Setting-up GNN Prediction Tasks

GNN Training Pipeline (5)

(5) How do we split our dataset into train / validation / test set?

Dataset split

Dataset Split: Fixed / Random Split

- Fixed split: We will split our dataset once
 - Training set: used for optimizing GNN parameters
 - Validation set: develop model/hyperparameters
 - Test set: held out until we report final performance
- A concern: sometimes we cannot guarantee that the test set will really be held out
- Random split: we will randomly split our dataset into training / validation / test
 - We report average performance over different random seeds

- Suppose we want to split an image dataset
 - Image classification: Each data point is an image
 - Here data points are independent
 - Image 5 will not affect our prediction on image 1

- Splitting a graph dataset is different!
 - Node classification: Each data point is a node
 - Here data points are NOT independent
 - Node 5 will affect our prediction on node 1, because it will participate in message passing → affect node 1's embedding

Training
Validation
Test

What are our options?

- Solution 1 (Transductive setting): The input graph can be observed in all the dataset splits (training, validation and test set).
- We will only split the (node) labels
 - At training time, we compute embeddings using the entire graph, and train using node 1&2's labels
 - At validation time, we compute embeddings using the entire graph, and evaluate on node 3&4's labels

Training

Validation

Test

- Solution 2 (Inductive setting): We break the edges between splits to get multiple graphs
 - Now we have 3 graphs that are independent. Node 5 will not affect our prediction on node 1 any more
 - At training time, we compute embeddings using the graph over node 1&2, and train using node 1&2's labels
 - At validation time, we compute embeddings using the graph over node 3&4, and evaluate on node 3&4's labels

Training
Validation
Test

Transductive / Inductive Settings

- Transductive setting: training / validation / test sets are on the same graph
 - The dataset consists of one graph
 - The entire graph can be observed in all dataset splits, we only split the labels
 - Only applicable to node / edge prediction tasks
- Inductive setting: training / validation / test sets are on different graphs
 - The dataset consists of multiple graphs
 - Each split can only observe the graph(s) within the split.
 A successful model should generalize to unseen graphs
 - Applicable to node / edge / graph tasks

Example: Node Classification

- Transductive node classification
 - All the splits can observe the entire graph structure, but can only observe the labels of their respective nodes

Training

Validation

Test

- Inductive node classification
 - Suppose we have a dataset of 3 graphs
 - Each split contains an independent graph

Training

Validation

Test

Example: Graph Classification

Test

- Only the inductive setting is well defined for graph classification
 - Because we have to test on unseen graphs
 - Suppose we have a dataset of 5 graphs. Each split will contain independent graph(s).

Training

Validation

Example: Link Prediction

- Goal of link prediction: predict missing edges
- Setting up link prediction is tricky:
 - Link prediction is an unsupervised / self-supervised task. We need to create the labels and dataset splits on our own
 - Concretely, we need to hide some edges from the GNN and the let the GNN predict if the edges exist

Predictions made by GNN

- For link prediction, we will split edges twice
- Step 1: Assign 2 types of edges in the original graph
 - Message edges: Used for GNN message passing
 - Supervision edges: Use for computing objectives
 - After step 1:
 - Only message edges will remain in the graph
 - Supervision edges are used as supervision for edge predictions made by the model, will not be fed into GNN!

- Step 2: Split edges into train / validation / test
- Option 1: Inductive link prediction split
 - Suppose we have a dataset of 3 graphs. Each inductive split will contain an independent graph

- Step 2: Split edges into train / validation / test
- Option 1: Inductive link prediction split
 - Suppose we have a dataset of 3 graphs. Each inductive split will contain an independent graph
 - In train or val or test set, each graph will have 2 types of edges: message edges + supervision edges
 - Supervision edges are not the input to GNN

- Option 2: Transductive link prediction split:
 - This is the default setting when people talk about link prediction
 - Suppose we have a dataset of 1 graph

- Option 2: Transductive link prediction split:
 - By definition of "transductive", the entire graph can be observed in all dataset splits
 - But since edges are both part of graph structure and the supervision, we need to hold out validation / test edges
 - To train the training set, we further need to hold out supervision edges for the training set

Next: we will show the exact settings

Option 2: Transductive link prediction split:

The original graph

(1) At training time:
Use training message
edges to predict training
supervision edges

(2) At validation time:
Use training message
edges & training
supervision edges to
predict validation edges

(3) At test time:
Use training message
edges & training
supervision edges &
validation edges to
predict test edges

Summary: Transductive link prediction split:

Training message edges
Training supervision edges
Validation edges
Test edges

- Note: Link prediction settings are tricky and complex. You may find papers do link prediction differently.
- Luckily, we have full support in PyG and GraphGym

GNN Training Pipeline

Implementation resources:

<u>DeepSNAP</u> provides core modules for this pipeline<u>GraphGym</u> further implements the full pipeline to facilitate GNN design

Summary of the Lecture

We introduce a general GNN framework:

- GNN Layer:
 - Transformation + Aggregation
 - Classic GNN layers: GCN, GraphSAGE, GAT
- Layer connectivity:
 - The over-smoothing problem
 - Solution: skip connections
- Graph Augmentation:
 - Feature augmentation
 - Structure augmentation
- Learning Objectives
 - The full training pipeline of a GNN