Parte I

Geometría

Geometría Analítica

1 VECTORES LIBRES

Dados dos puntos en el plano (A y B), podemos trazar una flecha que vaya del primero al segundo. A esta flecha la llamaremos vector (fijo) y se denota \overrightarrow{AB} .

- Módulo: La longitud del vector
- Dirección: La recta que contiene al vector y cualquiera de sus paralelas
- Sentido: El que va del origen al final o su contrario. Viene representado por punta "la cabeza de la flecha"

Dos vectores (fijos) son **equipolentes** cuando tienen el mismo módulo, misma dirección y mismo sentido. Un vector fijo y todos sus equipolentes forman lo que de denomina un **vector libre**. Se denota \overrightarrow{v} o $\left[\overrightarrow{AB}\right]$ siendo \overrightarrow{AB} un vector fijo representante de \overrightarrow{v} . Un vector libre viene determinado por sus coordenadas:

2 COORDENADAS Y MÓDULO DE UN VECTOR

Un vector se puede ver como el desplazamiento que tenemos que hacer horizontalmente y verticalmente para ir del origen al extremo del mismo. Al desplazamiento horizontal le llamaremos primera coordenada y al vertical, segunda.

- Dados $A(x_1, y_2), B(x_2, y_2) \to \overrightarrow{AB}(x_2 x_1, y_2 y_1)$
- A partir de las coordenadas del punto podremos calcular su módulo. Dados $\overrightarrow{u}(x,y)$, $\rightarrow |\overrightarrow{u}| = \sqrt{x^2 + y^2}$

2.1. Ejemplo

Determina las coordenadas y el módulo del vector libre cuyo representante es el vector que va de A(1,1) a B(7,5)

3 OPERACIONES CON VECTORES

3.1. Producto de un número por un vector

Definición Dado $k \in \mathbb{R}$ y \overrightarrow{u} se define $k \cdot \overrightarrow{u}$ como un \overrightarrow{v} que:

- $|\overrightarrow{v}| = |k| \cdot |\overrightarrow{u}|$
- $\blacksquare \overrightarrow{v} /\!\!/ \overrightarrow{u}$
- Mismo sentido que \overrightarrow{u} si k > 0 o sentido contrario si k > 0

Además se cumple que si $\overrightarrow{u}(x_1,y_1) \to k \overrightarrow{u}(k \cdot x_1,k \cdot y_1)$

3.1.1. Ejemplos

3.2. Suma y resta de vectores

Definición de suma Dados \overrightarrow{u} y \overrightarrow{v} se define la suma como el vector que si los ponemos seguidos va del origen del primer vector al extremo del segundo vector. Además se cumple que si $\overrightarrow{u}(x_1,y_1)$ y $\overrightarrow{v}(x_2,y_2) \to \overrightarrow{u} + \overrightarrow{v}(x_1+x_2,y_1+y_2)$

Definición de resta Dados \overrightarrow{u} y \overrightarrow{v} se define la resta como la suma del primero con el opuesto del segundo. Además se cumple que si $\overrightarrow{u}(x_1,y_1)$ $y\overrightarrow{v}(x_2,y_2) \rightarrow \overrightarrow{u} - \overrightarrow{v}(x_1-x_2,y_1-y_2)$

4 PUNTO MEDIO DE UN SEGMENTO

Dados dos puntos del plano, $A(x_1,y_1)$ y $B(x_2,y_2)$, el punto medio es $M(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$.

La demostración es sencilla aplicando la propiedad geométrica que cumple el punto medio: $\overrightarrow{AM} = \overrightarrow{MB}$

4.1. Ejemplo

5 PUNTOS ALINEADOS

Dados los puntos A, B y C estarán alineados si los vectores \overrightarrow{AB} y \overrightarrow{BC} son colineales, o tienen la misma dirección, y por tanto: $\exists k \in \mathbb{R} | \left[\overrightarrow{BC} \right] = k \cdot \left[\overrightarrow{AB} \right]$

o bien:

Si
$$\left[\overrightarrow{AB}\right] = \overrightarrow{u}(u1,u2)$$
 y $\left[\overrightarrow{BC}\right] = \overrightarrow{v}(v1,v2)$, se cumple:
$$\frac{v1}{u1} = \frac{v2}{u2}$$

5.1. Ejemplo

$$\overrightarrow{AB}(1,6) \longrightarrow B(2,5,5)$$

$$\overrightarrow{BC} = 3 \cdot \overrightarrow{AB} = (3,0,-1,5)$$

$$C(5,0,4,0)$$
Están alineados porque $\left[\overrightarrow{BC}\right] = 3 \cdot \left[\overrightarrow{AB}\right]$, o bien porque

Están alineados porque $\left |\overrightarrow{BC}\right |=3\cdot \left |\overrightarrow{AB}\right |$, o bien porque:

$$\frac{3}{1} = \frac{-1.5}{-0.5}$$

6 ECUACIONES DE LA RECTA

Podemos definir la recta como el lugar geométrico formado por el conjunto de puntos del plano que a partir de un punto fijo siguen una misma dirección. Dado un punto $P(x_0, y_0)$ y un vector $\overline{d}(v_1, v_2)$, en la recta r se cumple:

$$\overrightarrow{OX} = \overrightarrow{OP} + \overrightarrow{PX}$$

Como \overrightarrow{PX} y \overrightarrow{d} son colineales:

$$\overrightarrow{OX} = \overrightarrow{OP} + \lambda \cdot \overrightarrow{d}$$

6.1. Ecuación vectorial

Se obtiene a partir de las coordenadas de la expresión anterior

$$(x,y) = (x_0, y_0) + \lambda \cdot (v_1, v_2)$$

6.2. Ecuaciones paramétricas

Se obtienen separando cada coordenada del expresión anterior:

$$\begin{cases} x = x_0 + \lambda \cdot v_1 \\ y = y_0 + \lambda \cdot v_2 \end{cases}$$

6.3. Ecuación continua

Se obtienen de la anterior despejando λ en cada ecuación e igualando la expresiones:

$$\frac{x - x_0}{v_1} = \frac{y - y_0}{v_2}$$

6.4. Ecuación implícita o general

Operando y reduciendo la expresión anterior llegaremos a una de la forma:

$$Ax + By + C = 0$$

6.5. Ecuación explícita

Despejando la y en la ecuación anterior obtendremos

$$y = mx + n$$

donde m es la pendiente y n la ordenada en el origen

Vector director y pendiente de una recta: Dada una recta r de pendiente m entonces el vector $\overrightarrow{v}(1,m)$ es un vector director de la recta. Y al revés, si $\overrightarrow{d}(v_1, v_2)$ es un vector director de la recta, entonces $m=\frac{v_2}{v_1}$ es la pendiente de la recta

6.6. Ejemplo

Dada la recta que pasa por P(1,3) y de dirección la marcada por edl vector $\overrightarrow{d}(3,-1)$ determina la ecuación de la misma en sus diferentes variantes:

- Ecuación vectorial: $(x,y) = (1,3) + \lambda \cdot (3,-1)$
- Ecuaciones paramétricas: $\begin{cases} x = 1 + 3\lambda \\ y = 3 \lambda \end{cases}$
- $\blacksquare \ \, \text{Ecuación continua:} \ \, \frac{x-1}{3} = 3 y$
- Ecuación general: 3y + x 10 = 0
- \blacksquare Ecuación explícita: $y=-\frac{1}{3}x+\frac{10}{3}$

7 CONDICIONES DE PARALELISMO Y PERPENDICU-LARIDAD

Dado $\overrightarrow{d}(u1,u2)$ y un vector perpendicular del mismo módulo $\overrightarrow{e}(v1,v2)$:

Se cumple que $\overrightarrow{e}(v1,v2)=(-u2,u1)$ y por tanto:

- Para que dos rectas sean paralelas basta con que tengan la misma dirección
- Dada una recta con vector director $\overrightarrow{d}(v_1,v_2)$, un vector director de las rectas perpendiculares será $\overrightarrow{e}(-v_2,v_1)$. Además si m y m' son las pendientes de las rectas perpendiculares, se cumple: $m \cdot m' = -1$

8 ECUACIÓN DE LA CIRCUNFERENCIA

Dada una circunferencia de centro $P(x_0, y_0)$ y de radio r:

Los puntos X(x,y) de la misma cumplen:

$$\left|\overrightarrow{PX}\right| = r$$

Como $\overrightarrow{OP} + \overrightarrow{PX} = \overrightarrow{OX}$, luego $\overrightarrow{PX} = \overrightarrow{OX} - \overrightarrow{OP}$ - Por tanto:

$$\left|\overrightarrow{OX} - \overrightarrow{OP}\right| = r$$

Pasando a coordenadas:

$$|(x - x_0, y - y_0)| = r$$

Y por el teorema de Pitágoras obtenemos la ecuación de la circunferencia:

$$(x-x_0)^2 + (y-y_0)^2 = r^2$$

8.1. Ejemplo

Determina la ecuación de la circunferencia con centro P(3,1) y radio 3:

$$(x-3)^2 + (y-1)^2 = 3^2$$

$$x^2 - 6x + 9 + y^2 - 2y + 1 = 9$$

$$x^2 + y^2 - 6x - 2y + 1 = 0$$