Genome Annotation

The Viterbi algorithm

Outline

- The most probable path task for HMMs
- The Viterbi algorithm

HMM most probable path task

- Given: x
- Do: find a hidden path of states π that maximizes the joint probability of x and π

- Mathematically: $\pi^* = \operatorname*{argmax} P(x,\pi)$
- Note that this is equivalent to computing $\operatorname{argmax} P(\pi|x)$

Example

• Consider an candidate CpG island CGCGC

• Considering our HMM for CpG island model, some possible paths that are consistent with this CpG island are

Number of paths

• for a sequence of length L, how many possible paths through this HMM are there?

• the **Viterbi** algorithm enables us to compute the most likely path by efficiently taking a maximum over all possible paths

Finding the Most Probable Path: The Viterbi Algorithm

- Dynamic programming!
- subproblem: define $v_k(i)$ to be the probability of the most probable path accounting for the first i characters of x and ending in state k $v_k(i) = \max_{\pi_1, \dots, \pi_i : \pi_i = k} P(x_1, \dots, x_i, \pi_1, \dots, \pi_i)$
- we want to compute $v_N(L)$, the probability of the most probable path accounting for all of the sequence and ending in the end state
- can define recursively
- can use DP to find $v_N(L)$ efficiently

Derivation of Viterbi recurrence

$$v_{\ell}(i) = \max_{\pi_{1}, \dots, \pi_{i}: \pi_{i} = \ell} P(x_{1}, \dots, x_{i}, \pi_{1}, \dots, \pi_{i})$$

$$= \max_{\pi_{1}, \dots, \pi_{i}: \pi_{i} = \ell} P(x_{1}, \dots, x_{i-1}, \pi_{1}, \dots, \pi_{i-1}) P(\pi_{i} | \pi_{i-1}) P(x_{i} | \pi_{i})$$

$$= \max_{k} \max_{\pi_{1}, \dots, \pi_{i}: \pi_{i-1} = k, \pi_{i} = \ell} P(x_{1}, \dots, x_{i-1}, \pi_{1}, \dots, \pi_{i-1}) P(\pi_{i} | \pi_{i-1}) P(x_{i} | \pi_{i})$$

$$= \max_{k} \max_{\pi_{1}, \dots, \pi_{i}: \pi_{i-1} = k, \pi_{i} = \ell} P(x_{1}, \dots, x_{i-1}, \pi_{1}, \dots, \pi_{i-1}) a_{kl} e_{\ell}(x_{i})$$

$$= e_{\ell}(x_{i}) \max_{k} a_{kl} \max_{\pi_{1}, \dots, \pi_{i-1}: \pi_{i-1} = k} P(x_{1}, \dots, x_{i-1}, \pi_{1}, \dots, \pi_{i-1})$$

$$= e_{\ell}(x_{i}) \max_{k} a_{kl} \underbrace{v_{k}(i-1)}_{k}$$

Finding the Most Probable Path: The Viterbi Algorithm

• initialization:

$$v_0(0) = 1$$
 (0 is the begin state)

 $v_k(0) = 0$, for k that are not silent states

The Viterbi Algorithm

• recursion for emitting states (i=1...L):

$$v_l(i) = e_l(x_i) \max_{k} \left[v_k(i-1)a_{kl} \right]$$

$$ptr_l(i) = \arg\max_{k} \left[v_k(i-1)a_{kl} \right] \text{ keep track of most probable path}$$

• recursion for silent states:

$$v_l(i) = \max_{k} [v_k(i)a_{kl}]$$
$$ptr_l(i) = \arg\max_{k} [v_k(i)a_{kl}]$$

The Viterbi Algorithm

• termination:

$$\Pr(x, \pi^*) = \max_{k} \left(v_k(L) a_{kN} \right)$$

$$\pi_L^* = \arg\max_{k} \left(v_k(L) a_{kN} \right)$$

• traceback: follow pointers back starting at π_L^*

Implicitly considering all possible paths

- The Viterbi algorithm effectively considers all possible paths for a sequence
- consider a sequence of length 4...

Numerically stable Viterbi

Use log probabilities instead

$$V_k(i) = \log v_k(i)$$
 $\tilde{e}_k(c) = \log e_k(c)$ $\tilde{a}_{k\ell} = \log a_{k\ell}$

Initialization

$$V_0(0) = 0$$
 z (y (1) $V_\ell(0) = -\infty$ for all other (non-silent) states

Recurrence

$$V_{\ell}(i) = \tilde{e}_{\ell}(x_i) + \max_{k} \left(V_k(i-1) + \tilde{a}_{k\ell} \right)$$

Using HMM to detect CpG islands

- Recall the 8-state HMM for our CpG island
- Apply the Viterbi algorithm to a DNA sequence on this HMM
- Contiguous assignments of '+' states will correspond to CpG islands

Summary

- Viterbi algorithm efficiently solves the most probable path problem
- Viterbi algorithm is a dynamic programming algorithm
 - subproblem: $v_k(i)$: probability of most probable path for a prefix (i) of the sequence that ends in a given state (k)
- Log-transformed equations are needed for numerical stability when computing on long sequences