Funções - Composição

José Antônio O. Freitas

MAT-UnB

Sejam $f: A \rightarrow B$

Sejam $f: A \rightarrow B \ e \ g: B \rightarrow C$

Sejam $f: A \rightarrow B \ e \ g: \underline{B} \rightarrow C \ funções.$

Sejam $f: A \to B \ e \ g: B \to C \ funções$. Definimos a **função composta**

Sejam $f:A\to B$ e $g:B\to C$ funções. Definimos a **função composta** de g com f

Sejam $f: A \to B$ e $g: B \to C$ funções. Definimos a **função composta** de g com f como sendo a função denotada por $g \circ f$

Sejam $f: A \to B$ e $g: B \to C$ funções. Definimos a **função composta** de g com f como sendo a função denotada por $g \circ f: A \to C$

Sejam $f: A \to B$ e $g: B \to C$ funções. Definimos a **função composta** de g com f como sendo a função denotada por $g \circ f: A \to C$ tal que

Sejam $f: A \to B$ e $g: B \to C$ funções. Definimos a **função composta** de g com f como sendo a função denotada por $g \circ f: A \to C$ tal que $(g \circ f)(x)$

Sejam $f: A \to B$ e $g: B \to C$ funções. Definimos a **função composta** de g com f como sendo a função denotada por $g \circ f: A \to C$ tal que $(g \circ f)(x) = g(f(x))$

Sejam $f: A \to B$ e $g: B \to C$ funções. Definimos a **função composta** de g com f como sendo a função denotada por $g \circ f: A \to C$ tal que $(g \circ f)(x) = g(f(x))$ para todo $\underline{x} \in A$.

Sejam $f: A \to B$ e $g: B \to C$ funções. Definimos a **função composta** de g com f como sendo a função denotada por $g \circ f: A \to C$ tal que $(g \circ f)(x) = g(f(x))$ para todo $x \in A$.

1) Sejam $f: \mathbb{R} \to \mathbb{R}$

1) Sejam $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$

1) Sejam $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$ dadas por $f(x) = x^2$

1) Sejam $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$ dadas por $f(x) = x^2$ e g(x) = x + 1.

AQUI EXISTE g.f:
$$R \rightarrow R$$
 DA DA POR $(g \circ f)(x) = g(f(x)) = g(x^2) = x^2 + 1$.

AQUI TAMBÉM PODEMO) DÉFINIR foy: $R \rightarrow R$, $Q \rightarrow Q$

$$(f \circ y)(x) = f(g(x)) = f(x+1)^{2}$$

$$= x^{2} + 2x + 1$$

JOSERVE QUÉ NEM SEMPRE y, f e f, g estàs DEFINIDAS. MAS MESMO QUANDO fog e go f EXISTEM, PODE OCURNER DE

(fog) + (gof).

2)
$$f: \mathbb{R}_- \to \mathbb{R}_+^* \ e \ g: \mathbb{R}_+^* \to \mathbb{R}$$

2)
$$f: \mathbb{R}_- \to \mathbb{R}_+^*$$
 e $g: \mathbb{R}_+^* \to \mathbb{R}$ dadas por $f(x) = x^2 + 1$

2)
$$f: \mathbb{R}^* \to \mathbb{R}^*$$
 $e \ g: \mathbb{R}^* \to \mathbb{R}$ dadas por $f(x) = x^2 + 1$ $e \ g(x) = \ln x$.

$$(gef)(\chi) = g(f(\chi)) = g(\chi^2 + 1) = h(\chi^2 + 1).$$

Proposição Se $f: A \rightarrow B$

Proposição Se $f: A \rightarrow B$ e $g: B \rightarrow C$

Se $f: A \rightarrow B$ e $g: B \rightarrow C$ são funções injetoras,

Se $f: \underline{A} \rightarrow B$ e $g: B \rightarrow C$ são funções injetoras, então $\underline{g} \circ \underline{f}$:

Se $f: A \rightarrow B$ e $g: B \rightarrow C$ são funções injetoras, então $g \circ f: A \rightarrow C$

f: A > B & $J \times J \in TONY \subseteq MOOD$ $\chi_1 \chi_2 \in A \quad TAIS \quad DUE \quad f(\chi_1) = f(\chi_2)$ $TSSO IMPLICA \quad EM \quad \chi_1 = \chi_2$

Proposição

Se $f: A \to B$ e $g: B \to C$ são funções injetoras, então $g \circ f: A \to C$ é injetora.

$$\chi_1 \mid \chi_1 \in A$$
; $(g \circ f)(\chi_1) = (g \circ f)(\chi_2) \dots \chi_1 = \chi_2$
 $g(f(\chi_1)) = g(f(\chi_2)) \quad g(y_1) = g(y_2) \Rightarrow y_1 = y_2$
 $y_1 \quad y_2 \quad f(\chi_1) = f(\chi_2) \Rightarrow \chi_1 = \chi_2$

PROVA: SEJAM X, X, EA TAIS QUE $(g \circ f)(\chi_i) = (g \circ f)(\chi_z).$ ASSIM, PON DEFINIÇÃO DE COMPOSTA, g (f (X)) = g(f(X2)).

MAS g & IN JEHOMA, DA! $f(\chi_1) = f(\chi_2)$.

MAS + TAMBÉM È INJEPONT. 660

 $\chi_1 = \chi_2$

PONTANTO, yof & INJETOM.

Proposição $Se \ f: \underline{A \rightarrow B}$

Proposição Se $f: A \rightarrow B$ e $g: B \rightarrow C$

Se $f: A \rightarrow B$ e $g: B \rightarrow C$ são funções sobrejetoras,

Se $f:A \to B$ e $g:B \to C$ são funções sobrejetoras, então $g \circ f:\underline{A} \to C$

f: A > B & SODRETETOM SE PARA TODO

yeb, Existe XEA TAL DUE f(x)=y.

Proposição

Se $f: A \rightarrow B$ e $g: B \rightarrow C$ são funções sobrejetoras, então $g \circ f: A \rightarrow C$ e sobrejetora.

PROVA: SEJA BEL COMO g É SODREJETOM, EXISTE LEBTAL

OLE (1)

g(t) = 3.

MAS & & SOBRETETONA, LOGO ELIME LEATAL GUE f(l) = t.

$$(g \circ f)(l) = g(f(l)) = g(t) = 3$$