

复变函数

作者: 王子毅

组织:扬州大学数学科学学院

时间: August 12, 2024

版本: 0.0

Bio:Information

目录

第1章	复数与复变函数	2
1.1	复数的定义及运算	2
1.2	复数几何表示	4
1.3	复数列的极限	7
1.4	复平面上的拓扑	9
第2章	全纯函数	10
2.1	解析函数的概念与 Cauchy-Riemann 条件	10
第3章	复变函数的积分	11
3.1	复积分概念及其简单性质	11
3.2	Cauchy 积分定理	13
3.3	Cauchy 积分公式及其推论	14
3.4	解析函数与调和函数的关系	18
第4章	解析函数的幂级数表示	19
4.1	复级数的基本性质	19
4.2	幂级数	22
4.3	解析函数的泰勒展式	25
4.4	解析函数零点的孤立性及唯一性定理	26
第5章	解析函数的 Laurent 展式与孤立奇点	30
5.1	解析函数的 Laurent 展式	30
5.2	解析函数的孤立奇点	32
5.3	解析函数在无穷远处的性质	34
5.4	整函数与亚纯函数的概念	36
第6章	留数理论及应用	37
6.1	留数	37
6.2	用留数定理计算实积分	40
6.3	辐角原理及其应用	44
6.4	辐角原理	45
6.5	Rouche 定理	46

前言

本讲义的主体是按照扬州大学数学科学学院刘金林老师给数学专业《复变函数》课程上课的讲义整理完成,原讲义有不少 typo 而且 word 排版比较粗糙。

笔者使用 LATEX 进行了重新的整理,并修正 typo。例题融合了讲义本来有的以及 2023-2024 学年两学期《复变函数》课上新增例题。

第一章主要参考了清华大学刘思齐老师《复分析》课程讲解的内容,后面 2-6 章 a.e. 是刘金林老师课上内容。如果第一章不看也没事,和主线关联不大。

YZU 数院的《复变函数》讲的是比较浅的,几乎就是工科复变的难度。考试的难度也十分低,考的内容绝对不会超出本份讲义(包括证明题),如果你能完全掌握这份讲义且考试计算不粗心,那么你在扬州大学数学科学学院的《复变函数》考试中绝对能考到95以上。理论上只要你不是很笨的人,就算完全不听课,考前只要把这份讲义速刷一遍也能很容易考95+。

如果有读者对本讲义的编写有所建议,或者发现了一些 typo, 欢迎与我联系, 有所贡献的我会写进致谢。请优先通过邮件 (zyewang33@gmail.com) 与我联系, 联系时请标记主题 (xx 讲义反馈)。

本讲义完全免费公开,最新版本讲义可在网址 (https://zyewang33.github.io/notes/) 获取 注 刘金林老师经常会根据学生学习情况以及课时情况调整授课内容,所以请读者根据实际上课情况来 判断本讲义哪些内容要学,哪些可以不学。

致谢

特别感谢冯翼同学提供的 2023-2024 学年秋学期《复变函数》课程 goodnotes 导出的完整笔记。

第1章 复数与复变函数

1.1 复数的定义及运算

定义 1.1 (复数的一般定义)

定义复数为一对有序的实数 (a,b), 如果用 $\mathbb R$ 记实数的全体, $\mathbb C$ 记复数的全体, 那么

$$\mathbb{C} = \{(a, b) : a \in \mathbb{R}, b \in \mathbb{R}\}.$$

在这个集合中定义加法和乘法两种运算:

$$(a,b) + (c,d) = (a+c,b+d),$$

$$(a,b)(c,d) = (ac - bd, ad + bc).$$

命题 1.1

ℂ在上面定义的加法和乘法运算下构成一个域, 称为复数域.

证明 容易验证,加法和乘法都满足交换律和结合律;

- 1. (0,0) 是零元素;
- 2. (-a, -b) 是 (a, b) 的加法逆元;
- 3. (1,0) 是乘法的单位元;

每个非零元素 (a,b) 有逆元素; 此外, \mathbb{C} 中的加法和乘法还满足分配律:

$$[(a,b) + (c,d)](e,f) = (a,b)(e,f) + (c,d)(e,f).$$

命题 1.2

实数域 ℝ 是 ℂ 的一个子域

证明 如果记

$$\widetilde{\mathbb{R}} = \{(a,0) : a \in \mathbb{R}\},\$$

那么 \mathbb{R} 是 \mathbb{C} 的一个子域. 显然, $(a,0) \to a$ 是 \mathbb{R} 与 \mathbb{R} 之间的一个同构对应, 因此, 实数域 \mathbb{R} 是 \mathbb{C} 的一个子域. 我们直接记 (a,0)=a.

注 在 \mathbb{C} 中, (0,1) 这个元素有其特殊性, 它满足

$$(0,1)^2 = (0,1)(0,1) = (-1,0) = -1.$$

专门用 i 记 (0,1) 这个元素, 于是有 i² = -1. 由于 $(0,b) = (b,0) \cdot (0,1) = bi$, 于是每一个复数 (a,b) 都可写成

$$(a,b) = (a,0) + (0,b) = a + bi.$$

定义 1.2 (有序域的定义)

域 \mathbb{F} 称为有序域, 如果在 \mathbb{F} 的元素间能确定一种关系 (记为 a < b), 其满足下列要求:

1. 对 \mathbb{F} 中任意两个元素 a,b, 下述三个关系中必有而且只有一个成立:

$$a < b$$
, $a = b$, $b < a$;

- 2. 如果a < b, b < c, 那么a < c;
- 3. 如果a < b,那么对任意c,有a + c < b + c;
- 4. 如果 a < b, c > 0, 那么 ac < bc.

容易知道, 实数域是有序域, 而复数域则不是.

定理 1.1

复数域不是有序域.

m

证明 如果 \mathbb{C} 是有序域, 那么因为 $i \neq 0, i \neq 0$ 之间必有 i > 0 或 i < 0 的关系.

- 1. 如果 i > 0, 则由 (4) 得 $i \cdot i > i \cdot 0$, 即 -1 > 0, 再由 (3), 两端都加 1, 即得 0 > 1. 另一方面, 从 -1 > 0 还可得 $-1 \cdot (-1) > 0 \cdot (-1)$, 即 1 > 0, 这和刚才得到的 0 > 1 矛盾.
- 2. 如果 i < 0, 两端都加 -i, 再由 (4), 两端乘 -i, 得 -1 > 0. 重复上面的讨论, 即可得 0 > 1 和 0 < 1 的矛盾. 所以, 复数域不是有序域.

注 为了方便起见,直接用 z = a + bi 记复数

命题 1.3

- 1. a 为 z 的实部, b 称为 z 虚部, 分别记为 a = Re z, b = Im z.
- 2. 加法和乘法用现在的记号定义为:

$$(a + bi) + (c + di) = (a + c) + (b + d)i,$$

$$(a+bi)(c+di) = (ac-bd) + (ad+bc)i.$$

3. 减法和除法分别定义为加法和乘法的逆运算:

$$(a + bi) - (c + di) = (a - c) + (b - d)i,$$

$$\frac{a+bi}{c+di} = (a+bi)\left(\frac{c-di}{c^2+d^2}\right) = \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}i.$$

定义 1.3 (模和共轭复数)

设z = a + bi 是一复数, 定义

$$|z| = \sqrt{a^2 + b^2},$$

$$\bar{z} = a - bi$$
,

|z| 称为 z 的模或绝对值, \bar{z} 称为 z 的共轭复数.

*

命题 1.4

设2和 w 是两个复数

- 1. Re $z = \frac{1}{2}(z + \overline{z})$, Im $z = \frac{1}{2i}(z \overline{z})$;
- $2. \ z\overline{z} = |z|^2;$
- 3. $\overline{z+w} = \overline{z} + \overline{w}, \overline{zw} = \overline{zw};$
- 4. $|zw| = |z||w|, \left|\frac{z}{w}\right| = \frac{|z|}{|w|}$;

5. $|z| = |\overline{z}|$.

命题 1.5

设 z 和 w 是两个复数, 那么因为

- 1. $|\operatorname{Re} z| \le |z|, |\operatorname{Im} z| \le |z|;$
- 2. $|z+w| \leq |z| + |w|$, 等号成立当且仅当存在某个 $t \geq 0$, 使得 z = tw;
- 3. $|z-w| \ge ||z| |w||$.

证明

1. 从 Re z, Im z 和 |z| 的定义马上知道不等式成立.

2.

$$|z+w|^2 = (z+w)(\overline{z+w}) = |z|^2 + 2\operatorname{Re}(z\overline{w}) + |w|^2$$

$$\leq |z|^2 + 2|z||w| + |w|^2 = (|z| + |w|)^2,$$

由此即知 (2) 成立. 由上面的不等式可以看出,等式成立的充要条件是 $\operatorname{Re}(z\bar{w}) = |z\bar{w}|$, 这等价于 $z\bar{w} \ge 0$. 不妨设 $w \ne 0$ (w = 0 时, 等号显然成立), 由于 $\bar{w} = \frac{|w|^2}{w}$, 上面的不等式等价于 $\frac{z}{w}|w|^2 \ge 0$. 令 $t = \left(\frac{z}{w}|w|^2\right)\frac{1}{|w|^2}$, 则 $t \ge 0$, 而且 z = tw.

3.

$$|z| \le |z-w| + |w| \quad |w| \le |z-w| + |z|$$

 $||z| - |w|| \le |z-w|$

推论 1.1

设 z_1, \cdots, z_n 是任意n个复数,用数学归纳法,容易得到不等式

$$|z_1 + \dots + z_n| \leqslant |z_1| + \dots + |z_n|.$$

等号成立条件为 z_1, \dots, z_n 共线

(

1.2 复数几何表示

在平面上取定一个直角坐标系,实数对 (a,b) 就表示平面上的一个点,所以复数 z = a + bi 可以看成平面上以 a 为横坐标、以 b 为纵坐标的一个点. 这个点的极坐标设为 (r,θ) ,那么

$$a = r \cos \theta, \quad b = r \sin \theta,$$

定义 1.4 (复数三角形式)

复数 z = a + bi 也可表示为

$$z = r(\cos\theta + i\sin\theta).$$

注 $r = |z| = \sqrt{a^2 + b^2}$ 就是前面定义过的 z 的模, θ 称为 z 的**辐角**,记为 $\theta = \operatorname{Arg} z$. 容易看出,如果 θ 是 z 的辐角,那么 $\theta + 2k\pi$ 也是 z 的辐角,这里,k 是任意的整数,因此 z 的辐角有无穷多个. 但在 $\operatorname{Arg} z$ 中,只有一个 θ 满足 $-\pi < \theta \leq \pi$,称这个 θ 为 z 的**辐角的主值**,把它记为 $\operatorname{arg} z$. 因而

$$\operatorname{Arg} z = \operatorname{arg} z + 2k\pi, \quad k \in \mathbb{Z},$$

这里, ℤ表示整数的全体. 注意, 0 的辐角没有意义.

注 我们还可把复数 z = a + bi 看成在 x 轴和 y 轴上的投影分别为 a 和 b 的一个向量,这样复数就会有和向量类似的性质,由一向量经过平行移动所得的所有向量表示的是同一个复数. 如果一个向量的起点和终点分别为复数 z_1 和 z_2 ,那么这个向量所表示的复数便是 $z_2 - z_1$,因而 $|z_2 - z_1|$ 就表示 z_1 与 z_2 之间的距离. 特别地,当一个向量的起点为原点时,它的终点所表示的复数和向量所表示的复数是一致的.

命题 1.6

复数的乘除运算等价于复平面上向量的拉伸和旋转.

证明

$$z_1 = r_1 \left(\cos \theta_1 + i \sin \theta_1\right)$$

$$z_2 = r_2 \left(\cos \theta_2 + i \sin \theta_2\right)$$

那么

$$z_1 z_2 = r_1 r_2 \left[\cos (\theta_1 + \theta_2) + i \sin (\theta_1 + \theta_2) \right]$$

由此立刻得到

$$|z_1z_2| = |z_1| |z_2|,$$

$$\operatorname{Arg}(z_1 z_2) = \operatorname{Arg} z_1 + \operatorname{Arg} z_2.$$

注 第二个等式应该理解为两个集合的相等. 这就是说,两个复数的乘积是这样一个复数,它的模是两个复数的模的乘积,它的辐角是两个复数的辐角之和. 从几何上看,用复数 w 乘复数 z,相当于把 z 沿逆时针方向转动大小为 $\arg w$ 的角,再让 z 的长度伸长 |w| 倍. 特别地,如果 w 是单位向量,那么 w 乘 z 的结果就是把 z 沿逆时针方向转动大小为 $\arg w$ 的角. 这种几何直观在考虑问题时非常有用.

再看复数的除法,由于

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \left[\cos \left(\theta_1 - \theta_2 \right) + \mathrm{i} \sin \left(\theta_1 - \theta_2 \right) \right],$$

所以

$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|},$$

$$\operatorname{Arg}\left(\frac{z_1}{z_2}\right) = \operatorname{Arg}z_1 - \operatorname{Arg}z_2.$$

注 第二个等式也理解为集合的相等. 这说明向量 z_1 与 z_2 之间的夹角可以用 $\operatorname{Arg}\left(\frac{z_1}{z_2}\right)$ 来表示, 这一简单的事实在讨论某些几何问题时很有用. 例如, 用它很容易证明向量 z_1 与 z_2 垂直的充要条件是 $\operatorname{Re}\left(z_1\bar{z}_2\right)=0$. 这是因为 z_1 与 z_2 垂直就是 z_1 与 z_2 之间的夹角为 $\pm\frac{\pi}{2}$, 即 $\operatorname{arg}\left(\frac{z_1}{z_2}\right)=\pm\frac{\pi}{2}$, 这说明 是一个纯虚数, 因而 $z_1\bar{z}_2=\frac{z_1}{z_2}|z_2|^2$ 也是一个纯虚数, 即 $\operatorname{Re}\left(z_1\bar{z}_2\right)=0$. 同样道理, 可以得到 z_1 与 z_2 平行的充要条件为 $\operatorname{Im}\left(z_1\bar{z}_2\right)=0$.

引理 1.1

设
$$z_1 = r_1(\cos\theta_1 + i\sin\theta_1), \cdots, z_n = r_n(\cos\theta_n + i\sin\theta_n)$$
 是给定的 n 个复数,则有
$$z_1 \cdots z_n = r_1 \cdots r_n[\cos(\theta_1 + \cdots + \theta_n) + i\sin(\theta_1 + \cdots + \theta_n)].$$

定理 1.2 (de Moivre 公式)

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta,$$

注对负整数也成立

命题 1.7

只要知道w的任一n次根,就可以计算出所有n次根

设 $w=r(\cos\theta+\mathrm{i}\sin\theta)$ 是给定的,要求的 $z=\rho(\cos\varphi+\mathrm{i}\sin\varphi)$. 由 De Moivre 公式, $z^n=w$ 等价于

$$\rho^{n}(\cos n\varphi + i\sin n\varphi) = r(\cos \theta + i\sin \theta).$$

由此即得 $\rho=\sqrt[n]{r}, n\varphi=\theta+2k\pi, k=0,1,\cdots,n-1$. 这就是说,共有 n 个复数满足 $z^n=w$,它们是

$$z = \sqrt[n]{|w|} \left(\cos\frac{\theta + 2k\pi}{n} + i\sin\frac{\theta + 2k\pi}{n}\right), k = 0, 1, \dots, n - 1.$$

这 n 个复数恰好是以原点为中心、 $\sqrt[n]{|w|}$ 为半径的圆的内接正 n 边形的顶点. 当 w=1 时,若记 $\omega=\cos\frac{2\pi}{n}+i\sin\frac{2\pi}{n}$,则 $\sqrt[n]{1}$ 的 n 个值为

$$1, \omega, \omega^2, \cdots, \omega^{n-1},$$

称为n个单位根. 如果用 $\sqrt[n]{w}$ 记w的任一n次根,那么w的n个n次根又可表示为

$$\sqrt[n]{w}$$
, $\sqrt[n]{w}\omega$, \cdots , $\sqrt[n]{w}\omega^{n-1}$.

1.3 复数列的极限

定义 1.5 (复数列收敛)

- 1. 复数列 $\{z_n\}$ 收敛到 $\mathbb C$ 中的点 z_0 ,是指对于任给的 $\varepsilon>0$,存在正整数 N,当 n>N 时, $|z_n-z_0|<\varepsilon$,记作 $\lim_{n\to\infty}z_n=z_0$.
- 2. 复数列 $\{z_n\}$ 收敛到 ∞ ,是指对任给的正数 M>0,存在正整数 N,当 n>N 时, $|z_n|>M$,记为 $\lim_{n\to\infty}z_n=\infty$.

定义 1.6 (圆盘)

对于 $a \in \mathbb{C}, r > 0$,称

$$B(a,r) = \{ z \in \mathbb{C} : |z - a| < r \}$$

为以 a 为中心、以 r 为半径的圆盘. 特别当 a=0, r=1 时, $B(0,1)=\{z:|z|<1\}$ 称为单位圆盘. B(a,r) 也称为 a 点的一个 r 邻域,或简称为 a 的邻域. 无穷远点 $z=\infty$ 的邻域是指集合 $\{z\in\mathbb{C}:|z|>R\}$,记为 $B(\infty,R)$.

定义 1.7 (复数列收敛的几何定义)

- 1. $\lim_{n\to\infty} z_n = z_0$ 可以说成对任给的 $\varepsilon > 0$, 当 n 充分大时, $z_n \in B(z_0,\varepsilon)$.
- 2. $\lim_{n\to\infty} z_n = \infty$ 可以说成对任给的 M>0, 当 n 充分大时, $z_n\in B(\infty,M)$.

定义 1.8 (复 Cauchy 列)

复数列 $\{z_n\}$ 称为 Cauchy 列, 如果对任给的 $\varepsilon > 0$, 存在正整数 N, 当 m, n > N 时, 有 $|z_n - z_m| < \varepsilon$.

命题 1.8 (Cauchy 收敛准则)

 $\{z_n\}$ 收敛的充要条件是 $\{z_n\}$ 为 Cauchy 列. 由此知道 $\mathbb C$ 是完备的.

证明 设 $z_n = x_n + iy_n, z_m = x_m + iy_m$, 那么从等式

$$|z_n - z_m| = \sqrt{(x_n - x_m)^2 + (y_n - y_m)^2}$$

可知, $\{z_n\}$ 是 Cauchy 列的充分必要条件是它的实部 $\{x_n\}$ 和虚部 $\{y_n\}$ 都是实的 Cauchy 列.

引理 1.2

若
$$\alpha_n$$
 满足当 $n\to\infty$ 时, $\alpha_n=O\left(\frac{1}{n^2}\right)$. i.e. $\exists M>0,$ s.t. $\left|n^2\alpha_n\right|\leqslant M,$ 则
$$\lim_{n\to n}\left(1+\alpha_n\right)^n=1$$

证明

$$|(1+\alpha_n)^n - 1| = \left| n\alpha_n + \binom{n}{2} \alpha_n^2 + \dots \binom{n}{n} \alpha_n^n \right|$$

$$\leq n \frac{|\alpha_n|}{n^2} + \binom{n}{2} \frac{|M^2|}{n^4} + \dots \binom{n}{n} \frac{|M^n|}{n^{2n}}$$

$$< \frac{1}{n} \left(M + \frac{M^2}{2} + \dots + \frac{M^n}{n!} \right)$$

$$< \frac{e^M - 1}{n} < \varepsilon$$

注

$$\begin{pmatrix} n \\ k \end{pmatrix} \frac{M^k}{n^{2k}} = \frac{n(n-1)..(n-k+1)}{k!} \frac{M^k}{n^{2k}}$$
$$< \frac{1}{k!} \frac{M^k}{n^k} < \frac{M^k}{k!n}$$

例题 1.1 求证: 对于 $z \in \mathbb{C}$, 极限 $f(z) = \lim_{n \to \infty} (1 + \frac{z}{n})^n$ 存在。

证明

- 1. 若 $z = x \in \mathbb{R}, f(z) = e^x = e^z$
- 2. 若 z = iy $f(z) = \cos y + i \sin y$

$$\left(1 + \frac{\mathrm{i}y}{n}\right)^n = \left[r_n\left(\cos\theta_n + \mathrm{i}\sin\theta_n\right)\right]^n$$

$$= r_n^n\left(\cos n\theta_n + \mathrm{i}\sin n\theta_n\right)$$

$$r_n = \sqrt{1 + \frac{y^2}{n^2}} \quad \theta_n = \arctan\frac{y}{n}$$

$$\lim_{n \to \infty} r_n^n = \lim_{n \to \infty} \left(1 + \frac{y^2}{n^2}\right)^{\frac{n}{2}} = 1$$

$$\lim_{n \to \infty} n\theta_n = \lim_{n \to \infty} n \arctan\frac{y}{n}$$

$$\lim_{n \to \infty} \left(1 + \frac{\mathrm{i}y}{n}\right)^n = \cos y + \mathrm{i}\sin y$$

3. 若 $f(z_1)$ 存在, $f(z_2)$ 存在,则 $f(z_1 + z_2) = f(z_1) f(z_2)$ 已知 $\lim_{n \to \infty} (1 + \frac{z_1}{n})^n$, $\lim_{n \to \infty} (1 + \frac{z_2}{n})^n$ 存在

$$\lim_{n \to \infty} \left(1 + \frac{z_1 + z_2}{n} \right)^n = \lim_{n \to \infty} \left(\frac{\left(1 + \frac{z_1}{n} \right) \left(1 + \frac{z_2}{n} \right)}{\frac{1 + \frac{z_1 + z_2}{n} + \frac{z_1 z_2}{n^2}}{1 + \frac{z_1 + z_2}{n}}} \right)^n$$

$$= \lim_{n \to \infty} \frac{\left(1 + \frac{z_1}{n} \right)^n \left(1 + \frac{z_2}{n} \right)^n}{\left(1 + \frac{1}{n^2} \frac{z_1 z_2}{1 + \frac{z_1 + z_2}{n}} \right)^n}$$

$$= \lim_{n \to \infty} \left(1 + \frac{z_1}{n} \right)^n \left(1 + \frac{z_2}{n} \right)^n$$

1.4 复平面上的拓扑

定义 1.9

设E是一平面点集, \mathbb{C} 中的点对E而言可以分为三类:

- 1. 如果存在 r > 0,使得 $B(a,r) \subset E$,就称 $a \to E$ 的内点.
- 2. 如果存在 r > 0,使得 $B(a,r) \subset E^c$,就称 $a \to E$ 的外点这里, E^c 是由所有不属于 E 的点构成的集,称为 E 的余集或补集.
- 3. 如果对任意 r > 0, B(a,r) 中既有 E 的点, 也有 E^c 的点, 就称 a 为 E 的边界点.

*

定义 1.10

- 1. E 的内点的全体称为 E 的内部,记为 E° .
- 2. E 的外点的全体称为 E 的外部, 它就是 E 的余集 E^{c} 的内部, 即 $(E^{c})^{c}$.
- 3. E 的边界点的全体称为 E 的边界, 记为 ∂E .

命题 1.9

点集 E 把复平面分成三个互不相交的部分: $\mathbb{C} = E^{\circ} \cup (E^{c})^{\circ} \cup \partial E$, 即

$$(\partial E)^{c} = E^{\circ} \cup (E^{c})^{\circ}.$$

定义 1.11

- 1. 如果 E 的所有点都是它的内点, 即 $E = E^{\circ}$, 就称 E 为开集.
- 2. 如果 E^{c} 是开集, 就称 E 为闭集.

注 例如,B(a,r) 是开集,闭圆盘 $\{z: |z-a| \leq r\}$ 是闭集,B(a,r) 和它的上半圆周的并集既不是开集也不是闭集.

定义 1.12

- 1. 点 a 称为集 E 的极限点或聚点,如果对任意 r > 0, B(a,r) 中除 a 外总有 E 中的点.
- 2. 集E的所有极限点构成的集称为E的导集,记为E'.
- 3. E 中不属于 E' 的点称为 E 的孤立点.
- 4. E 和它的导集 E' 的并称为 E 的闭包,记为 \bar{E} ,即 $\bar{E}=E\cup E'$.

第2章 全纯函数

2.1 解析函数的概念与 Cauchy-Riemann 条件

2.1.1 复变函数的导数与微分

定义 2.1

设w = f(z)在区域D内有定义, $z_0 \in D$,若

$$\frac{\Delta w}{\Delta z} = \frac{f(z) - f(z_0)}{z - z_0} = \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} \rightarrow \alpha(\Delta z \rightarrow 0)$$
 则称 $f(z)$ 在 z_0 可导或可微, 记为 $f'(z_0)$, 称 $f'(z_0)$ Δz 为 $f(z)$ 在 z_0 的微分.

若 f(z) 在 D 内处处可微, 则称 f(z) 在 D 内可微, 记 $\frac{dw}{dz} = f'(z)$.

第3章 复变函数的积分

3.1 复积分概念及其简单性质

3.1.1 复积分定义

定义 3.1

以下提到的曲线除特别说明外,一般指光滑曲线或分段光滑曲线,称光滑或分段光滑的闭曲线为围 线。

复积分定义类似于第二类曲线积分, 记: $\int_{C} f(z)dz$, 这里有向曲线 $c: z = z(t) = x(t) + iy(t)(a \le t)$ $t \leq b$)(见书)

定理 3.1

设 f(z) = u(x,y) + iv(x,y) 在 c 上连续, 则 f(z) 沿 c 可积, 且

$$\int_{c} f(z)dz = \int_{c} udx - vdy + i \int_{c} vdx + udy$$

3.1.2 复积分基本性质

命题 3.1 (基本性质)

设f(z), $f_1(z)$, $f_2(z)$ 在c上连续, c^- 表示c的负向, 则

1.
$$\int_C (f_1 \pm f_2) dz = \int_C f_1 dz \pm \int_C f_2 dz$$

2.
$$\int_{a}^{b} \alpha f(z) dz = \alpha \int_{a}^{b} f(z) dz$$

3.
$$\int_{c^{-}}^{c} f(z) dz = -\int_{c}^{c} f(z) dz$$

4. 若
$$c = c_1 + c_2 + \dots + c_n$$
, 则 $\int_c f(z) dz = \int_{c_1} f(z) dz + \dots + \int_{c_n} f(z) dz$

5. 设 f(z) 在 c 上连续, $|f(z)| \leq M(z \in c)$, L 为 c 的长, 则

$$\left| \int_{c} f(z) dz \right| \leqslant \int_{c} |f(z)| |dz| = \int_{c} |f(z)| ds \leqslant ML$$

注 定积分中值定理不能直接推广到复积分. 考虑:
$$\int_0^{2\pi} e^{\mathrm{i}\theta} \mathrm{d}\theta = \int_0^{2\pi} (\cos\theta + \mathrm{i}\sin\theta) \mathrm{d}\theta = 0$$
 但 $e^{\mathrm{i}\theta}(2\pi - 0) \neq 0$

3.1.3 复积分的计算

命题 3.2 (参数方程法)

设 $c: z = z(t) = x(t) + iy(t) (a \le t \le b), z'(t) = x'(t) + iy'(t),$ 则

$$\int_{C} f(z) dz = \int_{a}^{b} f(z(t)) z'(t) dt$$

证明 设有光滑曲线 $c: z = z(t) = x(t) + iy(t) (a \le t \le a)$. 又设 f(z) 沿 c 连续.

$$\Rightarrow f(z(t)) = u[x(t), y(t)] + iv[x(t), y(t)] = u(t) + iv(t)$$

则由定理3.1:

$$\begin{split} \int_c f(z(t)) &= \int_a^b u \mathrm{d}x - v \mathrm{d}y + \mathrm{i} \int_a^b v \mathrm{d}x + u \mathrm{d}y \\ &= \int_a^b u x'(t) \mathrm{d}t - v y'(t) \mathrm{d}t + \mathrm{i} \int_a^b v x'(t) \mathrm{d}t + u y'(t) \mathrm{d}t \\ &= \int_a^b f(z(t)) z'(t) \mathrm{d}t \end{split}$$

练习 3.1 $I = \int_c \frac{\mathrm{d}z}{(z-\alpha)^n} = \begin{cases} 2\pi \mathrm{i}, (n=1) \\ 0, (n \neq 1) \end{cases}$,其中 c 是圆 $|z-\alpha| = r(r > 0)$.

 $\mathbf{m} c: z - \alpha = re^{\mathrm{i}\theta} (0 \leqslant \theta \leqslant$

$$\int_{c} \frac{\mathrm{d}z}{(z-\alpha)^{n}} = \int_{0}^{2\pi} \frac{\mathrm{i}re^{\mathrm{i}\theta}}{r^{n}e^{\mathrm{i}n\theta}} \mathrm{d}\theta = \frac{\mathrm{i}}{r^{n-1}} \int_{0}^{2\pi} e^{\mathrm{i}(1-n)\theta} \mathrm{d}\theta$$

- 1. 当 n = 1 时, $I = 2\pi i$;
- 2. 当 $n \neq 1$ 时, I = 0. **练习 3.2** 计算 $I = \int_{a}^{dz} \frac{dz}{z}$, 其中:
 - 1. c 是从 1 沿上半单位圆周到 -1.
 - 2. c 是从 1 沿下半单位圆周到-1.

解

1.

$$I = \int_{0}^{\pi} \frac{\mathrm{d}z}{z} = \int_{0}^{\pi} \frac{\mathrm{i}e^{\mathrm{i}\theta}}{e^{\mathrm{i}\theta}} \mathrm{d}\theta = \pi \mathrm{i}$$

2.

$$I = \int_{c} \frac{\mathrm{d}z}{z} = \int_{0}^{-\pi} \frac{\mathrm{i}e^{\mathrm{i}\theta}}{e^{\mathrm{i}\theta}} \mathrm{d}\theta = -\pi \mathrm{i}$$

- **练习 3.3** 计算 $I = \int_{a} \overline{z} dz$, 其中 c:
 - 1. 从原点到 1+i 的线段.
 - 2. 从原点沿圆 |z-i|=1 到 1+i 的劣弧.

1. $c: y = x(0 \le x \le 1), z = x + yi = (1 + i)x$,

$$I = \int_0^1 (1 - i)x(1 + i)dx = 1$$

2.
$$c: z - \mathbf{i} = e^{\mathbf{i}\theta} \left(-\frac{\pi}{2} \leqslant \theta \leqslant 0 \right)$$
, $(\theta \not\in z - i \text{ 的辐角})$.
$$I = \int_{-\frac{\pi}{2}}^{0} \left(-\mathbf{i} + e^{-\mathbf{i}\theta} \right) \mathbf{i} e^{\mathbf{i}\theta} \mathrm{d}\theta = 1 + \left(\frac{\pi}{2} - 1 \right) \mathbf{i}$$

3.2 Cauchy 积分定理

3.2.1 Cauchy 积分定理

定理 3.2

设 f(z) 在单连通区域 D 内解析, c 为 D 内任一围线, 则 $\int_c f(z) \mathrm{d}z = 0$.

 \mathbb{C}

证明 Riemann 证明

练习 3.4 求 $I = \int_{|z|=1} \frac{\mathrm{d}z}{\sin z - 1}$

解 不解析点: $\frac{\pi}{2} + 2k\pi$

因此 f(z) 在 |z|=1 内无不解析点,在 |z|=1 上处处解析,由 Cauchy 积分定理 I=0.

推论 3.1

单连通域内解析函数积分与路径无关: 设L 是D 内从 z_0 到 z_1 的任意一条曲线,则

$$\int_{L} f(z) dz = \int_{z_0}^{z_1} f(z) dz$$

 $^{\circ}$

3.2.2 Cauchy 积分定理的推广

命题 3.3

- 1. 设 c 是一条围线, D 是 c 的内部, f(z) 在 D 解析连续到 c, 则 $\int_{c} f(z)dz = 0$ 。
- 2. 设 c 是复围线, $c=c_0+c_1^-+\cdots+c_n^-$, 其中: c_j 均在 c_0 内部且互不相交、互不包含, D 是以 c 为边界的区域, f(z) 在 D 内解析, 连续到 c, 则 $\int f(z)\mathrm{d}z=0$ 。

解作 $c_1:|z-\alpha|=r(er>0)$ (圆周 - 规则图形) 使 c_1 在 c 的内部, 由 Cauchy 积分定理:

$$I = \int_{c_1} \frac{\mathrm{d}z}{(z - \alpha)^n} = \begin{cases} 2\pi i & (n = 1) \\ 0 & (n \neq 1) \end{cases}$$

3.3 Cauchy 积分公式及其推论

3.3.1 Cauchy 积分公式

设 c 是围线或复围线,D 是以 c 为边界的有界区域, f(z) 在 D 内解析且连续到 $c,z\in D$, 则

$$f(z) = \frac{1}{2\pi i} \int_{c} \frac{f(\varsigma)}{\varsigma - z} d\varsigma$$

证明 作 $C_r: |\varsigma - z| = r$, 使 C_r 及其内部均在 D 内, 由复连通域柯西定理, 有:

$$\int_{C} \frac{f(\varsigma)}{\varsigma - z} d\varsigma = \int_{C_{\pi}} \frac{f(\varsigma)}{\varsigma - z} d\varsigma$$

下面证明: $\lim_{r\to 0}\int_{C_r}\frac{f(\varsigma)}{\varsigma-z}\mathrm{d}\varsigma=2\pi\mathrm{i}f(z)$ 由 $f(\varsigma)$ 在 z 连续, 故对 $\forall \varepsilon>0, \exists \delta, \ \exists \ |\varsigma-z|<\delta$ 时, 有 $|f(\varsigma)-f(z)|<\varepsilon$.

取 $r < \delta$, 则

$$\left| \int_{C_r} \frac{f(\varsigma)}{\varsigma - z} d\varsigma - 2\pi i f(z) \right| = \left| \int_{C_r} \frac{f(\varsigma)}{\varsigma - z} d\varsigma - \int_{C_r} \frac{f(z)}{\varsigma - z} d\varsigma \right|$$
$$= \left| \int_{C_r} \frac{f(\varsigma) - f(z)}{\varsigma - z} d\varsigma \right|$$
$$< \frac{2\pi r}{r} \varepsilon$$

1. 计算积分 $\int_{\mathcal{C}} \frac{f(\varsigma)}{\varsigma - z} d\varsigma = 2\pi i f(z)$.

2. 解析函数在区域内的函数值,可以用边界上的函数值表示.

练习 3.6 求下列积分: 1. $\int \frac{e^{iz}}{z-i} dz, c$ 是不经过 i 的一条围线.

2. $\int_{c} \frac{e^{iz}}{z^2+1} dz$, c 是不经过 ±i 的一条围线.

1. (a). i 在 c 的外部

由 Cauchy 积分定理, $\frac{e^{iz}}{z-i}$ 在 c 内处处解析, $\therefore I=0$

(b). i 在 c 的内部

由 Cauchy 积分公式,
$$I=2\pi\mathrm{i}f(\mathrm{i})=\frac{2\pi\mathrm{i}}{e}$$

2. (a). ±i 在 c 的外部

由 Cauchy 积分定理, I=0

(b). i 在
$$c$$
 的内部, $-i$ 在 c 的外部
$$\int_{c} \frac{e^{\mathrm{i}z}}{z^{2}+1} \mathrm{d}z = \int_{c} \frac{e^{\mathrm{i}z}}{(z+\mathrm{i})(z-\mathrm{i})} \mathrm{d}z = 2\pi\mathrm{i}f(\mathrm{i}) = 2\pi\mathrm{i}\frac{e^{-1}}{2\mathrm{i}} = \frac{\pi}{e}$$
 (c). i 在 c 的外部, $-\mathrm{i}$ 在 c 的内部

(c). 1 在
$$c$$
 的外部, -1 在 c 的内部
$$\int_{c} \frac{e^{\mathrm{i}z}}{z^{2}+1} \mathrm{d}z = \int_{c} \frac{e^{\mathrm{i}z}}{(z+\mathrm{i})(z-\mathrm{i})} \mathrm{d}z = 2\pi\mathrm{i}f(-\mathrm{i}) = 2\pi\mathrm{i}\frac{e}{-2\mathrm{i}} = -\pi e$$
 (d). $\pm\mathrm{i}$ 在 c 的内部

作
$$c_1 = |z - i| = r_1, c_2 : |z + i| = r_2$$

$$\int_{c} \frac{e^{iz}}{(z^{2}+1)} dz = \left(\int_{c_{1}} + \int_{c_{2}} \right) \frac{e^{iz}}{(z^{2}+1)} dz = \frac{\pi}{e} - \pi e$$

练习 3.7 设 C 是一条围线, D 是 C 的内部, f(z), g(z) 均在 D 内解析连续到 C, 且在 C 上 f(z) = g(z), 试问 f(z) 与 g(z) 在 D 内有何关系?

解 相等,这是显然的.

定理 3.4 (解析函数平均值定理)

如果函数 f(z) 在圆 $|\varsigma - z_0| < R$ 内解析, 在闭圆盘 $|\varsigma - z_0| \le R$ 上连续, 则

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + Re^{i\varphi}) d\varphi$$

即 f(z) 在圆心 z_0 的值等于它在圆周上的值的算术平均数.

证明 设 c 表示圆周 $|\varsigma - z_0| = R$, 则

$$\varsigma - z_0 = Re^{i\varphi}, (0 \leqslant \varphi \leqslant 2\pi), d\varsigma = iRe^{i\varphi}d\varphi,$$

由 Cauchy 积分公式:

$$f(z_0) = \frac{1}{2\pi i} \int_c \frac{f(\varsigma)}{\zeta - z_0} d\varsigma$$
$$= \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(z_0 + Re^{i\varphi}) iRe^{i\varphi} d\varphi}{Re^{i\varphi}}$$
$$= \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + Re^{i\varphi}) d\varphi$$

练习 3.8 设 f(z) 在闭圆盘 $|z| \leq R$ 上解析, 若存在 a > 0, 使当 |z| = R 时, |f(z)| > a,

而且 |f(0)| < a. 试证:在圆 |z| < R 内 f(z) 至少有一个零点. 证明 假设 f(z) 在闭圆盘 |z| < R 内无零点,由题设知函数 $F(z) = \frac{1}{f(z)}$ 在闭圆盘 $|z| \leqslant R$ 上解析,且

$$|F(0)| = \frac{1}{|f(0)|} > \frac{1}{a}, \quad |F\left(Re^{i\varphi}\right)| = \frac{1}{|f\left(Re^{i\varphi}\right)|} < \frac{1}{a}$$

由解析函数平均值定理:

$$F(0) = \frac{1}{2\pi} \int_0^{2\pi} F\left(Re^{i\varphi}\right) d\varphi$$

从而

$$\frac{1}{a} < |F(0)| = \left| \frac{1}{2\pi} \int_0^{2\pi} F\left(Re^{i\varphi}\right) d\varphi \right| < \frac{1}{a} \cdot \frac{1}{2\pi} \cdot 2\pi = \frac{1}{a} , \quad \mathcal{F}fi.$$

3.3.2 高阶导数公式—解析函数无穷可微性

定理 3.5

在柯西公式条件下, f(z) 在 D 内有任意阶导数, 且

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_c \frac{f(\varsigma)}{(\varsigma - z)^{n+1}} d\varsigma$$

注

- 1. 可用于计算积分 $\int_{\mathcal{C}} \frac{f(\varsigma)}{(\varsigma z)^{n+1}} d\varsigma = \frac{2\pi i}{n!} f^{(n)}(z) .$
- 2. 解析函数的各阶导数仍然是解析函数.

例题 3.1

$$I = \int_{|z-1|=2} \frac{e^z}{(z-1)^3} dz = \frac{2\pi i}{2!} (e^z)'' \Big|_{z=1} = e\pi i$$

练习 3.9 求 $I = \int_c \frac{\cos z}{(z-\mathrm{i})^3} \mathrm{d}z$, 其中 c 是绕 i 一周的周线.

解

$$I = \frac{2\pi i}{2!} (\cos z)'' \bigg|_{z=i} = -\pi i \cos i = -\pi \frac{e^{-1} + e}{2} i$$

练习 3.10 计算 $I = \int_c \frac{e^z}{(z^2+1)^2} dz$, 其中 c 为正向圆周:|z| = r > 1.

解在c内f(z)有两个不解析点 $z_1 = i, z_2 = -i$

$$I = \int_c \frac{e^z}{(z+\mathrm{i})^2 (z-\mathrm{i})^2} \mathrm{d}z$$

作 $c_1: |z+i| = r_1, c_2: |z-i| = r_2$

$$\int_{c_1} \frac{e^z}{(z+\mathrm{i})^2 (z-\mathrm{i})^2} \mathrm{d}z = 2\pi\mathrm{i} \left(\frac{e^z}{(z-\mathrm{i})^2} \right)' \bigg|_{z=-\mathrm{i}} = \frac{e^{-\mathrm{i}} (\mathrm{i} - 1)}{4} \cdot 2\pi\mathrm{i} = \frac{e^{-\mathrm{i}} (-1-\mathrm{i})}{2} \pi$$

$$\int_{c_2} \frac{e^z}{(z+\mathrm{i})^2 (z-\mathrm{i})^2} \mathrm{d}z = 2\pi\mathrm{i} \left(\frac{e^z}{(z+\mathrm{i})^2} \right)' \bigg|_{z=\mathrm{i}} = -\frac{e^{\mathrm{i}} (1+\mathrm{i})}{4} \cdot 2\pi\mathrm{i} = \frac{e^{\mathrm{i}} (1-\mathrm{i})}{2} \pi$$

由 Cauchy 积分定理:

$$I = \left(\int_{c_1} + \int_{c_2} \right) \frac{e^z}{(z+i)^2 (z-i)^2} dz = \pi i (\sin 1 - \cos 1)$$

3.3.3 Cauchy 不等式与 Liouville 定理

命题 3.4 (Cauchy 不等式)

设 f(z) 在区域 D 内解析, $\alpha \in D$, 圆周 $C_R: |\varsigma - \alpha| = R$ 及其内部在 D 内, 则

$$\left|f^{(n)}(\alpha)\right| \leqslant \frac{n!M(R)}{R^n}$$
, $\sharp + M(R) = \max_{|\zeta - \alpha| = R} |f(\varsigma)|, n = 1, 2, 3, \cdots$

证明

$$\left| f^{(n)}(\alpha) \right| = \left| \frac{n!}{2\pi i} \int_{C_R} \frac{f(z) dz}{(z - \alpha)^{n+1}} \right| \leqslant \frac{n!}{2\pi} \cdot \frac{2\pi R M(R)}{R^{n+1}} = \frac{n! M(R)}{R^n}$$

注 特别地, 当 n=1 时, $\left|f'(\alpha)\right| \leqslant \frac{M(R)}{R}$.

定义 3.2 (整函数)

全平面上解析的函数. (例如: e^z , $\sin z$, $\cos z$ 等)

定理 3.6 (Liouville 定理)

有界整函数必为常数.

证明 若 f(z) 在全平面解析且有界, 即 $\forall z, |f(z)| \leq M$, 则由 Cauchy 不等式

$$|f'(z)| \leqslant \frac{M}{R} \to 0(R \to +\infty)$$

从而 f'(z) = 0, 即 f(z) 为常数.

注用 Liouville 定理说明 sin z, cos z 的无界性

证明 令 $F(z) = e^{f(z)}$,则 F(z) 为整函数,且

$$|F(z)| = \left| e^{\operatorname{Re} f(z) + i \operatorname{Im} f(z)} \right| = e^{\operatorname{Re} f(z)} < e^{M}$$

由 Liouville 定理, F(z) 为常数, 从而 f(z) 为常数,

3.3.4 代数学基本定理

定理 3.7 (代数学基本定理)

$$n$$
 次多项式 $P_n(z) = \alpha_n z^n + \alpha_{n-1} z^{n-1} + \dots + \alpha_1 z + \alpha_0 (\alpha_n \neq 0)$ 必有 n 个根.

注 上述定理等价于 $P_n(z) = 0$ 至少有一个根.

证明 (反证法)

若 $P_n(z) \neq 0$, 则 $f(z) = \frac{1}{P_n(z)}$ 在全平面解析. 下证 f(z) 在 z 平面有界.

由于
$$\lim_{z \to \infty} P_n(z) = \lim_{z \to \infty} z^n \left(\alpha_n + \frac{\alpha_{n-1}}{z} + \dots + \frac{\alpha_0}{z^n} \right) = \infty,$$

故 $\lim_{z \to \infty} f(z) = \lim_{z \to \infty} \frac{1}{P_n(z)} = 0, \exists R > 0, \ \exists |z| > R$ 时, $|f(z)| < M_1$.

 $|z| \leq R$ 时, $|f(z)| \leq M_2$.

综上可得, $|f(z)| < M = \max\{M_1, M_2\}$, 即 f(z) 在全平面上有界.

由 Liouville 定理, f(z) 为常数, 从而 $P_n(z)$ 为常数, 矛盾!

定理 3.8 (Morera 定理)

若 f(z) 在单连通区域 D 内连续, c 是 D 内任意一条围线, 有 $\int_{C} f(z) \mathrm{d}z = 0$, 则 f(z) 在 D 内解析.

注 Morera 定理为 Cauchy 积分定理的逆定理.

命题 3.5 (解析函数充要条件 (积分型))

f(z) 在区域 D 内解析 \iff f(z) 在 D 内连续, 对任一围线 c 及其内部全含于 D, 有 $\int_c f(z) \mathrm{d}z = 0$.

3.4 解析函数与调和函数的关系

定义 3.3 (调和函数)

如果二元实函数 H(x,y) 在区域 D 内有二阶连续偏导数, 且满足 Laplace 方程

$$\frac{\partial^2 H}{\partial x^2} + \frac{\partial^2 H}{\partial y^2} = 0$$

则称 H(x,y) 为区域 D 内的调和函数.

定义 3.4 (共轭调和函数)

若 f(z) = u + iv 在区域 D 内解析, 则由 C - R 条件得:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Longrightarrow \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 v}{\partial x \partial y}, \quad \frac{\partial^2 u}{\partial y^2} = -\frac{\partial^2 v}{\partial y \partial x}$$

故

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \quad \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$$

即 u(x,y),v(x,y) 为 D 内的调和函数,并称 v 为 u 的共轭调和函数.

定理 3.9

设u(x,y)是在单连通区域D内的调和函数,则存在

$$v(x,y) = \int_{(x_0,y_0)}^{(x,y)} -u_y dx + u_x dy + c$$

使若 f(z) = u + iv 是 D 内的解析函数.

练习 3.12 说明 $u(x,y) = y^3 - 3x^2y$ 为调和函数, 并求其共轭调和函数 v(x,y).

解

第4章 解析函数的幂级数表示

4.1 复级数的基本性质

4.1.1 复数项级数

定义 4.1

对于复数项的无穷级数

$$\sum_{n=1}^{\infty} z_n = z_1 + z_2 + \dots + z_n + \dots$$
 (4.1)

令 $s_n=z_1+z_2+\ldots+z_n$,若 $\lim_{n\to\infty}s_n=s$,则称复数项无穷级数收敛于 s,反之称级数发散

1. 若
$$\sum_{n=1}^{\infty} z_n$$
 收敛, $\sum_{n=1}^{\infty} |z_n|$ 不收敛, 则为条件收敛.

2. 若
$$\sum_{n=1}^{\infty} z_n$$
 收敛, $\sum_{n=1}^{\infty} |z_n|$ 也收敛, 则为绝对收敛.

命题 4.1

 $\diamondsuit z_n = x_n + iy_n = r_n e^{i\theta_n}, z_0 = x_0 + iy_0 = r_0 e^{i\theta_0}$

$$\lim_{n \to \infty} z_n \Longleftrightarrow \lim_{n \to \infty} x_n = x_0, \lim_{n \to \infty} y_n = y_0 \Longleftrightarrow r_n \to r_0, \theta_n \to \theta_0$$

命题 4.2 (Cauchy 法则)

 $\forall \varepsilon > 0, \exists N, \, \exists n > N$ 时, $\forall p$, 有 $|z_{n+p} - z_n| < \varepsilon$, 则 $\sum_{n=1}^{\infty} z_n$ 收敛.

$$\sum_{n=1}^{\infty} z_n = \sum_{n=1}^{\infty} x_n + i \sum_{n=1}^{\infty} y_n = a + ib \iff \sum_{n=1}^{\infty} x_n = a, \sum_{n=1}^{\infty} y_n = b$$

命题 4.3 (敛散性判别)

- 1. 若 $\lim_{n\to\infty} z_n \neq 0$, 则 4.1 发散.
- 2. 若 $\sum_{n=1}^{\infty} |z_n|$ 收敛, 则 4.1 收敛.
- 3. 若 $\sum_{n=1}^{\infty} x_n, \sum_{n=1}^{\infty} y_n$ 收敛, 则4.1 收敛.
- 4. Cauchy 准则4.2

练习 4.1 考察
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} + \frac{\mathrm{i}}{2^n}\right)$$
 的敛散性解

$$\sum_{n=1}^{\infty} \frac{1}{n} \, \xi \, \mathring{\mathbf{t}}, \, \mathbb{E} \, \mathbf{x} \, \mathbf{x}$$

 \Diamond

4.1.2 一致收敛的复函数项级数

定义 4.2 (函数项级数)

设 $f_n(z)(n=1,2,\cdots)$ 在点集 E 上有定义, 称

$$\sum_{n=1}^{\infty} f_n(z) = f_1(z) + f_2(z) + \dots + f_n(z) + \dots$$
 (4.2)

为 E 上函数项级数.

定义 4.3 (逐点收敛)

若 $z_0 \in E$, $\sum_{n=1}^{\infty} f_n(z_0)$ 收敛, 则称4.2 在 z_0 收敛。

若4.2 在 E 上每一点均收敛, 则称在 E 上收敛, 其和为 z 的函数记为: $f(z) = \sum_{n=1}^{\infty} f_n(z)$

定义 4.4 (一致收敛)

定理 4.1 (柯西一致收敛准则)

 $\sum_{n=1}^{\infty} f_n(z)$ 在 E 上一致收敛 $\Longleftrightarrow \forall \varepsilon > 0, \exists N(\varepsilon), \exists n > N$ 时, 对任意的自然数 p, 有

$$|f_{n+1} + f_{n+2} + \dots + f_{n+p}| < \varepsilon$$

定理 4.2 (一致收敛优级数判别法)

如果在E上有 $|f_n(z)| \leq M_n$, $\{M_n\}$ 为正数列, 且 $\sum M_n$ 收敛, 则 $\sum_{n=1}^{\infty} f_n(z)$ 在E上一致收敛

证明 由 $\sum_{n=1}^{\infty} M_n$ 收敛, $\forall \varepsilon > 0, \exists N(\varepsilon), \exists n > N$ 时, 对任意的自然数 p, 有

$$|M_{n+1} + M_{n+2} + \dots + M_{n+p}| = M_{n+1} + \dots + M_{n+p} < \varepsilon$$

考虑

$$|f_{n+1} + f_{n+2} + \dots + f_{n+p}| \le |f_{n+1}| + |f_{n+2}| + \dots + |f_{n+p}| \le M_{n+1} + \dots + M_{n+p} < \varepsilon$$

练习 4.2 若 $\sum_{n=1}^{\infty} f_n(z)$ 在 E 上一致收敛, $|g(z)| < M(z \in E, M > 0)$

试证: $\sum_{n=1}^{\infty} g(z) f_n(z)$ 在 E 上一致收敛

证明 $\forall \varepsilon > 0, \exists N(\varepsilon), \exists n > N$ 时,对任意的自然数 p,有 $|f_{n+1} + f_{n+2} + \dots + f_{n+p}| < \varepsilon$ 考虑 $|gf_{n+1} + gf_{n+2} + \dots + gf_{n+p}| \leq M |f_{n+1} + f_{n+2} + \dots + f_{n+p}| < M\varepsilon$

命题 4.4 (一致收敛函数项级数和函数性质)

- 1. 一致收敛连续函数项级数的和函数连续。
- 2. 逐项可积: 设 $f_n(z)$ 在曲线 c 上连续,且 $\sum_{n=1}^{\infty} f_n(z)$ 在 c 上一致收敛于 f(z)则沿 c 可逐项积分,即 $\int_c f(z) \mathrm{d}z = \sum_{n=1}^{\infty} \int_c f_n(z) dz$
- 3. 逐项可导: $f^{(p)}(z) = \sum_{n=1}^{\infty} f_n^{(p)}(z)$

4.1.3 解析函数项级数

定义 4.5 (内闭一致收敛)

设函数 $f_n(z)(n=1,2,\cdots)$ 定义于区域 D 内,考虑 $\sum_{n=1}^{\infty} f_n(z)$ 在 D 内任一有界闭集上一致收敛,则称此级数在 D 内内闭一致收敛。

练习 4.3 $\sum_{n=1}^{\infty} f_n(z)$ 在 $D_R: |z-z_0| < R$ 内闭一致收敛 $\Longleftrightarrow \forall \rho(0 < \rho < R), \sum_{n=1}^{\infty} f_n(z)$ 在 $\overline{D_\rho}: |z-z_0| \leqslant \rho$ 上一致收敛

证明

- 1. ⇒ 显然
- 2. \iff 对 D_R 内任意一个有界闭集 $E, \exists \rho > 0$, 使 $E \subset \overline{D_\rho} \subset D_R$, 而 $\sum_{n=1}^\infty f_n(z)$ 在 $\overline{D_\rho}$ 上一致收敛, 故 在 E 上一致收敛, 从而在 D_R 内内闭一致收敛。

例题 4.1 $\sum_{n=1}^{\infty} z^n$ 在 |z| < 1 内内闭一致收敛于 $\frac{1}{1-z}$, 但在 |z| < 1 内不一致收敛。

命题 4.5

一般地,一致收敛 => 内闭一致收敛,反之不真。

定理 4.3 (Weierstrass 定理)

设 $f_n(z)(n=1,2,3,\cdots)$ 在 D 内解析函数, $\sum_{n=1}^{\infty} f_n(z)$ 在 D 内内闭一致收敛于 f(z), 则

1. f(z) 在 D 内解析

2.
$$f^{(k)}(z) = \sum_{n=1}^{\infty} f_n^{(k)}(z)$$

证明

1. $\forall z \in D$, 作 $\overline{D_r}$: $|\varsigma - z| \leqslant r \subset D$, 使 $\sum_{n=1}^{\infty} f_n(z)$ 在 $\overline{D_r}$ 上一致收敛于 f(z), 则 f(z) 在 $\overline{D_r}$ 上连续.

设C是 $\overline{D_r}$ 内任意一条围线,则

$$\int_{C} f(\varsigma) d\varsigma = \int_{C} \sum_{n=1}^{\infty} f_{n}(\varsigma) d\varsigma = \sum_{n=1}^{\infty} \int_{C} f_{n}(\varsigma) d\varsigma = 0$$

由 Morera 定理 f(z) 在 $\overline{D_r}$ 点解析, 从而在 z 点解析, 由 z 的任意性, f(z) 在 D 内解析.

2. 由高阶导数公式:

$$f^{(k)}(z) = \frac{k!}{2\pi i} \int_C \frac{f(\varsigma)}{(\varsigma - z)^{k+1}} d\varsigma$$

$$= \frac{k!}{2\pi i} \int_C \sum_{n=1}^{\infty} \frac{f_n(\varsigma)}{(\varsigma - z)^{k+1}} d\varsigma$$

$$= \sum_{n=1}^{\infty} \frac{k!}{2\pi i} \int_C \frac{f_n(\varsigma)}{(\varsigma - z)^{k+1}} d\varsigma$$

$$= \sum_{n=1}^{\infty} f_n^{(k)}(z)$$

4.2 幂级数

定义 4.6 (幂级数)

具有形如

$$\sum_{n=0}^{\infty} \alpha_n (z - z_0)^n = \alpha_0 + \alpha_1 (z - z_0) + \dots + \alpha_n (z - z_0)^n + \dots$$

的复函数项级数称为幂级数. 这是解析函数项级数, 在点 $z=z_0$ 处收敛, 和为 α_0 。

4.2.1 幂级数敛散性

定理 4.4 (Abel 定理)

若 $\sum_{n=0}^{\infty} \alpha_n (z-z_0)^n$ 在 $z_1 \neq z_0$ 收敛, 则在圆盘 $K: |z-z_0| < |z_1-z_0|$ 内绝对收敛, 且内闭一致收敛

证明

1. 先证绝对收敛. 因为 $\sum_{n=0}^{\infty} \alpha_n (z_1 - z_0)^n$ 收敛, 它的各项必有界, 存在正数 M, 使

$$|\alpha_n (z_1 - z_0)^n| \leqslant M(n = 0, 1, 2, \cdots)$$

从而

$$\left|\alpha_n (z - z_0)^n\right| = \left|\alpha_n (z_1 - z_0)^n \left(\frac{z - z_0}{z_1 - z_0}\right)^n\right| \leqslant M \left|\frac{z - z_0}{z_1 - z_0}\right|^n$$

由于 $\frac{|z-z_0|}{|z_1-z_0|} < 1$,故级数 $\sum_{n=0}^{\infty} M \left| \frac{z-z_0}{z_1-z_0} \right|^n$ 为收敛的等比级数,从而 $\sum_{n=0}^{\infty} \alpha_n (z-z_0)^n$ 在 K 内绝对收敛.

2. 再证内闭一致收敛。对 K 内任一闭圆盘 $\overline{K_{\rho}}: |z-z_0| \leqslant \rho (0 < \rho < |z_1-z_0|)$ 上的一切点,有

$$|\alpha_n (z - z_0)^n| \le M \left| \frac{z - z_0}{z_1 - z_0} \right|^n \le M \left(\frac{\rho}{|z_1 - z_0|} \right)^n$$

而优级数 $\sum_{n=0}^{\infty} M\left(\frac{\rho}{|z_1-z_0|}\right)^n$ 收敛, 由优级数判别法, 级数 $\sum_{n=0}^{\infty} \alpha_n (z-z_0)^n$ 在 $\overline{K_\rho}$ 上一致收敛, 从而在 K 内内闭一致收敛, 证毕.

推论 4.1

若在点 ς 发散, 则 $\sum_{n=0}^{\infty} \alpha_n (z-z_0)^n$ 在 $|z-z_0| > |\varsigma-z_0|$ 发散.

证明 假设在以 z_0 为圆心并通过 ς 的圆外部有一点 ξ 收敛, $|\varsigma-z_0|<|\xi-z_0|$. 由 Abel 定理, 幂级数在 $|z-z_0|<|\xi-z_0|$ 内绝对收敛且内闭一致收敛, 与点 ς 发散矛盾!

4.2.2 收敛半径

定义 4.7 (收敛半径)

若存在 R>0, 使得 $\sum_{n=0}^{\infty}\alpha_{n}\left(z-z_{0}\right)^{n}$ 在 $|z-z_{0}|< R$ 内收敛、绝对收敛、内闭一致收敛、在

 $|z-z_0| > R$ 发散. 称 R 为 $\sum_{n=0}^{\infty} \alpha_n (z-z_0)^n$ 的收敛半径, 且约定:

- 1. 若仅在 z_0 收敛、称 R = 0;
- 2. 若在全平面收敛,则 $R = +\infty$;
- 3. 称 $|z-z_0| < R$ 为的收敛圆盘, 称 $|z-z_0| = R$ 为收敛圆

命题 4.6

- 1. 对于任意的 $z \neq a$, 级数 $\sum_{n=0}^{\infty} \alpha_n (z-z_0)^n$ 均发散 R=0
- 2. 对于任意的 z , 级数 $\sum_{n=0}^{\infty} \alpha_n (z-z_0)^n$ 均收敛 $R=+\infty$

例题 4.2 在收敛圆上 $\sum_{n=0}^{\infty} \alpha_n (z-z_0)^n$ 未必收敛, 有下列三种情况:

- 1. 处处发散: $\sum_{n=0}^{\infty} z^n(|z|<1)$, 在 |z|=1 上处处发散.
- 2. 有收敛点, 也有发散点: $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}z^n}{n}$ 在 |z| < 1 内收敛, 在 z = 1 收敛, 在 z = -1 发散.
- 3. 处处收敛: $\sum_{n=1}^{\infty} \frac{z^n}{n^2}$, 在 |z| = 1 上处处收敛.

4.2.3 收敛半径的求法

命题 4.7

$$\left. \begin{array}{c} \lim\limits_{n \to +\infty} \left| \frac{\alpha_{n+1}}{\alpha_n} \right| \quad \text{(d'Alembert)} \\ \left. \overline{\mathbb{I}} \right| \quad \lim\limits_{n \to +\infty} \sqrt[n]{|\alpha_n|} \quad \text{(Cauchy)} \\ \overline{\lim\limits_{n \to +\infty}} \sqrt[n]{|\alpha_n|} \quad \text{(Cauchy-Hadamard)} \end{array} \right\} = l, \qquad \mathbb{N} R = \left\{ \begin{array}{c} \frac{1}{l}, (0 < l < +\infty) \\ 0, (l = +\infty) \\ +\infty, (l = 0) \end{array} \right.$$

练习 4.4 求 $\sum_{n=0}^{+\infty} n! z^n$ 的收敛半径

练习 4.5 求 $\sum_{n=0}^{\infty} z^{n^2}$ 的收敛半径

解
$$\alpha_n = \begin{cases} 1 & n = k^2 \\ 0 & n \neq k^2 \end{cases}$$
 $\Longrightarrow \overline{\lim}_{n \to +\infty} \sqrt[n]{|\alpha_n|} = 1$, 从而 $R = 1$.

4.2.4 幂级数和函数的性质

定理 4.5

- 1. 幂级数 $\sum_{n=0}^{\infty} \alpha_n (z-z_0)^n$ 的和函数 f(z) 在其收敛圆盘内解析.
- 2. 幂级数 $\sum_{n=0}^{\infty} \alpha_n (z-z_0)^n$ 的和函数 f(z) 在其收敛圆盘内逐项求导至任意阶

$$f^{(p)}(z) = p!c_p + (p+1)p \cdots 2c_{p+1}(z-a) + \cdots + n(n-1) \cdots (n-p+1)c_n(z-a)^{n-p} + \cdots$$
 其中

$$c_p = \frac{f^{(p)}(a)}{p!}$$

推论 4.2

幂级数 $\sum_{n=0}^{\infty} \alpha_n (z-z_0)^n$ 可沿收敛域内曲线 C 逐项积分,且收敛半径和原级数的收敛半径相同.

4.3 解析函数的泰勒展式

4.3.1 泰勒定理

定理 4.6 (泰勒定理)

设 f(z) 在区域 D 内解析, $a \in D$, 只要圆 K = |z - a| < R 含于 D ,则 f(z) 在 K 内能唯一展成幂级数

$$f(z) = \sum_{n=0}^{\infty} c_n (z - a)^n, \quad c_i = \frac{1}{2\pi i} \int_{\tau_\rho} \frac{f(\xi)}{(\xi - a)^{n+1}} d\xi = \frac{f^{(n)}(a)}{n!}$$
$$(\tau_\rho : |\xi - a| = \rho, 0 < \rho < R; n = 0, 1, 2, \dots)$$

定义 4.8 (泰勒展式的收敛半径)

展式的收敛半径为: z_0 与 f(z) 的离 z_0 最接近的奇点之间的距离.

练习 4.6 $f(z) = \frac{1}{(z-1)(z-2)}$ 在 z=0 解析, 求泰勒展式收敛半径. 解 有两个不解析点 $z=1, z=2 \Longrightarrow R=1$

定理 4.7

f(z) 在区域 D 内解析 $\iff f(z)$ 在 D 内任一点可展开成泰勒级数.

\odot

4.3.2 初等函数的泰勒展式

命题 4.8

一些初等函数的泰勒展式:

1.
$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n = 1 + z + z^2 + \dots + z^n + \dots (|z| < 1)$$

2.
$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!} = 1 + z + \frac{z^2}{2!} + \dots + \frac{z^n}{n!} + \dots (|z| < +\infty)$$

3.
$$\sin z = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n+1} = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots (|z| < +\infty)$$

4.
$$\cos z = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n} = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \dots (|z| < +\infty)$$

5.
$$\ln(1+z) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} z^n = z - \frac{z^2}{2} + \frac{z^3}{3} - \dots + (|z| < 1)$$

6.
$$(1+z)^{\alpha} = \sum_{n=0}^{\infty} \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!} z^n (|z| < 1)$$

练习 4.7 求 $f(z) = \frac{z}{z+2}$ 在 z=1 处的泰勒展式。

解

$$f(z) = \frac{z}{z+2} = 1 - \frac{2}{z+2} = 1 - \frac{2}{(z-1)+3} = 1 - \frac{2}{3\left(1 + \frac{z-1}{3}\right)} = 1 - \frac{2}{3}\sum_{n=0}^{\infty} \frac{(-1)^n}{3^n}(z-1)^n$$

4.4 解析函数零点的孤立性及唯一性定理

4.4.1 解析函数的零点与零点的阶

定义 4.9 (解析函数的零点)

- 1. 若 f(z) 在 z_0 解析, 且 $f(z_0) = 0$, 则称 z_0 为 f(z) 的零点.

$$f(z_0) = f'(z_0) = f''(z_0) = \cdots = f^{(n-1)}(z_0) = 0, \ \text{If } f^{(n)}(z_0) \neq 0,$$

则称 z_0 是 f(z) 的 n 阶零点.

命题 4.9 (解析函数零点阶的判定)

- 1. 用泰勒级数, 若 $f(z) = \sum_{n=0}^{\infty} \alpha_n (z-z_0)^n (|z-z_0| < R)$, 且 $\alpha_0 = \alpha_1 = \cdots = \alpha_{n-1} = 0$, 但 $\alpha_n \neq 0$, 则 z_0 为 f(z) 的 n 阶零点.
- 2. z_0 为 f(z) 的 n 阶零点 $\Longleftrightarrow f(z) = (z-z_0)^n \varphi(z)$, 其中 $\varphi(z)$ 在 z_0 解析, 且 $\varphi(z_0) \neq 0$.
- 练习 4.8 判断 z = 0 是 $f(z) = z \sin z$ 的几阶零点.

$$f(z) = z - \left(z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots\right) = z^3 \varphi(z)$$

其中 $\varphi(z)$ 在 z=0 解析, 且 $\varphi(0)=\frac{1}{3!}\neq 0$, 故 z=0 是 f(z) 的 3 阶零点.

命题 4.10

若 f(z), g(z) 分别以 z_0 为 m, n 阶零点,则

- 1. $f(z) \cdot g(z)$ 以 z_0 为 m+n 阶零点;
- 2. 若 m > n, 则 $\frac{f(z)}{g(z)}$ 以 z_0 为 m n 阶零点.

▲ 练习4.9

- 1. $1 + \cos z$ 以 π 为 Ξ 阶零点.
- 2. $e^{iz} + 1$ 以 _ π 为 _ _ _ 阶零点. 3. $f(z) = \frac{(z-\pi)^2(1+\cos z)^3e^z}{(e^{iz}+1)^2}$ 以 _ π 为 _ 六 _ 阶零点。

4.4.2 解析函数零点孤立性

定理 4.8 (解析函数零点孤立性定理)

若 f(z) 在 z_0 解析 (不妨设 $|z-z_0| < R$), 且 $f(z_0) = 0$. 如果 f(z) 不恒为零, 那么 z_0 是 f(z) 的孤 立零点 (即 $\exists r (0 < r < R), f(z)$ 在 $0 < |z - z_0| < r$ 内无零点).

 \iff 若 f(z) 在 z_0 解析 (不妨设 $|z-z_0| < R$), 且 $f(z_0) = 0$. 如果 z_0 是 f(z) 的零点聚点, 那么 $f(z) \equiv 0 (|z - z_0| < R).$

证明 不妨设 z_0 是 f(z) 的 n 阶零点,则 $f(z) = (z - z_0)^n \varphi(z)$,其中 $\varphi(z)$ 在 $|z - z_0| < R$ 解析,且 $\varphi(z_0) \neq 0$ 。

下证: $\exists r(0 < r < R), \varphi(z)$ 在 $|z - z_0| < r$ 内无零点, 即 $|\varphi(z)| > 0$.

由 $\varphi(z)$ 在点 z_0 连续且 $\varphi(z_0) \neq 0$, 则

 $\forall \varepsilon > 0, \exists r (0 < r \leqslant R), \exists |z - z_0| < r$ $\forall f, \notin |\varphi(z) - \varphi(z_0)| < \varepsilon,$ \Leftrightarrow

$$||\varphi(z_0)| - \varepsilon| \leq |\varphi(z)| \leq |\varphi(z_0)| + \varepsilon$$

取 $\varepsilon = \frac{|\varphi\left(z_{0}\right)|}{2}$,则有 $|\varphi(z)| \geqslant \frac{|\varphi\left(z_{0}\right)|}{2} > 0$,从而 f(z) 在 $0 < |z-z_{0}| < r$ 内无零点.

注考察实函数的一个例子

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} (x \neq 0) \\ 0 \quad (x = 0) \end{cases}$$

在实轴上可导, f(0) = 0, 即 x = 0 是零点, 但不是孤立零点.

因为 $x_n = \frac{1}{n\pi}(n = \pm 1, \pm 2, \cdots)$ 也是 f(x) 的零点, 且以 x = 0 为极限, 即 x = 0 是 f(x) 的零点聚点, 但 f(x) 不恒为零.

练习 4.10 是否存在函数 f(z), 在原点解析, 且在 $z_n = \frac{1}{n}(n = 1, 2, 3, \cdots)$ 上依次取值为 $0, 1, 0, 1, \cdots$. 证明 不存在.

假设存在 f(z) 在 |z| < R 内解析, 且在点 $z_{2n-1} = \frac{1}{2n-1}$ 上取值为 0 , 则 f(0) = 0 . 又 $z_{2n-1} \to 0$ $0(n \to \infty)$, 即 z = 0 是 f(z) 的零点聚点, 则 $f(z) \equiv 0$, 从而不能有 $f\left(\frac{1}{2n}\right) = 1$, 矛盾!

定理 4.9 (区域内解析函数零点孤立性)

设 f(z) 在区域 D 内解析, 不恒为零, 则 f(z) 在 D 内的零点是孤立的.

证明 假设 $z_0 \in D$ 是 f(z) 的零点聚点. 设 z' ($\neq z_0$) 是 D 内任意一点, 下证 f(z') = 0.

在 D 内作连续曲线 l 连接 z_0, z' . 设 D 的边界为 Γ, l 与 Γ 的距离为 d(>0).

从 z_0 开始在 l 上依次作分点 $z_1, z_2, \cdots z_{n-1}, z_n$, 使 $|z_{k+1} - z_k| = \frac{d}{2}(k = 0, 1, \cdots, n-1)$,

$$|z'-z_n| \leq \frac{d}{2}$$
. 作圆盘 $D_k: |z-z_k| < \frac{3}{4}d(k=0,1,\cdots n),$

则 f(z) 在 $\bar{D_k}$ 内解析, 且 $z_{k+1} \in D_k, z' \in D_n$.

由于 z_0 是 f(z) 的零点聚点, 由零点孤立性, f(z) 在 D_0 内恒为零.

由 $z_1 \in D_0$, 知 z_1 是 f(z) 的零点聚点, 故 f(z) 在 D_1 内恒为零.

以此类推, f(z) 在 D_n 内恒为零。因为 $z' \in D_n$, 故 f(z') = 0, 由 z' 的任意性, f(z) 在 D 内恒为零. 矛盾!

4.4.3 解析函数唯一性定理

定理 4.10 (唯一性定理)

设 f(z), g(z) 在区域 D 内解析, 点列 $\{z_n\} \subset D (z_n \neq z_0), f(z_n) = g(z_n)$. 若 $z_n \to z_0 \in D$,则 $f(z) \equiv g(z) (z \in D)$.

27

证明 令 $\varphi(z) = f(z) - g(z)$, 则 $\varphi(z) \in H(D)$, 且有零点聚点, 故在 D 内 $\varphi(z) \equiv 0$, 从而 $f(z) \equiv g(z)$.

例题 4.3 $f(z) = \cos \frac{1}{z}$ 在 $D: 0 < |z| < +\infty$ 内解析, g(z) = 1 在全平面解析.

在 $z_n=\frac{1}{2n\pi}(n=\pm 1,\pm 2,\cdots)\in D$ 上, $f(z_n)=g(z_n)=1$, 但 f(z) 与 g(z) 并不恒等, 原因在于 $z_n \to 0 \notin D$

练习 4.11 在原点解析且在 $z_n = \frac{1}{n}(n = 1, 2, \cdots)$ 处取下列各组值的函数是否存在?

1.
$$1, 1, \frac{1}{3}, \frac{1}{3}, \frac{1}{5}, \frac{1}{5}, \cdots$$

2. $\frac{1}{3}, \frac{2}{5}, \frac{3}{7}, \cdots$

2.
$$\frac{1}{3}, \frac{2}{5}, \frac{3}{7}, \cdots$$

1. 不存在.

如果存在
$$f(z)$$
 在原点解析, 取 $z_{2n-1}=\frac{1}{2n-1}$, 有 $f(z_{2n-1})=f\left(\frac{1}{2n-1}\right)=\frac{1}{2n-1}$, 令 $g(z)=z$, 则 $g\left(z_{2n-1}\right)=g\left(\frac{1}{2n-1}\right)=\frac{1}{2n-1}$ 又点列 $z_{2n-1}=\frac{1}{2n-1}\to 0\in D$, 故 $f(z)\equiv z$, 这与 $f\left(\frac{1}{2n}\right)=\frac{1}{2n-1}$ 矛盾!

2. 存在. 点列 $z_n = \frac{1}{n} \to 0 \in D$,且 $f\left(\frac{1}{n}\right) = \frac{n}{2n+1} = \frac{1}{2+\frac{1}{2}}$,故 $f(z) \equiv \frac{1}{2+z}$ 。

4.4.4 最大模原理

定理 4.11 (最大模原理)

设 f(z) 在区域 D 内解析, 且不为常数, 则 |f(z)| 在 D 内任何点都不能达到最大值. (除非 f(z) 在 D 内恒为常数)

证明 假设在 D 内有一点 z_0 , 使 $|f(z_0)| = \max_{z \in D} |f(z)| = M$. 作 D 内圆盘 $\overline{D_R} : |z - z_0| \leq R$ 。

由解析函数平均值定理: $f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + \operatorname{Re}^{\mathrm{i}\theta}) d\theta$, 从而

$$M = |f(z_0)| \le \frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + \operatorname{Re}^{\mathrm{i}\theta})| d\theta$$

下证在圆周 $|z-z_0|=R$ 上, $|f(z_0+\mathrm{Re}^{\mathrm{i}\theta})|=M$.

若不然, 如果对于某个值 $\theta_0 \in [0, 2\pi]$, 有 $|f(z_0 + \operatorname{Re}^{i\theta_0})| < M$, 则由 |f(z)| 的连续性,

不等式 $|f(z_0 + \mathrm{Re}^{\mathrm{i}\theta})| < M$ 在某个小区间 $I_1 = [\theta_0 - \varepsilon, \theta_0 + \varepsilon]$ 内严格成立,

而在区间 $I_2 = [0, 2\pi] - I_1$ 上,有 $|f(z_0 + \operatorname{Re}^{i\theta})| \leq M$.由此,

$$M = |f(z_0)| \leqslant \frac{1}{2\pi} \int_0^{2\pi} \left| f\left(z_0 + \operatorname{Re}^{\mathrm{i}\theta}\right) \right| d\theta$$
$$= \frac{1}{2\pi} \left\{ \int_{I_1} \left| f\left(z_0 + \operatorname{Re}^{\mathrm{i}\theta}\right) \right| d\theta + \int_{I_2} \left| f\left(z_0 + \operatorname{Re}^{\mathrm{i}\theta}\right) \right| d\theta \right\}$$
$$< \frac{1}{2\pi} \left\{ \int_{I_1} M d\theta + \int_{I_2} M d\theta \right\} = M$$

矛盾! 这说明: 在以 z_0 为中心的每一个充分小圆周上, |f(z)|=M, 从而 f(z) 在 $\overline{D_R}$ 上为常数, 也即 f(z) 在 D 内为常数。

推论 4.3

设 f(z) 在有界区域 D 内解析, 在 \bar{D} 上连续, $|f(z)| \leq M(z \in \bar{D})$, 则除 f(z) 为常数情形外, 有 $|f(z)| < M(z \in D)$.

练习 4.12 设 f(z) 在闭圆盘 $|z| \le R$ 上解析, 如果存在 a > 0, 使当 |z| = R 时, |f(z)| > a, 且 |f(0)| < a, 则在圆 |z| < R 内, f(z) 至少有一个零点.

证明 假设在 |z| < R 内 f(z) 无零点,则 $\varphi(z) = \frac{1}{f(z)}$ 在 $|z| \leqslant R$ 上解析,且 $|\varphi(0)| = \frac{1}{|f(0)|} > \frac{1}{a}$, 而在 |z| = R 上, $|\varphi(z)| = \frac{1}{|f(z)|} < \frac{1}{a}$,这与最大模原理矛盾.

第5章 解析函数的 Laurent 展式与孤立奇点

5.1 解析函数的 Laurent 展式

5.1.1 双边幂级数

如果

$$f(z) = \sum_{n=0}^{\infty} \alpha_n (z - z_0)^n (|z - z_0| < R)$$
 (5.1)

收敛于 $f_1(z)$,则 5.1 在 $|z-z_0| < R$ 内绝对收敛、内闭一致收敛.

命题 5.1 (负幂项级数的敛散性)

$$\sum_{n=1}^{\infty} \alpha_{-n} (z - z_0)^{-n} = \frac{\alpha_{-1}}{z - z_0} + \frac{\alpha_{-2}}{(z - z_0)^2} + \dots$$
 (5.2)

作变换 $\varsigma = \frac{1}{z - z_0}$, 则 5.2 变为正幂项级数:

$$\sum_{n=1}^{\infty} \alpha_{-n} \varsigma^n = \alpha_{-1} \varsigma + \alpha_{-2} \varsigma^2 + \cdots$$
 (5.3)

若5.3的收敛域为 $|\zeta| < \frac{1}{r} \left(0 < \frac{1}{r} \leqslant +\infty \right)$, 则 5.2在 $|z-z_0| > r(0 \leqslant r < +\infty)$ 内绝对收敛、内闭一致收敛于解析函数 $f_2(z)$, 且逐项可积、逐项可导.

定义 5.1 (双边幂级数)

$$\sum_{-\infty}^{+\infty} \alpha_n (z - z_0)^n = \dots + \frac{\alpha_{-n}}{(z - z_0)^n} + \dots + \frac{\alpha_{-1}}{z - z_0} + \alpha_0 + \alpha_1 (z - z_0) + \dots + \alpha_n (z - z_0)^n + \dots$$
 (5.4)

当 r > R 时, 5.4处处发散; 当 r < R 时, 即在圆环 $r < |z - z_0| < R$ 内, 5.4 绝对收敛、内闭一致收敛.

命题 5.2

设双边幂级数5.4的收敛圆环为 $H: r < |z-z_0| < R \quad (r \ge 0, R \le +\infty)$,则

- 1. 5.4在 H 内绝对收敛且内闭一致收敛于 $f(z) = f_1(z) + f_2(z)$.
- 2. 函数 f(z) 在 H 内解析.
- 3. 函数 f(z) 在 H 内可逐项求导任意次.
- 4. 函数 f(z) 可沿 H 内曲线 C 逐项积分.

5.1.2 解析函数的 Laurent 展式

定理 5.1 (Laurent 定理)

在 $r < |z - z_0| < R(0 \le r < R \le +\infty)$ 内的解析函数 f(z) 可展开为唯一的双边幂级数:

$$f(z) = \sum_{-\infty}^{+\infty} \alpha_n (z - z_0)^n (r < |z - z_0| < R)$$
 (5.5)

其中

$$\alpha_n = \frac{1}{2\pi i} \int_{c_0} \frac{f(\varsigma)}{(\varsigma - z_0)^{n+1}} d\varsigma (n = 0, \pm 1, \pm 2, \cdots)$$
 (5.6)

 $c_{\rho} : |\varsigma - z_0| = \rho(r < \rho < R)$

称 5.5 为 f(z) 在 $r < |z - z_0| < R$ 内的 Laurent 展式, 5.6为 Laurent 系数.

 \Diamond

注

- 1. 将 $|z-z_0| < R$ 视为圆环 $r < |z-z_0| < R$ 特殊情形, 则 f(z) 在 $|z-z_0| < R$ 的 Taylor 展式为 Laurent 展式的特例.
- 2. 展式唯一性是对解析圆环 $r < |z z_0| < R$ 而言,同一函数在同一点为中心的解析圆环可能不止 一个,则在不同圆环内展式是不同的.
- 3. ± 5.6 , $\alpha_{-1} = \frac{1}{2\pi i} \int_{c_{\rho}} f(\varsigma) d\varsigma$.
- **练习 5.1** 将 $f(z) = \frac{1}{(z-1)(z-2)}$ 分别在以下圆环内展开成 Laurent 级数:
 - 1. 以原点为中心的圆环: |z| < 1; 1 < |z| < 2; $2 < |z| < +\infty$.
 - 2. 以 z = 1 为中心的圆环: 0 < |z 1| < 1; $1 < |z 1| < +\infty$.
 - 3. 以 z=2 为中心的圆环: $0<|z-2|<1; \quad 1<|z-2|<+\infty$. 解 $f(z)=\frac{1}{z-2}-\frac{1}{z-1}$ 。

$$f(z) = \frac{1}{-2\left(1 - \frac{z}{2}\right)} + \frac{1}{1 - z} = -\sum_{n=0}^{\infty} \frac{z^n}{2^{n+1}} + \sum_{n=0}^{\infty} z^n = \sum_{n=0}^{\infty} \left(1 - \frac{1}{2^{n+1}}\right) z^n$$

(b). 当 1 < |z| < 2 时:

$$f(z) = \frac{1}{z - 2} - \frac{1}{z\left(1 - \frac{1}{z}\right)} = -\sum_{n=0}^{\infty} \frac{z^n}{2^{n+1}} - \sum_{n=0}^{\infty} \frac{1}{z^{n+1}}$$

(c). 当 $2 < |z| < +\infty$ 时:

$$f(z) = \frac{1}{z-2} - \frac{1}{z-1} = \frac{1}{z\left(1 - \frac{2}{z}\right)} - \frac{1}{z-1} = \sum_{n=0}^{\infty} \frac{2^n}{z^{n+1}} - \sum_{n=0}^{\infty} \frac{1}{z^{n+1}}$$

2. (a). 当 0 < |z-1| < 1 时:

$$f(z) = \frac{1}{z-2} - \frac{1}{z-1} = -\frac{1}{1-(z-1)} - \frac{1}{z-1} = -\sum_{n=0}^{\infty} (z-1)^n - \frac{1}{z-1}$$

(b). 当 $1 < |z-1| < +\infty$ 时:

$$f(z) = \frac{1}{(z-1)-1} - \frac{1}{z-1} = \frac{1}{(z-1)\left(1 - \frac{1}{z-1}\right)} - \frac{1}{z-1} = \sum_{n=0}^{\infty} \frac{1}{(z-1)^{n+1}} - \frac{1}{z-1}$$

3. (a). 当 0 < |z-2| < 1 时:

$$f(z) = \frac{1}{z-2} - \frac{1}{1+(z-2)} = \frac{1}{z-2} - \sum_{n=0}^{\infty} (-1)^n (z-2)^n$$

(b). 当 $1 < |z-2| < +\infty$ 时:

$$f(z) = \frac{1}{z-2} - \frac{1}{(z-2)(1+\frac{1}{z-2})} = \frac{1}{z-2} - \sum_{n=0}^{\infty} (-1)^n \frac{1}{(z-2)^{n+1}}$$

练习 5.2 求 $f(z) = \sin \frac{z}{z-1}$ 在 $0 < |z-1| < +\infty$ 内的 Laurent 展式, 并求 $\int_{|z-1|=1} \sin \frac{z}{z-1} dz$.

解

$$\sin\frac{z}{z-1} = \sin\left(1 + \frac{1}{z-1}\right) = \sin 1\cos\frac{1}{z-1} + \cos 1\sin\frac{1}{z-1}$$
$$= \sum_{n=0}^{\infty} \frac{(-1)^n \sin 1}{(2n)!} \left(\frac{1}{z-1}\right)^{2n} + \sum_{n=0}^{\infty} \frac{(-1)^n \cos 1}{(2n+1)!} \frac{1}{(z-1)^{2n+1}}$$

由注3可得

$$\int_{|z-1|=1} \sin \frac{z}{z-1} dz = 2\pi i \alpha_{-1} = 2\pi i \cos 1$$

5.2 解析函数的孤立奇点

5.2.1 解析函数的孤立奇点及其分类

定义 5.2 (解析函数孤立奇点)

- 1. 若函数 f(z) 在 $0 < |z-z_0| < R$ 内解析, 在 z_0 不解析, 则称 z_0 为 f(z) 的孤立奇点.
- 2. 若 f(z) 在 $r < |z| < +\infty$ 内解析, 则称 ∞ 为 f(z) 的孤立奇点.

•

例题 5.1

- 1. z = 0 是 $f(z) = \frac{\sin z}{z}$ 的孤立奇点, $z = \infty$ 也是其孤立奇点.
- 2. $\frac{1}{e^z-1}$ 的奇点: $z_k=2k\pi\mathrm{i}(k\in Z)$, 且均为孤立奇点, 但 ∞ 不是孤立奇点.
- 3. $\frac{1}{e^{\frac{1}{z}}-1}$ 的奇点: $z=0, z_k=\frac{1}{2k\pi \mathrm{i}}(k\in\mathbb{Z})$ 。由于 $z_k\to 0(k\to\infty)$,因此 z=0 不是孤立奇点, ∞ 是孤立奇点。

定义 5.3 (孤立奇点的分类)

若 $z_0(\neq \infty)$ 是 f(z) 的孤立奇点, Laurent 展式为:

$$f(z) = \sum_{-\infty}^{\infty} \alpha_n (z - z_0)^n = \sum_{n=0}^{\infty} \alpha_n (z - z_0)^n + \sum_{n=1}^{\infty} \alpha_{-n} (z - z_0)^{-n} \quad (0 < |z - z_0| < R) \quad (5.7)$$

1. 可去奇点

若 $\alpha_{-n}=0$ $(n=1,2,3,\cdots)$, 则称 z_0 是 f(z) 的可去奇点, 此时

$$f(z) = \sum_{n=0}^{\infty} \alpha_n (z - z_0)^n (0 < |z - z_0| < R)$$

补充定义 $f(z_0) = \alpha_0$, 则 f(z) 在 $|z - z_0| < R$ 内解析, 孤立奇点被去掉了.

2. 极点

若 5.7 有有限个 $\alpha_{-n} \neq 0$, 则 z_0 为 f(z) 的极点. 特别地, 若 $\alpha_{-m} \neq 0$, $\alpha_{-n} = 0 (n > m)$ 即

$$f(z) = \frac{\alpha_{-m}}{(z - z_0)^m} + \frac{\alpha_{-m+1}}{(z - z_0)^{m-1}} + \dots + \frac{\alpha_{-1}}{z - z_0} + \sum_{n=0}^{\infty} \alpha_n (z - z_0)^n (\alpha_{-m} \neq 0)$$

则称 z_0 是 f(z) 的 \mathbf{m} 阶极点.

3. 本性奇点

若 5.7 有无限个 $\alpha_{-n} \neq 0$, 则称 z_0 是 f(z) 的本性奇点.

例题 5.2

1. 可去奇点

$$f(z) = \frac{\sin z}{z} = 1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \cdots (0 < |z| < +\infty)$$
, 补充定义 $f(0) = 1$, 则 $f(z)$ 在 $z = 0$ 解析.

2. 极点

$$f(z) = \frac{\sin z}{z^3} = \frac{1}{z^2} - \frac{1}{3!} + \frac{z^2}{5!} - \cdots (0 < |z| < +\infty)$$
, 故 $z = 0$ 是 $f(z)$ 的二阶极点.

3. 本性奇点

$$f(z) = e^{\frac{1}{z}} = 1 + \frac{1}{z} + \frac{1}{2!z^2} + \cdots (0 < |z| < +\infty), \text{ if } z = 0 \text{ } \text{\mathbb{E} } f(z) \text{ in a prime } f(z) = 0$$

注 从上可见, 主要看 Laurent 展式的负幂项, 故称 $\sum_{n=1}^{\infty} \alpha_{-n} (z-z_0)^{-n}$ 为展式的主要部分,

称
$$\sum_{n=0}^{\infty} \alpha_n (z-z_0)^n$$
 为展式的解析部分.

5.2.2 解析函数在孤立奇点处的性质

命题 5.3 (可去奇点的性质)

以下条件相互等价

 $1. z_0$ 是 f(z) 的可去奇点

2.
$$f(z) = \sum_{n=0}^{\infty} \alpha_n (z - z_0)^n (0 < |z - z_0| < R)$$

3. $\lim_{z\to z_0}f(z)=\alpha_0(\neq\infty)$, 补充定义 $f(z_0)=\alpha_0$, 则 f(z) 在 z=0 解析

4. $\exists r (0 < r \leqslant R), f(z)$ 在 $0 < |z - z_0| < r$ 内有界.

证明 证其中之一: 令 $|f(z)| < M, 0 < |z - z_0| \le \rho(0 < \rho < r)$, 则

$$|\alpha_{-n}| = \left| \frac{1}{2\pi i} \int_{c_{\rho}} \frac{f(\varsigma)}{(\varsigma - z_0)^{-n+1}} d\varsigma \right| \leqslant \frac{1}{2\pi} \int_{c_{\rho}} M \cdot \rho^{n-1} |d\varsigma|$$
$$\leqslant \frac{1}{2\pi} M \cdot \rho^{n-1} \cdot 2\pi \rho = M \rho^n \to 0 (\rho \to 0)$$

故 $\alpha_{-n} = 0 (n = 1, 2, 3, \cdots).$

命题 5.4 (极点的性质)

以下条件相互等价

1. z_0 是 f(z) 的 m 阶极点

2.
$$f(z) = \frac{\alpha_{-m}}{(z-z_0)^m} + \frac{\alpha_{-m+1}}{(z-z_0)^{m-1}} + \dots + \frac{\alpha_{-1}}{z-z_0} + \sum_{n=0}^{\infty} \alpha_n (z-z_0)^n (0 < |z-z_0| < R)$$

3.
$$f(z) = \frac{\varphi(z)}{(z-z_0)^m}$$
, 这里 $\varphi(z) = \alpha_{-m} + \alpha_{-m+1} (z-z_0) + \cdots$ 在 z_0 解析, 且 $\varphi(z_0) = \alpha_{-m} \neq 0$

4.
$$\frac{1}{f(z)} = \frac{(z-z_0)^m}{\varphi(z)}$$
以 z_0 为 m 阶零点

练习 5.3 求 $f(z) = \frac{\cos z}{z(e^z - 1)}$ 在有限复平面内的孤立奇点, 并判断其类型.

解 f(z) 的孤立奇点有 $z_k = 2k\pi i (k \in \mathbb{Z})$.

- 1. z=0 是 z 的一阶零点, 也是 e^z-1 的一阶零点, 不是 $\cos z$ 的零点, 故 z=0 是 $\frac{1}{f(z)}$ 的二阶零点, 因此是 f(z) 的二阶极点.
- 的二阶零点, 因此是 f(z) 的二阶极点. 2. $z_k=2k\pi\mathrm{i}\,(k=\pm 1,\pm 2,\cdots)$ 是 $\frac{1}{f(z)}$ 的一阶零点, 故是 f(z) 的一阶极点.

定理 5.2

 z_0 是 f(z) 的极点 $\Longleftrightarrow z_0$ 是 f(z) 的孤立奇点, 且 $\lim_{z \to z_0} f(z) = \infty$.

\sim

引理 5.1 (Schwarz 引理)

如果函数 f(z) 在单位圆 |z|<1 内解析, 并且满足条件 f(0)=0, |f(z)|<1, 则在单位圆 |z|<1 内恒有:

$$|f(z)| \leqslant |z|, |f'(0)| \leqslant 1$$

若上式等号成立, 或在圆 |z|<1 内一点 $z_0\neq 0$ 处前一个式子等号成立, 则 $f(z)=e^{\mathrm{i}\alpha}z(|z|<1)$, 其中 α 为实常数.

证明 设 $f(z) = c_1 z + c_2 z^2 + \cdots (|z| < 1)$, 令 $\varphi(z) = \frac{f(z)}{z} = c_1 + c_2 z + \cdots (z \neq 0)$, 定义 $\varphi(0) = c_1 = f'(0)$, 则 $\varphi(z)$ 在 |z| < 1 内解析.

设 z_0 为 |z| < 1 内任一点,取 r 满足条件 $|z_0| < r < 1$,由最大模原理,有

$$|\varphi(z_0)| \leq \max_{|\zeta|=r} |\varphi(\zeta)| = \max_{|\zeta|=r} \left| \frac{f(\zeta)}{\zeta} \right| \leq \frac{1}{r}$$

令 $r \to 1$ 得: $|\varphi(z_0)| \leqslant 1 \Longrightarrow |f(z_0)| \leqslant |z_0|$, 于是 $|f'(0)| = |\varphi(0)| \leqslant 1$.

如果这些不等式中,有一个取等号,这表明在 |z|<1 内某点 z_0 ,模 $|\varphi(z_0)|$ 达到最大值,从而 $\varphi(z)\equiv$ 常数,即 $f(z)=e^{\mathrm{i}\alpha}z$.

5.3 解析函数在无穷远处的性质

5.3.1 孤立奇点 ∞ 的分类

定义 5.4

设函数 f(z) 在无穷远点的 (去心) 邻域 $N:|r|<|z|<+\infty$ 内解析, 则称 ∞ 为 f(z) 的一个孤立奇点,设点 ∞ 为为 f(z) 的孤立奇点,利用变换 $z'=\frac{1}{z}$,则 $\varphi\left(z'\right)=f\left(\frac{1}{z'}\right)=f(z)$

则 $\varphi(z')$ 在 $0 < |z'| < \frac{1}{n}$ 内解析, 即以 z' = 0 为孤立奇点.

定义 5.5

- 1. 若 z' = 0 为 $\varphi(z')$ 的可去奇点,则称 $z = \infty$ 是 f(z) 的可去奇点.
- 2. 若 z' = 0 为 $\varphi(z')$ 的 m 阶极点,则称 $z = \infty$ 是 f(z) 的 m 阶极点.
- 3. 若 z' = 0 为 $\varphi(z')$ 的本性奇点, 则称 $z = \infty$ 是 f(z) 的本性奇点.

命题 5.5 (∞ 作为奇点类型)

- 1. $\alpha_n = 0 (n = 1, 2, 3, \cdots) \iff z = \infty \ \text{为 } f(z)$ 的可去奇点
- 2. $\alpha_m \neq 0, \alpha_n = 0 (n > m) \iff z = \infty \ \text{为 } f(z)$ 的 m 阶极点
- 3. 有无穷多个 $\alpha_n \neq 0 \iff z = \infty$ 为 f(z) 的本性奇点

证明

考虑 Laurent 展开

$$f(\frac{1}{z'}) = \varphi(z') = \sum_{-\infty}^{+\infty} \beta_n(z')^n = \sum_{n=1}^{+\infty} \beta_{-n}(z')^{-n} + \sum_{n=0}^{+\infty} \beta_n(z')^n$$
 (5.8)

记 $\alpha_n = \beta_{-n}, \alpha_{-n} = \beta_n, 则$

$$f(z) = f\left(\frac{1}{z'}\right) = \sum_{n=1}^{+\infty} \alpha_n z^n + \sum_{n=0}^{+\infty} \alpha_{-n} z^{-n}$$
 (5.9)

5.8 中的主要部分为负幂项部分; 5.9 中的主要部分为正幂项部分。 例题 5.3
$$f(z)=e^z=1+z+\frac{z^2}{2!}+\cdots, z=\infty$$
 是 $f(z)$ 的本性奇点.

5.3.2 解析函数在 ∞ 处的性质

命题 5.6

以下条件相互等价

- 1. ∞ 是 f(z) 的可去奇点.
- 2. $\alpha_n = 0 (n = 1, 2, \cdots), \ \operatorname{Fr} f(z) = \sum_{n=0}^{+\infty} \alpha_{-n} z^{-n} (r < |z| < +\infty).$
- 3. $\lim_{z \to \infty} f(z) = \alpha_0 \neq \infty$.
- 4. f(z) 在 $R < |z| < +\infty (R \ge r)$ 内有界.

命题 5.7

以下条件相互等价

- 1. ∞ 是 f(z) 的 m 阶极点.
- 2. $\alpha_{-m} \neq 0, \alpha_n = 0 (n > m), \ \text{Pr} \ f(z) = \sum_{n=0}^{+\infty} \alpha_{-n} z^{-n} + \alpha_0 + \alpha_1 z + \alpha_2 z^n + \dots + \alpha_m z^m \ (\alpha_m \neq 0).$
- 3. $f(z) = z^m h(z)$, 其中 h(z) 在 ∞ 解析,且 $h(\infty) \neq 0$.
- 4. $\frac{1}{f(z)}$ 以 ∞ 为 m 阶零点.

定理 5.3

 ∞ 是 f(z) 的极点 $\Longleftrightarrow \infty$ 是 f(z) 的孤立奇点, 且 $\lim_{z o \infty} f(z) = \infty$ 。

 \Diamond

5.4 整函数与亚纯函数的概念

5.4.1 整函数

定义 5.6

全平面上解析的函数称为整函数,也称全纯函数.

•

注 常数函数, 多项式, e^z , $\sin z$, $\cos z$ 都是整函数.

命题 5.8

若 f(z) 是整函数, 那么 ∞ 是 f(z) 唯一的孤立奇点, 且可设

$$f(z) = \sum_{n=0}^{\infty} \alpha_n z^n$$

- $1. \infty$ 是 f(z) 的可去奇点 $\iff f(z)$ 为常数.
- 2. ∞ 是 f(z) 的 m 阶极点 \iff f(z) 为 m 次多项式.
- 3. ∞ 是 f(z) 的本质奇点 \iff f(z) 展式系数 α_n 有无穷多个不为 0, 此时称 f(z) 为超越整函数

5.4.2 亚纯函数

定义 5.7

全平面上除可能有极点外无其他类型奇点的单值解析函数, 称为亚纯函数.

.

注

- 1. 全平面上解析的函数是亚纯函数.
- 2. 极点个数可能是有限个,也可能是无限个.

第6章 留数理论及应用

6.1 留数

6.1.1 留数的定义及留数定理

定义 6.1 (留数)

设 f(z) 以有限点 z_0 为孤立奇点, 即 f(z) 在 $0 < |z - z_0| < R$ 内解析, 称

$$\frac{1}{2\pi i} \oint_c f(z) dz \quad (c: |z - z_0| = \rho, 0 < \rho < R)$$

为 f(z) 在点 z_0 的留数,记作: $\operatorname{Res}[f(z), z_0]$ 或 $\operatorname{Res}_{z=z_0}f(z)$.

定理 6.1 (留数定理)

设函数 f(z) 在区域 D 内除有限个孤立奇点 z_1, z_2, \cdots, z_n 外处处解析, c 是 D 内包含各奇点的一条正向简单闭曲线, 那么

$$\oint_c f(z)dz = 2\pi i \sum_{k=1}^n \text{Res} [f(z), z_k]$$

证明 将在c内的孤立奇点 $z_k(k=1,2,\cdots,n)$ 用互不包含的正向简单闭曲线 c_k 包围起来,则根据复合闭路定理:

$$\oint_c f(z)dz = \oint_{c_1} f(z)dz + \oint_{c_2} f(z)dz + \dots + \oint_{c_n} f(z)dz$$

 $\dot{\mathbf{L}}$ 求沿封闭曲线 c 的积分,就转化为求被积函数在 c 内各孤立奇点处的留数.

6.1.2 留数的求法

命题 6.1

- 2. 若 z_0 是 f(z) 的本性奇点,则将 f(z) 展开成 Laurent 级数求 α_{-1} .

命题 6.2

若 z_0 是 f(z) 的极点:

1. 如果 z_0 是 f(z) 的一阶极点,则

Res
$$[f(z), z_0] = \lim_{z \to z_0} (z - z_0) f(z)$$

2. 如果 z_0 是 f(z) 的 m 阶极点,则

Res
$$[f(z), z_0] = \frac{1}{(m-1)!} \lim_{z \to z_0} \frac{\mathrm{d}^{m-1}}{\mathrm{d}z^{m-1}} \{ (z - z_0)^m f(z) \}$$

3. 设
$$f(z) = \frac{P(z)}{Q(z)}$$
, $P(z)$ 和 $Q(z)$ 在 z_0 都解析, 如果 $P(z_0) \neq 0$, $Q(z_0) = 0$, $Q'(z_0) \neq 0$, 则 z_0 是 $f(z)$ 的一阶极点, 从而

Res
$$[f(z), z_0] = \frac{P(z_0)}{Q'(z_0)}$$

证明

1. Trivial

2. 事实上,由于
$$f(z) = \alpha_{-m} (z - z_0)^{-m} + \dots + \alpha_{-1} (z - z_0)^{-1} + \alpha_0 + \alpha_1 (z - z_0) + \dots + \alpha_n (z - z_0)^n + \dots$$
以 $(z - z_0)^m$ 乘上式两端,得:
$$(z - z_0)^m f(z) = \alpha_{-m} + \alpha_{-m+1} (z - z_0) + \dots + \alpha_{-1} (z - z_0)^{m-1} + \alpha_0 (z - z_0)^m + \dots$$

两边求m-1阶导数,得:

$$\frac{\mathrm{d}^{m-1}}{\mathrm{d}z^{m-1}} \left\{ (z - z_0)^m f(z) \right\} = (m-1)! \alpha_{-1} + (z - z_0) P(x)$$

3.

$$\operatorname{Res}\left[f(z), z_{0}\right] = \lim_{z \to z_{0}} (z - z_{0}) \cdot \frac{P(z)}{Q(z)} = \lim_{z \to z_{0}} \frac{P(z_{0})}{\frac{Q(z) - Q(z_{0})}{z - z_{0}}} = \frac{P(z_{0})}{Q'(z_{0})}$$

练习 6.1 计算积分 $I = \oint_{\mathcal{C}} \frac{ze^z}{z^2 - 1} dz$, c 为正向圆周 |z| = 2.

 $\mathbf{m} z = \pm 1$ 是被积函数在 c 内的一级极点, 因此

$$I = 2\pi i \{ \text{Res}[f(z), 1] + \text{Res}[f(z), -1] \}$$

$$\text{Res}[f(z), 1] = \lim_{z \to 1} (z - 1) \frac{ze^z}{z^2 - 1} = \frac{e}{2}$$

$$\text{Res}[f(z), -1] = \lim_{z \to -1} (z + 1) \frac{ze^z}{z^2 - 1} = \frac{e^{-1}}{2}$$

代入得: $I = \pi i (e + e^{-1})$.

练习 6.2 计算积分 $I = \oint_c \frac{e^z}{z(z-1)^2} dz$, c 为正向圆周 |z| = 2.

mz=0 是被积函数在c内的一阶极点,z=1为二阶极点。

$$\operatorname{Res}[f(z), 0] = \lim_{z \to 0} z \cdot \frac{e^z}{z(z-1)^2} = 1$$
$$\operatorname{Res}[f(z), 1] = \frac{1}{(2-1)!} \lim_{z \to 1} \frac{\mathrm{d}}{\mathrm{d}z} \left[(z-1)^2 \frac{e^z}{z(z-1)^2} \right] = 0$$

从而

$$I=2\pi i\{\mathrm{Res}[f(z),0]+\mathrm{Res}[f(z),1]\}=2\pi \mathrm{i}$$

1. 计算:
$$\oint_{|z|=1} e^{\frac{1}{z^2}} dz$$
2. 计算: $\oint_{|z|=1} \frac{z - \sin z}{z^6} dz$

6.1.3 函数在无穷远点的留数

定义 6.2

设函数 f(z) 在圆环 $R<|z|<+\infty$ 内解析, c 为该圆环内绕原点的任何一条正向简单闭曲线, 则称积分

$$\frac{1}{2\pi i} \oint_{c^{-}} f(z) dz$$

为 f(z) 在 ∞ 点的留数, 记作

$$\operatorname{Res}[f(z), \infty] = \frac{1}{2\pi i} \oint_{c^{-}} f(z) dz$$

定理 6.2

如果函数 f(z) 在扩充复平面内只有有限个孤立奇点,则 f(z) 在所有各奇点(包括 ∞ 点)的留数 之和等于 0 .

证明 除 ∞ 点外, 设 f(z) 的有限个奇点为 $z_k(k=1,2,\cdots,n)$, 又设 c 为一条绕原点的并将 $z_k(k=1,2,\cdots,n)$ 包含在它内部的正向简单闭曲线,则

$$\operatorname{Res}[f(z), \infty] + \sum_{k=1}^{n} \operatorname{Res}[f(z), z_{k}] = \frac{1}{2\pi i} \oint_{c^{-1}} f(z) dz + \frac{1}{2\pi i} \oint_{c} f(z) dz = 0$$

命题 6.3 (无穷远处留数计算公式)

$$\operatorname{Res}[f(z),\infty] = -\operatorname{Res}\left[f\left(\frac{1}{z}\right)\cdot\frac{1}{z^2},0\right]$$

练习 6.4 计算积分 $I = \oint_c \frac{\mathrm{d}z}{(z+\mathrm{i})^{10}(z-1)(z-3)}, c$ 为正向圆周 |z|=2. 解除 ∞ 点外, 被积函数的奇点是: $-\mathrm{i}, 1, 3,$

$$\begin{split} \operatorname{Res}[f(z),-\mathrm{i}] + \operatorname{Res}[f(z),1] + \operatorname{Res}[f(z),3] + \operatorname{Res}[f(z),\infty] &= 0 \\ I = 2\pi \mathrm{i} \{ \operatorname{Res}[f(z),-\mathrm{i}] + \operatorname{Res}[f(z),1] \} \\ &= -2\pi \mathrm{i} \{ \operatorname{Res}[f(z),3] + \operatorname{Res}[f(z),\infty] \} \\ &= -2\pi \mathrm{i} \left\{ \frac{1}{2(3+\mathrm{i})^{10}} + 0 \right\} \\ &= -\frac{\pi \mathrm{i}}{(3+\mathrm{i})^{10}} \end{split}$$

注 由于计算 -i 处的留数比较复杂, 因此进行转换.

练习 6.5 计算积分 $I = \oint_C \frac{z dz}{z^4 - 1}, c$ 为正向圆周 |z| = 2 。

解

$$I = \oint_c \frac{z dz}{z^4 - 1} = 2\pi i \sum_{k=1}^n \text{Res}\left[f(z), z_k\right] = -2\pi i \operatorname{Res}\left[f(z), \infty\right]$$
$$= 2\pi i \operatorname{Res}\left[f\left(\frac{1}{z}\right) \frac{1}{z^2}, 0\right] = 2\pi i \operatorname{Res}\left[\frac{\frac{1}{z}}{\frac{1}{z^4} - 1} \cdot \frac{1}{z^2}, 0\right] = 2\pi i \operatorname{Res}\left[\frac{z}{1 - z^4}, 0\right] = 0$$

6.2 用留数定理计算实积分

6.2.1 三角形有理函数的积分

命题 6.4

形如 $\int_0^{2\pi} R(\cos\theta, \sin\theta) d\theta$ 的积分, 其中 $R(\cos\theta, \sin\theta)$ 为 $\cos\theta, \sin\theta$ 的有理函数并在 $[0, 2\pi]$ 连续.

方法: 令
$$z = e^{i\theta}$$
, 则 $dz = ie^{i\theta}d\theta = izd\theta$, $\cos\theta = \frac{z^2 + 1}{2z}$, $\sin\theta = \frac{z^2 - 1}{2iz}$, 从而

$$\int_0^{2\pi} R(\cos\theta, \sin\theta) d\theta = \oint_{|z|=1} R\left(\frac{z^2+1}{2z}, \frac{z^2-1}{2iz}\right) \frac{dz}{iz} = \oint_{|z|=1} f(z) dz$$

其中 f(z) 为 z 的有理函数, 且在单位圆周 |z|=1 上分母不为零, 因此满足留数定理的条件.

练习 6.6 计算
$$I = \int_0^{2\pi} \frac{\mathrm{d}\theta}{5 + 2\cos\theta}$$
.

解令 $z = e^{i\theta}$,则 $dz = ie^{i\theta}d\theta = izd\theta$, $\cos\theta = \frac{z^2 + 1}{2z}$,

$$I = \oint_{|z|=1} \frac{1}{5 + 2 \cdot \frac{z^2 + 1}{2z}} \frac{\mathrm{d}z}{\mathrm{i}z} = \frac{1}{\mathrm{i}} \oint_{|z|=1} \frac{\mathrm{d}z}{z^2 + 5z + 1} = \frac{1}{\mathrm{i}} \cdot 2\pi \mathrm{i} \frac{1}{2z + 5} \bigg|_{z = \frac{-5 + \sqrt{21}}{2}} = \frac{2\pi}{\sqrt{21}}$$

练习 6.7 计算
$$I = \int_0^{2\pi} \frac{\mathrm{d}\theta}{1 - 2p\cos\theta + p^2} (0 < |p| < 1)$$
.

解令 $z = e^{i\theta}$,则 $d\theta = \frac{dz}{iz}$,

$$1 - 2p\cos\theta + p^2 = 1 - 2p \cdot \frac{z^2 + 1}{2z} + p^2 = \frac{(z - p)(1 - pz)}{z}$$
$$I = \frac{1}{i} \oint_{|z| = 1} \frac{dz}{(z - p)(1 - pz)} = \frac{1}{i} 2\pi i \cdot \frac{1}{1 - p^2} = \frac{2\pi}{1 - p^2}$$

练习 6.8 计算 $I = \int_0^\pi \frac{\cos mx}{5 - 4\cos x} dx$ (m 为正整数).

解设 $z=e^{ix}$,则

$$I = \frac{1}{2} \int_{-\pi}^{\pi} \frac{\cos mx}{5 - 4\cos x} dx + \frac{1}{2} \int_{-\pi}^{\pi} \frac{i\sin mx}{5 - 4\cos x} dx$$

$$= \frac{1}{2} \int_{-\pi}^{\pi} \frac{e^{imx}}{5 - 4\cos x} dx$$

$$= \frac{1}{2i} \oint_{|z|=1} \frac{z^m}{5z - 2(1+z^2)} dz = \frac{i}{2} \oint_{|z|=1} \frac{z^m}{(z - \frac{1}{2})(z - 2)} dz$$

$$= \frac{\pi}{3 \cdot 2^m}$$

6.2.2 有理函数比值型积分

形如 $\int_{-\infty}^{+\infty} R(x) dx$ 的积分, 其中 R(x) 为 x 的有理函数, 分母的次数至少比分子次数高二次, R(z) 在实轴上没有孤立奇点.

引理 6.1

设 f(z) 沿圆弧 $S_R: z=\mathrm{Re}^{\mathrm{i}\theta}$ $(\theta_1\leqslant\theta\leqslant\theta_2,R$ 充分大) 上连续,且 $\lim_{R\to+\infty}zf(z)=\lambda$ 于 S_R 上一致成立,则

$$\lim_{R \to +\infty} \int_{S_R} f(z) dz = i (\theta_2 - \theta_1) \lambda$$

证明 $\forall \varepsilon > 0, \exists R_0(\varepsilon), \exists R > R_0(\varepsilon)$ 时,有 $|zf(z) - \lambda| < \frac{\varepsilon}{\theta_2 - \theta_1}, z \in S_R$,于是

$$\left| \int_{S_R} f(z) dz - i (\theta_2 - \theta_1) \lambda \right| = \left| \int_{S_R} \frac{z f(z) - \lambda}{z} dz \right|$$

$$\leq \int_{S_R} \frac{|z f(z) - \lambda|}{|z|} |dz|$$

$$\leq \int_{S_R} \frac{\varepsilon}{\theta_2 - \theta_1} \cdot \frac{1}{R} ds$$

$$= \frac{\varepsilon}{\theta_2 - \theta_1} \cdot \frac{1}{R} \cdot (\theta_2 - \theta_1) R = \varepsilon$$

注 这里使用了 $\lambda \int_{S_R} \frac{\mathrm{d}z}{z} = \lambda \int_{\theta_1}^{\theta_2} \frac{\mathrm{i}e^{\mathrm{i}\theta}}{e^{\mathrm{i}\theta}} \mathrm{d}\theta = \mathrm{i} (\theta_2 - \theta_1) \lambda$

定理 6.3

设 $R(z) = \frac{P(z)}{Q(z)}$ 为有理分式, 其中 $P(z) = a_m z^m + a_{m-1} z^{m-1} + \cdots + a_0 (a_m \neq 0), Q(z) = b_n z^n + b_{n-1} z^{n-1} + \cdots + b_0 (b_n \neq 0)$ 为互质多项式, 且满足:

- 1. $n m \ge 2$;
- 2. 在实轴上 $Q(z) \neq 0$.

于是

$$\int_{-\infty}^{+\infty} R(x) dx = 2\pi i \sum_{\text{Im } z_k > 0} \text{Res} [R(z), z_k]$$

这里 z_k 为 R(z) 的孤立奇点.

证明 从条件知, $\int_{-\infty}^{+\infty} R(x) dx = \lim_{R \to +\infty} \int_{-R}^{R} R(x) dx$ 。

取上半圆周 $\Gamma_R: z = \mathrm{Re}^{\mathrm{i}\theta} (0 \le \theta \le \pi), R$ 充分大, 由线段 [-R, R] 及 Γ_R 组成围线 $C_R = \Gamma_R \cup [-R, R]$,使 C_R 内部包含 R(z) 在上半平面内的所有孤立奇点, 由条件 (2), R(z) 在 C_R 上没有奇点。由留数定理:

$$\int_{C_R} R(z) dz = 2\pi i \sum_{\text{Im } z_k > 0} \text{Res} [R(z), z_k]$$

即

$$\int_{-R}^{R} R(x) dx + \int_{\Gamma_R} R(z) dz = 2\pi i \sum_{\text{Im } z_k > 0} \text{Res} \left[R(z), z_k \right]$$

而 $\lim_{R\to+\infty} zR(z) = 0$, 由引理6.1, 定理得证.

练习 6.9 计算
$$I = \int_{-\infty}^{+\infty} \frac{x^2}{(x^2 + a^2)(x^2 + b^2)} dx (a > 0, b > 0)$$

解 设 $R(z) = \frac{z^2}{(z^2 + a^2)(z^2 + b^2)}$, 符合定理条件.

$$I = 2\pi i \{ \operatorname{Res}[R(z), ai] + \operatorname{Res}[R(z), bi] \}$$
$$= 2\pi i \left(\frac{a}{2i(a^2 - b^2)} + \frac{b}{2i(b^2 - a^2)} \right)$$
$$= \frac{\pi}{a + b}$$

练习 6.10 计算 $I = \int_0^{+\infty} \frac{\mathrm{d}x}{x^4 + a^4} (a > 0)$ 解 设 $R(z) = \frac{1}{z^4 + a^4}$, 有 4 个一阶极点: $z_k = ae^{\frac{\pi + 2k\pi}{4}}$ i(k = 0, 1, 2, 3),

Res
$$[f(z), z_k] = \frac{1}{4z^3} \Big|_{z=z_k} = -\frac{z_k}{4a^4} (k = 0, 1, 2, 3)$$

$$I = \frac{1}{2} \int_{-\infty}^{+\infty} \frac{dx}{x^4 + a^4}$$

$$= -\pi i \cdot \frac{1}{4a^4} \left(ae^{\frac{\pi}{4}i} + ae^{\frac{3\pi}{4}i} \right)$$

$$= \frac{\pi}{2\sqrt{2}a^3}$$

6.2.3 三角和有理函数乘积型积分

引埋 6.2

设 g(z) 沿上半圆周 $S_R:z=\mathrm{Re}^{\mathrm{i}\theta}(0\leqslant\theta\leqslant\pi,R$ 充分大) 上连续, 且 $\lim_{R\to+\infty}g(z)=0$ 于 S_R 上一致成立, 则

$$\lim_{R\to +\infty} \int_{S_R} g(z) e^{\mathrm{i}\alpha z} dz = 0 (\alpha > 0)$$

如果 $P(z_0) \neq 0, Q(z_0) = 0$,

 $Q'(z_0) \neq 0$,则 z_0 是 f(z)的一级极点,从而

$$\operatorname{Res}\left[f(z), z_0\right] = \frac{P(z_0)}{Q'(z_0)}$$

命题 6.5

形如 $\int_{-\infty}^{+\infty} R(x)e^{\mathrm{i}\alpha x}\mathrm{d}x(\alpha>0)$ 的积分, 其中 R(x) 为 x 的有理函数, 分母的次数至少比分子次数 高一次, R(z) 在实轴上没有孤立奇点, 则

$$\int_{-\infty}^{+\infty} R(x)e^{\mathrm{i}\alpha x}\mathrm{d}x = 2\pi\mathrm{i}\sum_{\mathrm{Im}\,z_k>0}\mathrm{Res}\left[R(z)e^{\mathrm{i}\alpha x},z_k\right]$$

这里 z_k 为 R(z) 的孤立奇点.

 $\dot{\mathbf{L}}$ 特别地, 将上式分开成实部和虚部, 就可得到形如: $\int_{-\infty}^{+\infty} R(x) \cos \alpha x dx$ 和 $\int_{-\infty}^{+\infty} R(x) \sin \alpha x dx$ 的积

分.

练习 **6.11** 计算积分 $I = \int_0^{+\infty} \frac{\cos mx}{1 + x^2} dx (m > 0)$ 。

$$\begin{split} I &= \frac{1}{2} \int_{-\infty}^{+\infty} \frac{\cos mx}{1+x^2} \mathrm{d}x + \frac{1}{2} \int_{-\infty}^{+\infty} \frac{\mathrm{i}\sin mx}{1+x^2} \mathrm{d}x \\ &= \frac{1}{2} \int_{-\infty}^{+\infty} \frac{e^{\mathrm{i}mx}}{1+x^2} \mathrm{d}x \\ &= \pi \mathrm{i} \operatorname{Res} \left[\frac{e^{\mathrm{i}mz}}{1+z^2}, \mathrm{i} \right] \\ &= \frac{\pi}{2e^m}. \end{split}$$

练习 **6.12** 计算积分 $I = \int_0^{+\infty} \frac{x \sin x}{x^2 + a^2} dx (a > 0).$

$$\begin{split} I &= \frac{1}{2\mathrm{i}} \int_{-\infty}^{+\infty} \frac{\mathrm{i} x \sin x}{x^2 + a^2} \mathrm{d} x + \frac{1}{2\mathrm{i}} \int_{-\infty}^{+\infty} \frac{x \cos x}{x^2 + a^2} \mathrm{d} x \\ &= \frac{1}{2\mathrm{i}} \int_{-\infty}^{+\infty} \frac{x e^{\mathrm{i} x}}{x^2 + a^2} \mathrm{d} x \\ &= \frac{1}{2\mathrm{i}} \cdot 2\pi \mathrm{i} \operatorname{Res} \left[\frac{z e^{\mathrm{i} z}}{z^2 + a^2}, a \mathrm{i} \right] \\ &= \frac{\pi}{2} e^{-a} \end{split}$$

6.2.4 积分路径上有奇点的积分

引埋 6.3

设 f(z) 沿圆弧 $S_r:z-a=re^{\mathrm{i}\theta}$ $(\theta_1\leqslant\theta\leqslant\theta_2,r$ 充分小) 上连续, 且 $\lim_{r\to 0}zf(z)=\lambda$ 于 S_r 上一致成立, 则

$$\lim_{r \to 0} \int_{S_r} f(z) dz = i (\theta_2 - \theta_1) \lambda$$

 \Diamond

例题 **6.1** 计算 $I = \int_0^{+\infty} \frac{\sin x}{x} dx$

解

$$I = \frac{1}{2i} \int_{-\infty}^{+\infty} \frac{i \sin x}{x} dx + \frac{1}{2i} \int_{-\infty}^{+\infty} \frac{\cos x}{x} dx$$
$$= \frac{1}{2i} \int_{-\infty}^{+\infty} \frac{e^{ix}}{x} dx$$

以原点为心分别作正向上半圆周 $C_R: z=Re^{\mathrm{i}\theta}(0\leqslant\theta\leqslant\pi,R$ 充分大) 和 $C_r: z=re^{\mathrm{i}\theta}$ $(0\leqslant\theta\leqslant\pi,r$ 充分小),曲线 $C=C_R\cup[-R,-r]\cup C_r^-\cup[r,R]$,则 $f(z)=\frac{e^{\mathrm{i}z}}{z}$ 沿曲线 C 上的积分: $\int_C f(z)\mathrm{d}z=0$,即

$$\int_{C_R} \frac{e^{\mathrm{i}z}}{z} \mathrm{d}z + \int_{-R}^{-r} \frac{e^{\mathrm{i}x}}{x} \mathrm{d}x - \int_{C_r} \frac{e^{\mathrm{i}z}}{z} \mathrm{d}z + \int_r^R \frac{e^{\mathrm{i}x}}{x} \mathrm{d}x = 0$$

由引理6.2, $\lim_{R\to+\infty}\int_{C_R}\frac{e^{\mathrm{i}z}}{z}\mathrm{d}z=0$, 由引理6.3, $\lim_{r\to0}\int_{C_r}\frac{e^{\mathrm{i}z}}{z}\mathrm{d}z=\mathrm{i}\pi$. 令 $r\to0$, $R\to+\infty$, 得 $I=\frac{\pi}{2}$.

6.3 辐角原理及其应用

6.3.1 对数留数

定义 6.3

具有形式 $\frac{1}{2\pi i} \oint_c \frac{f'(z)}{f(z)} dz$ 的积分, 称为 f(z) 关于曲线 c 的对数留数.

显然函数 f(z) 的零点和奇点都可能是函数 $\frac{f'(z)}{f(z)}$ 的奇点, 由留数定理:

$$\frac{1}{2\pi i} \oint_c \frac{f'(z)}{f(z)} dz = \sum_k \text{Res} \left[\frac{f'(z)}{f(z)}, z_k \right]$$

注 名称来源: $\frac{f'(z)}{f(z)} = \frac{\mathrm{d}}{\mathrm{d}z} [\ln f(z)]$

引理 6.4

1. 设 a 为 f(z) 的 n 级零点,则 a 必为函数 $\frac{f'(z)}{f(z)}$ 的一级极点,且

$$\operatorname{Res}\left[\frac{f'(z)}{f(z)}, a\right] = n$$

2. 设 b 为 f(z) 的 m 级极点, 则 b 必为函数 $\frac{f'(z)}{f(z)}$ 的一级极点, 且

$$\operatorname{Res}\left[\frac{f'(z)}{f(z)}, b\right] = -m$$

证明

1. 设 $f(z) = (z-a)^n g(z)$, 其中 g(z) 在点 a 的邻域内解析, 且 $g(a) \neq 0$,

$$f'(z) = n(z - a)^{n-1}g(z) + (z - a)^n g'(z)$$
$$\frac{f'(z)}{f(z)} = \frac{n}{z - a} + \frac{g'(z)}{g(z)}$$

由于 $\frac{g'(z)}{g(z)}$ 在点 a 的邻域内解析, 故 $\operatorname{Res}\left[\frac{f'(z)}{f(z)},a\right]=n$.

2. 设 $f(z) = \frac{g(z)}{(z-b)^m}$, 其中 g(z) 在点 b 的邻域内解析, 且 $g(b) \neq 0$,

$$f'(z) = \frac{g'(z)(z-b)^m - m(z-b)^{m-1}g(z)}{(z-b)^{2m}}$$
$$\frac{f'(z)}{f(z)} = \frac{g'(z)}{g(z)} - \frac{m}{z-b}$$

定理 6.4

设c是一条围线,f(z)符合条件:

- 1. f(z) 在 c 的内部除可能有极点外解析;
- 2. f(z) 在 c 上解析且不为零

 \Diamond

则

$$\frac{1}{2\pi i} \oint_c \frac{f'(z)}{f(z)} dz = N(f, c) - P(f, c)$$

其中 N(f,c) 与 P(f,c) 分别表示 f(z) 在 c 内部的零点与极点的个数.(重数计个数)

证明 由条件知, f(z) 在 c 内部零点与极点的个数有限. 设 $a_k(k=1,2,\cdots,p)$ 为 f(z) 在 c 内部的不同零点, 其阶为 n_k ; $b_i(j=1,2,\cdots,q)$ 为 f(z) 在 c 内部的不同极点, 其阶为 m_i . 由留数定理:

$$\frac{1}{2\pi i} \oint_{c} \frac{f'(z)}{f(z)} dz = \sum_{k} \operatorname{Res} \left[\frac{f'(z)}{f(z)}, a_{k} \right] + \sum_{j} \operatorname{Res} \left[\frac{f'(z)}{f(z)}, b_{j} \right]$$
$$= \sum_{k} n_{k} + \sum_{j} (-m_{j})$$
$$= N(f, c) - P(f, c)$$

练习 6.13 求函数 $f(z) = \frac{1+z^2}{1-\cos 2\pi z}$ 关于圆周 $|z| = \pi$ 的对数留数. 解 f(z) 有两个一级零点 i 与 -i,故 N(f,c) = 2

令 $q(z) = 1 - \cos 2\pi z$, 则 q(z) 的零点为 $z_n = n(n = 0, \pm 1, \pm 2, \cdots)$.

$$g'(z) = 2\pi \sin 2\pi z, g''(z) = 4\pi^2 \cos 2\pi z, g'(n) = 0, g''(n) \neq 0,$$

即 $z_n = n$ 是 g(z) 的二级零点, 从而是 f(z) 的二级极点. 故 P(f,c) = 14, 从而

$$\frac{1}{2\pi i} \oint_{z=\pi} \frac{f'(z)}{f(z)} dz = N(f,c) - P(f,c) = -12$$

6.4 辐角原理

定理 6.5 (辐角原理)

设c是一条围线, f(z) 符合条件:

- 1. f(z) 在 c 的内部除可能有极点外解析;
- 2. f(z) 在 c 上解析且不为零

则 f(z) 在围线 c 内部的零点个数与极点个数之差,等于当 z 沿 c 的正向绕行一周后 $\arg f(z)$ 的改变量 $\Delta_c \arg f(z)$ 除以 2π , 即

$$N(f,c) - P(f,c) = \frac{\Delta_c \arg f(z)}{2\pi}$$

证明

$$\frac{1}{2\pi i} \oint_{\mathcal{C}} \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \oint_{\mathcal{C}} d\ln f(z) = \frac{1}{2\pi i} \left[\oint_{\mathcal{C}} d\ln |f(z)| + i \oint_{\mathcal{C}} d\arg f(z) \right]$$

由于 $\oint \mathrm{d} \ln |f(z)| = 0$, $\oint \mathrm{d} \arg f(z) = \theta_2 - \theta_1$ (终点与起点辐角之差), 故

$$\frac{1}{2\pi i} \oint_{c} \frac{f'(z)}{f(z)} dz = \frac{\theta_2 - \theta_1}{2\pi} = \frac{\Delta_c \arg f(z)}{2\pi}$$

这里 $\Delta_c \arg f(z)$ 表示 z 沿 c 的正向绕行一周后 $\arg f(z)$ 的改变量, 它是 2π 的整数倍.

 $\dot{\mathbf{L}}$ 特别地, 若 f(z) 在围线 c 上及内部都解析, 且 f(z) 在 c 上不为零, 则

$$N(f,c) = \frac{\Delta_c \arg f(z)}{2\pi}$$

练习 **6.14** 设 $f(z) = (z-1)(z-2)^2(z-4), c: |z| = 3$ 的正向, 试验证辐角原理. 解

$$N(f,c) = 3, P(f,c) = 0$$

$$\Delta_c \arg f(z) = \Delta_c \arg(z-1) + 2\Delta_c(z-2) + \Delta_c(z-4) = 6\pi$$

$$\frac{\Delta_c \arg f(z)}{2\pi} = \frac{6\pi}{2\pi} = 3$$

6.5 Rouche 定理

定理 6.6 (Rouche 定理)

设c是一条围线,函数f(z)及 $\varphi(z)$ 满足条件:

- 1. 在c内部都解析,且连续到c;
- 2. 在 $c \perp |f(z)| > |\varphi(z)|$.

则函数 f(z) 与 $f(z) + \varphi(z)$ 在 c 的内部有同样多的零点个数,即

$$N(f + \varphi, c) = N(f, c)$$

证明 在 c 上: |f(z)| > 0, 且

$$|f(z) + \varphi(z)| \ge |f(z)| - |\varphi(z)| > 0$$

考虑关系式: 对于 $z \in c$, $f(z) + \varphi(z) = f(z) \left[1 + \frac{\varphi(z)}{f(z)} \right]$,

$$\Delta_c \arg[f(z) + \varphi(z)] = \Delta_c \arg f(z) + \Delta_c \arg \left[1 + \frac{\varphi(z)}{f(z)}\right]$$

令 $w(z) = 1 + \frac{\varphi(z)}{f(z)}$, 从条件 2 知: $\left| \frac{\varphi(z)}{f(z)} \right| < 1 (z \in c)$, 从而 |w - 1| < 1,

即将 z 平面上曲线 c 映射成 w 平面上曲线 Γ , 且 Γ 全含在圆周 |w-1|=1 的内部,

即 Γ 没有包围原点w=0,从而

$$\Delta_c \arg w = \Delta_c \arg \left[1 + \frac{\varphi(z)}{f(z)} \right] = 0$$

于是 $\Delta_c \arg[f(z) + \varphi(z)] = \Delta_c \arg f(z)$.

例题 6.2 设 n 次多项式 $p(z) = a_0 z^n + a_1 z^{n-1} + \cdots + a_t z^{n-t} + \cdots + a_n \ (a_0 \neq 0)$, 满足 $|a_t| > |a_0| + \cdots + |a_{t-1}| + |a_{t+1}| + \cdots + |a_n|$, 则 p(z) 在单位圆 |z| < 1 内有 n-t 个零点.

证明 设 $f(z) = a_t z^{n-t}$, $\varphi(z) = a_0 z^n + \dots + a_{t-1} z^{n-t+1} + a_{t+1} z^{n-t-1} + \dots + a_n = p(z) - f(z)$. 则 f(z) 在 |z| < 1 内有 n-t 个零点. 在 c: |z| = 1 上,有 $|f(z)| = |a_t| > |\varphi(z)|$. 由 Rouche 定理,

$$N(p,c) = N(f + \varphi, c) = N(f,c) = n - t$$

▲ 练习 6.15

- 1. 方程 $z^8 6z^5 2z + 1 = 0$ 在 |z| < 1 内有 __5__ 个根.
- 2. 方程 $z^7 z^4 + 5z^2 2 = 0$ 在 |z| < 1 内有 __2_ 个根.
- 3. 方程 $z^7 z^4 + 5z^2 12 = 0$ 在 |z| < 1 内有 0 个根.

证明 显然方程在 |z| < 1 内无根.

由 Rouche 定理, 方程根均在 $1 \le |z| < 2$ 上.

但当
$$|z| = 1$$
 时, $|z^7 - z^3| = |z^3| |z^4 - 1| \le |z|^3 |z^4 + 1| = 2$

$$|z^7 - z^3 + 12| \ge 12 - |z^7 - z^3| = 10 > 0$$

综上,根全在1 < |z| < 2.