Problem Set 5

Problem 1: Normal random variables

Let X and Y be normal random variables with means 0 and 2, respectively, and variances 1 and 9, respectively. Find the following, using the standard normal table. Express your answers to an accuracy of 4 decimal places.

- 1. P(X > 0.75) =
- 2. $P(X \le -1.25) =$
- 3. Let Z=(Y-3)/4. Find the mean and the variance of Z. $\mathbf{E}[Z]=$ $\mathrm{var}(Z)=$
- 4. $\mathbf{P}(-1 \le Y \le 2) =$

Problem 2: CDF

For each one of the following figures, identify if it is a valid CDF. The value of the CDF at points of discontinuity is indicated with a small solid circle.

Problem 3: A Joint PDF given by a simple formula

Random variables X and Y are distributed according to the joint PDF

$$f_{X,Y}(x,y) = \begin{cases} ax, & \text{if } 1 \le x \le 2 \text{ and } 0 \le y \le x, \\ 0, & \text{otherwise.} \end{cases}$$

1. Find the constant a.

a =

2. Determine the marginal PDF $f_Y(y)$. (Your answer can be either numerical or algebraic functions of y).

For
$$0 \le y \le 1$$
, $f_Y(y) =$

For
$$1 < y \le 2$$
,

$$f_Y(y) =$$

3. Determine the conditional expectation of 1/X given that Y=3/2.

$$\mathbf{E}[1/X \mid Y = 3/2] =$$

Problem 4: Paul goes to the casino

Paul is vacationing in Monte Carlo. On any given night, he takes X dollars to the casino and returns with Y dollars. The random variable X has the PDF shown in the figure. Conditional on X = x, the continuous random variable Y is uniformly distributed between zero and 2x.

1. Determine the joint PDF $f_{X,Y}(x,y)$.

If
$$0 < x < 40$$
 and $0 < y < 2x$, $f_{X,Y}(x,y) =$

If
$$y < 0$$
 or $y > 2x$,
 $f_{X,Y}(x,y) =$

- 2. On any particular night, Paul makes a profit of Z = Y X dollars. Find the probability that Paul makes a positive profit (i.e., $\mathbf{P}(Z > 0)$):
- 3. Find the PDF of Z. Express your answers in terms of z using standard notation. Hint: Start by finding $f_{Z|X}(z|x)$.

If
$$0 < z < 40$$
, $f_Z(z) =$

If
$$-40 < z < 0$$
, $f_Z(z) =$

If
$$z < -40$$
 or $z > 40$, $f_Z(z) =$

4. What is $\mathbf{E}[Z]$? $\mathbf{E}[Z] =$

Problem 5: A joint PDF on a triangular region

This figure below describes the joint PDF of the random variables X and Y. These random variables take values in [0, 2] and [0, 1], respectively. At x = 1, the value of the joint PDF is 1/2.

- 1. Are X and Y independent?
- 2. Find $f_X(x)$. Express your answers in terms of x using standard notation.

If
$$0 < x < 1$$
,
 $f_X(x) =$
If $1 < x < 2$,
 $f_X(x) =$

3. Find $f_{Y|X}(y \mid 0.5)$.

If
$$0 < y < 1/2$$
, $f_{Y|X}(y \mid 0.5) =$

4. Find $f_{X|Y}(x \mid 0.5)$.

If
$$1/2 < x < 1$$
, $f_{X|Y}(x \mid 0.5) =$

If
$$1 < x < 3/2$$
, $f_{X|Y}(x \mid 0.5) =$

5. Let
$$R = XY$$
 and let A be the event $\{X < 0.5\}$. Evaluate $\mathbf{E}[R \mid A]$. $\mathbf{E}[R \mid A] =$

Problem 6: True or False II

Determine whether each of the following statement is true (i.e., always true) or false (i.e., not always true).

- 1. Let X be a random variable that takes values between 0 and c only, for some $c \ge 0$, so that $\mathbf{P}(0 \le X \le c) = 1$. Then, $\mathrm{var}(X) \le c^2/4$.
- 2. X and Y are continuous random variables. If $X \sim N(\mu, \sigma^2)$ (i.e., normal with mean μ and variance σ^2), Y = aX + b, and a > 0, then $Y \sim N(a\mu + b, a\sigma^2)$.
- 3. The expected value of a non-negative continuous random variable X, which is defined by $\mathbf{E}[X] = \int_0^\infty x f_X(x) dx$, also satisfies $\mathbf{E}[X] = \int_0^\infty \mathbf{P}(X > t) \mathrm{d}t$.

Problem 7: Bayes' rule

Let K be a discrete random variable with PMF

$$p_K(k) = \begin{cases} 1/3, & \text{if } k = 1, \\ 2/3, & \text{if } k = 2, \\ 0 & \text{otherwise.} \end{cases}$$

Conditional on K = 1 or 2, random variable Y is exponentially distributed with parameter 1 or 1/2, respectively.

Using Bayes' rule, find the conditional PMF $p_{K|Y}(k \mid y)$. Which of the following is the correct expression for $p_{K|Y}(2 \mid y)$ when $y \geq 0$?