Run 2 $R(D^{(*)})$ Progress 8-21-20

SVENDE BRAUN, ALEX FERNEZ, MANUEL FRANCO SEVILLA, PHOEBE HAMILTON, YIPENG SUN

$= \begin{bmatrix} D_2^*(2479) & 2^* \\ D_1(2469) & 1^* \\ D_1(2419) & 1^* \\ D_0^*(2380) & 0^* \end{bmatrix} D^{**} (1P)$

Monte Carlo Request

- •A few small differences for D** run 2 dec files
 - Run 1 requested two D** samples: D⁰ (D** \rightarrow D*+,D*0,D⁰) and D*+ (D** \rightarrow D*+ only) to increase D*+ stats
 - Run 2 will only request D⁰ and *adjust BF as needed* for comparable D*+ stats for each D** (actually, just D₁, D₁', D₂*, as D₀* \rightarrow D only)
 - Run 2 will reduce 3-body decays of D₂* to 5%, not eliminate
 - Run 2 will change some BF ratios for D₂*
 - $\Gamma(D^{*0}\pi)/\Gamma(D^{*+}\pi) = 2/1$ (isospin)
 - $\Gamma(D\pi)/\Gamma(D^*\pi) = 1/1$
 - Run 2 will also reduce 3-body decays of D₀* to 5%

11873010 - Bd_Dststmunu-D0 (8.9M events) $8.9 \times 0.3069 \times 0.2189 = \underline{598k} B^0 \rightarrow D_1^{'-} (\rightarrow D^{*-} \pi^0) \mu^+ \nu$ $8.9 \times 0.1188 \times 0.0887 = \underline{94k} B^0 \rightarrow D_2^{*-} (\rightarrow D^{*-} \pi^0) \mu^+ \nu$

```
Decay B0sia
 0.3069
                                  PHOTOS ISGW2
 0.2970
          MyD_0*- mu+
                                  PHOTOS ISGW2
          MyD_1- mu+
                                   PHOTOS ISGW2
 0.1188
          MyD_2*- mu+ nu_mu
                                  PHOTOS ISGW2
Decay MyD'_1+
 0.6466
          MyD*0 pi+
                             PHOTOS VVS_PWAVE [1.0, 0.0, 0.0, 0.0, 0.0, 0.0]
 0.2189
          MvD*+ pi0
                             PHOTOS VVS_PWAVE [1.0, 0.0, 0.0, 0.0, 0.0, 0.0]
 0.1345
         MyD0 pi+ pi0
                             PHOTOS PHSP
Decay MyD_2*+
 0.4028
          MyD0 pi+
                              PHOTOS TSS
          MyD*0 pi+
                              PHOTOS TVS_PWAVE [0.0, 0.0, 1.0, 0.0, 0.0, 0.0]
          MyD_0*0 pi+
          MyD*+ pi0
                              PHOTOS TVS_PWAVE [0.0, 0.0, 1.0, 0.0, 0.0, 0.0]
          MyD_0*+ pi0
                               PHOTOS PHSP
          MyD0 pi+ pi0
                               PHOTOS PHSP
                              PHOTOS PHSP
          MyD*+ pi+ pi-
                              PHOTOS PHSP
 0.0082
  0.0041
          MyD*+ pi0 pi0
                              PHOTOS PHSP
```

11874060 - Bd Dststmunu-Dst+ (2.0M events)

$$2\times0.4058 = \underline{\mathbf{812k}} B^0 \to D_1^{'-} (\to D^{*-}\pi^0)\mu^+\nu$$
$$2\times0.1449\times0.728 = \underline{\mathbf{311k}} B^0 \to D_2^{*-} (\to D^{*-}\pi^0)\mu^+\nu$$

```
Decay B0sig
 0.4493 MyD_1- mu+ nu_mu
                                 PHOTOS ISGW2
         MyD'_1- mu+ nu_mu
                                 PHOTOS ISGW2
         M 2 2*- mu+ nu_mu
 0.1449
                                 PHOTOS ISGW2
Decay MyD'_1+
 1.0000 MyD*+ pi0
                         PHOTOS VVS_PWAVE [1.0, 0.0, 0.0, 0.0, 0.0, 0.0]
Decay MyD_2*+
 0.7280 MyD*+ pi0
                              PHOTOS TVS_PWAVE [0.0, 0.0, 1.0, 0.0, 0.0, 0.0]
          MyD_0*0 pi+
                              PHOTOS PHSP
          MyD_0*+ pi0
                              PHOTOS PHSP
          MyD*+ pi+ pi-
                              PHOTOS PHSP
         MyD*+ pi0 pi0
                              PHOTOS PHSP
```

Monte Carlo Request (cont'd)

- •Another small change: Increase strange D_s** stats to achieve 4x more MC than data for all channels
 - May already be fine, but just to be sure
- Checked stats for all channels against Run 1 fitted yields
- Overall, keep the same relative sample ratios as Run 1
- •Svende will circulate slides (today?), we'll discuss feedback on Tuesday, and then make presentation at SL meeting Wednesday
- Request 200M FullSim and 200M tracker-only
 - May reduce to 100M if significant pushback or will take too long

				Run 1				Run 2 Tracker-only					Small FullSim	
				NMC		NMC sim	NMC	NMC gen		NMC sim	NMC	NMC per	NMC	NMC
#	Sample	MC ID	Name	gen [M]	ε_gen	[M]	disk [M]	[M]	ε_gen	[M]	disk [M]	type	gen [M]	disk [M]
1	D0	12573010 B	> D0 mu nu	2114.8	5.2%	110.0	7.7	8320.4	9.3%	929.6	65.1		26.9	1.88
2	D0/D*+	11574020 B	0 -> D*+mu nu	1703.3	5.2%	88.6	6.2	6701.3	8.6%	688.4	48.2		19.9	1.40
3	D0	12573031 B	> D*0mu nu	4285.7	5.2%	222.9	15.6	16861.2	8.1%	1647.0	115.3	228.5	47.7	3.34
4	D0	12573000 B	> D0 tau nu	140.9	5.2%	7.3	0.5	554.5	7.4%	49.3	3.5		1.4	0.10
5	D0/D*+	11574010 B	0 -> D*+tau nu	376.4	5.2%	19.6	1.4	1480.8	7.5%	133.4	9.3		3.9	0.27
6	D0	12573021 B	3> D*0tau nu	327.2	5.2%	17.0	1.2	1287.3	7.1%	109.4	7.7	20.4	3.2	0.22
7	D0/D*+	11873010 B	0->D^{**+}mu nu,	2569.4	4.9%	126.7	8.9	10108.7	7.0%	849.1	59.4		24.6	1.72
8	D0/D*+	11873030 B	0-> D^{**+}tau nu,	22.9	4.9%	1.1	0.1	90.1	7.0%	7.6	0.5		0.2	0.02
9	D0/D*+	12873010 B	> D^{**0}mu nu,	2121.4	4.9%	103.1	7.2	8346.2	7.0%	701.1	49.1		20.3	1.42
10	D0/D*+	12873030 B	3> D^{**0}tau nu,	34.4	4.9%	1.7	0.1	135.3	7.0%	11.4	0.8	109.8	0.3	0.02
11	D0	12675010 B	s- → D**(→D0ππ)μν	316.6	4.9%	15.5	1.1	1245.7	7.0%	104.6	7.3		3.0	0.21
12	D0	11674400 B	$50 \rightarrow D^{**}(\rightarrow D0\pi\pi)\mu\nu$	318.7	4.9%	15.6	1.1	1253.7	7.0%	105.3	7.4		3.1	0.21
	D0/D*+	12675400 B	s- → D**(→D*+ππ)μν	224.8	4.9%	11.0	0.8	884.4	7.0%	74.3	5.2		2.2	0.15
	D0/D*+		$0 \rightarrow D^{**}(\rightarrow D^* + \pi\pi)\mu\nu$	214.9		10.5	0.7		7.0%	71.0	5.0		2.1	0.14
	D0		s- → D**(→D*0ππ)μν	378.1		18.5	1.3		7.0%	125.0	8.7			0.25
	D0		s → Ds**(→D0K)μν	29.1		1.3	0.1		7.0%	9.6	0.7		0.3	0.02
	D*+		s -> D**+μ ν	106.6		4.7	0.3		7.0%	35.2	2.5		1.0	0.07
	D0		$0 \rightarrow D0(Xc \rightarrow \mu\nu X')X$	960.7	3.9%	37.8	2.6		7.0%	317.5	22.2		9.2	0.64
	D0		$0 \to D0(Ds \to \tau \nu)X$	61.4	3.9%	2.4	0.2		7.0%	20.3	1.4		0.6	0.04
	D0		$+ \rightarrow D0(Xc \rightarrow \mu\nu X')X$	1040.0		40.9	2.9		7.0%	343.7	24.1		10.0	
	D0 D*+		$S+ \rightarrow DO(Ds \rightarrow \tau v)X$ $SO -> D*+ (Xc -> \mu v X')X$	212.6 1054.2		8.4 41.4	0.6 2.9		7.0%	70.3 348.4	4.9 24.4	52.6	2.0 10.1	0.14 0.71
	D*+		30 -> D*+ (λε -> μ V λ)λ 30 -> D*+(Ds -> τ ν) Χ	98.5	3.9%	3.9	0.3		7.0%	348.4	24.4		0.9	0.71
	D*+		i+ -> D*+ (Xc -> μ ν X')X	305.3		12.0	0.8		7.0%	100.9	7.1		2.9	0.07
			+-> D*+(Ds-> τ ν) X	59.6		2.3	0.2			19.7	1.4		0.6	
		220, 1000 0		33.0	3.570	924.1	64.7		7.070	6904.5	483.3		200.0	14.0

Other things

- Yipeng and Alex working on finalizing ntuple production by carefully going through Phoebe's code for run 1
 - Yipeng looking at step 1-to-2 cuts, Alex at step 2-to-fit
 - Good agreement in plots between data/MC isn't expected for now (because there's no fit, weights aren't fully implemented from Phoebe's analysis...and for these two plots, Alex absolutely has some bugs).

Backup

Stats for D₁

11873010 - Bd_Dststmunu-D0 (8.9M events) 8.9×0.2772×0.1829= 451k $B^0 \to D_1^- (\to D^{*-}\pi^0)\mu^+\nu$

```
Decay B0sig
 0.3069 MyD'_1- mu+ nu_mu
                                PHOTOS ISGW2
 0.2970 MyD_0*- mu+ nu_mu
                                PHOTOS ISGW2
 0.2772 MyD_1- mu+ nu_mu
                                PHOTOS ISGW2
 0.1188 MyD_2*- mu+ nu_mu
                                PHOTOS ISGW2
Decay MyD_0*+
 0.7677 MyD0 pi+
                             PHOTOS PHSP
 0.1152 MyD*0 pi+ pi0
                            PHOTOS PHSP
 0.0781 MyD*+ pi+ pi-
                             PHOTOS PHSP
 0.0390 MyD*+ pi0 pi0
                             PHOTOS PHSP
Decay MyD_0*0
 0.6052 MyD0 pi0
                             PHSP
 0.1813 MyD*0 pi+ pi-
                             PHOTOS PHSP
 0.1228 MyD*+ pi- pi0
                            PHOTOS PHSP
 0.0907 MyD*0 pi0 pi0
                            PHOTOS PHSP
Decay MyD_1+
 0.5403 MyD*0 pi+
                          PHOTOS VVS_PWAVE [0.0, 0.0, 0.0, 0.0, 1.0, 0.0]
 0.1829 MyD*+ pi0
                          PHOTOS VVS_PWAVE [0.0, 0.0, 0.0, 0.0, 1.0, 0.0]
 0.1548 MyD_0*0 pi+j
                          PHOTOS PHSP
 0.1220 MyD_0*+ pi0
                          PHOTOS PHSP
```

```
11874060 - Bd_Dststmunu-Dst+ (2.0M events)

2 \times 0.4493 \times 0.846 = \frac{760 \text{k}}{2} B^0 \rightarrow D_1^- (\rightarrow D^{*-} \pi^0) \mu^+ \nu
```

```
Decay B0sig
 0.4493 MyD_1- mu+ nu_mu
                                PHOTOS ISGW2
 0.4058 MyD'_1- mu+ nu_mu
                                PHOTOS ISGW2
 0.1449 MyD_2*- mu+ nu_mu
                                PHOTOS ISGW2
Decay MyD_0*+
 0.6667 MyD*+ pi+ pi-
                             PHOTOS PHSP
 0.3333 MyD*+ pi0 pi0
                             PHOTOS PHSP
Decay MyD_0*0
 1.0000 MyD*+ pi- pi0
                            PHOTOS PHSP
Decay MyD_1+
 0.8460 MyD*+ pi0
                          PHOTOS VVS_PWAVE [0.0, 0.0, 0.0, 0.0, 1.0, 0.0]
 0.0880 MyD_0*0 pi+
                          PHOTOS PHSP
 0.0660 MyD_0*+ pi0
                          PHOTOS PHSP
```

Keeping the same ratio as in Run 1 request, we would get 40% fewer D*+ events with the D⁰ sample. Could reduce $D_1^- \to D_0^* \pi$ BF, and keep the same 8.9M/2M ratio

Run 2 Monte Carlo Request (old slide)

- Overall, keep the same relative sample ratios as Run 1
- A few small differences for D**
 - Increase strange D_s** stats to achieve 4x more MC than data for all channels
 - May already be fine, but just to be sure
 - Run 1 requested two D** samples: D^0 (D** \rightarrow D*+,D*0,D0) and D*+ (D**→ D*+ only) to increase D*+ stats
 - Run 2 will only request D⁰ and adjust BF as needed for comparable D*+ stats for each D** (actually, just D_1 , D_1 , D_2 *, as D_0 * \rightarrow D only)...next slide
 - Run 2 will reduce 3-body decays of D₂* to 5%, not eliminate
 - Run 2 will change some BF ratios for D₂*
 - $\Gamma(D^{*0}\pi)/\Gamma(D^{*+}\pi) = 2/1$ (isospin)
 - $\Gamma(D\pi)/\Gamma(D^*\pi) = 1/1$
 - Run 2 will also reduce 3-body decays of D₀* to 5%

Three body D** decays (from PDG & others):

 $D_0^* \rightarrow D\pi\pi$ not seen $D_0^* \rightarrow D^*\pi\pi$ D₁→Dππ seen D₁'→Dππ not seen $D_2^* \rightarrow D\pi\pi$ not seen

 $D_1 \rightarrow D^* \pi \pi$ not seen $D_1' \rightarrow D^* \pi \pi$ not seen $D_2^* \rightarrow D^* \pi \pi$ not seen

Run 2 Monte Carlo Request (backup)

Other differences (already discussed)

- Stripping cuts
 - See https://github.com/umd-lhcb/lhcb-ntuples-gen/issues/22

Run 1 MC stats (backup)

For the Run 1 request, they aimed to request 4x more MC than data using an early estimate of the data yields in the signal region (ISO) to adjust the MC efficiency of their samples, $N_{ISO}^{MC}/N_{disk}^{MC}$

$$N_{req}^{MC} = 4 \times N_{ISO}^{data} \frac{N_{disk}^{MC}}{N_{ISO}^{MC}}$$

I used the yields from Greg's fit in ANA note and the efficiencies from their excel files, to check if their MC request required updating.

In some cases (eg, DD yield) I had to distribute the yield

$D^0\mu\nu$ Iso yield	$3.66e5 \pm 2.9e3$
$D_0^{*+}\mu\nu$ Iso yield	9.56e3 ±7.77e3
$D_0^{*0} \mu \nu$ Iso yield	2.02e4 ±8.87e3
$D_1^+\mu\nu$ Iso yield	$3.66e3 \pm 9.85e3$
$D_1^0 \mu \nu$ Iso yield	4.8e4 ±9.71e3
$D_{1}^{+}\mu\nu$ Iso yield	$8.15e3 \pm 9.84e3$
$D_{1\prime}^{+}\mu\nu$ Iso yield $D_{1\prime}^{0}\mu\nu$ Iso yield	$7.38e3 \pm 1.11e4$
$D_2^{*+}\mu\nu$ Iso yield	5.2e3 ±5.62e3
$D_2^{*0}\mu\nu$ Iso yield	$1.63e3 \pm 9.48e3$
DD Iso yield	7.49e4 ±2.87c3
misID Iso yield	$3.4e4 \pm 2.24e3$
$D_{s1}^{+}, \mu\nu$ Iso yield	$7.03e3 \pm 3.12e3$
$D_{\pi 2}^{*+} \mu \nu$ Iso yield	$4.2e3 \pm 2.78e3$
$D_s \rightarrow \tau \nu$ Iso yield	$4.55e3 \pm 1.16e3$
$(D^{**} \rightarrow D^0 \pi \pi) \mu \nu$ Iso yield	$3.82e4 \pm 1.02e4$
$(D^{**} \rightarrow D^{*+}\pi\pi)\mu\nu$ Iso yield	$3.59e3 \pm 5.2e3$
$(D^{**} \rightarrow D^{*0}\pi\pi)\mu\nu$ Iso yield	$1.24e4 \pm 5.48e3$
$D^{**}\tau\nu$ Iso yield	1.74e3 ±498
Comb. Iso yield	2.37e4 ±2.73e3
$D^{*0}\mu\nu$ Iso yield	9.17e5 ±1.24e4
$D^{*+}\mu\nu$ Iso yield	6.95e4 ±1.19e4

D ⁺ ₁ μν IsoDst yield	1.12e4 ±3.35e3
$D_1^{\dagger}\mu\nu$ IsoDst yield	0 ±5.59e4
$D_{1s}^{+}\mu\nu$ IsoDst yield	$1.36e4 \pm 4.28e3$
$D_{1}^{+}\mu\nu$ IsoDst yield $D_{1}^{0}\mu\nu$ IsoDst yield	561 ±3.26e3
$D_2^{*+}\mu\nu$ IsoDst yield	3.22e3 ±2.54e3
$D_2^{*0}\mu\nu$ IsoDst yield	166 ±1.9e3
DstDD IsoDst yield	2.43e4 ±1.01e3
misID IsoDst yield	4.03e3 ±652
$D^{+}_{a1}\mu\nu$ IsoDst yield $D^{+}_{a2}\mu\nu$ IsoDst yield	817 ±953
$D_{+2}^{*+}\mu\nu$ IsoDst yield	0 ±1.76e3
$D_{\sigma} \rightarrow \tau \nu$ IsoDst yield	1.08e3 ±290
$D^{**}\tau\nu$ IsoDst yield	459 ±121
$D^{*+}\mu\nu$ IsoDst yield	$3.31e5 \pm 2.07e3$
Comb. IsoDst yield	1.05e3 ±451
$(D^{**} \rightarrow D^{*+}\pi\pi)\mu\nu$ IsoDst yield	1.1e4 ±2.35e3
FakeDst IsoDst yield	9.98e3 ±1.97e3

D*+ efficiencies from Dsttaunu MC numbers.xlsx

	D ⁰ efficiencies from						✓ MC/data ratio					
	D0MC Google sheet						generally above 4					
	DOMC Google sneed				ie sneet				Semen			
							\					
_				Ų D		, D*+		Data/MC comparison				
				MC ISO/disk	Data ISO	MC IS	O/disk	Data ISO	Data "on	MC disk	*	
#	Sample	MC ID	Description	(DOMC)	yield (fit)	(Dsttau	nu_MC)	yield (fit)	disk" [M]	[M]	MC/data	
1	D0	12573010	B> D0 mu nu	20.6%	366,000				1.77	7.70	4.3	
2	D0/D*+	11574020	B0 -> D*+mu nu		69,500		26.6%	331,000	1.25	6.20	5.0	
3	D0	12573031	B> D*0mu nu	25.4%	917,000				3.60	15.60	4.3	
4	D0	12573000	B> D0 tau nu	18.5%	6				0.00	0.51	#DIV/0!	
5	D0/D*+	11574010	B0 -> D*+tau nu				30.8%		0.00	1.37	#DIV/0!	
6	D0	12573021	B> D*0tau nu	19.7%	6				0.00	1.19	#DIV/0!	
7	D0/D*+	11873010	B0->D^{**+}mu nu,	2.8%	26,570		26.0%	28,020	0.94	8.87	9.4	
8	D0/D*+	11873030	B0-> D^{**+}tau nu,	6.9%	607		25.6%		0.01	0.08	9.0	
9	D0/D*+	12873010	B> D^{**0}mu nu,	6.8%	77,210		7.8%	727	1.13	7.22	6.4	
10	D0/D*+	12873030	B> D^{**0}tau nu,	12.9%	1,133		9.5%		0.01	0.12	13.4	
11	D0	12675010	B- → D**(→D0ππ)μν	8.0%	19,032				0.24	1.09	4.5	
12	D0	11674400	B0 → D**(→D0ππ)μν	8.0%	19,168				0.24	1.09	4.6	
13	D0/D*+	12675400	$B- \rightarrow D^{**}(\rightarrow D^* + \pi \pi) \mu \nu$			n	D _s ** μ ν stats		#DIV/0!	0.77	#DIV/0!	
14	D0/D*+	11676010	B0 → D**(→D*+ππ)μν					#DIV/0!	0.74	#DIV/0!		
	D0	12675430	B- → D**(→D*0ππ)μν	7.9%	12,400	see	seem low, typo?		0.16	1.30	8.2	
	D0		Bs → Ds**(→D0K)μν	7.5%	11,230				0.15	0.09	0.6	
	D*+		Bs -> D**+μ ν				30.4%	817	0.00	0.33	121.3	
	D0		$B0 \rightarrow D0(Xc \rightarrow \mu\nu X')X$	3.9%	, , , , , , , , , , , , , , , , , , , ,				0.76	2.64	3.5	
	D0		B0 → D0(Ds → τν)X	6.6%					0.02	0.17	8.8	
20	D0		$B+ \rightarrow D0(Xc \rightarrow \mu\nu X')X$	6.0%					0.76	2.86	3.8	
21	D0		$B+ \rightarrow D0(Ds \rightarrow \tau v)X$	4.6%	3,281				0.07	0.59	8.2	
	D*+		B0 -> D*+ (Xc -> μ ν X')X				15.7%	15,480		2.90	29.4	
	D*+		B0 -> D*+(Ds -> τ ν) X				29.4%	754		0.27	105.5	
	D*+		B+ -> D*+ (Xc -> μ v X')X				8.9%	8,820	0.10	0.84	8.5	
25	D*+	12874030	B+ -> D*+(Ds -> τ v) X				12.7%	326	0.00	0.16	63.8	