Miara i całka

ZADANIE DOMOWE

Jadwiga Świerczyńska

Wybrane zadania

Problem 1.11.B

Udowodnić, że dla dowolnego zbioru X, $|X| \leq \mathfrak{c}$ wtedy i tylko wtedy, gdy istnieje w $\mathcal{P}(X)$ przeliczalna rodzina zbiorów \mathcal{F} , taka że $\sigma(\mathcal{F})$ zawiera wszystkie punkty.

Problem 1.11.F

Przeprowadzić następującą konstrukcję zbioru Vitali'ego: Dla $x,y\in[0,1)$, niech

$$x \sim y \iff x - y \in \mathbb{Q}.$$

Sprawdzić, że \sim jest relacją równoważności. Niech Z będzie zbiorem, który z każdej klasy abstrakcji tej relacji wybiera dokładnie jeden element. Sprawdzić, że $\bigcup_{q\in\mathbb{Q}}(Z\oplus q)=[0,1)$, gdzie \oplus oznacza dodawanie mod 1. Zauważyć, że λ jest niezmienniczna na [0,1) względem działania \oplus ; wywnioskować stąd, że powyższy zbiór Z nie jest mierzalny w sensie Lebesgue'a.

Problem 1.11.H i 1.11.I

(*Twierdzenie Steinhausa*). Jeśli $A \subseteq \mathbb{R}$ jest mierzalny i $\lambda(A) > 0$ to zbiór A - A (różnica kompleksowa) zawiera odcinek postaci $(-\delta, \delta)$ dla pewnego $\delta > 0$.

Niech $A \subseteq \mathbb{R}$ będzie takim zbiorem mierzalnym, że $\lambda(A \triangle (x+A) = 0$ dla każdej liczby wymiernej x. Udowodnić, że $\lambda(A) = 0$ lub $\lambda(\mathbb{R} \setminus A) = 0$.

Problem 2.6.C

Wykazać, że nie istnieje ciąg funkcji ciągłych $f_n : \mathbb{R} \to \mathbb{R}$ zbieżny punktowo do funkcji $\chi_{\mathbb{Q}}$ (czyli funkcji charakterystycznej zbioru \mathbb{Q}).

Problem LD(A)

Niech μ i ν będą dwiema bezatomowymi miarami probabilistycznymi, określonymi na borelowskich podzbiorach [0,1]. Udowodnić, że istnieje przedział $[a,b] \subseteq [0,1]$, taki że

$$\mu([a,b]) = \nu([a,b]) = \frac{1}{2}.$$

Spis treści

1	Problem 1.11.B	3
	1.1 Treść	3
	1.2 Rozwiązanie	3
2	Problem 1.11.F	6
	2.1 Treść	6
	2.2 Rozwiązanie	6
3	Problem 1.11.H	8
	3.1 Treść	8
	3.2 Rozwiązanie	8
4	Problem 1.11.I	10
	4.1 Treść	10
	4.2 Rozwiązanie	10
5	Problem 2.6.C	12
	5.1 Treść	12
	5.2 Rozwiązanie	12
6	Problem LD(A)	15
	6.1 Treść	15
	6.2 Rozwiązanie	

1 Problem 1.11.B

1.1 Treść

Udowodnić, że dla dowolnego zbioru X, $|X| \leq \mathfrak{c}$ wtedy i tylko wtedy, gdy istnieje w $\mathcal{P}(X)$ przeliczalna rodzina zbiorów \mathcal{F} , taka że $\sigma(\mathcal{F})$ zawiera wszystkie punkty.

1.2 Rozwiązanie

Ustalmy dowolny zbiór X. Przeprowadzimy dowód przez pokazanie implikacji w obie strony. (\Longrightarrow) Ustalmy $\varphi:X\to\mathbb{R}$, taką że φ jest różnowartościowa. Oznaczmy

$$\mathcal{F} = \{ \varphi^{-1}[(a,b)] : a, b \in \mathbb{Q} \}.$$

Wówczas $\mathcal{F} \subseteq \mathcal{P}(X)$. Ponadto, ponieważ istnieje funkcja różnowartościowa z \mathcal{F} w $\mathbb{Q} \times \mathbb{Q}$, więc $|\mathcal{F}| \leq \aleph_0$. Zatem \mathcal{F} jest przeliczalną rodziną podzbiorów X. Wystarczy teraz pokazać, że $\sigma(\mathcal{F})$ zawiera wszystkie punkty.

Ustalmy dowolny $x \in X$ oraz $a \in \mathbb{R}$, takie że $\varphi(x) = a$. Niech $a_n, b_n \in \mathbb{Q}$, takie że $a_n \nearrow a$ oraz $b_n \searrow a$. Oznaczmy $A_n = \varphi^{-1}[(a_n, b_n)]$. Wówczas mamy

$$A_1 \supseteq A_2 \supseteq A_3 \supseteq \dots$$

ponieważ $(a_1,b_1) \supseteq (a_2,b_2) \supseteq (a_3,b_3) \supseteq \ldots$ Niech $A = \bigcap_{n=1}^{\infty} A_n$. Oczywiście $A \in \sigma(\mathcal{F})$. Ponadto dla dowolnego $n \in \mathbb{N}$ mamy $a \in (a_n,b_n)$, a więc $x \in A_n$. Natomiast dla dowolnego $y \neq x$ mamy $\varphi(y) \neq \varphi(x)$ (bez straty ogólności $\varphi(y) < \varphi(x)$). Istnieje zatem $n \in \mathbb{N}$, takie że $\varphi(y) < a_n < a$. Wobec tego $y \notin A_n$, a co za tym idzie $y \notin A$. Zatem $A = \varphi^{-1}[\{a\}] = \{x\}$. Otrzymujemy ostatecznie, że $\{x\} \in \sigma(\mathcal{F})$, co kończy dowód.

(\iff) Ustalmy \mathcal{F} – przeliczalną rodzinę podzbiorów X, taką że $\sigma(\mathcal{F})$ zawiera wszystkie punkty. Udowodnimy następujący lemat.

Lemat 1.1 (Rekurencyjna konstrukcja σ -ciała). Niech $B_0 = \mathcal{F} \cup \{X\}$ oraz

 $B_{\alpha} = \left\{ \bigcup \mathcal{R} : |\mathcal{R}| \leqslant \aleph_0 \text{ i dla dowolnego } A \in \mathcal{R} \text{ istnieje } \beta < \alpha, \text{ takie } \dot{z}e \text{ } A \in B_{\beta} \text{ lub } X \setminus A \in B_{\beta} \right\}.$

W'owczas

$$\bigcup_{\alpha < \aleph_1} B_{\alpha} = \sigma(\mathcal{F}).$$

Dowód. Pokażemy zawieranie w obie strony.

- (\subseteq). Przeprowadzimy dowód indukcyjny względem $\alpha < \aleph_1$.
- Dla $\alpha = 0$ mamy $B_{\alpha} = B_0 = \mathcal{F} \cup \{X\} \subseteq \sigma(\mathcal{F})$.
- (krok następnikowy). Załóżmy, że $B_{\beta} \subseteq \sigma(\mathcal{F})$ dla dowolnego $\beta \leqslant \alpha$. Pokażemy, że $B_{\alpha+1} \subseteq \sigma(\mathcal{F})$. Ustalmy dowolne $S = \bigcup \mathcal{R} \in B_{\alpha+1}$. Wówczas dla dowolnego $A \in \mathcal{R}$ istnieje $\beta < \alpha+1$, taka że $A \in B_{\beta}$ lub $X \setminus A \in B_{\beta}$. Wobec tego $A \in \sigma(\mathcal{F})$ z założenia indukcyjnego. Zatem $S = \bigcup \mathcal{R}$ jako przeliczalna suma zbiorów z σ -ciała także należy do $\sigma(\mathcal{F})$.
- (krok graniczny). Załóżmy, że $B_{\beta} \subseteq \sigma(\mathcal{F})$ dla dowolnego $\beta < \alpha$ i α graniczna liczba porządkowa. Pokażemy, że $B_{\alpha} \subseteq \sigma(\mathcal{F})$. Ustalmy dowolne $S = \bigcup \mathcal{R} \in B_{\alpha}$. Wówczas dla dowolnego $A \in \mathcal{R}$ istnieje $\beta < \alpha$, taka że $A \in B_{\beta}$ lub $X \setminus A \in B_{\beta}$. Wobec tego $A \in \sigma(\mathcal{F})$ z założenia indukcyjnego. Zatem $S = \bigcup \mathcal{R}$ jako przeliczalna suma zbiorów z σ –ciała także należy do $\sigma(\mathcal{F})$.

Wobec tego dla dowolnego $\alpha < \aleph_1$ mamy $B_{\alpha} \subseteq \sigma(\mathcal{F})$. Zatem $\bigcup_{\alpha < \aleph_1} B_{\alpha} \subseteq \sigma(\mathcal{F})$.

(⊇). Wystarczy pokazać, że

- 1. $\mathcal{F} \subseteq \bigcup_{\alpha < \aleph_1} B_{\alpha}$
- 2. $\bigcup_{\alpha < \aleph_1} B_{\alpha}$ jest σ -ciałem.

Oczywiście (1) wynika z tego, że $B_0 = \mathcal{F} \cup \{X\}$.

Pokażemy teraz (2). Oczywiście $X \in \bigcup_{\alpha < \aleph_1} B_\alpha$. Zauważmy, że z definicji zbiorów B_α wynika, że dla $\delta < \eta$ mamy $B_\delta \subseteq B_\eta$. Ustalmy dowolne $A, B, A_n \in \bigcup_{\alpha < \aleph_1} B_\alpha$. Niech $\beta_a < \aleph_1$, takie że $A \in B_{\beta_a}$ (analogicznie określmy β_b dla B i α_n dla A_n). Wówczas

• Niech $\gamma = \max\{\beta_a, \beta_b\}$. Mamy $X \setminus (A \setminus B) = (X \setminus A) \cup B \in B_{\gamma+1}$ oraz $\gamma + 1 < \gamma + 2 < \aleph_1$ (ponieważ \aleph_1 jest graniczną liczbą porządkową). Wobec tego

$$A \setminus B \in B_{\gamma+2} \subseteq \bigcup_{\alpha < \aleph_1} B_\alpha.$$

• Niech $\gamma = \sup\{\alpha_n : n \in \mathbb{N}\}$. Wtedy $\gamma < \aleph_1$ (ponieważ ciąg α_n jest ograniczony w \aleph_1 , jako że jest ciągiem o długości $\aleph_0 < \aleph_1$ oraz \aleph_1 jest regularną liczbą kardynalną). Wobec tego

$$\bigcup_{n=1}^{\infty}A_n\in B_{\gamma+1}\subseteq\bigcup_{\alpha<\aleph_1}B_{\alpha}.$$

Zatem $\bigcup_{\alpha < \aleph_1} B_{\alpha}$ jest σ -ciałem, a więc

$$\sigma(\mathcal{F}) \subseteq \bigcup_{\alpha < \aleph_1} B_{\alpha}.$$

Lemat 1.2 (moc σ -ciała). Dla zbiorów B_{α} określonych jak w 1.1 mamy

$$|B_{\alpha}| \leqslant |\mathcal{F}|^{\aleph_0} \leqslant \aleph_0^{\aleph_0} = \mathfrak{c},$$

a zatem

$$\left|\bigcup_{\alpha \in \mathbb{N}_{+}} B_{\alpha}\right| \leqslant \aleph_{1} \cdot \mathfrak{c} \leqslant \mathfrak{c} \cdot \mathfrak{c} = \mathfrak{c}.$$

Dowód. Dowód przeprowadzimy indukcyjnie względem $\alpha < \aleph_1$.

- $\alpha = 0$. Wówczas $|B_{\alpha}| = |B_0| = |\mathcal{F} \cup \{X\}| \leq \aleph_0 \leq \mathfrak{c}$.
- (krok następnikowy). Załóżmy, że teza lematu zachodzi dla dowolnego $\beta \leqslant \alpha$. Pokażemy, że zachodzi także dla $\alpha+1$. Z definicji $B_{\alpha+1}$ mamy, że dowolny element zbioru $B_{\alpha+1}$ jest sumą pewnej przeliczalnej rodziny elementów (lub ich dopełnień) zbiorów B_{β} dla $\beta \leqslant \alpha$. Wobec tego istnieje różnowartościowa funkcja z $B_{\alpha+1}$ w zbiór wszystkich funkcji z $\mathbb N$ w $\bigcup_{\beta \leqslant \alpha} B_{\beta} \times \{0,1\}$ (zbiór $\{0,1\}$ odpowiada wybieraniu zbioru lub jego dopełnienia dla mocy to nie będzie miało znaczenia, ale pozostawmy ten zapis dla zwiększenia czytelności). Wobec tego

$$|B_{\alpha+1}| \leqslant \left| \bigcup_{\beta \leqslant \alpha} B_{\beta} \times \{0,1\} \right|^{\aleph_0} \leqslant (|\alpha+1| \cdot |B_{\alpha}| \cdot 2)^{\aleph_0} \stackrel{\text{zal. ind.}}{\leqslant} (\aleph_0 \cdot \mathfrak{c} \cdot 2)^{\aleph_0}$$
$$\leqslant \mathfrak{c}^{\aleph_0} = \left(2^{\aleph_0}\right)^{\aleph_0} = 2^{\aleph_0 \cdot \aleph_0} = 2^{\aleph_0} = \mathfrak{c}.$$

• (krok graniczny) Załóżmy, że teza lematu zachodzi dla dowolnego $\beta < \alpha$ i α – graniczna liczba porządkowa. Pokażemy, że zachodzi także dla α . Analogicznie jak wyżej mamy

$$|B_{\alpha}| \leqslant \left| \bigcup_{\beta < \alpha} B_{\beta} \times \{0,1\} \right|^{\aleph_0} \overset{\text{zal. ind.}}{\leqslant} (|\alpha| \cdot \mathfrak{c} \cdot 2)^{\aleph_0} \leqslant (\aleph_0 \cdot \mathfrak{c} \cdot 2)^{\aleph_0} \leqslant \mathfrak{c}^{\aleph_0} = \mathfrak{c}.$$

Wobec tego z lematów 1.1 oraz 1.2 wynika, że

$$|\sigma(\mathcal{F})| \leqslant \mathfrak{c},$$

a ponieważ dla dowolnego $x \in X$ mamy $\{x\} \in \sigma(\mathcal{F})$, więc

$$|X| \leqslant |\sigma(\mathcal{F})| \leqslant \mathfrak{c},$$

5

co kończy dowód.

2 Problem 1.11.F

2.1 Treść

Przeprowadzić następującą konstrukcję zbioru Vitali'ego: Dla $x,y\in[0,1)$, niech

$$x \sim y \iff x - y \in \mathbb{Q}.$$

Sprawdzić, że \sim jest relacją równoważności. Niech Z będzie zbiorem, który z każdej klasy abstrakcji tej relacji wybiera dokładnie jeden element. Sprawdzić, że $\bigcup_{q\in\mathbb{Q}}(Z\oplus q)=[0,1)$, gdzie \oplus oznacza dodawanie mod 1. Zauważyć, że λ jest niezmienniczna na [0,1) względem działania \oplus ; wywnioskować stąd, że powyższy zbiór Z nie jest mierzalny w sensie Lebesgue'a.

2.2 Rozwiązanie

Pokażemy najpierw, że \sim jest relacją równoważności.

- (zwrotność). Ustalmy dowolny $x \in [0,1)$. Wówczas $x-x=0 \in \mathbb{Q}$, czyli $x \sim x$.
- (symetryczność). Ustalmy dowolne $x,y\in[0,1)$, takie że $x\sim y$. Wówczas $x-y\in\mathbb{Q}$, a zatem $y-x=-(x-y)\in\mathbb{Q}$, czyli $y\sim x$.
- (przechodniość). Ustalmy dowolne $x,y,z\in[0,1)$, takie że $x\sim y$ oraz $y\sim z$. Mamy zatem $x-y=a\in\mathbb{Q}$ oraz $y-z=b\in\mathbb{Q}$. Wobec tego $x-z=(x-y)+(y-z)=a+b\in\mathbb{Q}$. Wobec tego $x\sim z$.

Zauważmy teraz, że

$$\bigcup_{q\in\mathbb{Q}}(Z\oplus q)=[0,1).$$

Inkluzja \subseteq jest oczywista. Weźmy zatem dowolny $x \in [0,1)$ i pokażemy, że $x \in \bigcup_{q \in \mathbb{Q}} (Z \oplus q)$. Niech $z \in Z$, taki że $z \sim x$. Wówczas $x - z = a \in \mathbb{Q}$, czyli

$$x = z + (x - z) = z \oplus (x - z) \in Z \oplus (x - z).$$

Oznaczmy

$$V = \bigcup_{q \in \mathbb{Q} \cap [0,1)} (Z \oplus q).$$

Mamy

$$\bigcup_{q\in\mathbb{O}}(Z\oplus q)=V.$$

Inkluzja \supseteq jest oczywista. Ustalmy zatem dowolny $x \in \bigcup_{q \in \mathbb{Q}} (Z \oplus q)$. Wówczas $x = z \oplus q$ dla pewnego $z \in Z$ oraz $q \in \mathbb{Q}$. Oznaczmy q = a + r, gdzie $a \in \mathbb{Z}$ oraz $0 \leqslant r < 1$. Oczywiście mamy $x = z \oplus q = z \oplus r$ i $r \in \mathbb{Q} \cap [0, 1)$. Wobec tego

$$x \in (Z \oplus r) \subseteq V$$
.

Ponadto suma $\bigcup_{q\in\mathbb{Q}\cap[0,1)}(Z\oplus q)$ jest rozłączna. Ustalmy dowolne $x\in V$. Niech $z_1,z_2\in Z,$ $q_1,q_2\in\mathbb{Q}\cap[0,1),$ takie że

$$x = z_1 \oplus q_1 = z_2 \oplus q_2.$$

Wówczas $x \sim z_1$ oraz $x \sim z_2$, czyli z przechodniości \sim mamy $z_1 \sim z_2$. Ponieważ Z jest selektorem klas abstrakcji \sim , więc $z_1 = z_2$. Ponadto części ułamkowe liczb q_1, q_2 są sobie równe. A ponieważ $q_1, q_2 \in \mathbb{Q} \cap [0, 1)$, więc $q_1 = q_2$.

Załóżmy nie wprost, że Z jest mierzalny w sensie Lebesgue'a. Pokażemy teraz, że $\lambda(Z) = \lambda(Z \oplus q)$ dla dowolnego $q \in \mathbb{Q} \cap [0, 1)$. Oznaczmy

$$Z_n = \{x \in Z : n \leqslant x + q < n + 1\}$$
dla $n \in \mathbb{Z}$.

Oczywiście $Z_i \cap Z_j = \emptyset$ dla $i \neq j$. Ponadto $Z_n \oplus q = Z_n + q - n$, czyli $\lambda(Z_n \oplus q) = \lambda(Z_n)$. Dalej mamy $(Z_i \oplus q) \cap (Z_j \oplus q) = \emptyset$ dla $i \neq j$ – gdyby istniało $x = z_i \oplus q = z_j \oplus q$, gdzie $z_i \in Z_i$, $z_j \in Z_j$, to $z_i \sim z_j$, a zatem $z_i = z_j$, czyli sprzeczność z rozłącznością Z_i i Z_j . Otrzymujemy dalej (korzystając z niezmienniczości λ na przesunięcia):

$$\lambda(Z \oplus q) = \lambda \left(\bigcup_{n \in \mathbb{Z}} Z_n \oplus q \right) = \sum_{n \in \mathbb{Z}} \lambda \left(Z_n \oplus q \right)$$
$$= \sum_{n \in \mathbb{Z}} \lambda(Z_n) = \lambda \left(\bigcup_{n \in \mathbb{Z}} Z_n \right) = \lambda(Z).$$

Wówczas mamy

$$1 = \lambda([0,1)) = \lambda\left(V\right) = \sum_{q \in \mathbb{Q} \cap [0,1)} \lambda(Z \oplus q) = \sum_{q \in \mathbb{Q} \cap [0,1)} \lambda(Z).$$

Mamy dwie możliwości:

•
$$\lambda(Z)=0$$
. Wtedy
$$1=\sum_{q\in\mathbb{Q}\cap[0,1)}\lambda(Z)=0.$$

•
$$\lambda(Z) > 0$$
. Wtedy
$$1 = \sum_{q \in \mathbb{Q} \cap [0,1)} \lambda(Z) = \infty.$$

W obu przypadkach uzyskujemy sprzeczność. Wobec tego Z nie jest mierzalny w sensie Lebesgue'a. \blacksquare

3 Problem 1.11.H

3.1 Treść

Jeśli $A \subseteq \mathbb{R}$ jest mierzalny i $\lambda(A) > 0$ to zbiór A - A (różnica kompleksowa) zawiera odcinek postaci $(-\delta, \delta)$ dla pewnego $\delta > 0$.

3.2 Rozwiązanie

Przytoczmy twierdzenie (w numeracji ze skryptu: 1.6.2):

Twierdzenie 3.1. Jeżeli $A \in \mathfrak{L}$ oraz $\lambda(A) < \infty$, to dla każdego $\varepsilon > 0$ istnieją odcinki (a_1, b_1) , (a_2, b_2) , ..., (a_n, b_n) , takie że

$$\lambda\left(\left(\bigcup_{j=1}^n(a_j,b_j)\right)\triangle A\right)<\varepsilon.$$

Zauważmy, że bez straty ogólności możemy przyjąć, że odcinki w powyższym twierdzeniu są parami rozłączne i niepuste (ale może być n=0).

Lemat 3.2. W twierdzeniu 3.1 możemy przyjąć, że $\lambda(I) \leq \lambda(A)$, gdzie $I = \bigcup_{j=1}^{n} (a_j, b_j)$.

Dowód. Istotnie, ustalmy $\varepsilon > 0$ oraz $I = \bigcup_{j=1}^{n} (a_j, b_j)$ – skończoną sumę przedziałów, taką że $\lambda(I \triangle A) < \varepsilon$. Gdyby $\lambda(A) < \varepsilon$, to wystarczy przyjąć $I' = \emptyset$. Załóżmy zatem, że $\lambda(I) > \lambda(A) \geqslant \varepsilon$. Wówczas istnieje $1 \leqslant k \leqslant n$ oraz $a_k \leqslant c_k < b_k$, takie że dla

$$I' = (c_k, b_k) \cup \bigcup_{j=k+1}^{n} (a_j, b_j)$$

mamy $\lambda(I') = \lambda(I) - \varepsilon$. Oczywiście

$$\varepsilon > \lambda(A \triangle I) \geqslant |\lambda(A) - \lambda(I)|,$$

a więc

$$\lambda(A) - \varepsilon < \lambda(I) < \lambda(A) + \varepsilon.$$

Wówczas mamy

$$\lambda(I') = \lambda(I) - \varepsilon < \lambda(A),$$

a ponadto

$$\lambda(A \triangle I') = \lambda(A \triangle I \triangle I \triangle I') \leqslant \lambda(A \triangle I) + \lambda(I \triangle I') \leqslant \varepsilon + \varepsilon \leqslant 2\varepsilon.$$

Oczywiście I' jest sumą niepustych, parami rozłącznych odcinków. Z dowolności ε wynika teza lematu. \Box

Lemat 3.3. Niech $A \subseteq \mathbb{R}$, taki że $\lambda(A) > 0$. Istnieje niepusty odcinek (a,b), taki że

$$\frac{3}{4}\lambda((a,b)) \leqslant \lambda(A \cap (a,b)).$$

Dowód. Przyjmijmy, że $\lambda(A) < \infty$. Wystarczy bowiem znaleźć $n \in \mathbb{N}$, takie że $\lambda(A \cap (-n,n)) > 0$ – a takie n istnieje na mocy ciągłości z dołu λ . Ustalmy zatem $I = \bigcup_{j=1}^n (a_j,b_j)$ – sumę rozłącznych niepustych odcinków, taką że $\lambda(I \triangle A) < \frac{\lambda(A)}{4}$ oraz $\lambda(I) \leqslant \lambda(A)$. Wówczas oczywiście $I \neq \emptyset$. Oznaczmy $I_j = (a_j,b_j)$. Mamy

$$\lambda(A \setminus I) \leqslant \lambda(A \triangle I) < \frac{\lambda(A)}{4},$$

a zatem

$$\lambda(A \cap I) = \lambda(A) - \lambda(A \setminus I) > \frac{3\lambda(A)}{4}.$$

Gdyby dla dowolnego j zachodziło $\frac{3}{4}\lambda(I_j) > \lambda(A \cap I_j)$, to

$$\frac{3}{4}\lambda(I) = \frac{3}{4}\sum_{j=1}^{n}\lambda(I_j) > \sum_{j=1}^{n}\lambda(A\cap I_j) = \lambda(A\cap\bigcup_{j=1}^{n}I_j) = \lambda(A\cap I) > \frac{3\lambda(A)}{4},$$

a zatem $\lambda(I) > \lambda(A)$ – czyli sprzeczność.

Ustalmy zatem zbiór mierzalny A, taki że $\lambda(A)>0$. Niech $a,b\in\mathbb{R}$, takie że a< b i

$$\frac{3}{4}\lambda((a,b)) \leqslant \lambda(A \cap (a,b)).$$

Oznaczmy

$$S = (a, b) \cap A$$
.

Przyjmijmy $\delta = \frac{1}{8}\lambda((a,b))$. Gdyby zachodziło $(-\delta,\delta) \not\subseteq A - A$, to istniałoby $\eta \in (-\delta,\delta)$ (bez straty ogólności $\eta > 0$), takie że dla dowolnego $x \in S$ mamy $x - \eta \notin S$. Wobec tego

$$(S-n)\cap S=\emptyset$$
.

Oznaczmy teraz $S' = ((a + \eta, b) \cap A) \subseteq S$. A zatem

$$(S' - \eta) \cap S = \emptyset.$$

Oczywiście

$$(S'-\eta)\subseteq (a,b).$$

Ponadto, jako że λ jest niezmiennicza na przesunięcia, mamy

$$\lambda(S' - \eta) = \lambda(S') = \lambda((a + \eta, b) \cap A) \geqslant \lambda((a, b) \cap A) - \lambda((a, a + \eta))$$
$$= \lambda(S) - \eta \geqslant \lambda(S) - \delta.$$

Wobec tego

$$\lambda((a,b)) \geqslant \lambda((S'-\eta) \cup S) = \lambda(S'-\eta) + \lambda(S) = \lambda(S') + \lambda(S) \geqslant 2\lambda(S) - \delta$$
$$\geqslant 2\frac{3}{4}\lambda((a,b)) - \delta = \frac{3}{2}\lambda((a,b)) - \frac{1}{8}\lambda((a,b)) = \frac{11}{8}\lambda((a,b)).$$

Otrzymana sprzeczność oznacza, że $(-\delta,\delta)\subseteq S-S\subseteq A-A,$ co kończy dowód.

4 Problem 1.11.I

4.1 Treść

Niech $A \subseteq \mathbb{R}$ będzie takim zbiorem mierzalnym, że $\lambda(A \triangle (x+A)) = 0$ dla każdej liczby wymiernej x. Udowodnić, że $\lambda(A) = 0$ lub $\lambda(\mathbb{R} \setminus A) = 0$.

4.2 Rozwiązanie

Najpierw udowodnimy następujący lemat.

Lemat 4.1. Niech $A \subseteq \mathbb{R}$, taki że $\lambda(A \triangle (x + A)) = 0$ dla każdej liczby wymiernej x. Dla dowolnych $p, q \in \mathbb{Q}$, takich że p < q, mamy

$$\lambda(A \cap (p,q)) = \lambda(A \cap (0,q-p)).$$

 $Dow \acute{o}d.$ Ustalmy $p,q \in \mathbb{Q},$ takie że p < q. Wówczas mamy

$$A \cap (p,q) = (A-p) \cap (0,q-p).$$

Dalej otrzymujemy (z założenia o A):

$$\begin{split} 0 &= \lambda(A \bigtriangleup (A-p)) \geqslant \lambda((A \bigtriangleup (A-p)) \cap (0,q-p)) \\ &= \lambda((A \cap (0,q-p)) \bigtriangleup ((A-p) \cap (0,q-p))) \\ &\geqslant |\lambda(A \cap (0,q-p)) - \lambda((A-p) \cap (0,q-p))| \\ &= |\lambda(A \cap (0,q-p)) - \lambda(A \cap (p,q))|. \end{split}$$

To oznacza, że

$$\lambda(A \cap (p,q)) = \lambda(A \cap (0,q-p)).$$

Fakt 4.2. W twierdzeniu 3.1 (a zatem także w lematach 3.2 i 3.3) i możemy przyjąć, że końce odcinków są liczbami wymiernymi (por. zadanie 1.10.30).

Załóżmy nie wprost, że $\lambda(A) > 0$ oraz $\lambda(\mathbb{R} \setminus A) > 0$. Na mocy lematu 3.3 i faktu 4.2 mamy, że istnieje niepusty (a, b), taki że $a, b \in \mathbb{Q}$ oraz

$$\frac{3}{4}\lambda((a,b)) \leqslant \lambda((\mathbb{R} \setminus A) \cap (a,b)),$$

a zatem

$$\frac{1}{4}\lambda((a,b))\geqslant \lambda(A\cap(a,b)).$$

Ustalmy teraz $c, d \in \mathbb{Q}$, takie że c < d i

$$\frac{3}{4}\lambda((c,d)) \leqslant \lambda(A \cap (c,d)).$$

Ustalmy $n \in \mathbb{N}$, takie że

$$\left\lfloor \frac{b-a}{\frac{d-c}{n}} \right\rfloor \cdot \frac{d-c}{n} \geqslant \frac{1}{2}(b-a).$$

Oznaczmy $h=\frac{d-c}{n}.$ Rozważmy teraz przedziały postaci

$$(c, c+h), (c+h, c+2h), \dots (c+(n-1)h, d).$$

Wtedy na mocy lematu

$$\lambda(A \cap (c, c+h)) = \lambda(A \cap (c+h, c+2h)) = \dots = \lambda(A \cap (c+(n-1)h, d)) = \lambda(A \cap (0, h)).$$

A zatem mamy

$$\lambda(A\cap(0,h))=\lambda((c+(i-1)h,c+ih)\cap A)\geqslant \frac{3}{4}\lambda((c+(i-1)h,c+ih))=\frac{3h}{4}\lambda((c+(i-1)h,c+ih))=\frac{3h}{4}\lambda((c+(i-1)h,c+ih))=\frac{3h}{4}\lambda((c+(i-1)h,c+ih))=\frac{3h}{4}\lambda((c+(i-1)h,c+ih))=\frac{3h}{4}\lambda((c+(i-1)h,c+ih))=\frac{3h}{4}\lambda((c+(i-1)h,c+ih))=\frac{3h}{4}\lambda((c+(i-1)h,c+ih))=\frac{3h}{4}\lambda((c+(i-1)h,c+ih))=\frac{3h}{4}\lambda((c+(i-1)h,c+ih))=\frac{3h}{4}\lambda((c+(i-1)h,c+ih))=\frac{3h}{4}\lambda((c+(i-1)h,c+ih))=\frac{3h}{4}\lambda((c+(i-1)h,c+ih))$$

dla dowolnego i.

Ustalmy teraz $a \leqslant x_1 \leqslant x_2 \leqslant \ldots \leqslant x_k \leqslant b$, takie że

$$x_1 - a = x_2 - x_1 = \dots = x_k - x_{k-1} = h$$
 oraz $b - x_k < h$

dla $k = \lfloor \frac{b-a}{h} \rfloor$. Wówczas na mocy lematu

$$\lambda(A \cap (0,h)) = \lambda(A \cap (a,x_1)) = \lambda(A \cap (x_1,x_2)) = \dots = \lambda(A \cap (x_{k-1},x_k)) \geqslant \frac{3h}{4}.$$

To oznacza, że (przyjmijmy $x_0 = a$)

$$\frac{1}{4}\lambda((a,b)) \geqslant \lambda(A \cap (a,b)) \geqslant \lambda(A \cap (a,x_k)) = \sum_{j=1}^k \lambda(A \cap (x_{j-1},x_j)) \geqslant \sum_{j=1}^k \frac{3h}{4} = k\frac{3h}{4}$$
$$= \left| \frac{b-a}{\frac{d-c}{n}} \right| \cdot \frac{d-c}{n} \cdot \frac{3}{4} \geqslant \frac{1}{2}(b-a) \cdot \frac{3}{4} = \frac{3}{8}(b-a) > \frac{1}{4}(b-a).$$

Otrzymana sprzeczność kończy dowód.

5 Problem 2.6.C

5.1 Treść

Wykazać, że nie istnieje ciąg funkcji ciągłych $f_n : \mathbb{R} \to \mathbb{R}$ zbieżny punktowo do funkcji $\chi_{\mathbb{Q}}$ (czyli funkcji charakterystycznej zbioru \mathbb{Q}).

5.2 Rozwiązanie

Dla dowolnego $\varepsilon > 0$ oraz funkcji $f: \mathbb{R} \to \mathbb{R}$ definiujemy zbiór $F_{\varepsilon}(f)$ następująco

$$F_{\varepsilon}(f) = \{x \in \mathbb{R} : osc_x(f) \geqslant \varepsilon\},\$$

gdzie $osc_x(f) \geqslant \varepsilon$ oznacza, że

$$\forall \delta > 0 \ \exists x', x'' \in (x - \delta, x + \delta) \quad |f(x') - f(x'')| \geqslant \varepsilon.$$

Lemat 5.1. Dla dowolnego $\varepsilon > 0$ oraz funkcji $f : \mathbb{R} \to \mathbb{R}$ mamy, że $F_{\varepsilon}(f)$ jest domknięty.

Dowód. Pokażemy, że

$$F_{\varepsilon}(f)^{C} = \{ x \in \mathbb{R} : \exists \delta > 0 \ \forall x', x'' \in (x - \delta, x + \delta) \quad |f(x') - f(x'')| < \varepsilon \}$$

jest otwarty.

Istotnie, ustalmy dowolny $x \in F_{\varepsilon}(f)^C$. Niech $\delta > 0$ będzie taka, że dla dowolnych $x', x'' \in (x - \delta, x + \delta)$ mamy $|f(x') - f(x'')| < \varepsilon$. Pokażemy teraz, że

$$(x - \delta, x + \delta) \subseteq F_{\varepsilon}(f)^{C}$$
.

Weźmy dowolne $y \in (x - \delta, x + \delta)$. Niech

$$\eta = \min\{y - (x - \delta), (x + \delta) - y\}.$$

Wówczas

$$(y - \eta, y + \eta) \subseteq (x - \delta, x + \delta),$$

a zatem dla każdych $y', y'' \in (y - \eta, y + \eta)$ mamy $|f(y') - f(y'')| < \varepsilon$. Wobec tego $y \in F_{\varepsilon}(f)^C$. To pokazuje, że $F_{\varepsilon}(f)^C$ jest otwarty, czyli $F_{\varepsilon}(f)$ jest domknięty.

Fakt 5.2. Funkcja $f: \mathbb{R} \to \mathbb{R}$ nie jest ciągła w $x \in \mathbb{R}$ wtedy i tylko wtedy, gdy istnieje $\varepsilon > 0$, taki że

$$x \in F_{\varepsilon}(f)$$
.

Wobec tego

$$\bigcup_{n=1}^{\infty} F_{\frac{1}{n}}(f) \stackrel{\text{ozn.}}{=} D(f)$$

jest zbiorem punktów nieciągłości funkcji f.

Przypomnijmy sobie twierdzenie Baire'a.

Twierdzenie 5.3 (Baire). Niech X będzie zupelną przestrzenią metryczną i niech $F_n \subseteq X$ będzie ciągiem domkniętych zbiorów o pustym wnętrzu. Niech

$$F = \bigcup_{n=1}^{\infty} F_n.$$

Wówczas F ma puste wnętrze.

Lemat 5.4. Niech $f_n : \mathbb{R} \to \mathbb{R}$ będzie ciągiem funkcji ciąglych zbieżnych punktowo do $f : \mathbb{R} \to \mathbb{R}$. Wówczas dla dowolnego $\varepsilon > 0$ zbiór $F_{\varepsilon}(f)$ ma puste wnętrze.

 $Dow \acute{o}d$. Ustalmy $\varepsilon > 0$ oraz dowolny przedział [a,b], taki że a < b. Pokażemy, że

$$[a,b] \not\subseteq F_{\varepsilon}(f)$$
.

Zdefiniujmy

$$E_n = \bigcap_{i=n}^{\infty} \bigcap_{j=n}^{\infty} \left\{ x \in [a, b] : |f_i(x) - f_j(x)| \leqslant \frac{\varepsilon}{4} \right\}.$$

Oczywiście dla dowolnego n oraz $i,j\geqslant n$ funkcja $|f_i-f_j|$ jest ciągła. Wobec tego zbiór

$$\left\{ x \in [a,b] : |f_i(x) - f_j(x)| \leqslant \frac{\varepsilon}{4} \right\}$$

jest domknięty. Zatem także E_n jest domknięty. Określmy

$$E = \bigcup_{n=1}^{\infty} E_n.$$

Oczywiście $E \subseteq [a,b]$. Pokażemy, że $[a,b] \subseteq E$. Ustalmy dowolny $x \in [a,b]$. Ciąg $f_n(x)$ jest zbieżny, więc spełnia warunek Cauchy'ego – zatem istnieje n, takie że dla dowolnych $i,j \geqslant n$ mamy

$$|f_i(x) - f_j(x)| \leqslant \frac{\varepsilon}{4}.$$

Wobec tego $x \in E_n \subseteq E$.

Otrzymujemy zatem, że E = [a, b]. Jako że E jest sumą zbiorów domkniętych i wnętrze E jest niepuste, to istnieje n, takie że także wnętrze E_n jest niepuste. Niech zatem

$$[c,d] \subseteq E_n \subseteq E = [a,b].$$

Wówczas dla dowolnych $i,j\geqslant n$ oraz $x\in [c,d]$ mamy

$$|f_i(x) - f_j(x)| \leqslant \frac{\varepsilon}{4},$$

a więc w szczególności dla i=ni dowolnego $j\geqslant n$

$$|f_n(x) - f_j(x)| \leqslant \frac{\varepsilon}{4}.$$

Czyli dla $x \in [c, d]$ mamy

$$|f_n(x) - f(x)| \leqslant \frac{\varepsilon}{4},$$

ponieważ $f(x) = \lim_{j \to \infty} f_j(x)$.

Ustalmy dowolne $x \in (c,d)$ oraz $\delta > 0$, $\delta < \min\{x-c,d-x\}$, takie że dla dowolnego $x' \in (x-\delta,x+\delta) \subseteq [c,d]$ mamy

$$|f_n(x) - f_n(x')| < \frac{\varepsilon}{2}.$$

Weźmy dowolne $x', x'' \in (x - \delta, x + \delta)$. Otrzymujemy

$$|f(x') - f(x'')| = |f(x') - f_n(x') + f_n(x') - f_n(x) + f_n(x) - f_n(x'') + f_n(x'') - f(x'')|$$

$$\leq |f(x') - f_n(x')| + |f_n(x') - f_n(x)| + |f_n(x) - f_n(x'')| + |f_n(x'') - f(x'')|$$

$$\leq \frac{\varepsilon}{4} + 2\frac{\varepsilon}{8} + \frac{\varepsilon}{4} = \frac{3\varepsilon}{4}.$$

Wobec tego $osc_x(f)\leqslant \frac{3\varepsilon}{4}<\varepsilon$, czyli $x\not\in F_\varepsilon(f)$. Otrzymujemy ostatecznie $[a,b]\not\subseteq F_\varepsilon(f).$

Załóżmy nie wprost, że istnieje $f_n: \mathbb{R} \to \mathbb{R}$ – ciąg funkcji ciągłych zbieżny punktowo do $\chi_{\mathbb{Q}}$. Mamy oczywiście $D(\chi_{\mathbb{Q}}) = \mathbb{R}$. Z lematu 5.4, faktu 5.2 oraz twierdzenia 5.3 mamy, że $D(\chi_{\mathbb{Q}}) = \mathbb{R}$ ma puste wnętrze. Otrzymana sprzeczność kończy dowód.

6 Problem LD(A)

6.1 Treść

Niech μ i ν będą dwiema bezatomowymi miarami probabilistycznymi, określonymi na borelowskich podzbiorach [0,1]. Udowodnić, że istnieje przedział $[a,b] \subseteq [0,1]$, taki że

$$\mu([a,b]) = \nu([a,b]) = \frac{1}{2}.$$

6.2 Rozwiązanie

Udowodnimy najpierw kilka lematów.

Lemat 6.1. Niech (X, Σ, μ) będzie przestrzenią miarową, gdzie μ jest miarą bezatomową. Wówczas dla dowolnego $x \in X$, takiego że $\{x\} \in \Sigma$, mamy

$$\mu(\{x\}) = 0.$$

Dowód. Załóżmy nie wprost, że istnieje $x \in X$, $\{x\} \in \Sigma$ oraz $\mu(\{x\}) > 0$. Wówczas dla dowolnego $A \subseteq \{x\}$ mamy $A = \emptyset$, a więc $\mu(A) = 0$, lub $A = \{x\}$, a więc $\mu(A) = \mu(\{x\}) > 0$. Wobec tego $\{x\}$ jest atomem – sprzeczność.

Wniosek 6.2. Jeśli μ jest bezatomową miarą probabilistyczną określoną na Bor([0,1]), to dla dowolnych $a, b \in [0,1]$, takich że a < b mamy

$$\mu([a,b]) = \mu([a,b]) = \mu((a,b]) = \mu((a,b)).$$

W dalszych rozważaniach będziemy często używać tego wniosku bez bezpośredniego odwoływania się do niego.

Lemat 6.3. Niech μ będzie bezatomową miarą probabilistyczną określoną na Bor([0,1]). Wówczas dla $x \in [0,1]$ funkcje

$$\mu([x,\cdot]):[x,1]\to[0,1]$$

oraz

$$\mu([\cdot, x]) : [0, x] \to [0, 1]$$

są ciągłe.

Dowód. Ustalmy $x \in [0, 1]$. Pokażemy, że funkcja

$$\mu([x,\cdot]):[x,1]\to[0,1]$$

jest ciągła (dowód dla drugiej funkcji przebiega analogicznie). Ustalmy zatem $y \in [x, 1]$ oraz $\varepsilon > 0$. Mamy oczywiście

$$\lim_{n\to\infty}\mu\left(\left[y-\frac{1}{n},y+\frac{1}{n}\right]\cap[x,1]\right)=\mu(\{y\})=0$$

(z ciągłości z góry μ oraz lematu 6.1). Wobec tego istnieje $\delta > 0$, taka że $\mu([y-\delta,y+\delta]\cap[x,1]) < \varepsilon$. Weźmy zatem dowolne $y' \in [y-\delta,y+\delta]\cap[x,1]$ (bez straty ogólności $y' \leq y$). Otrzymujemy

$$|\mu([x, y']) - \mu([x, y])| = \mu([y', y]) \le \mu([y - \delta, y + \delta] \cap [0, 1]) < \varepsilon,$$

co pokazuje, że $\mu([x,\cdot])$ jest ciągła.

Lemat 6.4. Niech μ będzie bezatomową miarą probabilistyczną określoną na Bor([0,1]). Będziemy stosować oznaczenie

$$U_x(\mu) = \left\{ y \in [x, 1] : \mu([x, y]) = \frac{1}{2} \right\}.$$

Dla dowolnego $x \in [0,1]$ mamy

$$U_x(\mu) = \emptyset$$
 lub $U_x(\mu) = [a, b]$ dla pewnych $0 \le a \le b \le 1$.

 $Dow \acute{o}d$. Ustalmy dowolne $x \in [0,1]$. Załóżmy, że $U_x(\mu) \neq \emptyset$. Pokażemy najpierw, że $U_x(\mu)$ jest odcinkiem. Ustalmy zatem $y_1, y_2 \in U_x(\mu)$, takie że $y_1 \leqslant y_2$ oraz dowolne $y \in [y_1, y_2]$. Mamy wówczas

$$\mu([y_1, y]) \le \mu([y_1, y_2]) = \mu([x, y_2]) - \mu([x, y_1]) = \frac{1}{2} - \frac{1}{2} = 0,$$

czyli $\mu([y_1, y]) = 0$. Wobec tego

$$\mu([x,y]) = \mu([x,y_1]) + \mu([y_1,y]) = \frac{1}{2} + 0 = \frac{1}{2},$$

a zatem $y \in U_x(\mu)$.

Oznaczmy teraz

$$a = \inf U_x(\mu)$$
 oraz $b = \sup U_x(\mu)$.

Pokażemy, że $a \in U_x(\mu)$ (dowód dla b przebiega analogicznie). Ustalmy ciąg $a_n \setminus a$, taki że $a_n \in U_x(\mu)$ – istnieje taki, ponieważ a jest infimum. Wówczas z ciągłości z góry μ otrzymujemy

$$\mu([x,a]) = \lim_{n \to \infty} \mu([x,a_n]) = \lim_{n \to \infty} \frac{1}{2} = \frac{1}{2},$$

a zatem $a \in U_x(\mu)$.

Wniosek 6.5. Niech $x \in [0,1]$, taki że $U_x(\mu) \neq \emptyset$. Wówczas

$$U_x(\mu) = [\inf U_x(\mu), \sup U_x(\mu)].$$

Lemat 6.6. Niech μ będzie taka, jak wyżej. Wówczas dla $x_1, x_2 \in [0, 1]$, takich że $x_1 \leqslant x_2$, jeśli $U_{x_1}(\mu) \neq \emptyset$ oraz $U_{x_2}(\mu) \neq \emptyset$, to dla dowolnego $x_1 \leqslant x \leqslant x_2$ mamy $U_x(\mu) \neq \emptyset$.

Dowód. Ustalmy x_1, x_2 , takie jak w założeniu oraz $y_1 \in U_{x_1}(\mu)$ i $y_2 \in U_{x_2}(\mu)$. Niech $x \in [x_1, x_2]$. Wówczas

$$\mu([x, y_1]) \leqslant \mu([x_1, y_1]) = \frac{1}{2}$$

oraz

$$\mu([x, y_2]) \geqslant \mu([x_2, y_2]) = \frac{1}{2}.$$

Z ciągłości $\mu([x,\cdot])$ otrzymujemy, że istnieje $y\in [y_1,y_2]$, taki że $\mu([x,y])=\frac{1}{2}$. Wobec tego $y\in U_x(\mu)$, czyli $U_x(\mu)\neq\emptyset$.

Ustalmy zatem μ, ν – dowolne bezatomowe miary probabilistyczne określone na Bor([0,1]). Oznaczmy

$$m_x = \inf U_x(\mu)$$
 i $M_x = \sup U_x(\mu)$

oraz

$$n_x = \inf U_x(\nu)$$
 i $N_x = \sup U_x(\nu)$

dla dowolnego $x \in [0,1]$, takiego że $U_x(\mu), U_x(\nu) \neq \emptyset$.

Fakt 6.7. Dla dowolnych $x_1, x_2 \in [0, 1]$, takich że $x_1 \leqslant x_2$ oraz $U_{x_1}(\mu), U_{x_1}(\nu), U_{x_2}(\mu), U_{x_2}(\nu) \neq \emptyset$ mamy

$$n_{x_1} \leqslant n_{x_2}$$

$$N_{x_1} \leqslant N_{x_2}$$

$$m_{x_1} \leqslant m_{x_2}$$

$$M_{x_1} \leqslant M_{x_2}$$

Z lematu 6.3 wiemy, że $\mu([0,\cdot])$ oraz $\nu([0,\cdot])$ są ciągłe – a w szczególności mają własność Darboux. Oznaczmy zatem y_0, y_1 , takie że

$$\mu([0, y_0]) = \nu([0, y_1]) = \frac{1}{2}.$$

Wówczas oczywiście

$$\mu([y_0, 1]) = \nu([y_1, 1]) = \frac{1}{2}.$$

Bez straty ogólności przyjmijmy, że $y_0 \leqslant y_1$.

Mamy oczywiście $U_0(\mu)$, $U_0(\nu)$, $U_{y_0}(\mu) \neq \emptyset$ oraz $U_{y_0}(\nu) \neq \emptyset$ – na mocy lematu 6.6. Gdyby istniał $y \in [0, y_0]$, taki że

$$[m_u, M_u] \cap [n_u, N_u] \neq \emptyset$$

to dla $z \in [m_y, M_y] \cap [n_y, N_y]$ mamy

$$\mu([y,z]) = \nu([y,z]) = \frac{1}{2}.$$

Załóżmy więc (nie wprost), że

$$[m_y, M_y] \cap [n_y, N_y] = \emptyset$$

dla dowolnego $y \in [0, y_0]$. Oznacza to, że $M_0 < n_0$ (gdyż $y_0 \leqslant y_1, m_0 \leqslant y_0 \leqslant M_0, n_0 \leqslant y_1 \leqslant N_0$) oraz $N_{y_0} < m_{y_0}$ (gdyż $M_{y_0} = 1$).

Zdefiniujmy teraz ciąg przedziałów $[a_n, b_n]$, taki że

$$[a_0, b_0] = [0, y_0]$$

oraz dla n > 0

$$[a_n, b_n] = \begin{cases} [s_{n-1}, b_{n-1}] & \text{gdy } M_{s_{n-1}} < n_{s_{n-1}} \\ [a_{n-1}, s_{n-1}] & \text{gdy } N_{s_{n-1}} < m_{s_{n-1}} \end{cases}$$

gdzie $s_n = \frac{a_n + b_n}{2}$. Zauważmy, że przypadki w definicji $[a_n, b_n]$ są jedynymi możliwościami – wynika to z założenia nie wprost. Ponadto definicja ma sens na mocy lematu 6.6.

Fakt 6.8. Dla ciągu przedziałów zdefiniowanego jak wyżej zachodzi

$$m_{a_n} \leqslant M_{a_n} < n_{a_n} \leqslant N_{a_n}$$
 oraz $n_{b_n} \leqslant N_{b_n} < m_{b_n} \leqslant M_{b_n}$

dla dowolnego n.

Zauważmy teraz, że

$$[a_0, b_0] \supseteq [a_1, b_1] \supseteq [a_2, b_2] \supseteq \dots$$

oraz

$$b_n - a_n = \frac{b_0 - a_0}{2^n}.$$

Oczywiście z powyższych zależności widzimy, że ciąg postaci

$$a_0, b_0, a_1, b_1, a_2, b_2, \dots$$

jest ciagiem Cauchy'ego. Wobec tego

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n \stackrel{\text{ozn.}}{=} y.$$

Z założenia nie wprost mamy

$$[m_y, M_y] \cap [n_y, N_y] = \emptyset.$$

Rozważmy przypadki.

• $M_y < n_y$. Wtedy $y < y_0$ oraz oczywiście $\mu([M_y, n_y]) > 0$. Niech zatem $y < b_n \leqslant y_0$, taki że

$$\mu([y,b_n]) < \frac{1}{2}\mu([M_y,n_y]) \quad \text{ oraz } \quad b_n < n_y$$

(istnieje taki z ciągłości $\mu([y,\cdot])$). Wówczas

$$\begin{split} \mu([b_n,n_y]) &= \mu([y,n_y]) - \mu([y,b_n]) = \mu([y,M_y]) + \mu([M_y,n_y]) - \mu([y,b_n]) \\ &> \mu([y,M_y]) + \frac{1}{2}\mu([M_y,n_y]) > \mu([y,M_y]) = \frac{1}{2} \end{split}$$

Zatem $M_{b_n} < n_y \stackrel{6.7}{\leqslant} n_{b_n},$ czyli sprzeczność z faktem 6.8.

• $N_y < m_y$. Wtedy 0 < y oraz oczywiście $\mu\left([N_y, m_y]\right) > 0$. Niech zatem $0 \leqslant a_n < y$, taki że

$$\mu([a_n, y] < \mu([N_y, m_y]) \quad \text{oraz} \quad a_n < N_y$$

(istnieje taki z ciągłości $\mu([\cdot,y])$). Wówczas

$$N_{a_n} \stackrel{6.7}{\leqslant} N_y$$
.

Ponadto $m_{a_n} > N_y$, gdyż

$$\mu([a_n, N_y]) = \mu([a_n, y]) + \mu([y, m_y]) - \mu([N_y, m_y]) < \frac{1}{2}$$

Mamy zatem $N_{a_n} \leqslant N_y < m_{a_n}$ – czyli sprzeczność z faktem 6.8.

W obu przypadkach otrzymujemy sprzeczność. Wobec tego istnieje $y \in [0, y_0]$, taki że

$$U_n(\mu) \cap U_n(\nu) \neq \emptyset$$
,

czyli mamy $z \in U_y(\mu) \cap U_y(\nu)$, dla którego

$$\mu([y,z]) = \nu([y,z]) = \frac{1}{2}.$$

To kończy dowód.