

Automotive door and lights system design (Dynamic design)

Egypt Future work is digital

Contents

l.	Overview of system components	3
A.	Overview of system components ECU 1	3
В.	ECU 2	3
II.	Layered architecture	3
A.		
В.	ECU 2 Layered architecture	5
III.	Flowcharts	6
A.	ECU1 FlowChart	6
В.	ECU 2 FlowChart	7
IV.	State machine diagram	8
A.	. ECU 1 state machine diagram for each component	8
В.	ECU 2 state machine diagram for each Component	8
C.	ECU 1 state machine diagram for each Operation	9
D.	. ECU 2 state machine diagram for each Operation	10
٧.	sequence diagramsequence diagram	11
A.	ECU 1 Sequence diagram	11
В.	ECU 2 Sequence diagram	12
VI.	SimSo simulation and estimated CPU load	13
A.	ECU 1 Tasks	13
В.	ECU 2 Tasks	13
C.	ECU 1 Gantt chart	13

3 | Page

D.	ECU 1 Gantt chart	14
E.	ECU 1 CPU load	14
F.	ECU2 CPU load	14

I. Overview of system components

A. ECU 1

ECU 1 is a microcontroller responsible for receiving data from three sensors

- The vehicle speed (Analog input with the speed value)
- The light switch (A digital input switch has two states on or off)
- Door state sensor (detect if the door is closed or open)

And resend the data received from the sensors to ECU 2 Via can bus

B. ECU 2

ECU 2 is a microcontroller responsible for controlling three devices

- Left lights (by a switch with two states ON/OFF)
- Right lights (by a switch with two states ON/OFF)
- The buzzer

ECU 2 also take the decision according to the received data from ECU.1

II. Layered architecture

The layered architecture for each ECU according to AUTOSAR principles

A. ECU 1 Layered architecture

B. ECU 2 Layered architecture

III. Flowcharts

Each flowchart explain the how the program will flow in each microcontroller used

A. ECU1 FlowChart

B. ECU 2 FlowChart

IV. State machine diagram

A. ECU 1 state machine diagram for each component

B. ECU 2 state machine diagram for each Component

C. ECU 1 state machine diagram for each Operation

D. ECU 2 state machine diagram for each Operation

V. sequence diagram

A. ECU 1 Sequence diagram

B. ECU 2 Sequence diagram

VI. SimSo simulation and estimated CPU load

Simulating the estimated task execution time on each ECU as follows

A. ECU 1 Tasks

id	Name	Task type	Abort on miss	Act. Date (ms)	Period (ms)	List of Act. dates (ms)	Deadline (ms)	WCET (ms)	Followed by	priority
1	SendOnCAN	Periodic ▼	✓ Yes	0	5.0	-	5.0	1.0	-	5
2	SpeedSense	Periodic 🔻	✓ Yes	0	5.0	-	5.0	1.0	-	4
3	DoorState	Periodic 🔻	✓ Yes	0	10	-	10	0.1	-	3
4	Light Switch State	Periodic •	✓ Yes	0	20.0	-	20.0	0.1	•	2

B. ECU 2 Tasks

id	Name	Task type	Abort on miss	Act. Date (ms)	Period (ms)	List of Act. dates (ms)	Deadline (ms)	WCET (ms)	Followed by	priority
1	CAN Receive	Periodic ▼	✓ Yes	0	5	-	5	1	-	5
2	Data analysis	Periodic 🔻	✓ Yes	0	5	-	5	0.2	-	4
3	ControlTask	Periodic 🔻	✓ Yes	0	5	-	5	0.2	-	3
4	BuzzerControl	Periodic 🔻	✓ Yes	0	1000	-	100	0.1	-	1
5	LightsOffDelay	Periodic 🔻	✓ Yes	0	1000	-	10	0.1	-	1

C. ECU 1 Gantt chart

D. ECU 1 Gantt chart

E. ECU 1 CPU load

Observation Window:
from 0.00 to 100.00 ms

Configure...

	Total load	Payload	System load
CPU 1	0.4150	0.4150	0.0000
Average	0.4150	0.4150	0.0000

F. ECU2 CPU load

Observation Window:

from 0.00 to 1000.00 ms

Configure...

	Total load	Payload	System load
CPU 1	0.2802	0.2802	0.0000
Average	0.2802	0.2802	0.0000