Overview

Adaptive Markov Chain Monte Carlo

Scott C. Schmidler

Stat 863: Advanced Statistical Computing **Duke University** Fall 2018

• Basic ideas of adaptive MCMC and examples

• Theory for AMCMC: asymptotics vs mixing times

• Combining adaptive strategies: exploration/exploitation

Metropolis Algorithm

General case: $\pi(dx) = \pi(x)\mu(dx)$ for some σ -finite μ on \mathcal{X} .

To draw samples from $\pi(x)$:

Choose *proposal* kernel q(x, x').

Metropolis-Hastings

• Draw $x^* \sim q(x^{(t)}, \cdot)$

$$\bullet \ \mathsf{Set} \ x^{(t+1)} = \begin{cases} x^* & \mathsf{w/\ prob}\ \alpha = \min\left(1, \frac{\pi(x^*)q(x^*,x)}{\pi(x)q(x,x^*)}\right) \\ x^{(t)} & \mathsf{otherwise} \end{cases}$$

Result: reversible MC with stationary distribution $\pi(x)$.

Random-walk Metropolis

How to choose proposal q? Common choices:

• Random walk: $x^* = x + \epsilon$

• e.g. if $\mathcal{X} = \mathbb{R}^d$, take $\epsilon \sim N(0, \sigma^2 I_d)$.

• Independent: $q(x, x') \equiv q(x')$ (MIS)

Works under simple conditions (support). May not be efficient.

Example: Suppose $\pi(x) = N_2(0, \Sigma)$

Consider
$$\Sigma=egin{bmatrix}\sigma_1&\rho\\ \rho&\sigma_2\end{bmatrix}$$
, with $\sigma_1=2,\,\sigma_2=1$ and $\rho=.95$

Efficiency

Statistical Efficiency: $var(\hat{f})$

Under reasonably weak conditions * , for any function f with $var_{\pi}(f) \leq \infty$, we obtain a CLT:

$$\sqrt{n}(\bar{f}_n - \mu_f) \rightarrow N(0, \sigma_{\bar{f}}^2)$$

where

$$\sigma_{ar{f}_n}^2 = \sigma_f^2 (1 + 2 \sum_{i=1}^n (1 - rac{j}{n})
ho_j)$$

and ρ_i is lag-j autocorrelation:

$$\rho_{j} = \frac{1}{\sigma_{f}^{2}} E\left((f(X^{(n)}) - \mu_{f}) (f(X^{(n+j)}) - \mu_{f}) \right)$$

Adaptive Metropolis

 $q(x, x'; \theta)$ some parametric family. Can we "tune" θ automatically?

$$q^{(t)}(\cdot,\cdot) = q(\cdot,\cdot;\theta^{(t)})$$
 for $\theta^{(t)} = \theta(X_1,\ldots,X_{t-1})$

Obvious, old idea. But ... no longer a Markov chain.

- Does it converge to π ?
- Does it converge at all?

Old solutions:

- Stop adapting at some finite time t^* : for $t > t^*$ run a Markov chain; discard $X_{t \le t^*}$. (But how to choose t^* ?)
- Adapt only at regeneration times. (But difficult to identify.)

Adaptive Metropolis: Simple example

Haario et al (2001): For n > 2d, take

$$q^{(t)}(x,\cdot) = (1-\beta)N(x,(2.38)^2\hat{\Sigma}^{(t)}/d) + \beta N(x,1^2I_d/d)$$

Note: $(2.38)^2 \Sigma/d$ "optimal" under Langevin diffusion approximation argument of RR01.

Key: proof of convergence (WLLN; uses "mixingales").

Scott C. Schmidle

Adaptive Markov Chain Monte Carlo

I. Adaptive Metropolis kernels

Two approaches developed by various authors

Adaptive random-walk proposals

$$q_{n+1}(x,\cdot) = (1-\alpha)N(x,\hat{\Sigma}_n) + \alpha N(x,\Sigma_0)$$

e.g. Haario et al, Roberts & Rosenthal

Adaptive independence proposals (AMIS)

$$q_{n+1}(x,\cdot) = g(\cdot;\hat{\theta}_n) \quad \hat{\theta}_n = \theta(X_1,\ldots,X_n)$$

e.g. Andrieu & Moulines, Ji & Schmidler, etc.

Scott C. Schmidle

daptive Markov Chain Monte Carlo

Adaptive Metropolis algorithm: example

Convergence theorems

 X_1, \ldots, X_n no longer a Markov chain.

Under what conditions does $\hat{f}_n = \frac{1}{n} \sum_{i=1}^n f(X_i)$ converge?

- Haario et al 2001: WLLN, using "mixingales"
- Andrieu & Robert (2001): SA interpretation of Haario algorithm
- Andrieu & Moulines (2005), Atchade & Rosenthal (2005): generalizations to other algorithms (and a CLT)
- Roberts & Rosenthal (2007): Simplified conditions, coupling

Scott C. Schmidle

Adaptive Markov Chain Monte Carlo

Scott C. Schmidle

Adaptive Markov Chain Monte Carle

General setup: (Roberts & Rosenthal, 2007)

 π target distribution on ${\mathcal X}$ with $\sigma\text{-algebra }{\mathcal F}$

 $\{P_{\gamma}\}_{{\gamma}\in\mathcal{Y}}$ collection of π -invariant Markov kernels on \mathcal{X}

 $X_n \in \mathcal{X}$: State of algorithm

 $\Gamma_n \in \mathcal{Y}$: Choice of kernel for $Q_{n,n+1}$

 $\mathcal{G}_n = \sigma(X_0, \dots, X_n, \Gamma_0, \dots, \Gamma_n)$ filtration generated by $\{(X_n, \Gamma_n)\}$.

 $\Pr(X_{n+1} \in A \mid X_n = x, \Gamma_n = \gamma, \mathcal{G}_{n-1}) = P_{\gamma}(x, A)$

Ergodicity

Marginal kernel:

$$\mathcal{K}^{(n)}((x,\gamma),A) = \Pr(X_n \in A \mid X_0 = x, \Gamma_0 = \gamma)$$

$$\neq \prod_{i=0}^{n-1} P_{\Gamma_i}$$

Say the algorithm is *ergodic* if

$$\lim_{n\to\infty} \|K^{(n)}((x,\gamma),\cdot) - \pi(\cdot)\| = 0 \qquad \forall x\in\mathcal{X}, \gamma\in\mathcal{Y}$$

Scott C. Schmidler Adaptive Markov Chain Monte Carlo

Scott C. Schmidler

Cautionary example (RR07)

$$\mathcal{X} = \{1, \dots, k \ge 4\}$$

$$\pi(1) = a > 0$$
 $\pi(2) = b > 0$ small $\pi(x) = \frac{1-a-b}{k-2} > 0$

$$Q_{\theta}(x,\cdot) = \mathsf{Unif}\{x - \theta, \dots, x + \theta\}$$
 $\Theta = \mathbb{N}$

Initialize $\theta_0 = 1$, and adapt according to:

- ullet If accept, $heta_{n+1}= heta_n+1$
- If reject, $\theta_{n+1} = \theta_n 1$

Discrete analog to adaptive-scale random-walk.

See Jeff Rosenthal's applet:

http://probability.ca/jeff/java/adapt.html

Scott C. Schmidler Adaptive Markov Chain Monte Carlo

Sufficient conditions for convergence

Theorem (Roberts & Rosenthal, 2007):

- Diminishing adaptation: $\lim_{t\to\infty}\sup_{x\in\mathcal{X}}\|P_{\Gamma_{n+1}}(x,\cdot)-P_{\Gamma_n}(x,\cdot)\|=0$ in probability.
- Bounded convergence: $P_{\gamma \in \Gamma}$ are "simultaneously polynomially ergodic"

Then adaptive algorithms is ergodic:

$$\lim_{n\to\infty} \left| K^{(n)}((x,\theta),\cdot) - \pi(\cdot) \right| = 0 \qquad \forall x,\theta$$

where $K^{(n)}((x,\theta),B) = P(X_n \in B \mid X_0 = x, \theta_0 = \theta)$ involves marginalization.

Sufficient conditions for convergence

Theorem 5 (Roberts & Rosenthal, 2007):

- (a) Simultaneous Uniform Ergodicity: $\forall \epsilon > 0, \exists N(\epsilon) \in \mathbb{N}$ s.t. $\|P_{\gamma}^{N}(x,\cdot) - \pi(\cdot)\| \le \epsilon \quad \forall x \in \mathcal{X}, \gamma \in \Gamma$
- (b) Diminishing adaptation: $\lim_{t\to\infty} \sup_{x\in\mathcal{X}} \|P_{\Gamma_{n+1}}(x,\cdot) - P_{\Gamma_n}(x,\cdot)\| = 0$ in prob.

Then adaptive algorithm is ergodic.

Note: $D_n = \sup_{x \in \mathcal{X}} \|P_{\Gamma_{n+1}}(x, \cdot) - P_{\Gamma_n}(x, \cdot)\|$ a \mathcal{G}_{n+1} -meas. r.v. Note: Infinite adaptation allowed (i.e. $\sum D_n = \infty$ or $\sum p_n = \infty$); Γ_n need not converge.

Adaptive Metropolis kernels

Recall two approaches:

Adaptive random-walk proposals

$$q_{n+1}(x,\cdot) = (1-\alpha)N(x,\hat{\Sigma}_n) + \alpha N(x,\Sigma_0)$$

e.g. Haario et al, Roberts & Rosenthal

Adaptive independence proposals (AMIS)

$$q_{n+1}(x,\cdot) = g(\cdot; \hat{\theta}_n) \quad \hat{\theta}_n = \theta(X_1, \dots, X_n)$$

e.g. Andrieu & Moulines, Ji & Schmidler, etc.

Adaptive Metropolized independence sampler (AMIS) [Ji and Schmidler, 2013]

Finite mixture proposal distribution:

$$q(x) = \lambda N(x; \tilde{\mu}, \tilde{\Sigma}) + (1 - \lambda) \sum_{m=1}^{M} w_m N(x; \mu_m, \Sigma_m)$$

Wish to minimize

$$\mathcal{D}\left[\pi(x) \parallel q(x; \psi)\right] = \mathbb{E}_{\pi}\left[\log \frac{\pi(x)}{q(x; \psi)}\right]$$

Scott C. Schmidler Adaptive Markov Chain Monte Carlo

wrt proposal parameters $\psi = \{(w_i, \mu_i, \Sigma_i)\}_{i=1}^M$.

As $q(x) \to \pi(x)$

- Acceptance rate increases
- Samples become approximately iid

Adaptive Metropolized independence sampler (AMIS)

Adaptive strategy: Minimize $\mathcal{D}[\pi(x) \parallel q(x; \psi)] = \mathbb{E}_{\pi} \left[\log \frac{\pi(x)}{a(x; \psi)} \right]$ ψ^* obtained as a root of derivative:

$$h(\psi) = -\int \frac{\pi(x)}{g(x;\psi)} \frac{\partial}{\partial \psi} q(x;\psi) = 0$$

Approximate $h(\psi)$ by Monte Carlo integration:

$$h(\psi) \approx \frac{1}{K} \sum_{k=1}^{K} f(X^{(k)}, \psi)$$
 for $f(x, \psi) = \frac{\partial}{\partial \psi} [\log \frac{\pi(x)}{q(x; \psi)}]$

where $X^{(k)} \sim \pi(x)$.

 $\hat{h}(X^{(1:K)}; \psi)$: estimate of $h(\psi)$ based on sample path $X^{(1:k)}$

Stochastic Approximation algorithm [Robbins and Monro, 1951].

$$\psi_{n+1} = \psi_n + r_{n+1} (h(\psi_n) + \xi_{n+1})$$

= $\psi_n + r_{n+1} \hat{h}(X_n^{(1:K)}; \psi_n)$

 $\{r_n\}$ decreasing step-sizes satisfying $\sum_n r_n = \infty$ and $\sum_n r_n^2 < \infty$

Resulting chain is non-Markovian, but can be shown to satisfy a WLLN using results of [Roberts and Rosenthal, 2007]

Scott C. Schmidle

Adaptive Markov Chain Monte Carlo

Example: Logistic regression

Bayesian logistic regression model,

$$y_i \mid x_i, \beta \sim \text{Bernoulli}(g^{-1}(x_i\beta))$$
 $\beta \sim \pi_0(\beta)$

 $y_i \in \{0,1\}$; g(u) logistic link

Simulated data set:

- 200 observations
- r = 10 covariates
- $\beta_{1:10} = [-.01, -1.5, .15, .5, -.15, -.2, -.6, .25, 1.5, -.05]$

Scott C. Schmidl

Adaptive Markov Chain Monte Carl

Bayesian logistic regression

Figure: Autocorrelation of $\beta_{1:10}$ under data-augmentation Gibbs sampler [Holmes and Held, 2006] (blue), and adaptive MCMC algorithm (red).

chmidler

Adaptive Markov Chain Monte Carlo

Bayesian Variable Selection

GLM:
$$g(\mu_y) = \alpha + \sum_{i=1}^p \beta_i x_i$$

g is link function, e.g. g(x) = x or g(x) = logit(x)

 x_i 's are covariates (or *predictors*, or *features*)

Often many possible x_i 's available: genes, SNPs, pixels, frequencies, QSAR, etc. Wish to retain the important ones.

(one) Bayesian approach: Let $\gamma = (\gamma_1, \dots, \gamma_p) \in \{0, 1\}^p$ denote inclusion. Infer γ given data (X, Y):

$$\pi(\gamma, \beta \mid X, Y) \propto L(Y; X, \beta)\pi_0(\beta \mid \gamma)\pi_0(\gamma)$$

Scott C. Schmidle

Adaptive Markov Chain Monte Carlo

Variable selection priors

An alternative is the use of point mass variable selection priors:

$$\pi(\beta_i) = (1 - p)\delta_0(\beta_i) + p\mathcal{N}(\beta_i|0,\sigma)$$

often call spike-and-slab priors.

 $\mathsf{Linear}\ \mathsf{case} \Rightarrow \mathsf{closed}\text{-}\mathsf{form}\ \mathsf{Gibbs}\ \mathsf{updates}.$

GLM case \Rightarrow commonly assumed reversible-jump needed, but MH possible

However ... resulting posterior often *multi-modal* in each variable giving combinatorial number of modes.

Random-walk Metropolis-Hastings will generally fail to mix well on such target distributions with multiple well-separated modes.

Adaptive Metropolized independence sampler (AMIS) [Ji and Schmidler, 2013]

Finite mixture proposal distribution:

$$q(x) = \lambda N(x; \tilde{\mu}, \tilde{\Sigma}) + (1 - \lambda) \sum_{m=1}^{M} w_m N(x; \mu_m, \Sigma_m)$$

(see also Andrieu & Moulines 2005, others)

Point-mass mixture proposal for variable selection:

$$q(x) = (1 - \lambda) \left[w_0 \delta(x) + \sum_{m=1}^{M} w_m N(\mu_m, \Sigma_m) \right] + \lambda N(x; \tilde{\mu}, \tilde{\Sigma})$$

Adapt parameters $\psi = \{w_m, \mu_m, \Sigma_m\}_{m=0}^M$ to approximate $\pi(x)$.

att C. Schmidler Adantive Markov Chain Monte Carlo

Scott C. Schmidler

Bayesian variable selection logistic regression

200 data points, $\beta = [1, 4, 2, -2, 0, 0, 0, 0, 0, 0]$. Prior: $\pi_0(\beta_i) = 0.5 \, \delta(\beta_i) + 0.5 \, N(\beta_i \mid 0, \sigma^2)$

Figure: Posterior histograms of logistic coefficients $\beta_{1:10}$ obtained by adaptive MCMC (red: true values).

Relative efficiency

Comparison with random-walk Metropolis:

	Metropolis		Adaptive		Eff. sample size
	\hat{eta}_i	std error	$\hat{\beta}_i$	std error	$\sigma_{\text{MCMC}}^2/\sigma_{\text{AMCMC}}^2$
β_1	1.59	1.31	0.95	0.108	147.1
β_2	6.55	0.59	3.97	0.052	127.5
β_3	2.82	0.76	2.37	0.063	146.5
β_4	-3.70	0.05	-2.27	0.007	50.8

Table: Logistic coefficients estimated via Bayesian variable selection. Adaptive MCMC yields effective sample sizes 50-150× larger than Metropolis.

Example: Kernel regression

Kernel regression model:

$$\mu_i = w_0 + \sum_{j=1}^n K(x_i, x_j) w_j$$
 for $i = 1, ..., n$

 $K(x, x^*)$ some Mercer kernel (pos semidef inner product), commonly a radial basis function $\exp\{-\sum_{k=1}^{p} \rho_k (x_k - x_k^*)^2\}$ or linear kernel $\sum_{k=1}^{p} \rho_k x_k x_k^*$

Kernel classification using probit model with latent variables $z_i > 0$ iff $y_i = 1$, so $P(y_i = 1) = \Phi(\mu_i)$

Usually K fixed, but when $p \ge n$ we want to infer parameters of the kernel $(\rho$'s) to do simultaneous feature selection.

Bayesian model selection for kernel scale parameters:

$$ho_k \sim (1 - \gamma) \, \delta + \gamma \, \mathsf{Gamma}(a_\rho, a_\rho s) \qquad k = 1, \cdots, p$$
 $s \sim \mathsf{Exp}(a_s) \qquad \gamma \sim \mathsf{Beta}(a_\gamma, b_\gamma)$

West et al developed MH algorithm, but mixes slowly.

We apply AMIS algorithm:

Adaptive mixture-of-Gammas proposal

$$q(\rho) = (1 - \lambda) \Big[w_0 \delta(\rho) + \sum_{m=1}^4 w_m \mathcal{G}(\rho; \alpha_m, \beta_m) \Big] + \lambda \mathcal{G}(\rho; 1, 10).$$

Example: Kernel regression

Figure: Autocorrelation of ρ_k 's under MCMC algorithm of [Liang et al., 2006] (blue) and adaptive MCMC (red).

Example: Helix-coil model (Gibbs random field)

Biophysical (stat mech) model for predicting equilibrium conformation of short peptides [Schmidler et al., 2007].

Described by Gibbs distribution

$$P(X \in \mathcal{X} \mid R) = Z^{-1} e^{-\frac{1}{kT}U(X,R)}$$

with interaction potential

$$U(X,R) = \sum_{i=1}^{l} x_i \alpha_{R_i} + \sum_{i=1}^{l-3} x_{i:i+3} \beta_{R_i R_{i+3}} + \sum_{i=1}^{l-4} x_{i:i+4} \gamma_{R_i R_{i+4}}$$

Sort of like 1D Potts model with 4-nn interactions, 20 colors.

Many additional parameters. (Note interactions are 20×20 .) Select out important ones.

Scott C. Schmidler Adaptive Markov Chain Monte Carlo

Adaptive MIS algorithm

Figure: Autocorrelation of helix-coil parameters under MCMC algorithm

Scott C. Schmidler Adaptive Markov Chain Monte Carlo

Figure: Posterior distributions of helix-coil model parameters obtained by MCMC algorithm of [Lucas, 2006] (dashed blue) and adaptive MCMC (red) are the same.

Scott C. Schmidler Adaptive Markov Chain Monte Carlo

Adaptive MCMC theory

Nearly all theory to date deals with ergodicity (LLN). A few give conditions for CLTs (e.g Andrieu & Moulines (2005)).

Important and a significant advance. But all asymptotic.

We already knew how to construct ergodic MCMC algorithms.

Adaptation is only interesting if it improves rates!

MCMC Theory

- ullet Ergodicity: SLLN under usual conditions (ϕ -irred, aper, π -invariant)
- Geometric: $\exists \lambda \in [0,1)$ and $M(x) < \infty \ (\pi a.e. x \in \mathcal{X})$ s.t.

$$\|\mu K^n - \pi\| \le M(x)\lambda^n$$

Requires minorization, drift conditions. Implies CLT.

- Uniform: $M(x) \equiv M$
- ullet Rapid mixing: λ grows at most polynomially in d(Note G.E. requires only $\lambda^* > 0$; e.g.holds for any $|\mathcal{X}| < \infty$)
- Quantitative: e.g. Rosenthal 1995

Scott C. Schmidler Adaptive Markov Chain Monte Carlo

Efficiency revisited

Asymptotic efficiency:

Relies on CLT, asymptotic variance = integrated autocorrelation

Finite sample efficiency:

Convergence as well as autocorrelation

$$MSE(\hat{\theta}) = Bias^2(\hat{\theta}) + Var(\hat{\theta})$$

For multimodal targets, bias can dominate in MCMC. For good adaptive MCMC algorithms, bias will dominate.

Examples

Mixtures of normals

$$\pi(z) = \frac{1}{2} N_{M}(z; -1_{M}, \sigma_{1}^{2} I_{M}) + \frac{1}{2} N_{M}(z; 1_{M}, \sigma_{2}^{2} I_{M})$$

Upper/lower bounds on spectral gap (WSH07a,b) yield:

Thm: RW-MH is torpidly mixing.

Thm: Tempering is rapidly mixing for $\sigma_1 = \sigma_2$. Thm: Tempering is torpidly mixing for $\sigma_1 \neq \sigma_2$.

Lower bounds on hitting times obtained by (SW10) yield:

Thm: Equi-energy sampler torpidly mixing for $\sigma_1 \neq \sigma_2$.

Thm: Haario adaptive RW kernel torpidly mixing for $\sigma_1 \neq \sigma_2$.

Scott C. Schmidler Adaptive Markov Chain Monte Carlo

Example

Mean-field Ising model

$$\pi(x) = \frac{1}{Z} \exp \left\{ \frac{\alpha}{2M} \left(\sum_{i=1}^{M} x_i \right)^2 \right\} \qquad \mathcal{X} = \{-1, +1\}^M$$

Thm: Gibbs sampler (Glauber dynamics) is slowly mixing. Thm (WSH07a): Parallel tempering is rapidly mixing (see also).

Mean-field Potts

With $k \ge 3$ colors.

Thm (WSH07b): Tempering is torpidly mixing (see also BR06). Thm (SW10): Equi-energy sampler is torpidly mixing.

MRAM Processes (SW09)

Let $X^{(1)},\dots,X^{(l)}$ discrete time stochastic processes on $\mathcal{X}.$ So $X^{(i)}=X_0^{(i)},X_1^{(i)},\dots$

Generated by time-inhomogeneous sequences of transition kernels:

$$K_{i,n} = \alpha T_i + (1 - \alpha)R_{i,n}$$

with $\alpha \in [0,1]$, T_i an ergodic time-homogeneous Markov $\pi^{(i)}$ -reversible transition kernel, and $R_{i,n}$ is a resampling kernel with proposal:

$$Q_{i,n}(X_{n-1}^{(i)},y) = \sum_{i'=1}^{l} \sum_{j=0}^{n-1} w_{i'j} \delta(y - X_{j}^{(i')})$$

(Proposes new state from the set of previous samples $X_{0:n-1}^{(1:l)}$.)

MRAM Algorithms

Mulitchain resampling adaptive Metropolis (MRAM):

- Equi-Energy Sampler
- Importance-Resampling from the Past (Atchadé)
- Gelfand-Sahu

Lower bounds on MRAM mixing

Theorem (SW09)

For any $\epsilon > 0$ and any $A \subset \mathcal{X}$ such that $0 < \pi^{(i)}(A) < 1$ for all i, the mixing time au_{ϵ}^* of the MRAM satisfies:

$$au_{\epsilon}^* \geq (\pi(A) - \epsilon) \left[c l \max_i \gamma(A, i) \Phi_{T_i}(A) \right]^{-1}.$$

Note similarity to the bound obtained previously (WSH07b) for non-adaptive swapping:

$$\tau_{\epsilon}^* \geq 2^{-8} \ln(2\epsilon)^{-1} \left[\max_i \gamma(A,i) \Phi_{T_i}(A) \right]^{-1/2}.$$

Idea of proof:

- τ_{ϵ} is for worst-case π_0 , so initialize $X^{(i)} \sim \pi_{|A^c}$
- Let Y the restriction of X to A^c ; rejects any move leaving A^c .
- Then $Y_n^{(i)} \sim \pi_{|A^c}$ for all i, n, and X = Y for all $n < H_A$
- $Z_n^{(i)}$ indicates a rejection in $Y^{(i)}$ due to restriction. Then:

$$\Pr(H_{A} \leq n) \leq \sum_{i=1}^{I} \sum_{j=1}^{n} \Pr(Z_{j}^{(i)}) \leq \sum_{i=1}^{I} \sum_{j=1}^{n} \int_{A^{c}} T_{i}(y, A) \psi_{i,j-1}(dy) \\
\leq c \sum_{i=1}^{I} \sum_{j=1}^{n} \int_{A^{c}} T_{i}(y, A) \pi^{(i)}|_{A^{c}}(dy) \\
= cn \sum_{i=1}^{I} \pi^{(i)}(A) \Phi_{T_{i}}(A)$$

Assumption

c arises because MRAM only asymptotically π -invariant; don't approach π monotonically.

Assumption

There exists a constant $1 \le c < \infty$ such that $Y_0^{(i)} \stackrel{ind}{\sim} \pi^{(i)}|_A$ implies the marginal $\mathcal{L}(Y_n^{(i)})$ has a density with respect to $\pi^{(i)}|_A$ bounded

(Holds for c=1 for method of Atchade (2007) and when $\alpha=1$.)

Single chain

Note appearance of the conductance:

For any 0 $<\epsilon<1/4$, the mixing time au_{ϵ}^* of an adaptive sampler based on T, with I = 1, satisfies:

$$\tau_{\epsilon}^* \geq \frac{1}{4\Phi \tau}$$
.

Corollary

Slow mixing of the Markov chain with transition kernel T implies slow mixing of any MRAM process based on T that has I = 1.

Efficiency revisited

Asymptotic efficiency:

Relies on CLT, asymptotic variance = integrated autocorrelation

Finite sample efficiency:

Convergence as well as autocorrelation

$$\mathsf{MSE}(\hat{\theta}) = \mathsf{Bias}^2(\hat{\theta}) + \mathsf{Var}(\hat{\theta})$$

MRAM and IAMC sampling can only improve autocorrelation piece!

Suggests considering alternative "adaptation" strategies.

Generalized Wang-Landau (Atchade & Liu, 2009)

Partition state space $\mathcal{X} = \mathcal{X}_0 \cup \ldots \cup \mathcal{X}_k$ according to predefined energy levels $-\infty \le e_0 < e_1 < \cdots < e_k \le \infty$.

Goal: Sample from $\tilde{\pi}(x) = \sum_{i=1}^k \frac{\pi(x)}{\pi(\mathcal{X}_i)} \mathbf{1}_{\mathcal{X}_i}(x)$ uniform energy

Algorithm: Adaptively estimate $\hat{\pi}_n(i) \approx \pi(\mathcal{X}_i)$ by SA: $\{\gamma_{\it n}\}$ a sequence of decreasing positive numbers. Initialize $\phi_0(i)>0$ for $i=1,\ldots,k$, and $\hat{\pi}_0(i)=\frac{\phi_0(i)}{\sum_j\phi_0(j)}$

- (i) Sample $X_{n+1} \sim \sum_{i=1}^k \frac{\pi(x)}{\hat{\pi}_n(i)} \mathbf{1}_{\mathcal{X}_i}(x)$ by MH.
- (ii) Set $\phi_{n+1}(i) = \phi_n(i) \left(1 + \gamma_{a_n} \mathbf{1}_{\{X_{n+1} \in \mathcal{X}_i\}}\right); \ \hat{\pi}_{n+1}(i) = \frac{\phi_{n+1}(i)}{\sum_j \phi_{n+1}(j)}.$
- (iii) If $\max_i \left| v_{\kappa,n+1}(i) \frac{1}{k} \right| \leq \frac{c}{k}$ where $v_{\kappa,n}(i) = \frac{1}{n-\kappa} \sum_{j=\kappa+1}^n \mathbf{1}_{\{X_j \in \mathcal{X}_i\}}$ then set $\kappa = n+1$ and $a_{n+1} = a_n+1$, otherwise $a_{n+1} = a_n$

Scott C. Schmidler Adaptive Markov Chain Monte Carlo

Exploration/Exploitation Algorithm (Wang & SS, 2010)

- Run two chains in parallel: X^{WL} and X^{AMIS+}
- Every N_c iterations, update the proposal distribution for
- **3** At iteration $n = m * N_c$, let E_n be the energy ring of X_{n-1}^{AMIS+} Form KDE \hat{f} by adding the samples $\{X_1^{\text{WL}}, \dots, X_n^{\text{WL}}\}$ to those in E_n .
- Propose $X_n^{\text{AMIS}+}$ from \hat{f}_c .
- 6 At other iterations, run the two chains independently.

Improving on (generalized) Wang-Landau

Performance of the WL algorithm depends heavily on a good choice of the energy rings E_0, \ldots, E_k : number, spacing, max.

• Adaptive-energy GWL algorithm (AE-GWL), Wang & Schmidler (2011).

Monte-Carlo integration converges very slowly for WL

• Importance-resampling solution, Wang & Schmidler (2011).

Example

Figure: Example 2, modes at (-5,-5) and (5,5)

Slow mixing of generalized Wang-Landau

(b) d = 4, fixed energy levels

Theorem (SW11b): GWL slowly mixing for geometric energy-levels.

Scott C. Schmidle

Adaptive Markov Chain Monte Carlo

Energy level adaptation scheme

Performance of the WL algorithm depends heavily on a good choice of the energy rings E_0, \ldots, E_k .

We introduce an adaptive scheme to make updating energy levels fully automatic:

• Initialize by a geometric progression:

$$e_0 = \inf_{x} E(x) = 0, \ e_1 = 1, \ e_2 = r_e, \dots, E_{k-1} = r_e^{k-2}, E_k = infty.$$

- **②** Every $n_{\rm split}$ iterations: if any $|\log(\phi_i) \log(\phi_{i+1})| > E$, divide the i-th energy ring by adding a new $e_{i+1}^* = e_i \times \sqrt{\frac{e_{i+1}}{e_i}}$, again using geometric progression. Set $\log(\phi_{i+1}^*) = 0$.
- Also update the second largest e_i;

$$E_{k-1}^* = \frac{E_{k-1}^2}{E_k}$$

Set $\log(\phi_k^*) = 0$.

Scott C. Schmidler

Adaptive Markov Chain Monte Car

Adaptive Energy Generalized Wang-Landau (AE-GWL)

Algorithm: Adaptively estimate $\hat{\pi}_n(i) \approx \pi(\mathcal{X}_i)$ by SA: $\{\gamma_n\}$ a sequence of decreasing positive numbers. Initialize $\phi_0(i) > 0$ for $i = 1, \ldots, k$, and $\hat{\pi}_0(i) = \frac{\phi_0(i)}{\sum_i \phi_0(j)}$

- (i) Sample $X_{n+1} \sim \sum_{i=1}^k \frac{\pi(x)}{\hat{\pi}_n(i)} \mathbf{1}_{\mathcal{X}_i}(x)$ by MH.
- (ii) Set $\phi_{n+1}(i) = \phi_n(i) \left(1 + \gamma_{\mathsf{a}_n} \mathbf{1}_{\{X_{n+1} \in \mathcal{X}_i\}}\right)$ and $\hat{\pi}_{n+1}(i) = \frac{\phi_{n+1}(i)}{\sum_j \phi_{n+1}(j)}$.
- (iii) If $\max_i \left| v_{\kappa,n+1}(i) \frac{1}{k} \right| \leq \frac{c}{k}$ where $v_{\kappa,n}(i) = \frac{1}{n-\kappa} \sum_{j=\kappa+1}^n \mathbf{1}_{\{X_j \in \mathcal{X}_i\}}$ then set $\kappa = n+1$ and $a_{n+1} = a_n + 1$, otherwise $a_{n+1} = a_n$.
- (iv)* For every n_{split} iterations, adaptively update $E = \{E_i\}$.

Example

(c) d=4, update internal energy levels

Scott C. Schmidle

Adaptive Markov Chain Monte Carlo

Types of MCMC adaptation

These ways of adapting address fundamentally different problems:

 $\underline{\text{I \& II}} : \text{Improve mixing of chain among regions of target distribution } \textit{already visited}$

- Improves autocorrelation of chain
- In general cannot help in exploring previously unseen regions

Call these Exploitation methods.

III: Tries to push chain away from points "like" those already seen.

- Can help in finding new regions; improve mixing time.
- May suffer from high autocorrelation.

Call these Exploration methods.

Hybrid adaptation strategies

Can we combine types to achieve best of both? Yes but requires some care.

One approach: Mixture kernels

$$K_{\text{adapt}} = \alpha K_{\text{exploit}} + (1 - \alpha) K_{\text{explore}}$$

Suffers problems in multimodal examples (Wiehe & Schmidler, 2010).

Alternative approach:

Run exploration chain independently in parallel, but use samples to augment AMIS approximation.

Scott C. Schmidler Adaptive Markov Chain Monte Carlo

Scott C. Schmidler

Exploration/Exploitation Algorithm (Wang & SS, 2011)

- ullet Run two chains in parallel: $X^{ ext{AE-WL}}$ and $X^{ ext{AMIS}+}$
- $\begin{tabular}{ll} \textbf{@ Every N_c iterations, update the proposal distribution for χ^{AMIS+}$ \\ \end{tabular}$
- ① At iteration $n = m * N_c$, let E_n be the energy ring of $X_{n-1}^{\text{AMIS}+}$. Form KDE \hat{f} by adding the samples $\{X_1^{\text{AE-WL}}, \dots, X_n^{\text{AE-WL}}\}$ to those in E_n .
- Propose $X_n^{\text{AMIS}+}$ from \hat{f}_c .
- 5 At other iterations, run the two chains independently.

Scott C Schmidler

Idantive Markov Chain Monte Carlo

Mixture Exponential regression [Kou et al., 2006]

$$y_i \sim \alpha \operatorname{Exp}[\theta_1(x_i)] + (1 - \alpha) \operatorname{Exp}[\theta_2(x_i)]$$

$$\theta_j(x_i) = \exp(\beta_i^T x_i), \quad \alpha = .3, \quad \beta_1 = 1, \ \beta_2 = 6, \quad x_i \equiv 1.$$

$$L(Y|\alpha, \beta_1, \beta_2) \propto \prod_{i=1}^{n} \left[\frac{\alpha}{\theta_1(x_i)} \exp\left(-\frac{y_i}{\theta_1(x_i)}\right) + \frac{1-\alpha}{\theta_2(x_i)} \exp\left(-\frac{y_i}{\theta_2(x_i)}\right) \right]$$

Priors:
$$\pi(\alpha) = \text{Beta}(1,1), \ \pi(\beta_j) = \text{N}(0,100) \text{ for } j = 1,2$$

$$\textit{E}(\alpha,\beta_1,\beta_2) = -\log(\pi(\alpha,\beta_1,\beta_2|Y)) \propto -\textit{I}(Y|\alpha,\beta_1,\beta_2) + \frac{\beta_1^2 + \beta_2^2}{2\sigma^2}$$

Scott C. Schmidle

dantive Markov Chain Monte Carlo

Mixture exponential regression: AMIS

Scott C. Schmidle

Adaptive Markov Chain Monte Carl

Mixture exponential regression: WL

Scott C. Schmidle

Adaptive Markov Chain Monte Carlo

Mixture exponential regression: XX

Conclusions

Key ideas:

- Many ergodic adaptive MCMC methods may not improve rate
- Convergence of MC estimators involves both bias and variance.
- Existing adaptation strategies improve one or the other.
- Improvements from algorithms which combining types of strategies.

Scott C. Schmidle

Adaptive Markov Chain Monte Carl

Scott C. Schmidler