Étude de cas: Problème d'affectation généralisé (GAP)

Travail écrit à rendre pour le lundi 4 novembre 2024 au plus tard Les soutenances auront lieu le jeudi 7 novembre 2024 à partir de 9h

1 Sujet

On s'intéresse à un problème d'école en optimisation combinatoire : le problème d'affectation généralisé (GAP).

Étant donnés:

- T tâches et M agents
- b_i , la quantité de ressource disponible de l'agent $i \ (i = 1, ..., M)$
- c_{it} , le profit (ou gain) associé à l'affectation de la tâche t à l'agent i (i $1, \ldots, M \text{ et } t = 1, \ldots, T$
- r_{it} , la quantité de ressource de l'agent i consommée par la tâche t ($i=1,\ldots,M$ et t = 1, ..., T)

Le problème d'affectation généralisé consiste à maximiser le profit associé à l'affectation de T tâches à M agents tel que

- 1. chaque tâche est affectée à exactement un agent
- 2. la contrainte de capacité de chaque agent est respectée

Une formulation classique de ce problème est la suivante :

max
$$f(x) = \sum_{i=1}^{M} \sum_{t=1}^{T} c_{it} x_{it}$$

s.c. $\sum_{i=1}^{M} x_{it} = 1$ $t = 1, ..., T$ (1)
 $\sum_{t=1}^{T} r_{it} x_{it} \le b_i$ $i = 1, ..., M$ (2)

$$\sum_{t=1}^{T} r_{it} x_{it} \le b_i \qquad i = 1, ..., M$$
 (2)

$$x_{it} \in \{0, 1\}$$
 $i = 1, ..., M; t = 1, ..., T$ (3)

avec $x_{it} = 1$ si la tâche t est affectée à l'agent i ($x_{it} = 0$ sinon)

Les contraintes (1) garantissent que chaque tâche est affectée à un agent unique.

Les contraintes (2) traduisent les limitations de ressources des agents.

Hypothèses sur les données :

- c_{it} et b_i sont des entiers positifs
- $\{t : r_{it} \le b_i\} \ne \emptyset \ \forall i \in \{1, \dots, M\}$

L'objectif de ce devoir est la résolution approchée du problème d'affectation généralisé par l'intermédiaire d'une métaheuristique.

2 Travail à réaliser

- 1. Déterminer une heuristique pour trouver une solution réalisable du problème d'affectation généralisé. Détailler les différentes étapes de l'algorithme et le tester sur les jeux de données proposés.
- 2. Proposer plusieurs structures de voisinage adaptées au problème d'affectation généralisé. Les illustrer sur un exemple.
- 3. Mettre en oeuvre une méthode de *montée* en utilisant une des structures de voisinage proposées. Tester la méthode de *montée* en la démarrant à partir de la solution trouvée par l'heuristique proposée en 1.
- 4. Mettre en oeuvre une métaheuristique et la tester sur les jeux de données proposés.

3 Description des jeux de données

Les algorithmes doivent au moins être testés sur un ensemble de 16 fichiers de données à récupérer sur le lien suivant :

http://cedric.cnam.fr/~porumbed/meta/

Le format de chaque fichier de données est le suivant:

- Nombre d'instances dans le fichier (P)
- Pour chaque instance p (p=1,...,P) sont listés:

```
nombre d'agents (M), nombre de tâches (T)
```

```
Pour chaque agent i (i = 1,...,M), les gains (ou coûts) par tâche : c_{it} (t = 1,...,T)
```

Pour chaque agent i (i = 1, ..., M), les quantités de ressource consommées par tâche : $r_{it}(t = 1, ..., T)$

Les capacités des agents : b_i (i=1,...,M)

Les 12 premiers fichiers à traiter sont les fichiers gap1.txt,...,gap12.txt. Ils comportent chacun 5 instances. Dans ce premier ensemble de fichiers, le GAP est considéré en MAXIMISATION.

Les valeurs optimales des 5 instances de chaque fichier sont données dans *table 1*. Dans le deuxième ensemble de 4 fichiers (gapa.txt, gapb.txt,gapc.txt,gapd.txt), le GAP est considéré en MINIMISATION.

Les valeurs optimales (ou meilleurs majorants connus) des 6 instances de chaque fichier sont données dans $table\ 2$.

D'autres fichiers de données seront transmis en complément la semaine du 21 octobre.

4 Tableau de résultats

Présenter un tableau récapitulatif des expériences numériques :

- en colonnes, doivent figurer, pour chaque approche heuristique, la valeur d'une meilleure solution trouvée, le temps de résolution et le saut à la valeur optimale (ou meilleure borne connue).
- en lignes, les instances traitées.

gap1	gap2	gap3	gap4
c515-1 336	c520-1 434	c525-1580	c530-1 656
c515-2 327	c520-2 436	c525-2564	c530-2 644
c515-3 339	c520-3 420	c525-3573	c530-3673
c515-4 341	c520-4 419	c525-4570	c530-4 647
c515-5 326	c520-5 428	c525-5564	c530-5 664
gap5	gap6	gap7	gap8
c824-1 563	c832-1 761	c840-1942	c848-1 1133
c824-2 558	c832-2 759	c840-2949	c848-2 1134
c824-3 564	c832-3 758	c840-3968	c848-3 1141
c824-4 568	c832-4 752	c840-4945	c848-4 1117
c824-5 559	c832-5 747	c840-5951	c848-5 1127
gap9	gap10	gap11	gap12
c1030-1 709	c1040-1 958	$c1050-1\ 1139$	c1060-1 1451
c1030-2 717	c1040-2 963	c1050-2 1178	c1060-2 1449
c1030-3 712	c1040-3 960	c1050-3 1195	c1060-3 1433
c1030-4 723	c1040-4 947	c1050-4 1171	c1060-4 1447
c1030-5 706	c1040-5 947	c1050-5 1171	c1060-5 1446

Table 1: Valeurs optimales des instances gap1.txt à gap12.txt

gapa	gapb	gapc	gapd
a5-100 1698	b5-100 1843	c5-100 1931	d5-100 6353
a10-100 1360	b10-100 1407	c10-100 1402	d10-100 6347
a20-100 1158	b20-100 1166	c20-100 1243	d20-100 6185
a5-200 3235	b5-200 3552	c5-200 3456	d5-100 12742
a10-200 2623	b10-200 2827	c10-200 2806	d10-200 12430
a20-200 2339	b20-200 2339	c20-200 2391	d20-200 12241*

Table 2: Valeurs optimales ou majorants (suivis de *) pour les instances gapa.txt,gapb.txt,gapc.txt,gapd.txt à traiter

5 Travail à rendre

- Un rapport, dans lequel vous devrez :
 - décrire les heuristiques et métaheuristiques proposées ainsi que les algorithmes associés
 - détailler les voisinages et paramétrages choisis,
 - analyser les résultats numériques que vous aurez obtenus sur la batterie d'instances proposée.
- $\bullet\,$ Une archive du code comprenant un readme.txt

Le rapport sous format .pdf et l'archive associée au travail sont à envoyer aux adresses suivantes agnes.plateaualfandari@lecnam.net et daniel.porumbel@cnam.fr au plus tard le lundi 04/11/2024

6 RECOMMANDATIONS

• Ce travail est à réaliser en binôme.

- Le code source doit être bien commenté.
- $\bullet\,$ Le codage des algorithmes peut être effectué dans le langage de votre choix.

7 Soutenances

La présentation orale aura lieu le jeudi 07/11/2024 à partir de 9h.