# **Diode Clippers**

**Muhammad Adeel** 

M.Sc. Electronics (KU)

M.Phil. ISPA (KU)

# **REGULATOR Section OF THE Power Supply**

- ➤ A Voltage Regulator is connected to the output of a filtered rectifier.
- The purpose of a voltage regulator is to maintain a constant output voltage despite changes in the input, the load current, or the temperature.



Muhammad Adeel 06-Sep-17

## Percent Regulation

The regulation expressed as a percentage is a figure of merit used to specify the performance of a voltage regulator. It can be in terms of input (line) regulation or load regulation.

Line regulation specifies how much change occurs in the output voltage for a given change in the input voltage. It is typically defined as a ratio of a change in output voltage for a corresponding change in the input voltage expressed as a percentage.

Line regulation = 
$$\left(\frac{\Delta V_{\text{OUT}}}{\Delta V_{\text{IN}}}\right)$$
100%

Load regulation specifies how much change occurs in the output voltage over a certain range of load current values, usually from minimum current (no load, NL) to maximum current (full load, FL). It is normally expressed as a percentage and can be calculated with the following formula:

Load regulation = 
$$\left(\frac{V_{NL} - V_{FL}}{V_{FL}}\right)100\%$$

where  $V_{\rm NL}$  is the output voltage with no load and  $V_{\rm FL}$  is the output voltage with full (maximum) load.

Muhammad Adeel

# **Power Supply Circuit**



Muhammad Adeel 06-Sep-17

### **DIODE LIMITING (CIPPING) and CLAMPING CIRCUITS:**

# **DIODE CIPPERS/LIMITERS:**

Diode Clippers/Limiters are used to clip off (remove) portions of signal voltages above or below certain levels.

These circuit works on the principle that a diode when forward biased act as a shorted path and a diode when reverse biased act as an open circuit.

Muhammad Adeel 06-Sep-17

#### **Positive Clipper:**



(a) Limiting of the positive alternation. The diode is forward-biased during the positive alternation (above 0.7 V) and reverse-biased during the negative alternation.

$$V_{out}=\left(rac{R_L}{R_1+R_L}
ight)V_{in}$$
 If  $R_1$  is small compared to  $R_L$ , then  $V_{out}=V_{in}$ 

- For Positive half cycle of the input signal the diode is forward biased and it ensures that the output signal voltage value remains equal to the diode drop voltage of +0.7 Volt.
- ➤ Whereas for the negative half cycle of the input signal the diode is reverse biased and the magnitude of output voltage values are determined by the voltage divider stated above.





- (b) Limiting of the negative alternation. The diode is forward-biased during the negative alternation (below −0.7 V) and reverse-biased during the positive alternation.
- For negative half cycle of the input signal the diode is forward biased and it ensures that the output signal voltage value remains equal to the diode drop voltage of -0.7 Volt.
- ➤ Whereas for the positive half cycle of the input signal the diode is reverse biased and the output voltage values are determined by the voltage divider stated above.

Muhammad Adeel

#### **Example:**



The diode is forward-biased and conducts when the input voltage goes below -0.7 V. So, for the negative limiter, determine the peak output voltage across  $R_L$  by the following equation:

$$V_{p(out)} = \left(\frac{R_L}{R_1 + R_L}\right) V_{p(in)} = \left(\frac{1.0 \text{ k}\Omega}{1.1 \text{ k}\Omega}\right) 10 \text{ V} = 9.09 \text{ V}$$

The scope will display an output waveform as shown in Figure 2–36.

#### FIGURE 2-36

Output voltage waveform for Figure 2–35.

