Санкт-Петербургский политехнический университет Петра Великого

Физико-Механический Институт

Высшая школа прикладной математики и вычислительной физики Кафедра «Прикладной Математики и Информатики»

ОТЧЁТ ПО ЛАБОРАТОРНЫМ РАБОТАМ ПО ДИСЦИПЛИНЕ «МЕТОДЫ ОПТИМИЗАЦИИ» «РЕШЕНИЕ ЗАДАЧ минимизации градиентными методами без ограничений»

Выполнили студенты группы 5030102/00101

КУАССИ СИЕМО Т. Г.

Руководитель к. ф.-м. н., доц.

Родионова Елена Александровна

Санкт-Петербург 2023

Содержание

1	Постановка задачи	2
2	Исследование применимости метода	3
3	Описание алгоритма 3.1 Градиентный метод с дроблением шага:	
4	Практическое решение задач 4.1 Градиентный метод с дроблением шага:	
5	Обоснование результатов	6
6	Выводы	7

1 Постановка задачи

Пусть дана задача двумерной минимизации $f(x,y,z) = (x-2)^2 + (y-3)^2 + (z-4)^2$. Необходимо:

- 1. Реализовать градиентным методом 1го порядка с дроблением шага и градиентным методом 2го порядка с постоянным шагом (метод Ньютона)
- 2. Решить задачу с точностью epsilon 10^{-6}
- 3. Выполнить сравнительный анализ алгоритмов методов через количество вызов каждый функции

2 Исследование применимости метода

3 Описание алгоритма

3.1 Градиентный метод с дроблением шага:

Начальный этап: выберем $\epsilon > 0$ (параметр, определяющий условие окончания вычислений), $0 < \alpha_0 < 1$ (начальный шаг), $0 < \lambda < 1$ (коэффициент дробления), $0 < \delta < 1$, x_0 (начальное приближение). Положим k = 0.

Основной этап:

- 1. Вычисляем градиент в точке x_k : $\nabla f(x_k)$, $\alpha_k = \alpha_0$;
- 2. Определяем значение функции в следующей точке: $f(x) = f(x_k \alpha_k \nabla f(x_k))$ (4), подбирая шаг по принципу дробления: $\alpha_k = \lambda \alpha_k$ до тех пор, пока не выполнится условие: $f(x) f(x_k) \le -\alpha_k \delta \|\nabla f(x_k)\|^2$.
- 3. Полагаем следующее приближение: $x_{k+1} = x_k \alpha_k \nabla f(x_k)$, заменяем k на k+1 и переходим к первому пункту.

Условие окончания: $\|\nabla f(x_k)\| < \epsilon$.

В основе этого метода лежит правило Армихо: предполагается подбирать шаг так, чтобы условие выбора шага выполнялось при любом способе подбора шага α_k .

3.2 Градиентный метод Ньютона

- 1. Выбрать начальное приближение x_0 , задать точность вычислений $\varepsilon > 0$, принять шаг $\alpha = 1$ и положить k = 0
- 2. Произвести выбор направления:
 - (a) Вычислить матрицу Гессе $H(x_k)$ и градиент для функции f в точке x_k
 - (b) Найти обратную матрицу $H^{-1}(x_k)$
 - (c) Вычислить $x_{k+1} = x_k \alpha * H^{-1}(x_k) * gradf(x_k)$
- 3. Завершить процесс, если $||gradf(x_k)||^2 < \varepsilon$. Иначе перейти к шагу 2

4 Практическое решение задач

Мы применили два метода оптимизации, градиентный метод с дроблением шага и метод Ньютона, для поиска минимума функции f(x,y,z). Ниже представлены результаты:

4.1 Градиентный метод с дроблением шага:

- Минимальная точка: (2, 3, 4) - Минимальное значение функции: 1.3174×10^{-13} - Количество вызовов функции: 74

4.2 Метод Ньютона:

- Минимальная точка: (2, 3, 4) - Минимальное значение функции: 0 - Количество вызовов функции: 2

5 Обоснование результатов

f(x) - функция, являющая суммой степенной и тригонометрической функций. Это означает, что у нас не получится найти точку минимума аналитически.

Если x^* - точка минимума функции f(x), то $||\nabla f(x^*)|| = 0$ и $det H(x^*) > 0$.

Так как наши решения являются приближением точки x^* с заданной точностью ϵ , для того чтобы полученное решение x_r можно было назвать достоверным, необходимо потребовать условия:

$$||\nabla f(x_r)|| < \epsilon \quad det H(x_r) > 0$$

Рассмотрим полученные результаты при заданной точности $\epsilon=0.0001$

• Градиентный метод с дроблением шага

$$x_r = (2, 3, 4)$$
$$||\nabla f(x_r)|| = 0 < \epsilon$$
$$det H(x_r) = \dots > 0$$

• Градиентный метод второго порядка метод Ньютона

$$x_r = (2, 3, 4)$$
$$||\nabla f(x_r)|| = 0 < \epsilon$$
$$det H(x_r) > 0$$

6 Выводы

- Оба метода достигли одного и того же минимума функции f(x, y, z) в точке (2, 3, 4). Это означает, что оба метода успешно выполнили задачу оптимизации.
- Метод Ньютона сходится к минимуму функции намного быстрее (с 2 вызовами функции), чем градиентный метод с дроблением шага (с 74 вызовами функции). Это связано с использованием второй производной (Гессиан) для вычисления шага, что позволяет методу Ньютона быстро и точно приближаться к минимуму.
- Градиентный метод с дроблением шага является более устойчивым и простым для реализации, но требует большего числа итераций и вызовов функции для достижения минимума.
- В реальных задачах выбор метода оптимизации зависит от баланса между точностью и вычислительной эффективностью. Если у нас есть доступ к вторым производным функции и можем вычислить Гессиан, метод Ньютона может быть предпочтительным выбором, особенно если требуется высокая точность. В противном случае, градиентный метод с дроблением шага может быть полезным инструментом оптимизации.