平面图

李修成

计算机科学与技术学院

Outline

平面图的基本概念

欧拉公式

平面图的判定

平面图的对偶图

作业

平面图的基本概念

平面图

定义 1.1. 给定无向图 G,

- 若能将 G 画在平面上使的除顶点外无边相交,则称 G 是可平面图,简称平面图.
- 画出的无边相交的图称为 *G* 的<mark>平面嵌入</mark> planar representation.
- 无平面嵌入的图称为非平面图.

(2) 是 (1) 的平面嵌入, (4) 是 (3) 的平面嵌入.

平面图的性质

- K_1, K_2, K_3, K_4 都是平面图.
- $K_5 e$ 也是平面图.
- 完全二部图 $K_{1,n}$ $(n \ge 1)$, $K_{2,n}$ $(n \ge 1)$ 是平面图.
- K₅, K_{3,3} 是非平面图 (推论 2.1).

平面图的性质

命题 1.1.

- 平面图的子图都是平面图, 非平面图的母图都是非平面图.
- 平行边与环不影响平面性.

由命题 1.1 可知,

- $K_n(n \le 4)$ 和 $K_{2,n}(n \ge 1)$ 的所有子图均为平面图.
- 含 K_5 或 $K_{3,3}$ 为子图的图都是非平面图,如 $K_n (n \ge 5), K_{s,t} (s, t \ge 3)$.

平面图的面与次数

定义 1.2. 给定平面图 G 的平面嵌入,G 的边将平面划分成若干个区域,

- 每个区域都称为 G 的一个 \mathbf{m} ;
- 其中有一个面的面积无限,称为无限面或外部面, 通常记为 R_0 ;
- 其余面的面积有限, 称为有限面或内部面, 通常记为 R_1, R_2, \ldots ;
- 包围每个面的所有边组成的回路组称为该面的边界;
- 边界的长度称为该面的次数,面 R 的次数记为 $\deg(R)$.

平面图的面与次数

例子 1.1.

$$deg(R_1)=1$$
, $deg(R_2)=3$, $deg(R_3)=2$, $deg(R_0)=8$.

次数的性质

定理 1.1. 平面图各面次数之和等于边数的两倍.

证明. 对每一条边 e,若 e 在两个面的公共边界上,则在计算这两个面的次数时,e 各提供 1. 而当 e 只在某一个面的边界上出现时,它必在该面的边界上出现两次,从而在计算该面的次数时,e 提供 2.

极大平面图

定义 1.3.G 为简单平面图, 若在 G 的任意两个不相邻的顶点之间加一条边所得图为非平面图, 则称 G 为极大平面图.

- *K*₁, *K*₂, *K*₃, *K*₄ 都是极大平面图.
- *K*₅, *K*_{3,3} 删去一条边后是极大平面图.

定理 *1.2.* 极大平面图是连通的,且当阶数大于等于 3 时没有割点和桥. **证明.** 留作练习.

极大平面图

定理 1.3. 设 G 为 $n(n \ge 3)$ 阶简单连通的平面图,若 G 为极大平面图,则 G 的每个面的 次数均为 3.

证明. (⇒) 由 G 为简单平面图可知,G 中无环和平行边;由 G 连通且 $n \geq 3$ 知,G 中不存在 K_2 作为连通分支.故 G 中各面次数均大于等于 3. 现证明各面次数都不可能大于 3. 假如 $\deg(R_i) = s \geq 4$,若 v_1 与 v_3 不相邻,则在 R_i 内加边 $\{v_1, v_3\}$ 不破坏平面性,与 G 是极大平面图矛盾.因而 v_1 与 v_3 必相邻,且边 $\{v_1, v_3\}$ 必在 R_i 外部(为什么?).同理, v_2 与 v_4 也相邻且边 $\{v_2, v_4\}$ 在 R_i 的外部.于是 $\{v_1, v_3\}$ 与 $\{v_2, v_4\}$ 相交于 R_i 的外部,与 G 是平面图矛盾.

定理的应用

例子 1.2. 如下各图是否为极大平面图?

极小非平面图

定义 1.4. 若在非平面图 G 中任意删除一条边, 所得图为平面图, 则称 G 为极小非平面图.

- *K*₅, *K*_{3,3} 都是极小非平面图.
- 极小非平面图必为简单图.

欧拉公式

欧拉公式

定理 2.1. 设 G 为 n 阶 m 条边 r 个面的连通平面图,则有

$$n-m+r=2$$
.

证明. 对 m 进行归纳证明. 当 m=0 时, G 为平凡图, n=1, m=0, r=1, 成立. 假设 $m=k(k\geq 0)$ 时结论成立. 当 m=k+1 时:

- 1. 若 G 为树,令 v 为树中 1 度顶点,则 G' = G v 仍是连通的且 n' = n 1, m' = m 1 = k, r' = r. 由归纳假设,n' m' + r' = 2. 于是 n m + r = (n' + 1) (m' + 1) + r' = n' m' + r' = 2.
- 2. 若 G 不是树,则 G 中含有圈. 任取圈上一条边 e,则 G' = G e 仍连通且 n' = n, m' = m 1 = k, r' = r 1. 由归纳假设,n' m' + r' = 2. 于是 n m + r = n' (m' + 1) + (r' + 1) = n' m' + r' = 2.

欧拉公式的推广

定理 2.2 (广义欧拉公式). 对于有 k 个连通分支的平面图 G, 令 G 的顶点数、边数和面数分别为 n, m, r,则有

$$n - m + r = k + 1.$$

证明. 令 G 的连通分支为 G_1, G_2, \ldots, G_k . 由欧拉公式知

$$n_i - m_i + r_i = 2, \quad i = 1, 2, \dots, k.$$
 (1)

G 的面数有 $r = \sum_{i=1}^{k} r_i - (k-1)$. Eq. 1 等式两边同时取 Σ 有,

$$2k = \sum_{i=1}^{k} (n_i - m_i + r_i) = n - m + r + k - 1,$$

 $\mathbb{R} n - m + r = k + 1.$

定理 2.3. 设 G 为连通的平面图,每个面的次数至少为 $\ell \geq 3$,则

$$m \le \frac{\ell}{\ell - 2}(n - 2).$$

证明. 由定理 1.1 及欧拉公式有,

$$2m = \sum_{i=1}^{r} \deg(R_i) \ge \ell \cdot r = \ell(2 + m - n)$$

解的

$$m \le \frac{\ell}{\ell - 2}(n - 2).$$

推论 2.1. K₅, K_{3.3} 都是非平面图.

证明. 假设 K_5 是平面图, K_5 无环和平行边, 每个面的次数均大于等于 3, 则

$$10 \le \frac{3}{3-2}(5-2) = 9,$$

出现矛盾. 假设 $K_{3,3}$ 是平面图, $K_{3,3}$ 中最短圈的长度为 4, 每个面的次数均大于等于 4, 则

$$9 \le \frac{4}{4-2}(6-2) = 8,$$

出现矛盾.

定理 2.4. 设 G 为 $n(n \ge 3)$ 阶 m 条边的极大平面图,则 m = 3n - 6.

证明. 极大平面图是连通图, 由欧拉公式得 r = 2 + m - n. 又 G 是极大平面图, 由定理1.3知, G 的每个面的次数均为 3, 所以 2m = 3r, 得 m = 3n - 6.

推论 2.2. 设 G 是 $n(n \ge 3)$ 阶 m 条边的简单平面图, 则 $m \le 3n-6$.

推论 2.3. 设 G 是简单平面图, 则 G 的最小度 $\delta \leq 5$.

定理 2.5. 如果简单连通平面图 G 的每个面的次数都等于 3, 则 G 为极大平面图.

证明. 由定理 1.1 和欧拉公式知 $2m = 3r, r = 2 + m - n \Longrightarrow m = 3n - 6$. 若 G 不是极大平面图,则 G 中存在不相邻的顶点 u, v 使得 $G' = G \cup (u, v)$ 还是简单平面图. 而 m' = m + 1, n' = n, 故 m' > 3n' - 6, 与推论 2.2 矛盾.

平面图的判定

同胚

定义 3.1. 给定无向图 G,

- $\phi e = \{u, v\}$ 为图 G 的一条边,在 G 中删除 e,增加新的顶点 w,使 u, v 均与 w 相邻,称为在 G 中插入 2 度顶点w.
- 令 w 为 G 中与 u,v 相邻 2 度顶点,删除 w 增加新边 $\{u,v\}$,称为在 G 中消去 2 度顶点w.
- 若两个图 G_1 与 G_2 同构,或通过反复插入或消去 2 度顶点后同构,则称 G_1 与 G_2 同 M.
- 若两个图 G_1 与 G_2 通过若干次插入或消去 2 度顶点后同构,则称 G_1 与 G_2 同胚, G_1 is homeomorphic to G_2 . The noun of homeomorphic is homeomorphism.

关于同胚

- 同胚 homeomorphism 是一个拓扑上的定义.
- 同态 homomorphism 是一个代数上的定义.
- 同构 isomorphism 是一种特殊的同态.
- $\bullet \ \ {\sf A \ homomorphism} \ f \colon G \mapsto G' \ {\sf is \ a \ map \ between \ two \ groups} \ G, \ G' \ {\sf such \ that \ for \ all} \ a,b \in G,$

$$f(ab) = f(a)f(b).$$

- An isomorphism $f : G \mapsto G'$ from G to G' is a bijective homomorphism.
- ${\color{blue} \bullet}$ A homeomorphism $f\colon X\mapsto Y$ is a map between two topological spaces $X,\,Y$ such that
 - 1. f is a bijection.
 - 2. f and its inverse function f^{-1} are both continuous.

库拉图斯基 Kuratowski 定理

定理 3.1.G 是平面图 \iff G 中不含与 K_5 或 $K_{3,3}$ 同胚的子图.

定理 3.2.G 是平面图 \iff G 中无可收缩为 K_5 或 $K_{3.3}$ 的子图.

例子 3.1. 证明彼得森图为非平面图.

例题

例子 3.2. 对 K_5 插人一个 2 度顶点,或在 K_5 外放置一个顶点使其与 K_5 上的若干个顶点相邻,共可以产生多少个非同构的 6 阶简单连通非平面图?

例子 3.3. 由 $K_{3,3}$ 加若干条边能生成多少个非同构的 6 阶简单连通非平面图?

平面图的对偶图

平面图的对偶图

定义 4.1. 设 G 是一个平面图的平面嵌入,构造图 G 的对偶图 G^* 如下:

- 在 G 的每一个面 R_i 中放置一个顶点 v_i^* , 设 e 为 G 的一条边,
- 若 e 在 G 的面 R_i 与 R_j 的公共边界上,则作边 $e^* = \{v_i^*, v_j^*\}$ 与 e 相交,且不与其他任何边相交;
- 若 e 为 G 中的桥且在面 R_i 的边界上,则作以 v_i^* 为端点的环 $e^* = \{v_i^*, v_i^*\}$.

平面图的对偶图

例子 4.1. 平面嵌入的对偶图,实线和空心点是平面嵌入,虚线和实心点是对偶图.

平面图的对偶图的性质

平面图 G 的对偶图 G^* 有以下性质.

- G* 是平面图, 而且是平面嵌入.
- *G** 是连通图.
- 若边 e 为 G 中的环, 则 G^* 与 e 对应的边 e^* 为桥; 若 e 为 G 中的桥, 则 G^* 与 e 对应的边 e^* 为环.
- 在多数情况下, G* 为多重图 (含平行边的图)
- 同一个平面图的不同平面嵌入的对偶图不一定同构.

平面图的对偶图的性质

定理 4.1. 设平面图 G 是连通的, G^* 是 G 的对偶图, n^* , m^* , r^* 和 n, m, r 分别为 G^* 和 G 的顶点数、边数和面数,则

- (1) $n^* = r$, $m^* = m$.
- (2) $r^* = n$.
- (3) 设 G^* 的顶点 v_i^* 位于 G 的面 R_i 中,则 $d_{G^*}(v_i^*) = \deg(R_i)$.

证明. (1) 由对偶图定义可知成立.

- (2) 由于 G 与 G^* 都连通,因而满足欧拉公式, $n-m+r=2, n^*-m^*+r^*=2$,又由 $n^*=r, m^*=m$ 可以推出 $r^*=n$.
- (3) 设 G 的面 R_i 的边界为 C_i , C_i 中有 k_1 ($k_1 \ge 0$) 个桥、 k_2 条非桥的边,于是 C_i 的长度 为 $k_2 + 2k_1$,即 $\deg(R_i) = k_2 + 2k_1$. 而 k_1 条桥对应 v_i^* 处有 k_1 个环, k_2 条非桥的边对应从 v_i^* 处引出 k_2 条边,故 $d_{G^*}(v_i) = k_2 + 2k_1 = \deg(R_i)$.

平面图的对偶图的性质

定理 4.2. 若平面图 G 有 $k(k \ge 1)$ 个连通分支, G^* 是 G 的对偶图, n^*, m^*, r^* 和 n, m, r 分别为 G^* 和 G 的顶点数、边数和面数,则

- (1) $n^* = r, m^* = m$.
- (2) $r^* = n k + 1$.
- (3) 设 G^* 的顶点 v_i^* 位于 G 的面 R_i 中,则 $d_{G^*}(v_i^*) = \deg(R_i)$.

自对偶图

定义 4.2. 若 G^* 是 G 的对偶图且 $G^* \cong G$, 则称 G 为自对偶图.

例子 4.2. 下图三个实线的图都是自对偶图,虚线的图是其对偶图.

自对偶图

自对偶图

定义 4.3. 在 n-1 ($n \ge 4$) 边形 C_{n-1} 内放置一个顶点,连接这个顶点与 C_{n-1} 上的所有顶点. 所得的 n 阶简单图称作n 阶轮图,记作 W_n .

- n 为奇数的轮图称作<mark>奇阶轮图</mark>, n 为偶数的轮图称作<mark>偶阶轮图</mark>.
- 在图-(c) 中, 实边图为 5 阶轮图 W₅.
- 轮图都是自对偶图.

作业

作业

习题 17:

- **4**, 7, 14, 15.
- **17**, 21, 24.