HW5

Sam Olson

Outline

- Q1: Edited
- Q2: Edited
- Q3: Edited
- Q4: Edited

1.

In the attached article by Prof. M. Ghosh, read pages 509-512 (including example 1), examples 4-6 of Section 3, and Section 5.2 up to and including Examples 17-18. (This is sort of a technical article, so to read a bit of this material is not easy. Also, Example 17 should look like an example from class regarding Basu's theorem.)

In example 18, show that T is a complete and sufficient statistic, while U is an ancillary statistic.

Example 18.

Let X_1, \ldots, X_n $(n \ge 2)$ be iid with common Weibull pdf

$$f_{\theta}(x) = \exp(-x^p/\theta)(p/\theta)x^{p-1}; \quad 0 < x < \infty, \quad 0 < \theta < \infty,$$

p(>0) being known. In this case, $T=\sum_{i=1}^n X_i^p$ is complete sufficient for θ , while $U=X_1^p/T$ is ancillary. Also, since X_1^p,\ldots,X_n^p are iid exponential with scale parameter θ , $U\sim \mathrm{Beta}(1,n-1)$. Hence, the UMVUE of $P_{\theta}(X_1\leq x)=P_{\theta}(X_1^p\leq x^p)$ is given by

$$k(T) = \begin{cases} 1 - x^{np}/T^n & \text{if } T > x^p, \\ 1 & \text{if } T \le x^p. \end{cases}$$

Answer

A statistic T is sufficient for θ if its conditional distribution given the sample does not depend on θ . By the **Factorization Theorem**, a statistic T is sufficient if the joint pdf can be factorized as:

$$f_{\theta}(x_1,\ldots,x_n)=g(T,\theta)h(x_1,\ldots,x_n).$$

For our case, the joint pdf of X_1, \ldots, X_n is:

$$f_{\theta}(x_1,\ldots,x_n) = \prod_{i=1}^n \left[\exp(-x_i^p/\theta)(p/\theta)x_i^{p-1} \right].$$

Rewriting,

$$f_{\theta}(x_1,\ldots,x_n) = \left(\frac{p}{\theta}\right)^n \exp\left(-\frac{T}{\theta}\right) \prod_{i=1}^n x_i^{p-1}.$$

Here, $g(T,\theta) = \left(\frac{p}{\theta}\right)^n \exp\left(-\frac{T}{\theta}\right)$ depends on the data only through T, and $h(x_1,\ldots,x_n) = \prod_{i=1}^n x_i^{p-1}$ does not depend on θ . By the Factorization Theorem, T is **sufficient** for θ .

A statistic T is complete if for any function g(T),

$$E_{\theta}[g(T)] = 0 \quad \forall \theta \Rightarrow P(g(T) = 0) = 1.$$

Since $T = \sum_{i=1}^{n} X_{i}^{p}$ follows a gamma distribution:

$$T \sim \text{Gamma}(n, \theta),$$

and the gamma family is a complete exponential family, T is complete for θ .

We now turn to the question of U being ancillary. A statistic U is ancillary if its distribution does not depend on θ . Consider

$$U = \frac{X_1^p}{T}.$$

Since X_1^p, \ldots, X_n^p are **iid** exponential(θ), we can write

$$\left(\frac{X_1^p}{\theta}, \dots, \frac{X_n^p}{\theta}\right) \sim \text{iid Exp}(1).$$

Thus, $T/\theta \sim \text{Gamma}(n, 1)$, and $U = X_1^p/T$ follows a **Beta(1, n-1)** distribution, which **does not depend** on θ . Hence, U is **ancillary**.

2.

Problem 7.60, Casella and Berger and the following:

Base

Let X_1, \ldots, X_n be iid gamma (α, β) with α known. Find the best unbiased estimator of $1/\beta$.

Answer

Let X_1, \ldots, X_n be iid gamma (α, β) with α known. We want to find the best unbiased estimator of $1/\beta$. Since $X_i \sim \text{Gamma}(\alpha, \beta)$, the sum

$$S_n = \sum_{i=1}^n X_i$$

follows a Gamma distribution:

$$S_n \sim \text{Gamma}(n\alpha, \beta).$$

The expectation is:

$$E_{\theta}(S_n) = n\alpha\beta.$$

A natural unbiased estimator for $1/\beta$ is:

$$\frac{n\alpha}{S_n}$$
,

since:

$$E_{\theta}\left[\frac{n\alpha}{S_n}\right] = \frac{n\alpha}{E_{\theta}(S_n)} = \frac{n\alpha}{n\alpha\beta} = \frac{1}{\beta}.$$

Since S_n is a **complete sufficient statistic** for β (by the **Factorization Theorem** and **Lehmann-Scheffé Theorem**), any unbiased estimator that is a function of S_n is **UMVUE**. Thus,

$$\frac{n\alpha}{S_n}$$

is the **best unbiased estimator** of $1/\beta$.

a)

Let $S_n = \sum_{i=1}^n X_i$. Using Basu's theorem, show X_1/S_n and S_n are independent.

Answer

Using Basu's theorem, we show that X_1/S_n and S_n are independent.

Basu's theorem states that if T is a **complete sufficient statistic** and U is an **ancillary statistic**, then T and U are **independent**.

- We already know that S_n is **complete and sufficient** for β .
- Consider the ratio:

$$U = \frac{X_1}{S_n}.$$

The distribution of U does not depend on β . Specifically,

$$U \sim \text{Beta}(\alpha, (n-1)\alpha),$$

which is **free of** β and hence **ancillary**.

By Basu's theorem, $U = X_1/S_n$ and S_n are independent.

b)

Using the result in a) and $E_{\theta}(S_n) = n\alpha\beta$, find $E_{\theta}(X_1/S_n)$.

Answer

Using the results in a), we compute:

$$E_{\theta}\left(\frac{X_1}{S_n}\right).$$

Since $X_1/S_n \sim \text{Beta}(\alpha, (n-1)\alpha)$, we use the expectation formula for a Beta distribution:

$$E\left(\operatorname{Beta}(a,b)\right) = \frac{a}{a+b}.$$

Thus,

$$E_{\theta}\left(\frac{X_1}{S_n}\right) = \frac{\alpha}{\alpha + (n-1)\alpha} = \frac{1}{n}.$$

3.

Problem 8.13(a)-(c), Casella and Berger (2nd Edition) and, in place of Problem 8.13(d), consider the following test:

Let X_1, X_2 be iid uniform $(\theta, \theta + 1)$. For testing $H_0: \theta = 0$ versus $H_1: \theta > 0$, we have two competing tests:

$$\phi_1(X_1)$$
: Reject H_0 if $X_1 > 0.95$,

$$\phi_2(X_1, X_2)$$
: Reject H_0 if $X_1 + X_2 > C$.

a)

Find the value of C so that ϕ_2 has the same size as ϕ_1 .

Answer

The size of ϕ_1 is:

$$\alpha_1 = P(X_1 > 0.95 \mid \theta = 0) = 0.05.$$

The size of ϕ_2 is:

$$\alpha_2 = P(X_1 + X_2 > C \mid \theta = 0).$$

For $1 \le C \le 2$, the probability $P(X_1 + X_2 > C \mid \theta = 0)$ is computed as:

$$\alpha_2 = \int_{1-C}^{1} \int_{C-x_1}^{1} 1 \, dx_2 \, dx_1 = \frac{(2-C)^2}{2}.$$

Setting $\alpha_2 = \alpha_1 = 0.05$ and solving for C:

$$\frac{(2-C)^2}{2} = 0.05 \implies (2-C)^2 = 0.1 \implies C = 2 - \sqrt{0.1} \approx 1.68.$$

Thus, the value of C such that ϕ_2 has the same size as ϕ_1 is:

$$C = 2 - \sqrt{0.1} \approx 1.68.$$

b)

Calculate the power function of each test. Draw a well-labeled graph of each power function.

Answer

Power Function of ϕ_1 The power function of ϕ_1 is:

$$\beta_1(\theta) = P_{\theta}(X_1 > 0.95) = \begin{cases} 0 & \text{if } \theta \le -0.05, \\ \theta + 0.05 & \text{if } -0.05 < \theta \le 0.95, \\ 1 & \text{if } \theta > 0.95. \end{cases}$$

Power Function of ϕ_2 The distribution of $Y = X_1 + X_2$ is:

$$f_Y(y \mid \theta) = \begin{cases} y - 2\theta & \text{if } 2\theta \le y < 2\theta + 1, \\ 2\theta + 2 - y & \text{if } 2\theta + 1 \le y < 2\theta + 2, \\ 0 & \text{otherwise.} \end{cases}$$

The power function of ϕ_2 is:

$$\beta_2(\theta) = P_{\theta}(Y > C) = \begin{cases} 0 & \text{if } \theta \le \frac{C}{2} - 1, \\ \frac{(2\theta + 2 - C)^2}{2} & \text{if } \frac{C}{2} - 1 < \theta \le \frac{C - 1}{2}, \\ 1 - \frac{(C - 2\theta)^2}{2} & \text{if } \frac{C - 1}{2} < \theta \le \frac{C}{2}, \\ 1 & \text{if } \theta > \frac{C}{2}. \end{cases}$$

Power Functions of Phi1 and Phi2

c)

Prove or disprove: ϕ_2 is a more powerful test than ϕ_1 .

Answer

From the graph in Part (b), we observe that:

- ϕ_1 is more powerful for θ near 0.
- ϕ_2 is more powerful for larger values of θ .

Thus, ϕ_2 is **not uniformly more powerful** than ϕ_1 .

Extra

$$\phi_3(X_1, X_2) = \begin{cases} 1 & \text{if } X_{(1)} > 1 - \sqrt{0.05} \text{ or } X_{(2)} > 1 \\ 0 & \text{otherwise} \end{cases}$$

where $X_{(1)}, X_{(2)}$ are the min, max.

Find the size of this test and the power function for $\theta > 0$. Then, graph the power functions of ϕ_3 and ϕ_2 to determine which test is more powerful. (It's enough to graph over the range $\theta \in [0, 1.2]$.)

Answer

Define the test:

$$\phi_3(X_1, X_2) = \begin{cases} 1 & \text{if } X_{(1)} > 1 - \sqrt{0.05} \text{ or } X_{(2)} > 1, \\ 0 & \text{otherwise,} \end{cases}$$

where $X_{(1)}, X_{(2)}$ are the minimum and maximum of X_1, X_2 , respectively.

Size of ϕ_3 Under $H_0: \theta = 0$, the size of ϕ_3 is:

$$\alpha_3 = P(X_{(1)} > 1 - \sqrt{0.05} \mid \theta = 0) = (1 - (1 - \sqrt{0.05}))^2 = 0.05.$$

Power Function of ϕ_3 The power function of ϕ_3 is:

$$\beta_3(\theta) = P_{\theta}(X_{(1)} > 1 - \sqrt{0.05}) = (1 - (1 - \sqrt{0.05} - \theta))^2.$$

Plot Via the below:

• ϕ_3 is more powerful than ϕ_2 for all $\theta > 0$.

Thus, ϕ_3 is uniformly more powerful than ϕ_2 .

```
# Define theta range
theta \leftarrow seq(0, 1.2, by = 0.01)
C <- 2 - sqrt(0.1) # Computed value of C for phi_2
# Power function for phi_2
beta2 \leftarrow ifelse(theta \leftarrow (C/2) - 1, 0,
         ifelse(theta \leq (C - 1)/2, ((2*theta + 2 - C)^2)/2,
         ifelse(theta \leq C/2, 1 - ((C - 2*theta)^2)/2, 1)))
# Power function for phi_3
phi3_power <- function(theta) {</pre>
  pmin(1, (1 - pmax(0, 1 - sqrt(0.05) - theta))^2)
beta3 <- sapply(theta, phi3_power)</pre>
# Plot
plot(theta, beta2, type = "l", col = "red", lwd = 2, ylim = c(0, 1),
     ylab = "Power", xlab = expression(theta), main = "Power Functions of Phi2 and Phi3")
lines(theta, beta3, col = "green", lwd = 2, lty = 3)
legend("bottomright", legend = c(expression(phi[2]), expression(phi[3])),
       col = c("red", "green"), lty = c(2, 3), lwd = 2)
```

Power Functions of Phi2 and Phi3

4.

Problem 8.15, Casella and Berger (2nd Edition), though you can just assume the form given is most powerful (no need to show).

Show that for a random sample X_1, \ldots, X_n from a $\mathcal{N}(0, \sigma^2)$ population, the most powerful test of $H_0 : \sigma = \sigma_0$ versus $H_1 : \sigma = \sigma_1$, where $\sigma_0 < \sigma_1$, is given by

$$\phi\left(\sum X_i^2\right) = \begin{cases} 1 & \text{if } \sum X_i^2 > c, \\ 0 & \text{if } \sum X_i^2 \le c. \end{cases}$$

For a given value of α , the size of the Type I Error, show how the value of c is explicitly determined.

Answer

From the **Neyman-Pearson lemma**, the most powerful (UMP) test rejects H_0 if the likelihood ratio exceeds a threshold k. The likelihood ratio is:

$$\frac{f(x\mid\sigma_1)}{f(x\mid\sigma_0)} = \frac{(2\pi\sigma_1^2)^{-n/2}e^{-\sum_i x_i^2/(2\sigma_1^2)}}{(2\pi\sigma_0^2)^{-n/2}e^{-\sum_i x_i^2/(2\sigma_0^2)}} = \left(\frac{\sigma_0}{\sigma_1}\right)^n \exp\left\{\frac{1}{2}\sum_i x_i^2\left(\frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2}\right)\right\} > k.$$

After some algebra, this inequality simplifies to:

$$\sum_{i} x_{i}^{2} > \frac{2 \log \left(k \left(\sigma_{1} / \sigma_{0}\right)^{n}\right)}{\left(\frac{1}{\sigma_{0}^{2}} - \frac{1}{\sigma_{1}^{2}}\right)} = c,$$

where c is a constant. This is because $\frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2} > 0$ (since $\sigma_0 < \sigma_1$).

Thus, the UMP test rejects H_0 if:

$$\sum_{i} X_i^2 > c.$$

The critical value c is determined such that the Type I error probability is α , i.e.,

$$\alpha = P_{\sigma_0} \left(\sum_i X_i^2 > c \right).$$

Under H_0 , $\sum_i X_i^2/\sigma_0^2$ follows a chi-squared distribution with n degrees of freedom:

$$\sum_{i} X_i^2 / \sigma_0^2 \sim \chi_n^2.$$

Thus, the probability can be rewritten as:

$$\alpha = P_{\sigma_0} \left(\sum_i X_i^2 / \sigma_0^2 > c / \sigma_0^2 \right) = P \left(\chi_n^2 > c / \sigma_0^2 \right).$$

To find c, we solve for the $(1-\alpha)$ -quantile of the χ_n^2 distribution:

$$c = \sigma_0^2 \cdot \chi_{n,1-\alpha}^2,$$

where $\chi^2_{n,1-\alpha}$ is the $(1-\alpha)$ -quantile of the χ^2_n distribution.