1. Which of the following differential equations matches the slope field at right?

(b)
$$\frac{dy}{dx} = x - y^2$$

(c)
$$\frac{dy}{dx} = xy$$

(d)
$$\frac{dy}{dx} = x + y$$

(d)
$$\frac{dy}{dx} = x + y$$
 (e) $\frac{dy}{dx} = x^2 - y$

- 2. (Calculator Required): A cup of coffee is heated to boiling (212°F), and taken out of a microwave and placed in a 72°F room at time t = 0minutes. The coffee cools at the rate of $16e^{-0.112t}$ degrees Fahrenheit per minute. To the nearest degree, what is the temperature of the coffee at time t = 5 minutes?
- (a) 105°F
- (b) 133°F
- (c) $166^{\circ}F$
- (d) 151°F
- (e) 203°F
- 3. The table below gives values of the differentiable functions f and g at x=-1. If $h(x) = \frac{f(x) - g(x)}{2f(x)}$, then h'(-1) =

х	f(x)	g(x)	f'(x)	g'(x)
-1	-2	4	e	-3

(a)
$$\frac{-e-3}{4}$$

(b)
$$\frac{e+3}{2e}$$

(c)
$$\frac{e-6}{8}$$

(d)
$$\frac{2e-3}{4}$$

(a)
$$\frac{-e-3}{4}$$
 (b) $\frac{e+3}{2e}$ (c) $\frac{e-6}{8}$ (d) $\frac{2e-3}{4}$ (e) $\frac{-4e-3}{4}$

4. If f(x) is an antiderivative of $\frac{\sin^2 x}{x^2 + 2}$ such that $f(2) = \frac{1}{2}$, then f(0) is given by

(a)
$$\int_{0}^{2} \frac{\sin^{2}(x)}{x^{2}+2} dx$$

(b)
$$\int_{2}^{0} \frac{\sin^{2}(x)}{x^{2}+2} dx$$

(b)
$$\int_{2}^{0} \frac{\sin^{2}(x)}{x^{2} + 2} dx$$
 (c) $\frac{1}{2} + \int_{2}^{0} \frac{\sin^{2}(x)}{x^{2} + 2} dx$

(d)
$$\frac{1}{2} + \int_{0}^{2} \frac{\sin^{2}(x)}{x^{2} + 2} dx$$
 (e) $2 + \int_{2}^{0} \frac{\sin^{2}(x)}{x^{2} + 2} dx$

(e)
$$2 + \int_{2}^{0} \frac{\sin^{2}(x)}{x^{2} + 2} dx$$

5. Shown at right is the slope field of a differential equation. Which of the following could be a solution to the differential equation?

(b)
$$y = x^3$$

(c)
$$y = -5x^2$$

(d)
$$y = x$$

(e)
$$y = x^2$$

6. Which of the following differential equations is represented by the slope field at right?

(b)
$$\frac{dy}{dx} = x - y$$

(c)
$$\frac{dy}{dx} = 2x^2$$

- (d) $\frac{dy}{dx} = 1 + x^2$ (e) $\frac{dy}{dx} = 1 - y^2 + x^2$
- 7. The graph at right shows an object's acceleration in $\frac{ft}{\sec^2}$. It consists of a quarter circle, and two line segments. If the object was at rest at t=5 seconds, what was its initial $\begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix}$

- (a) $-2\frac{ft}{sec}$ (b) $3-\pi\frac{ft}{sec}$ (c) $0\frac{ft}{sec}$ (d) $\pi-3\frac{ft}{sec}$
- (e) $\pi + 3 \frac{\text{ft}}{\text{sec}}$
- **8.** The area of the largest rectangle that can be drawn with one side along the x-axis and two vertices on the curve $y = e^{-x^2}$ is

- (a) $\sqrt{\frac{2}{e}}$ (b) $\sqrt{2e}$ (c) $\frac{2}{e}$ (d) $\frac{1}{\sqrt{2e}}$

9. What is y if $\frac{dy}{dx} = \frac{3x+2}{5y}$ and y = 1 when x = 2?

(a)
$$y = \sqrt{\frac{3x^2 + 4x - 15}{5}}$$

(a)
$$y = \sqrt{\frac{3x^2 + 4x - 15}{5}}$$
 (b) $y = \pm \sqrt{\frac{3x^2 + 4x - 15}{5}}$ (c) $y = \sqrt{\frac{3x^2 + 4x + 13}{5}}$ (d) $y = \pm \sqrt{\frac{3x^2 + 4x}{5}}$ (e) $y = \sqrt{\frac{3x^2 + 4x}{5}}$

(c)
$$y = \sqrt{\frac{3x^2 + 4x + 13}{5}}$$

(d)
$$y = \pm \sqrt{\frac{3x^2 + 4x}{5}}$$

(e)
$$y = \sqrt{\frac{3x^2 + 4x}{5}}$$

- 10. Let $\frac{dy}{dx} = e^{x-y}$. Which of the following is the solution to this differential equation with the condition that y(0) = 1?

- (a) $y = \ln(x)$ (b) $y = \ln(e^x + e)$ (c) y = x (d) $y = e^x$ (e) $y = \ln(e^x + e 1)$