Chapitre 1 - Approche énergétique

Sciences Industrielles de

l'Ingénieur

Activation 1

Activation - Système de dépose de composants électroniques

Émilien Durif - E3A PSI 2011 Savoirs et compétences :

- □ Mod2.C18.SF1 : Déterminer l'énergie cinétique d'un solide, ou d'un ensemble de solides, dans son mouvement par rapport à un autre solide.
- Res1.C1.SF1: Proposer une démarche permettant la détermination de la loi de mouvement.

Le système étudié permet de déposer automatiquement des composants électroniques sur un circuit. On s'intéresse ici à la modélisation d'un seul axe (selon la direction notée $\overrightarrow{y_0}$) actionné par un moteur électrique et utilisant un mécanisme de transformation de mouvement « vis-écrou ».

Hypothèses:

- le référentiel associé au repère $R_0 = (O_0; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ est supposé galiléen;
- les solides seront supposés indéformables;
- on notera J_1 le moment d'inertie du solide 1 (composé d'une vis à billes et de l'arbre moteur) selon l'axe $(O_0, \overrightarrow{y_0}): J_1 = I_{(O_0, \overrightarrow{y_0})}(S_1);$
- on note M_3 et G_3 respectivement la masse et le centre d'inertie du solide S_3 ;
- la position de G_3 est définie par $\overrightarrow{O_0G_3} = y \cdot \overrightarrow{y_0} + z \cdot \overrightarrow{z_0}$
- les liaisons sont supposées parfaites (sans jeu ni frottement) sauf la glissière entre S_0 et S_3 (Coefficient de frottement noté μ) et la pivot entre S_0 et S_1 (couple résistant noté C_r);
- seul l'action de pesanteur sur S₃ sera supposée non négligeable.

- S₀ : poutre transversale considérée comme fixe par rapport au bâti.
- S_1 : vis à billes (hélice à droite) et arbre moteur.
- S_2 : écrou de la vis à billes (inertie négligeable).
- S₃ : chariot supportant la tête de dépose (masse M_3).

Données numériques associées au système :

- Coefficient de frottement dans la liaison glissière (rail + patin à billes) : $\mu = 0, 1$.
- Pas de la vis à billes : $p = 20 \,\mathrm{mm}$.
- Diamètre de la vis à billes : $D = 25 \,\mathrm{mm}$.
- Moment d'inertie de la vis à billes suivant l'axe $\overrightarrow{y_0}$: $I_v = 2,15 \times 10^{-4} \text{ kg m}^2$.
- · Couple résistant sur la vis due à son guidage (paliers + joints) : $C_r = 3 \text{ Nm}$.
- l, longueur libre de la vis entre deux paliers (mm): 1000 mm.
- · Caractéristiques du moteur d'axe (puissance, vitesse maxi, inertie):
 - couple maximal, $C_{\text{max}} = 21,2 \text{ Nm}$;

1

- fréquence de rotation maximale, N_m 6000 tr/min;
- moment d'inertie du rotor du moteur suivant l'axe $\overrightarrow{y_0}$, $I_m = 1,6 \times 10^{-4} \text{ kg m}^2$.

Objectif L'objectif de cette étude est de relier les grandeurs liées à l'actionneur du système (moteur) :

- couple moteur transmis à $S_1 : \overrightarrow{C}_{\text{Moteur} \to S_1} \cdot \overrightarrow{y_0} = C_m(t);$
- vitesse de rotation de $S_1: \overrightarrow{\Omega}(S_1/R_0) \cdot \overrightarrow{y_0} = \dot{\theta}(t)$; à celles liées à l'effecteur (tête de dépose S_3):
 - masse: M_3 ;
 - cinématique de S_3 : $\overrightarrow{a}(G_3R_0) \cdot \overrightarrow{y_0} = \ddot{y}(t)$.

On considère l'ensemble $E = \{S_1 + S_2 + S_3\}.$

Question 1 Construire le graphe des liaisons modélisant le système entier.

Question 2 Déterminer l'expression de $\mathcal{P}(ext \to E/R_g)$ en fonction de puissances extérieures élémentaires (on ne développera pas les calculs explicitement pour l'instant).

Question 3 Calculer $\mathcal{P}(ext \to E/R_0)$ en fonction des données du problème.

Question 4 Calculer l'ensemble des puissances des actions mutuelles dans les liaisons pour l'ensemble $E: \mathcal{P}_{int}(E)$.

Question 5 Déterminer l'énergie cinétique de l'ensemble E dans son mouvement par rapport à R_0

Question 6 Déterminer la mobilité du système.

Question 7 Déterminer une relation entre les paramètres cinématiques du problème.

Question 8 Déterminer l'inertie équivalente de E ramenée à la rotation autour de l'axe $(O_0, \overrightarrow{y_0})$ et du para-

mètre $\dot{\theta}(t)$.

Question 9 Déterminer la masse équivalente de E ramené à la translation selon la direction $\overrightarrow{y_0}$ et du paramètre $\dot{y}(t)$.

Question 10 Appliquer le théorème de l'énergie cinétique à l'ensemble E.

Question 11 Déterminer des équations supplémentaires issues des théorèmes généraux pour déterminer l'équation de mouvement du système permettant de relier C_m à y(t).

Question 12 Déterminer le couple moteur à fournir dans le cas le plus défavorable (accélération maximale).

On cherche à déterminer en régime permanent les pertes au niveaux de la liaison hélicoïdale entre S_1 et S_2 . On considère donc les actions mécaniques de frottement nulles partout ailleurs dans le système global. On introduit alors un rendement η défini en régime permanent et donc à variation d'énergie cinétique négligeable.

Question 13 En considérant le système $E_1 = \{S_1 + S_2\}$, définir le rendement.

Question 14 On définit la puissance dissipée comme la puissance des inter-effort entre S_1 et S_2 . En appliquant un théorème de l'énergie cinétique à S_2/R_0 et S_1/R_0 en régime permanent donner l'expression des puissances dissipées dans la liaison hélicoïdale.

On donne:

• Rendement η dans la liaison hélicoïdale : $\eta = 0.8$;

Question 15 Déterminer dans ces conditions les dissipations.