《数学模型与数学软件》练习题

一、某电视机厂向某电器行每季度提供彩电,按照合同规定,其交货数量和日期是:第一季度末交40台,第二季度末交60台,第三季度末交80台.工厂的最大生产能力为每季100台,第一季度开始时无彩电存货,每季的生产费用 $f(x)=50x+0.2x^2(元)$,此处x为该季度生产彩电的台数.若工厂生产的多,多余的彩电可移到下季度向用户交货,这样工厂就需要支付存贮费,每台彩电的存贮费为4元.该厂每季应生产多少台彩电,才能既满足交货合同,又使工厂所花费的费用最少?写出相应的数学模型和求解该模型的lingo代码.

二、某公司准备将4台设备分配给甲乙丙三家工厂,怎样分配使得总利润最大?各公司得到x台设备后所能创造的利润见下表(建立动态规划模型并求出最优解)

<u> </u>		1 4 11 4 2	<u> </u>
设备	甲	乙	丙
0	0	0	0
1	4	2	3
2	6	5	5
3	7	6	7
4	7	8	8

三、有4份工作A、B、C、D,现有甲、乙、丙、丁4个人,由于个人技术专长不同,他们承担各项工作所需时间如下表。规定每人只能做一项工作,建立动态规划模型求解该问题使得所需的总完成时间最短。

工人工作	甲	乙	丙	丁
A	15	19	26	19
В	18	23	18	21
С	21	22	16	23
D	24	18	19	17

四、某小区组建维修保洁服务,现需要招聘维修保洁人员若干轮班工作。其中包括电工和保洁员。工作采用计时制,每人工作满8小时后下班。根据统计,小区不同时段需求人数如下表. 维修保洁服务的收费标准是: 电工25/小时,保洁15/小时,请问该如何安排维修保洁人员的排班表才能保证服务需求,又能使总成本最低?试建立其数学模型,并写出求解此模型的lingo代码.

时段	0-4	4-8	8-12	12-16	16-20	20-24
电工所需人数	1	6	17	12	16	8
保洁所需人数	0	0	10	8	16	2

五、到了枇杷上市的季节,由于枇杷保存时间短,某水果店在每天清晨从果农处以每公斤a元进货,晚上将卖不完的以每公斤c元处理掉,卖出价为每公斤b元(b>a>c),每天当地人对此水果店的枇杷需求量为X公斤,X的分布函数为

$$F(x) = P(0 \le X \le x) = \int_0^x f(t)dt.$$

试问该水果店每天订购多少公斤枇杷可以获得最大利润? (建立数学模型,写出推导过程,给出求解方法)

六、为了研究女大学生肺活量与体重的关系,调查了12名大一女生,得到如下数据

编号	1	2	3	4	5	6	7	8	9	10	11	12
体重 (kg)	42	42	46	46	46	50	50	50	52	52	58	58
肺活量(L)	2.55	2.2	2.75	2.4	2.8	2.81	3.41	3.1	3.46	2.85	3.5	3

建立一元线性回归模型,写出Matlab代码并对代码的输出数据做解释. 如果还记录了这些女生的身高数据(见下表),试建立多元线性回归模型,写出Matlab代码.

编号	1	2	3	4	5	6	7	8	9	10	11	12
身高 (cm)	161	162	165	162	166	167	165	166	168	165	170	168
体重 (kg)	42	42	46	46	46	50	50	50	52	52	58	58
肺活量(L)	2.55	2.2	2.75	2.4	2.8	2.81	3.41	3.1	3.46	2.85	3.5	3

七、对于一匹成年马来说,最低的营养要求为: 40磅蛋白质,20磅碳水化合物,45磅粗饲料。这些营养成分是从不同饲料中得到的,饲料及其价格在下表中列出,请为农场主建立数学模型,确定如何以最低的成本满足最低的营养需求(只要写出数学模型和求解模型的Matlab程序)

	蛋白质/磅	碳水化合物/磅	粗饲料/磅	价格/美元
干草/捆	0.5	2.0	5.0	1.80
燕麦片/袋	1.0	4.0	2.0	3.50
饲料块/块	2.0	0.5	1.0	0.40
高蛋白浓缩料/袋	6.0	1.0	2.5	1.00

八、一种元件要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取10件,测得其寿命为: 968, 982, 963, 996, 1020,1043,973,1045, 998,1016. 试在显著水平0.05下确定这批元件是否合格. 如果已知这种元件寿命服从标准差 $\sigma=100$ (小时)的正态分布,如何确定这批元件是否合格?(只要写出数学模型和求解模型的Matlab程序)