图论第一次作业

1.1 举出两个可以化成图论模型的实际问题略

1.2 证明|E(G)|≤
$$\binom{\upsilon}{2}$$
,其中G是单图

证明: (思路)根据单图无环无重边的特点,所以[E(G)] 最大的情形为任意两个顶点间有一条边相连,即极

端情况为
$$\binom{\upsilon}{2}$$
。

• 1.4 画出不同构的一切四顶单图

• 0条边: ● ● ● 1条边: ● ● ●

• 2条边: •••• 3条边:

• 4条边: 5条边:

• 6条边:

1.10 G ≅ H 当且仅当存在可逆映射 θ : $V(G) \rightarrow V(H)$,使得 $uv \in E(G) \Leftrightarrow \theta(u)\theta(v) \in E(H)$,其中G和H是单图。

• 必要性

- 若 $G \cong H$,由定义可得,存在可逆映射 θ : $V(G) \rightarrow V(H)$, φ : $E(G) \rightarrow E(H)$,使得对任意 $e = uv \in E(G)$ 时,有 $\varphi(e) = \theta(u)\theta(v) \in E(H)$,所以当 $uv \in E(G) \Rightarrow \theta(u)\theta(v) \in E(H)$ 。
- 当 $\theta(u)\theta(v) \in E(H)$,由 φ 的可逆性,存在唯一的e'使得 $\varphi(e') = \theta(u)\theta(v)$,易知e' = uv,所以 $\theta(u)\theta(v) \in E(H) \Rightarrow uv \in E(G)$

• 充分性

- 对任意 $e = uv \in E(G)$,定义 φ : $E(G) \to E(H)$,使得 $\varphi(e) = \theta(u)\theta(v)$,则只需证 φ 是一一映射即可。
- 由于 θ 是一一映射,故对 $\theta(u)\theta(v) \in E(H)$,有唯一的 $e = uv \in E(G)$ 与之对应,因此 φ 为单射。
- 对任意 $xy \in E(H)$,存在 $u, v \in V(G)$,使得 $\theta(u) = x, \theta(v) = y$,则 $e = uv \in E(G)$,且 $\varphi(e) = \theta(u)\theta(v) = xy$,故 φ 为满射,因此 φ 是一一映射,故 $G \cong H$

- 1.12求证(a) $\epsilon(K_{m,n})=mn$,(b)G是完全二分图,则 $\epsilon(G)\leq \frac{1}{4}[v(G)]^2$
- (a)对于 $K_{m,n}$,将顶集分为X和Y,使得 $X \cup Y = V(K_{m,n})$, $X \cap Y = \emptyset$,|X| = m,|Y| = n,对于X中的每一顶点,都和Y中所有顶点相连,所以 $\epsilon(K_{m,n}) = mn$
- (b)设G的顶划分为X,Y,|X|=m,|Y|=v-m,则 $\epsilon(G)\leq$
- $\epsilon(K_{m,v-m})=(v-m)m \leq \frac{v^2}{4}$

1.35 证 明 : (a) 7,6,5,4,3,3,2和 6,6,5,4,3,3,1不 是 单图 的 次 数 序 列 。 (b) 若 d_1,d_2,\cdots,d_n 是 单图 的 次 数 序 列 且 $d_1 \geq d_2 \geq \cdots \geq d_{\nu}$,则 $\sum_{i=1}^n d_i$ 是 偶 数 ,且 对 $1 \leq k \leq n$, $\sum_{i=1}^k d_i \leq k(k-1) + \sum_{i=k+1}^n \min \left\{ k,d_i \right\}$

证明:

- (a)第一个序列考虑度数7,第二个序列考虑6,6,1
- (b)将顶点v分成两部分v'和v"
- $v' = \{v \mid v = v_i, 1 \le i \le k\},\$
- $v'' = \{v | v = v_i, k < i \le n\}$
- 以v'点为顶的原图的导出子图度数之和小于 k(k-1)
- 然后考虑剩下的点贡献给这k个点的度数之和最大可能为 $\sum_{i=k+1}^{n}$ m in $\{k,d_i\}$

- 1.37: 证明无环图G含二分生成子图H,使得 $d_{H(v)} \ge \frac{1}{2} d_{G(v)}$ 对每个 $v \in V(G)$ 成立。
- 证明:
 - 任取X, Y满足X U Y = V(G), X ∩ Y = Ø, 且令X,Y中的顶两两不相邻,所得的 图是H且是二分子图,令H是G边数最多的二分生成子图,若存在v \in V(G),使得d_H(v) < $\frac{1}{2}$ d_G(v),不妨设v \in X,则将v所连的边取消,换成d_G(v) d_H(v) 条边,且将v加入Y中,于是H的边数增加了d_G(v) 2d_H(v)条,与H边数最多矛盾,故原命题成立。