Reserve in Electricity Markets

Nigel Cleland University of Auckland EPOC

February 13, 2014

INTRODUCTION

Introduction

RESERVE CONSTRAINTS frame 1

RESULTS Frame 1

ABOUT ME

- ► University of Canterbury, BE(Hons) Chemical and Process Engineering
- ▶ University of Auckland, Year Three, Ph.D Eng. Sci and C&M
- Prior work at load aggregators
- ► HVDC Pole 3 Commissioning (Trading Team)
- ▶ Based at Transpower S.O. 2013
- Various Consulting Jobs

ROUGH AGENDA

- Reserve Constraints
- Assessment of Spot Prices
- ► Equilibrium Models of Reserve Participants
- Visualising Energy and Reserve Offers
- ► Using Bayesian Probability to assess Constraints
- ► Theoretical HVDC Transfer Capabilities
- ► Open Source and Open Data

IT STARTS WITH A PICTURE

Figure : Haywards Nodal Spot Price (x axis) compared with the North Island FIR Price (y axis)

WHY DOES THIS MATTER?

Figure: Revenue "lost" for missing highly priced trading periods

EFFECT ON INDIVIDUAL CONSUMERS

Table: Monthly Revenue "missed" by various IL producers

	NZST	PPAC	SKOG
2009	18-85%	2-92%	30-80%
2010	4-90%	0-90%	5-70%

In November 2010 NZST missed 90% of the monthly IR Revenue, SKOG missed 6%

SOME THEORY

$$[POPF] \min \quad p_g^T g + p_r^T r \qquad [DOPF] \max \quad d^T + R^T \omega + G^T \epsilon + F^T (\tau^+ + \tau^-)$$
 st. $Mg + Af = d \quad [\pi]$ st. $M^T \pi + \epsilon - K\kappa + \lambda^1 \leq p_g \quad [g]$
$$r + g \leq G \quad [\epsilon] \qquad \qquad \omega + \epsilon + \kappa + E\lambda^1 \leq p_r \quad [r]$$

$$r - Kg \leq 0 \quad [\kappa] \qquad \qquad A^T \pi + \tau^+ - \tau^- - B^T \lambda^2 + L^T \alpha = 0 \quad [f]$$

$$Er - g \geq 0 \quad [\lambda^1] \qquad \qquad \omega, \epsilon, \tau^\pm, \kappa \leq 0$$

$$Hr - Bf \geq 0 \quad [\lambda^2] \qquad \qquad \lambda^1, \lambda^2 \geq 0$$

$$r \leq R \quad [\omega] \qquad \qquad f| \leq F \qquad [\tau^\pm]$$

$$Lf = 0 \qquad [\alpha]$$

$$r, g > 0$$

CASE STUDIES

Figure : Some Case Studies to illustrate different mechanisms of binding constraints occurring

CASE STUDY RESULTS

Marginal Risk Setting Generator

$$\pi = p_{g,marginal} - \lambda \tag{1}$$

Risk Constrained Transmission Line

$$\pi_2 = \pi_1 - \lambda_2 \tag{2}$$

Bathtub Constrained Transmission

$$\pi_2 = \frac{1}{1 + k_{g,2}} p_{g,2} + \frac{k_{g,2}}{1 + k_{g,2}} (\pi_1 + p_{r,2}) \tag{3}$$

TESTING THESE, MARGINAL GENERATOR

Figure : Reserve Constraints binding upon major CCGT Units

RESULTS

TESTING THESE, MARGINAL TRANSMISSION, NI

Figure : Reserve Constraints Binding upon Northward HVDC Transmission

TESTING THESE, MARGINAL TRANSMISSION, SI

Figure : Reserve Constraints Binding upon Southward HVDC Transmission

TESTING THESE, BATHTUB CONSTRAINTS

Figure: Mighty River Fan Curve, TP 19, October 3 2013.

IMPACT ON THE MARKET

Figure: Aggregate assessment of constraints in the New Zealand Market

FRAME 1

RESULTS 0

FRAME 1