What is claimed is:

1. A compound of formula I

$$R_1$$
 R_2
 R_1
 R_4
 R_4
 R_4

5 wherein

R₁ and R₂ are each independently H, C₁-C₁₀alkyl optionally substituted with one or more halogen, hydroxy, C₁-C₄alkoxy, CO₂R₆, CONR₇R₈, C₃-C₇cycloalkyl or optionally substituted phenyl groups, or

phenyl optionally substituted with one to three halogen, hydroxy, C₁-C₂-haloalkyl, C₄-C₄-koxy, CO₂-R₂, NR₄-R₄, or CN groups:

C₆haloalkyl, C₁-C₄alkoxy, CO₂R₉, NR₁₀R₁₁ or CN groups;

 R_3 is H, C_1 - C_6 alkyl optionally substituted with a phenyl, naphthyl or heteroaryl group each group optionally substituted with one to three C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_4 alkoxy, hydroxy, CHO, NO_2 , CN, CO_2R_{12} or $NR_{13}R_{14}$ groups,

phenyl optionally substituted with one to three halogen, NO₂, CN, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, phenyl, phenoxy, benzyl, benzyloxy, CONR₁₅R₁₆, SO₂NR₁₅R₁₆, CO₂R₁₇, NR₁₈R₁₉ or CH₂CO₂R₂₀ groups,

naphthyl optionally substituted with one to three halogen, NO₂, CN, hydroxy, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, phenyl, phenoxy, benzyl, benzyloxy, CO₂R₁₇, NR₁₈R₁₉ or CH₂CO₂R₂₀ groups,

C₅-C₇cycloheteroalkyl optionally substituted with one to three halogen, NO₂, CN, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₄alkoxy, CO₂R₁₇ or NR₁₈R₁₉ groups, or

15

20

	heteroaryl optionally substituted with one to three halogen, NO_2 , CN , C_1 -
	C ₆ alkyl, C ₁ -C ₆ haloalkyl, C ₁ -C ₄ alkoxy, CO ₂ R ₁₇ or NR ₁₈ R ₁₉ groups;
	R ₄ is phenyl optionally substituted with one to three halogen, NO ₂ , CN, hydroxy,
	C_1 - C_6 alkyl, C_1 - C_6 alkylthio, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, phenyl,
5	phenoxy, benzyl, benzyloxy, SOnR26, SO2NR21R22, CO2R23 or
	NR ₂₄ R ₂₅ groups,
	cycloheteroalkyl optionally substituted with one or more halogen, NO2,
	CN, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 alkylthio, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy,
	phenyl, phenoxy, benzyl, benzyloxy, SO _n R ₂₆ , SO ₂ NR ₂₁ ,R ₂₂ , CO ₂ R ₂₃
10	or $NR_{24}R_{25}$ groups, or
	heteroaryl optionally substituted with one or more halogen, NO2, CN,
	hydroxy, C_1 - C_6 alkyl, C_1 - C_6 alkylthio, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy,
	phenyl, phenoxy, benzyl, benzyloxy, SO _n R ₂₆ , SO ₂ NR ₂₁ R ₂₂ , CO ₂ R ₂₃
	or NR ₂₄ R ₂₅ groups;
15	R₅ is H, C₁-C₃alkyl or haloalkyl;
	$R_6,R_9,R_{12},R_{17},R_{20},R_{26}$ and R_{27} are each independently H or a $C_1\text{-}C_6\text{alkyl},$
	C_3 - C_7 cycloalkyl, C_1 - C_6 haloalkyl, phenyl, C_5 - C_7 cycloheteroalkyl or
	heteroaryl group each optionally substituted;
	n is 0 or an integer of 1 or 2;
20	$R_7,R_8,R_{10},R_{11},R_{13},R_{14},R_{18},R_{19},R_{21},R_{22},R_{24}$ and R_{25} are each
	independently H or a C ₁ -C ₆ alkyl, C ₃ -C ₇ cycloalkyl, C ₁ -C ₆ haloalkyl, phenyl,
	C ₅ -C ₇ cycloheteroalkyl or heteroaryl group each optionally substituted or
	each of R_7 and R_8 or R_{10} and R_{11} or R_{13} and R_{14} or R_{18} and R_{19} or R_{21} and
	R_{22} or R_{24} and R_{25} may be taken together with the nitrogen atom to which
25	they are attached to form a 5- to 7-membered ring optionally containing
	another heteroatom selected from O, N or S; and
	R ₁₅ and R ₁₆ are each independently H, NH ₂ , CH ₂ CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₂ NH ₂
	or a C ₁ -C ₆ alkyl group optionally substituted with one or two CN, OR ₅ ,
20	NR ₁₃ R ₁₄ , CO ₂ R ₁₇ or C ₃ -C ₇ cycloalkyl group;
30	phenyl optionally substituted with one or two halogen, OR ₅ , CN, NR ₁₃ R ₁₄ ,
	CO ₂ R ₁₇ , COR ₂₇ , an optionally substituted C ₁ -C ₈ alkyl group or an
	optionally substituted C ₂ -C ₆ alkenyl group;
	benzyl optionally substituted with one or two halogen, OR-, COR-, or a

5

15

 C_1 - C_6 alkyl group optionally substituted with one OR $_5$ or pyridinyl optionally substituted with one or two halogen, OR $_5$, NR $_{13}$ R $_{14}$ or CO_2 R $_{17}$ groups or

R₁₅ and R₁₆ may be taken together with the atom to which they are attached to form an optionally substituted 5- to 7-membered ring optionally containing one double bond, a benzofused ring or an additional heteroatom selected from O, N or S; or the stereoisomers thereof or the pharmaceutically acceptable salts thereof.

- The compound according to claim 1 wherein R₃ is an optionally
 substituted phenyl or heteroaryl group.
 - 3. The compound according to claim 1 wherein R_1 and R_2 are H.
 - 4. The compound according to claim 1 wherein R_4 is a C_5 C_7 cycloheteroalkyl, heteroaryl or phenyl group each optionally substituted with one or two halogen, CN, NO₂, CF₃, methoxy, carboxy or SOR₂₆ groups.
 - 5. The compound according to claim 2 wherein R_1 and R_2 are H.
 - 6. The compound according to claim 2 wherein R₄ is a thienyl, pyridyl or phenyl group, each optionally substituted with one or two halogen, CN, NO₂, CF₃, methoxy, carboxy or SOCH₃ groups.
- 7. The compound according to claim 3 wherein R₃ is a phenyl group substituted with one or two halogen, CONR₁₅R₁₆ or SO₂NR₁₅R₁₆ groups.
 - 8. The compound according to claim 7 wherein R_4 is a phenyl group substituted with one NO_2 or CF_3 group.
 - 9. The compound according to claim 1 selected from the group consisting of:
- 25 2-(4-chlorophenyl)-4-[3-(trifluoromethyl)phenyl]-1,2-dihydro-3H-pyrazolo-[3,4-d]thieno[2,3-b]pyridin-3-one;
 - 2-(4-fluorophenyl)-4-[3-(trifluoromethyl)phenyl]-1,2-dihydro-3H-pyrazolo-[3,4-d]thieno[2,3-b]pyridin-3-one;

5

10

15

20

- N-(3,4-dihydroxybenzyl)-3-{3-oxo-4-[3-(trifluoromethyl)phenyl]-3,6-dihydropyrazolo[3,4-d]thieno[2,3-b]pyridin-2(1H)-yl}benzamide;
 N-[3-(1-hydroxyethyl)phenyl]-4-{3-oxo-4-[3-(trifluoromethyl)phenyl]-3,6-dihydropyrazolo[3,4-d]thieno[2,3-b]pyridin-2(1H)-yl}benzamide;
 ({[4-(6-methyl-3-oxo-4-[3-(trifluoromethyl)phenyl]-dihydropyrazolo-[3,4-d]thieno[2,3-b]pyridin-2(1H)-yl)phenyl]sulfonyl}amino)acetic acid; the stereoisomers thereof; or the pharmaceutically acceptable salts thereof.
 - 10. A method for the treatment of an immune disorder related to or affected by the immune regulatory protein B7-1 which comprises providing a patient in need thereof an immunotherapeutically effective amount of a compound of formula

$$R_1$$
 R_2
 R_3
 R_4
 R_4
(I)

wherein

R₁ and R₂ are each independently H, C₁-C₁₀alkyl optionally substituted with one or more halogen, hydroxy, C₁-C₄alkoxy, CO₂R₆, CONR₇R₈, C₃-C₇cycloalkyl or optionally substituted phenyl groups, or phenyl optionally substituted with one to three halogen, hydroxy, C₁-C₆haloalkyl, C₁-C₄alkoxy, CO₂R₉, NR₁₀R₁₁ or CN groups;

 R_3 is H, C_1 - C_6 alkyl optionally substituted with a phenyl, naphthyl or heteroaryl group each group optionally substituted with one to three C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_4 alkoxy, hydroxy, CHO, NO₂, CN, CO₂R₁₂ or NR₁₃R₁₄ groups,

phenyl optionally substituted with one to three halogen, NO₂, CN, hydroxy, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, phenyl, phenoxy, benzyl,

	benzyloxy, CONR ₁₅ R ₁₆ , SO ₂ NR ₁₅ R ₁₆ , CO ₂ R ₁₇ , NR ₁₈ R ₁₉ or
	CH ₂ CO ₂ R ₂₀ groups,
	naphthyl optionally substituted with one to three halogen, NO2, CN,
	hydroxy, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, phenyl, phenoxy,
5	benzyl, benzyloxy, CO ₂ R ₁₇ , NR ₁₈ R ₁₉ or CH ₂ CO ₂ R ₂₀ groups,
	C_5 - C_7 cycloheteroalkyl optionally substituted with one to three halogen,
	NO ₂ , CN, C ₁ -C ₆ alkyl, C ₁ -C ₆ haloalkyl, C ₁ -C ₄ alkoxy, CO ₂ R ₁₇ or
	NR ₁₈ R ₁₉ groups, or
	heteroaryl optionally substituted with one to three halogen, NO_2 , CN , C_1 -
10	C ₆ alkyl, C ₁ -C ₆ haloalkyl, C ₁ -C ₄ alkoxy, CO ₂ R ₁₇ or NR ₁₈ R ₁₉ groups;
	R ₄ is phenyl optionally substituted with one to three halogen, NO ₂ , CN, hydroxy,
	C_1 - C_6 alkyl, C_1 - C_6 alkylthio, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, phenyl,
	phenoxy, benzyl, benzyloxy, SOnR26, SO2NR21R22, CO2R23 or
	NR ₂₄ R ₂₅ groups,
15	cycloheteroalkyl optionally substituted with one or more halogen, NO ₂ ,
	CN, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 alkylthio, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy,
	phenyl, phenoxy, benzyl, benzyloxy, SO _n R ₂₆ , SO ₂ NR ₂₁ ,R ₂₂ , CO ₂ R ₂₃
	or NR ₂₄ R ₂₅ groups, or
	heteroaryl optionally substituted with one or more halogen, NO ₂ , CN,
20	hydroxy, C_1 - C_6 alkyl, C_1 - C_6 alkylthio, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy,
	phenyl, phenoxy, benzyl, benzyloxy, SO _n R ₂₆ , SO ₂ NR ₂₁ R ₂₂ , CO ₂ R ₂₃
	or NR ₂₄ R ₂₅ groups;
	R₅ is H, C₁-C₃alkyl or haloalkyl;
	R_6 , R_9 , R_{12} , R_{17} , R_{20} , R_{26} and R_{27} are each independently H or a C_1 - C_6 alkyl,
25	C ₃ -C ₇ cycloalkyl, C ₁ -C ₆ haloalkyl, phenyl, C ₅ -C ₇ cycloheteroalkyl or
	heteroaryl group each optionally substituted;
	n is 0 or an integer of 1 or 2;
	R_7 , R_8 , R_{10} , R_{11} , R_{13} , R_{14} , R_{18} , R_{19} , R_{21} , R_{22} , R_{24} and R_{25} are each
	independently H or a C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl, C_1 - C_6 haloalkyl, phenyl,
30	C ₅ -C ₇ cycloheteroalkyl or heteroaryl group each optionally substituted or
	each of R_7 and R_8 or R_{10} and R_{11} or R_{13} and R_{14} or R_{18} and R_{19} or R_{21} and
	R ₂₂ or R ₂₄ and R ₂₅ may be taken together with the nitrogen atom to which

they are attached to form a 5- to 7-membered ring optionally containing another heteroatom selected from O, N or S; and R₁₅ and R₁₆ are each independently H, NH₂, CH₂CH₂OCH₂CH₂OCH₂CH₂NH₂ or a C₁-C₆alkyl group optionally substituted with one or two CN, OR₅, 5 NR₁₃R₁₄, CO₂R₁₇ or C₃-C₇cycloalkyl group; phenyl optionally substituted with one or two halogen, OR₅, CN, NR₁₃R₁₄, CO₂R₁₇, COR₂₇, an optionally substituted C₁-C₈alkyl group or an optionally substituted C2-C6alkenyl group; benzyl optionally substituted with one or two halogen, OR5, COR27 or a 10 C₁-C₆alkyl group optionally substituted with one OR₅ or pyridinyl optionally substituted with one or two halogen, OR₅, NR₁₃R₁₄ or CO₂R₁₇ groups or R₁₅ and R₁₆ may be taken together with the atom to which they are attached to form an optionally substituted 5- to 7-membered ring 15 optionally containing one double bond, a benzofused ring or an additional heteroatom selected from O, N or S; or the stereoisomers thereof or the pharmaceutically acceptable salts thereof.

- 11. The method according to claim 10 wherein said disorder is transplant rejection.
- 20 12. The method according to claim 10 wherein said disorder is an autoimmune disease.
 - 13. The method according to claim 10 wherein said disorder is graft vs. host disease.
- 14. The method according to claim 12 wherein said disease is multiple25 sclerosis or rheumatoid arthritis.
 - 15. A pharmaceutical composition which comprises a pharmaceutically acceptable carrier and an effective amount of a compound of formula I

$$R_1$$
 R_2
 R_3
 R_4
 R_4

(I)

wherein

5

10

15

20

25

R₁ and R₂ are each independently H, C₁-C₁₀alkyl optionally substituted with one or more halogen, hydroxy, C₁-C₄alkoxy, CO₂R₆, CONR₇R₈, C₃-C₇cycloalkyl or optionally substituted phenyl groups, or

phenyl optionally substituted with one to three halogen, hydroxy, C₁-C₆haloalkyl, C₁-C₄alkoxy, CO₂R₉, NR₁₀R₁₁ or CN groups;

R₃ is H, C₁-C₆alkyl optionally substituted with a phenyl, naphthyl or heteroaryl group each group optionally substituted with one to three C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₄alkoxy, hydroxy, CHO, NO₂, CN, CO₂R₁₂ or NR₁₃R₁₄ groups,

phenyl optionally substituted with one to three halogen, NO₂, CN, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, phenyl, phenoxy, benzyl, benzyloxy, CONR₁₅R₁₆, SO₂NR₁₅R₁₆, CO₂R₁₇, NR₁₈R₁₉ or CH₂CO₂R₂₀ groups,

naphthyl optionally substituted with one to three halogen, NO₂, CN, hydroxy, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, phenyl, phenoxy, benzyl, benzyloxy, CO₂R₁₇, NR₁₈R₁₉ or CH₂CO₂R₂₀ groups,

C₅-C₇cycloheteroalkyl optionally substituted with one to three halogen, NO₂, CN, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₄alkoxy, CO₂R₁₇ or NR₁₈R₁₉ groups, or

heteroaryl optionally substituted with one to three halogen, NO₂, CN, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₄alkoxy, CO₂R₁₇ or NR₁₈R₁₉ groups; R₄ is phenyl optionally substituted with one to three halogen, NO₂, CN, hydroxy, C₁-C₆alkyl, C₁-C₆alkylthio, C₁-C₆haloalkyl, C₁-C₆alkoxy, phenyl,

- 29 -

	phenoxy, benzyl, benzyloxy, SO_nR_{26} , $SO_2NR_{21}R_{22}$, CO_2R_{23} or
	NR ₂₄ R ₂₅ groups,
	cycloheteroalkyl optionally substituted with one or more halogen, NO2,
	CN, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 alkylthio, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy
5	phenyl, phenoxy, benzyl, benzyloxy, SO _n R ₂₆ , SO ₂ NR ₂₁ ,R ₂₂ , CO ₂ R ₂₃
	or NR ₂₄ R ₂₅ groups, or
	heteroaryl optionally substituted with one or more halogen, NO2, CN,
	hydroxy, C_1 - C_6 alkyl, C_1 - C_6 alkylthio, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy,
	phenyl, phenoxy, benzyl, benzyloxy, SO_nR_{26} , $SO_2NR_{21}R_{22}$, CO_2R_{23}
10	or NR ₂₄ R ₂₅ groups;
	R_5 is H, C_1 - C_3 alkyl or haloalkyl;
	$R_6,R_9,R_{12},R_{17},R_{20},R_{26}$ and R_{27} are each independently H or a C_1 - C_6 alkyl,
	C_{3} - C_{7} cycloalkyl, C_{1} - C_{6} haloalkyl, phenyl, C_{5} - C_{7} cycloheteroalkyl or
	heteroaryl group each optionally substituted;
15	n is 0 or an integer of 1 or 2;
	$R_7,R_8,R_{10},R_{11},R_{13},R_{14},R_{18},R_{19},R_{21},R_{22},R_{24}$ and R_{25} are each
	independently H or a C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl, C_1 - C_6 haloalkyl, phenyl,
	C ₅ -C ₇ cycloheteroalkyl or heteroaryl group each optionally substituted or
	each of R_7 and R_8 or R_{10} and R_{11} or R_{13} and R_{14} or R_{18} and R_{19} or R_{21} and
20	R_{22} or R_{24} and R_{25} may be taken together with the nitrogen atom to which
	they are attached to form a 5- to 7-membered ring optionally containing
	another heteroatom selected from O, N or S; and
	R ₁₅ and R ₁₆ are each independently H, NH ₂ , CH ₂ CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₂ NH ₂
	or a C_1 - C_6 alkyl group optionally substituted with one or two CN, OR ₅ ,
25	NR ₁₃ R ₁₄ , CO ₂ R ₁₇ or C ₃ -C ₇ cycloalkyl group;
	phenyl optionally substituted with one or two halogen, OR ₅ , CN, NR ₁₃ R ₁₄ ,
	CO ₂ R ₁₇ , COR ₂₇ , an optionally substituted C ₁ -C ₈ alkyl group or an
	optionally substituted C ₂ -C ₆ alkenyl group;
	benzyl optionally substituted with one or two halogen, OR ₅ , COR ₂₇ or a
30	C₁-C₅alkyl group optionally substituted with one OR₅ or
	pyridinyl optionally substituted with one or two halogen, OR_5 , $NR_{13}R_{14}$ or
	CO₂R₁7 groups or
	R_{15} and R_{16} may be taken together with the atom to which they are

attached to form an optionally substituted 5- to 7-membered ring optionally containing one double bond, a benzofused ring or an additional heteroatom selected from O, N or S; or the stereoisomers thereof or the pharmaceutically acceptable salts thereof.

- 5 16. The composition according to claim 15 having a formula I compound wherein R₃ is an optionally substituted phenyl, thienyl or pyridyl group.
 - 17. The composition according to claim 16 having a formula I compound wherein R_1 and R_2 are H.
- 18. The composition according to claim 17 having a formula I compound wherein R₄ is a thienyl, pyridyl or phenyl group each optionally substituted with one or two halogen, CN, NO₂, CF₃, methoxy, carboxy or SOCH₃ groups.
 - 19. The composition according to claim 18 having a formula I compound wherein R_3 is a phenyl group substituted with one or two halogen, CONR₁₅R₁₆ or SO₂NR₁₅R₁₆ groups.
 - 20. A process for the preparation of a compound of formula I

$$R_1$$
 R_2
 R_1
 R_2
 R_3
 R_4

(I)

wherein

15

20

R₁ and R₂ are each independently H, C₁-C₁₀alkyl optionally substituted with one or more halogen, hydroxy, C₁-C₄alkoxy, CO₂R₆, CONR₇R₈, C₃-C₇cycloalkyl or optionally substituted phenyl groups, or phenyl optionally substituted with one to three halogen, hydroxy, C₁-C₆haloalkyl, C₁-C₄alkoxy, CO₂R₉, NR₁₀R₁₁ or CN groups;

	R ₃ is H, C ₁ -C ₆ alkyl optionally substituted with a phenyl, naphthyl or heteroaryl
	group each group optionally substituted with one to three C_1 - C_6 alkyl,
	C ₁ -C ₆ haloalkyl, C ₁ -C ₄ alkoxy, hydroxy, CHO, NO ₂ , CN, CO ₂ R ₁₂ or
	NR ₁₃ R ₁₄ groups,
5	phenyl optionally substituted with one to three halogen, NO2, CN, hydroxy
	C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, phenyl, phenoxy, benzyl,
	benzyloxy, $CONR_{15}R_{16}$, $SO_2NR_{15}R_{16}$, CO_2R_{17} , $NR_{18}R_{19}$ or
	CH ₂ CO ₂ R ₂₀ groups,
	naphthyl optionally substituted with one to three halogen, NO2, CN,
10	hydroxy, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, phenyl, phenoxy,
	benzyl, benzyloxy, CO ₂ R ₁₇ , NR ₁₈ R ₁₉ or CH ₂ CO ₂ R ₂₀ groups,
	C ₅ -C ₇ cycloheteroalkyl optionally substituted with one to three halogen,
	NO ₂ , CN, C ₁ -C ₆ alkyl, C ₁ -C ₆ haloalkyl, C ₁ -C ₄ alkoxy, CO ₂ R ₁₇ or
	NR ₁₈ R ₁₉ groups, or
15	heteroaryl optionally substituted with one to three halogen, NO ₂ , CN, C ₁ -
	C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_4 alkoxy, CO_2R_{17} or $NR_{18}R_{19}$ groups;
	R ₄ is phenyl optionally substituted with one to three halogen, NO ₂ , CN, hydroxy
	C_1 - C_6 alkyl, C_1 - C_6 alkylthio, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, phenyl,
	phenoxy, benzyl, benzyloxy, SO _n R ₂₆ , SO ₂ NR ₂₁ R ₂₂ , CO ₂ R ₂₃ or
20	NR ₂₄ R ₂₅ groups,
	cycloheteroalkyl optionally substituted with one or more halogen, NO ₂ ,
	CN, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 alkylthio, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy
	phenyl, phenoxy, benzyl, benzyloxy, SO _n R ₂₆ , SO ₂ NR ₂₁ ,R ₂₂ , CO ₂ R ₂₃
	or NR ₂₄ R ₂₅ groups, or
25	heteroaryl optionally substituted with one or more halogen, NO ₂ , CN,
	hydroxy, C_1 - C_6 alkyl, C_1 - C_6 alkylthio, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy,
	phenyl, phenoxy, benzyl, benzyloxy, SO _n R ₂₆ , SO ₂ NR ₂₁ R ₂₂ , CO ₂ R ₂₃
	or NR ₂₄ R ₂₅ groups;
	R₅ is H, C₁-C₃alkyl or haloalkyl;
30	R_6 , R_9 , R_{12} , R_{17} , R_{20} , R_{26} and R_{27} are each independently H or a C_1 - C_6 alkyl,
	C ₃ -C ₇ cycloalkyl, C ₁ -C ₆ haloalkyl, phenyl, C ₅ -C ₇ cycloheteroalkyl or
	heteroaryl group each optionally substituted;
	n is 0 or an integer of 1 or 2;

5

10

15

20

25

R₇, R₈, R₁₀, R₁₁, R₁₃, R₁₄, R₁₈, R₁₉, R₂₁, R₂₂, R₂₄ and R₂₅ are each independently H or a C₁-C₆alkyl, C₃-C₇cycloalkyl, C₁-C₆haloalkyl, phenyl, C₅-C₇cycloheteroalkyl or heteroaryl group each optionally substituted or each of R₇ and R₈ or R₁₀ and R₁₁ or R₁₃ and R₁₄ or R₁₈ and R₁₉ or R₂₁ and R₂₂ or R₂₄ and R₂₅ may be taken together with the nitrogen atom to which they are attached to form a 5- to 7-membered ring optionally containing another heteroatom selected from O, N or S; and

R₁₅ and R₁₆ are each independently H, NH₂, CH₂CH₂OCH₂CH₂OCH₂CH₂NH₂ or a C₁-C₆alkyl group optionally substituted with one or two CN, OR₅, NR₁₃R₁₄, CO₂R₁₇ or C₃-C₇cycloalkyl group;

phenyl optionally substituted with one or two halogen, OR₅, CN, NR₁₃R₁₄, CO₂R₁₇, COR₂₇, an optionally substituted C₁-C₈alkyl group or an optionally substituted C₂-C₆alkenyl group;

benzyl optionally substituted with one or two halogen, OR₅, COR₂₇ or a C₁-C₆alkyl group optionally substituted with one OR₅ or pyridinyl optionally substituted with one or two halogen, OR₅, NR₁₃R₁₄ or CO₂R₁₇ groups or

R₁₅ and R₁₆ may be taken together with the atom to which they are attached to form an optionally substituted 5- to 7-membered ring optionally containing one double bond, a benzofused ring or an additional heteroatom selected from O, N or S; or

which process comprises reacting a compound of formula VI

$$R_1 \xrightarrow{R_2} Cl CO_2C_2H_5$$

$$R_1 \xrightarrow{(VI)} R_4$$

wherein R₁, R₂ and R₄ are described hereinabove with a hydrazine, R₃NHNH₂, to give a 3-hydrazinylthieno-[2,3-b]pyridine intermediate; and cyclizing said intermediate to give the desired compound of formula I.