Лаба 4.3.2(Б). Дифракция на ультразвуковых волнах

Цель работы: изучение дифракции света на синусоидальной акустической решётке и наблюдение фазовой решётки методом тёмного поля.

В работе используются: оптическая скамья, осветитель, два длиннофокусных объектива, кювета с жидкостью, кварцевый излучатель с микрометрическим винтом, генератор ультразвуковой частоты, линза, вертикальная нить на рейтере, микроскоп.

Теоретическая часть:

1. При прохождении ультразвуковой (УЗ) волны через жидкость ней возникают периодические оптические неоднородности, обусловленные разницей значений коэффициента преломления в областяхсжатия и разрежения.

Рис. 1: Дифракция световых волн на акустической решётке

2. При небольших амплитудах звуковой волны показатель преломления жидкости n меняется по закону:

$$n = n_0(1 + m\cos\Omega x),$$

где Ω — волновое число для УЗ-волны ($\Omega=2\pi/\Lambda$), Λ — длина УЗ-волны, m — глубина модуляции показателя преломления, определяемая интенсивностью ультразвуковой волны ($m\ll 1$).

- 3. Пусть фаза световых колебаний на передней поверхности жидкости равна нулю. Тогда на задней поверхности (т.е. в плоскости z=0) она равна $\varphi=knL=\varphi_0(1+m\cos\Omega x)$, где L толщина слоя жидкости в кювете, k волновое число для света ($k=2\pi/\lambda$), λ длина световой волны, $\varphi_0=kn_0L$. Таким образом, в плоскости z=0 фаза световых колебаний является периодической функцией координаты x, иными словами УЗ-волна в жидкости создаёт фазовую дифракционную решётку.
- 4. В нашей задаче, условие того, что можно считать акустическую решётку чисто фазовой, т.е. рассматривать её как тонкий фазовый экран, выглядит следующим образом:

$$m \ll \frac{\Lambda}{L} \sqrt{\frac{\lambda}{L}}.$$

Таким образом, чисто фазовая акустическая решётка реализуется лишь на достаточно слабой УЗ-волне.

5. После прохождения через кювету световое поле представляет совокупность не трёх, а большого числа плоских волн, распространяю- щихся под углами, определяемыми условием:

$$\Lambda \sin \theta_m = n\lambda$$
, $(m = 0, \pm 1, \pm 2, ...)$.

Каждая из этих волн соответствует одному из максимумов в дифракционной картине Фраунгофера.

6. Определяя на опыте положение дифракционных максимумов различного порядка, можно по предыдущей формуле найти длину Λ УЗ-волны и вычислить скорость v распространения ультразвуковых волн в жидкости, если известна частота колебаний кварцевого излучателя:

$$v = \Lambda \nu$$

Экспериментальная установка:

1. Для наблюдения дифракции света на УЗ-волнах на оптической скамье собирается установка, изображённая на рис.2.

Рис. 2: Схема наблюдения дифракции на акустической решётке

2. В силу малости углов θ_m , длина Λ ультразвуковой волны определяется по следующей формуле:

$$l_m = mf\frac{\lambda}{\Lambda},$$

где l_m — измеренное на опыте линейное расстояние между m—м и нулевым максимумами, а f — фокусное расстояние объектива $_2$.

3. Наблюдение оптических неоднородностей, создаваемых ультразвуковыми волнами в жидкости, методом тёмного поля.

В настоящей работе используется следующий способ получения видимого изображения решётки — метод тёмного поля, основанный на устранении центрального дифракционного максимума с помощью специального экрана. Как нетрудно показать, в поле зрения микроскопа будут наблюдаться чередующиеся светлые и тёмные полосы, причём расстояние между тёмными полосами соответствует смещению в плоскости $\Lambda/2$. Таким образом, должно наблюдаться характерное для метода тёмного поля удвоение числа деталей рассматриваемой структуры.

Рис. 3: Наблюдение акустической решётки методом тёмного поля

4. Установка с горизонтальной щелью

Рис. 4: Схема для наблюдения дифракции на акустической решётке

(b) Проволока Пр, перекрестие П (a) Устройство для вертикального и реперная линия Рл в фокальной перемещения излучателя плоскости объектива O_2

Параллельный пучок света, дифрагируя на стоячей звуковой волне, образует дифракционную картину в фокальной плоскости F (рис. 4) камерного объектива O_2 . Картину можно наблюдать в микроскоп M. Дифракционные полосы ориентированы горизонтально. Расстояние между ними можно измерить с помощью микрометрического винта B. Винт передвигает размещённые на стекле (рис. 6) в плоскости F перекрестие Π , тонкую реперную линию Pл и толстую проволоку Πp , которая используется в методе тёмного поля.

Ход работы:

Определение скорости ультразвука по дифракционной картине

1. Параметры установки:

$$f = (30.0 \pm 0.3)$$
cm
 $\lambda = 6400 \pm 200$ Å

- 2. Наблюдаем дифракционную картину для $\nu \approx 1.2 \cdot 10^6$ Гц.
- 3. Измерения по лимбу:
 - (а) центральное деление 10 мкм
 - (b) начальное положение 38.6
 - (c) 1 полный оборот 50
 - (d) лучшее положение 0
- 4. Измерим положения x_m шести-восьми дифракционных максимумов с помощью поперечного микрометрического винта микроскопа. Повторим измерения для 4 значений частоты. Для каждой длинны волны построим график $x_m(m)$, по наклону прямой определим расстояние между соседними полосами $l_m/m = \Delta x/\Delta m$. Рассчитаем длину $\Lambda = \frac{f \cdot \lambda}{k}$ УЗ-волны.

				κ					
$\nu, 10^6 \Gamma$ ц	max	-3	-2	-1	0	1	2	3	Скорость, м/с
1.06	Ү, мкм	276	152	20	-112	-252	-384	-520	1413
1.16	Ү, мкм	308	172	24	-112	-264	-412	-548	1667
1.26	Ү, мкм	356	204	48	-112	-276	-436	-592	1852
1.36	Ү, мкм		228	60	-112	-292	-464		2131

$$\bar{v}=1680~\mathrm{m/c}$$

5. Графики:

Метод темного поля

1. При разных значениях частоты будем наблюдать акустическую решетку. Будем снимать координаты первой и последней светлых полос и количество светлых промежутков между ними. Результаты сведем в таблицу:

ν , М Γ ц	$1/ u$, 1 / М Γ ц	x_1 (ед.)	x_{max} (ед.)	Кол-во полос	$\Lambda(\mathrm{e}\mathrm{g}.)$	$\Lambda({ m { m MM}})$
1,06	0,94	8,1	0,1	17	0,24	0,15
1,16	0,86	8,2	0,4	18	0,22	0,14
1,26	0,79	8,1	0,2	21	0,19	0,12
1,36	0,74	8,2	0	23	0,18	0,12
1,46	0,68	8,4	0,2	25	0,16	0,11
1,56	0,64	8,3	0,1	27	0,15	0,1
1,66	0,6	8,2	0,1	28	0,14	0,09
1,76	0,57	8	0,1	29	0,14	0,09

2. По полученным данным построим график зависимости $\Lambda(1/\nu)$:

Рис. 7: $k = 0.174 \pm 6.2$

3. По наклону прямой определяем скорость ультразвука в воде:

$$v = 1738 \pm 62 \text{ m/c}$$

Вывод:

Изучили дифракцию света на синусоидальной акустической решётке и пронаблюдали фазовую решётку методом тёмного поля. Опрделили скорость звука в воде обоими способами. В первом случае результат получился ближе к теоретическому, что логично, так как во втором случае резульатт больше зависел от качетва проведения эксперимента.