Экспериментальная проверка уравнения Эйнштейна для фотоэекта*

Иван Едигарьев Московский Физико-Технический Институт Факультет Общей и Прикладной Физики, 526т

В работе исследуется зависимость фототока от величины задерживающего потенциала и частоты падающего излучения, что позволяет вычислить величину постоянной Планка.

1. Градуировка монохроматора

Используя окуляр, проградуируем барабан монохроматора по спектру неоновой лампы. Построим градуировочную кривую монохроматора.

2. Исследование зависимости фототока от величины запирающего потенциала

На одном листе построим серию графиков $\sqrt{I}=f(V)$; для каждой длины волны определим величину запирающего потенциала, экстраполируя полученные кривые к оси абсцисс. Построим график зависимости $V_0(\omega)$. По графику определим постоянную Планка, оценим погрешность результата и сравним найденное значение с табличным.

$$b = \frac{dV_0}{d\omega} = (5.9 \pm 0.7) \ 10^{-16} \ V \cdot s,$$

$$\hbar = (0.9 \pm 0.1) \ 10^{-34} \ J \cdot s,$$

$$\hbar = 1.054 \ 10^{-34} \ J \cdot s.$$

Оценим по графику красную границу в ангстремах и работу выхода материала катода в элек-

тронвольтах (с точностью до контактной разницы потенциалов).

$$\lambda_{\text{красн}} = 150 \ nm,$$
 $W = 1.1 \text{ eV}.$

