Knot Theory Seminar

Problem sheet 1

12 March 2020

- 1. The aim of this exercise is to use the knot group to show that the trefoil 3_1 is not the unknot (we already showed this by using 3-colourability).
 - (a) Show that if $f: A \longrightarrow G$ is a surjective group homomorphism from an abelian group A to a group G, then G is also abelian.
 - (b) Show that $\pi_1(S^3 3_1) \cong \langle a, b | aba = bab \rangle$. (*Hint*: Use the Wirtinger algorithm and later obtain an equivalent presentation).
 - (c) Define a surjection $\pi_1(S^3 3_1) \longrightarrow S_3$, where S_3 denotes the symmetric group of degree 3. Conclude that S_1 cannot be equivalent to the unknot.
- 2. Now we will show that the figure-of-eight knot 4_1 is not the unknot (we were not able to show this by using 3-colourability).
 - (a) Let D_n the dihedral group of degree n, that is, the group of isometries of the regular n-gon (n > 2). Show that it is generated by $g \in D_n$, the $2\pi/n$ rotation, and a reflexion $\tau \in D_n$. Show that D_n admits a presentation $D_n \cong \langle g, \tau | g^n = \tau^2 = 1, \tau g \tau = g^{-1} \rangle$.
 - (b) Show that $\pi_1(S^3 4_1) \cong \langle a, b | aba^{-1}bab^{-1} = bab^{-1}a \rangle$.
 - (c) Define a surjection $\pi_1(S^3 4_1) \longrightarrow D_5$. Conclude that 4_1 cannot be equivalent to the unknot. (*Hint*: $a \mapsto \tau g^3$, $b \mapsto \tau g$).
- 3. Compute the knot group and the Alexander polynomial of the 5_1 knot, the Square knot and the Granny knot:

4. Show that the degree of the normalized Alexander polynomial of a knot cannot be greater than the number of crossings of any of its diagrams.

5. Let K, K' be knots, let K#K' its connected sum and denote $\pi_K := \pi_1(S^3 - K)$. Show that

$$\pi_{K\#K'}\cong \pi_K*_{\mathbb{Z}}\pi_{K'}.$$

6. Let K, K' be knots. Show that

$$\Delta_{K\#K'}(t) = \Delta_K(t)\Delta_{K'}(t')$$

(the equality holds in $\mathbb{Z}[t,t^{-1}]/\{\pm t^n\} = \mathbb{Z}[t,t^{-1}]/\mathbb{Z}[t,t^{-1}]^{\times}$).