Algebraic Theory I

Thomas Fleming

November 19, 2021

Contents

Lecture 36: Polynomials (2)

Mon 07 May 2018 03:55

Recall. For a commutative ring R, we define the polynomial ring $R[x_1, \ldots, x_n]$ as formal sums of powers of x_i with coefficients in R.

Moreover, if we have two commutative rings R,R' with a ring homomorphism $\varphi:R\to\overline{\mathbb{R}}$, then there is a complementary ring homomorphism extending to the polynomial ring:

$$\overline{\varphi}: R[x] \longrightarrow \overline{\mathbb{R}}[x]$$

$$\sum_{i=0}^{\infty} \alpha_i x^i \longmapsto \sum_{i=0}^{\infty} \varphi(a_i) x^i.$$

Definition 0.1 (Map Space). Now, define Map $(Y \to R)$ to be the set of all maps $f: Y \to R$ with R being a commutative ring and Y being an arbitrary set. We equip Map $(Y \to R)$ with pointwise operations \times , + such that

$$(f+g)(x) = f(x) + g(x)$$
$$(fg)(x) = f(x)g(x)$$

These operations induce a ring over Map $(Y \to R)$.

Then, we see a polynomial $f \in R[x]$ defines a corresponding map $\overline{f} \in \text{Map}(R \to R)$ with $\overline{f}(a) = \text{ev}_a(f)$ for all $a \in R$.

Remark. The map $f \mapsto \overline{f}$ need not be injective. See the example $f = x^5 - x$ and g = 0 in \mathbb{F}_5 .

Proposition 0.1. If R is an integral domain, then R[x] is also an integral domain. Moreover, for nonzero polynomials $f, g \in R[x]$ we have $\deg(fg) = \deg(f) + \deg(g)$.

This prove is completely trivial hence it is omitted.

Theorem 0.1. If F is a field, then F[x] is a euclidean domain, a principal ideal domain, and a unique factorization domain.

Proof. Applying standard (euclidean) polynomial division with euclidean norm deg(f) for $f \in F[x]$ yields a euclidean domain (hence a PID and UFD).

Theorem 0.2. If R is a commutative ring then R[x] is a principal ideal domain if and only if R is a field.

Proof. One direction has already been shown.

Moreover if R[x] is a PID, then R is an integral domain. Hence, if ab = a with $a, b \in R$, then a = 0 or b = 0, so R is an integral domain as its a subring of R[x].

Now, let $y \in R$ be an arbitrary nonzero element. We wish to show y a unit. Let $I=(y,x)\subseteq R[x]$. Then, since R[x] is a Principal ideal domain, we have an $f\in I$ so that (y,x)=(f). Note that we must have $f\neq 0$ as $x\neq 0$ and as $y\in (f)$ we see y=hf for an $h\in R[x]$ which is nonzero. Since R is an integral domain, we see $\deg(f)=\deg(h)=0$. Hence, f is a nonzero constant $\alpha\in R$. Hence, we have $x\in I=(\alpha)$ so $x=g\alpha$ for some $g\in [x]$. But, R is an integral domain, so $1=\deg(x)=\deg(\alpha)+\deg(g)=\deg(g)$. So, we have g=ax+b for some nonzero $a\in R\setminus\{0\}$ and $b\in R$. Thus, $x=(ax+b)\alpha=(a\alpha x+b\alpha)$, hence $a\alpha=1$ and $b\alpha=0$ by the coefficient property of polynomial rings. Thus,

$$(\alpha) = (f) = I = (y, x) = R[x].$$

Hence, $1 \in (y, x) = R[x](y) + Rx$. So, $1 = g_1y + g_2x$ for some $g_1, g_2 \in R[x]$. Hence letting $g_1 = g_{11} + g_{12}x$ and similarly $g_2 = g_{21} + g_{22}x$ for some $g_{11}, g_{12}, g_{21}, g_{22} \in R$, we see $1 = yg_{11}$. So, y is a unit, hence R is a field. \square

Corollary 1. If F is a field F[x,y] is not a principal ideal domain.

Proof. F[x,y] = (F[x])[y] and F[x] is not a field (take f=x, there is no inverse), so F[x,y] is not a principal ideal domain by applying the previous characterization.

Theorem 0.3. If F is a field with f being a polynomial having $deg(f) = n \ge 0$ in F[x]. If, f(a) = 0 for $a \in R$, then $(x - a) \mid f$. Moreover, f has at most n roots in F.

Proof. Since $f \neq 0$ and f has a zero, we see $\deg(f) \geq 1$. Hence, using polynomial long division yields f = q(x-a) + r for some $q, r \in F[x]$ with $\deg(r) < \deg((x-a))$, hence $\deg(r) \leq 0$, that is r is a constant polynomial. We see f(a) = r = 0, hence f = q(x-a), so $(-a) \mid f$. Letting a_1, \ldots, a_n be distinct real zeros of f, then $(x-a_1) \mid f$ implying $f = f_1(x-a_1)$ with $\deg(f_1) = \deg(f) - 1$. Inducing on the roots a_i , we see that more than n roots

would imply $f = f_1 \cdot f_2 \cdot \dots \cdot f_n \cdot f_{n+1} \cdot g$ where g is the final polynomial obtained by dividing by $x - a_{n+1}$ and is of degree $\deg(g) = \deg(f) - (n+1) = -1$ implying g is the zero polynomial. But, we have $f = g \prod_{i=1}^{n+1} (x - a_i)$, so f = 0 ξ . Hence there are at most g zeroes.

Lecture 37: Polynomials (3)

Fri 19 Nov 2021 11:30

Theorem 0.4. Let K be a field, with U being a finite multiplicative subgroup. Then it is cyclic.

Proof. Since U is a finite additive group, we see $U = \prod_{i=1}^n P_i$ for some sylow p groups P_i . It suffices to show that each subgroup is cyclic as the product of their generators will generate U. Let $x \in P_i$ be an element of maximal order p^m and let $|P_i| = p^n$ for $m \le n$. Then every $y \in P_i$ has order ord $(y) \mid p^m$. Hence, they are all roots of $f = x^{p^m} - 1$ which has at most p^m roots, so $p^n = |P_i| \le p^m$, hence $n \le m$ so equality holds. So, x has order p^n implying x generates P_i . \square

Corollary 2. $(\mathbb{Z}/p\mathbb{Z})^{\times} \simeq \mathbb{Z}/(p-1)\mathbb{Z}$.

Definition 0.2 (Content of a Polynomial). Let R be a UFD with its quotient field K. Let $x \in K$, then there is a unique (up to units) representation $x = \frac{a}{b}$ with $a, b \in R$ being coprime (no prime p has $p \mid a$ and $p \mid b$). Then, for a prime p, define $V_p\left(\frac{a}{b}\right) = V_p\left(a\right) - V_p\left(b\right)$ where $V_p\left(x\right)$ is the power of p in the unique factorization of x. We see one of $V_p\left(a\right)$ or $V_p\left(b\right) = 0$. Leaving results $V_p\left(a\right)$ if $p \mid a$ or $-V_p\left(b\right)$ if $p \mid b$. This is called the p-adic valuation of $\frac{a}{b}$. Note $V_p\left(0\right) \coloneqq \infty$. Now, let $f \in K\left[x\right]$ with

$$f = \sum_{i=0}^{n} a_i x^i$$

for some $n \in \mathbb{N}$ and $a_i \in K$. Then, we define $V_p(f) = \inf\{V_p(a_i) : i \geq 0\}$. With this, we define the **content** of f to be

$$\operatorname{Cont}\left(f\right) = \prod_{p \text{ prime}} p^{V_p(f)}.$$

Remark. The notion of content essentially generalizes the GCD to fraction fields

Example. Let $R = \mathbb{Z}$ so $K = \mathbb{Q}$, then $V_2\left(\frac{2}{9}\right) = 1$ and $V_3\left(\frac{2}{9}\right) = -2$ and $V_5\left(\frac{2}{9}\right) = 0$. Then, let $f(x) = \frac{3}{4}x^2 + 6x - 3$, then

Cont
$$(f) = 3 \cdot 2^{-2} = \frac{3}{4}$$
.

Since Cont (f) will always contain all denominators, this allows us to reduce a polynomial over \mathbb{Q} to a rational times a polynomial, $f_1 \in K[x]$ having content Cont $(f_1) = 1$, hence $f_1 \in R[x]$.

Lemma 0.1. If R is a UFD, with K its quotient field, and $f \in K[x]$, then Cont (f) = 1 implies $f \in R[x]$.

Remark. It is of note that the converse does not hold, take $2x^2 + 4$.

Definition 0.3. For a UFD R and quotient field K, we say $f \in K[x]$ is **primitive** if Cont (f) = 1 (hence $f \in R[x]$).

Lemma 0.2 (Gauss Lemma). Let R be a UFD with K its quotient field. If $f, g \in K[x]$, then $\mathrm{Cont}\,(fg) = \mathrm{Cont}\,(f)\,\mathrm{Cont}\,(g)$.

Proof. Let $c_1 = \operatorname{Cont}(f)$, $c_2 = \operatorname{Cont}(g)$. Then, $f = c_1 f_1$ and $g = c_2 g_1$ for some $f_1, g_1 \in R[x]$ with $\operatorname{Cont}(f_1) = \operatorname{Cont}(g_1) = 1$. So, $fg = \operatorname{Cont}(f)\operatorname{Cont}(g)f_1g_1$. Thus, it suffices to show $\operatorname{Cont}(f_1g_1) = 1$. Since $f_1, g_1 \in R[x]$, we see $f_1g_1 \in R[x]$. Hence, we need to show no p divides all the coefficients of f_1g_1 . Suppose by contradiction that p is a prime dividing all coefficients of f_1g_1 . Then, the map

$$\varphi: R[x] \longrightarrow R/(p)[x] = \overline{\mathbb{R}}[x]$$

Clearly (p) is a prime ideal, so $\overline{\mathbb{R}}$ is an integral domain with $0 = \varphi(f_1g_1) = \varphi(f_1) \varphi(g_1)$. Hence either $\varphi(f_1) = 0$ or $\varphi(g_1) = 0$, so WLOG $p \mid a_i$ for all a_i in the representation of f_1 , hence $\operatorname{Cont}(f_1) \geq p \notin$. So the claim holds.