3. Autómatas Finitos

Araceli Sanchis de Miguel Agapito Ledezma Espino José A. Iglesias Martínez Beatriz García Jiménez Juan Manuel Alonso Weber

Grado Ingeniería Informática Teoría de Autómatas y Lenguajes Formales

Objetivos

- Definir el concepto de Autómata Finito Determinista (AFD).
- Definir el concepto de Autómata Finito No Determinista (AFND).
- Establecer las equivalencias entre AFD.
- Convertir un AFND en un AFD.
- Minimizar AFD.
- Identificar el tipo de lenguaje aceptado por un AFND.

Autómatas Finitos

Autómatas Finitos Deterministas (AFD)

AFD como reconocedores de lenguajes

Equivalencia y minimización de AFD

Autómatas Finitos No Deterministas (AFND)

Equivalencia entre AFD y AFND

Autómatas Finitos

- Los Autómatas Finitos son de dos tipos:
 - Deterministas:
 - cada combinación (estado, símbolo de entrada) produce un solo (estado).
 - No Deterministas:
 - cada combinación (estado, símbolo de entrada) produce varios (estado1, estado 2, ..., estado i).
 - son posibles transiciones con λ

Л

Autómatas Finitos. Representación

- Se pueden representar mediante:
 - 1. Diagramas de transición o
 - 2. Tablas de transición

1. Diagramas de transición:

- Nodos etiquetados por los estados (qi ∈ Conjunto de estados)
- Arcos entre nodos q_i a q_j etiquetados con e_i
 (e_i es un símbolo de entrada) si existe la transición de q_i, a q_j con e_i
- El estado inicial se señala con →
- El estado final se señala con * o doble círculo

Autómatas Finitos. Representación

2. Tablas de transición:

- Filas encabezadas por los estados ($q_i \in Conjunto de estados$)
- Columnas encabezadas por los símbolos de entrada ($e_i \in alfabeto de entrada$)

	e ₁	e_2	•••	e _n	Símbolos de Entrada
q_1		f(q ₁ , e ₂)			
*q _m					
		q ₁	q ₁ f(q ₁ , e ₂)	q ₁ f(q ₁ , e ₂)	q ₁ f(q ₁ , e ₂)

Autómatas Finitos Deterministas (AFD)

AFD como reconocedores de lenguajes

Equivalencia y minimización de AFD

Autómatas Finitos No Deterministas (AFND)

Equivalencia entre AFD y AFND

Autómatas Finitos Deterministas

- AF Deterministas, AFD's: se definen mediante una quíntupla
 (Σ, Q, f, q₀, F), donde:
 - Σ: alfabeto de entrada
 - **Q: conjunto de estados**, es conjunto finito no vacío, realmente un alfabeto para distinguir a los estados
 - f: $Qx\Sigma \rightarrow Q$, función de transición
 - q₀∈Q, estado inicial
 - F⊂Q: conjunto de estados finales o de aceptación

Autómatas Finitos Deterministas

 Ejemplo: El AFD₁ = ({0,1}, {p,q,r}, f, p, {q}), donde f está definida por:

$$f(p,0) = q$$

$$f(p,1) = r$$

$$f(q,0) = q$$

$$f(q,1) = r$$

$$f(r,0) = r$$

$$f(r,1) = r$$

Tiene la tabla de transición y el diagrama de estados siguientes:

Autómatas Finitos Deterministas (AFD)

AFD como reconocedores de lenguajes

Equivalencia y minimización de AFD

Autómatas Finitos No Deterministas (AFND)

Equivalencia entre AFD y AFND

AFD como reconocedores de Lenguajes

• Cuando un AF transita desde q_0 a un <u>estado final</u> en varios movimientos, se ha producido <u>el RECONOCIMIENTO o</u>

<u>ACEPTACIÓN</u> de la cadena de entrada

 Cuando un AF no es capaz de alcanzar un estado final, se dice que el <u>AF NO RECONOCE</u> la cadena de entrada y que ésta <u>NO PERTENECE al lenguaje reconocido por el AF</u>

AFD. Conceptos Básicos

- - q: estado actual del AF

• w: cadena que le queda por leer en ese instante, w $\in \Sigma^*$

- Configuración inicial: (q₀, t)
 - q_0 : estado inicial
 - t: cadena de entrada a reconocer por el AFD, t $\subseteq \Sigma^*$
- Configuración final: (q_i,λ)
 - q_i: estado final
 - λ la cadena de entrada ha sido leída completamente
- Movimiento: es el tránsito entre dos configuraciones.

(q,aw)
$$f(q,a) = q'$$

Discurso

Extensión a palabra de la función de transición f, f':

Es la ampliación de la definición de \mathbf{f} a palabras de Σ^* , i.e. $\mathbf{w} \in \Sigma^*$

- f': Q x Σ* → Q
 a partir de f, que sólo considera palabras de longitud 1,
 hay que añadir:
- $f'(q,\lambda) = q \forall q \in Q$
- $f'(q, a \cdot x) = f'(f(q, a), x) \quad \forall q \in Q, a \in \Sigma, x \in \Sigma^*$

• En el AFD₁ (de la figura), indicar el resultado de las siguientes expresiones:

- f'(p, 0ⁿ)
- f'(p,11)
- f'(p,0011010)
- f' (p,100)

Lenguaje asociado a un AFD:

- Sea un AFD = (Σ, Q, f, q_0, F) , se dice que una palabra x es aceptada o **reconocida** por el AFD si f' $(q_0, x) \in F$
- Se llama lenguaje asociado a un AFD al conjunto de todas las palabras aceptadas por éste:

$$L = \{ x / x \in \Sigma * \text{ and } f'(q_0, x) \in F \}$$

• Si
$$F = \{\} = \emptyset \Rightarrow L = \emptyset$$

• Si
$$F = Q \Rightarrow L = \Sigma *$$

Otra definición:

$$L = \{ x / x \in \Sigma * \text{ and } (q_0, x) \rightarrow (q, \lambda) \text{ and } q \in F \}$$

AFD. Conceptos Básicos

En el AFD₁

- Cuál es L(AFD₁) = ¿?
- Y si se hace F = {r},
 cuál es L(AFD₁) = ¿?

AFD. Conceptos Básicos

En el AFD₁

• Cuál es $L(AFD_1) = \{0^n / n > 0\}.$

En el AFD₁

• Cuál es $L(AFD_1) = \{0^n / n > 0\}$. Comprobación

Desde p, con el número de 0's que sea, pero siempre al menos uno, se llega al estado final

AFD. Conceptos Básicos

En el AFD₁

Y si se hace F = {r},
 L(AFD₁) = {0ⁿ1x / n ≥ 0, x ∈ Σ *}.

En el AFD₁,

• comprobar que si se hace $F = \{r\}$, $L(AFD_1) = \{0^n1x / n \ge 0, x \in \Sigma^*\}$.

Desde p, con un "0" llego al estado q y desde allí se pueden aceptar tantos 0s como sean.

Luego con un 1 salto al estado final y allí puedo terminar o reconocer cualquier cadena de 0s y 1s.

Expresión regular: $L_A = 0+1 (0+1)*$

Expresión regular: L_B= 1(0+1)*

AFD. Conceptos Básicos

En el AFD₁,

• comprobar que si se hace $F = \{r\}$, $L(AFD_1) = \{0^n1x / n \ge 0, x \in \Sigma^*\}$.

Expresión regular L_A U L_B = 0*1(0+1)*

Estados accesibles y Autómatas conexos:

• Sea un AFD = (Σ, Q, f, q_0, F) , el estado $p \in Q$ es ACCESIBLE desde $q \in Q$ si $\exists x \in \Sigma^* f'(q,x) = p$. En otro caso se dice que INACCESIBLE.

Todo estado es accesible desde sí mismo pues $f'(p,\lambda) = p$

Teoremas:

- teorema 3.2.2, libro 1 de la bibliografía.
 - Sea un AFD, |Q| = n, $\forall p, q \in Q$ p es accesible desde q sii $\exists x \in \Sigma^*$, |x| < n / f'(p,x) = q
- teorema 3.2.3, libro 1 de la bibliografía

Sea un AFD, |Q| = n, entonces $L_{AFD} \neq \phi$ sii el AFD acepta al menos

una palabra $x \in \Sigma^*$, |x| < n

Nota: sii= "si y solo si"

Estados accesibles y Autómatas conexos:

Sea un AFD = (Σ, Q, f, q_0, F) . Diremos que el autómata es conexo si todos los estados de Q son accesibles desde q_0

Dado un autómata no conexo, podemos obtener a partir de él otro autómata equivalente conexo eliminando los estados inaccesibles desde el estado inicial. Los autómatas reconocen el mismo lenguaje.

Eliminación de estados inaccesibles.

 ¿Qué algoritmo, para ser implementado en un programa, se podría implementar para marcar los accesibles?

AFD. Ejercicios

- Hallar el AFD conexo equivalente al dado: AF= ({0,1}, {p,q,r,s},
 p, f, {q,r,s}), donde f viene dada por la tabla.
 - Se eliminan todos los estados innacesibles
 y todos las transiciones (i.e. arcos) que salen
 desde dichos estados innacesibles.

	0	1
р	r	р
*q	r	р
*r	r	р
*s	S	S

 Indicar, además el leguaje reconocido por ambos AFD's (original y conexo).

Autómatas Finitos Deterministas (AFD)

AFD como reconocedores de lenguajes

Equivalencia y minimización de AFD

Autómatas Finitos No Deterministas (AFND)

Equivalencia entre AFD y AFND

AFD. Equivalencia y Minimización

- Es posible tener varios autómatas que reconozcan el mismo lenguaje.
- Para todo autómata se puede obtener un autómata equivalente (i.e. reconoce el mismo lenguaje) donde el número de estados del autómata sea el mínimo.

■ ¿Por qué interesa obtener el mínimo? (Apartado 4.4 Libro 2 bibliografía)

AFD. Equivalencia y Minimización

¿Por qué interesa obtener el AFD mínimo? (Ap. 4.3 y 4.4 Libro 2 bibliograf)

- Se dispone de un descriptor del lenguaje (lenguaje regular): gramática tipo 3,
 AFD, AFND, expresión regular.
- Se plantean problemas de decisión:
 - ¿El lenguaje descrito es vacio?
 - ¿Existe una determinada cadena w en el lenguaje descrito?
 - ¿Dos descripciones de un lenguaje describen realmente el mismo lenguaje?
 - Nota: usualmente los lenguajes son infinitos, con lo que no es posible plantear la pregunta y recorrer el conjunto INFINITO de cadenas.
- Los algoritmos para responder a las dos primeras preguntas son sencillos.
 ¿Pero y para la última pregunta ?

¿Dos descripciones de un lenguaje describen realmente el mismo lenguaje? Consecuencia de esta comprobación: es necesario obtener el AFD mínimo equivalente

AFD. Equivalencia y Minimización

Teoremas:

Equivalencia de estados:

p E q, donde p,q
$$\in$$
 Q, si \forall x \in Σ^* se verifica que
$$f'(p,x) \in F \Leftrightarrow f'(q,x) \in F$$

• Equivalencia de orden (o de longitud) "n" $p E_n q, donde p, q \in Q, si \forall x \in \Sigma^* / |x| \le n se verfica que \\ f'(p,x) \in F \Leftrightarrow f'(q,x) \in F$

E y E_n son relaciones de equivalencia.

AFD. Equivalencia y Minimización

Equivalencia de estados – Casos particulares:

■ E_{0} , x palabra $|x| \le 0 => x = \lambda$ se verifica que p E_{0} q, \forall p,q \in Q, si \forall x \in Σ* / $|x| \le 0$ se verfica que f'(p,x) \in F \Leftrightarrow f'(q,x) \in F

x es lamba

$$f'(p,x) = f'(p,\lambda) = p \text{ (por definición de f')}$$

$$f(p,\lambda) \in F \Leftrightarrow f(q,\lambda) \in F \implies q \in F$$

Todos los estados finales de son E₀ equivalentes.

- \forall p,q \in F se cumple que p E_0 q
- \forall p,q \in Q F se cumple que p E_0 q

AFD. Equivalencia y Minimización

Equivalencia de estados – Casos particulares:

■ E_1 , x palabra $|x| \le 1$, $(x \in \Sigma)$ se verifica que $p E_1 q$, $\forall p,q \in Q$, si $\forall x \in \Sigma^* / |x| \le 1$ se verifica que $f'(p,x) \in F \Leftrightarrow f'(q,x) \in F$

x es lamba o símbolo del alfabeto.

$$f'(p,x) = f'(p,a) = f(p,a)$$
 ó $f'(p,x) = f'(p,\lambda) = p$ (por definición de f') $f(p,a) \in F \Leftrightarrow f(q,a) \in F$

Partiendo de p y q con una sola transición se debe llegar a un estado final para ambos casos o uno no final para ambos casos.

AFD. Equivalencia y Minimización

- Propiedades
 Nota: en estas expresiones matemáticas, "n" <u>no</u> significa |
 Q|
 - Lema: $p E q \Rightarrow p E_n q$, $\forall n, p, q \in Q$
 - Lema: $p E_n q \Rightarrow p E_k q$, $\forall n > k$
 - Lema: $p E_{n+1} q \Leftrightarrow p E_n q$ and $f(p,a) E_n f(q,a) \forall a \in \Sigma$
- Teorema: $p E q \Leftrightarrow p E_{n-2} q$, donde n = |Q| > 1 Aquí "n" <u>sí</u> significa |Q|

(Teorema 5.1 (pag 117 libro 4 bibliografia))

p E q sii
$$\forall$$
 x \in Σ^* , $|x| = m \le n-2$ se verifica que $f(p,x) \in F \Leftrightarrow f(q,x) \in F$

m = n-2 es el valor más pequeño que cumple este teorema

(n-1 sí lo cumple, pero n-3 no se garantiza que se cumpla)

AFD. Equivalencia y Minimización

"E" es una relación de equivalencia. ¿Qué significa Q/E?

- Q/E es una partición de Q,
- Q/E = $\{C_1, C_2, ..., C_m\}$, donde $C_i \cap C_j = \emptyset$
 - p E q \Leftrightarrow (p,q \in C_i), por lo tanto

$$\forall x \in \Sigma^*$$
 se verifica que $f'(p,x) \in C_i \Leftrightarrow f'(q,x) \in C_i$

Nota: en libro 1 biblio, p,q \in Ci se representa por p = q = C_i;

- Para la relación de orden n
 - E_n : $Q/E_n = \{C_1, C_2, ..., C_m\}$, C_i intersección $C_i = \emptyset$
 - $p E_n q \Leftrightarrow p,q \in C_i$;
 - por lo tanto $\forall x \in \Sigma^*$, $|x| \le n$ se verifica que $f'(p,x) \in C_i \Leftrightarrow f'(q,x) \in C_i$

AFD. Equivalencia y Minimización

Propiedades. (Lemas)

- Lema: Si $Q/E_n = Q/E_{n+1} \Rightarrow Q/E_n = Q/E_{n+i} \forall i = 0, 1, ...$
- Lema: Si $Q/E_n = Q/E_{n+1} \Rightarrow Q/E_n = Q/E$ conjunto cociente
- Lema: Si $|Q/E_0| = 1 \Rightarrow Q/E_0 = Q/E_1$
- Lema: $n = |Q| > 1 \Rightarrow Q/E_{n-2} = Q/E_{n-1}$
- $p E_{n+1} q \Leftrightarrow (p E_n q \text{ and } f(p,a) E_n f(q,a) \forall a \in \Sigma)$

AFD. Equivalencia y Minimización

Interpretación lemas anteriores:

El objetivo es obtener la partición Q/E, puesto que será el autómata mínimo, sin estados equivalentes .

- En cuanto se obtienen dos particiones consecutivas $Q/E_k = Q/_{E_{k+1}}$, se para.
- Para obtener Q/E, hay que empezar por Q/E₀, Q/E₁, etc.
- Para obtener Q/E, hay que obtener Q/E_{n-2} en el peor caso, ya que si se obtiene Q/E_{n-k} = Q/E_{n-k+1}, con k>=3, se habría obtenido ya Q/E.
- El lema p $E_{n+1} q \Leftrightarrow p E_n q$ and $f(p,a) E_n f(q,a) \forall a \in \Sigma$, permite es extender la equivalencia de orden n desde E_0 y E_1

AFD. Equivalencia y Minimización

☐ Teorema:

 $pEq \Leftrightarrow pE_{n-2}q \text{ donde } |Q| = n > 1 (**)$

Es decir, p E q Sii \forall x \in Σ^* , $|x| \le n-2$, $f'(p,x) \in F \Leftrightarrow f'(q,x) \in F$

n-2 es el valor más pequeño que cumple este teorema

AFD. Equivalencia y Minimización

Algoritmo formal para obtener Q/E:

- 1. $Q/E_0 = \{ F, no F \}$
 - 1ª división en función de si son o no estados finales.
- 2. Q/E_{i+1}

partiendo de $\mathbf{Q/E_i} = \{C_1, C_2, ..., C_n\}$, se construye $\mathbf{Q/E_{i+1}}$: p y q están en la misma clase si:

$$p, q \in C_k \in Q/E_i \ \forall \ a \in \Sigma \Rightarrow f(p,a) \ y \ f(q,a) \in C_m \in Q/E_i$$

3. Si Q/E_i = Q/E_{i+1} entonces Q/E_i = Q/E Si no, repetir el paso 2 partiendo de Q/E_{i+1}

AFD. Equivalencia y Minimización

Ejercicio: Hallar el AFD mínimo equivalente

AFD. Equivalencia

Autómatas Equivalentes:

- Estados equivalentes en AFD's distintos:
 - Sean 2 AFD's: (Σ,Q,f,q_0,F) y $(\Sigma',Q',f''q_0',F')$
 - Los estados p,q / p \in Q y q \in Q' son equivalentes (pEq) si se verifica que f(p,x) \in F \Leftrightarrow f"(q,x) \in F' \forall x \in Σ *
- Estados equivalentes en AFD's distintos:
 - Dos AFD's son equivalentes si reconocen el mismo lenguaje, es decir: Si $f(q_0, x) \in F \Leftrightarrow f(q_0', x) \in F' \ \forall \ x \in \Sigma^*$. Es decir:
 - Dos AFD's son equivalentes si lo son sus estados iniciales: q₀ E q₀'

AFD. Equivalencia

¿Qué es la suma directa de 2 AFD's?

Sean 2 AFD's:

A1 =
$$(\Sigma, Q_1, f_1, q_{01}, F_1)$$

A2 = $(\Sigma', Q_2, f_2, q_{02}, F_2)$

Donde $Q_1 \cap Q_2 = \phi$

Se llama suma directa de A1 y A2 al AF A:

$$A = A1 + A2 = (\Sigma, Q_1 \cup Q_2, f, q_0, F_1 \cup F_2), donde:$$

q₀ es el estado inicial de uno de los AF's

f:
$$f(p,a) = f1(p,a) \text{ si } p \in Q1$$

$$f(p,a) = f2 (p,a) si p \in Q2$$

AFD. Equivalencia

☐ **Teorema:** (el teorema (**) aplicado a la suma directa de dos autómatas):

sean A1, A2 /
$$Q_1 \cap Q_2 = \phi$$
, $|Q_1| = n_1$, $|Q_2| = n_2$

 $A_1 E A_2 si q_{01} E q_{02} en A = A_1 + A_2$

Es decir, si A_1 y A_2 aceptan las mismas palabras x / $|x| \le n_1 + n_2 - 2$

además, n₁+n₂-2 es el valor mínimo que cumple el teorema

AFD. Equivalencia

Autómatas equivalentes, comprobación:

Algoritmo para comprobar la equivalencia de AFDs

- 1. Se hace la suma directa de los dos AFD's
- 2. Se hace Q/E del AFD suma
- 3. Si los dos estados iniciales están en la misma clase de equivalencia de $Q/E \Rightarrow los 2 AFD's son equivalentes$

AFD. Equivalencia

• **Ejercicio:** Comprobar que los autómatas A1 y A2 son equivalentes.

A1

A2

AFD. Equivalencia

- Sean dos autómatas:
 - A1 = $(\Sigma, Q_1, f_1, q_{01}, F_1)$ y A2 = $(\Sigma', Q_2, f_2, q_{02}, F_2)$, tales que $|Q_1| = |Q_2|$
- Se dice que A1 y A2 son isomorfos, si existe una aplicación biyectiva $i: Q_1 \rightarrow Q_2$ que cumple:
 - 1. $i(q_{01}) = q_{02}$ es decir, los estados iniciales son correspondientes
 - 2. $q \in F_1 \Leftrightarrow i(q) \in F_2$ es decir, los estados finales son correspondientes
 - 3. $i(f_1(q,a)) = f_2(i(q),a) \forall a \in \Sigma q \in Q_1$
 - En definitiva, a cada estado le corresponde otro equivalente que solo se diferencia en el nombre de sus estados.
- Dos AFDs isomorfos, también son equivalentes y reconocen el mismo lenguaje.

AFD. Minimización

Sea el AFD, A = (Σ,Q,f,q_0,F) :

- 1. Partir del AFD conexo, i.e. eliminar estados inaccesibles desde el estado inicial
- 2. Construir Q/E del autómata conexo
- 3. El AFD mínimo, salvo isomorfismos, es:

$$A' = (\Sigma, Q', f', q_0', F')$$

donde:

$$Q' = Q/E$$

f' se construye: f' $(C_i,a) = C_i$ si $\exists q \in C_i$, $p \in C_i$ / f(q,a) = p

$$q_0' = C_0 \text{ si } q0 \in C_0, C_0 \in Q/E$$

 $F' = \{C / C \text{ contiene al menos un estado de } F(\exists \text{ un } q \in F \text{ tal que } q \in C)\}$

COROLARIO:

2 AFD's son equivalentes si sus AF mínimos respectivos son isomorfos.

44

AFD. Ejercicio

Hallar el AFD mínimo equivalente al dado:

Autómatas Finitos Deterministas (AFD)

AFD como reconocedores de lenguajes

Equivalencia y minimización de AFD

Autómatas Finitos No Deterministas (AFND)

Equivalencia entre AFD y AFND

Autómatas Finitos No Deterministas

Definiciones de AFND:

- 1.AFND = (Σ, Q, f, q_0, F) , donde
 - f: Q x (Σ U λ }→ Q es No determinista,
 es decir, por ejemplo: f(p,a) = {q,r} y f(p,λ) = {q,r}
- 2.AFND = $(\Sigma, Q, f, q_0, F, T)$, donde
 - f: Q x $\Sigma \rightarrow P(Q)$: conjunto de las partes de Q
 - T : Relación definida sobre pares de elementos de Q.

pTq = $(p,q) \in T$ si está definida la transición $f(p, \lambda)=q$

Nota: "T" es la definición formal de la transición λ

Autómatas Finitos No Deterministas

Ejemplo: Sea el AFND siguiente:

A = ({a,b}, {p,q,r,s}, f,p, {p,s}, T= {(q,s), (r,r), (r,s), (s,r)}) donde f:

$$f(p,a) = \{q\} \qquad \qquad f(p,b) = \{\}$$

$$f(q,a) = \{p,r,s\} \qquad \qquad f(q,b) = \{p,r\}$$

$$f(r,a) = \{\} \qquad \qquad f(r,b) = \{p,s\}$$

$$f(s,a) = \{\}$$

La tabla de transiciones es

	а	b	λ
→*p	q		
q		p,r	S
r		p,s	r,s
S			r

AFNDs. Función de Transición extendida a palabras

• Se define a partir de f, una función de transición f'', que actúa sobre palabras de Σ^* ;

f' es la función de transición sobre palabras.

- Es una aplicación: $f'': Q \times \Sigma^* \rightarrow P(Q)$. Donde:
 - 1. $f''(q,\lambda) = \{p / qT^*p \ \forall q \in Q\}$ (T* se define más adelante) donde se cumple que $q \in f'(q,\lambda)$
 - 2. sea $x = a_1 a_2 a_3 ... a_n$, n > 0

f"(q,x) = {p / p es accesible desde q por medio de la palabra
$$\lambda^* a_1 \lambda^* a_2 \lambda^* a_3 \lambda^* \dots \lambda^* a_n \lambda^* \forall q \in Q$$
}

es idéntica a x

Lectura recomendada: Apartado 3.3.4 del primer libro de la bibliografía básica

AFNDs. Función de Transición extendida a palabras

Calculo de T*

Sea AFND = $(\Sigma, Q, f, q_0, F, T)$.

- Para calcular f' es necesario extender las transiciones con una λ a λ^* , es decir calcular T* del AFND= (Σ ,Q, f,q₀,F, \underline{T})
- Para ello existe el método formal de las matrices booleanas, o el método de la matriz de pares (estado, estado).

AFNDs. Función de Transición extendida a palabras

Calculo de T*. Método de la matriz de pares de estados

- Se construye una matriz con tantas filas como estados.
- En la 1º columna se coloca el par correspondiente al estado en cuestión, es decir, por ej. (p,p) puesto que cada estado es accesible desde si mismo.
- En las columnas siguientes se añaden las transiciones λ definidas en el AFND, considerando si el hecho de añadirlas permite extender alguna transición más.
 - Pej. Si existe la transición λ (q,r) y se añade la transición λ (r,s), habrá que añadir asimismo, la transición (q,s).
- Cuando no sea posible añadir ningún par más, se habrá terminado T*

AFNDS. Función de Transición extendida a palabras

Calculo de T*. Ejemplo 1:

Sea el AFND: A, definido anteriormente donde T= {(q,s), (r,r), (r,s), (s,r)}. Se trata de calcular T*

	а	b	λ
→ *p	q		
q		p,r	S
r		p,s	r,s
* S			r

AFNDS. Función de Transición extendida a palabras

Calculo de T*. Ejemplo 2:

• Se extiende la tabla de transición anterior para contener T^* , insertando una nueva columna correspondiente a λ^*

	a	b	λ	λ*
→* p	q			р
q	p,r,s	p,r	S	q,s,r
r		p,s	r,s	r,s
*5			r	r,s

AFNDs. Función de Transición extendida a palabras

Calculo de T*. Ejemplo 3:

• Y ahora se calcula la tabla de transición correspondiente a f", cambiando las transiciones con a por λ^*a λ^* y las de b por λ^*b λ^* .

	a	b	λ	λ*			λ*αλ*	λ*bλ*
→* p	9			р		→* p	q,r,s	Ф
9	p,r,s	p,r	S	q,s,r	\longrightarrow	9	p,r,s	p,r,s
r	•	p,s	r,s	r,s	·	r	Ф	p,r,s
*5			r	r,s		* S	Φ	p,r,s

AFND. Lenguaje aceptado por un AFND

- Una palabra $x \in \Sigma$ * es aceptada por un AFND si:
 - f' (q0,x) y F tienen al menos un elemento común, es decir, que f'(q0,x) contiene al menos un estado final.
- El conjunto de todas las palabras aceptadas por un AFND es el lenguaje aceptado por ese AFND.

Formalmente:

$$L_{AFND} = \{x \mid x \in \Sigma * y \exists q_o \rightarrow F\} = \{x \mid x \in \Sigma * y f'(q_o, x) \cap F \neq \emptyset\}$$

AFND. Lenguaje aceptado por un AFND

 Al ser un AFND, desde q_o puede haber más de un camino para la palabra "x", y "x" es aceptada sólo con que uno de los caminos lleve a un estado final.

Además:

λ∈ L AFND si:

- q_o∈F ó
- ∃ un estado final, q ∈ F, tal que está en relación T* con q₀ (q₀ T* q)

Autómatas Finitos Deterministas (AFD)

AFD como reconocedores de lenguajes

Equivalencia y minimización de AFD

Autómatas Finitos No Deterministas (AFND)

Equivalencia entre AFD y AFND

AFD equivalente a un AFND

- Dado un AFND siempre es posible encontrar un AFD que reconozca el mismo lenguaje:
 - El conjunto de los L_{AFND} = al conjunto de los L_{AFD}.
 - Un AFND no es más potente que un AFD, sino que un AFD es un caso particular de AFND.

Paso de AFND a AFD:

- Sea el AFND A = $(\Sigma, Q, f, q_0, F, T)$.
- Se define a partir de A el AFD B, donde:

$$B = (\Sigma, Q', f^{\wedge}, q_{o}', F')$$
, tal que:

Q' = P(Q) conjunto de las partes de Q que incluye a Q y a \emptyset .

 $q_0' = f'(q_0, \lambda)$ (f' extensión a palabra de f, i.e. todos los estados que tengan relación T* con q_0).

$$F' = \{C/C \in Q' \ y \exists q \in C/q \in F\}$$

$$f^{(C,a)} = \{C'/C' = \bigcup_{q \in C} f(q,a)\}$$

AFD equivalente a un AFND. Ejemplo

Obtener el AFD correspondiente al siguiente AFND

	a	b	λ
→ *p	q		
q	p,r,s	p,r	S
r		p,s	r,s
*s			r

- Pasos:
 - 1. Eliminar transiciones λ
 - a) Determinar λ^* (el cierre de las transiciones λ , T*)
 - b) Obtener la tabla sin transiciones λ
 - 2. Aplicar algoritmo de creación de nuevos estados que pertenecen a P(Q), añadiendo su transiciones.

AFD equivalente a un AFND. Ejemplo

Eliminar transiciones λ

a) Determinar λ^* (el cierre de las transiciones λ) a partir de la tabla de transiciones.

	a	b	λ
→* p	q		
q	p,r,s	p,r	S
r		p,s	r,s
*s			r

	а	b	λ	λ*
→ *p	q			p
q	p,r,s	p,r	S	q ,s,r
r		p,s	r,s	r ,s
*s			r	s,r

AFD equivalente a un AFND. Ejemplo

- 1. Eliminar transiciones λ
 - a) Determinar λ^* (el cierre de las transiciones λ)

	а	b	λ	λ*
→ *p	q			р
q	p,r,s	p,r	S	q,r,s
r		p,s	r,s	r,s
*s			r	r,s

b) Obtener la tabla sin transiciones λ (transiciones con entrada λ^* a λ^* , para cada elemento, a, del alfabeto Σ)

	λ*αλ*	λ*bλ*
→* p	q,r,s	Ø
q	p,r,s	p,r,s
r	Ø	p,r,s
*5	Ø	p,r,s

AFD equivalente a un AFND. Ejemplo

2. Aplicar algoritmo de creación de nuevos estados que pertenecen a P(Q), añadiendo su transiciones.

	λ*αλ*	λ*bλ*
→* p	q,r,s	Ø
q	p,r,s	p,r,s
r	Ø	p,r,s
*5	Ø	p,r,s

	α	Ь
→* p	{q,r,s}	Ø
#	p,r,s	p,r,s
¥	₽	p,r,s
<u>*</u> €	₽	p,r,s
{q,r,s}	{p,r,s}U Ø U Ø	{p,r,s}U {p,r,s}U{p,r,s}

AFD equivalente a un AFND. Ejemplo

2. Aplicar algoritmo de creación de nuevos estados que pertenecen a P(Q), añadiendo su transiciones.

	λ*αλ*	λ*bλ*
→* p	q,r,s	Ø
q	p,r,s	p,r,s
r	Ø	p,r,s
* S	Ø	p,r,s

	λ*αλ*	λ*bλ*
→* p	{q,r,s}	Ø
#	p,r,s	p,r,s
¥	₽	p,r,s
≛ g	₽	p,r,s
{q,r,s}	{p,r,s}	{p,r,s}

	λ*αλ*	λ*b λ *
→* p	{q,r,s}	Ø
#	(p,r,s)	(p,r,s)
ŧ	₽	(p,r,s)
<u>*</u>	₽	(p,r,s)
{q,r,s}	{p,r,s}	{p,r,s}

	λ*αλ*	λ*bλ*
→* p	{q,r,s}	Ø
#	p,r,s	p,r,s
¥	₽	p,r,≤
<u>*</u>	₽	p,r,≤
{q,r,s}	{p,r,s}	{p,r,s}
{p,r,s}	{q,r,s} U Ø U Ø	Ø U {p,r,s} U {p,r,s}

	λ*αλ*	λ*bλ*
→* p	{q,r,s}	Ø
{q,r,s}	{p,r,s}	{p,r,s}
{p,r,s}	{q,r,s}	{p,r,s}

3. Autómatas Finitos

Araceli Sanchis de Miguel Agapito Ledezma Espino José A. Iglesias Martínez Beatriz García Jiménez Juan Manuel Alonso Weber

Grado Ingeniería Informática Teoría de Autómatas y Lenguajes Formales

