GUÍA 1 : CÁLCULO DE INCERTIDUMBRE

1) Se realizan 20 mediciones con un multímetro digital, repetidas en las mismas condiciones ambientales, obteniéndose una media aritmética de 100,145 V y una desviación estándar experimental (S) de 1,489V.

El multímetro posee las siguientes especificaciones

Rango: 200VDígitos: 3 y ½

Error máximo = ±(0,5% lectura + 3 digitos)

Expresar el resultado de la medición con una probabilidad del 95%

2) Considere cinco conjuntos independientes de observaciones simultáneas de las tres magnitudes de entrada V, I, y ϕ se obtienen en condiciones similares.

Número de grupo	Magnitudes de entrada				
k	<i>V</i> (V)	/ (mA)	φ (rad)		
4. 1 . a. jp	5,007	19,663	1,0456		
2	4,994	19,639	1,0438		
3	5,005	19,640	1,0468		
4	4,990	19,685	1,0428		
5	4,999	19,678	1,0433		
Products various and the			. All yaras		
Media aritmética	$\overline{V} = 4,9990$	$\bar{I} = 19,6610$	φ = 1,044 46		
Desviación estándar experimental del método	$s(\overline{V}) = 0,0032$	$s(\bar{I}) = 0,0095$	$s(\overline{\phi}) = 0,00075$		
	Coeficiente d	le correlación			
ku dengala salua 1934	$r(\overline{V},\overline{I})$	= -0,36	el estado e		
	$r\left(\overline{V},\overline{\phi}\right)$	= 0,86			
	$r(\bar{l},\bar{\phi})$	= -0,65			

- a) Cuáles son las circunstancias en las que debe observarse la correlación entre las magnitudes de entrada. ¿Un coeficiente de correlación igual a 0 (cero) indica que la correlación es alta o baja?
- b) Calcule la incertidumbre combinada de las cantidades R, X y Z.

Medidas Electrónicas I

3) Se busca calibrar la función amperímetro de alterna de un multímetro digital de 3 ½ dígitos. Se controlará en este ejercicio sólo el punto de fondo de escala de 10A, con 50 Hz. Se empleará un calibrador (aparato que provee la corriente necesaria y la indicación de su valor, 10A en este caso, con alta exactitud).

Se toman 5 mediciones sucesivas en el instrumento a contrastar que arrojan los siguientes valores:

N	1	2	3	4	5
I [A]	10,01	10,00	10,02	10,01	10,00

El fabricante del calibrador específica en su catálogo que la incertidumbre expandida de este dispositivo es ±(0,05% lectura + 2 mA) con una probabilidad de 99% y distribución gaussiana. Estime el error y la incertidumbre expandida en el error de la medida de 10 A, con un factor de cobertura del 95 %.

4) En una resistencia alimentada con una fuente de corriente de 10A, $\pm 0,1\%$ según expresaba su certificado de calibración con distribución normal y un intervalo de confianza del 95%, se obtuvo una medición de 123,38V y un desvío estándar experimental de 50mV con un voltímetro digital de de 4 $\frac{3}{4}$ dígitos y un error de $\pm (0,04\%+1d)$ rangos de 400mV, 4V, 40V, 400V.

Utilizando dicha resistencia como medidor indirecto de corriente, se midió sobre ella una tensión, con el voltímetro anterior, obteniéndose una indicación de 346,42mV y un desvío estándar experimental de 0,50mV. Determinar:

- a. Característica de la resistencia.
- b. El resultado de ambas mediciones.
- c. Indique la potencia disipada en ambas mediciones.