高涌泉老師專訪

全方位的思考

我相信物理或數學上的問題應 該從各種不同的角度去看:用不同角度去看強調的重點不同 , 會加深你對這個東西的理解 , 例如瞎子摸象,摸到部位不 —樣,但拼湊起來就是完整的象。

高涌泉老師專訪

時間:2:30 p.m Jan. 27 '94

地點:老師辦公室

人物:林耿慧、陳桂蓉

整理:林耿慧

楔子

未交談前第一個印象:

取:在大一時,海潮兄就像常和我們提年輕有爲 的高涌泉老師,心早暗生仰慕之情,路上碰 到他,他總是會對著我親切的微笑。

榕:原本以為高涌泉老師不是很年輕,結果經人 指認才知道那位年輕英俊,健步如飛的老師 就是他……

第一回合交手:

桂榕滿懷希望,輕輕地叩開老師的門;

榕:老師,我們想找您做訪問,這次時空有新老 師真訪。

師:啊!我都已經"臭甫"(台語)了,在這種 好幾年,還把我當新老師,實在太侮辱我了 !我沒什麽話要說的。你們做時空很辛苦, 我知道,我也喜歡看時空。如果要我說話, 我會勸你們看Feynman Lectures,或你們回 去寫我怎樣,我都會笑著看。

正式過招:

當你碰到逗點,請停頓三秒鐘;

當你碰到句點,請停頓五秒鐘。

在不侵犯老師隱私權下,緊張地準備了一堆老師說:「這個問題沒有人知道。」的問題到他的辦公室。其實, 老師很和善地和我們聊了一個下午,後來我也放鬆地享受 了一個美好的下午。

因為聊的太多,在保留最多意見的考量下,許多老師 的習慣說法被我改的有點緊凑,後來發現如何逼真一點: 當你碰到逗點,請停頓三秒鐘;當你碰到句點,請停頓五 秒鐘。

科學裡頭應該有物理的聲音

生:老師,我們很好奇您這學期開了一門通識 "從電子到 夸克",限定未修過普物甲、乙者才能修,請老師談 一下是什麼樣的動機讓您開了這門課?為什麼會加上 那些限制?

師:我渉入通識教育,算是意外吧!學校有通識教育課程 小組,他們找一些他們認為比較關心通識教育的老師 們組成小組,在這小組原先並沒有專長是物理的人, 這裡頭有張海潮,他大約在去年二、三月主動邀請我 在他們開會的時候也去參加,因為在科學裡頭應該有 物理的聲音,所以我就去參加了兩、三次他們的會議 。我個人對通識認識並不深,泛泛地好像覺得要讓你 的知識面博一點,實際上它的內容、精神和特色是什 麽?我並沒很深的瞭解;在這會議裡頭,我看到有人 榕:老師,沒有要你講什麽嚴肅的,只是談談自己,介紹新老師給大家認識!

師:啊!我這個人最重隱私權了,不要談我自己。

榕:那,說說您的人生觀。

師:唉!我這個人最悲觀了,你們最好不要聽我 什麼人生觀。你可以去訪問陳義裕、侯維恕 、陳銘堯,他們可以給你們一些正面的東西 。我都已是個老人了。

第二回合交手:

不死心的耿慧再度代表時空造訪老師,終於 在海潮兄的庇蔭下,及義裕師熱心的遊說下,親 愛的涌泉老兄眉頭皺了又展,展了又皺,足足三 分鐘,終於點頭說好!

提供哈佛核心課程的資料。喔!科學部分有Glashow 講基本粒子, David Nelson談物質世界。老師可依 各人專長去選擇他的題材,不是按照設定好的內容來 開課,蠻有彈性的。對理工科學生,也許這樣的核心 課程蠻合適的,讓電機系的多瞭解一些基本粒子、天 文物理…等。不過從另外一個角度看通識物理,可以 把它當做普通物理丁,還是教一般的物理知識,相當 於物理學概論。就我而言開這通識,當然希望聽衆越 多越好,如果一定要我說什麼,現也回憶不起來,我 在一瞬間就決定了——不准修過普通物理甲乙的人來 修,把對象鎖定在文法學院學生。我想很多現代物理 可以說給他們欣賞,即使他們沒有太多基礎物理知識 , 這是不是正確的?我不曉得。如果開放理工科來修 ,背景差異太大,太難掌握對象!或許是好奇吧!想 要看看那些文法學生如何看物理,才加上限制。一開 始不是有十足的把握說內容要教什麽?只有一個模糊 的概念,要講一些近代物理的東西。我不確定他們的 知識有多少?要補充多少?有人提到這種通識科學要 加一些反省性、批判性和思考性的東西,讓大家思考 科學和社會的關係?科學和其他領域的關係?那些東 西我並沒有把握說,到底要講多少?或者是我自己又 懂多少?能夠說明多少?所以在開始上課時,有一些 不確定感,慢慢地幾堂課下來,比較能掌握學生的興 趣與程度,也上軌道。上一個學期下來的心得是:我 還蠻喜歡這堂課。上這門課的學生有二十幾個,裡頭 有哲學系博士、外文系、農學院、歷史系、政治系… ,背景差易頗大,我覺得是蠻有意思的挑戰,上得蠻 高興的。

"科學史"是應該開的

生:老師並未把這門課教成普通物理了,是為了避免泛泛,才能讓那些未受過科學訓練的人,也能了解科學精神、內涵與發展。所謂通識教育,並不是要讓學生只知道一堆東西。我想,一個完全浸淫在科學中的人,仍然會有相當的人文素養,如果他不是只做技術性的工作。科學是人在探索自然的另一種"感官"吧!但系上的課程,似乎只重視解題和分析,要求操作上的熟練,才能有好成績。是否系上在規劃課程時,該多加一些具有"通識教育"意義的課程?

師:這些非科學性的東西,例如科學哲學,對一個物理系的學生來說,到底應該知道多少?這恐怕爭議性頗大。並且要以怎樣的方式來獲取這些知識?是上課呢、或是有興趣者自己去看、和同學討論、或和老師私底下討論…這爭議性很大。

生: 若開個如"科學史"呢?

師: "科學史" 是應該開的。同樣,可以爭論這門課應該誰來開,是歷史系?物理系?還是數學系?這跨科系的事是很有趣。如果有人開這種課,我也會去聽。只是一般說來,這些知識還不列入正規的物理系教育理頭。當然,臺灣可以走自己的路,選擇自己的教授內容。目前我們的課程內容,跟美國跟的滿緊的的情況,或許無法避免--如果說科學在哪裡都是一一個爭議。或有人有不同的意見,認為科學應該有其地域性的。那臺灣是不是也要有自己的科學呢?又是一個爭議。或有人問:為什麼我們不寫?有特色的就另一方面來說,你需不需要自己寫?有沒有能力?像、"科學中文化" 這話題,在以前吵的很大,現在大家比較不談。其實有些東西是製造出來的,並不見得有什麼紮實的內容在裡面。

我也想寫一本我理想中的場論教科書

生:老師對這問題的看法呢?

師:其實我一直在提倡一種語言叫"科學中文",就是那些科學術語,並不一定要去翻譯它,可是一般的語句還是中文語句,嚴格來講好像不是中文化,可是需不需要一碰到 laser,就說激光或雷射,碰到 gauge theory,就說規範場。

生:但對於一般大衆,若名詞很陌生,就難以接受,如剛 接觸電子學,不懂那一堆縮寫,可能就難以學習。

師:我同意!一般大衆需要科學名詞的中文翻譯,才不會碰到不熟悉的英文名詞而打斷閱讀,可是這是否是科學中文化的內容,也同樣地可以辯論。看在那個層次,是科技傳播還是科技工作的層次?就這樣講,我沒有答案!這個在十幾年前曾是大辯論,批評說我們科學沒有中文化等等,或者現在不談"科學中文化",說"科學本土化",一樣的意思,什麽叫做"本土化",雙思量!噴!怎麼扯到這個,回來講我們用的教科書。如果follow美國,好處是不至於離譜,壞處是不容易超越,有人覺得,臺灣現在距離和美國越來越

近,應要考慮怎麽超越,這是大問題!我是沒有答案! 寫一本書沒那麽容易,我也想寫一本我理想中的場論 教科書。每次讀了一些東西覺得很有心得,一般書沒 那麽強調,就想那一天我寫書一定要把它寫出來。慢 慢地我看美國教科書很多過去人家沒有強調的,都有 人寫出來。在世界上要做人家沒想過的東西或做得比 人家好,不容易!我有一個想法,寫一系列的文章介 紹現代物理,因為很多文章都是從相對論講到量子力 學就停了,可是量子力學以後的物理就比較少通俗性 的文章在談,所以我有這樣的打算,可是一直沒實現! 如果說要介紹現代物理——二十世紀以後的物理,裡 而有很多可以講,很多新的現象出現,如 quantum Hall effect,背後有很多有趣的物理結合在一起才能 解釋,或像 phase的觀念,還有很多有意思的量子現 象,不管是實驗或理論,可是要有個切入點。若一開 始假設大家都懂 Shroedinger Equation, 這是個錯 誤,可是那些事情需要量子的概念,這是考驗!要把 它們講得一般大學生都懂,很難!我想也許可以從 path integral講起,是一個適當的切入點,是否能用 淺顯的方式來解釋?若交代的淸楚,很多現代物理的 現象和概念都可以接下去講,但我第一關都還沒過。

我們現在還不知道從

Schrodinger equation

可不可以推導出青蛙會跳?

生:老師是做高能物理,有人說高能的好時代過去了,物 理也在轉變。是否能說說您對高能物理的前途的看法? 是悲觀還是樂觀?

師:我做的是高能理論,有時會開自己的玩笑說,我不是 做低能或高能,而是無能的(笑)。我有興趣的問題 是場論,場論其實是一套數學架構,透過這個數學架 構去理解很多物理現象。高能現象是其中之一。場論 其實是等於統計力學、等於多體問題、這個"多"是 很多,或無窮多體物理。可以解釋低能的凝態現象, 或是無能的數學現象,去研究數學問題。所以好像我 也不太受quark存在不存在影響。Feymann在六十年 代演講就提到:物理如果要終結,是如何終結?他說 :有兩種方式:一個是所有定律都被發現,這當然就 結束掉!另一個是人類發現每次找到一個新規律,就 會引出新的問題,要花更多的精力與金錢才能回答這 個新的問題,進展會愈來愈慢、愈來愈難,到一個地 步人類以失去興趣了,這學問就被終止了!他還說如 果物理結束,哲學家一定出現。不過Feynman定義的 物理狹義了一點,在他一本書 "The Theory of Fundamental Processes",頭一句話是:這一本書包括 所有的物理,他所謂的物理就是尋找基本規律,難道 凝態物理不算嗎?當然Feynman 不是這麼膚淺,在 他的Lectures on Physics,那一本書是個寶藏,很多 comments都是很精彩的,他提到:現在找到許多方 程式—Maxwell equation, Schrodinger equation , Yang-Mills equation, 可是你不清楚它們帶 來什麼,下一個科學大進展就是尋找這些方程式給的 現象,了解這些方程式。現在複雜性系統的研究很旺 ,方程式很簡單,可是後果卻很豐富。就如Feynman 說的。我們現在還不知道從Schrodinger equation可 不可以推導出靑蛙會跳?他不是那麼單純地說物理只 是在尋找基本方程式,只是那樣子的物理和尋找方程 式的物理有點不大一樣。雖然許多人相信生物現象可 由化學定律來解釋,而化學現象可由物理定律去解釋

什麽是物理

,後來發現說其實也不是這個樣子,在實踐層次上知識好像分層的,每一層有它自己的規則、方式,品味,style。就是quark 存在性不會去影響高溫超導體的研究。的確應該想一想,你獲得的知識在比較大的架構是佔什麼樣的位置?我也希望知道top quark 存在嗎?質量多少?從大角度來看,物理不可能維持過去三、四十年的發展,過去知識累積非常快速,顯然這個時代已經過去了!從八十年代以來,物理在轉變

或許現在是你們投入粒子物理的好時機,至少有五十年還有東西好做,而你們的career就這五十年。

做個"正常"的人

生:有人認為這世界宇宙的存在就是為了人,如物理常數 是那麼地恰到好處,能使星球存在,然後又安排恰到 好處,星球上能有生物的存在。您的看法呢?

師:我不覺得這有說服力。Weinberg的看法恰好相反:你越了解物理定律,越不覺得是為了人的存在而存在。這沒有定論,可以相信是或不是?假如知道人世間是沒有意義的,並不表示你不用過這一世。多半的事情,如人生、做學問…,只是為了取得一個平衡,若人世間是空的,幾千萬年後就滅了,是不是表示現在不用奮鬥了呢?在書本中、環境裡很容易找到對立的概念,兩種都言之有理,可是要找平衡點,這最難了,沒有人教你怎麽做?你也無法教別人。選擇本身是

,楊振寧說 "Party is over." ,不是說基本粒子完了,是說基本粒子的好時代過去了。它不似過去高人一等。什麼是物理?要重新定義,有一個時代基本粒子才是物理,這當然讓不做基本物理的人不高興。Wilczek 曾提過condense matter imperialism,疑態物理霸權主義。過去是高能物理霸權,現在是疑態物理霸權,這風潮已經來了。學問有他內在的邏輯,也有外在社會因素,總之,這難以改變。由比較大的角度看,物裡在未來會比較像化學。不過,知道很好,不知道並不會嚴重影響到別的事務。這並不是什麼新鮮事,大家都知道。我不會為高能物理擔心,學問很難完,只要有人有興趣,還是有優秀的人進去,有新發現。也許隔幾年,報紙上登出top quark找到了。

最好玩的,天平放在哪裡?像在浪漫和現實中取平衡。我本身可以說是浪漫的人但不脫離現實,我想我是個"正常"的人,我也常跟學生說要做個"正常"的人,我也常跟學生說要做個"正常"的人,正常最重要。消極和積極也是兩種不同的觀點:有些事可以看開一點,有些事可以看開一點,有些事可以看開一點,有數學事情都看開。取平衡(中庸)入此,我不做的事情比做的事多。對於中庸,我的解釋是中華,我不做的事情比做的事多。對於中庸,我的解釋是中華,我不做的事情比做的事多。對於中庸,我的解釋是中華,我不做的事情上做的事多。對於中庸,我的解釋是的問題。我相信物理或數學上問題應該從各種不同的度去看:用不同角度去看的重點不同,會加深你對這個東西的理解,例如瞎子摸象,摸到部位不一樣,但拼凑起來就是完整的象。特別是做理論的,每個問題都必須從不同角度去看。

人生問題也是如此,且更複雜。物理裡的所謂高手就 是你跟他談,他會全面性的告訴你,每一方面他都考 慮到了。

要能夠堅持、能夠吃苦

生:老師可否舉些實例?

師:嗯!這是很大的挑戰···例如F=ma,方程式你怎麼解? 用數值方法:一個點算完再算下一個點,這是infinitesmal的觀點;若用action princle:是一條軌跡的作 用量(action)算完再算另一條;或用Halmitonian 方法這就比較接近differential的觀念,在phase space 中流動;這些都equivalent,但觀點不同,有趣的是 :在解問題時,某一觀點比其它方法讓人更快得到結 果,所以想問題時最好想的快、全面、周密、深入, 高手就是如此。

生:一般課程沒給這樣的訓練。

師:這怎麽訓練?天生的!只能靠多讀,多和人討論。就如此武,你要多和拿不同武器的人練。我常說:一個人一輩子招式就幾招,高手就不同,會的招數很多, 一般人很難比的。

生:如果說一個人很貪心,怎麽辦?

師:那我就說你是個正常人。多受幾次挫折,大概就知道 自己能力。

生:要如何減少這種挫折?

師:我們在這圈子混了比較久以後,總是累積出一些經驗。我的感想是:在這物理裡頭,要有成就的話,你的 性格和你的能力是同等重要。

生:性格要如何?

師:你要能夠堅持、能夠吃苦,有奮鬥的毅力。一個人可以能力很強,但他可能沒太大的意願去追一個新的問題來解。主動的動力來源是很重要的。我甚至可以說這是最起碼的,如果沒有衝動、意志解決問題,光有能力也枉然。特別在你離開老師以後,這種特質越發重要。再來,在物理裡頭想做出點東西,選的field,跟你的能力同等重要,或是更重要。有些領域在某些時候比較容易做出東西來。能力是沒法改變的,性格也是,你能做的,就是選擇一個好的研究領域。好!這就來了!什麼叫好的研究領域?這不是書或老師能教的!我也無法告訴你:什麼是容易有成就的領域?

我最大的心願是:決不要當蚊子

生:老師您大學時,除了課業外,覺得自己那方面成長最 多?

師:當然是愛情方面, But No Comment!你們可以看 Feynman,他有豐富的romance。(笑)

生:老師很崇拜Feynman?!

師:Yahh······我知道他是個有缺點的人。他很熱情,可能和我身上某種特色共振,符合我某種需要,這一般社會很難找到,東方文化不談熱情。熱的人通常很真,Feynman很真,在做物理時很誠實。另外,我覺得人還要有一種特質--溫情compassion,這比較微妙,

很難說淸楚的,我認為Feynman兩者都有。 passion 還有 compassion是同樣重要的。

生: Feynman 常鼓勵後進"獨特、反時髦",但老師曾告訴我: 隨波逐流。

師:Feynman 只能欣賞,他熱情、浪漫,但你不能學。如果我勸你學Feynman,我才發瘋! Feynman 有很高的智慧,當然他也很努力,但有份浪漫,這是他獨特的地方。一般人是沒能力如此,浪漫要配合能力,否則就是發瘋。有能力按照自己意志選擇不受外在影響,什麼叫做"你管別人怎麼想?"這很難掌握的。Feynmann、Einstein都不能學,為什麼會有這種人存在?不懂,真的不懂,我們只能欣賞罷了!

生:老師是否想過下輩子要做什麽?

師:我最大的心願是:決不要當蚊子。(雙手一啪!ターY)我每天在這裡打蚊子,我實在…

生:老師,您知道馬友友曾說過:下輩子想做蟑螂,因為 蟑螂是最沒有用的東西,所以想當看看。

師:我只希望我不是蟑螂,(腳用力一踏,搖著頭笑)。 蚊子有沒有靈魂?I feel sorry for them. (再ター 丫一聲!笑…沉默)也許上帝看我們像蚊子。死亡這 東西,大到說什麽都沒用,沒法子抗拒。也許有蚊子 哲學家,飛經過我身邊,啪!就沒了!在 Physics Today紀念Feynman專集中曾刊:Feynman 在過世 前,有個人跟他說:我很難過你快死了。Feynman 說 "Yeah,有時我也很難過,但沒你想像的這麼難 過。我已經把我所知道good stuff告訴別人了"。我 想一個人在死時,沒有太大的遺憾,是很幸福的。 Feynman 在世70年,把他對物理的愛、發明和美妙 而別人沒發現的東西,告訴別人。當我在用Feynman Diagram 時,這是否算是Feynman 生命的延續?!

師:Anyway,你們還有沒有什麼要問的?看到人家滿足 ,我最快樂了!今天談的,我想就是多看書、多和人 討論對你們最有幫助吧!

生:謝謝老師!