### "Biology in Computational terms"-An Attempt.



A Cell-an Autonomous work station



Nucleus -CPU of the cell



DNA-Silicon Chip of the cell

#### **DNA** structure

**Monomer:polymer = Nucleotides:DNA** 

#### **NUCLEOTIDES**



**Base + sugar = Nucleosides** 

**Nucleoside** + Phosphate(s) = **Nucleotides** 



## Bases present in nucleic acids

- Bases- Nitrogenous molecules- heterocyclic amine bases
- 2 classes of bases







# **Purines**





# **Pyrimidines**







Only in RNA

### Sugars present in nucleic acids.

### **Pentose Sugars**



**Present in DNA** 

**Present in RNA** 

## **Linear array of nucleotides**



nucleotide nucleotide nucleotide

### Concept of 5'end &3'end





Sequence of bases is the form in which genetic information is stored - Primary Structure of DNA

Copyright (c) 1993 by Thaves. Distributed from www.thecomics.com.

Frank & Ernest

## **Base pairing rules**

- Base Pairing by hydrogen bonds
- Base pairing is complementary: purine-pyrimidine

#### Watson Crick Base Pairing



Chargaff's rule







Purines = Pyrimidines

Amount of purines (A + G) = amount of pyrimidines (C + T)

# Secondary structure

- Double stranded structure
- Analogy of a ladder
- steps = bases
- rungs of the ladder = sugar phosphate backbone



#### Anti-parallel Strands



Hydrophobic interaction Hydrogen binding b/w bases

# **DNA Replication**

### Base pairing provides the mechanism for DNA replication



### **DNA Replication**

Nature (1953), 171:737

"It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material."



# Remember!!!!





# Double helix structure



### **Messelson and Stahl**

- Used DNA labelled with heavy (15N) nitrogen to show that...
  - DNA, after each replication, contains
    - one strand from the previous molecule and
    - one new strand
- Replication is... Semiconservative



## Basic Requirements for DNA Replication



## Origin of Replication

Replication starts at a specific site called the origin







## **Enzyme System**

### Cluster of enzymes involved in the process of DNA replication



### **Topoisomerase**

An enzyme that removes super coils from DNA

**enzyme which relieves stress** on the **DNA molecule** by allowing free rotation around a single strand.



**Replication Fork** 

### **DNA Replication : The Process**



### **RNA Primers**

Short nucleotide sequence with a reactive 3'-OH that initiates DNA synthesis along a template



### **Primase**





RNA primers: before new DNA strands can form, there must be small pre-existing primer (RNA) present to start the addition of new nucleotides (DNA Polymerase).

**Primase**: enzyme that polymerizes (synthesizes) the RNAPrimer

DNA chain is initiated by a short RNA primer synthesized by DNA primase

### **Nucleotides**



## **Polymerase**

•Synthesis of the new DNA Strands:

**DNA Polymerase**: with a **RNA primer** in place, DNA Polymerase (enzyme) catalyze the **synthesis of a new DNA strand in the 5'to 3' direction**.



## **Synthesis of new DNA strands**

**Leading Strand**: synthesized as a single polymer in the 5' to 3' direction.



**Lagging Strand**: also synthesized in the **5' to 3' direction**, but **discontinuously** against overall direction of replication.



Okazaki Fragments: series of short segments on the lagging strand.



DNA ligase: a linking enzyme that catalyzes the formation of a covalent bond from the 3' to 5' end of joining stands.

Example: joining two Okazaki fragments together.



# **Enzymes involved in DNA replication**

| Enzyme                                  | Function in DNA replication                                                                                                            |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| DNA Helicase                            | Also known as helix destabilizing enzyme. Unwinds the DNA double helix at the Replication Fork.                                        |
| DNA Polymerase                          | Builds a new duplex DNA strand by adding nucleotides in the 5' to 3' direction. Also performs proof-reading and error correction.      |
| DNA clamp                               | A protein which prevents DNA polymerase III from dissociating from the DNA parent strand.                                              |
| Single-Strand Binding<br>(SSB) Proteins | Bind to ssDNA and prevent the DNA double helix from re-annealing after DNA helicase unwinds it thus maintaining the strand separation. |
| Topoisomerase                           | Relaxes the DNA from its super-coiled nature.                                                                                          |
| DNA Gyrase                              | Relieves strain of unwinding by DNA helicase.                                                                                          |
| DNA Ligase                              | Re-anneals the semi-conservative strands and joins Okazaki Fragments of the lagging strand.                                            |
| Primase                                 | Provides a starting point of RNA (or DNA) for DNA polymerase to begin synthesis of the new DNA strand.                                 |
| Telomerase                              | Lengthens telomeric DNA by adding repetitive nucleotide sequences to the ends of eukaryotic chromosomes.                               |



- •DNA synthesis occurs by adding 3'-OH end of the growing strand
- •New chain synthesized in the 5'-3' direction

**Proofreading**: initial base-pairing errors are usually corrected by **DNA polymerase**.

### Excision repair:

Damaged segment is **excised** by a **repair enzyme** (there are over 50 repair enzymes).

**DNA polymerase** and **DNA ligase** replace and bond the new nucleotides together.