

NATIONAL INSTITUTE OF TECHNOLOGY TIRUCHIRAPPALLI Semester Exam - Jan. 2021 SESSION

DEPARTMENT : COMPUTER SCIENCE AND ENGINEERING

DATE & TIME OF EXAM : 10/05/2021 10:00 am

SUB CODE & Title : CSPC41- Formal Languages and Automata Theory

DURATION : 2 hour

FACULTY NAME : R. LEELA VELUSAMY Max marks: 30

Note to Student: Answer all the questions. Detailed answer is expected.

- Make sure the 'Declaration and statement of authorship' is uploaded along with the answer sheet as cover sheet (First Sheet)
- 2. TIME MANAGEMENT IS YOUR RESPONSIBILITY
- 1. a) Construct a DFA for the regular expression $aa(ba)^* \mid abb^*$ and validate a string x with length ≥ 5 using the DFA Constructed. (4)
 - b) Design a Moore machine which counts the occurrence of substring bab in a given input string. Explain the working of the Moore machine with a string of length 10. (3)
- 2. Given the CFG with the set of production rules $\{S \to AB, S \to CA, A \to a, B \to BC, B \to AB, C \to aB, C \to b\}$ Find the following:
 - a) Determine the generated language and prove it. (2)
 - b) Prove or disprove that the CFG is ambiguous. (2)
 - c) Construct an equivalent CFG in Greibach normal form. (3)
- 3. A transition table is given below for a PDA with an initial state q_0 and accepting state q_2 . Describe the language accepted by the PDA and validate a string with length ≥ 5 . (6)

Move Number	State	Input	Stack Symbol	Move(s)
1	q_0	а	Z_0	(q_0, XZ_0)
2	q_0	\boldsymbol{b}	Z_0	(q_0, XZ_0)
3	q_0	a	X	(q_0, XX)
4	q_0	\boldsymbol{b}	X	(q_0, XX)
5	q_0	c	X	(q_1, X)
6	q_0	c	Z_0	(q_1, Z_0)
7	q_1	a	\boldsymbol{X}	(q_1, Λ)
8	q_1	\boldsymbol{b}	X	(q_1, Λ)
9	q_1	Λ	Z_0	(q_2, Z_0)
(all other combinations)				none

- 4. Construct a Turing machine using the checking of symbols technique to recognize the language L = {wcy | w and y in {a, b}*, w ≠ y}
 (6)
- 5. Use the CYK algorithm to determine whether the strings baba and bbaa are in the language generated by the grammar with production rules $\{S \rightarrow C_bA \mid C_aB, A \rightarrow C_bD \mid C_aS \mid a, B \rightarrow C_aE \mid C_bS \mid a, D \rightarrow AA, E \rightarrow BB, C_a \rightarrow a, C_b \rightarrow b\}$ (4)

Best Wishes