Claims

We claim:

1. A compound of formula (I):

wherein:

5

10

15

20

25

A is selected from H; Ht; $-R^1-Ht$; $-R^2-C_1-C_6$ alkyl, which is optionally substituted with one or more groups independently selected from hydroxy, C_1-C_4 alkoxy, Ht, -O-Ht, $-NR^2-CO-N(R^2)_2$ or $-CO-N(R^2)_2$; $-R^2-C_2-C_6$ alkenyl, which is optionally substituted with one or more groups independently selected from hydroxy, C_1-C_4 alkoxy, Ht, -O-Ht, $-NR^2-CO-N(R^2)_2$ or $-CO-N(R^2)_2$; or R^7 ;

each R^{1} is independently selected from -C(0)-, $-S(0)_{2}$ -, -C(0)-C(0)-, -O-C(0)-, -O- $S(0)_{2}$, $-NR^{2}$ - $S(0)_{2}$ -, $-NR^{2}$ -C(0)- or $-NR^{2}$ -C(0)-C(0)-;

each Ht is independently selected from C_3-C_7 cycloalkyl; C_5-C_7 cycloalkenyl; C_6-C_{10} aryl; or a 5-7 membered saturated or unsaturated heterocycle, containing one or more heteroatoms selected from N, $N(R^2)$, O, S and $S(O)_n$; wherein said aryl or said heterocycle is optionally fused to Q; and wherein any member of said Ht is optionally substituted with one or more substituents independently selected from oxo, $-OR^2$, SR^2 , $-R^2$, $-N(R^2)(R^2)$, $-R^2-OH$, -CN, $-CO_2R^2$, $-C(O)-N(R^2)_2$, $-S(O)_2-N(R^2)_2$, $-N(R^2)-C(O)-R^2$, $-C(O)-R^2$, $-S(O)_n-R^2$, $-OCF_3$, $-S(O)_n-Q$, methylenedioxy, $-N(R^2)-S(O)_2(R^2)$, halo, $-CF_3$, $-NO_2$, Q, -OQ, $-OR^7$, $-SR^7$, $-R^7$, $-N(R^2)(R^7)$ or $-N(R^7)_2$;

each R^2 is independently selected from H, Ht or $C_1\text{--}C_6$ alkyl optionally substituted with Q or R^{10} ;

B, when present, is $-N(R^2)-C(R^3)z-C(0)-;$ each x is independently 0 or 1;

- each R^3 is independently selected from H, Ht, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_3 - C_6 cycloalkyl or C_5 - C_6 cycloalkenyl; wherein any member of said R^3 , except H, is optionally substituted with one or more substituents selected from $-OR^2$, $-C(O)-NH-R^2$, $-S(O)_5-N(R^2)(R^2)$, Ht,
- 10 -CN, -SR², -CO₂R², NR²-C(0)-R²;

each n is independently 1 or 2;

G, when present, is selected from H, R^7 or C_1 - C_4 alkyl, or, when G is C_1 - C_4 alkyl, G and R^7 are bound to one another either directly or through a C_1 - C_3 linker to form a

15 heterocyclic ring; or

when G is not present, the nitrogen to which G is attached is bound directly to the R^7 group in $-OR^7$ with the concomitant displacement of one -ZM group from R^7 ;

D is selected from Q; C_1 - C_6 alkyl or C_2 - C_4 alkenyl, which is optionally substituted with one or more groups selected from C_3 - C_6 cycloalkyl, $-OR^2$, -S-Ht, $-R^3$, -O-Q or Q; C_5 - C_6 cycloalkyl or C_5 - C_6 cycloalkenyl, which is optionally substituted with or fused to Q;

each Q is independently selected from a 3-7

membered saturated, partially saturated or unsaturated carbocyclic ring system; or a 5-7 membered saturated, partially saturated or unsaturated heterocyclic ring containing one or more heteroatoms selected from O, N, S, S(O), or N(R²); wherein Q is optionally substituted with one or more groups selected from oxo, -OR², -R², -N(R²), -N(R²) - C(O)-R², -R²-OH, -CN, -CO₂R², -C(O)-N(R²)₂, halo or -CF₃;

D' is selected from $-OR^{10}$, $-N=R^{10}$ or $-N(R^{10})-R^1-R^3$; E is selected from Ht; O-Ht; Ht-Ht; $-O-R^3$; $-N(R^2)(R^3)$; C_1-C_2 alkyl, which is optionally substituted with one or more groups selected from R^4 or Ht; C_1-C_2 alkenyl, which is optionally substituted with one or more groups selected from R^4 or Ht; C_3-C_4 saturated carbocycle, which is optionally substituted with one or more groups selected from R^4 or Ht; or C_3-C_4 unsaturated carbocycle, which is optionally substituted with one or more groups selected from R^4 or Ht;

each R^4 is independently selected from $-OR^2$, 10 $-SR^2$, $-C(O)-NHR^2$, $-S(O)_2-NHR^2$, halo, $-NR^2-C(O)-R^2$, $-N(R^2)_2$ or -CN;

each R is independently selected from hydrogen,

wherein each M is independently selected from H, Li, Na, K, Mg, Ca, Ba, -N(R²)₄, C₁-C₁₂-alkyl, C₂-C₁₂-alkenyl, or -R⁶; wherein 1 to 4 -CH₂ radicals of the alkyl or alkenyl group, other than the -CH₂ that is bound to Z, is optionally replaced by a heteroatom group selected from O, S, S(O), S(O₂), or N(R²); and wherein any hydrogen in said alkyl, alkenyl or R⁶ is optionally replaced with a substituent selected from oxo, -OR², -R², N(R²)₂, N(R²)₃, C(O)R², -CN, -CO₂R², -C(O)-N(R²)₂, S(O)₂-N(R²)₁, N(R²)-C(O)-R₁, C(O)R², -S(O)₂-R², OCF₃, -S(O)₂-R⁶, N(R¹)-S(O)₂(R²), halo, -CF₃, or -NO₂;

M' is H, C_1-C_{12} -alkyl, C_2-C_{12} -alkenyl, or $-R^6$; wherein 1 to 4 -CH₂ radicals of the alkyl or alkenyl group is optionally replaced by a heteroatom group selected from 0, S, S(0), S(O₂), or N(R²); and wherein any hydrogen in said alkyl, alkenyl or R⁶ is optionally replaced with a substituent selected from oxo, $-OR^2$, $-R^2$, $-N(R^2)_2$, $N(R^2)_3$, $-R^2OH$, -CN, $-CO_2R^2$, $-C(O)-N(R^2)_2$, $-S(O)_2-N(R^2)_2$,

 $-N(R^2)-C(O)-R_2$, $-C(O)R^2$, $-S(O)_n-R^2$, $-OCF_3$, $-S(O)_n-R^6$, $-N(R^2)-S(O)_2(R^2)$, halo, $-CF_3$, or $-NO_2$;

Z is O, S, $N(R^2)_2$, or, when M is not present, H.

Y is P or S;

X is O or S;

5

 R^9 is $C\,(R^2)_{\,2},\,\,O$ or $N\,(R^2)\,;$ and wherein when Y is S, Z is not S;

R⁶ is a 5-6 membered saturated, partially saturated or unsaturated carbocyclic or heterocyclic ring system, or an 8-10 membered saturated, partially saturated or unsaturated bicyclic ring system; wherein any of said heterocyclic ring systems contains one or more heteroatoms selected from O, N, S, S(O)_n or N(R²); and wherein any of said ring systems optionally contains 1 to 4 substituents independently selected from OH, C₁-C₄ alkyl, O-C₁-C₄ alkyl;

 R^8 is selected from $C_1\!-\!C_8$ alkyl, $C_3\!-\!C_7$ alkyl or cyano substituted $C_2\!-\!C_6$ alkenyl; and

 $R^{10} \text{ is selected from $C_{1-}C_6$ alkyl, $C_{2-}C_6$ alkenyl, $C_{6-}C_{14}$}$ aryl or Ht, wherein \$R^{10}\$ optionally contains up to three substituents independently selected from $-R^3$, -CN, $-SR^5$, $-SOR^5$, $-SO_2R^5$, $-SR-NR^5-C(O)R^6$, $-NR^5-(SO_2)R^5$, $-C(O)N(R^5)_2$, $-C(S)N(R^5)_2$, $-S(O)_2N(R^5)_2$, $-C(O)R^6$, $-C(S)R^6$, $-N(R^5)_2$, $-NR^5-C(O)R^5$,

25 $C(S)OR^5$, $-NR^5-C(S)N(R^5)_2$, $-NR^5-C[=N(R^5)]-N(R^5)_2$, $-NH-C[=N-NO_2]-NH_2$, $-NH-C[=N-NO_2]-OR^5$, $-N(R^6)_2-C(O)R^6$, $-NH-C[=N-NO_2]-NH_2$, $-NH-C[=N-NO_2]-OR^5$, $-N(R^6)_2-C(O)R^6$, $-OC(O)N(R^5)_2$, $-OC(S)N(R^5)_2$, wherein any one of the $-CH_2$ groups of said alkyl or alkenyl chains of R^{1C} may be optionally replaced by 0, S, SO, SO₂, C(O) or NR^5 ;

wherein each R^5 is independently selected from hydrogen, C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl or Ht, wherein each R^5 , except for hydrogen, is optionally substituted with -CF3, -PO₃R³, azido or halo;

or a pharmaceutically acceptable derivative thereof.

2. The compound according to claim 1, wherein at least one $R^{\mbox{\tiny ?}}$ is selected from:

PO₃-spermine, PO₃-(spermidine); or PO₃-(meglamine);.

A compound of formula (II):

10

$$A \xrightarrow{N} \xrightarrow{N} N -SO_2 -E$$

15 .

wherein A, R^7 , D' and E are as defined in claim 1; or a pharmaceutically acceptable derivative thereof.

20

A compound of formula (III):

$$Ht - (CH2)x \xrightarrow{O} \xrightarrow{N} \xrightarrow{O} SO_2 - E$$

25

wherein Ht, x, R^3 , R^7 , D' and E are as defined in claim 1; or a pharmaceutically acceptable derivative thereof.

5. A compound of formula (IV):

$$A \xrightarrow[H]{R^3 R^3} NH \xrightarrow[N-SO_2-E]{OR^7 D'} N-SO_2-E$$

5

25

30

wherein A, R^3 , R^7 , D' and E are as defined in claim 1; 10 or a pharmaceutically acceptable derivative thereof.

6. The compound according to claim 3, wherein: A is -C(0)Ht; D' is $-O-R^{16}$:

E is C_6-C_{10} aryl optionally substituted with one or more substituents selected from oxo, $-OR^2$, SR^2 , $-R^2$, $-N(R^2)_2$, $-R^2-OH$, -CN, $-CO_2R^2$, $-C(O)-N(R^2)_2$, $-S(O)_2-N(R^2)_2$, $-N(R^2)-C(O)-R^2$, $-C(O)-R^2$, $-S(O)_n-R^2$, $-OCF_3$, $-S(O)_n-Q$, methylenedioxy, $-N(R^2)-S(O)_2(R^2)$, halo, $-CF_3$, $-NO_2$, Q, -OQ, $-OR^7$, $-SR^7$, $-R^7$, $-N(R^2)(R^7)$ or $-N(R^7)_2$; or a 5-membered heterocyclic ring containing one S and optionally containing N as an additional heteroatom, wherein said heterocyclic ring is optionally substituted with one to two groups independently selected from $-CH_3$, R^4 , or Ht.

7. The compound according to claim 3, wherein: E is a 5-membered heterocyclic ring containing one S and optionally containing N as an additional heteroatom, wherein said heterocyclic ring is optionally substituted with one to two groups independently selected from $-CH_3$, R^4 , or Ht.

8. The compound according to claim 3, wherein:

 R^7 in $-OR^7$ group shown in formula II is $-PO(OM)_2$ or $C(O) CH_2OCH_2CH_2OCH_2CCH_3OCH_3$ and both R^7 in $-N(R^7)_2$ are H; or R^7 in $-OR^7$ group shown in formula II is $C(O) CH_2OCH_2CCH_3OCH_3$, one R^7 in $-N(R^7)_2$ is $C(O) CH_2OCCH_2CCH_3OCCH_3$ and the other is H; and wherein M is H, Li, Na, K or C_1-C_4 alkyl.

9. A compound according to claim 1, having formula (V) :

wherein A, R^7 , R^{10} and E are as defined in claim 1; 20 or a pharmaceutically acceptable derivative thereof.

10. A compound of formula (VI):

wherein:

30

5

 R^{11} and R^{2} are as defined in claim 1;

E is C₆-C₁₄ aryl, optionally substituted with one or more groups selected from the group consisting of nitro, oxo, alkoxy, amino, hydroxyamino; heterocyclcyl, optionally substituted with one or more groups selected from the group consisting of nitro, oxo, alkoxy, amino, hydroxyamino or N(CO)OCH₃;

or a pharmaceutically acceptable derivative thereof.

11. A compound of formula (VII):

10

15

A H N N S E (VII)

wherein A, E, ${\mbox{R}}^7$ and ${\mbox{R}}^{10}$ are as defined in claim 1; or a pharmaceutically acceptable derivative thereof.

12. A compound of formula (VIII):

wherein A, R¹, R³, R⁷ and E are as defined in claim 1;

or a pharmaceutically acceptable salt thereof.

13. A compound selected from:

$$\begin{array}{c} R^{7} \\ R^{11} \\ R^{11} \\ R^{10} \\ R^{10$$

5

wherein R^{13} is selected from isopropyl or cyclopentyl; R^{11} is selected from NHR⁷ or OR⁷; \mathbf{x} , R^7 and G are as defined in claim 1; and X^7 is a pharmaceutically acceptable counterion.

14. A compound selected from:

```
(3R, 3aS, 6aR) Hexahydrofuro[2, 3-b] furan-3-yl-N-((1S, 2R)-
     1-benzyl-3-(cyclopentyloxy) (2-[(methylsulfonyl)amino]
     benzimidazol-5-ylsulfonyl)amino-2-hydroxypropyl)carbamate;
          (3R, 3aS, 6aR) hexahydrofuro [2, 3-b] furan-3-yl N-(1S, 2R)-3-
     [[(3-N-methylaminophenyl)sulfonyl](cyclopentyloxy)amino]-1-
     benzyl-2-hydroxypropylcarbamate;
          1,3-Dioxan-5-yl N-(1S,2R)-1-benzyl-3-[(cyclopentyloxy)
     (2-{ (methoxycarbonyl) amino]-1H-benzimidazol-5-ylsulfonyl)
     amino]-2-hydroxypropylcarbamate;
10
          (3R, 3aS, 6aR) hexahydrofuro[2, 3-b] furan-3-yl N-(1S, 2R)-1-
    benzyl-2-hydroxy-3-[[(4-methoxyphenyl)sulfonyl](tetrahydro-
     2H-pyran-4-yloxy) amino] propylcarbamate;
          (3R, 3aS, 6aR) hexahydrofuro [2, 3-b] furan -3-yl N-(1S, 2R)-3-
     [[(3-aminophenyl)sulfonyl](cyclopentyloxy)amino]-1-benzyl-2-
15
    hydroxypropylcarbamate;
          (3R, 3aS, 6aR) hexahydrofuro [2, 3-b] furan -3-y1 N-[(1S, 2R)-
    1-benzyl-3-((cyclopentyloxy)[3-(2-[methoxy(methyl)amino]-2-
    oxoethylamino)phenyl]sulfonylamino)-2-hydroxypropyl]
    carbamate;
20
          (3R, 3aS, 6aR) hexahydrofuro[2, 3-b] furan-3-yl N-[(1S, 2R)-
    1-benzyl-4-(cyclopentyloxy)-2-hydroxy-4-(6-quinoxalinyl
    sulfonyl)butyl] carbamate;
          (3R, 3aS, 6aR) hexahydrofuro [2, 3-b] furan -3-y N-((1S, 2R)-
    1-benzyl-3-(cyclopentyloxy)[(4-methoxyphenyl)sulfonyl]amino-
25
    2-hydroxypropyl)carbamate;
          (3R, 3aS, 6aR) hexahydrofuro [2, 3-b] furan -3-y1 N-[(1S, 2R)-
    1-benzyl-3-((cyclopentyloxy)[3-(2-[(methylsulfonyl)amino]
    ethylamino)phenyl]sulfonylamino)-2-hydroxypropyl]carbamate;
          (3R, 3aS, 6aR) hexahydrofuro[2, 3-b] furan-3-yl N-(1S, 2R)-3-
30
    [[(3-N-methylaminophenyl)sulfonyl](cyclopentyloxy)amino]-1-
    benzyl-2-hydroxypropylcarbamate, phosphate ester;
          (3R, 3aS, 6aR) hexahydrofuro [2, 3-b] furan -3-y1 N-(1S, 2R)-3-
    [[(3-aminophenyl)sulfonyl](cyclopentyloxy)amino]-1-benzyl-2-
    hydroxypropylcarbamate phosphate ester;
```

- (3R,3aS,6aR) hexahydrofuro [2,3-b]furan-3-yl N-(1S,2R)-3-[[(4-aminophenyl)sulfonyl](cyclopentyloxy)amino]-1-benzyl-2-hydroxypropyl carbamate;
- (3R, 3aS, 6aR) hexahydrofuro[2, 3-b] furan-3-yl (1S, 2R)-1-5 benzyl-3-{(1-ethylpropoxy)[(4-hydroxyphenyl)sulfonyl]amino}2-hydroxypropylcarbamate;
 - (3R, 3aS, 6aR) hexahydrofuro[2,3-b] furan-3-yl (1S,2R)-3-[(1,3-benzodioxol-5-ylsulfonyl)(1-ethylpropoxy)amino]-1benzyl-2-hydroxypropylcarbamate;
- 10 (3R, 3aS, 6aR) hexahydrofuro[2, 3-b] furan-3-yl N-[(1S, 2R) 3-[(1,3-benzodioxol-5-ylsulfonyl) (cyclopentyloxy) amino]-1-benzyl-2-(phosphonoxy) propyl] carbamate;
 - (3R, 3aS, 6aR) hexahydrofuro[2,3-b] furan-3-yl (1S,2R)-3-[(1,3-benzodioxol-5-ylsulfonyl) (cyclohexyloxy) amino]-1benzyl-2-hydroxypropylcarbamate;
 - (3R, 3aS, 6aR) hexahydrofuro[2, 3-b] furan-3-yl 3-[(1, 3-benzodioxol-5-ylsulfonyl) (tetrahydro-2H-pyran-4-yloxy) amino]-1-benzyl-2-hydroxypropylcarbamate;

- (3R, 3aS, 6aR) hexahydrofuro[2, 3-b] furan-3-yl N-[(1S, 2R)20 3-[(1,3-benzodioxol-5-ylsulfonyl) (cyclopentyloxy) amino]-1benzyl-2-(phosphonooxy) propyl] carbamate;
 or a pharmaceutically acceptable derivative thereof.
- 15. The compound according to claim 1 wherein 25 said compound has a molecular weight less than or equal to about 700 g/mol.
- 16. The compound according to claim 15 wherein said compound has a molecular weight less than or equal to 30 about 600 g/mol.
 - 17. A pharmaceutical composition comprising an effective antiviral amount of a compound according to any one of claims 1-14 or a pharmaceutically acceptable

derivative thereof together with a pharmaceutically acceptable carrier therefore.

- 18. The pharmaceutical composition according to 5 claim 17, further comprising an antiviral agent other than a compound according to claims 1-14.
 - 19. A pharmaceutical composition according to claim 17 or 18 in the form of a tablet or capsule.
- 20. A method of treating a virus infection in a human comprising administering to said human an effective antiviral treatment amount of a compound according to any one of claims 1-13 or a pharmaceutically acceptable derivative thereof.

- 21. The method according to claim 20 wherein the virus infection is an HIV infection.
- 20 22. The method according to claim 20 or 21 wherein said step of administering comprises oral administration or administration by injection.
- 23. Use of a compound according to any of claims 25 1-14 for the manufacture of a medicament for the treatment or prophylaxis of a viral infection.
- 24. Use of a compound according to any of claims 1-14 or a formulation according to claim 17 for use in medical therapy.