

Benchmarks for cyber-physical systems:

A modular model library for building automation systems

ADHS 2018

University of Oxford

- growing interest in cyber-physical systems (CPS)
- smart buildings are exemplars of CPS

- growing interest in cyber-physical systems (CPS)
- smart buildings are exemplars of CPS
- research aims of interest:
 - ensure comfort
 - minimise consumption
 - ascertain reliability

- growing interest in cyber-physical systems (CPS)
- smart buildings are exemplars of CPS
- research aims of interest:
 - ensure comfort
 - minimise consumption
 - ascertain reliability
- need for framework to verify correctness

1

• we focus on building automation systems (BAS)

- we focus on building automation systems (BAS)
- mixed digital controls & continuous processes
- choice of model is an art
- different trade-offs of complexities

- we focus on building automation systems (BAS)
- mixed digital controls & continuous processes
- choice of model is an art
- different trade-offs of complexities

Building Automation Systems (BAS) setup

- vary in size and topology of building,
- smart buildings laboratory within the University of Oxford
- highly sensorised setup
- focus on modelling temperature

Building Automation Systems (BAS) setup

- vary in size and topology of building,
- smart buildings laboratory within the University of Oxford
- highly sensorised setup
- focus on modelling temperature

Building Automation Systems (BAS) setup

Components

- boiler
- valve
- heating coil
- mixer
- . . .
- . .
- zone

Components

- boiler
- valve
- heating coil
- mixer
- ...
- ..
- zone

Model description

- 1 discrete variable : Ben
- 1 continuous variable : $T_{sw,b}$
- 1 output : $T_{sw,b}$
- process noise: σ_{sw}
- constants; τ_{sw} , k_b

Model dynamics

$$dT_{\mathrm{sw,b}}(t) = \begin{cases} 0 & B_{\mathrm{en}}(t) = 0 \\ \left(\tau_{\mathrm{sw}}\right)^{-1} \left[\left(-T_{\mathrm{sw,b}}(t) + k_b\right) dt \right] + \sigma_{\mathrm{sw}} dW & B_{\mathrm{en}}(t) = 1 \end{cases}$$

Components

- boiler
- valve
- heating coil
- mixer
- ...
- ..
- zone

Types

- algebraic / differential
- non / linear
- continuous variables
- discrete modes
- noise

Coupling

- input-output
- control laws

Characteristics:

- modular structure
- flexible as it allows for generation of different benchmarks

Format:

Matlab files

github.com/natchi92/BASBenchmarks

How do we construct benchmarks using library?

How do we construct benchmarks using library?

- select individual components modules
- couple using input-output relationships

How do we construct benchmarks using library?

- select individual components modules
- couple using input-output relationships

Case studies:

- set-up three case studies
- each trading off a particular characteristic

CS1: deterministic or stochastic dynamics

- two zones, one radiator and a common supply air:
- we consider two different dynamics:
 - purely deterministic ones;
 - a stochastic model
- we discretise time

CS1: deterministic or stochastic dynamics

- $x \in \mathbb{R}^4$, $u \in \mathbb{R}$, $y \in \mathbb{R}^2$, $\Sigma \in \mathbb{R}^4$
- constant gain vector Q_d
- task: decide if traces remain within safe set for given time period

M_d: deterministic

$$x[k+1] = Ax[k] + Bu[k] + Q_d$$

M_s: stochastic

$$x[k+1] = Ax[k] + Bu[k] + Q_d + \Sigma W[k]$$

CS1: deterministic or stochastic dynamics

deterministic model

- reachability analysis (ra)
- tool: Axelerator

stochastic model

- probabilistic ra
- tool: FAUST²

CS2: large number of continuous variables

• focus on internal dynamics of two zones

CS2: large number of continuous variables

- discretise model
- neglect process noise
- $x_c \in \mathbb{R}^7$, $u_c \in \mathbb{R}$, $y_c \in \mathbb{R}^2$, $d_c \in \mathbb{R}^5$
- constant gain vector Q_c

$$\mathbf{M}_c: \begin{cases} x_c[k+1] &= A_c x_c[k] + B_c u_c[k] + F_c d_c[k] + Q_c \\ y_c[k] &= \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} x_c[k]. \end{cases}$$

CS2: large number of continuous variables

task: synthesis policy that minimises deviation from mean

policy synthesis

- set of abstract models
- relate via (ε, δ) simulation relations
- synthesise policy on abstract
- refine policy for original model
- resulting policy: safety
 probability of p = 0.7657

- focus on mixer, AHU air duct, and 1 zone components
- mixer position and fan settings used to maintain a comfortable temperature within the zone

- focus on mixer, AHU air duct, and 1 zone components
- mixer position and fan settings used to maintain a comfortable temperature within the zone

switching controls

- mixer: open (Op) or closed (Cl).
- fan: (off *O*, medium *M*, and high *H*)

• discrete modes q are in the set:

$$\{(O,-),(M,Op),(M,CI),\,(H,Op),(H,CI)\},$$

• discrete modes q are in the set:

$$\{(O, -), (M, Op), (M, Cl), (H, Op), (H, Cl)\},\$$

- continuous dynamics:
 - zone temperature (T_{z_1}) and supply air temperature (T_{sa})
 - continuous-time ordinary differential equations
 - neglect process noise

• discrete modes q are in the set:

$$\{(O, -), (M, Op), (M, CI), (H, Op), (H, CI)\},\$$

- continuous dynamics:
 - zone temperature (T_{z_1}) and supply air temperature (T_{sa})
 - continuous-time ordinary differential equations
 - neglect process noise
- transitions occur when crossing spatial guards:
 - denote deviations from temperature set-point

- task: reachability analysis of the hybrid model
- tool: SpaceEx

(a) Initial condition: $T_{z_1} = 15^{\circ} C$, $T_{s_2} = 15^{\circ} C$

(b) Initial condition: $T_{z_1} = 20^{\circ} C$, $T_{sa} = 20^{\circ} C$

Summary

• presented a modular & compositional library of models

Summary

- presented a modular & compositional library of models
- identified three sources of complexity:
 - presence of stochasticity
 - number of continuous variables
 - number of discrete modes

Summary

- presented a modular & compositional library of models
- identified three sources of complexity:
 - presence of stochasticity
 - number of continuous variables
 - number of discrete modes
- three different case studies
- need for a unified framework to address these complexities

Future work

- extension of library components
- formal description language

Future work

- extension of library components
- formal description language
- StocHy: Stochastic hybrid systems made easy!

Come find us at poster session!

Thank you!

nathalie.cauchi@cs.ox.ac.uk

github.com/natchi92/BASBenchmarks

Questions?