ECG (Normal & LBBB)

Team Number: 21

Team Members

Name	ID
محمد حسین رجب فرغلی	2022170581
مازن محمود مصطفى احمد	2022170339
مازن محمد عبد العال محمد	2022170337
يوسف محمود ابراهيم ابراهيم	2022170528

1. Introduction

- **Objective**: This project aims to diagnose the Left Bundle Branch Block (LBBB) in ECG signals using a K-nearest neighbours (KNN) model.
- **Dataset**: The dataset includes normal and LBBB ECG signals, sourced from the MIT-BIH database with a sampling rate of 360 Hz.

2. Data Preprocessing

- Steps:
 - Mean Removal: The mean of the signal is removed to center it around zero.
 - Bandpass Filter: To remove noise, a Butterworth filter is applied with a range of 0.5 to 40 Hz.
 - Normalization: The signal is normalized to a standard range [-1, 1] for consistent feature extraction.

3. Feature Extraction

- Wavelet Transform: Daubechies wavelets are used to decompose the ECG signals into approximation coefficients.
 - Used Parameters (After Several Trials):

• Type: db2

• **Level:** 3

Statistical Features:

- Mean: The average value of the wavelet coefficients.
- Standard Deviation: The dispersion or variability of the coefficients.
- **Skewness:** The asymmetry of the coefficient distribution.
- Kurtosis: The peakedness of the coefficient distribution.

4. Model Training

- Algorithms:
 - K-Nearest Neighbors (KNN) classifier:
 - n_neighbors: 11 (Number of neighbours to use)
 - Support Vector Machine:
 - **C**: 0.4 (Regularization parameter)
 - kernel: 'rbf' (Specifies the kernel type to be used in the algorithm)
 - Random Forest:
 - **n estimators**: 1 (Number of trees in the forest)
 - random_state: 42 (Controls the randomness of the estimator)
 - max_depth: 1 (The maximum depth of the tree)
- Parameter Tuning:
 - GridSearchCV: Used to find the best parameters (e.g., number of neighbours, weights) through cross-validation.
 - o **Elbow Method**: Plotted error rate vs. Parameters to identify the optimal ones.

5. Model Evaluation

- Metrics:
 - Accuracy: The percentage of correctly classified instances.
 - Confusion Matrix: A table showing the true positives, false positives, true negatives, and false negatives.
 - o **Permutation Importance**: Evaluated the importance of each feature.

6. Trials

Used Wavelet (db2, level 3):

7. Results

Model	Train Accuracy	Test Accuracy
KNN	98.75%	98.15%
SVM	99.25%	90.91%
Random Forest	99.50%	87.21%

KNN Model

SVM Model

Random Forest Model

7. Model Deployment

- Saving the Model: Using joblib to save and load the trained model for deployment.
- **Creating GUI**: Using Tkinter to develop a simple graphical user interface (GUI) for users to input ECG signals and get predictions.