

(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関  
国際事務局



(43) 国際公開日  
2003年12月18日 (18.12.2003)

PCT

(10) 国際公開番号  
**WO 03/104166 A1**

(51) 国際特許分類: C07B 59/00 // C07M 5:00

(21) 国際出願番号: PCT/JP02/11785

(22) 国際出願日: 2002年11月12日 (12.11.2002)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ: 特願2002-166224 2002年6月6日 (06.06.2002) JP

(71) 出願人(米国を除く全ての指定国について): 和光純薬工業株式会社 (WAKO PURE CHEMICAL INDUSTRIES, LTD.) [JP/JP]; 〒540-8605 大阪府 大阪市中央区 道修町三丁目 1-2 Osaka (JP).

(72) 発明者; および

(75) 発明者/出願人(米国についてのみ): 廣田 耕作 (HIROTA,Kosaku) [JP/JP]; 〒502-0003 岐阜県 岐阜市三田

洞東 3-22-5 Gifu (JP). 佐治木 弘尚 (SAJIKI,Hironao) [JP/JP]; 〒502-0823 岐阜県 岐阜市光栄町 2丁目23番地 Gifu (JP).

(74) 共通の代表者: 和光純薬工業株式会社 (WAKO PURE CHEMICAL INDUSTRIES, LTD.); 〒103-0023 東京都中央区 日本橋本町二丁目1番7号 Tokyo (JP).

(81) 指定国(国内): JP, US.

規則4.17に規定する申立て:

— すべての指定国ための不利にならない開示又は新規性喪失の例外に関する申立て(規則4.17(v))

添付公開書類:

— 國際調査報告書

— 不利にならない開示又は新規性喪失の例外に関する申立て

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイドスノート」を参照。

(54) Title: PROCESS FOR DEUTERATION OF INERT METHYLENE

(54) 発明の名称: 不活性メチレンの重水素化方法

(57) Abstract: The invention relates to a process for deuteration of inert alkanes with activated palladium-carbon, specifically, a process for deuterating a compound having either a methyl group or an alkylene group having two or more carbon atoms in a state directly bonded to an optionally substituted aromatic ring through replacement of one or more hydrogen atoms of the methyl group or one or more of the benzylic and other hydrogen atoms of the alkylene group by deuterium, characterized in that the above compound is subjected to refluxing in a closed system in the presence of activated palladium-carbon in a state dissolved in a deuterated solvent.

(57) 要約:

本発明は、活性化されたパラジウムカーボンを用いた不活性アルカンの重水素化方法に関するものであり、活性化されたパラジウムカーボンの存在下、重水素化された溶媒中、置換基を有していてもよい芳香環に直結したメチル基又は炭素数2以上のアルキレン基を有する化合物を密封還流下に置くことを特徴とする、当該化合物が有する当該メチル基の水素原子、又は当該化合物が有する炭素数2以上のアルキレン基のベンジル位及びそれ以外の炭素原子に結合する水素原子重水素化方法を開示する。

WO 03/104166 A1

## 明細書

## 不活性メチレンの重水素化方法

## 5 技術分野

本発明は、活性化されたパラジウムカーボンを用いた不活性アルカンの重水素化方法に関する。

## 技術背景

10 同位体で標識された化合物は、薬物の生体内動態を調べる上で有用であり、中でも重水素（D）で標識された化合物は、前記目的で一般的に用いられる化合物の一つである。

この重水素で標識された化合物は、予め重水素化された出発原料から合成するというのが従来の一般的合成方法であったが、該合成方法は多15段階の合成過程を要するという点で問題を有しているため、合成した最終目的物のC-HをC-Dに直接変換（H-D交換）することにより、重水素で標識化された化合物を得るという方法の開発が望まれている。

そこで、本発明者等は研究を重ね、芳香環に直結する炭素原子に結合する水素原子（ベンジル位の水素原子）のみを選択的に重水素化する方法を見出した。しかしながら、該重水素化方法では、ベンジル位であっても末端炭素に結合している水素原子（芳香環に直結したメチル基の水素原子）は未だ重水素化率が低く、またベンジル位以外の水素原子については全く重水素化されないため、芳香環に直結したメチル基の水素原子の重水素化率が高く、且つベンジル位以外の炭素原子に結合する水素25原子も重水素化し得る重水素化方法の開発が望まれていた。

従って、本発明は、芳香環に直結したメチル基の水素原子の重水素化

率が高く、且つベンジル位の水素原子のみならず、それ以外の炭素原子に結合する水素原子をも効率よく重水素化する方法を開発することを目的としている。

## 5 発明の開示

本発明者等は、上記目的を解決すべく銳意研究を重ねた結果、置換基を有していてもよい芳香環に直結したメチル基又はアルキレン基を有する化合物を、活性化されたパラジウムカーボンを触媒として用い、且つ重水素化された溶媒を用いて密封還流下で反応させることにより、該化合物の当該メチル基の水素原子や、該化合物のベンジル位の水素原子のみならず、それ以外の炭素原子に結合する水素原子をも重水素化し得ることを見出し、本発明を完成するに到った。

本発明は、活性化されたパラジウムカーボンの存在下、重水素化された溶媒中、置換基を有していてもよい芳香環に直結したメチル基又は炭素数 2 以上のアルキレン基を有する化合物を密封還流下に置くことを特徴とする、当該化合物が有する当該メチル基の水素原子、又は当該化合物が有するベンジル位及びそれ以外の炭素原子に結合する水素原子の重水素化方法、の発明である。

## 20 発明を実施するための最良の形態

本発明に係る、置換基を有していてもよい芳香環に直結したメチル基又は炭素数 2 以上のアルキレン基を有する化合物に於ける、芳香環に直結したメチル基又は炭素数 2 以上のアルキレン基を有する化合物としては、例えば一般式 [1]



(式中、Aはメチレン基又は炭素数2以上のアルキレン基を表し、Xは水素原子、アルコキシ基、カルボキシリ基、水酸基、アミノ基、アシリル基、アシリルアミノ基又はアルコキカルボニル基を表す。但し、Aがメチレン基のときXは水素原子を表す。)で示される化合物が挙げられる。

一般式 [1] に於いて、Aで表される炭素数2以上のアルキレン基としては、直鎖状でも分枝状でも或いは環状でもよく、中でも直鎖状或いは分枝状のものが好ましく、特に直鎖状であるものが好ましく、通常炭素数2～20、好ましくは2～10、更に好ましくは2～7のものが挙げられる。

Aで表される炭素数2以上のアルキレン基の具体例としては、例えばエチレン基、メチルメチレン基、n-プロピレン基、イソプロピレン基、n-ブチレン基、イソブチレン基、1,2-ジメチルエチレン、n-ペンチレン基、イソペンチレン基、2-メチルブチレン基、1,2-ジメチルプロピレン基、n-ヘキシレン基、イソヘキシレン基、2-メチルペンチレン基、1,4-ジメチルブチレン基、2,3-ジメチルブチレン基、n-ヘプチレン基、イソヘプチレン基、1,2-ジメチルペンチレン、1,2,3-トリメチルブチレン基、n-オクチレン基、n-ノニレン基、n-デシレン基、n-ウンデシレン基、n-ドデシレン基、n-トリデシレン基、n-テトラデシレン基、n-ペンタデシレン基、n-ヘキサデシレン基、n-ヘプタデシレン基、n-オクタデシレン基、n-ノナデシレン基、n-イコシレン基、シクロペンチレン基、シクロヘキシレン基、シクロヘプチレン基、シクロオクチレン基、シクロノニレン基、シクロデシレン基、シクロウンデシレン基、シクロドデ

シレン基、シクロトリデシレン基、シクロテトラデシレン基、シクロヘサデシレン基、シクロヘプタデシレン基、シクロノナデシレン基、シクロイコシレン基等が挙げられる。尚、上記アルキレン基のうち炭素数が5以上のものは、芳香環と直結する炭素から数えて4つ以上離れた炭素原子が酸素原子に置換されていてもよい。

一般式〔1〕に於いて、Xで表されるアルコキシ基としては、通常炭素数1～6、好ましくは1～4のものが挙げられ、具体的には、例えばメトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基等が挙げられる。

Xで表されるカルボキシル基は、例えばナトリウム塩、カリウム塩、リチウム塩等のアルカリ金属塩、例えばカルシウム塩、マグネシウム塩等のアルカリ土類金属塩等、塩の形をとってもよく、中でもアルカリ金属塩となっているものがその取り扱い易さから好ましく、その中でも特にナトリウム塩が好ましい。

Xで表されるアミノ基としては、第1級アミノ基（-NH<sub>2</sub>）、第2級アミノ基（-NHR）及び第3級アミノ基（-NR<sub>2</sub>）（但し、Rは炭素数1～6、好ましくは1～4のアルキル基を表す。）が挙げられ、具体的には、例えば第1級アミノ基、例えばメチルアミノ基、エチルアミノ基、プロピルアミノ基、ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基等の第2級アミノ基、例えばジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、ジペンチルアミノ基、ジヘキシルアミノ基等の第3級アミノ基等が挙げられ、中でも第1級アミノ基が好ましい。

Xで表されるアシリル基としては、通常炭素数2～10の例えばアセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ピバロイル基等の脂肪族カルボン酸由来のもの、例えば

ベンゾイル基等の芳香族カルボン酸由来のもの等が挙げられる。

Xで表されるアシルアミノ基としては、上記アシル基のカルボニル基に更に-NH-が結合して成る基を表し、具体的には、例えばアセチルアミノ基、プロピオニルアミノ基、ブチリルアミノ基、イソブチリルアミノ基、バレリルアミノ基、イソバレリルアミノ基、ピバロイルアミノ基、  
5 ベンゾイルアミノ基等が挙げられる。

Xで表されるアルコキカルボニル基としては、通常炭素数2～7のものが挙げられ、具体的には、例えばメトキカルボニル基、エトキカルボニル基、プロポキカルボニル基、ペンチルオキカルボニル基  
10 、ヘキシリオキカルボニル基等が挙げられる。

尚、Xがアルコキシ基、水酸基又はアミノ基の場合には、Aは炭素数3以上の直鎖アルキレン基であることが好ましい。

一般式〔1〕で示される化合物に於ける芳香環の水素原子のうち、通常1～5個、好ましくは1～2個、より好ましくは1個が、夫々独立して例えばアルキル基、アリール基、アラルキル基、アルコキシ基、ニトロ基、アミノ基等で置換されていてもよい。

芳香環の水素原子がアルキル基で置換される場合のアルキル基としては、直鎖状でも分枝状でもよく、通常炭素数1～10、好ましくは1～6のものが挙げられ、中でも直鎖状のものが好ましく、具体的には、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、sec-ペンチル基、tert-ペンチル基、ネオペンチル基、n-ヘキシリ基、イソヘキシリ基、2,2-ジメチルブチル基、n-ヘプチル基、イソヘプチル基、sec-ヘプチル基、tert-ヘプチル基、n-オクチル基、イソオクチル基、n-ノニル基、イソノニル基、sec-ノニル基、n-デシル基が挙げられる。

芳香環の水素原子がアリール基で置換される場合のアリール基としては、通常炭素数6～14のものが挙げられ、具体的には、例えばフェニル基、ナフチル基、アントリル基等が挙げられる。

芳香環の水素原子がアラルキル基で置換される場合のアラルキル基としては、通常炭素数7～10のものが挙げられ、具体的には、例えばベニジル基、フェニルエチル基、フェニルプロピル基、フェニルブチル基等が挙げられる。

芳香環の水素原子がアルコキシ基で置換される場合のアルコキシ基としては、直鎖状でも分枝状でもよく、通常炭素数1～6、好ましくは1～4のものが挙げられ、具体的には、例えばメトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシリオキシ基等が挙げられる。

芳香環の水素原子がアミノ基で置換される場合のアミノ基としては、上記した如き一般式〔1〕に於けるXで表されるアミノ基と同様のものが挙げられる。

一般式〔1〕で示される化合物は、その芳香環が置換基を有していないものが好ましい。

上記一般式〔1〕で示される化合物の具体例としては、例えば芳香環に直結したメチル基を有する

20



25

、例えば芳香環に直結する炭素数2以上のアルキレン基を有する







等が挙げられる。

本発明の重水素化方法に於いて、触媒として用いられる、活性化されたパラジウムカーボンとは、所謂パラジウムカーボンが水素ガスと接触することにより活性化されたものをいう。

本発明の重水素化方法に於いて、活性化されたパラジウムカーボンとしては、予め水素ガス等で活性化されたものを用いててもよいし、また、重水素化の反応系に水素ガスを存在させれば、活性化されていない所謂パラジウムカーボンを用いることも出来る。

15 活性化されていないパラジウムカーボン或いは活性化されたパラジウムカーボンの使用量は、反応の基質として用いられる、置換基を有していてもよい芳香環に直結したメチル基又は炭素数2以上のアルキレン基を有する化合物に対して通常0.1～50w/w%、好ましくは3～10w/w%となる量である。

20 また、活性化されていないパラジウムカーボンを本発明の反応に用いる場合、反応系で接触させる水素ガスの量は、多すぎると本発明の反応溶媒である重水素化された溶媒が水素化されて本発明の重水素化反応に悪影響を及ぼすため、パラジウムカーボンの活性化に必要な程度の量であればよく、その量は通常パラジウムカーボンのパラジウムに対して通常 1～20000 当量、好ましくは 10～700 当量となる量である。

本発明の重水素化方法に於いて用いられる、重水素化された溶媒とし

ては、例えば、重水、例えば重メタノール、重エタノール、重イソプロパノール、重ブタノール、重tert-ブタノール、重ペントノール、重ヘキサノール、重ヘプタノール、重オクタノール、重ノナノール、重デカノール、重ウンデカノール、重ドデカノール等の重アルコール類、例えば重ギ酸、重酢酸、重プロピオン酸、重酪酸、重イソ酪酸、重吉草酸、重イソ吉草酸、重ピバル酸等の重カルボン酸類、例えば重アセトン、重メチルエチルケトン、重メチルイソブチルケトン、重ジエチルケトン、重ジプロピルケトン、重ジイソプロピルケトン、重ジブチルケトン等の重ケトン類、重ジメチルスルホキシド等が挙げられ、中でも重水、重メタノールが好ましい。これら溶媒は、分子中の一つ以上の水素原子が重水素化されているものであればよく、例えば重アルコール類ではヒドロキシル基の水素原子、重カルボン酸類ではカルボキシル基の水素原子が重水素化されれば本発明の重水素化方法に使用し得るが、分子中の水素原子全てが重水素化されたものが特に好ましい。

重水素化された溶媒の使用量は、反応の基質として用いられる、置換基を有していてもよい芳香環に直結したメチル基又は炭素数2以上のアルキレン基を有する化合物に対して、交換部位に必要な重水素原子の理論量を1当量とすると、通常重水素化された溶媒に1～1000当量の重水素原子が含まれるような量、好ましくは10～250当量の重水素原子が含まれるような量である。

本発明の重水素化方法に於ける反応温度は、通常、溶媒の沸点（常圧）以上で還流状態になるように設定すればよく、好ましくは溶媒の沸点～沸点+30℃、より好ましくは溶媒の沸点～沸点+20℃、更に好ましくは溶媒の沸点+5℃～沸点+15℃である。

密封された反応系内が上記した如き反応温度になるよう設定するには、加温及び／又は加圧すればよく、それによって結果的に系内が加圧状

態になっていればよい。

反応系を加圧するには、例えば窒素ガス、アルゴンガス等の不活性ガスを用いて行えばよい。

反応時間は、通常 1～100 時間、好ましくは 10～50 時間、より  
5 好ましくは 15～30 時間である。

本発明の重水素化方法を、溶媒として重水を用いる場合を例にとって具体的に説明する。

即ち、例えば一般式〔1〕で示される化合物（基質）0.25mmol及び該基質に対して約10wt%の活性化されていないパラジウムカーボン（Pd10%）を重水1mLに懸濁させ、密封した反応系を水素置換した後、油浴中で約24時間加熱還流しながら反応させる。反応終了後、反応液を濾過し、生成物が重水に可溶な場合はそのまま<sup>1</sup>H-NMR及びMassスペクトルを測定して構造解析を行う。生成物が重水に難溶な場合は、反応液からこれを単離してから<sup>1</sup>H-NMR及びMassスペクトルを測定して構造解析を行う  
15 。

生成物が重水に難溶な場合に反応液から生成物を単離するには、例えば抽出等の公知の精製方法に従って行えばよい。

尚、一般式〔1〕で示される化合物に於いて、-A-Xで表される基或いは芳香環の置換基の重水素化は、芳香環に近い位置にある炭素原子に結合した水素原子程重水素化率が高いと推測される。  
20

また、-A-Xで表される基又は芳香環の置換基として芳香環に結合したアルキル基の鎖中に、酸素原子が含まれている場合には、該酸素原子に隣接する炭素原子及び芳香環から見て該酸素原子より遠い位置にある炭素原子に結合している水素原子は重水素化され難い。

25 尚、一般式〔1〕で示される化合物のうち、例えばニトロ基等の置換基を有している化合物を反応の基質として用い、且つ反応系中で触媒を

活性化させるために水素ガスを用いて重水素化反応を行う場合には、本発明の重水素化の他に該基質のニトロ基等の置換基がアミノ基等に還元される場合がある。

上記した如く、活性化されたパラジウムカーボン及び重水素化された溶媒を用い、密封還流下で基質を反応させることを特徴とする本発明の重水素化方法によれば、従来、重水素化は可能なもののその重水素化率が低かった芳香環に直結したメチル基の水素原子が非常に効率よく重水素化出来、また、炭素数2以上のアルキレン基に於けるベンジル位の水素原子の重水素化のみならず、従来不可能であったベンジル位以外の水素原子をも重水素化し得るようになった。

以下に実施例を挙げて本発明を更に具体的に説明するが、本発明はこれらにより何等限定されるものではない。

### 実施例

15 実施例1. 下記式



で示される化合物0.25mmol及び上記化合物に対して10wt%のパラジウムカーボン(Pd10%)及び内部標準としてp-アニス酸0.25mmolを重水1mLに懸濁させ、系内を脱気した後バルーンを用いて反応液に水素ガスを接触させた。反応液を110℃の油浴中で24時間加熱還流させた後、反応液をメンブランフィルターで濾過し、濾液をそのまま<sup>1</sup>H-NMR及びMassスペクトル測定に用いて生成物の構造解析を行ったところ、原料化合物の芳香環上の水素原子及び芳香環に結合しているアルキレン基上の水素原子が重水素化されていることが分かった。化合物中の炭素原子に結合した水素原子夫々の重水素化率(%)を表1に示す。

表 1

|       | 反応温度 | P h | C 1 | C 2 + C 3 | C 4 |
|-------|------|-----|-----|-----------|-----|
| 実施例 1 | 110℃ | 21  | 93  | 88        | 53  |
| 比較例 1 | 室温   | 0   | 89  | 0         | 0   |

但し、表中、P hは芳香環の炭素原子を意味し、C 1、C 2 + C 3及びC 4は下記式中の数字で示される炭素原子を夫々意味し、表に記載されている数字は夫々の炭素原子に結合している水素原子の重水素化率を  
5 表す。



## 比較例 1.

10 反応を室温で行った以外は実施例 1 と同様にして重水素化を行った。化合物中の炭素原子に結合した水素原子の重水素化率を表 1 に併せて示す。

## 比較例 2 及び 3.

15 基質として以下に示すような芳香環を持たない化合物を用いて実施例 1 と同様な操作を行ったところ、何れの化合物も全く重水素化されなかつた。



## 実施例 2 ~ 8.

20 表 2 に示す化合物を基質として用いた以外は実施例 1 と同様にして重水素化を行った。化合物中の炭素原子に結合した水素原子の重水素化率(%)を表 2 に示す。

表 2

|       | 基質                                                | 使用量<br>(mmol) | Ph | C1 | C2 | C3 | C4 | C5 | C6 | C7 |
|-------|---------------------------------------------------|---------------|----|----|----|----|----|----|----|----|
| 実施例 2 | PhCH <sub>3</sub>                                 | 5             | 0  | 64 | —  | —  | —  | —  | —  | —  |
| 実施例 3 | PhCH <sub>2</sub> CH <sub>3</sub>                 | 4             | 0  | 59 | 52 | —  | —  | —  | —  | —  |
| 実施例 4 | Ph(CH <sub>2</sub> ) <sub>2</sub> CH <sub>3</sub> | 4             | 19 | 77 | 75 | 56 | —  | —  | —  | —  |
| 実施例 5 | Ph(CH <sub>2</sub> ) <sub>3</sub> CH <sub>3</sub> | 3             | 51 | 74 | 75 | 72 | 70 | —  | —  | —  |
| 実施例 6 | Ph(CH <sub>2</sub> ) <sub>4</sub> CH <sub>3</sub> | 0.25          | 0  | 85 | 80 | —  | 12 | 0  | —  | —  |
| 実施例 7 | Ph(CH <sub>2</sub> ) <sub>5</sub> CH <sub>3</sub> | 0.25          | 32 | 90 | 96 | —  | 36 | —  | 11 | —  |
| 実施例 8 | Ph(CH <sub>2</sub> ) <sub>6</sub> CH <sub>3</sub> | 0.25          | 20 | 93 | 59 | —  | —  | 17 | —  | 10 |

但し、表中ーは該当する水素原子がないことを表し、Phは芳香環の炭素原子を意味し、C1～C7は芳香環に近い位置から順次番号を付した炭素原子を意味し、表に記載されている数字は夫々の炭素原子に結合している水素原子の重水素化率を表す（以下同じ）。



## 10 実施例 9～12.

表 3 に示す化合物を基質として用いた以外は実施例 1 と同様にして重水素化を行った。化合物中の炭素原子に結合した水素原子の重水素化率(%)を表 3 に示す。

表 3

|        | 基質                                     | Ph | C1 | C2  | C3 | C4  | C5 | 末端H |
|--------|----------------------------------------|----|----|-----|----|-----|----|-----|
| 実施例 9  | Ph(CH <sub>2</sub> ) <sub>2</sub> COOH | 0  | 91 | 77  | —  | —   | —  | 100 |
| 実施例 10 | Ph(CH <sub>2</sub> ) <sub>3</sub> COOH | 33 | 96 | 97  | 55 | —   | —  | 100 |
| 実施例 11 | Ph(CH <sub>2</sub> ) <sub>4</sub> COOH | 26 | 97 | —   | 80 | 0   | —  | 100 |
| 実施例 12 | Ph(CH <sub>2</sub> ) <sub>5</sub> COOH | 21 | 94 | (A) | 81 | (B) | 0  | 100 |

\* (A) + (B) = 60%。

但し、末端Hはカルボキシリ基の水素原子を意味し、表に記載された数字はその重水素化率を表す。

### 実施例 13.

5 表4に示す化合物を基質として用いた以外は実施例1と同様にして重水素化を行った。化合物中の炭素原子に結合した水素原子の重水素化率(%)を表4に示す。

表4

|       | 基質                                                   | Ph | C1 | C2+C3 | C4 | C5 |
|-------|------------------------------------------------------|----|----|-------|----|----|
| 実施例13 | Ph(CH <sub>2</sub> ) <sub>4</sub> COOCH <sub>3</sub> | 0  | 90 | 91    | 0  | 0  |

10 但し、表中 Ph、C1、C2、C3、C4及びC5は、下記式の数字で示される位置にある炭素原子を表す。



### 実施例 14～16.

15 表5に示す化合物を基質として用いた以外は実施例1と同様にして重水素化を行った。化合物中の炭素原子に結合した水素原子の重水素化率(%)を表5に示す。

表5

|       | 基質                                   | Ph | C1 | C2  | C3 | C4  | C5 |
|-------|--------------------------------------|----|----|-----|----|-----|----|
| 実施例14 | Ph(CH <sub>2</sub> ) <sub>3</sub> OH | 0  | 92 | 31  | 0  | —   | —  |
| 実施例15 | Ph(CH <sub>2</sub> ) <sub>4</sub> OH | 0  | 90 | 24  | 32 | 0   | —  |
| 実施例16 | Ph(CH <sub>2</sub> ) <sub>5</sub> OH | 0  | 89 | (A) | 39 | (B) | 0  |

\* (A) + (B) = 42%。

20 実施例17及び18.

下記に示す化合物を基質として用いた以外は実施例1と同様にして重

水素化を行った。化合物中の炭素原子に結合している水素原子の重水素化率(%)を表6に示す。



5 表6

|       | 基質                                                                 | Ph | C1 | C2 | C3 | C4 | C5 |
|-------|--------------------------------------------------------------------|----|----|----|----|----|----|
| 実施例17 | Ph(CH <sub>2</sub> ) <sub>3</sub> OCH <sub>3</sub>                 | 0  | 91 | 88 | 0  | 0  | —  |
| 実施例18 | Ph(CH <sub>2</sub> ) <sub>3</sub> OCH <sub>2</sub> CH <sub>3</sub> | 0  | 96 | 99 | 0  | 0  | 0  |

比較例4及び5.

基質として下記の化合物を用いた以外は実施例1と同様の操作を行つたところ、何れの化合物も全く重水素化されなかつた。



10

実施例19～24.

基質として下記の化合物を下記表に記載の量用いた以外は実施例1と同様にして重水素化を行つた。化合物中の炭素原子に結合している水素原子の重水素化率(%)を表7に示す。

15



但し、Xは表7に示す置換基を表す。

20

表 7

|       | 置換基(X)              | 基質使用量    | Ph | C1  | C2  | 末端CH <sub>3</sub> |
|-------|---------------------|----------|----|-----|-----|-------------------|
| 実施例19 | H                   | 4mmol    | 0  | 59  | 52  | —                 |
| 実施例20 | CH <sub>3</sub>     | 4mmol    | 19 | 77  | 75  | 56                |
| 実施例21 | OCH <sub>3</sub>    | 0.25mmol | 0  | 85  | 7   | 0                 |
| 実施例22 | NHCOCH <sub>3</sub> | 0.25mmol | 15 | 92  | 38  | 0                 |
| 実施例23 | COOH                | 0.25mmol | 0  | 91  | 77  | *末端H 100%         |
| 実施例24 | COCH <sub>3</sub>   | 0.25mmol | 36 | 100 | 100 | 96                |

実施例 25 ~ 30.

表 8 に記載の反応基質を下記の量用いた以外は実施例 1 と同様にして重水素化を行った。化合物中の炭素原子に結合した水素原子の重水素化率(%)を表 8 に示す。

表 8

|        | 基質 | 生成物 | 基質使用量    | 重水素化率                 |
|--------|----|-----|----------|-----------------------|
| 実施例 25 |    |     | 5mmol    | 64%                   |
| 実施例 26 |    |     | 0.25mmol | 94%                   |
| 実施例 27 |    |     | 0.25mmol | 92%                   |
| 実施例 28 |    |     | 3mmol    | 81%                   |
| 実施例 29 |    |     | 0.25mmol | 95%<br>*芳香環の重水素化率:56% |
| 実施例 30 |    |     | 0.25mmol | 92%<br>*芳香環の重水素化率:63% |

## 実施例 3 1 ~ 3 3 .

表 9 に記載の化合物を基質として用い、反応溶媒として重水の代わりに重メタノールを用い、80°Cで反応を行った以外は実施例 1 と同様にして重水素化を行った。化合物中の炭素原子に結合した水素原子の重水素化率(%)を表 9 に示す。

表 9

|        | 基質                                                | Ph | C1 | C2 | C3 | C4 | C5 |
|--------|---------------------------------------------------|----|----|----|----|----|----|
| 実施例 31 | Ph(CH <sub>2</sub> ) <sub>2</sub> CH <sub>3</sub> | 0  | 59 | 26 | 4  | —  | —  |
| 実施例 32 | Ph(CH <sub>2</sub> ) <sub>3</sub> CH <sub>3</sub> | 0  | 73 | 69 | 10 | 0  | —  |
| 実施例 33 | Ph(CH <sub>2</sub> ) <sub>4</sub> CH <sub>3</sub> | 0  | 81 | 70 | 10 | 5  |    |

## 実施例 3 4 .

基質として下記式で示されるイブプロフェン

10



を用いた以外は実施例 1 と同様にして重水素化を行った。重水素化率(%)を表 1 0 に表す。

表 1 0

|        | C1 | C2 | C3 | C4 | 末端H |
|--------|----|----|----|----|-----|
| 実施例 34 | 50 | 96 | 94 | 50 | 100 |
| 比較例 6  | 0  | 1  | 18 | 0  | 100 |

15 比較例 6 .

室温で反応を行った以外は実施例 3 4 と同様にして重水素化を行った。重水素化率を表 1 0 に併せて示す。

実施例 1 と比較例 1 、実施例 3 4 と比較例 6 の重水素化率を比較すると、室温で重水素化反応を行った場合では所謂ベンジル位のみが僅かに重水素化されているのに対し、還流下で重水素化を行うとベンジル位の

20

みならずベンジル位以外のアルキル炭素上に結合する水素原子も高い割合で重水素化されることが分かる。

比較例 2 及び 3 より、芳香環を有していない脂肪族化合物は、重水素化されないことが分かる。

5 実施例 2～8、31～33 から明らかな如く、芳香族化合物の芳香環に直結したアルキル基の炭素数が多くなるにつれ、芳香環から遠い位置に存在する炭素原子に結合している水素原子の重水素化率が低くなることが分かる。

10 実施例 2～8、17～18、25～28、31～33 から明らかな如く、重水素化された溶媒への溶解性が低い化合物でも、それを基質として本発明の重水素化方法を行えば重水素化されることが分かる。

15 実施例 17 及び 18 から明らかな如く、アルキル鎖中に酸素原子を有する芳香族化合物では、該酸素原子に隣接する炭素原子に結合している水素原子及び芳香環からみて該酸素原子より遠い位置に存在する炭素原子に結合している水素原子は重水素化され難いことが分かる。

### 産業上の利用の可能性

活性化されたパラジウムカーボン及び重水素化された溶媒を用い、密封還流下で、置換基を有していてよい芳香環に直結したメチル基又は炭素数 2 以上のアルキレン基を有する化合物を反応させるという本発明の方法によれば、従来重水素化は可能なもののその重水素化率が低かつた当該メチル基の水素原子を、極めて効率よく重水素化出来、また、炭素数 2 以上のアルキレン基に於けるベンジル位の水素原子の重水素化のみならず、従来不可能であったベンジル位以外の水素原子をも重水素化することが可能となった。

## 請 求 の 範 囲

1. 活性化されたパラジウムカーボンの存在下、重水素化された溶媒中、置換基を有していてもよい芳香環に直結したメチル基又は炭素数 2 以上 5 のアルキレン基を有する化合物を密封還流下に置くことを特徴とする、当該化合物が有する当該メチル基の水素原子、又は当該化合物が有する炭素数 2 以上 10 のアルキレン基のベンジル位及びそれ以外の炭素原子に結合する水素原子重水素化方法。

2. 置換基を有していてもよい芳香環に直結したメチル基又は炭素数 2 以上的アルキレン基を有する化合物が、当該メチル基を有する化合物で 15 ある請求項 1 に記載の重水素化方法。

3. 置換基を有していてもよい芳香環に直結したメチル基又は炭素数 2 以上のアルキレン基を有する化合物が、置換基を有していてもよい芳香環に直結した炭素数 2 以上のアルキレン基を有する化合物である請求項 15 1 に記載の重水素化方法

4. 置換基を有していてもよい芳香環に直結したメチル基又は炭素数 2 以上的アルキレン基を有する化合物に於ける、芳香環に直結したメチル基又は炭素数 2 以上のアルキレン基を有する化合物が、一般式 [1]

20



25

(式中、 A はメチレン基又は炭素数 2 以上のアルキレン基を表し、 X は水素原子、アルコキシ基、カルボキシル基、水酸基、アミノ基、アシリル基、アシリルアミノ基又はアルコキカルボニル基を表す。但し、 A がメチレン基のとき X は水素原子を表す。) で示される化合物である請求項 1 に記載の重水素化方法。

5. A で表される炭素数 2 以上のアルキレン基が直鎖状アルキレン基で

あり、Xが水素原子、カルボキシル基、アシリル基、アシリルアミノ基又はアルコキシカルボニル基である請求項3に記載の重水素化方法。

6. Aで表される炭素数2以上のアルキレン基が炭素数3以上の直鎖アルキレン基であり、Xがアルコキシ基、水酸基又はアミノ基である請求

5 項3に記載の重水素化方法。

7. 芳香環が有していてもよい置換基がアルキル基、アリール基、アラルキル基、アルコキシ基、ニトロ基及びアミノ基から選ばれるものである、請求項3に記載の重水素化方法。

8. 一般式 [2]

10



(式中、nは3、4又は5である。)で示される化合物。

## 特許協力条約に基づく国際出願願書

原本（出願用）・印刷日時 2002年11月05日 (05.11.2002) 火曜日 16時05分41秒

F 1521

|                   |                                                                                   |                                                                                             |
|-------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| VIII-5-1          | 不利にならない開示又は新規性喪失の例外に関する申立て<br>不利にならない開示又は新規性喪失の例外に関する申立て（規則4.17(v)及び51の2.1(a)(v)) | <b>本国際出願に關し、</b><br><br><b>和光純薬工業株式会社は、<br/>本国際出願の請求項に記載された対象が以下のように<br/>開示されたことを申し立てる。</b> |
| VIII-5-1<br>(i)   | 開示の種類                                                                             | <b>その他：学会発表</b>                                                                             |
| VIII-5-1<br>(ii)  | 開示の日付：                                                                            | <b>2001年12月08日 (08.12.2001)</b>                                                             |
| VIII-5-1<br>(iii) | 開示の名称：                                                                            | <b>平成13年度日本薬学会東海支部例会</b>                                                                    |
| VIII-5-1<br>(iv)  | 開示の場所：                                                                            | <b>名城大学薬学部</b>                                                                              |
| VIII-5-1<br>(i)   | 開示の種類                                                                             | <b>その他：学会発表（インターネット掲載の要旨）</b>                                                               |
| VIII-5-1<br>(ii)  | 開示の日付：                                                                            | <b>2002年02月01日 (01.02.2002)</b>                                                             |
| VIII-5-1<br>(iii) | 開示の名称：                                                                            | <b>日本薬学会第122年会</b>                                                                          |
| VIII-5-1<br>(iv)  | 開示の場所：                                                                            |                                                                                             |
| VIII-5-1<br>(i)   | 開示の種類                                                                             | <b>その他：学会発表（要旨集）</b>                                                                        |
| VIII-5-1<br>(ii)  | 開示の日付：                                                                            | <b>2002年03月05日 (05.03.2002)</b>                                                             |
| VIII-5-1<br>(iii) | 開示の名称：                                                                            | <b>日本薬学会第122年会</b>                                                                          |
| VIII-5-1<br>(iv)  | 開示の場所：                                                                            |                                                                                             |
| VIII-5-1<br>(i)   | 開示の種類                                                                             | <b>その他：学会発表</b>                                                                             |
| VIII-5-1<br>(ii)  | 開示の日付：                                                                            | <b>2002年03月26日 (26.03.2002)</b>                                                             |
| VIII-5-1<br>(iii) | 開示の名称：                                                                            | <b>日本薬学会第122年会</b>                                                                          |
| VIII-5-1<br>(iv)  | 開示の場所：                                                                            | <b>幕張メッセ・国際展示場</b>                                                                          |
| VIII-5-1<br>(v)   | 本申立ては、次の指定国のため<br>になされたものである。：                                                    | <b>すべての指定国</b>                                                                              |

# INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP02/11785

**A. CLASSIFICATION OF SUBJECT MATTER**  
Int.Cl<sup>7</sup> C07B59/00//C07M5:00

According to International Patent Classification (IPC) or to both national classification and IPC

**B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)  
Int.Cl<sup>7</sup> C07B59/00//C07M5:00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)  
CAPLUS (STN), REGISTRY (STN)

**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                                                                | Relevant to claim No. |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| A         | JP 63-198638 A (Hoechst AG.),<br>17 August, 1988 (17.08.88),<br>& EP 276675 A2 & DE 3701302 A1<br>& CN 88100364 A                                                 | 1-7                   |
| A         | EP 203588 A2 (MITSUBISHI RAYON CO., LTD.),<br>03 December, 1986 (03.12.86),<br>& JP 61-275241 A & DE 3689206 A1<br>& NO 862126 A & CA 1265814 A<br>& US 5221768 A | 1-7                   |
| A         | JP 10-139694 A (Dainippon Ink And Chemicals, Inc.),<br>26 May, 1998 (26.05.98),<br>(Family: none)                                                                 | 1-7                   |

Further documents are listed in the continuation of Box C.

See patent family annex.

\* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search  
05 February, 2003 (05.02.03)

Date of mailing of the international search report  
25 February, 2003 (25.02.03)

Name and mailing address of the ISA/  
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

**INTERNATIONAL SEARCH REPORT**

International application No.

PCT/JP02/11785

**Box I Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)**

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1.  Claims Nos.:  
because they relate to subject matter not required to be searched by this Authority, namely:
  
2.  Claims Nos.:  
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
  
3.  Claims Nos.:  
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

**Box II Observations where unity of invention is lacking (Continuation of item 3 of first sheet)**

This International Searching Authority found multiple inventions in this international application, as follows:

Claims 1-7 relate to a process for deuteration, while claim 8 relates to compounds represented by the general formula [2]. The compounds are not ones produced by the process of claims 1-7.

Therefore, there is no technical relationship between claims 1-7 and claim 8 involving one or more of the same or corresponding special technical features.

Thus, claims 1-7 and claim 8 are not considered as relating to a group of inventions so linked as to form a single general inventive concept. This international application includes two inventions.

1.  As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
  
2.  As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
  
3.  As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
  
4.  No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-7

**Remark on Protest**     The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

## A. 発明の属する分野の分類(国際特許分類(IPC))

Int. C17 C07B59/00 // C07M5:00

## B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C17 C07B59/00, C07M5:00

最小限資料以外の資料で調査を行った分野に含まれるもの

## 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CAPLUS(STN)、REGISTRY(STN)

## C. 関連すると認められる文献

| 引用文献の<br>カテゴリー* | 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示                                                                                                  | 関連する<br>請求の範囲の番号 |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------|------------------|
| A               | J P 63-198638 A (ヘキスト・アクチエンゲゼルシャフト) 1988. 08. 17 & EP 276675 A2 & DE 3701302 A1 & CN 88100364 A                                    | 1-7              |
| A               | EP 203588 A2 (MITSUBISHI RAYON CO. LTD.) 1986. 12. 03 & JP 61-275241 A & DE 3689206 A1 & NO 862126 A & CA 1265814 A & US 5221768 A | 1-7              |

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

## \* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
- 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

|                                                                         |                                                                                                                   |    |      |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----|------|
| 国際調査を完了した日<br>05.02.03                                                  | 国際調査報告の発送日<br>25.02.03                                                                                            |    |      |
| 国際調査機関の名称及びあて先<br>日本国特許庁 (ISA/JP)<br>郵便番号 100-8915<br>東京都千代田区霞が関三丁目4番3号 | 特許庁審査官(権限のある職員)<br>藤森 知郎<br> | 4H | 9357 |

電話番号 03-3581-1101 内線 3443

| C (続き) 関連すると認められる文献 |                                                                           |                  |
|---------------------|---------------------------------------------------------------------------|------------------|
| 引用文献の<br>カテゴリー*     | 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示                                         | 関連する<br>請求の範囲の番号 |
| A                   | J P 1 0 - 1 3 9 6 9 4 A (大日本インキ化学工業株式会社)<br>1 9 9 8 . 0 5 . 2 6 (ファミリーなし) | 1 - 7            |

## 第I欄 請求の範囲の一部の調査ができないときの意見（第1ページの2の続き）

法第8条第3項（PCT17条(2)(a)）の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。

1.  請求の範囲 \_\_\_\_\_ は、この国際調査機関が調査をすることを要しない対象に係るものである。つまり、
  
  
  
  
2.  請求の範囲 \_\_\_\_\_ は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
  
  
  
  
3.  請求の範囲 \_\_\_\_\_ は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に従って記載されていない。

## 第II欄 発明の単一性が欠如しているときの意見（第1ページの3の続き）

次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。

請求の範囲1-7にかかる発明は重水素化方法に関する発明であり、請求の範囲8にかかる発明は一般式[2]で示される化合物に関する発明であるが、該化合物は請求の範囲1-7に係る発明の方法によって製造される化合物ではない。  
したがって、請求の範囲1-7と請求の範囲8とは、相互に同一のまたは対応する特別の技術的特徴を含む技術的関係を有しているとは認められない。  
よって、請求の範囲1-7と請求の範囲8とは、单一の一般的発明概念を形成するように関連している一群の発明とすることはできず、この国際出願に2の発明があると認めた。

1.  出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求の範囲について作成した。
2.  追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。
3.  出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかつたので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
  
  
  
  
4.  出願人が必要な追加調査手数料を期間内に納付しなかつたので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。

請求の範囲1-7

## 追加調査手数料の異議の申立てに関する注意

- 追加調査手数料の納付と共に出願人から異議申立てがあった。
- 追加調査手数料の納付と共に出願人から異議申立てがなかつた。