NPHardEval: Dynamic Benchmark on Reasoning Ability of Large Language Models via Complexity Classes

Lizhou Fan, et al

Rutgers University

February 12, 2024

Abstract

- Current benchmarks are prone to the risk of overfitting
- We suggest benchmark with various complexity classes
 - P, NP-Complete, NP-Hard
- Dynamic update to avoid overfitting
 - Monthly Update datapoints

Introduction

- 3 Complexity classes, 3 Tasks, 100 Problems offered
 - Total $3 \times 3 \times 100 = 900$ problems
 - P: Solved in polynomial time
 - NP-Complete: Verified in polynomial time
 - NP-Hard: No guarantee for polynomial time

Introduction

- · End-to-end automation
 - Generation, Verification are automated by using well-known task
- Excluded numerical computation
 - It is noticably difficult for LLMs
 - Focusing on pure logical reasoning ability
- · Difficulty level system
 - For each task, there are 100 problems
 - Each problem has difficulty level from 1 to 10

P Tasks

- Sorted Array Search (SAS)
 - Finding the position of a target value after sorting a given array
 - Solved by sorting and binary search
- Edit Distance Problem (EDP)
 - Minimum number of operations to transform one string into another
 - Insertion, deletion, and substitution of a single character.
 - Solved by Dynamic programming
- Shortest Path Problem (SPP)
 - Finding the shortest path between two nodes in a weighted graph
 - Solved by Dijkstra's algorithm

NP-Complete Tasks

- Traveling Salesman Problem (TSP-D)
 - Can you complete a route, visiting each city at least once?
 - Total travel distance must be less than a specified value
- Graph Coloring Problem (GCP-D)
 - Can you color the vertices of a graph using a given number of colors?
 - No two adjacent vertices share the same color
- Knapsack Problem (KSP)
 - Fill a knapsack of fixed capacity without exceeding it
 - Maximize the total value of the selected items

NP-Hard Tasks

- Traveling Salesman Problem (TSP-O)
 - Find the shortest route, visiting each city at least once
 - Important for delivery services, maintenance operations, and sales
- Graph Coloring Problem (GCP-O)
 - Color the vertices of a graph with the constraint
 - Used in exam timetabling and register allocation in compilers
- Meeting Scheduling Problem (MSP)
 - Allocating time slots with participant availability and room capacity
 - Crucial in organizational management for scheduling meetings

Experiment

- Model Performance Comparison
 - Compare 5 closed-source models, 7 open-source models
 - Shed light on the relative strengths and weaknesses
- Robustness of Benchmark Assessments
 - Examines if the risk of "hacking" the benchmark is prevented
 - Examines if finetuning LLMs on benchmarks leads to overfitting
- Generalization through In-context Learning
 - Discern whether the model is "learning" or "mimicking"
 - Examine if performance is constant with varing difficulty levels

Result

Increasing difficulty, performance significantly dropped

Limitations

- Task Complexity's Comparison
 - There are only 9 tasks
 - Difficulty is defined as linear increment of variables
- Randomness
 - In decision problem, LLMs may find correct answer by luck
- Model Update and Emergence
 - Fast-paced evolution of LLMs like Gemini Ultra
 - The analysis based on our benchmark may quickly become outdated