

Curs 01

Transmisiuni analogice și digitale

Obiective

- Rețele și protocoale
- Nivelul fizic
- Transmisiuni digitale
- Transmisiuni analogice

Internet

"Getting information off the Internet is like taking a drink from a fire hydrant."

Mitchell Kapor

"The Internet is the first thing that humanity has built that humanity doesn't understand, the largest experiment in anarchy that we have ever had."

Eric Schmidt

Ce este o rețea de calculatoare?

• Interconectarea mai multor sisteme de calcul

© https://www.submarinecablemap.com/

Ce este o rețea de calculatoare?

• Conexiunea între sisteme de calcul diferite se realizează prin intermediul unor dispozitive (plăci de rețea, switch-uri, rutere) și a unor medii de comunicație (cabluri electrice, fibră optică) dedicate

• Conexiunea între componentele unui calculator se realizează prin magistrale (circuite electrice pe placa de bază) și chipset-uri

LAN, MAN, WAN

 Clasificare în funcție de distanța între nodurile rețelei, concretizată printr-un număr de protocoale specifice fiecărui tip de rețea

LAN - Local Area Network

Standardele dominante sunt Ethernet și WLAN (IEEE 802.11)

Separația (conectarea) între LAN și MAN/WAN se realizează cu un ruter (gateway)

MAN – Metropolitan Area Network rar întâlnite în rețelele actuale

WAN – Wide Area Network Numeroase protocoale: MPLS, ATM, Frame Relay, PPP

Dimensiunea fizică a unei rețele

Distanța între procesoare	Localizare procesoare	Rețea
1 mm	Centimetru pătrat	Micro nw (pe siliciu)
1 cm	Decimetru pătrat	Platformă multiprocesor
1m	Metru pătrat	Personal Area Network
10 m	Cameră	
100 m	Clădire	Local Area Network
1 km	Campus	
10 km	Oraș	Metropolitan Area Net
100 km	Ţară	
1000 km	Continent	Wide Area Network
10 000 km	Planetă	Internet

Dispozitive de rețea

- Placă de rețea network card, network adapter, NIC (Network Interface Controller)
 - Permite sistemului să comunice cu un altul aflat în aceeași rețea
- Repetor, hub folosit pentru regenerarea și amplificarea semnalului
- **Switch** folosit pentru interconectarea sistemelor de calcul dintr-o rețea (topologie stea)
- **Ruter** folosit pentru interconectarea mai multor rețele de calculatoare (LAN); folosit în WAN

Dispozitive de rețea - imagine

Interfața de rețea

- Network interface
- Se referă la un punct de comunicație cu o rețea de calculatoare (o placă de rețea, un port al unui dispozitiv avansat de rețea)
- Un calculator cu o placă de rețea are o singură interfață de rețea; un calculator cu două plăci are două interfețe
- Un switch/ruter are mai multe interfețe de rețea mai multe porturi de comunicație
- Denumirea de interfață de rețea se referă și la abstracția dată de sistemul de operare
 - configurarea unei plăci de rețea sau a unui port al unui ruter se numește "configurarea unei interfețe"
 - pe un sistem Unix/Linux, interfețele de plăci de rețea Ethernet sunt denumite **eth0**, **eth1**, etc.
 - o interfață virtuală denumită interfață de **loopback** este folosită pentru a referi stația curentă ca și cum aceasta s-ar afla într-o rețea (deși aceasta nu există fizic)

Protocol

- Comunicația între două entități necesită existența unui protocol
- Ce este un protocol?
 - Un set de reguli care guvernează modul în care două dispozitive schimbă informație într-o rețea

Stiva de protocoale OSI

Pentru a abstractiza complexitatea lucrului cu rețeaua, se stabilește o stivă de protocoale; protocolul de nivel inferior oferă servicii celui de nivel superior

Stiva de protocoale TCP/IP

- Stiva de protocoale utilizată în Internet este stiva TCP/IP
- Nivelul Aplicație este cel care oferă servicii utilizatorului (transfer de fișiere, control de la distanță, transmitere e-mail, etc.)
- Nivelul Transport este responsabil cu asigurarea controlului fluxului (pachetele să ajungă în ordine și nealterate)
- IP este protocolul esențial de la nivelul Internet, iar TCP de la nivelul Transport

Stiva OSI vs Stiva TCP/IP

Nivelul fizic

Nivelul fizic

Tipuri de date/comunicare

- Date digitale, transmisie digitala
 - Date stocate in calculator transmise pe mediu digital (ex., cablu UTP)
- Date digitale, transmisie analog
 - Date stocate pe telefon transmise prin wireless
- Date analog, transmisie digitala
 - Conversia din voce in digital (sampling, etc.)
- Date analog, transmisie analog
 - Semnal de voce pe liniile de telefonie

Codificare si modulatie

(a) Encoding onto a digital signal

(b) Modulation onto an analog signal

Modem

MOdulator/DEModulator

Transmisii digitale

- NRZL, NRZI
- Manchester, Differential Manchester
- MLT-3
- PAM-5
- 4B5B

Transmisii digitale

- Folosesc valori discrete pentru a transmite informație
- Caracteristici:
 - Bit interval (echivalent perioadă)
 - Bit rate (echivalent frecvență)
- Line coding este denumită și digital baseband modulation
 - Unipolară un singur nivel de tensiune care reprezintă 1; absența înseamnă 0
 - Polară două niveluri de tensiune
 - Bipolară trei niveluri: pozitiv, negativ și zero

Codificare Non-Return-To-Zero Level

Codificare Non-Return-To-Zero Inverted

Codificare Manchester IEEE 802.3

Codificare Manchester Diferențial

Codificare Multi-Level Transmit 3

Pulse-Amplitude Modulation 5

Codificare 4B5B

- Convertește blocuri de 4 biți în blocuri de 5 biți
- Folosit în combinație cu NRZ-I (fibră optică) sau MLT-3 (100BASE-TX, FDDI peste cupru)

• Blocurile de 5 biți au suficient de mulți biți de 1 a.î. NRZ-I/MLT-3 să nu piardă

sincronizarea

Nume	46	5 b
0	0000	11110
1	0001	01001
2	0010	10100
3	0011	10101
4	0100	01010
5	0101	01011
6	0110	01110
7	0111	01111

Nume	4b	5b
8	1000	10010
9	1001	10011
Α	1010	10110
В	1011	10111
С	1100	11010
D	1101	11011
E	1110	11100
F	1111	11101

Nume	4b	5b
Q	-	00000
	-	11111
J	-	11000
K	-	10001
T	-	01101
R	-	00111
S	-	11001
Н	-	00100

Exemplu: Fast Ethernet

(Tehnologiile Ethernet vor fi studiate în detaliu în cadrul cursului 2)

Exemplu: Gigabit Ethernet

Transmisii analogice

- AM
- FM

Transmisii analogice

- Folosesc valori continue pentru a transmite informația
- Caracteristici
 - Amplitudine nivelul maxim al semnalului
 - Perioada/frecvența viteza de schimbare raportată la timp
 - Faza poziția formei de undă raportată la momentul de timp zero

Transmisie analogică - AM

- AM = Amplitude Modulation
- Folosește valori continue ale amplitudinii pentru a transmite informația
- Folosită în special în transmisii radio

Transmisie analogică - FM

- FM = Frequency Modulation
- Folosește valori continue ale frecvenței pentru a transmite informația
- Folosită în special în transmisii radio

Transmiterea datelor digitale cu carrier analog

- ASK
- PSK
- FSK
- Diagrame de constelații

Transmisie analogică a datelor digitale

- Dacă se dorește transmiterea datelor digitale peste un mediu ce folosește semnale analogice (de exemplu linii telefonice), semnalul analog trebuie modulat
- Există mai multe tipuri de modulare:
 - ASK Amplitude Shift Keying
 - PSK Phase Shift Keying
 - FSK Frequency Shift Keying
- Bit rate numărul de biți pe secundă
- Baud rate numărul de semnale pe secundă
- Baud rate ≤ bit rate
- Tehnicile de modulare sunt caracterizate prin raportul $\frac{bit\ rate}{baud\ rate}$

Modulare ASK

Modulare PSK

Modulare FSK

Combinație PSK-ASK (Quadrature Amplitude Modulation)

Diagrame de constelații

Exemple de constelații

Exercițiu

- Se consideră o linie cu o capacitate de 2400 baud. Câți biți de date pot fi trimiși pe secundă dacă se folosește QAM-16 pentru modulare?
- R: Sunt folosite 16 puncte de constelație pentru a trimite 4 biți per simbol, ceea ceoînseamnă:

Sumar

