PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-262057

(43)Date of publication of application: 12.10.1993

(51)Int.CI.

B41H 5/38

(21)Application number: 03-121076

(71)Applicant: MITSUBISHI KASEI CORP

(22) Date of filing:

27.05.1991

(72)Inventor: KOBAYASHI TATSUHIKO

OTA TAKAYUKI

KURODA KATSUHIKO

(54) IMAGE RECEIVING MATERIAL FOR THERMAL TRANSFER RECORDING

(57) Abstract:

PURPOSE: To obtain the above image receiving material suitable for high temp. high speed printing using high energy by providing a sublimable dye image receiving layer on a base material using a water in oil type emulsion of a polyurethane resin.

CONSTITUTION: A polyurethane resin is dissolved or dispersed in an org. solvent having proper solubility to water to obtain an oil phase and, after a proper amount of a water in oil type emulsifier, pref. a polyurethane emulsifier is compounded with the oil phase, water is added to and dispersed in the oil phase under stirring to prepare a water in oil type emulsion of a polyurethane resin. This emulsion is applied to a base material such as synthetic paper and dried to obtain an image receiving material for thermal transfer recording having a sublimable dye image receiving layer. It is pref. to use a polyurethane dispersion containing polyurethane fine particles at the time of the preparation of the emulsion from the aspect of the fusion preventing effect and releasability of a transfer recording sheet. As an org. solvent for disolving and dispersing polyurethane, MEK is used.

LEGAL STATUS

[Date of request for examination]

Date of sending the examiner's decision of rejection]

Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection

[Date of extinction of right]

2005年 2月15日 19時04分

(19)日本国特新庁 (JP) (12) 公 開 特 許 公 報 (A) (11)特許出顧公開番号

特開平5-262057

(43)公開日 平成5年(1993)10月12日

(51)Int.Cl.⁶

ΡI

技術表示箇所

B41M 5/38

8305-2H

B41M 5/28 101 H

審査請求 未請求 請求項の数2(全 5 頁)

(21)出頭番号	特頗平3-121076	(71)出題人 000005968 三菱化成株式会社
(22)出顯日	平成3年(1991)5月27日	東京部千代田区丸の内二丁目 5 番 2 号
		(72)発明者 小林 龍彦 神奈川県横浜市緑区鴨志田町1000番地 三 愛化成株式会社給合研究所内
		(72) 発明者 太田 隆之 神奈川県横浜市緑区鴨志田町1000番地 三 遊化成株式会社給合研究所内
		(72) 発明者 黒田 勝彦 神奈川県横浜市緑区鴨志田町1000番地 三 変化成株式会社総合研究所内
		(74)代理人 弁理士 長谷川 一 (外1名)

(54)【発明の名称】 熱転写記録用受像体

(57)【要約】

【株成】 基材の上に昇華性染料を受容する受像層が設 けられた熱転写記録用受像体において、前記受像層がボ リウレタン系樹脂の抽中水型エマルジョンを用いて形成 される多孔質層である。

【効果】 受像層が多孔質構造を有し染料の取り込みが 良いため高濃度の記録ができ、受像層に耐熱性の高い微 粒子を含むととによって色材層と受像層の融資が起こら ず、熱による受像層表面の変形が少ない。

(2)

【特許請求の範囲】

【請求項1】 基材の上に昇華性染料を受容する受像層 が設けられた熱転写記録用受像体において、前記受像層 がポリウレタン系樹脂の油中水型エマルジョンを用いて 形成される多孔質層であることを特徴とする熱転写記録 用受像体。

【請求項2】 該受保層の上に離型層を設けることを特 徴とする請求項1記載の熱転写記録用受像体。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は熱転写記録用受像体に関 し、特に昇華性染料を色材とする転写記録用シートに対 して使用される熱転写記録用受像体に関する。

[0002]

【従来の技術】近年、カラーハードコピーを得るための 方法として、熱転写記録法がその簡便さ、装置の安価 さ、メンテナンスの容易さ等から急速に広まっている が、特に写真調の高精細カラーハードコピーが得られる ことから、染料転写方式が注目される様になってきた。 との方式は、ベースフィルムの一方の面に昇筆性染料 (本発明に於て昇華性染料とは昇華もしくは気化性等を 有する染料を総称し、以下回様とする)とバインダー樹 脂を主成分とする色材層を有する転写記録用シートを、 サーマルヘッドなどの加熱手段により加熱し、染料を、 染料染着性の樹脂を主成分とする受像層を基体の表面に 有する受像体上に転写して記録を行うが、受像体には下 記のような性能が要求される。

①転写記録時、転写記録用シートと融着することなく、 記録後、転写記録用シートとの剥離が容易なこと。

②受像層での染料の染着性が良好で、高速度、高階調の 30 た。 記録が可能なとと。

◎記録物の染料のにじみ、光退色性、暗退色性、耐溶剤 性などの保存安定性が良好であること。

【0003】転写記録用受像体の上記の性能を満足する ために、受像屑形成のための樹脂、蘸型剤、増感剤、光 安定剤などの各種添加剤が、種々提案されてきた。さら に、最近ではプリントの高速化が求められ、そのためサ ーマルヘッドに商エネルギーを短時間印加することによ り高速化がなされるようになってきた。又、さらに高速 ィルムを用いサーマルヘッドの代わりに記録電極を使用 し、記録電極より導電性フィルムの中に雷流を流してフ ィルム内でジュール熱を発生させ、熱効率を上げると共 に電極への密熱を防ぐことにより、プリントのさらなる 高速化が検討されている。

【0004】それらのととにより上記三つの特性の内の の項目が特に問題となってきており、いかに融着を起と さずに、剥離をスムーズにおこなわさせるか工夫を要す るところである。又、たとえ融着が起こらなくても、高 温のために受像層表面が熱変形を超とし、特にイエロ

一、マゼンタ、シアンと3回ブリントされる黒色部に光 沢がなくなり、画像の品位が落ちるという問題も生じて

【0005】それらの問題を解決する方法として、受像 層にポリウレタンポリオールとポリイソシアネートの架 機物を使用したり [特開昭61-132387号公報参 照】、又、ポリエステル樹脂とイソシアネート、エポキ シ、メラミン、フェノール等の硬化剤との架橋物を使う ことが提案されている〔特開昭82-25089号公報 。(預參

【0006】しかしながら、上記架橋物の受像層を使用 した場合、受保層表面が硬くなり、それにより、酸若や 熱変形が起こりにくくなるものの、逆に硬くなったため に染料に対する染着性が悪くなり、画像浪度が低下する という問題が生じる。又、画像渡度を上げるためには、 架樑剤の添加量を減らさなくてはならず、そうすると、 遊に融着や熱変形が起こりやすくなるという問題が生 じ、両方の問題を同時に解決することが不可能であっ た。又、単に受像層に架橋物を使っただけでは、融洽防 20 止効果が不十分であり、特に通電シートと電極を使った 通電方式でプリントしたときには、より高エネルギーが かかるため融着が起とりやすかった。

【0007】また、染着性樹脂を用い多孔質層を受像層 とし、染料を受像層内部まで拡散、吸着させ画像濃度を 上げる方法として、特開昭B1-184893号公報が 提案されているが、この方法では多孔化が樹脂溶液の乾 燥によるもので、均一かつ緻密な多孔質が再現よく得ら れにくいばかりでなく、この際添加される可塑剤がブリ ードしやすいなどの問題があって十分なものではなかっ

[0008]

【発明が解決しようとする課題】との発明の目的は、転 写記録用シートと随着が起こらずに、簡単に剔離可能で あり、印画後の受像層表面の熱変形が少なく、なおかつ 画像濃度が高い熱転写記録用受像体を提供することにあ る。本発明者らは上記課題を解決すべく鋭意検討した結 果、種々ある樹脂のうちでも特定のポリウレタン系樹脂 の油中水型、いわゆるW/O型エマルジョンを用いて多 孔質層の受像層を設けることにより、本熱転写記録法に 化を行う方法として、転写記録シートの基材に導電性フ 40 特有で且つ必須特性である熱転写時の転写記録用シート との融着防止効果や剥離性が飛躍的に向上し、さらに は、ポリウレタン系樹脂の有する耐熱変形性及び耐溶剤 性等の特性と相まって、高エネルギーで高温、高速に印 加する熱転写記録用の受像体として、非常に好過な受像 体が得られることを見出だし、本発明に到達した。

[0000]

【課題を解決するための手段】すなわち本発明は、基材 の上に昇華性染料を受容する受像層が設けられた熱転写 記録用受像体において、前記受像層がポリウレタン系樹 50 脂の油中水型エマルジョンを用いて形成される多孔質層

(3)

であることを特徴とする熱転写記録用受像体を要旨とす

[0010]以下、本発明を詳細に記述する。本発明の 受像体に用いられる基材としては、主に紙基材、フィル ム基材等の通常熱転写記録に用いられる基材を用いる事 が可能であり、紙基材としては、セルロース繊維より得 ちれる通常の抵類、好ましくはこれらに表面加工等を施 したアート紙、コート紙、キャストコート紙、上質紙、 合成樹脂より得られる合成柢等があげられ、またフィル **ム基材としては、ポリエチレンテレフタレート、ポリオ 10** レフィン、塩化ビニル系樹脂等のプラスチックフィル ム、とれらの積層体及びこれらと前記紙類との積層体等 があげられる。

【0011】本発明の受像体において受像層はポリウレ タン系樹脂のW╱○型エマルション(油相に水滴が分散 したエマルジョン)を用いて形成された多孔質構造を有 するものである。該エマルジョンは、水に対し適度な溶 解度をもつ有機溶媒中にポリウレタン系樹脂が溶解ない し分散した液を抽相とし、W/O型乳化剤、好ましくは ポリウレタン系乳化剤を適量用いて、攪拌下で水を添加 し分散させるととによって得られる。そして酸エマルジ ョンを基材上に塗布し乾燥させると、先ず大半の有機溶 媒が蒸発し樹脂が凝固し、続いて水と残存溶媒が蒸発す ることによって連通した気孔を有する均一で緻密な多孔 **賀層を形成することができる。**

【0012】前記有機溶媒としては、メチルエチルケト ン、メチルーn-プロピルケトン、メチルイソブチルケ トン、ジェチルケトン、シクロヘキサノン、ギ酸メチ ル、ギ酸エチル、ギ酸プロピル、酢酸メチル、酢酸エチ ル、酢酸ブチル、セロソルプアセテート等の水に対し適 30 度な溶解度をもつ溶媒があげられる。また、トルエンや キシレン等、水に対する溶解度の小さい溶媒、あるいは アルコール類、セロソルブ類、アセトン、テトラヒドロ フラン、ジオキサン、ジメチルホルムアミド等水に対す る溶解度の大きい溶媒も他の溶媒との組み合せにより水 に対する溶解度を調節して使用することができる。これ **らの裕謀で沸点が高いものはなるべく使用量を少なくす** ることが望ましい。

[0013] 本発明においてポリウレタン系樹脂の分散 液は通常のウレタン原料を用いて得るととができるが、 受像層に必要とされる転写記録用シートとの融着防止効 果、刺離性、耐熱変形性及び耐溶剤性などが良い点から ポリウレタン微粒子を含有するポリウレタン分散液を用 いることが好ましい。該分散液は通常有機ジイソシアネ ート、ポリエーテル型、ポリエステル型、ポリカーボネ ート型などのポリオール及び短鎖ジオール等の鎖延長剤 を用いて前記溶媒のうち活性水素をもたない溶媒中で反 応させることによって得られる。該分散液中にはポリウ レタン微粒子が均一微細に分散しており、W/O型エマ ルションとした時にすぐれた分散安定性を示す。前記録 50 ター、パーコーター等を用い基材上に塗布し、乾燥する

粒子は有機ジイソシアネートと鎖延長剤が反応したハー ドセグメントを主体としたものであり、粒径は通常5 μ m 以下である。また、設分散液に更にポリウレタン樹脂 を混合してもよい。

[0014] W/O型のポリウレタン系乳化剤は重合体 鎖中にポリオキシエチレン甚のような親水基を適度な割 合で有するものであり前記と同様な溶媒中で合成され る。本発明において用いられるポリウレタン系樹脂の₩ ノO型エマルジョンは前記のポリウレタン系樹脂の分散 液にポリウレタン系乳化剤を加えた混合液を必要に応じ 更に溶媒で希釈しこれに水を分散することによって使用 されるものであり、該混合液は公知の方法により得られ るものでもよいし、市販品を入手して用いてもよい。

【0015】本発明において、受像層を形成する樹脂は ポリウレタン系樹脂単独でもよいが、飽和ポリエステル 系樹脂、ポリビニルアセタール系樹脂、塩化ビニル系樹 脂、塩化ビニル-酢酸ビニル共量合樹脂、アクリル系樹 脂、シリコーン系樹脂、スチレン樹脂、ポリアリレート 樹脂、AS樹脂、ポリカーボネート樹脂、セルロース系 樹脂等の樹脂を1種類または2種類以上含有していても 20 よい。

[0016]また本発明の受像体は、転写記録用シート との政治防止効果や剥離性を良好にし、熱転写記録の受 像体として極めてバランスの良い性能を付与するため に、該受像層の上に離型層を設けることが特に推奨され る。との離型層の形成方法としては、該受像層上に、更 に無型層を形成する工程を塗布等により付加する方法 と、顔型剤を設受像層形成スラリー中に添加混合し、該 受像層中に含有せしめ、受像層の表面に離型剤の一部を 形成せしめる方法とがある。又、本発明で使用される離 型剤としては、シリコーン系の化合物、各種のワックス 類、ファ素系化合物、前記ポリウレタン系以外の微粒子 等が有用である。この中でも特にシリコーン系の化合物 は、その効果が大きく、その中でも特に未硬化又は少な くとも―部が未硬化なシリコーン系の化合物を受像層形 成スラリー中に添加混合する方法で形成することが推奨 される.

【0017】また、受像層あるいは受像層上に形成され る離型剤を含む層中には露光による変色を防止する目的 で紫外線吸収剤、紫外線安定剤、酸化防止剤などを1種 類または2種類以上含有することが好ましい。 また耐熱 性、耐溶剤性の向上のため多官能イソシアネート硬化剤 を用いることもできる。その他蛍光増白剤、帯電防止剤 などが添加されていても良い。

【0018】本発明の受像層は前記のポリウレタン系樹 脂のW/O型エマルジョン調製時に必要に応じて前記ポ リウレタン系以外の樹脂及び各種添加剤を加え竣工液を 調製し、例えばリバースロールコータ、グラビアコータ ー、ロッドコーター、エアドクターコーター、ダイコー

(4)

特開平5-282057

ととにより得られる。基材上に形成させる受像層の厚さは乾燥塗膜として通常3~50μm、好ましくは5~30μmである。

【0019】なお、本発明の受像体とともに用いる感熱 転写記録用シートは通常の方法で得られ、昇華型熱転写 の場合使用される昇華性色素としては、アゾ系、アント ラキノン系、ニトロ系、スチリル系、ナフトキノン系、 キノフタロン系、アゾメチン系、クマリン系、縮合多環* *系等の種々の非イオン性の昇華性色素があげられる。 【0020】

【夷施例】以下、実施例により本発明を具体的に説明するが、本実施例は本発明をなんら限定するものではない。なお実施例中、「部」は「重量部」、「%」は「重量%」を示す。

実施例-1

(a) 受像体の作製

ŧ	•		
۱	ポリエーテル型ポリウレタン分散液(固形分80%)	10	0部
1	ポリウレタン系乳化剤(固形分30%)		7部
ı	メチルエチルケトン	2	140
١	トルエン	2	0部
	アミノ変性シリコンオイル(信越化学製、KF-393)	0.	6
	衆外線安定剤 (チバガイギー社、チヌピン144)	0.	1部
	紫外級吸収剤(/ 、テヌピンP)	0.	1部
l	陸化防止剤 (4 、イルガノックス245)	0.	1部
١	多営能イソシアネート硬化剤 (三菱化成製、マイテックNY-7	10A)	3部
	*		0部
1	•		

上記組成の竣工液を厚き150μmのポリプロビレン製合成紙にバーコーターで塗布、乾燥し乾燥厚さ約15μmの受像層を形成させ受像体を作製した。なお、上記のポリウレタン分散液は4、4′ージフェニルメタンジイソシアネート、ポリテトラメチレンエーテルグリコール及びエチレングリコールを用い、メチルエチルケトン中で反応させて得たものであり、粒径3μm以下の微粒子を含むものである。

【0023】(c) 転写記録試験

上記のカラーシートのインキ塗布面を上記(a)で作成 した受像体と重ね8ドット/mの発熱抵抗体密度を有す る薄膜型ラインサーマルヘッドを使用して、下記条件で★40

> 記録ライン密度 サーマルヘッドの印加電力 サーマルヘッドの印加バルス幅

(d)記録物の表面観察及び保存安定性試験

上記記録物の印画部表面を顕微鏡観察し、熱変形の跡を 観察した結果を後記表 1 に示した。

【0025】又、上記の記録物をキセノンフェードメーターで80時間露光し露光後の変退色の程度を色差計で 倒定した結果を後記表1に示した。

実施例-2

★記録を行ない、後記表1に示した色濃度の記録物を得た。

※ インキ塗布面の背面が耐熱滑性加工された二軸延伸ポリ

エチレンテレフタレートフィルム (6 μm 厚) に下記機

造式(A)で表されるマゼンタ系昇華色素5部、AS樹

脂(電気化学工業(株)製、商品名デンカAS-S))

0部、トルエン85部、及びシクロヘキサノン10部か

ちなるインキを塗布、乾燥し、乾燥膜厚が約1μmの色

材層を形成し、カラーシートを作成した。

[0024]

8 ライン/mm 0.4 W/ドット 5 ミリ秒

実施例-1 においてポリエーテル型ポリウレタン分散液の代りに固形分が同じ30%のポリエステル型ポリウレタン分散液を用いた以外は実施例-1と同様の方法により受像体を作製した。なお上記のポリウレタン分散液は4.4′ージフェニルメタンジイソシアネート、ポリブチレンアジベート及びエチレングリコールを用い、メチルエチルケトン中で反応させて得たものであり、粒径3

(5)

特期平5-282057

μm 以下の微粒子を含有するものである。

7

*試験を行ない、その結果を表-1に示した。

【0026】実施例-1と同様にカラーシートを作製し* 比較例-1

100部 ポリエステル樹脂(東洋紡績製、パイロン290) アミノ変性シリコンオイル (信越化学製、KF-898) 568 トルエン 600部 600部 メチルエチルケトン

上記組成の竣工液を実施例-1と同様にして受像体を作 ※【0027】 製した。実施例-1と同様にして試験を行ない、その結 10 【表1】 果を表−1に示した。

表-1

	実施例-1	実施例-2	比較例-1
熱変形の程度 (*)	0	0	×
記錄物色震度	2. 02	2.13	1.90
記録物の色の にじみの程度	無し	無し	少し有り
記録物の露光後 の変退色 (ΔE)	4	3	3 7

*) 熱変形の程度が殆ど認められないものを〇、熱変形 の程度が大きいものを×とした。

[0028]

[発明の効果] 熱転写記録用の受像体として本発明品を 用いた場合、受像層が多孔質構造を有し染料の取り込み 30 通電方式で印加を行った場合に有効である。 が良いため高浪度の記録ができ、受像層に耐熱性の高い 徴粒子を含むことによって色材層と受像層の融着が起と らず、熱による受像層表面の変形が少ない。従って低エ ネルギー印加時のざらつきが小さいばかりでなく高エネ

ルギー印加時においても受像層表面の光沢低下が少な く、なおかつ画像の保存性が良好な記録物を得るととが できる。特に高速記録のためにサーマルヘッドで高エネ ルギー印加を行った場合や、さらに高速化をするために

【0028】従って、近年急速に普及しつつあるファク シミリ、プリンタ、複写機等のOA端末機におけるカラ 一記録やテレビ画像のカラー記録用などに有利に使用で きる。

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потигр

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.