Insertion sort & Asymptotisk notation Algorithms and Datastructures, F25, Lecture 2

Andreas Holck Høeg-Petersen

Department of Computer Science Aalborg University

Opdateringer

- Løsninger på exercises kommer på et eller andet tidspunkt
- Fra evaluering:
 - ► Grupper?
 - ► Andet?

Outline

- Insertion Sort
- 2 Loop invarianter og korrekthed
- 3 Exercises

Asymptotisk notation og analyse

Outline

- Insertion Sort
- 2 Loop invarianter og korrekthed
- 3 Exercises
- 4 Asymptotisk notation og analyse

En klassiker

Input En sekvens A af n tal (a_1, a_2, \ldots, a_n)

Output En permutation $(a_1', a_2', \dots, a_n')$ af A således at $a_1' \leq a_2', \leq, \dots, \leq a_n'$

En klassiker

Input En sekvens A af n tal (a_1, a_2, \ldots, a_n) Output En permutation $(a'_1, a'_2, \ldots, a'_n)$ af A således at $a'_1 \leq a'_2, \leq, \ldots, \leq a'_n$

• Tallene vi sorterer kalder vi også nøgler (keys)

En klassiker

Input En sekvens A af n tal (a_1, a_2, \ldots, a_n) Output En permutation $(a'_1, a'_2, \ldots, a'_n)$ af A således at $a'_1 \leq a'_2, \leq, \ldots, \leq a'_n$

- Tallene vi sorterer kalder vi også nøgler (keys)
 - ▶ Nøglerne er nogle gange forskellig fra den data, vi egentlig sorterer

En klassiker

Input En sekvens A af n tal (a_1, a_2, \ldots, a_n)

Output En permutation $(a_1', a_2', \ldots, a_n')$ af A således at $a_1' \leq a_2', \leq, \ldots, \leq a_n'$

- Tallene vi sorterer kalder vi også nøgler (keys)
 - ▶ Nøglerne er nogle gange forskellig fra den data, vi egentlig sorterer
 - ► F.eks. kunne vi sortere brugere (sattelit data) på baggrund af deres alder (nøgler)

En klassiker

Input En sekvens A af n tal $(a_1, a_2, ..., a_n)$ Output En permutation $(a'_1, a'_2, ..., a'_n)$ af A således at $a'_1 \leq a'_2, \leq, ..., \leq a'_n$

- Tallene vi sorterer kalder vi også nøgler (keys)
 - ▶ Nøglerne er nogle gange forskellig fra den data, vi egentlig sorterer
 - ► F.eks. kunne vi sortere brugere (sattelit data) på baggrund af deres alder (nøgler)
- Sortering er tit et underproblem for mange andre problemer, der kan gøres nemmere ved først at sortere inputtet

5/30

En klassiker

Input En sekvens A af n tal $(a_1, a_2, ..., a_n)$ Output En permutation $(a'_1, a'_2, ..., a'_n)$ af A således at $a'_1 \leq a'_2, \leq, ..., \leq a'_n$

- Tallene vi sorterer kalder vi også nøgler (keys)
 - ▶ Nøglerne er nogle gange forskellig fra den data, vi egentlig sorterer
 - ► F.eks. kunne vi sortere brugere (sattelit data) på baggrund af deres alder (nøgler)
- Sortering er tit et underproblem for mange andre problemer, der kan gøres nemmere ved først at sortere inputtet
- Der findes <u>mange</u> sorteringsalgoritmer: merge sort, quicksort, bubble sort, heapsort, cocktail shaker sort, etc. . .

En klassiker

Figure: Screenshot fra Wikipedia

Vores første sorteringsalgoritme!

- Vi starter med at kigge på Insertion sort
- ullet Simple sorteringsalgoritme, effektiv for små værdier af n
 - ▶ Hvad mener jeg med *n*?
 - Også effektiv for næsten sorterede sekvenser!
- Kan ligne sortering af kort:
 - Start med en tom hånd, kortbunken ligger på bordet
 - Tag et kort af gangen fra bunken
 - Søg i hånden til vi finder den korrekte position (fra højre til venstre)
 - Indsæt kortet på denne position

Pseudo-kode

```
Insertion-Sort(A)

1 for i = 2 to n

2   key = A[i]

3   // Insert A[i] into the sorted sequence A[1:i-1]

4   j = i - 1

5   while j > 0 and A[j] > key

6   A[j+1] = A[j]

7   j = j - 1

8   A[j+1] = key
```

Pseudo-kode

- Algoritmen tager et array A[1 : n] som input
- Vedligeholder to sub-arrays
 - ▶ A[1:i-1] er 'kortene på hånden' (altid sorteret)
 - ► A[i : n] er 'kortene på bordet'

```
INSERTION-SORT(A)

1 for i = 2 to n

2 key = A[i]

3 j = i - 1

4 while j > 0 and A[j] > key

5 A[j + 1] = A[j]

6 j = j - 1

7 A[j + 1] = key
```

Pseudo-kode

• Algoritmen gør 3 ting i hver iteration:

- ► Find det element *key*, der skal placeres korrekt (i 'hånden')
- Gør plads i det sorterede sub-array ('hånden') ved at flytte større elementer en plads bagud
- ► Indsæt *key* på sin plads

1 **for** i = 2 **to** n2 key = A[i]3 j = i - 14 **while** j > 0 and A[j] > key5 A[j + 1] = A[j]

j = j - 1

A[i+1] = key

Insertion-Sort(A)

Pseudo-kode

- Algoritmen gør 3 ting i hver iteration:
 - ► Find det element *key*, der skal placeres korrekt (i 'hånden')
 - Gør plads i det sorterede sub-array ('hånden') ved at flytte større elementer en plads bagud
 - ► Indsæt *key* på sin plads

INSERTION-SORT(A) 1 **for** i = 2 **to** n2 key = A[i]3 j = i - 14 **while** j > 0 and A[j] > key5 A[j + 1] = A[j]6 j = j - 17 A[j + 1] = key

Pseudo-kode

- Algoritmen gør 3 ting i hver iteration:
 - ► Find det element *key*, der skal placeres korrekt (i 'hånden')
 - Gør plads i det sorterede sub-array ('hånden') ved at flytte større elementer en plads bagud
 - ► Indsæt *key* på sin plads

```
INSERTION-SORT(A)

1 for i = 2 to n

2 key = A[i]

3 j = i - 1

4 while j > 0 and A[j] > key

5 A[j + 1] = A[j]

6 j = j - 1

7 A[j + 1] = key
```

Pseudo-kode

- Algoritmen gør 3 ting i hver iteration:
 - ► Find det element *key*, der skal placeres korrekt (i 'hånden')
 - Gør plads i det sorterede sub-array ('hånden') ved at flytte større elementer en plads bagud
 - ► Indsæt *key* på sin plads

```
INSERTION-SORT(A)

1 for i = 2 to n

2 key = A[i]

3 j = i - 1

4 while j > 0 and A[j] > key

5 A[j + 1] = A[j]

6 j = j - 1

7 A[j + 1] = key
```

Eksempel

Eksempel

INSERTION-SORT(
$$A$$
)

1 **for** $i = 2$ **to** n

2 $key = A[i]$

3 $j = i - 1$

4 **while** $j > 0$ and $A[j] > key$

5 $A[j + 1] = A[j]$

6 $j = j - 1$

7 $A[j + 1] = key$

Eksempel

INSERTION-SORT(
$$A$$
)

1 **for** $i = 2$ **to** n

2 $key = A[i]$

3 $j = i - 1$

4 **while** $j > 0$ and $A[j] > key$

5 $A[j + 1] = A[j]$

6 $j = j - 1$

7 $A[j + 1] = key$

Eksempel

INSERTION-SORT(
$$A$$
)

1 **for** $i = 2$ **to** n

2 $key = A[i]$

3 $j = i - 1$

4 **while** $j > 0$ and $A[j] > key$

5 $A[j + 1] = A[j]$

6 $j = j - 1$

7 $A[j + 1] = key$

Eksempel

INSERTION-SORT(
$$A$$
)

1 **for** $i = 2$ **to** n

2 $key = A[i]$

3 $j = i - 1$

4 **while** $j > 0$ and $A[j] > key$

5 $A[j + 1] = A[j]$

6 $j = j - 1$

7 $A[j + 1] = key$

Eksempel

INSERTION-SORT(
$$A$$
)

1 **for** $i = 2$ **to** n

2 $key = A[i]$

3 $j = i - 1$

4 **while** $j > 0$ and $A[j] > key$

5 $A[j + 1] = A[j]$

6 $j = j - 1$

7 $A[j + 1] = key$

Eksempel

INSERTION-SORT(
$$A$$
)

1 **for** $i = 2$ **to** n

2 $key = A[i]$

3 $j = i - 1$

4 **while** $j > 0$ and $A[j] > key$

5 $A[j + 1] = A[j]$

6 $j = j - 1$

7 $A[j + 1] = key$

Insertion sort GIF!

Outline

- Insertion Sort
- 2 Loop invarianter og korrekthed
- 3 Exercises
- 4 Asymptotisk notation og analyse

Introduktion

Når vi ser på algoritmer skal vi gerne kunne argumentere for, at algoritmen faktisk virker — og endnu bedre, vi skal gerne kunne bevise det! En type korrekthedsbevis er ved hjælp af loop invarianter.

• En invariant er en egenskab, der ikke varierer; altså altid er sand

Introduktion

- En invariant er en egenskab, der ikke varierer; altså altid er sand
- Vi leder efter en egenskab, der relaterer sig til algoritmens opgave

Introduktion

- En invariant er en egenskab, der ikke varierer; altså altid er sand
- Vi leder efter en egenskab, der relaterer sig til algoritmens opgave
- Vi vil så gerne vise, at

Introduktion

- En invariant er en egenskab, der ikke varierer; altså altid er sand
- Vi leder efter en egenskab, der relaterer sig til algoritmens opgave
- Vi vil så gerne vise, at
 - Invarianten er sand når vi starter den første iteration (initialization)

Introduktion

- En invariant er en egenskab, der ikke varierer; altså altid er sand
- Vi leder efter en egenskab, der relaterer sig til algoritmens opgave
- Vi vil så gerne vise, at
 - Invarianten er sand når vi starter den første iteration (initialization)
 - Hvis den er sand, når en iteration starter, er den også sand, når iterationen slutter (maintenance)

Introduktion

- En invariant er en egenskab, der ikke varierer; altså altid er sand
- Vi leder efter en egenskab, der relaterer sig til algoritmens opgave
- Vi vil så gerne vise, at
 - Invarianten er sand når vi starter den første iteration (initialization)
 - ► Hvis den er sand, når en iteration starter, er den også sand, når iterationen slutter (maintenance)
 - ► Loopet terminerer på et tidspunkt, og invariantens egenskab kan nu bruges til at vise algoritmens korrekthed

Insertion sort

Insertion sort

Initialization

• Før den første iteration er i = 2

```
INSERTION-SORT(A)

1 for i = 2 to n

2 key = A[i]

3 j = i - 1

4 while j > 0 and A[j] > key

5 A[j + 1] = A[j]

6 j = j - 1

7 A[j + 1] = key
```

Loop invariant

Ved begyndelse af hver iteration af for-løkken består sub-arrayet A[1:i-1] af de oprindelige elementer i A[1:i-1] men i sorteret rækkefølge.

Insertion sort

Initialization

- Før den første iteration er i = 2
- Sub-arrayet A[1:i-1] består kun af et element A[1]

```
INSERTION-SORT(A)

1 for i = 2 to n

2 key = A[i]

3 j = i - 1

4 while j > 0 and A[j] > key

5 A[j + 1] = A[j]

6 j = j - 1

7 A[j + 1] = key
```

Loop invariant

Ved begyndelse af hver iteration af for-løkken består sub-arrayet A[1:i-1] af de oprindelige elementer i A[1:i-1] men i sorteret rækkefølge.

Insertion sort

Initialization

- Før den første iteration er i = 2
- Sub-arrayet A[1:i-1] består kun af et element A[1]
- Dette element er det samme, som oprindeligt var i A[1] (for vi har ikke ændret noget)

```
INSERTION-SORT(A)

1 for i = 2 to n

2 key = A[i]

3 j = i - 1

4 while j > 0 and A[j] > key

5 A[j + 1] = A[j]

6 j = j - 1

7 A[j + 1] = key
```

Loop invariant

Insertion sort

Initialization

- Før den første iteration er i = 2
- Sub-arrayet A[1:i-1] består kun af et element A[1]
- Dette element er det samme, som oprindeligt var i A[1] (for vi har ikke ændret noget)
- Et array med kun 1 element er per definition sorteret

Insertion-Sort(A)

1 **for**
$$i = 2$$
 to n
2 $key = A[i]$
3 $j = i - 1$
4 **while** $j > 0$ and $A[j] > key$
5 $A[j + 1] = A[j]$
6 $j = j - 1$
7 $A[j + 1] = key$

Loop invariant

Insertion sort

Maintenance

• While-løkken flytter et element fra A[i] til dets korrekte plads i A[1:i]

```
INSERTION-SORT(A)

1 for i = 2 to n

2 key = A[i]

3 j = i - 1

4 while j > 0 and A[j] > key

5 A[j + 1] = A[j]

6 j = j - 1

7 A[j + 1] = key
```

Loop invariant

Insertion sort

Maintenance

- While-løkken flytter et element fra A[i] til dets korrekte plads i A[1 : i]
- Sub-arrayet indeholder nu stadig de oprindelige elementer fra A[1:i], stadig i sorteret orden

```
INSERTION-SORT(A)

1 for i = 2 to n

2 key = A[i]

3 j = i - 1

4 while j > 0 and A[j] > key

5 A[j + 1] = A[j]

6 j = j - 1

7 A[j + 1] = key
```

Loop invariant

Insertion sort

Maintenance

- While-løkken flytter et element fra A[i] til dets korrekte plads i A[1 : i]
- Sub-arrayet indeholder nu stadig de oprindelige elementer fra A[1:i], stadig i sorteret orden
- Når vi inkrementerer i opretholdes loop-invarianten

```
INSERTION-SORT(A)

1 for i = 2 to n

2 key = A[i]

3 j = i - 1

4 while j > 0 and A[j] > key

5 A[j + 1] = A[j]

6 j = j - 1

7 A[j + 1] = key
```

Loop invariant

Insertion sort

Maintenance

- While-løkken flytter et element fra A[i] til dets korrekte plads i A[1 : i]
- Sub-arrayet indeholder nu stadig de oprindelige elementer fra A[1:i], stadig i sorteret orden
- Når vi inkrementerer *i* opretholdes loop-invarianten
- NB: I teorien burde vi have lavet samme øvelse for while-løkken selv, men...

Insertion-Sort(A)

```
1 for i = 2 to n

2 key = A[i]

3 j = i - 1

4 while j > 0 and A[j] > key

5 A[j + 1] = A[j]

6 j = j - 1
```

$$7 A[j+1] = key$$

Loop invariant

Insertion sort

Termination

• For-løkken stopper når i er større end n. Da i starter ved 2 og inkrementeres i hver iteration, vil løkken terminere når i=n+1

```
INSERTION-SORT(A)

1 for i = 2 to n

2 key = A[i]

3 j = i - 1

4 while j > 0 and A[j] > key

5 A[j+1] = A[j]

6 j = j - 1

7 A[j+1] = key
```

Loop invariant

Insertion sort

Termination

- For-løkken stopper når i er større end n. Da i starter ved 2 og inkrementeres i hver iteration, vil løkken terminere når i=n+1
- Indsætter vi n + 1 i loop-invarianten får vi A[1:(n+1)-1] = A[1:n]

```
INSERTION-SORT(A)

1 for i = 2 to n

2 key = A[i]

3 j = i - 1

4 while j > 0 and A[j] > key

5 A[j + 1] = A[j]

6 j = j - 1

7 A[j + 1] = key
```

Loop invariant

Insertion sort

Termination

- For-løkken stopper når i er større end n. Da i starter ved 2 og inkrementeres i hver iteration, vil løkken terminere når i=n+1
- Indsætter vi n + 1 i loop-invarianten får vi A[1:(n+1)-1] = A[1:n]
- Altså får vi, at A[1 : n] indeholder alle de oprindelige elementer, men nu i sorteret rækkefølge

Insertion-Sort(A)

```
1 for i = 2 to n

2 key = A[i]

3 j = i - 1

4 while j > 0 and A[j] > key

5 A[j + 1] = A[j]

6 j = j - 1

7 A[j + 1] = key
```

Loop invariant

Insertion sort

Termination

- For-løkken stopper når i er større end n. Da i starter ved 2 og inkrementeres i hver iteration, vil løkken terminere når i=n+1
- Indsætter vi n + 1 i loop-invarianten får vi A[1:(n+1)-1] = A[1:n]
- Altså får vi, at A[1 : n] indeholder alle de oprindelige elementer, men nu i sorteret rækkefølge
- Eftersom A[1 : n] er hele arrayet, kan vi konkludere, at A er sorteret og algoritmen er korrekt

Insertion-Sort(A)

```
1 for i = 2 to n

2 key = A[i]

3 j = i - 1

4 while j > 0 and A[j] > key

5 A[j + 1] = A[j]

6 j = j - 1

7 A[j + 1] = key
```

Loop invariant

Outline

- Insertion Sort
- 2 Loop invarianter og korrekthed
- 3 Exercises
- 4 Asymptotisk notation og analyse

Exercises!

Yay!

Outline

- Insertion Sort
- 2 Loop invarianter og korrekthed
- 3 Exercises
- 4 Asymptotisk notation og analyse

Recap

Vi så i sidste uge, hvordan vi i lidt grove træk kan angive køretiden på en algoritme. Lad os prøve på Insertion-Sort! Vi siger, at while-løkken kører t_i gange for en eller anden værdi af i:

```
INSERTION-SORT(A)

1 for i = 2 to n

2 key = A[i]

3 j = i - 1

4 while j > 0 and A[j] > key

5 A[j + 1] = A[j]

6 j = j - 1

7 A[j + 1] = key
```

 $\mathsf{tid} \times \mathsf{antal} \; \mathsf{gange}$

Recap

Vi så i sidste uge, hvordan vi i lidt grove træk kan angive køretiden på en algoritme. Lad os prøve på Insertion-Sort! Vi siger, at while-løkken kører t_i gange for en eller anden værdi af i:

```
INSERTION-SORT(A) tid \times antal gange 1 for i=2 to n c_1 \times n 2 key = A[i] 3 j=i-1 4 while j>0 and A[j]>key 5 A[j+1]=A[j] 6 j=j-1 7 A[j+1]=key
```

Recap

Vi så i sidste uge, hvordan vi i lidt grove træk kan angive køretiden på en algoritme. Lad os prøve på INSERTION-SORT! Vi siger, at while-løkken kører t_i gange for en eller anden værdi af i:

Insertion-Sort(A)

1 **for**
$$i = 2$$
 to n
2 $key = A[i]$
3 $j = i - 1$
4 **while** $j > 0$ and $A[j] > key$
5 $A[j + 1] = A[j]$
6 $j = j - 1$
7 $A[j + 1] = key$

 $tid \times antal gange$

$$c_1 \times n$$

 $c_2 \times n - 1$

Recap

Vi så i sidste uge, hvordan vi i lidt grove træk kan angive køretiden på en algoritme. Lad os prøve på Insertion-Sort! Vi siger, at while-løkken kører t_i gange for en eller anden værdi af i:

Insertion-Sort(A)

1 **for**
$$i = 2$$
 to n
2 $key = A[i]$
3 $j = i - 1$
4 **while** $j > 0$ and $A[j] > key$
5 $A[j + 1] = A[j]$
6 $j = j - 1$
7 $A[j + 1] = key$

 $\mathsf{tid} \times \mathsf{antal} \; \mathsf{gange}$

$$c_1 \times n$$

 $c_2 \times n - 1$
 $c_3 \times n - 1$

Recap

Vi så i sidste uge, hvordan vi i lidt grove træk kan angive køretiden på en algoritme. Lad os prøve på Insertion-Sort! Vi siger, at while-løkken kører t_i gange for en eller anden værdi af i:

Insertion-Sort(A)

1 **for**
$$i = 2$$
 to n
2 $key = A[i]$
3 $j = i - 1$
4 **while** $j > 0$ and $A[j] > key$
5 $A[j + 1] = A[j]$
6 $j = j - 1$
7 $A[j + 1] = key$

 $\mathsf{tid} \times \mathsf{antal} \; \mathsf{gange}$

$$c_1 \times n$$

$$c_2 \times n - 1$$

$$c_3 \times n - 1$$

$$c_4 \times \sum_{i=2}^{n} t_i$$

Recap

Vi så i sidste uge, hvordan vi i lidt grove træk kan angive køretiden på en algoritme. Lad os prøve på Insertion-Sort! Vi siger, at while-løkken kører t_i gange for en eller anden værdi af i:

Insertion-Sort(A)

1 **for**
$$i = 2$$
 to n
2 $key = A[i]$
3 $j = i - 1$
4 **while** $j > 0$ and $A[j] > key$
5 $A[j + 1] = A[j]$
6 $j = j - 1$
7 $A[j + 1] = key$

 $\mathsf{tid} \times \mathsf{antal} \; \mathsf{gange}$

$$c_1 \times n$$

 $c_2 \times n - 1$
 $c_3 \times n - 1$
 $c_4 \times \sum_{i=2}^{n} t_i$
 $c_5 \times \sum_{i=2}^{n} (t_i - 1)$

Recap

Vi så i sidste uge, hvordan vi i lidt grove træk kan angive køretiden på en algoritme. Lad os prøve på Insertion-Sort! Vi siger, at while-løkken kører t_i gange for en eller anden værdi af i:

Insertion-Sort(A)

1 **for**
$$i = 2$$
 to n
2 $key = A[i]$
3 $j = i - 1$
4 **while** $j > 0$ and $A[j] > key$
5 $A[j + 1] = A[j]$
6 $j = j - 1$
7 $A[j + 1] = key$

$tid \times antal gange$

$$c_1 \times n$$

 $c_2 \times n - 1$
 $c_3 \times n - 1$
 $c_4 \times \sum_{i=2}^{n} t_i$
 $c_5 \times \sum_{i=2}^{n} (t_i - 1)$
 $c_6 \times \sum_{i=2}^{n} (t_i - 1)$

Recap

Vi så i sidste uge, hvordan vi i lidt grove træk kan angive køretiden på en algoritme. Lad os prøve på INSERTION-SORT! Vi siger, at while-løkken kører t_i gange for en eller anden værdi af i:

Insertion-Sort(A) for i = 2 to n

$$2 key = A[i]$$

$$j = i - 1$$

4 **while**
$$j > 0$$
 and $A[j] > key$

$$5 A[j+1] = A[j]$$

$$j = j - 1$$

$$7 A[j+1] = key$$

$tid \times antal gange$

$$c_1 \times n$$

$$c_2 \times n - 1$$

$$c_3 \times n - 1$$

$$c_4 \times \sum_{i=2}^n t_i$$

$$c_5 \times \sum_{i=2}^n (t_i - 1)$$

$$c_6 \times \sum_{i=2}^n (t_i - 1)$$

$$c_7 \times n - 1$$

Recap

Vi så i sidste uge, hvordan vi i lidt grove træk kan angive køretiden på en algoritme. Lad os prøve på Insertion-Sort! Vi siger, at while-løkken kører t_i gange for en eller anden værdi af i:

```
Insertion-Sort(A)
                                                           tid \times antal gange
    for i = 2 to n
                                                                c_1 \times n
         key = A[i]
                                                                c_2 \times n - 1
        i = i - 1
                                                                c_3 \times n - 1
     while i > 0 and A[i] > kev
                                                                c_4 \times \sum_{i=2}^n t_i
               A[i + 1] = A[i]
                                                                c_5 \times \sum_{i=2}^n (t_i - 1)
       i = i - 1
                                                                c_6 \times \sum_{i=2}^n (t_i - 1)
         A[i+1] = key
                                                                c_7 \times n - 1
```

Hmm... Hvad er best case? Hvad er worst case?

Recap

```
INSERTION-SORT(A)

1 for i = 2 to n

2 key = A[i]

3 j = i - 1

4 while j > 0 and A[j] > key

5 A[j + 1] = A[j]

6 j = j - 1

7 A[j + 1] = key
```

tid imes antal gange $c_1 imes n$ $c_2 imes n-1$ $c_3 imes n-1$ $c_4 imes \sum_{i=2}^n t_i$ $c_5 imes \sum_{i=2}^n (t_i-1)$ $c_6 imes \sum_{i=2}^n (t_i-1)$ $c_7 imes n-1$

Recap

Best case A er allerede sorteret, og vi kommer aldrig ind i while-løkken $\Rightarrow t_i = 0$ for alle $i = 2 \dots n$

Insertion-Sort(A) $tid \times antal gange$ for i = 2 to n $c_1 \times n$ key = A[i] $c_2 \times n - 1$ i = i - 1 $c_3 \times n - 1$ while j > 0 and A[j] > key $c_4 \times n - 1$ A[i+1] = A[i] $c_5 \times 0$ j = j - 1 $c_6 \times 0$ A[i+1] = kev $c_7 \times n - 1$

Recap

Best case A er allerede sorteret, og vi kommer aldrig ind i while-løkken $\Rightarrow t_i = 0$ for alle $i = 2 \dots n$

Worst case A er omvendt sorteret, og vi skal helt i bund hver gang $\Rightarrow t_i = i$ for alle $i = 2 \dots n$

Insertion-Sort(A)

1 **for**
$$i = 2$$
 to n
2 $key = A[i]$

$$3 \qquad i = i - 1$$

$$J = I - 1$$

4 while
$$j > 0$$
 and $A[j] > key$

$$\begin{array}{ccc}
5 & A[j+1] = A[j] \\
\vdots & \vdots & 1
\end{array}$$

$$j = j - 1$$

$$A[j+1] = key$$

tid × antal gange

$$c_1 \times n$$

$$c_2 \times n - 1$$

$$c_3 \times n - 1$$

$$c_4 \times \sum_{i=2}^n i$$

$$c_5 \times \sum_{i=2}^n (i-1)$$

$$c_6 \times \sum_{i=2}^n (i-1)$$

$$c_7 \times n - 1$$

Recap

Best case A er allerede sorteret, og vi kommer aldrig ind i while-løkken $\Rightarrow t_i = 0$ for alle $i=2\ldots n$

Worst case A er omvendt sorteret, og vi skal helt i bund hver gang $\Rightarrow t_i = i$ for alle $i=2\ldots n$

Insertion-Sort(A)

1 **for**
$$i = 2$$
 to n
2 $key = A[i]$
3 $i = i - 1$

$$5 A[j+1] = A[j]$$

$$6 j=j-1$$

$$A[j+1] = key$$

$tid \times antal gange$

$$c_1 \times n$$

 $c_2 \times n - 1$

$$c_2 \times n-1$$

$$c_3 \times n - 1$$

$$c_4 \times \frac{n(n+1)}{2} - 1$$

$$c_5 \times \frac{n(n-1)}{2}$$

$$c_6 \times \frac{n(n-1)}{2}$$

$$c_7 \times n - 1$$

Recap

Og husk, vi er primært interessert i worst case. Men det efterlader os så med...

$$T(N) = c_1 n + c_2(n-1) + c_3(n-1) + c_4 \left(\frac{n(n+1)}{2} - 1\right) + c_5 \left(\frac{n(n-1)}{2}\right) + c_6 \left(\frac{n(n-1)}{2}\right) + c_7(n-1)$$

Recap

Og husk, vi er primært interessert i worst case. Men det efterlader os så med...

$$T(N) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \left(\frac{n(n+1)}{2} - 1\right)$$

$$+ c_5 \left(\frac{n(n-1)}{2}\right) + c_6 \left(\frac{n(n-1)}{2}\right) + c_7 (n-1)$$

$$= \left(\frac{c_4}{2} + \frac{c_5}{2} + \frac{c_6}{2}\right) n^2 + \left(c_1 + c_2 + c_3 + \frac{c_4}{2} - \frac{c_5}{2} - \frac{c_6}{2} + c_7\right) n$$

$$- \left(c_2 + c_3 + c_4 + c_7\right)$$

Og husk, vi er primært interessert i worst case. Men det efterlader os så med...

$$T(N) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \left(\frac{n(n+1)}{2} - 1\right)$$

$$+ c_5 \left(\frac{n(n-1)}{2}\right) + c_6 \left(\frac{n(n-1)}{2}\right) + c_7 (n-1)$$

$$= \left(\frac{c_4}{2} + \frac{c_5}{2} + \frac{c_6}{2}\right) n^2 + \left(c_1 + c_2 + c_3 + \frac{c_4}{2} - \frac{c_5}{2} - \frac{c_6}{2} + c_7\right) n$$

$$- (c_2 + c_3 + c_4 + c_7)$$

$$= an^2 + bn + c$$

Asymptotisk analyse

Order of growth

Det leder os videre til en ny måde at tale om kompleksitet på, nemlig i termer af order of growth.

- Den eksakte køretid er sjældent særligt relevant vi vil hellere abstrahere
- For små inputs er køretiden også irrelevant (computere er hurtige!)
- For store inputs er konstanter og små termer irrelevante det essentielle er, hvordan køretiden udvikler sig som en funktion af *n*
- Vi studerer derfor asymptotisk køretid
 - Hvordan vokser køretiden, når inputtet bliver større?

Big-Oh, Big-Omega, Big-Theta

Målet med asymptotisk analyse er forenkle udtrykket for køretiden ved at abstrahere irrelevante og svært forudsigelige faktorer væk og istedet fange 'essensen' af T(n) — nemlig den dominerende term, når n går mod ∞ .

Big-Oh, Big-Omega, Big-Theta

Målet med asymptotisk analyse er forenkle udtrykket for køretiden ved at abstrahere irrelevante og svært forudsigelige faktorer væk og istedet fange 'essensen' af T(n) — nemlig den dominerende term, når n går mod ∞ .

Vi har 3 notationer, vi bruger:

Big-Oh, O Asymptotisk upper bound

Big-Omega, Ω Asymptotisk lower bound

Big-Theta, ⊖ Asymptotisk thight bound

Både O, Ω og Θ definerer sæt af funktioner, som en funktion for tidskompleksiteten kan høre til.

Big-Oh

Definition (Big-Oh, O)

For en given funktion g(n) er O(g(n)) det sæt af funktioner, således at

$$O(g(n)) = \{f(n) : \text{der eksisterer positive konstanter } c \text{ og } n_0 \}$$

sådan at $0 \le f(n) \le cg(n)$ for alle $n \ge n_0\}$

Big-Oh

Definition (Big-Oh, O)

For en given funktion g(n) er O(g(n)) det sæt af funktioner, således at

$$O(g(n)) = \{f(n) : \text{der eksisterer positive konstanter } c \text{ og } n_0 \}$$

sådan at $0 \le f(n) \le cg(n)$ for alle $n \ge n_0\}$

• Vi skriver T(n) = O(g(n)) hvis $T(n) \in O(g(n))$

ALBORG Niversitet

Big-Oh

Definition (Big-Oh, O)

For en given funktion g(n) er O(g(n)) det sæt af funktioner, således at

$$O(g(n)) = \{f(n) : \text{der eksisterer positive konstanter } c \text{ og } n_0 \}$$

sådan at $0 \le f(n) \le cg(n)$ for alle $n \ge n_0\}$

- Vi skriver T(n) = O(g(n)) hvis $T(n) \in O(g(n))$
- Intuition: T(n) vokser asymptotisk langsommere end g(n)

Big-Oh

Definition (Big-Oh, O)

For en given funktion g(n) er O(g(n)) det sæt af funktioner, således at

$$O(g(n)) = \{f(n) : \text{der eksisterer positive konstanter } c \text{ og } n_0 \}$$

sådan at $0 \le f(n) \le cg(n)$ for alle $n \ge n_0\}$

- Vi skriver T(n) = O(g(n)) hvis $T(n) \in O(g(n))$
- Intuition: T(n) vokser asymptotisk langsommere end g(n)
- Eksempler:

Big-Oh

Definition (Big-Oh, O)

For en given funktion g(n) er O(g(n)) det sæt af funktioner, således at

$$O(g(n)) = \{f(n) : \text{der eksisterer positive konstanter } c \text{ og } n_0 \}$$

sådan at $0 \le f(n) \le cg(n)$ for alle $n \ge n_0\}$

- Vi skriver T(n) = O(g(n)) hvis $T(n) \in O(g(n))$
- Intuition: T(n) vokser asymptotisk langsommere end g(n)
- Eksempler:
 - $T(n) = 23n^3 + 1000n = O(n^3)$

Big-Oh

Definition (Big-Oh, O)

For en given funktion g(n) er O(g(n)) det sæt af funktioner, således at

$$O(g(n)) = \{f(n) : \text{der eksisterer positive konstanter } c \text{ og } n_0 \}$$

sådan at $0 \le f(n) \le cg(n)$ for alle $n \ge n_0\}$

- Vi skriver T(n) = O(g(n)) hvis $T(n) \in O(g(n))$
- Intuition: T(n) vokser asymptotisk langsommere end g(n)
- Eksempler:
 - $T(n) = 23n^3 + 1000n = O(n^3)$
 - $T(n) = 23n^3 + 1000n = O(n^4)$

Big-Oh

Definition (Big-Oh, O)

$$O(g(n)) = \{f(n) : \text{der eksisterer positive konstanter } c \text{ og } n_0 \}$$

sådan at $0 \le f(n) \le cg(n)$ for alle $n \ge n_0\}$

- Vi skriver T(n) = O(g(n)) hvis $T(n) \in O(g(n))$
- Intuition: T(n) vokser asymptotisk langsommere end g(n)
- Eksempler:

$$T(n) = 23n^3 + 1000n = O(n^3)$$

$$T(n) = 23n^3 + 1000n = O(n^4)$$

$$T(n) = 2^n + 41n^27 = O(2^n)$$

Big-Oh

Definition (Big-Oh, O)

For en given funktion g(n) er O(g(n)) det sæt af funktioner, således at

$$O(g(n)) = \{f(n) : \text{der eksisterer positive konstanter } c \text{ og } n_0 \}$$

sådan at $0 \le f(n) \le cg(n)$ for alle $n \ge n_0\}$

- Vi skriver T(n) = O(g(n)) hvis $T(n) \in O(g(n))$
- Intuition: T(n) vokser asymptotisk langsommere end g(n)
- Eksempler:
 - $T(n) = 23n^3 + 1000n = O(n^3)$
 - $T(n) = 23n^3 + 1000n = O(n^4)$
 - $T(n) = 2^n + 41n^27 = O(2^n)$
 - T(n) = 100 = O(1)

Big-Oh

Definition (Big-Oh, O)

For en given funktion g(n) er O(g(n)) det sæt af funktioner, således at

$$O(g(n)) = \{f(n) : \text{der eksisterer positive konstanter } c \text{ og } n_0 \}$$

sådan at $0 \le f(n) \le cg(n)$ for alle $n \ge n_0\}$

Eksempel:

Big-Oh

Definition (Big-Oh, O)

For en given funktion g(n) er O(g(n)) det sæt af funktioner, således at

$$O(g(n)) = \{f(n) : \text{der eksisterer positive konstanter } c \text{ og } n_0 \}$$

sådan at $0 \le f(n) \le cg(n)$ for alle $n \ge n_0\}$

Eksempel:

• Vi vil vise, at funktionen $f(n) = n^2 + 1000n + 500 = O(n^2)$

Big-Oh

Definition (Big-Oh, O)

For en given funktion g(n) er O(g(n)) det sæt af funktioner, således at

$$O(g(n)) = \{f(n) : \text{der eksisterer positive konstanter } c \text{ og } n_0 \}$$

sådan at $0 \le f(n) \le cg(n)$ for alle $n \ge n_0\}$

Eksempel:

- Vi vil vise, at funktionen $f(n) = n^2 + 1000n + 500 = O(n^2)$
- Vi skal dermed finde c og n_0 således, at $n^2 + 1000n + 500 \le cn^2$ for all $n \ge n_0$

Definition (Big-Oh, O)

For en given funktion g(n) er O(g(n)) det sæt af funktioner, således at

$$O(g(n)) = \{f(n) : \text{der eksisterer positive konstanter } c \text{ og } n_0 \}$$

sådan at $0 \le f(n) \le cg(n)$ for alle $n \ge n_0\}$

Eksempel:

- Vi vil vise, at funktionen $f(n) = n^2 + 1000n + 500 = O(n^2)$
- Vi skal dermed finde c og n_0 således, at $n^2 + 1000n + 500 \le cn^2$ for all $n \ge n_0$
- Vi dividerer begge sider med n^2 , hvilket giver $1 + 1000/n + 500/n^2 \le c$

Definition (Big-Oh, O)

For en given funktion g(n) er O(g(n)) det sæt af funktioner, således at

$$O(g(n)) = \{f(n) : \text{der eksisterer positive konstanter } c \text{ og } n_0 \}$$

sådan at $0 \le f(n) \le cg(n)$ for alle $n \ge n_0\}$

Eksempel:

- Vi vil vise, at funktionen $f(n) = n^2 + 1000n + 500 = O(n^2)$
- Vi skal dermed finde c og n_0 således, at $n^2 + 1000n + 500 \le cn^2$ for all $n \ge n_0$
- Vi dividerer begge sider med n^2 , hvilket giver $1 + 1000/n + 500/n^2 \le c$
- Her skulle det være nemt at se, at jo større n_0 , jo mindre et c kan vi klare os med f.eks. ved $n_0=2$ bliver venstresiden af uligheden 629, og vi kan vælge et hvilket som helst $c \geq 629$. Hvis vi vælger $n_0=100$ kan vi vælge et $c \geq 11.05$

Big-Omega

Definition (Big-Omega, Ω)

$$\Omega(g(n)) = \{f(n) : \text{der eksisterer positive konstanter } c \text{ og } n_0 \}$$

sådan at $0 \le cg(n) \le f(n)$ for alle $n \ge n_0\}$

Big-Omega

Definition (Big-Omega, Ω)

For en given funktion g(n) er $\Omega(g(n))$ det sæt af funktioner, således at

$$\Omega(g(n)) = \{f(n) : \text{der eksisterer positive konstanter } c \text{ og } n_0 \}$$

sådan at $0 \le cg(n) \le f(n)$ for alle $n \ge n_0\}$

• Vi skriver $T(n) = \Omega(g(n))$ hvis $T(n) \in \Omega(g(n))$

Big-Omega

Definition (Big-Omega, Ω)

For en given funktion g(n) er $\Omega(g(n))$ det sæt af funktioner, således at

$$\Omega(g(n)) = \{f(n) : \text{der eksisterer positive konstanter } c \text{ og } n_0 \}$$

sådan at $0 \le cg(n) \le f(n)$ for alle $n \ge n_0\}$

- Vi skriver $T(n) = \Omega(g(n))$ hvis $T(n) \in \Omega(g(n))$
- Intuition: T(n) vokser asymptotisk hurtigere end g(n)

Big-Omega

Definition (Big-Omega, Ω)

For en given funktion g(n) er $\Omega(g(n))$ det sæt af funktioner, således at

$$\Omega(g(n)) = \{f(n) : \text{der eksisterer positive konstanter } c \text{ og } n_0 \}$$

sådan at $0 \le cg(n) \le f(n)$ for alle $n \ge n_0\}$

- Vi skriver $T(n) = \Omega(g(n))$ hvis $T(n) \in \Omega(g(n))$
- Intuition: T(n) vokser asymptotisk hurtigere end g(n)
- Eksempler:

Big-Omega

Definition (Big-Omega, Ω)

$$\Omega(g(n)) = \{f(n) : \text{der eksisterer positive konstanter } c \text{ og } n_0 \}$$

sådan at $0 \le cg(n) \le f(n)$ for alle $n \ge n_0\}$

- Vi skriver $T(n) = \Omega(g(n))$ hvis $T(n) \in \Omega(g(n))$
- Intuition: T(n) vokser asymptotisk hurtigere end g(n)
- Eksempler:
 - $T(n) = 23n^3 + 1000n = \Omega(n^3)$

Big-Omega

Definition (Big-Omega, Ω)

$$\Omega(g(n)) = \{f(n) : \text{der eksisterer positive konstanter } c \text{ og } n_0 \}$$

sådan at $0 \le cg(n) \le f(n)$ for alle $n \ge n_0\}$

- Vi skriver $T(n) = \Omega(g(n))$ hvis $T(n) \in \Omega(g(n))$
- Intuition: T(n) vokser asymptotisk hurtigere end g(n)
- Eksempler:
 - $T(n) = 23n^3 + 1000n = \Omega(n^3)$
 - $T(n) = 23n^3 + 1000n = \Omega(n)$

Big-Omega

Definition (Big-Omega, Ω)

$$\Omega(g(n)) = \{f(n) : \text{der eksisterer positive konstanter } c \text{ og } n_0 \}$$

sådan at $0 \le cg(n) \le f(n)$ for alle $n \ge n_0\}$

- Vi skriver $T(n) = \Omega(g(n))$ hvis $T(n) \in \Omega(g(n))$
- Intuition: T(n) vokser asymptotisk hurtigere end g(n)
- Eksempler:
 - $T(n) = 23n^3 + 1000n = \Omega(n^3)$
 - $T(n) = 23n^3 + 1000n = \Omega(n)$ $T(n) = 2^n + 41n^{27} = \Omega(2^n)$

Big-Omega

Definition (Big-Omega, Ω)

For en given funktion g(n) er $\Omega(g(n))$ det sæt af funktioner, således at

$$\Omega(g(n)) = \{f(n) : \text{der eksisterer positive konstanter } c \text{ og } n_0 \}$$

sådan at $0 \le cg(n) \le f(n)$ for alle $n \ge n_0\}$

- Vi skriver $T(n) = \Omega(g(n))$ hvis $T(n) \in \Omega(g(n))$
- Intuition: T(n) vokser asymptotisk hurtigere end g(n)
- Eksempler:

$$T(n) = 23n^3 + 1000n = \Omega(n^3)$$

$$T(n) = 23n^3 + 1000n = \Omega(n)$$

$$T(n) = 2^n + 41n^{27} = \Omega(2^n)$$

T(n) = 2 + 41n = 1 $T(n) = 100 = \Omega(1)$

Big-Theta

Definition (Big-Theta, Θ)

$$\Theta(g(n)) = \{f(n) : \text{der eksisterer positive konstanter } c_1, c_2 \text{ og } n_0 \}$$

sådan at $0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for alle } n \ge n_0 \}$

Big-Theta

Definition (Big-Theta, Θ)

For en given funktion g(n) er $\Theta(g(n))$ det sæt af funktioner, således at

$$\Theta(g(n)) = \{f(n) : \text{der eksisterer positive konstanter } c_1, c_2 \text{ og } n_0 \}$$

sådan at $0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for alle } n \ge n_0 \}$

• Intuition: g(n) er et asymptotisk tight bound for T(n)

Big-Theta

Definition (Big-Theta, Θ)

For en given funktion g(n) er $\Theta(g(n))$ det sæt af funktioner, således at

$$\Theta(g(n)) = \{f(n) : \text{der eksisterer positive konstanter } c_1, c_2 \text{ og } n_0 \}$$

sådan at $0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for alle } n \ge n_0 \}$

- Intuition: g(n) er et asymptotisk tight bound for T(n)
- Theorem: for to funktioner f(n) og g(n) har vi at $f(n) = \Theta(g(n))$ hvis og kun hvis $f(n) = \Omega(g(n))$ og f(n) = O(g(n))

Big-Theta

Definition (Big-Theta, Θ)

For en given funktion g(n) er $\Theta(g(n))$ det sæt af funktioner, således at

$$\Theta(g(n)) = \{f(n) : \text{der eksisterer positive konstanter } c_1, c_2 \text{ og } n_0 \}$$

sådan at $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for alle $n \ge n_0 \}$

- Intuition: g(n) er et asymptotisk tight bound for T(n)
- Theorem: for to funktioner f(n) og g(n) har vi at $f(n) = \Theta(g(n))$ hvis og kun hvis $f(n) = \Omega(g(n))$ og f(n) = O(g(n))
- Eksempler:

Big-Theta

Definition (Big-Theta, Θ)

$$\Theta(g(n)) = \{f(n) : \text{der eksisterer positive konstanter } c_1, c_2 \text{ og } n_0 \}$$

sådan at $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for alle $n \ge n_0 \}$

- Intuition: g(n) er et asymptotisk tight bound for T(n)
- Theorem: for to funktioner f(n) og g(n) har vi at $f(n) = \Theta(g(n))$ hvis og kun hvis $f(n) = \Omega(g(n))$ og f(n) = O(g(n))
- Eksempler:

$$T(n) = 23n^3 + 1000n = \Theta(n^3)$$

Big-Theta

Definition (Big-Theta, Θ)

For en given funktion g(n) er $\Theta(g(n))$ det sæt af funktioner, således at

$$\Theta(g(n)) = \{f(n) : \text{der eksisterer positive konstanter } c_1, c_2 \text{ og } n_0$$
 sådan at $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for alle $n \ge n_0 \}$

- Intuition: g(n) er et asymptotisk tight bound for T(n)
- Theorem: for to funktioner f(n) og g(n) har vi at $f(n) = \Theta(g(n))$ hvis og kun hvis $f(n) = \Omega(g(n))$ og f(n) = O(g(n))
- Eksempler:
 - $T(n) = 23n^3 + 1000n = \Theta(n^3)$

$$T(n) = 2^n + 41n^{27} = \Theta(2^n)$$

ALBORG Niversitet

Big-Theta

Definition (Big-Theta, Θ)

For en given funktion g(n) er $\Theta(g(n))$ det sæt af funktioner, således at

$$\Theta(g(n)) = \{f(n) : \text{der eksisterer positive konstanter } c_1, c_2 \text{ og } n_0 \}$$

sådan at $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for alle $n \ge n_0 \}$

- Intuition: g(n) er et asymptotisk tight bound for T(n)
- Theorem: for to funktioner f(n) og g(n) har vi at $f(n) = \Theta(g(n))$ hvis og kun hvis $f(n) = \Omega(g(n))$ og f(n) = O(g(n))
- Eksempler:
 - $T(n) = 23n^3 + 1000n = \Theta(n^3)$
 - $T(n) = 2^n + 41n^{27} = \Theta(2^n)$
 - $T(n) = 100 = \Theta(1)$

Tips og tricks

Tips og tricks

Denne nemme måde ('ingeniørmetoden') til at bruge asymptotisk notation:

• Ignorer indledende konstanter

Tips og tricks

- Ignorer indledende konstanter
 - $T(n) = 1000n^2 = \Theta(n^2)$

Tips og tricks

- Ignorer indledende konstanter
 - $T(n) = 1000n^2 = \Theta(n^2)$
- Ignorer mindre termer

Tips og tricks

- Ignorer indledende konstanter
 - $T(n) = 1000n^2 = \Theta(n^2)$
- Ignorer mindre termer

$$T(n) = n^3 + 1000n^2 - n\log n + 13n = \Theta(n^3)$$

Tips og tricks

Denne nemme måde ('ingeniørmetoden') til at bruge asymptotisk notation:

- Ignorer indledende konstanter
 - $T(n) = 1000n^2 = \Theta(n^2)$
- Ignorer mindre termer

$$T(n) = n^3 + 1000n^2 - n \log n + 13n = \Theta(n^3)$$

• Hvordan identificerer man mindre termer?

Tips og tricks

- Ignorer indledende konstanter
 - $T(n) = 1000n^2 = \Theta(n^2)$
- Ignorer mindre termer

$$T(n) = n^3 + 1000n^2 - n \log n + 13n = \Theta(n^3)$$

- Hvordan identificerer man mindre termer?
 - $c < \log n < n < n \log n < n^a < b^n < n!$

Tips og tricks

- Ignorer indledende konstanter
 - $T(n) = 1000n^2 = \Theta(n^2)$
- Ignorer mindre termer

$$T(n) = n^3 + 1000n^2 - n \log n + 13n = \Theta(n^3)$$

- Hvordan identificerer man mindre termer?
 - $c < \log n < n < n \log n < n^a < b^n < n!$
 - ► Konstant, logaritmisk, log linear, polynomial, eksponentiel, fakultet

Tips og tricks

- Ignorer indledende konstanter
 - $T(n) = 1000n^2 = \Theta(n^2)$
- Ignorer mindre termer

$$T(n) = n^3 + 1000n^2 - n \log n + 13n = \Theta(n^3)$$

- Hvordan identificerer man mindre termer?
 - $c < \log n < n < n \log n < n^a < b^n < n!$
 - ► Konstant, logaritmisk, log linear, polynomial, eksponentiel, fakultet

Tips og tricks

Denne nemme måde ('ingeniørmetoden') til at bruge asymptotisk notation:

- Ignorer indledende konstanter
 - $T(n) = 1000n^2 = \Theta(n^2)$
- Ignorer mindre termer

$$T(n) = n^3 + 1000n^2 - n \log n + 13n = \Theta(n^3)$$

- Hvordan identificerer man mindre termer?
 - $c < \log n < n < n \log n < n^a < b^n < n!$
 - ► Konstant, logaritmisk, log linear, polynomial, eksponentiel, fakultet

Figure: Source: https://www.geeksforgeeks.org/what-is-logarithmic-time-complexit

Insertion sort

Vi slutter, hvor vi startede — med Insertion-Sort. Nu da vi kender til asymptotisk analyse og notation, kan vi så gribe vores analyse lidt lettere an?

```
Insertion-Sort(A)
```

```
1 for i = 2 to n

2 key = A[i]

3 j = i - 1

4 while j > 0 and A[j] > key

5 A[j + 1] = A[j]

6 j = j - 1

7 A[j + 1] = key
```

Insertion sort

Vi slutter, hvor vi startede — med Insertion-Sort. Nu da vi kender til asymptotisk analyse og notation, kan vi så gribe vores analyse lidt lettere an?

Insertion-Sort(A)

```
1 for i = 2 to n

2 key = A[i]

3 j = i - 1

4 while j > 0 and A[j] > key

5 A[j + 1] = A[j]

6 j = j - 1

7 A[j + 1] = key
```

• Vi ser, at hele algoritmen er pakket ind i en for-løkke, der kører $\Theta(n)$ gange

Insertion sort

Vi slutter, hvor vi startede — med Insertion-Sort. Nu da vi kender til asymptotisk analyse og notation, kan vi så gribe vores analyse lidt lettere an?

Insertion-Sort(A)

```
1 for i = 2 to n

2 key = A[i]

3 j = i - 1

4 while j > 0 and A[j] > key

5 A[j + 1] = A[j]

6 j = j - 1

7 A[j + 1] = key
```

- Vi ser, at hele algoritmen er pakket ind i en for-løkke, der kører $\Theta(n)$ gange
- Vi ser, at der i for-løkken er en while-løkke, der i worst case selv kører $\Theta(n)$ gange

Insertion sort

Vi slutter, hvor vi startede — med Insertion-Sort. Nu da vi kender til asymptotisk analyse og notation, kan vi så gribe vores analyse lidt lettere an?

Insertion-Sort(A)

1 **for**
$$i = 2$$
 to n
2 $key = A[i]$
3 $j = i - 1$
4 **while** $j > 0$ and $A[j] > key$
5 $A[j + 1] = A[j]$
6 $j = j - 1$
7 $A[j + 1] = key$

- Vi ser, at hele algoritmen er pakket ind i en for-løkke, der kører $\Theta(n)$ gange
- Vi ser, at der i for-løkken er en while-løkke, der i worst case selv kører $\Theta(n)$ gange
- Resten af linierne er konstanter, altså har vi $T(n) = \Theta(n) \cdot \Theta(n) = \Theta(n^2)$

Dagens temaer

Opsummering

- Vi har mødt vores første sorteringsalgoritme Insertion-Sort!
 - ▶ Simpel at implementere og forstå
 - ► God til næsten sorterede sekvenser
 - Den asymptotiske worst case køretid er kvadratisk
- Loop invarianter og korrekthed
 - Initialization, maintenance og termination
- Asymptotisk analyse og notation
 - *O*, Ω, Θ

29 / 30

Tak for i dag!

Flere exercises..

Den bedste måde ikke at snyde sig selv på er lave exercises!

