Bernoulli Distribution

1. Introduction & Intuition

- A Bernoulli trial has only two outcomes: Success or Failure.
- Define a random variable X such that

$$X = \begin{cases} 1 & \text{Success,} \\ 0 & \text{Failure.} \end{cases}$$

So $X \in \{0, 1\}$.

• Let p = P(Success). Then q = 1 - p = P(Failure).

2. Probability Mass Function (PMF)

2.1 Piecewise form

$$P(X = x) = \begin{cases} p & x = 1, \\ 1 - p & x = 0, \\ 0 & \text{otherwise.} \end{cases}$$

2.2 Compact "exponent-switch" form

$$P(X = x) = p^{x} (1 - p)^{1 - x}, \quad x \in \{0, 1\}.$$

Why it works (switch intuition):

If
$$x = 1$$
: $p^1 = p$, $(1-p)^0 = 1$ $\Rightarrow p^x (1-p)^{1-x} = p$.
If $x = 0$: $p^0 = 1$, $(1-p)^1 = 1-p$ $\Rightarrow p^x (1-p)^{1-x} = 1-p$.

3. Expectation (Mean)

$$\mathbb{E}[X] = \sum_{x \in \{0,1\}} x P(X = x) = 0 \cdot (1 - p) + 1 \cdot p = p.$$

Interpretation: on average a proportion p of all trials will be successes.

4. Variance

$$Var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2.$$

1. Compute $\mathbb{E}[X^2]$:

$$X^{2} = 0^{2} \cdot (1 - p) + 1^{2} \cdot p = p.$$

2. Subtract the square of the mean:

$$Var(X) = p - p^2 = p(1 - p) = pq.$$

Key point: Variance peaks at p = 0.5 (maximum uncertainty) and drops to 0 when p is at the extremes 0 or 1.

5. Quick Facts

- Support: $\{0,1\}$.
- Mode: 1 if p > 0.5 (skew toward success), otherwise 0.
- Skewness: distribution is symmetric only when p = 0.5; otherwise it is skewed.

6. Worked Examples

- 1. **Spam detection**: Treat "email flagged correctly as spam" as Success. If the classifier is 95% accurate, then $X \sim \text{Bernoulli}(p = 0.95)$.
- 2. **Rigged coin**: Coin shows Heads 70% of the time. Define Success = Heads $\Rightarrow X \sim \text{Bernoulli}(0.7)$.

7. Visual Aids

- Bar chart: two bars at x = 0 and x = 1 with heights (1 p) and p.
- Variance curve: plot of p(1-p) against p (optional for teaching).
- Classroom idea: animate the bars while increasing p so students see how 1-p decreases by the same amount.

8. Summary

- Bernoulli(p) is the *building block* of many other discrete distributions (Binomial, Geometric, Negative Binomial, etc.).
- PMF: $P(X = x) = p^x (1 p)^{1-x}$.
- Mean: $\mathbb{E}[X] = p$. Variance: Var(X) = p(1-p).
- Highest randomness at p = 0.5; deterministic at p = 0 or p = 1.