# MATH 2 Lecture Notes

# Tejas Patel

# Tuesday, 14 January, 2025

# Contents

| 1 | Intr | Introduction to Differential Equations 4              |  |  |  |  |  |
|---|------|-------------------------------------------------------|--|--|--|--|--|
|   | 1.1  | Terminology                                           |  |  |  |  |  |
|   | 1.2  | Some Mathematical Models                              |  |  |  |  |  |
| 2 | Firs | st-Order Differential Equations                       |  |  |  |  |  |
|   | 2.1  | Preliminary Theory                                    |  |  |  |  |  |
|   |      | 2.1.1 Theorem                                         |  |  |  |  |  |
|   |      | 2.1.2 Key Questions:                                  |  |  |  |  |  |
|   | 2.2  | Separable Variables (Separable Equations)             |  |  |  |  |  |
|   |      | 2.2.1 <b>Definition:</b>                              |  |  |  |  |  |
|   |      | 2.2.2 Substitution                                    |  |  |  |  |  |
|   | 2.3  | Homogeneous Equations                                 |  |  |  |  |  |
|   |      | 2.3.1 Definition                                      |  |  |  |  |  |
|   |      | 2.3.2 Example                                         |  |  |  |  |  |
|   |      | 2.3.3 Differential Equation form                      |  |  |  |  |  |
|   |      | 2.3.4 Substitution                                    |  |  |  |  |  |
|   |      | 2.3.5 Example                                         |  |  |  |  |  |
|   | 2.4  | Exact Equations                                       |  |  |  |  |  |
|   |      | 2.4.1 Definition                                      |  |  |  |  |  |
|   |      | 2.4.2 Solve the DE                                    |  |  |  |  |  |
|   |      | 2.4.3 Example:                                        |  |  |  |  |  |
|   | 2.5  | Linear Equations                                      |  |  |  |  |  |
|   |      | 2.5.1 Procedure to follow for every Linear DE         |  |  |  |  |  |
|   | 2.6  | What method to use to solve?                          |  |  |  |  |  |
| 3 | A na | plications of First-Order Differential Equation 10    |  |  |  |  |  |
| J | 3.1  | Orthogonal Trajectories                               |  |  |  |  |  |
|   | 0.1  | 3.1.1 Example                                         |  |  |  |  |  |
|   |      | 3.1.2 Definition                                      |  |  |  |  |  |
|   | 3.2  | Applications of Linear Equations                      |  |  |  |  |  |
|   | 3.3  | Applications of Nonlinear Equations                   |  |  |  |  |  |
|   | 0.0  | rippinearions of frommeas Equations                   |  |  |  |  |  |
| 4 |      | ear DE of Higher Order 11                             |  |  |  |  |  |
|   | 4.1  | Preliminary Theory                                    |  |  |  |  |  |
|   | 4.2  | Constructing a Second Solution from a Known Solution  |  |  |  |  |  |
|   |      | 4.2.1 General Reduction of Order Formula              |  |  |  |  |  |
|   | 4.3  | Homogeneous Linear Equations w/ Constant Coefficients |  |  |  |  |  |
|   |      | 4.3.1 Auxiliary Equation for a DE                     |  |  |  |  |  |
|   |      | 4.3.2 Three Scenarios for the Auxiliary Equation 19   |  |  |  |  |  |

|   | 4.4           | Undetermined Coefficients - Superposition Approach                                               |
|---|---------------|--------------------------------------------------------------------------------------------------|
|   |               | 4.4.1 Trial Particular Solutions                                                                 |
|   | 4.5           | Variation of Parameters                                                                          |
|   |               | 4.5.1 Idea:                                                                                      |
|   |               | 4.5.2 Derivation:                                                                                |
|   |               | 4.5.3 Example                                                                                    |
| 5 | Apı           | olications of 2nd-Order DE                                                                       |
| • | 5.1           | Simple Harmonic Motion                                                                           |
|   |               | 5.1.1 Example                                                                                    |
|   | 5.2           | Damped Motion                                                                                    |
|   |               | 5.2.1 Differential Equation form                                                                 |
|   | 5.3           | Forced Motion                                                                                    |
|   |               | 5.3.1 Example                                                                                    |
|   | 5.4           | Electric Circuits & Other Analogous Systems                                                      |
|   | 0.1           | 5.4.1 Example                                                                                    |
| c | DE            |                                                                                                  |
| 6 | <b>DE</b> 6.1 | with Variable Coefficients15Cauchy-Euler Equations15                                             |
|   | 0.1           | 6.1.1 General Formula for the Auxiliary Equation                                                 |
|   |               | v i                                                                                              |
|   |               | 6.1.2 Steps to solving for an auxiliary equation                                                 |
|   |               | 6.1.4 Example Case 1                                                                             |
|   |               | 6.1.5 Example Case 2                                                                             |
|   |               | 6.1.6 Example Case 3                                                                             |
|   | 6.2           | Review of Power Series; Power-Series Solutions                                                   |
|   | 0.2           | 6.2.1 Example                                                                                    |
|   |               | $\infty$ $\infty$                                                                                |
|   |               | 6.2.2 Write $\sum_{n=1}^{\infty} 2nc_n x^{n-1} + \sum_{n=0}^{\infty} 6c_n x^{n+1}$ as one series |
|   |               | 6.2.3 Use Power Series to solve $y' - 2xy = 0$                                                   |
|   |               | 6.2.4 $4y'' + y = 0$                                                                             |
| 7 | Lap           | place Transformations 18                                                                         |
|   | 7.1           | Laplace Transform:                                                                               |
|   |               | 7.1.1 Definition                                                                                 |
|   |               | 7.1.2 Example $\mathcal{L}$                                                                      |
|   |               | 7.1.3 Theorem                                                                                    |
|   |               | 7.1.4 Theorem                                                                                    |
|   |               | 7.1.5 Forms of Laplace Transformations                                                           |
|   |               | 7.1.6 Piecewise Laplace Tranform                                                                 |
|   | 7.2           | Inverse Laplace Transform:                                                                       |
|   |               | 7.2.1 Example                                                                                    |
|   |               | 7.2.2 Theorem                                                                                    |
|   |               | 7.2.3 Theorem                                                                                    |
|   | 7.3           | Translation Theorems & Derivatives of a Transform                                                |
|   |               | 7.3.1 First Translation Theorem                                                                  |
|   |               | 7.3.2 Second Translation Theorem                                                                 |
|   |               | 7.3.3 Examples                                                                                   |
|   |               | 7.3.4 Unit Step Function                                                                         |
|   |               | 7.3.5 Differentiation: Derivatives of Transforms                                                 |
|   |               | 7.3.6 Examples                                                                                   |
|   | 7.4           | Transformations of Derivatives, Integrals, & Periodic Functions                                  |

|   |      | 7.4.1 Formulae                                                                                | 20 |
|---|------|-----------------------------------------------------------------------------------------------|----|
|   |      | 7.4.2 General solution:                                                                       | 21 |
|   |      | 7.4.3 Convolution                                                                             | 21 |
|   |      | 7.4.4 Example                                                                                 | 21 |
|   |      | 7.4.5 Convolution Theorem                                                                     | 21 |
|   |      | 7.4.6 Corollary                                                                               | 21 |
|   |      | 7.4.7 Transform of a Periodic Function                                                        | 21 |
|   |      | 7.4.8 Examples                                                                                | 22 |
|   | 7.5  | Applications                                                                                  | 22 |
|   |      |                                                                                               |    |
| 8 | Exa  | 1                                                                                             | 23 |
|   | 8.1  |                                                                                               | 23 |
|   |      | 9 ( ,)9                                                                                       | 23 |
|   | 8.3  | $\frac{dy}{dx} = e^x e^{5y}  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots  $ | 24 |
|   | 0.0  | $\frac{dx}{dx} = 0$                                                                           |    |
|   |      |                                                                                               | 24 |
|   | 8.5  |                                                                                               | 24 |
|   | 8.6  |                                                                                               | 24 |
|   | 8.7  | 8                                                                                             | 25 |
|   | 8.8  |                                                                                               | 25 |
|   | 8.9  | v 1                                                                                           | 25 |
|   |      | ·                                                                                             | 26 |
|   |      |                                                                                               | 26 |
|   |      |                                                                                               | 26 |
|   | 8 13 | $y'' + 2y' + y - 3\sin 2x$                                                                    | 26 |

#### Introduction to Differential Equations 1

#### 1.1 **Terminology**

**Definition** A differential equation is an equation containing the derivatives or differentials of one or more dependent variables, with respect to one or more independent variables.

- · An Ordinary Differential Equation (ODE) involves only ordinary derivatives
- · A Partial Differential Equation (PDE) involves partial derivatives.

**Definition** The order of a DE is the order of the highest-order derivative that appears in the DE

Notation  $F(x, y, \frac{dy}{dx}, \frac{d^2y}{dx^2})$ Definition A linear DE is any DE that can be written in form:

 $a_0(x)y + a_1(x)y' + a_2(x)y'' \cdots + a_n(x)y^{(n)} = b(x)$ 

For a DE to be linear:

- 1. Y and all of its derivatives must be of the 1st degree
- 2. Any term that does not include y or any of its derivatives must be a function of x

#### 1.2Some Mathematical Models

## I. Free-falling body

Goal: Find s(t).



4

Set up a differential equation in S, model it, then solve

$$ma = mg$$

$$\frac{d^2s}{dt^2} = g$$

$$v = \frac{ds}{ds}$$
  $a = \frac{ds}{dt}$ 

 $v=\frac{ds}{dt},g=\frac{dv}{dt}$  What if there is air resistance. Assume force scales linear with velocity

$$\frac{dv}{dt} = g - \frac{kv}{m} \rightarrow \frac{dv}{dt} = g - \frac{k}{m} \cdot \frac{ds}{dt}$$

### II: Series Circuit



Voltage drops: 
$$V = L \frac{dI}{dt}, V = L \frac{d^2q}{dt^2}$$
 
$$V = IR, V = R \frac{dq}{dt}$$
 
$$V = \frac{q}{C}$$

$$E(t) = L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{C}$$

### III: Population Growth

P = P(t) = population at time t - use exponential model $\frac{dp}{dt} \propto P \rightarrow \frac{dp}{dt} = kP \rightarrow = Ce^{kt}$  where C is the initial population

## IV: Population Growth with Finite Capacity

"Carrying Capacity" = N — uses the logistic growth model  $\frac{dp}{dt} \propto \text{both P and amount to carrying capacity (N-P)}$   $\frac{dp}{dt} = kP(N-P)$ 

## V: Chemical Reaction

 $A + B \rightarrow C$  Concentrations of A and B decreases by amount of C formed

Can we write DE governing the concentration of C x(t)?

The rate at which the reaction takes place \( \preceq \) Product of the remaining concentrations of A and B  $\alpha$  initial concentration of A

 $\beta$  initial concentration of B

$$\frac{dx}{dt} = k(\alpha - x)(\beta - x)$$

#### First-Order Differential Equations $\mathbf{2}$

## Preliminary Theory

Example DE:  $y' = 3y \Rightarrow y = Ce^{3x}$  the general solution where C is an arbitrary constant

Add initial condition y(0) = 5 plug in x=0 to  $5 = Ce^{3*0}, 5 = C*1, C = 5 \Leftarrow$  Initial Value Problem  $y = 5e^{3x}$  is the general solution for the Initial Value Problem

### 2.1.1 Theorem

$$f(x) = \begin{cases} \frac{dy}{dx} = f(x, y) & \text{Differential Equation} \\ y(x_0) = y_0 & \text{Initial Condition} \end{cases}$$

Let R be a rectangular region in the xy-plane defined by  $a \le x \le b, c \le y \le d$ , that contains the point  $(x_0, y_0)$  in its interior.

If f(x,y) and  $\frac{\partial f}{\partial u}$  are continuous on R, then there exists an interval I centered at  $x_o$ , and on this interval I there exists a unique solution y(x) for this IVP

#### **Key Questions:** 2.1.2

Does every IVP have at least one solution?

If an IVP has a solution is it the only solution?

Meaning of a solution existing "on an Interval" The initial value problem

$$\begin{cases} \frac{dy}{dx} = 1 + y^2 \\ y(0) = 0 \end{cases}$$
 has a unique solution. In fact, we can easily verify that  $y = \tan x$  satisfies this IVP

However note that there are some intervals on which  $y = \tan x$  cannot be a solution for this IVP, such as (-2,2), where the function is discontinuous at  $\pm \frac{\pi}{2}$  but can be used for (-1,1) since it is continuous at all points within the interval

#### 2.2Separable Variables (Separable Equations)

#### 2.2.1Definition:

A differential equation that can be written in the form  $\frac{dy}{dx} = \frac{g(x)}{h(y)}$  is said to be separable (or have separable variables).

Example: 
$$\frac{dy}{dx} = \frac{g(x)}{h(y)}$$

$$h(y)dy = g(x)dx$$

$$\int h(y)dy = \int g(x)dx$$
 Example:  $dx + e^{3x}dy = 0$ 

Example: 
$$dx + e^{3x}dy = 0$$

$$e^{3x}dy = -dx$$

$$dy = -\frac{dx}{e^{3x}} \rightarrow dy = -e^{-3x}dx \rightarrow \int dy = \int -e^{-3x}dx \rightarrow y = \frac{1}{3}e^{-3x} + C \text{ where C is an arbitrary constant}$$

#### 2.2.2 Substitution

$$\frac{dy}{dx} = F(ax+bc+c) \text{ where } b \neq 0 \text{ use the substitution: } u = ax+by+c \Rightarrow \frac{du}{dx} = a+b\frac{dy}{dx} = \frac{1}{b} \left[ \frac{du}{dx} - a \right]$$
Example: 
$$\frac{dy}{dx} = \tan^2(x+y) \text{ let } u = x+y \to \frac{dy}{dx} = \frac{du}{dx} - 1 \to \frac{du}{dx} - 1 = \tan^2 u \to \frac{du}{dx} = \sec^2 u$$

$$\int \cos^2 u \ du = \int dx$$

$$2(x+y) + \sin 2(x+y) = 4x + C \to 2y - 2x + \sin 2(x+y)$$
Solve: 
$$\frac{dy}{dx} = (y+3)^2 \text{ By inspection } y = -3 \text{ is a solution. This is the only solution because } f(x,y) = \frac{dy}{dx} = \frac{1}{b} \left[ \frac{du}{dx} - a \right]$$

 $(x+3)^2$  is continuous on  $\mathbb{R}^2$  and  $\frac{\partial f}{\partial x}$  is continuous on  $\mathbb{R}$  so it is the only solution Why solving by separation is not possible  $\int (y+3)^{-}2dy = \int dx \to (y+3)^{-}2/-1 = x + C_1 \to \frac{1}{y+3} = -x - C_1 \to \frac{1}{y+3}$  $y+3=\frac{1}{c-x}\to y=-3+\frac{1}{c-x}$ 

 $y(0) = -3 \rightarrow 0 = \frac{1}{c}$  where there is no real c that solves that equation, making this not possible

## **Homogeneous Equations**

What do we do if the DE is not separable?

#### 2.3.1Definition

A function f(x,y) is said to be **homogeneous of degree** n if, for x, y, and twhere f(x,y) and f(tx,ty)are defined:

$$f(tx, ty) = t^n f(x, y)$$

#### 2.3.2Example

Determine whether each function is homogeneous: a: 
$$f(x,y) = x^3 - 7x^2y + 4y^3 \rightarrow f(tx,ty) = (tx^3) - 7(tx)^2(ty) + 4(ty)^3 t^3x^3 - 7t^3x^2y + 4t^3y^3 t^3(x^3 - 7x^2y - 4y^3) = t^3f(x,y)$$

How to tell quickly whether f(x, y) is homogeneous:

Each term must have the same combined degree

Example: 
$$x^3 - 7x^2y + 4y^3$$
 is D3,  $x^2 + y^2 - 4x$  is not,  $\sqrt{x^5 + 4y^5}$  is with D 2.5,  $\frac{3y}{x} - 2$  is D0

### Differential Equation form

M(x,y)dx + N(x,y)dy = 0 is called a homogeneous differential equation if the functions M and N are both homogeneous of the same degree

If f(x,y) is homogeneous of degree n then f(x,y) can be written as:

$$f(x,y) = f\left(x \times 1, x \times \frac{y}{x}\right) = x^n f\left(1, \frac{y}{x}\right)$$
  
or  $f(x,y) = y^n f\left(\frac{x}{y}, 1\right)$ 

## 2.3.4 Substitution

To solve a homogeneous DE make the substitution: y = ux  $(u = \frac{y}{r})$  or x = vy  $(v = \frac{x}{u})$ 

### **2.3.5** Example

$$\begin{split} &(y^2 + xy)dx + x^2dy = 0 \to y = ux \to dy = (udx + xdu) \\ &(u^2x^2 + ux^2)dx + x^2(udx + xdu) = 0 \\ &u^2x^2dx + ux^2dx + ux^2dx + x^3du = 0 \\ &ux^2(u+2)dx + x^3du = 0 \\ &\int \frac{1}{u(u+2)}du = -\int \frac{1}{x}dx \\ &\text{Partial Fraction Decomposition: } \frac{1}{u(u+2)} = \frac{A}{u} + \frac{B}{u+2} \to A = \frac{1}{2}, B = -\frac{1}{2} \text{ Back to solving } \\ &\int \left[\frac{0.5}{u} - \frac{0.5}{u+2}\right] = -\int \frac{1}{x}dx \\ &0.5 \ln|u| - 1/2 \ln|u+2| = -\ln|x| + C_1 \\ &\ln\left|\frac{u}{u+2}\right| = 2C_1 - 2 \ln|x| \\ &\left|\frac{u}{u+2}\right| = e^{2C_1} \cdot e^{-2 \ln|x|} = e^{2C_1} \cdot |x^{-2}| \Rightarrow \left|\frac{u}{u+2}\right| = |e^{2C_1} \cdot x^{-2}| \Rightarrow \left|\frac{u}{u+2} = \frac{C}{x^2}\right| \\ &ux^2 = X(u+2) \Rightarrow ux^2 = Cu + 2c \to ux^2 - Cu = 2C \\ &u(x^2-c) = 2C \Rightarrow u = \frac{2C}{x^2-C} \Rightarrow \frac{y}{x} = \frac{2Cx}{x^2-C}, \ x \neq 0 \end{split}$$

## 2.4 Exact Equations

Recall from Math 1C: Let  $F(x,y) = \langle 3x^2 - 7y, -7x + 2y \rangle$ 

- 1. If F a conservative vector field i.e., Is there a function f(x, y) such that  $\nabla f$ ? Yes, -7=-7
- 2. If F is indeed conservative, what is f?  $x^{3} 7xy + g(y) = f(x, y) 7x + 2y, g'(y) = 2y$  $f(x, y) = x^{3} 7xy + y^{2} + k$

### 2.4.1 Definition

A differential equation in the form M(x,y)dx + N(x,y)dy = 0 where  $M_y = N_x$ , is called an exact differential equation.

### 2.4.2 Solve the DE

$$(3x^2-7y)dx+(-7x+2y)dy=0$$
  
Using 1C techniques it is  $f(x,y)=x^3-2xy+y^2+k$   
Set this  $f=c$ .  $f(x,y)=x^3-2xy+y^2=c$  take k=0 in every problem  
If the DE is not exact, sometimes we can make it exact by multiplying by magical quantity  $\mu(x,y)$ 

### **2.4.3** Example:

Solve the DE: 
$$(x+y)dx + xlnxdy = 0 \text{ using } \mu(x,y) = \frac{1}{x}$$
 
$$\left(\frac{x+y}{x}\right)dx + \ln|x| \ dy = 0 \text{ is now exact.}$$
 Solution:  $f(x,y) = x + y \ln x = c$ 

## 2.5 Linear Equations

## 2.5.1 Procedure to follow for every Linear DE

- 1. Rewrite the linear DE in the form  $\frac{dy}{dx} + P(x)y = f(x)$
- 2. Find the integrating factor  $\mu(x) = e^{\int P(x)dx}$
- 3. Multiply each side of the DE by  $\mu(x)$
- 4. Rewrite the left side as  $\frac{d}{dx} [\mu(x) \cdot y]$
- 5. Integrate both sides with respect to x and retrieve an implicitly expressed solution
- 6. Solve for y

## 2.6 What method to use to solve?

First ask is it exact?  $(M_y = M_x)$ Yes: Use the method in §2.4 No: Is it linear? (in y or x) Yes: Use the method in §2.5

No: Is it separable?

Yes:  $\S 2.2$ 

No: Homogeneous?

Yes: Use a substitution  $\S 2.3$  No: Good luck. or use inspection

# 3 Applications of First-Order Differential Equation

## 3.1 Orthogonal Trajectories

· Consider the family of curves  $y = cx^3$  Question: Which DE should be solved to get this family as its solutions?

Steps:

1. Find 
$$\frac{dy}{dx} = 3cx^2$$

2. Eliminate c"

$$y = cx^{3}c = \frac{y}{x^{3}}$$
$$\frac{dy}{dx} = 3\frac{y}{x^{3}}x^{2} \to \frac{3y}{x}$$

· The two curves are orthogonal if their tangent lines are orthogonal at the point of intersection i.e. The derivatives are the negative reciprocals of each other

### 3.1.1 Example

Show that  $y=x^3$  and  $x^2+3y^2=4$  are orthogonal at their points of intersection, (1,1) and (-1,-1)  $y=x^3\Rightarrow \frac{dy}{dx}=3x^2\to=3$  at x=1 and 3 at x=-1

$$2x + 6y \frac{dy}{dx} = 0 \rightarrow \frac{dy}{dx} = -\frac{x}{3y} = \frac{-1}{3}$$
 at both  $x = 1$  and  $x = -1$  meaning it is orthogonal

### 3.1.2 Definition

When all the curves of one family of curves intersect orthogonally all the curves of another family, then the families are said to be orthogonal trajectories of each other

## 3.2 Applications of Linear Equations

 $\frac{dN}{dt} = kN \rightarrow N = Ce^{kt}$  for bacterial growth rate. Nothing else here, just an applications section

# 3.3 Applications of Nonlinear Equations

## Logistic Model of Population Growth

1: End Behaviour (Steady State Solution) as  $t \to \infty P(t) = \frac{aP_0}{bP_0 + (a - bP_0)e^{-at}} \to P(t) = \frac{aP_0}{bP_0} = \frac{a}{b}$ 

2: Concavity Analysis (Point of Inflection)  $\frac{dP}{dt} = P(a - bP)$ 

$$\frac{d^{2}P}{dt^{2}} = \frac{dP}{dt}(a - 2bP) = P(a - bP)(a - 2bP) = 0$$

For inflection point  $a-2bP=0 \rightarrow a=2bP \rightarrow P=\frac{a}{2b} \rightarrow P=\frac{N}{2}$  3 cases of initial conditions

$$\begin{cases} 0 < P_0 < \frac{a}{2b} & \text{Hits inflection point while rising to CC} \\ \frac{a}{2b} < P_0 < \frac{a}{b} & \text{Population grows at a decreasing rate to CC} \\ P_0 > \frac{a}{b} & \text{Population falls to the carrying capacity} \end{cases}$$

## 4 Linear DE of Higher Order

## 4.1 Preliminary Theory

Initial Value Problem  $a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + ... + a_1(x)y' + a_0(x)y = g(x)$ Initial Conditions  $y(x_0) = y_0...y^{(n-1)}(x_0) = y_0^{(n-1)}$ **Theorem** Let each  $a_i(x)$  be continuous on an interval I and let  $a_n(x) \neq 0$  for e

**Theorem** Let each  $a_j(x)$  be continuous on an interval I and let  $a_n(x) \neq 0$  for every... CONTINUE LATER

Boundary-Value Problem for 2nd order Linear DE  $a_2(x)y'' + a_1(x)y' + a_0(x)y = g(x)$ 

$$y(a) = y_0 \qquad y(b) = y_1$$

Example: 
$$y'' + 16y = 0$$
  $y(0) = 0$   $y(\pi/2) = 0$ 

 $y = \sin 4x$  and  $y = \cos 4x$  are solutions so  $y(x) = c_1 \cos 4x + c_2 \sin 4x$ 

$$y(0) = c_1 \cos(0) + c_2 \sin(0) = c_1 = 0$$

$$y(\pi/2) = c_1 \cos(2\pi) + c_2 \sin(2\pi) = c_1 = 0$$
 so  $y(x) = c_2 \sin 4x$  is a solution

## 4.2 Constructing a Second Solution from a Known Solution

### General Formula

Given  $a_2(x)y'' + a_1(x)y' + a_0(x)y = 0$  and  $a_2(x) \neq 0$  and  $y_1(x) \neq 0$  is a solution of this DE, find  $y_2(x)$  P(x) Q(x) Divide by  $a_2(x)$ :  $y'' + \frac{a_1(x)}{a_2(x)}y' + \frac{a_0(x)}{a_2(x)}y = 0$  y'' + Py' + Qy = 0,  $y_2 = uy_1 \rightarrow y_2' = uy'1 + u'y_1 \rightarrow y_2'' = uy_1'' + 2u'y_1' + u''y_1$  Plug it all in:  $u''y_1 + 2u'y_1' + 2u$ 

### 4.2.1 General Reduction of Order Formula

$$y = C_1 y_1 + C_2 y_2$$
 where  $y_2 = y_1 \int \frac{e^{-\int P dx}}{y_1^2} dx$ 

## 4.3 Homogeneous Linear Equations w/ Constant Coefficients

In the DE  $a_2(x)y'' + a_1(x)y' + a_0(x)y = 0$ , take  $a_2(x) = a$ ,  $a_1(x) = b$ ,  $a_0(x) = c$ 

so we have a 2ns-order Homogeneous Linear DE with constant coefficients

$$ay'' + by' + cy$$

What does a typical solution look like?

$$\begin{cases} y = e^{mx} \\ y' = me^{mx} \\ y'' = m^2 e^{mx} \end{cases} \text{ so } am^2 e^{mx} + bme^{mx} + ce^{mx} = 0 = e^{mx} (am^2 + bc + c)$$

### 4.3.1 Auxiliary Equation for a DE

$$am^2 + bm + c = 0$$

### 4.3.2 Three Scenarios for the Auxiliary Equation

$$\begin{cases} \text{If } b^2 - 4ac > 0 & \text{two real roots } y = c_1 e^{m_1 x} + c_2 e^{m_2 x} \\ \text{If } b^2 - 4ac = 0 & \text{one real root } y = c_1 e^{mx} + c_2 x e^{mx} \\ \text{If } b^2 - 4ac < 0 & \text{No real roots, 2 distinct complex roots, } y = e^{\alpha x} \left( C_1 \cos \beta t + C_2 \sin \beta t \right) \ m = \alpha \pm i \beta \end{cases}$$

## 4.4 Undetermined Coefficients - Superposition Approach

• Nonhomogeneous Linear DE with constant coefficients:

$$ay'' + by' + cy = g(x)$$

Recall from Section 4.1: The general solution is:

$$y(x) = y_c(x) + y_p(x)$$

where  $y_c(x)$  is the general solution ay'' + by' + cy = 0  $y_p(x)$  is one particular solution of ay'' + by' + cy = g(x) **The big question:** How do we find  $y_p(x)$ ?

### 4.4.1 Trial Particular Solutions

### 4.5 Variation of Parameters

Given:  $a_2(x)y'' + a_1(x)y' + a_0(x)y = g(x)$   $\Rightarrow y'' + P(x)y' + Q(x)y = f(x)$ Goal: Find  $y_p$ 

### 4.5.1 Idea:

Let  $y_1, y_2$  be the two linearly independent solutions of

$$y'' + P(x)y' + Q(x)y = 0$$

Then we will look for  $y_p$  of the form:

$$y_p = u_1(x)y_1(x) + u_2(x)y_2(x)$$

### 4.5.2 Derivation:

$$\begin{aligned} y_p' &= u_1'y_1 + u_2'y_2 + u_1y_1' + u_2y_2' \text{ by product rule} \\ \text{Assume } u_1'y_1 + u_2'y_2 &= 0 \rightarrow y_p' = u_1y_1' + u_2y_2' \\ y_p'' &= u_1y_1'' + u_2y_2'' + u_1'y_1' + u_2' + y_2' \text{ then substitute into } y'' + Py' + Qy = f \\ \underbrace{u_1(y_1'' + Py_1' + Qy_1) + u_2(y_2'' + Py_2' + Qy_2) + u_1'y_1' + u_2' + y_2'}_{\{u_1'y_1 + u_2'y_2 = 0\}} \\ \underbrace{u_1'y_1 + u_2'y_2 = 0}_{u_1'y_1' + u_2' + y_2' = f} \rightarrow y_p = u_1y_1 + u_2y_2 \end{aligned}$$

### 4.5.3 Example

$$y'' + 9y = \cos 3x$$

$$m^{2} + 9 = 0 \rightarrow m = \pm 3i \rightarrow y_{c} = C_{1} \cos 3x + C_{2} \sin 3x$$

$$y_{p} = u_{1}y_{1} + u_{2}y_{2} \text{ where } u'_{1} = \frac{\begin{bmatrix} 0 & \sin 3x \\ \cos 3x & 3\cos 3x \end{bmatrix}}{\begin{bmatrix} \cos 3x & \sin 3x \\ 3\sin 3x & 3\cos 3x \end{bmatrix}} = -\frac{1}{3} \sin 3x \cos 3x = -\frac{1}{6} \sin 6x$$

$$u_{1} = \int -\frac{1}{6} \sin 6x dx = \frac{\cos 6x}{36}$$

$$u'_{2} = \frac{\begin{bmatrix} \cos 3x & 0 \\ -3\sin 3x & \cos 3x \end{bmatrix}}{\begin{bmatrix} \cos 3x & \sin 3x \\ 3\sin 3x & 3\cos 3x \end{bmatrix}} = \frac{\cos^{2} 3x}{3} = \int \frac{\cos^{2} 3x}{3} dx = \int \frac{1 + \cos 6x}{6} dx = \frac{x}{6} + \frac{\sin 6x}{36}$$

$$y_{p} = \frac{\cos 6x}{36} \cos 3x + \frac{x}{6} + \frac{\sin 6x}{36} \sin 3x = \frac{1}{36} \cos 3x + \frac{x}{6} \sin 3x$$

$$y_{p} = C_{1} \cos 3x + C_{2} \sin 3x + \frac{1}{36} \cos 3x + \frac{x}{6} \sin 3x = \begin{bmatrix} C_{1} \cos 3x + C_{2} \sin 3x + \frac{1}{6} x \sin 3x \end{bmatrix}$$
Initial Value Problem  $y(0) = 1$ ,  $y'(0) = 0$ 

$$C_{1} \cos 3x + C_{2} \sin 3x + \frac{1}{6} x \sin 3x \rightarrow C_{1} \cos(0) = 1 \rightarrow C_{1} = 1$$

$$y'(0) \rightarrow 3\sin 3x + 3C_{2} \cos 3x + \frac{1}{6} x \sin 3x = 0 \rightarrow 3C_{2} = 0 \text{ so } C_{2} = 0$$

$$y(x) = \cos 3x + \frac{1}{6} x \sin 3x$$

# 5 Applications of 2nd-Order DE

## 5.1 Simple Harmonic Motion

$$\begin{split} \frac{d^2x}{dt^2} + \omega^2 s &= 0 \text{ where } \omega = \sqrt{\frac{k}{m}} \\ \text{Auxiliary Equation: } m^2 \omega^2 &= 0 \quad m = 0 \pm \beta i \\ C_1 cos\omega t + C_3 \sin \omega t &= A \sin(\omega t + \phi) \text{ where } A = \sqrt{C_1^2 + C_2^2}, \ \sin \phi = \frac{C_2}{A}, \ \cos \phi = \frac{C_2}{A}, \ \tan \phi = \frac{C_1}{C_2} \end{split}$$

### 5.1.1 Example

A 16lb weight is attached to a spring, stretching it 1.28 feet. This weight is released 2 feet above the equilibrium position, with initial downward velocity of 1.5 ft/s

DE: 
$$m \frac{d^2x}{dt^2} + kx = 0$$
 \begin{cases} \text{Weight} &  $w = mg = \frac{1}{2} \text{Slug} \\ k & F = k \cdot s = 16 = k * 1.28, & 12.5 \frac{lb}{ft} \end{cases} \frac{d^2x}{dt^2} + 25x = 0, &  $x(0) = -2, & x'(0) = -1.5 \\ \text{Solve the equation: } x(t) = C_1 \cos 5t + C_2 \sin 5t \\ x(t) = -2 \cos 5t + 0.3 \sin 5t \\ \text{Period is } \frac{2\pi}{5} \text{ seconds or } \frac{5}{2\pi} \text{ vps}$$ 

### 5.2 Damped Motion

### 5.2.1 Differential Equation form

$$\frac{d^2x}{dt^2} + 2\lambda \frac{dx}{dt} + \omega^2 x = 0$$
 Forms of solutions

### 5.3 Forced Motion

With the presence of an external force, the equation of motion has another extra term:

$$x\frac{d^2x}{dt^2} = -kx - \beta\frac{dx}{dt} + f(t) \text{ where } k > 0$$

### 5.3.1 Example

8lb weight, 32/13 ft stretch when hung freely, starts 3 feet below equilibrium, find equation of motion if  $f(t) = 18.75 \sin 2t$  is applied and damping force is 1.5x instantaneous velocity

$$m\frac{d^{2}x}{dt^{2}} + \beta \frac{dx}{dt} + kx = f(t)$$

$$m = \frac{1}{4}, \ \beta = 1.5 \ k : 8 = k \cdot \frac{32}{13} = \frac{13}{4}$$

$$\frac{1}{4}x'' + \frac{6}{4}x' + \frac{13}{4}x = 18.75 \sin 2t$$

$$x'' + 6x' + 13x = 75 \sin 2t \ x(0) = 3 \ x'(0) = 0$$

$$x_{p} = A\cos 2t + B\sin 2t \ A = -4, \ B = 3$$

$$x(t) = c_{1}e^{-3t}\cos 2t + c_{2}e^{-3t}\sin 2t - 4\cos 2t + 3\sin 2t$$
with initial conditions  $c_{1} = 7 \ c_{2} = \frac{15}{2}$ 

$$x(t) = 7e^{-3t}\cos 2t + \frac{15}{2}e^{-3t}\sin 2t - 4\cos 2t + 3\sin 2t$$

 $-4\cos 2t + 3\sin 2t$  is the steady state solution and  $7e^{-3t}\cos 2t + \frac{15}{2}e^{-3t}\sin 2t$  is the transient solution

## Electric Circuits & Other Analogous Systems

LRC Circuit: For charge q = q(t) and current  $i = i(t) = \frac{dq}{dt}$ 

$$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{c} = E(t)$$

### 5.4.1 Example

$$\begin{split} L &= 2H, \ R = 8\Omega, \ C = \frac{1}{18}F, \ E(t) = 10\sin(t) \ V, \ q(0) = 0, \ i(0) = 0 \ 2\frac{d^2q}{dt^2} + 8\frac{dq}{dt} + 18\frac{q}{c} = 10\sin t \\ &= \frac{d^2q}{dt^2} + 4\frac{dq}{dt} + 9\frac{q}{c} = 5\sin t \\ &= \frac{d^2q}{dt^2} + 4\frac{dq}{dt} + 9\frac{q}{c} = 5\sin t \Rightarrow m^2 + 4m + 9 = 0 \Rightarrow m = -2 \pm \sqrt{5}i \\ &= q_c(t) = c_1e^{-2t}\cos\sqrt{5}t + c_2e^{-2t}\sin\sqrt{5}t \\ &= \frac{1}{4}\cos t + \frac{1}{2}\sin t \quad \text{time for initial conditions} \\ &c_1 = \frac{1}{4} \ c_2 = 0 \Rightarrow \boxed{q(t) = c_1e^{-2t}\cos\sqrt{5}t - \frac{1}{4}\cos t + \frac{1}{2}\sin t} \end{split}$$
 Steady state charge:  $q = -\frac{1}{4}\cos t + \frac{1}{2}\sin t$ 

Steady state current:  $i = \frac{1}{4} \sin t + \frac{1}{2} \cos t$ 

#### 6 DE with Variable Coefficients

## Cauchy-Euler Equations

Differential Equations of the form:

$$a_n x^n y^{(n)} + a_{n-1} x^{n-1} y^{(n-1)} + \dots + a_1 x y' + a_0 y = g(x)$$

These are considered equidimensional, where the degree of each monomial coefficient function equals the order of the derivative of y in each term

### 6.1.1 General Formula for the Auxiliary Equation

$$am(m-1) + bm + c = 0$$
 is equivalent to  $am^2 + (b-a)m + c = 0$ 

### 6.1.2 Steps to solving for an auxiliary equation

- 1. Consider  $y = x^r$ ,  $y' = rx^{r-1}$ ,  $y'' = r(r-1)x^{r-2}$  etc.
- 2. Plug that in for each y and its derivatives, simplify the  $x^r$  terms
- 3. Factor out  $x^r$  and that's your equation

### 6.1.3 Forms of Solutions

Two Real Roots 
$$y = c_1 x^{m_1} + c_2 x^{m_2}$$
 One Repeated Real Root 
$$y = c_1 x^{m_1} + c_2 x^{m_2}$$
 Complex Conjugate Roots where  $m = \alpha \pm i\beta$  
$$y = x^{\alpha} \left[ c_1 \cos(\beta \ln x) + c_2 \sin(\beta \ln x) \right]$$

### 6.1.4 Example Case 1

Solve 
$$x^2y'' + 4xy' - 4y = 0$$
  
Assume  $y = x^m \Rightarrow -4y = -4x^m$   
 $y' = mx^{m-1} \Rightarrow 4xy' = 4mx^m$   
 $y'' = m(m-1)x^{m-2} \Rightarrow x^m$   
 $x^2y'' + 4xy' - 4y = m(m-1)x^m + 4mx^m - 4x^m \Rightarrow [m(m-1) + 4m - 4]x^m = 0$   
 $m^2 - m + 4m - 4 = 0$  is the auxiliary equation  $m = 1, -4 \Rightarrow y_1 = x', y_2 = x^{-4}$   
 $y = C_1x + C_2x^{-4}$ 

### 6.1.5 Example Case 2

$$9x^2y'' + 3xy' + y = 0 \Rightarrow a = 9, \ b = 3, \ c = 1 \Rightarrow (3m - 1)^2 \Rightarrow m = \frac{1}{3}$$

$$y_1 = x^{\frac{1}{3}}, \ y_2 = c_2 x^{\frac{1}{3}} \ln x$$
  
 $y = x^{\frac{1}{3}} + c_2 x^{\frac{1}{3}} \ln x$ 

### 6.1.6 Example Case 3

Solve the IVP: 
$$x^2y'' + 3x'y + 3y = 0$$
  $y(1) = 1$   $y'(1) = -5$   $m^2 + 2m + 3 = 0 \Rightarrow m = -1 \pm \sqrt{2}iy = x^{\frac{1}{3}} + c_2x^{\frac{1}{3}} \ln x$   $y = x^{-1} \left[ c_1 \cos(\sqrt{2}\ln x) + c_2 \sin(\sqrt{2}\ln x) \right]$  Now time to plug in initial conditions  $1 = 1 \left[ c_1 \cos(\sqrt{2}\ln x) + c_2 \sin(\sqrt{2}\ln x) \right] \Rightarrow c_1 = 1$   $y'(x) = x^{-1} \left[ -c_1 \sin(\sqrt{2}\ln x) \frac{\sqrt{2}}{x} + c_1 \frac{\sqrt{2}}{x} \cos(\sqrt{2}\ln x) \right] + x^{-2} \left[ c_1 \cos(\sqrt{2}\ln x) + c_2 \sin(\sqrt{2}\ln x) \right] - 5 = y'(1) = c_2 \cdot \sqrt{2} - 1 \Rightarrow c_2 = -2\sqrt{2}$   $y(x) = x^{-1} \left[ \cos\left(\sqrt{2}\ln x\right) - 2\sqrt{2}\sin\left(\sqrt{2}\ln x\right) \right]$ 

## 6.2 Review of Power Series; Power-Series Solutions

$$f(x) = \sum_{n=0}^{\infty} c_n (x - a)^n$$

## 6.2.1 Example

Where does 
$$\sum_{n=1}^{\infty} \frac{x^n}{n^2}$$
 converge? 
$$L = \lim_{k \to \infty} \left| \frac{\frac{x^{k+1}}{(k+1)^2}}{\frac{x^k}{k^2}} \right| = \lim_{k \to \infty} \left| \frac{x^{k+1}}{x^k} \right| \cdot \left| \frac{k^2}{(k+1)^2} \right| = |x| \cdot \lim_{k \to \infty} \frac{k^2}{(k+1)^2} \text{ for x=1 and x=-1 both } \sum_{n=1}^{\infty} \frac{1^n}{n^2} \text{ and } \sum_{n=1}^{\infty} \frac{-1^n}{n^2} \text{ converges by the p series test and alternating series test}$$

**6.2.2** Write 
$$\sum_{n=1}^{\infty} 2nc_n x^{n-1} + \sum_{n=0}^{\infty} 6c_n x^{n+1}$$
 as one series

Write it out manually

First: 
$$2c_1 + 4c_2x + 6c_3x^2 + 8c_4x^3 + \dots = 2c_1 + \sum_{n=2}^{\infty} 2nc_nx^{n-1} = k = n-1$$
  $2c_1 + \sum_{k=1}^{\infty} 2(k+1)c_{k+1}x^k$ 

2nd: 
$$6c_0x + 6c_1x^2 + 6c_2x^3 = \sum_{n=0}^{\infty 6c_nx^{n+1}} = k = n-1 \sum_{k=1}^{\infty} 6c_{k-1}x^k$$

Combine them:  $2c_1 + \sum_{k=0}^{\infty} (2(k+1)c_{k+1} + 6c_k - 1)x^k$ 

### **6.2.3** Use Power Series to solve y' - 2xy = 0

$$y = \sum_{n=0}^{\infty} c_n x^n \qquad y' = \sum_{n=1}^{\infty} n c_n x^{n-1} \qquad 2xy = 2x \sum_{n=0}^{\infty} c_n x^n = \sum_{n=0}^{\infty} 2c_n x^{n+1}$$
$$y' - 2xy = \sum_{n=0}^{\infty} n c_n x^{n-1} - \sum_{n=0}^{\infty} 2c_n x^{n+1} \text{ Let } k = n-1, \ n = k+1$$

$$y - 2xy = \sum_{n=1}^{\infty} nc_n x - \sum_{n=0}^{\infty} 2c_n x \cdot \text{Let } k = n-1, \ n = k + 1$$

$$y' = c_1 + \sum_{k=1}^{\infty} (k+1)c_{k+1}x^k - 2xy = -\sum_{k=1}^{\infty} 2c_{k-1}x^k$$
$$y' - 2xy = c_1 + \sum_{k=1}^{\infty} (k+1)c_{k+1}x^k - \sum_{k=1}^{\infty} 2c_{k-1}x^k = c_1 + \sum_{k=1}^{\infty} \left[ (k+1)c_{k+1} - 2c_{k-1} \right]x^k = 0$$

$$c_1 = 0,$$
  $(k+1)c_{k+1} = -2c_{k+1} \Rightarrow c_{k+1} = \frac{2c_{k-1}}{k+1}$ 

$$c_0$$
 is an arbitrary constant  $c_1 = 0$  
$$c_{k+1} = \frac{2c_{k-1}}{k+1}$$

$$c_2 = c_0$$
  $c_3 = 0$   $c_4 = \frac{1}{2}c_0$   $c_6 = \frac{c_0}{6}$   $c_8 = \frac{c_0}{24}$ 

$$\begin{cases} 0 & \text{If n is odd} \\ \frac{c_0}{\left(\frac{n}{2}\right)!} & \text{If n is even} \end{cases} \qquad \text{If } m = \frac{n}{2} \Rightarrow \frac{c_0}{m!}$$

$$\sum_{m=0}^{\infty} \frac{c_0}{m!} x^{2m} = c_0 \sum_{m=0}^{\infty} \frac{x^{2m}}{m!}$$
 which converts to  $c_0 e^{x^2}$ 

## **6.2.4** 4y'' + y = 0

$$y = \sum_{n=0}^{\infty} c_n x^n \qquad y' = \sum_{n=1}^{\infty} n c_n x^{n-1} \qquad y'' = \sum_{n=2}^{\infty} n(n-1) c_n x^{n-2}$$

$$4y'' = \sum_{n=2}^{\infty} 4n(n-1)c_n x^{n-2} \qquad y = \sum_{n=0}^{\infty} c_n x^n \Rightarrow \sum_{k=0}^{\infty} (4(k+2)(k+1)c_{k+2} + c_k)x^k = 0$$

Solve for 
$$c_{k+2} = -\frac{c_k}{4(k+1)(k+2)}$$
  $k \in \mathbb{Z}$ 

Solve for 
$$c_{k+2} = -\frac{c_k}{4(k+1)(k+2)} k \in \mathbb{Z}$$

$$c_2 = -\frac{c_0}{8} \qquad c_3 = \frac{c_1}{24} \qquad c_4 = \frac{c_0}{4^2 \cdot 4!} \qquad c_5 = \frac{c_1}{4^2 \cdot 5!}$$

General Pattern: 
$$\begin{cases} c_n = (-1)^{\frac{n}{2}} \frac{c_0}{4^{\frac{n}{2}} \cdot n!} & \text{When n is even} \\ c_n = c_{2m+1} = (-1)^m \cdot \frac{c_1}{4^m \cdot (2m+1)!} & \text{When n is odd} \end{cases}$$

$$c_0 \sum_{m=0}^{\infty} \frac{(-1)^m}{(2m)!} \left(\frac{x}{2}\right)^{2m} + c_1 \sum_{m=0}^{\infty} \frac{(-1)^m}{(2m+1)!} \left(\frac{x}{2}\right)^{2m+1}$$
Converts to  $y = c_1 \cos \frac{x}{2} + c_2 \sin \frac{x}{2}$ 

# 7 Laplace Transformations

## 7.1 Laplace Transform:

- Method used to solve certain DEs in an easier way
- Converts DE/IVP into simpler equations

### 7.1.1 Definition

Let f(t) be a function, where  $t \geq 0$  then

$$\mathcal{L}\left\{f(t)\right\} = \int_0^\infty e^{-st} f(t) dt, \ s > 0$$

### 7.1.2 Example $\mathcal{L}$

$$\int_0^\infty e^{-st}*1dt = \lim_{b\to\infty} \int_0^b e^{-st}dt = \lim_{b\to\infty} \left[\frac{e^{-st}}{-s}\right]_{t=0}^{t=b} \text{ results in } \frac{1}{s}$$

### 7.1.3 Theorem

$$\mathcal{L}\left\{\alpha f(t) + \beta g(t)\right\} - \alpha \mathcal{L}\left\{f(t)\right\} + \beta \mathcal{L}\left\{g(t)\right\}$$

### 7.1.4 Theorem

If f is piecewise continuous on  $[0, \infty)$ , and f is of **exponential order**, then  $\mathcal{L}\{f(t)\}$  exists for s > c

### 7.1.5 Forms of Laplace Transformations

$$t^{n} \Rightarrow = \frac{n!}{s^{n+1}}$$

$$e^{at} \Rightarrow \frac{1}{s-a}$$

$$\cos(kt) = \frac{s}{k^{2} + s^{2}}$$

$$\sin(kt) = \frac{k}{k^{2} + s^{2}}$$

$$\cosh(kt) = \frac{s}{s^{2} - k^{2}}$$

$$\sinh(kt) = \frac{k}{s^{2} - k^{2}}$$

$$te^{at} = \frac{1}{(s-a)^{2}}$$

$$t^{n}e^{at} = \frac{n!}{(s-a)^{n+1}}$$

$$\cos^{2}t = \frac{1}{2}\mathcal{L}\left\{1 + \cos 2t\right\} = \frac{1}{2}\left(\frac{1}{s} + \frac{s}{s^{2} + 4}\right)$$

$$e^{at}\cos kt = \frac{s-a}{(s-a)^2 + k^2}$$
  
 $e^{at}\sin kt = \frac{k}{(s-a)^2 + k^2}$ 

### 7.1.6 Piecewise Laplace Tranform

Suppose 
$$f(t) = \begin{cases} 0 & 0 \le t < a \\ k & t \ge a \end{cases}$$
  $\mathcal{L}f(t) = \int_0^\infty e^{-st} f(t) dt = \int_a^a e^{-st} \cdot 0 dt + \int_a^\infty e^{-st} \cdot k dt = \frac{ke^{-sa}}{s}$ 

## 7.2 Inverse Laplace Transform:

$$\mathcal{L}^{-}1\left\{ F(s)\right\} =f(t)$$

### **7.2.1** Example

Inverse Laplace Transform 
$$\frac{1}{s^5} = \mathcal{L}^{-1} \left\{ \frac{1}{4!} \frac{4!}{s^5} \right\} = \frac{1}{4!} \mathcal{L}^{-1} \left\{ \frac{4!}{s^5} \right\} = \frac{t^4}{4!} = \frac{t^4}{24}$$

2: ILT:  $\mathcal{L}^{-1} \left\{ \frac{5s - 4}{s^2 - 3} \right\} = 5\mathcal{L}^{-1} \left\{ \frac{s}{s^2 + 3} \right\} - 4\mathcal{L}^{-1} \left\{ \frac{\sqrt{3}}{s^2 + 3} \right\} = 5\cos\sqrt{3}t - \frac{4}{\sqrt{3}}\sin\sqrt{3}t$ 

3: ILT:  $\mathcal{L}^{-1} \left\{ \frac{1}{(s+1)(s-2)(s-3)} \right\} = \mathcal{L}^{-1} \left\{ \frac{1/12}{s+1} + \frac{-1/3}{s-2} + \frac{1/4}{s-3} \right\} \text{ distribute the transform } \frac{1}{12}\mathcal{L}^{-1} \left\{ \frac{1}{s+1} \right\} - \frac{1}{3}\mathcal{L}^{-1} \left\{ \frac{1}{s-2} \right\} + \frac{1}{4}\mathcal{L}^{-1} \left\{ \frac{1}{s-3} \right\} = \frac{1}{12} \left( e^{-t} - 4e^{2t} + 3e^{3t} \right)$ 

4: ILT:  $\mathcal{L}^{-1} \left\{ \frac{s+1}{s^2(s+2)^3} \right\} \Rightarrow \text{PFD} \Rightarrow \frac{-1}{16} + \frac{1}{8}t + \frac{1}{16}e^{-2t} - \frac{1}{8}t^2e^{-2t}$ 

### 7.2.2 Theorem

Just like 
$$\mathcal{L}$$
,  $\mathcal{L}^{-1}$  is also linear, so  $\mathcal{L}^{-1}\left\{\alpha F(s) + \beta G(s)\right\} = \mathcal{L}^{-1}\left\{\alpha F(s)\right\} + \mathcal{L}^{-1}\left\{\beta G(s)\right\}$ 

### 7.2.3 Theorem

Every Laplace transform  $\to 0$  as  $s \to \infty$ 

### 7.3 Translation Theorems & Derivatives of a Transform

### 7.3.1 First Translation Theorem

For 
$$a \in \mathbb{R}$$
  $\mathcal{L}\left\{e^{at}f(t)\right\} = F(s-a)$  where  $F(s) = \mathcal{L}\left\{f(t)\right\}$   
For the Inverse:  $\mathcal{L}^{-1}\left\{F(s-a)\right\} = \mathcal{L}^{-1}\left\{F(s)|_{s \to (s-a)}\right\} = e^{at}f(t)$   
Notation:  $\mathcal{L}\left\{e^{at}f(t)\right\} = \mathcal{L}\left\{f(t)\right\}_{s \to (s-a)} = F(s)|_{s \to (s-a)}$ 

### 7.3.2 Second Translation Theorem

$$\mathcal{L}\left\{f(t-a)\mathcal{U}(t-a)\right\} = e^{-sa}\mathcal{L}\left\{f(t)\right\} = e^{-sa}F(s)$$

## 7.3.3 Examples

$$\mathcal{L}\left\{e^{-3t}t^4\right\} = \mathcal{L}\left\{t^4\right\}_{s \to s+3} = \frac{4!}{s^5}|_{s \to s+3} = \frac{24}{(s+3)^5}$$

$$\mathcal{L}\left\{e^{5t}\cos 2t\right\} = \mathcal{L}\left\{\cos 2t\right\}_{s \to (s-5)} = \frac{s}{s^2+4}|_{s \to (s-5)} = \frac{s-5}{s^2-10s+29}$$

$$\mathcal{L}^{-1}\left\{\frac{s}{s^2+4s+9}\right\} = \mathcal{L}^{-1}\left\{\frac{s}{s^2+4s+4+5}\right\} = \mathcal{L}^{-1}\left\{\frac{s}{(s+2)^2+5}\right\} = \mathcal{L}^{-1}\left\{\frac{s+2-2}{(s+2)^2+5}\right\} = \mathcal{L}^{-1}\left\{\frac{s+2}{(s+2)^2+5}\right\} - 2\mathcal{L}^{-1}\left\{\frac{1}{(s+2)^2+5}\right\} = \mathcal{L}^{-1}\left\{\frac{s+2}{(s+2)^2+5}\right\} - \frac{2}{\sqrt{5}}\mathcal{L}^{-1}\left\{\frac{\sqrt{5}}{(s+2)^2+5}\right\} = \mathcal{L}^{-1}\left\{\frac{s+2}{(s+2)^2+5}\right\} - \frac{2}{\sqrt{5}}\mathcal{L}^{-1}\left\{\frac{\sqrt{5}}{(s+2)^2+5}\right\} = \mathcal{L}^{-1}\left\{\frac{s+2}{(s+2)^2+5}\right\} - \frac{2}{\sqrt{5}}\mathcal{L}^{-1}\left\{\frac{\sqrt{5}}{(s+2)^2+5}\right\} = \mathcal{L}^{-1}\left\{\frac{s+2}{(s+2)^2+5}\right\} - \mathcal{L}^{-1}\left\{\frac{s+2}{(s+2)^2+5}\right\} = \mathcal{L}^{-1}\left\{\frac{s+2}{(s+2)^2+5}\right\} - \mathcal{L$$

### 7.3.4 Unit Step Function

Defined as:  $\mathcal{U}(t-a)$   $\begin{cases} 0 & 0 \le t < a \\ 1 & t \ge a \end{cases}$ , jump occurs at t value where the argument equals zero



## 7.3.5 Differentiation: Derivatives of Transforms

$$\mathcal{L}\left\{t^nf(t)\right\} = (-1)^n\frac{d^n}{ds^n}\mathcal{L}\left\{f(t)\right\} = (-1)^n\frac{d^n}{ds^n}F(s)$$

### 7.3.6 Examples

$$\mathcal{L}\left\{te^{at}\right\} = \frac{d}{ds}\mathcal{L}\left\{e^{at}\right\} = -\frac{d}{ds}\left[\frac{1}{s-a}\right] = \frac{1}{(s-a)^2}$$

$$\mathcal{L}\left\{t^2\cos kt\right\} = \frac{d^2}{ds^2}\mathcal{L}\left\{\cos kt\right\} = -\frac{d}{ds}\left[\frac{s^2-k^2}{(s^2+k^2)^3}\right] = \frac{2s(3^2-3k^2)}{(s^2+k^2)^3}$$

$$\mathcal{L}\left\{te^{at}\sin kt\right\} = -\frac{d}{ds}\left[\mathcal{L}\left\{e^{at}\sin kt\right\}\right] = -\frac{d}{ds}\left[\mathcal{L}\left\{\sin kt\right\}\right]_{s\to(s-a)} = -\frac{d}{ds}\left[k(s^2+k^2)^{-1}\right]_{s\to(s-a)}$$

$$= -k(-1)(s^2+k^2)^{-2}\cdot 2s|_{s\to(s-a)} = \frac{2ks}{(s^2+k^2)^2|_{s\to(s-a)}} = \frac{2k(s-a)}{[(s-a)^2+k^2]^2}$$

## 7.4 Transformations of Derivatives, Integrals, & Periodic Functions

### 7.4.1 Formulae

$$\mathcal{L}\left\{f'(t)\right\} = s\mathcal{L}\left\{f(t)\right\} - f(0) \Rightarrow \mathcal{L}\left\{f'(t)\right\} = sF(s) - f(0) \\ \mathcal{L}\left\{f''(t)\right\} = s(sF(s) - f(0)) - f'(0) \Rightarrow \mathcal{L}\left\{f''(t)\right\} = s^2F(s) - sf(0) - f'(0) \\ \mathcal{L}\left\{f'''(t)\right\} = s^3F(s) - s^2f(0) - sf'(0) - f''(0)$$

### 7.4.2 General solution:

$$\mathcal{L}\left\{f^{(n)}(t)\right\} = s^n F(s) - \sum_{k=0}^{n-1} s^{n-1-k} f^{(k)}(0) = s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) \dots s^{n-1} f^{(n-1)}(0)$$

### 7.4.3 Convolution

Let f, g be piecewise confinuous on  $[0, \infty)$ . The convolution of f and g is defined as:

$$(f * g)(t) = \int_0^t f(\tau)g(t - \tau)d\tau$$

And (f \* g)(t) = (g \* f)(t)

## **7.4.4** Example

1: Use the fact that  $\frac{d}{dt} [t \cos kt] = -kt \sin kt + \cos kt$  to find  $\mathcal{L} \{-kt \sin kt + \cos kt\}$ 

$$\mathcal{L}\left\{\frac{d}{dt}\left[t\cos kt\right]\right\} = \mathcal{L}\left\{f'(t)\right\} = s\mathcal{L}\left\{f(t)\right\} - f(0) = s\mathcal{L}\left\{t\cos kt\right\} = \boxed{\frac{s(s^2 - k^2)}{(s^2 + k^2)^2}}$$

2: Let 
$$f(t) = e^t$$
 and  $g(t) = \cos t$ . Find  $(f * g)(t)$ 

$$(f * g)(t) = \int_0^t e^\tau \cos(t - \tau) d\tau = -e^\tau \sin(t - \tau)|_0^t + \int_0^t e^\tau \sin(t - \tau) d\tau$$

$$(f * g)(t) = \sin t + [e^\tau \cos(t - \tau)]_{\tau=0}^{\tau=t} - \int_0^t e^\tau \cos(t - \tau) d\tau$$

$$2(f * g)(t) = \sin t - \cos t + e^t \Rightarrow \boxed{(f * g)(t) = \frac{\sin t - \cos t + e^t}{2}}$$

### 7.4.5 Convolution Theorem

$$\{(f * g)(t)\} = \mathcal{L}\{f(t)\}\mathcal{L}\{g(t)\} = F(s)G(s)$$

## 7.4.6 Corollary

$$\mathcal{L}\left\{\int_0^t f(\tau)dt\right\} = \frac{F(s)}{s}$$

### 7.4.7 Transform of a Periodic Function

**Definition** A periodic function is a function that repeats itself every period T. In other words, f is periodic if and only if there exists T > 0 such that

$$f(t+T) = f(t)$$

**Theorem** Let f(t) be piecewise continuous on  $[0, \infty)$ , of exponential order, and periodic with period T. Then

$$\mathcal{L}\left\{f(t)\right\} = \frac{1}{1 - e^{-sT}} \int_0^T e^{-st} f(t) dt$$

### 7.4.8 Examples

1: 
$$\mathcal{L}\left\{\int_0^t e^{\tau} \cos(t-\tau) d\tau\right\} = \mathcal{L}\left\{e^t \cos t\right\} = \mathcal{L}\left\{e^t\right\} \cdot \mathcal{L}\left\{\cos t\right\} = \frac{1}{s-1} \cdot \frac{s}{s^2+1} = \frac{s}{(s-1)(s^2+1)}$$

2: 
$$\mathcal{L}^{-1}\left\{\frac{1}{(s-3)(s+1)}\right\} = \mathcal{L}^{-1}\left\{\frac{1}{s-3}\frac{1}{s+1}\right\} = \mathcal{L}^{-1}\left\{\frac{1}{s-3}\right\}\mathcal{L}^{-1}\left\{\frac{1}{s+1}\right\} = e^{3t} * e^{-t}$$

$$= \int_0^t e^{3\tau} e^{-(t-\tau)} d\tau = e^{-t} \int_0^t e^{4\tau} d\tau = \frac{e^{3t} - e^{-t}}{4}$$

3: 
$$\mathcal{L}^{-1}\left\{\frac{1}{(s^2+k^2)^2}\right\} = \frac{1}{k^2}\mathcal{L}^{-1}\left\{\frac{k}{s^2+k^2}\frac{k}{s^2+k^2}\right\} = \frac{1}{k^2}(\sin kt * \sin kt) = \frac{1}{k^2}\int_0^t \sin k\tau \sin k(t-\tau)d\tau$$
$$= \frac{1}{2k^2}\int_0^t \left[\cos(2k\tau-kt)-\cos kt\right]d\tau = \frac{1}{2k^2}\left(\frac{\sin kt}{k}-t\cos kt\right) = \frac{\sin kt-kt\cos kt}{2k^3}$$

**4:** Find the Laplace Tranform of the sawtooth function with period b and amplitude a On  $[0,b], f(t)=\frac{a}{b}, f(t+b)=f(t)$ 

$$\mathcal{L}\left\{f(t)\right\} = \frac{1}{1 - e^{-sb}} \int_0^b e^{-st} \frac{a}{b} t dt = \frac{a}{b(1 - e^{-sb})} \int_0^b t e^{-st} dt = \frac{-a(-sbe^{-sb} + (1 - e^{-sb}))}{bs^2(1 - e^{-sb})} = \frac{a}{s^2} \left(\frac{1}{bs} - \frac{1}{e^{bs} - 1}\right)$$

## 7.5 Applications

# **Example Problems with Solutions**

### 8.1

$$\begin{cases} \frac{dy}{dx} = 2xy^{\frac{2}{3}} \\ y(0) = 0 \end{cases} \quad y = 0 \text{ and } y = \frac{x^6}{27} \text{ are solutions}$$

$$\frac{dy}{dx}\frac{x^6}{27} = 2x \cdot \frac{x^4}{9} = y^{\frac{2}{3}}$$

$$\begin{cases} \frac{dy}{dx} = 2yx^{\frac{2}{3}} \\ y(0) = 0 \end{cases}$$
 and  $y = 0$  is the only solution. This IVP satisfies a certain condition and that makes

it have a unique solution

$$\begin{cases} \frac{dy}{dx} = xy^{\frac{1}{2}} \\ y(0) = 0 \end{cases}$$

Does the IVP have a unique solution? When on  $\mathbb{R}^2$  is  $\frac{\partial f}{\partial y}$  continuous?  $\frac{\partial f}{\partial y} = \frac{1}{2}xy^{-\frac{1}{2}} = \frac{x}{2.\sqrt{y}}$ 

$$\begin{cases} \frac{dy}{dx} = 3y & \text{Yes there is a unique solution, } \frac{\partial f}{\partial y} = 3 \\ y(0) = 5 & \end{cases}$$

Determine the region R for which the DE would have a unique solution through a point  $(x_0, y_0)$  in the region  $\frac{dy}{dx} = \sqrt{xy}$ 

Where on 
$$\mathbb{R}^2$$
 is  $\frac{\partial f}{\partial y}$  continuous?  $\frac{\partial f}{\partial y} = \frac{1}{2}(xy)^{-1/2} * \frac{\partial}{\partial y}(xy) = \frac{x}{2\sqrt{xy}}$ 

$$\frac{\mathbf{DIY}}{\frac{dy}{dx}} - y = x$$

**8.2** 
$$ydx = (2+3x)dy$$

**Solve:** 
$$ydx = (2 + 3x)dy$$

$$\frac{dy}{y} = \frac{dx}{2+3x}$$

$$\int \frac{dy}{2} = \int \frac{dx}{2+3x}$$

Solve: 
$$ydx = (2+3x)dy$$
  

$$\frac{dy}{y} = \frac{dx}{2+3x}$$

$$\int \frac{dy}{y} = \int \frac{dx}{2+3x}$$

$$\ln|y| = \frac{\ln|2+3x|}{3} + C$$

$$e^{\ln|y|} = e^{\frac{\ln|2+3x|}{3}} + C_1$$

$$= e^{\frac{\ln|2+3x|}{3}} \cdot e^{C_1}$$

$$|y| = e^{C_1} \cdot \ln|2+3x|^{\frac{1}{3}}$$

$$e^{\ln|y|} = e^{\frac{\ln|2+3x|}{3} + C_1}$$

$$|y| = e^{C_1} \cdot \ln|2 + 3x|^{\frac{1}{3}}$$

$$|y| = |e^{C_1}| \cdot |(2+3x)^{\frac{1}{3}}$$

$$|y| = \left| e^{C_1} \cdot \left| (2 + 3x)^{\frac{1}{3}} \right| \right|$$

$$|y| = e^{C_1} |x|^{\frac{1}{3}}$$

$$|y| = |e^{C_1}| \cdot |(2+3x)^{\frac{1}{3}}|$$

$$|y| = |e^{C_1}| \cdot |(2+3x)^{\frac{1}{3}}|$$

$$y = \pm C(2+3x)^{\frac{1}{3}} \qquad x \neq -\frac{2}{3}$$

8.3 
$$\frac{dy}{dx} = e^x e^{5y}$$

$$\frac{dy}{dx} = e^x e^{5y}$$

$$e^{-5y} dy = \frac{e^x}{dx}$$

$$\int e^{-5y} dy = \int e^x dx$$

$$-\frac{1}{5}e^{-5y} = e^x + C_1$$

$$e^{-5y} = -5e^x - 5C_1$$

$$-5y = \ln(-5e^x - 5C_1)$$

$$y = -\frac{1}{5}\ln(C - 5e^x)$$

8.4 
$$y' = 2y - y^2$$

$$\begin{split} y' &= 2y - y^2 \\ \frac{dy}{dx} &= y(2-y) \to \int \frac{dy}{y(2-y)} = \int dx \to \int \left(\frac{0.5}{y} + \frac{0.5}{2-y}\right) dy = \int dx \\ \frac{1}{2} \ln|y| - \frac{1}{2} \ln|2 - y| &= x + C_1 \\ \ln|y| - \ln|2 - y| &= 2x + 2C_1 \\ \ln\left|\frac{y}{2-y}\right| &= 2x + 2C_1 \Rightarrow \left|\frac{y}{2-y}\right| = e^{2x}e^{2C_1} \to \frac{y}{2-y} = Ce^{2x} \to y = CE^{2x}(2-y) \\ y &= 2Ce^{2x} - Ce^{2x}y \to (1 + Ce^{2x})y = 2Ce^{2x} \\ \boxed{y = \frac{2Ce^{2x}}{1 + Ce^{2x}}} \to \frac{2C}{e^{-2x} + C} \end{split}$$

$$8.5 \quad (x-y)dx + xdy = 0$$

$$(x-y)dx + xdy = 0$$
Substitution  $y = ux \Rightarrow dy = udx + xdu$ 

$$(x-ux)dx + x(udx + xdu) = 0$$

$$xdx - uxdx + uxdx + x^2du = 0$$

$$xdx + x^2du = 0$$

$$\int du = -\int \frac{1}{x}dx \Rightarrow u = -\ln|x| + C$$

$$u = \frac{y}{x}$$

$$\frac{y}{x} = C - \ln|x|$$

$$y = Cx - x \ln|x|$$

**8.6** 
$$(x^3 + y^2)dx = 3xy^2dy = 0$$
  
 $(x^3 + y^2)dx = 3xy^2dy = 0$  is conservative, so find  $f(x, y)$  that satisfies  $M = f_x, N = f_y$   

$$\int (x^3 + y^3)dx = \frac{x^4}{4} + xy^3 + g(y) \text{ and } \int xy^2dy = xy^3 + g'(y)$$

$$f(x, y) = \frac{x^4}{4} + xy^3 = C$$

#### Logistic Growth Rumor 8.7

Big Mouth John brings a juicy rumor to a town of 5000. Assume logistic growth. After 5 days 200 people have heard it. How many people will have heard it after 7 days?  $\frac{dP}{dt} = kP(5000 - P) =$ 

$$P(5000k - kP) \to a = 5000k$$

$$P(t) = \frac{aP_0}{bP_0 + (a - bP_0)e^{-at}}$$

$$P(t) = \frac{5000k \cdot 1}{k \cdot 1 + (5000k - k \cdot 1)e^{-5000kt}} = \frac{5000k}{k + 4999ke^{-5000kt}} = \frac{5000}{1 + 4999e^{-5000kt}}$$

From here use 
$$P(5) = 200$$
 to determine  $k$ 

$$P(t) = \frac{5000}{1 + 4999e^{-5000kt}} \Rightarrow 200 = \frac{5000}{1 + 4999e^{-25000k}}$$

$$1 + 4999e^{-25000k} = 25$$

$$e^{-25000k} = \frac{24}{4999}$$

$$k = -\frac{1}{25000} \ln\left(\frac{25}{4999}\right) = 2.13557E - 4$$
Now plug in for  $P(7) = 1303.3603$  people

#### **Chemical Reaction** 8.8

Compound C is formed as a reaction of A and B  $A + B \rightarrow C$ . The resulting reaction is such that

- 1. For each gram of B, 3 grams of A are used
- 2. Initially 40g of A 25g of B
- 3. 10 mins after start, 20g of C is formed
- 4. Reaction rate is proportional to amounts of A and B
- (a) Determine the amount of C at time t
- (b) How much C is formed in 15 minutes
- (c) How much C formes at  $t = \infty$

$$\begin{aligned} \frac{dx}{dt} &= k_1(40 - 0.75x)(25 - 0.25x) = \frac{k_1}{160}(160 - 3x)(100 - x) = k(160 - 3x)(100 - x) \\ \frac{dx}{dt} &= k(160 - 3x)(100 - x) = \int \frac{1}{(160 - 3x)(100 - x)} dx = \int kdt \\ &= \int \frac{3/140}{160 - 3x} - \frac{1/140}{100 - x} dx = kt + C_1 \\ &= \frac{1}{140} \ln \left| \frac{100 - x}{160 - 3x} \right| = kt + C_1 = \frac{100 - x}{160 - 3x} = c_2 e^{140kt} \Rightarrow c_2 = \frac{5}{8} \text{ by } x(0) = 0 \\ &= \frac{100 - x}{160 - 3x} = \frac{5}{8} e^{140kt} \quad x(10) = 20 \to k = \frac{1}{1400} \ln \frac{32}{25} \\ x(t) &= \frac{100(e^{140kt} - 1)}{\frac{15}{8}e^{140kt} - 1} \text{ where } k = \frac{1}{1400} \ln \frac{32}{25} \\ x(15) &= 26.12705 \text{ grams of } C \\ \lim_{t \to \infty} \frac{100(e^{140kt} - 1)}{\frac{15}{8}e^{140kt} - 1} = \frac{160}{3} \text{ grams of } C \end{aligned}$$

## Find the auxiliary equation for the DE

$$3y'' + 5y' - 2y = 0$$
$$3m^2 + 5m - 2 = 0$$

8.10 
$$3m^2 + 5m - 2 = 0$$

$$3m^2 + 5m - 2 = 0$$

Solutions to quadratic formula  $m_1 = \frac{1}{3}$   $m_2 = -2$ 

Solution to DE  $y = c_1 e^{\frac{x}{3}} + c_2 e^{-2x}$ 

## 8.11 $m^2 + 4m + 4 = 0$

$$m^2 + 4m + 4 = 0$$

$$(m+2)^2 = 0, \quad m = -2$$
  
 $y = c_1 e^{-2x} + c_2 x e^{-2x}$ 

# **8.12** $y'' - 2y' - 3y = -6x^2 + x - 2$

## Find $y_c$

y'' - 2y' - 3y = 0 gets an auxiliary equation

$$m^2 - 2m - 3 = 0 \Rightarrow (m+1)(m-3) = 0 \Rightarrow m_2 = -1, m_2 = -3$$

 $y_2 = c_1 e^{-x} + c_2 e^{3x}$ 

### Find $y_p$

$$y_p(x) \stackrel{\circ}{=} Ax^2 + Bx + C$$

$$y_p'(x) = 2Ax + B$$

$$y_p''(x) = 2A$$

$$2A - 2(2Ax + B) - 3(Ax^{2} + Bx + C) = -6x^{2} + x - 2$$

$$\Rightarrow -3Ax^2 + (-4A - 3B)x + (2A - 2B - 3C) = -6x^2 + x - 2$$

$$-3A = -6$$
  $-4A - 3B = 1$   $2A - 2B - 3C = -2$ 

$$A=2$$
,  $B=-3$ ,  $C=4$  making the equation  $y_p(x)=2x^2-3x+4$ 

Solution to the nonhomogeneous equation  $y = y_c + y_p = c_1 e^{-x} + c_2 e^{3x} + 2x^2 - 3x + 4$ 

# **8.13** $y'' + 2y' + y = 3\sin 2x$

$$m^2 + 2m + 1 = 0 \Rightarrow m - = 1, \quad m = -1$$

$$y_c = c_1 e^{-x} + c_2 x e^{-x}$$

$$y_p = \cos 2x + B\sin 2x$$

$$y_p = \cos 2x + B \sin 2x$$
  
 $y'_p(x) = -2A \sin 2x + 2x \cos 2x$   
 $y''_p = -4A \cos 2x - 4B \sin 2x$ 

$$y_n'' = -4A\cos 2x - 4B\sin 2x$$

$$y_p'' + 2y_p' + y_p = (-3A + 4B)\cos 2x + (-4A - 3B)\sin 2x = 3\sin 2x \Rightarrow A = -\frac{12}{25} \quad B = -\frac{9}{25}$$

$$\Rightarrow y_p = -\frac{12}{25}\cos 2x - \frac{9}{25}\sin 2x$$

$$\Rightarrow y_p = -\frac{12}{25}\cos 2x - \frac{9}{25}\sin 2x$$
$$y = c_1 e^{-x} + c_2 x e^{-x} - \frac{12}{25}\cos 2x - \frac{9}{25}\sin 2x$$