T.D. 1 – Corrigé Systèmes de numération entière

Exercice 1

Représentez les nombres 28₁₀, 129₁₀, 147₁₀, 255₁₀ sous leur forme binaire par une autre méthode que les divisions successives. À partir de cette représentation binaire, vous en déduirez leur représentation hexadécimale.

À partir de la valeur des différents poids binaires, et en commençant par le poids le plus fort, on positionne les bits à 0 ou à 1 en fonction de la somme de leur poids.

Le passage d'une représentation binaire (base 2) vers une représentation hexadécimale (base 16) s'obtient assez facilement en regroupant les bits par paquets de quatre $(2^4 = 16)$; chaque paquet de quatre bits correspond à un chiffre hexadécimal.

$$28_{10} = 0001 \ 1100_2 = 1C_{16}$$
 $129_{10} = 1000 \ 0001_2 = 81_{16}$
 $147_{10} = 1001 \ 0011_2 = 93_{16}$
 $255_{10} = 1111 \ 1111_2 = FF_{16}$

Exercice 2

1. Les nombres 11000010₂, 10010100₂, 11101111₂, 10000011₂, 10101000₂ sont-ils pairs ou impairs ?

Les nombres pairs se terminent par au moins un zéro : 110000102, 100101002, 101010002

- 2. Lesquels sont divisibles par 4, 8 ou 16?
 - Les nombres divisibles par 4 se terminent par au moins deux zéros : 100101002, 101010002
 - Les nombres divisibles par 8 se terminent par au moins trois zéros : 10101000₂
 - Les nombres divisibles par 16 se terminent par au moins quatre zéros : Aucun nombre.

T.D. 1 – Corrigé

3. Donnez le quotient et le reste d'une division entière par 2, 4 et 8 de ces nombres.

	11000010		10010100		11101111		10000011		10101000	
	quotient	reste								
/2	1100001	0	1001010	0	1110111	1	1000001	1	1010100	0
/4	110000	10	100101	00	111011	11	100000	11	101010	00
/8	11000	010	10010	100	11101	111	10000	011	10101	000

- 4. En généralisant, que suffit-il de faire pour obtenir le quotient et le reste d'une division entière d'un nombre binaire par 2ⁿ ?
 - Pour le quotient : il faut réaliser un décalage de n bits vers la droite du nombre.
 - Pour le reste : il faut réaliser un ET logique de $2^n 1$ avec le nombre.

Les décalages et les opérations logiques sont nettement plus rapides à réaliser pour un microprocesseur que l'opération de division.

5. Si l'on souhaite multiplier un nombre binaire quelconque par une puissance de 2, quelle méthode peut-on utiliser afin d'éviter la multiplication ?

Un décalage logique d'un seul bit vers la gauche est équivalent à une multiplication par 2. Ainsi, un décalage logique de n bits vers la gauche est équivalent à une multiplication par 2^n .

- 6. Si l'on souhaite multiplier un nombre binaire quelconque par 3 ou par 10, quelle méthode peut-on utiliser pour éviter la multiplication ?
 - 3n = 2n + n

Sous cette forme, il apparaît une multiplication par 2 (équivalente à un décalage d'un bit vers la gauche) et une addition.

• 10n = 8n + 2n

Sous cette forme, il apparaît une multiplication par 8 (équivalente à un décalage de 3 bits vers la gauche), une multiplication par 2 (équivalente à un décalage d'un bit vers la gauche), et une addition.

Si le multiplicateur est connu, on peut le décomposer de sorte à n'avoir comme opérations que des décalages et des additions. Ces dernières sont beaucoup plus rapides à réaliser pour un microprocesseur que la multiplication.

T.D. 1 – Corrigé 2/4

Exercice 3

Donnez les valeurs décimales, minimales et maximales, que peuvent prendre des nombres signés et non signés codés sur 4, 8, 16, 32 et *n* bits.

Bits	Non Signés	Signés
4	0 → 15	-8 → 7
8	0 → 255	-128 → 127
16	$0 \rightarrow 65535$	$-32768 \rightarrow 32767$
32	$0 \rightarrow 2^{32} - 1$	$-2^{31} \rightarrow 2^{31} - 1$
n	$0 \rightarrow 2^n - 1$	$-2^{n-1} \rightarrow 2^{n-1} - 1$

Exercice 4

Soit les deux nombres binaires suivants : 111111111₂ et 10110110₂.

1. Donnez leur représentation décimale s'ils sont codés sur 8 bits signés.

• 1111111₂

Sur 8 bits signés, le bit de poids fort vaut 1 : le nombre est négatif. On effectue son complément à 2 puis on convertit le résultat en décimal : $(111111111_2)_{C2} = 00000000_2 + 1_2 = 1_2 = 1$

La représentation décimale est donc de -1.

· 10110110₂

Sur 8 bits signés, le bit de poids fort vaut 1 : le nombre est négatif. On effectue son complément à 2 puis on convertit le résultat en décimal : $(10110110_2)_{C2} = 01001001_2 + 1_2 = 01001010_2 = 64 + 8 + 2 = 74$

La représentation décimale est donc de -74.

2. Donnez leur représentation décimale s'ils sont codés sur 16 bits signés.

· 11111111₂

Sur 16 bits signés, le bit de poids fort vaut 0 ($\underline{\mathbf{0}}$ 00000001111111112) : le nombre est positif. On effectue une simple conversion binaire-décimal :

$$111111111_2 = 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255$$

La représentation décimale est donc de +255.

• 10110110_2

Sur 16 bits signés, le bit de poids fort vaut 0 ($\underline{\mathbf{0}}$ 000000010110110₂) : le nombre est positif. On effectue une simple conversion binaire-décimal :

$$10110110_2 = 128 + 32 + 16 + 4 + 2 = 182$$

La représentation décimale est donc de +182.

T.D. 1 – Corrigé 3/4

Soit le nombre entier négatif suivant : -80₁₀.

3. On souhaite le coder sur 8 bits signés. Donnez sa représentation binaire et sa représentation hexadécimale.

On convertit sa valeur absolue en binaire : $80_{10} = 01010000_2$

On effectue son complément à 2 : $(01010000_2)_{C2} = 10101111_2 + 1_2 = 10110000_2$

Ce qui donne : 10110000₂ en binaire.

B0₁₆ en hexadécimale.

4. On souhaite le coder sur 16 bits signés. Donnez sa représentation binaire et sa représentation hexadécimale.

Une simple extension de signe suffit pour passer de 8 bits à 16 bits signés.

Ce qui donne : 11111111101100002 en binaire.

FFB0₁₆ en hexadécimale.

Exercice 5

1. Donnez, en puissance de deux, le nombre de bits que contiennent les grandeurs suivantes : 128 Kib, 16 Mib, 2 Kio, 512 Gio.

On sait que:

- $1 \text{ Ki} = 2^{10}$; $1 \text{ Mi} = 2^{20}$; $1 \text{ Gi} = 2^{30}$.
- 1 octet = 8 bits = 2^3 bits.

On a donc:

- 128 Kib = $2^7 \times 2^{10}$ bits = 2^{17} bits.
- 16 Mib = $2^4 \times 2^{20}$ bits = 2^{24} bits.
- 2 Kio = $2^1 \times 2^{10}$ octets = $2^1 \times 2^{10} \times 2^3$ bits = 2^{14} bits.
- 512 Gio = $2^9 \times 2^{30}$ octets = $2^9 \times 2^{30} \times 2^3$ bits = 2^{42} bits.
- 2. Donnez, à l'aide des préfixes binaires (Ki, Mi ou Gi), le nombre d'octets que contiennent les grandeurs suivantes : 2 Mib, 2¹⁴ bits, 2²⁶ octets, 2³² octets. Vous choisirez un préfixe qui permet d'obtenir la plus petite valeur numérique entière.
 - **2 Mib** = $2^1 \times 2^{20}$ bits = $2^1 \times 2^{20} / 2^3$ octets = 2^{18} octets = $2^8 \times 2^{10}$ octets = **256 Kio**.
 - 2^{14} bits = $2^{14} / 2^3$ octets = 2^{11} octets = $2^1 \times 2^{10}$ octets = **2 Kio**.
 - 2^{26} octets = $2^6 \times 2^{20}$ octets = **64 Mio**.
 - 2^{32} octets = $2^2 \times 2^{30}$ octets = 4 Gio.

T.D. 1 – Corrigé 4/4