MO2

March 2021

1 Ядровые методы

Данные: $x = (x_1, ...x_m)$

Базисные функции: $\phi(x_1,...)$

Модель принимает вид: $a(x) = \sum_{j=1}^{m} w_j \phi_j(x)$

Для хорошего качества нужно много базисных функций \to Ядровые методы позволяют не перебирать большое количество базисных функций

• Быстрое обучение

Ядровые методы

1. Двойственное представление для линейной регрессии

$$Q(w) = \frac{1}{2} \sum_{i=1}^{l} (\sum_{j=1}^{m} (w_j \phi_j(x_i) - y_i)^2 + \frac{\lambda}{2} ||w||_2^2 = \frac{1}{2} ||\Phi w - y||_2^2 + \frac{\lambda}{2} ||w||_2^2$$

$$\Phi = \begin{pmatrix} \phi_1(x_1) & \dots & \phi_m(x_1) \\ \dots & \dots & \dots \\ \phi_1(x_l) & \dots & \phi_m(x_l) \end{pmatrix}$$

$$\nabla_w Q = \Phi^T(\Phi w - y) + \lambda w \to w = -\frac{1}{\lambda} \Phi^T(\Phi w - y) \to w = \Phi^T a$$

w является линейной комбинацией строк $\Phi \to \mathrm{Pemehue}$ можно искать из $w = \Phi^T a$

$$Q(a) = \frac{1}{2} ||\Phi \Phi^T a - y|| + \frac{\lambda}{2} a^T \Phi \Phi^T a \rightarrow min_a$$

 $\Phi\Phi^T$ - матрица Грама (попарных скалярных произведений объектов)

Можно записать Q(w) так, что он зависит только от скалярных произведений объектов

2. SVM

$$\begin{cases} \sum_{i=1}^{l} \lambda_i - \frac{1}{2} \sum_{i,j=1}^{l} \lambda_i \lambda_j y_i y_j < x_i, x_j > \to max_{\lambda} \\ 0 \ge \lambda_i \le C \\ \sum_{i=1}^{l} \lambda_i y_i = 0 \end{cases}$$

Такая формулировка задачи зависит от скалярных произведений объектов

3. Алгоритм

- (а) Добавляем новые признаки
- (b) Делаем это так, что $<\phi(x),\phi(z)>$ выражается через < x,z>
- (с) Используем метод, который использует скалярные произведения объектов
- (d) В этом методе $\langle x, z \rangle \rightarrow \langle \phi(x), \phi(z) \rangle$ (Kernel trick)
- 4. Ядро функция $K(x,z) = <\phi(x), \phi(z)>$, где $\phi:X\to H$
 - (а) Н спрямляющее пространство
 - (b) ϕ спрямляющее отображение

5. Теорема Мерсера

(a)
$$K(x,z)$$
 - ядро $\leftrightarrow \begin{cases} K(x,z) = K(z,x) \\ K$ неотрицательно определенная

(b) HO
$$\rightarrow \forall l, \forall (x_1, ..., x_l) \in \mathbb{R}^d \rightarrow (K(x_i, x_j))_{i,j=1}^l$$
 HO

(c) На практике теорема Мерсера слишком сложна для применения

Теорема 1

(а) Если

і.
$$K_1(x,z), K_2(x,z)$$
 - ядра, $x,z \in X$

іі.
$$f^{(x)}$$
 - вещественная функция на X

iii.
$$\phi:X\to R^n$$

iv.
$$K_3$$
 - ядро заданное на \mathbb{R}^n

(b) То следующие функции являюися ядрами:

i.
$$K(x,z) = K_1(x,z) + K_2(x,z)$$

ii.
$$K(x,z) = \alpha K_1(x,z)$$

iii.
$$K(x,z) = K_1 K_2$$

iv.
$$K(x, z) = f^{(x)} f^{(z)}$$

v. $K(x, z) = K(\phi(x), \phi(z))$

7. Теорема 2

- (а) Если:
 - і. $K_1(x,z), K_2(x,z), \dots$ последовательность ядер
 - ii. $\exists K(x,z) = \lim_{n\to\infty} K_n(x,z), \forall x,z$
- (b) To:
 - і. К ядро

8. Полиномиальные ядра

- (a) p(v) многочлен с неотриц. коэфф
- (b) $K(x,z) = w_0 + w_1 < x, z > +w_2 < x, z >^2 + \dots$
- (с) Является ядром по теореме 1
- (d) $K(x,z) = (\langle x,z \rangle + R)^m = \sum_{i=0}^m C_m^i R^{m-i} \langle x,z \rangle^i$
 - і. Если расписать все $< x, z >^i$, то получим все мономы степени і от исходных признаков
 - іі. Зачем R? ightarrow коэффициент при мономе = $\sqrt{C_m^i R^{m-i}}$
 - ііі. Сравним веса при мономах 1 и (m 1) $\sqrt{\frac{C_m^{m-1}R}{C_m^1R^{m-1}}}=\sqrt{\frac{1}{R^{m-2}}}$
 - iv. R больше мономы высоких степеней имеют низкий вклад
 - v. Конечномерное спрямляющее пространство, но можно сделать линейно разделимое пространство

9. Гауссовы ядра

(а) Позволяет перевести в бесконечномерное спрямляющее пространство

(b)
$$K(x,z) = exp\left(-\frac{||x-z||^2}{2\sigma^2}\right)$$

- i. $exp(< x, z >) = \sum_{k=0}^{\infty} \frac{< x, z > k}{k}, \forall x, z = \lim_{n \to \infty} \sum_{k=0}^{\infty} \frac{< x, z > k}{k}$
 - А. Разложение через ряд Тейлора
 - В. Ядро, как последовательность ядер
- іі. $\frac{exp(< x, z>)}{2\sigma^2}$ ядро, аналогично

iii.
$$exp\left(-\frac{||x-z||^2}{2\sigma^2}\right) = exp\left(-\frac{\langle x,x \rangle - \langle z,z \rangle + \langle x,z \rangle}{2\sigma^2}\right) = exp\left(-\frac{\langle x,x \rangle - \langle z,z \rangle + \langle x,z \rangle}{2\sigma^2}\right) = \frac{exp(\langle x,z \rangle / \sigma^2}{exp(||x||^2 / \sigma^2)exp(||z||^2 / \sigma^2)}$$

iv.
$$exp(< x, z > /\sigma^2) = K(x, z) = < \phi(x), \phi(z) >$$

v. $\phi(x) = \frac{\phi(x)}{||\phi(x)||} = \frac{\phi(x)}{\sqrt{K(x,x)}}$
vi. $<\phi(x), \phi(z) > = \frac{<\phi(x), \phi(z)>}{\sqrt{K(x,x)K(z,z)}}$

- (c) Какое спрямляющее пространство? бесконечная сумма всех мономов
- (d) *Утверждение:* $x_1, ..., x_l$ различные векторы из \mathbb{R}^d Тогда:

$$G=(exp\left(-rac{||x-z||^2}{2\sigma^2}
ight))_{i,j=1}^l$$
 - невырожденная при $\sigma^2>0$

(e) $x_1,...,x_l \in \mathbb{R}^d$ - их матрица Грамма невырождена $\to \phi(x_1,...,x_l)$ ЛНЗ \to бесконечное количество ЛНЗ векторов \to бесконечномерное пространство

10. Ядровой SVM

(a)
$$\begin{cases} \frac{1}{2} ||w||^2 + C \sum_{i=1}^l \xi_i \to \min_{w,b,\xi} \\ y_i(< w, x_i > +b) \ge 1 - \xi_i \\ \xi_i \ge 0 \end{cases}$$

$$L(w, b, \xi, \lambda, \mu) = \frac{1}{2} ||w||^2 + C \sum_{i=1}^{d} \xi_i - \sum_{i=1}^{l} \lambda_i (y_i (< w, x_i > +b) - 1 + \xi_i) - \sum_{i=1}^{l} \mu_i \xi_i$$

В точке оптимума $\nabla_w L = 0$

$$\nabla_w L = w - \sum_{i=1}^l \lambda_i y_i x_i = 0 \to w = \sum_{i=1}^l \lambda_i y_i x_i$$
$$\nabla_b L = \sum_{i=1}^l \lambda_i y_i = 0$$
$$\nabla_{\xi_i} L = C - \lambda_i - \mu_i = 0 \to \lambda_i + \mu_i = C$$

Условие дополняющей нежесткости:

$$\lambda_i(y_i(< w, x_i > +b)-1+\xi_i) = 0 \to \lambda_i = 0 \text{ или } (y_i(< w, x_i > +b)-1+\xi_i)$$

$$\mu_i\xi_i = 0 \to \mu_i = 0 \text{ или } \xi_i = 0$$

Свойства лагранжиана:

$$\lambda \ge 0, \mu \ge 0$$

- (b) Типы объектов
 - і. $\lambda_i = 0 \to \mu_i = C \to \xi_i = 0 \to x_i$ лежит с правильной стороны от разделяющей гиперплоскости и на достаточном расстоянии от нее. $w = \sum_{i=1}^l \lambda y_i x_i \to$ объект не влияет на веса. Называется **периферийный.**
 - іі. $0 < \lambda_i < 1 \to \mu \neq 0 \to \xi_0 = 0$. x_i не залезает на разделяющую полосу, но $y_i (< w, x_i > +b) = 1 \to x_i$ лежит прямо на границе. Дает вклад в w. x_i опорный граничный.
 - ііі. $\lambda_i = C \to \xi_i > 0$. x_i дает вклад в w. $\xi_i > 0 \to x_i$ нарушает границу Опорные нарушители.
- (c) Подставляем $w=\sum_{i=1}^l \lambda y_i x_i$ в лагранжиан, учтем ограничения $\sum_{i=1}^l \lambda_i y_i=0$ и $C-\lambda_i-\mu_i=0$

Двойственная задача SVM

$$\begin{cases} L = \sum_{i=1}^{l} \lambda_i - \frac{1}{2} \sum_{i,j=1}^{l} \lambda_i \lambda_j y_i y_j < x_i, x_j > \to \max_{\lambda} \\ \sum_{i=1}^{l} \lambda_i y_i = 0 \\ 0 \le \lambda_i \le C \end{cases}$$

- (d) Если λ решение, то $w=\sum_{i=1}^l \lambda_i y_i x_i$ решение исходной залачи
- (e) Задача зависит от объектов только через скалярное произведение \rightarrow можно заменить его на ядро
- (f) Находим b Берем $x_i: 0 < \lambda_i < C \to \xi_i = 0 \to y_i (< w, x_i > +b) = 1 \to b = y_i < w, x_i >$
- (g) Минусы ядрового SVM
 - і. Сложно контролировать переобучение
 - іі. Необходимо хранить в памяти матрицу Грамма
 - ііі. Нельзя менять функцию потерь

11. Применение ядерной модели

(a)
$$a(x) = sign(< w, x > +b) = sign(< \sum_{i=1}^{l} \lambda y_i x_i, x > +b) = sign(\sum_{i=1}^{l} \lambda_i y_i < x_i, x > +b)$$