1.3 命题演算的简单性质

第1章 命题逻辑

- ❖形式语义 在外延性原则之下,给L的所有语法对象赋予真值意义,包括:命题变元、联结词、公式、内定理、形式推理。
- ❖真值 真值 t,f分别代表抽象的"真"和"假",其中真/假的含义没有具体规定(形式语义),要求: (1)符合矛盾律和排中律, (2)在L的每一项应用中(命题变元代表具体命题),真/假的含义保持不变(保真性的前提条件之一)。
- ◆注释 外延性原则中的"外延"实际上落实到真值上,与外延的通常含义有差别。
- ◆观察 L语义学的设计使L语义学可适用于不同领域的应用。

- ❖定义1(指派-命题变元的语义解释) L(X)的一个指派是一个映射 $v_0: X \rightarrow \{t, f\}$ 。
- ◆注释 命题符号被解释为真值。逻辑不考虑一个v₀"对不对"。
- ❖定义2(赋值-联结词的解释原则) L(X)的一个赋值ν是一个满足下列条件的映射:
 - 1. $\nu(\neg)$ 是一个一元函数 $\{t, f\}$ → $\{t, f\}$;
 - 2. ν (→)是一个二元函数{t,f}×{t,f}→{t,f};
- 注释 联结词被解释为真值函数。

- ❖定义3(标准赋值) 标准赋值是满足下列条件的赋值ν:
 - $1. v(\neg) =_{df} f_{\neg},$ $f_{\neg}(x)$ 的定义如下

2.	$v(\rightarrow) =_{df} f_{\rightarrow},$
	$f_{\rightarrow}(x,y)$ 的定义如下

		t	f	y
	t	t	f	
	f	t	t	
	X	$f_{\rightarrow}(x, y)$ $x \rightarrow y$ 的真值		
$x \rightarrow y$ 的具值				

- **❖定义4**(命题语言的标准解释) L(X)的一个(标准)解释 $I=(v_0, v)$ 是一个复合映射I:L(X) **→**{t,f}, 满足:
 - 1. 对任何命题变元x, $I(x) = v_0(x)$;
- 2. 对任何公式p, $I(\neg p) = v(\neg)(I(p)) = f(I(p)) = t$ 如果 $I(p) = f \mid f$ 如果I(p) = t;
- 3.对任何公式p和q, $I(p \rightarrow q) = v(\rightarrow)(I(p), I(q)) = f_{\rightarrow}(I(p), I(q)) = f$ 如果I(p)=t并且 $I(q)=f \mid t$ 其他情况。
- ◆注释 语义解释中v固定、 v_0 可变,公式的真值也随 v_0 可变。

- ❖性质(语义解释的良定义性) 对命题演算L的任何公式p和任何解释 $I=(v_0,v)$,存在唯一的 $u\in\{t,f\}$,使得I(p)=u。证明 自修。
- ◆注释 符合标准解释的命题逻辑称为标准命题逻辑; 否则称为 非标准命题逻辑。
- ❖标准命题逻辑的演算都是等价的(内定理集合相同);非标准命题逻辑系统相互不等价,也不等价于标准命题逻辑系统。

* 例1 读
$$v_0(x_1) = f$$
, $v_0(x_2) = t$, 则
$$I(\neg x_1 \rightarrow x_2) = f_{\rightarrow}(I(\neg x_1), I(x_2))$$

$$= f_{\rightarrow}(v(\neg)(I(x_1)), I(x_2))$$

$$= f_{\rightarrow}(f_{\neg}(v_0(x_1)), v_0(x_2))$$

$$= f_{\rightarrow}(f_{\neg}(f), t)$$

$$= f_{\rightarrow}(t, t)$$

$$= t.$$

❖例1(续) 用真值表法计算公式¬ x_1 → x_2 在所有指派 v_0 下的真值:

x_1	x_2	$\neg x_1$	$\neg x_1 \rightarrow x_2$
t	t	f	t
t	f	f	t
f	t	t	t
f	f	t	f

❖公式的语义 L(X)公式在语义中被解释为真值函数。

❖ 定义联结词的语义解释

 $1. x \wedge y$

	t	f
t	t	f
f	f	f
\mathcal{X}	x ∧ y 的真值	

 $2. x \vee y$

y

	t	f
t	t	t
f	t	f

 $3. x \leftrightarrow y$

	t	f
t	t	\int
f	f	t

❖ 蕴涵词的实质蕴涵解释

◆ x → y 的实质蕴涵解释:

- ◆为什么采用实质蕴涵解释?
- 1. 总体上合理;
- 2. 直观合理性因人而异;
- 3. 经典数学采取实质蕴涵解释。

习题

1.5 p.15: 1(7, 8); 2(3).