US Patent & Trademark Office Patent Public Search | Text View

United States Patent Application Publication Kind Code Publication Date Inventor(s) 20250265755 A1 August 21, 2025 Moll; Sharon et al.

HAND-TRACKED TEXT SELECTION AND MODIFICATION

Abstract

An Augmented Reality (AR) system is provided. The AR system generates a text scene object including virtual text objects based on a text and detect a text selection gesture made by a user of the AR system. The AR system generates a selection line based on a landmark of the user's hand. The AR system detects a confirmation gesture made by the user and sets a text selection start point at an intersection of the selection line with a start virtual text object of the one or more virtual text objects. The AR system detects a subsequent confirmation gesture made by the user, sets a text selection end point, and selects selected text from the text based on the text selection start point and the text selection end point.

Inventors: Moll; Sharon (Lachen, CH), Zhang; Dawei (Seattle, WA)

Applicant: Snap Inc. (Santa Monica, CA)

Family ID: 1000008578105

Appl. No.: 19/201406

Filed: May 07, 2025

Related U.S. Application Data

parent US continuation 17664010 20220518 parent-grant-document US 12327302 child US 19201406

Publication Classification

Int. Cl.: G06T11/60 (20060101); G02B27/01 (20060101); G06F3/01 (20060101); G06T19/00 (20110101); G06V20/20 (20220101); G06V40/10 (20220101); G06V40/20 (20220101)

U.S. Cl.:

CPC

G06T11/60 (20130101); **G02B27/0101** (20130101); **G02B27/017** (20130101); **G06F3/011** (20130101); **G06F3/017** (20130101); **G06T19/006** (20130101); **G06V20/20** (20220101); **G06V40/10** (20220101); **G06V40/28** (20220101); G02B2027/0138 (20130101); G02B2027/014 (20130101); G02B2027/0178 (20130101)

Background/Summary

PRIORITY CLAIM [0001] This application claims the benefit of U.S. patent application Ser. No. 17/664,010, filed on May 18, 2022, which is hereby incorporated by reference in its entirety.

TECHNICAL FIELD

[0002] The present disclosure relates generally to user interfaces and more particularly to user interfaces used in augmented and virtual reality.

BACKGROUND

[0003] A head-worn device may be implemented with a transparent or semi-transparent display through which a user of the head-worn device can view the surrounding environment. Such devices enable a user to see through the transparent or semi-transparent display to view the surrounding environment, and to also see objects (e.g., virtual objects such as a rendering of a 2D or 3D graphic model, images, video, text, and so forth) that are generated for display to appear as a part of, and/or overlaid upon, the surrounding environment. This is typically referred to as "augmented reality" or "AR." A head-worn device may additionally completely occlude a user's visual field and display a virtual environment through which a user may move or be moved. This is typically referred to as "virtual reality" or "VR." As used herein, the term AR refers to either or both augmented reality and virtual reality as traditionally understood, unless the context indicates otherwise.

[0004] A user of the head-worn device may access and use a computer software application to perform various tasks or engage in an entertaining activity. To use the computer software application, the user interacts with a user interface provided by the head-worn device.

Description

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

[0005] To easily identify the discussion of any particular element or act, the most significant digit or digits in a reference number refer to the figure number in which that element is first introduced.

[0006] FIG. 1 is a perspective view of a head-worn device, in accordance with some examples.

[0007] FIG. **2** is a further view of the head-worn device of FIG. **1**, in accordance with some examples.

[0008] FIG. **3** is a diagrammatic representation of a machine, in the form of a computing apparatus within which a set of instructions may be executed for causing the machine to perform any one or more of the methodologies discussed herein in accordance with some examples.

[0009] FIG. **4**A is a process flow diagram of a text selection and modification process in accordance with some examples.

[0010] FIG. **4**B illustrates a hand gesture in accordance with some examples.

[0011] FIG. 4C, FIG. 4D, and FIG. 4E are illustrations of an AR augmented scene including a text scene object in accordance with some examples.

[0012] FIG. **5**A is a process flow diagram of a text selection and modification process in accordance with some examples.

[0013] FIG. **5**B is another illustration of a gesture in accordance with some examples.

[0014] FIG. 5C, FIG. 5D, and FIG. 5E are illustrations of another AR augmented scene including a

text scene object in accordance with some examples.

[0015] FIG. **6**A is a process flow diagram of a virtual keyboard process in accordance with some examples.

[0016] FIG. **6**B is an illustration of a physical surface selection process in accordance with some examples.

[0017] FIG. **6**C is an illustration of a virtual keyboard user interface in accordance with some examples.

[0018] FIG. 7 is a block diagram showing a software architecture within which the present disclosure may be implemented, in accordance with some examples.

[0019] FIG. **8** is a block diagram illustrating details of the head-worn device of FIG. **1**, in accordance with some examples.

[0020] FIG. **9** is a diagrammatic representation of a networked environment in which the present disclosure may be deployed, in accordance with some examples.

DETAILED DESCRIPTION

[0021] AR systems are limited when it comes to available user input modalities. As compared other mobile devices, such as mobile phones, it is more complicated for a user of an AR system to indicate user intent and invoke an action or application. When using a mobile phone, a user may go to a home screen and tap on a specific icon to start an application. However, because of a lack of a physical input device such as a touchscreen or keyboard, such interactions are not as easily performed on an AR system. Typically, users can indicate their intent by pressing a limited number of hardware buttons or using a small touchpad. Therefore, it would be desirable to have an input modality that allowed for a greater range of inputs that could be utilized by a user to indicate their intent through a user input.

[0022] An input modality that may be utilized with AR systems is hand-tracking combined with Direct Manipulation of Virtual Objects (DMVO) where a user is provided with a user interface that is displayed to the user in an AR overlay having a 2D or 3D rendering. The rendering is of a graphic model in 2D or 3D where virtual objects located in the model correspond to interactive elements of the user interface. In this way, the user perceives the virtual objects as objects within an overlay in the user's field of view of the real-world scene while wearing the AR system, or perceives the virtual objects as objects within a virtual world as viewed by the user while wearing the AR system. To allow the user to manipulate the virtual objects, the AR system detects the user's hands and tracks their movement, location, and/or position to determine the user's interactions with the virtual objects.

[0023] Gestures that do not involve DMVO provide another input modality suitable for use with AR systems. Gestures are made by a user moving and positioning portions of the user's body while those portions of the user's body are detectable by an AR system while the user is wearing the AR system. The detectable portions of the user's body may include portions of the user's upper body, arms, hands, and fingers. Components of a gesture may include the movement of the user's arms and hands, location of the user's arms and hands in the real-world scene environment, and positions in which the user holds their upper body, arms, hands, and fingers. Gestures are useful in providing an AR experience for a user as they offer a way of providing user inputs into the AR system during an AR experience without having the user take their focus off of the AR experience. As an example, in an AR experience that is an operational manual for a piece of machinery, the user may simultaneously view the piece of machinery in the real-world scene through the lenses of the AR system, view an AR overlay on the real-world scene view of the machinery, and provide user inputs into the AR system.

[0024] Head-tracking information provides another input modality suitable for use with AR systems. AR system continually gathers and uses updated sensor data describing movements of the AR system to determine changes in the relative position and orientation relative to physical objects in the real-world scene environment. The sensor data permits detection of a focus of the user on

virtual objects and physical objects by the AR device within the field of view of the user. [0025] By combining hand-tracked DMVO, gesture, and head-tracking input modalities, an improved text entry user interface is provided to a user of an AR system. The AR system uses a combination of gesture and DMVO methodologies to provide for the user's selection and modification of text within a text scene object of the AR experience. The user makes a gesture to open or invoke a text selection and modification user interface and makes another gesture to begin selecting text from the text scene object. The AR system provides a virtual stylus to the user. The user uses the virtual stylus to select text to modify. With a free hand, a user makes gestures to set text selection points in a location pointed to by the virtual stylus.

[0026] In some examples, instead of a virtual stylus, the AR system detects a focus of a user to select portions of text to modify. The user focuses on a portion of the text where the user wants to set an end point, and the user makes gestures to set text selection points defining the selected text. [0027] In some examples, the AR system projects a virtual keyboard onto a physical surface and the user interacts with the virtual keyboard and with text displayed in a text scene object. The physical surface provides haptic feedback to the user.

[0028] Other technical features may be readily apparent to one skilled in the art from the following figures, descriptions, and claims.

[0029] FIG. 1 is a perspective view of an AR system in a form of a head-worn device (e.g., glasses 100 of FIG. 1), in accordance with some examples. The glasses 100 can include a frame 102 made from any suitable material such as plastic or metal, including any suitable shape memory alloy. In one or more examples, the frame 102 includes a first or left optical element holder 104 (e.g., a display or lens holder) and a second or right optical element holder 106 connected by a bridge 112. A first or left optical element 108 and a second or right optical element 110 can be provided within respective left optical element holder 104 and right optical element holder 106. The right optical element 110 and the left optical element 108 can be a lens, a display, a display assembly, or a combination of the foregoing. Any suitable display assembly can be provided in the glasses 100. [0030] The frame 102 additionally includes a left arm or temple piece 122 and a right arm or temple piece 124. In some examples the frame 102 can be formed from a single piece of material so as to have a unitary or integral construction.

[0031] The glasses **100** can include a computing device, such as a computer **120**, which can be of any suitable type so as to be carried by the frame **102** and, in one or more examples, of a suitable size and shape, so as to be partially disposed in one of the temple piece **122** or the temple piece **124**. The computer **120** can include one or more processors with memory, wireless communication circuitry, and a power source. As discussed below, the computer **120** comprises low-power circuitry, high-speed circuitry, and a display processor. Various other examples may include these elements in different configurations or integrated together in different ways. Additional details of aspects of computer **120** may be implemented as illustrated by the data processor **802** discussed below.

[0032] The computer **120** additionally includes a battery **118** or other suitable portable power supply. In some examples, the battery **118** is disposed in left temple piece **122** and is electrically coupled to the computer **120** disposed in the right temple piece **124**. The glasses **100** can include a connector or port (not shown) suitable for charging the battery **118**, a wireless receiver, transmitter or transceiver (not shown), or a combination of such devices.

[0033] The glasses **100** include a first or left camera **114** and a second or right camera **116**. Although two cameras are depicted, other examples contemplate the use of a single or additional (i.e., more than two) cameras. In one or more examples, the glasses **100** include any number of input sensors or other input/output devices in addition to the left camera **114** and the right camera **116**. Such sensors or input/output devices can additionally include biometric sensors, location sensors, motion sensors, and so forth.

[0034] In some examples, the left camera **114** and the right camera **116** provide video frame data

for use by the glasses **100** to extract 3D information from a real-world scene.

[0035] The glasses 100 may also include a touchpad 126 mounted to or integrated with one or both of the left temple piece 122 and right temple piece 124. The touchpad 126 is generally vertically arranged, approximately parallel to a user's temple in some examples. As used herein, generally vertically aligned means that the touchpad is more vertical than horizontal, although potentially more vertical than that. Additional user input may be provided by one or more buttons 128, which in the illustrated examples are provided on the outer upper edges of the left optical element holder 104 and right optical element holder 106. The one or more touchpads 126 and buttons 128 provide a means whereby the glasses 100 can receive input from a user of the glasses 100.

[0036] FIG. **2** illustrates the glasses **100** from the perspective of a user. For clarity, a number of the elements shown in FIG. **1** have been omitted. As described in FIG. **1**, the glasses **100** shown in FIG. **2** include left optical element **108** and right optical element **110** secured within the left optical element holder **104** and the right optical element holder **106** respectively.

[0037] The glasses **100** include forward optical assembly **202** comprising a right projector **204** and a right near eye display **206**, and a forward optical assembly **210** including a left projector **212** and a left near eye display **216**.

[0038] In some examples, the near eye displays are waveguides. The waveguides include reflective or diffractive structures (e.g., gratings and/or optical elements such as mirrors, lenses, or prisms). Light 208 emitted by the projector 204 encounters the diffractive structures of the waveguide of the near eye display 206, which directs the light towards the right eye of a user to provide an image on or in the right optical element 110 that overlays the view of the real-world scene seen by the user. Similarly, light 214 emitted by the projector 212 encounters the diffractive structures of the waveguide of the near eye display 216, which directs the light towards the left eye of a user to provide an image on or in the left optical element 108 that overlays the view of the real-world scene seen by the user. The combination of a GPU, the forward optical assembly 202, the left optical element 108, and the right optical element 110 provide an optical engine of the glasses 100. The glasses 100 use the optical engine to generate an overlay of the real-world scene view of the user including display of a user interface to the user of the glasses 100.

[0039] It will be appreciated however that other display technologies or configurations may be utilized within an optical engine to display an image to a user in the user's field of view. For example, instead of a projector **204** and a waveguide, an LCD, LED or other display panel or surface may be provided.

[0040] In use, a user of the glasses **100** will be presented with information, content and various user interfaces on the near eye displays. As described in more detail herein, the user can then interact with the glasses **100** using a touchpad **126** and/or the buttons **128**, voice inputs or touch inputs on an associated device (e.g., client device **826** illustrated in FIG. **8**), and/or hand movements, locations, and positions detected by the glasses **100**.

[0041] FIG. **3** is a diagrammatic representation of a computing apparatus **300** within which instructions **310** (e.g., software, a program, an application, an applet, an app, or other executable code) for causing the computing apparatus **300** to perform any one or more of the methodologies discussed herein may be executed. The computing apparatus **300** may be utilized as a computer **120** of glasses **100** of FIG. **1**. For example, the instructions **310** may cause the computing apparatus **300** to execute any one or more of the methods described herein. The instructions **310** transform the general, non-programmed computing apparatus **300** into a particular computing apparatus **300** programmed to carry out the described and illustrated functions in the manner described. The computing apparatus **300** may operate as a standalone device or may be coupled (e.g., networked) to other machines. In a networked deployment, the computing apparatus **300** may operate in the capacity of a server machine or a client machine in a server-client network environment, or as a peer machine in a peer-to-peer (or distributed) network environment. The computing apparatus **300** may comprise, but not be limited to, a server computer, a client computer, a personal computer

(PC), a tablet computer, a laptop computer, a netbook, a set-top box (STB), a PDA, an entertainment media system, a cellular telephone, a smart phone, a mobile device, a head-worn device (e.g., a smart watch), a smart home device (e.g., a smart appliance), other smart devices, a web appliance, a network router, a network switch, a network bridge, or any machine capable of executing the instructions **310**, sequentially or otherwise, that specify actions to be taken by the computing apparatus **300**. Further, while a single computing apparatus **300** is illustrated, the term "machine" may also be taken to include a collection of machines that individually or jointly execute the instructions **310** to perform any one or more of the methodologies discussed herein. [0042] The computing apparatus **300** may include processors **302**, memory **304**, and I/O components **306**, which may be configured to communicate with one another via a bus **344**. In some examples, the processors **302** (e.g., a Central Processing Unit (CPU), a Reduced Instruction Set Computing (RISC) processor, a Complex Instruction Set Computing (CISC) processor, a Graphics Processing Unit (GPU), a Digital Signal Processor (DSP), an A SIC, a Radio-Frequency Integrated Circuit (RFIC), another processor, or any suitable combination thereof) may include, for example, a processor **308** and a processor **312** that execute the instructions **310**. The term "processor" is intended to include multi-core processors that may comprise two or more independent processors (sometimes referred to as "cores") that may execute instructions contemporaneously. Although FIG. 3 shows multiple processors 302, the computing apparatus 300 may include a single processor with a single core, a single processor with multiple cores (e.g., a multi-core processor), multiple processors with a single core, multiple processors with multiples cores, or any combination thereof.

[0043] The memory **304** includes a main memory **314**, a static memory **316**, and a storage unit **318**, both accessible to the processors **302** via the bus **344**. The main memory **304**, the static memory **316**, and storage unit **318** store the instructions **310** embodying any one or more of the methodologies or functions described herein. The instructions **310** may also reside, completely or partially, within the main memory **314**, within the static memory **316**, within machine-readable medium **320** within the storage unit **318**, within one or more of the processors **302** (e.g., within the processor's cache memory), or any suitable combination thereof, during execution thereof by the computing apparatus **300**.

[0044] The I/O components **306** may include a wide variety of components to receive input, provide output, produce output, transmit information, exchange information, capture measurements, and so on. The specific I/O components **306** that are included in a particular machine will depend on the type of machine. For example, portable machines such as mobile phones may include a touch input device or other such input mechanisms, while a headless server machine will likely not include such a touch input device. It will be appreciated that the I/O components **306** may include many other components that are not shown in FIG. **3**. In various examples, the I/O components 306 may include output components 328 and input components 332. The output components 328 may include visual components (e.g., a display such as a plasma display panel (PDP), a light-emitting diode (LED) display, a liquid crystal display (LCD), a projector, or a cathode ray tube (CRT)), acoustic components (e.g., speakers), haptic components (e.g., a vibratory motor, resistance mechanisms), other signal generators, and so forth. The input components **332** may include alphanumeric input components (e.g., a keyboard, a touch screen configured to receive alphanumeric input, a photo-optical keyboard, or other alphanumeric input components), point-based input components (e.g., a mouse, a touchpad, a trackball, a joystick, a motion sensor, or another pointing instrument), tactile input components (e.g., a physical button, a touch screen that provides location and/or force of touches or touch gestures, or other tactile input components), audio input components (e.g., a microphone), and the like. [0045] In some examples, the I/O components **306** may include biometric components **334**, motion

components **336**, environmental components **338**, and position components **340**, among a wide array of other components. For example, the biometric components **334** include components to

detect expressions (e.g., hand expressions, facial expressions, vocal expressions, body gestures, or eye tracking), measure biosignals (e.g., blood pressure, heart rate, body temperature, perspiration, or brain waves), identify a person (e.g., voice identification, retinal identification, facial identification, fingerprint identification, or electroencephalogram-based identification), and the like. The motion components **336** may include inertial measurement units, acceleration sensor components (e.g., accelerometer), gravitation sensor components, rotation sensor components (e.g., gyroscope), and so forth. The environmental components **338** include, for example, illumination sensor components (e.g., photometer), temperature sensor components (e.g., one or more thermometers that detect ambient temperature), humidity sensor components, pressure sensor components (e.g., barometer), acoustic sensor components (e.g., one or more microphones that detect background noise), proximity sensor components (e.g., infrared sensors that detect nearby objects), gas sensors (e.g., gas detection sensors to detection concentrations of hazardous gases for safety or to measure pollutants in the atmosphere), or other components that may provide indications, measurements, or signals associated to a surrounding physical environment. The position components 340 may include location sensor components (e.g., a GPS receiver component), altitude sensor components (e.g., altimeters or barometers that detect air pressure from which altitude may be derived), orientation sensor components (e.g., an Inertial Measurement Unit (IM U)), and the like.

[0046] Communication may be implemented using a wide variety of technologies. The I/O components **306** further include communication components **342** operable to couple the computing apparatus **300** to a network **322** or devices **324** via a coupling **330** and a coupling **326**, respectively. For example, the communication components **342** may include a network interface component or another suitable device to interface with the network **322**. In further examples, the communication components **342** may include wired communication components, wireless communication components, cellular communication components, Near Field Communication (NFC) components, Bluetooth® components (e.g., Bluetooth® Low Energy), Wi-Fi® components, and other communication components to provide communication via other modalities. The devices **324** may be another machine or any of a wide variety of peripheral devices (e.g., a peripheral device coupled via a USB).

[0047] Moreover, the communication components **342** may detect identifiers or include components operable to detect identifiers. For example, the communication components **342** may include Radio Frequency Identification (RFID) tag reader components, NFC smart tag detection components, optical reader components (e.g., an optical sensor to detect one-dimensional bar codes such as Universal Product Code (UPC) bar code, multi-dimensional bar codes such as Quick Response (QR) code, Aztec code, Data Matrix, Dataglyph, MaxiCode, PDF417, Ultra Code, UCC RSS-2D bar code, and other optical codes), or acoustic detection components (e.g., microphones to identify tagged audio signals). In addition, a variety of information may be derived via the communication components **342**, such as location via Internet Protocol (IP) geolocation, location via Wi-Fi® signal triangulation, location via detecting an NFC beacon signal that may indicate a particular location, and so forth.

[0048] The various memories (e.g., memory **304**, main memory **314**, static memory **316**, and/or memory of the processors **302**) and/or storage unit **318** may store one or more sets of instructions and data structures (e.g., software) embodying or used by any one or more of the methodologies or functions described herein. These instructions (e.g., the instructions **310**), when executed by processors **302**, cause various operations to implement the disclosed examples.

[0049] The instructions **310** may be transmitted or received over the network **322**, using a

transmission medium, via a network interface device (e.g., a network interface component included in the communication components **342**) and using any one of a number of well-known transfer protocols (e.g., hypertext transfer protocol (HTTP)). Similarly, the instructions **310** may be transmitted or received using a transmission medium via the coupling **326** (e.g., a peer-to-peer

coupling) to the devices 324.

[0050] FIG. 4A is a process flow diagram of a text selection and modification process 400 of an AR system, such as, but not limited to, glasses 100 in accordance with some examples. FIG. 4B is an illustration of a hand gesture in accordance with some examples. FIG. 4C, FIG. 4D, and FIG. 4E are illustrations of an AR overlay 442 including a text scene object 444 having text 446 in accordance with some examples. During the text selection and modification process 400, the AR system utilizes gesture recognition methodologies and DMVO methodologies to implement a user interface for text selection and modification during an AR experience provided by the AR system. [0051] In operation 402, the AR system starts the text selection and modification process 400 by invoking an AR text processing user interface application 426. The AR text processing user interface application 426 connects to a scan services component 432. The scan services component 432 includes a gesture recognition service 430 that continuously recognizes gestures made by a user while using the AR system, and an object tracking service 428 that continuously tracks objects in the field of view of the AR system.

[0052] The object tracking service **428** scans for, detects, and tracks objects in a real-world scene

including landmarks on portions of the user's upper body, arms, and hands in the real-world scene. In some examples, the object tracking service **428** receives real-world scene video frame data of a real-world scene from one or more cameras of the AR system, such as cameras **114** and **116** of FIG. 1, and extracts features of objects including the user's upper body, arms, and hands from the realworld scene video frame data. The object tracking service **428** generates current tracking data **436** based on the extracted features. The current tracking data **436** includes current object data of objects in the real-world scene, and current skeletal model data 460 including identification, location, and categorization data of landmarks associated with the user's upper body, arms, and hands. The object tracking service **428** communicates the current skeletal model data **460** to the gesture recognition service **430**. In addition, the object tracking service **428** makes the current tracking data **436** available to the text selection and modification component **434**. [0053] The gesture recognition service **430** receives the current skeletal model data **460** from the object tracking service **428** and compares the current skeletal model data **460** to previously generated gesture model data. The gesture recognition service **430** detects a detected gesture on the basis of the comparison of the current skeletal model data 460 with the gesture model data and generates current detected gesture data **462** based on the detected gesture. In additional examples, the gesture recognition service **430** determines the detected gesture on the basis of categorizing the current skeletal model data **460** using artificial intelligence methodologies and a gesture model previously generated using machine learning methodologies.

[0054] In operation **404**, the AR system generates the text scene object **444** and adds the text scene object **444** to the AR overlay **442** provided by the AR system. For example, the AR device generates the text scene object **444** including one or more virtual text objects **468** based on the text **446**. The one or more virtual text objects **468** correspond to respective individual characters of the text **446**.

[0055] In operation **406**, the AR system detects a text selection mode gesture, such as, but not limited to, text selection mode gesture **440** of FIG. **4B**, made by the user based on current detected gesture data **462** received from the text selection and modification component **434**. In operation **408**, in response to detecting the text selection mode gesture **440**, the AR system provides a text selection and modification user interface as part of text scene object **444** and enters into a text selection mode.

[0056] In operation **410**, the AR system detects a defined text selection gesture **448**, such as, but not limited to, a pinching gesture, made by the user using one of their hands as a selection hand **464**, such as, but not limited to, the user's left hand, based on current detected gesture data **462** received from the text selection and modification component **434**.

[0057] In operation **412**, in response to detecting the text selection gesture **448**, the AR system

generates a selection line **450** based on a landmark of the user's hand. For example, the AR system projects the selection line **450** from a landmark of the user's hand making the text selection gesture **448** such that the selection line **450** projects orthogonally toward a surface of the virtual text objects **468** of the text scene object **444**. The selection line functions as a virtual stylus for the user. In an additional example, the AR system determines a landmark for the user's handheld in the text selection gesture **448**, such as, but not limited to, a middle point of two of the user's fingers that perform the text selection gesture **448**, based on current skeletal model data **438** received from the text selection and modification component **434**. The projected selection line **450** is a line collider that the user moves to select text **446**. The AR system detects collisions between the selection line **450** and the virtual text objects **468** of the text scene object **444** as the user positions the selection line **450** within the virtual text objects **468**. The AR system determines user interactions by the user with the virtual text objects **468** based on the detected collisions.

[0058] In operation **414**, the AR system tracks the user's selection hand making the text selection gesture **448** as the user moves their selection hand to position the selection line **450** to a position at a text selection start point **452** in the virtual text objects of the text scene object **444** based on current skeletal model data **438** received from the text selection and modification component **434**. [0059] In operation **416**, the AR system detects a confirmation gesture **454**, such as, but not limited to, a fist gesture, made by the user using a confirmation hand **466**, such as, but not limited to, the user's right hand, based on current detected gesture data **462** received by the AR system from the text selection and modification component **434**.

[0060] In operation **418**, the AR system sets a text selection start point **452** for a text selection from the text **446** at a position of an intersection of the selection line **450** with a start virtual text object of the virtual text objects **468** of the text scene object **444**. The text selection start point **452** is a starting point in text **446** of text that will be selected from text **446**.

[0061] In operation **420**, the AR system determines if a text selection end point **456** has been set. The AR system repeats operation **414**, operation **416**, and operation **418** to set the text selection end point **456** on the basis of determining that the text selection end point **456** has not been set. [0062] In repeated operation **414**, the AR system tracks the user's selection hand making the text selection gesture **448** as the user moves their selection hand to position selection line **450** at a position of a text selection end point **456** in the virtual text objects **468** based on current skeletal model data **438** received from the text selection and modification component **434**.

[0063] In some examples, the AR overlay **442** includes one or more user selectable virtual direction keys, such as, but not limited to, direction keys **470**, that the user may use to perform a text selection once the initial cursor placement is set.

[0064] In repeated operation **416**, the AR system detects a subsequent confirmation gesture **454** made by the user using their confirmation hand **466** based on the current detected gesture data **462** received by the AR system from the text selection and modification component **434**.

[0065] In repeated operation **418**, the AR system sets a text selection end point **456** for a text selection from the text **446** to a position of an intersection of the selection line **450** with an end virtual text object of the virtual text objects **468**. The text selection end point is an end point in text **446** of text that will be selected from text **446**.

[0066] In repeated operation **420**, the AR system determines if the text selection end point **456** has been set. The AR system selects selected text **458** between the text selection start point **452** and the text selection end point **456** from text **446** on the basis of determining that the text selection end point **456** has been set. In operation **422**, the AR system highlights the selected text **458** and performs a text operation on the selected text **458**. The text operation can be a modification of the selected text **458**, cutting the selected text **458**, copying the selected text **458**, changing the appearance of the selected text **458**, changing the formatting of the selected text, etc. [0067] In some examples, the AR system generates a virtual keyboard, such as, but not limited to, virtual keyboard **628** of FIG. **6**C, that is provided to the user in the AR overlay **442**. The user may

use the virtual keyboard **628** to edit the selected text **458** as described herein.

[0068] In some examples, the AR system generates a user selectable list of text modifications that are available for modifying the text, such as, but not limited to, cutting selected text **458**, copying the selected text **458**, changing the appearance of the selected text **458**, changing the formatting of the selected text, etc.

[0069] In operation **424**, the AR system exits the text selection mode and terminates the AR text processing user interface application **426**.

[0070] In some examples, the user makes a text selection mode exit gesture, such as, but not limited to, text selection mode gesture **440**, to terminate the AR text processing user interface application **426**.

[0071] In some examples, the AR overlay **442** includes a user selectable exit button (not shown) that when selected by the user terminates the AR text processing user interface application **426**. [0072] In some examples, the AR text processing user interface application **426** terminates after an operation is completed on the selected text **458**.

[0073] FIG. **5**A is a process flow diagram of a text selection and modification process **500** of an AR system, such as, but not limited to, glasses **100**; FIG. **5**B is an illustration of a text selection mode gesture; and FIG. **5**A, FIG. **5**C, FIG. **5**D, and FIG. **5**E are illustrations of an AR overlay **546** including a text scene object **542** having text **544** in accordance with some examples. During the text selection and modification process **500**, the AR system utilizes gesture recognition and head-tracking methodologies to implement a user interface for text selection and modification during an AR experience provided by the AR system.

[0074] In operation **502**, the AR system starts the text selection and modification process **500** by invoking an AR text processing user interface application **524**. The AR text processing user interface application **524** connects to a scan services component **530**. The scan services component **530** includes a gesture recognition service **528** that continuously recognizes gestures made by a user while using the AR system, an object tracking service **526** that continuously tracks objects in the field of view of the AR system, and a head-tracking head tracking service **538** that continuously tracks movement of the user's head while wearing the AR system.

[0075] The object tracking service **526** scans for, detects, and tracks objects in a real-world scene including landmarks on portions of the user's upper body, arms, and hands in the real-world scene. In some examples, the object tracking service **526** receives real-world scene video frame data from one or more cameras of the AR system, such as, but not limited to, cameras **114** and **116**, and extracts features of objects including the user's upper body, arms, and hands from the real-world scene video frame data. The object tracking service **526** generates current tracking data **556** based on the extracted features. The current tracking data **556** includes current object data of objects in the real-world scene, and current skeletal model data **554** including identification, location, and categorization data of landmarks associated with the user's upper body, arms, and hands. The object tracking service **526** communicates the current skeletal model data **554** to the gesture recognition service **528**. In addition, the object tracking service **526** makes the current tracking data **556** available to the text selection and modification component **532**.

[0076] The gesture recognition service **528** receives the current skeletal model data **554** from the object tracking service **526** and compares the current skeletal model data **554** to previously generated gesture model data. The gesture recognition service **528** detects a detected gesture on the basis of the comparison of the current skeletal model data **554** with the gesture model data and generates current detected gesture data **534** based on the detected gesture. In additional examples, the gesture recognition service **528** determines the detected gesture on the basis of categorizing the current skeletal model data **554** using artificial intelligence methodologies and a gesture model previously generated using machine learning methodologies.

[0077] The head-tracking head tracking service **538** receives head-tracking data from an IM U of the AR system, such as, but not limited to, an IM U included in position components **340** of FIG. **3**,

and makes current head-tracking data **536** available to the text selection and modification component **532**.

[0078] During execution of the AR text processing user interface application **524**, in operation **504**, the AR system adds the text scene object **542** to the AR overlay **546**. The text scene object **542** includes text **544** to be selected and modified by the user using the AR system. For example, the AR system generates the text scene object **542** including one or more virtual text objects **560** based on the text **544**. The one or more virtual text objects **560** correspond to respective individual characters of the text **544**.

[0079] In operation **506**, the AR system detects a text selection mode gesture, such as, but not limited to, start/stop text selection mode gesture **540**, based on current detected gesture data **534** received from the text selection and modification component **532**. In operation **508**, in response to detecting the text selection mode gesture, the AR system provides a text selection and modification user interface as part of text scene object **542** and enters into a text selection mode.

[0080] In operation **510**, the AR system projects a text selection icon **548** onto potential text selection points in the text **544** of the text scene object **542** based on current head-tracking data generated by the head tracking service **538**. For example, the AR system determines a direction the user is looking in the real-world scene based on current head-tracking data **536**. The AR system generates a ray originating at an eye location of the user and projects the ray in the direction the user is looking. The AR system determines a user focus point based on a location of an intersection of the ray with the text **544** of the text scene object **542**. The AR system generates the text selection icon **548** at the location of the user focus point in the text **544**.

[0081] In operation **512**, the AR system detects a confirmation gesture, such as a confirmation gesture **550**, made by the user using a confirmation hand **558**, such as the user's right hand, based on current detected gesture data **534** received by the AR system from the text selection and modification component **532**.

[0082] In operation **514**, in response to detecting the confirmation gesture **550**, the AR system sets the text selection start point in the text **544** based on a current potential text selection point located where the AR system is currently projecting the text selection icon **548** onto the text **544**. The text selection start point is a starting point in text **544** of text that will be selected from text **544**. [0083] In operation **516**, the AR system determines if a text selection end point has been set. The AR system repeats operation **510** (projecting the text selection icon **548** onto potential text selection points), operation **512** (detecting a subsequent confirmation gesture made using the confirmation hand), and operation **514** (setting a text selection end point) to set the text selection end point on the basis of determining that the text selection end point has not been set. [0084] In repeated operation **510** the AR system projects a text selection icon **548** onto potential text selection points in the text **544** of the text scene object **542** based on current head-tracking data generated by the head tracking service **538**.

[0085] In repeated operation **512**, the AR system detects a subsequent confirmation gesture **550** made by the user using the user's confirmation hand **558** based on current detected gesture data **534** received by the AR system from the text selection and modification component **532**.

[0086] In repeated operation **514**, in response to detecting the confirmation gesture **550**, the AR system sets the text selection end point in the text **544** based on a subsequent current potential text selection point located where the AR system is currently projecting the text selection icon **548** onto the text **544**. The text selection end point is an ending point in text **544** of text that will be selected from text **544**.

[0087] In repeated operation **516**, the AR system determines if the text selection end point has been selected. In operation **518**, the AR system selects selected text **552** and highlights selected text **552** between the text selection start point and the text selection end point on the basis of determining that the text selection end point has been set. In operation **520**, the AR system performs a text operation on the selected text **552**. The text operation can be a modification of the selected text

552, cutting the selected text **552**, copying the selected text **552**, changing the appearance of the selected text **458**, changing the formatting of the selected text, etc. In operation **522**, the AR system exits the text selection mode and terminates.

[0088] FIG. **6**A is a process flow diagram of a virtual keyboard process **600** of an AR system, such as, but not limited to, glasses **100**, in accordance with some embodiments. FIG. **6**B is a depiction of a user selection of a physical surface **640** in accordance with some embodiments. FIG. **6**C is an illustration of a virtual keyboard user interface **660** in accordance with some embodiments. During the virtual keyboard process **600**, the AR system utilizes gesture recognition methodologies and DMVO methodologies to implement a virtual keyboard **628** of a virtual keyboard user interface **660** on the physical surface **640** for text selection and modification during an AR experience. [0089] The AR system executes a virtual keyboard application **620** to provide the virtual keyboard user interface **660** to the user. The virtual keyboard application **620** connects to a scan services component **626** of the AR system. The scan services component **626** includes a gesture recognition service **624** that continuously recognizes gestures made by a user while using the AR system, an object tracking service **622** that continuously tracks objects in the field of view of the AR system, and a head-tracking service **646** that continuously tracks movement of the user's head while wearing the AR system.

[0090] The object tracking service **622** receives real-world scene video frame data of a real-world scene from a perspective of a user of the AR system from one or more cameras of the AR system, such as, but not limited to, cameras **114** and **116** of FIG. **1**. Included in the real-world scene video frame data are tracking video frame data of objects and portions of the user's body including portions of the user's upper body, arms, hands, and fingers in the real-world scene. The tracking video frame data includes video frame data of movement of portions of the user's upper body, arms, and hands as the user makes a gesture or moves their hands and fingers to interact with objects in an AR overlay of an AR experience; video frame data of locations of the user's arms and hands in space as the user makes the gesture or moves their hands and fingers to interact with the with objects in an AR overlay of an AR experience; video frame data of positions in which the user holds their upper body, arms, hands, and fingers as the user makes the gesture or moves their hands and fingers to interact with the with objects in an AR overlay of an AR experience; and object video frame data of objects in the real-world scene.

[0091] The object tracking service **622** scans for, detects, and tracks objects in the real-world scene including landmarks on portions of the user's upper body, arms, and hands in the real-world scene. In some examples, the object tracking service **622** receives the real-world scene video frame data from the one or more cameras and extracts features of objects including the user's upper body, arms, and hands from the tracking video frame data included in the real-world scene video frame. The object tracking service **622** generates current tracking data based on the extracted features. The current tracking data includes current object data **656** of objects in the real-world scene, and current skeletal model data **648** including identification, location, and categorization data of landmarks associated with the user's upper body, arms, and hands. The object tracking service **622** communicates the current skeletal model data **648** to the gesture recognition service **624**. In addition, the object tracking service **622** makes the current tracking data available to the virtual keyboard application **620**.

[0092] The gesture recognition service **624** receives the current skeletal model data **648** from the object tracking service **622** and compares the current skeletal model data **648** to previously generated gesture model data. The gesture recognition service **624** detects a detected gesture on the basis of the comparison of the current skeletal model data **648** with the gesture model data and generates current detected gesture data **650** based on the detected gesture. In additional examples, the gesture recognition service **624** determines the detected gesture on the basis of categorizing the current skeletal model data **648** using artificial intelligence methodologies and a gesture model previously generated using machine learning methodologies.

[0093] The head-tracking service **646** receives head-tracking data from an IM U of the AR system and makes current head-tracking data **652** available to the virtual keyboard application **620**. [0094] In some examples, the tracking gesture recognition service **624**, gesture recognition service **624**, and head-tracking service **646** operate continuously so that the current skeletal model data **648**, current detected gesture data **650**, and current head-tracking data **652** are available on demand for an application executing on the AR system.

[0095] During an AR experience, a user approaches a physical object **654** having a flat physical surface **640** upon which to project a virtual keyboard **628**. The user focuses on a text scene object **636** of an AR overlay **658** within the AR experience and physically touches the physical surface **640** with a text entry hand **630**, such as, but not limited to, their left hand. The user makes an open keyboard gesture, such as, but not limited to, open/close keyboard gesture **644**, with a free hand **642**, such as, but not limited to, their right hand. In operation **602**, the AR system detects the open keyboard gesture based on the current detected gesture data **650** generated by the gesture recognition service **624**. In response to detecting the open keyboard gesture, the AR system invokes the virtual keyboard application **620**.

[0096] In some examples, the AR system determines a user's focus on a physical surface location based on current head-tracking data received from the scan services component **626**. The physical surface location is determined based on a physical object that the user is focusing on without having the user touch the physical surface. The user uses a free hand to make an open keyboard gesture, such as, but not limited to, open/close keyboard gesture **644**, when the user is focusing on a surface that the user wants to select. The AR system detects the open/close keyboard gesture **644** and determines a physical surface that the user is currently focusing on as the physical surface location upon which a virtual keyboard is to be virtually projected within an AR experience. [0097] In some examples, the user makes a tapping gesture with a finger on a physical surface to indicate a physical surface upon which a virtual keyboard is to be virtually projected within an AR experience. The AR system detects the tapping motion and determines the location of the physical surface based on current skeletal model data received from the scan services component **626**. When the AR system generates a virtual keyboard, the virtual keyboard is centered on the location determined from the user's finger.

[0098] In some examples, the AR system highlights a physical surface based on the user's focus on the physical surface. In some examples, the AR system highlights a physical surface based on a determination of a physical surface location determined from the user touching the physical surface.

[0099] In operation **604**, the AR device detects a focus of the user on the text scene object **636** based on current head-tracking data **652** provided by the head-tracking service **646**, and a location of the text scene object **636** in the AR overlay **658**. In some examples, the AR device receives current head-tracking data **652** from the head-tracking service **646**. The AR system determines a direction the user is looking in the real-world scene based on current head-tracking data **536**. The AR system generates a ray originating at an eye location of the user and projects the ray in the direction the user is looking. The AR system detects the text scene object **636** based on an intersection of the ray with the text scene object **636**.

[0100] In operation **606**, the AR device determines a location in a user interface model that corresponds to a location of the physical surface **640** of a physical object **654** in the real-world scene based on current object data **656** received from the object tracking service **622**. For example, the AR device determines a location of a landmark associated with a tip of an index finger of the text entry hand **630** based on current skeletal model data **648** received from the object tracking service **622**. As the user is touching the physical surface **640**, the location of the physical surface **640** is the location of the landmark associated with the tip of the index finger of the user's text entry hand **630**. The AR device generates a geometric mesh of a virtual surface in the user interface model corresponding to the physical surface **640** based on the location of the physical surface **640**

and current object data **656** received from the object tracking service **622**.

[0101] In operation **608**, the AR device generates the virtual keyboard user interface **660** including the virtual keyboard **628** in the AR overlay **658** and associated with the text scene object **636**. The virtual keyboard **628** includes a plurality of virtual objects that constitute interactive virtual keys **632** of the virtual keyboard **628**. The virtual keys **632** are virtual objects representing geometric solids having respective locations in the user interface model or volume that corresponds to a volume of space in the real-world scene that is occupied by the virtual keyboard **628**. The AR device locates the virtual keyboard **628** at a location in the user interface model that corresponds to the location of the physical surface **640** in the real-world scene and orientates the virtual keyboard **628** such that a front surface of the virtual keyboard **628** corresponds to the geometric mesh of the virtual surface determined for the physical surface **640** of the physical object.

[0102] In operation **610**, the AR device provides the virtual keyboard user interface **660** including the virtual keyboard **628** in a display to the user, and the virtual keyboard **628** appears to the user as if the virtual keyboard **628** is located on the physical surface **640** of the physical object **654**. When the user interacts with the virtual keyboard **628**, the user touches the physical surface as the user selects one or more virtual keys **632** of the virtual keyboard **628**.

[0103] In operation 612, the AR device determines the user's selection of one or more selected virtual keys. For example, the AR device receives current skeletal model data 648 from the object tracking service 622. The AR device detects a landmark associated with the user's text entry hand 630, for example a tip of a forefinger, based on the current skeletal model data 648. The AR device generates a landmark collider 634 in the virtual keyboard user interface 660 based on the landmark. To select a virtual key from the virtual keys 632, the user moves their text entry hand 630 to move the landmark collider 634 within the virtual keyboard user interface 660. To move the landmark collider 634 over the virtual keys 632 without selecting a virtual key, the user retracts their text entry hand 630 away from the physical surface 640, and thus the virtual keys 632 in the user interface model thereby clearing the virtual keys 632. To select a virtual key, the user positions their text entry hand 630 over the virtual key and extends their text entry hand 630 to "press" or "poke" the virtual key until the landmark collider 634 collides with the selected virtual key and the user physically touches the physical surface 640. The AR device determines the user's selection of one or more selected virtual keys on the basis of detecting the collisions between the landmark collider 634 and the one or more selected virtual keys.

[0104] In operation **614**, the AR device provides entered text to the user in the text scene object **636**. For example, each of the selected virtual keys of the virtual keys **632** is associated with a character. The AR device generates entered text data based on the selected virtual keys and communicates the entered text data to the text scene object. The text scene object receives the entered text data and uses an optical engine of the AR system to provide the entered text data as entered text to the user using a display of the AR system.

[0105] In operation **616**, the AR device determines if the user is making a close keyboard gesture, such as, but not limited to, open/close keyboard gesture **644**. For example, the AR device receives current detected gesture data **650** from the gesture recognition service **624** and determines if a gesture being made by the user is the close keyboard gesture based on the current detected gesture data **650**. In operation **618**, the AR system closes the virtual keyboard user interface **660** and terminates the virtual keyboard application **620** on the basis of determining that the user is making the close keyboard gesture. The AR system continues determining the user's selection of the one or more virtual keys in operation **612** on the basis of determining that the user is not making the close keyboard gesture.

[0106] In some examples, the characters of the entered text data **638** provided to the user in the text scene object **636** are composed of virtual objects that the user interacts with using the landmark collider **634**. For example, the AR device detects that the user selects a character from the text scene object **636** on the basis of detecting a collision between the landmark collider **634** and the

selected character. Accordingly, the AR device can determine the user's selection or manipulation of the entered text data by detecting collisions between the landmark collider **634** and the virtual objects of the characters. Text selections can include selecting and highlighting a text area by the AR device detecting the user using their text entry hand **630** to drag the landmark collider **634** across the physical surface **640** in a location of the entered text data **638** containing characters to be selected. In some examples, the AR device provides a menu user interface to the user within the virtual keyboard user interface **660**. The menu user interface contains selectable text manipulation options including copy, cut, and paste in the form of virtual objects. The AR device detects the user's selection of the text manipulation items on the basis of detecting collisions between the landmark collider **634** and the virtual objects of the selectable text manipulation options. [0107] In some examples, the AR device of the AR system performs the functions of the gesture recognition service **624** and the head-tracking service **646** by utilizing various A Pls and system libraries.

[0108] FIG. 7 is a block diagram 700 illustrating a software architecture 704, which can be installed on any one or more of the devices described herein. The software architecture 704 is supported by hardware such as a machine 702 that includes processors 720, memory 726, and I/O components 738. In this example, the software architecture 704 can be conceptualized as a stack of layers, where individual layers provide a particular functionality. The software architecture 704 includes layers such as an operating system 712, libraries 708, frameworks 710, and applications 706. Operationally, the applications 706 invoke API calls 750 through the software stack and receive messages 752 in response to the API calls 750.

[0109] The operating system **712** manages hardware resources and provides common services. The operating system **712** includes, for example, a kernel **714**, services **716**, and drivers **722**. The kernel **714** acts as an abstraction layer between the hardware and the other software layers. For example, the kernel **714** provides memory management, processor management (e.g., scheduling), component management, networking, and security settings, among other functionalities. The services **716** can provide other common services for the other software layers. The drivers **722** are responsible for controlling or interfacing with the underlying hardware. For instance, the drivers 722 can include display drivers, camera drivers, BLUETOOTH® or BLUETOOTH® Low Energy drivers, flash memory drivers, serial communication drivers (e.g., Universal Serial Bus (USB) drivers), WI-FI® drivers, audio drivers, power management drivers, and so forth. [0110] The libraries **708** provide a low-level common infrastructure used by the applications **706**. The libraries **708** can include system libraries **718** (e.g., C standard library) that provide functions such as memory allocation functions, string manipulation functions, mathematic functions, and the like. In addition, the libraries **708** can include A PI libraries **724** such as media libraries (e.g., libraries to support presentation and manipulation of various media formats such as Moving Picture Experts Group-4 (MPEG4), Advanced Video Coding (H.264 or AVC), Moving Picture Experts Group Layer-3 (MP3), Advanced Audio Coding (AAC), Adaptive Multi-Rate (AMR) audio codec, Joint Photographic Experts Group (JPEG or JPG), or Portable Network Graphics (PNG)), graphics libraries (e.g., an OpenGL framework used to render in two dimensions (2D) and three dimensions (3D) graphic content on a display, GL Motif used to implement user interfaces), image feature extraction libraries (e.g., OpenlMAJ), database libraries (e.g., SQLite to provide various relational database functions), web libraries (e.g., WebK it to provide web browsing functionality), and the like. The libraries **708** can also include a wide variety of other libraries **728** to provide many other A Pls to the applications **706**.

[0111] The frameworks **710** provide a high-level common infrastructure that is used by the applications **706**. For example, the frameworks **710** provide various graphical user interface (GUI) functions, high-level resource management, and high-level location services. The frameworks **710** can provide a broad spectrum of other APIs that can be used by the applications **706**, some of which may be specific to a particular operating system or platform.

[0112] In some examples, the applications **706** may include a home Application **736**, a contacts Application **730**, a browser Application **732**, a book reader Application **734**, a location Application **742**, a media Application **744**, a messaging application **746**, a game Application **748**, and a broad assortment of other applications such as third-party applications **740**. The applications **706** are programs that execute functions defined in the programs. Various programming languages can be employed to create one or more of the applications **706**, structured in a variety of manners, such as object-oriented programming languages (e.g., Objective-C, Java, or C++) or procedural programming languages (e.g., C or assembly language). In a specific example, the third-party applications **740** (e.g., applications developed using the ANDROIDTM or IOSTM software development kit (SDK) by an entity other than the vendor of the particular platform) may be mobile software running on a mobile operating system such as IOSTM, ANDROIDTM, WINDOWS® Phone, or another mobile operating system. In this example, the third-party applications **740** can invoke the API calls **750** provided by the operating system **712** to facilitate functionality described herein.

[0113] FIG. **8** is a block diagram illustrating a networked system **800** including details of the glasses **100**, in accordance with some examples. The networked system **800** includes the glasses **100**, a client device **826**, and a server system **832**. The client device **826** may be a smartphone, tablet, phablet, laptop computer, access point, or any other such device capable of connecting with the glasses **100** using a low-power wireless connection **836** and/or a high-speed wireless connection **834**. The client device **826** is connected to the server system **832** via the network **830**. The network **830** may include any combination of wired and wireless connections. The server system **832** may be one or more computing devices as part of a service or network computing system. The client device **826** and any elements of the server system **832** and network **830** may be implemented using details of the software architecture **704** or the computing apparatus **300** described in FIG. **7** and FIG. **3** respectively.

[0114] The glasses **100** include a data processor **802**, displays **810**, one or more cameras **808**, and additional input/output elements **816**. The input/output elements **816** may include microphones, audio speakers, biometric sensors, additional sensors, or additional display elements integrated with the data processor **802**. Examples of the input/output elements **816** are discussed further with respect to FIG. **7** and FIG. **3**. For example, the input/output elements **816** may include any of I/O components **306** including output components **328**, motion components **336**, and so forth. Examples of the displays **810** are discussed in FIG. **2**. In the particular examples described herein, the displays **810** include a display for the user's left and right eyes.

[0115] The data processor **802** includes an image processor **806** (e.g., a video processor), a GPU & display driver 838, a tracking module 840, an interface 812, low-power circuitry 804, and highspeed circuitry **820**. The components of the data processor **802** are interconnected by a bus **842**. [0116] The interface **812** refers to any source of a user command that is provided to the data processor **802**. In one or more examples, the interface **812** is a physical button that, when depressed, sends a user input signal from the interface 812 to a low-power processor 814. A depression of such button followed by an immediate release may be processed by the low-power processor **814** as a request to capture a single image, or vice versa. A depression of such a button for a first period of time may be processed by the low-power processor **814** as a request to capture video data while the button is depressed, and to cease video capture when the button is released, with the video captured while the button was depressed stored as a single video file. Alternatively, depression of a button for an extended period of time may capture a still image. In some examples, the interface 812 may be any mechanical switch or physical interface capable of accepting user inputs associated with a request for data from the cameras **808**. In other examples, the interface **812** may have a software component, or may be associated with a command received wirelessly from another source, such as from the client device **826**.

[0117] The image processor **806** includes circuitry to receive signals from the cameras **808** and

process those signals from the cameras **808** into a format suitable for storage in the memory **824** or for transmission to the client device **826**. In one or more examples, the image processor **806** (e.g., video processor) comprises a microprocessor integrated circuit (IC) customized for processing sensor data from the cameras **808**, along with volatile memory used by the microprocessor in operation.

[0118] The low-power circuitry **804** includes the low-power processor **814** and the low-power wireless circuitry **818**. These elements of the low-power circuitry **804** may be implemented as separate elements or may be implemented on a single IC as part of a system on a single chip. The low-power processor **814** includes logic for managing the other elements of the glasses **100**. As described above, for example, the low-power processor **814** may accept user input signals from the interface **812**. The low-power processor **814** may also be configured to receive input signals or instruction communications from the client device **826** via the low-power wireless connection **836**. The low-power wireless circuitry **818** includes circuit elements for implementing a low-power wireless communication system. BluetoothTM Smart, also known as BluetoothTM low energy, is one standard implementation of a low power wireless communication system that may be used to implement the low-power wireless circuitry **818**. In other examples, other low power communication systems may be used.

[0119] The high-speed circuitry **820** includes a high-speed processor **822** may be any processor capable of managing high-speed communications and operation of any general computing system used for the data processor **802**. The high-speed processor **822** includes processing resources used for managing high-speed data transfers on the high-speed wireless connection **834** using the high-speed wireless circuitry **828**. In some examples, the high-speed processor **822** executes an operating system such as a LINUX operating system or other such operating system such as the operating system **712** of FIG. **7**. In addition to any other responsibilities, the high-speed processor **822** executing a software architecture for the data processor **802** is used to manage data transfers with the high-speed wireless circuitry **828**. In some examples, the high-speed wireless circuitry **828** is configured to implement Institute of Electrical and Electronic Engineers (IEEE) 802.11 communication standards, also referred to herein as Wi-Fi. In other examples, other high-speed communications standards may be implemented by the high-speed wireless circuitry **828**.

[0120] The memory **824** includes any storage device capable of storing camera data generated by the cameras **808** and the image processor **806**. While the memory **824** is shown as integrated with the high-speed circuitry **820**, in other examples, the memory **824** may be an independent standalone element of the data processor **802**. In some such examples, electrical routing lines may provide a connection through a chip that includes the high-speed processor **822** from image processor **806** or the low-power processor **814** to the memory **824**. In other examples, the high-speed processor **822** may manage addressing of the memory **824** such that the low-power processor **814** will boot the high-speed processor **822** any time that a read or write operation involving the memory **824** is desired.

[0121] The tracking module **840** estimates a pose of the glasses **100**. For example, the tracking module **840** uses image data and associated inertial data from the cameras **808** and the position components **340**, as well as GPS data, to track a location and determine a pose of the glasses **100** relative to a frame of reference (e.g., real-world scene environment). The tracking module **840** continually gathers and uses updated sensor data describing movements of the glasses **100** to determine updated three-dimensional poses of the glasses **100** that indicate changes in the relative position and orientation relative to physical objects in the real-world scene environment. The tracking module **840** permits visual placement of virtual objects relative to physical objects by the glasses **100** within the field of view of the user via the displays **810**.

[0122] The GPU & display driver **838** may use the pose of the glasses **100** to generate frames of virtual content or other content to be presented on the displays **810** when the glasses **100** are

functioning in a traditional augmented reality mode. In this mode, the GPU & display driver **838** generates updated frames of virtual content based on updated three-dimensional poses of the glasses **100**, which reflect changes in the position and orientation of the user in relation to physical objects in the user's real-world scene environment.

[0123] One or more functions or operations described herein may also be performed in an application resident on the glasses **100** or on the client device **826**, or on a remote server. For example, one or more functions or operations described herein may be performed by one of the applications **706** such as messaging application **746**.

[0124] FIG. **9** is a block diagram showing an example messaging system **900** for exchanging data (e.g., messages and associated content) over a network. The messaging system **900** includes multiple instances of a client device **826** which host a number of applications, including a messaging client **902** and other Applications **904**. A messaging client **902** is communicatively coupled to other instances of the messaging client **902** (e.g., hosted on respective other client devices **826**), a messaging server system **906** and third-party servers **908** via a network **830** (e.g., the Internet). A messaging client **902** can also communicate with locally-hosted Applications **904** using Application Program Interfaces (APIs).

[0125] A messaging client **902** is able to communicate and exchange data with other messaging clients **902** and with the messaging server system **906** via the network **830**. The data exchanged between messaging clients **902**, and between a messaging client **902** and the messaging server system **906**, includes functions (e.g., commands to invoke functions) as well as payload data (e.g., text, audio, video or other multimedia data).

[0126] The messaging server system **906** provides server-side functionality via the network **830** to a particular messaging client **902**. While some functions of the messaging system **900** are described herein as being performed by either a messaging client **902** or by the messaging server system **906**, the location of some functionality either within the messaging client **902** or the messaging server system **906** may be a design choice. For example, it may be technically preferable to initially deploy some technology and functionality within the messaging server system **906** but to later migrate this technology and functionality to the messaging client **902** where a client device **826** has sufficient processing capacity.

[0127] The messaging server system **906** supports various services and operations that are provided to the messaging client **902**. Such operations include transmitting data to, receiving data from, and processing data generated by the messaging client **902**. This data may include message content, client device information, geolocation information, media augmentation and overlays, message content persistence conditions, social network information, and live event information, as examples. Data exchanges within the messaging system **900** are invoked and controlled through functions available via user interfaces (UIs) of the messaging client **902**.

[0128] Turning now specifically to the messaging server system **906**, an Application Program Interface (API) server **910** is coupled to, and provides a programmatic interface to, application servers **914**. The application servers **914** are communicatively coupled to a database server **916**, which facilitates access to a database **920** that stores data associated with messages processed by the application servers **914**. Similarly, a web server **924** is coupled to the application servers **914** and provides web-based interfaces to the application servers **914**. To this end, the web server **924** processes incoming network requests over the Hypertext Transfer Protocol (HTTP) and several other related protocols.

[0129] The Application Program Interface (API) server **910** receives and transmits message data (e.g., commands and message payloads) between the client device **826** and the application servers **914**. Specifically, the Application Program Interface (API) server **910** provides a set of interfaces (e.g., routines and protocols) that can be called or queried by the messaging client **902** in order to invoke functionality of the application servers **914**. The Application Program Interface (API) server **910** exposes various functions supported by the application servers **914**, including account

registration, login functionality, the sending of messages, via the application servers **914**, from a particular messaging client **902** to another messaging client **902**, the sending of media files (e.g., images or video) from a messaging client **902** to a messaging server **912**, and for possible access by another messaging client **902**, the settings of a collection of media data (e.g., story), the retrieval of a list of friends of a user of a client device **826**, the retrieval of such collections, the retrieval of messages and content, the addition and deletion of entities (e.g., friends) to an entity graph (e.g., a social graph), the location of friends within a social graph, and opening an application event (e.g., relating to the messaging client **902**).

[0130] The application servers **914** host a number of server applications and subsystems, including for example a messaging server **912**, an image processing server **918**, and a social network server **922**. The messaging server **912** implements a number of message processing technologies and functions, particularly related to the aggregation and other processing of content (e.g., textual and multimedia content) included in messages received from multiple instances of the messaging client **902**. As will be described in further detail, the text and media content from multiple sources may be aggregated into collections of content (e.g., called stories or galleries). These collections are then made available to the messaging client **902**. Other processor and memory intensive processing of data may also be performed server-side by the messaging server **912**, in view of the hardware requirements for such processing.

[0131] The application servers **914** also include an image processing server **918** that is dedicated to performing various image processing operations, typically with respect to images or video within the payload of a message sent from or received at the messaging server **912**.

[0132] The social network server **922** supports various social networking functions and services and makes these functions and services available to the messaging server **912**. To this end, the social network server **922** maintains and accesses an entity graph within the database **920**. Examples of functions and services supported by the social network server **922** include the identification of other users of the messaging system **900** with which a particular user has relationships or is "following," and also the identification of other entities and interests of a particular user.

[0133] The messaging client **902** can notify a user of the client device **826**, or other users related to such a user (e.g., "friends"), of activity taking place in shared or shareable sessions. For example, the messaging client **902** can provide participants in a conversation (e.g., a chat session) in the messaging client **902** with notifications relating to the current or recent use of a game by one or more members of a group of users. One or more users can be invited to join in an active session or to launch a new session. In some examples, shared sessions can provide a shared augmented reality experience in which multiple people can collaborate or participate.

[0134] A "carrier signal" refers to any intangible medium that is capable of storing, encoding, or carrying instructions for execution by the machine, and includes digital or analog communications signals or other intangible media to facilitate communication of such instructions. Instructions may be transmitted or received over a network using a transmission medium via a network interface device.

[0135] A "client device" refers to any machine that interfaces to a communications network to obtain resources from one or more server systems or other client devices. A client device may be, but is not limited to, a mobile phone, desktop computer, laptop, portable digital assistants (PDAs), smartphones, tablets, ultrabooks, netbooks, laptops, multi-processor systems, microprocessor-based or programmable consumer electronics, game consoles, set-top boxes, or any other communication device that a user may use to access a network.

[0136] A "communication network" refers to one or more portions of a network that may be an ad hoc network, an intranet, an extranet, a virtual private network (VPN), a local area network (LAN), a wireless LAN (WLAN), a wide area network (WAN), a wireless WAN (WWAN), a metropolitan area network (MAN), the Internet, a portion of the Internet, a portion of the Public Switched

Telephone Network (PSTN), a plain old telephone service (POTS) network, a cellular telephone network, a wireless network, a Wi-Fi® network, another type of network, or a combination of two or more such networks. For example, a network or a portion of a network may include a wireless or cellular network and the coupling may be a Code Division Multiple Access (CDMA) connection, a Global System for Mobile communications (GSM) connection, or other types of cellular or wireless coupling. In this example, the coupling may implement any of a variety of types of data transfer technology, such as Single Carrier Radio Transmission Technology (1xRTT), Evolution-Data Optimized (EVDO) technology, General Packet Radio Service (GPRS) technology, Enhanced Data rates for GSM Evolution (EDGE) technology, third Generation Partnership Project (3GPP) including 3G, fourth generation wireless (4G) networks, Universal Mobile Telecommunications System (UMTS), High Speed Packet Access (HSPA), Worldwide Interoperability for Microwave Access (WiMAX), Long Term Evolution (LTE) standard, others defined by various standardsetting organizations, other long-range protocols, or other data transfer technology. [0137] A "component" refers to a device, physical entity, or logic having boundaries defined by function or subroutine calls, branch points, APIs, or other technologies that provide for the partitioning or modularization of particular processing or control functions. Components may be combined via their interfaces with other components to carry out a machine process. A component may be a packaged functional hardware unit designed for use with other components and a part of a program that usually performs a particular function of related functions. Components may constitute either software components (e.g., code embodied on a machine-readable medium) or hardware components. A "hardware component" is a tangible unit capable of performing some operations and may be configured or arranged in a particular physical manner. In various examples, one or more computer systems (e.g., a standalone computer system, a client computer system, or a server computer system) or one or more hardware components of a computer system (e.g., a processor or a group of processors) may be configured by software (e.g., an application or application portion) as a hardware component that operates to perform some operations as described herein. A hardware component may also be implemented mechanically, electronically, or any suitable combination thereof. For example, a hardware component may include dedicated circuitry or logic that is permanently configured to perform some operations. A hardware component may be a special-purpose processor, such as a field-programmable gate array (FPGA) or an application specific integrated circuit (ASIC). A hardware component may also include programmable logic or circuitry that is temporarily configured by software to perform some operations. For example, a hardware component may include software executed by a generalpurpose processor or other programmable processor. Once configured by such software, hardware components become specific machines (or specific components of a machine) tailored to perform the configured functions and are no longer general-purpose processors. It will be appreciated that the decision to implement a hardware component mechanically, in dedicated and permanently configured circuitry, or in temporarily configured circuitry (e.g., configured by software), may be driven by cost and time considerations. Accordingly, the phrase "hardware component" (or "hardware-implemented component") is to be understood to encompass a tangible entity, be that an entity that is physically constructed, permanently configured (e.g., hardwired), or temporarily configured (e.g., programmed) to operate in a particular manner or to perform some operations described herein. Considering examples in which hardware components are temporarily configured (e.g., programmed), the hardware components may not be configured or instantiated at any one instance in time. For example, where a hardware component comprises a general-purpose processor configured by software to become a special-purpose processor, the general-purpose processor may be configured as respectively different special-purpose processors (e.g., comprising different hardware components) at different times. Software accordingly configures a particular processor or processors, for example, to constitute a particular hardware component at one instance of time and to constitute a different hardware component at a different instance of time. Hardware components

can provide information to, and receive information from, other hardware components. Accordingly, the described hardware components may be regarded as being communicatively coupled. Where multiple hardware components exist contemporaneously, communications may be achieved through signal transmission (e.g., over appropriate circuits and buses) between or among two or more of the hardware components. In examples in which multiple hardware components are configured or instantiated at different times, communications between such hardware components may be achieved, for example, through the storage and retrieval of information in memory structures to which the multiple hardware components have access. For example, one hardware component may perform an operation and store the output of that operation in a memory device to which it is communicatively coupled. A further hardware component may then, at a later time, access the memory device to retrieve and process the stored output. Hardware components may also initiate communications with input or output devices, and can operate on a resource (e.g., a collection of information). The various operations of example methods described herein may be performed by one or more processors that are temporarily configured (e.g., by software) or permanently configured to perform the relevant operations. Whether temporarily or permanently configured, such processors may constitute processor-implemented components that operate to perform one or more operations or functions described herein. As used herein, "processorimplemented component" refers to a hardware component implemented using one or more processors. Similarly, the methods described herein may be partially processor-implemented, with a particular processor or processors being an example of hardware. For example, some of the operations of a method may be performed by one or more processors or processor-implemented components. Moreover, the one or more processors may also operate to support performance of the relevant operations in a "cloud computing" environment or as a "software as a service" (SaaS). For example, at some of the operations may be performed by a group of computers (as examples of machines including processors), with these operations being accessible via a network (e.g., the Internet) and via one or more appropriate interfaces (e.g., an A PI). The performance of some of the operations may be distributed among the processors, residing within a single machine as well as being deployed across a number of machines. In some examples, the processors or processorimplemented components may be located in a single geographic location (e.g., within a home environment, an office environment, or a server farm). In other examples, the processors or processor-implemented components may be distributed across a number of geographic locations. [0138] A "computer-readable medium" refers to both machine-storage media and transmission media. Thus, the terms include both storage devices/media and carrier waves/modulated data signals. The terms "machine-readable medium," "computer-readable medium" and "devicereadable medium" mean the same thing and may be used interchangeably in this disclosure. [0139] A "machine-storage medium" refers to a single or multiple storage devices and/or media (e.g., a centralized or distributed database, and/or associated caches and servers) that store executable instructions, routines and/or data. The term includes, but not be limited to, solid-state memories, and optical and magnetic media, including memory internal or external to processors. Specific examples of machine-storage media, computer-storage media and/or device-storage media include non-volatile memory, including by way of example semiconductor memory devices, e.g., erasable programmable read-only memory (EPROM), electrically erasable programmable readonly memory (EEPROM), FPGA, and flash memory devices; magnetic disks such as internal hard disks and removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks The terms "machine-storage medium," "device-storage medium," "computer-storage medium" mean the same thing and may be used interchangeably in this disclosure. The terms "machine-storage media," "computer-storage media," and "device-storage media" specifically exclude carrier waves, modulated data signals, and other such media, at some of which are covered under the term "signal medium."

[0140] A "processor" refers to any circuit or virtual circuit (a physical circuit emulated by logic

executing on an actual processor) that manipulates data values according to control signals (e.g., "commands", "op codes", "machine code", and so forth) and which produces associated output signals that are applied to operate a machine. A processor may, for example, be a Central Processing Unit (CPU), a Reduced Instruction Set Computing (RISC) processor, a Complex Instruction Set Computing (CISC) processor, a Graphics Processing Unit (GPU), a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (A SIC), a Radio-Frequency Integrated Circuit (RFIC) or any combination thereof. A processor may further be a multi-core processor having two or more independent processors (sometimes referred to as "cores") that may execute instructions contemporaneously.

[0141] A "signal medium" refers to any intangible medium that is capable of storing, encoding, or carrying the instructions for execution by a machine and includes digital or analog communications signals or other intangible media to facilitate communication of software or data. The term "signal medium" may be taken to include any form of a modulated data signal, carrier wave, and so forth. The term "modulated data signal" means a signal that has one or more of its characteristics set or changed in such a matter as to encode information in the signal. The terms "transmission medium" and "signal medium" mean the same thing and may be used interchangeably in this disclosure. [0142] Changes and modifications may be made to the disclosed examples without departing from the scope of the present disclosure. These and other changes or modifications are intended to be included within the scope of the present disclosure, as expressed in the following claims.

Claims

- 1. A computer-implemented method comprising: generating a text scene object including virtual text objects based on a text; detecting, using one or more cameras of an Augmented Reality (AR) system, a text selection mode gesture; providing a text selection interface; receiving head-tracking data from sensors of the AR system; projecting a text selection icon onto the text scene object based on the head-tracking data; detecting, using the one or more cameras, a first confirmation gesture made by a confirmation hand; setting a first text selection point based on a location of the text selection icon; detecting, using the one or more cameras, a second confirmation gesture made by the confirmation hand; setting a second text selection point based on a subsequent location of the text selection icon; and selecting text between the first and second text selection points.
- **2**. The computer-implemented method of claim 1, further comprising performing a text operation on the selected text.
- **3**. The computer-implemented method of claim 1, wherein projecting the text selection icon comprises generating a ray originating at an eye location of a user and projecting the ray in a direction the user is looking.
- **4.** The computer-implemented method of claim 3, further comprising determining a user focus point based on an intersection of the ray with the text scene object.
- **5.** The computer-implemented method of claim 1, wherein the text selection mode gesture and the first confirmation gesture are different gestures.
- **6.** The computer-implemented method of claim 1, wherein the first confirmation gesture and the second confirmation gesture are a same gesture.
- **7**. The computer-implemented method of claim 1, wherein the AR system comprises a head-worn device.
- **8.** A machine comprising: at least one processor; and at least one memory storing instructions that, when executed by the at least one processor, cause the machine to perform operations comprising: generating a text scene object including virtual text objects based on a text; detecting, using one or more cameras of an Augmented Reality (AR) system, a text selection mode gesture; providing a text selection interface; receiving head-tracking data from sensors of the AR system; projecting a text selection icon onto the text scene object based on the head-tracking data; detecting, using the

one or more cameras, a first confirmation gesture made by a confirmation hand; setting a first text selection point based on a location of the text selection icon; detecting, using the one or more cameras, a second confirmation gesture made by the confirmation hand; setting a second text selection point based on a subsequent location of the text selection icon; and selecting text between the first and second text selection points.

- **9.** The machine of claim 8, wherein the operations further comprise performing a text operation on the selected text.
- **10**. The machine of claim 8, wherein projecting the text selection icon comprises generating a ray originating at an eye location of a user and projecting the ray in a direction the user is looking.
- **11**. The machine of claim 10, wherein the operations further comprise determining a user focus point based on an intersection of the ray with the text scene object.
- **12.** The machine of claim 8, wherein the text selection mode gesture and the first confirmation gesture are different gestures.
- **13**. The machine of claim 8, wherein the first confirmation gesture and the second confirmation gesture are a same gesture.
- **14**. The machine of claim 8, wherein the AR system comprises a head-worn device.
- **15.** A machine-readable medium including instructions that, when executed by a machine, cause the machine to perform operations comprising: generating a text scene object including virtual text objects based on a text; detecting, using one or more cameras of an Augmented Reality (AR) system, a text selection mode gesture; providing a text selection interface; receiving head-tracking data from sensors of the AR system; projecting a text selection icon onto the text scene object based on the head-tracking data; detecting, using the one or more cameras, a first confirmation gesture made by a confirmation hand; setting a first text selection point based on a location of the text selection icon; detecting, using the one or more cameras, a second confirmation gesture made by the confirmation hand; setting a second text selection point based on a subsequent location of the text selection icon; and selecting text between the first and second text selection points.
- **16**. The machine-readable medium of claim 15, wherein the operations further comprise performing a text operation on the selected text.
- **17**. The machine-readable medium of claim 15, wherein projecting the text selection icon comprises generating a ray originating at an eye location of a user and projecting the ray in a direction the user is looking.
- **18**. The machine-readable medium of claim 17, wherein the operations further comprise determining a user focus point based on an intersection of the ray with the text scene object.
- **19**. The machine-readable medium of claim 15, wherein the text selection mode gesture and the first confirmation gesture are different gestures.
- **20**. The machine-readable medium of claim 15, wherein the first confirmation gesture and the second confirmation gesture are a same gesture.