Introduction to aeronautics

Part 2. The era of Strut-and-Wire Biplanes

- Biplanes dominated the first 30 years of aviation
- The majority of airplanes during WWI are warplanes
- The majority of warplanes during WWI are biplanes

Now the Biplanes are primarily used for entertainment purpose

- To win the battle, the following problems should be solved
 - To generate more lift with limited wing span
 - To reduce the drag
 - To reduce the weight of the structure
 - To develop engines with higher T/W and reduce the drag caused by engine
 - Avoid the bullets hitting the propeller

- Solutions:
 - Biplane configuration
 - The fairings on landing gears or retractable landing gears
 - Radial engine and NACA cowling
 - Gun synchronizer

- A. The Biplane configuration
 - Two wings are placed one above another

- A. The biplane configuration
 - Very thin and highly cambered airfoil are first used, then they gradually diminished
 - Later, people recognized that thicker airfoils have much better aerodynamics performance, and larger structure profile and hence lower weight

- A. The biplane configuration
 - Very thin airfoil results in low structure profile
 - To reduce the weight, the bracing and wire structure for bridges is borrowed

- A. The biplane configuration
- Advantage of the biplanes
 - For the same wing shape, the biplanes have lower induced drag
 - For the same wing area, biplanes possess higher aspect ratio and much shorter wing span
 - In case the low speed aircraft with limited wing span, biplane can be a good choice
 - The aerobatic plane, reduced span means higher roll rate
 - For aircraft with very low speed, reduced wing span means lighter structure

- A. The biplane configuration
- Disadvantage of the biplanes
 - There is interference drag between two wings
 - The parasite drag is very high
 - For the monoplane with the same wing area and aspect ratio of each wing, biplane would generate less lift (Monoplane has larger wing span)

- B. The efforts to reduce the drag
 - The fuselage is covered by fabric

- B. The efforts to reduce the drag
 - The cockpit is opened, with very simple wind shield
 - As the speed of aircraft increases, the cockpit is enclosed

- B. The efforts to reduce the drag
 - The fairings are mounted on the landing gear to reduce the drag

Polikarpov I-15

- B. The efforts to reduce the drag
 - Some of them are equipped with retractable landing gear

Curtiss Hawk III

- C. The engine
 - The parts of piston engine

- C. The engine
 - How the reciprocating engine (piston engine) works

Four stroke piston engine

- C. The engine
 - How the reciprocating engine (piston engine) works

Two stroke piston engine

- C. The engine
 - How the reciprocating engine (piston engine) works

Rotary engine (Wankle engine)

- C. The engine
 - The arrangement of multiple cylinder piston engine
 - Radial engine
 - Inline engine
 - Straight engine
 - Flat engine
 - V engine
 - H engine

- C. The engine
 - The arrangement of multiple cylinder piston engine
 - Radial engine

- C. The engine
 - The arrangement of multiple cylinder piston engine
 - Inline engine
 - Straight engine

- C. The engine
 - The arrangement of multiple cylinder piston engine
 - Inline engine
 - Flat engine

- C. The engine
 - The arrangement of multiple cylinder piston engine
 - Inline engine
 - V engine

- C. The engine
 - The arrangement of multiple cylinder piston engine
 - Inline engine
 - H engine
 - Can be deemed as two flat engines

- C. The radial engine
 - Most of the biplanes in 1920's had air cooled radial engines.

- C. The radial engine
 - Some of the biplanes had V-engines.

- C. The engine
 - Air cooled Radial engine
 - Advantages:
 - Light weight
 - Less vulnerable
 - Easier to maintain

- C. The engine
 - Air cooled Radial engine
 - Disadvantages:
 - Very large front area
 - Difficult to streamline the fuselage
 - Reduced front visibility
 - Cylinders exposed in the air causes drag

- C. The engine
 - Air cooled radial engine
 - NACA cowling
 - It is a aerodynamic fairing used to streamline radial engines
 - A long-chord ring cowling whose trailing edge fairs smoothly into the fuselage or engine nacelle.

- C. The engine
 - Air cooled radial engine
 - NACA cowling
 - Streamline the fuselage
 - Improves the engine cooling
 - Reduce the turbulence behind the cylinders

The drag is reduced by 60%!

- D. The gun synchronizer
 - To avoid bullets hitting the propeller, people tried a lot of approaches:
 - Pusher propeller configuration

- D. The gun synchronizer
 - To avoid bullets hitting the propeller, people tried a lot of approaches:
 - Pusher configuration and tractor configuration

- D. The gun synchronizer
 - To avoid bullets hitting the propeller, people tried a lot of approaches:
 - Rotary engine

- D. The gun synchronizer
 - To avoid bullets hit the propeller, people tried a lot of approaches:
 - Armored propeller blades
 - Deflector wedges on the propeller
 - Reduced the efficiency of the propeller

- D. The gun synchronizer
 - To avoid bullets hit the propeller, people tried a lot of approaches:
 - The gun synchronizer

- D. The gun synchronizer
 - To avoid bullets hit the propeller, people tried a lot of approaches:
 - The gun synchronizer

