IEEE 754浮点数

IEEE 754 浮点数标准

Kahan教授

www.cs.berkeley.edu/~wkahan/
.../ieee754status/754story.html

浮点数标准 IEEE754

• 单精度 32位

1 8-bits

23-bits

• 双精度 64 位

■ 扩展精度 80 位 (Intel)

S E M

1

15-bits

63 or 64-bits

单精度浮点数编码格式

S_(1bit) E_{(23~30共8}

M_(0~22共23bit)

符号位S,阶码E,尾数M

符号位	阶码	尾数	表示
0/1	255	非零1xxxx	NaN Not a Number
0/1	255	非零0xxxx	sNaN 发信号的 NaN
0	255	0	+∞
1	255	0	<i>-</i> ∞
0/1	1~254	f	$(-1)^{S} \times (1.f) \times 2^{(e-127)}$
0/1	0	f(非零)	$(-1)^{S} \times (0.f) \times 2^{(-126)}$
0/1	0	0	+0/-0

IEEE754单精度浮点数标准

• 规格化数:

代表数值: (-1)^s×1.m×2^{e-127}

- $e_{min} = 1$, $e_{max} = 254$
- 阶: e减去偏移量 127, 表达范围: -126 ~ +127
- 尾数: 采用原码表示。IEEE754 将小数点前的1作为隐藏位缺省存储, 使得尾数表示范围比实际存储多一位。
- 规格化数的最高数字位总是1, 1.m 是规格化数。

举例: 将如下十进制数用IEEE754 单精度浮点数用表示:

• 数值 F = 15213.0;

$$v = (-1)^{s} \times 1.m \times 2^{e-127}$$

- $15213_{10} = 11101101101101_2$ = $1.1101101101101_2 \times 2^{13}$
- 阶: 13
- $E = 13+127 = 140 = 10001100_2$
- 单精度浮点数15213.0 的IEEE754编码:
 - 0 10001100 1101101101101000000000

M

s E

将如下IEEE754 单精度浮点数用十进制数表示:

解:
$$s=1$$
, $e=129$, $f=1/4=0.25$, $(-1)^1 \times (1+0.25) \times 2^{129-127}$ $= -1 \times 1.25 \times 2^2$ $= -1.25 \times 4$ $= -5.0$

IEEE754 规格化浮点数表示范围

格式	最小值	最大值
单精度	$E_{min} = 1, M = 0,$ $1.0 \times 2^{1-127} = 2^{-126}$	$E_{\text{max}} = 254,$ $f = 1.11111, 1.1111 \times 2^{254-127}$ $= 2^{127} \times (2-2^{-23})$
双精度	$E_{min}=1$, $M=0$, $1.0 \times 2^{1-1023} = 2^{-1022}$	$E_{\text{max}} = 2046,$ $f = 1.1111, 1.1111 \times 2^{2046-1023}$ $= 2^{1023} \times (2-2^{-52})$

单精度: (有效尾数24位,相当于7位十进制有效位数) 双精度: (有效尾数53位,相当于17位十进制有效位数)

IEEE754 标准:零的表达

S	Е	M	
1	8-bits	23-bits	

- $\mathbf{E} = 000...0, \mathbf{M} = 000...0$
 - 表达: 0
 - 注意不同的值:+0和 −0

非规格化数

- 非规格化数(Subnormal)
- **E** = **000**...**0**, **M** \neq **000**...**0** (E = 0, M 非零) 代表: $(-1)^s \times 0.m \times 2^{-126}$

∞ (infinity)

S	E	М
---	---	---

1 8-bits

23-bits

$$E = 111...1, M = 000...0$$

- 表示 ∞ (infinity)
- 注意不同的值: + ∞ and ∞

- 一般是运算溢出 后得到的结果
- 例如: $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$

NaN

S	E	М	
1	8-bits	23-bits	

$$E = 111...1, M \neq 000...0$$

- 不是一个数 Not-a-Number (NaN)
- 表达当数值无法确定时,
- 例如: sqrt(-1), $\infty \infty$, $\infty \times 0$

IEEE 754的特点

- 规格化尾数隐藏位缺省存储,使得尾数表示范围更大
- 提供了非规格化数、NaN, ∞ 等多样化的数据表达
- 浮点0的形式和 整数0的表达形式相同
- 几乎可以用Unsigned Integer 比较器直接比较大小
 - 非规格化 vs. 规格化
 - 规格化 vs. 无穷大
 - 除了:
 - 要先比较符号位,负数的符号位是1
 - 必须考虑 -0 = 0
 - NaNs 比任何其他数值都大