1.(a) Prove that if λ is an eigenvalue of an invertible matrix A then $\lambda \neq 0$ and $1/\lambda$ is an eigenvalue of A^{-1}

Let λ be an eigenvalue of an invertable matrix A

* Suppose that 0 is an eigenvalue of A

Then Av = 0v = 0 for some nonzero eigenvector v, eigenvalue $\lambda = 0$ Hence, A is not invertable

 \Rightarrow By contradiction, $\lambda \neq 0$

* $Av = \lambda v$ for some eigenvector $v \neq 0$, eigenvalue $\lambda \neq 0$ Thus, $v = A^{-1}(\lambda v) = \lambda(A^{-1}v)$ Hence, $A^{-1}v = (\lambda)v$, so λ is an eigenvalue of $A^{-1}v$

(b) Let V_i and V_2 be eigenvalues of a linear transformation T on \mathcal{Q}^n , and let λ_1 and λ_2 , corresponding eigenvalues.

Prove that if $\lambda_1 \neq \lambda_2$, then $\{V_1, V_2\}$ is linearly independent.

Suppose that $C_1V_1 + C_2V_2 = 0$ for some scalars C_1 , C_2

Then $O = T(0) = T(C_1V_1 + C_2V_2) = C_1\lambda_1V_1 + C_2\lambda_2V_2 = \lambda_1(-C_2V_2) + \lambda_2(C_2V_2) = (\lambda_2 - \lambda_1)(C_2V_2)$

Since $\lambda_1 \neq \lambda_1$ and $\sqrt{2} \neq 0$, we have $C_2 = 0$, thus $C_1 = 0$,

so $\{V_i, V_i\}$ is linearly independent.

where
$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} -4x_1 + 6x_2 \\ 2x_2 \\ -5x_1 + 5x_2 + x_3 \end{bmatrix}$$

Standard matrix
$$A = \begin{bmatrix} -4 & 6 & 0 \\ 0 & 2 & 0 \\ -5 & 5 & 1 \end{bmatrix}$$

The characteristic polynomial of A is
$$\det (A - \lambda I_n) = \det \begin{bmatrix} -4 - \lambda & 6 & 0 \\ 0 & 2 - \lambda & 0 \\ -5 & 5 & 1 - \lambda \end{bmatrix} = (-4 - \lambda)(2 - \lambda)(1 - \lambda)$$

$$\Rightarrow$$
 when $\lambda = 1$, the corresponding eigenspace is $\left\{ \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$

$$\lambda = -4$$
, the corresponding eigenspace is $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$

$$\lambda = 2$$
, the corresponding eigenspace is $\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\}$

3. Given a matrix
$$A = \begin{bmatrix} 3 & 2 & -2 \\ -8 & 0 & -5 \\ -8 & -2 & -3 \end{bmatrix}$$
 and its characteristic polynomial $-(t+5)(t-2)(t-3)$

find, if possible, an invertable matrix P and its diagonal matrix D

such that
$$A = PDP^{-1}$$

(i) $A+5I_3 = \begin{bmatrix} 8 & 2 & -2 \\ -8 & 5 & -5 \\ -8 & -2 & 2 \end{bmatrix}$

• • • •

$$\begin{bmatrix} 8 & 2 & -2 \\ -8 & 5 & -5 \\ -8 & -2 & 2 \end{bmatrix} \xrightarrow{F_1 + F_1 \to F_2} \Rightarrow \begin{bmatrix} 8 & 2 & -2 \\ 0 & 7 & -7 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\frac{1}{7}} \xrightarrow{F_2 \to F_2} \Rightarrow \begin{bmatrix} 8 & 2 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\frac{1}{8}} \xrightarrow{F_1 \to F_1} \Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \chi_2 \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

$$(\bar{u}) A - 2I_3 = \begin{bmatrix} 1 & 2 & -2 \\ -8 & -2 & -5 \\ -8 & -2 & -5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -2 \\ -8 & -1 & -5 \\ -8 & -2 & -5 \end{bmatrix} \xrightarrow{F_2+8F_1 \to F_2} \xrightarrow{f_2} \begin{bmatrix} 1 & 2 & -2 \\ 0 & 14 & -21 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\frac{1}{1}} \xrightarrow{F_2 \to F_2} \Rightarrow \begin{bmatrix} 1 & 2 & -2 \\ 0 & 2 & -3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{F_1-F_2 \to F_1} \Rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & -3 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \frac{1}{2}\chi_3 \begin{bmatrix} -2 \\ 3 \\ 2 \end{bmatrix}$$

$$(\bar{m}) A - 3I_3 = \begin{bmatrix} 5 & 2 & -2 \\ -8 & 2 & -5 \\ -8 & -2 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 2 & -2 \\ -8 & 2 & -5 \\ -8 & -2 & -1 \end{bmatrix} \Rightarrow \begin{bmatrix} 40 & 16 & -16 \\ -40 & 10 & -25 \\ -40 & -10 & -5 \end{bmatrix} \Rightarrow \begin{bmatrix} 5 & 2 & -2 \\ 0 & 26 & -41 \\ 0 & 6 & -21 \end{bmatrix} \Rightarrow \begin{bmatrix} 5 & 2 & -2 \\ 0 & 26 & -41 \\ 0 & 2 & -7 \end{bmatrix} \Rightarrow \begin{bmatrix} 5 & 0 & 5 \\ 0 & 0 & 1 \\ 0 & 2 & -7 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} =$$

$$\Rightarrow Ans: P = \begin{bmatrix} 0 & -2 & -1 \\ 1 & 3 & 1 \\ 1 & 2 & 1 \end{bmatrix}, D = \begin{bmatrix} -5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

5. Let A be a diagnalizable
$$n \times n$$
 matrix.
Prove that if the characteristic polynomial of A is $f(t) = a_n t^n + a_{n-1} t^{n-1} + ... + a_i t + a_0$ then $f(A) = 0$, where $f(A) = a_n A^n + a_{n-1} A^{n-1} + ... + a_i A + a_0 I_n$ (Cayley - Hamilton theorem)

$$\Rightarrow$$
 Let λ be an eigenvalue of A , then $f(\lambda)=0$.

Let
$$A = PDP^{-1}$$
, where $D = \begin{bmatrix} \lambda_1 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & \lambda_1 \end{bmatrix}$

Then
$$f(D) = \begin{cases} f(A) & 0 & 0 & 0 \\ 0 & f(A) & 0 & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & f(A) \end{cases} = 0$$
, Hence $f(A) = f(PDP^{-1}) = p f(D) P^{-1}$
 $= POP^{-1} = 0$

6. Given a linear operator
$$T$$
 and its characteristic polynomial $f(t)$, determine all the values of the scalar c for which T on R^3 is not diagonalizable,

where
$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} cx_1 \\ -x_1 - 3x_2 - x_3 \\ -8x_1 + x_2 - 5x_3 \end{bmatrix}$$
, $f(t) = -(t-c)(t+4)^2$

$$\Rightarrow A = \begin{bmatrix} c & 0 & 0 \\ -1 & -3 & -1 \\ -8 & 1 & -5 \end{bmatrix}, \quad (A-4I_3) = \begin{bmatrix} c+4 & 0 & 0 \\ -1 & 1 & -1 \\ -8 & 1 & -1 \end{bmatrix}$$

$$\Rightarrow$$
 last two rows of (A-4I3) is linearly independent, so the rank of A+4I3 is at least 2. Hence, the dimension of the eigenspace of T corresponding to -4 is 1.

[⇒] Since this dimension does not equal the multiplicity of the eigenvalue -4

[⇒] T is not diagonalizable for any scalar C.

7. Let $\{u, v, w\}$ be a basis for R^3 and let T be the linearly operator on R^3 defined by T(au+bv+cw)=au+bv

for all scalar α , b, c. (a) Find the eigenvalues of T and determine a basis for each eigenspace.

 \Rightarrow Let $B = \{u, v, w\}$, we can know T(u) = u, T(v) = v, T(w) = 0

Hence, u, v are eigenvectors of T corresponding to eigenvalue = 1 W is eigenvectors of T corresponding to eigenvalue = 0

 ${}^{\circ}$ {u, v} is a basis for the eigenspace of T corresponding to eigenvalue 1 ${}^{\circ}$ {w} is a basis for the eigenspace of T corresponding to eigenvalue 0

(b) Is T diagonalizable? Justify the answer

 \Rightarrow by (a), there is a basis B for \mathbb{R}^3 consisting of eigenvectors of T. Thus, T is stagonalizable.

8. Let T be the linear operator on \mathbb{R}^n and B be a basis for \mathbb{R}^n Such that $[T]_B$ is a diagonal matrix.

Prove that B must consist of eigenvectors of T.

 \Rightarrow Let $[T]_B$ be a diagonal matrix D, $B = \{b, b_2 \dots b_n\}$.

Since the jth column of [T]B is [T(b)]B

we must have $T(b_j) = d_j \cdot b_j$, $b_j \neq 0$ because B is a basis,

and hence each by must be an eigenvector of T *