

TP 1

Implémentation du Perceptron avec la Descente de Gradient

Objectifs pédagogiques

- Comprendre les bases mathématiques du perceptron.
- Implémenter progressivement un perceptron binaire avec la descente de gradient.
- Renforcer les concepts de la fonction coût et des mises à jour des paramètres.
- Développer des compétences en programmation Python.

Étape 1 : Concepts de base

1. Question conceptuelle

• Expliquez en une phrase ce qu'est un perceptron.

2. Exercice manuel

• Une donnée X = [2,3], un vecteur de poids w = [0.5, 1.5] et un biais b = -2 sont donnés. Calculez la sortie du perceptron avec une fonction sigmoïde.

$$z = w^T X + b$$

$$y_{pred} = a(z)$$

Question: Que se passe-t-il si vous augmentez le biais b? Essayez avec b = 0 et b = 2.

Étape 2 : Génération et visualisation des données

- 1. Générer des données linéairement séparables avec *make_blobs*.
 - Paramètres suggérés : n_samples=100, centers=2, cluster_std=1.5.
- 2. Affichez ces données avec matplotlib.

Questions:

- Combien de points appartiennent à chaque classe ?
- Pensez-vous que le perceptron peut séparer ces données ?

Étape 3: Implémentation de la fonction sigmoïde

1. Implémentez la fonction **sigmoïde** :

def sigmoid(z):

Complétez le calcul de la fonction sigmoïde

return

2. Testez-la avec une série de valeurs de z.

Questions:

- Quelle est la sortie pour z = 0 ? Pourquoi ?
- Tracez la courbe de la sigmoïde pour z entre -10 et 10. Que remarquezvous ?

Étape 4: Fonction coût

1. Implémentez la fonction coût logistique binaire :

def cost_function(y, y_pred):

Calcule la fonction coût logistique

return

2. Testez-la avec:

y = [1, 0, 1, 0] et
$$y_{pred}$$
=[0.9, 0.1, 0.8, 0.2].

Question:

• Que se passe-t-il si les prédictions y_{pred} sont proches des étiquettes y ? Et si elles sont très éloignées ?

Étape 5 : Descente de gradient

1. Implémentez une étape de la descente de gradient. Utilisez les formules pour mettre à jour *w* et b.


```
def gradient_descent_step(X, y, w, b, alpha):
    m = len(y)
    z = np.dot(X, w) + b
    y_pred = sigmoid(z)
    # Complétez le calcul de dw
    dw = ...
# Complétez le calcul de db
    db = ...
# Mettez à jour w et b
    w -= ...
b -= ...
return w, b
```

Question:

• Qu'arrive-t-il aux poids si le taux d'apprentissage α est trop grand ? Essayez α = 0.1, 1, et 10.

Étape 6 : Entraînement du perceptron

1. Implémentez une boucle complète d'entraînement pour optimiser les poids et biais sur plusieurs itérations.

Question:

• Après combien d'itérations le coût commence-t-il à se stabiliser ? Pourquoi ?

Étape 7 : Évaluation

- 1. Implémentez une fonction *predict* pour prédire les étiquettes.
- 2. Évaluez la précision sur le jeu de données.

Questions:

- Votre perceptron est-il parfait ? Pourquoi pourrait-il échouer dans certains cas ?
- Comment pourriez-vous améliorer ce modèle?