VECTORS

Position Vector

r=xi+yj+zk $|\vec{r}| = \sqrt{x^2 + y^2 + z^2}$

Displacement Vector

Particle displaces from position P₁ to position P₂

Parallel Vectors

$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$

$$\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$$

$$\vec{a} = m\vec{b}$$

$$\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3} = m$$

Components of Vector

 $R=4\sqrt{H_{1}.H_{2}}$

In two dimentions

Addition Of Vectors

$$\vec{R} = \sqrt{A^2 + B^2 + 2A B \cos \theta}$$

$$R_{max} = A + B$$
 $R_{min} = |A - B|$

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_x A_y & A_z \\ B_x B_y & B_z \end{vmatrix} = \hat{i} [A_y B_z - B_y A_z] - \hat{j} [A_x B_z - A_z B_x] + \hat{k} [A_x B_y - A_y B_x]$$

Dot product

 $x=\vec{A}.\vec{B}=AB\cos\theta$

Projectile motion

Horizontal component = $U\cos\theta$ Vertical component = $Usin\theta$

$$H = \frac{U^2 \sin^2 \theta}{2g} = \frac{(U \sin \theta)^2}{2g} = \frac{U_y^2}{2g}$$

$$R = \frac{U^2 \sin 2\theta}{g} = \frac{2U \sin \theta U \cos \theta}{g} = \frac{2U_x U_y}{g}$$

Same range for θ and (90- θ)

• $T_1 \times T_2 = \frac{2R}{g}$ • $H_1 \times H_2 = \frac{R^2}{16}$

 $T_1^2 + T_2^2 = \frac{4 R_{max}}{9}$ $H_1 + H_2 = \frac{R_{max}}{2}$

PROJECTILE MOTION

KE at maximum height =Kcos²θ

 $\Delta p = -mgt \hat{j}$ $=-mg \times \frac{u \sin\theta}{a} \hat{j}$ =-mu sin⊖ĵ

Equation of Velocity

Maximum range

For
$$\theta$$
 = 45°

$$R_{\text{max}} = \frac{U^2}{q}$$

From the relation, $4H=Rtan\theta=5T^2$

$$4H=R_{max} tan45 \Rightarrow H = \frac{R_{max}}{4}$$

$$4H=R_{max} \Rightarrow H = \frac{u^2}{4a}$$

Relative Motion

- 1) Velocity of A with respect to B VAB=VA-VB
- 2) $V_{A/B} = V_A V_B$
 - $=V_A (-V_B) = V_A + V_B$

- 3)V_{A/Tree}=V_A-V_{Tree}=60-0=60
- $V_{B/Tree} = V_B V_{Tree} = -40$

RELATIVE MOTION

Relative Motion in one dimension (overtaking & chasing)

Minimum separation to avoid collision

$$0=(u_1-u_2)^2-2a_1s$$

 a_1 = retardation of car 1

RELATIVE MOTION

Man-river problem

- 1) V_{MR} or $V_{M/Still\ water}$ = velocity due to effort of man, OR velocity of man in still water
- 2) V_s= velocity of River
- 3) V = Resultant velocity of man with respect to ground
- 1) Upstream

w.r.t. A

2) Down stream

Swimming across the river

$$t_{\text{cross}} = \frac{d}{V_{\text{MR}} cos \theta} = \frac{d}{V_{\perp}}$$

$$X_{drift} = (V_{MR} \cos \theta + V_{R}) \times t$$

•t_{min}= d •X_{drift}=V_Rx †

$$\bullet V_{m} = \sqrt{(V_{MR})^{2} + (V_{R})^{2}}$$

on a stationary escalator t_a=Time taken by a stationary man to move

distance d along with moving escalator

t₃=Time taken by a man to move distance d while walking along a moving escalator

V=Velocity of escalator

V_{M/E}=Velocity of man w.r.t escalator

MAN RAIN PROBLEM

V_⊳ sinθ

Man-rain problem

In order to find the relative velocity of B with respect to A we have to reverse the direction of vector A and add it with vector B

 $V_{B/A} = V_B - V_A$, V_B w.r.t A $V_{A/R} = V_R - V_A , V_A w.r.t B$

Terms

 $V_{\rm b} \Rightarrow \text{Velocity of rain w.r.t}$ stationary man

 $V_m \Rightarrow Velocity of man$

V_{R/m}⇒ Velocity of Rain w.r.t man

 $V_{R/m} = /(V_R \sin\theta - V_m)^2 + (V_R \cos\theta)^2$

Method

V_psin0 > V_m

 $V_{R/m} = \sqrt{(V_R \cos \theta)^2 + (V_R \sin \theta - V_m)^2}$

$$\tan \alpha = \frac{V_{R} \cos \theta}{V_{R} \cos \theta}$$

$$\alpha = \tan^{-1} \left(\frac{V_{R} \sin \theta - V_{m}}{V_{R} \cos \theta} \right)$$

- (i) = Constant

 $- a_c = \frac{v^2}{r} = r(0)^2$

- Speed not Constant

Non-uniform Circular Motion

- Velocity changes in direction and magnitude

- a = Centripetal acceleration

- a = tangential acceleration

- ω = Changes → α angular acceleration

Horizontal circular motion

- a₊ = 0

 $-\alpha = \frac{d\omega}{dt}$

CIRCULAR MOTION

Case 2 V_m>V_psinθ

 $V_{R/m} = \sqrt{(V_R \cos \theta)^2 + (V_m - V_R \sin \theta)^2}$

Case 3 V_=V_sine

 \Rightarrow t_{cross} = $\frac{d}{V_{ii}}$

⇒Drift=0

 \Rightarrow $V_m = \sqrt{V_{MR}^2 - V_R^2}$

 $V_m = V_R \sin \theta$ $V_{R/m} = V_{R} \sin \theta$

∝ = 0

minimum distance

 $\textbf{d}_{\times}\textbf{V}$

 $d \times U$

$1^{\circ} = \frac{\pi}{180} \text{ rad}$

Angular velocity

 $\omega = \frac{\Delta \theta}{\Delta t} = \frac{2\pi}{T}$ (in uniform circular motion), V= ω

 $\vec{V} = \vec{\omega} \times \vec{r}$

Angular acceleration

$$\alpha = \frac{d\omega}{dt} \qquad \vec{a}_t = \vec{\alpha} \times \vec{r}$$

Equation of angular motion

- 1) Constant angular velocity : (i) = constant
- 2) Constant angular acceleration

- $\Rightarrow \omega = \omega_{\circ} + \Omega \uparrow$
- $\Rightarrow \Delta\theta = \omega_{\circ} t + 1/2 \Omega t^2$
- $\Rightarrow \omega^2 = \omega_0^2 + 2\Omega(\Delta\theta)$

Centripetal acceleration Directed towards centre

Not a constant vector

$$a_c = \frac{\mathbf{v}^2}{\mathbf{R}} = a_c = \mathbf{r} \, \omega^2$$

- · a _ L v
- $\cdot \vec{F} \perp \vec{s}$

Tangential acceleration

 $\mathbf{a}_{\scriptscriptstyle{+}}$ is due to change in magnitude of velocity

Resultant acceleration

Circular Motion

Uniform Circular Motion

- Speed Constant - Direction of velocity changes

 $T_1 = m_1 l_1 \omega^2 + m_2 (l_1 + l_2) \omega^2 + m_3 (l_1 + l_2 + l_3) \omega^2$

$$T_2 = m_2(l_1 + l_2) \otimes^2 + m_3(l_1 + l_2 + l_3) \otimes^2$$

 $T_3 = m_3(l_1 + l_2 + l_3) \oplus^2$

Flat circular track

Banking of Road

At Bottom

a)
$$T_{max} = \frac{mv^2}{r} + mg$$

b) min velocity at bottom to complete circle = $\sqrt{5gR}$

At Top

a) $T_{min} = \frac{mv^2}{r} - mg$

b) min velocity at top to complete the circle = \sqrt{gR}