# Homework Assignment 2

**Problem.** The n-dimensional hypercube  $Q_n$  is a simple graph whose vertex set is  $\{(x_1, \ldots, x_n) \mid x_i \in \{0, 1\}\}$ . Two vertices are adjacent in this graph if and only if they agree in exactly n-1 coordinates. Then  $Q_n$  has a Hamiltonian cycle for  $n \geq 2$ 

Proof. By Induction

### **Basis:**

For the base case, look at the 2-Dimension square,  $Q_1 = C_{2,1} = (n_0, ..., n_j)$ , which has a Hamiltonian Cycle.

## **Induction:**

Assume that it holds for  $Q_k$  (want to show that it then holds for  $Q_{k+1}$ ). Now, let  $C_{k,1} = (u_0, ..., u_j)$  and  $C_{k,2} = (v_0, ..., v_j)$  Then, create a hypercube with  $C_{k,1}$  and  $C_{k,2}$  by following vertex  $u_0$  to  $u_j$ , then from  $u_j$  to  $v_j$ , then follow  $C_{k,2}$  backwards from  $v_j$  to  $v_0$  and then connect it back to  $u_0$ . This will create a Hamiltonian cycle with the hypercube  $Q_k$ . Now if we add the base case, we will follow similar steps to connecting  $C_{2,1}$  with  $C_{k,1}$  and  $C_{k,2}$ . This will create hypercube  $Q_{k+1}$  with a Hamiltonian cycle. Thus, it holds that  $Q_n$  has a Hamiltonian cycle for  $n \geq 2$ , by induction.

**Problem.** The two longest paths in any tree must cross each other.

Proof. Let  $P_1 = (n_0, ..., n_i)$  and  $P_2 = (m_0, ..., m_i)$  be the two longest paths in any tree, T. For the sake of contradiction, assume that  $P_1$  and  $P_2$  do not share any vertices. Since both paths exist within the same tree T, there must be a path,  $P_3$  that connects  $P_1$  and  $P_2$ . Define this path such that it is the shortest path from  $P_1$  to  $P_2$ , and only shares one vertex with each path. Then we can construct  $P_3 = (l_0 = n_p, l_1, ..., l_k = m_q)$ , where  $n_p \in (n_0, ..., n_i)$  and  $m_q \in (m_0, ..., m_i)$ . Now, consider the path  $P_4 = (n_0, ..., n_p, l_1, ..., l_{k-1}, m_q, m_{q-1}, ..., m_0)$ . With certain restrictions on where  $n_p$  and  $m_q$  lie within their respected paths, we know that the length of  $P_4$  is greater than either path  $P_1$  or  $P_2$ , contradicting that  $P_1$  and  $P_2$  are the two longest paths. Thus the two longest paths within any tree, T, share a vertex.

**Problem.** The chromatic polynomial p(x) of a simple graph G is the number of ways to properly color G using up to x colors, where x is a positive integer. Let  $K_{m,n}$  be the bipartite graph with vertex set  $[m] \cup [n]$  obtained by connecting each vertex of [m] to each vertex of [n]. Find the chromatic polynomial of  $K_{3,3}$ .

*Proof.* Considering the chromatic polynomial  $K_{3,3}$ , we will have three cases it must follow.

# Case 1: Vertex set [m] will all be one color.

In this case, vertex set [m] only uses one color, meaning that there are [x-1] colors left to choose from to color the 3 vertices in vertex set [n]. Therefore, in this case, we have  $x(x-1)^3$ .

## Case 2: Vertex set [m] will have two different colors.

In this case, vertex set [m] uses two colors, meaning that two of the vertices must share a same color, which there are  $\binom{3}{2}$  ways to do. Also since vertex set [m] has two colors, we know it can be represented by (x)(x-1). For vertex set [n] there are (x-2) colors to choose from. Therefore, in this case, we have  $\binom{3}{2}x(x-1)(x-2)^3$ .

# Case 3: Vertex set [m] will have three different colors.

In this case, since there are only three vertices in set [m], all vertices will be different colors, meaning it vertex set [m] can be represented by x(x-1)(x-2). For vertex set [n] there are (x-3) colors to choose from. Therefore, in this case, we have  $x(x-1)(x-2)(x-3)^3$ . Thus, combining the three cases, we get:

$$K_{3,3} = x(x-1)^3 + {3 \choose 2}x(x-1)(x-2)^3 + x(x-1)(x-2)(x-3)^3$$

**Problem.** Find the smallest tree with at least one edge that has no non-trivial automorphisms. Prove your tree is indeed the smallest possible

*Proof.* The following tree, T, is the smallest tree that has no non-trivial automorphisms.



To further prove this claim, we will look at cases that will remove certain vertices and will show that the resulting graph, T' is a tree with trivial automorphisms or that it is no longer a tree.

#### Case 1: We remove vertex A.

Looking at this case, if we remove vertex A, the resulting tree T' has a resulting trivial automorphism since each vertex is the same distance from the middle.

## Case 2: We remove vertex F.

This case follows from the first case.

### Case 3: We remove vertex G.

This case follows from the two previous cases.

<u>Case 4:</u> We remove any one vertex from the remaining vertices:  $\{B, C, D, E\}$ . Looking at this case, if we remove any of those vertices, then the resulting graph T' is no longer a tree and thus is not the smallest tree. Since the tree T given has no non-trivial automorphisms, and we showed that if we try to make the tree smaller by one vertex you will no longer have a tree with non-trivial automorphisms or you will no longer have a tree in general, the tree T must be the smallest tree with no non-trivial automorphisms.