Kapitel 3 – Kombinatorische Logik

- 1. Kombinatorische Schaltkreise
- 2. Boolesche Algebren
- 3. Boolesche Ausdrücke, Normalformen, zweistufige Synthese
- 4. Berechnung eines Minimalpolynoms
- 5. Arithmetische Schaltungen
- 6. Anwendung: ALU von ReTI

Albert-Ludwigs-Universität Freiburg

Prof. Dr. Christoph Scholl Institut für Informatik WS 2015/16

Kombinatorische Schaltkreise

Definition

Kombinatorische Logik ist ein Modell von Hardware, die eine boolesche Funktion $f: \mathbb{B}^n \to \mathbb{B}^m(n, m \in \mathbb{N})$ implementiert.

Ein kombinatorischer Schaltkreis (Schaltnetz) hat n Eingänge und m Ausgänge. Legt man an den Eingängen den Vektor $i \in \mathbb{B}^n$ an, berechnet der Schaltkreis den Vektor $f(i) \in \mathbb{B}^m$ und stellt ihn an den Ausgängen bereit.

- Es gibt weitere Arten von Hardware:
 - Sequentielle Logik mit speichernden Elementen (später).
 - Analog- und Mixed-Signal-Blöcke (nicht in TI).

Kombinatorische Logiksynthese

- Kombinatorische Logiksynthese ist das Problem, zu einer gegebenen Booleschen Funktion einen möglichst effizienten kombinatorischen Schaltkreis, d. h. einen mit möglichst geringen Kosten, zu finden.
- Die Definition von Kosten hängen von der verwendeten Technologie ab und können sich auf die Größe, Verzögerung, Energieverbrauch des Schaltkreises beziehen und eventuell weitere Parameter (Zuverlässigkeit, Testbarkeit, ...) berücksichtigen.

Technologien

- Wir konzentrieren uns hier auf zwei Arten von Technologien:
 - Programmierbare Logikfelder (Programmable Logic Arrays, PLAs).
 - Implementieren sogenannte zweistufigen Realisierungen, siehe später (Kapitel 3.3).
 - Mehrstufige Realisierungen mit allgemeinen Bibliothekszellen (Logik-Gattern).

Logikgatter

- Gatter sind kleine kombinatorische Blöcke, in der Regel mit bis zu 4 Eingängen und einem Ausgang.
- Gatter werden mit Transistoren realisiert.
- Gatter können zu größeren Schaltungen verbunden werden.
- Die Menge der verfügbaren Gattern ergibt eine Standardzellen-Bibliothek.

Einige wichtige Gatter

<i>i</i> ₁	i ₂	AND_2
0	0	0
0	1	0
1	0	0
1	1	1

<i>i</i> ₁	i ₂	OR_2	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

i ₁	NOT ₂
0	1
1	0

i	
'1 ⁻	1/~

<i>i</i> ₁	i ₂	$NAND_2$	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

i ₁	i ₂	NOR ₂
0	0	1
0	1	0
1	0	0
1	1	0

<i>i</i> ₁	i ₂	XOR ₂	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

$$i_1$$
- i_2 - i_2 -

$$i_1$$

$$i_1$$
 \rightarrow i_2

Logikgatter - verschiedene Notationen

Es gibt verschiedene Notationen für Logikgatter.

	IEC	ANSI	DIN
OR ₂	$i_1 - \ge 1$ $i_2 - $	i_1	i_1 i_2
NOT	<i>i</i> ₁ — 1	<i>i</i> ₁ —	<i>i</i> ₁ —

Wir werden in dieser Vorlesung die ANSI-Notation verwenden.

Transistoren

- Einen Transistor kann man vereinfacht als spannungsgesteuerten Schalter sehen:
 - Leitung g (gate) regelt Leitfähigkeit zwischen Quelle und Senke.

- Leitet, wenn an g eine 0 anliegt.
- Sperrt, wenn an *g* eine 1 anliegt.
- Leitet, wenn an g eine 1 anliegt.
- Sperrt, wenn an g eine 0 anliegt.

- Complementary Metal Oxide Semiconductor.
- Es werden p- und n-Kanal-Transistoren verwendet.
- Beispiel: CMOS-Inverter.

- Complementary Metal Oxide Semiconductor.
- Es werden p- und n-Kanal-Transistoren verwendet.
- Beispiel: CMOS-Inverter.

- Complementary Metal Oxide Semiconductor.
- Es werden p- und n-Kanal-Transistoren verwendet.
- Beispiel: CMOS-Inverter.

- Complementary Metal Oxide Semiconductor.
- Es werden p- und n-Kanal-Transistoren verwendet.
- Beispiel: CMOS-Inverter.

- Complementary Metal Oxide Semiconductor.
- Es werden p- und n-Kanal-Transistoren verwendet.
- Beispiel: CMOS-Inverter.

- Complementary Metal Oxide Semiconductor.
- Es werden p- und n-Kanal-Transistoren verwendet.
- Beispiel: CMOS-Inverter.

- Complementary Metal Oxide Semiconductor.
- Es werden p- und n-Kanal-Transistoren verwendet.
- Beispiel: CMOS-Inverter.

CMOS-NAND-Gatter

Ausgang ist 0

⇔ Es existiert ein leitender
 Pfad von 0 zum Ausgang
 ⇔ beide n-Kanal-Transistoren
 leiten

$$\Leftrightarrow a = b = 1, a \land b = 1$$
$$\Leftrightarrow NAND(a, b) = 0$$

Ausgang ist 1

⇔ Es existiert ein leitender
 Pfad von 1 zum Ausgang
 ⇔ einer der

p-Kanal-Transistoren leitet

$$\Leftrightarrow a = 0 \text{ oder } b = 0, \neg a \lor \neg b = 1$$

$$\Leftrightarrow NAND(a,b) = 1$$

Weitere CMOS-Gatter

- Es gibt keine "direkte" Implementierung von AND- und OR-Gattern. Sie werden aus NAND-/NOR-Gattern plus Invertern zusammengesetzt.
- Zu jedem p-Kanal Transistor gibt es stets einen komplementären n-Kanal-Transistor, der genau dann sperrt, wenn der erste Transistor leitet und umgekehrt. Dadurch gibt es niemals einen leitenden Pfad von der Stromversorgung zur Masse. Dies reduziert Leistungsverluste.

Schaltkreis: Zunächst informal durch Beispiel ($f \in \mathbb{B}_{8,2}$)

Schaltkreise

■ Idee:

"gerichteter Graph mit einigen zusätzlichen Eigenschaften"

Gerichtete Graphen (Wiederholung!)

- \blacksquare G = (V, E) ist ein gerichteter Graph, genau dann, wenn
 - V endliche nichtleere Menge ("Knoten")
 - E endliche Menge ("Kanten")
 - Auf E sind Abbildungen $Q, Z : E \rightarrow V$ definiert (Q(e) heißt Quelle, Z(e) Ziel einer Kante e)
- Die Abbildung $indeg: V \to \mathbb{N}, indeg(v) = |\{e \mid Z(e) = v\}|$ gibt den Eingangsgrad eines Knotens $v \in V$ an.
- Die Abbildung $outdeg: V \to \mathbb{N}, outdeg(v) = |\{e \mid Q(e) = v\}|$ gibt den Ausgangsgrad eines Knotens $v \in V$ an.
- Ein Pfad (der Länge k) in G ist eine Folge von k Kanten $e_1, e_2, \ldots, e_k (k \ge 0)$ mit $Z(e_i) = Q(e_{i+1}) \ \forall i$ mit $k-1 \ge i \ge 1$. $Q(e_1)$ heißt Quelle, $Z(e_k)$ Ziel des Pfades.
- Ein Zyklus in G ist ein Pfad der Länge ≥ 1 in G, bei dem Ziel und Quelle identisch sind.
- G heißt azyklisch, falls kein Zyklus in G existiert.
- Die Graph-Tiefe eines azyklischen Graphen ist definiert als die Länge des längsten Pfades in G.

Modellierung durch Schaltkreise (1/2)

- Eine Zellenbibliothek $BIB \subset \bigcup_{n \in \mathbb{N}} \mathbb{B}_n$ enthält Basisoperatoren, die den Grundgattern entsprechen.
- Ein 5-Tupel $SK = (\vec{X}_n, G, typ, IN, \vec{Y}_m)$ heißt Schaltkreis mit n Eingängen und m Ausgängen über der Zellenbibliothek BIB genau dann wenn
 - $\vec{X}_n = (x_1, \dots, x_n)$ ist eine endliche Folge von Eingängen.
 - G = (V, E) ist ein azyklischer, gerichteter Graph mit $\{0,1\} \cup \{x_1,...,x_n\} \subseteq V$.
 - Die Menge $I = V \setminus (\{0,1\} \cup \{x_1,...,x_n\}$ heißt Menge der Gatter. Die Abbildung $typ : I \rightarrow BIB$ ordnet jedem Gatter $v \in I$ einen Zellentyp $typ(v) \in BIB$ zu.

. . . .

Modellierung durch Schaltkreise (2/2)

- ...
- Für jedes Gatter $v \in I$ mit $typ(v) \in \mathbb{B}_k$ gilt indeg(v) = k.
- indeg(v) = 0 für $v \in \{0,1\} \cup \{x_1,...,x_n\}$.
- Die Abbildung $IN: I \to E^*$ legt für jedes Gatter $v \in I$ eine Reihenfolge der eingehenden Kanten fest, d.h. falls indeg(v) = k, dann ist $IN(v) = (e_1, ..., e_k)$ mit $Z(e_i) = v \ \forall 1 \le i \le k$.
- Die Folge $\vec{Y}_m = (y_1, ..., y_m)$ zeichnet Knoten $y_i \in V$ als Ausgänge aus.

Beispiel für einen mehrstufigen komb. Schaltkreis ($f \in \mathbb{B}_{8,2}$)

Beispiel für einen mehrstufigen komb. Schaltkreis ($f \in \mathbb{B}_{8,2}$)

Formale Semantikdefinition für Schaltkreise (1/2)

- Sei $SK = (\vec{X}_n, G, typ, IN, \vec{Y}_m)$ ein Schaltkreis über einer Zellenbibliothek BIB.
- Sei eine Eingangsbelegung $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{B}^n$ gegeben.
- Eine Belegung $\Phi_{SK,\alpha}: V \to \mathbb{B}$ für alle Knoten $v \in V$ ist dann gegeben durch die folgenden Definitionen:
 - $\Phi_{SK,\alpha}(x_i) = \alpha_i \ \forall 1 \le i \le n.$ $\Phi_{SK,\alpha}(0) = 0, \ \Phi_{SK,\alpha}(1) = 1.$
 - falls $v \in I$ mit $typ(v) = g \in \mathbb{B}_k$, $IN(v) = (e_1, ..., e_k)$, dann ist $\Phi_{SK,\alpha}(v) = g(\Phi_{SK,\alpha}(Q(e_1)), ..., \Phi_{SK,\alpha}(Q(e_k)))$.
- Warum ist das wohldefiniert?
- Weil G azyklisch!

Formale Semantikdefinition für Schaltkreise (2/2)

- $(\Phi_{SK,\alpha}(y_1), \dots, \Phi_{SK,\alpha}(y_m))$ ist dann die unter Eingangsbelegung $\alpha = (\alpha_1, \dots, \alpha_n)$ berechnete Ausgangsbelegung des Schaltkreises SK.
- Die Berechnung von $\Phi_{SK,\alpha}$ bei Eingangsbelegung α heißt auch Simulation von SK für Belegung α .
- Die an einem Knoten ν berechnete Boolesche Funktion $\Psi(\nu): \mathbb{B}^n \to \mathbb{B}$ ist definiert durch

$$\Psi(v)(\alpha) := \Phi_{SK,\alpha}(v)$$

für ein beliebiges $\alpha \in \mathbb{B}^n$.

Die durch den Schaltkreis berechnete Funktion ist

$$f_{SK}: \mathbb{B}^n \to \mathbb{B}^m, f_{SK} = (\Psi(y_1), \dots, \Psi(y_m)).$$

Standardzellen-Bibliothek

- Eine Standardzellen-Bibliothek enthält eine Menge von Gattern und kleinen kombinatorischen Schaltungen (Standardzellen).
 - Z. B. AND-Gatter mit 4 Eingängen
- Für jedes Element der Bibliothek werden Parameter wie Fläche auf dem Chip, Schaltgeschwindigkeit, Leistungsaufnahme des Gatters bzw. der Standardzelle abgespeichert.
- Es sind oft z. B. mehrere Inverter unterschiedlicher Größe und Geschwindigkeit vorhanden.

Kombinatorische Logiksynthese

- Allgemeine kombinatorische Logiksynthese optimiert mehrere Parameter gleichzeitig.
- Exakte Verfahren existieren, stoßen aber schon für kleinste Schaltkreise an ihre Grenzen.
- In der Praxis werden Heuristiken eingesetzt, die auf Ausschnitten eines großen Schaltkreises lokale Optimierungen durchführen.
- Hier beschränken wir uns bei der Logiksynthese auf eine wichtige Unterklasse von kombinatorischen Schaltkreisen: Die zweistufige Logik.
- Allgemeinere kombinatorische Schaltkreise betrachten wir später bei der Einführung arithmetischer Schaltkreise.