ность проводной передачи сигнала от датчика к ЭБУ. Решением этой проблемы с нашей точки зрения может стать использование таких беспроводных технологий передачи данных, как Bluetooth- или RF-передатчиков, осуществляющих связь между сенсором и контроллером. Такие

передатчики помимо того, что решат свою основную задачу в предложенной нами схеме работы АБС, ещё и значительно упростят электросистему автомобиля путём отказа от части проводки. А это в свою очередь позволит в целом повысить надёжность автомобиля.

Литература:

- 1. Балакина, Е.В., Сатонин А.А. Микроэлектромеханический датчик угловой скорости автомобиля. В кн.: Материалы международно-практической конференции Инновации на основе информационных и коммуникационных технологий./Под ред., С.У. Увайсова; Отв. за вып. И.А. Иванов М.: МИЭМ НИУ ВШЭ, 2012, с. 492—495. [Электронный ресурс]. URL: http://window.edu.ru/resource/335/78335/files/info2012. pdf (дата обращения: 24.04.2014).
- 2. Бараночников, М. Л. Микромагнитоэлектроника. Т. 1. М: ДМК Пресс, 2001. 544 с. ил. (Серия «Учебник») Электронная версия 373 с.
- 3. Сысоева, С.С. Датчики скорости автомобиля. Анализ конструкций и перспективы развития/Сысоева С. С // Компоненты и технологии. 2004. № 8. с. 84–89.
- 4. https://www.trwaftermarket.com/ru-RU/(дата обращения: 24.04.2014).

Регенерация гранулированного активного угля, насыщенного парами бутанола, микроволновым излучением

Семенищева Екатерина Леонидовна, студент; Старостин Кирилл Геннадьевич, аспирант; Клушин Виталий Николаевич, профессор Российский химико-технологический университет имени Д. И. Менделеева (г. Москва)

В последние годы в России все больше внимания уделяется исследованиям возможности применения микроволнового излучения для разных технологических процессов. Одно из таких направлений — регенерация активных углей под действием СВЧ-волн. В настоящей статье описаны эксперименты по десорбции активных углей в СВЧ-печи, а также их методологические основы. Результаты экспериментов позволяют сделать вывод о возможности эффективной микроволновой регенерации активного угля, насыщенного парами бутанола.

Ключевые слова: СВЧ, десорбция, активные угли, регенерация.

Введение

Улавливание паров летучих органических растворителей является важной экологической задачей, поскольку потери их с выбросными газами весьма велики: ежегодно в мире выбрасывается более 50 млн. тонн различных углеводоводов [1], среди которых летучие растворители занимают главное место. Улавливание их паров возможно любыми мелкопористыми адсорбентами: активными углями, силикагелями, алюмогелями, цеолитами, пористыми стеклами и т.п. Однако активные угли, являющиеся гидрофобными адсорбентами, наиболее предпочтительны для решения этой задачи: при относительной влажности очищаемых паровоздушных или парогазовых потоков до 50% влага практически не влияет на сорбируемость паров органических растворителей [2].

После насыщения активного угля встает вопрос о его регенерации — главным образом водяным паром

или инертным газом при повышенной температуре. По некоторым исследованиям (напр., [3]) использование СВЧ-технологий для этих целей может быть экономически более выгодным. Основное применение микроволнового излучения большой интенсивности сегодня — это бытовые «микроволновки» и лабораторные минерализаторы. В последние годы в России ведутся активные исследования возможности применения СВЧ-технологий в иных областях: интенсификация сушки зерна и иных сыпучих материалов [4], переработка отходов резины в жидкие продукты [5], применение СВЧ-волн в ортопедической стоматологии [6], деполимеризации ПЭТФ [7] и др. Быстрый, избирательный нагрев без необходимости непосредственного контакта излучателя (магнетрона) и нагреваемого объекта делает эту технологию весьма привлекательной. В настоящей статье описаны эксперименты по регенерации активных углей в СВЧ-печи, а также их методологические основы.

1. Материалы и методы эксперимента

Эксперименты проводили в стандартной бытовой СВЧ-печи с частотой волн 2450 МГц и заявленной мощностью магнетрона 800 Вт. К сожалению, использование микроволнового излучения накладывает целый ряд ограничений. Во-первых, попытка измерения температуры при помощи термопары в зоне СВЧ высокой интенсивности обычно ведет к ее расплавлению под действием наведенных токов. Кроме того, будучи металлом, термопара, выведенная из корпуса печи, сама становится опасным для окружающих источником СВЧ-излучения (в наших экспериментах бытовой измеритель CBЧ MWT-2G зашкаливал в радиусе более метра от печи). Этот эффект отрицательно сказывается и на показаниях измерительного прибора (ПИД-регулятор ТРМ-10 каждую секунду показывал случайную температуру кипения воды: от минус двухсот до тысячи градусов). Использование пирометра также невозможно, т.к. луч прибора не сможет пройти внутрь закрытой СВЧ-печи.

Во-вторых, сложность представляет регулировка интенсивности излучения: магнетроны проектируются на фиксированную мощность (например, 800 или 1000 Вт), которую нельзя изменить уменьшением подаваемого напряжения — магнетрон либо не запустится, либо будет работать нестабильно. Мощность можно уменьшить, поставив между магнетроном и нагреваемым объектом поглощающую нагрузку (например, полиэтиленовый пакет с водой [4]), но тем самым снижается КПД системы.

В-третьих, если СВЧ-облучение ведется в замкнутом отражающем пространстве (а именно таким пространством являются стандартные печи), то из-за многократных отражений о стенки образуются стоячие волны, для которых характерны узлы и пучности. Понятно, что если, к примеру, в узлах мощность СВЧ-волн равняется нулю, то встает проблема неравномерности нагрева в пространстве печи.

Указанные ограничения потребовали внести в наши эксперименты ряд упрощений. Исследования проводили в одной и той же области печи, выбранной визуально по скорости нагрева активного угля докрасна. Мощность излучения в выбранной области (она составила 320 Вт, т.е. 40% мощности магнетрона) определяли по количеству воды, выкипевшей из стеклянного бюкса за определенный промежуток времени. Измерять температуру угля непосредственно не представлялось возможным по названным причинам, ее определяли косвенно: менее чем за минуту плавились помещенные в активный уголь кусочки молибденового стекла (что свидетельствует о температуре 600° C), а за 7-10 минут плавились медные дробинки (выше тысячи градусов). Впрочем, эксперименты с медными дробинками требуют уточнения их плавление могло быть вызвано наведенными токами и другими причинами. Чтобы проводить исследования при столь высоких температурах (не менее 600 градусов), был заказан кварцевый бюкс с отводной трубкой в крышке. Снаружи бюкс теплоизолировали шамотным кирпичом, который выдерживает высокие температуры, хорошо пропускает СВЧ-волны и практически не поглощает их (рисунок 1).

В качестве поглощаемого вещества был выбран н-бутиловый спирт (квалификации хч), как органический растворитель с невысокой токсичностью, который широко используется в производстве: примерно треть его мирового потребления расходуется в производстве бутилакрилатов, еще треть — в производстве гликолевых эфиров, около 15% для получения бутилацетата, остальное — для синтеза других химических продуктов [8].

В качестве адсорбента использовали активный уголь $A\Gamma-3$, как универсальный поглотитель газов и жидкостей [9] наиболее доступный в розничной продаже. Основные характеристики угля в соответствии с паспортом, сопровождающим его поставку, приведены в таблице 1.

Рис. 1. Кварцевый бюкс, теплоизолированный шамотом, в СВЧ-печи. Хорошо видно свечение раскаленного угля внутри бюкса, а также СВЧ-волновод (справа)

Динамическая активность по бензолу	47 мин
Суммарный объем пор по воде	0,84 см³∕г
Насыпная плотность	465 г/дм³
Прочность гранул на истирание	77%

Таблица 1. Паспортные характеристики активного угля АГ-3

Эксперимент проводили с двумя порциями угля после 10 и 15 минут десорбции соответственно. Свежий уголь выдерживали сушильном шкафу в течение суток при 170 °С. Для полного удаления воды и других примесей, уголь после сушильного шкафа обрабатывали в СВЧ-печи в течение пятнадцати минут — при этом, как будет показано ниже, адсорбционная способность угля увеличивалась.

Для экспериментов брали одну и ту же массу угля, которая соответствовала предельному рабочему объему кварцевого бюкса и составляла $24\,\mathrm{r}$. Таким образом, бюкс при регенерации был заполнен, сверху закрыт крышкой с отводной трубкой и окисление угля кислородом воздуха сводилось к минимуму ($<0,01\,\mathrm{r}$). В виду малой скорости поглощения углем паров бутанола в статических условиях (полное насыщение достигалось только через трое суток) от эксикаторного метода адсорбции пришлось отказаться и собрать установку динамической адсорбции (рисунок 2).

Воздух с расходом $4\pi/\text{мин} \cdot \text{см}^2$ подавали компрессором 1 через ротаметр 2 в склянку Дрекселя, где он барботировался через бутанол. Затем воздух, насыщенный парами бутанола, поступал в пустую склянку Дрекселя, служившую каплеуловителем, а оттуда — в адсорбционную колонку 4. Колонка представляла собой стеклянную трубку диаметром 3 см. Расход воздуха контролировали ротаметром, а регулировали выпуском воздуха на тройнике (на рисунке не показано). По мере насы-

щения активного угля каждые две минуты фиксировалось изменение его массы. Адсорбцию проводили при $20\pm5^{\circ}$ С до выхода на плато графика зависимости массы угля от времени.

Также была проведена серия экспериментов по динамической адсорбции с построением кривых проскока. Для определения проскока использовался прибор с откалиброванным датчиком паров органики TGS-822. Конструктивно установка по определению проскока не отличается от изображенной на рис. 2 с той лишь разницей, что вместо автомобильного компрессора использовался мембранный, а проходящий через слой угля воздух, насыщенный бутанолом, шел через датчик органики, а не сразу в тягу. Воздух в этой серии экспериментов подавался со скоростью $2\pi/$ мин · см².

2. Результаты и обсуждение

В результате экспериментов были получены зависимости массы насыщаемого угля от времени и кривые проскока. Зависимости для угля, регенерированного в течение 15 минут представлены на рис. 3.

Кривая 1 — это адсорбция бутанола свежим активным углем (после СВЧ-обработки). Кривые 2-5 — после 15-минутной десорбции в СВЧ-печи. По этому графику видно, что СВЧ-регенерация практически не повлияла на качество активного угля, а степень десорбции близка к 100%.

Рис. 2. Схема адсорбционной установки: 1 — автомобильный компрессор, 2 — ротаметр, 3 — склянки Дрекселя, 4 — адсорбционная колонка

¹ Здесь и далее под свежим активным углем следует понимать предварительно обработанный в СВЧ-печи, если не указано иное.

Рис. 3. **Кривые адсорбции бутанола активным углем: свежим (1) и после нескольких циклов регенерации (2–5)** в течение 15 минут

Аналогичная серия процессов адсорбции-регенерации выполнена с такой же навеской активного угля и 10 минутной регенерацией (рисунок 4). Из сопоставления рис. 3 и рис. 4 хорошо видно, что 10-минутного СВЧ-облучения достаточно для десорбции бутанола при данных условиях, а качество активного угля практически не изменилось.

Кривые проскока, построенные при помощи откалиброванного по бутанолу прибору на датчике TGS-822, представлены на рис. 5 и дают более детальную информацию о влиянии СВЧ-регенерации на поглотительную способность активного угля. По оси ординат — объемная доля бутанола в воздухе (ppm), прошедшего через слой активного угля.

На графике (рис. 5) хорошо видно, что предварительная обработка заводского угля в СВЧ-печи в течение 15 минут (кривая 1) дает гораздо лучшие результаты, чем просто сушка в течение суток при 170 градусах (кривая 4). Также видно, что после первой регенерации поглотительная способность угля снижается (кривая 2), но далее остается практически постоянной вплоть до четвертой регенерации (кривая 3).

Выводы

Полученные результаты свидетельствуют о принципиальной возможности эффективной регенерации насыщенного бутанолом активного угля $A\Gamma$ —3 с использованием СВЧ-технологии. В ходе экспериментов были отмечены

Рис. 4. **Кривые адсорбции бутанола активным углем: свежим (1) и после нескольких циклов регенерации (2–5)** в течение 10 минут

Рис. 5. Кривые проскока для активного угля (регенерация 15 минут). 1 — без регенерации (предварительно обработан в СВЧ-печи), 2 — после первой регенерации, 3 — после четвертой регенерации, 4 — без регенерации (и без СВЧ-обработки)

следующие ее преимущества перед традиционными методами регенерации: быстрый нагрев до высоких температур (не ниже 600°С буквально за минуту при оцененной по воде мощности СВЧ-излучения в 320 Вт), целенаправленный нагрев (под действием СВЧ нагревался только уголь), отсутствие непосредственного контакта между нагревателем (магнетроном) и нагреваемым объектом (активным углем).

Предстоит уточнить степень разложения бутанола при десорбции (по предварительной оценке выход бута-

нола при регенерации достигает 80%), энергетические затраты по сравнению с регенерацией активного угля водяным паром и возможность повышения КПД магнетрона (в выполненных экспериментах задействована мощность 320 Вт, что составляет меньше половины от заявленной производителем мощности магнетрона — 800 Вт). В целом выполненное исследование характеризуют положительные результаты, указывающие на перспективность более детального изучения процесса СВЧ-регенерации.

Литература:

- 1. Дорожко, С.В., Малькевич Н.Г., Морзак Г. И Технические основы охраны окружающей среды г. Минск БНТУ Ч. 1. 2012. 287 с.:
- 2. Родионов, А. И., Клушин В. Н., Систер В. Г. Технологические процессы экологической безопасности г. Калуга, изд-во Н. Бочкаревой, 2000 г. 800 с.
- 3. Qing-Song Liu, Peng Wang, Shan-Shan Zhao, Wei Zhang. Treatment of an industrial chemical waste-water using a granular activated carbon adsorption-microwave regeneration process // Journal of Chemical Technology and Biotechnology V. 87 P. 1004–1009.
- 4. Будников, Д.А. Интенсификация сушки зерна активным вентилированием с использованием электромагнитного поля СВЧ: дис. канд. техн. наук. Зерноград, 2008. 164 с.
- 5. Коновалов, Н. П. Применение СВЧ-энергии для переработки угля и отходов резины в жидкие продукты: дис. д-ра техн. наук. Москва, 2001. 239 с.
- 6. Пан, Е.Г. Обоснование применения СВЧ технологий в ортопедической стоматологии (экспериментально-лабораторное исследование): дис. д-ра. мед. наук. Москва, 2004. 146 с.
- 7. Насыбуллин, А.Р. Разработка и исследование СВЧ-устройств для технологий переработки полиэтилентерефталата: дисс. д-ра техн. наук Казань, 2012. 143 с.
- 8. Брагинский, О.Б. Мировая нефтехимическая промышленность М.: Наука, 2003 г. 556 с.
- 9. Дытнерский, Ю.И. Основные процессы и аппараты химической технологии: Пособие по проектированию М.:Химия, 1991. 496 с.