Atividade 01

Métodos Numéricos para EDO/PVI

Relatório Escrito

Departamento de Engenharia Informática Análise Matemática II 2019/20

Gonçalo Correia - 2019150122

Rafael Ribeiro - 2019131989

Sofia Janeiro - 2019132578

Índice

- 1. Introdução
 - 1.1 Enunciado da actividade proposta e interpretação do mesmo
 - 1.2 Definição de PVI
- 2. Métodos Numéricos para resolução de PVI
 - 2.1 Método de Euler
 - 2.1.1 Fórmulas
 - 2.1.2 Algoritmo/Função
 - 2.2 Método de Euler Melhorado ou Modificado
 - 2.2.1 Fórmulas
 - 2.1.2 Algoritmo/Função
 - 2.3 Método de RK2
 - 2.3.1 Fórmulas
 - 2.3.2 Algoritmo/Função
 - 2.4 Método de RK4
 - 2.4.1 Fórmulas
 - 2.4.2 Algoritmo/Função
 - 2.5 Função ODE45 do Matlab

Índice

- 3. Exemplos de aplicação e teste dos métodos
 - 3.1 Exercício 4 do um teste A de 2015/2016
 - 3.1.1 PVI Equação Diferencial de 1ª ordem e Condições Iniciais
 - 3.1.2 Exemplos de output GUI com gráfico e tabela
 - 3.2 Problema de aplicação
 - 3.2.1 Modelação matemática do problema / Resolução através da aplicação criada
- Conclusão

Introdução

Com o objetivo dos alunos inscritos à Unidade Curricular de Análise Matemática II adquirirem conhecimentos sobre os métodos numéricos para a resolução de EDO/PVI, foi proposto aos mesmos, o desenvolvimento dos seus conhecimentos em Matlab para com os métodos para a resolução de Equações Diferenciais Ordinárias. Assim, estes seriam capazes de ampliar as suas competências algorítmicas e de programação em Matlab.

Introdução

Perante isto e posteriormente à resolução do mesmo, expomos aqui o enunciado da actividade proposta e a interpretação do mesmo, apresentamos um esclarecimento sobre o Problema de Valor Inicial (PVI), os métodos utilizados para a sua resolução com as respetivas fórmulas e funções e ainda explicamos a função ODE45 do Matlab.

Para uma melhor familiarização com estes conteúdos, incluímos exemplos de aplicação e testes dos métodos numéricos analisados.

Por fim, concluímos com umas breves considerações que recolhemos após a resolução desta atividade.

Introdução Enunciado da atividade

Desenvolvimento de um programa que seja capaz de resolver equações diferenciais, perante um PVI.

Assim, o resultado final deste exercício deve ser capaz de oferecer ao utilizador a introdução de um PVI e a escolha da forma como este deseja resolvê-lo, perante os vários métodos numéricos.

Sendo assim, toda esta relação do utilizador para com o programa tem de ser facilitada através de uma interface intuitiva e clara.

Por fim, deve ser apresentada a respetiva modelação e resolução.

Introdução Definição de PVI

Para um determinado PVI é possível obter um resultado mais ou menos preciso da equação diferencial ordinária.

Temos vários algoritmos/métodos para a sua resolução, como por exemplo o método de Euler(solução exata é reduzida), método Runge-Kutta 2(solução exata é maior comparando com o método de Euler) e o método Runge-Kutta 4 que é o método mais preciso, comparado aos últimos mencionados.

$$\left\{egin{aligned} y'(t) &= f(t,y(t)) \ t \epsilon[a,b] \ t y(t0) &= y0 \end{aligned}
ight. \quad h = rac{b-a}{n} \quad t_0 = a, t_1 = t_0 + h, t_2 = t_1 + h, \ldots, t_n = t_{n-1} + h = b
ight.$$

Métodos Numéricos Método de Euler

O método de Euler, é um método numérico de primeira ordem para solucionar equações diferenciais ordinárias com um valor inicial dado. É o tipo mais básico de métodos explícito para integração numérica de equações diferenciais ordinárias.

Fórmula

$$y_{i+1} = y_i + h * f(t_i, y_i), i = 0, 1, 2, \dots, n-1$$

Métodos Numéricos Método de Euler

Função

```
function y = NEuler(f,a,b,n,y0)
h = (b-a)/n;
t(1) = a;
y(1) = y0;
for i=1:n
    y(i+1)=y(i)+h*f(t(i),y(i));
    t(i+1)=t(i)+h;
end
```

Métodos Numéricos Método de Euler Melhorado

O método de Euler melhorado é em tudo semelhante ao método de Euler tradicional, a única diferença é que este método utiliza uma média das inclinações em cada ponto para cada iteração, ou seja, tendo um x0 e um x1 este método calcula a inclinação em x0 a inclinação em x1 e consegue assim um resultado mais aproximado.

Métodos Numéricos Método de Euler Melhorado

Fórmulas

$$y_{i+1} = y_i + h * f(t_i, y_i), i = 0, 1, 2, \dots, n-1$$

$$y_{i+1} = y_i + rac{h * f(t_i, y_i) + f(t_{i+1}, y_{i+1})}{2}, i = 0, 1, 2, \ldots, n-1$$

Métodos Numéricos Método de Euler Melhorado

Função

```
function y = NEuler Melhorada(f,a,b,n,y0)
h = (b-a)/n;
t = a:h:b:
v = zeros(n+1,1);
y(1) = y0;
z(1) = y0;
for i = 1:n
    z(i+1) = y(i)+h*f(t(i),y(i));
    y(i+1,1) = y(i)+(h/2)*(f(t(i),y(i))+f(t(i+1),z(i+1)));
end
```

Método numérico com alguma precisão, isto deve-se em muito à sua fórmula que considera para cada iteração dois valores denominados normalmente por "k" onde o primeiro é a inclinação no início do intervalo, o segundo é a inclinação no final do intervalo, assim fazendo uma "média" das inclinações obtém-se a inclinação para cada iteração, tornando este método eficiente.

Fórmulas

$$k_1 = h * f(t_i, y_i);$$
 $k_2 = h * f(t_{i+1}, y_i + k_i);$ $y_{i+1} = y_i + rac{1}{2}(k_1 + k_2), i = 0, 1, \dots, n-1$

Função

```
function y = NRK2(f,a,b,n,y0)
h=(b-a)/n;
t=a:h:b;
y=zeros(1,n+1);
y(1) = y0;
for i=1:n
    k1=h*f(t(i),y(i));
    k2=h*f(t(i+1),y(i)+k1);
    y(i+1)=y(i)+(k1+k2)/2;
end
```

Método numérico com a maior precisão.

Deve-se em muito à sua fórmula que considera para cada iteração quatro valores denominados normalmente por "k" onde o primeiro é a inclinação no início do intervalo, o segundo é a inclinação no ponto médio do intervalo usando a primeira inclinação, o terceiro é novamente a inclinação no ponto médio do intervalo mas, desta vez, utilizando a segunda inclinação e, finalmente, o quarto é a inclinação no final do intervalo, assim fazendo uma "média" das inclinações obtém-se a inclinação para cada iteração, tornando este método bastante eficiente.

Fórmulas

$$k_1 = h * f(t_i, y_i); k_2 = h * f(t_i + \frac{h}{2}, y_i + \frac{1}{2}k_1)$$

$$k_3 = h * f(t_i + rac{h}{2}, y_i + rac{1}{2}k_2); k_4 = h * f(t_{i+1}, y_i + k_3)$$

$$y_{i+1} = y_i + rac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4), i = 0, 1, \ldots, n-1$$

end

Função

```
function y = NRK4(f,a,b,n,y0)
h = (b-a)/n;
t=a:h:b;
y=zeros(1,n+1);
y(1) = y0;
for i=1:n
    k1 = f(t(i), y(i));
    k2 = f(t(i)+(h/2), y(i)+(h*k1)/2);
    k3 = f(t(i)+(h/2), y(i)+h*(k2/2));
    k4 = f(t(i)+h, y(i)+(h*k3));
    y(i+1)=y(i)+(h/6)*(k1+2*k2+2*k3+k4);
    t(i+1)=t(i)+h;
```

Métodos Numéricos Função ODE45

A função ODE45 pode resolver sistemas de equações da forma y'=f(t,y) com alguma precisão.

Esta função recebe como argumentos uma odefun(função f),tspan(intervalo[a,b]) e o y0 como condição inicial.

Função

```
function [t,y]=ODE45(f,a,b,n,y0)
h=(b-a)/n;
tspan=a:h:b;
[t,y] = ode45(f,tspan,y0);
```

a) Graficamente a afirmação é verdadeira uma vez que sobrepondo a figura 5 e a figura 6, a sobreposição é total e o ajuste é completo e perfeito.

Analiticamente:
$$y = c * e^{-x^2}$$
 \Longrightarrow $y' + 2xy = 0$

1º Derivar

$$y' = (c * e^{-x^2})' = c(e^{-x^2})' = c(-x)^2 * e^{-x^2} = c(-2x) * e^{-x}$$

$$y' = -2cxe^{-x^2}$$

2° Substituir y' e y

$$y' + 2xy = 0 <=> -2cxe^{-x^2} + 2xy = 0 <=> -2cxe^{-x^2} + 2cxe^{-x^2} = 0$$

0=0 Logo a proposição é verdadeira.

b)

$$y' + 2ty = 0 = y' = -2ty$$
 $y' = (3e^{-t^2})' = 3e^{-t^2} * (-t^2)' = -2t * 3 * 3e^{-t^2} = -6te^{-t^2}$
 $2ty = 2t * 3e^{-t^2} = 2t * 3e^{-t^2} = 6te^{-t^2}$
 $y' = -2ty \rightarrow porque \rightarrow -6te^{-t^2} = -(6te^{-t^2})$

c)

	t	Solução Exata	Euler	RK2	RK4	Euler	RK2	RK4
0	0	3	3	3	3	0	0	0
1	0.5000	2.3364	3	2.500	2.3359		0.0864	0.0005
2	1	1.1036	1.5000	1.1250	1.1041	1.8964	0.0214	0.0005
3	1.5000	0.3162	0	0.5625	0.3350		0.2463	0.0188
4	2	0.0549	0	0.4219	0.0907	3.0549	0.3670	0.0358

d) _[

Pelo script do programa, podemos concluir que o gráfico que representa o PVI dado é o da figura 9.

e)

f)

```
function y = NEuler(f,a,b,n,y0)
h=(b-a)/_n;
t=a: n:b;
y=zeros(1,n+1);
y(1)=y0;
for i=1:n
     y(i+1)=_y(i)_+h_*f(t(i),y(i));
end
```

```
function y = NRK2(f,a,b,n,y0)
    (b-a)/n
    a:h:b
    zeros(n+1,1)
y(1) = y0
for i=
    k1=
    y(i+1) = y(i)+(1/2)*(k1+k2)
```

end

vExata = eval(vectorize(char(sExacta)));

```
g)
                                                              plot(t, yExata,'-kd')
    clear:
                                                              hold on
    clc;
                                                              plot(t, yEuler,'-bo')
    strF = '-2tv'
                                                              plot(t, yRK2,'-g*')
    f = @(t,y) eval(vectorize(strF));
                                                              plot(t, yRK4,'-r+')
    a = 0;
                                                              grid on
                                                              legend('Exata','Euler','RK2','RK4')
    b = 2;
                                                              hold off
    n = 5;
    y0 = 3;
                                                              erroEuler = abs(yExata-yEuler);
    yEuler = NEuler(f,a,b,n,y0);
                                                              erroRK2 = abs(yExata-YRK2);
                                                              erroRK4 = abs(yExata-YRK4);
    yRK2 = NRK2(f,a,b,n,y0);
                                                              tabela=[t.',yExata.',yEuler.',yRK2.',yRK4.',erroEuler.',erroRK2.',
    yRK4 = NRK4(f,a,b,n,y0);
                                                              erroRk4.':
    t = a:(b-a)/n:b;
                                                              disp(tabela);
    sExata =
    dsolve(['Dy=',strF],['y(',a,')=',num2str(a)]);
```

Exemplos de aplicação PVI - Equação diferencial de 1° ordem e condições iniciais

Uma equação diferencial ordinária de primeira ordem é uma equação diferencial ordinária da seguinte forma:

$$rac{dx}{dt} = f(x,t), t\epsilon D$$
 f(x,t) é dada e a incógnita é a função x(t)

Então:

$$\begin{cases} y' = f(t, y(t)) \\ t\epsilon[a, b] \\ y(t_0) = y_0 \end{cases} \Leftrightarrow \begin{cases} y'(t, y) = -2ty \\ t\epsilon[0, 2] \\ y(0) = 3 \end{cases} \qquad h = \frac{b-a}{n} = \frac{2-0}{2} = 1$$

Exemplos de aplicação Exemplo de output - GUI com gráfico e tabela

a)
$$m(rac{dv}{dt}) = mg - k^2 \Leftrightarrow mv' = mg - k^2 \quad k = 0.125; m = 5; g = 32ft/s^2$$
 $y' = rac{5*32 - 0.125*y^2}{5} \qquad a = 0; b = 5; h = 1 \qquad t \in [0,5]$ $y_0 = v(0) = 0 \qquad n = rac{b-a}{b} = 5$

Temos assim todos os dados precisos para a resolução do exercício.

a)

a)

$$\begin{cases} y'(t)=f(t,y(t))\\ t\epsilon[a,b]\\ y(t_0)=y_0 \end{cases} \Leftrightarrow \begin{cases} y'(t,y)=\frac{5*32-0.125*y^2}{5}\\ t\epsilon[0,5]\\ y(0)=0 \end{cases}$$

c)

Com
$$v(5) = 35.7213$$

	t	Solução Exata	Euler	Erro Euler
1	0	0	0	0
2	1	25.5296	32	6.4704
3	2	33.8322	38.4000	4.5678
4	3	35.4445	33.5360	1.9085
5	4	35.7213	37.4194	1.6981
6	5	35.7678	34.4141	1.3537

a)

t(dias)	1	2	3	4	5
A(observado)	2.78	13.53	36.30	47.50	49.40
A(aproximado)	0.2400	1.8288	11.5841	35.1288	45.4815

b)
$$\begin{cases} y'(t) = f(t, y(t)) \\ t \in [a, b] \\ y(t_0) = y_0 \end{cases} \Leftrightarrow \begin{cases} y'(t, y) = y * (2.128) - (0.0432 * y) \\ t \in [1, 5] \\ y(0) = 0.24 \end{cases}$$

c)

	t	Solução Exata	Euler	Erro Euler
1	1	0.2400	0.2400	0
2	2	1.9454	0.7482	1.1972
3	3	12.6436	2.3163	10.3273
4	4	36.6283	7.0136	29.6147
5	5	47.3164	19.8134	27.5029

Autores

autores

Bruno Teixeira

2019100036

Rafael Ribeiro

2019131989

Gonçalo Correia

2019150122

Sofia Janeiro

2019132578

Conclusão

As equações diferenciais ordinárias têm uma importância notória na resolução de possíveis problemas do quotidiano e em inúmeras áreas da ciência.

É a partir dos métodos numéricos que nos é possível obter as soluções paras as referidas equações, visto que é por meio dos mesmos que os algoritmos podem ser obtidos para execução de aproximações numéricas para as respostas a estas equações.