CPE 221 Worked Examples: Machine Code in ARM

Instructor: Rahul Bhadani

1 Decode Data-Processing Instruction

Decode the ARM instruction 0xE0831002 into its assembly language form.

Solution

ADD R1, R3, R2

Explanation

- op code (27-26): 00 indicates a data-processing instruction
- funct (25-20): 0 0100 0 where bits 24-21 are 0100 which is the ADD operation
- Rn (19-16): 0011 = R3 (first source register)
- Rd (15-12): 0001 = R1 (destination register)
- Src2 (11-0): 000000000010 = R2 (second source register)

2 Identify Conditional Execution

What is the condition code for the instruction 0x1A000003 and what does it mean?

Solution

Condition code is 0001 (NE), meaning "Not Equal".

Explanation

- Condition code is in bits 31-28: 0001
- According to the ARM condition codes, 0001 corresponds to NE (Not Equal)
- This instruction will execute only if the Z flag is not set (Z=0)
- The full instruction is a branch instruction (BNE) that branches if the result is not equal

3 Decode Memory Instruction

Decode the machine code 0xE5845000 into its assembly form.

Solution

STR R5, [R4]

Explanation

- op code (27-26): 01 indicates a memory instruction
- L bit (20): 0 indicates store (STR)
- Rn (19-16): 0100 = R4 (base register)
- Rd (15-12): 0101 = R5 (source register to be stored)
- P bit (24): 1 indicates pre-indexing
- U bit (23): 1 indicates addition
- Offset (11-0): 00000000000 = 0 (no offset)

4 Encode ADD Instruction

Encode the assembly instruction ADD R7, R2, R3, LSL #2 into machine code.

Solution

0xE0827103

Explanation

- Cond (31-28): 1110 (AL Always execute)
- Op (27-26): 00 (data-processing)
- Funct (25-20): 001000 (ADD operation, I=0, S=0)
- Rn (19-16): 0010 (R2)
- Rd (15-12): 0111 (R7)
- Shift (11-4): 0001 0000 (LSL #2)
- Rm (3-0): 0011 (R3)

5 Identify Immediate Value

What is the immediate value in the instruction 0xE2851014?

Solution

The immediate value is 20 (decimal).

Explanation

- This is a data-processing instruction with I=1 (immediate)
- The immediate field is in bits 7-0: 00010100 = 0x14 = 20 decimal
- The rotation field (bits 11-8) is 0000, meaning no rotation
- The instruction is ADD R1, R5, #20 (adding immediate value 20 to R5)

6 Calculate Branch Target Address

If the instruction at address 0x8400 is 0xEA000005, what is the branch target address?

Solution

The branch target address is 0x841C.

Explanation

- This is an unconditional branch (B) instruction
- The immediate field is 5
- Branch target = $PC+8 + (imm24 \times 4)$
- PC+8 for the instruction at 0x8400 is 0x8408
- $5 \times 4 = 20 (0x14)$
- 0x8408 + 0x14 = 0x841C

7 Decode STR Instruction with Offset

Decode the machine code 0xE5073018 into its assembly form.

Solution

STR R3, [R7, #-24]

Explanation

- op code (27-26): 01 indicates a memory instruction
- L bit (20): 0 indicates store (STR)
- Rn (19-16): 0111 = R7 (base register)
- Rd (15-12): 0011 = R3 (source register)
- P bit (24): 1 indicates pre-indexing
- U bit (23): 0 indicates subtraction
- Offset (11-0): 000000011000 = 24 decimal
- The negative sign comes from U=0 (subtraction)

8 Identify Function Code

What operation is performed by the instruction 0xE0413002?

Solution

This is a SUB instruction that performs subtraction.

Explanation

- op code (27-26): 00 indicates a data-processing instruction.
- funct (24-21): 0100 corresponds to SUB operation.
- The instruction subtracts R2 from R1 and stores the result in R3

9 Decode Load Multiple Instruction

Decode the machine code 0xE92D4030 into its assembly form.

Solution

PUSH {R4, R5, LR}

Explanation

- This is a STMFD instruction (Store Multiple Full Descending)
- Register list (bits 15-0): 0100000000110000 sets bits 4, 5, and 14
- · So registers R4, R5, and LR (R14) are being stored
- Base register (bits 19-16): 1101 = R13 (SP)
- When SP is the base register with writeback, this is equivalent to the PUSH instruction

10 Encode Conditional Execution

Encode the assembly instruction ADDEQ RO, R1, R2 into machine code.

Solution

0x00810002

Explanation

- Cond (31-28): 0000 (EQ Equal)
- Op (27-26): 00 (data-processing)
- Funct (25-20): 001000 (ADD operation, I=0, S=0)
- Rn (19-16): 0001 (R1)
- Rd (15-12): 0000 (R0)
- Src2 (11-0): 000000000010 (R2)
- This instruction adds R2 to R1 and stores the result in R0, but only if the Z flag is set (indicating equality)