x Identified no targets to load.

Our data

- To illustrate making graphs, we need some data.
- Data on 202 male and female athletes at the Australian Institute of Sport.
- Variables:
 - categorical: Sex of athlete, sport they play
 - quantitative: height (cm), weight (kg), lean body mass, red and white blood cell counts, haematocrit and haemoglobin (blood), ferritin concentration, body mass index, percent body fat.
- Values separated by tabs (which impacts reading in).

Packages for this section

library(tidyverse)

Reading data into R

• Use read_tsv ("tab-separated values"), like read_csv.

my_url <- "http://ritsokiguess.site/datafiles/ais.txt"</pre>

Data in ais.txt:

```
## Rows: 202 Columns: 13
## -- Column specification ------
## Delimiter: "\t"
## chr (2): Sex, Sport
## dbl (11): RCC, WCC, Hc, Hg, Ferr, BMI, SSF, %Bfa...
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message
```

The data (some)

athletes												
Sex	Sport	RCC	WCC	Нс	Hg	Ferr	ВМІ	SSF	%Bfat	LBM	Ht	Wt
fe- male	Net- ball	4.56	13.30	42.2	13.6	20	19.16	49.0	11.29	53.14	176.8	59.90
fe- male	Net- ball	4.15	6.00	38.0	12.7	59	21.15	110.2	25.26	47.09	172.6	63.00
fe- male	Net- ball	4.16	7.60	37.5	12.3	22	21.40	89.0	19.39	53.44	176.0	66.30
fe- male	Net- ball	4.32	6.40	37.7	12.3	30	21.03	98.3	19.63	48.78	169.9	60.70
fe- male	Net- ball	4.06	5.80	38.7	12.8	78	21.77	122.1	23.11	56.05	183.0	72.90
fe- male	Net- ball	4.12	6.10	36.6	11.8	21	21.38	90.4	16.86	56.45	178.2	67.90
fe- male	Net- ball	4.17	5.00	37.4	12.7	109	21.47	106.9	21.32	53.11	177.3	67.50
fe- male	Net- ball	3.80	6.60	36.5	12.4	102	24.45	156.6	26.57	54.41	174.1	74.10
fe-	Net-	3.96	5.50	36.3	12.4	71	22.63	101.1	17.93	55.97	173.6	68.20

Drawing graphs

6/18

Types of graph

Depends on number and type of variables:

Categorical	Quantitative	Graph
1	0	bar chart
0	1	histogram
2	0	grouped bar charts
1	1	side-by-side boxplots
0	2	scatterplot
2	1	grouped boxplots
1	2	scatterplot with points identified by
		group (eg. by colour)

With more variables, might want *separate plots by groups*. This is called facetting in R.

Drawing graphs

7/18

ggplot

- R has a standard graphing procedure ggplot, that we use for all our graphs.
- Use in different ways to get precise graph we want.
- Let's start with bar chart of the sports played by the athletes.

Bar chart

Histogram of body mass index

Which sports are played by males and females?

Grouped bar chart:

```
ggplot(athletes, aes(x = Sport, fill = Sex)) +
geom_bar(position = "dodge")
```


BMI by gender

Height vs. weight

Scatterplot:

With regression line

```
ggplot(athletes, aes(x = Ht, y = Wt)) +
  geom_point() + geom_smooth(method = "lm")
## `geom_smooth()` using formula = 'y ~ x'
 125 -
 100 -
 50 -
                                   180
                                                       200
```

BMI by sport and gender

ggplot(athletes, aes(x = Sport, y = BMI, colour = Sex)) +
 geom_boxplot()

Height and weight by gender

```
ggplot(athletes, aes(x = Ht, y = Wt, colour = Sex)) + geom_point()
```


Height by weight for each sport, with facets

```
ggplot(athletes, aes(x = Ht, y = Wt, colour = Sex)) +
  geom_point() + facet_wrap(~Sport)
```


aphs 17 / 18

Filling each facet

Default uses same scale for each facet. To use different scales for each facet, this:

```
ggplot(athletes, aes(x = Ht, y = Wt, colour = Sex)) +
   geom point() + facet wrap(~Sport, scales = "free")
                        120
                        100 -
                                                  150.0 152.5 155.0 157.5
                                                        T400m
                                                                              Tennis
                                                                                           Sex
                                               70 -
                                               60 -
                                        190
         170
              180
                  190
                             170
                                  WPolo
           TSprnt
                        100 -
  90 -
80 -
70 -
                                              Ht
```