221900180田永铭 数理逻辑作业3

Problem1 证明命题3选1

1. $\vdash (\alpha \rightarrow \beta) \rightarrow ((\beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \gamma))$

我不选

2.若 $\Gamma \cup \neg \alpha \vdash \neg \beta$,则 $\Gamma \cup \beta \vdash \alpha$

证明:对 $\Gamma \cup \{\neg \alpha\}$ 到 $\neg \beta$ 的长度进行归纳:

奠基:

(1) 若 $\neg \beta \in \Gamma$,则 $\Gamma \vdash \neg \beta$, 所以 $\Gamma \cup \beta \vdash \neg \beta$ (多一个条件更能推出).

 $\therefore \beta \in \Gamma \cup \beta, \therefore \Gamma \cup \beta \vdash \beta$. 由于公理1.22.10,得到

 $\Gamma \cup \beta \vdash \neg \beta \rightarrow (\beta \rightarrow \bot)$,利用两次MP推理得:

 $\Gamma \cup \beta \vdash \bot$.这意味着 $\Gamma \cup \beta$ 不一致,所以 $\{\Gamma \cup \beta\} \cup \neg \alpha$ 也不一致,由定理1.30可知,这不一致当且仅当 $\Gamma \cup \beta \vdash \alpha$,这就是要证的公式,所以此情况得证.

(2) 若 $\neg \beta \notin \Gamma$, 则 $\beta = \alpha$. $\therefore \alpha \in \Gamma \cup \alpha$, $\therefore \Gamma \cup \alpha \vdash \alpha$, $\therefore \Gamma \cup \beta \vdash \alpha$, 得证.

归纳:

假设长度小于n的时候均成立.假设存在一个 $\Gamma \cup \{ \neg \alpha \}$ 到 $\neg \beta$ 的证明,且 $\neg \beta$ 由MP推出.则其证明前段必然存在 $\gamma \to \neg \beta$ 以及 γ ,且长度均小于n.

 \therefore $(a)\Gamma \vdash \neg \alpha \rightarrow (\gamma \rightarrow \neg \beta)$ 成立,并且(b) $\Gamma \vdash \neg \alpha \rightarrow \gamma$ 成立.

在公理1.22.8中,利用替换 $\theta[\neg \alpha/\alpha, \neg \beta/\beta]$,得到公式:

 $\Gamma \vdash (\neg \alpha \to (\gamma \to \neg \beta)) \to ((\neg \alpha \to \gamma) \to (\neg \alpha \to \neg \beta))$,结合(a)(b)两式,利用两次MP规则,可得 $\Gamma \vdash \neg \alpha \to \neg \beta$.

因为 $\Gamma \vdash \neg \alpha \rightarrow \neg \beta$,所以

(c) $\Gamma \cup \beta \vdash \neg \alpha \rightarrow \neg \beta$.

因为 $\beta \in \Gamma \cup \beta$,所以 $\Gamma \cup \beta \vdash \beta$.

由公理1.22.7得, $\alpha \to (\beta \to \alpha)$,作简单替换得 $\beta \to (\neg \alpha \to \beta)$,这是公理, 所以有

(d) $\Gamma \cup \beta \vdash (\neg \alpha \rightarrow \beta)$.

由公理1.22.9,将其中的 α 替换成 $\neg \alpha$,得到公理,可得到

 $\Gamma \cup \beta \vdash (\neg \alpha \to \beta) \to ((\neg \alpha \to \neg \beta) \to \neg \neg \alpha)$,结合(c)(d)两个式子,利用两次MP规则,可以得到

 $\Gamma \cup \beta \vdash \neg \neg \alpha$.由公理1.22.14得, $\Gamma \cup \beta \vdash \neg \neg \alpha \rightarrow \alpha$, 结合MP推理得:

 $\Gamma \cup \beta \vdash \alpha$.

证毕!

3.¬¬ α ⊢ α

证明:

因为 $\neg \neg \alpha \in \{\neg \neg \alpha\}$, 所以 $\{\neg \neg \alpha\} \vdash \neg \neg \alpha$. 由公理1.22.14得 $\{\neg \neg \alpha\} \vdash \neg \neg \alpha \to \alpha$, 由MP推理规则变形得到 $\{\neg \neg \alpha\} \vdash \alpha$.

证毕!

Problem2 证明3选2

1. 若 Γ 是不一致的,那么对任意 wfflpha,有 $\Gamma \vdash lpha$

证明:

因为 Γ 不一致, 所以由一致性的定义"一个wff集合是一致的(consistent),当且仅当 Γ \vdash \bot ",得 Γ \vdash \bot ,所以新增一个wff $\neg \alpha$,可得 Γ \cup $\neg \alpha$ \vdash \bot ,由定理1.30 " Γ \vdash α 当且仅当 Γ \cup $\neg \alpha$ 不一致" 得到,上式等价于 Γ \vdash α ,所以得证.

证毕!

2.若 $\Gamma \vdash \alpha$ 且 $\neg \alpha \in \Gamma$, 那么 Γ 是不一致的

证明:

 $\therefore \neg \alpha \in \Gamma, \therefore \Gamma \vdash \neg \alpha, \Sigma \because \Gamma \vdash \alpha.$

由公理1.22.10得到:

 $\Gamma \vdash \neg \alpha \to (\alpha \to \bot)$,利用两次MP推理,得到 $\Gamma \vdash \bot$.

又由定理1.29得到, Γ 不一致.

证毕!

3. 若 $\Gamma \cup \alpha$ 与 $\Gamma \cup \neg \alpha$ 均不一致,那么 Γ 本身就不一致

我不选

Problem3 证明定理 1.34

如果Γ是完备 (complete) 且一致 (consistent) 的, 那么:

1. 若 $\Gamma \vdash \alpha$, 则 $\alpha \in \Gamma$ 2. $\alpha \to \beta \in \Gamma$ 当且仅当要么 $\alpha \notin \Gamma$,要么 $\beta \in \Gamma$

证明:

1证明:

采用反证法,假设 $\Gamma \vdash \alpha$ 成立的前提下, $\alpha \notin \Gamma$. 由完备集的定义1.33可知,必有 $\neg \alpha \in \Gamma$. 所以有 $\Gamma \vdash \neg \alpha$.

由公理1.22.10得到 $\Gamma \vdash \neg \alpha \to (\alpha \to \bot)$,利用两次MP推理,得到 $\Gamma \vdash \bot$. 这与 Γ 为一致的相矛盾,所以假设不成立,所以原结论成立。

证毕!

2 证明:

(1) ⇒:

采用反证法,假设 $\alpha \to \beta \in \Gamma$ 成立的前提下,同时有 $\alpha \in \Gamma$ 和 $\beta \notin \Gamma$.

 $\therefore \alpha \to \beta \in \Gamma, \therefore \Gamma \vdash \alpha \to \beta. \therefore \alpha \in \Gamma, \therefore \Gamma \vdash \alpha$. 由MP推理得到, $\Gamma \vdash \beta$.由已经证明的定理1.34的1得到,在 Γ 完备且一致的条件下,有 $\beta \in \Gamma$. 这与假设相矛盾,所以假设不成立.所以原结论正方向成立.

(2) ⇐:

分为两种情况: (a) $\alpha \notin \Gamma$, (b) $\beta \in \Gamma$.

(a)因为 $\alpha \notin \Gamma$, 由 Γ 是完备的, 可知 $\neg \alpha \in \Gamma$, 所以 $\Gamma \vdash \neg \alpha$.

由公理1.22.10可知, $\Gamma \vdash \neg \alpha \to (\alpha \to \beta)$,由MP规则可知, $\Gamma \vdash (\alpha \to \beta)$,又由已经证明的定理1.34的1得到, $\alpha \to \beta \in \Gamma$.

(b)因为 $\beta \in \Gamma$, 所以 $\Gamma \vdash \beta$. 由公理1.22.7得到 $\Gamma \vdash \beta \to (\alpha \to \beta)$, 由MP推理可得到 $\Gamma \vdash (\alpha \to \beta)$,又由已经证明的定理1.34的1得到, $\alpha \to \beta \in \Gamma$.

证毕!