PROJEKTOWANIE ALGORYTMÓW I METOD SZTUCZNEJ INTELIGENCJI

IMIĘ I NAZWISKO	NUMER INDEKSU	TERMIN
Kacper Połatajko	241603	$\$r.15^{15} - 16^{55}$
TEMAT: Projekt 2 – Algorytmy sortowania		

1. Cel ćwiczenia

Zaimplementowanie trzech algorytmów sortowania dwa o złożoności obliczeniowej nie większej niż O(nlogn) oraz jeden o dowolnej złożoności np. $O(n^2)$. Następnie sprawdzenie ich wydajności dla różnych rozmiarów problemów (dla różnej ilości danych wejściowych). Czas zliczany w μ s.

2. Wynik działania sortowań

a. Sortowanie przez scalanie – złożoność <u>O(nlogn)</u>

b. Sortowanie szybkie – złożoność <u>O(nlogn)</u>

c. Sortowanie szybkie – złożoność $O(n^2)$

d. Sortowanie przez kopcowanie – złożoność <u>O(nlogn)</u>

e. DODATKOWO - Sortowanie bąbelkowe – złożoność $\underline{O(n^2)}$

3. Wnioski

Wynikiem zastosowania algorytmów sortowania przez scalanie, przez kopcowanie i szybkiego (przypadek niepesymistyczny) są wykresy bardzo zbliżone do wykresu funkcji *nlogn*, tak jak tego oczekiwaliśmy.

Przypadek pesymistyczny dla algorytmu sortowania szybkiego zakładał sortowanie tablic zapełnionych w $^3/_4$ pojedynczą liczbą, zaś do pozostałej części zostały losowo przypisane liczby z zakresu od 0 do 100000. Poza pojedynczym wynikiem pomiaru (błąd może tkwić nie w kodzie czy algorytmie sortowania, a w mocy obliczeniowej laptopa) charakterystyka wyjściowa jest zbliżona do wykresu funkcji n^2 .

Dodatkowo został przedstawiony algorytm sortowania bąbelkowego o złożoności obliczeniowej $O(n^2)$ dla porównania z pesymistycznym przypadkiem sortowania szybkiego i dla pokazania różnicy w wykresach dla algorytmów o złożoności O(nlogn).