

Data science for Engineers

Example I solution

Logistic regression

Data science for Engineers

Regularization

General objective

 $\min_{\theta} -L(\theta)$ where $L(\theta) = \left(\sum_{i=1}^{n} y_i \log(p(x_i)) + (1 - y_i) \log(1 - p(x_i))\right)$

· When large number of independent variables are present, logistic regression tends to over-fit

· To prevent over-fitting, we need to penalize the coefficients

· This is known as regularization

Data science for Engineers

Regularization

- Regularization helps in building non-complex models that avoids capturing noise in model due to over-fitting
- The objective now becomes $\min_{\theta} -L(\theta) + \lambda * h(\theta) \text{ where } \lambda \text{ is regularization } \beta * h(\theta) \text{ parameter and } h(\theta) \text{ is regularization function}$
- Depending on $h(\theta)$, the regularization can be classified as L_1 or L_2 type
- $h(\theta) = \theta^T \theta$ for L_2 type regularization
- Larger the value of λ , more is the regularization strength
- Regularization helps the model work better on test data due to the fact that over-fitting is minimized on training data

∠ ® ℚ ⊝ Logistic regression