Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа программной инженерии

Курсовая Работа

по дисциплине «Математические модели»

Выполнил:Ферапонтов М.В.Группа:гр. 3530904/00104

Проверил: Воскобойников С. П.

Санкт-Петербург 2023

Содержание

Осн	овная ч	асть
2.1	Разнос'	тная схема
	2.1.1	На левой границе
	2.1.2	На правой границе
	2.1.3	На нижней границе
	2.1.4	На верхней границе
	2.1.5	Левый-нижний угол
	2.1.6	Левый-верхний угол
	2.1.7	Правый-верхний угол
	2.1.8	Правый-нижний угол
2.2	Запись	СЛАУ
	2.2.1	Запись для внутренних точек
	2.2.2	Запись для левой границы
	2.2.3	Запись для правой границы
	2.2.4	Запись для нижней границы
	2.2.5	Запись для верхней границы
	2.2.6	Запись для левой нижней граничной точки
	2.2.7	Запись для правой нижней граничной точки

1 Вступление

1.1 Постановка задачи

Вариант N. Используя интегро-интерполяционный метод, разработать подпрограмму для моделирования распределения температуры в цилиндре, описываемого математической моделью

$$-\left[\frac{1}{r}\frac{\partial}{\partial r}\left(rk_1(r,z)\frac{\partial u}{\partial r}\right)+\frac{\partial}{\partial z}\left(k_2(r,z)\frac{\partial u}{\partial v}\right)\right]=f(r,z)$$

$$0 \leq c_{11} \leq k_1(r,z) \leq c_{12}, \quad 0 \leq c_{11} \leq k_2(r,z) \leq c_{22}, \quad 0 \leq r \leq R, \ 0 \leq z \leq L$$

С граничными условиями:

$$\begin{aligned} \left.u\right|_{r=0} &-\text{ограничено} & \left.-k_1\frac{\partial u}{\partial r}\right|_{r=R} &= \chi_2 \left.u\right|_{r=R} - \varphi_2(z) \\ \left.k_2\frac{\partial u}{\partial z}\right|_{z=0} &= \chi_3 \left.u\right|_{z=0} - \varphi_3(r) & \left.u\right|_{z=L} &= \varphi_r(r) \\ \chi_2 &\geq 0 & \chi_3 \geq 0 \end{aligned}$$

Матрица алгебраической системы должна храниться в упакованной форме.

2 Основная часть

2.1 Разностная схема

Введем основную сетку:

Введем дополнительную сетку:

$$\begin{split} r_{i-\frac{1}{2}} &= \frac{r_i + r_{i-1}}{2} \quad i = 1, \cdots, N_r \\ \hbar_i &= \begin{cases} \frac{h_r}{2}, \ i = 0 \\ h_r, \ i = 1, 2, \dots, N_r - 1 \\ \frac{h_r}{2}, \ i = N_r \end{cases} &\qquad \qquad \\ \hbar_j &= \begin{cases} \frac{h_z}{2}, \ j = 0 \\ h_z, \ j = 1, 2, \dots, N_z - 1 \\ \frac{h_z}{2}, \ j = N_z \end{cases} \end{split}$$

Преобразуем наше начальное уравнение домножив на г

$$-\left[\frac{\partial}{\partial r}\left(rk_1(r,z)\frac{\partial u}{\partial r}\right)+\frac{\partial}{\partial z}\left(rk_2(r,z)\frac{\partial u}{\partial v}\right)\right]=rf(r,z)$$

Проинтегрируем уравнение внутри интервала:

$$-\int\limits_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}}\int\limits_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}}\left[\frac{\partial}{\partial r}\left(rk_1(r,z)\frac{\partial u}{\partial r}\right)+\frac{\partial}{\partial z}\left(rk_2(r,z)\frac{\partial u}{\partial v}\right)\right]drdz=\int\limits_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}}\int\limits_{z_{j-\frac{1}{2}}}^{r_{j+\frac{1}{2}}}rf(r,z)drdz$$

Получим:

$$\begin{split} &-\left.\left[\int\limits_{z_{i-\frac{1}{2}}}^{z_{i+\frac{1}{2}}}rk_{1}(r,z)\frac{\partial u}{\partial r}\right|_{r=r_{i+\frac{1}{2}}}dz-\int\limits_{z_{i-\frac{1}{2}}}^{z_{i+\frac{1}{2}}}rk_{1}(r,z)\frac{\partial u}{\partial r}\Big|_{r=r_{i-\frac{1}{2}}}dz\\ &+\int\limits_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}}rk_{2}(r,z)\frac{\partial u}{\partial v}\Big|_{z=z_{j+\frac{1}{2}}}dr-\int\limits_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}}rk_{2}(r,z)\frac{\partial u}{\partial v}\Big|_{z=z_{j-\frac{1}{2}}}dr\right]=\int\limits_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}}\int\limits_{z_{j-\frac{1}{2}}}^{r_{i}(r,z)drdz}rf(r,z)drdz \end{split}$$

Воспользуемся формулами численного дифференцирования:

$$\left.k_1(r,z)\frac{\partial u}{\partial r}\right|_{r=r_{i-\frac{1}{2}}}\approx k_1(r_{i-\frac{1}{2}},z)\frac{v_{i,j}-v_{i-1,j}}{h_r}$$

$$\left.k_2(r,z)\frac{\partial u}{\partial r}\right|_{z=z_{j-\frac{1}{2}}}\approx k_2(r,z_{j-\frac{1}{2}})\frac{v_{i,j}-v_{i,j-1}}{h_z}$$

Также воспользуемся формулой средних прямоугольников:

$$\int\limits_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}}r\varphi(r,z)dr=\hbar_{i}r_{i}\varphi_{i}$$

$$\int\limits_{\hat{r}_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}}\int\limits_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}}r\varphi(r,z)drdz=\hbar_{i}\hbar_{j}r_{i}\varphi_{i,j}$$

В итоге получаем разностную схему внутри интервала:

$$\begin{split} &-\left[\hbar_{j}r_{i+\frac{1}{2}}k_{1}(r_{i+\frac{1}{2}},z_{j})\frac{v_{i+1,j}-v_{i,j}}{h_{r}}-\hbar_{j}r_{i-\frac{1}{2}}k_{1}(r_{i-\frac{1}{2}},z_{j})\frac{v_{i,j}-v_{i-1,j}}{h_{r}}\right.\\ &\left.+\hbar_{i}r_{i}k_{2}(r_{i},z_{j+\frac{1}{2}})\frac{v_{i,j+1}-v_{i,j}}{h_{z}}-\hbar_{i}r_{i}k_{2}(r_{i},z_{j-\frac{1}{2}})\frac{v_{i,j}-v_{i,j-1}}{h_{z}}\right]=\hbar_{i}\hbar_{j}r_{i}f_{i,j} \end{split}$$

Перейдём к частному:

$$\begin{split} &-\left[h_{j}r_{i+\frac{1}{2}}k_{1}(r_{i+\frac{1}{2}},z_{j})\frac{v_{i+1,j}-v_{i,j}}{h_{r}}-h_{j}r_{i-\frac{1}{2}}k_{1}(r_{i-\frac{1}{2}},z_{j})\frac{v_{i,j}-v_{i-1,j}}{h_{r}}\right.\\ &\left.+h_{i}r_{i}k_{2}(r_{i},z_{j+\frac{1}{2}})\frac{v_{i,j+1}-v_{i,j}}{h_{z}}-h_{i}r_{i}k_{2}(r_{i},z_{j-\frac{1}{2}})\frac{v_{i,j}-v_{i,j-1}}{h_{z}}\right]=h_{r}h_{z}r_{i}f_{i,j} \end{split}$$

Теперь найдем значение разностной схемы на углах и границах интервалов

2.1.1 На левой границе

Проинтегрируем наше уравнение в i = 0 и z внутри промежутка

$$-\int\limits_{r_{i}}^{r_{i+\frac{1}{2}}}\int\limits_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}}\left[\frac{\partial}{\partial r}\left(rk_{1}(r,z)\frac{\partial u}{\partial r}\right)+\frac{\partial}{\partial z}\left(rk_{2}(r,z)\frac{\partial u}{\partial v}\right)\right]drdz=\int\limits_{r_{i}}^{r_{i+\frac{1}{2}}}\int\limits_{z_{j-\frac{1}{2}}}^{r_{i+\frac{1}{2}}}rf(r,z)drdz$$

Получаем:

$$\begin{split} & - \left. \left[\int\limits_{z_{i-\frac{1}{2}}}^{z_{i+\frac{1}{2}}} r k_1(r,z) \frac{\partial u}{\partial r} \right|_{r=r_{i+\frac{1}{2}}} dz - \int\limits_{z_{i-\frac{1}{2}}}^{z_{i+\frac{1}{2}}} r k_1(r,z) \frac{\partial u}{\partial r} \right|_{r=r_i} dz \\ & + \left. \int\limits_{r_i}^{r_{i+\frac{1}{2}}} r k_2(r,z) \frac{\partial u}{\partial v} \right|_{z=z_{j+\frac{1}{2}}} dr - \int\limits_{r_i}^{r_{i+\frac{1}{2}}} r k_2(r,z) \frac{\partial u}{\partial v} \right|_{z=z_{j-\frac{1}{2}}} dr \right] = \int\limits_{r_i}^{r_{i+\frac{1}{2}}} \int\limits_{z_{j-\frac{1}{2}}}^{r} r f(r,z) dr dz \end{split}$$

Имеем граничное условие:

$$\left.u\right|_{r=0}-$$
 ограничено, т. е $\left.\frac{\partial u}{\partial r}\right|_{r=0}=0$

$$\int\limits_{r_{i}}^{r_{i+\frac{1}{2}}} rfdr \approx f_{i} \int\limits_{r_{i}}^{r_{i+\frac{1}{2}}} rdr = f_{i} \frac{r_{i+\frac{1}{2}}^{2}}{2} = h_{r} f_{i} \frac{r_{i+\frac{1}{2}}}{2}, \quad i = 0, \quad r_{i} = 0, r_{i+\frac{1}{2}} = \frac{h_{r}}{2}$$

Получаем разностную схему:

$$\begin{split} &-\left[\hbar_{j}r_{i+\frac{1}{2}}k_{1}(r_{i+\frac{1}{2}},z_{j})\frac{v_{i+1,j}-v_{i,j}}{h_{i+1}}-0\right.\\ &+\left.\hbar_{i}r_{i+\frac{1}{2}}k_{2}(r_{i},z_{j+\frac{1}{2}})\frac{v_{i,j+1}-v_{i,j}}{h_{j+1}}-\hbar_{i}r_{i}k_{2}(r_{i},z_{j-\frac{1}{2}})\frac{v_{i,j}-v_{i,j-1}}{h_{j}}\right]=\hbar_{i}\hbar_{j}r_{i}f_{i,j} \end{split}$$

Перейдём к частному:

$$\begin{split} &-\left[h_{z}r_{\frac{1}{2}}k_{1}(r_{\frac{1}{2}},z_{j})\frac{v_{1,j}-v_{0,j}}{h_{r}}-0\right.\\ &\left.+\frac{h_{r}}{2}\frac{r_{\frac{1}{2}}}{2}k_{2}(r_{0},z_{j+\frac{1}{2}})\frac{v_{0,j+1}-v_{0,j}}{h_{z}}-\frac{h_{r}}{2}\frac{r_{\frac{1}{2}}}{2}k_{2}(r_{0},z_{j-\frac{1}{2}})\frac{v_{0,j}-v_{0,j-1}}{h_{z}}\right]=\frac{h_{r}}{2}\frac{r_{\frac{1}{2}}}{2}h_{z}f_{0,j} \end{split}$$

2.1.2 На правой границе

Проинтегрируем наше уравнение в $i=N_x$ и z внутри промежутка

$$-\int\limits_{r_{i-\frac{1}{2}}}^{r_{i}}\int\limits_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}}\left[\frac{\partial}{\partial r}\left(rk_{1}(r,z)\frac{\partial u}{\partial r}\right)+\frac{\partial}{\partial z}\left(rk_{2}(r,z)\frac{\partial u}{\partial v}\right)\right]drdz=\int\limits_{r_{i-\frac{1}{2}}}^{r_{i}}\int\limits_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}}rf(r,z)drdz$$

Получаем:

$$\begin{split} & - \left| \int\limits_{z_{i-\frac{1}{2}}}^{z_{i+\frac{1}{2}}} r k_1(r,z) \frac{\partial u}{\partial r} \right|_{r=r_i} dz - \int\limits_{z_{i-\frac{1}{2}}}^{z_{i+\frac{1}{2}}} r k_1(r,z) \frac{\partial u}{\partial r} \Big|_{r=r_{i-\frac{1}{2}}} dz \\ & + \int\limits_{r_{i-\frac{1}{2}}}^{r_i} r k_2(r,z) \frac{\partial u}{\partial v} \Big|_{z=z_{j+\frac{1}{2}}} dr - \int\limits_{r_{i-\frac{1}{2}}}^{r_i} r k_2(r,z) \frac{\partial u}{\partial v} \Big|_{z=z_{j-\frac{1}{2}}} dr \right] = \int\limits_{r_{i-\frac{1}{2}}}^{r_i} \int\limits_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}} r f(r,z) dr dz \end{split}$$

Имеем граничное условие:

$$-k_1\frac{\partial u}{\partial r}\Big|_{r=R} = \chi_2 \left.u\right|_{r=R} - \varphi_2(z)$$

Получаем разностную схему:

$$\begin{split} &-\left[-\hbar_{j}(\chi_{2}v_{i}-\varphi_{2}(z))-\hbar_{j}r_{i-\frac{1}{2}}k_{1}(r_{i-\frac{1}{2}},z_{j})\frac{v_{i,j}-v_{i-1,j}}{h_{r}}\right.\\ &+\left.\hbar_{i}r_{i}k_{2}(r_{i},z_{j+\frac{1}{2}})\frac{v_{i,j+1}-v_{i,j}}{h_{z}}-\hbar_{i}r_{i}k_{2}(r_{i},z_{j-\frac{1}{2}})\frac{v_{i,j}-v_{i,j-1}}{h_{z}}\right]=\hbar_{i}\hbar_{j}r_{i}f_{i,j} \end{split}$$

Перейдём к частному:

$$\begin{split} &-\left[-h_z(\chi_2 v_{N_r}-\varphi_2(z))-h_z r_{N_r-\frac{1}{2}}k_1(r_{N_r-\frac{1}{2}},z_j)\frac{v_{N_r,j}-v_{N_r-1,j}}{h_r}\right.\\ &\left.+\frac{h_r}{2}r_{N_r}k_2(r_{N_r},z_{j+\frac{1}{2}})\frac{v_{N_r,j+1}-v_{N_r,j}}{h_z}-\frac{h_r}{2}r_{N_r}k_2(r_{N_r},z_{j-\frac{1}{2}})\frac{v_{N_r,j}-v_{N_r,j-1}}{h_z}\right]=\frac{h_r}{2}r_{N_r}h_zf_{N_r,j} \end{split}$$

2.1.3 На нижней границе

Проинтегрируем наше уравнение j = 0 и i внутри промежутка

$$-\int\limits_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}}\int\limits_{z_{j}}^{z_{j+\frac{1}{2}}}\left[\frac{\partial}{\partial r}\left(rk_{1}(r,z)\frac{\partial u}{\partial r}\right)+\frac{\partial}{\partial z}\left(rk_{2}(r,z)\frac{\partial u}{\partial v}\right)\right]drdz=\int\limits_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}}\int\limits_{z_{j}}^{z_{j+\frac{1}{2}}}rf(r,z)drdz$$

Получаем:

$$\begin{split} & - \left[\int\limits_{z_{i}}^{z_{i+\frac{1}{2}}} r k_{1}(r,z) \frac{\partial u}{\partial r} \Big|_{r=r_{i+\frac{1}{2}}} dz - \int\limits_{z_{i}}^{z_{i+\frac{1}{2}}} r k_{1}(r,z) \frac{\partial u}{\partial r} \Big|_{r=r_{i-\frac{1}{2}}} dz \\ & + \int\limits_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}} r k_{2}(r,z) \frac{\partial u}{\partial v} \Big|_{z=z_{j+\frac{1}{2}}} dr - \int\limits_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}} r k_{2}(r,z) \frac{\partial u}{\partial v} \Big|_{z=z_{j}} dr \right] = \int\limits_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}} \int\limits_{z_{j}}^{z_{j+\frac{1}{2}}} r f(r,z) dr dz \end{split}$$

Имеем граничное условие:

$$\left.k_2\frac{\partial u}{\partial z}\right|_{z=0}=\chi_3\left.u\right|_{z=0}-\varphi_3(r)$$

Получаем разностную схему:

$$\begin{split} -\left[\hbar_{j}r_{i+\frac{1}{2}}k_{1}(r_{i+\frac{1}{2}},z_{j})\frac{v_{i+1,j}-v_{i,j}}{h_{r}}-\hbar_{j}r_{i-\frac{1}{2}}k_{1}(r_{i-\frac{1}{2}},z_{j})\frac{v_{i,j}-v_{i-1,j}}{h_{r}}\right.\\ \left.+\hbar_{i}r_{i}k_{2}(r_{i},z_{j+\frac{1}{2}})\frac{v_{i,j+1}-v_{i,j}}{h_{z}}-\hbar_{i}(\chi_{3}v_{i}-\varphi_{3}(r))\right]=\hbar_{i}\hbar_{j}r_{i}f_{i,j} \end{split}$$

Перейдём к частному:

$$\begin{split} -\left[\frac{h_z}{2}r_{i+\frac{1}{2}}k_1(r_{i+\frac{1}{2}},z_0)\frac{v_{i+1,0}-v_{i,0}}{h_r} - \frac{h_z}{2}r_{i-\frac{1}{2}}k_1(r_{i-\frac{1}{2}},z_0)\frac{v_{i,0}-v_{i-1,0}}{h_r} \right. \\ \left. + h_r r_i k_2(r_i,z_{\frac{1}{2}})\frac{v_{i,1}-v_{i,0}}{h_z} - h_r(\chi_3 v_{i,0} - \varphi_3(r))\right] = h_r \frac{h_z}{2}r_i f_{i,0} \end{split}$$

2.1.4 На верхней границе

Имеем граничное условие:

$$\left.u\right|_{z=L}=\varphi_r(r)$$

$$v_{i,N_z} = \varphi(r_i)$$

2.1.5 Левый-нижний угол

Проинтегрируем наше уравнение в i = 0 и j = 0 внутри промежутка

$$-\int\limits_{r_{i}}^{r_{i+\frac{1}{2}}}\int\limits_{z_{j}}^{z_{j+\frac{1}{2}}}\left[\frac{\partial}{\partial r}\left(rk_{1}(r,z)\frac{\partial u}{\partial r}\right)+\frac{\partial}{\partial z}\left(rk_{2}(r,z)\frac{\partial u}{\partial v}\right)\right]drdz=\int\limits_{r_{i}}^{r_{i+\frac{1}{2}}}\int\limits_{z_{j}}^{z_{j+\frac{1}{2}}}rf(r,z)drdz$$

Получаем:

$$\begin{split} &-\left[\int\limits_{z_{i}}^{z_{i+\frac{1}{2}}}rk_{1}(r,z)\frac{\partial u}{\partial r}\Big|_{r=r_{i+\frac{1}{2}}}dz-\int\limits_{z_{i}}^{z_{i+\frac{1}{2}}}rk_{1}(r,z)\frac{\partial u}{\partial r}\Big|_{r=r_{i}}dz\\ &+\int\limits_{r_{i}}^{r_{i+\frac{1}{2}}}rk_{2}(r,z)\frac{\partial u}{\partial v}\Big|_{z=z_{j+\frac{1}{2}}}dr-\int\limits_{r_{i}}^{r_{i+\frac{1}{2}}}rk_{2}(r,z)\frac{\partial u}{\partial v}\Big|_{z=z_{j}}dr\right]=\int\limits_{r_{i}}^{r_{i+\frac{1}{2}}}\int\limits_{z_{j}}^{z_{j+\frac{1}{2}}}rf(r,z)drdz \end{split}$$

Имеем граничное условие:

$$\left.u\right|_{r=0}-$$
 ограничено, т. е $\left.\frac{\partial u}{\partial r}\right|_{r=0}=0$

$$\int\limits_{r_{i}}^{r_{i+\frac{1}{2}}} rfdr \approx f_{i} \int\limits_{r_{i}}^{r_{i+\frac{1}{2}}} rdr = f_{i} \frac{r_{i+\frac{1}{2}}^{2}}{2} = h_{r} f_{i} \frac{r_{i+\frac{1}{2}}}{2}, \quad i = 0, \quad r_{i} = 0, r_{i+\frac{1}{2}} = \frac{h_{r}}{2}$$

Также:

$$\left.k_2\frac{\partial u}{\partial z}\right|_{z=0} = \chi_3 \left.u\right|_{z=0} - \varphi_3(r)$$

Получаем:

$$\begin{split} &-\left[\hbar_{j}r_{i+\frac{1}{2}}k_{1}(r_{i+\frac{1}{2}},z_{j})\frac{v_{i+1,j}-v_{i,j}}{h_{r}}-0\right.\\ &\left.+\hbar_{i}r_{i+\frac{1}{2}}k_{2}(r_{i},z_{j+\frac{1}{2}})\frac{v_{i,j+1}-v_{i,j}}{h_{z}}-\hbar_{i}(\chi_{3}\left.u\right|_{z=0}-\varphi_{3}(r))\right]=\hbar_{i}\hbar_{j}r_{i}f_{i,j} \end{split}$$

Перейдём к частному:

$$\begin{split} &-\left[\frac{h_z}{2}r_{\frac{1}{2}}k_1(r_{\frac{1}{2}},z_0)\frac{v_{1,0}-v_{0,0}}{h_r}-0\right.\\ &\left.+\frac{h_r}{2}r_{\frac{1}{2}}k_2(r_0,z_{\frac{1}{2}})\frac{v_{0,1}-v_{0,0}}{h_z}-\frac{h_r}{2}(\chi_3v_{0,0}-\varphi_3(r))\right]=\frac{h_r}{2}\frac{h_z}{2}r_if_{i,j} \end{split}$$

2.1.6 Левый-верхний угол

При i=0 и $z=N_z$ имеем граничное условие: Имеем граничное условие:

$$\left.u\right|_{z=L}=\varphi_r(r)$$

$$v_{0,N_z}=\varphi(r_0)$$

2.1.7 Правый-верхний угол

При $i=N_r$ и $z=N_z$ имеем граничное условие: Имеем граничное условие:

$$u|_{z=L} = \varphi_r(r)$$

$$v_{N_r,N_z} = \varphi(r_{N_r})$$

2.1.8 Правый-нижний угол

Проинегрируем наше уравнение в $i=N_r$ и j=0:

$$-\int\limits_{r_{i-\frac{1}{2}}}^{r_{i}}\int\limits_{z_{j}}^{z_{j+\frac{1}{2}}}\left[\frac{\partial}{\partial r}\left(rk_{1}(r,z)\frac{\partial u}{\partial r}\right)+\frac{\partial}{\partial z}\left(rk_{2}(r,z)\frac{\partial u}{\partial v}\right)\right]=\int\limits_{r_{i-\frac{1}{2}}}^{r_{i}}\int\limits_{z_{j}}^{z_{j+\frac{1}{2}}}rf(r,z)$$

Получаем:

$$\begin{split} &-\left[\int\limits_{z_{i}}^{z_{i+\frac{1}{2}}}rk_{1}(r,z)\frac{\partial u}{\partial r}\Big|_{r=r_{i}}\,dz-\int\limits_{z_{i}}^{z_{i+\frac{1}{2}}}rk_{1}(r,z)\frac{\partial u}{\partial r}\Big|_{r=r_{i-\frac{1}{2}}}\,dz\\ &+\int\limits_{r_{i-\frac{1}{2}}}^{r_{i}}rk_{2}(r,z)\frac{\partial u}{\partial v}\Big|_{z=z_{j+\frac{1}{2}}}\,dr-\int\limits_{r_{i-\frac{1}{2}}}^{r_{i}}rk_{2}(r,z)\frac{\partial u}{\partial v}\Big|_{z=z_{j}}\,dr\right]=\int\limits_{r_{i-\frac{1}{2}}}^{r_{i}}\int\limits_{z_{j}}^{z_{j+\frac{1}{2}}}rf(r,z)drdz \end{split}$$

Имеем граничные условия:

$$\begin{split} -k_1 \frac{\partial u}{\partial r}\Big|_{r=R} &= \left. \chi_2 \left. u \right|_{r=R} - \varphi_2(z) \right. \\ \left. k_2 \frac{\partial u}{\partial z} \right|_{z=0} &= \left. \chi_3 \left. u \right|_{z=0} - \varphi_3(r) \right. \end{split}$$

Получаем разностную схему:

$$\begin{split} &-\left[-\hbar_{j}(\chi_{2}\left.u\right|_{r=R}-\varphi_{2}(z))-\hbar_{j}r_{i-\frac{1}{2}}k_{1}(r_{i-\frac{1}{2}},z_{j})\frac{v_{i,j}-v_{i-1,j}}{h_{r}}\right.\\ &+\left.\hbar_{i}r_{i}k_{2}(r_{i},z_{j+\frac{1}{2}})\frac{v_{i,j+1}-v_{i,j}}{h_{z}}-\hbar_{i}(\chi_{3}v_{i}-\varphi_{3}(r))\right]=\hbar_{i}\hbar_{j}r_{i}f_{i,j} \end{split}$$

Перейдём к частному

$$\begin{split} -\left[-\frac{h_z}{2}(\chi_2 v_{N_r,0}-\varphi_2(z)) - \frac{h_z}{2} r_{N_r-\frac{1}{2}} k_1(r_{N_r-\frac{1}{2}},z_0) \frac{v_{N_r,0}-v_{N_r-1,0}}{h_r} \right. \\ \left. + \frac{h_r}{2} r_{N_r} k_2(r_{N_r},z_{\frac{1}{2}}) \frac{v_{N_r,1}-v_{N_r,0}}{h_z} - \frac{h_r}{2} (\chi_3 v_{N_r,0}-\varphi_3(r)) \right] = \frac{h_r}{2} \frac{h_z}{2} r_{N_r} f_{N_r,0} \end{split}$$

2.2 Запись СЛАУ

Перейдём к одноиндексной записи

$$m = j(N_r + 1) + i$$

Индексы изменяются в следующих границах:

$$0 \le i \le N_r$$

$$0 \le j \le N_z$$

Тогда имеем:

$$0 \leq m < (N_r+1)(N_y+1)$$

2.2.1 Запись для внутренних точек

Перепишем наше уравнение с использованием нового индеса для $i\in(0,N_r)$ и $j\in(0,N_z)$:

$$\begin{split} &-\left[h_{z}r_{i+\frac{1}{2}}k_{1}(r_{i+\frac{1}{2}},z_{j})\frac{v_{i+1,j}-v_{i,j}}{h_{r}}-h_{z}r_{i-\frac{1}{2}}k_{1}(r_{i-\frac{1}{2}},z_{j})\frac{v_{i,j}-v_{i-1,j}}{h_{r}}\right.\\ &+\left.h_{r}r_{i}k_{2}(r_{i},z_{j+\frac{1}{2}})\frac{v_{i,j+1}-v_{i,j}}{h_{z}}-h_{r}r_{i}k_{2}(r_{i},z_{j-\frac{1}{2}})\frac{v_{i,j}-v_{i,j-1}}{h_{z}}\right]=h_{r}h_{z}r_{i}f_{i,j} \end{split}$$

$$\begin{split} &-\frac{h_r}{h_z}r_ik_2(r_i,z_{j-\frac{1}{2}})v_{i,j-1}-\frac{h_r}{h_z}r_{i-\frac{1}{2}}k_1(r_{i-\frac{1}{2}},z_j)v_{i-1,j}+\\ &+\left[\frac{h_z}{h_r}r_{i+\frac{1}{2}}k_1(r_{i+\frac{1}{2}},z_j)+\frac{h_z}{h_r}r_{i-\frac{1}{2}}k_1(r_{i-\frac{1}{2}},z_j)+\frac{h_r}{h_z}r_ik_2(r_i,z_{j+\frac{1}{2}})+\frac{h_r}{h_z}r_ik_2(r_i,z_{j-\frac{1}{2}})\right]v_{i,j}\\ &-\frac{h_z}{h_r}r_{i+\frac{1}{2}}k_1(r_{i+\frac{1}{2}},z_j)v_{i+1,j}-\frac{h_r}{h_z}r_ik_2(r_i,z_{j+\frac{1}{2}})v_{i,j+\frac{1}{2}}=h_rh_zr_if_{i,j} \end{split}$$

2.2.2 Запись для левой границы

Перепишем наше уравнение с использованием нового индекса для i=0 и $j\in(0,N_z)$:

$$\begin{split} &-\left[h_zr_{\frac{1}{2}}k_1(r_{\frac{1}{2}},z_j)\frac{v_{1,j}-v_{0,j}}{h_r}-0\right.\\ &\left.+\frac{h_r}{2}\frac{r_{\frac{1}{2}}}{2}k_2(r_0,z_{j+\frac{1}{2}})\frac{v_{0,j+1}-v_{0,j}}{h_z}-\frac{h_r}{2}\frac{r_{\frac{1}{2}}}{2}k_2(r_0,z_{j-\frac{1}{2}})\frac{v_{0,j}-v_{0,j-1}}{h_z}\right]=\frac{h_r}{2}\frac{r_{\frac{1}{2}}}{2}h_zf_{0,j} \end{split}$$

$$\begin{split} &-\frac{h_r}{2h_z}\frac{r_{\frac{1}{2}}}{2}k_2(r_0,z_{j-\frac{1}{2}})v_{0,j-1} + \\ &+ \left[\frac{h_z}{h_r}r_{\frac{1}{2}}k_1(r_{\frac{1}{2}},z_j) + \frac{h_r}{2h_z}\frac{r_{\frac{1}{2}}}{2}k_2(r_0,z_{j+\frac{1}{2}}) + \frac{h_r}{2h_z}\frac{r_{\frac{1}{2}}}{2}k_2(r_0,z_{j-\frac{1}{2}})\right]v_{0,j} \\ &- \frac{h_z}{h_r}r_{\frac{1}{2}}k_1(r_{\frac{1}{2}},z_j)v_{1,j} - \frac{h_r}{2h_z}\frac{r_{\frac{1}{2}}}{2}k_2(r_0,z_{j+\frac{1}{2}})v_{0,j+1} = \frac{h_r}{2}\frac{r_{\frac{1}{2}}}{2}h_zf_{0,j} \end{split}$$

2.2.3 Запись для правой границы

Перепишем наше уравнение с использованием нового индекса для $i=N_r$ и $j\in(0,N_z)$:

$$\begin{split} &-\left[-h_z(\chi_2 v_{N_r}-\varphi_2(z))-h_z r_{N_r-\frac{1}{2}}k_1(r_{N_r-\frac{1}{2}},z_j)\frac{v_{N_r,j}-v_{N_r-1,j}}{h_r}\right.\\ &\left.+\frac{h_r}{2}r_{N_r}k_2(r_{N_r},z_{j+\frac{1}{2}})\frac{v_{N_r,j+1}-v_{N_r,j}}{h_z}-\frac{h_r}{2}r_{N_r}k_2(r_{N_r},z_{j-\frac{1}{2}})\frac{v_{N_r,j}-v_{N_r,j-1}}{h_z}\right]=\frac{h_r}{2}r_{N_r}h_zf_{N_r,j} \end{split}$$

$$\begin{split} &-\frac{h_r}{2h_z}r_{N_r}k_2(r_{N_r},z_{j-\frac{1}{2}})v_{N_r,j-1}-\frac{h_z}{h_r}r_{N_r-\frac{1}{2}}k_1(r_{N_r-\frac{1}{2}},z_j)v_{N_r-1,j}\\ &+\left[h_z\chi_2+\frac{h_z}{h_r}r_{N_r-\frac{1}{2}}k_1(r_{N_r-\frac{1}{2}},z_j)+\frac{h_r}{2h_z}r_{N_r}k_2(r_{N_r,z_{j+\frac{1}{2}}})+\frac{h_r}{2h_z}r_{N_r}k_2(r_{N_r},z_{j-\frac{1}{2}})\right]v_{N_r,j}\\ &-\frac{h_r}{2h_z}r_{N_r}k_2(r_{N_r},z_{j+\frac{1}{2}})v_{N_r,j+1}=\frac{h_r}{2}r_{N_r}h_zf_{N_r,j}+h_z\phi_2(z) \end{split}$$

2.2.4 Запись для нижней границы

2.2.5 Запись для верхней границы

Перепишем наше уравнение с использованием нового индекса для $i\in(0,N_r)$ и $j=N_z$:

$$v_{i,N_z} = \varphi(r_i)$$

Перейдём к новым обозначениям:

$$c_m w_m = \varphi_m$$

где:

$$c_m=1, \quad \varphi_m=\varphi_2(r_i)$$

2.2.6 Запись для левой нижней граничной точки

2.2.7 Запись для правой нижней граничной точки

3 Заключение