

Advanced Molecular Detection Southeast Region Bioinformatics

Retrospective Genomic Data Analysis

Common Uses

Limitations

Forecasting

Literature Review on Genomic Pathogen Evolution

Southeast Region Bioinformatics

Common Reasons for Retrospective Data Analysis

Spillover event identification

Investigate past outbreaks

Identify past trends at various levels

Inform policy making

Pathogen Evolution

- Factors that influence pathogen virulence and host susceptibility
 - Trade-off between transmission rate and mortality rate of host
- Genetic variation and population dynamics on pathogenesis
 - Acquisition of genetic material from different pathogens
- Mechanisms of Antibiotic Resistance
 - Role of medical interventions on drug resistance
- Role of disease control interventions on pathogens

The evolution of antagonistic coevolutionary relationships

Coevolution in emerging or relatively new infectious disease systems is likely to be characterized by quantitative resistance, whereas infectious disease systems with a long coevolutionary history are likely to be characterized by the evolution of qualitative resistance.

Spillover Event Identification

- Transmission from animals to humans
 - Can cause new variants to be introduced into circulation
- Genomic Epi successfully used to identify Ebola spillover in DRC along with GIS mapping

Past Outbreak Investigation

- Retrospective analysis can inform dynamics and timing of past outbreaks
 - Can inform understanding of current and future outbreaks
 - Reconstruct outbreak transmission to isolate points of introduction
 - Useful for planning new interventions and disease prevention

Analysis of Past Trends

- Identify endemic strains across areas and time
- Discover and characterize undetected outbreaks
- Expansion of AMR strains over time
- Can overlay Epi information such as policies in place at the time or major population events

Data to Inform Policymaking

- A review of 6,000 SARS-CoV-2 samples revealed locally specific haplotypes
 - In tandem with epi investigations supported stay-at-home orders and travel restrictions
- Addressing endemic circulation of disease
 - Vaccination campaigns
- Limit points of new introduction of disease
 - Travel restrictions
 - Zoonotic disease monitoring
- Hospital hygiene procedures, routine screening for CROs, isolation protocols

Limitations of Retrospective Data Analysis

Time lag between clinical usefulness and availability of genomic sequences

- Genomic data not available for most clinical cases
- Most sampling is convenience based
 - Lack of representation amongst people groups
- Limited time and availability of bioinformaticians

Outbreak Forecasting

- Requires more longitudinal genomic sampling of a geographical region
 - Takes A LOT of data
 - Can utilize pathogen sequence databases such as GISAID and NCBI to increase the number of samples in the study
 - Let us know if you need help finding/creating a database for your chosen pathogen
- Goal is not to predict exact sequences or mutations but to predict prevalence of types or emergence of new strains
 - Design intervention strategies
 - Assess risk of AR

Forecasting Models

- Models combine sequence data and estimated underlying parameters gathered from phylogenetic trees
 - Epi data and investigation can be added to clarify or verify estimated parameters
 - Usually, cannot include pathogen diversity as a model element
- Can be incorporated into existing models for enhanced clarity
 - Malaria uses population structures and immune selection
 - Incorporate genomics to identify vaccine strain candidates
- Adding genomic data to currently used forecasting models adds specificity and can be used to better prepare for outbreaks

Conclusion

- There are many uses for retrospective genomic epidemiology studies
 - Pathogen Evolution
 - Spillover Event Identification
 - Past Outbreak Investigation
 - Past Trends
- Limitations include lack of samples and lack of staff availability
- Genomic data can augment current forecasting models to better inform decision and policymaking

Advanced Molecular Detection Southeast Region Bioinformatics

Questions?

Bphl-sebioinformatics@flhealth.gov

TBD

Lead Bioinformatician & Supervisor TBD@flhealth.gov

Molly Mitchell, PhD

Bioinformatician
Molly.Mitchell@flhealth.gov

Lakshmi Thsaliki, MS

Bioinformatician Lakshmi.Thsaliki@flhealth.gov

Sam Marcellus, MPH

Bioinformatician
Samantha.marcellus@flhealth.gov