# Information Management Systems (ECSE211L)

(Introduction of DBMS- Part 1)

## What is Data?

- Different view points:
  - A sequence of characters stored in computer memory or storage.
  - Interpreted sequence of characters stored in computer memory or storage
  - Interpreted set of objects
  - Word 'Data' is originated from the word 'datum' that means 'single piece of information.' It is plural of the word datum.

• This maybe one of the most profound questions in computer science! It is still open and keep evolving!!



Data is the fact or information which is storable.

## What is DataBase?

Database is a collection of inter-related data, which helps in efficient retrieval, insertion and deletion of data from database and organizes the data in the form of tables, views, schemas, reports etc.

**For Example:** university database organizes the data about students, faculty, and admin staff etc. which helps in efficient retrieval, insertion and deletion of data from it.

# **DBMS**

- DBMS stands for Database Management System. We can break it like this
   DBMS = Database + Management System.
- Database is a collection of data, and Management System is a set of programs to store and retrieve those data.
- Based on this we can define DBMS like this: DBMS is a collection of inter-related data and set of programs to store & access those data in an easy and effective manner.
- DBMS provides an interface to perform various operations like database creation, storing data in it, updating data, creating a table in the database and a lot more.
- For example: MySQL, Oracle, etc are a very popular commercial database which is used in different applications.

# Users in a DBMS environment

| Component Name          | Task                                                                                                                                                                 |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Application Programmers | The Application programmers write programs in various programming languages to interact with databases.                                                              |
| Database Administrators | Database Admin is responsible for managing the entire DBMS system. He/she is called Database admin or DBA.                                                           |
| End-Users               | The end users are the people who interact with the database management system. They conduct various operations on database like retrieving, updating, deleting, etc. |

# Characteristics of DBMS

- It uses a digital repository established on a server to store and manage the information.
- It can provide a clear and logical view of the process that manipulates data.
- DBMS contains automatic backup and recovery procedures.
- It contains ACID properties which maintain data in a healthy state in case of failure.
- It can reduce the complex relationship between data.
- It is used to support manipulation and processing of data.
- It is used to provide security of data.
- It can view the database from different viewpoints according to the requirements of the user

# Advantages of DBMS

- Controls database redundancy: It can control data redundancy because it stores all the data in one single database file and that recorded data is placed in the database.
- **Data sharing:** In DBMS, the authorized users of an organization can share the data among multiple users.
- Easily Maintenance: It can be easily maintainable due to the centralized nature of the database system.
- Reduce time: It reduces development time and maintenance need.
- **Backup:** It provides backup and recovery subsystems which create automatic backup of data from hardware and software failures and restores the data if required.
- Multiple user interface: It provides different types of user interfaces like graphical user interfaces, application program interfaces

# Disadvantages of DBMS

- Cost of Hardware and Software: It requires a high speed of data processor and large memory size to run DBMS software.
- Size: It occupies a large space of disks and large memory to run them efficiently.
- Complexity: Database system creates additional complexity and requirements.
- **Higher impact of failure:** Failure is highly impacted the database because in most of the organization, all the data stored in a single database and if the database is damaged due to electric failure or database corruption then the data may be lost forever.

# DBMS vs. Flat File

| DBMS                                                             | Flat File Management System                |
|------------------------------------------------------------------|--------------------------------------------|
| Multi-user access                                                | It does not support multi-user access      |
| Design to fulfil the need for small and large businesses         | It is only limited to smaller DBMS system. |
| Remove redundancy and Integrity                                  | Redundancy and Integrity issues            |
| Expensive. But in the long term Total Cost of Ownership is cheap | It's cheaper                               |
| Easy to implement complicated transactions                       | No support for complicated transactions    |

- A collection of related data.
  - a) Information
  - b) Valuable information
  - c) Database
  - d) Metadata

- A collection of related data.
  - a) Information
  - b) Valuable information
  - c) Database
  - d) Metadata

- DBMS is software.
  - a) True
  - b) False

- DBMS is software.
  - a) True
  - b) False

- Which of the following is not involved in DBMS?
  - a) End Users
  - b) Data
  - c) Application programmer
  - d) HTML

- Which of the following is not involved in DBMS?
  - a) End Users
  - b) Data
  - c) Application programmer
  - d) **HTML**



### File-Based

- 1968 was the year when File-Based database were introduced.
- In file-based databases, data was maintained in a flat file.

#### Advantages

• One of the major advantages is that the file system has various access methods, e.g., sequential, indexed, and random.

#### Limitations

• It requires extensive programming in a third-generation language such as COBOL, BASIC



#### **Hierarchical Data Model**

- 1968-1980 was the era of the Hierarchical Database.
- IBM's first DBMS was based on this model. It was called IMS.
- Files are related in a parent/child manner.
- It follows one to many relationship.
- This is an ideal model where the data contains nested and sorted information
- It had some limitations like complex implementation, lack structural independence, can't easily handle a many-many relationship, etc.



#### Network data model

- It was standardized in 1971 by the CODASYL group.
- Files are related as owners and members, like to the common network model.

#### Advantages of a Network Database Model

- Because it has the many-many relationship, network database model can easily be accessed in any table record in the database
- For more complex data, it is easier to use because of the multiple relationship founded among its data
- Easier to navigate and search for information because of its flexibility

#### Disadvantage of a Network Database Model

- Difficult for first time users
- Difficulties with alterations of the database because when information entered can alter the entire database



#### **Relational Database**

- 1970 Present: It is the era of Relational Database and Database Management. In 1970, the relational model was proposed by E.F. Codd.
- Two main terminologies: instance and schema.
- The instance is a table with rows or columns
- Schema specifies the structure like name of the relation, type of each column and name.
- It uses mathematical concept like set theory and predicate logic.
- The first internet database application had been created in 1995.
- During the era of the relational database, many more models had introduced like object-oriented model, objectrelational model, etc.



### **Object-Oriented Databases**

- It contains data in the form of object and classes.
- Objects are the real-world entity, and types are the collection of objects. It is a hybrid approach.
- It maintains separate sets of memories separate memory spaces for each row.
- Data *independence is achieved* so that all operations and transactions done in one data are independent and unaffected with other data as minimum as possible

**Object-Oriented Database Features:** persistence, support of transactions, simple querying of bulk data, concurrent access, resilience, security

#### Why OODB?

- Industry Trends: Integration and Sharing
- Seamless integration of operating systems, databases, languages, spreadsheets, word processors, Al expert system shells.
- Referential sharing: Multiple applications, products, or objects share common sub-objects through the support of object identity and inheritance. (Hypermedia links are then used to navigate from one object to another)

#### Truck

char \*number\_plate;
char \*model;
int licence;
date data\_last\_overhual;
float price;
date next\_overhual;

#### Bus

char \*number\_plate;
char \*model;
date data\_last\_overhual;
int seats;
date next\_overhual;

#### Vehicle

char \*number\_plate;
char \*model;
date data\_last\_overhual;
date next\_overhual;

#### Truck

int licence; float price; Bus

int seats;









#### Object-Oriented Model



# **NoSQL Database**

- NoSQL databases are databases designed to be used across large distrusted systems.
- Much more scalable and much faster at handling very large data loads
- NoSQL databases do not use the standard tabular relationships.
- NoSQL databases allow for the querying and storage of data by a variety of other means, depending on the specific software.

#### **Other Features**

- Multi-Model
- Concurrency
- Security
- Data Model Flexibility
- Deployment Model Flexibility



# NoSQL DATABASE TYPES

#### Document













#### Graph



#### Key-Value



#### Wide-Column



```
{
  "user":{
     "id":"143",
     "name":"improgrammer",
     "city":"New York"
     }
}
```





| 1 | Fruit | A Foo | B Baz |       |
|---|-------|-------|-------|-------|
| 2 | City  | E DC  | DIPLA | G FLD |
| 3 | State | AINZ  | clcr  |       |























#### 6. Cloud database

- Cloud database facilitates you to store, manage, and retrieve their structured, unstructured data via a cloud platform. This data is accessible over the Internet. Cloud databases are also called a database as service (DBaaS) because they are offered as a managed service.
- Some best cloud options are:
  - AWS (Amazon Web Services)
  - Snowflake Computing
  - Oracle Database Cloud Services
  - Microsoft SQL server
  - Google cloud spanned

### References

- <a href="https://medium.com/@rpolding/databases-evolution-and-change-29b8abe9df3e">https://medium.com/@rpolding/databases-evolution-and-change-29b8abe9df3e</a>
- https://creately.com/blog/diagrams/database-modeling-basics/
- https://people.cs.pitt.edu/~chang/156/19oodb.html
- https://www.trustradius.com/nosql-databases
- <a href="https://www.improgrammer.net/most-popular-nosql-database/">https://www.improgrammer.net/most-popular-nosql-database/</a>
- https://hackernoon.com/5-top-cloud-databases-that-works-wonders-7e628810e3ac

