МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э.Баумана

Отчет по лабораторной работе №4 по курсу «Технологии машинного обучения»

Линейные модели, SVM и деревья решений.

Подготовил Ионов С.А. ИУ5-62Б

1) Описание задания

- 1. Выберите набор данных (датасет) для решения задачи классификации или регрессии.
- 2. В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.
- 3. С использованием метода train_test_split разделите выборку на обучающую и тестовую.
- 4. Обучите следующие модели:
 - о одну из линейных моделей;
 - SVM;
 - о дерево решений.
- 5. Оцените качество моделей с помощью двух подходящих для задачи метрик. Сравните качество полученных моделей

Дополнительные задания:

- Проведите эксперименты с важностью признаков в дереве решений.
- Визуализируйте дерево решений.

2) Текст программы

import pandas as pd

from sklearn.preprocessing import LabelEncoder, StandardScaler

from sklearn.model_selection import train_test_split

import seaborn as sns

import matplotlib.pyplot as plt

%matplotlib inline

sns.set(style="ticks")

import numpy as np

from typing import Dict, Tuple

from sklearn.metrics import accuracy_score, balanced_accuracy_score

from sklearn.metrics import confusion_matrix

from sklearn.metrics import classification_report

from sklearn.metrics import plot_roc_curve, plot_precision_recall_curve

from sklearn.model_selection import cross_validate, KFold, StratifiedKFold

from sklearn.model_selection import GridSearchCV, RandomizedSearchCV

from scipy.stats import uniform, randint

from sklearn.model_selection import validation_curve, learning_curve

from sklearn.linear_model import LogisticRegression

from sklearn.svm import SVC

from sklearn.tree import DecisionTreeClassifier, export graphviz

import graphviz

import pydotplus

0) Подготовка

```
data = pd.read_csv('data/BankChurners.csv', sep=',')
data.drop(columns=data.columns[[data.shape[1]-2, data.shape[1]-1]], inplace=True)
data.head()
data.info()
data.duplicated().sum()
col_obj = data.dtypes[data.dtypes==object].index.values.tolist()
for i in enumerate(col obj):
  uniq_obj = data[i[1]].unique()
  print(f'{i[0]+1}. {i[1]}: {uniq_obj} | КОЛ-ВО: {len(uniq_obj)}')
le = LabelEncoder()
data['Gender'] = le.fit_transform(data['Gender'])
for i in range(2):
  print(f'{i}: {le.inverse_transform([i]).tolist()[0]}')
mapping = {'Existing Customer' : 0, 'Attrited Customer' : 1}
data['Attrition_Flag'] = data['Attrition_Flag'].apply(lambda x: mapping[x])
data_copy = data
data_copy = data_copy.apply(LabelEncoder().fit_transform)
col_num = data.dtypes[data.dtypes!=object].index.values.tolist()
col_num.remove('Attrition_Flag')
col_num.remove('Gender')
se = StandardScaler()
data[col_num] = se.fit_transform(data[col_num])
data = pd.get dummies(data, drop first=True)
plt.figure(figsize=(10,10))
g = sns.heatmap(data_copy.corr())
data_copy.corr()['Avg_Open_To_Buy'].sort_values(ascending=False)
data_copy.corr()['Credit_Limit'].sort_values(ascending=False)
data_copy.corr()['Total_Trans_Amt'].sort_values(ascending=False)
data_copy.corr()['Total_Trans_Ct'].sort_values(ascending=False)
data_copy.corr()['Attrition_Flag'].sort_values(ascending=False)
dataD_copy = data_copy.drop(columns=['Avg_Open_To_Buy'])
dataD = data.drop(columns=['Avg_Open_To_Buy'])
data_copy.drop(columns=['Avg_Open_To_Buy', 'Total_Trans_Amt'], inplace=True)
data.drop(columns=['Avg_Open_To_Buy', 'Total_Trans_Amt'], inplace=True)
plt.figure(figsize=(10,10))
g = sns.heatmap(data_copy.corr())
def class_proportions(array: np.ndarray) -> Dict[int, Tuple[int, float]]:
  Вычисляет пропорции классов
  array - массив, содержащий метки классов
  labels, counts = np.unique(array, return counts=True)
  counts_perc = counts/array.size
  res = dict()
```

```
for label, count2 in zip(labels, zip(counts, counts_perc)):
    res[label] = count2
  return res
def print_class_proportions(array: np.ndarray):
  Вывод пропорций классов
  proportions = class_proportions(array)
  if len(proportions)>0:
    print('Метка \t Количество \t Процент встречаемости')
  for i in proportions:
    val, val_perc = proportions[i]
    val_perc_100 = round(val_perc * 100, 2)
    print('{} \t {} \t \t {}%'.format(i, val, val_perc_100))
from imblearn.under_sampling import RandomUnderSampler
TEST_SIZE = 0.3
RANDOM STATE = 0
SPLITS_DEFAULT = 5
CROSS_VAL = StratifiedKFold(n_splits=SPLITS_DEFAULT)
rus = RandomUnderSampler(random state=RANDOM STATE)
data X, data y = rus.fit resample(data.drop(columns='Attrition Flag'), data['Attrition Flag'])
dataD_X, dataD_y = rus.fit_resample(dataD.drop(columns='Attrition_Flag'),
dataD['Attrition Flag'])
data_X_train, data_X_test, data_y_train, data_y_test = train_test_split(data_X, \
                                            data y, test size=TEST SIZE, \
                                            random_state=RANDOM_STATE)
dataD_X_train, dataD_X_test, dataD_y_train, dataD_y_test = train_test_split(dataD_X, \
                                            dataD_y, test_size=TEST_SIZE, \
                                            random_state=RANDOM_STATE)
print_class_proportions(data_y_train)
print_class_proportions(data_y_test)
def print_metrics(X_train, Y_train, X_test, Y_test, clf):
  clf.fit(X_train, Y_train)
  target = clf.predict(X_test)
  ret = balanced_accuracy_score(Y_test, target)
  print(f'Сбалансированная оценка: {ret}')
  plot_roc_curve(clf, X_test, Y_test)
  plt.show()
  print(f'Maтрица ошибок:\n {confusion_matrix(Y_test, target)}')
  print(classification_report(Y_test, target, target_names=['Existing Customer', 'Attrited
Customer']))
```

```
def print_gridResults(grid, p):
  print(f'Подобранный параметр: {grid.best_params_}')
  print(f'Oценка при подобранном параметре: {grid.best_score_}')
  return [grid.best_params_[p], grid.best_score_]
def get_optimum(clf, dist, n_iter, data X_train, data y_train, scoring='balanced accuracy'):
  Random_grid = RandomizedSearchCV(clf, dist, n_iter=n_iter, \
                      scoring=scoring, cv=CROSS_VAL, random_state=RANDOM_STATE)
  Random grid.fit(data X train, data y train)
  res = print_gridResults(Random_grid, list(dist.keys())[0])
  return res
1) Logistic Regression
LogReg_param = {"C":uniform(loc=0, scale=100)} # равномерное распределение между 0 и
linearD = get_optimum(LogisticRegression(max_iter=10000), LogReg_param, 20,
dataD_X_train, dataD_y_train)
LRd = print_metrics(dataD_X_train, dataD_y_train, dataD_X_test, dataD_y_test,
LogisticRegression(C=linearD[0], max_iter=10000))
linear = get_optimum(LogisticRegression(max_iter=10000), LogReg_param, 20, data_X_train,
data y train)
LR = print_metrics(data_X_train, data_y_train, data_X_test, data_y_test,
LogisticRegression(C=linear[0], max_iter=10000))
2) SVM
SVM param = {"C":uniform(loc=0, scale=100)} # равномерное распределение между 0 и
100
svmD = get_optimum(SVC(random_state=RANDOM_STATE), SVM_param, 3, dataD_X_train,
dataD y train)
SVMd = print_metrics(dataD_X_train, dataD_y_train, dataD_X_test, dataD_y_test,
SVC(random_state=RANDOM_STATE, C=svmD[0]))
svm = get_optimum(SVC(random_state=RANDOM_STATE), SVM_param, 3, data_X_train,
data_y_train)
SVM = print_metrics(data_X_train, data_y_train, data_X_test, data_y_test,
SVC(random_state=RANDOM_STATE, C=svm[0]))
3) Дерево решений
dataL_X, dataL_y = rus.fit_resample(data_copy.drop(columns='Attrition_Flag'),
data copy['Attrition Flag'])
dataLD_X, dataLD_y = rus.fit_resample(dataD_copy.drop(columns='Attrition_Flag'),
dataD_copy['Attrition_Flag'])
dataL_X_train, dataL_X_test, dataL_y_train, dataL_y_test = train_test_split(dataL_X, dataL_y,
test_size=TEST_SIZE, \
```

random_state=RANDOM_STATE)

```
dataLD_X_train, dataLD_X_test, dataLD_y_train, dataLD_y_test = train_test_split(dataLD_X,
dataLD_y, test_size=TEST_SIZE, \
                                          random_state=RANDOM_STATE)
Tree_param = {"max_depth":randint(1, 10)} # целочисленное распределение между 1 и 10
treeD = get_optimum(DecisionTreeClassifier(random_state=RANDOM_STATE), Tree_param,
10, dataLD_X_train, dataLD_y_train)
DTd = print_metrics(dataLD_X_train, dataLD_y_train, dataLD_X_test, dataLD_y_test,
DecisionTreeClassifier(max_depth=treeD[0], \
                                                        random_state=RANDOM_STATE))
tr_clfD = DecisionTreeClassifier(max_depth=treeD[0], random_state=RANDOM_STATE)
tr_clfD.fit(dataLD_X_train, dataLD_y_train)
dot_data = export_graphviz(tr_clfD, out_file=None,
                feature_names=dataLD_X_train.columns.tolist(),
                class_names=['Existing Customer', 'Attrited Customer'],
                filled=True, rounded=True, special_characters=True)
graph = graphviz.Source(dot_data)
graph
def show_feature_importance(importance, col_names):
pd.DataFrame({'feature_names':np.array(col_names),'feature_importance':np.array(importance
  data.sort_values(by=['feature_importance'], ascending=False,inplace=True)
  plt.figure(figsize=(10,7))
  sns.barplot(x=data['feature_importance'], y=data['feature_names'])
  plt.title('Feature importance using DecisionTreeClassifier')
  plt.xlabel('importance')
  plt.ylabel('name')
show_feature_importance(tr_clfD.feature_importances_, dataLD_X_train.columns.tolist())
tree = get optimum(DecisionTreeClassifier(random state=RANDOM STATE), Tree param,
10, dataL_X_train, dataL_y_train)
DT = print_metrics(dataL_X_train, dataL_y_train, dataL_X_test, dataL_y_test,
DecisionTreeClassifier(max_depth=tree[0], \
                                                        random state=RANDOM STATE))
tr_clf = DecisionTreeClassifier(max_depth=tree[0], random_state=RANDOM_STATE)
tr_clf.fit(dataL_X_train, dataL_y_train)
dot_data = export_graphviz(tr_clf, out_file=None,
                feature_names=dataL_X_train.columns.tolist(),
                class_names=['Existing Customer', 'Attrited Customer'],
                filled=True, rounded=True, special_characters=True)
graph = graphviz.Source(dot data)
show_feature_importance(tr_clf.feature_importances_, dataL_X_train.columns.tolist())
4) Кривые обучения
```

def plot_learning_curve(data_X, data_y, clf):

```
train_sizes, train_scores, test_scores = learning_curve(estimator=clf, X=data_X, y=data_y,
                                    train_sizes=np.linspace(0.1, 1.0, 10), cv=5)
  train_mean = np.mean(train_scores, axis=1)
  train_std = np.std(train_scores, axis=1)
  test_mean = np.mean(test_scores, axis=1)
  test_std = np.std(test_scores, axis=1)
  plt.figure(figsize=(7,5))
  plt.plot(train_sizes, train_mean, color='blue', marker='o', markersize=5,
label=f'тренировочная верность')
  plt.fill_between(train_sizes, train_mean+train_std, train_mean-train_std, alpha=0.15,
color='blue')
  plt.plot(train_sizes, test_mean, color='green', linestyle='--', marker='s', markersize=5,
        label=f'проверочная верность')
  plt.fill_between(train_sizes, test_mean+test_std, test_mean-test_std, alpha=0.15,
color='green')
  plt.grid()
  plt.legend(loc='upper right')
  plt.xlabel('Число тренировочных образцов')
  plt.ylabel('Верность')
  plt.show()
plot_learning_curve(dataLD_X_train, dataLD_y_train, tr_clfD)
plot_learning_curve(dataL_X_train, dataL_y_train, tr_clf)
lst_label_cv = ['LR', 'SVM', 'DT']
dc_score = {'Удален 1 признак':[LRd, SVMd, DTd],\
      'Удалено 2 признака':[LR, SVM, DT]}
pd.DataFrame(dc_score, index=lst_label_cv)
plot_roc_curve(LogisticRegression(C=linearD[0], max_iter=10000).fit(dataD_X_train,
dataD_y_train), \
         dataD_X_test, dataD_y_test)
plot_roc_curve(SVC(random_state=RANDOM_STATE, C=svmD[0]).fit(dataD_X_train,
dataD_y_train), \
         dataD_X_test, dataD_y_test)
plot_roc_curve(DecisionTreeClassifier(max_depth=treeD[0],
random_state=RANDOM_STATE).fit(dataLD_X_train, \
         dataLD_y_train), dataLD_X_test, dataLD_y_test)
plot_roc_curve(LogisticRegression(C=linear[0], max_iter=10000).fit(data_X_train,
data_y_train), \
         data_X_test, data_y_test)
plot_roc_curve(SVC(random_state=RANDOM_STATE, C=svm[0]).fit(data_X_train,
data_y_train), data_X_test, data_y_test)
plot_roc_curve(DecisionTreeClassifier(max_depth=tree[0],
random_state=RANDOM_STATE).fit(dataL_X_train, \
```

3) Экранные формы с примерами выполнения программы

1. Подготовка

Для лабораторной работы был выбран датасет <u>Credit Card customers</u>.
 Будем решать задачу классификации для предсказания оттока клиентов в банке, выдающем кредитные карты. Первые 5 строк и несколько столбцов набора данных имеют вид:

	CLIENTNUM	Attrition_Flag	Customer_Age	Gender	Dependent_count	Education_Level	Marital_Status	Income_Category	Card_Category	Months_on_book
0	768805383	Existing Customer	45	М	3	High School	Married	60 <i>K</i> -80K	Blue	39
1	818770008	Existing Customer	49	F	5	Graduate	Single	Less than \$40K	Blue	44
2	713982108	Existing Customer	51	М	3	Graduate	Married	80 <i>K</i> -120K	Blue	36
3	769911858	Existing Customer	40	F	4	High School	Unknown	Less than \$40K	Blue	34
4	709106358	Existing Customer	40	М	3	Uneducated	Married	60 <i>K</i> -80K	Blue	21

5 rows × 21 columns

• Состав признаков в датасете:

Уникальные значения категориальных признаков:

```
1. Attrition_Flag: ['Existing Customer' 'Attrited Customer'] | КОЛ-ВО: 2
2. Gender: ['M' 'F'] | КОЛ-ВО: 2
3. Education_Level: ['High School' 'Graduate' 'Uneducated' 'Unknown' 'College' 'Post-Graduate' 'Doctorate'] | КОЛ-ВО: 7
4. Marital_Status: ['Married' 'Single' 'Unknown' 'Divorced'] | КОЛ-ВО: 4
5. Income_Category: ['$60K - $80K' 'Less than $40K' '$80K - $120K' '$40K - $60K' '$120K +' 'Unknown'] | КОЛ-ВО: 6
6. Card Category: ['Blue' 'Gold' 'Silver' 'Platinum'] | КОЛ-ВО: 4
```

Целевая переменная:

Нашей целевой переменной является Attrition Flag: Existing Customer - ещё клиент, Attrited Customer - ушедший клиент

• Далее была произведена проверка наличия случайных ошибок в категориях датасета:

```
    Attrition_Flag: ['Existing Customer' 'Attrited Customer'] | КОЛ-ВО: 2
    Gender: ['M' 'F'] | КОЛ-ВО: 2
    Education_Level: ['High School' 'Graduate' 'Uneducated' 'Unknown' 'College' 'Post-Graduate' 'Doctorate'] | КОЛ-ВО: 7
    Marital_Status: ['Married' 'Single' 'Unknown' 'Divorced'] | КОЛ-ВО: 4
    Income_Category: ['$60K - $80K' 'Less than $40K' '$80K - $120K' '$40K - $60K' '$120K +' 'Unknown'] | КОЛ-ВО: 6
    Card_Category: ['Blue' 'Gold' 'Silver' 'Platinum'] | КОЛ-ВО: 4
```

- Нашей целевой переменной является "Attrition_Flag": Existing Customer
 ещё клиент, Attrited Customer ушедший клиент. Кодируем: 0 –
 Existing Customer, 1 Attrited Customer.
- Далее копируем DataFrame с идеей применения метода «Label Encoding», после чего использования его в классификаторе Decision Tree. В другом DataFrame для всех категориальных признаков был применен метод «one-hot encoding» для того, чтобы использовать в классификаторах Logistic Regression и SVM.
- Также выполняем масштабирование признаков второго DataFrame методом «Standard Scaler» с идеей получения более хороших оценок ассигасу в SVM.
- Из корреляционной матрицы видим сильную корреляцию между отдельными признаками: «Credit_Limit» и «Avg_Open_To_Buy», а также "Total_Trans_Amt" и "Total_Trans_Ct".

• Корреляция признаков с целевым:

```
Attrition Flag
                            1.000000
Contacts Count 12 mon
                            0.204491
Months_Inactive_12_mon
                            0.152449
Dependent count
                            0.018991
Marital_Status
                            0.018597
Customer Age
                            0.018227
Income Category
                            0.017584
Months on book
                            0.013687
Avg_Open_To_Buy
                            0.013000
Education Level
                            0.005551
Card Category
                           -0.006038
Gender
                           -0.037272
Credit Limit
                           -0.043096
CLIENTNUM
                           -0.059369
Total Amt Chng Q4 Q1
                           -0.128713
Total Relationship Count
                           -0.150005
Avg Utilization Ratio
                           -0.177846
Total_Revolving_Bal
                           -0.231116
Total Trans_Amt
                           -0.231827
Total Ct Chng Q4 Q1
                           -0.324012
Total_Trans Ct
                           -0.371429
Name: Attrition Flag, dtype: float64
```

- В дальнейшем в результате анализа корреляции коллинеарных признаков с целевым признаком были приняты следующие решения:
- Среди двух сильно коррелирующих признаков "Credit_Limit" (кредитный лимит по кредитной карте) и "Avg_Open_To_Buy" (Разница между кредитным лимитом, присвоенным счету держателя карты, и текущим остатком на счете (в среднем за последние 12 месяцев)) был удален признак "Avg_Open_To_Buy", так как он сильнее коррелирует с другими признаками объектов и слабее коррелирует с целевым признаком
- Первый случай (удален 1 признак): среди двух сильно коррелирующих признаков "Total_Trans_Amt" (общая сумма транзакций за 12 мес.) и "Total_Trans_Ct" (общее количество транзакций за 12 месяцев) был удален признак "Total_Trans_Amt", так как он сильнее коррелирует с остальными признаками объектов и слабее коррелирует с целевым признаком.
- Второй случай (удалено 2 признака): среди двух сильно коррелирующих признаков "Total_Trans_Amt" (общая сумма транзакций за 12 мес.) и "Total_Trans_Ct" (общее количество транзакций за 12 месяцев) были оставлены оба, так как они оба достаточно сильно коррелируют с целевым признаком.
 - Было замечено, что целевой признак имеет несбалансированные классы. С целью устранения этой проблемы был применен метод «under sampling» так, что пропорции классов приобрели следующий вид:

print_class_proportions(data_y_train) Количество Процент встречаемости Метка 48.88% 0 1113 1164 51,12% print class proportions(data y test) Метка Количество Процент встречаемости 0 514 52.61% 1 463 47.39%

- 2. Logistic Regression (удален 1 признак)
- Выборка была поделена на обучающую (на ней будет выполнен подбор гиперпараметра С) и отложенную (на ней будет замерена

итоговая ассuracy при полученном гиперпараметре С после его подбора с помощью решетчатого поиска и кросс-валидации) в отношении 80% против 20%

• При использовании кросс-валидации и Randomized Grid Search был подобран гиперпараметр и получена оценка:

Подобранный параметр: {'C': 71.51893663724195} Оценка при подобранном параметре: 0.8443274807428306

• После итоговой оценки по оставленной выборке:

Сбалансированная оценка: 0.8512261431536838

Матрица ошибок: [[431 83]

[[431 83] [63 400]]

	precision	recall	f1-score	support
Existing Customer	0.87	0.84	0.86	514
Attrited Customer	0.83	0.86	0.85	463
accuracy			0.85	977
macro avg	0.85	0.85	0.85	977
weighted avg	0.85	0.85	0.85	977

3. Logistic Regression (удалено 2 признака)

• Аналогично получаем следующие результаты при удалении двух признаков:

Подобранный параметр: {'C': 38.34415188257777} Оценка при подобранном параметре: 0.8222731019052523 Сбалансированная оценка: 0.824978359707877

Матрица ошибок: [[424 90] [81 382]]

[81 382]]	precision	recall	f1-score	support
Existing Customer	0.84	0.82	0.83	514
Attrited Customer	0.81	0.83	0.82	463
accuracy			0.82	977
macro avg	0.82	0.82	0.82	977
weighted avg	0.83	0.82	0.83	977

Видно, что оценка ухудшилась.

4. SVM (удален 1 признак)

• После подбора гиперпараметра, отвечающего за регуляризацию модели, рандомным решетчатым поиском с применением кроссвалидации получаем следующий результат:

Подобранный параметр: {'C': 54.88135039273247} Оценка при подобранном параметре: 0.869575441397712

• После итоговой оценки по оставленной выборке:

Сбалансированная оценка: 0.893145279895118

Матрица ошибок: [[453 61]

[44 419]]

. ,,	precision	recall	f1-score	support
Existing Customer Attrited Customer	0.91 0.87	0.88 0.90	0.90 0.89	514 463
accuracy macro avg weighted avg	0.89 0.89	0.89 0.89	0.89 0.89 0.89	977 977 977

5. SVM (удалено 2 признака)

Подобранный параметр: {'C': 54.88135039273247} Оценка при подобранном параметре: 0.8471342397891911

Сбалансированная оценка: 0.8680761570202788

Матрица ошибок:

[[435 79] [51 412]]

[31 412]]	precision	recall	f1-score	support
Existing Customer	0.90	0.85	0.87	514
Attrited Customer	0.84	0.89	0.86	463
accuracy			0.87	977
macro avg	0.87	0.87	0.87	977
weighted avg	0.87	0.87	0.87	977

6. Дерево решений (удален 1 признак)

• Подбор гиперпараметра «максимальной глубины дерева» дает следующий результат:

Подобранный параметр: {'max_depth': 8} Оценка при подобранном параметре: 0.9002867748031624

• После итоговой оценки по оставленной выборке:

Сбалансированная оценка: 0.8970363304787756

Матрица ошибок: [[457 57] [44 419]]

[44 415]]	precision	recall	f1-score	support
Existing Customer	0.91	0.89	0.90	514
Attrited Customer	0.88	0.90	0.89	463
accuracy			0.90	977
macro avg	0.90	0.90	0.90	977
weighted avg	0.90	0.90	0.90	977

• Получена следующая важность признаков:

7. Дерево решений (удалено 2 признака)

• Подбор гиперпараметра «максимальной глубины дерева» дает следующий результат:

Подобранный параметр: {'max_depth': 6} Оценка при подобранном параметре: 0.8439906922693083

• После итоговой оценки по оставленной выборке:

Сбалансированная оценка: 0.8231651973678682

Матрица ошибок:

[[451 63] [107 356]]

[10, 350]]	precision	recall	f1-score	support
Existing Customer	0.81	0.88	0.84	514
Attrited Customer	0.85	0.77	0.81	463
accuracy			0.83	977
macro avg	0.83	0.82	0.82	977
weighted avg	0.83	0.83	0.83	977

• Получена следующая важность признаков:

Feature importance using DecisionTreeClassifier Total_Trans_Ct Total_Revolving_Bal Total_Relationship_Count Credit_Limit Total_Ct_Chng_Q4_Q1 Total_Amt_Chng_Q4_Q1 Avg_Utilization_Ratio Months_on_book CLIENTNUM Months_Inactive_12_mon Contacts_Count_12_mon Income_Category Customer_Age Education_Level Dependent_count Marital_Status Card_Category Gender 0.1 0.2 0.3 0.4 0.0 importance

8. Кривые обучения для Decision Tree Classifier

• Кривая обучения с удалением одного признака:

• Кривая обучения с удалением двух признаков:

9. Итоги

• Метрика «balanced_accuracy»:

	Удален 1 признак	Удалено 2 признака
LR	0.851226	0.824978
SVM	0.893145	0.868076
DT	0.897036	0.823165

• Метрика «ROC-кривая» для LR, SVM, DT соответственно (удален 1 признак):

• Метрика «ROC-кривая» для LR, SVM, DT соответственно (удалено 2 признака):

