Présentation du Routage IP Comment acheminer une information dans une infrastructure mondiale?

Contenu de ce cours.

- □ Découverte du routage IP
 - Structuration des réseaux
 - Principes du routage IP
 - Rôle des tables de routage IP
 - Tables de routage IP

Prés requis.

- □ Principes de communication
- ☐ Principes de fonctionnement du protocole Ethernet
- □ Principes de fonctionnement du protocole IP

Réseaux informatiques.

- □ Routage IP
 - ☐ Structuration des réseaux

Structuration des réseaux (1).

- □ De quoi a-t-on besoin ?
 - De segmenter en sous réseaux :
 - ✓ Limiter les domaines de broadcast Ethernet et IP (ARP, Å)
 - √ Apporter de la sécurité
 - √ Respecter des politiques de sécurité de chacun
 - Attribuer des adresses de réseaux différentes à chaque segment
 - De router les paquets entre les différents réseaux

Structuration des réseaux (2).

- ☐ Organisation :
 - Routage de réseaux locaux → LAN (Local Area Network),
 - Routage de site, ensemble de réseaux locaux → MAN (Metropolitan Area Network),
 - Routage hors site → WAN (Wide Area Network).

Réseaux informatiques.

- □ Routage IP
 - ☐ Structuration des réseaux
 - **☑** Principes du routage IP

Principes du routage IP (1).

□ Définition :

Acheminement de datagrammes entre machines situées sur des réseaux IP différents à travers un ensemble dautres réseaux.

Principes du routage IP (2).

- ☐ Remise dun datagramme :
 - Le datagramme ne subit aucune modification lors de son passage à travers les routeurs.

Principes du routage IP (3).

Position du routeur :

- Les informations sont desencapsulées jusqua la couche 3 du routeur puis réencapsulées,
- Le routeur se sert de lentête du datagramme.

Réseaux informatiques.

- □ Routage IP
 - ☐ Structuration des réseaux
 - ☐ Principes du routage IP
 - ☑ Rôle des tables de routage IP

Rôle des tables de routage IP (1).

□ Définition du plan de routage :

Rôle des tables de routage IP (2).

□ Définition du plan de routage (poste 1) :

Destination	Masque	Passerelle	Interface
193.50.24.0	/24	*	eth1

Rôle des tables de routage IP (3).

□ Définition du plan de routage (poste 2) :

Destination	Masque	Passerelle	Interface
193.50.24.0	/24	*	eth2
195.8.1.0	/24	*	eth3

Rôle des tables de routage IP (4).

□ Définition du plan de routage (poste 3) :

Destination	Masque	Passerelle	Interface
195.8.1.0	/24	*	eth4

Réseaux informatiques.

- □ Routage IP
 - ☐ Structuration des réseaux
 - ☐ Principes du routage IP
 - ☐ Rôle des tables de routage IP
 - **☑** Tables de routage IP

Tables de routage IP (1).

■ Nécessité :

- "Plusieurs chemins peuvent se présenter sur un segment de réseau,
- Nécessité de définir par quel itinéraire il faut passer pour se rendre de la source à la destination.

Tables de routage IP (2).

- □ Définition du routage :
 - A deux niveaux : postes et routeurs
 - " Classe IP de destination / masque, adresse IP de passerelle de proximité.

Tables de routage IP (3).

- □ Définition du routage (suite) :
 - " Définition dans un sens.

Tables de routage IP (4).

- □ Définition du routage (suite) :
 - " Définition dans la utre sens.

Tables de routage IP (5).

- □ Définition du plan de routage :
 - " Attribution de adresse IP à chaque interface.

Tables de routage IP (6).

- □ Définition du plan de routage (suite) :
 - Définition de seule table de routage sur chaque équipement.

Tables de routage IP (7).

Définition des tables de routage :

" Attribution de une entrée sur « Source » pour le ller.

Tables de routage IP (8).

- □ Définition des tables de routage (suite) :
 - " Attribution de une entrée sur « Routeur 1 » pour le ller.

Tables de routage IP (9).

- □ Définition des tables de routage (suite) :
 - Aucune entrée sur « Routeur 2 » pour la ller.

Tables de routage IP (10).

- □ Définition des tables de routage (suite) :
 - Attribution de entrée sur « Destination » pour le retour.

Tables de routage IP (11).

- □ Définition des tables de routage (suite) :
 - Attribution dune entrée sur « Routeur 2 » pour le retour.

Tables de routage IP (12).

- □ Définition des tables de routage (suite) :
 - **Aucune entrée supplémentaire sur « Routeur 1 » pour le retour.**

Tables de routage IP (13).

Définition des tables de routage :

Destination	Masque	Passerelle	Int
193.50.24.0	255.255.255.0		eth1
193.50.26.0	255.255.255.0	193.50.24.253	eth1
193.50.27.0	255.255.255.0	193.50.24.252	eth1

Tables de routage IP (14).

□ Définition des tables de routage (suite) :

Tables de routage IP (15).

□ Définition des tables de routage (suite) :

Tables de routage IP (16).

□ Définition des tables de routage (suite) :

Réseaux informatiques.

- Routage IP
 - ☐ Structuration des réseaux
 - ☐ Principes du routage IP
 - ☐ Rôle des tables de routage IP
 - ☐ Tables de routage IP
 - ☑ Priorité de mise en circulation

Priorité de mise en circulation (1).

- ☐ Scrutation de la table de routage locale :
 - Comparaison de la dresse de destination avec (adresse / masque) de chaque entrée de la table de routage triées dans la dresse / 32, ..., /24, Å, /16, Å, /8, Å, /0

Destination	Masque	Passerelle	Interface
194.60.18.0	/24	*	eth1
xxx.xxx.xxx	/xx	194.60.18.45	eth1

Réseaux informatiques.

- Routage IP
 - ☐ Structuration des réseaux
 - ☐ Principes du routage IP
 - ☐ Rôle des tables de routage IP
 - ☐ Tables de routage IP
 - ☐ Priorité de mise en circulation
 - **☑** Exemples

Exemples (1).

Poste n°1

Destination	Masque	Passerelle	Interface
194.60.18.0	/24 *1	*	eth1
196.23.48.0	/24 *1	194.60.18.45	eth1

Ping 194.60.18.38

(194.60.18.38 masquée 24 *1) = 194.60.18.0 ?

Oui, le datagramme est donc transmis directement au poste n°2

Exemples (2).

□ Poste n°1

Destination	Masque	Passerelle	Interface
194.60.18.0	/24 *1	*	eth1
196.23.48.0	/24 *1	194.60.18.45	eth1

Non, on recherche le couple suivant dans la table de routage

 $(196.23.48.5 \text{ masquée } 24 *^2) = 196.23.48.0 ?$

Oui, le datagramme est donc transmis au routeur n°1

Exemples (3).

Poste n°1

Destination	Masque	Passerelle	Interface
194.60.18.0	/24 *1	*	eth1
196.23.48.0	/24 *1	194.60.18.45	eth1

Non, on recherche le couple suivant dans la table de routage

(196.23.12.55 masquée 24 *2) = 196.23.48.0 ?

Non, le datagramme næst donc pas transmis

Fin.