30100: Mathematical Statistics I

Winter 2022

Homework 3

Lecturer: Chao Gao

- 1. Read Chapters 4.1 & 4.2 of Lehmann & Casella, and answer the question: why are Bayes estimators biased?
- 2. Consider i.i.d. observations $X_1, ..., X_n \sim N(\theta, \sigma^2)$ with parameter space $(\theta, \sigma^2) \in \mathbb{R} \times \mathbb{R}^+$, where $\mathbb{R}^+ = (0, \infty)$. Show \bar{X} is the minimax estimator for the loss $(\hat{\theta} \theta)^2/\sigma^2$. In other words, it minimizes $\sup_{\theta \in \mathbb{R}, \sigma^2 > 0} \mathbb{E}_{\theta, \sigma^2} \frac{(\hat{\theta} \theta)^2}{\sigma^2}$.
- 3. Consider $y \sim N(X\beta, \sigma^2 I_n)$ with $\beta \in \mathbb{R}^p$. For the loss $||X(\hat{\beta} \beta)||^2$, show $\hat{\beta} = (X^T X)^- X^T y$ is minimax. Do not assume $(X^T X)$ is invertible. The notation $(X^T X)^-$ means the generalized inverse.
- 4. For $Z \sim N(0, I_p)$, show $\mathbb{E}Z^T g(Z) = \mathbb{E}\nabla^T g(Z)$.
- 5. For $Z \sim N(0, I_p)$ with $p \geq 3$, show $\mathbb{E} \frac{1}{\|Z + \mu\|^2}$ only depends on $\|\mu\|$ and is a decreasing function of $\|\mu\|$.
- 6. Consider $X_1, ..., X_n \sim N(\theta, \sigma^2 I_p)$ for $p \geq 3$. The parameter space is $\theta \in \mathbb{R}^p$ and the loss is $\|\hat{\theta} \theta\|^2$. Let $\hat{\theta}_{JS+} = \left(1 \frac{\sigma^2(p-2)}{n\|X\|^2}\right)_+ \bar{X}$, where $x_+ = \max(x, 0)$. Prove $\mathbb{E}_{\theta} \|\hat{\theta}_{JS+} \theta\|^2 < \mathbb{E}_{\theta} \|\hat{\theta}_{JS} \theta\|^2$ for all $\theta \in \mathbb{R}^p$. Is $\hat{\theta}_{JS}$ admissible?
- 7. Is $\hat{\theta}_{\rm JS+}$ admissible? Briefly explain why. Hint: Read Chapter 5.7 of Lehmann & Casella.
- 8. Does $\hat{\theta}_{JS}$ improves MLE for each coordinate? Without loss of generality, we can study this problem with n = 1, $\sigma^2 = 1$ and $p \geq 3$, and compare $\mathbb{E}(\hat{\theta}_{JS,1} \theta_1)^2$ and $\mathbb{E}(X_1 \theta_1)^2$.
 - (a) Show $\mathbb{E}(\hat{\theta}_{JS,1} \theta_1)^2 \mathbb{E}(X_1 \theta_1)^2 = (p-2)\mathbb{E}\left(\frac{(p+2)X_1^2 2\|X\|^2}{\|X\|^4}\right)$.
 - (b) When $\theta_1 = \theta_2 = ... = \theta_p$, show $\mathbb{E}(\hat{\theta}_{JS,1} \theta_1)^2 \mathbb{E}(X_1 \theta_1)^2 < 0$.
 - (c) When $\theta_2 = ... = \theta_p$, show as θ_1 moves away from θ_2 , eventually $\mathbb{E}(\hat{\theta}_{JS,1} \theta_1)^2 \mathbb{E}(X_1 \theta_1)^2 > 0$.
 - (d) Plot $\mathbb{E}(\hat{\theta}_{JS,1}-\theta_1)^2$ and $\mathbb{E}(X_1-\theta_1)^2$ as functions of θ_1 , and illustrate your conclusions in (b) and (c). Discuss your new understanding of $\hat{\theta}_{JS}$.
- 9. Read the paper (https://projecteuclid.org/download/pdfview_1/euclid.ss/1331729980) and write a very brief summary. Do not exceed 0.5 pages.
- 10. If you want more intuition of the construction of the JS estimator, read (or do) Chapter 5, Problem 4.6 and Chapter 5, Problem 5.3 in Lehmann & Casella. You do not need to submit anything for this problem.

Homework 3:

11. (***Extra credit***) Consider i.i.d. $X_1, \dots, X_n \sim N(\theta, 1)$. You proved in the last homework that the Bayes estimator induced by the Gaussian prior $\theta \sim N(0, \tau^2)$ satisfies $\sup_{\theta \in \mathbb{R}} \mathbb{E}_{\theta}(\hat{\theta} - \theta)^2 = \infty$. This is because of the strong shrinkage effect of the Gaussian prior. In other words, a Gaussian distribution implies a very strong prior belief around its mean. Can we construct a Bayes estimator that satisfies $\sup_{\theta \in \mathbb{R}} \mathbb{E}_{\theta}(\hat{\theta} - \theta)^2 < \infty$? This can be achieved by using a prior distribution with a heavier tail. For example, consider a Laplace prior $\theta \sim \frac{1}{2\tau} \exp\left(-\frac{|\theta|}{\tau}\right)$. For the posterior mean induced by this prior, show that you can achieve

$$\sup_{\theta \in \mathbb{R}} \mathbb{E}_{\theta} (\hat{\theta} - \theta)^2 \le \frac{1.00001}{n},$$

with some sufficiently large τ . An interesting fact is that any prior distribution with a heavier tail would also work (e.g. Cauchy). On the other hand, the Laplace is the lightest tail such that the induced Bayes estimator satisfies $\sup_{\theta \in \mathbb{R}} \mathbb{E}_{\theta}(\hat{\theta} - \theta)^2 < \infty$.