1. Data StEucture

· Data Structure :-

The logical and mathematical model of a particular organisation of data is called Data

Data item:

Refet to a single unit of values

Data item

Group item Elementray item

e.g Name-friest e.g. - Studentid.

Last Adhar no.

Feild, EecoEds, files

Feild - Single elementey unit of information representing an attribute of an exentity

Records: - collection of feild

e.g collection of la practical

Files: - collection of Records

consolion of all producal

	Page No	
0	Classfication of Data Steucture	2
	data Structure	
	PEimitive Non-pEim	svitic
	int Float chaz double	
		1
	Linear Non	Linear
	TERRY -7 Similar datal elements Tree	O.F.
	> linked list -> nodes :	Jean
	Ly queue -> FIFO	
	Algo Eithmic notation	
6	Identifying number. Steps, control, Exit	
(3) (9)	Comments & variable name. Assignment Statement (:=)	
	Linear Search.	
0.0	g DATA = {22,65,7,99,32,17,74 Linear Search (Data, item, N	149,33 K,101 Counter VUE 19610

	StePs to Weite Algorithin
	F Totialize set K: - and Loc: - 0
0.	Repeat Step = 3 6 @
	HESTITE LOC := 0 and KEN.
3.	if item := DATA [K] then
	Set loc := K.
4.	Set K := K+1
5.	if loci: - o then
	COEITE: + item is not in the after
6.	DATA
7.	else.
8.	Write: item is present 9+ location
_ h.	loc.
9.	
<u> </u>	
	Largest element in array (0,3)
	DATA - { 22, 65, 7, 99, 32, 17, 74, 49,
	33,2}
-	INTEREST FLEDDEDT (DATA, N.K. LOC, MAX)
100 C	D [Intialization] Set MAX := DATA [1],
MIT TO	K=I and loc:=I
(@ Repeat steps @ & @ while k < N
(Pal	3 IF MAX < DATA [K] then:
1	Set loc: - K and MAX : = DATA[k]
	(9 Set K:- K+]
	3 WEHE 10C, MAX.
	6 Exit
	(b) EXIT

- Asymptotic Motation

1) Omega Motations (-2)

The omega Motation is used when function g(n) define lowerbound of for the function f(n).

FCM = a gCm

If their exist a positive integer Alono and a positive number of search that If (m) > M Igan) for all n [n > no]

2) Theta Notations (9)

The theta Motation is used when the function f(n) is bounded both from above and below by the function g(n).

f(n) = 0 = g(n)

If their exist two positive constant CI and Co and a positive integer. No such that CI and Ig(n) < Co Ig(n) I for all in > no

3) Oh Notation :-

FCD = Oh. gCD

The oh Notation is used when the function to g(n) define upperbound for the function f(n).

- consider the complexity function c(n) which measures the no of time loc and max are updated in Step III
 - Determine the complexity of Algorithin
- on) Describled and find (n) for the worst case.
 - b) poscibed and find c(n) for the best case
 - of Find c(n) for the average case when n = 3. assuming all areally gement of element in Data are equally likely

Ans: a) => The copest case Complexity

occur when the elements are in

increasing order where each comp

arsion of max with DATA (K) forces

	N.S.	ins algi	le comp	exity coi	Page N	0	
	locc	and m	onple	be	ipdate	d. In	THE WAR
- L	ten comp comp	VOE Y	case appear	hax	it coho	Data	30
Ans	P P	ABC	ACB	BAC	BCA	CAB	1/3:
	A -71 B - 71 C - 7 5			-	+ 1 + 1 +		_
					5		

. String processing . / operations.

A finite sequence s(a) of more character is called as string.

The number of charachters in a string is called it's length.

The string with zero character is called empty string of pull

is called empty string or null string

e.g i) THE END -> Length 7.

ii) TO BE OR NOT TO BE

-> Length -> 18.

· String operation

a) SUBSTRING

Accessing a SUBSTRING From a giver string required 3 pieces of information

I The name of the string or string itself

ii) The position of the first character

iii) The length of SUBSTRING

· Syntax

Page	Nic			
Date			7	
water		-/		

SUBSTRING (String, intial, length)

e.g., SUBSTRING (" TO BE OR NOT TO BE"

=> BEDORAN

ii) SUBSTRING (" THE END", 4,4)

=> DEND

DI INDEXING

INDEXIMA is also called as pattern matching. Refers to finding the position where a string pattern p first appear in

a given String Text

Syntax

INDEX (Text, Pattern)

T => HIS FATHER IS THE PROFESSOR TNDEX (T, THE) -> 7 INDEX (T, THEN) => 6

INDEX (T, DTHED') => 14.

		Page No Date :/_/_
0	Concatenation Conerge	
	Let Si and So be Stein catenation of Si and So	g then con is indicate
	Syntax: - SIIIs2	
	e.g => S1 = THE 6 S2 => THE S1/1/S2 => THE	END
d)_	Length	Cincluding Spar
	The number of charact string is called it's le	eesina
C	eg T = THE FIND LENGTH (T) = 7.	Space
	et stand T be a ch	
1	ST = " JOHN PAUL JONS T = " ATHING OF BEAD JOY FOREVER?	S'
-		

i) LENGTH(S) = 15

```
Page No.
                             , Date :_ /_ /_
    ii) LENGTH (T) = 34.
    iii) SUBSTRING (5,4,8) - NMPAULDI
       SUBSTRING (T, 10,5) = FIBEA
       INDEX (S, JO) = J
    VI
       INDEX (s, 'Joy') = 0
    M
       TNDEX (S, 'DJO') = 10
   Vii)
      TNDEX (T, 'A') = 7
   Viii
     INDEX (T, '\Pi A \Pi') = 21

TIMDEX (T, 'THE') = 0
                               11 SUBSTRIN
   XI) SUBSTRING (S, 11,5) //[]
         JONES JOHN PAUL
   XII) SUBSTRING (T, 28, 3) // GIVEN
         - FORGETVEN
Ex. Let 5 and T be a character variable
    Such that S = "WETHE PEOPLE"
                 - OF THE UNITED
                    STATES?
   Determine
 i) LENGTH (S) = 13
 ii) LENGTH (T)
 iii) SUBSTRING (S; 4,8)
 IN SUBSTRING (T, 10,5) = ITED
 V) INDEX (S,P)
VI) THDEX (S, 'E')
VII) INDEX (S, 'THE') = 34
```

1 dgc 140.	Page No	
	rage ist	

VIII) TNDEX (T, THE') = 9

INDEX (T, THEN') = 0

X) INDEX (T, TE') = 11

XI) SUBSTRING (S, 4,10) // D'ARE D //

SUBSTRING (T, 8,6)

THE PEOPLE ARE UNITED.

7: Word / Text processing.

1] Insertion

Suppose the given text T. we want to insert a string s. so that.

5 begins in postion K.

Syntax:-

INSERT (Text, Position, String)

INSERT ('ABCDEFG,', 3, 'XYZ')
ADS: - ABXYZCDEFG

INSERT ('ABCDEFG!, 6, 6 XY21)
ADS:- ABCDEXXXFG

The INSERT function can be implemented by using String operation

		, Date :/_/_	
	as follows:	30.1	
	Syntax.	<u> </u>	
	TNISERT (T, K, S) => S (T, 1, K-1) // S // SO LENGTH (T) - K + 1)	BSTRING	T, K
	C'g.ITNSERT CABCDEECE,		0 4-
	TNSERT (T, K,s) -> SUBS	STRING (T	, 1, K-
	THSERT SUBSTRING (ABCDEFGE) XY2 // SUBSTRING (, 31, 2) / ABCDEFG	<u>/</u>
	=> ABXYZCDEFG	ESOROLE.	1000
e	9 II TINSERT (ABCDEEG.		
	=> SOBSTRING ('ABCDEFG XYZ// SOBSTRING ('A	BCDEFG',	6,2
	=> ABCDEXYZEG	ERI/ERI	
7	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		

Page No.

Suppose in a given Text T we want to delete the substring which begins at position k and has length

Syntax:

DFLETE (text, position, length)

PELETE (ABCDEFQ, 412) Ans - ABCEC

eg DELETE (ABCDEFG, 2,4)

P.g DELETE (ABCDEFQ,0,2)
Ans: - ABCDEFQ

The DELETE OPERation can be imple mented using string operation as follows.

DELETE (T, K, L) => SUBSTRING (T, 1, K-1)

1 SUBSTRING (T, K+1, LENGTH(T)-K-L+1) e.g: DELETE (ABCDEFG, 4,2)

=> SUBSTRING (ABCDEFC, Y, 3) //

Page	No.		
Date		1	1
	-	-	

SUBSTRING (ABODEFG, 6, 2)

ABOFG

C.8 DELETE (ABCDEFG, 2,4)

SUBSTRING (ABCDEFG, 7, 7) 1/ SUBSTRING (ABCDEFG, 6, 2)

=> AFG

· Suppose Text I and Pattern Pare given and we want to delete from I the first occurrence of the Pattern I.

DELETE (T, INDEX (T, P), Longth (P))

e.g T-ABCDEFG, P-CD · INDEX (I, P) = 3

and length (P) = 2

=> DELETE (ABCDEFG, JNDEX (ABCDEFG, C)

=> DELETE (ABCDEFG, 3, 2)

=> ABFFG

Page	12	o	-
Date	i.	1	1

Ti coill deletes only first appearing patts

=> DELETE (XABYAB2, TNDEX (XABYAB2, AB), 2)

=> DELETE (XABYAB2, 2, 2)

=> XYAB2

- of pattern P from the text Then we have to use Algorithim which is as follows
 - i) Set K: INDEX (T, P)

 ii) Repeat while K to

 a) Set T = DELETE (T, INDEX (T, P),

 length (P))
 - b) Se+K = INDEX (T,P) =

iii) WEite: - T

Page	No	_		
Date	:	1	1	

3) Sy Replacement:

Suppose in a given Text I. We want to Eeplace first occurance of pattern Pl by a pattern Pr. we denote this operation by

Syntax :-

REPLACE (Text, Patterny, Patternz)

REPLACE ('XABYABZ', 'AB', 'C')

eg => REPLACE ('XABYABZ', 'BA', 'C')

×ABYABZ

Using String operation replacement is explain as follows:

K:= TNDEX (T.P.)

T:= DELETE (T, K, length (PD))
THSERT (T, K, P2)

Ans:- K:= TNDEx (T, PD = TNDEx (XABYAB2', AB) => 2 T:= DELETE (T, K, length (PD=> DELETE (XABYAB2,

=> XYABO

Page	No				_
Date		1	11	1	

TNSERT (T, K, P) - INSERT (XABYAB) , 2, c) -> XCYABZ IT OF dee To replace the every occurance of Pattern I by Pattern 2. we have to use following algorithin il Set K := INDEX (T, P) ii) Repeat while k to 画 a) set T:= Replace (T.P.a) b) Set K := TNDEX (T,P) iii) WEITE: T S=5 iv) Exit e.q T= XAAABBBY, P=AB, Q=C e.a. T=XABYABZ, PAB, Q=C Q1. INSERT ('AAAAA', 1, 'BBB') > BBBAA
Q1. INSERT ('AAAAA', 3 'BBB') > AABBB Q1. INSERT ('KKKKK' 6, BBB') => KKKKK BBB 0.2 Suppose T is the is the text " THE STUDENT IS III". USO insert operation to read T as Follows 1) THE STODENT IS VERY III IN THE STODENT IS I'L TODAY iii) THE STUDENT IS VERY IN TODAY

```
Page No.____
                            , Date :__/_/
0.3
    DELETE ( AAABBB', 2,2) = ABBB
    DELETE ( ' JOHN PAUL JONES', 6, 5)
    REPLACE ( AAABBB', 'AA', 'BB') = BBAB
    REPLACE ( JOHN PAUL JONES , PAUL
          (DAVID)
     = JOHN DAVID JONES
 Ans: i) INSERT ('THE STUDENT IS ILL', 16,
  Ans:-ii) THSERT ('THE STUDENT IS ILL', 2019
                              (YADOTO)
  ADS: III) INSERT (TNSERT (T, 15 . DVERY), 24,
                               (YADOT D
     III) THSERT (INSERT (T, 19, D. Foday), 15,
(1.5) DELETE ('AAABBB', 3,3) = AAB
   ii) DELETE ('AAABBB', Y, 4) = BB
   IN DELETE ('S, 31, 3)
   Let, S-WE THE PEOPLE
   Ans: THE PEOPLE
```

	Page No Date :
	ivì
0.6	ij REPLACE ('ABABAB', B, 'BAB') = 'ABABABAB
	ii) REPLACE (S, 'ME', 'ALL')
	Let, S = WE THE PEOPLE = ALL THE PEOPLE
	iii) REPLACE (T; 'THE', 'THESE')
Q·7)	IB) INSERT (AAA, 2,B)
	i) INSERT ('THE BOY', S, BIGD
	, DAGET

	Page No Date:/_/_
-	Pattern Maching
7.	First pattern Matching / 81000 patter Matching
e. 9	T - COMPOTER P = POT
	$\begin{array}{c} MAX \Rightarrow length(T) - length(P) + y \\ \Rightarrow 8 - 3 + 1 \end{array}$
MY	$S_1 \Rightarrow COM$ $S_2 \Rightarrow OMP$ $C \Rightarrow 1+1+3$ $S_3 \Rightarrow MPO$ $\Rightarrow G$
130	$S_{\alpha} \Rightarrow PUT \rightarrow 1+1+1-3$ $S_{5} \Rightarrow OTE$ $S_{6} \Rightarrow TER$
4 10	Pattern is present at location 4
e.g	i) $T = (ab)^S \Rightarrow abababab$ $P = Gbc$
	MAX => length (T) - Length (P) +1 => 10 - 3 + 1
	C=> 3+1+3+1+3+1+3+1 => 16 INDEX CT(P)=0

Page No.____ eqiii) MAX => Length (T) - Length (P) +1 SIECDCD 7+7+7+7+7+7 S3 CDCD +1 +1 +1 (t) fl = = 17 INDEX (T,P) = 0 P = aaab. MAX => Length (T) - Length (P) + y
=> 420 - 4 + 1 2 x FT <- 2 INDEX (T, P) = 0

Page No.

T- ababaaba Si= abab P = aaba sa = baba 53 = abaa MAX - length (T) - length (P) + 1 Sy-baab 08-4+1 S5 = 9aba C -> 2 + 1 + 2 + 1 + 4 3 10 TNDEX (T,P) = 5 Length (T) => S, Length (p) => R. Text (counter variable) => K. == note

Pattern (counter variable) => 1.

Algorithim

Set K:= I and MAX:= S-R+I Repeat Step 3 to 5 while K < MAX 3) Repeat for L: 1 to R3 if P[1] # T[K+L-1] then go to Steps 4) Set INDEX = K and Exit. Jahon march s) Set K:= K * 1 6) Set INDEX = 0 Exit Cohen not match rains

Date :_		-	-
		-	-
	-		

e.g Consider the pattern P = abc Osing Slow pattern matching algorithms find the no of comparision C and TNPEX of P an in each of the following text T.

i) (aba)¹⁰
ii) (cbab)¹⁰
iv) (p)¹⁰

⇒ DT-Co)° → aaaaaaaaaaa P=abc

MAX - length (7) - length (P) + 1
= 10 - 3 + 1

O - (Q,T) JOHT

Pattern is not found in the text

of Pattern is no P-labe is not

prent in Text T= (a)10

ii) T = (aba)10

= abaabaabaabaabaabaabaabaabaaba

P = abc.

MAX = length(T) - Length(P) + 1

28

C -> (3 x 28 + 4+2)

C=) 84

INDEX (T, P) = 0

Pattern is not found in the text.

ii) T- (cbab) 10

- cbabcbabcbabcbabcbabcbabcbab

P = abc

MAX- Length (T)-Length (P) + 1

= 40 - 5 +]

C => ++++3

=> 5

INDEX (T,P) = 3

		Page No, Date :
	= apc = DDDDD	
		dander
MA	X = LENGTH (T) - 1	ENGTH(P) + 1
	- 8	
	- 8 - 7 + 7 + 1 + 1 + 1 +	1+1+1
	(1,P) - 0	
	er is not foun	
The	omplexity of fix	is O(n2)
	the design of a day	1000 do
		acibers.
		200139
	The state of the s	
		a X & Roll

					Page No	
e. q	=> Q0 -	t list t	he s	intial So , Oz - o P - aa		Of P Oaa
	State	<u> </u>	Ь	and the sales	9	b
	Q ₀ Q ₂ Q ₃ Q ₄		Q. Q. Q. Q.		10 00 000 000 000 000 000	99999 999 98
	(a) Tutine b	Patte	En m		table !	
*	0 - a	(C)	(0)	a 20) 6	a (p)
	C	b) Pat	toEn	match	ing geo	iph
-						
		1				

Page No.____ Date :_ / / Ex. P = abaab. First list the intial segments of p Qo-17, Q1-a, Q2-ab; Q3-aba Q4-abaa, P-abaab. State 01 00 On Ma MK 01 01 000 da ab apag akap 02 Q3 Q0 Q4 Q2 03 sibaga abagi 04 matching table (b) Pattern matching graph The complexity of this pattern matching algorithm is O(n)