Submitted in part fulfilment for the degree of MEng.

Tracing and Debugging in GP2

Joshua Asch

Date TBC

Supervisor: Detlef Plump

Number of words = o, as counted by wc -w. This includes the body of the report only.

Abstract

This is my project!

Contents

1	Intro	duction	n	9
	1.1	Introd	ductiony Bit	9
	1.2		S	9
2	Lite	rature F	Review	10
	2.1	Progr	amming by Graph Transformation	10
		2.1.1	Graph Programming	10
		2.1.2	The GP2 Language	10
	2.2	Progr	am Tracing	13
		-	Tracing in Imperative Languages	13
		2.2.2	Tracing in Functional Languages	13
		2.2.3	Previous Work on Tracing GP2	13
3	Ano	ther ch	apter	14

List of Figures

2.1	A rule in C	3P2														-	11

List of Tables

1 Introduction

1.1 Introductiony Bit

A section introducing the project.

1.2 Ethics

A section discussing the ethics of the project.

2 Literature Review

2.1 Programming by Graph Transformation

2.1.1 Graph Programming

Graph programming involves a series of transformations applied to a graph. The problem being solved must be redefined in terms of a start graph and an algorithm represented by graph transformations. The final graph at the end of the algorithm gives the solution to the problem.

Historically, programming by graph transformation required using a programming language such as C or Java, implementing data structures to represent graphs, and directly making modifications to the graph in the program. However, recently some attempts have been made to create tools for graph programming which abstract away the representation of the graphs, allowing the programmer to focus on the program itself.

Some of these tools include PROGRES [1], AGG [2], GROOVE [3], and, most recently, GP2 [4]. All of these are domain-specific languages for graph programming which also provide a graphical interface to describe graphs and transformations.

These kinds of tools take a representation of a graph program, as defined in their graphical editor, and transform this into a runnable program. This can be implemented in Java (in the case of AGG and GROOVE) or in C (in the case of PROGRES and GP2). This program can then be executed to find the output graph generated by the algorithm.

2.1.2 The GP2 Language

GP2 is a programming language developed at the University of York [4], an updated implementation of the original language, GP [5]. It is designed for writing programs at a high level, to perform graph transformations without having to implement data structures to represent the graphs in more traditional lower level languages such as C.

Programming in GP2 consists of an input graph, known as the *host graph*, a set of *rules*, and a *program* which defines the order in which to

Figure 2.1: A rule in GP2

apply the rules. Running a GP2 program on a host graph produces a new graph as a result, called the *output graph*.

Rules

Rules are the basic building blocks of a GP2 program and are defined by a left-hand-side (LHS), a right-hand-side (RHS), and optionally a conditional clause. A rule can be thought of as the definition of a transformation; a subgraph matching the LHS of the rule is transformed to resemble the RHS. An example of a GP2 rule is shown in Figure 2.1.

The conditional clause is used to specify additional constraints on the subgraph matching the LHS. Any match has to both match the LHS and conform to the constraints defined by the conditional clause.

In a compiled program, a rule is split into two phases. The *match* phase searches the current graph for a subgraph which matches the LHS of the rule. If a match is found, the program moves on to the second phase, the *application*. To ensure consistent output between successive program executions, rule matches are chosen deterministically by the compiled program. If no match is found for the LHS, the rule is considered *failed*.

During the application phase, any nodes and edges present in the LHS but not the RHS will be deleted, and any nodes and edges present in the RHS but not the LHS will be created. At the end of the application phase, the subgraph will match the RHS of the rule definition. The new graph created by the application of this rule, an *intermediate graph*, is then used as the input to the next part of the program.

In the example in Figure 2.1, the program will search for a subgraph containing two nodes without an edge connecting them. If a match is found, it will be transformed to resemble the RHS by adding an edge between the nodes.

Programs

A GP2 program defines the order in which to apply rules using 8 simple control structures:

- **SEQUENCE** Two subprograms separated by a semicolon "P; Q" are applied one after the other.
- **RULE SET** Subprograms in curly braces "{P, Q, R}" define a set, where exactly one subprogram from the set is executed, unless no subprograms in the set can be matched. The subprogram to execute is chosen deterministically.
- **IF-THEN-ELSE** In the statement "if C then P else Q", the sub-program C is executed, and the result, i.e. success or failure, is recorded, before reverting any changes caused by C. Then, if C succeeded, P is executed on the original graph. If it failed, then Q is executed on the original graph. Note that by taking a copy first, any changes made by C are reverted before executing either P or Q.
- **TRY-THEN-ELSE** Similar to IF-THEN-ELSE, but $\mathbb C$ is only reverted if it fails. Thus any changes made by $\mathbb C$ are *not* reverted before executing $\mathbb P$, but they *are* reverted before executing $\mathbb Q$.
- **As-Long-As-Possible** A subprogram followed by an exclamation point "P!" is matched and applied repeatedly until it cannot be matched any more. The final attempt to match the LHS will *not* consider the rule *failed*.
- **PROCEDURE** Similar to a *C* preprocessor macro, a procedure is simply a named subprogram where any reference to the procedure name can be replaced with the definition of the procedure.
- **SKIP** A no-op which always succeeds, and does not affect the graph. Invoked using the keyword "skip".
- **FAIL** A no-op which always fails and does not affect the graph. This is the same as attempting to execute a rule for which there are no matches. Invoked using the keyword "fail".

For GP2, a subprogram is either a single rule, referenced by its name, or one of the above control structures. Therefore it is possible to nest control structures to create more complex programs.

In general, execution of a program continues until either all statements are executed, or until a statement results in an attempt to apply a rule which has no matches in the graph. The exceptions to this are As-Long-As-Possible statements, and the conditional statements in If-Then-Else and Try-Then-Else structures. In these cases, a failure to match a rule does not halt execution of the program.

2.2 Program Tracing

2.2.1 Tracing in Imperative Languages

A section discussing what tracing and debugging imperative languages like C and Java is like.

2.2.2 Tracing in Functional Languages

A section discussing what tracing functional languages like Haskell is like. A main focus on the Hat tool for Haskell, describing how it relates to the problem of tracing GP₂.

2.2.3 Previous Work on Tracing GP2

A section discussing the previous project [6] on this topic.

3 Another chapter...

Bibliography

- [1] A. Schürr, A. Winter, and A. Zü, "The PROGRES approach: Language and environment," in *Handbook of Graph Grammars and Computing by Graph Transformation*. World Scientific Publishing Co., Inc., 1999, pp. 487–550.
- [2] C. Ermel, M. Rudolf, G. Taentzer *et al.*, "The AGG approach: Language and environment," in *Handbook of Graph Grammars and Computing by Graph Transformation*. World Scientific Publishing Co., Inc., 1999, pp. 551–603.
- [3] A. Rensink, "The GROOVE simulator: A tool for state space generation," in *Applications of Graph Transformations with Industrial Relevance*, ser. Lecture Notes in Computer Science, vol. 3062, 2004, pp. 479–485.
- [4] C. Bak, "GP 2: Efficient implementation of a graph programming language," Ph.D. dissertation, University of York, September 2015.
- [5] D. Plump, "The graph programming language GP," in *Algebraic Informatics: Third International Conference, CAI 2009, Thessaloniki, Greece, May 19-22, 2009, Proceedings*, ser. Lecture Notes in Computer Science, vol. 5725, 2009, pp. 99–122.
- [6] H. Taylor, "Tracing & debugging GP2," Master's thesis, University of York, April 2016.