Math 607 - Real Variables I Definitions, Theorems and Propositions

Kari Eifler

December 14, 2016

Contents

1	Set Theory	3
2	Cardinality	5
3	Measures	6
4	Measure Theory	8
5	Cantor Sets	10
6	Measurable-ness	11
7	Integration	12
8	Convergence	15
9	Product measures / spaces / stuff	16
10	Signed Measure and Differentiation Theory	17

The propositions and theorems marked with a \star indicate that the proof was important and relatively short, and thus should be learned for exams. Definitions are shown in **blue** while theorems are shown in **purple**.

1 Set Theory

We skip the first day of class, since it likely won't show up on any exam.

- **1** (relation) A relation from X to Y is a subset R of $X \times Y = \{(x, y) \mid x \in X, y \in Y\}$. If $(x, y) \in R$ we write xRy
- **2** (countable) A is countable provided $A = \emptyset$ or there exists a function $f : \mathbb{N} \to A$ which is onto.

Remark: If A is finite, then A is countable. Here, we call A finite provided $A = \emptyset$ or there exists some $n \in \mathbb{N}$ and a function $f : \{1, 2, \dots, n\} \to A$ which is surjective.

Lemma: If A is countable, then there exists a function $f: A \to \mathbb{N}$ which is injective.

Theorem: Suppose A is a non-empty, countable set. Then either A is finite (and there exists a unique $n \in \mathbb{N}$ and some function $f : \{1, \ldots, n\} \to A$ which is a bijection) or there exists a bijection between \mathbb{N} and A.

- 3 (partial/linear order) A partial order on X is a relation \leq on $X \times X$ having the properties:
 - 1. $x \le x$ for all $x \in X$ (reflexive)
 - 2. $x \leq y$ and $y \leq x$ implies x = y
 - 3. $x \le y$ and $y \le z$ implies $x \le z$ (transitivity)

A partial order is called a linear order if

- 4. $\forall x, y \in X$ either $x \leq y$ or $y \leq x$
- **ex.** on \mathbb{R}^2 , we say $(x_1, x_2) \leq (y_1, y_2)$ if $x_1 \leq y_1$ and $x_2 \leq y_2$. This is a partial order (not a linear order).
- **ex.** on \mathbb{R}^2 , we say $(x_1, x_2) \leq (y_1, y_2)$ if $x_1 < y_1$ or if $x_1 = y_1$ and $x_2 \leq y_2$ (called the dictionary order). This is a linear order.
- **4** (well-ordered) We say B is well-ordered if for all $A \subseteq B$ and $A \neq \emptyset$, then A has a smallest element.

Theorem: \mathbb{N} is well-ordered.

If (X, \leq) is a partially ordered set, then \leq is called a well-order if every non-empty subset of X has a \leq smallest element.

ex. The set $\{1-\frac{1}{n}\mid n\in\mathbb{N}\}\cup\{2-\frac{1}{n}\mid n\in\mathbb{N}\}$ is well-ordered under the natural order.

Properties: if (X, \leq) is a well-ordered set then

- every subset of W is well-ordered by \leq
- if x is not the largest element of W then $x^+ = \min\{y \in W : y > x\}$ is defined (called the immediate successor of x)
- an immediate predessessor does not necessarily exist

5 (initial segment) If (X, \leq) is a well ordered set, for $x \in X$, we define $I(x) = \{y \in W \mid y < x\}$ to be the initial segment at x. Then $x = \min(W \setminus I(x))$.

6 (Principle of Transfinite Induction) Suppose (W, \leq) is well ordered and $A \subseteq \mathbb{N}$. Assume for every $x \in W$, if $I(x) \subseteq A$ then $x \in A$.

Then A = W.

Yo dummkopf, make sure you look at examples of this

7 (Theorem) Suppose (W, \leq) is well ordered set and $A \subseteq W$ is some subset. Then $\bigcup_{x \in A} I(x)$ is equal to W or is an initial segment.

8 (order isomorphic) An order isomorphism between two well ordered sets (W_1, \leq_1) and (W_2, \leq_2) is some $f: W_1 \to W_2$ which is one-to-one and surjective and $f(x) \leq f(y)$ if and only if $x \leq y$.

ex. the even natural numbers are order isomorphic to \mathbb{N} .

Theorem: Suppose (W_1, \leq_1) and (W_2, \leq_2) are well ordered. Then one of the following holds:

- 1. W_1 is order isomorphic to W_2
- 2. W_1 is order isomorphic to an initial segment of W_2
- 3. W_2 is order isomorphic to an initial segment of W_1

Proof: We do this by defining $f: W_1 \to W_2 \cup \{\infty\}$ via

$$f(x) = \begin{cases} \min(W_2 \backslash f[I(x)]) & \text{if the set is non-empty} \\ \infty & \text{if the set is empty} \end{cases}$$

We may confirm that if $f(x) \in W_2$ then $I_2(f(x)) = f(I_1(x))$.

Corollary: If A and B are two sets, then either

- 1. there exists some $f: A \to B$ one-to-one
- 2. there exists some $g: B \to A$ one-to-one

Proposition: Suppose (W, \leq) is well ordered. Then if $X \subseteq W$, then either X is order isomorphic to W or to an initial segment of W. Moreover, W is not order isomorphic to an initial segment of W.

- **9** (transfinite recursion) You can define a function f from a well ordered set W by uniquely specifying the value f(x) in terms of $f|_{I(x)}$. This is the definition of transfinite recursion.
- 10 (Well-ordering Theorem) Given any set A, there is a well-order on A
- 11 (Axiom of Choice) If $\{X_t \mid t \in I\}$ is a family of non-empty sets then $\Pi_{t \in I} X_t \neq 0$ where $\Pi_{t \in I} X_t = \{f : I \to \bigcup_{t \in I} X_t \mid \forall t \in I, f(A) \in X_t\}$.

2 Cardinality

12 (cardinality, \leq , \geq) We say card(A) \leq card(B) if \exists injective function $f: A \to B$.

We say $\operatorname{card}(B) \geq \operatorname{card}(A)$ if $A = \emptyset$ or if there exists a surjective function $g: B \to A$.

We say card(A) = card(B) if there exists a bijection $f: A \to B$.

Theorem: $\operatorname{card}(A) \leq \operatorname{card}(B) \Leftrightarrow \operatorname{card}(B) \geq \operatorname{card}(A)$

Corollary: If A is infinite, $card(\mathbb{N}) \leq card(A)$

Notation: Write $|A| = \operatorname{card}(A)$.

- 13 (Cantor-Schröder-Bernstein) If $card(A) \leq card(B)$ and $card(B) \leq card(A)$ then card(A) = card(B).
- 14 $(\operatorname{card}(\mathcal{P}(A)))$ For any set A, $\operatorname{card}(A) < \operatorname{card}(\mathcal{P}(A))$ where $\mathcal{P}(A)$ is the power set of A.
- 15 (cardinal arithmetic) We write $\operatorname{card}(A) + \operatorname{card}(B) = \operatorname{card}(C)$ if $\operatorname{card}(C) = \operatorname{card}(A \sqcup B)$ where \sqcup is the disjoint union.

That is, for A', B' with $A' \cap B' = \emptyset$ and card(A) = card(A'), card(B) = card(B') then define $card(A) + card(B) = card(A' \cup B')$.

Theorem: If A is infinite, then |A| + |A| = |A|. If A is infinite and B is arbitrary, then $|A| + |B| = \max\{|A|, |B|\}$.

16 (Zorn's Lemma) Assume (X, \leq) is a partially ordered set. Assume every limiting order subset (i.e. chain) of X has an upper bound. Then X has a maximal element.

17 (Hausdorff Maximal Principle) Let (X, \leq) be a partially ordered set. Then there exists a maximal chain in X

i.e. if $Y \subseteq X$ such that (Y, \leq) is linearly ordered and if $Z \subseteq X$ with Z linearly ordered and $Z \supseteq Y$ then Z = Y.

18 (important equivalence) TFAE:

- 1. well-ordering theorem
- 2. Axiom of Choice
- 3. Zorn's Lemma
- 4. Hausdorff Maximal Principle

Note: these proofs are obnoxiously long. Probably not worth looking into. Unless you'd rather be studying than hanging out by the pool.

19
$$(A^{|B|})$$
 We let $2^{|A|} = \operatorname{card}\{f : A \to \{0, 1\}\} = \operatorname{card}(\mathcal{P}(A))$.

More generally, $A^{|B|} = \operatorname{card}\{f: B \to A\}$

Theorem: $2^{|\mathbb{N}|} = |\mathbb{N}|^{|\mathbb{N}|} = |\mathbb{R}|$

3 Measures

- **20** (algebra) We define $A \subseteq \mathcal{P}(X)$ to be an algebra if
 - 1. $\emptyset \in \mathcal{A}$
 - 2. $A \in \mathcal{A}$ implies $A^C = X \backslash A \in \mathcal{A}$
 - 3. $A, B \in \mathcal{A}$ implies $A \cup B \in \mathcal{A}$.

A σ -algebra is an algebra \mathcal{A} such that if $(A_n)_{n\in\mathbb{N}}\in\mathcal{A}$ then $\cup_n A_n\in\mathcal{A}$.

ex. finite unions of the form $(a, b] \cap \mathbb{R}$ for $-\infty \leq a < b \leq \infty$ is an algebra (but not a σ -algebra)

ex. If X is an infinite set then $\mathcal{A} = \{A \subseteq X \mid A \text{ is finite or } A^c \text{ is finite}\}$ is an algebra (but not a σ -algebra)

- **21** (measure) If \mathcal{A} is an algebra and $\mu: \mathcal{A} \to [0, \infty]$ satisfies
 - 1. $\mu(\emptyset) = 0$
 - 2. If $A, B \in \mathcal{A}$ with $A \cap B = \emptyset$ then $\mu(A \cup B) = \mu(A) + \mu(B)$

then μ is called a finitely additive measure on \mathcal{A} (for obvious reasons).

If $\mu : \mathcal{A} \to [0, \infty]$ satisfies $\mu(\emptyset) = 0$ and is countably additive (i.e. for pairswise disjoint $\{A_n\}$ then $\mu(\cup A_n) = \sum \mu(A_n)$) then we call μ a premeasure.

A measure is a premeasure on a σ -algebra. That is, if \mathcal{A} is a σ -algebra, then $\mu : \mathcal{A} \to [0, \infty]$ is a measure if

- 1. $\mu(\emptyset) = 0$
- 2. If $A_n \in \mathcal{A}$ for $n \in \mathbb{N}$ and $A_i \cap A_j = \emptyset$ for $i \neq j$ and $\bigcup_n A_n \in \mathcal{A}$ then $\mu(\bigcup A_n) = \sum_n \mu(A_n)$

ex. We may define the counting measure to be

$$\mu(A) = \begin{cases} |A| & \text{if } A \text{ is finite} \\ \infty & \text{otherwise} \end{cases}$$

ex. the dirac measure are those where we fix $x_0 \in X$ and for $A \subseteq X$ set

$$\delta_{x_0}(A) = \begin{cases} 1 & \text{if } x_0 \in A \\ 0 & \text{otherwise} \end{cases}$$

We call a premeasure (i.e. countably additive function on an algebra)

- finite if $\mu(X) < \infty$
- a probability if $\mu(X) = 1$
- σ -finite if there exists $(A_n)_{n\in\mathbb{N}}\subseteq A$ such that $X=\cup A_n$ and $\mu(A_n)<\infty$ for all n
- simi-finite if for all $A \subseteq X$ such that $\mu(A) \neq 0$, there exists some $B \subseteq A$ with $0 < \mu(B) < \infty$

22 (Disjointification lemma) Given an algebra \mathcal{A} and $(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{A}$, there exists $(B_n)_{n\in\mathbb{N}}\subseteq\mathcal{A}$ such that

- 1. for all $n, B_n \subseteq A_n$
- 2. (B_n) is pairwise disjoint
- 3. for all $N, \cup_{n=1}^{N} A_n = \cup_{n=1}^{N} B_n$

23 $(\mathcal{A}(\mathcal{E}), \mathcal{M}(\mathcal{E}))$ Let \mathcal{E} be the collection of all subsets of X. Let

$$\mathcal{A}(\mathcal{E}) = \cap \{\mathcal{A} \mid \mathcal{E} \subseteq \mathcal{A} \subseteq \mathcal{P}(X) \text{ and } \mathcal{A} \text{ is an algebra}\}$$

$$\mathcal{M}(\mathcal{E}) = \cap \{ \mathcal{M} \mid \mathcal{E} \subseteq \mathcal{M} \subseteq \mathcal{P}(X) \text{ and } \mathcal{M} \text{ is a σ-algebra} \}$$

Proposition: $\mathcal{A}(\mathcal{E})$ is an algebra and $\mathcal{M}(\mathcal{E})$ is a σ -algebra.

Let (X, d) be a metric space. We set

 \mathcal{B}_X to be the Borel subsets of X to be $\mathcal{M}(\{\text{open subsets of }X\})$.

 $G_{\delta}(x) = \{ \text{ countable intersections of open sets } \}$

 $F_{\sigma}(x) = \{ \text{ countable union of closed sets } \}$

Proposition: Let $\mathcal{B}_{\mathbb{R}} = \mathcal{M}(\text{open subsets of } \mathbb{R})$ is also equal to

- \mathcal{M} (open intervals)
- $\mathcal{M}(\text{bounded open intervals})$
- $\mathcal{M}(\text{closed bounded sets})$
- $\mathcal{M}(\text{bounded intervals } [a, b))$
- $\mathcal{M}(\text{bounded intervals }(a,b])$
- $\mathcal{M}\{(a,\infty) \mid a \in \mathbb{R}\}$
- $\mathcal{M}\{(-\infty, a) \mid a \in \mathbb{R}\}$
- $\mathcal{M}\{[a,\infty) \mid a \in \mathbb{R}\}$
- $\mathcal{M}\{(-\infty, a] \mid a \in \mathbb{R}\}$
- 24 (elementary family) $\mathcal{E} \subset \mathcal{P}(X)$ is called an elementary family provided
 - 1. $\emptyset \in \mathcal{E}$
 - 2. If $E, F \in \mathcal{E}$ then $E \cap F \in \mathcal{E}$
 - 3. If $E \in \mathcal{E}$ then E^C is the finite disjoint union of sets in \mathcal{E}

Proposition: Let \mathcal{E} be an elementary family. Then $\mathcal{A}(\mathcal{E}) = \{$ all finite disjoint unions of sets in $\mathcal{E}\}$.

4 Measure Theory

25 (measurable space) If \mathcal{M} is a σ -algebra of subsets then (X, \mathcal{M}) is called a measurable space. If (X, \mathcal{M}) is a measurable space and μ is a measure on \mathcal{M} then (X, \mathcal{M}, μ) is called a measure space.

26 (continuous from below/above) We say μ is continuous from below if $E_1 \subseteq E_2 \subseteq ...$ and $E = \bigcup E_n$ are all in \mathcal{A} then $\mu(E) = \lim \mu(E_n)$.

Similarly, μ is continuous from above if for $E_1 \supseteq E_2 \supseteq ...$ and $E = \cap E_n$ and $\mu(E_1) < \infty$ then $\mu(E) = \lim \mu(E_n)$.

We say μ is continuous from above at 0 if for $E_1 \supseteq E_2 \supseteq ...$ and $\emptyset = \cap E_n$ and $\mu(E_1) < \infty$ then $0 = \lim \mu(E_n)$.

Proposition: If $\mu(X) < \infty$ then

 μ is countably additive $\Leftrightarrow \mu$ is continuous from below

- $\Rightarrow \mu$ is continuous from above
- $\Rightarrow \mu$ is continuous from above at 0.
- **27** (complete measure space) A measure space (X, \mathcal{M}, μ) is called complete provided whenever $A \subseteq X$ and there exists some $E \in \mathcal{M}$ such that $A \subseteq E$ and $\mu(E) = 0$, then $A \in \mathcal{M}$.
- **28** (outer measure) Suppose X is a set. An outer measure is a function $\mu^* : \mathcal{P}(X) \to [0, \infty]$ which satisfies
 - 1. $\mu^*(\emptyset) = 0$
 - 2. If $A \subseteq B$ then $\mu^*(A) \leq \mu^*(B)$
 - 3. $\mu^*(\cup E_n) \le \sum \mu^*(E_n)$

Proposition: Fix $\mathcal{E} \subseteq \mathcal{P}(X)$ with $\emptyset, X \in \mathcal{E}$. For $\rho : \mathcal{E} \to (0, \infty]$ with $\rho(\emptyset) = 0$, we may define for $E \subseteq X$

$$\mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \rho(E_n) \mid E \subseteq \cup E_n, \ E_n \in \mathcal{E} \right\}$$

Then μ^* is an outer measure, and is called the outer measure induced by ρ .

Given an outer measure μ^* on X, we say a subset A of X is called μ^* -measurable provided A splits every subset of X in an additive way. That is, for every $E \subseteq X$, $\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^C)$

- 29 (Caratheodory) Suppose μ^* is an outer measure on X and set $\mathcal{M} = \mathcal{M}_{\mu^*} = \text{all } \mu^*$ -measurable subsets of X. Then \mathcal{M} is a σ -algebra and $\mu^*|_{\mathcal{M}}$ is a complete measure.
- **30** (Proposition) Say \mathcal{A} is an algebra of subsets of X and μ_0 is a premeasure on \mathcal{A} , μ^* the outer measure generated by μ_0 . Then $\mu^*|_{\mathcal{A}} = \mu_0$, $\mathcal{A} \subseteq \mathcal{M}_{\mu^*}$, and $(X, \mathcal{M}_{\mu^*}, \mu = \mu^*|_{\mathcal{M}_{\mu^*}})$ is a complete measure.
- **31** (J1.1) Suppose \mathcal{E} is an elementary family, $\rho : \mathcal{E} \to [0, \infty]$ satisfies $\rho(\emptyset) = 0$. Then if ρ is finitely additive on \mathcal{E} then there exists a unique finitely additive ρ_1 on $\mathcal{A}(\mathcal{E})$ such that $\rho = \rho_1|_{\mathcal{E}}$.

Moreover, if ρ is countably additive on \mathcal{E} then ρ_1 is a premeasure on $\mathcal{A}(\mathcal{E})$.

32 (μ_F) Let $F: \mathbb{R} \to \mathbb{R}$ be monotonically increasing, right continuous and let $\mathcal{E} = \{(a,b] \cap \mathbb{R} \mid -\infty \leq a \leq b \leq \infty\}$, so \mathcal{E} is an elementary family and $\mathcal{M}(\mathcal{E}) = \mathcal{B}_{\mathbb{R}}$. Define ρ on \mathcal{E} by $\rho((a,b] \cap \mathbb{R}) := F(b) - F(a)$. Then

1.
$$\rho(\emptyset) = 0$$

- 2. ρ is monotone
- 3. ρ is countably additive

By our extension theorem, ρ extends to a (unique) measure μ (we will call it μ_F) on $\mathcal{M}(\mathcal{E}) = \mathcal{B}_{\mathbb{R}}$.

Denote by $\overline{\mu_F}$ the completion of $(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \mu)$ on the μ_F measurable set. We usually denote by \mathcal{M}_{μ_F} , and we usually write μ_F for $\overline{\mu_R}$. μ_F on \mathcal{M}_{μ_F} is called the Lebesgue-Stielites measure generated by F.

If F(x) = x, then $m = \mu_F$ is the Lebesgue measure restricted to $\mathcal{B}_{\mathbb{R}}$. Lebesgue measure itself is the completion \overline{m} .

33 (regularity properties of Lebesgue-Stiltjes measure) If $A \in \mathcal{M}_{\mu}$, then

- 1. $\mu(A) = \inf \{ \mu(\mathcal{O}) \mid A \subseteq \mathcal{O}, \mathcal{O} : \text{open} \}$
- 2. $\mu(A) = \sup{\{\mu(K) \mid K \subseteq A, K : \text{compact}\}}$
- **34** (Theorem) For $E \subseteq \mathbb{R}$, TFAE:
 - 1. $E \in \mathcal{M}_{\mu}$
 - 2. there exists a $V \supseteq E$, V is a G_{δ} -set, $\mu(V \setminus E) = 0$
 - 3. there exists a $H \subseteq E$, H is a F_{σ} -set, $\mu(E \setminus H) = 0$

5 Cantor Sets

35 (cantor set) A metric space X is called a Cantor set provided |X| > 2, X is compact, X has no isolated points (ie. for all $x \in X$, $\{x\}$ is not open) and X is totally disconnected (ie. no subset of X having 2 or more points is connected).

 $X \subseteq \mathbb{R}$ is totally disconnected if it does not contain any non-degenerate intervals.

ex. the regular Cantor middle thirds

ex.
$$X = \{0, 1\}^{\mathbb{N}}$$

Theorem: Any two Cantor sets are homeomorphic.

36 (Fat Cantor sets) Suppose $\mu = \mu_F$ with F increasing and continuous. Then for all $E \in \mathcal{M}_{\mu}$,

$$\mu(E) = \sup \{ \mu(K) \mid K \subseteq E, K \text{ is a Cantor set} \}$$

 $\mu([0,1]) = \sup \{\mu(K) \mid K \subseteq [0,1] \text{ } K \text{ is totally disconnected, compact, no isolated points} \}$

Thus, for every $\epsilon > 0$, there exists some Cantor set $K \subseteq [0,1]$ with $\mu(K) > 1 - \epsilon$. We call these fat cantor sets.

6 Measurable-ness

- 37 (non-measurable set) There exists $A \subseteq [0,1]$ that is universally non-measurable in the following sense: if F is monotonically increasing and continuous and F(1) F(0) > 0 then A is not μ_F measurable.
- 38 (J1.17) Assume $A \subseteq [0,1]$ satisfies $\forall C \subseteq [0,1]$ closed and uncountable, $A \cap C \neq \emptyset \neq A^C \cap C$. If F is monotonically increasing and continuous, $\mu = \mu_F$ then
 - 1. $\mu^*(A) = \mu([0,1])$
 - 2. $E \in \mathcal{M}_{\mu}, E \subseteq [0,1] \Rightarrow \mu^*(E \cap A) = \mu(E)$
 - 3. $E \in \mathcal{M}_{\mu}, E \subseteq [0,1], \mu(E) > 0$ then $E \cap A \notin \mathcal{M}_{\mu}$

In particular, if F(1) > F(0) then A is not μ -measurable.

39 (measurable function) Let (X, \mathcal{M}) and (Y, \mathcal{N}) be measurable spaces, where \mathcal{M} and \mathcal{N} are σ -algebras. Then $f: X \to Y$ is called measurable provided for every $E \in \mathcal{N}$, $f^{-1}(E) \in \mathcal{M}$.

For (X, \mathcal{M}) a measurable space, a function $f: X \to \mathbb{R}$ is called measurable if $f^{-1}(E) \in \mathcal{M}$ for all $E \in \mathcal{B}_{\mathbb{R}}$. Let $f': X \to \overline{\mathbb{R}}$. Then f' is measurable when we consider $\mathcal{M}(\mathcal{B}_{\mathbb{R}} \cup \{\pm \infty\})$. Then we require $f'^{-1}(E) \in \mathcal{M}$ for all $E \in \mathcal{B}_{\mathbb{R}}$, $f'^{-1}(\infty) \in \mathcal{M}$ and $f'^{-1}(-\infty) \in \mathcal{M}$.

A function $f: X \to \mathbb{C}$ is measurable if and only if $\Re(f)$ and $\Im(f)$ are measurable.

Proposition: Assume $\mathcal{E} \subseteq \mathcal{P}(X)$ such that $\mathcal{M}(\mathcal{E}) = \mathcal{N}$. If $f^{-1}(E) \in \mathcal{M}$ for all $E \in \mathcal{E}$ then f is measurable.

Proposition: Let $(X, \mathcal{M}), (Y, \mathcal{N}), (Z, \mathcal{P})$ be measurable spaces, $f: X \to Y, g: X \to Z$ and define $h: X \to Y \times Z$ by h(x) = (f(x), g(x)).

Then h is $\mathcal{M} - \mathcal{N} \otimes \mathcal{P}$ measurable if and only if f and g are measurable (where $\mathcal{N} \otimes \mathcal{P} = \mathcal{M}(\{A \times B \mid A \in \mathcal{N}, B \in \mathcal{P}\})$.

Proposition: For a measurable space (X, \mathcal{M}) and $f, g : X \to \mathbb{R}$, $a \in \mathbb{R}$ then $a \cdot f$, f + g, and $f \cdot g$ are all measurable.

Moreover, if $f, g: X \to \overline{\mathbb{R}}$ then $f \wedge g$ and $f \vee g$ are measurable, as is |f|.

If we define $0 \cdot \infty = 0 = \infty \cdot 0$, $\infty - \infty = 0$ then so is f + g and $f \cdot g$ for $f, g : X \to \overline{\mathbb{R}}$.

Propositon: If (f_j) is a sequence of $\overline{\mathbb{R}}$ measurable functions on (X, \mathcal{M}) , then $g_1 = \sup f_j$, $g_2 = \inf f_j$, $g_3 = \limsup f_j$, and $g_4 = \liminf f_j$ are all measurable functions.

40 (simple function) A function $f: X \to \mathbb{R}$ is simple if f is measurable and f[X] is finite.

Any simple function may be written as $f = \sum_{j=1}^{n} a_j \chi_{E_j}$ for measurable E_j .

- 41 (Important approximation theorem) Let (X, \mathcal{M}) be a measurable space and
 - 1. $f: X \to [0, \infty]$ a measurable function. Then there exists a sequence $\{\phi_n\}_{n=1}^{\infty}$ of simple functions such that $0 \le \phi_1 \le \phi_2 \le \cdots \le f$ and $\phi_n \to f$ pointwise.
 - 2. Moreover, if f is bounded, then ϕ_n converges to f uniformly ie. $\sup_{x \in X} |f(x) \phi_n(x)| \to 0$.
 - 3. $f: X \to \mathbb{R}$ a measurable function. Then there exists a sequence $\{\phi_n\}_{n=1}^{\infty}$ of simple functions to \mathbb{R} such that $0 \le |\phi_1| \le |\phi_2| \le \cdots \le |f|$ and $\phi_n \to f$ pointwise.

42 (f = g a.e.) Suppose (X, \mathcal{M}, μ) is a measure space. We say $f = g \mu$ -a.e. if there exists some $E \in \mathcal{M}$ with $\mu(E) = 0$ such that $\{x \mid f(x) \neq g(x)\} \subseteq E$.

Proposition: Let (X, \mathcal{M}, μ) be a complete measure space. Then

- 1. f is measurable and $f = g \mu$ -a.e. then g is measurable
- 2. (f_n) measurable and $g = \sup f_n \mu$ -a.e. then g is measurable
- 3. (f_n) measurable and $f_n \to f$ μ -a.e. then f is measurable

7 Integration

43 (integral) For a simple, positive function ϕ , we have the canonical representation $a_1 < a_2 < \cdots < a_n$, $E_i = [f = a_i]$, so $f = \sum_{i=1}^n a_i \chi_{E_i}$. We define the integral to be

$$\int_X f d\mu = \sum_{i=1}^n a_i \mu(E_i)$$

Proposition: For $\phi, \psi \in \text{Simp}(X)^+$, then

- 1. $\int \phi d\mu \ge 0$
- 2. $a \ge 0$ then $\int a\phi d\mu = a \int \phi d\mu$

- 3. $\int (\phi + \psi) d\mu = \int \phi d\mu + \int \psi d\mu$
- 4. If $\phi \leq \psi$ then $\int \phi d\mu \leq \int \psi d\mu$
- 5. Define $\nu: \mathcal{M} \to (0, \infty]$ by $\nu(E) := \int_E \phi d\mu = \int \chi_E \phi d\mu$. Then ν is a measure on \mathcal{M}
- 6. $\phi = 0$ μ -a.e. $\Leftrightarrow \int \phi d\mu = 0$

For an arbitrary $f \in L^+$, define

$$\int f d\mu = \sup \left\{ \int \phi d\mu \mid 0 \le \phi \le f, \phi \in \operatorname{Simp}(X)^+ \right\}$$

All remarks of the above proposition hold true for all functions in L^+ .

- 44 (monotone convergence) If $0 \le f_1 \le f_2 \le ...$ with $f_n \in L^+$ and $f = \lim_n f_n$ pointwise, then $\int f_n d\mu \to \int f d\mu$.
- **45** (Fatou's Lemma) For $f_n \in L^+$ then

$$\int \liminf f_n \le \liminf \int f_n$$

- **46** (Dominated Convergence Theorem, v1) If $0 \le f_n \le g$ are all measurable and $f_n \to_X f$, $\int g < \infty$ then $\int f_n \to \int f$.
- **47** (Dini's Theorem) For $f_n \in \mathcal{C}([0,1])$, $f_1 \geq f_2 \geq \ldots$, $f_n \rightarrow_{[0,1]} 0$ then f_n converges to 0 uniformly on [0,1].
- **48** (μ -integrable) We say $f: X \to \overline{\mathbb{R}}$ is μ -integrable provided f is measurable and $\int f^+ d\mu < \infty$ and $\int f^- d\mu < \infty$. Define $\int f d\mu = \int f^+ d\mu \int f^- d\mu$.

Let $L^1(\mu)$ be the set of all μ -integrable real-valued functions.

Proposition: $L^1(\mu)$ is a vector space and a lattice and $\int \cdot d\mu$ is a positive linear functional on $L^1(\mu)$.

We say a function $f: X \to \mathbb{C}$ is μ -integrable if both $\Re(f)$ and $\Im(f)$ are μ -integrable. Define $\int f = \int \Re(f) + i \int \Im(f)$.

Proposition: If $f \in L^1_{\mathbb{C}}(\mu)$ then $|\int f| \leq \int |f|$.

49 (Generalized Dominated Convergence Theorem) Let $g, g_n \in L^+$ be measurable, $|f_n| \leq g_n \ \mu$ -a.e., $f_n \to f$ and $g_n \to g \ \mu$ -a.e. with $\int g_n \to \int g < \infty$.

Then $\int f_n \to \int f$. Moreover, $\int |f - f_n| \to 0$

50 (norm on $L^1(\mu)$) For a measure space (X, \mathcal{M}, μ) , the norm on $L^1(\mu)$ is defined to be

 $||f||_1 = \int |f| d\mu.$

Properties:

- $||f||_1 \ge 0$ and $||f||_1 = 0$ if and only if f = 0 μ -a.e.
- $||af||_1 = |a|||f||_1$
- $\bullet \|f + g\|_1 \le \|f\|_1 + \|g\|_1$

Proposition: If we assume $\mu = \mu_F$ for some increasing, right continuous F on \mathbb{R} then

- 1. the integrable simple functions are dense in $L^1(\mu)$
- 2. the linear combinations of χ_I (for I bounded and open interval) is dense in $L^1(\mu)$
- 3. the continuous functions with compact support are dense in $L^1(\mu)$

Theorem: $L^1(\mu)$ is complete

51 (oscillation) Suppose $f: X \to Y$ where (X, ρ_X) and (Y, ρ_Y) are metric spaces. For $\epsilon > 0$, define

$$\omega(f, x)(\epsilon) = \sup \{ \rho_Y(f(z), f(y)) \mid y, z \in B_{\epsilon}(x) \}$$

If $0 \le \epsilon_1 < \epsilon_2$ then $\omega(f, x)(\epsilon_1) \le \omega(f, x)(\epsilon_2)$. Define the oscillation of f at x to be

$$\omega(f,x) = \lim_{\epsilon} \omega(f,x)(\epsilon)$$

 $\omega(f,x) > \delta \Leftrightarrow \text{for every open } \mathcal{O} \text{ with } x \in \mathcal{O}, \text{ there exists } y,z \in \mathcal{O} \text{ such that } \rho_Y(f(y),f(z)) > \delta.$

Set
$$D_{\delta}(f) = \{x \in X \mid \omega(f, x) \ge \delta\}.$$

Lemma: For any function f, $D_{\delta}(f)$ is a closed set.

Set
$$D(f) = \bigcup_{n \in \mathbb{N}} D_{1/n}(f)$$
 so $D(f) \in F_{\sigma}$.

52 (Lebesgue-Stieltzes vs Riemann) If $\int_a^b g(t)dF(t)$ exists, then so does $\int_{[a,b]} gd\mu_F$ and the integrals are the same.

53 (D(g) gives existence of integral) If F is monotonically increasing and continuous, g bounded on [a,b] then if $\mu_F(D(g)) = 0$ then the Riemann-Stieltjes Integral $\int_a^b g(t)dF(t)$ exists.

8 Convergence

54 (converges in measure) If f_n , f are \mathbb{C} -valued measurable functions on the measure space (X, \mathcal{M}, μ) then we say $f_n \to f(\mu)$ (ie. f_n converges to f in measure) provided $\forall \epsilon > 0$, $\lim_n \mu[|f - f_n| > \epsilon] = 0$

Let $A_n(\epsilon) = \sup_{k \ge n} \mu[|f - f_k| > \epsilon]$ so $f_n \to f(\mu)$ if and only if for every $\epsilon > 0$, $\lim_n A_n(\epsilon) = 0$.

We say f_n is Cauchy in measure provided for every $\epsilon > 0$, $\mu[|f_n - f_m| > \epsilon] \to 0$.

Letting $B_n(\epsilon) = \sup_{k,m \ge n} \mu[|f_k - f_m| > \epsilon]$ then (f_n) is Cauchy in measure $\Leftrightarrow \lim_n B_n(\epsilon) = 0$.

Theorem: In a finite measure space, $f_n \to f$ in measure \Leftrightarrow every subsequence of f_n has a futher subsequence that converges to f a.e.

Proposition: Suppose $||f_n - f||_1 \to 0$. Then $f_n \to f(\mu)$.

Theorem: Let (f_n) be Cauchy in measure. Then there exists a measurable f and a subsequence (f_{n_k}) such that

- 1. $f_{n_k} \to f$ a.e.
- 2. $f_n \to f(\mu)$

55 (almost uniformly) We say $f_n \to f$ almost uniformly provided $\forall \epsilon > 0$, $\exists E$ such that $\mu(E^C) < \epsilon$ and f_n converges to f uniformly on E.

Theorem: Suppose $f_n \to f$ almost uniformly. Then $f_n \to f$ in measure and $f_n \to f$ a.e.

Note: converse is not true

- **56** (Egoroff's Theorem) Suppose $f_n \to f$ a.e. and $\mu(D) < \infty$. Then $\chi_D f_n \to \chi_D f$ almost uniformly.
- 57 (metric on $\mathcal{L}_{\mathbb{C}}(\mathcal{M})$) Let (X, \mathcal{M}, μ) be a finite metric space (ie. $\mu(X) < \infty$). Define d on $\mathcal{L}_{\mathbb{C}}(\mathcal{M})$ via $d(f, g) = \int |f g| \wedge 1d\mu = d(f g, 0)$.

Then d(f,g)=0 if and only if f=g μ -a.e.

Then d is a metric on $\mathcal{L}_{\mathbb{C}}(\mathcal{M})$.

58 (types of convergence)

(A) $f_n \rightrightarrows f$ (uniform)

i.e.
$$||f_n - f||_{\sup} \to 0$$

(B) $f_n \to f$ pointwise

i.e.
$$f_n(x) \to f(x)$$
 for all x

(C) $f_n \to f$ a.e.

i.e. $\mu(\lbrace x \mid f_n(x) \nrightarrow f(x)\rbrace) = 0$ (this is not a topological mode of convergence)

(D) $f_n \to f(\mu)$ (in measure)

i.e.
$$\forall \epsilon > 0$$
, $\lim_n \mu[|f - f_n| > \epsilon] = 0$

(E) $L^1(\mu)$ convergence

i.e.
$$||f_n - f||_1 \to 0$$

(F) $f_n \to f$ almost uniformly

i.e.
$$\forall \epsilon > 0$$
, $\exists E$ such that $\mu(E^C) < \epsilon$ and $f_n \Rightarrow_E f$

The following diagram shows the implications where blue arrows mean on any measure space and gray arrows mean it only holds on finite measure spaces.

- $(F) \rightarrow (E)$ and $(D) \rightarrow (C)$ for a subsequence.
- (C) or (D) + (dominated or monotonicity) \rightarrow (E)

 $f_n \to f$ in $L^1 \Leftrightarrow$ every subsequence of f_n has a further subsequence which converges to f in L^1 .

9 Product measures / spaces / stuff

59 (product of measure spaces) Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be measure spaces. Then $(X \times Y, \mathcal{M} \otimes \mathcal{N}, \mu \times \nu)$ is a measure space where $\mathcal{M} \otimes \mathcal{N} = \mathcal{M}(\mathcal{M} \times \mathcal{N})$. For $A \times B \in \mathcal{M} \times \mathcal{N}$ we set $(\mu \times \nu)(A \times B) := \mu(A)\nu(B)$.

 $\mu \times \nu$ is a premeasure on $\mathcal{M} \times \mathcal{N}$ and so we may apply Caratheodory to get a measure space.

Theorem Let $(X, \mathcal{M}, \mu), (Y, \mathcal{N}, \nu)$ be σ -finite measure spaces and $E \in \mathcal{M} \otimes \mathcal{N}$. Set

$$E_x = \{ y \in Y \mid (x, y) \in E \}$$
 $E^y = \{ x \in X \mid (x, y) \in E \}$

Then

1.
$$\forall x \in X, E_x \in \mathcal{N}$$

- 2. Define $g_E: X \to [0, \infty]$ by $x \mapsto \nu(E_x)$. Then g_E is measurable.
- 3. $\int \chi_E d(\mu \times \nu) = (\mu \times \nu)(E) = \int g_E(x) d\mu(x) = \int \nu(E_x) d\mu(x) = \int (\int \chi_E(x, y) d\nu(y)) d\mu(x).$

By symmetry, the same holds for y. Note: this is Tonelli's theorem with $f = \chi_E$.

- **60** (Tonelli) Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be σ -finite measure spaces, and $f: X \times Y \to [0, \infty]$ be a measurable function. Then
 - 1. Define $f_x: Y \to [0, \infty]$ by $y \mapsto f(x, y)$. Then f_x is measurable for all $x \in X$
 - 2. $x \mapsto \int f(x,y)d\nu(y)$ is a measurable function on X
 - 3. $\int f d(\mu \times \nu) = \int (\int f(x, y) d\nu(y)) d\mu(x)$
- **61** (Fubini) Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be σ -finite measure spaces, $f \in L^1(\mu \times \nu)$. Then
 - 1. for μ -a.e. $x \in X$, $f(x, \cdot) \in L^1(\nu)$
 - 2. $x \mapsto \int_Y f(x,y) d\nu(y) \in L^1(\mu)$
 - 3. $\int f d\mu \times \nu = \int (\int f(x, y) d\nu(y)) d\mu(x)$

If f is measurable on $X \times Y$ then |f| is measurable on $X \times Y$.

62 (Approximation properties of m^n) We let m^n be the completion of $m \times \cdots \times m$ where m is the Lebesgue measure on \mathbb{R} . So \mathcal{L}^n is the Lebesgue measurable sets on \mathbb{R}^n .

Take $E \in \mathcal{L}^n$. Then

- 1. $m^n(E) = \inf\{m^n(\mathcal{O}) \mid E \subseteq \mathcal{O} \text{ and } \mathcal{O} \text{ is open}\}\$ = $\sup\{m^n(K) \mid K \subseteq E \text{ and } K \text{ is compact}\}.$
- 2. $E = A_1 \backslash N_1$ where A_1 is G_δ and $m^n(N_1) = 0$ $E = A_2 \cup N_2$ where A_2 is F_σ and $m^n(N_2) = 0$
- 3. $m^n(E) < \infty$ implies $\forall \epsilon > 0$, $\exists (R_j)_{j=1}^N$ of disjoint open rectangles such that $m^n(E \triangle (\cup R_j)) = 0$
- **63** (uniqueness of Haar measure on \mathbb{R}^n) Let ν be a measure on $\mathcal{B}_{\mathbb{R}^n}$ that is translation invariant (i.e. $\nu(E) = \nu(a+E)$ for $a \in \mathbb{R}^n$, $E \in \mathcal{B}_{\mathbb{R}^n}$) such that $\nu([0,1]^n) < \infty$.

Then ν is equal to the scalar $\nu([0,1]^n)$ times m^n .

10 Signed Measure and Differentiation Theory

64 (signed measure) Let (X, \mathcal{M}) be a measurable space. We call $\mu : \mathcal{M} \to \overline{\mathbb{R}}$ a signed measure provided

- $\mu(\emptyset) = 0$
- μ is valued on $[-\infty, \infty)$ or $(-\infty, \infty]$
- μ is countably additive

Then $\mu(\cup E_n) = \sum \mu(E_n)$ is absolutely convergent.

- 65 (positive/negative/null for ν) Let ν be a signed measure on (X, \mathcal{M}) . Then $P \in \mathcal{M}$ is called positive for ν if for all $A \in \mathcal{M}$ with $A \subseteq P$, $\nu(A) \geq 0$. N is negative for ν provided for all $B \in \mathcal{M}$ with $B \subseteq N$, $\nu(B) \leq 0$. We say N is null for ν if N is both positive and negative.
- **66** (Hahn-Decomposition Theorem) Let ν be a signed measure on (X, \mathcal{M}) . Then there exists $P \in \mathcal{M}$ which is positive for ν and $N = P^C$ is negative for ν .

Moreover, the decomposition $X = P \cup N$ is essentially unique: if P_1 is positive for ν and $N_1 = P_1^C$ is negative for ν , then $P \triangle P_1 = N \triangle N_1$ is null for ν .

- **67** (mutually singular) The signed measures μ and λ are mutually singular ($\mu \perp \lambda$) if ther exists a measurable decomposition $A \cup B = X$, $A \cap B = \emptyset$ such that A is null for λ and B is null for μ .
- **68** (Jordan Decomposition) Take the Hahn decomposition and let $\nu^+(E) := \nu(E \cap P)$, $\nu^-(E) := -\nu(E \cap N)$ so that $\nu = \nu^+ \nu^-$. Note that $\nu^+ \perp \nu^-$.

Note that the Jordan Decomposition is unique.

The total variation of ν is defined to be $|\nu|(E) = \nu^+(E) + \nu^-(E)$.

- **69** (absolutely continuous wrt) We say ν is absolutely continuous with respect to μ (written $\nu \ll \mu$) if $\mu(E) = 0$ then E is null for ν .
- 70 (Lebesgue Decomposition Theorem) Let μ be a measure on (X, \mathcal{M}) and ν a σ -finite signed measure. Then $\nu = \nu_1 + \nu_2$ where $\nu_1 \perp \mu$, $\nu_2 \ll \mu$. Moreover, this decomposition is unique.
- 71 (Radon-Nikodyn Theorem) If f is \mathcal{M} -measurable and $\max\{\int f^+ d\mu, \int f^- d\mu\} < \infty$ then we say f is extended μ -integrable, and $\int_E f d\mu = \int_E f^+ d\mu \int_E f^- d\mu$.
- If (X, \mathcal{M}) is a measurable space, μ a σ -finite measure on \mathcal{M} and ν a σ -finite signed measure on \mathcal{M} with $\nu \ll \mu$, then there exists an extended μ -integrable f such that $\nu = \nu_f$ where $\nu_f(E) = \int_E f d\mu$.

Moreover, we have uniqueness. If $\nu_f = \nu_g$ then f = g μ -a.e.

Theorem: If μ is a measure, and ν a finite signed measure, then $\nu \ll \mu$ if and only if $\forall \epsilon > 0$, $\exists \delta > 0$ such that $\mu(E) < \delta$ implies $|\nu|(E) < \epsilon$.

Proposition: Let (X, \mathcal{M}) be a measurable space, ν a σ -finite signed measure, and μ, λ σ -finite measures such that $\nu \ll \mu \ll \lambda$. If $\nu(E) = \int_E f d\mu$, we write $\frac{d\nu}{d\mu}$ for f. Then

1. $g \in L^1(\nu)$ and $g \frac{d\nu}{d\mu} \in L^1(\mu)$ and

$$\int g d\nu = \int g \frac{d\nu}{d\mu} d\mu$$

2. $\nu \ll \lambda$ and $\frac{d\nu}{d\lambda} = \frac{d\nu}{d\mu} \frac{d\mu}{d\lambda}$

72 (Covering Lemma) Let \mathcal{C} be a collection of open balls in \mathbb{R}^n and $\mathcal{U} = \cup \mathcal{C}$ is an open set. If $c < m(\mathcal{U})$ then there exists disjoint $B_1, \ldots, B_n \in \mathcal{C}$ such that

$$m^{n}(\mathcal{U}) \ge m^{n} \left(\bigcup_{j=1}^{k} B_{j} \right) = \sum_{j=1}^{k} m^{n}(B_{j}) > \frac{1}{3^{n}} c$$

73 (locally integrable) A measurable function $f: \mathbb{R}^n \to \mathbb{R}$ is called locally integrable if $\int_E |f| d\mu < \infty$ for all bounded Borel sets E.

We denote this $f \in L^1_{loc}(m)$. For $f \in L^1_{loc}(m)$ and r > 0, define

$$A_r(f): \mathbb{R}^n \to \mathbb{R}$$

$$A_r(f)(x) \mapsto \frac{\int_{B(r,x)} f(y) dy}{m(B(r,x))} = \frac{\int_{B(r,x)} f(y) dy}{r^n m(B(1,0))}$$

Define the Hardy-Littlewood Maximal function of $f \in L^1_{loc}(m)$ to be

$$(Hf)(v) = \sup_{r>0} A_r |f(x)|$$

Lemma: Define $g:(0,\infty)\times\mathbb{R}^n\to\mathbb{R}$ via $g(r,x)=A_rf(x)$. Then g is jointly continuous (hence, H is measurable).

Moreover, $[H > t] = \bigcup_{r \ge 0} [A_r |f| > t].$

Theorem: $\epsilon m[Hf > \epsilon] \leq 3^n ||f||_1$.

Theorem: Suppose $f \in L^1_{loc}(\mathbb{R}^n)$. Then $\lim_{r\to 0^+} A_r(f)(x) = f(x)$ m-a.e.

74 (Lebesgue set of f) For $f \in L^1_{loc}(\mathbb{R}^n)$, define the Lebesgue set of f to be

$$L_f = \left[x \mid \lim_{r \to 0^+} \frac{\int_{B(r,x)} |f(y) - f(x)| dy}{m(B(r,x))} = 0 \right]$$

Theorem: Then $m(L_f^C) = 0$.

Comment 1:

$$\left| \frac{\int_{B(r,x)} f(y) dy}{m(B(r,x))} - f(x) \right| = \left| \frac{\int_{B(r,x)} f(y) - f(x) dy}{m(B(r,x))} \right|$$

so this theorem strengthens the last.

Lebesgue Density Theorem:

$$\frac{m(B(r,x)\cap A)}{m(B(r,x))} \to \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases} \quad a.e. \text{ as } r \to 0^+$$

75 (Lebesgue Differential Theorem) Fix $x \in \mathbb{R}^n$. We say $\{E_r\} \subseteq \mathcal{B}_{\mathbb{R}^n}$ shrinks nicely to x if

- $E_r \subseteq B(r,x) \qquad \forall r > 0$
- $\exists \alpha > 0$ such that $\forall r > 0, m(E_r) \geq \alpha m(B(r, x))$

Lebesgue Differential Theorem: For $f \in L^1_{loc}(\mathbb{R}^n)$, then for all $x \in L_f$ and for all $\{E_r\}$ shrinking nicely to x, we have

$$\lim_{r \to 0^+} \frac{\int_{E_r} |f(y) - f(x)| dy}{m(E_r)} = 0$$

$$f(x) = \lim_{r \to 0^+} \frac{\int_{E_r} f(y) dy}{m(E_r)}$$

76 (Theorem) Theorem: Assume μ is a signed measure on \mathbb{R}^n , $\mu \ll m$, $|\mu(E)| < \infty$ for all bounded E_r strinking nicely to x. Then for m-almost every $x \in \mathbb{R}^n$,

$$\lim_{r \to 0} \frac{\mu(E_r)}{m(E_r)} = 0$$

77 (differentiation on \mathbb{R}) If F is increasing on \mathbb{R} , then

- 1. D(F) is countable, where D(F) is the set of discontinuities of F
- 2. $G(x) := F(x^+) = \lim_{y \downarrow x^+} F(y)$ is right continuous and F(x) = G(x) for all but countably many x
- 3. F'(x) and G'(x) exist almost everywhere and F'(x) = G'(x) a.e.

78 (bounded variation) Define $T(F, P) = \sum_{i=1}^{n} |F(x_i) - F(x_{i-1})|$ where $P = x_0 < x_1 < \cdots < x_n$ is a partition. Let $T_F(x) = \sup T(F, P)$ which is clearly monotocially increasing.

Let $T_F(\infty) = \lim_{x\to\infty} T_F(x)$ and so we say F is of bounded variation $(F \in BV)$ provided $T_F(\infty) < \infty$.

F bounded and monotone implies $F \in BV$. Moreover, if G, H are bounded and monotonically increasing, then $G - H \in BV$.

Properties:

- 1. $T_{cF} = |c|T_F$
- $2. T_{F+G} \leq T_F + T_G$
- 3. $T_{constant} = 0$
- 4. $T_{F+constant} = T_F$
- 5. $F \in BV$ implies $T_F(-\infty) = 0$
- 6. F monoton and bounded, then $F \in BV$, $T_F(x) = F(x) F(-\infty)$
- 7. $F \in BV$ then F = G H where G, H are bounded increasing functions
- 8. $F \in BV$ implies F(x+), F(x-) exist
- 9. $F \in BV$ then F'(x) exists m-a.e. and F'(x) = G'(x) on m-a.e. x where G(x) = F(x+)
- 10. $F \in BV$ and right continuous implies T_F is right continuous.

We say F is normalized bounded variation $(F \in NBV)$ if $F \in BV$, F is right continuous and $F(-\infty) = 0$.

Theorem: If μ is a finite signed measure on $\mathcal{B}_{\mathbb{R}}$ define $F : \mathbb{R} \to \mathbb{R}$ by $F(x) = \mu(-\infty, x]$. Then $F \in NBV$.

Conversely, if $F \in NBV$ then there exists a unique Borel measure μ_F such that for all x, $\mu_F(-\infty, x] = F(x)$.

79 (*F* absolutely continuous) We have $F : \mathbb{R} \to \mathbb{R}$ absolutely continuous provided $\forall \epsilon > 0, \ \exists \delta > 0$ such that $((a_i, b_i))$ disjoint open intervals such that $\sum b_i - a_i < \delta$ then $\sum |F(b_i) - F(a_i)| < \epsilon$.

Theorem: Let $F \in NBV$. Then F is absolutely continuous if and only if $\mu_F \ll m$.

Proposition: $F \in NBV$ then

- 1. $F' \in L^1(m)$
- 2. $\mu_F \perp m$ implies F' = 0 m-a.e.

3. $\mu_F \ll m$ implies $F(x) = \int_0^x F'(t)dt$

If we write $\mu_F = \lambda + \nu$ where $\lambda \perp m$, $\nu \ll m$ then $F'(x) = \frac{d\nu}{dm}(x)$.

Theorem: If $F, G \in NBV$ and G is continuous, then

$$\int_{(a,b]} FdG + \int_{(a,b]} GdF = F(b)G(b) - F(a)G(a).$$