半导体物理

杨一鸣 张贺秋 教授

微电子学院

大连理工大学

Email: ymyang@dlut.edu.cn hqzhang@dlut.edu.cn

半导体物理

绪论

半导体物理的重要性

- 微电子/半导体行业的门槛
- 研究生入学考试笔试/面试必考
- 半导体器件/集成电路/芯片的"语言"

上课时间

2022~2023学年 第二学期

三四节课

五六节课

جلاآ	37	503				4		K la		100		A.C.					المحالة	
周	次	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
月	份	11			Ξ				2	<u> </u>			Ŧ	ī		7	<u> </u>	
星其	月一	20	27	6	13	20	27	3	10	17	24	1	8	15	22	29	5	12
星其	月二	21	28	7	14	21	28	4	11	18	25	2	9	16	23	30	6	13
星其	月三	22	1	8	15	22	29	5	12	19	26	3	10	17	24	31	7	14
星其	月四	23	2	9	16	23	30	9	13	20	27	4	11	18	25	1	8	15
星其	月五	24	3	10	17	24	31	7	14	21	28	5	12	19	26	2	9	16
星其	月六	25	4	11	18	25	1	8	15	22	29	6	13	20	27	3	10	17
星其	月日	26	5	12	19	26	2	9	16	23	30	7	14	21	28	4	11	18
环	节																	1

注: | 考试

课程信息

- 上课时间: 周二3,4节、周五5,6节,第1-16周
- 答疑时间: 随堂QQ群答疑(可匿名)
- 作业提交: 每周五布置/上交, 迟交最多计50%分数
 - 提交方式: 手写, 拍照上传超星平台
- 考试时间: 第8周期中考试, 闭卷笔试
- 成绩组成: 10%章节测试+10%作业+10%大作业+26%期中考试
 - +44%期末考试
- 课堂考勤: 随机点名, 无故缺席每次扣除总成绩10分

课程信息: 大作业

- 题目要求:
 - 1. 组成6人或7人学习小组
 - 2. 聚焦与半导体物理相关的热点或前沿问题,每人查找与半导体物理相关的近3年期刊论文2篇及以上(每人至少阅读一篇英文期刊论文,国内的期刊需要为核心期刊,国外的期刊影响因子5以上,最好阅读Nature或Science的论文)。

课程信息: 大作业

• 考核方式:

- 1. 讨论汇总每个人的阅读资料,总结确定的热点或前沿问题的研究背景,在此前沿或热点问题上有哪些研究方向,采用哪些软件、硬件工具进行分析,与哪些半导体物理知识相关,制作成PPT。
- 2. 在课堂上做5分钟汇报。
- 3. 组内成员互相打分,主要考察对所研究问题的讨论情况。(50分)
- 4. 其他班级成员打分,主要考察PPT汇报结构完整性,报告语言表达流利性。(20分)
- 5. 任课教师打分,主要考察题目与半导体物理的相关性、PPT结构、 汇报表达。(30分)

主要参考书

1987年

- 1. 胡礼中教授编写的《半导体物理》讲义
- 2. 黄昆原著,韩汝琦改编,《固体物理学》,高等 教育出版社
- 3. 刘恩科等 《半导体物理学》,国防工业出版社,第7版
- 4. 黄昆, 韩汝琦 《半导体物理基础》, 科学出版社
- 5. 叶良修 《半导体物理学》, 高等教育出版社,

黄昆院士简介

朱邦芬院士

杨老师

黄昆(1919.9.2-2005.7.6),浙江嘉兴人,世界著名物理学家、中国固体物理学和半导体物理学奠基人之一。

主要贡献:

黄昆完成了两项开拓性的学术贡献。一项是提出著名的"黄方程"和"声子极化激元"概念,另一项是与后来成为他妻子的共同提出的"黄一里斯理论"。提出固体中杂质缺陷导致x射线漫散射的理论,被称为"黄散射",与里斯共同提出了多声子的辐射和无辐射跃迁的量子理论;同期佩卡尔发表了相平行的理论,被国际上称为"黄-佩卡尔理论"或"黄-里斯理论";提出了晶体中声子与电磁波的耦合振荡模式,当时提出的方程,被称为"黄方程";研究半导体量子阱超晶格物理。建立超晶格光学振动的理论,发表了后来被国际物理学界称为"黄一朱模型"的理论。

半导体的定义

导体

半导体

绝缘体

电阻率: 10^{-7} to $10^{-8} \ \Omega \cdot m$ 电阻率:

电阻率: 10^{-6} to 10^2 $\Omega \cdot m$ 10^{10} to 10^{14} $\Omega \cdot m$

单纯通过导电性定义半导体并不准确

学习半导体物理的初心

载流子密度: 量子力学 + 平衡态统计力学

载流子速度: 非平衡态下的统计理论

怎样学好半导体物理

- 半导体物理内容范围广,知识体系庞大,涉及众多量子 力学与统计物理的内容,对大二本科生来说难度较大。
- 建议一: 重心放在概念的理解与物理图像的建立
- 建议二: "书读百遍,其义自见。"至少读两本以上参考书、读第一遍弄懂概念,第二遍再关注公式推导。
- 建议三: 独立思考,提出问题。课本上有没有错误?假 设能不能成立?

为什么需要半导体?

计算

储存

导电: 1

不导电: 0

高阻态:1

低阻态: 0

因为半导体的导电性可以调控!

半导体的一些常见特性

- 1. 导电性
- 2. 电阻随温度变化
- 3. 掺杂可在很大范围内 改变半导体的导电性
- 4. 光照下电阻发生变化

半导体材料分类

- 1. 第一代半导体: Si、Ge
- 2. 第二代半导体: GaAs, InP等III-V族材料
- 3. 第三代半导体: GaN、SiC等宽禁带材料
- 4. 新型半导体: 纳米材料、

碳材料、柔性材料等

II	III	IV	V	VI		
4	5	6	7	8		
Be	B	C	N	O		
12	13	14	15	16		
Mg	Al	Si	P	S		
30 Zn	31	32	33	34		
	Ga	Ge	As	Se		
48	49	50	51	52		
Cd	In	Sn	Sb	Te		
80	81	82	83	84		
Hg	Tl	Pb	Bi	Po		

第一章

晶体结构

认识晶体

天然晶体大多具有规则的几何形状

微观原子或分子排列有序

想一想, 生活中常见的晶体有哪些?

固体的分类

长程有序:一般在微米量级范围内原子排列具有周期性。

§ 1.1 一些晶体的实例

晶格 —— 晶体中原子排列的具体形式

原子、原子间距不同,但有相同排列规则,这些原子构成的晶体具有相同的晶格,如Cu和Ag; Ge和Si等等

1. 简单立方晶格

——原子球在一个平面 内呈现为正方排列

——平面的原子层叠加起 来得到简单立方格子

用圆点表示原子的位置 —— 得到简单立方晶格结构

2. 体心立方晶格

体心立方晶格

原子球排列形式

体心立方原子球排列方式表示为 AB AB AB

密排堆积

二维密排堆积

密排堆积 —— 晶体由同一种粒子组成,将粒子看作小圆球 这些全同的小圆球最紧密的堆积

两种密排堆积方式

原子球排列为: ABABAB

3. 六角密排晶格

Be, Mg, Zn, Cd

原子球排列为: ABC ABC ABC

4. 面心立方晶格

Cu, Ag, Au, Al

5. 金刚石晶格结构

—— 碳原子构成的一个面心立 方原胞内还有四个原子,分别 位于四个空间对角线的1/4处

——一个碳原子和其它四个碳原子构成一个正四面体

—— 金刚石结构的半导体晶体

Ge、Si等

6. 几种化合物晶体的晶格

1) NaCl晶体的结构

氯化钠由Na⁺和Cl⁻结合而成,是一种典型的离子晶体 Na⁺构成面心立方格子; Cl⁻也构成面心立方格子

2) CsCl晶体的结构

CsCl结构 —— 由两个简单立方子晶格彼此沿立方体空间对角线位移1/2的长度套构而成

3) ZnS晶体的结构 —— 闪锌矿结构

立方系的硫化锌 —— 具有金刚石类似的结构

化合物半导体 —— 锑化铟、砷化镓、磷化铟

