Theoretische Informatik Serie 8

Benjamin Simmonds Dario Näpfer Fabian Bösiger

Aufgabe 22

 (\mathbf{a})

Wir beschreiben mit $C_1, C_2, ..., C_t$ die t Konfiguration, die M bei der Berechnung von y in den t Schritten hat. Offensichtlich sind diese Zustände immer die selben auf der selben Eingabe λ . Sei zudem q_i der Zustand in der Konfiguration C_i und b_i der Buchstabe, der M im i-ten Zeitschritt auf das Band schreibt für $i \in \{1, ..., t\}$.

Wir definieren die Turingmaschine M' wie folgt. Die Turingmaschine M' besteht aus den Zuständen q_i und durchläuft bei der Berechnung von y die Konfigurationen C_i . Das Alphabet $\Gamma_{M'}$ muss die maximal t Buchstaben b_i enthalten, sowie die Zeichen " \mathfrak{e} " und " $_{\perp}$ ". Es gilt somit $\|\Gamma_{M'}\| \leq t+2$. Da M' die exakt selbe Berechnung wie M macht, gilt, dass M' auf λ ebenfalls y berechnet

(b)

Offensichtlich existiert eine Turingmaschine B mit $Kod(B) \in L_{tr\"{a}ge}$, welche auf der Eingabe λ in t = |y| Zeitschritten y auf das Band schreiben kann. Es gilt, dass $t = min\{Time_{M'}(\lambda) \mid M' \in L_{comp,\lambda} \text{ und } M'(\lambda) = B(\lambda)\} = Time_B(\lambda)$.

Wir beschreiben eine Turingmaschine A, die $L_{träge}$ erkennt. Diese arbeitet folgendermassen:

- 1. A überprüft, ob die Eingabe eine Kodierung einer Turingmaschine Kod(M) ist.
- 2. A simuliert M auf dem leeren Wort λ , dabei misst A die Zeit t_M , die M benötigt, um die Ausgabe zu schreiben.
- 3. Falls M auf einem akzeptierenden Zustand terminiert, überprüft A, ob auf dem Band y steht und wir fahren im nächsten Schritt fort. Wenn dies nicht der Fall ist, verwirft A.
- 4. Ansonsten überprüft A, ob $t_M \geq 2t$ ist. Falls ja, akzeptiert A, sonst verwirft A.

Für jedes Wort $w \in L_{tr\ddot{a}ge}$ mit Kod(C) = w und $Time_C(\lambda) \ge 2t$ gilt, dass C auf λ hält und y auf das Band schreibt. Per Definition von A überprüft A als Nächstes, ob $Time_C(\lambda) \ge 2t$ ist, was offensichtlich der Fall ist. Somit akzeptiert A alle $w \in L_{tr\ddot{a}ge}$.

Für jedes Wort $w \notin L_{tr\"{a}ge}$ gilt entweder Kod(C) = w und C schreibt nicht y auf das Band oder $Time_C(\lambda) < 2t$, oder $Kod(C) \neq w$. Im ersten Fall hält A entweder nicht oder verwirft, im zweiten Fall verwirft A ebenfalls. Somit akteptiert A nie bei allen $w \notin L_{tr\"{a}ge}$.

Somit existiert eine Turingmaschine A mit $L(A) = L_{träge}$ und es gilt $L_{träge} \in \mathcal{L}_{RE}$.

(c)

Wir wissen, dass $L_U \notin \mathcal{L}_R$, und zeigen $L_{comp,\lambda} \leq_R L_U$. Sei A eine TM, die L_U entscheidet und somit immer hält. Wir bauen eine TM B, die A als Teilprogramm enthält, und $L_{comp,\lambda}$ entscheidet. Für jedes Wort $w \in \{0,1\}^*$ konkatenieren wir die Eingabe w zu $w' = w \# \lambda$. A erhält w' als Eingabe. Falls A die Eingabe nicht akzeptiert, verwirft B. Sonst überprüfen wir, ob die Ausgabe A(w') = y. Falls dies der Fall ist, akzeptieren wir die Eingabe, sonst verwerfen wir. Es gilt, dass $L(B) = L_{comp,\lambda}$ und B hält immer, da A immer hält.

Formalismus: Sei $x \in L_{comp,\lambda}$. Also ist x = Kod(M) für eine TM M, die λ akzeptiert, und für Eingabe λ y auf das Band schreibt. A erhält die Eingabe $x' = Kod(M) \# \lambda$. Offensichtlich gilt, dass $x' \in L_U$. Ausserdem gilt per Definition, dass y auf dem Band steht und B somit immer akzeptiert.

Sei $x \notin L_{comp,\lambda}$. Somit gilt entweder, dass $x \neq Kod(M)$. Dann verwirft A die Eingabe x' und somit auch B. Oder es gilt, dass x = Kod(M), aber entweder M auf λ nicht hält oder die Ausgabe nicht y entspricht. Im ersten Fall verwirft A und somit auch B. Im zweiten Fall verwirft B bei der Überprüfung der Ausgabe von A.

(d)

Aus der Teilaufgabe (c) wissen wir, dass $L_{comp,\lambda} \notin \mathcal{L}_R$. Wir zeigen, dass $L_{comp,\lambda} \leq_R L_{träge}$.

Sei A eine TM, die $L_{träge}$ entscheidet. Wir bauen eine TM B, die A als Teilprogramm enthält, und $L_{comp,\lambda}$ entscheidet. Jede Eingabe $w \in \{0,1\}^*$ in B übernehmen wir als Eingabe für A. Wenn A die Eingabe akzeptiert, akzeptiert auch B. Sonst überprüfen wir, ob w = Kod(M). Wenn das nicht der Fall ist, verwirft B die Eingabe. Sonst simuliert Teilprogramm C M auf λ für 2t-1 Zeitschritte, wobei wir annehmen, dass t gegeben ist und $t = min\{Time_{M'}(\lambda) \mid M' \in L_{comp,\lambda} \text{ und } M'(\lambda) = y\}$. Falls M in dieser Zeit akzeptiert, überprüfen wir, ob die Ausgabe y entspricht. Wenn das der Fall ist, akzeptiert B, sonst verwirft B. Es gilt, dass $L(B) = L_{comp,\lambda}$ und B hält immer, da A immer hält.

Formalismus: Sei $x \in L_{comp,\lambda}$. Es gilt, dass x = Kod(M) und M liefert y als Ausgabe für Eingabe λ . Falls $Time_M(\lambda) \geq 2t$, akzeptiert A und somit auch B. Sonst akzeptiert A nicht und C simuliert M auf λ für 2t-1 Schritte. Da $x \in L_{comp,\lambda}$ und $Time_M(\lambda) < 2t$, muss M in dieser Zeit y auf das Band schreiben und somit akzeptiert B.

Sei $x \notin L_{comp,\lambda}$. Es gilt per Definition von $L_{tr\"{a}ge}$, dass $x \notin L_{tr\"{a}ge}$. Somit verwirft A immer und dehalb verwirft auch B.

Aufgabe 23