Hola

Continuidad de la cuerda: $\psi_1(x_d,t) = \psi_2(x_d,t)$

Continuidad de
$$F_y$$
: $-T_1 \left. \frac{\partial \psi_1(x,t)}{\partial x} \right|_{x_d} + T_2 \left. \frac{\partial \psi_2(x,t)}{\partial x} \right|_{x_d} = \delta_m a$

$$\psi_I^{(1)}(x,t) = A_I^{(1)}\cos(\omega t - kx)$$

$$\rho_1 \qquad \rho_2$$

$$\psi_1(x,t) \qquad x_d \qquad \psi_2(x,t)$$

Continuidad de la cuerda:
$$\psi_1(x_d,t) = \psi_2(x_d,t)$$

Continuidad de
$$F_y$$
: $-T_1 \left. \frac{\partial \psi_1(x,t)}{\partial x} \right|_{x_d} + T_2 \left. \frac{\partial \psi_2(x,t)}{\partial x} \right|_{x_d} = \delta_m a$

Conservación de la masa: $\rho_1 S_1 \left. \frac{\partial \psi_1(x,t)}{\partial t} \right|_{x_d} = \rho_2 S_2 \left. \frac{\partial \psi_2(x,t)}{\partial t} \right|_{x_d}$

Continuidad de las presiones: $\left. \gamma_1 \left. \frac{\partial \psi_1(x,t)}{\partial x} \right|_{x_d} = \gamma_2 \left. \frac{\partial \psi_2(x,t)}{\partial x} \right|_{x_d}$

$$\psi_1(x,t) = A_I^1 e^{i(\omega t - kx)} + A_R^1 e^{i(\omega t + kx)}$$

$$\psi_2(x,t) = A_T^2 e^{i(\omega t - kx)} + A_R^2 e^{i(\omega t + kx)}$$

Eso es todo