Customer Churn Prediction

1. Project goal

I built an end-to-end churn prediction pipeline to identify customers likely to leave so the business can run targeted retention actions.

2. Dataset summary

- Raw rows: 7,043 customers.
- Key columns: demographics, service flags, account info, MonthlyCharges, TotalCharges, tenure, and target Churn.
- **Churn distribution:** No = 5,174, Yes = 1,869 (≈ 73.5% No, 26.5% Yes).
- **Data issues found:** TotalCharges initially read as object; after coercion to numeric there were 11 NaNs (all had tenure == 0).

Churn distribution (counts) 5000 - 5174 4000 - 4000 - 1869 1000 - No Yes Churn

3. Exploratory Data Analysis (EDA)

3.1 Missing values & problematic rows

 TotalCharges converted to numeric produced 11 NaN values; all these rows had tenure == 0. I kept them and treated them as new-customer cases (impute or handle explicitly).

3.2 Numeric summary

Numeric columns used in analysis: SeniorCitizen (binary), tenure,
 MonthlyCharges, TotalCharges (converted to numeric).

3.3 Distributions & boxplots

- **Tenure:** many customers with low tenure, right tail to 72 months. No extreme outliers detected by IQR rule.
- **MonthlyCharges:** multi-modal distribution (distinct plan clusters). No extreme outliers detected by IQR rule.
- **TotalCharges:** skewed, wide range (explained by tenure × monthly); visually consistent with business logic.

3.4 Outlier check (IQR rule)

• I computed outlier counts using the IQR rule:

SeniorCitizen: flagged (binary behavior causes IQR rule to misreport)

tenure: 0 outliers

MonthlyCharges: 0 outliers

3.5 Correlation analysis

• Correlation (numeric features):

tenure → TotalCharges: strong positive correlation (≈ 0.83)

MonthlyCharges

 → TotalCharges: moderate positive correlation (≈ 0.65)

tenure ← MonthlyCharges: weak correlation (≈ 0.25)

Interpretation: TotalCharges is largely redundant with tenure and MonthlyCharges (expected since TotalCharges \approx tenure \times MonthlyCharges). I kept TotalCharges but treated its scaling cautiously.

4. Feature engineering & preprocessing

4.1 Column grouping and transformers

- Numeric (StandardScaler): tenure, MonthlyCharges
 - Rationale: these columns are on different scales; StandardScaler (z-score) centers and scales for models that are scale-sensitive.
- Numeric (RobustScaler): TotalCharges
 - Rationale: TotalCharges has wide spread; RobustScaler (median & IQR) reduces sensitivity to possible extreme values.
- **Binary passthrough:** SeniorCitizen (0/1) no scaling applied.
- Categorical → OneHotEncoder(drop='first', handle_unknown='ignore'):
 gender, Partner, Dependents, PhoneService, MultipleLines, InternetService,
 OnlineSecurity, OnlineBackup, DeviceProtection, TechSupport, StreamingTV,
 StreamingMovies, Contract, PaperlessBilling, PaymentMethod.
 - drop='first' reduces redundancy. handle_unknown='ignore' avoids crashes at inference when unseen categories appear.

4.2 Pipeline & output

- Implemented ColumnTransformer inside an sklearn. Pipeline.
- X_processed shape: (7,043, 23) features after scaling + one-hot encoding.
- Saved artifacts:
 - preprocessor.joblib (the fitted ColumnTransformer pipeline)
 - preprocessor_raw_columns.json (raw input column order expected by the preprocessor)
 - preprocessor output columns.json (final processed feature names)

5. Dataset splits & SageMaker formatting

- Locally for sklearn experiments: I used 80% train / 20% test (stratified by y).
- For SageMaker XGBoost HPO: I created 70% train / 15% validation / 15% test CSVs in the format expected by SageMaker XGBoost (label as the first column, no header).
- Saved processed data files:
 - churn_processed.csv (final processed dataset)
 - SageMaker CSVs: train_for_sagemaker.csv, validation_for_sagemaker.csv, test_for_sagemaker.csv (label-first format).

6. Modeling — models trained, tuning, and evaluation

6.1 Baseline models (local)

- Logistic Regression (baseline)
 - Test set (n ≈ 1,409):
 - o Class 0 (No): precision 0.85, recall 0.90, f1 0.87 (support 1,035)
 - o Class 1 (Yes): precision 0.66, recall 0.56, f1 0.60 (support 374)
 - o Accuracy: 0.81, ROC-AUC: ≈ 0.8422
 - Confusion matrix:

- Random Forest (baseline)
 - Test set (n ≈ 1,409):
 - Class 0: precision 0.83, recall 0.90, f1 0.86
 - Class 1: precision 0.63, recall 0.49, f1 0.55
 - Accuracy: 0.79, ROC-AUC: ≈ 0.8258
 - Confusion matrix:

6.2 Hyperparameter tuning (sklearn)

- Logistic Regression (GridSearchCV, scoring='recall', cv=5): best params
 C=1, penalty='l2', solver='lbfgs' CV recall ≈ 0.548.
- Random Forest (RandomizedSearchCV, scoring='recall', cv=5): best params n_estimators=200, max_depth=10, min_samples_split=5, min_samples_leaf=1 — CV recall ≈ 0.495.
- After tuning, test set metrics were similar; logistic remained stronger on recall under this objective.

6.3 Addressing imbalance (class weight & threshold tuning)

- LogisticRegression with class_weight='balanced':
 - At default threshold 0.5:
 - Class 1 recall increased to ~0.78, precision decreased to ~0.51, accuracy \approx 0.74, ROC-AUC \approx 0.842.

- Precision—Recall vs Threshold: lowering threshold improves recall and reduces precision. Example results:
 - o threshold 0.5 → recall ≈ 0.78, precision ≈ 0.51
 - o threshold 0.4 → recall ≈ 0.87, precision ≈ 0.47
 - o threshold 0.3 \rightarrow recall ≈ 0.93, precision ≈ 0.43

6.4 SageMaker XGBoost with Automatic Model Tuning (HPO)

- **Estimator:** SageMaker XGBoost built-in container. Fixed hyperparams: objective="binary:logistic", eval_metric="auc", num_round=200.
- Hyperparameter search space (Bayesian):
 - eta (0.01–0.3), max_depth (3–10), min_child_weight (1–10), subsample (0.5–1.0), colsample_bytree (0.5–1.0).
- **Tuner configuration:** objective_metric_name="validation:auc", max_jobs=12, max_parallel_jobs=2, strategy="Bayesian".
- **Important fix made:** SageMaker XGBoost requires label as the first column and labels in {0,1}; I updated CSVs accordingly.

6.5 Final XGBoost results (best model from SageMaker HPO, evaluated locally on test.csv)

- Test set (n = 1,057):
 - ROC-AUC (test): 0.8552514248942821
 - Classification report:
 - Class 0: precision 0.92, recall 0.72, f1 0.81 (support 777)
 - o Class 1: precision 0.51, recall 0.82, f1 0.63 (support 280)
- Confusion matrix:

[[561 216] [51 229]]

■ TN = 561, FP = 216, FN = 51, TP = 229

7. Comparative summary

Model	Test rows	ROC- AUC	Precision (churn)	Recall (churn)	F1 (churn)	Key observation
Logistic (baseline)	1,409	0.8422	0.66	0.56	0.60	Interpretable baseline
Random Forest (baseline)	1,409	0.8258	0.63	0.49	0.55	Slightly lower recall
Logistic (class_weight='balanced')	1,409	0.8419	0.51	0.78	0.61	Higher recall via weighting
Logistic (threshold 0.4)	1,409	_	0.47	0.87	0.61	Threshold tuned for recall
XGBoost (SageMaker HPO, best)	1,057	0.8553	0.51	0.82	0.63	Best ROC-AUC and high recall

8. Artifacts & files produced

- preprocessor.joblib saved sklearn ColumnTransformer pipeline (use for inference).
- preprocessor_raw_columns.json raw column order expected by the preprocessor (must be used to build input rows).
- preprocessor_output_columns.json final processed feature names (for debugging).
- churn_processed.csv processed dataset (features + label) used in experiments.
- SageMaker artifacts: train.csv, validation.csv, test.csv (label-first format for XGBoost).
- model.tar.gz in S3 (best model path printed by tuner) contains the XGBoost model file; I downloaded and loaded it locally for evaluation.
- Notebook files: fe.ipynb (feature engineering notebook), SageMaker notebook (HPO + training notebook).

9. Inference & deployment approach

- Implemented a local Streamlit app (app.py) to perform inference using the saved preprocessing pipeline and the downloaded XGBoost model. The app loads three artifacts that must be placed next to app.py: preprocessor.joblib, preprocessor_raw_columns.json, and the extracted XGBoost model file (xgboost-model). If any of these files are missing the app stops and reports the missing files.
- The Streamlit app workflow (what the app does):
 - Presents an input form for all raw customer fields (categoricals as selectboxes, numerics as number inputs).
 - Uses preprocessor_raw_columns.json to reindex the user input DataFrame into the exact raw column order expected by the preprocessor.
 - Fills any missing numeric values with 0 and missing string values with "No" as a safety measure.
 - Transforms the reindexed raw DataFrame with the loaded preprocessor.joblib to produce the numeric feature vector.
 - Converts the processed vector to an xgboost.DMatrix and calls Booster.predict(...) to obtain a probability of churn.
 - Applies an interactive threshold slider (user-controlled in the sidebar) to convert probability → label (Churn / No Churn), and displays both the probability and the thresholded prediction.
 - Optionally shows the preprocessed feature values for debugging.

Threshold & Controls Decision threshold (probability ≥ threshold ⇒ Churn) 0.50

Lower threshold => higher recall

Churn Predictor

Fill the customer fields below and click Predict. The app uses your saved preprocessor and local XGBoost model

Customer details

Preview input

Show preprocessed features (first 10 values)

```
"gender": "Wale"
"SentorCitizen": 0
"Partner": "Yes"
"Dependents": "Yes"
"Phymodservice": "Yes"
"Multipletines": "No"
"Multipletines": "No"
"Multipletines": "No"
"OnlineSecurity": "Yes"
"OnlineSecurity": "Yes"
"DeviceProtection": "Yes"
"DeviceProtection": "Yes"
"StreamingTi": "Yes"
"StreamingTi": "Yes"
"StreamingTi": "Yes"
"StreamingTilling": "Yes"
"PaperlessEttling": "Yes"
"PaperlessEttling": "Yes"
"PaymentMethod": "Electronic check"
"MonthlyCharges": 10
"TotalCharges": 340

Prediction (threshold=0.50): No Churn
```

10. Conclusion

I built and validated a complete churn prediction pipeline—data cleaning, robust preprocessing, baseline models, hyperparameter tuning on SageMaker, and local inference-ready deployment artifacts—resulting in an XGBoost model that achieved the best ROC-AUC ($^{\sim}$ 0.855) and a high churn recall ($^{\approx}$ 0.82) at the evaluated threshold.

(END OF REPORT)