Foundations of Computing Lecture 25

Arkady Yerukhimovich

April 25, 2023

Outline

- 1 Lecture 24 Review
- 2 A New Goal for Proofs
- Opening Knowledge
 3
- 4 Examples of Zero-Knowledge Proofs

Lecture 24 Review

- \bullet Proof that co- $\mathcal{NP}\subseteq\mathcal{IP}$
- Arithmetization of Boolean Formulas

Outline

- 1 Lecture 24 Review
- 2 A New Goal for Proofs
- Opening Knowledge
 3
- 4 Examples of Zero-Knowledge Proofs

Reviewing the Definition of \mathcal{IP}

Definition of \mathcal{IP}

 $L \in \mathcal{IP}$ if there exist a pair of interactive algorithms (P, V) with V being poly-time (in |x|) s.t.

• (Completeness) If $x \in L$, then $\Pr[\langle P, V \rangle(x) = 1] = 1$

Reviewing the Definition of \mathcal{IP}

Definition of \mathcal{IP}

 $L \in \mathcal{IP}$ if there exist a pair of interactive algorithms (P, V) with V being poly-time (in |x|) s.t.

- (Completeness) If $x \in L$, then $\Pr[\langle P, V \rangle(x) = 1] = 1$
- ② (Soundness) If $x \notin L$, then for any (possibly unbounded) P^* , we have $\Pr[\langle P^*, V \rangle(x) = 1] \le 1/2$

Reviewing the Definition of \mathcal{IP}

Definition of IP

 $L \in \mathcal{IP}$ if there exist a pair of interactive algorithms (P, V) with V being poly-time (in |x|) s.t.

- (Completeness) If $x \in L$, then $\Pr[\langle P, V \rangle(x) = 1] = 1$
- ② (Soundness) If $x \notin L$, then for any (possibly unbounded) P^* , we have $\Pr[\langle P^*, V \rangle(x) = 1] \le 1/2$

A New Property

We say that a proof is *zero-knowledge* if the verifier learns nothing (other than the truth of the statement) from seeing the proof.

An Example – Where's Waldo

An Example

A Second Example - Puppy and Panda

Outline

- 1 Lecture 24 Review
- 2 A New Goal for Proofs
- Oefining Knowledge
- 4 Examples of Zero-Knowledge Proofs

Question

What does it mean for a machine to know/learn something?

Question

What does it mean for a machine to know/learn something?

Answer: A poly-time TM M "knows" x, if it can output x after an efficient computation.

Question

What does it mean for a machine to know/learn something?

Answer: A poly-time TM M "knows" x, if it can output x after an efficient computation.

Question

What does it mean for a machine to learn nothing from a proof?

Question

What does it mean for a machine to know/learn something?

Answer: A poly-time TM M "knows" x, if it can output x after an efficient computation.

Question

What does it mean for a machine to learn nothing from a proof?

Answer: Whatever it can (efficiently) compute after seeing the proof, it could have efficiently computed before seeing the proof.

Consider an interactive proof between Prover (P) and Verifier (V):

$$\langle P, V \rangle (x)$$

Consider an interactive proof between Prover (P) and Verifier (V):

$$\langle P, V \rangle (x)$$

Define V's view of this interaction by:

$$VIEW_V(\langle P, V \rangle(x))$$

Consider an interactive proof between Prover (P) and Verifier (V):

$$\langle P, V \rangle (x)$$

Define V's view of this interaction by:

$$VIEW_V(\langle P, V \rangle(x))$$

This includes:

- V's randomness
- Any messages that V receives

Consider an interactive proof between Prover (P) and Verifier (V):

$$\langle P, V \rangle (x)$$

Define V's view of this interaction by:

$$VIEW_V(\langle P, V \rangle(x))$$

This includes:

- V's randomness
- Any messages that V receives

Zero-Knowledge Proof

Consider an interactive proof between Prover (P) and Verifier (V):

$$\langle P, V \rangle (x)$$

Define V's view of this interaction by:

$$VIEW_V(\langle P, V \rangle(x))$$

This includes:

- V's randomness
- Any messages that V receives

Zero-Knowledge Proof

A proof $\langle P, V \rangle(x)$ for a language L is zero-knowledge if

ullet For any (possibly malicious) poly-time verifier V^*

Consider an interactive proof between Prover (P) and Verifier (V):

$$\langle P, V \rangle (x)$$

Define V's view of this interaction by:

$$VIEW_V(\langle P, V \rangle(x))$$

This includes:

- V's randomness
- Any messages that V receives

Zero-Knowledge Proof

- ullet For any (possibly malicious) poly-time verifier V^*
- There exists a poly-time Simulator S s.t.

$$\forall x \in L$$
, $VIEW_{V^*}(\langle P, V^* \rangle(x)) = S(x)$

Zero-Knowledge Proof

- ullet For any (possibly malicious) poly-time verifier V^*
- There exists a poly-time *Simulator S* s.t.

$$\forall x \in L$$
, $VIEW_{V^*}(\langle P, V^* \rangle(x)) = S(x)$

Zero-Knowledge Proof

A proof $\langle P, V \rangle(x)$ for a language L is zero-knowledge if

- ullet For any (possibly malicious) poly-time verifier V^*
- There exists a poly-time *Simulator S* s.t.

$$\forall x \in L$$
, $VIEW_{V^*}(\langle P, V^* \rangle(x)) = S(x)$

• S(x) captures what V knows about x

Zero-Knowledge Proof

- ullet For any (possibly malicious) poly-time verifier V^*
- There exists a poly-time *Simulator S* s.t.

$$\forall x \in L$$
, $VIEW_{V^*}(\langle P, V^* \rangle(x)) = S(x)$

- S(x) captures what V knows about x
- If S can produce V's view in the proof, then this everything in this view is "known" to V before the proof.

Zero-Knowledge Proof

- ullet For any (possibly malicious) poly-time verifier V^*
- There exists a poly-time *Simulator S* s.t.

$$\forall x \in L$$
, $VIEW_{V^*}(\langle P, V^* \rangle(x)) = S(x)$

- S(x) captures what V knows about x
- If S can produce V's view in the proof, then this everything in this view is "known" to V before the proof.
- ullet Thus, the proof is zero-knowledge: V learns nothing more than that $x \in \mathcal{L}$

Zero-Knowledge Proof

- ullet For any (possibly malicious) poly-time verifier V^*
- There exists a poly-time *Simulator S* s.t.

$$\forall x \in L, \qquad VIEW_{V^*}(\langle P, V^* \rangle(x)) = S(x)$$

- S(x) captures what V knows about x
- If S can produce V's view in the proof, then this everything in this view is "known" to V before the proof.
- ullet Thus, the proof is zero-knowledge: V learns nothing more than that $x \in \mathcal{L}$
- IMPORTANT: $VIEW_V^*$ and S(x) are both distributions, not values. So, equality is of distributions

Outline

- 1 Lecture 24 Review
- 2 A New Goal for Proofs
- Oefining Knowledge
- 4 Examples of Zero-Knowledge Proofs

Where's Waldo

Puppy and Panda

Input: $x = (G_0, G_1)$

Prover's goal: Prove that he knows permutation π s.t. $\pi(G_0) = G_1$

Input: $x = (G_0, G_1)$

Prover's goal: Prove that he knows permutation π s.t. $\pi(G_0) = G_1$

The Proof

Input: $x = (G_0, G_1)$

Prover's goal: Prove that he knows permutation π s.t. $\pi(G_0) = G_1$

The Proof

① P chooses $b \leftarrow \{0,1\}$ and a random permutation σ and sends $H = \sigma(G_b)$ to V

Input: $x = (G_0, G_1)$

Prover's goal: Prove that he knows permutation π s.t. $\pi(G_0) = G_1$

The Proof

- **①** P chooses $b \leftarrow \{0,1\}$ and a random permutation σ and sends $H = \sigma(G_b)$ to V
- ② V chooses $b' \leftarrow \{0,1\}$ and sends it to P

Input:
$$x = (G_0, G_1)$$

Prover's goal: Prove that he knows permutation π s.t. $\pi(G_0) = G_1$

The Proof

- **①** P chooses $b \leftarrow \{0,1\}$ and a random permutation σ and sends $H = \sigma(G_b)$ to V
- ② V chooses $b' \leftarrow \{0,1\}$ and sends it to P
- **1** P sends V the permutation π' mapping $G_{b'}$ to H

$$\pi' = \begin{cases} \sigma & \text{if } b = b' \\ \sigma \pi^{-1} & \text{if } b = 0, b' = 1 \\ \sigma \pi & \text{if } b = 1, b' = 0 \end{cases} \quad \text{H=} \sigma(\mathcal{L})$$

Input: $x = (G_0, G_1)$

Prover's goal: Prove that he knows permutation π s.t. $\pi(G_0) = G_1$

The Proof

- **①** P chooses $b \leftarrow \{0,1\}$ and a random permutation σ and sends $H = \sigma(G_b)$ to V
- ② V chooses $b' \leftarrow \{0,1\}$ and sends it to P
- **3** P sends V the permutation π' mapping $G_{b'}$ to H

$$\pi' = \begin{cases} \sigma & \text{if } b = b' \\ \sigma \pi^{-1} & \text{if } b = 0, b' = 1 \\ \sigma \pi & \text{if } b = 1, b' = 0 \end{cases}$$

• V accepts iff $H = \pi'(G_{b'})$

The Proof

- **①** P chooses $b \leftarrow \{0,1\}$ and a random permutation σ and sends $H = \sigma(G_b)$ to V
- ② V chooses $b' \leftarrow \{0,1\}$ and sends it to P
- **3** P sends V the permutation π' mapping $G_{b'}$ to H

$$\pi' = \left\{ \begin{array}{ll} \sigma & \text{if } b = b' \\ \sigma \pi^{-1} & \text{if } b = 0, b' = 1 \\ \sigma \pi & \text{if } b = 1, b' = 0 \end{array} \right.$$

• V accepts iff $H=\pi'(G_{b'})$

The Proof

- **①** P chooses $b \leftarrow \{0,1\}$ and a random permutation σ and sends $H = \sigma(G_b)$ to V
- ② V chooses $b' \leftarrow \{0,1\}$ and sends it to P
- **3** P sends V the permutation π' mapping $G_{b'}$ to H

$$\pi' = \left\{ \begin{array}{ll} \sigma & \text{if } b = b' \\ \sigma \pi^{-1} & \text{if } b = 0, b' = 1 \\ \sigma \pi & \text{if } b = 1, b' = 0 \end{array} \right.$$

- lacksquare V accepts iff $H=\pi'(G_{b'})$
- **①** Completeness: If $\pi(G_0) = G_1$, then π' correctly maps $G_{b'}$ to H

The Proof

- **1** P chooses $b \leftarrow \{0,1\}$ and a random permutation σ and sends $H = \sigma(G_b)$ to V
- ② V chooses $b' \leftarrow \{0,1\}$ and sends it to P
- **3** P sends V the permutation π' mapping $G_{b'}$ to H

$$\pi' = \left\{ \begin{array}{ll} \sigma & \text{if } b = b' \\ \sigma \pi^{-1} & \text{if } b = 0, b' = 1 \\ \sigma \pi & \text{if } b = 1, b' = 0 \end{array} \right.$$

- **4** V accepts iff $H = \pi'(G_{b'})$
- **①** Completeness: If $\pi(G_0) = G_1$, then π' correctly maps $G_{b'}$ to H
- ② Soundness: Suppose G_0 is not isomorphic to G_1 , so there is no such π . Then, if $b \neq b'$, there is no permutation that P can give that V will accept

The Proof

- **①** P chooses $b \leftarrow \{0,1\}$ and a random permutation σ and sends $H = \sigma(G_b)$ to V
- ② V chooses $b' \leftarrow \{0,1\}$ and sends it to P
- **3** P sends V the permutation π' mapping $G_{b'}$ to H

$$\pi' = \left\{ \begin{array}{ll} \sigma & \text{if } b = b' \\ \sigma \pi^{-1} & \text{if } b = 0, b' = 1 \\ \sigma \pi & \text{if } b = 1, b' = 0 \end{array} \right.$$

4 V accepts iff $H = \pi'(G_{b'})$

The Proof

- **①** P chooses $b \leftarrow \{0,1\}$ and a random permutation σ and sends $H = \sigma(G_b)$ to V
- ② V chooses $b' \leftarrow \{0,1\}$ and sends it to P
- **3** P sends V the permutation π' mapping $G_{b'}$ to H

$$\pi' = \begin{cases} \sigma & \text{if } b = b' \\ \sigma \pi^{-1} & \text{if } b = 0, b' = 1 \\ \sigma \pi & \text{if } b = 1, b' = 0 \end{cases}$$

• V accepts iff $H = \pi'(G_{b'})$

Zero-Knowledge

The Proof

- **①** P chooses $b \leftarrow \{0,1\}$ and a random permutation σ and sends $H = \sigma(G_b)$ to V
- ② V chooses $b' \leftarrow \{0,1\}$ and sends it to P
- **3** P sends V the permutation π' mapping $G_{b'}$ to H

$$\pi' = \left\{ \begin{array}{ll} \sigma & \text{if } b = b' \\ \sigma \pi^{-1} & \text{if } b = 0, b' = 1 \\ \sigma \pi & \text{if } b = 1, b' = 0 \end{array} \right.$$

• V accepts iff $H = \pi'(G_{b'})$

Zero-Knowledge

The Proof

- **①** P chooses $b \leftarrow \{0,1\}$ and a random permutation σ and sends $H = \sigma(G_b)$ to V
- ② V chooses $b' \leftarrow \{0,1\}$ and sends it to P
- **3** P sends V the permutation π' mapping $G_{b'}$ to H

$$\pi' = \begin{cases} \sigma & \text{if } b = b' \\ \sigma \pi^{-1} & \text{if } b = 0, b' = 1 \\ \sigma \pi & \text{if } b = 1, b' = 0 \end{cases}$$

• V accepts iff $H = \pi'(G_{b'})$

Zero-Knowledge

We define simulator $S(G_0, G_1)$ as follows:

① *S* chooses $b \leftarrow \{0,1\}$ and a random permutation σ

The Proof

- **1** P chooses $b \leftarrow \{0,1\}$ and a random permutation σ and sends $H = \sigma(G_b)$ to V
- ② V chooses $b' \leftarrow \{0,1\}$ and sends it to P
- **3** P sends V the permutation π' mapping $G_{b'}$ to H

$$\pi' = \begin{cases} \sigma & \text{if } b = b' \\ \sigma \pi^{-1} & \text{if } b = 0, b' = 1 \\ \sigma \pi & \text{if } b = 1, b' = 0 \end{cases}$$

ullet V accepts iff $H=\pi'(G_{b'})$

Zero-Knowledge

- **1** S chooses $b \leftarrow \{0,1\}$ and a random permutation σ
- Set $H = \sigma(G_b)$ and let $\underline{b' = V^*(G_0, G_1, H)}$

The Proof

- **①** P chooses $b \leftarrow \{0,1\}$ and a random permutation σ and sends $H = \sigma(G_b)$ to V
- ② V chooses $b' \leftarrow \{0,1\}$ and sends it to P
- **3** P sends V the permutation π' mapping $G_{b'}$ to H

$$\pi' = \begin{cases} \sigma & \text{if } b = b' \\ \sigma \pi^{-1} & \text{if } b = 0, b' = 1 \\ \sigma \pi & \text{if } b = 1, b' = 0 \end{cases}$$

ullet V accepts iff $H=\pi'(G_{b'})$

Zero-Knowledge

- **①** *S* chooses $b \leftarrow \{0,1\}$ and a random permutation σ
- ② Set $H = \sigma(G_b)$ and let $b' = V^*(G_0, G_1, H)$
- **3** If b' = b, output (b', H, σ) . Otherwise, restart with new σ, b .

Zero-Knowledge

- **①** *S* chooses $b \leftarrow \{0,1\}$ and a random permutation σ
- ② Set $H = \sigma(G_b)$ and let $b' = V^*(G_0, G_1, H)$
- **3** If b' = b, output $(\underline{b'}, H, \sigma)$. Otherwise, restart with new σ, b .

Zero-Knowledge

We define simulator $S(G_0, G_1)$ as follows:

- **①** *S* chooses $b \leftarrow \{0,1\}$ and a random permutation σ
- ② Set $H = \sigma(G_b)$ and let $b' = V^*(G_0, G_1, H)$
- 3 If b' = b, output (b', H, σ) . Otherwise, restart with new σ, b .

Zero-Knowledge

We define simulator $S(G_0, G_1)$ as follows:

- **①** *S* chooses $b \leftarrow \{0,1\}$ and a random permutation σ
- ② Set $H = \sigma(G_b)$ and let $b' = V^*(G_0, G_1, H)$
- 3 If b' = b, output (b', H, σ) . Otherwise, restart with new σ, b .

Observations:

• If b' = b, then S's simulation is perfect.

Zero-Knowledge

We define simulator $S(G_0, G_1)$ as follows:

- **①** S chooses $b \leftarrow \{0,1\}$ and a random permutation σ
- ② Set $H = \sigma(G_b)$ and let $b' = V^*(G_0, G_1, H)$
- **3** If b' = b, output (b', H, σ) . Otherwise, restart with new σ, b .

- If b' = b, then S's simulation is perfect.
- If G_0 and G_1 are isomorphic, then b' cannot depend on b

Zero-Knowledge

We define simulator $S(G_0, G_1)$ as follows:

- **①** *S* chooses $b \leftarrow \{0,1\}$ and a random permutation σ
- ② Set $H = \sigma(G_b)$ and let $b' = V^*(G_0, G_1, H)$
- 3 If b' = b, output (b', H, σ) . Otherwise, restart with new σ, b .

- If b' = b, then S's simulation is perfect.
- If G_0 and G_1 are isomorphic, then b' cannot depend on b
- So, b = b' with probability 1/2. Thus, S expected to stop after two rounds

Zero-Knowledge

We define simulator $S(G_0, G_1)$ as follows:

- **①** *S* chooses $b \leftarrow \{0,1\}$ and a random permutation σ
- ② Set $H = \sigma(G_b)$ and let $b' = V^*(G_0, G_1, H)$
- **3** If b' = b, output (b', H, σ) . Otherwise, restart with new σ, b .

- If b' = b, then S's simulation is perfect.
- If G_0 and G_1 are isomorphic, then b' cannot depend on b
- So, b = b' with probability 1/2. Thus, S expected to stop after two rounds
- When S stops, he produces a perfect simulation

Graph 3-Coloring

ZK proofs have found practical importance in critical Blockchain applications:

ZK proofs have found practical importance in critical Blockchain applications:

ZK proofs have found practical importance in critical Blockchain applications:

Blockchain Transactions in a Nutshell

Blockchain consists of a sequence of "valid" transactions (e.g., Send
 5 Bitcoins from Alice to Bob)

ZK proofs have found practical importance in critical Blockchain applications:

- Blockchain consists of a sequence of "valid" transactions (e.g., Send
 5 Bitcoins from Alice to Bob)
- Miners need to be able to verify that transactions are valid

ZK proofs have found practical importance in critical Blockchain applications:

- Blockchain consists of a sequence of "valid" transactions (e.g., Send
 5 Bitcoins from Alice to Bob)
- Miners need to be able to verify that transactions are valid
- Bitcoin does this by making the transactions public

ZK proofs have found practical importance in critical Blockchain applications:

- Blockchain consists of a sequence of "valid" transactions (e.g., Send
 5 Bitcoins from Alice to Bob)
- Miners need to be able to verify that transactions are valid
- Bitcoin does this by making the transactions public
- But, what if we want to keep the details of our transaction secret?

ZK proofs have found practical importance in critical Blockchain applications:

Blockchain Transactions in a Nutshell

- Blockchain consists of a sequence of "valid" transactions (e.g., Send
 5 Bitcoins from Alice to Bob)
- Miners need to be able to verify that transactions are valid
- Bitcoin does this by making the transactions public
- But, what if we want to keep the details of our transaction secret?

ZK Proofs enable privacy-preserving transactions on a public Blockchain!