Tomás Pérez Group Theory - Lecture Notes December 5, 2022

Theory & Notes

Definition 1. A vector space L over a field \mathbb{F} , with an operation

$$\begin{array}{c} L \times L \to L \\ (x, y) \to [x, y], \end{array}$$

called the bracket or commutator of x and y, is called a Lie algebra over \mathbb{F} if the following axioms are satisfied

- The bracket operation is bilinear,
- $[x,x]=0, \forall x \in L$
- $[x, [y, z]] = [y, [z, x]] = [z, [x, y]] = 0, \forall x, y, z \in L$

where the first two axioms imply the bracket's anticommutativity.

Two Lie algebras $\mathfrak{g},\mathfrak{g}'$ are isomorphic if there exists a vector space isomorphism $\phi:\mathfrak{g}\to\mathfrak{g}'$, satisfying $\phi([x,y])=[\phi(x),\phi(y)],\ \forall x,y\in\mathfrak{g}.$ Similarly, a subspace $\mathfrak{k}\subset\mathfrak{g}$ is called a subalgebra if $[x,y]\in\mathfrak{k},\ \forall x,y\in\mathfrak{k}.$ Note that any Lie subalgebra is a Lie algebra in its own right, relative to the inherited operations. Note as well, that any non-zero element $x\in\mathfrak{g}$ defines a one-dimensional subalgebra $\mathbb{F} x$, with trivial multiplications.

If V is a finite n-dimensional vector space over \mathbb{F} , $\operatorname{End}(V)$ is the set of endomorphisms over V, being a n^2 -dimensional vector space. Note that $\operatorname{End}(V)$ is a ring relative to the usual product operation. Imbued with the Lie bracket operation, $\operatorname{End}(V)$ is a Lie algebra over \mathbb{F} , denoted by $\mathfrak{gl}(V) \simeq \operatorname{End}(V)$ and is the general linear algebra. If a basis for V is fixed, thereby identifying $\mathfrak{gl}(n,\mathbb{F}) \simeq (V)$, explicit calculations may be performed. In particular if the standard matrix basis e_{ij} is chosen, such that $e_{ij}e_{kl} = \delta_{jk}e_{il}$, it follows that

$$[e_{ij}, e_{kl}] = \delta_{jk}e_{il} - \delta_{li}e_{kj},$$

noticing that all coefficients are either 0 or ± 1 .

All (simple) Lie algebras fall into four families, $\mathfrak{A}_{\ell}, \mathfrak{B}_{\ell}, \mathfrak{C}_{\ell}, \mathfrak{D}_{\ell}$ ($\ell > 1$) are the classical algebras, for they correspond to certain classical linear group. In particular, for the last three families, let char $\mathbb{F} \neq 2$.

• \mathfrak{A}_{ℓ} : let $\dim V = \ell + 1$. Denote by $\mathfrak{sl}(V)$, or $\mathfrak{sl}(\ell + 1, \mathbb{F})$, the set of endomorphisms on V with zero trace. Since $\operatorname{Tr}(xy) = \operatorname{Tr}(yx)$ and $\operatorname{Tr}(x+y) = \operatorname{Tr}(x) + \operatorname{Tr}(y)$, thus $\mathfrak{sl}(V) \subseteq \mathfrak{gl}(V)$. This algebra is the special linear algebra and is intimately connected to the special linear group SL(V) of endomorphisms of unit determinant.

What about its dimension? since $\mathfrak{sl}(V)$ is a proper subalgebra of $\mathfrak{gl}(V)$, its dimension is at most $(\ell+1)^2-1$. On the other hand, the number of linearly independent matrices of zero-trace can be readily found. For all e_{ij} , $i \neq j$ and all $h_i = e_{ii} - e_{i+1,i+1}$, with $1 \leq i \leq \ell$, yielding a total of $\ell + (\ell+1)^2 - (\ell+1)$ matrices, which is the standard basis for $\mathfrak{sl}(V)$.

• \mathfrak{C}_{ℓ} : let dim $V=2\ell$, with basis $(v_1,\cdots,v_{2\ell})$. Let the non-degenerate skew-symmetric form $f:V\to V$ defined by the matrix

$$s = \left(\begin{array}{cc} 0 & i\mathbf{d}_{\ell} \\ -i\mathbf{d}_{\ell} & 0 \end{array} \right).$$

Let $\mathfrak{sp}(V)$, or $\mathfrak{sp}(2\ell,\mathbb{F})$, the symplectic algebra, which by definition consists of all endomorphism $x:V\to V$ satisfying f(x(v),w)=-f(v,x(w)). This algebra is closed under the bracket operation. In matrix terms, the previous condition may be rewritten as

$$x \in \mathfrak{sl}(V) \mid x = \left(\begin{array}{cc} m & n \\ p & q \end{array} \right), m, n, p, q \in \mathfrak{gl}(\ell, \mathbb{F}) \wedge sx = -x^{\mathsf{T}}s \leftrightarrow \begin{array}{c} n^{\mathsf{T}} = n \\ p^{\mathsf{T}} = p \\ m^{\mathsf{T}} = -q \end{array}.$$

This last condition fixes that $\operatorname{Tr} x = 0$. A basis for $\mathfrak{sl}(2\ell, \mathbb{F})$ can now be fixed.

Consider all diagonal matrices $e_{ii} - e_{\ell+1,\ell+1}$, and adding to these all $e_{ij} - e_{\ell+j,\ell+j}$, with $1 \le i \ne j \le \ell$, which are $\ell^2 - \ell$ in number. For n, consider the matrices $e_{i,\ell+1}$ and $e_{i,\ell+j} + e_{j,\ell+i}$, for $(1 \le i < j \le \ell)$, a total of $\ell + \frac{1}{2}\ell(\ell-1)$, and similarly for positions in p. Adding up yields $\dim \mathfrak{sl}(2\ell, \mathbb{F}) = 2\ell^2 + \ell$.

• \mathfrak{B}_{ℓ} : let dim $V = 2\ell + 1$ be odd, and let f be the non-degenerate symmetric bilinear form on V whose matrix is

$$s = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & \mathrm{id}_{\ell} \\ 0 & \mathrm{id}_{\ell} & 0 \end{array}\right).$$

The orthogonal algebra $\mathfrak{o}(V)$ or $\mathfrak{o}(2\ell+1,\mathbb{F})$, consists on all endomorphisms of V satisfying f(x(v),w)=-f(v,x(w)), the same requirement as for \mathfrak{C}_{ℓ} . If x is partitioned in the same way as s, say

$$x = \begin{pmatrix} a & b_1 & b_2 \\ c_1 & m & n \\ c_2 & p & q \end{pmatrix} \Rightarrow sx = -x^{\mathsf{T}}s \leftrightarrow$$

Definition 2. Let \mathfrak{g} be a Lie algebra over \mathbb{F} and let V be a vector space over said field. A representation of \mathfrak{g} on V is a linear map

$$\rho: \mathfrak{g} \to \operatorname{End}(V)$$
, such that $\rho([x,y]) = \rho(x)\rho(y) - \rho(y)\rho(x)$.

Example

Let \mathfrak{g} be the 3-dimensional subspace of End(\mathbb{Q}) spanned by

$$A_1 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, A_2 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, A_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

and let ρ be the linear map from into said space, spanned by the previous matrices, such that

$$\rho(x) = A_1, \rho(y) = A_2, \rho(h) = A_3.$$

Then, ρ is an g-representation. Furthermore, the representation's kernel is 0, so g is isomorphic to its image. Said representations are called faithful.

Definition 3. Let \mathfrak{g} be a Lie algebra. Define a map

ad :
$$\mathfrak{g} \to \operatorname{End}(\mathfrak{g})$$
 such that $\operatorname{ad}(x)(y) = [x, y]$.

This is a Lie algebra representation, with the ad-map being called the adjoint representation.

Definition 4. Let \mathfrak{g} be a Lie algebra. A subspace $\mathfrak{k} \subseteq \mathfrak{g}$ is a subalgebra if $[x,y] \in \mathfrak{k}$, $\forall x,y \in \mathfrak{k}$

Definition 5. Let \mathfrak{g} be a Lie algebra. A subspace \mathfrak{I} of \mathfrak{g} is called an ideal if $[x,y] \in \mathfrak{I}, \forall x \in \mathfrak{g}, y \in \mathfrak{I}$.

Let \mathfrak{g} be a Lie algebra and let \mathfrak{I} be an ideal on \mathfrak{g} such that there is a subalgebra $\mathfrak{k} \subseteq \mathfrak{k}$ with the property that $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{I}$, ie. a direct sum of vector spaces. Then, \mathfrak{g} is called the semidirect product of \mathfrak{k} and \mathfrak{I} , denoted by $\mathfrak{g} = \mathfrak{k} \triangleright \mathfrak{I}$. A special case is the situation where \mathfrak{k} is also an ideal of \mathfrak{g} . Then, \mathfrak{g} is called the direct sum of \mathfrak{k} and \mathfrak{I} , in which case $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{I}$.

Definition 6. Let g be a Lie algebra. Then, the subspace

$$Z(\mathfrak{g}) = \{ x \in \mathfrak{g} \mid [x, y] = 0, \ \forall y \in \mathfrak{g} \},$$

is called the centre of g.

The centre of a Lie algebra $\mathfrak g$ is an ideal in $\mathfrak g$. In particular, if $Z(\mathfrak g) \simeq \mathfrak g$, then $\mathfrak g$ is called abelian or commutative.

Definition 7. Let \mathfrak{g} be a Lie algebra and let K be a subspace of \mathfrak{g} . Then

$$Z_{\mathfrak{g}}(K) = \{ x \in \mathfrak{g} \mid [x, y] = 0, \ \forall y \in K \},\$$

is called the centraliser of K in \mathfrak{g} .

If K is an ideal of \mathfrak{g} , then $Z_{\mathfrak{g}}(K)$ will also be an ideal of \mathfrak{g} . This follows from the Jacobi identity.

Definition 8. Let K be a subspace of the Lie algebra \mathfrak{g} . Then,

$$N_{\mathfrak{g}}(K) = \{ x \in \mathfrak{g} \mid [x, y] \in K, \ \forall y \in K \},$$

is called the normaliser of K in \mathfrak{g} .

If K_1 and K_2 are \mathfrak{g} -subspaces, then $[K_1, K_2]$ denotes the subspace spanned by all $[x_1, x_2], x_1 \in K_1, x_2 \in K_2$.

Definition 9. Let \mathfrak{g} be a finite-dimensional Lie algebra. Then, set $\mathfrak{g}_{k+1} = [\mathfrak{g}, \mathfrak{g}]$ with $\mathfrak{g}_1 = \mathfrak{g}$ and let s be the smallest integer such that $\mathfrak{g}_s = \mathfrak{g}_{s+1}$. The series

$$\mathfrak{g}_1 \supset \mathfrak{g}_2 \supset \cdots \supset \mathfrak{g}_s$$
,

is the derived series of g.

A Lie algebra is called solvable if the final term of its derived series is 0. If \mathfrak{I} and \mathfrak{J} are solvable ideals of \mathfrak{g} , then it can be proved that $\mathfrak{I} + \mathfrak{J}$ is also a solvable ideal of \mathfrak{g} . It follows then that if \mathfrak{g} is a finite-dimensional Lie algebra, then it has maximal solvable ideal. This is called the solvable radical of \mathfrak{g} , $R(\mathfrak{g})$.

Definition 10. Let \mathfrak{g} be a finite-dimensional algebra. Set $\mathfrak{g}^1 = \mathfrak{g}$, and $\mathfrak{g}^{k+1} = [\mathfrak{g}, \mathfrak{g}^k]$ and let t be the smallest integer such that $\mathfrak{g}^t = \mathfrak{g}^{t+1}$. The series

$$\mathfrak{g}^1\supset\mathfrak{g}^2\supset\cdots\supset\mathfrak{g}^t,$$

is called the lower central series of g.

A finite-dimensional Lie algebra \mathfrak{g} is called nilpotent if $\mathfrak{g}^t = 0$. If \mathfrak{I} and \mathfrak{J} are nilpotent ideals of \mathfrak{g} , then it can be proved that so is $\mathfrak{I} + \mathfrak{J}$. It follows that a finite-dimensional Lie algebra \mathfrak{L} has a largest nilpotent ideal. It is called the nilradical and it is denoted by $NR(\mathfrak{g})$.

Definition 11. Let \mathfrak{g} be a finite-dimensional Lie algebra. Set $Z_1 = Z(\mathfrak{g})$ and define Z_{k+1} recursively by the relation $Z_{k+1}/Z_k = Z(\mathfrak{g}/Z_k)$ and let u be the smallest number such that $Z_u = Z_{u+1}$. Then, the series

$$Z_1\supset Z_2\supset\cdots\supset Z_u,$$

is called the upper central series of g.

Definition 12. A Lie algebra $\mathfrak g$ is called semisimple if $R(\mathfrak g)=0$.

Definition 13. Cartan's criterion for semi-simplicity: Let \mathfrak{g} be a Lie algebra, with basis $\{x_1, \dots, x_n\}$ and let $d = \det\{\mathbf{K}\}(x_i, x_j)$. If $d \neq 0$, then \mathfrak{g} is semisimple. If \mathfrak{g} is defined over a field of characteristic 0, then this is in turn implies $d \neq 0$.

Definition 14. A Lie algebra \mathfrak{g} is called simple if dim $\mathfrak{g} > 1$ and it has no ideals except 0 and \mathfrak{g} .

Let $\mathfrak g$ be a Lie algebra. Then, $R(\mathfrak g)$ can be only 0 or $\mathfrak g$. Suppose that $R(\mathfrak g)=\mathfrak g$, then $\mathfrak g$ is solvable and hence $[\mathfrak g,\mathfrak g]$ is an ideal of $\mathfrak g$ not equal to $\mathfrak g$ itself. It follows then that $[\mathfrak g,\mathfrak g]=0$ so that $\mathfrak g$ is Abelian. But then every subspace of $\mathfrak g$ is an ideal, contradicting the fact that $\mathfrak g$ is simple. The conclusion is that $R(\mathfrak g)=0$ and $\mathfrak g$ is semi-simple.