COVID-19, Mask Use, and Vaccination Report

Byeolha Kim

March 16, 2025

1. Summary

This report explores the relationship between COVID-19 outcomes and preventive behaviors across U.S. counties. By analyzing mask usage and vaccination rates in relation to COVID-19 death rates in 2022, the report highlights how these public health measures have significantly contributed to reducing mortality.

2. Data

2.1 Data Sources

- COVID-19 county-level death data: NYT COVID-19 Repository
- Mask usage estimates: NYT July 2020 Mask Use Survey
- Vaccination data: CDC County-Level Vaccination Data

2.2 Data Preparation

2.3 Key Variables Summary

COVID-19 Deaths in 2022

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 12.00 29.00 84.14 70.00 7034.00
```

Distribution of COVID-19 Deaths (2022)

Mask Usage

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's ## 0.1150 0.3930 0.4970 0.5077 0.6130 0.8890 9

Distribution of Mask Usage

Vaccination Rates

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's ## 11.30 44.30 52.10 53.43 61.00 95.00 93

Distribution of Vaccination Rates

3. Regression Analysis

To evaluate the effects of mask usage and vaccination on COVID-19 mortality rates, we estimated three regression models. The dependent variable is COVID-19 deaths per 100,000 people (deaths.scaled).

Appendix: Full Code

```
# Additional: Identify counties with lowest and highest vaccination rates
covid %>%
  select(vax.complete, state, county) %>%
  filter(vax.complete %in% c(min(vax.complete, na.rm = TRUE), max(vax.complete, na.rm = TRUE)))
## # A tibble: 15 x 3
##
      vax.complete state
                                 county
##
             <dbl> <chr>
                                 <chr>>
##
              95
                    Arizona
                                 Apache
    1
    2
                                 Santa Cruz
##
              95
                    Arizona
##
    3
              95
                    California
                                 Imperial
##
    4
              95
                    {\tt Colorado}
                                 San Juan
              95
                                 Chattahoochee
##
    5
                    Georgia
##
    6
              95
                    Kansas
                                 Geary
```

	m1	m2	m3
always.mask	-112.887***		-83.296***
	(10.212)		(10.834)
population	-0.000***	-0.000***	
	(0.000)	(0.000)	
svi.indexB	11.415***	9.968***	9.581***
	(2.884)	(2.878)	(2.859)
svi.indexC	15.142***	14.399***	13.128***
	(3.111)	(3.103)	(3.080)
svi.indexD	19.811***	18.353***	17.491***
	(3.401)	(3.393)	(3.367)
vax.complete		-1.123***	-0.923***
		(0.093)	(0.099)
Num.Obs.	3049	3049	3049

 $[\]overline{+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001}$

##	7	95	New Mexico	McKinley
##	8	11.3	North Dakota	Slope
##	9	95	Texas	Brooks
##	10	95	Texas	Irion
##	11	95	Texas	${\tt Maverick}$
##	12	95	Texas	${\tt Presidio}$
##	13	95	Texas	Starr
##	14	95	Texas	Webb
##	15	95	Wyoming	Teton

All code used above is consolidated here for reference.