La teoría de conjuntos ZF y el axioma de elección

Daniel Camarena Pérez

Universidad Nacional de Ingeniería vcamarenap@uni.pe

6 de octubre de 2018

Contenido

- Conceptos Previos
- 2 Historia y Desarrollo
 - Antecedentes
 - La teoría ingenua de conjuntos.
 - La teoría de conjuntos ZFC
 - Consistencia y completitud de la teoría ZFC

Lógica matematica

Lógica de primer orden : es un sistema formal diseñado para estudiar la inferencia en los lenguajes de primer orden.

Lenguaje de primer orden : es un lenguaje formal (español) con conectores lógicos, cuantificadores y funciones proposicionales.

Lógica matematica

Lógica de primer orden : es un sistema formal diseñado para estudiar la inferencia en los lenguajes de primer orden.

Lenguaje de primer orden : es un lenguaje formal (español) con conectores lógicos, cuantificadores y funciones proposicionales.

- Axioma
- Concepto primitivo
- Demostración
- Teorema

Ejemplos

En la teoría de conjuntos ZFC:

- Axioma : existe el conjunto vacío
- Concepto primitivo : conjunto
- Teorema : no existe el conjunto que es elemento de sí mismo.

Ejemplos

En la aritmética de Peano:

- Teorema: Para todo m y n enteros positivos, si m y n son pares, entonces m+n es par.
- Demostración: Supongamos que m y n son enteros pares arbitrariamente elegidos. [Debe mostrarse que m+n es par.]
 - 1. m = 2r, n = 2s para algunos enteros r y s (por definición de par)
 - 2. m + n = 2r + 2s (por sustitución)
 - 3. m + n = 2(r + s) (mediante la factorización de 2)
 - 4. r + s es un entero (pues es la suma de dos enteros)
 - 5. m + n es par (por definición de par)

Teoría

Sistema hipotético deductivo formado por un conjunto de proposiciones dentro de un lenguaje formal.

Teoría

Sistema hipotético deductivo formado por un conjunto de proposiciones dentro de un lenguaje formal.

- Consistente
- Completa

Teoría

Sistema hipotético deductivo formado por un conjunto de proposiciones dentro de un lenguaje formal.

- Consistente
- Completa

¡¡En matemáticas todas las teorías son consistentes!!

Paradoja

Argumento

- premisas no controvertidas y verdaderas.
- emplea un procedimiento no controversial.
- obtiene una conclusión

Paradoja

Argumento

- premisas no controvertidas y verdaderas.
- emplea un procedimiento no controversial.
- obtiene una conclusión
 - contradictoria
 - absurda, inapropiada o inaceptable

Edad antigua y media

La teoría de conjuntos tiene su origen en los razonamientos sobre el infinito, que datan desde la época griega.

Edad moderna

La teoría ingenua de conjuntos.

La teoría de conjuntos ZFC Consistencia y completitud de la teoría ZFC

Georg Cantor

En 1874 Cantor publicó un artículo en el *Crelle's Journal (Journal für die reine und angewandte Mathematik*) el cual marca el nacimiento de la teoría de conjuntos.

1870 1910

La teoría ingenua de conjuntos.

La teoría de conjuntos ZFC Consistencia y completitud de la teoría ZFC

El hotel de Hilbert

Un segundo artículo fue presentado por Cantor en el *Crelle's* Journal en 1878Kronecker, quien estaba en la redacción de Crelle's Journal, no estaba contento con las nuevas ideas revolucionarias

La teoría ingenua de conjuntos.

La teoría de conjuntos ZFC

Consistencia y completitud de la teoría ZFC

El hotel de Hilbert

El conjunto de los números naturales

Peano, en 1889, publica Arithmetices principia, nova methodo exposita que donde expone los axiomas de Peano

Axiomas de Peano

Existe un conjunto N, no vacío, y una función $s: N \to N$ de modo que se cumplen las siguientes propiedades:

El conjunto de los números naturales

Peano, en 1889, publica Arithmetices principia, nova methodo exposita que donde expone los axiomas de Peano

Axiomas de Peano

Existe un conjunto N, no vacío, y una función $s: N \to N$ de modo que se cumplen las siguientes propiedades:

- s es inyectiva.
- **2** $N \setminus s(N) = \{1\}$
- **③** Todo subconjunto de N que contiene al 1 y tiene la propiedad, $\forall n \in X, s(n) \in N$, no es otro sino N.

La teoría ingenua de conjuntos.

La teoría de conjuntos ZFC Consistencia y completitud de la teoría ZFC

El todo no es mayor que las partes

Teorema

Todo conjunto infinito tiene un subconjunto propio que se puede poner en correspondencia uno-uno a si mismo.

Antecedentes

El continuo

Dedekind logró construir los números reales a partir de los racionales usando la técnica de las cortaduras de Dedekind.

El continuo

Dedekind logró construir los números reales a partir de los racionales usando la técnica de las *cortaduras de Dedekind*.

Teorema

No existe una biyección entre el conjunto de los naturales y el conjunto de los reales.

La teoría ingenua de conjuntos.

La teoría de conjuntos ZFC Consistencia y completitud de la teoría ZFC

La hipótesis del continuo

Teorema

La potencia de un conjunto no es equipotente al conjunto.

La teoría ingenua de conjuntos.

La teoría de conjuntos ZFC Consistencia y completitud de la teoría ZFC

La hipótesis del continuo

Teorema

La potencia de un conjunto no es equipotente al conjunto.

Teorema

El continuo es equipotente de a la potencia de N.

La teoría ingenua de conjuntos. La teoría de conjuntos ZFC

Consistencia y completitud de la teoría ZFC

La hipótesis del continuo

Teorema

La potencia de un conjunto no es equipotente al conjunto.

Teorema

El continuo es equipotente de a la potencia de N.

HC

Todo subconjunto infinito de R es o bien equipotente a N o bien equipotente a R

La teoría ingenua de conjuntos.

La teoría de conjuntos ZFC Consistencia y completitud de la teoría ZFC

La paradoja del barbero

Antecedentes

La paradoja de barbero

Definamos un conjunto

$$A = \{X | X \text{no es elemento de } X\}$$

Russell entonces se preguntó: ¿Es A un elemento de A? Tanto el supuesto de que A es un miembro de A y que A no es un miembro de A conllevan a una contradicción.

Antecedentes
La teoría inge

La teoría ingenua de conjuntos.

La teoría de conjuntos ZFC Consistencia y completitud de la teoría ZFC

La paradoja de barbero

Definamos un conjunto

$$A = \{X | X \text{ no es elemento de } X\}$$

Russell entonces se preguntó: ¿Es A un elemento de A? Tanto el supuesto de que A es un miembro de A y que A no es un miembro de A conllevan a una contradicción.

¡¡ La propia construcción del conjunto parece dar una paradoja !!

Ernst Zermelo

Daniel Camarena Pérez

Una nueva teoría de conjuntos

Los axiomas Zermelo-Fraenkel

- I Extensionalidad
- II Vacío
- III Unión
- IV Potencia
- V Infinitud
- VI Elección
- VII Reemplazamiento
- VIII Relación de Tipos

Resolviendo la paradoja de Rusell

Axioma del Esquema de Comprensión (FALSO). Si P es una propiedad, entonces existe un conjunto $Y = \{x : P(x)\}.$

Resolviendo la paradoja de Rusell

Axioma del Esquema de Comprensión (FALSO). Si P es una propiedad, entonces existe un conjunto $Y = \{x : P(x)\}$.

Y el conjunto de todos los conjuntos no existe, en todo caso:

¡¡ es el concepto del conjunto de todos los conjuntos lo que es paradójico, no la idea de la comprensión misma !!

El Buen Orden

El concepto del buen orden generaliza la propiedad de buen orden de los naturales y da origen a la teoría de los números ordinales.

El Buen Orden

El concepto del buen orden generaliza la propiedad de buen orden de los naturales y da origen a la teoría de los números ordinales.

Principio del Buen Orden

Todo subconjunto, no vacío, de naturales admite un primer elemento.

El Buen Orden

Teorema

Teorema del Buen Orden Todo subconjunto no vacio de naturales admite un primer elemento.

El Buen Orden

Teorema

Teorema del Buen Orden Todo subconjunto no vacio de naturales admite un primer elemento.

Demostración.

¡¡Usar Axioma de Elección!!

La teoría ingenua de conjuntos.

La teoría de conjuntos ZFC Consistencia y completitud de la teoría ZFC

El Axioma de Elección

La paradoja de Banach-Tarski

Teorema

Es posible dividir una esfera de radio 1 en ocho partes disjuntas dos a dos, de modo que, aplicando movimientos oportunos a cinco de ellas, obtengamos nuevos conjuntos que constituyan una partición de una esfera de radio 1, y lo mismo ocurra con las tres partes restantes.

Antecedentes

La teoría ingenua de conjuntos.

La teoría de conjuntos ZFC Consistencia y completitud de la teoría ZFC

La paradoja de Banach-Tarski

Godel y Cohen

Goedel y Cohen

Equivalencias al Axioma de Elección

- Principio Multiplicativo
- Principio de Buen Orden
- El Lema de Zorn
- Principio de Kuratowski

Aplicaciones del Axioma de Elección

- Todo espacio vectorial tiene una base.
- La unión enumerable de conjuntos enumerables es enumerable.
- Existe un conjunto de números reales que no es Lebesgue-medible.
- El producto de espacios compactos es compacto.
- Todo anillo con unidad tiene un ideal maximal.
- Todo orden parcial puede extenderse a un orden total.
- El teorema de Hahn-Banach.
- El teorema de completud para la lógica de primer orden.
- Toda álgebra de Boole es isomorfa a un campo de conjuntos.

La consistencia e independencia del axioma de elección

Teorema

Bajo la teoría ZF, el axioma de elección es equivalente a la hipótesis del continuo generalizado.

La consistencia e independencia del axioma de elección

Teorema

Bajo la teoría ZF, el axioma de elección es equivalente a la hipótesis del continuo generalizado.

Teorema (Goedel, 1938)

El axioma de elección y la hipótesis del continuo generalizado es consistente de los axiomas de la teoría de conjuntos ZF.

La consistencia e independencia del axioma de elección

Teorema

Bajo la teoría ZF, el axioma de elección es equivalente a la hipótesis del continuo generalizado.

Teorema (Goedel, 1938)

El axioma de elección y la hipótesis del continuo generalizado es consistente de los axiomas de la teoría de conjuntos ZF.

Teorema (Cohen, 1963)

El axioma de elección y la hipótesis del continuo generalizado es independiente de los axiomas de la teoría de conjuntos ZF.

Una teoría de conjuntos estándar

La teoría de conjuntos es uno de los mayores logros de la matemática moderna. Básicamente todos los conceptos matemáticos, métodos y resultados admiten la representación dentro de la teoría axiomática de conjuntos.

.

Referencias

Set theory. the third millennium edition.

Springer Monographs in Mathematics. Springer-Verlag, 2003.

Kazimierz Kuratowski.

Introduction to set theory and topology, volume 101. Elsevier, 2014.

Clifford A Pickover.

The math book: from Pythagoras to the 57th dimension, 250 milestones in the history of mathematics.

Sterling Publishing Company, Inc., 2009.

¡¡Muchas Gracias!!