

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

(12) Offenlegungsschrift
(10) DE 199 40 415 A 1

(5) Int. Cl. 7:
A 23 L 1/30

(21) Aktenzeichen: 199 40 415.1
(22) Anmeldetag: 26. 8. 1999
(23) Offenlegungstag: 8. 3. 2001

(71) Anmelder:
Spener, Friedrich, Prof. Dr., 48149 Münster, DE

(72) Erfinder:
Spener, Friedrich, Prof. Dr., 48147 Münster, DE;
Wolfrum, Christian, Dipl.-Chem., 48149 Münster,
DE

(56) Entgegenhaltungen:
WO 99 20 722
Chem. Abstr. 130, 265265z (1999);
Chem. Abstr. 128, 304760m (1998);
Römpf, Lexikon chemie, 10.Aufl., 1999, Georg
Thieme Verlag, Stuttgart, Bd.4, S.3332;

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

(54) Verzweigtkettige Fettsäuren als fettabbauende Wirkstoffe

(57) Die vorliegende Erfindung betrifft verzweigtkettige Fettsäuren, dadurch gekennzeichnet, daß sie mit einem der Peroxisomen Proliferator aktivierter Rezeptoren (PPAR) Isoformen oder strukturverwandter, ligandaktiver Keratrezeptoren, und/oder mit einem Lipidbindungsprotein vom Strukturtyp der 14-15 kDa Fettsäure-bindungsproteine, direkt wechselwirken, als Wirkstoffe mit einem antiparoxysmischen Effekt. Zu diesen verzweigtketigen Fettsäuren gehören die als Beispiele aufgeführten verzweigtketigen Fettsäuren vom Isoprenoid- und Acetogenintyp. Weiterhin betrifft diese Erfindung den Einsatz dieser verzweigtketigen Fettsäuren als Zusatzstoffe zu Diätetika, Nahrungsmitteln und Genußmitteln zur Vermeidung von Übergewicht und zur Reduktion bestehender Fettdepots.

26.08.99

Zusammenfassung
Zurücksetzung eines Verzweigtkettigen Fettsäuren als Wirkstoffe mit einem antiparoxysmischen Effekt

375 19940415 1 002070

Die vorliegende Erfindung betrifft verzweigtketige Fettsäuren, die mit einem der Peroxisomen Proliferator aktivierter Rezeptor (PPAR) Isoformen oder strukturverwandter, ligandaktiver Keratrezeptoren und/oder mit einem Lipidbindungsprotein vom Strukturtyp der 14-15 kDa Fettsäure-bindungsproteine, direkt wechselwirken, als Wirkstoffe mit einem antiparoxysmischen Effekt. Zu diesen verzweigtketigen Fettsäuren gehören die als Beispiele aufgeführten verzweigtketigen Fettsäuren vom Isoprenoid- und Acetogenintyp. Weiterhin betrifft diese Erfindung den Einsatz dieser verzweigtketigen Fettsäuren als Zusatzstoffe zu Diätetika, Nahrungsmitteln und Genußmitteln zur Vermeidung von Übergewicht und zur Reduktion bestehender Fettdepots.

DE 199 40 415 A 1

BEST AVAILABLE COPY

Beschreibung

Die vorliegende Erfindung betrifft natürliche Fettsäuren des Isoprenoid- und Acetogenintyps mit Methyl- und Ethylverzweigung und synthetische verzweigtkettige Fettsäuren als Diätetika und Zusatzstoffe zu Nahrungs- und Genussmitteln zur Förderung des Fettabbaus bei Menschen.

Der Anspruch erstreckt sich auf natürliche und synthetische verzweigtkettige Fettsäuren, deren Struktur angepaßt ist für die Bindung dieser Fettsäuren durch Isoformen des Peroxisomen Proliferator aktivierten Rezeptors (PPAR) sowie durch Lipidbindungsproteine vom Strukturtyp der 14–15 kDa Fettsäurebindungsproteine.

Die Lipidhomöostase in Menschen und in Säugetieren wird durch die Balance zwischen Energiezufuhr (Nahrungsaufnahme) und -verbrauch reguliert. Aus diesem Grund existieren Kontrollmechanismen in Bezug auf die Verfügbarkeit von Kohlenhydraten und Fetten, ihren Transport, Stoffwechsel, Einbau und Mobilisation. Übersteigt die Energiezufuhr den Energieverbrauch so wird dieses Gleichgewicht gestört und bedingt Gewichtszunahme, deren größter Anteil auf die Bildung von Fettdepots zurückzuführen ist (Woods et al. (1998) *Science* 280, 1378–1383).

Unter die Isoformen ligandaktivierter Kernrezeptoren des PPAR Typs fallen die bis heute bekannten PPAR α , PPAR β (auch NuCI oder FAAR) und PPAR γ 1-2 (Wahl et al. (1999) *Adv. Exp. Med. Biol.* 447, 199–209). Der katabole Fettstoffwechsel unterliegt der Kontrolle der PPARs, die als Zielmoleküle für hypolipidämische Medikamente fungieren und über die Steuerung mehrerer Schlüsselenzyme des peroxisomalen und mitochondrialen Stoffwechsels sowie der Lipoproteinlipase und verschiedener Apolipoproteine den katabolen Fettstoffsstoffwechsel in Eukaryoten transkriptionell regulieren (Hashimoto et al. (1999) *J. Biol. Chem.* 274, 19228–19236). Die hypolipidämischen Medikamente werden unter dem Begriffe der peroxisomalen Proliferatoren zusammengefaßt; der Name dieser Stoffe leitet sich aus der Fähigkeit ab, ausschließlich in Nagern die peroxisomale Proliferation, d. h. Größe und Menge der Peroxisomen, zu induzieren. Bezogen auf den Menschen führt die Aktivierung dieser Rezeptoren zu einer gesteigerten Expression der lipidabbauenden Enzyme, die sich zum Beispiel in einer Verringerung der Triacylglycerinkonzentration im Blut auswirkt und das Risiko einer Fettleibigkeit damit verbundenen Typ II Diabetes verringert. In jüngerer Zeit wurden geradkettige Fettsäuren als natürliche Agonisten der PPARs identifiziert (Bocos et al. (1995) *J. Steroid Biochem. Mol. Biol.* 53, 467–473).

Unter den Begriff Lipidbindungsproteine vom Strukturtyp der 14–15 kDa Fettsäurebindungsproteine (FABPs) fallen die bis heute bekannten 19 Mitglieder dieser Familie, die ein Strukturmotiv bestehend aus zwei orthogonalen β -Faltblättern sowie zwei α -Helices aufweisen (Hohoff und Speiser (1998) *Fet/*Lipid 100, 252–263). Diese Proteine binden geradkettige Fettsäuren, manche Vertreter binden jedoch auch die hypolipidämischen Medikamente. Den erstmals 1972 beschriebenen Proteinen (Ockner et al. (1972) *Science* 177, 56–58) wird eine Rolle im intrazellulären Fettsäuretransport und Fettstoffwechsel einerseits und in der Regulation von Genen des Fettstoffwechsels andererseits zugeschrieben (Glatz et al. (1995) *Prostaglandins Leukot. Essent. Fatty Acids* 52, 121–127). Unsere Untersuchungen haben ergeben, daß die Lipidhomöostase durch die PPAR-vermittelte Genregulation durch Interaktion des Rezeptors und Lipidbindungsprotein sowie durch Interaktion beider Proteine mit geradkettigen Fettsäuren beeinflußt werden kann.

Erstmals konnten wir nun zeigen, daß die Lipidhomöostase auf die verzweigtkettige Phytansäure äußerst empfind-

lich reagiert (Ellinghaus et al. (1999) *J. Biol. Chem.* 274, 2766–2772). Dabei fungieren die Fettsäurebindungsproteine als cytosolische Diskriminator- und Transportproteine für die PPAR-Agonisten in den Kern, die dort über PPAR-

Transaktivierung die Genexpression der Enzyme des katabolen Fettstoffwechsels steuern. Die Erfindung erstreckt sich auf verzweigtkettige Fettsäuren, die über diesen Mechanismus die ligandaktivierten Kernrezeptoren besser transaktivieren als gesättigte und ungesättigte geradkettige Fettsäuren und daher einen verstärkten Abbau der Fettdepots bewirken. In pathologisch hohen Konzentrationen von Phytansäure in Sera und Lebern, wie in sterol carrier protein 2 defizienten Mäusen gezeigt, kommt es sogar zu einem Totalabbau der Fettdepots (Seedorf et al. (1998) *Genes Dev.* 12, 1189–1201). Bei Patienten mit bestimmten genetischen Stoffwechseldefekten, wie z. B. dem Refsum-Syndrom, kann der Spiegel der Phytansäure bei 1,3 mM liegen und langfristig neurologische Schäden bedingen (Kahlke et al. (1964) *Klin. Wochenschr.* 42, 1011–1018). Die verzweigtkettigen Fettsäuren sind jedoch als Minorkomponenten Bestandteil der menschlichen Nahrung, beispielsweise beträgt der Phytansäurespiegel im Serum Gesunder zwischen 0,5 und 10 μ M.

Zu den natürlich vorkommenden verzweigtkettigen Fettsäuren gehören Isoprenoidfettsäuren, wie die Phytansäure und Pristansäure, Acetogenin-abgeleitete Fettsäuren wie iso- und anteiso-Fettsäuren und die von der Uropygialdrüse der Vögel sezernierten Fettsäuren (Jacob und Ziswiler (1982) *Avian Biology* 6, 199–314), einschließlich der α - und β -Oxidationsprodukte aller verzweigtkettigen Fettsäuren soweit sie von den Kernrezeptoren und Lipidbindungsproteinen gebunden werden. Verzweigtkettige Fettsäuren die von der Uropygialdrüse produziert werden, haben Methyl- und Ethylverzweigungen in variierender Anzahl an ungeradzahligen oder geradzahligen Kohlenstoffatomen der Fettsäurekette.

Beispiele für verzweigtkettige Fettsäuren, die für die Erfindung relevant sind, sind in Abb. 1 dargestellt.

Der Anspruch bezieht sich auf den Einsatz der verzweigtkettigen Fettsäuren in reiner Form, als Mischung mehrere verzweigtkettige Fettsäuren und als Proform. Zu letzteren zählen metabolische Vorstufen, die im Organismus zum Wirkstoff umgewandelt werden, zum Beispiel Phytol zu Phytansäure, und in Estern gebundene verzweigtkettige Fettsäuren, aus denen der Wirkstoff im Organismus freigesetzt wird, zum Beispiel aus Triacylglycerinen.

Die Erfindung wird nun weiter mit Bezug auf die nachfolgenden Beispiele beschrieben.

Beispiel 1

Das Transaktivierungspotential der Fettsäuren und Medikamente für PPARs und damit für die Kapazität, fettabbauende Enzyme verstärkt zu induzieren, wird in Transaktivierungssassays deutlich. Immortalisierte humane Leberzellen (HepG2) wurden mit einem PPAR α -sensitiven CAT-Reportergen, einem Expressionsvektor für humanen PPAR α und einem β -Gal Normierungsvektor transient transfiziert und mit den in Abb. 2 bezeichneten Agonisten für 24 h inkubiert. Die CAT- und β -Gal-Konzentration wurde jeweils durch ELISAs bestimmt, das Verhältnis beider Werte spiegelt die PPAR α -Transaktivierung wider. Das Ergebnis zeigt, daß die verzweigtkettige Phytansäure und Pristansäure den humanen PPAR α etwa 2–4 mal stärker als die geradkettigen Fettsäuren transaktivieren. Im Vergleich zum potenteren hypolipidämischen Medikament Bezafibrat liegt die Aktivierungskapazität der Pristansäure etwa doppelt so hoch (Abb. 2).

Beispiel 2

Wir zeigen in Abb. 3, daß neben PPAR das Fettsäurebindungsprotein ebenfalls ein Zielmolekül für PPAR-Agonisten ist, da die Transaktivierung von der intrazellulären Konzentration an Fettsäurebindungsprotein, das die Agonisten ebenso bindet, abhängt. HepG2-Zellen, die stabil mit antisense Leber (L-)FABP transfiziert wurden, haben je nach Klon einen geringeren L-FABP Gehalt als normale HepG2-Zellen. Diese Zellklone wurden wie unter Beispiel 1 beschrieben transfiziert, mit verzweigt- und geradketten Fettsäuren für 24 h inkubiert und die CAT-, β -Gal- und L-FABP-Konzentration durch ELISAs bestimmt. Die beobachtete positive Korrelation von PPAR α -Aktivierung und intrazellulärer L-FABP-Konzentration beweist, daß L-FABP am Transport der Agonisten zum Kernrezeptor PPAR α beteiligt ist (Abb. 3), eine Extrapolation auf den Nullwert der L-FABP Konzentration ergibt, daß ohnc L-FABP keine PPAR α -Aktivierung durch Agonisten möglich ist. Auch dieses Beispiel zeigt, daß verzweigtketige Fettsäuren das höhere Transaktivierungspotential als geradketige Fettsäuren besitzen.

Beispiel 3

In vivo Untersuchungen an der Maus weisen die Bedeutung der verzweigtketigen Fettsäuren für die Genexpression und die Gewichtsabnahme nach. Mäusen wurden mit Normalfutter, dem 0,5 Gew.-% Pristansäure zugesetzt wurde, für 2 Wochen ad libitum gefüttert und das Gewicht dieser Mäuse kontrolliert. Nach der Fütterung wurde die RNA aus der Leber isoliert und der Gehalt der mRNAs für die Enzyme des peroxisomalen katabolen Fettsäurestoffwechsels, der Acyl-CoA-Oxidase (Δ CO), des peroxisomalen bifunktionellen Enzyms (PBE) sowie der peroxisomalen Thiolase (pTHIOL) durch Northern-Blotting quantifiziert, normalisiert auf die stetige Expression der mRNA für Glycerinaldehyd-3-phosphat-dehydrogenase (GAPDH). Es zeigt sich eine 2-4facher Anstieg in der mRNA-Konzentration der untersuchten Enzyme (Abb. 4) in der Leber der mit Pristansäure-Zusatz gefütterten Mäuse. Zusätzlich zu dem Effekt auf die Enzyme war nach Fütterung dieser Fettsäure bei den Mäusen einen Gewichtsverlust von 2%, einhergehend mit einer teilweisen Reduktion des Fettgewebes zu beobachten. Dieser Versuch zeigt direkt am Organismus den Einfluß der verzweigtketigen Fettsäuren auf den katabolen Lipidstoffwechsel.

Patentansprüche

50

1. Natürliche isoprenoid- und acetogeninabgeleitete Fettsäuren mit Methyl- oder Ethylverzweigung, **dadurch gekennzeichnet**, daß sie mit einem der PPAR Isoformen, und/oder mit einem Lipidbindungsprotein vom Strukturtyp der 14–15 kDa Fettsäurebindungsproteine, direkt wechselwirken.
2. Synthetische Fettsäuren mit Verzweigungsmustern, die natürlich nicht vorkommen, dadurch gekennzeichnet, daß sie mit einem der PPAR Isoformen und/oder mit einem Lipidbindungsprotein vom Strukturtyp der 14–15 kDa Fettsäurebindungsproteine, direkt wechselwirken.
3. Verzweigtketige Fettsäuren gemäß Ansprüche 1 und 2, dadurch gekennzeichnet, daß sie die Expression lipidabbauender Enzyme und die von Lipidbindungs- und -transportproteinen verstärken.
4. Proformen der verzweigtketigen Fettsäuren gemäß Ansprüche 1 und 2, wie die metabolischen Vorstufen

der verzweigtketigen Fettsäuren und wie die estergebundenen verzweigtketige Fettsäuren, dadurch gekennzeichnet, daß sie nach Umwandlung in die Wirkstoffe die Expression lipidabbauender Enzyme und die von Lipidbindungs und -transportproteinen verstärken.

5. Verwendung der verzweigtketigen Fettsäuren und ihrer Proformen gemäß Ansprüche 1 bis 4 als Diätetikum zur Reduktion der Fettdepots.

6. Verwendung der verzweigtketigen Fettsäuren und ihrer Proformen gemäß Ansprüche 1 bis 4 als Diätetikum zur Vermeidung von Übergewicht.

7. Applikation der verzweigtketigen Fettsäuren und ihrer Proformen gemäß Ansprüche 5 und 6 als Einzelkomponenten oder im Gemisch gelöst in Trägerölen oder in stabilen Emulsionen.

8. Applikation der verzweigtketigen Fettsäuren und ihrer Proformen gemäß Ansprüche 5 und 6 als Einzelkomponenten oder im Gemisch in Kapseln, Dragees, Tabletten oder Pellets, oder als Zusatz zu festen oder flüssigen diätetischen Lebensmitteln.

9. Verwendung der verzweigtketigen Fettsäuren und ihrer Proformen gemäß Ansprüche 1 bis 4 als Zusatzstoffe zur Reduktion der Fettdepots.

10. Verwendung der verzweigtketigen Fettsäuren und ihrer Proformen gemäß Ansprüche 1 bis 4 als Zusatzstoffe zur Verminderung von Übergewicht.

11. Applikation der verzweigtketigen Fettsäuren und ihrer Proformen gemäß Ansprüche 9 und 10 als Einzelkomponenten oder im Gemisch als Zusatzstoffe in Fetten, Ölen oder Fettgemischen, wie beispielsweise Margarinen, für die menschliche Ernährung.

12. Applikation der verzweigtketigen Fettsäuren und ihrer Proformen gemäß Ansprüche 9 und 10 als Einzelkomponenten oder im Gemisch als Zusatzstoffe in übrigen Lebensmitteln und Materialien zur Herstellung von Lebensmitteln.

13. Applikation der verzweigtketigen Fettsäuren und ihrer Proformen gemäß Ansprüche 9 und 10 als Einzelkomponenten oder im Gemisch als Zusatzstoffe in Genussmitteln und in Materialien zur Herstellung von Genussmitteln.

Hierzu 4 Seite(n) Zeichnungen

- Leerseite -

Phytansäure

Pristansäure

iso-Fettsäure

anteiso-Fettsäure

Fettsäure mit Methylverzweigungen an geradzahligen Kohlenstoffatomen

Fettsäure mit Methylverzweigungen an ungeradzahligen Kohlenstoffatomen

Abb. 1 Beispiele für verzweigtkettige Fettsäuren

BEST AVAILABLE COPY

Abb. 2 Transaktivierung von humanem PPAR α in HepG2 Zellen durch Fettsäuren und Bezafibrat ($n=6 \pm SD$).

Abb. 3 Transaktivierung von humanem PPAR α in Abhängigkeit von L-FABP durch 200 μM Stearinsäure (●), 50 μM Arachidonsäure (■) und 100 μM Phytansäure (▲) ($n=6 \pm \text{SD}$)

BEST AVAILABLE COPY

Abb. 4 Transaktivierung von Enzymen des peroxisomalen Fettsäurereststoffwechsels in Pristansäure gefütterten Mäusen ($n=3 \pm SD$)