TD Réseaux Informatiques Responsable : H. AKSASSE

Solution TD 3

Exercice 1:

Quelles adresses IP se trouvent sur le même sous-réseau que 130.12.127.231 si le masque de sous-réseau est 255.255.192.0:

- a) 130.12.63.232,
- b) 130.22.130.1,
- c) 130.12.64.23,
- d) 130.12.167.127)?

R

Tout d'abord il faut calculer l'adresse réseaux qui contient l'IP: 130.12.127.231 avec le masque de sous-réseau est 255.255.192.0 (c a d /18), pour ceci on doit faire AND binaire entre l'IP et le masque. Notez aussi qu'il s'agit ici des sous réseaux de classe B (/16), par suite on a passé de /16 à /18, donc il y a 2^2 =4 sous réseaux possibles. Sont : 130.12.0.0/18, 130.12.64.0/18, 130.12.128.0/18, et 130.12.192.0/18.

Par conséquent la seule adresse IP qui se trouvent avec 130.12.127.231 sur le même sous réseau est : 130.12.64.23.

Exercice 2

A partir d'une adresse de réseau et d'un nombre souhaité de sous réseaux, calculer le masque de sous-réseau et le nombre d'hôtes par sous réseau (note : on ne compte pas l'adresse du réseau et l'adresse du broadcast).

- a) 148.25.0.0 et 37 sous réseaux
- b) 198.63.24.0 et 2 sous réseaux
- c) 110.0.0.0 et 1000 sous réseaux
- d) 175.23.0.0 et 550 sous réseaux
- e) 209.206.20.20 et 60 sous réseaux

R

@Réseau	NSR	Nouveau masque	Nombre hôtes
148.25.0.0 /16	$37 2^5 < 37 < 2^6$	/22 255.255.252.0	2 ¹⁰ -2=1022
198.63.24.0 /24	$2 2=2^1$	/25 255.255.255.128	2^{7} -2=126
110.0.0.0 /8	$1000 2^9 < 1000 < 2^{10}$	/18 255.255.192.0	2 ¹⁴ -2=16382
175.23.0.0 /16	550 2 ⁹ <550<2 ¹⁰	/26 255.255.255.192	2^{6} -2=62
209.206.20.20 /24	$60 2^5 < 60 < 2^6$	/30 255.255.255.252	$2^2-2=2$

Exercice 3

La table de routage d'une hôte à 221.3.4.3 contient les entrées suivantes :

Destination	Passerelle
221.3.4.0	connecté directement

221.12.5.0	221.3.4.100
222.10.10.0	221.3.4.110
223.4.5.0	221.3.4.109
221.22.1.0	221.3.4.100

1) Faites un schéma représentant la cartographie de ce réseau

R

- 2) Pour chacune des destinations suivantes, spécifiez s'il est possible de router la destination à partir de l'hôte. Spécifiez aussi le routeur de prochain saut nécessaire pour atteindre la destination.
 - a) 221.3.4.1
 - b) 221.10.10.44
 - c) 221.10.11.44
 - d) 222.10.10.7
 - e) 221.22.1.9
 - f) 223.4.5.7
 - g) 220.1.1.1

R

@destination	Routable
221.3.4.1	Oui, cette @IP appartient au même RL
221.10.10.44	Non aucune route
221.10.11.44	Non aucune route
222.10.10.7	Oui, routeur de prochain saut = 221.3.4.110
221.22.1.9	Oui, routeur de prochain saut = 221.3.4.100
223.4.5.7	Oui, routeur de prochain saut = 221.3.4.109
220.1.1.1	Non aucune route

- 3) Indiquez les tables de routage des trois routeurs suivants :
 - a) 221.3.4.100
 - b) 221.3.4.109
 - c) 221.3.4.110

R

Table de routage de 221.3.4.100

14616 46 1641486 46 22116111166		
Destination	Passerelle	
221.3.4.0	connecté directement	
221.12.5.0	connecté directement	

221.22.1.0	connecté directement
223.4.5.0	221.3.4.109
222.10.10.0	221.3.4.110

Table de routage de 221.3.4.109

Destination	Passerelle
221.3.4.0	connecté directement
223.4.5.0	connecté directement
221.22.1.0	221.3.4.100
221.12.5.0	221.3.4.100
222.10.10.0	221.3.4.110

Table de routage de 221.3.4.110

Destination	Passerelle
221.3.4.0	connecté directement
222.10.10.	connecté directement
221.22.1.0	221.3.4.100
221.12.5.0	221.3.4.100
223.4.5.0	221.3.4.109

4) Sur la machine 223.4.5.109, on exécute la commande ping 221.22.1.110. En supposant que la valeur de TTL soit de 64, quelle valeur de TTL aura le paquet ICMP lorsqu'il atteindra sa destination ?

