

Schletter, Inc.		15° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2

Module Tilt = 15°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
$g_{MIN} =$	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 22.68 psf (ASCE 7-10, Eq. 7.4-1)
$$I_s = 1.00$$

$$C_s = 1.00$$

$$C_e = 0.90$$

$$C_t = 1.20$$

2.3 Wind Loads

Design Wind Speed, V =	110 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 19.00 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ _{TOP}	=	1.000	
Cf+ BOTTOM	=	1.000 1.600 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.300	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.780 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applied away from the danage.

2.4 Seismic Loads

$S_S =$ $S_{DS} =$ $S_1 =$ $S_{D1} =$	1.67 1.00	$R = 1.25$ $C_S = 0.8$ $\rho = 1.3$ $\Omega = 1.25$	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5 may be used to calculate the base shear, C_s , of structures under five stories and with a period, T_s , of 0.5 or less. Therefore, a S_{ds} of 1.0 was used
$T_a =$		$C_{d} = 1.25$	to calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E ^O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

 $1.0D + 1.0S \\ 1.0D + 0.6W \\ 1.0D + 0.75L + 0.45W + 0.75S \\ 0.6D + 0.6W \\ ^{M} \\ 1.238D + 0.875E \\ ^{O} \\ 1.1785D + 0.65625E + 0.75S \\ 0.362D + 0.875E \\ ^{O} \\ 0.362D + 0.875E \\ ^{O} \\ \\$

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

[™] Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u> Front</u>	<u>Rear</u>	
<u>1066.15</u>	<u>3798.97</u>	k
<u>4728.26</u>	<u>4908.66</u>	k
<u>319.95</u>	<u>1391.20</u>	k
<u>0.65</u>	0.44	k
	4728.26 319.95	1066.15 3798.97 4728.26 4908.66 319.95 1391.20

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. Compressive Strength = 2500 psi Yield Strength = 60000 psi Overturning Check $M_O =$ 90906.6 in-lbs Resisting Force Required = 1377.37 lbs A minimum 132in long x 21in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 2295.62 lbs to resist overturning. Minimum Width = <u>21 in</u> in Weight Provided = 4186.88 lbs Sliding 320.69 lbs Force = Friction = Use a 132in long x 21in wide x 18in tall 0.4 ballast foundation to resist sliding. Weight Required = 801.72 lbs Resisting Weight = 4186.88 lbs Friction is OK. Additional Weight Required = 0 lbs Cohesion Sliding Force = 320.69 lbs Cohesion = 130 psf Use a 132in long x 21in wide x 18in tall 19.25 ft² Area = ballast foundation. Cohesion is OK. Resisting = 2093.44 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. 2500 psi $f'_c =$

Bearing Pressure

Length =

8 in

 $\frac{\text{Ballast Width}}{21 \text{ in}} = \frac{22 \text{ in}}{23 \text{ in}} = \frac{24 \text{ in}}{4785 \text{ lbs}}$ $P_{\text{ftg}} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(1.75 \text{ ft}) = \frac{4187 \text{ lbs}}{4386 \text{ lbs}} = \frac{4586 \text{ lbs}}{4785 \text{ lbs}} = \frac{4785 \text{ lbs}}{4785 \text{ lbs}}$

ASD LC	1.0D + 1.0S				1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W					
Width	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in
FA	1810 lbs	1810 lbs	1810 lbs	1810 lbs	1287 lbs	1287 lbs	1287 lbs	1287 lbs	2189 lbs	2189 lbs	2189 lbs	2189 lbs	-482 lbs	-482 lbs	-482 lbs	-482 lbs
F _B	1877 lbs	1877 lbs	1877 lbs	1877 lbs	1336 lbs	1336 lbs	1336 lbs	1336 lbs	2271 lbs	2271 lbs	2271 lbs	2271 lbs	-1743 lbs	-1743 lbs	-1743 lbs	-1743 lbs
F _V	162 lbs	162 lbs	162 lbs	162 lbs	578 lbs	578 lbs	578 lbs	578 lbs	544 lbs	544 lbs	544 lbs	544 lbs	-641 lbs	-641 lbs	-641 lbs	-641 lbs
P _{total}	7874 lbs	8074 lbs	8273 lbs	8473 lbs	6810 lbs	7010 lbs	7209 lbs	7408 lbs	8647 lbs	8846 lbs	9046 lbs	9245 lbs	287 lbs	407 lbs	527 lbs	646 lbs
М	4396 lbs-ft	4396 lbs-ft	4396 lbs-ft	4396 lbs-ft	3818 lbs-ft	3818 lbs-ft	3818 lbs-ft	3818 lbs-ft	5835 lbs-ft	5835 lbs-ft	5835 lbs-ft	5835 lbs-ft	990 lbs-ft	990 lbs-ft	990 lbs-ft	990 lbs-ft
е	0.56 ft	0.54 ft	0.53 ft	0.52 ft	0.56 ft	0.54 ft	0.53 ft	0.52 ft	0.67 ft	0.66 ft	0.65 ft	0.63 ft	3.45 ft	2.43 ft	1.88 ft	1.53 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft							
f _{min}	284.5 psf	281.4 psf	278.7 psf	276.1 psf	245.6 psf	244.3 psf	243.2 psf	242.1 psf	283.9 psf	280.8 psf	278.1 psf	275.6 psf	0.0 psf	0.0 psf	0.0 psf	4.8 psf
f _{max}	533.6 psf	519.3 psf	506.1 psf	494.1 psf	461.9 psf	450.8 psf	440.7 psf	431.4 psf	614.5 psf	596.5 psf	580.0 psf	564.9 psf	53.3 psf	48.3 psf	50.6 psf	53.9 psf

Maximum Bearing Pressure = 615 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 21in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Seismic Design

Overturning Check

 $M_O = 1958.5 \text{ ft-lbs}$

Resisting Force Required = 2238.28 lbs

S.F. = 1.67

Weight Required = 3730.46 lbs

Minimum Width = 21 in in

Weight Provided = 4186.88 lbs

A minimum 132in long x 21in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1.238D + 0.875E			1.1785D + 0.65625E + 0.75S			0.362D + 0.875E			
Width		21 in		21 in			21 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F_Y	261 lbs	676 lbs	232 lbs	992 lbs	3000 lbs	970 lbs	86 lbs	198 lbs	58 lbs	
F_V	221 lbs	217 lbs	223 lbs	165 lbs	158 lbs	173 lbs	221 lbs	219 lbs	222 lbs	
P _{total}	5444 lbs	5859 lbs	5416 lbs	5926 lbs	7934 lbs	5904 lbs	1602 lbs	1713 lbs	1574 lbs	
М	886 lbs-ft	878 lbs-ft	892 lbs-ft	672 lbs-ft	666 lbs-ft	698 lbs-ft	883 lbs-ft	877 lbs-ft	884 lbs-ft	
е	0.16 ft	0.15 ft	0.16 ft	0.11 ft	0.08 ft	0.12 ft	0.55 ft	0.51 ft	0.56 ft	
L/6	0.29 ft		0.29 ft	0.29 ft	0.29 ft	0.29 ft	0.29 ft	0.29 ft		
f _{min}	124.9 psf	148.0 psf	122.5 psf	188.2 psf	293.5 psf	182.4 psf	0.0 psf	0.0 psf	0.0 psf	
f _{max}	440.7 psf	460.8 psf	440.2 psf	427.6 psf	530.8 psf	431.0 psf	300.1 psf	285.9 psf	304.6 psf	

Maximum Bearing Pressure = 531 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 21in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 21in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut
Maximum Axial Load =	3.637 k	Maximum $\overline{\text{Axial Load}} = 3.607 \text{ k}$
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>49%</u>	Utilization = 49%
<u>Diagonal Strut</u> Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	1.013 k 12.808 k 7.421 k <u>14%</u>	Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & 36.30 \text{ in} \\ \text{Allowable Story Drift for All} & 0.020 h_{\text{sx}} \\ \text{Other Structures, } \Delta = \{ & 0.726 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.48 \text{ in} \\ \end{array}$

 $0.48 \le 0.726$, OK.

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Strong Axis:

3.4.14

$$L_b = 126 \text{ in}$$

$$J = 0.432$$

$$348.575$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$$

 $φF_L = 27.2 \text{ ksi}$

Not Used

3.4.16

b/t = 32.195

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 25.1 \text{ ksi}$$

3.4.16.1

Rh/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_{b} = 126$$

$$J = 0.432$$

$$221.673$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b[Bc-1.6Dc^{*}]$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^* \sqrt{((LbSc)/(Cb^* \sqrt{(lyJ)/2}))}]$$

$$\varphi F_L = 28.5$$

3.4.16

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{rll} \phi F_L St = & 25.1 \text{ ksi} \\ \text{lx} = & 897074 \text{ mm}^4 \\ & 2.155 \text{ in}^4 \\ \text{y} = & 41.015 \text{ mm} \\ \text{Sx} = & 1.335 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 2.788 \text{ k-ft} \end{array}$$

3.4.18

 $M_{max}Wk =$

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 23.1 \text{ ksi}$$

$$\phi F_L Wk = 23.1 \text{ ksi}$$

$$\phi F_L Wk = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

$$X = 45.5 \text{ mm}$$

$$Sy = 0.599 \text{ in}^3$$

1.152 k-ft

Compression

3.4.9

$$b/t = 32.195$$

 $S1 = 12.21$ (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

$$b/t = 37.0588$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\varphi F_L = (\varphi ck2^* \sqrt{(BpE)})/(1.6b/t)$$

$$\phi F_L = 21.9 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$\int Bt - \frac{\theta_y}{\Omega} F$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$P_{max} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis:

3.4.14

$$L_b = 88.9 \text{ in}$$
 $J = 1.08$
 152.913

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(IyJ)/2}))}]$$

$$\phi F_L = 29.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 88.9$$
 $J = 1.08$
 161.829

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\varphi F_{L} = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 29.2$$

3.4.16

$$b/t = 16.2$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = 31.6 \text{ ksi}$$

 $\phi F_L = \phi b[Bp-1.6Dp*b/t]$

3.4.16

$$\theta_{r}$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 1.0Dp$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used
$$Rb/t = 18.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = C_t$$

S2 = 141.0

$$\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.1 \text{ ksi}$$

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.4 \text{ ksi}$$
 $lx = 984962 \text{ mm}^4$
 2.366 in^4

$$y = 43.717 \text{ mm}$$

 $Sx = 1.375 \text{ in}^3$

$$M_{max}St = 3.363 \text{ k-ft}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{rll} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{max} W k = & 3.904 \text{ k-ft} \end{array}$$

Compression

3.4.9

$$b/t = 16.2$$

S1 = 12.21 (See 3.4.16 above for formula)

S2 = 32.70 (See 3.4.16 above for formula)

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

$$\phi F_L = 31.6 \text{ ksi}$$

$$b/t = 7.4$$

S1 = 12.21

$$S2 = 32.70$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 1215.13 \text{ mm}^2$

1.88 in²

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L}_b = & 24.8 \text{ in} \\ \mathsf{J} = & 0.942 \\ 38.7028 \\ \\ \mathit{S1} = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ \\ \mathit{S2} = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib}[\mathsf{Bc-1.6Dc*}\sqrt{((\mathsf{LbSc})/(\mathsf{Cb*}\sqrt{(\mathsf{lyJ})/2}))}] \\ \mathsf{\phiF_L} = & 31.4 \text{ ksi} \\ \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= 24.8 \\ \mathsf{J} &= 0.942 \\ 38.7028 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= 1701.56 \\ \phi \mathsf{F_L} &= \phi b [\mathsf{Bc-1.6Dc}^* \sqrt{((\mathsf{LbSc})/(\mathsf{Cb}^* \sqrt{(\mathsf{lyJ})/2}))}] \\ \phi \mathsf{F_L} &= 31.4 \end{split}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

0.672 in⁴

 $0.621 in^{3}$

1.460 k-ft

27.5 mm

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$V = 27.5 \text{ mm}$$

$$V = 0.621 \text{ in}^3$$

$$V = 1.460 \text{ k-ft}$$

y =

Sx =

 $M_{max}St =$

Compression

$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.87952$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_{L} = 28.0279 \text{ ksi}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L {=} \; \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 28.85 \text{ kips}$$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis: 3.4.14

$$L_b = 86.60 \text{ in}$$
 $J = 0.942$
 135.148

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc-1.6Dc^* \sqrt{((LbSc)/(Cb^* \sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 29.6 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 86.6$$
 $J = 0.942$
 135.148

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 29.6$$

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

Ψ. [= 2012 No.

3.4.16.1 Not Used
$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$\phi F_L St = 28.2 \text{ ksi}$

$$lx = 279836 \text{ mm}^4$$
 0.672 in^4
 $y = 27.5 \text{ mm}$
 $Sx = 0.621 \text{ in}^3$
 $M_{max}St = 1.460 \text{ k-ft}$

Compression

3.4.7

$$\begin{array}{ll} \lambda = & 2.00335 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.86047 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 7.50396 \text{ ksi} \end{array}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$\phi F_L W k = 28.2 \text{ ksi}$

 $M_{max}Wk =$

$$ly = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

1.460 k-ft

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$
 $A = 663.99 \text{ mm}^2$

$$1.03 \text{ in}^2$$

$$P_{\text{max}} = 7.72 \text{ kips}$$

55x55

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strong Axis: 3.4.14

Strut =

$$L_b = 48.30 \text{ in}$$
 $J = 0.942$
 75.3767

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1/01.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(IyJ)/2))]$$

 $φF_L = 30.6 \text{ ksi}$

$$b/t = 24.5$$

$$\theta_{2}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 48.3$$
 $J = 0.942$
 75.3767

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 30.6$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

27.5 mm

0.621 in³

1.460 k-ft

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$\phi F_L W k = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}W k = 1.460 \text{ k-ft}$$

Compression

 $M_{max}St =$

y =

Sx =

3.4.7 $\lambda = 1.11734$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\varphi cc = 0.76536$ $\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$ $\varphi F_L = 18.9268 \text{ ksi}$

3.4.9 b/t =24.5 12.21 (See 3.4.16 above for formula) S1 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 28.2 ksi 24.5 b/t =S1 = 12.21 32.70 S2 = $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 28.2 ksi

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(MeS	Surface(
1	Dead Load, Max	DĽ	_	-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-61.093	-61.093	0	0
2	M14	Υ	-61.093	-61.093	0	0
3	M15	Υ	-61.093	-61.093	0	0
4	M16	Υ	-61 093	-61 093	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-52.98	-52.98	0	0
2	M14	V	-52.98	-52.98	0	0
3	M15	V	-84.769	-84.769	0	0
4	M16	٧	-84.769	-84.769	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	121.855	121.855	0	0
2	M14	٧	94.305	94.305	0	0
3	M15	V	52.98	52.98	0	0
4	M16	У	52.98	52.98	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	6.693	6.693	0	0
2	M14	Z	6.693	6.693	0	0
3	M15	Z	6.693	6.693	0	0
4	M16	Z	6.693	6.693	0	0
5	M13	Z	0	0	0	0
6	M14	Z	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	237.631	2	1119.659	1	1.169	1	.005	1	0	1	0	1
2		min	-340.145	3	-885.642	3	-87.429	5	338	4	0	1	0	1
3	N7	max	.053	1	1242.892	1	328	12	0	12	0	1	0	1
4		min	049	2	-233.324	3	-246.119	4	501	4	0	1	0	1
5	N15	max	.024	9	3637.122	1	0	2	0	2	0	1	0	1
6		min	774	2	-820.114	3	-237.15	5	49	4	0	1	0	1
7	N16	max	1022.997	2	3775.89	1	0	1	0	1	0	1	0	1
8		min	-1070.157	3	-2922.287	3	-87.114	5	341	4	0	1	0	1
9	N23	max	.053	1	1242.892	1	8.498	1	.018	1	0	1	0	1
10		min	049	2	-233.324	3	-241.058	4	492	4	0	1	0	1
11	N24	max	237.631	2	1119.659	1	05	12	0	12	0	1	0	1
12		min	-340.145	3	-885.642	3	-87.947	4	34	4	0	1	0	1
13	Totals:	max	1497.387	2	12138.114	1	0	2						
14		min	-1750.787	3	-5980.335	3	-981.943	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	93.492	1	516.116	1	-4.934	12	0	3	.222	1	0	1
2			min	3.59	12	-459.303	3	-143.394	1	013	1	.009	12	0	3
3		2	max	93.492	1	361.708	1	-3.855	12	0	3	.076	4	.456	3
4			min	3.59	12	-323.177	3	-110.302	1	013	1	.003	12	512	1
5		3	max	93.492	1	207.3	1	-2.777	12	0	3	.038	5	.754	3
6			min	3.59	12	-187.052	3	-77.21	1	013	1	035	1	844	1
7		4	max	93.492	1	52.893	1	-1.698	12	0	3	.02	5	.893	3
8			min	3.59	12	-50.927	3	-44.117	1	013	1	106	1	996	1
9		5	max	93.492	1	85.199	3	619	12	0	3	.003	5	.873	3
10			min	3.59	12	-101.515	1	-16.084	4	013	1	138	1	967	1
11		6	max	93.492	1	221.324	3	22.068	1	0	3	004	12	.694	3
12			min	3.59	12	-255.923	1	-11.857	5	013	1	132	1	759	1
13		7	max	93.492	1	357.45	3	55.16	1	0	3	003	12	.356	3
14			min	-3.946	5	-410.331	1	-10.188	5	013	1	086	1	37	1
15		8	max	93.492	1	493.575	3	88.253	1	0	3	0	10	.199	1
16			min	-15.922	5	-564.738	1	-8.519	5	013	1	037	4	14	3
17		9	max	93.492	1	629.7	3	121.345	1	0	3	.119	1	.947	1
18	_		min	-27.898	5	-719.146	1	-6.85	5	013	1	045	5	795	3

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
19		10	max	93.492	1	765.826	3	154.438	1_	.005	14	.28	1	1.877	1
20			min	3.59	12	-873.554	1	-87.818	14	013	1	.008	12	-1.609	3
21		11	max	93.492	1	719.146	1	-3.696	12	.013	1	.119	1	.947	1
22			min	3.59	12	-629.7	3	-121.345	1	0	3	.003	12	795	3
23		12	max	93.492	1	564.738	1	-2.617	12	.013	1	.035	4	.199	1
24			min	3.59	12	-493.575	3	-88.253	1	0	3	003	1	14	3
25		13	max	93.492	1	410.331	1	-1.538	12	.013	1	.016	5	.356	3
26			min	3.59	12	-357.45	3	-55.16	1	0	3	086	1	37	1
27		14	max	93.492	1	255.923	1	459	12	.013	1	0	15	.694	3
28		17	min	.849	15	-221.324	3	-22.068	1	.013	3	132	1	759	1
29		15		93.492	1		1	11.025	1	.013	1		12	.873	3
		15	max			101.515						004			
30		40	min	-10.59	5	-85.199	3	-12.399	5	0	3	138	1	<u>967</u>	1
31		16	max	93.492	1	50.927	3	44.117	_1_	.013	1	003	12	.893	3
32			min	-22.566	5	-52.893	_1_	-10.73	5	0	3	106	1	996	1
33		17	max	93.492	1_	187.052	3	77.21	_1_	.013	1_	0	12	.754	3
34			min	-34.542	5	-207.3	1_	-9.061	5	0	3	05	4	844	1
35		18	max	93.492	1	323.177	3	110.302	1	.013	1	.074	1	.456	3
36			min	-46.518	5	-361.708	1	-7.392	5	0	3	052	5	512	1
37		19	max	93.492	1	459.303	3	143.394	1	.013	1	.222	1	0	1
38			min	-58.494	5	-516.116	1	-5.723	5	0	3	059	5	0	3
39	M14	1	max	65.4	4	542.314	1	-5.069	12	.005	3	.252	1	0	1
40			min	1.537	12	-359.905	3	-147.654	1	011	1	.01	12	0	3
41		2	max	53.424	4	387.906	1	-3.99	12	.005	3	.107	4	.359	3
42			min	1.537	12	-255.921	3	-114.561	1	011	1	.004	12	543	1
43		3	max	42.33	1	233.498	1	-2.911	12	.005	3	.056	5	.597	3
44		3		1.537	12	-151.937	3	-81.469	1	011	1	015	1	905	1
-		4	min								_		_		
45		4	max	42.33	1	79.091	1_	-1.833	12	.005	3	.03	5	.714	3
46			min	1.537	12	-47.954	3	-48.376	1_	011	1	091	1	<u>-1.087</u>	1
47		5	max	42.33	1	56.03	3	754	12	.005	3	.006	5	.709	3
48			min	1.537	12	-75.317	1_	-23.698	4	011	1	128	1	-1.09	1
49		6	max	42.33	1	160.014	3	17.809	_1_	.005	3	004	12	.583	3
50			min	-3.139	5	-229.725	1_	-18.447	5	011	1	127	1	912	1
51		7	max	42.33	1	263.997	3	50.901	_1_	.005	3	003	12	.336	3
52			min	-15.115	5	-384.132	1	-16.778	5	011	1	087	1	554	1
53		8	max	42.33	1	367.981	3	83.993	1	.005	3	0	10	0	15
54			min	-27.091	5	-538.54	1	-15.109	5	011	1	059	4	033	3
55		9	max	42.33	1	471.965	3	117.086	1	.005	3	.109	1	.703	1
56			min	-39.067	5	-692.948	1	-13.44	5	011	1	073	5	523	3
57		10	max	63.47	4	575.948	3	150.178	1	.005	3	.265	1	1.601	1
58			min	1.537	12	-847.355	1	-89.009	14	011	1	.007	12	-1.134	3
59		11	max		4	692.948	1	-3.561	12	.011	1	.109	1	.703	1
60		- ' '	min	1.537	12	-471.965	3	-117.086	1	005	3	.003	12	523	3
61		12				538.54	<u> </u>	-2.482		.011	1	.055	5		15
		12	max	42.33	1				12		3			0	3
62		40	min	1.537	12	-367.981	3	-83.993	1_	005		008	1	033	
63		13	max	42.33	1	384.132	1_	-1.403	12	.011	1	.029	5	.336	3
64			min	1.537	12	-263.997	3	-50.901	1_	005	3	087	1	<u>554</u>	1
65		14	max	42.33	1	229.725	_1_	325	12	.011	1	.004	5	.583	3
66			min	1.537	12	-160.014	3	-24.255	4_	005	3	127	1	912	1
67		15	max	42.33	1	75.317	1	15.284	1_	.011	1	004	12	.709	3
68			min	-4.747	5	-56.03	3	-18.56	5	005	3	128	1	-1.09	1
69		16	max	42.33	1	47.954	3	48.376	1	.011	1	003	12	.714	3
70			min	-16.723	5	-79.091	1	-16.891	5	005	3	091	1	-1.087	1
71		17	max	42.33	1	151.937	3	81.469	1	.011	1	0	3	.597	3
72			min	-28.699	5	-233.498	1	-15.222	5	005	3	062	4	905	1
73		18	max	42.33	1	255.921	3	114.561	1	.011	1	.099	1	.359	3
74		10	min	-40.675	5	-387.906	1	-13.553	5	005	3	075	5	543	1
75		19	max	42.33	1	359.905	3	147.654	1	.011	1	.252	1	0	1
L I O		l 19	шах	42.33		JJ3.300	J	147.004		.011		.202		U	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]								z-z Mome	
76			min	-52.651	5	-542.314	1_	-11.884	5	005	3	089	5	0	3
77	M15	1	max	81.955	5	604.888	_1_	-5.049	12	.011	1	.252	1	00	1
78			min	-44.539	1	-197.335	3	-147.632	1	005	3	.009	12	0	3
79		2	max	69.979	5	431.937	1	-3.97	12	.011	1	.142	4	.198	3
80			min	-44.539	1	-141.564	3	-114.539	1	005	3	.004	12	605	1
81		3	max	58.003	5	258.986	1	-2.892	12	.011	1	.082	5	.33	3
82			min	-44.539	1	-85.793	3	-81.447	1	005	3	015	1	-1.008	1
83		4	max	46.027	5	86.034	1	-1.813	12	.011	1	.046	5	.398	3
84			min	-44.539	1	-30.022	3	-48.354	1	005	3	091	1	-1.209	1
85		5	max	34.051	5	25.75	3	734	12	.011	1	.011	5	.4	3
86			min	-44.539	1	-86.917	1	-32.259	4	005	3	128	1	-1.209	1
87		6	max	22.075	5	81.521	3	17.831	1	.011	1	004	12	.338	3
88			min	-44.539	1	-259.868	1	-27.006	5	005	3	127	1	-1.006	1
89		7	max	10.099	5	137.292	3	50.923	1	.011	1	003	12	.21	3
90			min	-44.539	1	-432.819	1	-25.337	5	005	3	087	1	602	1
91		8	max	-1.219	15	193.063	3	84.016	1	.011	1	0	10	.017	3
92			min	-44.539	1	-605.771	1	-23.668	5	005	3	083	4	003	9
93		9	max	-1.743	12	248.834	3	117.108	1	.011	1	.109	1	.811	1
94			min	-44.539	1	-778.722	1	-21.999	5	005	3	107	5	24	3
95		10	max	-1.743	12	355.788	14	150.2	1	.011	1	.265	1	1.821	1
96		10	min	-44.539	1	-951.673	1	-93.353	14	005	3	.007	12	563	3
97		11	max	9.181	5	778.722	1	-3.581	12	.005	3	.142	4	.811	1
98			min	-44.539	1	-248.834	3	-117.108	1	011	1	.003	12	24	3
99		12	max	-1.743	12	605.771	1	-2.502	12	.005	3	.08	5	.017	3
100		12	min	-44.539	1	-193.063	3	-84.016	1	011	1	008	1	003	9
101		13	max	-1.743	12	432.819	1	-1.423	12	.005	3	.043	5	.21	3
102		10	min	-44.539	1	-137.292	3	-50.923	1	011	1	087	1	602	1
103		14	max	-1.743	12	259.868	1	345	12	.005	3	.009	5	.338	3
104		17	min	-44.539	1	-81.521	3	-32.83	4	011	1	127	1	-1.006	1
105		15	max	-1.743	12	86.917	1	15.262	1	.005	3	004	12	.4	3
106		10	min	-48.209	4	-25.75	3	-27.12	5	011	1	128	1	-1.209	1
107		16	max	-1.743	12	30.022	3	48.354	1	.005	3	003	12	.398	3
108		10	min	-60.185	4	-86.034	1	-25.451	5	011	1	091	1	-1.209	1
109		17	max	-1.743	12	85.793	3	81.447	1	.005	3	0	3	.33	3
110		- ' '	min	-72.161	4	-258.986	1	-23.782	5	011	1	088	4	-1.008	1
111		18	max	-1.743	12	141.564	3	114.539	1	.005	3	.099	1	.198	3
112		10	min	-84.137	4	-431.937	1	-22.113	5	011	1	11	5	605	1
113		19	max	-1.743	12	197.335	3	147.632	1	.005	3	.252	1	0	1
114		10	min	-96.113	4	-604.888	1	-20.444	5	011	1	135	5	0	5
115	M16	1	max	81.804	5	578.906	1	-4.87	12	.012	1	.223	1	0	1
116	IVITO			-98.612	1	-185.685		-143.561	1	007	3	.008	12	0	3
117		2	max	69.828	5	405.955	1	-3.791	12	.012	1	.106	4	.184	3
118			min	-98.612	1	-129.913	3	-110.469	1	007	3	.003	12	574	1
119		3	max	57.852	5	233.003	1	-2.713	12	.012	1	.06	5	.303	3
120		3	min	-98.612	1	-74.142	3	-77.377	1	007	3	034	1	947	1
121		4	max	45.876	5	60.052	1	-1.634	12	.012	1	.033	5	.357	3
122		_	min	-98.612	1	-18.371	3	-44.284	1	007	3	105	1	-1.118	1
123		5	max	33.9	5	37.4	3	555	12	.012	1	.008	5	.346	3
124			min	-98.612	1	-112.899	1	-23.265	4	007	3	138	1	-1.087	1
125		6	max	21.924	5	93.171	3	21.901	1	.012	1	004	12	.27	3
126		0	min	-98.612	1	-285.851	1	-18.97	5	007	3	131	1	855	1
127		7	max	9.948	5	148.942	3	54.993	1	.012	1	003	12	.129	3
128			min	-98.612	1	-458.802	1	-17.301	5	007	3	087	1	42	1
129		8	max	-1.294	15	204.714	3	88.086	1	.012	1	0	10	.216	1
130			min	-98.612	1	-631.753	1	-15.632	5	007	3	057	4	078	3
131		9	max	-3.661	12	260.485	3	121.178	1	.012	1	.119	1	1.054	1
132			min	-98.612	1	-804.704	1	-13.963	5	007	3	072	5	349	3
. 52				00.012		ОО ОТ			_						

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
133		10	max	-3.661	12	366.234	14	154.271	1	.012	1_	.28	1	2.093	1
134			min	-98.612	1	-977.656	1	-91.381	14	007	3	.008	12	686	3
135		11	max	4.091	5	804.704	1	-3.76	12	.007	3	.119	1	1.054	1
136			min	-98.612	1	-260.485	3	-121.178	1	012	1	.003	12	349	3
137		12	max	-3.661	12	631.753	1	-2.681	12	.007	3	.055	4	.216	1
138			min	-98.612	1	-204.714	3	-88.086	1	012	1	003	1	078	3
139		13	max	-3.661	12	458.802	1	-1.602	12	.007	3	.027	5	.129	3
140			min	-98.612	1	-148.942	3	-54.993	1	012	1	087	1	42	1
141		14	max	-3.661	12	285.851	1	523	12	.007	3	.002	5	.27	3
142			min	-98.612	1	-93.171	3	-25.888	4	012	1	131	1	855	1
143		15	max	-3.661	12	112.899	1	11.192	1	.007	3	004	12	.346	3
144			min	-98.612	1	-37.4	3	-19.503	5	012	1	138	1	-1.087	1
145		16	max	-3.661	12	18.371	3	44.284	1	.007	3	003	12	.357	3
146			min	-98.612	1	-60.052	1	-17.834	5	012	1	105	1	-1.118	1
147		17	max	-3.661	12	74.142	3	77.377	1	.007	3	0	12	.303	3
148			min	-98.612	1	-233.003	1	-16.165	5	012	1	072	4	947	1
149		18	max	-3.661	12	129.913	3	110.469	1	.007	3	.075	1	.184	3
150			min	-100.412		-405.955	1	-14.496	5	012	1	082	5	574	1
151		19	max	-3.661	12	185.685	3	143.561	1	.007	3	.223	1	0	1
152			min	-112.388	4	-578.906	1	-12.827	5	012	1	098	5	0	5
153	M2	1		1114.847	1	2.331	4	1.327	1	0	3	0	3	0	1
154	1112		min	-807.049	3	.571	15	-83.071	4	0	4	0	1	0	1
155		2	+	1115.175	1	2.315	4	1.327	1	0	3	0	1	0	15
156				-806.802	3	.567	15	-83.356	4	0	4	018	4	0	4
157		3	1	1115.504	1	2.3	4	1.327	1	0	3	0	1	0	15
158			min	-806.556	3	.564	15	-83.641	4	0	4	037	4	001	4
159		4		1115.832	1	2.285	4	1.327	1	0	3	0	1	0	15
160			min	-806.31	3	.56	15	-83.926	4	0	4	055	4	002	4
161		5		1116.161	1	2.27	4	1.327	1	0	3	.001	1	0	15
162			min	-806.063	3	.557	15	-84.21	4	0	4	074	4	002	4
163		6		1116.489	1	2.254	4	1.327	1	0	3	.001	1	0	15
164			min	-805.817	3	.553	15	-84.495	4	0	4	093	4	003	4
165		7	+	1116.817	1	2.239	4	1.327	1	0	3	.002	1	0	15
166				-805.571	3	.549	15	-84.78	4	0	4	112	4	003	4
167		8		1117.146	1	2.224	4	1.327	1	0	3	.002	1	0	15
168		0	min	-805.324	3	.546	15	-85.065	4	0	4	13	4	004	4
169		9	_	1117.474	1	2.209	4	1.327	1	0	3	.002	1	0	15
170		9	min	-805.078		.542	15	-85.35	4	0	4	149	4	004	4
171		10		1117.803	<u></u>	2.193	4	1.327	1		3	.003	1	004 001	15
172		10	1	-804.832	3	.539	15	-85.635	4	0 0	4	168	4	005	4
173		11	min	1118.131		2.178	4	1.327	1	0	3	.003	1	005 001	15
174		11		-804.585		.535	15	-85.919	4	0	4	187	4	005	4
175		12		1118.46			4	1.327	1		3	.003	1		15
176		12		-804.339	3	2.163 .532	15			0	4	206	4	001	4
		12		1118.788					4	0	3			005	
177 178		13		-804.093	1	2.148 .528	4 15	1.327	1	0	4	.004 225	1	001	15
		4.4			3			-86.489	4	0	_		4	006	4
179		14		1119.116	1	2.132	4	1.327	1	0	3	.004	1	002	15
180		4.5		-803.846		.524	15	-86.774	4	0	4	245	4	006	4
181		15		1119.445	1	2.117	4	1.327	1	0	3	.004	1	002	15
182		40	min	-803.6	3	.521	15	-87.059	4	0	4	264	4	007	4
183		16		1119.773	1	2.102	4	1.327	1	0	3	.004	1	002	15
184				-803.354	3	.517	15	-87.343	4	0	4	283	4	007	4
185		17		1120.102	1	2.087	4	1.327	1	0	3	.005	1	002	15
186				-803.107	3	.514	15	-87.628	4	0	4	303	4	008	4
187		18		1120.43	1	2.071	4	1.327	1	0	3	.005	1	002	15
188				-802.861	3	.51	15	-87.913	4	0	4	322	4	008	4
189		19	max	1120.759	1	2.056	4	1.327	1	0	3	.005	1	002	15

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]	LC		LC	z-z Mome	LC
190			min	-802.615	3	.506	15	-88.198	4	0	4	341	4	009	4
191	<u>M3</u>	1	max	216.109	2	8.104	4	.011	1_	0	3	0	1_	.009	4
192			min	-322.894	3	1.917	15	-1.234	5	0	4	013	4	.002	15
193		2	max	215.939	2	7.332	4	.011	1	0	3	0	1	.005	4
194			min	-323.021	3	1.736	15	691	5	0	4	013	4	.001	15
195		3	max	215.768	2	6.559	4	.011	1	0	3	0	1	.003	4
196			min	-323.149	3	1.554	15	149	5	0	4	013	4	0	12
197		4	max	215.598	2	5.787	4	.447	4	0	3	0	1	0	2
198			min	-323.277	3	1.372	15	0	12	0	4	013	4	001	3
199		5	max	215.427	2	5.015	4	.989	4	0	3	0	1	0	15
200			min	-323.405	3	1.191	15	0	12	0	4	013	4	002	6
201		6	max	215.257	2	4.242	4	1.531	4	0	3	0	1	0	15
202			min	-323.533	3	1.009	15	0	12	0	4	012	4	004	6
203		7	max	215.087	2	3.47	4	2.073	4	0	3	0	1	001	15
204			min	-323.66	3	.828	15	0	12	0	4	012	4	006	6
205		8	max	214.916	2	2.697	4	2.615	4	0	3	0	1	002	15
206			min	-323.788	3	.646	15	0	12	0	4	011	4	002	6
207		9		214.746		1.925	4	3.158	4	0	3	0	1	007	15
		9	max		2				12				_		
208		40	min	-323.916	3_	.465	15	0		0	4	01	4	008	6
209		10	max	214.576	2	1.152	4	3.7	4	0	3	0	1	002	15
210		4.4	min	-324.044	3	.283	15	0	12	0	4	008	5	009	6
211		11	max	214.405	2	.38	4	4.242	4	0	3	0	1_	002	15
212			min	-324.171	3	.054	12	0	12	0	4	006	5	009	6
213		12	max	214.235	2	08	15	4.784	4	0	3	0	1	002	15
214			min	-324.299	3	393	6	0	12	0	4	005	5	009	6
215		13	max	214.065	2	262	15	5.326	4	0	3	0	1_	002	15
216			min	-324.427	3	-1.166	6	0	12	0	4	002	5	009	6
217		14	max	213.894	2	443	15	5.868	4	0	3	0	1	002	15
218			min	-324.555	3	-1.938	6	0	12	0	4	0	5	008	6
219		15	max	213.724	2	625	15	6.41	4	0	3	.003	4	002	15
220			min	-324.682	3	-2.711	6	0	12	0	4	0	12	007	6
221		16	max	213.554	2	806	15	6.953	4	0	3	.005	4	001	15
222			min	-324.81	3	-3.483	6	0	12	0	4	0	12	006	6
223		17	max	213.383	2	988	15	7.495	4	0	3	.008	4	0	15
224			min	-324.938	3	-4.256	6	0	12	0	4	0	12	004	6
225		18	max	213.213	2	-1.17	15	8.037	4	0	3	.012	4	0	15
226			min	-325.066	3	-5.028	6	0	12	0	4	0	12	002	6
227		19	max	213.043	2	-1.351	15	8.579	4	0	3	.015	4	0	1
228		1.0	min	-325.193	3	-5.8	6	0	12	0	4	0	12	0	1
229	M4	1		1239.825	1	0	1	326	12	0	1	.008	4	0	1
230				-235.624	3	0	1	-245.15	4	0	1	0	10	0	1
231		2		1239.996	1	0	1	326	12	0	1	0	12	0	1
232		_	min		3	0	1	-245.298		0	1	02	4	0	1
233		3		1240.166	<u> </u>	0	1	326	12	0	1	0	12	0	1
234		J	min		3	0	1	-245.445		0	1	048	4	0	1
235		4		1240.336	<u>ა</u> 1		1	326	12		1	046 0	12		1
		4				0	1	-245.593		0	1			0	1
236				-235.241	3	0	•			0		076	12	0	_
237		5		1240.507	1	0	1	326	12	0	1	0		0	1
238				-235.113	3	0	1	-245.741	4	0	1	105	4	0	1
239		6		1240.677	1_	0	1	326	12	0	1	0	12	0	1
240				-234.985	3	0	1_	-245.888		0	1	133	4	0	1
241		7		1240.847	_1_	0	1	326	12	0	1	0	12	0	1
242			min		3	0	1	-246.036		0	1	161	4	0	1
243		8		1241.018	_1_	0	1	326	12	0	1	0	12	0	1
244			min	-234.73	3	0	1	-246.183		0	1	189	4	0	1
245		9	max	1241.188	_1_	0	1	326	12	0	1	0	12	0	1
246			min	-234.602	3	0	1	-246.331	4	0	1	218	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
247		10	max	1241.359	_1_	0	1	326	12	0	1	0	12	0	1
248			min	-234.474	3	0	1	-246.479	4	0	1	246	4	0	1
249		11	max	1241.529	1	0	1	326	12	0	1	0	12	0	1
250			min	-234.346	3	0	1	-246.626	4	0	1	274	4	0	1
251		12	max	1241.699	1	0	1	326	12	0	1	0	12	0	1
252			min	-234.219	3	0	1	-246.774	4	0	1	303	4	0	1
253		13	max	1241.87	1	0	1	326	12	0	1	0	12	0	1
254			min	-234.091	3	0	1	-246.922	4	0	1	331	4	0	1
255		14	max		1	0	1	326	12	0	1	0	12	0	1
256			min	-233.963	3	0	1	-247.069	4	0	1	359	4	0	1
257		15	max		1	0	1	326	12	0	1	0	12	0	1
258			min	-233.835	3	0	1	-247.217	4	0	1	388	4	0	1
259		16	max	1242.381	1	0	1	326	12	0	1	0	12	0	1
260			min	-233.708	3	0	1	-247.365	4	0	1	416	4	0	1
261		17		1242.551	1	0	1	326	12	0	1	0	12	0	1
262		1	min		3	0	1	-247.512	4	0	1	444	4	0	1
263		18		1242.721	1	0	1	326	12	0	1	0	12	0	1
264		1	min	-233.452	3	0	1	-247.66	4	0	1	473	4	0	1
265		19		1242.892	1	0	1	326	12	0	1	0	12	0	1
266		'	min	-233.324	3	0	1	-247.807	4	0	1	501	4	0	1
267	M6	1		3601.141	1	2.543	2	0	1	0	1	0	4	0	1
268	1110		min	-2657.335	3	.373	12	-83.824	4	0	4	0	1	0	1
269		2		3601.469	1	2.531	2	0	1	0	1	0	1	0	12
270			min	-2657.088	3	.367	12	-84.108	4	0	4	019	4	0	2
271		3		3601.798	1	2.519	2	0	1	0	1	0	1	0	12
272		<u> </u>	min	-2656.842	3	.361	12	-84.393	4	0	4	037	4	001	2
273		4		3602.126	1	2.507	2	0	1	0	1	0	1	0	12
274			min	-2656.596	3	.355	12	-84.678	4	0	4	056	4	002	2
275		5	+	3602.455	1	2.495	2	0	1	0	1	0	1	0	12
276		Ť	min	-2656.349	3	.349	12	-84.963	4	0	4	075	4	002	2
277		6		3602.783	1	2.484	2	0	1	0	1	0	1	0	12
278		Ĭ	min	-2656.103	3	.343	12	-85.248	4	0	4	094	4	003	2
279		7		3603.112	1	2.472	2	0	1	0	1	0	1	0	12
280		<u> </u>	min	-2655.857	3	.337	12	-85.533	4	0	4	113	4	003	2
281		8	max		1	2.46	2	0	1	0	1	0	1	0	12
282			min	-2655.61	3	.332	12	-85.817	4	0	4	132	4	004	2
283		9		3603.768	1	2.448	2	0	1	0	1	0	1	0	12
284			min	-2655.364	3	.326	12	-86.102	4	0	4	151	4	004	2
285		10		3604.097	1	2.436	2	0	1	0	1	0	1	0	12
286		'	min	-2655.118	3	.32	12	-86.387	4	0	4	17	4	005	2
287		11		3604.425	1	2.424	2	0	1	0	1	0	1	0	12
288			min		3	.314	12	-86.672	4	0	4	189	4	006	2
289		12		3604.754	1	2.412	2	0	1	0	1	0	1	0	12
290		, <u> </u>	min		3	.308	12	-86.957	4	0	4	208	4	006	2
291		13		3605.082	1	2.4	2	0	1	0	1	0	1	0	12
292			min		3	.302	12	-87.242	4	0	4	227	4	007	2
293		14		3605.411	1	2.388	2	0	1	0	1	0	1	0	12
294		17	min		3	.296	12	-87.526	4	0	4	247	4	007	2
295		15		3605.739	1	2.376	2	0	1	0	1	0	1	001	12
296		'0	min		3	.29	12	-87.811	4	0	4	266	4	008	2
297		16		3606.068	1	2.365	2	0	1	0	1	0	1	001	12
298		10		-2653.64	3	.284	12	-88.096	4	0	4	286	4	008	2
299		17		3606.396	<u> </u>	2.353	2	0	1	0	1	0	1	003	12
300		17	min		3	.278	12	-88.381	4	0	4	305	4	009	2
301		18		3606.724	<u> </u>	2.341	2	0	1	0	1	0	1	009	12
302		10	min		3	.272	12	-88.666	4	0	4	325	4	009	2
303		19		3607.053	<u> </u>	2.329	2	0	1	0	1	0	1	003	12
000		13	πιαλ	10001.000		2.323								UU I	14

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]	LC		LC	z-z Mome	<u>LC</u>
304			min	-2652.901	3	.266	12	-88.951	4	0	4	344	4	01	2
305	M7	1_	max		2	8.12	6	0	1	0	1_	0	1	.01	2
306			min	-1010.758	3_	1.905	15	-1.303	5	0	4	013	4	.001	12
307		2	max		2	7.347	6	0	1	0	1	0	1	.007	2
308			min	-1010.886	3	1.723	15	761	5	0	4	013	4	0	3
309		3	max	963.967	2	6.575	6	0	1	0	1	0	1	.005	2
310			min	-1011.014	3_	1.542	15	219	5	0	4	014	4	002	3
311		4	max	963.796	2	5.802	6	.37	4	0	1_	0	1_	.002	2
312			min	-1011.142	3	1.36	15	0	1	0	4	014	4	003	3
313		5	max	963.626	2	5.03	6	.912	4	0	1_	0	1	0	2
314			min	-1011.269	3	1.179	15	0	1	0	4	013	4	004	3
315		6	max		2	4.258	6	1.454	4	0	1	0	1	001	15
316			min	-1011.397	3	.997	15	0	1	0	4	013	4	005	3
317		7	max		2	3.485	6	1.996	4	0	1	0	1	001	15
318			min	-1011.525	3	.815	15	0	1	0	4	012	4	006	4
319		8	max	963.115	2	2.713	6	2.538	4	0	1	0	1	002	15
320			min	-1011.653	3	.634	15	0	1	0	4	011	4	007	4
321		9	max	962.945	2	1.94	6	3.08	4	0	1	0	1	002	15
322			min	-1011.78	3	.452	15	0	1	0	4	01	4	008	4
323		10	max	962.774	2	1.28	2	3.622	4	0	1	0	1	002	15
324			min	-1011.908	3	.168	12	0	1	0	4	008	4	009	4
325		11	max	962.604	2	.678	2	4.164	4	0	1	0	1	002	15
326			min	-1012.036	3	246	3	0	1	0	4	007	4	009	4
327		12	max	962.434	2	.076	2	4.707	4	0	1	0	1	002	15
328			min	-1012.164	3	697	3	0	1	0	4	005	4	009	4
329		13	max	962.263	2	274	15	5.249	4	0	1	0	1	002	15
330			min	-1012.291	3	-1.149	4	0	1	0	4	003	4	009	4
331		14	max	962.093	2	456	15	5.791	4	0	1	0	1	002	15
332			min	-1012.419	3	-1.922	4	0	1	0	4	0	5	008	4
333		15	max	961.923	2	637	15	6.333	4	0	1	.002	4	002	15
334			min	-1012.547	3	-2.694	4	0	1	0	4	0	1	007	4
335		16	max	961.752	2	819	15	6.875	4	0	1	.005	4	001	15
336			min	-1012.675	3	-3.467	4	0	1	0	4	0	1	006	4
337		17	max	961.582	2	-1	15	7.417	4	0	1	.008	4	0	15
338			min	-1012.802	3	-4.239	4	0	1	0	4	0	1	004	4
339		18	max	961.412	2	-1.182	15	7.959	4	0	1	.011	4	0	15
340			min	-1012.93	3	-5.012	4	0	1	0	4	0	1	002	4
341		19	max	961.241	2	-1.363	15	8.501	4	0	1	.015	4	0	1
342			min	-1013.058	3	-5.784	4	0	1	0	4	0	1	0	1
343	M8	1		3634.056	1	0	1	0	1	0	1	.008	4	0	1
344				-822.413	3	0	1	-239.612	4	0	1	0	1	0	1
345		2		3634.226	1	0	1	0	1	0	1	0	1	0	1
346			min		3	0	1	-239.759	4	0	1	02	4	0	1
347		3		3634.397	1	0	1	0	1	0	1	0	1	0	1
348				-822.158	3	0	1	-239.907	4	0	1	047	4	0	1
349		4		3634.567	1	0	1	0	1	0	1	0	1	0	1
350			min		3	0	1	-240.055	4	0	1	075	4	0	1
351		5	+	3634.737	1	0	1	0	1	0	1	0	1	0	1
352				-821.902	3	0	1	-240.202	_	0	1	102	4	0	1
353		6		3634.908	1	0	1	0	1	0	1	0	1	0	1
354				-821.774	3	0	1	-240.35	4	0	1	13	4	0	1
355		7	_	3635.078	1	0	1	0	1	0	1	0	1	0	1
356			min		3	0	1	-240.497		0	1	158	4	0	1
357		8		3635.248	_ <u></u>	0	1	0	1	0	1	0	1	0	1
358		0		-821.519		0	1	-240.645		0	1	185	4	0	1
359		9		3635.419		0	1	0	1	0	1	0	1	0	1
360		9		-821.391	3	0	1	-240.793		0	1	213	4	0	1
500			111111	021.031	J	U		270.133		U		210		U	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

004	Member	Sec		Axial[lb]						Torque[k-ft]		1 -	LC	_	
361		10		3635.589	1_	0	1	0	1_1	0	1	0	1	0	1
362		4.4	min	-821.263	3	0	1	-240.94	4	0	1_	241	4	0	1
363		11		3635.759	1	0	1	0	1_1	0	<u>1</u> 1	0	1_4	0	1
364		12		-821.136 3635.93	3	0	1	-241.088 0	<u>4</u> 1	0	1	268 0	1	0	1
365 366		12	max	-821.008	<u>1</u> 3	0	1	-241.236	4	0	1	296	4	0	1
		12	min		<u>ာ</u> 1		1			_	1		1	0	1
367 368		13	max	3636.1	3	0	1	0 -241.383	<u>1</u> 4	0	1	324	4	0	1
		14	min	-820.88	<u>ာ</u> 1	0	1		_ 4 _	0	1		1	0	1
369		14	max		3		1	0	4	-	1	0	4	0	1
370 371		15	min	-820.752 3636.441	<u>ာ</u> 1	0	1	-241.531 0	<u>4</u> 1	0	1	351 0	1	0	1
372		13	min	-820.625	3	0	1	-241.679	4	0	1	379	4	0	1
373		16	_	3636.611	<u> </u>	0	1	0	1	0	+	379	1	0	1
374		10		-820.497	3	0	1	-241.826	4	0	1	407	4	0	1
375		17		3636.781	<u> </u>	0	1	0	1	0	1	407	1	0	1
376		17		-820.369	3	0	1	-241.974	4	0	1	435	4	0	1
377		18		3636.952	<u> </u>	0	1	0	1	0	1	0	1	0	1
378		10		-820.241	3	0	1	-242.121	4	0	1	462	4	0	1
379		19		3637.122	_ <u></u>	0	1	0	1	0	1	0	1	0	1
380		13		-820.114	3	0	1	-242.269	4	0	1	49	4	0	1
381	M10	1		1114.847	<u> </u>	2.229	6	048	12	0	1	0	1	0	1
382	IVITO		min	-807.049	3	.503	15	-83.736	4	0	5	0	3	0	1
383		2		1115.175	<u> </u>	2.214	6	048	12	0	1	0	12	0	15
384				-806.802	3	.5	15	-84.021	4	0	5	019	4	0	6
385		3		1115.504	<u> </u>	2.199	6	048	12	0	1	0	12	0	15
386		3		-806.556	3	.496	15	-84.306	4	0	5	037	4	0	6
387		4		1115.832	1	2.184	6	048	12	0	1	0	12	0	15
388		-	min	-806.31	3	.492	15	-84.591	4	0	5	056	4	001	6
389		5		1116.161	1	2.168	6	048	12	0	1	0	12	0	15
390		J	min	-806.063	3	.489	15	-84.876	4	0	5	075	4	002	6
391		6		1116.489	<u> </u>	2.153	6	048	12	0	1	0	12	0	15
392			min	-805.817	3	.485	15	-85.16	4	0	5	094	4	002	6
393		7	_	1116.817	1	2.138	6	048	12	0	1	0	12	0	15
394				-805.571	3	.482	15	-85.445	4	0	5	112	4	003	6
395		8		1117.146	1	2.123	6	048	12	0	1	0	12	0	15
396				-805.324	3	.478	15	-85.73	4	0	5	131	4	003	6
397		9		1117.474	1	2.107	6	048	12	0	1	0	12	0	15
398			min	-805.078	3	.474	15	-86.015	4	0	5	15	4	004	6
399		10		1117.803	1	2.092	6	048	12	0	1	0	12	0	15
400				-804.832	3	.471	15	-86.3	4	0	5	169	4	004	6
401		11		1118.131	1	2.077	6	048	12	0	1	0	12	001	15
402				-804.585	3	.467	15	-86.585	4	0	5	189	4	005	6
403		12		1118.46	1	2.062	6	048	12	0	1	0	12	001	15
404				-804.339	3	.464	15	-86.869	4	0	5	208	4	005	6
405		13		1118.788	1	2.046	6	048	12	0	1	0	12	001	15
406				-804.093	3	.46	15	-87.154	4	0	5	227	4	006	6
407		14		1119.116	1	2.031	6	048	12	0	1	0	12	001	15
408				-803.846	3	.457	15	-87.439	4	0	5	246	4	006	6
409		15		1119.445	1	2.016	6	048	12	0	1	0	12	001	15
410			min		3	.453	15	-87.724	4	0	5	266	4	007	6
411		16		1119.773	1	2.001	6	048	12	0	1	0	12	002	15
412				-803.354	3	.449	15	-88.009	4	0	5	285	4	007	6
413		17		1120.102	1	1.985	6	048	12	0	1	0	12	002	15
414				-803.107	3	.446	15	-88.293	4	0	5	305	4	007	6
415		18		1120.43	1	1.97	6	048	12	0	1	0	12	002	15
416				-802.861	3	.442	15	-88.578	4	0	5	324	4	008	6
417		19		1120.759	1	1.955	6	048	12	0	1	0	12	002	15

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
418			min	-802.615	3	.439	15	-88.863	4	0	5	344	4	008	6
419	M11	1	max	216.109	2	8.051	6	0	12	0	1	0	12	.008	6
420			min	-322.894	3	1.882	15	-1.234	5	0	4	013	4	.002	15
421		2	max	215.939	2	7.279	6	0	12	0	1	0	12	.005	6
422			min	-323.021	3	1.7	15	692	5	0	4	013	4	.001	15
423		3	max	215.768	2	6.506	6	0	12	0	1	0	12	.003	2
424			min	-323.149	3	1.518	15	15	5	0	4	013	4	0	12
425		4	max	215.598	2	5.734	6	.442	4	0	1	0	12	0	2
426			min	-323.277	3	1.337	15	011	1	0	4	013	4	001	3
427		5	max	215.427	2	4.961	6	.984	4	0	1	0	12	0	15
428			min	-323.405	3	1.155	15	011	1	0	4	013	4	003	4
429		6	max		2	4.189	6	1.526	4	0	1	0	12	001	15
430			min	-323.533	3	.974	15	011	1	0	4	013	4	005	4
431		7	max	215.087	2	3.416	6	2.068	4	0	1	0	12	002	15
432			min	-323.66	3	.792	15	011	1	0	4	012	4	006	4
433		8	max	214.916	2	2.644	6	2.611	4	0	1	0	12	002	15
434			min	-323.788	3	.611	15	011	1	0	4	011	4	007	4
435		9	max		2	1.872	6	3.153	4	0	1	0	12	002	15
436			min	-323.916	3	.429	15	011	1	0	4	01	4	008	4
437		10	max	214.576	2	1.099	6	3.695	4	0	1	0	12	002	15
438			min	-324.044	3	.247	15	011	1	0	4	008	4	009	4
439		11	max		2	.375	2	4.237	4	0	1	0	12	002	15
440			min	-324.171	3	.054	12	011	1	0	4	007	4	009	4
441		12	max	214.235	2	116	15	4.779	4	0	1	0	12	002	15
442		1 -	min	-324.299	3	447	4	011	1	0	4	005	4	009	4
443		13	max		2	297	15	5.321	4	0	1	0	12	002	15
444			min	-324.427	3	-1.219	4	011	1	0	4	002	4	009	4
445		14	max		2	479	15	5.863	4	0	1	0	12	002	15
446			min	-324.555	3	-1.992	4	011	1	0	4	0	1	008	4
447		15	max	213.724	2	66	15	6.405	4	0	1	.002	4	002	15
448		'0	min	-324.682	3	-2.764	4	011	1	0	4	0	1	007	4
449		16	max		2	842	15	6.948	4	0	1	.005	4	001	15
450			min	-324.81	3	-3.536	4	011	1	0	4	0	1	006	4
451		17	max	213.383	2	-1.024	15	7.49	4	0	1	.008	4	001	15
452		11	min	-324.938	3	-4.309	4	011	1	0	4	0	1	004	4
453		18	max	213.213	2	-1.205	15	8.032	4	0	1	.012	4	0	15
454		10	min	-325.066	3	-5.081	4	011	1	0	4	0	1	002	4
455		19	max		2	-1.387	15	8.574	4	0	1	.015	4	0	1
456		10	min	-325.193	3	-5.854	4	011	1	0	4	0	1	0	1
457	M12	1		1239.825	1	0	1	8.84	1	0	1	.008	4	0	1
458	IVIIZ			-235.624		0	1	-240.705		0	1	0	1	0	1
459		2		1239.996	1	0	1	8.84	1	0	1	0	1	0	1
460				-235.496	3	0	1	-240.853		0	1	02	4	0	1
461		3		1240.166	1	0	1	8.84	1	0	1	.002	1	0	1
462				-235.369	3	0	1	-241	4	0	1	047	4	0	1
463		4		1240.336	1	0	1	8.84	1	0	1	.003	1	0	1
464		_	min		3	0	1	-241.148		0	1	075	4	0	1
465		5		1240.507	1	0	1	8.84	1	0	1	.004	1	0	1
466				-235.113	3	0	1	-241.296		0	1	103	4	0	1
467		6		1240.677	<u>ა</u> 1	0	1	8.84	1	0	1	.005	1	0	1
468		0	min		3	0	1	-241.443		0	1	13	4	0	1
469		7		1240.847	<u>ာ</u> 1	0	1	8.84	1	0	1	.006	1	0	1
470		/					1				1				1
		0		-234.857	3	0	-	-241.591		0		158	4	0	
471		8		1241.018	1	0	1	8.84	1	0	1	.007	1	0	1
472		0		-234.73	3	0	1	-241.738		0	1	186	4	0	1
473		9		1241.188	1	0	1	8.84	1	0	1	.008	1	0	1
474			mın	-234.602	3	0	1	-241.886	4	0	1	214	4	0	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
475		10	max	1241.359	1	0	1	8.84	1	0	1	.009	1	0	1
476			min	-234.474	3	0	1	-242.034	4	0	1	241	4	0	1
477		11	max	1241.529	1	0	1	8.84	1	0	1	.01	1	0	1
478			min	-234.346	3	0	1	-242.181	4	0	1	269	4	0	1
479		12		1241.699	1	0	1	8.84	1	0	1	.011	1	0	1
480		· -	min	-234.219	3	0	1	-242.329	4	0	1	297	4	0	1
481		13		1241.87	1	0	1	8.84	1	0	1	.012	1	0	1
482			min		3	0	1	-242.477	4	0	1	325	4	0	1
483		14	max		1	0	1	8.84	1	0	1	.013	1	0	1
484		17	min	-233.963	3	0	1	-242.624	4	0	1	353	4	0	1
485		15		1242.21	1	0	1	8.84	1	0	1	.014	1	0	1
486		13			3	0	1	-242.772	4	0	1	381	4	0	1
		16	min				1								_
487		16		1242.381	1	0	1	8.84	1	0	1	.015	1	0	1
488		4-	min	-233.708	3	0	1	-242.92	4	0	1_	408	4	0	1
489		17		1242.551	1	0	1	8.84	1	0	1	.016	1	0	1
490			min	-233.58	3	0	1_	-243.067	4	0	<u>1</u>	436	4	0	1
491		18		1242.721	1	0	1	8.84	1	0	_1_	.017	1	0	1
492			min	-233.452	3	0	1	-243.215	4	0	1_	464	4	0	1
493		19	max	1242.892	1	0	1	8.84	1	0	_1_	.018	1	0	1
494			min	-233.324	3	0	1	-243.362	4	0	1	492	4	0	1
495	M1	1	max	143.397	1	459.292	3	58.484	5	0	1	.222	1	0	3
496			min	-5.723	5	-514.904	1	-93.399	1	0	3	059	5	013	1
497		2	max	143.768	1	458.254	3	59.725	5	0	1	.173	1	.259	1
498			min	-5.55	5	-516.288	1	-93.399	1	0	3	028	5	242	3
499		3	max		3	566.947	1	-3.54	12	0	3	.124	1	.518	1
500			min	-124.537	2	-329.888	3	-92.309	1	0	1	.002	15	474	3
501		4	max		3	565.564	1	-3.54	12	0	3	.075	1	.22	1
502			min		2	-330.925	3	-92.309	1	0	1	008	5	299	3
503		5	max		3	564.18	1	-3.54	12	0	3	.026	1	004	15
504		Ť	min	-123.795	2	-331.963	3	-92.309	1	0	1	017	5	124	3
505		6	max		3	562.796	1	-3.54	12	0	3	0	12	.051	3
506			min		2	-333.001	3	-92.309	1	0	1	031	4	376	1
507		7	max		3	561.413	1	-3.54	12	0	3	003	12	.227	3
508		'	min	-123.054	2	-334.039	3	-92.309	1	0	1	071	1	672	1
509		8			3	560.029	1	-3.54	12	0	3	005	12	.404	3
510		-	max	-122.683	2	-335.076	3	-92.309	1	0	1	12	1	968	1
			min												_
511		9	max		3	32.033	2	39.784	5	0	9	.07	1	.472	3
512		40	min	-65.439	2	.418	15		1	0	3	122	5	-1.103	1
513		10	max	199.096	3	30.649	2	41.026	5	0	9	0	12	.459	3
514		4.4	min	-65.068	2	0	5	-134.659	1	0	3	102	4	-1.112	1
515		11		199.374	3	29.265	2	42.267	5	0	9	003	12	.447	3
516				-64.698	2	-1.73	4	-134.659		0	3_	093	4	-1.12	1
517		12	max		3	219.605	3	130.021	5	0	1_	.118	1	.389	3
518			min	-46.372	5	-593.698	1	-90.164	1	0	3	173	5	988	1
519		13	max		3	218.567	3	131.263	5	0	_1_	.071	1	.273	3
520			min	-46.199	5	-595.082	1	-90.164	1	0	3	104	5	675	1
521		14	max		3	217.53	3	132.504	5	0	_1_	.023	1	.158	3
522			min		5	-596.465	1	-90.164	1	0	3	035	5	36	1
523		15	max	208.099	3	216.492	3	133.745	5	0	1_	.035	5	.044	3
524			min	-45.853	5	-597.849	1	-90.164	1	0	3	024	1	045	1
525		16	max		3	215.454	3	134.987	5	0	1	.106	5	.271	1
526			min	-45.68	5	-599.233	1	-90.164	1	0	3	072	1	07	3
527		17			3	214.416	3	136.228	5	0	1	.178	5	.587	1
528			min	-45.507	5	-600.616	1	-90.164	1	0	3	12	1	183	3
529		18	max		5	581.44	1	-3.661	12	0	5	.146	5	.294	1
530		'	min	-143.93	1	-184.672	3	-113.683	4	0	1	171	1	091	3
531		10	max		5	580.056	1	-3.661	12	0	5	.098	5	.007	3
JJI		נו	παλ	12.020	J	100.000		-0.001	14	U	<u> </u>	.080	_ ∪	.007	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
532			min	-143.56	1	-185.71	3	-112.442	4	0	1	223	1	012	1
533	M5	1	max	308.87	1	1531.609	3	89.192	5	0	1	0	1	.027	1
534			min	9.549	12	-1739.795	1	0	1	0	4	134	4	0	3
535		2	max	309.241	1	1530.571	3	90.434	5	0	1	0	1	.945	1
536			min	9.734	12	-1741.178	1	0	1	0	4	088	4	809	3
537		3	max	608.962	3	1746.494	1	13.614	4	0	4	0	1	1.822	1
538			min	-494.053	1	-1067.491	3	0	1	0	1	041	4	-1.585	3
539		4	max		3	1745.111	1	14.856	4	0	4	0	1	.901	1
540			min	-493.682	1	-1068.529	3	0	1	0	1	034	4	-1.021	3
541		5	max	609.518	3	1743.727	1	16.097	4	0	4	0	1	.011	9
542			min	-493.312	1	-1069.567	3	0	1	0	1	025	4	457	3
543		6	max		3	1742.344	1	17.339	4	0	4	0	1	.107	3
544			min	-492.941	1	-1070.604	3	0	1	0	1	017	5	939	1
545		7	max	610.074	3	1740.96	1	18.58	4	0	4	0	1	.673	3
546		<u> </u>	min	-492.57	1	-1071.642	3	0	1	0	1	009	5	-1.858	1
547		8	max	610.352	3	1739.576	1	19.822	4	0	4	.004	14	1.238	3
548		<u> </u>	min	-492.199	1	-1072.68	3	0	1	0	1	0	15	-2.776	1
549		9	max		3	105.768	2	127.092	4	0	1	0	1	1.426	3
550		<u> </u>	min	-345.413	2	.418	15	0	1	0	1	159	4	-3.139	1
551		10	max	624.745	3	104.384	2	128.333	4	0	1	0	1	1.382	3
552		10	min	-345.043	2	.001	15	0	1	0	1	092	5	-3.168	1
553		11	max		3	103	2	129.575	4	0	1	0	1	1.338	3
554			min	-344.672	2	-1.576	6	0	1	0	1	026	5	-3.198	1
555		12	max	639.202	3	699.017	3	177.068	4	0	1	0	1	1.174	3
556		12		-227.652	2	-1853.021	1	0	1		4	241	4	-2.847	1
		13	min			697.98	3	178.31	4	0	1		1	.805	3
557		13	max		2	-1854.405		0	1	0	<u> </u>	147			1
558		14	min	-227.282			3	179.551			1	147	1	<u>-1.869</u>	_
559		14	max		3	696.942 -1855.788		_	4	0		0		.437	3
560		15	min	-226.911	2		1	100.702		0	1	053	4	89	1
561 562		15	max	640.037	2	695.904 -1857.172	3	180.793	4	0	4	.042	1	.132 004	13
		16	min	-226.54			_			_		_		1.07	
563		16	max		3	694.866 -1858.555	3	182.034	4	0	1	.138	1		1
564		17	min	-226.169	2					0	4	_		297	3
565		17	max	640.593	3	693.829	3	183.275	4	0	1	.234	4	2.051	1
566		40	min	-225.799	2	-1859.939	1	0	1	0	4	0	1	664	3
567		18	max	-9.862	12	1963.584	1	0	_	0	4	.229	4	1.06	1
568		40	min	-308.916	1	-631.635	3	-43.335	5	0	1	0	1	347	3
569		19	max	-9.677	12	1962.2	1	0	1	0	4	.207	4	.024	1
570	N40	4	min	-308.545	1	-632.672	3	-42.094	5	0	1	0	1	013	3
571	<u>M9</u>		max	143.397	1	459.292	3	93.399	1	0	3	009	12	013	3
572		2	min		12			3.59	12		2	222	10		
573		2		143.768	1	458.254	3	93.399	1	0	3	007	12	.259	1
574		_	min	5.119	12	-516.288		3.59	12	0	1	173	1	242	3
575		3		189.505	3	566.947	1	92.309	1	0	1	005	12	.518	1
576		A		-124.537	2	-329.888	-	-10.929	5	0	3	124	1	474	3
577		4		189.783	3	565.564	1	92.309	1	0	1	003	12	.22	1
578		_			2	-330.925	3	-9.688	5	0	3	075	1	299	3
579		5		190.061	3	564.18	1	92.309	1	0	1	001	12	004	15
580				-123.795		-331.963	3	-8.446	5	0	3	026	1	124	3
581		6		190.339	3	562.796	1	92.309	1	0	1	.022	1	.051	3
582					2	-333.001	3	-7.205	5	0	3	024	5	376	1
583		7		190.617	3	561.413	1	92.309	1	0	1	.071	1	.227	3
584				-123.054		-334.039		-5.964	5	0	3	028	5	672	1
585		8		190.895	3	560.029	1	92.309	1	0	1	.12	1	.404	3
586				-122.683		-335.076	3	-4.722	5	0	3	03	5	968	1
587		9		198.818	3	32.033	2	134.659	1	0	3	003	12	.472	3
588			min	-65.439	2	.422	15	5.076	12	0	9	145	4	-1.103	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	199.096	3	30.649	2	134.659	1	0	3	0	1	.459	3
590			min	-65.068	2	.005	15	5.076	12	0	9	101	4	-1.112	1
591		11	max	199.374	3	29.265	2	134.659	1	0	3	.072	1	.447	3
592			min	-64.698	2	-1.691	6	5.076	12	0	9	072	5	-1.12	1
593		12	max	207.264	3	219.605	3	159.054	4	0	3	004	12	.389	3
594			min	-38.501	10	-593.698	1	3.334	12	0	1	211	4	988	1
595		13	max	207.543	3	218.567	3	160.295	4	0	3	003	12	.273	3
596			min	-38.192	10	-595.082	1	3.334	12	0	1	127	4	675	1
597		14	max	207.821	3	217.53	3	161.537	4	0	3	0	12	.158	3
598			min	-37.883	10	-596.465	1	3.334	12	0	1	042	4	36	1
599		15	max	208.099	3	216.492	3	162.778	4	0	3	.044	4	.044	3
600			min	-37.574	10	-597.849	1	3.334	12	0	1	0	12	045	1
601		16	max	208.377	3	215.454	3	164.02	4	0	3	.13	4	.271	1
602			min	-37.265	10	-599.233	1	3.334	12	0	1	.003	12	07	3
603		17	max	208.655	3	214.416	3	165.261	4	0	3	.217	4	.587	1
604			min	-36.956	10	-600.616	1	3.334	12	0	1	.004	12	183	3
605		18	max	-5.056	12	581.44	1	98.702	1	0	1	.2	4	.294	1
606			min	-143.93	1	-184.672	3	-83.132	5	0	3	.006	12	091	3
607		19	max	-4.87	12	580.056	1	98.702	1	0	1	.223	1	.007	3
608			min	-143.56	1	-185.71	3	-81.891	5	0	3	.008	12	012	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	C x Rotate [r LC (n) L/y Ratio LC (n) L/z Ra	tio LC
1	M13	1	max	Ō	1	.111	1	.003	3 8.8e-3 1 NC 1 NC	1
2			min	499	4	013	3	001	0 -9.774e-4 3 NC 1 NC	1
3		2	max	0	1	.237	3	.039	1 1.017e-2 1 NC 5 NC	2
4			min	499	4	148	1	015	5 -1.026e-3 3 971.583 1 6897.13	32 1
5		3	max	0	1	.44	3	.092	1 1.155e-2 1 NC 5 NC	3
6			min	499	4	354	1	017	5 -1.075e-3 3 541.871 1 2802.90)2 1
7		4	max	0	1	.563	3	.138	1 1.292e-2 1 NC 5 NC	3
8			min	499	4	47	1	012	5 -1.124e-3 3 433.583 1 1847.90)4 1
9		5	max	0	1	.59	3	.163	1 1.429e-2 1 NC 5 NC	3
10			min	499	4	48	1	002	5 -1.172e-3 3 417.648 3 1569.42	21 1
11		6	max	0	1	.525	3	.158	1 1.567e-2 1 NC 5 NC	3
12			min	499	4	388	1	.006	5 -1.221e-3 3 468.284 3 1620.3	
13		7	max	0	1	.386	3	.125	1 1.704e-2 1 NC 5 NC	3
14			min	499	4	215	1	.008	0 -1.27e-3 3 631.025 3 2055.0	9 1
15		8	max	0	1	.21	3	.074	1 1.841e-2 1 NC 5 NC	2
16			min	499	4	012	9	.003	0 -1.319e-3 3 1127.554 3 3516.94	1 9
17		9	max	0	1	.185	1	.023	1 1.979e-2 1 NC 4 NC	1
18			min	499	4	.005	15	002	0 -1.367e-3 3 3410.677 1 NC	1
19		10	max	0	1	.269	1	.011	3 2.116e-2 1 NC 3 NC	1
20			min	499	4	021	3	006	2 -1.416e-3 3 1592.699 1 NC	1
21		11	max	0	12	.185	1	.023	1 1.979e-2 1 NC 4 NC	1
22			min	499	4	.005	15	012	5 -1.367e-3 3 3410.677 1 NC	1
23		12	max	0	12	.21	3	.074	1 1.841e-2 1 NC 5 NC	2
24			min	499	4	012	9	012	5 -1.319e-3 3 1127.554 3 3516.94	19 1
25		13	max	0	12	.386	3	.125	1 1.704e-2 1 NC 5 NC	3
26			min	499	4	215	1	004	5 -1.27e-3 3 631.025 3 2055.0	9 1
27		14	max	0	12	.525	3	.158	1 1.567e-2 1 NC 5 NC	3
28			min	499	4	388	1	.005	5 -1.221e-3 3 468.284 3 1620.3	′ 1 1 .
29		15	max	0	12	.59	3	.163	1 1.429e-2 1 NC 5 NC	3
30			min	499	4	48	1	.009	2 -1.172e-3 3 417.648 3 1569.42	21 1
31		16	max	0	12	.563	3	.138	1 1.292e-2 1 NC 5 NC	3
32			min	499	4	47	1	.008	2 -1.124e-3 3 433.583 1 1847.90)4 1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio			
33		17	max	0	12	.44	3	.092	1	1.155e-2	_1_	NC	5_	NC	3
34			min	499	4	354	1	.006		-1.075e-3	3	541.871	<u>1</u>	2802.902	1
35		18	max	0	12	.237	3	.039	1	1.017e-2	_1_	NC	5	NC	2
36			min	499	4	148	1	.002		-1.026e-3	3	971.583	_1_	6897.132	
37		19	max	0	12	.111	1	.003	3	8.8e-3	_1_	NC	_1_	NC	1
38			min	499	4	013	3	001		-9.774e-4	3	NC	1_	NC	1
39	M14	1	max	0	1	.138	3	.003	3	5.568e-3	_1_	NC	1_	NC	1
40			min	397	4	36	1	0	10	-2.52e-3	3	NC	_1_	NC	1
41		2	max	0	1	.376	3	.027	1	6.711e-3	1	NC	_5_	NC	1
42		_	min	397	4	<u>753</u>	1	021	5	-3.081e-3	3	641.865	1_	NC	1
43		3	max	0	1	.575	3	.075	1	7.853e-3	1_	NC	<u>15</u>	NC	3
44			min	397	4	-1.089	1	025	5	-3.642e-3	3	346.047	1_	3475.449	
45		4	max	0	1	.712	3	.119	1	8.995e-3	1_	NC	<u>15</u>	NC NC	3
46			min	397	4	-1.328	1	017	5	-4.203e-3	3	260.411	_1_	2148.974	
47		5	max	0	1	.772	3	.145	1	1.014e-2	1_	9017.179	<u>15</u>	NC 1700 100	3
48			min	397	4	<u>-1.452</u>	1	002	5	-4.764e-3	3	230.908	1_	1762.492	1
49		6	max	0	1	.757	3	.144	1	1.128e-2	1_	8986.629	<u>15</u>	NC	3
50		-	min	397	4	<u>-1.459</u>	1	.009		-5.325e-3	3	229.317	1_	1779.768	
51		7	max	0	1	.68	3	.116	1	1.242e-2	1_	9833.008	15	NC	3
52			min	397	4	<u>-1.37</u>	1	.007	10	-5.886e-3	3	249.596	1_	2221.804	
53		8	max	0	1	.567	3	.069	1	1.356e-2	1_	NC 200 005	<u>15</u>	NC	2
54		_	min	397	4	-1.223	1	.003	10	-6.447e-3	3	292.285	1_	3751.812	1
55		9	max	0	1	.46	3	.029	4	1.471e-2	1	NC 250 C44	<u>15</u>	NC occo	1
56		40	min	398	4	-1.075	1	002		-7.008e-3	3	352.611	1_	8566.707	
57		10	max	0	1	.41	3	.01	3	1.585e-2	1	NC 200.07	5_4	NC NC	1
58		4.4	min	398	4	-1.005	1	006	2	-7.569e-3	3	390.87	1_	NC NC	1
59		11	max	0	12	.46	3	.022	1	1.471e-2	1	NC 252 C44	<u>15</u>	NC NC	1
60		40	min	398	4	<u>-1.075</u>	1	021	5	-7.008e-3	3	352.611	1_	NC NC	1
61		12	max	0	12	.567	3	.069	1	1.356e-2	1	NC 202 205	<u>15</u>	NC	2
62 63		13	min	<u>398</u> 0	12	<u>-1.223</u> .68	3	024 .116	1	-6.447e-3 1.242e-2	<u>3</u>	292.285 9832.747	<u>1</u> 15	3751.812 NC	3
64		13	max	398	4	-1.37	1	015	5	-5.886e-3	3	249.596	1	2221.804	
65		14	min	_ 396 _ 0	12	<u>-1.37</u> .757	3	<u>015</u> .144	1	1.128e-2		8986.305	15	NC	3
66		14	max	398	4	-1.459	1	144 0		-5.325e-3	3	229.317	1	1779.768	
67		15		_ 396 _ 0	12	<u>-1.439 </u>	3	.145	1	1.014e-2	1	9016.77	15	NC	3
68		15	max	398	4	-1.452	1	.008	12	-4.764e-3	3	230.908	1	1762.492	
69		16	max	590	12	.712	3	.119	1	8.995e-3	1	NC	15	NC	3
70		10	min	398	4	-1.328	1	.007			3	260.411	1	2148.974	
71		17	max	590	12	.575	3	.075	1	7.853e-3	<u> </u>	NC	15	NC	3
72		17	min	398	4	-1.089	1	.005	12	-3.642e-3	3	346.047	1	3475.449	
73		18	max	<u>590 </u>	12	.376	3	.03		6.711e-3		NC	5	NC	1
74		10	min	398	4	753	1	.001	10		3	641.865	1	8274.306	
75		19		0	12	.138	3	.003	3	5.568e-3	1	NC	1	NC	1
76		10	min	398	4	36	1	0	10	-2.52e-3	3	NC	1	NC	1
77	M15	1	max	0	12	.142	3	.003	3	2.12e-3	3	NC	1	NC	1
78	10110		min	335	4	36	1	0	10	-5.659e-3	1	NC	1	NC	1
79		2	max	0	12	.291	3	.027	1	2.594e-3	3	NC	5	NC	2
80			min	335	4	787	1	032	5	-6.825e-3	1	590.492	1	7664.409	
81		3	max	0	12	.419	3	.075	1	3.068e-3	3	NC	15	NC	3
82		Ĭ	min	335	4	-1.15	1	039	5	-7.99e-3	1	318.981	1	3466.285	
83		4	max	0	12	.513	3	.12	1	3.543e-3	3	NC	15	NC	3
84			min	335	4	-1.406	1	028	5	-9.156e-3	1	240.865	1	2144.552	
85		5	max	0	12	.564	3	.145	1	4.017e-3	3	9024.533		NC	3
86			min	335	4	-1.534	1	007	5	-1.032e-2	1	214.713		1759.185	
87		6	max	0	12	.572	3	.144	1	4.491e-3	3	8995.423	15	NC	3
88			min	335	4	-1.532	1	.009	_		1	214.95	1	1776.276	
89		7	max	0	12	.544	3	.116	1	4.966e-3	3	9845.034	15	NC	3
		-							•						

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
90			min	335	4	-1.424	1	.008		-1.265e-2	1	236.799	1_	2216.411	1
91		8	max	0	12	.495	3	.07	1	5.44e-3	3	NC	<u>15</u>	NC	2
92			min	335	4	-1.253	1	.003	10	-1.382e-2	1	282.26	1_	3736.939	1
93		9	max	0	12	.444	3	.039	4	5.914e-3	3	NC	15	NC	1
94			min	335	4	-1.084	1	001	10	-1.498e-2	1	348.258	1	6478.174	4
95		10	max	0	1	.419	3	.009	3	6.389e-3	3	NC	5	NC	1
96			min	335	4	-1.004	1	005	2	-1.615e-2	1	391.399	1	NC	1
97		11	max	0	1	.444	3	.022	1	5.914e-3	3	NC	15	NC	1
98			min	335	4	-1.084	1	031	5	-1.498e-2	1	348.258	1	8222.623	5
99		12	max	0	1	.495	3	.07	1	5.44e-3	3	NC	15	NC	2
100			min	335	4	-1.253	1	036	5	-1.382e-2	1	282.26	1	3736.939	1
101		13	max	0	1	.544	3	.116	1	4.966e-3	3	9844.842	15	NC	3
102			min	335	4	-1.424	1	023	5	-1.265e-2	1	236.799	1	2216.411	1
103		14	max	0	1	.572	3	.144	1	4.491e-3	3	8995.187	15	NC	3
104			min	335	4	-1.532	1	002	5	-1.149e-2	1	214.95	1	1776.276	1
105		15	max	0	1	.564	3	.145	1	4.017e-3	3	9024.237	15	NC	3
106			min	334	4	-1.534	1	.008	12	-1.032e-2	1	214.713	1	1759.185	1
107		16	max	0	1	.513	3	.12	1	3.543e-3	3	NC	15	NC	3
108			min	334	4	-1.406	1	.007	12	-9.156e-3	1	240.865	1	2144.552	1
109		17	max	0	1	.419	3	.075	1	3.068e-3	3	NC	15	NC	3
110			min	334	4	-1.15	1	.005	12	-7.99e-3	1	318.981	1	3466.285	1
111		18	max	0	1	.291	3	.041	4	2.594e-3	3	NC	5	NC	2
112			min	334	4	787	1	.001	10	-6.825e-3	1	590.492	1	6111.114	4
113		19	max	0	1	.142	3	.003	3	2.12e-3	3	NC	1	NC	1
114		10	min	334	4	36	1	0		-5.659e-3	1	NC	1	NC	1
115	M16	1	max	0	12	.108	1	.003	3	3.667e-3	3	NC	1	NC	1
116	10110		min	146	4	047	3	0		-8.312e-3	1	NC	1	NC	1
117		2	max	0	12	.043	3	.038	1	4.346e-3	3	NC	5	NC	2
118			min	146	4	187	1	024	5	-9.566e-3	1	855.324	1	6938.545	1
119		3	max	0	12	.114	3	.092	1	5.024e-3	3	NC	5	NC	3
120			min	146	4	421	1	03		-1.082e-2	1	476.357	1	2810.782	1
121		4	max	0	12	.153	3	.138	1	5.702e-3	3	NC	5	NC	3
122			min	146	4	555	1	022		-1.207e-2	1	380.141	1	1849.861	1
123		5		0	12	.153	3	.163	1	6.381e-3	3	NC	5	NC	3
124		- 5	max	146	4	57	1	007		-1.333e-2	1	371.763	1	1568.805	1
125		6	max	<u>140</u> 0	12	<u>57</u> .117	3	.158	1	7.059e-3	3	NC	5	NC	3
126		0	min	146	4	469	1	.006		-1.458e-2	1	436.618	1	1616.965	1
127		7			12		3	.125				NC	5	NC	3
128		-	max	0	4	.052	1		1 12	7.738e-3 -1.584e-2	<u>3</u>	652.898	1	2044.968	1
129		0	min	146	12	278		.008	1		•		3		2
		8	max	146	4	.001	13	.074 .004		8.416e-3 -1.709e-2	3	NC 1666.744		NC 3475.283	
130		9	min	146		065	1					NC		NC	1
131		9	max	0	12	166		.028	4	9.094e-3	3	4310.645	4_		
132		10	min	<u>146</u>	4	095	3	0		-1.834e-2	<u> </u>			9033.455	
133		10	max	0	1	.26	1	.008	3	9.773e-3	3	NC 4CEO CC	5	NC NC	1
134		4.4	min	<u>146</u>	4	126	3	005	2	-1.96e-2	1	1652.66	1_	NC NC	_
135		11	max	0	1	.166	1	.024	1	9.094e-3	3	NC	4	NC	1
136		10	min	146	4	095	3	019	5	-1.834e-2	1	4310.645	1_	NC NC	1
137		12	max	0	1	.001	13	.074	1	8.416e-3	3	NC	3_	NC	2
138		40	min	<u>146</u>	4	065	2	021	5	-1.709e-2	1_	1666.744	1_	3475.283	1
139		13	max	0	1	.052	3	.125	1	7.738e-3	3_	NC 050,000	5_	NC OO 44 OOO	3
140			min	<u>146</u>	4	278	1	01	5	-1.584e-2	1	652.898	1_	2044.968	1
141		14	max	0	1	.117	3	.158	1	7.059e-3	3	NC	5	NC	3
142			min	146	4	469	1	.004		-1.458e-2	1	436.618	<u>1</u>	1616.965	1
143		15	max	0	1	.153	3	.163	1	6.381e-3	3	NC	_5_	NC	3
144			min	146	4	57	1	.008		-1.333e-2	1	371.763	1_	1568.805	1
145		16	max	0	1	.153	3	.138	1	5.702e-3	3	NC	5	NC	3
146			min	146	4	555	1	.007	12	-1.207e-2	1	380.141	1	1849.861	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					
147		17	max	0	1	.114	3	.092	1	5.024e-3	3_	NC 470.057	_5_	NC	3
148		1.0	min	<u>146</u>	4	421	1	.005	12	-1.082e-2	1_	476.357	<u>1</u>	2810.782	1
149		18	max	0	1	.043	3	.038	1	4.346e-3	3	NC	5	NC	2
150			min	146	4	187	1	.002	10	-9.566e-3	1_	855.324	1_	6917.636	4
151		19	max	0	1	.108	1	.003	3	3.667e-3	3_	NC	_1_	NC	1_
152			min	146	4	047	3	0	10	-8.312e-3	1_	NC	1	NC	1
153	M2	1	max	.005	1	.002	2	.007	1	1.228e-3	5	NC	1	NC	2
154			min	004	3	004	3	472	4	-1.858e-4	1_	NC	1_	101.367	4
155		2	max	.005	1	.002	2	.007	1	1.318e-3	5	NC	1	NC	2
156			min	003	3	004	3	433	4	-1.721e-4	1	NC	1	110.453	4
157		3	max	.005	1	.001	2	.006	1	1.408e-3	5	NC	1	NC	2
158			min	003	3	004	3	395	4	-1.585e-4	1	NC	1	121.258	4
159		4	max	.004	1	0	2	.005	1	1.498e-3	5	NC	1	NC	2
160			min	003	3	004	3	356	4	-1.448e-4	1	NC	1	134.231	4
161		5	max	.004	1	0	2	.005	1	1.588e-3	5	NC	1	NC	2
162			min	003	3	004	3	319	4	-1.312e-4	1	NC	1	149.985	4
163		6	max	.004	1	0	2	.004	1	1.678e-3	5	NC	1	NC	1
164			min	003	3	004	3	283	4	-1.176e-4	1	NC	1	169.369	4
165		7	max	.003	1	0	15	.004	1	1.768e-3	5	NC	1	NC	1
166		- '	min	002	3	004	3	247	4	-1.039e-4	1	NC	1	193.593	4
167		8	max	.003	1	004 0	15	.003	1	1.858e-3	5	NC	1	NC	1
168		0		002	3	004	3	213	4	-9.027e-5		NC	1	224.422	4
		9	min		1	004 0	15				1_	NC NC	+	NC	
169		9	max	.003				.003	1	1.953e-3	4_		1		1
170		10	min	002	3	003	3	181	4	-7.662e-5	1_	NC NC	•	264.518	4
171		10	max	.003	1	0	15	.002	1	2.048e-3	4_	NC NC	1	NC 040.054	1
172		1.4	min	002	3	003	3	<u>15</u>	4	-6.298e-5	1_	NC	1_	318.054	4
173		11	max	.002	1	0	15	.002	1	2.143e-3	_4_	NC	_1_	NC	1
174			min	002	3	003	3	122	4	-4.934e-5	_1_	NC	_1_	391.875	4
175		12	max	.002	1	0	15	.001	1	2.238e-3	4_	NC	_1_	NC	1
176			min	001	3	003	3	096	4	-3.57e-5	<u>1</u>	NC	1_	497.867	4
177		13	max	.002	1	0	15	.001	1	2.333e-3	_4_	NC	_1_	NC	1
178			min	001	3	002	3	073	4	-2.205e-5	1_	NC	_1_	658.187	4
179		14	max	.001	1	0	15	0	1	2.428e-3	4_	NC	<u>1</u>	NC	1
180			min	001	3	002	3	052	4	-8.411e-6	1_	NC	1_	918.181	4
181		15	max	.001	1	0	15	0	1	2.523e-3	4	NC	<u>1</u>	NC	1
182			min	0	3	002	3	035	4	0	3	NC	1	1383.217	4
183		16	max	0	1	0	15	0	1	2.618e-3	4	NC	1	NC	1
184			min	0	3	001	6	02	4	5.513e-7	12	NC	1	2347.998	4
185		17	max	0	1	0	15	0	1	2.713e-3	4	NC	1	NC	1
186			min	0	3	001	6	01	4	1.078e-6	12	NC	1	4926.194	4
187		18	max	0	1	0	15	0	1	2.808e-3	4	NC	1	NC	1
188			min	0	3	0	6	003	4	1.605e-6	12	NC	1	NC	1
189		19	max	0	1	0	1	0	1	2.903e-3	4	NC	1	NC	1
190			min	0	1	0	1	0	1		12	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	-6.651e-7	12	NC	1	NC	1
192			min	0	1	0	1	0	1	-6.47e-4	4	NC	1	NC	1
193		2	max	0	3	0	15	.014	4	4.357e-6	1	NC	1	NC	1
194		_	min	0	2	001	6	0	12	-7.137e-6		NC	1	NC	1
195		3	max	0	3	0	15	.028	4	6.371e-4	4	NC	1	NC	1
196			min	0	2	003	6	0	12	9.94e-7	12	NC	1	NC	1
197		4	max	0	3	003 001	15	.04	4	1.279e-3	4	NC	1	NC	1
198			min	0	2	005	6	0	12	1.824e-6	12	NC	1	9964.072	4
199		5		0	3	005 001	15	.053	4	1.024e-0 1.921e-3	4	NC NC	+	NC	1
200		J	max		2	001 007		<u>.053</u>	12	2.653e-6		NC NC	1	8294.65	4
		_	min	0			6				<u>12</u>		•		
201		6	max	0	3	002	15	.064	4	2.563e-3	4	NC NC	1	NC 7446.69	1
202		-	min	0	2	<u>008</u>	6	0.75	12	3.483e-6	12	NC NC	1	7446.68	4
203		7	max	0	3	002	15	.075	4	3.205e-3	4_	NC	_1_	NC	1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

205		Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio			
206						_										
Description			8								3.847e-3					
208														_		
10 max 0.01 3 003 15 106 4 5.131e-3 4 NC 2 NC 1			9													
210			40		•									_		
11			10													
212			11													
1213																
214			12													
215			12													
216			12													
218			13								0.2800.6					
218			1.1											_		-
219			14								1.0996-3					
Description			15											_		
221			13								1.0050-5					
222			16													
17			10													
Description			17											•		
225			11/													
1226			18					•						_		•
19 max			10								1 3440-5					
228			10											_		-
229 M4			13													
230		M4	1			_										
231		IVIT														
232			2			_								•		
233 3 max .003 1 .001 2 0 12 -4.624e-7 12 NC 1 NC 2 234 min 0 3 002 3 157 4 -1.009e-3 4 NC 1 157.806 4 235 4 max .002 1 .001 2 0 12 -4.624e-7 12 NC 1 NC 2 236 min 0 3 002 3 142 4 -1.009e-3 4 NC 1 NC 2 238 min 0 3 002 3 127 4 -1.009e-3 4 NC 1 NC 2 240 min 0 3 002 3 113 4 -1.009e-3 4 NC 1 NC 2 242 min 0 3 002 0 12																
234			3											•		
235			T .			-										
236			4											•		
S max .002 1 .001 2 0 12 -4.624e-7 12 NC 1 NC 2 238 min 0 3 002 3 127 4 -1.009e-3 4 NC 1 194.898 4 239 6 max .002 1 0 2 0 12 -4.624e-7 12 NC 1 NC 2 240 min 0 3 002 3 113 4 -1.009e-3 4 NC 1 219.911 4 241 7 max .002 1 0 2 0 12 -4.624e-7 12 NC 1 NC 2 242 min 0 3 002 3 099 4 -1.009e-3 4 NC 1 251.146 4 243 8 max .002 1 0 2 0 12 -4.624e-7 12 NC 1 NC 2 244 min 0 3 002 3 085 4 -1.009e-3 4 NC 1 290.861 4 245 9 max .002 1 0 2 0 12 -4.624e-7 12 NC 1 NC 2 246 min 0 3 002 3 072 4 -1.009e-3 4 NC 1 290.861 4 245 9 max .002 1 0 2 0 12 -4.624e-7 12 NC 1 NC 2 246 min 0 3 002 3 072 4 -1.009e-3 4 NC 1 342.455 4 247 10 max .001 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 248 min 0 3 001 3 06 4 -1.009e-3 4 NC 1 342.455 4 249 11 max .001 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 250 min 0 3 001 3 049 4 -1.009e-3 4 NC 1 411.241 4 249 11 max .001 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 251 12 max .001 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 252 min 0 3 001 3 039 4 -1.009e-3 4 NC 1 505.913 4 253 13 max 0 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 254 min 0 3 001 3 029 4 -1.009e-3 4 NC 1 845.959 4 255 14 max 0 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 256 min 0 3 0 3 021 4 -1.009e-3 4 NC 1 176.073 4 256 min 0 3 0 3 021 4 -1.009e-3 4 NC 1 176.073 4 257 15 max 0 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 176.073 4 257 15 max 0																
238			5											1		
239 6 max .002 1 0 2 0 12 -4.624e-7 12 NC 1 NC 2 240 min 0 3 002 3 113 4 -1.009e-3 4 NC 1 219.911 4 241 7 max .002 1 0 2 0 12 -4.624e-7 12 NC 1 NC 2 242 min 0 3 002 3 099 4 -1.009e-3 4 NC 1 251.146 4 243 8 max .002 1 0 2 0 12 -4.624e-7 12 NC 1 NC 2 244 min 0 3 002 3 072 4 -1.009e-3 4 NC 1 329.861 4 245 min 0 3 002 3						-			-					1		
240 min 0 3 002 3 113 4 -1.009e-3 4 NC 1 219.911 4 241 7 max .002 1 0 2 0 12 -4.624e-7 12 NC 1 NC 2 242 min 0 3 002 3 099 4 -1.009e-3 4 NC 1 251.146 4 243 8 max .002 1 0 2 0 12 -4.624e-7 12 NC 1 NC 2 244 min 0 3 002 3 085 4 -1.009e-3 4 NC 1 290.861 4 245 9 max .002 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 NC 1 NC 1 NC 1 NC			6		•							_		1		
241 7 max .002 1 0 2 0 12 -4.624e-7 12 NC 1 NC 2 242 min 0 3 002 3 099 4 -1.009e-3 4 NC 1 251.146 4 243 8 max .002 1 0 2 0 12 -4.624e-7 12 NC 1 NC 2 244 min 0 3 002 3 085 4 -1.009e-3 4 NC 1 NC 2 246 min 0 3 002 3 072 4 -1.009e-3 4 NC 1 NC 1 NC 2 247 10 max .001 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 248 min 0 3 001 <td></td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td></td>						3										
242 min 0 3 002 3 099 4 -1.009e-3 4 NC 1 251.146 4 243 8 max .002 1 0 2 0 12 -4.624e-7 12 NC 1 NC 2 244 min 0 3 002 3 085 4 -1.009e-3 4 NC 1 290.861 4 245 9 max .002 1 0 2 0 12 -4.624e-7 12 NC 1 NC 2 246 min 0 3 002 3 072 4 -1.009e-3 4 NC 1 342.455 4 247 10 max .001 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 248 min 0 3 001 3			7			_										
243 8 max .002 1 0 2 0 12 -4.624e-7 12 NC 1 NC 2 244 min 0 3 002 3 085 4 -1.009e-3 4 NC 1 290.861 4 245 9 max .002 1 0 2 0 12 -4.624e-7 12 NC 1 NC 2 246 min 0 3 002 3 072 4 -1.009e-3 4 NC 1 342.455 4 247 10 max .001 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 248 min 0 3 001 3 06 4 -1.009e-3 4 NC 1 NIC 1 250 min 0 3 001 3																
244 min 0 3 002 3 085 4 -1.009e-3 4 NC 1 290.861 4 245 9 max .002 1 0 2 0 12 -4.624e-7 12 NC 1 NC 2 246 min 0 3 002 3 072 4 -1.009e-3 4 NC 1 342.455 4 247 10 max .001 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 248 min 0 3 001 3 06 4 -1.009e-3 4 NC 1 AI1.241 4 249 11 max .001 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 250 min 0 3 001 3			8		_					12		12		1		2
245 9 max .002 1 0 2 0 12 -4.624e-7 12 NC 1 NC 2 246 min 0 3 002 3 072 4 -1.009e-3 4 NC 1 342.455 4 247 10 max .001 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 248 min 0 3 001 3 06 4 -1.009e-3 4 NC 1 411.241 4 249 11 max .001 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 250 min 0 3 001 3 049 4 -1.009e-3 4 NC 1 NC 1 NC 1 251 12 max .001 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>3</td><td></td><td></td><td>085</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td></td<>						3			085					1		
246 min 0 3 002 3 072 4 -1.009e-3 4 NC 1 342.455 4 247 10 max .001 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 248 min 0 3 001 3 06 4 -1.009e-3 4 NC 1 411.241 4 249 11 max .001 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 250 min 0 3 001 3 049 4 -1.009e-3 4 NC 1 NC 1 251 12 max .001 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 252 min 0 3 001 3 <td< td=""><td></td><td></td><td>9</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			9													
247 10 max .001 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 248 min 0 3 001 3 06 4 -1.009e-3 4 NC 1 411.241 4 249 11 max .001 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 250 min 0 3 001 3 049 4 -1.009e-3 4 NC 1 505.913 4 251 12 max .001 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 252 min 0 3 001 3 039 4 -1.009e-3 4 NC 1 641.512 4 253 13 max 0 1 0 2 0				min	_	3	002		072					1		4
248 min 0 3 001 3 06 4 -1.009e-3 4 NC 1 411.241 4 249 11 max .001 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 250 min 0 3 001 3 049 4 -1.009e-3 4 NC 1 505.913 4 251 12 max .001 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 252 min 0 3 001 3 039 4 -1.009e-3 4 NC 1 641.512 4 253 13 max 0 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 254 min 0 3 0 3 -			10		.001	1	0	2	0	12		12	NC	1		1
249 11 max .001 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 250 min 0 3 001 3 049 4 -1.009e-3 4 NC 1 505.913 4 251 12 max .001 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 252 min 0 3 001 3 039 4 -1.009e-3 4 NC 1 641.512 4 253 13 max 0 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 254 min 0 3 0 3 029 4 -1.009e-3 4 NC 1 845.959 4 255 14 max 0 1 0 2 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td>001</td> <td></td> <td>06</td> <td>4</td> <td></td> <td>4</td> <td></td> <td>1</td> <td></td> <td>4</td>						3	001		06	4		4		1		4
250 min 0 3 001 3 049 4 -1.009e-3 4 NC 1 505.913 4 251 12 max .001 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 252 min 0 3 001 3 039 4 -1.009e-3 4 NC 1 641.512 4 253 13 max 0 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 254 min 0 3 0 3 029 4 -1.009e-3 4 NC 1 845.959 4 255 14 max 0 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 256 min 0 3 0 3 021 </td <td></td> <td></td> <td>11</td> <td></td> <td>.001</td> <td>1</td> <td></td> <td></td> <td></td> <td>12</td> <td></td> <td>12</td> <td></td> <td>1</td> <td></td> <td>1</td>			11		.001	1				12		12		1		1
251 12 max .001 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 252 min 0 3001 3039 4 -1.009e-3 4 NC 1 641.512 4 253 13 max 0 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 254 min 0 3 0 3029 4 -1.009e-3 4 NC 1 845.959 4 255 14 max 0 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 256 min 0 3 0 3021 4 -1.009e-3 4 NC 1 176.073 4 257 15 max 0 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1	250				0	3	001	3	049	4		4	NC	1	505.913	4
252 min 0 3 001 3 039 4 -1.009e-3 4 NC 1 641.512 4 253 13 max 0 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 254 min 0 3 0 3 029 4 -1.009e-3 4 NC 1 845.959 4 255 14 max 0 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 256 min 0 3 0 3 021 4 -1.009e-3 4 NC 1 1176.073 4 257 15 max 0 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1			12	max	.001	1	0	2	0	12		12	NC	1	NC	1
253 13 max 0 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 254 min 0 3 0 3029 4 -1.009e-3 4 NC 1 845.959 4 255 14 max 0 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 256 min 0 3 0 3021 4 -1.009e-3 4 NC 1 1176.073 4 257 15 max 0 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1					0	3	001		039	4		4	NC	1	641.512	4
254 min 0 3 0 3 029 4 -1.009e-3 4 NC 1 845.959 4 255 14 max 0 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 256 min 0 3 0 3 021 4 -1.009e-3 4 NC 1 1176.073 4 257 15 max 0 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1			13		0					12		12		1		1
255 14 max 0 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1 256 min 0 3 0 3021 4 -1.009e-3 4 NC 1 1176.073 4 257 15 max 0 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1					0	3			029	4		4		1		4
256 min 0 3 0 3 021 4 -1.009e-3 4 NC 1 1176.073 4 257 15 max 0 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1			14		0		0	2	0	12	-4.624e-7	12	NC	1		1
257 15 max 0 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1				min		3	0		021					1		4
			15		0	1	0			12		12		1		
	258			min	0	3	0	3	014	4	-1.009e-3	4	NC	1	1762.857	4
259 16 max 0 1 0 2 0 12 -4.624e-7 12 NC 1 NC 1			16		0	1	0	2		12		12		1		1
260 min 0 3 0 3008 4 -1.009e-3 4 NC 1 2968.567 4	260				0	3	0	3	008	4	-1.009e-3	4	NC	1	2968.567	4

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r			LC		LC
261		17	max	0	1	0	2	0	12	-4.624e-7	12	NC	_1_	NC	1
262			min	0	3	0	3	004	4	-1.009e-3	4	NC	1_	6136.916	4
263		18	max	0	1	0	2	00	12	-4.624e-7	12	NC	_1_	NC	1
264			min	0	3	0	3	001	4	-1.009e-3	4_	NC	1_	NC	1
265		19	max	0	1	0	1	0	1	-4.624e-7	12	NC	_1_	NC	1
266			min	0	1	0	1	0	1	-1.009e-3	4	NC	1_	NC	1
267	<u>M6</u>	1	max	.017	1	.009	2	0	1	1.284e-3	4_	NC	3	NC	1
268			min	012	3	014	3	476	4	0	_1_	5044.57	2	100.496	4
269		2	max	.016	1	.009	2	0	1	1.373e-3	4	NC	3	NC	1
270			min	012	3	<u>013</u>	3	437	4	0	1_	5572.755	2	109.505	4
271		3	max	.015	1	.008	2	0	1	1.461e-3	4	NC	_1_	NC	1
272		-	min	<u>011</u>	3	012	3	398	4	0	1_	6218.786	2	120.218	4
273		4	max	.014	1		2	0	1	1.55e-3	4	NC	1	NC	1
274		_	min	01	3	<u>012</u>	3	36	4	0	1_	7019.742	2	133.081	4
275		5_	max	.013	1	.006	2	0	1	1.639e-3	4_	NC	1_	NC 440.704	1
276			min	01	3	011	3	322	4	0	1_	8029.086	2	148.701	4
277		6	max	.012	1	.005	2	0	1	1.728e-3	4	NC	1_	NC 407,000	1
278		-	min	009	3	01	3	285	4	0	1_	9326.304	2	167.922	4
279		7	max	.011	1	.004	2	0	1	1.816e-3	4_	NC		NC 101 010	1
280		_	min	008	3	01	3	249	4	0	1_	NC NC	1_	191.942	4
281		8	max	.01	1	.004	2	0	1	1.905e-3	4	NC NC	1	NC 000 F44	1
282			min	007	3	009	3	215	4	0	1_	NC NC	1_	222.511	4
283		9	max	.009	1	.003	2	0	1	1.994e-3	4	NC NC	1_	NC OCO 074	1
284		10	min	007	3	008	3	182	4	0	1_	NC NC	1_	262.271	4
285		10	max	.008	1	.002	2	0	1	2.083e-3	4	NC NC	1	NC 245.20	1
286		4.4	min	006	3	007	3	152	4	0	1_	NC NC	1_	315.36	4
287		11	max	.007	1	.002	2	0	1	2.171e-3	4	NC	1	NC 200 FCZ	1
288		40	min	005	3	007	3	123	4	0	1_	NC NC	1_	388.567	4
289		12	max	.006	1	.001	2	0	1	2.26e-3	<u>4</u> 1	NC	<u>1</u> 1	NC 402 C02	1
290 291		13	min	005 .006	3	006 0	2	097 0	1	0 2.349e-3	4	NC NC	1	493.682 NC	1
292		13	max	004	3	005	3	073	4	2.3496-3	1	NC NC	1	652.686	4
293		14	min	.005	1	005 0	2	073 0	1	2.438e-3	4	NC NC	1	NC	1
294		14	max	003	3	004	3	053	4	2.4306-3	1	NC NC	1	910.564	4
295		15		.003	1	004	2	055 0	1	2.526e-3	4	NC	1	NC	1
296		15	max min	003	3	003	3	035	4	0	1	NC	1	1371.87	4
297		16	max	.003	1	<u>003</u> 0	2	0 033	1	2.615e-3	4	NC	1	NC	1
298		10	min	002	3	003	3	021	4	0	1	NC	1	2329.077	4
299		17	max	.002	1	003	2	0	1	2.704e-3	4	NC	1	NC	1
300		17	min	001	3	002	3	01	4	0	1	NC	1	4887.805	
301		18	max	0	1	0	15	0	1	2.793e-3	4	NC	1	NC	1
302		10	min	0	3	0	3	003	4	0	1	NC	1	NC	1
303		19	max	0	1	0	1	0	1	2.881e-3	4	NC	1	NC	1
304		10	min	0	1	0	1	0	1	0	1	NC	1	NC	1
305	M7	1	max	0	1	0	1	0	1	0	1	NC	1	NC	1
306	1017	<u>'</u>	min	0	1	0	1	0	1	-6.399e-4	4	NC	1	NC	1
307		2	max	0	3	0	15	.014	4	0	1	NC	1	NC	1
308			min	0	2	002	3	0	1	-1.177e-5	5	NC	1	NC	1
309		3	max	0	3	0	15	.027	4	6.183e-4	4	NC	1	NC	1
310		Ĭ	min	0	2	003	3	0	1	0	1	NC	1	NC	1
311		4	max	.001	3	001	15	.04	4	1.247e-3	4	NC	1	NC	1
312			min	001	2	005	3	0	1	0	1	NC	1	9597.949	-
313		5	max	.002	3	002	15	.052	4	1.877e-3	4	NC	1	NC	1
314			min	002	2	007	4	0	1	0	1	NC	1	7969.668	_
315		6	max	.002	3	002	15	.064	4	2.506e-3	4	NC	1	NC	1
316			min	002	2	009	4	0	1	0	1	NC	1	7134.164	
317		7	max	.003	3	002	15	.075	4	3.135e-3	4	NC	1	NC	1
	_					_			_			_			

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			
318			min	003	2	01	4	0	1	0	1_	9568.408	4	6733.005	
319		8	max	.003	3	003	15	.085	4	3.764e-3	4	NC	_1_	NC	1
320			min	003	2	<u>011</u>	4	0	1	0	1_	8508.949	4	6627.221	4
321		9	max	.004	3	003	15	.095	4	4.393e-3	4	NC	1_	NC	1
322			min	004	2	012	4	0	1	0	1	7874.077	4	6767.766	4
323		10	max	.004	3	003	15	.105	4	5.022e-3	4	NC	1_	NC	1
324			min	004	2	013	4	0	1	0	_1_	7550.098	4	7157.587	4
325		11	max	.005	3	003	15	.114	4	5.651e-3	4	NC	_1_	NC	1
326			min	005	2	013	4	0	1	0	1	7488.087	4	7845.897	4
327		12	max	.005	3	003	15	.122	4	6.28e-3	4	NC	_1_	NC	1
328			min	005	2	013	4	0	1	0	_1_	7684.905	4	8943.95	4
329		13	max	.006	3	003	15	.131	4	6.909e-3	4	NC	_1_	NC	1
330			min	006	2	012	4	0	1	0	1_	8184.244	4	NC	1
331		14	max	.006	3	003	15	.139	4	7.538e-3	4	NC	1_	NC	1
332			min	006	2	012	1	0	1	0	1	9100.162	4	NC	1
333		15	max	.007	3	002	15	.148	4	8.168e-3	4	NC	<u>1</u>	NC	1
334			min	007	2	011	1	0	1	0	1_	NC	1_	NC	1
335		16	max	.007	3	002	15	.156	4	8.797e-3	4	NC	<u>1</u>	NC	1
336			min	007	2	011	1	0	1	0	1	NC	1	NC	1
337		17	max	.008	3	001	15	.165	4	9.426e-3	4	NC	1_	NC	1
338			min	007	2	01	1	0	1	0	1	NC	1_	NC	1
339		18	max	.008	3	0	15	.174	4	1.005e-2	4	NC	<u>1</u>	NC	1
340			min	008	2	009	1	0	1	0	1	NC	1	NC	1
341		19	max	.009	3	0	15	.184	4	1.068e-2	4	NC	1_	NC	1_
342			min	008	2	008	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.009	1	.007	2	0	1	0	1_	NC	1_	NC	1
344			min	002	3	009	3	184	4	-1.031e-3	4	NC	1	135.082	4
345		2	max	.008	1	.007	2	0	1	0	_1_	NC	1_	NC	1
346			min	002	3	008	3	169	4	-1.031e-3	4	NC	1	147.082	4
347		3	max	.008	1	.006	2	0	1	0	1_	NC	1	NC	1
348			min	002	3	008	3	154	4	-1.031e-3	4	NC	1	161.352	4
349		4	max	.007	1	.006	2	0	1	0	1_	NC	1_	NC	1
350			min	002	3	007	3	139	4	-1.031e-3	4	NC	1	178.484	4
351		5	max	.007	1	.005	2	0	1	0	1_	NC	1_	NC	1_
352			min	002	3	007	3	124	4	-1.031e-3	4	NC	1	199.282	4
353		6	max	.006	1	.005	2	0	1	0	1_	NC	1	NC	1
354			min	001	3	006	3	11	4	-1.031e-3	4	NC	1	224.86	4
355		7	max	.006	1	.005	2	0	1	0	_1_	NC	1_	NC	1
356			min	001	3	006	3	097	4	-1.031e-3	4	NC	1	256.801	4
357		8	max	.005	1	.004	2	0	1	0	1	NC	1	NC	1
358			min		3	005	3	083	4	-1.031e-3	4	NC	1	297.414	4
359		9	max	.005	1	.004	2	0	1	0	_1_	NC	1_	NC	1
360			min	001	3	005	3	071	4	-1.031e-3	4	NC	1_	350.173	4
361		10	max	.004	1	.003	2	0	1	0	1_	NC	1_	NC	1
362			min	0	3	004	3	059	4	-1.031e-3	4	NC	1_	420.513	4
363		11	max	.004	1	.003	2	0	1	0	1	NC	1_	NC	1
364			min	0	3	004	3	048	4	-1.031e-3	4	NC	1	517.324	4
365		12	max	.003	1	.003	2	0	1	0	_1_	NC	1_	NC	1
366			min	0	3	003	3	038	4	-1.031e-3	4	NC	1	655.987	4
367		13	max	.003	1	.002	2	0	1	0	1	NC	1	NC	1
368			min	0	3	003	3	029	4	-1.031e-3	4	NC	1	865.054	4
369		14	max	.002	1	.002	2	0	1	0	1	NC	1_	NC	1
370			min	0	3	002	3	021	4	-1.031e-3	4	NC	1	1202.628	4
371		15	max	.002	1	.002	2	0	1	0	1	NC	1	NC	1
372			min	0	3	002	3	014	4	-1.031e-3	4	NC	1	1802.676	4
373		16	max	.001	1	.001	2	0	1	0	1	NC	1	NC	1
374			min	0	3	001	3	008	4	-1.031e-3	4	NC	1	3035.645	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

376	375	Member	Sec 17	max	x [in]	LC 1	y [in] 0	LC 2	z [in]	LC 1	x Rotate [r	LC 1	(n) L/y Ratio	LC 1	(n) L/z Ratio	LC 1
18			11	_		_						_				_
378			18													_
389			- 10								_					
1880			19		-									•		
381 M10			10			_		-						1		
382		M10	1			1		2		12		•		1		2
388				_												
384			2													
385						3			437	4		12		1		
386			3											1		
388						3			398			12		1		
388			4							12				1	NC	2
390					003	3	004		359			12		1	133.222	
390	389		5	max	.004	1	0	2	0	12	1.639e-3	4	NC	1	NC	2
392	390			min	003	3	004	3	321	4		12	NC	1	148.859	4
393	391		6	max	.004	1	0	2	0	12		4	NC	1	NC	1
394	392			min	003	3	004	3	285	4		12	NC	1	168.1	4
395	393		7	max	.003	1	0	2	0	12		4	NC	1	NC	1
396	394			min	002	3	004	3	249	4		12		1		4
397			8	max	.003					12	1.903e-3	4		1_	NC	1
398				min		3	004		215	_		12		1_		4
10 max			9	max						12		4		<u>1</u>		1
Month Mont				min		3	003	3	182	4		12	NC	1_	262.549	4
Moto			10											1_		1
Min Min				min		3			152			12		1_		4
12 max			11	max						12						
Mot Mot				min								12		•		
405			12													
Mode														_		_
407			13													
Mode			1													_
15 max			14													_
410 min 0 3 002 4 035 4 -5.231e-6 1 NC 1 1373.365 4 411 16 max 0 1 0 15 0 12 2.608e-3 4 NC 1 NC 1 412 min 0 3 002 4 021 4 -1.887e-5 1 NC 1 2331.653 4 413 17 max 0 1 0 15 0 12 2.696e-3 4 NC 1			4.5													
411 16 max 0 1 0 15 0 12 2.608e-3 4 NC 1 NC 1 412 min 0 3 002 4 021 4 -1.887e-5 1 NC 1 2331.653 4 413 17 max 0 1 0 15 0 12 2.696e-3 4 NC 1 NC 1 414 min 0 3 001 4 01 4 -3.252e-5 1 NC 1 A893.364 4 415 18 max 0 1 0 15 0 12 2.785e-3 4 NC 1			15			_										-
412 min 0 3 002 4 021 4 -1.887e-5 1 NC 1 2331.653 4 413 17 max 0 1 0 15 0 12 2.696e-3 4 NC 1 NC 1 414 min 0 3 001 4 01 4 -3.252e-5 1 NC 1 4893.364 4 415 18 max 0 1 0 15 0 12 2.785e-3 4 NC 1 NC 1 416 min 0 3 0 4 003 4 -4.616e-5 1 NC 1 NC 1 417 19 max 0 1 0 1 0 1 2.873e-3 4 NC 1 NC 1 419 M11 1 max 0 1 0 1 0 1 -5.98e-5<			16		_					_				_		
413 17 max 0 1 0 15 0 12 2.696e-3 4 NC 1 NC 1 414 min 0 3 001 4 01 4 -3.252e-5 1 NC 1 4893.364 4 415 18 max 0 1 0 15 0 12 2.785e-3 4 NC 1 NC 1 416 min 0 3 0 4 003 4 -4.616e-5 1 NC 1 NC 1 417 19 max 0 1 0 1 2.873e-3 4 NC 1 NC 1 418 min 0 1 0 1 0 1 -5.98e-5 1 NC 1 NC 1 419 M11 1 max 0 1 0 1 -6.377e-4 4 <td></td> <td></td> <td>16</td> <td></td>			16													
414 min 0 3 001 4 01 4 -3.252e-5 1 NC 1 4893.364 4 415 18 max 0 1 0 15 0 12 2.785e-3 4 NC 1 NC 1 416 min 0 3 0 4 003 4 -4.616e-5 1 NC 1 NC 1 417 19 max 0 1 0 1 0 1 2.873e-3 4 NC 1 NC 1 418 min 0 1 0 1 0 1 2.873e-3 4 NC 1 NC 1 418 min 0 1 0 1 -5.98e-5 1 NC 1 NC 1 419 M11 1 max 0 1 0 1 -6.377e-4 4 NC			17											1		
415 18 max 0 1 0 15 0 12 2.785e-3 4 NC 1 NC 1 416 min 0 3 0 4003 4 -4.616e-5 1 NC 1 NC 1 417 19 max 0 1 0 1 0 1 2.873e-3 4 NC 1 NC 1 418 min 0 1 0 1 0 1 -5.98e-5 1 NC 1 NC 1 419 M11 1 max 0 1 0 1 1.852e-5 1 NC 1 NC 1 420 min 0 1 0 1 -6.377e-4 4 NC 1 NC 1 421 2 max 0 3 0 15 .014 4 -1.644e-7 12 NC 1 NC 1 422 min 0 2002 4 0 1 -7.56e-6 5 NC 1 NC 1 NC 1 423 3 max 0 3 0 15 .027 4 6.234e-4 4 NC 1 NC 1 NC 1 424 min 0 2003 4 0 1 -2.723e-5 1 NC 1 NC			17		-	_								1		
416 min 0 3 0 4 003 4 -4.616e-5 1 NC 1 NC 1 417 19 max 0 1 0 1 0 1 2.873e-3 4 NC 1 NC 1 418 min 0 1 0 1 0 1 -5.98e-5 1 NC 1 NC 1 419 M11 1 max 0 1 0 1 0.598e-5 1 NC 1 NC 1 420 min 0 1 0 1 -6.377e-4 4 NC 1 NC 1 421 2 max 0 3 0 15 .014 4 -1.644e-7 12 NC 1 NC 1 422 min 0 2 002 4 0 1 -7.56e-6 5 NC	115		18	may		1						_		1		1
417 19 max 0 1 0 1 0 1 2.873e-3 4 NC 1 NC 1 418 min 0 1 0 1 0 1 -5.98e-5 1 NC 1 NC 1 419 M11 1 max 0 1 0 1 1.852e-5 1 NC 1 NC 1 420 min 0 1 0 1 0.377e-4 4 NC 1 NC 1 421 2 max 0 3 0 15 .014 4 -1.644e-7 12 NC 1 NC 1 422 min 0 2 002 4 0 1 -7.56e-6 5 NC 1 NC 1 423 3 max 0 3 003 4 0 1 -2.723e-5 1 NC			10			3								1		1
418 min 0 1 0 1 0 1 -5.98e-5 1 NC 1 NC 1 419 M11 1 max 0 1 0 1 0 1 1.852e-5 1 NC 1 NC 1 420 min 0 1 0 1 0 1 -6.377e-4 4 NC 1 NC 1 421 2 max 0 3 0 15 .014 4 -1.644e-7 12 NC 1 NC 1 422 min 0 2 002 4 0 1 -7.56e-6 5 NC 1 NC 1 423 3 max 0 3 0 15 .027 4 6.234e-4 4 NC 1 NC 1 424 min 0 2 003 4 0 1			19									•				
419 M11 1 max 0 1 0 1 1.852e-5 1 NC 1 NC 1 420 min 0 1 0 1 -6.377e-4 4 NC 1 NC 1 421 2 max 0 3 0 15 .014 4 -1.644e-7 12 NC 1 NC 1 422 min 0 2 002 4 0 1 -7.56e-6 5 NC 1 NC 1 423 3 max 0 3 0 15 .027 4 6.234e-4 4 NC 1 NC 1 424 min 0 2 003 4 0 1 -2.723e-5 1 NC 1 NC 1 425 4 max 0 3 001 15 .04 4 1.254e-3 4 <td></td> <td></td> <td>10</td> <td></td>			10													
420 min 0 1 0 1 0 1 -6.377e-4 4 NC 1 NC 1 421 2 max 0 3 0 15 .014 4 -1.644e-7 12 NC 1 NC 1 422 min 0 2 002 4 0 1 -7.56e-6 5 NC 1 NC 1 423 3 max 0 3 0 15 .027 4 6.234e-4 4 NC 1 NC 1 424 min 0 2 003 4 0 1 -2.723e-5 1 NC 1 NC 1 425 4 max 0 3 001 15 .04 4 1.254e-3 4 NC 1 NC 1 426 min 0 2 005 4 0 1		M11	1			_						•		•		
421 2 max 0 3 0 15 .014 4 -1.644e-7 12 NC 1 NC 1 422 min 0 2 002 4 0 1 -7.56e-6 5 NC 1 NC 1 423 3 max 0 3 0 15 .027 4 6.234e-4 4 NC 1 NC 1 424 min 0 2 003 4 0 1 -2.723e-5 1 NC 1 NC 1 425 4 max 0 3 001 15 .04 4 1.254e-3 4 NC 1 NC 1 426 min 0 2 005 4 0 1 -5.011e-5 1 NC 1 NC 1 427 5 max 0 3 002 15 .052 4 1.884e-3 4 NC 1 NC 1 428 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>						_		-								
422 min 0 2 002 4 0 1 -7.56e-6 5 NC 1 NC 1 423 3 max 0 3 0 15 .027 4 6.234e-4 4 NC 1 NC 1 424 min 0 2 003 4 0 1 -2.723e-5 1 NC 1 NC 1 425 4 max 0 3 001 15 .04 4 1.254e-3 4 NC 1 NC 1 426 min 0 2 005 4 0 1 -5.011e-5 1 NC 1 NC 1 427 5 max 0 3 002 15 .052 4 1.884e-3 4 NC 1 NC 1 428 min 0 2 007 4 001			2			3	0	15	.014	4				1		1
423 3 max 0 3 0 15 .027 4 6.234e-4 4 NC 1 NC 1 424 min 0 2 003 4 0 1 -2.723e-5 1 NC 1 NC 1 425 4 max 0 3 001 15 .04 4 1.254e-3 4 NC 1 NC 1 426 min 0 2 005 4 0 1 -5.011e-5 1 NC 1 9838.756 4 427 5 max 0 3 002 15 .052 4 1.884e-3 4 NC 1 NC 1 428 min 0 2 007 4 001 1 -7.299e-5 1 NC 1 NC 1 429 6 max 0 3 002 15 .064 4 2.515e-3 4 NC 1 NC 1										1						
424 min 0 2 003 4 0 1 -2.723e-5 1 NC 1 NC 1 425 4 max 0 3 001 15 .04 4 1.254e-3 4 NC 1 NC 1 426 min 0 2 005 4 0 1 -5.011e-5 1 NC 1 9838.756 4 427 5 max 0 3 002 15 .052 4 1.884e-3 4 NC 1 NC 1 428 min 0 2 007 4 001 1 -7.299e-5 1 NC 1 NC 1 429 6 max 0 3 002 15 .064 4 2.515e-3 4 NC 1 NC 1			3							4						
425 4 max 0 3 001 15 .04 4 1.254e-3 4 NC 1 NC 1 426 min 0 2 005 4 0 1 -5.011e-5 1 NC 1 9838.756 4 427 5 max 0 3 002 15 .052 4 1.884e-3 4 NC 1 NC 1 428 min 0 2 007 4 001 1 -7.299e-5 1 NC 1 8185.984 4 429 6 max 0 3 002 15 .064 4 2.515e-3 4 NC 1 NC 1										1		1		1		1
426 min 0 2 005 4 0 1 -5.011e-5 1 NC 1 9838.756 4 427 5 max 0 3 002 15 .052 4 1.884e-3 4 NC 1 NC 1 428 min 0 2 007 4 001 1 -7.299e-5 1 NC 1 8185.984 4 429 6 max 0 3 002 15 .064 4 2.515e-3 4 NC 1 NC 1			4		0				.04	4		4		1		1
427 5 max 0 3 002 15 .052 4 1.884e-3 4 NC 1 NC 1 428 min 0 2 007 4 001 1 -7.299e-5 1 NC 1 8185.984 4 429 6 max 0 3 002 15 .064 4 2.515e-3 4 NC 1 NC 1										1		1		1		4
428 min 0 2 007 4 001 1 -7.299e-5 1 NC 1 8185.984 4 429 6 max 0 3 002 15 .064 4 2.515e-3 4 NC 1 NC 1			5		0		002	15	.052	4		4		1		
429 6 max 0 3002 15 .064 4 2.515e-3 4 NC 1 NC 1										1		1		1		4
			6		0	3	002	15	.064	4		4	NC	1		
				min	0	2	009	4				1	NC	1		4
431 7 max 0 3003 15 .075 4 3.146e-3 4 NC 1 NC 1	431		7	max	0	3	003	15	.075	4	3.146e-3	4	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC				
432			min	0	2	01	4	002	1	-1.187e-4	1_	9108.513	4	6949.604	
433		8	max	.001	3	003	15	.085	4	3.776e-3	4	NC	_1_	NC	1
434			min	0	2	012	4	002	1	-1.416e-4	_1_	8131.504	4_	6861.22	4
435		9	max	.001	3	003	15	.095	4	4.407e-3	_4_	NC	_1_	NC	1
436			min	0	2	013	4	003	1	-1.645e-4	<u>1</u>	7548.807	4_	7031.888	4
437		10	max	.001	3	003	15	.104	4	5.037e-3	4_	NC	2	NC	1
438			min	0	2	013	4	003	1	-1.874e-4	<u>1</u>	7257.347	4_	7468.999	
439		11	max	.002	3	003	15	.113	4	5.668e-3	_4_	NC	2	NC	1
440			min	001	2	013	4	003	1	-2.103e-4	1_	7213.611	4	8230.545	
441		12	max	.002	3	003	15	.122	4	6.298e-3	4_	NC	2	NC_	1
442		10	min	001	2	013	4	004	1	-2.331e-4	1	7416.86	4	9444.778	
443		13	max	.002	3	003	15	.131	4	6.929e-3	4_	NC		NC	1
444			min	001	2	<u>012</u>	4	004	1	-2.56e-4	1_	7910.926	4_	NC	1
445		14	max	.002	3	003	15	.139	4	7.559e-3	4_	NC		NC NC	1
446		4.5	min	001	2	<u>011</u>	4	005	1	-2.789e-4	1_	8807.438	4_	NC	1
447		15	max	.002	3	002	15	.148	4	8.19e-3	4	NC	1	NC NC	1
448		40	min	001	2	01	4	005	1	-3.018e-4	1_	NC	1_	NC NC	1
449		16	max	.002	3	002	15	.156	4	8.82e-3	4_	NC	1	NC NC	1
450		4-	min	002	2	008	1	005	1	-3.246e-4	1_	NC	1_	NC NC	1
451		17	max	.003	3	001	15	.165	4	9.451e-3	4	NC	1	NC NC	1
452		40	min	002	2	006	1	006	1	-3.475e-4	1_	NC NC	1_	NC NC	1
453		18	max	.003	3	0	15	.175	4	1.008e-2	4	NC	1_	NC NC	1
454		40	min	002	2	005	1	006	1	-3.704e-4	1_	NC NC	1_	NC NC	1
455		19	max	.003	3	0	12	.184	4	1.071e-2	4	NC	1	NC	1
456	MAO	1	min	002	2	003	1	007	1	-3.933e-4	1_	NC NC	1_	NC NC	1
457	M12	1	max	.003	1	.001	2	.007	1	1.537e-5	1	NC NC	1	NC	3
458		2	min	0	3	003	3	184	4	-1.001e-3	4	NC NC	1_	134.579	4
459		2	max	.003	1	.001	2	.006	1	1.537e-5	1_	NC	1	NC 440 F22	2
460		2	min	0	3	003	3	169	4	-1.001e-3	4_	NC NC		146.532	4
461 462		3	max	.003	3	.001 002	3	.006 154	1 4	1.537e-5 -1.001e-3	<u>1</u> 4	NC NC	<u>1</u> 1	NC 160.745	4
463		4	min	.002	1	.002	2	.005	1	1.537e-5	1	NC NC	1	NC	2
464		4	max min	.002	3	002	3	139	4	-1.001e-3	4	NC NC	1	177.809	4
465		5	max	.002	1	002 .001	2	.005	1	1.537e-5	1	NC NC	1	NC	2
466		5	min	.002	3	002	3	125	4	-1.001e-3	4	NC	1	198.524	4
467		6	max	.002	1	<u>002</u> 0	2	.004	1	1.537e-5	1	NC	1	NC	2
468		0	min	0	3	002	3	111	4	-1.001e-3	4	NC	1	224.001	4
469		7	max	.002	1	<u>002</u> 0	2	.004	1	1.537e-5	1	NC	1	NC	2
470			min	0	3	002	3	097	4	-1.001e-3	4	NC	1	255.816	4
471		8	max	.002	1	0	2	.003	1	1.537e-5	1	NC	1	NC	2
472			min		3	002	3	084		-1.001e-3		NC	1	296.268	
473		9	max	.002	1	0	2	.003	1	1.537e-5	1	NC	1	NC	2
474		 	min	0	3	002	3	071	4	-1.001e-3	4	NC	1	348.819	4
475		10	max	.001	1	0	2	.002	1	1.537e-5	1	NC	1	NC	1
476		10	min	0	3	001	3	059	4	-1.001e-3	4	NC	1	418.881	4
477		11	max	.001	1	0	2	.002	1	1.537e-5	1	NC	1	NC	1
478			min	0	3	001	3	048	4	-1.001e-3	4	NC	1	515.308	4
479		12	max	.001	1	0	2	.001	1	1.537e-5	1	NC	1	NC	1
480		T	min	0	3	001	3	038	4	-1.001e-3	4	NC	1	653.421	4
481		13	max	0	1	0	2	.001	1	1.537e-5	1	NC	1	NC	1
482			min	0	3	0	3	029	4	-1.001e-3	4	NC	1	861.659	4
483		14	max	0	1	0	2	0	1	1.537e-5	1	NC	1	NC	1
484			min	0	3	0	3	021	4	-1.001e-3	4	NC	1	1197.892	
485		15	max	0	1	0	2	0	1	1.537e-5	1	NC	1	NC	1
486			min	0	3	0	3	014	4	-1.001e-3	4	NC	1	1795.552	4
487		16	max	0	1	0	2	0	1	1.537e-5	1	NC	1	NC	1
488			min	0	3	0	3	008	4	-1.001e-3	4	NC	1	3023.605	-

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

400	Member	Sec	 	x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio LC		
489		17	max	0	1	0	2	0	1	1.537e-5	1	NC 1	NC	1
490		40	min	0	3	0	3	004	4	-1.001e-3	4_	NC 1	6250.653	4
491		18	max	0	1	0	2	0	1	1.537e-5	1	NC 1	NC	1
492		40	min	0	3	0	3	001	4	-1.001e-3	4	NC 1	NC	1
493		19	max	0	1	0	1	0	1	1.537e-5	1	NC 1	NC	1
494	B.4.4	4	min	0	1	0	1	0	1	-1.001e-3	4_	NC 1	NC	1
495	<u>M1</u>	1	max	.003	3	111	1	.499	4	1.928e-2	1	NC 1	NC	1
496		_	min	001	10	013	3	0	12	-1.856e-2	3	NC 1	NC	1
497		2	max	.003	3	.055	1	.485	4	9.398e-3	1	NC 3	NC	1
498			min	001	10	006	3	005	1	-9.183e-3	3	2040.247 1	NC	1
499		3	max	.003	3	.005	3	.472	4	1.446e-2	4	NC 5	NC	1
500			min	001	10	006	1	007	1	-1.367e-4	1_	974.809 1	8423.756	5
501		4	max	.003	3	.025	3	.459	4	1.284e-2	_4_	NC 5	NC	_1_
502			min	001	10	077	1	007	1	-3.31e-3	3	607.919 1	5704.13	5
503		5	max	.003	3	.052	3	.446	4	1.121e-2	4	NC 15	NC	1
504			min	001	10	152	1	005	1	-6.532e-3	3	434.292 1	4338.358	5
505		6	max	.003	3	.08	3	.433	4	1.596e-2	<u>1</u>	NC 15	NC	1
506			min	0	10	226	1	002	1	-9.753e-3	3	339.385 1	3540.37	5
507		7	max	.003	3	.108	3	.419	4	2.133e-2	1	9418.796 15	NC	1
508			min	0	10	292	1	0	12	-1.297e-2	3	283.723 1	3030.037	4
509		8	max	.003	3	.131	3	.404	4	2.669e-2	1	8364.879 15	NC	1
510			min	0	10	344	1	0	12	-1.62e-2	3	250.954 1	2689.142	4
511		9	max	.003	3	.146	3	.387	4	2.931e-2	1	7815.7 15	NC	1
512			min	0	10	378	1	0	1	-1.625e-2	3	233.954 1	2500.542	4
513		10	max	.003	3	.152	3	.369	4	3.01e-2	1	7648.534 15	NC	1
514			min	0	10	389	1	0	12	-1.421e-2	3	228.855 1	2451.623	4
515		11	max	.003	3	.148	3	.348	4	3.089e-2	1	7815.556 15	NC	1
516			min	0	10	377	1	0	12	-1.217e-2	3	234.195 1	2520.602	4
517		12	max	.003	3	.136	3	.325	4	2.908e-2	1	8364.548 15	NC	1
518			min	0	10	344	1	0	1	-1.014e-2	3	251.71 1	2725.812	5
519		13	max	.003	3	.115	3	.299	4	2.337e-2	1	9418.16 15	NC	1
520			min	0	10	29	1	0	1	-8.115e-3	3	285.597 1	3220.427	4
521		14	max	.003	3	.089	3	.271	4	1.766e-2	1	NC 15	NC	1
522			min	0	10	223	1	0	12	-6.092e-3	3	343.43 1	4212.05	4
523		15	max	.003	3	.06	3	.242	4	1.194e-2	1	NC 15	NC	1
524		10	min	0	10	149	1	0	12	-4.07e-3	3	442.669 1	6303.578	4
525		16	max	.003	3	.03	3	.214	4	9.523e-3	4	NC 5	NC	1
526		10	min	0	10	074	1	0	12	-2.047e-3	3	625.655 1	NC	1
527		17	max	.003	3	.002	3	.188	4	1.039e-2	4	NC 5	NC	1
528		- ' '	min	0	10	004	1	0	12	-2.475e-5	3	1015.131 1	NC	1
529		18	max	.003	3	.055	1	.166	4	1.101e-2	1	NC 5	NC	1
530		10	min	0	10	023	3	0	12	-3.299e-3	3	2142.99 1	NC	1
531		19	max	.003	3	.108	1	.146	4	2.189e-2	1	NC 1	NC	1
532		13	min	0	10	047	3	0	1	-6.697e-3		NC 1	NC	1
533	M5	1	max	.011	3	.269	1	.499	4	0	1	NC 1	NC	1
534	IVIO		min	006	2	021	3	0	1	-2.095e-6	4	NC 1	NC	1
535		2	max	.011	3	.133	1	.488	4	7.404e-3	4	NC 5	NC	1
536			min	007	2	011	3	0	1	0	1	842.54 1	NC	1
537		3		.011	3	.016	3	.476				NC 15	NC	1
		3	max		2				1	1.458e-2	4		7034.127	4
538		Λ	min	007		021	1	462		1 1990 2	1_1			
539		4	max	.011	3	.072	3	.462	4	1.188e-2	4	8874.357 15		1
540		-	min	006	2	21	1	0	1	0 170 2	1_	238.729 1	5085.208	4
541		5	max	.01	3	.149	3	.448	4	9.179e-3	4	6213.026 15	NC	1
542			min	006	2	416	1	0	1	0 470 0	1_	166.789 1	4084.672	4
543		6	max	.01	3	.234	3	.434	4	6.478e-3	4	4784.931 15		1
544		-	min	006	2	622	1	0	1	0	1_	128.223 1	3469.608	4
545		7	max	.01	3	.318	3	.419	4	3.777e-3	4	3959.896 15	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		_		(n) L/y Ratio	LC		
546			min	006	2	809	1	0	1	0	1_	105.958	1_	3044.101	
547		8	max	.01	3	.388	3	.404	4	1.077e-3	4_		<u>15</u>	NC	1
548			min	006	2	96	1	0	1	0	_1_	93.016	1_	2721.344	4
549		9	max	.01	3	.433	3	.388	4	0	1_		<u>15</u>	NC	1
550		40	min	006	2	-1.054	1	0	1	-1.196e-6	5	86.385	1_	<u>2501.083</u>	4
551		10	max	.009	3	.45	3	.369	4	0 -1.131e-6	1		<u>15</u>	NC 2468.922	4
552		11	min	006 .009	3	<u>-1.086</u> .439	3	.348	4	0	<u>5</u> 1	84.408 3233.955	<u>1</u> 15	NC	1
553 554			max	005	2	-1.054	1	.346	1	-1.067e-6	5	86.481	1	2545.109	
555		12	max	.009	3	.401	3	.326	4	7.483e-4	4		<u></u> 15	NC	1
556		12	min	005	2	957	1	0	1	0	1	93.334	1	2690.251	4
557		13	max	.009	3	.339	3	.3	4	2.625e-3	4		15	NC	1
558		10	min	005	2	804	1	0	1	0	1	106.784	1	3173.216	_
559		14	max	.009	3	.262	3	.27	4	4.503e-3	4		15	NC	1
560			min	005	2	613	1	0	1	0	1	130.08	1	4332.065	4
561		15	max	.008	3	.175	3	.24	4	6.38e-3	4		15	NC	1
562			min	005	2	405	1	0	1	0	1	170.81	1	7311.302	5
563		16	max	.008	3	.088	3	.211	4	8.257e-3	4	8876.402	15	NC	1
564			min	005	2	198	1	0	1	0	1	247.714	1	NC	1
565		17	max	.008	3	.006	3	.184	4	1.013e-2	4		15	NC	1
566			min	005	2	013	1	0	1	0	1	415.46	1	NC	1
567		18	max	.008	3	.134	1	.163	4	5.147e-3	4	NC	5	NC	1
568			min	005	2	064	3	0	1	0	1_	900.754	1_	NC	1
569		19	max	.008	3	.26	1	.146	4	0	_1_	NC	1_	NC	1
570			min	005	2	126	3	0	1	-8.631e-7	4_	NC	1_	NC	1
571	<u>M9</u>	1	max	.003	3	.111	1	.499	4	1.856e-2	3	NC	1	NC	1
572			min	001	10	013	3	0	1	-1.928e-2	1_	NC	1_	NC NC	1
573		2	max	.003	3	.055	1	.488	4	9.183e-3	3_	NC 0040.047	3	NC NC	1
574			min	001	10	006	3	0	12	-9.398e-3	1_	2040.247	1_	NC NC	1
575 576		3	max	.003	3	.005	3	.475	12	1.454e-2	4	NC 974.809	<u>5</u> 1	NC 7120.441	4
576 577		4	min	001 .003	3	006 .025	3	.462	4	-1.738e-5 1.139e-2	<u>10</u> 5	NC	5	7 120.441 NC	1
578		4	max	001	10	025 077	1	.462	12	-5.229e-3	1	607.919	1	5112.204	
579		5	max	.003	3	.052	3	.448	4	8.537e-3	5		<u></u> 15	NC	1
580			min	001	10	152	1	0	12	-1.059e-2	1	434.292	1	4082.065	
581		6	max	.003	3	.08	3	.434	4	9.753e-3	3		15	NC	1
582		T .	min	0	10	226	1	0	12	-1.596e-2	1	339.385	1	3453.538	_
583		7	max	.003	3	.108	3	.419	4	1.297e-2	3		15	NC	1
584			min	0	10	292	1	0	1	-2.133e-2	1	283.723	1	3025.715	
585		8	max	.003	3	.131	3	.404	4	1.62e-2	3		15	NC	1
586			min		10	344	1	0		-2.669e-2		250.954	1	2707.103	5
587		9	max	.003	3	.146	3	.388	4	1.625e-2	3		15	NC	1
588			min	0	10	378	1	0	12	-2.931e-2	1	233.954	1	2494.816	4
589		10	max	.003	3	.152	3	.369	4	1.421e-2	3	7639.583	15	NC	1
590			min	0	10	389	1	0	1	-3.01e-2	1	228.855	1	2452.495	4
591		11	max	.003	3	.148	3	.348	4	1.217e-2	3		<u>15</u>	NC	1
592			min	0	10	377	1	0	1	-3.089e-2	1_	234.195	1	2527.816	4
593		12	max	.003	3	.136	3	.325	4	1.014e-2	3_		<u>15</u>	NC	1
594			min	0	10	344	1	0	12	-2.908e-2	1_	251.71	1	2708.025	4
595		13	max	.003	3	.115	3	.299	4	8.115e-3	3_		<u>15</u>	NC	1
596			min	0	10	29	1	0	12	-2.337e-2	1_		1_	3221.422	4
597		14	max	.003	3	.089	3	.27	4	6.092e-3	3		<u>15</u>	NC 1010 000	1
598		4-	min	0	10	223	1	002	1	-1.766e-2	_1_	343.43	1_	4313.689	5
599		15	max	.003	3	.06	3	.24	4	5.92e-3	5		<u>15</u>	NC COOA OZO	1
600		10	min	0	10	<u>149</u>	1	004	1	-1.194e-2	1_	442.669	1_	6824.078	
601		16	max	.003	3	.03	3	.211	4	8.e-3	5	NC 625 655	5	NC NC	1
602			min	0	10	074	1	006	1	-6.23e-3	1_	625.655	1	NC	1

Company Designer Job Number Model Name Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
603		17	max	.003	3	.002	3	.185	4	1.015e-2	4	NC	5	NC	1
604			min	0	10	004	1	007	1	-5.169e-4	1	1015.131	1	NC	1
605		18	max	.003	3	.055	1	.163	4	4.736e-3	5	NC	5	NC	1
606			min	0	10	023	3	005	1	-1.101e-2	1	2142.99	1	NC	1
607		19	max	.003	3	.108	1	.146	4	6.697e-3	3	NC	1	NC	1
608			min	0	10	047	3	0	12	-2.189e-2	1	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015					
Engineer:	HCV	Page:	1/5					
Project:	Standard PVMax - Worst Case, 21-30 Inch Width							
Address:								
Phone:								
E-mail:								

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2344.5	1654.5	0.0	1654.5
2	2344.5	1654.5	0.0	1654.5
Sum	4689.0	3309.0	0.0	3309.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4689 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	ıc / ΑΝco) Ψec,N Ψea	$_{I,N}\varPsi_{c,N}\varPsi_{cp,N}N_{b}$ (3	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$arPsi_{ extsf{c}, extsf{N}}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324 00	1 000	0.972	1.00	1 000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

,								
τ _{k,cr} (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extsty$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

378.00	648.00	1 000	0 836	1 000	1 000	15503		φν cbgx (ID)
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec.V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	φ	ϕV_{cbqx} (lb)
$\phi V_{cbgx} = \phi (A$	$(V_{c}/A_{V_{co}})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} arPsi_{c,V} arPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
4.00	0.50	1.00	2500	12.00	15593			
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
$V_{bx} = 7(I_e/d_e)$	$(a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}^{1.5}$	⁵ (Eq. D-24)						

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.9}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{\Psi}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n <i>kcpNag</i> ; <i>kcpN</i>	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$arPsi_{p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in ²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2345	6071	0.39	Pass
Concrete breakout	4689	9208	0.51	Pass
Adhesive	4689	8093	0.58	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1655	3156	0.52	Pass
T Concrete breakout x+	3309	5323	0.62	Pass (Governs)
Concrete breakout y-	1655	12241	0.14	Pass (Governs)
Pryout	3309	19833	0.17	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rat	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 21-30 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.58 0.62 120.1 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.