<u>Distance Vector Routing Algorithm | Example</u> <u>Routing Algorithms-</u>

- Routing algorithms are meant for determining the routing of packets in a node.
- · Routing algorithms are classified as-

- 1. Static Routing Algorithms
- 2. Dynamic Routing Algorithms

In this article, we will discuss about distance vector routing.

Distance Vector Routing Algorithm-

Distance Vector Routing is a dynamic routing algorithm.

It works in the following steps-

Step-01:

Each router prepares its routing table. By their local knowledge, each router knows about-

- All the routers present in the network
- Distance to its neighbouring routers

Step-02:

- Each router exchanges its distance vector with its neighbouring routers.
- Each router prepares a new routing table using the distance vectors it has obtained from its neighbours.

Distance Vector Routing Example-

Consider-

- There is a network consisting of 4 routers.
- The weights are mentioned on the edges.
- Weights could be distances or costs or delays.

Step-01:

Each router prepares its routing table using its local knowledge.

Routing table prepared by each router is shown below-

At Router A-

Destination	Distance	Next Hop
A	0	A
В	2	В
С	œ	_
D	1	D

At Router B-

Destination	Distance	Next Hop
A	2	A
В	0	В
С	3	С
D	7	D

At Router C-

Destination	Distance	Next Hop
A	∞	_
В	3	В
С	0	С
D	11	D

At Router D-

Destination	Distance	Next Hop
A	1	A
В	7	В
С	11	С
D	0	D

Step-02:

- Each router exchanges its distance vector obtained in Step-01 with its neighbours.
- After exchanging the distance vectors, each router prepares a new routing table.

This is shown below-

At Router A-

- Router A receives distance vectors from its neighbours B and D.
- Router A prepares a new routing table as-

F	rom l	B F	rom l	D
	2		1	
	0		7	
	3		11	
	7		0	

Destination	Distance	Next hop
Α	0	Α
В		
С		
D		

 $Cost(A \rightarrow B) = 2$ $Cost(A \rightarrow D) = 1$ New Routing Table at Router A

- Cost of reaching destination B from router A = min { 2+0 , 1+7 } = 2 via B.
- Cost of reaching destination C from router A = min { 2+3, 1+11 } = 5 via B.
- Cost of reaching destination D from router A = min { 2+7, 1+0 } = 1 via D.

Explanation For Destination B

- Router A can reach the destination router B via its neighbor B or neighbor D.
- It chooses the path which gives the minimum cost.
- Cost of reaching router B from router A via neighbor B = Cost $(A \rightarrow B) + Cost (B \rightarrow B) = 2 + 0 = 2$
- Cost of reaching router B from router A via neighbor D = Cost $(A \rightarrow D)$ + Cost $(D \rightarrow B)$ = 1 + 7 =
- Since the cost is minimum via neighbor B, so router A chooses the path via B.
- It creates an entry (2, B) for destination B in its new routing table.
- Similarly, we calculate the shortest path distance to each destination router at every router.

Thus, the new routing table at router A is-

Destination	Distance	Next Hop
A	0	A
В	2	В
С	5	В
D	1	D

At Router B-

- Router B receives distance vectors from its neighbors A, C and D.
- Router B prepares a new routing table as-

Destination	Distance	Next hop
Α		
В	0	В
С		
D		

New Routing Table at Router B

- Oost of reaching destination A from router B = min { 2+0 , 3+ ∞ , 7+1 } = 2 via A.
- Cost of reaching destination C from router B = min { $2+\infty$, 3+0 , 7+11 } = 3 via C.
- Cost of reaching destination D from router B = min $\{ 2+1, 3+11, 7+0 \} = 3 \text{ via A}$.

Thus, the new routing table at router B is-

Destination	Distance	Next Hop
A	2	A
В	0	В
С	3	С
D	3	A

At Router C-

- Router C receives distance vectors from its neighbors B and D.
- Router C prepares a new routing table as-

F	rom l	В	F	rom I	D
	2			1	
	0			7	
	3			11	
	7			0	
Cost	(C→E	3) = 3	Cost (C→[o) = 1

Destination	Distance	Next hop
Α		
В		
С	0	С
D		

New Routing Table at Router C

- Cost of reaching destination A from router C = min { 3+2 , 11+1 } = 5 via B.
- Cost of reaching destination B from router C = min { 3+0 , 11+7 } = 3 via B.
- Cost of reaching destination D from router C = min { 3+7 , 11+0 } = 10 via B.

Thus, the new routing table at router C is-

Destination Distance Next Hop

A	5	В
В	3	В
С	0	С
D	10	В

At Router D-

- Router D receives distance vectors from its neighbors A, B and C.
- Router D prepares a new routing table as-

Destination	Distance	Next hop
Α		
В		
С		
D	0	D

New Routing Table at Router D

- Cost of reaching destination A from router D = min $\{ 1+0 , 7+2 , 11+\infty \} = 1$ via A.
- Cost of reaching destination B from router D = min { 1+2 , 7+0 , 11+3 } = 3 via
- Cost of reaching destination C from router D = min { $1+\infty$, 7+3 , 11+0 } = 10 via B.

Thus, the new routing table at router D is-

Destination Distance	Next Hop
-----------------------------	----------

A	1	A
В	3	A
С	10	В
D	0	D

Step-03:

- Each router exchanges its distance vector obtained in Step-02 with its neighboring routers.
- After exchanging the distance vectors, each router prepares a new routing table.

This is shown below-

At Router A-

- Router A receives distance vectors from its neighbors B and D.
- Router A prepares a new routing table as-

From B	From D
2	1
0	3
3	10
3	0
Cost(A→B) = 2	Cost(A→D) =

Destination	Distance	Next hop
Α	0	Α
В		
С		
D		

New Routing Table at Router A

• Cost of reaching destination B from router $A = min \{ 2+0, 1+3 \} = 2 via B$.

- Cost of reaching destination C from router A = min { 2+3, 1+10 } = 5 via B.
- Cost of reaching destination D from router A = min { 2+3, 1+0 } = 1 via D.

Thus, the new routing table at router A is-

Destination	Distance	Next Hop
A	0	A
В	2	В
С	5	В
D	1	D

At Router B-

- Router B receives distance vectors from its neighbors A, C and D.
- Router B prepares a new routing table as-

Destination	Distance	Next hop
Α		
В	0	В
С		
D		

New Routing Table at Router B

- Cost of reaching destination A from router B = min $\{ 2+0 , 3+5 , 3+1 \} = 2$ via A.
- Cost of reaching destination C from router B = min { 2+5 , 3+0 , 3+10 } = 3 via C.
- Oost of reaching destination D from router B = min { 2+1 , 3+10 , 3+0 } = 3 via A.

Thus, the new routing table at router B is-

Destination	Distance	Next Hop
A	2	A
В	0	В
С	3	С
D	3	A

At Router C-

- Router C receives distance vectors from its neighbors B and D.
- Router C prepares a new routing table as-

Destination	Distance	Next hop
Α		
В		
С	0	С
D		

New Routing Table at Router C

- Cost of reaching destination A from router C = min { 3+2, 10+1 } = 5 via B.
- Cost of reaching destination B from router $C = min \{ 3+0 , 10+3 \} = 3 via B$.
- Cost of reaching destination D from router $C = min \{ 3+3 , 10+0 \} = 6 via B$.

Thus, the new routing table at router C is-

Destination	Distance	Next Hop
A	5	В
В	3	В
С	0	С
D	6	В

At Router D-

- Router D receives distance vectors from its neighbors A, B and C.
- Router D prepares a new routing table as-

Destination	Distance	Next hop
Α		
В		
С		
D	0	D

New Routing Table at Router D

- Oost of reaching destination A from router D = min { 1+0 , 3+2 , 10+5 } = 1 via A.
- Cost of reaching destination B from router D = min $\{ 1+2, 3+0, 10+3 \} = 3$ via A.
- Cost of reaching destination C from router D = min $\{ 1+5, 3+3, 10+0 \} = 6$ via A.

Thus, the new routing table at router D is-

Destination	Distance	Next Hop
A	1	A
В	3	A
С	6	A
D	0	D

These will be the final routing tables at each router.

Identifying Unused Links-

After routing tables converge (becomes stable),

- Some of the links connecting the routers may never be used.
- In the above example, we can identify the unused links as-

We have-

- The value of next hop in the final routing table of router A suggests that only edges AB and AD are used.
- The value of next hop in the final routing table of router B suggests that only edges BA and BC are used.
- The value of next hop in the final routing table of router C suggests that only edge CB is used.
- The value of next hop in the final routing table of router D suggests that only edge DA is used.

Thus, edges BD and CD are never used.

Important Notes-

Note-01:

In Distance Vector Routing,

- Only distance vectors are exchanged.
- "Next hop" values are not exchanged.
- This is because it results in exchanging the large amount of data which consumes more bandwidth.

Note-02:

While preparing a new routing table-

- A router takes into consideration only the distance vectors it has obtained from its neighboring routers.
- It does not take into consideration its old routing table.

Note-03:

The algorithm is called so because-

- It involves exchanging of distance vectors between the routers.
- Distance vector is nothing but an array of distances.

Note-04:

- The algorithm keeps on repeating periodically and never stops.
- This is to update the shortest path in case any link goes down or topology changes.

Note-05:

- Routing tables are prepared total (n-1) times if there are n routers in the given network.
- This is because shortest path between any 2 nodes contains at most n-1 edges if there are n nodes in the graph.

Note-06:

- Distance Vector Routing suffers from count to infinity problem.
- Distance Vector Routing uses UDP at transport layer.