Amendments to the Claims

The listing of claims will replace all prior versions, and listings of claims in the application.

1. (previously presented) A compound of formula (I)

in which

X represents halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkylthio, alkylsulphinyl, alkylsulphonyl, haloalkyl, haloalkoxy, haloalkenyloxy, nitro or cyano,

Y represents in each case optionally substituted aryl or hetaryl,

W and Z independently of one another represent hydrogen, halogen, alkyl, alkoxy, haloalkyl, haloalkoxy, nitro or cyano,

A represents hydrogen, in each case optionally substituted alkyl, alkenyl, alkoxyalkyl, polyalkoxyalkyl, alkylthioalkyl, saturated or unsaturated, optionally substituted cycloalkyl in which optionally at least one ring atom is replaced by a heteroatom, or represents in each case optionally halogen-, alkyl-, haloalkyl-, alkoxy-, haloalkoxy-, cyano- or nitro-substituted aryl, arylalkyl or hetaryl,

D represents hydrogen or an optionally substituted radical from the group consisting of alkyl and alkenyl,

A and D together with the atoms to which they are attached represent a saturated or unsaturated ring which optionally contains at least one heteroatom and which is unsubstituted or substituted in the A,D moiety,

G represents halogen or nitro.

2. (previously presented) The compound of formula (I) according to Claim 1 in which

W represents hydrogen, halogen or C₁-C₆-alkyl,

X represents halogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy or cyano,

Y represents one of the radicals

wherein V¹ represents hydrogen, halogen, C₁-C₁₂-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio, C₁-C₆-alkylsulphinyl, C₁-C₆-alkyl sulphonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, nitro, cyano or represents phenyl or phenoxy, each of which is optionally mono- or disubstituted by halogen, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, nitro or cyano,

 $V^2 \ \ and \ \ V^3 \ \ independently \ of \ one \ another \ represent \ \ hydrogen, \ halogen, \ C_1\text{-}C_6\text{-}$ $Alkyl, \ C_1\text{-}C_6\text{-}alkoxy, \ C_1\text{-}C_4\text{-}haloalkyl \ or \ C_1\text{-}C_4\text{-}haloalkoxy,}$

Z represents hydrogen, halogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, nitro or cyano,

A represents in each case optionally halogen-substituted C_1 - C_{12} -alkyl, C_3 - C_8 -alkenyl, C_1 - C_{10} -alkoxy- C_1 - C_8 -alkyl, poly- C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, C_1 - C_1 -alkylthio- C_1 - C_6 -alkyl, optionally halogen-, C_1 - C_6 -alkyl-, C_1 - C_2 -haloalkyl- or C_1 - C_6 -alkoxy-

substituted C₃-C₈-cycloalkyl in which optionally one or two not directly adjacent ring members are replaced by oxygen and/or sulphur or represents phenyl or phenyl-C₁-C₆-alkyl, each of which is optionally substituted by halogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, cyano or nitro,

D represents hydrogen, in each case optionally halogen-substituted C_1 - C_{12} -alkyl or C_3 - C_8 -alkenyl,

A and D together represent in each case optionally substituted C_3 - C_6 -alkanediyl or C_3 - C_6 -alkenediyl in which optionally one methylene group is replaced by oxygen or sulphur,

possible substituents being in each case:

hydroxyl, halogen, C₁-C₆-alkyl, C₁-C₄-haloalkyl, C₁-C₆-alkoxy or one of the following groups:

$$c=0$$
; $-c-c$; $c=N-N$, R^3 ; $c=N-OR^1$

in which

L represents oxygen or sulphur,

R¹, R² independently of one another represent C₁-C₆-alkyl,

R³ represents C₁-C₆-alkyl, C₁-C₆-haloalkyl, optionally halogen-, alkyl-, alkoxy-, haloalkyl-, haloalkoxy-, cyano- or nitro-substituted phenyl or represents the groups

$$CO_2R^1$$
 or $CON_{R^2}^{R^1}$

R₄ represents hydrogen or C₁-C₄,-alkyl

or represents the group
$$\begin{bmatrix} N \\ 1 \end{bmatrix}$$

G represents chlorine, bromine or nitro.

3. (previously presented) The compound of formula (I) according to Claim 1 in which

W represents hydrogen, chlorine, bromine or C₁-C₄-alkyl,

X represents fluorine, chlorine, bromine, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy or cyano,

Y represents the radical

$$V^1$$
 or V^2

wherein V¹ represents hydrogen, fluorine, chlorine, bromine, C₁-C₆-alkyl, C₁-C₆-alkylthio, C₁-C₆-alkylsulphonyl, C₁-C₄-alkoxy, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy, nitro or cyano, or represents phenyl or phenoxy, each of which is optionally monosubstituted by chlorine.

wherein V^2 represents hydrogen, fluorine, chlorine, bromine, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_2 -haloalkyl or C_1 - C_2 -haloalkoxy,

Z represents hydrogen, fluorine, chlorine, bromine, C_1 - C_4 -alkyl, C_1 - C_2 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_2 -haloalkoxy,

A represents C_1 - C_{10} -alkyl, C_3 - C_6 -alkenyl, C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, each of which is optionally mono- to pentasubstituted by fluorine or chlorine, represents C_3 - C_7 -cycloalkyl which is optionally mono- or disubstituted by fluorine, chlorine, C_1 - C_4 -alkyl, trifluoromethyl or C_1 - C_4 -alkoxy and in which optionally one ring member is replaced by

oxygen or sulphur or represents phenyl or phenyl-C₁-C₄-alkyl, each of which is optionally mono- or disubstituted by fluorine, chlorine, bromine, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy,

D represents hydrogen, represents C₁-C₈-alkyl or C₃-C₆-alkenyl, each of which is optionally mono- to pentasubstituted by fluorine or chlorine,

A and D together represent optionally substituted C_3 - C_5 -alkanediyl or C_3 - C_5 -alkenediyl in which optionally one methylene group may be replaced by oxygen or sulphur, possible substituents being hydroxyl, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy or the groups:

where

$$C=O$$
; $-C-C$; $-C-C-C$ or $C=N-OR^1$
 R^1 R^2
 R^1 R^2

R¹ and R² independently of one another represent C₁-C₄-alkyl

or represent the group
$$\begin{bmatrix} N \\ - \end{bmatrix}$$
,

G represents chlorine, bromine or nitro.

4. (previously presented) The compound of formula (1) according to Claim 1 in which

W represents hydrogen, chlorine, methyl or ethyl,

X represents chlorine, methyl, ethyl, n-propyl, isopropyl, methoxy, ethoxy, n-propoxy, isopropoxy, trifluoromethyl, difluoromethoxy, trifluoromethoxy or cyano,

Y represents the radical

$$V^1$$
 or V^2

 V^1 represents hydrogen, fluorine, chlorine, bromine, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, methoxy, ethoxy, n-propoxy, isopropoxy, $SO_2C_2H_5$, SCH_3 , trifluoromethyl, trifluoromethoxy, nitro, cyano, or represents phenoxy which is optionally monosubstituted by chlorine,

 V^2 represents hydrogen, fluorine, chlorine, methyl, ethyl, n-propyl, isopropyl, methoxy, ethoxy, trifluoromethyl or trifluoromethoxy,

Z represents hydrogen, fluorine, chlorine or methyl,

A represents C_1 - C_6 -alkyl, C_3 - C_4 -alkenyl C_1 - C_2 -alkoxy- C_1 - C_2 -alkyl or C_3 - C_6 -cycloalkyl,

D represents hydrogen, methyl, ethyl or n-propyl,

A, D together represent C_3 - C_5 -alkanediyl which is optionally substituted by fluorine and/or C_1 - C_6 -alkyl and in which optionally one carbon atom is replaced by oxygen,

or represent the group
$$N-$$
,

G represents chlorine or bromine.

5. (previously presented) The compound of formula (I) according to Claim 1 in which

W represents hydrogen, methyl or ethyl,

X represents chlorine, methyl or ethyl,

Y represents the radical

$$V^1$$
 or V^2

 V^{1} represents hydrogen, fluorine, chlorine, methyl, isopropyl, methoxy, $SO_{2}C_{2}H_{5}$, SCH_{3} , trifluoromethyl, trifluoromethoxy, nitro, or represents phenoxy which is optionally monosubstituted by chlorine,

V² represents hydrogen, fluorine, chlorine, methoxy, or trifluoromethyl,

Z represents hydrogen, or methyl,

A represents C₁-C₆-alkyl,

D represents methyl or ethyl, or

A, D together represent optionally fluorine- and/or methyl-substituted C₃-C₅- alkanediyl in which optionally one carbon atom is replaced by oxygen,

or represent the group
$$N$$

G represents chlorine.

- 6. (original) Process for preparing compounds of the formula (I) according to Claim 1, characterized in that, to obtain
 - A) compounds of the formula (I)

in which

A, D, W, X, Y and Z, are as defined above

and

G represents halogen,

compounds of the formula (II)

in which

A, D, W, X, Y and Z are as defined above

are reacted with halogenating agents in the presence of a solvent and, if appropriate, in the presence of a free-radical initiator,

B) compounds of the formula (I)

$$\begin{array}{c|c}
A & O & X \\
D-N & & Z
\end{array}$$

$$(I)$$

in which

A, D, W, X, Y and Z are as defined above and

G represents nitro,

compounds of the formula (II)

in which

A, D, W, X, Y and Z are as defined above

are reacted with nitrating agents, such as, for example, fuming nitric acid, in the presence of a solvent.

7. (previously presented) A composition for controlling pests, unwanted vegetation and/or unwanted microorganisms comprising at least one compound of the formula (I) according to Claim 1.

8. (withdrawn) Method for controlling animal pests, unwanted vegetation and/or unwanted microorganisms, characterized in that compounds of the formula (I) according to Claim I are allowed to act on pests, unwanted vegetation, unwanted microorganisms and/or their habitat.

9. (previously cancelled)

10. (currently amended) A process for preparing a composition for controlling pests, unwanted vegetation and/or unwanted microorganisms, comprising mixing a compound of the formula (I) according to Claim I 1 with extenders and/or surfactants.

- 11. (previously cancelled)
- 12. (previously presented) A composition, comprising an effective amount of a combination of active compounds comprising,
- (a') at least one 4-biphenyl-substituted-4-substituted pyrazolidine-3,5-dione derivative of the formula (I),

and

(b') at least one crop plant compatibility-improving compound from the following group of compounds:

4-dichloroacetyl-l-oxa-4-azaspiro[4.5]decane (AD-67, MON-4660), 1-dichloroacetylhexahydro-3,3,8a-trimethylpyrrolo[1,2-a]pyrimidin-6(2H)-one (dicyclonon, BAS-145138), 4-dichloroacetyl-3,4-dihydro-3-methyl-2H-1,4-benzoxazine (benoxacor), 1-methylhexyl 5-chloroquinoline-8-oxyacetate (cloquintocet-mexyl), 3-(2-chlorobenzyl)-l-(1-methyl-1-phenylethyl)urea (cumyluron), a-(cyanomethoximino)-phenylacetonitrile (cyometrinil), 2,4-dichlorophenoxyacetic acid (2,4-D), 4-(2,4-dichlorophenoxy)butyric acid (2,4-DB), 1-(1-methyl-1-phenyethyl)-3-(4-methylphenyl)urea (daimuron, dymron), 3,6-dichloro-2-methoxybenzoic acid (dicamba), S-1-methyl 1-phenylethyl piperidine-1-thiocarboxylate (dimepiperate), 2,2-dichloro-N-(2-oxo-2-(2-propenylamino)ethyl)-N-(2-propenyl) acetamide (DKA-24), 2,2-dichloro-N,N-di-2-propenylacetamide (dichlormid), 4,6-dichloro-2-phenylpyrimidine (fenclorim), ethyl 1-(2,4-dichlorophenyl)-5-trichloromethyl-1H-1,2,4-triazole-3-carboxylate (fenchlorazole-ethyl), phenylmethyl 2-chloro-4-trifluoromethylthiazole 5 -carboxylate (flurazole), 4-chloro-N-(1,3-dioxolan-2-yl-methoxy)-α-trifluoroacetophenone oxime (fluxofenim), 3-dichloroacetyl-5-(2-furanyl)-2,2-dimethyloxazolidine (furilazole, MON-

13900), ethyl 4,5-dihydro-5,5-diphenyl-3-isoxazolecarboxylate (isoxadifen-ethyl), 1-(ethoxycarbonyl)-ethyl 3,6-dichloro-2-methoxybenzoate (lactidichlor), (4-chloro-otolyloxy)acetic acid (MCPA), 2-(4-chloro-o-tolyloxy)propionic acid (mecoprop), diethyl 1-(2,4-dichorophenyl)-4,5-dihydro-5-methyl-lH-pyrazole-3,5-dicarboxylate (mefenpyrdiethyl), 2-dichloromethyl-2-methyl-1,3-dioxolane (MG-191), 2-propenyl-1-oxa-4azaspiro[4.5]decane-4-carbodithioate (MG-838), 1,8-naphthalic anhydride, α-(1,3dioxolan-2-ylmethoximino)phenylacetonitrile (oxabetrinil), 2,2-dichloro-N-(1,3dioxolan-2-yl-methyl)-N-(2-propenyl)acetamide (PPG-1292), 3-dichloroacetyl-2,2dimethyloxazolidine (R-28725), 3-dichloroacetyl-2,2,5-trimethyloxazolidine (R-29148), 4-(4-chloro-o-tolyl)butyric acid, 4-(4-chlorophenoxy)butyric acid, diphenylmethoxyacetic acid, methyl diphenylmethoxyacetate, ethyl diphenylmethoxyacetate, methyl 1-(2-chlorophenyl)-5-phenyl-1H-pyrazole-3carboxylate, ethyl 1-(2,4-dichlorophenyl)-5-methyl-lH-pyrazol-3-carboxylate, ethyl 1-(2.4-dichlorc phenyl)-5-isopropyl-lH-pyrazole-3-carboxylate, ethyl 1-(2,4dichlorophenyl)-5-(1,1-dimethylethyl)-1H-pyrazole-3-carboxylate, ethyl 1-(2,4dichlorophenyl)-5-pheny-1H-pyrazole-3-carboxylate, ethyl 5-(2,4-dichlorobenzyl)-2isoxazoline-3-carboxylate, ethyl 5-pheny-2-isoxazoline-3-carboxylate, ethyl 5-(4fluorophenyl)-5-phenyl-2-isoxazoline-3-carboxylate, 1,3-dimethylbut-1-yl 5chloroquinoline-8-oxyacetate, 4-allyloxybutyl 5-chloroquinoline-8-oxyacetate, 1allyloxyprop-2-yl 5-chloroquinoline-8-oxyacetate, methyl 5-chloroquinoxaline-8-oxyacetate, ethyl 5-chloroquinoline-8-oxyacetate, allyl 5-chloroquinoxaline-8-oxyacetate, 2oxoprop-1-yl 5-chloroquinoline-8-oxyacetate, diethyl 5-chloroquinoline-8-oxymalonate diallyl 5-chloroquinoxaline-8-oxymalonate, diethyl 5-chloroquinoline-8-oxymalonate, 4carboxychroman-4-ylacetic acid (AC-304415), 4-chlorophenoxyacetic acid, 3,3'-dimethyl-4-methoxybenzophenone,1-bromo-4-chloromethylsulphonylbenzene, 1-[4-(N-2-methoxybenzoylsulphamoyl) phenyl]-3-methylurea (also known as N-(2-methoxybenzoyl)-4-[(methylaminocarbonyl: amino]benzenesulphonamide), 1-[4-(N-2-methoxybenzoylsulphamoyl)phenyl]-3,3-di-methylurea, 1-[4-(N-4,5-dimethylbenzoylsulphamoyl)phenyl]-3-methylurea, 1-[4-(N-aphthylsulphamoyl)phenyl]-3,3-dimethylurea, N-(2-methoxy-5-methylbenzoyl)4-(cyclopropylaminocarbonyl)benzenesulphonamide,

and/or one of the following compounds, defined by general formulae, of the general formula (IIa)

$$(X^{1})_{m} \xrightarrow{I} Q$$

$$R^{14}$$
(IIa)

or of the general formula (IIb)

$$X^3$$
 X^2
 A^2
 R^{15} (IIb)

or of the formula (IIc)

where

m represents a number 0, 1, 2, 3, 4 or 5,

A¹ represents one of the divalent heterocyclic groupings shown below

$$R^{19}$$
 R^{19}
 R^{19}
 R^{19}
 R^{19}
 R^{19}
 R^{19}
 R^{21}
 R

n represents a number between 0 and 5,

 A^2 represents optionally C_1 - C_4 -alkyl- and/or C_1 - C_4 -alkoxy-carbonyl- and or C_1 - C_4 -alkenyloxy-carbonyl- substituted alkanediyl having 1 or 2 carbon atoms,

R¹⁴ represents hydroxyl, mercapto, amino, C₁-C₆-alkoxy, C₁-C₆-alkylthio, C₁-C₆-alkylamino or di-(C₁-C₄-alkyl)-amino,

 R^{15} represents hydroxyl, mercapto, amino, C_1 - C_7 -alkoxy, C_1 - C_6 -alkenyloxy, C_1 - C_6 -alkenyloxy- C_1 - C_6 -alkylthio, C_1 - C_6 -alkylamino or di- $(C_1$ - C_4 -alkyl)-amino,

 R^{16} represents in each case optionally fluorine-, chlorine- and/or bromine-substituted C_1 - C_4 -alkyl,

R¹⁷ represents hydrogen, in each case optionally fluorine-, chlorine- and/or bromine-substituted C₁-C₆-alkyl, C₂-C₆-alkenyl or C₂-C₆-alkynyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, dioxolanyl-C₁-C₄-alkyl, furyl, furyl-C₁-C₄-alkyl, thienyl, thiazolyl, piperidinyl, or optionally fluorine-, chlorine- and/or bromine- or C₁-C₄-alkyl-substituted phenyl,

R¹⁸ represents hydrogen, in each case optionally fluorine-, chlorine- and/or bromine-substituted C₁-C₆-alkyl, C₂-C₆-alkenyl or C₂-C₆-alkynyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, dioxolanyl-C₁-C₄-alkyl, furyl, furyl-C₁-C₄-alkyl, thienyl, thiazolyl, piperidinyl, or optionally fluorine-, chlorine- and/or bromine- or C₁-C₄-alkyl-substituted phenyl, R¹⁷ and

 R^{18} also together optionally represents C_3 - C_6 -alkanediyl or C_2 - C_5 -oxaalkanediyl, each of which is optionally substituted by C_1 - C_4 -alkyl, phenyl, furyl, a fused benzene ring or by two substituents which, together with the C atom to which they are attached, form a 5- or 6-membered carbocycle,

 R^{19} represents hydrogen, cyano, halogen, or represents in each case optionally fluorine-, chlorine- and/or bromine-substituted C_1 - C_4 -alkyl, C_3 - C_6 -cycloalkyl or phenyl,

 R^{20} represents hydrogen, optionally hydroxyl-, cyano-, halogen- or C_1 - C_4 -alkoxysubstituted C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl or tri-(C_1 - C_4 -alkyl)-silyl,

R²¹ represents hydrogen, cyano, halogen, or represents in each case optionally fluorine-, chlorine- and/or bromine-substituted C₁-C₄-alkyl, C₃-C₆-cycloalkyl or phenyl,

 X^1 represents nitro, cyano, halogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy,

 X^2 represents hydrogen, cyano, nitro, halogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy,

X³ represents hydrogen, cyano, nitro, halogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy,

and/or the following compounds, defined by general formulae, of the general formula (IId)

$$O = \bigcap_{R^{24}} \bigcap_{N} (X^{5})_{v} = \bigcap_{N} (X^{5})_{t} (X^{4})_{t}$$

$$SO_{2} \bigcap_{N} (IId)$$

or the general formula (IIe)

$$R^{25}$$
 R^{26}
 R^{20}
 R^{22}
 R^{22}
 R^{21}
 R^{22}
 R^{24}
 R^{24}
 R^{25}
 R

where

t represents a number between 0 and 5,

v represents a number between 0 and 5,

 R^{22} represents hydrogen or C_1 - C_4 -alkyl,

R²³ represents hydrogen or C₁-C₄-alkyl,

R²⁴ represents hydrogen, in each case optionally cyano-, halogen- or C₁-C₄-alkoxysubstituted C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio, C₁,-C₆-alkylamino or di-(C₁-C₄-alkyl)-amino, or in each case optionally cyano-, halogen- or C₁-C₄-alkylsubstituted C₃-C₆-cycloalkyl, C₃-C₆-cycloalkyloxy, C₃-C₆-cycloalkylthio or C₃-C₆-cycloalkylamino,

 R^{25} represents hydrogen, optionally cyano-, hydroxyl-, halogen- or C_1 - C_4 -alkoxysubstituted C_1 - C_6 -alkyl, in each case optionally cyano-, or halogen-substituted C_3 - C_6 -alkenyl or C_3 - C_6 -alkynyl, or optionally cyano-, halogen- or C_1 - C_4 -alkyl-substituted C_3 - C_6 -cycloallcyl,

R²⁶ represents hydrogen, optionally cyano-, hydroxyl-, halogen- or C₁-C₄-alkoxysubstituted C₁-C₆-alkyl, in each case optionally cyano- or halogen-substituted C₃-C₆-alkenyl or C₃-C₆-alkynyl, optionally cyano-, halogen- or C₁-C₄-alkyl-substituted C₃-C₆-cycloalkyl, or optionally nitro-, cyano-, halogen-, C₁-C₄-alkyl-, C₁-C₄-haloalkyl, C₁-

 C_4 -alkoxy- or C_1 - C_4 -haloalkoxy-substituted phenyl, or together with R^{32} represents in each case optionally C_1 - C_4 -alkyl-substituted C_2 - C_6 -alkanediyl or C_2 - C_5 -oxaalkanediyl,

X⁴ represents nitro, cyano, carboxyl, carbamoyl, formyl, sulphamoyl, hydroxyl, amino, halogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy, and

 X^5 represents nitro, cyano, carboxyl, carbamoyl, formyl, sulphamoyl, hydroxyl, amino, halogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy.

13. (previously presented) A composition according to Claim 12, where the crop plant compatibility-improving compound is selected from the group consisting of:

cloquintocet-mexyl, fenchlorazole-ethyl, isoxadifen-ethyl, mefenpyr-diethyl, furilazole, fenclorim, cumyluron, dymron or the compounds

and

14. (previously presented) A composition according to Claim 12 or 13 where the crop plant compatibility-improving compound is cloquintocet-mexyl or mefenpyrdiethyl.

15. (withdrawn) Method for controlling unwanted vegetation, characterized in that a composition according to Claim 12 is allowed to react on the plants or their habitat.

16. (previously cancelled)

17. (withdrawn) Method for controlling unwanted vegetation, characterized in that a compound of the formula (I) according to Claim 1 and the crop plant compatibility-improving compound as set forth in Claim 12 are allowed to act on the plants or their habitat separately, one soon after the other.