ADDIS ABABA EDUCATIN BUREAU

2012/2020 GRADE 12 PHYSICS MODEL EXAMINATION

TIME ALLOWED: 2HOURS

GENERAL DIRECTIONS

THIS BOOKLET CONTAINS **PHYSICS** EXAMINATION FOR THE NATURAL SCIENCE CANDIDATES ONLY. IN THIS EXAMINATION, THERE ARE A TOTAL OF 50 MULTIPLE CHOICE QUESTIONS.

THERE IS ONLY ONE BEST ANSWER FOR EACH QUESTION. CHOOSE THE CORRECT ANSWER FROM THE SUGGESTED OPTIONS AND BLACKEN THE LETTER OF YOUR CHOICE ON THE ANSWER SHEET. USE ONLY PENCILE TO MARK YOUR ANSWERS.

YOU WILL BE ALLOWED TO WORK ON THE EXAM FOR **2 HOURS**. WHEN TIME IS CALLED, YOU MUST IMMEDIATELY STOP WORKING, PUT YOUR PENCIL DOWN, AND WAIT FOR FURTHER INSTRUCTIONS.

ANY FORM OF CHEATING OR AN ATTEMT TO CHEAT IN THE EXAMINATION WILL RESULT IN AN AUTOMATIC DISMISSAL FROM THE EXAMINATION HALL AND CANCELLATION OF YOUR SCORE(S).

PLEASE MAKE SURE THAT YOU HAVE WRITTEN ALL THE REQUIRED INFORMATION ON THE ANSWER SHEET BEFORE YOU START TO WORK ON THE EXAMINATION.

Read the Following Questions Carefully and Write Your Appropriate

1. Two students perform an experiment in which they drop a ball from rest a known height above the ground

and measure the speed of the ball just before it strikes the ground. From repeated measurement, the students

Answer on Your Provided Answer Sheet!!

	estimate the uncertainty in the measured speed of the ball to be 10%. Which of the following gives the						
	uncertainty in the kinetic energy of the ball? (Assume the uncertainty in the ball's mass is negligibly small.)						
	(A) 5%	(B) 10%	(C) 15%	(D) 20)%		
2.	The sum and dif	ference of two non-	zero vectors A and	B are equal in magnitude	. What can you conclude		
	about these two rectors?						
	(A) \mathbf{A} and \mathbf{B} has	ave the same directi	on	(C) \mathbf{A} and \mathbf{B} have	opposite direction		
	(B) A and B h	nave the same magn	itude	(D) A and B are pe	rpendicular to each other		
3.	A vector \overrightarrow{A} has	magnitude 10 units	and acts at an angl	e of 53 ⁰ from the positive	x- axis. What are the		
	magnitudes of th	ne x and y compone	nts respectively?				
	(A) 8 units, 6 units (C) 14 units, 8 units						
	(B) 6 units, 8	units	(D) 8 units, 14	units			
4.	When $\overrightarrow{A} / = 2$, /	$\overrightarrow{B}/=4$, and the ang	gle between \vec{A} and	\vec{B} is 45°. What is $ \vec{A} \times \vec{B}$	· } /?		
	(A) 8	(B) 4	(C) $4\sqrt{2}$	(D) $2\sqrt{2}$			
5.	All are correct a	bout the law of ther	modynamics EXC	EPT one.			
	(A) Zeroth law indicates that thermal equilibrium.						
	(B) First law is about decreases in internal energy						
	(C) Second law works in reveres of refrigerator						
	(D) Third law related to absolute entropy						
6.	At sea level, atmospheric pressure is 1.0×10^5 pas, temperature is 40K and the density of air is $0.5 \frac{\text{Kg}}{\text{m}^3}$. Wh						
	is the density of the air at the top of Entoto Mountain, where the temperature is 30K and atmospheric						
	pressure is 3X 10 ⁴ Pa?						
	(A) $5\frac{Kg}{m^3}$	(B)	$0.2\frac{Kg}{m^3}$	(C) $0.5 \frac{Kg}{m^3}$	(D) $2\frac{Kg}{m^3}$		
	7. The first law	of thermodynamic	s takes the form ΔQ	$Q=\Delta W$, this equation is val	id if the process is		
	(A) Isobaric	(B)	Isochoric	(C) Isothermal	(D) Adiabatic		

ADDIS ABABA CITY EDUCATIONAL BUREAU

8. The diagram 1 below shows the horizontal forces on a 20.0 kg mass. The forces are constant in time. If the mass starts from rest, how far has it travelled in the horizontal direction after 3 second?

9. A light rod has masses attached to each end, as shown in the diagram 2 below. At what distance from mass m_I will the rod is balanced in equilibrium?

- (A) $\frac{L(m_1 + m_2)}{2(m_1 + m_2)}$ (B) $\frac{m_2 L}{m_1 + m_2}$ (C) $\frac{m_1 L}{m_1 + m_2}$ (D) $\frac{L}{2}$
- 10. The period of oscillation of particle undergoing simple harmonic motion is
 - (A) Dependent of amplitude of oscillation
 - (B) Directly proportional to frequency of oscillation
 - (C) Dependent of gravity (g) and spring constant (K) of oscillation
 - (D) Independent of mass (m) and length (l) of oscillating object
- **11.** A pipe, 50cm long is open at one end closed at other. When air is blow across the open end sound is produced at 200Hz. What is the velocity of sound along the pipe?
 - (A) 400 m/se

(B) 800m/se

(C) 300 m/se

- (D)600m/se
- 12. The position of particle moving with simple harmonic motion is given by the expression

X=4cos (ωt- φ), where (amplitude in meter, t=7T/4 is time, ω=2rad/se is angular frequency & φ =3 π /2 is phase constant). Which one is **NOT CORRECT** about the particle's position, velocity, acceleration, and kinetic energy?

- (A) Position and amplitudes are equal
- (C) Acceleration of the particle is positive

(B) Velocity of the particle is zero

- (D) Kinetic energy of the particle is 8kJ
- **13.** In young's double slit experiment, if the slit separation is 0.8mm and the average spacing of the bright fringe observed on screen placed 4m away from the source is 2mm. what is the wave length of the light source?
 - (A) 450nm

(B) 200nm

(C) 600nm

(D)400nm

14	14. Two projectiles are launched from ground level with the same initial speed. The maximum height h ₁					
	reached by projectile 1 is twice the maximum height h_2 reached by projectile 2. If θ_1 and θ_2 denote the					
	respective launch angles, as	measured from the horizontal, these angles satisfy which of the following				
	relationships?					

(A)
$$\cos \theta_1 = \sqrt{2} \cos \theta_2$$

(C)
$$\tan \theta_1 = \sqrt{2} \tan \theta_2$$

(B)
$$\sin \theta_1 = \sqrt{2} \sin \theta_2$$

(D)
$$\sin \theta_1 = 2 \sin \theta_2$$

15. A 10kg box slides horizontally without friction at a speed of 1m/s.at one point, a constant force is applied to the box in the direction of its motion. The box travels 5m with the constant force applied. The force is the then removed, leaving the box with a speed of 2m/s. which of the following gives the magnitude of the applied force?

16. A block with mass m₁ that slides on a frictionless table is attached by a massless string over a massless, frictionless pulley to a hanging ball with mass m₂, as shown in the figure 3 below. The tension in the string must be____

- 17. The driver of a 1000-kg car wants to safely go on an unbanked curve of radius 100 m safely. If the coefficient of friction is $\mu = 0.1$, about how fast can be take the curve without sliding (in m/s)?
 - (A) 3

(B) 10

(C) 31

- (D) 1
- 18. All are inversely proportional with distance [r=d] in electrostatics **EXCEPT** one:-
 - (A) Electric field strength

(C) Work done by test charge

(B) Potential difference (voltage)

- (D) Capacitance between the two plates
- **19.** Two –ve point charges are 2m apart & repeal each other with the force of 40N. When the distance between the charge is doubled, the new force between them is
 - (A) 20N

(B) 40N

(C) 10N

(D) 80N

ADDIS ABABA CITY EDUCATIONAL BUREAU

y.
a
.S
netio
e
ıl
ther
2
8
onal
tal
) ⁻¹⁴ J
t .

27. A 10μF capacitor is di	scharged through $10000~\Omega$	resistance. How long will it	take for the charge across		
the capacitor to fall to	25% of its initial value?				
(A) 7se	(B) 1.4se	(C) 14se	(D)0.7se		
28. Three resistors each ha	ave 100Ω resistance are cor	nnected as shown on fig 4 blo	ow. When maximum		
power that can deliver	to any one of the restores i	s 25watt and current entering	g from junction is 2A,		
what is the current I ar	nd voltage V drops on each	parallel resistor respectively	?		
(A) 1A and 100V	(B) 2A and 300V	(C) 1A and 200V	(D) 2A and 200V		
	A	- ww) B			
		-w- -			
29. An object of mass M is se	t in a vertical circular moti	on. Tension T from the rope	keeps the object in a		
circular path with speed V	7. Where does the rope expe	erience a minimum tension?			
(A) At the bottom of	a circle	(C) At the top of a circle			
(B) When the object	is at half of the circle	(D) When it is at 45 ⁰ is the vertical			
30. Air bags help reduces	injury in automobile accide	ents by:			
(A) Reducing the time	ne of collision.	(C) Reducing the change in momentum			
(B) Increasing the ap	oplied force	(D) Increasing the time that force is applied			
31. Consider a Hollow sphere, disc and solid sphere the entire radius starts from rest and roll down with					
slipping from the top of bottom?	of an inclined plane at the sa	ame time. What is the order i	n which they reach the		
(A) Hollow sphere, di	sc then solid sphere	(C) Disc, Hollow sphere then solid sphere			
(B) Solid sphere, disc	then Hollow sphere	(D) Solid sphere, Hollow sphere then disc			
32. As an ice skater begins	s a spin, her angular speed i	is 5rad/s. After pulling in her	arms, her angular speed		
increases to 7 rad/s. while inertia?	hat is the ratio of the skater	's initial moment of inertia to	her final moment of		
(A) 5:3	(B) 7:5	(C) 5:7	(D)3:5		
33. Two resistors connected	ed in series have an equival	ent resistance of 7Ω . When t	hey are connected in		
parallel, their equivale	nt resistance is $12/7 \Omega$. Wh	at is the resistance of each re	esistor?		
(A) 5.5Ω , 1.5Ω	(B) 4 Ω , 3 Ω	(C) 5 Ω , 2 Ω	(D) 6Ω , 1Ω		

- **34.** Galvanometer may be used as voltmeter by
 - (A) Shunting the Galvanometer with high resistance
 - (B) Connecting low resistance in parallel with the Galvanometer
 - (C) Connecting it to a high resistance in series
 - (D) Connecting it to a low resistance in series
- 35. A Wheatstone bridge circuit is shown on the diagram 5 below and the value of $R_1 = 3\Omega$, $R_2 = 5\Omega$ and $R_3 = 6\Omega$ are given to limit the current in the galvanometer. What is the value of \mathbf{R}_x to balance the bridge?

- (A) 2.5Ω
- (B) 10Ω
- (C) 3.6Ω
- (D) 14Ω
- 36. The necessary and sufficient condition for a rigid body to be in equilibrium is the sum of
 - (A) All torque acting on it is zero
 - (B) All forces acting on it is zero
 - (C) All force should be equal in magnitude
 - (D) All force and the sum of all torque should be zero
- **37.** The buoyant force on a block of wood floating in water
 - (A) Is equal to the weight of a volume of water with the same volume as the wood.
 - (B) Is equal to the weight of the wood.
 - (C) Is greater than the weight of the wood.
 - (D) Cannot be calculated because the block is not completely submerged.
- **38.** Bernoulli's principle explains why
 - (A) A hot air balloon rises

(C) Liquid rises in a drinking straw.

(B) Airplanes fly.

- (D) Dead fish float.
- **39.** When you touch a piece of metal and a piece of wood at the same time and that are placed in the same room, the piece of metal feels much colder than the piece of wood. This happens because of the difference in:
 - (A) Specific heat

(C) Temperature

(B) Thermal conductivity

(D) Density

40	. An electi	ron moving at s	peed of 1.6X	10 ⁷ m/se into	ers a region of u	niform mag	netic field of mag	nitude
	9X10 ⁻³ T	, in a direction	perpendicular	to the field.	The path follow	ved by the el	ectron is circular	. What is
	the radius of circular path?							
	(A)	1cm	(B)	4cm	(C)	3cm	(D)	2cm
41	. What is t	the centripetal a	acceleration of	an electron	charge moving	in a uniform	magnetic field o	f 9nT on
	a circle of radius 2cm, if magnetic field is perpendicular to particle's direction of its motion?							
	(A) 5.12	$2 \times 10^4 \text{ m/se}^2$	(B) 5.12 X	10^{-4}m/se^2	(C) 2.56 X	10^4 m/se^2	(D) 2.56 X 1	$0^{-4} \mathrm{m/se}^2$
42	. A rectan	gular loop of ar	ea 0.4m² is pla	aced in a ma	gnetic field that	t is changing	at a rate of 200T	/se. if
	the normal of the loop makes angle 60^0 with the magnetic field, what is the magnitude of induced							ed
	electrom	otive force?						
	(A) 20V		(B) 80V		(C) 34°	V	(D) 40V	
43.	Long wire	es of 10m in a l	ength carry a c	current of 2A	A & 3A in the sa	ame direction	n. The wires are s	eparated
	by 4cm. v	what is the magi	netic force that	t the wire ex	erted on each of	ther?		
	(A) 200μN repulsive force				(C) 5 00μN repulsive force			
	(B) 300	μN attractive for	orce		(D)4 0	0μN attractiv	ve force	
44	The coor	dinate of the pa	rticle in meter	is given by	$x=48t-4t^3$, when	re t is in seco	ond. At what valu	e of t
	will the p	particle become	momentarily a	at rest?				
	(A) 0se	:	(B) 4se		(C) 2s	e	(D)2√	2 se
45.	. Reactanc	e in the circuit	matches the re	sistance. W	hat is the induct	ance of an L	C circuit that osc	illates at
	120Hz w	hen the capacita	ance is 8µF?					
	(A) 22µ	ιH	(B) 0.2	2H	(C) 2.	19H	(D) 2.1	19μΗ
46	. Which st	atement is corr	ect about pure	e capacitive	circuit?			
	(A) The current lead the voltage by 90°							
	(B) The current is in phase with the voltage by 90°							
	(C) The current lags by 90° at low frequency							
	(D) The current lags behind the voltage by 90°							

- **47.** In LRC series circuit, suppose R=45 Ω , Z=75 Ω , X_C=40 Ω , V_{rms} =210V & ω =200rad/se. which one is **NOT CORRECT** about RLC series circuit?
 - (A) The circuit is predominantly inductive
 - (B) Inductance is 0.5H and Capacitor is 125 μF
 - (C) Root square mean current is 2A
 - (D) Power factor is 0.6 and average power is 353W
- **48.** When the radioactive element ²²⁶Ra decays to ²²²Rn, which one is **NOT CORRECT** about the decay process?
 - (A) An alpha particle is emitted during the decay process
 - (B) The daughter nucleus has two protons more than the parent nucleus
 - (C) The daughter nucleus has two protons less than the parent nucleus.
 - (D) The atomic mass of parent nuclei is more than daughter nuclei by four
- **49.** The activity of radioactive substance is reduces from 4000 Bq to 1000 Bq in 10⁶ se. what is the decay constant?
 - (A) $6.93 \times 10^7 \text{ decay /se}$

(C) $1.386 \times 10^6 \text{ decay/se}$

(B) $6.93 \times 10^{-7} \text{decay/se}$

- (D) $1.386 \times 10^{-6} \text{ decay /se}$
- 50. The half-life of radium 224 is 3.5 days. What percentage fractions of the sample remain after 14 days?
 - (A) 50%

(B) 25%

- (C) 6.25%
- (D) 12.5%