예측 모델 학습 프로세스

김성범

(다변량) 데이터

Y (결과): 종속변수, 반응변수, 출력변수

X (원인): 독립변수, 예측변수, 입력변수	

변수 관측치	X,		X_{i}		X_p
N ₁	x ₁₁	•••	x _{Ii}	•••	x_{lp}
N ₂	x ₂₁	•••	x _{2i}	•••	x _{2p}
	•••			•••	•••
N _{n-1}	Х _{п-1 I}		X _{n-li}	•••	x _{n-1p}
N_n	X _{n I}	•••	X _{ni}	•••	X np

	<u>'</u>
Y	
20.5	
22.2	
•••	
72.3	
82.8	

많은 현상을 X와 Y로 설명할 수 있어...

어떤 고객들이 이탈할까?

고장을 미리 예측 할 수 있을까?

최적의 투자전략은 무엇인가?

식품 판매량 (수요) 예측?

보험 과다 청구 여부?

출시 예정 상품이 시장에서 어떤 반응을 보일까?

X와 Y의 관계를 찾는 것!

우리의 주 관심은 Y (예측하려는 대상)

Y를 설명하는 X변수는 보통 여러 개

여러 개의 X와 Y의 관계를 찿는 것!

X변수들을 조합(결합)하여 Y를 표현

조합하는 방법은 무수히 많음

수학적으로는, $Y = f(X_1, X_2, ..., X_p)$

X	Y
0	0
1	2
2	4
3	6

X	Υ
0	1
1	3
2	5
3	7

X	Y
0	2
1	2.5
2	3
3	3.5

Xı	X2	Υ
0	2	2
1	3	4
2	4	6
3	5	8

X1	X2	Y
0	2	6
1	3	9.5
2	4	13
3	5	16.5

Xı	X2	Υ
0	2	6
1	3	9
2	4	11.5
3	5	14.5

	<u> </u>	Λ2	<u>^3</u>	
모델	주행거리	마력	용량	가격
TOYOTA Corolla 2.0 D4D HATCHB TERRA 2/3-Doors	46,986	90	2,000	13,500
TOYOTA Corolla 1800 T SPORT VVT I 2/3-Doors	19,700	192	1,800	21,500
TOYOTA Corolla 1.9 D HATCHB TERRA 2/3-Doors	71,138	69	1,900	12,950
TOYOTA Corolla 1.8 VVTL-i T-Sport 3-Drs 2/3-Doors	31,461	192	1,800	20,950
TOYOTA Corolla 1.8 16V VVTLI 3DR T SPORT BNS 2/3-Doors	43,610	192	1,800	19,950
TOYOTA Corolla 1.6 VVTI Linea Terra Comfort 2/3-Doors	21,716	110	1,600	17,950
TOYOTA Corolla 1.6 16v LSOL 2/3-Doors	25,563	110	1,600	16,750
TOYOTA Corolla 1.6 16V VVT I 3DR TERRA 2/3-Doors	64,359	110	1,600	16,950
TOYOTA Corolla 1.6 16V VVT I 3DR SOL AUT4 2/3-Doors	43,905	110	1,600	16,950
TOYOTA Corolla 1.6 16V VVT I 3DR SOL 2/3-Doors	56,349	110	1,600	15,950
TOYOTA Corolla 1.4 VVTI Linea Terra 2/3-Doors	9,750	97	1,400	12,950
TOYOTA Corolla 1.4 16V VVT I 3DR 2/3-Doors	27,500	97	1,400	14,750
TOYOTA Corolla 1.4 16V VVT I 3DR 2/3-Doors	49,059	97	1,400	13,950
TOYOTA Corolla 1.4 16V VVT I 3DR 2/3-Doors	44,068	97	1,400	16,750
TOYOTA Corolla 1.4 16V VVT I 3DR 2/3-Doors	46,961	97	1,400	13,950
TOYOTA Corolla 2.0 D4D 90 5DR TERRA COMFORT 4/5-Doors	110,404	90	2,000	16,950
TOYOTA Corolla 2.0 D4D 90 5DR TERRA COMFORT 4/5-Doors	100,250	90	2,000	16,950
TOYOTA Corolla 2.0 D4D 90 5DR SOL 4/5-Doors	84,000	90	2,000	19,000
TOYOTA Corolla 2.0 D4D 90 5DR TERRA 4/5-Doors	79,375	90	2,000	17,950
TOYOTA Corolla 1.4 16V VVT I 5DR TERRA COMFORT 4/5-Doors	75,048	97	1,400	15,800

X1 X2 X2 Y

X	X2	Υ
0	2	6
1	3	9
2	4	11.5
3	5	14.5

$$Y = ?X_1 + ?X_2 + \varepsilon$$

$$Y = W_1X_1 + W_2X_2 + \varepsilon$$

W₁? W₂?

Given X1, X2, Y (데이터)

$$Y = (W_1)X_1 + (W_2)X_2 + \varepsilon$$

파라미터 (母數)(媒介變數)

데이터가 주어졌을 때 모델의 파라미터 찿기!

$$Y = W_1 X_1 + W_2 X_2 + \varepsilon$$
$$= f(X) + \varepsilon$$

$$\varepsilon = Y - f(X)$$
 \Rightarrow 오차 Loss function (손실함수)

$$Y-f(X)=o, \varepsilon=o$$

$$\varepsilon = Y - f(X)$$
 Loss function (손실함수)

$$f(X) = W_1 X_1 + W_2 X_2 + \varepsilon$$

$$\varepsilon = Y - (W_1 X_1 + W_2 X_2)$$

Xı	X2	Υ
0	2	2
1	3	4
2	4	6
3	5	8

$$\varepsilon_i = Y_i - (w_1 X 1_i + w_2 X 2_i), i = 1, 2, ..., n$$

$$\varepsilon_i = Y_i - (w_1 X 1_i + w_2 X 2_i), i = 1, 2, ..., n$$

$$\sum_{i=1}^{n} \{Y_i - (w_1 X_{1i} + w_2 X_{2i})\} = 0$$

$$\sum_{i=1}^{n} \{Y_i - (w_1 X_{1i} + w_2 X_{2i})\}^2$$

$$(비용함수)$$

$$\sum_{i=1}^{n} \{Y_i - (w_1 X_{1i} + w_2 X_{2i})\}^2$$
 Cost function (비용함수)

비용함수를 최소로 하는 w₂와 w₂를 찾자!

$$\min_{\mathbf{w_1}, \mathbf{w_2}} \sum_{i=1}^{n} \{Y_i - (\mathbf{w_1} X_{1i} + \mathbf{w_2} X_{2i})\}^2$$

$$\min_{\mathbf{w_1, w_2}} \sum_{i=1}^{n} \{Y_i - (\mathbf{w_1} X_{1i} + \mathbf{w_2} X_{2i})\}^2$$

답:
$$\widehat{w}_1,\widehat{w}_2$$

$$\widehat{f}(X) = \widehat{w}_1 X_{1i} + \widehat{w}_2 X_{2i}$$

모델 결정 → 파라미터 추정

$$\min_{\mathbf{w_1, w_2}} \sum_{i=1}^{n} \{Y_i - (\mathbf{w_1} X_{1i} + \mathbf{w_2} X_{2i})\}^2$$

$$f(X)$$

$$f(X) = w_0 + w_1 X_1 + w_2 X_2$$

다중선형회귀 모델

$$f(X) = \frac{1}{1 + e^{-(w_0 + w_1 X_1 + w_2 X_2)}}$$

로지스틱회귀 모델

$$f(X) = \sum_{m=1}^{n} k(m)I\{(x_1, x_2) \in R_m\}$$
 의사결정나무 모델

$$f(X) = \frac{1}{1 + exp\left(-\left(w_0 + w_1\left(\frac{1}{1 + e^{-(w_{01} + w_{11}X_1 + w_{21}X_2)}}\right)\right) + w_2\left(\frac{1}{1 + e^{-(w_{02} + w_{12}X_1 + w_{22}X_2)}}\right)\right)}$$

뉴럴네트워크 모델

모델 결정 → 파라미터 추정

$$\min_{W} \sum_{i=1}^{n} \{Y_i - f(X)\}^2$$
 $f(X) = w_0 + w_1 X_1 + w_2 X_2$ 다중선형회귀 모델

$$\min_{w_0, w_1, w_2} \sum_{i=1}^{n} \{Y_i - (w_0 + w_1 X_{1i} + w_2 X_{2i})\}^2$$

$$\hat{f}(X) = \hat{w}_0 + \hat{w}_1 X_1 + \hat{w}_2 X_2$$

$$\min_{W} \sum_{i=1}^{n} \{Y_i - f(X)\}^2$$

$$f(X) = \frac{1}{1 + e^{-(w_0 + w_1 X_1 + w_2 X_2)}} \quad \text{로지스틱회귀 모델}$$

$$\min_{W_0, W_1, W_2} \sum_{i=1}^{n} \left\{ Y_i - \left(\frac{1}{1 + e^{-(w_0 + w_1 X_1 + w_2 X_2)}} \right) \right\}^2$$

모델 결정 → 파라미터 추정

$$\min_{W} \sum_{i=1}^{n} \{Y_i - f(X)\}^2$$
 뉴럴네트워크 모델

$$f(X) = \frac{1}{1 + exp\left(-\left(w_0 + w_1\left(\frac{1}{1 + e^{-(w_{01} + w_{11}X_1 + w_{21}X_2)}}\right)\right) + w_2\left(\frac{1}{1 + e^{-(w_{02} + w_{12}X_1 + w_{22}X_2)}}\right)\right)}$$

$$\min_{w_0,\dots,w_{22}} \sum_{i=1}^{n} \left\{ Y_i - \left(\frac{1}{1 + exp\left(-\left(\frac{1}{1 + e^{-(w_{01} + w_{11}X_1 + w_{21}X_2)}}\right) \right) + w_2\left(\frac{1}{1 + e^{-(w_{02} + w_{12}X_1 + w_{22}X_2)}}\right) \right) \right\}^2$$

$$\widehat{f}(X) = \frac{1}{1 + exp\left(-\left(\widehat{w}_0 + \widehat{w}_1\left(\frac{1}{1 + e^{-(\widehat{w}_{01} + \widehat{w}_{11}X_1 + \widehat{w}_{21}X_2)}}\right)\right) + \widehat{w}_2\left(\frac{1}{1 + e^{-(\widehat{w}_{02} + \widehat{w}_{12}X_1 + \widehat{w}_{22}X_2)}}\right)\right)}$$

$$f(X) = w_0 + w_1 X_1 + w_2 X_2$$
 다중선형회귀모델 Least square estimation algorithm
$$f(X) = \frac{1}{1 + e^{-(w_0 + w_1 X_1 + w_2 X_2)}} \quad \hat{f}(X) = \frac{1}{1 + e^{-(\hat{w}_0 + \hat{w}_1 X_1 + \hat{w}_2 X_2)}}$$
 로지스틱회귀모델 Conjugate gradient algorithm
$$f(X) = \frac{1}{1 + exp\left(-\left(w_0 + w_1\left(\frac{1}{1 + e^{-(w_{01} + w_{11} X_1 + w_{21} X_2)}\right)\right) + w_2\left(\frac{1}{1 + e^{-(w_{02} + w_{12} X_1 + w_{22} X_2)}\right)\right)}$$
 바월네트워크모델 Backpropagation algorithm
$$\hat{f}(X) = \frac{1}{1 + exp\left(-\left(\hat{w}_0 + \hat{w}_1\left(\frac{1}{1 + e^{-(\hat{w}_{01} + \hat{w}_{11} X_1 + \hat{w}_{21} X_2)}\right)\right) + \hat{w}_2\left(\frac{1}{1 + e^{-(\hat{w}_{02} + \hat{w}_{12} X_1 + \hat{w}_{22} X_2)}\right)}\right)$$

모델
$$Y = f(X)$$

알고리즘

$$Y = w_1 X_1 + W_2 X_2 + w_3 X_3 + w_4 X_4 + W_5 X_5 + w_6 X_6 + w_7 X_7$$

- 1. 모델 결정하기 (Y를 표현하기 위한 X들을 조합 방식 결정)
- 2. 모델을 구성하는 파라미터 찿기 (모델의 핵심!!)

어떻게?

가지고 있는 데이터를 이용하여

무엇을 추구하며?

실제 데이터의 값과 최대한 같게 나오도록!

EOD