Day 1

题目名称	蒙德	璃月	稻妻	须弥
可执行文件名	mondstadt	liyue	inazuma	sumeru
输入文件名	mondstadt.in	liyue.in	inazuma.in	sumeru.in
输出文件名	mondstadt.out	liyue.out	inazuma.out	sumeru.out
每个测试点时 限	1 秒	1 秒	1 秒	1 秒
内存限制	256MB	256MB	256MB	256MB
测试点数目	20	20	20	10
每个测试点分	5	5	5	10
值				
是否有部分分	否	否	否	否
题目类型	传统型	传统型	传统型	传统型
是否有样例文	否	否	否	否
件				
是否有附加文 件	否	否	否	否

提交源程序须加后缀

对于 C++	语	mondstadt .cpp	liyue.cpp	inazuma.cpp	sumeru.cpp	
言						

编译开关

对于 C++	语	-O2 -lm	-O2 -lm	-O2 -lm	-O2 -lm
言					

蒙德(Mondstadt)

【问题描述】

在自由的城邦,人们晚上喜欢仰望着星空,尽管那是虚假的。

伟大的占星术士莫娜,绘制了提瓦特天空的无向星图。在星图中,一颗 k 大的星星指的是星图上一个拥有 k+1 个点,k 条边的有向子图 ($k \ge 2$),且所有的边的起点都是一个公共中心。那个公共中心便是星星的中心,而其余节点均为星星的外沿。

莫娜想要计算出无向星图上大小为k的星星的数量除以 10^9+7 的余数 cnt_k ,但是由于输出过于巨大,莫娜只想要知道 $\bigoplus_{k=2}^{n-1}cnt_k=cnt_2\oplus cnt_3\oplus ...\oplus cnt_{n-1}$ (\oplus 表示异或)

【输入格式】

输入文件为 mondstadt.in。

输入文件的第一行包含两个正整数 n,m,用空格隔开,表示星图节点数和边数。

接下来 m 行,包含用空格隔开的两个整数 u_i 和 v_i ,为星图中的一条边,保证 $u_i < v_i$ 。

【输出格式与部分分】

输出文件为 mondstadt.out。

输出仅一行一个整数,表示 $\bigoplus_{k=2}^{n-1} cnt_k$ 。

【样例1输入】

- 3 2
- 1 2
- 2 3

【样例1输出】

1

【样例2输入】

- 4 6
- 1 2
- 1 3
- 1 4
- 2 3
- 2 4
- 3 4

【样例2输出】

8

【样例2说明】

一共有 12 个大小为 2 的星和 4 个大小为 3 的星, $12 \oplus 4 = 8$ 。

【子任务】

所有测试数据的范围和特点如下:

对于 20%的数据有 $1 \le n \le 10, 1 \le m \le 20$

对于 40%的数据有 $1 \le n \le 200, 1 \le m \le 400$

对于 60%的数据有 $1 \le n \le 5000, 1 \le m \le 20000$ 。

对于 80%的数据有 图为 n-1 大小的星图

对于 100%的数据有 $1 \le n \le 10^6$, $1 \le m \le 2 \times 10^6$

璃月(Liyue)

【问题描述】

在岩的国度, 人们喜欢正方的事物, 比如完全平方数。

月海亭的秘书甘雨打算处理今日事务,她将今日的事务从 1 到 n 编号,然后打乱,打乱后的第 i 件事编号为 a_i 。每一次,她会从打乱后的事务中抽出连续的一摞,然后从中选择两个编号之和为完全平方数的事务处理。

甘雨想要知道,假如她抽出的连续的一摞是打乱之后的第L到R件事务,她有多少种选择两个编号之和为完全平方数的事务的方法。

【输入格式】

输入文件为 livue.in。

输入文件的第一行包含一个正整数 n。

接下来一行包含 n 个整数,表示打乱后的事务编号。

接下来一行包含一个正整数 q 表示询问次数。

接下来 q 行包含两个正整数 L,R,表示甘雨这次抽出的是第 L 到 R 件事务 $(L \le R)$ 。

【输出格式与部分分】

输出文件为 livue.out。

输出 q 行,每行一个整数,该次询问甘雨可选择事务的方案数。

【样例1输入】

```
8
5 7 4 1 8 6 2 3
10
4 5
2 6
1 8
2 7
4 8
3 8
4 7
1 5
2 5
```

3 7

【样例1输出】

1

1

5

2

3

3

1

2

1

1

【子任务】

所有测试数据的范围和特点如下:

对于 30%的数据有 $1 \le n \le 500, 1 \le q \le 500$

对于 50%的数据有 $1 \le n \le 5 \times 10^3$, $1 \le q \le 10^5$ 。

对于额外 20% 的数据有甘雨不会将今日事务打乱

对于 100%的数据有 $1 \le n \le 10^5$, $1 \le q \le 10^5$

稻妻(Inazuma)

【问题背景】

在提瓦特,司掌雷电力量的魔神是来自稻妻鸣神岛的*御建鸣神主尊大御所大人*。在雷电的国度,电力供应由一个**仙人掌**形状的输电系统维持。如果一个无向连通图的任意一条边最多属于一个简单环,我们就称之为**仙人掌**。所谓简单环即不经过重复的结点的环。

然而,电线并不是*永恒*的,每根电线 $e_i(u_i,v_i)$ 都有其寿命 d_i 。向往永恒的魔神并不能改变万物的寿命,她只能控制每根电线的启用时间 s_i 。若一根电线的启用时间为 s_i ,则在时间段[s_i,s_i+d_i]内,该电线可以传输电力,其余时间改电线不能传输电力。

整个输电系统只有一个建在1号节点的稻妻鸣神岛的发电站, 御建鸣神主尊 大御所大人想知道,这个输电系统最长能令所有节点拥有电力多长时间。

【输入格式】

输入文件为 inazuma.in。

输入文件的第一行包含两个正整数 n,m,用空格隔开,表示节点数和边数。接下来 m 行,每行表示一根电线,包含用空格隔开的三个整数 u_i , v_i 和 d_i ,为电线的两个端点和寿命。

【输出格式】

输出文件为 inazuma.out。

输出文件只有一行,包含一个正整数,即输电系统正常工作的最长时间。

【样例1输入】

- 3 3
- 1 2 1
- 2 3 1
- 3 1 2

【样例1输出】

2

【样例1说明】

你可以设置 $s_1 = s_3 = 0; s_2 = 1$,这样所有的节点在时间区间 [0; 1] 内都会通过边 1 和边 3 连接,而在时间区间 [1; 2] 内则通过边 2 和边 3 连接。

【样例2输入】

- 5 6
- 1 2 3
- 1 2 2
- 2 3 3
- 2 4 5
- 2 5 5
- 3 4 2

【样例2输出】

5

【子任务】

所有测试数据的范围和特点如下:

对于 20%的数据有 $1 \le n \le 10, 1 \le m \le 20$

对于 40%的数据有 $1 \le n \le 200, 1 \le m \le 400$

对于 70%的数据有 $1 \le n \le 10^5$, $1 \le m \le 2 \times 10^5$

对于 100%的数据有 $1 \le n \le 10^6$, $1 \le m \le 2 \times 10^6$, $1 \le d_i \le 10^6$

须弥(Sumeru)

【问题背景】

智慧之神纳西妲经常为了封印五百年前的漆黑灾厄,智慧消耗过度(谁是大慈树王?)。现在,她遇到了连智慧之神都无法解决的问题:

对于四个三维向量 A_1,A_2,A_3,A_4 ,是否存在三个非负数 x_1,x_2,x_3 ,使得 $x_1A_1+x_2A_2+x_3A_3=A_4$ 。

【输入格式】

输入文件为 sumeru.in。

输入文件的第一行包含个正整数 T,表示询问次数。

接下来 T 行,每行 12 个整数,其中包含

 a_{11} , a_{12} , a_{13} , a_{21} , a_{22} , a_{23} , a_{31} , a_{32} , a_{33} , a_{41} , a_{42} , a_{43} ,表示 A_1 , A_2 , A_3 , A_4 。

【输出格式】

输出文件为 sumeru.out。

输出文件有T行,每行输出YES或者NO,表示是否存在 x_1,x_2,x_3 满足条件。

【样例1输入】

2 3 4 4 4 3 0 2 3 2 9 10 6 0 3 1 0 1 3 4 0 4 4 1 10

【样例1输出】

YES NO

【子任务】

所有测试数据的范围和特点如下:

对于 30%的数据有 $0 \le a_{ij} \le 4$

对于 40%的数据有 A_1,A_2,A_3 线性无关。

对于 100%的数据有 $0 \le a_{ij} \le 10^4$, $T \le 1000$