ELEC 207 Instrumentation and Control

7 – Displacement Transducers (1)

Dr Roberto Ferrero

Email: Roberto.Ferrero@liverpool.ac.uk

Telephone: 0151 7946613

Office: Room 506, EEE A block

Displacement, position and level

Displacement is defined as the movement of an object from one position to another. It can be:

- Translational (movement along a straight line);
- Rotational (angular movement).

Displacement is measured by measuring a (new) position with respect to a reference (old) position:

- A displacement measurement is equivalent to a position or level measurement;
- It has a wide range of applications (robotics, process feedback control, performance evaluation, industrial automation, etc.).

Application examples in industrial automation

Semiconductor industry:

Height measurement of electronic components

Beverage industry:

Detection of fallen parts

Types of transducers (1)

Displacement and level transducers are based on different physical principles and technologies:

Resistive:

- Typically based on potentiometers;
- A relatively simple and low-cost technology used in many applications.

Capacitive:

- Used for high-resolution non-contact measurement of conductive targets;
- Used also to measure the thickness or density of nonconductive materials.

Types of transducers (2)

Inductive:

- Reliable under harsh conditions, high signal quality and good temperature stability;
- Allow also non-contact measurements.

Optical:

- Used for non-contact measurements;
- Typically employed to detect the position or rotational speed of a rotating shaft;

➤ Based on at least three essential components: a light source, a light detector and a light guidance device (e.g. lenses, mirrors, optical fibres, etc.).

Resistive potentiometer

Principle of operation

A potentiometer consists of a resistor and a sliding contact:

It acts as a resistive voltage divider:

$$V_o = V_s \frac{R_{AC}}{R_{AB}}$$

- The body whose motion is being measured is connected to the sliding contact:
 - ➤ There is a **linear relationship** between the distance AC (position of the body) and the output voltage:

$$V_o = V_s \frac{AC}{AB}$$

Resistive potentiometer

Drawbacks and limitations

This type of transducer is simple and low-cost, but not very accurate:

- If the resistance value is high, the resistance of the instrument measuring the output voltage (e.g., a voltmeter) can affect the output value (loading effect);
- If the resistance value is low, the output can be affected by the additional resistance of connecting wires (parasitic resistance);
- Moreover, in case of wire-wound potentiometers, the **resolution** is limited by the step increment (one turn of the wire):
 - Carbon-film or plastic-film potentiometers can be used to overcome this limitation.

Capacitive transducer

Principle of operation

The capacitance of a capacitor with parallel conducting plates is:

$$C = \varepsilon_0 \varepsilon_r \frac{A}{d}$$

A: area of the plates

d: distance between them

 ε_r : dielectric constant of the insulator

- Displacement can be sensed by varying any of the three variables: ε_r , A, d:
 - \triangleright Only variations of ε_r and A produce a **linear response**.

Capacitive transducer

Drawbacks and limitations

The capacitance measurement is affected by the **wiring capacitance**, which is in parallel to the capacitor and therefore is added to the total measured capacitance:

- A small change in the capacitance value can be affected by a large error;
- Using the plate separation d to measure the displacement would result in a higher sensitivity (and better accuracy), but the response would be nonlinear.

Change in plate separation

The transducer response can be **made linear** by using a **differential capacitance transducer**:

 One movable plate is placed between two fixed plates, thus producing two variable capacitors:

 The capacitance change corresponding to a displacement can be measured by a capacitance bridge.

Capacitance bridge (1)

The change in capacitance can be measured by an **AC bridge**:

$$V_{o} = V_{B} - V_{A} = V_{S} \frac{\frac{1}{j\omega C_{2}}}{\frac{1}{j\omega C_{1}} + \frac{1}{j\omega C_{2}}} - \frac{V_{S}}{2} = V_{S} \left(\frac{C_{1}}{C_{1} + C_{2}} - \frac{1}{2}\right)$$

 When the movable electrode is in the central position, the bridge is balanced:

$$C_1 = C_2$$
 \longrightarrow $V_0 = 0$

Capacitance bridge (2)

When the movable electrode is shifted by Δx (e.g. to the right), an unbalance appears:

$$C_1 = \varepsilon_0 \varepsilon_r \frac{A}{d + \Delta x}$$
 , $C_2 = \varepsilon_0 \varepsilon_r \frac{A}{d - \Delta x}$

In this case the **output voltage** of the bridge is:

$$V_o = V_s \left(\frac{C_1}{C_1 + C_2} - \frac{1}{2} \right) = V_s \left(\frac{\frac{1}{d + \Delta x}}{\frac{1}{d + \Delta x} + \frac{1}{d - \Delta x}} - \frac{1}{2} \right) = 0$$

$$=V_{S}\left(\frac{1}{\frac{d-\Delta x+d+\Delta x}{d-\Delta x}}-\frac{1}{2}\right)=V_{S}\left(\frac{d-\Delta x}{2d}-\frac{1}{2}\right)=-V_{S}\frac{\Delta x}{2d}$$

Transfer function

The transfer function of this transducer is therefore:

$$V_o = -V_s \frac{\Delta x}{2d}$$

- The bridge is an AC circuit, so V_s and V_o are **phasors**:
 - ➤ The magnitude of V_o is proportional to the magnitude of the displacement;
 - \triangleright The **phase** of V_o provides the direction of the displacement.
- Therefore both amplitude and phase must be measured.

Change in overlapping area

An alternative solution is to change the **overlapping area** of plates in a differential capacitance transducer:

 The movement of the movable cylinder produces an opposite change in the overlapping electrode areas in the two capacitors:

$$C_1 = \varepsilon_0 \varepsilon_r \frac{A - \Delta A}{d}$$
 , $C_2 = \varepsilon_0 \varepsilon_r \frac{A + \Delta A}{d}$

Capacitance bridge

A capacitance bridge can be used again to convert this change in capacitance into a voltage:

The output voltage of the bridge is now:

$$V_{o} = V_{s} \left(\frac{C_{1}}{C_{1} + C_{2}} - \frac{1}{2} \right) = V_{s} \left(\frac{A - \Delta A}{A - \Delta A + A + \Delta A} - \frac{1}{2} \right) =$$

$$= V_{s} \left(\frac{A - \Delta A}{2A} - \frac{1}{2} \right) = -V_{s} \frac{\Delta A}{2A}$$

• Since $\Delta A = L\Delta x$ (being L the circumference of the cylinder), the output voltage is proportional to the displacement Δx as well.

References

Textbook: Principles of Measurement Systems, 4th ed.

For further explanation about the points covered in this lecture, please refer to the following chapters and sections in the **Bentley** textbook:

- Chapter 8, Sec. 8.1.1: Potentiometers for linear and angular displacement measurement;
- Chapter 8, Sec. 8.2: Capacitive sensing elements;
- Chapter 9, Sec. 9.1.3: Design of reactive deflection bridges.

NOTE: Topics not covered in the lecture are not required for the exam.

References

Textbook: Measurement and Instrumentation, 2nd ed.

For further explanation about the points covered in this lecture, please refer to the following chapters and sections in the **Morris-Langari** textbook:

- Chapter 19, Sec. 19.2.1: Resistive potentiometer;
- Chapter 19, Sec. 19.2.3: Variable capacitance transducers;
- Chapter 7, Sec. 7.2.4: AC bridges.

<u>NOTE</u>: Topics not covered in the lecture are not required for the exam.

