MA2252 Introduction to Computing

Lecture 13 Least Squares Regression

Sharad Kumar Keshari

School of Computing and Mathematical Sciences

University of Leicester

Learning outcomes

At the end of lecture, students will be able to

- understand scatter plot and regression
- understand theory of Least Squares Regression
- solve basic regression problems in MATLAB

Scatter plot

A **scatter plot** plots two different sets of data using dots. Unlike line plot, the dots are not connected by a curve.

Scatter plot (contd.)

MATLAB's scatter() function can be used to create a scatter plot.

Example: The code below creates the scatter plot shown earlier.

```
x=1:0.5:5; %create data for vector x s=size(x); %find size of vector x y=x+rand(s); %create a vector y=x+'some random values' scatter(x,y) %create scatter plot title('scatter plot 1') xlabel('x') ylabel('y')
```

Scatter plot (contd.)

Demo

Regression

Regression (contd.)

Figure: Scatter plot showing linear trend ¹

Regression (contd.)

Non-linear Regression example

Figure: Data showing number of active users on a website with time 2

¹Chen, S., Prettner, K., Kuhn, M. et al. Climate and the spread of COVID-19. Sci Rep 11, 9042 (2021). https://doi.org/10.1038/s41598-021-87692-z

²http://sam-koblenski.blogspot.com

Regression model

linear function or northing

A regression model provides a function to describe the relationship between one (or more) independent variables and a dependent variable.

A basic regression model is the 'Least Squares Regression model'.

Least Squares Regression

Here, the relationship between dependent data points $y_i (i = 1, 2, ...m)$ and independent data points x_i is modelled as

where each points $\hat{y}(x) = \sum_{i=1}^{n} \alpha_{i} f_{i}(x)$ $\hat{y}(x) = \sum_{i=1}^{n} \alpha_{i} f_{i}(x)$ $\hat{y}(x)$ is an estimation function

lacksquare are parameters of estimation function

• $f_i(x)$ are linearly independent basis functions

The parameters are then found by minimising the total squared error E.

$$E = \sum_{i=1}^{m} (\hat{y} - y_i)^2 \tag{2}$$

Substituting (1) in (2) gives

$$E = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} \alpha_j f_j(x_i) - y_i \right)^2$$
 (3)

E is a function of *n* variables namely $\alpha_i (j = 1, 2, \dots, n)$.

The solution for n parameters α_j which minimise the total squared error E is given as

$$\beta = pinv(A) * Y \tag{4}$$

Here,

- β is a column vector with n entries α_j
- A is a $m \times n$ matrix with entries $A(i,j) = f_j(x_i)$
- pinv(A) is the pseudo-inverse of A
- Y is a column vector with m entries y_i

Derivation of (4): Please refer book and lecture recording

hold on

plot(x,beta(1)*x+beta(2))

```
Example: Perform a least squares regression for the scatter plot created
before using estimation function \hat{y}(x) = \alpha_1 x + \alpha_2.
                                           film = k , fz(x)=1
 acrdle
openfig('scatter plot 1.fig') %opens figure scatter plot 1.fig
a = get(gca, 'Children');
x = get(a, 'XData'); %extract x-data points
y = get(a, 'YData'); %extract y-data points
A=[x',ones(size(x'))]; %create the matrix A of basis functions
beta=pinv(A)*y'; %evaluate vector beta containing values of parameters
%plot the regression line
```


Figure: Regression line

polyfit and polyval functions

When the estimation function $\hat{y}(x)$ is a polynomial, MATLAB's polyfit and polyval functions can be used.

For vectors x and y containing x-data and y-data points respectively,

• p=polyfit(x,y,n) creates a vector p of the coefficients of regression polynomial p(x) of degree n

• polyval(p,x) calculates the values of p(x)

polyfit and polyval functions (contd.)

a = get(gca, 'Children');

Example: This code creates the same regression line as was shown before.

openfig('scatter plot 1.fig') %opens figure scatter plot 1.fig

```
x = get(a, 'XData'); %extract x-data points
y = get(a, 'YData'); %extract y-data points

p= polyfit(x,y,1); %creates coefficients of regression polynomial of degree 1
Y=polyval(p,x); %evaluates the value of polynomial at x-data points
hold on
plot(x,polyval(p,x)) %plot the regression polynomial
```

polyfit and polyval functions (contd.)

Demo

Nonlinear Estimation Functions

Sometimes, a nonlinear estimation function provides the best fit for a scatter plot. This means we require

here
$$g$$
 is some nonlinear function.

This means we require

$$\hat{y}(x) = g(\alpha_1, \alpha_2, \dots, \alpha_n, x)$$

$$\hat{y} = \begin{cases} g \text{ is some nonlinear function.} \end{cases}$$

$$\hat{y} = \begin{cases} g \text{ is some nonlinear function.} \end{cases}$$
(5)

where g is some nonlinear function.

can linearise the equation
$$(5)$$
 into (1) .

In some special cases, a transformation such as
$$\tilde{y}(x) = h(\hat{y}(x)) \qquad \text{and} \quad \text{interpolation} \quad \text{(6)}$$
 can linearise the equation (5) into (1).
$$\text{for a deventable matrix}$$

$$\text{deventable matrix}$$

Nonlinear Estimation Functions (contd.)

Example: Consider the estimation function
$$\hat{y}(x) = \alpha_1 e^{\alpha_2 x} \qquad (7)$$
Applying the transformation
$$\hat{y}(x) = \log(\hat{y}(x)) \qquad = \log(\alpha_1) \qquad (8)$$
converts (7) into
$$\frac{\tilde{y}(x) = \tilde{\alpha}_1 + \alpha_2 x}{2} \qquad = \log(\alpha_1) \qquad (8)$$
where we define $\tilde{\alpha}_1 = \log(\alpha_1)$. Now, least squares regression can be applied to equation (9). The parameter α_1 can be found using $\alpha_1 = e^{\tilde{\alpha}_1}$.

$$f(x) = \int_{\alpha_1}^{\alpha_1} (x) dx dx = \int_{\alpha_1}^{\alpha_2} (x) dx = \int_{\alpha_1}^{\alpha_$$

End of Lecture 13

Please provide your feedback • here