Problem Set 5 Zack Garza

① We'll proceed by induction on $n = \deg f$. The n = 1 case follows immediately since $\deg f = 1 \implies f(x) = x - \alpha \in K[x]$, so $\alpha \in K$ and [K:K] = 1 which divides 1! = 1.

If now deg f = n, we have $f(x) = \prod_{i=1}^{k} (x - u_i)^{m_i}$ for some $m_i \ge 1$, $1 \le \ell \le n$.

· Suppose f is irreducible over K

Thun we can write $f(x) = (x-u_1)^n g(x)$ in $K(u_1)[x]$ where $\deg g \leq n-1$. So let F_g be its splitting field, so $[F_g: Kuu_1]$ divides (n-1)! by hypothesis. But $[K(u_1): K] = n$, so F_g is the splitting field of $F_g: K] = [F_g: K(u_1)][K(u_1): K] = p \cdot n$ where p(n-1)!, so pn[n!]. Suppose $F_g: F_g: K(u_1) = p \cdot n$ where p(n-1)!, so pn[n!] suppose $F_g: F_g: K(u_1) = p \cdot n$ where p(n-1)!, so pn[n!] suppose $F_g: K(u_1) = p \cdot n$ where p(n-1)!, so pn[n!] suppose $F_g: K(u_1) = p \cdot n$ where $f_g: K(u_1) =$

- a) If u is separable in K, then $F(x):=\min(u, K)$ has distinct roots in its splitting field L. But since $K \subseteq E$, we have $g(x):=\min(u, E) | F(x)$. But then g must also have distinct roots in L, otherwise F would have a multiple root, so u is separable over E.
 - b) Since F/K is separable & $E \subseteq F$, we immediately have E/K separable. To see that F/E is separable, we have: F/K is separable if F/K u is separable over F/K (defn)

 iff F/K vue F, u is separable over F/K (by (a))

iff EXT is a 11

iff F/E is separable. (defin)

3 Defn: $F \ge K$ is <u>Galois</u> iff F is a separable splitting field, or $[K:F] = \{K:F\} = |Gal(K/F)|$.

1 \Rightarrow 2: Immediate from defn.

2=3: Since F splits some f(x) & F is separable, f(x) has distinct roots in F. But then any irreducible factor of f(x) can not have a multiple root, so they are all separable as well.

3 \Rightarrow 2: Let g(x) be the irreducible factors of f(x), then F is the splitting field of p(x) := T(Tg(x)), which is separable. Now letting x be a root of p, we have F/K(x) as a splitting field of a separable polynomial (some g(x)|p(x)) and so F/K(x) is Galois & F(X(x)) = F(X(x)) = F(X(x)).

Since F is a splitting field of q(x), any $\sigma \in Gal(F/K)$ permutes the roots of q(x). Suppose there are d roots, which are distinct, then [K(a):K]=d. Since $Gal(F/K) \xrightarrow{} X:=\{roots of q\}$ transitively, we have $|X|=|[Gal(F/K):Stab_X]|$ by Orbit-stabilizer for any $x \in X$. So pick x=a, then

 $Stab_X = Gal(K(\alpha)/K) \implies [Gal(F/K): Gal(F/K(\alpha))] = |X| = d.$

But then

 $[F:K]=[F:K\omega][K(\omega):K]$

= {F: K(a)}[K(a):K] Since F/K(a) is Galois

= {F: K(a)}. d Since K(a)/K is splits a separable q(x)

= {F: K(2)}. [Gal(F/K): Gal(F/K(a))] by Orbit-Stabilizer

= |Gal(F/K(a))|. [Gal(F/K). Gal(F/K(a))] Since F/K(a) is Galois

= |Gal(F/K)|, since HEG =>

1H1.[G:H]= 161

So F/K is Galois.