Function GET_MW - single-thread version

built-in abundance tables

Calling syntax:

Function parameters:

- 0. Lparms 5-element long integer array of dimensions and global (for all voxels) integer parameters (see below).
- 1. Rparms 3-element double array of global (for all voxels) real parameters (see below).
- 2. Parms array of LOS parameters, $15 \times Nz$ elements, double. Parms[*, i] represents the parameters for *i*th voxel (see below).
- 3. T_arr array of temperatures where DEM/DDM are specified, NT elements, double, in K. The temperature grid is assumed to be the same in all voxels, and the same for both DEM and DDM.
- 4. DEM_arr array of DEMs, NT × Nz, double, in cm⁻⁶ K⁻¹. DEM_arr[*, i] represents the DEM for ith voxel.
- 5. DDM_arr array of DDMs, NT × Nz, double, in cm⁻³ K⁻¹. DDM_arr[*, i] represents the DDM for ith voxel.
- 6. RL input/output array, $7 \times Nf$, double. RL[*, i] corresponds to *i*th frequency (see below).

Array of dimensions and global integer parameters Lparms:

Lparms = [Nz, Nf, NT, DEM_key, DDM_key]

- 0. Nz number of voxels along LOS;
- 1. Nf number of frequencies in the spectrum;
- 2. NT number of temperatures in the T_arr array; must be ≥ 2 otherwise DEM/DEM are ignored;
 - 3. DEM_key global DEM on/off key.
 - a. 0: DEM is enabled: it can be used in all or some voxels, depending on the local DEM on/off keys (see below).
 - b. \neq 0: DEM is disabled for all voxels, regardless of the local DEM on/off keys.
 - 4. DDM_key global DDM on/off key: same as above, but for DDM.

Array of global real parameters Rparms:

Rparms = $[S, f_0, \Delta f]$

- 0. S visible source area, in cm².
- 1. f_0 starting frequency of the spectrum, in Hz:
 - a. is used, only if $f_0 > 0$;
 - b. if $f_0 \le 0$, the frequencies are taken from the RL[0, *] array.
- 2. Δf logarithmic frequency step (is used only if $f_0 > 0$).

Array of parameters Parms (for a single voxel, 15 parameters):

- 0. Parms[0] = Δz voxel length, in cm.
- 1. Parms[1] = T_0 plasma temperature, in K (is used if DEM or DDM are not specified).
- 2. Parms[2] = n_0 either electron concentration or total atomic concentration (depending on other parameters), in cm⁻³ (is used if DEM or DDM are not specified).
 - 3. Parms[3] = B magnetic field strength, in G.
 - 4. Parms[4] = θ viewing angle, in degrees.
 - 5. Parms[5] = φ magnetic field azimuthal angle, in degrees.
 - 6. Parms[6] emission mechanism flag (rounded to the nearest integer):
 - a. 0: all emission mechanisms (gyroresonance + free-free + contribution of neutrals) are included;
 - b. 1: gyroresonance is off;
 - c. 2: free-free is off;
 - d. 4: contribution of neutrals is off.

Several flags can be combined by usual or bitwise summation: e.g., $mechanism\ flag = 2 + 4\ turns\ off\ both\ free-free\ and\ contribution\ of\ neutrals,\ etc.$

- 7. Parms[7] = s_{max} maximum cyclotron harmonic number.
- 8. Parms[8] = n_p proton concentration, in cm⁻³ (is used if DEM or DDM are not specified, and the temperature is low).
 - 9. Parms[9] = $n_{\rm HI}$ neutral hydrogen concentration, in cm⁻³.
 - 10. Parms[10] = n_{HeI} neutral helium concentration, in cm⁻³.
 - 11. Parms[11] local DEM on/off key:
 - a. 0: DEM is used (provided that $NT \ge 2$ and DEM is enabled by the global key);
 - b. \neq 0: DEM in this voxel is ignored even if it is specified; T_0 and n_0 are used instead.
 - 12. Parms[12] local DDM on/off key: same as above, but for DDM.
 - 13. Parms[13] element abundance model:
 - a. 0: coronal (default);
 - b. 1: photospheric (Caffau);
 - c. 2: photospheric (Scott).
- 14. Parms[14] = Vox_ID voxel type (coronal / chromospheric / etc.), currently ignored.

Input/output array RL:

0. First row (RL[0, *]) – emission frequencies, in GHz. On input, this array is used if f_0 = Rparms[1] \leq 0; otherwise, the frequencies are computed using the f_0 and Δf parameters: $f_1 = f_0 10^{\Delta f}$, $f_2 = f_1 10^{\Delta f}$, etc. On output, this array contains the computed or pre-defined emission frequencies.

Other rows – emission intensities, as observed from the Earth, in sfu:

- 1. RL[1, *] left polarization, weak mode coupling;
- 2. RL[2, *] right polarization, weak mode coupling;
- 3. RL[3, *] left polarization, strong mode coupling;
- 4. RL[4, *] right polarization, strong mode coupling;
- 5. RL[5, *] left polarization, exact mode coupling.
- 6. RL[6, *] right polarization, exact mode coupling.

On input, these arrays specify the emission intensities at the start of the line-of-sight; on output, they contain the emission intensities at the end of the line-of-sight.

Return value: currently, -1 if the input was incorrect (incorrect number of parameters); 0 otherwise.

Function GET_MW - single-thread version

user-defined abundance tables

Calling syntax:

Function parameters:

- 0. Lparms 8-element long integer array of dimensions and global (for all voxels) integer parameters (see below).
- 1-5. Rparms, Parms, T_arr, DEM_arr, DDM_arr same as in the version with built-in abundance tables; for Parms, see a note below.
- 6. fzeta_arr array of frequencies where the ζ -function is specified, Nf_zeta elements, double, in Hz. The frequency grid is assumed to be the same in all voxels and for all supplied abundance sets.
- 7. Tzeta_arr array of temperatures where the ζ -function is specified, NT_zeta elements, double, in K. The temperature grid is assumed to be the same in all voxels and for all supplied abundance sets.
- 8. zeta_arr array of ζ -function values, Nf_zeta × NT_zeta × N_zeta elements, double. This array is the same for all voxels. zeta_arr[*, *, m] represents the 2D ζ -function table for mth abundance set.
 - 9. RL same as in the version with built-in abundance tables.

Array of dimensions and global integer parameters Lparms:

Lparms = [Nz, Nf, NT, DEM_key, DDM_key, Nf_zeta, NT_zeta, N_zeta]

- 0-4. Nz, Nf, NT, DEM_key, DDM_key same as in the version with built-in abundance tables.
 - 5. Nf_zeta number of frequencies where the ζ -function is specified.
 - 6. NT_zeta number of temperatures where the ζ -function is specified.
 - 7. N_zeta number of supplied 2D ζ -function tables (abundance sets).

Array of parameters Parms (for a single voxel):

Most of parameters are the same as in the version with built-in abundance tables, except Parms[13] that specifies the element abundance model index m, so that the 2D ζ -function table given by zeta_arr[*, *, m] is used in this voxel.

Return value: currently, -1 if the input was incorrect (incorrect number of parameters); 0 otherwise.

Function GET_MW_SLICE - multi-thread version

built-in abundance tables

Calling syntax:

res = call_external(libname, 'GET_MW_SLICE', Lparms_M, Rparms_M, \$
Parms_M, T_arr, DEM_arr_M, DDM_arrM, RL_M)

Function parameters:

- 0. Lparms_M 6-element long integer array of dimensions and global (for all voxels and all LOSs) integer parameters (see below).
- 1. Rparms_M array of real parameters common for all voxels within each LOS, 3 × Npix, double (see below).
- 2. Parms_M array of voxel parameters, $15 \times Nz \times Npix$ elements, double (see below).
- 3. T_arr array of temperatures where DEM/DDM are specified, NT elements, double, in K. This parameter is the same as in the GET_MW function: the temperature grid is assumed to be the same in all voxels and all LOSs, and the same for both DEM and DDM.
 - 4. DEM_arr_M array of DEMs, NT × Nz × Npix, double, in cm⁻⁶ K⁻¹ (see below).
- 5. DDM_arr_M array of DDMs, NT × Nz × Npix, double, in cm⁻³ K^{-1} (see below).
 - 6. RL_M input/output array, $7 \times Nf \times Npix$, double (see below).

Array of dimensions and global integer parameters Lparms_M: Lparms_M = [Npix, Nz, Nf, NT, DEM_key, DDM_key]

0. Npix – number of LOSs.

Other elements (1^{st} to 5^{th}) are the same as the 0^{th} to 4^{th} elements of the Lparms array in the GET MW function. In particular:

- a. all LOSs have the same number of voxels Nz;
- b. the number of frequencies Nf is the same for all LOSs;
- c. the global DEM and DDM on/off keys are related to all voxels within all LOSs.

Other parameters: sub-arrays Rparms_M[*, i], Parms_M[*, *, i], DEM_arr_M[*, *, i], DDM_arr_M[*, *, i] and RL_M[*, *, i] correspond respectively to the parameters Rparms, Parms, DEM_arr, DDM_arr and RL of the single-thread GET_MW function, for ith LOS.

Return value: currently, -1 if the input was incorrect (incorrect number of parameters); 0 otherwise.

Function GET_MW_SLICE – multi-thread version for user-defined abundance tables: not implemented yet.