高二綜合练习8

- 一、选择题(共40分,每小题2分,每小题只有一个正确答案)
- 1. 荷兰医生艾克曼经实验发现把来燃加入到鸡饲料中,可以治疗因喂养精<u>自</u>来而引起的 鸡的脚气病,并认为米德中含有"保护因素"。这种"保护因素"是(13) A. 维生素 A B, 维生素 B₁ C. 维生素 C

- 2. "朴雪"乳酸亚铁口服液是一种治疗缺铁性贫血的药物,它适用于各种原因引起的缺铁 性贫血, 并且适用于老年患者、几童患者、孕妇或者哺乳期的女性。这是因为其中的 Fe2 进入人体后能(C)
 - A. 调节血液的酸碱平衡

B. 调节血液的渗透压

C. 构成红细胞中的血红蛋白

D. 促使更多红细胞的产生

3. 图 1 示质子泵跨膜运 目的过程。质子泵抑制剂可与胃壁细胞膜上 的质子泵共价结合, 使其不可逆地失活, 从而抑制胃酸的分泌。 下列叙述错误的是(5)

- B. 质子泵参与细胞的 pH 调控
- ○. 质子泵本质上是一种生物膜上的栽体蛋白
- D. 呼吸抑制剂使质子泵失活而抑制胃酸分泌

4. 研究叶南细胞的结构和功能时,取匀浆或上清液依次离心将不同的结构分开,其过程和 结果如图 2 所示, Pr-Pa表示沉淀物, Sr-Sa表示上清液

据此分析,下列叙述正确的是(A)

- A、S.和P.均含有与光合作用有关的酶
- B、DNA 存在于PI、PI、PI和Pa中
- C、葡萄糖在Pa中被分解成CO2和HaD
- D、S₁、S₂、S₃和 P₄ 中均含其膜结构的细胞器

5. 甲同学从某哺乳动物的胃液中分<u>医到了一种</u>酶。为探讨该酶的最适 pH,设计了如表生实验方案,其中最合理的是(**3**)

表1

方案	pH范围	流度	酶活性测定	最達 pH
A	1~6	25℃		以pH对酶活性
В	1~14	25°C	每间隔一个pH	作图 酶活性粉
С	1~6	37°C	· 赫度进行酶活 性测定	高时对应的 pH
D	1~14	37°C	132 001 12	为最适 pH

- 6. "血清疗法"可用于一些病毒性传染病的临床救治。该疗法主要是利用康复期患者捐献的血液,经严格的血液生物安全性检测分离后,将血浆输入到重症患者体内。"血清疗法"的免疫学原理是利用康复期患者血浆中的(()
 - A. 抗原,可以刺激重症患者产生较多的抗体
 - B. 抗体,可以刺激重症患者产生淋巴细胞
 - C. 特异性抗体, 帮助重症患者对抗病毒
 - D. 淋巴因子,刺激重症患者产生较多抗体
- 7. 2019 新型冠状病毒, 2020 年 1 月 12 日被世界卫生组织命名为 2019-nCo, 2020 年 2 月 11 日被国际病毒分类委员会命名为 SARS-CoV-2, 属于 RNA 病毒。以下关于新型冠状病毒的叙述,不正确的是())
 - A. 新型冠状病毒需借助电子显微镜观察
 - B. 新型冠状病毒可通过飞沫等方式传播
 - C. 新型冠状病毒的遗传物质为 RNA
 - D. 新型冠状病毒可直接用牛肉膏蛋白胨培养基培养
- 8. Ca²⁴能消除突触前膜内的负电荷,利于突触小泡和前膜融合,释放神经递质。若瞬间增大突触前膜对组织液中 Ca²⁴的通透性,将引起的效应是(人)
 - A. 加速神经冲动的传递

B. 使突触后神经元持续性兴奋

C. 减缓神经冲动的传递

D. 使突触后神经元持续性抑制

9. 图 3 显示了人体内蛋白质的部分代谢途径,大写字母代表物质,下列叙述正确的是(人

图3 蛋白质 ··· > A C AIP

- A. A含有P元素
- C. 脂肪代谢也可产生B
- B. ①为氧化分解反应
 - D. ②也存在于糖代谢中
- [10.] 图 4 中甲表示酵母丙氨酸 tRNA 的结构示意图。乙和丙是甲相 应部分的放大图,其中1表示次黄嘌呤,能够与A、U或C配
 - 对。下列有关叙述正确的是(人)
 - A. 图中tRNA的p端是结合氨基酸的部位
 - B. 单链 tRNA 分子内部存在碱基互补配对
 - C. 丙氨酸的密码了与反密码了是——对应的
 - D. 转录丙所示序列的双链 DNA 片段含有 2 个腺嘌呤

图 4

[1] 张小杰同学重复噬菌体侵染细菌的实验,由于对其中一组噬菌体进行同位素标记时有 误(其他操作正确),导致两组实验结果如下表2,两组的错误标记分别

1,7 %				
	组别	同位素分布情况		
表 2		沉淀物中放射性很高,上清液中放射性很低		
		沉淀物和上清液中放射性均較高		

A. 32p, 14C B. 35S, 32p

D. 14C. 32P

12. 有研究者采用荧光染色法制片,在显微镜下观察拟南芥 (2n=10) 花药减数分裂细胞中 染色体形态、位置和数日,图 6 为镜检时拍摄的 4 幅图片。下列叙述正确的是(一一)

Z

内

14 6

图 5

- A. 图甲、两中细胞处于减数第一次分裂时期
- B. 图甲细胞中同源染色体已彼此分离

用

- C. 图乙细胞中正在发生非同源染色体自由组合
- D. 图中细胞按照减数分裂时期排列的先后顺序为甲→乙→丙→丁

- 15. 图 7 为左心室与其相连接的主动脉局部示意图,下列描述正确的是(///)
 - A. 此时心脏活动是心宣舒张
 - B. 此时主动脉压力仅与心输出量有关
 - C. 此时测得的动脉血压为舒张压
 - D. 此时测得的动脉血压为收缩压

1317

- A. 昆虫翅的变异是多方向且可遗传的
- B. 昆虫翅的全部基因构成了该种群的基因库
- C. 大风在昆虫翅的进化过程中起选择作用
- D. 自然选择使有利变异得到保留并逐渐积累
- 15. 图 8 显示一对表型正常的大妇及其智障儿子细胞中的两对染色体(不考虑受精和胚胎发育过程中的任何情况下造成),造成儿子异常的根本原因是((())

- A. 父亲精子异常, 发生基因突变
- B. 母亲卵细胞异常, 发生染色体易位
- C. 父亲精子异常,发生染色体片段缺失
- D. 母亲卵细胞异常,发生染色体数目变异
- 16. 图 9 表示单克隆抗体的制备过程,下列关于该过程的说法,正确的是(人)

- A, 该技术涉及的生物学原理有细胞膜具有一定的流动性
- B, 经特定抗原免疫过的 B 淋巴细胞在体外培养时可分泌单克隆抗体
- C. 诱导 B 淋巴细胞和骨髓瘤细胞融合后,发生融合的细胞均为杂交瘤细胞

	D. 将特定抗原注射到小鼠体内,可直接从小!	鼠血清中获得单克隆抗体
17.	7. 互花干草入侵某湿地, 欲调查其入侵程度, 所	用样方正确的是(1)。
	入侵湿地 []未入侵。 A 8	型化 ○ ○ 所选取样方区域
18.	8. 胡萝卜根单个细胞经体外培养,能发育成完整 (C)	B的植株。其根本原因是胡萝卜根细胞
		. 通过有丝分裂形成了植株). 能合成胡萝卜所需的蛋白质
19.	异,下列叙述错误的是(
20.	染液和胰液等鉴定试剂,鉴定后显色结果如图 10 特測 班氏 榜測 双缩服 特视 苏 液体 试剂 液体 染 下上灰人	所标注,该待测溶被最有可能是(13)。 Fui 特测
	图 9	棕红色 ——棕黄色
	D. Stolling of the tra-	鸡蛋清 农大山泉天然水

二、综合题(共60分)

(一)植物激素(12分)

植物体中赤霉素 (GA) 可以调节生长素 (IAA) 的水平, 从而促进植物的生长, 具体调节过程知图 [1 所示。束缚 IAA 无活性, 可以与 IAA 相互转变。其中, ①~③表示调节

- 21. (2分)植物体内与 [AA 生理作用指 抗的激素有 [4] (举一例即可)。
- 22. (2 分) 据图 11 分析 GA 对 IAA 的调节效应分别是: ① _____; ③ _____ ("+" 表示促进, "-" 表示抑制)。
- 23. (2分)为研究 IAA 和 GA 对遗传性矮生植物的作用效应, 某课题组选取了甲~戌五、种矮生豌豆突变体(生长速率依次递增)。现将一定浓度的 IAA 和 GA 溶液分别喷施到 五种突变体幼苗上,结果如图 12 所示。据图分析,下列分析正确的是
 - A. 图中对照组均没有生长
 - B. 体外喷施 IAA 能明显促进矮生豌豆的生长
 - C. IAA和GA共同作用后效果更好
 - D. 同一浓度 IAA 对不同突变体的作用效果不同

为进一步研究 IAA 对植物生长的促进作用,范小晨做了以下 6 组实验 (编号①-4向),如图 13,使用不同方式处理燕麦胚芽鞘,均给予左侧光照。

前二综合练习 6 6/11

- 24. (2 分) 告证则胚芽鞘的瘾光部位是失端, 需选取的实验组别是 Ø ⑤ ③ (填写实验 编号)..
- 25. (4分)一段时间后,②② 组的胚芽鞘将弯向光源生长,原因是 复复光影孔 3分)

(二)碳酸饮料与内环境(12分)

碳酸饮料是很多年轻人的喜爱,其主要成分经消化后以果糖,葡萄糖等形式进入人体。 长期饮用碳酸饮料,还会增加患糖尿病的风险。产生甜味感的原因以及影响糖代谢的部分这 程如图 14 和图 15 所示, 其中 X 和 Y 代表物质或结构, L II、III 代表不同部位。

A. 受体

29. (2分) 人能区分储味和苦味,结合图 14分析,主要原因是

的结构不同。

A. X

B. Y

C. IP3

D. TRPMS

30. (4分) 长期大量吗 解释该现象的原因

(三) 生物工程与疾病预防(12分)

接种疫苗是预防疾病的措施之一。图 16 显示了某种 DNA 疫苗的制备与使用过程,人体内将产生抗广的抗体。A、B、C代表结构,I、II、III 代表培养基,质粒中 Apr 表示氨苄青霉素抗性基因。

31. (2分)上述生物工程中,目的基因 A 是______,该基因最可能是致病菌 M 的

- A. 特有致病基因
- B. 特有不致病基因
- C. 全部致病基因
- D. 全部不致病基因
- 32. (1分) 图 16 所示的 I~IV 阶段中,需使用限制酶和 DNA 连接酶的是 1, 0、阶段

- 34. (2分) 图 16 所示过程利用到生物工程领域有 12 (多选)
 - A. 发酵工程
- B. 基因工程
- C. 细胞工程
- D. 醇工程:
- 35. (2分) 图 16 中注入到人体内的是 DNA 疫苗,以下关下 DNA 疫苗的叙述,正确的是 (多选)
 - A. 分子较小, 结构较稳定
 - B. 能通过 PCR 技术增加生产量

- C. 能直接激活机体产生特异性免疫
- D. 可在室温下保存,能提高疫苗的接种率
- (四)人类遗传病与预防(12分)

图 17

37. (2分) 根据图 17, 该遗传病的遗传方式可能是

A. X 连锁隐性

B. X 连锁显性

C. 常染色体隐性

D. 常染色体显性

致病基因 li 和正常基因 Hi 中的某一特定序列经 Bcll 酶切后,可产生大小不同的片段 (如图 18, bp表示碱基对),据此可进行基因诊断;表 3 为 I-1、I-2 和 II-1 号的体细胞基因 诊断结果。

38. (2分)根据图 17、图 18 和表 3 的基因诊断分析, III-7 的致病基因来自于 选)。

A. I-1

B. 1-2

C. 11-5

D. 11-6

39. (2分) 不考虑基因突变, II-5 可能不含有致病基因的细胞有<u>Cl</u>/(多选)。 A. 柳细胞 B. 初级别母细胞 C. 第一极体 D. 次级卵母细胞 (2分)11-5号的基因诊断中出现 99bp 的概率是 [06分],1-1的基因型是] 41. (2分) III-1和 III-2 婚后生育的孩子进行基因诊断,可能出现表 3 中的 **丁**

42. (2分) 从根本上治疗该遗传病的方法是 /

A. 加强锻炼

B. 提入 II 基因表达出的蛋白质

C. 基因检测

D. 将 H 基因导入患者相应细胞内

(五)光合作用(12分)

永稻是一种常见的农价物,其光合作用过程如图 19。

- 43. (2分)图19中,光合色素直接参与的反应是 (反应 1/反应 2),光合速率可以用 图中的 (0~释放量来衡量。
- 44. (2分)正常生长的水稻,照光培养一段时间后,突然停止光照,此时水稻细胞的叶绿 体内可能发生的现象是(多选)

A. O. 的产生停止

B. CO₂的固定加快

C. ATP/ADP 比但下降

D. NADPH/NADP比值下降

研究者发现,将玉米的PEPC 基因导入水稻后,水稻在高光强下的光合途率显著增加。 为研究转基因水稻光合选率增加的机理,将水稻叶片放入叶室中进行如下实验:研究者调节 25W 灯泡与叶室之间的距离, 测定不同光强下的气孔导度和光合速率, 结果如图 20 所示。 (注:气孔导度越大,气孔开放程度越高)

图 20

45. (3分) 图 20中,光强低于 800μmol*m²•s¹ 則,影响转基因水稻光台速率的主要因素是 COx。在大于 1000μmol*m²•s¹ 光强下, 两种水稻气孔导度开始下降,原种水稻的气孔导度下降但光合速率基本不变,最可能的原因是 1 1000μ (Οx)

12 Ve Cornsula T. B.

(2分)

- 46. (2分) 要获得图 20 中的实验结果,实验应设置的条件组合是 ② ③ ⑤
 - ①环境 CO2 浓度保持不变
- ②环境温度保持不变
- ③环境湿度保持不变

- ①光照强度保持不变
- ⑤植物样本足够
- ⑥选用生长状态一致的植物

苏小运对 PEPC 基因的水稻植株进行补光处理 (红光: 蓝光=1:1), 检测相关指标, 结果如表 4。

表4 补光处理对水稻(含PEPC基因)的影响

光处理	叶片数/叶幽 刻 cm²	叶绿素 (mg/g)	根系 鲜重/十重 (g)	可溶性蛋白质 (g)	维生素C
白光 (对照)	7.0/456.73	0.56	3.96/0.15	1.58	9.30
红: 蓝 (1;1)	7.0/646.85	0.96	7.87/0,40	2.48	9.70