1

Funciones Continuas

Definición 1.1 La función f es continua en a si

$$\lim_{x \to a} f(x) = f(a)$$

Para todo $\epsilon > 0$ existe un $\delta > 0$ tal que, para todo x, si $0 < |x - a| < \delta$. Pero en este caso, en que el límite es f(a), la frase

$$0 < |x - a| < \delta$$

puede cambiarse por la condición más sencilla

$$|x - a| < \delta$$

puesto que si x = a se cumple ciertamente que $|f(x) - f(a)| < \epsilon$.

TEOREMA 1.1 Si f y g son continuas en a, entonces

- $(1) \quad f+g \ es \ continua \ en \ a.$
- (2) $f \cdot g$ es continua en a.

Además, si $g(a) \neq 0$, entonces (3) 1/g es continua en a

Demostración.- Puesto que f y g son continuas en a,

$$\lim_{x\to a} f(x) = f(a) \qquad y \qquad \lim_{x\to a} g(x) = g(a).$$

Por el teorema 2(1) del capítulo 5 esto implica que

$$\lim_{x \to a} (f+g)(x) = f(a) + g(a) = (f+g)(a),$$

lo cual es precisamente la afirmación de que f+g es continua en a. Para $f\cdot g$ se tiene que

$$\lim_{x \to a} (f \cdot g)(x) = f(a) \cdot fg(a) = (f \cdot g)(a)$$

Por último para 1/g tenemos que

$$\lim_{x \to a} 1/g = 1/g(a), \qquad para \ g(a) \neq 0$$

TEOREMA 1.2 Si g es continua en a, y f es continua en g(a), entonces $f \circ g$ es continua en a.

Demostración.- Sea $\epsilon > 0$. Queremos hallar un $\delta > 0$ tal que para todo x,

$$Si |x-a| < \delta \ entonces |(f \circ g)(x) - (f \circ g)(a)| < \epsilon, \ es \ decir, |f(g(x)) - f(g(a))| < \epsilon$$

Tendremos que aplicar primero la continuidad de f para estimar cómo de cerca tiene que estar g(x) de g(a) para que se cumpla esta desigualdad. Puesto que f es continua en g(a), existe un $\delta' > 0$ tal que para todo y,

$$Si |y - g(a)| < \delta', \ entonces |f(y) - f(g(a))| < \epsilon.$$
 (1)

En particular, esto significa que

$$Si |g(x) - g(a)| < \delta', entonces |f(g(x)) - f(g(a))| < \epsilon.$$
 (2)

Aplicamos ahora la continuidad de g para estimar cómo de cerca tiene que estar x de a para que se cumpla la desigualdad $|g(x) - g(a)| < \delta'$. El número δ' es un número positivo como cualquier otro número positivo; podemos, por lo tanto, tomar δ' como el epsilon de la definición de continuidad de g en a. Deducimos que existe un $\delta > 0$ tal que, para todo x,

$$Si |x - a| < \delta, \ entonces |g(x) - g(a)| < \delta',$$
 (3)

combinando (2) y (3) vemos que para todo x,

$$Si |x-a| < \delta, \ entonces |f(g(x)) - f(g(a))| < \epsilon.$$

Definición 1.2 Si f es continua en x para todo x en (a,b), entonces se dice que f es continua en (a,b) si

$$f$$
 es continua en x para todo x de (a,b) , (1)

$$\lim_{x \to a^+} f(x) = f(a) \ y \lim_{x \to b^-} f(x) = f(b). \tag{2}$$

TEOREMA 1.3 Supóngase que f es continua en a, y f(a) > 0. Entonces existe un número $\delta > 0$ tal que f(x) > 0 para todo x que satisface $|x - a| < \delta$. Análogamente, si f(a) > 0, entonces existe un número $\delta > 0$ tal que f(x) < 0 para todo x que satisface $|x - a| < \delta$.

Demostración.- Considérese el caso f(a) > 0 puesto que f que es continua en a, si $\epsilon > 0$ existe un $\delta > 0$ tal que, para todo x,

$$Si |x - a| < \delta$$
, entonces $|f(x) - f(a)| < \epsilon$.

Puesto que f(a) > 0 podemos tomar a f(a) como el epsilon. Así, pues, existe $\delta > 0$ tal que para todo x,

$$Si |x-a| < \delta$$
, entonces $|f(x) - f(a)| < f(a)$

Y esta última igualdad implica f(x) > 0.

Puede darse una demostración análoga en el caso f(a) < 0; tómese $\epsilon = -f(a)$. O también se puede aplicar el primer caso a la función -f.

1.1. Problemas

1. ¿para cuáles de las siguientes funciones f existe una función F de dominio R tal que F(x) = f(x) para todo x del dominio de f?

(i)
$$f(x) = \frac{x^2 - 4}{x - 2}$$

Respuesta.- Sabiendo que el límite cuando x tiende a 2 existe, entonces existe una función F de dominio R tal que F(x) = f(x) para todo x del dominio de f.

(ii)
$$f(x) = \frac{|x|}{x}$$

Respuesta.- No existe F, ya que $\lim_{x\to 0} \frac{|x|}{x}$ no existe.

(iii) f(x) = 0, x irracional.

Respuesta.- Existe F de dominio R tal que F(x) = f(x) para todo x del dominio de f.

- (iv) f(x) = 1/q, x = p/q racional en fracción irreducible. Respuesta.- No existe F, ya que F(a) tendría que ser 0 para los a irracionales, y entonces F no podría ser continua en a si a es racional.
- $\mathbf{2}$. ¿En qué puntos son continuas las funciones de los problemas 4-17 y 4-19?.

Respuesta.- Problema 4-17.

Para (i), (ii) y (iii) son continuas para todos los puntos menos para los enteros. Para (iv) es continua en todos los puntos. Para (v) es entera para todos los puntos excepto para 0 y 1/n para n en los enteros.

Problema 4-19.

- (i) todos los puntos que no sean de la forma n+k/10 para todos los enteros k y n. El (ii) para todo los puntos que no sea de la forma n+k/100 para todos los enteros k y n. (iii) y (iv) para ningún punto. (v) para todos los puntos que el decimal no termine en 7999.... Y (vi) para todos los puntos que el decimal contenga al menos un 1.
- **3.** (a) Supóngase que f es una función que satisface $|f(x)| \le |x|$ para todo x. Demostrar que f es continua en 0.[Observe que f(0) debe ser igual a 0.]

Demostración.- Supongamos que $|f(x)| \leq |x|$. afirmamos que, $\lim_{x \to 0} f(x) = 0$. De hecho dado $\epsilon > 0$, tomamos $\delta = \epsilon$. Si $|x| < \delta$ entonces $|f(x)| \leq |x| < \delta = \epsilon$. Esto prueba que $\lim_{x \to 0} f(x) = 0$. Para concluir que f es constante en 0, tenga en cuenta que, como se señala en la pregunta, aplicar $|f(x)| \leq |x|$ para todo x, en x = 0 se da $|f(0)| \leq 0$ y en consecuencia f(0) = 0. Por lo tanto $\lim_{x \to 0} f(x) = 0$ implica que $\lim_{x \to 0} f(x) = f(0)$, así f es constante en 0.

(b) Dar un ejemplo de una función f que no sea continua en ningún $a \neq 0$.

Respuesta.- Sea f(x) = 0 para x irracional, y f(x) = x para x racional.

(c) Supóngase que g es continua en 0, g(0) = 0, y $|f(x)| \le |g(x)|$. Demostrar que f es continua en 0.

Demostración.- La condición $|f(x)| \leq |g(x)|$ para todo x y g(0) = 0 implica que ff(0) = 0, así que sólo tenemos que demostrar que $\lim_{x \to 0} f(x) = 0$.

Sea $\epsilon > 0$, luego ya que g es continua en 0, existe un $\delta > 0$ tal que $|x| < \delta$ entonces $|g(x) - g(0)| = |g(x)| < \epsilon$. Usando $|f(x)| \le |g(x)|$ para todo x, vemos que $|x| < \delta$ implica $|f(x)| \le |g(x)| < \epsilon$. Por lo tanto esto demuestra que $\lim_{x \to 0} f(x) = 0$.

 $\bf 4.~$ Dar un ejemplo de una función f que no sea continua en ningún punto, pero tal que |f| sea continua en todos lo puntos.

Respuesta.- Sea f(x) = 1 para x racional, y f(x) = -1 para x irracional.

5. Para todo número a, hallar la función que sea continua en a, pero no lo sea en ningún otro punto.

Respuesta.- Sea f(x) = a para x irracional, y f(x) = x para x racional.

6. (a) Hallar una función f que sea descontinua en $1, \frac{1}{2}, \frac{1}{3}, \dots$, pero continua en todos los demás puntos.

Respuesta.- Define f como sigue,

$$f(x) = \begin{cases} 0, & x \le 0 \\ \frac{1}{\left[\frac{1}{x}\right]}, & 0 < x \le 1 \\ 2, & x > 1 \end{cases}$$

(b) Hallar una función f que sea descontinua en $1, \frac{1}{2}, \frac{1}{3}, \dots$, y en 0, pero sea continua en ningún en todos los demás puntos.

Respuesta.- Sea

$$f(x) = \begin{cases} -1, & x \le 0 \\ \frac{1}{\left[\frac{1}{x}\right]}, & 0 < x \le 1 \\ 2, & x > 1 \end{cases}$$

7. Supóngase que f satisface (x + y) = f(x) + f(y), y que f es continua en 0. Demostrar que f es continua en a para todo a.

1.1. PROBLEMAS 5

Demostración.- Sea f(x+0) = f(x) + f(0), por lo tanto f(0) = 0, entonces

$$\lim_{h \to 0} f(a+h) - f(a) = \lim_{h \to 0} f(a) + f(h) - f(a)$$
$$= \lim_{h \to 0} f(h)$$
$$= \lim_{h \to 0} f(h) - f(0) = 0$$

8. Supóngase que f es continua en a y f(a) = 0. Demostrar que si $\alpha \neq 0$, entonces $f + \alpha$ es distinta de 0 en algún intervalo abierto que contiene a.

Demostración.- Sabiendo que $(f + \alpha)(a) \neq 0$, entonces por el teorema 3, $f + \alpha$ es distinto de cero en algún intervalo que contiene a a.

9. (a) Supóngase que f no es continua en a. Demostrar que para algún $\epsilon > 0$ existen números x tan próximos como se quiere de a con $|f(x) - f(a)| > \epsilon$.

Demostración.- Lógicamente equivalente a la definición de continuidad se tiene

$$\exists \epsilon > 0, \forall \delta > 0, \exists x | x - a | < \delta y | f(x) - f(a) | \ge \epsilon$$

Existe $\epsilon > 0$ tal que $|f(x) - f(a)| > \epsilon$. Luego sea $\epsilon' = \frac{1}{2}\epsilon$, entonces tenemos $|f(x) - f(a)| \ge \epsilon > \epsilon'$.

(b) Dedúzcase que para algún $\epsilon > 0$, o bien existen números x tan próximos como se quiera de a con $f(x) < f(a) - \epsilon$ o bien existen números x tan próximos como se quiera de a con $f(x) > f(a) + \epsilon$.

Demostración.- La demostración es directa aplicando la reciproca de la definicion de continuidad. Como se vio en el inciso a.

10. (a) Demostrar que si f es continua en a, entonces también lo es |f|.

Demostración.- Ya que $\lim_{x\to a} f(x) = l \implies \lim_{x\to a} |f|(x) = |l|$ como se vio en el problema 5-16, entonces

$$\lim_{x \to a} |f|(x) = \left| \lim_{x \to a} f(x) \right| = |f(a)| = |f|(a).$$

(b) Demostrar que toda función continua f puede escribirse en la forma f = E + O, donde E es par y continua y O es impar y continua.

Demostración.- Por el problema 13 del capítulo 3 (funciones) mostramos que E y O son continuas si f lo es.

(c) Demostrar que si f y g son continuas, también lo son máx(f,g) y mín(f,g).

Demostración.- Por la parte a) y sabiendo que

$$\max(f,g) = \frac{f+g+|f-g|}{2}$$

$$\min(f,g) = \frac{f+g-|f-g|}{2}$$

(d) Demostrar que toda función continua f puede escribirse en la forma f = g - h, donde g y h son no negativas y continuas.

Demostración.- Por el problema 15 del capítulo 3 (funciones) podemos comprobar que f=g-h siempre que f sea continua.

11. Demostrar el teorema 1(3) aplicando el teorema 2 y la continuidad de la función f(x) = 1/x.

Demostración.- Sea $f \circ g = \frac{1}{g}$ y f es continua en g(a) para $g(a) \neq 0$, entonces por el teorema 2, se tiene que $\frac{1}{g}$ es continua en a para $g(a) \neq 0$.

12. (a) Demostrar que si f es continua en l, y $\lim_{x\to a}g(x)=l$ entonces $\lim_{x\to a}f(g(x))=f(l)$.

Demostración.- Sea

$$G(x) = \begin{cases} g(x) & si \quad x \neq a \\ l & si \quad x = a \end{cases}$$

entonces G es continua en a, ya que $G(a) = l = \lim_{x \to a} g(x) = \lim_{x \to a} G(x)$. Así $f \circ G$ es continua en a esto por el teorema 2. Luego

$$f(l)=f(G(a))=(f\circ G)(a)=\lim_{x\to a}=\lim_{x\to a}(f\circ G)(x)=\lim_{x\to 0}f(g(x)).$$

(b) Demostrar que si no se supone la continuidad de f en l, entonces no se cumple, por lo general, que $\lim_{x\to a} f(g(x)) = f\left(\lim_{x\to a} g(x)\right)$.

Demostración.- Sea g(x) = l + x - a y

$$f(x) = \begin{cases} 0, & x \neq 1\\ 1, & x = 1 \end{cases}$$

Luego $\lim_{x\to a}g(x)=l$, así $f\left(\lim_{x\to a}g(x)\right)=f(l)=l$, pero $g(x)\neq l$ para $x\neq a$, por lo tanto $\lim_{x\to a}f(g(x))=\lim_{x\to a}=0$.

13. (a) Demostrar que si f es continua en [a, b], entonces existe una función g el cual es contuna en \mathbb{R} y que satisface a g(x) = f(x) para todo x en [a, b].

Demostración.-

1.1. PROBLEMAS 7

(b) Hágase ver con un ejemplo que ésta afirmación es falsa si se sustituye [a, b] por (a, b).

Respuesta.- Definimos $f(x)=1/(x^2-1)$ en el intervalo (-1,1). Es continuo, pero no existe $\lim_{x\to 1^+}g(x)$ ni $\lim_{x\to 1^-}f(x)$. Ahora, para que f se extienda a una función g que sea constante en toda la línea real, es necesario que existan tanto $\lim_{x\to -1}g(x)$ como $\lim_{x\to 1}g(x)$, lo que requiere $\lim_{x\to -1^+}f(x)$ y $\lim_{x\to 1^-}f(x)$ para existir. Entonces f no se puede extender a una función que sea constante en toda la línea real.

14. (a) Supóngase que g y h son continuos en a, y que g(a) = h(a), Defínase f(x) como g(x) si $x \ge a$ y h(x) si $x \le a$. Demuestre que f es continua en a.

Demostración.- Sea

$$f(x) = \begin{cases} g(x) & si \quad x \ge a \\ h(x) & si \quad x \le a \end{cases}$$

Luego se tiene

$$\lim_{x \to a} g(x) = g(a) \quad y \quad \lim_{x \to a} h(x) = h(a)$$

de donde

$$g(a) = \lim_{x \to a^+} g(x) = \lim_{x \to a^+} f(x) = f(a) \quad y \quad h(a) = \lim_{x \to a^-} h(x) = \lim_{x \to a^-} f(x) = f(a)$$

y por lo tanto

$$\lim_{x \to a} f(x) = f(a)$$

(b) Supóngase que g es continuo en [a,b] y h es continuo en [b,c] y g(b) = h(b). Sea f(x) igual g(x) para x en [a,b] y h(x) para x en [b,c]. Demuestre que f es continuo en [a,c]. (Así pues, las funciones continuas pueden ser "pegados juntos").

Demostración.- la continuidad de f en [a,b) y en (b,c] es evidente. En [a,b) f es igual a g y g es continuo para todo los puntos del intervalo.

Ahora para la continuidad en b, si g es continuo en b, entonces $\lim_{x\to b^-} g(x) = g(b)$, y $\lim_{x\to b^-} f(x) = f(b)$. Similarmente, $\lim_{x\to b^+} f(x) = f(b)$, aquí tenemos que usar g(b) = h(b) = f(b). Luego ya que $\lim_{x\to b^-} f(x) = f(b)$ y $\lim_{x\to b^+} f(x) = f(b)$ concluimos que $\lim_{x\to b} f(x) = f(b)$, es decir f es también continuo en b.

15. (a)