1. Prime numbers

Definition 1.1 (Prime numbers). A natural number is called a *prime number* if it is greater than 1 and cannot be written as the product of two smaller natural numbers.

Theorem 1.1. Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do.

Theorem 1.2 (Euclid). *There are infinitely many primes.*

Corollary 1.2.1. There is no largest prime number.

Corollary 1.2.2. *There are infinitely many composite numbers.*

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magnam aliquam quaerat.

Theorem 1.3. Lorem ipsum dolor sit amet, consectetur adipiscing.

Theorem 1.4. There are arbitrarily long stretches of composite numbers.

Proof. For any n > 2, consider

$$n! + 2, \quad n! + 3, \quad ..., \quad n! + n.$$

2. Restated or deferred

Theorem 1.2 (Euclid). There are infinitely many primes.

Proof. Suppose to the contrary that $p_1, p_2, ..., p_n$ is a finite enumeration of all primes. Set $P = p_1 p_2 ... p_n$. Since P+1 is not in our list, it cannot be prime. Thus, some prime factor p_j divides P+1. Since p_j also divides P, it must divide the difference (P+1)-P=1, a contradiction.

Corollary 1.2.2. *There are infinitely many composite numbers.*

Theorem 1.3. Lorem ipsum dolor sit amet, consectetur adipiscing.

Theorem 1.4. There are arbitrarily long stretches of composite numbers.

Proof. For any n > 2, consider

$$n! + 2, \quad n! + 3, \quad \dots, \quad n! + n.$$

3. Only Theorems and Corollaries

Theorem 1.2 (Euclid). *There are infinitely many primes.*

Corollary 1.2.2. *There are infinitely many composite numbers.*

Theorem 1.3. Lorem ipsum dolor sit amet, consectetur adipiscing.

Theorem 1.4. There are arbitrarily long stretches of composite numbers.

4. Only 'Results'

Corollary 1.2.2. *There are infinitely many composite numbers.*

Theorem 1.3. Lorem ipsum dolor sit amet, consectetur adipiscing.