1 ESPECIFICAÇÃO DO SISTEMA

1.1 REQUISITOS DE ALTO NÍVEL

A especificação do sistema será feita pela técnica de levantamento de requisitos *use case* (UC). Será escrito um documento de UC onde serão descritos todas as formas que o usuário poderá usar cada funcionalidade existente na ferramenta e, desta forma, apresentar detalhadamente os requisitos funcionais. Na Figura 1, a seguir, é mostrado o diagrama de UC do **Aprenda QEE** para que haja um melhor entendimento da ferramenta como um todo.

powered by Astah

Figura 1: Diagrama de UC

1.1.1 UC I: simular fluxo de potência fundamental

1.1.1.1 Descrição

O programa deve mostrar a forma de onda da tensão, da corrente, da potência instantânea, o valor da potência ativa, reativa e complexa, o fator de potência e o triângulo de potências.

1.1.1.2 Fluxo principal

- FP1. O caso de uso se inicia quando o usuário seleciona a funcionalidade UC I: simular fluxo de potência fundamental; [FS1]
- FP2. O usuário informa a amplitude e ângulo de fase da tensão e corrente; [FS2]
- FP3. O sistema apresenta a forma de onda da tensão, corrente e da potência instantânea. Também, os valores da potência ativa, reativa e aparente, o fator de potência e o triângulo de potências. [FS3]
- FP4. O usuário poderá alterar, a qualquer momento, as entradas sem necessidade de abrir novamente a funcionalidade e retorna-se ao FP3.
- FP5. Fim do caso de uso.

1.1.1.3 Fluxo Secundário

- FS1. Usuário retorna para o menu principal.
- FS2. Usuário informa entradas com valores inválidos. Uma mensagem de operação inválida deve ser apresentada pelo sistema.
- FS3. Caso o sistema não consiga processar os dados inseridos, uma mensagem de erro deve ser apresentada.

1.1.2 UC II: simular distorção harmônica

1.1.2.1 Descrição

A ferramenta deve ser capaz de apresentar a distorção da forma de onda fundamental causada pelos harmônicos.

1.1.2.2 Fluxo principal

- FP1. O caso de uso inicia-se quando o usuário seleciona a funcionalidade UC II: simular distorção harmônica; [FS1]
- FP2. O usuário informa se irá trabalhar com ordens harmônicas pares ou ímpares. Em seguida, o usuário também informa o número de

harmônicos e a ordem de cada um e, a amplitude e a fase de cada forma de onda. O sistema deve ser capaz de organizar as informações de acordo com o número de harmônicos informados. [FS2]

- FP3. O sistema apresenta a forma de onda das ordens harmônicas criadas pelo usuário, a forma de onda fundamental, a distorcida resultante e a série de Fourier da resultante; [FS3]
- FP4. O usuário poderá alterar a qualquer momento as entradas inseridas sem a necessidade de abrir novamente a funcionalidade. Assim, retorna-se ao FP3. [FS2] [FS3]

FP5. Fim do caso de uso.

1.1.2.3 Fluxo secundário

- FS1. Usuário retorna para o menu principal.
- FS2. Usuário informa entradas com valores inválidos. Uma mensagem de operação inválida deve ser apresentada pelo sistema.
- FS3. Caso o sistema não consiga processar os dados inseridos, uma mensagem de erro deve ser apresentada.

1.1.3 Requisitos de baixo nível

Para cada funcionalidade descrita pelos casos de uso serão especificados os limites e todas as equações necessárias para implementação no programa.

1.1.3.1 Requisitos comuns a todas as funcionalidades

Alguns requisitos são comuns às funcionalidades e serão descritas no Quadro 1, a seguir:

Quadro 1: Requisitos comuns a ambas funcionalidades.

Requisito	Descrição	Domínio	Limites definidos	Observações e Equações
Amplitude da senoide (A)	É o valor de pico da onda	$A \in \mathbb{R}$	-	-
Valor eficaz	O valor da	$A_{RMS} \in$	Tensão: $0 \le V_{RMS} \le$	Para sinais senoidais:
de um sinal	corrente	\mathbb{R}	220	$V_{RMS} = \frac{V_{pico}}{\sqrt{2}}$ e
periódico	contínua (CC)		Corrente: $0 \le I_{RMS} \le$	$\sqrt{2}$
	que seria capaz		100	$I_{ m pice}$
	de fornecer a			$I_{RMS} = \frac{I_{pico}}{\sqrt{2}}$
	mesma potência			

	média para um			
	resistor que uma			
	corrente de sinal			
	periódico			
	É o ângulo			
Ângulo de	correspondente			
fase da	a um	$\theta \in \mathbb{R}$	-180°≤ θ ≤ 180°	-
senoide	deslocamento de			
	fase			
Frequência				
cíclica ou	É o número de			
frequência	ciclos por	$f \in \mathbb{R}$	-	No Brasil $f = 60$ Hz
fundamental	segundo			
(f)				
Frequência	É o número de			nad
angular ω	radianos por	$\omega \in \mathbb{R}$	-	$\omega = 2\pi f \frac{rad}{s}$
	segundo			
Período T da	É o tempo de			 1
função	realizar um ciclo	$T \in \mathbb{R}$	-	$T = \frac{1}{f}$
periódica	completo			· •
Forma de	É a forma de			
onda da	onda senoidal da			
tensão	tensão da	$v \in \mathbb{R}$	-	$v(t) = V_{RMS} \cos(\omega t + \theta_{v})$
fundamental	frequência			
randamentar	fundamental			
	É a forma de			
Forma de	onda senoidal da			
onda da	corrente na	$i \in \mathbb{R}$	-	$i(t) = I_{RMS} \cos(\omega t + \theta_i)$
corrente	frequência			
	fundamental			

1.1.3.2 Requisitos de baixo nível UC I

Para o UC I o Quadro 2, a seguir, mostra todas as equações necessárias para implementação da funcionalidade.

Quadro 2: Requisitos UC I.

P					
Requisito	Descrição	Domínio	Limites definidos	Observações e Equações	
Potência instantânea $p(t)$	É potência em qualquer instante	$p(t) \in \mathbb{R}$	-	$p(t)=v(t)\times i(t)$	
Potência ativa ou potência média ^P	É a média da potência instantânea	$P \in \mathbb{R}$	-	$P = V_{RMS} I_{RMS} \cos (\theta_{v} - \theta_{i})$	
Potência Reativa ()	Representa uma troca de energia entre a fonte e uma carga reativa	Q ∈ ℝ		$Q = V_{RMS} I_{RMS} \cos \left(\theta_{v} - \theta_{i}\right)$	
Potência S Complexa S	Contém todas as informações da potência absorvida por uma carga	<i>ss</i> ∈ C	-	S=P+jQ	
Potência Aparente	É o módulo da potência complexa	$S \in \mathbb{R}$	-	$S = V_{RMS} I_{RMS}$ Ou $S = \sqrt{P^2 + Q^2}$	
Fator de potência (FP)	É o cosseno da diferença de fase entre tensão e corrente	$FP \in \mathbb{R}$	0 ≤ FP ≤ 1	Se o ângulo $\theta_v - \theta_i < 0$ o FP é dito atrasado, se $0 < \theta_v - \theta_i$ o fator de potência é adiantado e $\theta_v = \theta_i$ o FP=1. O cálculo do FP é feito pela seguinte expressão: $FP = \cos(\theta_v - \theta_i)$	
Triângulo de Potência	Representação de S, P e Q no plano complexo	-	_	Im Atrasado P Q Re S Adiantado	

1.1.3.3 Requisitos de baixo nível UC II

Para o UC I o Quadro 2, a seguir, mostra todas as equações necessárias para implementação da funcionalidade.

Quadro 3: Requisitos UC II.

Quadro 3: Requisitos UC II.						
Requisito	Descrição	Domínio	Limites	Observações e Equações		
Ordens harmônicas (n)	Múltiplos inteiros da frequência fundamental	$n\in\mathbb{R}$	definidos -	-		
Harmônicos da fundamental	Senoides de frequências múltiplas inteiras da frequência fundamental	$f \in \mathbb{R}$	-	$f(t) = A_n \cos(n\omega t) + \theta_n$		
Harmônicos pares ou ímpares	Significa dizer que as harmônicas são pares ou ímpares.	"Par","Í mpar"	-	-		
Número de harmônicos (N)	O número de harmônicos significa que uma quantidade N de harmônicos n serão causadores da distorção da onda fundamental.	$N \in \mathbb{R}$	0 ≤ N ≤ 6	-		
Série de Fourier de uma função periódica f(t)	É uma representação da função $f(t)$ em uma componente CC e outra CA formada por uma série infinita de senoides	$f(t) \in \mathbb{R}$	Com $c_0 = 0$ e $c_n = A_n$, que é a amplitude de cada ordem harmônica n	$f(t) = c_0 + \sum_{n=1}^{\infty} c_n \cos(n\omega t + \theta_n)$		

2 PLANO DE VERIFICAÇÃO DO SISTEMA

2.1 PLANO DE VERIFICAÇÃO E PROTÓTIPO NÃO FUNCIONAL DO UC I

Conforme mencionado no FP2 o usuário irá inserir o valor eficaz da amplitude e o ângulo de fase. Conforme previsto no FP3 o sistema irá apresentar as formas de onda de tensão e corrente com os valores de amplitude de pico e, também a forma de onda da potência instantânea, o triângulo de potências e os valores de potência ativa, reativa, aparente e o FP.

Será mostrado como exemplo no Quadro 4, a seguir, os valores de entrada e as saídas que foram utilizadas para construção do protótipo não funcional.

Quadro 4: Relação de entradas, saídas e resultados do UC I: simular fluxo de potência fundamental.

Fonte: Autora.

Entradas		Saídas	Resultado
Sinal de Tensão	- Amplitude: $220 V_{RMS}$ - Ângulo de fase: 0°	Forma de onda do sinal de tensão: $v(t)$ =220 $\cos(\omega t)V_{RMS}$	 Forma de onda da potência instantânea. Valor da Potência ativa <i>P</i>=7028 <i>W</i> Valor da potência reativa <i>Q</i>=4921 <i>VAR</i>
Sinal de Corrent e	- Amplitude do sinal: 39 A _{RMS} ; -Ângulo de defasagem: 35°	Forma de onda do sinal de corrente: $i(t) = 39 \cos(\omega t + 35^{\circ}) I_{RMS}$	 Valor do FP. fp=0,82 Triângulo de potências.

O protótipo não funcional mostrado na Figura 2, propõe uma interface para a simulação do fluxo de potência fundamental. Com as visualizações mostrados no protótipo, forma de onda da tensão, corrente e potência instantânea, o triângulo de potências e os valores das potências, será alcançado o objetivo de aprendizado desejado que é a revisão de conceitos sobre fluxo de potência.

Figura 2: Protótipo não funcional do caso de uso I. Fonte: Autora.

Como visto, o protótipo atenderá as necessidades pois permitirá ao usuário a interatividade com o sistema que ocorre na alteração das entradas e visualização dos resultados de saída, como previsto no FP4. Por meio desta interação ocorrerá a fixação dos conceitos.

2.2 PLANO DE VERIFICAÇÃO E PROTÓTIPO NÃO FUNCIONAL DO UC II

Do fluxo principal do UC II percebe-se que o usuário terá que fornecer as informações de amplitude e ângulo de fase para cada forma de onda e, adicionalmente, o número harmônicas causadoras da distorção e a ordem de cada uma. Além disso, definirá se os harmônicos serão pares ou ímpares. Como resultado, a simulação mostrará a forma de onda da fundamental, dos harmônicos, da onda distorcida resultante e a série de Fourier desta onda. Como exemplo, o Quadro 5 resume todas as entradas e as saídas que foram definidas no protótipo da Figura 3.

Quadro 5: Exemplo das entradas e saídas do UC II: simular distorção harmônica. Fonte: Autora.

Entrada	Definição dos harmônicos	Ímpares
S	Número de Harmônicas	Duas ordens
	Ordens harmônicas	Ordens: 3° e 5°
	causadoras das distorções	

	Amplitude A das formas de onda	Fundamental: 220 3°: 20 5°: 15	
		Fundamental: 0°	
	Ângulo de defasagem θ de cada sinal	3°: $\frac{\pi}{6}$ $\frac{3\pi}{2}$ 5°: $\frac{\pi}{2}$	
Saídas -	Série de Fourier da onda resultante	$f(t) = 220\cos(\omega t) + 20\cos\left(3\omega t + \frac{\pi}{6}\right) + 15\cos\left(5\omega t\right)$	
		Formas de onda da fundamental, harmônicos e distorcida	

Como mostrado no Quadro 5 de entradas e saídas, será proposto um protótipo não funcional do UC II: simular distorção harmônica que atenda as necessidades que foram especificadas. O protótipo é mostrado na Figura 3, a seguir:

Figura 3: Protótipo não funcional do caso de uso III. Fonte: Autora.

Esse protótipo atende as necessidades pois atinge o objetivo de aprendizado que é a visualização das distorções harmônicas permitindo a interação do usuário na alteração das entradas e visualização das saídas, como previsto no FP4.