Authentication

Prof. Dr. Helene Dörksen

helene.doerksen@th-owl.de

Excursus: Support-Vector-Machine

separating hyperplane (classification function) is:

Support vectors and classification margin ho

Excursus: Support-Vector-Machine

Extreme example:

Learned before

Classification Methods:

- naïve Bayes
- support-vector-machine
- decision tree
- 3-nearest-neighbours
- LDA (good for Gaussian)

Feature Extraction and Feature Selection Methods:

- PCA (good for correlated features; bad for noisy data)
- LDA (good for Gaussian)

Lecture 7:

Estimating and Comparing Classifiers

Comparing Classifiers and No Free Lunch Theorem

No Free Lunch Theorem: there is **no one ideal solution** to the classification problem

Take into account: If we compare algorithms on a particular application, the comparison is only true for that application and that dataset

Comparing Classifiers and No Free Lunch Theorem

possible split of sample in subsets

Comparing Classifiers and No Free Lunch Theorem

Model selection and error estimation using data split:

Holdout method

Random subsampling

k-fold cross-validation

Leave-one-out

Predicted			
Actual	Positive	Negative	Total
Positive	TP	FN	p
Negative	FP	TN	n
Total	p'	n'	N

Confusion matrix for two classes

Name	Formula
(total) error	$(FP + FN)/N (=\alpha + \beta)$
Accuracy	(TP + TN)/N = 1 - (total) error
FPF, false positive fraction (or FP rate)	FP/n (or α)
TPF, true positive fraction (or TP rate)	TP/ p [or $(1 - \alpha)$]
Precision	TP/p'
Recall	TP/p (=TP fraction)
Sensitivity	TP/p (=TPF)
Specificity	TN/n (=TNF = 1 - FPF)

Performance measures used in two-class problems

Distributions with a lot of overlap result in a ROC plot, with an **AUC** close to **0.5**

Distributions that are well-separated result in a ROC plot, with an **AUC** close to **1**

Comparing Classifiers

McNemar's test

e_{00} : number of examples misclassified	e_{01} : number of examples misclassified
by both	by 1 but not by 2
e_{10} : number of examples misclassified	e_{11} : number of examples correctly classified
by 2 but not by 1	by both

classifier 1 vs. classifier 2

same error: $e_{01} = e_{10}$

otherwise: $e_{01} \neq e_{10}$

Chi-square statistic: $\frac{(|e_{01}-e_{10}|-1)^2}{e_{01}+e_{10}} \sim \chi_1^2 > 3.84$

Comparing Classifiers

Further tests:

- -5×2 cv Paired t Test
- -5×2 cv Paired F Test

Summary

- Measuring of classifier performance
- Comparing classifiers

Homework: Exercises and Labs

for the next week prepare practical exercises and labs from **Exercises Lec 7** (you will find it in the donwload area)