The Levels of Obesity in South America

Gabrielle Salamanca

About

- Provided by the DSS Club
 - kaggle.com
- From:
 - Mexico
 - Peru
 - Colombia
- 2111 rows
- 17 columns
- No missing values

Contains

- Personal information
 - Age
 - Gender
 - Height
 - Weight
- Habits
 - Eating
 - Exercise
 - Smoking

Variable: Nobeyesdad

- Obesity IvI
 - Weight category
 - In kilograms

Category:

- Insufficient Weight
- Normal Weight
- Overweight Lvl I
- Overweight Lvl II
- Obesity Type I
- Obesity Type II
- Obesity Type III

Insufficient Weight

- 39-65 kg
- 85.98-143.3 lbs

Normal Weight

- 42.3-87 kg
- 93.26-191.8 lbs

Overweight Lvl I

- 53-91 kg
- 116.85- 200.62 lbs

Overweight Lvl II

- 60-102 kg
- 132.28-224.87 lbs

Obesity Type I

- 75-125 kg
- 165.35-275.58 lbs

Obesity Type II

- 93-130 kg
- 205.03-286.6 lbs

Obesity Type III

- 102-173 kg
- 224.87- 381.4 lbs

These categories are likely to have BMI (Body Mass Index) in mind

- Metric
 - $\frac{weight (kg)}{height^2(m)} = BMI$
- Imperial
 - $703 \left[\frac{weight (lbs)}{height^2(in)} \right] = BMI$

From kaggle.com:

Obesity, which causes physical & mental problems, is a global health problem with serious consequences. The prevalence of obesity is increasing steadily, & therefore, new research is needed that examines the influencing factors of obesity & how to predict the occurence of the condition according to these factors.

Your BMI concerns your height and weight. But are there other factors that affect your weight category?

- Classification
 - Find a model provides the most accurate prediction
- Response variable
 - Obesity lvl

ObesityDataSet_raw_and_data_sinthetic

	Age	Gender	Height	Weight	Alcohol Consumption	
1	21	Female	1.62	64.0	No	
2	21	Female	1.52	56.0	Sometimes	
3	23	Male	1.80	77.0	Frequently	
4	27	Male	1.80	87.0	Frequently	
5	22	Male	1.78	89.9	Sometimes	
						:

The Gender Pie

2111 participants

- 1043 females
- 1068 males

Histogram: Age

Weight Categories

Weight vs Height

Weight vs Height

Cleanup, Organization, & Such

tinuing?

Additional steps before continuing?

Data Cleanup

None!

- No missing values
- No notable outliers

Consideration:

- Removing category
 - Insufficient Weight

If looking at obesity lvls

- Concern only for the obese/overweight
- Normal for baseline

Data Consideration

New dataset

- Removed "insufficient weight" category
- Separate train & test data

Results:

Error:

 All arguments must have the same length

Warning:

 longer object length is not multiple of shorter object length

Original columns

- CALC
- FAVC
- FCVC
- TUE
- CAEC
- Nobeyesdad

Renamed columns

- Alcohol Consumption
- High Caloric Food Consumption
- Vegetable Consumption
- Screen Time
- Snacking
- Obesity lvl

Data Splitting

- 80% training
- 20% test

- Manually go through fits for all 16 vars
 - a. Linear \rightarrow Max
- Max variable fits

summary()

- Find most significant vars
- Use a variation of those to find best fit

anova()

- Didn't give the significant vars
- Warnings
 - Fitted probabilitiesnumerically 0 or 1 occurred
 - Algorithm didn't converge

chisq.test()

- Error
 - 'List' obj can't be coerced to type 'double'

Best Subset Selection

- Adjusted $R^2 = 16$ vars
- Mallow's $C_p = 16$ vars
- BIC = 11 vars

Opinion

- summary(16 variables)
 - No significant p-values
 - 0.982 1
- BIC
 - More reasonable

glm(Obesity.Lvl~)

- Age, Gender
- Weight, High.Caloric.Food.Consumption
- Main.Meal.Consumption, Calorie.Count
- Water.Consumption
- Family.History.Overweight
- Exercise.Activity, Screen.Time
- Snacking

summary(): $\alpha > 0.05$

- Gender
- High.Caloric.Food.Consumption
- Calorie.Count
- Family.History.Overweight
- Exercise.Activity
- Screen.Time

glm(Obesity.Lvl~)

- Age
- Weight
- Main.Meal.Consumption
- Water.Consumption
- Snacking

summary() Results, $\alpha = 0.05$

- All p-values significant
 - But Snackingno = 0.155470
- AIC = 330.36
- $\chi^2_{1687-1680} = \text{null dev residual dev}$
 - 1306.57 314.36 = 992.21
 - p-value = .00001

Chosen fit

glm.fit2 = glm(Obesity.Lvl ~ Age + Weight +
 Main.Meal.Consumption + Water.Consumption + Snacking)

Methods

- QDA
- LDA

Method: Linear Discriminant Analysis

Classification

LDA

Source:

https://www.geeksforgeeks.org/ml -linear-discriminant-analysis/ Supervised learning algorithm specifically designed for classification tasks, aiming to identify linear combo of features that optimally segregates classes w/in dataset

Method: Quadratic Discriminant Analysis

Classification

QDA

Similar to LDA

- Relaxed assumption
 - Mean & coV of all classes are equal
- Calculation done separately ∀ class

Source:

https://www.geeksforgeeks.org/quadratic-discriminant-analysis/

Model Fit: Prediction

Glm.fit2 = 0%

	Insufficient	Normal	Ob T1	Ob T2	Ob T3	Ow L1	Ow L2
No	44	11	0	0	0	0	0
Yes	9	39	71	57	83	58	51

Model Fit: Method Testing

QDA

- Error
 - Rank deficiency in group Obesity Type 3

LDA

- No errors
- 59.81087%

- 1. Run new fit I've used previously
- 2. Use summary() to see best variables
 - a. Height
 - b. Weight

glm.fit3 = glm(Obesity.Lvl ~ Weight + Height)

Runs w/ no errors when running the other methods

Model Methods: QDA

	Insufficient	Normal	Ob T1	Ob T2	ОЬ ТЗ	Ow L1	Ow L2
Insufficient	57	3	0	0	0	0	0
Normal	0	45	0	0	0	0	0
Ob T1	0	0	73	0	0	0	1
Ob T2	0	0	0	55	6	0	0
Ob T3	0	0	0	1	63	0	0
Ow L1	0	2	0	0	0	46	6
Ow L2	0	0	2	0	0	2	61

Model Methods: LDA

	Insufficient	Normal	Ob T1	Ob T2	ОЬ ТЗ	Ow L1	Ow L2
Insufficient	48	6	0	0	0	0	0
Normal	9	33	0	0	0	0	0
Ob T1	0	0	71	0	0	0	1
Ob T2	0	0	2	56	13	0	0
ОЬ ТЗ	0	0	0	1	56	0	0
Ow L1	0	11	0	0	0	46	6
Ow L2	0	0	2	0	0	2	61

Prediction

O%

QDA

94.56265%

LDA

87.70686%

4. Improvements That said...

If I had more time...

- 1. Further exploration on best fit
 - a. Esp making it consistent
 - b. summary(fit) result changes every time I go back to R
- 2. Figure out the prediction table with the fit
- 3. Apply more methods

CREDITS

Presentation template

SlidesCarnival

Dataset

- Data Science Society
- kaggle.com

THANKS!

Any questions?
Any suggestions?

