

Low Power Programmable Timing Control Hub™ for P4™ processor

Recommended Application:

Low Power CK410M Compliant Main Clock

Output Features:

- 2 0.7V push-pull differential CPU pairs
- 5 0.7V push-pull differential PCIEX pairs
- 1 0.7V push-pull differential SATA pair
- 1 0.7V push-pull differential CPU/PCIEX selectable pair
- 1 0.7V push-pull differential 27MHz/LCDCLK/PCIEX selectable pair
- 4 PCI (33MHz)
- 2 PCICLK_F, (33MHz) free-running
- 1 USB, 48MHz
- 2 REF, 14.318MHz

Key Specifications:

- CPU outputs cycle-cycle jitter < 85ps
- PCIEX outputs cycle-cycle jitter < 125ps
- SATA outputs cycle-cycle jitter < 125ps
- PCI outputs cycle-cycle jitter < 500ps
- +/- 100ppm frequency accuracy on CPU, PCIEX and SATA clocks
- +/- 100ppm frequency accuracy on USB clocks

Features/Benefits:

- Supports tight ppm accuracy clocks for Serial-ATA and PCIEX
- Supports programmable spread percentage and frequency
- Uses external 14.318MHz crystal, external crystal load caps are required for frequency tuning
- PEREQ# pins to support PCIEX power management.
- Low power differential clock outputs (No 50W resistor to GND needed)

Pin Configuration

VDDPCI GND PCICLK3 PCICLK4 *SELPCIEX0_LCD#PCICLK5 GND VDDPCI ITP_EN/PCICLK_F1 Vtt_PwrGd#/PD VDD48 FS_LA/USB_48MHz GND DOTT_96MHzL DOTC_96MHzL DOTC_96MHzL 27FIX/LCD_SSCGT/PCIeT_L0 27SS/LCD_SSCGT/PCIeT_L0 27SS/LCD_SSCGC/PCIeC_L0 PCIeT_L1 PCIeC_L1 VDDPCIEX PCIET_L3 PCIEC_L2 SATACLKT_L SATACLKC_L VDDPCIEX	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 24 25 26 27	55 54 53 52 51 50 49 48 47 46 45 42 43 42 40 39 38 37 36 35 31 32 31 31	PCICLK2/REQ_SEL** PCI&PCIEX_STOP# CPU_STOP# REF1/FSLC/TEST_SEL REF0 GND X1 X2 VDDREF SDATA SCLK GND CPUT_L0 CPUT_L0 CPUT_L0 CPUT_L1 CPUC_L1 VDD GNDA VDDA CPUTTT_L2/PCIeT_L6 CPUTTP_L2/PCIeT_L6 VDDPCIEX PEREQ2#/PCIeC_L5 PCIeT_L4 PCIeC_L4 GND
--	--	--	---

56-TSSOP

Functionality Table

Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	CPU	PCIEX	PCI	SATA
DIL 4	כום	FS_LC	FS_LB	FS∟A	MHz	MHz	MHz	MHz
0	0	0	0	0	266.66	99.75	33.33	100.00
0	0	0	0	1	133.33	99.75	33.33	100.00
0	0	0	1	0	200.00	99.75	33.33	100.00
0	0	0	1	1	166.66	99.75	33.33	100.00
0	0	1	0	0	333.33	99.75	33.33	100.00
0	0	1	0	1	100.00	99.75	33.33	100.00
0	0	1	1	0	400.00	99.75	33.33	100.00
0	0	1	1	1	200.00	99.75	33.33	100.00
0	1	0	0	0	266.66	99.75	33.33	100.00
0	1	0	0	1	133.33	99.75	33.33	100.00
0	1	0	1	0	200.00	99.75	33.33	100.00
0	1	0	1	1	166.66	99.75	33.33	100.00
0	1	1	0	0	333.33	99.75	33.33	100.00
0	1	1	0	1	100.00	99.75	33.33	100.00
0	1	1	1	0	400.00	99.75	33.33	100.00
0	1	1	1	1	200.00	99.75	33.33	100.00
1	0	0	0	0	269.33	100.75	33.33	100.00
1	0	0	0	1	271.99	101.75	33.33	100.00
1	0	0	1	0	274.66	102.74	33.33	100.00
1	0	0	1	1	277.33	103.74	33.33	100.00
1	0	1	0	0	279.99	104.74	33.33	100.00
1	0	1	0	1	282.66	105.74	33.33	100.00
1	0	1	1	0	285.33	106.73	33.33	100.00
1	0	1	1	1	287.99	107.73	33.33	100.00
1	1	0	0	0	269.33	108.73	33.33	100.00
1	1	0	0	1	271.99	109.73	33.33	100.00
1	1	0	1	0	274.66	110.72	33.33	100.00
1	1	0	1	1	277.33	111.72	33.33	100.00
1	1	1	0	0	279.99	112.72	33.33	100.00
1	1	1	0	1	282.66	113.72	33.33	100.00
1	1	1	1	0	285.33	114.71	33.33	100.00
1	1	1	1	1	287.99	115.71	33.33	100.00

1346-10/23/07

^{*} Internal Pull-Up Resistor ** Internal Pull-Down Resistor

Pin Description

PIN #	SCRIPTION PIN NAME	TYPE	DESCRIPTION
1	VDDPCI	PWR	Power supply for PCI clocks, nominal 3.3V
2	GND	PWR	Ground pin.
3	PCICLK3	OUT	PCI clock output.
4	PCICLK4	OUT	PCI clock output.
			Latched select input for LCDCLK/PCIEX output 0 = LCDCLK, 1 = PCIEX / 3.3V PCI clock
5	*SELPCIEX0_LCD#PCICLK5	I/O	output.
6	GND	PWR	Ground pin.
7	VDDPCI	PWR	Power supply for PCI clocks, nominal 3.3V
8	ITP_EN/PCICLK_F0	I/O	Free running PCI clock not affected by PCI_STOP#. ITP_EN: latched input to select pin functionality 1 = CPU_ITP pair 0 = SRC pair
9	*SELLCD_27#/PCICLK_F1	I/O	Free running PCI clock not affected by PCI_STOP#. SELLCD_27#: latched input to select pin functionality 1 = LCDCLK pair 0 = 27MHzSS/27MHzSS# pair
10	Vtt_PwrGd#/PD	IN	Vtt_PwrGd# is an active low input used to determine when latched inputs are ready to be sampled. PD is an asynchronous active high input pin used to put the device into a low power state. The internal clocks, PLLs and the crystal oscillator are stopped.
11	VDD48	PWR	Power pin for the 48MHz output.3.3V
12	FSLA/USB_48MHz	I/O	3.3V tolerant input for CPU frequency selection. Refer to input electrical characteristics for Vil_FS and Vih_FS values. / Fixed 48MHz USB clock output. 3.3V.
13	GND	PWR	Ground pin.
14	DOTT_96MHzL	OUT	True clock of low power differential pair for 96.00MHz DOT clock. No 50ohm to GND needed.
15	DOTC_96MHzL	OUT	Complement clock of low power differential pair for 96.00MHz DOT clock. No 50ohm resistor to GND needed.
16	FSLB/TEST_MODE	IN	3.3V tolerant input for CPU frequency selection. Refer to input electrical characteristics for Vil_FS and Vih_FS values. TEST_MODE is a real time input to select between Hi-Z and REF/N divider mode while in test mode. Refer to Test Clarification Table.
17	27FIX/LCD_SSCGT/PCleT_L0	OUT	27MHz Non-Spread Push-Pull output / True clock of low power LCDCLK output / True clock of low power PCIEXCLK differential pair/ selected by SELPCIEX0_LCD# and SELLCD_27#. No 50ohm resistor to GND needed for differential outputs.
18	27SS/LCD_SSCGC/PCIeC_L0	OUT	27MHz Spreading Push-Pull output / Complementary clock of LCDCLK_SS output / Complementary clock of PCIEXCLK differential pair/ selected by SELPCIEX0_LCD# and SELLCD_27#. No 50ohm resistor to GND needed for differential outputs.
19	PCleT_L1	OUT	True clock of 0.8V differential push-pull PCI_Express pair (no 50ohm resistor to GND needed)
20	PCIeC_L1	OUT	Complement clock of 0.8V differential push-pull PCI_Express pair. (no 50ohm resistor to GND needed)
21	VDDPCIEX	PWR	Power supply for PCI Express clocks, nominal 3.3V
22	PCIeT_L2	OUT	True clock of 0.8V differential push-pull PCI_Express pair (no 50ohm resistor to GND needed)
23	PCIeC_L2	OUT	Complement clock of 0.8V differential push-pull PCI_Express pair. (no 50ohm resistor to GND needed)
24	PCIeT_L3	OUT	True clock of 0.8V differential push-pull PCI_Express pair (no 50ohm resistor to GND needed)
25	PCIeC_L3	OUT	Complement clock of 0.8V differential push-pull PCI_Express pair. (no 50ohm resistor to GND needed)
26	SATACLKT_L	OUT	True clock of 0.8V push-pull differential SATA pair. (no 50ohm resistor to GND needed)
27	SATACLKC_L	OUT	Complement clock of 0.8V push-pull differential SATA pair. (no 50ohm resistor to GND needed)
28	VDDPCIEX	PWR	Power supply for PCI Express clocks, nominal 3.3V

Pin Description (Continued)

PIN # PIN NAME TYPE GROUND PWR Ground pin. 30 PCIeC_L4 OUT Complement clock of 0.8V differential push-pull PCI_Express pair. (no 50oh GND needed) 31 PCIeT_L4 OUT True clock of 0.8V differential push-pull PCI_Express pair. (no 50oh gND needed) 32 PEREQ2#/PCIeC_L5 I/O disabled, 0 = enabled, 1 Complement clock of differential low power PCI Express pair. (no 50ohm resistor to GND needed) 33 PEREQ1#/PCIeT_L5 I/O disabled, 0 = enabled, 1 Complement clock of differential low power PCI Express out disabled, 0 = enabled, 1 True clock of differential low power PCI Express out disabled, 0 = enabled, 1 True clock of differential low power PCI Express out disabled, 0 = enabled, 1 True clock of differential low power PCI Express out disabled, 0 = enabled, 1 True clock of differential low power PCI Express out disabled, 0 = enabled, 1 True clock of differential low power PCI Express out disabled, 0 = enabled, 1 True clock of differential low power PCI Express out disabled, 0 = enabled, 1 True clock of differential low power PCI Express out disabled, 0 = enabled, 1 True clock of differential pair CPU output. / Complement clock of differential pair CPU output. / Complement clock of differential pair CPU output. / True clock of differential pair CPU output. / True clock of differential pair CPU output. / True clock of differential PCIEX pair. These are 0.8V push pull outputs. No 50ohm resistor to GND needed. 37 VDDA PWR Ground pin for the PLL core. 38 GNDA PWR Ground pin for the PLL core. 40 CPUC_L1 OUT Complementary clock of differential pair 0.8V push-pull CPU outputs. No 50ohm resistor needed. 41 CPUT_L1 OUT True clock of differential pair 0.8V push-pull CPU outputs. No 50ohm resistor needed. 42 VDDCPU PWR Supply for CPU clocks, 3.3V nominal 43 CPUC_L0 OUT True clock of differential pair 0.8V push-pull CPU outputs. No 50ohm resistor needed. 44 CPUT_L0 OUT True clock of differential pair 0.8V push-pull CPU outputs. No 50ohm resistor needed. 55 GND PWR Ground pin. 56 GND PWR Ground pin. 57 Ground pin. 57 Ground p	
31 PCIeT_L4 OUT True clock of 0.8V differential push-pull PCI_Express pair (no 50ohm resistor needed) PEREQ2#/PCIeC_L5 I/O disabled, 0 = enabled, / Complement clock of differential low power PCI Express out (no 50ohm resistor to GND needed.) PEREQ1#/PCIeT_L5 I/O disabled, 0 = enabled, / Complement clock of differential low power PCI Express out (no 50ohm resistor to GND needed.) PEREQ1#/PCIeT_L5 I/O disabled, 0 = enabled, / True clock of differential low power PCI Express out (no 50ohm resistor to GND needed.) 34 VDDPCIEX PWR Power supply for PCI Express clocks, nominal 3.3V CPUITPT_L2/PCIeT_L6 OUT Complement clock of differential pair CPU output. / Complement clock of differential pair CPU output. True clock of differential pair 0.8V push-pull CPU outputs. No 50ch pair of the PLL core. 38 GNDA PWR Ground pin for the PLL core. 40 CPUC_L1 OUT Complementary clock of differential pair 0.8V push-pull CPU outputs. No 50ch of GND needed. 41 CPUT_L1 OUT True clock of differential pair 0.8V push-pull CPU outputs. No 50ch needed. 42 VDDCPU PWR Supply for CPU clocks, 3.3V nominal CPUC_L0 OUT True clock of differential pair 0.8V push-pull CPU outputs. No 50ch of GND needed. True clock of differential pair 0.8V push-pull CPU outputs. No 50ch of GND needed. True clock of differential pair 0.8V push-pull CPU outputs. No 50ch of GND needed. True clock of differential pair 0.8V push-pull CPU outputs. No 50ch of GND needed. True clock of differential pair 0.8V push-pull CPU outputs. No 50ch of GND needed. True clock of differential pair 0.8V push-pull CPU outputs. No 50ch of GND needed. True clock of differential p	
PEREQ2#/PCIeC_L5 PEREQ2#/PCIeC_L5 PEREQ2#/PCIeC_L5 PEREQ2#/PCIeC_L5 PEREQ2#/PCIeC_L5 PEREQ2#/PCIeC_L5 PEREQ1#/PCIeT_L5 PEREQ1#/PCIeT_L5 PEREQ1#/PCIeT_L5 POS Dohn resistor to GND needed. Real-time input pin that controls PCIEXCLK outputs that are selected through disabled, 0 = enabled. / True clock of differential low power PCI Express out 500hm resistor to GND needed. PEREQ1#/PCIET_L5 PEREQ1#/PCIET_L5 PEREQ1#/PCIET_L5 POUT Complement clock of differential pair CPU output. / Complement clock of differential pair CPU output. / Complement clock of differential pair CPU output. / Complement clock of differential pair CPU output. Prue clock of differential pair 0.8V push pull outputs. No 500hm resistor to GND needed. PUDDA PWR Power supply nominal 3.3V CPUC_L1 OUT Complementary clock of differential pair 0.8V push-pull CPU outputs. No 500hm resistor needed. PUDC_L1 OUT Complementary clock of differential pair 0.8V push-pull CPU outputs. No 500 to GND needed. CPUT_L0 OUT True clock of differential pair 0.8V push-pull CPU outputs. No 50 to GND needed. CPUT_L0 OUT Complementary clock of differential pair 0.8V push-pull CPU outputs. No 500 to GND needed. True clock of differential pair 0.8V push-pull CPU outputs. No 500 to GND needed. PUBL CPUT_L0 OUT True clock of differential pair 0.8V push-pull CPU outputs. No 500 to GND needed. True clock of differential pair 0.8V push-pull CPU outputs. No 500 to GND needed. True clock of differential pair 0.8V push-pull CPU outputs. No 500 to GND needed. True clock of differential pair 0.8V push-pull CPU outputs. No 500 to GND needed. True clock of differential pair 0.8V push-pull CPU outputs. No 500 to GND needed. True clock of differential pair 0.8V push-pull CPU outputs. No 500 to GND nee	Oohm resistor to
32 PEREQ2#/PCIeC_L5 I/O disabled, 0 = enabled. / Complement clock of differential low power PCI Expr. No 50ohm resistor to GND needed.	
Sa	xpress output.
CPUITPC_L2/PCIeC_L6 OUT Complement clock of differential pair CPU output. / Complement clock of differential pair CPU output. No 500hm resistor to GND resistor resistor resistor to GND resistor	
PCIEX pair. These are 0.8V push pull outputs. No 50ohm resistor to GND needed. 36	
are 0.8V push pull outputs. No 50ohm resistor to GND needed. 37 VDDA PWR 3.3V power for the PLL core. 38 GNDA PWR Ground pin for the PLL core. 39 VDD PWR Power supply, nominal 3.3V 40 CPUC_L1 OUT Complementary clock of differential pair 0.8V push-pull CPU outputs. No 50c to GND needed. 41 CPUT_L1 OUT True clock of differential pair 0.8V push-pull CPU outputs. No 50 ohm resisted needed. 42 VDDCPU PWR Supply for CPU clocks, 3.3V nominal CPUC_L0 OUT Complementary clock of differential pair 0.8V push-pull CPU outputs. No 50 ohm resisted needed. 44 CPUT_L0 OUT True clock of differential pair 0.8V push-pull CPU outputs. No 50 ohm resisted needed. 45 GND PWR Ground pin. 46 SCLK IN Clock pin of SMBus circuitry, 5V tolerant. 47 SDATA I/O Data pin for SMBus circuitry, 5V tolerant. 48 VDDREF PWR Ref, XTAL power supply, nominal 3.3V 49 X2 OUT Crystal output, Nominally 14.318MHz 50 X1 IN Crystal input, Nominally 14.318MHz 51 GND PWR Ground pin. 52 REF0 OUT 14.318 MHz reference clock. 14.318 MHz reference clock./ 3.3V tolerant input for CPU frequency selection input to enable test mode. Refer to Test Clarification Table	
38 GNDA PWR Ground pin for the PLL core. 39 VDD PWR Power supply, nominal 3.3V 40 CPUC_L1 OUT Complementary clock of differential pair 0.8V push-pull CPU outputs. No 50c to GND needed. 41 CPUT_L1 OUT True clock of differential pair 0.8V push-pull CPU outputs. No 50 ohm resisted needed. 42 VDDCPU PWR Supply for CPU clocks, 3.3V nominal 43 CPUC_L0 OUT Complementary clock of differential pair 0.8V push-pull CPU outputs. No 50 ohm resisted needed. 44 CPUT_L0 OUT True clock of differential pair 0.8V push-pull CPU outputs. No 50 ohm resisted needed. 45 GND PWR Ground pin. 46 SCLK IN Clock pin of SMBus circuitry, 5V tolerant. 47 SDATA I/O Data pin for SMBus circuitry, 3.3V tolerant. 48 VDDREF PWR Ref, XTAL power supply, nominal 3.3V 49 X2 OUT Crystal output, Nominally 14.318MHz 50 X1 IN Crystal input, Nominally 14.318MHz. 51 GND PWR Ground pin. 52 REF0 OUT 14.318 MHz reference clock. 53 REF1/FSLC/TEST_SEL I/O input electrical characteristics for VI_FS and Vih_FS values. /TEST_Set: 3-lectron input to enable test mode. Refer to Test Clarification Table	X pair. These
39 VDD	
CPUC_L1 OUT Complementary clock of differential pair 0.8V push-pull CPU outputs. No 50c to GND needed. True clock of differential pair 0.8V push-pull CPU outputs. No 50 chm resists needed. VDDCPU PWR Supply for CPU clocks, 3.3V nominal CPUC_L0 OUT Complementary clock of differential pair 0.8V push-pull CPU outputs. No 50 cto GND needed. CPUT_L0 OUT True clock of differential pair 0.8V push-pull CPU outputs. No 50 cto GND needed. True clock of differential pair 0.8V push-pull CPU outputs. No 50 cto GND needed. True clock of differential pair 0.8V push-pull CPU outputs. No 50 cto GND needed. IN Clock pin of SMBus circuitry, 5V tolerant. TO Data pin for SMBus circuitry, 5V tolerant. VDDREF PWR Ref, XTAL power supply, nominal 3.3V VDREF PWR Ref, XTAL power supply, nominal 3.3V Crystal output, Nominally 14.318MHz IN Crystal input, Nominally 14.318MHz. TO UT 14.318 MHz reference clock. REF1/FSLC/TEST_SEL I/O input electrical characteristics for Vil_FS and Vih_FS values. /TEST_Sel: 3-lei input to enable test mode. Refer to Test Clarification Table	
to GND needed. 41 CPUT_L1 OUT True clock of differential pair 0.8V push-pull CPU outputs. No 50 ohm resisted needed. 42 VDDCPU PWR Supply for CPU clocks, 3.3V nominal 43 CPUC_L0 OUT Complementary clock of differential pair 0.8V push-pull CPU outputs. No 50 to GND needed. 44 CPUT_L0 OUT True clock of differential pair 0.8V push-pull CPU outputs. No 50 needed. 45 GND PWR Ground pin. 46 SCLK IN Clock pin of SMBus circuitry, 5V tolerant. 47 SDATA I/O Data pin for SMBus circuitry, 3.3V tolerant. 48 VDDREF PWR Ref, XTAL power supply, nominal 3.3V 49 X2 OUT Crystal output, Nominally 14.318MHz 50 X1 IN Crystal input, Nominally 14.318MHz. 51 GND PWR Ground pin. 52 REF0 OUT 14.318 MHz reference clock. 14.318 MHz reference clock./ 3.3V tolerant input for CPU frequency selection input electrical characteristics for Vil_FS and Vih_FS values. /TEST_Sel: 3-leigney to the pable test mode. Refer to Test Clarification Table	
41 CPUT_LI OUT needed. 42 VDDCPU PWR Supply for CPU clocks, 3.3V nominal 43 CPUC_LO OUT Complementary clock of differential pair 0.8V push-pull CPU outputs. No 50 to GND needed. 44 CPUT_LO OUT True clock of differential pair 0.8V push-pull CPU outputs. No 50 to GND needed. 45 GND PWR Ground pin. 46 SCLK IN Clock pin of SMBus circuitry, 5V tolerant. 47 SDATA I/O Data pin for SMBus circuitry, 3.3V tolerant. 48 VDDREF PWR Ref, XTAL power supply, nominal 3.3V 49 X2 OUT Crystal output, Nominally 14.318MHz 50 X1 IN Crystal input, Nominally 14.318MHz. 51 GND PWR Ground pin. 52 REF0 OUT 14.318 MHz reference clock. 53 REF1/FSLC/TEST_SEL I/O input electrical characteristics for Vil_FS and Vih_FS values. /TEST_Sel: 3-lei input to enable test mode. Refer to Test Clarification Table	
CPUC_LO OUT Complementary clock of differential pair 0.8V push-pull CPU outputs. No 50 to GND needed. 44 CPUT_LO OUT True clock of differential pair 0.8V push-pull CPU outputs. No 50 hm resisted needed. 45 GND PWR Ground pin. 46 SCLK IN Clock pin of SMBus circuitry, 5V tolerant. 47 SDATA I/O Data pin for SMBus circuitry, 3.3V tolerant. 48 VDDREF PWR Ref, XTAL power supply, nominal 3.3V APPROVED AND AND AND AND AND AND AND AND AND AN	istor to GND
to GND needed. 44 CPUT_LO OUT True clock of differential pair 0.8V push-pull CPU outputs. No 50ohm resistoneeded. 45 GND PWR Ground pin. 46 SCLK IN Clock pin of SMBus circuitry, 5V tolerant. 47 SDATA I/O Data pin for SMBus circuitry, 3.3V tolerant. 48 VDDREF PWR Ref, XTAL power supply, nominal 3.3V 49 X2 OUT Crystal output, Nominally 14.318MHz 50 X1 IN Crystal input, Nominally 14.318MHz. 51 GND PWR Ground pin. 52 REF0 OUT OUT 14.318 MHz reference clock. 14.318 MHz reference clock. Refer to Test Clarification Table	
45 GND PWR Ground pin. 46 SCLK IN Clock pin of SMBus circuitry, 5V tolerant. 47 SDATA I/O Data pin for SMBus circuitry, 3.3V tolerant. 48 VDDREF PWR Ref, XTAL power supply, nominal 3.3V 49 X2 OUT Crystal output, Nominally 14.318MHz 50 X1 IN Crystal input, Nominally 14.318MHz. 51 GND PWR Ground pin. 52 REF0 OUT 14.318 MHz reference clock. 14.318 MHz reference clock./ 14.318 MHz reference clock.// 3.3V tolerant input for CPU frequency selection input to enable test mode. Refer to Test Clarification Table	
46 SCLK IN Clock pin of SMBus circuitry, 5V tolerant. 47 SDATA I/O Data pin for SMBus circuitry, 3.3V tolerant. 48 VDDREF PWR Ref, XTAL power supply, nominal 3.3V 49 X2 OUT Crystal output, Nominally 14.318MHz 50 X1 IN Crystal input, Nominally 14.318MHz. 51 GND PWR Ground pin. 52 REF0 OUT 14.318 MHz reference clock. 14.318 MHz reference clock./ 3.3V tolerant input for CPU frequency selection input to enable test mode. Refer to Test Clarification Table	istor to GND
47 SDATA I/O Data pin for SMBus circuitry, 3.3V tolerant. 48 VDDREF PWR Ref, XTAL power supply, nominal 3.3V 49 X2 OUT Crystal output, Nominally 14.318MHz 50 X1 IN Crystal input, Nominally 14.318MHz. 51 GND PWR Ground pin. 52 REF0 OUT 14.318 MHz reference clock. 14.318 MHz reference clock. 14.318 MHz reference clock./ 3.3V tolerant input for CPU frequency selection input electrical characteristics for Vil_FS and Vih_FS values. /TEST_Sel: 3-lection input to enable test mode. Refer to Test Clarification Table	
48 VDDREF PWR Ref, XTAL power supply, nominal 3.3V 49 X2 OUT Crystal output, Nominally 14.318MHz 50 X1 IN Crystal input, Nominally 14.318MHz. 51 GND PWR Ground pin. 52 REF0 OUT 14.318 MHz reference clock. 53 REF1/FSLC/TEST_SEL I/O input electrical characteristics for Vil_FS and Vih_FS values. /TEST_Sel: 3-lection input to enable test mode. Refer to Test Clarification Table	
49 X2 OUT Crystal output, Nominally 14.318MHz 50 X1 IN Crystal input, Nominally 14.318MHz. 51 GND PWR Ground pin. 52 REF0 OUT 14.318 MHz reference clock. 53 REF1/FSLC/TEST_SEL I/O input electrical characteristics for Vil_FS and Vih_FS values. /TEST_Sel: 3-lection input to enable test mode. Refer to Test Clarification Table	
50 X1 IN Crystal input, Nominally 14.318MHz. 51 GND PWR Ground pin. 52 REF0 OUT 14.318 MHz reference clock. 53 REF1/FSLC/TEST_SEL I/O input electrical characteristics for Vil_FS and Vih_FS values. /TEST_Sel: 3-le input to enable test mode. Refer to Test Clarification Table	
51 GND PWR Ground pin. 52 REF0 OUT 14.318 MHz reference clock. 14.318 MHz reference clock. 14.318 MHz reference clock./ 3.3V tolerant input for CPU frequency selection input electrical characteristics for Vil_FS and Vih_FS values. /TEST_Sel: 3-lectronian input to enable test mode. Refer to Test Clarification Table	
52 REF0 OUT 14.318 MHz reference clock. 14.318 MHz reference clock./ 3.3V tolerant input for CPU frequency selection input electrical characteristics for Vil_FS and Vih_FS values. /TEST_Sel: 3-lectron input to enable test mode. Refer to Test Clarification Table	
53 REF1/FSLC/TEST_SEL I/O 14.318 MHz reference clock./ 3.3V tolerant input for CPU frequency selection input electrical characteristics for Vil_FS and Vih_FS values. /TEST_Sel: 3-lectron input to enable test mode. Refer to Test Clarification Table	
53 REF1/FSLC/TEST_SEL I/O input electrical characteristics for Vil_FS and Vih_FS values. /TEST_Sel: 3-le input to enable test mode. Refer to Test Clarification Table	
54 CPU_STOP# IN Stops all CPU clocks, except those set to be free running clocks	
55 PCI&PCIEX_STOP# IN Stops all PCICLKs at logic 0 level, when low. Free running PCICLKs are not this input.	not effected by
56 PCICLK2/REQ_SEL** I/O 3.3V PCI clock output / Latch select input pin. 0 = PCIEXCLK, 1 = PEREQ#	Q#

General Description

ICS9LPR426A is a low power CK410M-compliant clock specification. This clock synthesizer provides a single chip solution for next generation P4 Intel processors and Intel chipsets. **ICS9LPR426A** is driven with a 14.318MHz crystal.

Block Diagram

M and N programming range

	Minimum	Maximum
M	N	N
3	200	400
4	150	300
5	120	240
6	100	200
7	85	171
8	75	150
9	66	133
10	60	120
11	54	109
12	50	100
13	46	92

	Minimum	Maximum
M	N	N
14	42	85
15	40	80
16	37	75
17	35	70
18	33	66
19	31	63
20	30	60
21	28	57
22	27	54
23	26	52
24	25	50

Yellow range is programming with more margin

1346—10/23/07

Table 1: CPU PLL Spread Frequency Selection Table

FS4	1	Selection Table FS ₁ C	EC B	EC A	CDII		
_	FS3 (B0b3)	- - -	FS _L B	FS _L A	CPU MHz		
(B0b4)	0	(B0b2)	(B0b1) 0	(B0b0)		Spread %	
<u> </u>	0	<u> </u>		0	266.66	+/- 0.25 Center	
0	0	0	0	1	133.33	+/- 0.25 Center	
0	0	0	1	0	200.00	+/- 0.25 Center	
0	0	0	1	1	166.66	+/- 0.25 Center	
0	0	1	0	0	333.33	+/- 0.25 Center	
0	0	1	0	1	100.00	+/- 0.25 Center	
0	0	1	1	0	400.00	+/- 0.25 Center	ad
0	0	1	1	1	200.00	+/- 0.25 Center	pre
0	1	0	0	0	266.66	+/- 0.25 Center	S
0	1	0	0	1	133.33	+/- 0.25 Center	금
0	1	0	1	0	200.00	+/- 0.25 Center	Ö
0	1	0	1	1	166.66	+/- 0.25 Center	П
0	1	1	0	0	333.33	+/- 0.25 Center	S 0
0	1	1	0	1	100.00	+/- 0.25 Center	Ď
0	1	1	1	0	400.00	+/- 0.25 Center	ed e
0	1	1	1	1	200.00	+/- 0.25 Center	ğ
1	0	0	0	0	269.33	+/- 0.25 Center	ac
1	0	0	0	1	271.99	+/- 0.25 Center	CPU PLL Spread Depends on PCI PLL Spread
1	0	0	1	0	274.66	+/- 0.25 Center	
1	0	0	1	1	277.33	+/- 0.25 Center	占
1	0	1	0	0	279.99	+/- 0.25 Center	B
1	0	1	0	1	282.66	+/- 0.25 Center	O
1	0	1	1	0	285.33	+/- 0.25 Center	
1	0	1	1	1	287.99	+/- 0.25 Center	
1	1	0	0	0	269.33		
1	1	0	0	1	271.99	+/- 0.25 Center	
1	1	0	1	0	274.66	+/- 0.25 Center	
1	1	0	1	1	277.33	+/- 0.25 Center	
1	1	1	0	0	279.99	+/- 0.25 Center	
1	1	1	0	1	282.66	+/- 0.25 Center	
1	1	<u>.</u> 1	1	0	285.33	+/- 0.25 Center	
1	1	<u>.</u> 1	1	1	287.99	+/- 0.25 Center	

Table2: PCIEX PLL Spread and Frequency Selection Table

FS4	FS3	FS∟C	FS∟B	FS _L A	PCIEX	Spread	
(B19b4)	(B19b3)	(B19b2)	(B19b1)	(B19b0)	MHz	%	
0	0	0	0	0	99.75	+/- 0.25 Center	
0	0	0	0	1	99.75	+/- 0.25 Center	
0	0	0	1	0	99.75	+/- 0.25 Center	
0	0	0	1	1	99.75	+/- 0.25 Center	
0	0	1	0	0	99.75	+/- 0.25 Center	
0	0	1	0	1	99.75	+/- 0.25 Center	-
0	0	1	1	0	99.75	+/- 0.25 Center	еас
0	0	1	1	1	99.75	+/- 0.25 Center	Spr
0	1	0	0	0	99.75	+/- 0.25 Center	1,
0	1	0	0	1	99.75	+/- 0.25 Center	PCIEX PLL Spread Depends on PCI PLL Spread
0	1	0	1	0	99.75	+/- 0.25 Center	PC
0	1	0	1	1	99.75	+/- 0.25 Center	o
0	1	1	0	0	99.75	+/- 0.25 Center	sp
0	1	1	0	1	99.75	+/- 0.25 Center	nec
0	1	1	1	0	99.75	+/- 0.25 Center	Эер
0	1	1	1	1	99.75	+/- 0.25 Center	ad I
1	0	0	0	0	100.00	+/- 0.25 Center)re
1	0	0	0	1	101.75	+/- 0.25 Center	S.
1	0	0	1	0	102.74	+/- 0.25 Center	7.1
1	0	0	1	1	103.74	+/- 0.25 Center	X
1	0	1	0	0	104.74	+/- 0.25 Center	CIE
1	0	1	0	1	105.74	+/- 0.25 Center	₽.
1	0	1	1	0	106.73	+/- 0.25 Center	
1	0	1	1	1	107.73	+/- 0.25 Center	
1	1	0	0	0	108.73	+/- 0.25 Center	
1	1	0	0	1	109.73	+/- 0.25 Center	
1	1	0	1	0	110.72	+/- 0.25 Center	
1	1	0	1	1	111.72	+/- 0.25 Center	
1	1	1	0	0	112.72	+/- 0.25 Center	
1	1	1	0	1	113.72	+/- 0.25 Center	
1	1	1	1	0	114.71	+/- 0.25 Center	
1	1	1	1	1	115.71	+/- 0.25 Center	

Table3: SATA PLL Spread and Frequency Selection Table

B22b2	FS3	Bit 2	Bit 1	Bit 0	SATA	Pin 17/18	Spread
DZZUZ	(B31b6)	(Hardwired Low = 0)	(Hardwired	(Hardwired	MHz	MHz	%
0	0	0	0	0	N/A*	27.00	0.5% Down
0	0	0	0	1	N/A*	27.00	0.5% Down
0	0	0	1	0	N/A*	27.00	0.5% Down
0	0	0	1	1	N/A*	27.00	0.5% Down
0	0	1	0	0	N/A*	27.00	0.5% Down
0	0	1	0	1	N/A*	27.00	0.5% Down
0	0	1	1	0	N/A*	27.00	0.5% Down
0	0	1	1	1	N/A*	27.00	0.5% Down
0	1	0	0	0	N/A*	27.00	+/- 0.3 Center
0	1	0	0	1	N/A*	27.00	+/- 0.3 Center
0	1	0	1	0	N/A*	27.00	+/- 0.3 Center
0	1	0	1	1	N/A*	27.00	+/- 0.3 Center
0	1	1	0	0	N/A*	27.00	+/- 0.3 Center
0	1	1	0	1	N/A*	27.00	+/- 0.3 Center
0	1	1	1	0	N/A*	27.00	+/- 0.3 Center
0	1	1	1	1	N/A*	27.00	+/- 0.3 Center
1	0	0	0	0	100.00	N/A*	No Spread
1	0	0	0	1	100.00	N/A*	No Spread
1	0	0	1	0	100.00	N/A*	No Spread
1	0	0	1	1	100.00	N/A*	No Spread
1	0	1	0	0	100.00	N/A*	No Spread
1	0	1	0	1	100.00	N/A*	No Spread
1	0	1	1	0	100.00	N/A*	No Spread
1	0	1	1	1	100.00	N/A*	No Spread
1	1	0	0	0	100.00	N/A*	0.5% Down
1	1	0	0	1	100.00	N/A*	0.5% Down
1	1	0	1	0	100.00	N/A*	0.5% Down
1	1	0	1	1	100.00	N/A*	0.5% Down
1	1	1	0	0	100.00	N/A*	0.5% Down
1	1	1	0	1	100.00	N/A*	0.5% Down
1	1	1	1	0	100.00	N/A*	0.5% Down
1	1	1	1	1	100.00	N/A*	0.5% Down

SELPCIEX_LCD# and SELLCD_27# definition:

SELPCIEX_LCD#	SELLCD_27#	Pin #17/18	SATA source
0	0	27MHzFixed/27MHz_SS pair	PCI PLL
0	1	LCD_SST/C pair	SATA PLL
1	0	PCIe0T/C	SATA PLL
1	1	PCIe0T/C	SATA PLL

Table4: PCI PLL Spread and Frequency Selection Table

Bit 4	Bit 3	Bit 2 FSLB		FS _L A	PCI	LCD/SATA	Spread
(Hardwired Low = 0)	(Hardwired Low = 0)	(Hardwired Low = 0)	(B22b1)	(B22b0)	MHz	MHz	%
0	0	0	0	0	33.33	100.00	+/- 0.25% Center
0	0	0	0	1	33.33	100.00	+/- 0.5% Center
0	0	0	1	0	33.33	100.00	+/3% Center
0	0	0	1	1	33.33	100.00	1% down
0	0	1	0	0	33.33	100.00	+/- 0.25% Center
0	0	1	0	1	33.33	100.00	+/- 0.5% Center
0	0	1	1	0	33.33	100.00	+/3% Center
0	0	1	1	1	33.33	100.00	1% down
0	1	0	0	0	33.33	100.00	+/- 0.25% Center
0	1	0	0	1	33.33	100.00	+/- 0.5% Center
0	1	0	1	0	33.33	100.00	+/3% Center
0	1	0	1	1	33.33	100.00	1% down
0	1	1	0	0	33.33	100.00	+/- 0.25% Center
0	1	1	0	1	33.33	100.00	+/- 0.5% Center
0	1	1	1	0	33.33	100.00	+/3% Center
0	1	1	1	1	33.33	100.00	1% down
1	0	0	0	0	33.33	100.00	+/- 0.25% Center
1	0	0	0	1	33.33	100.00	+/- 0.5% Center
1	0	0	1	0	33.33	100.00	+/3% Center
1	0	0	1	1	33.33	100.00	1% down
1	0	1	0	0	33.33	100.00	+/- 0.25% Center
1	0	1	0	1	33.33	100.00	+/- 0.5% Center
1	0	1	1	0	33.33	100.00	+/3% Center
1	0	1	1	1	33.33	100.00	1% down
1	1	0	0	0	33.33	100.00	+/- 0.25% Center
1	1	0	0	1	33.33	100.00	+/- 0.5% Center
1	1	0	1	0	33.33	100.00	+/3% Center
1	1	0	1	1	33.33	100.00	1% down
1	1	1	0	0	33.33	100.00	+/- 0.25% Center
1	1	1	0	1	33.33	100.00	+/- 0.5% Center
1	1	1	1	0	33.33	100.00	+/3% Center
1	1	1	1	1	33.33	100.00	1% down

General I²C serial interface information for the ICS9LPR426A

How to Write:

- · Controller (host) sends a start bit.
- Controller (host) sends the write address D2 (H)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) sends the data byte count = X
- ICS clock will acknowledge
- Controller (host) starts sending Byte N through Byte N + X -1 (see Note 2)
- ICS clock will acknowledge each byte one at a time
- · Controller (host) sends a Stop bit

How to Read:

- · Controller (host) will send start bit.
- Controller (host) sends the write address D2
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- · Controller (host) will send a separate start bit.
- Controller (host) sends the read address D3 (H)
- ICS clock will acknowledge
- ICS clock will send the data byte count = X
- ICS clock sends Byte N + X -1
- ICS clock sends Byte 0 through byte X (if X_(H) was written to byte 8).
- · Controller (host) will need to acknowledge each byte
- Controllor (host) will send a not acknowledge bit
- · Controller (host) will send a stop bit

Index Block Write Operation						
Coi	ntroller (Host)		ICS (Slave/Receiver)			
Т	starT bit					
Slav	e Address D2 _(H)					
WR	WRite					
			ACK			
Beg	inning Byte = N					
	•		ACK			
Data	Byte Count = X					
			ACK			
Begir	nning Byte N					
			ACK			
	0	ţe				
	0	X Byte	0			
	0	×	0			
			0			
Byte N + X - 1						
			ACK			
P stoP bit						

Inc	dex Block Rea	ad	Operation	
Con	troller (Host)	IC	S (Slave/Receiver)	
Т	starT bit			
Slave	e Address D2 _(H)			
WR	WRite			
			ACK	
Begi	nning Byte = N			
			ACK	
RT	Repeat starT			
Slave	e Address D3 _(H)			
RD	ReaD			
			ACK	
			oata Byte Count = X	
	ACK			
			Beginning Byte N	
	ACK			
		X Byte	0	
	0	B)	0	
	0	×	0	
	0			
			Byte N + X - 1	
N	Not acknowledge			
Р	stoP bit			

I2C Table: Frequency Select Register

Byte 0	Name	Control Function	Туре	0	1	PWD
Bit 7	ROD	Reset on Demand	RW	Disable	Enable	0
Bit 6	SS_EN2	PCI PLL Spread Enable	RW	OFF	ON	1
Bit 5	Reserved	Reserved	RW	-	-	Х
Bit 4	FS4	Freq Select Bit 4	RW			0
Bit 3	FS3	Freq Select Bit 3	RW			0
Bit 2	FSLC	Freq Select Bit 2	RW	See Table 1: Frequency Selection Table		Latch
Bit 1	FSLB	Freq Select Bit 1	RW			Latch
Bit 0	FSLA	Freq Select Bit 0	RW			Latch

I2C Table: Output Control Register

Byte 1	Name	Control Function	Туре	0	1	PWD
Bit 7	Dot96Mhz	Output Control	RW	Disable	Enable	1
Bit 6	I2C RB	Select I2c readback from	RW	Shadow RAM	Active RAM	1
Bit 5	Reserved	Reserved	RW	-	-	X
Bit 4	PCIEX PLL MNEN	PCIEX PLL M/N Enable	RW	Disable	Enable	0
Bit 3	Reserved	Reserved	RW	-	-	Х
Bit 2	REF0 STRENGTH	Strength Programming	RW	1X	2X	0
Bit 1	PCI/PCIEX_STOP#	Stop all PCI and PCIEX clocks	RW	Outputs Stopped	Outputs Active	1
Bit 0	CPU PLL MNEN	CPU PLL M/N Enable	RW	Disable	Enable	0

I2C Table: Output Control Register

Byte 2	Name	Control Function	Туре	0	1	PWD
Bit 7	USB_48Mhz	Output Control	RW	Disable	Enable	1
Bit 6	CPUCLK2_ITP / PCIEXT/C6	Output Control	RW	Disable	Enable	1
Bit 5	SATACLKT/C	Output Control	RW	Disable	Enable	1
Bit 4	REF1	Output Control	RW	Disable	Enable	1
Bit 3	PCICLK5	Output Control	RW	Disable	Enable	1
Bit 2	PCICLK4	Output Control	RW	Disable	Enable	1
Bit 1	PCICLK3	Output Control	RW	Disable	Enable	1
Bit 0	PCICLK2	Output Control	RW	Disable	Enable	1

I2C Table: Output Control Register

Byte 3	Name	Control Function	Туре	0	1	PWD
Bit 7	PCICLK1	Output Control	RW	Disable	Enable	1
Bit 6	PCICLK0	Output Control	RW	Disable	Enable	1
Bit 5	PCIEXT/C5	Output Control	RW	Disable	Enable	1
Bit 4	PCIEXT/C4	Output Control	RW	Disable	Enable	1
Bit 3	Reserved	Reserved	RW	-	-	Х
Bit 2	Reserved	Reserved	RW	-	-	Χ
Bit 1	PCIEXT/C3	Output Control	RW	Disable	Enable	1
Bit 0	PCIEXT/C2	Output Control	RW	Disable	Enable	1

I2C Table: Output Control Register

	or output control riogists					
Byte 4	Name	Control Function		0	1	PWD
Bit 7	PCIEXT/C1	Output Control	RW	Disable	Enable	1
Bit 6	REF0	Output Control	RW	Disable	Enable	1
Bit 5	CPUCLK1	Output Control	RW	Disable	Enable	1
Bit 4	CPUCLK0	Output Control	RW	Disable	Enable	1
Bit 3	SEL PCIEX_LCDCLK#	Selects PCIEX or LCD/27MHz on pins 17 and 18	R	LCDCLK	PCIEX0	latch
Bit 2	PCIEXT/C0	Output Control	RW	Disable	Enable	1
Bit 1	Reserved	Reserved	RW	-	-	Х
Bit 0	Reserved	Reserved	RW	-	-	Х

I2C Table: Output Control Register

Byte 5	Name	Control Function		0	1	PWD
Bit 7	PCIEXT/C4		RW	Free-Running	Stoppable	0
Bit 6	Reserved		RW	-	-	X
Bit 5	Reserved	Allow assertion of PCI_STOP# or	RW	-	-	Χ
Bit 4	SATACLK	setting of PCI STOP control bit in I2C	RW	Free-Running	Stoppable	0
Bit 3	PCIEXT/C3	register to stop PCIEX clocks.	RW	Free-Running	Stoppable	0
Bit 2	PCIEXT/C2	register to stop i oiex clocks.	RW	Free-Running	Stoppable	0
Bit 1	PCIEXT/C1		RW	Free-Running	Stoppable	0
Bit 0	PCIEXT/C0		RW	Free-Running	Stoppable	0

I2C Table: Amplitude Control Register

Byte 6	Name	Control Function	Туре	0	1	PWD
Bit 7	Diff AMP	CPU Differential output Amplitude	RW	00 = 700mV	01 = 900mV	0
Bit 6	Diff AMP	Control	RW	10 = 800mV	11 = 1000mV	0
Bit 5	Reserved	Reserved	RW	-	-	Х
Bit 4	Reserved	Reserved	RW	-	-	Х
Bit 3	Diff AMP	DOT96 Differential output Amplitude	RW	00 = 700mV	01 = 900mV	0
Bit 2	Diff AMP	Control	RW	10 = 800mV	11 = 1000mV	0
Bit 1	Diff AMP	SATACLK Differential output Amplitude	RW	00 = 700mV	01 = 900mV	0
Bit 0	Diff AMP	Control	RW	10 = 800mV	11 = 1000mV	0

I2C Table: Revision and Vendor ID Register

Byte 7	Name	Control Function	Туре	0	1	PWD
Bit 7	RID3		R	-	-	0
Bit 6	RID2	Revision ID	R	-	-	0
Bit 5	RID1	nevision ib	R	-	-	0
Bit 4	RID0		R	-	-	0
Bit 3	VID3		R	-	-	0
Bit 2	VID2	VENDOR ID	R	-	-	0
Bit 1	VID1	VENDORID	R	001 = ICS	-	0
Bit 0	VID0		R	-	-	1

I2C Table: Byte Count Register

IZC Table	e. Byte Count negister					
Byte 8	Name	Control Function	Туре	0	1	PWD
Bit 7	BC7		R		1 Figure how many bytes will be is 0F = 15 bytes.	0
Bit 6	BC6		R			0
Bit 5	BC5		R			0
Bit 4	BC4	Byte Count Programming b(7:0)	RW	Writing to this register will cor	0	
Bit 3	BC3	Byte Count Flogramming b(7.0)	RW	read back, defaul	t is 0F = 15 bytes.	1
Bit 2	BC2		RW			1
Bit 1	BC1		RW			1
Bit 0	BC0		RW			1

I2C Table: Watch Dog Timer Control Register

Byte 9	Name	Control Function	Туре	0	1	PWD
Bit 7	HWD_EN	Watchdog Hard Alarm Enable	RW	Disable	Enable	0
Bit 6	SWD_EN	Watchdog Soft Alarm Enable	RW	Disable	Enable	0
Bit 5	WD Hard Status	WD Hard Alarm Status	R	Normal	Alarm	Х
Bit 4	WD Soft Status	WD Soft Alarm Status	R	Normal	Alarm	Χ
Bit 3	WDTCtrl	Watch Dog Alarm Time base Control	RW	290ms Base	1160ms Base	0
Bit 2	HWD2	WD Hard Alarm Timer Bit 2	RW	These bits represent X*290ms	(or 1.16S) the watchdog timer	1
Bit 1	HWD1	WD Hard Alarm Timer Bit 1	RW	waits before it goes to alarm mode. Default is 7 X 290ms =		1
Bit 0	HWD0	WD Hard Alarm Timer Bit 0	RW	2s.		1

I2C Table: WD Safe Frequency Control Register

Byte 10	Name	Control Function	Туре	0	1	PWD
Bit 7	SWD2	WD Soft Alarm Timer Bit 2	RW	These bits represent X*290ms	(or 1.16S) the watchdog timer	1
Bit 6	SWD1	WD Soft Alarm Timer Bit 1	RW	waits before it goes to alarm mode. Default is 7 X 290ms =		1
Bit 5	SWD0	WD Soft Alarm Timer Bit 0	RW	2s.		1
Bit 4	WD SF4		RW			0
Bit 3	WD SF3	Motob Dog Cofe Free Breezemming	RW	Writing to these bit will configure the safe frequency as	in we the cofe frequency of	0
Bit 2	WD SF2	Watch Dog Safe Freq Programming bits	RW	S	. ,	0
Bit 1	WD SF1	DitS	RW	- Byte10 bit (4:0).	0	
Bit 0	WD SF0		RW			0

I2C Table: CPU PLL Frequency Control Register

Byte 11	Name	Control Function	Туре	0	1	PWD
Bit 7	N Div2	N Divider Prog bit 2	RW			Χ
Bit 6	N Div1	N Divider Prog bit 1	RW			Χ
Bit 5	M Div5		RW	The decimal representation of	of M and N Divider in Byte 11	Χ
Bit 4	M Div4		RW	and 12 will configure the CPU	PLL VCO frequency. Default	Χ
Bit 3	M Div3	M Divider Programming	RW	at power up = latch-in or Byte	0 Rom table. VCO Frequency	Χ
Bit 2	M Div2	bit (5:0)	RW	= 24 x Ndiv(1	0:0)/Mdiv(5:0)	Х
Bit 1	M Div1		RW			Χ
Bit 0	M Div0		RW			Χ

I2C Table: CPU PLL Frequency Control Register:

Byte 12	Name	Control Function	Туре	0	1	PWD
Bit 7	N Div10		RW			X
Bit 6	N Div9		RW			Х
Bit 5	N Div8		RW	The decimal representation	of M and N Divider in Byte 11	Х
Bit 4	N Div7	N Divider Programming Byte12 bit(7:0)	RW	and 12 will configure the CPU	PLL VCO frequency. Default	Х
Bit 3	N Div6	and Byte11 bit(7:6)	RW	at power up = latch-in or Byte	0 Rom table. VCO Frequency	Х
Bit 2	N Div5		RW	= 24 x Ndiv(1	0:0)/Mdiv(5:0)	Х
Bit 1	N Div4		RW			Х
Bit 0	N Div3		RW			Х

I2C Table: PCI PLL Spread Spectrum Control Register

Byte 13	Name	Control Function	Туре	0	1	PWD
Bit 7	SSP7		RW			Χ
Bit 6	SSP6		RW			Χ
Bit 5	SSP5		RW			Χ
Bit 4	SSP4	Spread Spectrum Programming	RW	These Spread Spectrum bits	in Byte 13 and 14 will program	Χ
Bit 3	SSP3	bit(7:0)	RW	the spread perce	entage of PCI PLL	Χ
Bit 2	SSP2		RW			Χ
Bit 1	SSP1		RW			Χ
Bit 0	SSP0		RW			Χ

I2C Table: PCI PLL Spread Spectrum Control Register

Byte 14	Name	Control Function	Туре	0	1	PWD
Bit 7	SSP15		RW			0
Bit 6	SSP14		RW			Х
Bit 5	SSP13		RW			Χ
Bit 4	SSP12	Spread Spectrum Programming	RW	These Spread Spectrum bits	in Byte 13 and 14 will program	Χ
Bit 3	SSP11	bit(14:8)	RW	the spread perce	entage of PCI PLL	Х
Bit 2	SSP10		RW			Χ
Bit 1	SSP9		RW			Χ
Bit 0	SSP8		RW			Χ

I2C Table: PCIEX PLL Frequency Control Register

Byte 15	Name	Control Function	Туре	0	1	PWD
Bit 7	N Div2	N Divider Prog bit 2	RW			Χ
Bit 6	N Div1	N Divider Prog bit 1	RW			X
Bit 5	M Div5		RW	The decimal representation of	of M and N Divider in Byte 15	Χ
Bit 4	M Div4		RW	ı	PLL VCO frequency. Default at	X
Bit 3	M Div3	M Divider Programming	RW	,	Rom table. VCO Frequency =	Χ
Bit 2	M Div2	bit (5:0)	RW	24 x Ndiv(10	0:0)/Mdiv(5:0)	Χ
Bit 1	M Div1		RW			Χ
Bit 0	M Div0		RW			Χ

I2C Table: PCIEX PLL Frequency Control Register:

Byte 16	Name	Control Function	Туре	0	1	PWD
Bit 7	N Div10		RW			Χ
Bit 6	N Div9		RW			Х
Bit 5	N Div8	7	RW	The decimal representation	of M and N Divider in Byte 15	Х
Bit 4	N Div7	N Divider Programming Byte16 bit(7:0)	RW	and 16 will configure the PCI F	PLL VCO frequency. Default at	Х
Bit 3	N Div6	and Byte15 bit(7:6)	RW	power up = latch-in or Byte 0	Rom table. VCO Frequency =	Х
Bit 2	N Div5		RW	24 x Ndiv(10	0:0)/Mdiv(5:0)	Х
Bit 1	N Div4		RW			Х
Bit 0	N Div3		RW			Х

Bytes 17,18 are reserved

I2C Table: PCIEX PLL Frequency Select Select Register

Byte 19	Name	Control Function	Type	0	1	PWD	
Bit 7	Reserved	Reserved	RW	-	-	0	
Bit 6	Reserved	Reserved	RW	-	0		
Bit 5	Reserved	Reserved	RW				
Bit 4	FS4	Freq Select Bit 4	RW		0		
Bit 3	FS3	Freq Select Bit 3	RW			0	
Bit 2	FSLC	Freq Select Bit 2	RW	See Table 2: PCIEX PLL F	Frequency Selection Table	Latch	
Bit 1	FSLB	Freq Select Bit 1	RW		Latch		
Bit 0	FSLA	Freq Select Bit 0	RW		Latch		

I2C Table: Output Control Register

Byte 20	Name	Control Function	Туре	0	1	PWD
Bit 7	48Mhz	Strength Control	RW 1x		2x	0
Bit 6	CPU_1	Free running Control	RW Free-Running		Stoppable	0
Bit 5	Load Control	IIC Load control	RW	Load	Do not Load	0
Bit 4	CPUCLK_2/ITP	Free-Running Controls	RW	Free-Running	Stoppable	0
Bit 3	Reserved	Reserved	RW	-	-	1
Bit 2	Reserved	Reserved	RW	-	-	1
Bit 1	CPUCLK_0	Free Running Controls	RW	Free-Running	Stoppable	0
Bit 0	RESET Sync	Reset Synchronization upon Reset (Byte 21)	RW Disable		Enable	0

I2C Table: Synchronization Control Register

Byte 21	Name	Control Function	Type	0	1	PWD
Bit 7	Reserved	Reserved	RW	-	-	1
Bit 6	Reserved	Reserved	RW	-	-	1
Bit 5	Reserved	Reserved	RW	-	-	1
Bit 4	Reserved	Reserved	RW	-	-	1
Bit 3	Reserved	Reserved	RW	-	-	1
Bit 2	Reserved	Reserved	RW	-	-	1
Bit 1	Reserved	Reserved	RW	-	-	1
Bit 0	Reserved	Reserved	RW	-	-	1

I2C Table: Output Control Register

Byte 22	Name	Control Function	Туре	0	1	PWD
Bit 7	PCIEXT/C5	Free- Running Control	RW	Free-Running	Stoppable	0
Bit 6	PCIEXT/C6	Free- Running Control	RW	Free-Running Stoppable		0
Bit 5	PCICLK_F1	Free- Running Control	RW	Free-Running Stoppable		0
Bit 4	PCICLK_F0	Free- Running Control	RW	Free-Running	Stoppable	0
Bit 3	REF1	Strength Control	RW	1X	2X	0
Bit 2	Reserved	Reserved	RW	-	-	Х
Bit 1	PCI PLL Freq. Select	Freq Select Bit 1	RW	See Table 4: PCI PLL Fr	0	
Bit 0	PCI PLL Freq. Select	Freq Select Bit 0	RW	See Table 4. FOIFLETT	0	

Bytes 23-27 are reserved

I2C Table: Programmable output divider Register

Byte 28	Name	Control Function	Туре	0		1		PWD
Bit 7	Reserved	Reserved	RW	-		-		X
Bit 6	Reserved	Reserved	RW	-		-		X
Bit 5	Reserved	Reserved	RW	-		-		X
Bit 4	Reserved	Reserved	RW	-		-		X
Bit 3	CPUDiv3		RW	0000:/2	0100:/4	1000:/8	1100:/16	X
Bit 2	CPUDiv2	CPU Divider Ratio Programming Bits	RW	0001:/3	0101:/6	1001:/12	1101:/24	Х
Bit 1	CPUDiv1	for CPU PLL	RW	0010:/5	0110:/10	1010:/20	1110:/40	Х
Bit 0	CPUDiv0		RW	0011:/7	0111:/14	1011:/28	1111:/56	Х

I2C Table: Programmable output divider Register

Byte 29	Name	Control Function	Type	0		1		PWD
Bit 7	Reserved	Reserved	RW	-		-		X
Bit 6	Reserved	Reserved	RW	-		-		Х
Bit 5	Reserved	Reserved	RW	-		-		Х
Bit 4	Reserved	Reserved	RW	-		-		Х
Bit 3	PCIEXDiv3		RW	0000:/2	0100:/4	1000:/8	1100:/16	Χ
Bit 2	PCIEXDiv2	PCIEX Divider Ratio Programming Bits	RW	0001:/3	0101:/6	1001:/12	1101:/24	Х
Bit 1	PCIEXDiv1	for PCIEX PLL	RW	0010:/5	0110:/10	1010:/20	1110:/40	X
Bit 0	PCIEXDiv0		RW	0011:/7	0111:/14	1011:/28	1111:/56	Χ

I2C Table: Programmable output divider Register

Byte 30	Name	Control Function	Туре	0		1		PWD
Bit 7	Reserved	Reserved	RW		-	-		X
Bit 6	Reserved	Reserved	RW	-		-		X
Bit 5	Reserved	Reserved	RW	-		-		X
Bit 4	Reserved	Reserved	RW	-		-		Х
Bit 3	PCIDiv3		RW	0000:/N/A	0100:/N/A	1000:/N/A	1100:/N/A	X
Bit 2	PCIDiv2	PCI Divider Ratio Programming Bits	RW	0001:/3	0101:/6	1001:/12	1101:/24	X
Bit 1	PCIDiv1	1 Of Divider Hallo Flogramming Dits	RW	0010:/9	0110:/18	1010:/36	1110:/72	Х
Bit 0	PCIDiv0		RW	0011:/N/A	0111:/N/A	1011:/N/A	1111:/N/A	Х

I2C Table: PEREQ# Control Register

IZO TUDIO	izo Tablo. Fizitzan Control Hogiotor									
Byte 31	Name	Control Function	Туре	0	1	PWD				
Bit 7	SELLCD_27#	Select LCD or 27MHz for pins 17/18	R	27MHz	LCDCLK	latch				
Bit 6	Reserved	Reserved	RW	-	-	Х				
Bit 5	Reserved	Reserved	RW	-	-	Х				
Bit 4	Reserved	Reserved	RW	-	-	Х				
Bit 3	PEREQ2# Control	PCIEX6 is controlled	RW	Not Controlled	Controlled	0				
Bit 2	PEREQ2# Control	PCIEX1 is controlled	RW	Not Controlled	Controlled	0				
Bit 1	PEREQ1# Control	PCIEX4 is controlled	RW	Not Controlled	Controlled	0				
Bit 0	PEREQ1# Control	PCIEX0 is controlled	RW	Not Controlled	Controlled	0				

I2C Table: Skew programming Register

Byte 32	Name	Control Function	Туре	0		1		PWD
Bit 7	CPUSkw3		RW	0:000	0100:400	1000:800	1100:1200	0
Bit 6	CPUSkw2	CPUCLK0 Skew Control (ps)	RW	0001:100	0101:500	1001:900	1101:1300	0
Bit 5	CPUSkw1		RW	0010:200	0110:600	1010:1000	1110:1400	0
Bit 4	CPUSkw0		RW	0011:300	0111:700	1011:1100	1111:1500	0
Bit 3	CPUSkw3		RW	0:000	0100:400	1000:800	1100:1200	0
Bit 2	CPUSkw2	CPUCLK1 Skew Control (ps)	RW	0001:100	0101:500	1001:900	1101:1300	0
Bit 1	CPUSkw1	CFOCERT Skew Control (ps)	RW	0010:200	0110:600	1010:1000	1110:1400	0
Bit 0	CPUSkw0]	RW	0011:300	0111:700	1011:1100	1111:1500	0

Absolute Maximum Rating

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
3.3V Core Supply Voltage	VDD_A	-			$V_{DD} + 0.5V$	V	1
3.3V Logic Input Supply Voltage	VDD_ln	-	GND - 0.5		V _{DD} + 0.5V	V	1
Storage Temperature	Ts	-	-65		150	Ô	1
Ambient Operating Temp	Tambient	-	0		70	°C	1
Case Temperature	Tcase	-			115	°C	1
Input ESD protection HBM	ESD prot	-	2000			V	1

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics - Input/Supply/Common Output Parameters

PARAMETER	SYMBOL	CONDITIONS*	MIN	TYP	MAX	UNITS	Notes
Input High Voltage	V _{IH}	3.3 V +/-5%	2		V _{DD} + 0.3	V	1
Input Low Voltage	V _{IL}	3.3 V +/-5%	V _{ss} - 0.3		0.8	√ V	1
Input High Current	I _{IH}	$V_{IN} = V_{DD}$	-5		5	uA	1
Input Low Current	I _{IL1}	V _{IN} = 0 V; Inputs with no pull-up resistors	-5			uA	1
input Low Ourrent	I _{IL2}	V _{IN} = 0 V; Inputs with pull-up resistors	-200		\ \	uA	1
Low Threshold Input- High Voltage	V _{IH_FS}	3.3 V +/-5%	0.7		V _{DD} + 0.3	V	1
Low Threshold Input- Low Voltage	V _{IL_FS}	3.3 V +/-5%	V _{SS} - 0.3		0.35	٧	1
Operating Supply Current	I _{DD3.3OP}	Full Active, $C_L = Full load;$	(3)	175	350	mA	1
Operating Current	I _{DD3.3OP}	all outputs driven		175	400	mA	1
Powerdown Current	I _{DD3.3PD}	all diff pairs driven		2	70_	mA	1
Input Frequency	F _i	V _{DD} = 3.3 V		14.31818		MHz	2
Pin Inductance	L _{pin}			\wedge	$^{\prime}()$	nH	1
	CIN	Logic Inputs			5	pF	1
Input Capacitance	Сопт	Output pin capacitance	3 46		6	pF	1
	C _{INX}	X1 & X2 pins			5	pF	1
Clk Stabilization	T _{STAB}	From VDD Power-Up or de- assertion of PD to 1st clock			1.8	ms	1
Modulation Frequency		Triangular Modulation	30		33	kHz	1
Tdrive_PD		CPU output enable after PD de-assertion	\sim		300	us	1
Tfall_PD		PD fall time of			5	ns	1
Trise_PD		PD rise time of	<i>></i>		5	ns	1
SMBus Voltage	V _{DD}		2.7		5.5	V	1
Low-level Output Voltage	V_{OL}	@ I _{PULLUP}			0.4	V	1
Current sinking at V _{OL} = 0.4 V	I _{PULLUP}		4			mA	1
SCLK/SDATA Clock/Data Rise Time	T _{RI2C}	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SCLK/SDATA Clock/Data Fall Time	T _{FI2C}	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1

^{*}TA = 0 - 70°C; Supply Voltage VDD = 3.3 V + /-5%

1346—10/23/07

¹Guaranteed by design and characterization, not 100% tested in production.

² Input frequency should be measured at the REF pin and tuned to ideal 14.31818MHz to meet ppm frequency accuracy on PLL outputs.

AC Electrical Characteristics - (CPU, PCIEX, SATACLK, DOT96Mhz)

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	NOTES
Rising Edge Slew Rate	t _{SLR}	Differential Measurement	2.5	8	V/ns	1,2
Falling Edge Slew Rate	t _{FLR}	Differential Measurement	2.5	8	V/ns	1,2
Slew Rate Variation	t _{SLVAR}	Single-ended Measurement		20	%	1
Maximum Output Voltage	V_{HIGH}	Includes overshoot		1150	mV	1
Minimum Output Voltage	V_{LOW}	Includes undershoot	-300		mV	1
Differential Voltage Swing	V_{SWING}	Differential Measurement	300		mV	1
Crossing Point Voltage	V_{XABS}	Single-ended Measurement	300	550	(mV	1,3,4
Crossing Point Variation	$V_{XABSVAR}$	Single-ended Measurement		140	mV/	1,3,5
Duty Cycle	D _{CYC}	Differential Measurement	45	55 (%	1
CPU Jitter - Cycle to Cycle	CPUJ _{C2C}	Differential Measurement		85	ps	1
SRC Jitter - Cycle to Cycle	SRCJ _{C2C}	Differential Measurement		125	ps	1
DOT Jitter - Cycle to Cycle	DOTJ _{C2C}	Differential Measurement		250	ps	1
CPU[1:0] Skew	CPU _{SKEW10}	Differential Measurement		100	ps	1
CPU[2_ITP:0] Skew	CPU _{SKEW20}	Differential Measurement		150	ps	1
SRC Skew	SRC _{SKEW}	Differential Measurement		TBD	ps	1

 $^{{}^{*}}T_{A} = 0 - 70 {}^{\circ}C; V_{DD} = 3.3 \text{ V +/-5\%}; C_{L} = 2 \mathrm{pF}, R_{S} = 33.2 \Omega, R_{P} = 49.9 \Omega, I_{REF} = 475 \Omega$

Electrical Characteristics - PCICLK/PCICLK_F

PARAMETER	SYMBOL	CONDITIONS*	\mathbb{K} MIN \mathbb{K}	J) TYP(Š	◯ MAX	UNITS	NOTES
Output Impedance	R _{DSP}	$V_{O} = V_{DD}^{*}(0.5)$	12		55	Ω	1
Output High Voltage) V _{oH}	I _{OH} = -1 mA	2.4			V	1
Output Low Voltage	V _{OL}	I _{OL} = 1 mA			0.55	V	1
Output High Current	V	V _{OH} @MIN = 1.0 V	-33/	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		mA	1
Output High Current	I _{OH}	V _{OH} @MAX = 3.135 V		Y	-33	mA	1
Output Low Current		V _{OL} @ MIN = 1.95 V	30			mA	1
Output Low Current	lor	V _{OL} @ MAX = 0.4 V			38	mA	1
Edge Rate	t _{slewr/f}	Rising/Falling edge rate	1		4	V/ns	1
Rise Time	ţr	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$	0.5		2	ns	1
Fall Time) t _f	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$	0.5		2	ns	1
Duty Cycle	d _{t1}	V _T = 1.5 V	45		55	%	1
Group Skew	t _{skew}	$V_{T} = 1.5 \text{ V}$			250	ps	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	$V_T = 1.5 \text{ V}$	·		500	ps	1

^{*}TA = 0 - 70°C; Supply Voltage VDD = 3.3 V +/-5%, CL = 20 pF with Rs = 7Ω (unless otherwise specified)

¹Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REFOUT is at 14.31818MHz

 $^{{}^{3}}I_{REF} = V_{DD}/(3xR_{R}). \ \, \text{For} \, R_{R} = 475\Omega \, (1\%), \, I_{REF} = 2.32\text{mA}. \, I_{OH} = 6 \, x \, I_{REF} \, \text{and} \, V_{OH} = 0.7V \, @ \, Z_{O} = 50\Omega. \, \, \text{The substitution}$

¹Guaranteed by design and characterization, not 100% tested in production.

³ Spread Spectrum is off

Electrical Characteristics - 48MHz/USB48MHz/24_48MHz

PARAMETER	SYMBOL	CONDITIONS*	MIN	TYP	MAX	UNITS	NOTES
Long Accuracy	ppm	see Tperiod min-max values	-100		100	ppm	1,2
Clock period	T _{period}	48.00MHz output nominal	20.8313		20.8354	ns	2
Output Impedance	R _{DSP}	$V_{O} = V_{DD}^{*}(0.5)$	12		55	Ω	1
Output High Voltage	V_{OH}	I _{OH} = -1 mA	2.4			V	1
Output Low Voltage	V_{OL}	I _{OL} = 1 mA			0.55	V	1
Output High Coment	1	V _{OH} @MIN = 1.0 V	-33		\wedge	mA	1
Output High Current	I _{OH}	V _{OH} @MAX = 3.135 V	^		-33	mA	1
Outrout Lour Comment		V _{OL} @ MIN = 1.95 V	30		\bigcirc	mA	1
Output Low Current	I _{OL}	V _{OL} @ MAX = 0.4 V	1	> (38	mA	1
Edge Rate	t _{slewr/f}	Rising/Falling edge rate	1		4	V/ns	1
Edge Rate	t _{slewr/f_USB}	USB48 Rising/Falling edge rate	<u>)</u>		2	V/ns	1
Rise Time	t _r	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$	0.5		2	ns	1
Fall Time	t _f	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$	0.5		2	ns	1
Rise Time	t _{r_USB}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$	_ 1		2	ns	1
Fall Time	t _{f_USB}	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$		>v	2	ns	1
Duty Cycle	d _{t1}	V _T = 1.5 V	45		55	%	1
Group Skew	t _{skew}	V _T = 1.5 V			250	ps	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	V _T = 1.5 V			500	ps	1

^{*}TA = 0 - 70°C; Supply Voltage VDD = 3.3 V +/-5%, CL = 20 pF with Rs = 7Ω (Rs is used in USB48MHz test only)

Electrical Characteristics - REF-14.318MHz

PARAMETER	SYMBOL	CONDITIONS) MIM	TYP	MAX	UNITS	Notes
Long Accuracy	ppm	see Tperiod min-max values	-300		300	ppm	1,2
Clock period	T _{period}	14.318MHz output nominal	69.8270	9///	69.8550	ns	2
Output High Voltage	V _{OH}	I _{OH} = -1 mA	2.4//>			V	1
Output Low Voltage	Vol	I _{OL} = 1 mA		/	0.4	V	1
Output High Current	Гон	V _{OH} @ MIN = 1.0 V, V _{OH} @ MAX = 3.135 V	-29		-23	mA	1
Output Low Current	loL	V _{OL} @MIN = 1.95 V, @MAX = 0.4 V	29		27	mA	1
Edge Rate	t _{slewr/f}	Rising/Falling edge rate	1		4	V/ns	1
Rise Time	t _{r1}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$	1		2	ns	1
Fall Time	t _{f1}	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$	1		2	ns	1
Skew	t _{sk1}	V _T = 1.5 V			500	ps	1
Duty Cycle	d _{t1}	V _T = 1.5 V	45		55	%	1
Jitter	t _{jcyc-cyc}	V _T = 1.5 V			1000	ps	1

^{*}TA = 0 - 70°C; Supply Voltage VDD = 3.3 V +/-5%, CL = 20 pF with Rs = 7Ω (Rs is used in USB48MHz test only)

¹Guaranteed by design and characterization, not 100% tested in production.

¹Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REFOUT is at 14.31818MHz

Test Clarification Table

Comments		HW	
	FSLC/	FSLB/	
	TEST_SEL	TEST_MODE	
	HW PIN	HW PIN	OUTPUT
	<2.0V	Χ	NORMAL
Power-up w/ TEST_SEL = 1 to enter test mode Cycle power to disable test mode FSLC./TEST_SEL>3-level latched input If power-up w/ V>2.0V then use TEST_SEL	>2.0V	0	HI-Z
If power-up w/ V<2.0V then use FSLC FSLB/TEST_MODE>low Vth input TEST_MODE is a real time input	>2.0V	1	REF/N

56-Lead 6.10 mm. Body, 0.50 mm. Pitch TSSOP (240 mil) (20 mil)

	(240	11111)	(20 11111)		
	In Millir	neters	In Ind	ches	
SYMBOL	COMMON DI	COMMON DIMENSIONS		MENSIONS	
	MIN	MAX	MIN	MAX	
Α		1.20		.047	
A1	0.05	0.15	.002	.006	
A2	0.80	1.05	.032	.041	
b	0.17	0.27	.007	.011	
С	0.09	0.20	.0035	.008	
D	SEE VAR	IATIONS	SEE VAR	IATIONS	
E	8.10 B	ASIC	0.319 BASIC		
E1	6.00	6.20	.236	.244	
е	0.50 B	ASIC	0.020 E	BASIC	
L	0.45	0.75	.018	.030	
N	SEE VARIATIONS		SEE VAR	IATIONS	
α	0°	8°	0°	8°	
aaa		0.10		.004	

VARIATIONS

N	D m	m.	D (inch)		
	MIN	MAX	MIN	MAX	
56	13.90	14.10	.547	.555	

Reference Doc.: JEDEC Publication 95, M O-153

10-0039

Ordering Information

ICS9LPR426AGLF-T

1346—10/23/07

Revision History

Rev.	Issue Date	Description	Page #
0.1	05/09/07	Initial Release	-
0.2	06/04/07	Updated SMBUS	Various
		1. Updated Output Features.	1,
0.3	06/22/07	2. Updated Block Diagram	4
0.4	08/21/07	Added Test Clarification Table.	19
0.5	09/14/07	Updated Electrical Characteristics.	16
0.6	10/23/07	Added Programming Range Table	4