

Introduction to ML

Introto Well proposed Machine Learning -I Intro to well proposed ML. in Into to supervised & unspervised algo imp iii) Decision tree algorithm iv) K nearst reigney (KNN)

Applications of ML.

ML has 3 fields -> Experience, Tasks, Performer

Supervised -> Using labels (correct data is presents
Unspervised -> No lables are provided hence we
use clustering method.

> also called instance based

imp * K nearest neighbour algorithm: learning.

The most instance based method is

K nearest neighbour rearning. This algo
assumes all the instances corresponds
to the points in all n-dimensional space R' Where R is arbitrary axis btw the data points.

 $\int d(x_i, x_j) = \sum_{i=1}^{n} \int [a_i(x_i) - a_2(x_j)]^2$ Euclidian dixtance.

The nearest neighbours of an instance are defined in terms of standard Euclidian distance

Stepe

Det an arbitrary instance 'x' described by feature vector (data points) $a_1(x)$, $a_2(x)$, $a_3(x)$... $a_n(x)$

ii) Where $a_r(x)$ denotes the value of the rth attribute of instance x. The distance ben two instances is calculated cuing Euclidian distance.

 $d(x_i, x_j) = \sum_{Y=1}^n \sqrt{[a_i(x_i) - a_2(x_j)]^2}$

QI) Following dataset contains types of timues produced by a company & its clients responds

Type of Time	Acid -	Strength	Clau
Type 1	Durability 7.	7	Bad
	7	ч	Bad
*	2	ч	Good
		1	
Type 3 Type 4	3	4	Good.

Find the class label of the new instances

(text data with acid durability = 3

and strength = 7). using K data point

(min distance) ie K = 3 Vieng the

instance based algorithm classify

the above sample data set.

Soln: Stepki.

Given: K=3 acid durability = 3
Strength = 7.

Stepl: Calculating the distance for the given text data (3,7)

İ	Type 't.	Acid durability	l el H	D (3,7)
I	31	Acia aunapitity	Strength.	Pistance
l	Types	7	7	4
	2	7	4	5
	3	3	4	3
	4		4	3.6
		Advertising the		1 5 50

Distance (3,7):

 $1 \quad \sqrt{(3-7)^2 + (7-7)^2} = 4$

2 $\sqrt{(3-7)^2 + (7-4)^2} = \sqrt{16+9} = \sqrt{25} = 5$

 $3\sqrt{(3-3)^2+(7-4)^2}=\sqrt{9}=8$

 $4\sqrt{3-1}^2+(7-4)^2=\sqrt{4+9}=\sqrt{13}=3.6$

Step 2:.
Using kin minimum distance aurign the vank for the given distance

Park = K (For good or bad dassmate

	Type	Acid	Strength	- Distance (3,7)	Rank (3)
1.0	1	7	7	4	3 40
north and	012	7	ч	5	4X No
Por	3	3	4	3	1 Yes
	4		4	3-6	2 Yes

Step3:

Recalculate using the name test data (3,7) Replace the rank value "4" with acid durability to recalculate the nearest redata using (3,7))

Tupe	Acid	Strength	Dietana	Rank
3,7	7	7	4 4	hN
2	4	4	VIO = 3.16	2 Y
3	3	4	3 1	1 4
4	1	4	3.6 3	3 4
	and the same	d delais	Bright W	

added the text data (3,7) i Hena the clan good. into

2)	Height	Weight		Clau
7				
	167	51		Under Weight
	182	62		Normal.
	176	69	10.3	Normal
	173	64		Normal
	172	65		Normal
	174	56		Under weight
	169	58		Normal
3.1	173	57		Normal
4	170	55		Normal
	170	57		9

& K=1, 2, 5. [Check for all] Find claw for (170, 57).

For K=Li

Step 1:.

Height	Weight	Distance.	clar	Rank
169	51	6.70	UW	5
182	62	13	N	
176	6 a	13.41	N	
173	64	7.61	N	
172	65	8.24	N	
174	36	4.12	UW	4
169	58	1.41	N	1
173	57	3.	N	3
170	55	2	N	2

For k=1 clan is Normal k=2 class is Normal

For k=5 -> 3 Normal, 2 UW

Nence K=5 is in class Normal

Hence the point (170,57) is classified as Normal

3) Calculate the class for the test data $x_1 = 28$, $x_2 = 26$ K = 5 for the given attribute set

72000		A. I		5.7	· · · clau	
XI		2	62	-	9	4
2				. 1	A	
4		2		-	A	
4					В	
6	1/2	6			В	
8	1	6			` В	
10		10			*B	
12	12	8			A	
14	1	10			A	
16		8	A		A	
18		12			A	
20		14	3		A	
22		18		E	3	
24	li .	20	3	В	2 9 10	
26		22		B	3 2	
28	- 3	24		B	7.5	
30	17	26	8	В	08	
32	Spl .	28	A	В	27	
34	1 2	30	- 10	B	139	
36	3	32		A		
38	3	6	1884	A	3	
					J	

Classmate Date Page

-1 .	100	
Step1:	(28, 26)	K = 5

l						
ļ	XI	X2		y	Dieta	ио
	2	4		A	34.05	
	4	2		A	33.94	1
ļ	4	4		34	32.55	G-
ļ	6	6	1	3	29.73	
ļ	8	6	B		28.28	
ļ	10	1.0	В		24.08	
ļ	12	8	A	3	24.08	
ļ	14	10	A	91	21.26	0.1
	16	8	A		21.63	2
ļ	18	12	A	101	17-20	
l	20	14	A	3	14.42	
ļ	22	18	B	2.1	10	2
	24	20,	В	MI	7-21	
	2.6	22	B	21	4.47	4
1	28	24	В	09	2	1
	30	26	В		2	. 2
	32	28	B	19 30	4.47	3
	34	30	B	35	7.21	5
	36	32	A	- 1-2	10	13 11
	38	36	A	100	14-14	18. 1

For K = 5 the data set (28,26) is classified un into B.

y) To the following data let give the classification by considering k=3.

test data (66,03)

Student no	marki	mark 2	grade.
SI	87	17	A
52	20	06	В
53	25	12	B
54	93	75	A
SS	91	52	В

Step 1:

	Std No -	Marker	Mark 2	Dietance	Grade	Kank
	51	87	17	25.23	A	1-1
l	52	20	06	46.09	В	3-16
	53	25	12	41.97	В	2.78
	54	93	75	76.89	A	5(x
	55	91	52	55.00	B	4
ı						

Step 2: Recalculate

Step Z : Fo	calculate						
Std No	Marki	Mark 2	Distance	Grade	Rank		
SI	87	17	25.23	A	1		
52	20	06	46.09	В	3		
53	25	12	41.97	B	2		
Su	5	75	70.80	A	5		
SS	91	5 2	55.00	В	4		

Logn = Logn * Decision Tree Problem: Jif claustication in diff change to the start of the start g training examples wit the target function clanification. ii) What is the information gain of attribute a, & az related to these training enamples Information Gain = Entropy (S) - I Isil Fritropy (SV) iii) Draw the decision tree for the given data set. Instance | classification Entrop[3+ 3-7=1 Equal clanification then = 1 For a attribute:

$$=-\left(\frac{2}{3}\right)\times\log_{2}\left(\frac{2}{3}\right)-\left(\frac{1}{3}\right)\times\log_{2}\left(\frac{1}{3}\right)$$

$$=-\left(\frac{1}{3}\right)\times\log_2\left(\frac{1}{3}\right)-\left(\frac{2}{3}\right)\times\log_2\left(\frac{2}{3}\right)$$

attribute

Play Tennin Day Win Humidity Outlook Wind Jemp Sunny DI Weak Hot High No. Sunny DE Hot No High Strong Da Hot overcart High WK Yes Rain P4 Mild High WK Yes-Rain DS Cool · Normal WK Yes. 06 Rain Cool Normal No 07 Overcart Cool Normal Yes Mild High Sunny Ds WV No Cool Da Sunny. yes 1 Normal WK Rain . Mild D10 Normal WE Yes . Sunny Mild Norm DI Yer. Mitd Overcart High D12 5 Yes Norm Overeast Hot YEL DII WK Du Lain. Mild High No Stra 0-248 0.029

0.192

0.048

An: Entropy of whole data

Entropy[49yer, 5no] = 0.9402

Outlook -> Surry Rain, Overcart.

For outlook:

D Swiny

Entropy [Sourry] = [2 Yes, 3 No]

FEntropy [Srain] = [#34, 200] = 0.970.

Entropy [Sovercast] = [440, ono]

Information Ceain:

Ent(s) = \(\subsection | \sub

 $= 0.9402 - \left[\frac{25}{814} \cdot 0.97 + \frac{5}{14} \times 0.97 + \frac{4}{14} \times 0 \right]$

For Temp

Entropy [Snot] = [24, 2N] = 1

Entropy [Smidd] = [44, 2N] = 0.918

Entropy[Scool] = [34, IN] = 0.811

Info gain:

E 0-9402- 4 x01+ 6 x0.918+4 x0.8

For humidity:

Entropy [Shigh] = [34,4N] - 0.985

Entropy [Snormal] = [64, 1N] = 0-591

Info gain: 0.9402 - 7 x0.985 + 7 x0.591 0.1827 For wind: Entropy[Swk] = [64, 2N] = 0.8112 Entropy [Sstrong] = [34,3N) = 1 Into gain. P x 0.8112 + = 0.048

Out Look DI, DZ, D8, D9, DIJ Devant Rain Du Ds Ds Dio Dia

(Yes) PLAY Termin Wind Humid Temp hot High Di not high. 02 Dã mild high WK Normal D9 cool DII mild Navmal

0.97 Entropy =

For Temp Entrop [Snot] = [OY, 2NO] = 0

Entropy (Smild] = [and, INO] = 01

Entropy [Scool] = [14, ONO] = 0

Info gain $0.97 - \begin{bmatrix} 2 & 0 + 2 & x & 1 + 1 & x & 0 \end{bmatrix}$

Que 0.57

Humid: Entropy [Snigh] = [3no] = 0

Entropy [Snormal] = [24] = 0

Into gain:

0.97

Wind:

Entropy [Sweak] = [14, 2N] = 0.918

Entropy [Sstrong] = [14, INO] = 1

Info gain: 0.97-[3 x0.918+2x1]

= 0.019

For Temp [Snot] = [OY, 2NO] = 0

Entropy (smild] = [axx, INO] = 01

Entropy [Scool] = [14, ONO] = 0

Info gain $0.97 - \left[\frac{2}{5} \times 0 + \frac{2}{5} \times 1 + \frac{1}{3} \times 0\right]$

QUE 0.57

Humid: Entropy [Snigh] = [3no] = 0

Entropy [Snormal] = [24] = 0

Into gain:

0.97

Wind:

Entropy [Sweak] = [14, 2N] = 0.918

Entropy [sstrong] = [14, INO] = 1

Info gain: 0.97 - [3 x0.918 + 2 x1]

Day	Temp	wind	Play Tenuis
Pu	Mild	wk	Y
Pg	Coal	WK	Y
120	Cool	Strong	N
Dio	Mild	WE	- Y
Die	Mila	Strong	N

€ Entropy > 0.97.

Tenip: Entropy [Smild] = [24,1N] = 0.918

Entrop (Scool] = [14,1N] = 1

16 19: 0.97 - \[\frac{3}{5} \times 0.918 + \[\frac{1}{5} \times 0.910 \]

=0.0192

wind

8 Ent [Swh] = [34] = 0

SPINO

Eut (5 , 7 = 0 -

0.97

Sunny Court Rain

DI, D2, D8, D9 D11 D4, D5, D6, D10, D14

Hunial

High Normal

Normal

3)	Instances	Ou A1	A2	A3	Classification		
	1	True	Hot	High	No		
	2	True	Hot	High	No		
	3	False	Hot	High	Yes		
	4	Falle	Cool	Norm	Yes		
	5	False	Cool	Norm	Yel		
	6	True	Cool	High	No		
	7	True	Hot	High	No		
	8	True	Hot	Norm	Yes		
	9	False	Cool	Norm	Yes		
	10	False	Cool	High.	Yes.		
				2 27 /2			
()	aive t	he entro	py & into	gain f	or the		
An	above dataset						
ij	Construct Dexision tree based on effectiveness						
	of info gain value.						
	A COLUMN TO THE			in balging	date		
AN	Entropy [5] = [6]	P, 4NOT	= 0.97			
				Fland	343		
	For Al:	· True, Fo	de.	7			
	& Entre	opy [True] =	= LIY, UN	10) = 0.	72		
	& Entropy [True] = [14, 4No] = 0.72						
	Entropy [Falu] = [354] = 0.						
	Info gain:						
	White the second						
	= 0.97 - 5 cara + 0						
		1.10		1	Section 1		
		1089					
	ar =	0.61					

Classmate Date Page

For A2:

Ent [Hot] = [24, 2N] = 0-124 0.97

Ent [cool] = [44, 1N] = 0-72

Info gain:

0.97- [5 x 2 72] 10 x 0.72]

= 0.125

For A3

Ent[High] = [24, 4N] = 0.918

Ent[Norm] = [44] = 0.

Info gain: 0.97 - [6 x0.918] = 0.419.

True Falle.
1 2 6 7 8 3, 4, 5, 9, 10

Yes

3				
	Intana	A2	A3	Claw
	100	Hot	Hig	No
	2	Hot	Hig	No
	6	Cool	High	00
	7	Hot	High	No
	8	Hot	Norm.	Yer
				1

Subminion on Monday.

Augnment

DExplain D'Explain all 4 steps of Designing Learning System.

2) Explain any two application y machine learning. Algorithm :-ID3 (Examples, Target Attribute, Attributes)
Examples are the training examples Target attribute in the attribute whose value is to be predicted by the tree and return a decision tree that correctly claufies as the i) (reate a root node for the tree
ii) If all the examples are positive return
the single node tree root, with lable= iii) If all the examples are negative return the ringle node tree root with label = - (Negative iv) If the attribute in empty return the single node tree root with lable = most common value of target attributes in examples examples. Otherwise begin A = The attributes from Best full attributes that best multiplied with A classifies example. v) The decision attribute for root & A

vi) For the possible value (i(A) Vi of A

Vi of Aa:

i) Add a new tree branch below the root

corresponding to the test A = Vi

ii) Let examples Vi be the subset y examples
that have value Vi of A.

If enamples Vi is empty:-

Then below this new branch, add a leaf node with a label equals to most common value of target attribute add the sub tree ID3 (Examples Vi, Target - attributes, Attributes - EA &)

return root

* How to relect the value of K in KNN algorithm.

-) There is no particular way to determine the best value for & so we need to try come values to find the best of out of them. The most preferred value for k is '5'. A very low value for k is '5'. A very k=1 or k=2 can be noisy x lead to the effects of outliers in the model.

it may find some difficulties during training.

Advantages of KNN.

-> Simple to implement

-> It is robust to the noisy training

data

data

) It can be more effective for the training data. if it is large.

Disadvantages:

Always needs to determine value of

> The computation cost is high because

I calculating the distance ben the datapoints for all the training ramples

MSEI Questions:

Explain Well proposed learning with an example.

Explain with a neat diagram concept of Machine Learning that cummarizes concept learning.

3) Problems of KNN & Decision tree

4) Coine the basic steps of ID3 algorithm
5) Explain ID3 algo in detail o
6) Explain ID3 algo with example (Draw tree)
7) Give algo for KNN.
8) Explain or list out the applications
of ML

9) him the difference between supervised & unsufference between supervised

Classmate Date Page

y = mx + c + e e - x i i not mentioned hence $y = 50 \times 2000 + 100$ zero.

y = 100100

ing e

ching least mean aguar method apply the regression algorithm for the following data set of 7 observation on 2 variables x & Y & find the regression equation that relates x & Y variables or find the regression equation using least mean aguare error method where [x \geq 2]

X	Y	1 × 4	X 2
- (1-5	1.5	
2	3-8	7.6	4
3	6.7	20.1	9
i.	9.0	36.0	16
5	11.2	56	25
6	13-6	81-6	36
7	16	112	49
Ex = 28	XY=61-8	Ex7-314.8 7	5 x = 140

Step ! - Take the compination of both

X & Y variables and write runn of

XY as well as the independent variation

EXY = 1.5+7.6+20.1+36.0+56+81.6+116

Exy = 314-8

$$m = n \sum xy - \sum x \sum y$$

$$n \sum x^2 - (\sum x)^2$$

$$m = 7 \times 314.8 - 28 \times 61.8$$

$$7 \times 140 - (28)^{2}.$$

$$b = 61.8 - 2.414 \times 28$$
 $b = -0.827$

	Observation	X.	14 1	·X Y	X2
ı	1	2.5	316	9	6.25
ı	2	3-0	4.0	12	9
	3	4.5	6.0	27	20.25
	žę.	5-0	7-2	36	25
	5	60	8.0	480.	36
	6	6.5	9.0	58-5	42.25
	7	7.0	10.0	70.0	49
	5	8.0	11.0.	88-0	64
	9	8.5	12.0	102	72.25
	10	9.0	12.5	112.5	91
		EX=60	ZY=83-3	EXY=563	Ex2 = 405

$$m = n \times y - \times y$$

 $n \times x^2 - (\times x)^2$

m = 1.404