classification

Feature Extraction

CNN 4 layers -> Convolution Pooling Milegerk Arhitechers, for digulating. hely connected classofication. (town) Convolutional layer - mi should interitamount wino . with . · Foundation of CNN, trabable pullershedurgmas. · responsible efor executing consolution operations. · Kernel/Filter component -> performs convolution. · detects patterns of features using learnlable kernels or file detects diff types of filters. whole imp scanned > kernels makes adjustments horizontally & vertically according to stride ratestride rate -> no of steps taken by kernel. 5,10,5,10,5 , 10x1 5x1 100, 5 10 1-0ansof Marino 35 40 30 : 5x0 l0x0 l0xi 5 5 110 45 40 105 5 10 10 001 40 35 40 5 5 10 10 10 completed 13×3 kund (3×3) feature map * * width = Win - K+2P+1 Win = Width Input devisitations K = kernel size P = padding Height = Hin - K+2P +1 s = stole. FRAFINE Editor

		Page No. Date	
===	A	3) Fully Connected Layer -	
		Lineal word of the Continuity of the Continuity of the	
		· every input connected -> neuron -> called flattened input.	
-		· multilayer preciption on neural network where each neuron is connec	ched
-		to all other neurons in previous layer.	
		· connec" b/w neuron have associated weight which is learned or	ising than
		· subjut of neuron - applying a activation fun it magnetization	of tayout
		· allows network -> complex non-linear ren b/w extracted fear	huls.
		· large no of parameters can lead to overfitting exp for	
		high dimensi and class	
		· Po mitigate we apply regularization, drop out batch n	ormaliza .
		. max pooling - noise reduction with dimensionali hyreduc	bion
		· to avoid loosing pixels -> padding -> add ontra pixels edges of ?	nort mes
		· amt of sliding - input tensor -> stricle.	1
) Peoling windows fixe - six of polling segion 2x2 on 3x3;	1
*	4	(a) ReLUMA swam brown brown when who and give - white (s	
Agen		en Palling - alleres to control size of poeling large maps	cal toda
		eteration fun? decroes if neuson should be fired or not by &	
		simplicity & performance -> used alot	11922
		Rectified Linear Unit Lelv = max(x,0)	1
		provides non-linear transformation. Reets all tre elements.	l
0	1	A discords all -ve s	
	TRel	Lu(x) Retu (x).	
	1		-
	-2	2 0 +x 4-x 0 x>	1
			1
	o ke	sout layers help avoid overfitting on training data-	1
	000	sout layers help avoild overfitting on training data-	1
			1 Mer
adu	1	fficient to compute • non linear activation fun uses	dinter
adv->			
		loss as bely to suffer vanishing $f(x) = 50$ $\chi = 10$ Less as bely to suffer vanishing χ	
	· · ·	less askely to suffer vanishing x	
		gradient problem. max(0, x)	

Page No.		
Date	1	

Local Response Normalization-

- unbounded activation fun nequire normalization.
- normalization & applied before activation fune.
- used in CNN for normalization
- was first introduced in AlexNet.
- Introduced lateral inhibition increases competition among newaltes.
- helps to normalize & scale them for a particular neuron based on activities
- Emprove robustness of new orks to noise & learn most reight outing nouten
- works by normalizing activation of convolution layer within local region-
- prevent activations from too large or too small to prevent model from being oversenselive to noise.
-) Inter channel CRN normalization is done in depth dimens- for each
- 2) Inter channel LRN extends only to neighbour in same channel (x14) pair
- · Introduces local competition blu neurons & normalize response within specific and
- fill is hypically applied as reperate byes in CNN.
- operates individually on each feature map
- insuled to convolution & before pooling to normalize activation before downsamply.
- Adv -> . Improved generali xation
 - · better discrimenative power:
 - · resisten to valiation in illuminated at construct
 - · amplify diff blis strong of weak activation.
- · Replaced by Batch Normalization in modern UN architechee to as it. aparates on batch of sample rather than neighbourhood make'ng It more afficient I eatier to train.