Anticipez le retard de vol des avions

Base de données : Intégralité des vols commerciaux pour le transport de passagers aux Etats-Unis, année 2016

Source : <u>US bureau of transportation statistics</u>

Version figée : <u>lien de téléchargement</u>

Objets de la mission

- Réaliser une analyse exploratoire
 - Relation entre les variables et leur impact sur les retards
 - Préparation de la base pour la modélisation
- Tester différentes approches
- Optimiser les hyperparamètres
- Choisir le modèle final
- Développer un site permettant de réaliser des prédictions sur les vols à venir

Problématique

Quelles sont les informations dont le client a besoin pour organiser au mieux sa logistique ? Peut-on prédire les retards avec précision ? Est-ce que donner une simple prédiction sans un niveau de confiance élevé a un sens ?

- Quelles sont les variables qui impactent les retards ?
- Donner une estimation du retard attendu
- Fournir une probabilité d'occurrence par classe de retard

Problématique

Mon approche:

• Donner une prédiction du retard pour tous les vols possibles aux Etats-Unis, en veillant à ce que l'approche adoptée pour l'année 2016 puisse être généralisable pour des vols dans le futur.

• Fournir des probabilités de prédiction pour plusieurs classes de retard afin de mesurer les risques de retard important et d'agir en conséquence.

- a. Découverte des données
- Des lignes corrompues qui sont supprimées au moment de l'importation des données. Un total restant de plus de 5M de lignes.
- De nombreuses variables (64) :
 - Endogènes (35) décrivant le vol tel que planifié et disponible à l'usager au moment de la réservation
 - Exogènes (27) décrivant les conditions réelles du vol
 - Une variable entre les 2 (TAIL_NUM), et une variable de somme.

b. Analyse des catégories temporelles

⇒Des différences visibles entre les mois de l'année et aussi entre les heures de départ. Moins marquées entre les jours de la semaine.

c. Analyse du trajet : la compagnie aérienne

⇒Les compagnies aériennes n'ont pas la même performance en terme de retards

d. Analyse du trajet : aéroport de départ et d'arrivée

⇒Des performances divergentes. Une vingtaine d'aéroports représente la majorité du trafic aérien

e. Analyse du trajet : distance et temps de parcours

 Forte corrélation linéaire entre la distance et le temps de vol annoncé

• Des temps de vol annoncés pas toujours identiques pour un même trajet

Le retard est faiblement corrélé à la différence entre le temps annoncé pour un parcours et le temps habituel.

a. Performance de base

- Suppression des outliers pour un aéroport par jour et pour une compagnie aérienne par jour : trop de retards ou d'annulation sur une journée
- Suppression des vols annulés, détournés ou avec plus de 3h de retard
- Suivi de 3 métriques pour le retard à l'arrivée :
 - Erreur quadratique moyenne (RMSE)
 - R²
 - Erreur absolue moyenne

Baseline

RMSE: train=26.612, test=26.657 R2: train=0.000, test=-0.007 MAE: train=16.918, test=16.947

b. Transformation des variables

- Variables catégorielles
 - *Trajet* : compagnie aérienne, aéroports de départ et de destination
 - Date et heure : mois, jour de la semaine (ou jour férié), heure de départ
- ⇒One Hot Encoder
- Distance
- Différence entre le temps annoncé et le temps médian pour le trajet
- ⇒Centrage-réduction
- Création de classes de retard (déséquilibrées) : [1, 20]: 20.2% [21, 60]: 8.4% [61, 120]: 3.1% [121, 180]: 0.9%

[-inf, 0]: 67.4%

- c. Régression linéaire
- Prédictions sans risque :

RMSE: train=25.804, test=26.029

R2: train=0.060, test=0.039

MAE: train=16.399, test=16.513

 La régularisation par Elastic Net n'a pas permis d'améliorer les résultats :

RMSE: train=26.404, test=26.470

R2: train=0.015, test=0.015

MAE: train=16.791, test=16.809

d. Tentative de réduction des dimensions

 Réduction par buckets :
 On regroupe compagnie, origine et destination d'après la moyenne des retards et l'écart-type

RMSE: train=25.803, test=25.890

R2: train=0.059, test=0.058 MAE: train=16.421, test=16.442

- Autres approches tentées mais moins performantes :
 - Réduction des variables catégorielles par leur retard moyen
 - Réduction par les quantiles des retards

- e. Test d'algorithmes et optimisation des paramètres
- Decision tree regressor
- XGBoost regressor
- XGBoost random forest regressor
- SGD Regressor

Optimisation bayésienne des paramètres sur un échantillon + crossvalidation 5 folds sur le SGDRegressor et XGBRFRegressor. Ce dernier a

la meilleure amélioration les données de test : RMSE: train=25.616, test=25.702

R2: train=0.073, test=0.071 MAE: train=16.211, test=16.235

f. Deep learning pour la régression

Succession de couches denses avec un nombre décroissant de neurones. Activation ReLU pour les couches intermédiaires.

Activation linéaire pour la dernière couche

Amélioration des résultats :

RMSE: train=24.610, test=25.066 R2: train=0.144, test=0.117

MAE: train=15.139, test=15.376

- g. Deep learning pour la détection d'outliers
- Activation sigmoid pour la dernière couche
- Couches Dropout intermédiaires pour prévenir l'overfitting
- Rééquilibrage des classes : 50-50
- Accuracy à 67% vs 63% pour une régression logistique

Anticipez le retard de vol des avions - Jérôme HOEN

h. Deep learning pour la classification

• Activation softmax pour la dernière couche afin d'avoir des probabilités

• F1-score moyenne pondérée :

• Deep learning: 0.58

• 1 couche: 0.55

Prédiction constante : 0.55

Prédiction aléatoire : 0.51

• Comparaison entre les prédictions de classes et les probabilités associées : R² = 0.999 vs 0.867 pour une couche

```
class distribution: 67.7%
mean prediction: 68.0%
mean prediction when 'DELAY CLASS'==0: 71.7%
mean prediction when 'DELAY_CLASS'!=0: 60.2%
Class 1, [1, 20]:
class distribution: 20.1%
mean prediction: 20.6%
mean prediction when 'DELAY_CLASS' == 1: 24.8%
mean prediction when 'DELAY_CLASS'!=1: 19.6%
Class 2, [21, 60]:
class distribution: 8.3%
mean prediction: 7.9%
mean prediction when 'DELAY_CLASS' == 2: 12.1%
mean prediction when 'DELAY CLASS'!=2: 7.5%
Class 3, [61, 120]:
class distribution: 3.0%
mean prediction: 2.7%
mean prediction when 'DELAY_CLASS'==3: 5.3%
mean prediction when 'DELAY CLASS'!=3: 2.6%
Class 4, [121, 180]:
class distribution: 0.9%
mean prediction: 0.8%
mean prediction when 'DELAY_CLASS' == 4: 1.8%
mean prediction when 'DELAY CLASS'!=4: 0.8%
```

3. Déploiement de la solution Préparation des fichiers

• Téléchargement des modèles, de l'encodeur et du scaler

- Création d'une matrice de distances entre tous les aéroports :
 - Projection conique <u>EPSG 2163</u>: (longitude, latitude) => (x, y)
 - Calcul des distances pour les liaisons non présentes dans la base
- Calcul du temps de trajet médian pour les liaisons manquantes d'après la distance

3. Déploiement de la solution

Accessible à l'adresse :

http://flightdelayprediction.herokuapp.c
om/

- Permet de tester avec des données réelles de 2016
- Possibilité de créer des vols inédits
- Retard réel et retard calculé
- Probabilités des classes de retard rééquilibrées avec la probabilité d'avoir un outlier

Conclusion

- a. Des résultats relativement décevants
- Au final, la régression donne des résultats très moyens même avec un modèle deep learning (R² de 0.12)
- Explication :
 - Les compagnies ajustent le temps de vol en fonction de leurs propres prédictions pour éviter les retards en chaine
 - Les retards importants dus à des problèmes au caractère aléatoire
- Une amélioration toute de même sensible par rapport aux modèles les plus simples (R² de 0.06 ou 0.07)

Conclusion

- b. Régression contrebalancée par la classification
- Evaluation des risques : risque élevé d'un retard > 1h ?
 - Correspondance manquée
 - Risque de manquer un évènement à l'arrivée (livraison par exemple)
- En fonction des besoins et des conséquences d'un retard, action possible : comparaison avec d'autres vols similaires (autre date, heure ou compagnie)