Homework 1

Problem: Pick a small example from the AMPL book and write the corresponding LP in its original form, standard form and canonical form.

Solution: For this problem I used the very first LP presented in the book. It is presented as such:

$$\max \ 25 X_B + 30 X_c$$
 Subject To: $(1/200) X_B + (1/140) X_C \le 40$
$$0 \le X_B \le 6000$$

$$0 \le X_C \le 4000$$

Converting this to canonical form is easier than standard form so we'll start there.

Canonical Form

For this we want the following setup:

$$\min \ c^T x$$

s.t. $Ax < b$

First we'll handle the conversion from max to min.

$$\max 25X_B + 30X_C = \min -25X_B - 30X_C$$

From here we need to account for something, we need all less than inequalities for our constraints however we have double inequalities. So we need to adjust those. Double inequalities aren't anything fancy really, they're just two sets of inequalities written in a more concise way.

On top of that, we need to capture all of the coefficients in these inequalities. Some of these constraints only have a single variable, but in a way they still contain both. The one that isn't present can be represented with a simple 0 coefficient. Capturing all of that information, let's begin.

First off.

$$0 \le X_B \le 6000 \iff 0 \le X_B, X_B \le 6000$$

 $0 \le X_C \le 4000 \iff 0 \le X_C, X_C \le 4000$

And,

$$0 \le X_B \iff 0 \le X_B + 0X_C$$
$$0 \le X_C \iff 0 \le X_C + 0X_B$$

Now let's rewrite all of our constraints. I'll also be flipping these inequalities to ensure all of them are in the same direction.

$$\frac{1}{200}X_B + \frac{1}{140}X_C \le 40$$

$$X_B + 0X_C \le 6000$$

$$0X_B + X_C \le 4000$$

$$-X_B + 0X_C \le 0$$

$$0X_B - X_C \le 0$$

Now we can rewrite all of what we have in vector/matrix notation and finish this up.

$$x = \begin{bmatrix} X_B \\ X_C \end{bmatrix}, c = \begin{bmatrix} -25 \\ -30 \end{bmatrix}$$

And now the constraints:

$$A = \begin{bmatrix} \frac{1}{200} & \frac{1}{140} \\ 1 & 0 \\ 0 & 1 \\ -1 & 0 \\ 0 & -1 \end{bmatrix}, b = \begin{bmatrix} 40 \\ 6000 \\ 4000 \\ 0 \\ 0 \end{bmatrix}$$

And so now in canonical form we have:

$$\min \ c^T x$$

s.t. $Ax < b$

Standard Form

This modification isn't too bad going from canonical form now. We need slack variables to handle the inequalities but nothing too crazy.

Essentially, all we gotta do is create a slack variable s_i for all of the inequalities. These will be set up such that $s_i \geq 0$. These end up going with the non-negativity constraints on X_B, X_C , so we only need 3 slack variables in total. One for each of the main constraints.

For a simple example, the second inequality becomes $X_B + 0X_C + s_2 = 6000$.

$$\begin{split} \frac{1}{200}X_B + \frac{1}{140}X_C + s_1 &= 40 \\ X_B + 0X_C + s_2 &= 6000 \\ 0X_B + X_C + s_3 &= 4000 \\ X_B, X_C, s_1, s_2, s_3 &\geq 0 \end{split}$$

As these add new variables we adjust the matrices as such.

$$x = \begin{bmatrix} X_B & X_C & s_1 & s_2 & s_3 \end{bmatrix}^T$$

$$c = \begin{bmatrix} -25 & -30 & 0 & 0 & 0 \end{bmatrix}^T$$

$$A = \begin{bmatrix} \frac{1}{200} & \frac{1}{140} & 1 & 0 & 0\\ 1 & 0 & 0 & 1 & 0\\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}, b = \begin{bmatrix} 40\\ 6000\\ 4000 \end{bmatrix}$$

So now we have everything. In standard form we have:

$$\min \ c^T x$$

s.t. $Ax = b$
$$x \ge 0$$

Homework 2

Given the system of equations, remove a set of 2 variables aside from $\{x_1, x_4\}$.

$$x_1 + 2x_2 + 3x_3 = 6$$
$$x_1 + x_2 + x_3 + x_4 = 4$$
$$x_1, x_2, x_3, x_4 \ge 0$$

For this homework we will remove $\{x_2, x_4\}$.

Step 1: Solve for x_2 .

$$x_1 + 2x_2 + 3x_3 = 6$$
$$2x_2 = 6 - 1x_1 - 3x_3$$
$$x_2 = 3 - \frac{1}{2}x_1 - \frac{3}{2}x_3$$

Step 2: Solve for x_4 . Plug in x_2 .

$$x_1 + x_2 + x_3 + x_4 = 4$$

$$x_1 + 3 - \frac{1}{2}x_1 - \frac{3}{2}x_3 + x_3 + x_4 = 4$$

$$3 + \frac{1}{2}x_1 - \frac{1}{2}x_3 + x_4 = 4$$

$$x_4 = 1 + \frac{1}{2}x_3 - \frac{1}{2}x_1$$

Step 3: Handle non-negativity constraint. Simplify.

$$3 - \frac{1}{2}x_1 - \frac{3}{2}x_3 \ge 0$$
$$-\frac{1}{2}x_1 - \frac{3}{2}x_3 \ge -3$$
$$\frac{1}{2}x_1 + \frac{3}{2}x_3 \le 3$$
$$x_1 + 3x_3 \le 6$$
$$1 + \frac{1}{2}x_3 - \frac{1}{2}x_1 \ge 0$$

So our new setup is:

$$x_1 + 3x_3 \le 6$$
$$x_1 - x_3 \le 2$$
$$x_1, x_3 \ge 0$$

 $x_1 - x_3 \le 2$

Homework 3

Problem Decide for our running example for which combinations of basic variables we get a basic feasible or infeasible solution via a computation. (From lecture 4).

I'll be using the same system of equations as in homework 2.

$$A = \begin{vmatrix} 1 & 2 & 3 & 0 \\ 1 & 1 & 1 & 1 \end{vmatrix}, \ b = \begin{pmatrix} 6 \\ 4 \end{pmatrix}$$

To get our basic solution we need to take A and take 2 subsets of columns from it, B and N. The columns we choose for these don't need to be consecutive or anything. For the sake of this assignment, we'll nab 2 columns from A to use for B and the other two will go to N.

We'll be ignoring N after that as it's set to 0.

Our basic solution will be calculated as such:

$$x_B = B^{-1}b$$

To choose something different from the lecture, I'll be using columns 2 and 3 for B. N then will get columns 1 and 4.

$$B = \begin{vmatrix} 2 & 3 \\ 1 & 1 \end{vmatrix}, \quad N = \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix}$$

From there it is as simple as doing the calculation.

$$x_B = B^{-1}b \tag{1}$$

$$= \begin{vmatrix} -1 & 3\\ 1 & -2 \end{vmatrix} \begin{pmatrix} 6\\ 4 \end{pmatrix} \tag{2}$$

$$= \begin{pmatrix} 6 \\ -2 \end{pmatrix} \tag{3}$$

$$\vec{x} = \begin{pmatrix} 0 & 6 & -2 & 0 \end{pmatrix} \tag{4}$$

So this is giving us the basic solution of $x_2 = 6, x_3 = -2$. Because -2 < 0, this contradicts the non-negativity constraint for x_3 . Thus, this represents an infeasible solution for the system.