CAS in Applied Data Science Muerren 2024

Géraldine Schaller-Conti

Program of the week

12:30

End

```
Convolutions
17:00 - 18:30 Tutorial (Geraldine)
19:00 - 20:00 Dinner at hotel Regina
20:30 - 21:00 Neural Style Transformations (an example on how to use deep ML to create art - Sigve)
Thursday (Geraldine)
                       Deep Forward Networks – optimization
08:15 - 09:00 Lecture
                       Transfer Learning
09:15 - 10:00 Tutorial
10:00 - 10:30 Coffee break
                      Transfer Learning
10:30 - 12:30 Tutorial
12:30 - 17:00 Skiing, work or whatever
17:00 - 18:15 Tutorial and project discussions Projects
19:00 - 22:00 Fondue and sledge ride back down to Regina in the dark
Everyone has to be READY OUTSIDE THE HOTEL at 18:45.
The train up departs at 19:00.
Friday (Geraldine)
                       Convolutional models and generative models
08:15 - 09:00 Lecture
                       Recurrent Neural Networks
09:15 - 10:00 Tutorial
10:00 - 10:30 Coffee break and Check Out
10:30 - 12:00 Tutorial / Discussion Session Recurrent Neural Networks
12:00 - 12:30 Wrap up (Sigve)
```

About me ©

About you ©

Bibliography

- Deep Learning book (Goodfellow, Bengio, Courville)
- Machine Learning @ Stanford (Prof Andrew Ng)
- Hands-On Machine Learning with Scikit-Learn & Tensorflow (Aurélien Géron)

Teaching method

Inverted classroom based

- Introduction lectures
- Real content you learn yourself with the notebooks. Either to put in practice your knowledge or to learn ahead of another lecture

Why

- Supposed to be better
- More fun
- Learning by doing

To give back sense to being present (Marcel Lebrun)

Tutorial IV: Convolutions

Introduction

- Goal: basics to perform image recognition
- Program: inverted classroom style
 - Theory
 - Overview to get the big picture of the Notebook
 - Work alone (30 minutes)
 - Work in groups of 4 (30 minutes)
- Technical: Google Colab, Pytorch

Theory

Human vision

Computer vision

Kernel (filter)

- Used to detect features (vertical/horizontal filter,...)
- Different kernels to create different feature maps → learn to see various patterns and details in images

Kernel example

Padding, Stride, Dilation

	ad	pa						
nad	0	0	0	0	0	0	0	0
pad	0	0	0	0	0	0	0	0
	0	0	2	83	94	133	0	0
	0	0	102	187	48	24	0	0
	0	0	126	222	79	24	0	0
	0	0	202	164	63	87	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0

	tO.	DE						
pad	0	0	0	0	0	0	0	O
Pac	0	0	0	0	0	0	0	0
	0	0	4	2	94	123	0	0
	0	0	192	22	3	11	0	0
	0	0	34	23		12	0	0
	0	0	94	12	83	194	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	c

pad

1	2	3
4	5	6
7	8	9

	1	2	3		
•		4	5	6	
			7	8	9

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	123	94	81	2	0	0
0	0	34	44	37	30	0	0
0	0	94	114	224	124	0	0
9	0	69	10	204	143	0	0
a	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Inception V3 model

- Deep learning model based on Convolutional Neural Networks
- Used for image classification
- Released in year 2015
- It has 42 layers

Overview of the notebook

Tutorial IV (1)

- 1) Load necessary libraries (common libraries and personal modules)
- 2) Images
- 3) Convolutions

Tutorial IV (2)

- Pre-processing of the image
 - Gray-scale, cropping, float conversion, normalization
 - Add dimensions (batch, channel, height, width) (in get_convolved)
 - Convert Numpy to pytorch (in get_convolved)

- Define the convolution
 - Forward model (class Model)
 - Apply 4 convolutions one after each other (inside class Model, call conv_2d function)
- Define the filter
 - Identity filter
 - Convert to np.array (in get_convolved)
 - Add dimensions
 - Convert Numpy to pytorch

```
flt_mtx = [
     [ 0, 0, 0, 0, 0, ],
     [ 0, 0, 0, 0, 0, ],
     [ 0, 0, 1, 0, 0, ],
     [ 0, 0, 0, 0, 0, ],
     [ 0, 0, 0, 0, 0, ],
] # identity transformation
```

Tutorial IV (3)

- Use it ! (ims_convolved = get_convolved(img_raw, flt_mtx))
 - You get back 5 figures

• Exercise :

- 1. experiment with different filters and understand what they do, e.g.:
- · identity transformation
- identity transformation with positive non-unit values
- identity transformation with negative unit value
- identity transformation off center
- · blurring with box filter
- edge detection with + and bands
- try whatever you like
- 2. experiment with convolution parameters:
- padding = 1, 2, 3
- stride = 2
- dilation = 2

0	0	0	0	0
0	0	0	0	0
0	0	30	0	0
0	0	0	0	0
0	0	0	0	0

0	0	0	0	0
0	0	0	0	0
0	0	-1	0	0
0	0	0	0	0
0	0	0	0	0

0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	1	0	0
0	0	0	0	0

1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1

0	-1	1	0	0
0	-1	1	0	0
0	-1	1	0	0
0	-1	1	0	0
0	-1	1	0	0

Tutorial IV (4)

filter type	effect
gaussian	bluring
first derivative of gaussian	detection of edges
second derivative of gaussian	detection of peaks

Most common filters

- Define 1D functions
- Create 2D filters by repeating the 1D filters along axis 0 (np.tile)
- Multiply by transpose() to get the horizontal dimension (filter size does not change)
- Use them ! (ims_convolved = get_convolved(img_raw, flt_mtx)

4) Homework (leave it for now)

Tutorial IV (5)

- 5) Load a pretrained model (inception V3) from torchhub
- 6) Test the model
- Preprocessing of the image (cropping, shuffle sizes, totensor, normalize adds batch size) \rightarrow [1,3,299,299]
- Desactivate the gradient (eval mode)
- Get the logits (1000 values), then the probabilities (applying softmax)
- Print out the 5 most probable classes
- Do the same with 100 classes

Tutorial V: Transfer Learning

Introduction

 Goal: use the Inception model to classify images of different nature, learn how to save a model

- Program : inverted classroom style
 - Theory
 - Overview to get the big picture of the notebook
 - Work alone ()
 - Work in groups of 4 (45 minutes, then 2 minute presentation)
- Technical: Google Colab, Pytorch

Theory

Transfer Learning

- Try to find an existing neural network that accomplishes a similar task to the one you are trying to tackle
- reuse the lower layers of this network
 - Output layer should usually be replaced
- Speeds up training and requires much fewer training data

Training Loop

• *Iterative* process

Gradient descentParameter update

Forward propagation

Make a prediction

Backward propagation

Learning curve

Cost function *Compute the error function*

Measure the error contribution from each connection

Dataset Augmentation

 Apply realistic transformations to data to create new synthetic samples, with same label

Overview of the notebook

Tutorial V (1)

- 1) Load necessary libraries (common libraries and personal modules)
- 2) Transfer Learning
- Load the inception model (base_model)
- Build new model using the base_model (model)
 - Define a head function (in_features, n_classes=2) : use of sigmoid
- Optimization: define the loss function (criterion) and the optimizer
- Helper functions to get the prediction (get_predictions) and to compute the batch accuracy (calculate accuracy batch)

Tutorial V (2)

3) Dataset

- Images :
 - Get them from ML3 folder
 - Preprocessing using transforms.Compose (resize, tensor, normalize)
 - Shape [3,299,299]
 - Transform to numpy array for display (im_numpy)
- Labels
- Split dataset into train/test samples
 - Torch.utils.data.random_split
 - Train_test_split with stratify enabled from scikit-learn
- Create data loaders for training/val (beware shuffle param)
- Example: batch of 10 images, plot them, print logits and output classes (res)

Tutorial V (3)

4) Training

- Train_model function
 - Contains the loop on epochs
 - Calls the train and validate functions (beware the params)
 - Save history (loss, accuracy) and model for a given epoch
 - Train function: reset gradients, compute logits and loss, compute gradients (backward prop), update parameters, calculate accuracy of the batch (helper functions), returns train loss and train accuracy
 - Validate function: structure BUT (no optimizer, no backward, no update of the params), returns test loss and test accuracy
- Plot_history function
- Run it ! history = train_model(...) using 70 epochs

Tutorial V (4)

- 5) Load trained variables from checkpoint
 - Choose epochs values
 - Load corresponding models
 - Call validate function to get the validation loss and validation accuracy (see how it evolves)
- 6) Save final model for inference

7) Inference:

- Load the model, eval() mode
- Get an image, preprocess (convert to tensor, add batch dimension)
- Get the logits and associated class

Tutorial V (4)

- 8) Improve the results: data augmentation
 - Load images from ML3 folder
 - Preprocess (resize, Randomcrop, tensor, normalize)
 - Convert to Numpy for plotting purposes (im_numpy)
 - The rest of the code is similar to previous code
- 9) Exercise (groups of 4) (35 min), 2min presentation

Tutorial VI: Transfer Learning

Introduction

 Goal: use Recurrent Neural Networks to predict and generate text sequence

- Program : inverted classroom style
 - Theory
 - Overview to get the big picture of the notebook
 - Work alone
 - Work in groups of 4
- Technical: Google Colab, Pytorch

Theory

Overview of the notebook

Tutorial VI (1)

- 1) Load necessary libraries (common libraries and personal modules)
- 2) Text data
 - Read the data (rnn.txt), print the first 100 words
- 3) Build the dataset
 - 2 dictionaries: word → id (dictionary) and id → word (reverse_dictionary)
 - Build_dictionaries function
 - Vocabulary size = 493 (0=most common word)
 - Helper functions to get sequences of int or words (text_to_ints, ints_to_text)
 - Print example : first 100 words (or int), length of input data=2118 (words_as_int)

Tutorial VI (2)

3) Data streaming

- Create dataset using WordDataSet class to create blocks of text
 - Block length = n_input+1 = 3+1 = 4
- Create DataLoader with batch size=50, preprocess data (separate input and target sequences, stack data and convert Numpy > tensors, put them to GPU)
 - Length of dataset = Number of blocks in sequence = Total length/Block length = 2118/4=529
- Example: print the 50 samples that are in the 1st batch

Tutorial VI (3)

- 4) Construct model
- Create class RNN
 - Embedding layer (vocab_size, embedding_dim=128)
 - Loop to add the 3 LSTM layers
 - FC layer with vocab size
- Define sequence of 3 words (n_input), define dimension of 3 LSTM, call the RNN class
- Investigate the model using Tensorboard
 - Create an input of size=5 (x), transform to tensor, add batch
 - SummaryWriter to save the model and be able to open it with tensorboard
 - Print the output size of y: [5,1,493]
- Test the NOT trained model and see that it is bad
 - Get the first batch (break), apply the model, get the predictions, compare to true

Tutorial VI (4)

5) Train the model

- Params : n_input = 3, batch_size=50 , one LSTM layer (128),n_epochs=200
- Create the data loader (preprocess data)
- Optimization part : criterion, optimizer (RMSprop, why?)
- Training loop on epochs, then on batches
 - Initialize gradients
 - Get the output (seq_len, batch_size, vocab_size), reshape it to (seq_len*batch_size, vocab_size)
 - Reshape labels (seq_len, batch_size) to (seq_len*batch_size)
 - Compute the loss between output and true labels
 - Backward prop, param update
 - Compute loss and accuracy
- Plot loss and accuracy

Tutorial VI (5)

- 6) Generate text with RNN
- Function to generate text (gen_long)
 - Input parameters: model, input sequence, number of words to generate (128)
 - No_grad() because we are in an evaluation mode
 - Loop on number of words, convert to tensor, predict, ...)

Back-up slides

• https://www.tensorflow.org/api_docs/python/tf/keras/applications