Large Language Models

Reza Fayyazi

Introduction

Foundation Model

Adaptation

Inference & Application

Transformers

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez* †
University of Toronto
aidan@cs.toronto.edu

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* ‡
illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.0 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature.

Transformers

Self-Attention

Watch this YouTube video on how the self-attention mechanism works:

https://www.youtube.com/watch?app =desktop&v=eMlx5fFNoYc

State-of-the-art LLMs are Decoder-Only Models

^[4] https://stackoverflow.com/questions/75672816/how-does-gpt-like-transformers-utilize-only-the-decoder-to-do-sequence-generatio

LLM Use Cases

LLM Pre-Training

LLMs work on predicting the next probable token!

Pre-training Objectives

LLM Pre-training

Token String	Token ID	Embedding / Vector Representation
'_The'	37	[-0.0513, -0.0584, 0.0230,]
'_teacher'	3145	[-0.0335, 0.0167, 0.0484,]
'_teaches'	11749	[-0.0151, -0.0516, 0.0309,]
'_the'	8	[-0.0498, -0.0428, 0.0275,]
'_student'	1236	[-0.0460, 0.0031, 0.0545,]

Vocabulary

Word Embeddings

LLM Comparison

Model	Provider	Context Window	Open-Source	Price / Million	Price	Quality	Speed
GPT-4o	OpenAl	128k	No	7.5	★ ☆☆	***	***
GPT-4 Turbo	OpenAl	128k	No	15	***	***	★ ☆☆
GPT-4	OpenAl	8k	No	37.5	★ ☆☆	***	***
GPT-3.5 Turbo	OpenAl	16k	No	0.75	***	★ ☆☆	***
Gemini 1.5 Pro	Google	1m	No	5.25	***	***	***
Gemini 1.5 Flash	Google	1m	No	0.53	***	***	***
Gemma 7B	Google	8k	Yes	0.2	***	★ ☆☆	***
Claude 3 Opus	Anthropic	200k	No	30	★ ☆☆	***	★ ☆☆
Claude 3 Sonnet	Anthropic	200k	No	6	***	***	***
Claude 3 Haiku	Anthropic	200k	No	0.5	***	***	***
Command R +	Cohere	128k	Yes	6	***	***	***
Command R	Cohere	128k	Yes	0.75	***	★ ☆☆	***
Llama 3 70B	Meta Al	8k	Yes	0.93	***	***	★ ☆☆
Llama 3 8B	Meta Al	8k	Yes	0.2	***	★ ☆☆	***
Code Llama	Meta Al	16k	Yes	0.9	***	***	★ ☆☆
Mistral Large	Mistral Al	32k	No	12	***	***	★ ☆☆
Mistral Medium	Mistral Al	32k	No	4.05	***	***	***
Mistral Small	Mistral Ai	32k	No	2.25	***	★☆☆	***
Mixtral 8x22B	Mistral Al	65k	Yes	1.2	***	***	***
Mixtral 8x7B	Mistral Al	32k	Yes	0.5	***	★ ☆☆	***
Mistral 7B	Mistral Al	32k	Yes	0.2	***	★☆☆	***
DBRX	Databricks	32k	Yes	1.4	***	***	***

High Number of Parameters

S	GPT-3	Total weights:		
	1	175,181,291,520		
Embedding	$\begin{array}{ccc} 12,288 & 50,257 \\ \mathbf{d_embed} * \mathbf{n_vocab} \end{array}$	=617,558,016		
Key	128 12,288 96 96 d_query * d_embed * n_heads * n_layers	= 14,495,514,624		
Query	128 12,288 96 96 d_query * d_embed * n_heads * n_layers	= 14,495,514,624		
Value	$ ho_{128}$ 12,288 96 96 $ ho_{12}$ d_value * d_embed * n_heads * n_layers	= 14,495,514,624		
Output	$ ho_{12,288}$ $ ho_{128}$ $ ho_{96}$ $ ho_{96}$ $ ho_{12,288}$	= 14,495,514,624		
Up-projection	49,152 12,288 96 n_neurons * d_embed * n_layers	= 57,982,058,496		
Down-projection	12,288 49,152 96 d_embed * n_neurons * n_layers	= 57,982,058,496		
Unembedding	50,257 12,288 n_vocab * d_embed	= 617,558,016		

(shifted right)

Computational Challenges

Computational Challenges for 1B Param Model

Memory needed to store model

4GB @ 32-bit full precision

Memory needed to train model

Computational Challenges

500B param 1B param 175B param model model model 12,000 GB @ 32-bit full precision 4,200 GB @ 32-bit full precision

Computational Challenges

	Bytes per parameter
Model Parameters (Weights)	4 bytes per parameter
Adam optimizer (2 states)	+8 bytes per parameter
Gradients	+4 bytes per parameter
Activations and temp memory (variable size)	+8 bytes per parameter (high-end estimate)
TOTAL	=4 bytes per parameter +20 extra bytes per parameter

^[3] https://www.coursera.org/learn/generative-ai-with-llms

^[11] https://huggingface.co/docs/transformers/v4.20.1/en/perf_train_gpu_one#anatomy-of-models-memory

^[12] https://www.youtube.com/live/g68qlo9lzf0

One Solution: Quantization from FP32 to FP16

One Solution: Quantization from FP32 to BFLOAT16

One Solution: Quantization from FP32 to INT8

Approximate GPU Needed for a 1B Parameter

LLM Training Speed of V100 and A100

Scaling Choices for Pre-training

Thank you!

Reza Fayyazi rf1679@rit.edu