Exercice 1: (8 points)

Soit ABCD un parallélogramme non aplati et soient M et N les points tels que :

$$\overrightarrow{AM} = \frac{2}{3}\overrightarrow{AB}$$
, et $\overrightarrow{CN} = \frac{3}{2}\overrightarrow{CB}$

- 1. Pourquoi les vecteurs \vec{AB} et \vec{AD} permettent de réaliser un repère $(A; \vec{AB}, \vec{AD})$?

 ABCD étant un parallélogramme non aplati, les vecteurs \vec{AB} et \vec{AD} ne sont pas colinéaires et peuvent ainsi former un repère $(A; \vec{AB}, \vec{AD})$. (1pt)
- 2. Calculer les coordonnées des points D, M, C et N dans le repère $(A, \overrightarrow{AB}, \overrightarrow{AD})$.

Comme $\overrightarrow{AD} = 0 \times \overrightarrow{AB} + 1 \times \overrightarrow{AD}$, D(0;1). (1pt)

Comme $\vec{AM} = \frac{2}{3}\vec{AB}, M(\frac{2}{3}; 0).$ (1pt)

Comme \overrightarrow{ABCD} est un parallélogramme $\overrightarrow{AC} = 1 \times \overrightarrow{AB} + 1\overrightarrow{AD}$ et C(1;1). (1pt)

Or
$$\vec{CN}(x_N-1,y_N-1) = \frac{3}{2}\vec{CB}(\frac{3}{2}(1-1);\frac{3}{2}(0-1)) = (0;-\frac{3}{2})$$
 d'où $N(1;-\frac{1}{2})$. (1pt)

3. Montrer que les points D, M et N sont alignés.

$$\vec{DM}(\frac{2}{3} - 0; 0 - 1) = (\frac{2}{3}; -1) \text{ et } \vec{DN}(1 - 0; -\frac{1}{2} - 1) = (1; -\frac{3}{2})$$

 $\vec{DN} = \frac{3}{2}\vec{DM}$ donc \vec{DN} est colinéaire à \vec{DM} et les points D, N, M sont alignés. (1pt)

4. On considère un nombre réel a non nul, et P et Q définis par

$$\overrightarrow{AP} = a\overrightarrow{AB}$$
, et $\overrightarrow{CQ} = \frac{1}{a}\overrightarrow{CB}$

Les points D, P et Q sont-ils toujours alignés ?

$$P(a;0)$$
 et $\vec{CQ}(x_Q - 1, y_Q - 1) = \frac{1}{a}\vec{CB} = (\frac{1}{a}(1 - 1); \frac{1}{a}(0 - 1) = (0; -\frac{1}{a})$ d'où $Q(1; 1 - \frac{1}{a})$; (1pt)

$$\vec{DP}(a-0;0-1) = (a;-1) \text{ et } \vec{DQ}(1-0;1-\frac{1}{a}-1) = (1;-\frac{1}{a}).$$

Ainsi \overrightarrow{DP} et \overrightarrow{DQ} sont colinéaires. Les points D, P, Q sont toujours alignés. (1pt)

Exercice 2: (11 points) Soit $(O; \vec{i}, \vec{j})$ un repère du plan.

1. Trouver une équation cartésienne pour la droite d_1 qui passe par le point A(2;5) et qui a pour vecteur directeur $\vec{u}(2;1)$.

 d_1 possède une équation de la forme $d_1: x - 2y + c = 0$.

$$A \in d_1 \Leftrightarrow 2 - 2 \times 5 + c = 0 \Leftrightarrow c = 8$$

 d_1 admet comme équation cartésienne $d_1: x-2y+8=0$. (1 pt)

2. Donner l'équation réduite de la droite d_1 .

$$x - 2y + 8 = 0 \Leftrightarrow x + 8 = 2y \Leftrightarrow y = \frac{1}{2}x + 4$$
 d₁ admet comme équation réduite $d_1 : y = \frac{1}{2}x + 4$ (1 pt)

- 3. Trouver l'équation réduite de la droite d_2 dirigée par le vecteur $\vec{v}(0;2)$ passant par le point B(4;-3). d_2 est parallèle à l'axe des ordonnées, son équation réduite est de la forme $d_2: x = k$ et comme $B(4;-3) \in d_2$, $d_2: x = 4$. (1 pt)
- 4. Dans chacun des cas, donner un vecteur directeur :
 - u_3 de la droite $d_3: 3x 5y + 1 = 0$.
 - u_4 de la droite $d_4 : y = 3x 7$.
 - u_5 de la droite $d_5 : x 6 = 0$.

 $\vec{u_3}(5;3)$ est un vecteur directeur directeur de d_3 . (1 pt)

 $\vec{u}_4(1;3)$ est un vecteur directeur de d_4 . (1pt)

 $\vec{u}_5(0;1)$ est un vecteur directeur de d_5 . (1pt)

- 5. Donner l'ordonnée à l'origine de la droite $d_6: 7x + 5y 15 = 0$. Le point de coordonnées (0; 3) est sur d_6 et 3 est donc l'ordonnée à l'origine de d_6 . (1 pt)
- **6.** Déterminer si le point E(-1;2) appartient à la droite $d_7 = \frac{x}{5} + \frac{y}{9} = 0$. $\frac{-1}{5} + \frac{2}{9} = -\frac{9}{45} + \frac{10}{45} = \frac{1}{45} \neq 0$ et $E \notin d_7$. (1 pt)
- 7. Trouver toutes les valeurs de m pour lesquelles $d_8: 3x+my+4=0$ est parallèle à la droite $d_9: 5x-4y+1=0$

 d_8 est parallèle à d_9

 \Leftrightarrow

les vecteurs directeurs $\vec{u}(-m;3)$ et $\vec{v}(4;5)$ sont colinéaires. (1 pt)

 \Leftrightarrow

- -5m-12=0 soit $m=-\frac{12}{5}$. $-\frac{12}{5}$ est la seule valeur de m pour laquelle les droites d_8 et d_9 sont parallèles. (1 pt)
- **8.** Trouver une équation cartésienne pour la droite (AB) avec A(3;7) et B(2;5).

 $\vec{AB}(2-3;5-7) = (-1;-2)$ est un vecteur directeur de (AB), $\vec{u}(1;2)$ aussi. La droite (AB) possède une équation de la forme 2x-y+c=0. Or B(2;5) appartient à (AB) d'où $2\times 2-5+c=0$ et c=1.

En définitive, (*AB*) : 2x - y + 1 = 0. (1pt)

Exercice 3: (1 point)

Résoudre l'inéquation $\frac{2}{3x+1} > 2x+1$.

$$\frac{2}{3x+1} > 2x+1$$

$$\frac{2}{3x+1} - (2x+1) > 0$$

$$\frac{2-(3x+1)(2x+1)}{3x+1} > 0$$

$$\Leftrightarrow \frac{-6x^2 - 5x + 1}{3x+1} > 0 (0.5 \text{ pt})$$

$$\Delta = 25 + 24 = 7^2, x_1 = \frac{-(-5) - 7}{2 \times (-6)} = \frac{1}{6} \text{ et } x_2 = \frac{-(-5) + 7}{2 \times (-6)} = -1.$$

On pose
$$f(x) = -6x^2 - 5x + 1$$
 et $g(x) = \frac{-6x^2 - 5x + 1}{3x + 1}$

x	-∞		-1	3x 1	$-\frac{1}{3}$		$\frac{1}{6}$		+∞
f(x)		_	0		+		0	_	
3x + 1			_		0		+		
g(x)		+	0	_		+	0	_	

d'où $S =]-\infty; -1[\cup] -\frac{1}{3}; \frac{1}{6}[(0.5 \text{ pt})]$