MẬT MÃ HỌC

Phan Quốc Tín – tinpq@uit.edu.vn

Tài liệu tham khảo

- ☐Slide bài giảng
 - Được upload theo từng buổi học.
- ☐Sách tham khảo tiếng Anh
 - "Introduction to Modern Cryptography", Jonathan Katz and Yehuda Lindell.
 - "An Introduction to Cryptography", Richard A. Mollin.
- ☐Sách tham khảo Tiếng Việt
 - "Mã hóa và Ứng dụng", Dương Anh Đức, Trần Minh Triết.
 - "Mã hóa Thông tin: lý thuyết và ứng dụng", Bùi Doãn Khanh, Nguyễn Đình Thúc, Hoàng Đức Hải.

Đánh giá môn học

- ☐ Thực hành + bài tập: 30%
- ☐ Giữa kỳ: 20%
- ☐ Cuối kỳ: 50%

Thực hành

- ☐ Upload nội dung thực hành chậm nhất 2 ngày trước buổi học.
- ☐ Làm bài tập trong 5 tiết.
 - Hình thức đánh giá: vấn đáp.
 - Hoàn thành tại lớp: 100% số điểm được nhận.
 - Không hoàn thành, về nhà làm: 80% số điểm được nhận.
 - Sao chép: 0 điểm

E	Bài tập	
] Tại lớp] Về nhà	
		5

Thi giữa kỳ, cuối kỳ	
☐ Trắc nghiệm ☐ Không sử dụng tài liệu	
	6

Chương 1. GIỚI THIỆU MẬT MÃ HỌC

Phan Quốc Tín – tinpq@uit.edu.vn

Lịch sử

- ☐ Kỹ thuật giấu thư (steganography): che giấu sự tồn tại của thư tín
 - Ưu điểm: đơn giản.
 - Khuyết điểm: nội dung bị lộ khi người đưa thư bị khám xét gắt gao hoặc thư tín bị phát hiện.
- ☐ Khoa học mật mã (cryptography): che giấu nội dung của thư tín
 - Ưu điểm: bảo vệ được nội dung dù cho thư tín bị phát hiện.
 - Khuyết điểm: phức tạp.

Mật mã học (Cryptography)

- ■Mật mã học là một ngành khoa học chuyên nghiên cứu các phương pháp bảo vệ thông tin dựa trên các kỹ thuật toán-tin học.
- ■Mã hóa là một cách thức để chuyển đổi thông tin từ dạng thông thường có thể nhận thức được sang dạng không thể nhân thức được.
- □Những điều không đúng về mật mã học
 - Là giải pháp cho tất cả các vấn đề liên quan đến an toàn thông tin.
 - Mật mã học đáng tin cậy dù cho được cài đặt và sử dụng không đúng.
 - Là những kỹ thuật chúng ta có thể tự phát minh ra

9

Ứng dụng của mật mã học

Google

One account. All of Google.

Sign in to continue to Gmail

- ☐ Https sử dụng giao thức SSL để gửi password đến server một cách an toàn
- □SSL là một sản phẩm của mật mã học

Ứng dụng của mật mã học

- ■Những ứng dụng khác
 - Các máy ATM
 - Ngân hàng điện tử
 - Kết nối an toàn sử dụng SSH
 - Bầu cử
 - •
- ☐ Theo thống kê, có 11,748 ứng dụng trên android sử dụng API về mật mã, 10,327 trong số đó sử dụng sai (88%)

11

Mục tiêu của mật mã học

- Adversary: một người thông minh và có máy tính cấu hình cao
- ☐Muc tiêu
 - Đảm bảo tính riêng tư (privacy) của dữ liệu
 - Đảm bảo tính toàn vẹn (integrity) và tính xác thực (authenticity)

Tính riêng tư

- Mục tiêu là đảm bảo A không thể xem được dữ liệu (thông điệp) M
- □Ví dụ: M có thể là thông tin thẻ tín dụng Alice gửi đến server và chúng ta không muốn tin tặc biết được

13

Tính toàn vẹn và xác thực

- ☐Mục tiêu là để đảm bảo
 - M được gửi bởi Alice chứ không phải người khác
 - M không bị thay đổi trong quá trình truyền

Tính toàn vẹn và xác thực

Alice chuyển 10.000.000 đến Charlie

- ☐Tin tặc Eve có thể
 - Thay đổi "Charlie" thành "Eve"
 - Thay đổi "10.000.000" thành "20.000.000"
- □Những hành vi trên ảnh hưởng đến tính toàn vẹn

<u>Doctor</u>	Tính toàn vẹn và xác thực	<u>Database</u>
Reads F_A Modifies F_A	Get Alice F_A F_A	$\begin{array}{c c} \text{Alice} & F_A \\ \hline \text{Bob} & F_B \end{array}$
	Put: Alice, F'_A	Alice F'_A Bob F_B
☐Tính to: • Bác sĩ • F_A , F'_A • F_A thật	A là thông tin riêng tư, không thể để lộ àn vẹn và xác thực: T phải được xác thực khi lấy dữ liệu của Alice không bị thay đổi trong quá trình truyền t sự được gửi từ CSDL	16

Các hệ mật mã

- ☐ E: thuật toán mã hóa (encryption algorithm)
- □D: thuật toán giải mã (decryption algorithm)
- □K_e: khóa mã hóa (encryption key)
- □K_d: khóa giải mã (decryption key)
- ☐M: thông điệp (message)
- □C: bản mã (ciphertext)

17

Các hệ mật mã

- ☐Các thuật toán: tiêu chuẩn, đã được cài đặt.
- ☐ Thuật toán mã hóa và giải mã là công khai (nguyên tắc Kerchhoffs).
- ■Khóa công khai (bất đối xứng)
 - K_e: công khai, K_d: bí mật
- □Khóa bí mật (đối xứng)
 - $K_e = K_d$: bí mật

Các hệ mật mã

- ☐ Chúng ta quan tâm đến
 - Làm sao thiết kế các thuật toán để đạt được các mục tiêu an toàn
- ☐Mật mã học khó bởi vì:
 - Người lập mã không thể biết trước được khả năng của tin tặc.
 - "Testing" dường như là không thể.

10

Các phương pháp mã hóa cổ điển

- ☐Mã thay thế (Substitution cipher) / mã Caesar
 - $K_e = K_d = \pi$
 - Ánh xa: $\Sigma \rightarrow \Sigma$ là bí mật
 - Ví dụ: $\Sigma = \{A,B,C,...\}$ và π là bảng thay thế sau

σ	Α	В	С	D	
$\pi(\sigma)$	Ε	Α	Z	U	

- $E_{\pi}(CAB) = \pi(C) \pi(A) \pi(B) = Z E A$
- D $_{\pi}(ZEA) = \pi^{-1}(Z) \pi^{-1}(E) \pi^{-1}(A) = C A B$

☐Mã thay thế / mã Caesar

- Ví du:
 - Cho trước K (bảng thay thế)

σ	A	В	C	D	E	F	G	Н	I	J	K	L	M
$\pi(\sigma)$	В	U	P	W	I	Z	L	A	F	N	S	G	K
σ	N	0	P	Q	R	S	T	U	V	W	X	Y	Z
$\pi(\sigma)$	D	Н	Т	J	X	C	M	Y	0	V	Е	Q	R

Hãy mã hóa thông điệp: "HELLO I AM A STUDENT"

 Cho trước K như sau: mỗi ký tự sẽ bị dịch đi 3. VD: A sẽ được thay thế bằng D. Hãy mã hóa thông điệp "HELLO I AM A STUDENT"

2

Các phương pháp mã hóa cổ điển

☐Mã thay thế / mã Caesar

- Giả sử có 26 ký tự, không gian khóa của mã Caesar là bao nhiều?
 - |K| = 26
 - |K| = 26!
 - $|K| = 2^{26}$
 - $|K| = 26^2$
- Mã Caesar có thể bị tấn công dựa vào tần suất xuất hiện của các chữ cái
 - VD: "e": 12.7%

"t": 9.1%

"a": 8.1%

☐Mã thay thế / mã Caesar

• Minh họa một tấn công

UKBYBIPOUZBCUFEEBORUKBYBHOBBRFESPVKBWFOFERVNBCVBZPRUBOFERVNBCVBPCYYFVUFOFEIKNWF RFIKJNUPWRFIPOUNVNIPUBRNCUKBEFWWFDNCHXCYBOHOPYXPUBNCUBOYNRVNIWNCPOJIOFHOPZRVFZ IXUBORJRUBZRBCHNCBBONCHRJZSFWNVRJRUBZRPCYZPUKBZPUNVPWPCYVFZIXUPUNFCPWRVNBCVBRPY YNUNFCPWWJUKBYBIPOUZBCUIPOUNVNIPUBRNCHOPYXPUBNCUBOYNRVNIWNCPOJIOFHOPZRNCRVNBC UNENVVFZIXUNCHPCYVFZIXUPUNFCPWZPUKBZPUNVR

23

Các phương pháp mã hóa cổ điển

☐Mã Vigenère (thế kỷ 16, Rome)

```
k = \begin{bmatrix} \mathbf{C} & \mathbf{R} & \mathbf{Y} & \mathbf{P} & \mathbf{T} & \mathbf{O} & \mathbf{C} & \mathbf{R} & \mathbf{Y} & \mathbf{P} & \mathbf{T} & \mathbf{O} & \mathbf{C} & \mathbf{R} & \mathbf{Y} & \mathbf{P} & \mathbf{T} \\ \mathbf{m} & = & \mathbf{W} & \mathbf{H} & \mathbf{A} & \mathbf{T} & \mathbf{A} & \mathbf{N} & \mathbf{I} & \mathbf{C} & \mathbf{E} & \mathbf{D} & \mathbf{A} & \mathbf{Y} & \mathbf{T} & \mathbf{O} & \mathbf{D} & \mathbf{A} & \mathbf{Y} \\ \mathbf{c} & = & \mathbf{Y} & \mathbf{Y} & \mathbf{Y} & \mathbf{I} & \mathbf{T} & \mathbf{B} & \mathbf{K} & \mathbf{T} & \mathbf{C} & \mathbf{S} & \mathbf{T} & \mathbf{M} & \mathbf{V} & \mathbf{E} & \mathbf{B} & \mathbf{O} & \mathbf{R} \\ \end{bmatrix}
```

Có thể bị phá bằng cách đi tìm chiều dài của từ khóa và suy đoán dưa trên tần suất xuất hiện của ký tư

■Mã Vigenère

- Cho K = "HELLO"
- Mã hóa thông điệp "MY NAME IS TAM"

2.5

Các phương pháp mã hóa cổ điển

■Mã Vigenère

- Cho K = "HELLO"
- Mã hóa thông điệp "MY NAME IS TAM"
- Có thể sử dụng bảng thay thế

KLMNOPQRSTUVW G H I J K L M N O P Q R S T U V W X G H I J K L M N O P Q R S T U V W X G H I J K L M N O P Q R S T U V W X M N O P Q R $\mathsf{M} \; \mathsf{N} \; \mathsf{O} \; \mathsf{P} \; \mathsf{Q} \; \mathsf{R}$ S TUVWXQR S ΤU U V W XY Z A B C $\mathsf{S} \mathsf{T} \mathsf{U} \mathsf{V} \mathsf{W} \mathsf{X} \mathsf{Y}$ Ζ A B C ВС GHI $T \ U \ V \ W \ X \ Y \ Z \ A \ B \ C \ D \ E \ F \ G \ H$ TUVWXYZABCDEFGHIJKLMNO UVWXYZABCDEFGHI IKLMNOP VWXYZABCDEFGHI JKLMNOP W W X Y Z A B C D E F G H I J K L M N O P Q R X Y Z A B C D E F G H I J K L M N O P Q R S T U V W YZABCDEFGHIJKLMNOPQRSTUVWX ZZABCDEFGHIJKLMNOPQRSTUVWXY

☐Các máy Rotor

• Máy Hebern: rotor đơn

27

Các phương pháp mã hóa cổ điển

☐Các máy Rotor

• Enigma: 3-5 rotors

 Mã hóa: gõ các ký tự của bản rõ, đèn tương ứng của bản mã sáng lên.

• Giải mã: ngược lại.

■Mã Playfair

- Mật mã hóa đa ký tự (mỗi lần mã hóa 2 ký tự liên tiếp nhau)
- Dựa trên một ma trận các chữ cái 5x5 được xây dựng từ các chữ cái (khóa)
 - Lần lượt thêm từng ký tự của khóa vào ma trận
 - Nếu ma trận chưa đầy, thêm các ký tự còn lại trong bảng chữ cái vào ma trân theo thứ tư A->Z

 Short version of the Playfair key:
 - I và J xem như một ký tự

29

Các phương pháp mã hóa cổ điển

■Mã Playfair

- Mã hóa
 - Mã hóa từng cặp 2 ký tự liên tiếp nhau
 - Nếu 2 ký tự này giống nhau thì thêm ký tự 'x' vào giữa. VD: 'intelligent' sẽ được tách thành 'in' 'te' 'lx' 'li' 'ge' 'nt'
 - Nếu dư 1 ký tự thì thêm ký tự 'q' vào cuối
 - Nếu 2 ký tự nằm cùng dòng thì được thay thế bằng 2 ký tự tương ứng bên phải
 - Nếu 2 ký tự nằm cùng cột thì được thay thế bằng 2 ký tự tương ứng bên dưới
 - Nếu 2 ký tự lập thành hình chữ nhật được thay thế bằng 2 ký tự tương ứng trên cùng dòng ở 2 góc còn lại

☐Mã Playfair

- Mã hóa
 - Mã hóa từng cặp 2 ký tự liên tiếp nhau
 - Nếu 2 ký tự này giống nhau thì thêm ký tự 'x' vào giữa. VD: 'intelligent' sẽ được tách thành 'in' 'te' 'lx' 'li' 'ge' 'nt'
 - Nếu dư 1 ký tự thì thêm ký tự 'q' vào cuối
 - Nếu 2 ký tự nằm cùng dòng thì được thay thế bằng 2 ký tự tương ứng bên phải
 - Nếu 2 ký tự nằm cùng cột thì được thay thế bằng 2 ký tự tương ứng bên dưới
 - Nếu 2 ký tự lập thành hình chữ nhật được thay thế bằng 2 ký tự tương ứng trên cùng dòng ở 2 góc còn lại

3

Các phương pháp mã hóa cổ điển

■Mã Playfair

Mã hóa

С	0	D	Е	S
Α	В	F	G	Н
1/5	K	(L)	М	N
Р	Q	R	Т	U
V	W	Х	Y	Z

	С	0	D	E	s
	A	В	F	G	Н
-	J	K	L	М	(N)
	Р	Q	R	Т	U
	V	W	×	Y	Z

☐Mã Playfair

 Cho biết khóa là từ khóa "FOOTBALL", hãy tìm ma trận 5x5 và mã hóa thông điệp "MY NAME IS TAM"

33

Mã hóa kỹ thuật số

- ☐ 1974: chuẩn mã hóa dữ liệu (Data Encryption Standard DES)
 - Số lượng khóa: 256
 - Kích thước khối: 64 bits
- ☐ 2001: chuẩn mã hóa tiên tiến (Advanced Encryption Standard AES)
 - Số lượng khóa: 2¹²⁸ (2¹⁹², 2²⁵⁶)
 - Kích thước khối: 128 bits.

XÁC SUẤT RỜI RẠC

Phan Quốc Tín – tinpq@uit.edu.vn

Nguyên tắc Kerckhoffs

"The system must be practically, if not mathematically, indecipherable" – Kerckhoffs (1883).

Phân bố xác suất

- \Box U: tập hữu hạn (ví dụ: U = $\{0,1\}^n$)
- \square Định nghĩa: Phân bố xác suất P trên U là một ánh xạ P: U \rightarrow [0,1] sao cho $\sum_{x \in U} P(x) = 1$
- ■Ví dụ:
- 1. Phân bố đều (Uniform distribution):

$$\forall x \in U: P(x) = 1/|U|$$

2. Phân bố điểm (Point distribution) tại x_0 :

$$P(x_0) = 1, \forall x \neq x_0: P(x) = 0$$

2-

Sự kiện

□Cho tập A \subseteq U: Pr[A] = $\sum_{x \in A} P(x) \in [0,1]$.

Ghi chú: Pr[U] = 1

- ☐ Tập A được gọi là một sự kiện.
- \square Ví dụ: U = $\{0,1\}^8$

 $A = \{tất cả x thuộc U sao cho lsb_2 = 11\} \subseteq U$

Nếu phân bố xác xuất trên U là phân bố đều thì:

Tổng xác suất

 \square Cho 2 sự kiện A_1 và A_2

$$\Pr[A_1 \cup A_2] \le \Pr[A_1] + \Pr[A_2]$$

Nếu
$$A_1 \cap A_2 = \emptyset$$
 thì $Pr[A_1 \cup A_2] =$

Ví dụ: $A_1 = \{tất cả x thuộc \{0,1\}^8 \text{ sao cho lsb}_2 = 11\}$

 $A_2 = \{tất cả x thuộc \{0,1\}^8 sao cho msb_2 = 11\}$

 $Pr[lsb_2(x) = 11 \text{ hoặc } msb_2(x) = 11]$

$$= \Pr[A_1 \cup A_2] \le$$

30

1

Biến ngẫu nhiên

□Định nghĩa: một biến ngẫu nhiên X có thể được mô hình hóa bằng một hàm X:U→V

Ví dụ: $X: \{0,1\}^n \longrightarrow \{0,1\}$; $X(y) = Isb(y) \in \{0,1\}$

Isb=0 0

lsb=1

■Đối với phân bố xác suất đều trên U:

$$Pr[X=0] = 1/2$$
 , $Pr[X=1] = 1/2$

Thuật toán ngẫu nhiên

- ☐ Thuật toán tất định: $y \leftarrow A(m)$
- Thuật toán ngẫu nhiên $y \leftarrow A(m;r) \quad với \quad r \leftarrow_{\mathbb{R}} \{0,1\}^n$ output là một biến ngẫu nhiên $y \leftarrow_{\mathbb{R}} A(m)$

Ví dụ: A(m; k) = E(k, m), $y \leftarrow_R A(m)$

Sự độc lập

- Dịnh nghĩa: 2 sự kiện A và B là độc lập nếu
 Pr[A and B] = Pr[A] · Pr[B]
- 2 biến X,Y nhận giá trị trong V là độc lập nếu ∀a,b∈V: Pr[X=a and Y=b] = Pr[X=a] · Pr[Y=b]
- \square Ví dụ: U = $\{0,1\}^2$ = $\{00, 01, 10, 11\}$ và $r \stackrel{\mathbb{R}}{\leftarrow} U$
 - Biến ngẫu nhiên X và Y được định nghĩa: X = lsb(r) , Y = msb(r)

$$Pr[X=0 \text{ and } Y=0] = Pr[r=00] = \frac{1}{4} = Pr[X=0] \cdot Pr[Y=0]$$

Nhắc lại: XOR

XOR của 2 chuỗi thuộc {0,1}ⁿ là phép cộng modulo cho 2

Một tính chất quan trọng của XOR

Định lý: Y là một biến ngẫu nhiên trên $\{0,1\}^n$, X là một biến độc lập với Y và phân bố đều trên $\{0,1\}^n$

Thì Z := Y⊕X phân bố đều trên {0,1}ⁿ

Proof: (với n=1)

$$Pr[Z=0] = Pr[(X,Y) = (0,0) hoặc$$

$$(X,Y) = (1,1)$$
] = $Pr[(X,Y) = (0,0)] +$

$$Pr[(X,Y) = (1,1)] = P_0 / 2 + P_1 / 2 = 1/2$$

Υ	Pr
0	P_0
1	P ₁

Х	Pr
0	1/2
1	1/2

Χ	Y	Pr
0	0	P ₀ / 2
0	1	P ₁ / 2
1	0	P ₀ / 2
1	1	P ₁ / 2

Nghịch lý "ngày sinh nhật"

 \Box Cho $r_1, ..., r_n \in U$ là các biến ngẫu nhiên độc lập nhau.

Định lý: khi
$$\mathbf{n} = 1.2 \times \left| \mathbf{U} \right|^{1/2}$$
 thì $\Pr\left[\exists i \neq j: r_i = r_j \right] \ge \frac{1}{2}$

Nghịch lý: cho U là tập ngày sinh thì |U| = 365. Khi n = 1.2 x $\sqrt{365}$ \approx 23.

Theo nguyên lý chuồng bồ câu, xác suất đạt 100% khi số người đạt 367 (vì có 366 ngày sinh khả dĩ, kể cả ngày 29 tháng 2). Tuy nhiên, xác suất 99.9% đạt được chỉ với 70 người và 50% với 23 người.

HẾT CHƯƠNG 1