

Projeto e Análise de Algoritmos Busca em cadeias (KMP)

Bruno Prado

Departamento de Computação / UFS

- O que é uma cadeia?
 - ▶ É uma sequência de símbolos T com tamanho n
 - lacktriangle Os símbolos são definidos por um alfabeto finito \sum

- Aplicações multidisciplinares
 - Biologia: representação da cadeia de DNA, sendo composta pelos símbolos A, C, G, T
 - Computação: armazenamento de texto através do tipo string, adotando o padrão de codificação ASCII
 - ▶ ...

- O que é uma busca em cadeia?
 - É o processo para encontrar todas as ocorrências de um padrão em uma cadeia T que possui n símbolos
 - ▶ Para a busca é utilizada a cadeia de padrão P com quantidade de símbolos $m \le n$
 - As cadeias P e T utilizam um alfabeto finito \sum

$$\sum_{|T| = n = 10, |P| = m = 4} \{0, 1\}$$

$$0 \le s \le n - m$$

- Notação e terminologia
 - É definido por \sum^* todos os conjuntos de cadeias de tamanho finito que podem ser construídas do alfabeto finito \sum
 - lacktriangle Uma cadeia vazia é denotada pelo símbolo arepsilon
 - ightharpoonup O tamanho de uma cadeia x é definida por |x|
 - A concatenação de duas cadeias x e y resulta em uma cadeia xy com os caracteres de x seguidos dos caracteres de y, com tamanho total de |x| + |y|

- Notação e terminologia
 - Prefixo
 - A cadeia w é um prefixo da cadeia x se x = wy, para alguma cadeia y ∈ ∑*
 - ▶ Denotado por $w \sqsubset x$, com $|w| \le |x|$

- Sufixo
 - A cadeia w é sufixo da cadeia x se x = yw, para alguma cadeia y ∈ ∑*
 - ▶ Denotado por $w \supset x$, com $|w| \le |x|$

- Knuth-Morris-Pratt (KMP)
 - É um algoritmo linear para busca em cadeia que utiliza preprocessamento do padrão, armazenando uma tabela para comparação em tempo constante
 - Seu princípio de funcionamento está baseado em autômatos finitos e em sua função de transição
 - Em cada posição da tabela é armazenado o comprimento do maior prefixo de P_i que é um sufixo de P_j através da função de prefixo π

$$\pi[i] = \max\{(j-1) : (j < i) \land (P_i \supset P_i)\}$$

- Knuth-Morris-Pratt (KMP)
 - Cálculo da tabela

P[i]	1	0	1	0
$\pi[i]$	-1	-1	0	1
-1	0	1	2	3

O armazenamento do comprimento do maior prefixo, que também é sufixo dele mesmo, evita que o algoritmo precise retroceder na comparação dos símbolos

- Knuth-Morris-Pratt (KMP)
 - Autômato Finito Determinístico

P[i]	1	0	1	0
$\pi[i]$	-1	-1	0	1
-1	0	1	2	3

- Knuth-Morris-Pratt (KMP)
 - Implementação em C

```
void calcular tabela(int tab(), char P()) {
    unsigned int i, m = strlen(P);
    int j = -1;
    inicializar(tab, m):
    for(i = 1; i < m; i++) {
         while(i >= 0 \&\& P(i + 1) != P(i))
              i = tab(i);
         if(P(j + 1) == P(i))
              j++;
         tab(i) = j;
```

- Knuth-Morris-Pratt (KMP)
 - ▶ Implementação em C

```
void busca_kmp(int pos(), int tab(), char T(), char P()) {
    unsigned int i, n = strlen(T);
    unsigned int m = strlen(P);
    int i = -1:
    calcular_tabela(tab, P);
    for(i = 0; i < n; i++) {
         while(j \ge 0 \&\& P(j + 1) != T(i)) j = tab(j);
         if(P(j + 1) == T(i)) i++;
         if(j == m - 1) {
              inserir(pos, i - m + 1);
              i = tab(i);
```

- Knuth-Morris-Pratt (KMP)
 - Execução do algoritmo de cálculo da tabela

P[i]	а	r	а
$\pi[i]$	-1	-1	0
-1	0	1	2

- Knuth-Morris-Pratt (KMP)
 - Execução do algoritmo de busca

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

- Knuth-Morris-Pratt (KMP)
 - Execução do algoritmo de busca

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

- Knuth-Morris-Pratt (KMP)
 - Execução do algoritmo de busca

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

- Knuth-Morris-Pratt (KMP)
 - Execução do algoritmo de busca

- Knuth-Morris-Pratt (KMP)
 - Execução do algoritmo de busca

- Knuth-Morris-Pratt (KMP)
 - Execução do algoritmo de busca

- Knuth-Morris-Pratt (KMP)
 - Execução do algoritmo de busca

- Knuth-Morris-Pratt (KMP)
 - Execução do algoritmo de busca

- Knuth-Morris-Pratt (KMP)
 - Execução do algoritmo de busca

13

- Knuth-Morris-Pratt (KMP)
 - Execução do algoritmo de busca

2

13

- Knuth-Morris-Pratt (KMP)
 - Execução do algoritmo de busca

- Knuth-Morris-Pratt (KMP)
 - Execução do algoritmo de busca

- Knuth-Morris-Pratt (KMP)
 - Execução do algoritmo de busca

- Knuth-Morris-Pratt (KMP)
 - Execução do algoritmo de busca

- Knuth-Morris-Pratt (KMP)
 - Execução do algoritmo de busca

- Knuth-Morris-Pratt (KMP)
 - Análise de complexidade
 - ► Espaço O(n-m+1)
 - ► Tempo $\Theta(m) + O(n+m) = O(n+m)$

Exemplo

- - Execute passo a passo a busca na cadeia
 - Descreva seu princípio de funcionamento e as vantagens com relação aos algoritmos já vistos

- A empresa de biotecnologia Poxim Tech está desenvolvendo um sistema de diagnóstico para doenças genéticas, comparando a sequência de DNA com genes conhecidos
 - A sequência de DNA é composta exclusivamente pelos símbolos A, C, G e T para codificação dos genes
 - Uma doença genética possui até 10 genes associados, cada um deles com sequências de tamanho entre 100 até 1000, denotados por letras maiúsculas e números entre 4 e 8 caracteres
 - Para tratar os efeitos da mutação nos genes que alteram sua codificação, é feita a busca por combinações que possuam o tamanho mínimo de subcadeia, com pelo menos 90% de compatibilidade total para manifestação da doença
 - No diagnóstico será calculada a probabilidade de manifestação da doença, de acordo com a quantidade de genes detectados

- Diagnóstico da doença CRTLF4 com genes AATTTGGCCC e GGGGGGGGG

 - ▶ Tamanho da subcadeia: 3

- Diagnóstico da doença CRTLF4 com genes AATTTGGCCC e GGGGGGGGG

 - Tamanho da subcadeia: 3

AATTIGGCCC: 5 combinações = 50%

- Diagnóstico da doença CRTLF4 com genes AATTTGGCCC e GGGGGGGGGG

 - Tamanho da subcadeia: 3

- Diagnóstico da doença CRTLF4 com genes AATTTGGCCC e GGGGGGGGG

 - Tamanho da subcadeia: 3

Chance de 50% de ocorrência da doença CRTLF4

- Formato do arquivo de entrada
 - [#Tamanho da subcadeia]
 - ► $[B_0 ... B_{N-1}]$
 - ► [#Número de doenças]
 - $[C\'odigo_0]$ [#Genes₀] $[G_{0_0}]$... $[G_{0_{i-1}}]$
 - •
 - ightharpoonup [Código_{M-1}] [#Genes_{M-1}] [G_{M-10}] ... [G_{M-1j-1}]

3
AAAATTTCGTTAAATTTGAACATAGGGATA
4
ABCDE 3 AAA AAT AAAG
XY1WZ2AB 1 TTTTTTGGGG
H1N1 4 ACTG AACCGGTT AATAAT AAAAAAAAAAH
HUEBR 1 CATAGGGATT

- Formato do arquivo de saída
 - ▶ É feita a ordenação estável em ordem decrescente dos resultados, utilizando como critério de ordenação a probabilidade de ocorrência da doença e fazendo o arredondamento dos percentuais para fins de comparação e impressão

XY1W72AB: 100%

HUEBR: 100% ABCDE: 67%

H1N1: 25%