Specyfikacja funkcjonalna

1. Opis ogólny

1.1. Nazwa programu

Program nazywa się VaccOpt.

1.2. Poruszany problem

Program będzie optymalizował proces zakupu szczepionek przez hipotetyczne apteki.

Każda z aptek będących pod opieką GM ma podpisany kontrakt z każdym dystrybutorem szczepionek leczniczych.

Program napisany przeze mnie (jako członka ZA) ma za zadanie korzystając z danych zawartych w pliku dostarczonym przez GM ma znaleźć konfigurację, w której nastąpi minimalizacja kosztów sprzedaży szczepionek przy jednoczesnym zapewnieniu dostaw do wszystkich aptek.

1.3. Użytkownik docelowy

Przyjmując konwencję zadania użytkownikiem docelowym jest GM. Właściwym użytkownikiem docelowym naszego programu jest prowadzący zajęć laboratoryjnych.

2. Ogólna funkcjonalność

2.1. Korzystanie z programu

Program wykonany jest w formie aplikacji działającej w terminalu. Do włączenia go wymagane jest posiadanie kompilatora Java.

2.2. Uruchamianie programu

Aby włączyć program należy przejść w terminalu do katalogu zawierającego pilk wykonywalny ${\bf VaccOpt.jar}$ i włączyć go wpisując komendę ${\it java-jar}$ ${\it VaccOpt.jar}$ nazwa ${\it Pliku}''$, gdzie nazwa ${\it Pliku}$ to nazwa pliku z danymi. W przypadku wywołania bezargumentów program domyślnie przyjmuje korzyta z pliku ${\it dane.txt.}$

2.3. Możliwości programu

Program jest w stanie sprawdzić, czy przekazane mu *dane* zgadzają się z ustalonymi dyrektywami, na ich podstawie zoptymalizować, czyli w tym wypadku zminimalizować koszty zaopatrzenia

w pełni wszystkich aptek. Efektem końcowym działania programu jest wygenerowanie pliku result.txt.

3. Format danych i struktura plików

3.1. Słownik

GM - grupa menadżerska

ZA - zespół analityków

Klucz, ID - element unikatowy dla każdej apteki oraz dystrybutora

dane - w domyśle odpowiednio sformatowany plik dostarczony przez GM lub jego zawartość

GUI - graphical user interface, czyli interfejs graficzny widziany przez użytkownika

3.2. Struktura katalogów

Cały kod tworzący program będzie znajdował się w w katalogu src, tam też będzie plik main.java. Wszystkie testy znajdować się będą w katalogu test. Przykładowe dane będą znajdowały się w katalogu nadrzędnym dlasrc i test. Plik wyjściowy będzie generowany w tym samym folderze.

3.3. Przechowywanie danych w programie

Sam program znajduje się w repozytorium Wydziału Elektrycznego Politechniki Warszawskiej.

W programie informacje pobrane z danych będą przechowywane postaci tablic kluczy, z którymi będą powiązane pozostałe informacje dotyczące aptek i dystybutorów. Jedna tablica zawierać będzie klucze aptek, druga klucze dystrybutorów.

3.4. Dane wejściowe

Dane wejściowe znajdują się domyślnie w pliku dane.txt. Muszą zgadzać się one z przyjętym formatowaniem. Należy pamiętać, aby każda apteka i dystrybutor mieli ID. Dane w pliku muszą być oddzielone od siebie separatorem ", a nazwy aptek i dystrybutorów nie mogą zawierać tego znaku. Każda z aptek musi mieć połączenie z każdym z dystrybutorów. Wszystke liczby zawarte w pliku muszą być liczbami dodatnimi, a zapotrzebowanie na szczepionki jak i ich dostępna ilość muszą być liczbami całkowitymi. Przykładowy plik wejściowy:

```
# Producenci szczepionek (id | nazwa | dzienna produkcja)
   0 | BioTech 2.0 | 900
   1 | Eko Polska 2020 | 1300
   2 | Post-Covid Sp. z o.o. | 1100
   # Apteki (id | nazwa | dzienne zapotrzebowanie)
   0 | CentMedEko Centrala | 450
   1 | CentMedEko 24h | 690
   2 | CentMedEko Nowogrodzka | 1200
   # Połączenia
                 (id prod | id apt | max liczba szczepionek | koszt sztuki)
           800 | 70.5
   0 | 1 |
           600
                 70
   0 | 2 |
           750 | 90.99
   1
     1 0
           900 | 100
   1 | 1 |
           600
                 80
   1 | 2 |
           450
                 70
   2 | 0 |
           900
                 80
   2 | 1 |
           900
                 90
   2 | 2 | 300 | 100
3.5. Dane wyjściowe
   Dane wyjściowe znajdować się będą w pliku result.txt w poniższy
   sposób:
                    -> CentMedEko Centrala [Koszt = 300 * 70.5 = 21150 zł]
   BioTech 2.0
   Eko Polska 2020 -> CentMedEko Centrala [Koszt = 150 * 100 = 15000 zł]
   /*
```

pozostałe ustalone połączenia pomiędzy producentami a aptekami

4. Scenariusz działania programu

4.1. Scenariusz ogólny

*/

- 4.1.1. Włączenie programu
- 4.1.2. Sprawdzenie, czy podany plik jest odpowiednio sformatowany
- 4.1.3. Wyliczenie namniejszego możliwego kosztu
- 4.1.4. Zapisanie danych do pliku wyjściowego
- 4.1.5. Koniec działania programu

Opłaty całkowite: 36150 zł

4.2. Scenariusz szczegółowy

- i. Włączenie programu podając mu za argmunet własny plik z danymi, lub nie podając żadnego (wtedy pobierany jest plik domyślny)
- ii. Sprawdzenie przez program, czy plik jest odpowiednio sformatowany. Podanie informacji o błędzie jeżeli taki nie jest.
- iii. Zapisanie danych przez program w postaci tablic.
- iv. Sprawdzenie, w której konfiguracji dla każdej z aptek będzie najkorzystniej kupić szczepionki.
- v. Optymalizacja tego procesu.
- vi. Sprawdzenie, czy można utworzyć plik wyjściowy i w przy pozytywnym rozpatrzeniu tego warunku utworzenie go. W przeciwnym wypadku komunikat błędu.
- vii. Zapisanie wyniku w poprawnym formacie do pliku result.txt
- viii. Zakończenie działania programu

5. Testowanie

I Ogólny przebieg testowania

Do testów kodu użyty zostanie JUnit 4. Testy będą miały na celu sprawdzenie jak się zachowuje program w wypadku podania nieprawidłowego pliku przez GM i czy zostanie zwrócona prawidłowa informacja o błędzie. Testy będą miały również sprawdzić, czy program zwraca prawidłowe dane i czy poprawnie tworzy nowe pliki wyjściowe.