

Applied Machine Learning

Dr. Harikrishnan N B Computer Science and Information Systems

SE ZG568 / SS ZG568, Applied Machine Learning Lecture No. 6 [23- Feb-2025]

Recap

Basics of Linear Algebra, Row Picture, Col Picture, Algebraic Way Solution to System of Linear Equations Inverse of a Matrix Linear Regression, PCA

Practical Challenges and Important Points

When can we apply $A = X\Lambda X^{-1}$?

- A should be a square matrix
- When A has 'n' linearly independent eigenvectors, then X^{-1} always exist.

What happens when A is Symmetric ($A^T = A$)?

- The eigenvectors of a symmetric matrix A can be chosen as ORTHONORMAL. So in this case X is orthonormal.
- For an ORTHONORMAL matrix X, the inverse is its transpose $X^{-1} = X^{T}$ $A = X \Lambda X^{-1}$

$$A = X \Lambda X^{T}$$

• The eigenvectors of a symmetric matrix A can be chosen as ORTHONORMAL. So in this case X is orthonormal. Why?

Practical Challenges and Important Points

When can we apply $A = X\Lambda X^{-1}$?

- A should be a square matrix
- When A has 'n' linearly independent eigenvectors, then X^{-1} always exist.

What happens when A is Symmetric ($A^T = A$)?

- The eigenvectors of a symmetric matrix A can be chosen as ORTHONORMAL. So in this case X is orthonormal.
- For an ORTHONORMAL matrix X, the inverse is its transpose $X^{-1} = X^T$ $A = X\Lambda X^{-1}$ $A = X\Lambda X^T$

Practical Challenges

What if A is not a square matrix?

• We cannot apply Spectral Decomposition.

Don't Worry!!!

Singular Value Decomposition works for any Matrix.

A Few more steps to PCA

X, **Y** are the features

What all minimum can we say about this data?

$$\begin{aligned} &\text{Mean(X)} = \frac{1}{N} \sum_{i=1}^{N} x_i \\ &\text{Variance(X)} = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu_x)^2 \\ &\text{Cov(X,Y)} = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu_x)(y_i - \mu_y) \end{aligned}$$

X	Υ	var(X)	var(Y)	cov(X,Y)	cov(Y,X)
1	1				
2	5				
3	4				
4	6				
5	7				
Mean (X)	Mean(Y)	var(X)	var(Y)	cov(X,Y)	cov(Y,X)
?	7	7	7	7	7

$$\begin{aligned} & \text{Mean}(\textbf{X}) = \frac{1}{N} \sum_{i=1}^{N} x_{i} \\ & \text{Variance}(\textbf{X}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{i} - \mu_{x})^{2} \\ & \text{Mean}(\textbf{Y}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{i} - \mu_{x})(y_{i} - \mu_{y}) \end{aligned}$$

$$\begin{aligned} & \text{Var}(\textbf{X}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{i} - \mu_{x})(y_{i} - \mu_{y}) \end{aligned}$$

$$\begin{aligned} & \text{Var}(\textbf{Y}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{i} - \mu_{x})(y_{i} - \mu_{y}) \end{aligned}$$

$$\begin{aligned} & \text{Var}(\textbf{Y}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{i} - \mu_{x})(y_{i} - \mu_{y}) \end{aligned}$$

$$\begin{aligned} & \text{Var}(\textbf{Y}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_{i} - \mu_{x})(y_{i} - \mu_{y}) \end{aligned}$$

$$\begin{aligned} & \text{Var}(\textbf{Y}) & \text{Var}(\textbf{Y}) \\ & \text{Max}(\textbf{Y}) & \text{Var}(\textbf{Y}) \\ & \text{Max}(\textbf{Y}) & \text{Max}(\textbf{Y}) & \text{Max}(\textbf{Y}) & \text{Max}(\textbf{Y})$$

$$\mathbf{Mean(X)} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\mathbf{Variance(X)} = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu_x)^2$$

Cov(X,Y) =
$$\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu_x)(y_i - \mu_y)$$

Х	Υ
1	1
2	5
3	4
4	6
5	7

What all minimum can we say about this data?

$$Mean(X) = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Variance(X) =
$$\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu_x)^2$$

Cov(X,Y) =
$$\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu_x)(y_i - \mu_y)$$

X	Υ	var(X)	var(Y)	cov(X,Y)	cov(Y,X)
1	1				
2	5				
3	4				
4	6				
5	7				
Mean (X)	Mean(Y)	var(X)	var(Y)	cov(X,Y)	cov(Y,X)
3.0	4.6	2.5	5.3	2.25	2.25

 $\frac{1}{N-1} \left[\frac{Var(t)}{Var(t)} \right] = \left[\frac{2i-M_{\chi}}{i=1} \right] \left(\frac{4i-M_{\chi}}{i} \right) \left(\frac{4i-M_{\chi}}{i} \right)$

- Variance Covariance Matrix is symmetric. cov(X,Y) = cov(Y,X)
- The diagonal entries represents variance
- The off- diagonal entries represents the correlation of X and Y

What does Variance - Covariance Matrix signifies?

Case I Case II

$$\begin{bmatrix} 2 & -3 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -3 \\ -3 & 5 \end{bmatrix} \qquad \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix}$$

113

Case III

So what does PCA do?

Principal Component Analysis (PCA) makes the data UNCORRELATED.

Change of Basis

Recall

Dimension of a Vector space - Every vector space has a dimension. Dimension is the number of basis vectors required to span the vector space.

Properties of Basis Vectors -

- Basis vectors has to be linearly independent.
- Basis vectors should span the vector space.

Example of Change of Basis

To represent a point (2,3) in old basis and new basis- How to understand this?

Old basis =
$$\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$

Example of Change of Basis

To represent a point (2,3) in old basis and new basis- How to understand this?

New Basis Representation

New Basis =
$$\left\{ \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}, \begin{bmatrix} \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \right\}$$

Finding x and y for representing (2,3) using new basis

$$\frac{\frac{1}{\sqrt{2}} \frac{-1}{\sqrt{2}}}{\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$P\vec{x} = \vec{y}$$

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$A^{-1} = \frac{1}{|A|} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

For **ORTHONORMAL MATRIX**, $P^{-1} = P^{T}$

In our case the matrix P is ORTHONORMAL

$$\vec{x} = P^{-1}\vec{y} = P^T\vec{y}$$

$$b_1^T$$
 b_2^T

$$\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$\frac{5}{\sqrt{2}} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} + \frac{1}{\sqrt{2}} \begin{bmatrix} \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} 2\\ 3 \end{bmatrix}$$

mean COV 212 Var-cov matr χo **N**-N-1

What should be the NEW BASIS so that DATA

$$\begin{bmatrix} b_1^T \\ b_2^T \end{bmatrix} \begin{bmatrix} v_1 & v_2 & v_3 \\ v_1 & v_2 & v_3 \end{bmatrix} \begin{bmatrix} v_1 & v_2 & v_3 \\ v_1 & v_2 & v_3 \end{bmatrix} \begin{bmatrix} v_1 & v_2 & v_3 \\ v_1 & v_2 & v_3 \end{bmatrix}$$

$$?$$

$$PX = Y$$

$$Varcov(Y) = cov(PX)$$

$$Varcov(PX) = \frac{1}{(PX)(PX)}$$

$$\label{eq:cov} \begin{aligned} & \text{Val} \cdot cov(PX) = \frac{1}{N-1} (PX)(PX)^T \\ & \text{Val} \cdot cov(PX) = \frac{1}{N-1} PXX^T P^T \end{aligned}$$

$$cov(PX) = Pcov(X)P^{T}$$
$$cov(PX) = P(V\Lambda V^{T})P^{T}$$

$$\Lambda$$

Harikrishnan N B

 $\operatorname{Val} cov(PX) = P(\frac{1}{N-1}XX^T)P^T$

Some words about PCA

• PCA is "an orthogonal linear transformation that transfers the data to a new coordinate system such that the greatest variance by any projection of the data comes to lie on the first coordinate (*first principal component*), the second greatest variance lies on the second coordinate (*second principal component*), and so on."

- **Dimensionality Reduction**
- Denoising
- Feature Extraction
- **Image Compression**
- **EEG** Analysis

Assumptions in PCA

- Linearity

 frame(fr)

 man (fr)
- Large variance have important structure

• Principal components are orthogonal

When does PCA fail?

- Non-linearity
- Non-Gaussian
- Non-orthogonality

Ref: https://arxiv.org/abs/1404.1100

Interesting Materials

Prof. Gilbert Strang

Tutorial on PCA - (Click here)

Learning - Function Approximation

Problem Setting

- Set of possible instances X.
- Unknown target function f: X—> Y
- Set of function hypotheses $H = \{h | h: X \longrightarrow Y\}$

Input

Training Examples of unknown target function f.

Output

Hypothesis $h \in H$ that best approximates target function f.

Decision Tree

Decision Tree Learning is a method for approximating the target function (Y), in which the **learned functions** (h) is represented by a **decision tree**.

ID No	SEX	AGE	Blood Pressure	Drug	
1	М	20	Normal	D1	
2	F	73	Normal	D2	
3	М	37	High	D1	
4	М	33	Low	D2	
5	F	48	High	D1	
6	М	29	Normal	D1	
7	F	52	Normal	D2	
8	М	42	Low	D2	
9	М	61	Normal	D2	
10	F	30	Normal	D1	
11	F	26	Low	D2	
12	М	54	High	D1	136

ID No	SEX	AGE	Blood Pressure	Drug			
1	M	20	Normal	D1			Bloo
2	F	73	Normal	D2			
3	M	37	High	D1	High		Nor
4	M	33	Low	D2 D	rug D1		
5	F	48	High	D1 L	ug D1		
6	M	29	Normal	D1			
7	F	52	Normal	D2	<= 4	40	
8	M	42	Low	D2			_
9	M	61	Normal	D2	Drug D)1	
10	F	30	Normal	D1			
11	F	26	Low	D2			
12	М	54	High	D1			

Decision Tree

- ID3 (Iterative Dichotomiser 3)- 1986 Ross Quinlan
- C4.5 is the successor to ID3 and removed the restriction that features must be categorical by dynamically defining a discrete attribute (based on numerical variables) that partitions the continuous attribute value into a discrete set of intervals.
- **C5.0** is Quinlan's latest version release under a proprietary license. It uses less memory and builds smaller rulesets than C4.5 while being more accurate.
- CART Classification and Regression Trees s very similar to C4.5, but it differs in that it supports numerical target variables (regression) and does not compute rule sets. CART constructs binary trees using the feature and threshold that yield the largest information gain at each node.

scikit-learn uses an optimized version of the CART algorithm; however, the scikit-learn implementation does not support categorical variables for now.

ID3- Decision Tree algorithm for classification

How do we construct such a tree?

Day	outlook	temperature	humidity	wind	Decision
1	sunny	hot	high	weak	No
2	sunny	hot	high	strong	No
3	overcast	hot	high	weak	Yes
4	rainfall	mild	high	weak	Yes
5	rainfall	cool	normal	weak	Yes
6	rainfall	cool	normal	strong	No
7	overcast	cool	normal	wtrong	Yes
8	sunny	mild	high	weak	No
9	sunny	cool	normal	weak	Yes
10	rainfall	mild	normal	weak	Yes
11	sunny	mild	normal	strong	Yes
12	overcast	mild	high	strong	Yes
13	overcast	hot	normal	weak	Yes
14	rainfall	mild	high	strong	No

