Proof Complexity and Solving LAB

VSIDS Decision Heuristic

Dr. Joshua Blinkhorn

Friedrich-Schiller-Universität Jena https://github.com/JoshuaBlinkhorn/SAT-LAB

Goals

- Implemenatation of SAT solving algorithms
 - (a) 2-SAT (polynomial time)
 - (b) DPLL
 - (c) CDCL
 - watched literals
 - clause learning
 - decision heuristics
 - restart strategy
 - (d) QBF expansion..
- Practical programming experience
 - use your favourite language (Python, C, C++, Java, ..)
 - recommended: Python

CDCL Pseudocode

```
function CDCL-solver(\Phi)
                                                               #assuming \Phi is preprocessed
decision-level \leftarrow 0
while there are unassigned variables
   decision-level++
   decide()
                                                                   #adds assignment to trail
   C_{\text{conflict}} \leftarrow \text{propagate}()
                                                            #returns conflict clause or null
   while C<sub>conflict</sub> is not null
      if decision-level = 0 return UNSAT
      C_{\text{learned}} \leftarrow \text{analyse-conflict}(C_{\text{conflict}})
      if C_{\text{conflict}} is unit
         backtrack(0)
         assign unit literal
      else
         backtrack(asserting-level(C_{learned}))
                                                                       #changes trail and DL
         \Phi \leftarrow \Phi \wedge C_{\text{learned}}
      C_{\text{conflict}} \leftarrow \text{propagate()}
   apply-restart-policy()
return SAT
```

Decisions, Decisions, ..

- Choosing good decision variables is key to fast solving
- Well-explored research area
- VSIDS emerged as leading heuristic

Variable State Independent Decaying Sum (VSIDS)

- State-Independent does not depend on current assignment
- Conceptually very simple even elegant
- Tries to prioritise variables involved in recent conflicts

VSIDS Implementation

- Simple algorithm:
 - one counter per variable (use floats)
 - initialise all counters to 0
 - at conflict, add 1 to all variables involved in conflict
 - every j conflicts, multiply all counters by $0 < c_{decay} < 1$
- Variables involved in the conflict: those 'touched' in conflict analysis
- Sensible values: j = 1000, $c_{decav} = 0.5$
- If you have time: experiment with different values

VSIDS Task

- implement the VSIDS decision heuristic
- check correctness
- compare the solving time to your naive heuristic