TS-CP2 for semi-supervised change point detection

Андрей Веприков Алексей Зайцев Евгения Романенкова Александр Степикин

Лето 2022

 Андрей Веприков
 Сколтех
 Лето 2022
 1/2

Содержание

- Методы детектирования и способ их совмещения
- Датасеты
- Эксперименты
- Finetuning

Введение

Разладка во временному ряду — это момент резкой смены вероятностного распределения составляющих его данных. Интересной задачей машинного обучения и нейронных сетей является детектирование этих самых разладок в различных последователтностях.

Этим летом я совместил 2 метода детектирования разладок в одну модель, исследовал качество этой модели на различных датасетах (Syntetic 1D и MNIST) и выбрал оптимальные гиперпараметры для этой модели.

Какие именно методы я совместил и каким образом, особенности датасетов, об этом всем будет подробнее рассказано далее.

Методы детектирования и способ их совмещения

 Андрей Веприков
 Сколтех
 Лето 2022
 4/22

Unsupervised метод TS-CP2

В основе этого подхода лежит кодировщик (encoder), который отображает «позитивыне» пары (то есть пары из одного распределения) в метрическое пространство так, чтобы между этими парами расстояние было небольшим, а «негативные» пары (то есть пары из разного распределения) он отображает в элементы, расстояние между которыми достаточно большое.

Ключевым является семплирование положительных и негативных пар. В этом методе позитивными считаются пары, которые взяты из близких мест в последовательноти, а негативными – пары из различных последовательностей в батче.

Supervised метод TS-CP2

Этот метод похож на предыдущий, разница только в семплировании положительных и негативных пар — здесь мы уже пользуемся разметкой.

Андрей Веприков Сколтех Лего 2022 6/22

Комбинирование этих методов

При обучении нашей модли на каждом тренировочном шаге мы брали батчи из двух разных датасетов — размеченного и неразмеченного, параллельно вычислялись функции ошибок, назовем их unsupervised loss и supervised loss. Финальная функция ошибки вычислялась как alpha * unsupervised loss + (1-alpha) * supervised loss.

Гиперпараметр alpha лежит в промежутке [0; 1] и регулирует вклад каждого метода в нашу модель.

Андрей Веприков Сколтех

Датасеты

Syntetic 1D

В качестве простейшей выборки были сгенерированы последовательности длины 128, состоящие из 1-мерных гауссовских случайных величин. Они имеют вид

$$x_1, ..., x_{\theta} \sim N(0, 1)$$
 $x_{\theta+1}, ..., x_{128} \sim N(\mu, 1),$

где $\mu \in \{1,...,100\}$ – случайное математическое ожидание, а $\theta \in \{2,...,127,128\}$ – случайный момент разладки (если $\theta = 128$, значит, разладки нет). Примеры последовательносей из Syntetic 1D:

С разладкой

Без разладки

Андрей Веприков Сколтех Лето 2022 9/22

MNIST

Данная выборка была получена на основе базы данных MNIST, которая представляет собой набор изображений рукописных арабских цифр размера 28×28 пикселей.

Если есть разладка, то наши последовательности состоят только из изображений цифры 4, а если она есть, то в какой-то случайный момент 4 переходят в 7. Примеры последовательносей из MNIST:

С разладкой

Без разладки

Эксперименты

Андрей Веприков

Варьирование alpha и supervised num

В первом эксперименте я одновременно менял alpha и supervised num – размер размеченного датасета, для неразмеченного датасета размер был фиксирован – 500 последовательностей.

Для каждого значения двух гиперпараметров я обучал модель 3 раза при разных сидах и усреднял результаты.

Ниже представленны значения для метрики F1-Score на двух датасетах.

Андрей Веприков Сколтех Лето 2022

Варьирование alpha и supervised num, таблицы

	s = 5	s = 10	s = 15	s = 25	s = 50	s = 75
$\alpha = 0$	0.8950 ± 0.0108	0.9056 ± 0.0225	0.9239 ± 0.0091	0.9369 ± 0.0192	0.9406 ± 0.0142	0.9322 ± 0.0219
$\alpha = 0.3$	0.8642 ± 0.0404	0.9087 ± 0.0097	0.9045 ± 0.0100	0.9154 ± 0.0117	0.9245 ± 0.0017	0.9183 ± 0.0084
$\alpha = 0.5$	0.8914 ± 0.0193	0.8988 ± 0.0125	0.8900 ± 0.0118	0.9198 ± 0.0032	0.8525 ± 0.0420	0.8775 ± 0.0340
$\alpha = 0.7$	0.7989 ± 0.1254	0.8882 ± 0.0423	0.7502 ± 0.1500	0.7602 ± 0.0953	0.7336 ± 0.0276	0.7831 ± 0.0626

Syntetic 1D

	s = 15	s = 20	s = 25	s = 30
$\alpha = 0$	0.8620 ± 0.0482	0.8610 ± 0.0699	0.9538 ± 0.0119	0.9612 ± 0.0193
$\alpha = 0.3$	0.6758 ± 0.0882	0.7126 ± 0.0102	0.7123 ± 0.0584	0.6801 ± 0.0340
$\alpha = 0.5$	0.6495 ± 0.0408	0.7152 ± 0.0279	0.7253 ± 0.0195	0.7193 ± 0.0301
$\alpha = 0.7$	0.6845 ± 0.0260	0.6665 ± 0.0278	0.7043 ± 0.0079	0.7107 ± 0.0158

MNIST

13/22

Андрей Веприков

Варьирование unsupervised num

Во втором эксперименте я менял unsupervised num – размер не размеченного датасета, alpha и supervised num были выбраны исходя из предыдущего эксперимента (эти значения помечены жирным в таблицах). Ниже представленны значения для метрики F1-Score на двух датасетах.

unsupervised_num	F1-Score	_	unsupervised_num	F1-Score
400	0.9147 ± 0.0033		400	0.6814 ± 0.0299
450	0.8724 ± 0.0463		450	0.6540 ± 0.0427
500	0.9198 ± 0.0032		500	0.7193 ± 0.0301
550	0.7942 ± 0.1137		550	0.7436 ± 0.0261
600	0.8804 ± 0.0431		600	0.7091 ± 0.0111
Syntetic 1D			MNIS	ST

Построение графиков обучения

Третьим экспериментом было построить график зависимости F1-Score для различных supervised num, причем unsupervised num выбиралось в первом случае исходя из предыдущего эксперимента, во втором оно бралось равным supervised num, а в третьем 2 * supervised num. Значения alpha выбирались исходя из предыдущих экспериментов.

Ниже представлены таблицы и графики, которые из них получились

 Андрей Веприков
 Сколтех
 Лето 2022

Построение графиков обучения, таблицы и графики

	s = 10	s = 15	s = 20	s = 25
u = 500	0.9103	0.875	0.9103	0.8687
u = s	0.3455	0.7846	0.9028	0.8912
u = 2 * s	0.8873	0.9215	0.8794	0.9288

Syntetic 1D

	s = 15	s = 20	s = 25	s = 30
u = 550	0.5833		0.7292	0.6837
u = s	0.5333	0.5948	0.5215	0.625
u = 2 * s	0.5603	0.6232	0.5848	0.7556

MNIST

Syntetic 1D

40.40.45.45. 5 .000.

Андрей Веприков Сколтех Лето 2022 16/22

Варьирование num change

Отдельно для датасета MNIST я менял num change в неразмеченном датасете – кол-во последовательностей с разладкой, без разладки было 550 - num change последовательностей. supervised num и alpha были фиксированы – 30 (15 с разладкой, 15 без) и 0.5 соответственно.

Ниже представлена таблица, которая у меня получилась

num_change	F1-Score
100	0.7518 ± 0.0191
150	0.7217 ± 0.0193
200	0.6584 ± 0.0238
225	0.7193 ± 0.0301
300	0.7106 ± 0.0300
350	0.7811 ± 0.0239
400	0.6473 ± 0.0774
450	0.6738 ± 0.0449

Finetuning

Андрей Веприков

Описание

Теперь отойдем от идеи параллельного обучения и будем истользовать Finetuning — мы сначала обучим ее только на неразмеченных данных (unsupervised num = 500), а потом уже дообучим ее на размеченных данных. Изначально мы обучали модель на неограниченом кол-ве эпох — пока процесс не остановится сам, а уже дообучали на конкретном числе эпох, потом строили график зависимости F1-Score от кол-ва эпох. Также мы меняли supervised num — размер дообучающей выборки.

Ниже представлены таблицы и графики, которые у нас получились

19/22

Syntetic 1D

max_epoch	AUC	F1-Score	COVER
0	1350.2109 ± 0.0000	0.8178 ± 0.0000	0.9313 ± 0.0000
1	1134.0923 ± 40.5511	0.9215 ± 0.0030	0.9739 ± 0.0002
2	1041.0715 ± 19.6686	0.9253 ± 0.0002	0.9750 ± 0.0004
3	1015.4839 ± 21.7968	0.9267 ± 0.0015	0.9763 ± 0.0009
4	990.0316 ± 1.0131	0.9266 ± 0.0016	0.9764 ± 0.0005
5	982.5919 ± 7.2966	0.9288 ± 0.0000	0.9772 ± 0.0002
10	991.7048 ± 16.1740	0.9279 ± 0.0012	0.9769 ± 0.0011
15	986.8419 ± 4.0656	0.9264 ± 0.0017	0.9766 ± 0.0006
20	1018.8196 ± 13.0035	0.9255 ± 0.0002	0.9769 ± 0.0003

supervised num = 500

max_epoch	AUC	F1-Score	COVER
0	1465.7275 ± 0.0000	0.6997 ± 0.0000	0.8970 ± 0.0000
1	935.7097 ± 91.7876	0.9285 ± 0.0293	0.9258 ± 0.0351
2	1088.0619 ± 19.9490	0.9097 ± 0.0022	0.8914 ± 0.0026
3	1111.2375 ± 1.4985	0.9177 ± 0.0017	0.8937 ± 0.0006
4	1115.3999 ± 8.8529	0.9149 ± 0.0005	0.8943 ± 0.0005
5	1105.1944 ± 8.8972	0.9168 ± 0.0034	0.8941 ± 0.0011
10	1098.1161 ± 9.3388	0.9215 ± 0.0052	0.8956 ± 0.0022
15	1095.1049 ± 6.4511	0.9276 ± 0.0017	0.8971 ± 0.0014
20	1094.2226 ± 5.9605	0.9290 ± 0.0028	0.8981 ± 0.0017

supervised num = 250

Андрей Веприков

20/22

Syntetic 1D

max_epoch	AUC	F1-Score	COVER
0	1481.9738 ± 0.0000	0.5893 ± 0.0000	0.8886 ± 0.0000
1	1274.5978 ± 66.6809	0.8193 ± 0.1038	0.9438 ± 0.0321
2	1197.7415 ± 8.8820	0.9194 ± 0.0015	0.9772 ± 0.0008
3	1145.2041 ± 26.6605	0.9266 ± 0.0032	0.9793 ± 0.0006
4	1038.3662 ± 14.1210	0.9288 ± 0.0000	0.9802 ± 0.0001
5	1046.2301 ± 6.6570	0.9288 ± 0.0000	0.9803 ± 0.0000
10	1067.5729 ± 19.6342	0.9288 ± 0.0000	0.9801 ± 0.0002
15	1099.2345 ± 8.3709	0.9218 ± 0.0030	0.9772 ± 0.0010
20	1154.5492 ± 12.5719	0.8981 ± 0.0034	0.9682 ± 0.0016

supervised num = 100

max_epoch	AUC	F1-Score	COVER
0	1490.0293 ± 0.0000	0.6716 ± 0.0000	0.8923 ± 0.0000
1	1240.3684 ± 34.5952	0.8873 ± 0.0207	0.9615 ± 0.0090
2	1199.6192 ± 4.5594	0.9040 ± 0.0036	0.9709 ± 0.0018
3	1189.3978 ± 9.0754	0.9252 ± 0.0030	0.9781 ± 0.0008
4	1127.9910 ± 13.3004	0.9288 ± 0.0000	0.9802 ± 0.0001
5	1131.0608 ± 15.8516	0.9288 ± 0.0000	0.9804 ± 0.0000
10	1163.7966 ± 3.6990	0.9177 ± 0.0092	0.9755 ± 0.0029
15	1132.4999 ± 19.2155	0.9090 ± 0.0070	0.9728 ± 0.0025
20	1048.8060 ± 32.0784	0.8883 ± 0.0135	0.9673 ± 0.0048

supervised num = 50

Андрей Веприков Сколтех

MNIST

max_epoch	AUC	F1-Score	COVER
0	326.7924 ± 0.0000	0.6485 ± 0.0000	0.8110 ± 0.0000
1	206.4070 ± 50.0186	0.9129 ± 0.0065	0.8833 ± 0.0129
2	89.8429 ± 16.0769	0.9671 ± 0.0219	0.9081 ± 0.0095
3	104.2689 ± 11.8005	0.9527 ± 0.0313	0.9194 ± 0.0032
4	201.449 ± 60.5243	0.9141 ± 0.0667	0.8974 ± 0.0086
5	76.1339 ± 2.4245	0.9819 ± 0.0137	0.9194 ± 0.0053
10	111.9123 ± 48.7905	0.9473 ± 0.0302	0.9215 ± 0.0014
15	183.3653 ± 63.9131	0.9806 ± 0.0177	0.9198 ± 0.0036
20	74 5935 + 2 5516	0.9683 + 0.0399	0.9196 + 0.0022

supervised num = 500

max epoch	AUC	F1-Score	COVER
0	300.7945 ± 0.0000	0.6899 ± 0.0000	0.8213 ± 0.0000
1	219.6781 ± 23.7464	0.9093 ± 0.0074	0.8517 ± 0.0103
2	150.6444 ± 33.3137	0.9720 ± 0.0153	0.9044 ± 0.0098
3	82.7836 ± 5.8121	0.9358 ± 0.0285	0.9196 ± 0.0004
4	93.2684 ± 20.9937	0.9063 ± 0.0595	0.9188 ± 0.0002
5	106.9713 ± 27.4376	0.8903 ± 0.0265	0.9209 ± 0.0010
10	180.3521 ± 39.3568	0.9433 ± 0.0312	0.9210 ± 0.0014
15	194.214 ± 72.4240	0.9710 ± 0.0079	0.9008 ± 0.0290
20	122.3874 ± 20.0243	0.9820 ± 0.0108	0.9195 ± 0.0004

