MATH 220 Torture Finals — October, 2024, Duration: 2.5 hours This test has 8 questions on 24 pages, for a total of 100 points.

First Name:	Last Name:
Student Number:	Section:
Signature:	

Question:	1	2	3	4	5	6	7	8
Points:								
Total:							/	100

- 1. Carefully define or restate each of the following:
 - (a) A relation on A

(b) A function $f: A \mapsto B$

(c) The limit of a function $f: \mathbb{R} \to \mathbb{R}$ as $x \to a$

(d) Euclidean division

(e) The principle of mathematical induction

- 2. Write the negation of each of the following and prove or disprove the original statement.
 - (a) There exists a prime $p \in \mathbb{Z}$ such that there exists $r, k \in \mathbb{Z}$ such that $0 \le r \le p-1$ and k < p and $p \mid kr$.

(b) For all $n \in \mathbb{N}$, for all $p,q \in \mathbb{N}$ such that $k,\ell \in \mathbb{N}$ are the smallest integers such that $n \mid kp$ and $n \mid \ell q$, then if $k = \ell$, $|\{px \in \mathbb{Z}|0 \leq px \leq kp \in \mathbb{Z}\}| = |\{qy \in \mathbb{Z}|0 \leq yq \leq \ell q \in \mathbb{Z}\}|$

10 Marks 3.

3. Prove that there does not exist a bijective $f: \mathbb{Q} \mapsto \mathbb{Q} \setminus \{0\}$ such that for all $x, y \in \mathbb{Q}$, f(x+y) = f(x)f(y).

4. Let $S = \{1, 2, 3, ..., m \in \mathbb{N}\}$ and $p_i : S \mapsto S$ be a function that swaps some $a, b \in S$ around where $a \neq b$ and fixes everything else, denoted $p_i = (ab)$. Prove that the identity map e can only be written as a product $p_1p_2p_3...p_n$ where n is even by induction on the number of p_i .

5. (a) Let D_n denote the set of rotations by an angle of $\frac{2\pi}{i}$ where $1 \leq n$ and reflections across an axis of symmetry on an n-gon, and let \sim be a relation $\sigma \sim \tau$ if and only if $\sigma \tau$ is a rotation where $\sigma, \tau \in D_n$. Prove that \sim is an equivalence relation.

(b) Let $R \subseteq D_n$ be the set of rotations by an angle of $\frac{2\pi}{i}$ where $1 \le n$, and for all $\sigma \in D_n$, let σR denote the set $\{\sigma x | x \in R\}$. Prove that the collection of σR forms a partition on D_n .

(c) Prove that for all $\sigma \in D_n$, $\sigma R = [\sigma]$ where $[\sigma]$ is the equivalence class of σ under \sim .

6. Let m, n be coprime integers with m < n. Prove that for all $a, b \in \mathbb{Z}$, there exists $x \in \mathbb{Z}$ such that $x \equiv a \mod m$ and $x \equiv b \mod m$. (Hint: Contradiction and pigeonhole principle)

- 7. Prove or disprove each of the following:
 - (a) There exists a bijective function $f: \mathbb{R} \mapsto S_1$ where S_1 is the unit circle in \mathbb{C} .

(b) There exists a function $f: \mathbb{R} \mapsto S_1$ where S_1 is the unit circle in \mathbb{C} such that for all $x, y \in \mathbb{R}$, f(x+y) = f(x) + f(y).

(c) A countable union of countable sets is countable.

(d) A denumerable intersection of uncountable sets is countable.

8. (a) Let $A \subseteq \mathbb{R}$. Prove that if $-A = \{-a | a \in A\}$, then $-\sup A = \inf A$.

(b) Let $\{x_n\}: \mathbb{N} \to \mathbb{R}$ be a non-decreasing sequence. Prove that if $\{x_n\}$ is bounded above, then $\lim_{n\to\infty} x_n = \sup\{x_n\}$.

(c) Prove that if $\{x_n\}$ is a non-increasing sequence, and if $\{x_n\}$ is bounded below, then $\lim_{n\to\infty}x_n=\inf\{x_n\}$

(d) Prove that if $\{x_n\}: \mathbb{N} \to \mathbb{R}$ is bounded, then $\{x_n\}$ has a finite limit.

(e) Let $\{x_n\}: \mathbb{N} \to \mathbb{R}$ be a sequence, and we define $\{a_n\}$ to be a subsequence of $\{x_n\}$ if we can obtain $\{a_n\}$ from removing some elements from $\{x_n\}$. Let $n \in \mathbb{N}$ be a peak if for all $m \geq n$, $x_m \geq x_n$. Prove that if $\{x_n\}$ has infinite peaks then $\{x_n\}$ has a monotone (non-decreasing or non-increasing) subsequence.

(f) Prove that if $\{x_n\}$ has finite peaks then $\{x_n\}$ has a monotone subsequence.

(g) Prove that if $\{x_n\}$ is bounded then $\{x_n\}$ has a convergent subsequence.

(h) We denote $\{b_n\}: \mathbb{N} \to \mathbb{R}^n$ to be a sequence of vectors in \mathbb{R}^n and we say a sequence $\{b_n\}: \mathbb{N} \to \mathbb{R}^n$ is bounded if there exists $M > 0 \in \mathbb{R}$ such that for all $i \in \mathbb{N}$, $||b_i|| \leq M$ where $||b_i||$ denotes the Euclidean norm of b_i . Prove that if $\{b_n\}$ which can be represented as $(\{b_{n1}\}, \{b_{n2}\}, \ldots, \{b_{nn}\})$ is bounded, then for all $j \in \mathbb{N}$, $\{b_{nj}\}$ is bounded.

(i) We say $\{b_n\}: \mathbb{N} \to \mathbb{R}^n$ converges to $L \in \mathbb{R}^n$ if for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all n > N, $||x_n - L|| < \varepsilon$ where $||x_n - L||$ denote the Euclidean norm. Prove that if $\{b_n\}$ has a convergent subsequence, then there exists a countable $K \subseteq I$ where I is the index set of $\{b_n\}$

(j) Using the results from parts (g),(h),(i), prove that every bounded sequence $\{b_n\}$: $\mathbb{N} \mapsto \mathbb{R}^n$ has a convergent subsequence.