Dynamical Systems: Homework 4

Chris Hayduk

October 25, 2020

Problem 1.

Recall that the shift map $\sigma: \Sigma_A \to \Sigma_A$ is defined as follows:

$$\sigma((x_k)_{k=0}^{\infty}) = (x_{k+1})_{k=0}^{\infty}$$

That is, we are essentially cutting off the first element of the sequence.

In addition, recall that topological transitivity is defined as $\exists x \in \Sigma_A$ such that the orbit $O(x) = \{\sigma^n(x) : n \in \mathbb{N}_0\}$ of x is dense in Σ_A .

Lastly, we have that,

$$d(x,y) = d_{\theta}(x,y) = \begin{cases} 0 & \text{if } x = y \\ \theta^{\min\{k: x_k \neq y_k\}} & \text{if } x \neq y \end{cases}$$

where $0 < \theta < 1$.

Let us define A as follows,

$$A = \begin{array}{c} 0 & 1 & 2 & 3 & 4 & \cdots & d-1 \\ 0 & 1 & 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & \cdots & 1 \\ 2 & 0 & 1 & 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 1 & 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ d-1 & 0 & 1 & 1 & 1 & 1 & \cdots & 1 \end{array} \right)$$

That is, 0 cannot appear anywhere in a sequence $x \in \Sigma_A$ except for in the first position. Now let us fix some $x, y \in \Sigma_A$ with $x \neq y$. Let y be such that it begins with 0. That is,

$$y = (0y_1y_2y_3\cdots)$$

If x does not also start with 0, then it is clear that,

$$d(\sigma^n(x), y) = \theta^0 = 1$$

for every $n \in \mathbb{N}_0$. This is true because, by the definition of A, the element 0 can only appear as the first element in a sequence. Hence, if x does not start with a 0, then $O(x) \cap B(y, \epsilon) = \emptyset$ for every $y \in \Sigma_A$ that starts with 0 and every $\epsilon < 1$.

Now suppose x does indeed start with a 0 and fix $\epsilon = \theta^2$. Observe that following a 0, we have d-1 choices for the next element in the sequence. Let us now fix $y \in \Sigma_A$ such that $y_0 = 0$ and $y_1 \neq x_1$. Then we have,

$$d(x,y) = \theta^1 = \theta \tag{1}$$

However, observe that since 0 can only appear at the beginning of a sequence, the first element of $\sigma^n(x)$ will never be 0 for any $n \ge 1$. Hence, we have,

$$d(\sigma^n(x), y) = \theta^0 = 1$$

for every n > 1. Combining this result with (1) yields

$$d(\sigma^n(x), y) \ge \theta > \epsilon = \theta^2$$

for all $n \in \mathbb{N}_0$. Thus, we have that $O(x) \cap B(y, \epsilon) = \emptyset$ in this case as well. Since we have covered all possible cases for $x \in \Sigma_A$, we have shown that there is no x such that O(x) is dense in Σ_A .

Problem 2.

(a) Suppose $\lambda > 1/e$. Then,

$$E_{\lambda}(x) = \lambda e^{x}$$

$$> \frac{e^{x}}{e}$$

$$= e^{x-1}$$

Hence, if we define $f(x) = e^{x-1}$, it suffices to show that $\lim_{n\to\infty} f^n(x) = \infty$ in order to assert that $\lim_{n\to\infty} E_{\lambda}^n(x) = \infty$.

From Bernoulli's Inequality, we have that,

$$e^x \ge x + 1$$

for all $x \in \mathbb{R}$. Hence, applying this to our case, we have that,

$$f(x) = e^{x-1} \ge (x-1) + 1 = x$$

Now let us define the function y = x - 1. Then,

$$f(y) = e^y \ge y + 1$$

Note that y ranges over all of \mathbb{R} . Define g(y) = y + 1. It is clear that,

$$g^{n}(y) = y + 1 + 1 + \dots + 1$$
$$= y + n$$

Thus,

$$\lim_{n \to \infty} g^n(y) = y \lim_{n \to \infty} n$$
$$= y \cdot \infty$$
$$= \infty$$

Since $E_{\lambda}(x) > f(x) = f(y) \ge g(y)$, we have that,

$$\lim_{n \to \infty} E_{\lambda}^{n}(x) > \lim_{n \to \infty} f^{n}(y) \ge \lim_{n \to \infty} g(y)$$

This yields,

$$\lim_{n\to\infty} E_{\lambda}^n(x) > \infty$$

and so,

$$\lim_{n \to \infty} E_{\lambda}^{n}(x) = \infty$$

(b) Now suppose $\lambda = 1/e$. Then we have,

$$E_{\lambda}(x) = \lambda e^{x}$$

$$= \frac{e^{x}}{e}$$

$$= e^{x-1}$$

Observe that $E_{\lambda}(1) = e^{1-1} = 1$. Hence, 1 is a fixed point of $E_{\lambda}(x)$. In addition, we have,

$$E_{\lambda}'(x) = e^{x-1}$$

So,

$$E'_{\lambda}(1) = e^{1-1}$$
$$= 1$$

Hence, 1 is a non-hyperbolic fixed point of $E_{\lambda}(x)$. Now suppose x < 1. Then,

$$E_{\lambda}(x) = e^{x-1}$$

 $< e^{1-1} = 1$ (2)

In addition, from Bernoulli's Inequality, we have that,

$$e^x > x + 1$$

for all $x \in \mathbb{R}$. Hence, applying this to our case, we have that,

$$E_{\lambda}(x) = e^{x-1} \ge (x-1) + 1 = x$$

Note that since $x \neq 1$, we get the following inequality,

$$E_{\lambda}(x) = e^{x-1} > (x-1) + 1 = x \tag{3}$$

By combining (2) and (3) and fixing x < 1, we have that,

$$x < E_{\lambda}(x) < E_{\lambda}^{2}(x) < E_{\lambda}^{3}(x) < \dots < 1$$

Hence, if we define the sequence $(x_n)_{n\in\mathbb{N}_0} = E_{\lambda}^n(x)$, we have that it is monotonically increasing and bounded above by 1. Thus, by the Monotone Convergence Theorem, (x_n) converges to its supremum.

Now suppose that $\sup(x_n) < 1$. Then there exists $m \in \mathbb{R}$ such that $x_n \leq m < 1$ for every $n \in \mathbb{N}_0$. But observe that, since m is a supremum of the set, for any $\epsilon > 0$, we have that $m < x_n + \epsilon$ for some x_n . If we choose ϵ small enough, we have,

$$x_{n+1} = e^{x_n - 1}$$
$$> x_n$$

Hence, $x_{n+1} = x_n + \epsilon$ and so $x_{n+1} > m$, a contradiction. Thus the supremum of the set is 1. Hence, if x < 1, then,

$$\lim_{n\to\infty} E_{\lambda}^n(x) = 1$$

Now suppose x > 1. We have,

$$x < E_{\lambda}(x) < E_{\lambda}^{2}(x) < E_{\lambda}^{3}(x) < \cdots$$

as before. However, we also have that this set is unbounded. Suppose that it were bounded. Then there exists a number m > 1 such that,

$$x < E_{\lambda}(x) < E_{\lambda}^{2}(x) < E_{\lambda}^{3}(x) < \dots < m$$

This implies that m is a fixed point of $E_{\lambda}^{n}(x)$. However, we know that there are no fixed point of this function greater than 1. Thus, we have a contradiction and hence there is no upper bound for this sequence. Thus, if x > 1, then,

$$\lim_{n \to \infty} E_{\lambda}^{n}(x) = \infty$$

(c) Suppose $0 < \lambda < 1/e$. Then

$$E_{\lambda}(x) = \lambda e^{x}$$

$$< \frac{e^{x}}{e}$$

$$= e^{x-1}$$

We have,

$$\lambda e^{x} = x$$

$$\implies e^{x} = x/\lambda$$

$$\implies x = \ln(x/\lambda)$$

$$\implies x = \ln(x) - \ln(\lambda)$$

Problem 3.

Let $\alpha \in [0,1) \cap \mathbb{Q}$. Hence, $\alpha = q/p$ for some $q, p \in \mathbb{Z}$ such that $0 \le \alpha < 1$. Hence,

$$f(e^{2\pi i\phi}) = e^{2\pi i(\alpha+\phi)}$$
$$= e^{2\pi i(p/q+\phi)}$$

Note that this map shifts the initial angle by $\alpha = p/q$. Now suppose we consider $f^q(e^{2\pi i\phi})$. That is, we iterate the function q times. We are thus have that f^q is equivalent to,

$$f^q(e^{2\pi i\phi}) = e^{2\pi i[(\alpha+\alpha+\cdots+\alpha)+\phi]}$$

That is, we are shifting the initial angle by $q \cdot \alpha = p$. Hence,

$$f^{q}(e^{2\pi i\phi}) = e^{2\pi i(q\cdot\alpha+\phi)}$$
$$= e^{2\pi i(p+\phi)}$$
$$= e^{2\pi ip+2\pi i\phi}$$

Since $p \in \mathbb{Z}$, we have that $2\pi i p$ is a multiple of 2π . Hence, $2\pi i p$ represents a full rotation around the circle, returning to the angle ϕ . Thus,

$$f^q(e^{2\pi i\phi}) = e^{2\pi i\phi}$$

for any angle ϕ . Hence, $Per(f) = [0, 2\pi)$.

Now suppose $\alpha \in [0,1) \cap \mathbb{I}$. I would guess that Per(f) would exclude any rational points, since shifting a rational number by an irrational number would result in an irrational number.

Problem 4. Bonus problem

Problem 5. Bonus problem

Let
$$4 < \mu \le 2 + \sqrt{5}$$
 and let $\Lambda_{\mu} = \{x \in [0, 1] \mid f^{n}(x) \in [0, 1] \ \forall n \in \mathbb{N}\}$