Roll No.

Total No. of Questions: 9] (1047)

[Total No. of Printed Pages: 4

BCA (CBCS) RUSA VIth Semester Examination

3768

NUMERIAL METHODS

Paper: BCA0602

Time: 3 Hours]

[Maximum Marks: 50

Note: Attempt five questions in all, selecting one question each from Units I, II, III and IV. Q. No. 9 in Unit-V is compulsory. All questions are of equal marks.

Unit-I

1. (a) Given that $u = \frac{5xy^2}{z^3}$ find the relative error at x = y = z = 1 when the errors in each of x, y, z is 0.001.

C-547

(1)

Turn Over

(b) The Maclaurin expansion of $\sin x$ is given by:

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots,$$

where x is in radians. Use the series to compute the value of $\sin 25^{\circ}$ to an accuracy of 0.001.

- 2. (a) Evaluate the sum $S = \sqrt{3} + \sqrt{5} + \sqrt{7}$ correct to four significant figures and find its absolute and relative errors.
- Convert the following binary fractions to decimal fractions:

(0.1100011)₂ and (0.111111111)₂.

6

10

Unit-II

- 3. (a) Find the positive root, between 0 and 1, of the equation $x = e^{-x}$ to a tolerance of 0.05%.
- (b) Solve $x^4 5x^3 + 20x^2 40x + 60 = 0$, by Newton-Raphson method given that all the roots of the given equation are complex.
- 4. Solve the system 2x + y + z = 10, 3x + 2y + 3z = 18, x + 4y + 9z = 16 using both Gauss elimination and Gauss-Jordan methods.

		Unit-III	
5.	(a)	Prove that $e^x = \frac{\Delta^2}{E} e^x \cdot \frac{Ee^x}{\Delta^2 e^x}$, the interval of differencing being h .	
		Find the missing term in the following table:	
	(b)	0 1 2	
		3 9 81	5
		Explain, why result differs from $3^3 = 27$.	
	(0)	Given that :	
0.	(a)	$\sqrt{12500} = 111.8034, \sqrt{12510} = 111.8481,$	
		$\sqrt{12520} = 111.8928, \sqrt{12530} = 111.9375.$	
		Find the value of $\sqrt{12516}$ using Newton's forward interpolation formula.	5
-	(b)	Apply the Gauss's backward interpolation formula and find the population of a town in 1946, with the help of the following data:	
		Year 1931 1941 1951 1961 1971	
		Population 15 20 27 39 52	
		(in Thousands)	5
		Unit-IV	
7.	(a)	A cubic function $y = f(x)$ satisfies the following data:	
		x 0 1 3 4	
		f(x) 1 4 40 85	
	P	Determine $f(x)$ and hence find $f'(2)$ and $f''(2)$.	4
C	-54	7 (3) Tum (Ove

Turn Over

(b) The function $y = 3xe^{-x}$ is tabulated below: (3,0.4481), (4,0.2198), (5,0.1011). Find y'(x) at x = 3, 4 and 5 and compare your

Find y'(x) at x = 3, 4 and 5 and compare your results with the exact values.

- 8. (a) Derive Simpson's 3/8 rule and using this rule evaluate $\int_0^1 \frac{1}{1+x} dx$ with $h = \frac{1}{6}$.
 - (b) Compute the integral $\int_0^{\pi/2} \sqrt{1 0.162 \sin^2 x} \, dx$ by Weddle's rule.

Unit-V

- 9. (a) Calculate the value of $\sqrt{102} \sqrt{101}$ correct to four significant figures.
 - (b) Define absolute and relative errors.
 - (c) Apply Newton-Raphson method to fine $\sqrt[3]{x}$, x > 0.
 - (d) Prove that $\mu = \sqrt{1 + \frac{\delta^2}{4}}$.
 - (e) For what values of α and β , the quadrature formula $\int_{-1}^{1} f(x)dx \approx \alpha f(-1) + f(\beta)$ is exact for all polynomials of degree less than or equal to 1.

 $2 \times 5 = 10$

5

5

C-547