2022年11月13日

修改题目为

对于 0/1 损失函数来说, 指数损失函数并非仅有的一致替代函数. 考虑式 (8.5), 试证明: 任意 损失函数 $\ell(-f(\boldsymbol{x})H(\boldsymbol{x}))$, 若对于 $fH(\boldsymbol{x})$ 在区间 $[-\infty,\delta](\delta>0)$ 上单调递减, 则 ℓ 是 0/1 损失函数的一致替代函数.

$$\begin{split} L(H \mid \mathcal{D}) &= E_{\boldsymbol{x} \sim \mathcal{D}}[\ell(-yH(\boldsymbol{x}))] \\ &= P(y = 1 \mid \boldsymbol{x})\ell(-H(\boldsymbol{x})) + P(y = -1 \mid \boldsymbol{x})\ell(H(\boldsymbol{x})) \end{split}$$

(L(-U))函数的特点是:在 $[-\infty, \delta]$ 区间是单调递减函数(无论其凹凸性如何),在 $[\delta, +\infty]$ 区间,可以是任意形状曲线,无论其单调性如何。对该损失函数进行最小化时,所对应的横坐标位置 u^* 总是在 δ 右侧,也就是 $f(x^*)$ $H(x^*) \geq 0 > 0$,这说明 H(x) 与 f(x) 同正负号。因此 $sign(H(x^*)) = f(x^*)$,其结果与最小化 0/1 损失函数结果一致,是一致替代函数。