Design and analysis of a soft continum robot for endoscopy

Author 1, Author 2

Abstract

The abstract goes here.

Index Terms

IEEEtran, journal, LATEX, paper, template.

I. FIGURES AND TABLES

- 1) Figure of our prototype
 - to give first impression what this paper is about
 - in the introduction section
 - with working channel and biopsy forceps
 - · with camera and LED
 - endoscopic view with biopsy forceps
 - · photo of ex-vivo experiments
- 2) Tables
 - to show the need of soft robotic endoscope
 - in the introduction section
 - state-of-the-art robotic endoscope
 - size
 - actuation method
 - materials
- 3) Table of hyperelastic models:
 - in methodology section
 - several candidates
 - equations of the corresponding strain-energy functions
- 4) Figure of FEM models
 - in methodology section
 - to show more details about the FEM meshing techniques
 - 2D cross-sectional design
 - indicate the design parameters
 - · show the meshed figures
 - indicate different types of elements
 - * hexahedral, truss elements
- 5) Table of the FEM parameters
 - in methodology section
 - to show more details about the FEM simulation
 - the simulation parameters and the corresponding values for each hyperelastic model
 - e.g. name of the software
 - e.g. the number of elements used for simulation
 - e.g. name of the element in the software
 - (fitting error, which indicates the best candidate among the hyperelastic models)
- 6) Figures of fabrication procedure
 - photos or schematic diagram
- 7) Figures of FEA results
 - objective: the design parameters are optimized based on these FEA results
 - · stress vs strain

1

- to show how high stress the endoscope can sustain before failure
- longitudinal and axial direction
- pressure vs elongation
 - to show the change of the scope length during bending
 - if the change is small, this figure can be omitted. instead describe this data in the text
 - double channel actuation
 - curves of different design parameters
 - (with and without instrument)
- pressure vs bending performance
 - to show the bending curvature at different pressure
 - ratio between the bending radius and the length of scope
 - curves of different design parameters
 - with and without instrument inserted
- can we simulate the force? e.g. the force at the tip
 - which can show the scope can provide enough force
- 8) Figures of real robots
 - in the result section
 - to show the actual bending behavior and the bending force of the robot
 - to show the measurement setting
 - · for validation of the FEA result
- 9) Videos of FEA
 - a) animation of bending
 - · with and without instrument
 - b) animation of instrument insertion
- 10) Videos of real robot motion
 - a) bending behavior alongside of FEM animation
 - i) without instrument
 - ii) with instrument
 - b) lifting
 - · lifting a mass
 - showing the pressure sensor value alongside
 - c) endoscopic view
 - working with biopsy, suction of liquid

II. Introduction

- 1st paragraph: To introduce the advantages of using soft robots in endoscopy
 - Clinical data of endoscopy, showing the increasing need of robotic endoscope
 - Review of some state-of-the-art robot-assisted endoscopy with rigid structure
 - * tendon-driven
 - Current applications of soft robots in medical applications
 - Advantages of using soft robots in endoscopy
 - * low-cost
 - · disposable
 - * easy to fabricate
 - * particularly fluidically-driven soft continuum robots
- 2nd paragraph: To introduce the technical challenges of using soft robots in endoscopy
 - State-of-the-art soft robotic technologies
 - * achievements in literature
 - requirements for endoscopy
 - * safe
 - * fast response
 - * small size
 - * with working channel *

- * (with embedded camera)
- the technical challenges in design:
 - * choice of material
 - * structural and geometrical design
 - * how stiff should be enough?
 - * simulation of hyper-elastic materials and interaction with internal instrument
- 3rd paragraph: How do we solve these challenges
 - state-of-the-art FEA for hyperelastic material
 - * achievement in literature
 - what are the contributions of our FEA?
 - * any literature have done simulation of interaction with internal instrument?

*

- what are our approach/tricks that can approximate the hyperelastic behaviour?
 - * new FEM formulations?
 - * new combination of element?
 - * optimized for fast computation?
 - * etc...
- how the FEA results be incorporate in the design optimization
 - * description of role of FEA in the design optimization cycle
- 4rd paragraph: Clearly list out the contributions using the proposed FEM-based design
 - how small the soft endoscope with working channel can we achieve?
 - how much force does our prototype can it give?
 - how accurate the FEA simulations were?

_

III. MATERIALS AND METHODS

A. Design and performance requirements

- preserve a working channel
 - for biopsy, suction, irrigation, ...
 - common dimension of clinically-used biopsy forceps
 - * e.g. colonoscopy,
 - requirement for the diameter: the larger the better suction
 - * do we need to specify the target application, e.g. to colonoscopy?
 - * but we need to specify the dimension we are using in this paper
- Dimension: Outer diameter and length
 - give examples of potential endoscopic applications

Stiffness

- sufficient to withstand instrument insertion
- sufficient to withstand high input pressure
- · constrained elongation
 - i.e. only bending without much elongation
 - camera is mount at the tip. bending with large elongation will cause loss of tracked vision target in the endoscopic view
- · Bending force
 - high enough bending force
- · actuation method fluidic actuation
 - advantages of fluidically driven can be only Hydraulic/pneumatic
 - safe without internal electric component
 - hydraulic: incompressible transmission media gives fast response, ...
 - pneumatic: ease of assembly, ...
 - MRI-compatible
- Durability

- long life cycle
- discuss difficulties of miniaturization
 - link to the proposed structural design in the next section
- figures
 - can be the same figure in the introduction section
 - a real prototype (with instrument inserted)
 - a endoscopic view

B. Structural design

- we can first give the design using fan-shaped actuation chambers
- then use FEM to demonstrate the weak points at the chamber corners
- then provide the dump bell shaped design
- actuation chamber design 1st version: the fan-shaped
 - number of chambers
 - * 3-chamber are commonly used in the literature
 - chamber geometry
 - * why using the fan-shaped chamber?
 - chamber arrangement/location
- · constraint layers
 - material
 - where are the constraint layers
 - what are the benefits of the constraint layers?
 - why they are necessary?
- dimension of the working channel
- which design parameters will be determined based on FEA?

C. FEM optimization

- the advanced formulations for simulating hyperelastic materials
 - how to choose the strain energy functions?
 - * list several candidates, and then discuss how to choose among them.
 - what software you are using?
 - how to choose the finite element? and why?
 - * hexahedral element for the hyperelastic material, truss for the constraint layer?
 - · with the element number in that software (e.g. Abaqus element type C3D10H)
 - * what is the number of element
 - * simulation time
- how to simulate the insertion of instrument?
 - how to model the reaction force from the instrument
 - applying a force to the inner wall of the working channel
 - * stiffness = force / displacement
- measuring bending performance: ratio = curvature/length
- bending force
 - what is bending force? the force at the tip?

D. Fabrication

- · Fabrication process
 - low-cost
 - basic procedure (of course some basic tricks that can be disclosed)
 - * e.g. sequence of molding and filling material, temperature
 - * photos/schematic diagrams of the procedure. e.g. the Fig.1 in martinez2012robotic [1].
 - what should be paid attention to? why?
 - * e.g. temperature control, material filling speed, assembly cautions
 - * ...

IV. RESULTS AND DISCUSSION

- Comparison of the results between FEA and the real robot
- comparison to results in literature
- discuss some advantages in the endoscopy procedure

A. Experiment setup

- · workspace analysis
 - using random pressure inputs
- how to measure the bending force
- how to measure the internal force
- · fatigue test
 - no. of cycle until failure
- can take reference from yap2016highforce [2]

V. CONCLUSION

- summary
- future work

REFERENCES

- [1] R. V. Martinez, J. L. Branch, C. R. Fish, L. Jin, R. F. Shepherd, R. M. D. Nunes, Z. Suo, and G. M. Whitesides, "Robotic tentacles with three-dimensional mobility based on flexible elastomers," *Advanced Materials*, vol. 25, no. 2, p. 205212, Sep 2012. [Online]. Available: http://dx.doi.org/10.1002/adma.201203002
- [2] H. K. Yap, H. Y. Ng, and C.-H. Yeow, "High-force soft printable pneumatics for soft robotic applications," *Soft Robotics*, vol. 3, no. 3, p. 144158, Sep 2016. [Online]. Available: http://dx.doi.org/10.1089/soro.2016.0030