งานประชุมวิชาการ และนวัตกรรม กฟภ. ปี 2564

Data Driven Business in Digital Utility Era ขับเคลื่อนธุรกิจด้วยฐานข้อมูลในยุค Digital Utility

แนวทางในการคำนวณอัตราค่าพลังงานไฟฟ้า เพื่อปรับปรุงประสิทธิภาพของอัตราค่าไฟฟ้าฐาน

น.ส.นภัทร ภักดีสุวรรณ์¹, นายสุรพัศ ลาภวิสุทธิสาโรจน์², รศ.ดร.สุรชัย ชัยทัศนีย์³

¹ภาควิชาวิศวกรรมไฟฟ้า จุฬาลงกรณ์มหาวิทยาลัย 6272102621@student.chula.ac.th

²ภาควิชาวิศวกรรมไฟฟ้า จุฬาลงกรณ์มหาวิทยาลัย surapad.l@gmail.com

³ภาควิชาวิศวกรรมไฟฟ้า จุฬาลงกรณ์มหาวิทยาลัย Surachai.C@chula.ac.th

บทคัดย่อ

โครงสร้างอัตราค่าไฟฟ้าที่ดีจะสะท้อนถึงต้นทุนในการ จัดหาไฟฟ้าที่เหมาะสมและเป็นธรรมทั้งในส่วนของผู้ผลิตไฟฟ้า จัดส่งไฟฟ้า และจัดจำหน่ายไฟฟ้า แต่ในปัจจุบันนี้อัตราค่า ไฟฟ้าที่ใช้จัดเก็บจากผู้ใช้ไฟฟ้าอาจยังมีความไม่ชัดเจน ทำให้ ไม่สามารถระบุที่มาของอัตราค่าไฟฟ้าและสะท้อนถึงสถานะ ทางการเงินที่แท้จริงของการไฟฟ้าฝ่ายผลิตแห่งประเทศไทย (กฟผ.) การไฟฟ้านครหลวง (กฟน.) และการไฟฟ้าส่วนภูมิภาค (กฟภ.) ได้ เช่น ต้นทุนในการก่อสร้างโรงไฟฟ้า ระบบสายส่ง ระบบจำหน่าย และ ค่าการผลิตพลังงานไฟฟ้า เป็นต้น บทความนี้จึงได้เสนอแนวทางในการคำนวณอัตราค่าพลังงาน ไฟฟ้าเพื่อปรับปรุงประสิทธิภาพของอัตราค่าไฟฟ้าฐาน ให้ สามารถสะท้อนถึงต้นทุนในการให้บริการที่ชัดเจนมากยิ่งขึ้น โดยมีการจัดทำอัตราค่าพลังงานไฟฟ้าแยกตามเขตพื้นที่ เพื่อ ทำให้การไฟฟ้าทั้ง 3 แห่ง สามารถปรับปรุงอัตราค่าไฟฟ้าใหม่ ให้สอดคล้องกับต้นทุนของการไฟฟ้าในแต่ละพื้นที่ได้มากยิ่งขึ้น คำสำคัญ Electricity, NOPAT, Pricing,

Revenue Requirement, ROIC, WACC

1. บทน้ำ

ไฟฟ้าเป็นกิจการสาธารณูปโภคขั้นพื้นฐานที่มีบทบาท สำคัญต่อความเจริญก้าวหน้าของประเทศในทุกๆ ด้าน เนื่องจากไฟฟ้าเป็นส่วนหนึ่งของโครงสร้างพื้นฐานที่ใช้ในการ ดำเนินกิจกรรมทุกประเภททั้งในเรื่องของการสร้างผลผลิต และการช่วยส่งเสริมให้เกิดการพัฒนาเศรษฐกิจและสังคม อย่างต่อเนื่อง ดังนั้นอัตราการใช้พลังงานไฟฟ้าของประเทศจึง มีความสัมพันธ์โดยตรงกับปริบาณการขยายตัวของผลิตภัณฑ์ มวลรวมประชาชาติ (Gross Domestic Product: GDP) รายได้ประชาชาติ (National Income: NI) และการขยายตัว ทางเศรษฐกิจของประเทศ อัตราค่าไฟฟ้าจึงต้องมีการกำหนด อย่างเหมาะสมและไม่ควรมีค่าที่สูงเกินไป ทั้งนี้เพื่อให้ ประชาชนทั่วไปสามารถดำเนินกิจกรรมต่างๆ ไปได้อย่าง เหมาะสมและไม่ได้รับความเดือดร้อน อย่างไรก็ตามรายได้ที่ การไฟฟ้าทั้ง 3 แห่งได้รับจากการเรียกเก็บอัตราค่าไฟฟ้าจาก ผู้ใช้ไฟฟ้านั้นควรที่จะต้องครอบคลุมการลงทุนในอดีต ต้นทุน ค่าใช้จ่ายต่างๆ รวมถึงการลงทุนในอนาคตที่จะเกิดขึ้น เพื่อที่ การไฟฟ้าทั้ง 3 แห่งจะสามารถดำเนินกิจการไปได้อย่าง ต่อเนื่องและมีประสิทธิภาพ ดังนั้นในบทความนี้จึงได้นำเสนอ แนวทางการคำนวณอัตราค่าพลังงานไฟฟ้าภายใน องค์ประกอบของค่าไฟฟ้าฐาน โดยคำนึงถึงข้อมูลต้นทุนของ การไฟฟ้าฝ่ายผลิตแห่งประเทศไทยที่ครอบคลุมทั่วประเทศ และการไฟฟ้าฝ่ายจำหน่ายแยกตามเขตพื้นที่ที่การไฟฟ้าดูแล เพื่อให้อัตราค่าไฟฟ้าสามารถสะท้อนถึงต้นทุนและการใช้ไฟฟ้า ที่เกิดขึ้นจริงในแต่ละพื้นที่ รวมถึงเพื่อลดการอุดหนุนรายได้ ระหว่างการไฟฟ้าฝ่ายจำหน่าย และทำให้อัตราค่าไฟฟ้าขายส่ง และขายปลีกมีความถูกต้องและสมบูรณ์มากยิ่งขึ้น

2. ความรู้พื้นฐาน

โครงสร้างอัตราค่าไฟฟ้าในปัจจุบันได้มีการกำหนดให้ เป็นไปตามมติของสำนักงานคณะกรรมการกำกับกิจการ พลังงาน (สำนักงาน กกพ.) โดย สำนักงาน กกพ. ได้กำหนดให้ อัตราค่าไฟฟ้ามีอัตราเดียวกันทั้งประเทศ (Uniform Tariff) ทั้งนี้อัตราค่าไฟฟ้าของประเทศไทยได้แบ่งออกเป็น 2 อัตราหลักตามกิจการไฟฟ้า คือ อัตราค่าไฟฟ้าขายส่ง และอัตราค่า ไฟฟ้าขายปลีก [1] โดยอัตราค่าไฟฟ้าขายส่งจะเป็นอัตราค่า ไฟฟ้าที่การไฟฟ้าฝ่ายผลิตแห่งประเทศไทย (กฟผ.) ขายไฟฟ้า ให้แก่การไฟฟ้าฝ่ายจำหน่าย ได้แก่ การไฟฟ้านครหลวง (กฟน.) และการไฟฟ้าส่วนภูมิภาค (กฟภ.) ซึ่งอัตราค่าไฟฟ้า ขายส่งนี้จะมีโครงสร้างด้วยกัน 3 ส่วน คือ ค่าไฟฟ้าฐานขายส่งค่าไฟฟ้าผันแปรขายส่งและภาษีมูลค่าเพิ่ม [2] ดังรูปที่ 1

รูปที่ 1 โครงสร้างอัตราค่าไฟฟ้าขายส่ง

สำหรับอัตราค่าไฟฟ้าขายปลีกนั้นจะเป็นอัตราค่าไฟฟ้าที่ การไฟฟ้าฝ่ายจำหน่ายขายให้ผู้ใช้ไฟฟ้าทั่วไป และเป็นอัตราค่า ไฟฟ้าที่ กฟผ. ขายให้แก่ลูกค้าตรงของ กฟผ. ซึ่งอัตราค่าไฟฟ้า ขายปลีกจะมีโครงสร้างด้วยกัน 3 ส่วน คือ ค่าไฟฟ้าฐานขาย ปลีก ค่าไฟฟ้าผันแปรขายปลีก และภาษีมูลค่าเพิ่ม ดังรูปที่ 2

รูปที่ 2 โครงสร้างอัตราค่าไฟฟ้าขายปลีก

เมื่อพิจารณาอัตราค่าไฟฟ้าฐานในโครงสร้างอัตราค่า ไฟฟ้าขายส่งและโครงสร้างอัตราค่าไฟฟ้าขายปลีกจะพบว่ามี องค์ประกอบที่ใกล้เคียงกัน ดังรูปที่ 3 ซึ่งถูกกำหนดอยู่บนฐาน ของต้นทุน (Cost based tariff) ตามหลักการต้นทุนหน่วย สุดท้าย (Marginal Cost) [3] ในบทความนี้จะพิจารณาเฉพาะ ต้นทุนคงที่ (Fixed Cost) ของกิจการระบบผลิต กิจการระบบ ส่ง และกิจการระบบจำหน่าย ในองค์ประกอบของอัตราค่า พลังงานไฟฟ้าเท่านั้น โดยไม่รวมค่าเชื้อเพลิง กฟผ. ค่าซื้อ ไฟฟ้าเอกชนและต่างประเทศ และค่าใช้จ่ายตามนโยบายรัฐ [2] ต้นทุนคงที่นั้นจะเป็นรายจ่ายต่างๆ ที่เกิดขึ้นในกิจการ ไฟฟ้า โดยแสดงออกมาในรูปของค่าบริการระบบผลิต ค่าบริการระบบส่ง ในอัตราค่าไฟฟ้าขายส่งและอัตราค่าไฟฟ้าขาย ปลีก โดยต้นทุนที่เกิดขึ้นแล้วและกิจการไฟฟ้าได้ใช้ประโยชน์ เรียบร้อยแล้วต้นทุนนั้นถือเป็น ค่าใช้จ่าย (Expenses) ได้แก่

ค่าใช้จ่ายในการดำเนินงาน ค่าใช้จ่ายในการบำรุงรักษา ค่า เสื่อมราคา เงินเดือนพนักงาน เป็นต้น สำหรับต้นทุนที่เป็น ทรัพยากรที่มีอยู่ในการควบคุมของกิจการไฟฟ้าที่สามารถตี ราคามูลค่าเป็นเงินได้ซึ่งกิจการไฟฟ้าจะได้รับประโยชน์ทาง เศรษฐกิจในอนาคต ต้นทุนนั้นถือเป็น สินทรัพย์ (Assets) ได้แก่ โรงไฟฟ้า อุปกรณ์ไฟฟ้า เงินสดหมุนเวียน เป็นต้น [4] และสำหรับการจัดสรรเงินลงทุนเพื่อไปลงทุนในสินทรัพย์ ประเภทต่าง ๆ จะเรียกว่าเป็น แผนการลงทุน (Investment Plan)

รูปที่ 3 โครงสร้างค่าไฟฟ้าฐานขายส่ง/ขายปลีก

3. แนวทางการคำนวณอัตราค่าพลังงานไฟฟ้าที่เสนอ

บทความนี้นำเสนอแนวทางในการคำนวณค่าพลังงาน ไฟฟ้า โดยการแบ่งการคำนวณอัตราต้นทุนออกเป็น 2 ขั้นตอน หลักๆ คือ 1) การคำนวณรายได้ที่พึงได้รับจากการให้บริการ (Revenue Requirement) ที่พิจารณาจากต้นทุนต่างๆ ที่ เกี่ยวข้อง และ 2) การคำนวณอัตราค่าพลังงานไฟฟ้า ในหน่วย บาทต่อกิโลวัตต์ และหน่วยบาทต่อกิโลวัตต์ชั่วโมงหรือบาทต่อ หน่วย [5]

3.1 การคำนวณรายได้ที่พึงได้รับจากการให้บริการ

รายได้ที่ พึงได้รับจากการให้บริการจะแสดงถึงความ ต้องการรายได้ของการไฟฟ้าในระดับที่การไฟฟ้าสามารถ ดำเนินกิจการและขยายการดำเนินงานได้ในอนาคต ซึ่งการ กำหนดรายได้ที่ กฟผ. กฟน. และ กฟภ. พึงได้รับนี้จะเป็นสิ่งที่ ใช้ในการคำนวณอัตราค่าพลังงานไฟฟ้าในขั้นตอนต่อไป โดย ข้อมูลสำคัญที่ใช้ในการคำนวณจะประกอบด้วย สินทรัพย์ที่ใช้ ในการให้บริการและค่าใช้จ่ายในการดำเนินงานในแต่ละปี ซึ่ง เป็นข้อมูลต้นทุนของการไฟฟ้าแต่ละแห่ง รวมทั้งข้อมูล พยากรณ์ความต้องการใช้ไฟฟ้า (Load forecast) ที่ได้รับ อนุมัติเห็นชอบจาก กกพ. แล้ว [3]

ในขั้นตอนแรกก่อนการคำนวณต้องมีการกำหนด อัตราส่วนผลตอบแทนเงินลงทุน (Return on Invested Capital; ROIC) ก่อน โดยในบทความนี้ได้กำหนดให้อัตรา ผลตอบแทนเงินลงทุนของการไฟฟ้าทั้ง 3 แห่ง มีค่าใกล้เคียง กับค่าเฉลี่ยถ่วงน้ำหนักของต้นทุนทางการเงิน (Weighted Average Cost of Capital; WACC) ซึ่งเป็นไปตามมติของ กพช. หลังจากนั้นจึงกำหนดภาษีเงินได้นิติบุคคลของแต่ละการ ไฟฟ้าร่วมด้วย [6] จากข้อมูลสรุปสาระสำคัญของการปรับ โครงสร้างอัตราค่าไฟฟ้าปี 2558 จะได้อัตราผลตอบแทน ดัง ตารางที่ 1

ตารางที่ 1 อัตราผลตอบแทนตามประเภทสินทรัพย์ของการไฟฟ้า

		กฟผ.	กฟน./กฟภ.
ปี 2554	ROIC	7.50%	5.70%
มติ กพช. 13 ส.ค. 2558	WACC	5.69-6.00%	4.70-4.73%
WACC สำหรับอ้างอิง ROIC	ปี 2558-2560	5.69% (-1.81%)	4.73% (-0.97%)

การคำนวณรายได้ที่พึงได้รับในขั้นตอนต่อไปจะแบ่งการ คำนวณข้อมูลต่างๆ ออกเป็น 3 หัวข้อย่อยตามประเภทของ ต้นทุน เพื่อความง่ายในการคำนวณ และการทำความเข้าใจ ข้อมูลในแต่ละส่วน ได้แก่

3.1.1 สินทรัพย์ระหว่างก่อสร้างและสินทรัพย์ของ โครงการหลัง COD ในแต่ละปี

ในการคำนวณสินทรัพย์ระหว่างก่อสร้าง และสินทรัพย์ ของโครงการหลัง COD ซึ่งเป็นสินทรัพย์หลังก่อสร้างแล้วเสร็จ และเริ่มต้นการซื้อขายไฟฟ้าในแต่ละปี จะต้องมีการกำหนดค่า ROIC ค่า WACC และภาษีเงินได้นิติบุคคลของการไฟฟ้า โดย หลังจากที่คำนวณสินทรัพย์ทั้งสองเรียบร้อยแล้ว จะนำค่าที่ได้ ไปคำนวณผลกำไรหลังหักภาษีในขั้นตอนต่อไป โดยการ กำหนดข้อมูลการลงทุนระหว่างก่อสร้างและค่าเสื่อมราคาของ อุปกรณ์ไฟฟ้าต่างๆ ซึ่งเป็นข้อมูลที่ได้รับจากการไฟฟ้าทั้ง 3 แห่ง เพื่อนำข้อมูลสินทรัพย์ทั้งสองมาคำนวณหารายได้ที่พึง ได้รับจากการให้บริการ โดยก่อนจะเริ่มมีการคำนวณ จะ กำหนดให้สินทรัพย์ปลายปีของสินทรัพย์ระหว่างก่อสร้างจะมี ค่าเพิ่มขึ้นตามเงินลงทุนตามแผนการลงทุนในแต่ละปี และ สินทรัพย์ปลายปีของสินทรัพย์ที่ COD แล้วจะมีค่าลดลงตาม ค่าเสื่อมราคาในแต่ละปี ดังนั้นจะคำนวณสินทรัพย์ระหว่าง ก่อสร้างในปีที่ y และ สินทรัพย์ของโครงการหลัง COD ในปีที่ v ได้ดังสมการที่ (1) และสมการที่ (2)

$$Asset_{con,y} = \frac{Asset_{con-BY,y} + Asset_{con-EY,y}}{2}$$
 (1)

Asset_{cod,y} =
$$\frac{Asset_{cod-BY,y} + Asset_{cod-EY,y}}{2}$$
 (2)

 $Asset_{con,y}$ คือ สินทรัพย์ระหว่างก่อสร้างในปีที่ y [บาท]

 $Asset_{con-BY,y}$ คือ สินทรัพย์ระหว่างก่อสร้างต้นปีที่ y (Beginning of The Year) [บาท]

 $Asset_{con-EY,y}$ คือ สินทรัพย์ระหว่างก่อสร้างปลายปี ที่ y (End of The Year) [บาท]

 $Asset_{cod,y}$ คือ สินทรัพย์ของโครงการหลัง COD ในปีที่ y [บาท]

 $Asset_{cod-BY,y}$ คือ สินทรัพย์ของโครงการหลัง COD ต้นปีที่ y (Beginning of The Year) [บาท]

 $Asset_{cod-EY,y}$ คือ สินทรัพย์ของโครงการหลัง COD ปลายปีที่ y (End of The Year) [บาท]

3.1.2 ค่าใช้จ่ายทั้งหมดในแต่ละปี

หลังจากที่ได้มีการคำนวณสินทรัพย์ระหว่างก่อสร้าง และสินทรัพย์ของการโครงหลัง COD แล้ว ต่อมาจึงกำหนด ค่าใช้จ่ายในการดำเนินงานในแต่ละปีซึ่งค่าใช้จ่ายดังกล่าวเป็น ข้อมูลที่ได้จากการไฟฟ้าและมีค่าแตกต่างกันไปตามการ ดำเนินงานของไฟฟ้าแต่ละแห่ง สำหรับข้อมูลค่าใช้จ่ายในการ ดำเนินงาน O&M ของโรงไฟฟ้าใหม่ในส่วนของ กฟผ. ใน บทความนี้จะกำหนดให้เป็น 2% ของสินทรัพย์ทั้งหมดของ โรงไฟฟ้าแต่ละโรง

การคำนวณค่าใช้ จ่ายทั้งหมด (Expense) ในการ ให้บริการของการไฟฟ้า สามารถทำได้โดยการนำค่าใช้จ่ายใน การดำเนินงานในแต่ละปีและค่าเสื่อมราคาในแต่ละปีมา รวมกัน ดังสมการที่ (3)

$$Expense_y = O\&M_y + Depreciation_y$$
 (3)

Expenseyคือค่าใช้จ่ายทั้งหมดในปีที่ y [บาท]Depreciationyคือค่าเสื่อมราคาทั้งหมดในปีที่ y[บาท]

3.1.3 สินทรัพย์ทั้งหมดในแต่ละปี

ในการคำนวณรายได้ที่พึงได้รับ จำเป็นที่จะต้องพิจารณา ถึงเงินสดเพื่อสำรองจ่ายค่าใช้จ่ายในการดำเนินงานในเดือน ถัดไปในรูปแบบของสินทรัพย์เงินสดหมุนเวียนโดยกำหนดให้มี ค่าเท่ากับ ค่าใช้จ่ายในการดำเนินงานปีนั้นๆ หารด้วย 12 เดือน ดังสมการที่ (4)

$$Asset_{M,y} = \frac{O\&M_y}{12} \tag{4}$$

เมื่อ

เมื่อ

 Asset_{M,y}
 คือ
 สินทรัพย์เงินสดหมุนเวียนในปีที่ y [บาท]

 O&M_y
 คือ
 ค่าใช้จ่ายในการดำเนินงานในปีที่ y [บาท]

 หลังจากที่ได้คำนวณสินทรัพย์ระหว่างก่อสร้าง
 สินทรัพย์

 ของโครงการหลัง
 COD และสินทรัพย์เงินสดหมุนเวียนแล้ว
 จะ

 สามารถนำสินทรัพย์ทั้งสามมารวมกันเพื่อหาสินทรัพย์ทั้งหมด
 ในแต่ละปี (Total Asset) ได้ดังสมการที่ (5)

$$Asset_{total,y} = Asset_{con,y} + Asset_{cod,y} + Asset_{M,y}$$
 (5)

Asset_{total,y} คือ สินทรัพย์ทั้งหมดในปีที่ y [บาท] จากหัวข้อย่อยที่ 3.1.1 – 3.1.3 สามารถหาผลกำไรหลัง หักภาษี (Net Operating Profit After Tax; NOPAT) จากผล คุณของค่า ROIC และสินทรัพย์ทั้งหมดได้ดังสมการที่ (6)

$$NOPAT_y = \%ROIC \times Asset_{total,y}$$
 (6)

NOPAT_y คือ ผลกำไรหลังหักภาษี ในปีที่ y [บาท]
%ROIC คือ อัตราส่วนผลตอบแทนเงินลงทุน [บาท]
ค่า NOPAT ที่คำนวณได้สามารถนำไปคำนวณรายได้ ก่อนหักภาษี (Operating Income) ได้ดังสมการที่ (7)

$$Operating\ Income_{y} = \frac{NOPAT_{y}}{1 - \%TAX} \tag{7}$$

 $Operating\ Income_y$ คือ รายได้ก่อนหักภาษี ในปีที่ \vee [บาท]

จากข้อมูลข้างต้นจะสามารถคำนวณรายได้ที่การไฟฟ้า พึงได้รับจากการให้บริการได้ดังสมการที่ (8)

$$RR_y = Operating \ Income_y + Expense_y$$
 (8)

 RR_{y} คือ รายได้ที่การไฟฟ้าพึงได้รับในปีที่ y [บาท]

3.2 การคำนวณอัตราค่าพลังงานไฟฟ้า

หลังจากที่ได้ข้อมูลรายได้ที่การไฟฟ้าพึงได้รับแล้วจึงนำ ข้อมูลดังกล่าวมาคำนวณอัตราค่าพลังงานไฟฟ้า ในหน่วยบาท ต่อกิโลวัตต์ และหน่วยบาทต่อกิโลวัตต์ชั่วโมงหรือบาทต่อ หน่วย ในกรอบระยะเวลาที่กำหนดไว้ (3 - 5 ปี) เพื่อเฉลี่ย ต้นทุนของสินทรัพย์และค่าใช้จ่ายในการดำเนินงานแต่ละปีให้ เท่ากันโดยคำนึงถึงผลตอบแทนทางการเงิน หรืออัตราคิดลด (Discount rate) ร่วมด้วย ซึ่งจะคำนวณได้ดังสมการที่ (9) และ สมการที่ (10)

Rate (Baht/kW) =
$$\frac{\sum_{y=1}^{N} \frac{RR_{y}}{(1+r)^{y}}}{\sum_{y=1}^{N} \frac{P_{y}}{(1+r)^{y}}}$$
 (9)

$$Rate (Baht/kWh) = \frac{\sum_{y=1}^{N} \frac{RR_{y}}{(1+r)^{y}}}{\sum_{y=1}^{N} \frac{E_{y}}{(1+r)^{y}}}$$
(10)

เมื่อ

Rate คือ อัตราค่าบริการตลอดระยะเวลาในการคำนวณ

N คือ กรอบระยะเวลาในการคำนวณ (ปี)

 P_y คือ กำลังไฟฟ้าสูงสุดในระบบของการไฟฟ้าในปี ที่ y [กิโลวัตต์]

 E_y คือ พลังงานไฟฟ้ารวมในระบบของการไฟฟ้าในปี ที่ y [กิโลวัตต์-ชั่วโมง]

r คือ อัตราคิดลด (กำหนดให้มีค่าเท่ากับ WACC)

4. ผลการคำนวณ

ในบทความนี้ จะใช้การประมาณค่า WACC และ ค่า ROIC จากข้อมูลสรุปผลการรับฟังความคิดเห็นเรื่องการปรับ โครงสร้างอัตราค่าไฟฟ้าปี 2558 [6] โดยกำหนดให้มีการปรับ ลด ROIC กับ WACC ของ กฟผ. และการไฟฟ้าฝ่ายจำหน่าย ลง 10% และปรับเปลี่ยนภาษีใหม่ ตามข้อมูลจริง ณ ปี พ.ศ. 2564 ดังตารางที่ 2

ตารางที่ 2 ประมาณการค่า WACC, ROIC และ Tax ของการไฟฟ้า

	กฟผ.	กฟน. /กฟภ.
WACC	5.12 %	4.26 %
ROIC	5.12 %	4.26 %
TAX	20 %	30 %

สำหรับข้อมูลที่นำมาคำนวณในบทความนี้ จะเป็นข้อมูลที่ ดัดแปลงจากข้อมูลจริงต่างๆ และได้จากการประมาณสินทรัพย์ แผนการลงทุน ค่าเสื่อมราคา และค่าใช้จ่าย ในปี 2562 – 2565 ของการไฟฟ้าทั้ง 3 แห่ง โดยในส่วนของ กฟผ. จะแบ่งออกเป็น 2 ส่วน คือ ส่วนของระบบผลิตที่ประกอบด้วย สินทรัพย์และ ค่าใช้จ่ายของโรงไฟฟ้าเก่า แผนการลงทุนของโรงไฟฟ้าใหม่ โดย ไม่รวมต้นทุนค่าเชื้อเพลิง และ ส่วนของระบบส่งทั้งหมด สำหรับ กฟน. จะเป็นระบบจำหน่ายใน กรุงเทพา นนทบุรี และ สมุทรปราการ จึงไม่มีการแยกเขตพื้นที่ และ สำหรับ กฟภ. จะ มีการแยกเขตพื้นที่ ออกเป็น 4 เขต ได้แก่ ภาคเหนือ ภาค ตะวันออกเฉียงเหนือ ภาคกลาง และภาคใต้ โดยตัวอย่างข้อมูล สามารถแสดงได้ดังข้อมูลในตารางที่ 3

ตารางที่ 3 ข้อมูลต้นทุนการไฟฟ้า [ล้านบาท]

การไฟฟ้า	2562	2563	2564	2565		
กฟผ.						
ระบบผลิต						
สินทรัพย์	-	110,000	101,000	93,000		
แผนการลงทุน	-	356	356	356		
ค่าใช้จ่าย	-	21,000	21,000	22,000		
ระบบส่ง						
สินทรัพย์	133,000	132,800	132,350	131,400		
แผนการลงทุน	3,400	6,500	10,000	20,100		
ค่าใช้จ่าย	10,000	11,000	11,500	12,000		
กฟน.						
สินทรัพย์	88,000	84,520	77,290	69,540		
แผนการลงทุน	-	13,540	11,600	15,900		
ค่าใช้จ่าย	1	10,900	11,500	11,400		
กฟภ.						
สินทรัพย์	276,400	275,569	273,807	270,128		
แผนการลงทุน	-	43,080	47,030	54,440		
ค่าใช้จ่าย	51,200	50,400	51,900	52,900		

นอกจากข้อมูลต้นทุนต่างๆ แล้ว ข้อมูลที่สำคัญในการ คำนวณอัตราค่าพลังงานไฟฟ้า คือค่ากำลังไฟฟ้าและพลังงาน ไฟฟ้าของแต่ละการไฟฟ้า ซึ่งเป็นข้อมูลที่ได้จากการประมาณ จากการไฟฟ้าแต่ละแห่ง ดังตารางที่ 4 และตารางที่ 5

ตารางที่ 4 กำลังไฟฟ้าของแต่ละการไฟฟ้า (Power Demand)

ปี กฟผ.	กฟน.	กฟภ.				
		เหนือ	อีสาน	กลาง	ใต้	
2562	-	-	57,700	69,400	186,900	22,800
2563	28,000	116,000	58,000	70,100	180,900	21,900
2564	30,800	119,000	59,000	71,000	186,300	22,900
2565	31,900	31,900	60,700	72,600	191,400	23,000

ตารางที่ 5 พลังงานไฟฟ้าของแต่ละการไฟฟ้า (Energy Demand)
[จิกะวัตต์-ซั่วโมง หรือ ล้านหน่วย]

ปี	กฟผ.	กฟน.	กฟภ.			
U MW.	IINU.	เหนือ	อีสาน	กลาง	ใต้	
2562	-	-	19,700	22,000	70,700	22,800
2563	192,000	50,000	19,900	22,100	68,000	21,900
2564	199,000	51,000	21,300	22,500	70,500	22,900
2565	203,000	53,000	20,700	22,900	72000	23,000

เมื่อทำการคำนวณรายได้ที่พึงได้รับจากการให้บริการ จากวิธีการข้างต้นจะได้ผลลัพธ์ ดังตารางที่ 5 ตารางที่ 6 รายได้ที่การไฟฟ้าพึงได้รับจากการให้บริการ [ล้านบาท]

การไฟฟ้า 2563 2564 กฟผ. ระบบผลิต 37,186 36.383 36.649 ระบบส่ง 23,583 20.176 21.478 กฟน. 23,678 25,586 26,821 กฟภ. ภาคเหนือ 15,371 16,484 17,596 18,327 ภาคอีสาน 19.615 16.938 ภาคกลาง 21.248 23.309 25.473

จากข้อมูลในตารางที่ 6 นำมาคำนวณอัตราค่าพลังงาน ไฟฟ้าตามสมการที่ (9) และ สมการที่ (10) โดยใช้กรอบ ระยะเวลาในการคำนวณเป็นกรอบ 3 ปี จะได้ผลการคำนวณ ดังตารางที่ 6

17,407

18,738

16,026

ภาคใต้

ตารางที่ 7 อัตราค่าพลังงานไฟฟ้าบนฐานของต้นทุนในหน่วย
[บาท/กิโลวัตต์] และหน่วย [บาท/หน่วย]

การไฟฟ้า	บาท/กิโลวัตต์	บาท/หน่วย					
กฟผ.							
ระบบผลิต - โรงไฟฟ้า	100.27	0.18					
ระบบส่ง	60.24	0.10					
กฟน. (ระบบจำหน่าย)							
กทม. นนทบุรี สมุทรปราการ	18.52	0.49					
กฟภ. (ระบบจำหน่าย)							
ภาคเหนือ	23.19	0.76					
ภาคอีสาน	21.40	0.78					
ภาคกลาง	10.45	0.32					
ภาคใต้	23.72	0.74					

จากผลการคำนวณต้นทุนอัตราค่าพลังงานไฟฟ้าข้างต้น จะจำแนกได้เป็นระบบผลิต ระบบส่ง และ ระบบจำหน่ายตาม โรงไฟฟ้าและเขตพื้นที่ ได้ดังตารางที่ 7 จะเห็นได้ว่าในส่วนของ กฟผ. จะมีค่าต้นทุนโรงไฟฟ้าอยู่ที่ 0.18 บาทต่อหน่วย และค่า ต้นทุนระบบส่งอยู่ที่ 0.10 บาท/หน่วย และในส่วนของกิจการ

ระบบจำหน่ายทั้ง กฟน. และ กฟภ. จะมีค่าต้นทุนใกล้เคียงกัน โดยจะเห็นได้ว่าในส่วนของภาคกลางที่ดูแลโดย กฟภ. จะมีต้น ทุนที่ต่ำที่สุดอยู่ที่ 0.32 บาท/หน่วย และกิจการระบบจำหน่าย จะมีต้นทุนสูงสุดอยู่ที่ 0.78 บาท/หน่วย ทั้งนี้เมื่อพิจารณา อัตราค่าพลังงานไฟฟ้าทั้งในส่วนระบบผลิต ระบบส่ง และ ระบบจำหน่ายไปรวมกับต้นทุนค่าเชื้อเพลิงของ กฟผ. ค่าซื้อ ไฟฟ้าเอกชนและต่างประเทศ และค่าใช้จ่ายตามนโยบายรัฐ รวม 2.74 บาท/หน่วย [2] จะพบว่าอัตราค่าพลังงานไฟฟ้ารวม มีค่าอยู่ในช่วง 3.34 – 3.80 บาท/หน่วย ตามแต่ละพื้นที่การ ให้บริการ จากผลการคำนวณจะพบว่าการคำนวณดังกล่าวนี้ สามารถระบุที่มาของอัตราค่าไฟฟ้าฐานของการไฟฟ้าทั้ง 3 แห่งได้ชัดเจน รวมถึงสามารถสะท้อนถึงฐานะทางการเงินของ การไฟฟ้าในปัจจุบันได้มากยิ่งขึ้น

5. สรุปผล

บทความนี้ได้เสนอแนวทางการคำนวณต้นทุนอัตราค่า พลังงานไฟฟ้าเพื่อปรับปรุงประสิทธิภาพของอัตราค่าไฟฟ้า ฐานที่แยกตามเขตพื้นที่เพื่อสะท้อนถึงต้นทุนในการก่อสร้าง โรงไฟฟ้า ระบบส่ง และ ระบบจำหน่าย ที่ถูกต้องมากยิ่งขึ้น โดยใช้วิธีการหารายได้ที่พึงได้รับจากการให้บริการ และนำผล การคำนวณที่ได้มาคำนวณค่าพลังงานไฟฟ้า ทำให้การไฟฟ้าทั้ง 3 แห่ง สามารถปรับปรุงอัตราค่าไฟฟ้าใหม่ให้สอดคล้องกับ ต้นทุนของการไฟฟ้าได้มากยิ่งขึ้น

เอกสารอ้างอิง

- [1] มติการประชุมคณะกรรมการนโยบายพลังงานแห่งชาติ ครั้งที่ 1/2564 (ครั้งที่ 153), สำนักงานนโยบายและแผนพลังงาน กระทรวงพลังงาน, 7 ก.ย. 2564. [อ อ นไล น์]. เข้า ถึงได้ จาก: http://www.eppo.go.th/index.php/ th/component/k2/item/16806-nepc-prayut01-04-64.
- [2] นโยบายกำหนดโครงสร้างอัตราค่าไฟฟ้าของประเทศไทย ปี 2559 2563, สำนักงานนโยบายและแผนพลังงาน กระทรวงพลังงาน, 5 ก.ย. 2564. [ออนไลน์]. เข้าถึงได้จาก: http://www.eppo.go.th/images/Power/pdf/ Tariff Structure.pdf.
- [3] (ร่าง) หลักเกณฑ์การกำหนดโครงสร้างอัตราค่าไฟฟ้าของไทยสำหรับปี 2557-2559, สถาบันวิจัยและให้คำปรึกษาแห่งมหาวิทยาลัยธรรมศาสตร์ , 8 ก.ย. 2564. [ออนไลน์]. เข้าถึงได้จาก: http://www.erc.or.th/ercweb2/ Upload/PublicHearing/27422014034242ERCFR PB 1014.pdf.
- [4] ความรู้เบื้องต้นเกี่ยวกับการบัญชีต้นทุน, อนุรักษ์ ทองสุโขวงศ์, 7 ก.ย. 2564.
 [ออนไลน์]. เข้าถึงได้จาก: https://home.kku.ac.th/anuton/cost%20 accounting /cost%20split.htm.
- [5] รายงานการศึกษาอัตราค่าบริการสายส่งไฟฟ้า (Wheeling Charge) สำหรับ Third Party Access, จุฬาลงกรณ์มหาวิทยาลัย, 2564.

[6] สรุปผลการรับฟังความคิดเห็นเรื่องการปรับโครงสร้างอัตราค่าไฟฟ้าปี 2558 ระหว่างวันที่ 16 – 28 กันยายน 2558, สำนักงานคณะกรรมการกำกับกิจการ พลังงาน, 7 ส.ค. 2564. [ออนไลน์]. เข้าถึงได้จาก: http://www.erc.or.th/ ERCWeb2/Upload/Document/สรุปผลการรับฟังความคิดเห็นการปรับ โครงสร้างค่าไฟปี%2058%20pdf(ปรับ).pdf.