Transformers: A Sample Design and Basic Principles

Prof. S. V. Kulkarni
Department of Electrical Engineering
Indian Institute of Technology Bombay, INDIA

svk@ee.iitb.ac.in

Design of a 31.5 MVA, 132/33 Power Transformer

Specification

Rating : 3-phase, 31.5 MVA, 132/33 kV

Vector group: Yd1

Frequency: 50 Hz

No-load loss : 26 kW

Load loss : 146 kW

Source of the design: S. V. Kulkarni, and S. A. Khaparde, *Transformer Engineering: Design, Technology, and Diagnostics*, Second Edition, CRC Press, Taylor & Francis Group, September 2012.

Vector Groups

Yd11

Yd1

Total owning cost of a transformer

Note: Higher the material cost (& the capital cost) lower is the running cost.

Therefore, the owning cost needs to be optimized.

Core Design

- ❖ Selection of core diameter based on experience or some empirical formula. Let us select it as 54 cm.
- Core area with 0.9 as space factor

$$=0.9*((\prod /4)*54^2) = 2290*0.9 = 2061 \text{ cm}^2$$

- Maximum flux density that can be used for CRGO material is
 1.73 tesla (knee point: 1.9 Tesla, saturation: 2.03 Tesla)
- \bullet Let us choose $B_m=1.7$ Tesla
- Emf equation for transformer is

V=
$$4.44*\phi *f* T = 4.44*(B_m*A_c)*50*T$$

=> V/T = $4.44*1.7*0.2061*50=77.78$

Core Temperature Rise

- Design of optimum number of cooling ducts
- Requires determination of temperature profile under most onerous conditions

- ❖ For most accurate temperature rise estimation, 3-D FEM analysis required with consideration of anisotropic thermal properties
- * The limits of temperature rise for core surface and interior portions are generally different

LV Design

First choose the number of LV turns,

(it is a delta connected winding, line voltage = phase voltage)

LV turns =
$$33000/77.78 = 424.3 \approx 424$$
 turns

• Recalculate flux density as $B_m=1.701$ tesla,

$$V/T=33000/424=77.83$$

- Current (phase) = 31500/(3*33) = 318.2 A
- Insulation level: 70 kVrms/170 kVp
- Choose number of discs = 106,

4 turns/disc: 106*4=424 turns

INSULATION LEVEL

- High voltage equipments need to withstand overvoltages
 (much higher than their rated voltage): i) switching overvoltages
 ii) lightning overvoltages
- Protective devices are used (e.g. lightning arresters).
- Insulation coordination is done between the insulation level
 (breakdown voltage) of the protective devices and that of the HV equipments

A protective device is typically designed to operate at 80% of the HV equipment insulation level.

Insulation levels are standardized.

Transformers

Rated Voltage	1 minute power frequency over-voltage test	1.2/50 µsec lightning test over- voltage
11 kV	$28 \text{ kV}_{\text{rms}}$	75 kV _P
33 kV	$70~\mathrm{kV_{rms}}$	170 kV _P
132 kV	$230~\mathrm{kV_{rms}}$	550 kV_{P}
220 kV	$395 \text{ kV}_{\text{rms}}$	950 kV _P

[•]Higher the over-voltage level, lower is the time of application of test voltage.

- Choose current density of 3 A/mm²
- Cross sectional area of LV conductor

$$= 318.2/3 = 106 \text{ mm}^2$$

10.6

- Insulation on conductors: 0.7 mm,
- ❖ Insulation between discs = 3.0 mm
- Height of the winding

=
$$(10.6+0.7+3.0)*106 - 3.0 = 1513 \approx 1520 \text{ mm}$$

Depth of the winding

$$= [(2.5+0.7)*4]*4$$

$$=51.2 \text{ mm} \approx 52 \text{ mm}$$

Note: Design parameters are not optimum; values are chosen for convenience while explaining the design

LV Winding

Windings

- Design of windings is influenced by the following considerations
 - electromagnetic (eddy / stray losses)
 - dielectric
 - short circuit
 - thermal
- These design considerations have often conflicting requirements:
 - conductor radiusdielectric Vs short circuit
 - paper covering : dielectric Vs thermal
 - conductor thickness : short circuit Vs eddy loss
 - □ first duct : thermal Vs dielectric
 - □ radial spacer width : thermal Vs short circuit
- Judicious selection of design parameters is necessary

Eddy Loss Evaluation and Optimization

Eddy loss per unit volume for a thin conductor

$$P_E = \frac{\omega^2 B^2 t^2}{24\rho}$$

- where,
 - ullet ω is frequency in rad/sec
 - \Box B is the peak value of tangential leakage flux density on the conductor surface (B_v or B_x)
 - t is the dimension of the conductor perpendicular to field (conductor *thickness* or *width*)
 - ightharpoonup is the resistivity of the conductor material

HV Design:

- Current (phase) = $31500/(132*\sqrt{3}) = 137.78 \text{ A}$
- Insulation level: 230 kVrms / 550 kVp impulse
- HV turns = $(132000/\sqrt{3})/77.83 = 979.2 \approx 980$ turns
- ❖ Choose 98 D, 10T/D; 98*10 = 980 turns
- Conductor covering = 1 mm, insulation between discs = 4 mm
- Conductor width = 1520/98 1 4 = 10.5 mm
- * For conductor density of 3 A/mm², total conductor area required= $137.78/3 = 45.9 \text{ mm}^2$
- Hence, choose two parallel conductors as:

Area of turn =
$$46.2 \text{ mm}^2$$

2||2.2

10.5

• HV radial depth = [(2.2+1)*2]*10+1 (tolerance)= 65 mm

Note: Design parameters are not optimum; values are chosen for convenience₁₅ while explaining the design

Design Continued....

Core diameter 540 mm

Core-LV :23 563 mm (mean diameter)

586 mm (LV-ID)

LV :52 638 mm (LV mean diameter)

690 mm (LV-OD)

LV-HV gap :49 739 mm (mean diameter)

788 mm (HV-ID)

HV :65 853 mm (HV mean diameter)

918 mm (HV-OD)

Phase-Phase :52

- Center to center distance = 970 mm
- ❖ Winding to top yoke clearance= 200 mm and winding to bottom yoke clearance = 80 mm
- ❖ Window height = winding height + 200 + 80 = 1520+280= 1800 mm
- Mean length of core

$$= 2*54+3*180+4*97=1036$$
 cm

- Volume: 1036*2061 = 2135196 cm³
- Weight (density of core lamination = $7.65 * 10^{-3} \text{ kg/cm}^3$)

- ♦ Watts/kg for built core at 1.7 tesla flux density => 1.56
- Core losses

$$= 16334 \times 1.56 = 25481 \text{ Watts} = 25.5 \text{ kW (approx)}$$

Note: Design parameters are not optimum; values are chosen for convenience while explaining the design

Core Length Calculation:

Length=
$$4 \times (\frac{1}{2} \times 540) + 3 \times 1800 + 4 \times 970$$
 mm.
= $(2 \times 54 + 3 \times 180 + 4 \times 97)$ cm.

Shunt Branch Parameters of the Equivalent Circuit

$$R_c = (132 \times 10^3 / \sqrt{3})^2 / (25.5 \times 10^3 / 3) = 683.3 \text{ k}\Omega$$

 $I_c = (132 \times 10^3 / \sqrt{3}) / 683.3 \times 10^3 = 0.11 \text{ A}$

- ❖VA/kg for built core at 1.7 tesla flux density => 9.6
- No-load current $(I_0) = (9.6 \times 16334) / (\sqrt{3} \times 132 \times 10^3) = 0.69 \text{ A}$
- *Magnetizing current

$$I_{\rm m} = \sqrt{(0.69)^2 - (0.11)^2} = 0.68 \text{ A}$$

*Magnetizing reactance

$$X_c = (132 \times 10^3 / \sqrt{3}) / 0.68 = 112.1 \text{ k}\Omega$$

Leakage Inductance Calculations

- Effective height
 - $= 152 + \{(HVOD-LVID)/2\Pi\}$
 - $=152+(91.8-58.6)/(2\Pi)$
 - =157.3 cm = 1.573 m
- Effective area

=
$$[(5.2/3)*63.8+4.9*73.9+(6.5/3)*85.3] \times \Pi \times 10^{-4} \text{ m}^2$$

= $657.5 \times \Pi \times 10^{-4} \text{ m}^2 = 0.2066 \text{ m}^2$

LV

Core

HV

L (referred to the HV side)

$$= (\mu_0 \, N^2 \, A) \, / \, HT_{eff}$$

$$= (4\Pi \times 10^{-7} \times 980^2 \times 0.2066) \, / \, 1.573 = 0.158 \, H$$

Load Loss Calculations:

I²R loss in LV winding

- •Mean turn length = mean diameter = 0.638 * Π meters
- Total length for all 3 phases

$$L = 3*.638 * \Pi*424 = 2550 \text{ m}$$

❖Resistance (R)

= resistivity * L/(area); resistivity = $0.0211 \times 10^{-6} \Omega$ -m at 75^{0} C

$$R_{LV} = (0.0211 \times 10^{-6} *2550) / (106 \times 10^{-6}) = 0.5076 \Omega$$

❖I² R loss in the LV winding

$$= (318.2)*(318.2)*0.5076 = 51394 \text{ Watts} = 51.4 \text{ Kw}$$

I²R loss in the HV winding

- ♦ Mean turn length = Π * 0.853 meters
- *Total length for all three phases = $3*0.853*\Pi*980 = 7879$ m

- * $R_{HV} = (0.0211 \times 10^{-6} * 7879) / (46.2 \times 10^{-6})$ = 3.598 Ω
- ❖ I²R loss in HV

$$= 137.78*137.78*3.598 = 68306 \text{ watts} \approx 68.3 \text{ kW}$$

❖ Total I²R loss in windings

$$= 51.4 + 68.3 = 119.7 \text{ kW},$$

- And (eddy + stray) losses = 20% extra*
- ❖ Total load loss = 144 kW

Note: * Design parameters are not optimum; values are chosen for convenience 23 while explaining the design

Similarly, HV winding weight

$$= 7879*46.2*10^{-6} *8.89*10^{3} = 3236 \text{ kg}$$

- Winding losses per phase = 144/3 = 48 kW
- * Resistance of the transformer per phase referred to HV = $(48 \times 10^3)/137.78^2 = 2.53\Omega$
- * Reactance of the transformer per phase referred to HV = $2\Pi \times 50 \times 0.158 = 49.6 \Omega$

Calculation of weights

- LV winding volume
 - = total length of conductors * area of one turn
 - $= (2550 \text{ m}) * (106 \times 10^{-6} \text{ m}^2)$
- * LV winding weight (Density of copper = $8.89 \times 10^3 \text{ kg/m}^3$) = $2550*106*10^{-6} * 8.89*10^3 \text{ kg} = 2402 \text{ kg}$

Equivalent Circuit

