Fakultet elektrotehnike i računarstva Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave

Elektronika 1

Ž. Butković, J. Divković Pukšec, A. Barić

8. Sklopovi s bipolarnim tranzistorima

Osnovni sklop bipolarnog tranzistora

ulazni krug

$$u_{UL} = u_{BE}$$

izlazni krug

$$u_{IZ} = u_{CE} = U_{CC} - R_T i_C$$

Polje izlaznih karakteristika

Q – statička radna točka primjer:

$$U_{CC}$$
 = 15 V, R_T = 1,5 k Ω
za u_{BE} = u_{UL} \rightarrow I_{BQ} = 40 μ A,
 I_{CQ} = 4,1 mA, U_{CEQ} = 8,8 V

između A i B – normalno aktivno područje

točka *A* – granica s područjem zapiranja

točka *B* – granica s područjem zasićenja

Naponska prijenosna karakteristika

naponska prijenosna karakteristika -

$$u_{IZ} = f(u_{UL})$$

- za $u_{UL} = u_{BE} < 0.5 \text{ V} \rightarrow \text{struje tranzistora}$ vrlo male; $i_C \approx 0$, $u_{IZ} = u_{CE} = U_{CC}$
- između A i B normalno aktivno područje \rightarrow pojačalo

$$i_C = I_S \exp\left(\frac{u_{BE}}{U_T}\right) = I_S \exp\left(\frac{u_{UL}}{U_T}\right)$$

$$u_{IZ} = U_{CC} - R_T I_S \exp\left(\frac{u_{UL}}{U_T}\right)$$

□ lijevo od A i desno od $B \rightarrow$ sklopka primjer: $U_{ULQ} = 0.69$ V, $U_{IZQ} = 8.8$ V

Pojačanja

grafičko očitanje:

$$A_{V} = \frac{u_{iz}}{u_{ul}} = \frac{-U_{izm} \sin \omega t}{U_{ulm} \sin \omega t} = -\frac{U_{izm}}{U_{ulm}} = -\frac{1,88}{8 \cdot 10^{-3}} = -235$$

analitički izvod:

$$A_{V} \equiv \frac{\mathrm{d} u_{IZ}}{\mathrm{d} u_{UL}} \bigg|_{Q} = -\frac{R_{T}}{U_{T}} I_{S} \exp \left(\frac{u_{UL}}{U_{T}}\right) \bigg|_{Q} = -\frac{R_{T} I_{CQ}}{U_{T}} = -g_{m} R_{T}$$

primjer: U_T = 25 mV, I_{CQ} = 4,1 mA $\rightarrow g_m$ = 164 mA/V, R_T = 1,5 k $\Omega \rightarrow A_V$ = -246

$$A_{I} \equiv \frac{\mathrm{d} i_{IZ}}{\mathrm{d} i_{UL}} \bigg|_{O} = \frac{\mathrm{d} i_{IZ}}{\mathrm{d} i_{UL}} \bigg|_{O} = -\frac{\mathrm{d} i_{C}}{\mathrm{d} i_{B}} \bigg|_{O} = -h_{fe}$$

primjer: $h_{fe} \approx 100 \rightarrow A_I = -100$

Podešavanje radne točke stalnom baznom strujom

ulazni strujni krug

$$I_{BQ} = \frac{U_{CC} - U_{BEQ}}{R_B}$$

$$U_{BEQ} \approx U_{\gamma}$$

izlazni strujni krug

$$I_{CQ} \approx \beta I_{BQ}$$

$$U_{CEQ} = U_{CC} - R_C I_{CQ}$$

uvjet za normalno aktivno područje

$$U_{CEQ} > U_{BEQ}$$

U sklopu prema slici napon napajanja je U_{CC} = 15 V, a otpor R_{C} = 2 k Ω .

Parametri tranzistora su $U_\gamma=0.7~{
m V}$ i $\beta=100.$ Odrediti otpor otpornika R_B uz koji će u statičkoj radnoj točki izlazni napon U_{CEQ} biti jednak polovici napona napajanja, $U_{CEO}=U_{CC}/2.$

Kada u primjeru 8.1 temperatura naraste s 25° C na 75° C faktor strujnog pojačanja poveća se s $\beta_1 = 100$ na $\beta_2 = 150$. Izračunati nove vrijednosti struja i napona tranzistora u statičkoj radnoj točki na temperaturi od 75° C. Zanemariti struju zasićenja I_{CE0} , te promjenu napona propusne polarizacije U_{BE} s temperaturom.

Stabilizacija radne točke emiterskim otpornikom

Nadomještavanje otpornog djelila po Theveninu

$$U_{BB} = \frac{R_2}{R_1 + R_2} U_{CC}$$

$$R_B = R_1 \| R_2$$

Shema sklopa za statičku analizu

$$U_{BB} = R_B I_B + U_{BE} + R_E (I_B + I_C)$$

$$U_{BB} = R_B I_{BQ} + U_{BEQ} + (1 + \beta) R_E I_{BQ}$$

$$I_{BQ} = \frac{U_{BB} - U_{BEQ}}{R_B + (1 + \beta)R_E} = \frac{U_{BB} - U_{\gamma}}{R_B + (1 + \beta)R_E}$$

$$I_{CQ} = \beta I_{BQ}$$

$$U_{CEQ} = U_{CC} - R_C I_{CQ} - R_E (I_{BQ} + I_{CQ}) \approx U_{CC} - (R_C + R_E) I_{CQ}$$

- U sklopu prema slici napon napajanja je U_{CC} = 15 V, a otpori su R_1 = 11 k Ω , R_2 = 2 k Ω , R_C = 2 k Ω i R_E = 500 Ω .
- a) Odrediti struje i napone tranzistora u statičkoj radnoj točki za temperaturu od 25°C na kojoj su parametri tranzistora $U_{\nu} = 0.7 \text{ V}$ i $\beta_1 = 100$.
- b) Ponoviti proračun statičke radne točke za temperaturu od 75°C na kojoj faktor strujnog pojačanja naraste na $\beta_2 = 150$. Zanemariti pri tome temperaturnu promjenu napona koljena propusno polariziranog spoja $U_{\gamma} = 0.7 \text{ V}$.

Uvjet za dobru stabilizaciju statičke radne točke

$$I_{CQ} = \beta I_{BQ} = \frac{\beta (U_{BB} - U_{BEQ})}{R_B + (1 + \beta)R_E}$$

Struja I_{CQ} neovisna je o β uz $R_B << (1 + \beta) R_E$

$$I_{CQ} \approx \frac{\beta (U_{BB} - U_{BEQ})}{(1+\beta)R_E} \approx \frac{U_{BB} - U_{BEQ}}{R_E}$$

Uz $R_{B} << (1+\beta) R_{E}$ baza je na fiksnom potencijalu U_{BB}

$$U_{BB} \approx U_{BE} + R_E I_C$$

Podešavanje radne točke s dva napona napajanja

jednadžba ulaznog strujnog kruga

$$U_{EE} = R_B I_B + U_{BE} + R_E \left(I_B + I_C \right)$$

$$UZ I_C = \beta I_B$$

$$I_B = \frac{U_{EE} - U_{BE}}{R_B + (1 + \beta)R_E}$$

jednadžba izlaznog strujnog kruga

$$U_{CE} = U_{CC} + U_{EE} - (R_C + R_E)I_C$$

Pojačalo u spoju zajedničkog emitera

Pojačalo u spoju zajedničkog emitera – naponsko pojačanje

$$R_B = R_1 \| R_2$$

$$u_{iz} = -g_m u_{be} \left(r_{ce} \| R_C \| R_T \right) \qquad u_{ul} = u_{be}$$

$$A_{V} = \frac{u_{iz}}{u_{ul}} = -g_{m} \left(r_{ce} \| R_{C} \| R_{T} \right) \qquad A_{V} = \frac{u_{iz}}{u_{ul}} \approx -g_{m} \left(R_{C} \| R_{T} \right)$$

uz ovisni izvor
$$h_{fe} i_b$$
 i uz $g_m = h_{fe}/r_{be} \rightarrow A_V = \frac{u_{iz}}{u_{ul}} \approx -\frac{h_{fe} \left(R_C \parallel R_T\right)}{r_{be}}$

Pojačalo u spoju zajedničkog emitera – strujno pojačanje

$$i_{iz} = -g_m u_{be} \frac{r_{ce} \| R_C}{r_{ce} \| R_C + R_T}$$

$$u_{be} = (R_B \| r_{be}) i_{ul}$$

$$A_{I} = \frac{i_{iz}}{i_{ul}} = -g_{m} \frac{r_{ce} \| R_{C}}{r_{ce} \| R_{C} + R_{T}} (R_{B} \| r_{be}) \qquad A_{I} = \frac{i_{iz}}{i_{ul}} \approx -g_{m} \frac{R_{C}}{R_{C} + R_{T}} (R_{B} \| r_{be})$$

$$A_{I} = \frac{i_{iz}}{i_{ul}} \approx -g_{m} \frac{R_{C}}{R_{C} + R_{T}} \left(R_{B} \| r_{be} \right)$$

uz ovisni izvor
$$h_{fe} i_b$$
 i uz $g_m = h_{fe}/r_{be} \rightarrow$

uz ovisni izvor
$$h_{fe} i_b$$
 i uz $g_m = h_{fe}/r_{be} \rightarrow A_I = \frac{i_{iz}}{i_{ul}} \approx -h_{fe} \frac{R_C}{R_C + R_T} \frac{R_B}{R_B + r_{be}}$

Pojačalo u spoju zajedničkog emitera – ulazni i izlazni otpor

$$R_{ul} = \frac{u_{ul}}{i_{ul}} = R_B \| r_{be}$$
 strujno pojačanje \rightarrow $A_I = \frac{i_{iz}}{i_{ul}} = \frac{u_{iz} / R_T}{u_{ul} / R_{ul}} = A_V \frac{R_{ul}}{R_T}$

Shema za određivanje izlaznog otpora:

$$R_{iz} = \frac{u}{i} = r_{ce} \| R_C$$

U pojačalu sa slike zadano je: $U_{CC}=15~{\rm V},\,R_g=500~\Omega,\,R_1=30~{\rm k}\Omega,\,R_2=11~{\rm k}\Omega,\,R_C=2~{\rm k}\Omega,\,R_T=1,2~{\rm k}\Omega$ i $R_E=1~{\rm k}\Omega.$ Parametri npn bipolarnog tranzistora su $\beta\approx h_{fe}=100,\,U_{\gamma}=0,7~{\rm V}$ i $U_A=200~{\rm V}.$ Naponski ekvivalent temperature $U_T=25~{\rm mV}.$ Odrediti pojačanja $A_V=u_{iz}/u_{ul},\,A_I=i_{iz}/i_{ul}$ i $A_{Vg}=u_{iz}/u_g$, te ulazni i izlazni otpor pojačala.

Za pojačalo iz primjera 8.4 u polje izlaznih karakteristika bipolarnog tranzistora ucrtati statički i dinamički radni pravac. Koliki je maksimalni hod izmjeničnih izlaznih napona i struje, a da pri tome radna točke ne izađe iz normalnog aktivnog područja?

Podešavanje statičke radne točke za maksimalni hod signala (1)

Jednadžba statičkog radnog pravca:

$$U_{CEQ} = U_{CC} - (R_C + R_E)I_{CQ}$$

Jednadžba dinamičkog radnog pravca:

$$u_{ce} = -\left(R_C \, \middle| \, R_T\right) i_c$$

Podešavanje statičke radne točke za maksimalni hod signala (2)

$$I_{CQ} = \frac{U_{CC}}{R_C + R_E + R_C \|R_T}$$

$$u_{ce} = -(R_C \| R_T)i_c$$

$$u_{CE} - U_{CEO} = -(R_C \| R_T)(i_C - I_{CO})$$

U točki
$$B \rightarrow za \ u_{CE} = 0$$
, $i_C = 2 I_{CO}$

$$0 - U_{CEQ} = -(R_C \| R_T)(2I_{CQ} - I_{CQ})$$

$$U_{CEQ} = (R_C \| R_T) I_{CQ}$$

$$U_{CEQ} = \frac{R_C \| R_T}{R_C + R_E + R_C \| R_T} U_{CC}$$

Za pojačalo sa slike odrediti statičku radnu točku za maksimalni hod signala. Koliki su pri tome maksimalni hodovi izlaznog napona u_{iz} i izlazne struje i_{iz} ? Odrediti otpore otpornog djelila R_1 i R_2 kojima se postiže ta statička radna točka. Zadano je: $U_{CC}=15$ V, $R_C=2$ k Ω , $R_T=1,2$ k Ω i $R_E=1$ k Ω . Parametri npn bipolarnog tranzistora su $\beta=100$ i $U_{\gamma}=0,7$ V.

Pojačalo u spoju zajedničkog emitera s emiterskom degeneracijom

Pojačalo s emiterskom degeneracijom – naponsko pojačanje

$$u_{ul} = i_b r_{be} + (1 + h_{fe})i_b R_E$$
 $u_{iz} = -h_{fe} i_b (R_C || R_T)$

$$u_{iz} = -h_{fe} i_b \left(R_C \| R_T \right)$$

$$A_{V} = \frac{u_{iz}}{u_{ul}} = -h_{fe} \frac{R_{C} \| R_{T}}{r_{be} + (1 + h_{fe}) R_{E}} \qquad A_{V} \approx \frac{-g_{m} (R_{C} \| R_{T})}{1 + g_{m} R_{E}}$$

$$A_V \approx \frac{-g_m \left(R_C \| R_T\right)}{1 + g_m R_E}$$

Uz:
$$g_m R_E >> 1 \rightarrow A_V \approx -\frac{R_C \|R_T\|}{R_E}$$

Pojačalo s emiterskom degeneracijom – strujno pojačanje

$$R'_{ul} = \frac{u_{ul}}{i_b} = r_{be} + (1 + h_{fe})R_E$$

$$i_{iz} = -h_{fe} i_b \frac{R_C}{R_C + R_T}$$
 $i_b = i_{ul} \frac{R_B}{R_B + R'_{ul}} = i_{ul} \frac{R_B}{R_B + r_{be} + (1 + h_{fe})R_E}$

$$A_{I} = \frac{i_{iz}}{i_{ul}} = -h_{fe} \frac{R_{C}}{R_{C} + R_{T}} \frac{R_{B}}{R_{B} + r_{be} + (1 + h_{fe})R_{E}}$$

Pojačalo s emiterskom degeneracijom – ulazni i izlazni otpor

$$R_{ul} = \frac{u_{ul}}{i_{ul}} = R_B \| R'_{ul} = R_B \| [r_{be} + (1 + h_{fe})R_E]$$

$$i = \frac{u}{R_C} + h_{fe} i_b$$

$$u_e = (1 + h_{fe})i_b R_E = -i_b (R_g || R_B + r_{be}) \rightarrow i_b = 0$$

$$R_{iz} = \frac{u}{i} = R_C$$

U pojačalu sa slike zadano je: $U_{CC}=15$ V, $R_g=500$ Ω , $R_1=25$ k Ω , $R_2=2,2$ k Ω , $R_C=3$ k Ω , $R_T=2$ k Ω i $R_E=200$ Ω . Parametri npn bipolarnog tranzistora su $\beta \approx h_{fe}=100$ i $U_{\gamma}=0,7$ V. Zanemariti porast struje kolektora u normalnom aktivnom području. Naponski ekvivalent temperature $U_T=25$ mV. Odrediti pojačanja $A_V=u_{iz}/u_{ul}$, $A_I=i_{iz}/i_{ul}$ i $A_{Vg}=u_{iz}/u_g$, te ulazni i izlazni otpor pojačala.

Pojačalo u spoju zajedničke baze

s jednim izvorom napajanja

s dva izvora napajanja

Pojačalo u spoju zajedničke baze – naponsko pojačanje

$$u_{ul} = -i_b r_{be} \qquad \qquad u_{iz} = -h_{fe} i_b \left(R_C \| R_T \right)$$

$$A_{V} = \frac{u_{iz}}{u_{ul}} = h_{fe} \frac{R_{C} \| R_{T}}{r_{be}} = g_{m} (R_{C} \| R_{T})$$

Pojačalo u spoju zajedničke baze – strujno pojačanje

$$R'_{ul} = \frac{u_{ul}}{i_e} = \frac{-i_b r_{be}}{-(1 + h_{fe})i_b} = \frac{r_{be}}{1 + h_{fe}} \approx \frac{r_{be}}{h_{fe}} = \frac{1}{g_m}$$

$$i_{iz} = -h_{fe} i_b \frac{R_C}{R_C + R_T}$$
 $i_e = -(1 + h_{fe})i_b = i_{ul} \frac{R_E}{R_E + R'_{ul}}$

$$A_{I} = \frac{i_{iz}}{i_{ul}} = \frac{h_{fe}}{1 + h_{fe}} \frac{R_{C}}{R_{C} + R_{T}} \frac{R_{E}}{R_{E} + R'_{ul}}$$

Pojačalo u spoju zajedničke baze – ulazni i izlazni otpor

$$R_{ul} = \frac{u_{ul}}{i_{ul}} = R_E \| R'_{ul} = R_E \| \frac{r_{be}}{1 + h_{fe}} \approx R_E \| \frac{1}{g_m}$$

$$u_e = -i_b r_{be} = (1 + h_{fe})i_b (R_g || R_E)$$

$$R_{iz} = \frac{u}{i} = R_C$$

U pojačalu sa slike zadano je: $U_{CC} = U_{EE} = 15 \text{ V}$, $R_g = 500 \ \Omega$, $R_C = 2 \ \text{k}\Omega$ i $R_T = 1.2 \ \text{k}\Omega$. Parametri npn bipolarnog tranzistora su $\beta \approx h_{fe} = 100$ i $U_{\nu} = 0.7 \text{ V.}$ Zanemariti porast struje kolektora u normalnom aktivnom području. Naponski ekvivalent temperature $U_T = 25 \text{ mV}$. Odrediti otpor otpornika R_E koji će osigurati statičku struju kolektora $I_{CO} = 3 \text{ mA.}$ Izračunati pojačanja $A_V = u_{iz}/u_{ul}$, $A_I = i_{iz}/i_{ul}$ i $A_{Vo} = u_{iz}/u_{o}$, te ulazni i izlazni otpor pojačala.

Pojačalo u spoju zajedničkog kolektora – emitersko sljedilo

U statici: $U_{CE} \approx U_{CC} - R_E I_C$

Pojačalo u spoju zajedničkog kolektora – naponsko pojačanje

$$u_{iz} = (1 + h_{fe})i_b(R_E \| R_T)$$
 $u_{ul} = i_b r_{be} + (1 + h_{fe})i_b(R_E \| R_T)$

$$A_{V} = \frac{u_{iz}}{u_{ul}} = \frac{(1 + h_{fe})(R_{E} || R_{T})}{r_{be} + (1 + h_{fe})(R_{E} || R_{T})}$$

$$A_{V} \approx \frac{h_{fe}\left(R_{E} \parallel R_{T}\right)}{r_{be} + h_{fe}\left(R_{E} \parallel R_{T}\right)} = \frac{g_{m}\left(R_{E} \parallel R_{T}\right)}{1 + g_{m}\left(R_{E} \parallel R_{T}\right)}$$

Pojačalo u spoju zajedničkog kolektora – strujno pojačanje

$$R'_{ul} = \frac{u_{ul}}{i_b} = r_{be} + (1 + h_{fe}) (R_E || R_T)$$

$$i_{iz} = (1 + h_{fe})i_b \frac{R_E}{R_E + R_T}$$
 $i_b = i_{ul} \frac{R_B}{R_B + R'_{ul}}$

$$A_{I} = \frac{i_{iz}}{i_{ul}} = (1 + h_{fe}) \frac{R_{E}}{R_{E} + R_{T}} \frac{R_{B}}{R_{B} + R'_{ul}}$$

Pojačalo u spoju zajedničkog kolektora – ulazni i izlazni otpor

$$R_{ul} = \frac{u_{ul}}{i_{ul}} = R_B \| R'_{ul} = R_B \| [r_{be} + (1 + h_{fe})(R_E \| R_T)]$$

$$u = -i_b \left(R_g \left\| R_B + r_{be} \right) \right.$$

$$u = -i_b \left(R_g \| R_B + r_{be} \right) \qquad \frac{i}{u} = \frac{1}{R_E} - \frac{\left(1 + h_{fe} \right) i_b}{u} = \frac{1}{R_E} + \frac{1 + h_{fe}}{R_g \| R_B + r_{be}}$$

$$R_{iz} = \frac{u}{i} = R_E \left\| \frac{R_g \| R_B + r_{be}}{1 + h_{fe}} \right\|$$

U pojačalu sa slike zadano je: $U_{CC}=15~{\rm V},~R_g=500~\Omega,~R_1=70~{\rm k}\Omega,~R_1=100~{\rm k}\Omega,~R_E=4~{\rm k}\Omega$ i $R_T=1~{\rm k}\Omega.$ Parametri npn bipolarnog tranzistora su $\beta\approx h_{fe}=100~{\rm i}$ $U_\gamma=0,7~{\rm V}.$ Zanemariti porast struje kolektora u normalnom aktivnom području. Naponski ekvivalent temperature $U_T=25~{\rm mV}.$ Odrediti pojačanja $A_V=u_{iz}/u_{ul},~A_I=i_{iz}/i_{ul}~{\rm i}~A_{Vg}=u_{iz}/u_g,$ te ulazni i izlazni otpor pojačala.

U pojačalu sa slike zadano je: $U_{CC} = U_{EE} = 15 \text{ V}$, $R_g = 500 \ \Omega$, $R_E = 4 \ \text{k}\Omega$ i $R_T = 1 \ \text{k}\Omega$. Parametri npn bipolarnog tranzistora su $\beta \approx h_{fe} = 100$ i $U_\gamma = 0.7 \ \text{V}$. Zanemariti porast struje kolektora u normalnom aktivnom području. Naponski ekvivalent temperature $U_T = 25 \ \text{mV}$. Odrediti pojačanja $A_V = u_{iz}/u_{ul}$ i $A_I = i_{iz}/i_{ul}$, te ulazni i izlazni otpor pojačala.

Usporedba osnovnih spojeva pojačala s bipolarnim tranzistorima

Spoj pojačala	zajednički emiter	zajednička baza	zajednički kolektor
A_V	$-g_m(R_C R_T)$	$g_m\left(R_C \parallel R_T\right)$	$\frac{g_m\left(R_E \parallel R_T\right)}{1+g_m\left(R_E \parallel R_T\right)}$
A_I	$-h_{fe}\frac{R_C}{R_C+R_T}\frac{R_B}{R_B+r_{be}}$	$\frac{h_{fe}}{1 + h_{fe}} \frac{R_C}{R_C + R_T} \frac{R_E}{R_E + \frac{r_{be}}{1 + h_{fe}}}$	$(1 + h_{fe}) \frac{R_E}{R_E + R_T} \frac{R_B}{R_B + r_{be} + (1 + h_{fe}) (R_E \parallel R_T)}$
R_{ul}	$R_B \parallel r_{be}$	$R_E \parallel \frac{r_{be}}{1 + h_{fe}}$	$R_B \left\ \left[r_{be} + (1 + h_{fe}) \left(R_E \middle\ R_T \right) \right] \right.$
R_{iz}	R_C	R_C	$R_E \parallel \frac{R_g \parallel R_B + r_{be}}{1 + h_{fe}}$

Diferencijsko pojačalo

Diferencijsko pojačalo

- jedno od najznačajnijih tranzistorskih pojačala
- ulazni stupanj u operacijskim pojačalima, komparatorima, stabilizatorima
- primjena u mjernoj tehnici

2 ulaza $\rightarrow u_{ul1}$ i u_{ul2}

2 izlaza $\rightarrow u_{iz1}$ i u_{iz2}

koristi se:

- □ samo u_{iz1} ili u_{iz2} → asimetrični izlaz
- razlika $u_{iz} = u_{iz2} u_{iz1} \rightarrow$ diferencijski ili simetrični izlaz

istosmjerno pojačalo

Statička analiza

u statici
$$\rightarrow u_{\sigma 1} = u_{\sigma 2} = 0$$

$$T_1 = T_2, R_{g1} = R_{g2}, R_{C1} = R_{C2} \longrightarrow I_{B1} = I_{B2}, I_{C1} = I_{C2}$$

$$U_{EE} = I_{BQ1} R_{g1} + U_{BEQ1} + 2(1+\beta)I_{BQ1} R_{E}$$

$$I_{BQ1} = I_{BQ2} = \frac{U_{EE} - U_{BEQ1}}{R_{g1} + 2(1+\beta)R_{E}}$$

$$I_{CO1} = I_{CO2} = \beta I_{BO1}$$

$$\begin{split} U_{CEQ1} &= U_{CEQ2} = U_{CC} + U_{EE} - \left[\beta R_{C1} + 2(1+\beta)R_E\right]I_{BQ1} \approx \\ &\approx U_{CC} + U_{EE} - \left(R_{C1} + 2R_E\right)I_{CQ1}. \end{split}$$

U diferencijskom pojačalu sa slike zadano je: $U_{CC}=U_{EE}=15~{\rm V},~R_{g1}=R_{g2}=500~\Omega,$ $R_{C1}=R_{C2}=1,5~{\rm k}\Omega$ i $R_E=4,5~{\rm k}\Omega.$ Parametri oba bipolarna tranzistora su $\beta=100$ i $U_{\gamma}=0,7~{\rm V}.$ Odrediti struje i napone tranzistora u statičkoj radnoj točki.

Dinamička analiza – nadomjesni sklop pojačala za mali signal

Zajednički i diferencijski signal

Naponi u_{g1} i u_{g2} rastavljaju se na:

- lacksquare zajednički signal u_z i
- \Box diferencijski signal u_d

$$u_z = \frac{u_{g1} + u_{g2}}{2} \qquad u_d = u_{g2} - u_{g1}$$

Pojedinačni ulazni naponi u_{g1} i u_{g2} su:

$$u_{g1} = u_z - u_d / 2$$
 $u_{g2} = u_z + u_d / 2$

Analiza metodom superpozicije – posebno za zajednički, a posebno za diferencijski signal

Pojačanje zajedničkog signala

Na oba je ulaza zajednički signal $\rightarrow u_{g1} = u_{g2} = u_z$

Uz simetriju $\rightarrow i_{bz1} = i_{bz2}$; za $u_{iz} = u_{iz2}$

$$u_{iz} = -h_{fe} i_{bz2} R_{C2}$$

$$u_{z} = i_{bz2} \left[R_{g2} + r_{be2} + 2 R_{E} (1 + h_{fe}) \right]$$

$$A_{Vz} = \frac{u_{iz}}{u_z} = \frac{-h_{fe} R_{C2}}{R_{g2} + r_{be2} + 2R_E (1 + h_{fe})}$$

Pojačanje diferencijskog signala

Između oba ulaza je diferencijski signal $u_d \rightarrow u_{g2} = -u_{g1} = u_d/2$

Uz simetriju $\rightarrow i_{bd2} = -i_{bd1} \rightarrow$ nema pada napona na R_E ; za $u_{iz} = u_{iz2}$

$$u_{iz} = -h_{fe} i_{bd2} R_{C2}$$

$$u_{d} / 2 = i_{bd2} (R_{g2} + r_{be2})$$

$$A_{Vd} = \frac{u_{iz}}{u_d} = \frac{1}{2} \frac{u_{iz}}{u_d / 2} = \frac{-h_{fe} R_{C2}}{2(R_{g2} + r_{be2})}$$

Faktor potiskivanja

Izlazni napon → superpozicija napona uz diferencijski i zajednički signal

$$u_{iz} = A_{Vd} u_d + A_{Vz} u_z$$

Faktor potiskivanja:
$$\rho = \frac{|A_{Vd}|}{|A_{Vz}|}$$

$$\rho = \frac{R_{g2} + r_{be2} + 2R_E (1 + h_{fe})}{2(R_{g2} + r_{be2})} = \frac{1}{2} + \frac{R_E (1 + h_{fe})}{R_{g2} + r_{be2}}$$

Uz
$$R_{g1} = R_{g2} = 0$$

$$\rho = \frac{1}{2} + \frac{R_E (1 + h_{fe})}{r_{be2}} \approx \frac{1}{2} + g_{m2} R_E = \frac{1}{2} + \frac{I_{CQ2}}{U_T} R_E$$

Za diferencijsko pojačalo iz primjera 8.11 za asimetrični izlaz $u_{iz}=u_{iz2}$ izračunati naponska pojačanja zajedničkog i diferencijskog signala A_{Vz} i A_{Vd} , te faktor potiskivanja ρ . Dinamički faktor strujnog pojačanja $h_{fe}=100$, a naponski ekvivalent temperature $U_T=25~{\rm mV}$. Zanemariti porast struje kolektora u normalnom aktivnom području.

Na diferencijsko pojačalo iz primjera 8.12 priključeni su sinusni signali $u_{g1} = U_{g1m} \sin \omega t$ i $u_{g2} = U_{g2m} \sin \omega t$. Izračunati izlazni napon $u_{iz} = u_{iz2}$ za

- a) $U_{g1m} = -5 \text{ mV i } U_{g2m} = 5 \text{ mV}$, te
- b) $U_{g1m} = 20 \text{ mV i } U_{g2m} = 30 \text{ mV.}$

Pojačanja simetričnog ili diferencijskog izlaza

Diferencijski izlaz $\to u_{iz}=u_{iz2}-u_{iz1}\to u_{iz2}$ i u_{iz1} su pojedinačni izlazni naponi Za zajednički signal $u_{g1}=u_{g2}=u_z$

$$A_{Vz1} = \frac{u_{iz1}}{u_z} = \frac{-h_{fe} R_{C1}}{R_{g1} + r_{be1} + 2R_E (1 + h_{fe})} \qquad A_{Vz2} = \frac{u_{iz2}}{u_z} = \frac{-h_{fe} R_{C2}}{R_{g2} + r_{be2} + 2R_E (1 + h_{fe})}$$

$$A_{Vz} = \frac{u_{iz2} - u_{iz1}}{u_z} = A_{Vz2} - A_{Vz1} = 0$$

Za diferencijski signal $u_{g2} = -u_{g1} = u_d/2$

$$A_{Vd1} = \frac{u_{iz1}}{u_d} = \frac{+h_{fe} R_{C1}}{2(R_{g1} + r_{be1})} \qquad A_{Vd2} = \frac{u_{iz2}}{u_d} = \frac{-h_{fe} R_{C2}}{2(R_{g2} + r_{be2})}$$

$$A_{Vd} = \frac{u_{iz2} - u_{iz1}}{u_d} = A_{Vd2} - A_{Vd1} = \frac{-h_{fe} R_{C2}}{R_{g2} + r_{be2}}$$

Prijenosna karakteristika (1)

$$I_0 = \frac{u_E + U_{EE}}{R_E} \approx \frac{U_{EE}}{R_E}$$

$$I_0 \approx i_{C1} + i_{C2}$$

$$i_{C1} = I_S \exp\left(\frac{u_{BE1}}{U_T}\right)$$

$$i_{C2} = I_S \exp\left(\frac{u_{BE2}}{U_T}\right)$$

$$i_{C1} = I_S \exp\left(\frac{u_{BE2}}{U_T}\right) \exp\left(-\frac{u_{BE2} - u_{BE1}}{U_T}\right) = i_{C2} \exp\left(-\frac{u_{BE2} - u_{BE1}}{U_T}\right)$$

$$u_D = u_{B2} - u_{B1} = u_{BE2} - u_{BE1}$$

Prijenosna karakteristika (2)

$$i_{C2} \approx \frac{I_0}{1 + \exp\left(-\frac{u_D}{U_T}\right)}$$
 $i_{C1} \approx \frac{I_0}{1 + \exp\left(\frac{u_D}{U_T}\right)}$

$$i_{C1} \approx \frac{I_0}{1 + \exp\left(\frac{u_D}{U_T}\right)}$$

Za
$$u_D = 0$$

$$G_{m,\text{max}} = \left| \frac{\mathrm{d}i_{C1}}{\mathrm{d}u_D} \right| = \left| \frac{\mathrm{d}i_{C2}}{\mathrm{d}u_D} \right| = \frac{I_0}{4U_T}$$

$$A_{Vd,\text{max}} = -G_{m,\text{max}} R_{C2} =$$

$$= -\frac{I_0}{4U_T} R_{C2}$$

Bipolarni tranzistor kao sklopka

Točka A: $i_C \approx 0$, $u_{IZ} = u_{CE} = U_{CC} \rightarrow \text{isključena sklopka}$

Točka B: $u_{IZ} = u_{CE} = U_{CEzas}$, $i_C = I_{Czas} = (U_{CC} - U_{CEzas})/R_C \rightarrow \text{uključena sklopka}$

Uvjet za zasićenje: $I_{Bzas} \ge I_{Czas}/\beta$

Bipolarna sklopka sa slike radi s naponom napajanja $U_{CC}=5~{\rm V}$ i s kolektorskim otporom $R_C=1~{\rm k}\Omega$. Odrediti maksimalnu vrijednost otpora R_B koji će uz ulazni napon $U_{UL}=U_{CC}$ osigurati rad tranzistora u zasićenju. Faktor strujnog pojačanja tranzistora β može poprimati vrijednosti iz intervala $50~{\rm do}~150$. Pretpostaviti vrijednosti $U_{CEzas}=0.2~{\rm V}$ i $U_{BEzas}=0.8~{\rm V}$.

Naponska prijenosna karakteristika

Bipolarna tranzistorska sklopka je invertor

naponska prijenosna karakteristika $\rightarrow u_{IZ} = f(u_{UL})$

$$lacksquare$$
 za $u_{U\!L} < U_{U\!LN}
ightarrow i_C pprox 0$, $u_{I\!Z} = U_{CC} = U_{I\!ZV} = U_1$

$$lacksquare$$
 za $U_{ULN} < u_{UL} < U_{ULV} \rightarrow i_C = \beta i_B$

$$u_{IZ} = u_{CE} = U_{CC} - R_C i_C = U_{CC} - \beta R_C \frac{u_{UL} - u_{BE}}{R_B}$$

za
$$u_{U\!L} = U_{U\!LN} \rightarrow i_C \approx 0 \rightarrow U_{U\!LN} = U_{BE}$$

za
$$u_{UL} = U_{ULV} \rightarrow U_{IZ} = U_{CEzas}$$

$$I_{B} = \frac{U_{ULV} - U_{BE}}{R_{B}} = \frac{I_{Czas}}{\beta} = \frac{U_{CC} - U_{CEzas}}{\beta R_{C}}$$

$$U_{ULV} = \frac{R_B}{\beta R_C} (U_{CC} - U_{CEzas}) + U_{BE}$$

Odrediti karakteristične napone naponske prijenosne karakteristike invertora s bipolarnim tranzistorom sa slike. Napon napajanja $U_{CC}=5$ V, a otpori otpornika su $R_B=10$ k Ω i $R_C=1$ k Ω . Faktor strujnog pojačanja tranzistora $\beta=100$, a napon $U_{CEzas}=0,2$ V. Pretpostaviti da je normalnom aktivnom području rada tranzistora napon $U_{BE}=0,7$ V. Izračunati granice naponskih smetnji.

Utjecaj opterećenja na napone logičkih razina

Analiziraju se stacionarna stanja invertora s tranzistorom T_1

 $lacksquare T_0$ u zapiranju $ightarrow T_1$ u zasićenju $ightarrow T_2$ u zapiranju

$$\begin{split} I_{B1zas} &= \frac{U_{CC} - U_{BEzas}}{R_C + R_B} \\ I_{B1zas} &\geq \frac{I_{C1zas}}{\beta} = \frac{U_{CC} - U_{CEzas}}{\beta R_C} \\ u_{IZ1} &= u_{CE1} = U_{CEzas} = U_0 \end{split}$$

lacksquare T_0 u zasićenju o T_1 u zapiranju o T_2 u zasićenju

$$u_{UL1} = u_{CE0} = U_{CEzas}$$

$$u_{IZ1} = U_{CC} - R_C I_{B2zas} =$$

$$= U_{CC} - R_C \frac{U_{CC} - U_{BEzas}}{R_C + R_B} = U_1$$

Ako je T_1 opterećen s N invertora

$$U_1 = U_{CC} - NR_C \frac{U_{CC} - U_{BEzas}}{NR_C + R_B}$$

U lancu invertora sa slike zadani su napon napajanja $U_{CC}=5$ V i otpori otpornika $R_B=20~{\rm k}\Omega$ i $R_C=1~{\rm k}\Omega$. Parametri svih tranzistora su jednaki i iznose: faktor strujnog pojačanja $\beta=100$ i naponi $U_{CEzas}=0.2$ V i $U_{BEzas}=0.8$ V. Da li uz navedene podatke invertori ispravno rade? Odrediti napone logičkih 0 i 1 invertora s tranzistorom T_1 .

Impulsni odziv

Vremenski odziv na pravokutni impuls

Uključivanje tranzistora

- ☑ Za t < 0 → napon $u_{UL} = -U_{UL2}$ zaporno polarizira spoj emiter-baza → $i_B \approx 0$, $u_{BE} = -U_{UL2}$; napon U_{CC} zaporno polarizira spoj kolektor-baza → $i_C \approx 0$ → tranzistor je u području zapiranja
- □ U t=0 → trenutačna promjena napona u_{UL} s $-U_{UL2}$ na U_{UL1} izaziva trenutačnu promjenu struje i_B → spoj emiter-baza postupno se propusno polarizira → postupno raste struja i_C → tranzistor prolazi kroz normalno aktivno područje i uz

$$i_{B1} = \frac{U_{UL1} - U_{BEzas}}{R_B} > \frac{I_{Czas}}{\beta} = \frac{U_{CC} - U_{CEzas}}{\beta R_C}$$

prelazi u područje zasićenja

- Impulsna vremena
 - ightharpoonup vrijeme zakašnjenja $t_d \rightarrow \text{od } t = 0 \text{ do } i_C = 0,1 \, I_{Czas}$
 - ightharpoonup vrijeme porasta $t_r \rightarrow \text{od } i_C = 0.1 \, I_{Czas} \, \text{do } i_C = 0.9 \, I_{Czas}$
 - \triangleright vrijeme uključivanja $t_{on} = t_d + t_r$

Isključivanje tranzistora

□ U $t=t_1$ → trenutačna promjena napona u_{UL} s U_{UL1} na − U_{UL2} → trenutačna promjena struje i_R na

$$-I_{B2} = \frac{-U_{UL2} - U_{BEzas}}{R_B}$$

- ightarrow zbog injektiranog naboja manjinskih nosilaca spoj emiter-baza ostaje u početku propusno polariziran ightarrow struja baze $-I_{B2}$ odstranjuje višak naboja u području zasićenja ightarrow struje i_B i i_C počinju se smanjivati ulaskom u normalno aktivno područje ightarrow prolazom kroz normalno aktivno područje tranzistor prelazi u području zapiranja
- Impulsna vremena
 - ightharpoonup vrijeme zadržavanja $t_s \rightarrow \text{od } t = t_1 \text{ do } i_C = 0.9 I_{Czas}$
 - ightharpoonup vrijeme pada $t_f \rightarrow \text{ od } i_C = 0.9 I_{Czas} \text{ do } i_C = 0.1 I_{Czas}$
 - \triangleright vrijeme isključivanja $t_{off} = t_s + t_f$

Brzina odziva

- lacktriangle Odnos vremena uključivanja i isključivanja podešava se omjerom $I_{\rm B2}/I_{\rm B1}$ odnosno $U_{\rm UL2}/U_{\rm UL1}$
 - \rightarrow veća struja I_{R1} \rightarrow brže uključivanje i sporije isključivanje
 - \rightarrow veći iznos struje I_{B2} \rightarrow brže isključivanje i sporije uključivanje
- Sklopka se može upravljati samo pozitivnim impulsom $u_{U\!L}$ s visokom razinom $u_{U\!L}=U_{U\!L1}$ i niskom razinom $u_{U\!L}=0$ \to manji iznos struje I_{B2} i sporije isključivanje
- Najduže vrijeme je vrijeme zadržavanja $t_s \to z$ bog odstranjenja viška naboja manjinskih nosilaca u području zasićenja

Skraćivanje vremena zadržavanja – Schottkyjev tranzistor

Schottkyjeva dioda između kolektora i baze

Kod propusne polarizacije spoja kolektor-baza provede Schottkyjeva dioda i ograniči napon u_{BC} na napon koljena diode — sprječava ulazak tranzistora dublje u zasićenje

Napon u_{CE} tranzistora u zasićenju $u_{CE} = u_{BE} - u_D \approx 0.7 - 0.4 = 0.3 \text{ V}$ Primjena: Schottky TTL

Digitalni integrirani sklopovi

- Prvi digitalni integrirani sklopovi bipolarni sklopovi
- Najznačajnije bipolarne logičke skupine
 - TTL skupina tranzistorsko-tranzistorske logike
 (engl. transistor-transistor-logic) veća brzina rada primjenom
 Schottkyjevih tranzistora
 - ➤ ECL skupina emiterski vezane logike
 (engl. emitter-coupled-logic) najbrža skupina logičkih sklopova →
 tranzistori rade u normalnom aktivnom području i području zasićenja

Strujna sklopka

Sklopovska konfiguracija diferencijskog pojačala

ulaz $\rightarrow u_{UL}$, $U_R \rightarrow$ referentni napon

$$\frac{i_{C1}}{i_{C2}} = \exp\left(\frac{u_{BE1} - u_{BE2}}{U_T}\right) = \exp\left(\frac{u_{UL} - U_R}{U_T}\right)$$

za
$$i_{C1} + i_{C2} \approx I_0$$

$$\frac{i_{C1}}{I_0} \approx \frac{1}{1 + \exp\left(\frac{U_R - u_{UL}}{U_T}\right)}$$

$$\frac{i_{C2}}{I_0} \approx \frac{1}{1 + \exp\left(\frac{u_{UL} - U_R}{U_T}\right)}$$

Strujna sklopka – naponi logičkih razina

$$\begin{aligned} \mathbf{Za} \ & U_R - u_{UL} > 4 \ U_T \rightarrow \\ & i_{C1} \approx 0 \ \mathbf{i} \ i_{C2} \approx I_0 \\ & u_{IZ1} = U_1 \approx U_{CC} \\ & u_{IZ2} = U_0 \approx U_{CC} - I_0 R_{C2} \end{aligned} \\ \mathbf{Za} \ & u_{UL} - U_R > 4 \ U_T \rightarrow \\ & i_{C1} \approx I_0 \ \mathbf{i} \ i_{C2} \approx 0 \\ & u_{IZ1} = U_0 \approx U_{CC} - I_0 R_{C1} \\ & u_{IZ2} = U_1 \approx U_{CC} \end{aligned}$$

tranzistori rade u normalnom aktivnom području ili području zapiranja

$$I_{0} = \frac{U_{R} - u_{BE2} + U_{EE}}{R_{E}}$$

$$U_{0} \approx U_{CC} - \frac{R_{C}}{R_{E}} (U_{R} - u_{BE2} + U_{EE})$$

$$\Delta U = U_{1} - U_{0} \approx \frac{R_{C}}{R_{E}} (U_{R} - u_{BE2} + U_{EE})$$

ECL sklop serije 10K - shema

ECL sklop serije 10K – opis rada (1)

- Temelji se na strujnoj sklopki
- □ Logička funkcija → tranzistor T_1 zamijenjen paralelno spojenim tranzistorima T_{1i}
- □ Izlazi \overline{Y} i Y spojeni su na kolektore T_{1i} i T_2 preko emiterskih sljedila s tranzistorima T_3 i T_4
- \square Za ispravan rad $U_0 > U_R > U_1$
- ☑ Za barem jedan od ulaza u logičkoj 1 → struja teče kroz R_{C1} i ne teče kroz $R_{C2} o U_{\overline{Y}} = U_0 o U_Y = U_1$
- □ Za sve ulaze u logičkoj 0 → struja ne teče kroz R_{C1} i teče kroz R_{C2} → $U_{\overline{Y}} = U_1$ → $U_Y = U_0$
- Logičke funkcije ILI i NILI Y = A + B, $\overline{Y} = \overline{A + B}$

ECL sklop serije 10K – opis rada (2)

- □ Uloga sljedila s T_3 i T_4 →
 - > naponi emitera T_3 i T_4 negativniji su od napona kolektora T_{1i} i T_2 \rightarrow pomak naponske razine osigurava iste napone logičkih 0 i 1 na ulazima i izlazima
 - ightharpoonup zbog velikog strujnog pojačanja sljedila ightharpoonup veće izlazne struje manje utječu na napone kolektora T_{1i} i $T_2
 ightharpoonup$ moguć veći faktor grananja izlaza
- □ Emiterski otpornici tranzistora T_3 i T_4 su otpornici R_A i R_B ulaza sljedećeg sklopa → za veće brzine rada otpori se smanjuju spajanjem paralelnih dodatnih otpornika → za prijenosne linije otpor od $50~\Omega$ spaja se na drugi napon napajanja od 2~V

ECL sklop serije 10K – opis rada (3)

Tranzistori ne ulaze u zasićenje \rightarrow ako je na bazi jednog od ulaznih tranzistora napon $U_B=U_1 \rightarrow U_{\overline{Y}}=U_0 \rightarrow U_C=U_0+U_{BE}$

$$U_{CB} = U_0 + U_{BE} - U_1 = U_{BE} - \Delta U$$

$$U_{CE} = U_{CB} + U_{BE} = 2U_{BE} - \Delta U = 2U_{\gamma} - \Delta U$$

za normalno aktivno područje $\to U_{CE} \ge U_{CEzas}$ primjer: za $U_{CE\min} = U_\gamma/2 \to \Delta U_{\max} = 1,5~U_\gamma$

- Koriste se negativni naponi napajanja, jer su smetnje manje izražene u tim točkama
- Odvajaju se naponi napajanja za strujne sklopke i referentne naponske izvore (ne generiraju strujne promjene) od napona napajanja za emiterska sljedila (generiraju velike strujne promjene)

ECL sklop serije 10K – svojstva

Osnovna svojstva

- □ referentni napon $\rightarrow U_R = -1.32 \text{ V}$
- \blacksquare naponi logičkih razina $\rightarrow U_1 = -0.88 \text{ V}$ i $U_0 = -1.77 \text{ V}$
- □ razmak logičkih razina $\rightarrow \Delta U = U_1 U_2 = 0.89 \text{ V}$
- ☐ faktor grananja izlaza $\rightarrow N = 10$
- □ vrijeme kašnjenja → t_d = 2 ns
- □ srednja disipacija snage $\rightarrow P = 25 \text{ mW}$
- □ umnožak snage i vremena kašnjenja $\rightarrow P \cdot t_d = 50 \text{ pJ}$