

# LAB #5

#### การทคลอง

5.1 Effects of interpolation techniques in Image Resizing

5.2 Image Augmentation using KERAS ImageDataGenerator

5.3 Training Model using ImageDataGenerator





5.1 EFFECTS OF
INTERPOLATION TECHNIQUES
IN IMAGE RESIZING

### LIBRARIES

- # Import Libraries
- import cv2
- import numpy as np
- from matplotlib import pyplot as plt
- from keras import Model, Input
- import keras.utils as image
- from keras.wrappers.scikit\_learn import KerasRegressor
- from tensorflow.keras.preprocessing.image import ImageDataGenerator
- from tensorflow.keras.layers import Dense, Conv2D, MaxPool2D, UpSampling2D
- from tensorflow.keras.callbacks import EarlyStopping
- from tensorflow.keras import optimizers
- from tensorflow.keras.datasets import fashion\_mnist
- from sklearn.model\_selection import train\_test\_split

### 5.1 Effects of interpolation techniques in Image Resizing

1

- # Read image file
  - imread("Grid Image.jpg")

- # Define resize factor
  - Reduce\_factors = [2, 4, 5, 7, 8, 10, 15] # อย่างน้อย 3 ค่า
  - Scale\_factors = 1/ Reduce\_factors
- # Define interpolation method
  - inter methods = [cv2.INTER NEAREST,cv2.INTER LINEAR, cv2.INTER CUBIC, cv2.INTER AREA]

2

- Display results using each scale factors & interpolation methods
  - Cv2.resize(Scale factors, inter methods)

3

# 50 -20

## 5.1 IMAGE RESIZE







### 5.2 IMAGE AUGMENTATION USING KERAS IMAGEDATAGENERATOR

# Read image

Imread()

• # Define fill method

fill method = ['constant', 'nearest', 'reflect', 'wrap']

•# Define parameters

Npic / rotation\_range / width\_shift\_range / height\_shift\_range / shear\_range / zoom\_range / horizontal\_flip

Prepare Gaussian Noise Function

def add\_gaussian\_noise(img)

#img\_noisy = img+gaussion\_noise

return img\_noisy

4

### 7.2 IMAGE AUGMENTATION USING KERAS IMAGEDATAGENERATOR





# IMAGE DATA GENERATOR

(PREPROCESSING\_FUNCTION=NONE)



# IMAGE DATA GENERATOR

(PREPROCESSING\_FUNCTION=ADD\_NOISE)



### 5.3 TRAINING AUTOENCODER USING IMAGE AUGMENTATION AND ADD\_NOISE

# Read image from fashion\_mnist dataset

• (x\_train, \_), (x\_test, \_) = fashion\_mnist.load\_data()

• x\_train = x\_train/255. x\_test =x\_test/255.

x\_train, x\_test= train\_test\_split(x\_train, random\_state, test\_size)

x\_train, x\_val = train\_test\_split(x\_train, random\_state, test\_size)

# load images from dataset

# normalized image intensity

# create train data, test data

# create train data, validation data

#### Prepare Gaussian Noise Function

- add\_gaussian\_noise
  - กำหนด noise (mean, std, noise\_factor)

•# Define ImageDataGenerator with parameters

datagen = ImageDataGenerator( rotation range,

width\_shift\_range,

height shift range,

shear range,

zoom range,

horizontal flip,

fill mode = m

Preprocessing function = add gaussian noise)

2



# IMAGE DATA GENERATOR

(PREPROCESSING\_FUNCTION=ADD\_NOISE)

#### 5.3 TRAINING AUTOENCODER USING IMAGE AUGMENTATION WITH NOISE

- # construct the autoencoder model
- autoencoder = create\_model(optimizer=opts, learning\_rate=lr)
  - callback = EarlyStopping(monitor='loss', patience=10)
  - history = autoencoder.fit\_generator( datagen.flow(x\_train, x\_train, batch\_size=bs),
  - epochs=eps, steps\_per\_epoch = x\_train.shape[0]//bs,
  - validation\_data=datagen.flow(x\_val, x\_val, batch\_size=bs),
  - callbacks=[callback],verbose=1)
  - # test batch\_size , epoch, learning\_rate,
- Plot graph to show training and validation loss
- •predict\_test = autoencoder.predict(x\_test\_noisy)
- •Imshow() to see prediction images

# EPOCH=70





Sample Footer Text

### เงื่อนไขการทดลอง

- ทดสอบ noise std, noise\_factor อย่างน้อย 2 คู่
- ทดลองค่า epoch, batch\_size, learning\_rate, จำนวน convolution node เลือกอย่างละ 2 แบบ เป็นอย่างน้อย
- แสดงผลลัพธ์ในรูปแบบ
  - Graph Training vs Validation Loss
  - รูปภาพ เปรียบเทียบ Original, Noisy, and Predicted images จำนวนอย่างละ 5 ภาพ เป็นอย่าง น้อย

Sample Footer Text 2/7/20XX