某学院有 1900 台个人计算机,50 台服务器,其中办公用计算机60 台,教学用计算机60 台,科研用计算机120台,研究生计算机200台。其余为学生实验电脑。

分配的 IP 地址为:

服务器: 172.16.1.1—172.16.1.61/26

网关为: 172.16.1.62/26

个人计算机: 192.168.0.0—192.168.7.255

学院现在三层交换机 6 台,每台三层交换机可划 VLAN (虚拟局域网) 个数为 100。24 口二层交换机若干台。

- 1.请为学院的全部计算机分配 IP 地址,并使用上述设备为学院设计网络。
- 2.要求:
- a.画出网络拓扑图。
- b.给出每个网段的 IP 范围, 子网掩码, 默认网关。
- c.为三层交换机规划 VLAN。给每个 VLAN 接口分配 IP 地址。
- d.做好三层交换机之间的路由设计(可使用静态路由和 RIP)
- e.设计学院网站,写出功能版块及初步描述。

4 网络结构设计

4.1 拓扑结构

对于本项目,使用包括核心层、汇聚层和接入层的三层结构:

- (1) 核心层:中心机房设置一台千兆核心交换机,负责整个学院网内部的数据交换。
- (2) **汇聚层:** 对于办公用计算机、教学用计算机、科研用计算机、研究生计算机和学生电脑分别设置二级交换机节点。
 - (3)接入层:连接各种计算机到汇聚层。

总体拓扑结构如下图所示, 共使用三个三层交换机和若干二层交换机, 左上角是服务器集群, 右下角是学生实验电脑集群, 左下角是其他所有电脑:

4.2 硬件结构

(1) **三层交换机:** CISCO WS-C3560-24PS 是企业级交换机,应用层级为三层。提供了可用性、安全性和服务质量功能,改进了网络运营,采用 24 端口配置,配备 2 个模块化插槽,接口丰富。还支持堆叠功能,扩展性十分强大,功能比较丰富。

(2) 二层交换机: Cisco Catalyst 2950 系列智能以太网交换机是一个固定配置、可堆叠的独立设备系列,提供了 快速以太网和千兆位以太网连接,凭借内置 Cisco 集群管理套件可出色地管理并轻松地配置第 2-4 层服务。

(3) **服务器:** 服务器比普通计算机运行更快、负载更高、价格更贵。服务器在网络中为其它客户机(如 PC 机、智能手机、ATM 等终端甚至是火车系统等大型设备)提供计算或者应用服务。服务器具有高速的 CPU 运算能力、长时间的可靠运行、强大的 I/O 外部数据吞吐能力以及更好的扩展性。根据服务器所提供的服务,一般来说服务器都具备承担响应服务请求、承担服务、保障服务的能力。服务器作为电子设备,其内部的结构十分的复杂,但与普通的计算机内部结构相差不大,如: CPU、硬盘、内存,系统,系统总线等。

4.3 地址规划

IP 地址规划方法有许多,本项目主要从节省资源的角度考虑分配 IP 地址,满足基本的需求,地址规划表如下图所示:

网段名	默认网关	始地址	末地址	子网掩码	VLAN
服务器群	172.16.1.1	172.16.1.2	172.16.1.51	255.255.255.192	10
办公用计算机群	192.168.0.1	192.168.0.2	192.168.0.61	255.255.255.192	20
教学用计算机群	192.168.0.65	192.168.0.66	192.168.0.125	255.255.255.192	30
科研用计算机群	192.168.0.129	192.168.0.130	192.168.0.249	255.255.255.128	40
研究生计算机群	192.168.1.1	192.168.1.2	192.168.1.201	255.255.255.0	50
学生实验计算机群 1	192.168.2.1	192.168.2.2	192.168.2.251	255.255.255.0	60
学生实验计算机群 2	192.168.3.1	192.168.3.2	192.168.3.251	255.255.255.0	70
学生实验计算机群 3	192.168.4.1	192.168.4.2	192.168.4.251	255.255.255.0	80
学生实验计算机群 4	192.168.5.1	192.168.5.2	192.168.5.251	255.255.255.0	90
学生实验计算机群 5	192.168.6.1	192.168.6.2	192.168.6.251	255.255.255.0	100
学生实验计算机群 6	192.168.7.1	192.168.7.2	192.168.7.251	255.255.255.0	110

5 系统配置与实施

5.1 网络设备配置

5.1.1 IP 地址配置

按照 4.3 中的地址规划,为主机 PC 和服务器配置 IP 地址,以学生实验计算机 1 为例:

同样地,可以配置服务器等的 IP 地址:

5.1.2 二层交换机配置

按照 4.3 中的地址规划,为每个二层交换机配置 VLAN,以对应学生计算机集群 1 的 Switch5 为例,首先创建 vlan 60,然后将端口 2-24 批量设置为 access 模式,接着将 vlan 60 分配给 2-24 口,最后将 int f0/1 端口调成 trunk 模式,具体指令如下:

```
Switch>en
Switch#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)#vlan 60
Switch(config-vlan)#int f0/2
Switch(config-if)#exit
Switch(config-if)#sw mode acc
Switch(config-if-range)#sw mode acc
Switch(config-if-range)#sw acc vlan 60
Switch(config-if-range)#exit
Switch(config-if-range)#xit
Switch(config-if)#sw mode trunk
Switch(config-if)#sw mode trunk
Switch(config-if)#
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to up
```

二层交换机配置完成后,对同一网段的主机测试 ping 能 ping 通,以办公计算机为例:

5.1.3 三层交换机配置

以 Multilayer Switch2 配置为例,为 vlan 设置 IP 地址:

Switch>en Switch#conf t

Enter configuration commands, one per line. End with CNTL/Z.

配置完 vlan 地址后,输入 ip routing 打开三层交换机的 IP 地址功能,测试位于同一个三层交换机下的不同网段的主机之间 ping 可以 ping 通的,以学生实验计算机 1 与学生实验计算机 2 为例,如下所示:

5.2 路由设计

配置静态路由是一种手动设置路由表的方法,通过明确指定目标网络和下一跳地址来确定数据包的转发路径。与动态路由协议不同,静态路由需要管理员手动配置并维护路由表,不会自动学习和适应网络变化。在配置静态路由时,管理员需要指定目标网络的 IP 地址和子网掩码,以及下一跳地址,即数据包要发送到的下一个路由器或目标网络的接口。下一跳地址可以是直接连接的接口,也可以是通过其他路由器转发数据包的地址。

静态路由的优点是简单和可控,管理员可以精确地配置网络流量的路径。它适用于小型网络或需要固定路由路径的特定场景。然而,静态路由也有一些限制,例如当网络拓扑发生变化时,管理员需要手动更新路由表,否则可能导致数据包无法正确转发。

首先,设计三层交换机的路由表:

Multilayer Switch0 的静态路由:				
目的地址	子网掩码	下一跳地址		
192.168.0.0	255.255.255.192	2.2.2.2		
192.168.0.64	255.255.255.192	2.2.2.2		
192.168.0.128	255.255.255.128	2.2.2.2		
192.168.1.0	255.255.255.0	2.2.2.2		
192.168.2.0	255.255.255.0	3.3.3.2		
192.168.3.0	255.255.255.0	3.3.3.2		
192.168.4.0	255.255.255.0	3.3.3.2		
192.168.5.0	255.255.255.0	3.3.3.2		
192.168.6.0	255.255.255.0	3.3.3.2		
192.168.7.0	255.255.255.0	3.3.3.2		

Multilayer Switch1 的静态路由:				
目的地址	子网掩码	下一跳地址		
192.168.2.0	255.255.255.0	1.1.1.4		
192.168.3.0	255.255.255.0	1.1.1.4		
192.168.4.0	255.255.255.0	1.1.1.4		
192.168.5.0	255.255.255.0	1.1.1.4		
192.168.6.0	255.255.255.0	1.1.1.4		
192.168.7.0	255.255.255.0	1.1.1.4		
172.16.1.0	255.255.255.192	2.2.2.1		

Multilayer Switch2 的静态路由:					
目的地址	子网掩码	下一跳地址			
192.168.0.0	255.255.255.192	1.1.1.3			
192.168.0.64	255.255.255.192	1.1.1.3			
192.168.0.128	255.255.255.128	1.1.1.3			
192.168.1.0	255.255.255.0	1.1.1.3			
172.16.1.0	255.255.255.192	3.3.3.1			

配置六个接口的 IP 地址, 以 Multilayer Switch0 的接口 f0/1 和 f0/3 为例:

```
Switch>en
Switch#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Switch (config) #int f0/1
Switch(config-if) #no sw
Switch(config-if)#
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to down
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to up
{\tt Switch (config-if) \# ip \ add \ 2.2.2.1 \ 255.0.0.0}
Switch(config-if) #exit
Switch(config)#int f0/3
Switch(config-if) #no sw
Switch(config-if)#
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/3, changed state to down
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/3, changed state to up
Switch(config-if) #ip add 3.3.3.1 255.0.0.0
Switch(config-if) #exit
Switch (config) #
```

接下来根据上述路由表为三个三层交换机配置静态路由,仍然以 Multilayer Switch0 为例:

装

订

I

I

线--

S

S

```
SWICCH (COHITY) #
Switch (config) #
Switch (config) #
Switch(config) #ip route 192.168.0.0 255.255.255.192 2.2.2.2
Switch(config) #ip route 192.168.0.64 255.255.255.192 2.2.2.2
Switch(config) #ip route 192.168.0.128 255.255.255.128 2.2.2.2
Switch(config) #ip route 192.168.1.0 255.255.255.0 2.2.2.2
Switch(config) #ip route 192.168.2.0 255.255.255.0 3.3.3.2
Switch(config) #ip route 192.168.3.0 255.255.255.0 3.3.3.2
Switch(config) #ip route 192.168.4.0 255.255.255.0 3.3.3.2
Switch(config) #ip route 192.168.5.0 255.255.255.0 3.3.3.2
Switch(config) #ip route 192.168.6.0 255.255.255.0 3.3.3.2
Switch(config) #ip route 192.168.7.0 255.255.255.0 3.3.3.2
Switch (config) #
    Multilayer Switch0 配置好路由如下,其它三层交换机类似:
Switch#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       {\tt N1} - OSPF NSSA external type 1, {\tt N2} - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     2.0.0.0/8 is directly connected, FastEthernet0/1
C
     3.0.0.0/8 is directly connected, FastEthernet0/3
C
     172.16.0.0/26 is subnetted, 1 subnets
C
        172.16.1.0 is directly connected, Vlan10
     192.168.0.0/24 is variably subnetted, 3 subnets, 2 masks
      192.168.0.0/26 [1/0] via 2.2.2.2
S
       192.168.0.64/26 [1/0] via 2.2.2.2
S
       192.168.0.128/25 [1/0] via 2.2.2.2
S
    192.168.1.0/24 [1/0] via 2.2.2.2
   192.168.2.0/24 [1/0] via 3.3.3.2
S
```

此时,不同网段能够互相 ping,以办公计算机 ping 服务器为例:

192.168.3.0/24 [1/0] via 3.3.3.2

192.168.4.0/24 [1/0] via 3.3.3.2


```
Physical
           Config
                     Desktop
                                Programming
                                                Attributes
Command Prompt
 Reply from 192.168.0.66: bytes=32 time=8ms TTL=127
 Reply from 192.168.0.66: bytes=32 time=12ms TTL=127
 Ping statistics for 192.168.0.66:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
 Approximate round trip times in milli-seconds:
     Minimum = 1ms, Maximum = 12ms, Average = 5ms
 C:\>ping 172.16.1.2
 Pinging 172.16.1.2 with 32 bytes of data:
 Request timed out.
 Request timed out.
 Reply from 172.16.1.2: bytes=32 time=25ms TTL=126
 Reply from 172.16.1.2: bytes=32 time=10ms TTL=126
 Ping statistics for 172.16.1.2:
    Packets: Sent = 4, Received = 2, Lost = 2 (50% loss),
 Approximate round trip times in milli-seconds:
     Minimum = 10ms, Maximum = 25ms, Average = 17ms
 C:\>ping 172.16.1.2
 Pinging 172.16.1.2 with 32 bytes of data:
 Reply from 172.16.1.2: bytes=32 time=1ms TTL=126
 Reply from 172.16.1.2: bytes=32 time=23ms TTL=126
 Reply from 172.16.1.2: bytes=32 time<1ms TTL=126
 Reply from 172.16.1.2: bytes=32 time=2ms TTL=126
 Ping statistics for 172.16.1.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
 Approximate round trip times in milli-seconds:
     Minimum = 0ms, Maximum = 23ms, Average = 6ms
```

5.3 学院网站设计与 Web 服务连接

参照同济大学电子与信息工程学院网站的菜单项,编写简单的 html 代码如下:

用办公计算机输入服务器地址,可以打开编写的网页:

装 订 线

同僚大學

所有学院计算机都能够使用服务器提供的 Web 服务。