

Departamento de Ciencias de la Computación

Organización de Computadoras y Assembler

Laboratorio 5

Integrante	Carné	Integrante	Carné			
Dulce Ambrosio	231143	Javier Linares	231135			
Javier Benitez	23405	Cristian Túnchez	231359			
Daniel Chet	231177	Anggelie Velásquez	221181			

<u>Instrucciones</u>: resuelva los ejercicios planteados, pueden ser hechos a mano pues se requiere que quede evidencia del procedimiento. Al finalizar entregue en Canvas la versión en PDF de este documento.

- 1. Prelaboratorio
- 2. Convertir IEEE 754 a ASCII y encontrar el título de la canción:
 - a. Los números dados están en formato IEEE 754.
 - b. Convierte cada número IEEE 754 a su equivalente en ASCII.
 - c. Reorganiza los caracteres ASCII obtenidos para formar el título de la canción.

Valor IEEE 754 (precisión simple)
010000101001100000000000000000000000000
010000101100010000000000000000000000000
01000010110010100000000000000000000

Título de la canción: Let it be

3. Un programador de computadoras escribió un programa que suma dos números. El programador ejecutó el programa y observó que cuando suma 4 y 6, el resultado es el carácter 'X'. ¿Por qué este programa se comporta de manera errónea?

Porque "4" en ASCII es 52 y "6" es 54, por lo que al sumarlos el total es de 106 y el programa debería arrojar como resultado el carácter "j".

- 4. Escriba el resultado en decimal del siguiente número que se encuentran como tipo de datos en punto flotante en el estándar IEEE 704:

		74.	4	5	4	3	2	. 1					2000	1000000	_	753400		1						
C.	1	1	1	15	1	1	1	1	1	0	0	0	0	0	0	0		,						
	(-)	Ĉ.	Ponento	2=2°+	-2 ¹ +	2 ² + 2	3+ 2 ⁴ -	2542	24+2															
				= 25	5																			
	121	Como	el e	xponen	te es	moyor	que	254 n	0 59	puede	utiliz	ar la	förm	ula (n	=(-1)	5 x 1. f	naction	x 2 ^{expo}	onent-1	¹²⁷ , 1	≤ exp	onent	≤ 254),
				ue el																				
																20-	→ Ø							
d.	0	1	1	1	{	1	1	1	0	11	1-2	1	0	0	0	٥	0	0	0	0	0.		Γ΄,	
	↑ (+)	Cexp	onante	1 = 21	+ 22 -	23+2	4+25	1241	24	J.t	امحدن	5n = 2	2-1 +	2-2	2-3									
				= 25									0.8											
						254	4 - 127			× 10	38													

- 5. Represente el siguiente número en el tipo de datos de punto flotante de 32 bits utilizando el estándar IEEE 754.
 - a. -158.6875
 - b. 225.555

6. Construya la tabla de verdad para la operación (NOT(A+B)) AND C

I	ncis	0	6.			
	(NO) тс	A + '	B))AN1	D C	
	A	B	С	A+B	NOT(A+B)	(NOT (A+B)) AND C)
	0	0	0	0	1	0
	0	0	1	0	1	1
	0	1	0	1	0	0
	0	1	1	1	0	0
	1	0	0	1	0	0
	1	0	1	1	0	0
	1	1	0	1	0	0
	1	1	1	1	0	0

- 7. Desarrollar un programa en el lenguaje de su elección que sea capaz de realizar conversiones entre:
 - a. Binario en formato IEEE 754 de precisión simple a decimal.
 - b. Decimal a binario en formato IEEE 754 de precisión simple.

Requisitos:

- a. Implementación de las funciones para convertir de binario a decimal y viceversa.
- b. Manejo correcto de los diferentes campos del formato IEEE 754: Signo,
 Exponente y Mantisa.
- Video del Programa:

[Ver el vídeo de demostración]

- Controlador de Versiones:

[Enlace al repositorio en GitHub]