

Credit Hours System

SBEN454: Data Mining and

Machine Learning in Healthcare

Cairo University
Faculty of Engineering

CARDIOVASCULAR DISEASE CLASSIFICATION PROJECT

(https://www.kaggle.com/sulianova/cardiovascular-disease-dataset).

WE HAVE USED CARDIOVASCULAR DISEASE DATASET. BASED ON SOME HEALTH INFORMATION OF AN INDIVIDUAL OUR MODEL WILL PREDICT WHETHER HE HAS ANY CARDIOVASCULAR DISEASE OR NOT.

Submitted to: Dr. Inas A. Yassine

Names	IDs
Amira Mahmoud	1170498
Alaa Ossama	1170185
Salma Hazem	1170425

DATA DESCRIPTION

There are 3 types of input features:

- 1. Objective: factual information;
- 2. Examination: results of medical examination;
- 3. Subjective: information given by the patient.

FEATURES:

- Age | Objective Feature | age | int (days)
- Height | Objective Feature | height | int (cm) |
- Weight | Objective Feature | weight | float (kg) |
- Gender | Objective Feature | gender | categorical code |
- Systolic blood pressure | Examination Feature | ap hi | int |
- Diastolic blood pressure | Examination Feature | ap_lo | int |
- Cholesterol | Examination Feature | cholesterol | 1: normal, 2: above normal, 3: well above normal |
- Glucose | Examination Feature | gluc | 1: normal, 2: above normal, 3: well above normal |
- Smoking | Subjective Feature | smoke | binary |
- Alcohol intake | Subjective Feature | alco | binary |
- Physical activity | Subjective Feature | active | binary |
- Presence or absence of cardiovascular disease | Target Variable | cardio | binary |

EXPLORATORY DATA ANALYSIS (VISUALISTION)

Data is almost balanced

Distribution of height

250 cm height is extremely rare cases

Distribution of weight

200 kg weight is extremely rare cases

CORRELATION OF FEATURES WITH TARGET VARIABLE

The first 3 feature (Age, Cholesterol and weight) are most effective on cardiovascular disease (Age is the most effective)

PREPROCESSING NEEDED

- ID needs to be dropped.
- Age provided is in days. We will convert it to years
- Gender can be converted to binary
- ap_hi and ap_lo has negative numbers. This means that we have outliers so we need to remove them.
- Gluc and Cholesterol need to be converted to dummies
- There are many rare cases in height and weight features, so we can combine them in BMI feature (get 1 feature from 2 features).

DATA CLEANING & PREPROCESSING

- Remove Outliers
 - o BMI more than 100 or less than 10
 - o ap_hi more than 250 or less than 20
 - o ap_lo more than 200 or less than 20
- Convert categorical variable into indicator variables
- Scaling non-categorical data
- PCA

We removed 1,251 row that means 1.7 % of data which is not too high

DATA CORRELATION AFTER PREPROCESSING

TRAINING

Splitting data into 0.25% for testing and 0.75% for training

Note: Numbers may vary with every run

CLASSIFICATION

We used different classifiers and used accuracy and F1 score to evaluate the classifiers

CLASSIFICATION WITHOUT PCA OR DATA SCALING

Classifiers	Accuracy (%)	F1-score
Logistic Regression	71.92	0.70
Decision Tree	62.76	0.63
Random Forrest	69.83	0.70
Support Vector Machine	55.16	0.69
K-Nearest Neighbor	68.80	0.68
Naïve Bayes	66.92	0.63

CLASSIFICATION MODELS WITHOUT DATA SCALING TO CHOOSE PCA NUMBER OF COMPONENTS

The non-normalized data showed the highest accuracy in almost all models with PCA n_components = 5

Classifiers	Accuracy (%)	F1-score
Logistic Regression	71.50	0.70
Decision Tree	63.08	0.63
Random Forrest	69.43	0.69
Support Vector Machine	71.31	0.70
K-Nearest Neighbor	68.37	0.68
Naïve Bayes	70.00	0.67

SCALE DATA USING MINMAXSCALER, STANDARDSCALER, AND NORMALIZER WITH PCA COMPONENT = 5

Accuracies of 'StandardScaler' and 'Normalization' are too close so we will choose 'StandardScaler'

ACCURACIES WITH PCA COMPONENTS = 5 AND SCALED DATA

Classifiers	Accuracy (%)	F1-score
Logistic Regression	71.43	0.70
Decision Tree	62.82	0.63
Random Forrest	69.03	0.69
Support Vector Machine	71.29	0.69
K-Nearest Neighbor	68.36	0.68
Naïve Bayes	69.47	0.67

ENHANCEMENTS BY CHANGING HYPER-PARAMETERS

KNN ENHANCEMENT

Accuracy went from 68.36% to accuracy 71.28%, with k = 14

TREE ENHANCEMENT

Accuracy went from 62.82% to accuracy 72.45%, max depth = 5

RANDOM FOREST ENHANCEMENT

Accuracy went from 69.03% to accuracy 71.11%, with best parameters: 'max_depth': 90, 'max_features': 2, 'min_samples_leaf': 4, 'min_samples_split': 10, 'n_estimators': 100

CONCLUSION

Classifiers	Accuracy (%)
Logistic Regression	71.43
Decision Tree	72.45
Random Forrest	71.11
Support Vector Machine	71.29
K-Nearest Neighbor	71.28
Naïve Bayes	69.47

Decision Tree is the highest accuracy 72.45%