ARCS IN FINITE PROJECTIVE SPACES

SIMEON BALL

ABSTRACT. These notes are an outline of a course on arcs given at the Finite Geometry Summer School, University of Sussex, June 26-30, 2017.

Basic objects and definitions

Let K denote an arbitrary field.

Let \mathbb{F}_q denote the finite field with q elements, where q is the power of a prime p.

Let $V_k(\mathbb{K})$ denote the k-dimensional vector space over \mathbb{K} .

Let $PG_{k-1}(\mathbb{K})$ denote the (k-1)-dimensional projective space over \mathbb{K} .

Let $AG_k(\mathbb{K})$ denote the k-dimensional affine space over \mathbb{K} .

A projective point of $\mathrm{PG}_{k-1}(\mathbb{K})$ is a one-dimensional subspace of $\mathrm{V}_k(\mathbb{K})$ which, with respect to a basis, is denoted by (x_1,\ldots,x_k) .

The *weight* of a vector is the number of non-zero coordinates it has with respect to a fixed canonical basis.

A k-dimensional linear code of length n and minimum distance d is a k-dimensional subspace of $V_n(\mathbb{F}_q)$ in which every non-zero vector has weight at least d.

1. Normal rational curve

Example 1. A normal rational curve is a set of q+1 points in $\mathrm{PG}_{k-1}(\mathbb{K})$ projectively equivalent to

$$S = \{(1, t, \dots, t^{k-1}) \mid t \in \mathbb{K} \cup \{(0, \dots, 0, 1)\}.$$

Lemma 2. Any k-subset of S spans $PG_{k-1}(\mathbb{K})$.

Date: 27 June 2017.

An $arc\ S$ of $PG_{k-1}(\mathbb{K})$ is a subset of points with the property that any k-subset of S spans $PG_{k-1}(\mathbb{K})$. Implicitly, we will assume that S has size at least k.

For k = 3, a normal rational curve is the zero-set of a quadratic form. In the example above, $X_1X_3 - X_2^2$.

A symmetric bilinear form b(X,Y) is degenerate is b(X,y)=0 for some point y.

A quadratic form f(X) is degenerate if f(y) = 0 and b(X, y) = 0 for some point y.

Exercise 1. Let f(X) be a non-degenerate quadratic form in three variables. There is a basis of the space with respect to which $f(X) = X_1X_3 - X_2^2$.

The zero-set of a non-degenerate quadratic form is a *conic*.

Exercise 2. There is a unique conic through any arc of 5 points of $PG_2(\mathbb{K})$.

There is a $k \times k$ matrix M over K such that

$$M\begin{pmatrix} 1 \\ t \\ \vdots \\ t^{k-1} \end{pmatrix} = \begin{pmatrix} (ct+d)^{k-1} \\ (ct+d)^{k-2}(at+d) \\ \vdots \\ (ct+d)(at+d)^{k-2} \\ (at+d)^{k-1} \end{pmatrix}.$$

Exercise 3. The authormphism group of the normal rational curve is transitive on the points of the normal rational curve.

Exercise 4. The normal rational curve in $PG_{k-1}(\mathbb{K})$ projects onto a normal rational curve in $PG_{k-2}(\mathbb{K})$ form any point of the normal rational curve.

Exercise 5. There is a unique normal rational curve through any arc of k + 2 points of $PG_{k-1}(\mathbb{K})$.

2. Other examples of large arcs

Example 3. Let σ be the automorphism of \mathbb{F}_q , $q=2^h$, which takes x to x^{2^e} . The set

$$S = \{(1,t,t^\sigma) \mid t \in \mathbb{F}_q \cup \{(0,0,1),(0,1,0)\}.$$

is called the translation hyperoval. It is an arc of q+2 points in $\mathrm{PG}_2(\mathbb{F}_q)$, whenever (e,h)=1.

Exercise 6. Prove that Example 3 is an arc.

Example 4. Let σ be the automorphism of \mathbb{F}_q , $q=2^h$, which takes x to x^{2^e} . The set

$$S = \{(1, t, t^{\sigma}, t^{\sigma+1}) \mid t \in \mathbb{F}_q \cup \{(0, 0, 0, 1)\}.$$

is an arc of q+1 points in $PG_3(\mathbb{F}_q)$, whenever (e,h)=1.

Exercise 7. Prove that the autmorphism group of the arc is 2-transitive, by finding a matrix M such that

$$M\begin{pmatrix} 1\\t\\t^{\sigma}\\t^{\sigma+1}\end{pmatrix} = \begin{pmatrix} (ct+d)^{\sigma+1}\\(ct+d)^{\sigma}(at+d)\\(ct+d)(at+d)^{\sigma}\\(at+d)^{\sigma+1}\end{pmatrix}.$$

Prove that Example 4 is an arc.

Example 5. Let η be an element of \mathbb{F}_9 , $\eta^4 = -1$. The set

$$S = \{(1, t, t^2, t^3 + \eta t^6, t^4) \mid t \in \mathbb{F}_9 \cup \{(0, 0, 0, 0, 1)\}.$$

is an arc of size q+1 in $PG_4(\mathbb{F}_9)$.

Exercise 8. Prove that Example 5 is an arc.

3. The trivial upper bound and the MDS conjecture

Theorem 6. Let S be an arc of $PG_{k-1}(\mathbb{F}_q)$ of size q + k - 1 - t and let A be a subset of S of size k - 2. There are exactly t hyperplanes which meet S in precisely the points A.

Proof. The points of A span a (k-3)-dimensional subspace $\langle A \rangle$. There are q+1 hyperplanes containing $\langle A \rangle$ each containing at most one point of $S \setminus A$. Therefore there are q+1-(|S|-k-2) hyperplanes which meet S in precisely the points A.

Corollary 7. An arc of $PG_{k-1}(\mathbb{F}_q)$ has at most q + k - 1 points.

Proof. The follows from Theorem 6, since $t \ge 0$.

Theorem 8. Let S be an arc of $PG_{k-1}(\mathbb{F}_q)$. If $k \ge q$ then $|S| \le k+1$.

Proof. After choosing a suitable basis and scaling the points of S we can assume

$$S \supseteq \{e_1, \dots, e_k, e_1 + \dots + e_k\},\$$

where e_i is the *i*-th coordinate vector.

Suppose $u = (u_1, ..., u_k) \in S \setminus \{e_1, ..., e_k, e_1 + \cdots + e_k\}.$

If $u_i = 0$ for some i then the hyperplane $\ker X_i$ (the hyperplane with equation $X_i = 0$) contains k points of S, contradicting the arc property.

If $u_i \neq 0$ for all i then by the pigeon-hole principle there exists and i and j such that $u_i = u_j$, since $k \geq q$. But then the hyperplane $\ker(X_i - X_j)$ (the hyperplane with equation $X_i = X_j$) contains k points of S, contradicting the arc property.

Let G be a $k \times |S|$ matrix with entries from \mathbb{F}_q whose columns are vector representatives of the points of S.

Lemma 9. For all $u \in \mathbb{F}_q^k$ the vector uG has at most k-1 zeros.

Proof. Suppose that there are k coordinates where uG has zero coordinates. Then restricting G to these k coordinates we get a $k \times k$ submatrix of G which has rank less than k. Hence, the k columns of this submatrix are linearly dependent, contradicting the arc property.

Let $C = \{uG \mid u \in \mathbb{F}_q^k\}$. Then C is a k-dimensional subspace of $\mathbb{F}_q^{|S|}$.

Lemma 10. The minimum weight of a non-zero vector in C is |S| - k + 1.

Proof. This follows immediately from Lemma 9.

A k-dimensional linear maximum distance separable (MDS) code C of length n is a k-dimensional subspace of \mathbb{F}_q^n in which every non-zero vector has weight at least n-k+1. We have already established the following lemma.

Lemma 11. The linear code generated by the matrix G, whose columns are vector representatives of the points of an arc is a linear MDS code, and vice-verse, the set of columns of a generator matrix of a linear code, considered as a set of points of the projective space, is an arc.

The dual of a linear code C is,

$$C^{\perp} = \{ v \in \mathbb{F}_q \mid u \cdot v = 0 \text{ for all } u \in C \},$$

where $u \cdot v = u_1 v_1 + \dots + u_k v_k$.

Lemma 12. The linear code C is MDS if and only if C^{\perp} is MDS.

Proof. Suppose C is MDS and that C^{\perp} is not MDS. Then C^{\perp} contains a non-zero vector v with of weight less than n-(n-k)=k. Consider the columns of G which correspond to these non-zero coordinates of v. Then these columns are linearly dependent, contradicting the arc property implied by Lemma 11.

Corollary 13. There is an arc of size n in $PG_{k-1}(\mathbb{F}_q)$ if and only if there is an arc of size n in $PG_{n-k-1}(\mathbb{F}_q)$.

Proof. This follows from Lemma 11 and Lemma 12.

Conjecture 14. (The MDS conjecture) If $4 \le k \le q-3$ then an arc of $PG_{k-1}(\mathbb{F}_q)$ has size at most q+1.

4. The tangent functions and the Lemma of Tangents

Let S be an arc of $PG_{k-1}(\mathbb{F}_q)$ of size q+k-1-t and let A be a subset of S of size k-2.

Let $\alpha_1, \ldots, \alpha_t$ be t linear forms whose kernels are the t hyperplanes which meet S in precisely the points A, see Theorem 6.

Define (up to scalar factor) a homogeneous polynomial of degree t,

$$f_A(X) = \prod_{i=1}^t \alpha_i(X),$$

where $X = (X_1, ..., X_k)$.

A homogeneous polynomial f in k variables defines a function from $V_k(\mathbb{F}_q)$ to \mathbb{F}_q under evaluation. If we change the basis of $V_k(\mathbb{F}_q)$ then although the polynomial f will change its evaluation function will not. Put another way, any function from $V_k(\mathbb{F}_q)$ to \mathbb{F}_q is the evaluation of a polynomial once we fix a basis of $V_k(\mathbb{F}_q)$. Obviously, the polynomial we obtain depends on the basis we choose.

Lemma 15. (Segre's lemma of tangents) Let S be an arc of $\operatorname{PG}_{k-1}(\mathbb{F}_q)$ and let D be a subset of S of size k-3. For all $x,y,z\in S\setminus D$,

$$f_{D\cup\{x\}}(y)f_{D\cup\{y\}}(z)f_{D\cup\{z\}}(x) = (-1)^{t+1}f_{D\cup\{y\}}(x)f_{D\cup\{z\}}(y)f_{D\cup\{x\}}(z).$$

Proof. (k = 3). Let $f_a^*(X)$ be the homogeneous polynomial we obtain from $f_a(X)$ when we change the basis from the canonical basis to $B = \{x, y, z\}$.

The polynomial $f_x^*(X) = \prod_{i=1}^t (a_{i2}X_2 + a_{i3}X_3)$, for some $a_{ij} \in \mathbb{F}_q$.

The polynomial $f_y^*(X) = \prod_{i=1}^t (b_{i1}X_1 + b_{i3}X_3)$, for some $b_{ij} \in \mathbb{F}_q$.

The polynomial $f_z^*(X) = \prod_{i=1}^t (c_{i1}X_1 + c_{i2}X_2)$, for some $c_{ij} \in \mathbb{F}_q$.

Let $s \in S \setminus B$. The line joining x and s is $\ker(s_3X_2 - s_2X_3)$ where (s_1, \ldots, s_k) are the coordinates of s with respect to the basis B.

As s runs through the elements of $S \setminus B$, the element $-s_2/s_3$ runs through the elements of $\mathbb{F}_q \setminus \{a_{i3}/a_{i2} \mid i=1,\ldots,t\}$. Since there product of all the non-zero elements of \mathbb{F}_q is -1,

$$\prod_{s \in S \setminus B} \frac{-s_2}{s_3} \prod_{i=1}^t \frac{a_{i3}}{a_{i2}} = -1,$$

and since $\prod_{i=1}^{t} a_{i3} = f_{x}^{*}(z)$ and $\prod_{i=1}^{t} a_{i2} = f_{x}^{*}(y)$, we have

$$f_x^*(z) \prod_{s \in S \setminus B} (-s_2) = \prod_{s \in S \setminus B} (-s_2) s_3 f_x^*(y).$$

Now permuting x, y and z, we get

$$f_y^*(x) \prod_{s \in S \setminus B} (-s_3) = \prod_{s \in S \setminus B} s_1 f_y^*(z)$$

and

$$f_z^*(y) \prod_{s \in S \setminus B} (-s_1) = \prod_{s \in S \setminus B} s_2 f_z^*(x),$$

from which

$$f_x^*(z)f_y^*(x)f_z^*(y) = (-1)^{t+1}f_x^*(y)f_y^*(z)f_z^*(x).$$

Now, since f^* and f define the same functions on the points of $\mathrm{PG}_{k-1}(\mathbb{F}_q)$, the lemma follows.

Order the elements of S arbitrarily and let F be the first k-2 points of S.

Let A be a subset of S of size k-2, where $A \neq F$. Let e be the first element of $F \setminus A$ and a be the last element of $A \setminus F$. We scale $f_A(X)$ so that

$$f_A(e) = (-1)^{s(\sigma)(t+1)} f_{(A \cup \{e\}) \setminus \{a\}}(a),$$

where σ is the permutation that orders (A, e) as in the ordering of S and $s(\sigma)$ is the sign of the permutation σ .

Note that this scaling only makes sense if we fix a representative for each point of S.

Lemma 16. (Segre's lemma of tangents scaled and planar) Let S be an arc of $PG_2(\mathbb{F}_q)$. For all $x, y \in S$,

$$f_{\{x\}}(y) = (-1)^{t+1} f_{\{y\}}(x).$$

Proof. This follows from Lemma 15 and the fact that we have scaled $f_a(X)$ so that $f_e(x) = (-1)^{t+1} f_x(e)$.

Lemma 17. (Segre's lemma of tangents scaled) Let S be an arc of $PG_{k-1}(\mathbb{F}_q)$ and let $A = \{a_1, \ldots, a_{k-2}\}$ be a subset of S of size k-2. For any permutation σ of $\{1, \ldots, k-2\}$,

$$f_{a_1,\dots,a_{k-2}}(a_{k-1}) = (-1)^{s(\sigma)(t+1)} f_{a_{\sigma(1)},\dots,a_{\sigma(k-2)}}(a_{\sigma(k-1)}).$$

Lemma 17 can be proved by induction on the number of elements that $A = \{a_1, \ldots, a_{k-2}\}$ intersects F in and using Lemma 15.

5. The Segre-Blokhuis-Bruen-Thas form

A planar arc is an arc of $PG_2(\mathbb{F}_q)$.

The Segre form associated to a planar arc is the polynomial G(X,Y) whose existence is proved in the following theorem.

Theorem 18. Let $m \in \{1,2\}$ such that m-1=q modulo 2. If S is a planar arc of size q+2-t, where $|S| \geqslant mt+2$, then there is a homogeneous polynomial in three variables $\phi(Z)$, of degree mt, which gives a polynomial G(X,Y) under the substitution $Z_1 = X_2Y_3 - Y_2X_3$, $Z_2 = X_1Y_3 - Y_1X_3$, $Z_3 = X_2Y_1 - Y_2X_1$, with the property that for all $y \in S$

$$G(X,y) = f_y(X)^m.$$

Proof. Order the set S arbitrarily and let E be a subset of S of size mt + 2. Define

$$G(X,Y) = \sum_{a < b} f_a(b)^m \prod_{u \in E \setminus \{a,b\}} \frac{\det(X,Y,u)}{\det(a,b,u)}.$$

where the sum runs over subsets $\{a, b\}$ of E.

Then, for $y \in E$, the only non-zero terms in G(X, y) are obtained for a = y and b = y. Lemma 16 implies

$$G(X,y) = \sum_{a \in E \setminus y} f_a(y)^m \prod_{u \in E \setminus \{a,y\}} \frac{\det(X,y,u)}{\det(a,y,u)}.$$

With respect to a basis containing y, the polynomials G(X,y) and $f_y(X)^m$ are homogeneous polynomials in two variables of degree mt. Their values at the mt+1 points $x \in E \setminus \{y\}$ are the same, so we conclude that $G(X,y) = f_y(X)^m$.

If $y \notin E$ then we still have that with respect to a basis containing y, the polynomial G(X, y) is a homogeneous polynomial in two variables of degree mt. For $x \in E$,

$$G(x,y) = G(y,x) = f_x(y)^m = f_y(x)^m,$$

the last equality following from Lemma 16, and so again we conclude that $G(X,y) = f_y(X)^m$.

If $y \in S$ and x is a point on a tangent to S incident with y then $G(x,y) = f_y(x)^m = 0$. This implies that, changing the coordinates to $z_1 = x_2y_3 - y_2x_3$, etc, the point z is a zero of the polynomial $\phi(Z)$. Therefore, the set of zeros of ϕ contains the points in the dual plane, dual to the tangents of S.

Theorem 19. Let $m \in \{1, 2\}$ such that m - 1 = q modulo 2. If S is a planar arc of size q + 2 - t, where $|S| \ge mt + 2$, then S has a unique completion to a complete arc.

Proof. Suppose that S is incomplete, i.e. there is a point u such that $S \cup \{u\}$ is an arc. Then the polynomial we obtain from G(u,Y), when we change the basis to a basis containing u, is a homogenous polynomial in two variables of degree mt which is zero at all points y of S, since the line joining y and u is a tangent and so $G(u,y) = f_y(u)^m = 0$. Therefore G(X,u) is identically zero. This implies

$$\phi(u_3X_2 - u_2X_3, u_3X_1 - u_1X_3, u_1X_2 - u_2X_1) = 0,$$

so ϕ is zero at all points of the line $u_1Z_1 + u_2Z_2 + u_3Z_3 = 0$, so $u_1Z_1 + u_2Z_2 + u_3Z_3$ is a factor of $\phi(Z)$. Therefore, if S is incomplete, we can find the points which extend S to a larger arc by looking at the factors of $\phi(Z)$.

Theorem 20. If S is a planar arc of size at least $q - \sqrt{q} + 2$ and q is even then S is extendable to an arc of size q + 2.

Example 21. Let q be a square. Let I be the 3×3 identity matrix and let H be a 3×3 matrix with the property that $H^{\sqrt{q}} = H^t$. For any 3×3 matrix M, let

$$V(\mathbf{M}) = \{ x \in \mathrm{PG}_2(\mathbb{F}_q) \mid x^t \mathbf{M} x^{\sqrt{q}} = 0 \}$$

If the characteristic polynomial of H is irreducible over \mathbb{F}_q then the set of points $V(I) \cap V(M)$ is a complete arc of $PG_2(\mathbb{F}_q)$ of size $q - \sqrt{q} + 1$.

The Segre-Blokhuis-Bruen-Thas form associated to an arc is the polynomial $G(X_1, \ldots, X_{k-1})$ whose existence is proved in the following theorem.

We denote by $\det_j(X_1,\ldots,X_{k-1})$ the determinant in which the *j*-coordinate has been deleted.

Theorem 22. Let $m \in \{1,2\}$ such that m-1=q modulo 2. If S is a planar arc of size q+k-1-t, where $|S| \ge mt+k-1$, then there is a homogeneous polynomial in three variables $\phi(Z)$, of degree mt, which gives a polynomial $G(X_1, \ldots, X_{k-1})$ under the substitution $Z_j = \det_j(X_1, \ldots, X_{k-1})$, with the property that for all $\{y_1, \ldots, y_{k-2}\} \subset S$

$$G(X, y_1, \dots, y_{k-2}) = f_{\{y_1, \dots, y_{k-2}\}}(X)^m.$$

Theorem 23. Let $m \in \{1, 2\}$ such that m - 1 = q modulo 2. If S is a planar arc of size q + k - 1 - t, where $|S| \ge mt + k - 1$, then S has a unique completion to a complete arc.

6. A NEW FORM

For an arc S of $\operatorname{PG}_2(\mathbb{F}_q)$ of size q+2-t, let $\Phi[X]$ denote the subspace of the vector space of homogeneous polynomials of degree t in $X=(X_1,X_2,X_3)$ which are zero on S.

Theorem 24. Let S be a planar arc of size q + 2 - t. There is a polynomial F(X, Y), which is a homogeneous polynomial of degree t in both X and Y, such that

$$F(X,Y) = (-1)^{t+1}F(Y,X)$$

and with the property that for all $a \in S$,

$$F(X, a) = f_a(X) \pmod{\Phi[X]}.$$

Moreover, modulo $(\Phi[X], \Phi[Y])$ the polynomial F is unique.

Example 25. The planar arc of 12 points in $PG_2(\mathbb{F}_{13})$,

$$S = \{(3,4,1), (-3,4,1), (3,-4,1), (-3,-4,1), (4,3,1), (4,-3,1), (-4,3,1), (-4,-3,1), ($$

is an arc with t=3 and it is not contained in a curve of degree 3. Consequently, Theorem 31 implies that there is a unique polynomial F(X,Y) of degree three in both Xand Y with the property that $F(X,a)=f_a(X)$ for all $a\in S$. It is given by

$$F(x,y) = 5(x_2^2x_3y_1^2y_3 + y_2^2y_3x_1^2x_3 + x_2x_3^2y_1^2y_2 + x_1^2x_2y_2y_3^2 + x_1x_3^2y_1y_2^2 + x_1x_2^2y_1y_3^2) + 6x_1x_2x_3y_1y_2y_3 + x_1^3y_1^3 + x_2^3y_2^3 + x_3^3y_3^3.$$

Let S be a planar arc of size q+2-t and let F(X,Y) be a polynomial given by Theorem 31, i.e. a representative from the equivalence class modulo $(\Phi[X], \Phi[Y])$.

For each $i, j, k \in \{0, \dots, t-1\}$ where $i+j+k \leq t-1$, define $\rho_{ijk}(Y)$ to be the coefficient of $X_1^i X_2^j X_3^k$ in

$$F(X+Y,Y) - F(X,Y).$$

Lemma 26. For all $i, j, k \in \{0, ..., t-1\}$ where $i + j + k \leq t - 1$, the polynomial $\rho_{ijk}(Y)$ is either zero or a homogeneous polynomial of degree 2t - i - j - k which is zero on S.

Example 27. Applying Lemma 26 to the arc of size 12 in Example 25, we see that S lies on the intersection of the three quartic curves $x_3^4 = x_1^2 x_2^2$, $x_2^4 = x_1^2 x_3^2$ and $x_1^4 = x_3^2 x_2^2$.

We say that a polynomial $\phi(X)$ is hyperbolic on an arc S if ϕ has the property that if the kernel of a linear form γ is a bisecant ℓ to S then ϕ modulo γ factorises into at most two linear factors, which are zero at the points of S on ℓ , and whose multiplicities sum to the degree of ϕ .

Lemma 28. Let S be a planar arc of size q + 2 - t. If q is odd then one of the following holds: (i) there are two co-prime polynomials of degree at most $t + p^{\lfloor \log_p t \rfloor}$ which are zero on S; (ii) there is a non-zero homogeneous polynomial ϕ of degree at most $t + p^{\lfloor \log_p t \rfloor}$ which is hyperbolic on S.

Lemma 29. Let S be a planar arc of size $q + 2 - t \ge 8$. If there is a homogeneous polynomial ϕ of degree at most $\frac{1}{2}(q - t + 1)$ which is hyperbolic on S, then S is contained in a conic.

Theorem 30. Let S be a planar arc of size q + 2 - t not contained in a conic. If q is odd then S is contained in the intersection of two curves, sharing no common component, each of degree at most $t + p^{\lfloor \log_p t \rfloor}$.

Theorem 31. Let S be a arc of $PG_{k-1}(\mathbb{F}_q)$ of size q+k-1-t arbitrarily ordered. There is a function $F=F(X_1,\ldots,X_{k-1})$, which is homogeneous polynomial of degree t in $X_i=(X_{i1},\ldots,X_{ik})$ for each $i=1,\ldots,k-1$, with the following properties

(i) For all ordered subsets $A = \{a_1, \ldots, a_{k-2}\} \subseteq S$,

$$F(X, a_1, \dots, a_{k-2}) = f_A(X) \pmod{\Phi[X]}.$$

(ii) For all non-distinct $a_1, \ldots, a_{k-1} \in S$,

$$F(a_1,\ldots,a_{k-1})=0.$$

(iii) For any permutation $\sigma \in \text{Sym}(k-1)$,

$$F(X_1, X_2, \dots, X_{k-1}) = (-1)^{s(\sigma)(t+1)} F(X_{\sigma(1)}, X_{\sigma(2)}, \dots, X_{\sigma(k-1)}).$$

(iv) Modulo $\Phi[X_1], \ldots, \Phi[X_{k-1}]$ the polynomial F is unique.

7. Proof of the MDS conjecture for prime fields

Let S be an arc of $PG_{k-1}(\mathbb{F}_q)$ of size $q+k-1-t \ge k+t$ arbitrarily ordered.

For each subset E of S of size at least k + t, and subset $C = \{a_1, \ldots, a_{k-2}\}$ of E, define

$$\alpha_{C,E} = f_{a_1,\dots,a_{k-2}}(a_{k-1}) \prod_{u \in E \setminus C} \det(u, a_1, \dots, a_{k-1}).$$

Lemma 32. Let S be an arc of $PG_{k-1}(\mathbb{F}_q)$ of size $q + k - 1 - t \ge k + t$ arbitrarily ordered and let E be a subset of S of size k + t. For every subset A of E of size k - 2,

$$\sum_{C} \alpha_{C,E} = 0,$$

where the sum runs over the (k-1)-subsets of E containing A.

The following theorem proves the MDS conjecture for q prime.

Theorem 33. Let S be an arc of $PG_{k-1}(\mathbb{F}_q)$. If $k \leq p$ then $|S| \leq q+1$.

8. Classification of the largest arcs for $k \leq p$

Theorem 34. Let S be an arc of $PG_{k-1}(\mathbb{F}_q)$ of size q+1. If $k \leq p$ and $k \neq \frac{1}{2}(q+1)$ then S is a normal rational curve.

9. Extending small arcs to large arcs

Let G be an arc of $PG_{k-1}(\mathbb{F}_q)$ arbitrarily ordered.

Suppose that G can be extended to an arc S of $PG_{k-1}(\mathbb{F}_q)$ of size $q+k-1-t\geqslant k+t$.

Let n = |G| - k - t be a non-negative integer.

For each subset A of G of size k-2 and U of $G \setminus A$ of size n, Lemma 32 implies

$$\sum_{C} \alpha_{C,G} \prod_{u \in U} \det(u, C) = 0,$$

where the sum runs over the (k-1)-subsets of G containing A.

This system of equations can be expressed in matrix form by the matrix P_n , whose columns are indexed by the (k-1)-subsets C of G and whose rows are indexed by pairs (A, U), where A is a (k-2)-subset of G and U is a n-subset of $G \setminus A$. The ((A, U), C) entry of P_n is zero unless C contains A in which case it is $\prod_{u \in U} \det(u, C)$.

Theorem 35. If an arc G of $PG_{k-1}(\mathbb{F}_q)$ can be extended to an arc of size q+2k-1-|G|+n then the system of equations $P_nv=0$ has a solution in which all the coordinates of v are non-zero.

Theorem 36. If G is a subset of the normal rational curve of $PG_{k-1}(\mathbb{F}_q)$ of size 3k-6 and q is odd, then G cannot be extended to an arc of size q+2.