

We have nothing to disclose

DSM-5 diagnostic criteria

Autism spectrum disorder (ASD)

- 1. Deficits in social communication
- 2. Restrictive and/or repetitive behavior

Schizophrenia

- 1. Delusions
- 2. Hallucinations
- 3. Disorganized speech
- 4. Negative symptoms

Language problems

Bipolar I Disorder

- Manic episode
 - a. Grandiosity
 - b. Decreased need for slep
 - c. More talkative than usual

To ette's Disorder

- 1. Multiple motor and vocal tics
- 2. Tics persisted for at least 1 year
- 3. Onset before 18 years old

DSM-5 diagnostic criteria

Autism spectrum disorder (ASD)

- 1. Deficits in social communication
- 2. Restrictive and/or repetitive behavior

Schizophrenia

- 1. Delusions
- 2. Hallucinations
- 3. Disorganized speech
- 4. Negative symptoms

Language problems

Bipolar I Disorder

- 1. Manic episode
 - a. Grandiosity
 - b. Decreased need for sleep
 - c. More talkative than usual

Tourette's Disorder

- . Multiple motor and vocal tics
- 2. Tics persisted for at least 1 year
- 3. Onset before 18 years old

Are language problems being driven by autism genetic risk factors?

Phenotypes:

- Language level for their age
- Cognitive level for their age

Specific language impairment* (SLI) score

- Residualized for:
 - Age & assigned sex
 - Cognitive impairment, deafness
 - CNVs / de novo variants
 - 20 genetic PCs

Phenotypes:

- Language level for their age
- Cognitive level for their age

Specific language impairment* (SLI) score

- Residualized for:
 - Age & assigned sex
 - Cognitive impairment, deafness
 - CNVs / de novo variants
 - 20 genetic PCs

SLI scores are associated with core autism phenotypes

Language problems are associated with ASD social problems

SLI scores are associated with externalizing behaviors

 $CBCL\ Score_i \sim Intercept + \square_1 SLI\ Score_i + \square_2 Age_i + \square_2 Sex_i +$

Genetic analysis

Heritability estimates vary with age

Autism PGS is not associated with language problems

SLI associated variants discovered in ASD translate to the general population

N = 9,723

SLI variants from autism are generalizable

Conclusions and future directions

Conclusions

- Language impairments are associated with autism phenotypes
 - Not associated with autism polygenic risk

Heritability changes with age in language phenotypes

 Genetic studies of traits in ASD-only samples are generalizable to the general population

Future directions

Data + tools

Software:

- PLINK, GCTA, fastGWA, KING, LDSC, FUMA, LDPred2
- R, Python

Data:

- SPARK
- ABCD
- GWAS summary statistics from the PGC, SSGAC, and gwas catalog

Acknowledgements

Michaelson Lab @ Ulowa

- Jacob Michaelson
- Ethan Bahl
- Muhammad Elsadany
- Annie Gleason
- Grace Kim
- Camilla Strathearn

SPARK

ABCD

PGC

WCPG

Questions?

Lucas-casten@uiowa.edu

Jacob-michaelson@uiowa.edu

Extra slides

Shared genetic architectures

SLI variants from autism impact reading

BrainSpan 11 general developmental stages of brain samples

Gene Set	N genes	Beta 🛊	Beta STD	SE	P	P _{bon}
GOBP_REGULATION_OF_PROTEIN_LIPIDATION	11	0.91001	0.021875	0.22257	2.1794e-0	5 0.370694146
GOCC_PROTEASOME_REGULATORY_PARTICLE_BASE_SUBCOMPLEX	9	0.87806	0.019093	0.22889	6.2724e-0	5 1
GOBP_PROTEIN_CATABOLIC_PROCESS_IN_THE_VACUOLE	21	0.58601	0.019459	0.15564	8.3497e-0	5 1
GOBP_REGULATION_OF_LIPOPROTEIN_METABOLIC_PROCESS	18	0.70184	0.021578	0.18846	9.8303e-0	5 1
GOCC_CALCIUM_AND_CALMODULIN_DEPENDENT_PROTEIN_KINASE_COMPLE	X 5	1.3675	0.022167	0.36823	0.0001023	89 1
GOBP_NATURAL_KILLER_CELL_CHEMOTAXIS	6	1.3165	0.023376	0.36674	0.0001659	99 1
GOMF_FATTY_ACID_OMEGA_HYDROXYLASE_ACTIVITY	8	0.9262	0.018989	0.25868	0.0001719	94 1
GOBP_REGULATION_OF_OSTEOBLAST_DIFFERENTIATION	121	0.26788	0.021296	0.07575	3 0.0002034	7 1
GOBP_REGULATION_OF_NATURAL_KILLER_CELL_CHEMOTAXIS	4	1.6128	0.023383	0.45759	0.0002127	1 1
GOBP_REGULATION_OF_NEURONAL_SYNAPTIC_PLASTICITY	55	0.40277	0.021624	0.11511	0.0002341	.6 1

Language problems are associated with social problems

