Games for Systems Engineers

Where is everyone meeting? Where is everyone publishing?

We need to impact multiple groups but also would be good to have a home

Game-Based Learning for incentives and mechanism design

XWhy Games?

Gamification of Systems Engineering

How to bring game elements into a real systems engineering process?

Dr. Bryan Mesmer

Games for Systems Engineers

Where is everyone meeting? Where is everyone publishing?

We need to impact multiple groups but also would be good to have a home

Game-Based Learning for incentives and mechanism design

XWhy Games?

Gamification of Systems Engineering

How to bring game elements into a real systems engineering process?

Dr. Bryan Mesmer

Games and Gamification

Game-Based Learning

Games that focus on teaching the player

Outcome: A skill or knowledge is gained by player

Gamification

The use of game design elements in non-game contexts

Outcome: a product of the process being gamified

Why SE?

Complex products that are hard for a single person to grasp

Need tools to enable general understanding

May only see 2 or 3 system designs in entire career

Repetition is a key to learning

We have great math tools, but they are not always taught in SE programs

Decision Analysis
Examination of effective
decision-making in a state
of uncertainty
Who Cares?
Most games have uncertainty
(otherwise it would not be fun)
Understanding value AND

Examination of the structure and path information follows in large groups

Who Cares?

Its important to know how you decision (or game moves) outcomes will be impacted by takes.

Game-Based Learning for incentives and mechanism design

Vhy Games?

Why SE2

Games being examined focus on SE-related mathematical theories

These games also relate to resource allocation and subsystem trade-off problems

ple Mission

Complex M

Simple Mission Control

Rules

Similar to Rock Paper Scissors

3 players: 1 player is mission control (MC)

on 3 count:

players can refuse aid (fist) or give aid (palm) MC puts out fist, 1 finger, or 2 fingers

If the MC puts out as many fingers as palms then he wins (1,3,9 points corresponding to 0,1,2 fingers shown)

If MC losers he loses 1,3,9 points corresponding to 0,1,2 fingers shown

3 rounds, each player is MC

Intent

Bribing (with points) is allowed and encouraged

Drives players to delve into a form of mechanism design where they are trying to alter the behaviors of their opponents by manipulating the outcomes of the game

Complex Mission Control

Missions and Techs bring in uncertainty

Roles that mask Eng Positions

All Math discussed before is represented

Game-Based Learning for incentives and mechanism design

Vhy Games?

Why SE2

Gamification of Systems Engineering

How to bring game elements into a real systems engineering process?

Scorecards in Value-Driven Design

Gives designers at different levels the impact of their decisions on system value

	Plant .	***	
me.	-	Sec. No.	1107
	-	-	
		1.0	444
Seeded to		100	200
Z			.,,
ZC			
Section 1			
200	٠.	4	
			•
	****		600

ScoreBOARDS

By taking value impact (and accounting for the degree of impact from each group) can have groups competing for top place

ScoreBOARDS

This is all very preliminary work but we believe it to be a path that should be taken to slight SE with the traits of future and current engineers and to address the teaching of topics that are not taught or are taught incorrectly in current SE progression.

Scorecards in Value-Driven Design

Gives designers at different levels the impact of their decisions on system value

Attribute	Change in Status	Gradient	Value Impact
Efficiency	10%	150,000	15,000
Weight	700	-130	-91,000
Reliability	1500	2.3	3,450
Maintainability	7.8	-340	-2,652
Maintenance Cost	500	5	-250
Support Equipment	12	-15	-180
Radar Cross- Section	.1	-1200	-120
InfraRed Signature	1.4	-50	-70
Manufacturing Cost	700	-1	-700
Design Value Impact			-76,522

Attribute	Change in Status	Gradient	Value Impact
Efficiency	10%	150,000	15,000
Weight	700	-130	-91,000
Reliability	1500	2.3	3,450
Maintainability	7.8	-340	-2,652
Maintenance Cost	500	5	-250
Support Equipment	12	-15	-180
Radar Cross- Section	.1	-1200	-120
InfraRed Signature	1.4	-50	-70
Manufacturing Cost	700	-1	-700
D	Design Value Impact		

Scorecards in Value-Driven Design

Gives designers at different levels the impact of their decisions on system value

Attribute	Change in Status	Gradient	Value Impact
Efficiency	10%	150,000	15,000
Weight	700	-130	-91,000
Reliability	1500	2.3	3,450
Maintainability	7.8	-340	-2,652
Maintenance Cost	500	5	-250
Support Equipment	12	-15	-180
Radar Cross- Section	.1	-1200	-120
InfraRed Signature	1.4	-50	-70
Manufacturing Cost	700	-1	-700
Design Value Impact			-76,522

ScoreBOARDS

By taking value impact (and accounting for the degree of impact from each group) can have groups competing for top place

Attribute	Change in Status	Gradient	Value Impact
Efficiency	10%	150,000	15,000
Weight	700	-130	-91,000
Reliability	1500	2.3	3,450
Maintainability	7.8	-340	-2,652
Maintenance Cost	500	5	-250
Support Equipment	12	-15	-180
Radar Cross- Section	.1	-1200	-120
InfraRed Signature	1.4	-50	-70
Manufacturing Cost	700	-1	-700
Design Value Impact			-76,522

ScoreBOARDS

Attribute	Charge in	Gradient	Value Impact
Hideray	10%	151,000	15,000
weight	700	190	51,000
nearly.	3500	2.3	5,250
Maintainaidh	120	481	2360
Maintenance	500	-5	-250
Cost			
Support Equipment	17	-13	-182
Factor Cross- Acction	.I	1200	121
adoeset Signature	1.4	-93	-70
Marefalteing Cost	YEE	4	922
Design Value Inspect			70,553

/A Bio	Oriona State	Easter C	Virginia.
100.007	1950	99,000	*9m
was.	700	Dir.	0.29
Princible.	2500	23	Ma
archer colding			5.00
Points one	No.	3	202
0.4			
representative		a.	467
Protections Seeks a	al .	per	100
egha _a nd Agaman	5.4	a	15.
Mareka ar a Nati	700	1	*0
magnet market.			

A S Back	State 1	E allo d	No les Mayors
rest ray	1950	197111	2500
Week.	700	180	01.199
Principles	286	23	Ma
erster rolling			0.00
Puids uno Out	No.	,	202
register tig passers	22	4.	467
Projections Seeks o	al .	pes	100
eghagus Agairtas	54	a	
Manufacian is Soci	700	1	***
	Magniti San	ra ***	40.00

A Select	Meson 1 Meson 1	Salle .	No. of Impart
18.00.7	165	Sign	-500
No. in	76	100	#Upon
Believite	2000	-2	2205
ar hadroiding	4.9		25.0
Darley or and	100		280
rately, press.	12	0	CN.
Beir Guer Imalu		200	*
digent or		Ar .	
Manufestation South	.76		700
	brighter a separ		

total in	77	14-	444
WIFE.	4.5	64.00	474
40	54	Mr.	244
A	2.00		10
		100	2.75
	P1		-
1000			
ACCES.			
*****	**	•	
		-	17.75

		***	Pales I speci
1/15/11		8.00	1865
		No.	19.5
****			44
		4.0	4.47
····	70		7
1000			
Series .		5.7	
No.			
COLUMN TO	-		

		Actes	*****
reer	r/de	4500	660
	400	1.0	0.00
1145	100		- 5
Salar Fr		199	40.0
			100
10.000			-
Ca.	•	-	
ud.			-
	**		-

3. Structures 11588

1. Flight Controls 15468

SCOREBOARD

This is all very preliminary work but we believe it to be a path that should be taken to align SE with the traits of future and current engineers and to address the teaching of topics that are not taught or are taught incorrectly in current SE programs

Gamification of Systems Engineering

How to bring game elements into a real systems engineering process?

Scorecards in Value-Driven Design

Gives designers at different levels the impact of their decisions on system value

	Plant .	***	
me.	-	Sec. No.	1107
	-	-	
		1.0	444
Seeded to		100	200
Z			.,,
ZC			
Section 1			
200	٠.	4	
	****		600

ScoreBOARDS

By taking value impact (and accounting for the degree of impact from each group) can have groups competing for top place

ScoreBOARDS

This is all very preliminary work but we believe it to be a path that should be taken to slight SE with the traits of future and current engineers and to address the teaching of topics that are not taught or are taught incorrectly in current SE progression.

Turning Vision into Decision (TV200)

Hexagon

Subscribe

452 views

LETS MAKE A STRONG COMMUNITY

Where is everyone meeting? Where is everyone publishing?

We need to impact multiple groups but also would be good to have a home

Games in Engineering Feedback Panel

A collection of individuals exploring games

Provide constructive criticism and avo repeating similiar mistakes

Useful on proposals (such as CAREER proposals) to demonstrate that this is an organized community and there has accepted practice/mathematics and we aren't just making games up without rigor.

Games in Engineering Feedback Panel

A collection of individuals exploring games

Provide constructive criticism and avoid repeating similiar mistakes

Useful on proposals (such as CAREER proposals) to demonstrate that this is an organized community and there has accepted practices/mathematics and we aren't just making games up without rigor

Games for Systems Engineers

LETS MAKE A STRONG COMMUNITY

Where is everyone meeting? Where is everyone publishing?

We need to impact multiple groups but also would be good to have a home

Game-Based Learning for incentives and mechanism design

XWhy Games?

Gamification of Systems Engineering

How to bring game elements into a real systems engineering process?

Dr. Bryan Mesmer