01:640:311H - Homework 2

Pranav Tikkawar

February 11, 2025

- 1. Prove the following statements using the ϵ -N definition of the limit:
 - (a) $\lim_{n\to\infty} \frac{n-4}{n+7} = 1$
 - (b) $\lim_{n\to\infty} \frac{2n-3}{n+5} = 2$

Solution: (a): We want to show that for any $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that for all n > N,

$$\left| \frac{n-4}{n+7} - 1 \right| < \epsilon$$

Take $N = \frac{11}{\epsilon} - 7$.

$$n > \frac{11}{\epsilon} - 7$$

$$\frac{11}{n+7} < \epsilon$$

$$\left| \frac{-11}{n+7} \right| < \epsilon$$

$$\left| \frac{n-4}{n+7} - 1 \right| < \epsilon$$

(b): We want to show that for any $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that for all n > N,

$$\left| \frac{2n-3}{n+5} - 2 \right| < \epsilon$$

1

Take $N = \frac{13}{\epsilon} - 5$.

$$n > \frac{13}{\epsilon} - 5$$

$$\frac{13}{n+5} < \epsilon$$

$$\left| \frac{-13}{n+5} \right| < \epsilon$$

$$\left| \frac{2n-3}{n+5} - 2 \right| < \epsilon$$

2. (a) We say that a function $f: \mathbb{R} \to \mathbb{R}$ is Lipschitz continuous if there exists an L such that for all $x, y \in \mathbb{R}$,

$$|f(x) - f(y)| \le L|x - y|$$

Show that if $\{x_n\}_{n=1}^{\infty} \to x$ and f(x) is Lipschitz, then $\{f(x_n)\}_{n=1}^{\infty}$ converges to f(x).

(b) We say that a function $g: \mathbb{R} \to \mathbb{R}$ is α -Hölder continuous if there exists an $L \in \mathbb{R}$ such that for every $x, y \in \mathbb{R}$,

$$|g(x) - g(y)| \le L|x - y|^{\alpha}$$

(In particular, Lipschitz functions are Hölder continuous with Hölder exponent $\alpha = 1$). Prove that if $x_n \to x$ and g is α -Hölder continuous for $\alpha \in (0,1)$, then $g(x_n) \to g(x)$.

Solution: (a): Suppose that $\{x_n\}_{n=1}^{\infty} \to x$ and f is Lipschitz continuous. Need to show that $\{f(x_n)\}_{n=1}^{\infty} \to f(x)$. Fix L > 0 from the Lipschitz condition. Then if we take y = x and $x = x_n$, in the Lipschitz definition, we have

$$|f(x_n) - f(x)| \le L|x_n - x|$$

We also know that there exists an $N \in \mathbb{N}$ such that for all n > N, we have

$$|x_n - x| < \frac{\epsilon}{L}$$

Thus, we have

$$|f(x_n) - f(x)| \le L|x_n - x| < L\frac{\epsilon}{L} = \epsilon$$

Thus, We have $\{f(x_n)\}_{n=1}^{\infty} \to f(x)$. **b**: Suppose that $\{x_n\}_{n=1}^{\infty} \to x$ and g is α -Hölder continuous for $\alpha \in (0,1)$. Need to show that $\{g(x_n)\}_{n=1}^{\infty} \to g(x)$ Fix L>0 from the Hölder condition. Then if we take y=x and $x=x_n$, in the Hölder definition, we have

$$|g(x_n) - g(x)| \le L|x_n - x|^{\alpha}$$

We also know that there exists an $N \in \mathbb{N}$ such that for all n > N, we have

$$|x_n - x| < (\frac{\epsilon}{L})^{\frac{1}{\alpha}}$$

Thus, we have

$$|g(x_n) - g(x)| \le L|x_n - x|^{\alpha} < \epsilon$$

Thus, We have $\{g(x_n)\}_{n=1}^{\infty} \to g(x)$.

3. Let $x_{n_{n=1}}^{\infty}$ and $y_{n_{n=1}}^{\infty}$ be sequences and define

$$\{z_n\}_{n=1}^{\infty} = \{x_1, y_1, x_2, y_2, \ldots\}_{n=1}^{\infty}$$

Show that if $z_n \to x$ then $\{x_n\}_{n=1}^{\infty} \to x$ and $\{y_n\}_{n=1}^{\infty} \to x$.

Solution: Suppose that $\{z_n\}_{n=1}^{\infty} \to x$. We want to show that $\{x_n\}_{n=1}^{\infty} \to x$ and $\{y_n\}_{n=1}^{\infty} \to x$. We can see that the subsequence $\{z_{2n}\}_{n=1}^{\infty} = \{x_n\}_{n=1}^{\infty}$ and $\{z_{2n-1}\}_{n=1}^{\infty} = \{y_n\}_{n=1}^{\infty}$. We also know that 2n-1>2n>n for all $n\in\mathbb{N}$ and thus must converge if our original sequence converges. Thus, we have $\{x_n\}_{n=1}^{\infty} \to x$ and $\{y_n\}_{n=1}^{\infty} \to x$.

4. Let $T: \mathbb{N} \to \mathbb{N}$ be an injective function. Prove that if $\{x_n\}_{n=1}^{\infty}$ converges to x, then $\{x_{T(n)}\}_{n=1}^{\infty}$ also converges to x.

Solution: Suppose that $\{x_n\}_{n=1}^{\infty} \to x$. We want to show that $\{x_{T(n)}\}_{n=1}^{\infty} \to x$. We know that if $x_n \to x$, in a topological sense, a sequence converges to x if and only if any given neighborhood of x contains all but finitely many terms of the sequence. Thus the set $S = \{n : n \in N \text{ and } x_n \notin V_{\epsilon}(x)\}$ is a finite set. Aslo since T is injective the set $S' = \{n : n \in N \text{ and } x_{T(n)} \notin V_{\epsilon}(x)\}$ is also finite since as each element of the image of T has a unique inverse. Thus we have that for all $\epsilon > 0$ there exists a finite set of elements not in the neighborhood of x. Thus, we have $\{x_{T(n)}\}_{n=1}^{\infty} \to x$.

- 5. Let a be a positive real number.
 - (a) Assuming a > 1, write an ϵn proof that $a^{\frac{1}{n}} \to 1$. (Hint: Bernoulli's inequality, which you proved in HW 1, may be helpful.)
 - (b) Explain how your answer for part (a) can be used to prove $a^{\frac{1}{n}} \to 1$ for all positive real numbers a.

Solution: (a): Suppose a > 1. We want to show that $a^{\frac{1}{n}} \to 1$. For all $\epsilon > 0$. We need to show there exists an $N \in \mathbb{N}$ such that for all n > N, the following holds:

$$|a^{\frac{1}{n}} - 1| < \epsilon$$

We can take $N = \frac{a-1}{\epsilon}$ ie $a = 1 + \epsilon N$ and. Then for all n > N,

$$a < 1 + \epsilon n$$

$$a < (1 + \epsilon)^n$$

$$a^{\frac{1}{n}} < 1 + \epsilon$$

$$a^{\frac{1}{n}} - 1 < \epsilon$$

$$|a^{\frac{1}{n}} - 1| < \epsilon$$

(b):

Case: 1 a > 1 then the proof follows from part (a)

Case: 2 a = 1 then $a^{\frac{1}{n}} = 1$ for all $n \in \mathbb{N}$

Case: 2 a = 1 then $a^n = 1$ for an $n \in \mathbb{N}$ Case: 3 0 < a < 1 Then we know that $\left\{\frac{1}{a^{\frac{1}{n}}}\right\}_{n=1}^{\infty} \to 1$ by part (a) and the algebraic

limit theorem. Thus, we have $a^{\frac{1}{n}} \to 1$.

6. Given a sequence $\{x_n\}_{n=1}^{\infty}$, define the sequence $\{s_n\}_{n=1}^{\infty}$ with general term

$$s_n = \frac{1}{n} \sum_{k=1}^n x_k$$

Prove that if $\{s_n\}_{n=1}^{\infty}$ is convergent, then

$$\lim_{n \to \infty} \frac{x_n}{n} = 0$$

(Hint: Try to express $\frac{x_n}{n}$ in terms of s_n .)

Solution: Suppose that $\{s_n\}_{n=1}^{\infty}$ is convergent. We want to show that $\lim_{n\to\infty}\frac{x_n}{n}=0$.

We can first notice what $\frac{x_n}{n}$ is in terms of s_n . We can see that

$$s_n = \frac{1}{n} \sum_{k=1}^n x_k$$

$$ns_n = \sum_{k=1}^n x_k$$

$$ns_n - (n-1)s_{n-1} = x_n$$

$$\frac{x_n}{n} = s_n - s_{n-1} + \frac{1}{n} s_{n-1}$$

We can use the algebraic limit theorem to consider each term in the limit.

$$\lim_{n \to \infty} \frac{x_n}{n} = \lim_{n \to \infty} s_n - s_{n-1} + \frac{1}{n} s_{n-1}$$
$$\lim_{n \to \infty} s_n - \lim_{n \to \infty} s_{n-1} + \lim_{n \to \infty} \frac{1}{n} s_{n-1}$$

Since we know that $\{s_n\}_{n=1}^{\infty}$ is convergent, let us call the value it converges to s thus we have

$$\lim_{n \to \infty} s_n = s$$
$$\lim_{n \to \infty} s_{n-1} = s$$

Thus clearly

$$\lim_{n\to\infty}\frac{1}{n}s_{n-1}=0$$

Thus, we have

$$\lim_{n \to \infty} \frac{x_n}{n} = s - s + 0 = 0$$

Thus, we have $\lim_{n\to\infty} \frac{x_n}{n} = 0$.