Assiut University Third Year (وتخلفات) Term Test, Dec 2005 Faculty of Computers Algorithms Analysis & Design Time: 20 min.

Circle **T** or **F** for each of the following statements to indicate whether the statement is true or false.

1	T	\mathbf{F}	Radix-sort works correctly even if Insertion-sort is used as an auxiliary
			sorting algorithm instead of Counting-sort.

2 **T** F The best case running time for Insertion-sort to sort n elements is O(n).

3 **T F** A sorted array of n elements can be sorted by quick-sort in $O(n \lg n)$ steps.

4 **T** F The smallest element in a max-heap containing n elements can be found in $O(\lg n)$ steps.

5 **T F** By Master theory, the solution to the recurrence $T(n)=3T(n/3)+\lg n$ is $T(n)=\Theta(n \lg n)$.

6 **T** F Heap-sort is a sort in place sorting algorithm.

7 **T F** $f(n) = \Theta(g(n))$ if and only if $f(n) = \Omega(g(n))$.

8 **T** F The lower bound of selecting the m smallest elements of an array A of n integers is $O(n + m \lg n)$ in the worst-case.

9 **T** $f(n)+g(n) = \Theta(\max(f(n), g(n))).$

10 **T F** In spite of both Merge-sort and Heap-sort are running in $O(n \lg n)$, Heap-sort is running faster than Merge Sort for the same Array A(n).

11 **T** F The median of odd n elements is the element (n-1)/2.

T The selection problem can be solved in O(n) in the average-case and can be solved in $O(n \log n)$ in the worst-case.

In spite of the worst-case running time if Quick-sort is $O(n^2)$, it considered practically as the best comparison sorting algorithm.

14 **T** F The maximum number of elements in a heap with height h is 2^{h+1} .

15 **T** F The recurrence equation is an equation describing the running time of recursive algorithms.

With my best wishes Dr. Tarek Hagras