Moduli spaces: functors, algebraic spaces, stacks, algebraic stacks

Max Lieblich

Lecture 1 . What is a moduli space ?

- (o) varieties
- (1) carries of genus g
- (2) line bundles on X
- (3) maps between X & Y
- (4) closed subschemes of X (ag. X = [p n]
- (5) Intopures of a fixed vector space

{pt} of Mi} <-> (objects of flew i}

Q: How should a sihene be described?

- (1) "Absolute": affine chant
- (2) Relative!

Analogy: functions

 $\underline{\alpha}$. How should an element $f \in C^{\infty}([0,1])$ be described?

- (1) f(x)
- (2) Relative: paining $g \in ({}^{\infty}([0,1])) \longrightarrow \int_0^1 f g \in \mathbb{R}$

Lf: (([0,1]) →]R

g ← , ∫¹fg

 $=\frac{1}{2}$ L: $C^{\infty}([0,13)) \longrightarrow Hom(C^{\infty}([0,1]), [R])$ is an injective linear transf.

Same procedure in a cat: pairing X, Y 1-> Hom(X, Y), a set

D

$$Z \longrightarrow Y \longrightarrow h_X(Y) \longrightarrow h_X(Z)$$

Hom $(Y, X) \longrightarrow Hom(Z, X)$

composition

hx is a contravariant functor from e to Set

$$\Sigma \times C = Sch_{\mathbb{Z}}, h_{\mathbb{A}^{2}}(Y) = \Gamma(Y, O_{Y})$$

$$Z \rightarrow Y, \Gamma(Y, O_{Y}) \xrightarrow{\text{pull fack}} \Gamma(Z, O_{Z})$$

$$h_{Gm}(Y) = \Gamma(Y, O_Y^X)$$

as.
$$\Gamma(Y, Q_Y^{\times}) \hookrightarrow \Gamma(Y, Q_Y)$$
, $h_{Gm}(Y) \rightarrow h_{A'}(Y)$
 $h_{Gm} \rightarrow h_{A^{\perp}}$.

Analogue of bumps

Voneda Lemme. h: e -> Func (e°, Set) is fully faithful.
els. hai -> hpr comes from a map of scheme A¹ -> 1pr.

Votation. $h_X =$ the functor of pts of X "

C = Schoo, hx (Spec C) = Homo (Spec C, X) = X (C)

 $G_{m} \longrightarrow G_{m}$ $X \longmapsto \chi^{2}$ hook on all pts, def a nat'l transf ham -> ham

Philosophy: Funta = "genralized space" Schemes = distinguished class of spaces

> Instead of F: 6° -> Jet think = F

Internal Structure: F(T)

Exer. 3 a natil bijection Hom (hT, F) ~ F(T)

A functor F is representable if $\exists X \in \mathcal{C}$ sit. $F \approx h_X$

Anything we can do my sets, we can do my functors of sets.

eg. F_{μ} $(F \times h)(T) = F(T) \times h(T)$ This unhs. hxxx = hx x hy.

Q. What is the functor of points of Mi?

 $C = Sch_Z$, $M_o(T) = {X \longrightarrow T, \text{ finite presentation.}} /= geom. integral fiber$

 $M_1(T) = \{ C \rightarrow T \mid \text{proper smooth } \text{t finite presentation} \} /=$ filters are curses of genus g

$$M_2(T) = \{ L \text{ inventite sheaf on } X \times T \} /_{\sim}$$
 $M_3(T) = \{ Hom_T(X_T, Y_T) \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) = \{ Z \hookrightarrow X \times T \}$
 $M_4(T) =$

Lecture ? X scheme, hx has a nice property:

Fix Y, UCY -> Hom (u, x) = hx(u) is a sheaf in zar. top.

{uicY} open cour. hx(Y) as Thx(ui) = Thx(uin uj)

is exact. [a injectie, β im(a) = $\{d: b(d) = c(d)\}$]

Publis : Zar. topology is not - geometric .

Sovre: FAC

Sorre: other things better.

how then diech: ats tract categorical topology.

Obs. X top. space, get a (at: obj. $U \subset X$ open mor. $Hom(U,V) = \{inclusions \ U \subset V\}$.

| Hom (u, v) | ≤ 1.

Presheaf contravariant functor to Set.

 $U \longrightarrow V$, $F(v) \longrightarrow F(u)$.

For sheaves, need to remember more: open loverings.

Retain { Vi C U }

set of arrows Vi -> U in cat.

Silly properties. (i) {ucu} is a covering

- (ii) It {vicu} is a wearing of weu, {vinwew} is a wearing
- (iii) If {Wijc Vi} and weering; {Vic U} is a weering, then {Wijc U} is a weering.

Det . (linen a cat. ℓ , a brothendieck top. is a collection of sets of arrows $\{Vi \to U\}$ for each $U \in \ell$ ["coverings"] s.t.

- (i) Any isom. is a weig.
- (iii) If $\{V_i \rightarrow U\}$ is a covering, $\{W \rightarrow U\}$, then $V_i \times W$ exists for each if $\{V_i \times W \rightarrow W\}$ is a covering.
- (iii) If $\{W: j \rightarrow V: \}$ (ov', , $\{V: \rightarrow U\}$ (ov., then $\{W: j \rightarrow U\}$ (overing.

Site is a cat. of a low thendiech top.

Examples X a scheme

X Zan = Small Zaniski site

Obj: = U -> X open immensions

Onrows = V -> X

U

(derings = $\{V_i \xrightarrow{\varphi_i} U : U_{\varphi_i}(V_i) = U\}$.

$$X_{ZAR} = big Zaniski site$$

$$C = Sch \times g \times Z$$
where $Y_i = Y_i = Y_i \times Z$

$$X_{X_i} = ach \quad (Y_i) = ach \quad (Y_i) = Z$$

$$X_{X_i} = Y_i \cdot (Y_i) = Z$$

$$X = A^{1}$$
, $Y = X$

$$h_{Y}$$

$$X = Sman = Sma$$

$$X \in T = \text{ fig etale site}$$

$$C = Sch_X, \qquad \text{ Loverings of } Z = \left\{ \begin{array}{c} Y_i \xrightarrow{\varphi_i} Z & \varphi_i \text{ is equility} \\ Y & Z \end{array} \right\}$$

$$\begin{array}{lll}
\text{X typb} &=& \text{typb site} \\
\text{C} &=& \text{Sch}_X, & \text{coverings} &=& \left\{ \begin{array}{ll} Y_i & \xrightarrow{\varphi_i} Z \\ \times & \end{array} \right. & \text{pri} & \text{is blat}, & \text{loc. of fin. pres.} \\
\text{X} & \text{U Pi}(Y_i) &=& Z
\end{array}$$

Det liver a site ℓ , a sheat on ℓ is a functor $F: \ell^{\circ} \to Set$ sit. \forall covering $\{Y_i \to Z\}$ in ℓ , the diagram $F(Z) \to TTF(V_i) = TTF(Y_i \times Y_i)$ is exact.

Threed to consider i=j, ug. Spec (1(52) -> Spec (1)

Thm (buthendieck) For any X-scheme S, the functor hs: Sch x -> Set is an Spyl sheaf.

hs
$$(z)$$
 \rightarrow Ths (Y_i) \Rightarrow Ths $(Y_i \underset{\sim}{\times} Y_5)$ is exact.
 $\{Y_i \rightarrow z\}$ is Spec B \rightarrow Spec A, $A \rightarrow B$ faithfully that

[equi
$$.0 \rightarrow A \rightarrow B \rightarrow B \otimes B$$
 exact seq. of A -modules] $(1-) (1 \otimes 1 - 1 \otimes 6)$

Let
$$B \otimes B \longrightarrow B$$

 $A \otimes C \longrightarrow \sigma(b) C$

Show: if
$$6 \otimes 1 = 1 \otimes 6$$
, then $6 \in A$.

$$\Rightarrow \sigma(b) = b$$

$$\uparrow \qquad \uparrow \qquad \qquad \checkmark$$

Observe: to prove 0 -> A -> B -> B & B is exact, it's enough to prove it after a

faithfully flat base change A -> B:

$$B \xrightarrow{\beta} B \otimes B \xrightarrow{\text{mult}} B$$

Lemma. F: Schx - Set is an toppt sheat itt

(1) F i) a Zanishi sheat

(2) \(\text{Spec B} \rightarrow \text{Spec A}, \ A \rightarrow \(\text{B} \) \(\text{faithfully Hat & of fin. presentation.} \\ \(\text{U} \) \(\text{W} \) \(\text{V} \)

F(v) -> F(u) => F(u x u) is exact.

Con. It S is affine, then his is an opport sheaf.

Sketch of general (use (S arb.) hs Fanishi sheaf: no problem.

Let SiCS be an affine weing.

U- V fppf covering.

 $h_s(v) \rightarrow h_s(u) \Rightarrow h_s(u \otimes u)$

U -> S s.t. the two maps

 $\exists |V| \xrightarrow{t} |S| \qquad \underset{t \neq p \neq t}{\text{magic}} \quad \bigcup \qquad \text{ag}$ $\text{s.t.} \quad |U| \rightarrow |V| \rightarrow |S| \quad \text{corresp.} \qquad \qquad S$ $t \rightarrow U \rightarrow S.$

Pullback Sics, Vi= f-1(si), Ui = UX Vi

Lecture 3 Descent theory = Whing

Zarishi-land: X scheme, {Uicx} open covering, Fi on Ui, q-coh.

Pages

$$\underline{Deb}$$
 $\times' \xrightarrow{6} \times$ an $bpqc$ morphism.

$$X'' := X \times X'$$

$$\begin{cases} P_1 & P_2 \\ X' & X' \end{cases}$$

3 quh. sheaf on X'.

A descent datum is an ison.
$$9: P_1^*F' \implies P_2^*F'$$
 s.t. $P_{23}^* 9 \circ P_{12}^* 9 = P_{13}^* 9.$

commutes.

Reinterpretation,

Ytt= id.

Det!: A descent datum on \mathcal{F}' consists an isom. Pt_1, t_2: $t_1^{\times}\mathcal{F}' \longrightarrow t_2^{\times}\mathcal{F}'$ for all t_1 , $t_2 \in X'(T)$, fixed $T \in S_{chx}(T \to X)$ s.t. $\forall t_2, t_2, t_3 \in X'(T)$, Pt_2, $t_3 \circ Y_{t_1, t_2} = Y_{t_1, t_3}$. & this is functional in T, t_1 .

Note. If $F' = f^* F$, there is a natil descent datum. (can) $(ft_1)^* = (ft_2)^*$ $\forall t_1, t_2: t_1^* f^* F \implies t_2^* f^* F$. $ft_1 = ft_2$. $t_1^* f^* \implies t_2^* f^*$ Det. The cat. of descent data for f Df, is the cat. of pairs (F', 4)

when I' is a q-coh_ sheaf on x' & y is a descent datum.

Maps: $\psi: \mathcal{F}_1' \longrightarrow \mathcal{F}_2'$ sit. $p_1^* \mathcal{F}_1' \xrightarrow{\gamma_1} p_2^* \mathcal{F}_1'$ $p_1^* \psi_1$ \wedge $\downarrow p_2^* \psi$ p, I, P, I,

-) pullback defines a funta $f^*: (lloh(x) \longrightarrow \mathcal{D}_f$ $F \mapsto (f^*F, (an))$

Det tis a descent morphism it fx is fully faithful. f is an effective desunt maphism if &* is an equil.

Thm (brothendieck). It f:x'-1x is spec, then f is an effective descent morphism for 9-ch. sheares. [We CAH GLINE!].

The (Circuit / Crotherdiech) . If t has a section, then f is an effective descent morphism.

Pf X equiv: \(\text{fully faithful} \) essentially sury.

fx is clearly faithful: 5* f* = id. d: F-19 1.1. 6* d=0

=> \sigma^* \int \d= \d= 0.

Full: a map $(F, \varphi) \xrightarrow{\psi} (F', \varphi') \equiv T \xrightarrow{\psi} X' + F \xrightarrow{\psi} t^* J'$

Essential surjectivity. (F, 4) + Df, ++x(+), Teschx.

Hope: $[J, \gamma) \simeq \widetilde{f}^*(\sigma^* J) = (f^* \sigma^* J, (an))$

9t, 01t: t* } → t* f* σ* }

Given t_1, t_2 , $t_1^* \downarrow f \rightarrow t_1^* \downarrow f \rightarrow f$ $\begin{cases} f_1, f_2 \downarrow & f_1 \neq f_2 \\ f_2 \neq f_3, f_2 \neq f_4 \end{cases} \qquad \begin{cases} f_1 = f_2 \uparrow_2 \\ f_2 \neq f_3 \neq f_4 \end{cases} \qquad \begin{cases} f_1 = f_1 \uparrow_2 \\ f_2 \neq f_3 \end{cases} \qquad \begin{cases} f_1 \neq f_4 \end{cases} \qquad \begin{cases} f_2 \neq f_4 \end{cases} \qquad \begin{cases} f_3 \neq f_4 \end{cases} \qquad \begin{cases} f_4 \neq f_4 \end{cases} \qquad f_4 \neq f_4 \end{cases} \qquad \begin{cases} f_4 \neq f_4 \end{cases} \qquad f_4 \neq f_4 \end{cases} \qquad \begin{cases} f_4 \neq f_4 \end{cases} \qquad f_4 \neq f_4 \end{cases} \qquad \begin{cases} f_4 \neq f_4 \end{cases} \qquad f_4 \neq f_4 \end{cases}$

Gres from gluing for F.

Ph of Thm Special case: X, X' offine. Spec B > Spec A, A >> B faithfully flat

a) fx fully faithful (=> M, N are A-modules, show that the following is exact.

 $H_{MA}(M,N) \rightarrow H_{MB}(M \otimes B, N \otimes B) \xrightarrow{2} H_{2M}(M \otimes B \otimes B, N \otimes B \otimes B)$ $X \quad X' \quad X'' = X \times X \quad H_{MA}(M, N \otimes B) \xrightarrow{R} B \quad H_{2MA}(M, N \otimes B \otimes B)$ $M \otimes B \quad B \quad M \otimes B \otimes (B \otimes B)$ $M \otimes B \quad B \quad M \otimes B \otimes (B \otimes B)$ $M \otimes B \quad B \quad M \otimes B \otimes B \quad B$ $M \otimes B \otimes B \quad B \quad M \otimes B \otimes B \quad B$ $M \otimes B \otimes B \quad B \quad M \otimes B \otimes B \quad B$

(tomp (M, N -> N&B => N&B&B)

enough to show this is exact.

reduce to the case where ang. 13 -> A. then tollow nose.

b) f* essentially surg.

(F,4)

}

Y: B\(\text{M} \rightarrow \text{M} \text{B} \text{B} \text{B} \text{B} \rightarrow \text{B} \(\text{B} \text{B} \rightarrow \text{B} \text{M} \text{B} \text{B} \rightarrow \text{B} \(\text{M} \rightarrow \text{B} \text{B} \rightarrow \text{B} \(\text{B} \text{B} \rightarrow \text{B} \text{B} \rightarrow \text{B} \(\text{B} \text{B} \rightarrow \text{B} \text{B} \text{B} \(\text{B} \text{B} \rightarrow \text{B} \text{B} \text{B} \rightarrow \text{B} \(\text{B} \text{B} \rightarrow \text{B} \rightarrow \text{B} \\ \text{B} \text{B} \rightarrow \text{B} \(\text{B} \text{B} \rightarrow \text{B} \rightarrow \text{B} \\ \

Thuess what g on X should be s.t. $\widetilde{f}^*(g) \simeq (F, y)$ $N = \{ m \in M : m \otimes 1 = \Psi(1 \otimes m) \}$

Obs. I a map $v: N \otimes B \to M$ Which is compatible or descent datum.

Good: Show this is an isom.

(and, this after faithfully that base change.

-) may assume ∃ ang. B → A, i.e. a section x' -> x

Now: KNOW descent is effective. The proof in this case shows that D is an ison.

in Df. D.

Lecture & Return to moduli : do ne get sheares?

- (3) Hom (x, y)
- (4) Closed Subschemes of X
- (5) Subspaces of V

h_{M(3)} (T) = Hom + (XT, YT) = Hom (XxT, Y)

Proved: Y is a sheat. -> h M(3) is a first sheat.

 $h_{M(4)}(T) = \{ z \subseteq X \times T : z \in T \text{ that } \}_{=}^{\infty}$ (=) $I_{z} \subseteq O_{X \times T}$ (some are unique when they exist.

Sheef cond's mo descent data on the inclusion IZ C OXXT.

topt descent is effective for q-coh. = these things glue => h_M(4) is a sheat.

uniqueness => harmless to choose rep's:

Know: Iz/Ti is Ti-flat, Vi.

Conclude: Iz is T- that.

Lemma $f: X' \rightarrow X$ faithfully flat. A q-10h. sheaf f on X is X- flat, resp. fixite pres...

The f^*F is-

Again: isoms are unique if they exist. Same descent argument applies.

- (0) Varieties
- (1) (wies of genus g
- (2) line burdly on X

$$h_{M(2)}(T) = \langle 1 \rangle \langle 1 \rangle = \langle 1 \rangle \langle 1 \rangle \langle 1 \rangle = \langle 1 \rangle \langle 1$$

Sheaf cond. $\{T_i \rightarrow T\}$

Note this completely un-exact.

Claim Exactness always tails on the left.

Pt Choose T sit Pic(T) \$ (0)

Let M be a non-trivial invished on T

~ Po M & Pic (XXT) . Choose an open coloring {TiCT} st.

XXT -7

MIT: ~ OTi.

Pic (XXT) -> Thic (XXTi)

They are Pr* M (9xxTi)

Claim Exactness tails at the middle (in general)

Ph. χ/μ : $(\chi^2 + \chi^2 + 3^2 = 0) \subset \mathbb{P}_{1R}^2$

 $\underline{K_{non}} \quad X_{iR}^{\infty} \quad C \simeq \left(\underline{P}_{i}^{1} \right) \quad \text{for} \quad X \not\simeq \left(\underline{P}_{iR}^{1} \right)$

=) there are no divisors of deg 1 (we R-R!)

Consider the covering Spa (-> Spec IR

$$Pic(X) \longrightarrow Pic(X \otimes C) \longrightarrow Pic(X \otimes C \otimes C)$$

$$\stackrel{1}{Z} \longrightarrow Z \longrightarrow Z \longrightarrow Z \times Z$$

this is the proof. $1 \longrightarrow (1,1)$

Descent tails because

- local bb. L on XXT'

 $-p_1^*L \longrightarrow p_2^*L$ on $X\times T''$

- Yiko Yij + Yik -

Fix our problem - think about categories instead of sets.

Pet. A groupsid is a cat, where all morphisms are invertible.

Det A groupoid l'is divineta if $\forall x \in \ell$, Ant(x) = id.

Det A ground is connected if any two objects are isom.

X: Set -> Corpoid a cat. arrows are functors

S (---) (obj=s

arrows just id arrows)

Lem Essential image of X is the divirete gapsids.

More good things:

 $M_{ij}(T)$ grappid, e.g. $M_{z}(T)$ {grappid of L on $X \times T$ } $S \xrightarrow{f} T, M_{(z)}(T) \xrightarrow{(X \times f)^{*}} M_{(z)}(S) \qquad \text{functor}$ $L \text{ on } X \times T \longmapsto (i d \times f)^{*} L \text{ on } X \times S$

Cuess, M(2): Suh" -> Curpoid.

7" 3 7' to T

I isom. 9*f* => (fg)* universal property of pullback.

T Pullbacks are unique up to unique isom.

 $T'' \stackrel{h}{\longrightarrow} T' \stackrel{h}{\longrightarrow} T$ $h^* G^* F^* \longrightarrow h^* (Fg)^* \qquad (fgh)^* \qquad (commute.)$

Det A fibered cat. of clivage (a pseudo-functor) over a cat. C is

- (2) for each (El, a groupoid F(c)
- (2) \tanson f: () d in (, a functor b*: F(d) -> F(c)
- (3) for each pair of arious $c \xrightarrow{f} d \xrightarrow{g} e$, an isom. $V_{f,g} : b^*g^* \Longrightarrow (g_f)^*$

st the diagram c to d 3 e i h

commutes

Leiture 5

Det A functor F: 2) - C is a cat. fibered in groupoids it

(i) $\forall \beta: C_1 \rightarrow C_2 \leftarrow C$, $\forall d_2 \in D$ i.t. $F(d_2) = C_2$, $\exists d: d_1 \rightarrow d_2$ i.t. $F(\lambda) = \beta$.

(ii)
$$\forall$$
 d_1

$$d_2$$

$$d_3$$

Given β_3 , \exists d₃ sit. $F(d_3) = \beta_3$.

Det liven $c \in l$, the fiter rategory D_c (F_c) has objects $d \in D$ s.t. F(d) = c, & arrows $d_1 \stackrel{d}{\longrightarrow} d_2$ s.t. F(d) = id.

Det A 1-morphism of cat. Fibered in groupoid f_1 ; $\mathcal{D}_1 \to \mathcal{C}$, $f_2 : \mathcal{D}_2 \to \mathcal{C}$ is

a funta
$$F: \mathcal{O}_1 \longrightarrow \mathcal{O}_2$$

$$F_1 \searrow^{\prime\prime\prime} / F_2$$

F is an equiv. if \forall c ce, the induced \cdot [=c: $(D_1)_c \longrightarrow (D_2)_c$ is an equiv.

Panell

Note: Hom (D1, D2) is a groupoid. (arrows are not'll isom.s) between functors

e = Schs

Old Friend: Func (e°, Set)

Older friend: Schemes /5

Set < Corpoid - our old (or) friends naturally define costs fibered in grapoid.

(x) U1 = hx, X & Schs

Home (hx, D2) ~ (D2)X

equir. of

 $M_{(0)} = Varieties$ $\{ \chi - \gamma M_{(0)} \} \longleftrightarrow \begin{cases} V \\ V \\ X \end{cases}$ of varieties

 E_X . $X \mapsto (a coh(x))$ defines a cont. Fifered in grapoids. cat. of q. coh. sh

on X wy Bows ag arrows

Bonny descent theory = glueing = "sheafiness"

While of this as the

big étale site.

Det Ciren a weering { Y:->x}

(at of descent data (u.z.t. this overing)

D{Yi→x}: ebj.: (di, Pij) where dit DYi,

Pij: di | Yix Yj \rightarrow dj | Yix Yj

mi di mi dj

y arraws

(di, (ij) - (di, (ij))

di-di'

compatible of the (ij, (ij))

sit. Yik · Yij = Yik, Yijik , on YixYj X Yk.

Any object of Dx gives rise to an obj. of D{Y; tix};

di = d / Y = + (d)

Yix Yi Yi Yi X

4: 0 pm = 4: 0 pm

 $p_i^* + i^* \Rightarrow p_i^* + i^* \longrightarrow p_j^* d_i \Rightarrow p_i^* d_j$

Coycle: built in to pseudo-funtors.

Upshot get a fruits YKi-XI:DX -> D/Yi-X)

Det. D is a prestack on C if $V_{\{Y_i \to X\}}$ is fully faithful for all $\{Y_i \to X\}$ (-descent morphism") $V_{\{Y_i \to X\}}$ (effective descent morphism").

Prestacles: a reinterpretation

Cinen a, b & Dx. define a presheaf on Schx as follows:

(iven $f: Y \rightarrow X$, assign $I(a, b)(f) = Isom_{D_Y}(f^*a, f^*f)$

Lemma (exen) D is a prestack iff $\forall X, a, b, I(a, b)$ is a sheat on XET.

" isomorphisms form a sheaf".

Just as one can sheafify a prestack, one can stackify a prestack (in fact, any fibered cut.)

Then when a fibered cut. $D \rightarrow e'$ \exists a stack D^{S} & a 1-morphism $D \rightarrow D^{S}$

St. & stack 8 -> C, the map

Home $(D^s, S) \longrightarrow Home (D, S)$ is an equir. of groupoids.

Prop QGh is a stack on (Spa Z) ET (in fact, (Spa Z) fppt)

Sch Z

Prop Sheave on (Spec 2) ET from a stack.

ShT = { Sheaves on TET }.

Our problems "Is it a stack?"

- (5) Subspaces of V: STACK- SHEAF!
- (4) Closed subschemes of X: STACK-SHEAF!
- (3) Hom (X,Y) : STACK- SHEAF!
- 12) Line Polle on X. : STACK BUT NOT A SHEAF

٥

- (1) (writes of genus g = 1: STACK NOT A SHEAF.
- (0) Varieties PRESTACK (Isom (X,Y) is a sheat)
 BUT NOT A STACK!

Ex. $\exists \times / \epsilon$, smooth 3-told, of a descent datum relative to spec $\epsilon \rightarrow \delta per \epsilon \rightarrow \delta per$

Funny: a sheme X is a sheat a fairly X is a sheaf on TET.

{ Schemes } < { Sheares } Why not take the stacky closure of (sch) < Sh ?!

Lecture 6

Pi (and category) is a groupoid P together by the following extra structure

(a) A functor +: P × P → P

(b) An ison. of functors

P × P × P

+ × 1

P × P

P × P

T × P

T × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P × P

P ×

```
Lecture 6
```

$$S = scheme$$
, $e = Sch_S$ (hig etale site)

(1)
$$h_{\mathbb{P}^n}(T) = \{0^{n+1} \longrightarrow 1, 1 \text{ invertible on } T\}/=$$

(2) "
$$\mathbb{P}^n = (\mathbb{A}^{n+1} \setminus \{0\}) / \mathbb{G}_m$$
" $\mathbb{G}_m(T) = \Gamma(T, \mathbb{O}_T^{\times})$

$$f_{nn}$$
 = equit.

T -> $A^{n+1} \setminus \{0\}$
 $f_{nsn} \left\{ \int_{-\infty}^{\infty} dt dt \right\} = df(t)$
 $f_{nsn} \left\{ \int_{-\infty}^{\infty} dt dt dt \right\} = df(t)$

Proposerise. Those is a nat'll equir of cats

Idea: given

me treaks up as a sum of eigenspaus indexed by the characters = Z

t (Com, Xi) tx;

I hm-torsor -> let affine by desient theory (hm is affine) Rose Wien a lim-town T- X, 3 an inv. sheaf 2 on X s.t.

T = Sperx (D Li) nut'll grading by "i" (aution Spec x (⊕ L') =:
 ∓

the toph locally on X, T= Speix Ux[x,x-1]. note: each graded piece has the

Descent datum: graded ison. $O[x, x^{-1}] \Rightarrow O[x, x^{-1}]$ form zio.

ETC --- D

Spen x & Li

A Gm- equil map T -> Ant2 \ {0} $\frac{0}{7}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

Spec x & Co. L' -> Spec x Ox [x1, ... xn1]

Proded Ox [x1, .., xn+2]

Conclusion. The functor of pts tells in that in fact, AMI \{0} -> P is a Con-torson.

Love: make a quotion+ X/G sit. $X \rightarrow X/G$

G-town.

Arrows:
$$\begin{pmatrix} T & \varphi \end{pmatrix} \rightarrow \begin{pmatrix} T' & \varphi' \end{pmatrix}$$
 $T \xrightarrow{\psi} T'$ s.t. ψ is G -equiv. isom.

Det. Cinen morphisms of stacks
$$X \xrightarrow{\alpha} Z$$
, $Y \xrightarrow{\beta} Z$

Denazz

$$\underbrace{(X \times Y)}_{GY/GJ} T \qquad \underbrace{(X \times Y)}_{X} X \qquad \underbrace{(X \times X)}_{X} X \qquad \underbrace{(X \times Y)}_{X} X \qquad \underbrace{(X \times X)}_{X} X \qquad \underbrace{(X \times$$

9:
$$\int_{T}^{4} \int_{T}^{4} \int_$$

Isoms:
$$(x,y,y) \Rightarrow (x',y',y')$$

$$X = X'$$
 $y = y'$
 $Y = y'$

$$= \begin{cases} (x \times X) \rightarrow Y \\ (x/4) \\ (x$$

$$\begin{array}{cccc}
(x \times y)_{T} : & (x, \beta, \psi) \\
(x \times y)_{T} : & (x, \beta, \psi) \\
(x \times y)_{T} : & (x, \beta, \psi)
\end{array}$$

$$(\alpha, \beta, \Psi)$$
 $2 \in X(T)$
 $\varphi : f \circ \alpha \Longrightarrow g \circ \beta$
 $\beta \in Y(T)$

 $(f \circ pr_2)$, $(d \times \beta) \Rightarrow (g \circ pr_2)$, $(d \times \beta)$

Page 24

Det
$$X \to Y$$
 is representable (by Schemes) if $Y T \to Y$, $X X Y T \to T$ is equiv. to a fiber cut. assoc. to a scheme.

$$[*/6]_{T} = cat. \text{ of } G-towns$$

$$[*/6]_{T} = BG$$

$$[*/6]_{T} = BG$$

$$[*/6]_{T} = BG$$

$$[*/6]_{T} = BG$$

$$finite \text{ etale of deg 2}$$

[extere } Algebraic stacks.

C. What is geometry?

A. Local str. (on top of topology).

Ex. F: a sheaf on Stoppt.

Claim. Fix scheme it I a scheme U & a map U => F which is Earishi-builty an isom. i.e. I a wering {GiCF} open subfunctor s.t. for each i, I Uic U open w/ Ui -> F

Which is Earishi-builty

A: Uniformization

Dot (temp) An étab algebrai space over S is a sheaf F on S_{FT} sit. F a scheme U & a surjective étale representate morphism $U \to F$. Hypotheses i) $F \to F \times F$ quasi-effhe An topk alg. I pave: [Same, but $U \to F$ is only topk].

Thm (Actin) Any topot alg. space is an etale alg. space. [same hypotheses] Hypotheses, - F locally of fint presentation / S. F > F x F representable 8 finite type (=> q- attine) (x 1) 3 smooth 3-told/C & descent datum w.zt. Spec (-> Spec B which is not effective. BUT: 3 a sheaf T/R sit TOC2T finite étale 2) group quotients ... 37 Contactions ... Pet A stack X on SET is Deligne-Mumbred stack (DM stack) it (i) X -> X x X is representable, q-cpt, separated, by schemes (iii) I an étale surjection X -> X (i) =) any map from scheme to X is representable (i) says $\forall f: T \rightarrow X$ 9: T' -> X, -> Isom (pri*f, pri*g) "is" a q-cpt sep'd map of schemes. offel / X itel TXT1

Pragara

Spa k

Det An Artin Stack on SET is a Stack of 1.t.

- (i) X -> X x X is rep'ble by alg. spaces, q-cp+ & separated
- (ii) I a scheme X & a smooth sinjection X -> X.

Thm (Artin). If $X \to X \times X$ rep'ble, q-cpt, sep'd, then $\exists X \to X$ topp surj.

iff X is an Artin Hack.

hop Suppose M is a moduli stack st. isoms are replace (by alg spaces), 4-qpt, sept's.

Then M is Artin iff = X -> M which is formally smooth.

Soc. of first pres

X > M

The lift up to isom.

Thm (Intin) An Artis Stack X is DM iff X -> X × X is umanified

iff no object has non-trivial infinitesimal aut's.

Ex.
$$S = Spec C$$
, $M_{1,1} = stack of elliptic curves$

or $Spec C$, $M_{1,1} = stack of elliptic curves$
 $(M_{1,1})_T = \left\{ \frac{\pi}{C}, T : \pi \text{ is purpor & Smooth, } \forall \overline{\pm} \rightarrow T, \right\}$
 $\left\{ \overline{\xi} \text{ bound, } g\left(\xi_{\overline{\pm}}\right) = 1 \right\}$

Claim. Ma,1 is a DM stack.

- Condition on Isoms: not so bad.

saving grave: no non-trivial inf. auts.

Inf. auto of (E,p)

$$H^{\circ}(E,T_{E})$$

=) enough to show M1,1 is an Artin stack.

To prove this: find a formally smooth family B -> M1,1.

Idea. Uniformize by the family of plane cubics

Pt of (2), take the unicersal cubic

$$etab$$
 bootly on T , $T \to T$.

s.t. $e_{T}^{1} \rightarrow e_{T}^{2}$; e is the vanishing lows of

] W CA 10 param. smooth outics.

U = image of II in 19 c A10/203

I a scheme $P(\rightarrow U)$ rep. the functor $T\mapsto\begin{pmatrix} \xi\subset\mathbb{P}_T^2\\ \sigma(L) \end{pmatrix}$ pt'd smooth free $O(1)(\xi=O(3\sigma)|_{\xi}\to p'$

Action of PGL3 on p' coming from choosing cond. of IP2. (5) [P'/PGL3] = M1,1.

Lecture 8. S scheme boally of finite type / excellent Dedekind scheme F: Stack on SET loc. of finite pres: A = lin Ai lin, FsperAi = FsperA is an equil of cat Brian O .: Speck => F Ib x adaits an effective cersal formal deformation then 3 × s.t. f is "formally smooth at xe".

of first type /5. $\begin{array}{c} local & \overline{Y} \longrightarrow X \\ hotin & \downarrow & \downarrow \\ schemes & Y \longrightarrow F \end{array}$ Content: 1) Schlessinger => I versal formal deform. [hull] pt of i maps to x [Infinites inal] 2) Formel -> effective Crothendiech Existence Than

≈ étale-local existence.

Given $X \longrightarrow S$, at F_X , let F_a be the groupsid , $(X \longrightarrow Y)$, (Fa)y = (d: a - b sic in (d) in SET is f) = { 66 Fy, 4: a => + 6}

Fa (Y) = ison. classes of (Fa)y

(S1')

B

(Fa)

(Fa)

(A'
$$\times$$
 B)

At Free A | cen (A' \rightarrow A)

F(A)

F(A)

F(A)

F(A)

F(B)

is an equir. of cats.

(52)
$$a_0 = a \mid \text{Spec Ao}$$
 $D_{a_0}(M)$ is a first $A_0 - \text{module}$

Martin: $F_a(A_0[M]) = D_{a_0}(M)$ an $A_0 - \text{module}$
 $M = \text{firste} A_0 - \text{module}$

Suppose given on obstruction (à la Nortin)

s.f.
$$\forall A' \rightarrow A \rightarrow A_0$$
 deformation situation.

[con $(A' \rightarrow A) = M$ is an A_0 -module, then

on $(A') \in \mathcal{O}_A(M)$ s.t. on $(A') = 0$ iff a lifts to A' .

In addition, assume: A-on Ao into ext. Ao of 6-type 15

(4.1) (i) Etab localization: then
$$Pao(Mo \otimes Bo) \subset Pao(Mo) \otimes Bo$$

$$Bo = Ao \otimes B, \quad Mo \in Ao-mod + Obo (Mo \otimes Bo) \subset Qao(Mo) \otimes Bo$$
(4.1) (ii) Completion. If $m \in Ao = max'l$, then
$$b_o = ao \mid_{Bo}$$

Dao(M) & Âo = fin Dao (M/mªM)

(4.1) (iii) Construct lility: I a dense set of closed pts pt Spec Ao sit

Dagez

$$D_{ao}(M) \otimes k(p) \Rightarrow D_{(ao)p} (M \otimes k(p))$$
 $O_{ao}(M) \otimes k(p) \Rightarrow O_{(ao)p} (M \otimes k(p))$

Thm (Artin). Given F. O satisfying (S11), (SZ), & (4.1), if $X \xrightarrow{b} F$, $X \rightarrow S$ into type f is formally smooth at x, then BUCX, XEW, St.

flu: U-) F is formally smooth.

- (1) F -> FXF is reply by alg. spaces, q-cpt, sepital
- (2) (SL1), (SZ) hold
- (3) If (Â, m) is a complete loc north ring /S then $F(\hat{A}) \rightarrow \lim_{n \to \infty} F(\hat{A}/m^n)$ is an equit
- (4) D, O satisfy (4.1)

- (1) Mg -> Mg × Mg : Crother dich or [one second]
- (2) Schlossinger: no problem.
- (no thendieth existence than:

Spec A'
$$\rightarrow$$
 Spec A': $O_{e}(M) = H^{2}(\ell_{Ao}, T_{\ell_{Ao}(Ao)})$

$$M = \ker(A' \rightarrow A)$$

$$O_{e}(M) = H^{2}(\ell_{Ao}, T_{\ell_{Ao}(Ao)})$$

$$O_{e}(M) = H^{2}(\ell_{Ao}, T_{\ell_{Ao}(Ao)})$$

$$O_{e}(M) = H^{2}(\ell_{Ao}, T_{\ell_{Ao}(Ao)})$$

(i) compatible w étale fase change A. -> Bo (Hartshorne)

(ii) completion [less obvious, but Ok] (iii) Constructibility: cohomological base change.

P 12021

Co Sper Ao

Lant: Rif* (TegolAo & M) & k(p) => Hi(ep, Tcp/p & M)

ison.

(Vote, no non-trive inf. auts (HO(R,T))

~ DM Stack.

Thun (Artin) - I is an Artin stack loc. of fits type Is it

- (1) (S1'), (SZ) hold, & if a of F(Ao) & M is a finite Ao-module, then
 Autao (Ao[M]) is a finite Ao-module.
- (2) $\mathcal{F}(\widehat{A}) \Longrightarrow \lim_{n \to \infty} \mathcal{F}(\widehat{A}/m^n)$ equi.
- (3) D, O, Aut int (AO[M]) satisfy (4.1)
- (4) If 4 is an aut. of an s.t. 4 = id at a dense set of pts of Spec An, then 4 = i'd.
- (5) (1)-(4) \Rightarrow F \rightarrow $F \times F$ is replie & septed. Check that it is q-cpt.