

ROBIFE

HERA - Home Enviroment Robot Assistant

Our team

Since 2015, RoboFEI@Home brings together undergraduate and graduate students in engineering and computer science to develop robots that aid elderly individuals and people with limited mobility. Team members volunteer as organizers, technical advisers, and trustees, actively supporting and promoting the competition across Latin America.

Electrics advancements

Full robot remodel

	Old Hera	New Hera	Changes
Base	26.6Kg/58.643 lbs	14.8Kg/32.62841 lbs	≫ 44,36%
Torso	25.260Kg/55.689 lbs	12.676Kg/27.946 lbs	४ 48,96%
Packing	Non modular model, hard to dismount	Modular, low-maintance, easy to pack	Packed into 2 bags instead of 4

iiiROS ↓ iiiROS 2

Software

Our project is available at https://github.com/RoboFEI-Home

Work in progress

Objective: Implement context-aware facial expressions for enhanced human-robot interaction using the Hera platform. Method: Analyze context, design & map expressions, implement on Hera, and validate with users.

Objective: Evaluate and compare the performance of different battery types in robots under varied operational conditions. Method: Analyze battery performance according to operating environments.

Objective: Develop a robust system for person tracking and following in dynamic environments using sensor fusion and reidentification techniques.

Method: Synchronize sensors, fuse data with EKF, apply re-ID, plan safe following paths, test, and refine via tracking metrics.

Latest work

Objective: Analyse and compare different manipulation solutions in service robotics

Methods: Research Team Description Papers, interview members, and analyse general solutions.

Objective: Compare the evaluation of YOLOv9, YOLOv10 and YOLOv11 for real-time service robotics

Method: A comparative benchmark of YOLOv9, v10, and v11 on an NVIDIA Jetson Orin platform measuring latency, power consumption, accuracy, and frame rate for embedded robotics.

Objective: Enhance Hera robot's functionality and efficiency, improving its structure, systems, and human-robot interaction. Method: Change the computational system, redesign the mechanical structure to reduce weight.

Objective: Adapt US8K_AV so service robots running Raspberry-Pi-class hardware can detect safety-critical and social sounds in real time.

Method: Filter and rebalance classes, add "silence," split into ten folds, then benchmark classical and CNN models on a robot-mounted Pi.

(Publication status — Accepted for publication in Nature Scientific Data (June 2025). (https://www.nature.com/scientificdata))

