初三数学能力提升练习

1. (1) 解方程 $x^2-1=6x$.

- (2) 解方程: $x^2 + 8x = 9$.
- 3.已知 a 是方程 $x^2 2x 1 = 0$ 的一个根,求代数式 $(a-1)^2 + a(a-2)$ 的值.

- 3. 关于x的一元二次方程 $x^2-(m+4)x+3(m+1)=0$.
 - (1) 求证: 该方程总有两个实数根;
 - (2) 若该方程有一根小于 0, 求 m 的取值范围.

- 4. 已知关于x的一元二次方程 $x^2 (2m+1)x + m^2 2 = 0$
 - (1) 当该方程有两个不相等的实数根时,求 m 的取值范围;
 - (2) 当该方程的两个实数根互为相反数时,求 m 的值.

- 5.在平面直角坐标系 xOy 中,二次函数 $y = x^2 + bx$ 的图象过点 A(3, 3).
 - (1)求该二次函数的解析式;
 - (2)用描点法画出该二次函数的图象;
 - (3)当0 < x < 3时,对于x的每一个值,都有 $kx > x^2 + bx$,直接写出k的取值范围.

6. 已知一次函数 $y_1=mx+n$ ($m\neq 0$)和二次函数 $y_2=ax^2+bx+c$ ($a\neq 0$),下表给出了 y_1 , y_2 与 自变量 x 的几组对应值:

x	 -2	-1	0	1	2	3	4	
<i>y</i> 1	 5	4	3	2	1	0	-1	
<i>y</i> 2	 -5	0	3	4	3	0	-5	

- (1) 求 y_2 的解析式;
- (2) 直接写出关于x 的不等式 $ax^2+bx+c>mx+n$ 的解集.

- 7.在平面直角坐标系 xOy 中,点(2,m)在抛物线 $y=ax^2+bx+c(a>0)$ 上,设抛物线的对称轴为 x=t.
- (1)当m=c时,求t的值;
- (2)点(-1, y_1),(3, y_2) 在抛物线上,若 c < m,比较 y_1, y_2 的大小,并说明理由.

- 8. 在平面直角坐标系 xOy 中,点 (x_1, m) , (x_2, n) 在抛物线 $y=ax^2+bx+c(a>0)$ 上,设抛物线的对称轴为 x=t.
 - (1) 若对于 $x_1=1$, $x_2=3$, 有m=n, 求t的值;
 - (2) 若对于 t-1< x_1 <t, 2< x_2 <3, 存在 m>n, 求 t 的取值范围.

- 9. 在平面直角坐标系 xOy 中,点(2, c)在抛物线 $y = ax^2 + bx + c(a > 0)$ 上,设该抛物线的对称轴为直线 x = t .
- (1)求 t 的值;
- (2) 已知 $M(x_1,y_1)$, $N(x_2,y_2)$ 是该抛物线上的任意两点,对于 $m < x_1 < m+1$, $m+1 < x_2 < m+2$,都有 $y_1 < y_2$,求 m 的取值范围.

- 10. 已知线段 AB 和点 C,将线段 AC 绕点 A 逆时针旋转 α (0° $<\alpha$ <90°),得到线段 AD,将线段 BC 绕点 B 顺时针旋转 180° $-\alpha$,得到线段 BE,连接 DE ,F 为 DE 的中点,连接 AF,BF.
 - (1) 如图 1,点 C在线段 AB 上,依题意补全图 1,直接写出 $\angle AFB$ 的度数;
 - (2) 如图 2, 点 C 在线段 AB 的上方,写出一个 α 的度数,使得 $AF = \sqrt{3}BF$ 成立,并证明.

