Appunti di Aritmetica

Gabriel Antonio Videtta

15 settembre 2022

Indice

1 Teoria degli insiemi		2	
	1.1	L'operazione di unione	2
	1.2	L'operazione di intersezione	2
	1.3	L'operazione di sottrazione	3
	1.4	Il prodotto cartesiano	3

Capitolo 1

Teoria degli insiemi

Il concetto di insieme è primitivo e pertanto non definito formalmente in questa sede. Viene tuttavia definita la terminologia che riguarda le teoria dei suddetti insiemi.

Quando si leggerà $a \in S$, s'intenderà che "a appartiene all'insieme S", mentre $a \notin S$ si legge "a non appartiene all'insieme S". Un insieme A si dice sottoinsieme di B ($A \subseteq B$) quando $a \in A \to a \in B$; in particolare si dice sottoinsieme proprio di B ($A \subseteq B$) quando $A \subseteq B \land \exists b \in B \mid b \notin A$.

Due insiemi A e B sono uguali se e solo se $A \subseteq B \land B \subseteq A$. L'insieme vuoto è l'insieme che non ha elementi, ed è sottoinsieme di ogni insieme.

1.1 L'operazione di unione

L'unione di due insiemi A e B è un'operazione che restituisce un insieme $A \cup B = \{x \mid x \in A \lor x \in B\}$.

Tale operazione si può estendere a più insiemi mediante l'introduzione di un insieme di indici T per una famiglia di insiemi. Un insieme di indici T rispetto a un famiglia $F = \{A_t\}$ ha la seguente proprietà: $\forall t \in T, \exists A_t \in F$; ossia è in grado di enumerare gli insiemi della famiglia F.

L'unione è pertanto definita su una famiglia F come $\bigcup_{t \in T} A_t = \{x \mid (\exists t \in T \mid x \in A_t)\}.$

L'unione gode delle seguente proprietà: $A \subseteq B \to A \cup B = B$ (in particolare, $A \cup \emptyset = A$).

1.2 L'operazione di intersezione

Analogamente a come è stata definita l'unione, l'intersezione è un'operazione che resistuisce un insieme $A \cap B = \{x \mid x \in A \land x \in B\}$; ossia estesa a più insiemi: $\bigcap_{t \in T} A_t = \{x \mid (\forall t \in T \mid x \in A_t)\}.$

In modo opposto all'unione, l'intersezione è tale per cui $A\subseteq B\to A\cap B=A$ (in particolare, $A\cap\varnothing=\varnothing$).

1.3 L'operazione di sottrazione

L'operazione di sottrazione su due insiemi A e B è definita come $A \setminus B = \{x \mid x \in A \land x \notin B\}$. Si può facilmente verificare che $A = (A \cap B) \cup (A \setminus B)$.

Dimostrazione. Ogni elemento di A può appartenere o non appartenere a B: nel primo caso, appartiene anche a $A \cap B$, e quindi a $(A \cap B) \cup (A \setminus B)$; altrimenti appartiene per definizione a $A \setminus B$, e quindi sempre a $(A \cap B) \cup (A \setminus B)$. Pertanto $A \subseteq (A \cap B) \cup (A \setminus B)$.

Ogni elemento di $(A \cap B) \cup (A \setminus B)$ appartiene ad almeno uno dei due operandi dell'unione; in entrambi i casi deve appartenere ad A. Quindi $(A \cap B) \cup (A \setminus B) \subseteq A$.

In particolare, se $B \subseteq A$, $A \setminus B$ si dice **complemento di** B **in** A.

1.4 Il prodotto cartesiano

Il prodotto cartesiano di una famiglia ordinata di insiemi F con un certo insieme di indici T è l'insieme $X_{t \in T} A_t = \{(a_{t_0}, a_{t_1}, \ldots) \mid a_{t_0} \in A_{t_0} \land a_{t_1} \in A_{t_1} \land \ldots\}$. In particolare, il prodotto cartesiano di due due insiemi A e B si indica con $A \times B = \{(a, b) \mid a \in A \land b \in B\}$.

Una *n*-tupla ordinata, ossia la forma in cui è raccolto un certo elemento di un prodotto cartesiano, è uguale ad una altra tupla se e solo se ogni elemento di una tupla è uguale a quello corrispondente in ordine dell'altra: pertanto, in generale, $(a,b) \neq (b,a)$.

Inoltre, il prodotto cartesiano $A \times A$ viene indicato con A^2 (analogamente, $A^n = \underset{i=1}{\overset{n}{\times}} A$).