Clasificación de páginas Web en dominios específicos

Tesis de master en Lenguajes y Sistemas Informáticos

D. Francisco Manuel Rangel Pardo Director: Dr. D. Anselmo Peñas Padilla

Dominios genéricos

 Académicas, Blogs, Corporativas, Información, Entretenimiento, Personales, Tiendas...

Dominios específicos

- Entretenimiento / Teatro / (revistas, compañías, festivales, salas...)
- ¿Por qué?

Estructura

- Definición del problema y objetivos
 - Experimentos de clasificación Web
 - Conclusiones y líneas de investigación futuras

Definición del problema y objetivos

La Web y las necesidades de clasificación

Gran repositorio de información Muy dinámica Muy utilizado para consultar

Necesidad de dar orden a toda esta información

Necesidad de clasificación de manera automática

Necesidad de proteger ciertos grupos sociales de contenidos perniciosos

Acercamiento tecnológico a la población

Definición del problema y objetivos

La Web 2.0 y las tendencias de futuro

Colaboración entre usuarios Servicios avanzados

• • • •

Blogs

Buscadores específicos

Buscadores de Blogs: ¿Google?

Necesidad de clasificación de manera automática

Definición del problema y objetivos

Objetivos de la investigación

- Crear colección de pruebas en dominio específico
- Determinar marco de evaluación
- Determinar necesidad de preprocesado lingüístico
- Fijar marco comparativo con representaciones actuales
- Proponer representación general de las páginas
- Proponer representación específica para Blogs
- Trasladar resultados a otros dominios

Estructura

- Definición del problema y objetivos
- Experimentos de clasificación Web
 - Conclusiones y líneas de investigación futuras

La colección de pruebas

- Objetivo: Crear una colección de pruebas para el dominio específico del teatro
- Se parte de 167 sitios anotados en 16 categorías
- Se realiza un crawl para obtener 4801 páginas

Clase	Total	9/0
Asociaciones	26	0,54%
Blogs	553	11,52%
Compañías	2611	54,38%
Festivales	747	15,56%
Formación	290	5,42%
Revistas	75	1,56%
Salas	300	6,25%
Textos	182	3,79%
Resto categorías	17	0,35%
TOTAL	4801	100%

La colección de pruebas

- Objetivo: Crear una colección de pruebas para el dominio específico del teatro
- Se parte de 167 sitios anotados en 16 categorías
- Se realiza un crawl para obtener 4801 páginas

Clase	Total	%
Asociaciones	26	0,54%
Blogs	553	11,52%
Compañías	2611	(54,38%)
Festivales	747	15,56%
Formación	290	5,42%
Revistas	75	1,56%
Salas	300	6,25%
Textos	182	3,79%
Resto categorias	17	0,35%
TOTAL	4801	100%

La división de la colección de pruebas

- Objetivo: Obtener un método de evaluación independiente de los datos
- Se divide colección en dos repositorios independientes por dominio
- Se mantiene un porcentaje aproximado 25/75% de páginas por división
- Algunas categorías como compañías tienen una distribución muy desigual
- Se propone una evaluación 2x2 frente a validación cruzada

La colección de pruebas extendida

- Objetivo: Extender la representación Blog fuera del dominio del teatro
- Se obtienen 9158 páginas Web
- 3696 páginas de tipo Blog
 - Se obtienen haciendo un crawl hasta el 3er. nivel de 42 Blogs de cocina, personales, música, informática... en varios idiomas
- 5462 páginas variadas no-Blog
 - Se obtienen a partir de un crawl hasta el 5º nivel del directorio Yahoo!

Clase	Sitios	Total	%
No Blogs		5.462	59,64%
Blogs	42	3.696	40,36%
TOTAL	43	9158	100%

Idioma	Sitios	Total	%
Castellano	39	3566	96,48%
Alemán	Î	26	0,70%
Inglés	1	103	2,89%
Francés	1		0,02%

Determinar la necesidad del crawl

 Hipótesis: Necesidad de crawl de las Urls anotadas

Método:

- Se realiza el crawl
- Se obtiene Bag of Words
- Validación cruzada
- Se comparan tasas de error y estadístico F

Conclusión:

Necesidad de crawl

	Sin expandir	Expandida
Asociaciones	0,000	0,135
Blogs	0,211	0,776
Compañías	0,136	0,900
Festivales	0,250	0,745
Formación	0,000	0,736
Revistas	0,000	0,296
Salas Alternativas	0,000	0,659
Textos	0,286	0,936

Sin expandir: ErrorR(S) = 0.907 + -0.058

Expandido: ErrorR(S) = 0.227 + -0.012

Determinar el marco de evaluación

- Validación basada en precisión
 - Matriz de confusión (True Positive, False Positive)

Clase A	Clase B	<- Clasificado como
TPA	FPA	Clase A
FPB	TPB	Clase B

- Precission y Recall $p = \frac{TPc}{TPc + FPnc}$ $r = \frac{TPc}{TPc + FPc}$
- Prueba F $F = \frac{2pr}{p+r}$
- Intervalos de confianza del error real

$$errorR(h) = errorS(h) \pm z_c \sqrt{\frac{errorS(h)(1 - errorS(h))}{n}}$$

Determinar el marco de evaluación

- Validación cruzada
 - K veces (K-1 entrenamiento / 1 validación)
 - K Subconjuntos de prueba independientes
 - Subconjuntos de entrenamiento con datos compartidos
 - Posibles problemas de sobre-ajuste
- Métodos alternativos
 - Dietterich 5x2
 - Bouckaert NxM
 - Propuesta 2x2

Determinar el marco de evaluación

- Hipótesis: La validación cruzada introduce un sesgo en la evaluación
- Método: Se validan los modelos por validación cruzada y validación 2x2
- Conclusión: Los resultados muestran la necesidad de la evaluación 2x2 para una evaluación más ajustada

	Validación cruzada	2x2
Blogs	0,776	0,303
Compañías	0,900	0,048
Formación	0,736	0,107
Salas Alternativas	0,659	0,228

Validación cruzada: 0,227 +- 0,012

2x2: 0,917 +- 0,008

Determinar necesidades de pre-procesamiento

 Hipótesis: La selección de corpus y el tratamiento lingüístico reducen la dimensionalidad y aumentan el rendimiento

Método:

- Bag of Words corpus general y corpus por categoría
- Bag of Words corpus con stem y sin stem
- Validación cruzada

Determinar necesidades de pre-procesamiento

Resultados:

Palabras

Corpus: 7019 vs. Aprox. 4000

Stem: 51292 vs. 7019

Resultados t-student 95%

Corpus:1,846 < 2,365 y 0,351 < 2,365

• Stem: -3,098 > 2,365

Conclusiones:

- Ambas disminuyen la dimensionalidad
- Corpus específico no mejora rendimiento
- Stem empeora rendimiento

Determinar la baseline

 Hipótesis: La adición de información contextual y url mejora la baseline basada en Bag of Words

Método:

- Se obtiene la representación BoW
- Se obtiene la representación BoW mejorada
- Se obtiene la representación BoW de las urls
- Se validan 2x2

Determinar la baseline

Resultados:

- BoW mejorado
 - T-student 95%: t = 0,185 < 2,365 y t = 1,438 < 2,365
- BoW Url
 - T-student 95%: t = 0.081 < 2.365 y t = 0.231 < 2.365
 - Casos concretos F: 0.084 vs. 0.664

Conclusiones:

- BoW mejorado no mejora la baseline
- BoW Url no mejora la baseline
- BoW Url mejoras considerables puntuales

Propuesta basada en meta-información h&l&u

 Hipótesis: Combinación meta-información para mejorar la representatividad en dominios específicos

Método:

- Se obtiene corpus de cabecera y enlaces
- Se crea una característica por palabra
- Se triplica la característica para cabecera, enlaces y url
- Validación 2x2

Propuesta basada en meta-información h&l&u

Resultados:

PERTENENCIA A LA CATEGORÍA	BoW std	BoW h&l&u
Asociaciones	0	0.016
Blogs	0.299	0.663
Compañías	0.660	0.825
Festivales	0.084	0.740
Formación	0.157	0.356
Revistas	0.036	0.010
Salas Alternativas	0.185	0.406
Textos	0.814	0.868

FIGURA 3.55: Prueba F en la clasificación de pertenencia BoW std vs. BoW h&l&u

No-PERTENENCIA A LA CATEGORÍA	BoW std	BoW h&l&u
Asociaciones	0.958	0.788
Blogs	0.707	0.947
Compañías	0.706	0.699
Festivales	0.760	0.939
Formación	0.761	0.909
Revistas	0.959	0.506
Salas Alternativas	0.795	0.941
Textos	0.991	0.994

FIGURA 3.56: Prueba F en la clasificación de no-pertenencia BoW std vs. BoW h&l&u

Pertenencia:

t = 3,31 > 2,365

No-pertenencia:

t = 2,920 > 2,365

Propuesta basada en meta-información h&l&u

Resultados:

PERTENENCIA A LA CATEGORIA	BoW std	BoW h&l&u
Asociaciones	0	0.016
Blogs	0.299	(0.663)
Compañias	0.660	0.825
Festivales	0.084	0.740
Formación	0.157	0.356
Revistas	0.036	0.010
Salas Alternativas	0.185	0.406
Textos	0.814	0.868

FIGURA 3.55: Prueba F en la clasificación de pertenencia BoW std vs. BoW h&l&u

No-PERTENENCIA A LA CATEGORÍA	BoW std	BoW h&l&u
Asociaciones	0.958	0.788
Blogs	0.707	0.947
Compañias	0.706	0.699
Festivales	0.760	0.939
Formación	0.761	0.909
Revistas	0.959	0.506
Salas Alternativas	0.795	0.941
Textos	0.991	0.994

FIGURA 3.56: Prueba F en la clasificación de no-pertenencia BoW std vs. BoW h&l&u

Pertenencia:

t = 3,31 > 2,365

No-pertenencia:

$$t = 2,920 > 2,365$$

Propuesta basada en meta-información h&l&u

Resultados:

PERTENENCIA A LA CATEGORÍA	BoW std	BoW H&L&U
Asociaciones	1+-0	(0,409+-0,205)
Blogs	0,256 +- 0,036	0,261+-0,037
Compañúas	0,315 +- 0,013	0,221+-0.012
Festivales	0,891 +- 0,022	(0,098+-0,009)
Formación	0,409 +- 0,058	(0,213+-0,050)
Revistas	0,887 +- 0,079	0,754+-0,014
Salas Alternativas	0,391 +- 0,057	0,612+-0,057
Textos	0,044 +- 0,030	0,033+-0,026

FIGURA 3.57: Intervalo de error en la clasificación de pertenencia BoW std vs. BoW h&l&u

$-\mathbf{D}$	Or	to:	\mathbf{a}	nc	2	
$\blacksquare P$	CI	LCI		HU	a	

$$t = 3,31 > 2,365$$

No-pertenencia:

$$t = 2,920 > 2,365$$

No-PERTENENCIA A LA CATEGORIA	BoW std	BoW H&L&U
Asociaciones	0,078 +- 0,008	0,348+-0,014
Blogs	0,434 +- 0,015	0,068+-0,008
Compañías	0,162 +- 0,016	0,427+-0,021
Festivales	0,284 +- 0,014	0,104+-0,010
Formación	0,370 +- 0,014	0,156+-0,011
Revistas	0,067 +- 0,007	0,658+-0,014
Salas Alternativas	0,323 +- 0,014	0,090+-0,009
Textos	0,016 +- 0,004	0,011+-0,003

FIGURA 3.58: Intervalo de error en la clasificación de no-pertenencia BoW std vs. BoW h&l&u

Propuesta basada en meta-información h&l&u

Resultados:

PERTENENCIA A LA CATEGORÍA	BoW std	BoW H&L&U
Asociaciones	1+-0	0,409+-0,205
Blogs	0,256 +- 0,036	0,261+-0,037
Compañúas	0,315 +- 0,013	0,221+-0,012
Festivales	0,891 +- 0,022	0,098+-0,009
Formación	0,409 +- 0,058	0,213+-0,050
Revistas	0,887 +- 0,079	0,754+-0,014
Salas Alternativas	0,391 +- 0,057	0,612+-0,057
Textos	0,044 +- 0,030	0,033+-0,026

FIGURA 3.57: Intervalo de error en la clasificación de pertenencia BoW std vs. BoW h&l&u

Per	tor	\sim	212	
	-	ı—ı ı		
			CIG	

$$t = 3,31 > 2,365$$

No-pertenencia:

$$t = 2,920 > 2,365$$

No-PERTENENCIA A LA CATEGORIA	BoW std	BoW H&L&U
Asociaciones	0,078 +- 0,008	0,348+-0,014
Blogs	0,434 +- 0,015	0,068+-0,008
Compañías	0,162 +- 0,016	0,427+-0,0217
Festivales	0,284 +- 0,014	0,104+-0,010
Formación	0,370 +- 0,014	0,156+-0,011
Revistas	0,067 +- 0,007	0,658+-0,014
Salas Alternativas	0,323 +- 0,014	0,090+-0,009
Textos	0,016 +- 0,004	0,011+-0,003

FIGURA 3.58: Intervalo de error en la clasificación de no-pertenencia BoW std vs. BoW h&l&u

Propuesta basada en meta-información h&l&u

Conclusiones:

- Obtiene mejoras significativas sobre la baseline
- Método sensible a entrenamiento/validación "defectuosa"

Propuesta específica para los Blogs

Hipótesis:

- Uso de características visuales de los Blogs
- Incrementará la eficiencia
- Independiente del contenido
- "Independiente" del idioma

Propuesta específica para los Blogs

Método:

- Se obtienen 15 características específicas
 - Estructuras html y específicas:
 - H1/H2/H3
 - Fechas

POST del diario

- Feedback
- Islas de enlaces
- Palabras POST, BLOG
- Suscripción RSS/Atom
- Combinación mediante ratios

Propuesta específica para los Blogs

Resultados:

	BoW std	BoW improv	BoW url	BoW h&l&u	Blogs specifics
Blogs	0.299	0.429	0.558	0.663	0.920
No Blogs	0.707	0.889	0.918	0.947	0,989

FIGURA 3.61: Estadístico F en la clasificación BoW specifics vs. el resto

	BoW std	BoW improv	BoW url	BoW h&l&u	Blogs specifics
Blogs	0,256 +- 0,036	0,399 +- 0,041	0,241 +- 0,036	0,261 +- 0,037	0,022 +- 0,012
No Blogs	0,434 +- 0,015	0,158 +- 0,011	0,125 +- 0,010	0,068 +- 0,008	0,020 +- 0,004
TOTAL	0,413 +- 0,014	0,186 +- 0,011	0,138 +- 0,010	0,091 +- 0,008	0,020 +- 0,004

FIGURA 3.62: Intervalo de error en la clasificación BoW specifics vs. el resto

Propuesta específica para los Blogs

Conclusiones:

- Se ha obtenido una representación novedosa
- Se ha obtenido una representación eficiente
- La representación obtenida supera el rendimiento de las estudiadas en el estado del arte

Extensión de los Blogs a otros dominios

 Hipótesis: Adecuación de la representación de los Blogs a otros dominios

Método:

- Entrenamiento con la colección de pruebas completa
- Validación con el repositorio extendido

Extensión de los Blogs a otros dominios

Resultados:

	Blogs Specific	Blogs Specific Exhaustivo
Blogs	0.920	0,913
No Blogs	0,989	0,930

FIGURA 3.67: Prueba F en la clasificación BoW specifics con DSE

	Blogs specifics	Blogs specifics exhaustivo
Blogs	0,022 +- 0,012	0,009 +- 0,003
No Blogs	0,020 +- 0,004	0,126 +- 0,009
TOTAL	0,020 +- 0,004	0,078 +- 0,003

FIGURA 3.68: Intervalo de error en la clasificación BoW specifics con DSE

4726	679
33	3720

FIGURA 3.69: Matriz de contingencia en la clasificación BoW specifics con DSE

Extensión de los Blogs a otros dominios

Resultados:

	Blogs Specific	Blogs Specific Exhaustivo
Blogs	0.920	0,913
No Blogs	0,989	0,930

FIGURA 3.67: Prueba Fen la clasificación BoW specifics con DSE

	Blogs specifics	Blogs specifics exhaustivo
Blogs	0,022 +- 0,012	0,009 +- 0,003
No Blogs	0,020 +- 0,004	0,126 +- 0,009
TOTAL	0,020 +- 0,004	0,078 +- 0,003

FIGURA 3.68: Intervalo de error en la clasificación BoW specifics con DSE

4726	679
33	3720

FIGURA 3.69: Matriz de contingencia en la clasificación BoW specifics con DSE

Extensión de los Blogs a otros dominios

Resultados:

	Blogs Specific	Blogs Specific Exhaustivo
Blogs	0.920	0,913
No Blogs	0,989	0,930

FIGURA 3.67: Prueba Fen la clasificación BoW specifics con DSE

	Blogs specifics	Blogs specifics exhaustivo
Blogs	0,022 +- 0,012	0,009 +- 0,003
No Blogs	0,020 +- 0,004	0,126 +- 0,009
TOTAL	0,020 +- 0,004	0,078 +- 0,003

FIGURA 3.68: Intervalo de error en la clasificación BoW specifics con DSE

4726	679
33	3720

Extensión de los Blogs a otros dominios

Conclusiones:

- Se mantiene el rendimiento en otros dominios
 - Se demuestra su adecuación a diferentes dominios
 - Se demuestra que no es sensible al contenido de los mismos
 - Se demuestra que clasifica bien páginas en diferentes idiomas
- Se incrementan los falsos positivos
 - Cataloga noticias como Blogs

Recapitulación de experimentos

- Colección de pruebas
- Marco de evaluación
- Preprocesado lingüístico
- Comparativa técnicas del estado del arte
- Propuesta basada en meta-información
- Propuesta específica de los Blogs
- Extensibilidad de la propuesta de los Blogs a otros dominios

Estructura

- Definición del problema y objetivos
- Experimentos de clasificación Web
- Conclusiones y líneas de investigación futuras

Conclusiones y líneas de investigación futuras

Conclusiones

Se ha fijado:

Colección de pruebas, marco de evaluación y Baseline

Método h&l&u:

- Mejora baseline hasta en 70 puntos de F
- Sensibilidad a determinados entrenamientos/validaciones

Método Blogs:

- Prueba F por encima del 90%
- Mejora significativamente el estado del arte
- Aplicable a cualquier dominio
- Independiente del contenido
- Independiente del idioma
- Problema con grupos de noticias

Conclusiones y líneas de investigación futuras

Líneas de investigación futuras

H&L&U:

- Extensión del método h&l&u fuera del dominio del teatro.
- Nuevas características para mayor estabilidad
- Mejorar tratamiento lingüístico
- ¿Análisis de las imágenes?
- Posibles aplicaciones.
 - Corex: Acceso de los empleados a determinados contenidos
 - Pederastía: Clasificación de páginas pornográficas ilegales
 - Combinación con análisis de página: ¿antispam?

Blogs

- Mejorar diferenciación blogs/noticias
- Posibles aplicaciones:
 - Buscador REAL de Blogs

Clasificación de páginas Web en dominios específicos

Muchas gracias por su atención

¿Preguntas?

francisco.rangel@corex.es