

Do space filling curves <u>really</u> exist?

Let X be some (compact) space.

Let X be some (compact) space.

A curve is an embedding $f:[0,1] \to X$.

Let X be some (compact) space.

A curve is an embedding $f:[0,1] \to X$. (No crossings, continuous)

Cantor and Cardinality

"In 1878, Georg Cantor demonstrated that any two finite-dimensional smooth manifolds, no matter what their dimensions, have the same cardinality...

... and Mathematics has never been the same since."

Netto's Theorem

Netto's Theorem

A bijection ϕ : $[0,1] \rightarrow [0,1]^2$

cannot be continuous.

Netto's Theorem

A bijection $\phi:[0,1] \rightarrow [0,1]^2$ cannot be continuous.

(More generally, manifolds of different dimensions cannot be homeomorphic.)

Corollary:

Corollary:

Space filling curves don't exist.

i = 2

Let $h_i: [0,1] \rightarrow [0,1]^2$ denote the order *i*th-order Hilbert curve.

Let $h_i: [0,1] \to [0,1]^2$ denote the order *i*th-order Hilbert curve.

The Hilbert curve is

Let $h_i: [0,1] \to [0,1]^2$ denote the order *i*th-order Hilbert curve.

The Hilbert curve is

$$h(x) := \lim_{i \to \infty} h_i(x)$$

Let $h_i: [0,1] \to [0,1]^2$ denote the order *i*th-order Hilbert curve.

The Hilbert curve is

$$h(x) := \lim_{i \to \infty} h_i(x)$$

Q: is h surjective?

Let $h_i: [0,1] \to [0,1]^2$ denote the order *i*th-order Hilbert curve.

The Hilbert curve is

$$h(x) := \lim_{i \to \infty} h_i(x)$$

Q: is h surjective?

Q: is h injective?

Let $h_i: [0,1] \to [0,1]^2$ denote the order *i*th-order Hilbert curve.

The Hilbert curve is

$$h(x) := \lim_{i \to \infty} h_i(x)$$

Q: is h surjective?

Q: is h injective?

Q: is h continuous?

The Cantor Set

 $\boxed{[0,1]}$

[0,1] C_1

	[0,1]	
	\boldsymbol{C}_1	
	C_2	

	Γ0.17	
	C_2	
	C_3	

	Γ0.17	
	C_1	
	C_2	
	C_3	
	C_4	
11 11 11	C_5	11 11 11
	C_6	
	•	

"The Set of Excluded Middle Thirds"

"The Set of Excluded Middle Thirds"

The **Cantor set** is
$$\mathscr{C} := \bigcap C_i$$

"The Set of Excluded Middle Thirds"

The **Cantor set** is
$$\mathscr{C} := \bigcap C_i$$

Equivalently, \mathscr{C} is the set of all x such that

"The Set of Excluded Middle Thirds"

The **Cantor set** is
$$\mathscr{C} := \bigcap C_i$$

Equivalently, \mathscr{C} is the set of all x such that

$$x = \frac{2t_1}{3} + \frac{2t_2}{3^2} + \frac{2t_3}{3^3} + \frac{2t_4}{3^4} \dots$$
, where $\forall i, t_i \in \{0,1\}$

"The Set of Excluded Middle Thirds"

The **Cantor set** is
$$\mathscr{C} := \bigcap C_i$$

Equivalently, \mathscr{C} is the set of all x such that

$$x = \frac{2t_1}{3} + \frac{2t_2}{3^2} + \frac{2t_3}{3^3} + \frac{2t_4}{3^4} \dots$$
, where $\forall i, t_i \in \{0,1\}$

Or in *ternary*:

"The Set of Excluded Middle Thirds"

The **Cantor set** is
$$\mathscr{C} := \bigcap C_i$$

Equivalently, \mathscr{C} is the set of all x such that

$$x = \frac{2t_1}{3} + \frac{2t_2}{3^2} + \frac{2t_3}{3^3} + \frac{2t_4}{3^4} \dots$$
, where $\forall i, t_i \in \{0,1\}$

Or in *ternary*:

$$x = 0.(2t_1)(2t_2)(2t_3)(2t_4)...$$

Define $\eta:\mathscr{C}\to [0,1]$ by the map

Define $\eta:\mathscr{C}\to [0,1]$ by the map

$$0.(2t_1)(2t_2)(2t_3)(2t_4)... \mapsto 0.t_1t_2t_3t_4...$$

Define $\eta: \mathscr{C} \to [0,1]$ by the map $0.(2t_1)(2t_2)(2t_3)(2t_4)... \mapsto 0.t_1t_2t_3t_4...$

• η is injective so the cardinality of $\mathscr C$ is at least that of [0,1]

Define $\eta:\mathscr{C}\to [0,1]$ by the map

$$0.(2t_1)(2t_2)(2t_3)(2t_4)... \mapsto 0.t_1t_2t_3t_4...$$

- η is injective so the cardinality of $\mathscr C$ is at least that of [0,1]
- $\mathscr{C} \subset [0,1]$ so the cardinality of [0,1] is at least that of \mathscr{C}

From the Cantor Set to [0,1]²

Define $\varphi:\mathscr{C}\to [0,1]^2$ by the mapping

Define $\varphi:\mathscr{C}\to [0,1]^2$ by the mapping

$$0.(2t_1)(2t_2)(2t_3)(2t_4)...(2t_i) \mapsto \begin{bmatrix} 0.t_1t_3t_5...\\ 0.t_2t_4t_6... \end{bmatrix}$$

Define $\varphi:\mathscr{C}\to [0,1]^2$ by the mapping

$$0.(2t_1)(2t_2)(2t_3)(2t_4)...(2t_i) \mapsto \begin{bmatrix} 0.t_1t_3t_5...\\ 0.t_2t_4t_6... \end{bmatrix}$$

Q: is ϕ surjective?

Define $\varphi:\mathscr{C}\to [0,1]^2$ by the mapping

$$0.(2t_1)(2t_2)(2t_3)(2t_4)...(2t_i) \mapsto \begin{bmatrix} 0.t_1t_3t_5...\\ 0.t_2t_4t_6... \end{bmatrix}$$

Q: is ϕ surjective?

Q: is ϕ injective?

Define $\varphi:\mathscr{C}\to [0,1]^2$ by the mapping

$$0.(2t_1)(2t_2)(2t_3)(2t_4)...(2t_i) \mapsto \begin{bmatrix} 0.t_1t_3t_5...\\ 0.t_2t_4t_6... \end{bmatrix}$$

Q: is ϕ surjective?

Q: is ϕ injective?

Q: is φ continuous?

(ith-order) Lebesgue Curve

Lebegue extends φ continuously to [0,1] by linear interpolation (for each ith-order approximation)

Eg. \mathscr{L}_2

• z is *surjective* onto $[0,1]^2$

- z is *surjective* onto $[0,1]^2$
- z is <u>not</u> injective

- z is *surjective* onto $[0,1]^2$
- z is <u>not</u> injective
- z is a continuous map

- z is surjective onto $[0,1]^2$
- z is <u>not</u> injective
- z is a continuous map
- z is <u>almost everywhere</u> differentiable

How to Fill Space

(A paradigm)

- 1. Net
- 2. Order
- 3. Recurse

Example:

Example: Quadtrees

