1. Introduction

$$\begin{split} \nabla^2 T(r) &= -\frac{\alpha}{\sqrt{2\pi r_b^2}} e^{-r^2/2r_b^2} \\ \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T(r)}{\partial r} \right) &= -\frac{\alpha}{\sqrt{2\pi r_b^2}} e^{-r^2/2r_b^2} \\ \frac{\partial}{\partial r} \left(r \frac{\partial T(r)}{\partial r} \right) &= -\frac{\alpha r}{\sqrt{2\pi r_b^2}} e^{-r^2/2r_b^2} \end{split}$$

Integrate both sides and set $a = \alpha/\sqrt{2\pi}$.

$$r\frac{\partial T(r)}{\partial r} = ar_b e^{-r^2/2r_b^2} + C$$
$$\frac{\partial T(r)}{\partial r} = \frac{ar_b}{r} e^{-r^2/2r_b^2} + \frac{C}{r}$$

Integrate again over a region of $0 < r < r_0$:

$$\begin{split} T(r')|_r^{r_0} &= \Delta T = \int_r^{r_0} dr' \left(\frac{ar_b}{r'} e^{-r'^2/2r_b^2} + \frac{C}{r'} \right) \\ &= \frac{ar_b}{2} \left[\text{Ei}(-r_0^2/2r_b^2) - \text{Ei}(-r^2/2r_b^2) \right] + C \ln(r_0/r) \end{split}$$

Or for a uniformly rastered heat load over a circular area radius R

$$\Delta T = \int_{r}^{r_0} dr \left(\frac{\alpha \Theta(R-r)}{\pi R^2 r} + \frac{C}{r} \right)$$

for r > R this is just $T(r) = C \ln(r/r_0)$. For r < R

$$T(r) = \int_{r}^{r_0} dr \left(\frac{\alpha \Theta(R-r)}{\pi R^2 r} + \frac{C}{r} \right)$$
$$= \frac{\alpha}{\pi R^2} \ln (R/r) + C \ln (r_0/r)$$

Now impose B.C.s $T(r_0) = T_0$.

b

Source	Value	$\delta P/P(\%)$
Foil Polarization	0.08005	0.57
High Current Extrapolation	_	0.50
Null Asymmetry (Cu Foil)	0.00%	0.22
Beam Bleedthrough	_	0.18
A_{zz}	0.75421	0.16
Dead Time Correction	0.148%	0.15
Other	_	0.13
	Total	0.85