Motivation
Progress towards the solution
Fast Relaxation of the septum post laser ablation
Simulation using phase field formalism
Summary and Future scope

Dynamics of the septum during cell division Dual Degree Project Stage-II

Amal Agarwal Supervisor: Prof. Anirban Sain

Department of Physics Indian Institute of Technology Bombay

June 2014

Outline

- Motivation
 - The Basic Problem of Septum Dynamics
- Progress towards the solution
 - Image analysis
 - Application of PIV to reveal septum dynamics
 - Theoretical Models
- Fast Relaxation of the septum post laser ablation
 - Theoretical Approach
 - Image analysis
- Simulation using phase field formalism
- Summary and Future scope

Outline

- Motivation
 - The Basic Problem of Septum Dynamics
- - Image analysis
 - Application of PIV to reveal septum dynamics
 - Theoretical Models
- - Theoretical Approach

What is septum? Septum Dynamics

- Visco elastic material
- Activity due to myosin molecular motors

Summary and Future scope

• Diameter of the septum \sim 10 μ m. Dynamics at micro scale.

What is septum? Septum Dynamics

- Visco elastic material
- Activity due to myosin molecular motors
- Diameter of the septum $\sim 10 \mu m$. Dynamics at micro scale.

What is septum? Septum Dynamics

- Visco elastic material
- Activity due to myosin molecular motors
- Diameter of the septum \sim 10 μ m. Dynamics at micro scale.

What is septum? Septum Dynamics

- Visco elastic material
- Activity due to myosin molecular motors
- Diameter of the septum \sim 10 μ m. Dynamics at micro scale.

Symmetric and Asymmetric Closure Septum Dynamics

Figure: Septum Plane during cell division

Symmetric and Asymmetric Closure Septum Dynamics

Figure: Septum Plane during cell division

Figure: Cross-section of septum plane: Symmetric and Asymmetric Septum closure

Asymmetric Closure experimentally Septum Dynamics

Figure: Experimental movie (obtained from Stephan Grill's lab, CBG Dresden) showing asymmetric septum closure

Asymmetric Closure experimentally Septum Dynamics

Outline

- Progress towards the solution
 - Image analysis
 - Application of PIV to reveal septum dynamics
 - Theoretical Models
- - Theoretical Approach

- To analyze the video, extract a time series of snapshots and analyze them.
- Method 1
 - Using mmreader and avireader in Matlab
 - Difference in number of rows, columns and colour channels
 - Inconsequential. Abandoned
- Method 2
 - Using snapshot tool in vlc media players
 - Advantages: Septum visibility
 - Disadvantages: Manual, Inaccurate

- To analyze the video, extract a time series of snapshots and analyze them.
- Method 1
 - Using mmreader and avireader in Matlab
 - Difference in number of rows, columns and colour channels
 - Inconsequential. Abandoned.
- Method 2
 - Using snapshot tool in vlc media player
 - Advantages: Septum visibility
 - Disadvantages: Manual, Inaccurate

- To analyze the video, extract a time series of snapshots and analyze them.
- Method 1
 - Using mmreader and avireader in Matlab
 - Difference in number of rows, columns and colour channels
 - Inconsequential. Abandoned.
- Method 2
 - Using snapshot tool in vlc media player
 - Advantages: Septum visibility
 - Disadvantages: Manual, Inaccurate

- To analyze the video, extract a time series of snapshots and analyze them.
- Method 1
 - Using mmreader and avireader in Matlab
 - Difference in number of rows, columns and colour channels
 - Inconsequential. Abandoned.
- Method 2
 - Using snapshot tool in vlc media playe
 - Advantages: Septum visibility
 - Disadvantages: Manual, Inaccurate

- To analyze the video, extract a time series of snapshots and analyze them.
- Method 1
 - Using mmreader and avireader in Matlab
 - Difference in number of rows, columns and colour channels
 - Inconsequential. Abandoned.
- Method 2
 - Using snapshot tool in vlc media player
 - Advantages: Septum visibility
 - Disadvantages: Manual, Inaccurate

- To analyze the video, extract a time series of snapshots and analyze them.
- Method 1
 - Using mmreader and avireader in Matlab
 - Difference in number of rows, columns and colour channels
 - Inconsequential. Abandoned.
- Method 2
 - Using snapshot tool in vlc media player
 - Advantages: Septum visibility
 - Disadvantages: Manual, Inaccurate

- To analyze the video, extract a time series of snapshots and analyze them.
- Method 1
 - Using mmreader and avireader in Matlab
 - Difference in number of rows, columns and colour channels
 - Inconsequential. Abandoned.
- Method 2
 - Using snapshot tool in vlc media player
 - Advantages: Septum visibility
 - Disadvantages: Manual, Inaccurate

- To analyze the video, extract a time series of snapshots and analyze them.
- Method 1
 - Using mmreader and avireader in Matlab
 - Difference in number of rows, columns and colour channels
 - Inconsequential. Abandoned.
- Method 2
 - Using snapshot tool in vlc media player
 - Advantages: Septum visibility
 - Disadvantages: Manual, Inaccurate

- To analyze the video, extract a time series of snapshots and analyze them.
- Method 1
 - Using mmreader and avireader in Matlab
 - Difference in number of rows, columns and colour channels
 - Inconsequential. Abandoned.
- Method 2
 - Using snapshot tool in vlc media player
 - Advantages: Septum visibility
 - Disadvantages: Manual, Inaccurate

PIV Basics

- Open source: GUI and command line versions in Matlab
- Analyze velocity profiles in a dynamic flow
- Role of Interrogation Windows

- PIV Basics
 - Open source: GUI and command line versions in Matlab
 - Analyze velocity profiles in a dynamic flow
 - Role of Interrogation Windows

- PIV Basics
 - Open source: GUI and command line versions in Matlab
 - Analyze velocity profiles in a dynamic flow
 - Role of Interrogation Windows

- PIV Basics
 - Open source: GUI and command line versions in Matlab
 - Analyze velocity profiles in a dynamic flow
 - Role of Interrogation Windows

Figure: Two images as input

Figure: PIV interrogation regions

Figure: Mapping using arrows

Figure: PIV Output

Parameters on PIV GUI PIV basics; Image analysis

TV basies, image analysis

- Scaling the vectors
- Outlier Filter
- Jump Value
- ROI tool

Parameters on PIV GUI

PIV basics; Image analysis

- Scaling the vectors
- Outlier Filter
- Jump Value
- ROI tool

Parameters on PIV GUI

PIV basics; Image analysis

- Scaling the vectors
- Outlier Filter
- Jump Value
- ROI tool

Parameters on PIV GUI

PIV basics; Image analysis

- Scaling the vectors
- Outlier Filter
- Jump Value
- ROI tool

Outline

- Progress towards the solution
 - Image analysis
 - Application of PIV to reveal septum dynamics
 - Theoretical Models
- - Theoretical Approach

Asymmetric closure experimentally Septum dynamics

Figure: Experimental movie (obtained from Stephan Grill's lab, CBG Dresden) showing asymmetric septum closure

Applications of PIV

PIV on snapshots of asymmetric septum closure

(a) 10-20

(b) 20-30

Applications of PIV

Applications of PIV

(g) 70-80

(h) 80-85

Applications of PIV

(h) 80-85

Inference from PIV maps

- Rotation of the acto-myosin ring is evident as its radius decreases.
- v_{ϕ} must depend on r.

Inference from PIV maps

- Rotation of the acto-myosin ring is evident as its radius decreases.
- v_{ϕ} must depend on r.

Outline

- Progress towards the solution
 - Image analysis
 - Application of PIV to reveal septum dynamics
 - Theoretical Models
- - Theoretical Approach

Image analysis Application of PIV to reveal septum dynamics Theoretical Models

Defining the system Septum dynamics

Navier-Stokes Equation:

Navier-Stokes Equation:

$$\rho\left[\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v}.\nabla)\mathbf{v}\right] = -\nabla \mathbf{p} + \eta \Delta \mathbf{v} + \left(\zeta + \frac{1}{3}\eta\right)\nabla(\nabla \cdot \mathbf{v})$$

Navier-Stokes Equation:

$$\rho\left[\frac{\partial v}{\partial t} + (v.\nabla)v\right] = -\nabla p + \eta \Delta v + \left(\zeta + \frac{1}{3}\eta\right)\nabla(\nabla \cdot v)$$

Equation of continuity:

Navier-Stokes Equation:

$$\rho\left[\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v}.\nabla)\mathbf{v}\right] = -\nabla \mathbf{p} + \eta \Delta \mathbf{v} + \left(\zeta + \frac{1}{3}\eta\right)\nabla(\nabla \cdot \mathbf{v})$$

• Equation of continuity:

$$\nabla \cdot \mathbf{v} = \mathbf{0}$$

Navier-Stokes Equation:

$$\rho\left[\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v}.\nabla)\mathbf{v}\right] = -\nabla \mathbf{p} + \eta \Delta \mathbf{v} + \left(\zeta + \frac{1}{3}\eta\right)\nabla(\nabla \cdot \mathbf{v})$$

• Equation of continuity:

$$\nabla \cdot v = 0$$
 which becomes

$$\frac{1}{r}\frac{\partial (rv_r)}{\partial r}\frac{1}{r}\frac{\partial (v_\phi)}{\partial \phi}+\frac{\partial v_z}{\partial z}=0$$

Image analysis Application of PIV to reveal septum dynamics Theoretical Models

Defining the system Basic equations; Septum dynamics

In cylinderical co-ordinates:

Basic equations; Septum dynamics

In cylinderical co-ordinates:

•
$$\frac{\partial v_r}{\partial t} + (v.\nabla)v_r - \frac{v_\phi^2}{r} = \frac{-1}{\rho}\frac{\partial p}{\partial r} + \nu(\nabla^2 v_r - \frac{2}{r^2}\frac{\partial v_\phi}{\partial \phi} - \frac{v_r}{r^2})$$

Basic equations; Septum dynamics

In cylinderical co-ordinates:

•
$$\frac{\partial v_r}{\partial t} + (v.\nabla)v_r - \frac{v_\phi^2}{r} = \frac{-1}{\rho}\frac{\partial p}{\partial r} + \nu(\nabla^2 v_r - \frac{2}{r^2}\frac{\partial v_\phi}{\partial \phi} - \frac{v_r}{r^2})$$

•
$$\frac{\partial v_{\phi}}{\partial t} + (v \cdot \nabla)v_{\phi} + \frac{v_{r}v_{\phi}}{r} = \frac{-1}{\rho r}\frac{\partial p}{\partial \phi} + \nu(\nabla^{2}v_{\phi} + \frac{2}{r^{2}}\frac{\partial v_{r}}{\partial \phi} - \frac{v_{\phi}}{r^{2}})$$

Basic equations; Septum dynamics

In cylinderical co-ordinates:

•
$$\frac{\partial v_r}{\partial t} + (v.\nabla)v_r - \frac{v_\phi^2}{r} = \frac{-1}{\rho}\frac{\partial p}{\partial r} + \nu(\nabla^2 v_r - \frac{2}{r^2}\frac{\partial v_\phi}{\partial \phi} - \frac{v_r}{r^2})$$

•
$$\frac{\partial v_{\phi}}{\partial t} + (v \cdot \nabla)v_{\phi} + \frac{v_{r}v_{\phi}}{r} = \frac{-1}{\rho r}\frac{\partial p}{\partial \phi} + \nu(\nabla^{2}v_{\phi} + \frac{2}{r^{2}}\frac{\partial v_{r}}{\partial \phi} - \frac{v_{\phi}}{r^{2}})$$

In our case, these simplify as:

Basic equations; Septum dynamics

In cylinderical co-ordinates:

•
$$\frac{\partial v_r}{\partial t} + (v.\nabla)v_r - \frac{v_\phi^2}{r} = \frac{-1}{\rho}\frac{\partial p}{\partial r} + \nu(\nabla^2 v_r - \frac{2}{r^2}\frac{\partial v_\phi}{\partial \phi} - \frac{v_r}{r^2})$$

•
$$\frac{\partial v_{\phi}}{\partial t} + (v \cdot \nabla)v_{\phi} + \frac{v_{r}v_{\phi}}{r} = \frac{-1}{\rho r}\frac{\partial p}{\partial \phi} + \nu(\nabla^{2}v_{\phi} + \frac{2}{r^{2}}\frac{\partial v_{r}}{\partial \phi} - \frac{v_{\phi}}{r^{2}})$$

In our case, these simplify as:

$$\bullet \ -\frac{\mathbf{v}_{\phi}^{2}}{r} = \frac{-1}{\rho} \frac{\partial p}{\partial r} + \nu \left(\nabla^{2} \mathbf{v}_{r} - \frac{2}{r^{2}} \frac{\partial \mathbf{v}_{\phi}}{\partial \phi} - \frac{\mathbf{v}_{r}}{r^{2}} \right)$$

Basic equations; Septum dynamics

In cylinderical co-ordinates:

•
$$\frac{\partial v_r}{\partial t} + (v.\nabla)v_r - \frac{v_{\phi}^2}{r} = \frac{-1}{\rho}\frac{\partial p}{\partial r} + \nu(\nabla^2 v_r - \frac{2}{r^2}\frac{\partial v_{\phi}}{\partial \phi} - \frac{v_r}{r^2})$$

•
$$\frac{\partial v_{\phi}}{\partial t} + (v \cdot \nabla)v_{\phi} + \frac{v_{r}v_{\phi}}{r} = \frac{-1}{\rho r}\frac{\partial p}{\partial \phi} + \nu(\nabla^{2}v_{\phi} + \frac{2}{r^{2}}\frac{\partial v_{r}}{\partial \phi} - \frac{v_{\phi}}{r^{2}})$$

In our case, these simplify as:

$$\bullet \ -\frac{v_{\phi}^2}{r} = \frac{-1}{\rho} \frac{\partial p}{\partial r} + \nu \left(\nabla^2 V_r - \frac{2}{r^2} \frac{\partial V_{\phi}}{\partial \phi} - \frac{V_r}{r^2} \right)$$

$$\bullet \ \frac{\mathbf{v}_r \mathbf{v}_{\phi}}{r} = \frac{-1}{\rho r} \frac{\partial p}{\partial \phi} + \nu \left(\nabla^2 \mathbf{v}_{\phi} + \frac{2}{r^2} \frac{\partial \mathbf{v}_r}{\partial \phi} - \frac{\mathbf{v}_{\phi}}{r^2} \right)$$

Basic equations; Septum dynamics

Stress-velocity relations in cylindrical co-ordinates:

•
$$\sigma_{rr} = -p + 2\eta \frac{\partial v_r}{\partial r}$$

•
$$\sigma_{\phi\phi} = -p + 2\eta \left(\frac{1}{r}\frac{\partial v_{\phi}}{\partial \phi} + \frac{v_{r}}{r}\right)$$

Basic equations; Septum dynamics

Stress-velocity relations in cylindrical co-ordinates:

•
$$\sigma_{rr} = -p + 2\eta \frac{\partial v_r}{\partial r}$$

$$\bullet \ \sigma_{r\phi} = \eta \left(\frac{1}{r} \frac{\partial v_r}{\partial \phi} + \frac{\partial v_{\phi}}{\partial r} - \frac{v_{\phi}}{r} \right)$$

•
$$\sigma_{\phi\phi} = -p + 2\eta \left(\frac{1}{r}\frac{\partial v_{\phi}}{\partial \phi} + \frac{v_{r}}{r}\right)$$

Basic equations; Septum dynamics

Stress-velocity relations in cylindrical co-ordinates:

•
$$\sigma_{rr} = -p + 2\eta \frac{\partial v_r}{\partial r}$$

$$\bullet \ \sigma_{r\phi} = \eta \left(\frac{1}{r} \frac{\partial v_r}{\partial \phi} + \frac{\partial v_{\phi}}{\partial r} - \frac{v_{\phi}}{r} \right)$$

$$\bullet \ \sigma_{\phi\phi} = -p + 2\eta \left(\frac{1}{r} \frac{\partial v_{\phi}}{\partial \phi} + \frac{v_{r}}{r}\right)$$

At outer periphery the velocity boundary conditions are:

•
$$v_r(R_1) = -v_0$$

•
$$V_{\phi}(R_1) = 0$$

At outer periphery the velocity boundary conditions are:

•
$$v_r(R_1) = -v_0$$

•
$$v_{\phi}(R_1) = 0$$

At outer periphery the velocity boundary conditions are:

•
$$v_r(R_1) = -v_0$$

•
$$v_{\phi}(R_1) = 0$$

Figure: ϕ symmetric vesicle addition through the outer rim

Amal Agarwal

At inner periphery the stress boundary condition is:

$$\sigma_{nn}(R_2) = \frac{\Sigma}{R_2}$$

 Radius of curvature changes at every point on the inner periphery in the asymmetric case

At inner periphery the stress boundary condition is:

$$\sigma_{nn}(R_2) = \frac{\Sigma}{R_2}$$

 Radius of curvature changes at every point on the inner periphery in the asymmetric case

- Case 1: $v_r = v_r(r), v_\phi = 0$
- Case 2: $v_r = v_r(r, \phi), v_\phi = 0$
- Case 3: $v_r = v_r(r), v_{\phi} = v_{\phi}(r)$
- Case 4: $v_r = v_r(r, \phi), v_\phi = v_\phi(r, \phi)$: Not possible to deal with analytically

- Case 1: $v_r = v_r(r), v_\phi = 0$
- Case 2: $v_r = v_r(r, \phi), v_\phi = 0$
- Case 3: $v_r = v_r(r), v_{\phi} = v_{\phi}(r)$
- Case 4: $v_r = v_r(r, \phi), v_\phi = v_\phi(r, \phi)$: Not possible to deal with analytically

- Case 1: $v_r = v_r(r), v_\phi = 0$
- Case 2: $v_r = v_r(r, \phi), v_\phi = 0$
- Case 3: $v_r = v_r(r), v_{\phi} = v_{\phi}(r)$
- Case 4: $v_r = v_r(r, \phi), v_\phi = v_\phi(r, \phi)$: Not possible to deal with analytically

- Case 1: $v_r = v_r(r), v_\phi = 0$
- Case 2: $v_r = v_r(r, \phi), v_\phi = 0$
- Case 3: $v_r = v_r(r), v_{\phi} = v_{\phi}(r)$
- Case 4: $v_r = v_r(r, \phi), v_\phi = v_\phi(r, \phi)$: Not possible to deal with analytically

- Streamfunction ϕ^{S} obeys $\mathbf{v} = \nabla \phi^{S} \times \hat{\mathbf{z}}$
- In terms of ϕ^S

$$V = V_r \hat{r} + V_\phi \hat{\phi} = \frac{1}{r} \frac{\partial \phi^S}{\partial \phi} \hat{r} - \frac{\partial \phi^S}{\partial r} \hat{\phi}$$

- Advantages:
- Doesn't work due to the conflict b/w

- Streamfunction $\phi^{\mathcal{S}}$ obeys $\mathbf{v} = \nabla \phi^{\mathcal{S}} \times \hat{\mathbf{z}}$
- In terms of ϕ^S

$$V = V_r \hat{r} + V_\phi \hat{\phi} = \frac{1}{r} \frac{\partial \phi^S}{\partial \phi} \hat{r} - \frac{\partial \phi^S}{\partial r} \hat{\phi}$$

- Advantages:
 - Equation of continuity automatically satisfied
 - ullet Everything gets reduced in terms of scalar function ϕ^S
- Doesn't work due to the conflict b/w
 - Periodicity constraint in δ and
 - Boundary condition at outer periphery

- Streamfunction ϕ^{S} obeys $\mathbf{v} = \nabla \phi^{S} \times \hat{\mathbf{z}}$
- In terms of ϕ^S

$$V = V_r \hat{r} + V_\phi \hat{\phi} = \frac{1}{r} \frac{\partial \phi^S}{\partial \phi} \hat{r} - \frac{\partial \phi^S}{\partial r} \hat{\phi}$$

- Advantages:
 - Equation of continuity automatically satisfied
 - Everything gets reduced in terms of scalar function ϕ^S
- Doesn't work due to the conflict b/w
 - Periodicity constraint in $\hat{\phi}$ and
 - Boundary condition at outer periphery

- Streamfunction ϕ^{S} obeys $\mathbf{v} = \nabla \phi^{S} \times \hat{\mathbf{z}}$
- In terms of ϕ^S

$$V = V_r \hat{r} + V_\phi \hat{\phi} = \frac{1}{r} \frac{\partial \phi^S}{\partial \phi} \hat{r} - \frac{\partial \phi^S}{\partial r} \hat{\phi}$$

- Advantages:
 - Equation of continuity automatically satisfied
 - Everything gets reduced in terms of scalar function ϕ^S
- Doesn't work due to the conflict b/w
 - Periodicity constraint in $\hat{\phi}$ and
 - Boundary condition at outer periphery

- Streamfunction $\phi^{\mathcal{S}}$ obeys $\mathbf{v} = \nabla \phi^{\mathcal{S}} \times \hat{\mathbf{z}}$
- In terms of ϕ^S

$$V = V_r \hat{r} + V_\phi \hat{\phi} = \frac{1}{r} \frac{\partial \phi^S}{\partial \phi} \hat{r} - \frac{\partial \phi^S}{\partial r} \hat{\phi}$$

- Advantages:
 - Equation of continuity automatically satisfied
 - Everything gets reduced in terms of scalar function ϕ^S
- Doesn't work due to the conflict b/w
 - ullet Periodicity constraint in ϕ and
 - Boundary condition at outer periphery

- Streamfunction ϕ^{S} obeys $\mathbf{v} = \nabla \phi^{S} \times \hat{\mathbf{z}}$
- In terms of ϕ^S

$$V = V_r \hat{r} + V_\phi \hat{\phi} = \frac{1}{r} \frac{\partial \phi^S}{\partial \phi} \hat{r} - \frac{\partial \phi^S}{\partial r} \hat{\phi}$$

- Advantages:
 - Equation of continuity automatically satisfied
 - Everything gets reduced in terms of scalar function ϕ^S
- Doesn't work due to the conflict b/w
 - Periodicity constraint in $\hat{\phi}$ and
 - Boundary condition at outer periphery

- Streamfunction $\phi^{\mathcal{S}}$ obeys $\mathbf{v} = \nabla \phi^{\mathcal{S}} \times \hat{\mathbf{z}}$
- In terms of ϕ^S

$$V = V_r \hat{r} + V_\phi \hat{\phi} = \frac{1}{r} \frac{\partial \phi^S}{\partial \phi} \hat{r} - \frac{\partial \phi^S}{\partial r} \hat{\phi}$$

- Advantages:
 - Equation of continuity automatically satisfied
 - Everything gets reduced in terms of scalar function ϕ^S
- Doesn't work due to the conflict b/w
 - Periodicity constraint in $\hat{\phi}$ and
 - Boundary condition at outer periphery

Streamfunction formalism

Different approaches that didn't work; Septum dynamics

- Streamfunction ϕ^{S} obeys $\mathbf{v} = \nabla \phi^{S} \times \hat{\mathbf{z}}$
- In terms of ϕ^S

$$V = V_r \hat{r} + V_\phi \hat{\phi} = \frac{1}{r} \frac{\partial \phi^S}{\partial \phi} \hat{r} - \frac{\partial \phi^S}{\partial r} \hat{\phi}$$

- Advantages:
 - Equation of continuity automatically satisfied
 - Everything gets reduced in terms of scalar function ϕ^S
- Doesn't work due to the conflict b/w
 - Periodicity constraint in $\hat{\phi}$ and
 - Boundary condition at outer periphery

Lubrication approximation; Septum dynamics

- Proceed with Case 3 above i.e. assume $v_r = v_r(r), v_\phi = v_\phi(r)$
- Lubrication approximation says that the pressure is zero.
- Forget incompressibility in 2D; z direction vesicle addition allowed

Lubrication approximation; Septum dynamics

- Proceed with Case 3 above i.e. assume $v_r = v_r(r), v_\phi = v_\phi(r)$
- Lubrication approximation says that the pressure is zero.
- Forget incompressibility in 2D; z direction vesicle addition allowed

Lubrication approximation; Septum dynamics

- Proceed with Case 3 above i.e. assume $v_r = v_r(r), v_\phi = v_\phi(r)$
- Lubrication approximation says that the pressure is zero.
- Forget incompressibility in 2D; z direction vesicle addition allowed

Lubrication approximation; Septum dynamics

Under these conditions stress velocity relations reduce as

•
$$\sigma_{rr} = 2\eta \frac{\partial V_r}{\partial r}$$

•
$$\sigma_{\phi\phi} = 2\eta(\frac{V_r}{r})$$

•
$$\frac{\partial \sigma_{rr}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{r\phi}}{\partial \phi} + \frac{1}{r} (\sigma_{rr} - \sigma_{\phi\phi}) = 0$$

$$\bullet \frac{\partial \sigma_{r\phi}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{\phi\phi}}{\partial \phi} + \frac{2}{r} (\sigma_{r\phi}) = 0$$

Lubrication approximation; Septum dynamics

Under these conditions stress velocity relations reduce as

•
$$\sigma_{rr} = 2\eta \frac{\partial v_r}{\partial r}$$

$$\bullet \ \sigma_{r\phi} = \eta \left(\frac{\partial v_{\phi}}{\partial r} - \frac{v_{\phi}}{r} \right)$$

•
$$\sigma_{\phi\phi} = 2\eta(\frac{v_r}{r})$$

•
$$\frac{\partial \sigma_{rr}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{r\phi}}{\partial \phi} + \frac{1}{r} (\sigma_{rr} - \sigma_{\phi\phi}) = 0$$

$$\bullet \frac{\partial \sigma_{r\phi}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{\phi\phi}}{\partial \phi} + \frac{2}{r} (\sigma_{r\phi}) = 0$$

Lubrication approximation; Septum dynamics

Under these conditions stress velocity relations reduce as

•
$$\sigma_{rr} = 2\eta \frac{\partial V_r}{\partial r}$$

$$\bullet \ \sigma_{r\phi} = \eta \left(\frac{\partial v_{\phi}}{\partial r} - \frac{v_{\phi}}{r} \right)$$

•
$$\sigma_{\phi\phi} = 2\eta(\frac{v_r}{r})$$

$$\bullet \frac{\partial \sigma_{r\phi}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{\phi\phi}}{\partial \phi} + \frac{2}{r} (\sigma_{r\phi}) = 0$$

Lubrication approximation; Septum dynamics

Under these conditions stress velocity relations reduce as

•
$$\sigma_{rr} = 2\eta \frac{\partial v_r}{\partial r}$$

$$\bullet \ \sigma_{r\phi} = \eta (\frac{\partial v_{\phi}}{\partial r} - \frac{v_{\phi}}{r})$$

•
$$\sigma_{\phi\phi} = 2\eta(\frac{v_r}{r})$$

Dynamic force balance in \hat{r} and $\hat{\phi}$ gives

$$\bullet \frac{\partial \sigma_{rr}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{r\phi}}{\partial \phi} + \frac{1}{r} (\sigma_{rr} - \sigma_{\phi\phi}) = 0$$

$$\bullet \frac{\partial \sigma_{r\phi}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{\phi\phi}}{\partial \phi} + \frac{2}{r} (\sigma_{r\phi}) = 0$$

Lubrication approximation; Septum dynamics

Under these conditions stress velocity relations reduce as

•
$$\sigma_{rr} = 2\eta \frac{\partial v_r}{\partial r}$$

$$\bullet \ \sigma_{r\phi} = \eta \left(\frac{\partial v_{\phi}}{\partial r} - \frac{v_{\phi}}{r} \right)$$

•
$$\sigma_{\phi\phi} = 2\eta(\frac{v_r}{r})$$

Dynamic force balance in \hat{r} and $\hat{\phi}$ gives

•
$$\frac{\partial \sigma_{rr}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{r\phi}}{\partial \phi} + \frac{1}{r} (\sigma_{rr} - \sigma_{\phi\phi}) = 0$$

$$\bullet \frac{\partial \sigma_{r\phi}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{\phi\phi}}{\partial \phi} + \frac{2}{r} (\sigma_{r\phi}) = 0$$

Lubrication approximation; Septum dynamics

Substituting, we get

•
$$r^2 \frac{\partial^2 V_r}{\partial r^2} + r \frac{\partial V_r}{\partial r} - V_r$$

$$r^2 \frac{\partial^2 v_{\phi}}{\partial r^2} + r \frac{\partial v_{\phi}}{\partial r} - v_{\phi}$$

• Putting $v_r = r^m$ and $v_\phi = r^n$ we get $m, n = \pm 1$. Thus v_r and v_ϕ take the same form

•
$$V_r = Ar + \frac{B}{2}$$

$$\bullet$$
 $V_{\phi} = Ar + \frac{D}{r}$

Lubrication approximation; Septum dynamics

Substituting, we get

•
$$r^2 \frac{\partial^2 v_r}{\partial r^2} + r \frac{\partial v_r}{\partial r} - v_r$$

$$r^2 \frac{\partial^2 v_{\phi}}{\partial r^2} + r \frac{\partial v_{\phi}}{\partial r} - v_{\phi}$$

• Putting $v_r = r^m$ and $v_\phi = r^n$ we get $m, n = \pm 1$. Thus v_r and v_ϕ take the same form

•
$$V_r = Ar + \frac{B}{r}$$

•
$$V_{\phi} = Ar + \frac{L}{2}$$

Lubrication approximation; Septum dynamics

Substituting, we get

•
$$r^2 \frac{\partial^2 V_r}{\partial r^2} + r \frac{\partial V_r}{\partial r} - V_r$$

• $r^2 \frac{\partial^2 V_{\phi}}{\partial r^2} + r \frac{\partial V_{\phi}}{\partial r} - V_{\phi}$

•
$$r^2 \frac{\partial^2 v_{\phi}}{\partial r^2} + r \frac{\partial v_{\phi}}{\partial r} - v_{\phi}$$

• Putting $v_r = r^m$ and $v_\phi = r^n$ we get $m, n = \pm 1$. Thus v_r and

•
$$V_r = Ar + \frac{B}{r}$$

•
$$V_{\phi} = Ar + \frac{L}{r}$$

Lubrication approximation; Septum dynamics

Substituting, we get

•
$$r^2 \frac{\partial^2 V_r}{\partial r^2} + r \frac{\partial V_r}{\partial r} - V_r$$

• $r^2 \frac{\partial^2 V_{\phi}}{\partial r^2} + r \frac{\partial V_{\phi}}{\partial r} - V_{\phi}$

$$r^2 \frac{\partial^2 v_{\phi}}{\partial r^2} + r \frac{\partial v_{\phi}}{\partial r} - v_{\phi}$$

• Putting $v_r = r^m$ and $v_\phi = r^n$ we get $m, n = \pm 1$. Thus v_r and v_{ϕ} take the same form

•
$$V_r = Ar + \frac{B}{r}$$

•
$$V_{\phi} = Ar + \frac{D}{r}$$

Lubrication approximation; Septum dynamics

Substituting, we get

•
$$r^2 \frac{\partial^2 V_r}{\partial r^2} + r \frac{\partial V_r}{\partial r} - V_r$$

• $r^2 \frac{\partial^2 V_{\phi}}{\partial r^2} + r \frac{\partial V_{\phi}}{\partial r} - V_{\phi}$

$$r^2 \frac{\partial^2 v_{\phi}}{\partial r^2} + r \frac{\partial v_{\phi}}{\partial r} - V_{\phi}$$

• Putting $v_r = r^m$ and $v_\phi = r^n$ we get $m, n = \pm 1$. Thus v_r and v_{ϕ} take the same form

•
$$V_r = Ar + \frac{B}{r}$$

•
$$V_{\phi} = Ar + \frac{D}{r}$$

Lubrication approximation; Septum dynamics

Substituting, we get

•
$$r^2 \frac{\partial^2 v_r}{\partial r^2} + r \frac{\partial v_r}{\partial r} - V_r$$

• $r^2 \frac{\partial^2 v_{\phi}}{\partial r^2} + r \frac{\partial v_{\phi}}{\partial r} - V_{\phi}$

$$r^2 \frac{\partial^2 v_{\phi}}{\partial r^2} + r \frac{\partial v_{\phi}}{\partial r} - v_{\phi}$$

• Putting $v_r = r^m$ and $v_\phi = r^n$ we get $m, n = \pm 1$. Thus v_r and v_{ϕ} take the same form

•
$$V_r = Ar + \frac{B}{r}$$

•
$$\mathbf{v}_{\phi} = \mathbf{A}\mathbf{r} + \frac{\mathbf{D}}{\mathbf{r}}$$

Lubrication approximation; Septum dynamics

Applying the boundary conditions at outer periphery

•
$$V_r(R_1) = -V_0$$
,

•
$$V_{\phi}(R_1) = 0$$
,

•
$$V_r(r) = Ar - \frac{AR_1^2}{r} - \frac{v_0R_1}{r}$$

$$v_{\phi}(r) = Cr - \frac{CR_1^2}{r}$$

• Applying the boundary condition at inner periphery $\sigma_{rr}(R_2) = \frac{\Sigma}{R_2}$ in symmetric case, we get $A = \left[\frac{1}{R_2^2 + R_2^2}\right] \left[\frac{\Sigma R_2}{2\eta} - v_0 R_1\right]$

Lubrication approximation; Septum dynamics

Applying the boundary conditions at outer periphery

•
$$v_r(R_1) = -v_0$$
,

•
$$V_{\phi}(R_1) = 0$$
,

•
$$V_r(r) = Ar - \frac{AR_1^2}{r} - \frac{V_0R_1}{r}$$

• $V_{\phi}(r) = Cr - \frac{CR_1^2}{r}$

$$v_{\phi}(r) = Cr - \frac{CR_1^2}{r}$$

 Applying the boundary condition at inner periphery $A = \left[\frac{1}{R^2 + R^2}\right] \left[\frac{\Sigma R_2}{2\eta} - v_0 R_1\right]$

Lubrication approximation; Septum dynamics

- Applying the boundary conditions at outer periphery
 - $v_r(R_1) = -v_0$,
 - $v_{\phi}(R_1) = 0$,

•
$$V_r(r) = Ar - \frac{AR_1^2}{r} - \frac{V_0R_1}{r}$$

• $V_{\phi}(r) = Cr - \frac{CR_1^2}{r}$

• Applying the boundary condition at inner periphery $\sigma_{rr}(R_2) = \frac{\Sigma}{R_2}$ in symmetric case, we get $A = \left[\frac{1}{R_2^2 + R_2^2}\right] \left[\frac{\Sigma R_2}{2\eta} - v_0 R_1\right]$

Lubrication approximation; Septum dynamics

Applying the boundary conditions at outer periphery

•
$$v_r(R_1) = -v_0$$
,

•
$$v_{\phi}(R_1) = 0$$
,

we get

•
$$V_r(r) = Ar - \frac{AR_1^2}{r} - \frac{V_0R_1}{r}$$

$$v_{\phi}(r) = Cr - \frac{CR_1^2}{r}$$

• Applying the boundary condition at inner periphery $\sigma_{rr}(R_2) = \frac{\Sigma}{R_2}$ in symmetric case, we get $A = \left[\frac{1}{R_2^2 + R_2^2}\right] \left[\frac{\Sigma R_2}{2\eta} - v_0 R_1\right]$

Lubrication approximation; Septum dynamics

Applying the boundary conditions at outer periphery

•
$$v_r(R_1) = -v_0$$
,

•
$$v_{\phi}(R_1) = 0$$
,

we get

•
$$V_r(r) = Ar - \frac{AR_1^2}{r} - \frac{V_0R_1}{r}$$

•
$$V_{\phi}(r) = Cr - \frac{CR_1^2}{r}$$

• Applying the boundary condition at inner periphery $\sigma_{rr}(R_2) = \frac{\Sigma}{R_2}$ in symmetric case, we get $A = \left[\frac{1}{R_1^2 + R_2^2}\right] \left[\frac{\Sigma R_2}{2\eta} - v_0 R_1\right]$

Lubrication approximation; Septum dynamics

Applying the boundary conditions at outer periphery

•
$$v_r(R_1) = -v_0$$
,

•
$$v_{\phi}(R_1) = 0$$
,

we get

•
$$v_r(r) = Ar - \frac{AR_1^2}{r} - \frac{v_0R_1}{r}$$

• $v_{\phi}(r) = Cr - \frac{CR_1^2}{r}$

•
$$V_{\phi}(r) = Cr - \frac{CR^2}{r}$$

 Applying the boundary condition at inner periphery $\sigma_{rr}(R_2) = \frac{\Sigma}{R_2}$ in symmetric case, we get $A = \left[\frac{1}{R^2 + R^2}\right] \left[\frac{\Sigma R_2}{2\eta} - v_0 R_1\right]$

Lubrication approximation; Septum dynamics

Figure: Schematic representation of the flows under lubrication approximation model showing radial dependence of v_r and v_ϕ

Outline

- - Image analysis
 - Application of PIV to reveal septum dynamics
 - Theoretical Models
- Fast Relaxation of the septum post laser ablation
 - Theoretical Approach

Revisiting the system Septum Dynamics

2D viscous tensor components inside septum:

$$\sigma_{rr} = \sigma_0 + 2\eta \frac{\partial v_r}{\partial r}, \, \sigma_{\phi\phi} = \sigma_0 + 2\eta \frac{v_r}{r}$$

Force balance Equation:

$$\partial_r \sigma_{rr} + \frac{1}{r} (\sigma_{rr} - \sigma_{\phi\phi}) = 0$$

Finally we get,

$$\sigma_{rr} = \sigma_0 + \frac{\eta}{A} \frac{dA}{dt} \left(1 + \frac{r_0^2}{r^2}\right)$$

Revisiting the system Septum Dynamics

2D viscous tensor components inside septum:

$$\sigma_{rr} = \sigma_0 + 2\eta \frac{\partial v_r}{\partial r}, \, \sigma_{\phi\phi} = \sigma_0 + 2\eta \frac{v_r}{r}$$

Force balance Equation:

$$\partial_r \sigma_{rr} + \frac{1}{r} (\sigma_{rr} - \sigma_{\phi\phi}) = 0$$

Finally we get,

$$\sigma_{rr} = \sigma_0 + \frac{\eta}{A} \frac{dA}{dt} (1 + \frac{r_0^2}{r^2})$$

Revisiting the system Septum Dynamics

2D viscous tensor components inside septum:

$$\sigma_{rr} = \sigma_0 + 2\eta \frac{\partial v_r}{\partial r}, \, \sigma_{\phi\phi} = \sigma_0 + 2\eta \frac{v_r}{r}$$

Force balance Equation:

$$\partial_r \sigma_{rr} + \frac{1}{r} (\sigma_{rr} - \sigma_{\phi\phi}) = 0$$

Finally we get,

$$\sigma_{rr} = \sigma_0 + \frac{\eta}{A} \frac{dA}{dt} (1 + \frac{r_0^2}{r^2})$$

Laser ablation on cortex Ablation response

Ablation response

Ablation response

Ablation response

Ablation response

- Spring: Elastic component
- Dashpot: Viscous component
- Spinning Circle: Activity

Ablation response

- Spring: Elastic component
- Dashpot: Viscous component
- Spinning Circle: Activity

Ablation response

- Spring: Elastic component
- Dashpot: Viscous component
- Spinning Circle: Activity

Ablation response

 Cortex assumed as an active visco-elastic solid modelled by Kelvin Voigt Material

• Effect of Ablation:

- Spring: Elastic component
- Dashpot: Viscous component
- Spinning Circle: Activity

Ablation response

- Spring: Elastic component
- Dashpot: Viscous component
- Spinning Circle: Activity

Cortical dynamics post ablation Ablation response

- Dynamics of the rapid displacements $T kx \zeta \dot{x} C = 0$
- The initial condition $T(t) = T_0(1 U(t))$, where U(t) is the unit step function
- Solving this equation, $v=\dot{x}=-\frac{\tau_0}{\eta}e^{-\frac{t}{\tau}}; t>0$ where $\tau\equiv\frac{\zeta}{k}$

Cortical dynamics post ablation Ablation response

- Dynamics of the rapid displacements $T kx \zeta \dot{x} C = 0$
- The initial condition $T(t) = T_0(1 U(t))$, where U(t) is the unit step function
- Solving this equation, $v = \dot{x} = -\frac{T_0}{\eta}e^{-\frac{t}{\tau}}; t > 0$ where $\tau \equiv \frac{\zeta}{k}$

Cortical dynamics post ablation Ablation response

- Dynamics of the rapid displacements $T kx \zeta \dot{x} C = 0$
- The initial condition $T(t) = T_0(1 U(t))$, where U(t) is the unit step function
- Solving this equation, $v=\dot{x}=-rac{T_0}{\eta}e^{-rac{t}{ au}}; t>0$ where $au\equivrac{\zeta}{k}$

- Radial septum stress $\sigma_r = \sigma_0 + \frac{\eta}{A} \frac{dA}{dt} (1 + \frac{A_0}{A_0 A})$
- Two components of transverse septum stress at ring boundary:
 - Active component: $\sigma_t^a = \Sigma_0 + \zeta \frac{u(r)}{r}$
 - Passive component: $\sigma_t^p = k \frac{u(r)}{r}$
- In 2D, $\sigma_r = \frac{\sigma_t}{r}$ and thus we obtain

$$\sigma_0 + \frac{\eta}{A} \frac{dA}{dt} \left(1 + \frac{A_0}{A_0 - A} \right) = \frac{1}{r} \left(\Sigma_0 + \zeta \frac{u(r)}{r} + k \frac{u(r)}{r} \right)$$

Stress balance equation

Theoretical approach

- Radial septum stress $\sigma_r = \sigma_0 + \frac{\eta}{A} \frac{dA}{dt} (1 + \frac{A_0}{A_0 A})$
- Two components of transverse septum stress at ring boundary:
 - Active component: $\sigma_t^a = \Sigma_0 + \zeta \frac{u(r)}{r}$
 - Passive component: $\sigma_t^p = k \frac{u(r)}{r}$
- In 2D, $\sigma_r = \frac{\sigma_t}{r}$ and thus we obtain

$$\sigma_0 + \tfrac{\eta}{A} \tfrac{dA}{dt} (1 + \tfrac{A_0}{A_0 - A}) = \tfrac{1}{r} (\Sigma_0 + \zeta \tfrac{u(r)}{r} + k \tfrac{u(r)}{r})$$

- Radial septum stress $\sigma_r = \sigma_0 + \frac{\eta}{A} \frac{dA}{dt} (1 + \frac{A_0}{A_0 A})$
- Two components of transverse septum stress at ring boundary:
 - Active component: $\sigma_t^a = \Sigma_0 + \zeta \frac{u(r)}{r}$
 - Passive component: $\sigma_t^p = k \frac{u(r)}{r}$
- In 2D, $\sigma_r = \frac{\sigma_t}{r}$ and thus we obtain $\sigma_0 + \frac{\eta}{A} \frac{dA}{dt} \left(1 + \frac{A_0}{A_0 A}\right) = \frac{1}{r} \left(\Sigma_0 + \zeta \frac{u(r)}{r} + k \frac{u(r)}{r}\right)$

• Radial septum stress $\sigma_r = \sigma_0 + \frac{\eta}{4} \frac{dA}{dt} (1 + \frac{A_0}{A_0 - A})$

- Two components of transverse septum stress at ring boundary:
 - Active component: $\sigma_t^a = \Sigma_0 + \zeta \frac{u(r)}{r}$
 - Passive component: $\sigma_t^p = k \frac{u(r)}{r}$
- In 2D, $\sigma_r = \frac{\sigma_t}{r}$ and thus we obtain $\sigma_0 + \frac{\eta}{A} \frac{dA}{dt} (1 + \frac{A_0}{A_0 A}) = \frac{1}{r} (\Sigma_0 + \zeta \frac{u(r)}{r} + k \frac{u(r)}{r})$

• Radial septum stress $\sigma_r = \sigma_0 + \frac{\eta}{A} \frac{dA}{dt} (1 + \frac{A_0}{A_0 - A})$

- Two components of transverse septum stress at ring boundary:
 - Active component: $\sigma_t^a = \Sigma_0 + \zeta \frac{u(r)}{r}$
 - Passive component: $\sigma_t^p = k \frac{u(r)}{r}$
- In 2D, $\sigma_r = \frac{\sigma_t}{r}$ and thus we obtain

$$\sigma_0 + \frac{\eta}{A} \frac{dA}{dt} (1 + \frac{A_0}{A_0 - A}) = \frac{1}{r} (\Sigma_0 + \zeta \frac{u(r)}{r} + k \frac{u(r)}{r})$$

A specific solution Theoretical approach

Neglecting the elastic component of the ring,

$$\frac{dA}{dt} = -\frac{\sigma_0 A}{\eta} \frac{A_0 - A}{2A_0 - A}$$

Solving this we get,

$$A(t) = \frac{1}{2} (e^{-\frac{\sigma_0 t}{\eta}}) [e^c \pm e^{\frac{c}{2}} \sqrt{e^c - 4A_0} e^{\frac{\sigma_0 t}{\eta}}]$$

A specific solution

Theoretical approach

Neglecting the elastic component of the ring,

$$\frac{dA}{dt} = -\frac{\sigma_0 A}{\eta} \frac{A_0 - A}{2A_0 - A}$$

Solving this we get,

$$A(t) = \frac{1}{2} (e^{-\frac{\sigma_0 t}{\eta}}) [e^c \pm e^{\frac{c}{2}} \sqrt{e^c - 4A_0 e^{\frac{\sigma_0 t}{\eta}}}]$$

Outline

- - Image analysis
 - Application of PIV to reveal septum dynamics
 - Theoretical Models
- Fast Relaxation of the septum post laser ablation
 - Theoretical Approach
 - Image analysis

Images extracted using method 2 Image extraction; Image analysis

Figure: Movie showing fast relaxation of septum post laser ablation

Images extracted using method 2 Image extraction; Image analysis

Figure: Movie showing fast relaxation of septum post laser ablation

Images extracted using method 2 Image extraction; Image analysis

Figure: Movie showing fast relaxation of septum post laser ablation

PIV on extracted images; Inconclusive PIV application; Image analysis

Phase Field formalism Septum Dynamics

The dynamic equation for the phase field is

$$\frac{\partial \phi}{\partial t} = -u \cdot \nabla \phi + \Gamma \left(\epsilon \nabla^2 \phi - \frac{G'}{\epsilon} \right)$$

•
$$G(\phi) = \phi^2 (1 - \phi)^2$$

• The second module describes the actin network as

$$\nu_0 \nabla \cdot [\phi(\nabla \mathbf{u} + \nabla \mathbf{u}^T)] + \nabla \cdot \sigma_{mvo} = 0$$

ullet ϕ takes care of the boundary conditions.

Phase Field formalism Septum Dynamics

The dynamic equation for the phase field is

$$\frac{\partial \phi}{\partial t} = -u \cdot \nabla \phi + \Gamma \left(\epsilon \nabla^2 \phi - \frac{G'}{\epsilon} \right)$$

•
$$G(\phi) = \phi^2 (1 - \phi)^2$$

The second module describes the actin network as

$$\nu_0 \nabla \cdot [\phi(\nabla \mathbf{u} + \nabla \mathbf{u}^T)] + \nabla \cdot \sigma_{mvo} = 0$$

 \bullet ϕ takes care of the boundary conditions.

Phase Field formalism Septum Dynamics

The dynamic equation for the phase field is

$$\frac{\partial \phi}{\partial t} = -u \cdot \nabla \phi + \Gamma \left(\epsilon \nabla^2 \phi - \frac{G'}{\epsilon} \right)$$

•
$$G(\phi) = \phi^2 (1 - \phi)^2$$

The second module describes the actin network as

$$\nu_0 \nabla \cdot [\phi(\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^T)] + \nabla \cdot \sigma_{mvo} = 0$$

ullet ϕ takes care of the boundary conditions.

Phase Field formalism Septum Dynamics

The dynamic equation for the phase field is

$$\frac{\partial \phi}{\partial t} = -u \cdot \nabla \phi + \Gamma \left(\epsilon \nabla^2 \phi - \frac{G'}{\epsilon} \right)$$

•
$$G(\phi) = \phi^2 (1 - \phi)^2$$

The second module describes the actin network as

$$\nu_0 \nabla \cdot [\phi(\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^T)] + \nabla \cdot \sigma_{mvo} = 0$$

ullet ϕ takes care of the boundary conditions.

- Velocity maps obtained from PIV gave way towards theoretical model under lubrication approximation
- Better video quality; Improved velocity maps; Can help resolving the rotation of the ring.
- Area of the septum decreases with time under fast relaxation.
- Simulation results can provide further insight in the underlying dynamics.

- Velocity maps obtained from PIV gave way towards theoretical model under lubrication approximation
- Better video quality; Improved velocity maps; Can help resolving the rotation of the ring.
- Area of the septum decreases with time under fast relaxation.
- Simulation results can provide further insight in the underlying dynamics.

- Velocity maps obtained from PIV gave way towards theoretical model under lubrication approximation
- Better video quality; Improved velocity maps; Can help resolving the rotation of the ring.
- Area of the septum decreases with time under fast relaxation.
- Simulation results can provide further insight in the underlying dynamics.

- Velocity maps obtained from PIV gave way towards theoretical model under lubrication approximation
- Better video quality; Improved velocity maps; Can help resolving the rotation of the ring.
- Area of the septum decreases with time under fast relaxation.
- Simulation results can provide further insight in the underlying dynamics.

Acknowledgements

- Prof. Anirban Sain, Physics Department, Indian Institute of Technology, Bombay
- Prof. Mandar Inamdar, Civil Engineering Department, Indian Institute of Technology, Bombay

Acknowledgements

- Prof. Anirban Sain, Physics Department, Indian Institute of Technology, Bombay
- Prof. Mandar Inamdar, Civil Engineering Department, Indian Institute of Technology, Bombay

- Anirban Sain and Frank Jülicher, "Dynamic force balances and cell shape changes during cytokinesis" (unpublished)
- L.D. Landau and E.M. Lifschitz, "Fluid Mechanics", Volume
- Danying Shao et al. "Coupling actin flow, adhesion, and
- Mirjam Mayer et al. "Anisotropies in cortical tension reveal

- Anirban Sain and Frank Jülicher, "Dynamic force balances and cell shape changes during cytokinesis" (unpublished)
- L.D. Landau and E.M. Lifschitz, "Fluid Mechanics", Volume 6 of Course of Theoretical Physics
- Danying Shao et al. "Coupling actin flow, adhesion, and morphology in a computational cell motility model", PNAS, 2007, vol 104, no. 51467, 20167–20172
- Mirjam Mayer et al. "Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows", Nature, 2010, 467, 617-621

- Anirban Sain and Frank Jülicher, "Dynamic force balances and cell shape changes during cytokinesis" (unpublished)
- L.D. Landau and E.M. Lifschitz. "Fluid Mechanics". Volume 6 of Course of Theoretical Physics
- Danying Shao et al. "Coupling actin flow, adhesion, and morphology in a computational cell motility model", PNAS, 2007, vol 104, no. 51467, 20167–20172
- Mirjam Mayer et al. "Anisotropies in cortical tension reveal

- Anirban Sain and Frank Jülicher, "Dynamic force balances and cell shape changes during cytokinesis" (unpublished)
- L.D. Landau and E.M. Lifschitz, "Fluid Mechanics", Volume 6 of Course of Theoretical Physics
- Danying Shao et al. "Coupling actin flow, adhesion, and morphology in a computational cell motility model", PNAS, 2007, vol 104, no. 51467, 20167–20172
- Mirjam Mayer et al. "Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows", Nature, 2010, 467, 617-621

- Amy Shaub Maddox, Lindsay Lewellyn, Arshad Desai, and Karen Oegema, "Anillin and the Septins Promote Asymmetric Ingression of the Cytokinetic Furrow", Developmental Cell 12, May 2007, 827-835
- Softwares:

- Amy Shaub Maddox, Lindsay Lewellyn, Arshad Desai, and Karen Oegema, "Anillin and the Septins Promote Asymmetric Ingression of the Cytokinetic Furrow", Developmental Cell 12, May 2007, 827-835
- Softwares:
 - Matlab 8.1.0.604 2013a
 - GUI of OpenPIV (Matlab)
 - Wolfram Mathematica 9 0 1 0

- Amy Shaub Maddox, Lindsay Lewellyn, Arshad Desai, and Karen Oegema, "Anillin and the Septins Promote Asymmetric Ingression of the Cytokinetic Furrow", Developmental Cell 12, May 2007, 827-835
- Softwares:
 - Matlab 8.1.0.604 2013a
 - GUI of OpenPIV (Matlab)
 - Wolfram Mathematica 9 0 1 0

- Amy Shaub Maddox, Lindsay Lewellyn, Arshad Desai, and Karen Oegema, "Anillin and the Septins Promote Asymmetric Ingression of the Cytokinetic Furrow", Developmental Cell 12, May 2007, 827–835
- Softwares:
 - Matlab 8.1.0.604 2013a
 - GUI of OpenPIV (Matlab)
 - Wolfram Mathematica 9.0.1.0

- Amy Shaub Maddox, Lindsay Lewellyn, Arshad Desai, and Karen Oegema, "Anillin and the Septins Promote Asymmetric Ingression of the Cytokinetic Furrow", Developmental Cell 12, May 2007, 827-835
- Softwares:
 - Matlab 8.1.0.604 2013a
 - GUI of OpenPIV (Matlab)
 - Wolfram Mathematica 9 0 1 0

