An Invitation to Higher-Dimensional Auomata Theory

Uli Fahrenberg

EPITA Rennes, France

27 October 2022

Higher-dimensional automata

a in parallel with b:

a and b are independent

Higher-dimensional automata & concurrency

HDA as a model for concurrency:

- points: states
- edges: transitions
- squares, cubes etc.: independency relations (concurrently executing events)
- two-dimensional automata ≅ asynchronous transition systems
 [Bednarczyk]

[van Glabbeek 2006, TCS]: Up to history-preserving bisimilarity, HDA "generalize the main models of concurrency proposed in the literature" (notably, event structures and Petri nets)

A 3D example

- no cubes, all faces except middle horizontal
- a and b independent; c introduces conflict; d releases conflict

Precubical sets and higher dimensional automata

An loset is a finite, ordered and Σ -labelled set. (a list of events)

A precubical set *X* consists of:

- A set of cells X (cubes)
- Every cell $x \in X$ has an loset ev(x) (list of events active in x)
- We write $X[U] = \{x \in X \mid \text{ev}(x) = U\}$ for an loset U (cells of type U)
- For every loset U and $A \subseteq U$ there are: upper face map $\delta_A^1: X[U] \to X[U-A]$ (terminating events A) lower face map $\delta_A^0: X[U] \to X[U-A]$ (unstarting events A)
- Precube identities: $\delta^{\mu}_{A}\delta^{\nu}_{B} = \delta^{\nu}_{B}\delta^{\mu}_{A}$ for $A \cap B = \emptyset$ and $\mu, \nu \in \{0, 1\}$

A higher dimensional automaton (HDA) is a precubical set X with start cells $X_{\perp} \subseteq X$ and accept cells $X^{\top} \subseteq X$ (not necessarily vertices)

Example

- Automata have languages
- HDA don't (hitherto)
- (focus has been on operational and topological aspects)

$$L_1 = \{abc, acb, bac, bca, cab, cba\}$$

$$L_3 = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix}, \dots \right\}$$

$$L_1 = \{abc, acb, bac, bca, cab, cba\}$$

$$L_{2} = \left\{ \begin{pmatrix} a \\ b \to c \end{pmatrix}, \begin{pmatrix} a \\ c \to b \end{pmatrix}, \begin{pmatrix} b \\ a \to c \end{pmatrix}, \\ \begin{pmatrix} b \\ c \to a \end{pmatrix}, \begin{pmatrix} c \\ a \to b \end{pmatrix}, \begin{pmatrix} c \\ b \to a \end{pmatrix} \right\} \cup L_{1}$$
sets of pomsets
$$L_{3} = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \right\} \cup L_{2}$$

$$\begin{pmatrix}
a \rightarrow b \\
c \rightarrow d
\end{pmatrix}$$

not series-parallel!

Are all pomsets generated by HDA?

No, only (labeled) interval orders

- Poset (P, \leq) is an interval order iff it has an interval representation:
 - a set $I = \{[I_i, r_i]\}$ of real intervals
 - with order $[I_i, r_i] \leq [I_j, r_j]$ iff $r_i \leq I_j$
 - and an order isomorphism $(P, \leq) \leftrightarrow (I, \preceq)$
- [Fishburn 1970]

Pomsets with interfaces

Definition (Ipomset)

A pomset with interfaces (and event order): $(P, <, -\rightarrow, S, T, \lambda)$:

- finite set P;
- two partial orders < (precedence order), --→ (event order)
 - s.t. $< \cup --\rightarrow$ is a total relation;
- $S, T \subseteq P$ source and target interfaces
 - s.t. S is <-minimal, T is <-maximal.

Composition of ipomsets

- Gluing P * Q: P before Q, except for interfaces (which are identified)
- Parallel composition $P \parallel Q$: P above Q (disjoint union)

- For an HDA X, L(X) is a set of interval-order ipomsets
 - and closed under subsumption

MSCS

- For any interval order P, \exists HDA \square^P for which $L(\square^P) = \{P\} \downarrow$
 - and then for any HDA X, $P \in L(X)$ iff $\exists f : \Box^P \to X$

Definition (Rational Languages over Σ)

- Generated by \emptyset , $\{\epsilon\}$, and all $\{[a]\}$, $\{[\bullet \ a]\}$, $\{[a \bullet]\}$, $\{[\bullet \ a \bullet]\}$ for $a \in \Sigma$
- under operations \cup , *, \parallel and (Kleene plus) $^+$

Theorem (à la Kleene)

A language is rational iff it is recognized by an HDA.

CONCUR

Theorem (à la Myhill-Nerode)

A language is rational iff it has finite prefix quotient.

Myhill-Nerode

- $P \setminus L := \{ Q \in \mathsf{iiPoms} \mid PQ \in L \}$
- $suff(L) := \{P \setminus L \mid P \in iiPoms\}$

$\mathsf{Theorem}$

L is rational iff suff (L) is finite.

Construction $L \sim M(L)$:

- $P \sim_L Q :\Leftrightarrow P \backslash L = Q \backslash L$
- $P \approx_L Q :\Leftrightarrow \forall A \subseteq T_P : (P-A) \setminus L = (Q-A) \setminus L$
- cells of M(L) are \approx_I -equivalence classes
- M(L) may be non-deterministic
- if L is determinizable, then M(L) is deterministic (and minimal (?))
- but there exist non-determinizable languages
- in fact, there are infinitely ambiguous languages