N_1 Fonction exponentielle

- D Fonction exponentielle
- La fonction exponentielle noté exp est la fonction définie, dérivable et continue sur $\mathbb R$ telle que :

$$[\exp(x)]' = \exp'(x) = \exp(x)$$
 et $\exp(0) = 1$

- R Remarques
- $\bullet \exp(x)$ est très souvent notée e^x
- \bullet Pour $x \in \mathbb{R}$, $\exp(x) \times \exp(-x) = 1$
- La dérivée de $\exp(x)$ est e^x

- $\exp(1) = e$ et $\exp(0) = e^0 = 1$
- ullet Pour $x\in\mathbb{R}$, $\exp(x)>0$ ou $\mathrm{e}^x>0$
- Une primitive de $\exp(x)$ est e^x

P Tableau de variation

La fonction $\exp(x)$ est définie et dérivable sur $\mathbb R$. La fonction ${f e}^x$ est **croissante** sur $\mathbb R$. On a de plus,

$$\lim_{x \to -\infty} \mathrm{e}^x = 0$$
 et $\lim_{x \to +\infty} \exp(x) = +\infty$:

P Représentation graphique

Dans un repère, la courbe représentative de la fonction $\exp(x) = e^x$ a pour asymptote horizontale l'axe des abscisses lorsque $x \to -\infty$:

- En utilisant la calculatrice donner e; e^2 ; exp(3); e^{-1} ; exp(-2). Arrondir au millième.
- Soit la fonction $g(x) = \exp(x-1) + 2$.
 - a) Donner l'ensemble de dérivabilté de g puis construire un tableau de variation de g.
 - **b)** Dans un repère, tracer la courbe représentative de g.
 - c) Déterminer graphiquement x tel que g(x) = 1.
- Soit la fonction h(x) telle que h'(x)=2h(x) et telle que h(0)=1.
 - a) Déterminer l'expression de h.
 - **b)** Construire un tableau de variation de *h*.
- Soit la fonction f(x) telle que f'(x) = -3f(x) + 2 et telle que f(0) = 3.
 - a) Déterminer l'expression de f.
 - **b)** Construire un tableau de variation de f.

N_2 Relation fonctionnelle

P Relation fonctionnelle

Pour a et b deux réels : $\mathbf{e}^{a+b} = \mathbf{e}^a \times \mathbf{e}^b$

Calculer les expressions suivantes :

$$1 e^{2+3}$$

$$e^{\frac{1}{3}+\frac{3}{4}}$$

$$\frac{3}{3} e^{\frac{2}{5} + a}$$

$$e^{y+x}$$

$$5 e^{2,7x+9}$$

$$6 e^{3x^2+2x+1}$$

$$7 e^{7x+}$$

$$e^{9+3,3y+6x+2x^2}$$

N₃ Exponentielle d'une différence

P Exponentielle d'une différence

Pour a et b deux réels : $e^{a-b} = e^a \div e^b = \frac{e^a}{e^b}$

Calculer les expressions suivantes :

$$1 e^{2-9,7}$$

$$e^{\frac{2}{5}-\frac{3}{4}}$$

$$\frac{1}{3}+x$$

$$A \qquad _{\mathbf{Q}}y-x$$

$$5 e^{4x-0.7}$$

$$e^{3x^2-2x-1}$$

$$7 e^{x-y+3}$$

$$e^{9-2y-6x+2x^2}$$

N_4 Exponentielle d'un produit

P Exponentielle d'un produit

Pour a et b deux réels et $n\in\mathbb{Z}$: $\mathrm{e}^{ab}=\left(\mathrm{e}^{a}\right)^{b}=\left(\mathrm{e}^{b}\right)^{a}$ et $\mathrm{e}^{na}=\left(\mathrm{e}^{a}\right)^{n}$

Calculer les expressions suivantes :

$$1 e^{2 \times 4}$$

$$e^{7x}$$

$$3 e^{2yx}$$

$$e^{0,5x}$$

$$5 e^{-4x}$$

$$6 e^{8y}$$

$$7 e^{xyz}$$

$$e^{3x+7y}$$

N_5 Dérivée de $e^{u(x)}$

 \square Dérivée de $e^{u(x)}$

Soit u une fonction dérivable sur un intervalle I de $\mathbb R$. Soit f une fonction définie sur I et par : $f(x)=e^{u(x)}$. f est dérivable sur I et : $f'(x)=u'(x)e^{u(x)}$

Donner les dérivées de :

$$1 e^{4x+1}$$

$$e^{2x+3}$$

$$3x - 4x^2 + e^{2x^2}$$

$$e^{\frac{1}{x}-7x^6}$$

$$e^{-\frac{1}{x^2} + \sqrt{3x-1}}$$

$$6 e^{\frac{4x+8}{\cos x}}$$

$$\begin{array}{c}
7 & e^{2\sin(7x-8)}
\end{array}$$

$$(x-1)e^{-x^2+3\sin^2x}$$

N_6 Primitive $u'(x)e^{u(x)}$

 \square Primitive $u'(x)e^{u(x)}$

Soit u une fonction dérivable sur un intervalle I de $\mathbb R$. Soit f une fonction définie sur I et par :

$$f(x)=u'(x)e^{u(x)}$$
 . Une primitive sur I de f est $F:F(x)=e^{u(x)}$

Donner une primitive de :

$$\boxed{1} \ \ 3e^x + x^2$$

$$2 2e^{3x+1}$$

$$\frac{3e^x}{e^x+1}$$

$$2e^x + \cos x$$

$$\frac{1}{e^{3x}}$$

$$\boxed{6} \quad 2 - x \mathrm{e}^{-x^2}$$

$$7 \quad e^{2x} - 5e^x + 8$$

$$\frac{2\mathrm{e}^x}{(\mathrm{e}^x+1)^2}$$

N_7 | Limites de $e^{u(x)}$ et autres limites

 \square Limites de $e^{u(x)}$

Soient u une fonction définie sur un intervalle I de $\mathbb R$ et $a\in\mathbb R$ et $b\in\mathbb R$:

- ullet si $\lim_{x o a}u(x)=b$ alors $\lim_{x o a}e^{u(x)}=e^b$

- ullet si $\lim_{x o -\infty} u(x) = -\infty$ alors $\lim_{x o -\infty} e^{u(x)} = 0$

- ullet si $\lim_{x o a}u(x)=+\infty$ alors $\lim_{x o a}e^{u(x)}=+\infty$
- si $\lim_{x \to -\infty} u(x) = b$ alors $\lim_{x \to +\infty} e^{u(x)} = e^b$ si $\lim_{x \to +\infty} u(x) = +\infty$ alors $\lim_{x \to +\infty} u(x) = +\infty$ si $\lim_{x \to -\infty} u(x) = +\infty$ alors $\lim_{x \to +\infty} e^{u(x)} = +\infty$ si $\lim_{x \to -\infty} u(x) = -\infty$ alors $\lim_{x \to +\infty} e^{u(x)} = 0$ si $\lim_{x \to -\infty} u(x) = b$ alors $\lim_{x \to -\infty} e^{u(x)} = e^b$ si $\lim_{x \to +\infty} u(x) = -\infty$ alors $\lim_{x \to +\infty} e^{u(x)} = 0$

P Autres limites

$$\bullet \lim_{x\to 0}\frac{\mathrm{e}^x-1}{x}=1$$

$$\bullet \lim_{x \to +\infty} \frac{e^x}{x} = +\infty$$

$$ullet \lim_{x o -\infty} x \mathrm{e}^x = 0$$

Déterminer les limites suivantes :

- $\lim_{x \to +\infty} e^{\frac{1}{x}}$
- $\lim_{x o -\infty}e^{3x+9}$
- $\lim_{x\to 0^+}e^{\frac{1}{x^2}}$
- $\lim_{x o 3^-}e^{rac{1}{x-3}}$

- $\lim_{x o +\infty} e^{rac{1}{x}}$
- $\lim_{x o -\infty}e^{3x+9}$
- $\lim_{x\to 0^+}e^{\frac{1}{x^2}}$
- $\lim_{x\to 3^-}e^{\frac{1}{x-3}}$

- $\lim_{x \to +\infty} e^{rac{1}{x}}$
- $\lim_{x o -\infty} e^{3x+9}$
- $\lim_{x\to 0^+}e^{\frac{1}{x^2}}$
- $\lim_{x\to 3^-}e^{\frac{1}{x-3}}$

- $\lim_{x\to +\infty}e^{\frac{1}{x}}$
- $\lim_{x\to 0} e^{3x+9}$
- $\lim_{x\to 0^+} e^{\frac{1}{x^2}}$
- $\lim_{x\to 3^-}e^{\frac{1}{x-3}}$

Lubrifiant d'un moteur $n^{\circ}1$

La température f en $^{\circ}C$ du lubrifiant d'un moteur varie en fonction du temps t exprimé en heures. La fonction f est définie sur $[0;+\infty[$ par $f(t)=30-10\mathrm{e}^{-0,1t}$

- Déterminer la température du lubrifiant à l'arrêt at au bout de 24 h.
- Déterminer $\lim_{t\to +\infty} f(t)$. Donner une interprétation graphique de ce résultat puis donner une signification concrète pour ce lubrifiant.
- Calculer f'(t), la dérivée de f sur $[0;+\infty[$. En déduire le sens de variations de la fonction f sur $[0; +\infty[$.
- Tracer la courbe représentative \mathcal{C}_f de f dans un repère adapté.
- A quel instant la température du lubrifiant est-elle de $28^{\circ}C$? Donner une valeur approchée à l'heure près.

Fonction g $n^{\circ}2$

Soit g une fonction définie par $g(x) = 2e^x + 2x + 3$ sur \mathbb{R} .

- Etudier le fonction g et la représenter la courbe représentative \mathcal{C}_g dans le repère $(0; \overrightarrow{i}, \overrightarrow{j})$.
- En déduire que l'équation g(x) = 0 admet une unique solution α .
- Donner l'arrondi au dixième de α .
- En déduire le signe de g(x).

$n^{\circ}3$ Fonction f

Soit f une fonction définie par $f(x)=2\mathrm{e}^x+x^2+3x$ sur \mathbb{R} .

- Déterminer les limites de f(x) quand x tend vers $+\infty$ et $-\infty$.
- Soit \mathcal{P} la parabole d'équation $y=x^2+3x$. Déterminer la limite de $f(x)-(x^2+3x)$ quand x tend vers $-\infty$. Que peut on en déduire graphiquement ?
- Etudier la positon de ${\cal P}$ et de la courbe représentative ${\cal C}_f$ de f. Etablir le tabeau de variation de f.
- Donner une valeur approchée de f(lpha) à 10^{-1} près.
- Déterminer une équation de la tangente à la courbe \mathcal{C}_f au point d'abscisse 0.

$n^{\circ}4$ Une autre fonction f

On considère la fonction f définie sur $\mathbb R$ par : $f(x)=(x-x^2)\mathrm e^{-x+2}+1$

- 1 Déterminer la limite de f en $-\infty$.
- Montrer que pour $x \in \mathbb{R}$: $f(x) = \mathrm{e}^2(xe^{-x} x^2\mathrm{e}^{-x}) + 1$
- $\overline{\mathbf{3}}$ En déduire la limite de f en $+\infty$. Interpréter graphiquement le résultat obtenu.
- Montrer que pour $x \in \mathbb{R}: f'(x) = (x^2 3x + 1)\mathrm{e}^{-x+2}$
- Déterminer le signe de f' sur $\mathbb R$ et en déduire le sens de variation de f.
- Déterminer les coordonnées des points d'intersection de la courbe représentative \mathcal{C}_f de la fonction f et de la droite (Δ) d'équation y=1.
- Etudier les positions relatives de la courbe \mathcal{C}_f et de la droite (Δ) .
- Montrer que sur l'intervalle [-1;0], la courbe \mathcal{C}_f coupe l'axe des abscisses en un unique point. On notera α l'abscisse de ce point.
- 9 A l'aide de la calculatrice, déterminer un encadrement de lpha d'amplitude 10^{-2} .

$n^{\circ}5$ Encore une fonction f

Soit la fonction ${m f}$ définie sur ${\mathbb R}$ par :

$$f(x)=\mathrm{e}^{2x}-rac{9}{2}\,\mathrm{e}^x+2$$

Sur le graphique ci-dessous, on a tracé sa courbe représentative \mathcal{C}_f dans un repère orthonormé d'unité graphique $2\ cm$:

- Déterminer la limite de f en $-\infty$. Interpréter le résultat graphiquement.
- Démontrer que pour $oldsymbol{x} \in \mathbb{R}$:

$$f(x)=(\mathrm{e}^x-4)\Big(\mathrm{e}^x-rac{1}{2}\,\Big)$$

- 3 En déduire la limite de f en $+\infty$.
- Démontrer que pour $oldsymbol{x} \in \mathbb{R}$:

$$f'(x)=2\mathrm{e}^x\Big(\mathrm{e}^x-rac{9}{4}\,\Big)$$

- Etudier le signe de f' puis établir le tableau complet des variations de la fonction f: on calculera en particulier la valeur exacte de l'extremum.
- 6 Graphiquement :
 - a) Quelle est l'équation de la tangente (\mathcal{D}) en 0 à la courbe \mathcal{C}_f .
 - **b)** Résoudre l'équation f(x) = 0
 - c) Résoudre l'inéquation $f(x) \leqslant 2$
- En utilisant la factorisation de la fonction f, résoudre par le calcul l'équation f(x) = 0.