浙江水学

本科实验报告

课程名称: 计算机网络

实验名称: 动态路由协议 OSPF 配置

姓 名: 张溢弛

学院: 计算机学院

系: 软件工程

专业: 软件工程

学 号: 3180103772

指导教师: 邱劲松

2020年 11月 20日

浙江大学实验报告

一、实验目的

- 1. 理解链路状态路由协议的工作原理。
- 2. 理解 OSPF 协议的工作机制。
- 3. 掌握配置和调试 OSPF 协议的方法。

二、 实验内容

- 使用网线连接 PC 和路由器,并配置 PC 和路由器各端口的 IP 地址,让 PC 彼此能够与路由器接口互相 Ping 通;
- 用网线连接多个路由器,并配置互联端口的 IP 地址,使直接连接的 2 个路由器能相互 Ping 通;
- 在 Area 0 的路由器上启用 OSPF 动态路由协议,让各路由器能够互相学习到新的路由信息,进 而使区域内的 PC 能够相互 Ping 通;
- 在 Area 1 的路由器上启用 OSPF 动态路由协议,让区域内和区域间各路由器能够互相学习到新的路由信息;
- 在 Area 2 的路由器上启用 OSPF 动态路由协议,在 NBMA(非广播多路访问)网络拓扑上配置 OSPF 协议,让区域内和区域间各路由器能够互相学习到新的路由信息;
- 在 Area 3(不与 Area 0 直接连接)的路由器上启用 0SPF 动态路由协议,在边界路由器上建立 虚链路,让 Area 3 的路由器能够学习到新的路由信息,进而使 Area 3 的路由器能够学习到其 他区域的路由信息;
- 在上述各种情况下,观察各路由器上的路由表和 OSPF 运行数据,并验证各 PC 能够相互 Ping 通;
- 断开某些链路,观察 OSPF 事件和路由表变化;
- 在 Area 边界路由器上配置路由聚合。

三、 主要仪器设备

PC 机、路由器、Console 连接线、直联网络线、交叉网络线(如果物理设备不足,可以使用模拟软件)。

四、操作方法与实验步骤

- 按照拓扑图连接 PC 和路由器,其中 R1-R2 之间采用串口连接,数据链路层协议使用 HDLC; R5、R7、R8 之间采用 Frame Relay 交换机连接(Frame Relay 交换机的配置请参考 GNS3 指南)。
- 设计好 PC 和路由器各端口的 IP 地址、子网掩码。分配地址时请遵循下面的规则:
 - a) Area 0 使用 10. 0. 0. 0/16 的网络地址进行扩展,每个子网分别使用 10. 0. 0. 0/24、10. 0. 1. 0/24、10. 0. 2. 0/24 等子网地址。其中点对点连接的路由器之间的子网使用 10. 0. 123. 240/28 进行扩展,可以最大程度的节约地址,例如使用串行掩码方案,网络地址 部分为 30 位,每个子网刚好有 2 个可用地址(去掉 1 个主机地址部分全 0 的和 1 个主机地址部分全 1 的),可以按如下方式进行分配:

R1-R2 互联接口: 10.0.123.241/30、10.0.123.242/30, 子网地址: 10.0.123.240/30;

R1-R3 互联接口: 10. 0. 123. 245/30、10. 0. 123. 246/30,子网地址: 10. 0. 123. 244/30; 依次类推, R2、R3、R4、R6 之间的子网为(只需要 4 个地址): 10. 0. 123. 248/29,去 掉全 0 全 1 地址后,还有 6 个地址可用。

b) Area 1、Area 2、Area 3 使用 10. X. 0. 0/16 的网络地址进行扩展,其中 X 为 Area 编号,例 如 Area 1 的 3 个子网分别使用 10. 1. 0. 0/24、10. 1. 1. 0/24、10. 1. 2. 0/24 等子网地址(同一个交换机上的多台路由器的接口属于同一个子网)。

- 配置各 PC 的的默认网关,分别设置为所连路由器的相应端口 IP 地址;
- 配置各路由器互联端口的 IP 地址, 使直连的 2 个路由器能相互 Ping 通;
- 先后给路由器 R1、R2、R3 配置 RIP 协议和 OSPF 协议,比较两者选择的路由差别(RIP 不考虑线路带宽,只考虑经过的路由器个数,OSPF 考虑线路 cost,带宽越大,cost 越小);
- 给 Area 1、Area 2 的路由器配置 OSPF 协议,观察区域间路由信息交换;
- 给 Area 3 的路由器配置 OSPF 协议。由于 Area 3 没有物理上直接与 Area 0 连接,所以需要利用 Area 1 作为中介,在 R4 和 R9 之间为 Area 3 建立一个虚链路。
- 观察各路由器的路由表,查看路由器做出的选择是否符合预期;
- 通过 Ping 检查各 PC 之间的联通性;
- 实时显示路由器之间交换的路由信息事件,理解 OSPF 协议交互过程;
- 断开某些网络连接,查看 OSPF 的数据变化以及路由表的变化,并测试 PC 间的联通性;

RIP相关命令参考

● 在路由器上启用 RIP 协议

Router (config) # router rip

将路由器各接口(子网)加入路由宣告:

Router(config-router)# network <ip_net>

OSPF 相关命令参考

● 给路由器的回环接口配置地址

Router(config)# interface loopback 0

Router(config-if)# ip address <ip> <mask>

● 在路由器上启用 OSPF 协议

Router(config)# router ospf process-id>

● 配置路由器接口(子网)所属 Area ID

Router(config-router)# network <ip_net> <mask> area <area-id>

● 查看路由器的 OSPF 数据库 (可以查看 Router ID)

Router# show ip ospf database

● 手工指定 Router ID

Router(config-router)# router-id x. x. x. x

更换 Router ID 需要重启路由器或清除 OSPF 状态才能生效, 其中

重启路由器命令:

Router# reload

清除 OSPF 状态命令:

Router# clear ip ospf process

观察各路由器的 OSPF 邻居关系,在广播网络中,为减少通信量,会自动选出一个 DR(Designated Router) 和一个 BDR(Backup Designated Router),其他路由器只与 DR、BDR 成为邻接关系。

Router# show ip ospf neighbor detail

● 观察路由器的 OSPF 接口状态 (可以查看 cost 值)

Router# show ip ospf interface

● 打开事件调试,实时显示路由器之间交换的路由信息事件

Router# debug ip ospf events

观察完毕后,可以关闭调试信息显示:

Router# no debug ip ospf events

● 在两个区域边界路由器之间建立虚链路, <area-id>填写用于传递数据的区域 ID, <router ID> 分别设为对方的 Router ID:

Router(config-router)# area <area-id> virtual-link <router ID>

● 在区域边界路由器上手工进行路由合并:

Router(config-router)# area <area-id> range <ip_net> <mask>

五、 实验数据记录和处理

以下实验记录需结合屏幕截图进行文字标注和描述,图片应大小合适、关键部分清晰可见(本文档中的截图仅用于示例, 请更换成你自己的)。记录输入的命令时,直接粘帖文字即可(保留命令前面的提示符,如 R1#)。

1. 参考实验操作方法的说明,设计好每个 PC、路由器各接口的 IP 地址及掩码,并标注在拓扑图上。 设计的拓扑图(参考 GNS3 指南,在 FrameRelay 交换机上配置 R5-R7, R5-R9 之间的数据链路,每路由器 1 个物理端口):

初步连接好的拓扑图如上图所示

2. 给路由器 R1、R2、R3 各接口配置 IP 地址并激活。配置 PC1、PC2 的 IP 地址和默认网关,测试 PC1 与 R1、PC2 与 R2 的连通性。

R1 配置命令(此处为截图形式,请使用文本形式,下同):

```
int f0/0
ip addr 10.0.0.1 255.255.255.0
no shut
exit
int f0/1
ip addr 10.0.123.245 255.255.255.252
```

no shut

```
int s0/0
ip addr 10.0.123.241 255.255.255.252
encapsulation hdlc
clock rate 128000
no shut
```

```
R1#config t
Enter configuration commands, one per line. End with CNTL/Z.
R1(config-if)#int f0/0
R1(config-if)#ip add 10.0.0.1 255.255.255.0
R1(config-if)#o shutdown
R1(config-if)#exit
R1(config)#
*Mar 1 00:01:43.391: %LINK-3-UPDOWN: Interface FastEthernet0/0, changed state to up
*Mar 1 00:01:44.391: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up
R1(config)#in f0/1
R1(config-if)#in add 10.0.123.245 255.255.255.252
R1(config-if)#o shutdown
R1(config-if)#exit
R1(config)#
*Mar 1 00:02:17.539: %LINK-3-UPDOWN: Interface FastEthernet0/1, changed state to up
*Mar 1 00:02:18.539: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to up
R1(config)#int s0/0
R1(config-if)#ip add 10.0.123.241 255.255.255.252
R1(config-if)#exit
R1(config-if)#exit
R1(config-if)#exit
R1(config-if)#oshutdown
R1(config-if)#oshutdown
R1(config-if)#oshutdown
R1(config-if)#oshutdown
R1(config-if)#oshutdown
R1(config-if)#exit
```

R2 配置命令:

config t

int f0/0

ip add 10.0.1.1 255.255.255.0

no shut

exit

int f1/0

ip addr 10.0.123.249 255.255.255.248

no shut

exit

inter s0/0

ip addr 10.0.123.242 255.255.255.252

encapsulation hdlc

no shut

R3 配置命令:

conf t

int f0/1

ip addr 10.0.123.246 255.255.255.252

no shut

int f1/0

ip addr 10.0.123.250 255.255.255.248

no shut

```
R3#config t
Enter configuration commands, one per line. End with CNTL/Z.
R3(config)#int f0/1
R3(config-if)#ip add 10.0.123.246 255.255.255.252
R3(config-if)#no shutdown
R3(config-if)#exi
*Mar 1 00:05:03.979: %LINK-3-UPDOWN: Interface FastEthernet0/1, changed state to up
*Mar 1 00:05:04.979: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to up
R3(config-if)#exit
R3(config-if)#exit
R3(config-if)#ip add 10.0.123.250 255.255.255.248
R3(config-if)#no shutdown
R3(config-if)#exit
```

PC1→R1:

```
PC-1> ip 10.0.0.2 /24 10.0.0.1

Checking for duplicate address...

PC1: 10.0.0.2 255.255.255.0 gateway 10.0.0.1

PC-1> show

NAME IP/MASK GATEWAY MAC LPORT RHOST:PORT PC-1 10.0.0.2/24 10.0.0.1 00:50:79:66:68:00 10083 127.0.0.1:10084 fe80::250:79ff:fe66:68:00/64

PC-1> ping 10.0.0.1 icmp_seq=1 ttl=255 time=19.631 ms 84 bytes from 10.0.0.1 icmp_seq=2 ttl=255 time=6.285 ms 84 bytes from 10.0.0.1 icmp_seq=3 ttl=255 time=9.632 ms 84 bytes from 10.0.0.1 icmp_seq=4 ttl=255 time=9.632 ms 84 bytes from 10.0.0.1 icmp_seq=4 ttl=255 time=4.107 ms 84 bytes from 10.0.0.1 icmp_seq=5 ttl=255 time=1.795 ms
```

PC2**→**R2:

```
PC-2> ip 10.0.1.2 /24 10.0.1.1
Checking for duplicate address...
PC1 : 10.0.1.2 255.255.255.0 gateway 10.0.1.1

PC-2> show

NAME IP/MASK GATEWAY MAC LPORT RHOST:PORT
PC-2 10.0.1.2/24 10.0.1.1 00:50:79:66:68:01 10085 127.0.0.1:10086 fe80::250:79ff:fe66:6801/64

PC-2> ping 10.0.1.1
84 bytes from 10.0.1.1 icmp_seq=1 ttl=255 time=19.267 ms
84 bytes from 10.0.1.1 icmp_seq=2 ttl=255 time=8.861 ms
84 bytes from 10.0.1.1 icmp_seq=3 ttl=255 time=11.667 ms
84 bytes from 10.0.1.1 icmp_seq=4 ttl=255 time=4.553 ms
84 bytes from 10.0.1.1 icmp_seq=5 ttl=255 time=4.423 ms
```

---Part 1: 配置 RIP (用于和 OSPF 进行比较) ---

3. 在R1、R2、R3上启用RIP 动态路由协议,并宣告各接口所在子网地址(版本要设置成2):

R1 配置命令:

R1(config)#router rip

R1(config-router)#network 10.0.0.0

R1(config-router)#version 2

```
R1(config) #router rip
R1(config-router) #version 2
R1(config-router) #network 10.0.0.0
R1(config-router) #exit
R1(config) #exit
R1#w
*Mar 1 00:13:10.995: %SYS-5-CONFIG_I: Configured from console by console
R1#write
Building configuration...
[OK]
```

R2 配置命令:

R2(config-if)#router rip

R2(config-router)#version 2

R2(config-router)#network 10.0.0.0

```
R2#config t
Enter configuration commands, one per line. End with CNTL/Z.
R2(config) #router rip
R2(config-router) #version 2
R2(config-router) #network 10.0.0.0
R2(config-router) #exit
R2(config) #exit
R2(config) #exit
R2#
*Mar 1 00:14:00.915: %SYS-5-CONFIG_I: Configured from console by console
R2#write
Building configuration...
[OK]
```

R3 配置命令:

R3(config-if)#router rip

R3(config-router)#version 2

R3(config-router)#network 10.0.0.0

```
R3(config) #router rip
R3(config-router) #version 2
R3(config-router) #network 10.0.0.0
R3(config-router) #exit
R3(config) #exit
R3#
*Mar 1 00:12:06.047: %SYS-5-CONFIG_I: Configured from console by console
R3#write
Building configuration...
[OK]
```

4. 查看 R1、R2、R3 的路由表, 跟踪 PC1 到 PC2 的路由;

R1 路由表 (标出到 PC2 子网的路由,下一跳是哪个路由器):

```
Rl#show ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

o - ODR, P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 5 subnets, 3 masks

C 10.0.0.0/24 is directly connected, FastEthernet0/0

R 10.0.1.0/24 [120/1] via 10.0.123.242, 00:00:07, Serial0/0

C 10.0.123.240/30 is directly connected, Serial0/0

C 10.0.123.244/30 is directly connected, FastEthernet0/1

R 10.0.123.248/29 [120/1] via 10.0.123.246, 00:00:14, FastEthernet0/1

[120/1] via 10.0.123.242, 00:00:07, Serial0/0
```

R2 路由表 (标出到 PC1 子网的路由,下一跳是哪个路由器):

```
R2#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

0 - ODR, P - periodic downloaded static route

Sateway of last resort is not set

10.0.0.0/8 is variably subnetted, 5 subnets, 3 masks

R 10.0.0.0/24 [120/1] via 10.0.123.241, 00:00:23, Serial0/0

10.0.1.0/24 is directly connected, FastEthernet0/0

10.0.123.240/30 is directly connected, Serial0/0

R 10.0.123.244/30 [120/1] via 10.0.123.250, 00:00:10, FastEthernet1/0

[120/1] via 10.0.123.241, 00:00:23, Serial0/0

10.0.123.248/29 is directly connected, FastEthernet1/0
```

R3 路由表:

```
R3#show ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

O - ODR, P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 5 subnets, 3 masks

R 10.0.0.0/24 [120/1] via 10.0.123.245, 00:00:10, FastEthernet0/1

R 10.0.1.0/24 [120/1] via 10.0.123.249, 00:00:17, FastEthernet1/0

[120/1] via 10.0.123.249, 00:00:10, FastEthernet1/0

[120/1] via 10.0.123.245, 00:00:10, FastEthernet0/1

10.0.123.244/30 is directly connected, FastEthernet0/1
```

```
PC-1> trace 10.0.1.2

trace to 10.0.1.2, 8 hops max, press Ctrl+C to stop

1 10.0.0.1 10 317 ms 9.194 ms 10.272 ms

2 10.0.123.242 10.947 ms 8.943 ms 8.882 ms

3 * * *

4 *10.0.1.2 17.900 ms (ICMP type:3, code:3, Destination port unreachable)
```

---Part 2: 配置单域 OSPF (Area 0) ---

5. 启用路由器 R1 的 OSPF 动态路由协议,并配置各接口所属区域(为 Area 0),其中进程 ID 请设置为学 号的后 2 位(全 0 者往前取值)。

R1 配置命令:

R1(config)#router ospf 72

R1(config-router)#network 10.0.0.0 0.0.255.255 area 0

```
R1#config t
Enter configuration commands, one per line. End with CNTL/Z.
R1(config)#router ospf 72
R1(config-router)#network 10.0.0.0 0.0.255.255 area 0
R1(config-router)#exit
```

6. 先给 R2 的回环接口配置 IP 地址。然后再启用路由器 R2 的 OSPF 动态路由协议,设置包括回环接口在内的各接口所属区域(为 Area 0)。

R2 配置命令:

R2(config)#inter loopback 0

R2(config-if)#ip address 10.0.20.1 255.255.255.252

R2(config-if)#exit

R2(config)#router ospf 72

R2(config-router)#network 10.0.0.0 0.0.255.255 area 0

```
R2(config) #inter loopback 0
R2(config-if) #ip

*Mar 1 00:20:10.951: %LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback0, changed state to up
R2(config-if) #ip add 10.0.20.1 255.255.252
R2(config-if) #exit
R2(config) #router ospf 72
R2(config-router) #network 10.0.0.0 0.0.255.255 area 0
R2(config-router) #exit
```

7. 启用路由器 R3 的 OSPF 动态路由协议,手工指定 Router ID,并设置各接口所属区域为 Area 0。

R3 配置命令:

R3(config)#router ospf 72

R3(config-router)#router-id 10.0.30.1

R3(config-router)#network 10.0.0.0 0.0.255.255 area 0

```
R3(config) #router ospf 72
R3(config-router) #router-id 10.0.30.1
R3(config-router) #network 10.0.0.0 0.0.255.255 area 0
R3(config-router) #exit
*Mar 1 00:18:47.867: %OSPF-5-ADJCHG: Process 72, Nbr 10.0.20.1 on FastEthernet1/0 from LOADING to FULL, Loading Done
*Mar 1 00:18:47.867: %OSPF-5-ADJCHG: Process 72, Nbr 10.0.123.245 on FastEthernet0/1 from LOADING to FULL, Loading Done
R3(config-router) #exit
```

8. 查看 OSPF 数据库,并标出各路由器的 Router ID。

R1 的 OSPF 数据库:

```
OSPF Router with ID (10.0.123.245) (Process ID 72)

Router Link States (Area 0)

Link ID ADV Router Age Seq# Checksum Link count 10.0.20.1 47 0x80000002 0x00E5B3 5 10.0.30.1 10.0.30.1 47 0x80000001 0x003F90 2 10.0.123.245 10.0.123.245 46 0x80000003 0x001756 4

Net Link States (Area 0)

Link ID ADV Router Age Seq# Checksum 10.0.123.245 46 0x80000001 0x00DFC1 10.0.123.245 46 0x80000001 0x00DFC1 10.0.123.245 10.0.123.245 46 0x80000001 0x00DFC1 10.0.20.1 47 0x80000001 0x00DFC5D
```

从上图可知, R1 的 Router ID 为<u>10.0.123.245</u> (取自接口<u>f0/1</u> 的 IP); 与 R1 连接的有<u>2</u> 个路由器,其 ID 分别是<u>10.0.20.1</u>、<u>10.0.30.1</u>,有<u>2</u>条链路,其 ID 分别是<u>10.0.123.245</u>、<u>10.0.123.249</u>。

R2的OSPF数据库:

```
OSPF Router with ID (10.0.20.1) (Process ID 72)

Router Link States (Area 0)

ADV Router Age Seq# Checksum Link count 10.0.20.1 128 0x80000002 0x00E5B3 5 10.0.30.1 129 0x80000001 0x003F90 2 10.0.123.245 129 0x80000003 0x001756 4

Net Link States (Area 0)

Link ID ADV Router Age Seq# Checksum 10.0.123.245 129 0x80000001 0x00DFC1 10.0.123.245 129 0x80000001 0x00DFC1 10.0.123.245 129 0x80000001 0x00DFC1 10.0.123.245 129 0x80000001 0x00DFC5D
```

从上图可知, R2 的 Router ID 为 10.0.20.1 (取自接口 loopback 0 的 IP); 与 R2 连接的有 2 个路由器,其 ID 分别是 10.0.30.1 、 10.0.123.245 ,有 2 条链路,其 ID 分别是 10.0.123.249 。

R3 的 OSPF 数据库:

```
R3#sh ip ospf database
              OSPF Router with ID (10.0.30.1) (Process ID 72)
                  Router Link States (Area 0)
                 ADV Router
                                                        Checksum Link count
  Link ID
                                 Age
                                             Seq#
                                           0x80000002 0x00E5B3 5
  10.0.20.1
                  10.0.20.1
                                190
  10.0.30.1
                                            0x80000001 0x003F90 2
                  10.0.123.245 190
                                             0x80000003 0x001756 4
  10.0.123.245
                  Net Link States (Area 0)
                                             Seq#
  Link ID
                  ADV Router
                                                        Checksum
  10.0.123.245
                                 191
                  10.0.123.245
                                 190
  从上图可知,R3的 Router ID 为 10.0.30.1 ; 与 R3 连接的有 2 个路由器,其 ID 分别是 10.0.20.1
10.0.123.245 , 有 2 条链路,其 ID 分别是 10.0.123.245 、 10.0.123.249。
9. 在路由器 R1 上显示 OSPF 接口数据(命令: show ip ospf interface),标记各接口的 cost 值,网络类
  型,邻接关系及其 Router ID,广播类型的网络再标出 DR (Designed Router)或者 BDR (Backup Designed
  Router)角色。
  R1 的 s2/0: (从图可知,s2/0 连接的网络类型为<u>点对点</u>,Cost=<u>64</u>,邻居 Router ID=<u>10.0.20.1</u>)
  Serial0/0 is up, line protocol is up
    Process ID 72, Router ID 10.0.123.245, Network Type POINT TO POINT, Cost: 64
    Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
      Hello due in 00:00:04
    Supports Link-local Signaling (LLS)
    Index 2/2, flood queue length 0 Next 0x0(0)/0x0(0)
    Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 1, Adjacent neighbor count is 1
      Adjacent with neighbor 10.0.20.1
  DR 的 Router ID 是 10.0.123.245 ,接口 IP 是 10.0.123.245 ,BDR 的 Router ID 是
10.0.30.1 ____, 接口 IP 是 10.0.123.246
```

```
R1#show ip ospf interface
FastEthernet0/1 is up, line protocol is up
 Internet Address 10.0.123.245/30, Area 0
 Process ID 72, Router ID 10.0.123.245, Network Type BROADCAST, Cost: 10
 Transmit Delay is 1 sec, State DR, Priority 1
 Designated Router (ID) 10.0.123.245, Interface address 10.0.123.245
 Backup Designated router (ID) 10.0.30.1. Interface address 10.0.123.246
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
   oob-resync timeout 40
   Hello due in 00:00:01
 Supports Link-local Signaling (LLS)
 Index 3/3, flood queue length 0
 Next 0x0(0)/0x0(0)
 Last flood scan length is 1, maximum is 1
 Neighbor Count is 1, Adjacent neighbor count is 1
   Adjacent with neighbor 10.0.30.1 (Backup Designated Router)
 Suppress hello for 0 neighbor(s)
```

R1 的 f0/0: (f0/1 连接的网络类型为<u>广播</u>, Cost=<u>10</u>, DR 的 Router ID 是<u>10.0.123.245</u>,

接口 IP 是 10.0.0.1

```
FastEthernet0/0 is up, line protocol is up
  Internet Address 10.0.0.1/24, Area 0
 Process ID 72, Router ID 10.0.123.245, Network Type BROADCAST, Cost: 10
 Transmit Delay is 1 sec, State DR, Priority 1
 Designated Router (ID) 10.0.123.245, Interface address 10.0.0.1
 No backup designated router on this network
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
   oob-resync timeout 40
   Hello due in 00:00:04
 Supports Link-local Signaling (LLS)
 Index 1/1, flood queue length 0
 Next 0x0(0)/0x0(0)
 Last flood scan length is 0, maximum is 0
 Last flood scan time is 0 msec, maximum is 0 msec
 Neighbor Count is 0, Adjacent neighbor count is 0
 Suppress hello for 0 neighbor(s)
```

10. 查看 R1、R2、R3 的路由表,与 RIP 比较,OSPF 所选择的路由有何不同,谁的优先级高? 跟踪 PC1 到 PC2 的路由。

R1 路由表: (从图可知,对于 PC2 的网络,OSPF 选择的下一跳 IP 地址是 10.0.123.246 ,由于 OSPF 的路由管理距离为 110,比 RIP 的管理距离 120 优先级更高,所以把之前 RIP 选择的路由替换了)

```
Rl#show ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 7 subnets, 4 masks

C 10.0.0.0/24 is directly connected, FastEthernet0/0

0 10.0.1.0/24 [110/21] via 10.0.123.246, 00:09:11, FastEthernet0/1

R 10.0.20.0/3 [120/1] via 10.0.123.242, 00:00:08, Serial0/0

0 10.0.20.1/32 [110/12] via 10.0.123.246, 00:09:11, FastEthernet0/1

10.0.123.240/30 is directly connected, Serial0/0

10.0.123.244/30 is directly connected, FastEthernet0/1

10.0.123.248/29 [110/11] via 10.0.123.246, 00:09:13, FastEthernet0/1
```


R3 路由表:

```
R3#show ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

O - ODR, P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/24 [110/20] via 10.0.123.245, 0:10:32, FastEthernet0/1

0 10.0.1.0/24 [110/11] via 10.0.123.249, 0:10:32, FastEthernet1/0

R 10.0.20.0/30 [120/1] via 10.0.123.249, 0:00:26, FastEthernet1/0

0 10.0.20.1/32 [110/2] via 10.0.123.249, 0:10:32, FastEthernet1/0

10.0.123.240/30 [110/65] via 10.0.123.249, 0:10:32, FastEthernet1/0

10.0.123.244/30 is directly connected, FastEthernet0/1

10.0.123.248/29 is directly connected, FastEthernet1/0
```

PC1→PC2 的路由跟踪: (经过的路由器顺序是<u>R1</u>、<u>R3</u>、<u>R2</u>

```
PC-1> trace 10.0.1.2

trace to 10.0.1.2, 8 hops max, press Ctrl+C to stop

1 10.0.0.1 9.157 ms 9.993 ms 9.180 ms

2 10.0.123.246 31.145 ms 31.102 ms 31.678 ms

3 10.0.123.249 52.083 ms 52.510 ms 52.030 ms

4 * * *

5 *10.0.1.2 50.614 ms (ICMP type:3, code:3, Destination port unreachable)
```

11. 断开 R1 和 R3 的接口(在 R1 或 R3 上 shutdown 该接口),再次显示 R1 的路由表,标记到达 PC2 所在子 网的下一跳。

R1 的路由表:

```
Rl#show ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

O - ODR, P - periodic downloaded static route

Sateway of last resort is not set

10.0.0.0/8 is variably subnetted, 6 subnets, 4 masks

10.0.0.0/24 is directly connected, FastEthernet0/0

10.0.1.0/24 [110/74] via 10.0.123.242, 00:00:22, Serial0/0

10.0.20.1/32 [110/65] via 10.0.123.242, 00:00:22, Serial0/0

10.0.123.240/30 is directly connected, Serial0/0

10.0.123.248/29 [110/65] via 10.0.123.242, 00:00:22, Serial0/0
```

12. 保存 R1 配置后(在 R1 上输入命令: write)重启路由器(右键菜单 reload),查看 R1 的 Router ID 是否发生变化,变成了 10.0.123.241 ,取自 s0/0 接口的 IP 地址。原因是由于接口 f0/1 断开了,故其上的 IP 地址也暂时不可用,OSPF 于是选择了另一个可用 IP 地址作为 Router ID,而原来的 Router ID 也未消失,看上去是来自另一台不存在的路由器。而 R2 配置了回环接口,OSPF 会优先选择不会断开的回环接口的 IP 地址作为 Router ID,就不会出现上述情况。

R1 的 OSPF 数据库:

```
R1#show ip ospf database
            OSPF Router with ID (10.0.123.241) (Process ID 72)
                Router Link States (Area 0)
Link ID
               ADV Router
                                                      Checksum Link count
                                Aae
                                            Seq#
                                            0x80000003 0x005B41 5
                                            0x80000002 0x00E865 2
0x80000004 0x004044 3
10.0.123.241
10.0.123.245
               10.0.123.245 130
               Net Link States (Area 0)
               ADV Router
                                                       Checksum
                                Age
                                            Seq#
10.0.123.249 10.0.20.1
                                            0x80000001 0x00FC5D
```

13. 在 R1 上打开 OSPF 事件调试 (命令: debug ip ospf events), 然后重新连接 R1 和 R3 的接口 (在 R1 或 R3 上 no shutdown 该接口), 等与 R3 的邻居关系为 Full 后关闭 debug, 最后查看邻居关系。

R1 和 R3	重新建立	立邻接关系的事件记录:	()	人图可知,	邻接关系建立经历	力了	5 个状态	,分别是	<u> </u>	INIT	_`
2WAY		EXSTART	`_	EXCHA	NGE	`	FUL	L	_)		

```
Rl#debug ip ospf events
OSPF events debugging is on
R1#config t
*Mar 1 00:01:34.627: OSPF: Send hello to 224.0.0.5 area 0 on FastEthernet0/0 from 10.0.0.1
*Mar 1 00:01:34.863: OSPF: Send hello to 224.0.0.5 area 0 on Serial0/0 from 10.0.123.241
R1(config)#int f0/1
*Mar 1 00:01:36.219: OSPF: Rcv hello from 10.0.20.1 area 0 from Serial0/0 10.0.123.242 *Mar 1 00:01:36.219: OSPF: End of hello processing
R1(config-if)#no shutdown
*Mar 1 00:01:46.223: OSPF: Rcv hello from 10.0.20.1 area 0 from Serial0/0 10.0.123.242 *Mar 1 00:01:46.223: OSPF: End of hello processing
R1(config-if)#no shutdown
*Mar 1 00:01:50.283: OSPF: Interface FastEthernet0/1 going Up
*Mar 1 00:01:50.283: OSPF: Send hello to 224.0.0.5 area 0 on FastEthernet0/1 from 10.0.123.245
*Mar 1 00:01:50.363: OSPF: Rcv hello from 10.0.30.1 area 0 from FastEthernet0/1 10.0.123.246
         1 00:01:50.367: OSPF: 2 Way Communication to 10.0.30.1 on FastEthernet0/1, state 2WAY
       1 00:01:50.367: OSPF: Backup seen Event before WAIT timer on FastEthernet0/1
1 00:01:50.367: OSPF: DR/BDR election on FastEthernet0/1
1 00:01:50.367: OSPF: Elect BDR 10.0.123.241
1 00:01:50.367: OSPF: Elect DR 10.0.30.1
1 00:01:50.371: OSPF: Elect BDR 10.0.123.241
*Mar
        1 00:01:50.371: OSPF: Elect DR 10.0.30.1
         1 00:01:50.371:
1 00:01:50.371: OSPF:
1 00:01:50.375: OSPF:
                                            DR: 10.0.30.1 (Id) BDR: 10.0.123.241 (Id)
Send DBD to 10.0.30.1 on FastEthernet0/1 seq 0x70B opt 0x52 flag 0x7 len 32
Send immediate hello to nbr 10.0.30.1, src address 10.0.123.246, on FastEthernet0/
*Mar
*Mar 1 00:01:50.375: OSPF: Send hello to 10.0.123.246 area 0 on FastEthernet0/1 from 10.0.123.245
                                   OSPF: End of hello processing
R1(config-if)#
*Mar 1 00:01:52.267: %LINK-3-UPDOWN: Interface FastEthernet0/1, changed state to up
*Mar 1 00:01:53.267: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to up
*Mar 1 00:01:54.627: OSPF: Send hello to 224.0.0.5 area 0 on FastEthernet0/0 from 10.0.0.1
        1 00:01:54.863: OSPF: Send hello to 224.0.0.5 area 0 on Serial0/0 from 10.0.123.241
1 00:01:55.375: OSPF: Send DBD to 10.0.30.1 on FastEthernet0/1 seq 0x70B opt 0x52 flag 0x7 len 32
         1 00:01:55.375: OSFF: Retransmitting DBD to 10.0.30.1 on FastEthernet0/1 [1]
1 00:01:55.395: OSFF: Rcv DBD from 10.0.30.1 on FastEthernet0/1 seq 0x12C7 opt 0x52 flag 0x7 len 32 mtu
*Mar
1500 state EXSTART
*Mar 1 00:01:55.407: OSPF: NBR Negotiation Done. We are the MASTER
*Mar 1 00:01:55.411: OSPF: Send DBD to 10.0.30.1 on FastEthernet0/1 seq 0x70C opt 0x52 flag 0x3 len 132
*Mar 1 00:01:55.427: OSPF: Rcv DBD from 10.0.30.1 on FastEthernet0/1 seq 0x70C opt 0x52 flag 0x0 len 32 mtu
1500 state EXCHANGE
                                   QSPF: Send DBD to 10.0.30.1 on FastEthernet0/1 seq 0x70D opt 0x52 flag 0x1 len 32
       1 00:01:55.447: ONPF: Rcv DBD from 10.0.30.1 on FastEthernet0/1 seq 0x70D opt 0x52 flag 0x1 len 32 mtu state EXCHANGE
                :01:55.427
            00:01:55.447. OSPF: Exchange Done with 10.0.30.1 on FastEthernet0/1 00:01:55.451: OSPF: Synchronized with 10.0.30.1 on FastEthernet0/1 state FULL 00:01:55.451: %OSPF-5-ADJCHG: Process 72, Nbr 10.0.30.1 on FastEthernet0/1 from
*Mar
                                                                                                                                        from LOADING to FULL, Loadi
```

R1 的 OSPF 邻居详细信息:

```
R1#show ip ospf neighbor detail
Neighbor 10.0.30.1, interface address 10.0.123.246
   Neighbor priority is 1, State is FULL, 6 state changes
   DR is 10.0.123.246 BDR is 10.0.123.245
   Options is 0x12 in Hello (E-bit L-bit )
   Options is 0x52 in DBD (E-bit L-bit O-bit)
   Neighbor is up for 00:09:35
   Index 2/2, retransmission queue length 0, number of retransmission 0
   First 0x0(0)/0x0(0) Next 0x0(0)/0x0(0)
   Last retransmission scan length is 0, maximum is 0
Neighbor 10.0.20.1, interface address 10.0.123.242
   Neighbor priority is 0, State is FULL, 6 state changes
   Options is 0x12 in Hello (E-bit L-bit )
   Options is 0x52 in DBD (E-bit L-bit O-bit)
   Neighbor is up for 00:11:21
   Index 1/1, retransmission queue length 0, number of retransmission 1
   First 0x0(0)/0x0(0) Next 0x0(0)/0x0(0)
   Last retransmission scan length is 1, maximum is 1
   Last retransmission scan time is 0 msec, maximum is 0 msec
```

14. 给 R4、R6 的回环接口、f0/0 接口配置 IP 地址并激活,启用 OSPF 协议,接口均属于 Area 0。过一会儿查看 R4 和 R6 的邻居信息(由于 R2、R3、R4、R6 在同一个广播网络中,四台路由器并不会都成为邻接关系,而是选出 DR、BDR,然后各路由器与 DR、BDR 进行路由信息交换)。

R4 配置命令:

R4#config t

R4(config)#inter f0/0

R4(config-if)#ip addr 10.0.123.252 255.255.255.248

R4(config-if)#no shut

R4(config-if)#

R4(config-if)#inter loopback 0

R4(config-if)#ip address 10.0.40.1 255.255.255.252

R4(config-if)#no shut

R4(config-if)#router ospf 72

R4(config-router)#network 10.0.0.0 0.0.255.255 area 0

```
R4#config t
Enter configuration commands, one per line. End with CNTL/Z.
R4(config)#int f0/0
R4(config-if)#ip add 10.0.123.251 255.255.255.248
R4(config-if)#no shut
R4(config-if)#exit
R4(config)#
*Mar 1 00:24:29.219: %LINK-3-UPDOWN: Interface FastEthernet0/0, changed state to up
*Mar 1 00:24:30.219: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up
R4(config)#inter loopback 0
R4(config-if)#
*Mar 1 00:24:39.383: %LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback0, changed state to up
R4(config-if)#ip add 10.0.40.1 255.255.255.252
R4(config-if)#no shutdown
R4(config-if)#exit
R4(config-if)#exit
R4(config-router)#network 10.0.0.0 0.0.255.255 area 0
R4(config-router)#network 10.0.0.0 0.0.255.255 area 0
R4(config-router)#exit
R4(config)#exit
```

R6 配置命令:

R6(config)#inter f0/0

R6(config-if)#ip addr 10.0.123.251 255.255.255.248

R6(config-if)#no shut

R6(config-if)#inter loopback 0

R6(config-if)#ip address 10.0.60.1 255.255.255.252

R6(config-if)#no shut

R6(config-if)#router ospf 72

R6(config-router)#network 10.0.0.0 0.0.255.255 area 0

```
R6#config t
Enter configuration commands, one per line. End with CNTL/Z.
R6(config)#int f0/0
R6(config-if)#ip add 10.0.123.252 255.255.255.248
R6(config-if)#no shutdown
R6(config-if)#exit
R6(config)#inter
*Mar 1 00:25:26.347: %LINK-3-UPDOWN: Interface FastEthernet0/0, changed state to up
*Mar 1 00:25:27.347: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up
R6(config)#inter loopback 0
R6(config)#inter loopback 0
R6(config-if)#ip add
*Mar 1 00:25:35.343: %LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback0, changed state to up
R6(config-if)#ip add 10.0.60.1 255.255.255.252
R6(config-if)#ab shut
R6(config-if)#exit
R6(config-router)#network 10.0.0.0 0.0.255.255 area 0
R6(config-router)#network 10.0.0.0 0.0.255.255 area 0
R6(config-router)#exit
R6(config)#exit
```

R4 上查看邻居关系(与 R6 是邻居,但不建立邻接关系,重启后可能会变化):

R6 上查看邻居关系(与 R4 是邻居,但不建立邻接关系,重启后可能会变化):

```
R6#show ip ospf neighbor
Neighbor ID
                Pri
                       State
                                                    Address
                                                                     Interface
                       FULL/DR
                                                    10.0.123.249
                                                                     FastEthernet0/0
                       FULL/BDR
                                                                     FastEthernet0/0
10.0.40.1
                       2WAY/DROTHER
                                       00:00:38
                                                    10.0.123.251
                                                                     FastEthernet0/0
```

---Part 3: 配置多域 OSPF---

15. 给 R4 的 f0/1 接口、R5 的回环接口、f0/1 和 f0/0 接口配置 IP 地址、激活端口,并启用 OSPF 协议,各接口均属于 Area 1。配置 PC3 的 IP 地址和默认路由。过一会儿,查看 R2、R5 上的路由表,标出区域间路由(IA),测试 PC3 与 PC1 的连通性。

R4 配置命令(替换成文本形式):

```
R4(config)#int f0/1
R4(config-if)#ip addr 10.1.0.1 255.255.255.0
R4(config-if)#no shut
R4(config-if)#router ospf 72
R4(config-router)#network 10.1.0.0 0.0.255.255 area 1
```

```
R4#config t
Enter configuration commands, one per line. End with CNTL/Z.
R4(config) #int f0/1
R4(config-if) #ip add 10.1.0.1 255.255.255.0
R4(config-if) #no shutdown
R4(config-if) #exit
R4(config) #r

*Mar 1 00:29:05.679: %LINK-3-UPDOWN: Interface FastEthernet0/1, changed state to a *Mar 1 00:29:06.679: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0
R4(config) #router ospf 72
R4(config-router) #network 10.1.0.0 0.0.255.255 area 1
R4(config-router) #exit
R4(config) #exit
```

R5 配置命令:

```
R5(config)#interface f0/1
R5(config-if)# ip addr 10.1.0.2 255.255.255.0
R5(config-if)# no shut
R5(config)# interface f0/0
R5(config-if)# ip addr 10.1.1.1 255.255.255.0
R5(config-if)# no shut
R5(config-if)# no shut
R5(config-if)# ip address 10.1.50.1 255.255.255.252
R5(config-if)# ip address 10.1.50.1 255.255.255.252
```

R5(config-router)# network 10.1.0.0 0.0.255.255 area 1

```
R5(config) #int f0/1
R5(config-if) #ip add 10.1.0.2 255.255.255.0
R5(config-if) #no shutdown
R5(config-if) #int f0.

*Mar 1 00:27:22.751: %LINK-3-UPDOWN: Interface FastEthernet0/1, changed state to up

*Mar 1 00:27:23.751: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to up

R5(config-if) #int f0/0
R5(config-if) #int f0/0
R5(config-if) #in add 10.1.1.1 255.255.255.0
R5(config-if) #no shutdown
R5(config-if) #

*Mar 1 00:28:13.071: %LINK-3-UPDOWN: Interface FastEthernet0/0, changed state to up

*Mar 1 00:28:13.071: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up

R5(config-if) #inter loopback 0
R5(config-if) #ip add

*Mar 1 00:28:27.783: %LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback0, changed state to up
R5(config-if) #ip add 10.1.50.1 255.255.255.252
R5(config-if) #exit
R5(config) #router ospf 72
R5(config-router) #exit
R5(config-router) #exit
R5(config) #exit
```

PC3 配置命令:

```
PC-3> ip 10.1.1.3 255.255.255.0 10.1.1.1
Checking for duplicate address...
PC1 : 10.1.1.3 255.255.255.0 gateway 10.1.1.1
PC-3> show

NAME IP/MASK GATEWAY MAC LPORT RHOST:PORT
PC-3 10.1.1.3/24 10.1.1.1 00:50:79:66:68:02 10087 127.0.0.1:10088
fe80::250:79ff:fe66:6802/64
```

R2 的路由表: 目标为 Area 1 中的子网的下一跳 IP 地址均为 10.0.123.251 ,从 f1/0 接口发出。

```
R5#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
        N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
        E1 - OSPF external type 1, E2 - OSPF external type 2
        i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route
        o - ODR, P - periodic downloaded static route
Gateway of last resort is not set
      10.0.0.0/8 is variably subnetted, 11 subnets, 4 masks
         10.0.0.0/24 [110/40] via 10.1.0.1, 00:02:32, FastEthernet0/1 10.1.0.0/24 is directly connected, FastEthernet0/1
 ΙA
         10.0.20.1/32 [110/21] via 10.1.0.1, 00:02:32, FastEthernet0/1
O IA
         10.0.40.1/32 [110/11] via 10.1.0.1, 00:02:32, FastEthernet0/1
O IA
O IA
         10.0.60.1/32 [110/21] via 10.1.0.1, 00:02:33, FastEthernet0/1
         10.0.123.240/30 [110/84] via 10.1.0.1, 00:02:33, FastEthernet0/1 10.0.123.244/30 [110/30] via 10.1.0.1, 00:02:33, FastEthernet0/1
AI O
AI O
         10.0.123.248/29 [110/20] via 10.1.0.1, 00:02:33, FastEthernet0/1
```

PC3→PC1 的连通性:

```
PC-3> ping 10.0.0.2

10.0.0.2 icmp_seq=1 timeout

84 bytes from 10.0.0.2 icmp_seq=2 ttl=60 time=71.178 ms

84 bytes from 10.0.0.2 icmp_seq=3 ttl=60 time=71.869 ms

84 bytes from 10.0.0.2 icmp_seq=4 ttl=60 time=45.537 ms

84 bytes from 10.0.0.2 icmp_seq=5 ttl=60 time=80.363 ms
```

16. 分别在 R2、R4、R5 上显示 OSPF 数据库信息, 关注是否出现其他 Area 的信息。

R2: 没有 Area 1 的具体信息,但是该区域的子网地址 10.1.0.0 、 10.1.1.0 、 10.1.50.1 由路由器 R4 汇 聚后以区域间链路的形式进行通告。

```
R2#show ip ospf database
           OSPF Router with ID (10.0.20.1) (Process ID 72)
Link ID
               ADV Router
                               Age
                                            Seq#
10.0.20.1
                                           0x800000003 0x005B41 5
10.0.30.1
                                           0x80000003 0x00517B 2
10.0.40.1
10.0.60.1
                               549
                                           0x80000002 0x00C27D 2
10.0.123.241
               10.0.123.241
                               1382
                                           0x80000006 0x005B16 4
10.0.123.245
               10.0.123.245
                               1598
                                           0x80000004 0x00FF7C 3
Link ID
               ADV Router
                               Age
                                           Seq#
                                                       Checksum
10.0.123.246
10.0.123.249
                               443
                                           0x80000004 0x0020B4
               Summary Net Link States (Area 0)
Link ID
               ADV Router
                                Age
                                            Seq#
10.1.0.0
                                            0x80000001 0x00E50F
                10.0.40.1
                                432
                10.0.40.1
                                            0x80000001 0x003FAA
10.1.50.1
               10.0.40.1
                                254
                                           0x80000001 0x00BD03
```

R5: 没有 Area <u>0</u> 的具体信息,但是该区域的子网地址全部由路由器 <u>R4</u> 汇聚后以区域间链路的形式进行通告。

R5#show ip osp	of database							
08	SPF Router with I	D (10.1.50.1)	(Process I	D 72)				
	Router Link St	Router Link States (Area 1)						
10.0.40.1	ADV Router 10.0.40.1 10.1.50.1	324	0x80000002	Checksum Link count 0x00B0F8 1 0x00DB42 3				
	Net Link State	s (Area 1)						
	ADV Router 10.0.40.1		Seq# 0x80000001					
	Summary Net Li	Summary Net Link States (Area 1)						
Link ID	ADV Router	Age	Seq#	Checksum				
10.0.0.0	10.0.40.1		0x80000001					
10.0.1.0	10.0.40.1	495	0x80000001	0x004B9F				
10.0.20.1	10.0.40.1	495	0x80000001	0x0015CA				
10.0.40.1	10.0.40.1	495	0x80000001	0x00D302				
10.0.60.1	10.0.40.1	495	0x80000001	0x005B5C				
	10.0.40.1	495	0x80000001	0x00AAA1				
	10.0.40.1		0x80000001					
10.0.123.248	10.0.40.1	498	0x80000001	0x00BFC8				

R4: 有 Area 1 和 Area 0 的具体信息,由于 R4 是区域边界路由器(ABR),所以对区域内的链路进行了汇聚,然后以区域

间路由的形式向其他区域进行链路状态通告(LSA),其中:

向 Area 0 通告的属于 Area 1 的链路有 <u>10.1.0.0</u> 、 <u>10.1.1.0</u> 、 <u>10.1.50.1</u> ;

向 Area 1 通告的属于 Area 0 的链路有 <u>10.0.0.0</u> 、 <u>10.0.1.0</u> 、 <u>10.0.20.1</u> 、

10.0.40.1 、 <u>10.0.60.1</u> 、 <u>10.0.123.240</u> 、 <u>10.0.123.244</u> 、

<u>10.0.123.248</u> 。

R4#show ip ospf	database						
OSF	F Router with ID	(10.0.40.1)	(Process I	D 72)			
				- :-,			
	Router Link States (Area 0)						
Link ID	ADV Router	Age	Sea#	Checksum Link count			
10.0.20.1		1622		0x005B41 5			
10.0.30.1		1480		0x00517B 2			
10.0.40.1	10.0.40.1	532	0x80000003	0x005E1D 2			
10.0.60.1	10.0.60.1 10.0.123.241	645	0x80000002	0x00C27D 2			
10.0.123.241	10.0.123.241	1480	0x80000006				
10.0.123.245	10.0.123.245	1696	0x80000004	0x00FF7C 3			
	Net Link States	(Area 0)					
Link ID 10.0.123.246 10.0.123.249	ADV Router	Age	Seq#				
10.0.123.246	10.0.30.1		0x80000001				
10.0.123.249	10.0.20.1	541	0x80000004	0x0020B4			
	Summary Net Lin	k States /Ar	ea ())				
	Summary Net Link States (Area 0)						
Link ID	ADV Router	Age	Seq#	Checksum			
10.1.0.0	10.0.40.1	527	0x80000001				
10.1.1.0	10.0.40.1	347	0x80000001				
10.1.50.1	10.0.40.1	349	0x80000001	0x00BD03			
	Router Link Sta	tes (Area 1)					
	nouser zimi boa	oob (IIIou I)					
	ADV Router	Age		Checksum Link count			
	10.0.40.1			0x00B0F8 1			
10.1.50.1	10.1.50.1	360	0x80000002	0x00DB42 3			
	Net Link States (Area 1)						
		(/					
	ADV Router			Checksum			
10.1.0.1	10.0.40.1	364	0x80000001	0x005C2D			
	Summary Not Link States (Area 1)						
	Summary Net Link States (Area 1)						
Link ID	ADV Router	Age	Seq#	Checksum			
10.0.0.0	10.0.40.1	534	0x80000001				
10.0.1.0	10.0.40.1	534	0x80000001				
10.0.20.1	10.0.40.1	534	0x80000001				
10.0.40.1 10.0.60.1	10.0.40.1 10.0.40.1	534 534	0x80000001 0x80000001				
10.0.123.240	10.0.40.1	534	0x80000001				
10.0.123.244	10.0.40.1	536	0x80000001				
10.0.123.248	10.0.40.1	537	0x80000001				

17. 分别在 R1、R5 上查看区域边界路由器(ABR)信息(命令: show ip ospf border-routers)

10.0.123.246

```
R1#show ip ospf border-routers

OSPF Process 72 internal Routing Table

Codes: i - Intra-area route, I - Inter-area route

i 10.0.40.1 [11] via 10.0.123.246, FastEthernet0/1, ABR, Area 0, SPF 9
```

R5: 当前已知的区域 1 内的 ABR 的 IP 地址为 10.0.40.1 ,下一跳 IP 地址为 10.1.0.1 。

```
R5#show ip ospf border-routers

OSPF Process 72 internal Routing Table

Codes: i - Intra-area route, I - Inter-area route

i 10.0.40.1 [10] via 10.1.0.1, FastEthernet0/1, ABR, Area 1, SPF 2
```

18. 给 R6 的 f0/1、R8 的各接口配置 IP 地址并激活,启用 OSPF 协议,各接口均属于 Area 2。配置 PC4 的 IP 地址和默认路由。过一会,查看 R8 上的路由表,标出 Area 1 的区域间路由,测试 PC4 与 PC1、PC3 的连通性。

R6 配置命令:

```
R6(config)#interface f0/1
R6(config-if)# ip addr 10.2.0.1 255.255.255.0
R6(config-if)# no shut
R6(config)# router ospf 72
R6(config-router)# network 10.2.0.0 0.0.255.255 area 2
```

```
R6#config t
Enter configuration commands, one per line. End with CNTL/Z.
R6(config) #int f0/1
R6(config-if) #ip add 10.2.0.1 255.255.255.0
R6(config-if) #no shutdown
R6(config-if) #exit
R6(config) #
*Mar 1 00:41:02.951: %LINK-3-UPDOWN: Interface FastEthernet0/1, changed state to up
*Mar 1 00:41:03.951: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to up
R6(config) #router ospf 72
R6(config-router) #network 10.2.0.0 0.0.255.255 area 2
R6(config-router) #exit
R6(config) #exit
```

R8 配置命令:

```
R8(config)#interface f0/1
R8(config-if)# ip addr 10.2.0.2 255.255.255.0
R8(config-if)# no shut
```

```
R8(config)#interface f0/0
R8(config-if)# ip addr 10.2.123.241 255.255.255.252
R8(config-if)# no shut
R8(config)#interface f1/0
R8(config-if)# ip addr 10.2.1.1 255.255.255.0
R8(config-if)# no shut
R8(config-if)# no shut
R8(config)#interface loopback 0
R8(config-if)# ip addr 10.2.80.1 255.255.255.0
R8(config-router)# network 10.2.0.0 0.0.255.255 area 2
```

```
R8#config t
Enter configuration commands, one per line. End with CNTL/2.

R8 (config-if) #ip add 10.2.0.2 255.255.255.0

R8 (config-if) #ip add 10.2.0.2 255.255.255.0

R8 (config-if) #no shutdown

R8 (config-if) #
*Mar 1 00:33:33.2.579: %LINK-3-UPDOWN: Interface FastEthernet0/1, changed state to up
*Mar 1 00:33:33.579: %LINK-3-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to up

R8 (config-if) #p add 10.2.123.241 255.255.255

R8 (config-if) #ip add 10.2.123.241 255.255.255.252

R8 (config-if) #ip add 10.2.123.241 255.255.255.252

R8 (config-if) #in shutdown

R8 (config) #int
*Mar 1 00:34:01.231: %LINK-3-UPDOWN: Interface FastEthernet0/0, changed state to up
*Mar 1 00:34:02.231: %LINK-3-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up

R8 (config) #int f1/0

R8 (config-if) #ip add 10.2.1.1 255.255.255.0

R8 (config-if) #no shutdown

R8 (config-if) #no shutdown

R8 (config-if) #o shutdown

R8 (config-if) #ip configuration shutdown

R8 (config-if) #inc shutdown

R8 (confi
```

R8 的路由表: 如图所示,区域间路由包含了 Area 1 和 Area 0 的地址,其中 Area 1 的子网地址有

10.1.50.1/32

```
R8#show ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

O - ODR, P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 15 subnets, 4 masks

C 10.2.0.0/24 is directly connected, FastEthernet0/1

C 10.2.1.0/24 is directly connected, FastEthernet1/0

O IA 10.1.1.0/24 [110/40] via 10.2.0.1, 00:00:18, FastEthernet0/1

O IA 10.0.0.0/24 [110/40] via 10.2.0.1, 00:00:18, FastEthernet0/1

O IA 10.1.0.0/24 [110/30] via 10.2.0.1, 00:00:18, FastEthernet0/1

O IA 10.0.1.0/24 [110/21] via 10.2.0.1, 00:00:20, FastEthernet0/1

O IA 10.0.4.1/32 [110/21] via 10.2.0.1, 00:00:20, FastEthernet0/1

O IA 10.0.60.1/32 [110/11] via 10.2.0.1, 00:00:20, FastEthernet0/1

O IA 10.1.50.1/32 [110/31] via 10.2.0.1, 00:00:20, FastEthernet0/1

O IA 10.0.23.240/30 [110/84] via 10.2.0.1, 00:00:20, FastEthernet0/1

C 10.2.83.0/24 is directly connected, LoopbackO

O IA 10.0.123.240/30 is directly connected, FastEthernet0/0

O IA 10.0.123.244/30 [110/84] via 10.2.0.1, 00:00:21, FastEthernet0/1

O IA 10.0.123.244/30 [110/30] via 10.2.0.1, 00:00:21, FastEthernet0/1

O IA 10.0.123.244/30 [110/30] via 10.2.0.1, 00:00:21, FastEthernet0/1
```

. 10.1.0.0/24

10.1.1.0/24

PC4→PC1 的连通性:

```
PC-4> ip 10.2.1.2 /24 10.2.1.1
Checking for duplicate address...
PC1: 10.2.1.2 255.255.255.0 gateway 10.2.1.1

PC-4> show

NAME IP/MASK GATEWAY MAC LPORT RHOST:PORT
PC-4 10.2.1.2/24 10.2.1.1 00:50:79:66:68:00 10001 127.0.0.1:10002
fe80::250:79ff:fe66:6800/64

PC-4> ping 10.0.0.2
10.0.0.2 icmp_seq=1 timeout
10.0.0.2 icmp_seq=2 timeout
84 bytes from 10.0.0.2 icmp_seq=3 ttl=60 time=58.906 ms
84 bytes from 10.0.0.2 icmp_seq=4 ttl=60 time=81.305 ms
84 bytes from 10.0.0.2 icmp_seq=5 ttl=60 time=81.642 ms
```

PC4→PC3 的连通性:

```
PC-4> ping 10.1.1.3

10.1.1.3 icmp_seq=1 timeout

10.1.1.3 icmp_seq=2 timeout

84 bytes from 10.1.1.3 icmp_seq=3 ttl=60 time=57.292 ms

84 bytes from 10.1.1.3 icmp_seq=4 ttl=60 time=55.474 ms

84 bytes from 10.1.1.3 icmp_seq=5 ttl=60 time=68.298 ms
```

19. 如果之前未配置 Frame Relay 数据链路,请在此时进行配置(参考 GNS3 指南)。

FR 交换机的虚链路配置表截图:

之前已经配置好了,结果忘记截图了,反正一共三条链路:

```
Port:DLCI Port:DLCI
1:101 10:202
1:102 11:203
10:201 11:204
```

20. 给 R5 的 s2/0 接口配置封装协议为 Frame Relay(命令: encapsulation frame-relay,由于 GNS3 自带的 FR 交换机只支持 ANSI 模式,而路由器默认的是 Cisco,所以需再加一句 frame-relay lmi-type ANSI)并 激活,然后创建 2 个子接口,配置其 IP 地址、接口 DLCI(命令: frame-relay interface-dlci 〈dlci〉,dlci 值等于 Frame Relay 交换机上定义的数据链路相关 DLCI 值),最后配置 R5 的 s2/0 接口属于 Area 1。

R5 配置命令:

R5(config-if)#inter s0/0

R5(config-if)#encapsulation frame-relay

R5(config-if)#frame-relay lmi-type ANSI

R5(config)#inter s0/0.1 mu

R5(config-subif)#ip address 10.1.2.5 255.255.255.0

R5(config-subif)#frame-relay interface-dlci 101

R5(config-fr-dlci)#exit

R5(config-subif)#inter s0/0.2 mu

R5(config-subif)#ip address 10.1.2.6 255.255.255.0

R5(config-subif)#frame-relay interface-dlci 102

```
R5#config t
Enter configuration commands, one per line. End with CNTL/Z.
R5(config)#int s0/0
R5(config-if)#encapsulation frame-relay
R5(config-if)#frame-relay lmi-type ANSI
R5(config-if)#encapsulation
R5(config-if)#exit
R5(config-if)#exit
R5(config)#
*Mar 1 00:47:17.535: %LINK-3-UPDOWN: Interface Serial0/0, changed state to up
R5(config)#int s0/0.1
*Mar 1 00:47:28.535: %LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0/0, changed state to up
R5(config)#int s0/0.1 multipoint
R5(config-subif)#ip add 10.1.2.5 255.255.255.0
R5(config-subif)#frame-relay interface-dlci 101
R5(config-subif)#frame-relay interface-dlci 101
R5(config-subif)#int s0/0.2 multipoint
R5(config-subif)#ip add 10.1.2.6 255.255.255.0
R5(config-subif)#frame-relay interface-dlci 102
R5(config-subif)#frame-relay interface-dlci 102
R5(config-subif)#exit
```

21. 给 R7 的各接口配置 IP 地址、激活,其中回环接口和 f0/0 接口属于 Area 2, s2/0 接口属于 Area 1, 配置 s2/0 封装协议为 Frame Relay, DLCI 值设为 Frame Relay 交换机上 R5-R7 之间数据链路的相关 DLCI 值。

R7 配置命令:

```
R7(config)#interface f0/0
R7(config-if)# ip addr 10.2.123.242 255.255.255.252
R7(config-if)# no shut
R7(config)#interface s0/0
R7(config-if)# ip addr 10.1.2.1 255.255.255.0
                                                    (IP 地址)
R7(config-if)# encapsulation frame-relay
                                                    (封装协议)
R7(config-if)# frame-relay lmi-type ANSI
                                                    (LMI)
                                                    (DLCI)
R7(config-if)# frame-relay interface-dlci 202
R7(config-if)# no shut
                                                    (激活)
R7(config)#interface loopback 0
R7(config-if)# ip addr 10.1.70.242 255.255.255.0
R7(config)# router ospf 72
R7(config-router)# network 10.1.0.0 0.0.255.255 area 1
```

```
R7(config-router)# network 10.2.0.0 0.0.255.255 area 2
*Mar 1 00:38:26.963: %LINK-3-UPDOWN: Interface FastEthernet0/0, changed state to up
*Mar 1 00:38:27.963: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up
R7(config)#int s2/0
% Invalid input detected at '^' marker.
R7(config)#int s0/0
R7(config-if)#ip add 10.1.2.1 255.255.255.0 R7(config-if)#encapsulation frame-relay
R7(config-if)#frame-relay lmi-type ANSI
R7(config-if)#frame-relay interface-dlci 202
R7(config-fr-dlci)#exit
R7(config-if) #no shutdown
R7(config-if) #ext
R7(config-if)#
*Mar 1 00:40:32.667: %LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0/0, changed state to up
R7(config-if)#router ospf 72
R7(config-router)#network 10.1.0.0 0.0.255.255 area 1
R7(config)#exit
R7#config t
Enter configuration commands, one per line. End with CNTL/Z.
R7(config)#int f0/0
R7(config-if)#ip add 10.2.123.242 255.255.255.252
R7(config-if)#no shutdown
R7(config-if)#exit
R7(config)#int s0/0
```

```
R7#config t
Enter configuration commands, one per line. End with CNTL/Z.
R7(config)#int f0/0
R7(config-if)#ip add 10.2.123.242 255.255.252
R7(config-if)#no shutdown
R7(config-if)#exit
R7(config)#int s0/0
R7(config-if)#ip add 10.1.2.1 255.255.255.0
R7(config-if)#encapsulation frame-relay
R7(config-if)#frame-relay lmi-type ANSI
R7(config-if)#frame-relay interface-dlci 202
R7(config-if)#frame-relay interface-dlci 202
R7(config-if)#no shutdown
R7(config-if)#no shutdown
R7(config-if)#exit
R7(config)#int loopback 0
R7(config-if)#ip add 10.1.70.242 255.255.255.0
R7(config-if)#exit
R7(config-if)#exit
R7(config-if)#exit
R7(config-router)#network 10.1.0.0 0.0.255.255 area 1
R7(config-router)#network 10.2.0.0 0.0.255.255 area 2
R7(config-router)#exit
R7(config)#exit
```

在R7上查看Frame Relay映射(命令: show frame-relay map):

```
R7#show frame-relay map
Serial0/0 (up): ip 10.1.2.5 dlci 202(0xCA,0x30A0), dynamic,
broadcast,, status defined, active
```

```
R5#show frame-relay map
Serial0/0.1 (up): ip 10.1.2.1 dlci 101(0x65,0x1850), dynamic,
broadcast,, status defined, active
```

在 R7 上测试到 R5 的连通性(由于 R5-R7 采用的是点对点 Frame Relay 连接,只有 R5 的 1 个子接口地址可以通):

```
R7#ping 10.1.2.5

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.1.2.5, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/4/16 ms
```

22. 给 R9 的各接口配置 IP 地址、激活,其中回环接口和 f0/1 接口属于 Area 3, s2/0 接口属于 Area 1,配置 s2/0 封装协议为 Frame Relay, DLCI 值设为 Frame Relay 交换机上 R5-R9 之间数据链路的相关 DLCI 值。

R9 配置命令:

```
R9(config)#interface f0/1
R9(config-if)# ip addr 10.3.0.1 255.255.255.0
R9(config-if)# no shut
R9(config)#interface s0/0
R9(config-if)# ip addr 10.1.2.3 255.255.255.0
                                                                       (IP 地址)
R9(config-if)# encapsulation frame-relay
                                                                      (封装协议)
R9(config-if)# frame-relay lmi-type ANSI
                                                                        (LMI)
R9(config-if)# frame-relay interface-dlci 203
                                                                         (DLCI)
R9(config-if)# no shut
                                                                  (激活)
R9(config)#interface loopback 0
R9(config-if)# ip addr 10.3.90.1 255.255.255.0
R9(config)# router ospf 72
R9(config-router) # network 10.1.0.0 0.0.255.255 area 1
R9(config-router)# network 10.3.0.0 0.0.255.255 area 3
```

```
R9#config t
Enter configuration commands, one per line. End with CNTL/Z.
R9(config)#int f0/1
R9(config-if)#ip add 10.3.0.1 255.255.255.0
R9(config-if)#no shutdown
R9(config-if)#exit
R9(config)#int s0/0
R9(config-if)#ip add 10.1.2.3 255.255.255.0
R9(config-if)#frame-relay lmi-type ANSI
R9(config-if)#frame-relay interface-dlci 203
R9(config-fr-dlci)#no shutdown
R9(config-if)#exit
R9(config)#interface loopback 0
R9(config-if)#ip add 10.3.90.1 255.255.255.0
R9(config-if)#router ospf 72
R9(config-router)#network 10.1.0.0 0.0.255.255 area 1
R9(config-router)#network 10.3.0.0 0.0.255.255 area 3
R9(config)#exit
```

在 R9 上查看 Frame Relay 映射 (命令: show frame-relay map):

```
R9#show frame-relay map
Serial0/0 (up): ip 10.1.2.1 dlci 204(0xCC,0x30C0), dynamic,
broadcast,, status defined, active
Serial0/0 (up): ip 10.1.2.6 dlci 203(0xCB,0x30B0), dynamic,
broadcast,, status defined, active
```

在 R9 上测试到 R5 的连通性(由于 R5-R9 采用的是点对点 Frame Relay 连接,只有 R5 的 1 个子接口地址可以通。如果在 R5 上测试,需要加上参数 source s2/0 指定接口):

```
R9#ping 10.1.2.5

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.1.2.5, timeout is 2 seconds:
....
Success rate is 0 percent (0/5)
R9#ping 10.1.2.6

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.1.2.6, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms
```

在 R9 上测试到 R7 的连通性 (R5、R7、R9 通过帧中继交换机连接的形式称为非广播式多路访问,虽然路由器在同一个 IP 子网,但由于数据链路不是广播式的,所以在没有建立点对点数据链路的情况下,是不能通信的):

```
R9#ping 10.1.2.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.1.2.1, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/4/12 ms
```

23. 分别在 R5、R7、R9 上查看 OSPF 邻居关系(此时 OSPF 认为当前链路属于广播式,需要先竞选出 DR, 而实际网络为非广播式的,因此三者之间的邻居关系暂时不能建立)

在 R5 上查看邻居关系:

```
R5#show ip ospf neighbor detail

Neighbor 10.0.40.1, interface address 10.1.0.1

In the area 1 via interface FastEthernet0/1

Neighbor priority is 1, State is FULL, 6 state changes

DR is 10.1.0.1 BDR is 10.1.0.2

Options is 0x12 in Hello (E-bit L-bit )

Options is 0x52 in DBD (E-bit L-bit O-bit)

LLS Options is 0x1 (LR)

Dead timer due in 00:00:30

Neighbor is up for 00:47:39

Index 1/1, retransmission queue length 0, number of retransmission 0

First 0x0(0)/0x0(0) Next 0x0(0)/0x0(0)

Last retransmission scan length is 0, maximum is 0

Last retransmission scan time is 0 msec, maximum is 0 msec
```

在 R7 上查看邻居关系:

```
Neighbor 10.2.80.1, interface address 10.2.123.241

In the area 2 via interface FastEthernet0/0

Neighbor priority is 1, State is FULL, 6 state changes

DR is 10.2.123.241 BDR is 10.2.123.242

Options is 0x12 in Hello (E-bit L-bit )

Options is 0x52 in DBD (E-bit L-bit O-bit)

LLS Options is 0x1 (LR)

Dead timer due in 00:00:32

Neighbor is up for 00:24:07

Index 1/1, retransmission queue length 0, number of retransmission 0

First 0x0(0)/0x0(0) Next 0x0(0)/0x0(0)

Last retransmission scan length is 0, maximum is 0

Last retransmission scan time is 0 msec, maximum is 0 msec
```

在 R9 上查看邻居关系:

```
R9#show ip ospf neighbor detail
```

24. 分别在 R5、R7、R9 上配置 s0/0 的接口为点对多点的网络类型(命令: ip ospf network point-to-mulitpoint), 然后再次查看邻居关系:

R5 配置命令:

```
R5(config)#interface s2/0.1
R5(config-subif)# ip ospf network point-to-multipoint
R5(config)#interface s2/0.2
R5(config-subif)# ip ospf network point-to-multipoint
```

```
R5#config t
Enter configuration commands, one per line. End with CNTL/Z.
R5(config) #int s0/0.1
R5(config-subif) #ip ospf network point-to-multipoint
R5(config-subif) #
*Mar 1 01:19:40.055: %OSPF-5-ADJCHG: Process 72, Nbr 10.1.70.242 on Serial0/0.1 from I Done
R5(config-subif) #exit
R5(config-subif) #exit
R5(config-subif) #ip ospf network point-to-multipoint
```

R7 配置命令:

```
R7(config)#interface s2/0
R7(config-if)#ip ospf network point-to-multipoint
```

```
R7(config)#int s0/0
R7(config-if)#ip ospf network point-to-multipoint
R7(config-if)#exit
R7(config)#
```

R9 配置命令:

```
R9(config)#interface s2/0
R9(config-if)# ip ospf network point-to-multipoint
```

```
R9#config t
Enter configuration commands, one per line. End with CNTL/Z.
R9(config)#int s0/0
R9(config-if)#ip ospf network point-to-multipoint
R9(config-if)#exit
*Mar 1 01:07:03.875: %OSPF-5-ADJCHG: Process 72, Nbr 10.1.50.
Interface down or detached
*Mar 1 01:07:03.951: %OSPF-5-ADJCHG: Process 72, Nbr 10.1.50.
e
```

在 R5 上查看邻居关系:

```
RS#show ip ospf neighbor detail

Neighbor 10.3.90.1, interface address 10.1.2.3

In the area 1 via interface Serial0/0.2

Neighbor priority is 0, State is FULL, 12 state changes

DR is 0.0.0.0 BDR is 0.0.0.0

Options is 0x12 in Hello (E-bit L-bit)

Options is 0x52 in DBD (E-bit L-bit)

Options is 0x52 in DBD (E-bit L-bit)

LLS Options is 0x1 (LR)

Dead timer due in 00:01:40

Neighbor is up for 00:00:20

Index 3/3, retransmission queue length 0, number of retransmission 0

First 0x0(0)/0x0(0) Next 0x0(0)/0x0(0)

Last retransmission scan time is 0 msec, maximum is 0

Last retransmission scan time is 0 msec, maximum is 0 msec

Neighbor 10.1.70.242, interface address 10.1.2.1

In the area 1 via interface Serial0/0.1

Neighbor priority is 0, State is FULL, 12 state changes

DR is 0.0.0.0 BDR is 0.0.0.0

Options is 0x12 in Hello (E-bit L-bit)

Options is 0x22 in DBD (E-bit L-bit 0-bit)

LLS Options is 0x1 (LR)

Dead timer due in 00:01:54

Neighbor is up for 00:01:04

Index 2/2, retransmission queue length 0, number of retransmission 1

First 0x0(0)/0x0(0) Next 0x0(0)/0x0(0)

Last retransmission scan time is 0 msec, maximum is 0 msec

Neighbor 10.0.40.1, interface address 10.1.0.1

In the area 1 via interface FastEthernet0/1

Neighbor priority is 1, State is FULL, 6 state changes

DR is 10.1.0.1 BDR is 10.1.0.2

Options is 0x12 in BDD (E-bit L-bit 0-bit)

LLS Options is 0x12 in BDD (E-bit L-bit 0-bit)

LLS Options is 0x12 in BDD (E-bit L-bit 0-bit)

LLS Options is 0x12 in BDD (E-bit L-bit 0-bit)

LLS Options is 0x12 in BDD (E-bit L-bit 0-bit)

LLS Options is 0x12 in BDD (E-bit L-bit 0-bit)

LLS Options is 0x12 in BDD (E-bit L-bit 0-bit)

LLS Options is 0x12 in BDD (E-bit L-bit 0-bit)

LLS Options is 0x12 in BDD (E-bit L-bit 0-bit)

LLS Options is 0x12 in BDD (E-bit L-bit 0-bit)

LLS Options is 0x12 in BDD (E-bit L-bit 0-bit)

LLS Options is 0x12 in BDD (E-bit L-bit 0-bit)

Last retransmission scan time is 0 msec, maximum is 0 msec
```

在 R7 上查看邻居关系:

```
Rishow ip ospf neighbor detail

Neighbor 10.1.50.1, interface address 10.1.2.5

In the area 1 via interface SerialO/O

Neighbor priority is 0, State is FULL, 6 state changes

DR is 0.0.0.0 BDR is 0.0.0.0

Options is 0x12 in Hello (E-bit L-bit )

Options is 0x52 in DBD (E-bit L-bit )

Options is 0x52 in DBD (E-bit L-bit)

LLS Options is 0x1 (LR)

Dead timer due in 00:01:32

Index 2/3, retransmission queue length 0, number of retransmission 0

First 0x0 (0) /0x0 (0) Next 0x0 (0) /0x0 (0)

Last retransmission scan length is 0, maximum is 0

Last retransmission scan time is 0 msec, maximum is 0 msec

Neighbor 10.3.90.1, interface address 10.1.2.3

In the area 1 via interface SerialO/O

Neighbor priority is 0, State is FULL, 6 state changes

DR is 0.0.0.0 BDR is 0.0.0.0

Options is 0x52 in DBD (E-bit L-bit )

Options is 0x52 in DBD (E-bit L-bit )

Options is 0x62 in DBD (E-bit L-bit )

Neighbor is up for 00:01:32

Index 1/2, retransmission queue length 0, number of retransmission 0

First 0x0 (0) /0x0 (0) Next 0x0 (0) /0x0 (0)

Last retransmission scan time is 0 msec, maximum is 0

Last retransmission scan length is 0, maximum is 0

Last retransmission scan time is 0 msec, maximum is 0

Last retransmission scan time is 0 msec, maximum is 0

Last retransmission scan time is 0 msec, maximum is 0

Last retransmission scan time is 0 msec, maximum is 0

Last retransmission scan time is 0 msec, maximum is 0

Last retransmission scan time is 0 msec, maximum is 0

DR is 10.2.123.241 BDR is 10.2.123.242

Options is 0x52 in DBD (E-bit L-bit )

Dead timer due in 00:00:35

Neighbor is up for 00:00:157

Inde
```

在 R9 上查看邻居关系:

```
Neighbor 10.1.50.1, interface address 10.1.2.6

In the area 1 via interface Serial0/0

Neighbor priority is 1, State is FULL, 6 state changes

DR is 0.0.0.0 BDR is 0.0.0.0

Poll interval 120

Options is 0x12 in Hello (E-bit L-bit )

Options is 0x52 in DBD (E-bit L-bit )

LLS Options is 0x1 (LR)

Dead timer due in 00:01:34

Neighbor is up for 00:01:55

Index 1/1, retransmission queue length 0, number of retransmission 0

First 0x0(0)/0x0(0) Next 0x0(0)/0x0(0)

Last retransmission scan length is 0, maximum is 0

Last retransmission scan time is 0 msec, maximum is 0 msec

Neighbor 10.1.70.242, interface address 10.1.2.1

In the area 1 via interface Serial0/0

Neighbor priority is 1, State is FULL, 6 state changes

DR is 0.0.0.0 BDR is 0.0.0.0

Poll interval 120

Options is 0x12 in Hello (E-bit L-bit )

Options is 0x52 in DBD (E-bit L-bit )

Options is 0x52 in DBD (E-bit L-bit )

LLS Options is 0x1 (LR)

Dead timer due in 00:01:58

Neighbor is up for 00:01:54

Index 2/2, retransmission queue length 0, number of retransmission 0

First 0x0(0)/0x0(0) Next 0x0(0)/0x0(0)

Last retransmission scan length is 0, maximum is 0

Last retransmission scan time is 0 msec, maximum is 0 msec
```

25. 分别在 R5、R8、R7 上查看 OSPF 数据库 (命令: show ip ospf database),观察 Summary Net Link 部分,你发现了什么现象?

R5 的 OSPF 数据库: 观察得知, Area 1 所有的的聚合路由都是由区域边界路由器(ABR) R4 宣告的,而 R7 作为 Area 1 和 Area 2 的 ABR,却没有向 Area 1 宣告 Area 2 的路由信息,是因为所有的 Area 都只和 Area 0 进行路由信息交换。

R5#show ip ospf	datahase						
KJ#SHOW IP OSPI	uacabase						
OSP	F Router with ID	(10.1.50.1)	(Process II	72)			
	Router Link States (Area 1)						
Link ID	ADV Router	Age	Seq#	Checksum Link count			
10.0.40.1	10.0.40.1	1854	0x80000003	0x00AEF9 1			
10.1.50.1	10.1.50.1	688	0x80000007	0x0074F0 7			
10.1.70.242	10.1.70.242	276	0x80000004	0x008A1F 3			
10.3.90.1	10.3.90.1	591	0x80000003	0x005162 2			
	Net Link States	(Area 1)					
Link ID	ADV Router	Age	Seq#	Checksum			
10.1.0.1	10.0.40.1	1854	0x80000002	0x005A2E			
	Summary Net Link States (Area 1)						
Link ID	ADV Router	Age	Seq#	Checksum			
10.0.0.0	10.0.40.1	1854	0x80000002	0x00B828			
10.0.1.0	10.0.40.1	1854	0x80000002	0x0049A0			
10.0.20.1	10.0.40.1	1854	0x80000002	0x0013CB			
10.0.40.1	10.0.40.1	1854	0x80000002	0x00D103			
10.0.60.1	10.0.40.1	1854	0x80000002	0x00595D			
10.0.123.240	10.0.40.1	1856	0x80000002	0x00A8A2			
10.0.123.244	10.0.40.1	1856	0x80000002	0x00621B			
10.0.123.248	10.0.40.1	1856	0x80000002	0x00BDC9			
10.2.0.0	10.0.40.1	1111	0x80000002	0x003CAC			
10.2.1.0	10.0.40.1	1111	0x80000002	0x003BAB			
10.2.80.1	10.0.40.1	1111	0x80000002	0x00C8CD			
10.2.123.240	10.0.40.1	1111	0x80000002	0x00D69E			

R8 的 OSPF 数据库: 观察得知, Area 2 所有的的聚合路由都是由区域边界路由器(ABR) R6 宣告的,而 R7 作为 Area 1 和 Area 2 的 ABR,也没有向 Area 2 宣告 Area 1 的路由信息,。

R7的 OSPF 数据库:观察得知,Area 1 所有的的聚合路由都是由区域边界路由器(ABR) R4 宣告的,

Area 2 所有的的聚合路由都是由区域边界路由器(ABR) R6 宣告的。

26. 在 R8 上查看去往 PC3 所在网络的路由信息(命令: show ip route <ip network>)

```
R8#show ip route 10.1.1.0

Routing entry for 10.1.1.0/24

Known via "ospf 72", distance 110, metric 40, type inter area

Last update from 10.2.0.1 on FastEthernet0/1, 00:41:03 ago

Routing Descriptor Blocks:

* 10.2.0.1, from 10.0.60.1, 00:41:03 ago, via FastEthernet0/1

Route metric is 40, traffic share count is 1
```

27. 断开路由器 R6 的 f0/0 接口(命令: shutdown),等候片刻,在 R8 上再次查看路由信息:

R8 的路由信息: 观察得知,前往子网 10.0.0.0/16 的路由已经不存在。

```
R8#show ip route 10.1.1.0
% Subnet not in table
```

不直接交换路由信息,R7 没有向 Area 2 宣告路由的存在。

```
R7#show ip route 10.1.1.0

Routing entry for 10.1.1.0/24

Known via "ospf 72", distance 110, metric 74, type intra area

Last update from 10.1.2.5 on Serial0/0, 00:16:18 ago

Routing Descriptor Blocks:

* 10.1.2.5, from 10.1.50.1, 00:16:18 ago, via Serial0/0

Route metric is 74, traffic share count is 1
```

重新打开 R6 的 f0/0 接口,稍候再次查看 R8 的路由信息是否恢复。

```
10.0.0.0/8 is variably subnetted, 20 subnets, 4 masks

10.0.0.0/8 is variably subnetted, 20 subnets, 4 masks

10.2.0.0/24 is directly connected, FastEthernet0/1

10.1.2.1.0/24 is directly connected, FastEthernet1/0

10.2.1.0/24 is directly connected, FastEthernet1/0

10.2.1.0/24 is directly connected, FastEthernet1/0

10.1.2.3/32 [110/94] via 10.2.0.1, 00:01:38, FastEthernet0/1

10.1.1.0/24 [110/40] via 10.2.0.1, 00:01:38, FastEthernet0/1

10.1.1.0.0/24 [110/40] via 10.2.0.1, 00:01:38, FastEthernet0/1

10.1.1.0.0/24 [110/30] via 10.2.0.1, 00:01:39, FastEthernet0/1

10.1.1.0.0/24 [110/30] via 10.2.0.1, 00:01:39, FastEthernet0/1

10.1.1.0.0/24 [110/30] via 10.2.0.1, 00:01:39, FastEthernet0/1

10.1.1.0.0/22 [110/30] via 10.2.0.1, 00:01:39, FastEthernet0/1

10.1.1.1.0/22 [110/21] via 10.2.0.1, 00:01:39, FastEthernet0/1

10.1.1.1.0/22 [110/21] via 10.2.0.1, 00:01:39, FastEthernet0/1

10.1.1.1.0/24 [110/31] via 10.2.0.1, 00:01:41, FastEthernet0/1

10.1.2.1.2.3.240/30 [110/34] via 10.2.0.1, 00:01:41, FastEthernet0/1

10.1.1.1.2.2.240/30 [110/34] via 10.2.0.1, 00:01:41, FastEthernet0/1

10.1.1.1.1.2.2.240/30 [110/30] via 10.2.0.1, 00:01:51, FastEthernet0/1

10.1.1.1.2.2.240/30 [110/30] via 10.2.0.1, 00:01:51, FastEthernet0/1
```

没有恢复

28. 给 R10 的 f0/0、f0/1 接口配置 IP 地址并激活,启用 OSPF 协议,各接口均属于 Area 3。配置 PC5 的 IP 地址和默认路由。过一会,查看 R10 上的路由表和 OSPF 数据库。

R10 配置命令:

```
R8(config)#interface f0/1
R8(config-if)# ip addr 10.3.0.2 255.255.255.0
R8(config-if)# no shut
R8(config)#interface f0/0
R8(config-if)# ip addr 10.3.1.1 255.255.255.0
R8(config-if)# no shut
R8(config)#interface loopback 0
R8(config)#interface loopback 0
R8(config-if)# ip addr 10.3.100.1 255.255.255.0
R8(config-router)# network 10.3.0.0 0.0.255.255 area 3
```

R10 的 OSPF 数据库: 观察可知,数据库中没有其他 Area 的信息,因为 Area 3 和 Area 1 不直接交换信息

R10 的路由表: 观察可知,路由表中没有其他 Area 的信息,因为 OSPF 数据库中缺乏相关数据。

```
R10#show ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

O - ODR, P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 4 subnets, 2 masks

C 10.3.1.0/24 is directly connected, FastEthernet0/0

C 10.3.0.0/24 is directly connected, FastEthernet0/1

O 10.3.90.1/32 [110/11] via 10.3.0.1, 00:00:32, FastEthernet0/1

C 10.3.100.0/24 is directly connected, Loopback0
```

29. 在 Area 1 上的两个边界路由器 R9、R4 之间为 Area 3 和 Area 0 创建虚链路(命令: area 〈area-id〉 virtual-link RID),这样 Area 3 就能和 Area 0 进行路由信息交换了。其中,area-id 写 1,RID 写对方的 Router ID,稍候查看虚链路建立情况(命令: show ip ospf virtual-links)和邻居信息(命令: show ip ospf neighbor)。

R4 配置命令:

R4(config)# router ospf 72 R4(config-router)# area 1 virtual-link 10.3.90.1

R9 配置命令:

R9(config)# router ospf 72 R9(config-router)# area 1 virtual-link 10.0.40.1_

查看 R4 虚链路:观察得知,R4 通过区域<u>1</u>的接口<u>f0/1</u>与 R9(RID 是<u>10.3.90.1</u>)建立了虚链

路, 使用的 Cost 值为___74__。

```
R4#show ip ospf virtual-links
Virtual Link OSPF_VL0 to router 10.3.90.1 is up
Run as demand circuit
DoNotAge LSA allowed.
Transit area 1, via interface FastEthernet0/1, Cost of using 74
Transmit Delay is 1 sec, State POINT_TO_POINT,
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
Hello due in 00:00:00
Adjacency State FULL (Hello suppressed)
Index 3/4, retransmission queue length 0, number of retransmission 0
First 0x0(0)/0x0(0) Next 0x0(0)/0x0(0)
Last retransmission scan length is 0, maximum is 0
Last retransmission scan time is 0 msec, maximum is 0 msec
```

 查看 R9 虚链路: 观察得知, R9 通过区域 1
 的接口
 s0/0
 与 R4 (RID 是 10.0.40.1) 建立了虚链路, 使用的 Cost 值为 74 。

```
R9#show ip ospf virtual-links
Virtual Link OSPF_VLO to router 10.0.40.1 is up
Run as demand circuit
DoNotAge LSA allowed.
Transit area 1, via interface SerialO/O, Cost of using 74
Transmit Delay is 1 sec, State POINT_TO_POINT,
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
Hello due in 00:00:06
Adjacency State FULL (Hello suppressed)
Index 1/3, retransmission queue length 0, number of retransmission 0
First 0x0(0)/0x0(0) Next 0x0(0)/0x0(0)
Last retransmission scan length is 0, maximum is 0
Last retransmission scan time is 0 msec, maximum is 0 msec
```

查看 R4 邻居信息: 观察得知, R4 通过接口____OSPF_VL1______与 R9 (RID 是 10.3.90.1_____) 建立了邻接关系。

查看 R9 邻居信息: 观察得知, R9 通过接口 OSPF_VL0 与 R4 (RID 是 10.0.40.1) 建立了邻接关系。

30. 再次显示 R10 的路由表和 OSPF 数据库,标出 PC1、PC2、PC3 所在的子网相关记录。

R10的路由表:

R10 的 OSPF 数据库:观察得知,所有其他区域路由信息均由区域边界路由器 R9 宣告。

31. 在 R9 上手工合并 Area 0 上的子网路由(命令: area 0 range <ip_net> <mask>, 其中 ip_net 写成 10.0.0.0, mask 写成 255.255.0.0, 表示 10.0.x.x 这些网络都在 area 0 上), 然后显示 R9 和 R10 的路由表, 看看所指定的子网是否合并了路由

R9 的路由表:标出合并的那条路由,这条路由采用了特殊的接口 Nullo 作为下一跳。

32. 整理各路由器的当前运行配置,选择与本实验相关的内容记录在文本文件中,每个设备一个文件,分别命名为 R1.txt、R2.txt 等,随实验报告一起打包上传。

详情见附件,十个路由器共有十个 txt 文件记录了其运行配置

六、 实验结果与分析

根据你观察到的实验数据和对实验原理的理解,分别解答以下问题:

- 在一个网络中各路由器的 OSPF 进程号是否一定要相同?一个路由器上可以配置多个 进程号吗?
 - 同一个域可以使用不同的自治系统编号,但应该尽可能用一致的 OSPF 进程编号
- 未手工指定 Router ID 时,如果没有给回环接口配置 IP 地址,会从哪一个接口选取地址作为 Router ID? 如果给回环接口配置了 IP 地址,又会从哪一个接口选取地址作为 Router ID?

串口和回环接口

● 如果 Router ID 对应的接口 down 了,路由器会自动重新选择另一个接口地址作为新的 Router ID 吗?

会

● 宣告网络属于哪个 area 的命令中,网络地址后面的参数是子网掩码吗?为什么要写成 0.0.255.255,而不是 255.255.0.0? 不是子网掩码,是为了显示出网络层

● 是不是所有其他 Area 上的路由器都只和 Area 0 上的路由器进行路由信息交换? 虚链路的作用是什么?

虚连接设置两个路由器之间,这两个路由器各有一个端口和同一个非主干区域相连, 虚连接被认为是属于主干区域的

虚连接两端的两个路由器被一个点对点的链路连在一起

通过虚连接的路由信息是作为域内路由的,因此虚连接的作用是模拟邻居节点来传递路由表。

● 为什么要在区域边界路由器上进行路由合并? 方便路由的寻找

七、 讨论、心得

在完成本实验后,你可能会有很多待解答的问题,你可以把它们记在这里,接下来的学习中,你也许会逐渐得到答案的,同时也可以让老师了解到你有哪些困惑,老师在课堂可以安排针对性地解惑。等到课程结束后,你再回头看看这些问题时你或许会有不同的见解:

遇到的问题

- 一开始把 FrameRelay 的端口连接错了导致出现问题
- 十个路由器和若干台 PC 一起联通差点导致虚拟机的 RAM 达到 100%, 不过最后好像也没到,但我做实验的时候一直胆战心惊怕虚拟机内存满了,或许实验就要重开了

在实验过程中你可能会遇到的困难,并得到了宝贵的经验教训,请把它们记录下来,提供

给其他人参考吧:

遇到的问题都写在上面了,宝贵的经验教训就是最好坚持做完再干别的事情,不然可能回来就忘了做到哪一步了。

另外尽量选择健康的电脑进行试验,我就是因为这台电脑的硬盘容易松动导致系统崩溃,做实验的时候一直胆战心惊,不过还好最后电脑没在做计网实验的时候崩溃。

你对本实验安排有哪些更好的建议呢? 欢迎献计献策:

- 没有,做完还活着就是实验对我最好的安排
- 此类设计合理,内容丰富,过程有趣的实验建议开成通识必修课