## Solutions for Sheet 3

Raphael Wude, Martin Brückmann, Claude Jordan, Daniel Degenstein

### PATTERN MATCHING AND MACHINE LEARNING FOR AUDIO SIGNAL PROCESSING

28. April 2022

#### Task 3.1

(a) We have the following formulas for cos(z) and  $u_k$ :

$$cos(z) = \frac{1}{2}e^{iz} + e^{-iz}$$
$$u_k = e^{\frac{2\pi ikn}{N}}$$

So for f, we get:

$$f(t) = \cos(4\pi t) + 4\cos(20\pi t) + 8\cos(2\pi 20t) = \cos(2\pi 2t) + 4\cos(2\pi 10t) + 8\cos(2\pi 20t)$$

$$= \frac{1}{2} \left( e^{2\pi 2ti} + e^{-2\pi 2ti} \right) + \frac{4}{2} \left( e^{2\pi 10ti} + e^{-2\pi 10ti} \right) + \frac{8}{2} \left( e^{2\pi 20ti} + e^{-2\pi 20ti} \right)$$

$$= \frac{1}{2} \left( e^{2\pi 2ti} + e^{-2\pi 2ti} \right) + 2 \left( e^{2\pi 10ti} + e^{-2\pi 10ti} \right) + 4 \left( e^{2\pi 20ti} + e^{-2\pi 20ti} \right)$$

With  $t = \frac{k}{N}$  we get:

$$f = \frac{1}{2} (u_2 + u_{N-2}) + 2 (u_{10} + u_{N-10}) + 4 (u_{20} + u_{N-20})$$

(b) We obtain from f:

$$|\hat{f}(k)| = w_k \cdot \frac{N}{2}$$

with  $w_2 = w_{N-2} = 1$ ,  $w_{10} = w_{N-10} = 2$ ,  $w_{20} = w_{N-20} = 4$  and otherwise  $w_k = 0$ .

c)



Abbildung 1: f(t)(top) and  $|\hat{f}(k)|$ (bottom)

# **Task 3.2**

The spectrum X is defined as  $X:=(X(0),X(1),...,X(N-1))^{\top}\in\mathbb{C}^{N}.$ 

$$X(k) = \sum_{n=0}^{N-1} x(n) \cdot e^{-2\pi i k n/N}$$

The vector  $x \in \mathbb{C}^4$  is given as  $x := [-2, 1, -1, 3]^{\top}$ 

Therefore N=4 and

$$x(0) = -2$$

$$x(1) = 1$$

$$x(2) = -1$$

$$x(3) = 3$$

Now we can calculate the spectrum X as follows:

$$X(0) = \sum_{n=0}^{3} x(n) \cdot e^{-2\pi i \cdot 0 \cdot n/4} = \sum_{n=0}^{3} x(n) = -2 + 1 - 1 + 3 = 1$$

$$X(1) = \sum_{n=0}^{3} x(n) \cdot e^{-2\pi i \cdot 1 \cdot n/4} = x(0) \cdot e^{-2\pi i \cdot 0/4} + x(1) \cdot e^{-2\pi i \cdot 1/4} + x(2) \cdot e^{-2\pi i \cdot 2/4} + x(3) \cdot e^{-2\pi i \cdot 3/4}$$
$$= 1 \cdot (-2) - i \cdot 1 + 1 + i \cdot 3 = -1 + 2i$$

$$X(2) = \sum_{n=0}^{3} x(n) \cdot e^{-2\pi i \cdot 2 \cdot n/4}$$

$$= x(0) \cdot e^{-2\pi i \cdot 2 \cdot 0/4} + x(1) \cdot e^{-2\pi i \cdot 2 \cdot 1/4} + x(2) \cdot e^{-2\pi i \cdot 2 \cdot 2/4} + x(3) \cdot e^{-2\pi i \cdot 2 \cdot 3/4}$$

$$= -2 \cdot e^{-2\pi i \cdot 0/4} + 1 \cdot e^{-2\pi i \cdot 2/4} - 1 \cdot e^{-2\pi i \cdot 4/4} + 3 \cdot e^{-2\pi i \cdot 6/4}$$

$$= -2 + e^{-2\pi i \cdot 2/4} - e^{-2\pi i \cdot 4/4} + 3 \cdot e^{-2\pi i \cdot 6/4}$$

$$= -2 - 1 - 1 + 3 \cdot (-1)$$

$$\begin{split} X(3) &= \sum_{n=0}^{3} x(n) \cdot e^{-2\pi i \cdot 3 \cdot n/4} \\ &= x(0) \cdot e^{-2\pi i \cdot 3 \cdot 0/4} + x(1) \cdot e^{-2\pi i \cdot 3 \cdot 1/4} + x(2) \cdot e^{-2\pi i \cdot 3 \cdot 2/4} + x(3) \cdot e^{-2\pi i \cdot 3 \cdot 3/4} \\ &= -2 \cdot e^{-2\pi i \cdot 0/4} + 1 \cdot e^{-2\pi i \cdot 3/4} - 1 \cdot e^{-2\pi i \cdot 6/4} + 3 \cdot e^{-2\pi i \cdot 9/4} \\ &= -2 + e^{-2\pi i \cdot 3/4} - e^{-2\pi i \cdot 6/4} + 3 \cdot e^{-2\pi i \cdot 9/4} \\ &= -2 + i + 1 + 3 \cdot (-i) \\ &= -1 - 2i \end{split}$$

The spectrum is  $X = (1, -1 + 2i, -7, -1 - 2i)^{\top}$ .

## **Task 3.3**

= -7



Abbildung 2: 6th root of unity



Abbildung 3: primitive 6th root of unity