# **Assignment 10 - Report**

**Task**: Use what you have learned to build a new IoT device using a sensor and actuator or your choice. Send telemetry to an IoT Hub, and use that to control an actuator via serverless code. You can use a sensor and an actuator you have already used in this or the previous project, or if you have other hardware try something new.

#### I. Purpose

The purpose of this project is to determine the **optimal amount of fertilizer (NPK - Nitrogen, Phosphorus, Potassium), and water** needed. By accurately measuring soil nutrients, farmers can **improve fertilization efficiency, reduce waste, and save time**.

Furthermore, nutrient data will be uploaded to the cloud for analysis. Al-powered predictions will help identify **potential nutrient deficiencies for each crop**, providing farmers with **precise recommendations** on fertilizer application and soil treatment. This approach **optimizes plant growth while minimizing unnecessary costs**, leading to **smarter**, **more sustainable farming**.

#### **Key Features:**

- **IoT Integration:** ESP32-based system connected to **NPK**, **pH**, **and moisture** sensors.
- Cloud Computing: Data uploaded for remote access & historical tracking.
- Al & Machine Learning (Future Feature): Models analyze patterns to cluster land areas with similar nutrient deficiencies and recommend the right fertilizer type and quantity for each group therefore optimizing fertilization strategies.

- **GPS Mapping (Future feature):** Soil nutrient levels are mapped to **precisely** target areas needing treatment.
- Cost Efficiency: Reduces fertilizer waste by applying only what is needed, lowering costs.
- Sustainability: Prevents over-fertilization, reducing environmental impact.

The system will generate **nutrient maps** that visually indicate **areas of deficiency**, allowing farmers to take **immediate action**. Over time, the Al model will **continuously improve** based on collected data, making predictions even more accurate.

### **II. Progress Report**

 LCD display has been successfully create using function from library below and show the NPK level in mg/Kg

adafruit/Adafruit SSD1306 @ ^2.5.9 adafruit/Adafruit GFX Library @ ^1.11.9



- The MAX485 is an RS-485 to TTL (Transistor-Transistor Logic) converter. It acts as a bridge between your ESP32 (which uses TTL serial communication) and the soil NPK sensor (which uses RS-485 communication).
  - ESP32 UART Pins (TX/RX) connect to the MAX485's DI/RO.
  - The MAX485 A/B pins connect to the RS485 data line of your NPK sensor.
  - The DE/RE (Driver Enable/Receiver Enable) pins control whether you're sending or receiving:
    - Set **DE = HIGH and RE = LOW** to send data (write).
    - Set DE = LOW and RE = HIGH to receive data (read).



- Voltage Booster from 5 volt to the range of sensor (12 24 volts):
  - The voltage booster (also called a DC-DC step-up converter)
    increases the 5V power supply from your ESP32 system or USB
    power source to the required 12V-24V to power the RS485 NPK
    sensor.



The soil NPK sensor is a digital sensor designed to measure the concentration
of Nitrogen (N), Phosphorus (P), and Potassium (K) — three critical
macronutrients in soil fertility. It helps farmers and researchers optimize
fertilization, improving crop yield and soil health.

Communication Protocol: RS485 (Modbus RTU)

Operating Voltage: 12V-24V DC

Output: Digital data (N, P, K values in mg/kg or ppm)

• Measurement Range:

Nitrogen: 0–1999 mg/kg

■ Phosphorus: 0–1999 mg/kg

- Potassium: 0-1999 mg/kg
- The sensor is powered using a DC-DC Voltage Booster that steps up 5V to 12V-24V, supplying the sensor with the required operating voltage.



#### 3. Working Flow

- 1. ESP32 sends the correct Modbus request via the MAX485.
- 2. The sensor responds with a data packet including the requested value (e.g., Nitrogen).
- 3. ESP32 parses the response and extracts the numeric nutrient value.
- 4. The data is sent over Wi-Fi using **MQTT or HTTP** to the **Azure IoT Hub** (soil-sensor-Deuna).
- 5. Azure Function Apps or Stream Analytics can process, visualize, or store this data.

## 4. Final Product

 $\frac{attachment:fa946f64-05a4-44b1-b635-a03f9494c612:6489562041545.mp}{\underline{4}}$