Start 27
Ex: Klein Bottle
$X' = Q^a$ $X' = Q^a$ $X = Z * Z Z$
$IRP^2 = X^2 : e^2 = a b a b^{-1} $ $\pi_1(X^2) = \pi_1(X^2)/N$
=
A note about General Groups G.
Oct 25: Covering Spaces: We want a way to Find data of a space X by considering (topologically) & Services Simpler spaces.
Defn: A covering space of a space X a map p: X -> X with the following pro
For each XEX, I U>X open w/ p'(U) = ILU = X. and
Il U ->U is "U->u
Such a U is called evenly Covered, and each UELLU is called a sheet of the covering space.
The number of sheets is locally a constant

e number of sheets is locally a constant on X (it is on U), so it is constant on a connected comp of X. Commutative Algebra OSAKA 2017

 $\mathbb{RP}^n = S^n / \sim$

Locally finite
Some pice things: Open covers have cov sp Peulization
· If $p:X\to X$ and $q:Y\to Y$ are overs
• If $p: X \to X$ and $q: X \to X$ are CS, then so is gop.
· P* is injective (To be shown later) · Much like
· Good correspondence with II,(X)
Oct 27: Homotopy lifting property:
Prop: Given a covering space $p: X \to X$, and a homotopy $f_t: Y \to X$ $w/f_o: Y \to X$, then $\exists ! \ \mathcal{F}_t: Y \to X \ w/P \circ \mathcal{F}_t = \mathcal{F}_t$
$Y \times \{0\} \longrightarrow X$ Pf: Same as the $\int 3! - 7 \int P$ proof that homotopies $Y \times I \longrightarrow X$ 21st from $X = 1$ to $X = 1$ R.

If Y is a point, then we get the path lifting property. Thus, constant loops lift to constant loops.

If Y = I, we see that homotopies of loops lift. So if 30.81 are homotopic loops in X, 80.81 lifts to X w/ same basepoint, then 80.281.

Here is an application: Prop: If $P: X \to X$ is a covering space, then $\pi_{i}(X,X_{0}) \xrightarrow{R_{*}} \pi_{i}(X,X_{0})$ is injective. The image of P_{*} is homotopy classes of loops in X at X_{0} .

Let's consider the image. $Im(P_*) \leq loops \leq X$ listing to loops in X. Similarly is δ lists to a loop δ , $P_*\delta = V$.

Prop: If X is connected, and p: X -> X is
$ p^{-1}(x_0) = \# \text{ Sheets of } p = [\pi_1(x)] p = [\pi_1($
Ex5/ pn: 52 > 52 P: IR -> 51
Pf: For g: I > X V based a) xo, let g be its lift to X (a path) 00 xo. If
he P* (TE) (X, Xo)), then h.g lifts to h.g (to avoid composing paths a) different points. Thus, we can define cosets (H
Thus, we can define
$ \begin{array}{ccc} & & & & & & & & & & & \\ & & & & & & & &$
X: Path Connected =) of is surjective
$ \overline{\Phi} $ injective: If $\overline{\Phi}(H \cdot g) = X_0$, then $\widetilde{g}(1) = X_0$ $\overline{\Phi}$ \widetilde{g} is a loop $\widetilde{g}(1) = X_0$ $\overline{g}(1) = X_0$
More Generally, it is interesting to see when maps lift at all (indep of the map fo).
Listing criterion: Suppose $p:(\widetilde{X},\widetilde{x_0}) \to (X,x_0)$ is a CS and $f:(Y,y_0) \to (X,x_0)$. Then
$\exists \widetilde{f}: (Y, y_0) \rightarrow (\widetilde{X}, x_0) \Leftrightarrow f_* \pi_1(Y, y_0) \subseteq P_* \pi_1(\widetilde{X}, \widetilde{X})$ $w/P \circ \widetilde{f} = \widetilde{f}$ $\pi_1(\widetilde{X}, x_0)$
$\frac{S}{T_{1}(Y_{0}Y_{0})} \xrightarrow{f_{1}} = \frac{1}{2} \frac{f_{1}(X_{1}X_{0})}{T_{1}(X_{1}X_{0})}$
The Prospects for Commutative Algebra OSAKA 2017

Pf: ">" Let
$$X$$
 be a path from yo to Y ."

Then $f(X)$ at X lists to $f(X) = f(X)$.

Let $f(Y) = f(Y)$.

Well-defined: Suppose X' is another path.

Then $(f(X)) \cdot (f(X))$ is a loop ho at X o. Thus $f(X) \cdot (f(X))$ is a loop ho at $f(X) \cdot (f(X))$ is a loop ho at $f(X) \cdot (f(X))$ is a loop at $f(X) \cdot (f(X))$ ho is a loop at $f(X) \cdot (f(X)) = f(X)$.

Thus $f(X) \cdot (f(X)) = f(X)$

Then $f(X$

$$\widehat{F}'(\overline{\mathcal{U}}) = \widehat{F}'(\mathcal{U}_{\alpha})$$

$$= \widehat{\mathcal{U}}\widehat{F}'(\mathcal{U}_{\alpha})$$

$$= \widehat{\mathcal{U}}\widehat{F}'(\mathcal{U}_{\alpha})$$

$$= \widehat{\mathcal{U}}\widehat{F}'(\mathcal{U}_{\alpha})$$

$$= \widehat{\mathcal{U}}\widehat{F}'(\mathcal{U}_{\alpha})$$

