Parameter Estimation and Simulation of Bacteriophage Infection Model

Abigail Ballard, Dr. Dustin Edwards, Dr. Keith Emmert

Projected Prognosis

2020

→700,000 deaths from AMR infections

2030

24 million people forced into extreme poverty

2050

- →10 Million deaths from AMR
- Economic damage akin to 2008-2009 global financial crisis

Bacteriophage Background

Bacteriophages

- Viruses that infect bacteria
- Estimated **10**³¹ bacteriophages in the biosphere

TEM Scan of Microbacterium Phage Finny

Bacteriophage Background

Bacteriophages

- Two infection types: Lytic and Lysogenic
- Lysogenic bacteriophages become reservoir hosts
- Lytic bacteriophages produce more bacteriophages
- Infectious bacteriophage particles called virions

Bacteriophage **T4** in a lytic infection lysing, and subsequently killing, **E. coli**

Compartmental Diagram

- S Susceptible bacteria
- **C** Circularized phage genome, choose between lytic and lysogenic infection
- I Lytic bacteria
- R Lysogenic reservoir bacteria
- V Virions created
- α Infection rate
- **β** Infected to lytic
- γ Infected to lysogenic
- ε Lysogenic to lytic
- μ Death rate of a class
- rS Replication rate of the S class
- **rR** Replication rate of the R class

System of Differential Equations

$$\frac{dS}{dt} = r_S S \left(1 - \frac{S + C + I + R}{\mathbb{K}} \right) - \mu_S S - \alpha S V$$

$$\frac{dC}{dt} = \alpha S V - (\mu_C + \beta + \gamma) C$$

$$\frac{dI}{dt} = \beta C - \mu_I I + \epsilon R$$

$$\frac{dR}{dt} = r_R R \left(1 - \frac{S + C + I + R}{\mathbb{K}} \right) + \gamma C - (\epsilon + \mu_R) R$$

$$\frac{dV}{dt} = \mu_I N I - \mu_V V - \alpha S V.$$

Search for Stability: Extinction

Theorem 1 (Extinction Stability for Constant Carrying Capacity, One Phage Only). The extinction equilibrium is locally asymptotically stable provided

$$r_S < \mu_S$$
 and $r_R < \mu_R + \epsilon$.

Search for Stability: Bacterial Survival

Theorem 2 (Stability of $(\bar{S}, 0, 0, 0, 0)$ for Constant Carrying Capacity, One Phage Only). Suppose $r_S > \mu_S$ so that $\bar{S} = \frac{\mathbb{K}(r_S - \mu_S)}{r_S} > 0$. Further assume that $\mu_V > N\mu_I$. Then, a sufficient criteria for local asymptotic stability is

$$\alpha < \min \left\{ \frac{\beta + \gamma + \mu_C}{\bar{S}}, \mu_V - N\mu_I \bar{S} \right\}$$

$$\mu_I > \beta + \epsilon$$

$$\gamma < \epsilon + \mu_R - \frac{\mu_S r_R}{r_S}.$$

Search for Stability: IRV Survival

Theorem 3 (Stability Criterion for IRV Equilibrium for Constant Carrying Capacity, One Phage Only). Assume $r_R > \mu_R + \epsilon$. The equilibrium

$$(\bar{S}, \bar{C}, \bar{I}, \bar{R}, \bar{V}) = \left(0, 0, \frac{\epsilon \bar{R}}{\mu_I}, \bar{R}, \frac{N \epsilon \bar{R}}{\mu_V}\right),$$
$$\bar{R} = \frac{\mathbb{K}\mu_I(r_R - \epsilon - \mu_R)}{r_R(\epsilon + \mu_I)}$$

is locally asymptotically stable provided

$$r_S < \frac{r_R(\alpha V + \mu_S)}{\epsilon + \mu_R}$$
 and $r_R > \mu_R - \mu_I$.

Future Directions

Brauer Theorem

- Ovals of Cassini
- Finding more strict restrictions for S equilibrium

Bacteriophages in Competition

- A complex system of multiple phages interacting
- Models interactions similar to what is seen in medical applications

Future Directions

Acknowledgements

Support for this work was provided by Tarleton State University College of Science and Technology.

Thank You!

Questions

