Input/Output Ports and Interfacing

ELEC 330

Digital Systems Engineering

Dr. Ron Hayne

Images Courtesy of Ramesh Gaonkar and Delmar Learning

Basic I/O Concepts

- Peripherals such as LEDs and keypads are essential components of microcontroller-based systems
- Input devices
 - Provide digital information to an MPU
 - Examples: switch, keyboard, scanner, and digital camera
- Output devices
 - Receive digital information from an MPU
 - Examples: LED, seven-segment display, LCD, and printer
- Devices are interfaced to an MPU using I/O ports

I/O Interfacing

Interfacing and Addressing

• I/O ports

- Buffers and latches on the MCU chip
 - Assigned binary addresses by decoding the address bus
- Generally bidirectional
 - Internal data direction registers
- To read binary data from an input peripheral
 - MPU places the address of an input port on the address bus
 - Enables the input port by asserting the RD signal
 - Reads data using the data bus
- To write binary data to an output peripheral
 - MPU places the address of an output port on the address bus
 - Places data on data bus
 - Asserts the WR signal to enable the output port

PIC18F452/4520 I/O Ports

- MCU includes five I/O ports
 - PORTA, PORTB, PORTC, PORTD, PORTE
- Ports are multiplexed
 - Can be set up to perform various functions
- Each I/O port is associated with several SFRs
 - PORT
 - Functions as a latch or a buffer
 - TRIS
 - Data direction register
 - Logic 0 sets up the pin as an output
 - Logic 1 sets up the pin as an input
 - LAT
 - Output latch similar to PORT

PIC18F452/4520 I/O Ports

PORTA: Example of Multiple Fns

- Digital I/O: RA6-RA0
- Analog Input: AN0-AN4
- ◆ V_{REF}+: A/D Reference Plus V
- ◆ V_{REF}-: A/D Reference Minus V
- ◆ TOCK1: Timer0 Ext. Clock
- SS: SPI Slave Select Input
- LVDIN: Low V Detect Input

PIC18F452/4520 I/O Ports

Note 1: I/O pins have diode protection to VDD and Vss.
2: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (Option_REG<7>).

I/O Example

 Write instructions to set up pins RB7-RB4 of PORTB as inputs and pins RB3-RB0 as outputs

Opcode	Operands	Comments			
MOVLW	0xF0	;Load B'11110000' into WREG			
MOVWF	TRISB	;Set PORTB TRIS Reg			

Interfacing Output Peripherals

- Commonly used output peripherals in embedded systems
 - LEDs
 - Seven-Segment Displays
 - LCDs
- Two ways of connecting LEDs to I/O ports
 - Common Cathode
 - LED cathodes are grounded
 - Logic 1 from the I/O port turns on the LEDs
 - Current is supplied by the I/O port called current sourcing
 - Common Anode
 - LED anodes are connected to the power supply
 - Logic 0 from the I/O port turns on the LEDs
 - Current is received by the chip called current sinking

Interfacing Output Peripherals

330_09 10

Seven-Segment Display

- Seven-segment Displays
 - Used to display BCD digits
 - 0 thru 9
 - A group of 7 LEDs physically mounted in the shape of the number eight
 - Plus a decimal point
 - Each LED is called a segment
 - 'a' through 'g'
 - Two types
 - Common anode
 - Common cathode

Seven-Segment Display

- Common Anode
 - All anodes are connected together to a power supply
 - Cathodes are connected to data lines
- Logic 0 turns on a segment
- Example: To display the digit 1
 - All segments except b and c should be off
 - $11111001 = F9_{H}$

Common Anode

To Data Lines
Through an Interfacing Device

Seven-Segment Display

- Common Cathode
 - All cathodes are connected together to ground
 - Anodes are connected to data lines
- Logic 1 turns on a segment
- Example: To display digit 1
 - All segments except b and c should be off
 - $-00000110 = 06_{H}$

From Data Lines

Example 9.4

- Interfacing Seven-Segment Display to PORTB
 - Common Anode
 - Table Look-Up

Illustrative Program

- Problem Statement
 - Interface two common-anode seven-segment displays to PORTD and PORTC of the PIC18F
 - Write instructions to implement an up-counter, counting from 00 to 59
 - Display the count on the two seven-segment displays

330_09

Interfacing Input Peripherals

- Commonly used input peripherals
 - DIP switches, push-button keys, keyboards, and A/D converters
- DIP switch
 - One side of the switch is tied high
 - To a power supply through a resistor called a pull-up resistor
 - The other side is grounded
 - The logic level changes when the position is switched
- Push-button key
 - Same as the DIP switch except that contact is momentary

Interfacing Dip Switches

330_09

Reading from an I/O Port

- Read input switches on PORTB (RB7-RB4)
 - RB0 set HI (1)
 - Switches Open = LOW (0)
 - Switches Closed = HIGH (1)
- Display on PORTC

Opcode	Operands	Comments
MOVLW	0xF0	;Load B'11110000' into WREG
MOVWF	TRISB	;Set PORTB TRIS Reg
CLRF	TRISC	;Set PORTC as Output
BSF	PORTB,0	;Set RB0 High
MOVF	PORTB,W	;Read PORTB
MOVWF	PORTC	;Display on PORTC

330_09

Internal Pull-Up Resistor

- Turning off the internal FET provides a pull-up resistor
- Bit7 (RBPU) in the INTCON2 register enables or disables the pull-up resistor
 - Instruction to Enable Pull Up Resistors:BCF INTCON2,7

B7	B6	B5	B4	B4	В3	B2	B1	ave diode protection to VDD and Vss. eak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (Option_REG<7>).
RBPU								

RBPU = PORTB pull-up resistor enable bit

0 = Pull-up resistors are enabled

1 = Pull-up resistors are disabled

Interfacing Push-Button Keys

- When a key is pressed (or released), mechanical metal contact bounces momentarily and can be read as multiple inputs
- Key debounce
 - Eliminating reading of one contact as multiple inputs
 - Hardware or Software

330_09

Key Debounce Techniques

- Hardware technique
 - Two NAND gates
 - S-R latch
 - The output of the latch is a pulse without a bounce
 - +5V

 MAXIM
 MAX
 6816

 IN OUT

- Software technique
 - Wait for 10 to 20 ms after detection of a switch closure
 - If the reading is still the same it is accepted

21

- Problem statement
 - Interface a 4 x 4 Hex keypad to PORTB
 - Write a program to recognize a key pressed and encode the key in its binary value
 - Display binary code on PORTC

- Hardware (PIC18 Simulator)
 - 4 x 4 matrix keypad organized in the row and column format
 - Four columns are connected to the lower half of PORTB (RB0-RB3)
 - Four rows are connected to upper half of PORTB (RB4-RB7)
 - When a key is pressed, it makes a contact with the corresponding row and column

330_09 23

PIC18 Simulator Keypad Matrix

330_09

Software

- To recognize and encode the key pressed
 - Set all the columns High by sending ones
 - Check for any key pressed (non-zero)
 - Set one column High at a time
 - Check all the rows in that column
 - Once a key is identified
 - Encode based on its position in the column

330_09 25

Time Multiplex Scanning Technique

Problem statement

- Interface four common cathode seven-segment displays to PORTB and PORTC using the time multiplex scanning technique.
- Write instructions to display a four-digit number stored in data registers.

330_09 26

Time Multiplex Scanning

Hardware

- Eight data lines of PORTB are connected to the anodes of each display
- Each cathode is connected to PORTC (RC3-RC0) through a transistor
- Transistors (and LEDs) can be turned on by sending logic 1
- Each display is turned on and off in a sequence to display a digit

Time Multiplex Scanning

330_09

Time Multiplex Scanning

Software

- Codes of the numbers to be displayed are stored in data registers in sequence
- The program gets the codes from the data registers by using the pointer (FSR0) and sends them out to the LED segments through PORTB
- One display at a time is turned on by sending logic 1 to the corresponding transistor connected to PORTC
- After an appropriate delay, the first display is turned off and the next display is turned on
- Turning displays on/off is repeated in sequence

Problem statement

- Interface a 2-line x 20 character LCD module with the built-in HD44780 controller to I/O ports of the PIC18 microcontroller.
- Explain the control signals necessary to read from and write to the LCD.
- Write a program to display ASCII characters.

- Hardware
 - 20 x 2-line LCD display
 - Two lines with 20 characters per line
 - LCD has a display Data RAM
 - Stores data in 8-bit character code
 - Each register in Data RAM has its own address
 - Corresponds to its position on the line
 - Line 1 is 00_H to 13_H
 - Line 2 is 40_H to 53_H

330_09 32

- Driver HD44780
 - 8-bit data bus (RD7-RD0)
 - Three control signals
 - RS Register Select (RA3)
 - R/W Read/Write (RA2)
 - E Enable (RA1)
 - Three power connections
 - Power, ground, and variable resistor to control brightness

- Can be interfaced either in 8-bit mode or 4-bit mode
 - In 8-bit mode, all eight data lines are connected
 - In 4-bit mode, only four data lines are connected
 - Two transfers per character (or instruction) are needed
- Driver has two 8-bit internal registers
 - Instruction Register (IR) to write instructions to set up LCD
 - Table 9-3
 - Data Register (DR) to write data (ASCII characters)

330_09

- LCD Operation
 - When the MPU writes an instruction to IR or data to DR, the controller:
 - Sets DB7 high indicating that the controller is busy
 - Sets DB7 low after the completion of the operation
 - The MPU should always check whether DB7 is low before sending an instruction or a data byte

330_09 35

- Writing to or Reading from LCD (Table 9-4)
 - The MPU:
 - Asserts RS low to select IR
 - Asserts RS high to select DR
 - Reads from LCD by asserting the R/W signal high
 - Writes into LCD by asserting the R/W signal low
 - Asserts the E signal high and then low (toggles) to latch a data byte or an instruction

330_09 36

• Timing diagram: writing to LCD

330_09

- Software
 - To write into the LCD
 - Send the initial instructions to set up the LCD
 - 4-bit or 8-bit mode
 - Continue to check DB7 until it goes low
 - Write instructions to IR to set up LCD parameters
 - Number of display lines and cursor status
 - Write data to display a message

330_09