CH 1 – Precalculus Review

Luke Lu • 2025-09-13

Real and Transcendental Functions

Real-Valued Functions

Let *X* and *Y* be sets. A function *f* assigns to each xinX exactly one y = f(x)inY:

$$f: XtoY, ; x \mapsto f(x).$$

Domain and Range

For f: XtoY:

- **Domain** $D(f) = \{x : f(x) \text{ is well-defined}\}.$
- Range $R(f) = \{f(x) : xinX\}.$

Parity

- f is **even** if f(-x) = f(x) for all xinD(f) (y-axis symmetry).
- g is **odd** if g(-x) = -g(x) for all xinD(g) (180° rotation).

Examples (domains & ranges)

Function	Domain	Range
y = x	\mathbb{R}	\mathbb{R}
$y = x^2$	\mathbb{R}	$[0,\infty)$
$y = \sqrt{x}$	$[0,\infty)$	$[0,\infty)$
$y = \frac{1}{x}$	$\mathbb{R}\setminus\{0\}$	$\mathbb{R}\setminus\{0\}$
e^x	\mathbb{R}	$(0,\infty)$
ln(x)	$(0,\infty)$	\mathbb{R}
$\sin(x)$	\mathbb{R}	[-1, 1]
$\cos(x)$	\mathbb{R}	[-1, 1]
$\tan(x)$	$\mathbb{R}\setminus\{\frac{(2k+1)\pi}{2}:k\in\mathbb{Z}\}$	\mathbb{R}
$\arcsin(x)$	[-1, 1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
$\arccos(x)$	[-1, 1]	$[0,\pi]$
$\arctan(x)$	\mathbb{R}	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
y = x	\mathbb{R}	$[0,\infty)$

Function Operations

Composition

Given
$$f:X \to Y$$
 and $g:Y \to Z$ $(g \circ f):X \to Z, (g \circ f)(x)=g(f(x))$

Inverse

 $f: X \to Y$ is invertible if there exists $f^{\{-1\}}: Y \to X$ with

$$f^{-1}(f(x)) = x$$
 for $x \in X, f(f^{-1}(y)) = y(\text{for})y \in Y.$

Piecewise (absolute value)

$$|x| = \begin{cases} x \text{ if } x \ge 0\\ -x \text{ if } x < 0 \end{cases}$$

Examples:

1. Find the domain of this function:

$$f(x) = \frac{x}{x^2 - x} = \frac{x}{(x - 1)x}; x \neq 0, 1$$

 $Domain = \mathbb{R} \setminus \{0,1\} = (-\infty,0) \cup (0,1) \cup (1,\infty)$

- 2. The domain of $\cos(x)$ is $\mathbb R$ with range of [-1,1] Its inverse is $\arccos(x)$ will have domain [-1,1] and range of $[0,\pi]$
- 3. Parity questions:
 - 1) A find that is odd that is not a power of x: sin(x)
 - 2) A find that is even that is not a power of x: cos(x)
 - 3) A fn that is neither even nor odd: $\sin(e^x)$ or e^x
 - 4) A fin that is even and odd: f(x) = 0
- 4) Factor $x^3 + 10x^3 + 13x 24$

Find a factor: x = 1, it will always be the factor of the constant term.

So
$$x - 1$$
 is a factor of $x^3 + 10x^3 + 13x - 24$

 $x^2 + 11x + 24$ is the quotient of the factorization of the polynomial.

$$x^2 + 11x + 24 = (x+3)(x+8)$$

$$x^3 + 10x^3 + 13x - 24 = (x - 1)(x + 3)(x + 8)$$