2c.) $\lambda = 2\pi$, c = 1, h = .1, $\sigma = .5$ $1 - \sigma + \sigma \cos B$ $1 - .5 + .5 \cos A = .9975$ Fou: $|9| = \sqrt{11 - r + \sigma \cos B^2} + ... (\sigma \sin B)^2}$ $\sigma^2 \sin^2 B = .00249$ $= \sqrt{.9975/^2 + \sigma^2 \sin^2 B}$ $= \sqrt{.995 + .00249}$ $|3| = .99875^N = .5$ $N = \frac{1}{L} \cdot .5$ $L_0.99875^N = .5$

First order upwind requires 555 steps before the amplitude is a of the exact solution.

 $|S| = \sqrt{|S|^{2} + \sigma^{2} \cos \beta} + |\sigma \sin \beta|^{2}$ $|S| = \sqrt{|S|^{2} + \sigma^{2} \cos \beta}^{2} + |\sigma \sin \beta|^{2}$ $|S| = \sqrt{|S|^{2} + \sigma^{2} \cos \beta}^{2} + |\sigma \sin \beta|^{2}$ $|S| = \sqrt{|S|^{2} + \sigma^{2} \cos \beta}^{2} + |\sigma \sin \beta|^{2}$ $|S| = \sqrt{|S|^{2} + \sigma^{2} \cos \beta}^{2} + |\sigma \sin \beta|^{2}$ $|S| = \sqrt{|S|^{2} + \sigma^{2} \cos \beta}^{2} + |\sigma \sin \beta|^{2}$ $|S| = \sqrt{|S|^{2} + \sigma^{2} \cos \beta}^{2} + |\sigma \sin \beta|^{2}$ $|S| = \sqrt{|S|^{2} + \sigma^{2} \cos \beta}^{2} + |\sigma \sin \beta|^{2}$ $|S| = \sqrt{|S|^{2} + \sigma^{2} \cos \beta}^{2} + |\sigma \sin \beta|^{2}$ $|S| = \sqrt{|S|^{2} + \sigma^{2} \cos \beta}^{2} + |\sigma \sin \beta|^{2}$ $|S| = \sqrt{|S|^{2} + \sigma^{2} \cos \beta}^{2} + |\sigma \sin \beta|^{2}$ $|S| = \sqrt{|S|^{2} + \sigma^{2} \cos \beta}^{2} + |\sigma \sin \beta|^{2}$ $|S| = \sqrt{|S|^{2} + \sigma^{2} \cos \beta}^{2} + |\sigma \sin \beta|^{2}$ $|S| = \sqrt{|S|^{2} + \sigma^{2} \cos \beta}^{2} + |\sigma \sin \beta|^{2}$ $|S| = \sqrt{|S|^{2} + \sigma^{2} \cos \beta}^{2} + |\sigma \sin \beta|^{2}$ $|S| = \sqrt{|S|^{2} + |\sigma \sin \beta|^{2}}$ $|S| = \sqrt{|S|^{2} + |\sigma \sin \beta|^{2}}}$

Lox-wundroff requires 296247 steps before the amplitude is to of the exact solution.