FUNCIONES ELEMENTALES

Página 244

PARA EMPEZAR, REFLEXIONA Y RESUELVE

Problema 1

Las siguientes gráficas corresponden a funciones, algunas de las cuales conoces y otras no. En cualquier caso, vas a trabajar con ellas.

■ Las ecuaciones correspondientes a estas gráficas son:

a)
$$y = \frac{4}{x^2}$$

b)
$$y = \sqrt{x+1}$$

c)
$$y = \frac{3}{x}$$

a)
$$y = \frac{4}{x^2}$$
 b) $y = \sqrt{x+1}$ c) $y = \frac{3}{x}$ d) $y = x^2 - 6x + 11$

Asigna a cada gráfica su ecuación haciendo uso, sucesivamente, de:

- el conocimiento que ya tienes de algunas de ellas;
- la comprobación, mediante cálculo mental, de algunos de sus puntos;
- y, en caso de necesidad, recurriendo a la calculadora para obtener varios de sus puntos.

b)
$$\Leftrightarrow$$
 II c) \Leftrightarrow IV d) \Leftrightarrow I

$$d) \Leftrightarrow I$$

Página 245

Problema 2

■ Teniendo en cuenta los pasos descritos antes, representa gráficamente las siguientes funciones:

a)
$$y = \begin{cases} x+3 & \text{si } x < 1 \\ 5-x & \text{si } x \ge 1 \end{cases}$$

a)
$$y = \begin{cases} x+3 & \text{si } x < 1 \\ 5-x & \text{si } x \ge 1 \end{cases}$$
 b) $y = \begin{cases} 3 & \text{si } x < -2 \\ 2-x & \text{si } x \ge -2 \end{cases}$ c) $y = \begin{cases} x+5 & \text{si } x \le 0 \\ 2x & \text{si } x > 0 \end{cases}$

c)
$$y = \begin{cases} x+5 & \text{si } x \le 0 \\ 2x & \text{si } x > 0 \end{cases}$$

Página 247

1. Halla el dominio de definición de las siguientes funciones:

a)
$$y = \sqrt{x^2 + 1}$$

b)
$$y = \sqrt{x-1}$$

c)
$$y = \sqrt{1-x}$$

d)
$$y = \sqrt{4 - x^2}$$

e)
$$y = \sqrt{x^2 - 4}$$

e)
$$y = \sqrt{x^2 - 4}$$
 f) $y = 1/\sqrt{x^2 - 1}$

g)
$$y = 1/\sqrt{x-1}$$

h)
$$y = 1/\sqrt{1-x}$$

h)
$$y = 1/\sqrt{1-x}$$
 i) $y = 1/\sqrt{4-x^2}$

j)
$$y = 1/\sqrt{x^2 - 4}$$

k)
$$y = x^3 - 2x + 3$$
 1) $y = \frac{1}{x}$

1)
$$y = \frac{1}{x}$$

$$\mathbf{m}) y = \frac{1}{x^2}$$

$$\tilde{\mathbf{n}}$$
) $y = \frac{1}{x^2 + 4}$

o)
$$y = \frac{1}{x^3 + 1}$$

p) El área de un cuadrado de lado variable, l, es $A = l^2$.

a) R

b) [1, ∞)

c) (-∞. 1]

d) [-2, 2]

- e) (-∞, -2] U [2, ∞)
- f) $(-\infty, -1) \cup (1, \infty)$

g) (1, ∞)

h) (-∞, 1)

i) (-2, 2)

- j) $(-\infty, -2) \cup (2, \infty)$
- k) R

1) $|\mathbf{R} - \{0\}|$

m) $|\mathbf{R} - \{0\}|$

- n) $|\mathbf{R} \{-2, 2\}|$
- \tilde{n}) R

o) $|R - \{-1\}|$

p) l > 0

Página 248

1. Representa la siguiente función: y = -2x + 7, $x \in (1, 4]$.

2. Una función lineal f cumple: f(3) = 5, f(7) = -4, D(f) = [0, 10]. ¿Cuál es su expresión analítica? Represéntala.

$$m = \frac{-4-5}{7-3} = -\frac{9}{4}$$

$$y = 5 - \frac{9}{4}(x - 3) = -\frac{9}{4}x + \frac{47}{4}, \ x \in [0, 10]$$

Página 249

1. Representa las parábolas:

a)
$$y = x^2 - 2x + 3$$

b)
$$y = -x^2 - 2x - 3$$
 c) $y = x^2 - 6x + 5$

c)
$$y = x^2 - 6x + 5$$

d)
$$y = 2x^2 - 10x + 8$$

e)
$$y = \frac{1}{3}x^2 - x + 3$$

$$f) y = \frac{1}{4} x^2 + x - 2$$

2. Representa las funciones:

a)
$$y = x^2 - 6x + 1$$
, $x \in [2, 5)$

b)
$$y = -x^2 + 3x$$
, $x \in [0, 4]$

c)
$$y = x^2 - 4$$
, $x \in (-\infty, -2) \cup (2, -\infty)$

Página 250

1. Representa $y = \frac{1}{4} x^2$. A partir de ella, representa:

a)
$$y = \frac{1}{4} x^2 + 5$$

b)
$$y = \frac{1}{4} x^2 - 2$$

2. Teniendo en cuenta el ejercicio anteior, representa:

a)
$$y = -\frac{1}{4} x^2$$

b)
$$y = -\frac{1}{4}x^2 + 2$$

Página 251

1. Representa $y = f(x) = \frac{1}{4}x^2$ para $x \ge 1$.

A partir de ella, representa:

$$a) y = f(x-5)$$

b)
$$y = f(x + 1)$$

c)
$$y = f(-x)$$

d)
$$y = f(-x + 2)$$

a) [

d) [

Página 252

1. Representa:

a)
$$y = \frac{4}{x}$$

b)
$$y = -\frac{4}{x}$$

c)
$$y = \frac{4}{x-3}$$

d)
$$y = \frac{4}{x-3} + 2$$

b) [

c)

2. Representa estas funciones:

a)
$$y = \frac{3x + 2}{x + 1}$$

c)
$$y = \frac{x+1}{x-1}$$

b)
$$y = \frac{4x+3}{x+1}$$

$$d) y = \frac{x-1}{x+1}$$

Página 253

1. Representa las siguientes funciones:

a)
$$y = 3 + \sqrt{x-4}$$

c)
$$y = \sqrt[3]{-x}$$

b)
$$y = \sqrt{2 - x}$$

d)
$$y = \sqrt[3]{-x} + 2$$

c)

b) [

2. Representa:

a)
$$y = \sqrt[3]{x} + 1$$

c)
$$y = \sqrt[3]{-x+1}$$

b)
$$y = \sqrt[3]{x+1}$$

d)
$$y = -\sqrt{4 - x}$$

Página 254

1. Representa esta función:

$$f(x) = \begin{cases} x+1 & x \in [-3,0) \\ x^2 - 2x + 1 & x \in [0,3] \\ 4 & x \in (3,7) \end{cases}$$

2. Haz la representación gráfica de la siguiente función:

b)
$$g(x) = \begin{cases} 2x + 1 & x < 1 \\ x^2 - 1 & x \ge 1 \end{cases}$$

Página 255

1. Representa: $y = |-x^2 + 4x + 5|$

2. Representa gráficamente: $y = \left| \frac{x}{2} - 3 \right|$

Página 256

1. Si $f(x) = x^2 - 5x + 3$ y $g(x) = x^2$, obtén las expresiones de f[g(x)] y g[f(x)]. Halla f[g(4)] y g[f(4)].

$$f[g(x)] = f[x^2] = x^4 - 5x^2 + 3$$

$$g[f(x)] = g[x^2 - 5x + 3] = (x^2 - 5x + 3)^2$$

$$f[g(4)] = 179; g[f(4)] = 1$$

2. Si f(x) = sen x, $g(x) = x^2 + 5$, halla $f \circ g$, $g \circ f$, $f \circ f$ y $g \circ g$.

Halla el valor de estas funciones en x = 0 y x = 2.

$$f \circ g(x) = sen(x^2 + 5); \ f \circ g(0) = -0.96; \ f \circ g(2) = 0.41$$

$$g \circ f(x) = sen^2 x + 5$$
; $g \circ f(0) = 5$; $g \circ f(2) = 5,83$

$$f \circ f(x) = sen(sen x); \ f \circ f(0) = 0; \ f \circ f(2) = 0.79$$

$$g \circ g(x) = (x^2 + 5)^2 + 5; \quad g \circ g(0) = 30; \quad g \circ g(2) = 86$$

Página 257

1. Representa y = 2x, y = x/2 y comprueba que son inversas.

2. Comprueba que hay que descomponer $y = x^2 - 1$ en dos ramas para hallar sus inversas respecto de la recta y = x. Averigua cuáles son.

a)
$$y = x^2 - 1$$
 si $x \ge 0$

$$v^{-1} = \sqrt{x+1}$$

b)
$$y = x^2 - 1$$
 si $x < 0$

$$v^{-1} = -\sqrt{x+1}$$

3. Si f(x) = x + 1 y g(x) = x - 1, comprueba que f[g(x)] = x. ¿Son f(x) y g(x) funciones inversas? Comprueba que el punto (a, a + 1) está en la gráfica de f y que el punto (a + 1, a) está en la gráfica de g.

Representa las dos funciones y observa su simetría respecto de la recta y = x.

$$f[g(x)] = f(x-1) = (x-1) + 1 = x$$

Son funciones inversas.

Página 266

EJERCICIOS Y PROBLEMAS PROPUESTOS

PARA PRACTICAR

¿Cuáles de estas gráficas son funciones?

Son funciones a), b) y d).

Indica si los valores de $x: 0; -2; 3.5; \sqrt{2}; -0.25$ pertenecen al dominio de es-2 tas funciones:

a)
$$y = \frac{1}{\sqrt{x}}$$

b)
$$y = \frac{x}{x^2 - 4}$$

c)
$$y = x - \sqrt{2}$$

d)
$$y = \sqrt{x^2 + 4}$$

e)
$$y = \sqrt{x-3}$$

f)
$$y = \sqrt{7 - 2x}$$

a) 3,5;
$$\sqrt{2}$$

c) Todos

d) Todos

e) 3,5

f) Todos

3 Halla el dominio de definición de las siguientes funciones:

$$a) y = \frac{3}{x^2 + x}$$

b)
$$y = \frac{x}{(x-2)^2}$$

c)
$$y = \frac{x-1}{2x+1}$$

d)
$$y = \frac{1}{x^2 + 2x + 3}$$

e)
$$y = \frac{2}{5x - x^2}$$

f)
$$y = \frac{1}{x^2 - 2}$$

a)
$$|\mathbf{R} - \{-1, 0\}|$$

b)
$$|\mathbf{R} - \{2\}$$

e)
$$|\mathbf{R} - \{0, 5\}|$$

f)
$$\mathbb{R} - \{-\sqrt{2}, \sqrt{2}\}$$

4

Halla el dominio de definición de estas funciones:

a)
$$y = \sqrt{3-x}$$

b)
$$y = \sqrt{2x - 1}$$

c)
$$y = \sqrt{-x-2}$$

d)
$$v = \sqrt{-3x}$$

a)
$$(-\infty, 3]$$

b)
$$[1/2, +\infty)$$

c)
$$(-\infty, -2]$$

d)
$$(-\infty, 0]$$

5 Halla el dominio de definición de estas funciones:

a)
$$y = \sqrt{x^2 - 9}$$

b) =
$$\sqrt{x^2 + 3x + 4}$$

c)
$$v = \sqrt{12x - 2x^2}$$

d)
$$y = \sqrt{x^2 - 4x - 5}$$

e)
$$y = \frac{1}{\sqrt{4-x}}$$

f)
$$y = \frac{1}{\sqrt{x^2 - 3x}}$$

g)
$$y = \frac{-1}{x^3 - x^2}$$

h)
$$y = \frac{2x}{x^4 - 1}$$

a)
$$x^2 - 9 \ge 0 \to (x + 3)(x - 3) \ge 0 \to Dominio = (+\infty, -3] \cup [3, +\infty)$$

b)
$$x^2 + 3x + 4 \ge 0 \rightarrow Dominio = \mathbb{R}$$

c)
$$12x - 2x^2 \ge 0 \rightarrow 2x(6 - x) \ge 0 \rightarrow Dominio = [0, 6]$$

d)
$$x^2 - 4x - 5 \ge 0 \to (x + 1)(x - 5) \ge 0 \to Dominio = (-\infty, -1] \cup [5, +\infty)$$

e)
$$4 - x > 0 \rightarrow 4 > x \rightarrow Dominio = (-\infty, 4)$$

f)
$$x^2 - 3x > 0 \rightarrow x(x - 3) > 0 \rightarrow Dominio = (-\infty, 0) \cup (3, +\infty)$$

g)
$$x^3 - x^2 = 0 \rightarrow x^2(x-1) = 0 \rightarrow x_1 = 0, \ x_2 = 1 \rightarrow Dominio = |\mathbf{R} - \{0, 1\}|$$

h)
$$x^4 - 1 = 0 \rightarrow x^4 = 1 \rightarrow x = \pm \sqrt[4]{1} = \pm 1 \rightarrow Dominio = |R - \{-1, 1\}|$$

6 Elige dos puntos en cada una de estas rectas y escribe su ecuación:

a)
$$y = \frac{5}{3}x + \frac{10}{3}$$

b)
$$y = -\frac{1}{5}x + 8$$

c)
$$y = 0.025x - 0.05$$

d)
$$y = 12x - 30$$

7 Asocia a cada una de estas parábolas una de estas ecuaciones:

a)
$$y = x^2 - 2$$

b)
$$y = -0.25x^2$$

c)
$$y = (x + 3)^2$$

- a) II

b) I

- c) IV
- d) III

8 Representa las siguientes parábolas hallando el vértice, los puntos de corte con los ejes de coordenadas y algún punto próximo al vértice:

a)
$$y = 0.5x^2 - 3$$

b)
$$y = -x^2 + 3$$

c)
$$y = 2x^2 - 4$$

d)
$$y = -\frac{3x^2}{2}$$

a) Y X X

Vértice: (0, -3). Corte con los ejes: $(-\sqrt{6}, 0), (\sqrt{6}, 0), (0, -3)$

Vértice: (0, 3). Corte con los ejes: $(\sqrt{3}, 0), (-\sqrt{3}, 0), (0, 3)$

Vértice: (0, -4). Corte con los ejes: $(\sqrt{2}, 0), (-\sqrt{2}, 0), (0, -4)$

Vértice: (0, 0). Corte con los ejes: (0, 0)

Representa las siguientes funciones:

a)
$$y = x^2 + 2x + 1$$

b)
$$y = \frac{x^2}{2} + 3x + 1$$

c)
$$y = -x^2 + 3x - 5$$

Página 267

10 En las siguientes parábolas, halla el vértice y comprueba que ninguna de ellas corta al eje de abscisas. Obtén algún punto a la derecha y a la izquierda del vértice y representalas gráficamente:

a)
$$y = 4(x^2 + x + 1)$$

b)
$$y = 5(x+2)^2 + 1$$

c)
$$y = -x^2 - 2$$

d)
$$y = -\frac{3}{4}(x^2 + 2)$$

Vértice: $\left(-\frac{1}{2}, 3\right)$

Vértice: (-2, 1)

Vértice: (0, −2)

- Vértice: $\left(0, -\frac{3}{2}\right)$
- Observando la gráfica de estas funciones, indica cuál es su dominio de definición y su recorrido:

Los dominios son, por orden: [-2, 2]; $(-\infty, 2) \bigcup (2, +\infty)$ y $[-1, +\infty)$.

Los recorridos son, por orden: [0, 2], $(0, +\infty)$ y $[0, +\infty)$.

12 Representa las siguientes funciones en las que se ha restringido voluntariamente su dominio:

a)
$$y = x^2 - 4$$
, si $x \in [-2, 3]$

De un cuadrado de 4 cm de lado, se cortan en las esquinas triángulos rectángulos isósceles cuyos lados iguales miden x.

- a) Escribe el área del octógono que resulta en función de x.
- b) ¿Cuál es el dominio de esa función? ¿Y su recorrido?

a)
$$A(x) = 16 - 2x^2$$

b) Dominio: (0, 2). Recorrido: (8, 16)

- 14 Una empresa fabrica envases con forma de prisma de dimensiones x, x/2 y 2x cm.
 - a) Escribe la función que da el volumen del envase en función de x.
 - b) Halla su dominio sabiendo que el envase más grande tiene 1 l de volumen. ¿Cuál es su recorrido?

a)
$$V(x) = x^{3}$$

b) Domini: (0, 10). Recorrido: (0, 1000)

15 Representa gráficamente las siguientes funciones:

a)
$$y = \begin{cases} -2 & \text{si } x < 0 \\ x - 2 & \text{si } 0 \le x < 4 \\ 2 & \text{si } x \ge 4 \end{cases}$$
 b) $y = \begin{cases} -2x - 1 & \text{si } x < 1 \\ (3x - 15)/2 & \text{si } x \ge 1 \end{cases}$

16 Representa $f(x) = 4 - x^2$ y, a partir de ella, representa:

a)
$$g(x) = f(x) - 3$$

Halla el dominio de definición de estas funciones:

a)
$$y = \sqrt{x^2 - 2x}$$

b)
$$y = \sqrt{x^2 + 3}$$

c)
$$y = \sqrt{5 - x^2}$$

d)
$$y = \sqrt{x^2 - 3x + 2}$$

a)
$$(-\infty, 0] \bigcup [2, +\infty)$$

c)
$$[-\sqrt{5}, \sqrt{5}]$$

d)
$$(-\infty, 1] \cup [2, +\infty)$$

Asocia a cada una de las gráficas una de las siguientes expresiones analíticas: 18

a)
$$y = \frac{1}{x} + 2$$

b)
$$y = \frac{1}{x + 3}$$

b)
$$y = \frac{1}{x+3}$$
 c) $y = \frac{1}{x} - 3$ d) $y = \frac{1}{x-4}$

d)
$$y = \frac{1}{x-4}$$

(II)

(III)

(v)

- a) II
- b) III
- c) IV
- d) I

Esta es la gráfica de la función y = f(x):

Representa, a partir de ella, las funciones:

$$a) y = |f(x)|$$

b)
$$y = f(x-1)$$

$$c) y = f(x) + 2$$

Página 268

- 20 Haz una tabla de valores de la función $y = 3^x$. A partir de ella, representa la función $y = log_3 x$.
 - Si el punto (2, 9) pertenece a $y = 3^x$, el punto (9, 2) pertenecerá a $y = \log_3 x$.

X	-2	-1	0	1	2
3 ^x	1/9	1/3	1	3	9

X	1/9	1/3	1	3	9
$log_3 x$	-2	-1	0	1	2

21 Con ayuda de la calculadora, haz una tabla de valores de la función $y = \left(\frac{3}{5}\right)^x$ y representala gráficamente.

x	-3	-2	-1	0	1	2	3
у	4,63	2,78	1,67	1	0,6	0,36	0,22

22 Representa la función $y = \left(\frac{6}{5}\right)^x$. ¿Es creciente o decreciente?

Es una función creciente en todo R.

Considera las funciones f y g definidas por las expresiones $f(x) = x^2 + 1$ y $g(x) = \frac{1}{x}$.

Calcula:

a)
$$(f \circ g)$$
 (2)

b)
$$(g \circ f) (-3)$$

c)
$$(g \circ g)(x)$$

$$d) (f \circ g) (x)$$

a)
$$\frac{5}{4}$$

b)
$$\frac{1}{10}$$

c)
$$g(g(x)) = x$$

d)
$$f(g(x)) = \frac{1 + x^2}{x^2}$$

24 Dadas las funciones $f(x) = \cos x$ y $g(x) = \sqrt{x}$, halla:

a)
$$(f \circ g)(x)$$

b)
$$(g \circ f)(x)$$

c)
$$(g \circ g)(x)$$

a)
$$f[g(x)] = \cos \sqrt{x}$$

b)
$$g[f(x)] = \sqrt{\cos x}$$

c)
$$g[g(x)] = \sqrt[4]{x}$$

25 Halla la función inversa de estas funciones:

$$a) y = 3x$$

b)
$$y = x + 7$$

c)
$$y = 3x - 2$$

a)
$$x = 3y \rightarrow y = \frac{x}{3} \rightarrow f^{-1}(x) = \frac{x}{3}$$

b)
$$x = y + 7 \rightarrow y = x - 7 \rightarrow f^{-1}(x) = x - 7$$

c)
$$x = 3y - 2 \rightarrow y = \frac{x+2}{3} \rightarrow f^{-1}(x) = \frac{x+2}{3}$$

26 Representa la gráfica de $y = log_{1/3} x$ a partir de la gráfica de $y = \left(\frac{1}{3}\right)^x$.

- 27 Comprueba que las gráficas de $y = 3^x$ e $y = \left(\frac{1}{3}\right)^x$ son simétricas respecto al eje OY.
 - Represéntalas en los mismos ejes.

PARA RESOLVER

28 Representa: a) $y = \begin{cases} x/2 + 2 & \text{si } x \le 2 \\ x - 3/2 & \text{si } x > 2 \end{cases}$ b) $y = \begin{cases} (2x + 2)/3 & \text{si } x < 2 \\ -2x + 6 & \text{si } x \ge 2 \end{cases}$

Dibuja la gráfica de las siguientes funciones:

a)
$$y = \begin{cases} x^2 & \text{si } x \le 1\\ (2x-1)/3 & \text{si } x > 1 \end{cases}$$

b)
$$y = \begin{cases} x^2 - 2x & \text{si } x \le 2 \\ 3 & \text{si } x > 2 \end{cases}$$

c)
$$y =\begin{cases} -x^2 - 4x - 2 & \text{si } x < -1 \\ x^2 & \text{si } x \ge -1 \end{cases}$$
 d) $y =\begin{cases} -x^2 & \text{si } x < 0 \\ x^2 & \text{si } x \ge 0 \end{cases}$

d)
$$y = \begin{cases} -x^2 & \text{si } x < 0 \\ x^2 & \text{si } x \ge 0 \end{cases}$$

30 Representa:

a)
$$y = \begin{cases} -x - 1 & \text{si } x \le -1 \\ 2x^2 - 2 & \text{si } -1 < x < 1 \\ x - 1 & \text{si } x \ge 1 \end{cases}$$
 b) $y = \begin{cases} (-x^2/2) + 2 & \text{si } x < 1 \\ x - 3 & \text{si } x \ge 1 \end{cases}$

b)
$$y = \begin{cases} (-x^2/2) + 2 & \text{si } x < 1 \\ x - 3 & \text{si } x \ge 1 \end{cases}$$

31 A partir de la gráfica de f(x) = 1/x, representa:

$$a) g(x) = f(x) - 2$$

b)
$$h(x) = f(x-3)$$

c)
$$i(x) = -f(x)$$

$$\mathbf{d})\, j(x) = \big|f(x)\big|$$

a)

c)

d)

32 Representa la función $f(x) = \sqrt{x}$ y dibuja, a partir de ella:

$$a) g(x) = \sqrt{x+1}$$

b)
$$b(x) = \sqrt{x} - 3$$

b) [

- 33 La factura del gas de una familia, en septiembre, ha sido 24,82 euros por 12 m³, y en octubre, 43,81 por 42 m³.
 - a) Escribe la función que da el importe de la factura según los m³ consumidos y represéntala.
 - b) ¿Cuánto pagarán si consumen 28 m³?

a)
$$y = 24.82 + 0.633(x - 12)$$

 $y(28) = 34.94$ euros

b)
$$y = 24.82 + 0.633(x - 12) = 0.633x + 17.22$$

El precio del billete de una línea de cercanías depende de los kilómetros recorridos. Por 57 km he pagado 2,85 euros y por 168 km, 13,4 euros. Calcula el precio de un billete para una distancia de 100 km. ¿Cuál es la función que nos indica el precio según los kilómetros recorridos?

$$y = 2.85 + 0.095(x - 57)$$

 $y(100) = 6.94$ euros

La función es: y = 2.85 + 0.095(x - 57) = 0.095x - 2.565

Página 269

35 La dosis de un medicamento es 0,25 g por cada kilo de peso del paciente, hasta un máximo de 15 g. Representa la función *peso del paciente-cantidad de medicamento* y halla su expresión analítica.

$$y = 0.25x$$
 hasta un máximo de 15 g: $0.25x = 15 \rightarrow x = 60$ kg

$$y = \begin{cases} 0.25x & 0 < x < 60 \\ 15 & x \ge 60 \end{cases}$$

36 Los gastos fijos mensuales de una empresa por la fabricación de x televisores son G = 3000 + 25x, en miles de euros, y los ingresos mensuales son $I = 50x - 0.02x^2$, también en miles de euros.

¿Cuántos televisores deben fabricarse para que el beneficio (ingresos menos gastos) sea máximo?

La función Beneficio viene dada por la expresión:

$$B = I - G = 50x - 0.02x^2 - 3000 - 25x = -0.02x^2 + 25x - 3000$$

Se trata de una parábola con las ramas hacia abajo.

El máximo de la función se encuentra en el vértice:

$$x_0 = \frac{-b}{2a} = \frac{-25}{-0.04} = 625$$

El beneficio máximo se obtendrá para 625 televisores.

Midiendo la temperaura a diferentes alturas, se ha observado que por cada 180 m de ascenso el termómetro baja 1 °C.

Si en la base de una montaña de 800 m estamos a 10 °C, ¿cuál será la temperatura en la cima?

Representa gráficamente la función altura-temperatura y busca su expresión analítica.

Haz una tabla de valores y represéntala.

$$T(h) = 10 - \frac{h}{180}$$
; $T(800) = 5,56$ °C

- Una pelota es lanzada verticalmente hacia arriba desde lo alto de un edificio. La altura que alcanza viene dada por la fórmula $b = 80 + 64t - 16t^2$ (t en segundos y b en metros).
 - a) Dibuja la gráfica en el intervalo [0, 5].
 - b) Halla la altura del edificio.
 - c) ¿En qué instante alcanza su máxima altura?

- b) 80 metros.
- c) 2 segundos.
- 39 El precio de venta de un artículo viene dado por la expresión p = 12 0.01x (x = número de artículos fabricados; <math>p = precio, en cientos de euros).
 - a) Si se fabrican y se venden 500 artículos, ¿cuáles serán los ingresos obtenidos?
 - b) Representa la función Nº de artículos-Ingresos.
 - c) ¿Cuántos artículos se deben fabricar para que los ingresos sean máximos?
 - a) Si se venden 500 artículos, su precio será:

$$12 - 0.01 \cdot 500 = 7$$
 cientos de euros → Ingresos = 350 000 €

$$I(x) = p \cdot x = 12x - 0.01x^2$$

- c) Deben fabricar 600 artículos para obtener los ingresos máximos (360 000 euros).
- 40 Un fabricante vende mensualmente 100 electrodomésticos a 400 euros cada uno y sabe que por cada 10 euros de subida venderá 2 electrodomésticos menos.
 - a) ¿Cuáles serán los ingresos si sube los precios 50 euros?
 - b) Escribe la función que relaciona la subida de precio con los ingresos mensuales.
 - c) ¿Cuál debe ser la subida para que los ingresos sean máximos?

a) En este caso vendería 90 electrodomésticos a 450 euros cada uno; luego los ingresos serían de $450 \cdot 90 = 40\,500$ euros.

b)
$$I(x) = (400 + 10x) (100 - 2x) = -20x^2 + 200x + 40000$$

($x =$ decenas de euros)

c) El máximo se alcanza en el vértice de la parábola:

$$x = \frac{-b}{2a} = \frac{-200}{-40} = 5 \rightarrow 50 \text{ euros}$$

- a) Escribe la función que nos da el beneficio total si se venden las x unidades producidas.
- b) Halla el número de unidades que deben venderse para que el beneficio sea máximo.
- Los ingresos por la venta de x unidades son x(50-x/4) euros.

a)
$$B(x) = 50x - \frac{x^2}{4} - \left(\frac{1}{4}x^2 + 35x + 25\right) = -\frac{x^2}{2} + 15x - 25$$

b) El máximo se alcanza en el vértice de la parábola: $x = \frac{-15}{-1} = 15$ Deben venderse 15 unidades.

b)
$$f(x) = \begin{cases} x^2 & \text{si } x \le 2\\ 4 & \text{si } x > 2 \end{cases}$$

43 Representa la función y = |x-5| y comprueba que su expresión analítica en intervalos es:

$$y = \begin{cases} -x + 5 & \text{si } x < 5 \\ x - 5 & \text{si } x \ge 5 \end{cases}$$

44 Representa las siguientes funciones y definelas por intervalos:

a)
$$y = |4 - x|$$

b)
$$y = |x - 3|$$

a)
$$y = \begin{cases} 4 - x & \text{si } x < 4 \\ -4 + x & \text{si } x \ge 4 \end{cases}$$

b)
$$y = \begin{cases} -x + 3 & \text{si } x < 3 \\ x - 3 & \text{si } x \ge 3 \end{cases}$$

45 Representa las siguientes funciones:

$$a) y = \frac{1}{x+1}$$

b)
$$y = \frac{1}{x-1}$$

c)
$$y = \frac{-1}{x}$$

46 Representa las siguientes funciones:

a)
$$y = \sqrt{x-1}$$

b)
$$y = -\sqrt{x+3}$$

c)
$$y = 2 + \sqrt{x}$$

d)
$$y = 1 - \sqrt{x}$$

Elena va a visitar a su amiga Ana y tarda 20 minutos en llegar a su casa, que está a 1 km de distancia. Está allí media hora y en el camino de vuelta emplea el mismo tiempo que en el de ida.

a) Representa la función tiempo-distancia.

b) Busca su expresión analítica.

a) distancia a su casa (km)

si
$$0 \le x \le 20$$

b) $f(x) = \begin{cases} (1/20)x & \text{si } 0 \le x \le 20\\ 1 & \text{si } 20 < x \le 50\\ -1/20(x - 70) & \text{si } 50 < x \le 70 \end{cases}$

si
$$20 < x \le 50$$

TIEMPO (min)

Página 270

48 Representa y define como funciones "a trozos":

a)
$$y = \left| \frac{x-3}{2} \right|$$

b)
$$y = |3x + 6|$$

c)
$$y = \left| \frac{2x - 1}{3} \right|$$

d)
$$y = |-x - 1|$$

 ■ Mira el ejercicio resuelto número 6.

a)
$$y = \begin{cases} -\frac{x-3}{2} & \text{si } x < 3 \\ \frac{x-3}{2} & \text{si } x \ge 3 \end{cases}$$
 b) $y = \begin{cases} -3x-6 & \text{si } x < -2 \\ 3x+6 & \text{si } x \ge -2 \end{cases}$

b)
$$y = \begin{cases} -3x - 6 & \text{si } x < -2 \\ 3x + 6 & \text{si } x \ge -2 \end{cases}$$

c)
$$y =\begin{cases} \frac{-2x+1}{3} & \text{si } x < \frac{1}{2} \\ \frac{2x-1}{3} & \text{si } x \ge \frac{1}{2} \end{cases}$$
 d) $y =\begin{cases} -x-1 & \text{si } x < -1 \\ x+1 & \text{si } x \ge -1 \end{cases}$

d)
$$y = \begin{cases} -x - 1 & \text{si } x < -1 \\ x + 1 & \text{si } x \ge -1 \end{cases}$$

Utilizando la relación $\frac{\text{Dividendo}}{\text{divisor}}$ = cociente + $\frac{\text{resto}}{\text{divisor}}$ podemos escribir la función $y = \frac{2x+3}{x+1}$ de esta forma:

$$y = 2 + \frac{1}{x+1}$$

Comprueba que su gráfica coincide con la de y = 1/x trasladada 1 unidad hacia la izquierda y 2 hacia arriba.

$$y = \frac{1}{x}$$

$$y = 2 + \frac{1}{x+1}$$

50 Representa las funciones $y = \frac{3x}{x-1}$, $y = \frac{x-2}{x-4}$ utilizando el procedimiento del problema anterior.

$$y = \frac{3x}{x - 1} = 3 + \frac{3}{x - 1}$$

$$y = \frac{x - 2}{x - 4} = 1 + \frac{2}{x - 4}$$

Con las funciones f(x) = x - 5, $g(x) = \sqrt{x}$, $h(x) = \frac{1}{x + 2}$, hemos obtenido, por composición, estas otras:

$$p(x) = \sqrt{x-5}$$

$$q(x) = \sqrt{x} - 5$$

$$p(x) = \sqrt{x-5}$$
 $q(x) = \sqrt{x} - 5$ $r(x) = \frac{1}{\sqrt{x+2}}$

Explica cómo, a partir de f, g y h, se pueden obtener p, q y r.

$$p = g \circ f$$
 $q = f \circ g$ $r = h \circ g$

$$q = f \circ g$$

$$r = h \circ g$$

52 Representa las funciones:

a)
$$y = 2^x + 1$$

b)
$$y = 2^x - 3$$

• Utiliza la gráfica de $y = 2^x$.

Representa las siguientes funciones:

a)
$$y = 2^{x-1}$$

b)
$$y = \left(\frac{1}{2}\right)^{x+3}$$

c)
$$y = 1 - 2^x$$

d)
$$y = 2^{-x}$$

54 De la función exponencial $f(x) = ka^x$ conocemos f(0) = 5 y f(3) = 40. ¿Cuánto valen k y a?

$$f(0) = 5 \rightarrow 5 = k$$

$$f(3) = 40 \rightarrow 40 = 5 \cdot a^3 \rightarrow a = 2$$

La función es $f(x) = 5 \cdot 2^x$

55 Halla la función inversa de las siguientes funciones:

a)
$$y = 3 \cdot 2^{x-1}$$

b)
$$y = 1 + 3^x$$

a)
$$x = 3 \cdot 2^{y-1}$$
; $\frac{x}{3} = 2^{y-1}$; $\log_2 \frac{x}{3} = y - 1$

$$y = 1 + \log_2 \frac{x}{3} \rightarrow f^{-1}(x) = 1 + \log_2 \frac{x}{3}$$

b)
$$x = 1 + 3^y$$
; $x - 1 = 3^y$; $\log_3(x - 1) = y \rightarrow f^{-1}(x) = \log_3(x - 1)$

56 Estas gráficas corresponden a funciones del tipo $y = a^x$, $y = log_a x$. Identifícalas e indica, en cada caso, si es a > 1 o 0 < a < 1.

1)
$$y = log_a x$$
, $0 < a < 1$

2)
$$y = a^x$$
, $0 < a < 1$

3)
$$y = log_a x$$
, $a > 1$

4)
$$y = a^x$$
, $a > 1$

Representa estas funciones a partir de la gráfica de $y = log_2 x$:

a)
$$y = 1 + log_2 x$$

b)
$$y = log_2(x-1)$$

• En b), el dominio es $(1, +\infty)$.

a)
$$y = 1 + log_2 x$$

b)
$$y = log_2 (x - 1)$$

58 ¿Cuál es el dominio de esta función?: $y = log_2(2-x)$. Represéntala.

Dominio: $(-\infty, 2)$

La gráfica de una función exponencial del tipo $y = ka^x$ pasa por los puntos (0; 0.5) y (1; 1.7).

- a) Calcula k y a.
- b) Representa la función.

a)
$$\begin{pmatrix} 0.5 = k \cdot a^0 \\ 1.7 = k \cdot a^1 \end{pmatrix}$$
 $\begin{pmatrix} 0.5 = k \\ 1.7 = k \cdot a \end{pmatrix}$ $\begin{pmatrix} k = 0.5 \\ a = 3.4 \end{pmatrix}$

La función es $y = 0.5 \cdot (3.4)^x$

60 Se llama inflación a la pérdida de valor del dinero; es decir, si un artículo que costó 100 euros al cabo de un año cuesta 106 euros, la inflación ha sido del 6%.

Suponiendo que la inflación se mantiene constante en el 6% anual, ¿cuánto costará dentro de 7 años un terreno que hoy cuesta cinco mil euros?

Para un capital C y una inflación del 6% durante x años, el valor de ese capital será:

$$C' = C \cdot (1,06)^x$$

Para x = 7 años y C = 5000 euros:

$$C' = 5000 \cdot (1,06)^7 = 7518$$
 euros

Página 271

- 61 En el contrato de trabajo de un empleado figura que su sueldo subirá un 6% anual.
 - a) Si empieza ganando 10 000 euros anuales, ¿cuánto ganará dentro de 10 años?
 - b) Calcula cuánto tiempo tardará en duplicarse su sueldo.
 - a) $10\,000 \cdot (1,06)^{10} \approx 17\,908,48$ euros
 - b) $1.06^x = 2 \rightarrow x \approx 12$ años tardará en duplicarse.

62 Utiliza la calculadora en radianes para obtener el valor de y en cada una de estas expresiones:

a)
$$y = arc sen 0.8$$

b)
$$y = arc sen (-0.9)$$

c)
$$y = arc \cos 0.36$$

d)
$$y = arc \cos(-0.75)$$

e)
$$y = arc \ tg \ 3.5$$

f)
$$y = arc tg(-7)$$

a)
$$0.93 \ rad \rightarrow 53^{\circ} \ 7' \ 48"$$

b)
$$-1.12 \ rad \rightarrow -64^{\circ} \ 9' \ 29''$$

c) 1,20
$$rad \rightarrow 68^{\circ} 53' 59''$$

d) 2,42
$$rad \rightarrow 138^{\circ} 35^{\circ} 25^{\circ}$$

e) 1,29
$$rad \rightarrow 74^{\circ} 3' 17"$$

f)
$$-1.43 \ rad \rightarrow -81^{\circ} \ 52' \ 11''$$

Obtén el valor de estas expresiones en grados, sin usar la calculadora:

a)
$$y = arc sen \frac{\sqrt{3}}{2}$$

b)
$$y = arc \cos \frac{1}{2}$$

c)
$$y = arc tg 1$$

d)
$$y = arc sen (-1)$$

e)
$$y = arc \cos\left(-\frac{1}{2}\right)$$

f)
$$y = arc tg \sqrt{3}$$

64 Calcula x en las siguientes expresiones:

a)
$$arc sen x = 45^{\circ}$$

b)
$$arc \cos x = 30^{\circ}$$

c) arc tg
$$x = -72^{\circ}$$

d) arc sen
$$x = 75^{\circ}$$

e)
$$arc \cos x = \frac{\pi}{3} \text{ rad}$$

f)
$$arc tg x = 1.5 rad$$

a)
$$\frac{\sqrt{2}}{2}$$

b)
$$\frac{\sqrt{3}}{2}$$

$$c) -3,078$$

e)
$$\frac{1}{2}$$

CUESTIONES TEÓRICAS

65 Si $f(x) = 2^x$ y $g(x) = log_2 x$, ¿cuál es la función $(f \circ g)(x)$? ¿Y $(g \circ f)(x)$?

$$(f \circ g)(x) = (g \circ f)(x) = x$$

Dada la función $f(x) = 1 + \sqrt{x}$, halla $f^{-1}(x)$. Representa las dos funciones y comprueba su simetría respecto de la bisectriz del 1er cuadrante.

$$f^{-1}(x) = (x-1)^2, x \ge 1$$

- 67 Dada la función $y = a^x$, contesta:
 - a) ¿Puede ser negativa la y? ¿Y la x?
 - b) ¿Para qué valores de a es creciente?
 - c) ¿Cuál es el punto por el que pasan todas las funciones del tipo $y = a^x$?
 - d) ¿Para qué valores de x se verifica $0 < a^x < 1$ siendo a > 1?
 - a) La y no puede ser negativa, la x sí.
 - b) a > 1
 - c)(0, 1)
 - d) Para x < 0.
- Una parábola corta al eje de abscisas en x = 1 y en x = 3. La ordenada del vértice es y = -4. ¿Cuál es la ecuación de esa parábola?

$$y = k(x-1)(x-3) = k(x^2 - 4x + 3)$$

Vértice
$$\rightarrow x = \frac{4}{2} = 2 \rightarrow y(2) = -k = -4 \rightarrow k = 4$$

La ecuación es:
$$y = 4(x^2 - 4x + 3) = 4x^2 - 16x + 12$$

PARA PROFUNDIZAR

69 Halla el dominio de definición de las siguientes funciones:

$$a) y = \sqrt{\frac{x+3}{x-2}}$$

a)
$$y = \sqrt{\frac{x+3}{x-2}}$$
 b) $y = \sqrt{\frac{x-9}{x}}$

a)
$$\frac{x+3}{x-2} \ge 0$$

$$\begin{cases} x+3 \ge 0 \\ x-2 > 0 \end{cases} x > 2$$

$$\begin{cases} x+3 \le 0 \\ x-2 < 0 \end{cases} x \le -3$$
Dominio = $(-\infty, -3] \cup (2, +\infty)$

Dominio =
$$(-\infty, -3] \bigcup (2, +\infty)$$

b)
$$\frac{x-9}{x} \ge 0$$

$$\begin{cases} x-9 \ge 0 \\ x>0 \end{cases} x \ge 9$$

$$\begin{cases} x-9 \le 0 \\ x>0 \end{cases} x < 0$$
Dominio = $(-\infty, 0) \cup [9, +\infty)$

Dominio =
$$(-\infty, 0) \bigcup [9, +\infty)$$

70 Representa y define como funciones "a trozos":

a)
$$y = |x^2 - 4|$$

b)
$$y = |x^2 - 2x - 4|$$

c)
$$y = \left| -\frac{x^2}{2} + 2 \right|$$

d)
$$y = |x^2 + 2x - 2|$$

a)
$$y = \begin{cases} x^2 - 4 & \text{si } x < -2 \\ -x^2 + 4 & \text{si } -2 \le x \le 2 \\ x^2 - 4 & \text{si } x > 2 \end{cases}$$

a)
$$y = \begin{cases} x^2 - 4 & \text{si } x < -2 \\ -x^2 + 4 & \text{si } -2 \le x \le 2 \\ x^2 - 4 & \text{si } x > 2 \end{cases}$$
 b) $y = \begin{cases} x^2 - 2x - 4 & \text{si } x < -1, 2 \\ -x^2 + 2x + 4 & \text{si } -1, 2 \le x \le 3, 2 \\ x^2 - 2x - 4 & \text{si } x > 3, 2 \end{cases}$

c)
$$y = \begin{cases} (x^2/2) - 2 & \text{si } x < -2\\ (-x^2/2) + 2 & \text{si } -2 \le x \le 2\\ (x^2/2) - 2 & \text{si } x > 2 \end{cases}$$

71 Representa estas funciones y exprésalas en intervalos:

a)
$$y = 1 - |x|$$

b)
$$y = |x-1| - |x|$$

a)
$$y = \begin{cases} 1 - x & \text{si } x \ge 0 \\ 1 + x & \text{si } x < 0 \end{cases}$$

a)
$$y = \begin{cases} 1 - x & \text{si } x \ge 0 \\ 1 + x & \text{si } x < 0 \end{cases}$$
 b) $y = \begin{cases} 1 & \text{si } x \le 0 \\ 1 - 2x & \text{si } 0 < x < 1 \\ -1 & \text{si } x \ge 1 \end{cases}$

72 Las tarifas de una empresa de transportes son:

- 40 euros por tonelada de carga si esta es menor o igual a 20 t.
- Si la carga es mayor que 20 t, se restará, de los 40 euros, tantos euros como toneladas sobrepasen las 20.
- a) Dibuja la función ingresos de la empresa según la carga que transporte (carga máxima: 30 t).
- b) Obtén la expresión analítica.

b)
$$f(x) = \begin{cases} 40x & \text{si } 0 \le x \le 20\\ [40 - (x - 20)]x & \text{si } 20 < x \le 30 \end{cases}$$

Es decir:

$$f(x) = \begin{cases} 40x & \text{si } 0 \le x \le 20\\ 60x - x^2 & \text{si } 20 < x \le 30 \end{cases}$$

PARA PENSAR UN POCO MÁS

73 En una piscina hay un trampolín a 8 m del agua. Un nadador se lanza tomando impulso y elevándose 1 m antes de empezar a caer. El nadador alcanza el agua a 8 m del borde del trampolín.

- a) Si tomamos como origen de coordenadas la proyección del extremo del trampolín sobre el agua y el vértice de la parábola es (a, b), ¿cuánto vale b?
- b) La ecuación del movimiento es $y = k(x \alpha)^2 + 9$. Justificala y halla $k = y + \alpha$.
- a) b = 8 + 1 = 9
- b) El vértice es $(\alpha, 9)$, por eso la ecuación es $y = k(x \alpha)^2 + 9$.

Como
$$y(0) = 8 \rightarrow 8 = k \alpha^2 + 9$$

Como $y(8) = 0 \rightarrow 0 = k(8 - \alpha)^2 + 9$ $\begin{cases} k = -1/\alpha^2 \\ k = -9/(8 - \alpha)^2 \end{cases}$

$$-\frac{1}{\alpha^2} = \frac{-9}{(8-\alpha)^2} \to (8-\alpha)^2 = 9\alpha^2 \to 8\alpha^2 + 16\alpha - 64 = 0$$

$$\alpha^2 + 2\alpha - 8 = 0 \rightarrow \alpha = 2 \rightarrow k = -1/4$$
(vemos por la gráfica que no vale)

La ecuación será, por tanto:

$$y = -\frac{1}{4}(x-2)^2 + 9$$