OpenMP 调度策略实验报告

容逸朗 2020010869

测量结果

• 在两个测例上分別应用 OpenMP 的 static 、 dynamic 和 guided 三种调度模式,测量结果如下:

调度模式	均匀长度分段用时/ms	随机长度分段用时/ms
static	68.3845	1414.37
dynamic	73.2568	1373.87
guided	68.1761	1452.47

分析

- 对于排序任务而言,数据量越大,排序时间以 n log n 的速度增长:
 - 均匀分布的情况下, 5×10^7 的数据被分为 10^5 组, 每组约有 500 个数;
 - 对于随机长度的任务而言,程序利用正态分布生成 100 个位于区间 $[0,5\times10^7]$ 的数,再排序成为区间端点。一般情况下,第一个和最后一个数会位于 1.3×10^7 及 3.9×10^7 上,这导致了无论使用何种调度模式,程序也必需面对 10^7 量级的排序。
 - 在不考虑调度时间的情况下,执行一次 $n=10^7$ 排序的时间足以完成 5×10^4 次规模为 500 的排序任务,因此两个任务的执行时间差距极大。
- 接下来考虑不同的调度模式对程序的影响,首先考虑均匀分布的测例:
 - static 和 guided 的时间相若,这是因为 guided 一开始分配的任务较多,以后减小,这和预先分配定量的 static 区别不大;
 - 而 dynamic 可能由于每次线程完成任务后都需要重新分配任务,故需要额外的调度时间;
- 对于随机长度的任务而言:
 - dynamic 每次重新分配可以使得每个进程完成的时间较集中,因此在数据量大的情况下速度较高;
 - static 方法只考虑任务的平均分配,因此仍然会对执行区间两侧的长时间任务的进程分配更多的数据,故速度较 dynamic 慢;
 - guided 算法一开始可能把多个任务量大的任务划分到同一进程中,故速度最慢。