGCTGGGTTTCAACAAACGTGCCATTGATAA $\tt ATGCTGGAAGATTAGACACTTCCCCAACGAATTTATTGTTGAGACCAAGATCTGTCAAGAG{\bf T}$ **AA**GAGGCAACAGATAGAGTGTCCTTGGTAATAAGAAGTCAGAGATTTACAATATGACTTTAA CATTAAGGTTTATGGGATACTCAAGATATTTACTCATGCATTTACTCTTATTGCTTATGCTTT AAAAAAAGGAAAAAAAAAAAAAACTACTAACCACTGCAAGCTCTTGTCAAATTTTTAGTTTAAT GGTTTAGATTTCTGAAAGCAGCATGAATATATCACCTAACATCCTGACAATAAATTCCATCC GTTGTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTAGTAAGCTCTTTATTCATCTTATG GTGGAGCAATTTTAAAATTTGAAATATTTTAAATTGTTTTTGAACTTTTTGTGTAAAATATA TCAGATCTCAACATTGTTGGTTTCTTTTGTTTTCATTTTGTACAACTTTCTTGAATTTAGA AATTACATCTTTGCAGTTCTGTTAGGTGCTCTGTAATTAACCTGACTTATATGTGAACAATT AATGCACAAAATTGTGTAGGTGCTGAATGCTGTAAGGAGTTTAGGTTGTATGAATTCTACAA

FIGURE 26

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58828

<subunit 1 of 1, 263 aa, 1 stop

<MW: 29741, pI: 5.74, NX(S/T): 1

MVKIAFNTPTAVQKEEARQDVEALLSRTVRTQILTGKELRVATQEKEGSSGRCMLTLLGLSF ILAGLIVGGACIYKYFMPKSTIYRGEMCFFDSEDPANSLRGGEPNFLPVTEEADIREDDNIA IIDVPVPSFSDSDPAAIIHDFEKGMTAYLDLLLGNCYLMPLNTSIVMPPKNLVELFGKLASG RYLPQTYVVREDLVAVEEIRDVSNLGIFIYQLCNNRKSFRLRRRDLLLGFNKRAIDKCWKIR HFPNEFIVETKICQE

Type II transmembrane domain:

amino acids 53-75

N-glycosylation site.

amino acids 166-170

Casein kinase II phosphorylation site.

amino acids 35-39, 132-136, 134-138

N-myristoylation site.

amino acids 66-72, 103-109

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 63-74

FIGURE 27

GGAGGAGGGAGGCGGGCAGCCCAGAGCAGCCCCGGGCACCAGCACGGACTCTCT CTTCCAGCCCAGGTGCCCCCACTCTCGCTCCATTCGGCGGGAGCACCCAGTCCTGTACGCC AAGGAACTGGTCCTGGGGGCACCATGGTTTCGGCGGCCAGCCCCCAGCCTCCTCATCCTTCTG TTGCTGCTGCTGGGGTCTGTGCCTGCTACCGACGCCCCGCTCTGTGCCCCTGAAGGCCACGTT CCTGGAGGATGTGGCGGGTAGTGGGGAGGCCGAGGCTCGTCGGCCTCCTCCCCGAGCCTCC CGCCACCTGGACCCCGGCCCTCAGCCCCACATCGATGGGGCCCCAGCCCACACCCTGGGG GGCCCATCACCCCCCACCAACTTCCTGGATGGGATAGTGGACTTCTTCCGCCAGTACGTGAT GCTGATTGCTGTGGTGGGCTCCCTGGCCTTTCTGCTGATGTTCATCGTCTGTGCCGCGGTCA TCACCCGGCAGAAGCAGAAGGCCTCGGCCTATTACCCATCGTCCTTCCCCAAGAAGAAGTAC GTGGACCAGAGTGACCGGGCCGGGGCCCCCGGGCCTTCAGTGAGGTCCCCGACAGAGCCCC CGACAGCAGGCCGAGGAAGCCCTGGATTCCTCCCGGCAGCTCCAGGCCGACATCTTGGCCG CCACCCAGAACCTCAAGTCCCCCACCAGGGCTGCACTGGGCGGTGGGGACGGAGCCAGGATG GTGGAGGCAGGGGCCAGAGGAAGAGGAGAGGCCAGGAGGGGGACCAGGAAGTCCA GGGACATGGGGTCCCAGTGGAGACACCAGAGGCGCAGGAGGAGCCGTGCTCAGGGGTCCTTG AGGGGGCTGTGGTGGCCGGTGAGGGCCAAGGGGAGCTGGAAGGGTCTCTCTTGTTAGCCCAG GAAGCCCAGGGACCAGTGGGTCCCCCGAAAGCCCCTGTGCTTGCAGCAGTGTCCACCCCAG TGTCTAACAGTCCTCCCGGGCTGCCAGCCCTGACTGTCGGGCCCCCAAGTGGTCACCTCCCC TGCCAATCCCAGCATGTGCTGATTCTACAGCAGGCAGAAATGCTGGTCCCCGGTGCCCCGGA GGAATCTTACCAAGTGCCATCATCCTTCACCTCAGCAGCCCCAAAGGGCTACATCCTACAGC ACAGCTCCCCTGACAAAGTGAGGGAGGGCACGTGTCCCTGTGACAGCCAGGATAAAACATCC CCCAAAGTGCTGGGATTACAGGCGTGAGCCACCGTGCCCGGCCCAAACTACTTTTTAAAACA GCTACAGGGTAAAATCCTGCAGCACCCACTCTGGAAAATACTGCTCTTAATTTTCCTGAAGG TGGCCCCTGTTTCTAGTTGGTCCAGGATTAGGGATGTGGGGTATAGGGCATTTAAATCCTC TCAAGCGCTCTCCAAGCACCCCCGGCCTGGGGGTGAGTTTCTCATCCCGCTACTGCTGG GATCAGGTTGAATGAATGGAACTCTTCCTGTCTGGCCTCCAAAGCAGCCTAGAAGCTGAGGG GCTGTGTTTGAGGGGACCTCCACCCTGGGGAAGTCCGAGGGGCTGGGGAAGGGTTTCTGACG CCCAGCCTGGAGCAGGGGGGCCCTGGCCACCCCTGTTGCTCACACATTGTCTGGCAGCCTG TGTCCACATATTCGTCAGTCCTCGACAGGGAGCCTGGGCTCCGTCCTGCTTTAGGGAGGCT CTGGCAGGAGGTCCTCCCCCATCCCTCCATCTGGGGCTCCCCCAACCTCTGCACAGCTCT

FIGURE 28

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58852

><subunit 1 of 1, 283 aa, 1 stop

><MW: 29191, pI: 4.52, NX(S/T): 0

MVSAAAPSLLILLLLLGSVPATDARSVPLKATFLEDVAGSGEAEGSSASSPSLPPPWTPAL SPTSMGPQPTTLGGPSPPTNFLDGIVDFFRQYVMLIAVVGSLAFLLMFIVCAAVITRQKQKA SAYYPSSFPKKKYVDQSDRAGGPRAFSEVPDRAPDSRPEEALDSSRQLQADILAATQNLKSP TRAALGGGDGARMVEGRGAEEEEKGSQEGDQEVQGHGVPVETPEAQEEPCSGVLEGAVVAGE GQGELEGSLLLAOEAOGPVGPPESPCACSSVHPSV

Signal peptide:

amino acids 1-25

Transmembrane domain:

amino acids 94-118

N-myristoylation site.

amino acids 18-24, 40-46, 46-52, 145-151, 192-198, 193-199, 211-217, 238-244, 242-248

FIGURE 29

AAGTTCCAGGGGCCCTGGCCTGCTGCTGGCCTCTGCCTGGGCAGTGGGGAGGCTGG CCCCTGCAGAGCGGAGAGGAAAGCACTGGGACAAATATTGGGGAGGCCCTTGGACATGGCC TGGGAGACGCCCTGAGCGAAGGGGTGGGAAAGGCCATTGGCAAAGAGGCCGGAGGGCCAGCT GGCTCTAAAGTCAGTGAGGCCCTTGGCCAAGGGACCAGAGAAGCAGTTGGCACTGGAGTCAG GCAGGTTCCAGGCTTTGGCGCAGCAGATGCTTTGGGCAACAGGGTCGGGGAAGCAGCCCATG CTCTGGGAAACACTGGGCACGAGATTGGCAGACAGGCAGAAGATGTCATTCGACACGGAGCA GATGCTGTCCGCGGCTCCTGGCAGGGGGTGCCTGGCCACAGTGGTGCTTGGGAAACTTCTGG AGGCCATGGCATCTTTGGCTCTCAAGGTGGCCTTGGAGGCCAGGGCCAGGGCAATCCTGGAG CCTCAGGGAGCTCCCTGGGGTCAAGGAGGCCAATGGAGGGCCCACCAAACTTTGGGACCAACAC TCAGGGAGCTGTGGCCCAGCCTGGCTATGGTTCAGTGAGAGCCAGCAACCAGAATGAAGGGT GCACGAATCCCCCACCATCTGGCTCAGGTGGAGGCTCCAGCAACTCTGGGGGAGGCAGCGGC TCACAGTCGGGCAGCAGTGGCAGTGGCAGTGGTGACAACAACAATGGCAGCAGTGG GTGGCAGCAGTGGCAACAGTGGTGGCAGCAGAGGTGACAGCGGCAGTGAGTCCTCCTGGGGA TCCAGCACCGGCTCCTCCTCCGGCAACCACGGTGGGAGCGGGGGGGAGAATGGACATAAACC CGGGTGTGAAAAGCCAGGGAATGAAGCCCGCGGGAGCGGGGAATCTGGGATTCAGGGCTTCA GAGGACAGGGAGTTTCCAGCAACATGAGGGAAATAAGCAAAGAGGGCAATCGCCTCCTTGGA GGCTCTGGAGACAATTATCGGGGGCAAGGGTCGAGCTGGGGCAGTGGAGGAGGTGACGCTGT TGGTGGAGTCAATACTGTGAACTCTGAGACGTCTCCTGGGATGTTTAACTTTGACACTTTCT GGAAGAATTTTAAATCCAAGCTGGGTTTCATCAACTGGGATGCCATAAACAAGGACCAGAGA ${\tt AGCTCTCGCATCCCG}{\tt \underline{TGA}}{\tt CCTCCAGACAAGGAGCCACCAGATTGGATGGGAGCCCCCACACT}$ CCCTCCTTAAAACACCACCCTCTCATCACTAATCTCAGCCCTTGCCCTTGAAATAAACCTTA

FIGURE 30

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA59212

><subunit 1 of 1, 440 aa, 1 stop

><MW: 42208, pI: 6.36, NX(S/T): 1

MKFQGPLACLLLALCLGSGEAGPLQSGEESTGTNIGEALGHGLGDALSEGVGKAIGKEAGGA
AGSKVSEALGQGTREAVGTGVRQVPGFGAADALGNRVGEAAHALGNTGHEIGRQAEDVIRHG
ADAVRGSWQGVPGHSGAWETSGGHGIFGSQGGLGGQGQGNPGGLGTPWVHGYPGNSAGSFGM
NPQGAPWGQGGNGGPPNFGTNTQGAVAQPGYGSVRASNQNEGCTNPPPSGSGGGSSNSGGGS
GSQSGSSGSGSNGDNNNGSSSGGSSSGSSSGSSGGSSGGSSGNSGGSRGDSGSESSW
GSSTGSSSGHHGGSGGNGHKPGCEKPGNEARGSGESGIQGFRGQGVSSNMREISKEGNRLL
GGSGDNYRGQGSSWGSGGGDAVGGVNTVNSETSPGMFNFDTFWKNFKSKLGFINWDAINKDQ
RSSRIP

Signal peptide:

amino acids 1-21

N-glycosylation site.

amino acids 265-269

Glycosaminoglycan attachment site.

amino acids 235-239, 237-241, 244-248, 255-259, 324-328, 388-392 Casein kinase II phosphorylation site.

amino acids 26-30, 109-113, 259-263, 300-304, 304-308

N-myristoylation site.

amino acids 17-23, 32-38, 42-48, 50-56, 60-66, 61-67, 64-70, 74-80, 90-96, 96-102, 130-136, 140-146, 149-155, 152-158, 155-161, 159-165, 163-169, 178-184, 190-196, 194-200, 199-205, 218-224, 236-242, 238-244, 239-245, 240-246, 245-251, 246-252, 249-252, 253-259, 256-262, 266-272, 270-276, 271-277, 275-281, 279-285, 283-289, 284-290, 287-293, 288-294, 291-297, 292-298, 295-301, 298-304, 305-311, 311-317, 315-321, 319-325, 322-328, 323-329, 325-331, 343-349, 354-360, 356-362, 374-380, 381-387, 383-389, 387-393, 389-395, 395-401

Cell attachment sequence.

amino acids 301-304

FIGURE 31

GACCGGTCCTCCGGTCCTGGATGTGCGGACTCTGCTGCAGCGAGGGCTGCAGGCCCGCCGGGGGGGTGCTCACCG TGCCCTGGCTGGTGGAGTTTCTCTCTTTGCTGACCATGTTGTTCCCTTGCTGGAATATTACCGGGACATCTTCA CTCTCCTGCTGCGCCTGCACCGGAGCTTGGTGTTGTCGCAGGAGAGTGAGGGGAAGATGTGTTTCCTGAACAAGC GTCCCTCATATGCCTTTGAGGTGGACACAGTAGCCCCAGAGCATGGCTTGGACAATGCGCCTGTGGTGGACCAGC AGCTGCTCTACACCTGCTGCCCCTACATCGGAGAGCTCCGGAAACTGCTCGCTTCGTGGGTGTCAGGCAGTAGTG GACGGAGTGGGGGCTTCATGAGGAAAATCACCCCCACCACTACCACCAGCCTGGGAGCCCAGCCTTCCCAGACCA GCCAGGGGCTGCAGGCACAGCTCGCCCAGGCCTTTTTCCACAACCAGCCGCCCTCCTTGCGCCGGACCGTAGAGT TCGTGGCAGAAAGAATTGGATCAAACTGTGTCAAACATATCAAGGCTACACTGGTGGCAGATCTGGTGCGCCAGG TGTGTTCCCAGCTGTGCCCTCACGGGGCCCAGGCATTGGCCCTGGGGCGGGAGTTCTCTCAAAGGAAGAGCCCTG GGGCTGTGCGGCGCTGCTTCCAGAGGAGACCCCGGCAGCCGTTCTGAGCAGTGCAGAGAACATTGCTGTGGGGC TGAGTCGCACACTTCGAGCCCAGGGTCCTGAACCTGCTCCCGGGGGGAGCGGAGGGGCTGCTCCCGCGCCTGAC GTGCTCTCCTTGGCCGTGGGGCCACGGGACCCTGACGAGGGAGTCTCCCCAGAGCATCTGGAACAGCTCCTAGGC CAGCTGGGCCAGACGCTGCGGTGCCGCCAGTTCCTGTGCCCACCTGCTGAGCAGCATCTGGCAAAGTGCTCTGTG CTGCTGAGCCCAAGAAATGTGGGGCTTCTGGCAGACACAAGGCCAAGGGAGTGGGACTTGCTGCTATTCTTGCTA TGGCCAGGGGACTTTGCTGAAGAATTAGCAACACTGTCTAATCTGTTTCTAGCCGAGCCCCACCTGCCAGAACCC CAGCTAAGAGCCTGTGAGTTGGTGCAGCCAAACCGGGGCACTGTGCTGGCCCAGAGCTAGGGCTGAGAAGTGGCC TGGTTGGGGTGTAGCTGGGTCTACAGTCAGACTTCCTGCTCTAAGGGTGTCACTGCCTGGCATCCCACCACGCGA ATCCTAGAGGAAGGAGAGTTGGCCTGATTTGGGATTATGGCAGAAAAGTCCAGAGATGCCAGTCCTGGAGTAGAA CATTTGCTATCCCAGCATCTCTTAAAACTTTGTAGTCTTGGAATTCATGACAGAGGCAAATGACTCCTGCTTAAC TTATGAAGAAAGTTAAAACATGAATCTTGGGAGTCTACATTTTCTTATCACCAGGAGCTGGACTGCCATCTCCTT ATAAATGCCTAACACAGGCCGGGTCTGGTGGCTCATGCCTGTAATCCCAGCACTTTGAGAGGCCTGAGGTCGGCG GACTGCCTGAGGTCAGGAATTCAAGACCAGCCTGGCCAACATGGCAAAACCCCATCTCTACTAAAAATAAAAAAA TTATTAGCTGGGCATGGTGTGTGCCTGTAATCCCAGCTACTCAGGAGGATGAGGCAGGAGACCTGCTTGAAC CTGGAGGTGGAGGTTGCAGTGAGCCGAGGTCGCACCACTGCACTCCAGTCTGGGTAACAGAGCGAGACTTTCTAG AAAAAGCCTAACAAACAGATAAGGTAGGACTCAACCAACTGAACCTGACTTTCCCCCTGTACCTTCAGCCCCTG TGCAGGTAGTAACCTCTTGAGACCTCTCCCTGACCAGGGACCAAGCACAGGGCATTTAGAGCTTTTTAGAATAAA TTTTTTTTTTTTTTAAAAAGGGCTTTTATTAAAATTCTCCCCACACGATGGCTCCTGCAATCTGCCACAGCTC TGGGGCGTGTCCTGTAGGGAAAGGCCCTGTTTTCCCTGAGGCGGGGCTTGTCCATGGGTCCGCGGAGCTG GCCGTGCTTGGCGCCCTGGCGTGTCTTAGCTGCTTCTTGCCGGGCACAGAGCTGCGGGGTCTGGGGGCACCGGG AGCTAAGAGCAGGCTCTGGTGCAGGGGTGGAGGCCTGTCTCTTAACCGACACCCTGAGGTGCTCCTGAGATGCTG GGTCCACCCTGAGTGGCACGGGGAGCAGCTGTGGCCGGTGCTCCTTCYTAGGCCAGTCCTGGGGAAACTAAGCTC ${\tt GGGCCCTTCTTTGCAAAGACCGAGGATGGGGTGGGTGGGGGGACTCATGGGGAATGGCCTGAGGAGCTACGTGT}$ GAAGAGGGCCCGGTTTGTTGGCTGCAGCGGCCTGGAGCGCCTCTCTCCTGAGCCTCAGTTTCCCTTTCCGTCTA ATGAAGAACATGCCGTCTCGGTGTCTCAGGGCTATTAGGACTTGCCCTCAGGAAGTGGCCTTGGACGAGCGTCAT GTTATTTTCACAACTGTCCTGCGACGTTGGCCTGGGCACGTCATGGAATGGCCCATGTCCCTCTGCTGCGTGGAC GTCGCGGTCGGGAGTGCCAGCCAGAGGCGGGGCCAGACGTGCGCCTGGGGGTGAGGGGAGGCGCCCCGGGAGGG GGCCGGTAGACAAAGTGGAAGTCGCGCTTGGGCTCGCTGCGCAGCAGGTAGCCCTTGATGCAGTGCGGCAGCGCG TCGTCCGCCAGCTGGAAGCAGCGCCCGTCCACCAGCACGAACAGCCGGTGCGCCT

FIGURE 32

MCFLNKLLLLAVLGWLFQIPTVPEDLFFLEEGPSYAFEVDTVAPEHGLDNAPVVDQQLLYTC CPYIGELRKLLASWVSGSSGRSGGFMRKITPTTTTSLGAQPSQTSQGLQAQLAQAFFHNQPP SLRRTVEFVAERIGSNCVKHIKATLVADLVRQAESLLQEQLVTQGEEGGDPAQLLEILCSQL CPHGAQALALGREFCQRKSPGAVRALLPEETPAAVLSSAENIAVGLATEKACAWLSANITAL IRREVKAAVSRTLRAOGPEPAARGERRGCSRA

Signal peptide:

amino acids 1-18

N-glycosylation site.

amino acids 244-248

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 89-93

Casein kinase II phosphorylation site.

amino acids 21-25, 167-171, 223-227

N-myristoylation site.

amino acids 100-106, 172-178, 207-213

Microbodies C-terminal targeting signal.

amino acids 278-282

FIGURE 33

TCCCTTGACAGGTCTGGTGGCTGGTTCGGGGTCTACTGAAGGCTGTCTTGATCAGGAAACTG AAGACTCTCTGCTTTTGCCACAGCAGTTCCTGCAGCTTCCTTGAGGTGTGAACCCACATCCC TGCCCCCAGGGCCACCTGCAGGACGCCGACACCTACCCCTCAGCAGACGCCGGAGAGAAATG AGTAGCAACAAAGAGCAGCGGTCAGCAGTGTTCGTGATCCTCTTTGCCCTCATCACCATCCT CATCCTCTACAGCTCCAACAGTGCCAATGAGGTCTTCCATTACGGCTCCCTGCGGGGCCGTA GCCGCCGACCTGTCAACCTCAAGAAGTGGAGCATCACTGACGGCTATGTCCCCATTCTCGGC AACAAGACACTGCCCTCTCGGTGCCACCAGTGTGTGATTGTCAGCAGCTCCAGCCACCTGCT CCACCACTGGCTACTCAGCTGATGTGGGCAACAAGACCACCTACCGCGTCGTGGCCCATTCC AGTGTGTTCCGCGTGCTGAGGAGGCCCCAGGAGTTTGTCAACCGGACCCCTGAAACCGTGTT AGCGAGCGGGCCTGGTGTTCCCCAACATGGAAGCATATGCCGTCTCTCCCGGCCGCATGCGG CAATTTGACGACCTCTTCCGGGGTGAGACGGGCAAGGACAGGGAGAAGTCTCATTCGTGGTT GAGCACAGGCTGGTTTACCATGGTGATCGCGGTGGAGTTGTGTGACCACGTGCATGTCTATG TACGAGCCCAAGGGGCCGGACGAATGTGTCACCTACATCCAGAATGAGCACAGTCGCAAGGG CAACCACCACCGCTTCATCACCGAGAAAAGGGTCTTCTCATCGTGGGCCCAGCTGTATGGCA AGGAGAAGCAGCCTCCGCCCAGCCGCTAGGCCAGGGACCATCTTCTGGCCAATCAAGGCTTG CTGGAGTGTCTCCCAGCCAATCAGGGCCTTGAGGAGGATGTATCCTCCAGCCAATCAGGGCC TGGGGAATCTGTTGGCGAATCAGGGATTTGGGAGTCTATGTGGTTAATCAGGGGTGTCTTTC TTGTGCAGTCAGGGTCTGCGCACAGTCAATCAGGGTAGAGGGGGGTATTTCTGAGTCAATCTG AGGCTAAGGACATGTCCTTTCCCATGAGGCCTTGGTTCAGAGCCCCAGGAATGGACCCCCCA ATCACTCCCCACTCTGCTGGGATAATGGGGTCCTGTCCCAAGGAGCTGGGAACTTGGTGTTG CCCCCTCAATTTCCAGCACCAGAAAGAGAGATTGTGTGGGGGGTAGAAGCTGTCTGGAGGCCC GGCTGGCATCCAGGTCTTGGCTCTGCCCTGAGACCTTGGACAAACCCTTCCCCCTCTCTGGG CACCCTTCTGCCCACACCAGTTTCCAGTGCGGAGTCTGAGACCCTTTCCACCTCCCCTACAA GTGCCCTCGGGTCTGTCCCCCGTCTGGACCCTCCCAGCCACTATCCCTTGCTGGAAGGCT CAGCTCTTTGGGGGGTCTGGGGTGACCTCCCCACCTCCTGGAAAACTTTAGGGTATTTTTGC GCAAACTCCTTCAGGGTTGGGGGACTCTGAAGGAAACGGGACAAAACCTTAAGCTGTTTTCT TAGCCCCTCAGCCAGCTGCCATTAGCTTGGCTCTTAAAGGGCCAGGCCTCCTTTTCTGCCCT CTAGCAGGGAGGTTTTCCAACTGTTGGAGGCGCCTTTGGGGGCTGCCCCTTTGTCTGGAGTCA CTGGGGGCTTCCGAGGGTCTCCTCGACCCTCTGTCGTCCTGGGGATGGCTGTCGGGAGCTGT ATCACCTGGGTTCTGTCCCCTGGCTCTGTATCAGGCACTTTATTAAAGCTGGGCCTCAGTGG GGTGTGTTTGTCTCCTGCTCTTCTGGAGCCTGGAAGGAAAGGGCTTCAGGAGGAGGCTGTGA GGCTGGAGGACCAGATGGAGGAGGCCAGCAGCTAGCCATTGCACACTGGGGTGATGGGTGG GGGCGGTGACTGCCCCAGACTTGGTTTTGTAATGATTTGTACAGGAATAAACACACCTACGC

FIGURE 34

MSSNKEQRSAVFVILFALITILILYSSNSANEVFHYGSLRGRSRRPVNLKKWSITDGYVPIL GNKTLPSRCHQCVIVSSSSHLLGTKLGPEIERAECTIRMNDAPTTGYSADVGNKTTYRVVAH SSVFRVLRRPQEFVNRTPETVFIFWGPPSKMQKPQGSLVRVIQRAGLVFPNMEAYAVSPGRM RQFDDLFRGETGKDREKSHSWLSTGWFTMVIAVELCDHVHVYGMVPPNYCSQRPRLQRMPYH YYEPKGPDECVTYIQNEHSRKGNHHRFITEKRVFSSWAOLYGITFSHPSWT

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 9-31 (type II)

N-glycosylation site.

amino acids 64-68, 115-119

 $\mathtt{cAMP-}$ and $\mathtt{cGMP-} \mathtt{dependent}$ protein kinase phosphorylation site.

amino acids 50-54

Casein kinase II phosphorylation site.

amino acids 3-7, 29-33, 53-57, 197-201

Tyrosine kinase phosphorylation site.

amino acids 253-262

N-myristoylation site.

amino acids 37-43, 114-120, 290-294

FIGURE 35

GTTTCTCATAGTTGGCGTCTTCTAAAGGAAAAACACTAAAATGAGGAACTCAGCGGACCGGGAGCGACGCAGCTT GAGGGAAGCATCCCTAGCTGTTGGCGCAGAGGGGCCGAGGCTGAAGCCGAGTGGCCCGAGGTGTCTGAGGGGCCTGG GGCAAAGGTGAAAGAGTTTCAGAACAAGCTTCCTGGAACCCATGACCCATGAAGTCTTGTCGACATTTATACCGT CTGAGGGTAGCAGCTCGAAACTAGAAGAAGTGGAGTGTTGCCAGGGACGGCAGTATCTCTTTGTGTGACCCTGGC GGCCTATGGGACGTTGGCTTCAGACCTTTGTGATACACCATGCTGCGTGGGACGATGACGGCGTGGAGAGGAATG AGGCCTGAGGTCACACTGGCTTGCCTCCTCCTAGCCACAGCAGGCTGCTTTGCTGACTTGAACGAGGTCCCTCAG GTCACCGTCCAGCCTGCGTCCACCGTCCAGAAGCCCGGAGGCACTGTGATCTTGGGCTGCGTGGTGGAACCTCCA AGGATGAATGTAACCTGGCGCCTGAATGGAAAGGAGCTGAATGGCTCGGATGATGCTCTGGGTGTCCTCATCACC CACGGGACCCTCGTCATCACTGCCCTTAACAACCACACTGTGGGACGGTACCAGTGTGTGGCCCGGATGCCTGCG GGGGCTGTGGCCAGCCACCTGTGACACTAGCCAATCTCCAGGACTTCAAGTTAGATGTGCAGCACGTG TACAGCGTCAAACAAGAGTGGCTGGAGGCCTCCAGAGGTAACTACCTGATCATGCCCTCAGGGAACCTCCAGATT GTGAATGCCAGCCAGGAGGACGAGGGCATGTACAAGTGTGCAGCCTACAACCCAGTGACCCAGGAAGTGAAAACC TCCGGCTCCAGCGACAGGCTACGTGTGCGCCGCTCCACCGCTGAGGCTGCCCGCATCATCTACCCCCCAGAGGCC CAAACCATCATCGTCACCAAAGGCCAGAGTCTCATTCTGGAGTGTGTGGCCAGTGGAATCCCACCCCCACGGGTC ACCTGGGCCAAGGATGGGTCCAGTGTCACCGGCTACAACAAGACGCGCTTCCTGCTGAGCAACCTCCTCATCGAC ACCACCAGCGAGGAGGACTCAGGCACCTACCGCTGCATGGCCGACAATGGGGTTGGGCAGCCCGGGGCAGCGGTC ATCCTCTACAATGTCCAGGTGTTTGAACCCCCTGAGGTCACCATGGAGCTATCCCAGCTGGTCATCCCCTGGGGC CAGAGTGCCAAGCTTACCTGTGAGGTGCGTGGGAACCCCCCGCCCTCCGTGCTGTGGCTGAGGAATGCTGTGCCC CTCATCTCCAGCCAGCGCCTCCGGCTCTCCCGCAGGGCCCTGCGCGTGCTCAGCATGGGGCCTGAGGACGAAGGC GTCTACCAGTGCATGGCCGAGAACGAGGTTGGGAGCGCCCATGCCGTAGTCCAGCTGCGGACCTCCAGGCCAAGC ATAACCCCAAGGCTATGGCAGGATGCTGAGCTGGCTACTGGCACACCTCCTGTATCACCCTCCAAACTCGGCAAC CCTGAGCAGATGCTGAGGGGGCAACCGGCGCTCCCCAGACCCCCAACGTCAGTGGGGCCTGCTTCCCCGAAGTGT TCATATGAACTGGTGTGGCGGCCTCGGCATGAGGGCAGTGGCCGGGCGCCAATCCTCTACTATGTGGTGAAACAC CGCAAGCAGGTCACAAATTCCTCTGACGATTGGACCATCTCTGGCATTCCAGCCAACCAGCACCGCCTGACCCTC ACCAGACTTGACCCCGGGAGCTTGTATGAAGTGGAGATGGCAGCTTACAACTGTGCGGGAGAGGGCCAGACAGCC ATGGTCACCTTCCGAACTGGACGGCGGCCCAAACCCGAGATCATGGCCAGCAAAGAGCAGCAGATCCAGAGAGAC GACCCTGGAGCCAGTCCCCAGAGCAGCCAGCCAGACCACGGCCGCCTCTCCCCCCCAGAAGCTCCCGACAGG CCCACCATCTCCACGGCCTCCGAGACCTCAGTGTACGTGACTTGCCCGTGGGAATGGTGGGTTCCCAATC CAGTCCTTCCGTGTGGAGTACAAGAAGCTAAAGAAAGTGGGAGACTGGATTCTGGCCACCAGCGCCATCCCCCCA TCGCGGCTGTCCGTGGAGATCACGGGCCTAGAGAAAGGCACCTCCTACAAGTTTCGAGTCCGGGCTCTGAACATG CTGGGGGAGAGCGAGCCCAGCGCCCCTCTCGGCCCTACGTGGTGTCGGGCTACAGCGGTCGCGTGTACGAGAGG CCCGTGGCAGGTCCTTATATCACCTTCACGGATGCGGTCAATGAGACCACCATCATGCTCAAGTGGATGTACATC GACTACAAGAAGGATATGGTGGAAGGGGACAAGTACTGGCACTCCATCAGCCACCTGCAGCCAGAGACCTCCTAC GACATTAAGATGCAGTGCTTCAATGAAGGAGGGGAGAGCGAGTTCAGCAACGTGATGATCTGTGAGACCAAAGCT CGGAAGTCTTCTGGCCAGCCTGGTCGACTGCCACCCCAACTCTGGCCCCACCACAGCCGCCCCTTCCTGAAACC CTGGGCTCCATCGTTCATCATCGTCACCTTCATCCCCTTCTGCTTGTGGAGGGCCTGGTCTAAGCAAAAACAT ACAACAGACCTGGGTTTTCCTCGAAGTGCCCTTCCACCCTCCTGCCCGTATACTATGGTGCCATTGGGAGGACTC CCAGGCCACCAGGCCAGTGGACAGCCCTACCTCAGTGGCATCAGTGGACGGGCCTGTGCTAATGGGATCCACATG AATAGGGGCTGCCCTCGGCTGCAGTGGGCTACCCGGGCATGAAGCCCCAGCAGCACTGCCCAGGCGAGCTTCAG CAGCAGAGTGACACCAGCAGCCTGCTGAGGCAGACCCATCTTGGCAATGGATATGACCCCCAAAGTCACCAGATC CTGCAGCCCCATCACGACTGCTGCCAACGCCAGGAGCAGCCTGCTGCTGTGGGCCAGTCAGGGGTGAGGAGAGCC CCCGACAGTCCTGTCCTGGAAGCAGTGTGGGACCCTCCATTTCACTCAGGGCCCCCATGCTGCTTGGGCCTTGTG GCCTACGTAGGACAGGAACCTGGAATGCAGCTCTCCCCGGGGCCACTGGTGCGTGTGTCTTTTGAAACACCACCT TATGTTTTATAATTCTGGAGAGACATAAGGAGTCCTACCCGTTGAGGTTGGAGAGGGAAAATAAAGAAGCTGCCA CCTAACAGGAGTCACCCAGGAAAGCACCGCACAGGCTGGCGCGGGACAGACTCCTAACCTGGGGCCTCTGCAGTG TGAGGGAACAGCAAGGGGCACGGTATCACAGCCTGGAGACACCCACACAGATGGCTGGATCCGGTGCTACGGGAA ACATTTTCCTAAGATGCCCATGAGAACAGACCAAGATGTGTACAGCACTATGAGCATTAAAAAACCTTCCAGAAT

FIGURE 36

MLRGTMTAWRGMRPEVTLACLLLATAGCFADLNEVPQVTVQPASTVQKPGGTVILGCVVEPP RMNVTWRLNGKELNGSDDALGVLITHGTLVITALNNHTVGRYQCVARMPAGAVASVPATVTL ANLODFKLDVOHVIEVDEGNTAVIACHLPESHPKAOVRYSVKQEWLEASRGNYLIMPSGNLO IVNASQEDEGMYKCAAYNPVTOEVKTSGSSDRLRVRRSTAEAARIIYPPEAQTIIVTKGOSL ILECVASGIPPPRVTWAKDGSSVTGYNKTRFLLSNLLIDTTSEEDSGTYRCMADNGVGOPGA AVILYNVQVFEPPEVTMELSOLVIPWGQSAKLTCEVRGNPPPSVLWLRNAVPLISSORLRLS RRALRVLSMGPEDEGVYQCMAENEVGSAHAVVQLRTSRPSITPRLWQDAELATGTPPVSPSK LGNPEOMLRGOPALPRPPTSVGPASPKCPGEKGOGAPAEAPIILSSPRTSKTDSYELVWRPR HEGSGRAPILYYVVKHRKQVTNSSDDWTISGIPANQHRLTLTRLDPGSLYEVEMAAYNCAGE GQTAMVTFRTGRRPKPEIMASKEQQIQRDDPGASPQSSSQPDHGRLSPPEAPDRPTISTASE TSVYVTWIPRGNGGFPIQSFRVEYKKLKKVGDWILATSAIPPSRLSVEITGLEKGTSYKFRV RALNMLGESEPSAPSRPYVVSGYSGRVYERPVAGPYITFTDAVNETTIMLKWMYIPASNNNT PIHGFYIYYRPTDSDNDSDYKKDMVEGDKYWHSISHLQPETSYDIKMQCFNEGGESEFSNVM ICETKARKSSGOPGRLPPPTLAPPOPPLPETIERPVGTGAMVARSSDLPYLIVGVVLGSIVL IIVTFIPFCLWRAWSKQKHTTDLGFPRSALPPSCPYTMVPLGGLPGHQASGQPYLSGISGRA CANGIHMNRGCPSAAVGYPGMKPOOHCPGELQQQSDTSSLLRQTHLGNGYDPQSHQITRGPK SSPDEGSFLYTLPDDSTHQLLQPHHDCCQRQEQPAAVGQSGVRRAPDSPVLEAVWDPPFHSG PPCCLGLVPVEEVDSPDSCQVSGGDWCPQHPVGAYVGQEPGMQLSPGPLVRVSFETPPLTI

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 16-30 (type II), 854-879

FIGURE 37

CGGGAGGCTGGGTCGTCATGATCCGGACCCCATTGTCGGCCTCTGCCCATCGCCTGCTCCTC CCAGGCTCCCGCGGCCGACCCCGCGCAACATGCAGCCCACGGGCCGCGAGGGTTCCCGCGC GCTCAGCCGGCGTATCTGCGGCGTCTGCTGCTCCTGCTACTGCTGCTGCTGCTGCGGCAGC CCGTAACCCGCGGGAGACCACGCCGGGCGCCCCCAGAGCCCTCTCCACGCTGGGCTCCCCC AGCCTCTTCACCACGCCGGGTGTCCCCAGCGCCCTCACTACCCCAGGCCTCACTACGCCAGG CACCCCAAAACCCTGGACCTTCGGGGTCGCGCGCGGGGCCCTGATGCGGAGTTTCCCACTCG TGGACGGCCACAATGACCTGCCCCAGGTCCTGAGACAGCGTTACAAGAATGTGCTTCAGGAT GTTAACCTGCGAAATTTCAGCCATGGTCAGACCAGCCTGGACAGGCTTAGAGACGGCCTCGT GGGTGCCCAGTTCTGGTCAGCCTCCGTCTCATGCCAGTCCCAGGACCAGACTGCCGTGCGCC TCGCCCTGGAGCAGATTGACCTCATTCACCGCATGTGTGCCTCCTACTCTGAACTCGAGCTT TGGTCACTCACTGGACAGCAGCCTCTCTGTGCTGCGCAGTTTCTATGTGCTGGGGGTGCGCT ACCTGACACTTACCTTCACCTGCAGTACACCATGGGCAGAGGTTCCACCAAGTTCAGACAC CACATGTACACCAACGTCAGCGGATTGACAAGCTTTGGTGAGAAAGTAGTAGAGGAGTTGAA CCGCCTGGGCATGATGATAGATTTGTCCTATGCATCGGACACCTTGATAAGAAGGGTCCTGG TTGAATGTTCCCGATGATATCCTGCAGCTTCTGAAGAACGGTGGCATCGTGATGGTGACACT GTCCATGGGGGTGCTGCAGCTGCAACCTGCTAACGTGTCCACTGTGGCAGATCACTTTG ACCACATCAGGGCAGTCATTGGATCTGAGTTCATCGGGATTGGTGGAAATTATGACGGGACT GGCCGGTTCCCTCAGGGGCTGGAGGATGTGTCCACATACCCAGTCCTGATAGAGGAGTTGCT GAGTCGTASCTGGAGCGAGGAAGAGCTTCAAGGTGTCCTTCGTGGAAACCTGCTGCGGGTCT TCAGACAAGTGGAAAAGGTGAGAGAGGAGGAGAGCCGCAGAGCCCCGTGGAGGTTT CCATATGGGCAACTGAGCACATCCTGCCACCTCGTGCCTCAGAATGGACACCAGGC TACTCATCTGGAGGTGACCAAGCAGCCAACCAATCGGGTCCCCTGGAGGTCCTCAAATGCCT CCCCATACCTTGTTCCAGGCCTTGTGGCTGCCACCATCCCAACCTTCACCCAGTGGCTC TGCTGACACAGTCGGTCCCCGCAGAGGTCACTGTGGCAAAGCCTCACAAAGCCCCCCTCTCCT AGTTCATTCACAAGCATATGCTGAGAATAAACATGTTACACATGGAAAA

FIGURE 38

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA59817

><subunit 1 of 1, 487 aa, 1 stop, 2 unknown

><MW: 53569.32, pI: 7.68, NX(S/T): 5

MQPTGREGSRALSRRYLRRLLLLLLLLLLRQPVTRAETTPGAPRALSTLGSPSLFTTPGVPS
ALTTPGLTTPGTPKTLDLRGRAQALMRSFPLVDGHNDLPQVLRQRYKNVLQDVNLRNFSHGQ
TSLDRLRDGLVGAQFWSASVSCQSQDQTAVRLALEQIDLIHRMCASYSELELVTSAEGLNSS
QKLACLIGVXGGHSLDSSLSVLRSFYVLGVRYLTLTFTCSTPWAESSTKFRHHMYTNVSGLT
SFGEKVVEELNRLGMMIDLSYASDTLIRRVLEVSQAPVIFSHSAARAVCDNLLNVPDDILQL
LKNGGIVMVTLSMGVLQCNLLANVSTVADHFDHIRAVIGSEFIGIGGNYDGTGRFPQGLEDV
STYPVLIEELLSRXWSEEELQGVLRGNLLRVFRQVEKVREESRAQSPVEAEFPYGQLSTSCH
SHLVPQNGHQATHLEVTKQPTNRVPWRSSNASPYLVPGLVAAATIPTFTOWLC

Important features of the protein:

Signal peptide:

amino acids 1-36

Transmembrane domain:

amino acids 313-331

N-glycosylation sites.

amino acids 119-122, 184-187, 243-246 and 333-336

N-myristoylation sites.

amino acids 41-46, 59-64, 73-78, 133-138, 182-187, 194-199, 324-329, 354-359, 357-362, 394-399, 427-432 and 472-477.

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 136-146

FIGURE 39

TGCTAGGCTCTGTCCCACAATGCACCCGAGAGCAGGAGCTGAAAGCCTCTAACACCCACAGA TCCCTCTATGACTGCAATGTGAGGTGTCCGGCTTTGCTGGCCCAGCAAGCCTGATAAGCATG AAGCTCTTATCTTTGGTGGCTGTGGTCGGGTGTTTGCTGGTGCCCCCAGCTGAAGCCAACAA GAGTTCTGAAGATATCCGGTGCAAATGCATCTGTCCACCTTATAGAAACATCAGTGGGCACA GTGCCTGGCCATGACGTGGAGGCCTACTGCCTGCTGTGCGAGTGCAGGTACGAGGAGCGCAG ACATGGCCTTCCTGATGCTGGTGGACCCTCTGATCCGAAAGCCGGATGCATACACTGAGCAA CTGCACAATGAGGAGGAGAATGAGGATGCTCGCTCTATGGCAGCAGCTGCTGCATCCCTCGG GGGACCCCGAGCAAACACTCCTGGAGCGTGTGGAAGGTGCCCAGCAGCGGTGGAAGCTGC AGGTGCAGGAGCAGCGGAAGACAGTCTTCGATCGGCACAAGATGCTCAGCTAGATGGGCTGG TGTGGTTGGGTCAAGGCCCCAACACCATGGCTGCCAGCTTCCAGGCTGGACAAAGCAGGGGG CTACTTCTCCCTCGGTTCCAGTCTTCCCTTTAAAAGCCTGTGGCATTTTTCCTCCTT CTCCCTAACTTTAGAAATGTTGTACTTGGCTATTTTGATTAGGGAAGAGGGATGTGGTCTCT ATGGAGACATTCGAGGCGCCTCAGGAGTGGATGCGATCTGTCTCTCCTGGCTCCACTCTTG CCGCCTTCCAGCTCTGAGTCTTGGGAATGTTGTTACCCTTGGAAGATAAAGCTGGGTCTTCA GGAACTCAGTGTCTGGGAGGAAAGCATGGCCCAGCATTCAGCATGTGTTCCTTTCTGCAGTG GTTCTTATCACCACCTCCCTCCCAGCCCCGGCGCCTCAGCCCCAGCCCCAGCCCCAGCCCTG AGGACAGCTCTGATGGGAGAGCTGGGCCCCCTGAGCCCACTGGGTCTTCAGGGTGCACTGGA AGCTGGTGTTCGCTGTCCCCTGTGCACTTCTCGCACTGGGGCATGGAGTGCCCATGCATACT CTGCTGCCGGTCCCCTCACCTGCACTTGAGGGGTCTGGGCAGTCCCTCCTCTCCCCAGTGTC CACAGTCACTGAGCCAGACGGTCGGTTGGAACATGAGACTCGAGGCTGAGCGTGGATCTGAA CACCACAGCCCTGTACTTGGGTTGCCTCTTGTCCCTGAACTTCGTTGTACCAGTGCATGGA GAGAAAATTTTGTCCTCTTGTCTTAGAGTTGTGTGTAAATCAAGGAAGCCATCATTAAATTG TTTTATTTCTCTCA

FIGURE 40

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA60278

<subunit 1 of 1, 183 aa, 1 stop

<MW: 20574, pI: 6.60, NX(S/T): 3

MKLLSLVAVVGCLLVPPAEANKSSEDIRCKCICPPYRNISGHIYNQNVSQKDCNCLHVVEPM PVPGHDVEAYCLLCECRYEERSTTTIKVIIVIYLSVVGALLLYMAFLMLVDPLIRKPDAYTE QLHNEEENEDARSMAAAASLGGPRANTVLERVEGAQQRWKLQVQEQRKTVFDRHKMLS

Important features:

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 90-112

N-glycosylation sites.

amino acids 21-24, 38-41 and 47-50

FIGURE 41

AGCGGGTCTCGCTTGGGTTCCGCTAATTTCTGTCCTGAGGCGTGAGACTGAGTTCATAGGGTCCTGGGTCCCCGA ACCAGGAAGGGTTGAGGGAACACAATCTGCAAGCCCCCGCGACCCAAGTGAGGGGCCCCGTGTTGGGGTCCTCCC TCCCTTTGCATTCCCACCCCTCCGGGCTTTGCGTCTTCCTGGGGACCCCCTCGCCGGGAGATGGCCGCGTTGATG CGGAGCAAGGATTCGTCCTGCTGCTCCTACTGGCCGCGGTGCTGATGGTGGAGAGCTCACAGATCGGCAGT TCGCGGGCCAAACTCAACTCCATCAAGTCCTCTCTGGGCGGGGAGACGCCTGGTCAGGCCGCCAATCGATCTGCG GGCATGTACCAAGGACTGGCATTCGGCGGCAGTAAGAAGGGCAAAAACCTGGGGCAGGCCTACCCTTGTAGCAGT GATAAGGAGTGTGAAGTTGGGAGGTATTGCCACAGTCCCCACCAAGGATCATCGGCCTGCATGGTGTGTCGGAGA AAAAAGAGCGCTGCCACCGAGATGGCATGTGCTGCCCCAGTACCCGCTGCAATAATGGCATCTGTATCCCAGTT ACTGAAAGCATCTTAACCCCTCACATCCCGGCTCTGGATGGTACTCGGCACAGAGATCGAAACCACGGTCATTAC GACCCCTGCCTACGATCATCAGACTGCATTGAAGGGTTTTTGCTGTGCTCGTCATTTCTGGACCAAAATCTGCAAA CCAGTGCTCCATCAGGGGGAAGTCTGTACCAAACAACGCAAGAAGGGTTCTCATGGGCTGGAAATTTTCCAGCGT TGCGACTGTGCGAAGGGCCTGTCTTGCAAAGTATGGAAAGATGCCACCTACTCCTCCAAAGCCAGACTCCATGTG TGTCAGAAAATTTGATCACCATTGAGGAACATCATCAATTGCAGACTGTGAAGTTGTGTATTTAATGCATTATAG CATGGTGGAAAATAAGGTTCAGATGCAGAAGAATGGCTAAAATAAGAAACGTGATAAGAATATAGATGATCACAA AAAGGGAGAAAGAAAACATGAACTGAACTAGATTAGAATGGGTGACAAATGCAGTGCAGCCAGTGTTTCCATTATG CAACTTGTCTATGTAAATAATGTACACATTTGTGGAAAATGCTATTATTAAGAGAACAAGCACAGTGGAAATT ACTGATGAGTAGCATGTGACTTTCCAAGAGTTTAGGTTGTGCTGGAGGAGGGGTTTCCTTCAGATTGCTGATTGC TTATACAAATAACCTACATGCCAGATTTCTATTCAACGTTAGAGTTTAACAAAATACTCCTAGAATAACTTGTTA TACAATAGGTTCTAAAAATTAAAATTGCTAAACAAGAAATGAAACATGGAGCATTGTTAATTTACAACAGAAAAT TTCAGATTCTACGGAATGACAGTATATCTCTCTTTATCCTATGTGATTCCTGCTCTGAATGCATTATATTTTCCA AACTATACCCATAAATTGTGACTAGTAAAATACTTACACAGAGCAGAATTTTCACAGATGGCAAAAAAATTTAAA GATGTCCAATATATGTGGGAAAAGAGCTAACAGAGAGATCATTATTTCTTAAAGATTGGCCATAACCTATATTTT GATAGAATTAGATTGGTAAATACATGTATTCATACATACTCTGTGGTAATAGAGACTTAAGCTGGATCTGTACTG CACTGGAGTAAGCAAGAAAATTGGGAAAACTTTTTCGTTTGTTCAGGTTTTGGCAACACATAGATCATATGTCTG AGGCACAAGTTGGCTGTTCATCTTTGAAACCAGGGGATGCACAGTCTAAATGAATATCTGCATGGGATTTGCTAT TGCTGAGATCCTCAAATAATCTCAATTTCAGGAGGTTTCACAAAATGTACTCCTGAAGTAGACAGAGTAGTGAGG TTTCATTGCCCTCTATAAGCTTCTGACTAGCCAATGGCATCATCCAATTTTCTTCCCCAAACCTCTGCAGCATCTG CTTTATTGCCAAAGGGCTAGTTTCGGTTTTCTGCAGCCATTGCGGTTAAAAAATATAAGTAGGATAACTTGTAAA ACCTGCATATTGCTAATCTATAGACACCACAGTTTCTAAATTCTTTGAAACCACTTTACTACTTTTTTAAACTT AACTCAGTTCTAAATACTTTGTCTGGAGCACAAAACAATAAAAGGTTATCTTATAGTCGTGACTTTAAACTTTTG TAGACCACATTCACTTTTTAGTTTTCTTTTACTTAAATCCCATCTGCAGTCTCAAATTTAAGTTCTCCCAGTAG AGATTGAGTTTGAGCCTGTATATCTATTAAAAATTTCAACTTCCCACATATATTTACTAAGATGATTAAGACTTA TTAATGAGATGTATTTCTTATAGAGATATTTCTTACAGAAAGCTTTGTAGCAGAATATATTTGCAGCTATTGAC ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

FIGURE 42

MAALMRSKDSSCCLLLLAAVLMVESSQIGSSRAKLNSIKSSLGGETPGQAANRSAGMYQGLA FGGSKKGKNLGQAYPCSSDKECEVGRYCHSPHQGSSACMVCRRKKKRCHRDGMCCPSTRCNN GICIPVTESILTPHIPALDGTRHRDRNHGHYSNHDLGWQNLGRPHTKMSHIKGHEGDPCLRS SDCIEGFCCARHFWTKICKPVLHQGEVCTKQRKKGSHGLEIFQRCDCAKGLSCKVWKDATYS SKARLHVCQKI

Signal peptide:

amino acids 1-25

FIGURE 43

GTGTTGGGATTACAGGCGTGAGCCACCGCGCCCGGCCAACATCACGTTTTTAAAAATTGATT TAGCTGCATTTATTTAGTCAGTTTTCATTGCATAGTAATATTTTCATGTAGTATTTTCTAAG TTATATTTTAGTAATTCATATGTTTTAGATTATAGGTTTTAACATACTTGTGAAAATACTTG ATGTGTTTTAAAGCCTTGGGCAGAAATTCTGTATTGTTGAGGATTTGTTCTTTTATCCCCCT TTTAAAGTCATCCGTCCTTGGCTCAGGATTTGGAGAGCTTGCACCACCAAAAATGGCAAACA TCACCAGCTCCCAGATTTTGGACCAGTTGAAAGCTCCGAGTTTGGGCCAGTTTACCACCACC CCAAGTACACAGCAGAATAGTACAAGTCACCCTACAACTACTACTTCTTGGGACCTCAAGCC CCCAACATCCCAGTCCTCAGTCCTCAGTCTTGACTTCAAATCTCAACCTGAGCCATCCC CAGTTCTTAGCCAGTTGAGCCAGCGACAACAGCACCAGAGCCAGGCAGTCACTGTTCCTCCT CCTGGTTTGGAGTCCTTTCCTTCCCAGGCAAAACTTCGAGAATCAACACCTGGAGACAGTCC CTCCACTGTGAACAAGCTTTTGCAGCTTCCCAGCACGACCATTGAAAATATCTCTGTGTCTG TCCACCAGCCACAGCCCAAACACATCAAACTTGCTAAGCGGCGGATACCCCCAGCTTCTAAG ATCCCAGCTTCTGCAGTGGAAATGCCTGGTTCAGCAGATGTCACAGGATTAAATGTGCAGTT TGGGGCTCTGGAATTTGGGTCAGAACCTTCTCTCTCTGAATTTGGATCAGCTCCAAGCAGTG AAAATAGTAATCAGATTCCCATCAGCTTGTATTCGAAGTCTTTAAGTGAGCCTTTGAATACA TCTTTATCAATGACCAGTGCAGTACAGAACTCCACATATACAACTTCCGTCATTACCTCCTG CAGTCTGACAAGCTCATCACTGAATTCTGCTAGTCCAGTAGCAATGTCTTCCTCTTATGACC AGAGTTCTGTGCATAACAGGATCCCATACCAAAGCCCTGTGAGTTCATCAGAGTCAGCTCCA CAGCAAGCTACTCTTGTCATGGCTGGTGCCAACCAAACAGAGGAAGAGGATAGCTCACGTGA TGTGGAAAACACCAGTTGGTCAATGGCTCATTCGT**TAA**AAAGCAGCCCTTTTGCTTTTTTGT TTTTGGACCAGGTGTTGGCTGTGGTGTTATTAGAAATGTCTTAACCACAGCAAGAAGGAGGT GGTGGTCTCATATTCTTCTGCCCTAATCAGACTGCACCACAAGTGCAGCATACAGTATGCAT TTTAAAGATGCTTGGGCCAGGCGGGGTGGCTGATGCCCATAATCCCAGTGCTTTGGGGGGCC AAGGCAGGCAGATTGCCCAAGCTCAGGAGTTTGAGACCACCCTGGGCAACATGGTGAAACTC TGTCTCTACTAAAATACGAAAAACTAGCCGGGTGTGGTGGCGGCGCGCGTGCCTGTAATCCCAG CTACTTGGGAGGCTGAGGCAAGAATCGCTTGAGCCAGCTTGGGCTACAAAGTGAGACTCC GTCTGAAAAGA

FIGURE 44

MCFKALGRNSVLLRICSFIPLLKSSVLGSGFGELAPPKMANITSSQILDQLKAPSLGQFTTT
PSTQQNSTSHPTTTTSWDLKPPTSQSSVLSHLDFKSQPEPSPVLSQLSQRQQHQSQAVTVPP
PGLESFPSQAKLRESTPGDSPSTVNKLLQLPSTTIENISVSVHQPQPKHIKLAKRRIPPASK
IPASAVEMPGSADVTGLNVQFGALEFGSEPSLSEFGSAPSSENSNQIPISLYSKSLSEPLNT
SLSMTSAVQNSTYTTSVITSCSLTSSSLNSASPVAMSSSYDQSSVHNRIPYQSPVSSSESAP
GTIMNGHGGGRSQQTLDSKYSSKLLLSWLVPTKORKRIAHVMWKTPYGOWLIR

Signal peptide:

amino acids 1-24

FIGURE 45

GCCGAGTGGGACAAAGCCTGGGGCTGGGCGGGGGCCATGCCGTGCCATCCCGAATCCTGCT TTGGAAACTTGTGCTTCTGCAGAGCTCTGCTGTTCTCCTGCACTCAGCGGTGGAGGAGACGG ACGCGGGGCTGTACACCTGCAACCTGCACCATCACTGCCACCTCTACGAGAGCCTGGCC GTCCGCCTGGAGGTCACCGACGGCCCCCGGCCACCCCTACTGGGACGGCGAGAAGGA GGTGCTGGCGGTGGCGCGCGCGCCCCCCGCGCTTCTGACCTGCGTGAACCGCGGGCACGTGT GGACCGACCGGCACGTGGAGGAGGCTCAACAGGTGGTGCACTGGGACCGCCAGCCCCCGGG GTCCCGCACGACCGCGCGGGACCGCCTGCTGGACCTCTACGCGTCGGGCGAGCGCCGCCCTA CGGGCCCCTTTTCTGCGCGACCGCGTGGCTGTGGGCGCGGATGCCTTTGAGCGCGGTGACT TCTCACTGCGTATCGAGCCGCTGGAGGTCGCCGACGAGGGCACCTACTCCTGCCACCTGCAC CACCATTACTGTGGCCTGCACGAACGCCGCGTCTTCCACCTGACGGTCGCCGAACCCCACGC GGAGCCGCCCCGGGGCTCTCCGGGCAACGGCTCCAGCCACAGCGGCGCCCCAGGCCCAG ACCCCACACTGGCGCGGCCACAACGTCATCAATGTCATCGTCCCCGAGAGCCGAGCCCAC TTCTTCCAGCAGCTGGGCTACGTGCTGCCACGCTGCTCTTCATCCTGCTACTGGTCAC TGTCCTCCTGGCCGCCGCAGGCGCCGCGGAGGCTACGAATACTCGGACCAGAAGTCGGGAA AGTCAAAGGGGAAGGATGTTAACTTGGCGGAGTTCGCTGTGGCTGCAGGGGACCAGATGCTT TACAGGAGTGAGGACATCCAGCTAGATTACAAAAACAACATCCTGAAGGAGAGGGCGGAGCT GGCCCACAGCCCCTGCCTAGCAAGTACATCGACCTAGACAAAGGGTTCCGGAAGGAGAACT $\tt CTCGGGGCATCTCCTGATGCTCCGGGGCTCACCCCCTTCCAGCGGCTGGTCCCGCTTTCCT$ GGAATTTGGCCTGGGCGTATGCAGAGGCCGCCTCCACACCCCTCCCCAGGGGCTTGGTGGC AGCATAGCCCCACCCTGCGGCCTTTGCTCACGGGTGGCCCTGCCCACCCCTGGCACACC AAAATCCCACTGATGCCCATCATGCCCTCAGACCCTTCTGGGCTCTGCCCGCTGGGGGCCTG AAGACATTCCTGGAGGACACTCCCATCAGAACCTGGCAGCCCCAAAACTGGGGTCAGCCTCA GGGCAGGAGTCCCACTCCTCCAGGGCTCTGCTCCGGGGCTGGGAGATGTTCCTGGAGGA GGACACTCCCATCAGAACTTGGCAGCCTTGAAGTTGGGGTCAGCCTCGGCAGGAGTCCCACT CCTCCTGGGGTGCTGCCACCAAGAGCTCCCCCACCTGTACCACCATGTGGGACTCCAG GCACCATCTGTTCTCCCCAGGGACCTGCTGACTTGAATGCCAGCCCTTGCTCTCTGTGTTG CTTTGGGCCACCTGGGGCTGCACCCCTGCCCTTTCTCTGCCCCATCCCTACCCTAGCCTTG CTCTCAGCCACCTTGATAGTCACTGGGCTCCCTGTGACTTCTGACCCCTGACACCCCTTCCCTT GGACTCTGCCTGGGCTGGAGTCTAGGGCTGGGGCTACATTTGGCTTCTGTACTGGCTGAGGA CAGGGGAGGGAGTGAAGTTGGTTTGGGGTGGCCTGTGTTGCCACTCTCAGCACCCCACATTT AAAAA

FIGURE 46

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA60618</pre>

<subunit 1 of 1, 341 aa, 1 stop

<MW: 38070, pI: 6.88, NX(S/T): 1

MALPSRILLWKLVLLQSSAVLLHSAVEETDAGLYTCNLHHHYCHLYESLAVRLEVTDGPPAT
PAYWDGEKEVLAVARGAPALLTCVNRGHVWTDRHVEEAQQVVHWDRQPPGVPHDRADRLLDL
YASGERRAYGPLFLRDRVAVGADAFERGDFSLRIEPLEVADEGTYSCHLHHHYCGLHERRVF
HLTVAEPHAEPPPRGSPGNGSSHSGAPGPDPTLARGHNVINVIVPESRAHFFQQLGYVLATL
LLFILLLVTVLLAARRRRGGYEYSDQKSGKSKGKDVNLAEFAVAAGDQMLYRSEDIQLDYKN
NILKERAELAHSPLPAKYIDLDKGFRKENCK

Important features:

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 237-262

N-glycosylation site.

amino acids 205-208

Cell attachment sequence.

amino acids 151-154

Coproporphyrinogen III oxidase proteins.

amino acids 115-140

FIGURE 47

CGCCGGAGCCAGCGGCGTGGCGCAGCGCGACATGGCCGTTGTCTCAGAGGACGACTTT CAGCACAGTTCAAACTCCACCTACGGAACCACAAGCAGCAGTCTCCGAGCTGACCAGGAGGC ACTGCTTGAGAGCTGCTGGACCGCCCCCCCTGGCCTGCAGAGGCCCGAGGACCGCTTCT GTGGCACATACATCATCTTCTTCAGCCTGGGCATTGGCAGTCTACTGCCATGGAACTTCTTT ATCACTGCCAAGGAGTACTGGATGTTCAAACTCCGCAACTCCTCCAGCCCAGCCACCGGGGA GGACCCTGAGGCTCAGACATCCTGAACTACTTTGAGAGCTACCTTGCCGTTGCCTCCACCG TGCCCTCCATGCTGTGCCTGGTGGCCAACTTCCTGCTTGTCAACAGGGTTGCAGTCCACATC CGTGTCCTGGCCTCACTGACGGTCATCCTGGCCATCTTCATGGTGATAACTGCACTGGTGAA GGTGGACACTTCCTCCTGGACCCGTGGTTTTTTTGCGGTCACCATTGTCTGCATGGTGATCC TCAGCGGTGCCTCCACTGTCTTCAGCAGCAGCATCTACGGCATGACCGGCTCCTTTCCTATG AGGAACTCCCAAGCACTGATATCAGGAGGAGCCATGGGCGGGACGGTCAGCGCCGTGGCCTC ATTGGTGGACTTGGCTGCATCCAGTGATGTGAGGAACAGCGCCCTGGCCTTCTTCCTGACGG CCACCATCTTCCTCGTGCTCTGCATGGGACTCTACCTGCTGCTGCTCCAGGCTGGAGTATGCC AGGTACTACATGAGGCCTGTTCTTGCGGCCCATGTGTTTTCTGGTGAAGAGGAGCTTCCCCA GGACTCCCTCAGTGCCCCTTCGGTGGCCTCCAGATTCATTGATTCCCACACACCCCCTCTCC GCCCCATCCTGAAGAAGACGGCCAGCCTGGGCTTCTGTGTCACCTACGTCTTCTTCATCACC AGCCTCATCTACCCCGCCGTCTGCACCAACATCGAGTCCCTCAACAAGGGCTCGGGCTCACT GTGGACCACCAAGTTTTTCATCCCCCTCACTACCTTCCTCCTGTACAACTTTGCTGACCTAT GTGGCCGGCAGCTCACCGCCTGGATCCAGGTGCCAGGGCCCAACAGCAAGGCGCTCCCAGGG TTCGTGCTCCTCCGGACCTGCCTCATCCCCCTCTTCGTGCTCTGTAACTACCAGCCCCGCGT CCACCTGAAGACTGTGGTCTTCCAGTCCGATGTGTACCCCGCACTCCTCAGCTCCCTGCTGG GGCTCAGCAACGGCTACCTCAGCACCCTGGCCCTCCTCTACGGGCCTAAGATTGTGCCCAGG GAGCTGGCTGAGGCCACGGGAGTGGTGATGTCCTTTTATGTGTGCTTGGGCTTAACACTGGG CTCAGCCTGCTCTACCCTCCTGGTGCACCTCATCTAGAAGGGAGGACACAAGGACATTGGTG CTTCAGAGCCTTTGAAGATGAGAAGAGAGTGCAGGAGGGCTGGGGGCCATGGAGGAAAGGCC GTGAGCCACGTCCATGCCCATTCCGTGCAAGGCAGATATTCCAGTCATATTAACAGAACACT CCTGAGACAGTTGAAGAAGAAATAGCACAAATCAGGGGTACTCCCTTCACAGCTGATGGTTA ACATTCCACCTTCTTCTAGCCCCTTCAAAGATGCTGCCAGTGTTCGCCCCTAGAGTTATTACA AAGCCAGTGCCAAAACCCAGCCATGGGCTCTTTGCAACCTCCCAGCTGCGCTCATTCCAGCT GACAGCGAGATGCAAGCAAATGCTCAGCTCTCCTTACCCTGAAGGGGTCTCCCTGGAATGGA AGTCCCCTGGCATGGTCAGTCCTCAGGCCCAAGACTCAAGTGTGCACAGACCCCTGTGTTCT GCGGGTGAACAACTGCCCACTAACCAGACTGGAAAACCCAGAAAGATGGGCCTTCCATGAAT GCTTCATTCCAGAGGGACCAGAGGGCCTCCCTGTGCAAGGGATCAAGCATGTCTGGCCTGGG TTTTCAAAAAAAGAGGGATCCTCATGACCTGGTGGTCTATGGCCTGGGTCAAGATGAGGGTC GTATTCAAAAA

FIGURE 48

MAVVSEDDFQHSSNSTYGTTSSSLRADQEALLEKLLDRPPPGLQRPEDRFCGTYIIFFSLGI
GSLLPWNFFITAKEYWMFKLRNSSSPATGEDPEGSDILNYFESYLAVASTVPSMLCLVANFL
LVNRVAVHIRVLASLTVILAIFMVITALVKVDTSSWTRGFFAVTIVCMVILSGASTVFSSSI
YGMTGSFPMRNSQALISGGAMGGTVSAVASLVDLAASSDVRNSALAFFLTATIFLVLCMGLY
LLLSRLEYARYYMRPVLAAHVFSGEEELPQDSLSAPSVASRFIDSHTPPLRPILKKTASLGF
CVTYVFFITSLIYPAVCTNIESLNKGSGSLWTTKFFIPLTTFLLYNFADLCGRQLTAWIQVP
GPNSKALPGFVLLRTCLIPLFVLCNYQPRVHLKTVVFQSDVYPALLSSLLGLSNGYLSTLAL
LYGPKIVPRELAEATGVVMSFYVCLGLTLGSACSTLLVHLI

Transmembrane domain:

amino acids 50-74 (type II), 105-127, 135-153, 163-183, 228-252, 305-330, 448-472

FIGURE 49

GACAGTGGAGGCAGTGGAGAGGACCGCGCTGTCCTGTCACCAAGAGCTGGAGACACCA TCTCCCACCGAGAGTCATGGCCCCATTGGCCCTGCACCTCCTCGTCCTCGTCCCCATCCTCC TCAGCCTGGTGGCCTCCCAGGACTGGAAGGCTGAACGCAGCCAAGACCCCTTCGAGAAATGC ATGCAGGATCCTGACTATGAGCAGCTGCTCAAGGTGGTGACCTGGGGGCTCAATCGGACCCT GAAGCCCCAGAGGTGATTGTGGTTGGCGCTGGTGGCCGGGCTGGTGGCCGAAGGTGC TCAGCGATGCTGGACACAAGGTCACCATCCTGGAGGCAGATAACAGGATCGGGGGCCGCATC TTCACCTACCGGGACCAGAACACGGGCTGGATTGGGGAGCTGGGAGCCATGCCCAG CTCTCACAGGATCCTCCACAAGCTCTGCCAGGGCCTGGGGCTCAACCTGACCAAGTTCACCC AGTACGACAAGAACACGTGGACGGAGGTGCACGAAGTGAAGCTGCGCAACTATGTGGTGGAG AAGGTGCCCGAGAAGCTGGGCTACGCCTTGCGTCCCCAGGAAAAGGGCCACTCGCCCGAAGA CATCTACCAGATGGCTCTCAACCAGGCCCTCAAAGACCTCAAGGCACTGGGCTGCAGAAAGG CGATGAAGAAGTTTGAAAGGCACACGCTCTTGGAATATCTTCTCGGGGAGGGGAACCTGAGC CGGCCGGCCGTGCAGCTTCTGGGAGACGTGATGTCCGAGGATGGCTTCTTCTATCTCAGCTT CGCCGAGGCCCTCCGGGCCCACAGCTGCCTCAGCGACAGACTCCAGTACAGCCGCATCGTGG GTGGCTGGGACCTGCCGCGCGCGCGCTGCTGAGCTCGCTGTCCGGGCTTGTGCTGTTGAAC GCGCCCGTGGTGGCGATGACCCAGGGACCGCACGATGTGCACGTGCAGATCGAGACCTCTCC CCCGGCGCGAATCTGAAGGTGCTGAAGGCCGACGTGGTGCTGACGGCGAGCGGACCGG CGGTGAAGCGCATCACCTTCTCGCCGCCGCTGCCCCGCCACATGCAGGAGGCGCTGCGGAGG CTGCACTACGTGCCGGCCACCAAGGTGTTCCTAAGCTTCCGCAGGCCCTTCTGGCGCGAGGA GCACATTGAAGGCGGCCACTCAAACACCGATCGCCCGTCGCGCATGATTTTCTACCCGCCGC CGCGCGAGGGCGCGCTGCTGCCTGGCCTGTACACGTGGTCGGACGCGGCGGCAGCGTTCGCC GGCTTGAGCCGGGAAGAGGCGTTGCGCTTGGCGCTCGACGACGTGGCGGCATTGCACGGGCC TGTCGTGCGCCAGCTCTGGGACGGCACCGGCGTCGTCAAGCGTTGGGCGGAGGACCAGCACA GCCAGGGTGGCTTTGTGGTACAGCCGCCGCGCTCTGGCAAACCGAAAAGGATGACTGGACG GTCCCTTATGGCCGCATCTACTTTGCCGGCGAGCACCCCCTACCCGCACGGCTGGGTGGA GACGGCGGTCAAGTCGGCGCTGCGCCGCCATCAAGATCAACAGCCGGAAGGGGCCTGCAT CGGACACGGCCAGCCCGAGGGGCACGCATCTGACATGGAGGGGCAGGGGCATGTGCATGGG GTGGCCAGCAGCCCTCGCATGACCTGGCAAAGGAAGAAGGCAGCCACCCTCCAGTCCAAGG CCAGTTATCTCTCCAAAACACGACCCACACGAGGACCTCGCAT**TAA**AGTATTTTCGGAAAAA

FIGURE 50

MAPLALHLLVLVPILLSLVASQDWKAERSQDPFEKCMQDPDYEQLLKVVTWGLNRTLKPQRV
IVVGAGVAGLVAAKVLSDAGHKVTILEADNRIGGRIFTYRDQNTGWIGELGAMRMPSSHRIL
HKLCQGLGLNLTKFTQYDKNTWTEVHEVKLRNYVVEKVPEKLGYALRPQEKGHSPEDIYQMA
LNQALKDLKALGCRKAMKKFERHTLLEYLLGEGNLSRPAVQLLGDVMSEDGFFYLSFAEALR
AHSCLSDRLQYSRIVGGWDLLPRALLSSLSGLVLLNAPVVAMTQGPHDVHVQIETSPPARNL
KVLKADVVLLTASGPAVKRITFSPPLPRHMQEALRRLHYVPATKVFLSFRPFFWREEHIEGG
HSNTDRPSRMIFYPPPREGALLLASYTWSDAAAAFAGLSREEALRLALDDVAALHGPVVRQL
WDGTGVVKRWAEDQHSQGGFVVQPPALWQTEKDDWTVPYGRIYFAGEHTAYPHGWVETAVKS
ALRAAIKINSRKGPASDTASPEGHASDMEGQGHVHGVASSPSHDLAKEEGSHPPVQGQLSLQ
NTTHTRTSH

Signal peptide:

amino acids 1-21

FIGURE 51

GAACTCAGAGCCGGGAAGCCCCCATTCACTAGAAGCACTGAGAGATGCGGCCCCCTCGCAGGGTCTGAATTTCCT GCTGCTGTTCACAAAGATGCTTTTTATCTTTAACTTTTTGTTTTCCCCACTTCCGACCCCGGCGTTGATCTGCAT CCTGACATTTGGAGCTGCCATCTTCTTGTGGCTGATCACCAGACCTCAACCCGTCTTACCTCTTGTGACCTGAA CAATCAGTCTGTGGGAATTGAGGGAGGAGCACGGAAGGGGGTTTCCCAGAAGAACAATGACCTAACAAGTTGCTG CTTCTCAGATGCCAAGACTATGTATGAGGTTTTCCAAAGAGGACTCGCTGTGTCTGACAATGGGCCCTGCTTGGG ATATAGAAAACCAAACCAGCCCTACAGATGGCTATCTTACAAACAGGTGTCTGATAGAGCAGAGTACCTGGGTTC CTGTCTCTTGCATAAAGGTTATAAATCATCACCAGACCAGTTTGTCGGCATCTTTGCTCAGAATAGGCCAGAGTG GATCATCTCCGAATTGGCTTGTTACACGTACTCTATGGTAGCTGTACCTCTGTATGACACCTTGGGACCAGAAGC CATCGTACATATTGTCAACAAGGCTGATATCGCCATGGTGATCTGTGACACCCCCAAAAGGCATTGGTGCTGAT AGGGAATGTAGAGAAAGGCTTCACCCCGAGCCTGAAGGTGATCATCCTTATGGACCCCTTTGATGATGACCTGAA GCAAAGAGGGGAAAGAGTGGAATTGAGATCTTATCCCTATATGATGCTGAGAACCTAGGCAAAGAGCACTTCAG AAAACCTGTGCCTCCTAGCCCAGAAGACCTGAGCGTCATCTGCTTCACCAGTGGGACCACAGGTGACCCCAAAGG AGCCATGATAACCCATCAAAATATTGTTTCAAATGCTGCTGCCTTTCTCAAATGTGTGGAGCATGCTTATGAGCC CACTCCTGATGATGTGGCCATATCCTACCTCCCTCTGGCTCATATGTTTGAGAGGATTGTACAGGCTGTTGTGTA CACATTGTTTCCCGCGGTGCCTCGACTCCTTAACAGGATCTACGATAAGGTACAAAATGAGGCCAAGACACCCTT GAAGAAGTTCTTGTTGAAGCTGGCTGTTTCCAGTAAATTCAAAGAGCTTCAAAAAGGGTATCATCAGGCATGATAG TTTCTGGGACAAGCTCATCTTTGCAAAGATCCAGGACAGCCTGGGCGGAAGGGTTCGTGTAATTGTCACTGGAGC TGCCCCCATGTCCACTTCAGTCATGACATTCTTCCGGGCAGCAATGGGATGTCAGGTGTATGAAGCTTATGGTCA AACAGAATGCACAGGTGGCTGTACATTTACATTACCTGGGGACTGGACATCAGGTCACGTTGGGGTGCCCCTGGC TTGCAATTACGTGAAGCTGGAAGATGTGGCTGACATGAACTACTTTACAGTGAATAATGAAGGAGGTCTGCAT CAAGGGTACAAACGTGTTCAAAGGATACCTGAAGGACCCTGAGAAGACACAGGAAGCCCTGGACAGTGATGGCTG GCTTCACACAGGAGACATTGGTCGCTGGCTCCCGAATGGAACTCTGAAGATCATCGACCGTAAAAAGAACATTTT CAAGCTGGCCCAAGGAGAATACATTGCACCAGAGAAGATAGAAAATATCTACAACAGGAGTCAACCAGTGTTACA AATTTTTGTACACGGGGAGAGCTTACGGTCATCCTTAGTAGGAGTGGTGGTTCCTGACACAGATGTACTTCCCTC ATTTGCAGCCAAGCTTGGGGTGAAGGGCTCCTTTGAGGAACTGTGCCAAAACCAAGTTGTAAGGGAAGCCATTTT AGAAGACTTGCAGAAAATTGGGAAAGAAAGTGGCCTTAAAACTTTTGAACAGGTCAAAGCCATTTTTCTTCATCC AGAGCCATTTTCCATTGAAAATGGGCTCTTGACACCAACATTGAAAGCCAAGCGAGGAGAGCTTTCCAAATACTT ${\tt TCGGACCCAAATTGACAGCCTGTATGAGCACATCCAGGAT} \underline{{\tt TAG}}{\tt GATAAGGTACTTAAGTACCTGCCGGCCCACTG}$ ATCCTGTCTTTCCCATCTTCGATGTTGCTAATATTAAGGCTTCAGGGCTACTTTTATCAACATGCCTGTCTTCAA GATCCCAGTTTATGTTCTGTGTCCTTCCTCATGATTTCCAACCTTAATACTATTAGTAACCACAAGTTCAAGGGT CAAAGGGACCCTCTGTGCCTTCTTTGTTTTGTGATAAACATAACTTGCCAACAGTCTCTATGCTTATTTACA TCTTCTACTGTTCAAACTAAGAGATTTTTAAATTCTGAAAAACTGCTTACAATTCATGTTTTCTAGCCACTCCAC AAACCACTAAAATTTTAGTTTTAGCCTATCACTCATGTCAATCATATCTATGAGACAAATGTCTCCGATGCTCTT CTGCGTAAATTAAATTGTGTACTGAAGGGAAAAGTTTGATCATACCAAACATTTCCTAAACTCTCTAGTTAGATA TCTGACTTGGGAGTATTAAAAATTGGGTCTATGACATACTGTCCAAAAGGAATGCTGTTCTTAAAGCATTATTTA CAGTAGGAACTGGGGGAGTAAATCTGTTCCCTACAGTTTGCTGCTGAGCTGGAAGCTGTGGGGGAAGGAGTTGACA GGTGGGCCCAGTGAACTTTTCCAGTAAATGAAGCAAGCACTGAATAAAAACCTCCTGAACTGGGAACAAAGATCT ACAGGCAAGCAAGATGCCCACACAACAGGCTTATTTTCTGTGAAGGAACCAACTGATCTCCCCCACCCTTGGATT AGAGTTCCTGCTCTACCTTACCCACAGATAACACATGTTGTTTCTACTTGTAAAATGTAAAGTCTTTAAAATAAAC TATTACAGATAAAAA

FIGURE 52

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA60775

<subunit 1 of 1, 739 aa, 1 stop

<MW: 82263, pI: 7.55, NX(S/T): 3

MDALKPPCLWRNHERGKKDRDSCGRKNSEPGSPHSLEALRDAAPSQGLNFLLLFTKMLFIFN
FLFSPLPTPALICILTFGAAIFLWLITRPQPVLPLLDLNNQSVGIEGGARKGVSQKNNDLTS
CCFSDAKTMYEVFQRGLAVSDNGPCLGYRKPNQPYRWLSYKQVSDRAEYLGSCLLHKGYKSS
PDQFVGIFAQNRPEWIISELACYTYSMVAVPLYDTLGPEAIVHIVNKADIAMVICDTPQKAL
VLIGNVEKGFTPSLKVIILMDPFDDDLKQRGEKSGIEILSLYDAENLGKEHFRKPVPPSPED
LSVICFTSGTTGDPKGAMITHQNIVSNAAAFLKCVEHAYEPTPDDVAISYLPLAHMFERIVQ
AVVYSCGARVGFFQGDIRLLADDMKTLKPTLFPAVPRLLNRIYDKVQNEAKTPLKKFLLKLA
VSSKFKELQKGIIRHDSFWDKLIFAKIQDSLGGRVRVIVTGAAPMSTSVMTFFRAAMGCQVY
EAYGQTECTGGCTFTLPGDWTSGHVGVPLACNYVKLEDVADMNYFTVNNEGEVCIKGTNVFK
GYLKDPEKTQEALDSDGWLHTGDIGRWLPNGTLKIIDRKKNIFKLAQGEYIAPEKIENIYNR
SQPVLQIFVHGESLRSSLVGVVVPDTDVLPSFAAKLGVKGSFEELCQNQVVREAILEDLQKI
GKESGLKTFEQVKAIFLHPEPFSIENGLLTPTLKAKRGELSKYFRTQIDSLYEHIQD

Important features:

Type II transmembrane domain:

amino acids 61-80

Putative AMP-binding domain signature.

amino acids 314-325

N-glycosylation site.

amino acids 102-105, 588-591 and 619-622

FIGURE 53

GGAGGCGGAGCCGGGCCGAGCCGAGCAGTGAGGGCCCTAGCGGGGCCCGAGCGGG CCCGGGGCCCCTAAGCCATTCCTGAAGTCATGGGCTGGCCAGGACATTGGTGACCCGCCAAT CCGGTATGGACGACTGGAAGCCCAGCCCCTCATCAAGCCCTTTGGGGCTCGGAAGAAGCGG AGCTGGTACCTTACCTGGAAGTATAAACTGACAAACCAGCGGGCCCTGCGGAGATTCTGTCA GACAGGGGCCGTGCTTTTCCTGCTGGTGACTGTCATTGTCAATATCAAGTTGATCCTGGACA CTCGGCGAGCCATCAGTGAAGCCAATGAAGACCCAGAGCCAGAGCAAGACTATGATGAGGCC CTAGGCCGCCTGGAGCCCCACGGCGCAGAGGCAGTGGTCCCCGGCGGGTCCTGGACGTAGA GGTGTATTCAAGTCGCAGCAAAGTATATGTGGCAGTGGATGGCACCACGGTGCTGGAGGATG AGGCCCGGGAGCAGGGCCGGGGCATCCATGTCATTGTCCTCAACCAGGCCACGGGCCACGTG ATGGCAAAACGTGTGTTTGACACGTACTCACCTCATGAGGATGAGGCCATGGTGCTATTCCT CAACATGGTAGCGCCCGGCCGAGTGCTCATCTGCACTGTCAAGGATGAGGGCTCCTTCCACC TCAAGGACACAGCCAAGGCTCTGCTGAGGAGCCTGGGCAGCCAGGCTGGCCCTGGCCTGGGC TGGAGGGACACATGGGCCTTCGTGGGACGAAAAGGAGGTCCTGTCTTCGGGGAGAAACATTC TAAGTCACCTGCCCTCTCTTCCTGGGGGGGACCCAGTCCTGCTGAAGACAGATGTGCCATTGA GCTCAGCAGAAGAGGCAGAGTGCCACTGGGCAGACACAGAGCTGAACCGTCGCCGCCGGCGG TTCTGCAGCAAAGTTGAGGGCTATGGAAGTGTATGCAGCTGCAAGGACCCCACACCCATCGA GTTCAGCCCTGACCCACTCCCAGACAACAAGGTCCTCAATGTGCCTGTGGCTGTCATTGCAG GGAACCGACCCAATTACCTGTACAGGATGCTGCGCTCTCTGCTTTCAGCCCAGGGGGTGTCT CCTCAGATGATAACAGTTTTCATTGACGGCTACTATGAGGAACCCATGGATGTGGTGGCACT GTTTGGTCTGAGGGGCATCCAGCATACTCCCATCAGCATCAAGAATGCCCGCGTGTCTCAGC ACTACAAGGCCAGCCTCACTGCCACTTTCAACCTGTTTCCGGAGGCCAAGTTTGCTGTGGTT ACTGGAGGAGGATGACAGCCTGTACTGCATCTCTGCCTGGAATGACCAGGGGTATGAACACA CGGCTGAGGACCCAGCACTACTGTACCGTGTGGAGACCATGCCTGGGCTGGGCTGGGTGCTC AGGAGGTCCTTGTACAAGGAGGAGCTTGAGCCCAAGTGGCCTACACCGGAAAAGCTCTGGGA TTGGGACATGTGGATGCGGATGCCTGAACAACGCCGGGGCCGAGAGTGCATCATCCCTGACG TTTCCCGATCCTACCACTTTGGCATCGTCGGCCTCAACATGAATGGCTACTTTCACGAGGCC TACTTCAAGAAGCACAAGTTCAACACGGTTCCAGGTGTCCAGCTCAGGAATGTGGACAGTCT GAAGAAAGAAGCTTATGAAGTGGAAGTTCACAGGCTGCTCAGTGAGGCTGAGGTTCTGGACC ACAGCAAGAACCCTTGTGAAGACTCTTTCCTGCCAGACACAGAGGGCCACACCTACGTGGCC TTTATTCGAATGGAGAAAGATGATGACTTCACCACCTGGACCCAGCTTGCCAAGTGCCTCCA TATCTGGGACCTGGATGTGCGTGGCAACCATCGGGGCCTGTGGAGATTGTTTCGGAAGAAGA ACCACTTCCTGGTGGTGGGGGTCCCGGCTTCCCCCTACTCAGTGAAGAAGCCACCCTCAGTC TCCCTCCATCCTGTAGGATTTTGTAGATGCTGGTAGGGGCTGGGGCTACCTTGTTTTTAACA TGAGACTTAATTACTAACTCCAAGGGGAGGGTTCCCCTGCTCCAACACCCCGTTCCTGAGTT AAAAGTCTATTTATTTACTTCCTTGTTGGAGAAGGGCAGGAGAGTACCTGGGAATCATTACG ATCCCTAGCAGCTCATCCTGCCCTTTGAATACCCTCACTTTCCAGGCCTGGCTCAGAATCTA ACCTATTTATTGACTGTCCTGAGGGCCTTGAAAACAGGCCGAACCTGGAGGGCCTGGATTTC TTTTTGGGCTGGAATGCTGCCCTGAGGGTGGGGCTGGCTCTTACTCAGGAAACTGCTGTGCC GACACTGGACCAGGCCTCCTCAGCCTTCTCTTTGTCCAGATTTCCAAAGCTGGATAAGTT

FIGURE 54

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA61185

><subunit 1 of 1, 660 aa, 1 stop

><MW: 75220, pI: 6.76, NX(S/T): 0

MDDWKPSPLIKPFGARKKRSWYLTWKYKLTNQRALRRFCQTGAVLFLLVTVIVNIKLILDTR
RAISEANEDPEPEQDYDEALGRLEPPRRRGSGPRRVLDVEVYSSRSKVYVAVDGTTVLEDEA
REQGRGIHVIVLNQATGHVMAKRVFDTYSPHEDEAMVLFLNMVAPGRVLICTVKDEGSFHLK
DTAKALLRSLGSQAGPALGWRDTWAFVGRKGGPVFGEKHSKSPALSSWGDPVLLKTDVPLSS
AEEAECHWADTELNRRRRFCSKVEGYGSVCSCKDPTFIEFSPDPLPDNKVLNVPVAVIAGN
RPNYLYRMLRSLLSAQGVSPQMITVFIDGYYEEPMDVVALFGLRGIQHTPISIKNARVSQHY
KASLTATFNLFPEAKFAVVLEEDLDIAVDFFSFLSQSIHLLEEDDSLYCISAWNDQGYEHTA
EDPALLYRVETMPGLGWVLRRSLYKEELEPKWPTPEKLWDWDMMRMPEQRRGRECIIPDVS
RSYHFGIVGLNMNGYFHEAYFKKHKFNTVPGVQLRNVDSLKKEAYEVEVHRLLSEAEVLDHS
KNPCEDSFLPDTEGHTYVAFIRMEKDDDFTTWTQLAKCLHIWDLDVRGNHRGLWRLFRKKNH
FLVVGVPASPYSVKKPPSVTPIFLEPPPKEEGAPGAPFOT

Important features of the protein:

Transmembrane domain:

amino acids 38-55

Homologous region to Mouse GNT1

amino acids 229-660

FIGURE 55

CGGACGCGTGGGCTGGTGGGAAGGCCTAAAGAACTGGAAAGCCCACTCTCTTGGAACCACCACAC CTGTTTAAAGAACCTAAGCACCATTTAAAGCCACTGGAAATTTGTTGTCTAGTGGTTGTGGGTGAATA AAGGAGGCAGAATGGATGTTCATCTCCATTAGCCTGCTGTCTCTGGCTATGTTGGTGGGATGTTA CGTGGCCGGAATCATTCCCTTGGCTGTTAATTTCTCAGAGGAACGACTGAAGCTGGTGACTGTTTTGG GTGCTGGCCTTCTCTGTGGAACTGCTCTGGCAGTCATCGTGCCTGAAGGAGTACATGCCCTTTATGAA GATATTCTTGAGGGAAAACACCACCAAGCAAGTGAAACACATAATGTGATTGCATCAGACAAAGCAGC AGAAAAATCAGTTGTCCATGAACATGAGCACAGCCACGACCACACACGCTGCATGCCTATATTGGTG TTTCCCTCGTTCTGGGCTTCGTTTTCATGTTGCTGGTGGACCAGATTGGTAACTCCCATGTGCATTCT ACTGACGATCCAGAAGCAGCAAGGTCTAGCAATTCCAAAATCACCACCACGCTGGGTCTGGTTGTCCA TGCTGCAGCTGATGGTTTGCTTTGGGAGCAGCAGCATCTACTTCACAGACCAGTGTCCAGTTAATTG GGCTTAGAGCGGAATCGAATCAGAAAGCACTTGCTGGTCTTTGCATTGGCAGCACCAGTTATGTCCAT GGTGACATACTTAGGACTGAGTAAGAGCAGTAAAGAAGCCCTTTCAGAGGTGAACGCCACGGGAGTGG CCATGCTTTTCTCTGCCGGGACATTTCTTTATGTTGCCACAGTACATGTCCTCCCTGAGGTGGCCGGA GGTTCTGGGTTGCCTCATCCTCTCATCCTGTCAGTAGGACACCAGCATTAAATGTTCAAGGTCCAGC CTTGGTCCAGGGCCGTTTGCCATCCAGTGAGAACAGCCGGCACGTGACAGCTACTCACTTCCTCAGTC TCTTGTCTCACCTTGCGCATCTCTACATGTATTCCTAGAGTCCAGAGGGGAGGTGAGGTTAAAACCTG AGTAATGGAAAAGCTTTTAGAGTAGAAACACATTTACGTTGCAGTTAGCTATAGACATCCCATTGTGT TATCTTTTAAAAGGCCCTTGACATTTTGCGTTTTAATATTTCTCTTAACCCTATTCTCAGGGAAGATG GAATTTAGTTTTAAGGAAAAGAGGAGAACTTCATACTCACAATGAAATAGTGATTATGAAAATACAGT GTTCTGTAATTAAGCTATGTCTCTTTCTTCTTAGTTTAGAGGCTCTGCTACTTTATCCATTGATTTTT AACATGGTTCCCACCATGTAAGACTGGTGCTTTAGCATCTATGCCACATGCGTTGATGGAAGGTCATA GCACCCACTCACTTAGATGCTAAAGGTGATTCTAGTTAATCTGGGATTAGGGTCAGGAAAATGATAGC AAGACACATTGAAAGCTCTCTTTATACTCAAAAGAGATATCCATTGAAAAGGGATGTCTAGAGAGGGATT TAAACAGCTCCTTTGGCACGTGCCTCTCTGAATCCAGCCTGCCATTCCATCAAATGGAGCAGGAGAGG TGGGAGGAGCTTCTAAAGAGGTGACTGGTATTTTGTAGCATTCCTTGTCAAGTTCTCCTTTGCAGAAT ACCTGTCTCCACATTCCTAGAGAGGGGCCAAGTTCTAGTAGTTCTAGGCTTTCCTTCAAGAA CAGTCAGATCACAAAGTGTCTTTGGAAATTAAGGGATATTAAATTTTAAGTGATTTTTTGGATGGTTAT TTTTTTTTAATTATTTCTCTTAGCAGATCAGCAATCCCTCTAGGGACCTAAATACTAGGTCAGCTTT GGCGACACTGTGTCTTCTCACATAACCACCTGTAGCAAGATGGATCATAAATGAGAAGTGTTTTGCCTA TTGATTTAAAGCTTATTGGAATCATGTCTCTTGTCTCTTCGTCTTTTCTTTGCTTTTCTTAACTTT TCCCTCTAGCCTCTCCTCGCCACAATTTGCTGCTTACTGCTGGTGTTAATATTTTGTGTGGGATGAATT CTTATCAGGACAACCACTTCTCGAACTGTAATAATGAAGATAATAATATCTTTATTCTTTATCCCCTT CAAAGAATTACCTTTGTGTCAAATGCCGCTTTGTTGAGCCCCTTAAAATACCACCTCCTCATGTGTAA ATTGACACAATCACTAATCTGGTAATTTAAACAATTGAGATAGCAAAAGTGTTTAACAGACTAGGATA ATTTTTTTTTCATATTTGCCAAAATTTTTGTAAACCCTGTCTTGTCAAATAAGTGTATAATATTTGTAT TATTAATTTATTTTACTTTCTATACCATTTCAAAACACATTACACTAAGGGGGAACCAAGACTAGTT TCTTCAGGGCAGTGGACGTAGTTTGTAAAAACGTTTTCTATGACGCATAAGCTAGCATGCCTATG ATTTATTTCCTTCATGAATTTGTCACTGGATCAGCAGCTGTGGAAATAAAGCTTGTGAGCCCTCTGCT ATTTTACTACCAAGAGAAGGTATAGTATGGAAAGTCCAAATGACTTCCTTGATTGGATGTTAACAGCT GACTGGTGTGAGACTTGAGGTTTCATCTAGTCCTTCAAAACTATATGGTTGCCTAGATTCTCTCTGGA AACTGACTTTGTCAAATAAATAGCAGATTGTAGTGTCAAAAAAA

FIGURE 56

MDDFISISLLSLAMLVGCYVAGIIPLAVNFSEERLKLVTVLGAGLLCGTALAVIVPEGVHAL
YEDILEGKHHQASETHNVIASDKAAEKSVVHEHEHSHDHTQLHAYIGVSLVLGFVFMLLVDQ
IGNSHVHSTDDPEAARSSNSKITTTLGLVVHAAADGVALGAAASTSQTSVQLIVFVAIMLHK
APAAFGLVSFLMHAGLERNRIRKHLLVFALAAPVMSMVTYLGLSKSSKEALSEVNATGVAML
FSAGTFLYVATVHVLPEVGGIGHSHKPDATGGRGLSRLEVAALVLGCLIPLILSVGHOH

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 37-56, 106-122, 211-230, 240-260, 288-304

FIGURE 57

GCTCGAGGCCGGCGGCGGGAGAGCGACCCGGGCGCCTCGTAGCGGGGCCCCGGATCCC CGAGTGGCGGCCGGAGCCTCGAAAAGAGATTCTCAGCGCTGATTTTGAG**ATG**ATGGGCTTGG GAAACGGGCGTCGCAGCATGAAGTCGCCGCCCCTCGTGCTGGCCGCCCTGGTGGCCTGCATC ATCGTCTTGGGCTTCAACTACTGGATTGCGAGCTCCCGGAGCGTGGACCTCCAGACACGGAT AGAACGAGTTCCAGGGAGAGCTGGAGAAGCAGCGGGAGCAGCTTGACAAAATCCAGTCCAGC CACAACTTCCAGCTGGAGAGCGTCAACAAGCTGTACCAGGACGAAAAGGCGGTTTTGGTGAA TAACATCACCACAGGTGAGAGGCTCATCCGAGTGCTGCAAGACCAGTTAAAGACCCTGCAGA GGAATTACGGCAGGCTGCAGCAGGATGTCCTCCAGTTTCAGAAGAACCAGACCAACCTGGAG AGGAAGTTCTCCTACGACCTGAGCCAGTGCATCAATCAGATGAAGGAGGTGAAGGAACAGTG TGAGGAGCGAATAGAAGAGGTCACCAAAAAGGGGAATGAAGCTGTAGCTTCCAGAGACCTGA GTGAAAACAACGACCAGAGACAGCAGCTCCAAGCCCTCAGTGAGCCTCAGCCCAGGCTGCAG GTCCCAGACACCAGCCCCCAGTTCCGAAGTGGTTTTGGATTCAAAGAGACAAGTTGAGAAAG AGGAAACCAATGAGATCCAGGTGGTGAATGAGGAGCCTCAGAGGGACAGGCTGCCGCAGGAG CCAGGCCGGGAGCAGGTGGTAGACAGACCTGTAGGTGGAAGAGGCTTCGGGGGAGCCGG AGAACTGGGCCAGACCCCACAGGTGCAGGCTGCCCTGTCAGTGAGCCAGGAAAATCCAGAGA TGGAGGGCCCTGAGCGAGACCAGCTTGTCATCCCCGACGGACAGGAGGAGGAGCAGGAAGCT GCCGGGGAAGGGAAAACCAGCAGAAACTGAGAGGAGAAGATGACTACAACATGGATGAAAA TGAAGCAGAATCTGAGACAGCAAGCAAGCAGCCCTGGCAGGGAATGACAGAAACATAGATG TTTTTAATGTTGAAGATCAGAAAAGAGACACCATAAATTTACTTGATCAGCGTGAAAAGCGG AATCATACACTC**TGA**ATTGAACTGGAATCACATATTTCACAACAGGGCCGAAGAGATGACTA

FIGURE 58

MMGLGNGRRSMKSPPLVLAALVACIIVLGFNYWIASSRSVDLQTRIMELEGRVRRAAAERGA
VELKKNEFQGELEKQREQLDKIQSSHNFQLESVNKLYQDEKAVLVNNITTGERLIRVLQDQL
KTLQRNYGRLQQDVLQFQKNQTNLERKFSYDLSQCINQMKEVKEQCEERIEEVTKKGNEAVA
SRDLSENNDQRQQLQALSEPQPRLQAAGLPHTEVPQGKGNVLGNSKSQTPAPSSEVVLDSKR
QVEKEETNEIQVVNEEPQRDRLPQEPGREQVVEDRPVGGRGFGGAGELGQTPQVQAALSVSQ
ENPEMEGPERDQLVIPDGQEEEQEAAGEGRNQQKLRGEDDYNMDENEAESETDKQAALAGND
RNIDVFNVEDQKRDTINLLDQREKRNHTL

Signal peptide:

amino acids 1-29

FIGURE 59

TGCCATGGGGGAGCCAAGGGAAACCTGGGGCCTGCTGGATGGCTTCCCGATTTTCGCGGGTTGTTTGGTGCTGA TAGATGCTCTGCGATTTGACTTCGCCCAGCCCCAGCATTCACACGTGCCTAGAGAGCCTCCTGTCTCCCTACCCT TCCTGGGCAAACTAAGCTCCTTGCAGAGGATCCTGGAGATTCAGCCCCACCATGCCCGGCTCTACCGATCTCAGG TTGACCCTCCTACCACCACCATGCAGCGCCTCAAGGCCCTCACCACTGGCTCACTGCCTACCTTTATTGATGCTG GTAGTAACTTCGCCAGCCACGCCATAGTGGAAGACAATCTCATTAAGCAGCTCACCAGTGCAGGAAGGCGTGTAG TCTTCATGGGAGATGATACCTGGAAAGACCTTTTCCCTGGTGCTTTCTCCCAAAGCTTTCTTCCCCATCCTTCA ATGTCAGAGACCTAGACACAGTGGACAATGGCATCCTGGAACACCTCTACCCCACCATGGACAGTGGTGAATGGG ACGTGCTGATTGCTCACTTCCTGGGTGTGGACCACTGTGGCCACAAGCATGGCCCTCACCACCCTGAAATGGCCA AGAAACTTAGCCAGATGGACCAGGTGATCCAGGGACTTGTGGAGCGTCTGGAGAATGACACACTGCTGGTAGTGG CTGGGGACCATGGGATGACCACAAATGGAGACCATGGAGGGGACAGTGAGCTGGAGGTCTCAGCTGCTCTCTTTC TGTATAGCCCCACAGCAGTCTTCCCCAGCACCCCACCAGAGGAGCCAGAGGTGATTCCTCAAGTTAGCCTTGTGC CCACGCTGGCCCTGCTGGGCCTGCCCATCCCATTTGGGAATATCGGGGAAGTGATGGCTGAGCTATTCTCAG GGGGTGAGGACTCCCAGCCCCACTCCTCTGCTTTAGCCCAAGCCTCAGCTCTCCATCTCAATGCTCAGCAGGTGT $\tt CCCGATTTCTTCATACCTACTCAGCTGCTACTCAGGACCTTCAAGCTAAGGAGCTTCATCAGCTGCAGAACCTCT$ TCTCCAAGGCCTCTGCTGACTACCAGTGGCTTCTCCAGAGCCCCAAGGGGGCTGAGGCGACACTGCCGACTGTGA TTGCTGAGCTGCAGCAGTTCCTGCGGGGAGCTCGGGCCATGTGCATCGAGTCTTGGGCTCGTTTCTCTCTGGTCC CAGGCTTTCCATTCTGCCCTCTACTCCTGACACCTGTGGCCTGGGGCCTGGTTGGGGCCATAGCGTATGCTGGAC TCCTGGGAACTATTGAGCTGAAGCTAGATCTAGTGCTTCTAGGGGCTGTGGCTGCAGTGAGCTCATTCCTCCCTT TTCTGTGGAAAGCCTGGGCTGGCGGGTCCAAGAGGCCCCTGGCAACCCTGTTTCCCATCCCTGGGCCCGTCC TGTTACTCCTGCTGTTTCGCTTGGCTGTTTCTTCTCTGATAGTTTTTGTTGTAGCTGAGGCCAGGGCCACCCCCT TCCTTTTGGGCTCATTCATCCTGCTCCTGGTTGTCCAGCTTCACTGGGAGGGCCAGCTGCTTCCACCTAAGCTAC TCACAATGCCCCGCCTTGGCACTTCAGCCACAACAAACCCCCCACGGCACAATGGTGCATATGCCCTGAGGCTTG CGGCGCTGGTGGCCCTGTTAGCTGCCGTGCGCTTGTGGCTTCGCCGCTATGGTAATCTCAAGAGCCCCGAGCCAC CCATGCTCTTTGTGCGCTGGGGACTGCCCCTAATGGCATTGGGTACTGCCTACTGGGCATTGGCGTCGGGGG CAGATGAGGCTCCCCCCCGTCTCCGGGTCCTGGTCTCTGGGGCATCCATGGTGCTGCCTCGGGCTGTAGCAGGGC TGGCTGCTTCAGGGCTCGCGCTGCTCTGGAAGCCTGTGACAGTGCTGGTGAAGGCTGGGGCAGGCGCTCCAA TCTACCGACACATGCAGGAGGAGTTCCGGGGCCGGTTAGAGAGGACCAAATCTCAGGGTCCCCTGACTGTGGCTG CTTATCAGTTGGGGAGTGTCTACTCAGCTGCTATGGTCACAGCCCTCACCCTGTTGGCCTTCCCACTTCTGCTGT TTGCAGTAGGTTGCCCACTGCTCTGCTCTGGCCTTTCCTGTGAGAGTCAAGGGCTGCGGAAGAGACAGCAGC CCCCAGGGAATGAAGCTGATGCCAGAGTCAGACCCGAGGAGGAAGAGGAGCCACTGATGGAGATGCGGCTCCGGG ATGCGCCTCAGCACTTCTATGCAGCACTGCTGCAGCTGGGCCTCAAGTACCTCTTTATCCTTGGTATTCAGATTC TGGCCTGTGCCTTGGCAGCCTCCATCCTTCGCAGGCATCTCATGGTCTGGAAAGTGTTTGCCCCTAAGTTCATAT TTGAGGCTGTGGGCTTCATTGTGAGCAGCGTGGGACTTCTCCTGGGCATAGCTTTGGTGATGAGAGTGGATGGTG $\tt CTGTGAGCTCCTGGTTCAGGCAGCTATTTCTGGCCCAGCAGAGGG{\color{red}{TAG}}{CCTAGTCTGTGATTACTGGCACTTGGCT$ ACAGAGAGTGCTGGAGAACAGTGTAGCCTGGCCTGTACAGGTACTGGATGATCTGCAAGACAGGCTCAGCCATAC TCTTACTATCATGCAGCCAGGGGCCGCTGACATCTAGGACTTCATTATTCTATAATTCAGGACCACAGTGGAGTA TGATCCCTAACTCCTGATTTGGATGCATCTGAGGGACAAGGGGGGCGGTCTCCGAAGTGGAATAAAATAGGCCGG GCGTGGTGACTTGCACCTATAATCCCAGCACTTTGGGAGGCAGAGGTGGGAGGATTGCTTGGTCCCAGGAGTTCA

FIGURE 60

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62809

<subunit 1 of 1, 1089 aa, 1 stop

<MW: 118699, pI: 8.49, NX(S/T): 2

MQKASVLLFLAWVCFLFYAGIALFTSGFLLTRLELTNHSSCQEPPGPGSLPWGSOGKPGACW MASRFSRVVLVLIDALRFDFAOPQHSHVPREPPVSLPFLGKLSSLORILEIOPHHARLYRSO VDPPTTTMQRLKALTTGSLPTFIDAGSNFASHAIVEDNLIKQLTSAGRRVVFMGDDTWKDLF PGAFSKAFFFPSFNVRDLDTVDNGILEHLYPTMDSGEWDVLIAHFLGVDHCGHKHGPHHPEM AKKLSQMDQVIQGLVERLENDTLLVVAGDHGMTTNGDHGGDSELEVSAALFLYSPTAVFPST PPEEPEVIPQVSLVPTLALLLGLPIPFGNIGEVMAELFSGGEDSQPHSSALAQASALHLNAQ QVSRFLHTYSAATQDLQAKELHOLQNLFSKASADYOWLLQSPKGAEATLPTVIAELOOFLRG ARAMCIESWARFSLVRMAGGTALLAASCFICLLASOWAISPGFPFCPLLLTPVAWGLVGAIA YAGLLGTIELKLDLVLLGAVAAVSSFLPFLWKAWAGWGSKRPLATLFPIPGPVLLLLLFRLA VFFSDSFVVAEARATPFLLGSFILLLVVQLHWEGOLLPPKLLTMPRLGTSATTNPPRHNGAY ALRLGIGLLLCTRLAGLFHRCPEETPVCHSSPWLSPLASMVGGRAKNLWYGACVAALVALLA AVRLWLRRYGNLKSPEPPMLFVRWGLPLMALGTAAYWALASGADEAPPRLRVLVSGASMVLP RAVAGLAASGLALLLWKPVTVLVKAGAGAPRTRTVLTPFSGPPTSOADLDYVVPQIYRHMOE EFRGRLERTKSQGPLTVAAYQLGSVYSAAMVTALTLLAFPLLLLHAERISLVFLLLFLQSFL LLHLLAAGIPVTTPGPFTVPWQAVSAWALMATQTFYSTGHQPVFPAIHWHAAFVGFPEGHGS CTWLPALLVGANTFASHLLFAVGCPLLLLWPFLCESQGLRKRQQPPGNEADARVRPEEEEEP LMEMRLRDAPQHFYAALLQLGLKYLFILGIQILACALAASILRRHLMVWKVFAPKFIFEAVG FIVSSVGLLLGIALVMRVDGAVSSWFRQLFLAQQR

Important features:

Signal peptide:

amino acids 1-16

Transmembrane domains:

amino acids 317-341, 451-470, 481-500, 510-527, 538-555, 831-850, 1016-1034, 1052-1070

Leucine zipper pattern.

amino acids 843-864

N-glycosylation sites.

amino acids 37-40, 268-271

FIGURE 61

TGCCGCTGCCGCCGCTGCTGCTGTTGCTCCTGGCCGCCCTTGGGGGACGGCCAGTTCCCTGT GTCTCTGGTGGTTTGCCTAAACCTGCAAACATCACCTTCTTATCCATCAACATGAAGA**xr**gr TCATCACAAATTGGCCCACCAGAGGTGGCACTGACTACAGATGAGAAGTCCATTTCTGTTGT CCTGACAGCTCCAGAGAGCTGGAAGAGAGAAATCCAGAAGACCTTCCTGTTTCCATGCAACAA TATACTCCAATCTGAAGTATAACGTGTCTGTGTTGAATACTAAATCAAACAGAACGTGGTCC CAGTGTGTGACCAACCACGCTGGTGCTCACCTGGCTGGAGCCGAACACTCTTTACTGCGT ACACGTGGAGTCCTTCGTCCAGGGCCCCCTCGCCGTGCTCAGCCTTCTGAGAAGCAGTGTG CCAGGACTTTGAAAGATCAATCATCAGAGTTCAAGGCTAAAATCATCTTCTGGTATGTTTTG CCCATATCTATTACCGTGTTTCTTTTTTCTGTGATGGGCTATTCCATCTACCGATATATCCA CGTTGGCAAAGAGAAACACCCAGCAAATTTGATTTTGATTTATGGAAATGAATTTGACAAAA GATTCTTTGTGCCTGCTGAAAAAATCGTGATTAACTTTATCACCCTCAATATCTCGGATGAT TCTAAAATTTCTCATCAGGATATGAGTTTACTGGGAAAAAGCAGTGATGTATCCAGCCTTAA TGATCCTCAGCCCAGCGGGAACCTGAGGCCCCCTCAGGAGGAAGAGGAGGTGAAACATTTAG GGTATGCTTCGCATTTGATGGAAATTTTTTTGTGACTCTGAAGAAAACACGGAAGGTACTTCT CTCACCCAGCAAGAGTCCCTCAGCAGAACAATACCCCCGGATAAAACAGTCATTGAATATGA ATATGATGTCAGAACCACTGACATTTGTGCGGGGCCTGAAGAGCAGGAGCTCAGTTTGCAGG CAAACGTTACAGTACTCATACACCCCTCAGCTCCAAGACTTAGACCCCCTGGCGCAGGAGCA CACAGACTCGGAGGAGGGCCGGAGGAAGAGCCATCGACGACCTGGTCGACTGGGATCCCC AAACTGGCAGGCTGTGTATTCCTTCGCTGTCCAGCTTCGACCAGGATTCAGAGGGCTGCGAG TCCAGACAGGCCACCAGGAGAAAATGAAACCTATCTCATGCAATTCATGGAGGAATGGGGGT TATATGTGCAGATGGAAAACTGATGCCAACACTTCCTTTTTGCCTTTTTGTTTTCCTGTGCAAAC AAGTGAGTCACCCCTTTGATCCCAGCCATAAAGTACCTGGGATGAAAGAAGTTTTTTCCAGT TTGTCAGTGTCTGTGAGAATTACTTATTTCTTTTTCTCTATTCTCATAGCACGTGTGTGATTG GTTCATGCATGTAGGTCTCTTAACAATGATGGTGGGCCTCTGGAGTCCAGGGGCTGGCCGGT TGTTCTATGCAGAGAAAGCAGTCAATAAATGTTTGCCAGACTGGGTGCAGAATTTATTCAGG TGGGTGT

FIGURE 62

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62815</pre>

<subunit 1 of 1, 442 aa, 1 stop

<MW: 49932, pI: 4.55, NX(S/T): 5

MSYNGLHQRVFKELKLLTLCSISSQIGPPEVALTTDEKSISVVLTAPEKWKRNPEDLPVSMQ
QIYSNLKYNVSVLNTKSNRTWSQCVTNHTLVLTWLEPNTLYCVHVESFVPGPPRRAQPSEKQ
CARTLKDQSSEFKAKIIFWYVLPISITVFLFSVMGYSIYRYIHVGKEKHPANLILIYGNEFD
KRFFVPAEKIVINFITLNISDDSKISHQDMSLLGKSSDVSSLNDPQPSGNLRPPQEEEEVKH
LGYASHLMEIFCDSEENTEGTSLTQQESLSRTIPPDKTVIEYEYDVRTTDICAGPEEQELSL
QEEVSTQGTLLESQAALAVLGPQTLQYSYTPQLQDLDPLAQEHTDSEEGPEEEPSTTLVDWD
PQTGRLCIPSLSSFDQDSEGCEPSEGDGLGEEGLLSRLYEEPAPDRPPGENETYLMQFMEEW
GLYVOMEN

Important features:

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 140-163

N-glycosylation sites.

amino acids 71-74, 80-83, 89-92, 204-207, 423-426

FIGURE 63

CGGACGCGTGGGCGGACGCGTGGGCGGACGCTGCG GATGCTGCCCGTGAAGCCCCCCGCAGGCTCCTGGGGGGCCCAGATCATCGGGGGCCACGAGG TGACCCCCACTCCAGGCCCTACATGGCATCCGTGCGCTTCGGGGGGCCAACATCACTGCGGA GGCTTCCTGCTGCGAGCCCGCTGGGTGGTCTCGGCCGCCCACTGCTTCAGCCACAGAGACCT TGTTTGGCATCGATGCTCTCACCACGCACCCCGACTACCACCCCATGACCCACGCCAACGAC ATCTGCCTGCTGCGGCTGAACGGCTCTGCTGTCCTGGGCCCTGCAGTGGGGCTGCTGAGGCT TCGTGTCTGACTTTGAGGAGCTGCCGCCTGGACTGATGGAGGCCAAGGTCCGAGTGCTGGAC CCGGACGTCTGCAACACTCCTGGAAGGGCCACCTGACACTTACCATGCTCTGCACCCGCAG TGGGGACAGCCACAGACGGGGCTTCTGCTCGGCCGACTCCGGAGGGCCCCTGGTGTGCAGGA ACCGGGCTCACGGCCTCGTTTCCTTCTCGGGCCTCTGGTGCGGCGACCCCAAGACCCCCGAC GTGTACACGCAGGTGTCCGCCTTTGTGGCCTGGATCTGGGACGTGGTTCGGCGGAGCAGTCC CCAGCCCGGCCCCTGCCTGGGACCACCAGGCCCCCAGGAGAAGCCGCCTGAGCCACAACCT TGCGGCATGCAAATGAGATGGCCGCTCCAGGCCTGGAATGTTCCGTGGCTGGGCCCCACGGG AAGCCTGATGTTCAGGGTTGGGGTGGGACGGGCAGCGGTGGGGCACACCCATTCCACATGCA

FIGURE 64

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62845

><subunit 1 of 1, 283 aa, 1 stop

><MW: 30350, pI: 9.66, NX(S/T): 2

MGLGLRGWGRPLLTVATALMLPVKPPAGSWGAQIIGGHEVTPHSRPYMASVRFGGQHHCGGF LLRARWVVSAAHCFSHRDLRTGLVVLGAHVLSTAEPTQQVFGIDALTTHPDYHPMTHANDIC LLRLNGSAVLGPAVGLLRLPGRRARPPTAGTRCRVAGWGFVSDFEELPPGLMEAKVRVLDPD VCNSSWKGHLTLTMLCTRSGDSHRRGFCSADSGGPLVCRNRAHGLVSFSGLWCGDPKTPDVY TQVSAFVAWIWDVVRRSSPOPGPLPGTTRPPGEAA

Signal peptide:

amino acids 1-30

FIGURE 65

GAGCTACCCAGGCGGCTGTGTGCAGCAAGCTCCGCGCCGACTCCGGACGCCTGACGCCTGA CGCCTGTCCCCGGCCCGGCATGAGCCGCTACCTGCTGCCGCTGTCGGCGCTGGGCACGGTAG CAGGCGCCGCGTGCTCAAGGACTATGTCACCGGTGGGGCTTGCCCCAGCAAGGCCACC ATCCCTGGGAAGACGGTCATCGTGACGGGCGCCAACACAGGCATCGGGAAGCAGACCGCCTT GGAACTGGCCAGGAGAGAGGGCAACATCATCCTGGCCTGCCGAGACATGGAGAAGTGTGAGG CGGCAGCAAAGGACATCCGCGGGGAGACCCTCAATCACCATGTCAACGCCCGGCACCTGGAC TTGGCTTCCCTCAAGTCTATCCGAGAGTTTGCAGCAAAGATCATTGAAGAGGAGGAGCGAGT GGACATTCTAATCAACAACGCGGGTGTGATGCGGTGCCCCCACTGGACCACCGAGGACGCCT TCGAGATGCAGTTTGGCGTTAACCACCTGGGTCACTTTCTCTTGACAAACTTGCTGCTGGAC AAGCTGAAAGCCTCAGCCCCTTCGCGGATCATCAACCTCTCGTCCCTGGCCCATGTTGCTGG GCACATAGACTTTGACGACTTGAACTGGCAGACGAGGAAGTATAACACCAAAGCCGCCTACT GCCAGAGCAAGCTCGCCATCGTCCTCTCACCAAGGAGCTGAGCCGGCGGCTGCAAGGCTCT GGTGTGACTGTCAACGCCCTGCACCCCGGCGTGGCCAGGACAGACCTGGGCAGACACACGG CATCCATGGCTCCACCTTCTCCAGCACCACACTCGGGCCCATCTTCTGGCTGCTGGTCAAGA GCCCGAGCTGGCCGCCCAGCCCAGCACATACCTGGCCGTGGCGGAGGAACTGGCGGATGTT TCCGGAAAGTACTTCGATGGACTCAAACAGAAGGCCCCGGCCCCCGAGGCTGAGGATGAGGA GGTGGCCCGGAGGCTTTGGGCTGAAAGTGCCCGCCTGGTGGGCTTAGAGGCTCCCTCTGTGA GGGAGCAGCCCCTCCCCAGATAACCTCTGGAGCAGATTTGAAAGCCAGGATGGCGCCTCCAG ACCGAGGACAGCTGTCCGCCATGCCCGCAGCTTCCTGGCACTACCTGAGCCGGGAGACCCAG GACTGGCGGCCCATGCCCGCAGTAGGTTCTAGGGGGCGGTGCTGGCCGCAGTGGACTGGC CTGCAGGTGAGCACTGCCCGGGCTCTGGCTGGTTCCGTCTGCTGCTGCCAGCAGGGGAG AGGGGCCATCTGATGCTTCCCCTGGGAATCTAAACTGGGAATGGCCGAGGAGGAAGGGGCTC TGTGCACTTGCAGGCCACGTCAGGAGAGCCAGCGGTGCCTGTCGGGGAGGGTTCCAAGGTGC TCCGTGAAGAGCATGGCAAGTTGTCTGACACTTGGTGGATTCTTGGGTCCCTGTGGGACCT TGTGCATGCATGGTCCTCTGAGCCTTGGTTTCTTCAGCAGTGAGATGCTCAGAATAACTG CTGTCTCCCATGATGGTGTGGTACAGCGAGCTGTTGTCTGGCTATGGCATGGCTGTGCCGGG GGTGTTTGCTGAGGGCTTCCTGTGCCAGAGCCCAGCCAGAGAGCAGGTGCAGGTGTCATCCC GAGTTCAGGCTCTGCACGGCATGGAGTGGGAACCCCACCAGCTGCTGCTACAGGACCTGGGA TTGCCTGGGACTCCCACCTTCCTATCAATTCTCATGGTAGTCCAAACTGCAGACTCTCAAAC TTGCTCATTT

FIGURE 66

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64842

><subunit 1 of 1, 331 aa, 1 stop

><MW: 35932, pI: 8.45, NX(S/T): 1

MSRYLLPLSALGTVAGAAVLLKDYVTGGACPSKATIPGKTVIVTGANTGIGKQTALELARRG
GNIILACRDMEKCEAAAKDIRGETLNHHVNARHLDLASLKSIREFAAKIIEEEERVDILINN
AGVMRCPHWTTEDGFEMQFGVNHLGHFLLTNLLLDKLKASAPSRIINLSSLAHVAGHIDFDD
LNWQTRKYNTKAAYCQSKLAIVLFTKELSRRLQGSGVTVNALHPGVARTELGRHTGIHGSTF
SSTTLGPIFWLLVKSPELAAQPSTYLAVAEELADVSGKYFDGLKQKAPAPEAEDEEVARRLW
AESARLVGLEAPSVREQPLPR

Signal peptide:

amino acids 1-17

FIGURE 67

GAAGTTCGCGAGCGCTGGCATGTCGTCCTGGGGCGCGCTGCCGGCGCTGCTGCCGGTGCTG GCGCTCGGGACAGGAGACCCAGAAAGGGCTGCGGCTCGGGGCGACACGTTCTCGGCGCTGAC CAGCGTGGCGCCCCTGGCGCCCGAGCGCCGGCTGCTGGGGGCTGCTGAGGCGGTACCTGC GAGGATTCAACACCCCTGTGGCTAACCCTCTGCTTGCATTTACTCTCATCAAACGCCTGCA GTCTGACTGGAGGAATGTGGTACATAGTCTGGAGGCCAGTGAGAACATCCGAGCTCTGAAGG ATGGCTATGAGAAGGTGGAGCAAGACCTTCCAGCCTTTGAGGACCTTGAGGGAGCAGCAAGG GCCCTGATGCGGCTGCAGGACGTGTACATGCTCAATGTGAAAGGCCTGGCCCGAGGTGTCTT TCAGAGAGTCACTGGCTCTGCCATCACTGACCTGTACAGCCCCAAACGGCTCTTTTCTCTCA CAGGGGATGACTGCCTACCAAGTTGGCAAGGTGGCCTATGACATGGGGGGATTATTACCATGCC ATTCCATGGCTGGAGGAGGCTGTCAGTCTCTTCCGAGGATCTTACGGAGAGTGGAAGACAGA GGATGAGGCAAGTCTAGAAGATGCCTTGGATCACTTGGCCTTTGCTTATTTCCGGGCAGGAA ATGTTTCGTGTGCCCTCAGCCTCTCTCGGGAGTTTCTTCTCTACAGCCCAGATAATAAGAGG ATGGCCAGGAATGTCTTGAAATATGAAAGGCTCTTGGCAGAGAGCCCCAACCACGTGGTAGC TGAGGCTGTCATCCAGAGGCCCAATATACCCCACCTGCAGACCAGAGACACCTACGAGGGGC TATGTCAGACCCTGGGTTCCCAGCCCACTCTCTACCAGATCCCTAGCCTCTACTGTTCCTAT GAGACCAATTCCAACGCCTACCTGCTCCAGCCCATCCGGAAGGAGGTCATCCACCTGGA GCCCTACATTGCTCTCTACCATGACTTCGTCAGTGACTCAGAGGCTCAGAAAATTAGAGAAC TTGCAGAACCATGGCTACAGAGGTCAGTGGTGGCATCAGGGGAGAAGCAGTTACAAGTGGAG TACCGCATCAGCAAAAGTGCCTGGCTGAAGGACACTGTTGACCCAAAACTGGTGACCCTCAA CCACCGCATTGCTGCCCTCACAGGCCTTGATGTCCGGCCTCCCTATGCAGAGTATCTGCAGG TGGTGAACTATGGCATCGGAGGACACTATGAGCCTCACTTTGACCATGCTACGTCACCAAGC GGTGGAAGCTGGAGGAGCCACAGCCTTCATCTATGCCAACCTCAGCGTGCCTGTGGTTAGGA ATGCAGCACTGTTTTGGTGGAACCTGCACAGGAGTGGTGAAGGGGACAGTGACACTTCAT GCTGGCTGTCCTGTCGTGGGAGATAAGTGGGTGGCCAACAAGTGGATACATGAGTATGG ACAGGAATTCCGCAGACCCTGCAGCTCCAGCCCTGAAGACTGAACTGTTGGCAGAGAGAAGC TGGTGGAGTCCTGTGGCTTTCCAGAGAAGCCAGGAGCCAAAAGCTGGGGTAGGAGAGGAGAA AGCAGAGCAGCCTCCTGGAAGAAGGCCTTGTCAGCTTTGTCTGTGCCTCGCAAATCAGAGGC AAGGGAGAGTTGTTACCAGGGGACACTGAGAATGTACATTTGATCTGCCCCAGCCACGGAA GTCAGAGTAGGATGCACAGTACAAAGGAGGGGGGGAGTGGAGGCCTGAGAGGGAAGTTTCTGG AGTTCAGATACTCTGTTGGGAACAGGACATCTCAACAGTCTCAGGTTCGATCAGTGGGTC TTTTGGCACTTTGAACCTTGACCACAGGGACCAAGAAGTGGCAATGAGGACACCTGCAGGAG GGGCTAGCCTGACTCCCAGAACTTTAAGACTTTCTCCCCACTGCCTTCTGCTGCAGCCCAAG CAGGGAGTGTCCCCCTCCCAGAAGCATATCCCAGATGAGTGGTACATTATATAAGGATTTTT ATGTTTATAAATCAAAA

FIGURE 68

MGPGARLAALLAVLALGTGDPERAAARGDTFSALTSVARALAPERRLLGLLRRYLRGEEARL RDLTRFYDKVLSLHEDSTTPVANPLLAFTLIKRLQSDWRNVVHSLEASENIRALKDGYEKVE QDLPAFEDLEGAARALMRLQDVYMLNVKGLARGVFQRVTGSAITDLYSPKRLFSLTGDDCFQ VGKVAYDMGDYYHAIPWLEEAVSLFRGSYGEWKTEDEASLEDALDHLAFAYFRAGNVSCALS LSREFLLYSPDNKRMARNVLKYERLLAESPNHVVAEAVIQRPNIPHLQTRDTYEGLCQTLGS QPTLYQIPSLYCSYETNSNAYLLLQPIRKEVIHLEPYIALYHDFVSDSEAQKIRELAEPWLQ RSVVASGEKQLQVEYRISKSAWLKDTVDPKLVTLNHRIAALTGLDVRPPYAEYLQVVNYGIG GHYEPHFDHATSPSSPLYRMKSGNRVATFMIYLSSVEAGGATAFIYANLSVPVVRNAALFWW NLHRSGEGDSDTLHAGCPVLVGDKWVANKWIHEYGQEFRRPCSSSPED

Signal peptide:

amino acids 1-19

FIGURE 69

GAGATAGGGAGTCTGGGTTTAAGTTCCTGCTCCATCTCAGGAGCCCCTGCTCCCACCCCTAG GAAGCCACCAGACTCCACGGTGTGGGGCCAATCAGGTGGAATCGGCCCTGGCAGGTGGGGCC ACGAGCGCTGGCTGAGGGACCGAGCCGGAGAGCCCCGGTAACCCGCGGGGGAG TGGCTCAAGTTTTCACTTATCATCTATTCCACCGTGTTCTGGCTGATTGGGGCCCTGGTCCT GTCTGTGGGCATCTATGCAGAGGTTGAGCGGCAGAAATATAAAACCCTTGAAAGTGCCTTCC TGGCTCCAGCCATCCTCATCCTCCTGGGCGTCGTCATGTTCATGGTCTCCTTCATTGGT GTGCTGGCGTCCCTCCGTGACAACCTGTACCTTCTCCAAGCATTCATGTACATCCTTGGGAT CTGCCTCATCATGGAGCTCATTGGTGGCGTGGTGGCCTTGACCTTCCGGAACCAGACCATTG ACTTCCTGAACGACAACATTCGAAGGGAATTGAGAACTACTATGATGATCTGGACTTCAAA AACATCATGGACTTTGTTCAGAAAAAGTTCAAGTGCTGTGGCGGGGAGGACTACCGAGATTG GAGCAAGAATCAGTACCACGACTGCAGTGCCCCTGGACCCCTGGCCTGTGGGGTGCCCTACA CCTGCTGCATCAGGAACACGACAGAAGTTGTCAACACCATGTGTGGCTACAAAACTATCGAC AAGGAGCGTTTCAGTGTGCAGGATGTCATCTACGTGCGGGGCTGCACCCAACGCCGTGATCAT CTGGTTCATGGACAACTACACCATCATGGCGTGCATCCTCGGGCATCCTGCTTCCCCAGT TCCTGGGGGTGCTGCTGACGCTGCTGTACATCACCCGGGTGGAGGACATCATCATGGAGCAC TCTGTCACTGATGGGCTCCTGGGGCCCGGTGCCAAGCCCAGCGTGGAGGCGCACGGCACGGG ATGCTGCTTGTGCTACCCCAATTAGGGCCCAGCCTGCCATGGCAGCTCCAACAAGGACCGTC TGGGATAGCACCTCTCAGTCAACATCGTGGGGCTGGACAGGGCTGCGGCCCCTCTGCCCACA CCCAGGGAGCAGAGCCTGGGCCTCCCCTAAGAGGCTTTCCCCGAGGCAGCTCTGGAATCTGT GAGCCTGAGGCTCTGCTCAGGGCCCATTTCATCTCTGGCAGTGCCTTGGCGGTGGTATTCAA GGCAGTTTTGTAGCACCTGTAATTGGGGAGAGGGAGTGTGCCCCTCGGGGCAGGAGGGAAGG GCATCTGGGGAAGGGCAGGAGGGAAGAGCTGTCCATGCAGCCACGCCCATGGCCAGGTTGGC CTCTTCTCAGCCTCCCAGGTGCCTTGAGCCCTCTTGCAAGGGCGGCTGCTTCCTTGAGCCTA GTTTTTTTTACGTGATTTTTGTAACATTCATTTTTTTTGTACAGATAACAGGAGTTTCTGAC TAATCAAAGCTGGTATTTCCCCGCATGTCTTATTCTTGCCCTTCCCCCAACCAGTTTGTTAA

FIGURE 70

></usr/segdb2/sst/DNA/Dnasegs.min/ss.DNA64863

><subunit 1 of 1, 294 aa, 1 stop

><MW: 33211, pI: 5.35, NX(S/T): 3

MPRGDSEQVRYCARFSYLWLKFSLIIYSTVFWLIGALVLSVGIYAEVERQKYKTLESAFLAP
AIILLLGVVMFMVSFIGVLASLRDNLYLLQAFMYILGICLIMELIGGVVALTFRNQTIDFL
NDNIRRGIENYYDDLDFKNIMDFVQKKFKCCGGEDYRDWSKNQYHDCSAPGPLACGVPYTCC
IRNTTEVVNTMCGYKTIDKERFSVQDVIYVRGCTNAVIIWFMDNYTIMACILLGILLPQFLG
VLLTLLYITRVEDIIMEHSVTDGLLGPGAKPSVEAAGTGCCLCYPN

Signal peptide:

amino acids 1-44

Transmembrane domains:

amino acids 22-42, 57-85, 93-116, 230-257

FIGURE 71

GAGGAGCGGGCCGAGGACTCCAGCGTGCCCAGGTCTGGCATCCTGCACTTGCTGCCCTCTGA CACCTGGGAAGATGGCCGGCCCGTGGACCTTCACCCTTCTCTGTGGTTTGCTGGCAGCCACC TTGATCCAAGCCACCCTCAGTCCCACTGCAGTTCTCATCCTCGGCCCAAAAGTCATCAAAGA AAAGCTGACACAGGAGCTGAAGGACCACAACGCCACCAGCATCCTGCAGCAGCTGCCGCTGC TCAGTGCCATGCGGGAAAAGCCAGCCGGAGGCATCCCTGTGCTGGGCAGCCTGGTGAACACC GTCCTGAAGCACATCATCTGGCTGAAGGTCATCACAGCTAACATCCTCCAGCTGCAGGTGAA GCCCTCGGCCAATGACCAGGAGCTGCTAGTCAAGATCCCCCTGGACATGGTGGCTGGATTCA ACACGCCCTGGTCAAGACCATCGTGGAGTTCCACATGACGACTGAGGCCCAAGCCACCATC CGCATGGACACCAGTGCAAGTGGCCCCACCCGCCTGGTCCTCAGTGACTGTGCCACCAGCCA AGGTCATGAACCTCCTAGTGCCATCCCTGCCCAATCTAGTGAAAAACCAGCTGTGTCCCGTG ATCGAGGCTTCCTTCAATGGCATGTATGCAGACCTCCTGCAGCTGGTGAAGGTGCCCATTTC CCTCAGCATTGACCGTCTGGAGTTTGACCTTCTGTATCCTGCCATCAAGGGTGACACCATTC AGCTCTACCTGGGGGCCAAGTTGTTGGACTCACAGGGAAAGGTGACCAAGTGGTTCAATAAC TCTGCAGCTTCCCTGACAATGCCCACCCTGGACAACATCCCGTTCAGCCTCATCGTGAGTCA GGACGTGGTGAAAGCTGCAGTGGCTGCTGTTGCTCTCCCAGAAGAATTCATGGTCCTGTTGG ACTCTGTGCTTCCTGAGAGTGCCCATCGGCTGAAGTCAAGCATCGGGCTGATCAATGAAAAG GCTGCAGATAAGCTGGGATCTACCCAGATCGTGAAGATCCTAACTCAGGACACTCCCGAGTT TTTTATAGACCAAGGCCATGCCAAGGTGGCCCAACTGATCGTGCTGGAAGTGTTTCCCTCCA GTGAAGCCCTCCGCCCTTTGTTCACCCTGGGCATCGAAGCCAGCTCGGAAGCTCAGTTTTAC ACCAAAGGTGACCAACTTATACTCAACTTGAATAACATCAGCTCTGATCGGATCCAGCTGAT GAACTCTGGGATTGGCTGGTTCCAACCTGATGTTCTGAAAAACATCATCACTGAGATCATCC ACTCCATCCTGCTGCCGAACCAGAATGGCAAATTAAGATCTGGGGTCCCAGTGTCATTGGTG AAGGCCTTGGGATTCGAGGCAGCTGAGTCCTCACTGACCAAGGATGCCCTTGTGCTTACTCC AGCCTCCTTGTGGAAACCCAGCTCTCCTGTCTCCCAGTGAAGACTTGGATGGCAGCCATCAG GGAAGGCTGGGTCCCAGCTGGGAGTATGGGTGTGAGCTCTATAGACCATCCCTCTCTGCAAT CAATAAACACTTGCCTGTGAAAAA

FIGURE 72

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64881

><subunit 1 of 1, 484 aa, 1 stop

><MW: 52468, pI: 7.14, NX(S/T): 3

MAGPWTFTLLCGLLAATLIQATLSPTAVLILGPKVIKEKLTQELKDHNATSILQQLPLLSAM REKPAGGIPVLGSLVNTVLKHIIWLKVITANILQLQVKPSANDQELLVKIPLDMVAGFNTPL VKTIVEFHMTTEAQATIRMDTSASGPTRLVLSDCATSHGSLRIQLLYKLSFLVNALAKQVMN LLVPSLPNLVKNQLCPVIEASFNGMYADLLQLVKVPISLSIDRLEFDLLYPAIKGDTIQLYL GAKLLDSQGKVTKWFNNSAASLTMPTLDNIPFSLIVSQDVVKAAVAAVLSPEEFMVLLDSVL PESAHRLKSSIGLINEKAADKLGSTQIVKILTQDTPEFFIDQGHAKVAQLIVLEVFPSSEAL RPLFTLGIEASSEAQFYTKGDQLILNLNNISSDRIQLMNSGIGWFQPDVLKNIITEIIHSIL LPNQNGKLRSGVPVSLVKALGFEAAESSLTKDALVLTPASLWKPSSPVSQ

Important features of the protein:

Signal peptide:

amino acids 1-21

N-glycosylation sites.

amino acids 48-51, 264-267, 401-404

Glycosaminoglycan attachment site.

amino acids 412-415

LBP / BPI / CETP family proteins.

amino acids 407-457

FIGURE 73

GAGCGAACATGCCAGCGCGTTGGCGGTTTTGGTGTGTCTCTGTGACCATGGTGGTGGCGCTG AGTTCCGTCGCCTTGTGAAAGCCCCACCGAGAAATTACTCCGTTATCGTCATGTTCACTGCT CTCCAACTGCATAGACAGTGTGTCGTTTGCAAGCAAGCTGATGAAGAATTCCAGATCCTGGC AAACTCCTGGCGATACTCCAGTGCATTCACCAACAGGATATTTTTTTGCCATGGTGGATTTTG ATGAAGGCTCTGATGTATTTCAGATGCTAAACATGAATTCAGCTCCAACTTTCATCAACTTT CCTGCAAAAGGGAAACCCAAACGGGGTGATACATATGAGTTACAGGTGCGGGGTTTTTTCAGC TGAGCAGATTGCCCGGTGGATCGCCGACAGAACTGATGTCAATATTAGAGTGATTAGACCCC CAAATTATGCTGGTCCCCTTATGTTGGGATTGCTTTTGGCTGTTATTGGTGGACTTGTGTAT CTTCGAAGAAGTAATATGGAATTTCTCTTTAATAAAACTGGATGGGCTTTTGCAGCTTTGTG TTTTGTGCTTGCTATGACATCTGGTCAAATGTGGAACCATATAAGAGGACCACCATATGCCC ATAAGAATCCCCACACGGGACATGTGAATTATATCCATGGAAGCAGTCAAGCCCAGTTTGTA GCTGAAACACACATTGTTCTTCTGTTTAATGGTGGAGTTACCTTAGGAATGGTGCTTTTATG GACTTGTTGTATTATTCTTCAGTTGGATGCTCTCTATTTTTAGATCTAAATATCATGGCTAC CCATACAGCTTTCTGATGAGGTAAAAAGGTCCCAGAGATATATAGACACTGGAGTACTGGAA ATTGAAAAACGAAAATCGTGTGTGTTTGAAAAGAAGAATGCAACTTGTATATTTTGTATTAC CTCTTTTTTCAAGTGATTTAAATAGTTAATCATTTAACCAAAGAAGATGTGTAGTGCCTTA ACAAGCAATCCTCTGTCAAAATCTGAGGTATTTGAAAATAATTATCCTCTTTAACCTTCTCTT CCCAGTGAACTTTATGGAACATTTAATTTAGTACAATTAAGTATATTATAAAAATTGTAAAA CTACTACTTTGTTTTAGTTAGAACAAAGCTCAAAACTACTTTAGTTAACTTGGTCATCTGAT TTTATATTGCCTTATCCAAAGATGGGGAAAGTAAGTCCTGACCAGGTGTTCCCACATATGCC TGTTACAGATAACTACATTAGGAATTCATTCTTAGCTTCTTCATCTTTGTGTGGATGTGTAT ACTTTACGCATCTTTCCTTTTGAGTAGAGAAATTATGTGTGTCATGTGGTCTTCTGAAAATG GAACACCATTCTTCAGAGCACACGTCTAGCCCTCAGCAAGACAGTTGTTTCTCCTCCTCCTT TCTCTAAATACAGGATTATAATTTCTGCTTGAGTATGGTGTTAACTACCTTGTATTTAGAAA GATTTCAGATTCATCCCTTAGTTTTCTTTTAAGGTGACCCATCTGTGATAAAAATA TAGCTTAGTGCTAAAATCAGTGTAACTTATACATGGCCTAAAATGTTTCTACAAATTAGAGT TTGTCACTTATTCCATTTGTACCTAAGAGAAAAATAGGCTCAGTTAGAAAAGGACTCCCTGG GAGGTCAGGAGTTCGAGACCATCCTGGCCAACATGGTGAAACCCCGTCTCTACTAAAAATAT AAAAATTAGCTGGGTGTGGCAGGAGCCTGTAATCCCAGCTACACAGGAGGCTGAGGCAC GAGAATCACTTGAACTCAGGAGATGGAGGTTTCAGTGAGCCGAGATCACGCCACTGCACTCC

FIGURE 74

MAARWRFWCVSVTMVVALLIVCDVPSASAQRKKEMVLSEKVSQLMEWTNKRPVIRMNGDKFR RLVKAPPRNYSVIVMFTALQLHRQCVVCKQADEEFQILANSWRYSSAFTNRIFFAMVDFDEG SDVFQMLNMNSAPTFINFPAKGKPKRGDTYELQVRGFSAEQIARWIADRTDVNIRVIRPPNY AGPLMLGLLLAVIGGLVYLRRSNMEFLFNKTGWAFAALCFVLAMTSGQMWNHIRGPPYAHKN PHTGHVNYIHGSSQAQFVAETHIVLLFNGGVTLGMVLLCEAATSDMDIGKRKIMCVAGIGLV VLFFSWMLSIFRSKYHGYPYSFLMS

Signal peptide:

amino acids 1-29

Transmembrane domains:

amino acids 183-205, 217-237, 217-287, 301-321

FIGURE 75

AAGCAACCAAACTGCAAGCTTTGGGAGTTGTTCGCTGTCCCTGCCTTGCTAGGGAGA GAACGCCAGAGGGAGGCGGCTGGCCCGGCGGCAGGCTCTCAGAACCGCTACCGGCGATGCTA CTGCTGTGGGTGTCGGTGGTCGCAGCCTTGGCGCTGCCGGTACTGGCCCCCGGAGCAGGGGA GCAGAGGCGGAGAGCAAAGCGCCCAATGTGGTGCTGGTCGTGAGCGACTCCTTCGATG GAAGGTTAACATTTCATCCAGGAAGTCAGGTAGTGAAACTTCCTTTTATCAACTTTATGAAG ACACGTGGGACTTCCTTTCTGAATGCCTACACAAACTCTCCAATTTGTTGCCCATCACGCGC AGCAATGTGGAGTGGCCTCTTCACTCACTTAACAGAATCTTGGAATAATTTTAAGGGTCTAG ATCCAAATTATACAACATGGATGGATGTCATGGAGAGGCATGGCTACCGAACACAGAAATTT GGGAAACTGGACTATACTTCAGGACATCACTCCATTAGTAATCGTGTGGAAGCGTGGACAAG AGATGTTGCTTTCTTACTCAGACAAGAAGGCAGGCCCATGGTTAATCTTATCCGTAACAGGA CTAAAGTCAGAGTGATGGAAAGGGATTGGCAGAATACAGACAAAGCAGTAAACTGGTTAAGA AAGGAAGCAATTAATTACACTGAACCATTTGTTATTTACTTGGGATTAAATTTACCACACCC TTACCCTTCACCATCTTCTGGAGAAAATTTTTGGATCTTCAACATTTCACACATCTCTTTATT GGCTTGAAAAAGTGTCTCATGATGCCATCAAAATCCCAAAGTGGTCACCTTTGTCAGAAATG CACCCTGTAGATTATTACTCTTCTTATACAAAAAACTGCACTGGAAGATTTACAAAAAAAGA AATTAAGAATATTAGAGCATTTTATTATGCTATGTGTGCTGAGACAGATGCCATGCTTGGTG AAATTATTTTGGCCCTTCATCAATTAGATCTTCTTCAGAAAACTATTGTCATATACTCCTCA GACCATGGAGAGCTGGCCATGGAACATCGACAGTTTTATAAAATGAGCATGTACGAGGCTAG TGCACATGTTCCGCTTTTGATGATGGGACCAGGAATTAAAGCCGGCCTACAAGTATCAAATG TGGTTTCTCTTGTGGATATTTACCCTACCATGCTTGATATTGCTGGAATTCCTCTGCCTCAG AACCTGAGTGGATACTCTTTGTTGCCGTTATCATCAGAAACATTTAAGAATGAACATAAAGT CAAAAACCTGCATCCACCCTGGATTCTGAGTGAATTCCATGGATGTAATGTGAATGCCTCCA CCTACATGCTTCGAACTAACCACTGGAAATATATAGCCTATTCGGATGGTGCATCAATATTG CCTCAACTCTTTGATCTTTCCTCGGATCCAGATGAATTAACAAATGTTGCTGTAAAATTTCC AGAAATTACTTATTCTTTGGATCAGAAGCTTCATTCCATTATAAACTACCCTAAAGTTTCTG CTTCTGTCCACCAGTATAATAAAGAGCAGTTTATCAAGTGGAAACAAAGTATAGGACAGAAT TATTCAAACGTTATAGCAAATCTTAGGTGGCACCAAGACTGGCAGAAGGAACCAAGGAAGTA TGAAAATGCAATTGATCAGTGGCTTAAAACCCATATGAATCCAAGAGCAGTT**TGA**ACAAAAA GTTTAAAAATAGTGTTCTAGAGATACATATAAATATATTACAAGATCATAATTATGTATTTT AAATGAAACAGTTTTAATAATTACCAAGTTTTTGGCCGGGCACAGTGGCTCACACCTGTAATC CCAGGACTTTGGGAGGCTGAGGAAAGCAGATCACAAGGTCAAGAGATTGAGACCATCCTGGC CAACATGGTGAAACCCTGTCTCTACTAAAAATACAAAAATTAGCTGGGCGCGGTGGTGCACA CCTATAGTCTCAGCTACTCAGAGGCTGAGGCAGGAGGATCGCTTGAACCCGGGAGGCAGCAG TTGCAGTGAGCTGAGATTGCGCCACTGTACTCCAGCCTGGCAACAGAGTGAGACTGTGTCGC TATTTTAAGATAAAATGCCAATGATTATAAAATCACATATTTTCAAAAATGGTTATTATTTA GGCCTTTGTACAATTTCTAACAATTTAGTGGAAGTATCAAAAGGATTGAAGCAAATACTGTA ACAGTTATGTTCCTTTAAATAATAGAGAATATAAAATATTGTAATAATATGTATCATAAAAT

FIGURE 76

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64885</pre>

<subunit 1 of 1, 536 aa, 1 stop

<MW: 61450, pI: 9.17, NX(S/T): 7

MLLLWVSVVAALALAVLAPGAGEQRRRAAKAPNVVLVVSDSFDGRLTFHPGSQVVKLPFINF
MKTRGTSFLNAYTNSPICCPSRAAMWSGLFTHLTESWNNFKGLDPNYTTWMDVMERHGYRTQ
KFGKLDYTSGHHSISNRVEAWTRDVAFLLRQEGRPMVNLIRNRTKVRVMERDWQNTDKAVNW
LRKEAINYTEPFVIYLGLNLPHPYPSPSSGENFGSSTFHTSLYWLEKVSHDAIKIPKWSPLS
EMHPVDYYSSYTKNCTGRFTKKEIKNIRAFYYAMCAETDAMLGEILLALHQLDLLQKTIVIY
SSDHGELAMEHRQFYKMSMYEASAHVPLLMMGPGIKAGLQVSNVVSLVDIYPTMLDIAGIPL
PQNLSGYSLLPLSSETFKNEHKVKNLHPPWILSEFHGCNVNASTYMLRTNHWKYIAYSDGAS
ILPQLFDLSSDPDELTNVAVKFPEITYSLDQKLHSIINYPKVSASVHQYNKEQFIKWKQSIG
QNYSNVIANLRWHQDWQKEPRKYENAIDQWLKTHMNPRAV

Important features:

Signal peptide:

amino acids 1-15

N-glycosylation sites.

amino acids 108-111, 166-169, 193-196, 262-265, 375-378, 413-416, 498-501

Sulfatases proteins:

amino acids 286-315, 359-369, 78-97

FIGURE 77

GAGAGAAGTCAGCCTGGCAGAGAGACTCTGAAATGAGGGATTAGAGGTGTTCAAGGAGCAAG AGCTTCAGCCTGAAGACAAGGGAGCAGTCCCTGAAGACGCTTCTACTGAGAGGTCTGCCATG GCCTCTCTTGGCCTCCAACTTGTGGGCTACATCCTAGGCCTTCTGGGGCTTTTGGGCACACT GGTTGCCATGCTCCCCAGCTGGAAAACAAGTTCTTATGTCGGTGCCAGCATTGTGACAG TGTGACATCTATAGCACCCTTCTGGGCCTGCCCGCTGACATCCAGGCTGCCCAGGCCATGAT GGTGACATCCAGTGCAATCTCCTCCCTGGCCTGCATTATCTCTGTGGTGGGCATGAGATGCA CAGTCTTCTGCCAGGAATCCCGAGCCAAAGACAGAGTGGCGGTAGCAGGTGGAGTCTTTTTTC ATCCTTGGAGGCCTCCTGGGATTCATTCCTGTTGCCTGGAATCTTCATGGGATCCTACGGGA CTTCTACTCACCACTGGTGCCTGACAGCATGAAATTTGAGATTGGAGAGGCTCTTTACTTGG GCATTATTTCTTCCCTGTTCTCCCTGATAGCTGGAATCATCCTCTGCTTTTTCCTGCTCATCC CAGAGAAATCGCTCCAACTACTACGATGCCTACCAAGCCCAACCTCTTGCCACAAGGAGCTC TCCAAGGCCTGGTCAACCTCCCAAAGTCAAGAGTGAGTTCAATTCCTACAGCCTGACAGGGT CACCCGAGGGCCACAGGTGAGGGACACTACCACTGGATCGTGTCAGAAGGTGCTGCTGAGG ATAGACTGACTTTGGCCATTGGATTGAGCAAAGGCAGAAATGGGGGCTAGTGTAACAGCATG CAGGTTGAATTGCCAAGGATGCTCGCCATGCCAGCCTTTCTGTTTTTCCTCACCTTGCTGCTC CCCTGCCTAAGTCCCCAACCCTCAACTTGAAACCCCATTCCCTTAAGCCAGGACTCAGAGG ATCCCTTTGCCCTCTGGTTTACCTGGGACTCCATCCCCAAACCCACTAATCACATCCCACTG ACTGACCCTCTGTGATCAAAGACCCTCTCTCTGGCTGAGGTTGGCTCTTAGCTCATTGCTGG GGATGGGAAGGAGAAGCAGTGGCTTTTGTGGGCATTGCTCTAACCTACTTCTCAAGCTTCCC TCCAAAGAAACTGATTGGCCCTGGAACCTCCATCCCACTCTTGTTATGACTCCACAGTGTCC AGACTAATTTGTGCATGAACTGAAATAAAACCATCCTACGGTATCCAGGGAACAGAAAGCAG GATGCAGGATGGGAGGACAGGAAGGCAGCCTGGGACATTTAAAAAAATA

FIGURE 78

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64886

><subunit 1 of 1, 230 aa, 1 stop

><MW: 24549, pI: 8.56, NX(S/T): 1

MASLGLQLVGYILGLLGLLGTLVAMLLPSWKTSSYVGASIVTAVGFSKGLWMECATHSTGIT QCDIYSTLLGLPADIQAAQAMMVTSSAISSLACIISVVGMRCTVFCQESRAKDRVAVAAGGVF FILGGLLGFIPVAWNLHGILRDFYSPLVPDSMKFEIGEALYLGIISSLFSLIAGIILCFSCS SQRNRSNYYDAYQAQPLATRSSPRPGOPPKVKSEFNSYSLTGYV

Important features of the protein:

Signal peptide:

amino acids 1-24

Transmembrane domains:

amino acids 82-102, 117-140, 163-182

N-glycosylation site.

amino acids 190-193

PMP-22 / EMP / MP20 family proteins.

amino acids 46-59

FIGURE 79

FIGURE 80

MVPRIFAPAYVSVCLLLLCPREVIAPAGSEPWLCQPAPRCGDKIYNPLEQCCYNDAIVSLSE TRQCGPPCTFWPCFELCCLDSFGLTNDFVVKLKVQGVNSQCHSSPISSKCESRRRFP

Signal peptide:

FIGURE 81

CTCCACTGCAACCACCAGAGCCATGCTCCCCGAGGCTGCATCGTAGCTGTTTTGCCATT
TTCTGCATCTCCAGGCTCCTCTGCTCACACGGAGCCCCATGGCCCCATGACTCCTTACCT
GATGCTGTGCCAGCACAAAGAGATGTGGGGACAAGTTCTACGACCCCTGCAGCACTGTT
GCTATGATGATGCCGTCGTGCCCTTGGCCAGGACCCAGACGTTGGAAACTGCACCTTCAGA
GTCTGCTTTGAGCAGTGCTGCCCTTGGCCATGACCTTCATGGTGAAACTGCAACTTCAGA
CTCAGCCCGGACCTCGGATGACAGGCTTTATGCGAAGCTGATAAACCACAACTCAGGAA
CGATGACTCCTGGATTCTCCTTCCTGGCTGGCCCTGAAAAAAGAGGCTGGTGTTACCTGAGA
TCTGGGATGCTGAGTGGCTGTTTTGGGGCCAGAAAACAACACTCAACTGCCACTTCATT
CTGTGACCTGTCTGAGGCCCACCCTGCAGCTGCCCTGAGGAGACCACAGGTCCCCTTCTAG
AATTCTGGACAGCATGAAGTGCTGTGTGTGTGTGGGGCCCAAGGACCCTCAACTCCTCTGAT
GACCCCTATGGCCAACATCAACCCGGCACCACCCCAAGGCTGCCTGGGGAACCCTTCACCCT
TCTGTGAGATTTTCCATCATCTCAAGTTCTCTTCTTCTTCTAGCAGGAGCAAAGCACAGGATCATAA
TAAATTTATGTACTTTATAAATAAAAAA

FIGURE 82

MAPRGCIVAVFAIFCISRLLCSHGAPVAPMTPYLMLCQPHKRCGDKFYDPLQHCCYDDAVVP LARTQTCGNCTFRVCFEQCCPWTFMVKLINQNCDSARTSDDRLCRSVS

Signal peptide:

FIGURE 83

GCGCGTCCGACGGCGACATGGGCGTCCCCACGGCCCTGGAGGCCGGCAGCTGGCGCTGGGGA TCCCTGCTCTTCGCTCTTCCTGGCTGCGTCCCTAGGTCCGGTGGCAGCCTTCAAGGTCGC CACGCCGTATTCCCTGTATGTCTGTCCCGAGGGGCAGAACGTCACCCTCACCTGCAGGCTCT TGGGCCCTGTGGACAAAGGGCACGATGTGACCTTCTACAAGACGTGGTACCGCAGCTCGAGG GGCGAGGTGCAGACCTGCTCAGAGCGCCGGCCCATCCGCAACCTCACGTTCCAGGACCTTCA CCTGCACCATGGAGGCCACCAGGCTGCCAACACCAGCCACGACCTGGCTCAGCGCCACGGGC TGGAGTCGGCCTCCGACCACCATGGCAACTTCTCCATCACCATGCGCAACCTGACCCTGCTG GATAGCGGCCTCTACTGCTGCCTGGTGGTGGAGATCAGGCACCACCACTCGGAGCACAGGGT ACCCATCCTCCCAGGATAGTGAAAACATCACGGCTGCAGCCCTGGCTACGGGTGCCTGC CTCCAACCGCCGTGCCCAGGAGCTGGTGCGGATGGACAGCAACATTCAAGGGATTGAAAACC CCGGCTTTGAAGCCTCACCACCTGCCCAGGGGATACCCGAGGCCAAAGTCAGGCACCCCTG TCCTATGTGGCCCAGCGCAGCCTTCTGAGTCTGGGCGGCATCTGCTTTCGGAGCCCAGCAC CCCCCTGTCTCCTCCAGGCCCCGGAGACGTCTTCTTCCCATCCCTGGACCCTGTCCCTGACT GGCAGGTGCATTTGAGCCAGGGCTGGCTCTGTGAGTGGCCTCCTTGGCCTCGGCCCTGGTTC CCTCCCTCCTGGGCTCAGATACTGTGACATCCCAGAAGCCCAGCCCCTCAACCCCTC TGGATGCTACATGGGGATGCTGGACGGCTCAGCCCCTGTTCCAAGGATTTTGGGGTGCTGAG ATTCTCCCCTAGAGACCTGAAATTCACCAGCTACAGATGCCAAATGACTTACATCTTAAGAA GTCTCAGAACGTCCAGCCCTTCAGCAGCTCTCGTTCTGAGACATGAGCCTTGGGATGTGGCA GCATCAGTGGGACAAGATGGACACTGGGCCACCCTCCCAGGCACCAGACACAGGGCACGGTG GAGAGACTTCTCCCCCGTGGCCGCCTTGGCTCCCCCGTTTTGCCCGAGGCTGCTCTTCTGTC ACCTTCCCCAGCTGCCTCCTACCAGCAGTTTCTCTGAAGATCTGTCAACAGGTTAAGTCAAT CTGGGGCTTCCACTGCCTGCATTCCAGTCCCCAGAGCTTGGTGGTCCCGAAACGGGAAGTAC ATATTGGGGCATGGTGGCCTCCGTGAGCAAATGGTGTCTTGGGCAATCTGAGGCCAGGACAG GTGGAGAGGGGCACCTGCCCCGCCCTCCCCATCCCCTACTCCCACTGCTCAGCGCGGGCC ATTGCAAGGGTGCCACACAATGTCTTGTCCACCCTGGGACACTTCTGAGTATGAAGCGGGAT

FIGURE 84

></usr/segdb2/sst/DNA/Dnasegs.min/ss.DNA64897

><subunit 1 of 1, 311 aa, 1 stop

><MW: 33908, pI: 6.87, NX(S/T): 6

MGVPTALEAGSWRWGSLLFALFLAASLGPVAAFKVATPYSLYVCPEGQNVTLTCRLLGPVDK GHDVTFYKTWYRSSRGEVQTCSERRPIRNLTFQDLHLHHGGHQAANTSHDLAQRHGLESASD HHGNFSITMRNLTLLDSGLYCCLVVEIRHHHSEHRVHGAMELQVQTGKDAPSNCVVYPSSSQ DSENITAAALATGACIVGILCLPLILLLVYKQRQAASNRRAQELVRMDSNIQGIENPGFEAS PPAQGIPEAKVRHPLSYVAQRQPSESGRHLLSEPSTPLSPPGPGDVFFPSLDPVPDSPNFEVI

Signal peptide:

amino acids 1-28

Transmembrane domain:

FIGURE 85

TTCCCCGCGTTCTCTTCCACCTTTCTCTTCTCCACCTTAGACCTCCCTTCCTGCCCTCC TTTCCTGCCCACCGCTGCTTCCTGGCCCTTCTCCGACCCCGCTCTAGCAGCAGCACCTCCTGG CTCCGCTCCCGGACCAGCGGCCTGACCCTGGGGAAAGGATGGTTCCCGAGGTGAGGGTCCTC AGACATGTTCTGCCTTTTCCATGGGAAGAGATACTCCCCCGGCGAGAGCTGGCACCCCTACT TGGAGCCACAAGGCCTGATGTACTGCCTGCGCTGTACCTGCTCAGAGGGCGCCCATGTGAGT TGTTACCGCCTCCACTGTCCGCCTGTCCACTGCCCCAGCCTGTGACGGAGCCACAGCAATG CTGTCCCAAGTGTGTGGAACCTCACACTCCCTCTGGACTCCGGGCCCCACCAAAGTCCTGCC AGCACAACGGGACCATGTACCAACACGGAGAGATCTTCAGTGCCCATGAGCTGTTCCCCTCC CGCCTGCCCAACCAGTGTGTCCTCTGCAGCTGCACAGAGGGCCAGATCTACTGCGGCCTCAC AACCTGCCCGAACCAGGCTGCCCAGCCCCCCCCCACTGCCAGACTCCTGCCCAAGCCT GCAAAGATGAGGCAAGTGAGCAATCGGATGAAGAGGACAGTGTGCAGTCGCTCCATGGGGTG AGACATCCTCAGGATCCATGTTCCAGTGATGCTGGGAGAAGAGAGGCCCGGGCACCCCAGC CCCCACTGGCCTCAGCGCCCCTCTGAGCTTCATCCCTCGCCACTTCAGACCCAAGGGAGCAG GCAGCACAACTGTCAAGATCGTCCTGAAGGAGAAACATAAGAAAGCCTGTGTGCATGGCGGG AAGACGTACTCCCACGGGGAGGTGTGGCACCCGGCCTTCCGTGCCTTCGGCCCCTTGCCCTG CATCCTATGCACCTGTGAGGATGGCCGCCAGGACTGCCAGCGTGTGACCTGTCCCACCGAGT ACCCCTGCCGTCACCCCGAGAAAGTGGCTGGGAAGTGCTGCAAGATTTGCCCAGAGGACAAA GCAGACCCTGGCCACAGTGAGATCAGTTCTACCAGGTGTCCCAAGGCACCGGGCCGGGTCCT CGTCCACACGTATCCCCAAGCCCAGACAACCTGCGTCGCTTTGCCCTGGAACACGAGG CCTCGGACTTGGTGGAGATCTACCTCTGGAAGCTGGTAAAAGATGAGGAAACTGAGGCTCAG AGAGGTGAAGTACCTGGCCCAAGGCCACACACCCAGAATCTTCCACTTGACTCAGATCAAGA AAGTCAGGAAGCAAGACTTCCAGAAAGAGGCACAGCACTTCCGACTGCTCGCTGGCCCCCAC GAAGGTCACTGGAACGTCTTCCTAGCCCAGACCCTGGAGCTGAAGGTCACGGCCAGTCCAGA CAAAGTGACCAAGACATAACAAGACCTAACAGTTGCAGATATGAGCTGTATAATTGTTGTT

FIGURE 86

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64902

><subunit 1 of 1, 451 aa, 1 stop

><MW: 49675, pI: 7.15, NX(S/T): 1

MVPEVRVLSSLLGLALLWFPLDSHARARPDMFCLFHGKRYSPGESWHPYLEPQGLMYCLRCT CSEGAHVSCYRLHCPPVHCPQPVTEPQQCCPKCVEPHTPSGLRAPPKSCQHNGTMYQHGEIF SAHELFPSRLPNQCVLCSCTEGQIYCGLTTCPEPGCPAPLPLPDSCCQACKDEASEQSDEED SVQSLHGVRHPQDPCSSDAGRKRGPGTPAPTGLSAPLSFIPRHFRPKGAGSTTVKIVLKEKH KKACVHGGKTYSHGEVWHPAFRAFGPLPCILCTCEDGRQDCQRVTCPTEYPCRHPEKVAGKC CKICPEDKADPGHSEISSTRCPKAPGRVLVHTSVSPSPDNLRRFALEHEASDLVEIYLWKLV KDEETEAQRGEVPGPRPHSQNLPLDSDQESQEARLPERGTALPTARWPPRRSLERLPSPDPG AEGHGQSRQSDQDITKT

Signal peptide:

FIGURE 87

FIGURE 88

MDSLRKMLISVAMLGAGAGVGYALLVIVTPGERRKQEMLKEMPLQDPRSREEAARTQQLLLA TLOEAATTOENVAWRKNWMVGGEGGASGRSP

Signal peptide:

FIGURE 89

CAGGAGAGAAGGCACCGCCCCCCCCCCCCCCCAAAGCTAACCCTCGGGCTTGAGGGGAAGA GGCTGACTGTACGTTCCTTCTACTCTGGCACCACTCTCCAGGCTGCCATGGGGCCCAGCACC CCTCTCCTCATCTTGTTCCTTTTTGTCATGGTCGGGACCCCTCCAAGGACAGCACCACCT TGTGGAGTACATGGAACGCCGACTAGCTGCTTTAGAGGAACGGCTGGCCCAGTGCCAGGACC AGAGTAGTCGGCATGCTGAGCTGCGGGACTTCAAGAACAAGATGCTGCCACTGCTGGAG GTGGCAGAGAAGGAGCGGGAGGCACTCAGAACTGAGGCCGACACCATCTCCGGGAGAGTGGA TCGTCTGGAGCGGGGGGTAGACTATCTGGAGACCCAGACCCAGCTCTGCCCTGTGTAGAGT TTGATGAGAAGGTGACTGGAGGCCCTGGGACCAAAGGCAAGGGAAGAAGGAATGAGAAGTAC GATATGGTGACAGACTGTGGCTACACAATCTCTCAAGTGAGATCAATGAAGATTCTGAAGCG ATTTGGTGGCCCAGCTGGTCTATGGACCAAGGATCCACTGGGGCAAACAGAGAAGATCTACG TGTTAGATGGGACACAGATGACACAGCCTTTGTCTTCCCAAGGCTGCGTGACTTCACCCTT GCCATGGCTGCCCGGAAAGCTTCCCGAGTCCGGGTGCCCTTCCCCTGGGTAGGCACAGGGCA GCTGGTATATGGTGGCTTTCTTTATTTTGCTCGGAGGCCTCCTGGAAGACCTGGTGGAGGTG GTGAGATGGAGAACACTTTGCAGCTAATCAAATTCCACCTGGCAAACCGAACAGTGGTGGAC AGCTCAGTATTCCCAGCAGAGGGGCTGATCCCCCCCTACGGCTTGACAGCAGACACCTACAT CGACCTGGTAGCTGATGAGGAAGGTCTTTGGGCTGTCTATGCCACCCGGGAGGATGACAGGC ACTTGTGTCTGGCCAAGTTAGATCCACAGACACTGGACACAGAGCAGCAGTGGGACACACCA TGTCCCAGAGAGAATGCTGAGGCTGCCTTTGTCATCTGTGGGACCCTCTATGTCGTCTATAA CACCCGTCCTGCCAGTCGGGCCCGCATCCAGTGCTCCTTTGATGCCAGCGGCACCCTGACCC CTGAACGGGCAGCACTCCCTTATTTTCCCCGCAGATATGGTGCCCATGCCAGCCTCCGCTAT AACCCCCGAGAACGCCAGCTCTATGCCTGGGATGATGGCTACCAGATTGTCTATAAGCTGGA GATGAGGAAGAAGAGGGGGGTTTGAGGGGGCTAGCCTTGTTTTTTGCATCTTTCTCACTC CCATACATTTATATTATATCCCCACTAAATTTCTTGTTCCTCATTCTTCAAATGTGGGCCAG TTGTGGCTCAAATCCTCTATATTTTTAGCCAATGGCAATCAAATTCTTTCAGCTCCTTTGTT TCATACGGAACTCCAGATCCTGAGTAATCCTTTTAGAGCCCGAAGAGTCAAAACCCTCAATG TTCCCTCCTGCTCTCCTGCCCCATGTCAACAAATTTCAGGCTAAGGATGCCCCAGACCCAGG GCTCTAACCTTGTATGCGGGCAGGCCCAGGGAGCAGCAGTGTTCTTCCCCTCAGAGTG TCAGTGTCCTGAGGACAGGACTTTCTCCACATTGTTTTGTATTGCAACATTTTGCATTAAA AAAAAAAAAAAAAAAAAAAA

FIGURE 90

</usr/seqdb2/sst/DNA/Dnasegs.min/ss.DNA64905

<subunit 1 of 1, 406 aa, 1 stop

<MW: 46038, pI: 6.50, NX(S/T): 2

MGPSTPLLILFLLSWSGPLQGQQHHLVEYMERRLAALEERLAQCQDQSSRHAAELRDFKNKM LPLLEVAEKEREALRTEADTISGRVDRLEREVDYLETQNPALPCVEFDEKVTGGPGTKGKGR RNEKYDMVTDCGYTISQVRSMKILKRFGGPAGLWTKDPLGQTEKIYVLDGTQNDTAFVFPRL RDFTLAMAARKASRVRVPFPWVGTGQLVYGGFLYFARRPPGRPGGGGEMENTLQLIKFHLAN RTVVDSSVFPAEGLIPPYGLTADTYIDLVADEEGLWAVYATREDDRHLCLAKLDPQTLDTEQ QWDTPCPRENAEAAFVICGTLYVVYNTRPASRARIQCSFDASGTLTPERAALPYFPRRYGAH ASLRYNPREROLYAWDDGYOIVYKLEMRKKEEEV

Important features:

Signal peptide:

amino acids 1-21

N-glycosylation sites.

amino acids 177-180, 248-251

FIGURE 91

GACAGCTGTGTCTCGATGGAGTAGACTCTCAGAACAGCGCAGTTTGCCCTCCGCTCACGCAG AGCCTCTCCGTGGCTTCCGCACCTTGAGCATTAGGCCAGTTCTCCTCTTCTCTCTAATCCAT CCGTCACCTCTCCTGTCATCCGTTTCCATGCCGTGAGGTCCATTCACAGAACACATCCATGG CTCTCATGCTCAGTTTGGTTCTGAGTCTCCTCAAGCTGGGATCAGGGCAGTGGCAGGTGTTT GGGCCAGACAAGCCTGTCCAGGCCTTGGTGGGGGGGGGCGCAGCATTCTCCTGTTCCTGTC TCCTAAGACCAATGCAGAGGCCATGGAAGTGCGGTTCTTCAGGGGCCAGTTCTCTAGCGTGG TCCACCTCTACAGGACGGGAAGGACCAGCCATTTATGCAGATGCCACAGTATCAAGGCAGG ACAAAACTGGTGAAGGATTCTATTGCGGAGGGGCGCATCTCTCTGAGGCTGGAAAACATTAC TGTGTTGGATGCTGGCCTCTATGGGTGCAGGATTAGTTCCCAGTCTTACTACCAGAAGGCCA TCTGGGAGCTACAGGTGTCAGCACTGGGCTCAGTTCCTCTCATTTCCATCACGGGATATGTT GATAGAGACATCCAGCTACTCTGTCAGTCCTCGGGCTGGTTCCCCCGGCCCACAGCGAAGTG TGTTTGATGTGGAGATCTCTCTGACCGTCCAAGAGAACGCCGGGAGCATATCCTGTTCCATG CGGCATGCTCATCTGAGCCGAGAGGTGGAATCCAGGGTACAGATAGGAGATACCTTTTTCGA GCCTATATCGTGGCACCTGGCTACCAAAGTACTGGGAATACTCTGCTGTGGCCTATTTTTTTG GCATTGTTGGACTGAAGATTTTCTTCTCCAAATTCCAGTGGAAAATCCAGGCGGAACTGGAC TGGAGAAGAAGCACGGACAGGCAGAATTGAGAGACGCCCGGAAACACGCAGTGGAGGTGAC TCTGGATCCAGAGACGCTCACCCGAAGCTCTGCGTTTCTGATCTGAAAACTGTAACCCATA GAAAAGCTCCCCAGGAGGTGCCTCACTCTGAGAAGAGATTTACAAGGAAGAGTGTGGTGGCT TCTCAGAGTTTCCAAGCAGGGAAACATTACTGGGAGGTGGACGGAGGACAATAAAAGGTG GCGCGTGGGAGTGTGCCGGGATGATGTGGACAGGAGGAGGAGTACGTGACTTTGTCTCCCG ATCATGGGTACTGGGTCCTCAGACTGAATGGAGAACATTTGTATTTCACATTAAATCCCCGT TTTATCAGCGTCTTCCCCAGGACCCCACCTACAAAATAGGGGTCTTCCTGGACTATGAGTG TTGAAGGCTTATTGAGGCCCTACATTGAGTATCCGTCCTATAATGAGCAAAATGGAACTCCC ATAGTCATCTGCCCAGTCACCCAGGAATCAGAGAAAGAGGCCTCTTGGCAAAGGGCCTCTGC AATCCCAGAGACAAGCAACAGTGAGTCCTCCTCACAGGCAACCACGCCCTTCCTCCCCAGGG GATCCAAAGTCCCGCAGCCGGCCAAGGTGGCTTCCAGATGAAGGGGGACTGGCCTGTCC ACATGGGAGTCAGGTGTCATGGCTGCCCTGAGCTGGGAGGAAGAAGGCTGACATTACATTT AGTTTGCTCTCACTCCATCTGGCTAAGTGATCTTGAAATACCACCTCTCAGGTGAAGAACCG TCAGGAATTCCCATCTCACAGGCTGTGGTGTAGATTAAGTAGACAAGGAATGTGAATAATGC TTAGATCTTATTGATGACAGAGTGTATCCTAATGGTTTGTTCATTATATTACACTTTCAGTA AAAAAA

FIGURE 92

MALMLSLVLSLLKLGSGQWQVFGPDKPVQALVGEDAAFSCFLSPKTNAEAMEVRFFRGQFSS
VVHLYRDGKDQPFMQMPQYQGRTKLVKDSIAEGRISLRLENITVLDAGLYGCRISSQSYYQK
AIWELQVSALGSVPLISITGYVDRDIQLLCQSSGWFPRPTAKWKGPQGQDLSTDSRTNRDMH
GLFDVEISLTVQENAGSISCSMRHAHLSREVESRVQIGDTFFEPISWHLATKVLGILCCGLF
FGIVGLKIFFSKFQWKIQAELDWRRKHGQAELRDARKHAVEVTLDPETAHPKLCVSDLKTVT
HRKAPQEVPHSEKRFTRKSVVASQSFQAGKHYWEVDGGHNKRWRVGVCRDDVDRRKEYVTLS
PDHGYWVLRLNGEHLYFTLNPRFISVFPRTPPTKIGVFLDYECGTISFFNINDQSLIYTLTC
RFEGLLRPYIEYPSYNEQNGTPIVICPVTQESEKEASWQRASAIPETSNSESSSQATTPFLP
RGEM

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 239-255

FIGURE 93

GCGATGGTGCGCCCGGTGGCGGTGGCGGCGGTTGCGGAGGCTTCCTTGGTCGGATTGCA CCGTCGCCTCAGCCGCCTCGGCGGGGAATGTCACCGGTGGCGGGGGGGCGGGGGCAGGTG TCCCACGGCCCAGGCCCCGAGGACCGGGCCCCCGCGCCCACCGTCCACCGACCCCTGGCTG CGACTTCTCCAGCCCAGTCCCGGAGACCACCCCTCTTTGGGCGACTGCTGGACCCTCTTCC ACCACCTTTCAGGCGCCGCTCGGCCCCTCGCCGACCCCTCCGGCGGCGGCGGACGCACTTC GACCACCTCTCAGGCGCCGACCAGACCCGCGCCGACCACCCTTTCGACGACCACTGGCCCGG CGCCGACCACCCTGTAGCGACCACCGTACCGGCCCACGACTCCCCGGACCCCGACCCCC GATCTCCCCAGCAGCAGCAACAGCAGCGTCCTCCCCACCCCACCTGCCACCGAGGCCCCCTC TTCGCCTCCTCCAGAGTATGTATGTAACTGCTCTGTGGTTGGAAGCCTGAATGTGAATCGCT GCAACCAGACCACAGGGCAGTGTGAGTGTCGGCCAGGTTATCAGGGGCTTCACTGTGAAACC TGCAAAGAGGGCTTTTACCTAAATTACACTTCTGGGCTCTGTCAGCCATGTGACTGTAGTCC ACATGGAGCTCTCAGCATACCGTGCAACAGGTAAGCAACAGAGGGTGGAACTGAAGTTTATT TTATTTTAGCAAGGGAAAAAAAAAGGCTGCTACTCTCAAGGACCATACTGGTTTAAACAAAG GAGGATGAGGGTCATAGATTTACAAAATATTTTATATACTTTTATTCTCTTACTTTATATGT TATATTTAATGTCAGGATTTAAAAACATCTAATTTACTGATTTAGTTCTTCAAAAGCACTAG AGTCGCCAATTTTTCTCTGGGATAATTTCTGTAAATTTCATGGGAAAAATTATTGAAGAAT AAATCTGCTTTCTGGAAGGGCTTTCAGGCATGAAACCTGCTAGGAGGTTTAGAAATGTTCTT ATCAAAATTCTACATTTGTTTCTTTGGACATCTAAAGCTTAACCTGGGGGTACCCTAATTTA TTTAACTAGTGGTAAGTAGACTGGTTTTACTCTATTTACCAGTACATTTTTTGAGACCAAAAG TAGATTAAGCAGGAATTATCTTTAAACTATTATGTTATTTTGGAGGTAATTTAATCTAGTGGA ATAATGTACTGTTATCTAAGCATTTGCCTTGTACTGCACTGAAAGTAATTATTCTTTGACCT TATGTGAGGCACTTGGCTTTTTGTGGACCCCAAGTCAAAAAACTGAAGAGACAGTATTAAAT AATGAAAAAATAATGACAGGTTATACTCAGTGTAACCTGGGTATAACCCAAGATCTGCTGC CACTTACGAGCTGTGTTCCTTGGGCAAGTAATTTCCTTTCACTGAGCTTGTTTCTTCTCAAG GTTGTTGTGAAGATTAAATGAGTTGATATATAAAATGCCTAGCACATGTCACTCAATAAA TTCTGGTTTGTTTTAATTTCAAAGGAATATTATGGACTGAAATGAGAGAACATGTTTTAAGA ACTTTTAGCTCCTTGACAAAGAAGTGCTTTATACTTTAGCACTAAATATTTTAAATGCTTTA TAAATGATATTATACTGTTATGGAATATTGTATCATATTGTAGTTTATTAAAAATGTAGAAG AGGCTGGGCGCGGTGGCTCACGCCTGTAATCCTAGCACTTTGGGAGGCCAAGGCGGGTGGAT CACTTGAGGCCAGGAGTTCTAGATGAGCCTGGCCAGCAGTGAAACCCCGTCTCTACTAAA AATACAAACAAATTAGCTGGGCGTGGTGGCACACCTGTAGTCCCAGCTACTCGGGAGGCT GAGGCAGGAGAATCGGTTGAACCCGGGAGGTGGAGGTTGCAGTGAGCTGAGATCGCGCCACT

FIGURE 94

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64952

><subunit 1 of 1, 258 aa, 1 stop

><MW: 25716, pI: 8.13, NX(S/T): 5

MRSLPSLGGLALLCCAAAAAVASAASAGNVTGGGGAAGQVDASPGPGLRGEPSHPFPRATA
PTAQAPRTGPPRATVHRPLAATSPAQSPETTPLWATAGPSSTTFQAPLGPSPTTPPAAERTS
TTSQAPTRPAPTTLSTTTGPAPTTPVATTVPAPTTPRTPTPDLPSSSNSSVLPTPPATEAPS
SPPPEYVCNCSVVGSLNVNRCNQTTGQCECRPGYQGLHCETCKEGFYLNYTSGLCQPCDCSP
HGALSIPCNR

Important features of the protein:

Signal peptide:

amino acids 1-25

N-glycosylation sites.

amino acids 30-33, 172-175, 195-198, 208-211, 235-238

EGF-like domain cysteine pattern signature.

amino acids 214-226.

FIGURE 95

TGCGGCGCAGTGTAGACCTGGGAGGATGGCGCCTGCTGCTGCTGCTTTTCTGGCTTTGG
TCTCGGTGCCCAGGCCCAGGCCGTGTGGTTGGGAAGACTGGACCCTGAGCAGCTTCTTGG
CCCTGGTACGTGCTTGCGGTGGCCTCCCGGGAAAAGGGCTTTCCCATGAGAAGGACATGAA
GAACGTCGTGGGGGTGGTGACCCTCACTCCAGAAAACAACCTGCGGACGCTGTCCTCTC
AGCACGGGCTGGGAGGGTTGACCAGAGTGTCATGGACCTGATAAAGCGAAACTCCGGATGG
GTGTTTGAGAATCCCTCAATAGGCGTGCTGGAGCTCTGGGTGCTGCCACCAACTTCAAGAA
CTATGCCATCATCTCACTCAGCTGGAGTTCGGGGACGACCCTTCAACACCGTGGAGCTGT
ACAGTCTGACGGAGACAGCCAGCAGAGGCCATGGGGCTCTTCACCAAGTGGAGCAGGAC
CTGGGCTTCCTGTCACAGTAGAGCCCAGCTGCAGAAGACCTCACCTGTGCTCACAAGAT
CCTTCTGTGAGTGCTGCGTCCCCAGTAGGATGGCCCCACAGGGTCCTGTGACCTCGGCCA
GTGTCCCACCCACCTCGCTCAGCGGCTCCCGGGGCCCACCACGCTCCAGAATAAAGCGATTC
CACAGCA

FIGURE 96

MGGLLLAAFLALVSVPRAQAVWLGRLDPEQLLGPWYVLAVASREKGFAMEKDMKNVVGVVVT LTPENNLRTLSSQHGLGGCDQSVMDLIKRNSGWVFENPSIGVLELWVLATNFRDYAIIFTQL EFGDEPFNTVELYSLTETASQEAMGLFTKWSRSLGFLSQ

Signal peptide:

FIGURE 97

AACAGACGTTCCCTCGCGGCCCTGGCACCTCTAACCCCAGACATGCTGCTGCTGCTGCTGCC CCTCCTCTGGGGGGGGGGGGGGGGGGAGGACAGCAGTAAACTGCTGACGATGCAGAGTT CCGTGACGGTGCAGGAAGGCCTGTGTGTGCCATGTGCCCCTGCTTCTTCTCCTACCCCTCGCATGGCTGGATTTACCCTGGCCCAGTAGTTCATGGCTACTGGTTCCGGGAAGGGGCCAATACAGA CCAGGATGCTCCAGTGGCCACAAACAACCCAGCTCGGGCAGTGTGGGAGGAGACTCGGGACC GATTCCACCTCCTTGGGGACCCACATACCAAGAATTGCACCCTGAGCATCAGAGATGCCAGA ACATCACCGGCTCTCTGTGAATGTGACAGCCTTGACCCACAGGCCCAACATCCTCATCCCAG GCACCCTGGAGTCCGGCTGCCCCCAGAATCTGACCTGCTCTGTGCCCTGGGCCTGTGAGCAG GGGACACCCCTATGATCTCCTGGATAGGGACCTCCGTGTCCCCCCTGGACCCCTCCACCAC CCGCTCCTCGGTGCTCACCCTCATCCCACAGCCCCAGGACCATGGCACCAGCCTCACCTGTC AGGTGACCTTCCCTGGGGCCAGCGTGACCACGAACAAGACCGTCCATCTCAACGTGTCCTAC CCGCCTCAGAACTTGACCATGACTGTCTTCCAAGGAGACGCACAGTATCCACAGTCTTGGG AAATGGCTCATCTCTGTCACTCCCAGAGGGCCAGTCTCTGCGCCTGGTCTGTGCAGTTGATG CAGTTGACAGCAATCCCCCTGCCAGGCTGAGCCTGAGCTGGAGAGGCCTGACCCTGTGCCCC TCACAGCCCTCAAACCCGGGGGTGCTGGAGCTGCCTTGGGTGCACCTGAGGGATGCAGCTGA ATTCACCTGCAGAGCTCAGAACCCTCTCGGCTCTCAGCAGGTCTACCTGAACGTCTCCCTGC AGAGCAAAGCCACATCAGGAGTGACTCAGGGGGGTGGTCGGGGGGAGCTGGAGCCACAGCCCTG GTCTTCCTGTCCTTCTGCGTCATCTTCGTTGTGGGGTCCTGCAGGAAGAAATCGGCAAG GCCAGCAGCGGGCGTGGGAGATACGGGCATAGAGGATGCAAACGCTGTCAGGGGTTCAGCCT CTCAGGGGCCCCTGACTGAACCTTGGGCAGAAGACAGTCCCCCAGACCAGCCTCCCCCAGCT TCTGCCCGCTCCTCAGTGGGGGAAGGAGACTCCAGTATGCATCCCTCAGCTTCCAGATGGT GAAGCCTTGGGACTCGCGGGGACAGGACGCCACTGACACCGAGTACTCGGAGATCAAGATCC ACAGATGAGAAACTGCAGAGACTCACCCTGATTGAGGGATCACAGCCCCTCCAGGCAAGGGA GAAGTCAGAGGCTGATTCTTGTAGAATTAACAGCCCTCAACGTGATGAGCTATGATAACACT ATGAATTATGTGCAGAGTGAAAAGCACACAGGCTTTAGAGTCAAAGTATCTCAAACCTGAAT

FIGURE 98

MLLLLPLLWGRERAEGQTSKLLTMQSSVTVQEGLCVHVPCSFSYPSHGWIYPGPVVHGYWF
REGANTDQDAPVATNNPARAVWEETRDRFHLLGDPHTKNCTLSIRDARRSDAGRYFFRMEKG
SIKWNYKHHRLSVNVTALTHRPNILIPGTLESGCPQNLTCSVPWACEQGTPPMISWIGTSVS
PLDPSTTRSSVLTLIPQPQDHGTSLTCQVTFPGASVTTNKTVHLNVSYPPQNLTMTVFQGDG
TVSTVLGNGSSLSLPEGQSLRLVCAVDAVDSNPPARLSLSWRGLTLCPSQPSNPGVLELPWV
HLRDAAEFTCRAQNPLGSQQVYLNVSLQSKATSGVTQGVVGGAGATALVFLSFCVIFVVVRS
CRKKSARPAAGVGDTGIEDANAVRGSASQGPLTEPWAEDSPPDQPPPASARSSVGEGELQYA
SLSFQMVKPWDSRGQEATDTEYSEIKIHR

Signal peptide:

amino acids 1-15

Transmembrane domain:

FIGURE 99

FIGURE 100

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA65404

<subunit 1 of 1, 170 aa, 1 stop

<MW: 19457, pI: 9.10, NX(S/T): 0

MKTLFLGVTLGLAAALSFTLEEEDITGTWYVKAMVVDKDFPEDRRPRKVSPVKVTALGGGKL EATFTFMREDRCIQKKILMRKTEEPGKYSAYGGRKLMYLQELPRRDHYIFYCKDQHHGGLLH MGKLVGRNSDTNREALEEFKKLVQRKGLSEEDIFTPLQTGSCVPEH

Important features:

Signal peptide:

FIGURE 101

GTTCCGCAGATGCAGAGGTTGAGGTGGCTGCGGGACTGGAAGTCATCGGGCAGAGGTCTCAC ${\tt AGCAGCCAAGGAACCTGGGGCCGCTCCTCCCCCCTCCAGGCC} {\color{red}{\textbf{ATG}}} {\color{blue}{\textbf{AGGATTCTGCAGTTAA}}}$ TCCTGCTTGCTCTGGCAACAGGGCTTGTAGGGGGAGAGACCAGGATCATCAAGGGGTTCGAG TGCAAGCCTCACTCCCAGCCCTGGCAGGCAGCCCTGTTCGAGAAGACGCGGCTACTCTGTGG GGCGACGCTCATCGCCCCCAGATGGCTCCTGACAGCCCCACTGCCTCAAGCCCCGCTACA TAGTTCACCTGGGGCAGCACCACCTCCAGAAGGAGGGGGGGTGTGAGCAGACCCGGACAGCC ACTGAGTCCTTCCCCCACCCGGCTTCAACAACAGCCTCCCCAACAAGACCACCGCAATGA CATCATGCTGGTGAAGATGGCATCGCCAGTCTCCATCACCTGGGCTGTGCGACCCCTCACCC TCTCCTCACGCTGTGTCACTGCTGGCACCAGCTGCCTCATTTCCGGCTGGGGCAGCACGTCC AGCCCCCAGTTACGCCTGCCTCACACCTTGCGATGCGCCAACATCACCATCATTGAGCACCA GAAGTGTGAGAACGCCTACCCCGGCAACATCACAGACACCATGGTGTGTGCCAGCGTGCAGG AAGGGGCAAGGACTCCTGCCAGGGTGACTCCGGGGGCCCTCTGGTCTGTAACCAGTCTCTT CAAGGCATTATCTCCTGGGGCCAGGATCCGTGTGCGATCACCCGAAAGCCTGGTGTCTACAC GAAAGTCTGCAAATATGTGGACTGGATCCAGGAGACGATGAAGAACAAT**TAG**ACTGGACCCA CCCACCACAGCCCATCACCCTCCATTTCCACTTGGTGTTTTGGTTCCTGTTCACTCTGTTAAT AAGAAACCCTAAGCCAAGACCCTCTACGAACATTCTTTGGGCCTCCTGGACTACAGGAGATG CTGTCACTTAATAATCAACCTGGGGTTCGAAATCAGTGAGACCTGGATTCAAATTCTGCCTT GAAATATTGTGACTCTGGGAATGACAACACCTGGTTTGTTCTCTGTTGTATCCCCAGCCCCA ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

FIGURE 102

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA65405

<subunit 1 of 1, 250 aa, 1 stop

<MW: 27466, pI: 8.87, NX(S/T): 4

MRILQLILLALATGLVGGETRIIKGFECKPHSQPWQAALFEKTRLLCGATLIAPRWLLTAAH CLKPRYIVHLGQHNLQKEEGCEQTRTATESFPHPGFNNSLPNKDHRNDIMLVKMASPVSITW AVRPLTLSSRCVTAGTSCLISGWGSTSSPQLRLPHTLRCANITIIEHQKCENAYPGNITDTM VCASVQEGGKDSCQGDSGGPLVCNQSLQGIISWGQDPCAITRKPGVYTKVCKYVDWIQETMKNN

Important features:

Signal peptide:

amino acids 1-18

Serine proteases, trypsin family, histidine active site. amino acids 58-63

N-qlycosylation sites.

amino acids 99-102, 165-168, 181-184, 210-213

Glycosaminoglycan attachment site.

amino acids 145-148

Kringle domain proteins.

amino acids 197-209, 47-64

Serine proteases, trypsin family, histidine protein

amino acids 199-209, 47-63, 220-243

Apple domain proteins

amino acids 222-249, 189-222

FIGURE 103

FIGURE 104

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA65406

<subunit 1 of 1, 222 aa, 1 stop

<MW: 25794, pI: 6.24, NX(S/T): 1

MPKTMHFLFRFIVFFYLWGLFTAQRQKKEESTEEVKIEVLHRPENCSKTSKKGDLLNAHYDG YLAKDGSKFYCSRTQNEGHPKWFVLGVGQVIKGLDIAMTDMCPGEKRKVVIPPSFAYGKEGY AEGKIPPDATLIFEIELYAVTKGPRSIETFKQIDMDNDRQLSKAEINLYLQREFEKDEKPRD KSYQDAVLEDIFKKNDHDGDGFISPKEYNVYQHDEL

Important features:

Endoplasmic reticulum targeting sequence.

amino acids 219-222

N-glycosylation site.

amino acids 45-48

FKBP-type peptidyl-prolyl cis-trans isomerase amino acids 87-223, 129-142

EF-hand calcium-binding domain proteins

amino acids 202-214, 195-214

FIGURE 105

CAGAAATGCAGGGACCATTGCTTCTTCCAGGCCTCTGCTTTCTGCTGAGCCTCTTTTGGAGCT
GTGACTCAGAAAACCAAAACTTCCTGTGCTAAGTGCCCCCCAAATGCTTCCTGTGTCAATAA
CACTCACTGCACCACCATGGATATACTTCTGGATCTTGGGCAGAAACTATTCACATTCC
CCTTGGAGACATGTAACGCCAGGCATGGTGGCTCGCGCCTGTAATCCCAGTTCTTTGGGAAG
CCAAGGCAGGTGGATCACCTGAGGTCAGGAGTTTGAGACCAGCCTGGCCAACATAGTGAAAC
CCCGTGCTCTACTAAAAATACAAAAATCAGCCGGGCGTGGTGGTGCATGCCTGCAATCCCAGT
TACTCGGGAGGCTGAGGCAGGAGAATCGCTTGAACTCAGGAGGCAGAAGTTGCAGTGAACCC
AGATCCTGCCATTGCACTCCAGCATGGATGACAGAGACTCCGTCTCAAAAAGAAAAAGA
TAGTTTCTTGTTTCATTTCGCGACTGCCCTCTCAGTGTTTCCTGGGATCCCCTCCCAAATAA
AGTACTTATATTCTC

FIGURE 106

 $\verb|MQGPLLLPGLCFLLSLFGAVTQKTKTSCAKCPPNASCVNNTHCTCNHGYTSGSGQKLFTFPL|\\ ETCNARHGGSRL|$

Signal peptide:

FIGURE 107

CAAGCAGGTCATCCCCTTGGTGACCTTCAAAGAGAAGCAGAGAGGGGCAGAGGTGGGGGGCAC AGGGAAAGGGTGACCTCTGAGATTCCCCTTTTCCCCCAGACTTTGGAAGTGACCCACCATGG TTCAATGGCACTGAGTGTGGGCGTAACTCACAGCCGTGGCAGGTGGGGCTGTTTGAGGGCAC CAGCCTGCGCTGCGGGGGTGTCCTTATTGACCACAGGTGGGTCCTCACAGCGGCTCACTGCA CAGATCCGGCACAGCGGCTTCTCTGTGACCCATCCCGGCTACCTGGGAGCCTCGACGAGCCA CGAGCACGACCTCCGGCTGCTGCGGCTGCGCCTGCCCGTCGCGTAACCAGCAGCATCAAC CCCTGCCCTGCCCAATGACTGTGCAACCGCTGGCACCGAGTGCCACGTCTCAGGCTGGGGC ATCACCAACCACCCACGGAACCCATTCCCGGATCTGCTCCAGTGCCTCAACCTCTCCATCGT CTCCCATGCCACCTGCCATGGTGTGTATCCCGGGAGAATCACGAGCAACATGGTGTGTGCAG GCGCCTCCCGGGCAGGATGCCTGCCAGGGTGATTCTGGGGGCCCCCTGGTGTGTGGGGGA GTCCTTCAAGGTCTGGTGTCCTGGGGGTCTGTGGGGCCCTGTGGACAAGATGGCATCCCTGG AGTCTACACCTATATTTGCAAGTATGTGGACTGGATCCGGATGATCATGAGGAACAACTGAC CTGTTTCCTCCACCTCCACCCCACCCCTTAACTTGGGTACCCCTCTGGCCCTCAGAGCACC AATATCTCCTCCATCACTTCCCCTAGCTCCACTCTTGTTGGCCTGGGAACTTCTTGGAACTT TAACTCCTGCCAGCCCTTCTAAGACCCACGAGCGGGTGAGAGAGTGTGCAATAGTCTGGA ATAAATATAAATGAAGGAGGGCAAAAAAAAAAAAAA

FIGURE 108

MGLSIFLLLCVLGLSQAATPKIFNGTECGRNSQPWQVGLFEGTSLRCGGVLIDHRWVLTAAH CSGSRYWVRLGEHSLSQLDWTEQIRHSGFSVTHPGYLGASTSHEHDLRLLRLRPVRVTSSV QPLPLPNDCATAGTECHVSGWGITNHPRNPFPDLLQCLNLSIVSHATCHGVYPGRITSNMVC AGGVPGQDACQGDSGGPLVCGGVLQGLVSWGSVGPCGQDGIPGVYTYICKYVDWIRMIMRNN

Signal peptide:

FIGURE 109

GCGGCCACACGCAGCTAGCCGGAGCCCGGACCAGGCGCCTGTGCCTCCTCCTCGTCCCTCGC CGCGTCCGCGAAGCCTGGAGCCGGCGGGAGCCCCGCGCTCGCCATGTCGGGCGAGCTCAGCA ACAGGTTCCAAGGAGGGGAAGGCGTTCGGCTTGCTCAAAGCCCGGCAGGAGAGGAGGAGGCTGGCC GAGATCAACCGGGAGTTTCTGTGTGACCAGAAGTACAGTGATGAAGAACCTTCCAGAAAA GCTCACAGCCTTCAAAGAGAAGTACATGGAGTTTGACCTGAACAATGAAGGCGAGATTGACC TGATGTCTTTAAAGAGGATGATGGAGAAGCTTGGTGTCCCCAAGACCCACCTGGAGATGAAG AAGATGATCTCAGAGGTGACAGGAGGGGTCAGTGACACTATATCCTACCGAGACTTTGTGAA CATGATGCTGGGGAAACGGTCGGCTGTCCTCAAGTTAGTCATGATGTTTGAAGGAAAAGCCA TCATCAATGTCTTTGTAAAGCACAAATTATCTGCCTTAAAGGGGCTCTGGGTCGGGGAATCC TGAGCCTTGGGTCCCCTCCTCTTCTTCCCTCCTTCCCCGCTCCCTGTGCAGAAGGGCTG ATATCAAACCAAAAACTAGAGGGGGCAGGGCCAGGGCAGGGAGGCTTCCAGCCTGTGTTCCC CTCACTTGGAGGAACCAGCACTCTCCATCCTTTCAGAAAGTCTCCAAGCCAAGTTCAGGCTC ACTGACCTGGCTCTGACGAGGACCCCAGGCCACTCTGAGAAGACCTTGGAGTAGGGACAAGG CTGCAGGGCCTCTTTCGGGTTTCCTTGGACAGTGCCATGGTTCCAGTGCTCTCGTGTCACCC AGGACACAGCCACTCGGGGCCCCGCTGCCCCAGCTGATCCCCACTCATTCCACACCTCTTCT CATCCTCAGTGATGTGAAGGTGGGAAGGAAGGAGCTTTGGCATTGGGAGCCCTTCAAGAAGG CGTGCAGCCCTACTGTCCCTTACTGGGGCAGCAGAGGGCTTCGGAGGCAGAAGTGAGGCCTG GGGTTTGGGGGGAAAGGTCAGCTCAGTGCTGTTCCACCTTTTAGGGAGGATACTGAGGGGAC CAGGATGGGAGAATGAGGAGTAAAATGCTCACGGCAAAGTCAGCAGCACTGGTAAGCCAAGA

FIGURE 110

MSGELSNRFQGGKAFGLLKARQERRLAEINREFLCDQKYSDEENLPEKLTAFKEKYMEFDLN NEGEIDLMSLKRMMEKLGVPKTHLEMKKMISEVTGGVSDTISYRDFVNMMLGKRSAVLKLVM MFEGKANESSPKPVGPPPERDIASLP

FIGURE 111A

CGCGCTCCCGCGCGCCTCCTCGGGCTCCACGCGTCTTGCCCCGCAGAGGCAGCCTCCTCCA GGAGCGGGCCCTGCACACCATGGCCCCCGGGTGGGCAGGGGTCGGCCGCCGTGCGCCCC CGCCTGGCGCTGGCGTGGCGAGCGTCCTGAGTGGGCCTCCAGCCGTCGCCTGCCC CACCAAGTGTACCTGCTCCGCTGCCAGCGTGGACTGCCACGGGCTGGGCCTCCGCGCGGTTC CTCGGGGCATCCCCGCAACGCTGAGCGCCTTGACCTGGACAGAAATAATATCACCAGGATC ACCAAGATGGACTTCGCTGGGCTCAAGAACCTCCGAGTCTTGCATCTGGAAGACAACCAGGT CAGCGTCATCGAGAGGGCGCCTTCCAGGACCTGAAGCAGCTAGAGCGACTGCGCCTGAACA AGAATAAGCTGCAAGTCCTTCCAGAATTGCTTTTCCAGAGCACGCCGAAGCTCACCAGACTA GATTTGAGTGAAAACCAGATCCAGGGGATCCCGAGGAAGGCGTTCCGCGGCATCACCGATGT GAAGAACCTGCAACTGGACAACAACCACATCAGCTGCATTGAAGATGGAGCCTTCCGAGCGC TGCGCGATTTGGAGATCCTTACCCTCAACAACAACATCAGTCGCATCCTGGTCACCAGC TTCAACCACATGCCGAAGATCCGAACTCTGCGCCTCCACCCCACCACCTCTACTGCGACTG CCACCTGGCCTGCGCATTGGCTGCGACAGCGACAGTTGGCCAGTTCACACTCT GCATGGCTCCTGTGCATTTGAGGGGCTTCAACGTGGCGGATGTGCAGAAGAAGAAGAGTACGTG TGCCCAGCCCCCACTCGGAGCCCCCATCCTGCAATCCCATCTCCTGCCCTTCGCC CTGCACGTGCAGCAATAACATCGTGGACTGTCGAGGAAAGGGCTTGATGGAGATTCCTGCCA ACTTGCCGGAGGGCATCGTCGAAATACGCCTAGAACAGAACTCCATCAAAGCCATCCCTGCA GGAGCCTTCACCCAGTACAAGAAACTGAAGCGAATAGACATCAGCAAGAATCAGATATCGGA TATTGCTCCAGATGCCTTCCAGGGCCTGAAATCACTCACATCGCTGGTCCTGTATGGGAACA AGATCACCGAGATTGCCAAGGGACTGTTTGATGGGCTGGTGTCCCTACAGCTGCTCCTCCTC AATGCCAACAAGATCAACTGCCTGCGGGTGAACACGTTTCAGGACCTGCAGAACCTCAACTT GCTCTCCCTGTATGACAACAAGCTGCAGACCATCAGCAAGGGGCTCTTCGCCCCTCTGCAGT CCATCCAGACACTCCACTTAGCCCAAAACCCATTTGTGTGCGACTGCCACTTGAAGTGGCTG GCCGACTACCTCCAGGACAACCCCATCGAGACAAGCGGGGCCCGCTGCAGCAGCCCGCGCCG ACTCGCCAACAAGCGCATCAGCCAGATCAAGAGCCAAGAAGTTCCGCTGCTCAGGCTCCGAGG ATTACCGCAGCAGCTCAGCAGCGAGTGCTCATGGACCTCGTGTGCCCCGAGAAGTGTCGC TGTGAGGGCACGATTGTGGACTGCTCCAACCAGAAGCTGGTCCGCATCCCAAGCCACCTCCC TGAATATGTCACCGACCTGCGACTGAATGACAATGAGGTATCTGTTCTGGAGGCCACTGGCA TCTTCAAGAAGTTGCCCAACCTGCGGAAAATAAATCTGAGTAACAATAAGATCAAGGAGGTG CGAGAGGGAGCTTTCGATGGAGCAGCCAGCGTGCAGGAGCTGATGCTGACAGGGAACCAGCT GGAGACCGTGCACGGGCGCGTGTTCCGTGGCCTCAGTGGCCTCAAAACCTTGATGCTGAGGA GTAACTTGATCAGCTGTGAGTAATGACACCTTTGCCGGCCTGAGTTCGGTGAGACTGCTG TCCCTCTATGACAATCGGATCACCACCATCACCCCTGGGGCCTTCACCACGCTTGTCTCCCT GTCCACCATAAACCTCCTGTCCAACCCCTTCAACTGCAACTGCCACCTGGCCTGGCTCGGCA AGTGGTTGAGGAAGAGGCGGATCGTCAGTGGGAACCCTAGGTGCCAGAAGCCATTTTTCCTC AAGGAGATTCCCATCCAGGATGTGGCCATCCAGGACTTCACCTGTGATGGCAACGAGGAGAG TAGCTGCCAGCTGAGCCCGCGCTGCCCGGAGCAGTGCACCTGTATGGAGACAGTGGTGCGAT GCAGCAACAAGGGGCTCCGCGCCCTCCCCAGAGGCATGCCCAAGGATGTGACCGAGCTGTAC CTGGAAGGAAACCACCTAACAGCCGTGCCCAGAGAGCTGTCCGCCCTCCGACACCTGACGCT TATTGACCTGAGCAACAACAGCATCAGCATGCTGACCAATTACACCTTCAGTAACATGTCTC ACCTCTCCACTCTGATCCTGAGCTACAACCGGCTGAGGTGCATCCCCGTCCACGCCTTCAAC GGGCTGCGGTCCCTGCGAGTGCTAACCCTCCATGGCAATGACATTTCCAGCGTTCCTGAAGG ACTGCAGTCTTCGGTGGCTGTCGGAGTGGGTGAAGGCGGGGTACAAGGAGCCTGGCATCGCC CGCTGCAGTAGCCCTGAGCCCATGGCTGACAGGCTCCTGCTCACCACCCCAACCCACCGCTT CCAGTGCAAAGGGCCAGTGGACATCAACATTGTGGCCAAATGCCAGTGCCTCCCAGCC

FIGURE 111B

TACAGCTACAAGGGCAAGGACTGCACTGTGCCCATCAACACCTGCATCCAGAACCCCTGTCA GCATGGAGGCACCTGCCACCTGAGTGACAGCCACAAGGATGGGTTCAGCTGCTCCTGCCCTC TGGGCTTTGAGGGCAGCGGTGTGAGATCAACCCAGATGACTGTGAGGACAACGACTGCGAA AACAATGCCACCTGCGTGGACGGGATCAACAACTACGTGTGTATCTGTCCGCCTAACTACAC AGGTGAGCTATGCGACGAGGTGATTGACCACTGTGTGCCTGAGCTGAACCTCTGTCAGCATG AGGCCAAGTGCATCCCCCTGGACAAAGGATTCAGCTGCGAGTGTGTCCCTGGCTACAGCGGG AAGCTCTGTGAGACAGACAATGATGACTGTGTGGCCCACAAGTGCCGCCACGGGGCCCAGTG CGTGGACACAATCAATGGCTACACATGCACCTGCCCCCAGGGCTTCAGTGGACCCTTCTGTG AACACCCCCACCCATGGTCCTACTGCAGACCAGCCCATGCGACCAGTACGAGTGCCAGAAC GGGGCCCAGTGCATCGTGGTGCAGCAGGAGCCCACCTGCCGCTGCCCACCAGGCTTCGCCGG CCCCAGATGCGAGAAGCTCATCACTGTCAACTTCGTGGGCAAAGACTCCTACGTGGAACTGG CCTCCGCCAAGGTCCGACCCCAGGCCAACATCTCCCTGCAGGTGGCCACTGACAAGGACAAC GGCATCCTTCTCTACAAAGGAGACAATGACCCCCTGGCACTGGAGCTGTACCAGGGCCACGT GCGGCTGGTCTATGACAGCCTGAGTTCCCCTCCAACCACAGTGTACAGTGTGGAGACAGTGA ATGATGGGCAGTTTCACAGTGTGGAGCTGGTGACCCTAAACCAGACCTGAACCTAGTAGTG CCCCTCTACCTTGGAGGCATCCCCACCTCCACCGGCCTCTCCGCCTTGCGCCAGGGCACGG ACCGGCCTCTAGGCGGCTTCCACGGATGCATCCATGAGGTGCGCATCAACAACGAGCTGCAG GACTTCAAGGCCCTCCCACCACAGTCCCTGGGGGTGTCACCAGGCTGCAAGTCCTGCACCGT GTGCAAGCACGCCTGTGCCGCTCCGTGGAGAAGGACAGCGTGGTGTGCGAGTGCCGCCCAG GCTGGACCGGCCCACTCTGCGACCAGGAGGCCCGGGACCCCTGCCTCGGCCACAGATGCCAC CATGGAAAATGTGTGGCAACTGGGACCTCATACATGTGCAAGTGTGCCGAGGGCTATGGAGG GGACTTGTGTGACAACAAGAATGACTCTGCCAATGCCTGCTCAGCCTTCAAGTGTCACCATG GGCAGTGCCACATCTCAGACCAAGGGGAGCCCTACTGCCTGTGCCAGCCCGGCTTTAGCGGC GAGCACTGCCAACAAGAGAATCCGTGCCTGGGACAAGTAGTCCGAGAGGTGATCCGCCGCCA GAAAGGTTATGCATCATGTGCCACAGCCTCCAAGGTGCCCATCATGGAATGTCGTGGGGGGCT GTGGGCCCAGTGCTGCCAGCCACCGCAGCAGCGGGGAAATACGTCTTCCAGTGCACG GACGGCTCCTCGTTTGTAGAAGAGGTGGAGAGACACTTAGAGTGCGGCTGCCTCGCGTGTTC CTAAGCCCCTGCCCGCCTGCCACCTCTCGGACTCCAGCTTGATGGAGTTGGGACAGCC ATGTGGGACCCCTGGTGATTCAGCATGAAGGAAATGAAGCTGGAGGGAAGGTAAAGAAGA AAAAA

FIGURE 112

MAPGWAGVGAAVRARLALALALASVLSGPPAVACPTKCTCSAASVDCHGLGLRAVPRGIPRN AERLDLDRNNITRITKMDFAGLKNLRVLHLEDNOVSVIERGAFODLKOLERLRLNKNKLOVL PELLFOSTPKLTRLDLSENOIOGIPRKAFRGITDVKNLOLDNNHISCIEDGAFRALRDLEIL TLNNNNISRILVTSFNHMPKIRTLRLHSNHLYCDCHLAWLSDWLRORRTVGOFTLCMAPVHL RGFNVADVOKKEYVCPAPHSEPPSCNANSISCPSPCTCSNNIVDCRGKGLMEIPANLPEGIV EIRLEONSIKAIPAGAFTOYKKLKRIDISKNOTSDIAPDAFOGLKSLTSLVLYGNKITEIAK GLFDGLVSLOLLLLNANKINCLRVNTFQDLQNLNLLSLYDNKLQTISKGLFAPLQSIQTLHL AONPFVCDCHLKWLADYLODNPIETSGARCSSPRRLANKRISOIKSKKFRCSGSEDYRSRFS SECFMDLVCPEKCRCEGTIVDCSNOKLVRIPSHLPEYVTDLRLNDNEVSVLEATGIFKKLPN LRKINLSNNKIKEVREGAFDGAASVOELMLTGNOLETVHGRVFRGLSGLKTLMLRSNLISCV SNDTFAGLSSVRLLSLYDNRITTITPGAFTTLVSLSTINLLSNPFNCNCHLAWLGKWLRKRR IVSGNPRCOKPFFLKEIPIODVAIODFTCDGNEESSCOLSPRCPEOCTCMETVVRCSNKGLR ALPRGMPKDVTELYLEGNHLTAVPRELSALRHLTLTDLSNNSTSMLTNYTFSNMSHLSTLTL SYNRLRCIPVHAFNGLRSLRVLTLHGNDISSVPEGSFNDLTSLSHLALGTNPLHCDCSLRWL SEWVKAGYKEPGIARCSSPEPMADRLLLTTPTHRFOCKGPVDINIVAKCNACLSSPCKNNGT CTODPVELYRCACPYSYKGKDCTVPINTCIONPCOHGGTCHLSDSHKDGFSCSCPLGFEGOR CEINPDDCEDNDCENNATCVDGINNYVCICPPNYTGELCDEVIDHCVPELNLCOHEAKCIPL DKGFSCECVPGYSGKLCETDNDDCVAHKCRHGAOCVDTINGYTCTCPOGFSGPFCEHPPPMV LLQTSPCDQYECONGAOCIVVQOEPTCRCPPGFAGPRCEKLITVNFVGKDSYVELASAKVRP QANISLQVATDKDNGILLYKGDNDPLALELYOGHVRLVYDSLSSPPTTVYSVETVNDGOFHS VELVTLNQTLNLVVDKGTPKSLGKLQKQPAVGINSPLYLGGIPTSTGLSALRQGTDRPLGGF HGCIHEVRINNELQDFKALPPQSLGVSPGCKSCTVCKHGLCRSVEKDSVVCECRPGWTGPLC DQEARDPCLGHRCHHGKCVATGTSYMCKCAEGYGGDLCDNKNDSANACSAFKCHHGQCHISD OGEPYCLCOPGFSGEHCOOENPCLGOVVREV TRROKGYASCATASKVPIMECRGGCGPOCCO PTRSKRRKYVFQCTDGSSFVEEVERHLECGCLACS

Signal peptide:

amino acids 1-27

FIGURE 113

FIGURE 114

MKAAGILTLIGCLVTGAESKIYTRCKLAKIFSRAGLDNYWGFSLGNWICMAYYESGYNTTAP TVLDDGSIDYGIFQINSFAWCRRGKLKENNHCHVACSALITDDLTDAIICARKIVKETQGMN YWQGWKKHCEGRDLSEWKKGCEVS

Signal peptide:

amino acids 1-19

FIGURE 115

CAGGCCATTTGCATCCCACTGTCCTTGTGTTCGGAGCCAGGCCACACCGTCCTCAGCAGTGT CATGTGTTAAAAACGCCAAGCTGAATATATCATGCCCCTATTAAAACTTGTACATGGCTCCC CATTGGTTTTTGGAGAAAAGTTCAAGCTTTTTTACCTTGGTGTCTGCCTGTATCCCAGTGTTC AGGCTGGCTAGACGGCGGAAGAAGATCCTATTTTACTGTCACTTCCCAGATCTGCTTCTCAC CAAGAGAGATTCTTTTCTTAAACGACTATACAGGGCCCCAATTGACTGGATAGAGGAATACA CCACAGGCATGGCAGACTGCATCTTAGTCAACAGCCAGTTCACAGCTGCTGTTTTTTAAGGAA ACATTCAAGTCCCTGTCTCACATAGACCCTGATGTCCTCTATCCATCTCTAAATGTCACCAG CTTTGACTCAGTTGTTCCTGAAAAGCTGGATGACCTAGTCCCCAAGGGGAAAAAATTCCTGC TGCTCTCCATCAACAGATACGAAAGGAAGAAAAATCTGACTTTGGCACTGGAAGCCCTAGTA CAGCTGCGTGGAAGATTGACATCCCAAGATTGGGAGGGGTTCATCTGATCGTGGCAGGTGG TTATGACGAGAGTCCTGGAGAATGTGGAACATTATCAGGAATTGAAGAAAATGGTCCAAC AGTCCGACCTTGGCCAGTATGTGACCTTCTTGAGGTCTTTCTCAGACAAACAGAAAATCTCC CTCCTCCACAGCTGCACGTGTGTGCTTTACACACCAAGCAATGAGCACTTTGGCATTGTCCC TCTGGAAGCCATGTACATGCAGTGCCCAGTCATTGCTGTTAATTCGGGTGGACCCTTGGAGT CCATTGACCACAGTGTCACAGGGTTTCTGTGTGAGCCTGACCCGGTGCACTTCTCAGAAGCA AGTGAAGGAAAAATTTTCCCCTGAAGCATTTACAGAACAGCTCTACCGATATGTTACCAAAC TGCTGGTATAATCAGATTGTTTTTAAGATCTCCATTAATGTCATTTTTATGGATTGTAGACC CAGTTTTGAAACCAAAAAAGAAACCTAGAATCTAATGCAGAAGAGATCTTTTAAAAAATAAA CTTGAGTCTTGAATGTGAGCCACTTTCCTATATACCACACCTCCCTGTCCACTTTTCAGAAA AACCATGTCTTTTATGCTATAATCATTCCAAATTTTGCCAGTGTTAAGTTACAAATGTGGTG TCATTCCATGTTCAGCAGAGTATTTTAATTATTTTTCTCGGGATTATTGCTCTTCTGTCTA TAAATTTTGAATGATACTGTGCCTTAATTGGTTTTCATAGTTTTAAGTGTGTATCATTATCAA AGTTGATTAATTTGGCTTCATAGTATAATGAGAGCAGGGCTATTGTAGTTCCCAGATTCAAT CATAGCGAGAGTGCTCTGTATTTTTTTAAGATAATTTGTATTTTTTGCACACTGAGATATAA TAAAAGGTGTTTATCATAAAAAAAAAAAAAAAAAAAAA

FIGURE 116

MPLLKLVHGSPLVFGEKFKLFTLVSACIPVFRLARRRKKILFYCHFPDLLLTKRDSFLKRLY RAPIDWIEEYTTGMADCILVNSQFTAAVFKETFKSLSHIDPDVLYPSLNVTSFDSVVPEKLD DLVPKGKKFLLLSINRYERKKNLTLALEALVQLRGRLTSQDWERVHLIVAGGYDERVLENVE HYQELKKMVQQSDLGQYVTFLRSFSDKQKISLLHSCTCVLYTPSNEHFGIVPLEAMYMQCPV IAVNSGGPLESIDHSVTGFLCEPDPVHFSEAIEKFIREPSLKATMGLAGRARVKEKFSPEAF TEQLYRYVTKLLV

Signal peptide:

amino acids 1-15

FIGURE 117

GACTACGCCGATCCGAGACGTGGCTCCCTGGGCGGCAGAACCATGTTGGACTTCGCGATCTT CGCCGTTACCTTCTTGCTGGCGTTGGTGGGAGCCGTGCTCTACCTCTATCCGGCTTCCAGAC AAGCTGCAGGAATTCCAGGGATTACTCCAACTGAAGAAAAAGATGGTAATCTTCCAGATATT GTGAATAGTGGAAGTTTGCATGAGTTCCTGGTTAATTTGCATGAGAGATATGGGCCTGTGGT CTCCTTCTGGTTTGGCAGGCGCCTCGTGGTTAGTTTGGGCACTGTTGATGTACTGAAGCAGC ATATCAATCCCAATA'AGACATCGGACCCTTTTGAAACCATGCTGAAGTCATTATTAAGGTAT CAATCTGGTGGTGGCAGTGTGAGTGAAAACCACATGAGGAAAAAATTGTATGAAAATGGTGT GACTGATTCTCTGAAGAGTAACTTTGCCCTCCTCAAAGCTTTCAGAAGAATTATTAGATA ATGAAGTCTGTTACACAGATGGTAATGGGTAGTACATTTGAAGATGATCAGGAAGTCATTCG CTTCCAGAAGAATCATGGCACAGTTTGGTCTGAGATTGGAAAAGGCTTTCTAGATGGGTCAC TTGATAAAAACATGACTCGGAAAAAACAATATGAAGATGCCCTCATGCAACTGGAGTCTGTT TTAAGGAACATCATAAAAGAACGAAAAGGAAGGAACTTCAGTCAACATATTTTCATTGACTC CTTAGTACAAGGGAACCTTAATGACCAACAGATCCTAGAAGACAGTATGATATTTTCTCTGG CCAGTTGCATAATAACTGCAAAATTGTGTACCTGGGCAATCTGTTTTTTAACCACCTCTGAA GAAGTTCAAAAAAATTATGAAGAGATAAACCAAGTTTTTGGAAATGGTCCTGTTACTCC AGAGAAAATTGAGCAGCTCAGATATTGTCAGCATGTGCTTTGTGAAACTGTTCGAACTGCCA AACTGACTCCAGTTTCTGCCCAGCTTCAAGATATTGAAGGAAAAATTGACCGATTTATTATT CCTAGAGAGACCCTCGTCCTTTATGCCCTTGGTGTGCTACTTCAGGATCCTAATACTTGGCC ATCTCCACAAGTTTGATCCAGATCGGTTTGATGATGAATTAGTAATGAAAACTTTTTCCT CACTTGGATTCTCAGGCACACAGGAGTGTCCAGAGTTGAGGTTTGCATATATGGTGACCACA GTACTTCTTAGTGTATTGGTGAAGAGACTGCACCTACTTTCTGTGGAGGGACAGGTTATTGA AACAAAGTATGAACTGGTAACATCATCAAGGGAAGAAGCTTGGATCACTGTCTCAAAGAGAT AAATCTATGTTGAATCCTTTTATAAACCAGTATCACTTTGTAATATAAACACCTATTTGTAC TTAA

FIGURE 118

MLDFAIFAVTFLLALVGAVLYLYPASRQAAGIPGITPTEEKDGNLPDIVNSGSLHEFLVNLH
ERYGPVVSFWFGRRLVVSLGTVDVLKQHINPNKTSDPFETMLKSLLRYQSGGGSVSENHMRK
KLYENGVTDSLKSNFALLLKLSEELLDKWLSYPETQHVPLSQHMLGFAMKSVTQMVMGSTFE
DDQEVIRFQKNHGTVWSEIGKGFLDGSLDKNMTRKKQYEDALMQLESVLRNIIKERKGRNFS
QHIFIDSLVQGNLNDQQILEDSMIFSLASCIITAKLCTWAICFLTTSEEVQKKLYEEINQVF
GNGPVTPEKIEQLRYCQHVLCETVRTAKLTPVSAQLQDIEGKIDRFIIPRETLVLYALGVVL
QDPNTWPSPHKFDPDRFDDELVMKTFSSLGFSGTQECPELRFAYMVTTVLLSVLVKRLHLLS
VEGQVIETKYELVTSSREEAWITVSKRY

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 271-290

FIGURE 119

FIGURE 120

MGRVSGLVPSRFLTLLAHLVVVITLFWSRDSNIQACLPLTFTPEEYDKQDIQLVAALSVTLG LFAVELAGFLSGVSMFNSTQSLISIGAHCSASVALSFFIFERWECTTYWYIFVFCSALPAVT EMALFVTVFGLKKKPF

Transmembrane domain:

amino acids 12-28 (type II), 51-66, 107-124

FIGURE 121

FIGURE 122

MSRRSMLLAWALPSLLRLGAAQETEDPACCSPIVPRNEWKALASECAQHLSLPLRYVVVSHT AGSSCNTPASCQQQARNVQHYHMKTLGWCDVGYNFLIGEDGLVYEGRGWNFTGAHSGHLWNP MSIGISFMGNYMDRVPTPQAIRAAQGLLACGVAQGALRSNYVLKGHRDVQRTLSPGNQLYHL IONWPHYRSP

Signal peptide:

amino acids 1-20

FIGURE 123

GACTCGCTGCTTCGTGTTCCTGGTGCAGGGTAGCCTCTATCTGGTCATCTGTGGCCAGG ATGATGGTCCTCCCGGCTCAGAGGACCCTGAGCGTGATGACCACGAGGGCCAGCCCCGGCCC CGGGTGCCTCGGAAGCGGGGCCACATCTCACCTAAGTCCCGCCCCATGGCCAATTCCACTCT CCTAGGGCTGCTGGCCCCCGAGCGCCTTGGGGCATTCTTGGGCAGCCCCCCAACCGCC CGAACCACAGCCCCCACCCTCAGCCAAGGTGAAGAAAATCTTTGGCTGGGGCGACTTCTAC TCCAACATCAAGACGGTGGCCCTGAACCTGCTCGTCACAGGGAAGATTGTGGACCATGGCAA TGGGACCTTCAGCGTCCACTTCCAACACACTGCCACAGGCCAGGGAAACATCTCCATCAGCC TCGTGCCCCCCAGTAAAGCTGTAGAGTTCCACCAGGAACAGCAGATCTTCATCGAAGCCAAG GCCTCCAAAATCTTCAACTGCCGGATGGAGTGGGAGAAGGTAGAACGGGGCCGCCGGACCTC GCTTTGCACCCACGACCCAGCCAAGATCTGCTCCCGAGACCACGCTCAGAGCTCAGCCACCT GGAGCTGCTCCCAGCCCTTCAAAGTCGTCTGTGTCTACATCGCCTTCTACAGCACGGACTAT CGGCTGGTCCAGAAGGTGTGCCCAGATTACAACTACCATAGTGATACCCCCTACTACCCATC TGGGTGACCCGGGGCAGGCCACAGAGGCCAGGCCAGGGCTGGAAGGACAGGCCTGCCCATGC ACGAGGAGATGCCAAGTGGGGCCAAGTCTCAAGTGGCAGAGAAAGGGTCCCAAGTG CTGGTCCCAACCTGAAGCTGTGGAGTGACTAGATCACAGGAGCACTGGAGGAGGAGGAGTGGGCT CTCTGTGCAGCCTCACAGGGCTTTGCCACGGAGCCACAGAGAGATGCTGGGTCCCCGAGGCC TGTGGGCAGGCCGATCAGTGTGGCCCCAGATCAAGTCATGGGAGGAAGCTAAGCCCTTGGTT CTTGCCATCCTGAGGAAAGATAGCAACAGGGAGGGGGAGATTTCATCAGTGTGGACAGCCTG TCAACTTAGGATGGATGGCTGAGAGGGCTTCCTAGGAGCCAGTCAGCAGGGTGGGGTGGGGC CAGAGGAGCTCTCCAGCCCTGCCTAGTGGGCCCCTGAGCCCCTTGTCGTGTGCTGAGCATG GCATGAGGCTGAAGTGGCAACCCTGGGGTCTTTGATGTCTTGACAGATTGACCATCTGTCTC CAGCCAGGCCACCCCTTTCCAAAATTCCCTCTTCTGCCAGTACTCCCCCTGTACCACCCATT GCTGATGGCACACCCATCCTTAAGCTAAGACAGGACGATTGTGGTCCTCCCACACTAAGGCC ACAGCCCATCCGCGTGCTGTGTCCCTCTTCCACCCCAACCCCTGCTGGCTCCTCTGGGAG CATCCATGTCCCGGAGAGGGGTCCCTCAACAGTCAGCCTCACCTGTCAGACCGGGGTTCTCC CGGATCTGGATGGCGCCCCCCTCTCAGCAGCGGGCACGGGTGGGGCCGGGCCCGCAGA GAAACCGCTGATTGCTGACTTTTGTGTGAAGAATCGTGTTCTTGGAGCAGGAAATAAAGCTT GCCCCGGGGCA

FIGURE 124

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA66521

><subunit 1 of 1, 252 aa, 1 stop

><MW: 28127, pI: 8.91, NX(S/T): 5

MQLTRCCFVFLVQGSLYLVICGQDDGPPGSEDPERDDHEGQPRPRVPRKRGHISPKSRPMAN STLLGLLAPPGEAWGILGQPPNRPNHSPPPSAKVKKIFGWGDFYSNIKTVALNLLVTGKIVD HGNGTFSVHFQHNATGQGNISISLVPPSKAVEFHQEQQIFIEAKASKIFNCRMEWEKVERGR RTSLCTHDPAKICSRDHAQSSATWSCSQPFKVVCVYIAFYSTDYRLVQKVCPDYNYHSDTPY YPSG

Important features of the protein:

Signal peptide:

amino acids 1-14

N-glycosylation sites.

amino acids 62-65, 127-130, 137-140, 143-146

2-oxo acid dehydrogenases acyltransferase amino acids 61-71

FIGURE 125

GTGAATGTGAGGGTTTGATGACTTTCAGATGTCTAGGAACCAGAGTGGGTGCAGGGGCCCCA GGCAGGGCTGATTCTTGGGCGGAGGAGAGTAGGGTAAAGGGTTCTGCATGAGCTCCTTAAAG GACAAAGGTAACAGAGCCAGCGAGAGAGCTCGAGGGGAGACTTTGACTTCAAGCCACAGAAT TGGTGGAAGTGTGCGCCGCCGCCGCCGCCGTCGCTCCTGCAGCGCTGTCGACCTAGCCGCTAG GGCTGCGGCTGCCCACACGGCTCACC<u>ATG</u>GGCTCCGGGCGCCGGGCGCTGTCCGCGGTGCCG GCCGTGCTGCTGGTCCTCACGCTGCCGGGGCTGCCCGTCTGGGCACAGAACGACACGGAGCC CATCGTGCTGGAGGGCAAGTGTCTGGTGGTGTGCGACTCGAACCCGGCCACGGACTCCAAGG GCTCCTCTCCCCCCCCTGGGGATATCGGTCCGGGCGGCCAACTCCAAGGTCGCCTTCTCG GCGGTGCGGAGCACCAACCACGAGCCATCCGAGATGAGCAACAAGACGCGCATCATTTACTT GAAAAGGAATTTACAGTTTCAGTTTTCACGTGATTAAAGTCTACCAGAGCCAAACTATCCAG GTTAACTTGATGTTAAATGGAAAACCAGTAATATCTGCCTTTGCGGGGGGACAAAGATGTTAC TCGTGAAGCTGCCACGAATGGTGTCCTGCTCTACCTAGATAAAGAGGATAAGGTTTACCTAA AACTGGAGAAAGGTAATTTGGTTGGAGGCTGGCAGTATTCCACGTTTTCTGGCTTTCTGGTG TTCCCCCTATAGGATTCAATTTCTCCATGATGTTCATCCAGGTGAGGGATGACCCACTCCTG AGTTATTGGAAGATCATTTTTTCATCATTGGATTGATGTCTTTTATTGGTTTCTCATGGGTG GATATGGATTCTAAGGATTCTAGCCTGTCTGAACCAATACAAAATTTCACAGATTATTTGTG TGTGTCTGTTTCAGTATATTTGGATTGGGACTCTAAGCAGATAATACCTATGCTTAAATGTA ACAGTCAAAAGCTGTCTGCAAGACTTATTCTGAATTTCATTTCCTGGGATTACTGAATTAGT TACAGATGTGGAATTTTATTTGTTTAGTTTTAAAAAGACTGGCAACCAGGTCTAAGGATTAGA AAACTCTAAAGTTCTGACTTCAATCAACGGTTAGTGTGATACTGCCAAAGAACTGTATACTG AAAACTTGGATTTTTTTTTTCAGTAACTGGTATTATGTTTTCTCTTAAAATAAGGTAATGAA GAATGCTTCATAGTTGTATTTTAATTGTATATGTGAAAGAGTCATATTTTCCAAGTTATATT TTCTAAGAAGAAGAATAGATCATAAATCTGACAAGGAAAAAGTTGCTTACCCAAAATCTAAG TGCTCAATCCCTGAGCCTCAGCAAAACAGCTCCCCTCCGAGGGAAATCTTATACTTTATTGC TCCGTAGACATGACCACTTTATTAACTGGTGGTGGGATGCTGTTGTTTCTAATTATACCTAT TTTTCAAGGCTTCTGTTGTATTTGAAGTATCATCTGGTTTTGCCTTAACTCTTTAAATTGTA TATATTTATCTGTTTAGCTAATATTAAATTCAAATATCCCATATCTAAATTTAGTGCAATAT TTAATATATGTTAAAAAA

FIGURE 126

MGSGRRALSAVPAVLLVLTLPGLPVWAQNDTEPIVLEGKCLVVCDSNPATDSKGSSSSSPLGI SVRAANSKVAFSAVRSTNHEPSEMSNKTRIIYFDQILVNVGNFFTLESVFVAPRKGIYSFSF HVIKVYQSQTIQVNLMLNGKPVISAFAGDKDVTREAATNGVLLYLDKEDKVYLKLEKGNLVG GWOYSTFSGFLVFPL

Signal peptide:

amino acids 1-27

FIGURE 127

FIGURE 128

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA66658

><subunit 1 of 1, 257 aa, 1 stop

><MW: 28472, pI: 9.33, NX(S/T): 0

MTAAVFFGCAFIAFGPALALYVFTIAIEPLRIIFLIAGAFFWLVSLLISSLVWFMARVIIDN KDGPTQKYLLIFGAFVSVYIQEMFRFAYYKLLKKASEGLKSINPGETAPSMRLLAYVSGLGF GIMSGVFSFVNTLSDSLGPGTVGIHGDSPQFFLYSAFMTLVIILLHVFWGIVFFDGCEKKKW GILLIVLLTHLLVSAQTFISSYYGINLASAFIILVLMGTWAFLAAGGSCRSLKLCLLCQDKN FLLYNORSR

Important features of the protein:

Signal peptide:

amino acids 1-19

Transmembrane domains:

amino acids 32-51, 119-138, 152-169, 216-235

Glycosaminoglycan attachment site.

amino acids 120-123

Sodium:neurotransmitter symporter family protein

amino acids 31-65

FIGURE 129

 $\tt CGGCAACCAGCCGCCACCACCGCTGCCACTGCCGCCCTGCCGGGGCCATGTTCGCTCTGGGCTTGCCCTTCT$ TGGTGCTCTTGGTGGCCTCGGTCGAGAGCCATCTGGGGGTTCTGGGGGCCCAAGAACGTCTCGCAGAAAGACGCCC AGTTTGAGCGCACCTACGTGGACGAGGTCAACAGCGAGCTGGTCAACATCTACACCTTCAACCATACTGTGACCC GCAACAGGACAGAGGGCGTGCGTGTCTCTGTGAACGTCCTGAACAAGCAGAAGGGGGCGCCGTTGCTGTTTGTGG TCCGCCAGAAGGAGGCTGTGCTCTTCCAGGTGCCCCTAATCCTGCGAGGGATGTTTCAGCGCAAGTACCTCT ACCAAAAAGTGGAACGAACCCTGTGTCAGCCCCCCACCAAGAATGAGTCGGAGATTCAGTTCTTCTACGTGGATG TGTCCACCCTGTCACCAGTCAACACCACATACCAGGTCCGGGTCAGCCGCATGGACGATTTTGTGCTCAGGACTG GGGAGCAGTTCAGCTTCAATACCACAGCAGCACCAGCCCCAGTACTTCAAGTATGAGTTCCCTGAAGGCGTGGACT CGGTAATTGTCAAGGTGACCTCCAACAAGGCCTTCCCCTGCTCAGTCATCTCCATTCAGGATGTGCTGTGTCCTG TCTATGACCTGGACAACAACGTAGCCTTCATCGGCATGTACCAGACGATGACCAAGAAGGCGGCCATCACCGTAC AGCGCAAAGACTTCCCCAGCAACAGCTTTTATGTGGTGGTGGTGGAGACCGAAGACCAAGCCTGCGGGGGCT CCCTGCCTTTCTACCCCTTCGCAGAAGATGAACCGGTCGATCAAGGGCACCGCCAGAAAACCCTGTCAGTGCTGG TGTCTCAAGCAGTCACGTCTGAGGCATACGTCAGTGGGATGCTCTTTTGCCTGGGTATATTTCTCTCTTTTTACC TGCTGACCGTCCTCCTGGCCTGCTGGGAGAACTGGAGGCAGAAGAAGAAGACCCTGCTGGTGGCCATTGACCGAG CCTGCCCAGAAAGCGGTCACCCTCGAGTCCTGGCTGATTCTTTTCCTGGCAGTTCCCCTTATGAGGGTTACAACT GTTACCAGGGCCGCTCCTTTGAACCTGTAGGTACTCGGCCCCGAGTGGACTCCATGAGCTCTGTGGAGGAGGATG ACTACGACACTTGACCGACATCGATTCCGACAAGAATGTCATTCGCACCAAGCAATACCTCTATGTGGCTGACC TGGCACGGAAGGACAAGCGTGTTCTGCGGAAAAAGTACCAGATCTACTTCTGGAACATTGCCACCATTGCTGTCT TCTATGCCCTTCCTGTGGTGCAGCTGGTGATCACCAGCGGTGGTGAATGTCACAGGGAATCAGGACATCT GCTACTACAACTTCCTCTGCGCCCACCCACTGGGCAATCTCAGCGCCTTCAACAACATCCTCAGCAACCTGGGGT ACATCCTGCTGGGGCTGCTTTTCCTGCTCATCATCCTGCAACGGGAGATCAACCACAACCGGGCCCTGCTGCGCA ATGACCTCTGTGCCCTGGAATGTGGGATCCCCAAACACTTTGGGCTTTTCTACGCCATGGGCACAGCCCTGATGA TGGAGGGGCTGCTCAGTGCTTGCTATCATGTGTGCCCCAACTATACCAATTTCCAGTTTGACACATCGTTCATGT ACATGATCGCCGGACTCTGCATGCTGAAGCTCTACCAGAAGCGGCACCCGGACATCAACGCCAGCGCCTACAGTG CCTACGCCTGCCATTGTCATCTTCTCTCTGTGCGGCGTGGTCTTTGGCAAAGGGAACACGGCGTTCT GGATCGTCTTCTCCATCATCACCATCATCGCCACCCTGCTCCTCAGCACGCAGCTCTATTACATGGGCCGGTGGA AACTGGACTCGGGGATCTTCCGCCGCATCCTCCACGTGCTCTACACAGACTGCATCCGGCAGTGCAGCGGGCCGC TGCGCCCCAATGATTTCGCTTCCTACTTGTTGGCCATTGGCATCTGCAACCTGCTCCTTTACTTCGCCTTCTACA TCATCATGAAGCTCCGGAGTGGGGAGAGGATCAAGCTCATCCCCCTGCTCTGCATCGTTTGCACCTCCGTGGTCT GGGGCTTCGCGCTCTTCTTCTTCTTCCAGGGACTCAGCACCTGGCAGAAAACCCCTGCAGAGTCGAGGGAGCACA ACCGGGACTGCATCCTCCTCGACTTCTTTGACGACCACGACATCTGGCACTTCCTCCTCCATCGCCATGTTCG GGTCCTTCCTGGTGTTGCTGACACTGGATGACGACCTGGATACTGTGCAGCGGGACAAGATCTATGTCTTC<u>TAG</u>C AGGAGCTGGGCCCTTCGCTTCACCTCAAGGGGCCCTGAGCTCCTTTGTGTCATAGACCGGTCACTCTGTCGTGCT GTGGGGATGAGTCCCAGCACCGCTGCCCAGCACTGGATGGCAGGACAGCCAGGTCTAGCTTAGGCTTGGCCT GGGACAGCCATGGGGTGGCATGGAACCTTGCAGCTGCCCTCTGCCGAGGAGCAGGCCTGCTCCCCTGGAACCCCC AGATGTTGGCCAAATTGCTGCTTTCTTCTCAGTGTTGGGGCCCTTCCATGGGCCCCTGTCCTTTGGCTCTCCATTT GTCCCTTTGCAAGAGGAAGGATGGAAGGGACACCCTCCCCATTTCATGCCTTGCATTTTTGCCCGTCCTCCCC ACAATGCCCCAGCCTGGGACCTAAGGCCTCTTTTTCCTCCCATACTCCCACTCCAGGGCCTAGTCTGGGGCCTGA ATCTCTGTCCTGTATCAGGGCCCCAGTTCTCTTTGGGCTGTCCCTGGCTGCCATCACTGCCCATTCCAGTCAGCC AGGATGGATGGGGGTATGAGATTTTGGGGGTTGGCCAGCTGGTGCCAGACTTTTGGTGCTAAGGCCTGCAAGGGG TGAGAACCGCCTTCTGATTCAAGAGGCTGAATTCAGAGGTCACCTCTTCATCCCATCAGCTCCCAGACTGATGCC AGCTGGTGGCCTTTCAGTGCCATTGACACTGCCCAAGAATGTCCAGGGGCAAAGGAGGATGATACAGAGTTCAG CCCGTTCTGCCTCCACAGCTGTGGGCACCCCAGTGCCTACCTTAGAAAGGGGCTTCAGGAAGGGATGTGCTGTTT AGTTCTGTGTTAGTCATGCACACACACATACCTATGAAACCTTGGAGTTTACAAAGAATTGCCCCAGCTCTGGGCAC CCTGGCCACCCTGGTCCTTGGATCCCCTTCGTCCCACCTGGTCCACCCCAGATGCTGAGGATGGGGGAGCTCAGG CGGGGCCTCTGCTTTGGGGATGGGATGTGTTTTTCTCCCAAACTTGTTTTTATAGCTCTGCTTGAAGGGCTGGG

FIGURE 130

></usr/segdb2/sst/DNA/Dnasegs.min/ss.DNA66659

><subunit 1 of 1, 832 aa, 1 stop

><MW: 94454, pI: 6.94, NX(S/T): 12

MFALGLPFLVLLVAS VESHLGVLGPKNVSQKDAEFERTYVDEVNSELVNIYTFNHTVTRNRT
EGVRVSVNVLNKQKGAPLLFVVRQKEAVVSFQVPLILRGMFQRKYLYQKVERTLCQPPTKNE
SEIQFFYVDVSTLSPVNTTYQLRVSRMDDFVLRTGEQFSFNTTAAQPQYFKYEFPEGVDSVI
VKVTSNKAFPCSVISIQDVLCPVYDLDNNVAFIGMYQTMTKKAAITVQRKDFPSNSFYVVVV
VKTEDQACGGSLPFYPFAEDEPVDQGHRQKTLSVLVSQAVTSEAYVSGMLFCLGIFLSFYLL
TVLLACWENWRQKKKTLLVAIDRACPESGHPRVLADSFPGSSPYEGYNYGSFENVSGSTDGL
VDSAGTGDLSYGYQGRSFEPVGTRPRVDSMSSVEEDDYDTLTDIDSDKNVIRTKQYLYVADL
ARKDKRVLRKKYQIYFWNIATIAVFYALPVVQLVITYQTVVNVTGNQDICYYNFLCAHPLGN
LSAFNNILSNLGYILLGLLFLLIILQREINHNRALLRNDLCALECGIPKHFGLFYAMTALM
MEGLLSACYHVCPNYTNFQFDTSFMYMIAGLCMLKLYQKRHPDINASAYSAYACLAIVIFFS
VLGVVFGKGNTAFWIVFSIIHIIATLLLSTQLYYMGRWKLDSGIFRRILHVLYTDCIRQCSG
PLYVDRWVLLVMGNVINWSLAAYGLIMRPNDFASYLLAIGICNLLLYFAFYIIMKLRSGERI
KLIPLLCIVCTSVVWGFALFFFFQGLSTWQKTPAESREHNRDCILLDFFDDHDIWHFLSSIA

Important features of the protein:

Signal peptide:

amino acids 1-18

Transmembrane domains:

amino acids 292-317, 451-470, 501-520, 607-627, 751-770

Leucine zipper pattern.

amino acids 497-518

N-glycosylation sites.

amino acids 27-30, 54-57, 60-63, 123-126, 141-144, 165-168, 364-367, 476-479, 496-499, 572-575, 603-606, 699-702

FIGURE 131

GCTCAAGTGCCCTGCCTTGCCCCACCCAGCCTGGCCAGAGCCCCCTGGAGAAGGAGC TCTCTTCTTGCTTGGCAGCTGGACCAAGGGAGCCAGTCTTGGGCGCCTGGAGGGCCTGTCCTG ACCATGGTCCCTGGCTGTGGCTGCTTTGTGTCTCCGTCCCCCAGGCTCTCCCCAAGGC CCAGCCTGCAGAGCTGTCTGTGGAAGTTCCAGAAAACTATGGTGGAAATTTCCCTTTATACC TGACCAAGTTGCCGCTGCCCCGTGAGGGGGCTGAAGGCCAGATCGTGCTGTCAGGGGACTCA GGCAAGGCAACTGAGGGCCCATTTGCTATGGATCCAGATTCTGGCTTCCTGCTGGTGACCAG GGCCCTGGACCGAGAGGAGCAGGCAGAGTACCAGCTACAGGTCACCCTGGAGATGCAGGATG GACATGTCTTGTGGGGTCCACAGCCTGTGCTTGTGCACGTGAAGGATGAGAATGACCAGGTG CCCCATTTCTCTCAAGCCATCTACAGAGCTCGGCTGAGCCGGGGTACCAGGCCTGGCATCCC CTTCCTCTTCCTTGAGGCTTCAGACCGGGATGAGCCAGGCACAGCCAACTCGGATCTTCGAT TCCACATCCTGAGCCAGGCTCCAGCCCAGCCTTCCCCAGACATGTTCCAGCTGGAGCCTCGG CTGGGGGCTCTGGCCCTCAGCCCCAAGGGGAGCACCAGCCTTGACCACGCCCTGGAGAGGAC CTACCAGCTGTTGGTACAGGTCAAGGACATGGGTGACCAGGCCTCAGGCCACCAGGCCACTG CCACCGTGGAAGTCTCCATCATAGAGAGCACCTGGGTGTCCCTAGAGCCTATCCACCTGGCA GAGAATCTCAAAGTCCTATACCCGCACCACATGGCCCAGGTACACTGGAGTGGGGGTGATGT GCACTATCACCTGGAGAGCCATCCCCCGGGACCCTTTGAAGTGAATGCAGAGGGAAACCTCT ACGTGACCAGAGAGCTGGACAGAGAAGCCCAGGCTGAGTACCTGCTCCAGGTGCGGGCTCAG TGACAACGTGCCTATCTGCCCTCCCGTGACCCCACAGTCAGCATCCCTGAGCTCAGTCCAC CAGGTACTGAAGTGACTAGACTGTCAGCAGAGGATGCCAGATGCCCCCGGCTCCCCCAATTCC CACGTTGTGTATCAGCTCCTGAGCCCTGAGCCTGAGGGTAGGGGGAGAGCCCTTCCA GGTGGACCCCACTTCAGGCAGTGTGACGCTGGGGGTGCTCCCACTCCGAGCAGGCCAGAACA TCCTGCTTCTGGTGCCATGGACCTGGCAGGCGCAGAGGGTGGCTTCAGCAGCACGTGT GAAGTCGAAGTCGCAGTCACAGATATCAATGATCACGCCCCTGAGTTCATCACTTCCCAGAT TGGGCCTATAAGCCTCCCTGAGGATGTGGAGCCCGGGACTCTGGTGGCCATGCTAACAGCCA TTGATGCTGACCTCGAGCCCGCCTTCCGCCTCATGGATTTTGCCATTGAGAGGGGAGACACA GAAGGGACTTTTGGCCTGGATTGGGAGCCAGACTCTGGGCATGTTAGACTCAGACTCTGCAA GAACCTCAGTTATGAGGCAGCTCCAAGTCATGAGGTGGTGGTGGTGGTGCAGAGTGTGGCGA AGCTGGTGGGGCCAGGCCCTGGAGCCACCGCCACGGTGACTGTGCTAGTGGAGAGA GTGATGCCACCCCCAAGTTGGACCAGGAGAGCTACGAGGCCAGTGTCCCCATCAGTGCCCC AGCCGGCTCTTTCCTGCTGACCATCCAGCCCTCCGACCCCATCAGCCGAACCCTCAGGTTCT CCCTAGTCAATGACTCAGAGGGCTGGCTCTGCATTGAGAAATTCTCCGGGGAGGTGCACACC GCCCAGTCCCTGCAGGGCGCCCAGCCTGGGGACACCTACACGGTGCTTGTGGAGGCCCAGGA TACAGCCCTGACTCTTGCCCCTGTGCCCTCCCAATACCTCTGCACACCCCGCCAAGACCATG GCTTGATCGTGAGTGGACCCAGCAAGGACCCCGATCTGGCCAGTGGGCACGGTCCCTACAGC TTCACCCTTGGTCCCAACCCCACGGTGCAACGGGATTGGCGCCTCCAGACTCTCAATGGTTC CCATGCCTACCTCACCTTGGCCCTGCATTGGGTGGAGCCACGTGAACACATAATCCCCGTGG TGGTCAGCCACAATGCCCAGATGTGGCAGCTCCTGGTTCGAGTGATCGTGTGTCGCTGCAAC GTGGAGGGCAGTGCATGCGCAAGGTGGGCCGCATGAAGGGCATGCCCACGAAGCTGTCGGC AGTGGGCATCCTTGTAGGCACCCTGGTAGCAATAGGAATCTTCCTCATCCTCATTTTCACCC ACTGGACCATGTCAAGGAAGAAGGACCCGGATCAACCAGCAGACAGCGTGCCCCTGAAGGCG ACTGTCTGAATGGCCCAGGCAGCTCTAGCTGGGAGCTTGGCCTCTGGCTCCATCTGAGTCCC CTGCCCTGGGGTGGAGGCACCATCACCATCACCAGGCATGTCTGCAGAGCCTGGACACCAAC TTTATGGACTGCCCATGGGAGTGCTCCAAATGTCAGGGTGTTTGCCCAATAATAAAGCCCCA

FIGURE 132

MVPAWLWLLCVSVPQALPKAQPAELSVEVPENYGGNFPLYLTKLPLPREGAEGQIVLSGDSG KATEGPFAMDPDSGFLLVTRALDREEQAEYQLQVTLEMQDGHVLWGPQPVLVHVKDENDQVP HFSQAIYRARLSRGTRPGIPFLFLEASDRDEPGTANSDLRFHILSQAPAQPSPDMFQLEPRL GALALSPKGSTSLDHALERTYQLLVQVKDMGDQASGHQATATVEVSIIESTWVSLEPIHLAE NLKVLYPHHMAQVHWSGGDVHYHLESHPFGPFEVNAEGNLYVTRELDREAQAEYLLQVRAQN SHGEDYAAPLELHVLVMDENDNVPICPPRDPTVSIPELSPPGTEVTRLSAEDADAPGSPNSH VVYQLLSPEPEDGVEGRAFQVDPTSGSVTLGVLPLRAGQNILLLVLAMDLAGAEGGFSSTCE VEVAVTDINDHAPEFITSQIGPISLPEDVEPGTLVAMLTAIDADLEPAFRLMDFAIERGDTE GTFGLDWEPDSGHVRLRCKNLSYEAAPSHEVVVVQSVAKLVGPGPGPGATATVTVLVERV MPPPFKLDQESYEASVPISAPAGSFLLTIQPSDPISRTLRFSLVNDSEGWLCIEKFSGEVHTA QSLQGAQPGDTYTVLVEAQDTALTLAPVPSQYLCTPRQDHGLIVSGPSKDPDLASGHGPYSF TLGPNPTVQRDWRLQTLNGSHAYLTLALHWVEPREHIIPVVVSHNAQMWQLLVRVIVCRCNV EGQCMRKVGRMKGMPTKLSAVGILVGTLVAIGIFILLIFTHWTMSRKKDPDQPADSVPLKATV

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 762-784

FIGURE 133

 ${\tt CCGGGGAC} \\ \underline{\textbf{ATG}} \\ \text{AGGTGGATACTGTTCATTGGGGCCCTTATTGGGTCCAGCATCTGTGGCCAA} \\ \\ \text{CCGGGGGAC} \\ \underline{\textbf{ATG}} \\ \underline{\textbf{A$ GAAAAATTTTTTGGGGACCAAGTTTTGAGGATTAATGTCAGAAATGGAGACGAGATCAGCAA AGATCCCAGGGCTTAGAGTACGCAGTGACAATTGAGGACCTGCAGGCCCTTTTAGACAATGA AGATGATGAAATGCAACAATGAAGGGCCAAGAACGGAGCAGTAATAACTTCAACTACGGGG CTTACCATTCCCTGGAAGCTATTTACCACGAGATGGACAACATTGCCGCAGACTTTCCTGAC CAGCACTGGGAAAGGCGTGAGGCGGCCGGCCGTTTGGCTGAATGCAGGCATCCATTCCCGAG AGTGGATCTCCCAGGCCACTGCAATCTGGACGGCAAGGAAGATTGTATCTGATTACCAGAGG GATCCAGCTATCACCTCCATCTTGGAGAAAATGGATATTTTCTTGTTGCCTGTGGCCAATCC TGATGGATATGTGTATACTCAAACTCAAAACCGATTATGGAGGAAGACGCGGTCCCGAAATC CTGGAAGCTCCTGCATTGGTGCTGACCCAAATAGAAACTGGAACGCTAGTTTTGCAGGAAAG GGAGCCAGCGACAACCCTTGCTCCGAAGTGTACCATGGACCCCACGCCAATTCGGAAGTGGA GGTGAAATCAGTGGTAGATTTCATCCAAAAACATGGGAATTTCAAGGGCTTCATCGACCTGC ACAGCTACTCGCAGCTGCTGATGTATCCATATGGGTACTCAGTCAAAAAGGCCCCAGATGCC GTACCAAGTGGGTCCCACCTGCACCACTGTCTATCCAGCTAGCGGGAGCAGCATCGACTGGG CGTATGACAACGGCATCAAATTTGCATTCACATTTGAGTTGAGAGATACCGGGACCTATGGC TTCCTCCTGCCAGCTAACCAGATCATCCCCACTGCAGAGGAGACGTGGCTGGGGCTGAAGAC CATCATGGAGCATGTGCGGGACAACCTCTACTAGGCGATGGCTCTGCTCTGTCTACATTTAT TTGTACCCACACGTGCACGCACTGAGGCCATTGTTAAAGGAGCTCTTTCCTACCTGTGTGAG CGTGTGTCCTGCGGTGTCCCTGCAAGAACTGGTTCTGCCAGCCTGCTCAATTTTGGTCCTG AGCATCACCCCTTCCTGGGTGGCATGTCTCTCTCTACCTCATTTTTAGAACCAAAGAACATC TGAGATGATTCTCTACCCTCATCCACATCTAGCCAAGCCAGTGACCTTGCTCTGGTGGCACT GTGGGAGACACCACTTGTCTTTAGGTGGGTCTCAAAGATGATGTAGAATTTCCTTTAATTTC TCGCAGTCTTCCTGGAAAATATTTTCCTTTGAGCAGCAAATCTTGTAGGGATATCAGTGAAG GTCTCTCCCTCCTCTCTGTTTTTTTTTTTTTTTGAGACAGAGTTTTGCTCTTGTTGCC CAGGCTGGAGTGTGATGGCTCGATCTTGGCTCACCACAACCTCTGCCTCCTGGGTTCAAGCA ATTCTCCTGCCTCAGCCTCTTGAGTAGCTTGGTTTATAGGCGCATGCCACCATGCCTGGCTA ATTTTGTGTTTTTAGTAGAGACAGGGTTTCTCCATGTTGGTCAGGCTGGTCTCAAACTCCCA ACCTCAGGTGATCTGCCCTCCTTGGCCTCCCAGAGTGCTGGGATTACAGGTGTGAGCCACTG TGCCGGGCCCGTCCCTCCTTTTTTAGGCCTGAATACAAAGTAGAAGATCACTTTCCTTCAC TGTGCTGAGAATTTCTAGATACTACAGTTCTTACTCCTCTCTCCCTTTGTTATTCAGTGTG ACCAGGATGGCGGGAGGGATCTGTGTCACTGTAGGTACTGTGCCCAGGAAGGCTGGGTGAA GTGACCATCTAAATTGCAGGATGGTGAAATTATCCCCATCTGTCCTAATGGGCTTACCTCCT CTTTGCCTTTTGAACTCACTTCAAAGATCTAGGCCTCATCTTACAGGTCCTAAATCACTCAT CTGGCCTGGATAATCTCACTGCCCTGGCACATTCCCATTTGTGCTGTGTGTATCCTGTGTT TCTGTCTATTTTGTATCCTGGACCACAAGTTCCTAAGTAGAGCAAGAATTCATCAACCAGCT TTGTTTTTTTGCTTTTACCAAACATGTCTGTAAATCTTAACCTCCTGCCTAGGATTTGTACA

FIGURE 134

MRWILFIGALIGSSICGQEKFFGDQVLRINVRNGDEISKLSQLVNSNNLKLNFWKSPSSFNR
PVDVLVPSVSLQAFKSFLRSQGLEYAVTIEDLQALLDNEDDEMQHNEGQERSSNNFNYGAYH
SLEAIYHEMDNIAADFPDLARRVKIGHSFENRPMYVLKFSTGKGVRRPAVWLNAGIHSREWI
SQATAIWTARKIVSDYQRDPAITSILEKMDIFLLPVANPDGYVYTQTQNRLWRKTRSRNPGS
SCIGADPNRNWNASFAGKGASDNPCSEVYHGPHANSEVEVKSVVDFIQKHGNFKGFIDLHSY
SQLLMYPYGYSVKKAPDAEELDKVARLAAKALASVSGTEYQVGPTCTTVYPASGSSIDWAYD
NGIKFAFTFELRDTGTYGFLLPANOIIPTAEETWLGLKTIMEHVRDNLY

Signal peptide:

amino acids 1-16

FIGURE 135

CAACCATGCAAGGACAGGGCAGGAGAAGAGGAACCTGCAAAGACATATTTTGTTCCAAAATG GCATCTTACCTTTATGGAGTACTCTTTGCTGTTGGCCTCTGTGCTCCAATCTACTGTGTGTC CCCGGCCAATGCCCCAGTGCATACCCCCGCCCTTCCTCCACAAAGAGCACCCCTGCCTCAC AGGTGTATTCCCTCAACACCGACTTTGCCTTCCGCCTATACCGCAGGCTGGTTTTGGAGACC CCGAGTCAGAACATCTTCTCCCCTGTGAGTGTCTCCACTTCCCTGGCCATGCTCTCCCT AAAGACCTGACCTTGAAGATGGGAAGTGCCCTCTTCGTCAAGAAGGAGCTGCAGCTGCAGGC AAATTTCTTGGGCAATGTCAAGAGGCTGTATGAAGCAGAAGTCTTTTCTACAGATTTCTCCA ACCCCTCCATTGCCCAGGCGAGGATCAACAGCCATGTGAAAAAGAAGACCCAAGGGAAGGTT GTAGACATAATCCAAGGCCTTGACCTTCTGACGGCCATGGTTCTGGTGAATCACATTTTCTT TGGGCGAGCAGGTCACTGTGCAAGTCCCCATGATGCACCAGAAAGAGCAGTTCGCTTTTGGG GTGGATACAGAGCTGAACTGCTTTGTGCTGCAGATGGATTACAAGGGAGATGCCGTGGCCTT CTTTGTCCTCCCTAGCAAGGGCAAGATGAGGCAACTGGAACAGGCCTTGTCAGCCAGAACAC TGATAAAGTGGAGCCACTCACTCCAGAAAAGGTGGATAGAGGTGTTCATCCCCAGATTTTCC ATTTCTGCCTCCTACAATCTGGAAACCATCCTCCCGAAGATGGGCATCCAAAATGCCTTTGA CAAAAATGCTGATTTTCTGGAATTGCAAAGAGAGACTCCCTGCAGGTTTCTAAAGCAACCC ACAAGGCTGTGCTGGATGTCAGTGAAGAGGGCACTGAGGCCACCAGCAGCTACCACCAAG TTCATAGTCCGATCGAAGGATGGTCCCTCTTACTTCACTGTCTCCTTCAATAGGACCTTCCT GATGATGATTACAAATAAAGCCACAGACGGTATTCTCTTTCTAGGGAAAGTGGAAAATCCCA CTAAATCCTAGGTGGGAAATGGCCTGTTAACTGATGGCACATTGCTAATGCACAAGAAATAA CAAACCACATCCCTCTTTCTGTTCTGAGGGTGCATTTGACCCCAGTGGAGCTGGATTCGCTG GCAGGGATGCCACTTCCAAGGCTCAATCACCAAACCATCAACAGGGACCCCAGTCACAAGCC AACACCCATTAACCCCAGTCAGTGCCCTTTTCCACAAATTCTCCCAGGTAACTAGCTTCATG GGATGTTGCTGGGTTACCATATTTCCATTCCTTGGGGCTCCCAGGAATGGAAATACGCCAAC CCAGGTTAGGCACCTCTATTGCAGAATTACAATAACACATTCAATAAAACTAAAATATGAAT AAAAAA

FIGURE 136

MASYLYGVLFAVGLCAPIYCVSPANAPSAYPRPSSTKSTPASQVYSLNTDFAFRLYRRLVLE
TPSQNIFFSPVSVSTSLAMLSLGAHSVTKTQILQGLGFNLTHTPESAIHQGFQHLVHSLTVP
SKDLTLKMGSALFVKKELQLQANFLGNVKRLYEAEVFSTDFSNPSIAQARINSHVKKKTQGK
VVDIIQGLDLLTAMVLVNHIFFKAKWEKPFHLEYTRKNFPFLVGEQVTVQVPMMHQKEQFAF
GVDTELNCFVLQMDYKGDAVAFFVLPSKGKMRQLEQALSARTLIKWSHSLQKRWIEVFIPRF
SISASYNLETILPKMGIQNAFDKNADFSGIAKRDSLQVSKATHKAVLDVSEEGTEATAATTT
KFIVRSKDGPSYFTVSFNRTFLMMITNKATDGILFLGKVENPTKS

Signal peptide:

amino acids 1-20

FIGURE 137

GGCTGACCGTGCTACATTGCCTGGAGGAAGCCTAAGGAACCCAGGCATCCAGCTGCCCACGC CTGAGTCCAAGATTCTTCCCAGGAACACAAACGTAGGAGACCCACGCTCCTGGAAGCACCAG CCTTTATCTCTCACCTTCAAGTCCCCTTTCTCAAGAATCCTCTGTTCTTTGCCCTCTAAAG TCTTGGTACATCTAGGACCCAGGCATCTTGCTTTCCAGCCACAAAGAGACAGATGAAGATGC AGAAAGGAAATGTTCTCCTTATGTTTGGTCTACTATTGCATTTAGAAGCTGCAACAAATTCC AATGAGACTAGCACCTCTGCCAACACTGGATCCAGTGTGATCTCCAGTGGAGCCAGCACAGC CACCAACTCTGGGTCCAGTGTGACCTCCAGTGGGGTCAGCACCACCATCTCAGGGTCCA GCGTGACCTCCAATGGGGTCAGCATAGTCACCAACTCTGAGTTCCATACAACCTCCAGTGGG ATCAGCACAGCCACCAACTCTGAGTTCAGCACAGCGTCCAGTGGGATCAGCATAGCCACCAA CTCTGAGTCCAGCACACCTCCAGTGGGGCCAGCACCCAACTCTGAGTCCAGCACAC CCTCCAGTGGGGCCAGCACACTCTGGGTCCAGTGTGACCTCCAGTGGAGCCAGC ACTGCCACCAACTCTGAGTCCAGCACAGTGTCCAGTAGGGCCAGCACTGCCACCAACTCTGA GTCTAGCACACTCTCCAGTGGGGCCAGCACACCCAACTCTGACTCCAGCACAACCTCCA GTGGGGCTAGCACACCCACCACTCTGAGTCCAGCACACCTCCAGTGGGGCCAGCACACCC CACAACCTCCAGTGGGGCCAGCACCACCCAACTCTGAGTCCAGAACGACCTCCAATGGGG CTGGCACAGCCACCAACTCTGAGTCCAGCACGACCTCCAGTGGGGCCAGCACCACCAAC TCTGACTCCAGCACAGTGTCCAGTGGGGCCAGCACTGCCACCAACTCTGAGTCCAGCACGAC CTCCAGTGGGGCCAGCACCACCAACTCTGAGTCCAGCACGACCTCCAGTGGGGCTAGCA CAGCCACCAACTCTGACTCCAGCACAACCTCCAGTGGGGCCGGCACAGCCACCAACTCTGAG TCCAGCACAGTGTCCAGTGGGATCAGCACAGTCACCAATTCTGAGTCCAGCACCCCTCCAG TGGGGCCAACACACCCAACTCTGAGTCCAGTACGACCTCCAGTGGGGCCAACACACCCA CCAACTCTGAGTCCAGCACAGTGTCCAGTGGGGCCAGCACTGCCACCAACTCTGAGTCCAGC ACAACCTCCAGTGGGGTCAGCACAGCCACCAACTCTGAGTCCAGCACAACCTCCAGTGGGGC TAGCACAGCCACCAACTCTGACTCCAGCACAACCTCCAGTGAGGCCAGCACAGCCACCAACT CTGAGTCTAGCACAGTGTCCAGTGGGATCAGCACAGTCACCAATTCTGAGTCCAGCACAACC TCCAGTGGGGCCAACACACCAACTCTGGGTCCAGTGTGACCTCTGCAGGCTCTGGAAC AGCCTGGTGGGTGCCGTGGGAAATCTTCCTCATCACCCTGGTCTCGGTTGTGGCG GCCGTGGGGCTCTTTGCTGGGCTCTTCTTCTGTGTGAGAAACAGCCTGTCCCTGAGAAACAC CTTTAACACAGCTGTCTACCACCCTCATGGCCTCAACCATGGCCTTGGTCCAGGCCCTGGAG GGAATCATGGAGCCCCCACAGGCCCAGGTGGAGTCCTAACTGGTTCTGGAGGAGACCAGTA TCATCGATAGCCATGGAGATGAGCGGGAGGAACAGCGGGCCCCTGAGCAGCCACGGAAGCAAG CCAGGAGACCCCTCCCAGCTTTGTTTGAGATCCTGAAAATCTTGAAGAAGGTATTCCTCACC TTTCTTGCCTTTACCAGACACTGGAAAGAGAATACTATATTGCTCATTTAGCTAAGAAATAA CTCTGAGATGAACTCAGTTATAGGAGAAAACCTCCATGCTGGACTCCATCTGGCATTCAAAA AAAAAAAAAAAAAAA

FIGURE 138

MKMQKGNVLLMFGLLLHLEAATNSNETSTSANTGSSVISSGASTATNSGSSVTSSGVSTATI
SGSSVTSNGVSIVTNSEFHTTSSGISTATNSEFSTASSGISIATNSESSTTSSGASTATNSE
SSTPSSGASTVTNSGSSVTSSGASTATNSESSTVSSRASTATNSESSTLSSGASTATNSDSS
TTSSGASTATNSESSTTSSGASTATNSESSTVSSRASTATNSESSTTSSGASTATNSESRTT
SNGAGTATNSESSTTSSGASTATNSDSSTVSSGASTATNSESSTTSSGASTATNSESSTTSS
GASTATNSDSSTTSSGAGTATNSESSTVSSGISTVTNSESSTPSSGANTATNSESSTTSSGA
NTATNSESSTVSSGASTATNSESSTTSSGVSTATNSESSTTSSGASTATNSDSSTTSSEAST
ATNSESSTVSSGISTVTNSESSTTSSGANTATNSGSSVTSAGSGTAALTGMHTTSHSASTAV
SEAKPGGSLVPWEIFLITLVSVVAAVGLFAGLFFCVRNSLSLRNTFNTAVYHPHGLNHGLGP
GPGGNHGAPHRPRWSPNWFWRRPVSSIAMEMSGRNSGP

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 510-532

FIGURE 139

GGGAGAGAGGATAAATAGCAGCGTGGCTTCCCTGGCTCCTCTCTGCATCCTTCCCGACCTTC CTGTCTGGATGGCCGGCCAGCGATGACCCCATTGAGAAGGTCATTGAAGGGATCAACCGAGG GCTGAGCAATGCAGAGAGAGGGTGGGCAAGGCCCTGGATGGCATCAACAGTGGAATCACGC ATGCCGGAAGGGAAGTGGAGAAGGTTTTCAACGGACTTAGCAACATGGGGAGCCACACCGGC AAGGAGTTGGACAAAGGCGTCCAGGGGCTCAACCACGGCATGGACAAGGTTGCCCATGAGAT CAACCATGGTATTGGACAAGCAGGAAAGGAAGCAGAGAGCTTGGCCATGGGGTCAACAACG CTGCTGGACAGGCCGGGAAGGAAGCAGACAAAGCGGTCCAAGGGTTCCACACTGGGGTCCAC CAGGCTGGGAAGGAAGCAGAAACTTGGCCAAGGGGTCAACCATGCTGCTGACCAGGCTGG AAAGGAAGTGGAGAAGCTTGGCCAAGGTGCCCACCATGCTGGCCAGGCCGGGAAGGAGC TGCAGAATGCTCATAATGGGGTCAACCAAGCCAGCAAGGAGGCCAACCAGCTGCTGAATGGC AACCATCAAAGCGGATCTTCCAGCCATCAAGGAGGGGCCACAACCACGCCGTTAGCCTCTGG GGCCTCAGTCAACACGCCTTTCATCAACCTTCCCGCCCTGTGGAGGAGCGTCGCCAACATCA TGCCCTAAACTGGCATCCGGCCTTGCTGGGAGAATAATGTCGCCGTTGTCACATCAGCTGAC ATGACCTGGAGGGGTTGGGGGTGGGGGACAGGTTTCTGAAATCCCTGAAGGGGGTTGTACTG GGATTTGTGAATAAACTTGATACACCA

FIGURE 140

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA66675

><subunit 1 of 1, 247 aa, 1 stop

><MW: 25335, pI: 7.00, NX(S/T): 0

MHLARLVGSCSLLLLLGALSGWAASDDPIEKVIEGINRGLSNAEREVGKALDGINSGITHAG REVEKVFNGLSNMGSHTGKELDKGVQGLNHGMDKVAHEINHGIGQAGKEAEKLGHGVNNAAG QAGKEADKAVQGFHTGVHQAGKEAEKLGQGVNHAADQAGKEVEKLGQGAHHAAGQAGKELQN AHNGVNQASKEANQLLNGNHQSGSSSHQGGATTTPLASGASVNTPFINLPALWRSVANIMP

Important features of the protein: Signal peptide:

amino acids 1-25

Homologous region to circumsporozoite (CS) repeats:

amino acids 35-225

FIGURE 141

CTCCGGGTCCCCAGGGGCTGCGCCGGCCTGGCAAGGGGGACGAGTCAGTGGACACTCCAGGAAGAGCGGC GGGCCGACCGCGGGCGAGCTGCCGCCCGTGAGTCCGGCCGAGCCACCTGAGCCCGAGCCGCGGGACACCGTC GCTCCTGCTCTCCGAATGCTGCGCACCGCGATGGGCCTGAGGAGCTGGCTCGCCGCCCCATGGGGCGCGCTGCCG CCTCGGCCACCGCTGCTGCTGCTGCTGCTGCTGCTCCTGCTGCAGCCGCCCTCCGACCTGGGCGCTCAGC CCCCGGATCAGCCTGCCTCTGGGCTCTGAAGAGCGGCCATTCCTCAGATTCGAAGCTGAACACATCTCCAACTAC ACAGCCCTTCTGCTGAGCAGGGATGGCAGGACCCTGTACGTGGGTGCTCGAGAGGCCCTCTTTGCACTCAGTAGC AACCTCAGCTTCCTGCCAGGCGGGGGTACCAGGAGCTGCTTTGGGGTGCAGACGCAGAGAAAACAGCAGTGC AGCTTCAAGGGCAAGGACCCACAGCGCGACTGTCAAAACTACATCAAGATCCTCCTGCCGCTCAGCGGCAGTCAC GACGAGAAGGGGAATGTCCTCCTGGAAGATGGCAAGGGCCGTTGTCCCTTCGACCCGAATTTCAAGTCCACTGCC CTGGTGGTTGATGGCGAGCTCTACACTGGAACAGTCAGCAGCTTCCAAGGGAATGACCCGGCCATCTCGCGGAGC CAAAGCCTTCGCCCCACCAAGACCGAGAGCTCCCTCAACTGGCTGCAAGACCCAGCTTTTGTGGCCTCAGCCTAC ATTCCTGAGAGCCTGGGCAGCTTGCAAGGCGATGATGACAAGATCTACTTTTTCTTCAGCGAGACTGGCCAGGAA TTTGAGTTCTTTGAGAACACCATTGTGTCCCGCATTGCCCGCATCTGCAAGGGCGATGAGGGTGGAGAGCGGGTG CTACAGCAGCGCTGGACCTCCTTCCTCAAGGCCCAGCTGCTGTGCTCACGGCCCGACGATGGCTTCCCCTTCAAC GTGCTGCAGGATGTCTTCACGCTGAGCCCCCAGGCCCCCAGGACTGCCGTGACACCCTTTTCTATGGGGTCTTCACT TCCCAGTGGCACAGGGGAACTACAGAAGGCTCTGCCGTCTGTGTCTTCACAATGAAGGATGTGCAGAGAGTCTTC CCTGGAGCGTGCATCACCAACAGTGCCCGGGAAAGGAAGATCAACTCATCCCTGCAGCTCCCAGACCGCGTGCTG AACTTCCTCAAGGACCACTTCCTGATGGACGGGCAGGTCCGAAGCCGCATGCTGCTGCTGCAGCCCCAGGCTCGC TACCAGCGCTGGCTGTACACCGCGTCCCTGGCCTGCACCACCACCACGATGTCCTCTTCCTGGGCACTGGTGAC GGCCGGCTCCACAAGGCAGTGAGCGTGGGCCCCCGGGTGCACATCATTGAGGAGCTGCAGATCTTCTCATCGGGA CAGCCCGTGCAGAATCTGCTCCTGGACACCCACAGGGGGGCTGCTGTATGCGGCCTCACACTCGGGCGTAGTCCAG GTGCCCATGGCCAACTGCAGCCTGTACCGGAGCTGTGGGGACTGCCTCCTCGCCCGGGACCCCTACTGTGCTTGG AGCGGCTCCAGCTGCAAGCACGTCAGCCTCTACCAGCCTCAGCTGGCCACCAGGCCGTGGATCCAGGACATCGAG GGAGCCAGCGCCAAGGACCTTTGCAGCGCGTCTTCGGTTGTGTCCCCGTCTTTTGTACCAACAGGGGAGAAGCCA TGTGAGCAAGTCCAGCTCCAACACAGTGAACACTTTGGCCTGCCCGCTCCTCTCCAACCTGGCGACCCGA GTGGGCACCCAACAGCTGGGGGAGTTCCAGTGCTGGTCACTAGAGGAGGGCTTCCAGCAGCTGGTAGCCAGCTAC TGCCCAGAGGTGGTGGACGGCTGGCAGACCAAACAGATGAGGGTGGCAGTGTACCCGTCATTATCAGCACA TCGCGTGTGAGTGCACCAGCTGGTGGCAAGGCCAGCTGGGGTGCAGACAGGTCCTACTGGAAGGAGTTCCTGGTG ATGTGCACGCTCTTTGTGCTGGCCGTGCTCCCAGTTTTATTCTTGCTCTACCGGCACCGGAACAGCATGAAA GTCTTCCTGAAGCAGGGGAATGTGCCAGCGTGCACCCCAAGACCTGCCCTGTGGTGCTGCCCCTGAGACCCGC CCACTCAACGGCCTAGGGCCCCTAGCACCCCGCTCGATCACCGAGGGTACCAGTCCCTGTCAGACAGCCCCCCG GGGGCCCGAGTCTTCACTGAGTCAGAGAAGAGGCCACTCAGCATCCAAGACAGCTTCGTGGAGGTATCCCCAGTG TGCCCTGGCTTCAGGGGCTGTGAATGCTCGGAGAGGGTCAACTGGACCTCCCCTCCGCTCTGCTCTTCGTGGAAC CAGTGCTCCTTATGTAAACTGAGCCCTTTGTTTAAAAAACAATTCCAAATGTGAAACTAGAATGAGAGGGAAGAG ATAGCATGGCATGCAGCACACACGGCTGCTCCAGTTCATGGCCTCCCAGGGGTGCTGGGGATGCATCCAAAGTGG TTGTCTGAGACAGAGTTGGAAACCCTCACCAACTGGCCTCTTCACCTTCCACATTATCCCGCTGCCACCGGCTGC CCTGTCTCACTGCAGATTCAGGACCAGCTTGGGCTGCGTTGCGTTGCCTTGCCAGTCAGCCGAGGATGTAGTTG TTGCTGCCGTCGTCCCACCACCTCAGGGACCAGAGGGCTAGGTTGGCACTGCGGCCCTCACCAGGTCCTGGGCTC GGACCCAACTCCTGGACCTTTCCAGCCTGTATCAGGCTGTGGCCACACGAGAGGACAGCGCGAGCTCAGGAGAGA CTGGTCCTCTCCCCAGTCCCCAGTTCACCTCCATCCCTCCACCTCTAAGGGATATCAACACTGCCC AGCACAGGGGCCCTGAATTTATGTGGTTTTTATACATTTTTTAATAAGATGCACTTTATGTCATTTTTTAATAAA GTCTGAAGAATTACTGTTTAAAAAAAAAAAAA

FIGURE 142

></usr/segdb2/sst/DNA/Dnasegs.min/ss.DNA67962

><subunit 1 of 1, 837 aa, 1 stop

><MW: 92750, pI: 7.04, NX(S/T): 6

MLRTAMGLRSWLAAPWGALPPRPPLLLLLLLLLLQPPPPTWALSPRISLPLGSEERPFLRF
EAEHISNYTALLLSRDGRTLYVGAREALFALSSNLSFLPGGEYQELLWGADAEKKQQCSFKG
KDPQRDCQNYIKILLPLSGSHLFTCGTAAFSPMCTYINMENFTLARDEKGNVLLEDGKGRCP
FDPMFKSTALVVDGELYTGTVSSFQGNDPAISRSQSLRPTKTESSLNWLQDPAFVASAYIPE
SLGSLQGDDDKIYFFFSETGQEFEFFENTIVSRIARICKGDEGGERVLQQRWTSFLKAQLLC
SRPDDGFPFNVLQDVFTLSPSPQDWRDTLFYGVFTSQWHRGTTEGSAVCVFTMKDVQRVFSG
LYKEVNRETQQWYTVTHPVPTPRPGACITNSARERKINSSLQLPDRVLNFLKDHFLMDGQVR
SRMLLLQPQARYQRVAVHRVPGLHHTYDVLFLGTGDGRLHKAVSVGPRVHIIEELQIFSSGQ
PVQNLLLDTHRGLLYAASHSGVVQVPMANCSLYRSCGDCLLARDPYCAWSGSSCKHVSLYQP
QLATRPWIQDIEGASAKDLCSASSVVSPSFVPTGEKPCEQVQFQPNTVNTLACPLLSNLATR
LWLRNGAPVNASASCHVLPTGDLLLVGTQQLGEFQCWSLEEGFQQLVASYCPEVVEDGVADQ
TDEGGSVPVIISTSRVSAPAGGKASWGADRSYWKEFLVMCTLFVLAVLLPVLFLLYRHRNSM
KVFLKQGECASVHPKTCPVVLPPETRPLNGLGPPSTPLDHRGYQSLSDSPPGARVFTESEKR
PLSIODSFYEVSPVCPRRVRLGSEIRDSVV

Transmembrane domains:

amino acids 23-46 (type II), 718-738

FIGURE 143A

CTAAGCCGGAGGATGTGCAGCTGCGGCGGCGCGCCGCCTACGAAGAGGACGGGGACAGGCGCCGTGCGAACCGA GCCCAGCCAGCCGGAGGACGCGGCAGGCGGGACGGGACCCGGACTCGTCTGCCGCCGCCGTCGTCGCCGTCG GCCCACGGCGCCGCCAGCCCCGAGGGCTGCCGGTCCGGCAGGCGGCGGCTTCCCAGGCCGGCGGGGGGGCGCGC GCGATGCGCGCGGGGCGCAGCTCTGGCCGCCCGGCTCGGACCCAGATGGCGGCCCGCGGACAGGAACTTTCTCT TCGTGGGAGTCATGACCGCCCAGAAATACCTGCAGACTCGGGCCGTGGCCGCCTACAGAACATGGTCCAAGACAA TTCCTGGGAAAGTTCAGTTCTTCTCAAGTGAGGGTTCTGACACATCTGTACCAATTCCAGTAGTGCCACTACGGG GTGTGGACGACTCCTACCCGCCCCAGAAGAAGTCCTTCATGATGCTCAAGTACATGCACGACCACTACTTGGACA AGTATGAATGGTTTATGAGAGCAGATGATGACGTGTACATCAAAGGAGACCGTCTGGAGAACTTCCTGAGGAGTT TGAACAGCAGCGAGCCCTCTTTCTTGGGCAGACAGGCCTGGGCACCACGGAAGAAATGGGAAAACTGGCCCTGG AGCCTGGTGAGAACTTCTGCATGGGGGGGCCTGGCGTGATCATGAGCCGGGAGGTGCTTCGGAGAATGGTGCCGC ACATTGGCAAGTGTCTCCGGGAGATGTACACCACCCATGAGGACGTGGAGGTGGGAAGGTGTCCCGGAGGTTTG CAGGGGTGCAGTGTGTCTGGTCTTATGAGATGCGGCAGCTTTTTTATGAGAATTACGAGCAGAACAAAAAGGGGT ACAGGCTCCACAGCTACATGCTGAGCCGCAAGATATCCGAGCTCCGCCATCGCACAATACAGCTGCACCGCGAAA TTGTCCTGATGAGCAAATACAGCAACACAGAAATTCATAAAGAGGACCTCCAGCTGGGAATCCCTCCTTCA TGAGGTTTCAGCCCCGCCAGCGAGAGAGATTCTGGAATGGGAGTTTCTGACTGGAAAATACTTGTATTCGGCAG TTGACGGCCAGCCCCTCGAAGAGGAATGGACTCCGCCCAGAGGGAAGCCTTGGACGACATTGTCATGCAGGTCA TGGAGATGATCAATGCCAACGCCAAGACCAGAGGGCGCATCATTGACTTCAAAGAGATCCAGTACGGCTACCGCC GGGTGAACCCCATGTATGGGGCTGAGTACATCCTGGACCTGCTGCTTCTGTACAAAAAGCACAAAGGGAAGAAAA TGACGGTCCCTGTGAGGAGGCACGCGTATTTACAGCAGACTTTCAGCAAAATCCAGTTTGTGGAGCATGAGGAGC TGGATGCACAAGAGTTGGCCAAGAGAATCAATCAGGAATCTGGATCCTTGTCCTTTCTCTCAAACTCCCTGAAGA AGCTCGTCCCCTTTCAGCTCCCTGGGTCGAAGAGTGAGCACAAAGAACCCCAAAGATAAAAAAGATAAACATACTGA TTCCTTTGTCTGGGCGTTTCGACATGTTTGTGAGATTTATGGGAAACTTTGAGAAGACGTGTCTTATCCCCAATC AGAACGTCAAGCTCGTGGTTCTGCTTTTCAATTCTGACTCCAACCCTGACAAGGCCAAACAAGTTGAACTGATGA GAGATTACCGCATTAAGTACCCTAAAGCCGACATGCAGATTTTGCCTGTGTCTGGAGAGTTTTCAAGAGCCCTGG CCCTGGAAGTAGGATCCTCCCAGTTTAACAATGAATCTTTGCTCTTCTTCTGCGACGTCGACCTCGTGTTTACTA CAGAATTCCTTCAGCGATGTCGAGCAAATACAGTTCTGGGCCAACAAATATATTTTCCAATCATCTTCAGCCAGT ATGACCCAAAGATTGTTTATAGTGGGAAAGTTCCCAGTGACAACCATTTTGCCTTTACTCAGAAAACTGCCTTCT AGGAAGTAGGAGTAGTCCACCATCCTGTCTTTTGTGATCCCAATCTTGACCCCAAACAGTACAAAATGT $\tt GTTACAGTAAAAGCAGCAATAATAATGGCTCAGTGAGGACAGCC\underline{TAA}TGTCCAGCTTTGCTGGAAAAGACGTTTT$ TAATTATCTAATTTATTTTCAAAAATTTTTTGTATGATCAGTTTTTGAAGTCCGTATACAAGGATATATTTTAC AAGTGGTTTTCTTACATAGGACTCCTTTAAGATTGAGCTTTCTGAACAAGAGGTGATCAGTGTTTGCCTTTGAA CACATCTTCTTGCTGAACATTATGTAGCAGACCTGCTTAACTTTGACTTGAAATGTACCTGATGAACAAAACTTT TTTAAAAAAATGTTTTCTTTTGAGACCCTTTGCTCCAGTCCTATGGCAGAAAACGTGAACATTCCTGCAAAGTAT TATTGTAACAAAACACTGTAACTCTGGTAAATGTTCTGTTGTGATTGTTAACATTCCACAGATTCTACCTTTTGT GTTTTGTTTTTTTTTTTACAATTGTTTTAAAGCCATTTCATGTTCCAGTTGTAAGATAAGGAAATGTGATAATA GCTGTTTCATCATTGTCTTCAGGAGAGCTTTCCAGAGTTGATCATTTCCTCTCATGGTACTCTGCTCAGCATGGC CACGTAGGTTTTTTGTTTTGTTTTTTTTTTTTTTTTGAGACGGAGTCTCACTCTGTTACCCAGGCTGGAATG CAGTGGCGCAATCTTGGCTCACTTTAACCTCCACTTCCCTGGTTCAAGCAATTCCCCTGCCTTTGCCTCCCGAGT AGCTGGGATTACAGGCACACCACCACCACGCCCAGNTAGTTTTTTTGTATTTTTAGTAGAGACGGGGTTTCACCAT GCAAGCCCAGCTGGCCACGTAGGTTTTAAAGCAAGGGGCGTGAAGAAGGCACAGTGAGGTATGTGGCTGTTCTCG TGGTAGTTCATTCGGCCTAAATAGACCTGGCATTAAATTTCAAGAAGGATTTGGCATTTTCTCTTCTTGACCCTT CTCTTTAAAGGGTAAAATATTAATGTTTAGAATGACAAAGATGAATTATTACAATAAATCTGATGTACACAGACT GAAACATACACACATACACCCTAATCAAAACGTTGGGGAAAAATGTATTTGGTTTTGTTCCTTTCATCCTGTCTG TGTTATGTGGGTGGAGATGGTTTTCATTCTTTCATTACTGTTTTGTTTTTATCCTTTGTATCTGAAATACCTTTAA GAGTGTGTTTAGTCTGTTTTATTTGCAGTAAACCGATCTCCAAAGATTTCCTTTTGGAAACGCTTTTTCCCCTCC

FIGURE 143B

TTAATTTTATATTCCTTACTGTTTTACTAAATATTAAGTGTTCTTTGACAATTTTGGTGCTCATGTGTTTTGGG GACAAAAGTGAAATGAACTGTCATTATACCAGAAAGTTAAAATTCTCAGAGTCAAATGTGCCTTAAATAAGTTTCTT TTCATTTAGATTTCAAACAGTGATAGACTTGCCATTTAAATACGTCATTGGAGGGTGCGTAATTGTAAATAG CCTGATGCTCATTTGGAAAAATAAACCAGTGAACAATATTTTTTATTGTACTTTTCGAACCATTTTGTCTCTT ATTCCTGTTTTTGGCTAAAAAACAGAAAAAA

FIGURE 144

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68836

><subunit 1 of 1, 802 aa, 1 stop

><MW: 91812, pI: 9.52, NX(S/T): 3

MAARGRRAWLSVLLGLVLGFVLASRLVLPRASELKRAGPRRRASPEGCRSQQAAASQAGGAR
GDARGAQLWPPGSDPDGGPRDRNFLFVGVMTAQKYLQTRAVAAYRTWSKTIPGKVQFFSSEG
SDTSVPIPVVPLRGVDDSYPPQKKSFMMLKYMHDHYLDKYEWFMRADDDVYIKGDRLENFLR
SLNSSEPLFLGQTGLGTTEEMGKLALEPGENFCMGGPGVIMSREVLRRMVPHIGKCLREMYT
THEDVEVGRCVRRFAGVQCVWSYEMRQLFYENYEQNKKGYIRDLHNSKIHQAITLHPNKNPP
YQYRLHSYMLSRKISELRHRTIQLHREIVLMSKYSNTEIHKEDLQLGIPPSFMRFQPRQREE
ILEWEFLTGKYLYSAVDGQPPRRGMDSAQREALDDIVMQVMEMINANAKTRGRIIDFKEIQY
GYRRVNPMYGAEYILDLLLLYKKHKGKKMTVPVRRHAYLQQTFSKIQFVEHEELDAQELAKR
INQESGSLSFLSNSLKKLVPFQLPGSKSEHKEPKDKKINILIPLSGRFDMFVRFMGNFEKTC
LIPNQNVKLVVLLFNSDSNPDKAKQVELMRDYRIKYPKADMQILPVSGEFSRALALEVGSSQ
FNNESLLFFCDVDLVFTTEFLQRCRANTVLGQQIYFPIIFSQYDPKIVYSGKVPSDNHFAFT
QKTGFWRNYGFGITCIYKGDLVRVGGFDVSIQGWGLEDVDLFNKVVQAGLKTFRSQEVGVVH
VHHPVFCDPNLDFKOYKNCLGSKASTYGSTOOLAEMMLEKNDPSYSKSSNNNGSVRTA

Signal peptide:

amino acids 1-23

FIGURE 145

GGACAACCGTTGCTGGGTGTCCCAGGGCCTGAGGCAGGACGGTACTCCGCTGACACCTTCCC TTTCGGCCTTGAGGTTCCCAGCCTGGTGGCCCCAGGACGTTCCGGTCGCATGGCAGAGTGCT ACGGACGACGCCTATGAAGCCCTTAGTCCTTCTAGTTGCGCTTTTTGCTATGGCCTTCGTCTG TGCCGGCTTATCCGAGCATAACTGTGACACCTGATGAAGAGCAAAACTTGAATCATTATATA CAAGTTTTAGAGAACCTAGTACGAAGTGTTCCCTCTGGGGAGCCAGGTCGTGAGAAAAAATC TAACTCTCCAAAACATGTTTATTCTATAGCATCAAAGGGATCAAAATTTAAGGAGCTAGTTA CACATGGAGACGCTTCAACTGAGAATGATGTTTTAACCAATCCTATCAGTGAAGAAACTACA TTGCCAGTTGTTACTGAATCATCTACAAGTCCATATGTTACCTCATACAAGTCACCTGTCAC CACTTTAGATAAGAGCACTGGCATTGAGATCTCTACAGAATCAGAAGATGTTCCTCAGCTCT CAGGTGAAACTGCGATAGAAAAACCCGAAGAGTTTGGAAAGCACCCAGAGAGTTGGAATAAT GATGACATTTTGAAAAAATTTTAGATATTAATTCACAAGTGCAACAGGCACTTCTTAGTGA CACCAGCAACCCAGCATATAGAGAAGATATTGAAGCCTCTAAAGATCACCTAAAACGAAGCC TTGCTCTAGCAGCAGCAGCAGAACATAAATTAAAAACAATGTATAAGTCCCAGTTATTGCCA GTAGGACGAACAAGTAATAAAATTGATGACATCGAAACTGTTATTAACATGCTGTGTAATTC TAGATCTAAACTCTATGAATATTTAGATATTAAATGTGTTCCACCAGAGATGAGAGAAAAAG CTGCTACAGTATTCAATACATTAAAAAATATGTGTAGATCAAGGAGAGTCACAGCCTTATTA AAAGTTTATTAAACAATAATATAAAAATTTTAAACCTACTTGATATTCCATAACAAAGCTGA TTTAAGCAAACTGCATTTTTCACAGGAGAAATAATCATATTCGTAATTTCAAAAGTTGTAT AAAAATATTTTCTATTGTAGTTCAAATGTGCCAACATCTTTATGTGTCATGTGTTATGAACA ATTTTCATATGCACTAAAAACCTAATTTAAAATAAAATTTTGGTTCAGGAAAAAA

FIGURE 146

></usr/segdb2/sst/DNA/Dnasegs.min/ss.DNA68864

><subunit 1 of 1, 350 aa, 1 stop

><MW: 39003, pI: 5.59, NX(S/T): 1

MKPLVLLVALLLWPSSVPAYPSITVTPDEEQNLNHYIQVLENLVRSVPSGEPGREKKSNSPK
HVYSIASKGSKFKELVTHGDASTENDVLTNPISEETTTFPTGGFTPEIGKKKHTESTPFWSI
KPNNVSIVLHAEEPYIENEEPEPEPEPAAKQTEAPRMLPVVTESSTSPYVTSYKSPVTTLDK
STGIEISTESEDVPQLSGETAIEKPEEFGKHPESWNNDDILKKILDINSQVQQALLSDTSNP
AYREDIEASKDHLKRSLALAAAAEHKLKTMYKSQLLPVGRTSNKIDDIETVINMLCNSRSKL
YEYLDIKCVPPEMREKAATVFNTLKNMCRSRRVTALLKVY

Signal peptide:

amino acids 1-19

FIGURE 147

CGGCTCGAGCGCTCGAGTGAAGAGCCTCTCCACGGCTCCTGCGCCTGAGACAGCTGGCCTG ACCTCCAAATCATCCATCCACCCCTGCTGTCATCTGTTTTCATAGTGTGAGATCAACCCACA GGAATATCCATGGCTTTTGTGCTCATTTTGGTTCTCAGTTTCTACGAGCTGGTGTCAGGACA GTGGCAAGTCACTGGACCGGGCAAGTTTGTCCAGGCCTTGGTGGGGGAGGACGCCGTGTTCT CCTGCTCCTCTTTCCTGAGACCAGTGCAGAGGCTATGGAAGTGCGGTTCTTCAGGAATCAG TTCCATGCTGTGGTCCACCTCTACAGAGATGGGGAAGACTGGGAATCTAAGCAGATGCCACA TAAAAAACATCACTCCCTCGGACATCGGCCTGTATGGGTGCTGGTTCAGTTCCCAGATTTAC GATGAGGAGGCCACCTGGGAGCTGCGGGTGGCACCACTGGGCTCACTTCCTCTCATTTCCAT CGTGGGATATGTTGACGGAGGTATCCAGTTACTCTGCCTGTCCTCAGGCTGGTTCCCCCAGC CCACAGCCAAGTGGAAAGGTCCACAAGGACAGGATTTGTCTTCAGACTCCAGAGCAAATGCA GATGGGTACAGCCTGTATGATGTGGAGATCTCCATTATAGTCCAGGAAAATGCTGGGAGCAT ATTGTGTTCCATCCACCTTGCTGAGCAGAGTCATGAGGTGGAATCCAAGGTATTGATAGGAG AGACGTTTTTCCAGCCCTCACCTTGGCGCCTGGCTTCTATTTTACTCGGGTTACTCTGTGGT GCCCTGTGTGTGTTGTCATGGGGATGATAATTGTTTTCTTCAAATCCAAAGGGAAAATCCA GGCGGAACTGGACTGGAGAAGAAGCACGGACAGGCAGAATTGAGAGACGCCCGGAAACACG CAGTGGAGGTGACTCTGGATCCAGAGACGGCTCACCCGAAGCTCTGCGTTTCTGATCTGAAA ACTGTAACCCATAGAAAAGCTCCCCAGGAGGTGCCTCACTCTGAGAAGAGATTTACAAGGAA GAGTGTGGTGGCTTCTCAGGGTTTCCAAGCAGGAGACATTACTGGGAGGTGGACGTGGGAC AAAATGTAGGGTGGTATGTGGGAGTGTGTCGGGATGACGTAGACAGGGGGAAGAACAATGTG ACTTTGTCTCCCAACAATGGGTATTGGGTCCTCAGACTGACAACAGAACATTTGTATTTCAC ATTCAATCCCCATTTTATCAGCCTCCCCCCCAGCACCCCTCCTACACGAGTAGGGGTCTTCC CTGCTGACATGTCAGTTTGAAGGCTTGTTGAGACCCTATATCCAGCATGCGATGTATGACGA GGAAAAGGGGACTCCCATATTCATATGTCCAGTGTCCTGGGGATGAGACAGAGAAGACCCTG CTTAAAGGGCCCCACACCACAGACCCAGACACACCCAAGGGAGAGTGCTCCCGACAGGTGGC TGAGGTTCTTCTGCCCTGAGCCCTGCAGCAGCGGCAGTCACAGCTTCCAGATGAGGGGGGGAT TGGCCTGACCCTGTGGGAGTCAGAAGCCATGGCTGCCCTGAAGTGGGGACGGAATAGACTCA CATTAGGTTTAGTTTGTGAAAACTCCATCCAGCTAAGCGATCTTGAACAAGTCACAACCTCC CAGGCTCCTCATTTGCTAGTCACGGACAGTGATTCCTGCCTCACAGGTGAAGATTAAAGAGA CAACGAATGTGAATCATGCTTGCAGGTTTGAGGGCACAGTGTTTGCTAATGATGTTTTTTA TATTATACATTTTCCCACCATAAACTCTGTTTGCTTATTCCACATTAATTTACTTTTCTCTA TACCAAATCACCCATGGAATAGTTATTGAACACCTGCTTTGTGAGGCTCAAAGAATAAAGAG GAGGTAGGATTTTTCACTGATTCTATAAGCCCAGCATTACCTGATACCAAAACCAGGCAAAG AAAACAGAAGAAGAAGGAAGGAAAACTACAGGTCCATATCCCTCATTAACACAGACACAAAAA TTCTAAATAAAATTTTAACAAATTAAACTAAACAATATATTTAAAGATGATATAAACTACT CAGTGTGGTTTGTCCCACAAATGCAGAGTTGGTTTAATATTTAAATATCAACCAGTGTAATT

FIGURE 148

></usr/segdb2/sst/DNA/Dnasegs.min/ss.DNA68866

><subunit 1 of 1, 466 aa, 1 stop

><MW: 52279, pI: 6.16, NX(S/T): 2

MAFVLILVLSFYELVSGQWQVTGPGKFVQALVGEDAVFSCSLFPETSAEAMEVRFFRNQFHA
VVHLYRDGEDWESKQMPQYRGRTEFVKDSIAGGRVSLRLKNITPSDIGLYGCWFSSQIYDEE
ATWELRVAALGSLPLISIVGYVDGGIQLLCLSSGWFPQPTAKWKGPQGQDLSSDSRANADGY
SLYDVEISIIVQENAGSILCSIHLAEQSHEVESKVLIGETFFQPSPWRLASILLGLLCGALC
GVVMGMIIVFFKSKGKIQAELDWRRKHGQAELRDARKHAVEVTLDPETAHPKLCVSDLKTVT
HRKAPQEVPHSEKRFTRKSVVASQGFQAGRHYWEVDVGQNVGWYVGVCRDDVDRGKNNVTLS
PNNGYWVLRLTTEHLYFTFNPHFISLPPSTPPTRVGVFLDYEGGTISFFNTNDQSLIYTLLT
COFEGLLRPYIOHAMYDEEKGTPIFICPVSWG

Signal peptide:

amino acids 1-17

Transmembrane domains:

amino acids 131-150, 235-259

FIGURE 149

CCTTCACAGGACTCTTCATTGCTGGTTGGCAATGATGTATCGGCCAGATGTGGTGAGGGCTA GGAAAAGAGTTTGTTGGGAACCCTGGGTTATCGGCCTCGTCATCTTCATATCCCTGATTGTC CTGGCAGTGTGCATTGGACTCACTGTTCATTATGTGAGATATAATCAAAAGAAGACCTACA TTACTATAGCACATTGTCATTTACAACTGACAAACTATATGCTGAGTTTGGCAGAGAGGCTT CTAACAATTTTACAGAAATGAGCCAGAGACTTGAATCAATGGTGAAAAATGCATTTTATAAA TCTCCATTAAGGGAAGAATTTGTCAAGTCTCAGGTTATCAAGTTCAGTCAACAGAAGCATGG AGTGTTGGCTCATATGCTGTTGATTTGTAGATTTCACTCTACTGAGGATCCTGAAACTGTAG ATAAAATTGTTCAACTTGTTTTACATGAAAAGCTGCAAGATGCTGTAGGACCCCCTAAAGTA TTGCTGCGGAACACGAAGAAGTAAAACTCTAGGTCAGAGTCTCAGGATCGTTGGTGGGACAG AAGTAGAAGAGGGTGAATGGCCCTGGCAGGCTAGCCTGCAGTGGGATGGGAGTCATCGCTGT GGAGCAACCTTAATTAATGCCACATGGCTTGTGAGTGCTGCTCACTGTTTTACAACATATAA GAACCCTGCCAGATGGACTGCTTCCTTTGGAGTAACAATAAAACCTTCGAAAATGAAACGGG GTCTCCGGAGAATAATTGTCCATGAAAAATACAAACACCCATCACATGACTATGATATTTCT CTTGCAGAGCTTTCTAGCCCTGTTCCCTACACAAATGCAGTACATAGAGTTTGTCTCCCTGA TGCATCCTATGAGTTTCAACCAGGTGATGTGATGTTTTGTGACAGGATTTGGAGCACTGAAAA ATGATGGTTACAGTCAAAATCATCTTCGACAAGCACAGGTGACTCTCATAGACGCTACAACT TGCAATGAACCTCAAGCTTACAATGACGCCATAACTCCTAGAATGTTATGTGCTGGCTCCTT AGAAGGAAAAACAGATGCATGCCAGGGTGACTCTGGAGGACCACTGGTTAGTTCAGATGCTA GAGATATCTGGTACCTTGCTGGAATAGTGAGCTGGGGAGATGAATGTGCGAAACCCAACAAG CCTGGTGTTTATACTAGAGTTACGGCCTTGCGGGACTGGATTACTTCAAAAACTGGTATCTA TTTAGAGATACAGAATTGGAGAAGACTTGCAAAACAGCTAGATTTGACTGATCTCAATAAAC TGTTTGCTTGATGCATGTATTTTCTTCCCAGCTCTGTTCCGCACGTAAGCATCCTGCTTCTG CCAGATCAACTCTGTCATCTGTGAGCAATAGTTGAAACTTTATGTACATAGAGAAATAGATA ATACAATATTACATTACAGCCTGTATTCATTTGTTCTCTAGAAGTTTTGTCAGAATTTTGAC TTGTTGACATAAATTTGTAATGCATATATACAATTTGAAGCACTCCTTTTCTTCAGTTCCTC TAAGAAGAAAAAATCCCCTACATTTTATTGGCACAGAAAAGTATTAGGTGTTTTTCTTAGT GGAATATTAGAAATGATCATATTCATTATGAAAGGTCAAGCAAAGACAGCAGAATACCAATC TCCTTATTTCATTTCCAAACAACTACTATGATAAATGTGAAGAAGATTCTGTTTTTTTGTG ACCTATAATAATTATACAAACTTCATGCAATGTACTTGTTCTAAGCAAATTAAAGCAAATAT TTATTTAACATTGTTACTGAGGATGTCAACATATAACAATAAAATATAAATCACCCA

FIGURE 150

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68871

><subunit 1 of 1, 423 aa, 1 stop .

><MW: 47696, pI: 8.96, NX(S/T): 3

MMYRPDVVRARKRVCWEPWVIGLVIFISLIVLAVCIGLTVHYVRYNQKKTYNYYSTLSFTTD KLYAEFGREASNNFTEMSQRLESMVKNAFYKSPLREEFVKSQVIKFSQQKHGVLAHMLLICR FHSTEDPETVDKIVQLVLHEKLQDAVGPPKVDPHSVKIKKINKTETDSYLNHCCGTRRSKTL GQSLRIVGGTEVEEGEWPWQASLQWDGSHRCGATLINATWLVSAAHCFTTYKNPARWTASFG VTIKPSKMKRGLRRIIVHEKYKHPSHDYDISLAELSSPVPYTNAVHRVCLPDASYEFQPGDV MFVTGFGALKNDGYSQNHLRQAQVTLIDATTCNEPQAYNDAITPRMLCAGSLEGKTDACQGD SGGPLVSSDARDIWYLAGIVSWGDECAKPNKPGVYTRVTALRDWITSKTGI

Transmembrane domain:

amino acids 21-40 (type II)

FIGURE 151

GTCGAAGGTTATAAAAGCTTCCAGCCAAACGGCATTGAAGTTGAAGATACAACCTGACAGCA CAGCCTGAGATCTTGGGGATCCCTCAGCCTAACACCCACAGACGTCAGCTGGTGGATTCCCG CTGCATCAAGGCCTACCCACTGTCTCCATGCTGGGCTCTCCCTGCCTTCTGTGGCTCCTGGC CGTGACCTTCTTGGTTCCCAGAGCTCAGCCCTTGGCCCCTCAAGACTTTGAAGAAGAGGAGG CAGATGAGACTGAGACGGCGTGGCCGCCTTTGCCGGCTGTCCCCTGCGACTACGACCACTGC AGGACTCTCCAGCCCGCCCAGCCCCGACCCGCCGCGCATGGGAGAAGTGCGCATTGCGG CCGAAGAGGCCGCGCAGTGGTCCACTGGTGTCCCCCTTCTCCCCGGTCCTCCACTACTGG CTGCTGCTTTGGGACGCCAGCGAGGCTGCGCAGAAGGGGCCCCCGCTGAACGCTACGGTCCG CAGAGCCGAACTGAAGGGGCTGAAGCCAGGGGGCATTTATGTCGTTTGCGTAGTGGCCGCTA ACGAGGCCGGGCAAGCCGCGTGCCCCAGGCTGGAGGAGGGGCCTCGAGGGGGCCGACATC CCTGCCTTCGGGCCTTGCAGCCGCCTTGCGGTGCCGCCCAACCCCCGCACTCTGGTCCACGC GGCCGTCGGGGTGGGCACGGCCCTGGCCCTGCTAAGCTGTGCCGCCCTGGTGTGGCACTTCT GCCTGCGCGATCGCTGGGGCTGCCCGCGCCGAGCCGCCCGAGCCGCAGGGGCGCTCTGA AAGGGCCTGGGGCATCTCGGGCACAGACAGCCCCACCTGGGCGCTCAGCCTGGCCCCCG GCTCCAGGGCCACGGGGGTCATGGTTCTCAGGACTGAGCGCTTGTTTAGGTCCGGTACTT

FIGURE 152

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68874

><subunit 1 of 1, 238 aa, 1 stop

><MW: 25262, pI: 6.44, NX(S/T): 1

MLGSPCLLWLLAVTFLVPRAQPLAPQDFEEEEADETETAWPPLPAVPCDYDHCRHLQVPCKE LQRVGPAACLCPGLSSPAQPPDPPRMGEVRIAAEEGRAVVHWCAPFSPVLHYWLLLWDGSEA AQKGPPLNATVRRAELKGLKPGGIYVVCVVAANEAGASRVPQAGGEGLEGADIPAFGPCSRL AVPPNPRTLVHAAVGVGTALALLSCAALVWHFCLRDRWGCPRRAAARAAGAL

Important features of the protein: Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 194-220

N-glycosylation site.

amino acids 132-135

FIGURE 153

AGAGAAAGAAGCGTCTCCAGCTGAAGCCAATGCAGCCCTCCGGCTCTCCGCGAAGAAGTTCC CCCAGCGCCGACGATCGCCGTTTTGCCCTTGGGAGTAGGATGTGGTGAAAGGATGGGGC CTACGCCCTCAATCTGCTCTTTTGGTTAATGTCCATCAGTGTGTTGGCAGTTTCTGCTTGGA TGAGGGACTACCTAAATAATGTTCTCACTTTAACTGCAGAAACGAGGGTAGAGGAAGCAGTC ATTTTGACTTACTTTCCTGTGGTTCATCCGGTCATGATTGCTGTTTGCTGTTTCCTTATCAT TGTGGGGATGTTAGGATATTGTGGAACGGTGAAAAGAAATCTGTTGCTTCTTGCATGGTACT TTGGAAGTTTGCTTGTCATTTTCTGTGTAGAACTGGCTTTGGCGTTTGGACATATGAACAG GAACTTATGGTTCCAGTACAATGGTCAGATATGGTCACTTTGAAAGCCAGGATGACAAATTA GCTGTGGAGTAGTATTTCACTGACTGGTTGGAAATGACAGAGATGGACTGGCCCCCAGAT TCCTGCTGTTTAGAGAATTCCCAGGATGTTCCAAACAGGCCCACCAGGAAGATCTCAGTGA CCTTTATCAAGAGGGTTGTGGGAAGAAATGTATTCCTTTTTGAGAGGAACCAAACAACTGC AGGTGCTGAGGTTTCTGGGAATCTCCATTGGGGTGACACAAATCCTGGCCATGATTCTCACC ATTACTCTGCTCTGGGCTCTGTATTATGATAGAAGGGAGCCTGGGACAGACCAAATGATGTC CTTGAAGAATGACAACTCTCAGCACCTGTCATGTCCCTCAGTAGAACTGTTGAAACCAAGCC TGTCAAGAATCTTTGAACACACACCATCCATGGCAAACAGCTTTAATACACACTTTGAGATGGAG GAGTTATAAAAAGAAATGTCACAGAAGAAAACCACAAACTTGTTTTATTGGACTTGTGAATT TTTGAGTACATACTATGTGTTTCAGAAATATGTAGAAATAAAAATGTTGCCATAAAATAACA CCTAAGCATATACTATTCTATGCTTTAAAATGAGGATGGAAAAGTTTCATGTCATAAGTCAC CACCTGGACAATAATTGATGCCCTTAAAATGCTGAAGACAGATGTCATACCCACTGTGTAGC CTGTGTATGACTTTACTGAACACAGTTATGTTTTGAGGCAGCATGGTTTGATTAGCATTTC CGCATCCATGCAAACGAGTCACATATGGTGGGACTGGAGCCATAGTAAAGGTTGATTTACTT CTACCAACTAGTATATAAAGTACTAATTAAATGCTAACATAGGAAGTTAGAAAATACTAATA ACTITIATIACTCAGCGATCTATTCTTCTGATGCTAAATAAATTATATATCAGAAAACTTTC AATATTGGTGACTACCTAAATGTGATTTTTGCTGGTTACTAAAATATTCTTACCACTTAAAA GAGCAAGCTAACACATTGTCTTAAGCTGATCAGGGATTTTTTGTATATAAGTCTGTGTTAAA TCTGTATAATTCAGTCGATTTCAGTTCTGATAATGTTAAGAATAACCATTATGAAAAGGAAA ATTTGTCCTGTATAGCATCATTATTTTTAGCCTTTCCTGTTAATAAAGCTTTACTATTCTGT CCTGGGCTTATATTACACATATAACTGTTATTTAAATACTTAACCACTAATTTTGAAAATTA CCAGTGTGATACATAGGAATCATTATTCAGAATGTAGTCTGGTCTTTAGGAAGTATTAATAA GAAAATTTGCACATAACTTAGTTGATTCAGAAAGGACTTGTATGCTGTTTTTCTCCCAAATG AAGACTCTTTTTGACACTAAACACTTTTTAAAAAGCTTATCTTTGCCTTCTCCAAACAAGAA GCAATAGTCTCCAAGTCAATATAAATTCTACAGAAAATAGTGTTCTTTTTCTCCAGAAAAAT GCTTGTGAGAATCATTAAAACATGTGACAATTTAGAGATTCTTTGTTTTATTTCACTGATTA GAAATGGGAAAAGTGCATTTTACTGTATTTTGTGTATTTTGTTTATTTCTCAGAATATGGAA AGAAAATTAAAATGTGTCAATAAATATTTTCTAGAGAGTAA

FIGURE 154

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68880

><subunit 1 of 1, 305 aa, 1 stop

><MW: 35383, pI: 5.99, NX(S/T): 0

MAREDSVKCLRCLLYALNLLFWLMSISVLAVSAWMRDYLNNVLTLTAETRVEEAVILTYFPV
VHPVMIAVCCFLIIVGMLGYCGTVKRNLLLLAWYFGSLLVIFCVELACGVWTYEQELMVPVQ
WSDMVTLKARMTNYGLPRYRWLTHAWNFFQREFKCCGVVYFTDWLEMTEMDWPPDSCCVREF
PGCSKQAHQEDLSDLYQEGCGKKMYSFLRGTKQLQVLRFLGISIGVTQILAMILTITLLWAL
YYDRREPGTDQMMSLKNDNSQHLSCPSVELLKPSLSRIFEHTSMANSFNTHFEMEEL

Signal peptide:

amino acids 1-33

Transmembrane domains:

amino acids 12-35, 57-86, 94-114, 226-248

FIGURE 155

GAGAGAGGCAGCAGCTTGCTCAGCGGACAAGGATGCTGGGCGTGAGGGACCAAGGCCTGCCC CCTGTGTGGGGAGGCCCTCCTGCTGCCTTGGGGTGACAATCTCAGCTCCAGGCTACAGGGAG ACCGGGAGGATCACAGAGCCAGCATGTTACAGGATCCTGACAGTGATCAACCTCTGAACAGC CTCGATGTCAAACCCCTGCGCAAACCCCGTATCCCCATGGAGACCTTCAGAAAGGTGGGGAT CCCCATCATCATAGCACTACTGAGCCTGGCGAGTATCATCATTGTGGTTGTCCTCATCAAGG TGATTCTGGATAAATACTACTTCCTCTGCGGGCAGCCTCTCCACTTCATCCCGAGGAAGCAG CTGTGTGACGGAGAGCTGGACTGTCCCTTGGGGGAGGAGGAGCACTGTGTCAAGAGCTT CCCCGAAGGCCTGCAGTGGCAGTCCGCCTCTCCAAGGACCGATCCACACTGCAGGTGCTGG ACTCGGCCACAGGGAACTGGTTCTCTGCCTGTTTCGACAACTTCACAGAAGCTCTCGCTGAG ACAGCCTGTAGGCAGATGGGCTACAGCAGAGCTGTGGAGATTGGCCCAGACCAGGATCTGGA TGTTGTTGAAATCACAGAAAACAGCCAGGAGCTTCGCATGCGGAACTCAAGTGGGCCCTGTC TCTCAGGCTCCCTGGTCTCCCTGCACTGTCTTGCCTGTGGGAAGAGCCCTGAAGACCCCCCGT GTGGTGGGTGGGAGGAGGCCTCTGTGGATTCTTGGCCTTGGCAGGTCAGCATCCAGTACGA ${\tt CAAACAGCACGTCTGTGGAGGGAGCATCCTGGACCCCCACTGGGTCCTCACGGCAGCCCACT}$ GCTTCAGGAAACATACCGATGTGTTCAACTGGAAGGTGCGGGCAGGCTCAGACAAACTGGGC AGCTTCCCATCCCTGGCTGTGGCCAAGATCATCATCATTGAATTCAACCCCATGTACCCCAA CCATCTGTCTGCCCTTCTTTGATGAGGAGCTCACTCCAGCCACCCCACTCTGGATCATTGGA TGGGGCTTTACGAAGCAGAATGGAGGGAAGATGTCTGACATACTGCTGCAGGCGTCAGTCCA GGTCATTGACAGCACACGGTGCAATGCAGACGATGCGTACCAGGGGGAAGTCACCGAGAAGA TGATGTGCAGGCATCCCGGAAGGGGGTGTGGACACCTGCCAGGGTGACAGTGGTGGGCCC CTGATGTACCAATCTGACCAGTGGCATGTGGTGGGCATCGTTAGCTGGGGCTATGGCTGCGG GGGCCCGAGCACCCCAGGAGTATACACCAAGGTCTCAGCCTATCTCAACTGGATCTACAATG CCCTGCCCACCTGGGGATCCCCCAAAGTCAGACACAGAGCAAGAGTCCCCTTGGGTACACCC CTCTGCCCACAGCCTCAGCATTTCTTGGAGCAGCAAAGGGCCTCAATTCCTGTAAGAGCCC TCGCAGCCCAGAGGCCCCAGAGGAAGTCAGCAGCCCTAGCTCGGCCACACTTGGTGCTCCC AGCATCCCAGGGAGAGACACAGCCCACTGAACAAGGTCTCAGGGGTATTGCTAAGCCAAGAA GGAACTTTCCCACACTACTGAATGGAAGCAGGCTGTCTTGTAAAAGCCCAGATCACTGTGGG CTGGAGAGGAGAAGGAAAGGGTCTGCGCCAGCCCTGTCCGTCTTCACCCATCCCCAAGCCTA CTAGAGCAAGAAACCAGTTGTAATATAAAATGCACTGCCCTACTGTTGGTATGACTACCGTT ACCTACTGTTGTCATTGTTATTACAGCTATGGCCACTATTATTAAAGAGCTGTGTAACATCT CTGGCAAAAAAAAAAAA

FIGURE 156

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68885

><subunit 1 of 1, 432 aa, 1 stop

><MW: 47644, pI: 5.18, NX(S/T): 2

MLQDPDSDQPLNSLDVKPLRKPRIPMETFRKVGIPIIIALLSLASIIIVVVLIKVILDKYYF
LCGQPLHFIPRKQLCDGELDCPLGEDEEHCVKSFPEGPAVAVRLSKDRSTLQVLDSATGNWF
SACFDNFTEALAETACRQMGYSRAVEIGPDQDLDVVEITENSQELRMRNSSGPCLSGSLVSL
HCLACGKSLKTPRVVGGEEASVDSWPWQVSIQYDKQHVCGGSILDPHWVLTAAHCFRKHTDV
FNWKVRAGSDKLGSFPSLAVAKIIIIEFNPMYPKDNDIALMKLQFPLTFSGTVRPICLPFFD
EELTPATPLWIIGWGFTKQNGGKMSDILLQASVQVIDSTRCNADDAYQGEVTEKMMCAGIPE
GGVDTCQGDSGGPLMYQSDQWHVVGIVSWGYGCGGPSTPGVYTKVSAYLNWIYNVWKAEL

Transmembrane domain:

amino acids 32-53 (typeII)

FIGURE 157

GGGTCAGATACTATGCAGGGGATGAACGTAGGGCACTTAGCTTCTTCCACCAGAAGGGCCTCCAGGATTTTGACA AGAAGAAGAACAATGACACAGTGTTTCAACTTCATCCGTGTCCTGGTTTCTTACAATGTCACCCATCTCTACA CCTGCGGCACCTTCGCCTTCAGCCCTGCTTGTACCTTCATTGAACTTCAAGATTCCTACCTGTTGCCCATCTCGG AGGACAAGGTCATGGAGGGAAAAGGCCAAAGCCCCTTTGACCCCGCTCACAAGCATACGGCTGTCTTGGTGGATG GGATGCTCTATTCTGGTACTATGAACAACTTCCTGGGCAGTGAGCCCATCCTGATGCGCACACTGGGATCCCAGC AGGTCGTCTACTTCTTCGAGGAGACAGCCAGCGAGTTTGACTTCTTTGAGAGGCTCCACACATCGCGGGTGG $\tt CTAGAGTCTGCAAGAATGACGTGGGGGGGGAAAAGCTGCTGCAGAAGAAGTGGACCACCTTCCTGAAGGCCCAGC$ TGCTCTGCACCCAGCCGGGGCAGCTGCCCTTCAACGTCATCCGCCACGCGGTCCTGCTCCCCGCCGATTCTCCCA CAGCTCCCCACATCTACGCAGTCTTCACCTCCCAGTGGCAGGTTGGCGGGACCAGGAGCTCTGCGGTTTGTGCCT TCTCTCTCTGGACATTGAACGTGTCTTTAAGGGGAAATACAAAGAGTTGAACAAAGAAACTTCACGCTGGACTA CTTATAGGGGCCCTGAGACCCAACCCCGGCCAGGCAGTTGCTCAGTGGGCCCTCCTCTGATAAGGCCCTGACCT TCATGAAGGACCATTTCCTGATGGATGAGCAAGTGGTGGGGACGCCCCTGCTGGTGAAATCTGGCGTGGAGTATA GGTCGCTCCACAAGGCTGTGGTAAGTGGGGACAGCAGTGCTCATCTGGTGGAAGAGATTCAGCTGTTCCCTGACC GGGTGCCCCGAGCCAACTGTAGTGTCTATGAGAGCTGTGTGGACTGTGTCCTTGCCCGGGACCCCCACTGTGCCT GGGACCCTGAGTCCCGAACCTGTTGCCTCCTGTCTGCCCCCAACCTGAACTCCTGGAAGCAGGACATGGAGCGG AAGAAGTCCTGGCTGTCCCCAACTCCTTGGAGCTCCCCTGCCCCACCTGTCAGCCTTGGCCTCTTATTATT GGAGTCATGGCCCAGCAGCAGTCCCAGAAGCCTCTTCCACTGTCTACAATGGCTCCCTCTTGCTGATAGTGCAGG ATGGAGTTGGGGGTCTCTACCAGTGCTGGGCAACTGAGAATGGCTTTTCATACCCTGTGATCTCCTACTGGGTGG TTGCCTTAGTGCTTTCAGGAGCCCTCATCATCCTCGTGGCCTCCCCATTGAGAGCACTCCGGGCTCGGGGCAAGG TTCAGGGCTGTGAGACCCTGCGCCCTGGGGAGAAGGCCCCGTTAAGCAGAGAGCAACACCTCCAGTCTCCCAAGG AATGCAGGACCTCTGCCAGTGATGTGGACGCTGACAACAACTGCCTAGGCACTGAGGTAGCTTAAACTCTAGGCA CAGCACAAAAGACCACCTTTCTCCCCTGAGAGGAGCTTCTGCTACTCTGCATCACTGATGACACTCAGCAGGGTG ATGCACAGCAGTCTGCCTCCCCTATGGGACTCCCTTCTACCAAGCACATGAGCTCTCTAACAGGGTGGGGGCTAC $\tt CCCCAGACCTGCTCCTACACTGATATTGAAGAACCTGGAGAGGATCCTTCAGTTCTGGCCATTCCAGGGACCCTC$ TAAACAATCATATGCTAACATGCCACTCCTGGAAACTCCACTCTGAAGCTGCCGCTTTGGACACCAACACTCCCT TCTCCCAGGGTCATGCAGGGATCTGCTCCCTCCTGCTTCCCTTACCAGTCGTGCACCGCTGACTCCCAGGAAGTC TTTCCTGAAGTCTGACCACCTTTCTTCTTGCTTCAGTTGGGGCAGACTCTGATCCCTTCTGCCCTGGCAGAATGG

FIGURE 158

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71166

><subunit 1 of 1, 761 aa, 1 stop

><MW: 83574, pI: 6.78, NX(S/T): 4

MALPALGLDPWSLLGLFLFQLLQLLLPTTTAGGGGQGPMPRVRYYAGDERRALSFFHQKGLQ
DFDTLLLSGDGNTLYVGAREAILALDIQDPGVPRLKNMIPWPASDRKKSECAFKKKSNETQC
FNFIRVLVSYNVTHLYTCGTFAFSPACTFIELQDSYLLPISEDKVMEGKGQSPFDPAHKHTA
VLVDGMLYSGTMNNFLGSEPILMRTLGSQPVLKTDNFLRWLHHDASFVAAIPSTQVVYFFFE
ETASEFDFFERLHTSRVARVCKNDVGGEKLLQKKWTTFLKAQLLCTQPGQLPFNVIRHAVLL
PADSPTAPHIYAVTTSQWQVGGTRSSAVCAFSLLDIERVFKGKYKELNKETSRWTTYRGPET
NPRPGSCSVGPSSDKALTFMKDHFLMDEQVVGTFLLVKSGVEYTRLAVETAQGLDGHSHLVM
YLGTTTGSLHKAVVSGDSSAHLVEEIQLFPDPEPVRNLQLAPTQGAVFVGFSGGVWRVPRAN
CSVYESCVDCVLARDPHCAWDPESRTCCLLSAPNLNSWKQDMERGNPEWACASGPMSRSLRP
QSRPQIIKEVLAVPNSILELPCPHLSALASYYWSHGPAAVPEASSTVYNGSLLLIVQDGVGG
LYQCWATENGFSYPVISYWVDSQDQTLALDPELAGIPREHVKVPLTRVSGGAALAAQQSYWP
HFVTVTVLFALVLSGALIILVASPLRALRARGKVQGCETLRPGEKAPLSREQHLQSPKECRT
SASDVDADNNCLGTEVA

Signal peptide:

amino acids 1-30

Transmembrane domains:

amino acids 136-156, 222-247, 474-490, 685-704

FIGURE 159

AGGGTCCCTTAGCCGGGCGCAGGCGCAGCCCAGGCTGAGATCCGCGGCTTCCGTAGAAG TCAGAGGCTGCCAAAATCCTGACAATATCTACAGTAGGTGGAAGCCATTATCTACTGATGGA CCGGGTTTCTCAGATTCTTCAAGATCACGGTCATAATGTCACCATGCTTAACCACAAAAGAG GTCCTTTTATGCCAGATTTTAAAAAGGAAGAAAAATCATATCAAGTTATCAGTTGGCTTGCA TGGCAGAGGAAAATTTGAAAACTTATTAAATGTTCTAGAATACTTGGCGTTGCAGTGCAGTC ATTTTTTAAATAGAAAGGATATCATGGATTCCTTAAAGAATGAGAACTTCGACATGGTGATA GTTGAAACTTTTGACTACTGTCCTTTCCTGATTGCTGAGAAGCTTGGGAAGCCATTTGTGGC CATTCTTTCCACTTCATTCGGCTCTTTGGAATTTGGGCTACCAATCCCCTTGTCTTATGTTC CAGTATTCCGTTCCTTGCTGACTGATCACATGGACTTCTGGGGCCGAGTGAAGAATTTTCTG ATGTTCTTTAGTTTCTGCAGGAGGCAACAGCACATGCAGTCTACATTTGACAACACCATCAA GGAACATTTCACAGAAGGCTCTAGGCCAGTTTTGTCTCATCTTCTACTGAAAGCAGAGTTGT GGTTCATTAACTCTGACTTTGCCTTTGATTTTGCTCGACCTCTGCTTCCCAACACTGTTTAT GTTGGAGGCTTGATGGAAAAACCTATTAAACCAGTACCACAAGACTTGGAGAACTTCATTGC CAAGTTTGGGGACTCTGGTTTTGTCCTTGTGACCTTGGGCTCCATGGTGAACACCTGTCAGA ATCCGGAAATCTTCAAGGAGATGAACAATGCCTTTGCTCACCTACCCCAAGGGGTGATATGG AAGTGTCAGTGTTCTCATTGGCCCAAAGATGTCCACCTGGCTGCAAATGTGAAAATTGTGGA CTGGCTTCCTCAGAGTGACCTCCTGGCTCACCCAAGCATCCGTCTGTTTGTCACCCACGGCG GGCAGAATAGCATAATGGAGGCCATCCAGCATGGTGTGCCCATGGTGGGGATCCCTCTTT GGAGACCAGCCTGAAAACATGGTCCGAGTAGAAGCCAAAAAGTTTGGTGTTTCTATTCAGTT AAAGAAGCTCAAGGCAGAGACATTGGCTCTTAAGATGAAACAAATCATGGAAGACAAGAGAT ACAAGTCCGCGGCAGTGGCCAGTGTCATCCTGCGCTCCACCCGCTCAGCCCCACACAC CGGCTGGTGGGCTGGATTGACCACGTCCTCCAGACAGGGGGCGCGACGCACCTCAAGCCCTA TGTCTTTCAGCAGCCCTGGCATGAGCAGTACCTGTTCGACGTTTTTGTGTTTCTGCTGGGGC TCACTCTGGGGACTCTATGGCTTTGTGGGAAGCTGCTGGGCATGGCTGTCTGGTGGCTGCGT GGGGCCAGAAAGGTGAAGGACATAAGGCCAGGTGCAGCCTTGGCGGGGTCTGTTTGGTGG GCGATGTCACCATTTCTAGGGAGCTTCCCACTAGTTCTGGCAGCCCCATTCTCTAGTCCTTC TAGTTATCTCCTGTTTTCTTGAAGAACAGGAAAAATGGCCAAAAATCATCCTTTCCACTTGC CTTGTCCTCCTTTGTTTGCCATCAGCAAGGGCTATGCTGTGATTCTGTCTCTGAGTGACTTG TCACACCCTGACTCTTCCAGCCTCCATGTCCAGACCTAGTCAGCCTCTCTCACTCCTGCCCC TACTATCTATCATGGAATAACATCCAAGAAAGACACCTTGCATATTCTTTCAGTTTCTGTTT TGTTCTCCCACATATTCTCTTCAATGCTCAGGAAGCCTGCCCTGTGCTTGAGAGTTCAGGGC CGGACACAGGCTCACAGGTCTCCACATTGGGTCCCTGTCTCTGGTGCCCACAGTGAGCTCCT TCTTGGCTGAGCAGGCATGGAGACTGTAGGTTTCCAGATTTCCTGAAAAATAAAAGTTTACA GCGTTATCTCTCCCCAACCTCACTAA

FIGURE 160

></usr/segdb2/sst/DNA/Dnasegs.min/ss.DNA71169

><subunit 1 of 1, 523 aa, 1 stop

><MW: 59581, pI: 8.68, NX(S/T): 1

MAGQRVLLLVGFLLPGVLLSEAAKILTISTVGGSHYLLMDRVSQILQDHGHNVTMLNHKRGP FMPDFKKEEKSYQVISWLAPEDHQREFKKSFDFFLEETLGGRGKFENLLNVLEYLALQCSHF LNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFVAILSTSFGSLEFGLPIPLSYVPV FRSLLTDHMDFWGRVKNFLMFFSFCRRQQHMQSTFDNTIKEHFTEGSRPVLSHLLLKAELWF INSDFAFDFARPLLPNTVYVGGLMEKPIKPVPQDLENFIAKFGDSGFVLVTLGSMVNTCQNP EIFKEMNNAFAHLPQGVIWKCQCSHWPKDVHLAANVKIVDWLPQSDLLAHPSIRLFVTHGGQ NSIMEAIQHGVPMVGIPLFGDQPENMVRVEAKKFGVSIQLKKLKAETLALKMKQIMEDKRYK SAAVAASVILRSHPLSPTQRLVGWIDHVLQTGGATHLKPYVFQQPWHEQYLFDVFVFLLGLT LGTLWLCGKLLGMAVWWLRGARKVKET

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 483-504

FIGURE 161

CTCCATCCCCCCAGGTCCAGCCCTCAGTGCTGTCCCATCCAGCAGGGCTACCCTGAAGCTCT GGCTGCAGCCCTCCCGTCCAGTGGGCAGGCGGCTTCATCCCTCCTTTCTCTCCCAAAGCCCA ACTGCTGTCACTGCATGCTCTGCCAAGGAGGAGGGAACTGCAGTGACAGCAGGAGTAAGAGT GGGAGGCAGGACAGACTGGGACACAGGTATGGAGAGGGGGTTCAGCGAGCCTAGAGAGGGC AGACTATCAGGGTGCCGGCGGTGAGAATCCAGGGAGAGGGGGGGAAACAGAAGAGGGGCAGA AGACCGGGGCACTTGTGGGTTGCAGAGCCCCTCAGCCATGTTGGGAGCCAAGCCACACTGGC TACCAGGTCCCCTACACAGTCCCGGGCTGCCCTTGGTTCTGGTGCTTCTGGCCCTGGGGGCC GGGTGGCCCAGGAGGGGTCAGAGCCCGTCCTGCTGGAGGGGGAGTGCCTGGTGGTCTGTGA GCCTGGCCGAGCTGCTGCAGGGGGGGCCCGGGGGAGCCCCTGGGCAGAGGCACCCCCTGGGC GAGTGGCATTTGCTGCGGTCCGAAGCCACCATGAGCCAGCAGGGGAAACCGGCAATGGC ACCAGTGGGCCATCTACTTCGACCAGGTCCTGGTGAACGAGGGCGGTGGCTTTGACCGGGC CTCTGGCTCCTTCGTAGCCCCTGTCCGGGGTGTCTACAGCTTCCGGTTCCATGTGGTGAAGG TGTACAACCGCCAAACTGTCCAGGTGAGCCTGATGCTGAACACGTGGCCTGTCATCTCAGCC TTTGCCAATGATCCTGACGTGACCCGGGAGGCAGCCACCAGCTCTGTGCTACTGCCCTTGGA CCCTGGGGACCGAGTGTCTCTGCGCCTGCGTCGGGGGAATCTACTGGGTGGTTGGAAATACT CAAGTTTCTCTGGCTTCCTCATCTTCCCTCTCTGAGGACCCAAGTCTTTCAAGCACAAGAAT ACTCCCTCTGGCTCCTATCCCACCTCTTTGCATGGGACCCTGTGCCAAACACCCCAAGTTTAA CTCCCAGCCACCTGCATCTGTTCCTGCCTGCAGCCCTAGGATCAGGGCAAGGTTTGGCA AGAAGGAAGATCTGCACTACTTTGCGGCCTCTGCTCCTCCGGTTCCCCCACCCCAGCTTCCT GCTCAATGCTGATCAGGGACAGGTGGCGCAGGTGAGCCTGACAGGCCCCCACAGGAGCCCAG ATGGACAAGCCTCAGCGTACCCTGCAGGCTTCTTCCTGTGAGGAAAGCCAGCATCACGGATC TCAGCCAGCACCGTCAGAAGCTGAGCCAGCACCGTATGGGCTAGGGTGGGAGGCTCAGCCAC GGCTGTCCTTCTATGCTGGATCCCAGATGGACTCTGGCCCTTACCTCCCCACCTGAGATTAG GGTGAGTGTGTTTGCTCTGGCTGAGAGCAGAGCTGAGAGCAGGTATACAGAGCTGGAAGTGG ACCATGGAAAACATCGATAACCATGCATCCTCTTGCTTGGCCACCTCCTGAAACTGCTCCAC TCACTGAGTTATCTTCACTGTACCTGTTCCAGCATATCCCCACTATCTCTCTTTCTCCTGAT GGCCCAGCCTGGATGAATCTATCAATAAAACAACTAGAGAATGGTGGTCAGTGAGACACTAT AGAATTACTAAGGAGAAGATGCCTCTGGAGTTTGGATCGGGTGTTACAGGTACAAGTAGGTA TGTTGCAGAGGAAAATAAATATCAAACTGTATACTAAAATTAAAAA

FIGURE 162

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71180

><subunit 1 of 1, 205 aa, 1 stop

><MW: 21521, pI: 7.07, NX(S/T): 1

MLGAKPHWLPGPLHSPGLPLVLVLLALGAGWAQEGSEPVLLEGECLVVCEPGRAAAGGPGGA ALGEAPPGRVAFAAVRSHHHEPAGETGNGTSGAIYFDQVLVNEGGGFDRASGSFVAPVRGVY SFRFHVVKVYNRQTVQVSLMLNTWPVISAFANDPDVTREAATSSVLLPLDPGDRVSLRLRRG NLLGGWKYSSFSGFLIFPL

Signal peptide:

amino acids 1-32

FIGURE 163

GCTGTTTCTCTCGCGCCACCACTGGCCGCCGGCCGCAGCTCCAGGTGTCCTAGCCGCCCAGC CTCGACGCCGTCCCGGGACCCCTGTGCTCTGCGCGAAGCCCTGGCCCCGGGGGCCGGGGCAT GAAGACCCTCATAGCCGCCTACTCCGGGGTCCTGCGCGGCGAGCGTCAGGCCGAGGCTGACC GGAGCCAGCGCTCTCACGGAGGACCTGCGCTGTCGCGCGAGGGGTCTGGGAGATGGGGCACT GGATCCAGCATCCTCTCCGCCCTCCAGGACCTCTTCTCTGTCACCTGGCTCAATAGGTCCAA GGTGGAAAAGCAGCTACAGGTCATCTCAGTGCTCCAGTGGGTCCTGTCCTTGTACTGG GAGTGGCCTGCAGTGCCATCCTCATGTACATATTCTGCACTGATTGCTGGCTCATCGCTGTG CTCTACTTCACTTGGCTGGTGTTTGACTGGAACACCCCAAGAAAGGTGGCAGGAGGTCACA GTGGGTCCGAAACTGGGCTGTGTGGCGCTACTTTCGAGACTACTTTCCCATCCAGCTGGTGA AGACACACCTGCTGACCACCAGGAACTATATCTTTGGATACCACCCCCATGGTATCATG GGCCTGGGTGCCTTCTGCAACTTCAGCACAGAGGCCACAGAAGTGAGCAAGAAGTTCCCAGG CATACGGCCTTACCTGGCTACACTGGCAGGCAACTTCCGAATGCCTGTGTTGAGGGAGTACC TGATGTCTGGAGGTATCTGCCCTGTCAGCCGGGACACCATAGACTATTTGCTTTCAAAGAAT GGGAGTGGCAATGCTATCATCGTGGTCGGGGGTGCGGCTGAGTCTCTGAGCTCCATGCC TGGCAAGAATGCAGTCACCCTGCGGAACCGCAAGGGCTTTGTGAAACTGGCCCTGCGTCATG GAGCTGACCTGGTTCCCATCTACTCCTTTGGAGAGAATGAAGTGTACAAGCAGGTGATCTTC GAGGAGGCTCCTGGGGCCGATGGGTCCAGAAGAAGTTCCAGAAATACATTGGTTTCGCCCC ATGCATCTTCCATGGTCGAGGCCTCTTCTCCTCCGACACCTGGGGGCTGGTGCCCTACTCCA AGCCCATCACCACTGTTGTGGGAGAGCCCATCACCATCCCCAAGCTGGAGCACCCAACCCAG CAAGACATCGACCTGTACCACCATGTACATGGAGGCCCTGGTGAAGCTCTTCGACAAGCA GCCAATTCCCTGGAGGAACCAGCTGCAAATCACTTTTTTGCTCTGTAAATTTTGGAAGTGTCA ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

FIGURE 164

></usr/segdb2/sst/DNA/Dnasegs.min/ss.DNA71184

><subunit 1 of 1, 388 aa, 1 stop

><MW: 43831, pI: 9.64, NX(S/T): 3

MKTLIAAYSGVLRGERQAEADRSQRSHGGPALSREGSGRWGTGSSILSALQDLFSVTWLNRS
KVEKQLQVISVLQWVLSFLVLGVACSAILMYIFCTDCWLIAVLYFTWLVFDWNTPKKGGRRS
QWVRNWAVWRYFRDYFPIQLVKTHNLLTTRNYIFGYHPHGIMGLGAFCNFSTEATEVSKKFP
GIRPYLATLAGNFRMPVLREYLMSGGICPVSRDTIDYLLSKNGSGNAIIIVVGGAAESLSSM
PGKNAVTLRNRKGFVKLALRHGADLVPIYSFGENEVYKQVIFEEGSWGRWVQKKFQKYIGFA
PCIFHGRGLFSSDTWGLVPYSKPITTVVGEPITIPKLEHPTQQDIDLYHTMYMEALVKLFDK
HKTKFGLPETEVLEVN

Important features of the protein:

Transmembrane domain:

amino acids 76-97

N-glycosylation sites.

amino acids 60-63, 173-176, 228-231

N-myristoylation sites.

amino acids 10-15, 41-46, 84-89, 120-125, 169-174, 229-234, 240-245, 318-323, 378-383

FIGURE 165

GCGGCTGCAGGCTTGTCCAGCCGGAAGCCCTGAGGGCAGCTGTTCCCACTGGCTCTGCTGACCTTGTGCCTTGGA CGGCTGTCCTCAGCGAGGGGCCGTGCACCCGCTCCTGAGCAGCGCCATGGGCCTGCTGGCCTTCCTGAAGACCCA GTTCGTGCTGCACCTGCTGGTCGGCTTTGTCTTCGTGGTGAGTGGTCTGGTCATCAACTTCGTCCAGCTGTGCAC ACTGGTCATGCTGGAGTGGTGGTCCTGCACGGAGTGTACACTGTTCACGGACCAGGCCACGGTAGAGCGCTT GCGCTTCGGAGTGCTGGGGAGCTCCAAGGTCCTCGCTAAGAAGGAGCTGCTCTACGTGCCCCTCATCGGCTGGAC GTGGTACTTTCTGGAGATTGTGTTCTGCAAGCGGAAGTGGGAGGAGGACCGGGACACCGTGGTCGAAGGGCTGAG GCGCCTGTCGGACTACCCCGAGTACATGTGGTTTCTCCTGTACTGCGAGGGGACGCGCTTCACGGAGACCAAGCA CTTCACCACCGCAGTCAAGTGCCTCCGGGGGACAGTCGCAGCTGTCTATGATGTAACCCTGAACTTCAGAGGAAA CAAGAACCCGTCCCTGCTGGGGATCCTCTACGGGAAGAAGTACGAGGGGGACATGTGCGTGAGGAGATTTCCTCT GGAAGACATCCCGCTGGATGAAAAGGAAGCAGCTCAGTGGCTTCATAAACTGTACCAGGAGAAGGACGCGCTCCA GGAGATATATAATCAGAAGGGCATGTTTCCAGGGGAGCAGTTTAAGCCTGCCCGGAGGCCGTGGACCCTCCTGAA CTTCCTGTCCTGGGCCACCATTCTCCTGTCTCCCCTCTTCAGTTTTGTCTTGGGCGTCTTTGCCAGCGGATCACC TCTCCTGATCCTGACTTTCTTGGGGTTTGTGGGAGCAGCTTCCTTTGGAGTTCGCAGACTGATAGGAGAATCGCT TGAACCTGGGAGGTGGAGATTGCAGTGAGCTGAGATGGCATCACTGTACTCCAGCCTAGGCAACAGAGCAAGAGCT CAGTCTCAAAAAAAAAAAAAAAAAAAAAAACCCCAGAAATTCTGGAGTTGAACTGTGTAGTTACTGACATGAAAA ATTCACTAGAGGCTGAACAGCAGATTTGAGCAGGCAGAAAAAAATCAGCAAGCTTGAAGATGGTACCTTGAGATT TTTCAGGCTAATGAAAAAAGAATGAAGGAAAATTAACAGCCTCAGAGACCCATGGTGCACCGTCACACAAATCAA GTAACCTACCCACTCAGGAAGCTCAGTGAACTCCAATGAGGATGAATATCAGAGATCCACACCTAGATATTTCAT AATCAAAGTGTCAAATGACAAAGAATCTTGAAAGCAGCAAGAGATGAGCAACTTATCTTGTTCAAAGGATCTTTG ATCAGATTAACAGCTCATTTCTCCTCAGAAATCATGGGAGCCAGGAGATAGTGGGATGAACACTGTTGAAGGCAA ATTTAATCCCTAATAACAATTAGTCAAGCTTCCTTGACCTGTAGGAAGGCCTGTCTTTAGGCCGGGCACAGTGGC TTACACCTGTAATCCCAGCACTTTGGGAGGCCCAGACGGGTGGATCATTTGGGGTCAGGCTGATCTCAAACTCCT GAGTTCAGGTGATCTGCCCGCCTCAGCCTCCCAAAGTGTTGTGATTGCAGGCGTGAGCCACTGCGCCTGGCCGGA ATTTCTTTTTAAGGCTGAATGATGGGGGCCAGGCACGATGGCTCACGCCTGTGATCCCAAGTAGCTTGGATTGTA AACATGCACCACCATGCCTGGCTAATTTTTGTATTTTTAGTAGAGACGTGTTTAGCCAGGCTGGTCTCGATCTCCT GACCTCAAGTGACCACCTGCCTCAGCCTCCCAAAGTACTGGGATTACAGGCGTGAGCCACTGTGCCTGGCCTTGA GCATCTTGTGATGTGCTTATTGGCCATTTGTATATCTTCTATCTTTTGGGGAAATGTCTGTTCAAGTCCTTTG CAGTGGCACAGTCTTGGCTCACTGCAGCCTCGACCTCCTGGGCTGCAGTGATCCTCCCACCTCAGCCTCCCTTGT GAGGGCCGGGTGTGGCCCCAACTACCAGGGAGACTGAAGTGGGAGGATCGCTTGGGCATGAGAAGTCGAGGCTG CAGTGAGTCGAGGTTGTGCGACTGCATTCCAGCCTGGACAACAGAGTGAGACCCTGTCTC

FIGURE 166

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71213

><subunit 1 of 1, 368 aa, 1 stop

><MW: 42550, pI: 9.11, NX(S/T): 1

MGLLAFLKTQFVLHLLVGFVFVVSGLVINFVQLCTLALWPVSKQLYRRLNCRLAYSLWSQLV
MLLEWWSCTECTLFTDQATVERFGKEHAVIILNHNFEIDFLCGWTMCERFGVLGSSKVLAKK
ELLYVPLIGWTWYFLEIVFCKRKWEEDRDTVVEGLRRLSDYPEYMWFLLYCEGTRFTETKHR
VSMEVAAAKGLPVLKYHLLPRTKGFTTAVKCLRGTVAAVYDVTLNFRGNKNPSLLGILYGKK
YEADMCVRRFPLEDIPLDEKEAAQWLHKLYQEKDALQEIYNQKGMFPGEQFKPARRPWTLIN
FLSWATILLSPLFSFVLGVFASGSPLLILTFLGFVGAASFGVRRLIGESLEPGRWRLO

Important features of the protein:

Signal peptide:

amino acids 1-25

Transmembrane domains:

amino acids 307-323, 335-352

Tyrosine kinase phosphorylation sites.

amino acids 160-168, 161-169

FIGURE 167

GCCACCAGGCATATTCATCTTTGTGTGTGTTTTTTCTTTTTGCTTTTAGCACTGGGGCACTTCTT GATAGCTGGGGTCTGAGACCTGCTTCCTCAGTAAAATTCCTGGGATCTGCCTATACCTTCTT TTCTCTAACCTGGCATACCCTGCTTAAAGCCTCTCAGGGCTTCTCTCTGTTCTTAGGATCAA AGTATTTAGAGCTACAAGAGCCCTCATGGTCTGGCCCCTGCCCCCTGGCCAGCTTCATTGT ACATGTGGTGTTCTCTTGTCGTTCCTGTAATGTGGTATGCCATGGGGTCTTTGCACAAGCCT TTCCTCTTTGGCTGGACACTGTTCCCTGCCCCCCCATACTCTTCCTACTTAATATGTAGTC ATCCTGCAGATTTCAATTCTAACATCATTTTCTCCAGGGATCCTGGCCTGACAGAATCTCAT CTTGTTTAATGCTCTCATAAGACCACTTGTTTCCCTTTTTGCAGCACTTGCCACTCAGTTGTATCTTTATGTGCGTTTGTGTTGTATGGGTTGTTCTCTCTCCCCAGAATGCCCAGCTCTGAGC CATGTTTTAGAGACTAAATGGAGGAGGAGATGAGGAAAAGATTGAAATCTCTCAGTTCACCA GATGGTGTAGGGCCCAGCATTGTAAATTCACACGTTGACTGTGCTTGTGAATTATCTGGGGA TGCAGGTCCTGATTCAGTAGGCCCAGGTTGGGCATCTCTAACAAACTCCCACGTGATGCTGA TGCTGGTCCTATGAACTATACTAAATAGTAAGAATCTATGGAGCCAGGCTGGGCATGGTGGC TCAAGACTAGCCTGGCCAACATGGTGGAACCCCATCTGTACTAAAAATACACAAATTAGCTG GGCATGGTGGCACATGCCTGTAGTCCCAGCTACTTGGGAGGCTGAAGCAAGAATCGCTTG AACCTGGGAGGCGGAGGTTGCAGTGAGCCGAGATCAGGCCACTGTATTCCAACCAGGGTGAC AGAGTGAGACTCTATGTCCAAAAAAAAAAAAAA

FIGURE 168

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71234

><subunit 1 of 1, 143 aa, 1 stop

><MW: 15624, pI: 9.58, NX(S/T): 0

MHHSLQCPGAATRHIHLCVCFSFALALGHFLLISLVGKGLSLSCGVGGRQAGLRLIRPWVRR EGKINFYTNGDSWGLRPASSVKFLGSAYTFFSLTWHTLLKASQGFSLFLGSKYLELQEPSWS GPCPPGOLHCTCGVLLSFL

Important features of the protein: Signal peptide:

amino acids 1-28

FIGURE 169

GGCTGGACTGGAACTCCTGGTCCCAAGTGATCCACCCGCCTCAGCCTCCCAAGGTGCTGTGA TTATAGGTGTAAGCCACCGTGTCTGGCCTCTGAACAACTTTTTCAGCAACTAAAAAAGCCAC ATTAAAATCTGTTTTTTGTTCTCTTGTAACTAGCCTTTACCTTCCTAACACAGAGGATCTGT CACTGTGGCTCTGGCCCAAACCTGACCTTCACTCTGGAACGAGAACAGAGGTTTCTACCCAC ACCGTCCCTCGAAGCCGGGGACAGCCTCACCTTGCTGGCCTCTCGCTGGAGCAGTGCCCTC ACCAACTGTCTCACGTCTGGAGGCACTGACTCGGGCAGTGCAGGTAGCTGAGCCTCTTGGTA GCTGCGGCTTTCAAGGTGGGCCTTGCCCTGGCCGTAGAAGGGAT<u>TGA</u>CAAGCCCGAAGATTT CATAGGCGATGGCTCCCACTGCCCAGGCATCAGCCTTGCTGTAGTCAATCACTGCCCTGGGG CTAACCTTTTCATGTCCTGCACATCACCTGATCCATGGGCTAATCTGAACTCTGTCCCAAGG AACCCAGAGCTTGAGTGAGCTGTGGCTCAGACCCAGAAGGGGTCTGCTTAGACCACCTGGTT TATGTGACAGGACTTGCATTCTCCTGGAACATGAGGGAACGCCGGAGGAAAGCAAAGTGGCA GGGAAGGAACTTGTGCCAAATTATGGGTCAGAAAAGATGGAGGTGTTGGGTTATCACAAGGC ATCGAGTCTCCTGCATTCAGTGGACATGTGGGGGGAAGGGCTGCCGATGGCGCATGACACACT CGGGACTCACCTCTGGGGCCATCAGACAGCCGTTTCCGCCCCGATCCACGTACCAGCTGCTG AAGGGCAACTGCAGGCCGATGCTCTCATCAGCCAGGCAGCCAAAATCTGCGATCACCAG TGAGAGGCCCTCCTATGTCCCTACTAAAGCCACCAGCAAGACATAGCTGACAGGGGCTAATG GCTCAGTGTTGGCCCAGGAGGTCAGCAAGGCCTGAGAGGCCTGATCAGAAGGGCCTGCTGTGCG AACACGGAAATGCCTCCAGTAAGCACAGGCTGCAAAATCCCCCAGGCAAAGGACTGTGTGGCT CAATTTAAATCATGTTCTAGTAATTGGAGCTGTCCCCAAGACCAAAGGAGCTAGAGCTTGGT TCAAATGATCTCCAAGGGCCCTTATACCCCAGGAGACTTTGATTTGAATTTGAAACCCCAAA TCCAAACCTAAGAACCAGGTGCATTAAGAATCAGTTATTGCCGGGTGTGGTGGCCTGTAATG CCAACATTTTGGGAGGCCGAGGCGGGTAGATCACCTGAGGTCAGGAGTTCAAGACCAGCCTG GCCAACATGGTGAAACCCCTGTCTCTACTAAAAATACAAAAAAACTAGCCAGGCATGGTGGT GTGTGCCTGTATCCCAGCTACTCGGGAGGCTGAGACAGGAGAATTACTTGAACCTGGGAGGT GAAGGAGGCTGAGACAGGAGAATCACTTCAGCCTGAGCAACACAGCGAGACTCTGTCTCAGA AAAAATAAAAAAAGAATTATGGTTATTTGTAA

FIGURE 170

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71277

><subunit 1 of 1, 109 aa, 1 stop

><MW: 11822, pI: 8.63, NX(S/T): 0

MLWWLVLLLLPTLKSVFCSLVTSLYLPNTEDLSLWLWPKPDLHSGTRTEVSTHTVPSKPGTA SPCWPLAGAVPSPTVSRLEALTRAVOVAEPLGSCGFOGGPCPGRRRD

Signal peptide:

amino acids 1-15

FIGURE 171

GCGGGCCGCGAGTCCGAGACCTGTCCCAGGAGCTCCAGCTGACCTGTCACTGCCTC GGCCCTGGGCTCAGCCGCACTGGGCGCCCCCTTCGCCACTGGCCTCTTCCTGGGGAGGCGGT GCCCCCATGGCGAGGCCGCGAGAGCAGTGCCTGCTTCCCCCGAGGACAGCCGCCTGTGG CAGTATCTTCTGAGCCGCTCCATGCGGGAGCACCCGGCGCTGCGAAGCCTGAGGCTGCTGAC CCTGGAGCAGCCGCAGGGGGATTCTATGATGACCTGCGAGCAGGCCCAGCTCTTGGCCAACC TGGCGCGCTCATCCAGGCCAAGAAGGCGCTGGACCTGGGCACCTTCACGGGCTACTCCGCC CTGGCCCTGGCCCTGGCGCTGCCCGCGGACGGGCGTGTGACCTGCGAGGTGGACGCGCA GCCCCGGAGCTGGGACGCCCCTGTGGAGGCAGGCCGAGGCGGAGCACAAGATCGACCTCC GCTGCTGCGACCCGGAGGCATCCTCGCCGTCCTCAGAGTCCTGTGGCGCGGGAAGGTGCTGC GACGTCAGGGTCTACATCAGCCTCCTGCCCCTGGGCGATGGACTCACCTTGGCCTTCAAGAT CTAGGGCTGGCCCCTAGTGAGTGGGCTCGAGGGAGGGTTGCCTGGGAACCCCAGGAATTGAC

FIGURE 172

></usr/segdb2/sst/DNA/Dnasegs.min/ss.DNA71282

><subunit 1 of 1, 262 aa, 1 stop

><MW: 28809, pI: 8.80, NX(S/T): 1

MTQPVPRLSVPAALALGSAALGAAFATGLFLGRRCPPWRGRREQCLLPPEDSRLWQYLLSRS MREHPALRSLRLLTLEQPQGDSMMTCEQAQLLANLARLIQAKKALDLGTFTGYSALALALAL PADGRVVTCEVDAQPPELGRPLWRQAEAEHKIDLRLKPALETLDELLAAGEAGTFDVAVVDA DKENCSAYYERCLQLLRPGGILAVLRVLWRGKVLQPPKGDVAAECVRNLNERIRRDVRVYIS LLPLGDGLTLAFKI

Important features of the protein:

Signal peptide:

amino acids 1-25

Transmembrane domains:

amino acids 8-30, 109-130

N-glycosylation site.

amino acids 190-193

Tyrosine kinase phosphorylation site.

amino acids 238-246

N-myristoylation sites.

amino acids 22-27, 28-33, 110-115, 205-210, 255-260

Amidation sites.

amino acids 31-34, 39-42

FIGURE 173

CCGCCGCCGCAGCCGCTACCGCCGCTGCAGCCGCTTTCCGCGGCCTGGGCCTCTCGCCGTCA GCATGCCACACGCCTTCAAGCCCGGGGACTTGGTGTTCGCTAAGATGAAGGGCTACCCTCAC CATCTTTTCTTTGGCACACACGAAACAGCCTTCCTGGGACCCAAGGACCTGTTCCCCTACG ACAAATGTAAAGACAAGTACGGGAAGCCCAACAAGAGGAAAGGCTTCAATGAAGGGCTGTGG GAGATCCAGAACCACCCCACGCCAGCTACAGCGCCCCTCCGCCAGTGAGCTCCTCCGACAG CGAGGCCCCGAGGCCAACCCCGCCGACGGCAGTGACGCTGACGAGGACGATGAGGACCGGG GGGTCATGGCCGTCACAGCGGTAACCGCCACAGCTGCCAGCGACAGGATGGAGAGCGACTCA GACTCAGACAAGAGTAGCGACAACAGTGGCCTGAAGAGAGGAAGACGCCTGCGCTAAAGATGTC GGTCTCGAAACGAGCCCGAAAGGCCTCCAGCGACCTGGATCAGGCCAGCGTGTCCCCATCCG AAGAGGAGAACTCGGAAAGCTCATCTGAGTCGGAGAAGACCAGCGACCAGGACTTCACACCT GGCGCCGTCAGCCTCCGACTCCAAGGCCGATTCGGACGGGGCCAAGCCTGAGCCGG TCTGTGAAGAAGCCTCCGAGGGGCAGGAAGCCAGCGGAGAAGCCTCTCCCGAAGCCGCGAGG GCGGAAACCGAAGCCTGAACGGCCTCCGTCCAGCTCCAGCAGTGACAGTGACAGCGACGAGG TGGACCGCATCAGTGAGTGGAAGCGGCGGGAGGCGCGGAGGCGGAGCTGGAGGCCCGG CGGCGGCGAGAGCAGGAGGAGGAGCTGCGGCGCCTGCGGGAGCAGGAGAAGGAGGAGAAGGA GCGGAGCGCGAGCGGCCGACCGCGGGGAGGCTGAGCGGGCAGCGGCGGCAGCAGCGGGG ACGAGCTCAGGGAGGACGATGAGCCCGTCAAGAAGCGGGGACGCAAGGGCCGGGGCCGGGGT GAAGAAGCCGCAGTCCTCAAGCACAGAGCCCGCCAGGAAACCTGGCCAGAAGGAGAAGAGAG TGCGGCCCGAGGAGAAGCAACAAGCCAAGCCCGTGAAGGTGGAGCGGACCCGGAAGCGGTCC GAGGGCTTCTCGATGGACAGGAAGGTAGAAGAAGAAGAAGAAGCCCTCCGTGGAGGAGAAGCT GCAGAAGCTGCACAGTGAGATCAAGTTTGCCCTAAAGGTCGACAGCCCGGACGTGAAGAGGT GCCTGAATGCCCTAGAGGAGCTGGGAACCCTGCAGGTGACCTCTCAGATCCTCCAGAAGAAC ACAGACGTGGTGGCCACCTTGAAGAAGATTCGCCGTTACAAAGCGAACAAGGACGTAATGGA GAAGGCAGCAGAAGTCTATACCCGGCTCAAGTCGCGGGTCCTCGGCCCAAAGATCGAGGCGG TGCAGAAAGTGAACAAGGCTGGGATGGAGAAGGAAAGGCCGAGGAGAAGCTGGCCGGGGAG GAGCTGGCCGGGGAGGAGCCCCCCAGGAGAAGGCGGAGGACAAGCCCAGCACCGATCTCTC AGCCCCAGTGAATGGCGAGGCCACATCACAGAAGGGGGAGAGCGCAGAGGACAAGGAGCACG AGGAGGTCGGACTCGGAGGAGGGGCCAAGGTGTGGCTCCTCTGAAGACCTGCACGACAGC GTACGGGAGGGTCCCGACCTGGACAGGCCTGGGAGCGACCGCAGGAGCGCGAGAGGGCACG GGGGGACTCGGAGGCCCTGGACGAGGAGAGCTGAGCCGCGGGCAGCCAGGCCCAGCCCCGC CCGAGCTCAGGCTGCCCTCTCCTTCCCCGGCTCGCAGGAGAGCAGAGCAGAGCAGAGCTGTGGG GAACGCTGTGCTGTTTTTTTTTTTTTTTCCTGCCTAATTTCTTGTGATT TCCAACCAACATGAAATGACTATAAACGGTTTTTTAATGA

FIGURE 174

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71286

><subunit 1 of 1, 671 aa, 1 stop

><MW: 74317, pI: 7.61, NX(S/T): 0

MPHAFKPGDLVFAKMKGYPHWPARIDDIADGAVKPPPNKYPIFFFGTHETAFLGPKDLFPYD KCKDKYGKPNKRKGFNEGLWEIQNNPHASYSAPPPVSSSDSEAPEANPADGSDADEDDEDRG VMAVTAVTATAASDRMESDSDSDKSSDNSGLKRKTPALKMSVSKRARKASSDLDQASVSPSE EENSESSSESEKTSDQDFTPEKKAAVRAPRRGPLGGRKKKKAPSASDSDSKADSDGAKPEPV AMARSASSSSSSSSDSDDSVSVKKPPRGRKPAEKPLPKPRGRKPKPERPPSSSSSDSDSDEV DRISEWKRRDEARRRELEARRREQEEELRRLREQEKEEKERRERADRGEAERGSGGSSGD ELREDDEPVKKRGKKGRGRGPPSSSDSPEPAELEREAKKSAKKPQSSSTEPARKPGQKEKRV RPEEKQQAKPVKVERTRKRSEGFSMDRKVEKKKEPSVEEKLQKLHSEIKFALKVDSPDVKRC LNALEELGTLQVTSQILQKNTDVVATLKKIRRYKANKDVMEKAAEVYTRLKSRVLGPKIEAV QKVNKAGMEKEKAEEKLAGEELAGEEAPQEKAEDKPSTDLSAPVNGEATSQKGESAEDKEHE EGRDSEGGFCGSSEDLHBSVREGPDLDRPGSDROERERARGDSEALDEES

Signal peptide:

amino acids 1-13

FIGURE 175

GTTGGTTCTCCTGGATCTTCACCTTACCAACTGCAGATCTTGGGACTCATCAGCCTCAATAATTATATAAATTA ACACCATTTGAAAGAGAACATTGTTTTCATCATGAATGCTAATAAAGATGAAAGACTTAAAGCCAGAAGCCAAGA TTTTCACCTTTTTCCTGCTTTGATGATGCTAAGCATGACCATGTTGTTTCTTCCAGTCACTGGCACTTTGAAGCA AAATATTCCAAGACTCAAGCTAACCTACAAAGACTTGCTGCTTTCAAATAGCTGTATTCCCTTTTTGGGTTCATC CTTTCTACTCAGTCTGGTTGACTTAAACAAAATTTTAAGAAGATTTATTGGCCTGCTGCAAAGGAACGGGTGGA ATTATGTAAATTAGCTGGGAAAGATGCCAATACAGAATGTGCAAATTTCATCAGAGTACTTCAGCCCTATAACAA AACTCACATATATGTGTGTGGAACTGGAGCATTTCATCCAATATGTGGGTATATTGATCTTGGAGTCTACAAGGA GGATATTATATTCAAACTAGACACACATAATTTGGAGTCTGGCAGACTGAAATGTCCTTTCGATCCTCAGCAGCC TTTTGCTTCAGTAATGACAGATGAGTACCTCTACTCTGGAACAGCTTCTGATTTCCTTGGCAAAGATACTGCATT CACTCGATCCCTTGGGCCTACTCATGACCACCACTACATCAGAACTGACATTTCAGAGCACTACTGGCTCAATGG AGCAAAATTTATTGGAACTTTCTTCATACCAGACACCTACAATCCAGATGATGATAAAATATATTTCTTCTTCTCG TGAATCATCTCAAGAAGGCAGTACCTCCGATAAAACCATCCTTTCTCGAGTTGGAAGAGTTTGTAAGAATGATGT AGGAGGACAACGCAGCCTGATAAACAAGTGGACGACTTTTCTTAAGGCCAGACTGATTTGCTCAATTCCTGGAAG AGTATATGGAGTCTTTACTACAACCAGCTCCATCTTCAAAGGCTCTGCTGTTTGTGTGTATAGCATGGCTGACAT CAGAGCAGTTTTTAATGGTCCATATGCTCATAAGGAAAGTGCAGACCATCGTTGGGTGCAGTATGATGGGAGAAT TCCTTATCCACGGCCTGGTACATGTCCAAGCAAAACCTATGACCCACTGATTAAGTCCACCCGAGATTTTCCAGA TGATGTCATCAGTTTCATAAAGCGGCACTCTGTGATGTATAAGTCCGTATACCCAGTTGCAGGAGGACCAACGTT CAAGAGAATCAATGTGGATTACAGACTGACACAGATAGTGGTGGATCATGTCATTGCAGAAGATGGCCAGTACGA TGTAATGTTTCTTGGAACAGACATTGGAACTGTCCTCAAAGTTGTCAGCATTTCAAAGGAAAAGTGGAATATGGA GCAACAATTGTACATTGGTTCCCGAGATGGATTAGTTCAGCTCTCCTTGCACAGATGCGACACTTATGGGAAAGC TTCTAAAAGGAGAGCTAGACGCCAAGATGTAAAATATGGCGACCCAATCACCCAGTGCTGGGACATCGAAGACAG CATTAGTCATGAAACTGCTGATGAAAAGGTGATTTTTGGCATTGAATTTAACTCAACCTTTCTGGAATGTATACC TAAATCCCAACAAGCAACTATTAAATGGTATATCCAGAGGTCAGGGGATGAGCATCGAGAGGAGTTGAAGCCCGA TGAAAGAATCATCAAAACGGAATATGGGCTACTGATTCGAAGTTTGCAGAAGAAGGATTCTGGGATGTATTACTG CAAAGCCCAGGAGCACACTTTCATCCACACCATAGTGAAGCTGACTTTGAATGTCATTGAGAATGAACAGATGGA AAATACCCAGAGGGCAGAGCATGAGGAGGGGCCAGGTCAAGGATCTATTGGCTGAGTCACGGTTGAGATACAAAGA CTACATCCAAATCCTTAGCAGCCCAAACTTCAGCCTCGACCAGTACTGCGAACAGATGTGGCACAGGGGAGAAGCG GAGACAGAAAACAAGGGGGGCCCAAAGTGGAAGCACATGCAGGAAATGAAGAAGAAACGAAATCGAAGACATCA TATAAAAACATTGCCTTCTGTTTTGTATATCCCTTATAGTAATTCATAAATGCTTCCCATGGAGTTTTGCTAAGG CACAAGACAATAATCTGAATAAGACAATATGTGATGAATATAAGAAAGGGCAAAAAAATTCATTTGAACCAGTTTT CCAAGAACAAATCTTGCACAAGCAAAGTATAAGAATTATCCTAAAAATAGGGGGGTTTACAGTTGTAAATGTTTTA TGTTTTGAGTTTTGGAATTTATTGTCATGTAAATAGTTGAGCTAAGCACCCCGAATTTGATAGTGTATAAGGT GCTTTATTCCCTCGAATGTCCATTAAGCATGGAATTTACCATGCAGTTGTGCTATGTTCTTATGAACAGATATAT CATTCCTATTGAGAACCAGCTACCTTGTGGTAGGGAATAAGAGGTCAGACACAAATTAAGACAACTCCCATTATC $\tt TGGCCACTGGGGTTAAATTTAGTGTACTACAACATTGATTTACTGAAGGGCACTAATGTTTCCCCCAGGATTTCT$ ATTGACTAGTCAGGAGTAACAGGTTCACAGAGAAGTTGGTGCTTAGTTATGTGTTTTTTAGAGTATATACTAA GCTCTACAGGGACAGAATGCTTAATAAATACTTTAATAAGATATGGGAAAATATTTTAATAAAACAAGGAAACA TAATGATGTATAATGCATCCTGATGGGAAGGCATGCAGATGGGATTTGTTAGAAGACAGAAGGAAAGACAGCCAT AAATTCTGGCTTTGGGGAAAACTCATATCCCCATGAAAAGGAAGAACAATCACAAATAAAGTGAGAGTAATGTAA AACTGCTAGCAAAATCTGAGGAAACATAAATTCTTCTGAAGAATCATAGGAAGAGTAGACATTTTATTATAACC AATGATATTTCAGTATATATTTTCTCTCTTTTTAAAAAAATATTTATCATACTCTGTATATTATTTCTTTTTACTGC CTTTATTCTCTCTGTATATTGGATTTTGTGATTATATTTGAGTGAATAGGAGAAAACAATATATAACACACAGA AACGGAAAGGGTTAAATTAACTCTTTGACATCTTCACTCAACCTTTTCTCATTGCTGAGTTAATCTGTTGTAATT GTAGTATTGTTTTTGTAATTTAACAATAAATAAGCCTGCTACATGT

FIGURE 176

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71883

><subunit 1 of 1, 777 aa, 1 stop

><MW: 89651, pI: 7.97, NX(S/T): 3

MNANKDERLKARSQDFHLFPALMMLSMTMLFLPVTGTLKQNIPRLKLTYKDLLLSNSCIPFL
GSSEGLDFQTLLLDEERGRLLLGAKDHIFLLSLVDLNKNFKKIYWPAAKERVELCKLAGKDA
NTECANFIRVLQPYNKTHIYVCGTGAFHPICGYIDLGVYKEDIIFKLDTHNLESGRLKCPFD
PQQPFASVMTDEYLYSGTASDFLGKDTAFTRSLGPTHDHHYIRTDISEHYWLNGAKFIGTFF
IPDTYNPDDDKIYFFFRESSQEGSTSDKTILSRVGRVCKNDVGGQRSLINKWTTFLKARLIC
SIPGSDGADTYFDELQDIYLLPTRDERNPVVYGVFTTTSSIFKGSAVCVYSMADIRAVFNGP
YAHKESADHRWVQYDGRIPYPRPGTCPSKTYDPLIKSTRDFPDDVISFIKRHSVMYKSVYPV
AGGPTFKRINVDYRLTQIVVDHVIAEDGQYDVMFLGTDIGTVLKVVSISKEKWNMEEVVLEE
LQIFKHSSIILNMELSLKQQQLYIGSRDGLVQLSHRCDTYGKACADCCLARDPYCAWDGNA
CSRYAPTSKRRARQDVKYGDPITQCWDIEDSISHETADEKVIFGIEFNSTFLECIPKSQQA
TIKWYIQRSGDEHREELKPDERIIKTEYGLLIRSLQKKDSGMYYCKAQEHTFIHTIVKLTLN
VIENEQMENTQRAEHEEGQVKDLLAESRLRYKDYIQILSSPNFSLDQYCEQMWHREKRRQRN

Important features of the protein:

Signal peptide:

amino acids 1-36

N-glycosylation sites.

amino acids 139-142, 607-610, 724-727

Tyrosine kinase phosphorylation site.

amino acids 571-576

Gram-positive cocci surface proteins 'anchoring' hexapeptide.

amino acids 32-37

FIGURE 177

CCCTGACCTCCCTGAGCCACACTGAGCTGGAAGCCGCAGAGGTCATCCTGGAGCATGCCCACCGCGGGGAGCAGA CAACCTCCCAGGTAAGCTGGGAGCAAGACCTGAAGCTGTTTCTTCAGGAGCCTGGTGTATTTTCCCCCACCCCAC GTGGCCTGGAGAAAGAGGTTCAGCGCTTGACCAGCCGAGCTGCCCGTGACTACAAGATCCAGAACCATGGCCATC GGGTGAGGTGGGGGGCACAGGTGTCATGTGCACCTTCTTGTCTCAGCAAGAAGAGCTGAGAGAGGGGATCTTGG AGCCATTGAGGGTGTCATGGAGCTACAGAGGGGAGGGAAAGGTATTTTAAGGTAACAGTGTGGCACAATAGTTAA GAGCACAGTTTTTGGAGCTAGACCGACATAGGTTCAAATTCTCTTCTGTTGCTTCCTAGTTCTGTAGCCCCAGGT AGGGAAGATTAAATGACATAATGTATGTGATGCAACTAGCAAAGTACCAGTCCCATAGTAAGTCATGCCCCACAG TATTTCCACCCACCCTGTTCTCTGCCTTCCCAACCAGGTACTGCAACGACTGGAGCAGGCGGCAGGCTT CAGAGCGGGAGGCTCCAAGCATAGAACAGAGGTTACAGGAAGTGCGAGAGAGCATCCGCCGGGCACAGGTGAGCC TGACCCAGGCCCAGGATGAGGTGGAGCAGGAGCGGCGCTCAGTGAGGCTCGCCTGTCCCAGAGGGACCTCTCTC CAACCGCTGAGGATGCTGAGCTTTCTGACTTTTGAGGAATGTGAGGAGACCGGGAGAGCTCTTTGAGGAGCCTGCCC AAGACAGTGACAATCCCTGCGGGGCAGAGCCCACAGCATTCCTGGCACAGGCCCTGTACAGCTACACCGGACAGA GTGCAGAGGAGCTGAGCTTCCCTGAGGGGGCACTCATCCGTCTGCCCCGGGCCCAAGATGGAGTAGATGACG GCTTCTGGAGGGGAGAATTTGGGGGCCGTGTTGGGGTCTTCCCCTCCTGCTGGTGGAAGAGCTGCTTGGCCCCC CAGGGCCACCTGAACTCTCTGACCCTGAACAGATGCTGCCGTCCCCTTCTCCCCAGCTTCTCCCCACCTGCAC ACATGATGCCACCTCGACTCAGGCCGATGCGTCCACCACCTCCCCGGCCGATAAAGCCCCGGATCCTGGCCACC CAGATCCCCTCACCTGAAGGCCAGGGAAGCCTTGACCCCCAGTGATGCTGCTGTCCCTATCTTCAAGCTGTCAGA CCACACCATCAATGATCCAGAGCAACACAGCCAAAAGCTGGAATCGCCCTTATTTCCACCCTCACCTCCAAGGGT GGAAACTTGCCCCTTCCCATTTCTAGAGCTGGAACCCACTCCTTTTTTTCCCATTGTTCTATCATCTCTAGGACC GGAACTACTACCTTCTCTGTCATGACCCTATCTAGGGTGGTGAAATGCCTGAAATCTCTGGGGCTGGAAACC CCAGGGTCACTGGGGTTGGGCTGGGGAGAGGACAGGCCTTGGGAATCAGGAGCTGGAGCCAGGATGCGAAGCAG CTGTAATGGTCTGAGCGGATTTATTGACAATGAATAAAGGGCACGAAGGCCAGGCCAGGGCCTGGGCCTCTTGTG CTAAGAGGCAGGGGCCTACGGTGCTATTGCTTTAGGGGCCCACCACGGGCAGGGCCTGCTCCCAGCTGCCAC TGAGGGGCTGTGACCTCTCCTGAGGCCCCCAGCCTGAGACTGTGCAACTCCAGGTGGAAGTAGAGCTGGTCCCTC AGCTGGGGGGCAGTGCTGTCCAGTGGAGGGGAGGGCTTTCACGCCCACCCCCTGGCCCTGCCAGCTGGTAG TCCATCAGCACAATGAAGGAGACTTGGAGAAGAAGAAGAAGAATAACACTGTTGCTTCCTGTTCAAGCTGTGCCAGC TTTTCCCCTGGGGCTCCAGGACCTTCCCTACCTCCACCACCAAACCAAGGGATTTATAGCAAAGGCTAAGCCTGC AGTTTACTCTGGGGGTTCAGGGAGCCGAAAGGCTTAAATAGTTTAAGTAGGTGATGGGAAGATGAGATTACCTCA TTTAGGGCTCAGGCAGACTCACCTCACATACTCCCTGCTCCCTGTGGTAGAGACACCTGAGAGAAAGGGGAGGGG TCAACAATGAGAGACCAGGAGTAGGTCCTATCAGTGCCCCCCAGAGTAGAGAGCAATAAGAGCCCAGCCCAGTGC AGTCCCGGCTGTGTTTTCCTACCTGGTGATCAGAAGTGTCTGGTTTGCTTGGCTGCCCATTTGCCTCTTGAGTGG GCAGCCTGGGCTTGGGCCCTCCCTCCGGCCCTCAGTGTTGGCTCTGCAGAAGCTCTGGGGTTCCCTTCAAGTG TCTCAGGGGGCAGCCTCTCCATGGCAGGCATCCCTGCCTTGGGCTGCCCTCCCCAGACCCCTGACCACCCCTG GGTCCTGTCCCCCACCAGAGCCCCAGCTCCTGTCTGTGGGGGAGCCATCACGGTGTTCGTGCAGTCCATAGCGCT TCTCAATGTGTCACCCGGAACCTGGGAGGGGAGGGAACACTGGGGTTTAGGACCACAACTCAGAGGCTGCTTG GCCCTCCCCTCTGACCAGGGACATCCTGAGTTTGGTGGCTACTTCCCTCTGGCCTAAGGTAGGGGAGGCCTTCTC AGATTGTGGGGCACATTGTGTAGCCTGACTTCTGCTGGAGCTCCCAGTCCAGGAGGAAAGAGCCAAGGCCCACTT TTGGGATCAGGTGCCTGATCACTGGGCCCCCTACCTCAGCCCCCCTTTCCCTGGAGCACCTGCCCACCTGCCCA GCCTCTTGCTGCGGCTGCAATGGATGCAAGGGGCTCCAGAGCCCAGGTGCACTGTGTGATGATGGGAGGGGGCTC TCATGTTTTGTTTCTTACGTTCTTTCAGCATGCTCCTTAAAACCCCAGAAGCCCCAATTTCCCCAAGCCCCATTT TTTCTTGTCTTTATCTAATAAACTCAATATTAAG

FIGURE 178

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73401

><subunit 1 of 1, 370 aa, 1 stop

><MW: 40685, pI: 4.53, NX(S/T): 0

MQLAKYQSHSKSCPTVFPPTPVLCLPNQVLQRLEQRRQQASEREAPSIEQRLQEVRESIRRA
QVSQVKGAARLALLQGAGLDVERWLKPAMTQAQDEVEQERRLSEARLSQRDLSPTAEDAELS
DFEECEETGELFEEPAPQALATRALPCPAHVVFRYQAGREDELTITEGEWLEVIEEGDADEW
VKARNQHGEVGFVPERYLNFPDLSLPESSQDSDNPCGAEPTAFLAQALYSYTGQSAEELSFP
EGALIRLLPRAQDGVDDGFWRGEFGGRVGVFPSLLVEELLGPPGPPELSDPEQMLPSPSPPS
FSPPAPTSVLDGPPAPVLPGDKALDFPGFLDMMAPRLRPMRPPPPPPPAKAPDDGHPDPLT

FIGURE 179A

CACAGGGAGACCCACAGACACATATGCACGAGAGAGACAGAGGAGGAAAGAGACAAAAGGCACAGCGGAA GAAGGCAGAGACAGGGCAGGCACAGAAGCGGCCCAGACAGAGTCCTACAGAGGGGAGAGGCCAGAGAAGCTGCAGA AGACACAGGCAGGAGAGACAAAGATCCAGGAAAGGAGGGCTCAGGAGGAGAGTTTGGAGAAGCCAGACCCCTGG GCACCTCTCCCAAGCCCAAGGACTAAGTTTTCTCCATTTCCTTTAACGGTCCTCAGCCCTTCTGAAAACTTTGCC TCTGACCTTGGCAGGAGTCCAAGCCCCCAGGCTACAGAGAGGAGCTTTCCAAAGCTAGGGTGTGGAGGACTTGGT GCCTAGACGGCCTCAGTCCCTCCCAGCTGCAGTACCAGTGCCATGTCCCAGACAGGCTCGCATCCCGGGAGGGG GCTGCTTCTGCTACTGCTGCCTCTCCTGCCCTCAGCCCGGCTGGCCAGCCCCCTCCCCCGGGAGGAGGAGAT CGTGTTTCCAGAGAAGCTCAACGGCAGCGTCCTGCCTGGCTCGGGCGCCCCTGCCAGGCTGTTGTGCCGCTTGCA GGCCTTTGGGGAGACGCTGCTACTAGAGCTGGAGCAGGACTCCGGTGTGCAGGTCGAGGGGGCTGACAGTGCAGTA GGAGTCGGTGGCATCTCTGCACTGGGATGGGGGAGCCCTGTTAGGCGTGTTACAATATCGGGGGGGCTGAACTCCA CCTCCAGCCCTGGAGGGAGGCACCCCTAACTCTGCTGGGGGACCTGGGGCTCACATCCTACGCCGGAAGAGTCC TGCCAGCGGTCAAGGTCCCATGTGCAACGTCAAGGCTCCTCTTGGAAGCCCCAGCCCCAGACCCCGAAGAGCCCA GCGCTTTGCTTCACTGAGTAGATTTGTGGAGACACTGGTGGTGGCAGATGACAAGATGGCCGCATTCCACGGTGC GGGGCTAAAGCGCTACCTGCTAACAGTGATGGCAGCAGCAGCCAAGGCCTTCAAGCACCCAAGCATCCGCAATCC TGTCAGCTTGGTGGTGACTCGGCTAGTGATCCTGGGGTCAGGCGAGGAGGGGCCCCAAGTGGGGCCCAGTGCTGC CCAGACCCTGCGCAGCTTCTGTGCCTGGCAGCGGGGCCTCAACACCCCTGAGGACTCGGGCCCTGACCACTTTGA CACAGCCATTCTGTTTACCCGTCAGGACCTGTGTGGAGTCTCCACTTGCGACACGCTGGGTATGGCTGATGTGGG CACCGTCTGTGACCCGGCTCGGAGCTGTGCCATTGTGGAGGATGATGGGCTCCAGTCAGCCTTCACTGCTGCTCA TGAACTGGGTCATGTCTTCAACATGCTCCATGACAACTCCAAGCCATGCATCAGTTTGAATGGGCCTTTGAGCAC CTCTCGCCATGTCATGGCCCCTGTGATGGCTCATGTGGATCCTGAGGAGCCCTGGTCCCCCTGCAGTGCCCGCTT CATCACTGACTTCCTGGACAATGGCTATGGGCACTGTCTCTTAGACAAACCAGAGGCTCCATTGCATCTGCCTGT GACTTTCCCTGGCAAGGACTATGATGCTGACCGCCAGTGCCAGCTGACCTTCGGGCCCGACTCACGCCATTGTCC ACAGCTGCCGCCCTGTGCTGCCCTCTGGTGCTCTGGCCACCTCAATGGCCATGCCATGTGCCAGACCAAACA CTCGCCCTGGGCCGATGGCACACCCTGCGGGCCCGCACAGGCCTGCATGGGTGGTCGCTGCCTCCACATGGACCA GCTCCAGGACTTCAATATTCCACAGGCTGGTGGCTGGGGTCCTTGGGGACCATGGGGTGACTGCTCTCGGACCTG TGGGGGTGTCCAGTTCTCCTCCGAGACTGCACGAGGCCTGTCCCCCGGAATGGTGGCAAGTACTGTGAGGG CCGCCGTACCCGCTTCCGCTCCTGCAACACTGAGGACTGCCCAACTGGCTCAGCCCTGACCTTCCGCGAGGAGCA GTGTGCTGCCTACAACCACCGCACCGACCTCTTCAAGAGCTTCCCAGGGCCCATGGACTGGGTTCCTCGCTACAC AGGCGTGGCCCCCAGGACCAGTGCAAACTCACCTGCCAGGCCCGGGCACTGGGCTACTACTATGTGCTGGAGCC ACGGGTGGTAGATGGGACCCCCTGTTCCCCGGACAGCTCCTCGGTCTGTGTCCAGGGCCGATGCATCCATGCTGG CTGTGATCGCATCATTGGCTCCAAGAAGAAGTTTGACAAGTGCATGGTGTGCGGAGGGGACGGTTCTGGTTGCAG CAAGCAGTCAGGCTCCTTCAGGAAATTCAGGTACGGATACAACAATGTGGTCACTATCCCCGGGGGGCCACCCA CATTCTTGTCCGGCAGCAGGGAAACCCTGGCCACCGGAGCATCTACTTGGCCCTGAAGCTGCCAGATGGCTCCTA TGCCCTCAATGGTGAATACACGCTGATGCCCTCCCCCACAGATGTGGTACTGCCTGGGGCAGTCAGCTTGCGCTA AGTGGCTGGCAACCCCCAGGACACACGCCTCCGATACAGCTTCTTCGTGCCCCGGCCGACCCCTTCAACGCCACG CCTGACCCCTGACCCCTCATAGCCCTCACCCTGGGGCTAGGAAATCCAGGGTGGTGGTGATAGGTATAAGTGGTG TTCCTGAATTTTATTTTTTGGGAAAAGAAAAGTCAAGGGTAGGGTGGGCCTTCAGGGAGTGAGGGATTATCTTTT GCACAATCTCGGCTCACTGCATCCTCCGCCTCCCGGGTTCAAGTGATTCTCATGCCTCAGCCTCCTGAGTAGCTG GGATTACAGGCTCCTGCCACCACGCCAGCTAATTTTTGTTTTGTTTTGGAGACAGAGTCTCGCTATTGTC ACCAGGGCTGGAATGATTTCAGCTCACTGCAACCTTCGCCACCTGGGTTCCAGCAATTCTCCTGCCTCAGCCTCC CGAGTAGCTGAGATTATAGGCACCTACCACCACGCCCGGCTAATTTTTGTATTTTTAGTAGAGACGGGGTTTCAC CATGTTGGCCAGGCTGGTCTCGAACTCCTGACCTTAGGTGATCCACTCGCCTTCATCTCCCAAAGTGCTGGGATT ACAGGCGTGAGCCACCGTGCCTGGCCACGCCCAACTAATTTTTGTATTTTTAGTAGAGACAGGGTTTCACCATGT TGGCCAGGCTGCTCTTGAACTCCTGACCTCAGGTAATCGACCTGCCTCGGCCTCCCAAAGTGCTGGGATTACAGG TGTGAGCCACCACGCCCGGTACATATTTTTTAAATTGAATTCTACTATTTATGTGATCCTTTTTGGAGTCAGACAG

FIGURE 179B

FIGURE 180

></usr/segdb2/sst/DNA/Dnasegs.min/ss.DNA73492

><subunit 1 of 1, 837 aa, 1 stop

><MW: 90167, pI: 8.39, NX(S/T): 1

MSQTGSHPGRGLAGRWLWGAQPCLLLPIVPLSWLVWLLLLLLASLLPSARLASPLPREEEIV FPEKLNGSVLPGGAPARLLCRLQAFGETLLLELEQDGSCVQVEGLTVQYLGQAPELLGGAEP GTYITGTINGDPESVASLHWDGGALGVLQYRGAELHLQPLEGGFPNSAGGPGAHILRRKSP ASGGPMCNVKAPLGSPSPRPRAKRFASLSRFVETLVVADDKMAAFHGAGLKRYLLTVMAA AAKAFKHPSIRNPVSLVVTRLVILGSGEEGPQVGPSAQTLRSFCAWQRGLNTPEDSGFDHF DTAILFTRQDLCGVSTCDTLGMADVGTVCDPARSCAIVEDDGLQSAFTAAHELGHVFNMLHD NSKPCISLNGPLSTSRHVMAPVMAHVDPEEPWSPCSARFITDFLDNGYGHCLLDKPEAPLHL PVTFPGKDYDADRQCQLTFGPDSRCPQLPPPCAALWCSGHLNGHAMCQTKHSPWADGTPCG PAQACMGGRCLHMDQLQDFNIPQAGGWGFWGPWGDCSRTCGGGVQFSSRDCTRPVPRNGGKY CEGRTTRFRSCNTEDCPTCSALTFREEQCAAYNHRTDLFKSFFCPMDWVPRTGVAPQDQCK LTCQARALGYYYVLEPRVVDGFPCSPDSSVCVQGRCTHAGCDRIIGSKKKFNKCMVCGGDG SGCSKQSGSFRKFRYGYNNVYTIPAGATHILVRQQGNPGHRSIYLALKLPDGSYALNGEYTL MPSPTDVVLPGAVSLRYSGATAASETLSGHGPLAQPLTLQVLVAGNPQDTRLRYSFFVPRPT PSTFRFTPODWLHRRAGOILEILRRPWAGRK

Important features of the protein:

Signal peptide:

amino acids 1-48

N-glycosylation site.

amino acids 68-71

Glycosaminoglycan attachment site

amino acids 188-191, 772-775

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 182-185

Tyrosine kinase phosphorylation site.

amino acids 730-736

N-myristovlation sites.

amino acids 5-10, 19-24, 121-126, 125-130, 130-135, 147-152, 167-172, 168-173, 174-179, 323-328, 352-357, 539-544, 555-560, 577-582, 679-684, 682-687, 763-768

Amidation sites.

amino acids 560-563, 834-837

Leucine zipper pattern.

amino acids 17-38, 24-45

Neutral zinc metallopeptidases, zinc-binding region signature.

amino acids 358-367

FIGURE 181

CAGCAGTGGTCTCTCAGTCCTCTCAAAGCAAGGAAAGAGTACTGTGTGCTGAGAGACCATGG CAAAGAATCCTCCAGAGAATTGTGAAGACTGTCACATTCTAAATGCAGAAGCTTTTAAATCC AAGAAAATATGTAAATCACTTAAGATTTGTGGACTGGTGTTTTGGTATCCTGGCCCTAACTCT AATTGTCCTGTTTTGGGGGAGCAAGCACTTCTGGCCGGAGGTACCCAAAAAAGCCTATGACA TGGAGCACACTTTCTACAGCAATGGAGAGAAGAAGAAGATTTACATGGAAATTGATCCTGTG ACCAGAACTGAAATATTCAGAAGCGGAAATGGCACTGATGAAACATTGGAAGTGCACGACTT TAAAAACGGATACACTGGCATCTACTTCGTGGGTCTTCAAAAATGTTTTATCAAAACTCAGA TTAAAGTGATTCCTGAATTTTCTGAACCAGAAGAGGAAATAGATGAGAATGAAGAATTACC ACAACTTTCTTTGAACAGTCAGTGATTTGGGTCCCAGCAGAAAAGCCTATTGAAAACCGAGA TTTTCTTAAAAATTCCAAAATTCTGGAGATTTGTGATAACGTGACCATGTATTGGATCAATC CCACTCTAATATCAGTTTCTGAGTTACAAGACTTTGAGGAGGAGGAGAAGATCTTCACTTT AGAGAAGACCCGTCACGCCAGACAAGCAAGTGAGGAAGAACTTCCAATAAATGACTATACTG AAAATGGAATAGAATTTGATCCCATGCTGGATGAGAGAGGTTATTGTTGTATTTACTGCCGT CGAGGCAACCGCTATTGCCGCCGCGTCTGTGAACCTTTACTAGGCTACTACCCATATCCATA GCATGCTGGGGAGGGTC**TAA**TAGGAGGTTTGAGCTCAAATGCTTAAACTGCTGGCAACATAT AATAAATGCATGCTATTCAATGAATTTCTGCCTATGAGGCATCTGGCCCCTGGTAGCCAGCT CTCCAGAATTACTTGTAGGTAATTCCTCTCTTCATGTTCTAATAAACTTCTACATTATCACC ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

FIGURE 182

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73727

><subunit 1 of 1, 317 aa, 1 stop

><MW: 37130, pI: 5.18, NX(S/T): 3

MAKNPPENCEDCHILNAEAFKSKKICKSLKICGLVFGILALTLIVLFWGSKHFWPEVPKKAY
DMEHTFYSNGEKKKIYMEIDPVTRTEIFRSGNGTDETLEVHDFKNGYTGIYFVGLQKCFIKT
QIKVIPEFSEPEEEIDENEEITTTFFEQSVIWVPAEKPIENRDFLKNSKILEICDNVTMYWI
NPTLISVSELQDFEEEGEDLHFPANEKKGIEQNEQWVVPQVKVEKTRHARQASEEELPINDY
TENGIEFDPMLDERGYCCIYCRRGNRYCRRVCEPLLGYYPYPYCYQGGRVICRVIMPCNWWV
ARMLGRV

Important features of the protein:

Signal peptide:

amino acids 1-40

Transmembrane domain:

amino acids 25-47 (type II)

N-glycosylation sites.

amino acids 94-97, 180-183

Glycosaminoglycan attachment sites.

amino acids 92-95, 70-73, 85-88, 133-136, 148-151, 192-195, 239-242

N-myristoylation sites.

amino acids 33-38, 95-100, 116-121, 215-220, 272-277

Microbodies C-terminal targeting signal.

amino acids 315-317

Cytochrome c family heme-binding site signature.

amino acids 9-14

FIGURE 183

GCGGAACTGGCTCCGGCTGGCACCTGAGGAGCGCGTGACCCCGAGGGCCCAGGGAGCTGCC CGGCTGGCCTAGGCAGGCAGCCGCACC**ATG**GCCAGCACGGCCGTGCAGCTTCTGGGCTTCCT GCTCAGCTTCCTGGGCATGGTGGGCACGTTGATCACCACCATCCTGCCGCACTGGCGGAGGA TGTGTGTGGCACAGCACAGGCATCTACCAGTGCCAGATCTACCGATCCCTGCTGGCGCTGCC GCGCCTGCGCCGTCATCGGGATGAAGTGCACGCGCTGCGCCAAGGGCACACCCGCCAAGACC CTCCTGGACCACCAACGACGTGGTGCAGAACTTCTACAACCCGCTGCTGCCCAGCGGCATGA AGTTTGAGATTGGCCAGGCCCTGTACCTGGGCTTCATCTCCTCGTCCCTCTCGCTCATTGGT GGCACCCTGCTTTGCCTGTCCTGCCAGGACGAGGCACCCTACAGGCCCTACCAGGCCCCGCC CAGGGCCACCACGACCACTGCAAACACCCGCACCTGCCTACCAGCCACCCAGCTGCCTACAAAG ACAATCGGGCCCCTCAGTGACCTCGGCCACGCACAGCGGGTACAGGCTGAACGACTACGTG AATGGAGGCAGGGGTTCCAGCACAAAGTTTACTTCTGGGCAATTTTTGTATCCAAGGAAATA ATGTGAATGCGAGGAAATGTCTTTAGAGCACAGGGGACAGAGGGGGGAAATAAGAGGAGGAGAA TTATGTGGGTGATTTGATAACAAGTTTAATATAAAGTGACTTGGGAGTTTGGTCAGTGGGGT

FIGURE 184

MASTAVQLLGFLLSFLGMVGTLITTILPHWRRTAHVGTNILTAVSYLKGLWMECVWHSTGIY QCQIYRSLLALPQDLQAARALMVISCLLSGIACACAVIGMKCTRCAKGTPAKTTFAILGGTL FILAGLLCMVAVSWTTNDVVQNFYNPLLPSGMKFEIGQALYLGFISSSLSLIGGTLLCLSCQ DEAPYRPYQAPPRATTTTANTAPAYQPPAAYKDNRAPSVTSATHSGYRLNDYV

Important features of the protein:
Signal peptide:

amino acids 1-21

Transmembrane domains:

amino acids 82-103, 115-141, 160-182

FIGURE 185

GAGCTCCCCTCAGGAGCGCGTTAGCTTCACACCTTCGGCAGCAGGAGGGCGGCAGCTTCTCG CAGGCGGCAGGGCGGCCAGGATCATGTCCACCACCACATGCCAAGTGGTGGCGTTCCT CCTGTCCATCCTGGGGCTGCCGGCTGCATCGCGGCCACCGGGATGGACATGTGGAGCACCC AGGACCTGTACGACAACCCCGTCACCTCCGTGTTCCAGTACGAAGGGCTCTGGAGGAGCTGC GTGAGGCAGAGTTCAGGCTTCACCGAATGCAGGCCCTATTTCACCATCCTGGGACTTCCAGC CATGCTGCAGGCAGTGCGAGCCCTGATGATCGTAGGCATCGTCCTGGGTGCCATTGGCCTCC TGGTATCCATCTTTGCCCTGAAATGCATCCGCATTGGCAGCATGGAGGACTCTGCCAAAGCC AACATGACACTGACCTCCGGGATCATGTTCATTGTCTCAGGTCTTTGTGCAATTGCTGGAGT GTCTGTGTTTGCCAACATGCTGGTGACTAACTTCTGGATGTCCACAGCTAACATGTACACCG GCATGGGTGGGATGGTGCAGACTGTTCAGACCAGGTACACATTTGGTGCGGCTCTGTTCGTG GGCTGGGTCGCTGGAGGCCTCACACTAATTGGGGGTGTGATGATGTGCATCGCCTGCCGGGG CCTGGCACCAGAAAACCAACTACAAAGCCGTTTCTTATCATGCCTCAGGCCACAGTGTTG CCTACAAGCCTGGAGGCTTCAAGGCCAGCACTGGCTTTGGGTCCAACACCAAAAACAAGAAG ATATACGATGGAGGTGCCCGCACAGAGGACGAGGTACAATCTTATCCTTCCAAGCACGACTA TGTGTAATGCTCTAAGACCTCTCAGCACGGGCGGAAGAAACTCCCGGAGAGCTCACCCAAAA AACAAGGAGATCCCATCTAGATTTCTTCTTGCTTTTGACTCACAGCTGGAAGTTAGAAAAGC CTCGATTTCATCTTTGGAGAGGCCAAATGGTCTTAGCCTCAGTCTCTGTCTCTAAATATTCC ACCATAAAACAGCTGAGTTATTTATGAATTAGAGGCTATAGCTCACATTTTCAATCCTCTAT ATTTTGATGATTAGACAGACTCCCCCTCTTCCTCCTAGTCAATAAACCCATTGATGATCTA CTGCTGTTTGAATTTTGTCTCCCCACCCCCAACTTGGCTAGTAATAAACACTTACTGAAGAA GAAGCAATAAGAGAAAGATATTTGTAATCTCTCCAGCCCATGATCTCGGTTTTCTTACACTG TGATCTTAAAAGTTACCAAACCAAAGTCATTTTCAGTTTGAGGCAACCAAACCTTTCTACTG CTGTTGACATCTTCTTATTACAGCAACACCATTCTAGGAGTTTCCTGAGCTCTCCACTGGAG TTAAGTCCTAAATATAGTTAAAATAAATAATGTTTTAGTAAAATGATACACTATCTCTGTGA AATAGCCTCACCCCTACATGTGGATAGAAGGAAATGAAAAAATAATTGCTTTGACATTGTCT ATATGGTACTTTGTAAAGTCATGCTTAAGTACAAATTCCATGAAAAGCTCACACCTGTAATC CTAGCACTTTGGGAGGCTGAGGAGGAAGGATCACTTGAGCCCAGAAGTTCGAGACTAGCCTG GGCAACATGGAGAAGCCCTGTCTCTACAAAATACAGAGAGAAAAAATCAGCCAGTCATGGTG GCATACACCTGTAGTCCCAGCATTCCGGGAGGCTGAGGTGGGAGGATCACTTGAGCCCAGGG TCCTGTCTAAAAAAATAAAAATAATAATGGAACACAGCAAGTCCTAGGAAGTAGGTTAAA ACTAATTCTTTAA

FIGURE 186

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73734

><subunit 1 of 1, 261 aa, 1 stop

><MW: 27856, pI: 8.50, NX(S/T): 1

MSTTTCQVVAFLLSILGLAGCIAATGMDMWSTQDLYDNPVTSVFQYEGLWRSCVRQSSGFTE CRPYFTILGLPAMLQAVRALMIVGIVLGAIGLLVSIFALKCIRIGSMEDSAKANMTLTSGIM FIVSGLCAÏAGVSVFANMLVTNFWMSTANMYTGMGGMVQTVQTRYTFGAALFVGWVAGGLTL IGGVMMCIACRGLAPEETNYKAVSYHASGHSVAYKPGGFKASTGFGSNTKNKKIYDGGARTE DEVQSYPSKHDYV

Signal peptide:

amino acids 1-23

Transmembrane domains:

amino acids 81-100, 121-141, 173-194

FIGURE 187

GGAAAAACTGTTCTCTTGTGGCACAGAGAACCCTGCTTCAAAGCAGAAGTAGCAGTTCCG GAGTCCAGCTGGCTAAAACTCATCCCAGAGGATAATGGCAACCCATGCCTTAGAAATCGCTG GGCTGTTTCTTGGTGGTGTGGAATGGTGGGCACAGTGGCTGTCACTGTCATGCCTCAGTGG AGAGTGTCGGCCTTCATTGAAAACAACATCGTGGTTTTTTGAAAACTTCTTGGGAAGGACTGTG GATGAATTGCGTGAGGCAGGCTAACATCAGGATGCAGAGCCAAAATCTATGATTCCCTGCTGG CTCTTTCTCCGGACCTACAGGCAGCCAGAGGACTGATGTGTGCTGCTTCCGTGATGTCCTTC TTGGCTTTCATGATGGCCATCCTTGGCATGAAATGCACCAGGTGCACGGGGGACAATGAGAA GGTGAAGGCTCACATTCTGCTGACGGCTGGAATCATCTTCATCATCACGGGCATGGTGGTGC TCATCCCTGTGAGCTGGGTTGCCAATGCCATCATCAGAGATTTCTATAACTCAATAGTGAAT GTTGCCCAAAAACGTGAGCTTGGAGAAGCTCTCTACTTAGGATGGACCACGGCACTGGTGCT GATTGTTGGAGGAGCTCTGTTCTGCTGCGTTTTTTTGTTGCAACGAAAAGAGCAGTAGCTACA GATACTCGATACCTTCCCATCGCACAACCCAAAAAAGTTATCACACCGGAAAGAAGTCACCG CATGCAAATGACAAAAATCTATATTACTTTCTCAAAATGGACCCCAAAGAAACTTTGATTTA CTGTTCTTAACTGCCTAATCTTAATTACAGGAACTGTGCATCAGCTATTTATGATTCTATAA GCTATTTCAGCAGAATGAGATATTAAACCCAATGCTTTGATTGTTCTAGAAAGTATAGTAAT TTGTTTTCTAAGGTGGTTCAAGCATCTACTCTTTTTATCATTTACTTCAAAATGACATTGCT AAAGACTGCATTATTTTACTACTGTAATTTCTCCACGACATAGCATTATGTACATAGATGAG TCCATTACACTGAATAAATAGAACTCAACTATTGCTTTTCAGGGAAATCATGGATAGGGTTG AAGAAGGTTACTATTAATTGTTTAAAAACAGCTTAGGGATTAATGTCCTCCATTTATAATGA AGATTAAAATGAAGGCTTTAATCAGCATTGTAAAGGAAATTGAATGGCTTTCTGATATGCTG TTTTTTAGCCTAGGAGTTAGAAATCCTAACTTCTTTATCCTCTCTCCCAGAGGCTTTTTTT TTCTTGTGTATTAAATTAACATTTTTAAAACGCAGATATTTTGTCAAGGGGCTTTGCATTCA AACTGCTTTTCCAGGGCTATACTCAGAAGAAAGATAAAAGTGTGATCTAAGAAAAAGTGATG GAAATCATATATGTATGGATATATTTTAATAAGTATTTGAGTACAGACTTTGAGGTTTCATC AATATAAATAAAAGAGCAGAAAAATATGTCTTGGTTTTCATTTGCTTACCAAAAAAACAACA ACAAAAAAGTTGTCCTTTGAGAACTTCACCTGCTCCTATGTGGGTACCTGAGTCAAAATTG TCATTTTTGTTCTGAAAAATAAATTTCCTTCTTGTACCATTTCTGTTTAGTTTTACTAAA ATCTGTAAATACTGTATTTTCTGTTTATTCCAAATTTGATGAAACTGACAATCCAATTTGA AAGTTTGTGTCGACGTCTGTCTAGCTTAAATGAATGTGTTCTATTTGCTTTATACATTTATA TTAATAAATTGTACATTTTTCTAATT

FIGURE 188

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73735

><subunit 1 of 1, 225 aa, 1 stop

><MW: 24845, pI: 9.07, NX(S/T): 0

MATHALEIAGLFLGGVGMVGTVAVTVMPQWRVSAFIENNIVVFENFWEGLWMNCVRQANIRM QCKIYDSLLALSPDLQAARGLMCAASVMSFLAFMMAILGMKCTRCTGDNEKVKAHILLTAGI IFIITGMVVLIPVSWVANAIIRDFYNSIVNVAQKRELGEALYLGWTTALVLIVGGALFCCVF CCNEKSSSYRYSIPSHRTTQKSYHTGKKSPSVYSRSQYV

Signal peptide:

amino acids 1-17

Transmembrane domains:

amino acids 82-101, 118-145, 164-188

FIGURE 189

TCGCCATGCCTCTGCCGGAATGCAGATCCTGGGAGTCGTCCTGACACTGCTGGGCTGGGTG AATGGCCTGGTCTCCTGTGCCCTGCCCATGTGGAAGGTGACCGCTTTCATCGGCAACAGCAT CGTGGTGGCCCAGGTGGTGTGGGAGGCCCTGTGGATGTCCTGCGTGGTGCAGAGCACCGGCC AGATGCAGTGCAAGGTGTACGACTCACTGCTGCCGCTGCCACAGGACCTGCAGGCTGCACGT GCCCTCTGTGTCATCGCCCTCCTTGTGGCCCTGTTCGGCTTGCTGGTCTACCTTGCTGGGGC CAAGTGTACCACCTGTGTGGAGGAGGAGGATTCCAAGGCCCGCCTGGTGCTCACCTCTGGGA TTGTCTTTGTCATCTCAGGGGTCCTGACGCTAATCCCCGTGTGCTGGACGGCGCATGCCATC ATCCGGGACTTCTATAACCCCCTGGTGGCTGAGGCCCAAAAGCGGGAGCTGGGGGCCTCCCT GCCCCTCGGGGGGGTCCCAGGGCCCCAGCCATTACATGGCCCGCTACTCAACATCTGCCCCT GCCATCTCTCGGGGGCCCTCTGAGTACCCTACCAAGAATTACGTCTGACGTGGAGGGGAATG GGGGCTCCGCTGGCGCTAGAGCCATCCAGAAGTGGCAGTGCCCAACAGCTTTGGGATGGGTT CGTACCTTTTGTTTCTGCCTCCTGCTATTTTTCTTTTGACTGAGGATATTTAAAATTCATTT GAAAACTGAGCCAAGGTGTTGACTCAGACTCTCACTTAGGCTCTGCTGTTTCTCACCCTTGG ATGATGGAGCCAAAGAGGGGATGCTTTGAGATTCTGGATCTTGACATGCCCATCTTAGAAGC TGTCCCCAAGAGTTCCTGCTGCTGCTGGGGGCTGGGCTTCCCTAGATGTCACTGGACAGCTG TTAACAAAGGACTGCCCACCTCCGGAACTTCTGACCTCTGTTTCCTCCGTCCTGATAAGACG TCCACCCCCAGGGCCAGGTCCCAGCTATGTAGACCCCCGCCCCCACCTCCAACACTGCACC CTTCTGCCCTGCCCCCTCGTCTCACCCCCTTTACACTCACATTTTTATCAAATAAAGCATG TTTTGTTAGTGCA

FIGURE 190

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73736

><subunit 1 of 1, 220 aa, 1 stop

><MW: 23292, pI: 8.43, NX(S/T): 0

MASAGMQILGVVLTLLGWVNGLVSCALPMWKVTAFIGNSIVVAQVVWEGLWMSCVVQSTGQM QCKVYDSLLALPQDLQAARALCVIALLVALFGLLVYLAGAKCTTCVEEKDSKARLVLTSGIV FVISGVLTLIPVCWTAHAIIRDFYNPLVAEAQKRELGASLYLGWAASGLLLLGGGLLCCTCP SGGSQGPSHYMARYSTSAPAISRGPSEYPTKNYV

Transmembrane domains:

amino acids 8-30 (type II), 82-102, 121-140, 166-186

FIGURE 191

GCCAAGGAGAACATCATCAAAGACTTCTCTAGACTCAAAAGGCTTCCACGTTCTACATCTTG AGCATCTTCTACCACTCCGAATTGAACCAGTCTTCAAAGTAAAGGCAATTGGCATTTTATCCC TTGCAAATTGCTGGGCTGGTTCTTGGGTTCCTTGGCATGGTGGGGACTCTTGCCACAACCCT TCTGCCTCAGTGGTGGAGTATCAGCTTTTGTTGGCAGCAACATTATTGTCTTTGAGAGGCTC TGGGAAGGGCTCTGGATGAATTGCATCCGACAAGCCAGGGTCCGGTTGCAATGCAAGTTCTA TTGCTCTCTCTCTTGATCGCCCTTGCTTATTGGCATCTGTGGCATGAAGCAGGTCCAGTGCACA GGCTCTAACGAGAGGGCCAAAGCATACCTTCTGGGAACTTCAGGAGTCCTCTTCATCCTGAC GGGTATCTTCGTTCTGATTCCGGTGAGCTGGACAGCCAATATAATCATCAGAGATTTCTACA ACCCAGCCATCCACATAGGTCAGAAACGAGAGCTGGGAGCAGCACTTTTTCCTTGGCTGGGCA AGCGCTGCTGCTCCTCTTCATTGGAGGGGGTCTGCTTTGTGGATTTTTGCTGCTTGCAACAAA ATACGACAATGCTTAGTAAGACCTCCACCAGTTATGTCTAATGCCTCCTTTTGGCTCCAAGT ATGGACTATGGTCAATGTTTTTTATAAAGTCCTGCTAGAAACTGTAAGTATGTGAGGCAGGA GAACTTGCTTTATGTCTAGATTTACATTGATACGAAAGTTTCAATTTGTTACTGGTGGTAGG AATGAAAATGACTTACTTGGACATTCTGACTTCAGGTGTATTAAATGCATTGACTATTGTTG GACCCAATCGCTGCTCCAATTTTCATATTCTAAATTCAAGTATACCCATAATCATTAGCAAG TGTACAATGATGGACTACTTATTACTTTTTGACCATCATGTATTATCTGATAAGAATCTAAA GTTGAAATTGATATTCTATAACAATAAAACATATACCTATTCTA

FIGURE 192

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73737

><subunit 1 of 1, 173 aa, 1 stop

><MW: 18938, pI: 9.99, NX(S/T): 1

MNCIRQARVRLQCKFYSSLLALPPALETARALMCVAVALSLIALLIGICGMKQVQCTGSNER AKAYLLGTSGVLFILTGIFVLIPVSWTANIIIRDFYNPAIHIGQKRELGAALFLGWASAAVL FIGGGLLCGFCCCNRKKQGYRYPVPGYRVPHTDKRRNTTMLSKTSTSYV

Important features of the protein:

Transmembrane domains:

amino acids 31-51, 71-90, 112-133

N-glycosylation site.

amino acids 161-164

FIGURE 193

FIGURE 194

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73739

><subunit 1 of 1, 85 aa, 1 stop

><MW: 9232, pI: 7.94, NX(S/T): 0

MKITGGLLLLCTVVYFCSSSEAASLSPKKVDCSIYKKYPVVAIPCPITYLPVCGSDYITYGN ECHLCTESLKSNGRVQFLHDGSC

Signal peptide:

amino acids 1-19

FIGURE 195

FIGURE 196

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73742

><subunit 1 of 1, 148 aa, 1 stop

><MW: 17183, pI: 8.77, NX(S/T): 0

MAASPARPAVLALTGLALLLLLCWGPGGISGNKLKLMLQKREAPVPTKTKVAVDENKAKEFL GSLKRQKRQLWDRTRPEVQQWYQQFLYMGFDEAKFEDDITYWLNRDRNGHEYYGDYYQRHYD EDSAIGPRSPYGFRHGASVNYDDY

Signal peptide:

amino acids 1-30

FIGURE 197

CGGCTCGAGCCCGCCGGAAGTGCCCGAGGGGCCGCGATGGAGCTGGGGGAGCCGGGCGCTC CGTCCTTTTCTCGGTGCTTGCCTGCCTTCTGGTGCTGGCCCTTGCCTGGGTCTCAACGCACA CCGCTGAGGGCGGGACCCACTGCCCCAGCCGTCAGGGACCCCAACGCCATCCCAGCCCAGC GCAGCCATGGCAGCTACCGACAGCATGAGAGGGGGAGGGCCCCAGGGGCAGAGACCCCCAGCCT GAGACACAGAGCTCAAGCTGCACAGCCAGAGCCCAGCACGGGGTTCACAGCAACACCGCCAG CCCCGGACTCCCCGCAGGAGCCCCTCGTGCTACGGCTGAAATTCCTCAATGATTCAGAGCAG GTGGCCAGGGCCTGGCCCCACGACACCATTGGCTCCTTGAAAAGGACCCAGTTTCCCGGCCG GGAACAGCAGGTGCGACTCATCTACCAAGGGCAGCTGCTAGGCGACGACACCCAGACCCTGG GCAGCCTTCACCTCCCTCCCAACTGCGTTCTCCACTGCCACGTGTCCACGAGAGTCGGTCCC CCAAATCCCCCTGCCGGGGTCCGAGCCCGGCCCTCCGGGCTGGAAATCGGCAGCCT GCTGCTGCCCCTGCTGCTGCTGCTGCTGCTGCTGCTACTGCCAGATCCAGTACCGGC CCTTCTTTCCCCTGACCGCCACTCTGGGCCTGGCCGGCTTCACCCTGCTCCTCAGTCTCCTG GCCTTTGCCATGTACCGCCGTAGTGCCTCCGCGGGCGCTTGGCAGCGTCGCCGGCCCCTCC GGACCTTGCTCCCCGCGCCGCGGGGGGGGCTGCCTGCCCAGGCCCGCCTCTCCGGCCTG CCTCTTCCCGCTGCCCTGGAGCCCAGCCCTGCGCCGCAGAGGACTCCCGGGACTGGCGGAGG CCCCGCCTGCGACCGCCGGGGCTCGGGGCCACCTCCCGGGGCTGCTGAACCTCAGCCCGCA CTGGGAGTGGCCTCCTCGGGGTCGGGCATCTGCTGTCGCTCGGCCCCGGGCAGAGCCG GGCCGCCCGGGGGCCCGTCTTAGTGTTCTGCCGGAGGACCCAGCCGCCTCCAATCCCTGAC AGCTCCTTGGGCTGGGGACGCCAGGTCGGTGGAGGCTGGTGAAGGGGAGCGGGGAG AAAAAAAA

FIGURE 198

MTLIEGVGDEVTVLFSVLACLLVLALAWVSTHTAEGGDPLPQPSGTPTPSQPSAAMAATDSM RGEAPGAETPSLRHRGQAAQPEPSTGFTATPPAPDSPQEPLVLRLKFLNDSEQVARAWPHDT IGSLKRTQFPGREQQVRLIYQGQLLGDDTQTLGSLHLPPNCVLHCHVSTRVGPPNPPCPPGS EPGPSGLEIGSLLLPLLLLLLLLLWYCQIQYRPFFPLTATLGLAGFTLLLSLLAFAMYRP

Signal peptide:

amino acids 1-31

Transmembrane domain:

amino acids 195-217

FIGURE 199

FIGURE 200

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73746

><subunit 1 of 1, 148 aa, 1 stop

><MW: 16896, pI: 6.05, NX(S/T): 1

MTKALLIYLVSSFLALNQASLISRCDLAQVLQLEDLDGFEGYSLSDWLCLAFVESKFNISKI NENADGSFDYGLFQINSHYWCNDYKSYSENLCHVDCQDLLNPNLLAGIHCAKRIVSGARGMN NWVEWRLHCSGRPLSYWLTGCRLR

Signal peptide:

amino acids 1-18

FIGURE 201

TCTGACCTGACTGGAAGCGTCCAAAGAGGGACGGCTGTCAGCCCTGCTTGACTGAGAACCCA CCAGCTCATCCCAGACACCTCATAGCAACCTATTTATACAAAGGGGGAAAGAACACCTGAG AATTTGAAGTCCCTGTGAATGGGCTTTCAGAAGGCAATTAAAGAAATCCACTCAGAGAGGAC TTGGGGTGAAACTTGGGTCCTGTGGTTTTCTGATTGTAAGTGGAAGCAGGTCTTGCACACGC TGTTGGCAAATGTCAGGACCAGGTTAAGTGACTGGCAGAAAAACTTCCAGGTGGAACAAGCA ACCCATGTTCTGCTGCAAGCTTGAAGGAGCCTGGAGCGGGAGAAAGCTAACTTGAACATGAC $\tt CTGTTGCATTTGGCAAGTTCTAGCAAC \underline{ATG} CTCCTAAGGAAGCGATACAGGCACAGACCATG$ CAGACTCCAGTTCCTCCTGCTCCTGATGCTGGGATGCGTCCTGATGATGGTGGCGATGT GAAGCCAGGTACCGCCTGGACTTTGGGGAATCCCAGGATTGGGTACTGGAAGCTGAGGATGA GGGTGAAGAGTACAGCCCTCTGGAGGGCCTGCCACCCTTTATCTCACTGCGGGAGGATCAGC TGCTGGTGGCCGTGGCCTTACCCCAGGCCAGAAGGAACCAGAGCCAGGGCAGGAGAGGTGGG AGCTACCGCCTCATCAAGCAGCCAAGGAGGCAGGATAAGGAAGCCCCAAAGAGGGACTGGGG GGCTGATGAGGACGGGGAGGTGTCTGAAGAAGAGGAGTTGACCCCGTTCAGCCTGGACCCAC GTGGCCTCCAGGAGGCACTCAGTGCCCGCATCCCCCTCCAGAGGGCTCTGCCCGAGGTGCGG TTTCCATGATGAGGCCTGGTCCACTCTCCTGCGGACTGTACACAGCATCCTCGACACAGTGC TCTGCTCTCAGCGAATATGTGGCCAGGCTGGAGGGGGTGAAGTTACTCAGGAGCAACAAGAG GCTGGGTGCCATCAGGGCCCGGATGCTGGGGGGCCACCAGAGCCACCGGGGATGTGCTCGTCT TCATGGATGCCCACTGCGAGTGCCACCCAGGCTGGCTGGAGCCCCTCCTCAGCAGAATAGCT GGTGACAGGAGCCGAGTGGTATCTCCGGTGATAGATGTGATTGACTGGAAGACTTTCCAGTA TTACCCCTCAAAGGACCTGCAGCGTGGGGTGTTGGACTGGAAGCTGGATTTCCACTGGGAAC CTTTGCCAGAGCATGTGAGGAAGGCCCTCCAGTCCCCCATAAGCCCCCATCAGGAGCCCTGTG GTGCCCGGAGAGGTGGTGGCCATGGACAGACATTACTTCCAAAACACTGGAGCGTATGACTC TCTTATGTCGCTGCGAGGTGGTGAAAACCTCGAACTGTCTTTCAAGGCCTGGCTCTGTGGTG GCTCTGTTGAAATCCTTCCCTGCTCTCGGGTAGGACACATCTACCAAAATCAGGATTCCCAT GTCATTCAAAGAAACCTTCTACAAGCATAGCCCAGAGGCCTTCTCCTTGAGCAAGGCTGAGA AGCCAGACTGCATGGAACGCTTGCAGCTGCAAAGGAGACTGGGTTGTCGGACATTCCACTGG TTTCTGGCTAATGTCTACCCTGAGCTGTACCCATCTGAACCCAGGCCCAGTTTCTCTGGAAA GCTCCACAACACTGGACTTGGGCTCTGTGCAGACTGCCAGGCAGAAGGGGACATCCTGGGCT GTCCCATGGTGTTGGCTCCTTGCAGTGACAGCCGGCAGCAACAGTACCTGCAGCACCAGC GATTCTTCAGAACTGCACGGAGGAAGGCCTGGCCATCCACCAGCAGCACTGGGACTTCCAGG AGAATGGGATGATTGTCCACATTCTTTCTGGGAAATGCATGGAAGCTGTGGTGCAAGAAAAC AATAAAGATTTGTACCTGCGTCCGTGTGATGGAAAAGCCCGCCAGCAGTGGCGATTTGACCA GATAAATGCTGTGGATGAACGA**TGA**ATGTCAATGTCAGAAGGAAAAGAGAATTTTGGCCATC AAAATCCAGCTCCAAGTGAACGTAAAGAGCTTATATATTTCATGAAGCTGATCCTTTTGTGT GTGTGCTCCTTGTGTTAGGAGAGAAAAAAGCTCTATGAAAGAATATAGGAAGTTTCTCCTTT TCACACCTTATTTCATTGACTGCTGGCTGCTTA

FIGURE 202

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73760

><subunit 1 of 1, 639 aa, 1 stop

><MW: 73063, pI: 6.84, NX(S/T): 2

MLLRKRYRHRPCRLQFLLLLLMLGCVLMMVAMLHPPHHTLHQTVTAQASKHSPEARYRLDFG
ESQDWVLEAEDEGEEYSPLEGLPPFISLREDQLLVAVALPQARRNQSQGRRGGSYRLIKQPR
RQDKEAPKRDWGADEDGEVSEEEELTPFSLDPRGLQEALSARIPLQRALPEVRHPLCLQQHP
QDSLPTASVILCFHDEAWSTLLRTVHSILDTVPRAFLKEIILVDDLSQQGQLKSALSEYVAR
LEGVKLLRSNKRLGAIRARMLGATRATGDVLVFMDAHCECHPGWLEPLLSRIAGDRSRVVSP
VIDVIDWKTFQYYPSKDLQRGVLDWKLDFHWEPLPEHVRKALQSPISPIRSPVVPGEVVAMD
RHYFQNTGAYDSLMSLRGGENLELSFKAWLCGGSVEILPCSRVGHIYQNQDSHSPLDQEATL
RNRVRIAETWLGSFKETFYKHSPEAFSLSKAEKPDCMERLQLQRRLGCRTFHWFLANVYPEL
YPSEPRPSFSGKLHNTGLGLCADCQAEGDILGCPMVLAPCSDSRQQQYLQHTSRKEIHFGSP
QHLCFAVRQEQVILQNCTEEGLAIHQQHWDFQENGMIVHILSGKCMEAVVQENNKDLYLRPC
DGKARQQWRFDQINAVDER

Signal peptide:

amino acids 1-28

FIGURE 203

CGCCAAGCATGCAGTAAAGGCTGAAAATCTGGGTCACAGCTGAGGAAGACCTCAGACATGGA TGCCCTCCCACCGCTGCTCAGGGCTCTTCATCCTCCCCTCGAACCCCACCAGCCCCAGCC CACCCCAGCCACCCCATCAGGCTTTGAGGAGGGGCCGCCCTCATCCCAATACCCCTGGGCT ATCGTGTGGGGTCCCACCGTGTCTCGAGAGGATGGAGGGGACCCCAACTCTGCCAATCCCGG ATTTCTGGACTATGGTTTTGCAGCCCCTCATGGGCTCGCAACCCCACACCCCAACTCAGACT CCATGCGAGGTGATGGAGATGGGCTTATCCTTGGAGAGGCACCTGCCACCCTGCGGCCATTC CTGTTCGGGGGCCGTGGGGAAGGTGTGGACCCCCAGCTCTATGTCACAATTACCATCTCCAT CATCATTGTTCTCGTGGCCACTGGCATCATCTTCAAGTTCTGCTGGGACCGCAGCCAGAAGC GACGCAGACCCTCAGGGCAGCAAGGTGCCCTGAGGCAGGAGGAGGCAGCAGCAGCACTGACA GACCTGTCCCCGGCTGGAGTCACTGTGCTGGGGGCCTTCGGGGACTCACCTACCCCCACCCC TGACCATGAGGAGCCCCGAGGGGGACCCCGGCCTGGGATGCCCCACCCCAAGGGGGCTCCAG CCTTCCAGTTGAACCGGTGAGGGCAGGGGCAATGGGATGGGAGGGCAAAGAGGGAAGGCAAC CTCCCACAGCCCTTGGCCCTCCCAAGGGGGCTGGACCAGCTCCTCTTGGGAGGCACCCTTC CTTCTCCCAGTCTCTCAGGATCTGTGTCCTATTCTCTGCTGCCCATAACTCCAACTCTGCCC TCTTTGGTTTTTTCTCATGCCACCTTGTCTAAGACAACTCTGCCCTCTTAACCTTGATTCCC CCTCTTTGTCTTGAACTTCCCCTTCTATTCTGGCCTACCCCTTGGTTCCTGACTGTGCCCTT TCCCTCTTCCTCTCAGGATTCCCCTGGTGAATCTGTGATGCCCCCAATGTTGGGGTGCAGCC AAGCAGGAGGCCAAGGGGCCGGCACAGCCCCCATCCCACTGAGGGTGGGGCAGCTGTGGGGA GCTGGGGCCACAGGGGCTCCTGGCTCCTGCCCCTTGCACCCCCGGAACACTCCCCAGCC CCACGGGCAATCCTATCTGCTCGCCCTCCTGCAGGTGGGGGCCTCACATATCTGTGACTTCG GGTCCCTGTCCCCACCCTTGTGCACTCACATGAAAGCCTTGCACACTCACCTCCACCTTCAC AGGCCATTTGCACACGCTCCTGCACCCTCTCCCCGTCCATACCGCTCCGCTCAGCTGACTCT TGGTCAGCGTTTCCTGCACACTTTACCTCTCATGTGCGTTTCCCGGCCTGATGTTGTGGTGG GTGCTGCTCCAGAGGTGGGTGGGAGGTGAGCTGGGGGCTCCTTGGGCCCTCATCGGTCATGG TCTCGTCCCATTCCACACCATTTGTTTCTCTGTCTCCCCATCCTACTCCAAGGATGCCGGCA TCACCCTGAGGGCTCCCCCTTGGGAATGGGGTAGTGAGGCCCCAGACTTCACCCCCAGCCCA CTGCTAAAATCTGTTTTCTGACAGATGGGTTTTGGGGGAGTCGCCTGCTGCACTACATGAGAA TCTGTGTGTGTGCCATTCTCTGGACTTCAGAGCCCCCTGAGCCAGTCCTCCCTTCCCAGCCT CCCTTTGGGCCTCCCTAACTCCACCTAGGCTGCCAGGGACCGGAGTCAGCTGGTTCAAGGCC GTGATATATTTTTGTATTATCTCTTTCTTCTTCTTGTGGTGATCATCTTGAATTACTGTG GGATGTAAGTTTCAAAATTTTCAAATAAAGCCTTTGCAAGATAA

FIGURE 204

></usr/segdb2/sst/DNA/Dnasegs.min/ss.DNA76393

><subunit 1 of 1, 243 aa, 1 stop

><MW: 26266, pI: 8.43, NX(S/T): 1

MRPQGPAASPQRLRGLLLLLLQLPAPSSASEIPKGKQKAQLRQREVVDLYNGMCLQGPAGV PGRDGSPGANVIPGTPGIPGRDGFKGEKGECLRESFEESWTPNYKQCSWSSLNYGIDLGKIA ECTFTKMRSNSALRVLFSGSLRLKCRNACCQRWYFTFNGAECSGPLPIEAIIYLDQGSPEMN STINIHRTSSVEGLCEGIGAGLVDVAIWVGTCSDYPKGDASTGWNSVSRIIIEELPK

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 195-217

FIGURE 205

FIGURE 206

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76398

><subunit 1 of 1, 121 aa, 1 stop

><MW: 12073, pI: 4.11, NX(S/T): 0

MASCLALRMALLLVSGVLAPAVLTDDVPQEPVPTLWNEPAELPSGEGPVESTSPGREPVDTG PPAPTVAPGPEDSTAQERLDQGGGSLGPGAIAAIVIAALLATCVVLALVVVALRKFSAS

Important features of the protein:

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 91-110

Glycosaminoglycan attachment site.

amino acids 44-47

cAMP- and cGMP-dependent protein kinase phosphorylation site.

umino acias iio iii

N-myristoylation site.

amino acids 91-96

FIGURE 207

CGGCTGTCTGCACTGCCACAGCAACTTCTCCAAGAAGTTCTCCTTCTACCGCCACCATGTGA ACTTCAAGTCCTGGTGGGTGGGCGACATCCCCGTGTCAGGGGGCGCTGCTCACCGACTGGAGC GACGACACGATGAAGGAGCTGCACCTGGCCATCCCCGCCAAGATCACCCGGGAGAAGCTGGA CCAAGTGGCGACAGCAGTGTACCAGATGATGGATCAGCTGTACCAGGGGAAGATGTACTTCC CCGGGTATTTCCCCAACGAGCTGCGAAACATCTTCCGGGAGCAGGTGCACCTCATCCAGAAC ACCCAGCCTAGCACCTGAAGGATCAATGCCATCACCCCGCGGGGACCTCCCCTAAGTAGCCC CCAGAGGCGCTGGGAGTGTTGCCACCGCCCTCCCCTGAAGTTTGCTCCATCTCACGCTGGGG CGACTGTCAGCACCGCTGTGGCATCTTCCAGTACGAGACCATCTCCTGCAACAACTGCACAG GCCAGGGCCCTACTGTCCCTGGGGTCCCAGGCTCTCCTTGGAGGGGGCTCCCCGCCTTCCAC CTGGCTGTCATCGGGTAGGGCGGGGCCGTGGGTTCAGGGGCGCACCACTTCCAAGCCTGTGT GGTGAGTATGTGTGGGGCACAGGCTGGCTCCCTCAGCTCCCACGTCCTAGAGGGGCTCCCGA GGAGGTGGAACCTCAACCCAGCTCTGCGCAGGAGGCGGCTGCAGTCCTTTTCTCCCTCAAAG GTCTCCGACCTCAGCTGGAGGCGGGCATCTTTCCTAAAGGGTCCCCATAGGGTCTGGTTCC ACCCCATCCCAGGTCTGTGGTCAGAGCCTGGGAGGGTTCCCTACGATGGTTAGGGGTGCCCC ATGGAGGGGCTGACTGCCCCACATTGCCTTTCAGACAGGACACGAGCATGAGGTAAGGCCGC AGATCAGTGGGGGCACTGCAGGTGGGGCTCTCCCTATACCTGGGACACCTGCTGGATGTCAC CTCTGCAACCACACCCATGTGGTGGTTTCATGAACAGACCACGCTCCTCTGCCTTCTCCTGG CCTGGGACACACAGAGCCACCCGGCCTTGTGAGTGACCCAGAGAAGGGAGGCCTCGGGAGA AGGGGTGCTCGTAAGCCAACACCAGCGTGCCGGGCCTGCACACCCTTCGGACATCCCAGGC ACGAGGGTGTCGTGGATGTGGCCACACATAGGACCACACGTCCCAGCTGGGAGGAGAGGCCT GGGGCCCCAGGGAGGGAGGCAGGGGGTGGGGGACATGGAGAGCTGAGGCAGCCTCGTCTCC CCGCAGCCTGGTATCGCCAGCCTTAAGGTGTCTGGAGCCCCCACACTTGGCCAACCTGACCT TGGAAGATGCTGCTGAGTGTCTCAAGCAGCAGCTGACAGCAGCTGGGCCTGCCCCAGGGCAAC GTGGGGGGGAGACTCAGCTGGACAGCCCCTGCCTGTCACTCTGGAGCTGGGCTGCTGCTGC CTCAGGACCCCTCTCCGACCCCGGACAGAGCTGAGCTGGCCAGGGCCAGGAGGGCGGGAGG GAGGGATGGGGTGGGCTGTGCGCAGCATCAGCGCCTGGGCAGGTCCGCAGAGCTGCGGGA TGTGATTAAAGTCCCTGATGTTTCTC

FIGURE 208

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76399

><subunit 1 of 1, 157 aa, 1 stop

><MW: 17681, pI: 7.65, NX(S/T): 1

MALLLCLVCLTAALAHGCLHCHSNFSKKFSFYRHHVNFKSWWVGDIPVSGALLTDWSDDTMK ELHLAIPAKITREKLDQVATAVYQMMDQLYQGKMYFPGYFPNELRNIFREQVHLIQNAIIER HLAPGSWGGGQLSREGPSLAPEGSMPSPRGDLP

Signal peptide:

amino acids 1-15

FIGURE 209

AGCAGGAGCAGGAGGGACAATGGAAGCTGCCCCGTCCAGGTTCATGTTCCTCTTATTTCT CCTCACGTGTGAGCTGCCTGCAGAAGTTGCTGCAGAAGTTGAGAAATCCTCAGATGGTCCTG GTGCTGCCCAGGAACCCACGTGGCTCACAGATGTCCCAGCTGCCATGGAATTCATTGCTGCC ACTGAGGTGGCTGTCATAGGCTTCTTCCAGGATTTAGAAATACCAGCAGTGCCCATACTCCA TAGCATGGTGCAAAAATTCCCAGGCGTGTCATTTGGGATCAGCACTGATTCTGAGGTTCTGA CACACTACAACATCACTGGGAACACCATCTGCCTCTTTCGCCTGGTAGACAATGAACAACTG AATTTAGAGGACGAAGACATTGAAAGCATTGATGCCACCAAATTGAGCCGTTTCATTGAGAT CAACAGCCTCCACATGGTGACAGAGTACAACCCTGTGACTGTGATTGGGTTATTCAACAGCG TAATTCAGATTCATCTCCTCCTGATAATGAACAAGGCCTCCCCAGAGTATGAAGAACATG CACAGATACCAGAAGGCAGCCAAGCTCTTCCAGGGGAAGATTCTCTTTATTCTGGTGGACAG TGGTATGAAAGAAAATGGGAAGGTGATATCATTTTTCAAACTAAAGGAGTCTCAACTGCCAG CTTTGGCAATTTACCAGACTCTAGATGACGAGTGGGATACACTGCCCACAGCAGAAGTTTCC TGAATCAGAAGGAAAGACTCCAAAGGTGGAACTCTCACTTCTCCTTGGAACTACATATGGCC AAGTATCTACTTTATGCAAAGTAAAAAGGCACAACTCAAATCTCAGAGACACTAAACAACAG ACACACGCGCACACACACACACACAGAGCTTCATTTCCTGTCTTAAAATCTCGTTTTCTC CATACTCTGTAAGCCCATCTGTAACACACCTAGATCAAGGCTTTAAGAGACTCACTGTGATG CCTCTATGAAAGAGGCATTCCTAGAGAAAGATTGTTCCAATTTGTCATTTAATATCAAGT TTGTATACTGCACATGACTTACACACAACATAGTTCCTGCTCTTTTAAGGTTACCTAAGGGT TGAAACTCTACCTTCTTTCATAAGCACATGTCCGTCTCTGACTCAGGATCAAAAACCAAAGG ATGGTTTTAAACACCTTTGTGAAATTGTCTTTTTGCCAGAAGTTAAAGGCTGTCTCCAAGTC CCTGAACTCAGCAGAAATAGACCATGTGAAAACTCCATGCTTGGTTAGCATCTCCAACTCCC TATGTAAATCAACAACCTGCATAATAAATAAAAGGCAATCATGTTATA

FIGURE 210

></usr/segdb2/sst/DNA/Dnasegs.min/ss.DNA76401

><subunit 1 of 1, 273 aa, 1 stop

><MW: 30480, pI: 4.60, NX(S/T): 1

MEAAPSRFMFLLFLLTCELAAEVAAEVEKSSDGPGAAQEPTWLTDVPAAMEFIAATEVAVIG FFQDLEIPAVPILHSMVQKFPGVSFGISTDSEVLTHYNITGNTICLFRLVDNEQLNLEDEDI ESIDATKLSRFIEINSLHMVTEYNPVTVIGLFNSVIQIHLLLIMNKASPEYEENMHRYQKAA KLFQGKILFILVDSGMKENGKVISFFKLKESQLPALAIYQTLDDEWDTLPTAEVSVEHVQNF CDGFLSGKLLKENRESEGKTPKVEL

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 143-162

FIGURE 211

GGAGAGCCGCGGCTGGGACCGGAGTGGGGAGCGCGCGTGGAGGTGCCACCCGGCGCGCGTG GCGGAGAGATCAGAAGCCTCTTCCCCAAGCCGAGCCAACCTCAGCGGGGACCCGGGCTCAGG GACGCGGCGCGCGCGCGACTGCAGTGGCTGGACGATGGCAGCGTCCGCCGGAGCCGGG GCTCTTGACAGCTGGAGTATCAGCCTTGGAAGTATATACGCCAAAAGAAATCTTCGTGGCAA ATGGTACACAAGGGAAGCTGACCTGCAAGTTCAAGTCTACTAGTACGACTGGCGGGTTGACC TCAGTCTCCTGGAGCTTCCAGCCAGAGGGGGCCGACACTACTGTGTCGTTTTTCCACTACTC CCAAGGGCAAGTGTACCTTGGGAATTATCCACCATTTAAAGACAGAATCAGCTGGGCTGGAG ACCTTGACAAGAAGATGCATCAATCAACATAGAAAATATGCAGTTTATACACAATGCCACC TATATCTGTGATGTCAAAAACCCTCCTGACATCGTTGTCCAGCCTGGACACATTAGGCTCTA TGTCGTAGAAAAAGAGAATTTGCCTGTGTTTCCAGTTTGGGTAGTGGTGGGCATAGTTACTG CTGTGGTCCTAGGTCTCACTCTGCTCATCAGCATGATTCTGGCTGTCCTCTATAGAAGGAAA AACTCTAAACGGGATTACACTGGCTGCAGTACATCAGAGAGTTTGTCACCAGTTAAGCAGGC TCCTCGGAAGTCCCCCTCCGACACTGAGGGTCTTGTAAAGAGTCTGCCTTCTGGATCTCACC AGGGCCCAGTCATATATGCACAGTTAGACCACTCCGGCGGACATCACAGTGACAAGATTAAC AAGTCAGAGTCTGTGTGTGTGTGCGGATATCCGAAAGAATTAAGAGAATACCTAGAACATATC CTCAGCAAGAAACCAAACTGGACTCTCGTGCAGAAAATGTAGCCCATTACCACATGT AGCCTTGGAGACCCAGGCAAGGACAAGTACACGTGTACTCACAGAGGGAGAGAAAGATGTGT ACAAAGGATATGTATAAATATTCTATTTAGTCATCCTGATATGAGGAGCCAGTGTTGCATGA TGAAAAGATGGTATGATTCTACATATGTACCCATTGTCTTGCTGTTTTTTGTACTTTTTC AGGTCATTTACAATTGGGAGATTTCAGAAACATTCCTTTCACCATCATTTAGAAATGGTTTG CCTTAATGGAGACAATAGCAGATCCTGTAGTATTTCCAGTAGACATGGCCTTTTAATCTAAG GGCTTAAGACTGATTAGTCTTAGCATTTACTGTAGTTGGAGGATGGAGATGCTATGATGGAA AAATGTGTCATATCAATTTCTGGATTCATAATAGCAAGATTAGCAAAGGATAAATGCCGAAG GTCACTTCATTCTGGACACAGTTGGATCAATACTGATTAAGTAGAAAATCCAAGCTTTGCTT GAGAACTTTTGTAACGTGGAGAGTAAAAAGTATCGGTTTTA

FIGURE 212

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76510

><subunit 1 of 1, 269 aa, 1 stop

><MW: 29082, pI: 9.02, NX(S/T): 3

MAASAGAGAVIAAPDSRRWLWSVLAAALGLLTAGVSALEVYTPKEIFVANGTQGKLTCKFKS
TSTTGGLTSVSWSFQPEGADTTVSFFHYSQGQVYLGNYPPFKDRISWAGDLDKKDASINIEN
MQFIHNGTYICDVKNPPDIVVQPGHIRLYVVEKENLPVFPVWVVVGIVTAVVLGLTLLISMI
LAVLYRRKNSKRDYTGCSTSESLSPVKQAPRKSPSDTEGLVKSLPSGSHQGPVIYAQLDHSG
GHHSDKINKSESVYYADIRKN

Signal peptide:

amino acids 1-37

Transmembrane domain:

amino acids 161-183

FIGURE 213

CCCGGGGGCTTGGCCTCAAGCTGCGGACGACGCGGGGTCCATCAGCGCGCCCGGGCTGCCGCC TCTCGGCCACGGCTGGGGGCCTCGGGGCTGGGGCTGGGGCTGGGGTGAAGC TGGCAGGTGGGCTGAGGGGCGCGCCCCGGCGCAGTCCCCCGGCCCCCGACCCTGAGGCG TCGCCTCTGGCCGAGCCGCCACAGGAGCAGTCCCTCGCCCCGTGGTCTCCGCAGACCCCGGC GCCGCCCTGCTCCAGGTGCTTCGCCAGAGCCATCGAGAGCAGCCGCGACCTGCTGCACAGGA TCAAGGATGAGGTGGGCGCACCGGGCATAGTGGTTGGAGTTTCTGTAGATGGAAAAGAAGTC TGGTCAGAAGGTTTAGGTTATGCTGATGTTGAGAACCGTGTACCATGTAAACCAGAGACACT TATGCGAATTGCTAGCATCAGCAAAAGTCTCACCATGGTTGCTCTTGCCAAATTGTGGGAAG CAGGGAAACTGGATCTTGATATTCCAGTACAACATTATGTTCCCGAAATTCCCAGAAAAAGAA TATGAAGGTGAAAAGGTTTCTGTCACAACAAGATTACTGATTTCCCATTTAAGTGGAATTCG TCATTATGAAAAGGACATAAAAAAGGTGAAAGAAGAGAAAGCTTATAAAGCCTTGAAGATGA TGAAAGAGAATGTTGCATTTGAGCAAGAAAAAGAAGGCAAAAGTAATGAAAAGAATGATTTT ACTAAATTTAAAACAGAGCAGGAGAATGAAGCCAAATGCCGGAATTCAAAACCTGGCAAGAA AAAGAATGATTTTGAACAAGGCGAATTATATTTGAGAGAAAGTTTGAAAATTCAATTGAAT CCCTAAGATTATTTAAAAATGATCCTTTGTTCTTCAAACCTGGTAGTCAGTTTTTGTATTCA CTATATGCAGAAAATATTCCATGACTTGGATATGCTGACGACTGTGCAGGAAGAAACGAGC CAGTGATTTACAATAGAGCAAGG**TAA**ATGAATACCTTCTGCTGTGTCTAGCTATATCGCATC TTAACACTATTTTATTAATTAAAAGTCAAATTTTCTTTGTTTCCATTCCAAAATCAACCTGC TGTTTATAAAGTAAAAAA

FIGURE 214

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76522

><subunit 1 of 1, 373 aa, 1 stop

><MW: 41221, pI: 8.54, NX(S/T): 0

MYRLLSAVTARAAAPGGLASSCGRRGVHQRAGLPPLGHGWVGGLGLGLALGVKLAGGLRG
AAPAQSPAAPDPEASPLAEPPQEQSLAPWSPQTPAPPCSRCFARAIESSRDLLHRIKDEVGA
PGIVVGVSVDGKEVWSEGLGYADVENRVPCKPETVMRIASISKSLTMVALAKLWEAGKLDLD
IPVQHYVPEFPEKEYEGEKVSVTTRLLISHLSGIRHYEKDIKKVKEEKAYKALKMMKENVAF
EQEKEGKSNEKNDFTKFKTEQENEAKCRNSKPGKKKNDFEQGELYLREKFENSIESLRLFKN
DPLFFKPGSQFLYSTFGYTLLAAIVERASGCKYLDYMQKIFHDLDMLTTVQEENEPVIYNRAR

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 39-60

FIGURE 215

AGGCTGGTGGGAAGAAGCCGAGATGGCGGCAGCCAGCGCTGGGGCAACCCGGCTGCTCCTGC TCTTGCTGATGGCGGTAGCAGCCCCAGTCGAGCCCGGGCCAGCGGCTGCCGGGCCGGGACT GGTGCGCGAGGGCTGGGGCGAAGGTCGAGAGGGCGAGGCCTGTGGCACGGTGGGGCTGCT GCTGGAGCACTCATTTGAGATCGATGACAGTGCCAACTTCCGGAAGCGGGGCTCACTGCTCT GGAACCAGCAGGATGGTACCTTGTCCCTGTCACAGCGGCAGCTCAGCGAGGAGGAGCGGGGC CGACTCCGGGATGTGGCAGCCCTGAATGGCCTGTACCGGGTCCGGATCCCAAGGCGACCCGG GGCCCTGGATGGCCTGGAAGCTGGTGGCTATGTCTCCTCCTTTGTCCCTGCGTGCTCCCTGG TGGAGTCGCACCTGTCGGACCAGCTGACCCTGCACGTGGATGTGGCCGGCAACGTGGTGGGC GTGTCGGTGGTGACGCACCCCGGGGGCTGCCGGGGCCATGAGGTGGAGGTGGACCTGGA GCTGTTCAACACCTCGGTGCAGCTGCAGCCGCCCACCACGAGCCCCAGGCCCTGAGACGGCGG CCTTCATTGAGCGCCTGGAGATGGAACAGGCCCAGAAGGCCCAAGAACCCCCAGGAGCAGAAG TCCTTCTTCGCCAAATACTGGATGTACATCATTCCCGTCGTCCTGTTCCTCATGATGTCAGG AGCGCCAGACACCGGGGGCCAGGGTGGGGGTGGGGGTGGGGGGTGGTGGTGGGGGTAGTGGCC TTTGCTGTGCCACCCTCCCTGTAAGTCTATTTAAAAACATCGACGATACATTGAAATGTG TGAACGTTTTGAAAAGCTACAGCTTCCAGCAGCCAAAAGCAACTGTTGTTTTTGGCAAGACGG TCCTGATGTACAAGCTTGATTGAAATTCACTGCTCACTTGATACGTTATTCAGAAACCCAAG GAATGGCTGTCCCCATCCTCATGTGGCTGTGTGGAGCTCAGCTGTTGTTGTGGCAGTTTAT TAAACTGTCCCCCAGATCGACACGCAAAAAAAA

FIGURE 216

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76529

><subunit 1 of 1, 269 aa, 1 stop

><MW: 28004, pI: 5.80, NX(S/T): 1

MAAASAGATRLLLLLLMAVAAPSRARGSGCRAGTGARGAGAEGREGEACGTVGLLLEHSFEI
DDSANFRKRGSLLWNQQDGTLSLSQRQLSEEERGRLRDVAALNGLYRVRIPRRPGALDGLEA
GGYVSSFVPACSLVESHLSDQLTLHVDVAGNVVGVSVVTHPGGCRGHEVEDVDLELFNTSVQ
LQPPTTAPGPETAAFIERLEMEQAQKAKNPQEQKSFFAKYWMYIIPVVLFLMMSGAPDTGGQ
GGGGGGGGGGGGGGCCCVPPSL

Signal peptide:

amino acids 1-24

Transmembrane domain:

amino acids 226-243

FIGURE 217

GGAGCGCTGCTGGAACCCGAGCCGGAGCCGCAGCCACAGCGGGGAGGGTGGCCTGGCGGCCT GGAGCCGGACGTGTCCGGGGCGTCCCCGCAGACCGGGGCAGCAGGTCGTCCGGGGGCCCACC AACTGGACTTCTATCAGGTCTACTTCCTGGCCCTGGCAGCTGATTGGCTTCAGGCCCCCTAC CTCTATAAACTCTACCAGCATTACTACTTCCTGGAAGGTCAAATTGCCATCCTCTATGTCTG TGGCCTTGCCTCTACAGTCCTCTTTGGCCTAGTGGCCTCCTCCCTTGTGGATTGGCTGGGTC GCAAGAATTCTTGTGTCCTCTTCTCCCTGACTTACTCACTATGCTGCTTAACCAAACTCTCT CAAGACTACTTTGTGCTGCTAGTGGGGCGAGCACTTGGTGGGGCTGTCCACAGCCCTGCTCTT CTCAGCCTTCGAGGCCTGGTATATCCATGAGCACGTGGAACGGCATGACTTCCCTGCTGAGT GTGGCAGCTGAGGCTGTAGCCAGCTGGATAGGGCTGGGGCCTGTAGCGCCCTTTGTGGCTGC CATCCCTCTCCTGGCTCTGGCAGGGGCCTTGGCCCTTCGAAACTGGGGGGGAGAACTATGACC GGCAGCGTGCCTTCTCAAGGACCTGTGCTGGAGGCCTGCGCTGCCTCCTGTCGGACCGCCGC GTGCTGCTGCGCCACCATACAAGCTCTATTTGAGAGTGTCATCTTCATCTTTGTCTTCCT CTGGACACCTGTGCTGGACCCACACGGGGCCCCTCTGGGCATTATCTTCTCCAGCTTCATGG CAGCCAGCCTGCTTTGCCTTTCCCTGTACCGTATCGCCACCTCCAAGAGGTACCACCTTCAG CTCTACCAGCCCAGGCCAGGAGAGTCCGGTGGAGTCCTTCATAGCCTTTCTACTTATTGAGT TGGCTTGTGGATTATACTTTCCCAGCATGAGCTTCCTACGGAGAAGGTGATCCCTGAGACA CCTTGTCCTCCATGACAGTGATCGAAAAACAGGCACTCGGAATATGTTCAGCATTTGCTCTG CTGTCATGGTGATGGCTCTGCCGGCAGTGGTGGGACTCTTCACCGTGGTAAGGCATGATGCT GAGCTGCGGGTACCTTCACCTACTGAGGAGCCCTATGCCCCTGAGCTGTAACCCCACTCCAG GACAAGATAGCTGGGACAGACTCTTGAATTCCAGCTATCCGGGATTGTACAGATCTCTCTGT GACTGACTTTGTGACTGTCCTGTGGTTTCTCCTGCCATTGCTTTTGTGTTTTGGGAGGACATGA TGGGGGTGATGGAAAGAAGGTGCCAAAAGTTCCCTCTGTGTTACTCCCATTTAGAAA ATAAACACTTTTAAATGATCAAAAAAAAAAA

FIGURE 218

MLVTAYLAFVGLLASCLGLELSRCRAKPPGRACSNPSFLRFQLDFYQVYFLALAADWLQAPY
LYKLYQHYYFLEGQIAILYVCGLASTVLFGLVASSLVDWLGRKNSCVLFSLTYSLCCLTKLS
QDYFVLLVGRALGGLSTALLFSAFEAWYIHEHVERHDFPAEWIPATFARAAFWNHVLAVVAG
VAAEAVASWIGLGPVAPFVAAIPLLALAGALALRNWGENYDRQRAFSRTCAGGLRCLLSDRR
VLLLGTIQALFESVIFIFVFLWTPVLDPHGAPLGIIFSSFMAASLLGSSLYRIATSKRYHLQ
PMHLLSLAVLIVVFSLFMLTFSTSPGQESPVESFIAFLLIELACGLYFPSMSFLRRKVIPET
EQAGVLNWFRVPLHSLACLGLLVLHDSDRKTGTRNMFSICSAVMVMALLAVVGLFTVVRHDA
ELRVPSPTEEPYAPEL

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 41-55, 75-94, 127-143, 191-213, 249-270, 278-299, 314-330, 343-359, 379-394, 410-430

FIGURE 219

GCGACGCGCGGGGGGGGGGAGAGGAAACGCGGCCCGGGCCGGGCCCGGCCCTGGAGATG GTCCCCGGCGCCGGGCTGGTTGTCTCGTGCTCTGGCTCCCCGCGTGCGTCGCGGCCCA CGGCTTCCGTATCCATGATTATTTGTACTTCAAGTGCTGAGTCCTGGGGACATTCGATACA TCTTCACAGCCACACCTGCCAAGGACTTTGGTGGTATCTTTCACACAAGGTATGAGCAGATT CACCTTGTCCCCGCTGAACCTCCAGAGGCCTGCGGGGAACTCAGCAACGGTTTCTTCATCCA AGGAGCACGGCGGGCGGCGGTGATCATCTCTGACAACGCAGTTGACAATGACAGCTTCTAC GTGGAGATGATCCAGGACAGTACCCAGCGCACACCTGACATCCCCGCCCTCTTCCTGCTCGG CCGAGACGCTACATGATCCGCCGCTCTCTGGAACAGCATGGGCTGCCATGGGCCATCATTT CCATCCCAGTCAATGTCACCAGCATCCCCACCTTTGAGCTGCTACCAACCGCCCTGGACCTTC TGGTAGAAGAGTTTGTCCCACATTCCAGCCATAAGTGACTCTGAGCTGGGAAGGGGAAACCC AGGAATTTTGCTACTTGGAATTTGGAGATAGCATCTGGGGACAAGTGGAGCCAGGTAGAGGA AAAGGGTTTGGGCGTTGCTAGGCTGAAAGGGAAGCCACACCACTGGCCTTCCCTTCCCCAGG GCCCCAAGGGTGTCTCATGCTACAAGAAGAGGCAAGAGACAGGCCCCAGGGCTTCTGGCTA GAACCCGAAACAAAAGGAGCTGAAGGCAGGTGGCCTGAGAGCCATCTGTGACCTGTCACACT CACCTGGCTCCAGCCTCCCCTACCCAGGGTCTCTCGCACAGTGACCTTCACAGCAGTTGTTGG AGTGGTTTAAAGAGCTGGTGTTTGGGGACTCAATAAACCCTCACTGACTTTTTTAGCAATAAA

FIGURE 220

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76532

><subunit 1 of 1, 188 aa, 1 stop

><MW: 21042, pI: 5.36, NX(S/T): 2

MVPGAAGWCCLVLWLPACVAAHGFRIHDYLYFQVLSPGDIRYIFTATPAKDFGGIFHTRYEQ IHLVPAEPPEACGELSNGFFIQDQIALVERGGCSFLSKTRVVQEHGGRAVIISDNAVDNDSF YVEMIODSTQRTADIPALFLLGRDGYMIRRSLEQHGLPWAIISIPVNVTSIPTFELLQPPWTFW

Signal peptide:

amino acids 1-20

FIGURE 221

FIGURE 222

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76538

><subunit 1 of 1, 116 aa, 1 stop

><MW: 12910, pI: 6.41, NX(S/T): 1

MELALLCGLVVMAGVIPIQGGILNLNKMVKQVTGKMPILSYWPYGCHCGLGGRGQPKDATDW CCQTHDCCYDHLKTQGCGIYKDNNKSSIHCMDLSQRYCLMAVFNVIYLENEDSE

Important features of the protein:

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 1-24

N-glycosylation site.

amino acids 86-89

N-myristoylation sites.

amino acids 20-25, 45-50

Phospholipase A2 histidine active site.

amino acids 63-70

FIGURE 223

FIGURE 224

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76541

><subunit 1 of 1, 178 aa, 1 stop

><MW: 19600, pI: 5.89, NX(S/T): 1

MHRPEAMLLLLTLALLGGPTWAGKMYGPGGGKYFSTTEDYDHEITGLRVSVGLLLVKSVQVK LGDSWDVKLGALGGNTQEVTLQPGEYITKVFVAFQAFLRGMVMYTSKDRYFYFGKLDGQISS AYPSQEGQVLVGIYGQYQLLGIKSIGFEWNYPLEEPTTEPPVNLTYSANSPVGR

Signal peptide:

amino acids 1-22

FIGURE 225

GCTGAGCGTGTGCGCGGTACGGGGCTCTCCTGCCTTCTGGGCTCCAACGCAGCTCTGTGGCT GAACTGGGTGCTCATCACGGGAACTGCTGGGCTATGGAATACAGATGTGGCAGCTCAGGTAG CCCCAAATTGCCTGGAAGAATACATCATGTTTTTCGATAAGAAGAAATTGTAGGATCCAGTT TTTTTTTTAACCGCCCCCTCCCCACCCCCAAAAAAACTGTAAAGATGCAAAAACGTAATAT CCATGAAGATCCTATTACCTAGGAAGATTTTGATGTTTTGCTGCGAATGCGGTGTTGGGATT TATTTGTTCTTGGAGTGTTCTGCGTGGCTGGCAAAGAATAATGTTCCAAAATCGGTCCATCT CCCAAGGGGTCCAATTTTTCTTCCTGGGTGTCAGCGAGCCCTGACTCACTACAGTGCAGCTG ACAGGGGCTGTCATGCAACTGGCCCCTAAGCCAAAGCAAAAGACCTAAGGACGACCTTTGAA CAATACAAAGGATGGGTTTCAATGTAATTAGGCTACTGAGCGGATCAGCTGTAGCACTGGTT ATAGCCCCACTGTCTTACTGACAATGCTTTCTTCTGCCGAACGAGGATGCCCTAAGGGCTG TAGGTGTGAAGGCAAAATGGTATATTGTGAATCTCAGAAATTACAGGAGATACCCTCAAGTA TATCTGCTGGTTGCTTAGGTTTGTCCCTTCGCTATAACAGCCTTCAAAAACTTAAGTATAAT CAATTTAAAGGGCTCAACCAGCTCACCTGGCTATACCTTGACCATAACCATATCAGCAATAT TGACGAAAATGCTTTTAATGGAATACGCAGACTCAAAGAGCTGATTCTTAGTTCCAATAGAA TCTCCTATTTTCTTAACAATACCTTCAGACCTGTGACAAATTTACGGAACTTGGATCTGTCC TATAATCAGCTGCATTCTCTGGGATCTGAACAGTTTCGGGGGCTTGCGGAAGCTGCTGAGTTT ACATTTACGGTCTAACTCCCTGAGAACCATCCCTGTGCGAATATTCCAAGACTGCCGCAACC TGGAACTTTTGGACCTGGGATATAACCGGATCCGAAGTTTAGCCAGGAATGTCTTTGCTGGC TTTTCCAAGGTTGGTCAGCCTTCAGAACCTTTACTTGCAGTGGAATAAAATCAGTGTCATAG GACAGACCATGTCCTGGACCTGGAGCTCCTTACAAAGGCTTGATTTATCAGGCAATGAGATC GAAGCTTTCAGTGGACCCAGTGTTTTCCAGTGTGTCCCGAATCTGCAGCGCCTCAACCTGGA TTCCAACAAGCTCACATTTATTGGTCAAGAGATTTTTGGATTCTTGGATATCCCTCAATGACA TCAGTCTTGCTGGGAATATATGGGAATGCAGCAGAAATATTTGCTCCCTTGTAAACTGGCTG AAAAGTTTTAAAGGTCTAAGGGAGAATACAATTATCTGTGCCAGTCCCAAAGAGCTGCAAGG AGTAAATGTGATCGATGCAGTGAAGAACTACAGCATCTGTGGCAAAAGTACTACAGAGAGGT TTGATCTGGCCAGGGCTCTCCCAAAGCCGACGTTTAAGCCCAAGCTCCCCAGGCCGAAGCAT GAGAGCAAACCCCCTTTGCCCCCGACGGTGGGAGCCACAGAGCCCGGCCCAGAGACCGATGC TGACGCCGAGCACATCTCTTTCCATAAAATCATCGCGGGCAGCGTGGCGCTTTTCCTGTCCG TGCTCGTCATCCTGCTGGTTATCTACGTGTCATGGAAGCGGTACCCTGCGAGCATGAAGCAG CTGCAGCAGCGCTCCCTCATGCGAAGGCACAGGAAAAAGAAAAGACAGTCCCTAAAGCAAAT GACTCCCAGCACCCAGGAATTTTATGTAGATTATAAACCCACCAACACGGAGACCAGCGAGA TGCTGCTGAATGGGACGGGACCCTGCACCTATAACAATCGGGCTCCAGGGAGTGTGAGGTA TGAACCATTGTGATAAAAAGAGCTCTTAAAAGCTGGGAAATAAGTGGTGCTTTATTGAACTC TGGTGACTATCAAGGGAACGCGATGCCCCCCCCCCCTCCCCTCTCCCTCTCACTTTGGTGG ATCAACCCATTGAAATTTAAATACCACAATCAATGTGAAGCTTGAACTCCGGTTTAATATAA TACCTATTGTATAAGACCCTTTACTGATTCCATTAATGTCGCATTTGTTTTAAGATAAAACT TCTTTCATAGGTAAAAAAAAAAA

FIGURE 226

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77301

><subunit 1 of 1, 513 aa, 1 stop

><MW: 58266, pI: 9.84, NX(S/T): 4

MGFNVIRLLSGSAVALVIAPTVLLTMLSSAERGCPKGCRCEGKMVYCESQKLQEIPSSISAG
CLGLSLRYNSLQKLKYNQFKGLNQLTWLYLDHNHISNIDENAFNGIRRLKELILSSNRISYF
LNNTFRPVTNLRNLDLSYNQLHSLGSEQFRGLRKLLSLHLRSNSLRTIPVRIFQDCRNLELL
DLGYNRIRSLARNVFAGMIRLKELHLEHNQFSKLNLALFPRLVSLQNLVLQWNKISVIGQTM
SWTWSSLQRLDLSGNEIEAFSGPSVFQCVPNLQRLNLDSNKLTFIGQEILDSWISLNDISLA
GNIWECSRNICSLVNWLKSFKGLRENTIICASPKELQGVNVIDAVKNYSICGKSTTERFDLA
RALPKPTFKPKLPRPKHESKPPLPPTVGATEPGPETDADAEHISFHKIIAGSVALFLSVLVI
LLVIYVSWKRYPASMKQLQQRSLMRRHRKKKRQSLKQMTPSTQEFYVDYKPTNTETSEMLLN
GTGPCTYNKSGSRFCEV

Important features of the protein:

Signal peptide:

amino acids 1-33

Transmembrane domain:

amino acids 420-442

N-glycosylation sites.

amino acids 126-129, 357-360, 496-499, 504-507

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 465-468

Tyrosine kinase phosphorylation site.

amino acids 136-142

N-myristoylation sites.

amino acids 11-16, 33-38, 245-250, 332-337, 497-502, 507-512

FIGURE 227

AGTTCTGAGAAAGAAGGAAATAAACACAGGCACCAAACCACTATCCTAAGTTGACTGTCCTT TAAATATGTCAAGATCCAGACTTTTCAGTGTCACCTCAGCGATCTCAACGATAGGGATCTTG TGTTTGCCGCTATTCCAGTTGGTGCTCTCGGACCTACCATGCGAAGAAGATGAAATGTGTGT AAATTATAATGACCAACACCCTAATGGCTGGTATATCTGGATCCTCCTGCTGCTGGTTTTTGG ATTGATTCTCACAGGCGCACCATGGCAGTTTTTGCTGTTGGAGACTTGGACTCTATTTATGG GACAGAAGCAGCTGTGAGTCCAACTGTTGGAATTCACCTTCAAACTCAAACCCCTGACCTAT ATCCTGTTCCTGCTCCATGTTTTGGCCCTTTAGGCTCCCCACCTCCATATGAAGAAATTGTA AAAACAACC**TGA**TTTTAGGTGTGGATTATCAATTTAAAGTATTAACGACATCTGTAATTCCA AAACATCAAATTTAGGAATAGTTATTTCAGTTGTTGGAAATGTCCAGAGATCTATTCATATA GTCTGAGGAAGGACAATTCGACAAAAGAATGGATGTTGGAAAAAATTTTGGTCATGGAGATG TTTAAATAGTAAAGTAGCAGGCTTTTGATGTGTCACTGCTGTATCATACTTTTATGCTACAC AACCAAATTAATGCTTCTCCACTAGTATCCAAACAGGCAACAATTAGGTGCTGGAAGTAGTT TCCATCACATTTAGGACTCCACTGCAGTATACAGCACCATTTTCTGCTTTAAACTCTTTC CTAGCATGGGGTCCATAAAAATTATTATAATTTAACAATAGCCCAAGCCGAGAATCCAACAT GTCCAGAACCAGAACCAGAAAGATAGTATTTGAATGAAGGTGAGGGGAGAGAGTAGGAAAAA GAAAAGTTTGGAGTTGAAGGGTAAAGGATAAATGAAGGGAAAAGGAAAAGATTACAAGTCT AGGAGATTGCTGAAGATATAGAGCACATATAATGCCAACACGGGGAGAAAAGAAAATTTCCC CTTTTACAGTAATGAATGTGGCCTCCATAGTCCATAGTGTTTCTCTGGAGCCTCAGGGCTTG GCATTTATTGCAGCATCATGCTAAGAACCTTCGGCATAGGTATCTGTTCCCATGAGGACTGC AGAAGTAGCAATGAGACATCTTCAAGTGGCATTTTGGCAGTGGCCATCAGCAGGGGGACAGA CAAAAACATCCATCACAGATGACATATGATCTTCAGCTGACAAATTTGTTGAACAAAACAAT AAACATCAATAGATATCTAAAAA

FIGURE 228

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77303

><subunit 1 of 1, 146 aa, 1 stop

><MW: 16116, pI: 4.99, NX(S/T): 0

MSRSRLFSVTSAISTIGILCLPLFQLVLSDLPCEEDEMCVNYNDQHPNGWYIWILLLLVLVA
ALLCGAVVLCLQCWLRRPRIDSHRRTMAVFAVGDLDSIYGTEAAVSPTVGIHLQTQTPDLYP
VPAPCFGPLGSPPPYEEIVKTT

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 52-70

FIGURE 229

TTCTCCAGCTCGATCTGGAGGCTGCTTCGCCAGTGTGGGACGCAGCTGACGCCCGCTTATTA GCTCTCGCTGCGTCGCCCCGGCTCAGAAGCTCCGTGGCGGCGGCGACCGTGACGAGAAGCCC CCCTCTTCAAAACTCATCTCCTGGGTGACTGAGTTAATAGAGTGGATACAACCTTGCTGAAG CAATCTCAAGAAAAATATGTCCCAGAAATTGAGTTTACTGTTGCTTGTATTTGGACTCATT TGGGGATTGATGTTACTGCACTATACTTTTCAACAACCAAGACATCAAAGCAGTGTCAAGTT ACGTGAGCAAATACTAGACTTAAGCAAAAGATATGTTAAAGCTCTAGCAGAGGAAAATAAGA ACACAGTGGATGTCGAGAACGGTGCTTCTATGGCAGGATATGCGGATCTGAAAAGAACAATT GCTGTCCTTCTGGATGACATTTTGCAACGATTGGTGAAGCTGGAGAACAAAGTTGACTATAT TGTTGTGAATGGCTCAGCAGCCAACACCACCAATGGTACTAGTGGGAATTTGGTGCCAGTAA CCACAAATAAAAGAACGAATGTCTCGGGCAGTATCAGA**TAG**CAGTTGAAAATCACCTTGTGC TGCTCCATCCACTGTGGATTATATCCTATGGCAGAAAAGCTTTATAATTGCTGGCTTAGGAC AGAGCAATACTTTACAATAAAAGCTCTACACATTTTCAAGGAGTATGCTGGATTCATGGAAC TCTAATTCTGTACATAAAATTTTAAAGTTATTTGTTTGCTTTCAGGCAAGTCTGTTCAATG CTGTACTATGTCCTTAAAGAGAATTTGGTAACTTGGTTGATGTGGTAAGCAGATAGGTGAGT TTTGTATAAATCTTTTGTGTTTGAGATCAAGCTGAAATGAAAACACTGAAAAACATGGATTC ATTTCTATAACACATTTATTTAAGTATATAACACGTTTTTTGGACAAGTGAAGAATGTTTAA TCATTCTGTCATTTGTTCTCAATAGATGTAACTGTTAGACTACGGCTATTTGAAAAAATGTG CTTATTGTACTATATTTTGTTATTCCAATTATGAGCAGAGAAAGGAAATATAATGTTGAAAA TAATGTTTTGAAATCATGACCCAAAGAATGTATTGATTTGCACTATCCTTCAGAATAACTGA AGGTTAATTATTGTATATTTTTAAAAATTACACTTATAAGAGTATAATCTTGAAATGGGTAG CAGCCACTGTCCATTACCTATCGTAAACATTGGGGCAATTTAATAACAGCATTAAAATAGTT GTAAACTCTAATCTTATACTTATTGAAGAATAAAAGATATTTTTATGATGAGAGTAACAATA AAGTATTCATGATTTTCACATACATGAATGTTCATTTAAAAGTTTAATCCTTTGAGTGTCT ATGCTATCAGGAAAGCACATTATTTCCATATTTGGGTTAATTTTGCTTTTATTATTATTGGTC TAGGAGGAAGGGACTTTGGAGAATGGAACTCTTGAGGACTTTAGCCAGGTGTATATAATAAA CTTTATGAAATTTTGAATTTGTATAACAGATGCATTAGATATTCATTTTATATAATGGCCAC TTAAAATAAGAACATTTAAAATATAAACTATGAAGATTGACTATCTTTTCAGGAAAAAAGCT GTATATAGCACAGGGAACCCTAATCTTGGGTAATTCTAGTATAAAACAAATTATACTTTTAT CTCTATAGTAACTGCTTAAGTGCAGCTAGCTTCTAGATTTAGACTATATAGAATTTAGATAT TGTATTGTTCGTCATTATAATATGCTACCACATGTAGCAATAATTACAATATTTTATTAAAA TAAATATGTGAAATATTGTTTCATGAAAGACAGATTTCCAAATCTCTCTTCTCTCTGTA CTGTCTACCTTTATGTGAAGAAATTAATTATATGCCATTGCCAGGT

FIGURE 230

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77648

><subunit 1 of 1, 140 aa, 1 stop

><MW: 15668, pI: 10.14, NX(S/T): 5

MFFTISRKNMSQKLSLLLLVFGLIWGLMLLHYTFQQPRHQSSVKLREQILDLSKRYVKALAE ENKNTVDVENGASMAGYADLKRTIAVLLDDILQRLVKLENKVDYIVVNGSAANTTNGTSGNL VPVTTNKRTNVSGSIR

Important features of the protein:

Signal peptide:

amino acids 1-26

FIGURE 231

CGCGGCCGGCCGGGGTGAGCGTGCCGAGGCGCTGTGGCGCAGGCTTCCAGCCCCAC CATGCCGTGGCCCTGCTGCTGCTGGCCGTGAGTGGGGCCCAGACAACCCGGCCATGCT TCCCCGGGTGCCAATGCGAGGTGGAGACCTTCGGCCTTTTCGACAGCTTCAGCCTGACTCGG GTGGATTGTAGCGGCCTGGGCCCCCACATCATGCCGGTGCCCATCCCTCTGGACACAGCCCA CTTGGACCTGTCCTCCAACCGGCTGGAGATGGTGAATGAGTCGGTGTTGGCGGGGCCGGGCT ACACGACGTTGGCTGGCCTGGATCTCAGCCACAACCTGCTCACCAGCATCTCACCCACTGCC TTCTCCCGCCTTCGCTACCTGGAGTCGCTTGACCTCAGCCACAATGGCCTGACAGCCCTCCC AGCCGAGAGCTTCACCAGCTCACCCCTGAGCGACGTGAACCTTAGCCACAACCAGCTCCGGG AGGTCTCAGTGTCTGCCTTCACGACGCACAGTCAGGGCCGGGCACTACACGTGGACCTCTCC TCAGAGCCTGAACCTGGCCTGGAACCGGCTCCATGCCGTGCCCAACCTCCGAGACTTGCCCC TGCGCTACCTGAGCCTGGATGGGAACCCTCTAGCTGTCATTGGTCCGGGTGCCTTCGCGGGG CTGGGAGGCCTTACACACCTGTCTCTGGCCAGCCTGCAGAGGCTCCCTGAGCTGGCGCCCAG TGGCTTCCGTGAGCTACCGGGCCTGCAGGTCCTGGACCTGTCGGGCAACCCCAAGCTTAACT GGGCAGGAGCTGAGGTGTTTTCAGGCCTGAGCTCCCTGCAGGAGCTGGACCTTTCGGGCACC AACCTGGTGCCCTGCCTGAGGCGCTGCTCCTCCACCTCCCGGCACTGCAGAGCGTCAGCGT GGGCCAGGATGTGCGGTGCCGGCGCCTGGTGCGGGAGGCACCTACCCCCGGAGGCCTGGCT CCAGCCCAAGGTGCCCCTGCACTGCGTAGACACCCGGGAATCTGCTGCCAGGGGCCCCACC ATCTTG**TGA**CAAATGGTGTGGCCCAGGGCCACATAACAGACTGCTGTCCTGGGCTGCCTCAG GTCCCGAGTAACTTATGTTCAATGTGCCAACACCAGTGGGGAGCCCGCAGGCCTATGTGGCA GCGTCACCACAGGAGTTGTGGGCCTAGGAGAGGCTTTGGACCTGGGAGCCACACCTAGGAGC AAAGTCTCACCCCTTTGTCTACGTTGCTTCCCCAAACCATGAGCAGAGGGACTTCGATGCCA AACCAGACTCGGGTCCCCTGCTTCCCTTCCCCACTTATCCCCCAAGTGCCTTCCCTCAT GTTCAGGTCCACTGGGCTGAGTGTCCCCTTGGGCCCATGGCCCAGTCACTCAGGGGCGAGTT TCTTTCTAACATAGCCCTTTCTTTGCCATGAGGCCATGAGGCCCGCTTCATCCTTTTCTAT TTCCCTAGAACCTTAATGGTAGAAGGAATTGCAAAGAATCAAGTCCACCCTTCTCATGTGAC AGATGGGGAAACTGAGGCCTTGAGAAGGAAAAAGGCTAATCTAAGTTCCTGCGGGCAGTGGC ATGACTGGAGCACAGCCTCCTGCCTCCCAGCCCGGACCCAATGCACTTTCTTGTCTCCTCTA ATAAGCCCCACCTCCCGGCTGGGCTCCCCTTGCTGCCTGTTCCCCATTAGCACA GGAGTAGCAGCAGGACAGGCAAGAGCCTCACAAGTGGGACTCTGGGCCTCTGACCAGCT GTGCGCATGGCTAAGTCACTCTGCCCTTCGGAGCCTCTGGAAGCTTAGGGCACATTGGTT CCAGCCTAGCCAGTTTCTCACCCTGGGTTGGGGTCCCCCAGCATCCAGACTGGAAACCTACC CATTTCCCCTGAGCATCCTCTAGATGCTGCCCCAAGGAGTTGCTGCAGTTCTGGAGCCTCA TCTGGCTGGGATCTCCAAGGGGCCTCCTGGATTCAGTCCCCACTGGCCCTGAGCACGACAGC CCTTCTTACCCTCCCAGGAATGCCGTGAAAGGAGACAAGGTCTGCCCGACCCATGTCTATGC TCTACCCCCAGGGCAGCATCTCAGCTTCCGAACCCTGGGCTGTTTCCTTAGTCTTCATTTTA TAAAAGTTGTTGCCTTTTTAACGGAGTGTCACTTTCAACCGGCCTCCCCTACCCCTGCTGGC CGGGGATGGACATGTCATTTGTAAAAGCAGAAAAAGGTTGCATTTGTTCACTTTTGTAAT ATTGTCCTGGGCCTGTGTTGGGGTGTTGGGGGAAGCTGGGCATCAGTGGCCACATGGGCATC AGGGCTGGCCCACAGAGACCCCACAGGGCAGTGAGCTCTGTCTTCCCCCACCTGCCTAGC AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

FIGURE 232

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77652

><subunit 1 of 1, 353 aa, 1 stop

><MW: 37847, pI: 6.80, NX(S/T): 2

MPWPLLLLAVSGAQTTRPCFPGCQCEVETFGLFDSFSLTRVDCSGLGPHIMPVPIPLDTAH LDLSSNRLEMVNESVLAGPGYTTLAGLDLSHNLLTSISPTAFSRLRYLESLDLSHNGLTALP AESFTSSPLSDVNLSHNQLREVSVSAFTTHSQGRALHVDLSHNLIHRLVPHPTRAGLPAPTI QSLNLAWNRLHAVPNLRDLPLRYLSLDGNPLAVIGPGAFAGLGGLTHLSLASLQRLPELAPS GFRELPGLQVLDLSGNPKLNWAGAEVFSGLSSLQELDLSGTNLVPLPEALLLHLPALQSVSV GQDVRCRRLVREGTYPRRPGSSPKVPLHCVDTRESAARGPTIL

Signal peptide:

amino acids 1-16

Transmembrane domains:

amino acids 215-232, 287-304

FIGURE 233

GATGGCGCAGCCACAGCTTCTGTGAGATTCGATTTCTCCCCAGTTCCCCTGTGGGTCTGAGG GGACCAGAAGGGTGAGCTACGTTGGCTTTCTGGAAGGGGAGGCTAT**ATG**CGTCAATTCCCCA GTTCCAGGCCTTACCTGCTGGGCACTAACGGCGGAGCCAGGATGGGGACAGAATAAAGGAGC CACGACCTGTGCCACCAACTCGCACTCAGACTCTGAACTCAGACCTGAAATCTTCTCTTCAC GGGAGGCTTGGCAGTTTTTCTTACTCCTGTGGTCTCCAGATTTCAGGCCTAAGATGAAAGCC TCTAGTCTTGCCTTCAGCCTTCTCTCTGCTGCGTTTTATCTCCTATGGACTCCTTCCACTGG ACTGAAGACACTCAATTTGGGAAGCTGTGTGATCGCCACAAACCTTCAGGAAATACGAAATG GATTTTCTGAGATACGGGGCAGTGTGCAAGCCAAAGATGGAAACATTGACATCAGAATCTTA AGGAGGACTGAGTCTTTGCAAGACACAAAGCCTGCGAATCGATGCTGCCTCCTGCGCCATTT GCTAAGACTCTATCTGGACAGGGTATTTAAAAACTACCAGACCCCTGACCATTATACTCTCC GGAAGATCAGCAGCCTCGCCAATTCCTTTCTTACCATCAAGAAGGACCTCCGGCTCTCTCAT GCCCACATGACATGCCATTGTGGGGAGGAAGCAATGAAGAAATACAGCCAGATTCTGAGTCA CTTTGAAAAGCTGGAACCTCAGGCAGCAGTTGTGAAGGCTTTGGGGGAACTAGACATTCTTC TGCAATGGATGGAGGAGACAGAATAGGAGGAAAGTGATGCTGCTGCTAAGAATATTCGAGGT CAAGAGCTCCAGTCTTCAATACCTGCAGAGGAGGCATGACCCCAAACCACCATCTCTTTACT GTACTAGTCTTGTGCTGGTCACAGTGTATCTTATTTATGCATTACTTGCTTCCTTGCATGAT TGTCTTTATGCATCCCCAATCTTAATTGAGACCATACTTGTATAAGATTTTTGTAATATCTT ATTTTTTTACTTGGACATGAAACTTTAAAAAAATTCACAGATTATATTTATAACCTGACTAG AGCAGGTGATGTATTTTTATACAGTAAAAAAAAAAAACCTTGTAAATTCTAGAAGAGTGGCT AGGGGGGTTATTCATTTGTATTCAACTAAGGACATATTTACTCATGCTGATGCTCTGTGAGA TATTTGAAATTGAACCAATGACTACTTAGGATGGGTTGTGGAATAAGTTTTGATGTGGAATT GCACATCTACCTTACAATTACTGACCATCCCCAGTAGACTCCCCAGTCCCATAATTGTGTAT CTTCCAGCCAGGAATCCTACACGGCCAGCATGTATTTCTACAAATAAAGTTTTCTTTGCATA ССАААААААААААААА

FIGURE 234

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA83500

><subunit 1 of 1, 261 aa, 1 stop

><MW: 29667, pI: 8.76, NX(S/T): 0

MRQFPKTSFDISPEMSFSIYSLQVPAVPGLTCWALTAEPGWGQNKGATTCATNSHSDSELRP EIFSSREAWQFFLLLWSPDFRPKMKASSLAFSLLSAAFYLLWTPSTGLKTLNLGSCVIATNL QEIRNGFSEIRGSVQAKDGNIDIRILRRTESLQDTKPANRCCLLRHLLRLYLDRVFKNYQTP DHYTLRKISSLANSFLTIKKDLRLSHAHMTCHCGEEAMKKYSQILSHFEKLEPQAAVVKALG ELDILLQWMEETE

Important features of the protein:

Signal peptide:

amino acids 1-42

cAMP- and cGMP-dependent protein kinase phosphorylation sites. amino acids 192-195, 225-228

N-myristoylation sites.

amino acids 42-47, 46-51, 136-141

FIGURE 235

 $\verb|CCGTTATCGTCTTGCGCTACTGCTGA| \textbf{ATG} \\ \texttt{TCCGTCCCGGAGGAGGAGGAGGAGGCTTTTGCCG} \\$ CTGACCCAGAGATGGCCCCGAGCGAGCAAATTCCTACTGTCCGGCTGCGCGGCTACCGTGGC CGAGCTAGCAACCTTTCCCCTGGATCTCACAAAAACTCGACTCCAAATGCAAGGAGAAGCAG CTCTTGCTCGGTTGGGAGACGGTGCAAGAGAATCTGCCCCCTATAGGGGAATGGTGCGCACA GCCCTAGGGATCATTGAAGAGGAAGGCTTTCTAAAGCTTTGGCAAGGAGTGACACCCGCCAT TTACAGACACGTAGTGTATTCTGGAGGTCGAATGGTCACATATGAACATCTCCGAGAGGTTG TGTTTGGCAAAAGTGAAGATGAGCATTATCCCCTTTGGAAATCAGTCATTGGAGGGATGATG GCTGGTGTTATTGGCCAGTTTTTAGCCAATCCAACTGACCTAGTGAAGGTTCAGATGCAAAT GGAAGGAAAAAGGAAACTGGAAGGAAAACCATTGCGATTTCGTGGTGTACATCATGCATTTG CAAAAATCTTAGCTGAAGGAGGAATACGAGGGCTTTGGGCAGGCTGGGTACCCAATATACAA AGAGCAGCACTGGTGAATATGGGAGATTTAACCACTTATGATACAGTGAAACACTACTTGGT ATTGAATACACCACTTGAGGACAATATCATGACTCACGGTTTATCAAGTTTATGTTCTGGAC TGGTAGCTTCTATTCTGGGAACACCAGCCGATGTCATCAAAAGCAGAATAATGAATCAACCA TCAAGGTGAAGGATTCATGAGTCTATATAAAGGCTTTTTACCATCTTGGCTGAGAATGACCC TTTTAA

FIGURE 236

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77568

><subunit 1 of 1, 323 aa, 1 stop

><MW: 36064, pI: 9.33, NX(S/T): 1

MSVPEEERLLPLTQRWPRASKFLLSGCAATVAELATFPLDLTKTRLQMQGEAALARLGDGA RESAPYRGMVRTALGIIEEEGFLKLWQGVTPAIYRHVVYSGGRMVTYEHLREVVFGKSEDEH YPLWKSVIGGMMAGVIGQFLANPTDLVKVQMQMEGKRKLEGKPLRFRGVHHAFAKILAEGGI RGLWAGWVPNIQRAALVNMGDLTTYDTVKHYLVLNTPLEDNIMTHGLSSLCSGLVASILGTP ADVIKSRIMNQPRDKQGRGLLYKSSTDCLIQAVQGEGFMSLYKGFLPSWLRMTPWSMVFWLT YEKIREMSGVSPF

Transmembrane domains:

amino acids 25-38, 130-147, 233-248

FIGURE 237

GCCTGAAGTCGGCGTGGGCGTTTGAGGAAGCTGGGATACAGCATTTAATGAAAAATTTATGC TTAAGAAGTAAAA**ATG**GCAGGCTTCCTAGATAATTTTCGTTGGCCAGAATGTGAATGTATTG ACTGGAGTGAGAAAAATGCTGTGGCATCTGTTGTCGCAGGTATATTGTTTTTTACAGGC TGGTGGATAATGATTGATGCAGCTGTGGTGTATCCTAAGCCAGAACAGTTGAACCATGCCTT TCACACATGTGTGTATTTTCCACATTGGCTTTCTTCATGATAAATGCTGTATCCAATGCTC AGGTGAGAGGTGATAGCTATGAAAGCGGCTGTTTAGGAAGAACAGGTGCTCGAGTTTGGCTT TTCATTGGTTTCATGTTGATGTTTTGGGTCACTTATTGCTTCCATGTGGATTCTTTTTTGGTGC ATATGTTACCCAAAATACTGATGTTTATCCGGGACTAGCTGTGTTTTTTCAAAATGCACTTA TATTTTTAGCACTCTGATCTACAAATTTGGAAGAACCGAAGAGCTATGGACCTGAGATCAC TTCTTAAGTCACATTTTCCTTTTGTTATATTCTGTTTGTAGATAGGTTTTTTATCTCTCAGT ACACATTGCCAAATGGAGTAGATTGTACATTAAATGTTTTGTTTCTTTACATTTTTATGTTC TGAGTTTTGAAATAGTTTTATGAAATTTCTTTATTTTTCATTGCATAGACTGTTAATATGTA TATAATACAAGACTATATGAATTGGATAATGAGTATCAGTTTTTTATTCCTGAGATTTAGAA CTTGATCTACTCCCTGAGCCAGGGTTACATCATCTTGTCATTTTAGAAGTAACCACTCTTGT CTCTCTGGCTGGCACGGTGGCTCATGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGG CCGATTGCTTGAGGTCAAGTGTTTGAGACCAGCCTGGCCAACATGGCGAAACCCCATCTACT AAAAATACAAAATTAGCCAGGCATGGTGGTGGGTGCCTGTAATCCCAGCTACCTGGGAGGC TGAGGCAGGAGAATCGCTTGAACCCGGGGGGCAGAGGTTGCAGTGAGCTGAGTTTGCGCCAC TCTGATTTCTGAAGATGTACAAAAAAATATAGCTTCATATATCTGGAATGAGCACTGAGCCA TAAAAGGTTTTCAGCAAGTTGTAACTTATTTTGGCCTAAAAATGAGGTTTTTTTGGTAAAGA AAAAATATTTGTTCTTATGTATTGAAGAAGTGTACTTTTATATAATGATTTTTTAAATGCCC AAAGGACTAGTTTGAAAGCTTCTTTTAAAAAGAATTCCTCTAATATGACTTTATGTGAGAA

FIGURE 238

MAGFLDNFRWPECECIDWSERRNAVASVVAGILFFTGWWIMIDAAVVYPKPEQLNHAFHTCG VFSTLAFFMINAVSNAQVRGDSYESGCLGRTGARVWLFIGFMLMFGSLIASMWILFGAYVTQ NTDVYPGLAVFFONALIFFSTLIYKFGRTEELWT

Important features:

Signal peptide:

amino acids 1-44

Transmembrane domains:

amino acids 23-42 (type II), 60-80, 97-117, 128-148

FIGURE 239

GTTGATGGCAAACTTCCTCAAAGGAGGGGCAGAGCCTGCGCAGGGCAGGAGCAGCTGGCCCA CTGGCGGCCCGCAACACTCCGTCTCACCCTCTGGGCCCACTGCATCTAGAGGAGGGCCGTCT GTGAGGCCACTACCCCTCCAGCAACTGGGAGGTGGGACTGTCAGAAGCTGGCCCAGGGTGGT GGTCAGCTGGGTCAGGGACCTACGGCACCTGCTGGACCACCTCGCCTTCTCCATCGAAGCAG GGAAGTGGGAGCCTCGAGCCCTCGGGTGGAAGCTGACCCCAAGCCACCCTTCACCTGGACAG GATGAGAGTGTCAGGTGTGCTTCGCCTCCTGGCCCTCATCTTTGCCATAGTCACGACATGGA GCCTCGCCCACCAAGGAGATCCAGGTTAAAAAGTACAAGTGTGGCCTCATCAAGCCCTGCCC AGCCAACTACTTTGCGTTTAAAATCTGCAGTGGGGCCGCCAACGTCGTGGGCCCTACTATGT GCTTTGAAGACCGCATGATCATGAGTCCTGTGAAAAACAATGTGGGCAGAGGCCTAAACATC GCCCTGGTGAATGGAACCACGGGAGCTGTGCTGGGACAGAAGGCATTTGACATGTACTCTGG AGATGTTATGCACCTAGTGAAATTCCTTAAAGAAATTCCGGGGGGTGCACTGGTGCTGGTGG CCTCCTACGACGATCCAGGGACCAAAATGAACGATGAAAGCAGGAAACTCTTCTCTGACTTG GGGAGTTCCTACGCAAAACAACTGGGCTTCCGGGACAGCTGGGTCTTCATAGGAGCCAAAGA AGGGATGGCCAGAGCTGCTGGAGATGGAGGGCTGCATGCCCCCGAAGCCATTTTAGGGTGGC TGTGTCGCGCCTCTCCTCCTCGGAAACAGAACCCTCCCACAGCACATCCTACCCGGAAGACC AGCCTCAGAGGGTCCTTCTGGAACCAGCTGTCTGTGGAGAAATGGGGTGCTTTCGTCAGGG ACTGCTGACGGCTGGTCCTGAGGAAGGACAAACTGCCCAGACTTGAGCCCAATTAAATTTTA TTTTTGCTGGTTTTGAAAAAAAAAAAAAAAAAAAAA

FIGURE 240

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA59814</pre>

<subunit 1 of 1, 224 aa, 1 stop

<MW: 24963, pI: 9.64, NX(S/T): 1

MRVSGVLRLLALIFAIVTTWMFIRSYMSFSMKTIRLPRWLAASPTKEIQVKKYKCGLIKPCP ANYFAFKICSGAANVVGPTMCFEDRMIMSPVKNNVGRGLNIALVNGTTGAVLGQKAFDMYSG DVMHLVKFLKEIPGGALVLVASYDDPGTKMNDESRKLFSDLGSSYAKQLGFRDSWVFIGAKD LRGKSPFEOFLKNSPDTNKYEGWPELLEMEGCMPPKPF

Important features:

Signal peptide:

amino acids 1-15

ATP/GTP-binding site motif A (P-loop).

amino acids 184-191

N-glycosylation site.

amino acids 107-110

FIGURE 241

GAGACTGCAGAGGGAGATAAAGAGAGAGGGCAAAGAGCCAGCAAGAGATTTGTCCTGGGGAT CCAGAAACCCATGATACCCTACTGAACACCGAATCCCCTGGAAGCCCACAGAGACAGAGAGACA TCACTCCTCCCTCCCTCTCTCTCTCCCCTGTCCTAGTCCTAGTCCTCAAATTCCCAGTCCC CTGCACCCCTTCCTGGGACACTATGTTGTTCTCCGCCCTCCTGCTGGAGGTGATTTGGATCC TGGCTGCAGATGGGGGTCAACACTGGACGTATGAGGGCCCACATGGTCAGGACCATTGGCCA GACATTTGACCCTGATTTGCCTGCTCTGCAGCCCCACGGATATGACCAGCCTGGCACCGAGC GGTGGACTTCCCCGAAAATATGTAGCTGCCCAGCTCCACCTGCACTGGGGTCAGAAAGGATC CCCAGGGGGGTCAGAACACCAGATCAACAGTGAAGCCACATTTGCAGAGCTCCACATTGTAC ATTATGACTCTGATTCCTATGACAGCTTGAGTGAGGCTTGCTGAGAGGCCTCAGGGCCTGGCT GTCCTGGGCATCCTAATTGAGGTGGGTGAGACTAAGAATATAGCTTATGAACACATTCTGAG TCACTTGCATGAAGTCAGGCATAAAGATCAGAAGACCTCAGTGCCTCCCTTCAACCTAAGAG TGCTACCAGAGTGTGCTCTGGACAGTTTTTTATAGAAGGTCCCAGATTTCAATGGAACAGCT GGAAAAGCTTCAGGGGACATTGTTCTCCACAGAAGAGGAGCCCTCTAAGCTTCTGGTACAGA ACTACCGAGCCCTTCAGCCTCTCAATCAGCGCATGGTCTTTGCTTCTTTCATCCAAGCAGGA CCTTCTCCTGGCTGTTTATTTCATTGCTAGAAAGATTCGGAAGAAGAGGCTGGAAAACCGAA AGAGTGTGGTCTTCACCTCAGCACAAGCCACGACTGAGGCATAAATTCCTTCTCAGATACCA TGGATGTGGATGACTTCCCTTCATGCCTATCAGGAAGCCTCTAAAATGGGGTGTAGGATCTG GCCAGAAACACTGTAGGAGTAGTAAGCAGATGTCCTCCTTCCCCTGGACATCTCTTAGAGAG GAATGGACCCAGGCTGTCATTCCAGGAAGAACTGCAGAGCCTTCAGCCTCTCCAAACATGTA GGAGGAAATGAGGAAATCGCTGTTGTTAATGCAGAGANCAAACTCTGTTTAGTTGCAGGG GAAGTTTGGGATATACCCCAAAGTCCTCTACCCCCTCACTTTTATGGCCCCTTTCCCTAGATA TACTGCGGGATCTCTCCTTAGGATAAAGAGTTGCTGTTGAAGTTGTATATTTTTTGATCAATA TATTTGGAAATTAAAGTTTCTGACTTT

FIGURE 242

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62812

><subunit 1 of 1, 337 aa, 1 stop

><MW: 37668, pI: 6.27, NX(S/T): 1

MLFSALLLEVIWILAADGGQHWTYEGPHGQDHWPASYPECGNNAQSPIDIQTDSVTFDPDLP
ALQPHGYDQPGTEPLDLHNNGHTVQLSLPSTLYLGGLPRKYVAAQLHLHWGQKGSPGGSEHQ
INSEATFAELHIVHYDSDSYDSLSEAAERPQGLAVLGILIEVGETKNIAYEHILSHLHEVRH
KDQKTSVPPFNLRELLPKQLGQYFRYNGSLTTPPCYQSVLWTVFYRRSQISMEQLEKLQGTL
FSTEEEPSKLLVQNYRALQPLNQRMVFASFIQAGSSYTTGEMLSLGVGILVGCLCLLLAVYF
IARKIRKKRLENRKSVVFTSAQATTEA

Important features of the protein:

Signal peptide:

amino acids 1-15

Transmembrane domain:

amino acids 291-310

N-glycosylation site.

amino acids 213-216

Eukaryotic-type carbonic anhydrases proteins

amino acids 197-245, 104-140, 22-69

FIGURE 243

AATTTTTCACCAGAGTAAACTTGAGAAACCAACTGGACCTTGAGTATTGTACATTTTGCCTC GTGGACCCAAAGGTAGCAATCTGAAACATGAGGAGTACGATTCTACTGTTTTGTCTTCTAGG CGGATCAGGGAACACTACCAAACCAACAGCAGTCAAATCAGGTCTTTCCTTCTTTAAGTCTG ATACCATTAACACAGATGCTCACACTGGGGCCAGATCTGCATCTGTTAAATCCTGCTGCAGG AATGACACCTGGTACCCAGACCCACCCATTGACCCTGGGAGGGTTGAATGTACAACAGCAAC TGCACCCACATGTGTTACCAATTTTTGTCACACACTTGGAGCCCAGGGCACTATCCTAAGC TCAGAGGAATTGCCACAAATCTTCACGAGCCTCATCATCCATTCCTTGTTCCCGGGAGGCAT CCTGCCCACCAGTCAGGCAGGGGCTAATCCAGATGTCCAGGATGGAAGCCTTCCAGCAGGAG GAGCAGGTGTAAATCCTGCCACCCAGGGAACCCCAGCAGCCGCCTCCCAACTCCCAGTGGC ACAGATGACGACTTTGCAGTGACCACCCCTGCAGGCATCCAAAGGAGCACACATGCCATCGA GGAAGCCACCACAGAATCAGCAAATGGAATTCAGTAAGCTGTTTCAAATTTTTTCAACTAAG CTGCCTCGAATTTGGTGATACATGTGAATCTTTATCATTGATTATATTATGGAATAGATTGA GACACATTGGATAGTCTTAGAAGAAATTAATTCTTAATTTACCTGAAAATATTCTTGAAATT TCAGAAAATATGTTCTATGTAGAGAATCCCAACTTTTAAAAACAATAATTCAATGGATAAAT CTGTCTTTGAAATATAACATTATGCTGCCTGGATGATATGCATATTAAAACATATTTGGAAA ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

FIGURE 244

 $\label{thm:mastillfcligstrslpqlkpalglpptklapp} MRSTILLFCLIGSTRSLpQLKPALGLPPTKLAPPQGTLPNQQQSNQVFPSLSLIPLTQM \\ LTLGPDLHLLNPAAGMTPGTQTHPLTLGGLNVQQQLHPHVLPIFVTQLGAQGTILSSEE \\ LPQIFTSLIIHSLFPGGILPTSQAGANPDVQDGSLPAGGAGVNPATQGTPAGRLPTPSG \\ TDDDFAVTTPAGIQRSTHAIEEATTESANGIQ$

Signal peptide:

amino acids 1-16

FIGURE 245

GGAGAGAGGCGCGGGTGAAAGGCGCATTGATGCAGCCTGCGGCGCCTCGGAGCGCGGCG GAGCCAGACGCTGACCACGTTCCTCTCGGTCTCCTCCGCCTCCAGCTCCGCGCTGCCCG TGCTGCTCCTGCTGCAGCTGCCCGCCGCCGTCGAGCGCCTCTGAGATCCCCAAGGGGAAG CAAAAGGCGCAGCTCCGGCAGAGGGAGGTGGTGGACCTGTATAATGGAATGTGCTTACAAGG GCCAGCAGGAGTGCCTGGTCGAGACGGGAGCCCTGGGGCCAATGTTATTCCGGGTACACCTG GGATCCCAGGTCGGGATGGATTCAAAGGAGAAAAGGGGGGAATGTCTGAGGGAAAGCTTTGAG GAGTCCTGGACACCCAACTACAAGCAGTGTTCATGGAGTTCATTGAATTATGGCATAGATCT TGGGAAAATTGCGGAGTGTACATTTACAAAGATGCGTTCAAATAGTGCTCTAAGAGTTTTGT TCAGTGGCTCACTTCGGCTAAAATGCAGAAATGCATGCTGTCAGCGTTGGTATTTCACATTC CCCTGAAATGAATTCAACAATTAATATTCATCGCACTTCTTCTGTGGAAGGACTTTGTGAAG GAATTGGTGCTGGATTAGTGGATGTTGCTATCTGGGTTGGCACTTGTTCAGATTACCCAAAA GGAGATGCTTCTACTGGATGGAATTCAGTTTCTCGCATCATTATTGAAGAACTACCAAAATA **A**ATGCTTTAATTTTCATTTGCTACCTCTTTTTTTATTATGCCTTGGAATGGTTCACTTAAAT GACATTTTAAATAAGTTTATGTATACATCTGAATGAAAAGCAAAGCTAAATATGTTTACAGA GGTTTCAATATTTTTTTTTAGTTGGTTAGAATACTTTCTTCATAGTCACATTCTCTCAACCTA AAAAATTATTTCCAACA

FIGURE 246

></usr/segdb2/sst/DNA/Dnaseqs.min/ss.DNA76393

><subunit 1 of 1, 243 aa, 1 stop

><MW: 26266, pI: 8.43, NX(S/T): 1

MRPQGPAASPQRLRGLLLLLLQLPAPSSASEIPKGKQKAQLRQREVVDLYNGMCLQGPAGV PGRDGSPGANVIPGTPGIPGRDGFKGEKGECLRESFEESWTPNYKQCSWSSLNYGIDLGKIA ECTFTKMRSNSALRVLFSGSLRLKCRNACCQRWYFTFNGAECSGPLPIEAIIYLDQGSPEMN STINIHRTSSVEGLCEGIGAGLVDVAIWVGTCSDYPKGDASTGWNSVSRIIIEELPK

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 195-217