

Topics to be covered

1 #

- K.B.D -> Kom Baneya Dr. Dorsh
- 10 Question

- 2
- 3 * (Crovor Analysis
- 4

1

If speed V, area A and force F are chosen as fundamental units, then the dimension of Young's modulus will be:

[JEE Main 2020]

- 1 FA-1 V⁰/
- $(2) (FA^{2}V^{-1}) = m \lambda_{T}^{-2} L^{H}$
- $\underline{\mathsf{F}\mathsf{A}^2}\,\mathsf{V}^{-2}\,\,\chi$
- (4) $(FA^2)V^{-3} \times$

Premoe(F) =
$$VAYF^2$$
 $ML^{T^2} = (LF)^{Y}(L^2)^{T}(MLF^2)^{T}$
 $ML^{T^2} = (LF)^{Y}(L^2)^{T}(MLF^2)^{T}$

If momentum (P), area (Å) and time (T) are taken to be the fundamental quantities then the dimensional formula for energy is [JEE Main 2020]

- $P^{1/2}$ AT-1]
- 2 X [P2 AT-2]
- 3 [PA^{1/2} T⁻¹]
- [P-1 AT-2]

If force (F), velocity (V) and time (T) are considered as fundamental physical quantity, then dimensional formula of density will be:

[JEE Main 2023]

- 1 FV⁴ T-6
- 2 FV-4 T-2 //
- 3 F² V⁻² V⁶
- 4 FV-2 T²

$$J = F^{2}V^{2}T^{2}$$

$$\frac{M}{L^{3}} = (ML^{\frac{2}{3}})(L^{\frac{2}{3}})T$$

The mpt

The mpt

$$\frac{1}{2} = f^{2}$$

$$\frac{1}{2} = \frac{1}{2}$$

7. If momentum [P], area [A] and time [T] are taken as fundamental quantities, then the dimensional formula for coefficient of viscosity is:

- (2) [P A T-1]
- (3) $[P A^{-1} T]$
- (4) $[P A^{-1} T^{-1}]$

$$\eta_{\text{SV}} = \frac{F}{L_{\text{XV}}} = \frac{10L_{\text{T}}^{2}}{L(L_{\text{T}}^{2})}$$

Time, velocity and angular momentum then find dimension of mass.

[JEE Main 2021]

$$\begin{cases}
T_{m} = T^{1} \\
V = LT^{-1}
\end{cases}$$

$$V = LT^{-1}$$

$$V = M^{2}T^{2}$$

Question

Planck's constant (h), Current (I) speed of light (c) correct dimension of stopping potential

- $h^{-1} I^1 G^{-1} c^6$
- $h^0 I^1 G^{-1} c^6$

A balloon is made of a material of surface tension S and its inflation outlet (from where gas is filled in it) has small area A. It is filled with a gas of density ρ and takes a spherical shape of radius R. When the gas is allowed to flow freely out of it, its radius r changes from R to 0 (zero) in time T. If the speed of gas coming out of the balloon depends on r as r^a and $T \propto S^\alpha$, $A^\beta \rho^\gamma R^\delta$ then

$$a = \frac{1}{2}, (\alpha = \frac{1}{2}), \beta = -1, \gamma = +1, \delta = \frac{3}{2}$$

(3)
$$a = -\frac{1}{2}, \alpha = -\frac{1}{2}, \beta = -1, \gamma = \frac{1}{2}, \delta = \frac{7}{2}$$

$$a = \frac{1}{2}, \alpha = \frac{1}{2}, \beta = -\frac{1}{2}, \gamma = \frac{1}{2}, \delta = \frac{7}{2}$$

Give the number of significant figures in each measurement.

- 1. 36.7 m -> 3
- 2. 0.006606 s Y
- 3. 2,002 kg
- 4. 306,490,000 people Infinite

* Addition or Subtraction with significant digit!

Final result is written in minimum decimal places.

1.71
+ 3.4

Final Anna (5.1)

Final Anna (5.1)

Multiplication or Division

Final result written in minimum significant figure.

$$\Rightarrow 3.2 \times 6 = 19.2$$

$$\Rightarrow (a) 19.2$$

$$(b) 19 \text{ (wrong)}$$

$$\Rightarrow (c) 20 \text{ Avg.}$$

multiply kiya

Usine minimum

significant digit

dekha y

Utne hi signifia

The are of rectangle of length 55.3 m and breadth 25 m.

- 1382
- 2 1382.5
- $3) 14 \times 10^2$
- 4 138 × 10¹

[NEET-2022]

Taking into account of significant digit. What is the value of 9.99 m – 0.0099 m.

[NEET-2020]

- 9.98 m Ans
- 2 9.890 m ×
- 3 9.9 m
- 9.9801 m

Minimum decimal place.

Add these three length:

 $l_1 = 0.307 \,\mathrm{m}$, 0.52 m and 0.4 m

- 1.22 m
- 2 (1.2 m) Arg
- 3 1.3 m
- 4 1.7 m

gf last digit is grette than 5 then previous no incressy 1

(1-2)

gf last digit is leasthan

5 then Previous no

remain some

ROUNDING OFF

लिस लेगा

- If digit to be removed is less than 5 then there is no change in parimary number.
- If digit to be removed is greater than 5 then there previous number increases by 1.
- If digit is 5, then previous number remains same if even and increase by 1 then if odd.

Express the final answer to the proper number of significant figures.

- (i) 101.2 + 18.702 = ?
- (ii) 202.88 1.013 = ?

Calculate the correct number of significant figures for the final solution:

- (i) Round 4.7475 to 4 significant figures
- (ii) Round 4.7465 to 4 significant figures

If A = 2.413 and B = 1.2 then find A + B.

If
$$A = \underline{25.5}$$
 and $B = \underline{5}$ then find $\frac{A}{B}$.

How close measured value To The True value is U Accurancy 2=5cm (True) accuracy. High accuracy -> minimum diffrence 6/w True a measures value. 1=4.8cm (#) of True value is not given 2=4.7cm then more Precise Will be considered as more accurate. 13=5.10 cm Pression yly = 5.05 cm. > Upto how many decimal placed Value is measured is (alled Prellion. ((losnous B/w True 2=5(m Tru 3 measured Nahi dekhna. 2= 4.856 cm Ja More Presise. Jacurate really

If true value of length is 6.57 m then which of the following reading is most accurate and most precise.

- 6.52 m
- 2 (6.61 m) more a curd.
- 6.513 m
- 6.57 6.52 6.52 0.05

> (3) 6.513 m

2) more accorate

Which of the following reading is most accurate?

- 1 2.4 m
- 2.41 m
- 3 2 m
- 2.413 m

> closmens blu True & meanired value.

[NEET 2024]

I of True is not given then
more precise is more accurate

	Clock-1	(101K-2
Mongay	10Am 15mint 10:15 AM	10:01 Am
IN 50 9V	10:16 MA	
Wedm 10:00AM	10:14AM	10:08 AM
15:03 AM	10:13Am	9:57Am

Ramial

No precise ?

No acuracy but high Precise.

More Precise log armte

les devidio)

High accord

(mose deviction)

Accord high but low precto

FRROR.

> 1. Absolute error

2. Relative erross

3. Percentag erro

2T=Scm

2m=5 cm

absolute = Zero

(a) Rambul

DD = 1KM

De 1km ladit of 6400 Km

m= 6401 Km.

ABSOlute error = magnitude of difference blw
True value & measurest value is

c/d absolute error.

XT = True value

Xm = measure value

De= 1(m)

1 Rod = 5 (m

absolute DX = | NT-MM

> Unit of absolute error same as unit of physical quantity.

> always Positive.

It Can't tells us about accuracy & pression.

Relative error = Ratio of absolute error to True value.
is called Relative error

Relative =
$$\frac{\Delta x}{x_T}$$

= $\frac{|x_T - x_m|}{x_{True}}$

= $\frac{|x_T - x_m|}{x_{True}}$

of error = $\frac{\Delta x}{x_T}$
 $\frac{\Delta x}{x_T}$
 $\frac{\Delta x}{x_T}$

dim led

(#)

If absolute error and actual value of a number are 5, 15 respectively then relative error is

$$\frac{-5}{15} = \frac{1}{3}$$

(B) 9f measured length of Rod is given as

$$Q_1 = 4.1 \text{ cm}$$
 $Q_1 = 4.1 \text{ cm}$
 $Q_2 = 4.2 \text{ cm}$
 $Q_3 = 3.9 \text{ cm}$
 $Q_4 = 3.8 \text{ cm}$

Find percentage,

$$\Delta l_{1} = |l_{7} - l_{m}| = |u_{cm} - 4.1 cm| = 0.1 cm$$

$$\Delta l_{2} = |l_{7} - l_{m_{2}}| = |4 - 4.2| = 0.2 cm$$

$$\Delta l_{3} = 0.1 cm \quad \Delta l_{9} = 0.2 cm$$

$$\Delta l_{3} = \frac{0.1 cm}{4} = \frac{0.1 + 0.2 + 0.2 + 0.1}{4} = \frac{0.6}{4}$$

Propagation of error in Mathematical expression. Z = A + Bdifferntiation areta DY = DA + DB DZ = DA + DB absolute Absolute Abolite Gala in DA+DB Absolute 2' & (A+B) corsin A-B Ju B 02 divided by 2 DA+DB A+B DA+AD A+P

Valid for around 70-12 le Blu Trues meun

If $l_1 = (10 \pm 2)$ cm and $l_2 = (20 \pm 1)$ cm. Find $l = l_1 + l_2$ with error.

In a series of successive measurements in an experiment, the readings of the period of oscillation of a simple pendulum were round to be 2.63s, 2.56s, 2.42s, 2.71s and 2.80s. Calculate

- (i) The mean value of the period of oscillation
- (ii) The absolute error in each measurement
- (iii) The mean absolute error
- (iv) The relative error
- (v) The percentage error.

SANGHARSH ASSIGNMENT

Units and Dimensions

Assignment-01 By: M.R. Sir

 Amount of solar energy received on the earth's surface per unit area per unit time is defined a solar constant. Dimension of solar constant is

[JEE Main 2020]

- (1) ML2 T2
- (2) MLT⁻²
- (3) M2L0T-1
- (4) ML⁰T⁻³
- Dimensional formula for thermal conductivity is (here K denotes the temperature) [JEE Main 2020]
 - (1) MLT-2K-2
 - (2) MLT-3K-1
 - (3) MLT-1K
 - (4) MLT-2K
- A quantity x is given by (IFv²/WL⁴) in terms of moment of inertia I, force F, velocity v, work W and length L. The dimensional formula for x is same as that of [JEE Main 2020]
 - (1) Coefficient of viscosity
 - (2) Force constant
 - (3) Energy density
 - (4) Planck's constant
- 4. The quantities $x = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$, $y = \frac{E}{B}$ and $z = \frac{1}{CR}$ are

defined where C - capacitance, R - resistance, I - length, E - electric field, B - magnetic field and ϵ_0 , μ_0 , - free space permittivity and permeability respectively. Then [JEE Main 2020]

- (1) Only x and y have the same dimension
- (2) Only x and z have the same dimension
- (3) x, y and z have the same dimension
- (4) Only y and z have the same dimension

5. A quantity f is given by $f = \sqrt{\frac{hc^5}{G}}$ where c is speed of light G universal gravitational constant and h is the Planck's constant. Dimension of f is that of:

[JEE Main 2020]

- (1) Momentum
- (2) Energy
- (3) Force
- (4) Pressure
- 6. The work done by a gas molecule in an isolated system is given by, $W = \alpha^2 \beta e^{\frac{-Bx^2}{kT}}$, where x is the displacement, k is the Boltzmann constant and T is the temperature, α and β are constants. Then the dimensions of β will be:

 [JEE Main 2021]
 - (I) [MºLTº]
- (2) [M2LT2]
- (3) [MLT-2]
- (4) [ML²T⁻²]
- 7. Match List-I with List-II:

	List-I		List-II
(A)	h (Planck's constant)	L	[MLT]
(B)	E (Kinetic energy)	11	[M L2 T-1]
(C)	V (electric potential)	111	[M L2 T-2]
(D)	P (linear momentum)	IV	[ML2[-1T-1]

Choose the correct answer from the options given below: [JEE Main 2021]

- (1) (a)-(n), (b)-(m), (c)-(iv), (d)-(i)
- (2) (a)-(i), (b)-(ii), (c)-(iv), (d)-(iii)
- (3) (a)-(iii), (b)-(ii), (c)-(iv), (d)-(i)
- (4) (a)-(iii), (b)-(iv), (c)-(ii), (d)-(i)
- If e is the electronic charged, c is the speed of light in free space and h is Planck's constant, the quantity

$$\frac{1}{4\pi\epsilon_0} \frac{|e|^2}{hc}$$
 has dimensions of: [JEE Main 2021]

- (1) [LC-1]
- (2) [MºLº1º]
- (3) [MLT⁰]
- (4) [MLT-1]

- 9. If a typical combustion engine the work done by a gas molecule is given by $W = \alpha^2 \beta e^{\frac{-Bx^2}{kT}}$, where x is the displacement, k is the Boltzmann constant and T is the temperature. If α and β are constants, dimensions of α will be:

 [JEE Main 2021]
 - (1) [M⁰ LT⁰] (2) [M² LT⁻²]
 - (3) [MLT⁻²] (4) [MLT⁻¹]
- 10. The dimension of mutual inductance is:

[JEE Main 2022]

- (1) [ML² T⁻² A⁻¹] (2) [ML² T⁻³ A⁻²]
- (3) [ML2 T-2 A-2] (4) [ML2 T-3 A-2]
- The SI unit of a physical quantity is pascal-second.
 The dimensional formula of this quantity will be [JEE Main 2022]
 - (1) [ML-1 T-1]
- (2) [ML-1 T-2]
- (3) [ML2 T-1]
- (4) [M-1 L1 T0]
- 12. If L, C and R are the self inductance, capacitance and resistance respectively, which of the following does not have the dimension of time?

[JEE Main 2022]

- (1) RC
- (2) $\frac{L}{R}$
- (3) \(\sqrt{LC}\)
- (4) L/C
- 13. In Vander Waals equation $\left[P + \frac{a}{V^2}\right][V b] = RT$; P is pressure, V is volume, R is universal gas constant and T is temperature. The ratio of constants $\frac{a}{b}$ is dimensionally equal to: [JEE Main 2022]
 - (t) $\frac{P}{V}$
 - (3) PF
 - PV (4) PV⁶
- 14. Dimension of $\frac{1}{\mu_0 \epsilon_0}$ should be equal to

[JEE Main 2023]

- (I) LT
- (2) T² L⁻²
- (3) L2 T-2 (4) TL-1

15. Match List I with List II | JEE Main 2023|

	List-I	List-II	
(A)	Torque	L	M L-2 T-2
(B)	Stress	11	M L2 T-2
(C)	Pressure gradient	1111	M L-I T-I
(D)	Coefficient of viscosity	IV	ML-T

Choose the correct answer from the options given below:

- (1) A-I, B-III, C-II, D-IV
- (2) A-IV, B-I, C-III, D-II
- (3) A-II, B-I, C-IV, D-III
- (4) A-II, B-III, C-I, D-IV
- 16. Match List I with List II [JEE Main 2023]

	List-I		List-II
(A)	Spring constant	-1	[1-1]
(B)	Angular speed	п	[MT-2]
(C)	Angular momentum	III	[ML ²]
(D)	Moment of inertia	IV	[ML ² T ⁻¹]

Choose the correct answer from the options given below:

- (1) A-I, B-III, C-II, D-IV
- (2) A-IV, B-I, C-III, D-II
- (3) A-II, B-I, C-IV, D-III
- (4) A-II, B-III, C-I, D-IV
- 17. In the equation $\left[X + \frac{a}{y^2}\right][Y b] = RT$, X is pressure, Y is volume, R is universal gas constant and T is temperature. The physical quantity equivalent to the ratio $\frac{a}{b}$ is: [JEE Main 2023]
 - (1) Pressure gradient
 - (2) Energy
 - (3) Impulse
 - (4) Coefficient of viscosity

18. Match List I with List II

	List-1		List-II
(A)	Young's Modulus (Y)	1	[M L-1 T-1]
(B)	Co-efficient of Viscosity (η)	11	[M L T-1]
(C)	Planck's constant (h)	ш	[M L-1 T-2]
(D)	Work function (\$)	IV	[M L2 T-2]

Choose the correct answer from the options given below:

- (1) A-II, B-III, C-V, D-I
- (2) A-III, B-I, C-II, D-IV
- (3) A-I, B-III, C-IV, D-II
- (4) A-I, B-II, C-III, D-IV
- 19. The equation of stationary wave is:

$$y = 2a \sin\left(\frac{2\pi nt}{\lambda}\right) \cos\left(\frac{2\pi x}{\lambda}\right)$$

Which of the following is not correct:

[JEE Main 2024]

- (1) The dimensions of n/k is [T]
- (2) The dimensions of n is [LT]
- (3) The dimensions of x is [L]
- (4) The dimensions of nt is [L]
- What is the dimensional formula of ab-1 in the $\frac{a}{2}(V-b) = RT$, where letters have their usual meaning. JEE Main 2024
 - (1) [M-1 L5 T3]
- (2) [M6 L7 T4]
- (3) [ML2 T2]
- (4) [Mº L3 T-2]
- 21. If so is the permittivity of free space and E is the electric field, then E0E2 has the dimensions:

[JEE Main 2024]

- (I) [M-1 L-3 T4 A2]
- (2) [ML2 T-2]
- (3) [M° L-2 TA]
- (4) [ML-1 T-2]
- 22. The dimensional formula of latent heat is:

[JEE Main 2024]

- (1) [ML2 T2]
- (2) [M⁰ L² T⁻²]
- (3) [MLT-2]
- (4) [ML² T⁻²]

- [JEE Main 2023] 23. The equation of state of a real gas is given by $\left(P + \frac{a}{V^2}\right)(V - b) = RT$, where P, V and T are pressure. Volume and temperature respectively and R is the universal gas constant. The dimensions of $\frac{a}{k^2}$ is similar to that of: [JEE Main 2024]
 - (1) PV
- (2) P
- (3) RT
- (4) R
- 24. A force is represented by $F = ax^2 + bt^{1/2}$. Where x = distance and t = time. The dimensions of b^2/a JEE Main 2024
 - (I) [ML3T-3]
- (2) [MLT-2]
- (3) [ML-1T-1]
- (4) [ML2T-1]
- 25. The position of a particle moving on x-axis is given by $x(t) = A \sin t + B \cos^2 t + Ct^2 + D$, where t is time. The dimension of $\frac{ABC}{D}$ is [JEE Main 2025]
 - (I) L2 T2
- (2) L2
- (3) L
- (4) L1T2
- The electric flux is $\phi = \cos + \beta \lambda$ where λ and σ are linear and surface charge density, respectively. $\left(\frac{\alpha}{\beta}\right)$ JEE Main 2025 represents
 - (1) electric field
 - (2) area
 - (3) charge
 - (4) displacement
- 27. The expression given below shows the variation of velocity (v) with time (t), $v = At^2 + \frac{Bt}{C+t}$. The [JEE Main 2025] dimension of ABC is:
 - (I) [Mº L2 T-2]
 - (2) [Mº L1 T-3]
 - (3) [M° L T-]
 - (4) [M° L2 T-3]

28. Match List-I with List-II

	List-L	List-II	
(A)	Boltzmann constant	1	ML2T-I
(B)	Coefficient of viscosity	n	MLT-K-1
(C)	Planck's constant	ш	ML2 T-2 K-1
(D)	Thermal conductivity	IV	ML-IT-I

Choose the correct answer from the options given below:

- (1) A-III, B-IV, C-I, D-II
- (2) A-II, B-III, C-IV, D-I
- (3) A-III, B-II, C-I, D-IV
- (4) A-III, B-IV, C-II, D-I
- 29. The dimension of $\sqrt{\frac{\mu_0}{\epsilon_0}}$ is equal to that of:

(μ₀ = Vacuum permeability and e₀ = Vacuum [JEE Main 2025] permittivity)

- (1) Voltage
- (2) Capacitance
- (3) Inductance
- (4) Resistance

[JEE Main 2025] 30. Match List-I with List-II

[JEE Main 2025]

	List-I		List-II
(A)	Mass density	1	[ML2 T-3]
(B)	Impulse	n	[MLT-1]
(C)	Power	111	[ML ² T ⁰]
(D)	Moment of inertia	IV	[ML-3T0]

Choose the correct answer from the options given below:

- (1) A-IV, B-II, C-III, D-I
- (2) A-I, B-III, C-IV, D-II
- (3) A-IV, B-II, C-I, D-III
- (4) A-II, B-III, C-IV, D-I

	ANSWER KEY				
L.	(4)	11. (1)	21. (4)		
2.	(2)	12. (4)	22. (2)		
1. 2. 3. 4. 5.	(3)	13. (3)	23. (2)		
4.	(3)	14. (3)	24. (1)		
5.	(2)	15. (3)	25. (1)		
6.	(3)	16. (3)	26. (4)		
7.	(1)	17. (2)	27. (4)		
8.	(2)	18. (2)	28. (1)		
9.	(1)	19. (1)	29. (4)		
10.	(3)	20. (3)	30. (3)		

SANGHARSH ASSIGNMENT

Units and Dimensions

Assignment-02 By: M.R. Sir

- If speed V, area A and force F are chosen as fundamental units, then the dimension of Young's modulus will be: [JEE Main 2020]
 - (1) FA-1V⁰ (2) FA²V-1
 - (3) FA²V⁻² (4) FA²V⁻³
- If momentum (P), area (A) and time (T) are taken to be the fundamental quantities then the dimensional formula for energy is [JEE Main 2020]
 - (1) [P^{1/2} AT⁻¹]
 - (2) [P2 AT-2]
 - (3) [PA1/2 T-1]
 - (4) [P-1 AT-2]
- 3. The dimensions of $\frac{B^2}{2\mu_0}$, where B is magnetic field

and μ_0 is the magnetic permeability of vacuum, is [JEE Main 2020]

- (i) ML-1 L-2
- (2) ML² L⁻²
- (3) ML-1 L2
- (4) ML-2 L-1
- Stopping potential depends on Planck's constant (h), current (l), Universal gravitational constant (G) and speed of light (C). Choose the correct option for the dimension of stopping potential (V)

[JEE Main 2020]

- (1) hrigics
- (2) h-11'G-1C6
- (3) HIT'G'C"
- (4) hor G'C
- If 'C' and 'V' represent capacity and voltage respectively then what are the dimensions of λ where C/V = λ?
 [JEE Main 2021]
 - (1) [M-2 L-13 T]
 - (2) [M-2 L-3 |2 T6]
 - (3) [M-1 L-3 1-2 T7]
 - (4) [M-3 L-4 [3 T7]

- Identify the pair of physical quantities which have different dimensions: [JEE Main 2022]
 - (1) Wave number and Rydberg's constant
 - (2) Stress and Coefficient of elasticity
 - (3) Coercivity and Magnetization
 - (4) Specific heat capacity and Latent heat
- If momentum [P], area [A] and time [T] are taken as fundamental quantities, then the dimensional formula for coefficient of viscosity is:

[JEE Main 2022]

- (1) [P A-1 T]
- (2) [PAT-1]
- (3) [P A-1 T]
- (4) [P A-1 T-1]
- Given below are two statements:

Statements-1: Astronomical unit (Au), Parsec (Pc) and Light year (Iy) are units for measuring astronomical distances.

Statements-II: Au < Parsec (pc) < ly

In the light of the above statements, choose the most appropriate answer from the options given below:

[JEE Main 2023]

- (1) Both Statement I and Statement II are incorrect
- (2) Statement I is correct but Statement II is incorrect
- (3) Both Statement I and Statement II are correct
- (4) Statement I is incorrect but Statement II is correct
- If force (F), velocity (V) and time (T) are considered as fundamental physical quantity, then dimensional formula of density will be: [JEE Main 2023]
 - (I) FV4 T-6
- (2) FV-1 T-2
- (3) F2 V-2 T4
- (4) FV-2 T2

- 10. The speed of a wave produced in water is given by v = λ^ag^bρ^c. Where λ, g and ρ are wavelength of wave, acceleration due to gravity and density of water respectively. The values of a, b and c respectively, are [JEE Main 2023]
 - (1) 1,-1,0
- (2) $\frac{1}{2}$, 0, $\frac{1}{2}$
- (3) I, 1, 0 (4) \(\frac{1}{2}\), \(\frac{1}{2}\), 0
- The frequency (v) of an oscillating liquid drop may depend upon radius (r) of the drop, density (ρ) of liquid and the surface tension (s) of the liquid as: v = r^a ρ^b s^c. The values of a, b and c respectively are [JEE Main 2023]
 - (1) $\left(-\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}\right)$ (2) $\left(\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}\right)$
 - (3) $\left(\frac{3}{2}, \frac{1}{2}, -\frac{1}{2}\right)$ (4) $\left(-\frac{3}{2}, \frac{1}{2}, \frac{1}{2}\right)$
- 12. The equation of a circle is given by $x^2 + y^2 = a^2$, where a is the radius. If the equation is modified to change the origin other than (0, 0), then find out the correct dimensions of A and B in a new equation: $(x At)^2 + \left(y \frac{t}{B}\right)^2 = a^2$. The dimensions of t is

 $(x-At)^{-} + (y-\frac{1}{B})^{-} = a^{-}$. The dimensions of t is given as $[T^{-1}]$. [JEE Main 2023]

- (1) $A = [L^{-1}T], B = [LT^{-1}]$
- (2) $A = [LT], B = [L^{-1}T^{-1}]$
- (3) $A = [L^{-1}T^{-1}], B = [LT^{-1}]$
- (4) $A = [L^{-1}T^{-1}], B = [LT]$
- If the velocity of light e, universal gravitational constant G and Planck's constant h are chosen as fundamental quantities. The dimensions of mass in the new system is:
 [JEE Main 2023]
 - (1) $\left[h^{\frac{1}{2}}e^{-\frac{1}{2}}G^{1}\right]$ (2) $\left[h^{1}e^{1}G^{-1}\right]$
 - (3) $\left[h^{-\frac{1}{2}}c^{\frac{1}{2}}G^{\frac{1}{2}}\right]$ (4) $\left[h^{\frac{1}{2}}c^{\frac{1}{2}}G^{-\frac{1}{2}}\right]$

- Applying the principle of homogeneity of dimensions, determine which one is correct, where T is time period G is gravitational constant, M is mass, r is radius of orbit. [JEE Main 2024]
 - (1) $T^2 = \frac{4\pi^2 r^2}{GM}$ (2) $T^2 = \frac{4\pi^2 r}{GM^2}$
 - (3) $T^2 = \frac{4\pi^2 r^3}{GM}$ (4) $T^2 = 4\pi^2 r^3$
- 15. If G be the gravitational constant and u be the energy density then which of the following quantity have the dimensions as that of the \(\sqrt{uG}\):

[JEE Main 2024]

- (1) Pressure gradient per unit mass
- (2) Gravitational potential
- (3) Energy per unit mass
- (4) Force per unit mass
- Statement (I): Dimension of specific heat is [L²T⁻²K⁻¹]

Statement (II): Dimension of gas constant is [ML²T⁻¹K⁻¹] [JEE Main 2024]

- (1) Both Statement (I) and Statement (II) are correct
- (2) Statement (I) is correct but Statement (II) is incorrect.
- (3) Both Statement (I) and Statement (II) are incorrect Statement (I) is incorrect but statement (II) is correct
- (4) Statement (I) is incorrect but Statement (II) is correct
- The de-Broglie wavelength associated with a particle of mass m and energy E is h / √2mE. The dimensional formula for Planck's constant is:

[JEE Main 2024]

- (1) [ML2 T-1]
- (2) [ML-1 T-2]
- (3) [MLT⁻²]
- (4) [M2 L2 T2]

18.	Statement-1:	Planck's	constant	and	angular
	momentum ha	ave same di	mensions.		

Statement-II: Linear momentum and moment of force have same dimensions.

Choose the correct answer from the options given below: [JEE Main 2024]

- (1) Statement I is true but Statement II is false
- (2) Both Statement I and Statement II are false
- (3) Both Statement I and Statement II are true
- (4) Statement I is false but Statement II is true
- If mass is written as m = k e^p G⁻ⁱⁿ hⁱⁿ then the value of P will be: (Constants have their usual meaning with k a dimensionless constant) [JEE Main 2024]
 - (1) 1/2
- (2) 1/3
- (3) 2
- (4) -1/3
- 20. Consider two physical quantities A and B related to each other as $E = \frac{B x^2}{At}$ where E, x and I have dimensions of energy, length and time respectively. The dimension of AB is [JEE Main 2024]
 - (1) L-2M1T0
- (2) L2M-1T1
- (3) L-2M-1Tt
- (4) L⁰M⁻¹T¹
- In a measurement, it is asked to find modulus of elasticity per unit torque applied on the system. The measured quantity has dimension of [M*L*T*]. If b = 3, the value of c is ______. [JEE Main 2025]

	7 4 5 6 6 6 7	C . S . T . G			
22.	Match	List-I	with	List-II	J.F.

JEE Main 2025

	List-1		List-II
(A)	Gravitational constant	1	[LT-2]
(B)	Gravitational potential energy	n	[L27-2]
(C)	Gravitational potential	ш	[ML2T-2]
(D)	Acceleration due to gravity	IV	[M-1L1T-2]

Choose the correct answer from the options given below:

- (1) A-IV, B-III, C-II, D-I
- (2) A-III, B-II, C-I, D-IV
- (3) A-II, B-IV, C-III, D-I
- (4) A-I, B-III, C-IV, D-II
- In an electromagnetic system, a quantity defined as the ratio of electric dipole moment and magnetic dipole moment has dimension of [M^PL^QT^RA^S]. The value of P and Q are: [JEE Main 2025]
 - (1) -1, 0
- (2) -1, 1
- (3) 1,-1
- (4) 0, -1

ANSWER KEY				
1. (1)	9. (2)	17. (1)		
2. (3)	10. (4)	18. (1)		
2. (3) 3. (1)	11. (1)	19. (1)		
4. (4)	12. (2)	20. (2)		
5. (1)	13. (4)	21. (4)		
	14. (3)	22. (1)		
6. (4) 7. (1)	15. (4)	23. (4)		
8. (2)	16. (2)			

