Understanding Linear Programming

Vitthal Srinivasan CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Linear programming problems (LPPs) have a linear objective and constraints

They closely mirror an economic profit maximisation problem

LPPs can be solved using the Simplex algorithm

Simplex is very powerful and widely used

A modified form of Simplex can be extended to quadratic programming

Linear Programming: Intuition

Three Factories

Different plants for wood, aluminium and glass

Two Products

Glass doors and glass windows

Cost and Profit

Profit and effort per unit product are known

	Production Time per Batch (Hours)		Production Time available per Week
	Product x ₁	Product x ₂	(hours)
Plant y ₁	1	Ο	4
Plant y ₂	0	2	12
Plant y ₃	3	2	18
Profit per Batch	\$3,000	\$5,000	

Tweak production to maximise profits

Manufacturing as an Optimization Problem

Objective Function

Maximize profits

Constraints

Plant capacity constraints

Decision Variables

How many batches of each product to produce

Decision Variables

 x_1 = Number of batches of product 1 to produce

x₂ = Number of batches of product 2 to produce

	Production Time Product x ₁	per Batch (Hours) Product x2	Production Time available per Week (hours)
Plant y ₁	1	0	4
Plant y ₂	0	2	12
Plant y ₃	3	2	18
Profit per Batch	\$3,000	\$5,000	

Batches of Product $1 = x_1$

	Production Time	oer Batch (Hours)	
	Product x ₁	Product x ₂	
Plant y ₁	1	0	
Plant y ₂	0	2	
Plant y ₃	3	2	
Profit per Batch	\$3,000	\$5,000	

Production Time available per Week (hours)
4
12
18

Batches of Product $2 = x_2$

Maximize profit Z

Z is total profit per week, in thousands of dollars

$$Z = 3x_1 + 5x_2$$

	Product x ₁ Product x ₂		
Plant y ₁	1	0	
Plant y ₂	0	2	
Plant y ₃	3	2	

Production Time available per Week (hours)
4
12
18

Profit per Batch	\$3,000		\$5,000
	3x ₁	+	5x ₂

	Production Time per Batch (Hours) Product x ₁ Product x ₂		
Plant y ₁	1	0	
Plant y ₂	0	2	
Plant y ₃	3	2	

Production Time available per Week (hours)
4
12
18

Profit per Batch \$3,000 \$5,000

Profit $Z = 3x_1 + 5x_2$

Infinite production is not possible

The production time available in the factories limits x_1 and x_2

	Production Time per Batch (Hours)			Production Time available per Week
	Product x ₁	Product x ₂		(hours)
Plant y ₁	1 X ₁ +	O X2	<=	4
Plant y ₂	0	2		12
Plant y ₃	3	2		18
Profit per Batch	\$3,000	\$5,000		

	Production Time	Production Time available per Week	
	Product x ₁	Product x ₂	(hours)
Plant y ₁	1	O	4
Plant y ₂	0	2	12
Plant y ₃	3	2	18
Profit per Batch	\$3,000	\$5,000	

Constraint 1: $x_1 \le 4$

	Production Time per Batch (Hours)			Production Time available per Week
	Product x ₁	Product x ₂		(hours)
Plant y ₁	1	0	-	4
Plant y ₂	O X ₁	+ 2 X ₂	<=	12
Plant y ₃	3	2		18
Profit per Batch	\$3,000	\$5,000		

	Production Time per Batch (Hours)		Production Time available per Week	
	Product x ₁	Product x ₂	(hours)	
Plant y ₁	1	0	4	
Plant y ₂	0	2	12	
Plant y₃	3	2	18	
Profit per Batch	\$3,000	\$5,000		

Constraint 2: 2x₂ <= 12

	Production Time per Batch (Hours)			Production Time available per Week	
	Product x ₁	Product x ₂		(hours)	
Plant y ₁	1	0		4	
Plant y ₂	0	2		12	
Plant y ₃	3 X ₁ +	2 X ₂	<=	18	
Profit per Batch	\$3,000	\$5,000			

	Production Time	Production Time available per Week	
	Product x ₁	Product x ₂	(hours)
Plant y ₁	1	0	4
Plant y ₂	0	2	12
Plant y ₃	3	2	18
Profit per Batch	\$3,000	\$5,000	

Constraint 3: $3x_1 + 2x_2 \le 18$

	Production Time Product x ₁	per Batch (Hours) Product x ₂	Production Time available per Week (hours)
Plant y ₁	1	0	4
Plant y ₂	0	2	12
Plant y ₃	3	2	18
Profit per Batch	\$3,000	\$5,000	

Constraint 4: $x_1 \ge 0$

	Production Time	oer Batch (Hours)
	Product x ₁	Product x ₂
Plant y ₁	1	0
Plant y ₂	0	2
Plant y ₃	3	2
Profit per Batch	\$3,000	\$5,000

Production Time available per Week (hours)
4
12
18

Constraint 5: $x_2 \ge 0$

Linear Programming Problem Formulation

Maximize

$$Z = 3x_1 + 5x_2$$

Subject to constraints:

$$x_1 <= 4$$

$$2x_2 <= 12$$

$$3x_1 + 2x_2 \le 18$$

$$x_1, x_2 >= 0$$

(Non-negativity constraints)

Maximize

$$Z = c_1x_1 + c_2x_2 + ... + c_nx_n$$

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \le b_1$$
 $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n \le b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \le b_m$

$$x_1, x_2...x_n >= 0$$
 (Non-negativity constraints)

Maximize

$$Z = c_1x_1 + c_2x_2 + ... + c_nx_n$$

Objective function, interpret as profit

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \le b_1$$
 $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n \le b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \le b_m$

$$x_1, x_2...x_n >= 0$$
 (Non-negativity constraints)

Maximize

$$Z = c_1x_1 + c_2x_2 + ... + c_nx_n$$

Maximize the profit function

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \le b_1$$
 $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n \le b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \le b_m$

$$x_1, x_2...x_n >= 0$$
 (Non-negativity constraints)

Maximize

$$Z = c_1 x_1 + c_2 x_2 + ... + c_n x_n$$

Decision variables: how much to produce of each product

Subject to constraints:

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \le b_1$$
 $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n \le b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \le b_m$

 $x_1, x_2...x_n >= 0$ (Non-negativity constraints)

Maximize

$$Z = c_1x_1 + c_2x_2 + ... + c_nx_n$$

Interpret each as an activity

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \le b_1$$
 $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n \le b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \le b_m$

$$x_1, x_2...x_n >= 0$$
 (Non-negativity constraints)

Maximize

$$Z = c_1x_1 + c_2x_2 + ... + c_nx_n$$
 increasing each activity

Increase in profit by increasing each activity by 1 unit

Subject to constraints:

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \le b_1$$
 $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n \le b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \le b_m$

 $x_1, x_2...x_n >= 0$ (Non-negativity constraints)

Maximize

$$Z = c_1x_1 + c_2x_2 + ... + c_nx_n$$

Subject to constraints:

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \le b_1$$
 $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n \le b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \le b_m$

Amount of each resource that is available for use

$$x_1, x_2...x_n >= 0$$
 (Non-negativity constraints)

Maximize

$$Z = c_1x_1 + c_2x_2 + ... + c_nx_n$$

Subject to constraints:

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \le b_1$$

$$a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n \le b_2$$

$$a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \le b_m$$

Amount of resource allocated to each activity

 $x_1, x_2...x_n >= 0$ (Non-negativity constraints)

Maximize

$$Z = c_1x_1 + c_2x_2 + ... + c_nx_n$$

Subject to constraints:

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \le b_1$$
 $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n \le b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \le b_m$

Functional constraints

 $x_1, x_2...x_n >= 0$ (Non-negativity constraints)

Maximize

$$Z = c_1x_1 + c_2x_2 + ... + c_nx_n$$

Subject to constraints:

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \le b_1$$

$$a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n \le b_2$$

Each functional constraint is a less-than inequality

$$a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \le b_m$$

$$x_1, x_2...x_n >= 0$$
 (Non-negativity constraints)

Maximize

$$Z = c_1x_1 + c_2x_2 + ... + c_nx_n$$

Subject to constraints:

Collectively referred to as the model parameters

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \le b_1$$
 $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n \le b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \le b_m$

$$x_1, x_2...x_n >= 0$$
 (Non-negativity constraints)

Maximize

$$Z = c_1x_1 + c_2x_2 + ... + c_nx_n$$

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \le b_1$$

$$a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n \le b_2$$

$$a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \le b_m$$

$$x_1, x_2...x_n >= 0$$
 (Non-negativity constraints)

Maximize

$$Z = c_1x_1 + c_2x_2 + ... + c_nx_n$$

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \le b_1$$
 $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n \le b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \le b_m$

$$x_1, x_2...x_n >= 0$$
 (Non-negativity constraints)

Dual Problem

Minimize

$$W = b_1y_1 + b_2y_2 + ... + b_my_m$$

$$a_{11}y_1 + a_{21}y_2 + ... + a_{m1}y_m >= c_1$$
 $a_{12}y_1 + a_{22}y_2 + ... + a_{m2}y_m >= c_2$
 \vdots
 $a_{1n}y_1 + a_{2n}y_2 + ... + a_{mn}y_m >= c_n$

$$y_1, y_2...y_m >= 0$$
 (Non-negativity constraints)

Primal and Dual Forms

Maximize

$$Z = c_1x_1 + c_2x_2 + ... + c_nx_n$$

Minimize

$$W = b_1y_1 + b_2y_2 + ... + b_my_m$$

Primal and Dual Forms

Subject to constraints:

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n <= b_1$$
 $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n <= b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n <= b_m$

Subject to constraints:

$$a_{11}y_1 + a_{21}y_2 + ... + a_{m1}y_m >= c_1$$
 $a_{12}y_1 + a_{22}y_2 + ... + a_{m2}y_m >= c_2$
 \vdots
 $a_{1n}y_1 + a_{2n}y_2 + ... + a_{mn}y_m >= c_n$

Primal and Dual Forms

Maximize

$$Z = c_1x_1 + c_2x_2 + ... + c_nx_n$$

Profit maximization

Subject to capacity constraints on production

Minimize

$$W = b_1y_1 + b_2y_2 + ... + b_my_m$$

Cost minimization

Subject to minimal level of economic activity

The primal and dual problems have the same optimal solution

Linear Programming: Micro-economic Assumptions

Manufacturing as an Optimization Problem

Objective Function

Maximize profits

Constraints

Plant capacity constraints

Decision Variables

How many batches of each product to produce

Micro-economic Assumptions

Proportionality Assumption

No start-up costs, constant returns to scale

Additivity **Assumption**

Products are neither complements nor substitutes

Divisibility Assumption

Fractional production is possible

Start-up costs would have caused profit function to have a constant term

Positive returns of scale would have profit function steepen as production increases

Negative returns of scale would have profit function flatten as production increases

Assumption

Complementary goods have positive synergies as scale increases

- reducing cost

or

- increasing profit

Substitute goods have negative synergies as scale increases

- increasing cost

or

- reducing profit

Divisibility Assumptions Fractional values of production are acceptable in optimal solution

This assumption is more important than it seems

Requiring integer values makes the optimization much more difficult to solve

Integer programming techniques accomplish this

Linear Programming: Graphical Solutions

A Famous Case Study: Wyndor Glass

Three Factories

Different plants for wood, aluminium and glass

Two Products

Glass doors and glass windows

Cost and Profit

Profit and effort per unit product are known

A Famous Case Study: Wyndor Glass

Production Time per Batch (Hours)	
Product x ₁	Product x ₂
1	0
0	2
3	2
	Product x ₁ 1

Production Time available per Week (hours)
4
12
18

Profit per Batch \$3,000 \$5,000

Tweak production to maximise profits

Linear Programming Problem Formulation

Maximize

$$Z = 3x_1 + 5x_2$$

Subject to constraints:

$$x_1 <= 4$$

$$2x_2 \le 12$$

$$3x_1 + 2x_2 \le 18$$

$$x_1, x_2 >= 0$$

(Non-negativity constraints)

Decision Variables in Space

Two decision variables => two-dimensional space

Each constraint bounds the feasible region

Each constraint bounds the feasible region

The optimal solution will always* be a corner point of this feasible region

The optimal solution will always* be a corner point of the feasible region

Linear Programming Problem Formulation

Maximize

$$Z = 3x_1 + 5x_2$$

Subject to constraints:

$$x_1 <= 4$$

$$2x_2 \le 12$$

$$3x_1 + 2x_2 \le 18$$

$$x_1, x_2 >= 0$$

(Non-negativity constraints)

Objective Function in Space

An infinite number of lines exist, each with a different value of the objective function

Objective Function in Space

Find the right-most such line that intersects the feasible region

Optimal Solution in Space

Find the right-most such line that intersects the feasible region

Optimal Solution in Space

The point of intersection represents the optimal solution

Multiple Optimum Solutions

Here the entire line segment contains optimal solutions

Each constraint bounds the feasible region

No Feasible Solutions

The intersection set of all feasible regions is the empty set

Each constraint bounds the feasible region

No Optimal Solution

Unbounded objective function (profits can increase to infinity)

Simplex Method: Intuition

The Simplex Method

Powerful

Easily extends to large numbers of variables, constraints

Versatile

Extends to sensitivity analysis and quadratic programming

Programmable

Easy to implement in software

Linear Programming Problem Formulation

Maximize

$$Z = 3x_1 + 5x_2$$

Subject to constraints:

$$x_1 <= 4$$

$$2x_2 \le 12$$

$$3x_1 + 2x_2 \le 18$$

$$x_1, x_2 >= 0$$

(Non-negativity constraints)

Constraints in Space

Intersection points of the constraint lines are called corner points

Some corner points represent feasible solutions...

...While others do not.

All Corner-point Solutions

The optimal solution will always* be a corner point of the feasible region

The optimal solution will always* be a corner point of the feasible region

If a corner-point solution is "better" than any adjacent corner-point solution, it is the optimal solution*

Pick an initial corner-point to be the current solution

Is any adjacent corner-point better than current solution?

Yes: set that point to be the current solution

No: stop, optimal point found

Have we run out of corner-points?

Yes: Sorry, no optimal

No: Keep iterating

◄ Pick an initial solution

◄ Test for optimality

Not optimal, continue

◀Optimal, stop

◀Keep iterating until we run out
of corner-points

Initial guess = (0,0)

Value of Z at (0,0) = 0

Adjacent corner-points are (0,6) and (4,0)

"Best" adjacent corner-point is (0,6)

Set (0,6) to be current solution

Adjacent corner-points are (0,0) and (2,6), but we already know (0,0) is not better

"Best" adjacent corner-point is (2,6)

Set (2,6) to be current solution

Adjacent corner-points are (0,6) and (4,3), but we already know (0,6) is not better

(4,3) is not better either - current solution (2,6) is better than any adjacent corner-point

(2,6) is the optimal solution

Pick an initial corner-point to be the current solution

Is any adjacent corner-point better than current solution?

Yes: set that point to be the current solution

No: stop, optimal point found

Have we run out of corner-points?

Yes: Sorry, no optimal

No: Keep iterating

◄ Pick an initial solution

◄ Test for optimality

Not optimal, continue

◀Optimal, stop

◀Keep iterating until we run out
of corner-points

Pick an initial corner-point to be the current solution

Is any adjacent corner-point better than current solution?

Yes: set that point to be

the current solution

No: stop, optimal point

found

Have we run out of cornerpoints?

Yes: Sorry, no optimal

No: Keep iterating

The simplex method uses a trick to avoid actually recalculating Z at each adjacent corner-point

Pick an initial corner-point to be the current solution

Is any adjacent corner-point better than current solution?

Yes: set that point to be the current solution

No: stop, optimal point found

Have we run out of cornerpoints?

Yes: Sorry, no optimal

No: Keep iterating

The rate of improvement in each direction is calculated, using the coefficients of x₁ and x₂ in the objective function

Initial guess = (0,0)

Adjacent corner-points are (0,6) and (4,0)

Moving right increases x_1 by 1 unit, and so increases Z by 3 units (Since $Z = 3x_1 + 5x_2$)

Moving up increases x_2 by 1 unit, and so increases Z by 5 units (Since $Z = 3x_1 + 5x_2$)

Moving up increases Z faster than moving right, so move up in next iteration

Set (0,6) to be current solution

Adjacent corner-points are (0,0) and (2,6), but we already know (0,0) is not better

Moving right increases x_1 by 1 unit, which increases Z by 3 units (Since $Z = 3x_1 + 5x_2$)

Set (2,6) to be current solution

Adjacent corner-points are (0,6) and (4,3), but we already know (0,6) is not better

Moving down and right decreases x₂ and increases x₁

Equation of that line: $3x_1 + 2x_2 = 18$

From slope of the line, we can conclude that moving 2 points right also moves us 3 points down

3 unit decrease in x_2 causes Z to reduce by 15 units, 2 unit increase in x_1 causes Z to increase by only 6 units

Moving to (4,3) will cause value of objective function to decrease, i.e. (4,3) is worse than current solution (2,6)

Current solution (2,6) is optimal - can stop now

Evaluate objective function only at optimal

Pick an initial corner-point to be the current solution

Is any adjacent corner-point better than current solution?

Yes: set that point to be the current solution

No: stop, optimal point found

Have we run out of corner-points?

Yes: Sorry, no optimal

No: Keep iterating

◄ Pick an initial solution

◄ Test for optimality

Not optimal, continue

◀Optimal, stop

◀Keep iterating until we run out
of corner-points

Pick an initial corner-point to be the current solution

Is any adjacent corner-point better than current solution?

Yes: set that point to be the current solution

No: stop, optimal point found

Have we run out of corner-points?

Yes: Sorry, no optimal

No: Keep iterating

◄ Pick an initial solution (0,0)

◄ Iteratively evaluate

◄(0,0) in iteration 0

 \triangleleft (0,6) in iteration 1

 \triangleleft (2,6) in iteration 2

 \triangleleft (2,6) is optimal solution, Z = 36

The Simplex Method

Powerful

Easily extends to large numbers of variables, constraints

Versatile

Extends to sensitivity analysis and quadratic programming

Programmable

Easy to implement in software

Simplex Method: Mechanics and Interpretation

Pick an initial corner-point to be the current solution

Is any adjacent corner-point better than current solution?

Yes: set that point to be the current solution

No: stop, optimal point found

Have we run out of corner-points?

Yes: Sorry, no optimal

No: Keep iterating

◄ Pick an initial solution

◄ Test for optimality

Not optimal, continue

◀Optimal, stop

◀Keep iterating until we run out
of corner-points

Linear Programming Problem Formulation

Maximize

$$Z = 3x_1 + 5x_2$$

Subject to constraints:

$$x_1 <= 4$$

$$2x_2 \le 12$$

$$3x_1 + 2x_2 \le 18$$

$$x_1, x_2 >= 0$$

(Non-negativity constraints)

Pick an initial corner-point to be the current solution

Is any adjacent corner-point better than current solution?

Yes: set that point to be the current solution

No: stop, optimal point found

Have we run out of corner-points?

Yes: Sorry, no optimal

No: Keep iterating

◄ Pick an initial solution (0,0)

◄ Iteratively evaluate

◄(0,0) in iteration 0

 \triangleleft (0,6) in iteration 1

 \triangleleft (2,6) in iteration 2

 \triangleleft (2,6) is optimal solution, Z = 36

Standard Form

Maximize

$$Z = 3x_1 + 5x_2$$

Subject to constraints:

$$x_1 <= 4$$

$$2x_2 \le 12$$

$$3x_1 + 2x_2 \le 18$$

$$x_1, x_2 >= 0$$

(Non-negativity constraints)

Augmented Form

Maximize

$$Z = 3x_1 + 5x_2$$

Subject to constraints:

$$x_1 + x_3 = 4$$

$$2x_2 + x_4 = 12$$

$$3x_1 + 2x_2 + x_5 = 18$$

$$x_1, x_2, x_3, x_4, x_5 >= 0$$

x₃,x₄ and x₅ are called slack variables

Augmented Form

Maximize

$$Z = 3x_1 + 5x_2$$

Subject to constraints:

$$x_1 + x_3 = 4$$

$$2x_2 + x_4 = 12$$

$$3x_1 + 2x_2 + x_5 = 18$$

$$x_1, x_2, x_3, x_4, x_5 >= 0$$

The slack variables convert inequality constraints into equalities

Augmented Form

Maximize

$$Z = 3x_1 + 5x_2$$

Subject to constraints:

$$Z - 3x_1 - 5x_2 = 0$$

$$x_1 + x_3 = 4$$

$$2x_2 + x_4 = 12$$

$$3x_1 + 2x_2 + x_5 = 18$$

$$x_1, x_2, x_3, x_4, x_5 >= 0$$

Convert the objective function into a constraint too

Maximize

$$Z = 3x_1 + 5x_2$$

Subject to constraints:

$$Z - 3x_1 - 5x_2 = 0$$

$$x_1 + x_3 = 4$$

$$2x_2 + x_4 = 12$$

$$3x_1 + 2x_2 + x_5 = 18$$

$$x_1, x_2, x_3, x_4, x_5 >= 0$$

Equation (0)

Equation (1)

Equation (2)

Equation (3)

	Basic	Coefficient of:							
	Variable	Z	X 1	X2	X 3	X 4	X 5		
(0)	Z	1	-3	-5	0	0	0		
(1)	X 3	0	1	0	1	0	0		
(2)	X 4	0	0	2	0	1	0		
(3)	X 5	0	3	2	0	0	1		

Right side of equation
0
4
12
18

This representation of a simplex problem is called a Simplex Tableau

	Basic	Coefficient of:							
	Variable	Z	X ₁	X2	X 3	X 4	X 5		
(0)	Z	1	-3	-5	0	0	0		
(1)	X 3	0	1	0	1	0	0		
(2)	X 4	0	0	2	0	1	0		
(3)	X 5	0	3	2	0	0	1		

Right side of equation
0
4
12
18

This tableau represents the initial state, with slack variables marked as 'basic variables'

	Basic			Coeffic	Right side o			
	Variable	Z	X 1	X 2	X 3	X 4	X 5	equation
(0)	Z	1	-3	-5	0	0	0	0
(1)	X 3	0	1	0	1	0	0	4
(2)	X 4	0	0	2	0	1	0	12
(3)	X 5	0	3	2	0	0	1	18

Find most negative coefficient in row (0)

	Basic		Right					
	Variable	Z	X 1	X 2	X 3	X 4	X 5	equa
(0)	Z	1	-3	-5	0	0	0	(
(1)	X 3	0	1	0	1	0	0	4
(2)	X4	0	0	2	0	1	0	1
(3)	X 5	0	3	2	0	0	1	1

Right side of equation
0
4
12
18

Corresponding column is called the pivot column

Divide right hand side of each equation by pivot column (for all values in pivot column > 0)

Highlight the smallest ratio, this identifies the pivot row

Intersection of pivot row and pivot column yields the pivot number

	Basic			Coeffi	Right side of			
	Variable	Z	X 1	X2	Х3	X 4	X 5	equation
(0)	Z	1	-3	-5	0	0	0	0
(1)	X 3	0	1	0	1	0	0	4
(2)	X4	0	0	2	0	1	0	12 / 2 = 6
(3)	X 5	0	3	2	0	0	1	18 / 2 = 9

Divide pivot row by pivot number

Divide pivot row by pivot number

Pivot column represents the entering variable Pivot row represents the leaving variable

Replace the leaving variable with the entering variable in the column for basic variables

For other rows, do some complicated manipulation (not important exactly what)

	Basic	Coefficient of:							
	Variable	Z	X 1	X 2	X 3	X 4	X 5		
(0)	Z	1	0	0	0	3/2	1		
(1)	X 3	0	0	0	1	1/3	-1/3		
(2)	X ₂	0	0	1	0	1/2	0		
(3)	X 1	0	1	0	0	-1/3	1/3		

Right side of equation
36
2
6
2

Rinse-and-repeat until all coefficients in row (0) are >=0

	Basic	Coefficient of:							
	Variable	Z	X1	X2	X3	X 4	X 5		
(0)	Z	1	0	0	0	3/2	1		
(1)	X3	0	0	0	1	1/3	-1/3		
(2)	X ₂	0	0	1	0	1/2	0		
(3)	X 1	0	1	0	0	-1/3	1/3		

Right side of equation
36
2
6
2

This final tableau represents the solution of the simplex algorithm

	Basic Variable	Coefficient of:					
		Z	X1	X2	X 3	X 4	X 5
(0)	Z	1	0	0	0	3/2	1
1)	Х3	0	0	0	1	1/3	-1/3
2)	X ₂	0	0	1	0	1/2	0
(3)	X 1	0	1	0	0	-1/3	1/3

Right side of equation (0) gives the optimal value

Other values in that column give values of the decision variables (and some slack variables)

We can conclude that at optimal, $x_1 = 2$, $x_2 = 6$

Any slack variable that is non-zero tells us that the corresponding constraint was non-binding at the optimal

Maximize

$$Z = 3x_1 + 5x_2$$

Subject to constraints:

$$Z - 3x_1 - 5x_2 = 0$$

$$x_1 + x_3 = 4$$

$$2x_2 + x_4 = 12$$

$$3x_1 + 2x_2 + x_5 = 18$$

$$x_1, x_2, x_3, x_4, x_5 >= 0$$

Equation (0)

Equation (1)

Equation (2)

Equation (3)

Maximize

$$Z = 3x_1 + 5x_2$$

Subject to constraints:

$$Z - 3x_1 - 5x_2 = 0$$

Any slack variable that is non-zero tells us that the corresponding constraint was non-binding at the optimal

$$x_1 + x_3 = 4$$

$$2x_2 + x_4 = 12$$

$$3x_1 + 2x_2 + x_5 = 18$$

$$x_1, x_2, x_3, x_4, x_5 >= 0$$

Equation (0)

Equation (1)

Equation (2)

Equation (3)

	Basic	Coefficient of:						
	Variable	Z	X1	X2	X 3	X4	X 5	
(0)	Z	1	0	0	0	3/2	1	
(1)	X 3	0	0	0	1	1/3	-1/3	
(2)	X ₂	0	0	1	0	1/2	0	
(3)	X ₁	0	1	0	0	-1/3	1/3	

Right side of equation
36
2
6
2

The values in row (0) for the slack variables are significant too

	Basic	Coefficient of:						
	Variable	Z	X1	X2	X 3	X 4	X 5	
(0)	Z	1	0	0	0	3/2	1	
(1)	X 3	0	0	0	1	1/3	-1/3	
(2)	X ₂	0	0	1	0	1/2	0	
(3)	X 1	0	1	0	0	-1/3	1/3	

Right side of equation
36
2
6
2

They represent the shadow prices of the resources (factory production time)

A Famous Case Study: Wyndor Glass

Three Factories

Different plants for wood, aluminium and glass

Two Products

Glass doors and glass windows

Cost and Profit

Profit and effort per unit product are known

A Famous Case Study: Wyndor Glass

	Production Time per Batch (Hours)			
	Product x ₁	Product x ₂		
Plant y ₁	1	O		
Plant y ₂	0	2		
Plant y ₃	3	2		

Production Time available per Week (hours)
4
12
18

Profit per Batch \$3,000 \$5,000

Tweak production to maximise profits

	Basic	Coefficient of:						
	Variable	Z	X1	X2	X 3	X4	X 5	
(0)	Z	1	0	0	0	3/2	1	
(1)	X 3	0	0	0	1	1/3	-1/3	
(2)	X ₂	0	0	1	0	1/2	0	
(3)	X ₁	0	1	0	0	-1/3	1/3	

Right side of equation	
36	
2	Plant y ₁
6	Plant y ₂
2	Plant y ₃

Shadow prices of the resources (factory production time)

	Basic	Coefficient of:						
	Variable	Z	X ₁	X2	X 3	X 4	X 5	
))	Z	1	0	0	0	3/2	1	
	X 3	0	0	0	1	1/3	-1/3	
)	X ₂	0	0	1	0	1/2	0	
3)	X ₁	0	1	0	0	-1/3	1/3	

Right side of equation
36
2
6
2

Shadow prices of 1 hour of production time in each of the factories y_1 , y_2 and y_3

Shadow price of 1 hour of production time in $y_1 = 3/2$ Unit increase in production time in y_1 will increase profit by \$1,500 per week

Right side of equation
36
2
6
2

Shadow price of 1 hour of production time in $y_2 = 1$

Unit increase in production time in y₂ will increase profit by \$1,000 per week

Shadow price of 1 hour of production time in $y_3 = 0$ Unit increase in production time in y_3 will not increase profit

Maximize

$$Z = 3x_1 + 5x_2$$

Subject to constraints:

$$Z - 3x_1 - 5x_2 = 0$$

Any slack variable that is non-zero tells us that the corresponding constraint was non-binding at the optimal

$$x_1 + x_3 = 4$$

$$2x_2 + x_4 = 12$$

$$3x_1 + 2x_2 + x_5 = 18$$

$$x_1, x_2, x_3, x_4, x_5 >= 0$$

Equation (0)

Equation (1)

Equation (2)

Equation (3)

Any slack variable that is non-zero tells us that the corresponding constraint was non-binding at the optimal

Simplex Method: Extensions

The Simplex Method

Powerful

Easily extends to large numbers of variables, constraints

Versatile

Extends to sensitivity analysis and quadratic programming

Programmable

Easy to implement in software

Equality constraints

Negative resources

Greater-than constraints

Minimization

Negative variables

Quadratic objectives

Equality constraints

Negative resources

Greater-than constraints

Minimization

Negative variables

Quadratic objectives

Standard Form of Linear Programming Problems

Maximize

$$Z = c_1x_1 + c_2x_2 + ... + c_nx_n$$

Subject to constraints:

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \le b_1$$
 $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n \le b_2$
 \vdots
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \le b_m$

$$x_1, x_2 ... x_n >= 0$$
 (Non-negativity constraints)

Equality Constraints

Maximize

$$Z = c_1x_1 + c_2x_2 + ... + c_nx_n$$

Subject to constraints:

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = b_1$$

1 equality constraint is equivalent to 2 inequality constraints

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \le b_1$$

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n >= b_1$$

Equality Constraints: Big-M Method

Maximize

$$Z = c_1x_1 + c_2x_2 + ... + c_nx_n$$

Subject to constraints:

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = b_1$$

Maximize

Alternatively, use an artificial variable x' (Big-M method)

$$Z = c_1x_1 + c_2x_2 + ... + c_nx_n - Mx'$$
 $M >> 0 (penalty)$

Subject to constraints:

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n + x' = b_1$$

Equality constraints

Negative resources

Greater-than constraints

Minimization

Negative variables

Quadratic objectives

Equality constraints

Negative resources

Greater-than constraints

Minimization

Negative variables

Quadratic objectives

Negative Resources

Maximize

$$Z = c_1x_1 + c_2x_2 + ... + c_nx_n$$

Subject to constraints:

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n < = -10$$

Multiply constraint by -1

 $-a_{11}x_1 - a_{12}x_2 - ... - a_{1n}x_n > = 10$

Equality constraints

Negative resources

Greater-than constraints

Minimization

Negative variables

Quadratic objectives

Equality constraints

Negative resources

Greater-than constraints

Minimization

Negative variables

Quadratic objectives

Standard Form

Maximize

$$Z = 3x_1 + 5x_2$$

Subject to constraints:

$$x_1 <= 4$$

$$2x_2 \le 12$$

$$3x_1 + 2x_2 \le 18$$

$$x_1, x_2 >= 0$$

(Non-negativity constraints)

Augmented Form

Maximize

$$Z = 3x_1 + 5x_2$$

Subject to constraints:

$$x_1 + x_3 = 4$$

$$2x_2 + x_4 = 12$$

$$3x_1 + 2x_2 + x_5 = 18$$

$$x_1, x_2, x_3, x_4, x_5 >= 0$$

x₃,x₄ and x₅ are called slack variables

Greater-than Constraints

Maximize

$$Z = c_1x_1 + c_2x_2 + ... + c_nx_n$$

Subject to constraints:

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n >= b_1$$

Need both a slack and a surplus variable in augmented form

$$a_{11}X_1 + a_{12}X_2 + ... + a_{1n}X_n - X_{surplus} + X_{slack} = b_1$$

Equality constraints

Negative resources

Greater-than constraints

Minimization

Negative variables

Quadratic objectives

Equality constraints

Negative resources

Greater-than constraints

Minimization

Negative variables

Quadratic objectives

Minimization

Minimize

$$Z = c_1x_1 + c_2x_2 + ... + c_nx_n$$

Multiply objective by -1 and maximize

Maximize

$$-Z = -c_1x_1 - c_2x_2 - ... - c_nx_n$$

Equality constraints

Negative resources

Greater-than constraints

Minimization

Negative variables

Quadratic objectives

Equality constraints

Negative resources

Greater-than constraints

Minimization

Negative variables

Quadratic objectives

Bounded Negative Variables

Minimize

$$Z = c_1x_1 + c_2x_2 + ... + c_nx_n$$

$$x_1 >= -L$$

 $x'_1 = x_1 + L$

 $x_1 >= -L$ x_1 can be negative, but certain to be larger than -L (L is positive)

Minimize

$$Z = c_1(x'_1 + L) + c_2x_2 + ... + c_nx_n$$

 $x'_1 >= 0$

Unbounded Negative Variables

Minimize

$$Z = c_1x_1 + c_2x_2 + ... + c_nx_n$$

$$x_1 <= 0$$

 $x_1 \le 0$ x_1 can be any negative value

 $x_1 = x_1 - x_1$ Express x_1 as difference of two non-negative variables

Minimize

$$Z = c_1(x_1 - x_1) + c_2x_2 + ... + c_nx_n$$

 $x_1 \cdot x_1 >= 0$

Equality constraints

Negative resources

Greater-than constraints

Minimization

Negative variables

Quadratic objectives

Equality constraints

Negative resources

Greater-than constraints

Minimization

Negative variables

Quadratic objectives

Standard Form of Linear Programming Problems

Maximize

$$Z = c_1x_1 + c_2x_2 + ... + c_nx_n$$

Subject to constraints:

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \le b_1$$
 $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n \le b_2$
 \vdots
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \le b_m$

$$x_1, x_2 ... x_n >= 0$$
 (Non-negativity constraints)

Quadratic Programming Problems

Maximize

$$Z = c_1x_1 + c_2x_2 + ... + c_nx_n$$
$$+ q_{11}x_{1}^{2} + q_{12}x_{1}x_{2} + ... + q_{nn}x_{n}^{2}$$

Subject to constraints:

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \le b_1$$
 $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n \le b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \le b_m$

$$x_1, x_2...x_n >= 0$$
 (Non-negativity constraints)

Quadratic Programming Problems

Maximize

$$Z = cx - \frac{1}{2} x Qx$$

Subject to constraints:

$$Ax \leq B$$

$$x >= 0$$

Matrix form of quadratic programming problems

Quadratic Programming Problems

Maximize

$$Z = cx - \frac{1}{2} x Qx$$

Subject to constraints:

$$Ax \leq B$$

$$x >= 0$$

Can be solved using the Modified Simplex Method

Summary

Linear programming problems (LPPs) have a linear objective and constraints

They closely mirror an economic profit maximisation problem

LPPs can be solved using the Simplex algorithm

Simplex is very powerful and widely used

A modified form of Simplex can be extended to quadratic programming