CMOSTEK

CMT2180A

240 – 480 MHz SoC OOK Transmitter

Features

- High-Performance RISC Microcontroller Core
 - All Single-Cycle Instructions Except Branches
 - Up to 8 MHz Clock
 - · Multiple Interruption Supported
 - 32 Bytes EEPROM / 64 Bytes SRAM / 1024 Words Flash
- High-Performance OOK Transmitter
 - · All Features Programmable on the RFPDK
 - · Frequency Range: 240 to 480 MHz
 - · Symbol Rate up to 30 ksps
 - · Configurable Single-Ended or Differential PA Output
 - Output Power: -10 to +13 dBm
- Supply Voltage: 2.3 to 3.6 V
- 1-pin Crystal
- FCC / ETSI Compliant
- RoHS Compliant
- 14-pin SOP Package

Descriptions

The CMT2180A devices are fully integrated, highly flexible, high performance, SoC OOK transmitters with embedded RISC microcontroller core for various 240 to 480 MHz wireless applications. They are part of the CMOSTEK NextGenRFTM family, which includes a complete line of transmitters, receivers and transceivers. The CMT2180A includes a 1024 words flash for programming the user's application, supports up to 4 push buttons to implement the user defined functions. All the device features (such as frequency, output power, WDT, Security and etc.) and programs can be burned into the device using the CMOSTEK USB Programmer and RFPDK. Alternatively, in stock product of 433.92 MHz is available for immediate demands. The CMT2180A uses a 1-pin crystal oscillator circuit with the required crystal load capacitance integrated on-chip to minimize the BOM counts. The device can deliver up to +13 dBm output power and the PA output can be either single-ended or differential. The device operates from 2.3 V to 3.6 V. Its low power design enables superior operation life for battery powered application. The CMT2180A transmitter together with **CMOSTEK** NextGenRF[™] receiver enables a highly flexible, low cost RF link.

Applications

- Remote Keyless Entry (RKE)
- Garage and gate door openers
- Home/Building Automation and Security
- Industrial Monitoring and Controls
- Remote Lighting Control
- Wireless Alarm and Security Systems
- Consumer Electronics Applications

Ordering Information

Part Number	Frequency	Package Option	MOQ	
CMT2180A-ESR	433.92 MHz	T&R	2,500 pcs	
CMT2180A-ESB	433.92 MHz	Tube	1,000 pcs	
More Ordering Info: See Page 62				

Typical Application

Figure 1. CMT2180A Typical Application with Differential PA Output

Table 1. BOM of 433.92 MHz Application with Dif	merential PA Output

Designator	Descriptions	Value	Unit	Manufacturer
U1	CMT2180A, 240 – 480 MHz SoC OOK transmitter	-	-	CMOSTEK
X1	±20 ppm, SMD32*25 mm crystal	26	MHz	EPSON
SW[3:0]	Push buttons	-	-	
D1	MBR0520LT1, SOD123 (Optional)	-	-	IR
R1	±5%, 0402	10	kΩ	
C0	±20%, 0402 X7R, 25 V	0.1	uF	Murata GRM15
C1	±0.25 pF, 0402 NP0, 50 V	2.2	pF	Murata GRM15
C2	±0.25 pF, 0402 NP0, 50 V	2.2	pF	Murata GRM15
L1	±5%, 0603 multi-layer chip inductor	180	nH	Murata LQG18

Figure 2. CMT2180A Typical Application with Single-ended PA Output

Table 2. BOM of 433.92 MHz Application with Single-ended PA Output

Designator	Descriptions	Value	Unit	Manufacturer
U1	CMT2180A, 240 – 480 MHz SoC OOK transmitter	-	-	CMOSTEK
X1	±20 ppm, SMD32*25 mm crystal	26	MHz	EPSON
SW[3:0]	Push buttons	-	-	
D1	MBR0520LT1, SOD123 (Optional)	-	-	IR
R1	±5%, 0402	10	kΩ	
C0	±20%, 0402 X7R, 25 V	0.1	uF	Murata GRM15
C1	±5%, 0402 NP0, 50 V	68	pF	Murata GRM15
C2	±5%, 0402 NP0, 50 V	15	pF	Murata GRM15
C3	±5%, 0402 NP0, 50 V	15	pF	Murata GRM15
L1	±5%, 0603 multi-layer chip inductor	180	nH	Murata LQG18
L2	±5%, 0603 multi-layer chip inductor	36	nH	Murata LQG18
L3	±5%, 0603 multi-layer chip inductor	18	nH	Murata LQG18

Abbreviations

Abbreviations used in this data sheet are described below

AN	Application Notes	OBW	Occupied Pandwidth
	Application Notes		Occupied Bandwidth
BOM	Bill of Materials	оок	On-Off Keying
BSC	Basic Spacing between Centers	PA	Power Amplifier
BW	Bandwidth	PC	Personal Computer
DC	Direct Current	PCB	Printed Circuit Board
EEPROM	Electrically Erasable Programmable Read-Only	PLL	Phase Lock Loop
	Memory	PN	Phase Noise
ESD	Electro-Static Discharge	RBW	Resolution Bandwidth
ESR	Equivalent Series Resistance	RCLK	Reference Clock
ETSI	European Telecommunications Standards	RF	Radio Frequency
	Institute	RFPDK	RF Product Development Kit
FCC	Federal Communications Commission	RoHS	Restriction of Hazardous Substances
GUI	Graphical User Interface	Rx	Receiving, Receiver
IC	Integrated Circuit	SOT	Small-Outline Transistor
LDO	Low Drop-Out	TBD	To Be Determined
Max	Maximum	Tx	Transmission, Transmitter
MCU	Microcontroller Unit	Тур	Typical
Min	Minimum	XO/XOSC	Crystal Oscillator
MOQ	Minimum Order Quantity	XTAL	Crystal
NP0	Negative-Positive-Zero		

Table of Contents

Ту	pical	l Application	2
1.	Elec	ctrical Characteristics	7
	1.1	Recommended Operating Conditions	7
	1.2	Absolute Maximum Ratings	7
	1.3	Transmitter Specifications	
	_	Crystal Oscillator	
2.		Descriptions	
3	Tyn	ical Performance Characteristics	11
		ical Application Schematics	
4.	тур		
	4.1	Typical Application with Differential PA Output	
	4.2	Typical Application with Single-ended PA Output	13
5.	Fun	nctional Descriptions	14
-		Overview	
	5.1	Modulation, Frequency and Symbol Rate	
	5.2		
	5.3	Embedded EEPROM and RFPDK	
	5.4	Power Amplifier	
	5.5	PA Ramping	
	5.6		
6.	Wor	rking States and Control Interface	
	6.1	Working States	19
	6.2	Transmission Control Interface	19
		6.2.1 Tx Enabled by DATA Pin Rising Edge	19
		6.2.2 Two-wire Interface	20
7.	RIS	C Microcontroller Core	23
	7 1	Memory Organization	24
	,	7.1.1 Program Memory Organization	
		7.1.2 Data Memory Organization	
		7.1.2.1 General Purpose Register File	
		7.1.2.2 Special Function Register File	
		7.1.2.2.1 W Register	
		7.1.2.2.2 STATUS Register	
		7.1.2.2.3 WDT0CON Register	
		7.1.2.2.4 INTER Register	
		7.1.2.2.5 INTFR Register	32
		7.1.2.2.6 PORCON Register	32
		7.1.2.2.7 IRCCON Register	33
		7.1.2.2.8 INOSCR Register	34
		7.1.3 PCL and PCHLAT	
		7.1.3.1 Computed LJUMP	35

		7.1.3.2	Stack	35
		7.1.4	Indirect Addressing Register (IAR) and MSR Registers	35
	7.2	Port A		
		7.2.1	PORTA and the CPIOA Registers	37
		7.2.2	Additional Pin Functions	
		7.2.2.1	Pull-up	38
		7.2.2.2	Interrupt-On-Change	38
		7.2.2.3	Open-Drain	39
		7.2.2.4	Pull-Down	39
	7.3	Timer0 N	Module	40
		7.3.1	Timer0 Operation	40
		7.3.2	Timer0 Interrupt	41
		7.3.3	Using Timer0 with an External Clock	
		7.3.4	Prescaler	
		7.3.4.1	Switching Prescaler Assignment	41
	7.4	Timer1 N	Module with Gate Control	42
		7.4.1	Timer1 Mode Operation	44
		7.4.2	Timer1 Interrupt	
		7.4.3	Timer1 Prescaler	
		7.4.4	Timer1 Operation in Asynchronous Counter Mode	
		7.4.4.1	Reading and Writing Timer1 in Asynchronous Counter Mode	
		7.4.5	Timer1 Oscillator	
		7.4.6	Timer1 Operation during Sleep	
	7.5	Timer2 N	Module with PWM/Buzzer Output Control	
		7.5.1	Timer2 Operation in Clock Frequency Output (Buzzer)	
		7.5.2	Timer2 Operation in PWM Output	
		7.5.2.1	Timer2 PWM Output Mode	
		7.5.2.2	T2IF and PWM Duty	
		7.5.2.3	PWM Duty with T2ALR Changing	
		7.5.3	Timer2 Registers	
	7.6	Reset Co	ondition for All Registers	
	7.7	Instruction	on Set Summary	53
		7.7.1	Read-Modify-Write Operations	55
		7.7.2	Instruction Descriptions	
8.	Ord	ering Info	ormation	62
			line	
10				
	10.1	CMT218	OA Top Marking	64
11	. Oth	er Docum	nentations	65
12	. Doc	ument Ch	hange List	66
40	C			

1. Electrical Characteristics

 V_{DD} = 3.3 V, T_{OP} = 25 $^{\circ}$ C, F_{RF} = 433.92 MHz, OOK modulation, output power is +10 dBm terminated in a matched 50 Ω impedance with single-ended PA output, unless otherwise noted.

1.1 Recommended Operating Conditions

Table 3. Recommended Operation Conditions

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Operation Voltage Supply	V_{DD}		2.3		3.6	V
Operation Temperature	T _{OP}		-40		85	$^{\circ}$
Supply Voltage Slew Rate			1			mV/us

1.2 Absolute Maximum Ratings

Table 4. Absolute Maximum Ratings^[1]

Symbol	Conditions	Min	Max	Unit
V_{DD}		-0.3	3.6	V
V _{IN}		-0.3	V _{DD} + 0.3	V
TJ		-40	125	$^{\circ}$ C
T _{STG}		-50	150	$^{\circ}$ C
T _{SDR}	Lasts at least 30 seconds		255	$^{\circ}\!\mathbb{C}$
	Human Body Model (HBM)	-2	2	kV
	@ 85 °C	-100	100	mA
	V _{DD} V _{IN} T _J T _{STG}	V _{DD} V _{IN} T _J T _{STG} T _{SDR} Lasts at least 30 seconds Human Body Model (HBM)	V _{DD} -0.3 V _{IN} -0.3 T _J -40 T _{STG} -50 T _{SDR} Lasts at least 30 seconds Human Body Model (HBM) -2	V _{DD} -0.3 3.6 V _{IN} -0.3 V _{DD} + 0.3 T _J -40 125 T _{STG} -50 150 T _{SDR} Lasts at least 30 seconds 255 Human Body Model (HBM) -2 2

Note:

[1]. Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Caution! ESD sensitive device. Precaution should be used when handling the device in order to prevent permanent damage.

1.3 Transmitter Specifications

Table 5. Transmitter Specifications

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Frequency Range ^[1]	F _{RF}		240		480	MHz
Synthesizer Frequency Resolution	F _{RES}			198		Hz
Symbol Rate	SR		0.5		30	ksps
Maximum Output Power ^[2]	P _{OUT(Max)}			+13		dBm
Minimum Output Power	P _{OUT(Min)}			-10		dBm
Output Power Step Size	P _{STEP}			1		dB
PA Ramping Time ^[3]	t _{RAMP}		0		1024	us
0		0 dBm, 50% duty cycle, 433.92 MHz		8.5		mA
Current Consumption,	I _{DD-S}	+10 dBm, 50% duty cycle, 433.92 MHz		11.5		mA
Single-ended		+13 dBm, 50% duty cycle, 433.92 MHz		13.0		mA
0		0 dBm, 50% duty cycle, 433.92 MHz		4.5		mA
Current Consumption,	I _{DD-D}	+10 dBm, 50% duty cycle, 433.92 MHz		6.9		mA
Differential		+13 dBm, 50% duty cycle, 433.92 MHz		9.1		mA
Sleep Current	I _{SLEEP}			2.5		uA
Frequency Tune Time	t _{TUNE}			370		us
		100 kHz offset from F _{RF}		-80		dBc/Hz
DI Note - @ 400.00		200 kHz offset from F _{RF}		-82		dBc/Hz
Phase Noise @433.92 MHz	PN _{433.92}	400 kHz offset from F _{RF}		-92		dBc/Hz
IVITZ		600 kHz offset from F _{RF}		-98		dBc/Hz
		1.2 MHz offset from F _{RF}		-107		dBc/Hz
Harmonics Output for 315	H2 ₃₁₅	2 nd harm @ 630 MHz, +13 dBm P _{OUT}		-60		dBm
$MHz^{[4]}$	H3 ₃₁₅	3 rd harm @ 945 MHz, +13 dBm P _{OUT}		-65		dBm
Harmonics Output for	H2 _{433.92}	2 nd harm @ 867.84 MHz, +13 dBm P _{OUT}		-52		dBm
433.92 MHz ^[4]	H3 _{433.92}	3 rd harm @ 1301.76 MHz, +13 dBm P _{OUT}		-60		dBm
OOK Extinction Ration				60		dB
Occupied Bandwidth @ 315 MHz	F _{OBW315}	Measured @ -20 dBc, RBW = 1 kHz, SR =		6		kHz
Occupied Bandwidth @ 433.92 MHz	F _{OBW433.92}	1.2 ksps, t_{RAMP} = 256 us Measured @ -20 dBc, RBW = 1 kHz, SR = 1.2 ksps, t_{RAMP} = 256 us		7		kHz

Notes:

- [1]. The frequency range is continuous over the specified range.
- [2]. Measured with single-ended PA output, and it is not applicable for when the device is configured as differential PA output.
- [3]. 0 and 2ⁿ us, n = 0 to 10, when set to "0", the PA output power will ramp to its configured value in the shortest possible time.
- [4]. The harmonics output is measured with the application shown as Figure 11.

1.4 Crystal Oscillator

Table 6. Crystal Oscillator Specifications

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Crystal Frequency ^[1]	F _{XTAL}		26	26	26	MHz
Crystal Tolerance ^[2]				±20		ppm
Load Capacitance ^[3]	C _{LOAD}		12		20	pF
Crystal ESR	Rm				60	Ω
XTAL Startup Time ^[4]	t _{XTAL}			400		us

Notes:

- [1]. The CMT2180A can directly work with external 26 MHz reference clock input to XTAL pin (a coupling capacitor is required) with amplitude 0.3 to 0.7 Vpp.
- [2]. This is the total tolerance including (1) initial tolerance, (2) crystal loading, (3) aging, and (4) temperature dependence. The acceptable crystal tolerance depends on RF frequency and channel spacing/bandwidth.
- [3]. The required crystal load capacitance is integrated on-chip to minimize the number of external components.
- [4]. This parameter is to a large degree crystal dependent.

2. Pin Descriptions

Figure 3. CMT2180A Pin Assignments

Table 7. CMT2180A Pin Descriptions

Pin Number	Name	I/O	Descriptions
1	VDD	I	Power supply input
2	GND	I	Ground
3	PAP	0	The differential power amplifier output, when using as singled-ended output, PAN/PAP
4	PAN	0	should be connected together before connecting to the matching network
5	CLK	I	Clock1 for the chip programming, internally pulled up to VDD
6	K3/VTG	I	Push button key 3 or voltage for the chip programming
7	K2	I	Push button key 2
8	K1/CLK2	I	Push button key 1 or clock2 for the chip programming
9	K0/DATA2	Ю	Push button key 0 or data2 for the chip programming
10	GND	L	Ground
11	VDD	4	Power supply input
12	DATA	10	Data1 for the chip programming, Internally pulled up to GND
13	GND		Ground
14	XTAL	L	26 MHz single-ended crystal oscillator input or external 26 MHz reference clock input

3. Typical Performance Characteristics

Figure 4. Phase Noise, $F_{RF} = 433.92$ MHz, $P_{OUT} = +13$ dBm, Unmodulated

Figure 7. OOK Spectrum, SR = 9.6 ksps, P_{OUT} = +10 dBm, t_{RAMP} = 32 us

Figure 8. Spectrum of PA Ramping, SR = 1.2 ksps, P_{OUT} = +10 dBm

Figure 5. Harmonics of 433.92 MHz, $P_{OUT} = +13 \text{ dBm}$

Figure 6. Spectrum of PA Ramping, SR = 9.6 ksps, P_{OUT} = +10 dBm

Figure 9. Output Power vs. Supply Voltages, $F_{RF} = 433.92 \text{ MHz}$

4. Typical Application Schematics

4.1 Typical Application with Differential PA Output

Figure 10. CMT2180A Typical Application with Differential PA Output

Notes:

- 1. Connector J1 is a must for the CMT2180A chip programming during development or manufacture.
- 2. D1 is an optional protection device for the chip programming. It is not needed during the normal operation.
- The general layout guidelines are listed below. For more design details, please refer to "AN131 CMT218xA Schematic and PCB Layout Design Guideline".
 - Use as much continuous ground plane metallization as possible.
 - Use as many grounding vias (especially near to the GND pins) as possible to minimize series parasitic inductance between the ground pour and the GND pins.
 - Avoid using long and/or thin transmission lines to connect the components.
 - Avoid placing the nearby inductors in the same orientation to reduce the coupling between them.
 - Place C0 as close to the CMT2180A as possible for better filtering.
- 4. The table below shows the BOM of 433.92 Application with Differential PA Output. For the BOM of 315 MHz application, please refer to "AN131 CMT218xA Schematic and PCB Layout Design Guideline".

Designator	Descriptions	Value	Unit	Manufacturer
U1	CMT2180A, 240 – 480 MHz SoC OOK transmitter	-	-	CMOSTEK
X1	±20 ppm, SMD32*25 mm crystal	26	MHz	EPSON
SW[3:0]	Push buttons	-	-	
D1	MBR0520LT1, SOD123 (Optional)	-	-	IR
R1	±5%, 0402	10	kΩ	
C0	±20%, 0402 X7R, 25 V	0.1	uF	Murata GRM15
C1	±0.25 pF, 0402 NP0, 50 V	2.2	pF	Murata GRM15
C2	±0.25 pF, 0402 NP0, 50 V	2.2	pF	Murata GRM15
L1	±5%, 0603 multi-laver chip inductor	180	nH	Murata LQG18

Table 8. BOM of 433.92 MHz Application with Differential PA Output

4.2 Typical Application with Single-ended PA Output

Figure 11. CMT2180A Typical Application with Single-ended PA Output

Notes:

- Connector J1 is a must for the CMT2180A EEPROM access during development or manufacture. 1.
- D1 is an optional protection device for the chip programming. It is not needed during the normal operation.
- The general layout guidelines are listed below. For more design details, please refer to "AN131 CMT218xA Schematic and PCB Layout Design Guideline".
 - Use as much continuous ground plane metallization as possible.
 - Use as many grounding vias (especially near to the GND pins) as possible to minimize series parasitic inductance between the ground pour and the GND pins.
 - Avoid using long and/or thin transmission lines to connect the components.
 - Avoid placing the nearby inductors in the same orientation to reduce the coupling between them.
 - Place C0 as close to the CMT2180A as possible for better filtering.
- The table below shows the BOM of 433.92 Application with single-ended PA output. For the BOM of 315 MHz applications, please refer to "AN131 CMT218xA Schematic and PCB Layout Design Guideline".

Table 9. BOM of 433.92 MHz FCC/ETSI Compliant Application

Designator	Descriptions	Value	Unit	Manufacturer
U1	CMT2180A, 240 – 480 MHz SoC OOK transmitter	-	-	CMOSTEK
X1	±20 ppm, SMD32*25 mm crystal	26	MHz	EPSON
SW[3:0]	Push buttons	-	-	
D1	MBR0520LT1, SOD123 (Optional)	-	-	IR
R1	±5%, 0402	10	kΩ	
C0	±20%, 0402 X7R, 25 V	0.1	uF	Murata GRM15
C1	±5%, 0402 NP0, 50 V	68	pF	Murata GRM15
C2	±5%, 0402 NP0, 50 V	15	pF	Murata GRM15
C3	±5%, 0402 NP0, 50 V	15	pF	Murata GRM15
L1	±5%, 0603 multi-layer chip inductor	180	nH	Murata LQG18
L2	±5%, 0603 multi-layer chip inductor	36	nH	Murata LQG18
L3	±5%, 0603 multi-layer chip inductor	18	nH	Murata LQG18

5. Functional Descriptions

Figure 12. CMT2180A Functional Block Diagram

5.1 Overview

The CMT2180A devices are fully integrated, highly flexible, high performance, SoC OOK transmitters with embedded RISC microcontroller core for various 240 to 480 MHz wireless applications. They are part of the CMOSTEK NextGenRFTM family, which includes a complete line of transmitters, receivers and transceivers. The chip is optimized for the low system cost, low power consumption, battery powered application with its highly integrated and low power design.

The functional block diagram of the CMT2180A is shown in the figure above. The CMT2180A is based on direct synthesis of the RF frequency, and the frequency is generated by a low-noise fractional-N frequency synthesizer. It uses a 1-pin crystal oscillator circuit with the required crystal load capacitance integrated on-chip to minimize the number of external components. Every analog block is calibrated on each Power-on Reset (POR) to the reference voltage generated by Bandgap. The calibration can help the chip to finely work under different temperatures and supply voltages. The CMT2180A has a highly efficient PA built in, the PA can be configured as single-ended or differential outputs, and the output power can be configured from -10 to +13 dBm in 1 dB step size. The RISC microcontroller core provides the core functionality of the CMT2180A. A 1024-word of flash area is available to store the user program of the applications. Up to 4 push buttons are supported with their function customized by the user program. RF Frequency, PA output power, other product features and unique transmit IDs can be programmed into the embedded EEPROM by the RFPDK and USB Programmer. This saves the cost and simplifies the product development and manufacturing effort. Alternatively, in stock products of 433.92 MHz is available for immediate demands. The CMT2180A operates from 2.3 to 3.6 V, only consumes 11.5 mA when transmitting +10 dBm power under 3.3 V supply voltage (433.92 MHz, OOK, single-ended PA output). The device together with CMOSTEK NextGenRFTM receiver enables a highly flexible, low cost RF link.

5.2 Modulation, Frequency and Symbol Rate

The CMT2180A supports OOK modulation with the symbol rate up to 30 ksps. The CMT2180A continuously covers the frequency range from 240 to 480 MHz, including the license free ISM frequency band around 315 MHz and 433.92 MHz. The device contains a high spectrum purity low power fractional-N frequency synthesizer with output frequency resolution better than 198 Hz within the supported frequency range. See the table below for the modulation, frequency and symbol rate specifications.

Table 10. Modulation, Frequency and Symbol Rate

Parameter	Value	Unit
Modulation	ООК	-
Frequency	240 to 480	MHz
Frequency Resolution	<198	Hz
Symbol Rate	0.5 to 30	ksps

5.3 Embedded EEPROM and RFPDK

The RFPDK (RF Products Development Kit) is a very user-friendly software tool delivered for the user configuring the CMT2180A in the most intuitional way. The user only needs to fill in/select the proper value of each parameter and click the "Burn" button to complete the chip configuration. No register access and control is required in the application program. See the figure below for the accessing of the EEPROM and Table 11 for the summary of all the configurable parameters of the CMT2180A in the RFPDK.

Figure 13. Accessing Embedded EEPROM

For the detail of CMT2180A configurations with the RFPDK, please refer to "AN132 CMT2180/89A Configuration Guideline".

Table 11. Configurable Parameters in RFPDK

Category	Parameters	Descriptions	Default	Mode
	Frequency	To input a desired transmitting radio frequency in the range from 240 to 480 MHz. The step size is 0.001 MHz.	433.92 MHz	Basic Advanced
	Tx Power	To select a proper transmitting output power from -10 dBm to +14 dBm, 1 dB margin is given above +13 dBm.	+13 dBm	Basic Advanced
RF Settings	Xtal Load	On-chip XOSC load capacitance options: from 10 to 22 pF. The step size is 0.33 pF.	15.00 pF	Basic Advanced
	PA Ramping	To control PA output power ramp up/down time, options are 0 and 2 ⁿ us (n from 0 to 10).	0 us	Advanced
	PA Output	To select the PA output mode, the option is Single-ended or Differential.	Differential	Basic Advanced
Transmitting:	Start by	Start condition of a transmitting cycle, by Data Pin Rising/Falling Edge.	Data Pin Rising Edge	Advanced
Transmitting Settings	Stop by Stop condition of a transmitting cycle, by Dat Holding Low for 20 to 90 ms.		Data Pin Holding Low for 20 ms	Advanced

Category	Parameters	Descriptions	Default	Mode
	Start Addr (Hex)	Defines the starting address of a consecutive address space in the Flash to store the series number.	0008	Basic Advanced
	End Addr (Hex)	Defines the ending address to store the series number to the Flash.	000A	Basic Advanced
Flash SN Settings	Init SN	Defines the initial SN value (in Dec), this value will be stored in the Flash with address defined from Start Addr (Hex) to End Addr (Hex).	1193046	Basic Advanced
	Step Size	Defines the incremental step size of the SN value, it can be a positive integer or zero.	1	Basic Advanced
	Current SN	Displays the next SN value to be burned into the device in the next burning operation.	1193046	Basic Advanced
	Clock Source	To select the internal clock source for the microcontroller, the options are: Blank, 8 MHz and 32 kHz.	8 MHz	Basic Advanced
	WDT	WDT To enable or disable the watchdog timer, the options are Blank, Enable or Disable.		Basic Advanced
Feature Bits	K3/MCLR	To configure the K3 pin as Master Clear (MCLR) or push button key.	КЗ	Basic Advanced
	LBD	Defines the battery low threshold, the options are: Blank, Disable and Typ 2.3V.	Typ 2.3V	Basic Advanced
	Security	To enable or disable the code protection. When it is enabled, the readouts of bit11-7, bit4-0 in each		Basic Advanced
ID Memory Settings	-	This is a 12 x 7-bit ID area in the microcontroller section that allows the user to store any data.	-	Basic Advanced

5.4 Power Amplifier

A highly efficient Power Amplifier (PA) is integrated in the CMT2189A to transmit the modulated signal out. Depending on the application, the PA can be configured as single-ended or differential output on the RFPDK, and the user can design a matching network for the PA to exhibit optimum efficiency at the desired output power for a wide range of antennas, such as loop or monopole antenna. Typical application schematics and the required BOM are shown in "Chapter 4 Typical Application Schematic". For the schematic, layout guideline and the other detailed information please refer to "AN131 CMT218xA Schematic and PCB Layout Design Guideline".

The output power of the PA can be configured by the user within the range from -10 dBm to +13 dBm in 1 dB step size using the CMOSTEK USB Programmer and the RFPDK.

5.5 PA Ramping

When the PA is switched on or off quickly, its changing input impedance momentarily disturbs the VCO output frequency. This process is called VCO pulling, and it manifests as spectral splatter or spurs in the output spectrum around the desired carrier frequency. By gradually ramping the PA on and off, PA transient spurs are minimized. The CMT2180A has built-in PA ramping configurability with options of 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 and 1024 us, as shown in Figure 14. When the option is set to "0", the PA output power will ramp up to its configured value in the shortest possible time. The ramp down time is identical to the ramp up time in the same configuration.

CMOSTEK recommends that the maximum symbol rate should be no higher than 1/2 of the PA ramping "rate", as shown in the formula below.

$$SR_{Max} \le 0.5 * \left(\frac{1}{t_{RAMP}} \right)$$

In which the PA ramping "rate" is given by $(1/t_{RAMP})$. In other words, by knowing the maximum symbol rate in the application, the PA ramping time can be calculated by formula below.

$$t_{RAMP} \le 0.5 * (\frac{1}{SR_{MAX}})$$

The user can select one of the values of the t_{RAMP} in the available options that meet the above requirement. If somehow the t_{RAMP} is set to be longer than "0.5 * (1/SR_{Max})", it will possibly bring additional challenges to the OOK demodulation of the Rx device. For more detail of calculating t_{RAMP} , please refer to "AN132 CMT2180/89A Configuration Guideline".

Figure 14. PA Ramping Time

5.6 Crystal Oscillator and RCLK

The CMT2180A uses a 1-pin crystal oscillator circuit with the required crystal load capacitance integrated on-chip. Figure 16 shows the configuration of the XTAL circuitry and the crystal model. The recommended specification for the crystal is 26 MHz with \pm 20 ppm, ESR (Rm) < 60 Ω , load capacitance C_{LOAD} ranging from 12 to 20 pF. To save the external load capacitors, a set of variable load capacitors C_L is built inside the CMT2180A to support the oscillation of the crystal.

The value of load capacitors is configurable with the CMOSTEK USB Programmer and RFPDK. To achieve the best performance, the user only needs to input the desired value of the XTAL load capacitance C_{LOAD} of the crystal (can be found in the datasheet of the crystal) to the RFPDK, then finely tune the required XO load capacitance according to the actual XO frequency.

CC XTAL 26 MHz 0.3 - 0.7 Vpp

Figure 16. XTAL Circuitry and Crystal Model

Figure 15. RCLK Circuitry

If a 26 MHz RCLK (reference clock) is available in the system, the user can directly use it to drive the CMT2180A by feeding the clock into the chip via the XTAL pin. This further saves the system cost due to the removal of the crystal. A coupling capacitor is required if the RCLK is used. The recommended amplitude of the RCLK is 0.3 to 0.7 Vpp on the XTAL pin. Also, the user should set the internal load capacitor C_L to its minimum value. See Figure 15 for the RCLK circuitry.

6. Working States and Control Interface

6.1 Working States

The CMT2180A has following 4 different working states: SLEEP, XO-STARTUP, TUNE and TRANSMIT.

SLEEP

When the CMT2180A is in the SLEEP state, all the internal blocks are turned off and the current consumption is minimized. The 4 push buttons keys are ready to sense valid pressing actions to start a transmitting cycle.

XO-STARTUP

Once the modulator of the CMT2180A detect valid signal on the D_{RAW} wire (see Figure 12), the RF section will go into the XO-STARTUP state, and the internal XO starts to work. The user has to wait for the t_{XTAL} to allow the XO to get stable. The t_{XTAL} is to a large degree crystal dependent. A typical value of t_{XTAL} is provided in the Table 12.

TUNE

The frequency synthesizer will tune the CMT2180A to the desired frequency in the time t_{TUNE} . The PA can be turned on to transmit the data only after the TUNE state is done, before that the data will not be transmitted. See Figure 17 for the details.

TRANSMIT

The CMT2180A starts to modulate and transmit the data (D_{RAW}) generated by the microcontroller core responding to the push buttons. The transmission can be ended in 2 methods: firstly, driving the DATA pin low for t_{STOP} time, where the t_{STOP} can be configured from 20 to 90 ms on the RFPDK; secondly, issuing SOFT_RST command over the two-wire interface, this will stop the transmission in 1 ms. See section 6.2.3 for details of the two-wire interface.

Table 12.Timing in	Different Working States

Parameter	Symbol	Min	Тур	Max	Unit
XTAL Startup Time [1]	t _{XTAL}		400		us
Time to Tune to Desired Frequency	t _{TUNE}		370		us
Hold Time After Rising Edge	t _{HOLD}	10			ns
Time to Stop The Transmission ^[2]	t _{STOP}	20		90	ms

Notes:

- [1]. This parameter is to a large degree crystal dependent.
- [2]. Configurable from 20 to 90 ms in 10 ms step size.

6.2 Transmission Control Interface

The CMT2180A uses the D_{RAW} wire for the microcontroller core to send in data for modulation and transmission. The D_{RAW} wire, which also connects to the DATA pin, can be used as pin for EEPROM programming, data transmission, as well as controlling the transmission. The transmission can be started by detecting rising or falling edge on the D_{RAW} wire (DATA Pin), and stopped by driving the D_{RAW} wire low for t_{STOP} as shown in the table above. Besides communicating over the D_{RAW} wire, the microcontroller core can also communicate with the RF section over the two-wire interface, so that the transmission is more robust, and consumes less current.

6.2.1 Tx Enabled by DATA Pin Rising Edge

As shown in the figure below, once the CMT2180A detects a rising edge on the D_{RAW} wire (DATA pin), it goes into the XO-STARTUP state. The user has to pull the D_{RAW} wire high for at least 10 ns (t_{HOLD}) after detecting the rising edge, as well as

wait for the sum of t_{XTAL} and t_{TUNE} before sending any useful information (data to be transmitted) into the chip on the D_{RAW} wire. The logic state of the D_{RAW} wire is "Don't Care" from the end of t_{HOLD} till the end of t_{TUNE} . In the TRANSMIT state, PA sends out the input data after they are modulated. The user has to pull the D_{RAW} wire low for t_{STOP} in order to end the transmission.

Figure 17. Transmission Enabled by DATA Pin Rising Edge

6.2.2 Two-wire Interface

For power-saving and reliable transmission purposes, the CMT21810A is recommended to communicate with the microcontroller core over a two-wire interface (TWI): D_{RAW} (DATA) and CLK. The TWI is designed to operate at a maximum of 1 MHz. The timing requirement and data transmission control through the TWI are shown in this section.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Digital Input Level High	V _{IH}		0.8			V_{DD}
Digital Input Level Low	V _{IL}				0.2	V_{DD}
CLK Frequency	F _{CLK}		10		1,000	kHz
CLK High Time	t _{CH}		500			ns
CLK Low Time	t _{CL}		500			ns
CLK Delay Time	t _{CD}	CLK delay time for the first falling edge of the TWI_RST command, see Figure 21	20		15,000	ns
DATA Delay Time	t _{DD}	The data delay time from the last CLK rising edge of the TWI command to the time DATA return to default state			15,000	ns
DATA Setup Time	t _{DS}	From DATA change to CLK falling edge	20			ns
DATA Hold Time	t _{DH}	From CLK falling edge to DATA change	200			ns

Table 13. TWI Requirements

Figure 18. Two-wire Interface Timing Diagram

Once the device is powered up, TWI_RST and SOFT_RST should be issued to make sure the device works in SLEEP state robustly. On every transmission, TWI_RST and TWI_OFF should be issued before the transmission to make sure the TWI

circuit functions correctly. TWI_RST and SOFT_RST should be issued again after the transmission for the device going back to SLEEP state reliably till the next transmission. The operation flow with TWI is shown as the figure below.

Figure 19. CMT21810A Operation Flow with TWI

Table 14. TWI Commands Descriptions

Command	Descriptions
	Implemented by pulling the DATA pin low for 32 clock cycles and clocking in 0x8D00, 48 clock cycles in total.
	It only resets the TWI circuit to make sure it functions correctly. The DATA pin cannot detect the
TWI_RST	Rising/Falling edge to trigger transmission after this command, until the TWI_OFF command is issued.
	Notes:
	a) Please ensure the DATA pin is firmly pulled low during the first 32 clock cycles.
	Implemented by clocking in 0x8D02, 16 clock cycles in total.
TWI OFF	
TWI_OFF	It turns off the TWI circuit, and the DATA pin is able to detect the Rising/Falling edge to trigger transmission
	after this command, till the TWI_RST command is issued. The command is shown as Figure 23.
	Implemented by clocking in 0xBD01, 16 clock cycles in total.
SOET BST	It resets all the other circuits of the chip except the TWI circuit. This command will trigger internal calibration
SOFT_RST	for getting the optimal device performance. After issuing the SOFT_RST command, the host MCU should
	wait 1 ms before sending in any new command. After that, the device goes to SLEEP state. The command is
	shown as Figure 24.

Figure 20. TWI_RST Command

Figure 21. TWI_OFF Command

Figure 22. SOFT_RST Command

The DATA is generated by the host MCU on the rising edge of CLK, and is sampled by the device on the falling edge. The CLK

should be pulled up by the host MCU during the TRANSMISSION shown in Figure 20. The TRANSMISSION process should refer to Figure 17 or Figure 18 for its timing requirement, depending on the "Start By" setting configured on the RFPDK.

The device will go to SLEEP state by driving the DATA low for t_{STOP} , or issuing SOFT_RST command. A helpful practice for the device to go to SLEEP is to issue TWI_RST and SOFT_RST commands right after the useful data is transmitted, instead of waiting the t_{STOP} , this can save power significantly.

7. RISC Microcontroller Core

The embedded MCU core is a high performance RISC Microcontroller. It includes the following features.

High-Performance RISC CPU:

- 1024 words Flash, 64 bytes SRAM
- · Only 37 Instructions to Learn
- All single-cycle instructions except branches
- · Operating Speed:
 - DC 8MHz oscillator
 - DC 250 ns instruction cycle
- · Interrupt Capability
- 8-Level Deep Hardware Stack
- · Direct, Indirect, and Relative Addressing modes

Special Microcontroller Features:

- · Internal 8 MHz oscillator
- · Power-Saving Sleep mode
- · Industrial and Extended Temperature Range
- · Watchdog timer with on-chip RC oscillator
- Power-on Reset (POR)
- · Multiplexed MCLR/Input Pin
- · Interrupt-on-Pin Change
- Individual Programmable Weak Pull-ups

Peripheral Features:

- 4 I/O Pins with Individual Direction Control
- · Timer0: 8-bit timer with 3-bit prescaler
- Timer1: 16-bit timer with 2-bit prescaler
- Timer2: 8-bit timer with 3-bit prescaler and
- K0~3 port with pull-up resister
- K0~3 port with open drain function
- K0~2 port with pull-down resister
- · Internal RC clock select at 8 MHz to 32 kHz
- · Five interrupt sources:
 - Three internal interrupts: TM0, TM1, TM2
 - Two external interrupts K1 or K0~3 pin change
- · One level buffer PUSH status (without /TF, /PF), and
- W data if interrupt executes, then POP data after RTFI instruction

Figure 23. Microcontroller Core Block Diagram

7.1 Memory Organization

7.1.1 Program Memory Organization

The CMT2180A device has 1k x 14 (0000h-03FFh) for program memory. Accessing a location above these boundaries will cause a wrap-around within the first 1k x 14 space. The Reset Vector is at 0000h and the Interrupt Vector is at 0004h (see figure below).

Figure 24. Program Memory Map and Stack

7.1.2 Data Memory Organization

The data memory (see Figure 27) is partitioned into two banks: the General Purpose Registers and the Special Function Registers. The Special Function Registers are located in the first 32 locations of each bank. Register locations 20h-5Fh are General Purpose Registers, implemented as static RAM and are mapped across both banks. All other RAM is unimplemented and returns '0' when being read. PAGE0 (STATUS<5>) is the bank select bit.

•PAGE0 = 0 Bank 0 is selected.

•PAGE0 = 1 Bank 1 is selected.

7.1.2.1 General Purpose Register File

The register file is organized as 64 x 8 in the CMT2180A. Each register is accessed, either directly or indirectly, through the Memory Select Register (MSR see Section 7.1.4 "Indirect Addressing, IAR and MSR Registers").

7.1.2.2 Special Function Register File

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (see Table 15). These registers are static RAM. The special registers can be classified into two sets: core and peripheral. The Special Function Registers associated with the "core" are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

Figure 25. Data Memory Map of the CMT2180A

Table 15. CMT2180A Special Registers Summary Bank0

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, PDR
Bank0										I
00h	IAR	Addressing	g this location	uses content	s of MSR to a	ddress data m	emory (not a	physical regis	ster)	XXXX XXXX
01h	TMR0	Timer0 Mo	dule's Regist	er						XXXX XXXX
02h	PCL	Program C	Counter's (PC) Least Signifi	cant Byte	1	T	1	I	0000 0000
03h	STATUS			PAGE0	/TF	/PF	Z	DC	С	0001 1xxx
04h	MSR	Indirect da	ta memory A	ddress Pointer	•					XXXX XXXX
05h	PORT A			I/O Control F	Registers					xx xxxx
06h		Unimplem	ented							
07h		Unimplem	ented							
08h		Unimplem	ented							
09h		Unimplem	ented							
0Ah	PCLATH				Write buffer	for upper 5 bit	s of program	counter		0 0000
0Bh	INTER	GIE			INTE	PAIE	T2IE	T1IE	TOIE	0000 0000
0Ch	INTFR				INTF	PAIF	T2IF	T1IF	TOIF	0000 0000
0Dh	PORCON	3Fx2F	SWDTEN		ENPOP	3Fx2EN	LOST	PORB	PEDHB	0001 00qq
0Eh	TMR1L	Holding re	gister for the	Least Significa	ant Byte of the	16-bit TMR1				xxxx xxxx
0Fh	TMR1H	Holding re	gister for the	Most Significa	nt Byte of the	16-bit TMR1				xxxx xxxx
10h	T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	/T1SYNC	TMR1CLK	TMR10N	0000 0000
11h	T2CON	T2ON	T2RATE2	T2RATE1	T2RATE0	T2ECKS	ALOAD	T2OUT	PWMOUT	0000 0000
12h	TMR2	Timer2 Mo	dule's Regist	er						0000 0000
13h	T2ALR	Timer2 aut	to-load registe	er						0000 0000
14h	IRCCON	IFDIV3	IFDIV2	IFDIV1	IFDIV0	T2OCK	/GMF	CHWCK	GREMD	1110 0100
15h		Unimplem	ented							
16h	PAODR			APOD5	APOD4		APOD2	APOD1	APOD0	0000 0000
17h	PACPLR						APLB2	APLB1	APLB0	0000 0000
18h		Unimplem	ented							
19h		Unimplem	ented	▼						
1Ah	-	Unimplem	ented							
1Bh		Unimplem								
1Ch		Unimplem	Unimplemented							
1Dh		Unimplem	Unimplemented							
1Eh	-	Unimplemented								
1Fh										
Note:		-								

Rev 0.6 | Page 27/67

Table 16. CMT2180A Special Function Registers Summary Bank1

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, PDR
Bank1										
80h	IAR	Addressi	ng this location	on uses conter	nts of MSR to a	address data	memory (not a	a physical reg	ister)	xxxx xxxx
81h	WDT0CON		IES	TCS	TCE	PSC	PS2	PS1	PS0	1111 1111
82h	PCL	Program	Counter's (P	C) Least Signi	ficant Byte					0000 0000
83h	STATUS		1	PAGE0	/TF	/PF	Z	DC	С	0001 1xxx
84h	MSR	Indirect d	ata memory	Address Pointe	er					xxxx xxxx
85h	CPIO A		-	CPIO PA5	CPIO PA4	CPIO PA3	CPIO PA2	CPIO PA1	CPIO PA0	11 1111
86h		Unimplen	nented							>
87h		Unimplen	nented							
88h		Unimplen	nented							
89h		Unimplen	nented							
8Ah	PCLATH				Write buffer	for upper 5 bi	ts of program	counter		0 0000
8Bh	INTER	GIE			INTE	PAIE	T2IE	T1IE	TOIE	0000 0000
8Ch	INTFR				INTF	PAIF	T2IF	T1IF	TOIF	0000 0000
8Dh	PORCON	3Fx2F	SWDTEN		ENPOP	3Fx2EN	LOST	PORB	PEDHB	0001 00qc
8Eh	TMR1L	Holding r	egister for the	e Least Signific	cant Byte of th	e 16-bit TMR	1			xxxx xxxx
8Fh	TMR1H	Holding r	egister for the	e Most Signific	ant Byte of the	e 16-bit TMR1				xxxx xxxx
90h		Unimplen	nented							0000 0000
91h	T2CON	T2ON	T2RATE2	T2RATE1	T2RATE0	T2ECKS	ALOAD	T2OUT	PWMOUT	0000 0000
92h	TMR2	Timer2 M	lodule's Regi	ster						0000 0000
93h	T2ALR	Timer2 a	uto-load regis	ster						0000 0000
94h	IRCCON	IFDIV3	IFDIV2	IFDIV1	IFDIV0	T2OCK	/GMF	CHWCK	GREMD	1110 0100
95h	PAPHR			APHB 5	APHB 4	APHB 3	APHB 2	APHB 1	APHB 0	0000 0000
96h	PAINTR			PINT A5	PINT A4	PINT A3	PINT A2	PINT A1	PINT A0	0000 0000
97h	INOSCR	SYCKF		IRCLVC	MK0	ECKIN	OSO2E	OSO2O	/OSCIN	1010 0000
98h		Unimplen	nented	<u> </u>						
99h		Unimplen	nented							
9Ah		Unimplen	nented							
9Bh		Unimplen	nented							
9Ch		Unimplen	nented							
9Dh	1-	Unimplen	nented							
9Eh		Unimplen	nented							
9Fh)	Unimplen	nented							
Note:										

[1]. Legend: – = Unimplemented locations, u= unchanged, x= unknown, q= value depends on condition.

7.1.2.2.1 W Register

When any interrupt occurs, system will jump to Interrupt Vector (Address: 0x0004) and execute interrupt service routine. It is necessary to save **W, STATUS** data. If PORCON (0DH bit 4) ENPOP = "1" is enable chip can save **W, STATUS** data into buffers, after "RTFI" instructions pop buffer data to **W, STATUS** register data.

Figure 26. W Register

7.1.2.2.2 STATUS Register

The STATUS register, shown in Register 1, contains the below sections.

- The arithmetic status of the ALU
- The Reset status
- The bank selects bits for data memory (SRAM)

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended. For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000u u1uu (where u= unchanged).

Register 1. STATUS - STATUS Register (Address: 03h or 83h)

Reserved Reserved	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
	PAGE0	/TF	/PF	Z	DC	С
bit7						hit∩

	PAGE0: Register Bank Select bit (used for direct addressing).			
bit 5	1 = Bank 1 (80h-FFh).			
	0 = Bank 0 (00h-7Fh).			
	/TF: WDT time-out flag bit.			
bit 4	1 = After power-up, CLRWT instruction, or SLEEP instruction.			
	0 = A WDT time-out occurred.			
	/PF: Power-Down flag bit.			
bit 3	1 = After power-up or by the CLRWT instruction.			
DIL 3	0 = By execution of the SLEEP instruction.			
	Z: Zero bit.			
bit 2	1 = The result of an arithmetic or logic operation is zero.			
Dit 2	0 = The result of an arithmetic or logic operation is not zero.			

	DC: Digit carry/borrow bit (ADDWR, ADDWI, SUBWI, SUBWR			
	instructions)			
bit 1	For borrow, the polarity is reversed.			
	1 = A carry-out from the 4th low order bit of the result occurred.			
	0 = No carry-out from the 4th low order bit of the result.			
	C: Carry/borrow bit (ADDWR, ADDWI, SUBWI, SUBWR			
	instructions).			
bit 0	1 = A carry-out from the Most Significant bit of the result occurred.			
	0 = No carry-out from the Most Significant bit of the result			
	occurred.			

Notes:

- [1]. For borrow the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRR, RLR) instructions, this bit is loaded with either the high or low order bit of the source register.
- [2]. Legend: R = Readable bit, W = Writable bit, U = Unimplemented bit, -n = Value at POR, '1' = Bit is set, '0' = Bit is cleared, x = Bit is unknown.

7.1.2.2.3 WDT0CON Register

The WDT0CON register is a readable and writable register, which contains various control bits to configure:

- TMR0/WDT prescaler
- External RA2/INT interrupts
- •TMR0

Register 2. WDT0CON Register (Address: 81h)

Reserved	R/W-1						
	IES	TCS	TCE	PSC	PS2	PS1	PS0
bit7							bit0

	IES: Interrupt Edge S	elect bit.					
bit 6	1 = Interrupt on rising	edge of PA0/INT pin.					
	0 = Interrupt on falling	g edge of PA0/INT pin.					
	TCS: TMR0 Clock Source Select bit.						
bit 5	1 = Transition on PA1	1 = Transition on PA1/T0CKI pin.					
	0 = Internal instruction	n cycle clock.					
	TCE: TMR0 Source E	TCE: TMR0 Source Edge Select bit.					
bit 4	1 = Increment on high	1 = Increment on high-to-low transition on RA1/T0CKI pin.					
	0 = Increment on low-	0 = Increment on low-to-high transition on RA1/T0CKI pin.					
	PSC: Prescaler Assig	nment bit.					
bit 3	1 = Prescaler is assig	ned to the WDT.					
	0 = Prescaler is assigned to the Timer0 module.						
	PS2-PS0: Prescaler I	Rate Select bits.					
	Bit Value	TMR0 Rate	WDT Rate				
bit 2 - 0	000	1:2	1:1				
	001	1:4	1:2				
	010	1:8	1:4				
	011	1:16	1:8				

100	1:32	1:16
101	1:64	1:32
110	1:128	1:64
111	1:256	1:128

Note:

7.1.2.2.4 INTER Register

The INTER register is a readable and writable register, which contains the various enable and flag bits for TMR0 register overflow, PORTA change and external RA0/INT pin interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTER <7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

Register 3. INTER - Interrupt Control Register (Address: 0Bh or 8Bh)

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| GIE | | | INTE | PAIE | T2IE | T1IE | TOIE |
| bit7 | - | • | - | | | - | bit0 |

	GIE: Global Interrupt Enable bit.			
bit 7	1 = Enables all unmasked interrupts.			
	0 = Disables all interrupts.			
	T0IE: TMR0 Overflow Interrupt Enable bit.			
bit 5	1 = Enables the TMR0 interrupt.			
	0 = Disables the TMR0 interrupt.			
	INTE: RA0/INT External Interrupt Enable bit.			
bit 4	1 = Enables the RA0/INT external interrupt.			
	0 = Disables the RA0/INT external interrupt.			
	PAIE: Port Change Interrupt Enable bit 1.			
bit 3	1 = Enables the PORTA change interrupt.			
	0 = Disables the PORTA change interrupt.			
	T2IE: TMR2 Overflow Interrupt Enable bit.			
bit 2	1 = Enables the TMR2 interrupt.			
	0 = Disables the TMR2 interrupt.			
	T1IE: TMR1 Overflow Interrupt Enable bit.			
bit 1	1 = Enables the TMR1 interrupt.			
	0 = Disables the TMR1 interrupt.			
	T0IE: TMR0 Overflow Interrupt Enable bit.			
bit 0	1 = Enables the TMR0 interrupt.			
	0 = Disables the TMR0 interrupt.			
Notoci				

Notes:

- [1]. IOCA register must also be enabled.
- [2]. Legend: R = Readable bit, W = Writable bit, U = Unimplemented bit, -n = Value at POR, '1' = Bit is set, '0' = Bit is cleared, x = Bit is unknown.

^{[1].} Legend: R = Readable bit, W = Writable bit, U = Unimplemented bit, -n = Value at POR, '1' = Bit is set, '0' = Bit is cleared, x = Bit is unknown.

7.1.2.2.5 INTFR Register

The INTFR register contains the interrupt flag bits, as shown in Register 4.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTER <7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

Register 4. INTFR – Peripheral Interrupt Flags (Address: 0Ch or 8Ch)

R/W-0								
1			INTF	PAIF	T2IF	T1IF	TOIF	
bit7							bit0	

	INTF: PA0/INT External Interrupt Flag bit.
bit 4	1 = The PA0/INT external interrupt occurred (must be cleared in software).
	0 = The PA0/INT external interrupt did not occur.
	PAIF: Port Change Interrupt Flag bit.
L:4 0	1 = When at least one of the PORTA <5:0> pins changed state (must be
bit 3	cleared in software).
	0 = None of the PORTA <5:0> pins have changed state.
	T2IF: TMR2 Overflow Interrupt Flag bit.
bit 2	1 = TMR2 register overflowed (must be cleared in software).
	0 = TMR2 register did not overflow.
	T1IF: TMR1 Overflow Interrupt Flag bit.
bit 1	1 = TMR1 register overflowed (must be cleared in software).
	0 = TMR1 register did not overflow.
	T0IF: TMR0 Overflow Interrupt Flag bit.
bit 0	1 = TMR0 register overflowed (must be cleared in software).
	0 = TMR0 register did not overflow.
Note:	

^{[1].} Legend: R = Readable bit, W = Writable bit, U = Unimplemented bit, -n = Value at POR, '1' = Bit is set, '0' = Bit is cleared, x = Bit is unknown.

7.1.2.2.6 PORCON Register

The Power Control (PORCON) Register bits are shown in Register 5.

Register 5. PORCON – Power Control Register (Address: 0Eh or 8Eh)

R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-x	R/W-x
3Fx2F	SWDTEN		ENPOP	3Fx2EN	LOST	PORB	LBDHB
bit7							bit0

	3Fx2F: ROM code run 3FFF instruction twice reset flag bit.
bit 7	0 = None 3FFF x 2 reset occurred.
	1 = The 3FFF x 2 reset occurred.
	SWDTEN: Software WDT enable bit. (When device option WDT
bit 6	select disable).
	0 = Disable software WDT.

		1 = Enable software WDT.			
		(If device option WDT select enable, irrespective of the SWDTEN			
		bit).			
		ENPOP: Interrupt PUSH and POP (W, STATUS) register enable			
	L:4 4	bit.			
	bit 4	0 = Disable interrupt PUSH and POP function.			
		1 = Enable interrupt PUSH and POP function.			
		3Fx2EN: ROM code run 3FFF instruction twice reset enable bit.			
	bit 3	0 = Disable 3FFF x 2 reset function.			
		1 = Enable 3FFF x 2 reset function.			
		LOST: Long external oscillator start time control bit.			
	bit 2	0 = 20ms Internal RC change to external oscillator start time.			
		1 = 40ms Internal RC change to external oscillator start time.			
		PORB: Power On Reset Status Bit.			
	bit 1	0 = A power on reset occurred (must be set in software after a			
	DIL I	power on reset occurs).			
		1 = No power on reset occurred.			
		LBDHB: Power Detect High Level Status Bit.			
	bit 0	0 = An LBD high level reset occurred (must be set in software after			
	DIL U	a power on reset occurs).			
		1 = No LBD high level reset occurred.			
Note:					

^{[1].} Legend: R = Readable bit, W = Writable bit, U = Unimplemented bit, -n = Value at POR, '1' = Bit is set, '0' = Bit is cleared, x = Bit is unknown.

7.1.2.2.7 IRCCON Register

The Internal RC Control register (IRCCON) is used to configure system frequency. The IRCCON register bits are shown in Register 6.

Register 6. IRCCON - Internal-RC Control (Address: 14h or 94h)

R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0
IFDIV3	IFDIV2	IFDIV1	IFDIV0	T2OCK	/GMF	CHWCK	GREMD
bit7							bit0

	FDIV[3:0	FDIV[3:0]: System clock select Bit.				
		Bit Value	Fosc			
		11xx	8 MHz (default)			
		10xx	32 kHz (WDT)			
		0111	4 MHz			
bit 7-4		0110	2 MHz			
		0101	1 MHz			
		0100	500 kHz			
		0011	250 kHz			
		0010	125 kHz			
		0001	62.5 kHz			
		0000	15.625 kHz			
	T20CK: Timer2 clock source select bit.					
bit 3	0 = From	r Fcpu.				
	1 = From	r Fosc.				

	/GMF: Green mode flag bit.		
bit 2	0 = Green mode occurred.		
	1 = None Green mode occurred.		
	CHWCK: Change WDT Input Clock Bit.		
bit 1	0 = WDT Input Clock from WDT.		
	1 = WDT Input Clock from System clock.		
	GREMD: Green Mode Enable Bit.		
bit 0	0 = Disable green mode.		
	1 = Enable green mode.		

Note:

7.1.2.2.8 INOSCR Register

The INOSCR register bits are shown in Register 7.

Register 7. INOSCR - MCU Oscillator Control (Address: 97h)

R/W-1	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SYCKF	_	IRCLVC	MK0	ECKIN	OSO2E	OSC2O	/OSCIN
bit7							bit0

	SYCKF: System clock operation flag bit.
bit 7	0 = System clock by external oscillator.
	1 = System clock by internal oscillator
	IRCLVC: Internal RC low-voltage compensate bits.
bit 5	0 = Disable IRC low voltage compensate.
	1 = Enable IRC low voltage compensate.
bit 4	MK0: Must keep "0" bit.
	ECKIN: External Clock Input Enable bit.
b.4.0	0 = Disable oscillator external clock input.
bit 3	1 = Enable oscillator external clock input (must be set in external
	oscillator of RC mode).
	OSO2E: Both of Internal and external oscillator Enable bit.
bit 2	0 = Only use internal oscillator or external oscillator.
	1 = Internal and external (LF mode only) oscillator enable both.
	OSC2O: OSC2/PA4 Oscillator Clock Output Enable bit.
	0 = Disable OSC2/PA4 oscillator clock output in internal or external
bit 1	of RC mode oscillator.
	1 = Enable OSC2/PA4 oscillator clock output in internal or external
*	of RC mode oscillator.
	/OSCIN: MCU Internal Or external oscillator Select bit.
	0 = Default the MCU clock based on internal 8MHz oscillator.
bit 0	1 = The MCU clock based on external oscillator (type from option
DIL 0	select).
	When internal 8MHz oscillator change to external oscillator must
	wait OST time 20ms.
Note:	

^{[1].} Legend: R = Readable bit, W = Writable bit, U = Unimplemented bit, -n = Value at POR, '1' = Bit is set, '0' = Bit is cleared, x = Bit is unknown.

^{[1].} Legend: $R = Readable \ bit$, $W = Writable \ bit$, $U = Unimplemented \ bit$, $-n = Value \ at$ POR, '1' = Bit is set, '0' = Bit is cleared, x = Bit is unknown.

7.1.3 PCL and PCHLAT

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCHLAT. On any Reset, the PC is cleared. Figure 29 shows the two situations for the loading of the PC. The upper example in Figure 29 shows how the PC is loaded on a write to PCL (PCHLAT<4:0> \rightarrow PCH). The lower example in Figure 29 shows how the PC is loaded during a LCALL or LJUMP instruction (PCLATH<4:3> \rightarrow PCH).

Figure 27. Loading of PC in Different Situations

7.1.3.1 Computed LJUMP

A computed LJUMP is accomplished by adding an offset to the program counter (ADDWR PCL). When performing a table read using a computed LJUMP method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block).

7.1.3.2 Stack

The CMT2180A has an 8-level x 13-bit wide hardware stack (see Figure 26). The stack space is not part of either program or data space and the Stack Pointer are not readable or writable. The PC is PUSHed onto the stack when a LCALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RET, RTIW or a RTFI instruction execution. PCHLAT is not affected by a PUSH or POP operation. The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and etc.).

Notes

- 1. There are no Status bits to indicate Stack Overflow or Stack Underflow conditions.
- 2. There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the LCALL, RET, RTIW and RTFI instructions or the vectoring to an interrupt address.

7.1.4 Indirect Addressing Register (IAR) and MSR Registers

The IAR is not a physical register. Addressing the IAR will cause indirect addressing. Indirect addressing is possible by using the IAR. Any instruction using the IAR actually accesses data pointed to by the Memory Select Register (MSR). Reading IAR itself indirectly will produce 00h. Writing to the IAR indirectly results in a no operation (although Status bits may be affected).

An effective 8-bit address is obtained by concatenating the 8-bit MSR, as shown in Figure 30. A simple program to clear RAM location 20h-2Fh using indirect addressing is shown in Example 1.

Example 1. Indirect Addressing

	LDWI	0x20	; initialize pointer
	STWR	MSR	; to RAM
NEXT	CLRR	IAR	; clear IAR register
	INCR	MSR, f	; inc pointer
	BTSS	MSR, 4	; all done?
	LJUMP	NEXT	; no clear next
CONTINUE			; yes continue

Figure 28. Direct/Indirect Addressing CMT2180A

7.2 Port A

There have four general purpose I/O pins available, PA0 \sim PA3, which map to the K0 \sim K3 pins in the manner as shown in the figure below. Depending on which peripherals are enabled, some or all of the pins may not be available as general purpose I/O. In general, when a peripheral is enabled, the associated pin may not be used as a general purpose I/O pin.

Table 17. Mapping from the GPIOs to the Pinouts

GPOI	Pinout
PA0	K1/CLK2
PA1	K0/DATA2
PA2	K2
PA3	K3/MCLR

7.2.1 PORTA and the CPIOA Registers

PORTA is a 6-bit wide, bidirectional port. The corresponding data direction register is CPIOA. Setting a CPIOA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a CPIOA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin). The exception is PA3, which is input only and its CPIO bit will always read as '1'. Example 2 shows how to initialize PORTA.

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read; this value is modified and then written to the PORT data latch. PA3 reads '0' when MCLR = 1.

Example 2. Initializing PORTA

BCR	STATUS, PAGE0	; Bank0
CLRR	PORTA	; Init PORTA
LDWI	05h	; Set PA<2:0> to DIO
BSR	STATUS, PAGE0	; Bank 1
LDWI	0Ch	; Set PA<3:2> as inputs
STWR	CPIOA	; and set PA<5:4, 1:0> as
		; outputs
BCR	STATUS, PAGE0	;Bank 0

Register 8. PORTA - PORTA Register (Address: 05h)

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
		DATA	CLK	PA3	PA2	PA1	PA0
bit7							bit0

	PORTA<5>: DATA I/O pin bit.
bit 5	1 = Port pin is >VIH.
	0 = Port pin is <vil.< td=""></vil.<>
	PORTA<4>: CLK Input pin bit.
bit 4	1 = Port pin is >VIH.
	0 = Port pin is <vil.< td=""></vil.<>
	PORTA<3:0>: PORTA I/O pin bits.
bit 3-0	1 = Port pin is >VIH.
	0 = Port pin is <vil.< td=""></vil.<>

Register 9. CPIOA - PORTA Input / Output Control Register (Address: 85h)

U-0	U-0	R/W-1	R/W-1	R-1	R/W-1	R/W-1	R/W-1
_	_	CPIOA5	CPIOA4	CPIOA3	CPIOA2	CPIOA1	CPIOA0
bit7							bit0

	CPIOA<5>: DATA Input / Output Control bits.
bit 5	1 = PORTA pin configured as an input.
	0 = PORTA pin configured as an output.

bit 4	CPIOA<4>: CLK Input Control bits, when used as CLK it need to configured as input pin. 1 = PORTA pin configured as an input. 0 = PORTA pin configured as an output.
bit 3-0	CPIOA<3:0>: PORTA Input / Output Control bits. 1 = PORTA pin configured as an input. 0 = PORTA pin configured as an output.
Notes:	, , , , , , , , , , , , , , , , , , , ,

- [1]. CPIOA<3> always reads 1.
- [2]. Legend: R = Readable bit, W = Writable bit, U = Unimplemented bit, -n = Value at POR, '1' = Bit is set, '0' = Bit is cleared, x = Bit is unknown.

7.2.2 Additional Pin Functions

Every PORTA pin on the CMT2180A has an interrupt-on-change option and every PORTA pin has a pull-up option. Every PORTA pin, except PA3, can be configured to open-drain output mode. But only PORTA<2:0> has a pull-down option. The next sections describe these functions.

7.2.2.1 Pull-up

Each of the PORTA pins has an individually configurable internal pull-up. Control bits APHBx enable or disable each pull-up. Refer to Register 10. The pull-ups are disabled on a POR.

Register 10. PAPHR - Pull-up Control Register (Address: 95h)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	APHB5	APHB4	APHB3	APHB2	APHB1	APHB0
bit7	-						bit0

	WPUA<5:0>: Pull-up Register bits.				
bit 5-0	1 = Pull-up enabled.				
0 = Pull-up disabled.					
Note:					
[1]. Legend: R = Readable bit, W = Writable bit, U = Unimplemented bit, -n = Value at					
POR. '1' = Bit is :	POR. '1' = Bit is set. '0' = Bit is cleared. x = Bit is unknown.				

7.2.2.2 Interrupt-On-Change

Each of the PORTA pins is individually configurable as an interrupt-on-change pin. Control bits PAINTx enable or disable the interrupt function for each pin. Refer to Register 11. The interrupt-on-change is disabled on a Power-on Reset. For enabled interrupt-on-change pins, the values are compared with the old value latched on the last read of PORTA. The 'mismatch' outputs of the last read are OR'd together to set, the PORTA Change Interrupt Flag bit (PAIF) in the INTFR register. This interrupt can wake the device from Sleep. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner.

- a) Any read or write of PORTA. This will end the mismatch condition.
- b) Clear the flag bit PAIF.

A mismatch condition will continue to set flag bit PAIF. Reading PORTA will end the mismatch condition and allow flag bit PAIF to be cleared.

Register 11. PAINTR- Interrupt-On-Change PORTA Register (Address: 96h)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	PAINT5	PAINT4	PAINT3	PAINT2	PAINT1	PAINT0
bit7	-						bit0

	IOCA<5:4>: Interrupt-on-Change PORTA Control bits. When PA5
	is used as DATA pin or PA4 is used as CLK pin, the corresponding
bit 5-4	bit need to be set to 0 to disable the Interrupt-on-change.
	1 = Interrupt-on-change enabled.
	0 = Interrupt-on-change disabled.
	IOCA<3:0>: Interrupt-on-Change PORTA Control bits.
bit 3-0	1 = Interrupt-on-change enabled.
	0 = Interrupt-on-change disabled.

Notes:

- [1]. Global Interrupt Enable (GIE) must be enabled for individual interrupts to be recognized.
- [2]. Legend: R = Readable bit, W = Writable bit, U = Unimplemented bit, -n = Value at POR, '1' = Bit is set, '0' = Bit is cleared, x = Bit is unknown.

7.2.2.3 Open-Drain

Each of the PORTA pins, except PA3, has an individually configurable open-drain output. Control bits PAODx enable or disable each open-drain. Refer to Register 12. The open-drain is disabled on a POR.

Register 12. PAODR - Open-Drain Output Control Register (Address: 16h)

U-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
1	_	PAOD5	PAOD4		PAOD2	PAOD1	PAOD0
bit7							bit0

bit 5-0	PAOD<5:0>: Open-drain Output Control bits. 1 = open-drain output enabled. 0 = open-drain output disabled.				
Note:					
[1]. Legend: R = Readable bit, W = Writable bit, U = Unimplemented bit, -n = Value at					

POR, '1' = Bit is set, '0' = Bit is cleared, x = Bit is unknown.

7.2.2.4 Pull-Down

Only PORTA<2:0> pins have individually configurable internal pull-down. Control bits APLBx enable or disable each pull-down. Refer to Register 13. The pull-down are disabled on a POR.

Register 13. PACPLR - Pull-Down Control Register (Address: 17h)

_	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	_	_				APLB2	APLB1	APLB0
•	hit7		-	-	-			hit0

	APLB<2:0>: Pull-down Control bits.						
bit 2-0	1 = Pull-down enabled.						
	0 = Pull-down disabled.						
Note:	Note:						
[1]. Legend: R = Readable bit, W = Writable bit, U = Unimplemented bit, -n = Value at							
POR, '1' = Bit is	set, '0' = Bit is cleared, x = Bit is unknown.						

7.3 Timer0 Module

The Timer0 module timer/counter has the following features.

- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- Internal or external clock select
- Interrupt on overflow from FFh to 00h
- Edge select for external clock

Figure 31 is a block diagram of the Timer0 module and the prescaler shared with the WDT.

Figure 29. Block Diagram of the Timer0/WDT Prescaler

7.3.1 Timer0 Operation

Timer mode is selected by clearing the TCS bit (WDT0CON <5>). In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If TMR0 is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting the TCS bit (WDT0CON <5>). In this mode, the Timer0 module will increment either on every rising or falling edge of pin PA1/T0CKI. The incrementing edge is determined by the source edge (TCE) control bit (WDT0CON <4>). Clearing the TCE bit selects the rising edge.

7.3.2 Timer0 Interrupt

A Timer0 interrupt is generated when the TMR0 register timer/counter overflows from FFh to 00h. This overflow sets the T0IF bit. The interrupt can be masked by clearing the T0IE bit (INTER<0>). The T0IF bit (INTFR<0>) must be cleared in software by the Timer0 module Interrupt Service Routine before re-enabling this interrupt. The Timer0 interrupt cannot wake the processor from Sleep, since the timer is shutoff during Sleep.

7.3.3 Using Timer0 with an External Clock

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI, with the internal phase clocks, is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, it is necessary for T0CKI to be high for at least 2 T_{OSC} (and a small RC delay of 20 ns) and low for at least 2 T_{OSC} (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

7.3.4 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer. For simplicity, this counter will be referred to as "prescaler" throughout this Datasheet. The prescaler assignment is controlled in software by the control bit PSC (WDT0CON<3>). Clearing the PSC bit will assign the prescaler to Timer0. Prescale values are selectable via the PS2:PS0 bits (WDT0CON _REG<2:0>). The prescaler is not readable or writable. When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRR 1, STWR 1, BSR 1, x...etc.) will clear the prescaler. When assigned to WDT, a CLRWT instruction will clear the prescaler along with the Watchdog Timer.

7.3.4.1 Switching Prescaler Assignment

The prescaler assignment is fully under software control (i.e., it can be changed "on the fly" during program execution). To avoid an unintended device Reset, the following instruction sequence (Example 3) must be executed when changing the prescaler assignment from Timer0 to WDT.

Example 3. Changing Prescaler (Timer0 → WDT)

BCR	STATUS, PAGE0	; Bank0
CLRWT		; Clear WDT
CLRR	TMR0	; Clear TMR0 and prescaler
BSR	STATUS, PAGE0	; Bank 1
LDWI	b'00101111'	; Required if desired
STWR	WDT0CON	; PS2:PS0 is 000 or 001
CLRWT		;
LDWI	b'00101xxx'	; Set postscaler to desired
STWR	WDT0CON	; WDT rate
BCR	STATUS, PAGE0	; Bank 0

To change prescaler from the WDT to the TMR0 module, use the sequence shown in Example 4. This precaution must be taken even if the WDT is disabled.

Example 4. Changing Prescaler (WDT → Timer0)

CLRWT ; Clear WDT and postscalter
BSR STATUS, PAGE0 ; Bank 1

LDWI b'xxxx0xxx' ; Select TMR0, prescale, and ; clock source

STWR WDT0CON ;
BCR STATUS, PAGE0 ; Bank 0

Table 18. Registers Association with Timer0

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, PDR
01h	TMR0	Timer0 N	Timer0 Module's Register						xxxx xxxx	
0Bh/8Bh	INTER	GIE	-		INTE	PAIE	T2IE	T1IE	TOIE	0000 0000
0Ch/8Ch	INTFR				INTF	PAIF	T2IF	T1IF	TOIF	0000 0000
81h	WDT0CON		IES	TCS	TCE	PSC	PS2	PS1	PS0	1111 1111
85h	CPIO A			CPIO PA5	CPIO PA4	CPIO PA3	CPIO PA2	CPIO PA1	CPIO PA0	11 1111

Notes:

7.4 Timer1 Module with Gate Control

The CMT2180A devices have a 16-bit timer. Figure 26 shows the basic block diagram of the Timer1 module. Timer1 has the following features:

- 16-bit timer/counter (TMR1H:TMR1L)
- Readable and writable
- Internal or external clock selection
- Synchronous or asynchronous operation
- Interrupt on overflow from FFFFh to 0000h
- Wake-up upon overflow (Asynchronous mode)
- Optional external enable input (T1G)
- Optional LP oscillator

The Timer1 Control register (T1CON), shown in Register 14, is used to enable/disable Timer1 and select the various features of the Timer1 module.

^{[1].} Legend: – = Unimplemented locations, read as '0', u= unchanged, x= unknown.

^{[2].} Shaded cell are not used by Timer0 module.

Figure 30. Timer 1 Block Diagram

Register 14. T1CON - Timer1 Control Register (Address: 10h)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T10SCEN	/T1SYNC	TMR1CLK	TMR10N
bit7	-	-					bit0

	T1GINV: Timer1 gate invert bit.					
bit 7	0 = Timer1 gate (PA4) is low active.					
	1 = Timer1 gate (PA4) is high active.					
	TMR1GE: Timer1 Gate Enable Bit.					
	If TMR1ON = 0 this bit is ignored.					
bit 6	If TMR1ON = 1.					
Dit 6	0 = Timer1 is on.					
	1 = Timer1 is on when T1GINVand /T1G(PA4) pin is both low, or					
	T1GINV and /T1G(PA4) pin is both high.					
	T1CKPS1& T1CKPS0: Timer1 Input Clock Prescale Select bits.					
	00 = 1 : 1 Prescale value.					
bit 5-4	01 = 1 : 2 Prescale value .					
	10 = 1 : 4 Prescale value.					
	11 = 1 : 8 Prescale value.					
	T10SCEN: LF Oscillator Enable Bit.					
bit 3	If INTOSC without CLKOUT oscillator is active :					
DIL 3	0 = LP oscillator is off.					
	1 = LP oscillator is enabled for Timer1 clock.					
	/T1SYNC: Timer1 External Clock Input Synchronization Control Bit.					
	If TMR1CLK = 0 this bit is ignored, Timer1 use internal clock					
bit 2	If TMR1CLK = 1.					
	0 = Synchronize external clock input.					
	1 = Do not synchronize external clock input.					

	TMR1CLK: Timer1 Clock Source Select Bit.				
bit 1	0 = Select internal clock Fcpu.				
	1 = Select External clock from T1CKI pin (on rising edge).				
	TMR1ON: TMR1 On Bit.				
bit 0	0 = Stop Timer1.				
	1 = Enable Timer1.				
Note:					
[1]. Legend: R = Readable bit, W = Writable bit, U = Unimplemented bit, -n = Value at					
POR, '1' = Bit is set, '0' = Bit is cleared, x = Bit is unknown.					

7.4.1 Timer1 Mode Operation

Timer1 can operate in one of three modes.

- 16-bit timer with prescaler
- 16-bit synchronous counter
- 16-bit asynchronous counter

In Timer mode, Timer1 is incremented on every instruction cycle. In Counter mode, Timer1 is incremented on the rising edge of the external clock input T1CKI (PA5). In addition, the Counter mode clock can be synchronized to the microcontroller system clock or run asynchronously. In counter and timer modules, the counter/timer clock can be gated by the T1G (PA4) input. If an external clock oscillator is needed (and the microcontroller is using the INTOSC w/o CLKOUT), Timer1 can use the LP oscillator as a clock source.

Please note that the PA4 and PA5 are also used as CLK and DATA pins in the chip pinouts, if the user want to use them as T1CKI or T1G, please make sure the Timer1 functions does not conflict with the CLK/DATA functions.

Note: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge.

Table 19. Timer1 Incrementing Edge

7.4.2 Timer1 Interrupt

The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit (INTFR<1>) is set. To enable the interrupt on rollover, you must set these bits.

- Timer1 interrupt Enable bit (INTER<1>)
- GIE bit (INTER<7>)

The interrupt is cleared by clearing the T1IF in the Interrupt Service Routine.

Note: The TMR1H:TTMR1L register pair and the T1IF bit should be cleared before enabling interrupts.

7.4.3 Timer1 Prescaler

Timer1 has four prescaler options allowing 1, 2, 4, or 8 divisions of the clock input. The T1CKPS bits (T1CON<5:4>) control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L.

7.4.4 Timer1 Operation in Asynchronous Counter Mode

If control bit T1SYNC (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (Section 5.12.4.1).

7.4.4.1 Reading and Writing Timer1 in Asynchronous Counter Mode

Reading TMR1H or TMR1L, while the timer is running from an external asynchronous clock, will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the timer register.

7.4.5 Timer1 Oscillator

A crystal oscillator circuit is built-in between pins OSC1 (input) and OSC2 (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator rated up to 32 kHz. It will continue to run during Sleep. It is primarily intended for a 32 kHz crystal.

The Timer1 oscillator is shared with the system LP oscillator. Thus, Timer1 can use this mode only when the system clock is derived from the internal oscillator. As with the system LP oscillator, the user must provide a software time delay to ensure proper oscillator start-up.

CPIOA5 and CPIOA4 bits are set when the Timer1 oscillator is enabled. PA5 and PA4 read as '0' and CPIOA5 and CPIOA4 bits read as '1'.

Note: The oscillator requires a start-up and stabilization time before use. Thus, T1OSCEN should be set and a suitable delay observed prior to enabling Timer1.

7.4.6 Timer1 Operation during Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external clock source can be used to increment the counter. To setup the timer to wake the device,

- Timer1 must be on (T1CON<0>);
- T1IE bit (INTER<1>) must be set.

The device will wake-up on an overflow. If the GIE bit (INTER<7>) is set, the device will wake-up and jump to the

Interrupt Service Routine on an overflow.

			_							
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, PDR
0Bh/8Bh	INTER	GIE			INTE	PAIE	T2IE	T1IE	TOIE	0000 0000
0Ch/8Ch	INTFR				INTF	PAIF	T2IF	T1IF	TOIF	0000 0000
0Eh/8Ch	TMR1L	Holding re	Holding register for the Least Significant Byte of the 16-bit TMR1 Register							
0Fh/8Fh	TMR1H	Holding re	olding register for the Most Significant Byte of the 16-bit TMR1 Register							xxxx xxxx
10h	T1CON	T1GINV	TMR1GF	T1CKPS1	T1CKPS0	T10SCEN	/T1SYNC	TMR1CLK	TMR10N	0000 0000

Table 20. Registers Association with Timer1 as a Timer/Counter

Notes:

- [1]. Legend: = Unimplemented locations, u= unchanged, x= unknown.
- [2]. Shaded cell are not used by Timer1 module.

7.5 Timer2 Module with PWM/Buzzer Output Control

Timer2 can operate for PWM or Buzzer output mode. Figure 27 shows the basic block diagram of the Timer2 module.

Figure 31. Timer2 Block Diagram

7.5.1 Timer2 Operation in Clock Frequency Output (Buzzer)

Buzzer output (T2OUT) is from TMR2 timer/counter frequency output function. By setting the TMR2 clock frequency, the clock signal is output to K2 and the K2 general purpose I/O function is auto-disable. The T2OUT frequency is divided by 2 from TMR2 interval time. T2OOUT frequency is 1/2 TMR2 frequency. The TMR2 clock has many combinations and easily to make difference frequency. The T2OUT frequency waveform is as following figure.

Figure 32. Timer2 Clock Frequency Output

Example 5. Setup T2OUT output from TMR2 to T2OUT (PA2)

The internal high-speed clock is 8 MHz. The T2OUT frequency is 2 kHz. Because the T2OUT signal is divided by 2, set the TMR2 clock to 4 kHz. (Interval time for TMR2 interrupt is 1/8 kHz = 0.125ms). The TMR2 clock source is from internal oscillator clock. TMR2 rate is Fcpu/4. The T2rate2~0 = 110. TMR2 = T2ALR2 = 131.

LDWI	60h	;
STWR	T2CON	; Set the T2rate to Fcpu/4
LDWI	83h	;
STWR	TMR2	;
STWR	T2ALR	; Set the auto-reload reference
		; value 131D=83h
BSR	T2CON, T2OUT	; Enable TMR2 output to PA2
		; and disable PA2 I/O function
BSR	T2CON, ALOAD	; Enable TMR2 auto-reload
		; function
BSR	T2CON, T2ON	; Enable TMR2 Timer

7.5.2 Timer2 Operation in PWM Output

7.5.2.1 Timer2 PWM Output Mode

PWM function is generated by TMR2 timer counter and output the PWM signal to PWMOUT pin (K2). The 8-bit counter counts modulus 256, 64, 32, 16 controlled by ALOAD2, T2OUT bits. The value of the 8-bit counter (TMR2) is compared to the contents of the reference register (T2ALR). When the reference register value (T2ALR) is equal to the counter value (TMR2), the PWM output goes low. When the counter reaches zero, the PWM output is forced high. The low-to-high ratio (duty) of the PWM0 output is T2ALR/256, 64, 32, 16. PWM output can be held at low level by continuously loading the reference register with 00H. Under PWM operating, to change the PWM's duty cycle is to modify the T2ALR.

The equation of TMR2 initial value is as following.

TMR2 initial value = N_Period - (TMR2interrupt interval time * input clock)

N_Periodis TMR2 overflow boundary number. TMR2 timer overflow time has six types (TMR2 timer, TMR2 event counter, TMR2 Fcpu clock source, TMR2 Fosc clock source, PWM mode and no PWM mode). These parameters decide TMR2 overflow time and valid value as Table 19.

Example 6. Setup Periodic 8 us, Duty Cycle 50% PWM Output

At internal osc = 8MHz. Fcpu=Fosc/2. Select T2rate2 \sim 0 = 000 (Fcpu/2), bit2 \sim 0 = 111 the TMR2 valid value = 00 \sim 0FH.

CLRR CLRR	T2CON TMR2	; Clear TMR2 control register ; Clear TMR2 counter register
LDWI	08h	;
STWR	T2ALR	; Set PWM data 08H,
		; duty=50%; if data 04h
		; duty=25%
LDWI	077h	;
STWR	T2CON	; Set PWM output and
		; TMR2valid value00~0Fh
BSR	T2CON, 7	; Enable TMR2 timer

Table 21. The Basic Timer Table Internal Time of TMR2

	TMR2	Fcpu = 8 l	MHz / 2	Fcpu = 32768 Hz / 2			
T2RATE[2:0]	Input	Max overflow interval	One step=max/256	Max overflow interval	One step = max/256		
	Clock	(ms)	(us)	(ms)	(us)		
111	Fcpu/2	0.128	0.5	31.25	122.070		
110	Fcpu/4	0.256	1	62.5	244.141		
101	Fcpu/8	0.512	2	125	488.281		
100	Fcpu/16	1.024	4	250	976.563		
011	Fcpu/32	2.048	8	500	1953.125		
010	Fcpu/64	4.096	16	1000	3906.25		
001	Fcpu/128	8.192	32	2000	7812.5		
000	Fcpu/256	16.384	64	4000	15625		

Example 7. To set 2.5ms interval time for TMR2 interrupt

TMR2 clock source is Fcpu (T2ECKS=0) and no PWM output (PWMOUT=0). High clock is internal 8MHz. Fcpu=Fosc/2. Select T2rate = 010 (Fcpu/64).

TMR2 initial value = N_Period- (TMR2 interrupt interval time * input clock)

= 256 - (2.5 ms * 8 MHz / 2 / 64)

= 256 - ((0.005 * 4 * 1000000) / 2 / 64)

= 256 - 156 (Real value = 156.25)

= 100

= 64h

PWMOUT	T2OUT	ALOAD	N_Period	TM2 valid value	Remark
0	Х	Х	256	000~0FF	Per 256 count overflow
1	0	0	256	000~0FF	Per 256 count overflow
1	1	0	64	000~03F	Per 64 count overflow
1	0	1	32	000~01F	Per 32 count overflow
1	1	1	16	000~00F	Per 16 count overflow
Х	Х	Х	256	000~0FF	Per 256 count overflow

Table 22. TMR2 Overflow Time and Valid Value

Figure 33. Timing of the PWM Output

7.5.2.2 T2IF and PWM Duty

In PWM mode, the frequency of T2IF is depended on PWM duty range. See the figure below, the T2IF frequency is related with PWM duty.

Figure 34. T2IF Frequency Relate with PWM Duty

7.5.2.3 PWM Duty with T2ALR Changing

In PWM mode, the system will compare TMR2 and T2ALR all the time. When TMR2 < T2ALR, the PWM will output logic "High", when TMR2 \geq T2ALR, the PWM will output logic "Low". If TMR2is changed in certain period, the PWM duty will change in next PWM period. If T2ALR is fixed all the time, the PWM waveform is also the same.

Figure 31 is shown the waveform with fixed T2ALR. In every TMR2overflow PWM output "High, when TMR2 ≥ T2ALR PWM outputs "Low". If T2ALR is changing in the program processing, the PWM waveform will became as Figure 38. In period 2 and period 4, new Duty (T2ALR) is set. T2ALRis double buffer design. The PWM still keeps the same duty in period 2 and period 4, and the new duty is changed in next period. By the way, system can avoid the PWM not changing or H/L changing twice in the same cycle and will prevent the unexpected or error operation.

Figure 35. The Waveform with Fixed T2ALR

Figure 36. The Waveform when Changing the Program Processing

7.5.3 Timer2 Registers

Register 15. T2CON – Timer2 Control Register (Address: 11h and 91h)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	T2ON	T2RATE2	T2RATE1	T2RATE0	T2ECKS	ALOAD	T2OUT	PWMOUT
٠	bit 7							bit 0

	T20N: Timer2 enable bit.
bit 7	0 = Stop Timer2.
	1 = Enable Timer2.
h:4 C 4	T2RATE<2:0>: Timer2 Input Clock Prescale Select bits.
bit 6-4	0 0 0 = Fck/256

	0 0 1 = Fck/128
	0 1 0 = Fck/64
	0 1 1 = Fck/32
	1 0 0 = Fck/16
	1 0 1 = Fck/8
	1 1 0 = Fck/4
	1 1 1 = Fck/2
	T2ECKS: Timer2 clock source select bit.
bit 3	0 = Internal clock (Fcpu or Fosc).
	1 = External clock from PA0 pin.
	ALOAD: Auto-reload control bit. Only valid when PWMOUT = 0.
bit 2	0 = Disable Timer2auto-reload function.
	1 = Enable Timer2auto-reload function.
	T2OUT: Timer2time out toggle signal output control bit.
L:4	Only valid when PWMOUT = 0.
bit 1	0 = Disable, PA2 is I/O function.
	1 = Enable, PA2 is output T2OUT signal.
	PWMOUT: PWM output control bit.
bit 0	0 = Disable PWM output.
DIT U	1 = Enable PWM output. PWM duty controlled by T2OUT, ALOAD 2
	bits.

Table 23. Registers Association with Timer2 as a Timer/Counter

										Value on
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR,
										PDR
0Bh/8Bh	INTER	GIE			INTE	PAIE	T2IE	T1IE	TOIE	0000 0000
0Ch/8Ch	INTFR			-	INTF	PAIF	T2IF	T1IF	TOIF	0000 0000
12h/92h	TMR2	Timer2 M	lodule's Regis	ster						0000 0000
13h/93h	T2ALR	Timer2 a	uto-load regis	ster						0000 0000
11h/91h	T2CON	T2ON	T2RATE2	T2RATE1	T2RATE0	T2ECKS	ALOAD	T2OUT	PWMOUT	0000 0000
14h/94h	IRCCON	IFDIV3	IFDIV2	IFDIV1	IFDIV0	T2OCK	/GMF	CHWCK	GREMD	1110 0100

Notes:

^{[3].} Legend: - = Unimplemented locations, u= unchanged, x= unknown.

^{[4].} Shaded cell are not used by Timer2 module.

7.6 Reset Condition for All Registers

Table 24. Reset Condition for All Registers

		Power-On Reset,		Walsa un france	
Register	Address	Power range	/MCLR or WDT Reset	Wake-up from	
		detector Reset		SLEEP	
IAR	00h(80h)	0000 0000	0000 0000	uuuu uuuu	
RTCC	01h	xxxx xxxx	uuuu uuuu	uuuu uuuu	
PCL	02h(82h)	0000 0000	0000 0000	0000 0100	
STATUS	03h(83h)	0001 1xxx	000# #uuu	uuu# #uuu	
MSR	04h(84h)	XXXX XXXX	uuuu uuuu	uuuu uuuu	
PORTA	05h	xx xxxx	uu uuuu	uu uuuu	
PCHLAT	0Ah(8Ah)	0 0000	0 0000	u uuuu	
INTER	0Bh(8Bh)	0000 0000	0000 0000	uuuu uuuu	
INTFR	0Ch(8Ch)	0 0000	0 0000	u uuuu	
PORCON	0Dh(8Dh)	001 00##	001 00uu	uuu uuuu	
TMR1L	0Eh(8Eh)	XXXX XXXX	uuuu uuuu	uuuu uuuu	
TMR1H	0Fh(8Fh)	XXXX XXXX	uuuu uuuu	uuuu uuuu	
T1CON	10h	0000 0000	0000 0000	uuuu uuuu	
T2CON	11h(91h)	0000 0000	0000 0000	uuuu uuuu	
TMR2	12h(92h)	0000 0000	0000 0000	uuuu uuuu	
T2ALR	13h(93h)	0000 0000	0000 0000	uuuu uuuu	
IRCCON	14h(94h)	1110 0100	1110 0#00	uuuu u#uu	
PCPHR	15h	0000 0000	0000 0000	uuuu uuuu	
PAODR	16h	00 000	00 000	uu uuu	
PACPLR	17h	0000 0000	0000 0000	uuuu uuuu	
WDT0CON	81h	1111 1111	1111 1111	uuuu uuuu	
CPIOA	85h	11 1111	11 1111	uu uuuu	
CPIOC	87h	11 1111	11 1111	uu uuuu	
PAPHR	95h	00 0000	00 0000	uu uuuu	
PAINTR	96h	00 0000	00 0000	uu uuuu	
INOSCR	97h	1010 0000	uuuu uuuu	uuuu uuuu	

Note:

[1]. x = unknown; u = unchanged; - = unimplemented, read as 0; # = value depends on condition.

7.7 Instruction Set Summary

The CMT2180A instruction set is highly orthogonal and is comprised of three basic categories listed as below.

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

Each instruction is a 14-bit word divided into an opcode, which specifies the instruction type, and one or more operands, which further specify the operation of the instruction. The formats for each of the categories are presented in Figure 39, while the various opcode fields are summarized in Table 25.

Figure 37. General Format for Instructions

Table 25. Opcode Field Decription

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.
PC	Program Counter
ТО	Time-out bit
PD	Power-down bit

Table 26 lists the instructions recognized by assembler.

For byte-oriented instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction. The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction. For bit-oriented instructions, 'b' represents a bit field designator, which selects the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For literal and control operations, 'k' represents an 8-bit or 11-bit constant or literal value. One instruction cycle consists of four oscillator periods; for an oscillator frequency of 4 MHz, this gives a normal instruction execution time of 1us. All instructions are executed within a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of an instruction. When this occurs, the execution takes two instruction cycles, with the second cycle executed as a NOP. All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

7.7.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register. For example, a CLRR PORTA instruction will read PORTA, clear all the data bits, and then write the result back to PORTA. This example would have the unintended result of clearing the condition that set the PAIF flag.

Table 26. CMT2180A Instruction Set

Mnemo	nic,	Description	Cycles 14-Bit Opcode		Status	Note
Opera	nds	Description	Cycles	MSB LSB	Affected	Note
	Byte-Oriented File Register Operations					
ADDWR	f, d	Add W and f	1	0 1 1 0 1 1 d f f f f f f	C, DC, Z	1, 2
ANDWR	f, d	AND W with f	1	0 1 0 0 1 0 d f f f f f f	Z	1, 2
CLRR	f	Clear f	1	0 1 0 0 0 1 0 f f f f f f	Z	1, 2
CLRW	-	Clear W	1	0 1 0 0 0 0 1 x x x x x x x	Z	
COMR	f, d	Complenment f	1	0 1 1 1 1 1 d f f f f f f f	Z	1, 2
CPIO	f	Load W to Control I/O PORT Register	1	01000000000fff		
DECR	f, d	Decrement f	1	0 1 1 1 0 1 d f f f f f f	Z	1, 2
DECRSZ	f, d	Decrement f, Skip if 0	1(2)	0 1 1 1 1 0 d f f f f f f f		1, 2, 3
INCR	f, d	Increment f	1	0 1 1 0 0 1 d f f f f f f	Z	1, 2
INCRSZ	f, d	Increment f, Skip if 0	1(2)	0 1 1 0 1 0 d f f f f f f		1, 2, 3
IORWR	f, d	Inclusive OR W with f	1	0 1 0 0 1 1 d f f f f f f	Z	1, 2
LDR	f, d	Move f	1	0 1 1 0 0 0 d f f f f f f	Z	1, 2
NOP	-	No Operation	1	010000000000000		
RLR	f, d	Rotate Left f through Carry	1	0 1 0 1 0 1 d f f f f f f	С	1, 2
RRR	f, d	Rotate Right f through Carry	1	0 1 0 1 1 0 d f f f f f f	С	1, 2
STWR	f	Move W to f	1	0 1 0 0 0 1 1 f f f f f f		
SUBWR	f, d	Subtract W from f	1	0 1 1 1 0 0 d f f f f f f	C, DC, Z	1, 2
SWAPR	f, d	Swap nibbles in f	1	0 1 0 1 1 1 d f f f f f f		1, 2
TMODE	-	Load W to WDT0CON Register	1	010000 00000011		
XORWR	f, d	Exclusive OR W with f	1	0 1 0 1 0 0 d f f f f f f	Z	1, 2
		Bit-Oriented Fi	le Register	Operations		
BCR	f, b	Bit Clear f	1	0000bbbffffff		1, 2
BSR	f, b	Bit Set f	1	0010bbbffffff		1, 2
BTSC	f, b	Bit Test f, Skip if Clear	1(2)	0 0 0 1 b b b f f f f f f		3
BTSS	f, b	Bit Test f, Skip if Set	1(2)	0 0 1 1 b b b f f f f f f		3
		Literal and	Control Op	erations		
ADDWI	k	Add literal and W	1	110111kkkkkkkk	C, DC, Z	
ANDWI	k	AND literal with W	1	110100kkkkkkkk	Z	
CLRWT	-	Clear Watchdog Timer	1	010000000000001	/TF, /PF	
IORWI	k	Inclusive OR literal with W	1	110101kkkkkkkk	Z	
LCALL	k	Call subroutine	2	100kkkkkkkkkk		
LDWI	k	Move literal to W	1	111010kkkkkkkk		
LJUMP	k	Go to address	2	101kkkkkkkkkk		
RTFI	-	Return from interrupt	2	01000000001001		
RTIW	k	Return with literal in W	2	110001kkkkkkkk		
RET	-	Return from Subroutine	2	01000000000100		
SLEEP	-	Go into Standby mode	1	01000000000010	/TF, /PF	
SUBWI	k	Subtract W from literal	1	111000kkkkkkkk	C, DC, Z	
XORWI	k	Exclusive OR W literal with W	1	110110kkkkkkkk	Z	

Notes:

- [1]. When an I/O register is modified as a function of itself (e.g., MOVF PORTA, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.
- [2]. If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module.
- [3]. If Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

7.7.2 Instruction Descriptions

Add Literal and W
[label] ADDWI k
0 ≤ k ≤ 255
$(W) + k \rightarrow (W)$
C, DC, Z
The contents of the W register
are added to the eight-bit literal
'k' and the result is placed in the
W register.

ADDWR	Add W and f
Syntax:	[label] ADDWR f, d
Operands:	0 ≤ f ≤ 127
	$d \in [0, 1]$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W
	register with register 'f'. If 'd' is 0,
	the result is stored in the W
	register. If 'd' is 1, the result is
	stored back in register 'f'.

ANDWI	AND Literal with W					
Syntax:	[label] ANDWI k					
Operands:	0 ≤ k ≤ 255					
Operation:	(W) .AND. $(k) \rightarrow (W)$					
Status Affected:	Z					
Description:	The contents of W register are					
	AND'ed with the eight-bit literal					
	'k'. The result is placed in the W					
	register.					

ANDWK	AND W WILLI
Syntax:	[label] ANDWR f, d
Operands:	0 ≤ f ≤ 127
	d ∈[0, 1]
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register
	'f'. If 'd' is 0, the result is stored
	in the W register. If 'd' is 1, the
	result is stored back in register
	·¢

BCR	Bit Clear f
Syntax:	[label] BCR f, b
Operands:	0 ≤ f ≤ 127
	$0 \le b \le 7$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

BSR	Bit Set f
Syntax:	[label] BSR f, b
Operands:	0 ≤ f ≤ 127
	0 ≤ b ≤ 7
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

BTSS	Bit Test f, Skip if Set
Syntax:	[label] BTSS f, b
Operands:	0 ≤ f ≤ 127
	$0 \le b \le 7$
Operation:	skip if $(f < b >) = 1$
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the
	next instruction is executed. If
	bit 'b' is '1', then the next
	instruction is discarded and a
	NOP is executed instead,
	making this a 2-cycle instruction.

BTSC	Bit Test, Skip if Clear
Syntax:	[label] BTSC f, b
Operands:	0 ≤ f ≤ 127
	$0 \le b \le 7$
Operation:	skip if $(f < b >) = 0$
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the
	next instruction is executed. If
	bit 'b', in register 'f', is '0', the
	next instruction is discarded,
	and a NOP is executed instead,
	making this a 2-cycle instruction.

LCALL	LCall Subroutine
Syntax:	[label] LCALL k
Operands:	$0 \le k \le 2047$
Operation:	(PC)+ 1→TOS,
	$K \rightarrow PC<10:0>$,
	(PCHLAT<4:3>) →PC<12:11>
Status Affected:	None
Description:	Call Subroutine. First, return
	address (PC + 1) is pushed onto
	the stack. The eleven-bit
	immediate address is loaded
	into PC bits <10:0>. The upper
	bits of the PC are loaded from
	PCHLAT. LCALL is a two-cycle
	instruction.

CLRR	Clear f
Syntax:	[label] CLRR f
Operands:	0 ≤ f ≤ 127
Operation:	$00h \rightarrow (f)$
	$1 \rightarrow Z$
Status Affected:	Z
Description:	The contents of register 'f' are
	cleared and the Z bit is set.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$00h \rightarrow (W)$
	1 → Z
Status Affected:	Z
Description:	W register is cleared. Zero bit
	(Z) is set.

CLRWT	Clear Watchdog Timer
Syntax:	[label] CLRWT
Operands:	None
Operation:	$00h \rightarrow WDT$
	$0 \rightarrow WDT$ prescaler,
	$1 \rightarrow /TF$
	1 → /PF
Status Affected:	/TF, /PF
Description:	CLRWT instruction resets the
	Watchdog Timer. It also resets
	the prescaler of the WDT. Status
	bits TO and PD are set.

COMR	Complement f
Syntax:	[label] COMR f, d
Operands:	0 ≤ f ≤ 127
	$d \in [0,1]$
Operation:	$(/f) \rightarrow (destination)$
Status Affected:	Z
Description:	The contents of register 'f' are
	complemented. If 'd' is 0, the
	result is stored in W. If 'd' is 1,
	the result is stored back in
	register 'f'.

DECR	Decrement f
Syntax:	[label] DECR f, d
Operands:	0 ≤ f ≤ 127
	$d \in [0,1]$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is 0,
	the result is stored in the W
	register. If 'd' is 1, the result is
	stored back in register 'f'.

DECRSZ	Decrement f, Skip if 0
Syntax:	[label] DECRSZ f, d
Operands:	0 ≤ f ≤ 127
	$d \in [0,1]$
Operation:	(f) -1 \rightarrow (destination);
	skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are
	decremented. If 'd' is 0, the
	result is placed in the W
	register. If 'd' is 1, the result is
	placed back in register 'f'. If the
	result is 1, the next instruction is
	executed. If the result is 0, then
	a NOP is executed instead,
	making it a 2-cycle instruction.

LJUMP	Unconditional Branch
Syntax:	[label] LJUMP k
Operands:	0 ≤ f ≤ 127
Operation:	$k \rightarrow PC < 10:0 >$
	PCHLAT<4:3> \rightarrow PC<12:11>
Status Affected:	None
Description:	LJUMP is an unconditional
	branch. The eleven-bit
	immediate value is loaded into
	PC bits <10:0>. The upper bits
	of PC are loaded from
	PCHLAT<4:3>. GOTO is a
	two-cycle instruction.

INCR	Increment f
Syntax:	[label] INCR f, d
Operands:	0 ≤ f ≤ 127
	d ∈ [0,1]
Operation:	(f) + 1 \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register 'f' are
	incremented. If 'd' is 0, the result
	is placed in the W register. If 'd'
	is 1, the result is placed back in
	register 'f'.

Increment f, Skip if 0

INCRSZ

Syntax:	[label] INCRSZ f, d	
Operands:	0 ≤ f ≤ 127	
	d ∈ [0,1]	
Operation:	(f) + 1 \rightarrow (destination),	
	skip if result = 0	
Status Affected:	None	
Description:	The contents of register 'f' are	
	incremented. If 'd' is 0, the result	
	is placed in the W register. If 'd'	
	is 1, the result is placed back in	
	register 'f'. If the result is 1, the	
	next instruction is executed. If	
	the result is 0, a NOP is	
	executed instead, making it a	
	2-cycle instruction.	

IORWI	Inclusive OR Literal with W
Syntax:	[label] IORWI k
Operands:	0 ≤ k ≤ 255
Operation:	(W) .OR. $k \rightarrow (W)$
Status Affected:	Z
Description:	The contents of the W register
	are OR'ed with the eight-bit
	literal 'k'. The result is placed in
	the W register.

IORWR	Inclusive OR W with f
Syntax:	[label] IORWR f, d
Operands:	0 ≤ f ≤ 127
	d ∈ [0,1]
Operation:	(W) .OR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Inclusive OR the W register with
	register 'f'. If 'd' is 0, the result is
	placed in the W register. If 'd' is
	1, the result is placed back in
	register 'f'.

LDR	Move f	
Syntax:	[label] LDR f, d	
Operands:	0 ≤ f ≤ 127	
	$d \in [0,1]$	
Operation:	$(f) \rightarrow (destination)$	
Status Affected:	Z	
Description:	The contents of register f are	
	moved to a destination	
	dependent upon the status of d.	
	If d = 0, destination is W register.	
	If d = 1, the destination is file	
	register f itself. d = 1is useful	
	to test a file register, since status	
	flag Z is affected.	

LDWI	Move Literal to W	
Syntax:	[label] LDWI k	
Operands:	0 ≤ k ≤ 255	
Operation:	$k \rightarrow (W)$	
Status Affected:	None	
Description:	The eight-bit literal 'k' is loaded	
	into W register. They don't cares	
	will assemble as 0's.	

STWR	Move W to f	RET	Return from Subroutine
Syntax:	[label] STWR f	Syntax:	[label] RET
Operands:	0 ≤ f ≤ 127	Operands:	None
Operation:	$(W) \rightarrow (f)$	Operation:	$TOS \to PC$
Status Affected:	None	Status Affected:	None
Description:	Move data from W register to register 'f'.	Description:	Return from subroutine. The stack is POPed and the top of
			the stack (TOS) is loaded into the program counter. This is a
NOP	No Operation		two-cycle instruction.
Syntax:	[label] NOP		
Operands:	None		
Operation:	No operation	RRR	Rotate Right f through Carry
Status Affected:	None	Syntax:	[label] RRR f, d
Description:	No operation.	Operands:	$0 \le f \le 127$ d $\in [0,1]$
		Operation:	See description below
RTFI	Return from Interrupt	Status Affected:	С
Syntax:	[label] RTFI	Description:	The contents of register 'f' are
Operands:	None		rotated one bit to the right
Operation:	$TOS \rightarrow PC$,		through the Carry Flag. If 'd' is
	$1 \rightarrow GIE$		the result is placed in the W
Status Affected:	None		register. If 'd' is 1, the result is
Description:	Return from interrupt.		placed back in register 'f'.
RTIW Syntax:	Return with Literal in W [label] RTIW k	SLEEP Syntax:	[label] SLEEP
Operands:	0 ≤ k ≤ 255	Operands:	None
Operation:	$k \rightarrow (W);$	Operation:	$00h \rightarrow WDT$,
- por uno	TOS → PC	Operano	0 → WDT prescaler,
Status Affected:			1 → /TF
Description:	The W register is loaded with		0 → /PF
	the eight-bit literal 'k'. The	Status Affected:	
	program counter is loaded from	Description:	The power-down Status bit, /PF
	the top of the stack (the return	•	is cleared. Time-out Status bit,
	address). This is a two-cycle		/TF is set. Watchdog Timer and
	instruction.		its prescaler are cleared. The
			processor is put into Sleep
RLR	Rotate Left f through Carry		mode with the oscillator
Syntax:	[label] RLR f, d		stopped.
Operands:	0 ≤ f ≤ 127		
	d ∈ [0,1]	SUBWI	Subtract W from Literal
Operation:	See description below	Syntax:	[label] SUBWI k
Status Affected:	•	Operands:	0 ≤ k ≤ 255
Description:	The contents of register 'f' are	Operation:	$k - (W) \rightarrow (W)$
•	rotated one bit to the left through	Status Affected:	
	the Carry Flag. If 'd' is 0, the	Description:	The W register is subtracted (2
	result is placed in the W register.	•	complement method) from the
	If 'd' is 1, the result is stored		eight-bit literal 'k'. The result is

back in register 'f'.

placed in the W register.

SUBWR	Subtract W from f
Syntax:	[label] SUBWR f, d
Operands:	0 ≤ f ≤ 127
	$d \in [0,1]$
Operation:	(f) - (W) \rightarrow destination
Status Affected:	C, DC, Z
Description:	Subtract (2's complement
	method) W register from register
	'f'. If 'd' is 0, the result is stored
	in the W register. If 'd' is 1, the
	result is stored back in register
	'f' .
SWAPR	Swap Nibbles in f
Syntax:	[label] SWAPR f, d
Operands:	0 ≤ f ≤ 127

 $d \, \in \, [0,1]$

f<3:0>→destination<7:4> f<7:4>→ destination<3:0>

placed in register 'f'.

The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is

Operation:

Description:

Status Affected: None

er
in
:
'. If
the
lt is

8. Ordering Information

Table 27. CMT2180A Ordering Information

Part Number	Descriptions	Package Type	Package Option	Operating Condition	MOQ / Multiple
CMT2180A-ESR ^[1]	240 – 480 MHz SoC OOK Transmitter	SOP14	Tape & Reel	2.3 to 3.6 V, -40 to 85 °C	2,500
CMT2180A-ESB ^[1]	240 – 480 MHz SoC OOK Transmitter	SOP14	Tube	2.3 to 3.6 V, -40 to 85 °C	1,000

Notes:

The default frequency for CMT2180A is 433.92 MHz, for the other settings, please refer to the Table 11 of Page 15.

Visit www.cmostek.com/products to know more about the product and product line.

Contact sales@cmostek.com or your local sales representatives for more information.

^{[1]. &}quot;E" stands for extended industrial product grade, which supports the temperature range from -40 to +85 °C. "S" stands for the package type of SOP14.

[&]quot;R" stands for the tape and reel package option, the minimum order quantity (MOQ) for this option is 2,500 pcs. "B" stands for the tube package option, with the MOQ of 1,000 pcs.

9. Package Outline

Figure 38. 14-Pin SOP Package

Table 28. 14-Pin SOP Package Dimensions

Owner Land	Size (millimeters)		
Symbol	Min	Тур	Max
А	-		1.75
A1	0.05	-	0.225
A2	1.30	1.40	1.50
A3	0.60	0.65	0.70
b	0.39	-	0.48
С	0.21	-	0.26
D	8.45	8.65	8.85
E	5.80	6.00	6.20
E1	3.70	3.90	4.10
е	1.27 BSC		
h	0.25	-	0.50
L	0.30	-	0.60
L1	1.05 BSC		
θ	0	-	8°

10. Top Marking

10.1 CMT2180A Top Marking

Figure 39. CMT2180A Top Marking

Table 29. CMT2180A Top Marking Explanation

Mark Method :	Laser	
Pin 1 Mark:	Circle's diameter = 1 mm.	
Font Size :	0.35 mm, right-justified.	
Line 1 Marking :	CMT2180A represents part number CMT2180A	
	YYWW is the Date code assigned by the assembly house. YY represents the last two digits of	
Line 2 Marking :	2 Marking: the mold year and WW represents the workweek.	
	①②③④⑤⑥ is the internal tracking number.	

11. Other Documentations

Table 30. Other Documentations for CMT2180A

Brief	Name	Descriptions
AN131	CMT218xA Schematic and PCB Layout Design Guideline	Details of CMT2180A, CMT2189A PCB schematic and layout design rules, RF matching network and other application layout design related issues.
AN132	CMT2180/89A Configuration Guideline	Details of configuring CMT2180/89A features on the RFPDK.

12. Document Change List

Table 31. Document Change List

Rev. No.	Chapter	Description of Changes	Date
0.6	All	Initial Released	

13. Contact Information

CMOSTEK Microelectronics Co., Ltd.

Room 202, Honghai Building, Qianhai Road. Nanshan District

Shenzhen, Guangdong, China PRC

Tel: 0755 - 83235017 Fax: 0755 - 82761326 Sales: <u>sales@cmostek.com</u>

Technical support: support@cmostek.com

www.cmostek.com

Zip Code: 518000

Copyright. CMOSTEK Microelectronics Co., Ltd. All rights are reserved.

The information furnished by CMOSTEK is believed to be accurate and reliable. However, no responsibility is assumed for inaccuracies and specifications within this document are subject to change without notice. The material contained herein is the exclusive property of CMOSTEK and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of CMOSTEK. CMOSTEK products are not authorized for use as critical components in life support devices or systems without express written approval of CMOSTEK. The CMOSTEK logo is a registered trademark of CMOSTEK Microelectronics Co., Ltd. All other names are the property of their respective owners.