1 Basics

1.1 List Of Games

- Büchi
- Staiger-Wagner
- weak Parity
- Reachability (E-condition)
- Safety (A-condition)
- Muller
- Parity
- Rabin
- Streett

1.2 List Of Properties

• Determined

For every node v, either player has a winning strategy.

- Positionally Determined
 - For every node v, either player has a positional winning strategy.
- Uniform determined

There are disjoint sets $W_0 \cup W_1 = V$ and strategies σ_0 and σ_1 for player 0 and 1 respectively, such that σ_0 is winning from all $v \in W_0$ and σ_1 is winning from all $v \in W_1$.

• Prefix Independent

 $\forall x \in C^*, \alpha \in C^\omega : \alpha \in Win \leftrightarrow x\alpha \in Win$

1.3 Definitions

Definition 1. A game graph / arena is a tuple $G = (V_0, V_1, E, c)$ where $V_0 \cap V_1 = \emptyset$, $E \subseteq V \times V$ where $V = V_0 \cup V_1$, and $c : V \to C$ for a finite set of colors C.

A game is a pair G = (G, Win) where G is an arena and $Win \subseteq C^{\omega}$.

A strategy for player i is a function $\sigma: V^*V_i \to V$ with $(u,v) \in E$ for all $\sigma(xu) = v$. σ is a winning strategy from $v \in V$, if all plays from v that are according to σ are won by player i. σ is positional if for all $x, y \in V^*, v \in V$: $\sigma(xv) = \sigma(yv)$.

2 Memory & Reductions

Definition 2. A strategy automaton for player 0 in a game \mathcal{G} is a tuple $\mathcal{A} = (M, C, m_{in}, \sigma^u, \sigma^n)$ with $\sigma^n : M \times V_0 \to V$ and $\sigma^u : M \times C \to M$. The automaton defines a strategy $\sigma_{\mathcal{A}}(xv) = \sigma^n(m, v)$ where $m = (\sigma^u)^*(m_{in}, x)$.

Definition 3. Let \mathcal{G} and \mathcal{G}' be games. \mathcal{G} reduces to \mathcal{G}' with memory m if there is an f_{in} : $V \to V'$ such that a player wins from $v \in V$ iff that player wins from $f_{in}(v) \in V'$. For a winning strategy with memory n from $f_{in}(v)$, one can compute a winning strategy with memory $n \cdot m$ from v.

Definition 4. Let $\mathcal{G} = (V_0, V_1, E, c, Win)$ be a game and let $\mathcal{A} = (Q, C, q_0, \delta, Acc)$ be a finite automaton with $L(\mathcal{A}) = Win$. The **product game** is defined as $\mathcal{G} \times \mathcal{A} = (V'_0, V'_1, E', c', Acc)$ with

- $V_0' = V_0 \times Q$
- $V_1' = V_1 \times Q$
- $E' = \{((u, p), (v, q) \in (V \times Q)^2 \mid (u, v) \in E \text{ and } q = \delta(p, c(u))\}$
- c'(v,q) = q

Theorem 1. \mathcal{G} reduces to $\mathcal{G} \times \mathcal{A}$ with memory |Q|.

Example Let $\mathcal{A} = (Q, C, q_0, \delta, F)$ be a DFA and let $\mathcal{G} = (G, C^*L(\mathcal{A}C^{\omega}))$. Then \mathcal{G} is a reachability game. Hence, $\mathcal{G} \times \mathcal{A}$ is determined with memory size |Q|.

3 Prefix Dependent Games

3.1 Reachability & Safety

 $F \subseteq C$ and Win = C^*FC^{ω} (reachability) or Win = $(C \setminus F)^{\omega}$ (safety)

Theorem 2. Reachability games and safety games are positionally determined. The winning regions and winning strategies can be computed in $\mathcal{O}(|G|)$.

??

3.2 Weak Parity

 $C \subseteq \mathbb{N}$ and Win = $\{\alpha \in C^{\omega} \mid \max \operatorname{Occ}(\alpha) \text{ is even}\}.$

Theorem 3. Weak parity games are positionally determined. The winning regions and winning strategies can be computed in $\mathcal{O}(|C| \cdot |G|)$.

3.3 Staiger-Wagner

 $\mathcal{F} \subseteq 2^C$ and Win = $\{\alpha \in C^{\omega} \mid \operatorname{Occ}(\alpha) \in \mathcal{F}\}.$

Theorem 4. Staiger-Wagner games can be reduced to weak parity games with memory $2^{|C|}$.

Proof. Similar to proof from SWA to WDBA.

Theorem 5. For every n > 0, there is an arena G_n with $|G_n| \in \mathcal{O}(n)$ and a set $\mathcal{F}_n \subseteq 2^C$ with $|\mathcal{F}_n| \in \mathcal{O}(n)$ such that player 0 has a winning strategy in the Staiger-Wagner game (G_n, \mathcal{F}_n) but every winning strategy requires memory of size 2^n .

4 Prefix Independent Games

4.1 Büchi Games

 $F \subseteq C$ and Win = $\{\alpha \in C^{\omega} \mid Inf(\alpha) \cap F \neq \emptyset\}.$

Theorem 6. Büchi games are uniformly positionally determined. The winning regions and winning strategies can be computed in polynomial time in |G|.

??

4.2 Parity Games

 $C \subseteq \mathbb{N}$ and Win = $\{\alpha \in C^{\omega} \mid \max \operatorname{Inf}(\alpha) \text{ is even}\}.$

Theorem 7. Parity games are uniformly positionally determined. The winning regions and winning strategies can be computed in non-deterministic polynomial time in |G|, or in deterministic time $\mathcal{O}\left(|V|\cdot|E|\cdot|C|\cdot(\frac{|V|}{|C|}+1)^{2|C|}\right)$.

Proof.

4.3 Muller Games

 $\mathcal{F} \subseteq 2^C$ and Win = $\{\alpha \in C^{\omega} \mid \text{Inf}(\alpha) \in \mathcal{F}\}.$

Theorem 8. Muller games can be reduced to parity games with memory $|C| \cdot |C|!$.

Proof. A Muller automaton can be transformed to a DPA using the LAR construction. \Box

Theorem 9. For every n > 0, there is an arena G_n with $|G_n| \in \mathcal{O}(n)$ and a set $\mathcal{F}_n \subseteq 2^C$ such that player 0 has a winning strategy in the Muller game (G_n, \mathcal{F}_n) but every winning strategy requires memory of size n!.

Proof.

Theorem 10. Let (G, \mathcal{F}) be a finite Muller game. Player 0 and player 1 have uniform winning strategies from their respective winning regions of size at most $m_{\mathcal{F}}^0 / m_{\mathcal{F}}^1$. (the automata use V for the update function instead of C)

Proof.

Theorem 11. For every $\mathcal{F} \subseteq 2^C$, there is an arena $G_{\mathcal{F}}$ such that player 0 wins $(G_{\mathcal{F}}, \mathcal{F})$ but every winning strategy requires memory at least $m_{\mathcal{F}}^0$.

Proof.

Theorem 12. Muller games can be reduced to parity games with memory $l_{\mathcal{F}}$.

4.3.1 Split Trees

Definition 5. Let $\mathcal{F} \subseteq 2^C$. We write $\mathcal{F}|_D = \mathcal{F} \cap 2^D$ for all $D \subseteq C$. The **split tree** of \mathcal{F} is called $\mathcal{S}_{\mathcal{F}}$ and is defined as follows:

- Nodes in the tree are labeled by $2^C \times \{0,1\}$.
- If $C \in \mathcal{F}$, the root is labeled (C,0). Otherwise, the root is labeled (C,1).
- For every \subseteq -maximal set D with $D \notin \mathcal{F}$, the root has the subtree $\mathcal{S}_{\mathcal{F}|_D}$ as a child.

Definition 6. Let $\mathcal{F} \subseteq 2^C$. Let $\mathcal{F}_1, \ldots, \mathcal{F}_n \subseteq 2^C$ such that $\mathcal{S}_{\mathcal{F}_1}, \ldots, \mathcal{S}_{\mathcal{F}_n}$ are the direct subtrees of the root in $\mathcal{S}_{\mathcal{F}}$. We define the **memory number**

$$m_i(\mathcal{S}_{\mathcal{F}}) = \begin{cases} 1 & \text{if } n = 0 \\ \max_j m_i(S_{\mathcal{F}_j}) & \text{if the root is } (C, i) \\ \sum_j m_i(S_{\mathcal{F}_j}) & \text{if the root is } (C, 1 - i) \end{cases}.$$

For a short form, we write $m_{\mathcal{F}}^i = m_i(\mathcal{S}_{\mathcal{F}})$. We write $l_{\mathcal{F}} \in \mathbb{N}$ for the number of leaves in $\mathcal{S}_{\mathcal{F}}$.

Theorem 13. • $m_{\mathcal{F}}^0 = m_{\mathcal{F}}^1$

- $m_{\mathcal{F}}^i \leq l_{\mathcal{F}}$
- $l_{\mathcal{F}} \leq |C|!$

4.4 Rabin & Streett Games

```
\Omega = \{ (E_i, F_i) \mid 1 \le i \le n \} \subseteq C \times C \text{ and} 

\text{Win} = \{ \alpha \in C^{\omega} \mid \exists i : \text{Inf}(\alpha) \cap E_i = \emptyset \land \text{Inf}(\alpha) \cap F_i \ne \emptyset \} \text{ (Rabin)} 

\text{Win} = \{ \alpha \in C^{\omega} \mid \forall i : \text{Inf}(\alpha) \cap E_i \ne \emptyset \land \text{Inf}(\alpha) \cap F_i = \emptyset \} \text{ (Streett)}.
```

Theorem 14. Rabin and Streett games are determined. In a Rabin game, player 0 has a uniform positional winning strategy from their winning region. In a Streett game, player 1 has a uniform positional winning strategy from their winning region.

For every n, there is a game graph G_n and a condition Ω_n with $|\Omega_n| = n$ such that the opposite player requires memory n! for a winning strategy from their winning region.

 \square

4.5 Logic Games

Let \mathcal{L} be a logic and $\varphi \in \mathcal{L}$. Then $Win_{\varphi} = \{ \alpha \in C^{\omega} \mid \alpha \models \varphi \}$.

Theorem 15. For $\mathcal{L} = LTL$, logic games are uniformly positionally determined and the winning strategies can be computed in $2^{2^{|\varphi|}}$.

Proof. One can compute an NBA for φ in exponential time which can then be transformed to a DPA.

Theorem 16. For $\mathcal{L} = S1S$, logic games are uniformly positionally determined and the winning strategies can be computed in $2 \uparrow |\varphi|$.

Proof. One can compute an NBA for φ in non-elementary time which can then be transformed to a DPA.

4.5.1 Church Synthesis

Goal: given a specification $\varphi(\alpha, \beta)$, construct a function/program f such that $f(\alpha) = \beta$ iff $\models \varphi(\alpha, \beta)$.

Define a game (G, Win_{φ}) where G defines a game in which player 0 and player 1 alternatingly choose bits 0 or 1. By using the previous results, the game can be solved. A winning strategy for player 0 can be used as a program f.