Задание 10-1 Разминка.

Часть 1. Газовая пружина.

1.1 При уменьшении объема газа возрастает его давление, что и приводит к появлению возвращающей силы, которую можно представить в виде

$$F = \Delta PS \tag{1}$$

Так как все процессы происходят при постоянной температуре, то для газа под поршнем справедливо уравнение (закон Бойля)

$$P_0 h = (P_0 + \Delta P)(h - x) \tag{2}$$

Из этого уравнения следует, что относительное изменение давления связано с относительным изменением объема простым соотношением

$$\left(1 + \frac{\Delta P}{P_0}\right) \left(1 + \frac{x}{h}\right) = 1$$
(3)

Так как эти изменения малы, то после раскрытия скобок можно пренебречь произведением относительных изменений, тогда из уравнения (3) следует, что

$$\frac{\Delta P}{P_0} = -\frac{x}{h} \,. \tag{4}$$

Теперь уравнение (1) можно записать в виде, формально совпадающим с законом Гука:

$$F = \Delta PS = -\frac{P_0 S}{h} x. \tag{5}$$

Таким образом, коэффициент упругости газа равен

$$k = \frac{P_0 S}{h} \,. \tag{6}$$

1.2 Перепишем еще раз выражение (5):

$$\frac{F}{S} = -P_0 \frac{x}{h} \tag{7}$$

И сравним его с законом Гука для деформации сжатии твердых тел

$$\sigma = E\varepsilon$$
, (8)

Где σ - механическое напряжение, ε - относительная деформация, E - модуль Юнга твердого вещества.

Опять наблюдается полная аналогия, которая позволяет утверждать, что модулем Юнга для газа при изотермическом процессе является его давление!

Часть 2. Ледяной двигатель.

Максимальная работа при заданных температурах нагревателя (которым в данном случае является водяной пар при температуре $T_1=373\,K$) и холодильника (в роли которого может выступать лед при температуре $T_2=273\,K$) совершается идеальной машиной, работающей по циклу Карно. Для цикла Карно справедливо соотношение

$$\frac{Q_1}{T_1} = \frac{Q_2}{T_2} \ . \tag{1}$$

Где Q_1 - теплота, полученная от нагревателя, Q_2 - теплота, отданная холодильнику. Рассчитаем численные значения этих величин (так называемых приведенных теплот)

$$\frac{Q_1}{T_1} = \frac{Lm}{T_1} = \frac{2,2 \cdot 10^6}{373} = 5,9 \cdot 10^3 \frac{\cancel{Д} \cancel{D} \cancel{C}}{\cancel{K}}$$

$$\frac{Q_2}{T_2} = \frac{\lambda m}{T_1} = \frac{0,33 \cdot 10^6}{273} = 1,2 \cdot 10^3 \frac{\cancel{Д} \cancel{D} \cancel{C}}{\cancel{K}}$$
(2)

Расчет показывает, что сначала расплавится весь лед (машине «не хватает» холода!), поэтому ответ следует выражать через теплоту Q_2 .

Работа, совершенная двигателем, может быть выражена через КПД

$$A = \eta Q_{1} = \frac{\Delta T}{T_{1}} Q_{1} = \Delta T \frac{Q_{2}}{T_{2}}, \tag{3}$$

 Где $\Delta T = 100\,K\,$ - разность температур нагревателя и холодильника.

Подстановка численных значений дает требуемый результат

$$A = \eta Q_1 = \frac{\Delta T}{T_1} Q_1 = \Delta T \frac{Q_2}{T_2} = 1,2 \cdot 10^5 \, \text{Дж} \approx 0,033 \text{кBm} \cdot \text{час} \,. \tag{4}$$