Professor: Yuri Frota

www.ic.uff.br/~yuri/pl.html

yuri@ic.uff.br

Seja:
$$\max x_1 + 2x_2$$

20000000

$$(x_1, x_2) = (1, 1) \rightarrow z = 3 \le z^*$$

$$2x_1 + x_2 \le 6$$

$$(x_1, x_2) = (2, 2) \to z = 6 \le z^*$$

$$x_1 + x_2 \le 4$$

$$-x_1 + x_2 \le 2$$

$$x_1, x_2 \ge 0$$

Soluções viáveis fornecem limitantes inferiores para o problema.

Seja:
$$\max x_1 + 2x_2$$

$$(x_1, x_2) = (1, 1) \rightarrow z = 3 \le z^*$$

$$2x_1 + x_2 \le 6$$

$$(x_1, x_2) = (2, 2) \to z = 6 \le z^*$$

$$x_1 + x_2 \le 4$$

$$-x_1 + x_2 \le 2$$

$$x_1, x_2 \ge 0$$

Soluções viáveis fornecem limitantes inferiores para o problema.

2000000

Como pode saber se a solução está próxima do ótimo ?

Seja:
$$\max x_1 + 2x_2$$

$$(x_1, x_2) = (1, 1) \rightarrow z = 3 \le z^*$$

$$2x_1 + x_2 \le 6$$

$$(x_1, x_2) = (2, 2) \to z = 6 \le z^*$$

$$x_1 + x_2 \le 4$$

$$-x_1 + x_2 \le 2$$

$$x_1, x_2 \ge 0$$

Soluções viáveis fornecem limitantes inferiores para o problema.

2200200

Como pode saber se a solução está próxima do ótimo ?

R - Comparando com um limite superior da solução ótima

Então como conseguir um limite superior?

tentativa 1: jogando com as inequações

$$2x_1 + x_2 \le 6$$

 $x_1 + x_2 \le 4$
 $-x_1 + x_2 \le 2$

Bossosos

Então como conseguir um limite superior?

tentativa 1: jogando com as inequações

$$2x_1 + x_2 \le 6 \tag{\times 2}$$

$$x_1 + x_2 \le 4 \tag{\times 1}$$

$$-x_1 + x_2 \le 2 \tag{\times 3}$$

Bossosso

valores aleatórios

Então como conseguir um limite superior ?

tentativa 1: jogando com as inequações

$$2x_1 + x_2 \le 6 \tag{\times 2}$$

$$x_1 + x_2 \le 4 \tag{\times 1}$$

$$-x_1 + x_2 \le 2 \tag{\times 3}$$

800000000

valores aleatórios

$$4x_1 + 2x_2 \le 12$$

$$x_1 + x_2 \le 4$$

$$-3x_1 + 3x_2 \le 6$$

$$2x_1 + 6x_2 \le 22$$

 $\max x_1 + 2x_2$ $2x_1 + x_2 \le 6$ $x_1 + x_2 \le 4$ $-x_1 + x_2 \le 2$ $x_1, x_2 \ge 0$

Então como conseguir um limite superior ?

tentativa 1: jogando com as inequações

$$2x_1 + x_2 \le 6 \tag{\times 2}$$

$$4x_1 + 2x_2 \le 12$$

$$x_1 + x_2 \le 4$$

$$(\times 1)$$

$$x_1 + x_2 \le 4$$

$$-3x_1 + 3x_2 \le 6$$

valores aleatórios

f.o.

200000000

pois $x_1 e x_2 \ge 0 e (2 \ge 1 e 6 \ge 2)$

Então como conseguir um limite superior?

tentativa 1: jogando com as inequações

$$2x_1 + x_2 \le 6$$

$$4x_1 + 2x_2 \le 12$$

$$x_1 + x_2 \le 4$$

$$(\times 1)$$

$$x_1 + x_2 \le 4$$

$$2x_1 + 6x_2 \le 22$$

 $(\times 3)$ $-x_1 + x_2 \le 2$ valores aleatórios

$$x_1 + x_2 \le 4$$

$$-x_1 + x_2 \le 2$$

$$x_1, x_2 \ge 0$$

f.o.

pois
$$x_1 e x_2 \ge 0 e (2 \ge 1 e 6 \ge 2)$$

Então como conseguir um limite superior ?

tentativa 2: generalizando a tentativa 1

$$2x_1 + x_2 \le 6 \qquad (\times y_1 \ge 0)$$

$$x_1 + x_2 \le 4 \qquad (\times y_2 \ge 0)$$

$$-x_1 + x_2 \le 2 \quad (\times y_3 \ge 0)$$

20000000

Então como conseguir um limite superior?

tentativa 2: generalizando a tentativa 1

$$2x_1 + x_2 \le 6$$
 $(\times y_1 \ge 0)$

$$\geq 0$$
) $2x_1y_1 + x_2y_1 \leq 6y_1$

$$x_1 + x_2 \le 4$$

$$x_1 + x_2 \le 4$$
 $(\times y_2 \ge 0)$ $x_1 y_2 + x_2 y_2 \le 4y_2$

$$-x_1 + x_2 \le 2 \quad (\times y_3 \ge 0)$$

$$(\times y_3 \ge 0)$$

$$-x_1y_3 + x_2y_3 \le 2y_3$$

Então como conseguir um limite superior?

tentativa 2: generalizando a tentativa 1

$$2x_1 + x_2 \le 6$$
 $(\times y_1 \ge 0)$

$$2x_1y_1 + x_2y_1 \le 6y_1$$

$$x_1 + x_2 \le 4$$

20000000

$$\times y_2 \ge 0$$

$$x_1 + x_2 \le 4$$
 $(\times y_2 \ge 0)$ $x_1 y_2 + x_2 y_2 \le 4y_2$

$$-x_1 + x_2 \le 2 \quad (\times y_3 \ge 0)$$

$$-x_1y_3 + x_2y_3 \le 2y_3$$

$$(2y_1 + y_2 - y_3)x_1 + (y_1 + y_2 + y_3)x_2 \le (6y_1 + 4y_2 + 2y_3)$$

$\max x_1 + 2x_2$ $2x_1 + x_2 \le 6$ $x_1 + x_2 \le 4$ $-x_1 + x_2 \le 2$ $x_1, x_2 \ge 0$

Então como conseguir um limite superior?

tentativa 2: generalizando a tentativa 1

$$2x_1 + x_2 \le 6$$
 $(\times y_1 \ge 0)$

$$2x_1y_1 + x_2y_1 \le 6y_1$$

$$x_1 + x_2 \le 4$$

$$\times y_2 \ge 0$$

$$x_1 + x_2 \le 4$$
 $(\times y_2 \ge 0)$ $x_1 y_2 + x_2 y_2 \le 4y_2$

$$-x_1 + x_2 \le 2 \quad (\times y_3 \ge 0)$$

$$-x_1y_3 + x_2y_3 \le 2y_3$$

$$(2y_1 + y_2 - y_3)x_1 + (y_1 + y_2 + y_3)x_2 \le (6y_1 + 4y_2 + 2y_3)$$

 $\max x_1 + 2x_2$ $2x_1 + x_2 \le 6$ $x_1 + x_2 < 4$ $-x_1 + x_2 < 2$ $x_1, x_2 \ge 0$

f.o.

20000000

$$x_1 + 2x_2 \le (6y_1 + 4y_2 + 2y_3)$$

SE

$$(2y_1 + y_2 - y_3) \ge 1$$

$$(y_1 + y_2 + y_3) \ge 2$$

1 e 2 coeficientes na f.o.

Então como conseguir um limite superior?

tentativa 2: generalizando a tentativa 1

$$2x_1 + x_2 \le 6$$
 $(\times y_1 \ge 0)$

$$\times y_1 \geq 0$$

$$2x_1y_1 + x_2y_1 \le 6y_1$$

$$x_1 + x_2 \le 4$$

$$(\times y_2 \ge 0)$$

$$x_1 + x_2 \le 4$$
 $(\times y_2 \ge 0)$ $x_1 y_2 + x_2 y_2 \le 4y_2$

$$-x_1 + x_2 \le 2 \quad (\times y_3 \ge 0)$$

$$(\times y_3 \ge 0)$$

$$-x_1y_3 + x_2y_3 \le 2y_3$$

$$x_1 + x_2 \le 4$$

 $2x_1 + x_2 \le 6$

$$-x_1 + x_2 \le 2$$

$$x_1, x_2 \ge 0$$

 $\max x_1 + 2x_2$

$$(2y_1+y_2-y_3)x_1+(y_1+y_2+y_3)$$

$$(2y_1 + y_2 - y_3)x_1 + (y_1 + y_2 + y_3)x_2 \le (6y_1 + 4y_2 + 2y_3)$$

logo

$$x_1 + 2x_2 \le (6y_1 + 4y_2 + 2y_3)$$

SE

$$(2y_1 + y_2 - y_3) \ge 1$$
$$(y_1 + y_2 + y_3) \ge 2$$

1 e 2 coeficientes na f.o.

f.o.

por exemplo, para $y_1 = 1, y_2 = 1, y_3 = 1$ temos: 10000000

$$x_1 + 2x_2 \le (6(1) + 4(1) + 2(1)) = 12$$

L.S. mais forte (quanto menor mais forte)

Então como conseguir um limite superior?

tentativa 2: generalizando a tentativa 1

$$2x_1 + x_2 \le 6$$
 $(\times y_1 \ge 0)$

$$2x_1y_1 + x_2y_1 \le 6y_1$$

$$x_1 + x_2 \le 4$$

$$\times y_2 \ge 0)$$

$$x_1 + x_2 \le 4$$
 $(\times y_2 \ge 0)$ $x_1 y_2 + x_2 y_2 \le 4 y_2$

$$-x_1 + x_2 \le 2 \quad (\times y_3 \ge 0)$$

$$-x_1y_3 + x_2y_3 \le 2y_3$$

$$(2y_1 + y_2 - y_3)x_1 + (y_1 + y_2 + y_3)x_2 \le (6y_1 + 4y_2 + 2y_3)$$

 $\max x_1 + 2x_2$ $2x_1 + x_2 \le 6$ $x_1 + x_2 \le 4$ $-x_1 + x_2 < 2$

 $x_1, x_2 \ge 0$

$$x_1 + 2x_2 \le (6y_1 + 4y_2 + 2y_3)$$

SE

$$(2y_1 + y_2 - y_3) \ge 1$$
$$(y_1 + y_2 + y_3) \ge 2$$

1 e 2 coeficientes na f.o.

f.o.

logo

por exemplo, para $y_1 = 1, y_2 = 1, y_3 = 1$ temos: 0000000

e se y3 = 0 ?, vamos fazer

$$x_1 + 2x_2 \le (6(1) + 4(1) + 2(1)) = 12$$

L.S. mais forte (quanto menor mais forte)

$$x_1 + 2x_2 \le (6y_1 + 4y_2 + 2y_3)$$
 SE
$$\frac{(2y_1 + y_2 - y_3) \ge 1}{(y_1 + y_2 + y_3) \ge 2}$$

vamos tentar então minimizar esse limitante superior

200000000

escrevendo um PPL!

$$x_1 + 2x_2 \le (6y_1 + 4y_2 + 2y_3)$$
 SE
$$\frac{(2y_1 + y_2 - y_3) \ge 1}{(y_1 + y_2 + y_3) \ge 2}$$

vamos tentar então minimizar esse limitante superior

escrevendo um PPL!

min
$$6y_1 + 4y_2 + 2y_3$$

s.a. $2y_1 + y_2 - y_3 \ge 1$
 $y_1 + y_2 + y_3 \ge 2$
 $y_1, y_2, y_3 \ge 0$

$$x_1 + 2x_2 \le (6y_1 + 4y_2 + 2y_3)$$
 SE
$$\frac{(2y_1 + y_2 - y_3) \ge 1}{(y_1 + y_2 + y_3) \ge 2}$$

vamos tentar então minimizar esse limitante superior

escrevendo um PPL!

min
$$6y_1 + 4y_2 + 2y_3$$

s.a. $2y_1 + y_2 - y_3 \ge 1$
 $y_1 + y_2 + y_3 \ge 2$

200000000

 $y_1, y_2, y_3 \geq 0$

Notemos que este problema possui:

- m variáveis
- n restrições

$$-b \rightarrow c \in c \rightarrow b$$

 $\max x_1 + 2x_2$ $2x_1 + x_2 \le 6$ $x_1 + x_2 \le 4$ $-x_1 + x_2 \le 2$ $x_1, x_2 \ge 0$

$$x_1 + 2x_2 \le (6y_1 + 4y_2 + 2y_3)$$
 SE
$$(2y_1 + y_2 - y_3) \ge 1$$
$$(y_1 + y_2 + y_3) \ge 2$$

vamos tentar então minimizar esse limitante superior

escrevendo um PPL!

min
$$6y_1 + 4y_2 + 2y_3$$

s.a. $2y_1 + y_2 - y_3 \ge 1$
 $y_1 + y_2 + y_3 \ge 2$
 $y_1, y_2, y_3 \ge 0$

200000000

Notemos que este problema possui:

- m variáveis
- n restrições
- $-b \rightarrow c \in c \rightarrow b$
- $-A \rightarrow A^T$
- $-\max \rightarrow \min$
- -restrições $\leq \rightarrow$ variáveis ≥ 0

$$x_1 + 2x_2 \le (6y_1 + 4y_2 + 2y_3)$$
 SE
$$\frac{(2y_1 + y_2 - y_3) \ge 1}{(y_1 + y_2 + y_3) \ge 2}$$

vamos tentar então minimizar esse limitante superior

escrevendo um PPL!

min
$$6y_1 + 4y_2 + 2y_3$$

s.a. $2y_1 + y_2 - y_3 \ge 1$
 $y_1 + y_2 + y_3 \ge 2$
 $y_1, y_2, y_3 \ge 0$

Notemos que este problema possui:

- m variáveis
- n restrições
- $-b \rightarrow c \in c \rightarrow b$
- $-A \rightarrow A^T$
- $-\max \rightarrow \min$
- restrições $\leq \rightarrow$ variáveis ≥ 0

vamos denominar o primeiro PPL de PRIMAL e o segundo de DUAL.

Interpretação gráfica

São problemas com direções e objetivos contrários

Nem sempre o grafo fica bonitinho assim.

Então como conseguir um limite superior ?

outro exemplo,
 mas agora com
 restrições de
 igualdade no
 problema primal :

Bossospa

$$\max x_1 + 2x_2 - x_3$$

s.a. $2x_1 + 3x_2 + x_3 = 6$

$$4x_1 + 5x_2 - x_3 = 4$$

$$x \ge 0$$

agora com var. de folga e rest. de igualdade.

Então como conseguir um limite superior?

- outro exemplo, mas agora com restrições de igualdade no problema primal:

$$\max x_1 + 2x_2 - x_3$$

s.a.
$$2x_1 + 3x_2 + x_3 = 6$$

$$4x_1 + 5x_2 - x_3 = 4$$

$$x \ge 0$$

agora com var. de folga e rest. de igualdade.

$$2x_1 + 3x_2 + x_3 \ge 6$$

$$4x_1 + 5x_2 - x_3 \le 4$$

$$4x_1 + 5x_2 - x_3 \ge 4$$
$$x \ge 0$$

$$x \ge 0$$

quebrar as $= em \le e \ge .$

Então como conseguir um limite superior?

- outro exemplo, mas agora com restrições de igualdade no problema primal:

$$\max x_1 + 2x_2 - x_3$$

s.a.
$$2x_1 + 3x_2 + x_3 = 6$$

$$4x_1 + 5x_2 - x_3 = 4$$

$$x \ge 0$$

agora com var. de folga e rest. de igualdade.

pois o processo que eu

fiz foi com <=

$$\max x_1 + 2x_2 - x_3$$

s.a.
$$2x_1 + 3x_2 + x_3 \le 6$$

$$2x_1 + 3x_2 + x_3 \ge 6$$

$$4x_1 + 5x_2 - x_3 \le 4$$

$$4x_1 + 5x_2 - x_3 \ge 4$$
$$x \ge 0$$

$$x \ge 0$$

$$\max x_1 + 2x_2 - x_3$$

s.a.
$$2x_1 + 3x_2 + x_3 \le 6$$

$$-2x_1 - 3x_2 - x_3 \le -6$$

$$4x_1 + 5x_2 - x_3 \le 4$$

$$-4x_1 - 5x_2 + x_3 \le -4$$

$$x \ge 0$$

todas restrições com \leq

Então como conseguir um limite superior?

- outro exemplo, mas agora com restrições de igualdade no problema primal:

$$\max x_1 + 2x_2 - x_3$$

s.a.
$$2x_1 + 3x_2 + x_3 = 6$$

$$4x_1 + 5x_2 - x_3 = 4$$

$$x \ge 0$$

agora com var. de folga e rest. de igualdade.

pois o processo que eu

fiz foi com <=

 $\max x_1 + 2x_2 - x_3$

s.a.
$$2x_1 + 3x_2 + x_3 \le 6$$

$$2x_1 + 3x_2 + x_3 \ge 6$$

$$4x_1 + 5x_2 - x_3 \le 4$$

$$4x_1 + 5x_2 - x_3 \ge 4$$
$$x \ge 0$$

$$x \ge 0$$

 $\max x_1 + 2x_2 - x_3$

s.a.
$$2x_1 + 3x_2 + x_3 \le 6$$
 $\times y_1 \ge 0$

$$-2x_1 - 3x_2 - x_3 \le -6$$
 $\times y_2 \ge 0$

$$4x_1 + 5x_2 - x_3 \le 4 \qquad \times y_3 \ge 0$$

$$-4x_1 - 5x_2 + x_3 \le -4 \qquad \times y_4 \ge 0$$

$$x \ge 0$$

quebrar as $= em \le e > .$

todas restrições com <

$$-2x_1 - 3x_2 - x_3 \le -6 \quad \times y_2 \ge 0$$

$$4x_1 + 5x_2 - x_3 \le 4 \quad \times y_3 \ge 0$$

$$-4x_1 - 5x_2 + x_3 \le -4 \quad \times y_4 \ge 0$$

$$x \ge 0$$

todas restrições com \leq

s.a.
$$2x_1 + 3x_2 + x_3 \le 6 \quad \times y_1 \ge 0$$

$$-2x_1 - 3x_2 - x_3 \le -6 \quad \times y_2 \ge 0$$

$$4x_1 + 5x_2 - x_3 \le 4 \quad \times y_3 \ge 0$$

$$-4x_1 - 5x_2 + x_3 \le -4 \quad \times y_4 \ge 0$$

$$x \ge 0$$

todas restrições com \leq

s.a.
$$2x_1 + 3x_2 + x_3 \le 6$$
 $\times y_1 \ge 0$

$$-2x_1 - 3x_2 - x_3 \le -6 \quad \times y_2 \ge 0$$

$$4x_1 + 5x_2 - x_3 \le 4 \quad \times y_3 \ge 0$$

$$-4x_1 - 5x_2 + x_3 \le -4 \quad \times y_4 \ge 0$$

$$x \ge 0$$

Bessesses

min
$$6(y_1 - y_2) + 4(y_3 - y_4)$$

s.a.
$$2(y_1 - y_2) + 4(y_3 - y_4) \ge 1$$

$$3(y_1-y_2)+5(y_3-y_4)\geq 2$$

$$(y_1-y_2)-(y_3-y_4)\geq -1$$

$$y \ge 0$$

s.a.
$$2y_1 - 2y_2 + 4y_3 - 4y_4 \ge 1$$

$$3y_1 - 3y_2 + 5y_3 - 5y_4 \ge 2$$

$$y_1 - y_2 - y_3 + y_4 \ge -1$$

$$y \ge 0$$

Então como conseguir um limite superior?

$$\max x_1 + 2x_2 - x_3$$

s.a.
$$2x_1 + 3x_2 + x_3 \le 6$$
 $\times y_1 \ge 0$

$$-2x_1 - 3x_2 - x_3 \le -6 \quad \times y_2 \ge 0$$

$$4x_1 + 5x_2 - x_3 \le 4 \quad \times y_3 \ge 0$$

$$-4x_1 - 5x_2 + x_3 \le -4 \quad \times y_4 \ge 0$$

$$x \ge 0$$

min
$$6y_1 - 6y_2 + 4y_3 - 4y_4$$

s.a. $2y_1 - 2y_2 + 4y_3 - 4y_4 \ge 1$
 $3y_1 - 3y_2 + 5y_3 - 5y_4 \ge 2$
 $y_1 - y_2 - y_3 + y_4 \ge -1$
 $y \ge 0$

todas restrições com \leq

min
$$6(y_1 - y_2) + 4(y_3 - y_4)$$

s.a. $2(y_1 - y_2) + 4(y_3 - y_4) \ge 1$
 $3(y_1 - y_2) + 5(y_3 - y_4) \ge 2$
 $(y_1 - y_2) - (y_3 - y_4) \ge -1$
 $y \ge 0$

podemos escrever uma variável livre como a diferença de outras duas positivas, logo:

$$u_1 = y_1 - y_2$$
, onde $y_1, y_2 \ge 0$

$$u_2 = y_3 - y_4$$
, onde $y_3, y_4 \ge 0$

$$3(y_1-y_2)+5(y_3-y_4)\geq 2$$

$$(y_1-y_2)-(y_3-y_4)\geq -1$$

$$y \ge 0$$

$$3u_1 + 5u_2 \ge 2$$

$$u_1-u_2\geq -1$$

$$u \in \mathbb{R}^2$$

- outro exemplo:

s.a.
$$2(y_1-y_2)+4(y_3-y_4)\geq 1$$

$$3(y_1-y_2)+5(y_3-y_4)\geq 2$$

$$(y_1-y_2)-(y_3-y_4)\geq -1$$

$$y \ge 0$$

$$3u_1 + 5u_2 \ge 2$$

$$u_1 - u_2 \ge -1$$

$$u \in \mathbb{R}^2$$

concluimos que as restrições de igualdade no PPL primal gerou variáveis livres no problema dual

$$\max x_1 + 2x_2 - x_3$$

s.a.
$$2x_1 + 3x_2 + x_3 = 6$$

$$4x_1 + 5x_2 - x_3 = 4$$
$$x \ge 0$$

$$x \ge 0$$

Primal/Dual

min
$$6u_1 + 4u_2$$

s.a.
$$2u_1 + 4u_2 \ge 1$$

$$3u_1 + 5u_2 \ge 2$$

$$u_1-u_2\geq -1$$

$$u \in \mathbb{R}^2$$

e o que acontece agora se o problema primal possui uma variável livre?

$$\max x_1 + 2x_2$$
s.a. $2x_1 + x_2 \le 6$

$$x_1 + x_2 \le 4$$

$$x_1 \ge 0$$

$$x_2 \in \mathbb{R}$$

e o que acontece agora se o problema primal possui uma variável livre?

max
$$x_1 + 2x_2$$

s.a. $2x_1 + x_2 \le 6$
 $x_1 + x_2 \le 4$
 $x_1 \ge 0$
 $x_2 \in \mathbb{R}$

$$x_2 = u_1 - u_2, \ u_1, u_2 \ge 0$$

e o que acontece agora se o problema primal possui uma variável livre?

max
$$x_1 + 2x_2$$

s.a. $2x_1 + x_2 \le 6$
 $x_1 + x_2 \le 4$
 $x_1 \ge 0$
 $x_2 \in \mathbb{R}$

$$\max_{x_2 = u_1 - u_2, u_1, u_2 \ge 0} \max_{s.a.} 2x_1 + u_1 - u_2 \le 6$$

$$x_1 + u_1 - u_2 \le 4$$

$$x_1, u \ge 0$$

e o que acontece agora se o problema primal possui uma variável livre?

max
$$x_1 + 2x_2$$

s.a. $2x_1 + x_2 \le 6$
 $x_1 + x_2 \le 4$
 $x_1 \ge 0$
 $x_2 \in \mathbb{R}$

$$x_2 = u_1 - u_2, \ u_1, u_2 \ge 0$$

$$\max x_1 + 2u_1 - 2u_2$$
s.a. $2x_1 + u_1 - u_2 \le 6$ $\times y_1 \ge 0$

$$x_1 + u_1 - u_2 \le 4$$
 $\times y_2 \ge 0$

$$x_1, u \ge 0$$

e o que acontece agora se o problema primal possui uma variável livre?

max
$$x_1 + 2x_2$$

s.a. $2x_1 + x_2 \le 6$
 $x_1 + x_2 \le 4$
 $x_1 \ge 0$
 $x_2 \in \mathbb{R}$

$$x_2 = u_1 - u_2, \ u_1, u_2 \ge 0$$

$$\max x_1 + 2u_1 - 2u_2$$
s.a. $2x_1 + u_1 - u_2 \le 6$ $\times y_1 \ge 0$

$$x_1 + u_1 - u_2 \le 4$$
 $\times y_2 \ge 0$

$$x_1, u \ge 0$$

e o que acontece agora se o problema primal possui uma variável livre?

$$\max x_1 + 2x_2$$
s.a. $2x_1 + x_2 \le 6$

$$x_1 + x_2 \le 4$$

$$x_1 \ge 0$$

$$x_2 \in \mathbb{R}$$

$$x_2 = u_1 - u_2, \ u_1, u_2 \ge 0$$
 s.a

$$\max x_1 + 2u_1 - 2u_2$$
s.a. $2x_1 + u_1 - u_2 \le 6$ $\times y_1 \ge 0$

$$x_1 + u_1 - u_2 \le 4$$
 $\times y_2 \ge 0$

$$x_1, u \ge 0$$

$$y_1 + y_2 = 2$$

e o que acontece agora se o problema primal possui uma variável livre?

max
$$x_1 + 2x_2$$

s.a. $2x_1 + x_2 \le 6$
 $x_1 + x_2 \le 4$
 $x_1 \ge 0$
 $x_2 \in \mathbb{R}$

$$\max x_1 + 2u_1 - 2u_2$$

$$x_2 = u_1 - u_2, \ u_1, u_2 \ge 0 \quad \text{s.a.} \ 2x_1 + u_1 - u_2 \le 6 \quad \times y_1 \ge 0$$

$$x_1 + u_1 - u_2 \le 4 \quad \times y_2 \ge 0$$

$$x_1, u \ge 0$$

concluimos que a variável livre no PPL primal gerou restrições de igualdade no problema dual

Tabela de Conversão Primal/Dual

200000000

<u>Primal</u>	<u>Dual</u>
max	min
rest. ≤	var. ≥0
rest. ≥	var. ≤0
rest. =	var. livre
var. ≥0	rest. ≥
var. livre	rest. =

Conversão quando o primal é de maximização

Tabela de Conversão Primal/Dual

<u>Primal</u>	<u>Dual</u>
max	min
rest. ≤	var. ≥0
rest. ≥	var. ≤0
rest. =	var. livre
var. ≥0	rest. ≥
var. livre	rest. =

Conversão quando o primal é de maximização

Dualidade é importante:

- Limites duais
- Interpretação Econômica
- Métodos de Solução de Programação Matemática

Finalmente podemos agora definir (P) primal e (D) dual como:

 $\max c^T x$

 $\min b^T y$

 $Ax \leq b$

 $A^T y \ge c$

 $x \ge 0$

200000000

 $y \ge 0$

 $x \in \mathbb{R}^n$

 $y \in R^m$

<u>Primal</u>	<u>Dual</u>
max	min
rest. ≤	var. ≥0
rest. ≥	var. ≤0
rest. =	var. livre
var. ≥0	rest. ≥
var. livre	rest. =

Finalmente podemos agora definir (P) primal e (D) dual como:

 $\max c^T x$

Bopossoo

 $\min b^T y$

 $Ax \leq b$

 $A^T y \ge c$

 $x \ge 0$

 $y \ge 0$

 $x \in \mathbb{R}^n$

 $y \in R^m$

Teorema: O dual de (D) é (P)

<u>Primal</u>	<u>Dual</u>
max	min
rest. ≤	var. ≥0
rest. ≥	var. ≤0
rest. =	var. livre
var. ≥0	rest. ≥
var. livre	rest. =

Finalmente podemos agora definir (P) primal e (D) dual como:

 $\max c^T x$

 $\min b^T y$

 $Ax \leq b$

 $A^T y \ge c$

 $x \ge 0$

 $y \ge 0$

 $x \in \mathbb{R}^n$

 $y \in R^m$

Teorema: O dual de (D) é (P)

reescrevendo (D)

<u>Primal</u>	<u>Dual</u>
max	min
rest. ≤	var. ≥0
rest. ≥	var. ≤0
rest. =	var. livre
var. ≥0	rest. ≥
var. livre	rest. =

Finalmente podemos agora definir (P) primal e (D) dual como:

 $\max c^T x$

 $\min b^T y$

$$Ax \leq b$$

$$A^T y \ge c$$

$$x \ge 0$$

$$y \ge 0$$

$$x \in \mathbb{R}^n$$

$$y \in R^m$$

Teorema: O dual de (D) é (P)

reescrevendo (D)

$$-\max - b^T y$$

$$-A^T y \le -c$$

$$y \ge 0$$

<u>Dual</u>
min
var. ≥0
var. ≤0
var. livre
rest. ≥
rest. =

Finalmente podemos agora definir (P) primal e (D) dual como:

 $\max c^T x$

 $\min b^T y$

 $Ax \leq b$

 $A^T y \ge c$

 $x \ge 0$

 $y \ge 0$

 $x \in \mathbb{R}^n$

 $y \in R^m$

Teorema: O dual de (D) é (P)

reescrevendo (D)

logo o dual de (D) será

 $-\max - b^T y$

 $-\min -c^T x$

$$-A^T y \le -c$$

$$-Ax \ge -b$$

 $y \ge 0$

x > 0

<u>Primal</u>	<u>Dual</u>
max	min
rest. ≤	var. ≥0
rest. ≥	var. ≤0
rest. =	var. livre
var. ≥0	rest. ≥
var. livre	rest. =

Finalmente podemos agora definir (P) primal e (D) dual como:

 $\max c^T x$

 $\min b^T y$

 $Ax \leq b$

 $A^T y \ge c$

 $x \ge 0$

 $y \ge 0$

 $x \in \mathbb{R}^n$

 $y \in R^m$

Teorema: O dual de (D) é (P)

reescrevendo (D)

logo o dual de (D) será

 $-\max - b^T y$

 $-\min -c^T x$

 $-A^T y \le -c$

 $-Ax \ge -b$

 $y \ge 0$

 $\max c^T x$

 $Ax \leq b$

 $x \ge 0$

<u>Primal</u>	<u>Dual</u>
max	min
rest. ≤	var. ≥0
rest. ≥	var. ≤0
rest. =	var. livre
var. $≥0$	rest. ≥
var. livre	rest. =

x > 0

Sempre colocamos na forma padrão antes de gerar o dual: Max, $Ax \le b e x \ge 0$

200000000

<u>Teorema da Dualidade Fraca:</u> Seja \overline{x} uma solução viável de $P = \{Ax \le b, x \ge 0\}$ e seja \overline{y} uma solução viável de $D = \{A^Ty \ge c, y \ge 0\}$, então:

$$c^T \overline{x} \le b^T \overline{y}$$

<u>Teorema da Dualidade Fraca:</u> Seja \overline{x} uma solução viável de $P = \{Ax \le b, x \ge 0\}$ e seja \overline{y} uma solução viável de $D = \{A^Ty \ge c, y \ge 0\}$, então:

$$c^T \overline{x} \le b^T \overline{y}$$

Sabemos que $A\overline{x} \leq b$ e $\overline{y} \geq 0$, logo

<u>Teorema da Dualidade Fraca:</u> Seja \overline{x} uma solução viável de $P = \{Ax \le b, x \ge 0\}$ e seja \overline{y} uma solução viável de $D = \{A^Ty \ge c, y \ge 0\}$, então:

$$c^T \overline{x} \le b^T \overline{y}$$

$$A\overline{x} \le b$$

$$[A\overline{x}]^T \leq b^T$$

$$\overline{x}^T A^T \leq b^T \ (\leftarrow \times \overline{y})$$

$$\overline{x}^T A^T \overline{y} \le b^T \overline{y} \quad (1)$$

<u>Teorema da Dualidade Fraca:</u> Seja \overline{x} uma solução viável de $P = \{Ax \le b, x \ge 0\}$ e seja \overline{y} uma solução viável de $D = \{A^Ty \ge c, y \ge 0\}$, então:

$$c^T \overline{x} \le b^T \overline{y}$$

Vemos também que $\overline{x} \ge 0$ logo:

$$A\overline{x} \le b$$

$$[A\overline{x}]^T \le b^T$$

$$\overline{x}^T A^T \le b^T \quad (\leftarrow \times \overline{y})$$

$$\overline{x}^T A^T \overline{y} \le b^T \overline{y} \quad (1)$$

<u>Teorema da Dualidade Fraca:</u> Seja \overline{x} uma solução viável de $P = \{Ax \le b, x \ge 0\}$ e seja \overline{y} uma solução viável de $D = \{A^Ty \ge c, y \ge 0\}$, então:

$$c^T \overline{x} \le b^T \overline{y}$$

$$A\overline{x} \leq b$$

$$[A\overline{x}]^T \leq b^T$$

$$\overline{x}^T A^T \leq b^T \quad (\leftarrow \times \overline{y})$$

$$\overline{x}^T A^T \overline{y} \le b^T \overline{y} \quad (1)$$

20000000

Vemos também que $\overline{x} \ge 0$ logo:

$$A^T \overline{y} \ge c \ (\to \times \overline{x}^T)$$

$$\overline{x}^T A^T \overline{y} \ge \overline{x}^T c$$
 (2)

<u>Teorema da Dualidade Fraca:</u> Seja \overline{x} uma solução viável de $P = \{Ax \le b, x \ge 0\}$ e seja \overline{y} uma solução viável de $D = \{A^Ty \ge c, y \ge 0\}$, então:

$$c^T \overline{x} \le b^T \overline{y}$$

$$A\overline{x} \le b$$

$$[A\overline{x}]^T \leq b^T$$

$$\overline{x}^T A^T \leq b^T \quad (\leftarrow \times \overline{y})$$

$$\overline{x}^T A^T \overline{y} \le b^T \overline{y} \quad (1)$$

por (1) e por (2) temos que:

$$\overline{x}^T c \le \overline{x}^T A^T \overline{y} \le b^T \overline{y}$$

Vemos também que $\overline{x} \ge 0$ logo:

$$A^T \overline{y} \ge c \ (\to \times \overline{x}^T)$$

$$\overline{x}^T A^T \overline{y} \ge \overline{x}^T c$$
 (2)

<u>Teorema da Dualidade Fraca:</u> Seja \overline{x} uma solução viável de $P = \{Ax \le b, x \ge 0\}$ e seja \overline{y} uma solução viável de $D = \{A^Ty \ge c, y \ge 0\}$, então:

$$c^T\overline{x} \leq b^T\overline{y}$$

Sabemos que $A\overline{x} \leq b$ e $\overline{y} \geq 0$, logo

Vemos também que $\overline{x} \ge 0$ logo:

 $\overline{x}^T A^T \overline{y} > \overline{x}^T c$ (2)

 $A^T \overline{y} \geq c \ (\rightarrow \times \overline{x}^T)$

$$A\overline{x} \le b$$

$$[A\overline{x}]^T \le b^T$$

$$\overline{x}^T A^T \leq b^T \quad (\leftarrow \times \overline{y})$$

$$\overline{x}^T A^T \overline{y} \le b^T \overline{y} \quad (1)$$

por (1) e por (2) temos que:

$$\overline{x}^T c \le \overline{x}^T A^T \overline{y} \le b^T \overline{y}$$

$$\overline{x}^T c \le b^T \overline{y} \to c^T \overline{x} \le b^T \overline{y}$$

Corolário: Seja \overline{x} uma solução viável de P e \overline{y} uma solução viável de D, tal que $c^T \overline{x} = b^T \overline{y}$. Então (i) \overline{x} será ótimo de P e (ii) \overline{y} será ótimo de D.

<u>Corolário</u>: Seja \overline{x} uma solução viável de P e \overline{y} uma solução viável de D, tal que $c^T \overline{x} = b^T \overline{y}$. Então (i) \overline{x} será ótimo de P e (ii) \overline{y} será ótimo de D.

(i) \overline{y} é solução viável de D $\rightarrow c^T x \leq b^T \overline{y}, \forall x \in P$

Bossospa

<u>Corolário</u>: Seja \overline{x} uma solução viável de P e \overline{y} uma solução viável de D, tal que $c^T \overline{x} = b^T \overline{y}$. Então (i) \overline{x} será ótimo de P e (ii) \overline{y} será ótimo de D.

(i) \overline{y} é solução viável de D $\rightarrow c^T x \leq b^T \overline{y}, \forall x \in P$ como $c^T \overline{x} = b^T \overline{y} \rightarrow c^T x \leq c^T \overline{x}, \forall x \in P$

Corolário: Seja \overline{x} uma solução viável de P e \overline{y} uma solução viável de D, tal que $c^T \overline{x} = b^T \overline{y}$. Então (i) \overline{x} será ótimo de P e (ii) \overline{y} será ótimo de D.

(i)
$$\overline{y}$$
 é solução viável de D $\rightarrow c^T x \leq b^T \overline{y}, \forall x \in P$

como
$$c^T \overline{x} = b^T \overline{y} \to c^T x \le c^T \overline{x}, \forall x \in P$$

80000000

 \log_{0}, \overline{x} é ótima em P.

<u>Corolário</u>: Seja \overline{x} uma solução viável de P e \overline{y} uma solução viável de D, tal que $c^T \overline{x} = b^T \overline{y}$. Então (i) \overline{x} será ótimo de P e (ii) \overline{y} será ótimo de D.

(i)
$$\overline{y}$$
 é solução viável de D $\rightarrow c^T x \leq b^T \overline{y}, \forall x \in P$
como $c^T \overline{x} = b^T \overline{y} \rightarrow c^T x \leq c^T \overline{x}, \forall x \in P$

logo, \overline{x} é ótima em P.

(ii)
$$\overline{x}$$
 é solução viável de $P \to c^T \overline{x} \leq b^T y, \forall y \in D$

<u>Corolário</u>: Seja \overline{x} uma solução viável de P e \overline{y} uma solução viável de D, tal que $c^T \overline{x} = b^T \overline{y}$. Então (i) \overline{x} será ótimo de P e (ii) \overline{y} será ótimo de D.

(i)
$$\overline{y}$$
 é solução viável de D $\rightarrow c^T x \leq b^T \overline{y}, \forall x \in P$
como $c^T \overline{x} = b^T \overline{y} \rightarrow c^T x \leq c^T \overline{x}, \forall x \in P$

logo, \overline{x} é ótima em P.

(ii)
$$\overline{x}$$
 é solução viável de $P \to c^T \overline{x} \le b^T y$, $\forall y \in D$
como $c^T \overline{x} = b^T \overline{y} \to b^T \overline{y} \le b^T y$, $\forall y \in D$

<u>Corolário</u>: Seja \overline{x} uma solução viável de P e \overline{y} uma solução viável de D, tal que $c^T \overline{x} = b^T \overline{y}$. Então (i) \overline{x} será ótimo de P e (ii) \overline{y} será ótimo de D.

(i)
$$\overline{y}$$
 é solução viável de D $\rightarrow c^T x \leq b^T \overline{y}, \forall x \in P$
como $c^T \overline{x} = b^T \overline{y} \rightarrow c^T x \leq c^T \overline{x}, \forall x \in P$

logo, \overline{x} é ótima em P.

(ii)
$$\overline{x}$$
 é solução viável de P $\rightarrow c^T \overline{x} \leq b^T y$, $\forall y \in D$
como $c^T \overline{x} = b^T \overline{y} \rightarrow b^T \overline{y} \leq b^T y$, $\forall y \in D$

20000000

logo, \overline{y} é ótima em D.

Corolário:

- (i) Se P ilimitado \rightarrow D inviável
- (ii) Se D ilimitado \rightarrow P inviável

Corolário:

- (i) Se P ilimitado \rightarrow D inviável
- (ii) Se D ilimitado \rightarrow P inviável

Corolário:

- (i) Se P ilimitado \rightarrow D inviável
- (ii) Se D ilimitado \rightarrow P inviável

(ii) Análogo

Corolário:

- (i) Se P ilimitado \rightarrow D inviável
- (ii) Se D ilimitado \rightarrow P inviável

(ii) Análogo

Mas e se P for vazio, será que D será ilimitado?

Seja:

(P)	max	$x_1 + x_2$	
		$-x_1 + x_2 \le -1$	(1)
		$x_1 - x_2 \le -1$	(2)
		$x \ge 0$	

var. livre

rest. =

Mas e se P for vazio, será que D será ilimitado?

Seja:

dual

$$(P) \quad \max x_1 + x_2$$

(1)

$$-x_1 + x_2 \le -1$$
 (1)

$$x_1 - x_2 \le -1 \tag{2}$$

$$x \ge 0$$

$$(D) \quad \min \quad -y_1 - y_2$$

$$-y_1 + y_2 \ge 1$$
 (3)

$$y_1 - y_2 \ge -1 \tag{4}$$

$$y \ge 0$$

(4)

<u>Primal</u> ■	<u>Dual</u>
max	min
rest. ≤	var. $≥0$
rest. ≥	var. ≤0
rest. =	var. livre
var. ≥0	rest. ≥
var. livre	rest. =

Vamos definir agora P e D de outra forma (com folgas em P)

 $\max c^T x$

$$Ax = b$$
 dual

$$x \ge 0$$

<u>Primal</u> ■	<u>Dual</u>
max	min
rest. ≤	var. $≥0$
rest. ≥	var. ≤0
rest. =	var. livre
var. ≥0	rest. ≥
var. livre	rest. =

Vamos definir agora P e D de outra forma (com folgas em P)

 $\max c^T x$

$$\min b^T y = y^T b$$

$$= y^T b$$

$$Ax = b$$

$$A^T y \ge c$$

$$x \ge 0$$

Bessesse

u	livre	

<u>Primal</u> ■	<u>Dual</u>
max	min
rest. ≤	var. $≥0$
rest. ≥	var. ≤0
rest. =	var. livre
var. ≥0	rest. ≥
var. livre	rest. =

Vamos definir agora P e D de outra forma (com folgas em P)

 $\max c^T x \qquad \qquad \min b^T y \qquad = y^T b$ $Ax = b \qquad \qquad A^T y \ge c$ $x \ge 0 \qquad \qquad y \text{ livre}$

20000000

Diferente da dualidade fraca que diz que se os dois tem o mesmo valor de solução, então são ótimos.

<u>Teorema da Dualidade Forte:</u> Seja x^* uma solução ótima de P tal que $z^*=c^Tx^*$ então D tem solução ótima y^* e com $b^Ty^*=z^*$.

max $c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$ s.a. $x_B = B^{-1} b - B^{-1} N x_N$ $x_B, x_N \ge 0$

assuma s.p.g. que x^* é S.B.V., ou seja:

$$x^* = \begin{bmatrix} x_B^* \\ x_N^* \end{bmatrix} = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix}$$

200000000

onde

$$B^{-1}b \ge 0$$

$$z^* = c_B^T B^{-1}b$$

$$(c_j - z_j) \le 0, \ \forall j \in I_N$$

$$(c_N^T - c_B^T B^{-1}N) < 0$$

Logo x* é ótimo

 $\max c^T x$ Ax = b $x \ge 0$

dual

 $\min b^T y$ $A^T y \ge c$ y livre

<u>Teorema da Dualidade Forte:</u> Seja x^* uma solução ótima de P tal que $z^* = c^T x^*$ então D tem solução ótima y^* e com $b^T y^* = z^*$.

 $\max c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N)x_{N}$ s.a. $x_{B} = B^{-1}b - B^{-1}Nx_{N}$ $x_{B}, x_{N} \ge 0$

assuma s.p.g. que x^* é S.B.V., ou seja:

$$x^* = \begin{bmatrix} x_B^* \\ x_N^* \end{bmatrix} = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix}$$

200000000

onde

$$z^* = c_B^T B^{-1} b$$
$$(c_j - z_j) \le 0, \ \forall j \in I_N$$

 $(c_N^T - c_B^T B^{-1} N) \le 0$

 $B^{-1}b > 0$

vamos considerar uma possível solução \overline{y} de D onde vamos atribuir os valores $c_B^TB^{-1}$, logo $\overline{y}=c_B^TB^{-1}$

Pois tem a mesma cardinalidade (m), na verdade y^T

Logo x* é ótimo

 $\max c^T x$ Ax = b

 $x \ge 0$

dual

 $\min\,b^Ty$

 $A^T y \ge c$

y livre

<u>Teorema da Dualidade Forte:</u> Seja x^* uma solução ótima de P tal que $z^* = c^T x^*$ então D tem solução ótima y^* e com $b^T y^* = z^*$.

 $\max c_{B}^{T} B^{-1} b + (c_{N}^{T} - c_{B}^{T} B^{-1} N) x_{N}$ s.a. $x_{B} = B^{-1} b - B^{-1} N x_{N}$ $x_{B}, x_{N} \ge 0$

assuma s.p.g. que x^* é S.B.V., ou seja:

$$x^* = \begin{bmatrix} x_B^* \\ x_N^* \end{bmatrix} = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix}$$

200000000

onde

$$z^* = c_B^T B^{-1} b$$

$$(c_j - z_j) \le 0, \ \forall j \in I_N$$

 $B^{-1}b > 0$

 $(c_N^T - c_B^T B^{-1} N) \le 0$

vamos considerar uma possível solução \overline{y} de D onde vamos atribuir os valores $c_B^TB^{-1}$, logo $\overline{y}=c_B^TB^{-1}$

Se \overline{y} for mesmo solução de D, temos:

$$A^T \overline{y} \ge c$$

$$[A^T \overline{y}]^T \ge c^T$$
$$\overline{y}^T A \ge c$$

$$\overline{y}^T A \ge [c_B^T \ c_N^T]$$

Logo x* é ótimo

 $\max c^T x$ Ax = b

 $x \ge 0$

dual

 $\min b^T y$

 $A^T y \ge c$ y livre

<u>Teorema da Dualidade Forte:</u> Seja x^* uma solução ótima de P tal que $z^*=c^Tx^*$ então D tem solução ótima y^* e com $b^Ty^*=z^*$.

 $\max c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N)x_{N}$ s.a. $x_{B} = B^{-1}b - B^{-1}Nx_{N}$ $x_{B}, x_{N} \ge 0$

assuma s.p.g. que x^* é S.B.V., ou seja:

$$x^* = \begin{bmatrix} x_B^* \\ x_N^* \end{bmatrix} = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix}$$

200000000

onde

$$z^* = c_B^T B^{-1} b$$

$$(c_j - z_j) \le 0, \ \forall j \in I_N$$

$$(c_N^T - c_B^T B^{-1} N) \le 0$$

 $B^{-1}b > 0$

vamos considerar uma possível solução \overline{y} de D onde vamos atribuir os valores $c_B^TB^{-1}$, logo $\overline{y}=c_B^TB^{-1}$

Se \overline{y} for mesmo solução de D, temos:

$$[A^T \overline{y}]^T \ge c^T$$

$$\overline{y}^T A \ge c$$

$$\overline{y}^T A \ge [c_B^T \ c_N^T]$$

 $A^T \overline{y} > c$

Logo x* é ótimo

$$\overline{y}^{T}A \ge [c_{B}^{T} c_{N}^{T}]$$

$$\overline{y}^{T}[B \ N] \ge [c_{B}^{T} c_{N}^{T}]$$

$$c_{B}^{T}B^{-1}[B \ N] \ge [c_{B}^{T} c_{N}^{T}]$$

$$[c_{B}^{T}B^{-1}B \ c_{B}^{T}B^{-1}N] \ge [c_{B}^{T} c_{N}^{T}]$$

$$[c_{B}^{T} \ c_{B}^{T}B^{-1}N] \ge [c_{B}^{T} c_{N}^{T}]$$

<u>Teorema da Dualidade Forte:</u> Seja x^* uma solução ótima de P tal que $z^*=c^Tx^*$ então D tem solução ótima y^* e com $b^Ty^*=z^*$.

 $\max c_{B}^{T} B^{-1} b + (c_{N}^{T} - c_{B}^{T} B^{-1} N) x_{N}$ s.a. $x_{B} = B^{-1} b - B^{-1} N x_{N}$ $x_{B}, x_{N} \ge 0$

Se \overline{y} for mesmo solução de D, temos:

por (1) temos que $c_B^T \ge c_B^T$.

<u>Teorema da Dualidade Forte:</u> Seja x^* uma solução ótima de P tal que $z^*=c^Tx^*$ então D tem solução ótima y^* e com $b^Ty^*=z^*$.

 $\max c_{B}^{T} B^{-1} b + (c_{N}^{T} - c_{B}^{T} B^{-1} N) x_{N}$ s.a. $x_{B} = B^{-1} b - B^{-1} N x_{N}$ $x_{B}, x_{N} \ge 0$

Se \overline{y} for mesmo solução de D, temos:

por (1) temos que $c_B^T \ge c_B^T$.

por (2) temos:

<u>Teorema da Dualidade Forte:</u> Seja x^* uma solução ótima de P tal que $z^*=c^Tx^*$ então D tem solução ótima y^* e com $b^Ty^*=z^*$.

 $\max c_{B}^{T} B^{-1} b + (c_{N}^{T} - c_{B}^{T} B^{-1} N) x_{N}$ s.a. $x_{B} = B^{-1} b - B^{-1} N x_{N}$ $x_{B}, x_{N} \ge 0$

Se \overline{y} for mesmo solução de D, temos:

por (1) temos que $c_B^T \ge c_B^T$.

por (2) temos:

$$c_B^T B^{-1} N \ge c_N^T$$

$$c_B^T B^{-1} N - c_N^T \ge 0$$

$$c_N^T - c_B^T B^{-1} N \le 0$$

$$(c_j - z_j) \le 0, \ \forall j \in I_N$$

<u>Teorema da Dualidade Forte:</u> Seja x^* uma solução ótima de P tal que $z^*=c^Tx^*$ então D tem solução ótima y^* e com $b^Ty^*=z^*$.

 $\max c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N)x_{N}$ s.a. $x_{B} = B^{-1}b - B^{-1}Nx_{N}$ $x_{B}, x_{N} \ge 0$

Se \overline{y} for mesmo solução de D, temos:

por (1) temos que $c_B^T \ge c_B^T$.

logo \overline{y} é solução de D, onde o valor sua f.o. é:

por (2) temos:

$$c_{B}^{T}B^{-1}N \ge c_{N}^{T}$$

$$c_{B}^{T}B^{-1}N - c_{N}^{T} \ge 0$$

$$c_{N}^{T} - c_{B}^{T}B^{-1}N \le 0$$

$$(c_{j} - z_{j}) \le 0, \ \forall j \in I_{N}$$

?

<u>Teorema da Dualidade Forte:</u> Seja x^* uma solução ótima de P tal que $z^*=c^Tx^*$ então D tem solução ótima y^* e com $b^Ty^*=z^*$.

max $c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$ s.a. $x_B = B^{-1} b - B^{-1} N x_N$ $x_B, x_N \ge 0$

Se \overline{y} for mesmo solução de D, temos:

por (1) temos que $c_B^T \ge c_B^T$.

logo \overline{y} é solução de D, onde o valor sua f.o. é:

por (2) temos:

 $b^T \overline{y} = \overline{y}^T b = c_B^T B^{-1} b = z^*$

$$c_B^T B^{-1} N \ge c_N^T$$

$$c_B^T B^{-1} N - c_N^T \ge 0$$

$$c_N^T - c_B^T B^{-1} N \le 0$$

$$(c_j - z_j) \le 0, \ \forall j \in I_N$$

Como f.o. de P e D são iguais, temos que \overline{y} é ótimo.

Com os resultados anteriores, podemos enunciar:

<u>Teorema da Existência da Dualidade</u>: Dado um par primal-dual de PPLs, uma e somente uma das afirmações se verifica:

- 1. Um deles é inviável e o outro é ilimitado
- 2. Os dois são inviáveis

20000000

3. Os dois tem solução ótima e o valor da f.o. ótima de ambos coincide.

Com os resultados anteriores, podemos enunciar:

<u>Teorema da Existência da Dualidade</u>: Dado um par primal-dual de PPLs, uma e somente uma das afirmações se verifica:

- 1. Um deles é inviável e o outro é ilimitado
- 2. Os dois são inviáveis

20000000

3. Os dois tem solução ótima e o valor da f.o. ótima de ambos coincide.

Primal / Dual	Finito e Viável	Ilimitado	Inviável
Finito e Viável	x		
Ilimitado			X
Inviável		х	x

Com os resultados anteriores, podemos enunciar:

<u>Teorema da Existência da Dualidade:</u> Dado um par primal-dual de PPLs, uma e somente uma das afirmações se verifica:

- 1. Um deles é inviável e o outro é ilimitado
- 2. Os dois são inviáveis

200000000

3. Os dois tem solução ótima e o valor da f.o. ótima de ambos coincide.

Primal / Dual	Finito e Viável	Ilimitado	Inviável
Finito e Viável	x		
Ilimitado			x
Inviável		x	х

este não pode ser demonstrado por dualidade

Exercícios

- 1. Considere o $PPL = \{\min c^T x \mid Ax = b, x \geq 0\}$, onde $x \in R^n$, $A \in R^{mxn}$, $b \in R^m$ e $c^T \in R^n$. Para cada uma das afirmações, diga se é verdadeiro ou falso. Se verdadeiro, apresente uma justificativa, caso contrário, um contra-exemplo.
- e) Se um PPL $\{\max c^T x \mid Ax \leq b, x \geq 0\}$ é ilimitado, então podemos alterar o valor do vetor b para tornar o PPL limitado.

Podemos alterar o b no DUAL para tornar o problema limitado?

Primal		Dual
$\max c^T x$	1	$\min b^T y$
$Ax \leq b$		$A^T y \ge c$
$x \ge 0$		$y \ge 0$
$x \in \mathbb{R}^n$		$y \in R^m$

<u>Primal</u>	<u>Dual</u>
max	min
rest. ≤	var. ≥0
rest. ≥	var. ≤0
rest. =	var. livre
var. ≥0	rest. ≥
var. livre	rest. =

Primal / Dual	Finito e Viável	Ilimitado	Inviável
Finito e Viável	X		
Ilimitado			X
Inviável		X	X

Interpretação Econômica: variáveis duais

Agora que sabemos como gerar o problema dual, temos acesso a interpretação econômica da solução

Seja x^* uma S.B.V. ótima de P, logo:

$$x^* = \begin{bmatrix} x_B^* \\ x_N^* \end{bmatrix} = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix}, \quad z^* = c_B^T x_B^* = c_B^T B^{-1}b = y^{*T}b$$

onde y^* é ótimo de D

$$\max c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N)x_{N}$$
s.a. $x_{B} = B^{-1}b - B^{-1}Nx_{N}$

$$x_{B}, x_{N} \ge 0$$

Interpretação Econômica: variáveis duais

Agora que sabemos como gerar o problema dual, temos acesso a interpretação econômica da solução

Seja x^* uma S.B.V. ótima de P, logo:

$$x^* = \begin{bmatrix} x_B^* \\ x_N^* \end{bmatrix} = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix}, \quad z^* = c_B^T x_B^* = c_B^T B^{-1}b = y^{*T}b$$

 $x_B, x_N > 0$

onde y^* é ótimo de D

vamos supor que o dado de entrada b_k foi alterado para b_{k+1} , logo seja:

$$\overline{b} = \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_k \\ \dots \\ b_m \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \dots \\ 1 \\ \dots \\ 0 \end{bmatrix}$$

e vamos supor também que $B^{-1}\overline{b} \geq 0$

manteve a viabilidade primal

Interpretação Econômica: variáveis duais

200000000

variação

$$z^* = c_B^T B^{-1} \overline{b} = y^{*T} \overline{b} = y^{*T} (b + e_k) = y^{*T} b + y_k^*$$

f.o do dual

f.o original

$$\max c_{B}^{T}B^{-1}b + (c_{N}^{T} - c_{B}^{T}B^{-1}N)x_{N}$$
s.a. $x_{B} = B^{-1}b - B^{-1}Nx_{N}$

Interpretação Econômica: variáveis duais

20000000

variação

$$z^* = c_B^T B^{-1} \overline{b} = y^{*T} \overline{b} = y^{*T} (b + e_k) = y^{*T} b + y_k^*$$

f.o do dual

f.o original

Podemos interpretar a variável dual y_k^* como sendo a variação de z^* (ganho ou perda) quando aumentamos 1 unidade na posição k de b.

$$\frac{\partial z}{\partial b_k} = y_k^*$$

o quanto varia z em relação a b_k

$$\max c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$

s.a. $x_B = B^{-1} b - B^{-1} N x_N$

Interpretação Econômica: variáveis duais

200000000

variação

$$z^* = c_B^T B^{-1} \overline{b} = y^{*T} \overline{b} = y^{*T} (b + e_k) = y^{*T} b + y_k^*$$

f.o do dual

f.o original

Podemos interpretar a variável dual y_k^* como sendo a variação de z^* (ganho ou perda) quando aumentamos 1 unidade na posição k de b.

$$\frac{\partial z}{\partial b_k} = y_k^*$$

o quanto varia z em relação a b_k

custo marginal (ou shadow price) de uma restrição k é a taxa de variação da f.o. em resposta a uma variação de b_k

$$\max c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$

s.a. $x_B = B^{-1} b - B^{-1} N x_N$

Interpretação Econômica: variáveis duais

variação

$$z^* = c_B^T B^{-1} \overline{b} = y^{*T} \overline{b} = y^{*T} (b + e_k) = y^{*T} b + y_k^*$$

f.o do

Podemos interpret ou perda) quando

200000000

Muito legal, mas como vou saber os valores das variáveis duais ? Vou ter que resolver o problema dual também ?

 $a b_{k}$

custo marginal (ou shadow price) de uma restrição k é a taxa de variação da f.o. em resposta a uma variação de b_k

$$\max c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$

s.a. $x_B = B^{-1} b - B^{-1} N x_N$

Teorema das folgas complementares:

Sejam $(P) \max c^T x$

20000000

 $(D) \min b^T y$

 $Ax \leq b$

 $A^T y \ge c$

 $x \ge 0$

 $y \ge 0$

e sejam x^* uma solução ótima de (P) e y^* uma solução ótima de (D), então:

$$y^{*T}(b - Ax^*) = 0 e x^{*T}(A^Ty^* - c) = 0$$

Primal	<u>Dual</u>
max	min
rest. ≤	var. $≥0$
rest. ≥	var. ≤0
rest. =	var. livre
var. ≥0	rest. ≥
var. livre	rest. =

Como encontrar o valor das vaiáveis duais, a partir das primais ?

Teorema das folgas complementares:

Sejam $(P) \max c^T x$

 $(D) \min b^T y$

 $Ax \leq b$

 $A^T y \ge c$

 $x \ge 0$

 $y \ge 0$

e sejam x^* uma solução ótima de (P) e y^* uma solução ótima de (D), então:

$$y^{*T}(b - Ax^*) = 0 e x^{*T}(A^Ty^* - c) = 0$$

folga primal

20000000

folga dual

<u>Primal</u>	<u>Dual</u>
max	min
rest. ≤	var. $≥0$
rest. ≥	var. ≤0
rest. =	var. livre
var. ≥0	rest. ≥
var. livre	rest. =

Como encontrar o valor das vaiáveis duais, a partir das primais ?

Teorema das folgas complementares:

Sejam $(P) \max c^T x$

 $(D) \min b^T y$

 $Ax \leq b$

 $A^T y \ge c$

 $x \ge 0$

 $y \ge 0$

e sejam x^* uma solução ótima de (P) e y^* uma solução ótima de (D), então:

$$y^{*T}(b - Ax^*) = 0 e x^{*T}(A^Ty^* - c) = 0$$

20000000

 $Ax^* \leq b$

 $x^{*T}A^T \le b^T$

 $x^{*T}A^Ty^* \le b^Ty^* \quad (1)$

<u>Primal</u>	<u>Dual</u>
max	min
rest. ≤	var. $≥0$
rest. ≥	var. ≤0
rest. =	var. livre
var. ≥0	rest. ≥
var. livre	rest. =

Teorema das folgas complementares:

Sejam $(P) \max c^T x$

 $(D) \min b^T y$

 $Ax \leq b$

 $A^T y \ge c$

 $x \ge 0$

 $y \ge 0$

e sejam x^* uma solução ótima de (P) e y^* uma solução ótima de (D), então:

$$y^{*T}(b - Ax^*) = 0 e x^{*T}(A^Ty^* - c) = 0$$

Vemos que

$$Ax^* \le b$$

$$A^T y^* \ge c$$

$$x^{*T}A^T \le b^T$$

$$x^{*T}A^T \le b^T \qquad \qquad x^{*T}A^Ty^* \ge x^{*T}c \quad (2)$$

$$x^{*T}A^Ty^* \le b^Ty^* \quad (1)$$

<u>Primal</u>	<u>Dual</u>
max	min
rest. ≤	var. $≥0$
rest. ≥	var. ≤0
rest. =	var. livre
var. $≥0$	rest. ≥
var. livre	rest. =

Teorema das folgas complementares:

Sejam $(P) \max c^T x$

 $(D) \min b^T y$

 $Ax \leq b$

 $A^T y \geq c$

 $x \ge 0$

 $y \ge 0$

e sejam x^* uma solução ótima de (P) e y^* uma solução ótima de (D), então:

$$y^{*T}(b - Ax^*) = 0 e x^{*T}(A^Ty^* - c) = 0$$

Primal	<u>Dual</u>
max	min
rest. ≤	var. $≥0$
rest. ≥	var. ≤0
rest. =	var. livre
var. ≥0	rest. ≥
var. livre	rest. =

Vemos que

20000000

 $Ax^* \le b$

 $A^T y^* \geq c$

por (1) e (2) temos

 $x^{*T}A^T < b^T$ $x^{*T}A^Ty^* \ge x^{*T}c$ (2)

 $x^{*T}c \le x^{*T}A^Ty^* \le b^Ty^* \tag{3}$

 $x^{*T}A^Ty^* \le b^Ty^* \quad (1)$

Teorema das folgas complementares:

Sejam $(P) \max c^T x$

 $(D) \min b^T y$

 $Ax \leq b$

 $A^T y \ge c$

x > 0

 $y \ge 0$

e sejam x^* uma solução ótima de (P) e y^* uma solução ótima de (D), então:

$$y^{*T}(b - Ax^*) = 0 e x^{*T}(A^Ty^* - c) = 0$$

<u>Primal</u>	<u>Dual</u>
max	min
rest. ≤	var. ≥0
rest. ≥	var. ≤0
rest. =	var. livre
var. ≥0	rest. ≥
var. livre	rest. =

Vemos que

 $Ax^* \le b$

 $A^T y^* \geq c$

 $x^{*T}A^T < b^T$ $x^{*T}A^Ty^* \ge x^{*T}c$ (2)

 $x^{*T}c \le x^{*T}A^Ty^* \le b^Ty^* \tag{3}$

por (1) e (2) temos

 $x^{*T}A^Ty^* < b^Ty^*$ (1)

como x^* e y^* são ótimos (com mesmo valor de f.o.) temos por

$$x^{*T}c = x^{*T}A^Ty^* = b^Ty^*$$

Teorema das folgas complementares:

Sepondoo!

$$y^{*T}(b - Ax^*) = 0 e x^{*T}(A^Ty^* - c) = 0$$

Teorema das folgas complementares:

$$y^{*T}(b - Ax^*) = 0 e x^{*T}(A^Ty^* - c) = 0$$

$$x^{*T}c = x^{*T}A^{T}y^{*} = b^{T}y^{*}$$

$$x^{*T}A^Ty^* - x^{*T}c = 0$$

$$x^{*T}(A^Ty^* - c) = 0 \quad (4)$$

Teorema das folgas complementares:

$$y^{*T}(b - Ax^*) = 0 e x^{*T}(A^Ty^* - c) = 0$$

$$x^{*T}c - x^{*T}A^Ty^* = 0$$

$$x^{*T}A^Ty^* - x^{*T}c = 0$$

$$x^{*T}(A^Ty^* - c) = 0 \quad (4)$$

Teorema das folgas complementares:

$$y^{*T}(b - Ax^*) = 0 e x^{*T}(A^Ty^* - c) = 0$$

$$x^{*T}c - x^{*T}A^Ty^* = 0$$

$$x^{*T}A^Ty^* - x^{*T}c = 0$$

$$x^{*T}(A^Ty^* - c) = 0 \quad (4)$$

$$b^{T}y^{*} - x^{*T}A^{T}y^{*} = 0$$

$$(b^{T} - x^{*T}A^{T})y^{*} = 0$$

$$y^{*T}(b^{T} - x^{*T}A^{T})^{T} = 0$$

$$y^{*T}(b - [x^{*T}A^{T}]^{T}) = 0$$

$$y^{*T}(b - Ax^{*}) = 0 \quad (5)$$

Teorema das folgas complementares:

$$y^{*T}(b - Ax^*) = 0 e x^{*T}(A^Ty^* - c) = 0$$

$$x^{*T}c = x^{*T}A^Ty^* = b^Ty^*$$

$$x^{*T}c - x^{*T}A^Ty^* = 0$$

$$x^{*T}A^Ty^* - x^{*T}c = 0$$

$$x^{*T}(A^Ty^* - c) = 0 \quad (4)$$

$$b^{T}y^{*} - x^{*T}A^{T}y^{*} = 0$$

$$(b^{T} - x^{*T}A^{T})y^{*} = 0$$

$$y^{*T}(b^{T} - x^{*T}A^{T})^{T} = 0$$

$$y^{*T}(b - [x^{*T}A^{T}]^{T}) = 0$$

$$y^{*T}(b - Ax^{*}) = 0 (5)$$

Além disso, em (4) temos que $x^* \ge 0$ e $(A^T y^* - c) \ge 0$, logo:

$$x_j^* \cdot (A^T y^* - c)_j = 0, \quad \forall j = 1...n$$

Teorema das folgas complementares:

$$y^{*T}(b - Ax^*) = 0 e x^{*T}(A^Ty^* - c) = 0$$

$$x^{*T}c = x^{*T}A^Ty^* = b^Ty^*$$

$$x^{*T}c - x^{*T}A^Ty^* = 0$$

$$x^{*T}A^Ty^* - x^{*T}c = 0$$

$$x^{*T}(A^Ty^* - c) = 0 \quad (4)$$

$$b^{T}y^{*} - x^{*T}A^{T}y^{*} = 0$$

$$(b^{T} - x^{*T}A^{T})y^{*} = 0$$

$$y^{*T}(b^{T} - x^{*T}A^{T})^{T} = 0$$

$$y^{*T}(b - [x^{*T}A^{T}]^{T}) = 0$$

$$y^{*T}(b - Ax^{*}) = 0 (5)$$

Além disso, em (4) temos que $x^* \ge 0$ e $(A^T y^* - c) \ge 0$, logo:

$$x_j^* \cdot (A^T y^* - c)_j = 0, \quad \forall j = 1...n$$

denominar folga de s

$$x_j^*.s_j = 0, \quad \forall j = 1...n$$

Teorema das folgas complementares:

$$y^{*T}(b - Ax^*) = 0 e x^{*T}(A^Ty^* - c) = 0$$

$$x^{*T}c = x^{*T}A^Ty^* = b^Ty^*$$

$$x^{*T}c - x^{*T}A^Ty^* = 0$$

$$x^{*T}A^Ty^* - x^{*T}c = 0$$

200000000

$$x^{*T}(A^Ty^* - c) = 0 \quad (4)$$

$$b^{T}y^{*} - x^{*T}A^{T}y^{*} = 0$$

$$(b^{T} - x^{*T}A^{T})y^{*} = 0$$

$$y^{*T}(b^{T} - x^{*T}A^{T})^{T} = 0$$

$$y^{*T}(b - [x^{*T}A^{T}]^{T}) = 0$$

$$y^{*T}(b - Ax^{*}) = 0 \quad (5)$$

de forma similar em (5) temos que $y^* \ge 0$ e $(b - Ax^*) \ge 0$, logo:

$$y_j^*.(b - Ax^*)_j = 0, \quad \forall j = 1...m$$

Teorema das folgas complementares:

$$y^{*T}(b - Ax^*) = 0 e x^{*T}(A^Ty^* - c) = 0$$

$$x^{*T}c = x^{*T}A^Ty^* = b^Ty^*$$

$$x^{*T}c - x^{*T}A^Ty^* = 0$$

$$x^{*T}A^Ty^* - x^{*T}c = 0$$

$$x^{*T}(A^Ty^* - c) = 0 (4)$$

$$b^{T}y^{*} - x^{*T}A^{T}y^{*} = 0$$

$$(b^{T} - x^{*T}A^{T})y^{*} = 0$$

$$y^{*T}(b^{T} - x^{*T}A^{T})^{T} = 0$$

$$y^{*T}(b - [x^{*T}A^{T}]^{T}) = 0$$

$$y^{*T}(b - Ax^{*}) = 0 \quad (5)$$

de forma similar em (5) temos que $y^* \ge 0$ e $(b - Ax^*) \ge 0$, logo:

$$y_j^* \cdot (b - Ax^*)_j = 0, \quad \forall j = 1...m$$

denominar folga de v

$$y_{j}^{*}.v_{j} = 0, \quad \forall j = 1...m$$

Teorema das folgas complementares:

$$y^{*T}(b - Ax^*) = 0 e x^{*T}(A^Ty^* - c) = 0$$

Bossosos

$$x_j^*.s_j = 0, \quad \forall j = 1...n$$

 $y_j^*.v_j = 0, \quad \forall j = 1...m$

$$y_j^*.v_j = 0, \quad \forall j = 1...m$$

Teorema das folgas complementares:

$$y^{*T}(b - Ax^*) = 0 e x^{*T}(A^Ty^* - c) = 0$$

Logo, temos que:

20000000

$$x_{j}^{*}.s_{j} = 0, \quad \forall j = 1...n$$

 $y_{j}^{*}.v_{j} = 0, \quad \forall j = 1...m$

$$y_j^*.v_j = 0, \quad \forall j = 1...m$$

Onde: Em uma solução ótima x^* de P, se $x_i^* \neq 0$ implica que a folga s_j associada a $x_i \in 0$.

$$x_j^* \neq 0 \to s_j = 0$$

Teorema das folgas complementares:

$$y^{*T}(b - Ax^*) = 0 e x^{*T}(A^Ty^* - c) = 0$$

Logo, temos que:

20000000

$$x_j^*.s_j = 0, \quad \forall j = 1...n$$

 $y_j^*.v_j = 0, \quad \forall j = 1...m$

$$y_j^*.v_j = 0, \quad \forall j = 1...m$$

Em uma solução ótima x^* de P, se $x_i^* \neq 0$ implica que a folga s_j associada Onde: a $x_i \in 0$.

$$x_j^* \neq 0 \to s_j = 0$$

Em uma solução ótima y^* de D, se $y_i^* \neq 0$ implica que a folga v_j associada a $y_i \in 0$.

$$y_j^* \neq 0 \to v_j = 0$$

Exemplo: $\max x_1 + 2x_2$

Bossosos

$$2x_1 + x_2 \le 6$$
 (1)

$$x_1 + x_2 \le 4 \qquad (2)$$

$$x_1, x_2 \ge 0$$

Exemplo: $\max x_1 + 2x_2$

$$2x_1 + x_2 \le 6$$
 (1)

$$x_1 + x_2 \le 4$$
 (2)

$$x_1, x_2 \ge 0$$

Exemplo:
$$\max x_1 + 2x_2$$

$$2x_1 + x_2 \le 6$$
 (1)

$$x_1 + x_2 \le 4$$
 (2)

$$x_1, x_2 \ge 0$$

Vimos anteriormente que o PPL tem solução ótima $x_1 = 0, x_2 = 4$ com z = 8, então qual a sua solução dual ótima ?

colocando as folgas temos:

20000000

O que leva a solução

Exemplo:
$$\max x_1 + 2x_2$$

$$2x_1 + x_2 \le 6$$
 (1)

$$x_1 + x_2 \le 4$$
 (2)

$$x_1, x_2 \ge 0$$

Vimos anteriormente que o PPL tem solução ótima $x_1 = 0, x_2 = 4$ com z=8, então qual a sua solução dual ótima?

colocando as folgas temos:
$$2x_1 + x_2 + x_3 = 6$$

20000000

$$2x_1 + x_2 + x_3 = 6$$

$$x_1 + x_2 + x_4 = 4$$

O que leva a solução

$$x_1 = 0, x_2 = 4, x_3 = 2, x_4 = 0$$

Exemplo: $\max x_1 + 2x_2$

$$2x_1 + x_2 \le 6$$
 (1)

$$x_1 + x_2 \le 4$$
 (2)

$$x_1, x_2 \ge 0$$

Vimos anteriormente que o PPL tem solução ótima $x_1 = 0, x_2 = 4$ com z=8, então qual a sua solução dual ótima?

colocando as folgas temos: $2x_1 + x_2 + x_3 = 6$

$$2x_1 + x_2 + x_3 = 6$$

$$x_1 + x_2 + x_4 = 4$$

O que leva a solução

$$x_1 = 0, x_2 = 4, x_3 = 2, x_4 = 0$$

O dual de P é:

Sempre colocamos na forma padrão antes de gerar o dual: Max, $Ax \le b e x \ge 0$

$\max c^T x$	$\min b^T y$	
$Ax \le b$ $x > 0$	$A^T y \ge c$ $y \ge 0$	
$x \in \mathbb{R}^n$	$y \in R^m$	

<u>Primal</u>	<u>Dual</u>
max	min
rest. ≤	var. ≥0
rest. ≥	var. ≤0
rest. =	var. livre
var. ≥0	rest. ≥
var. livre	rest. =

Exemplo:
$$\max x_1 + 2x_2$$

$$2x_1 + x_2 \le 6$$
 (1)

$$x_1 + x_2 \le 4$$
 (2)

$$x_1, x_2 \ge 0$$

Vimos anteriormente que o PPL tem solução ótima $x_1 = 0, x_2 = 4$ com z=8, então qual a sua solução dual ótima?

colocando as folgas temos:
$$2x_1 + x_2 + x_3 = 6$$

200000000

$$2x_1 + x_2 + x_3 = 6$$

$$x_1 + x_2 + x_4 = 4$$

$$x_1 = 0, x_2 = 4, x_3 = 2, x_4 = 0$$

O dual de P é: min
$$6y_1 + 4y_2$$

$$2y_1 + y_2 \ge 1$$
 (3)

$$y_1 + y_2 \ge 2$$
 (4)

$$y_1, y_2 \ge 0$$

<u>Primal</u>	<u>Dual</u>
max	min
rest. ≤	var. ≥0
rest. ≥	var. ≤0
rest. =	var. livre
var. ≥0	rest. ≥
var. livre	rest. =

Exemplo:
$$\max x_1 + 2x_2$$

$$2x_1 + x_2 \le 6$$
 (1)

$$x_1 + x_2 \le 4$$
 (2)

$$x_1, x_2 \ge 0$$

Vimos anteriormente que o PPL tem solução ótima $x_1 = 0, x_2 = 4$ com z=8, então qual a sua solução dual ótima?

colocando as folgas temos:
$$2x_1 + x_2 + x_3 = 6$$

20000000

$$2x_1 + x_2 + x_3 = 6$$

$$x_1 + x_2 + x_4 = 4$$

$$x_1 = 0, x_2 = 4, x_3 = 2, x_4 = 0$$

O dual de P é: min
$$6y_1 + 4y_2$$

$$2y_1 + y_2 \ge 1$$
 (3)

$$y_1 + y_2 \ge 2 \qquad (4)$$

$$y_1, y_2 \ge 0$$

colocando as folgas temos:

Exemplo:
$$\max x_1 + 2x_2$$

$$2x_1 + x_2 \le 6$$
 (1)

$$x_1 + x_2 \le 4$$
 (2)

$$x_1, x_2 \ge 0$$

Vimos anteriormente que o PPL tem solução ótima $x_1 = 0, x_2 = 4$ com z=8, então qual a sua solução dual ótima?

colocando as folgas temos:
$$2x_1 + x_2 + x_3 = 6$$

200000000

$$2x_1 + x_2 + x_3 = 6$$

$$x_1 + x_2 + x_4 = 4$$

$$x_1 = 0, x_2 = 4, x_3 = 2, x_4 = 0$$

O dual de P é: min
$$6y_1 + 4y_2$$

$$2y_1 + y_2 \ge 1$$
 (3)

$$y_1 + y_2 \ge 2$$
 (4)

$$y_1, y_2 \ge 0$$

colocando as folgas temos:

$$2y_1 + y_2 - y_3 = 1 \quad (5)$$

$$y_1 + y_2 - y_4 = 2 \qquad (6)$$

Exemplo:

20000000

Primal

$$2x_1 + x_2 + x_3 = 6$$
$$x_1 + x_2 + x_4 = 4$$

Dual

$$2y_1 + y_2 - y_3 = 1 (5)$$

$$y_1 + y_2 - y_4 = 2 (6)$$

Sol Primal

$$x_1 = 0, x_2 = 4, x_3 = 2, x_4 = 0$$

pelo teorema das folgas temos:

Exemplo:

Primal

$$2x_1 + x_2 + x_3 = 6$$
$$x_1 + x_2 + x_4 = 4$$

Dual

$$2y_1 + y_2 - y_3 = 1 (5)$$

$$y_1 + y_2 - y_4 = 2 (6)$$

Sol Primal

$$x_1 = 0, x_2 = 4, x_3 = 2, x_4 = 0$$

pelo teorema das folgas temos:

$$x_1.y_3 = 0$$

$$x_2.y_4 = 0$$

$$y_1.x_3 = 0$$

$$y_2.x_4 = 0$$

Berocoago

Exemplo:

Primal

$$2x_1 + x_2 + x_3 = 6$$
$$x_1 + x_2 + x_4 = 4$$

Dual

$$2y_1 + y_2 - y_3 = 1 (5)$$

$$y_1 + y_2 - y_4 = 2 (6)$$

Sol Primal

$$x_1 = 0, x_2 = 4, x_3 = 2, x_4 = 0$$

pelo teorema das folgas temos:

$$x_1.y_3 = 0$$

$$x_2.y_4 = 0$$
 como $x_2 = 4$ então $y_4 = 0$

$$y_1.x_3 = 0$$
 como $x_3 = 2$ então $y_1 = 0$

$$y_2.x_4 = 0$$

200000000

Exemplo:

Primal

$$2x_1 + x_2 + x_3 = 6$$
$$x_1 + x_2 + x_4 = 4$$

Dual

$$2y_1 + y_2 - y_3 = 1 (5)$$

$$y_1 + y_2 - y_4 = 2 (6)$$

Sol Primal

$$x_1 = 0, x_2 = 4, x_3 = 2, x_4 = 0$$

pelo teorema das folgas temos:

$$x_1.y_3 = 0$$

$$x_2.y_4 = 0$$
 como $x_2 = 4$ então $y_4 = 0$

$$y_1.x_3 = 0$$
 como $x_3 = 2$ então $y_1 = 0$

$$y_2.x_4 = 0$$

20000000

basta agora resolver o sistema em (5) e (6) para saber as demais variáveis:

Exemplo:

Primal

$$2x_1 + x_2 + x_3 = 6$$
$$x_1 + x_2 + x_4 = 4$$

Dual

$$2y_1 + y_2 - y_3 = 1 (5)$$

$$y_1 + y_2 - y_4 = 2 (6)$$

Sol Primal

$$x_1 = 0, x_2 = 4, x_3 = 2, x_4 = 0$$

pelo teorema das folgas temos:

$$x_1.y_3 = 0$$

$$x_2.y_4 = 0$$
 como $x_2 = 4$ então $y_4 = 0$

$$y_1.x_3 = 0$$
 como $x_3 = 2$ então $y_1 = 0$

$$y_2.x_4 = 0$$

basta agora resolver o sistema em (5) e (6) para saber as demais variáveis:

Por (6)
$$(0) + y_2 - (0) = 2$$

$$y_2 = 2$$

Exemplo:

Primal

$$2x_1 + x_2 + x_3 = 6$$
$$x_1 + x_2 + x_4 = 4$$

Dual

$$2y_1 + y_2 - y_3 = 1 (5)$$

$$y_1 + y_2 - y_4 = 2 (6)$$

Sol Primal

$$x_1 = 0, x_2 = 4, x_3 = 2, x_4 = 0$$

pelo teorema das folgas temos:

$$x_1.y_3 = 0$$

$$x_2.y_4 = 0$$
 como $x_2 = 4$ então $y_4 = 0$

$$y_1.x_3 = 0$$
 como $x_3 = 2$ então $y_1 = 0$

$$y_2.x_4 = 0$$

basta agora resolver o sistema em (5) e (6) para saber as demais variáveis:

Por (6)
$$(0) + y_2 - (0) = 2$$

$$2(0) + y_2 - y_3 = 1 \rightarrow 2 - y_3 = 1 \rightarrow y_3 = 1$$

$$y_3 = 1$$

$$y_2 = 2$$

concluimos que encontrar a solução ótima de P equivale a solucionar o sistema:

$$x^{T}(A^{T}y - c) = 0$$

$$y^{T}(b - Ax) = 0$$

$$Ax \le b$$

$$x \ge 0$$

$$A^{T}y \ge c$$

$$y \ge 0$$

800000000

Teorema das folgas

Primal Viabilidade

Dual Viabilidade

Com a teoria da dualidade agora podemos TRANSFORMAR um PPL em um sistema de inequações

concluimos que encontrar a solução ótima de P equivale a solucionar o sistema:

$$x^{T}(A^{T}y - c) = 0$$

$$y^{T}(b - Ax) = 0$$

$$Ax \le b$$

$$x \ge 0$$

$$A^{T}y \ge c$$

$$y \ge 0$$

Teorema das folgas

Primal Viabilidade

Dual Viabilidade

Note que dado uma base B_{mxm} que induz uma solução básica primal (vértice) $\overline{x} = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix}$ (viável ou não), também induz uma solução dual $\overline{y} = c_B^T B^{-1}$ (viável ou não).

Exercícios

Gostaria de fazer uma Interpretação econômica no problema, mas preciso da solução DUAL. Vamos descobrir com o teorema das folgas?

(P) min
$$4X_1 + 5X_2 + 2X_3$$

s.a. $X_1 + 2X_2 + X_3 \ge 6$
 $2X_1 - X_2 + 4X_3 \le 2$
 $X_1, X_2, X_3 \ge 0$

- Gera o DUAL de P
- Coloque as folgas no Primal e Dual
- Construa as equações das folgas complementares
- Determine solução DUAL

Lembrando:

Primal

max	$c^T x$
	$Ax \leq b$
	$x \ge 0$
	$x \in \mathbb{R}^n$

Dual $\min b^T y$

 $A^T y \ge c$

max min rest. \leq var. \geq 0 rest. ≥ var. ≤0var. livre rest. = var. ≥0rest. ≥ var. livre rest. =

Dual

Primal

Teorema das folgas:

$$x_j^*.s_j=0, \quad \forall j=1...n$$
 $y_j^*.v_j=0, \quad \forall j=1...m$

Ex: a primeira variável primal vezes a primeira folga dual = 0 a segunda variável primal vezes a segunda folga dual = 0

a primeira variável dual vezes a primeira folga primal = 0

Até a próxima

200000000

