Ata 14 de reunião do projeto TETHA - 08/Junho/2006

Presentes (Equipe PUC):

Nome	e-mail	Dedicação
Fernando Moraes	moraes@inf.pucrs.br	coordenador
Ney Laert Vilar Calazans	calazans@inf.pucrs.br	coordenador
Everton Carara	carara@inf.pucrs.br	40
Erico Bastos	ebastos@inf.pucrs.br	40
Alzemiro Henrique Lucas	alzemiro@gmail.com	30
Guilherme Montez Guindani	ac107029@inf.pucrs.br	30
Samuel dos Santos Marczak	samuelmarczak@yahoo.com.br	30
Taciano Ares Rodolfo	taciano@inf.pucrs.br	30

Pauta da reunião:

1. Guindani e Taciano.

- Dificuldades na compreensão da interface Wishbone com o bloco de controle do MAC;
- O Ney irá auxiliar o grupo nesta tarefa.

2. Alzemiro.

- Test bench para ler inúmeros pacotes. Não haverá geração de padding. O offset da célula indica o último byte válido;
- Implementar a separação de células conforme a sessão, e transmitir para arquivos de saída.

3. Érico.

- Deve validar as tabelas de rotemento MAC;
- O procedimento para envio à rede é como segue: (i) a primeira célula de um pacote contém o destino do pacote, o NI busca na tabela de roteamento a relação endereço MAC endereço NoC e armazena em um registrador interno este endereço NoC, utilizando-o para todo o pacote; (ii) as demais células utilizam o mesmo destino. Haverá um estabelecimento de circuito para cada célula do pacote. Não há ainda nesta fase endereço inexistente na tabela, pois isto implicará em broadcast;
- Deve ser definido o algoritmo de recepção de células para a escrita na tabela de roteamento. Observar que neste caso deve-se atentar ao controle de sessão, pois o NI poderá estar recebendo células de diferentes origens. O procedimento básico é o seguinte: ao chegar a primeira célula de uma sessão, escreve-se o endereço MAC e endereço origem na tabela de roteamento. Política de substituição atual: inicialmente a tabela conterá três a quatro endereços válidos, e novos endereços serão acrescidos de forma circular;
- Documentar os algoritmos.

4. Samuel.

 Responsável pela integração do sistema, scripts modelsim e validação da plataforma MOTIMT.

5. Carara.

- Irá implementar o controle de sessão nos reteadores, a fim de permitir que cada roteador possa receber células de até 'n' pacotes simultaneamente, onde 'n' deve ser parametrizável. Inicialmente 'n' será igual a 4;
- Adição de sinais sideband entre o roteador e a interface de rede: número da sessão e ack/nack para sinalizar aceite ou não de estabelecimento de circuito para uma dada célula.
 Se o sinal nack for ativado, a origem deverá esperar aguardar 'k' ciclos de clock antes de retransmitir, onde 'k' deve ser parametrizável. Inicialmente 'k' será igual a 200.

6. Modificação na arquitetura MOTIMT.

Foram acrescentados dois sinais: off_set_ni (off_set_pc) e start_packet_ni (start_packet_pc) figura 1;

Figura 1: Arquitetura MOTIMT.

Próximos Trabalhos:

- Uso do CVS. Atrasado devido a problemas técnicos de acesso ao servidor;
- Apresentar a uma simulação válida para a reunião do dia 20/Junho.

Apresento abaixo (Moraes) os cenários iniciais de teste, que deveremos apresentar no dia 20:

Cenário 1: Teste de sessão, múltiplas portas de origem, aprendizagem, uso dos dois canais físicos e saturação.

- Tabelas de roteamento fixas no início para S1, S2, S3, S4, S5
- Tabelas de roteamento vazias para T1, T2
- Padrões de comunicação (S→source e T→target):
 - \circ S1 \rightarrow T2
 - \circ S3 \rightarrow T2
 - \circ S2 \rightarrow T1
 - \circ S4 \rightarrow T1
 - \circ S5 \rightarrow T1
- Configuração dos geradores de teste: todos com 100 pacotes de 1024 bytes, com intervalo de tempo mínimo (mas configurável) entre os pacotes.
- Estaremos nesta simulação com apenas 500 pacotes (500kB) de dados.

Cenário 1: Teste de sessão, múltiplas portas de origem, aprendizagem, uso dos dois canais físicos e saturação.

Diagrama temporal de envio de pacotes de 1024 bytes:

- Inicialmente apenas os roteadores R8 e R10 tem dados na tabela de roteamento, apontando para o reteador zero.
- No início da simulação os roteadores R8 e R10 enviam pacotes para o roteador R0, fazendo com que haja aprendizado em R0
- O test_bench do roteador R0 deve ser capaz de iniciar o envio de pacotes após um *tempo x*, que deve fazer parte do arquivo de pacotes. Após o tempo x cada porta local do roteador R0 envia pacotes para os destinos ST3, ST4 e ST5 simultaneamente, para avaliarmos o comportamento do controle de sessão e canais físicos.

