

EXERCÍCIO :: Disciplina de Arquitetura e Organização de Computadores 1 2 3 4 5

NOME DO ALUNO: Izabela Cristina de Faria 16427

- 1) Circule de vermelho os chipsets.
- 2) Escreva o nome do componente da mainboard de acordo com o desenho ao lado:
- 1 Conector PCle X1 (slot4)
- 2 Conector PCIe X1 (slot3)
- 3 Conector PCIe X16 (slot2)
- 4 Conector PCI-eX1 (slot 1)
- 5 Video Port header
- 6 Conector de porta serial PS/2
- 7 Conector fan do sistema
- 8 Conector de interruptor de intrusão
- 9 Processador
- 10 Conector de alimentação da CPU
- 11 Conector fan da CPU
- 12 Conectores de módulo de memória
- 13 Conector do leitor de cartão
- 14 Conector do interruptor de energia
- 15 Conector SSD M.2
- 16 Conector SATA 0
- 17 Conector SATA 2
- 18 Conector de alto-falante
- 19 Conector SATA 3
- 20 Conector de alimentação ATX
- 21 Conector de alimentação do HDD e ODD
- 22 M2 WLAN conector
- 23 Bateria tipo moeda
- 24 Jumper CMOS

PROCESSADORES

Ano Lançamento	Modelo	Fabricante	Velocidade Inicial (MHZ)	Velocidade Final (MHZ)	Núcleos	Cache	FSB (placa-mãe)	Tecnologias Incoporadas (bits, evoluções, novidades)
1978	8086	Intel	4,77	10	1	Não possui	Barramento de 116 bits	Bits: 16 Evolução: Evolução para 80286 e 80386 Novidades: Segmentação de memória e arquitetura x86 de 16 bits Gerações: marcou o inicio da linha de processadores intel
1979	8088	Intel	5	10	1	Não possui	Barramento de 8 bits	Bits: Barramento de 8 bits para comunicação externa (memória e periféricos), mas internamente ele ainda era um processador de 16 bits. Evolução: O Intel 8088 foi sucedido por outros processadores, como o Intel 80286 e o Intel 80386 Novidades: Compatibilidade com sistemas existentes, facilitava a sua adoção em PCs domésticos. Gerações: Foi o precursor de uma linha de processadores da Intel que passou de 16 para 32 bits
1982	80286	Intel	6	25	1	Não possui	Barramento de 16 bits	Bits: 16 Evolução: Introduziu o modo protegido, permitindo multitarefa real Novidades: Melhor gerenciamento de memória e mais segurança Gerações: Base para a transição do x86 para 32 bits
1985	80386	Intel	12	40	1	Não possuía (algumas versões 80386DX usavam cache externo na placa-mãe)	Barramento de 32 bits	Bits: 32 Evolução: Primeiro processador x86 totalmente de 32 bits Novidades: Suporte a multitarefa avançada, memória virtual e modo protegido aprimorado Gerações: Base para processadores posteriores como 80486 e Pentium
1989	80486	Intel	20	100	1	Possuía cache interno (8 KB L1)	Barramento de 32 bits	Bits: 32 Evolução: Introduziu a Unidade de Ponto Flutuante (FPU) integrada e cache interno Novidades: Melhor desempenho e eficiência energética Gerações: Precedeu a linha Pentium

1991	Am386	AMD	20	40	1	Não possuía (usava cache externo na placa-mãe)	Barramento de 32 bits	Bits: 32 Evolução: Primeiro processador compatível com o Intel 80386 Novidades: Melhor custo-benefício comparado ao 80386 da Intel Gerações: Alternativa competitiva da AMD para a Intel
1993	Pentium (P5)	Intel	60	300	1	16 KB L1	Barramento de 64 bits	Bits: 32 Evolução: Primeira CPU superscalar x86 (capaz de processar múltiplas instruções simultaneamente) Novidades: Melhor desempenho em cálculos e gráficos Gerações: Primeiro processador da linha Pentium, que dominou o mercado nos anos 90
1996	K5	AMD	75	133	1	16 KB L1	Barramento de 64 bits	Bits: 32 Evolução: Primeira CPU x86 totalmente desenvolvida pela AMD Novidades: Arquitetura baseada no RISC interno, mas compatível com x86 Gerações: Concorrente do Pentium clássico
1997	Pentium II	Intel	233	450	1	32 KB L1 + 512 KB L2 externo no cartucho	Barramento de 66 MHz a 100 MHz	Bits: 32 Evolução: Melhor eficiência energética e suporte a instruções MMX Novidades: Uso de cache L2 externo, empacotado no cartucho SECC (Slot 1) Gerações: Marcou a transição para PCs multimídia mais avançados

Ano Lançamento	Modelo	Fabricante	Velocidade Inicial (MHZ)	Velocidade Final (MHZ)	Núcleos	Cache	FSB (placa-mãe)	Tecnologias Incoporadas (bits, evoluções, novidades)
1997	К 6	AMD	166	300	1	32 KB L1 + Cache L2 externo na placa-mãe	66 mhz	Bits: 32 Evolução: Concorrente direto do Pentium II Novidades: Melhor desempenho em cálculos de ponto flutuante e uso de MMX Gerações: Base para os futuros K6-2 e K6-III
1999	Athlon	AMD	500	1400	1	128 KB L1 + 512 KB L2 externo	100 a 133 MHz	Bits: 32 Evolução: Primeiro processador x86 a ultrapassar 1 GHz Novidades: Melhor desempenho em multitarefa e processamento gráfico Gerações: Introduziu a arquitetura K7, que competiu com o Pentium III
2000	Pentium 4	Intel	1.3 GHz	3.8 GHz	1	8 KB L1 + 256 KB a 2 MB L2	400 1066 MHz	Bits: 32 (com versões posteriores de 64 bits) Evolução: Nova arquitetura NetBurst Novidades: Introdução do Hyper- Threading (HT) em modelos posteriores Gerações: Durou até 2006, quando foi substituído pelos Core Duo
2000	Duron	AMD	600	1.8 GHz	1	64 KB L1 + 64 KB L2	100 a 133 MHz	Bits: 32 Evolução: Versão mais barata do Athlon Novidades: Menos cache L2, mas ainda com bom desempenho para PCs domésticos Gerações: Concorrente direto do Celeror da Intel
2003	Athlon 64	AMD	1.8 GHz	3.2 GHz	1	128 KB L1 + 512 KB a 1 MB L2	Tecnologia HyperTransport (HT)	Bits: 64 Evolução Primeira CPU de 64 bits para desktops Novidades: Suporte a instruções x86-64 e maior desempenho em multitarefa Gerações: Base para os futuros Athlon X2 e Phenom
2006	Core 2 Duo	Intel	1.86 GHz	3.33 GHz	2	64 KB L1 + 2 MB a 6 MB L2	800 a 1333 MHz	Bits: 64 Evolução: Substituiu o Pentium 4 e trouxe melhor eficiência energética Novidades: Melhor desempenho por watt e nova microarquitetura Core Gerações: Base para os futuros Core i3, i5 e i7

2006	Intel Core (Nehalem)	Intel	2.66 GHz	3.46 GH z	2 a 4	64 KB L1 + 256 KB L2 + 8 MB L3	Substituído pelo QuickPath Interconnect (QPI)	Bits: 64 Evolução: Introduziu o Hyper- Threading (HT) melhorado e Turbo Boost Novidades: Memória DDR3 e melhor desempenho multitarefa Gerações: Base para os processadores Core i7 e Xeon modernos
2008	Phenom II	AMD	2.5 GHz	3.7 GHz	2 a 6	64 KB L1 + 512 KB L2 + 6 MB L3	HyperTransport 3.0	Bits: 64 Evolução: Melhor eficiência energética e compatibilidade com placas AM2+ e AM3 Novidades: Suporte a memórias DDR2 e DDR3 Gerações: Concorrente direto dos Core 2 Quad da Intel
2011	Intel Core (Sandy Bridge)	Intel	2.5 GHz	3.9 GHz	2 a 6	64 KB L1 + 256 KB L2 + 6 a 15 MB L3	Substituído pelo DMI 2.0	Bits: 64 Evolução: Segunda geração dos processadores Intel Core (i3, i5, i7) Novidades: Gráficos integrados mais potentes e consumo reduzido de energia Gerações: Base para os futuros Ivy Bridge e Haswell

PROCESSADORES

Ano Lançamento	Modelo2023	Fabricante	Velocidade Inicial (MHZ)	Velocidade Final (MHZ)	Núcleos	Cache	FSB (placa-mãe)	Tecnologias Incoporadas (bits, evoluções, novidades)
2011	FX Series (Bulldozer)	AMD	3.1 GHz	5.O GHz	4 a 8	8 MB L3	HyperTransport 3.0 (2.6 GHz)	Bits: 64 Evolução: Substituiu a linha Phenom II Novidades: Introdução da arquitetura modular com dois núcleos por módulo Gerações: Base para os FX Piledriver (Vishera)
2012	Core (Ivy Bridge)	Intel	1600	3900	2 a 4	64 KB L1 + 256 KB L2 + 3-8 MB L3	DMI 2.0 (5 GT/s)	Bits: 64 Evolução: Refinamento da arquitetura Sandy Bridge Novidades: Primeira CPU com transistores Tri-Gate (3D) Gerações: Antecessor do Haswell
2013	Ryzen (Zen)	AMD	3000	4100	4 a 8	64 KB L1 + 512 KB L2 + 16 MB L3	Infinity Fabric (Base 1.6 GHz)	Bits: 64 Evolução: Substituiu a linha FX Novidades: Primeira grande evolução da AMD desde os Phenom II Gerações: Base para Zen+ e Zen 2
2015	Core (Skylake)	Intel	2000	4500	2 a 4	64 KB L1 + 256 KB L2 + 4-8 MB L3	DMI 3.0 (8 GT/s)	Bits: 64 Evolução: Melhor IPC e eficiência energética Novidades: Primeiros CPUs Intel com suporte oficial a DDR4 Gerações: Antecessor do Kaby Lake
2017	Ryzen (Zen 2)	AMD	3200	4700	6 a 16	64 KB L1 + 512 KB L2 + 32 MB L3	Infinity Fabric (Base 1.8 GHz)	Bits: 64 Evolução: Melhor latência e chiplets menores Novidades: Uso de chiplets para maior eficiência Gerações: Base para Zen 3
2020	Ryzen 5000 (Zen 3)	AMD	3400	4900	6 a 16	64 KB L1 + 512 KB L2 + 32 MB L3	Infinity Fabric (Base 1.6-2 GHz)	Bits: 64 Evolução: Aumento do IPC e melhor eficiência Novidades: Primeiro Ryzen a superar a Intel em single-core Gerações: Base para Zen 4
2021	Core (Rocket Lake)	Intel	2500	5300	6 a 8	64 KB L1 + 512 KB L2 + 16 MB L3	DMI 3.0 (8 GT/s)	Bits: 64 Evolução: Melhor IPC do que Skylake Novidades: Última geração a usar arquitetura Cypress Cove

Gerações: Transição para Alder Lake

2021	Core (Alder Lake)	Intel	2600	5500	6P+4E até 8P+8E	64 KB L1 + 1.25 MB L2 por P-core + 30 MB L3	DMI 4.0 (16 GT/s)	Bits: 64 Evolução: Primeira CPU híbrida x86 da Intel Novidades: Combinação de núcleos de alto desempenho e eficiência Gerações: Base para Raptor Lake
2022	Ryzen 7000 (Zen 4)	AMD	3500	5800	6 a 16	64 KB L1 + 1 MB L2 + 32 MB L3	Infinity Fabric (Base 2 GHz)	Bits: 64 Evolução: Melhor eficiência e maior IPC Novidades: Primeiro Ryzen com suporte a DDR5 e PCIe 5.0 Gerações: Base para futuros Zen 5

EXERCÍCIO :: Disciplina de Arquitetura e Organização de Computadores

EXE	RCÍCIO :: Disc	PROCESSADORES						
Ano Lançamento	Modelo2023	Fabricante	Velocidade Inicial (MHZ)	Velocidade Final (MHZ)	Núcleos	Cache	FSB (placa-mãe)	Tecnologias Incoporadas (bits, evoluções, novidades, gerações)
2023	Core (Raptor)	Intel	3,0 GHz	5.8 GHz	8 Performance + 16 Eficiência	2 MB L2 por núcleo P-core + 3 MB compartilhado por cluster E-core + até 36 MB L3	DMI 4.0 (16 GT/s)	Bits: 64 Evolução: Sucessor do Alder Lake, com melhorias em desempenho single-thread e eficiência energética. Novidades: Introdução de frequências de boost mais altas e melhor gerenciamento de tarefas entre núcleos de desempenho e eficiência. Gerações: 13ª Geração Intel Core.
2024	Core (Meteor Lake)	Intel	3.5 GHz	6.0 GHz	8 Performance + 16 Eficiência	2 MB L2 por núcleo P-core + 4 MB compartilhado por cluster E-core + até 38 MB L3	DMI 4.0 (16 GT/s)	Bits: 64 Evolução: Transição para um design de chiplet com integração de diferentes IPs em um único pacote. Novidades: Uso da tecnologia de empilhamento 3D Foveros, permitindo maior densidade e eficiência. Gerações: 14
2025	Core (Arrow Lake)	Intel	3.8 GHz	6.2 GHz	8 Performance + 16 Eficiência	3 MB L2 por núcleo P-core + 4 MB compartilhado por cluster E-core + até 40 MB L3	DMI 4.0 (16 GT/s)	Bits: 64 Evolução: Foco em eficiência energética e desempenho gráfico integrado. Novidades: Melhorias significativas na GPU integrada, aproximando-se do

A partir de 2021, a Intel adotou uma nova abordagem de arquitetura híbrida com a introdução dos núcleos de desempenho (P-Cores) e eficiência (E-Cores) no Alder Lake. Essa mudança seguiu nas gerações seguintes, trazendo maior eficiência e otimização de tarefas.

Enquanto isso, a AMD investiu no 3D V-Cache, que aumentou significativamente o desempenho em jogos e workloads específicos ao expandir a memória cache L3. Outra grande mudança foi a adoção da arquitetura baseada em chiplets pela Intel com o Meteor Lake (2024), um conceito que a AMD já utilizava com sucesso em seus processadores Ryzen.

Insira nesta caixa de texto comentários que julga interessante e achados durante a pesquisa que lhe chamou a atenção ou que não estão na listagem.

desempenho de GPUs dedicadas de

entrada. Gerações: 15

Complete o quadro abaixo com as informações sobre as memórias DDR

Tipo	Faixa de Frequencia (barramento)	Tamanho dos módulos	Máximo de memória comportado em um sistema	Velocidade de transferência de dados alcançadas	Melhorias em relação à geração anterior
DDR	226 a 400 mhz	128 MB, 256MB, 512MB e 1 GB	2GB	1.600 a 3200 MB/s	Melhoria em relação às memória DIMM
DDR2	400 a 1066 MHz	256 MB a 2 GB	16GB	3.200 a 8.500 MB/s	Melhoria em relação às memória DDR Maior eficiência energética e aumento da taxa de transferência
DDR3	800 a 2133 MHz	512 MB a 8 GB	128GB	6.400 a 17.000 MB/s	Melhoria em relação às memória DDR2 Redução no consumo de energia e maior largura de banda
DDR4	1600 a 3200 MHz	4 GB a 32 GB	512GB	12.800 a 25.600 MB/s	Melhoria em relação às memória DDR3 Maior densidade, menor voltagem e maior velocidade
DDR 5	3200 a 8400 MHz	8 GB a 128 GB	1TB	38.400 a 67.200 MB/s	Melhoria em relação às memória DDR4 Maior eficiência energética, dobro da largura de banda e melhor gerenciamento de energia

