Greek characters

Name	Symbol	Typical use(s)
alpha	α	angle, constant
beta	β	angle, constant
gamma	γ	angle, constant
delta	δ	limit definition
epsilon	ϵ or ε	limit definition
theta	θ or ϑ	angle
pi	π or π	circular constant
phi	ϕ or φ	angle, constant

Named sets

empty set	Ø
real numbers	R
ordered pairs	${f R}^2$

integers	\mathbf{Z}
positive integers	$\mathbf{Z}_{>0}$
positive real	$\mathbf{R}_{>0}$

Set symbols

Meaning	Symbol
is a member	\in
subset	
intersection	

Meaning	Symbol
union	U
complment	$superscript^{C}$
set minus	\

Intervals

For numbers a and b, we define the intervals:

$$(a, b) = \{x \in \mathbf{R} \mid a < x < b\}$$

$$[a, b) = \{x \in \mathbf{R} \mid a \le x < b\}$$

$$(a, b] = \{x \in \mathbf{R} \mid a < x \le b\}$$

$$[a,b] = \{x \in \mathbf{R} \mid a \le x \le b\}$$

Logic symbols

Meaning	Symbol
negation	Г
and	\wedge
or	V
implies	\implies

Meaning	Symbol
equivalent	=
iff	\iff
for all	\forall
there exists	∃

Tautologies

$$\begin{split} \neg(P \land Q) &\equiv \neg P \lor \neg Q \\ P &\implies Q \equiv P \land \neg Q \\ (P &\iff Q) \equiv ((P \implies Q) \land (Q \implies P)) \\ \neg(\forall x \in A)(P(x)) &\equiv (\exists x \in A)(\neg P(x)) \\ \neg(\exists x \in A)(P(x)) &\equiv (\forall x \in A)(\neg P(x)) \end{split}$$

Generalized set operators

Each member of a set C is a set:

$$\bigcup_{A \in \mathcal{C}} A = \{z \mid (\exists \, B \in \mathcal{C})(z \in B)\}$$
$$\bigcap_{A \in \mathcal{C}} A = \{z \mid (\forall \, B \in \mathcal{C})(z \in B)\}$$

Theorem:
$$\bigcup_{A \in \mathcal{C}} A^{\mathcal{C}} = \left(\bigcap_{A \in \mathcal{C}} A\right)^{\mathcal{C}}$$

Functions applied to sets

Let $A \subset \text{dom}(F)$ and $B \subset \text{codom}(F)$:

$$F(A) = \{ F(x) \mid x \in A \}$$
$$F^{-1}(B) = \{ x \in \text{dom}(F) \mid F(x) \in B \}$$

Function notation

dom(F)	domain of function F
range(F)	range of function F
C_A	set of continuous functions on set A
\mathbf{C}_A \mathbf{C}_A^1	set of differentiable functions on set A
$A \to B$	set of functions from A to B

Triangle inequalities

For all $x, y \in \mathbf{R}$, we have

$$|x+y| \le |x| + |y|$$
$$||x| - |y|| \le |x-y|$$

Floor and ceiling

Definitions:

Properties:

$$(\forall x \in \mathbf{R}, n \in \mathbf{Z})(x < n \iff \lfloor x \rfloor < n)$$
$$(\forall x \in \mathbf{R}, n \in \mathbf{Z})(n < x \iff n < \lceil x \rceil)$$

Bounded sets

Bounded below A set *A* is *bounded below* provided $(\exists M \in \mathbf{R})(\forall x \in A)(M < x)$.

Bounded above The set *A* is *bounded above* provided $(\exists M \in \mathbf{R})(\forall x \in A)(x < M)$.

Bounded A set is *bounded* if it is bounded below and bounded above.

Elementary function properties

Increasing $(\forall x, y \in A)(x < y \implies F(x) \le F(y))$. For strictly increasing, replace $F(x) \le F(y)$ with F(x) < F(y).

Decreasing $(\forall x, y \in A)(x < y \implies F(x) \ge F(y))$ For strictly decreasing, replace $F(x) \ge F(y)$ with F(x) > F(y).

One-to-one

$$(\forall x, y \in dom(F))(F(x) = F(y) \implies x = y)$$

Subadditive

$$(\forall x, y \in \text{dom}(F))(F(x+y) \le F(x) + F(y))$$

Bounded above $(\exists M \in \mathbf{R})(\forall x \in \text{dom}(F))(F(x) < M)$

Bounded below $(\exists M \in \mathbf{R})(\forall x \in \text{dom}(F))(M < F(x))$

Topology

Open ball $ball(a,r) = \{x \in \mathbf{R} \mid -r < x - a < r\}$

Punctured ball $ball'(a, r) = ball(a, r) \setminus \{a\}$

Open set A subset A of **R** is *open* provided $(\forall x \in A) (\exists r \in \mathbf{R}_{>0})(\text{ball}(x, r) \subset A)$

Closed set A subset A of R is closed provided $\mathbf{R} \setminus A$ is open.

Limit point A number a is a *limit point* of a set A provided $(\forall r \in \mathbf{R}_{>0})(\text{ball}'(a,r) \cap A \neq \emptyset)$

Open cover A set C is a cover of a set A provided

- (a) every member of C is a set
- (b) $A \subset \bigcup_{B \in S} B$

Compact A set A is compact provided for every open cover C of A, there is a finite subset C' of C such that C' is an open cover of A.

Least and greatest bounds

For any subset A of \mathbf{R} :

glb z = glb(A) provided

- (a) z is an lower bound for A
- (b) x is a lower bound for A implies $z \leq x$

lub z = lub(A) provided

- (a) z is an upper bound for A
- (b) x is a upper bound for A implies $z \leq x$

Sequences

Bounded A sequence F is bounded if range(F) bounded.

Cauchy A sequence F is Cauchy provided

- (a) for every $\varepsilon \in \mathbf{R}_{>0}$
- (b) there is $n \in \mathbf{Z}$
- (c) such that for all $k, \ell \in \mathbf{Z}_{>n}$
- (d) $|F_k F_\ell| < \varepsilon$

Converges A sequence F converges provided

- (a) there is $L \in \mathbf{R}$
- (b) and $n \in \mathbf{Z}$
- (c) such that for all $k \in \mathbb{Z}_{>n}$
- (d) $|F_k L| < \varepsilon$.

Functions

Continuous A function F is continuous at a provided

- (a) $a \in dom(F)$; and
- (b) for every $\varepsilon \in \mathbf{R}_{>0}$
- (c) there is $\delta \in \mathbf{R}_{>0}$
- (d) such that for all $x \in \text{ball}(a, \delta) \cap \text{dom}(F)$
- (e) we have $F(x) \in \text{ball}(F(a), \epsilon)$.

Uniformly continuous A function F is uniformly continuous on a set A provided

- (a) $A \subset dom(F)$; and
- (b) for every $\varepsilon \in \mathbf{R}_{>0}$
- (c) there is $\delta \in \mathbf{R}_{>0}$
- (d) such that for all $x, y \in A \land |x y| < \delta$
- (e) we have $|F(x) F(y)| < \epsilon$.

Limit A function F has a limit toward a provided

- (a) a is a limit point of dom(F); and
- (b) there is $L \in \mathbf{R}$
- (c) such that for every $\varepsilon \in \mathbf{R}_{>0}$
- (d) there is $\delta \in \mathbf{R}_{>0}$
- (e) such that for all $x \in \text{ball}'(a, \delta)$
- (f) we have $F(x) \in \text{ball}(L, \epsilon)$.

- (a) $a \in dom(F)$; and
- (b) there is $\phi \in \text{dom}(F) \to \mathbf{R}$
- (c) such that ϕ is continuous at a and
- (d) $(\forall x \in \text{dom}(F))(F(x) = F(a) + (x a)\phi(x)).$

Riemann sums

Partition A set \mathcal{P} is a partition of an interval [a, b] provided

- (a) the set \mathcal{P} is finite
- (b) every member of \mathcal{P} is a closed interval
- (c) the members of \mathcal{P} are pairwise disjoint
- (d) $\bigcup_{I \in \mathcal{P}} I = [a, b]$

Let F be a bounded function on an interval [a, b] and let \mathcal{P} be a partition of [a, b].

 $\mathbf{Lower \ sum} \quad \underline{S}(\mathcal{P}) = \sum_{I \in \mathcal{P}} \mathrm{glb}(F(A)) \times \mathrm{length}(I)$

 $\mathbf{Upper\ sum}\quad \overline{S}(\mathcal{P}) = \sum_{I \in \mathcal{P}} \mathrm{lub}(F(A)) \times \mathrm{length}(I)$

 $\textbf{Riemann sum} \quad \sum_{I \in \mathcal{P}, x^{\star} \in I} F(x^{\star}) \times \operatorname{length}(I)$

Axioms

Completeness Every nonempty subset A of \mathbf{R} that is bounded above has a least upper bound.

Well-ordering Every non-empty set of positive integers contains a least element.

Induction

$$(\forall n \in \mathbf{Z}_{>0}) \iff P(0) \land (\forall n \in \mathbf{Z}_{>0} P(n) \implies P(n+1))$$

Named theorems

Bolzano-Weirstrass Every bounded real valued sequence has a convergent subsequence.

Heine–Borel A subset of **R** is compact iff it is closed and bounded.

Intermediate value theorem If $F \in C_{[a,b]}$, then $F(I) \subset [\min(F(a), F(b)), \max(F(a), F(b))].$

Mean Value If $F \in C_{[a,b]} \cap C^1_{(a,b)}$, there is $\xi \in (a,b)$ such that $(b-a)F'(\xi) = F(b) - F(a)$.