Beta Distribution

Meesum Qazalbash

December 8, 2023

1 PDF

$$f_X(x \mid \alpha, \beta) = \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{\mathcal{Z}}, \ x \in [0, 1], \ \alpha, \beta > 0$$
 (1)

The normalization constant \mathcal{Z} will be,

$$\mathcal{Z} = \int_0^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx = \frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha + \beta)} = B(\alpha, \beta)$$
 (2)

$\mathbf{2}$ CDF

$$F_X(x \mid \alpha, \beta) = \int_0^x \frac{t^{\alpha - 1} (1 - t)^{\beta - 1}}{B(\alpha, \beta)} dt$$

$$= \frac{1}{B(\alpha, \beta)} \int_0^x t^{\alpha - 1} (1 - t)^{\beta - 1} dt$$
(4)

$$= \frac{1}{B(\alpha, \beta)} \int_0^x t^{\alpha - 1} (1 - t)^{\beta - 1} dt$$
 (4)

$$=\frac{B(x;\alpha,\beta)}{B(\alpha,\beta)}\tag{5}$$

$$=I_x(\alpha,\beta) \tag{6}$$

Where, $B(x; \alpha, \beta)$ is the incomplete beta function and $I_x(\alpha, \beta)$ is the regularized incomplete beta function.

3 **Inverse CDF**

$$F_X^{-1}(x \mid \alpha, \beta) = I_x^{-1}(\alpha, \beta) \tag{7}$$

$f_X(x)$	$\frac{x^{\alpha-1}(1-x)^{\beta-1}}{\mathcal{Z}}$	$\log(f_X(x))$	$(\alpha - 1)\log(x) + (\beta - 1)\log(1 - x) - \log(\mathcal{Z})$
$\mathcal{Z}(eta)$	$B(\alpha, \beta)$	$\log (\mathcal{Z}(\beta))$	$\log\left(B(\alpha,\beta)\right)$
$F_X(x)$	$I_x(\alpha,\beta)$	$\log\left(F_X(x)\right)$	$\log\left(I_x(\alpha,\beta)\right)$
$F_X^{-1}(x)$	$I_x^{-1}(\alpha,\beta)$	$\log\left(F_X^{-1}(x)\right)$	$I_x^{-1}(\alpha,\beta)$