

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In Re Application of: Confirmation No.: 2091
Carver et al. Group Art Unit: 3663
Serial No.: 10/795,879 Examiner: Dudnikov, Vadim
Filed: March 8, 2004 Docket Number: 61404-1100
For: **CONTAINER AND METHOD FOR STORING OR TRANSPORTING SPENT NUCLEAR FUEL**

DECLARATION OF CHARLES PENNINGTON UNDER 37 CFR §1.132

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Sir:

1. I possess an undergraduate degree in mathematics from Duke University, and an M.S. in Nuclear Engineering from North Carolina State University. I have been associated with the nuclear energy industry, both commercial and military, for 40 years. In that time, I have authored at least 50 articles and presentations for various publications and organizations relating to the storage of spent nuclear fuel and other topics relating to nuclear energy.

2. I am currently Vice President of Marketing and Business Development for NAC International, a U.S. company with a significant leadership role in the United States for the storage and transportation of spent nuclear fuel. I have also served for five years as the Director of the Nuclear Spent Fuel Academy sponsored by NAC International

which is a one-week colloquium on spent nuclear fuel storage and transport offered to industry, academia, and government.

3. I am named an inventor of patents relating to spent nuclear fuel storage and transport technology involving neutron absorbers for criticality control and special canister system designs for spent fuel storage and transport, including methods for heat removal from exothermic materials. I have served as a consultant to the International Atomic Energy Agency relating to casks for spent nuclear fuel and have served as an expert witness for several utility companies supporting their Federal licensing, state approval, and litigation activities relating to spent nuclear fuel transport and storage. I have provided both closed-door and public presentations to the National Academy of Sciences and the Nuclear Regulatory Commission on the safety and security of the storage and transport of dry spent nuclear fuel.

4. I have previously led the Engineering and Design Services business unit within NAC for five years. This unit performs the design, Federal licensing, and implementation of storage and transportation systems for spent nuclear fuel. In this role, I directed development, design, and Federal licensing of storage and transport systems for spent nuclear fuel including the NAC-MPC®, UMS®, Advanced UMS®, and other systems.

5. Before joining NAC International, I served as Vice President for Technology and Business Development for Holtec International where I directed the development of

technology for nuclear and hazardous material storage and transport. Prior to my employment at Holtec International, I served as Vice President for Transnuclear, Inc., where I was involved in design development, fabrication assessment, commercialization, and marketing efforts for several spent nuclear fuel dual purpose metal casks, metal spent fuel storage casks, and other types of casks.

6. I have been made aware of the contents U.S. Patent Application 10/795,879 entitled "Container and Method for Storing or Transporting Spent Nuclear Fuel" (hereafter "the '879 application"). The '879 application involves the storage and transport system for spent nuclear fuel that employs so called pin and slot technology.

7. I further have been made aware of the rejection of certain claims in this patent application as being allegedly unpatentable over U.S. Patent 6,009,136 issued to Loftis *et al.* (hereafter "Loftis") in view of a so called "wooden house." I have also been made aware of the rejection of certain claims in this patent application as being allegedly unpatentable over Loftis in view of U.S. Patent 4,630,738 issued to Bosshard (hereafter "Bosshard") in view of the so called "wooden house," and further in view of U.S. Patent Application Publication 2002/0015614 A1 filed by Lindsay (hereafter "Lindsay") and a catalog of Hoover Fence Company (hereafter "Hoover"). In view of these rejections, I set forth the following information.

8. Upon initial scrutiny, one skilled in the art of storage and transportation systems for spent nuclear fuel would not think to use the design that is the subject of the '879 patent for connectivity between tubes in a spent nuclear fuel containment system basket, which holds the nuclear spent fuel. This is because, at first glance, the approach appears too simple and presents neither obvious strength of connectivity between tubes, nor sufficient heat transfer paths for very hot spent nuclear fuel. Also at first glance, the design does not appear to provide for adequate ligaments for accident condition load transmission and distribution through the structure so that both the container and the spent nuclear fuel disposed therein remain geometrically stable through the range of off-normal and hypothetical accident conditions that a system must withstand as required by applicable Federal regulations.

9. Furthermore, before invention of the subject matter of the '879 patent, one skilled in the art would have been likely to deem such a design as unworkable due to weaknesses in the design. Specifically, given that in some embodiments, the pins are not rigidly or permanently fixed in the opposing slots, there is potential for relative motion among the tubes. One would be led to assume that "pull-out" forces from accident conditions imposed on the rods would remove them from the recesses, causing unacceptable basket instability. Typically, it has long been accepted that massive structures with extensive welding and very rigid assembly represent the best approach for the basket design in storage and transport systems for spent nuclear fuel. At the time of the invention that is the subject of the '879 patent, the perceived connection "looseness"

represented a glaring weakness. In addition, at the time of the invention that is the subject of the '879 patent, the depth of the recesses appeared to be another potential weakness under compressive loading, owing to the thinning of the wall material at a naturally weak point at the corners of the tubes.

10. Designs for dry spent nuclear fuel storage and transport containers must comply with Federal regulations governing Type B transportation packages. Such systems must be designed to withstand hypothetical accident conditions, such as, for example, a 9 meter drop onto an essentially unyielding surface. Such a requirement basically means that all energy from the drop condition must be absorbed by the package or cask. In typical rail or marine size casks (about 100 tons to 125 tons), the forces imposed on the containment structure in the packaging resulting from deceleration in connection with a 9 meter free drop approach 60 "g". Thus, an imparted force from a 60 g deceleration of the containment system is typical of the design requirements for hypothetical dry storage and transport accident conditions in order to meet Federal licensing requirements.

11. The structural and mechanical engineering effort to show that dry spent fuel storage and transport systems can meet these burdensome hypothetical accident conditions requires analytical methods and skills that are far removed from log cabin (i.e., wood house) and/or fence hinge design. Log cabin and fence hinge designs cannot withstand imposed loads of even a small fraction of what must be acceptable for

spent fuel dry storage and transport systems. Furthermore, the methods and skills required for these storage and transport systems are even quite distant from the analytical methods applied to wet spent nuclear fuel storage system design. For example, analysis of dry storage and transport systems under hypothetical accident conditions employs very advanced dynamic analysis methods. These analyses require time-history assessments of loads, deformations, pin and recess relative motion, and other basket stability parameters, all in a 3-D model that can require millions of nodes. Highly advanced, non-linear dynamic analysis computer codes like LS-DYNA are used to develop sophisticated accident sequence outputs by incorporating coordinated, but separate, inputs from other codes, such as ANSYS, a code for finite element modeling. Both the LS-DYNA and ANSYS codes are used by National Aeronautic and Space Administration subcontractors for aircraft, rocket, and space shuttle design analysis and evaluation under extreme performance conditions. Thus, the design of spent nuclear fuel storage and transport systems requires highly sophisticated analysis for assessment of system performance under demanding hypothetical accident conditions.

12. As mentioned above, the above-identified Office Action rejects certain claims in view of U.S. Patent 4,630,738 issued to Bosshard in combination with other references. It should be noted that the structures described by Bosshard are for wet spent nuclear fuel storage systems. The Federal regulatory requirements regarding accident conditions and the resulting loads therefrom that must be applied to such wet storage systems are much less demanding than those imposed on Type B containers

employed for dry spent nuclear fuel storage and transport systems. This is because the most limiting accident conditions to which wet storage systems may be exposed result from seismic disturbances such as earthquakes. As a consequence, such systems are typically designed to withstand a peak acceleration/deceleration of about 1 g, which is 1/60th of the design requirement for dry spent nuclear fuel storage and transport systems. Upon reading Bosshard, one skilled in the art will appreciate that the designs described by Bosshard are subject to such lower design requirements and that such designs may not be workable for Type B container baskets employed for dry spent nuclear fuel storage and transport systems.

I hereby declare that all statements made herein of my own knowledge are true and that all statements are made on information and belief and are believed to be true; and further, that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Charles W. Pennington

January 23, 2008

Date