SCHULZENTRUM UTBREMEN EUROPASCHU

Europaschule Schulzentrum Utbremen

LS4: Projekt Office
Aufgabenstellung

LF 7 NAME: DATUM:

LS 4 Projektaufgabe: Smart Office

Bildquelle: AKUSTIK, LUFTQUALITÄT UND TEMPERATUR IM BÜRO OPTIMIEREN | DAS LICHT DES WOHLBEFINDENS | Waldmann

1 Vorgaben zur Durchführung und Abgabe:

- Bearbeitung und Abgabe als 3er-Gruppe
- Zeitraum: 14.3. 9.5. (ca. 6 x 90 Minuten)
 - o Innerhalb dieser Zeit wird die Lösung präsentiert
- Abgabefrist der Dokumentation: 10.5.
- Abgabedatei: Dokumentation und Skriptdateien
- Bereitgestellte Materialien: Sensoren, Aktoren, Jumperkabel, (Raspberry PI)

2 Einleitung & Zielsetzung

In modernen Arbeitsumgebungen spielen **Luftqualität, Temperatur und Lärmpegel** eine große Rolle für Produktivität und Wohlbefinden. Ein zu warmes, feuchtes oder lautes Büro kann die Konzentration und Effizienz erheblich beeinträchtigen.

Ihre Aufgabe ist es, ein **Smart-Office-Monitoring-System** zu entwickeln, das **Temperatur**, **Luftfeuchtigkeit und Geräuschpegel erfasst**, die Werte in einem **Dashboard visualisiert** und ggf. Warnmeldungen ausgibt.

Sie arbeiten dabei mit **drei Raspberry Pis**, einem **MQTT-Broker** und verschiedenen Sensoren. Die Rollenverteilung der RPI's ist dabei folgenderweise:

Raspberry	Rolle	Funktion
RPI 1	MQTT-Broker (Mosquitto)	Vermittelt MQTT-Nachrichten zwischen Publisher & Subscriber
RPI 2	Publisher (Sensor-Node)	Liest Sensordaten & sendet sie über MQTT an den Broker
RPI 3	Subscriber (Dashboard & Logging)	Empfängt Sensordaten & visualisiert sie im Dashboard

Engelke Seite 1 von 4

	****	Europaschule Schulzentrum Utbremen	LF 7
M	* *	LS4: Projekt Office	NAME:
SCHULZENTRUM U T B R E M E N	EUROPASCHUL	Aufgabenstellung	DATUM:

3 Technische Anforderungen

3.1 RPI 1: MQTT-Broker

Funktion:

- Vermittelt die MQTT-Nachrichten zwischen Publisher und Subscriber.
- Akzeptiert nur authentifizierte Clients (Benutzer/Passwort-Schutz aktiv).

Software:

- Mosquitto MQTT-Broker

3.2 RPI 2: Publisher (Sensor-Node)

Funktion:

- Liest die Sensordaten (Temperatur, Luftfeuchtigkeit, Geräuschpegel).
- Sendet die Daten über MQTT an den Broker.

Sensoren:

- DHT11/DHT22 für die Temperatur und die Luftfeuchtigkeit
- Mikrofonsensor zur Geräuschdetektion

Software/Anforderung:

- Python-Skripte um die Sensoren auszulesen und für die MQTT-Kommunikation
 - Die Sensordaten sollen alle 10 Sekunden ausgelesen werden und per MQTT übertragen werden
 - Der Sensor-Node soll sicherstellen, dass nur valide Daten gesendet werden (Fehlermeldungen abfangen)

3.3 RPI 3: Subscriber (Dashboard & Logging)

Funktion:

- Empfängt Sensordaten vom Broker
- Stellt die Daten im Flask-Dashboard dar
- Speichert die Daten in einer Datei log.txt

Software/Anforderung:

- Python-Skript als MQTT-Subscriber
- Flask-Webserver zur Datenvisualisierung
 - o Temperatur, Luftfeuchtigkeit und Geräuschpegel anzeigen
 - o Eine Warnung ausgeben, wenn bestimmte Werte überschritten werden:
 - Beispiele: Temperatur über 26°C oder unter 18°C → Meldung:
 "Raumtemperatur nicht optimal!"
 - Luftfeuchtigkeit unter 30% oder über 70% → Meldung: "Luftfeuchtigkeit nicht im Idealbereich!"

Engelke Seite 2 von 4

****	Europaschule Schulzentrum Utbremen	LF 7
\mathcal{M}	LS4: Projekt Office	NAME:
SCHULZENTRUM U T B R E M E N EUROPASCHUL	Aufgabenstellung	DATUM:

- Mikrofon erkennt dauerhaft hohe Geräuschpegel (Threshold ab 10 Geräusche innerhalb von 10 Sekunden) → Meldung: "Hohe Geräuschbelastung erkannt!"
- Logging-Funktion: Die Daten sollen nicht nur live angezeigt, sondern auch in eine Textdatei gespeichert werden

4 Dokumentation

Erstellen sie eine **Dokumentation** (ca. 3-5 Seiten), in der folgende Punkte enthalten sind:

- 1. **Einleitung:** Kurze Erklärung des Projekts & Nutzen des Systems.
- 2. Technische Umsetzung: Beschreibung der eingesetzten Hard- & Software.
- 3. **MQTT-Kommunikation:** Beschreibung, wie Daten gesendet/empfangen werden.
- 4. Ergebnisse: Screenshots des Dashboards & Analyse der Sensordaten.
- 5. **Probleme & Lösungen:** Welche Herausforderungen gab es, und wie wurden sie gelöst? (Dokumentieren Sie Ihre Arbeit bzw. Arbeitsschritte ggf. mit Screenshots)

5 Bewertungskriterien

Kriterium	Punkte
Sensor-Daten werden korrekt erfasst und übertragen	10
MQTT-Broker läuft stabil und ist sicher konfiguriert	10
Dashboard zeigt alle Sensorwerte korrekt an	15
Warnmeldungen funktionieren korrekt	10
Logging-Funktion speichert Daten	10
Dokumentation ist vollständig & verständlich	15
Abnahme der Funktion / Präsentation der Lösung	30
Gesamtpunktzahl:	100 Punkte

6 Hinweis

Gehen Sie sorgsam mit den bereitgestellten Bauteilen um. Studieren Sie vor Inbetriebnahme der Sensoren unbedingt zunächst die Datenblätter.

Engelke Seite 3 von 4

,	****	Europaschule Schulzentrum Utbremen	LF 7
M	* *	LS4: Projekt Office	NAME:
SCHULZENTRUM U T B R E M E N	EUROPASCHUL	Aufgabenstellung	DATUM:

7 Optional: Durchführung mit 2 Raspberry Pl's

Für den Fall, dass die Aufgabe mit 2 RPI's bearbeitet werden muss, geht die Broker-Rolle des RPI 1 auf den RPI 3 über.

Dieser Raspberry Pi übernimmt dann zwei Rollen:

- Er hostet den MQTT-Broker (Mosquitto), über den alle Daten ausgetauscht werden.
- Er führt ein Flask-basiertes Dashboard aus, das die Sensordaten in Echtzeit anzeigt.

Engelke Seite 4 von 4