Claims

What is claimed is:

1	1.	A method of providing a checkpoint/restart facility across a plurality
2		of plurality of computer systems, wherein:
3		the plurality of computer systems comprises:
4		a first computer system executing a first program, and
5		a second computer system containing a disk system and
6		executing a second program;
7		the first computer system and the second computer system are
8		heterogeneous computer systems;
9		said method comprising:
10		A) checkpointing a current status of the first program resulting in a
11		first set of checkpoint status information;
12		B) transmitting a first checkpoint request that includes the first set of
13		checkpoint status information from the first program over a first
14		session to the second program;
15		C) checkpointing the second program resulting in a second set of
16		checkpoint status information in response to receiving the first
17		checkpoint request;
18		D) writing the first set of checkpoint status information and the second
19		set of checkpoint status information to a first checkpoint file on
20		the disk system; and
21		E) transmitting a first checkpoint response from the second program
22		over the first session to the first program after the writing in
23		step (D) is complete.

1	2.	The method in claim 1 wherein:
2		the method further comprises:
3		F) checkpointing the first program resulting in a third set of
4		checkpoint status information;
5		G) transmitting a second checkpoint request that includes the third set
6		of checkpoint status information from the first program over the
7		first session to the second program;
8		H) checkpointing the second program resulting in a fourth set of
9		checkpoint status information in response to receiving the first
10		checkpoint request transmitted in step (G);
11		I) writing the third set of checkpoint status information and the fourth
12		set of checkpoint status information to a second checkpoint file
13		on the disk system; and
14		J) transmitting a second checkpoint response from the second
15		program over the first session to the first program after the
16		writing in step (I) is complete.
1	3.	The method in claim 2 which further comprises:
2		J) transmitting a first rollback request from the first program over the
3		first session to the second program;
4		K) reading the third set of checkpoint status information and the
5		fourth set of checkpoint status information from the second
6		checkpoint file in response to receiving the first rollback
7		request transmitted in step (J);
8		L) rolling back the second program utilizing the fourth set of
9		checkpoint status information read in step (K);
10		M)transmitting a first rollback response from the second program
11		over the first session to the first program that includes the third
12		set of checkpoint status information read in step (K); and
13		N) rolling back the first program utilizing the third set of checkpoint
14		status information in response to receiving the first rollback
15		response in step (M).
1	4.	The method in claim 2 wherein:
2		the first checkpoint file and the second checkpoint file are a same file.

1	5.	The method in claim 1 which further comprises:
2		F) transmitting a first rollback request from the first program over the
3		first session to the second program;
4		G) reading the first set of checkpoint status information and the
5		second set of checkpoint status information from the first
6		checkpoint file in response to receiving the first rollback
7		request transmitted in step (F);
8		H) rolling back the second program utilizing the second set of
9		checkpoint status information read in step (G);
10		I) transmitting a first rollback response from the second program
11		over the first session to the first program that includes the first
12		set of checkpoint status information read in step (G);
13		J) rolling back the first program utilizing the first set of checkpoint
14		status information in response to receiving the first rollback
15		response in step (I).
1	6.	The method in claim 1 which further comprises:
2		F) transmitting a second checkpoint request that includes the first set
3		of checkpoint status information from the first program over a
4		second session to a third program executing in a third computer
5		system;
6		G) checkpointing the third program resulting in a fourth set of
7		checkpoint status information in response to receiving the
8		second checkpoint request;
9		H) writing the first set of checkpoint status information and the fourth
10		set of checkpoint status information to a second checkpoint file;
11		and
12		I) transmitting a second checkpoint response from the third program
13		over the second session to the first program after the writing in
14		step (H) is complete.

1	7.	The method in claim 6 which further comprises:
2		J) transmitting a first rollback request from the program over the first
3		session to the second program;
4		K) reading the first set of checkpoint status information and the
5		second set of checkpoint status information from the first
6	•	checkpoint file in response to receiving the first rollback
7		request transmitted in step (J);
8		L) rolling back the second program utilizing the second set of
9		checkpoint status information read in step (K);
10		M)transmitting a first rollback response from the second program
11		over the first session to the first program that includes the first
12		set of checkpoint status information read in step (K); and
13		N) rolling back the first program utilizing the first set of checkpoint
14		status information in response to receiving the first rollback
15		response transmitted in step (M).

1	8.	The method in claim 6 which further comprises:
2		J) transmitting a first rollback request from the program over the first
3		session to the second program;
4		K) reading the first set of checkpoint status information and the
5		second set of checkpoint status information from the first
6	8.1	checkpoint file in response to receiving the first rollback
7		request transmitted in step (J);
8		L) rolling back the second program utilizing the second set of
9		checkpoint status information read in step (K);
10		M)transmitting a first rollback response from the second program
11		over the first session to the first program that includes the first
12		set of checkpoint status information read in step (K);
13		O) transmitting a second rollback request from the first program over
14		the second session to the third program;
15		P) reading the first set of checkpoint status information and the fourth
16		set of checkpoint status information from the second checkpoint
17		file in response to receiving the second rollback request
18		transmitted in step (O);
19		Q) rolling back the third program utilizing the fourth set of checkpoint
20		status information read in step (P);
21		R) transmitting a second rollback response from the third program
22		over the second session to the first program that includes the
23		first set of checkpoint status information read in step (P); and
24		S) rolling back the first program utilizing the first set of checkpoint
25		status information in response to receiving the first rollback
26		response transmitted in step (M) and the second rollback
27		response transmitted in step (R).
1	9.	The method in claim 1 wherein:
2		there are plurality of sessions open between the first program and the
3		second program for accessing a corresponding plurality of files
4		by the second program; and
5		the checkpointing in step (C) flushes all of the plurality of files and
6		includes checkpoint information for all of the plurality of files
7		in the second set of checkpoint information.

27

1	10.	A computer readable Non-Volatile Storage Medium encoded with
2		software for providing a checkpoint/restart facility across a plurality
3		of plurality of computer systems, wherein:
4		the plurality of computer systems comprises:
5		a first computer system executing a first program, and
6		a second computer system containing a disk system and
7		executing a second program;
8		the first computer system and the second computer system are
9		heterogeneous computer systems;
10		said software comprising:
11		A) a set of computer instructions for checkpointing a current status of
12		the first program resulting in a first set of checkpoint status
13		information;
14		B) a set of computer instructions for transmitting a first checkpoint
15		request that includes the first set of checkpoint status
16		information from the first program over a first session to the
17		second program;
18		C) a set of computer instructions for checkpointing the second
19		program resulting in a second set of checkpoint status
20		information in response to receiving the first checkpoint
21		request;
22		D) a set of computer instructions for writing the first set of checkpoint
23		status information and the second set of checkpoint status
24		information to a first checkpoint file on the disk system; and
25		E) a set of computer instructions for transmitting a first checkpoint
26		response from the second program over the first session to the
27		first program after the writing in set (D) is complete.

29

1	11.	A data processing system having software stored in a set of Computer
2		Software Storage Media for providing a checkpoint/restart facility
3		across a plurality of plurality of computer systems, wherein:
4		the data processing system comprises the plurality of computer
5	•	systems;
6		the plurality of computer systems comprises:
7		a first computer system executing a first program, and
8		a second computer system containing a disk system and
9		executing a second program;
10		the first computer system and the second computer system are
11		heterogeneous computer systems;
12		said software comprising:
13		A) a set of computer instructions for checkpointing a current status of
14		the first program resulting in a first set of checkpoint status
15		information;
16		B) a set of computer instructions for transmitting a first checkpoint
17		request that includes the first set of checkpoint status
18		information from the first program over a first session to the
19		second program;
20		C) a set of computer instructions for checkpointing the second
21		program resulting in a second set of checkpoint status
22		information in response to receiving the first checkpoint
23		request;
24		D) a set of computer instructions for writing the first set of checkpoint
25		status information and the second set of checkpoint status
26		information to a first checkpoint file on the disk system; and
27		E) a set of computer instructions for transmitting a first checkpoint
28		response from the second program over the first session to the

first program after the writing in set (D) is complete.

1	12.	The software in claim 11 wherein:
2		the software further comprises:
3		F) a set of computer instructions for checkpointing the first program
4		resulting in a third set of checkpoint status information;
5		G) a set of computer instructions for transmitting a second checkpoint
6		request that includes the third set of checkpoint status
7		information from the first program over the first session to the
8		second program;
9		H) a set of computer instructions for checkpointing the second
10		program resulting in a fourth set of checkpoint status
11		information in response to receiving the first checkpoint request
12		transmitted in set (G);
13		I) a set of computer instructions for writing the third set of
14		checkpoint status information and the fourth set of checkpoint
15		status information to a second checkpoint file on the disk
16		system; and
17		J) a set of computer instructions for transmitting a second checkpoint
18		response from the second program over the first session to the
19		first program after the writing in set (I) is complete.

1	13.	The software in claim 12 which further comprises:
2		J) a set of computer instructions for transmitting a first rollback
3		request from the first program over the first session to the
4		second program;
5		K) a set of computer instructions for reading the third set of
6		checkpoint status information and the fourth set of checkpoint
7		status information from the second checkpoint file in response
8	•	to receiving the first rollback request transmitted in set (J);
9		L) a set of computer instructions for rolling back the second program
10		utilizing the fourth set of checkpoint status information read in
11		set (K);
12		M)a set of computer instructions for transmitting a first rollback
13		response from the second program over the first session to the
14		first program that includes the third set of checkpoint status
15		information read in set (K); and
16		N) a set of computer instructions for rolling back the first program
17		utilizing the third set of checkpoint status information in
18		response to receiving the first rollback response in set (M).
1	14.	The software in claim 12 wherein:
2		the first checkpoint file and the second checkpoint file are a same file

1	15.	The software in claim 11 which further comprises:
2		F) a set of computer instructions for transmitting a first rollback
3		request from the first program over the first session to the
4		second program;
5		G) a set of computer instructions for reading the first set of checkpoint
6		status information and the second set of checkpoint status
7		information from the first checkpoint file in response to
8		receiving the first rollback request transmitted in set (F);
9		H) a set of computer instructions for rolling back the second program
10		utilizing the second set of checkpoint status information read in
11		set (G);
12		I) a set of computer instructions for transmitting a first rollback
13		response from the second program over the first session to the
14		first program that includes the first set of checkpoint status
15		information read in set (G);
16		J) a set of computer instructions for rolling back the first program
17		utilizing the first set of checkpoint status information in
18		response to receiving the first rollback response in set (I).
1	16.	The software in claim 11 which further comprises:
2		F) a set of computer instructions for transmitting a second checkpoint
3		request that includes the first set of checkpoint status
4		information from the first program over a second session to a
5		third program executing in a third computer system;
6		G) a set of computer instructions for checkpointing the third program
7		resulting in a fourth set of checkpoint status information in
8		response to receiving the second checkpoint request;
9		H) a set of computer instructions for writing the first set of checkpoint
10		status information and the fourth set of checkpoint status
11		information to a second checkpoint file; and
12		I) a set of computer instructions for transmitting a second checkpoint
13		response from the third program over the second session to the
14		first program after the writing in set (H) is complete.

1	17.	The goffware in claim 16 which further commisses
1	1 / .	The software in claim 16 which further comprises:
2		J) a set of computer instructions for transmitting a first rollback
3		request from the program over the first session to the second
4		program;
5		K) a set of computer instructions for reading the first set of checkpoint
6		status information and the second set of checkpoint status
7		information from the first checkpoint file in response to
8		receiving the first rollback request transmitted in set (J);
9		L) a set of computer instructions for rolling back the second program
10		utilizing the second set of checkpoint status information read in
11		set (K);
12		M)a set of computer instructions for transmitting a first rollback
13		response from the second program over the first session to the
14		first program that includes the first set of checkpoint status
15		information read in set (K); and
16		N) a set of computer instructions for rolling back the first program
17		utilizing the first set of checkpoint status information in
18		response to receiving the first rollback response transmitted in
19		set (M).

1	18.	The coffyers in claim 16 which further commisses
1	10.	The software in claim 16 which further comprises:
2		J) a set of computer instructions for transmitting a first rollback
3		request from the program over the first session to the second
4		program;
5		K) a set of computer instructions for reading the first set of checkpoint
6		status information and the second set of checkpoint status
7		information from the first checkpoint file in response to
8		receiving the first rollback request transmitted in set (J);
9		L) a set of computer instructions for rolling back the second program
10		utilizing the second set of checkpoint status information read in
11		$set_{\cdot}(K);$
12		M)a set of computer instructions for transmitting a first rollback
13		response from the second program over the first session to the
14		first program that includes the first set of checkpoint status
15		information read in set (K);
16		O) a set of computer instructions for transmitting a second rollback
17		request from the first program over the second session to the
18		third program;
19		P) a set of computer instructions for reading the first set of checkpoint
20		status information and the fourth set of checkpoint status
21		information from the second checkpoint file in response to
22		receiving the second rollback request transmitted in set (O);
23		Q) a set of computer instructions for rolling back the third program
24		utilizing the fourth set of checkpoint status information read in
25		set (P);
26		R) a set of computer instructions for transmitting a second rollback
27		response from the third program over the second session to the
28		first program that includes the first set of checkpoint status
29		information read in set (P); and
30		S) a set of computer instructions for rolling back the first program
31		utilizing the first set of checkpoint status information in
32		response to receiving the first rollback response transmitted in
33		set (M) and the second rollback response transmitted in set (R).

1	19.	The software in claim 11 wherein:
2		there are plurality of sessions open between the first program and the
3		second program for accessing a corresponding plurality of files
4		by the second program; and
5		the checkpointing in set (C) flushes all of the plurality of files and
6		includes checkpoint information for all of the plurality of files
7		in the second set of checkpoint information.
1	20.	A data processing system having software stored in a set of Computer
2		Software Storage Media for providing a checkpoint/restart facility
3		across a plurality of plurality of computer systems, wherein:
4		the data processing system comprises the plurality of computer
5		systems;
6		the plurality of computer systems comprises:
7		a first computer system executing a first program, and
8		a second computer system containing a disk system and
9		executing a second program;
10		the first computer system and the second computer system are
11		heterogeneous computer systems;
12		said software comprising:
13		A) means for checkpointing a current status of the first program
14		resulting in a first set of checkpoint status information;
15		B) means for transmitting a first checkpoint request that includes the
16		first set of checkpoint status information from the first program
17		over a first session to the second program;
18		C) means for checkpointing the second program resulting in a second
19		set of checkpoint status information in response to receiving the
20		first checkpoint request;
21		D) means for writing the first set of checkpoint status information and
22		the second set of checkpoint status information to a first
23		checkpoint file on the disk system; and
24		E) means for transmitting a first checkpoint response from the second
25		program over the first session to the first program after the
26		writing in set (D) is complete.