Orange Labs

September 2022

Tutorial

KHIOPS 10.1

KHIOPS & KHIOPS VISUALIZATION

KHIOPS COCLUSTERING & KHIOPS COVISUALIZATION

MULTI-TABLE FUNCTIONALITIES

Khiops

- Optimal data preparation based on discretization and value grouping
- Scoring models for classification and regression
- Correlation analysis between pairs of variables

Khiops Visualization

Analysis of Khiops results using an interactive visualization tool

Khiops Coclustering

Correlation analysis of two or more variables using a hierarchical coclustering model

Khiops Covisualization

Exploratory analysis of Khiops Coclustering results using an interactive visualization tool

Multi-table functionalities

- Multi-table database
- Automatic feature construction
- Multi-table functionalities in Khiops and Khiops Coclustering

Khiops & Khiops Visualization

Khiops

- Optimal data preparation based on discretization and value grouping
- Scoring models for classification and regression
- Correlation analysis between pairs of variables

Khiops Visualization

 Analysis of Khiops results using an interactive visualization tool

Step 1 : Open an existing dictionary file

(ex: sample Iris.kdic)

- Dictionary file: contains one or more dictionaries
- Dictionary: description of variables of a database to use during analysis

Available actions:

- Open, Save, Save as, Close
- Edition (menu « Dictionary file/Inspect current dictionary », or NotePad)
 - Build dictionary from data table
 - Reload dictionary file
 - useful if it has been modified from an external editor

Step 1, bis: Build a new dictionary from a data table

(If no available dictionary)

Step 2: Specify train database

Step 2, bis: Specify test database

Three possibilities:

Complementary Specific None

Complementary (default)

The test database is the complementary of the train database according to the chosen sample percentage

Step 2, ter: Specify test database

The test database has it own independent specification: specific file, sampling, selection

Step 3 : Parameters

Step 3 bis: Advanced predictor parameters (optional)

Step 4 : Results

- Directory where all results files are written
- Prefix (ex: in case of several experiments)
- Brief description to summarize the current analysis
- Description of trained univariate preparation models
- Description of trained bivariate preparation models
- Technical description for deployment purposes
- Description of trained models with selected variables
- Evaluation on train database
- Evaluation on test database
 - Json report, to get the analysis results from external tools

Step 5: Start the analysis

1 - Train model

2 - Inspect the results using Khiops Visualization (double-click on .khi file)

18

Information on selected leaf

Leaf infos Target distribution in leaf

Leaf rules

Loof rules il A

Sequence of trre rules leading to the leaf

Leaf rules : L4			
Variable ↑	Туре	Partition	
SepalLength	Numerical	[4.3, 5.75]	
SepalWidth	Numerical	[2.95, 4.4]	

21

Exercises A and B ...

A: Perform a supervised classification on sample database Iris

B: Perform a Supervised classification on sample database Adult

Interpret the analysis results

Same as classification with a numerical target variable

In this case, bivariate analysis and tree construction are not available!

Exploratory of regression results using Khiops Visualization

24

Exercise C ...

C: Perform a regression of variable PetalLength of Iris

➡ Interpret the analysis results

Correlation analysis

(unsupervised, bivariate)

25

 Train a correlation model between two variables (categorical, numerical, both)

Correlation analysis

(unsupervised, bivariate)

26

Train a correlation model: advanced parameters

28

Exercises D, E, F and G...

- D : Perform the correlation analysis of the two most correlated variables of Iris (tip: analyze all pairs to identify the most informative)
- E: Idem with variables *PetalLength* and *PetalWidth* (tip: inspect the Variable pairs parameters)
- F: Idem with new constructed variables *PetalArea* and *SepalArea* (tip: use the derivation rule Product in dictionary, see KhiopsGuide: sections « Derivation rules » and « Appendix »)
- **G**: Perform the correlation analysis of all pairs of Adult involving variable *native_country*
- Interpret the analysis results

Variable construction

Parameters

Predictors

Feature engineering

Max number of constructed variables

- to build an analyze table from a multi-table schema (see later)
- automatic extraction of complex information to obtain accurate classifiers

Max number of trees

- combines natives or constructed variables to extract complex information
- better accuracy, at the expense of interpretability

Max number of pairs of variable

- to understand correlation between variables
- use rather for exploratory analysis rather than for better accuracy

Recommendation

- start with few constructed variables, and increase incrementally
- idem for trees
 - no tree for simpler, faster and more interpretable predictors
 - more and more trees for more accurate predictors

Orange Restricted

30

Exercise H ...

A: Perform a supervised classification on sample database Letter Build o, 10, 50 trees

Interpret the analysis results, and the trade-off between number of trees, training time and test accuracy

Integration in information systems

Batch mode

- to record and replay Khiops scripts
- to perform any Khiops task from any programming language
- see next slide
- Khiops Native Interface (KNI)
 - dynamic link library (DLL) for online deployment of Khiops models
 - package to download from <u>www.khiops.com</u>
- Python Khiops Library (pykhiops)
 - to perform any Khiops task from python
 - to inspect any Khiops analysis results from python
 - python package available from <u>www.khiops.com</u>
- JSON file exports
 - Khiops dictionaries and analysis results can be exported from the Khiops tool to exploit Khiops results from any programming language

Batch mode

Start a Shell Khiops

Record a script « automatically» using Khiops user interface

khiops -o my script. kh

o = output

Replay a script from the shell khiops —i my script. kh

i = input

Replay a script from Windows Explorer right click on script file

33

Exercise I ...

I: Record a script file, then replay it ...

🔷 Deploy a model

Steps for model deployment

- 1- Start from a modeling dictionary « Modeling.kdic »
 - In « Data dictionary » pane
- 2- Choose the variables to deploy
 - Inspect the modeling dictionary In « Data dictionary » pane by right-click in the "Dictionaries in file" list
 - Suppress the « Unused » tag from identifier variables
 - Select the prediction variables to deploy
- 3- Menu: "Tools -> Deploy model ">
 - 4- Deploy model dialog box
 - Select deployment dictionary
 - Select input database Select output database
 - Click on « Deploy model » button

35

Exercise J ...

J: Deploy a classifier on database Iris

Khiops Coclustering & Khiops Covisualization

Khiops Coclustering

 Correlation analysis of two or more variables using a hierarchical coclustering model

Khiops Covisualization

 Exploratory analysis of Khiops Coclustering results using an interactive visualization tool

Khiops Coclustering & Khiops Covisualization

- Train a coclustering model
 - Use of Khiops Coclustering back-end tool
 - Co-partition of two or more categorical or numerical variables
 - At each level of the hierarchy, the merge of clusters with the minimum information loss is performed
 - Write results in a coclustering report file « .khcj »

- Exploratory analysis of the results
 - Use of Khiops Covisualization tool
 - Navigation in the hierarchy of models

Train a coclustering model

38

Step 1: Open an existing dictionary

(ex: sample Adult.kdic)

Description of variables to use during analysis

Available actions:

- Open, Save, Save as, Close
- Edition (menu (Dictionary file/Inspect current dictionary)), or NotePad)
- Reload dictionary file
- Build dictionary from data table

Step 2: Specification of used database

Detect file format: heuristic help that scans the first few lines to guess the file format. The header line and field separator are updated on success, with a warning or an error in the log window only if necessary.

Step 3: Specification of coclustering variables

Step 4 : Results

- Directory where result file is written
- Prefix (ex: in case of several experiments)
- Synthetic coclustering report (cf. Khiops Covisualization)

Json report, to get the analysis results from external tools

Step 5: Start the analysis

(double-click on .khci file)

Example: base Adult education*occupation

- With Khiops Coclustering
 - Analysis of pair of variables education*occupation

- With Khiops Covisualization
 - Exploratory analysis of the results

44

Exercise J ...

- J: Train a coclustering model on two categorical variables of sample database Adult
- **Explore the analysis results**

Training a triclustering

• Same as coclustering (Step 3) by inserting a third variable

Exploring a triclustering

Exploring a triclustering

Exploring triclustering

Exploring a triclustering

Orange Restricted

Exploiting a coclustering model

Tools menu

- Train coclustering
 - Input: dictionary and database file
 - Train a coclustering model

Simplify coclustering

- Input: coclustering model
- Build a simplify coclustering model given user constraints

Extract clusters

- Input: coclustering model
- Extract clusters in a text file for a given coclustering variable

Prepare deployment

- Input: dictionary and coclustering model
- Enables the deployment of a coclustering model on new data by the means of a Khiops deployment dictionary
- See multi-table section of the tutorial

Simplifying a coclustering model

57

Extracting clusters in a text file

Steps for cluster extraction

- 1 Select input coclustering (.khc)
- 2- Specify user simplification constraints
- 3- Select coclustering variable containing the clusters
- 4- Select result files directory
- 5- Click on ((Extract clusters))

Output cluster file

- Text file with header line and separator tabulation
- Columns:
 - Cluster: name of the cluster (group of values)
 - Value: name of the value contained in the cluster
 - Frequency: frequency of the value
 - Typicality: interest measure of the value within its cluster

59

Exercise K, L ...

- K : Simplify previously built adult coclustering model Keep 50% of the information in the model
- **Explore the simplified analysis results with Khiops covisualization**
 - L : Extract clusters from variable education of adult coclustering model
- Inspect the cluster file with a text editor

60

Multi-table functionalities

- Multi-table database
- Automatic feature construction
- Multi-table functionalities in Khiops and Khiops Coclustering

--- Why extending to multi-table?

- Why extending to multi-table?
 - Most data mining tools work on instances*variables flat tables
 - Real data often have a structure coming from databases
 - The input representation is richer using multi-table specification
 - Data mining methods may benefit from explicit richer domain description
- Real data is usually structured
 - Example
 - Marketing: Customer with shopping list
 - Web analytics: cookie with web log
 - · Telecommunications: Customer with call detail records
 - Bioinformatics: DNA segments with ordered list of nucleotides
 - ٠ ..

City: Cat

- Data mining with structured data requires a lot of data preparation
 - Constructing a representation in a flat table
 - Expert knowledge necessary to constructed new variables
 - Time expensive process to get a flat table usable for data analysis
 - This process is unreliable
 - · Risk of missing informative variables
 - Risk of constructing and selecting irrelevant variables

--- Khiops multi-table

- Khiops can deal with multi-table databases
 - star schema: one root entity and several 0-1 or 0-n secondary entities
 - snowflake schemas and beyond

Impact on Khiops

- Multi-table dictionary
 - to describe star-schema input representation
- Multi-table database
 - to store input data on multiple files
- Feature construction language
 - to drive automatic feature construction
- Sort functionality on large files
- Powerful analytic functionalities
 - Automatic feature construction
 - Recoding of multi-table databases to get a flattened representation
 - Modeling and deployment at the multi-table level

Impact on Khiops Coclustering

- Deployment of coclustering models
 - For example, given a text*word coclustering model, assign new texts to their closest cluster

--- Khiops multi-table

- Khiops can deal with multi-table databases
 - star schema: one root entity and several 0-1 or 0-n secondary entities
 - snowflake schemas and beyond

Impact on Khiops

- Multi-table dictionary
 - to describe star-schema input representation
- Multi-table database
 - to store input data on multiple files
- · Feature construction language
 - to drive automatic feature construction
- Sort functionality on large files
- Powerful analytic functionalities
 - Automatic feature construction
 - Recoding of multi-table databases to get a flattened representation
 - Modeling and deployment at the multi-table level
- All other Khiops functionalities are available similarly
 - Classification, regression, correlation analysis
 - Deployment, recoding, evaluation
 - •••

--- Khiops multi-table

- Khiops can deal with multi-table databases
 - star schema: one root entity and several 0-1 or 0-n secondary entities
 - snowflake schemas and beyond

Impact on Khiops

- Multi-table dictionary
 - to describe star-schema input representation
- Multi-table database
 - to store input data on multiple files
- Feature construction language
 - to drive automatic feature construction
- Sort functionality on large files
- Powerful analytic functionalities
 - Automatic feature construction
 - Recoding of multi-table databases to get a flattened representation
 - Modeling and deployment at the multi-table level
- All other Khiops functionalities are available similarly
 - · Classification, regression, correlation analysis
 - Deployment, recoding, evaluation
 - • •

Star schema

- One root entity
 - secondary tables in 0-1 relationship: Entity
 - secondary tables in 0-n relationship: Table

Snowflake schema

- One root entity
 - secondary tables in 0-1 relationship: Entity
 - secondary tables in 0-n relationship: Table
- Each table may have secondary tables

- Example in samples/Customer
 - detailed explanations in sample

External tables

- One root entity
 - secondary tables in 0-1 relationship: Entity
 - secondary tables in 0-n relationship: Table
- Each table can have secondary tables
- External tables
 - to reuse common table shared by all analysis entities
 - can be referenced from any table, with specific keys

- Example in samples/CustomerExtended
 - detailed explanations in sample

--- Multi-table schemas: synthesis

- Khiops 8.0:
 - from mono-table to star schema
 - Automatic variable construction
 - a technological disruption

- Khiops 9.0:
 - extended data schema
 - Snowflake schema
 - External data
 - Multiple snowflake schema

Example of a multi-table database

French road accidents database

The AccidentsSummary is described using the following star schema:


```
Accident
|
| -- 1:n -- Vehicle
```

Each accident has associated one or more vehicles. In the Khiops dictionary Accident-Vehicle 1:n relationship is described with the Table keyword. The key linking both tables is AccidentId.

Objective: predict fatal traffic accidents (target variable: Gravity field of Accident table)

Build dictionary from data table

--- Build a multi-table dictionary

Step 1: Build one dictionary per data table

Orange Restricted

--- Build a multi-table dictionary

Step 1: Build one dictionary per data table

b: Repeat for the Vehicles.txt table

--- Build a multi-table dictionary

72

Step 1: save the constructed dictionary into a .kdic file

Build a multi-table dictionary

Step 2: Describe the table relationships in the .kdic file

```
Root Dictionary Accident(AccidentId)
5. Open the dictionary file
   with a text editor
                                                  Categorical AccidentId;
                                                  Categorical Gravity;
                                                  Date Date:
5.1 Specify the root entity
                                                  Time Hour;
                                                  Categorical Light;
                                                  Categorical Department;
5.2 Fix the types of the fields in green
                                                  Categorical Commune;
                                                  Categorical InAgglomeration;
                                                  Categorical IntersectionType;
                                                  Categorical Weather;
                                                  Categorical CollisionType;
                                                  Categorical PostalAddress;
                                                 Table (Vehicle) Vehicles;
                                           };
                                           Dictionary Vehicle (AccidentId, VehicleId)
5.4 Specify the relation between
the root entity and the secondary entity
                                                  Categorical AccidentId;
                                                  Categorical VehicleId;
    Add a variable per relation to root dictionary
                                                  Categorical Direction;
      • Table for 0-n relationship
                                                  Categorical Category;

    Entity for 0-1 relationship

                                                  Numerical
                                                              PassengerNumber;
                                                  Categorical FixedObstacle;
                                                  Categorical MobileObstacle;
                                                  Categorical ImpactPoint;
                                                  Categorical Maneuver:
6. Save the dictionary file
                                           };
```

5.3 Specify the key fields for each entity

Key fields must be Categorical and not derived

Sort data table files (if necessary)

For multi-table analyses data table files must be sorted by their keys

- Sorting is done only once before any Khiops analysis
 - Note: Records of the root table must be unique by key
- It is necessary for efficiency, specially when treating large databases
 - · Records of the root and secondary tables are read synchronously from their data table files

Step 1, bis: Open the Accidents.kdic dictionary file

Step 2: Specify train and test databases

Specify the root and secondary data table files

Step 3 : Parameters

Step 4: Variable construction parameters

Orange Restricted

Step 5 : Analysis results

Step 6: Start the analysis

(double-click on .khi file)

Exploratory of classification results using Khiops Visualization

81

Example of a complex multi-table database

French road accidents database (full version)

This the full version of the AccidentsSummary dataset.

It is described using the following snowflake schema:

Each accident has associated one or more vehicles and one unique place. The vehicles involved in an accident have in turn associated one or more road users (passengers and pedestrians).

In the Khiops dictionary the Accident-Place relationship (1:1) is described with the Entity keyword, whereas the Accident-Vehicle and Vehicle-User relationships (1:n) with the Table keyword.

Objective: predict fatal traffic accidents (target variable: Gravity field of Accident table)

Step 1 : Open the Accidents.kdic dictionary file

Step 2: Specify train and test databases

Root and other data table files have to be specified

Step 3 : Parameters

Step 4 : Variable construction parameters

Step 4: Variable construction parameters

Step 5 : Analysis results

89

Step 6 : Start the analysis

(double-click on .khi file)

Exploratory of classification results using Khiops Visualization

--- Khiops multi-table

- Khiops can deal with multi-table databases
 - star schema: one root entity and several 0-1 or 0-n secondary entities
 - snowflake schemas and beyond

- Impact on Khiops Coclustering
 - Deployment of coclustering models
 - Given a text*word coclustering model, assign new texts (with their words) to their closest cluster
 - Given a cookie*page coclustering model, assign new cookies (with their pages) to their closest cluster
 - Given a curve*X*Y triclustering model, assign new curves (with their X*Y points) to their closest cluster

_In this tutorial

- Build a triclustering model on the SpliceJunctionDNA data table
 - Clusters of sequence samples
 - Intervals of positions in the sequences
 - Clusters of DNA chars

- Prepare a deployment model
 - Build a deployment dictionary

- Deploy the model on the multi-table SpliceJunction database
 - Assign new DNA sequences to trained clusters of sequences

--- Splice junction multi-table database

- Molecular Biology (Splice-junction Gene Sequences)
 - Objective:
 - Recognition of boundaries between exons and introns in DNA sequences
 - Splice junctions are points on a DNA sequence at which 'superfluous' DNA is removed during the process of protein creation in higher organisms. The problem posed in this dataset is to recognize, given a sequence of DNA, the boundaries between exons (the parts of the DNA sequence retained after splicing) and introns (the parts of the DNA sequence that are spliced out). This problem consists of two subtrasks: recognizing exon/intron boundaries (referred to as El sites), and recognizing intron/exon boundaries (IE sites). (In the biological community, IE borders are referred to as ''acceptors' while El borders are referred to as ''donors''.)

Database dictionary

- Root entity: splice junction
 - Sampleld
 - Class (EI, IE, NEG)
 - Sequence of DNA
- Secondary entity: DNA
 - SampleId:
 - Pos: position in the sequence
 - Char (A, C, G, T)
- Database files
 - SpliceJunction.txt
 - SpliceJunctionDNA.txt

SpliceJunctionDNA.txt SpliceJunction.txt SampleId Class SampleId Pos Char AGMKPNRSB-NEG-1 AGMKPNRSB-NEG-1 AGMORS12A-NEG-181 AGMKPNRSB-NEG-1 AGMORS9A-NEG-481 AGMRSKPNI-NEG-1141 AGMKPNRSR-NFG-1 58 ATRINS-ACCEPTOR-1678 AGMKPNRSB-NEG-1 59 ATRINS-ACCEPTOR-701 ΙE AGMKPNRSB-NEG-1 60 ATRINS-DONOR-521 ΕI AGMORS12A-NEG-181 ATRINS-DONOR-905 ΕI AGMORS12A-NEG-181 G AGMORS12A-NEG-181 AGMORS12A-NEG-181 AGMORS9A-NEG-481 AGMORS9A-NEG-481 G AGMORS9A-NEG-481

Exploratory analysis of DNA sequences:

- . find clusters of similar DNA sequences
- . using a triclustering SampleId x Pos x Char

🏆 Train a triclustering model

Step 1: Open an existing dictionary

(ex: sample SpliceJunction.kdic)

Train a triclustering model

Step 2: Specification of used database

atriclustering model

Step 3: Specification of triclustering variables

Train a triclustering model

Step 4 : Analysis results

Train a triclustering model

97

Step 5 : Start the analysis

2 - Inspect the results using Khiops Covisualization (double-click on .khcj file)

Khiops covisualisation: base SpliceJunctionDNA

98

le View Help Report a hun

With Khiops Coclustering

 Analysis of correlation between variables SampleId*Pos*Char

With Khiops Covisualization

Exploratory analysis of the results

0 X

--- Khiops multi-table

Khiops can deal with multi-table databases

- star schema: one root entity and several 0-1 or 0-n secondary entities
- snowflake schemas and beyond

Impact on Khiops Coclustering

- Deployment of coclustering models
 - Given a text*word coclustering model, assign new texts (with their words) to their closest cluster
 - Given a cookie*page coclustering model, assign new cookies (with their pages) to their closest cluster
 - Given a curve*X*Y triclustering model, assign new curves (with their X*Y points) to their closest cluster

· 📶n this tutorial

- Clusters of sequence samples
- Intervals of positions in the sequences
- · Clusters of DNA chars

- Build a deployment dictionary
- Deploy the model on the multi-table SpliceJunction database
 - Assign new DNA sequences to trained clusters of sequences

100

- Prerequisite: a multi-table database
 - dictionary file
 - data files

(ex: sample SpliceJunction)

Step 1 : Open an existing dictionary

(ex: sample SpliceJunction.kdic)

102

Step 2 : Start « Tools – Prepare deployment »

103

Step 3: Select input coclustering file

(ex: previously trained triclustering model)

3. open

model file

- **Step 4:** The triclustering model is summarized in the first pane
 - if necessary, specify simplification parameters

Orange Restricted

105

Step 5 : Specify deployment parameters

106

Step 6: Specify result parameters

107

Step 7 : Build the deployment dictionary

2 – The deployment dictionary is ready for use with Khiops « *Transfer database* » functionality

--- Khiops multi-table

Khiops can deal with multi-table databases

- star schema: one root entity and several 0-1 or 0-n secondary entities
- snowflake schemas and beyond

Impact on Khiops Coclustering

- Deployment of coclustering models
 - Given a text*word coclustering model, assign new texts (with their words) to their closest cluster
 - Given a cookie*page coclustering model, assign new cookies (with their pages) to their closest cluster
 - Given a curve*X*Y triclustering model, assign new curves (with their X*Y points) to their closest cluster

· 🔼 In this tutorial

- Train a triclustering model on the SpliceJunctionDNA data table
 - Clusters of sequence samples
 - Intervals of positions in the sequences
 - Clusters of DNA chars

- Build a deployment dictionary
- Deploy the model on the multi-table SpliceJunction database
 - Assign new DNA sequences to trained clusters of sequences

109

Deploy the model

• Step 1: Open the deployment dictionary file with Khiops

(ex: Samples\SpliceJunction\TriclusteringResults\Deployment\Coclustering.kdic)

Deploy the model

110

Step 2: If necessary, select deployment variables

(use « Inspect current dictionary » by right-click on dictionary SpliceJunction)

Deploy the model

Step 3 : Open the « Deploy model » dialog box

Deploy the model

Step 4: Specify the file transfer parameters

Khiops

- Optimal data preparation based on discretization and value grouping
- Scoring models for classification and regression
- Correlation analysis between pairs of variables

Khiops Visualization

Analysis of Khiops results using an interactive visualization tool

Khiops Coclustering

Correlation analysis of two or more variables using a hierarchical coclustering model

Khiops Covisualization

Exploratory analysis of Khiops Coclustering results using an interactive visualization tool

Multi-table functionalities

- Multi-table database
- Automatic feature construction
- Multi-table functionalities in Khiops and Khiops Coclustering

