MATH3404 Week 6

Simon Thomas

September 14, 2025

Finding minimising curves

$$J[x] = \int_{t_0}^{t_1} f(t, x, \dot{x}) dt, \quad x(t_0) = x_0, \quad x(t_1) = x_1$$

We know how to find the extremels, but how can we show that an extremel is a minimising curve?

- Let $y(t) = x(t) + \eta(t)$, where x(t) is an extremel and $\eta \in C^1$ with $\eta(t_0) = \eta(t_1) = 0$.
- Show that $J[y] J[x] \ge 0$.
- Every C^1 curve passing through the endpoints is of the form $y(t) = x(t) + \eta(t)$, so x is a minimising curve.

Lagrange multipliers (again)

Problem

Find the extremels of

$$J[x] = \int_{t_0}^{t_1} f(t, x, \dot{x}) dt$$
 (1)

with $x(t_0) = x_0$, $x(t_1) = x_1$ and subject to the constraint

$$\int_{t_0}^{t_1} g(t,x,\dot{x})dt = c.$$

$\mathsf{Theorem}$

Extremels of (1) are also extremels of

$$\int_{t_0}^{t_1} (f + \lambda g) dt,$$

where $\lambda \in \mathbb{R}$.