

Patent Number:	EP0340762, A3		
Publication date:	1989-11-08	JPA 1-280598	
nventor(s):	NORO MASAO		
Applicant(s):	YAMAHA CORP (JP)	•	
Requested Patent:	JP1280998		
Application Number:	EP19890108045 19890503		
Priority Number(s):	JP19880110943 19880506		
PC Classification:	H04R3/00; H04R3/04		
EC Classification:	H04R3/00A, H04R3/00C		
Equivalents:	JP1990755C, JP7028473B, US4969195	,	
Cited Documents:	GB2188203; US4494074; US4694498; US45	50426; GB2187607	

In an impedance compensation circuit of a speaker driving system, an ideal impedance state of the speaker can be equivalently formed by the equivalent impedance means, and is compared with an impedance state of an actual speaker. On the basis of the comparison result, a positive feedback gain in the speaker driving means is controlled. Therefore, even when the internal impedance of the speaker or the impedance of the connecting cable varies, or when the internal impedance of the speaker is changed upon a change in temperature, the motional impedance of the speaker can always be driven and damped with a constant driving impedance. For this reason, in the negative-impedance driving system, an ideal speaker control state can always be realized.

Data supplied from the esp@cenet database - I2

SPECIFICATION

1. Title of the Invention IMPEDANCE COMPENSATION CIRCUIT

2. Claims

An impedance compensation circuit characterized by comprising:

loudspeaker driving means for detecting a signal corresponding to a drive current for a loudspeaker and for providing positive feedback for an input side, and for equivalently generating a predetermined negative output impedance and driving the loudspeaker to reduce or invalidate an internal impedance that is unique to the loudspeaker;

equivalent impedance means for equivalently generating an impedance state for the loudspeaker that is regarded as ideal by the loudspeaker driving means;

comparison means for comparing the signal output by the equivalent impedance means with a signal corresponding to the drive current for the loudspeaker; and

feedback gain control means for employing the comparison results obtained by the comparison means to control a gain provided by positive feedback for the speaker driving means.

3. Detailed Description of the Invention [Industrial Field of the Invention] The present invention relates to an impedance compensation circuit for a loudspeaker driving system, and more specifically, relates to an impedance compensation circuit used to prevent a change in the driving state of a loudspeaker as a result of a variance in an internal impedance unique to the loudspeaker or a variance in the impedance of a connection cable connecting the loudspeaker and a driving circuit, or a variance in the impedance resulting from changes in the temperatures of these components.

[Prior Art]

Generally, a driving force for an electromagnetic transducer (electroacoustic transducer), such as a loudspeaker, is obtained by supplying a current i to a coil (e.g., a copper coil) that is located in the magnetic gap of a magnetic circuit. When the length of the copper coil is denoted by 1 and the strength of the magnetic field of the magnetic gap is denoted by B, a driving force F appearing across the copper coil is represented by

$F = B \cdot 1 \cdot i$.

Since the electromagnetic control effects can not be satisfactorily obtained by driving using a constant current, a constant-voltage driving method is generally employed for driving a loudspeaker. According to the constant-voltage driving method, the current i flowing across a voice coil is changed depending on an internal impedance unique to the loudspeaker or the impedance of a connection cable that

connects the loudspeaker and a driver. Therefore, as the impedance for the loudspeaker or the connection cable varies or the impedance changes due to a fluctuation in the temperature, the driving force F appearing on the copper coil is varied, or altered.

In addition, the above described electromagnetic transducer generally has a motional impedance, and the resistance of the voice coil and the resistance of the connection table are also employed as the damping resistance for the motional impedance. Therefore, when the internal impedance of the loudspeaker or the impedance of the connection table is destablized, the damping force exerted on the voice coil is also destablized, so that the damping force changes when temperature changes alter these impedances.

On the other hand, a negative impedance driving method has been proposed to provide a driving force and a damping force both higher than those of the constant-voltage driving method. According to this method, a negative output impedance is equivalently generated by a driving circuit, and based on the negative impedance, a loudspeaker is driven as a load. In this case, a current that flows across the voice coil of the loudspeaker must be detected as a load in order to equivalently generate the negative output impedance, and thus, a detection element is connected in series with the load. Using the negative impedance driving method, since the internal impedance of the load is reduced or canceled upon appearance by using the negative output impedance that is

equivalently generated, a high driving force and a high damping force can be simultaneously obtained.

The overview of this method will now be described while referring to Figs. 2(a) and 2(b). In Fig. 2(a), Z_M denotes the motional impedance of an electromagnetic transducer (loudspeaker), and R_{V0} denotes the internal resistance R_V of a voice coil constituting a load. As is shown in Fig. 2(b), the internal resistance R_V is reduced by a negative resistance $-R_A$ that is equivalently generated by a driving side, and a driving impedance Z_A that, on appearance, is represented by

 $Z_A = R_V - R_A$.

When Z_A is a negative value and the operation of the circuit is destablized, generally, $R_V \geq R_A$ is established.

[Problems to be solved by the Invention]

However, according to the above described negative impedance driving method, the driving impedance relative to the motional impedance can not be constantly maintained to counter the variance in the internal impedance of the loudspeaker or the impedance of the connection table, or the altered internal impedance that accompanies a fluctuation in the temperature. Specifically, when the equivalent negative resistance -R_A is maintained at a constant level, the rate whereat the negative impedance driving method is adversely affected by a variance in the internal impedance of the loudspeaker or the impedance of the connection cable, or a change due to temperature fluctuation is higher than the rate

for the constant-voltage driving method.

Conventionally, no means has been provided for the negative impedance driving method that will prevent an especially remarkable adverse affect from being produced by a variance in the negative impedance and a fluctuation in the temperature.

Therefore, it is one objective of the present invention to provide an impedance compensation circuit that can maintain an ideal control state for a loudspeaker by using a negative impedance method even when the internal impedance of the loudspeaker or the impedance of a connection cable varies, or when the internal impedance of the voice coil of the loudspeaker is changed by temperature.

[Means for Solving the Problems]

An impedance compensation circuit according to the present invention is characterized by comprises loudspeaker driving means for detecting a signal corresponding to a drive current for a loudspeaker and for providing positive feedback for an input side, and for equivalently generating a predetermined negative output impedance and driving the loudspeaker to reduce or invalidate an internal impedance that is unique to the loudspeaker, equivalent impedance means for equivalently generating an impedance state for the loudspeaker that is regarded as ideal by the loudspeaker driving means, comparison means for comparing the signal output by the equivalent impedance means with a signal corresponding to the drive current for the loudspeaker, and

feedback gain control means for employing the comparison results obtained by the comparison means to control a gain provided by positive feedback for the speaker driving means.

[Operation]

According to this invention, an ideal impedance state for a loudspeaker is equivalently generated by the equivalent impedance means and is compared with the actual impedance state of the loudspeaker, and based on the comparison results, a gain in the positive feedback for the speaker driving means is controlled. Thus, when the internal impedance of the loudspeaker or the impedance of the connection cable is changed, or when the internal impedance is changed due to temperature, a driving impedance for the driving and the control of the loudspeaker is always the same as the motional impedance of the loudspeaker.

[Mode of the Invention]

One embodiment according to this invention will now be described while referring to the accompanying drawings, Figs. 1 to 9. To avoid overlapping during the explanation, the same reference numerals are employed throughout to denote corresponding components.

Fig. 1 is a block diagram showing the basic configuration for this embodiment. As is shown in Fig. 1, loudspeaker driving means 1 comprises: an amplification circuit 11 having a gain A; a feedback circuit 12 having an inherent transmission gain β_0 ; an adder 13, for transmitting the output of the feedback circuit 12 as a positive feedback

to the amplification circuit 11; and a detection element Z_S . A loudspeaker 3 is connected through a connection cable 2, having an impedance Zc, to the output terminal of the loudspeaker driving means 1. This loudspeaker 3 has a unique internal impedance Z_V and a motional impedance Z_M . Equivalent impedance means 4 equivalently generates the impedance state of the loudspeaker 3 that is regarded as ideal by the speaker driving means 1. The equivalent impedance means 4, which has an equivalent impedance Zref, outputs a signal to comparison means 5. The comparison means 5 compares the signal output by the equivalent impedance means 4 with a voltage detected by the detection element Zs, and transmits the comparison results to feedback gain control means 6. Thereafter, the feedback gain control means 6 employs the comparison results obtained by the comparison means 5 to control a feedback gain for the amplification circuit 11.

The reasons that the impedance compensation can be performed by the basic configuration of this embodiment will be explained in sequential order.

The first reason that the impedance compensation is necessary is mainly the variance in the internal impedance Z_V of the loudspeaker 3 and the variance in the impedance Z_C of the connection cable 2. When the internal impedance Z_V and the impedance Z_C vary, the driving impedance relative to the motional impedance Z_M of the loudspeaker 3 is altered. The second reason is that the change in the internal impedance Z_V

of the loudspeaker 3 is mainly due to the temperature. For example, when a drive current flows across the voice coil of the loudspeaker 3, in accordance with Joule's law, heat is generated, and that greatly changes the internal impedance Z_V . Therefore, for an ideal impedance state to be maintained, regardless of variances or changes, impedance compensation is required. In order to simplify the following explanation, assume that the sum of the internal impedance Z_V of the loudspeaker 3 and the impedance Z_V of the connection cable 2 is an internal impedance Z_V , that the design value is Z_V , and that the value of the detection element Z_V is Z_V .

Generally, in order to compensate for a change or a variance in the impedance of a load, some method must be used to obtain the current state of the impedance. In this case, information required for the compensation may be absolute impedance values; however, the compensation can also be obtained by using a smaller amount of information. That is, for the impedance of the load, a specific value (a design value) is assumed at the design stage, and so long as the actual impedance for the load is greater or smaller than the design value, the feedback system for an equivalent approach of the impedance of the load to the design value can be constituted.

Since an absolute value need not be obtained for a load, a signal whose property is not known (a signal for which a frequency or a level has not been defined) may be employed as a measurement signal, and a music signal, for

example, transmitted to the loudspeaker as the load can be employed as a measurement signal. Further, when the music signal is not received, a small amount of white noise, generated by an amplifier, is provided for the loudspeaker serving as the load, so that the white noise can be used as a measurement signal by appropriately increasing the gain of a feedback loop. Further, the detection element Z_S is provided to obtain, in accordance with the measurement signal, the current state of the impedance of the load.

In this invention, an originally driven circuit is shown in Fig. 2(a), and an equivalent circuit is shown in Fig. 2(b). R_{V0} denotes a design value, which differs from the actual internal impedance R_V of the load $(R_{V0} \neq R_V)$. Furthermore, the driving impedance relative to the motional impedance Z_M is

 $R_{V0} - R_S \cdot A\beta + R_S = R_{V0} + Rs(1 - A\beta) \qquad . \ . \ . \ (1) \, ,$ and the relationship

$$E_0 = A \cdot E_1 \qquad . . . (2)$$

is established between E_1 in Fig. 2(a) and E_0 in Fig. 2(b).

In Fig. 2(b), the motional impedance Z_M can be equivalently obtained using an electric circuit. Therefore, a circuit having the same characteristic as the circuit in Fig. 2(b), for the electric transmission of E_0 to e_0 , can be equivalently generated by assembling electric elements in a manner that will be described later, or by using an operating amplifier. Therefore, when R_V is defined as the design value R_{VO} , and when the circuit shown in Fig. 3(a), which has a

transmission characteristic $F(S)=e_0/E_0$, is employed, a circuit shown in Fig. 3(b) can compare e_0 with e_S to determine whether the actual impedance of the load differs from the design value.

In Fig. 3(b), the transmission characteristic is $F(S) = e_0/E_0$, and since, based on equation (2), $E_0 = A \cdot E_1$, the output $A \cdot F(S)$ of the equivalent circuit is e_0 . In this circuit, $e_0 = e_S$ is established when $R_V = R_{V0}$; $e_0 > e_S$ is established when $R_V > R_{V0}$; and $e_0 < e_S$ is established when $R_V > R_{V0}$; and $e_0 < e_S$ is established when $e_0 = A \cdot E$ is obtained based on equation (2), and $e_0 = A \cdot E$ is obtained based on equation (2), and $e_0 = A \cdot E$ is obtained based on equation (2), and $e_0 = A \cdot E$ is obtained based on equation (2), and $e_0 = A \cdot E$ is obtained based on equation (3), and $e_0 = A \cdot E$ is obtained based on equation (4), and $e_0 = A \cdot E$ is obtained based on equation (5), and $e_0 = A \cdot E$ is obtained based on equation (5), and $e_0 = A \cdot E$ is obtained based on equation (6), and $e_0 = A \cdot E$ is obtained based on equation (6), and $e_0 = A \cdot E$ is obtained based on equation (7), and $e_0 = A \cdot E$ is obtained based on equation (8), and $e_0 = A \cdot E$ is obtained based on equation (9), and $e_0 = A \cdot E$ is obtained based on equation (9), and $e_0 = A \cdot E$ is obtained based on equation (9), and $e_0 = A \cdot E$ is obtained based on equation (9), and $e_0 = A \cdot E$ is obtained based on equation (9), and $e_0 = A \cdot E$ is obtained based on equation (9), and $e_0 = A \cdot E$ is obtained based on equation (9), and $e_0 = A \cdot E$ is obtained based on equation (9), and $e_0 = A \cdot E$ is obtained based on equation (9), and $e_0 = A \cdot E$ is obtained based on equation (9), and $e_0 = A \cdot E$ is obtained based on equation (9), and $e_0 = A \cdot E$ is obtained based on equation (9), and $e_0 = A \cdot E$ is obtained based on equation (9), and $e_0 = A \cdot E$ is obtained based on equation (9), and $e_0 = A \cdot E$ is obtained based on equation (9), and $e_0 = A \cdot E$ is obtained based on equation (9), and $e_0 = A \cdot E$ is obtained based on equation (9), and $e_0 = A \cdot E$ is obtained based on equation (9), and $e_0 = A \cdot E$ is obtained based on equation (9), and $e_0 = A \cdot E$ is obtained

The comparison of e_0 and e_s can be performed by a circuit, in Fig. 4, according to which detection circuits 5_0 and 5_s obtain absolute values for e_0 and e_s , and transmit the outputs $|e_0|$ and $|e_s|$ to a comparator 51. Therefore, the output of the comparator is $(|e_0| - |e_s|)$. And since the output of the comparator 51 includes many distorted waveforms, relative to the original e_0 and e_s , the output waveform, especially when $R_V = R_{V0}$ is established, would be distorted by using this output unchanged. Therefore, an integrator 52, which is connected to the output side of the comparator 51, removes the distorted elements. The distorted elements can be

removed by integration along the time axis, because the value of R_V is changed only due to the temperature along the time axis (the variance in the R_V is unchanged along the time axis), and because only the value of the internal impedance R_V is gradually increased as the temperature is raised moderately. When the integration has been performed once for $(|e_0| - |e_S|)$, and the obtained value fed back substantially as a DC change, actually, no problem occurs. The integrator 52 can be a useful first-order delay circuit for the feedback system for improving the stability.

Finally, the comparison results are employed to control the transmission gain for the feedback system. In this case, feedback gain control means 6 can be constituted, for example, as a multiplier 61 in Fig. 5. While taking into account the polarity for the feedback, $e_0 > e_s$ is established when $R_V > R_{V0}$, and the driving impedance must be reduced because a too large value for R_V must be compensated for. Since the object of the present invention is the improvement of an operation when $(1 - A\beta) < 0$, and since $A\beta > 0$, the feedback gain control means 6 need only increase the feedback gain β for the driving impedance to be reduced, and an increase of R_V can be compensated for.

The embodiment of the present invention will now be described.

Fig. 6 is a circuit diagram showing the embodiment. As is shown in Fig. 6, the loudspeaker 3 is a dynamic cone loudspeaker, and the motional impedance Z_M can be expressed

by a parallel connection circuit having a capacitance C_M and an inductance L_M . The equivalent impedance means 4 has a resistance R_{VR} that corresponds to the internal impedance R_V of the loudspeaker, and a capacitance C_{MR} and an inductance L_{MR} that correspond to the motional impedances C_M and L_M , and a resistance R_{SR} that corresponds to the detected resistance R_S . With this configuration, the target operating value can be set. So when the internal impedance R_V of the loudspeaker 3 is 8 Ω , and -5 Ω is equivalently generated to set the target operating value of 2 Ω ,

 $R_{VR}: R_{SR} = 19: 1,$

while R_S = 0.1 Ω is established by ignoring the impedance Z_C of the connection cable 2. When, for example, R_{VR} = 1.9 Ω is established, R_{SR} = 0.1 Ω .

The circuit structure of the equivalent impedance means 4 can be variously modified. For example, while also taking the cabinet of the loudspeaker into account, the structure shown in Fig. 7 is provided. In Fig. 7(a), a loudspeaker is attached to a closed cabinet, and in Fig. 7(b), a loudspeaker is attached to a cabinet of a bus reflection type. Furthermore, as previously described, the equivalent impedance means 4 may be constituted by an operating amplifier.

On the other hand, a circuit shown in Fig. 8 is practical for the comparison means 5 and the feedback gain control means 6; however, the circuit is not limited to this application. For example, the multiplier 61 can be provided

with the following configuration. First, in the circuit in Fig. 5, a transmission function at a high frequency is required for the path from X to X. Y because a music signal is passed through there, while a fast response property is not required for the path from Y to X. Y because a DC signal is substantially passed through there. Therefore, the feedback gain control means 6 can be constituted by thermal coupling, as is shown in Figs. 9(a) and 9(b).

In Fig. 9(a), R_1 and R_2 denote thermal sensitive resistors, the resistances of which are changed by temperature, and are thermally coupled to heat generation resistors R_3 and R_4 . When a DC voltage signal Y is transmitted by the comparison means 5 to a terminal 31, the signal is amplified by an amplifier C and is transmitted to the connected resistors R_3 and R_4 , which are used for heat Then, in accordance with the level of the signal, generation. one of the resistors R_3 and R_4 generates heat, while the temperature of the other is reduced. Therefore, the resistances of the thermal sensitive resistors R_1 and R_2 are changed, and a $-R_1/R_2$ gain, transmitted by a terminal 32 to a terminal 33, is changed. The ratio for the multiplication of a signal X (a feedback signal for a feedback circuit 12) transmitted to the terminal 32 by a signal Y (a feedback gain control signal of the comparison means 5) transmitted to the terminal 31 varies, depending on the temperature coefficient and the polarity that are employed for resistors R_1 and R_2 . When the multiplication ratio, together with the polarity, is

set by an amplifier G, the output of the terminal 33 can be set as -X Y.

According to the circuit in Fig. 9(a), since the resistors R_1 to R_4 originally have thermal constants, an integrator need not be provided for the comparison 5. And the direct current gain provided by the integrator can be obtained by adjusting the gains of the comparator and the amplifier G in Fig. 9(a). The amplifier in Fig. 9(a) is an example wherein the output is inverted relative to the input $(X \rightarrow -X \cdot Y)$. Further, for a positive phase amplifier, the circuit in Fig. 9(b) can be employed.

[Advantages of the Invention]

As is described above, according to the invention, an ideal impedance state for a loudspeaker can be equivalently generated by the equivalent impedance means and can be compared with the actual impedance state of the loudspeaker, and based on the comparison results, the gain obtained by the positive feedback of the loudspeaker driving means can be controlled. Therefore, the internal impedance of the loudspeaker, or the impedance of the connection cable, is varied, or when the internal impedance of the loudspeaker is specifically changed due to the temperature, the motional impedance of the loudspeaker can be altered and controlled by the constant driving impedance. Thus, using the impedance driving method, an ideal state can be constantly obtained for the loudspeaker.

4. Brief Description of the Drawings Fig. 1 is a block diagram showing the basic configuration according to one embodiment of the present invention: Fig. 2 is a diagram showing an equivalent circuit to be driven in accordance with the invention; Fig. 3 is a circuit diagram for explaining equivalent impedance means; Fig. 4 is a circuit diagram showing example comparison means; Fig. 5 is a circuit diagram showing example feedback gain control means; Fig. 6 is a circuit diagram showing the embodiment of the present invention; Fig. 7 is a circuit diagram showing equivalent. impedance means while a cabinet is taken into account; Fig. 8 is a circuit diagram showing practical comparison means; and Fig. 9 is a circuit diagram showing another multiplier example. 1: loudspeaker driving means 2: connection cable 3: loudspeaker 4: equivalent impedance means 5: comparison means feedback gain control means 6: amplification circuit 11: - 15 -

12: feedback circuit

13: adder

Patent Applicant: Yamaha Trading Co., Ltd.

Patent Attorney: Yoshiki Hasegawa

Translation of drawings

[Fig. 1]

basic configuration for present invention

4: equivalent impedance means

5: comparison means

6: feedback gain control means

[Fig. 2]

equivalent circuit

[Fig. 3]

generation of equivalent impedance

[Fig. 4]

arrangement of comparison means

5a, 5s: detection circuit

[Fig. 5]

arrangement of feedback gain control means

61: multiplier

[Fig. 6]

circuit for embodiment

5a, 5s: detection circuit

[Fig. 7]

equivalent impedance means while cabinet is taken into account

19日本国特許庁(JP)

1D 特許出願公開

母 公 開 特 許 公 報 (A) 平1-280998

∰Int.Cl.⁴

識別記号

庁内整理番号

❷公開 平成 1年(1989)11月13日

H 04 R 3/04

101

8524-5D

審査請求 未請求 請求項の数 1 (全9頁)

図発明の名称 インピーダンス補償回路

②特 顧 昭63-110943

22出 頭 昭63(1988) 5月6日

⑩発明者 野呂 正夫 ⑪出願人 ヤマハ株式会社 静岡県浜松市中沢町10番1号 ヤマハ株式会社内

静岡県浜松市中沢町10番1号

邳代 理 人 弁理士 長谷川 芳樹 外3名

明細 😝

1. 発明の名称

インピーダンス補償回路

2. 特許請求の範囲

スピーカの駆動電流に対応する信号を検出して入力側へ正帰還し、所定の負性出力インピーダンスを等価的に生成して前記スピーカを駆動することにより、このスピーカに固有の内部インピーダンスを低減もしくは無効化するスピーカ駆動手段と、

このスピーカ駆動手段からみた前にスピーカの 理想インピーダンス状態を等価的に形成する等価 インピーダンス手段と、

この等価インピーダンス手段の出力信号と前記 スピーカの駆動者流に対応する信号とを比較する 比較手段と、

この比較手段の比較特果にもとづいて前記スピーカ駆動手段による正帰還の利得を制御する帰還

利得制御手段と

を備えることを特徴とするインピーダンス補債 団路。

3. 発明の詳細な説明

〔産業上の利用分野〕

この発明は、スピーカ駆動システムにおけるインピーダンスを供回路に関するもので、特に詳細には、スピーカに固有の内部インピーダンスのバラつきや、スピーカと駆動回路側をつなぐ接続ケーブル等のインピーダンスのバラつき、更にはこれらの温度変化によるインピーダンスの変化による駆動状態の変化を防止するもの等に使用される。 〔徙来の技術〕

一般に、スピーカ等の電磁変換器(動電形電気音響変換器)は、磁気回路の磁気ギャップ中のコイル(例えば銅線コイル)に電流 i を流すことで駆動力を得ている。ここで、銅線コイルの長さを g とし、磁気ギャップの磁界の強さを B とすると、銅線コイルに現れる駆動力をは

F - B . g . i

となる。そして、定電流駆動では電磁制動効果では、定電流駆動では、一般にスピーカなのののでは定電圧駆動方式が、ルを流れている。定電圧駆動方式ではが、カコイルを流れて、のでは、スピーカに、固有のインピーダンスには、ないはでなる。とになり、ないは変化についたが、カロになる。とになる。

また、上記のような電鉄系は一般にモルウンスを育し、ボイスコイルの抵抗分はこのモーショナルインピーダンスを育していため、ピケーブルの抵抗も兼ねている。このためのプルのインピーダンスにパラつきがあることになり、温度にイルへの制動力もパラつくことになり、温度を化ってこれらが変化したときにもこの制動力が変化したときにもなり、

に示すように駆動側で等価的に形成される負性抵抗 - R A によって減少化され、見掛け上の駆動インピーダンス Z A は

 $Z_A = R_V - R_A$ となる。但し、 Z_A が負になると回路の動作が不 安定になるので、一般には $R_V \ge R_A$ となってい

[発明が解決しようとする課題]

しかしながった。 大型ながった。 というながった。 ないかがった。 ないかがった。 ないかがった。 ないかがった。 ないかがった。 ないかがった。 ないかがった。 ないがいないでは、 ないがいないでは、 ないがいないでは、 ないでは、 な することになる。

第2図(a)、(b)を用いてその復略を说明する。第2図(a)において、 2 M は電磁変換器(スピーカ)のモーショナルインピーダンスに相当し、 R y 0 は負荷であるポイスコイルの内部抵抗 R v に相当する。この内部抵抗 R v は第2図(b)

そして、このような負性インピーダンス駆動方式で特に顕著な負荷インピーダンスのバラつきや 温度による想影響を積低的に防止する工夫は、従 来において特になされていない。

そこで、この発明は、スピーカの内部インピータンスがは、スピーカの内部インパラックときにも、また特にスピーカのポイスコイの内部インピーダンスが温度によって変化するスピーカの 斜御状態を常に理想状態とすることを目的とする。

(課題を解決するための手段)

この発明に係るインピーダンス補償回路は、スピーカの駆動電流に対応する信号を検出して入力側へ正帰還し、所定の負性出力インピーダンスを等価的に生成してスピーカを駆動することにより、当はスピーカに固有の内部インピーダンスを低減もしくは無効化するスピーカの理想をよって

ダンス状態を等価的に形成する等価インピーダンス手段と、この等価インピーダンス手段の出力信号とスピーカの駆動電流に対応する信号とを比较する比較手段と、この比較手段の比較結果にもとづいてスピーカ駆動手段による正帰還の利得を制御する帰還利得制御手段とを違えることを特徴とする。

〔作用〕

この免明によれば、 で スピーカの理想の で ス ピーカの理想の ピーン ス ス 状 状 性 で ス ス ス 大 教 を な れ な で ス ス と と さ れ な な で ス と と さ れ な な で ス と と さ れ な な と と さ な な な な と と さ な な な な と と さ な な な と と な な な と と な な な と と な な な と で な な と と な な な と と な な と と な な と と な な と と な な と と な な と と な な と と な な と と な な と と な な と と な な と と な な と と な な と と な な と と な な な と と な な と と な な と と な な と と な な と と な な と と な な と と な な と と な な と と な る 。

4 からの出力信号と校出案子 2 s による校出電圧を比較し、これを帰還利得制御手段 6 に与える。そして、帰還利得制御手段 6 は比較手段 5 による比較結果にもとづき、増幅回路 1 1 への帰還利得を制御する。

[实版例]

以下、添付図面の第1図ないし第9図にもとづいて、この発明の実施例を説明する。なお、図面の説明において同一要素には同一符号を付し、重複する説明を省略する。

らのバラつき、あるいは変化があっても、常に理想のインピーダンス状態が保たれるように行なう必要がある。そこで、以下の説明では鑑益を簡単化するために、スピーカ3の内部インピーダンススCの和を内部インピーダンスRyと仮定し、その设計包定値をRyOと仮定する。また、検出素子スSをRSと仮定する。

この発明において本来的に駆動しようとする回路は、第2図(a)のようになり、その姿価回路は同図(b)のようになる。ここで、 R Vo は設計想定値であり、現実の負荷の内部インピーダンス R V とは異なっている(R Vo ヤ R V)。また、モーショナルインピーダンス C M に対する駆動インピーダンスは

E 1 であるので、等価回路A・F (S) の出力は
e 6 となる。この回路において、R V = R V0の とき e 0 > R V0の とき e 0 >

上記のe₀ とe_S の比較は、第4図のような回路で行なうことができる。同図において、検液回路5₀ 、5_S はそれぞれe₀ 、e_S を絶対値化するもので、その出力(e₀)、!e_S)はないレータ 51に与えられる。従ってコンバレータ 51の出力は(!e₀)ー」e_S)となる形をうこれは元のe₀ 、e_S に対して多くの意波形を待にれているため、そのまま帰還制即に用いるとにに R_y = R_{y0}のときに出力波形を歪ませること

R Y O - R S · A β + R S · ... (1)
- R Y O + R S (1 - A β) ··· (1)
であり、第2図(a)のEiと第2図(b)のEoの間には、

E 0 - A・E 1 ... (2) の関係が成り立っている。

第3図(b)において、伝達特性はF(S) -eg /Eg であり、上記(2) 式よりEg - A・

最後に、この比較結果を帰還系の伝達利得の割御に用いる。そして、この場合の帰還利得割御手段6は例えば第5図のような掛算器61で構成することができる。ここで、帰還のための極性を考察すると、Ry > Ryoのときe a > e s であり、このときにはRy が大きすぎることを補償しなければならないから、駆動インピーダンスは小さく

しなければならない。すると、この発明では(1 - A B) く O のときの動作改善を目的としており、 A B > O であるから、帰還科得 B を帰還利得割包 手段 6 によって大きくすることで駆動インピーダ ンスを小さくでき、従って R y が大きすぎるのを 補債できる。

次に、この発明の実施例を順次に説明する。

信号が通過するために高周波での良好な伝達性能が要求されるが、YーX・Yの経路についてはほとんどDC的な信号が通過するため、高速応答性は要求されない。そこで、帰還利得制御手段6を第9図(a)、(b)のような無結合により構成できる。

 を2Ωとするときには、接続ケーブル2のインピー ーダンス

 Z_{c} を無視して $R_{s}=0$. 1Qとするならば、

R VR: R SR - 1 9: 1

となり、例えばR_{VR}-1. 9ΩとするとR_{SR}-O. 1 Ωとなる。

帯価インピーダンス手段4の具体的回路構成については、程々の変形が可能である。例えば、スピーカのキャピネットまで考慮に入れるときには、第7図の如くになる。同図(a)は密閉形のキャピネットにスピーカを取り付ける場合であり、同図(b)はバスレフ形のキャピネットにスピーカを取り付ける場合である。また、先に説明したように、オペアンプなどで等価インピーダンス手段4を形成してもよい。

一方、比較手取らおよび帰還利得制御手取6としては、第8図のような回路が実用的であるが、これに限られない。例えば、掛算器61については次のようにすることもできる。まず、第5図の回路において、X→X・Yの経路については音楽

極性のものを用いるかにより異なるが、これをアンプGで極性も含めて設定すれば、増子33からの出力は-X・Yとすることができる。

この第9図(a)の回路によれば、R.1 ~ R.4 はもともと熱時定数を持つているため、比較手段5中の積分器を省略できる利点がある。そして、この積分器の持っていた直流利得は、間図(a)中の比較器やアンプGの利得を異整することで得ることができる。なお、同図(a)は入力に対して出力が反転する(メーース・Y)アンプの例であるが、正相アンプの場合には第9図(b)のような回路にすればよい。

(発明の効果)

以上説明したとおり、この免明によれば、等価インピーダンス手段によってスピーカの理想インピーダンス状態が等価的に形成され、この選想インピーダンス状態が現実のスピーカのインピーダンス状態と比較され、この比較結果にもとづいてスピーカ駆動手段による正備温の利仰が制御される。従って、スピーカの内部インピーダンスや彼

特問平1-280998(6)

技ケーブルのインピーダンスがバラつくときにも、また特にスピーカの内部インピーダンスが温度によって変化するときにも、スピーカのモーショナルインピーダンスは常に一定の駆動インピーダンスで駆動され、かつ初勤される。このため、負性インピーダンス駆動方式におけるスピーカの制御状態を常に選想状態とすることができる。

3 … スピーカ、 4 … 等価インピーダンス手段、 5 … 比較手段、 6 … 帰還利得制御手段、 1 1 … 増 幅回路、 1 2 … 帰還回路、 1 3 … 加算器。

4. 図面の簡単な説明

第1 図はこの発明の実施例の基本構成を示すでファク図、第2 図はこの発明で駆動対象とする回路の等値回路図、第3 図は等価インピーダンス手段の回路図、第4 図は比較手段の一例の回路図、第6 図はこの発明の一実施例の回路図、第7 図はキャビネットを考慮したときの等価インピーダンス手段の回路図、第8 図は実用的な比較である。

1 … スピーカ 駆動手段、2 … 接続ケーブル、

特許出題人 ヤマハ 株式 会社 代理人弁理士 長谷川 芳 樹

この発明の基本構成 第 1 図

持間平1-280998(ア)

持周平1-280998(8)

比較手段の構成 第 4 図

実施例の回路 第 6 図

第 8 図

- 781 -