Introduction to Machine Learning Introduction to Linear Classifiers

Andres Mendez-Vazquez

February 11, 2019

Outline

- Introduction
 - Introduction
 - The Simplest Functions
 - Splitting the Space
 - Defining the Decision Surface
 - Properties of the Hyperplane $\boldsymbol{w}^T\boldsymbol{x} + w_0$
 - Augmenting the Vector
- Developing a Solution
 - Least Squared Error Procedure
 - The Geometry of a Two-Category Linearly-Separable Case
 - The Error Idea
 - The Final Error Equation
 - Geometric Interpretation
 - Issues with Least Squares!!!
 - Problem with Outliers
 - Problem with High Number of Dimensions

Outline

- Introduction
 - Introduction
 - The Simplest Functions
 - Splitting the Space
 - Defining the Decision Surface
 - Properties of the Hyperplane $w^T x + w_0$
 - Augmenting the Vector
- Developing a Solution
 - Least Squared Error Procedure
 - The Geometry of a Two-Category Linearly-Separable Case
 - The Error Idea
 - The Final Error Equation
 - Geometric Interpretation
 - Issues with Least Squares!!!
 - Problem with Outliers
 - Problem with High Number of Dimensions

Many Times

Thus

We can adjust a line/hyperplane to be able to forecast prices

Thus, Our Objective

To find such hyperplane

To do forecasting on the prices of a house given its surface!!!

Basically, the process defined in Machine Learning!!!

Thus, Our Objective

To find such hyperplane

To do forecasting on the prices of a house given its surface!!!

Here, where "Learning" Machine Learning style comes around

Basically, the process defined in Machine Learning!!!

Then, in Supervised Training

Outline

- Introduction
 - Introduction
 - The Simplest Functions
 - Splitting the Space
 - Defining the Decision Surface
 - lacktriangle Properties of the Hyperplane $oldsymbol{w}^T x + w_0$
 - Augmenting the Vector
- Developing a Solution
 - Least Squared Error Procedure
 - The Geometry of a Two-Category Linearly-Separable Case
 - The Error Idea
 - The Final Error Equation
 - Geometric Interpretation
 - Issues with Least Squares!!!
 - Problem with Outliers
 - Problem with High Number of Dimensions

What is it?

First than anything, we have a parametric model!!!

Here, we have an hyperplane as a model:

$$g(\boldsymbol{x}) = \boldsymbol{w}^T \boldsymbol{x} + w_0 \tag{1}$$

Note: $\boldsymbol{w}^T\boldsymbol{x}$ is also know as dot product

$$g(x) = (w_1, w_2) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + w_0 = w_1 x_1 + w_2$$

$$+w_0 = w_1 x_1 + w_2 x_2 + w_0$$

What is it?

First than anything, we have a parametric model!!!

Here, we have an hyperplane as a model:

$$g(\boldsymbol{x}) = \boldsymbol{w}^T \boldsymbol{x} + w_0 \tag{1}$$

Note: $oldsymbol{w}^T oldsymbol{x}$ is also know as dot product

In the case of \mathbb{R}^2

We have:

$$g(\mathbf{x}) = (w_1, w_2) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + w_0 = w_1 x_1 + w_2 x_2 + w_0$$
 (2)

Example

Outline

- Introduction
 - Introduction
 - The Simplest Functions
 - Splitting the Space
 - Defining the Decision Surface
 - lacktriangle Properties of the Hyperplane $oldsymbol{w}^T x + w_0$
 - Augmenting the Vector
- Developing a Solution
 - Least Squared Error Procedure
 - The Geometry of a Two-Category Linearly-Separable Case
 - The Error Idea
 - The Final Error Equation
 - Geometric Interpretation
 - Issues with Least Squares!!!
 - Problem with Outliers
 - Problem with High Number of Dimensions

Splitting The Space \mathbb{R}^2

Splitting the Space?

For example, assume the following vector ${m w}$ and constant w_0

$$\boldsymbol{w} = (-1,2)^T$$
 and $w_0 = 0$

Splitting the Space?

For example, assume the following vector ${m w}$ and constant w_0

$$\boldsymbol{w} = (-1,2)^T$$
 and $w_0 = 0$

Then, we have

The following results

$$g\left(\begin{pmatrix} 1\\2 \end{pmatrix}\right) = (-1,2)\begin{pmatrix} 1\\2 \end{pmatrix} = -1 \times 1 + 2 \times 2 = 3$$
$$g\left(\begin{pmatrix} 3\\1 \end{pmatrix}\right) = (-1,2)\begin{pmatrix} 3\\1 \end{pmatrix} = -1 \times 3 + 2 \times 1 = -1$$

YES!!! We have a positive side and a negative side!!!

Outline

- Introduction
 - Introduction
 - The Simplest Functions
 - Splitting the Space
 - Defining the Decision Surface
 - Properties of the Hyperplane $w^T x + w_0$
 - Augmenting the Vector
- Developing a Solution
 - Least Squared Error Procedure
 - The Geometry of a Two-Category Linearly-Separable Case
 - The Error Idea
 - The Final Error Equation
 - Geometric Interpretation
 - Issues with Least Squares!!!
 - Problem with Outliers
 - Problem with High Number of Dimensions

The Decision Surface

The equation g(x) = 0 defines a decision surface

Separating the elements in classes, ω_1 and ω_2 .

When $g\left(x\right)$ is linear the decision surface is an hyperplan

Now assume $oldsymbol{x}_1$ and $oldsymbol{x}_2$ are both on the decision surface

$$\boldsymbol{w}^T \boldsymbol{x}_1 + w_0 = 0$$

$$\boldsymbol{w}^T\boldsymbol{x}_2 + w_0 = 0$$

$$\boldsymbol{w}^T \boldsymbol{x}_1 + w_0 = \boldsymbol{w}^T \boldsymbol{x}_0 + w_0$$

(3)

The Decision Surface

The equation q(x) = 0 defines a decision surface

Separating the elements in classes, ω_1 and ω_2 .

When q(x) is linear the decision surface is an hyperplane

Now assume x_1 and x_2 are both on the decision surface

$$\boldsymbol{w}^T \boldsymbol{x}_1 + w_0 = 0$$

$$\boldsymbol{w}^T \boldsymbol{x}_2 + w_0 = 0$$

The Decision Surface

The equation g(x) = 0 defines a decision surface

Separating the elements in classes, ω_1 and ω_2 .

When g(x) is linear the decision surface is an hyperplane

Now assume $oldsymbol{x}_1$ and $oldsymbol{x}_2$ are both on the decision surface

$$\boldsymbol{w}^T \boldsymbol{x}_1 + w_0 = 0$$
$$\boldsymbol{w}^T \boldsymbol{x}_2 + w_0 = 0$$

Thus

$$\boldsymbol{w}^T \boldsymbol{x}_1 + w_0 = \boldsymbol{w}^T \boldsymbol{x}_2 + w_0 \tag{3}$$

Defining a Decision Surface

Then

$$\boldsymbol{w}^T \left(\boldsymbol{x}_1 - \boldsymbol{x}_2 \right) = 0$$

Therefore

$m{x}_1 - m{x}_2$ lives in the hyperplane i.e. it is perpendicular to $m{w}^T$

- Remark: any vector in the hyperplane is a linear combination of elements in a basis
- ullet Therefore any vector in the plane is perpendicular to $oldsymbol{w}^T$

18 / 5

Therefore

Outline

- Introduction
 - Introduction
 - The Simplest Functions
 - Splitting the Space
 - Defining the Decision Surface
 - Properties of the Hyperplane ${\boldsymbol w}^T{\boldsymbol x} + w_0$
 - Augmenting the Vector
- Developing a Solution
 - Least Squared Error Procedure
 - The Geometry of a Two-Category Linearly-Separable Case
 - The Error Idea
 - The Final Error Equation
 - Geometric Interpretation
 - Issues with Least Squares!!!
 - Problem with Outliers
 - Problem with High Number of Dimensions

Some Properties of the Hyperplane

We can say the following

ullet Any $oldsymbol{x} \in \mathcal{R}_1$ is on the positive side of H.

We can say the following

- ullet Any $oldsymbol{x} \in \mathcal{R}_1$ is on the positive side of H.
- ullet Any $oldsymbol{x} \in \mathcal{R}_2$ is on the negative side of H.

We can say the following

- ullet Any $oldsymbol{x} \in \mathcal{R}_1$ is on the positive side of H.
- Any $x \in \mathcal{R}_2$ is on the negative side of H.

In addition, $g\left(\boldsymbol{x}\right)$ can give us a way to obtain the distance from \boldsymbol{x} to the hyperplane H

First, we express any $oldsymbol{x}$ as follows

$$x = x_p + r \frac{w}{\|w\|}$$

Positive, if x is in the positive side
 Negative, if x is in the negative side

We can say the following

- Any $x \in \mathcal{R}_1$ is on the positive side of H.
- Any $x \in \mathcal{R}_2$ is on the negative side of H.

In addition, $g\left(\boldsymbol{x}\right)$ can give us a way to obtain the distance from \boldsymbol{x} to the hyperplane H

First, we express any $oldsymbol{x}$ as follows

$$x = x_p + r \frac{w}{\|w\|}$$

Where

ullet x_p is the normal projection of x onto H.

We can say the following

- Any $x \in \mathcal{R}_1$ is on the positive side of H.
- Any $x \in \mathcal{R}_2$ is on the negative side of H.

In addition, $g\left(\boldsymbol{x}\right)$ can give us a way to obtain the distance from \boldsymbol{x} to the hyperplane H

First, we express any $oldsymbol{x}$ as follows

$$x = x_p + r \frac{w}{\|w\|}$$

Where

- ullet x_p is the normal projection of x onto H.
- r is the desired distance

We can say the following

- Any $x \in \mathcal{R}_1$ is on the positive side of H.
- Any $x \in \mathcal{R}_2$ is on the negative side of H.

In addition, $g\left(\boldsymbol{x}\right)$ can give us a way to obtain the distance from \boldsymbol{x} to the hyperplane H

First, we express any $oldsymbol{x}$ as follows

$$x = x_p + r \frac{w}{\|w\|}$$

Where

- ullet x_p is the normal projection of x onto H.
- r is the desired distance
 - Positive, if x is in the positive side

We can say the following

- Any $x \in \mathcal{R}_1$ is on the positive side of H.
- ullet Any $oldsymbol{x} \in \mathcal{R}_2$ is on the negative side of H.

In addition, $g\left({{m{x}}} \right)$ can give us a way to obtain the distance from ${m{x}}$ to the hyperplane H

First, we express any $oldsymbol{x}$ as follows

$$\boldsymbol{x} = \boldsymbol{x}_p + r \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}$$

Where

- x_p is the normal projection of x onto H.
- r is the desired distance
 - Positive, if x is in the positive side
 - Negative, if x is in the negative side

We have something like this

Now

Since $g\left(\boldsymbol{x_p}\right) = 0$

We have that

$$g(\mathbf{x}) = g\left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right)$$

Now

Since $g(\boldsymbol{x}_p) = 0$

We have that

$$g(\mathbf{x}) = g\left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right)$$
$$= \mathbf{w}^T \left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right) + w_0$$

Since $g\left(\boldsymbol{x_p}\right)=0$

We have that

$$g(\mathbf{x}) = g\left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right)$$
$$= \mathbf{w}^T \left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right) + w_0$$
$$= \mathbf{w}^T \mathbf{x}_p + w_0 + r\frac{\mathbf{w}^T \mathbf{w}}{\|\mathbf{w}\|}$$

 $r = rac{g\left(oldsymbol{x}
ight)}{\left\|oldsymbol{w}
ight\|}$

Since $g\left(\boldsymbol{x_p}\right)=0$

We have that

$$g(\mathbf{x}) = g\left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right)$$

$$= \mathbf{w}^T \left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right) + w_0$$

$$= \mathbf{w}^T \mathbf{x}_p + w_0 + r\frac{\mathbf{w}^T \mathbf{w}}{\|\mathbf{w}\|}$$

$$= g(\mathbf{x}_p) + r\frac{\|\mathbf{w}\|^2}{\|\mathbf{w}\|}$$

Since $g\left(\boldsymbol{x_p}\right) = 0$

We have that

$$g(\mathbf{x}) = g\left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right)$$

$$= \mathbf{w}^T \left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right) + w_0$$

$$= \mathbf{w}^T \mathbf{x}_p + w_0 + r\frac{\mathbf{w}^T \mathbf{w}}{\|\mathbf{w}\|}$$

$$= g(\mathbf{x}_p) + r\frac{\|\mathbf{w}\|^2}{\|\mathbf{w}\|}$$

$$= r\|\mathbf{w}\|$$

Then, we have

Since $g(\boldsymbol{x_p}) = 0$

We have that

$$g(\mathbf{x}) = g\left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right)$$

$$= \mathbf{w}^T \left(\mathbf{x}_p + r\frac{\mathbf{w}}{\|\mathbf{w}\|}\right) + w_0$$

$$= \mathbf{w}^T \mathbf{x}_p + w_0 + r\frac{\mathbf{w}^T \mathbf{w}}{\|\mathbf{w}\|}$$

$$= g(\mathbf{x}_p) + r\frac{\|\mathbf{w}\|^2}{\|\mathbf{w}\|}$$

$$= r\|\mathbf{w}\|$$

Then, we have

$$r = \frac{g\left(\boldsymbol{x}\right)}{\|\boldsymbol{v}\|}$$

(5)

The distance from the origin to H

$$r = \frac{g\left(\mathbf{0}\right)}{\|\mathbf{w}\|} = \frac{\mathbf{w}^{T}\left(\mathbf{0}\right) + w_{0}}{\|\mathbf{w}\|} = \frac{w_{0}}{\|\mathbf{w}\|}$$
(6)

The distance from the origin to H

$$r = \frac{g\left(\mathbf{0}\right)}{\|\mathbf{w}\|} = \frac{\mathbf{w}^{T}\left(\mathbf{0}\right) + w_{0}}{\|\mathbf{w}\|} = \frac{w_{0}}{\|\mathbf{w}\|}$$
(6)

- If $w_0 > 0$, the origin is on the positive side of H.
- If $w_0 < 0$ the origin is on the negative side of
- ullet If $w_0=0$, the hyperplane has the homogeneous form $oldsymbol{w}^Toldsymbol{x}$ and
- hyperplane passes through the origin

The distance from the origin to H

$$r = \frac{g\left(\mathbf{0}\right)}{\|\mathbf{w}\|} = \frac{\mathbf{w}^{T}\left(\mathbf{0}\right) + w_{0}}{\|\mathbf{w}\|} = \frac{w_{0}}{\|\mathbf{w}\|}$$
(6)

- If $w_0 > 0$, the origin is on the positive side of H.
- If $w_0 < 0$, the origin is on the negative side of H.

The distance from the origin to H

$$r = \frac{g\left(\mathbf{0}\right)}{\|\boldsymbol{w}\|} = \frac{\boldsymbol{w}^{T}\left(\mathbf{0}\right) + w_{0}}{\|\boldsymbol{w}\|} = \frac{w_{0}}{\|\boldsymbol{w}\|}$$
(6)

- If $w_0 > 0$, the origin is on the positive side of H.
- If $w_0 < 0$, the origin is on the negative side of H.
- If $w_0 = 0$, the hyperplane has the homogeneous form $w^T x$ and hyperplane passes through the origin.

Outline

- Introduction
 - Introduction
 - The Simplest Functions
 - Splitting the Space
 - Defining the Decision Surface
 - lacktriangle Properties of the Hyperplane $oldsymbol{w}^T x + w_0$
 - Augmenting the Vector
- Developing a Solution
 - Least Squared Error Procedure
 - The Geometry of a Two-Category Linearly-Separable Case
 - The Error Idea
 - The Final Error Equation
 - Geometric Interpretation
 - Issues with Least Squares!!!
 - Problem with Outliers
 - Problem with High Number of Dimensions

We want to solve the independence of $\ensuremath{w_0}$

We would like w_0 as part of the dot product by making $x_0=1\,$

$$g\left(\boldsymbol{x}\right) = w_0 \times 1 + \sum_{i=1}^{a} w_i x_i =$$

We would like w_0 as part of the dot product by making $x_0=1\,$

$$g(\mathbf{x}) = w_0 \times 1 + \sum_{i=1}^{d} w_i x_i = w_0 \times x_0 + \sum_{i=1}^{d} w_i x_$$

We would like w_0 as part of the dot product by making $x_0=1$

$$g(\mathbf{x}) = w_0 \times 1 + \sum_{i=1}^{d} w_i x_i = w_0 \times x_0 + \sum_{i=1}^{d} w_i x_i = \sum_{i=0}^{d} w_i x_i$$
 (7)

By making

We would like w_0 as part of the dot product by making $x_0=1$

$$g(\mathbf{x}) = w_0 \times 1 + \sum_{i=1}^{d} w_i x_i = w_0 \times x_0 + \sum_{i=1}^{d} w_i x_i = \sum_{i=0}^{d} w_i x_i$$
 (7)

By making

$$m{x}_{aug} = \left(egin{array}{c} 1 \ x_1 \ dots \ x_d \end{array}
ight) = \left(egin{array}{c} 1 \ m{x} \end{array}
ight)$$

Where

We would like w_0 as part of the dot product by making $x_0=1$

$$g(\mathbf{x}) = w_0 \times 1 + \sum_{i=1}^{d} w_i x_i = w_0 \times x_0 + \sum_{i=1}^{d} w_i x_i = \sum_{i=0}^{d} w_i x_i$$
 (7)

By making

$$m{x}_{aug} = \left(egin{array}{c} 1 \ x_1 \ dots \ x_d \end{array}
ight) = \left(egin{array}{c} 1 \ m{x} \end{array}
ight)$$

Where

 x_{auq} is called an augmented feature vector.

In a similar way

We have the augmented weight vector

$$m{w}_{aug} = \left(egin{array}{c} w_0 \ w_1 \ dots \ w_d \end{array}
ight) = \left(egin{array}{c} w_0 \ m{w} \end{array}
ight)$$

In a similar way

We have the augmented weight vector

$$m{w}_{aug} = \left(egin{array}{c} w_0 \ w_1 \ dots \ w_d \end{array}
ight) = \left(egin{array}{c} w_0 \ m{w} \end{array}
ight)$$

Remarks

ullet The addition of a constant component to x preserves all the distance relationship between samples.

In a similar way

We have the augmented weight vector

$$m{w}_{aug} = \left(egin{array}{c} w_0 \ w_1 \ dots \ w_d \end{array}
ight) = \left(egin{array}{c} w_0 \ m{w} \end{array}
ight)$$

- ullet The addition of a constant component to x preserves all the distance relationship between samples.
- The resulting x_{aug} vectors, all lie in a d-dimensional subspace which is the x-space itself.

Outline

- - Introduction
 - The Simplest Functions
 - Splitting the Space
 - Defining the Decision Surface
 - Properties of the Hyperplane $w^T x + w_0$
 - Augmenting the Vector
- Developing a Solution
 - Least Squared Error Procedure
 - The Geometry of a Two-Category Linearly-Separable Case
 - The Error Idea

 - Geometric Interpretation
 - Issues with Least Squares!!!
 - Problem with Outliers

 - Problem with High Number of Dimensions

Outline

- - Introduction
 - The Simplest Functions
 - Splitting the Space
 - Defining the Decision Surface
 - lacktriangle Properties of the Hyperplane w^Tx+w_0
 - Augmenting the Vector
- Developing a Solution
 - Least Squared Error Procedure
 - The Geometry of a Two-Category Linearly-Separable Case
 - The Error Idea

 - Geometric Interpretation
 - Issues with Least Squares!!!

 - Problem with Outliers
 - Problem with High Number of Dimensions

Suppose, we have

n samples $m{x}_1, m{x}_2, ..., m{x}_n$ some labeled ω_1 and some labeled $\omega_2.$

Suppose, we have

n samples $x_1, x_2, ..., x_n$ some labeled ω_1 and some labeled ω_2 .

We want a vector weight $oldsymbol{w}$ such that

 \bullet $\boldsymbol{w}^T \boldsymbol{x}_i > 0$, if $\boldsymbol{x}_i \in \omega_1$.

Suppose, we have

n samples $x_1, x_2, ..., x_n$ some labeled ω_1 and some labeled ω_2 .

We want a vector weight w such that

- $\boldsymbol{w}^T \boldsymbol{x}_i > 0$, if $\boldsymbol{x}_i \in \omega_1$.
- $\boldsymbol{w}^T \boldsymbol{x}_i < 0$, if $\boldsymbol{x}_i \in \omega_2$.

Suppose, we have

n samples $x_1, x_2, ..., x_n$ some labeled ω_1 and some labeled ω_2 .

We want a vector weight $oldsymbol{w}$ such that

- $\boldsymbol{w}^T \boldsymbol{x}_i > 0$, if $\boldsymbol{x}_i \in \omega_1$.
- $\boldsymbol{w}^T \boldsymbol{x}_i < 0$, if $\boldsymbol{x}_i \in \omega_2$.

The name of this weight vector

It is called a separating vector or solution vector.

Imagine that your problem has two classes ω_1 and ω_2 in \mathbb{R}^2

- They are linearly separable!!!
- You require to label them.

Imagine that your problem has two classes ω_1 and ω_2 in \mathbb{R}^2

- They are linearly separable!!!
- 2 You require to label them.

Which is the problem?

Imagine that your problem has two classes ω_1 and ω_2 in \mathbb{R}^2

- They are linearly separable!!!
- You require to label them.

We have a problem!!!

Which is the problem?

Imagine that your problem has two classes ω_1 and ω_2 in \mathbb{R}^2

- They are linearly separable!!!
- You require to label them.

We have a problem!!!

Which is the problem?

We do not know the hyperplane!!!

Thus, what distance each point has to the hyperplane?

Label the Classes

- \bullet $\omega_1 \Longrightarrow +1$
- $\bullet \ \omega_2 \Longrightarrow -1$

Label the Classes

- $\bullet \ \omega_1 \Longrightarrow +1$
- $\bullet \ \omega_2 \Longrightarrow -1$

We produce the following labels

- \bullet if $x \in \omega_1$ then $y_{ideal} = g_{ideal}(x) = +1$.
- Remark: We have a problem with this labels!!!

Label the Classes

- $\bullet \ \omega_1 \Longrightarrow +1$
- $\bullet \ \omega_2 \Longrightarrow -1$

We produce the following labels

- **1** if $x \in \omega_1$ then $y_{ideal} = g_{ideal}(x) = +1$.
- \mathbf{Q} if $\mathbf{x} \in \omega_2$ then $y_{ideal} = g_{ideal}(\mathbf{x}) = -1$.

Remark: We have a problem with this labels!!!!

Label the Classes

- $\bullet \ \omega_1 \Longrightarrow +1$
- \bullet $\omega_2 \Longrightarrow -1$

We produce the following labels

- $\mathbf{2}$ if $\mathbf{x} \in \omega_2$ then $y_{ideal} = g_{ideal}(\mathbf{x}) = -1$.

Remark: We have a problem with this labels!!!

Outline

- Introduction
 - Introduction
 - The Simplest Functions
 - Splitting the Space
 - Defining the Decision Surface
 - Properties of the Hyperplane $w^T x + w_0$
 - Augmenting the Vector
- Developing a Solution
 - Least Squared Error Procedure
 - The Geometry of a Two-Category Linearly-Separable Case
 - The Error Idea
 - The Final Error Equation
 - Geometric Interpretation
 - Issues with Least Squares!!!
 - Problem with Outliers
 - Problem with High Number of Dimensions

Now, What?

Assume true function f is given by

$$y_{noise} = g_{noise}(\boldsymbol{x}) = \boldsymbol{w}^T \boldsymbol{x} + w_0 + e \tag{8}$$

It has a $e \sim N(\mu, \sigma^2)$

Thus we can do the follo

$$y_{noise} = g_{noise}\left(oldsymbol{x}
ight) = g_{ideal}\left(oldsymbol{x}
ight) + e$$

Now, What?

Assume true function f is given by

$$y_{noise} = g_{noise}(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0 + e$$
 (8)

Where the e

It has a $e \sim N(\mu, \sigma^2)$

$$q_{noise} = q_{noise}(\mathbf{x}) = q_{ideal}(\mathbf{x}) + e$$

(0)

Now, What?

Assume true function f is given by

$$y_{noise} = g_{noise}(\boldsymbol{x}) = \boldsymbol{w}^T \boldsymbol{x} + w_0 + e$$
 (8)

Where the e

It has a $e \sim N(\mu, \sigma^2)$

Thus, we can do the following

$$y_{noise} = g_{noise}(\boldsymbol{x}) = g_{ideal}(\boldsymbol{x}) + e$$
 (9)

Thus, we have

$$e = y_{noise} - g_{ideal}(\boldsymbol{x}) \tag{10}$$

Graphically

Thus, we have

$$e = y_{noise} - g_{ideal}(\boldsymbol{x}) \tag{10}$$

A TRICK... Quite a good one!!! Instead of using y_{noise}

$$e = y_{noise} - g_{ideal}(\boldsymbol{x}) \tag{11}$$

$$e = y_{ideal} - g_{ideal}(x) \tag{12}$$

How the geometry will solve the problem with using these labels.

A TRICK... Quite a good one!!! Instead of using y_{noise}

$$e = y_{noise} - g_{ideal}(\mathbf{x}) \tag{11}$$

We use y_{ideal}

$$e = y_{ideal} - g_{ideal}(\mathbf{x}) \tag{12}$$

How the geometry will solve the problem with using these labels.

A TRICK... Quite a good one!!! Instead of using y_{noise}

$$e = y_{noise} - g_{ideal}(\boldsymbol{x}) \tag{11}$$

We use $\overline{y_{ideal}}$

$$e = y_{ideal} - g_{ideal}(\boldsymbol{x}) \tag{12}$$

We will see

How the geometry will solve the problem with using these labels.

Outline

- Introduction
 - Introduction
 - The Simplest Functions
 - Splitting the Space
 - Defining the Decision Surface
 - Properties of the Hyperplane $w^T x + w_0$
 - Augmenting the Vector
- Developing a Solution
 - Least Squared Error Procedure
 - The Geometry of a Two-Category Linearly-Separable Case
 - The Error Idea
 - The Final Error Equation
 - Geometric Interpretation
 - Issues with Least Squares!!!
 - Problem with Outliers
 - Problem with High Number of Dimensions

Here, we have multiple errors

Sum Over All the Errors

We can do the following

$$J(\mathbf{w}) = \sum_{i=1}^{N} e_i^2 = \sum_{i=1}^{N} (y_i - g_{ideal}(\mathbf{x}_i))^2$$
(13)

Remark: This is know as the Least Squared Error cost function

Sum Over All the Errors

We can do the following

$$J(\boldsymbol{w}) = \sum_{i=1}^{N} e_i^2 = \sum_{i=1}^{N} (y_i - g_{ideal}(\boldsymbol{x}_i))^2$$
(13)

Remark: This is know as the Least Squared Error cost function

Generalizing

• The dimensionality of each sample (data point) is d.

Sum Over All the Errors

We can do the following

$$J(\boldsymbol{w}) = \sum_{i=1}^{N} e_i^2 = \sum_{i=1}^{N} (y_i - g_{ideal}(\boldsymbol{x}_i))^2$$
(13)

Remark: This is know as the Least Squared Error cost function

Generalizing

- ullet The dimensionality of each sample (data point) is d.
- You can extend each vector sample to be $x^T = (1, x')$.

We can use a trick

The following function

$$g_{ideal}\left(oldsymbol{x}
ight) = \left(egin{array}{cccc} 1 & x_1 & x_2 & ... & x_d \end{array}
ight) \left(egin{array}{c} w_0 \ w_2 \ w_3 \ dots \ w_d \end{array}
ight) = oldsymbol{x}^Toldsymbol{w}$$

$$J(\boldsymbol{w}) = \sum_{i=1}^{N} (y_i - g_{ideal}(\boldsymbol{x}_i))^2 = \sum_{i=1}^{N} (y_i - \boldsymbol{x}_i^T \boldsymbol{w})^2$$
(14)

We can use a trick

The following function

$$g_{ideal}\left(oldsymbol{x}
ight) = \left(egin{array}{cccc} 1 & x_1 & x_2 & ... & x_d \end{array}
ight) \left(egin{array}{c} w_0 \ w_2 \ w_3 \ dots \ w_d \end{array}
ight) = oldsymbol{x}^Toldsymbol{w}$$

We can rewrite the error equation as

$$J(\boldsymbol{w}) = \sum_{i=1}^{N} (y_i - g_{ideal}(\boldsymbol{x}_i))^2 = \sum_{i=1}^{N} (y_i - \boldsymbol{x}_i^T \boldsymbol{w})^2$$
(14)

Furthermore

Then stacking all the possible estimations into the product Data Matrix and weight vector

Note about other representations

We could have
$$\boldsymbol{x}^T = (x_1, x_2, ..., x_d, 1)$$
 thus
$$\boldsymbol{X} = \begin{pmatrix} (x_1)_1 & \cdots & (x_1)_j & \cdots & (x_1)_d & 1 \\ & & \vdots & & \vdots & \vdots \\ (x_i)_1 & & (x_i)_j & & (x_i)_d & 1 \\ & & \vdots & & \vdots & \vdots \\ (x_N)_1 & \cdots & (x_N)_j & \cdots & (x_N)_d & 1 \end{pmatrix}$$
 (15)

Then, we have the following trick with $oldsymbol{X}$

With the Data Matrix
$$\boldsymbol{X} \boldsymbol{w} = \begin{pmatrix} \boldsymbol{x}_1^T \boldsymbol{w} \\ \boldsymbol{x}_2^T \boldsymbol{w} \\ \boldsymbol{x}_3^T \boldsymbol{w} \\ \vdots \\ \boldsymbol{x}_N^T \boldsymbol{w} \end{pmatrix}$$
 (16)

Therefore

We have that

$$egin{pmatrix} y_1 \ y_2 \ y_3 \ dots \ y_4 \end{pmatrix} = egin{pmatrix} oldsymbol{x}_1^T oldsymbol{w} \ oldsymbol{x}_2^T oldsymbol{w} \ oldsymbol{x}_3^T oldsymbol{w} \ dots \ oldsymbol{x}_N^T oldsymbol{w} \end{pmatrix} \equiv egin{pmatrix} y_1 - oldsymbol{x}_1^T oldsymbol{w} \ y_2 - oldsymbol{x}_2^T oldsymbol{w} \ y_3 - oldsymbol{x}_3^T oldsymbol{w} \ dots \ y_4 - oldsymbol{x}_N^T oldsymbol{w} \end{pmatrix}$$

Therefore

We have that

$$\left(egin{array}{c} y_1 \ y_2 \ y_3 \ dots \ y_4 \end{array}
ight) = \left(egin{array}{c} oldsymbol{x}_1^Toldsymbol{w} \ oldsymbol{x}_2^Toldsymbol{w} \ oldsymbol{x}_3^Toldsymbol{w} \ dots \ oldsymbol{x}_N^Toldsymbol{w} \end{array}
ight) = \left(egin{array}{c} y_1 - oldsymbol{x}_1^Toldsymbol{w} \ y_2 - oldsymbol{x}_2^Toldsymbol{w} \ y_3 - oldsymbol{x}_3^Toldsymbol{w} \ dots \ y_4 - oldsymbol{x}_N^Toldsymbol{w} \end{array}
ight)$$

Then, we have the following equality

$$\left(\begin{array}{cccc} y_1 - \boldsymbol{x}_1^T \boldsymbol{w} & y_2 - \boldsymbol{x}_2^T \boldsymbol{w} & y_3 - \boldsymbol{x}_3^T \boldsymbol{w} & \cdots & y_4 - \boldsymbol{x}_N^T \boldsymbol{w} \end{array} \right) \left(\begin{array}{c} y_1 - \boldsymbol{x}_1^T \boldsymbol{w} \\ y_2 - \boldsymbol{x}_2^T \boldsymbol{w} \\ y_3 - \boldsymbol{x}_3^T \boldsymbol{w} \\ \vdots \\ y_4 - \boldsymbol{x}_N^T \boldsymbol{w} \end{array} \right) = \sum_{i=1}^N \left(y_i - \boldsymbol{x}_i^T \boldsymbol{w} \right)^2$$

The following equality

$$\sum_{i=1}^{N} (y_i - \boldsymbol{x}_i^T \boldsymbol{w})^2 = (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{w})^T (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{w}) = \|\boldsymbol{y} - \boldsymbol{X} \boldsymbol{w}\|_2^2$$
(17)

The Final Discriminant Function

Very Simple!!!

$$g(\boldsymbol{x}) = \boldsymbol{x}^T \boldsymbol{w} = \boldsymbol{x}^T \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \boldsymbol{y}$$
 (18)

Definition

Suppose that $X \in \mathbb{R}^{m \times n}$ and $rank\left(X\right) = m.$ We call the matrix

Definition

Suppose that $X \in \mathbb{R}^{m \times n}$ and $rank\left(X\right) = m$. We call the matrix

$$oldsymbol{X}^+ = \left(oldsymbol{X}^T oldsymbol{X}
ight)^{-1} oldsymbol{X}^T$$

the pseudo inverse of X.

Definition

Suppose that $X \in \mathbb{R}^{m \times n}$ and $rank\left(X\right) = m$. We call the matrix

$$oldsymbol{X}^+ = \left(oldsymbol{X}^T oldsymbol{X}
ight)^{-1} oldsymbol{X}^T$$

the pseudo inverse of X.

Definition

Suppose that $X \in \mathbb{R}^{m \times n}$ and $rank\left(X\right) = m$. We call the matrix

$$oldsymbol{X}^+ = \left(oldsymbol{X}^T oldsymbol{X}
ight)^{-1} oldsymbol{X}^T$$

the pseudo inverse of X.

Outline

- Introduction
 - Introduction
 - The Simplest Functions
 - Splitting the Space
 - Defining the Decision Surface
 - Properties of the Hyperplane $w^T x + w_0$
 - Augmenting the Vector
- Developing a Solution
 - Least Squared Error Procedure
 - The Geometry of a Two-Category Linearly-Separable Case
 - The Error Idea
 - The Final Error Equation
 - Geometric Interpretation
 - Issues with Least Squares!!!
 - Problem with Outliers
 - Problem with High Number of Dimensions

Geometrically

This Resolve Our Problem

With the Labels being chosen at the beginning

Question? Did you noticed the following?

This Resolve Our Problem

With the Labels being chosen at the beginning

Question? Did you noticed the following?

Outline

- - Introduction
 - The Simplest Functions
 - Splitting the Space
 - Defining the Decision Surface
 - lacktriangle Properties of the Hyperplane w^Tx+w_0
 - Augmenting the Vector
- Developing a Solution
 - Least Squared Error Procedure
 - The Geometry of a Two-Category Linearly-Separable Case
 - The Error Idea

 - Geometric Interpretation
 - Issues with Least Squares!!!

 - Problem with Outliers
 - Problem with High Number of Dimensions

Outline

- Introduction
 - Introduction
 - The Simplest Functions
 - Splitting the Space
 - Defining the Decision Surface
 - lacktriangle Properties of the Hyperplane $oldsymbol{w}^T x + w_0$
 - Augmenting the Vector
- Developing a Solution
 - Least Squared Error Procedure
 - The Geometry of a Two-Category Linearly-Separable Case
 - The Error Idea
 - The Final Error Equation
 - Geometric Interpretation
 - Issues with Least Squares!!!
 - Problem with Outliers
 - Problem with High Number of Dimensions

Issues with Least Squares

Outline

- - Introduction
 - The Simplest Functions
 - Splitting the Space
 - Defining the Decision Surface
 - Properties of the Hyperplane $w^Tx + w_0$
 - Augmenting the Vector
- Developing a Solution
 - Least Squared Error Procedure
 - The Geometry of a Two-Category Linearly-Separable Case
 - The Error Idea

 - Geometric Interpretation
 - Issues with Least Squares!!!
 - Problem with Outliers

 - Problem with High Number of Dimensions

In Many Modern Problems

Many dimensions/features/predictors (possibly thousands).

In Many Modern Problems

Many dimensions/features/predictors (possibly thousands).

Only a few of these may be important

It needs some form of feature selection.

In Many Modern Problems

• Many dimensions/features/predictors (possibly thousands).

Only a few of these may be important

- It needs some form of feature selection.
- Possible some type of regularization.

In Many Modern Problems

Many dimensions/features/predictors (possibly thousands).

Only a few of these may be important

- It needs some form of feature selection.
- Possible some type of regularization.

Why?

Least Square Error Regression treats all dimensions equally.

In Many Modern Problems

Many dimensions/features/predictors (possibly thousands).

Only a few of these may be important

- It needs some form of feature selection.
- Possible some type of regularization.

Why?

- Least Square Error Regression treats all dimensions equally.
- Relevant dimensions might be averaged with irrelevant ones.