

(12)

Europäisches Patentamt

European Patent Office

Office européen des brevets

EUROPEAN

(21) Application number: 94301202.1

(22) Date of filing: 21.02.94

30 Priority: 19.02.93 JP 30036/93 21.04.93 JP 93455/93

(43) Date of publication of application: 24.08.94 Bulletin 94/34

84) Designated Contracting States : DE FR GB IT NL SE

71 Applicant : NEC CORPORATION 7-1, Shiba 5-chome Minato-ku Tokyo 108-01 (JP)

(54) A method and apparatus for error-contro

In order to ensure that a predetermined of a bit sequence to be transmitted is co received by a receiver, the predetermined extracted from the bit sequence. The exti bit is encoded and then combined with sequence which has not been extracted combined bit sequence is convolutionall coded and then transmitted to the receiver transmitted bit sequence unde maximum-likelihood decoding algorithm, wherein the information of the determined bit encoding is used to decoc predetermined bit. Subsequently, the en predetermined bit portion is extracted and jected to block decoding.

11 Publication number: 0 612 166 A2

ENT APPLICATION

(51) Int. CI.5: H04L 1/00

72 Inventor : Ikekawa, Masao, c/o NEC Corporation 7-1, Shiba 5-chome, Minato-ku Tokyo (JP)

(4) Representative: Orchard, Oliver John JOHN ORCHARD & CO.
Staple Inn Buildings North High Holborn
London WC1V 7PZ (GB)

ng in a digital data communications system.

EP

The present invention relates generally to a meth od and apparatus for implementing error-control cod ing in a digital data communications system, and more specifically to such a method and apparatus fo correcting and/or detecting errors induced during data transmission.

Description of the Prior Art

. 1

In order to correct and/or detect channel bit er rors induced during digital data transmission, it is we known in the art to utilize error-control coding tech niques.

These techniques are disclosed in a book entitled "Essential of Error-coding Techniques" edited by Hideki IMAI and published 1990 by Academic Press Inc., San Diego, California 92101, U.S.A., and a bool entitled "Error Control Coding: Fundamentals and Applications" by Shu Lin, et al., published 1983 by Prentice-Hall, Inc., Englewood Cliffs, N.J. 07632 U.S.A., merely by way of example.

Redundant bits are added to each binary code word to be transmitted in order to provide the code with the capability of combating the channel noises Viterbi algorithm is able to exhibit error correcting ca pability almost equally over entire bits of a code worc However, it is sometimes required to transmit a spe cial bit(s) of each code word with high reliability a compared with the remaining bits of the code word. It order to realize such a requirement, according to pric art, it has been inevitably required to provide a plui ality of pairs of an encoder and decoder having dil ferent error-control capability or functions. However the above mentioned known technique suffers fror the drawback that an overall system is rendered large and complex. Further, the freedom of the system de sign is rendered.

SUMMARY OF THE INVENTION

An object of the present invention is to provide. method for error-control coding such that an important bit(s) is selected from a bit sequence and the subjected to block encoding for correctly transmitting same.

Another object of the present invention is to pro vide an apparatus for error-control coding such the an important bit(s) is selected from a bit sequenc and then subjected to block encoding for correctl transmitting same.

In brief, the above objects are achieved by a tech nique wherein, in order to ensure that a predeter mined bit(s) of a bit sequence to be transmitted is corectly received by a receiver, the predetermined bit i extracted from the bit sequence. The extracted bit i encoded and then combined with a bit sequence which has not been extracted. The combined bit se quence is convolutionally encoded and then transmi

ted to the receiver. The bit sequence transmitted undergoes maximum-likelihood decoding using Viterbi algorithm, wherein the information of the predetermined bit encoding is used to decode the predetermined bit. Subsequently, the encoded predetermined bit portion is extracted and subjected to block decod-

BRIEF DESCRIPTION OF THE DRAWINGS

The features and advantages of the present invention will become more clearly appreciated from the following description taken in conjunction with the accompanying drawings in which like elements are denoted by like reference numerals and in which:

Fig. 1 is a block diagram schematically showing a first embodiment of the present invention;

Fig. 2A is a sketch schematically showing waveforms of an analog signal to be encoded;

Fig. 2B is a diagram schematically showing burst digital signals to be transmitted;

Fig. 3 is a block diagram schematically showing an arrangement of a block of Fig. 1;

Fig. 4 is a known encoder state diagram by which the operations of the first embodiment are dis-

Figs. 5-7 each is a trellis diagram by which the operations of the first embodiment are discussed; Fig. 8 is a block diagram schematically showing a transmitter of a second embodiment;

Fig. 9 is a block diagram schematically showing a receiver of the second embodiment;

Fig. 10 is a block diagram schematically showing a transmitter of a third embodiment; and

Fig. 11 is a block diagram schematically showing a receiver of the third embodiment.

DETAILED DESCRIPTION OF THE PREFERRED **EMBODIMENTS**

A first embodiment of the present invention will be discussed with reference to Figs. 1-7.

Fig. 1 is a block diagram showing an arrangement of the first embodiment in block diagram form.

The arrangement of Fig. 1 generally includes a transmitter 10 which is interconnected to a receiver 12 via a transmission channel 14.

The transmitter 10 includes a message source 16, a source encoder 18, a bit selector 20, a block encoder 22, a bit combiner (or bit merger) 24, and a convolutional encoder 26, all of which are coupled as shown. On the other hand, the receiver 12 is comprised of a maximum likelihood decoder 28 which operates under Viterbi algorithm, a bit selector 30, a block decoder 32, a bit combiner 34, and a source decoder 36, all of which are coupled as illustrated.

Merely for the sake of a better understanding of the first embodiment, it is assumed that the message

5

EF

source 16 takes the form of an analog speech sign? source. The wave form of the speech signal (denote by "S1"), obtained from the source 16, is schematica ly shown in Fig. 2A. The speech signal S1 undergoe digital signal processing at the source encoder 18 That is, the speech signal is initially digitized at a tim interval of 40 ms (for example) which is called as frame. Subsequently, the digitized speech signal i compressed and then applied to the bit selector 20 a a bit sequence S2 in a burst mode as best seen from Fig. 2B. If the bit rate of digitization is 4K bits/sec, is readily appreciated that each frame of 40 ms cor tains 160 bits. It is further assumed that the first b of the burst signal is a mode bit indicating whether th corresponding frame is a voice frame or a silenc frame. This mode bit appearing at the beginning of each frame is very important and hence has to b correctly transmitted to the receiver 12. The secon to the last bits of each frame is not so important a compared with the mode bit.

The bit selector 20 selects the above mentione mode bit from the incoming frame data. This bit selection is carried out under control of a bit select signal applied to the selector 20 from a central processe unit (CPU) (not shown) which supervises the overal operation of the transmitter 10. The other bits which have not selected by the bit selector 20 are directly supplied to the bit combiner 24.

The mode bit thus selected is fed to the block er coder 22 which, in this particular embodiment, ou puts "01" and "10" when the applied mode bit as sumes "0" and "1", respectively. The bit combiner 2 combines or merges the two outputs of the block er coder 22 and the bit selector 20 in this order. A bit sequence (depicted by "A") from the bit combiner 24 applied to the convolutional encoder 26.

In the foregoing, it is assumed that a given fram of the bit sequence S2 outputted from the source er coder 18 is represented by

$$S2 = (0 \ 0 \ 0 \ 1 \dots)$$
 (1)

As mentioned above, if the mode bit is "0" then th output of the block encoder 22 assumes "01". Thus the combiner 24 issues the output A which is given the

$$A = (0 1 0 0 1 \dots)$$
 (2)

Reference is made to Fig. 3 wherein the arrangement of the convolutional encoder 26 is shown block diagram form. The encoder 26 is of a conveiltional type and includes three delay lines or shift rejisters (denoted by D_n , D_{n-1} and D_{n-2}), two moduloadders 40a-40b, and a parallel/serial (P/S) converte 42, in this particular embodiment. Thus, the constraint length (K) of the encoder 26 is 3 (three) while the code rate (R) thereof is 1/2. The arrangement is lustrated in Fig. 3 is well known in the art.

Fig. 4 is a state diagram of the encoder 26. In Fig. 4, two consecutive bits within each of ovals indicate the bits held in the last two delay lines D_{n-Z} and D_{n-Z} and indicates an encoder state. The encoder state

(00), (01), (10) and (11) are connected or looped by solid and broken arrow lines. If a bit "1" is applied to the encoder 26, the encoder state is shifted to the other state or returned to the same state along the solid arrow. On the other hand, if a bit "0" is applied to the encoder 26 then the encoder state is shifted to the other state or returned to the same state along the broken arrow. The outputs of the convolutional encoder 26 are represented along the corresponding arrows such as (00), (01), (10) and (11).

The encoder 26 is set to the state (00) before a burst type bit sequence is newly applied. Therefore, if the mode bit (viz., first bit) assuming "0" is applied to the encoder 26, the encoder state (00) remains unchanged. In this case, the output of the encoder 26 is (00). Following this, if the second bit assuming "1" is applied to the encoder 26, the encode 26 takes the state (01) and outputs two bits sequence (11). Thereafter, similar operations continues. Thus, if the bit sequence A of (0 1 0 0 1 . . .) is applied to the convolutional encoder 26 as mentioned in expression (2), the bit sequence C obtained from the encoder 26 and then sent over the channel 14 is given by

$$C = (00 11 01 11 11 ...)$$
 (3)

The bit sequence C is transmitted over the channel 14 and applied to the receiver 12 as a bit sequence CC. It is assumed the bit sequence C is subjected to bit errors during transmission and that the bit sequence CC is represented by

$$CC = (01\ 11\ 01\ 01\ 11\ \dots)$$
 (4)

The operations of the maximum-likelihood decoder 28 of the receiver 12 will be discussed with reference to trellis diagrams shown in Figs. 5-7. The above mentioned bit sequences A, C and CC, given by expressions (2)-(4) are shown at the top portions of each of Figs. 5-7. It is well known that the trellis diagram represents the encoder states (see Fig. 4) along a time axis. It should be noted in Figs. 5-7 that numerals above the encoder states represent respectively "decimal numbers" indicating path metrics.

Reference is made to Fig. 5. The decoder 28 is initialized such that the path metric of the encoder state (00) is set to 0 while each of the remaining path metrics of the other states (01), (10) and (11) is set to a sufficiently large number such as 10(decimal) in this particular embodiment. These path metrics are illustrated at the first time point (t=0).

The decoder 28 initially decodes the first two bits (viz., encoded mode bit) using the previously known block code information (01 and 10). This information has stored in a suitable memory in the receiver 12 and is applied to the decoder 28.

The first bit sequences have been block encoded at the encoder 22, it is thus appreciated that survivor paths at t=1 and t=2 are represented by two bold solid lines and two bold broken lines as illustrated.

A bit sequence of the survivor path extending to the state (00) at t=2 is (00), and hence, this path is unable to be finally selected. Further, a bit sequence c the survivor path extending to the stat (11) at t=2 i (11). Therefore, this path is expected to finally be se lected. On the other hand, the survivor path extending to the state (10) at t=2 can be expected to be chose for determining the decoded sequence, while the sur vivor path extending to the state (11) at t=2 can not be expected to be used to determine the decoded se quence.

Therefore, in order to determine the following survivor paths, path metrics at the states (00) and (11) both t=2 are set to sufficiently large number suc as 10 (decimal) in this case, as shown in Fig. 6. Thi is to exclude the survivor paths which can not ever tually be used for estimating the incoming bit se quence.

Subsequently, conventional decoding according to Viterbi algorithm is implemented which is we known in the art and thus will not be discussed for the sake of brevity. Survivor paths determined up to t= are illustrated by bold solid and broken lines in Fig. 7

The decoded bit sequence from the maximum likelihood decoder 28, is then applied to the bit selec tor 30. This selector 30 implements the reverse oper ation of the counterpart thereof 20 in response to a b select signal which has previously stored in the re ceiver 12. The first two bits of the frame is applied to the block decoder 32 while the remaining bits are di rectly applied to the bit combiner 34. The bit selectc 30 decodes the first two bits to "0" or "1" and then ar plies the decoded bit to the bit combiner 34. The b sequence aligned at the bit combiner 34 is applied to the source decoder 36 which produces an estimate message.

In the aforesaid first embodiment, the mode in formation is a single bit. However, it is within the scope of the present invention to set the mode infor mation to two or more than two bits in order to mee applications. Further, the bit combiner 24 is arrange to insert the output of the block encoder 22 into a giv en position of the bit stream applied thereto from the bit selector 20.

Reference is made to Figs. 8 and 9, wherein second embodiment of the present invention is sche matically shown in block diagram. The second em bodiment is an error-control coding apparatus whic includes both error-correcting and error-detecting functions. Figs. 8 and 9 show respectively a transmit ter and receiver of the second embodiment.

The transmitter shown in Fig. 8 further include a switch 60 and two error-detecting encoders 62 and 62b as compared with the counterpart of the fire embodiment. Accordingly, the blocks of Fig. 8 whic have been referred to in the first embodiment, will b described only if they are directly relevant to the sec ond embodiment.

The mode bit obtained from the bit selector 20 i applied to the switch 60 as a switch control signal. Th

remaining bits from the bit selector 20 is applied to the switch 60. If the mode bit assumes a logic "0", the switch 60 allows the incoming bit sequence to be applied to the error-detecting encoder 62a. Contrarily, if the mode bit assumes a logic "1" then the switch 60 applies the incoming bit sequence to the other encoder 62b.

As is known, an error-detecting encoder is to add redundant bits to a bit sequence (viz., detection bits) applied thereto for the purpose of error detection.

In the second embodiment, the encoders 62a and 62b add the same length of redundant bits to the bit sequences applied thereto. However, the two encoder 62a and 62b produce or arrange different redundant bits with each other. This is very preferable in the case where significant bits are different depending on a logic level of the mode bit (viz., whether the frame data is a voice mode or not in this particular embodiment).

The receiver shown in Fig. 9 includes a switch 64 and two error-detecting decoders 64a and 64b in addition to the receiver 12 of the first embodiment. Accordingly, the blocks of Fig. 9 which have been referred to in the first embodiment, will be described only if they are directly relevant to the second embodiment.

The decoded mode bit obtained from the block decoder 32 is applied to the switch 64 as a switch control signal. The bit sequence except for the mode bit, outputted from the bit selector 30, is applied to the switch 64. If the decoded mode bit (viz., switch control signal) assumes a logic "0", the switch 64 allows the incoming bit sequence to be applied to the error-detecting decoder 64a. Contrarily, if the decoded mode bit assumes a logic "1", the switch 64 applies the incoming bit sequence to the other decoder 64b.

Each of the error detecting decoders 64a and 64b outputs an error detect bit indicating whether or not the received bit sequence includes an error. Further, the decoders 64a and 64b apply respectively the decoded bit sequences to the bit combiner 34. The following operations are essentially the same as those mentioned in connection with the first embodiment.

Another feature of the second embodiment is that if the mode bit is erroneously transmitted, each of the decoders 64a and 64b issues the error detect bit which indicates the presence of transmission error. This is very advantageous in that the mode bit is the nature of being correctly transmitted as mentioned above.

Reference is made to Figs. 10 and 11, wherein a third embodiment of the present invention is schematically shown in block diagram. The third embodiment is an error-control coding apparatus which includes both error-correcting and error-detecting functions. Figs. 10 and 11 show respectively a transmitter and receiver of the third embodiment.

The transmitter shown in Fig. 10 further includes

Ei

a bit selector 70 and an error-detecting encoder 72 a compared with the counterpart 10 of the first embod ment. Accordingly, the blocks of Fig. 10 which hav been referred to in the first embodiment, will be discribed only if they are directly relevant to the thin

The mode bit obtained from the bit selector 20 applied to the bit selector 70 as a bit select signal. Th remaining bits of a frame, outputted from the bit so lector 20, are applied to the bit selector 70. The moc bit applied to the bit selector 70 determines which po tion of the bit sequence applied thereto should t transferred to the error-detecting encoder 72. Th number of consecutive bits selected depending or logic level of the mode bit, is usually different from that selected in response to the other logic level of th mode bit. This is very advantageous in the cas where significant bits are different in position de pending on the logic levels of the mode bit (viz whether the frame data is a voice mode or not in th particular embodiment). The bit combiner 24 cor bines the outputs of the blocks 22, 70 and 72.

Fig. 11 shows a receiver of the third embodimer The operations of this embodiment is readily appropriated from the foregoing and thus, the description thereof will be omitted for brevity.

It will be understood that the above disclosure representative of only three possible embodimen and that various modifications can be made witho departing from the concept of the invention.

Claims .

embodiment.

An apparatus for error-control coding, compriing:

first means for selecting at least one I from a bit sequence applied thereto;

second means for encoding said at lea one bit applied thereto from said first means;

third means for combining the output said second means and a bit sequence which hand been selected at said first means;

fourth means for implementing convol tional encoding to the bit sequence outputte from said third means;

fifth means for implementing maximur likelihood decoding to the bit sequence transm ted; and

sixth means for block decoding the bloencoded bit data.

7

5

)

5

2

5

0

5

0

FIG

FIG. 4

			m@		100	=	2
<u>,</u>	-	7	6 -	8/		20 2	
			700	(10)		~	4
0	7	01	00 :	0	\\ <u>-</u>	0 2	
			m@	D.		~=	~
0	01	01	1-	8		10 10	
			200	Ð,	10	2==	2
_	11	11	00 -	8	2	10 10	
			-6	Į.		2(=)	_
0	00	01	00 5	00	2=	01 20	
A =	_ 	=))	000	5	20	2(=)	t = 0

FIG. 8

FIG. 10

TRANSMITTER

Europäisches Patentamt

European Patent Office

Office européen des brevets

(12)

EUROPEAN

(21) Application number: 94301202.1

(22) Date of filing: 21.02.94

30 Priority: 19.02.93 JP 30036/93 21.04.93 JP 93455/93

(3) Date of publication of application: 24.08.94 Bulletin 94/34

84) Designated Contracting States : DE FR GB IT NL SE

Barrent publication of search repc 22.02.95 Bulletin 95/08

1 Applicant: NEC CORPORATION 7-1, Shiba 5-chome Minato-ku Tokyo (JP)

54 A method and apparatus for error-contr

In order to ensure that a predetermined of a bit sequence to be transmitted is co received by a receiver, the predetermined extracted from the bit sequence. The extended bit is encoded and then combined with sequence which has not been extracted combined bit sequence is convolutionall coded and then transmitted to the receiver transmitted sequence decoding using maximum-likelihood algorithm, wherein the information of the determined bit encoding is used to decoc predetermined bit. Subsequently, the en predetermined bit portion is extracted and jected to block decoding.

(1) Publication number: 0 612 166 A3

ENT APPLICATION

(51) Int. Cl.⁵: **H04L 1/00**, H03M 13/00

(2) Inventor: Ikekawa, Masao, c/o NEC Corporation 7-1, Shiba 5-chome, Minato-ku Tokyo (JP)

Representative: Orchard, Oliver John JOHN ORCHARD & CO.
Staple Inn Buildings North
High Holborn
London WC1V 7PZ (GB)

ng in a digital data communications system.

EP 0 612 166 A3

EUROPE

ARCH REPORT

Application Number EP 94 30 1202

	DOCUMENTS CONSIDERED	E RELEVAN				
Category	Citation of document with indication, wi	opriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.5)		
X	IEEE TRANSACTIONS ON VEHIC vol.41, no.2, May 1992, NE pages 177 - 189, XP307100	TECHNOLOGY, K US	1	H04L1/00 H03M13/00		
	G. D'ARIA / F. MURATORE / 'Simulation and Performanc	LESTINI: the	-			
	Pan-European Land Mobile R	System.'				
	* page 177, left column, l	1 - line 22				
	* page 178, left column, l column, line 5; figure 2 *	- right				
4	GB-A-2 238 933 (ERICSSON G COMMUNICATIONS INC.)	ILE	1			
	* abstract; claim 1; figur * page 4, line 16 - line 2	4 *		·		
	* page 4, Time 10 - Time 2 * page 10, paragraph 3 - p paragraph 2 *	1,				
١.	WO-A-88 09967 (MOTOROLA IN * the whole document *		1			
				TECHNICAL FIELDS SEARCHED (Int.Cl.5)		
				H03M H04L H04B		
	÷					
	÷					
	,	;				
		claims				
	The present search report has been drawn u	detion of the search	<u> </u>	Examiner		
	THE HAGUE	cember 1994	Gri	es, T		
X : part Y : part	CAFEGORY OF CITED DOCUMENTS cicularly relevant if taken alone cicularly relevant if combined with another ument of the same category	T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filing date 1): document cited in the application L: document cited for other reasons				
A: tech O: non	mological background -written disclosure rmediate document	& : member of the same patent family, corresponding document				

2 FORM 1503 03.82 (PO4C