Untitled

Nathaniel Brown, In Hee Ho, Sarah Zimmermann October 19, 2017

OLS Logistic Regression Binned Residuals

LASSO Logistic Regression Binned Residuals

Ridge Logistic Regression Binned Residuals

Kernel Logistic Regression Binned Residuals

	Deviance p-value
OLS	2e-04
LASSO Penalty	3e-04
Ridge Penalty	0e+00
Kernels	0e+00

	Lower	Upper
symptom0	-1.2348	0.1283
symptom1	-0.8128	0.4192
symptom2	-0.9683	0.3673
raceother	-0.2452	0.4814
male	-0.6261	0.0439
X1	-1.6083	-0.2653
X2	-0.1101	1.2464
X3	0.1159	1.6606
X4	-0.6474	1.2667
X5	-1.0553	1.3369
X6	-926.4905	958.4814

	LASSO Estimate
(Intercept)	0.0000
symptom0	0.0000

	LASSO Estimate
symptom1	0.0000
symptom2	0.0000
raceother	0.0000
male	0.0000
X1	-1.0788
X2	0.0347
X3	0.1736
X4	0.0000
X5	0.0000
X6	0.9557

	Ridge Estimate
(Intercept)	0.0000
symptom0	-0.1646
symptom1	-0.0401
symptom2	-0.0893
raceother	-0.0588
male	-0.1393
X1	-0.5499
X2	0.2039
X3	0.3068
X4	0.0513
X5	-0.0139
X6	0.9175

	Lower	Upper
symptom0	-1.3827	-0.0953
symptom1	-0.9360	0.2222
symptom 2	-1.0734	0.1903
raceother	-0.2915	0.4013
male	-0.5736	0.0674
k1	-5.6259	-0.1256
k2	5.8663	13.2598

Histogram of log(data.imp\$nctdel + 0.1)

Assumptions

```
## nctdel fail male black hisp sn1 sn2 sn3 all4 race sn0 ## [1,] 1 1 1 1 1 1 1 1 1 1 1 0 ## [2,] 0 0 0 0 0 0 0 0 0 0 0 0 0 0
```



```
##
##
    Variables sorted by number of missings:
    Variable Count
##
##
      nctdel
##
         fail
                   0
        male
##
                   0
       black
                   0
##
##
        hisp
                   0
                   0
##
          sn1
##
          sn2
                   0
                   0
##
          sn3
##
         al14
                   0
                   0
##
        race
##
          sn0
                   0
```


Survival Curves:

Question for Jonathan: how do we plot a survival curve from glm???

Kaplan–Meier Estimate $\hat{S}(t)$ with CI

Survival Distributions


```
## Call:
## survdiff(formula = Surv(timecat, fail) ~ raceother + male, data = datcat_X)
##
##
                         N Observed Expected (0-E)^2/E (0-E)^2/V
## raceother=0, male=0 95
                                         35.6
                                 38
                                                  0.164
                                                              0.26
## raceother=0, male=1 111
                                 42
                                         47.7
                                                  0.675
                                                              1.17
                                 103
## raceother=1, male=0 240
                                         91.2
                                                  1.517
                                                              3.20
## raceother=1, male=1 243
                                 94
                                        102.5
                                                  0.706
                                                              1.60
##
   Chisq= 4.4 on 3 degrees of freedom, p= 0.225
```

Discussion

why nothing is significant:

```
## # A tibble: 4 x 6
##
     symptom
                 mean
                                     sd
                                           lower
                                                     upper
                           n
       <chr>
                                           <dbl>
                                                     <dbl>
##
                 <dbl> <int>
                                 <dbl>
## 1
           0 1.560370
                          45 0.8675425 1.306892 1.813849
## 2
           1 1.547995
                         133 0.7804779 1.415350 1.680640
           2 1.618750
                          56 0.7784150 1.414871 1.822629
## 4
          3+ 1.493333
                          25 0.6746227 1.228881 1.757785
## # A tibble: 2 x 3
##
     gender
                mean
                        median
      <chr>
                         <dbl>
##
               <dbl>
```

```
## 1 female 1.516541 1.433333
## 2 male 1.606217 1.566667

## # A tibble: 2 x 3
## race mean median
## <chr> <dbl> <dbl>
## 1 Black or Hispanic 1.727556 1.716667
## 2 Other 1.491938 1.383333
```

References

https://www.r-bloggers.com/imputing-missing-data-with-r-mice-package/