WARTHOG 2018, Lecture II-3

We work in the standard setup.

Main Exercise 1. Recall that w_0 is the unique element of W of maximal length, and that w_0 is an involution.

- (a) Let $s \in S$. Show that there exists $t \in S$ such that $sw_0 = w_0t$.
- (b) Let $\pi = w_0 \cdot w_0$ in the braid monoid B_W^+ . Show that
 - (i) π is central in B_W^+ .
 - ((i) Every $w \in W$ divides π on the left and on the right.

Deduce that for every $b \in B_W$ there exists $n \ge 0$ such that $\pi^n b \in B_W^+$.

- (c) Let $b \in B_W$. Assume that $C_{B_W}(b)$ is finitely generated in B_W . Show that there exist $b' \in B_W^+$ and $b_1, \ldots, b_m \in B_W^+$ such that
 - $\bullet \ C_{B_W}(b) = C_{B_W}(b');$
 - each b_i divides b';
 - $\{b_1,\ldots,b_m\}$ generate $C_{B_W}(b')$.

WARTHOG 2018, Lecture II-3 supplementary exercises

Exercise 1. Using the element π studied in the main exercise, show that two elements of B_W^+ have a common multiple.

Exercise 2. Let w = vv' with $\ell(v) + \ell(v') = \ell(w)$. Recall that there is a natural morphism $D_v : \mathbf{X}(w) \to \mathbf{X}(v^{-1}wF(v))$. Show that it is bijective.

Exercise 3. Let F' be the endomorphism of \mathbf{G}^r defined by

$$F'(g_1,\ldots,g_r)=(g_2,\ldots,g_r,F(g_1)).$$

- (a) Show that some power of F' is a Frobenius endomorphism of \mathbf{G}^r . Such F' is a particular case of a Steinberg endomorphism. Show that the first projection induces an isomorphism $(\mathbf{G}^r)^{F'} \xrightarrow{\sim} \mathbf{G}^F$.
- (b) Let $w_1, \ldots, w_r \in W$ and $w = (w_1, w_2, \ldots, w_r) \in W^r$. Show that there is a G-equivariant isomorphism of varieties

$$\mathbf{X}_{\mathbf{G},F}(w_1,\ldots,w_r) \simeq \mathbf{X}_{(\mathbf{G})^r,F'}(w).$$

Exercise 4. Given $\mathbf{w} \in B_W^+$ we will write w for its image in W. We say that $\mathbf{w} \in B_W^+$ is a *good* d-th root of π if $\mathbf{w}^d = \pi$ and if \mathbf{w}^m is reduced for all $m \leq d/2$.

- (a) Show the equivalence between:
 - w is a good d-th root of π :
 - $w^d = 1$ and $\ell(w^m) = \ell(\pi)m/d$ for all $m \leq d/2$.

(Hint: start with the easy case where d is even)

(b) Find the good roots of π for $W = \mathfrak{S}_4$.

Exercise 5. Let **w** be a good d-th root of π . Show that $\mathbf{X}(\mathbf{w})^{F^m} = \emptyset$ for all $1 \leq m < d$.

Exercise 6. Let **w** be a *d*-th root of π . Show that the Deligne–Lusztig variety $\mathbf{X}(\mathbf{w})$ for (\mathbf{G}, F) embeds naturally in the Deligne–Lusztig variety $\mathbf{X}(\pi)$ for (\mathbf{G}, F^d) .

Exercise 7. We assume $W = \mathfrak{S}_n$.

- (a) All *n*-cycles in W are conjugate to (1, ..., n). Show that the lift of an *n*-cycle to B_W^+ is conjugate to (1, ..., n) in B_W^+ if and only if $\ell(w) = n 1$. (Hint: use induction on n.)
- (b) Find an *n*-cycle which is a good *n*-th root of π . Deduce that the *n*-th root of π are exactly the *n*-cycles with Coxeter length n-1.