Introduction to deep learning

9/10 points (90%)

Quiz, 10 questions

~	1 / 1 points
1. What	does the analogy "Al is the new electricity" refer to?
	Al is powering personal devices in our homes and offices, similar to electricity.
	Al runs on computers and is thus powered by electricity, but it is letting computers do things not possible before.
0	Similar to electricity starting about 100 years ago, Al is transforming multiple industries.
	rect Al is transforming many fields from the car industry to culture to supply-chain
	Through the "smart grid", AI is delivering a new wave of electricity.
	1/1

Un-selected is correct

Neural Networks are a brand new field.

	We have access to a lot more computational power
ı	vve have access to a for more compatational power

Introduction to deep learning

9/10 points (90%)

Quiz, 10 questions

Yes! The development of hardware, perhaps especially GPU computing, has significantly improved deep learning algorithms' performance.

We have access to a lot more data.

Correct

Yes! The digitalization of our society has played a huge role in this.

Deep learning has resulted in significant improvements in important applications such as online advertising, speech recognition, and image recognition.

Correct

These were all examples discussed in lecture 3.

1/1 points

3.

Recall this diagram of iterating over different ML ideas. Which of the statements below are true? (Check all that apply.)

	Being able to try out ideas quickly allows deep learning
۲.	engineers to iterate more quickly.

Introduction to deep learning

9/10 points (90%)

Quiz, 10 questions

Correct

Yes, as discussed in Lecture 4.

Faster computation can help speed up how long a team takes to iterate to a good idea.

Correct

Yes, as discussed in Lecture 4.

It is faster to train on a big dataset than a small dataset.

Un-selected is correct

Recent progress in deep learning algorithms has allowed us to train good models faster (even without changing the CPU/GPU hardware).

Correct

Yes. For example, we discussed how switching from sigmoid to ReLU activation functions allows faster training.

0/1 points

4

When an experienced deep learning engineer works on a new problem, they can usually use insight from previous problems to train a good model on the first try, without needing to iterate multiple times through different models. True/False?

True

This should not be selected

No. Finding the characteristics of a model is key to have good performance. Although experience can help, it requires multiple iterations to build a good model.

False

Introduction to deep learning

9/10 points (90%)

Quiz, 10 questions

5.

Which one of these plots represents a ReLU activation function?

Figure 1:

Figure 2:

Figure 3:

Correct

Correct! This is the ReLU activation function, the most used in neural networks.

Figure 4:

/

1/1 points

6.

Images for cat recognition is an example of "structured" data, because it is represented as a structured array in a computer. True/False?

True

False

Correct

Introduction tosdeepslearaningsnition is an example of "unstructured" data.

9/10 points (90%)

Quiz, 10 questions

1/1 points

7.

A demographic dataset with statistics on different cities' population, GDP per capita, economic growth is an example of "unstructured" data because it contains data coming from different sources. True/False?

True False

Correct

A demographic dataset with statistics on different cities' population, GDP per capita, economic growth is an example of "structured" data by opposition to image, audio or text datasets.

1/1 points

8.

Why is an RNN (Recurrent Neural Network) used for machine translation, say translating English to French? (Check all that apply.)

It can be trained as a supervised learning problem.

Correct

Yes. We can train it on many pairs of sentences x (English) and y (French).

It is strictly more powerful than a Convolutional Neural Network (CNN).

Un-selected is correct

Introduction to deep de attribute n the input/output is a sequence (e.g., a sequence of words).

9/10 points (90%)

Quiz, 10 questions

Correct

Yes. An RNN can map from a sequence of english words to a sequence of french words.

RNNs represent the recurrent process of Idea->Code->Experiment->Idea->....

Un-selected is correct

1/1 points

9.

In this diagram which we hand-drew in lecture, what do the horizontal axis (x-axis) and vertical axis (y-axis) represent?

- x-axis is the amount of data
 - y-axis is the size of the model you train.
- x-axis is the amount of data
 - y-axis (vertical axis) is the performance of the algorithm.

Correct

710/2010	Codisera Offiline Codises From Top Offiversities. Som for Free Codisera	
	x-axis is the input to the algorithm	
Introductio	n to deepaleaming	9/10 points (90%)
Quiz, 10 questions	x-axis is the performance of the algorithm	
	y-axis (vertical axis) is the amount of data.	
	1/1	
	points	
	10. Accuming the trends described in the provious question's figure are	
	Assuming the trends described in the previous question's figure are accurate (and hoping you got the axis labels right), which of the following are true? (Check all that apply.)	
	Increasing the training set size generally does not hurt an	
	algorithm's performance, and it may help significantly.	
	Correct	
	Yes. Bringing more data to a model is almost always beneficial.	
	Decreasing the size of a neural network generally does not	
	hurt an algorithm's performance, and it may help significantly.	
	Un-selected is correct	
	Decreasing the training set size generally does not hurt an	
	algorithm's performance, and it may help significantly.	
	Un-selected is correct	
	Increasing the size of a neural network generally does not hurt	
	an algorithm's performance, and it may help significantly.	
	Correct	
	Yes. According to the trends in the figure above, big networks	
	usually perform better than small networks.	