EECS 340: Assignment 2

Shaochen (Henry) ZHONG, sxz517 Zhitao (Robert) CHEN, zxc325

Due and submitted on 02/03/2020 EECS 340, Dr. Koyutrk

Problem 1

(a)
$$max\{f(n), g(n)\} = \Theta(f(n) + g(n))$$

Since it is known that $f(n) \ge 0$, $g(n) \ge 0$, and c > 0; we must have:

$$f(n) \leq f(n) + g(n)$$

$$g(n) \leq f(n) + g(n)$$

$$\Rightarrow \max(f(n), g(n)) \in O(f(n) + g(n)) \quad \text{for } \begin{cases} c = 1 \\ \forall n_0 \in \mathbb{R} \end{cases}$$

$$(1)$$

Since it is also known that $f(n) + g(n) \le 2 \cdot \max(f(n), g(n))$, we may therefore infer:

$$\max(f(n), g(n)) \in \Omega(f(n) + g(n)) \quad \text{for } \begin{cases} c = \frac{1}{2} \\ \forall n_0 \in \mathbb{R} \end{cases}$$
 (2)

Since both the O- and Ω -notation are established, we may therefore conclude:

$$\max(f(n), g(n)) \in \Theta(f(n) + g(n)) \tag{3}$$

(b1)
$$f(n) + d = O(f(n))$$
.

For the seek of disambiguation, we rewrite the questioned equation as f(n) + d = O(f(n)) by d replacing c for d > 0.

According to the defination of *O*-notation, we have:

$$f(n) = O(f(n))$$

$$\exists c, n_0 > 0 \text{ s.t. } 0 \le f(n) \le cf(n) \quad \text{for } n \ge n_0$$
(4)

$$\exists n' > 0 \text{ s.t. } f(n) \ge f(n') \text{ for } n, n' \ge n_0$$
 (5)

$$\Rightarrow 0 \le f(n) + d \le cf(n) + d \quad \text{for } n \ge n_0 \tag{6}$$

Due to Equation 5, we may rewrite Euquation 6 as:

$$0 \le f(n) + d \le \left(c + \frac{d}{f(n)}\right)f(n) \tag{7}$$

$$\Rightarrow 0 \le f(n) + d \le c' f(n) \quad \text{for } \begin{cases} c' = c + \frac{d}{f(n')} \\ n, n' \ge n_0 \end{cases}$$
 (8)

Based Euquation 8, we may conclude f(n) + d = O(f(n)) via direct proof.

(b2) If
$$f(n) \ge 1$$
, then $f(n) + c = O(f(n))$.

Please refer to proof at **b1** as it provides a broader proof base on f(n) regardless $f(n) \ge 1$ or not.

(c1) If
$$f(n) = O(g(n)), \log(f(n)) \ge 0$$
 and $\log(g(n)) \ge 0$, then $\log(f(n)) = O(\log(g(n))$.

According to the defination of O-notation, we must have:

$$\exists c, n_0 > 0 \text{ s.t. } f(n) \le cg(n) \text{ for } n \ge n_0$$
 (9)

Since it is given that $\log(f(n)), \log(g(n)) \geq 0$, thus we must have:

$$\log(f(n)) \le \log(c(g(n))) \quad \text{for } n \ge n_0$$

$$\Rightarrow \log(f(n)) \le \log c + \log(g(n)) \quad \text{for } n \ge n_0$$
(10)

As c, n_0 are constants, there must be a constant c' s.t.

Case 1 Assume $\log(g(n_0)) \neq 0$:

$$c' \ge \frac{\log c}{\log(g(n_0))} + 1 \tag{11}$$

$$\Rightarrow (c'-1)\log(g(n)) \ge (c'-1)\log(g(n_0)) \ge \log c \quad \text{for } n \ge n_0$$

$$\exists c, n_0 > 0 \quad \text{s.t.}$$
(12)

$$\log(f(n)) \le \log c + \log(g(n)) \le (c'-1)\log(g(n)) + \log(g(n))$$
 for $n \ge n_0$ (13)

$$\Rightarrow \log(f(n)) \le c' \log(g(n)) \tag{14}$$

Thus we may conclude log(f(n)) = O(log(g(n))) for this case.

Case 2 Assume $\log(g(n_0)) = 0$:

Since $\log(g(n_0)) = 0$, we shall infer that $g(n_0) = 1$. We may arbitrarily pick some constants c, c' where:

$$\log c \le 0$$

$$\log c \le (c' - 1) \cdot 0$$

$$\log c \le (c' - 1) \cdot \log(g(n_0))$$
(15)

Since $n \ge n_0$ by defination, and known that $g(n) \ge 1$ due to $\log(g(n)) \ge 0$; therefore there must be $g(n) \ge g(n_0)$. Putting this into the context of Equation 10, we may have:

$$\log(f(n)) \le \log c + \log(g(n)) \quad \text{for } n \ge n_0$$

$$\Rightarrow \log(f(n)) \le (c' - 1) \cdot \log(g(n_0)) + \log(g(n))$$

$$\Rightarrow \log(f(n)) \le (c' - 1) \cdot \log(g(n)) + \log(g(n))$$

$$\Rightarrow \log(f(n)) \le c' \log(g(n))$$
(16)

Thus we may conclude log(f(n)) = O(log(g(n))) for this case.

Since both cases reach to the conclusion of log(f(n)) = O(log(g(n))), we have proven the statement to be valid.

(c2) If
$$f(n) = O(g(n)), \log(f(n)) \ge 0$$
 and $\log(g(n)) \ge 1$, then $\log(f(n)) = O(\log(g(n))$.

According to the defination of O-notation, we must have:

$$\exists c, n_0 > 0 \text{ s.t. } f(n) \le cg(n) \text{ for } n \ge n_0$$
 (17)

Since it is given that $\log(f(n)) \ge 0$, $\log(g(n)) \ge 1$, thus we must have:

$$\log(f(n)) \le \log(c(g(n))) \quad \text{for } n \ge n_0$$

$$\Rightarrow \log(f(n)) \le \log c + \log(g(n)) \quad \text{for } n \ge n_0$$
(18)

As c, n_0 are constants, there must be a constant c' s.t.

$$c' \ge \frac{\log c}{\log(g(n_0))} + 1 \tag{19}$$

$$\Rightarrow (c'-1)\log(g(n)) \ge (c'-1)\log(g(n_0)) \ge \log c \quad \text{for } n \ge n_0$$

$$\exists c, n_0 > 0 \quad \text{s.t.}$$
(20)

$$\log(f(n)) \le \log c + \log(g(n)) \le (c'-1)\log(g(n)) + \log(g(n))$$
 for $n \ge n_0$ (21)

$$\Rightarrow \log(f(n)) \le c' \log(g(n)) \tag{22}$$

Thus we may conclude $log(f(n)) = O(\log(g(n)))$, the statement is therefore proven to be valid.

(d1)
$$f(2n) = \Theta(f(n))$$

Since it is known that $f(n) \ge 0$, $g(n) \ge 0$, and c > 0; we must have a constant c' > 0 which satisfy:

Case 1 Assume $f(n) \neq 0$.

$$c' \ge \frac{f(2n)}{f(n)} \tag{23}$$

$$\Rightarrow f(2n) \le c'(f(n)) \tag{24}$$

Thus we may conclude f(2n) = O(f(n)).

Similarly, we may also have a constant c'' > 0 which satisfy:

$$c'' \le \frac{f(2n)}{f(n)} \tag{25}$$

$$\Rightarrow f(2n) \ge c''(f(n)) \tag{26}$$

Thus we may conclude $f(2n) = \Omega(f(n))$.

Since both the O- and Ω -notation are established, we may therefore conclude $f(2n) = \Theta(f(n))$ in this case.

Case 1 Assume f(n) = 0 for n.

Thus we must have two constants k_1, k_2 which satisfy:

$$f(2n) = 0 (27)$$

$$k_1(0) \le f(2n) \le k_2 f(n) \Rightarrow k_1(0) \le 0 \le k_2(0), \ \forall k \in \mathbb{R}^+$$
 (28)

Thus we may conclude $f(2n) = \Theta(f(n))$.

Since both cases reach to the conclusion of $f(2n) = \Theta(f(n))$, we have proven the statement to be valid.

(d2) If
$$f(n) = O(n^c)$$
, then $f(2n) = O(n^c)$

As It is known from **d1** that $f(2n) = \Theta(f(n))$, which implies f(2n) = O(f(n)). Also it is given that $f(n) = O(n^c)$. Together, we shall infer $f(2n) = O(n^c)$ due to the transitivity property of Θ - and O-notations.

(d3) If
$$f(n) = \Theta(n^c)$$
, then $f(2n) = \Theta(f(n))$

Please refer to proof at **d3** as it provides a broader proof base on f(n) regardless $f(n) = \Theta(n^c)$ or not.

Problem 2

Answer

$$\frac{1}{n^a} \ll \frac{1}{n^{\epsilon}} \ll \log_{\frac{1}{\epsilon}}(n) \text{ (when } 0 < \epsilon < \frac{1}{2}) \ll \log(n^{\epsilon}) \equiv \log(bn) \equiv \log(n^a)$$
 (29)

$$\equiv \log(n^b) \le \log_{\frac{1}{\epsilon}}(n) \text{ (when } \epsilon \ge \frac{1}{2}) \ll (\log n)^a \ll n^{\epsilon}$$
 (30)

$$\ll a^{\log_a(n)} \equiv \epsilon n \equiv \frac{n}{a} \ll n^a \equiv (n+b)^a$$
 (31)

$$\ll (n+a)^b \ll n^{a+b} \ll \epsilon^n \ll a^{\epsilon n} \equiv a^n \ll b^n$$
 (32)

Justification of $\log(n^{\epsilon}) \equiv \log(bn) \equiv \log(n^{a}) \equiv \log(n^{b})$

The above equations can be rewrite as:

$$\log(n^{\epsilon}) = \epsilon \log(n) \tag{33}$$

$$\log(n^a) = a\log(n) \tag{34}$$

$$\log(bn) = \log(b) + \log(n) \tag{35}$$

$$\log(n^b) = b\log(n) \tag{36}$$

Where all of them can be generalized as $\Theta(\log(n))$, as it is known that $n^{\epsilon} \leq bn \leq n^{a}$ due to the decending of power(s).

Justification of $\log_{\frac{1}{\epsilon}}(n)$ (when $0 < \epsilon < \frac{1}{2}$) $\equiv \log(n^b) \le \log_{\frac{1}{\epsilon}}(n)$ (when $\epsilon \ge \frac{1}{2}$)

It is known that when $\epsilon < \frac{1}{2} \Rightarrow \frac{1}{\epsilon} \geq 2$; when $\epsilon \geq \frac{1}{2} \Rightarrow \frac{1}{\epsilon} \leq 2$. Since it is observable that $\log_x(n) \gg \log_{x'}(n)$ for x < x', such (in)equality is valid.

Justification of $a^{\log_a(n)} \equiv \epsilon n \equiv \frac{n}{a}$

The above equations can be rewrite as:

$$a^{\log_a(n)} = n^1 = \Theta(n) \tag{37}$$

$$\epsilon n = \Theta(n) \tag{38}$$

$$fracna = \frac{1}{a}n = \Theta(n) \tag{39}$$

Thus, the above equality is justified.

Justification of $a^{\epsilon n} \equiv a^n$

We may rewrite $a^{\epsilon n}$ as the following, since there must be a c for $c \in \mathbb{R}^+$ which satisfy the equality.

$$a^{\epsilon} \cdot a^n = c \cdot a^n = \Theta(a^n) \tag{40}$$

Since it is known that $a^n = \Theta(a^n)$, these two expressions are considered equivalent.