Untitled

Jamie Ash

2022-12-09

Question 1. Prove each of the following. I each case, you should create a bijection between the two sets.Briefly justify that your function are in fact bijections.

(a)
$$|\{\heartsuit, \clubsuit, \spadesuit\}| = |\{\circ, \Box, \triangle\}|$$

Informal proof Let $A = \{\heartsuit, \clubsuit, \spadesuit\}$ and $B = \{\circ, \Box, \triangle\}$ and the function $f : A \to B$ be $f = \{(\heartsuit, \circ), (\clubsuit, \Box), (\spadesuit, \triangle)\}$. f is a bijection from A to B, so then $|\{\heartsuit, \clubsuit, \spadesuit\}| = |\{\circ, \Box, \triangle\}|$. f is injective because every element in A maps to a unique element in B. f is a surjection because every element in B is mapped to an element in A. f's surgective and injectivenes can be easily seen because A and B are finite and small. \blacksquare .

(b) $|\mathbb{N}| = |\{oddnatural numbers\}|$

Informal proof Let O be the set of odd numbers. Then $f: \mathbb{N} \to O$ as f(n) = 2n + 1, where $n \in \mathbb{N}$, is a bijection. f is a injection because every element in \mathbb{N} maps to a unique element in O. That is all of \mathbb{N} are in the domain of f, and f is increasing so order is preserved, and each output is unique. f is a surjection because every element in O maps to an element in \mathbb{B} , through the inverse function n = (o-1)/2 where $o \in O$. This is further evidence that f(n) = 2n + 1 is a bijection, because it's inverse is also a function.

(c) $|A \times \{1\}| = |A|$, where A is any set.

Informal proof The set $A \times \{1\}$ looks like... $A \times \{1\} = \{(a_1, 1), (a_2, 1), (a_3, 1)...(a_i, 1)\}$ where a_i is the *i*'th element in $A \times \{1\}$. The projection of $A \times \{1\}$ onto it's first element is a bijection from $A \times \{1\} \to A$. Writen as f(a, 1) = a. f is an injection because f accepts the set $A \times \{1\}$, and outputs the set A. We know the elements output by f are unique because all elements in A are unique (no repeating elements in a set). It is a surjection because all elements of A are mapped to an element of $A \times \{1\}$.

Question 2. Let F denote the set of all functions from \mathbb{N} to $\{0,1\}$.

(a) Describe at least three functions in the set F.

 $f: \mathbb{N} \to \{0,1\}$ where f(x) = x * 0, or $f(x) = x^0$, or $f(x) = \{$ if x is even assign a 1, if x is odd assign a 0 $\}$.

(b) Prove that $|\mathcal{F}| = |P(\mathbb{N})|$.

Proof We proceed by proof of equivalent cases (not sure if that's a thing). First I will show that $|F| = 2^{|\mathbb{N}|}$. Then I will show that $|P(\mathbb{N})| = 2^{|\mathbb{N}|}$

case 1. By the definition of equal functions, for each element $n \in \mathbb{N}$ there are only two possible functions that can send $n \to \{0,1\}$. So then given the multiplicatory rule of combinitorics (pg. 69 of textbook), there are $2^{|\mathbb{N}|}$ functions that can send $\mathbb{N} \to \{0,1\}$. Thus $|F| = 2^{|\mathbb{N}|}$.

case 2. In class we showed that $|P(\mathbb{N})| = 2^{|\mathbb{N}|}$.

Therefore $|P(\mathbb{N})| = 2^{|\mathbb{N}|} = |F|$, meaning $|P(\mathbb{N})| = |F|$.

Question 3. Let X be a set. Prove that "it has the same cardinality as" is an equivalence relation on P(X).

Question 4. Prove or disprove: The set $\{a_1, a_2, a_3...a_i : a \in \mathbb{Z}\}$ of infinite sequence of integers is countably infinite.

Proof We show there exists a bijection $f: \mathbb{N} \to \{a_1, a_2, a_3...a_i : a \in \mathbb{Z}\}$, so that $\{a_1, a_2, a_3...a_i : a \in \mathbb{Z}\}$ is countably infinite.

Let Y be the set $\{a_1, a_2, a_3...a_i : a \in \mathbb{Z}\}$. The following table describe the bijection $f : \mathbb{N} \to Y$. I also show the set of f in set notation.

Set...

$$f = \{(a_1, 1), (a_1, 2), (a_1, 3), (a_1, 4), (a_1, 5)...(a_{\infty}, \infty)\}$$

Table...

```
n = 1:10
a = rep("a", length(n))
z = paste(a, as.character(n), sep = "")
data.frame(n, z)
```

```
##
       n
            z
## 1
           a1
        1
##
       2
           a2
## 3
       3
           a3
## 4
       4
           a4
## 5
       5
           a5
## 6
        6
           a6
## 7
       7
           a7
## 8
       8
           a8
## 9
       9
           a9
## 10 10 a10
```

f is both surgective and injective. Every integer appears once in the column "z" or in the first coordinate of f. So, given any integer $b \in \mathbb{Z}$, there is some natural number n such that f(n) = b, so f is surgective. f is injective because the way the data frame is constructed it forces $f(m) \neq f(n)$ when $m, n \in \mathbb{N}$ and $m \neq n$. From this bijection we find $|\mathbb{N}| = |Y|$, therefore Y is countably infinite. Y being the set $\{a_1, a_2, a_3...a_i : a \in \mathbb{Z}\}$.

Question 5: Prove that A and B are finite sets with |A| = |B|, then any injection $f : A \to B$ is also a surjection. Show this is not necessarily true if A and B are not finite.

Direct proof!!! (p.s. I do not have all my direct proof check marks)...

Suppose that A and B are finite sets with |A| = |B|.

Then the number of injective functions that can be made from A to B $f: A \to B$, is described using the binomial function $\binom{|B|}{|A|}$. Similarly, the number of bijective functions from $A \to B$ is given by $\binom{|A|}{|B|}$.

Since A and B are of equal cardinality, then $\binom{|B|}{|A|} = \binom{|A|}{|B|}$.

Thus the number of injective relationships equals the number of bijective relationships.

This means all injective functions between A and B are surjective.

Therefore any injection, $f: A \to B$, is also a surjection.

*Note: When describing the number of bijective functions as $\binom{|A|}{|B|}$, if |A| < |B| then $\binom{|A|}{|B|} = 0$, which agrees with the pigeon hole principle that if |A| < |B| then there is no surjective function from A to B, and thus no bijective function from A to B.

This is not necessarily true if A and B are not finite.