Adopted Levels, Gammas

History							
Type	Author	Citation	Literature Cutoff Date				
Full Evaluation	Ninel Nica, John Cameron and Balraj Singh	NDS 113,1 (2012)	31-Dec-2011				

 $Q(\beta^{-})=-1142.11 \ 19$; $S(n)=9889.22 \ 19$; $S(p)=13095.3 \ 19$; $Q(\alpha)=-9011.3 \ 4 \ 2012Wa38$

Note: Current evaluation has used the following Q record -1142.14 19 9889.2719 13095.319-9011.3635 2011AuZZ

S(2n)=16875.10 19, S(2p)=25285 14 (2011AuZZ).

Values in 2003Au03: $Q(\beta^-)=-1142.22$ 19, S(n)=9889.04 21, $Q(\alpha)=-9008.08$ 22, S(2n)=16874.92 22. S(p) and S(2p) are the same as in 2011AuZZ.

Identification of ³⁶S in mass spectrometer studies by A.O. Nier: Phys. Rev. 53, 282 (1938); measured ratio of ³⁶S to ³²S.

1971Ar32: production of ³⁶S in ²³²Th(⁴⁰Ar,X) at 290 MeV fragmentation reaction.

1983Ry04: 36 S(e,e) E=120, 240, 320 MeV. Measured $\sigma(\theta)$, deduced charge radius.

1985Gy02, 1985GyZZ: 36 S(π-,π-) E=48.4 MeV, measured $\sigma(\theta)$.

1985Ko43: ²⁰Ne(¹⁶O, ¹⁶O') E(c.m.)=24.5-35.5 MeV, deduced resonances.

1985Sc05: measured muonic atom x rays, deduced rms charge radii. Observed muonic x-ray energies: 515.985 14 (2p -> 1s),

616.28 8 (3p -> 1s), 651.30 10 (4p -> 1s), 667.63 12 (5p -> 1s).

1997Is02: 37 Cl(γ ,p) E \leq 32 MeV, measured E γ , I γ . GDR features deduced.

 $^{36}P \beta^{-} decay (5.6 s)$

 $^{34}S(t,p)$

C

 36 Cl ε decay (3.01×10⁵ y)

1999Ai02: Si(³⁶S,X) E=46.17 MeV/nucleon, measured energy integrated cross sections, deduced radius.

Additional information 1.

³⁶S Levels

Cross Reference (XREF) Flags

 $^{37}Cl(n,d)$

 37 Cl(d, 3 He)

H

Coulomb excitation M

 115 In(34 S,X γ)

 160 Gd(37 Cl,X γ)

 160 Gd(36 S, 36 S' γ),(34 S, 36 S' γ)

			$p'),(\alpha,\alpha')$	J ${}^{37}\text{Cl}({}^{36}\text{S}, {}^{36}\text{S}')$ P ${}^{176}\text{Yb}({}^{36}\text{S}, X)$:tentative K ${}^{40}\text{Ar}(\gamma, \alpha)$ L ${}^{40}\text{Ar}({}^{3}\text{He}, {}^{7}\text{Be})$
E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
0	0+	stable	ABCDEFGHI JKLMNOP	J^{π} : spin measurement by microwave spectroscopy (1949Lo21). Nuclear rms charge radius=3.2982 fm 21 (2004An14 evaluation); 3.2985 fm 24 from 2008 update of 2004An14. Mean radius r_0^2 =1.26 fm ² 10 from measured integrated σ_R =2.44 b 19 at 46.17 MeV/nucleon in Si(36 S,X) reaction (1999Ai02).
3290.9 3	2+	83 fs 7	A CDEFG IJk MNOP	μ =+2.6 10 (2008Sp01) $T_{1/2}$: from DSA in Coul. Ex. (2008Sp01). Other: 76 fs 21 (1972Sa09), also given in 2001Ra27 evaluation. J^{π} : E2 γ to 0 ⁺ . μ : transient field technique in Coulomb excitation in inverse kinematic reaction, g factor=+1.3 5 (2008Sp01).
3346 <i>4</i>	0_{+}	8.8 ns 2	CDE G I k	J^{π} : E0 transition to 0^{+} .
4192.7 5	3-	0.62 ps 7	A CDEFG J MNOP	μ =+2.4 15 (2008Sp01) B(E3)=0.008 3 (2002Ki06 evaluation), from β_3 in (p,p') (1990Ho19). T _{1/2} : from DSA in Coul. Ex. (2008Sp01). Other: 0.8 ps +4-3 (DSA in (t,p γ) (1972Sa09). μ : transient field technique in Coulomb excitation in inverse kinematic reaction, g factor=+0.8 5 (2008Sp01).
4523.0 <i>6</i>	1+	0.017 ps 8	CDE G I k	
4575.2 <i>7</i>	2+	55 fs <i>10</i>	A CDE G I k	
5021.5 <i>3</i>	4^{-}		A E MNOP	XREF: P(?).
5206.1 <i>3</i>	5-		$A E \qquad \qquad M OP$	XREF: P(?).
5251.2 <i>10</i>	3-	70 fs <i>30</i>	A CDE N	J^{π} : log ft=5.57 from 4 ⁻ ; γ to 2 ⁺ .

Adopted Levels, Gammas (continued)

³⁶S Levels (continued)

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	$T_{1/2}^{\#}$	X	KREF	Comments
5338 <i>3</i> 5391.4 9	2+	>0.2 ps	E CDE		XREF: E(5379). $T_{1/2}$: additional limit: <30 ns.
5462 <i>3</i> 5509.1 <i>5</i>	3 ⁺ (2,4)	0.19 ps 4	E CDE		XREF: E(5514). J ^{π} : 4 ⁻ proposed in (p,p'),(α , α ').
5573.1 <i>7</i> 5781.1 <i>10</i>	1-	<0.14 ps	CDE	M	
5830.9 <i>7</i> 6186.9 <i>8</i>	3 ⁻ 3 ⁻	55 fs 20	A E		XREF: E(5837). J^{π} : log ft =4.66 from 4^- ; γ to 2^+ . XREF: E(6180).
6225.2 <i>10</i> 6350 <i>3</i>	2+	<20 fs	DE E		XREF: E(6220).
6472 <i>3</i> 6514.4 <i>4</i> 6553 <i>3</i>	1 ⁻ 4 ⁺	<0.2 ps	A CDE E	I	XREF: E(6510).
6690 7120 <i>14</i> 7271.9 <i>3</i> 7710 <i>25</i>	(6^+) $(1,2)^+$ $(3^-,4^-,5^-)$	<0.2 ps	CD A	I I	J^{π} : log $ft=4.62$ from 4^{-} .

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	δ	Comments
3290.9	2+	3290.8 <i>6</i>	100	0 0+	E2		B(E2)(W.u.)=2.83 24
3346	0+	3346		0 0+	E0		Decay takes place by pair formation.
4192.7	3-	901.5 4	100	3290.9 2 ⁺	E1(+M2)	+0.03 3	B(E1)(W.u.)=0.00135 15
4523.0	1+	1232.1 4	33 13	3290.9 2+	,		()()
		4522.2 15	100 <i>13</i>	$0 0^{+}$	M1		B(M1)(W.u.)=0.0105
4575.2	2+	1284.2	100	3290.9 2+	M1(+E2)	+0.06 6	B(M1)(W.u.)=0.19 4
5021.5	4-	828.8	100 2	4192.7 3-	M1		
		1730.6	3 2	3290.9 2+			
5206.1	5-	184.6	100.0 23	5021.5 4-	D		
		1013.4	26.8 18	$4192.7 \ 3^{-}$	Q		
5251.2	3-	680		4575.2 2 ⁺			
		1059.6 <i>4</i>	43 11	$4192.7 \ 3^{-}$			
		1961.0 <i>4</i>	100 11	3290.9 2+	D+Q		
5391.4	2+	816.2 <i>4</i>	18 9	$4575.2 \ 2^{+}$			
		5391.0	100 9	$0 0^{+}$			
5509.1	(2,4)	1316.8 <i>4</i>	52 12	4192.7 3-			
		2217.7 <i>3</i>	100 12	3290.9 2 ⁺	D+Q		
5573.1	1-	2282.1 <i>3</i>	100	3290.9 2+			
5781.1		760.4	100	5021.5 4			
5830.9	3-	579.7	1.1 4	5251.2 3-			
		809.4	15.2 9	5021.5 4			
		1255.7	12.7 9	$4575.2 \ 2^{+}$			
		1638.2	100 <i>3</i>	$4192.7 \ 3^{-}$			
		2539.9	49.3 23	3290.9 2+			
6186.9	3-	1994.8 <i>4</i>	33 11	4192.7 3-			

[†] From least-squares fit to Eγ data, assuming 0.3 keV uncertainty for each Eγ. [‡] Mainly from $\gamma\gamma(\theta)$ and lin pol data in $(t,p\gamma)$ and from comparison of $\sigma(\theta)$ data in $(p,p'),(\alpha,\alpha')$ to DWBA calculations. [#] From DSA in $(t,p\gamma)$, unless otherwise stated.

Adopted Levels, Gammas (continued)

$\gamma(^{36}S)$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$
6186.9	3-	2894.8 <i>5</i>	100 11	3290.9 2+
6225.2	2+	1649.2 5	100 13	4575.2 2+
		2933.0 10	32 <i>13</i>	3290.9 2+
6514.4	4+	2321.6 [†]	100	4192.7 3-
6690	(6^+)	1485	100	5206.1 5
7120	$(1,2)^+$	2550	28 7	4575.2 2+
		3830	11 7	3290.9 2+
		7120	100 7	$0 0_{+}$
7271.9	$(3^-,4^-,5^-)$	757.5	32 5	6514.4 4+
		1441.0	12 5	5830.9 3-
		2020.6	100 7	5251.2 3-
		2065.7	15 5	5206.1 5
		2250.3	32 5	5021.5 4
		3079.1	54 12	4192.7 3

 $[\]rm E_{\gamma}, I_{\gamma}$: from $^{36}\rm P$ β^- decay (1986Du07); in (t,pγ), 1971Ol02 assign 3290.9 level as final state for single transition from 6514.4 level. For this γ ray, E γ =3223.3 and δ =-0.03 3.

Comments

 $^{^{\}dagger}$ Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

