ESERCIZI di ALGEBRA LINEARE

Esercizio 1

Sia $f: M_2(\mathbb{C}) \to M_2(\mathbb{C})$ definita da

$$f\left(\begin{array}{cc} x & y \\ z & t \end{array}\right) = \left(\begin{array}{cc} 1 & 2 \\ 1 & -1 \end{array}\right) \cdot \left(\begin{array}{cc} x & y \\ z & t \end{array}\right)$$

Verificare che f è una applicazione lineare, trovare N(f) e Im(f). Trovare la matrice A associata a f rispetto alla base \mathcal{B} sul dominio e codominio, dove

$$\mathcal{B} = \{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 2 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & -1 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right) \}$$

Esercizio 2

Sia $P_4(\mathbb{R})$ l'insieme dei polinomi a coefficienti reali di grado strettamento minore di 4, e sia $f: P_4(\mathbb{R}) \to P_4(\mathbb{R})$ definita da f(p) = xp', dove p' è la derivata del polinomio p. Dimostrare che f è una applicazione lineare, e trovare la matrice associata a f rispetto alla base $\mathcal{B} = \{1, x, x^2, x^3\}$ sul dominio e alla base $\mathcal{C} = \{2, x - 1, x^2 + 1, x^3\}$ sul codominio.

Esercizio 3

Si consideri la seguente applicazione lineare: $f: \mathbb{R}^3 \to \mathbb{R}^3$

$$f\left(\begin{array}{c} x\\y\\z\end{array}\right) = \left(\begin{array}{c} x+y-z\\y+2z\\-z\end{array}\right)$$

Determinare la matrice A_1 associata a f rispetto alla base canonica su dominio e codominio.

Verificare che l'insieme
$$\mathcal{B} = \{v_1, v_2, v_3\}$$
, dove $v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $v_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$, $v_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

$$\begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}$$
, è una base di \mathbb{C}^3 .

Determinare la matrice A_2 associata a f rispetto alla base canonica su dominio e alla base \mathcal{B} sul codominio.

Determinare la matrice A_3 associata a f rispetto alla base $\mathcal B$ su dominio e alla base canonica sul codominio.

Esercizio 4

Siano V e W due spazi vettoriali su $\mathbb C$ di dimensione 2 e 3, rispettivamente, e siano $\mathcal B=\{v_1,v_2\}$ una base di V e $\mathcal D=\{w_1,w_2,w_3\}$ una base di W. Sia $f:V\to W$ l'applicazione lineare tale che $f(v_1)=w_1-2w_2+u_3, \, f(v_2)=w_3-2w_1$. Determinare la matrice associata a f rispetto alle basi $\mathcal B$ e $\mathcal C$. Determinare le componenti rispetto a $\mathcal C$ del vettore f(v), dove $v=\frac{-1}{2}v_1+v_2$.

1