Final

January 6, 2023

1 Final Project: Crypto Currency from 2013 to 2021

Member of our team:

Fullname

Student ID

Đoàn Ánh Dương

20127474

1.1 Import Library

Necessary file imported here.

Note: Some external library out of min_ds-env need to be installed: - plotly

```
import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
from plotly.subplots import make_subplots
import plotly.graph_objects as go

from datetime import datetime, timedelta
from dateutil import relativedelta

import os
import glob
```

Environment using within this final project.

```
[2]: import sys sys.executable
```

[2]: '/home/duong/anaconda3/bin/python'

Set options here.

```
[3]: pd.set_option('display.max_colwidth', None)
# pd.set_option('display.float_format', '{:.2f}'.format)
```

1.2 I. Idea and Expectation

1.2.1 Idea

For recent years, we have been heard at least once about crypto, particuarly Bitcoin and its application. Although digital currency brought many controversial opinions up to now, we cannot realize its success and popularity.

So I decided to deep in crypto market and fortunately, I found the historical price data of crypto currency on Kaggle. Although the data does not contain all information about a specific coin, the historical price can bring us to take an overview of digital currency evolution.

Throughout this project, I hope that we can have a perspective objectively and a basic knowledge about digital currency. ### Expectation In this project, we will find out the crypto currency market and its history, with expectation that we can find a method to buy a coin and take profit.

1.3 II. Datasets and Collection

1.3.1 Source and Public Data

I found the datasets used in this project was public on Kaggle: Crypto Currency price history.

1.3.2 License

The data is taken from coinmarketcap and it is free to use the data.

More about the license I found on kaggle: - CCO: Public Domain (No copyright)

1.3.3 About Data

The dataset has one csv file for each currency. **Price history is available on a daily basis** from *April 28, 2013*. This dataset has the historical price information of some of the top crypto currencies by market capitalization, including Bitcoin, Etherium, Binance Coin,...

1.3.4 Description

All information of columns contain in the file named description.txt.

1.3.5 Author

Datasets were collected by Sudalai Rajkumar (registered account name SRK) on Kaggle.

1.3.6 How did the author collect data?

As the author's answer, there is not mentioned clearly how the way he collected data, maybe collected by scraping historical data web. For instance: bitcoin.

1.3.7 Is dataset subjective or objective?

Besides the historical price of digital currency, there are many factors in a coin we need to take consideration on. For example: Holders Statistic over time, legality, team and organization investors, who created the coin...

So that the dataset is subjective.

1.4 III. Preprocessing Data

1.4.1 1. Change files.

First, we cannot access each files to analyze, it must be combined into one.

How many files does we have?

duplicated in coin_Cardano.csv: 0

```
[4]: path = 'archive/'
    os.chdir(path)
    ext = 'csv'
    all_files = [f for f in glob.glob(f'*.{ext}')]

print(f'Containing number of files: {len(all_files)}.')
print(all_files)

os.chdir('../')
```

```
Containing number of files: 23.

['coin_XRP.csv', 'coin_Ethereum.csv', 'coin_Aave.csv', 'coin_USDCoin.csv',
'coin_Solana.csv', 'coin_EOS.csv', 'coin_WrappedBitcoin.csv',
'coin_Cardano.csv', 'coin_NEM.csv', 'coin_Tron.csv', 'coin_CryptocomCoin.csv',
'coin_BinanceCoin.csv', 'coin_Iota.csv', 'coin_ChainLink.csv',
'coin_Monero.csv', 'coin_Dogecoin.csv', 'coin_Tether.csv', 'coin_Bitcoin.csv',
'coin_Cosmos.csv', 'coin_Litecoin.csv', 'coin_Stellar.csv', 'coin_Polkadot.csv',
'coin_Uniswap.csv']
```

Are there duplicated in each files? Lets check duplicated rows.

```
[5]: for f in all_files:
    temp = pd.read_csv(path+f)
    print(f'duplicated in {f}:', temp.index.duplicated().sum())

duplicated in coin_XRP.csv: 0
    duplicated in coin_Ethereum.csv: 0
    duplicated in coin_Aave.csv: 0
    duplicated in coin_USDCoin.csv: 0
    duplicated in coin_Solana.csv: 0
    duplicated in coin_EOS.csv: 0
    duplicated in coin_WrappedBitcoin.csv: 0
```

```
duplicated in coin_NEM.csv: 0
duplicated in coin_Tron.csv: 0
duplicated in coin_CryptocomCoin.csv: 0
duplicated in coin_BinanceCoin.csv: 0
duplicated in coin_Iota.csv: 0
duplicated in coin_ChainLink.csv: 0
duplicated in coin_Monero.csv: 0
duplicated in coin_Dogecoin.csv: 0
duplicated in coin_Tether.csv: 0
duplicated in coin_Bitcoin.csv: 0
duplicated in coin_Cosmos.csv: 0
duplicated in coin_Litecoin.csv: 0
duplicated in coin_Stellar.csv: 0
duplicated in coin_Stellar.csv: 0
duplicated in coin_Polkadot.csv: 0
duplicated in coin_Uniswap.csv: 0
```

So there is no duplicated rows. We carry out combining files.

```
[6]: combined_csv = pd.concat([pd.read_csv(path + fname) for fname in all_files])
print('duplicated in combine files: ', combined_csv.index.duplicated().sum())
```

duplicated in combine files: 34091

Why the combined files take duplicated? Because column 'SNo' is the index starting with 1 for each files. So we must reset the index in combined files.

```
[7]: combined_csv.drop(columns='SNo',inplace = True)
    combined_csv.to_csv('crypto_finance.csv', index=False)

combined_csv = pd.read_csv('crypto_finance.csv')
    combined_csv.index.rename('SNo', inplace = True)
    combined_csv.to_csv('crypto_finance.csv')
```

1.4.2 2. Pre-processing

Read new file. Let's see some values.

```
[8]: cryp_df = pd.read_csv('crypto_finance.csv', index_col='SNo')
cryp_df.sample(10)
```

```
[8]:
                       Name Symbol
                                                   Date
                                                               High
                                                                            Low \
     SNo
     22767
                                                           0.000153
                                                                       0.000145
                   Dogecoin
                              DOGE 2015-12-15 23:59:59
                        XRP
     2549
                               XRP 2020-07-28 23:59:59
                                                           0.233693
                                                                       0.217894
     11085
                        NEM
                               XEM 2016-10-28 23:59:59
                                                           0.003937
                                                                       0.003696
     23259
                   Dogecoin
                              DOGE 2017-04-20 23:59:59
                                                           0.000483
                                                                       0.000438
     18607
                  Chainlink
                              LINK 2019-03-31 23:59:59
                                                           0.535640
                                                                       0.488088
     4345
                              ETH 2019-07-30 23:59:59 213.614075 206.867613
                   Ethereum
```

11237 398		NEM XEM XRP	2017-03-29 23 2014-09-07 23		0.014892 0.004813	0.013265 0.004704
14559	Crypto.com	Coin CRO	2019-12-19 23	:59:59	0.033643	0.032308
8059		EOS EOS	2020-12-30 23	:59:59	2.670463	2.551347
	Open	Close	Volume	Market	cap	
SNo						
22767	0.000145	0.000150	2.357910e+05	1.533710e	+07	
2549	0.223889	0.230277	1.754696e+09	1.032762e	+10	
11085	0.003937	0.003743	6.190920e+04	3.368925e	+07	
23259	0.000448	0.000443	1.828250e+06	4.830447e	+07	
18607	0.494278	0.507613	9.259723e+06	1.776646e	+08	
4345	211.339197	210.522604	5.489919e+09	2.255101e	+10	
11237	0.013594	0.014892	6.480060e+05	1.340280e	+08	
398	0.004796	0.004704	8.785810e+04	1.363579e	+08	
14559	0.033246	0.033331	5.710471e+06	4.144266e	+08	
8059	2.642033	2.609923	2.556476e+09	2.450865e	+09	

More information about dataset.

[9]: cryp_df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 37082 entries, 0 to 37081
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Name	37082 non-null	object
1	Symbol	37082 non-null	object
2	Date	37082 non-null	object
3	High	37082 non-null	float64
4	Low	37082 non-null	float64
5	Open	37082 non-null	float64
6	Close	37082 non-null	float64
7	Volume	37082 non-null	float64
8	Marketcap	37082 non-null	float64

dtypes: float64(6), object(3)

memory usage: 2.8+ MB

How many rows and columns in the file?

```
[10]: cryp_df.shape
```

[10]: (37082, 9)

There are 37082 rows and 9 columns.

What is the meaning of each row (sample)? The dataset shows that each samples contain the information of a specific coin at each time.

Does the data have duplicated samples?

```
[11]: cryp_df.index.duplicated().sum()
```

[11]: 0

There is no duplicated samples.

What does each column mean?

```
[12]: f = open('description.txt', 'r')
print(f.read())
f.close()
```

```
    SNo: Serial Number.
    Name: Name of coin.
    Symbol: Symbol of coin.
    Date: Date of observation.
```

5) Open: Opening price on the given day.
6) High: Highest price on the given day.
7) Low: Lowest price on the given day.
8) Close: Closing price on the given day.

9) Volume: Volume of transactions on the given day (in USD).

10) Market Cap: Market capitalization in USD.

Check the data types?

```
[13]: cryp_df.dtypes
```

```
[13]: Name
                     object
      Symbol
                     object
      Date
                     object
      High
                    float64
      Low
                    float64
      Open
                    float64
      Close
                    float64
                    float64
      Volume
      Marketcap
                    float64
      dtype: object
```

Overall, all the column types is correct except Date. We need to change Date column to appropriate type (datetime).

```
[14]: cryp_df['Date'] = pd.to_datetime(cryp_df['Date'], format="%Y-%m-%d %X")
```

With the numeric columns, how are values distributed? Is there any abnormal value?

nume_cols_df

[15]:			Da	te	Hig	gh	Low	\
	count		37082				7082.000000	
	mean	2018-08-16 07	:12:30.2216168	96	1016.0580	15	952.987707	
	min	201	3-04-29 23:59:	59	0.00008	39	0.000079	
	25%	201	7-03-05 23:59:	59	0.0756	34	0.069536	
	50%	201	9-01-09 23:59:	59	1.0087	33	0.999850	
	75%	202	0-05-13 23:59:	59	31.91639	99	28.996246	
	max	202	1-07-06 23:59:	59	64863.09890	08 6	2208.964366	
	std		N	aN	5249.5036	70	4907.932082	
	missing_ratio		0	.0	0.0000	00	0.000000	
		Open	Close		Volume	M	arketcap	
	count	37082.000000	37082.000000	3.7	708200e+04	3.70	8200e+04	
	mean	985.323755	987.120511	3.0)22542e+09	1.54	2943e+10	
	min	0.000086	0.000086	0.0	000000e+00	0.00	0000e+00	
	25%	0.072456	0.072648	4.9	937190e+06	2.39	5955e+08	
	50%	1.001157	1.001138	8.5	512805e+07	1.40	5335e+09	
	75%	30.459673	30.512205	9.3	388489e+08	5.15	9305e+09	
	max	63523.754869	63503.457930	3.5	509679e+11	1.18	6364e+12	
	std	5088.101367	5093.703878	1.1	190963e+10	7.05	9128e+10	
	missing_ratio	0.000000	0.000000	0.0	000000e+00	0.00	0000e+00	

There is no missing value in DataFrame. But it exists abnormal values in min row of Volume and Marketcap col.

So, lets take a look at these columns.

[16]:		Name	Symbol		Date	High	Low	Open	\
	SNo								
	0	XRP	XRP	2013-08-05	23:59:59	0.005980	0.005613	0.005875	
	1	XRP	XRP	2013-08-06	23:59:59	0.005661	0.004629	0.005637	
	2	XRP	XRP	2013-08-07	23:59:59	0.004682	0.004333	0.004669	
	3	XRP	XRP	2013-08-08	23:59:59	0.004424	0.004175	0.004397	
	4	XRP	XRP	2013-08-09	23:59:59	0.004367	0.004253	0.004257	
	•••					•••	•••		
	36477	Polkadot	DOT	2020-08-28	23:59:59	6.333746	5.540963	5.639486	
	36478	Polkadot	DOT	2020-08-29	23:59:59	6.562906	6.042309	6.175925	
	36479	Polkadot	DOT	2020-08-30	23:59:59	6.219506	5.749978	6.153440	
	36480	Polkadot	DOT	2020-08-31	23:59:59	6.459377	5.772966	5.905918	
	36481	Polkadot	DOT	2020-09-01	23:59:59	6.838898	6.172324	6.298810	
		Close		Volume	Marketcap				

```
SNo
0
      0.005613 0.000000e+00
                             4.387916e+07
1
      0.004680 0.000000e+00
                              3.659101e+07
2
      0.004417
                0.000000e+00
                              3.453412e+07
3
      0.004254 0.000000e+00
                             3.325863e+07
4
      0.004291
                0.000000e+00
                              3.354750e+07
36477
      6.159955
                7.271622e+08
                              0.000000e+00
      6.159143 5.272900e+08
                              0.000000e+00
36478
36479
      5.869881
                4.853351e+08
                              0.000000e+00
      6.300020 5.126048e+08
36480
                              0.000000e+00
36481
      6.288767 6.015274e+08
                             0.000000e+00
```

[971 rows x 9 columns]

We got some problems here: Abnormal values on Volume and Marketcap col. We can calculate the ratio of abnormal values to decide whether to drop or not.

```
[17]: abn_df = check_df.groupby(['Symbol']).size()
all_df = cryp_df.groupby(['Symbol']).size()
    (abn_df/all_df *100).dropna()
```

```
[17]: Symbol
      AAVE
                0.363636
      MOTA
                5.443787
      BTC
                8.090939
      CRO
                0.213904
      DOGE
                0.398551
      DOT
                3.750000
      EOS
                0.068213
      LTC
                8.090939
      SOL
               11.504425
      TRX
                1.005747
      USDC
                0.798403
      WBTC
              22.072072
      XRP
                4.977532
      dtype: float64
```

As the results, the number of invalid values is quite small, we can delete samples containing invalid values. But once we dropped it, we will face the intermittence of time data. So I decided not to drop.

With the categorical columns, how are the values distributed? Is there any abnormal value?

[18]: Name \

```
0.0
num_dif_val
23
diff_vals [XRP, Ethereum, Aave, USD Coin, Solana, EOS, Wrapped Bitcoin,
Cardano, NEM, TRON, Crypto.com Coin, Binance Coin, IOTA, Chainlink, Monero,
Dogecoin, Tether, Bitcoin, Cosmos, Litecoin, Stellar, Polkadot, Uniswap]
```

Symbol

There is no missing value in categorical columns. Everything seems to be fine.

1.5 IV. Data Exploratory and Analysis.

1.5.1 Data Exploratory

missing_ratio

which coin is stable/unstable? Before investing any markets, investors must know the basis to save their money. One of the most crucial knowledge is stable/unstable coins: - A stablecoin is a digital currency that is pegged to a "stable" reserve asset like the U.S dollar. - A unstable coin is a digital currency that has high price volatility, high inflation and weak economy.

We can find the answer by calculating the volatility.

Middle-term Investor (Month)

1. Preprocess

Now we are carrying out calculating the volatility of each coin month by month.

```
Values(Close\ month\ before)
                                                                                       (1)
[19]: | last_dom_prep = cryp_df.reset_index('SNo').drop(columns=['SNo', 'Symbol'])
      last_dom_prep['Month'] = last_dom_prep.Date.dt.month
      last_dom_prep['Year'] = last_dom_prep.Date.dt.year
      last_dom = last_dom_prep.groupby(['Name', 'Year', 'Month'])['Date'].max().
       →reset index()
      #make condition
      Name = (cryp_df['Name'].isin(last_dom['Name']))
      date = (cryp_df['Date'].isin(last_dom['Date']))
      #gat all cols of last date each month and each Name.
      last_dom_df = last_dom_prep[Name & date]
      last_dom_df=last_dom_df.drop(columns=['Month','Year'])
      #find min date and max date of each coin => delete min date and duplicate max
       \rightarrow date.
      min max = last_dom_df[['Name','Date']].groupby('Name').agg([min,max])
      min_max = min_max.reset_index(col_level=1).droplevel(level=0,axis=1).
       ⇒set_index(['Name','min'])
      substr = last_dom_df.set_index(['Name','Date']).drop(index=min_max.index)
      min_max = min_max.reset_index().set_index(['Name','max'])
      besubstr = last_dom_df.set_index(['Name','Date']).drop(index=min_max.index).
       ⇔reset_index()
      #increase to end of next month
      besubstr = besubstr.assign(
          Date = besubstr.Date + pd.Timedelta(days=1)
      besubstr = besubstr.assign(
          Date = besubstr.Date.apply(
              lambda x:x+ relativedelta.relativedelta(months=1)
          )
      besubstr = besubstr.assign(
          Date = besubstr.Date - pd.Timedelta(days=1)
      besubstr = besubstr.set_index(['Name','Date'])
```

 $Values(Close_end_of_month) - Values(Close_month_before)$

 $Monthly \ volatility =$

```
#calculating the volatility
res = ((substr - besubstr)*100/besubstr).reset_index()
res = pd.pivot(res, columns = 'Name',index='Date',values='Close')
res
```

[19]:	Name		Aave	Bi	nance Coin]	Bitcoin	(Cardano	Cha	inlink	: \
	Date											
	2013-05-31		NaN				.194245		NaN		NaN	
	2013-06-30		NaN				.105428		NaN		NaN	
	2013-07-31		NaN		NaN		.808100		NaN		NaN	
	2013-08-31				NaN		.580366		NaN		NaN	
	2013-09-30	23:59:59	NaN		NaN	-1	.736244		NaN		NaN	
	•••		•••		•••	•••		••	•••			
			17.962651		106.605778							
			-13.861344									
			-34.639432		-14.402834	-6	.139409	-20	.616898	-39.	239339)
	2021-07-06	23:59:59			NaN		NaN		NaN		NaN	
	2021-07-31	23:59:59	NaN		NaN		NaN		NaN		NaN	Ī
	Name		Cosmos	Cr	ypto.com Co	oin	Doge	coin		EOS	\	
	Date				J1		. 6				•	
	2013-05-31	23:59:59	NaN		1	NaN		NaN		NaN		
	2013-06-30		NaN			NaN		NaN		NaN		
	2013-07-31		NaN			NaN		NaN		NaN		
	2013-08-31					NaN		NaN		NaN		
	2013-09-30		NaN			NaN		NaN		NaN		
	•••		•••		•••		•••	•				
		23:59:59	18.930354		-8.2109	962				2844		
			-38.427119		-36.6419							
			-14.224586				-21.974			7659		
	2021-07-06					NaN		NaN		NaN		
	2021-07-31				1	NaN		NaN		NaN		
	Name		Ethereum		NEM	P	olkadot		Solana	a \		
	Date			•••								
	2013-05-31			•••	NaN		NaN		Nal	1		
	2013-06-30		NaN	•••	NaN		NaN		Nal	J		
	2013-07-31	23:59:59	NaN	•••	NaN		NaN		Nal	1		
	2013-08-31	23:59:59		•••	NaN		NaN		Nal	J		
	2013-09-30	23:59:59	NaN	•••	NaN		NaN		Nal	J		
			44.561196									
			-2.100881									
			-16.221234			-29						
	2021-07-06	23:59:59	NaN	•••	NaN		NaN		NaN	J		

2021-07-31 23:59:59	NaN	•••	NaN		NaN	
Name Date	Stellar	TROI	V Tether	USD Coin	Uniswap	\
2013-05-31 23:59:59	NaN	Nal	NaN	NaN	NaN	
2013-06-30 23:59:59	NaN	Nal	NaN	NaN	NaN	
2013-07-31 23:59:59	NaN	Nal	NaN	NaN	NaN	
2013-08-31 23:59:59	NaN	Nal	NaN	NaN	NaN	
2013-09-30 23:59:59	NaN	Nal	NaN	NaN	NaN	
•••	•••	***	•••	•••		
2021-04-30 23:59:59	28.870459	43.241110	0.001135	0.021877	45.418800	
2021-05-31 23:59:59	-23.817326	-41.827906	0.052419	0.044035	-30.291554	
2021-06-30 23:59:59	-29.853028	-11.40648	L -0.031692	-0.017570	-32.045981	
2021-07-06 23:59:59	NaN	Nal	NaN	NaN	NaN	
2021-07-31 23:59:59	NaN	Nal	NaN NaN	NaN	NaN	
Name	Wrapped Bi	itcoin	XRP			
Date						
2013-05-31 23:59:59		NaN				
2013-06-30 23:59:59		NaN	NaN			
2013-07-31 23:59:59		NaN	NaN			
2013-08-31 23:59:59		NaN	NaN			
2013-09-30 23:59:59		NaN 94	1.118035			
2021-04-30 23:59:59			7.358124			
2021-05-31 23:59:59		398383 -34				
2021-06-30 23:59:59						
2021-07-06 23:59:59		NaN	NaN			
2021-07-31 23:59:59		NaN	NaN			

[102 rows x 23 columns]

2. Visualization

Visualizing the volatility of each coin to observe clearly. From now on, we can assume a coin is stable if its volatility is not beyond to [-15, 15] and the data is enough for our decisions.

Long-term Investor (Year) We could take a look at the vilatility year by year if we are a long-term investor.

All processes like above. We appoximates the yearly volatility base on monthly volatility.

Standard Deviation of monthly volatility.

$$STD_Monthly_volatility = \sqrt{\frac{\sum{(vola_month_i - \mu)^2}}{N = Num_of_month}} \tag{2}$$

Anually volatility.

$$Annual_volatility = STD_Monthly_volatility\sqrt{Num_of_month}$$
 (3)

1. Pre-processing

[21]:	Name	Aave	e Binance Coi	'n	Bitcoir	1	Cardan	o C	hainlink	\		
	Year											
	2013	NaN			57.109181		Na		NaN			
	2014	NaN			36.556166		Na		NaN			
	2015	NaN			66.726704		Na		NaN			
	2016	NaN			19.309806		Na.		NaN			
	2017	NaN			95.957177		06.46499		0.086523			
	2018	NaN			70.876683		58.61516		7.557427			
	2019	NaN			77.494807		85.82507		7.470088			
	2020	142.704238			79.796929		41.51981		6.576276			
	2021	287.504510	430.66403	39 7	74.921018	3	18.18703	9 13	5.334441			
	Name	Cosmos	crypto.com	Coin	Dogeo	coin		EOS	Ether	eum	\	
	Year										•••	
	2013	NaN	1	NaN		NaN	•	NaN]	NaN	•••	
	2014	NaN	1	NaN	362.003	3329	1	NaN]	NaN		
	2015	NaN	I	NaN	86.039	260	1	NaN	59.311	735	•••	
	2016	NaN	I	NaN	95.502	2047		NaN	236.411	589	•••	
	2017	NaN	I	NaN	410.123	3269	320.30	8490	262.2114	431	•••	
	2018	NaN	I	NaN	151.124	1506	222.32	8876	124.953	128	•••	
	2019	88.550594	272.49	3451	56.080	850	113.33	1961	88.975	236	•••	
	2020	127.325853	109.70	3283	76.319	909	97.29	7391	103.716	362	•••	
	2021	150.046174	157.14	1160	901.397	7567	78.03	2515	98.454	019		
	Name	NEM	M Polkadot		Solana		Stellar		TRON	т	ether	. \
	Year	1121	. Tolliago		Dorana		DUULLUL		111011	-	001101	`
	2013	NaN	NaN		NaN		NaN		NaN		NaN	Ī
	2014	NaN			NaN	162	.539517		NaN		NaN	
	2015	96.102720			NaN		.689299		NaN	0.0	00000	
	2016	600.502428			NaN		.278866		NaN		06333	
	2017	459.309983			NaN		.910700	1892	.737961		311229	
	2018	122.565094			NaN		.527085		.551788		68578	
	2019	103.686407			NaN		.377906		.089444		23591	
	2020	192.908441		242	. 260489		.488532		.112881		.25439	
	2021	215.813788					.644518		.507427		21865	
	Name	USD Coin	Uniswap V	Iranne	ad Ritcoi	'n	У	RP				
	Year	ODD COIN	oniswap v	vi appe	ed Diccor	-11	Λ	161				
	2013	NaN	NaN		Na	M	539.5637	16				
	2014 2015	NaN NaN	NaN NaN		Na Na		199.2818 100.4292					
		NaN NaN										
	2016	NaN NaN	NaN NaN		Na Na		65.2822					
	2017	NaN 0 705658	NaN NaN		Na Na		869.0894					
	2018	0.795658	NaN NaN		Na 76 24790		132.6387					
	2019	2.669780	NaN		76.24780		62.6278					
	2020 2021	3.647628	98.530297		81.54781 75.28519		204.4316					
	ノロフエ	0.118152	285.846007		10.20015	11	252.1597	ა4				

[9 rows x 23 columns]

2. Visualization

```
[22]: \# fiq, axs = plt.subplots(int(res1.columns.size/2 + 1),2, fiqsize=(15,60))
      # fig.tight layout()
      # for i in range(res1.columns.size):
            axs[int(i/2), i\%2].plot(res1[res1.columns.values[i]])
            axs[int(i/2),i%2].set_title(res1.columns.values[i])
      fig = make_subplots(rows = int(res1.columns.size/2 + 1), cols = 2,
                         vertical_spacing=0.02,
                          subplot_titles=tuple(res1.columns.values))
      for i in range(res1.columns.size):
          fig.add_trace(
              go.Scatter(x = res1.index,
                          y =res1[res1.columns.values[i]],
                          mode='lines',
                          name = res1.columns.values[i]
                      ),
              row = int(i/2)+1, col = i\%2 + 1
      fig.update_layout(height=4000,
                      showlegend=False,
                      title_text="Volatility of each coin")
      fig.show()
```

Conclusion Before deciding to invest a digital currency, investors must save their capital. How to save their own capital while almost digital currencies have a high volatility? \Rightarrow They must find and reserve in a stable coin.

According to the result, we can consider which one is a stablecoin. Here we have the coins take least volatility whether investors is middle-term or long-term: - Tether. - USD Coin.

Crypto currency proportion of 2021 To see crypto currency evolution, we could use MarketCap col.

```
[23]:
                                    Marketcap
      Name
                       Symbol
                       AAVE
                                4342005247.88
      Aave
      Binance Coin
                       BNB
                               45863429127.74
      Bitcoin
                       BTC
                              850308418885.51
      Cardano
                       ADA
                               36073727647.25
      Chainlink
                       LINK
                               11780371063.65
      Cosmos
                       MOTA
                                3439341205.25
      Crypto.com Coin CRO
                                3452219867.56
      Dogecoin
                       DOGE
                               23253147261.34
      EOS
                       EOS
                                4767997966.08
      Ethereum
                       ETH
                              239910890392.16
      IOTA
                       ATOIM
                                3403257862.25
      Litecoin
                       LTC
                               13150059074.47
      Monero
                       XMR
                                4459267395.45
      NEM
                       XEM
                                2850426717.84
      Polkadot
                       DOT
                               25611960118.95
      Solana
                       SOL
                                6176877049.63
      Stellar
                      XLM
                                9270609681.84
      TRON
                       TRX
                                5192913205.79
                       USDT
      Tether
                               44067450019.42
      USD Coin
                       USDC
                               12663720269.43
      Uniswap
                       UNI
                               12035294126.12
      Wrapped Bitcoin WBTC
                                6764035608.35
      XRP
                       XRP
                               33799135106.02
```

Visualyzing...

Result

• Bitcoin takes the highest market capitalization (60.6%), and the second is Etherium (17.1%).

As a result, it is said that Bitcoin is the main part of crypto currency, and other coins are assumed to be alternative coins (called altcoins).

Bitcoin History By Year History price chart.

```
fig.add_trace(go.Candlestick(x=btc_df['Date'],
                    open=btc df['Open'],
                    close = btc_df['Close'],
                    high=btc_df['High'],
                    low = btc_df['Low'],
                    ),
            row=1, col=1
)
btc_df = btc_df[btc_df['Volume'] > 0]
fig.add_trace(
    go.Scatter(x=btc_df['Date'], y=btc_df['Volume']),
    row=2, col =1
fig.update_layout(height=1000,
                xaxis_rangeslider_visible=False,
                showlegend=False,
                title='Bitcoin analysis')
fig.show()
```

1.5.2 Propose meaningful question & answer.

After preprocessing and exploring, we had an overview about the dataset. Lets turn back to our purpose. There are 2 main questions we must answer: - How does the price fluctuations of currencies correlate with each other? - Which coins do we need to take consideration?

1. How does the price fluctuations of currencies correlate with each other? With this question and the results of data exploratory, we could know how the digital currency work. The answer of this question tells us we should invest alternative coins or bitcoin.

We choose top_7 coins and stable coins except Bitcoin representing alternative coins.

```
[26]: stb_coin=['USDT','USDC']
mean_mcap = mean_mcap.sort_values('Marketcap',ascending=False)
stb_coin = mean_mcap[mean_mcap['Symbol'].isin(stb_coin)]
alt_and_BTC_coin = mean_mcap[:8]

alt_and_BTC_coins = pd.concat([stb_coin,alt_and_BTC_coin],axis=0)
alt_and_BTC_coins = alt_and_BTC_coins.drop_duplicates()

corr_df = cryp_df[cryp_df['Symbol'].isin(alt_and_BTC_coins['Symbol'])]
corr_df = pd.pivot(corr_df,values='Close', index='Date',columns='Symbol')

corr_df
```

[26]:	Symbol		ADA	BNB	BTC	DOGE	DOT	ETH	USDC	USDT	XRP
	Date										
	2013-04-29	23:59:59	NaN	NaN	144.54	NaN	NaN	NaN	NaN	NaN	${\tt NaN}$
	2013-04-30	23:59:59	NaN	NaN	139.00	NaN	NaN	NaN	NaN	NaN	${\tt NaN}$
	2013-05-01	23:59:59	NaN	NaN	116.99	NaN	NaN	NaN	NaN	NaN	${\tt NaN}$
	2013-05-02	23:59:59	NaN	NaN	105.21	NaN	NaN	NaN	NaN	NaN	${\tt NaN}$
	2013-05-03	23:59:59	NaN	NaN	97.75	NaN	${\tt NaN}$	NaN	NaN	${\tt NaN}$	${\tt NaN}$
	•••						•••				
	2021-07-02	23:59:59	1.39	287.42	33897.05	0.25	15.34	2150.04	1.00	1.00	0.66
	2021-07-03	23:59:59	1.41	298.24	34668.55	0.25	15.55	2226.11	1.00	1.00	0.67
	2021-07-04	23:59:59	1.46	307.73	35287.78	0.25	16.01	2321.72	1.00	1.00	0.69
	2021-07-05	23:59:59	1.40	302.38	33746.00	0.23	15.24	2198.58	1.00	1.00	0.65
	2021-07-06	23:59:59	1.42	320.93	34235.19	0.23	16.14	2324.68	1.00	1.00	0.67

[2991 rows x 9 columns]

Calculating correlation efficient.

```
[27]:
     corr_df.corr()
[27]: Symbol
                ADA
                       BNB
                             BTC
                                  DOGE
                                          DOT
                                                 ETH
                                                      USDC
                                                             USDT
                                                                     XRP
      Symbol
      ADA
               1.00
                     0.89
                            0.86
                                   0.83
                                         0.85
                                                0.96 -0.24 -0.07
                                                                    0.65
      BNB
               0.89
                     1.00
                            0.86
                                   0.89
                                         0.85
                                                0.90 -0.22 -0.08
                                                                    0.48
      BTC
               0.86
                     0.86
                                   0.65
                                                0.90 - 0.32
                            1.00
                                         0.95
                                                             0.04
                                                                   0.62
      DOGE
               0.83
                     0.89
                            0.65
                                   1.00
                                         0.57
                                                0.84 - 0.17
                                                             0.00
                                                                   0.49
      DOT
               0.85
                     0.85
                            0.95
                                   0.57
                                         1.00
                                                0.84
                                                      0.02 - 0.08
                                                                    0.71
               0.96
                     0.90
      ETH
                            0.90
                                   0.84
                                         0.84
                                                1.00 - 0.27
                                                             0.03
      USDC
              -0.24 -0.22 -0.32 -0.17
                                         0.02 - 0.27
                                                      1.00
                                                             0.23 - 0.11
      USDT
              -0.07 -0.08
                            0.04
                                  0.00 -0.08
                                                0.03
                                                      0.23
                                                             1.00
                                                                   0.07
      XR.P
               0.65 0.48
                            0.62 0.49
                                         0.71 0.70 -0.11
                                                             0.07
```

Result & Conclusion Result

- Among Bitcoin and stable coins, we has negative correlation (weak correlation with USDT).
 And with others coins, it is shown that almost cases have negative correlations (weak correlation with USDT).
- Among Bitcoin and alternative coins, we has strong positive correlations.

Conclusion

- As the results showed us, We could choose alternative coins to invest by following Bitcoin.
 This conclusion implices that we could invest alternative coins to optimize profits and following Bitcoin if its profit is greater.
- Secondly, we can understand a little bit about other investors' sentiment: if the scenario is bullish market, some investors exchanged from stable coins (USDC) to coins having higher volatility. ⇒ stable coins is down and other is up (negative correlation).

Analyze some results

```
[28]: eth_df = cryp_df[cryp_df['Symbol'] == 'ETH']
      tether_df = cryp_df[cryp_df['Symbol'] == 'USDT']
[29]: fig = make_subplots(cols=1, rows=3,
                      shared_xaxes=True,
                      vertical_spacing=0.05,
                      subplot_titles=('Bitcoin historical price',
                                       'Ethereum historical price',
                                       'Tether historical price'
                                       ))
      fig.add_trace(
          go.Candlestick(x=btc_df['Date'],
                          open=btc_df['Open'],
                          close = btc_df['Close'],
                          high=btc_df['High'],
                          low = btc_df['Low'],
                          ),
          row=1,col=1
      )
      fig.add_trace(
          go.Candlestick(x=eth_df['Date'],
                          open=eth_df['Open'],
                          close = eth_df ['Close'],
                          high=eth_df['High'],
                          low = eth_df['Low'],
                          ),
          row=2, col=1
      fig.add_trace(
          go.Candlestick(x=tether_df['Date'],
                          open=tether_df['Open'],
                          close = tether_df['Close'],
                          high=tether_df['High'],
                          low = tether_df['Low'],
                          ),
          row=3, col=1
      )
      for i in range(3):
          fig.update_xaxes(row=i+1, col=1, rangeslider_visible=False)
      fig.update_layout(height=1500,
                      showlegend=False,
                      title='Crypto analysis')
```

```
fig.show()
```

But, how to choose other coins for optimizing profits. We continue to the next question.

2. Which coins do we need to take considerations? We can answer this question by being greedy in profits... which coins has the best profits.

Do High, Low, Open, Close cols have values been less than or equal to 0?

About profits Get max profits by dividing max of high to min of low for each coins.

$$Profits_of_coins = \frac{Max(High)}{Min(Low)} \tag{4}$$

```
[31]:
                             Proportion
                      Name
                               23506.73
      13
                       NEM
      9
                                9032.01
                  Ethereum
      7
                  Dogecoin
                                8269.84
      1
              Binance Coin
                                6826.65
      12
                    Monero
                                2056.03
```

```
22
                XRP
                         1246.49
2
            Bitcoin
                          869.93
16
            Stellar
                          621.70
4
                          335.85
          Chainlink
11
           Litecoin
                          307.08
17
               TRON
                          164.07
3
            Cardano
                          116.95
15
             Solana
                          104.16
10
               IOTA
                           45.62
8
                EOS
                           44.13
0
                           23.45
               Aave
6
    Crypto.com Coin
                           21.74
20
            Uniswap
                           20.82
21
   Wrapped Bitcoin
                           18.70
5
             Cosmos
                           17.72
14
           Polkadot
                           16.08
18
             Tether
                           2.00
19
           USD Coin
                            1.11
```

Visualyzing...

```
[32]: plt.figure(figsize=(8,6))
   plt.style.use('seaborn-whitegrid')
   sns.barplot(x = profits['Proportion'], y = profits['Name'])
   plt.title('Profits')
   plt.xlabel('Ratio');
```


Conclusion

We can take consideration on NEM, Ethereum, Dogecoin, Binance Coin, Monero,... before actually investing.

About risks Calculating risk based on the last day of Dataset collected:

$$Risks = \frac{min(Low_of_last_day) - max(High)}{max(High)} * 100 \tag{5}$$

```
).rename({0:'Risks'},axis=1).reset_index()

#sorting values
risk = risk.sort_values('Risks')
risk
```

```
[33]:
                     Name Symbol Risks
      13
                      NEM
                              XEM -93.84
      10
                      ATOI
                           MIOTA -85.58
      8
                      EOS
                              EOS -83.41
      22
                      XRP
                              XRP -83.01
      17
                     TRON
                              TRX -78.69
      16
                  Stellar
                              XLM -72.97
      14
                 Polkadot
                             DOT -69.39
      7
                 Dogecoin
                            DOGE -68.84
      11
                 Litecoin
                             LTC -67.09
      4
                Chainlink
                            LINK -65.29
      5
                   Cosmos
                             ATOM -60.10
      12
                   Monero
                             XMR -58.99
      6
          Crypto.com Coin
                              CRO -57.29
      1
             Binance Coin
                              BNB -56.26
      20
                  Uniswap
                              UNI -55.36
      0
                     Aave
                             AAVE -53.81
      9
                              ETH -49.62
                 Ethereum
      2
                  Bitcoin
                              BTC -48.20
          Wrapped Bitcoin
                            WBTC -47.99
                              SOL -43.52
      15
                   Solana
      3
                  Cardano
                             ADA -43.40
      18
                   Tether
                            USDT -17.53
      19
                 USD Coin
                            USDC -10.24
```

 ${\bf Visualyzing...}$

```
[34]: plt.figure(figsize=(8,6))
   plt.style.use('seaborn-whitegrid')
   sns.barplot(x = risk['Risks'], y = risk['Name'])
   plt.title('Risks')
   plt.yticks(rotation=45)
   plt.xlabel('Percentage');
```


Conclusion

We can take consideration on NEM, IOTA, EOS, XRP... before actually investing.

Question Conclusion We can easily observe that some coins having very good profits (like NEM can bring to investors > 20000 times based on their money in), but besides it, it could take the investors' money by substact 93.84 based on their money in.

So investors can pour out their money on the coins that take less risks, E.X: Solana or Bitcoin,...

Note: The answer to this question is for reference only

1.6 Project Reference

- Documents of subject Code for Data Science HCMUS.
- Searching functions on Plotly Plotly Documentation.
- Searching functions on Pandas Pandas Documentation.
- Searching some financial formula Wall street.