

Tutorial 4 Clasificador simple

Los Pilares del Deep Learning

Data

Dataset

Dataloader

Model

Network

Loss/Objective

Solver

Optimizer

Training Loop

Validation

Los Pilares del Deep Learning

Exercise 3: Dataset and Dataloader

Exercise 4: Simple Classifier

Exercise 5: Simple Network

Exercise 6: Hyperparameter Tuning

Model

Network

Loss/Objective

Optimizer
Training Loop
Validation

Goal: Training process

• Skip: Model Pillar

• Simplified Model: Classifier which

is a 1-Layer Neural Network

Solver

Optimizer

Training Loop

Validation

Objetivo: Ejercicio 5++

- Ex 3 + 4: Dataloading and Trainings process
- Ex 5++: Expand the exercises to more interesting model architectures

Model

Network

Loss/Objective

Ejercicio 4 Clasificador simple

Housing Dataset

- Housing Dataset: Data of ~1400 casas incluyendo 81 features como
 - Neighborhood, GrLivArea, YearBuilt, etc.
- Simplified model: 1 input feature para predecir el precio de la casa

housing_train

ld	Neighborhood	BldgType	HouseStyle	YearBuilt	YearRemodAdd	RoofStyle	CentralAir	GrLivArea	FullBath	HalfBath	Fireplaces	PoolArea	Fence	SalePrice
1	CollgCr	1Fam	2Story	2003	2003	Gable	Υ	1710	2	1	0	0	NA	208500
2	Veenker	1Fam	1Story	1976	1976	Gable	Υ	1262	2	0	1	0	NA	181500
3	CollgCr	1Fam	2Story	2001	2002	Gable	Y	1786	2	1	1	0	NA	223500
4	Crawfor	1Fam	2Story	1915	1970	Gable	Υ	1717	1	0	1	0	NA	140000
5	NoRidge	1Fam	2Story	2000	2000	Gable	Y	2198	2	1	1	0	NA	250000
6	Mitchel	1Fam	1.5Fin	1993	1995	Gable	Υ	1362	1	1	0	0	MnPrv	143000
7	Somerst	1Fam	1Story	2004	2005	Gable	Υ	1694	2	0	1	0	NA	307000
8	NWAmes	1Fam	2Story	1973	1973	Gable	Υ	2090	2	1	2	0	NA	200000

Expensive y = 1

Low-priced y = 0

3er Pilar del Deep Learning

Backpropagation

Backpropagation: Loss Function

Forward pass

Backward pass

Binary Cross Entropy Loss: $L(y, \hat{y}) = y \cdot log(\hat{y}) + (1 - y) \cdot log(1 - \hat{y})$

Backpropagation

- Input: $X \in \mathbb{R}^{N \times D + 1}$ representing our data with N samples and D+1 feature dimensions
- Output: Binary labels given by $y \in \mathbb{R}^{N \times 1}$
- Model: Classifier of the form $y = \sigma(X \cdot w)$
- Sigmoid function: $\sigma:\mathbb{R}\to [0,1]$ with $\sigma(t)=\frac{1}{1+e^{-t}}$

• Weights of the Classifier: $w = (w_1, w_2, \dots, w_{D+1}) \top \in \mathbb{R}^{D+1}$

Backpropagation: Ejemplo

Sample $x = (x_1, x_2, \dots, x_{D+1})$

Forward Pass

Classifier Model $y = \sigma(X \cdot w)$

(Single sample)

Input Data X

$$X \in \mathbb{R}^{N \times D + 1}$$

$$X = \begin{pmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,D+1} \\ x_{2,1} & x_{2,2} & \dots & x_{2,D+1} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N,1} & x_{N,2} & \dots & x_{N,D+1} \end{pmatrix}$$

Forward Pass

Sample
$$x_i = (x_{i1}, x_{i2}, \dots, x_{i,D+1})$$

(N samples)

Forward Pass

Backward Pass

CATOLICA PROCES

Sample
$$x = (x_1, x_2, \dots, x_{D+1})$$

Backward Pass

- 2 Notebooks
 - Optional: Preprocessing
 - Logistic Regression model
- Submission
 - Implementaciones en los notebooks
 - Submission file creation en Notebook

Nos vemos el próximo lunes ©