Alt Seviye Programlama BLM2021

Öğr. Grv. Furkan ÇAKMAK

Ders İşleyiş Bilgilendirmesi

BLM2021 Alt Seviye Programlama

- Teorik Ders Saatleri: Perşembe 09:00 11:50
- Derslerin tamamı yüzyüze ortamda olacak.
- Duyurular için: https://avesis.yildiz.edu.tr/fcakmak/dokumanlar
 - USIS Toplu Mesaj Sistemi
- Google Classroom Sınıf Kodu: vhmy4lm
 - Dersle ilgili sorularınızı Classroom üzerinden duvar paylaşımı yaparak sorabilirsiniz.
- Zoom Personal Room:
 - https://us04web.zoom.us/j/3752287039?pwd=TTFKNittZWJTUEhHREovckl0VTVYUT09
 - Meeting ID: 375 228 7039
 - Passcode: 5AXMNd
- Dersle ilgili soru ve danışmalarınız için EN AZ 1 (BİR) GÜN ÖNCEDEN linkten randevu alınız.
 - https://fcakmak.simplybook.it/v2/
 - Mail ile randevu verilmeyecektir.
 - Alınan randevu saatinde eğer randevunuz online ise lütfen yukarıda verilen Zoom odasında, yüzyüze ise D-122 nolu odada bulununuz.

Ders Tanıtım Formu ve Konular

BLM2021 Alt Seviye Programlama

Hafta	Tarih	Konular
1	07.10.2021	Alt seviye dilinin özellikleri, sayı ve kodlama sistemleri, 80x86 ailesi işlemcileri, yazmaçları ve bayrakları ile kesim organizasyonu
2	14.10.2021	Komutlar (veri aktarımı, aritmetik ve dallanma)
3	21.10.2021	Komutlar (çevrim, bayraklar, mantıksal, öteleme, döndürme)
4	28.10.2021	Komutlar (katar işlemleri <mark>,</mark> ön ekler)
5	04.11.2021	Adresleme modları, alt seviye programlama araçları, sözde komutlar
6	11.11.2021	Çalışma ortamının hazı <mark>rl</mark> anmas <mark>ı ve debug kullanımı</mark>
7	18.11.2021	EXE tipinde alt seviye programlama
8	25.11.2021	1. Ara Sınav
9	02.12.2021	COM tipinde alt seviye programlama
10	09.12.2021	Yordam ve makro kullanımları
11	16.12.2021	Alt-programlar ve parametre aktarma yöntemleri
12	23.12.2021	Ortak kesim kullanımı ve EXTRN/PUBLIC tanımlamaları
13	30.12.2021	Kesme, vektör tablosu 1911
14	06.01.2022	Alt seviye programlama dilinin yüksek seviyeli diller ile birlikte kullanılması

Ders Tanıtım Formu - Ders Kitabı

BLM2021 Alt Seviye Programlama

Hafta 1

	Kitaplar
1	80x86 Assembly Dili, Tasarım ve Çevre Birimleri, A.Tevfik İNAN, E. USLU, F. ÇAKMAK - Seçkin Yayıncılık
2	IBM PC Assembler Language and Programming, Peter Abel - Prentice Hall
3	The 80386, 80486 and Pentium Processor, Walter A. Triebel - Prentice Hall
4	THE INTEL MICROPROCESSORS Architecture, Programming, and Interfacing, Barry Brey - Prentice Hall

1911

Ders Tanıtım Formu - Değerlendirme

BLM2021 Alt Seviye Programlama

	Yöntem VIK	Ü N Adedi	Etki Oranı (%)
	Ara Sınavlar	1	30
	Kısa Sınavlar	-'0.	-
Başarı	Ödevler	2	30
Değerlendirme	Projeler	- ES	-
Sistemi	Dönem Ödevi		-
	Laboratuvar	-/	-
	Diğer	-	-
	Final Sınavı	1	40

Ders Tanıtım Formu - Bilgilendirme

- Ödevler, sınavlar ortak olacak
- Sınavda sınıf düzeni için 15 dk. önce gelinmeli
- İmza tükenmez kalem ile olmalı
- Sınavda Instruction Set kullanılabilir
- Yoklama %70 (< F0)
- İmza nedir? Neden atılır?
 - Vekalet yok!
- İletişim: fcakmak@yildiz.edu.tr

Assembly Dilinin Yeri

- Donanıma en yakın dil
- Makine kodunun sembolikleştirilmiş hali
- Program yazmak için Instruction Set'ten yararlanılır

Assembly Dili Hakkında Yanlışlar*

BLM2021 Alt Seviye Programlama

- Öğrenmek zordur.
- Okumak ve anlamak güçtür.
- Hatayı bulmak zordur.
- Yazılmış programların bakımı zordur.
- Program yazmak zordur.
- Programlama uzun zaman almaktadır.
- Gelişen derleyici teknolojileri bu dile ihtiyacı kaldırmıştır.
- Bilgisayarlar o kadar hızlanmıştır ki, hız için assembly diline olan ihtiyaç ortadan kalmıştır.
- Uygulamanın hızlanması için assembly dili yerine daha iyi bir algoritma kullanılmalıdır.
- Günümüzde bilgisayarların bellekleri arttı ve ucuzladı. Yerden (bellek) kazanmak için assembly diline gerek kalmadı.
- Assembly dili taşınabilir (portable) değildir.

Assembly Dili Hakkında Doğrular*

BLM2021 Alt Seviye Programlama

- Hızlıdır.
- Bellek üzerinde az yer kaplar.
- Yetenekleri fazladır.
- Bilgi birikimi ile yüksek seviyeli dillerde hareket kabiliyeti artar.

Sayı Sistemleri

BLM2021 Alt Seviye Programlama

- Bilgisayar teknolojisinin temelleri transistörlere dayanır.
 - Kapalı devre 0
 - Açık devre 1
- İkili (Binary) sayı sistemi
- Gösterim kolaylaştırmak için;
 - Sekizli (Octal)
 - On altını (Hexadecimal)

İkili (Binary) Sayı Düzeni

BLM2021 Alt Seviye Programlama

- Her bir digit 1 biti temsil eder.
- 8 bit = 1 byte
- En anlamlı bit (MSB Most Significant Bit) -> en soldaki bit
- En az anlamlı bit (LSB Least Significant Bit) -> en sağdaki bit
- Program yazarken B harfi ile tanımlanır.

2 ⁷	2^6	2 ⁵	24	2^3	2 ²	21	2^0	
\downarrow	\downarrow	\downarrow	↓	\downarrow	\downarrow	↓	\downarrow	
128	64	32	16	8	4	2	1	В
1	0	1	1	0	1	0	1	
\downarrow	\downarrow	\downarrow	\downarrow	191	1	\downarrow	\downarrow	
128	0	32	16	0	4	0	1	= 181

Binary İşlemler (Toplama, Çıkartma)

BLM2021 Alt Seviye Programlama

Hafta 1

Octal ve Hexadecimal Sayı Düzeni

Decimal	Binary	Octal	Нех.	Decimal	Binary	Octal	Нех.
0	0000B	000	00 <i>H</i>	8	1000B	100	08 <i>H</i>
1	0001 <i>B</i>	010	01 <i>H</i>	9	1001B	110	09 <i>H</i>
2	0010 <i>B</i>	020	02 <i>H</i>	10	1010 <i>B</i>	120	0 <i>AH</i>
3	0011 <i>B</i>	030	03 <i>H</i>	11	101 1 <i>B</i>	130	0 <i>BH</i>
4	0100 <i>B</i>	040	04 <i>H</i>	12	110 0 <i>B</i>	140	0 <i>CH</i>
5	0101 <i>B</i>	05 <i>0</i>	05 <i>H</i>	13	1101 <i>B</i>	15 <i>0</i>	0DH
6	0110 <i>B</i>	06 <i>0</i>	06H	14	1110 <i>B</i>	160	0 <i>EH</i>
7	0111 <i>B</i>	070	07 <i>H</i>	15	1111 <i>B</i>	170	0FH

Sistem Organizasyonu (Von Neuman - 80x86)

BLM2021 Alt Seviye Programlama

Sistem Organizasyonu (Von Neuman - 80x86)

BLM2021 Alt Seviye Programlama

- Birimlerin bağlantıları yollar (bus) ile sağlanır.
 - Address bus (Adres yolu)
 - Data bus (Veri yolu)
 - Control bus (Kontrol yolu)
- Yolların tipleri
 - Paralel
 - Seri

Yol (Bus) Çeşitleri

BLM2021 Alt Seviye Programlama

- FSB (Front Side Bus)
 - İşlemci ile anakart arasındaki bağlantı
- Bellek Bağlantı Yolları
 - SDRAM (Synchronous Dynamic RAM)
 - DDR-SDRAM (Dual Data Rate SDRAM)
 - DDR2-SDRAM
 - DDR3-SDRAM
 - DDR4-SDRAM
 - RDRAM (Rambus Dynamic RAM)

- Grafik Birim Bağlantı Yolları
 - AGP (Advanced Graphic Port)
 - PCIe (Peripheral Component Interconnect Express)
- İkincil Bellek Birim Bağlantı Yolları
 - ATA (Advanced Technology Attachment)
 - SATA (Serial ATA)
- Diğer Çevre Birim Bağlantı Yolları
 - IEEE 1394
 - Apple -> Firewire
 - Sony -> i.Link
- USB

80x86 Ailesi İşlemciler

BLM2021 Alt Seviye Programlama

- CISC (Complex Instruction Set Computers)
- İşlem hacmi -> 8, 16, 32, 64
- Intel, AMD, Cyrix, IBM, TI, NexGen, vb.
- Backward Code Compatibility (Geriye Yönelik Kod Uyumluluğu)
- Matematik İşlemciler -> 8086 için 8087 vb.

Öğr. Grv. Furkan ÇAKMAK

8086 İşlemcinin İç Yapısı

BLM2021 Alt Seviye Programlama

Bellekler, Yazmaçlar ve Fiziksel Adres Hesapları

Segments / Kesimler

- Kod Kesimi (Code Segment)
 - CS:IP
- Yığın Kesimi (Stack Segment)
 - SS:[SP-BP]
 - LIPO: Last in First Out
 - PUSH POP
- Veri Kesimi (Data Segment)
 - DS:[SI, DI, BX]
- Ek Kesim (Extra Segment)
 - ES:[SI, DI, BX]

. 3.	Kesim	Göreli Konum	
Komut Adresleme	CS	IP	
Viğin Adnaglama	SS	SP	
Yığı <mark>n Adresle</mark> me	SS	BP	
Veri Adresleme	DS	SI, DI, BX	
vert Auresteine	ES	DI, SI, BX	

Bayraklar (Flags - PSW)

BLM2021 Alt Seviye Programlama

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
_	_	_	_	OF	DF	IF	TP	SF	ZF	_	AF	_	PF	_	CF

Bayrak	Görevi (Set →> 1, Clear, Reset →> 0)				
CF: Carry Flag	Elde ödünç durumlarında CF set olur.				
PF: Parity Flag	Even parity -> Set, Odd Parity -> Clear (Even: Çift)				
AF: Auxilary CF	8 — bit işlemde 4'den 5'e; 16 — bit işlemde 8'den 9'a elde/ödünç aktarımı				
ZF: Zero Flag	İşlem sonucu 0 ise Set, 1 ise Clear				
SF: Sign Flag	İşlem sonucu negatif ise Set, pozitif ise Clear				
TP: Trap Flag	Adım bayrağı. Set ise her komuttan sonra kesme üretilerek prog. izleniyor				
IF: Interrupt Flag	Maskelenebilir (Maskable) kesmelerin kontrolü için kullanılır. 1 ise izin verilir.				
DF: Direction Flag	Dizgi (String) işlemlerinde işlemin yönünü belirlemek için kullanılır.				
OF: Overflow Flag	Aritmetik taşma durumunda Set, aksi durumda Clear.				

Belleğe Erişim

- İşlemcinin adresleyebileceği bellek adres bacağı ile değişir.
 - 20 bacak varsa; $2^{20} = 1 MB$
- Fiziksel adres hesabı

Gerçek Kip	Korumalı Kip
 16-bitlik kesim yazmaçları sayesinde 64K'lık bloklara erişilebilir. Toplam alan 1MB'dır. Programlar birbirlerinin bellek alanına erişebilir. Multitasking (Çoklu görev) yoktur. Yazılım ile BIOS kodlarına veya donanıma doğrudan erişmek mümkündür. 	 Bellek koruması vardır. Programlar birbirlerinin alanına giremez. Çoklu görev desteklenir. Donanım olarak, programın çalışma sıralarını değiştirme hakkı vardır (Preemptive Multitasking) Korumalı kipte yazmaçlar 32-bitlik tir. Günümüz işletim sistemleri açılışı sırasında işlemciyi korumalı kipe geçirerek çalışır.

İşlemcinin Komutları Adım Adım Çalıştırması

BLM2021 Alt Seviye Programlama

- 1. Komutu belirleyen byte'ın bellek üzerindeki kod alanına alınması (Instruction fetch)
- 2. IP yazmacının bir sonraki byte'ı gösterecek şekilde değiştirilmesi
- 3. Alınan komutun ne komutu olduğunun ve ne tür parametrelerle çalışacağının belirlenmesi (Instruction Decode)
- 4. Gerekli olması durumunda kullanılacak parametrelerin bellek alanından alınması (Operand Fetch)
- 5. IP yazmacının bir sonraki komutu gösterecek şekilde ayarlanması
- 6. İşlemin gerçekleştirilmesi (Execute)
- 7. Elde edilen sonucun gerekli olan yere yerleştirilmesi (Store)

Sabırla Dinlediğiniz İçin Teşekkürler

BLM2021 Alt Seviye Programlama

