

Investing

Accounting and profitability

Projects

Production as a part of value chain

Production processes and production control

Production systems and organizations

Creating value

Investing Case-example

In this exercise:

- Return on investment
 - Initial investment and cost of capital
 - Net present value (NPV)

In this exercise:

- Return on investment
 - Initial investment and cost of capital
 - Net present value (NPV)

Evaluation of return on investment

- The profitability of an investment can be assessed by its investment costs, cash flow from the investment and cost of capital
- Common methods used to assess the profitability of an investment are:
 - Net present value (NPV)
 - Internal rate of interest (IRR)
 - Payback period

Initial investment and cash flow

- BWM factory's Initial Investment was 1 Billion US (\$ 1,000,000,000)
- Production facilities could operate for example 10 years
- One 3-Series car costs around \$ 40 000
 - Taxes are ignored for simplicity
 - Car manufacturers receive an average of 6% margin on one car sold
 - Suppose the customer pays for the car immediately upon purchase
- Suppose the cost of the factory to be \$ 100 000 000 a year
- If the factory produces 150,000 cars a year, then the annual free cash flow will be

 $150\ 000 * $40\ 000 * 6 \% - $100\ 000\ 000 = $260\ 000\ 000$

Cost of capital

WACC = Weighted Average Cost of Capital, that is defined as follows:

WACC =
$$\left[\frac{E_{TOT_i}}{A_{TOT_i}} \cdot r_E + \frac{D_{TOT_i}}{A_{TOT_i}} \cdot r_D \cdot (1 - \tau)\right] \cdot 100\%,$$

where A_{TOTi} = Total Assets,

 $D_{TOTi} = Total Liabilities (Debts),$

 E_{TOTi} = Total Equity,

 τ = corporate tax rate,

 r_E = required yield for equity and

 r_D = average interest rate for debts.

Cost of capital

- The average capital cost of investment in the automotive industry is about 7.6%
 - Weighted Average Cost of Capital, WACC
- Money is more valuable today than in the future
 - Capital has a 'cost'
 - If money is available right away, it can make a profit
 - The present value of future cash flows is obtained by discounting

In this exercise:

- Return on investment
 - Initial investment and cost of capital
 - Net present value (NPV)

Net present value (NPV)

- NPV will help you evaluate the return on investment
 - However, NPV does not tell you the exact value of the investment!
 - NPV factors in the timing of cash flows
- In general, the investment is profitable if the NPV is positive
- The net present value is calculated:

$$NPV = \sum_{t=0}^{n} \frac{FCF_t}{(1 + WACC)^t}$$

NPV

- NPV is the sum of discounted cash flows
- The table below lists free cash flows and their discounted values
 - Year 0 includes only the initial investment
 - NPV is approximately \$ 721.7 million
 - NPV gets a positive value
 - That is, along with the NPV rule, the investment is profitable

Year	0	1	2	3	4	5	6	7	8	9	10
Free cash flow	-1000000000	260000000	260000000	260000000	260000000	260000000	260000000	260000000	260000000	260000000	260000000
Discounted cash flow	-1000000000	241635687,7	224568483	208706768,6	193965398,3	180265240,1	167532751	155699582,7	144702214,4	134481611,9	124982910,7
WACC	7,60 %										
NPV	776540648,6										

Week 5 assignment: Project plan and return on investment

Evaluating Return on Investment (Excel file)

- Estimate your initial investment in euros
- Initial investment includes equipment, facilities and other procurements to start a business
- Estimate your company's free cash flow for years 0–4
- Year 0 includes only the initial investment
 In years 1-4, business is conducted normally
- Calculate the net present value of your investment using 10% average cost of capital (WACC = 10%)
- Is the investment profitable?

Week 5 assignment: Project plan and return on investment

 Return Excel-file and text part as a pdf to myCourses. The weekly assignment must be returned not later than Monday, 9 November at 6:00 pm

Remember to give feedback:

- 1. How long did it take to do the assignment?
- 2. What new did you learn?
- 3. What should be developed in this exercise?
- 4. General comments on the course so far?

