a source bit is flipped. Are parity bits or source bits more likely to be among these three flipped bits, or are all seven bits equally likely to be corrupted when the noise vector has weight two? The Hamming code is in fact completely symmetric in the protection it affords to the seven bits (assuming a binary symmetric channel). [This symmetry can be proved by showing that the role of a parity bit can be exchanged with a source bit and the resulting code is still a (7,4) Hamming code; see below.] The probability that any one bit ends up corrupted is the same for all seven bits. So the probability of bit error (for the source bits) is simply three sevenths of the probability of block error.

$$p_{\rm b} \simeq \frac{3}{7} p_{\rm B} \simeq 9 f^2.$$
 (1.48)

Symmetry of the Hamming (7,4) code

To prove that the (7,4) code protects all bits equally, we start from the parity-check matrix

$$\mathbf{H} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}. \tag{1.49}$$

The symmetry among the seven transmitted bits will be easiest to see if we reorder the seven bits using the permutation $(t_1t_2t_3t_4t_5t_6t_7) \rightarrow (t_5t_2t_3t_4t_1t_6t_7)$. Then we can rewrite **H** thus:

$$\mathbf{H} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}. \tag{1.50}$$

Now, if we take any two parity constraints that ${\bf t}$ satisfies and add them together, we get another parity constraint. For example, row 1 asserts $t_5+t_2+t_3+t_1=$ even, and row 2 asserts $t_2+t_3+t_4+t_6=$ even, and the sum of these two constraints is

$$t_5 + 2t_2 + 2t_3 + t_1 + t_4 + t_6 = \text{even};$$
 (1.51)

we can drop the terms $2t_2$ and $2t_3$, since they are even whatever t_2 and t_3 are; thus we have derived the parity constraint $t_5 + t_1 + t_4 + t_6 =$ even, which we can if we wish add into the parity-check matrix as a fourth row. [The set of vectors satisfying $\mathbf{Ht} = \mathbf{0}$ will not be changed.] We thus define

$$\mathbf{H}' = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}. \tag{1.52}$$

The fourth row is the sum (modulo two) of the top two rows. Notice that the second, third, and fourth rows are all cyclic shifts of the top row. If, having added the fourth redundant constraint, we drop the first constraint, we obtain a new parity-check matrix \mathbf{H}'' ,

$$\mathbf{H}'' = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}, \tag{1.53}$$

which still satisfies $\mathbf{H}''\mathbf{t} = 0$ for all codewords, and which looks just like the starting \mathbf{H} in (1.50), except that all the columns have shifted along one