ΔΙΠΑΕ Τμήμα Μηχανικών Πληροφορικής Και Ηλεκτρονικών Συστημάτων

ПРОНГМЕНА

ΘΕΜΑΤΑ ΔΙΚΤΥΩΝ

Βίτσας Βασίλειος

Επικοινωνία είναι:

η αποστολή μηνύματος από ένα σημείο σε ένα άλλο

η επιβεβαίωση της

- πλήρους
- ορθής
- κατανοητής λήψης από τον <u>εξουσιοδοτημένο</u> παραλήπτη

Τηλεπικοινωνία είναι:

Τηλεπικοινωνία είναι

- η επικοινωνία σε μακρινή απόσταση (από το αρχαίο Ελληνικό *Τηλε*)
- Οι επικοινωνίες σε μεγάλες αποστάσεις μας υποχρεώνουν – λόγω ανεπάρκειας του μέσου μετάδοσης – να αλλάξουμε την μορφή της πληροφορίας προκειμένου να την μεταδώσουμε

Διάκριση μεταξύ Επικοινωνίας και Τηλεπικοινωνίας

Επικοινωνία:

όταν η πληροφορία δεν αλλάζει μορφή προκειμένου να μεταφερθεί σε μικρές αποστάσεις

Τηλεπικοινωνία:

όταν η πληροφορία αλλάζει μορφή προκειμένου να μεταφερθεί σε μεγάλες αποστάσεις

Εξέλιξη Τηλεπικοινωνιών

- σήματα καπνού
- ήχοι τυμπάνων
- ήχοι καμπάνας
- άναμμα φωτιάς (φρυκτωρίες)

ΠΡΟΒΛΗΜΑΤΑ

- αβέβαιη επιτυχία μετάδοσης
- μικρή ταχύτητα μεταφοράς
- πολύ μικρός όγκος πληροφορίας
- ελάχιστη ασφάλεια

Εξέλιξη Τηλεπικοινωνιών

εμφάνιση ηλεκτρισμού

Πρώτες εφαρμογές

- τηλέγραφος
- τηλέφωνο

Σημερινές εφαρμογές τηλεπικοινωνιών

- τηλεφωνία
- internet
- ραδιοφωνία
- τηλεόραση

Εξέλιξη Τηλεπικοινωνιών

- Ψηφιακή μετάδοση
- Ψηφιακή μεταγωγή και επεξεργασία
- Βελτίωση μέσων μετάδοσης (οπτικές ίνες, δορυφορικές συνδέσεις)
- Βελτίωση τεχνικών μετάδοσης (πολύπλεξη, συμπίεση, κωδικοποίηση, διαμόρφωση)

Σύγκλιση

Σύγκλιση των όρων τηλεπικοινωνία και πληροφορική στην

τηλε-πληροφορική

- Σύγκλιση φωνής-δεδομένων σε κοινά δίκτυα και υποδομές
- Σύγκλιση σταθερής-κινητής τηλεφωνίας
- Σύγκλιση τηλεόρασης-τηλεπικοινωνιών
- Σύγκλιση περιεχομένου (φωνή-δεδομένα-εικόνα)

Επικοινωνίες δεδομένων

- Επικοινωνία δεδομένων είναι η ανταλλαγή πληροφοριών υπό μορφή data μεταξύ υπολογιστικών και τερματικών σταθμών.
- Πληροφορία είναι κάθε οργανωμένο σήμα.
- Δεδομένα (data) είναι ο συμβολισμός που αναπαριστά την κωδικοποιημένη μορφή της πληροφορίας με την μορφή γραμμάτων ή συμβόλων.

Επικοινωνία δεδομένων

- Μετάδοση δεδομένων είναι η μετακίνηση της πληροφορίας μέσα από φυσικά κανάλια μετάδοσης.
 - Φυσικά κυκλώματα μετάδοσης
 - Εξοπλισμός
 - Λογισμικό
 - Διαδικασίες αναγνώρισης και διόρθωσης σφαλμάτων
 - Έλεγχο ροής
 - Κανόνες

Επικοινωνία δεδομένων

Σχήμα 1.4 Μοντέλο επικοινωνιών

Κεφάλαιο 2° - Στοιχεία μετάδοσης

- κώδικες επικοινωνίας
- σειριακή / παράλληλη μετάδοση
- ασύγχρονη / σύγχρονη επικοινωνία
- half duplex / full duplex επικοινωνία
- ανίχνευση / διόρθωση σφαλμάτων
- τεχνικές συμπίεσης δεδομένων

Στοιχεία μετάδοσης

- Πληροφορία αναπαρίσταται από γράμματα του αλφαβήτου, αριθμούς, σημεία στίξης και άλλους χαρακτήρες-σύμβολα
- Οι Ηλεκτρονικοί Υπολογιστές χειρίζονται τα δυαδικά ψηφία 0 και 1, δηλαδή τα bit
- Για να υπάρξει συνεννόηση μεταξύ ανθρώπωνυπολογιστών πρέπει να μετατραπούν οι χαρακτήρες σε σειρές από bit.
- Για την μετατροπή αυτή χρησιμοποιούνται πίνακες αντιστοιχίας ή πίνακες κωδικοποίησης

Κώδικες

- Οι κώδικες είναι πίνακες αμφιμονοσήμαντης αντιστοιχίας χαρακτήρων σε σειρές από bit.
- Γνωστοί κώδικες:
 - ASCII
 - UNICODE
 - EAOT
 - EBCDIC
- κύριο χαρακτηριστικό κάθε κώδικα είναι ο αριθμός των bit που χρησιμοποιεί για την αναπαράσταση των συμβόλων

Κώδικες – Βασικές αρχές

 Κάθε κώδικας πρέπει να είναι κατά το δυνατόν αποδοτικός.

Αν το πλήθος των χαρακτήρων είναι Ν και ο αριθμός των bit για κάθε χαρακτήρα είναι μ, το 2^μ (πλήθος των δυνατών συνδυασμών των μ bit) πρέπει να μην είναι πολύ μεγαλύτερο του Ν.

Ισχύει ο τύπος A=(1/μ)log₂N

Α: απόδοση κώδικα

μ: αριθμός των bit ανά χαρακτήρα

Ν: διαφορετικά σύμβολα που χρειάζονται στην κωδικοποίηση

Κώδικες – Βασικές αρχές

- > Η κωδικοποίηση πρέπει να διευκολύνει
 - τα προγράμματα ταξινόμησης
 - τον διαχωρισμό μεταξύ
 - αλφαριθμητικών χαρακτήρων
 - συμβόλων
 - και χαρακτήρων ελέγχου
- Επίσης πρέπει να περιέχει χαρακτήρες ελέγχου για την ομαλή ροή των δεδομένων και την αναγνώριση και διόρθωση τυχόν σφαλμάτων

Κώδικες

- Οι κώδικες συνήθως περιλαμβάνουν τα παρακάτω σύμβολα:
 - 10 αριθμητικά ψηφία 0 έως και 9
 - 26 λατινικά κεφαλαία γράμματα
 - 26 λατινικά μικρά γράμματα
 - Σύμβολα και σημεία στίξης .΄,;?:+-/()\&@ κλπ
 - Χαρακτήρες ελέγχου STX, EOT, SYN, ACK κλπ
 - Ελληνικά γράμματα !!

Κώδικας Morse

- Ο πρώτος κώδικας που χρησιμοποιήθηκε
- αποτελείται από τελείες και παύλες αντί για 0 και 1

A •—	N -·	1 •
в —•••	o	2
c -·-·	P •——•	3
D	Q	4
E •	R •—•	5 •••••
F ••—•	s •••	6 — • • • •
G•	т —	7 ——…
н ••••	U ••—	8 ———••
1 ••	v ···-	9 ———•
J •	w •——	0
к	x -··-	. •-•
L •-••	Y -·	,
м — —	z ——••	?

Κώδικας Morse

- Είναι μεταβλητού μεγέθους, δηλαδή κάθε σύμβολο δεν αντιστοιχεί στον ίδιο αριθμό bits
- Οφείλεται στην ύπαρξη 'παύσης' κατά την μετάδοση μεταξύ διαδοχικών συμβόλων στην τηλεγραφία
- Πρώτη προσπάθεια αύξησης του ρυθμού μετάδοσης με
 - την αντιστοίχηση συμβόλων με μεγάλη πιθανότητα χρήσης σε λίγα bits και
 - την αντιστοίχηση συμβόλων με μικρή πιθανότητα χρήσης σε πολλά bits

Κώδικας Baudot (Μπωντό)

- Χρησιμοποιήθηκε στα Telex (50 baud)
- Είναι κώδικας των 5 bit δηλ. 2⁵=32 σύμβολα.
 Παρόλα αυτά ο κώδικας έχει 64 σύμβολα τα οποία χωρίζονται σε 2 ομάδες των 32bit.

Η πρώτη ομάδα περιλαμβάνει γράμματα (Letters) και η δεύτερη ομάδα σύμβολα (Figures). Η μετάδοση αρχίζει είτε με το Figure Shift (11011) είτε με το Letter Shift (11111) και ότι bit ακολουθούν αναγνωρίζονται αντίστοιχα για την κάθε ομάδα.

Κώδικας Baudot (Μπωντό)

 Στόχος αυτής της τεχνικής είναι να αυξήσει τον ρυθμό μετάδοσης χρησιμοποιώντας χαρακτήρες των 5 αντί των 6 bit.

ΠΙΝΑΚΑΣ 2.2 ΚΩΔΙΚΑΣ ΒΑUDOT

BINARY	LETTERS	FIGURES
00000	Blank	Blank
00001	E	3
00010	Line Feed	Line Feed
00011	A	· · · · · · · · · · · · · · · · · · ·
00100	Space	Space
00101	s	•
00110		8
00111	U	7
01000	Carriage Return	Carriage Returi
	D	
	R	
• • • • • • • • • • • • • • • • • • • •	J J	
01100	N	· · · · · · · · · · · · · · · · · · ·
• • • • • • • • • • • • • • • • • • • •	F	
01111	K	(
10000	T	5
10001	z	· · · · · · · · · · · · · · · · · · ·
10010	L)
10011	w	2
10100	H	&
10101	Y	6
10110	P	0
10111	Q	1
11000		9
11001	B	······ ?
11010	G	%
11011	Figure Shift	Figure Shift
	м	•
	x	•
11110	v	=
11111	Letter Shift	Letter Shift

Κώδικας Baudot (Μπωντό)

- Βασίζεται στο γεγονός ότι στη μετάδοση της φυσικής γλώσσας του ανθρώπου, η εναλλαγή μεταξύ γραμμάτων και αριθμών είναι πολύ πιο σπάνια από ότι φανταζόμαστε.
- Στην πράξη αποδείχθηκε ότι με την χρήση του κώδικα Baudot δεν ξεπερνάμε τα 5.1 bit/χαρακτήρα

Κώδικας EBCDIC

- Είναι κώδικας των 8bit δηλ. 256 διαφορετικοί συνδυασμοί.
- Μπορεί να συμπεριλάβει γραφικά σύμβολα και χαρακτήρες ελέγχου.

ΠΙΝΑΚΑΣ 2.3 ΚΩΔΙΚΑΣ EBCDIC																	
Bits b3 l	o2 b1 b0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
b7 b6 b5 b4	HEX	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0 0 0 0	0	NUL	soн	STX	ETX	SEL	нт	LC	DEL		RLF	SMM	VT	FF	CR	so	SI
0 0 0 1	1	DLE	DC1	DC2	DC3	RES	NL	BS	IL	CAN	EM	СС		ITS	IGS	IRS	IUS
0 0 1 0	2	DS	sos	FS	wys	ВҮР	LF	ЕОВ	ESC			3M			ENQ	ACK	BEL
0 0 1 1	3			SYN	IR	PN	RS	uc	EOT					DC4	NAK		SUB
0 1 0 0	<u>4</u>	SP	Α	В	Г	Δ	E	z	н	Θ	ı	[•	<	(+	!
0 1 0 1	5	&	к	٨	М	N	Ξ	0	П	Р	Σ]	\$	* 2)	;	^
0 1 1 0	6	-	1	Т	Υ	Ф	х	Ψ	Ω			@	,	%	-	>	?
0 1 1 1	7		Α.	.E	'Η		'1	.O	'Y	'Ω		:	#	a	•	=	
1 0 0 0	8		а	b	С	d	е	f	g	h	i	α	β	γ	δ	3	ζ
1 0 0 1	9		j	k	1	m	n	0	p	q	r	η	θ	1	K	λ	μ
1 0 1 0	Α		,	s	t	u	v	w	x	у	z	v	ξ	0	π	ρ	σ
1 0 1 1	В	Ġ										ς	т	υ	φ	Х	Ψ
1 1 0 0	С	,	Α	В	С	D	E	F	G	н	- 1		ω			~	
1 1 0 1	D	•	J	к	L	М	N	0	Р	Q	R	+ <u>+</u>	1		3		
1 1 1 0	€ E		NSP	s	Т	υ	٧	w	х	Y	z	1/2					
1 1 1 1	F	0	1 .	2	3	4	5	6	7	8	9						

23

Κώδικας ASCII

- Χρησιμοποιεί 7 bit για την πληροφορία και συχνά 1 bit ισοτιμίας (parity).
- Περιλαμβάνει 128
 χαρακτήρες εκ των
 οποίων οι 95 είναι
 σύμβολα γραφής
 και οι 33
 χαρακτήρες
 ελέγχου.

Ο ΠΙΝΑΚΑΣ ASCII

	Bi	ts	k	o7 b6 b5	000	001	010	011	100	101	110	111
b4	b3	b2	b1	HEX	0	1	2	3	4	5	6	7
0	0	0	0	0	NUL	DLE	SP	0	@	Р	,	р
0	0	0	1	1	SOH	DC1	!	1	Α	Q	а	q
0	0	1	0	2	STX	DC2	"	2	В	R	b	r
0	0	1	1	3	ETX	DC3	#	3	С	s	С	s
0	1	0	0	4	EOT	DC4	\$	4	D	Т	d ,	t
0	1	0	1	5 .	ENQ	NAK	%	5	E	U	е	u
0	1	1	0	6	ACK	SYN	&	6	F	٧	f	٧
0	1	1	1	7	BEL	ETB	,	7	G	w	g	w
1	0	0	0	8	BS	CAN	(8	Н	Х	h	х
1	0	0	1	9	нт	EM)	9	- 1	Υ	i	у
1	0	1	0	Α	LF	SUB	*	:	J	Z	j	z
1	0	1	1	В	VT	ESC	+	;	К	[k	{
1	1	0	0	С	FF	FS	,	<	L	١	1	- 1
1	1	0	1	D	CR	GS	-	=	М]	m	}
1	1	1	0	Ε	so	RS		>	N	^	n	~
1	1	1	1	F	SI	US	/	?	0	-	0	DEL

Κώδικας ASCII

Οι 33 χαρακτήρες ελέγχου του κώδικα μπορούν διαιρεθούν σε:

- Χαρακτήρες μετακίνησης του cursor (δρομέα) όπως είναι ο BS Backspace, HT Horizontal Tabulation κτλ.
- Χαρακτήρες ελέγχου επικοινωνίας οι οποίοι χρησιμοποιούνται για την διαμόρφωση ενός μηνύματος και για έλεγχο ροής των data.
- •Χαρακτήρες ελέγχου συσκευών όπως είναι ο DC1, DC2 για να κάνουν switch on off σε περιφερειακές συσκευές.

Κώδικας ASCII

- Χαρακτήρες Διαχωρισμού χρησιμοποιούνται για τον διαχωρισμό file, group, record, unit.
- Διάφοροι χαρακτήρες όπως:
 - **NUL** γεμίζει κενά σε ένα μήνυμα
 - SUB κάνει αντικατάσταση ενός χαρακτήρα
 - ESC επεκτείνει τον κώδικα με σύμβολα
 - Del ακυρώνει τον προηγούμενο χαρακτήρα

Κώδικας UNICODE

- Έχει μήκος χαρακτήρα 16 bit, επιτυγχάνοντας
 2¹⁶ = 64Κ συνδυασμούς.
- Καλύπτει όλες τις υπάρχουσες γλώσσες, χαρακτήρες, σύμβολα και ιδεογράμματα σε όλο τον κόσμο.
- Επιλύει το θέμα της πολυγλωσσίας των κωδικών.

- Τα bit των κωδικοποιημένων χαρακτήρων αποστέλλονται το ένα κατόπιν του άλλου μέσα από ένα φυσικό κανάλι μετάδοσης.
- Τις περισσότερες φορές εκπέμπεται πρώτο το λιγότερο σημαντικό bit (LSB) του χαρακτήρα.
- Χρησιμοποιείται κυρίως στις συνδέσεις μεγάλων αποστάσεων μέσω modem.

Σειριακή μετάδοση

Σχήμα 2.1 Σειριακή μετάδοση

Παράλληλη μετάδοση

- Όλα τα bit του χαρακτήρα αποστέλλονται ταυτόχρονα. Αυτό επιτυγχάνεται με την χρήση πολλαπλών καναλιών μετάδοσης, τουλάχιστον τόσων όσο είναι και το πλήθος των bit του χαρακτήρα.
- Είναι ταχύτερη από την σειριακή μετάδοση και χρησιμοποιείται σε μεταδόσεις πολύ μικρών αποστάσεων.

Παράλληλη μετάδοση

Σχήμα 2.2 Παράλληλη μετάδοση

Συγχρονισμός

- Απαραίτητη προϋπόθεση για τη μετάδοση των δεδομένων είναι ο συγχρονισμός μεταξύ πομπού και δέκτη.
- Στόχος είναι ο ρυθμός δειγματοληψίας του δέκτη να ταυτίζεται με τον ρυθμό μετάδοσης των bit .
- Κυκλώματα χρονισμού καθορίζουν τον ρυθμό μετάδοσης.
- Ο δέκτης πρέπει να 'κοιτάζει' στην μέση της διάρκειας του bit για να προσδιορίζει την τιμή του αποστελλόμενου bit (0 ή 1)

Ασύγχρονη μετάδοση

 Η αποστολή των δεδομένων γίνεται υπό μορφή χαρακτήρων οι οποίοι μεταδίδονται ένας-ένας, με κάποιο κενό χρονικό διάστημα μεταξύ τους για να διακριθούν από το δέκτη.

Σχήμα 2.4 Ασύγχρονη μετάδοση

Ασύγχρονη μετάδοση

- Αρχικά η γραμμή βρίσκεται σε κατάσταση 1(idle)
- Έπειτα στέλνεται το start bit με τιμή 0 πριν από κάθε χαρακτήρα
- Ακολουθούν τα data bit του χαρακτήρα
- Τα data bit στέλνονται με πρώτο το λιγότερο σημαντικό ψηφίο του byte (LSB) και τελευταίο το bit ισοτιμίας αν υπάρχει
- Η γραμμή επανέρχεται σε κατάσταση 1 idle για 1 bit, το οποίο καλείται stop bit.

Σύγχρονη μετάδοση

- Οι χαρακτήρες για την μετάδοση τους ομαδοποιούνται σε block
- Υπάρχει ένα σήμα χρονισμού που συνοδεύει τα data, το ρολόι (clock). Αυτό είναι μια τετραγωνική κυματομορφή με συχνότητα ίση με το ρυθμό μετάδοσης.
- Οι ανερχόμενες παρυφές των παλμών του ρολογιού συμπίπτουν χρονικά με το μέσο του κάθε αποστελλόμενου bit

Σχήμα 2.5 Σύγχρονη μετάδοση

Σύγχρονη μετάδοση

- Υπάρχει ένα σήμα χρονισμού για τα δεδομένα εκπομπής και ένα άλλο για τα δεδομένα λήψης
- Το σήμα χρονισμού κατά την λήψη μπορεί να εξάγεται από τα ίδια τα λαμβανόμενα δεδομένα
- Δεν υπάρχει κενός χρόνος μεταξύ του τελευταίου bit ενός χαρακτήρα και του πρώτου bit του επόμενου
- Για την αναγνώριση της αρχής και του τέλους ενός **block χαρακτήρων** χρησιμοποιούνται στην αρχή, 1 ή 2 χαρακτήρες συγχρονισμού SYN και στο τέλος ένας χαρακτήρας γνωστός ως pad.
- Στα block δεδομένων από bit χρησιμοποιείται ένας ειδικός χαρακτήρας στην αρχή και ένας στο τέλος κάθε μπλοκ που καλείται flag.

Σύγκριση σύγχρονης - ασύγχρονης

Ασύγχρονη μετάδοση:

 Το μειονέκτημα της είναι ότι δεν εκμεταλλεύεται με τον καλύτερο δυνατό τρόπο το κανάλι.

• Το πλεονέκτημα της είναι ότι υλοποιείται εύκολα με χαμηλού κόστους συσκευές.

Σύγκριση σύγχρονης - ασύγχρονης

Σύγχρονη μετάδοση:

 Η απόδοση της είναι σαφώς υψηλότερη από την ασύγχρονη.

 Διαθέτει αποδοτικότερους μηχανισμούς ελέγχου σφαλμάτων.

Επικοινωνία Half/Full Duplex

- Τα φυσικά μέσα μετάδοσης μεταφέρουν την πληροφορία προς τη μια ή την άλλη κατεύθυνση ή και προς τις δύο μαζί.
- <u>Simplex(μονής κατεύθυνσης):</u> οι πληροφορίες κινούνται προς μια κατεύθυνση μονίμως.

Επικοινωνία Half/Full Duplex

Half Duplex(Αμφίδρομη, μη ταυτόχρονη):
Η επικοινωνία διεξάγεται είτε προς την μια είτε προς την άλλη κατεύθυνση, αλλά όχι ταυτόχρονα. Η ροή των δεδομένων αλλάζει κατεύθυνση ανάλογα με το ποιός είναι ο πομπός και ο δέκτης.

40

Επικοινωνία Half/Full Duplex

- Full Duplex(Ταυτόχρονη αμφίδρομη):
- Τα δεδομένα μεταδίδονται ταυτόχρονα και προς τις δύο κατευθύνσεις.

