ENSIMAG 1A

Interpolation aux abscisses de Tchebychev

Préliminaires

Les fonctions de Tchebychev $\mathcal{T}_k(x)$ sont définies, pour $k \geq 0$, de la manière suivante:

$$\mathcal{T}_k(x) = \cos(k \arccos(x)), \quad -1 \le x \le 1.$$

- 1. Calculer \mathcal{T}_0 , \mathcal{T}_1 et \mathcal{T}_2 .
- 2. Quel est le maximum de $|\mathcal{T}_k(x)|$ sur [-1,1]? Pour quels points est-il atteint?
- 3. Montrer que pour $k \geq 1$ on la relation de récurrence suivante

$$\mathcal{T}_{k+1}(x) = 2x\mathcal{T}_k(x) - \mathcal{T}_{k-1}(x).$$

indication: on pourra utiliser un développement de $cos((k \pm 1)\theta)$ en fonction de $cos(k\theta)$.

4. Montrer que $\mathcal{T}_{k+1}(x)$ est un polynôme. Quel est son degré, que vaut son coefficient directeur? En déduire que les (k+1) racines distinctes de $\mathcal{T}_{k+1}(x)$ sont les suivantes:

$$x_i = \cos\left(\frac{2i+1}{2k+2}\pi\right), \quad 0 \le i \le k.$$

On les appelle les abscisses de Tchebychev.

Erreur d'interpolation

Soit une fonction f de classe C^{n+1} , interpolée par un polynôme Φ de degré n en n+1 points $x_0, \ldots, x_n \in [a, b]$:

$$\Phi(x_i) = f(x_i), \quad 0 \le i \le n.$$

Les points d'interpolation sont choisis comme étant les racines du polynôme de Tchebychev, $\mathcal{T}_{n+1}(x)$.

- **5.** On considère ici que [a,b]=[-1,1]. Exprimer l'erreur d'interpolation en fonction de $\mathcal{T}_{n+1}(x)$.
- **6.** On considère ici que [a,b] est quelconque. Montrer que

$$||f(x) - \Phi(x)||_{\infty} \le \frac{2}{(n+1)!} \left(\frac{b-a}{4}\right)^{n+1} ||f^{n+1}||_{\infty}.$$

indication: on pourra utiliser un changement affine de variable et choisir les points d'interpolation comme étant les images, par ce changement de variable, des racines du polynôme de Tchebychev.