

Term End Examination - May 2013

Course : ITE203 - Theory of Computation Slot: D1+TD1

Class NBR : 2911/2913

Time : Three Hours Max.Marks:100

PART – A (8 X 5 = 40 Marks) Answer ALL Ouestions

	Answer <u>ALL</u> Questions	
1.	Define the transition function for the following machines	
	a) DFA	[2]
	b) Turing Machine	[2]
	c) Moore Machine	[1]
2.	Define the following	
	a) Greibach Normal form (GNF)	[2]
	b) Recursive Enumerable Language	[2]
	c) Left Linear Grammar	[1]
3.	Design a Turing machine to compute the following function	[5]
	f(x) = 2x + 3	
	Where <i>x</i> is the positive integer represented in unary.	
4.	Explain the basic model of Linear Bounded automata.	[5]
5.	Exhibit the relationship between grammars by Chomsky Hierarchy.	[5]
6.	Define the following with example	
	a) Decidable and Un-decidable Problem	[2]
	b) NP Problem	[2]
	c) NP Complete Problem	[1]
7.	Explain the post's correspondence problem with one example.	[5]
8.	Explain the halting problem of Turing machine.	[5]

$PART - B (6 \times 10 = 60 \text{ Marks})$ Answer any <u>SIX</u> Questions

9. a) Find the DFA for the following languages on $\Sigma = \{0, 1\}$

b) Construct the finite automata equivalent to the following regular expression. [5]

$$(11+0)^*011$$

10. a) Show that following language is not regular

 $L = \{a^n : n \text{ is perfect square}\}\$

b) Design a Moore machine to determine the residue mod 3 for each binary string [5] treated as a binary string.

11. Minimize the following DFA

12. a) Find the CFG for the following languages

i.
$$L = \{a^n b^m c^k : k = n + m\}$$

ii.
$$L = \{ab^5wb^2 : w \in \{a,b\}^*\}$$

b) Prove the following CFG is ambiguous. [5]

$$S \rightarrow aS \mid aSaS \mid \in$$

[5]

[10]

13. Convert the grammar

$$S \rightarrow aXbX$$

$$X \rightarrow aY \mid bY \models$$

$$Y \rightarrow X \mid c$$

Into Chomsky normal form.

14. Find an PDA that accepts following language

$$L = \{a^n b^{n+m} c^m : n \ge 0, m \ge 1\}$$

15. Design the Turing machine that accept the language

$$L = \{ww : w \in \{a, b\}^*\}$$

16. Construct Turing Machine (TM) that computes the following function

[10]

$$f(w) = w^R$$
 where $w \in \{a, b\}^*$

