Computing the Mandelbrot Set, Reliably

Jihoon Hyun, Hyunwoo Lee, Martin Ziegler

Contents

Mandelbrot set

- a. Properties, previous approaches and disadvantages
- b. Definition: Drawing a set in \mathbb{R}^2 with 3-colored pixels

2. (Computably & Reliably) Drawing the Mandelbrot set

- a. Explicit algorithm
- b. Correctness and termination
- c. Implementation in iRRAM
- d. Evaluation

• $M = \{ c \in \mathbb{G} \mid \forall k, \mid p_c^k(c) \mid \text{ is bounded } \} \text{ where } p_c(z) = z^2 + c$

• Proposition 1. $c \notin M \leftrightarrow \exists k, |p_c^k(c)| > 2$

- Proposition 1 is not sufficient to draw the Mandelbrot set;
 it only checks if the point is in the exterior.
- Floating point rounding errors propagate

Source: Wikipedia

References

Peter Hertling:
"Is the Mandelbrot Set Computable?",
MLQ (2005)

Mark Braverman, Michael Yampolsky: *Computability of Julia Sets*, Springer (2009)

Heinz-Otto Peitgen: *The Beauty of Fractals*, Springer (1986).

- Definition: Period
 - o z_i : fixed points of p^k
 - o z_0 is periodic point for p if $\exists k > 0$ that $p^k(z_0) = z_0$. Smallest such k is called the period of z_0 .
 - If z_0 is a periodic point for p with period k, then $\{z_0, z_1, \dots z_{k-1}\}$ where $z_j = p^j(z_0)$ is called a cycle.
 - $(p^k)`(z_0)$ is called the multiplier of the cycle. Note that $(p^k)`(z_0) = (p^k)`(z_j)$ for $0 \le j \le k - 1$.
 - Attracting cycle is a cycle whose multiplier is less than 1.

- Definition: Union of Hyperbolic Components of Mandelbrot Set
 - $H(M) = \{ c \in G \mid p_c \text{ has an attracting cycle } \}$
- Facts about *H*(*M*)
 - \circ H(M) is an open subset of the Mandelbrot set.
 - \circ ∂M is contained in the closure of H(M).
- Hyperbolicity Conjecture
 - \circ $H(M) = M^0$

Peter Hertling gave two propositions:

Proposition 2. M^c is semidecidable.

Proof. $c \notin M \leftrightarrow \exists k, |p_c^k(c)| > 2$

• **Proposition 3**. H(M) is semidecidable.

Proof. For each k, check if p_c^k has an attracting cycle.

But...

Drawing a set in \mathbb{R}^2

• Goal: Drawing a set in \mathbb{R}^2 with equally spaced $r \times r$ grid on $[0, 1] \times [0, 1]$ by coloring each pixel with some color

'Covering the set' is the most common method.

Drawing a set in \mathbb{R}^2

- Three types of colors are used to draw a set.
 - Pixel meets a set if the color of the pixel is positive.
 - Pixel does not meet a set if the color of the pixel is negative.
 - Pixel contains a point which is close enough (< 1 / r) to the boundary if the color of the pixel is zero.

Example of drawing of a set in \mathbb{R}^2

• $x^2 + y^2 < 1$ on 5×5 grid

0	0	0	-	-
+	+	+	0	-
+	+	+	+	0
+	+	+	+	0
+	+	+	+	0

0	-	0	-	0
0	0	0	0	-
+	+	+	0	0
+	+	+	0	-
+	+	+	0	0

Why three colors?

- H(M) is an open subset of the Mandelbrot set.
- ∂M is contained in the closure of H(M).

• $\partial M = \operatorname{cl}(H(M)) \cap M^{\operatorname{c}}$

Simpler approach to draw the set

Contents

- Mandelbrot set
 - a. Properties, previous approaches and disadvantages
 - b. Definition: Drawing a set in \mathbb{R}^2 with 3-colored pixels

2. (Computably & Reliably) Drawing the Mandelbrot set

- a. Explicit algorithm
- b. Correctness and termination
- c. Implementation in iRRAM
- d. Evaluation

Theorem. If the Hyperbolicity Conjecture is true, then the algorithm halts, and returns a drawing of the Mandelbrot set.

Pixel meets a set if the color of the pixel is positive.

Pixel does not meet a set if the color of the pixel is negative.

Pixel contains a point which is close enough (< 1 / r) to the boundary if the color of the pixel is zero.

Algorithm (Brief):

Initialize.

Choose points in pixels.

Color negative/positive.

Make a helper grid.

Color points of the helper grid negative/positive.

Color zero.

Iterate until all pixels are colored.

Theorem. If the Hyperbolicity Conjecture is true, then the algorithm halts, and returns a drawing of the Mandelbrot set.

50 × 50 drawing of the Mandelbrot Set

Theorem. If the Hyperbolicity Conjecture is true, then the algorithm halts, and returns a drawing of the Mandelbrot set.

0. Initialize.

Let the color of every pixels as unknown.

?	?	?	?	?
?	?	?	?	?
?	?	?	?	?
?	?	?	?	?
?	?	?	?	?

Theorem. If the Hyperbolicity Conjecture is true, then the algorithm halts, and returns a drawing of the Mandelbrot set.

1. Choose points.

For each pixel with unknown color, choose a point in a pixel. The closure of union of chosen points in each iteration should be the corresponding pixel.

?	?	?	?	?
?	?	?	?	?
?	?	?	?	?
?	?	?	?	?
?	?	?	?	?

Theorem. If the Hyperbolicity Conjecture is true, then the algorithm halts, and returns a drawing of the Mandelbrot set.

2. Color negative.

If the selected point is known to be in the exterior, color the pixel negative.

?	?	?	-	-
?	?	?	?	-
?	?	?	?	?
?	?	?	?	?
?	?	?	?	?

Theorem. If the Hyperbolicity Conjecture is true, then the algorithm halts, and returns a drawing of the Mandelbrot set.

3. Color positive.

If the selected point is known to be in the interior, color the pixel positive.

?	?	?	-	-
+	+	?	?	-
+	+	+	+	?
+	+	+	+	?
+	+	+	+	?

Theorem. If the Hyperbolicity Conjecture is true, then the algorithm halts, and returns a drawing of the Mandelbrot set.

4. Make a helper grid.

Choose a set of equally distanced points.
The points should get

denser as the number of

iteration increases.

?	?	?	-	-
+	+	?	?	-
+	+	+	+	?
+	+	+	+	?
+	+	+	+	?

Theorem. If the Hyperbolicity Conjecture is true, then the algorithm halts, and returns a drawing of the Mandelbrot set.

5. Color the helper grid.

Color the points from 4 as done in $2 \sim 3$.

?	?	?	-	-
+	+	?	?	-
+	+	+	+	?
+	+	+	+	?
+	+	+	+	?

Theorem. If the Hyperbolicity Conjecture is true, then the algorithm halts, and returns a drawing of the Mandelbrot set.

6. Color zero.

Color the (white) point W zero if there are at least one red point R and one green point G which d(W, R) < 1 / r and d(W, G) < 1 / r.

?	?	0	-	-
+	+	?	?	-
+	+	+	+	0
+	+	+	+	?
+	+	+	+	?

Theorem. If the Hyperbolicity Conjecture is true, then the algorithm halts, and returns a representation of the Mandelbrot set.

7. Iterate.

Do 1 ~ 6 until all pixels are colored.

?	?	0	-	-
+	+	?	?	-
+	+	+	+	0
+	+	+	+	?
+	+	+	+	?

2-1. In iteration n, check if a point z is in the exterior.

```
k := 1
while k \le n do:
if |p_z^k(z)| > 2
then return true
```

return false

3-1. In iteration n, check if a point z is in the interior.

Assuming that the Hyperbolicity Conjecture is true, we can check if $z \in M^0$.

3-1. In iteration n, check if a point z is in the interior.

```
p(x) := x, k := 1

while k \le n, do:

p := p \circ p_z

roots := set of fixed points of p(x)

for r in roots:

if p`(r) < 1 then return true
```

return false

Sketch of proof of termination

- Assume that the point is on the boundary.
 - o If not, the point will be classified positive or negative when iteration count is large enough.

• $\partial M = \operatorname{cl}(H(M)) \cap M^{\operatorname{c}}$

• Any circle centered at $x \in \partial M$ contains point of both cl(H(M)) and M^c .

For full implementation, please check: https://github.com/realcomputation/MANDELBROT

using Norbert Müller's C++ **iRRAM** library for Exact Real Computation

Drawing the Mandelbrot set: Evaluation time

Algorithm (Brief):

Initialize.

Choose points in pixels.

Color negative/positive.

Make a helper grid.

Color points of the helper grid.

Color zero.

Iterate until all pixels are colored.

resolution vs log time

Contents

- Mandelbrot set
 - a. Properties, previous approaches and disadvantages
 - b. Definition: Drawing a set in \mathbb{R}^2 with 3-colored pixels

2. (Computably & Reliably) Drawing the Mandelbrot set

- a. Explicit algorithm
- b. Correctness and termination
- c. Implementation in iRRAM
- d. Evaluation

Thank you!