Supervised ML Approaches for Predicting Survival Rate

Group 3 Darin, Darshan, David, Heng, Tina

June 14, 2023

Background/Introduction

- "How Long Have I Got?"
- Most lung cancer patients worldwide [stage IV non small cell lung cancer (NSCLC)] have a poor survival: 25%–30% die <3 months.
- Of those surviving >3 months, 10%–15% (70,000–105,000 new patients worldwide per year) survive (very) long.
- **Goal:** develop and validate a survival prediction model in a cohort of different stages patients of lung cancer in TCGA.

Overview

Clinical Endpoints

How to Define Negative/Positive Samples?

Clinical Endpoints

Trade-off between Sample Size and Sample Balance

Use two different clinical endpoints: 1 year and 3 year

Demographic Information

1 yr	N = 405	
Variable	Living (N=373)	Deceased (N=32)
Age (years)		
< 65(179)	163	16
≥65(226)	210	16
Sex		
Female (225)	210	15
Male(180)	163	17
Tumor stage		
Early(319)	293	26
Late(80)	74	6
Smoking status		
Smoker(256)	237	19
Non-smoker(149)	136	13

3 yr	N = 209	
Variable	Living (N=119)	Deceased (N=90)
Age (years)		
< 65(93)	49	44
≥65(116)	70	46
Sex		
Female(116)	66	50
Male(93)	53	40
Tumor stage		
Early(157)	99	58
Late(49)	18	31
Smoking status		
Smoker(134)	78	56
Non-smoker(75)	41	34

Data Preprocessing

Metadata

- 1. Age at diagnosis
- 2. Gender
- Tumor stage:
 I, II as EARLY stage; III, IV as LATE stage
- 4. Smoking status:
 - > 188 cigarettes/year as SMOKER
 - ≤ 188 cigarettes/year as NON-SMOKER

Gene Expression

- Remove all normal and recurrent samples
- 2. Log2 transformation

DESeq2 pre-filtering:

Remove genes with <u>less than 10 counts</u> (remove 757 genes out of 19382 with nonzero total read count, 3.9%)

- **3,226** genes (15.7%) being significant with padj < 0.05

GENE	log2FoldChange	pvalue	padj
GPR77	-2.41267	8.29E-26	1.54E-21
MT1A	-3.5278	3.01E-16	2.80E-12
SCGB3A1	3.90002	1.11E-15	6.92E-12
AMDHD1	-2.60538	9.55E-15	4.45E-11
TMEM213	3.2851	5.11E-14	1.90E-10

DESeq2 pre-filtering:

Remove genes with <u>less than 10 counts</u> (remove 757 genes out of 19382 with nonzero total read count, 3.9%)

- **3,226** genes (15.7%) being significant with padj < 0.05

GENE	log2FoldChange	pvalue	padj
GPR77	-2.41267	8.29E-26	1.54E-21
MT1A	-3.5278	3.01E-16	2.80E-12
SCGB3A1	3.90002	1.11E-15	6.92E-12
AMDHD1	-2.60538	9.55E-15	4.45E-11
TMEM213	3.2851	5.11E-14	1.90E-10

DESeq2 pre-filtering:

Remove genes with <u>less than 10 counts</u> (remove 757 genes out of 19382 with nonzero total read count, 3.9%)

- **3,226** genes (15.7%) being significant with padj < 0.05

GENE	log2FoldChange	pvalue	padj
GPR77	-2.41267	8.29E-26	1.54E-21
MT1A	-3.5278	3.01E-16	2.80E-12
SCGB3A1	3.90002	1.11E-15	6.92E-12
AMDHD1	-2.60538	9.55E-15	4.45E-11
TMEM213	3.2851	5.11E-14	1.90E-10

Role of GPR77 in lung cancer prognosis:
 GPR77+ carcinoma-associated fibroblasts (CAFs) sustain cancer stemness and promote tumor chemoresistance

MT1A|4489

AMDHD1|144193

AKAP12|9590

MKX|283078

GNPNAT1|64841

NOTUM|147111

Log₂ fold change

GPR77|27202

-5

Label 1 vs 0

10 11

DOWN

UP

INSIGNIFICANT

Clinical endpoint DSS 1yr

EnhancedVolcano

25

20

-10

DESeq2 pre-filtering:

Remove genes with <u>less than 10 counts</u> (remove 1126 genes out of 19163 with nonzero total read count, 5.9%)

- **1606** genes (7.8%) being significant with padj < 0.05

GENE	log2FoldChange	pvalue	padj
MAEL	3.81582	6.64E-17	1.20E-12
WIF1	3.07129	3.15E-15	2.84E-11
COL4A6	-2.22539	5.45E-15	3.28E-11
CIDEC	-3.94203	1.19E-14	5.36E-11
NTS	-3.85991	2.10E-14	7.57E-11

DESeq2 pre-filtering:

Remove genes with <u>less than 10 counts</u> (remove 1126 genes out of 19163 with nonzero total read count, 5.9%)

- **1606** genes (7.8%) being significant with padj < 0.05

GENE	log2FoldChange	pvalue	padj
MAEL	3.81582	6.64E-17	1.20E-12
WIF1	3.07129	3.15E-15	2.84E-11
COL4A6	-2.22539	5.45E-15	3.28E-11
CIDEC	-3.94203	1.19E-14	5.36E-11
NTS	-3.85991	2.10E-14	7.57E-11

DESeq2 pre-filtering:

Remove genes with <u>less than 10 counts</u> (remove 1126 genes out of 19163 with nonzero total read count, 5.9%)

- **1606** genes (7.8%) being significant with padj < 0.05

GENE	log2FoldChange	pvalue	padj
MAEL	3.81582	6.64E-17	1.20E-12
WIF1	3.07129	3.15E-15	2.84E-11
COL4A6	-2.22539	5.45E-15	3.28E-11
CIDEC	-3.94203	1.19E-14	5.36E-11
NTS	-3.85991	2.10E-14	7.57E-11

- Roles of MAEL in lung cancer prognosis:
- Maelstrom (MAEL) is highly expressed in lung, liver, breast, bladder, and colorectal cancer
- 2. Correlated with epithelial-mesenchymal transition (EMT), tumor aggressiveness and poor prognosis outcome

A.Van Tongelen et al. Cancer Letters (2017)

Read counts for the most significant genes

Feature Selection: XGBoost

Selected Features for our models:

- Top 100 significant gene expression → DESeq2 Result
- Patient age → metadata dataset
- Tumor stage → metadata dataset
- Smoking status → metadata dataset
- Gender → metadata dataset
- Split our dataset into 80-20

Combines weak predictive models (decision trees) to create a stronger predictive model

- Gradient boosting: each subsequent decision tree is trained to correct mistakes

Combines weak predictive models (decision trees) to create a stronger predictive model

- Gradient boosting: each subsequent decision tree is trained to correct mistakes

Parameters to vary:

- n_estimators
- max_depth
- learning_rate

After training on the total feature set, XGBoost allows us to analyze the importance of the features using a significant threshold

Features above the threshold were used for classification.

After training on the total feature set, XGBoost allows us to analyze the importance of the features using a significant threshold

Features above the threshold were used for classification

Iteration 1: threshold > 0.01

After training on the total feature set, XGBoost allows us to analyze the importance of the features using a significant threshold

Features above the threshold were used for classification.

Iteration 2: threshold > 0.011

After training on the total feature set, XGBoost allows us to analyze the importance of the features using a significant threshold

Features above the threshold were used for classification

Iteration 3: threshold > 0.012

After training on the total feature set, XGBoost allows us to analyze the importance of the features using a significant threshold

Features above the threshold were used for classification

Model: SVM

- Maps data to high-dimensional feature space to separate label data
- Looks to determine the optimal hyperplane that maximally separated the data points
 - Maximizing the margin
 - Maximizing the distance between the hyperplane and observations closest to the hyperplane
- Performed grid search varying the different parameter of SVM

Parameters to Choose:

- Penalty
- kernel

XGBoost Classification

Training

Cross Validation

• 5 folds

Hyperparameter Tuning

Grid search

Training

Cross Validation

5 folds

Hyperparameter Tuning

Grid search

Parameters in XGBoost:

- N-estimators: 10, 50, 100
- Max_depth: 5, 10
- Learning_rate: 0.01, 0.1, 1, 10, 100

Parameters in SVM:

- C: 0.1, 0.5, 1, 2, 5, 10
- Kernel: Linear, RBF

Accuracy: 0.85

Precision

Of all positive predictions, how many are really positive?

Recall

Of all real positive cases, how many are predicted positive?

- Accuracy
- F1-Score
 - Imbalanced datasets

		Real Class	
		Positive	Negative
D 41. 4. 4. 51	Positive	TP	FP
Predicted Class	Negative	FN	TN

		Real Class	
		Positive	Negative
	Positive	TP	FP
Predicted Class	Negative	FN	TN

Zeya, 2021

$$F1 \ Score = 2 \times \frac{recall \times precision}{recall + precision}$$

XGBoost

	Precision	Recall	F1
Alive	0.9481	0.9865	0.9669
Dead	0.7500	0.4286	0.5455
		Accuracy	0.9383

SVM

	Precision	Recall	F1
Alive	0.9487	1.0000	0.9737
Dead	1.0000	0.4286	0.6000
		Accuracy	0.9506

ROC curve (area = 0.71)

0.8

1.0

0.2 -

0.0

0.2

0.4

False Positive Rate

0.6

RESULTS -1 YEAR

Precision Recall F1 Alive 0.9481 0.9865 0.9669 Image: Curve of 1 year class of 1.0 -

 Dead
 0.7500
 0.4286
 0.5455

 Accuracy
 0.9383

SVM

3 1 1 1			
	Precision	Recall	F1
Alive	0.9487	1.0000	0.9737
Dead	1.0000	0.4286	0.6000
		Accuracy	0.9506

ROC curve (area = 0.71)

0.8

1.0

0.2 -

0.0

0.2

0.4

False Positive Rate

0.6

RESULTS -

RESULTS

XGBoost					
	Precision	Precision Recall			
Alive	0.9481	0.9865	0.9669		
Dead	0.7500	0.4286	0.5455		
		Accuracy	0.9383		
SVM	_	curacy expec to focus on I			
SVM	_	, ,			
SVM Alive	choose	to focus on I	-1 score		
	choose Precision	to focus on F	-1 score F1		

XGBoost

Precision	Recall	F1
0.8148	0.7333	0.7719
0.4667	0.5833	0.5185
	Accuracy	0.6905
	0.8148	0.8148

SVM

	Precision	Recall	F1
Alive	0.8696	0.6333	0.7308
Dead	0.4500	0.7500	0.5625
		Accuracy	0.6667

ROC curve (area = 0.69)

0.8

1.0

0.2

0.0

0.2

0.4

False Positive Rate

0.6

RESULTS -3 YEAR

XGBoost

	Precision	Recall	F1
Alive	0.8148	0.7333	0.7719
Dead	0.4667	0.5833	0.5185
		Accuracy	0.6905

	Precision	Recall	F1
Alive	0.8696	0.6333	0.7308
Dead	0.4500	0.7500	0.5625
		Accuracy	0.6667

0.4 0.6 False Positive Rate

ROC curve (area = 0.69)

0.8

1.0

0.2

0.0

0.2

RESULTS -3 YEAR

 Tradeoff between sample size and sample balance

- Trying different models
- Evaluation Metrics
 - Matthews Correlation Coefficient

$$MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$

• PCA, UMAP, t-SNE

- Including mutation data
- Ran DESeq2 on training data vs. full

20	patient_id	Hugo_Symbol	Entrez_Gene_Id	Center	NCBI_Build	Chromosome	Start_Position	End_Position	Strand	Variant_Classification
0	TCGA-05- 4244	CPN1	0		GRCh37	10	101814119	101814119	+	Missense_Mutation
1	TCGA-05- 4244	MKI67	0	18	GRCh37	10	129902901	129902901	+	Silent
2	TCGA-05- 4244	NEBL	0	ė.	GRCh37	10	21104601	21104606	+	In_Frame_Del
3	TCGA-05- 4244	RP11- 445N18.7	0	16	GRCh37	10	45652518	45652518	+	RNA
4	TCGA-05- 4244	ERCC6	0	*	GRCh37	10	50667200	50667200	+	Silent

THANK YOU!

- The coolest group, group 3