Homework 6

Andrew Tindall Topology II

February 21, 2020

Problem 1. Let \mathbb{H} be the Hamilton Quaternions, with its standard \mathbb{R} -basis $\{1, i, j, k\}$. Draw an isomorphism of \mathbb{R} -vector spaces $\mathbb{H} \simeq \mathbb{R}^{\oplus 4}$ using this basis. COnsider S^3 to be a subspace of \mathbb{H} under this isomorphism. Let $Q_8 := \{\pm 1, \pm i, \pm j, \pm k\}$ be the quaternion subgroup of the group of units \mathbb{H}^{\times} of \mathbb{H} .

(a) Prove that the natural left action of Q_8 on \mathbb{H}^{\times} by left multiplication induces a left action on S^3 which is a "covering space action."

Proof. We first define the left action $Q_8 \curvearrowright S^3$. Under the identification of \mathbb{H} with $\mathbb{R}^{\oplus 4}$, the definition of S^3 as unit vectors in $\mathbb{R}^{\oplus 4}$ embeds S^3 as a subset of \mathbb{H} . Specifically, S^3 can be identified with the set

$${a+bi+cj+dk \mid a^2+b^2+c^2+d^2=1}$$
.

We show that any of the elements of Q_8 preserve the magnitude of any unit element in \mathbb{H} . Let x = a + bi + cj + dk be an arbitrary element of $S^3 \subset \mathbb{H}$. Then the actions of the 8 elements of Q_8 on x are as follows:

$$\begin{aligned} 1 \cdot x &= a + bi + cj + dk \\ i \cdot x &= -b + ai - dj + ck \\ j \cdot x &= -c + di + aj - bk \\ k \cdot x &= -d - ci + bj + ak \end{aligned} \qquad \begin{aligned} (-1) \cdot x &= -a - bi - cj - dk \\ (-i) \cdot x &= b - ai + dj - ck \\ (-j) \cdot x &= c - di - aj + bk \\ (-k) \cdot x &= d + ci - bj - ak \end{aligned}$$

In each case, we see that the sum of squares of the coefficients of $g \cdot x$ are preserved, meaning that $g \cdot x \in S^3$ as well, and so the action $Q_8 \curvearrowright \mathbb{H}$ does indeed induce an action $Q_8 \curvearrowright S^3$.

Now, we want to show that this action is a covering space action. Given some $x \in S^3 \subset \mathbb{H}$, we want to find some open set U containing x such that the $g \cdot U$ are disjoint for each $g \in Q_8$.

First, we can show that a free action of a finite group on a Hausdorff space is always a covering space action. Let G be a finite group, X a Hausdorff space, and $\rho: G \hookrightarrow \operatorname{Aut}(x)$ a free group action, i.e. an action such that for each $g \in G$, $\rho(g)(x) \neq x$. We write $g \cdot x$ for $\rho(g)(x)$.

Since X is Hausdorff, there exist open sets $U_1 \ni x$, $U_2 \ni g \cdot x$ such that $U_1 \cap U_2 = \emptyset$. Then the set $U_g := U_1 \cap g^{-1} \cdot U_2$ contains x, and is a subset of U_1 , while $g \cdot U_g = g \cdot (U_1 \cap g^{-1} \cdot U_2)$ is a subset of U_2 , and so it is disjoint from U_g . Since G is finite, the intersection

$$U_x = \bigcap_{g \in G} U_g$$

is an open set, which contains x, and is disjoint from each of its translates under the action of G. Therefore, $G \curvearrowright X$ is a covering space action.

Since Q_8 is finite, S^3 is Hausdorff, and $Q_8 \curvearrowright S^3$ is free, it must be a covering space action.

(b) Write down all of the isomorphism classes of covers of the orbit space S^3/Q_8 , using the fact that S^3 is simply connected.

Proof. Since the group action of Q_8 on S^3 is a covering space action, by Hatcher 1.40 we see that

$$Q_8 \simeq \pi_1(S^3/Q_8)/p_*(\pi_1(S^3)).$$

But, since S^3 is simply connected, the group $\pi_1(S^3)$ is trivial, and so $Q_8 \simeq \pi_1(S^3/Q_8)$. Thus the set of isomorphism classes of covering spaces of S^3/Q_8 corresponds exactly to the set of subgroups of Q_8 . There are 4 nontrivial subgroups of Q_8 : three copies of \mathbb{Z}_4 :

$$\{1, i, -1, -i\}$$

$$\{1, j, -1, -j\}$$

$$\{1, k, -1, -k\}$$

and one copy of \mathbb{Z}_2 , the center of Q_8 , which is $\{1, -1\}$. Thus there are 6 total isomorphism classes of covering spaces,4 of them corresponding to these 4 subgroups:

$$(S^3/\mathbb{Z}_4)_1 \to S^3/Q_8,$$

 $(S^3/\mathbb{Z}_4)_2 \to S^3/Q_8,$
 $(S^3/\mathbb{Z}_4)_3 \to S^3/Q_8,$
 $S^3/\mathbb{Z}_2 \to S^3/Q_8,$

where the three numbered covers are different, corresponding to the actions of i, j, and k on S^3 under multiplication in \mathbb{H} . These 4, along with the trivial cover $S^3/Q_8 \to S^3/Q_8$, which corresponds to the subgroup $\{1\} \leq Q_8$ l and the universal cover $S^3 \to S^3/Q_8$, which corresponds to the whole subgroup $Q_8 \leq Q_8$, exhaust all of the isomorphism classes of covers of S^3/Q_8 .

Problem 2. Using example 1.48 as a starting point, write down all of the path-connected covering spaces of the wedge sum $\mathbb{RP}^2 \times \mathbb{R} \vee \mathbb{P}^2$, up to isomorphism.

Proof. We will show that the path-connected covering spaces of the space $\mathbb{RP}^2 \vee \mathbb{R}\P^2$ are even-numbered rings of spheres, and even-numbered chains of 2-spheres with a copy of \mathbb{RP}^2 wedged at either end. incomplete