Actividad: Regresión Lineal

Andrés Alejandro Guzmán González - A01633819

Instrucciones:

Utiliza un modelo de regresión lineal múltiple para predecir el salario en dolares (salary_in_usd) de cada empleado. Las variables regresoras de tu modelo deben de ser las siguientes: nivel de experiencia (experience_level), tipo de empleo (employment_type), salario (salary) y radio remoto (remote_ratio).

Entrega un documento en formato PDF donde se observe la siguiente información.

- 1. Ecuación matemática que describe el modelo de regresión lineal a ejecutar. Se debe especificar el nombre de las variables.
- 2. Base de datos completa. No se observan valores faltantes. En caso de haberlos se realiza imputación simple.
- 3. Mostrar que las variables regresoras son independientes. En caso de no serlo realizar el procedimiento correspondiente.
- 4. Calculo de R^2, calculo de los coeficientes de regresión y p-valor; interpretación de resultados.
- 5. Comparación entre datos reales y predicción. Análisis de los resultados.
- 6. Análisis de los errores mediante diferentes medios (QQ-plot, histograma, test Kolmogorov etc.). Mostrar las gráficas correspondientes y el análisis de resultados

El trabajo se realizará de forma individual. La forma de entrega será mediante un documento PDF en canvas.

Column	Description
work_year	The year the salary was paid.
experience_le vel	The experience level in the job during the year with the following possible values: EN Entry-level / Junior MI Mid-level / Intermediate SE Senior-level / Expert EX Executive-level / Director
employment_ type	The type of employement for the role: PT Part-time FT Full-time CT Contract FL Freelance
job_title	The role worked in during the year.
salary	The total gross salary amount paid.
salary_curren cy	The currency of the salary paid as an ISO 4217 currency code.
salary_in_usd	The salary in USD (FX rate divided by avg. USD rate for the respective year via fxdata.foorilla.com).
employee_res idence	Employee's primary country of residence in during the work year as an ISO 3166 country code.
remote_ratio	The overall amount of work done remotely, possible values are as follows: 0 No remote work (less than 20%) 50 Partially remote 100 Fully remote (more than 80%)
company_loc ation	The country of the employer's main office or contracting branch as an ISO 3166 country code.
company_size	The average number of people that worked for the company during the year: S less than 50 employees (small) M 50 to 250 employees (medium) L more than 250 employees (large)

#importación y llamado a librarías

```
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import statsmodels.formula.api as smf
import statsmodels.formula.api as smf
import matplotlib.pyplot as plt
import statsmodels.api as sm
import statsmodels.api as sm
from scipy import stats
```

```
# Lectura del Data Frame
df = pd.read_csv('/content/sample_data/ds_salaries.csv')
# Validación de la lectura del Data Frame
df.head()
```

	Unnamed:	work_year	experience_level	employment_type	job_title	salary	salary_currency	salary_i
0	0	2020	MI	FT	Data Scientist	70000	EUR	
1	1	2020	SE	FT	Machine Learning Scientist	260000	USD	2
2	2	2020	SE	FT	Big Data Engineer	85000	GBP	1
3	3	2020	MI	FT	Product Data Analvst	20000	USD	

Consultamos el tamaño del Data Frame df.shape

(607, 12)

Validadmos que no haya valores faltantes o nulos
df.isnull().sum()

Unnamed: 0 0 work_year experience_level 0 employment_type 0 job_title salary salary_currency 0 salary_in_usd employee_residence remote_ratio a company_location 0 company_size 0 dtype: int64

Quitamos la columna: 'Unnamed: 0'

```
# Quitamos del Data Frame las variables que no vamos a considerar en el modelo
df.drop('work_year', axis=1, inplace=True)
df.drop('job_title', axis=1, inplace=True)
df.drop('salary_currency', axis=1, inplace=True)
df.drop('employee_residence', axis=1, inplace=True)
df.drop('company_location', axis=1, inplace=True)
df.drop('company_size', axis=1, inplace=True)
df.head()
```

	Unnamed: 0	experience_level	employment_type	salary	salary_in_usd	remote_ratio
0	0	MI	FT	70000	79833	0
1	1	SE	FT	260000	260000	0
2	2	SE	FT	85000	109024	50
3	3	MI	FT	20000	20000	0
4	4	SE	FT	150000	150000	50

```
# Revisamos las categorías de la variable: 'experience_level'
df['experience level'].unique()
```

```
array(['MI', 'SE', 'EN', 'EX'], dtype=object)
```

Revisamos las categorías de la variable: 'experience_level'
df['employment_type'].unique()

```
array(['FT', 'CT', 'PT', 'FL'], dtype=object)
```

Creamos las dummies de la variable categórica: 'experience_level'
dummies_exp_lev=pd.get_dummies(df['experience_level'], prefix='experience_level')
dummies_exp_lev

	experience_level_EN	experience_level_EX	experience_level_MI	experience_level_SE
0	0	0	1	0
1	0	0	0	1
2	0	0	0	1
3	0	0	1	0
4	0	0	0	1
•••				
602	0	0	0	1
603	0	0	0	1
604	0	0	0	1
605	0	0	0	1
606	0	0	1	0

607 rows × 4 columns

Creamos las dummies de la variable categórica: 'employment_type'
dummies_emp_ty=pd.get_dummies(df['employment_type'], prefix='employment_type')
dummies_emp_ty

	employment_type_CT	employment_type_FL	<pre>employment_type_FT</pre>	employment_type_PT
0	0	0	1	0
1	0	0	1	0
2	0	0	1	0
3	0	0	1	0
4	0	0	1	0
602	0	0	1	0
603	0	0	1	0
604	0	0	1	0
605	0	0	1	0
606	0	0	1	0

607 rows × 4 columns

Concatenamos las dummies al Data Frame
df = pd.concat([df,dummies_exp_lev, dummies_emp_ty],axis=1)
df

```
Unnamed: experience_level employment_type salary salary_in_usd remote_ratio experience_level

0 0 MI FT 70000 79833 0
```

Eliminamos del Data Frame las variables 'employment_type' - 'experience_level'
df.drop('employment_type', axis = 1, inplace = True)
df.drop('experience_level', axis = 1, inplace = True)
df.drop('experience_level', axis = 1, inplace = True)

	Unnamed:	salary	salary_in_usd	remote_ratio	experience_level_EN	experience_level_EX	experienc
0	0	70000	79833	0	0	0	
1	1	260000	260000	0	0	0	
2	2	85000	109024	50	0	0	
3	3	20000	20000	0	0	0	
4	4	150000	150000	50	0	0	
602	602	154000	154000	100	0	0	
603	603	126000	126000	100	0	0	
604	604	129000	129000	0	0	0	
605	605	150000	150000	100	0	0	
606	606	200000	200000	100	0	0	

607 rows × 12 columns

Calculamos la correlación de las variables del modelo correlacion = df.corr() correlacion

	Unnamed:	salary	salary_in_usd	remote_ratio	experience_level_EN	experience_le
Unnamed: 0	1.000000	-0.096250	0.167025	0.095000	-0.199319	-0.
salary	-0.096250	1.000000	-0.083906	-0.014608	-0.015845	0.
salary_in_usd	0.167025	-0.083906	1.000000	0.132122	-0.294196	0.
remote_ratio	0.095000	-0.014608	0.132122	1.000000	-0.010490	0.
experience_level_EN	-0.199319	-0.015845	-0.294196	-0.010490	1.000000	-0.
experience_level_EX	-0.053909	0.014130	0.259866	0.041208	-0.087108	1.
experience_level_MI	-0.139869	0.074626	-0.252024	-0.127850	-0.302761	-0.
experience_level_SE	0.296579	-0.065995	0.343513	0.113071	-0.381033	-0.
employment_type_CT	-0.042856	-0.008268	0.092907	0.065149	0.066013	0.
employment_type_FL	-0.032304	-0.014568	-0.073863	-0.016865	-0.033537	-0.
employment_type_FT	0.094812	0.025685	0.091819	-0.023834	-0.167828	-0.
employment_type_PT	-0.078736	-0.020006	-0.144627	-0.002935	0.204028	-0.

```
# Validamos cuántas variables del modelo tienen alta correlación
alt_corr = np.where((correlacion > 0.95) & (correlacion < 1))
alt_corr</pre>
```

(array([], dtype=int64), array([], dtype=int64))

Validamos cuántas variables del modelo tienen baja correlación baja_corr = np.where((correlacion < -0.95) & (correlacion > -1)) baja_corr

(array([], dtype=int64), array([], dtype=int64))

Insertamos los valores de la estandarización en las columnas del Data Frame correspondientes
df_estandar = pd.DataFrame(df_estandar, columns=df.columns)
df_estandar

	Unnamed:	salary	salary_in_usd	remote_ratio	experience_level_EN	experience_level_EX	experie
0	-1.729200	-0.164605	-0.457904	-1.743615	-0.411773	-0.211543	
1	-1.723493	-0.041475	2.083282	-1.743615	-0.411773	-0.211543	
2	-1.717786	-0.154885	-0.046177	-0.514377	-0.411773	-0.211543	
3	-1.712079	-0.197008	-1.301826	-1.743615	-0.411773	-0.211543	
4	-1.706372	-0.112761	0.531774	-0.514377	-0.411773	-0.211543	
602	1.706372	-0.110169	0.588192	0.714862	-0.411773	-0.211543	
603	1.712079	-0.128314	0.193263	0.714862	-0.411773	-0.211543	
604	1.717786	-0.126370	0.235577	-1.743615	-0.411773	-0.211543	
605	1.723493	-0.112761	0.531774	0.714862	-0.411773	-0.211543	
606	1.729200	-0.080359	1.237005	0.714862	-0.411773	-0.211543	

607 rows × 12 columns

Procedemos a hacer la división del Data Frame en el conjunto de entrenamiento y prueba
entrenamiento, prueba = train_test_split(df_estandar, test_size=0.20, random_state=42)
entrenamiento

	Unnamed:	salary	salary_in_usd	remote_ratio	experience_level_EN	experience_level_EX	experie
9	-1.677837	-0.128962	0.179159	-0.514377	-0.411773	-0.211543	
227	-0.433727	-0.161365	-0.333488	-0.514377	-0.411773	-0.211543	
591	1.643596	-0.116096	0.459192	0.714862	-0.411773	-0.211543	
516	1.215576	-0.111141	0.567036	0.714862	-0.411773	-0.211543	
132	-0.975885	-0.185084	-1.042301	0.714862	-0.411773	-0.211543	

71	-1.324008	-0.185991	-0.988746	-0.514377	-0.411773	-0.211543	
106	-1.124265	-0.057677	1.059879	0.714862	-0.411773	-0.211543	
270	-0.188329	-0.162985	-0.561334	0.714862	2.428524	-0.211543	
435	0.753315	-0.164605	-0.291738	0.714862	-0.411773	-0.211543	
102	-1.147093	6.918609	-1.072499	-0.514377	-0.411773	-0.211543	

485 rows × 12 columns

```
# Hacemos el modelo de regresión lineal
# Quitamos una de las variables dummies de cada conjunto
modelo = smf.ols(formula='salary_in_usd~salary+remote_ratio+experience_level_EN+experience_level_EX+experience_level_MI+employment_type_CT+em
modelo = modelo.fit()
print(modelo.summary())
```

OLS Regression Results								
Dep. Variable:	salary_i	n_usd	R-squared:		0.264			
Model:		OLS	Adj. R-squared	d:	0.252			
Method:	Least Sq	uares	F-statistic:		21.37			
Date:	Thu, 17 Aug	2023	Prob (F-statis	stic):	8.41e-28			
Time:	23:	24:41	Log-Likelihood	d:	-627.06			
No. Observations:		485	AIC:		1272.			
Df Residuals:		476	BIC:		1310.			
Df Model:		8						
Covariance Type:	nonr	obust						
=============	coef	===== std @	err t	P> t	======== [0.025	0.975]		
Intercept	0.0167	0.6	0.413	0.680	-0.063	0.096		
salary	-0.1455	0.6	965 -2.251	0.025	-0.272	-0.018		
remote_ratio	0.0592	0.0	040 1.463	0.144	-0.020	0.139		
experience_level_EN	-0.3717	0.0	944 -8.423	0.000	-0.458	-0.285		
experience_level_EX	0.1902	0.6	949 4.698	0.000	0.111	0.270		
experience_level_MI	-0.3225	0.0	944 -7.387	0.000	-0.408	-0.237		
employment_type_CT	0.0980	0.0	050 1.974	0.049	0.000	0.196		
employment_type_FL	-0.0042	0.6	958 -0.073	0.941	-0.117	0.109		
employment_type_FT	0.0879	0.0	957 1.531	0.126	-0.025	0.201		
		=====			=========			
Omnibus:	24	2.000	Durbin-Watson:	•	1.979			
Prob(Omnibus):	(0.000	Jarque-Bera (3	JB):	2005.484			
Skew:		2.000	Prob(JB):		0.00			
Kurtosis:	1	2.123	Cond. No.		2.46			
============		======						

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Análisis de resultados del Modelo

Una vez realizado el modelo de regresión lineal podemos identificar el valor de r^2 (Coeficinete de correlación) es 0.264. Este dato nos indica que el modelo se ajusta al conjunto de datos en un 26.4%. También se puede identificar que los valores de las variables: remote_ratio, employment_type_FL y employment_type_FT tienen un valor de p-valor de 0.144, 0.941 y 0.126 respectivamente. Al ser mayores a 0.05 aceptamos la hipótesis nula que iguala los coeficientes de dichas variables a 0, haciendo que no tengan impacto en el modelo. Con esto la función del modelo es:

y = -0.1455x1 - 0.3717x3 + 0.1902x4 - 0.3225x5 + 0.0980*x6

Donde:

- x1 es 'salary'
- x3 es 'experience_level_EN'
- x4 es 'experience_level_EX'
- x5 es 'experience_level_MI'
- x6 es 'employment_type_CT'

249 0.355532 365 0.358493 453 -0.315495 548 0.362222

235 -0.314552 Length: 122, dtype: float64

Análisis de errores

Una vez generados los valores de aproximación hacemos un compartivo con los valores reales y a través de su diferencia con la aproximación podemos hacer el análisis de errores.

tabla=pd.DataFrame({'Real': prueba['salary_in_usd'], 'Prediccion': y_aprox, 'Errores': prueba['salary_in_usd']-y_aprox})
tabla

	Real	Prediccion	Errores
563	0.394254	0.358337	0.035917
289	0.320205	0.358832	-0.038627
76	-0.173457	-0.313609	0.140152
78	2.224328	0.754617	1.469711
182	-1.217128	-0.306254	-0.910873

249	0.813866	0.355532	0.458334
365	0.370981	0.358493	0.012489
453	0.108636	-0.315495	0.424130
548	-0.186856	0.362222	-0.549078
235	-0.032411	-0.314552	0.282141

¹²² rows × 3 columns

Gráfico - valores reales vs valores predecidos

```
plt.scatter(prueba['salary_in_usd'], y_aprox, color='gray')
plt.plot(prueba['salary_in_usd'], prueba['salary_in_usd'], color='red')
plt.xlabel("Datos Reales")
plt.ylabel("Predicción")
```


Al Analizar la dispersión de los datos se esperaría que estos se aproximen a la linea recta. Sin embargo, estos no siguen la línea de tendencia lo cual hace sentido por la baja correlación del modelo lo que demuestra que el modelo de regresión lineal multiple no es el mejor para predecir este conjunto de datos.

Gráfica de residuos

```
plt.scatter(range(l_residuos),tabla['Errores'], color='gray')
plt.axhline(y=0, linestyle='--', color='green')
```

```
plt.xlabel("No. de residuo")
plt.ylabel("Valor del residuo")
```


Nuevamente con la dispersión de errores se muestra que el Data Frame no se modela adecuadamente con un modelo de regresión lineal múltiple.

Histograma de residuos

```
plt.hist(x=tabla['Errores'], color='orange')
plt.title('Histograma residuos')
plt.xlabel("Residuos")
plt.ylabel("Frecuencia (Probabilidad)")
```

Text(0, 0.5, 'Frecuencia (Probabilidad)')

La forma del histograma nos muestra que los valores atípicos se cargan a la izquierda y afectan la distribución mostrando que los valores más pequeños tienen una mayor frecuencia.

QQ-Plot

```
QQ = sm.qqplot(tabla['Errores'], stats.norm, line='45')
```


Para el QQ-Plot, se esperaría que los puntos se ajusten a la línea x=y. Lo que significaría que el valor de los errores es normal.

Modelo 2

Una opción que podría mejorar el modelo es quitar las variables en las que se aceptó la hipótesis nula; sin embargo al analizar el resultado vemos que el coeficiente de correlación se reduce a un 25.6%, por lo que se prefirió hacer el análisis en el modelo anterior.

modelo = smf.ols(formula='salary_in_usd~salary+experience_level_EN+experience_level_EX+experience_level_MI+employment_type_CT',data=entrenami
modelo = modelo.fit()
print(modelo.summary())

	OLS	Regress	sion Re	esults			
Day Variable			D		=======	0.256	
Dep. Variable:	salary_i	n_usa OLS		uared:		0.256	
Model:				R-squared:		0.249	
Method:	Least Sq			atistic:		33.04	
Date:	Thu, 17 Aug			•	ic):	5.65e-29	
Time:	22:	26:59	0	Likelihood:		-629.63	
No. Observations:		485	AIC:			1271.	
Df Residuals:		479	BIC:			1296.	
Df Model:		5					
Covariance Type:	nonr	obust					
=======================================		======					
	coef	std 6	err	t	P> t	[0.025	0.975]
Intercept	0.0179	0.6	941	0.443	0.658	-0.062	0.098
salary	-0.1474	0.6	965	-2.282	0.023	-0.274	-0.020
experience level EN	-0.3904	0.6	943	-9.147	0.000	-0.474	-0.307
experience level EX	0.1920	0.0	941	4.734	0.000	0.112	0.272
experience level MI	-0.3292	0.6	944	-7.549	0.000	-0.415	-0.244
employment_type_CT	0.0583	0.0	941	1.428	0.154	-0.022	0.139
Omnibus:	 23	====== 9.133	Durb:	====== in-Watson:	=======	1.991	
Prob(Omnibus):		0.000	Jarqu	ue-Bera (JB):	1932.279	
Skew:		1.980	Prob	(JB):	-	0.00	
Kurtosis:	1	1.941	Cond	. No.		1.87	
=======================================		=====		=======	=======	========	

OLS Pagnassian Pasults

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

✓ 0 s completado a las 17:24