Blatt Nr. 01/1 Name: Bauer, Aaron

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	17	62	71	80	54	28	16	6	2
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/2 Name: Baumbach, Jonas

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	17	65	68	80	45	28	22	6	5
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/3 Name: Becher, Nicolas

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	17	74	80	74	45	19	16	3	8
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/4 Name: Beck, Jannis

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	14	83	68	71	57	22	13	6	2
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/5 Name: Bös, Cedric

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	14	77	71	80	45	25	16	3	5
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/6 Name: Chen, Jiuli

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	23	80	68	68	54	19	16	6	2
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/7 Name: Deibl, Nino

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	14	89	68	77	51	19	10	6	2
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/8 Name: Deißenberger, Fabian

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	14	86	71	71	48	22	13	9	2
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/9 Name: Englert, Lisa

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	20	74	77	77	45	22	13	3	5
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/10 Name: Gottschalk, Paul

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	20	77	74	80	48	16	13	3	5
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/11 Name: Grimmer, Lukas

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	14	83	71	68	54	25	16	3	2
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/12 Name: Hoffmann, Erik

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	17	80	68	74	48	22	19	3	5
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ^2 -Verteilung

Blatt Nr. 01/13 Name: Hollemann, Stephan

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	20	80	74	65	51	22	16	6	2
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/14 Name: Hoxha, Lyra

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	17	86	71	77	48	19	10	6	2
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/15 Name: Jansen, Theodor

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	14	86	71	68	51	22	16	6	2
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/16 Name: Karunaikumar,

Pooshwikaa

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	14	77	71	83	48	19	16	6	2
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/17 Name: Kauppert, Florian

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	20	83	71	71	51	19	16	3	2
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/18 Name: Klupp, Björn

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	14	77	74	74	54	22	10	6	5
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/19 Name: Kropfgans, Hans

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	20	74	74	77	45	22	16	3	5
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/20 Name: Lagerbauer, Daniel

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	23	83	62	71	54	19	13	9	2
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/21 Name: Marbaise, Sonja

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	17	80	71	80	45	22	10	6	5
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/22 Name: Mass, Agnessa

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	20	86	65	68	48	19	16	12	2
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/23 Name: Mehler, lannis

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	17	80	74	77	45	22	13	3	5
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/24 Name: Meurer, Nils

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	17	83	77	68	48	19	13	9	2
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/25 Name: Munne, Sophia

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	14	86	68	68	54	28	13	3	2
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/26 Name: Pastuschka, Tim

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	17	80	71	77	48	22	16	3	2
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/27 Name: Patzwald, Lara

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	23	83	65	74	48	19	16	6	2
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/28 Name: Penny, Sean

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	17	89	74	71	48	19	10	6	2
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/29 Name: Rech, Victor

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	14	89	74	65	48	19	16	9	2
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/30 Name: Reuß, Erik

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	17	77	71	86	48	19	13	3	2
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/31 Name: Rieger, Daniel

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	23	83	71	77	48	16	10	6	2
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/32 Name: Römer, Jakob

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	14	86	77	74	45	19	10	6	5
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/33 Name: Röpke, Ludwig

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	14	77	71	74	45	19	22	12	2
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/34 Name: Schäberle, Joanna

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	23	83	65	71	48	22	13	6	5
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/35 Name: Schlagenhauf, Larissa

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	11	80	74	71	48	28	13	9	2
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/36 Name: Schneidereit, Noah

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	17	92	68	68	51	25	10	3	2
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/37 Name: Schomburg, Daniel

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	14	77	74	77	48	22	19	3	2
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/38 Name: Seelmann, Josef

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	23	89	71	74	48	16	10	3	2
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/39 Name: Spitzner, Joshua

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	14	92	71	68	48	22	13	6	2
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/40 Name: Stolz, Eduard

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	11	83	74	80	42	22	19	3	2
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/41 Name: Suppes, Maxim

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	20	86	68	62	54	22	16	6	2
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/42 Name: Tan, Jun Wei

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	11	89	65	71	48	28	16	6	2
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/43 Name: Uder, Anne

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	23	89	68	71	48	19	13	3	2
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/44 Name: Volpert, Moritz

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	14	77	74	80	48	22	13	6	2
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/45 Name: Wagner, Jonas

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	17	95	74	71	48	16	10	3	2
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/46 Name: Waldmann, Richard

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	14	89	68	65	54	22	16	6	2
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/47 Name: Wolf, Erik

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	11	86	71	80	42	28	13	3	2
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/48 Name: Ziegler, Julius

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	20	83	65	65	57	25	13	6	2
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung

Blatt Nr. 01/49 Name: Ziegler, Moritz

Verteilungsfunktionen

1. Poissonverteilung

Es werden 10,0 g eines unbekannten radioaktiven Materials mit Hilfe eines Geiger-Müller Zählrohrs untersucht. Bauartbedingt registriert unser Zählrohr nur γ -Strahlung. Über das radioaktive Material wissen wir aus einer vorherigen Messung, dass die Halbwertszeit >10 Jahre sein muss.

Wir wollen nun wissen, welcher Verteilung die vom Präparat emittierten γ -Quanten folgen. Dazu positionieren wir unser Zählrohr in einem festen Abstand vor dem Präparat und zeichnen auf, wie viele Ereignisse dieses jeweils bei einer ebenfalls festen Beobachtungszeit (auch Torzeit genannt) von 1s jeweils registriert. Es ergeben sich folgende Daten:

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	11	86	65	77	51	25	13	6	2
Relative Häufigkeit									
Poisson- Wahrscheinlichkeit									

- a.) Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ-Quanten einer Poissonverteilung folgen?
- b.) Werten Sie die den Mittelwert und Standardfehler der Messung unter der Annahme aus, dass die γ -Quanten einer Poissonverteilung folgen! Ergänzen Sie damit obige Tabelle.
- c.) Fertigen Sie mit Hilfe eines geeigneten Programmes Ihrer Wahl eine graphische Darstellung (Histogramm) an, die die beobachtete relative Häufigkeit mit der Poissonwahrscheinlichkeit vergleicht. Beachten Sie dabei die formalen Kriterien zur Erstellung graphischer Darstellungen.

2. Zentrale χ²-Verteilung