IDS Projects

Vania Marangozova-Martin 2020-2021

Schedule

S12	22/3	7	Discuss LABS, Choice of project, P2P	1.5	////		-1
S13	29/03	8	P2P II, Complex dist systems I	3	////		į
S14	5/4	9		l	Project - design 1st version	1.5	ì
S15	12/4	10	Complex dist systems II	1.5	Project	3	ì
S16	19/4	Spring VACATION	** TURN IN PROJECT **	i	** TURN IN PROJECT **		ì
S17	26/4	11	SOUTENANCES	1.5	SOUTENANCES	6	ì
S18	3/5	EXAMENS		15.		18.	1

Administrativia

- Organisation
 - 2 members per group
- Project advancement:
 - We will organize discussions per group
- Turn in your project
 - turn in code and a report
 - prepare live remote demo session (15 minutes)
 - report = description of architecture, design, choice of techno
- There are three "algo-oriented projects"
 - 1.you need to work on the algorithmic logic
 - 2.implement it with the techno (RMI or RabbitMQ) you want
 - 3.be capable of explaining the choices (algo/techno) you made

Project 1 [ALGO]: Network Overlay

- 1. The goal is to construct a virtual network over a physical one
- 2. We start with a graph that gives the physical topology and build a virtual topology

Overlay: the input graph

- 1. You need an input to describe a graph for example a matrix
- 2. As the graph gives the physical topology of your system, you need to instantiate it with RabbitMQ or Java RMI to have a running distributed system

input matrix

running system, each node is a separate running entity (e.g. a remote object in RMI)

Decide of the nodes identifiers

- Decide who is neighbor of who in the virtual ring
 - May be 1-2-3-4-5-1 or, as given in the picture, 1-4-3-5-2-1

 Compute the routing between a ring node and its two neighbors

• Implement the two basic primitives sendLeft(Message m) and sendRight(Message m)

Project 2 [ALGO]: Multi-player Game

- Goal: Follow the movements of players
- Setting
 - The playground is separated in zones
 - you need to decide how
 - Players move around and pass from one zone to another
 - how do they move?
 - should avoid collisions
 - should say "Hello" to each other
 - Each zone is managed by a node
 - The nodes that manage the set of zones are connected in a distributed topology
 - You need to choose what topology

playground

playground **ZONE A ZONE B** zones **ZONE C ZONE D**

playground

possible player placements

Z	ONE A	A		ZC	NE B	
7	ONE	C		ZC	NE D	

zones

possible player placements

Project 2 [ALGO]: Multi-player Game (2) EXAMPLE: The corresponding dist. architecture

Project 2: Multi-player Game (2)

Red says Hello to Orange

Project 2: Multi-player Game (2)

Red says Hello to Orange

Distributed Shared Memory Abstraction

Distributed Memory Abstraction

Distributed Memory Abstraction

To Implement the primitives

- value read(address)
- write(address, value)

- You need to decide what is an address and how to manage addresses
- You need to decide what kind of values you will manipulate

- The memory is actually distributed over several physical machines
 - You need to decide how to distribute the memory
- The machines are interconnected into a distributed topology
 - You need to choose the topology
- You need to decide what is an address and how to manage addresses
- You need to decide what kind of values you will manipulate

Project 3 [ALGO]: DSM EXAMPE Setting

Distributed Shared Memory Abstraction

Physical machines in a grid

Project 3 [ALGO]: DSM EXAMPE with Partitioning

Project 3 [ALGO]: DSM EXAMPE with Partitioning

Project 3 [ALGO]: DSM EXAMPE with Partitioning

Project 3 [ALGO]: DSM EXAMPE with Replication

Project 3 [ALGO]: DSM EXAMPE with Non Replication

The big problem is consistency (this is really complicated)

- If there are only read operations, no problem
- The pb is that there are write operations
- What if two write operations concern the same address?
 - Which one will go first?
 - What value will the others observe? (if they read from this address)

Strong consistency

Consistency?

References (on Moodle)

- 1. Fekete, A. D., Ramamritham, K.: Consistency Models for Replicated Data. In Charron- Bost, B., Pedone, F., Schiper, A., eds.: Replication LNCS 5959. Springer-Verlag, Berlin (2010) 1-17
- 2. Burckhardt, S.: Principles of Eventual Consistency. Foundations and Trends Programming Languages 1(1-2), 1-150 (2014)