Package 'vctrs'

February 19, 2020

```
Title Vector Helpers
Version 0.2.3
Description Defines new notions of prototype and size that are
      used to provide tools for consistent and well-founded type-coercion
      and size-recycling, and are in turn connected to ideas of type- and
      size-stability useful for analysing function interfaces.
License GPL-3
URL https://github.com/r-lib/vctrs
\pmb{BugReports} \ \text{https://github.com/r-lib/vctrs/issues}
Depends R (>= 3.2)
Imports ellipsis (>= 0.2.0),
      digest,
      glue,
     rlang (>= 0.4.2)
Suggests bit64,
     covr,
     crayon,
      generics,
      knitr,
      pillar (>= 1.4.1),
     pkgdown,
     rmarkdown,
      testthat (>= 2.3.0),
      tibble,
      xml2,
      zeallot
VignetteBuilder knitr
Encoding UTF-8
Language en-GB
LazyData true
Roxygen list(markdown = TRUE)
RoxygenNote 7.0.2
```

R topics documented:

internal-faq-ptype2-identity	 •	•	 	•	٠	 	 	٠	٠	 •	٠	 	•	٠	•	•	•	•	 2
list_of	 		 			 	 					 							 4
name_spec	 		 			 	 					 							 5
partial_factor	 		 			 	 					 							 6
partial_frame	 		 			 	 					 							 7
vec_assert	 		 			 	 					 							 7
vec_as_names	 		 			 	 					 							 8
vec_bind	 		 			 	 					 							 10
vec_c	 		 			 	 					 							 13
vec_chop	 		 			 	 					 							 15
vec_compare	 		 			 	 					 							 15
vec_count	 		 			 	 					 							 16
vec_data	 		 			 	 					 							 17
vec_default_cast	 		 			 	 					 							 18
vec_duplicate	 		 			 	 					 							 19
vec_equal	 		 			 	 					 							 20
$vec_init \ \dots \dots \dots$	 		 			 	 					 							 21
$vec_is_list \ . \ . \ . \ . \ . \ .$	 		 			 	 					 							 21
vec_match	 		 			 	 					 							 22
vec_order	 		 			 	 					 							 23
vec_ptype	 		 			 	 					 							 24
vec_recycle	 		 			 	 					 							 25
vec_repeat	 		 			 	 					 							 27
$vec_seq_along \ . \ . \ . \ . \ .$	 		 			 	 					 							 28
vec_size	 		 			 	 					 							 28
vec_split	 		 			 	 					 							 30
vec_unique	 		 			 	 					 							 30
%0%	 		 			 	 					 							 31
																			33

internal-faq-ptype2-identity

Internal FAQ - vec_ptype2(), NULL, and unspecified vectors

Description

Promotion monoid:

Promotions (i.e. automatic coercions) should always transform inputs to their richer type to avoid losing values of precision. vec_ptype2() returns the *richer* type of two vectors, or throws an incompatible type error if none of the two vector types include the other. For example, the richer type of integer and double is the latter because double covers a larger range of values than integer. vec_ptype2() is a monoid over vectors, which in practical terms means that it is a well behaved operation for reduction. Reduction is an important operation for promotions because that is how the richer type of multiple elements is computed. As a monoid, vec_ptype2() needs an identity element, i.e. a value that doesn't change the result of the reduction. vctrs has two identity values, NULL and **unspecified** vectors.

The NULL identity:

As an identity element that shouldn't influence the determination of the common type of a set of vectors, NULL is promoted to any type:

```
vec_ptype2(NULL, "")
#> character(0)
vec_ptype2(1L, NULL)
#> integer(0)

The common type of NULL and NULL is the identity NULL:
vec_ptype2(NULL, NULL)
#> NULL

This way the result of vec_ptype2(NULL, NULL) does not influence subsequent promotions:
vec_ptype2(
    vec_ptype2(NULL, NULL),
    ""
)
#> character(0)
```

Unspecified vectors:

In the vctrs coercion system, logical vectors of missing values are also automatically promoted to the type of any other vector, just like NULL. We call these vectors unspecified. The special coercion semantics of unspecified vectors serve two purposes:

1. It makes it possible to assign vectors of NA inside any type of vectors, even when they are not coercible with logical:

```
x <- letters[1:5]
vec_assign(x, 1:2, c(NA, NA))
#> [1] NA NA "c" "d" "e"
```

2. We can't put NULL in a data frame, so we need an identity element that behaves more like a vector. Logical vectors of NA seem a natural fit for this.

Unspecified vectors are thus promoted to any other type, just like NULL:

```
vec_ptype2(NA, "")
#> character(0)
vec_ptype2(1L, c(NA, NA))
#> integer(0)
```

Finalising common types:

vctrs has an internal vector type of class vctrs_unspecified. Users normally don't see such vectors in the wild, but they do come up when taking the common type of an unspecified vector with another identity value:

```
vec_ptype2(NA, NA)
#> <unspecified> [0]
vec_ptype2(NA, NULL)
#> <unspecified> [0]
vec_ptype2(NULL, NA)
#> <unspecified> [0]
```

We can't return NA here because vec_ptype2() normally returns empty vectors. We also can't return NULL because unspecified vectors need to be recognised as logical vectors if they haven't been promoted at the end of the reduction.

4 list_of

```
vec_ptype_finalise(vec_ptype2(NULL, NA))
#> logical(0)
```

See the output of vec_ptype_common() which performs the reduction and finalises the type, ready to be used by the caller:

```
vec_ptype_common(NULL, NULL)
#> NULL
vec_ptype_common(NA, NULL)
#> logical(0)
```

Note that **partial** types in vctrs make use of the same mechanism. They are finalised with vec_ptype_finalise().

list_of

list_of S3 class for homogenous lists

Description

A list_of object is a list where each element has the same type. Modifying the list with \$, [, and [[preserves the constraint by coercing all input items.

Usage

```
list_of(..., .ptype = NULL)
as_list_of(x, ...)
validate_list_of(x)
is_list_of(x)

## S3 method for class 'vctrs_list_of'
vec_ptype2(x, y, ..., x_arg = "x", y_arg = "y")
## S3 method for class 'vctrs_list_of'
vec_cast(x, to, ...)
```

Arguments

y_arg

	Vectors to coerce.
.ptype	If NULL, the default, the output type is determined by computing the common type across all elements of
	Alternatively, you can supply .ptype to give the output known type. If getOption("vctrs.no_gues is TRUE you must supply this value: this is a convenient way to make production code demand fixed types.
Х	For as_list_of(), a vector to be coerced to list_of.
y, to	Arguments to vec_ptype2() and vec_cast().
x_arg	Argument names for x and y. These are used in error messages to inform the user about the locations of incompatible types (see stop_incompatible_type()).

Argument names for x and y. These are used in error messages to inform the user

about the locations of incompatible types (see stop_incompatible_type()).

name_spec 5

Details

Unlike regular lists, setting a list element to NULL using [[does not remove it.

Examples

```
x <- list_of(1:3, 5:6, 10:15)
if (requireNamespace("tibble", quietly = TRUE)) {
  tibble::tibble(x = x)
}
vec_c(list_of(1, 2), list_of(FALSE, TRUE))</pre>
```

name_spec

Name specifications

Description

A name specification describes how to combine an inner and outer names. This sort of name combination arises when concatenating vectors or flattening lists. There are two possible cases:

· Named vector:

```
vec_c(outer = c(inner1 = 1, inner2 = 2))
```

· Unnamed vector:

```
vec_c(outer = 1:2)
```

In r-lib and tidyverse packages, these cases are errors by default, because there's no behaviour that works well for every case. Instead, you can provide a name specification that describes how to combine the inner and outer names of inputs. Name specifications can refer to:

- outer: The external name recycled to the size of the input vector.
- inner: Either the names of the input vector, or a sequence of integer from 1 to the size of the vector if it is unnamed.

Arguments

```
name_spec, .name_spec
```

A name specification for combining inner and outer names. This is relevant for inputs passed with a name, when these inputs are themselves named, like outer = c(inner = 1), or when they have length greater than 1: outer = 1:2. By default, these cases trigger an error. You can resolve the error by providing a specification that describes how to combine the names or the indices of the inner vector with the name of the input. This specification can be:

- A function of two arguments. The outer name is passed as a string to the first argument, and the inner names or positions are passed as second argument.
- An anonymous function as a purrr-style formula.
- A glue specification of the form "{outer}_{inner}".

See the name specification topic.

6 partial_factor

Examples

```
# By default, named inputs must be length 1:
vec_c(name = 1)  # ok
try(vec_c(name = 1:3)) # bad

# They also can't have internal names, even if scalar:
try(vec_c(name = c(internal = 1))) # bad

# Pass a name specification to work around this. A specification
# can be a glue string referring to `outer` and `inner`:
vec_c(name = 1:3, other = 4:5, .name_spec = "{outer}")
vec_c(name = 1:3, other = 4:5, .name_spec = "{outer}_{inner}")

# They can also be functions:
my_spec <- function(outer, inner) paste(outer, inner, sep = "_")
vec_c(name = 1:3, other = 4:5, .name_spec = my_spec)

# Or purrr-style formulas for anonymous functions:
vec_c(name = 1:3, other = 4:5, .name_spec = ~ paste0(.x, .y))</pre>
```

partial_factor

Partially specify a factor

Description

This special class can be passed as a ptype in order to specify that the result should be a factor that contains at least the specified levels.

Usage

```
partial_factor(levels = character())
```

Arguments

levels

Character vector of labels.

```
# Assert that `x` is a factor
vec_assert(factor("x"), partial_factor())

# Testing with `factor()` is too strict,
# because it tries to match the levels exactly
# rather than learning them from the data.
try(vec_assert(factor("x"), factor()))

# You can also enforce a minimum set of levels
try(vec_assert(factor("x"), partial_factor("y")))
vec_assert(factor(c("x", "y")), partial_factor("y"))
pf <- partial_factor(levels = c("x", "y"))
pf</pre>
```

partial_frame 7

```
vec_ptype_common(factor("v"), factor("w"), .ptype = pf)
```

partial_frame

Partially specify columns of a data frame

Description

This special class can be passed to .ptype in order to specify the types of only some of the columns in a data frame.

Usage

```
partial_frame(...)
```

Arguments

...

Attributes of subclass

Examples

```
pf <- partial_frame(x = double())
pf

vec_rbind(
   data.frame(x = 1L, y = "a"),
   data.frame(x = FALSE, z = 10),
   .ptype = partial_frame(x = double(), a = character())
)</pre>
```

vec_assert

Assert an argument has known prototype and/or size

Description

- vec_is() is a predicate that checks if its input conforms to a prototype and/or a size.
- vec_assert() throws an error when the input doesn't conform.

Usage

```
vec_assert(x, ptype = NULL, size = NULL, arg = as_label(substitute(x)))
vec_is(x, ptype = NULL, size = NULL)
```

Arguments

X	A vector argument to check.
ptype	Prototype to compare against. If the prototype has a class, its vec_ptype() is compared to that of x with identical(). Otherwise, its typeof() is compared to that of x with ==.
size	Size to compare against
arg	Name of argument being checked. This is used in error messages. The label of the expression passed as x is taken as default.

8 vec_as_names

Value

vec_is() returns TRUE or FALSE. vec_assert() either throws a typed error (see section on error types) or returns x, invisibly.

Error types

- If the prototype doesn't match, an error of class "vctrs_error_assert_ptype" is raised.
- If the size doesn't match, an error of class "vctrs_error_assert_size" is raised.

Both errors inherit from "vctrs_error_assert".

vec_as_names

Retrieve and repair names

Description

vec_as_names() takes a character vector of names and repairs it according to the repair argument. It is the r-lib and tidyverse equivalent of base::make.names().

vctrs deals with a few levels of name repair:

- minimal names exist. The names attribute is not NULL. The name of an unnamed element is "" and never NA. For instance, vec_as_names() always returns minimal names and data frames created by the tibble package have names that are, at least, minimal.
- unique names are minimal, have no duplicates, and can be used where a variable name is expected. Empty names, ..., and .. followed by a sequence of digits are banned.
 - All columns can be accessed by name via df[["name"]] and df\$`name` and with(df, `name`).
- universal names are unique and syntactic (see Details for more).
 - Names work everywhere, without quoting: df\$name and with(df,name) and lm(name1 ~ name2,data = df) and dplyr::select(df,name) all work.

universal implies unique, unique implies minimal. These levels are nested.

Usage

```
vec_as_names(
  names,
  ...,
  repair = c("minimal", "unique", "universal", "check_unique"),
  quiet = FALSE
)
```

Arguments

names

A character vector.

. . .

These dots are for future extensions and must be empty.

repair

Either a string or a function. If a string, it must be one of "check_unique", "minimal", "unique", or "universal". If a function, it is invoked with a vector of minimal names and must return minimal names, otherwise an error is thrown.

• Minimal names are never NULL or NA. When an element doesn't have a name, its minimal name is an empty string.

vec_as_names 9

• Unique names are unique. A suffix is appended to duplicate names to make them unique.

• Universal names are unique and syntactic, meaning that you can safely use the names as variables without causing a syntax error.

The "check_unique" option doesn't perform any name repair. Instead, an error is raised if the names don't suit the "unique" criteria.

quiet

By default, the user is informed of any renaming caused by repairing the names. This only concerns unique and universal repairing. Set quiet to TRUE to silence the messages.

minimal names

minimal names exist. The names attribute is not NULL. The name of an unnamed element is "" and never NA.

Examples:

```
Original names of a vector with length 3: NULL minimal names: "" ""

Original names: "x" NA minimal names: "x" ""
```

unique names

unique names are minimal, have no duplicates, and can be used (possibly with backticks) in contexts where a variable is expected. Empty names, ..., and .. followed by a sequence of digits are banned. If a data frame has unique names, you can index it by name, and also access the columns by name. In particular, df[["name"]] and df\$`name` and also with(df, `name`) always work.

There are many ways to make names unique. We append a suffix of the form ...j to any name that is "" or a duplicate, where j is the position. We also change ..# and ... to ...#.

Example:

```
Original names: "" "x" "y" "x" ".2" "..." unique names: "...1" "x...2" "...3" "y" "x...5" "...6" "...7"
```

Pre-existing suffixes of the form ...j are always stripped, prior to making names unique, i.e. reconstructing the suffixes. If this interacts poorly with your names, you should take control of name repair.

universal names

universal names are unique and syntactic, meaning they:

- Are never empty (inherited from unique).
- Have no duplicates (inherited from unique).
- Are not . . . Do not have the form . . i, where i is a number (inherited from unique).
- Consist of letters, numbers, and the dot . or underscore _ characters.
- Start with a letter or start with the dot . not followed by a number.
- Are not a reserved word, e.g., if or function or TRUE.

10 vec_bind

If a vector has universal names, variable names can be used "as is" in code. They work well with nonstandard evaluation, e.g., df\$name works.

vctrs has a different method of making names syntactic than base::make.names(). In general, vctrs prepends one or more dots . until the name is syntactic.

Examples:

```
Original names: "" "x" NA "x" universal names: "...1" "x...2" "...3" "x...4"

Original names: "(y)" "_z" ".2fa" "FALSE" universal names: ".y." "._z" "..2fa" ".FALSE"
```

See Also

rlang::names2() returns the names of an object, after making them minimal.

The Names attribute section in the "tidyverse package development principles".

Examples

```
# By default, `vec_as_names()` returns minimal names:
vec_as_names(c(NA, NA, "foo"))

# You can make them unique:
vec_as_names(c(NA, NA, "foo"), repair = "unique")

# Universal repairing fixes any non-syntactic name:
vec_as_names(c("_foo", "+"), repair = "universal")
```

vec_bind

Combine many data frames into one data frame

Description

This pair of functions binds together data frames (and vectors), either row-wise or column-wise. Row-binding creates a data frame with common type across all arguments. Column-binding creates a data frame with common length across all arguments.

Usage

```
vec_rbind(
    ...,
    .ptype = NULL,
    .names_to = NULL,
    .name_repair = c("unique", "universal", "check_unique")
)

vec_cbind(
    ...,
    .ptype = NULL,
    .size = NULL,
    .name_repair = c("unique", "universal", "check_unique", "minimal")
)
```

vec_bind 11

Arguments

... Data frames or vectors.

When the inputs are named:

- vec_rbind() assigns names to row names unless .names_to is supplied.
 In that case the names are assigned in the column defined by .names_to.
- vec_cbind() creates packed data frame columns with named inputs.

NULL inputs are silently ignored. Empty (e.g. zero row) inputs will not appear in the output, but will affect the derived .ptype.

ptype If NULL, the default, the output type is determined by computing the common type across all elements of

Alternatively, you can supply .ptype to give the output known type. If getOption("vctrs.no_guess is TRUE you must supply this value: this is a convenient way to make production code demand fixed types.

.names_to Optionally, the name of a column where the names of . . . arguments are copied. These names are useful to identify which row comes from which input. If supplied and . . . is not named, an integer column is used to identify the rows.

.name_repair One of "unique", "universal", or "check_unique". See vec_as_names() for the meaning of these options.

With vec_rbind(), the repair function is applied to all inputs separately. This is because vec_rbind() needs to align their columns before binding the rows, and thus needs all inputs to have unique names. On the other hand, vec_cbind() applies the repair function after all inputs have been concatenated together in a final data frame. Hence vec_cbind() allows the more permissive minimal

names repair.

If, NULL, the default, will determine the number of rows in vec_cbind() output by using the standard recycling rules.

Alternatively, specify the desired number of rows, and any inputs of length 1 will be recycled appropriately.

Value

.size

A data frame, or subclass of data frame.

If ... is a mix of different data frame subclasses, vec_ptype2() will be used to determine the output type. For vec_rbind(), this will determine the type of the container and the type of each column; for vec_cbind() it only determines the type of the output container. If there are no non-NULL inputs, the result will be data.frame().

Invariants

All inputs are first converted to a data frame. The conversion for 1d vectors depends on the direction of binding:

- For vec_rbind(), each element of the vector becomes a column in a single row.
- For vec_cbind(), each element of the vector becomes a row in a single column.

Once the inputs have all become data frames, the following invariants are observed for row-binding:

- vec_size(vec_rbind(x,y)) == vec_size(x) + vec_size(y)
- vec_ptype(vec_rbind(x,y)) = vec_ptype_common(x,y)

12 vec_bind

Note that if an input is an empty vector, it is first converted to a 1-row data frame with 0 columns. Despite being empty, its effective size for the total number of rows is 1.

For column-binding, the following invariants apply:

```
    vec_size(vec_cbind(x,y)) == vec_size_common(x,y)
    vec_ptype(vec_cbind(x,y)) == vec_cbind(vec_ptype(x),vec_ptype(x))
```

See Also

vec_c() for combining 1d vectors.

```
# row binding -----
# common columns are coerced to common class
vec_rbind(
 data.frame(x = 1),
 data.frame(x = FALSE)
# unique columns are filled with NAs
vec_rbind(
 data.frame(x = 1),
 data.frame(y = "x")
# null inputs are ignored
vec_rbind(
 data.frame(x = 1),
 NULL,
 data.frame(x = 2)
)
# bare vectors are treated as rows
vec_rbind(
 c(x = 1, y = 2),
 c(x = 3)
)
# default names will be supplied if arguments are not named
vec_rbind(
 1:2,
 1:3,
 1:4
)
# column binding -----
# each input is recycled to have common length
vec_cbind(
 data.frame(x = 1),
 data.frame(y = 1:3)
# bare vectors are treated as columns
```

vec_c 13

```
vec_cbind(
  data.frame(x = 1),
 y = letters[1:3]
# if you supply a named data frame, it is packed in a single column
data <- vec_cbind(</pre>
  x = data.frame(a = 1, b = 2),
 y = 1
)
data
# Packed data frames are nested in a single column. This makes it
# possible to access it through a single name:
data$x
# since the base print method is suboptimal with packed data
# frames, it is recommended to use tibble to work with these:
if (rlang::is_installed("tibble")) {
  vec\_cbind(x = tibble::tibble(a = 1, b = 2), y = 1)
# duplicate names are flagged
vec\_cbind(x = 1, x = 2)
```

vec_c

Combine many vectors into one vector

Description

Combine all arguments into a new vector of common type.

Usage

```
vec_c(
    ...,
    .ptype = NULL,
    .name_spec = NULL,
    .name_repair = c("minimal", "unique", "check_unique", "universal")
)
```

Arguments

.. Vectors to coerce.

.ptype

If NULL, the default, the output type is determined by computing the common type across all elements of \dots

Alternatively, you can supply .ptype to give the output known type. If getOption("vctrs.no_guess is TRUE you must supply this value: this is a convenient way to make production code demand fixed types.

14 vec_c

.name_spec

A name specification for combining inner and outer names. This is relevant for inputs passed with a name, when these inputs are themselves named, like outer = c(inner = 1), or when they have length greater than 1: outer = 1:2. By default, these cases trigger an error. You can resolve the error by providing a specification that describes how to combine the names or the indices of the inner vector with the name of the input. This specification can be:

- A function of two arguments. The outer name is passed as a string to the first argument, and the inner names or positions are passed as second argument.
- An anonymous function as a purrr-style formula.
- A glue specification of the form "{outer}_{inner}".

See the name specification topic.

.name_repair How to repair names, see repair options in vec_as_names().

Value

A vector with class given by .ptype, and length equal to the sum of the vec_size() of the contents of

The vector will have names if the individual components have names (inner names) or if the arguments are named (outer names). If both inner and outer names are present, an error is thrown unless a .name_spec is provided.

Invariants

```
vec_size(vec_c(x,y)) == vec_size(x) + vec_size(y)vec_ptype(vec_c(x,y)) == vec_ptype_common(x,y).
```

See Also

vec_cbind()/vec_rbind() for combining data frames by rows or columns.

vec_chop 15

```
vec_c(name = 1:3, .name_spec = "{outer}_{inner}")
# See `?name_spec` for more examples of name specifications.
```

vec_chop

Repeatedly slice a vector

Description

 $vec_chop()$ provides an efficient method to repeatedly slice a vector. It captures the pattern of $map(indices, vec_slice, x = x)$.

Usage

```
vec_chop(x, indices = NULL)
```

Arguments

x A vector

indices

A list of index values to slice x with, or NULL. Each element of the list must be an integer, character or logical vector that would be valid as an index in vec_slice(). If NULL, x is split into its individual elements, equivalent to using an indices of as.list(vec_seq_along(x)).

Value

A list of size vec_size(indices) or, if indices == NULL, vec_size(x).

Examples

```
vec_chop(1:5)
vec_chop(1:5, list(1, 1:2))
vec_chop(mtcars, list(1:3, 4:6))
```

vec_compare

Compare two vectors

Description

Compare two vectors

Usage

```
vec_compare(x, y, na_equal = FALSE, .ptype = NULL)
```

Arguments

x, y Vectors with compatible types and lengths.
na_equal Should NA values be considered equal?
.ptype Override to optionally specify common type

16 vec_count

Value

An integer vector with values -1 for x < y, 0 if x == y, and 1 if x > y. If na_equal is FALSE, the result will be NA if either x or y is NA.

S3 dispatch

vec_compare() is not generic for performance; instead it uses vec_proxy_compare() to

Examples

```
vec_compare(c(TRUE, FALSE, NA), FALSE)
vec_compare(c(TRUE, FALSE, NA), FALSE, na_equal = TRUE)
vec_compare(1:10, 5)
vec_compare(runif(10), 0.5)
vec_compare(letters[1:10], "d")

df <- data.frame(x = c(1, 1, 1, 2), y = c(0, 1, 2, 1))
vec_compare(df, data.frame(x = 1, y = 1))</pre>
```

vec_count

Count unique values in a vector

Description

Count the number of unique values in a vector. vec_count() has two important differences to table(): it returns a data frame, and when given multiple inputs (as a data frame), it only counts combinations that appear in the input.

Usage

```
vec_count(x, sort = c("count", "key", "location", "none"))
```

Arguments

Х

A vector (including a data frame).

sort

One of "count", "key", "location", or "none".

- "count", the default, puts most frequent values at top
- "key", orders by the output key column (i.e. unique values of x)
- "location", orders by location where key first seen. This is useful if you want to match the counts up to other unique/duplicated functions.
- "none", leaves unordered.

Value

A data frame with columns key (same type as x) and count (an integer vector).

vec_data 17

Examples

```
vec_count(mtcars$vs)
vec_count(iris$Species)
# If you count a data frame you'll get a data frame
# column in the output
str(vec_count(mtcars[c("vs", "am")]))
# Sorting -----
x <- letters[rpois(100, 6)]</pre>
# default is to sort by frequency
vec_count(x)
# by can sort by key
vec_count(x, sort = "key")
# or location of first value
vec_count(x, sort = "location")
head(x)
# or not at all
vec_count(x, sort = "none")
```

vec_data

Extract underlying data

Description

Extract the data underlying an S3 vector object, i.e. the underlying (named) atomic vector or list.

- vec_data() returns unstructured data. The only attributes preserved are names, dims, and dimnames.
 - Currently, due to the underlying memory architecture of R, this creates a full copy of the data.
- vec_proxy() may return structured data. This generic is the main customisation point in vctrs, along with vec_restore(). See the section below to learn when you should implement vec_proxy().

Methods must return a vector type. Records and data frames will be processed rowwise.

Usage

```
vec_data(x)
vec_proxy(x, ...)
```

Arguments

x A vector or object implementing vec_proxy().

... These dots are for future extensions and must be empty.

Value

The data underlying x, free from any attributes except the names.

18 vec_default_cast

When should you proxy your type

You should only implement vec_proxy() when your type is designed around a non-vector class. I.e. anything that is not either:

- · An atomic vector
- · A bare list
- · A data frame

In this case, implement vec_proxy() to return such a vector class. The vctrs operations such as vec_slice() are applied on the proxy and vec_restore() is called to restore the original representation of your type.

The most common case where you need to implement vec_proxy() is for S3 lists. In vctrs, S3 lists are treated as scalars by default. This way we don't treat objects like model fits as vectors. To prevent vctrs from treating your S3 list as a scalar, unclass it in the vec_proxy() method. For instance, here is the definition for list_of:

```
vec_proxy.vctrs_list_of <- function(x) {
  unclass(x)
}</pre>
```

Another case where you need to implement a proxy is record types. Record types should return a data frame, as in the POSIX1t method:

```
vec_proxy.POSIXlt <- function(x) {
  new_data_frame(unclass(x))
}</pre>
```

Note that you don't need to implement vec_proxy() when your class inherits from vctrs_vctr or vctrs_rcrd.

See Also

See $vec_restore()$ for the inverse operation: it restores attributes given a bare vector and a prototype; $vec_restore(vec_data(x), x)$ will always yield x.

vec_default_cast

Default cast method

Description

This function should typically be called from the default vec_cast() method for your class, e.g. vec_cast.myclass.default(). It does two things:

- If x is an unspecified vector, it automatically casts it to to using vec_init().
- Otherwise, an error is thrown with stop_incompatible_cast().

Usage

```
vec_default_cast(x, to, x_arg = "x", to_arg = "to")
```

vec_duplicate 19

Argument	S
----------	---

X	Vectors to cast.
to	Type to cast to. If NULL, x will be returned as is.
x_arg	Argument names for x and to. These are used in error messages to inform the user about the locations of incompatible types (see stop_incompatible_type()).
to_arg	Argument names for x and to. These are used in error messages to inform the user about the locations of incompatible types (see stop_incompatible_type()).

vec_duplicate	Find duplicated values

Description

- vec_duplicate_any(): detects the presence of duplicated values, similar to anyDuplicated().
- vec_duplicate_detect(): returns a logical vector describing if each element of the vector is duplicated elsewhere. Unlike duplicated(), it reports all duplicated values, not just the second and subsequent repetitions.
- vec_duplicate_id(): returns an integer vector giving the location of the first occurrence of the value.

Usage

```
vec_duplicate_any(x)
vec_duplicate_detect(x)
vec_duplicate_id(x)
```

Arguments

x A vector (including a data frame).

Value

- vec_duplicate_any(): a logical vector of length 1.
- vec_duplicate_detect(): a logical vector the same length as x.
- vec_duplicate_id(): an integer vector the same length as x.

Missing values

In most cases, missing values are not considered to be equal, i.e. NA == NA is not TRUE. This behaviour would be unappealing here, so these functions consider all NAs to be equal. (Similarly, all NaN are also considered to be equal.)

See Also

vec_unique() for functions that work with the dual of duplicated values: unique values.

20 vec_equal

Examples

```
vec_duplicate_any(1:10)
vec_duplicate_any(c(1, 1:10))

x <- c(10, 10, 20, 30, 30, 40)
vec_duplicate_detect(x)
# Note that `duplicated()` doesn't consider the first instance to
# be a duplicate
duplicated(x)

# Identify elements of a vector by the location of the first element that
# they're equal to:
vec_duplicate_id(x)
# Location of the unique values:
vec_unique_loc(x)
# Equivalent to `duplicated()`:
vec_duplicate_id(x) == seq_along(x)</pre>
```

vec_equal

Test if two vectors are equal

Description

vec_equal_na() tests a special case: equality with NA. It is similar to is.na but:

- Considers the missing element of a list to be NULL.
- Considered data frames and records to be missing if every component is missing. This preserves the invariant that vec_equal_na(x) is equal to vec_equal(x,vec_init(x),na_equal = TRUE).

Usage

```
vec_equal(x, y, na_equal = FALSE, .ptype = NULL)
vec_equal_na(x)
```

Arguments

x Vectors with compatible types and lengths.
 y Vectors with compatible types and lengths.
 na_equal Should NA values be considered equal?
 .ptype Override to optionally specify common type

Value

A logical vector the same size as. Will only contain NAs if na_equal is FALSE.

vec_init 21

Examples

```
vec_equal(c(TRUE, FALSE, NA), FALSE)
vec_equal(c(TRUE, FALSE, NA), FALSE, na_equal = TRUE)
vec_equal_na(c(TRUE, FALSE, NA))

vec_equal(5, 1:10)
vec_equal("d", letters[1:10])

df <- data.frame(x = c(1, 1, 2, 1, NA), y = c(1, 2, 1, NA, NA))
vec_equal(df, data.frame(x = 1, y = 2))
vec_equal_na(df)</pre>
```

vec_init

Initialize a vector

Description

Initialize a vector

Usage

```
vec_init(x, n = 1L)
```

Arguments

x Template of vector to initialize.

n Desired size of result.

Examples

```
vec_init(1:10, 3)
vec_init(Sys.Date(), 5)
vec_init(mtcars, 2)
```

vec_is_list

Is the object a list?

Description

vec_is_list() tests if x is considered a list in the vctrs sense. It returns TRUE if:

- x is a bare list with no class.
- x is a list explicitly inheriting from "list" or "vctrs_list_of".
- x is an S3 list that vec_is() returns TRUE for. For this to return TRUE, the class must implement a vec_proxy() method.

Usage

```
vec_is_list(x)
```

22 vec_match

Arguments

Х

An object.

Details

Notably, data frames and S3 record style classes like POSIXIt are not considered lists.

Examples

```
vec_is_list(list())
vec_is_list(list_of(1))
vec_is_list(data.frame())
```

vec_match

Find matching observations across vectors

Description

vec_in() returns a logical vector based on whether needle is found in haystack. vec_match()
returns an integer vector giving location of needle in haystack, or NA if it's not found.

Usage

```
vec_match(needles, haystack)
vec_in(needles, haystack)
```

Arguments

needles, haystack

Vector of needles to search for in vector haystack. haystack should usually be unique; if not vec_match() will only return the location of the first match. needles and haystack are coerced to the same type prior to comparison.

Details

```
vec_in() is equivalent to %in%; vec_match() is equivalent to match().
```

Value

A vector the same length as needles. vec_in() returns a logical vector; vec_match() returns an integer vector.

Missing values

In most cases, missing values are not considered to be equal, i.e. NA == NA is not TRUE. This behaviour would be unappealing here, so these functions consider all NAs to be equal. (Similarly, all NaN are also considered to be equal.)

vec_order 23

Examples

```
hadley <- strsplit("hadley", "")[[1]]
vec_match(hadley, letters)

vowels <- c("a", "e", "i", "o", "u")
vec_match(hadley, vowels)
vec_in(hadley, vowels)

# Only the first index of duplicates is returned
vec_match(c("a", "b"), c("a", "b", "a", "b"))</pre>
```

vec_order

Order and sort vectors

Description

Order and sort vectors

Usage

```
vec_order(x, direction = c("asc", "desc"), na_value = c("largest", "smallest"))
vec_sort(x, direction = c("asc", "desc"), na_value = c("largest", "smallest"))
```

Arguments

x A vector

direction Direction to sort in. Defaults to ascending.

na_value Should NAs be treated as the largest or smallest values?

Value

- vec_order() an integer vector the same size as x.
- vec_sort() a vector with the same size and type as x.

```
x <- round(c(runif(9), NA), 3)
vec_order(x)
vec_sort(x)
vec_sort(x, "desc")

# Can also handle data frames
df <- data.frame(g = sample(2, 10, replace = TRUE), x = x)
vec_order(df)
vec_sort(df)
vec_sort(df, "desc")</pre>
```

24 vec_ptype

vec_ptype

Find the prototype of a set of vectors

Description

vec_ptype() returns the unfinalised prototype of a single vector. vec_ptype_common() finds the common type of multiple vectors. vec_ptype_show() nicely prints the common type of any number of inputs, and is designed for interactive exploration.

Usage

```
vec_ptype(x)
vec_ptype_common(..., .ptype = NULL)
vec_ptype_show(...)
```

Arguments

..., x Vectors inputs

.ptype

If NULL, the default, the output type is determined by computing the common type across all elements of

Alternatively, you can supply .ptype to give the output known type. If getOption("vctrs.no_guess is TRUE you must supply this value: this is a convenient way to make production code demand fixed types.

Value

```
vec_ptype() and vec_ptype_common() return a prototype (a size-0 vector)
```

```
vec_ptype()
```

vec_ptype() returns size 0 vectors potentially containing attributes but no data. Generally, this is just vec_slice(x, 0L), but some inputs require special handling.

- While you can't slice NULL, the prototype of NULL is itself. This is because we treat NULL as an identity value in the vec_ptype2() monoid.
- The prototype of logical vectors that only contain missing values is the special unspecified type, which can be coerced to any other 1d type. This allows bare NAs to represent missing values for any 1d vector type.

See internal-faq-ptype2-identity for more information about identity values.

Because it may contain unspecified vectors, the prototype returned by vec_ptype() is said to be **unfinalised**. Call vec_ptype_finalise() to finalise it. Commonly you will need the finalised prototype as returned by vec_slice(x, 0L).

```
vec_ptype_common()
```

vec_ptype_common() first finds the prototype of each input, then successively calls vec_ptype2() to find a common type. It returns a finalised prototype.

vec_recycle 25

Examples

```
# Unknown types -----
vec_ptype_show()
vec_ptype_show(NA)
vec_ptype_show(NULL)
# Vectors ------
vec_ptype_show(1:10)
vec_ptype_show(letters)
vec_ptype_show(TRUE)
vec_ptype_show(Sys.Date())
vec_ptype_show(Sys.time())
vec_ptype_show(factor("a"))
vec_ptype_show(ordered("a"))
# Matrices -----
# The prototype of a matrix includes the number of columns
vec_ptype_show(array(1, dim = c(1, 2)))
vec_ptype_show(array("x", dim = c(1, 2)))
# Data frames -----
# The prototype of a data frame includes the prototype of
# every column
vec_ptype_show(iris)
# The prototype of multiple data frames includes the prototype
# of every column that in any data frame
vec_ptype_show(
 data.frame(x = TRUE),
 data.frame(y = 2),
 data.frame(z = "a")
)
```

vec_recycle

Vector recycling

Description

vec_recycle(x,size) recycles a single vector to given size. vec_recycle_common(...) recycles multiple vectors to their common size. All functions obey the vctrs recycling rules, described below, and will throw an error if recycling is not possible. See vec_size() for the precise definition of size.

Usage

```
vec_recycle(x, size, ..., x_arg = "x")
vec_recycle_common(..., .size = NULL)
```

Arguments

Х

A vector to recycle.

26 vec_recycle

size	Desired output size.
	 For vec_recycle_common(), vectors to recycle.
	For vec_recycle(), these dots should be empty.
x_arg	Argument name for x. These are used in error messages to inform the user about which argument has an incompatible size.
.size	Desired output size. If omitted, will use the common size from vec_size_common().

Recycling rules

The common size of two vectors defines the recycling rules, and can be summarise with the following table:

(Note NULLs are handled specially; they are treated like empty arguments and hence don't affect the size)

This is a stricter set of rules than base R, which will usually return output of length max(nx,ny), warning if the length of the longer vector is not an integer multiple of the length of the shorter.

We say that two vectors have **compatible size** if they can be recycled to be the same length.

```
# Inputs with 1 observation are recycled
vec_recycle_common(1:5, 5)
vec_recycle_common(integer(), 5)
## Not run:
vec_recycle_common(1:5, 1:2)
## End(Not run)
```

vec_repeat 27

```
# Data frames and matrices are recycled along their rows vec_recycle_common(data.frame(x = 1), 1:5) vec_recycle_common(array(1:2, c(1, 2)), 1:5) vec_recycle_common(array(1:3, c(1, 3, 1)), 1:5)
```

vec_repeat

Expand the length of a vector

Description

This is a special case of rep() for the special case of integer times and each values, and works along size, rather than length.

Usage

```
vec_repeat(x, each = 1L, times = 1L)
```

Arguments

x A vector.

each Number of times to repeat each element of x.

times Number of times to repeat the whole vector of x.

Value

A vector the same type as x with size $vec_size(x) * times * each$.

```
# each repeats within
vec_repeat(1:3, each = 2)
# times repeats whole thing
vec_repeat(1:3, times = 2)

df <- data.frame(x = 1:2, y = 1:2)
# rep() repeats columns of data frame, and returns list:
rep(df, each = 2)
# vec_repeat() repeats rows, and returns same data.frame
vec_repeat(df, 2)</pre>
```

28 vec_size

vec_seq_along

Useful sequences

Description

vec_seq_along() is equivalent to seq_along() but uses size, not length. vec_init_along()
creates a vector of missing values with size matching an existing object.

Usage

```
vec_seq_along(x)
vec_init_along(x, y = x)
```

Arguments

х, у

Vectors

Value

- vec_seq_along() an integer vector with the same size as x.
- vec_init_along() a vector with the same type as x and the same size as y.

Examples

```
vec_seq_along(mtcars)
vec_init_along(head(mtcars))
```

vec_size

Number of observations

Description

vec_size(x) returns the size of a vector. vec_is_empty() returns TRUE if the size is zero, FALSE otherwise.

The size is distinct from the length() of a vector because it generalises to the "number of observations" for 2d structures, i.e. it's the number of rows in matrix or a data frame. This definition has the important property that every column of a data frame (even data frame and matrix columns) have the same size. vec_size_common(...) returns the common size of multiple vectors.

Usage

```
vec_size(x)
vec_size_common(..., .size = NULL, .absent = 0L)
vec_is_empty(x)
```

vec_size 29

Arguments

x,	Vector inputs or NULL.
.size	If NULL, the default, the output size is determined by recycling the lengths of all elements of Alternatively, you can supply . size to force a known size; in this case, x and are ignored.
.absent	The size used when no input is provided, or when all input is NULL. If left as NULL when no input is supplied, an error is thrown.

Details

There is no vctrs helper that retrieves the number of columns: as this is a property of the type.

vec_size() is equivalent to NROW() but has a name that is easier to pronounce, and throws an error when passed non-vector inputs.

Value

```
An integer (or double for long vectors).
```

vec_size_common() returns .absent if all inputs are NULL or absent, 0L by default.

Invariants

```
    vec_size(dataframe) == vec_size(dataframe[[i]])
    vec_size(matrix) == vec_size(matrix[,i,drop = FALSE])
    vec_size(vec_c(x,y)) == vec_size(x) + vec_size(y)
```

The size of NULL

The size of NULL is hard-coded to 0L in vec_size(). vec_size_common() returns .absent when all inputs are NULL (if only some inputs are NULL, they are simply ignored).

A default size of 0 makes sense because sizes are most often queried in order to compute a total size while assembling a collection of vectors. Since we treat NULL as an absent input by principle, we return the identity of sizes under addition to reflect that an absent input doesn't take up any size.

Note that other defaults might make sense under different circumstances. For instance, a default size of 1 makes sense for finding the common size because 1 is the identity of the recycling rules.

See Also

vec_slice() for a variation of [compatible with vec_size(), and vec_recycle() to recycle
vectors to common length.

```
vec_size(1:100)
vec_size(mtcars)
vec_size(array(dim = c(3, 5, 10)))

vec_size_common(1:10, 1:10)
vec_size_common(1:10, 1)
vec_size_common(integer(), 1)
```

30 vec_unique

vec_split

Split a vector into groups

Description

This is a generalisation of split() that can split by any type of vector, not just factors. Instead of returning the keys in the character names, the are returned in a separate parallel vector.

Usage

```
vec_split(x, by)
```

Arguments

x Vector to divide into groups.

by Vector whose unique values defines the groups.

Value

A data frame with two columns and size equal to vec_size(vec_unique(by)). The key column has the same type as by, and the val column is a list containing elements of type vec_ptype(x).

Note for complex types, the default data.frame print method will be suboptimal, and you will want to coerce into a tibble to better understand the output.

Examples

```
vec_split(mtcars$cyl, mtcars$vs)
vec_split(mtcars$cyl, mtcars[c("vs", "am")])

if (require("tibble")) {
   as_tibble(vec_split(mtcars$cyl, mtcars[c("vs", "am")]))
   as_tibble(vec_split(mtcars, mtcars[c("vs", "am")]))
}
```

vec_unique

Find and count unique values

Description

- vec_unique(): the unique values. Equivalent to unique().
- vec_unique_loc(): the locations of the unique values.
- vec_unique_count(): the number of unique values.

Usage

```
vec_unique(x)
vec_unique_loc(x)
vec_unique_count(x)
```

%0%

Arguments

Χ

A vector (including a data frame).

Value

- vec_unique(): a vector the same type as x containing only unique values.
- vec_unique_loc(): an integer vector, giving locations of unique values.
- vec_unique_count(): an integer vector of length 1, giving the number of unique values.

Missing values

In most cases, missing values are not considered to be equal, i.e. NA == NA is not TRUE. This behaviour would be unappealing here, so these functions consider all NAs to be equal. (Similarly, all NaN are also considered to be equal.)

See Also

vec_duplicate for functions that work with the dual of unique values: duplicated values.

Examples

```
x <- rpois(100, 8)
vec_unique(x)
vec_unique_loc(x)
vec_unique_count(x)

# `vec_unique()` returns values in the order that encounters them
# use sort = "location" to match to the result of `vec_count()`
head(vec_unique(x))
head(vec_count(x, sort = "location"))

# Normally missing values are not considered to be equal
NA == NA

# But they are for the purposes of considering uniqueness
vec_unique(c(NA, NA, NA, NA, 1, 2, 1))</pre>
```

%0%

Default value for empty vectors

Description

Use this inline operator when you need to provide a default value for empty (as defined by vec_is_empty()) vectors.

Usage

```
x %0% y
```

32

Arguments

x A vector

y Value to use if x is empty. To preserve type-stability, should be the same type as

х.

Examples

1:10 %0% 5 integer() %0% 5

Index

%0%, 31	vec_bind, 10
%in%, 22	vec_c, 13
D 1: 1 10 10	vec_c(), <i>12</i>
anyDuplicated(), 19	vec_cast(), <i>18</i>
as_list_of(list_of),4	<pre>vec_cast.vctrs_list_of (list_of), 4</pre>
hada umaka namaa() 8 10	vec_cbind (vec_bind), 10
base::make.names(), 8 , 10	vec_cbind(), <i>14</i>
duplicated(), 19	vec_chop, 15
duplicated(), 1)	vec_compare, 15
finalised, 24	vec_count, 16
	vec_data, 17
<pre>internal-faq-ptype2-identity, 2, 24</pre>	vec_default_cast, 18
is.na, 20	vec_duplicate, 19, 31
is_list_of (list_of), 4	vec_duplicate_any (vec_duplicate), 19
, _ ,,	vec_duplicate_detect (vec_duplicate), 19
length(), 28	vec_duplicate_id (vec_duplicate), 19
list_of, 4	vec_equal, 20
	vec_equal_na (vec_equal), 20
name specification topic, 5 , 14	vec_in (vec_match), 22
name_spec, 5	vec_init, 21
	vec_init(), 18
partial_factor, 6	
partial_frame,7	vec_init_along (vec_seq_along), 28
and tone 10	vec_is (vec_assert), 7
record types, 18	vec_is(), 21
rep(), 27	vec_is_empty (vec_size), 28
reserved, 9	vec_is_empty(), 31
rlang::names2(), <i>10</i>	vec_is_list, 21
seq_along(), 28	vec_match, 22
	vec_order, 23
size, 24	vec_proxy (vec_data), 17
split(), 30	vec_proxy(), 21
stop_incompatible_cast(), 18	vec_proxy_compare(), 16
$stop_incompatible_type(), 4, 19$	vec_ptype, 24
type, 29	<pre>vec_ptype(), 7</pre>
typeof(), 7	vec_ptype2(), <i>24</i>
typeor (), 7	<pre>vec_ptype2.vctrs_list_of(list_of), 4</pre>
unique(), <i>30</i>	<pre>vec_ptype_common (vec_ptype), 24</pre>
unspecified, 18, 24	<pre>vec_ptype_finalise(), 24</pre>
	<pre>vec_ptype_show(vec_ptype), 24</pre>
validate_list_of(list_of), 4	vec_rbind (vec_bind), 10
vec_as_names, 8	vec_rbind(), <i>14</i>
vec_as_names(), 11, 14	vec_recycle, 25
vec_assert, 7	vec_recycle(), 29
=	= · · · J · · · · · · · · · · · · · · ·

34 INDEX

```
vec_recycle_common (vec_recycle), 25
vec_repeat, 27
vec_restore(), 17, 18
vec_seq_along, 28
vec_size, 28
vec_size(), 25
vec_size_common (vec_size), 28
vec_size_common(), 26
vec_slice(), 15, 18, 29
vec_sort (vec_order), 23
vec_split, 30
vec_unique, 30
vec_unique(), 19
vec_unique_count (vec_unique), 30
vec_unique_loc (vec_unique), 30
```