Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_şt-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 3

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\frac{3}{2}$	3p
	$a_1 = a_2 - r = 1$	2 p
2.	$f(n) = n^2 - 1$, deci $n^2 - 1 = 3 \Rightarrow n^2 - 4 = 0$	3 p
	Cum n este număr natural, obținem $n = 2$	2p
3.	$x^2 - 9 = (x - 1)^2 \Rightarrow 2x = 10$	3 p
	x = 5, care convine	2p
4.	Numărul de submulțimi cu trei elemente ale mulțimii $\{1,2,3,4\}$ este egal cu $C_4^3 = \frac{4!}{3! \cdot 1!} =$	3p
	=4	2p
5.	$m_{MN} = 1, \ m_{PQ} = \frac{3-a}{3}$	2p
	$MN \parallel PQ$, de unde obţinem $m_{MN} = m_{PQ} \Leftrightarrow 3 - a = 3 \Leftrightarrow a = 0$	3p
6.	$\cos B = \frac{AB}{BC} \Leftrightarrow \frac{1}{2} = \frac{5}{BC}$	3p
	BC = 10	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A \cdot A = \begin{pmatrix} a^2 & 0 \\ 0 & b^2 \end{pmatrix}, \text{ pentru orice numere reale } a \text{ și } b$	3p
	$\det(A \cdot A) = \begin{vmatrix} a^2 & 0 \\ 0 & b^2 \end{vmatrix} = a^2 b^2, \text{ pentru orice numere reale } a \text{ și } b$	2p
b)	$X = \begin{pmatrix} x & y \\ z & t \end{pmatrix} \text{ cu } x, y, z, t \in \mathbb{R} \Rightarrow A \cdot X = \begin{pmatrix} ax & ay \\ bz & bt \end{pmatrix} \text{ si } X \cdot A = \begin{pmatrix} ax & by \\ az & bt \end{pmatrix}$	3p
	$ay = by$ şi $az = bz$, deci $y(a-b) = 0$ şi $z(a-b) = 0$ şi, cum $a \ne b$, obţinem $y = z = 0$, deci există numerele reale x şi t astfel încât $X = \begin{pmatrix} x & 0 \\ 0 & t \end{pmatrix}$	2p
c)	$Y \cdot Y = A$, deci $A \cdot Y = (Y \cdot Y) \cdot Y = Y \cdot (Y \cdot Y) = Y \cdot A$, deci $Y = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$, unde $\alpha, \beta \in \mathbb{R}$	2 p
	$Y \cdot Y = \begin{pmatrix} \alpha^2 & 0 \\ 0 & \beta^2 \end{pmatrix}, \text{ deci } \begin{pmatrix} \alpha^2 & 0 \\ 0 & \beta^2 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 0 & 0 \end{pmatrix}, \text{ de unde obţinem } \alpha^2 = 4 \text{ şi } \beta^2 = 0, \text{ deci}$ $Y = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \text{ sau } Y = \begin{pmatrix} -2 & 0 \\ 0 & 0 \end{pmatrix}, \text{ care convin}$	3p

2.a)	$3*3 = 3\sqrt{3+1} + 3\sqrt{3+1} =$	3p
	$=3\cdot 2+3\cdot 2=6+6=12$	2p
b)	$x*0 = x \cdot \sqrt{0+1} + 0 \cdot \sqrt{x+1} = x$, pentru orice $x \in M$	2p
	$0*x = 0 \cdot \sqrt{x+1} + x \cdot \sqrt{0+1} = x$, pentru orice $x \in M \Rightarrow x*0 = 0*x = x$, pentru orice $x \in M$	3 p
c)	$(x^{2} + 2x)\sqrt{3+1} + 3\sqrt{x^{2} + 2x + 1} = 7 \Leftrightarrow 2(x^{2} + 2x) + 3\sqrt{(x+1)^{2}} = 7 \Leftrightarrow 2x^{2} + 7x - 4 = 0$	3 p
	$x = -4$, care nu convine, $x = \frac{1}{2}$, care convine	2p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = x' \ln(x+1) + x(\ln(x+1))' =$	3p
	$= 1 \cdot \ln(x+1) + x \cdot \frac{1}{x+1} = \ln(x+1) + \frac{x}{x+1}, \ x \in (-1, +\infty)$	2p
b)	$= 1 \cdot \ln(x+1) + x \cdot \frac{1}{x+1} = \ln(x+1) + \frac{x}{x+1}, \ x \in (-1, +\infty)$ $f''(x) = \frac{x+2}{(x+1)^2}, \ x \in (-1, +\infty)$	3 p
	$f''(x) > 0$, pentru orice $x \in (-1, +\infty)$, deci funcția f este convexă	2 p
c)	$\ln(x+1) \le 0$ și $\frac{x}{x+1} \le 0$, pentru orice $x \in (-1,0]$, deci $f'(x) \le 0$, de unde obținem că f este descrescătoare pe $(-1,0]$	2 p
	Pentru orice $x_1, x_2 \in (-1,0]$ cu $x_1 \le x_2 \Rightarrow f(x_1) \ge f(x_2)$, deci $x_1 \ln(x_1+1) \ge x_2 \ln(x_2+1)$ de	
	unde obţinem $\ln(x_1+1)^{x_1} \ge \ln(x_2+1)^{x_2}$, deci $(x_1+1)^{x_1} \ge (x_2+1)^{x_2}$, adică $g(x_1) \ge g(x_2)$	3 p
2.a)	$\int_{0}^{1} f(x) dx = \int_{0}^{1} (1 - x^{3}) dx = \left(x - \frac{x^{4}}{4}\right) \Big _{0}^{1} =$	3p
	$=1-\frac{1}{4}=\frac{3}{4}$	2p
b)	$=1 - \frac{1}{4} = \frac{3}{4}$ $\int_{0}^{1} x^{2} (f(x))^{3} dx = \int_{0}^{1} x^{2} (1 - x^{3})^{3} dx = -\frac{1}{3} \int_{0}^{1} (1 - x^{3})^{3} (1 - x^{3})^{3} dx = -\frac{1}{12} (1 - x^{3})^{4} \Big _{0}^{1} = $	3 p
	$=0-\left(-\frac{1}{12}\right)=\frac{1}{12}$	2 p
c)	$\int_{0}^{1} (f(x))^{n+1} dx - \int_{0}^{1} (f(x))^{n} dx = \int_{0}^{1} (1-x^{3})^{n+1} dx - \int_{0}^{1} (1-x^{3})^{n} dx = -\int_{0}^{1} x^{3} (1-x^{3})^{n} dx, \text{ pentru orice număr natural nenul } n$	2 p
	$x^3 \ge 0$ şi $1-x^3 \ge 0$, pentru orice $x \in [0,1]$, deci $\int_0^1 (f(x))^{n+1} dx - \int_0^1 (f(x))^n dx \le 0$, de unde obţinem $\int_0^1 (f(x))^{n+1} dx \le \int_0^1 (f(x))^n dx$, pentru orice număr natural nenul n	3 p