Take Home Assignment MA2001 #1

For each of the following questions, write down your solution with details of steps. Marks will not given if only final answers are provided.

- 1. Find eigenvalues and eigenvectors of $A = \begin{bmatrix} 6 & 2 & -2 \\ 2 & 5 & 0 \\ -2 & 0 & 7 \end{bmatrix}$. (Hint: 3,6 are eigenvalues of A).
- 2. Find eigenvalues and eigenvectors of $A = \begin{bmatrix} 13 & 5 & 2 \\ 2 & 7 & -8 \\ 5 & 4 & 7 \end{bmatrix}$.
- 3. Find eigenvalues and eigenvectors of $A = \begin{bmatrix} -1 & 0 & 12 & 0 \\ 0 & -1 & 0 & 12 \\ 0 & 0 & -1 & -4 \\ 0 & 0 & -4 & -1 \end{bmatrix}$, whose characteristic polynomial is $(\lambda + 1)^2(\lambda + 5)(\lambda 3)$.
- 4. It is given the symmetric matrix $A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$.
 - (a) find the eigenvalues of A;
 - (b) find the eigenvectors corresponding to each of these eigenvalues;
 - (c) find an orthogonal matrix P such that $P^{T}AP$ gives a diagonal matrix D and calculates P^{-1} ;
 - (d) Determine the eigenvalues of the matrix $B = A^5 + (A^2)^{\top}$.
- 5. If A is a $n \times n$ matrix and $\{\lambda_1, \ldots, \lambda_k\}$ are its eigenvalues, show that the eigenvalues of $\alpha I + A$, where I is the identity matrix and α is a scalar, are $\{\lambda_1 + \alpha, \ldots, \lambda_k + \alpha\}$.
- 6. A quadratic form Q in the components x_1, \ldots, x_n of a vector $\vec{x} = [x_1, \ldots, x_n]^{\top}$ with symmetric coefficient matrix $A = (a_{ij})_{1 \leq i,j \leq n}$ is defined to be

$$Q(\vec{x}) := \vec{x}^{\top} A \vec{x} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j.$$

Determine whether each of the following quadratic forms in two variables is positive or negative definite or semidefinite, or indefinite.

- (a) $3x_1^2 + 8x_1x_2 3x_2^2$.
- (b) $9x_1^2 + 6x_1x_2 + x_2^2$.
- 7. Determine the values of a for which the quadratic form $2x^2+2axy+2xz+y^2+z^2$ is positive definite.
- 8. **Discovery Question**. Read "https://en.wikipedia.org/wiki/Gram-Schmidt process" to use the Gram-Schmidt process to find an orthogonal basis spanning the same space of \mathbb{R}^n as the given of vectors:
 - (a) < 1, 4, 0 >, < 2, -5, 0 > in \mathbb{R}^3 .
 - (b) <0,2,1,-1>,<0,-1,1,6>,<0,2,2,3> in \mathbb{R}^4 .