Advanced Machine Learning

Imbalanced Learning: Performance Measures

- Know performance measures beyond accuracy
- Know their advantages over accuracy for imbalanced data
- Know extensions of these measures for multiclass settings

RECAP: PERFORMANCE MEASURES FOR BINARY CLASSIFICATION

- In binary classification ($\mathcal{Y} = \{-1, +1\}$):

		True Class y		
		+	-	
Classification	+	TP	FP	$ \rho_{PPV} = \frac{\text{\#TP}}{\text{\#TP} + \text{\#FP}} $
ŷ	_	FN	TN	$\rho_{NPV} = \frac{\#TN}{\#FN + \#TN}$
		$\rho_{TPR} = \frac{\#TP}{\#TP + \#FN}$	$ \rho_{TNR} = \frac{\#TN}{\#FP + \#TN} $	$ \rho_{ACC} = \frac{\text{\#TP+\#TN}}{\text{TOTAL}} $

• F_1 score balances Recall (ρ_{TPR}) and Precision (ρ_{PPV}):

$$ho_{F_1} = 2 \cdot rac{
ho_{PPV} \cdot
ho_{TPR}}{
ho_{PPV} +
ho_{TPR}}$$

- Note that ρ_{F_1} does not account for TN.
- Does ρ_{F_1} suffer from data imbalance like accuracy does?

F₁ SCORE IN BINARY CLASSIFICATION

 F_1 is the **harmonic mean** of ρ_{PPV} & ρ_{TPR} . \rightarrow Property of harmonic mean: tends more towards the **lower** of two combined values.

- A model with $\rho_{TPB} = 0$ or $\rho_{PPV} = 0$ has $\rho_{E_1} = 0$.
- Always predicting "negative": $\rho_{TPR} = \rho_{F_1} = 0$
- Always predicting "positive": $\rho_{TPR} = 1 \Rightarrow \rho_{F_1} = 2 \cdot \rho_{PPV} / (\rho_{PPV} + 1) = 2 \cdot n_+ / (n_+ + n),$ \rightsquigarrow small when $n_+ (= TP + FN = TP)$ is small.
- Hence, F₁ score is more robust to data imbalance than accuracy.

F_{β} IN BINARY CLASSIFICATION

- F_1 puts equal weights to $\frac{1}{\rho_{PPV}}$ & $\frac{1}{\rho_{TPR}}$ because $F_1 = \frac{2}{\frac{1}{\rho PPV} + \frac{1}{\rho TPR}}$.
- F_{β} puts β^2 times of weight to $\frac{1}{\alpha_{TRB}}$:

$$F_{\beta} = \frac{1}{\frac{\beta^2}{1+\beta^2} \cdot \frac{1}{\rho_{TPR}} + \frac{1}{1+\beta^2} \cdot \frac{1}{\rho_{PPV}}}$$
$$= (1+\beta^2) \cdot \frac{\rho_{PPV} \cdot \rho_{TPR}}{\beta^2 \rho_{PPV} + \rho_{TPR}}$$

- $\beta \gg 1 \rightsquigarrow F_{\beta} \approx \rho_{TPR}$;
- $\beta \ll 1 \rightsquigarrow F_{\beta} \approx \rho_{PPV}$.

G SCORE AND G MEAN

• G score uses geometric mean:

$$\rho_{\rm G} = \sqrt{\rho_{\rm PPV} \cdot \rho_{\rm TPR}}$$

- Geometric mean tends more towards the lower of the two combined values.
- Geometric mean is larger than harmonic mean.

• Closely related is the G mean:

$$\rho_{\rm Gm} = \sqrt{\rho_{\rm TNR} \cdot \rho_{\rm TPR}}.$$

It also considers TN.

• Always predicting "negative": $\rho_G = \rho_{Gm} = 0 \leadsto \text{Robust to data imbalance!}$

BALANCED ACCURACY

• Balanced accuracy (BAC) balances $\rho_{\it TNR}$ and $\rho_{\it TPR}$:

$$ho_{ extit{BAC}} = rac{
ho_{ extit{TNR}} +
ho_{ extit{TPR}}}{2}$$

- If a classifier attains high accuracy on both classes or the data set is almost balanced, then $\rho_{BAC} \approx \rho_{ACC}$.
- However, if a classifier always predicts "negative" for an imbalanced data set, i.e. $n_+ \ll n_-$, then $\rho_{BAC} \ll \rho_{ACC}$. It also considers TN.

MATTHEWS CORRELATION COEFFICIENT

• Recall: Pearson correlation coefficient (PCC):

$$Corr(X, Y) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$

- View "predicted" and "true" classes as two binary random variables.
- Using entries in confusion matrix to estimate the PCC, we obtain MCC:

$$\rho_{MCC} = \frac{\textit{TP} \cdot \textit{TN} - \textit{FP} \cdot \textit{FN}}{\sqrt{(\textit{TP} + \textit{FN})(\textit{TP} + \textit{FP})(\textit{TN} + \textit{FN})(\textit{TN} + \textit{FP})}}$$

- In contrast to other metrics:
 - MCC uses all entries of the confusion matrix:
 - MCC has value in [-1, 1].

MATTHEWS CORRELATION COEFFICIENT

$$\rho_{MCC} = \frac{\textit{TP} \cdot \textit{TN} - \textit{FP} \cdot \textit{FN}}{\sqrt{(\textit{TP} + \textit{FN})(\textit{TP} + \textit{FP})(\textit{TN} + \textit{FN})(\textit{TN} + \textit{FP})}}$$

• $\rho_{MCC} \approx$ 1 \leadsto nearly zero error \leadsto good classification, i.e., strong correlation between predicted and true classes.

- $\rho_{MCC} \approx -1 \rightsquigarrow$ reversed classification, i.e., switch labels.
- Previous measures requires defining positive class. But MCC does not depend on which class is the positive one.

MULTICLASS CLASSIFICATION

		True Class y				
		1	2		g	
Classification	1	n ₁₁	n ₁₂		n _{1 q}	
		(True 1's)	(False 1's for 2's)		(False 1's for g's)	
	2	n ₂₁	n ₂₂		n_{2g}	
ŷ		(False 2's for 1's)	(True 2's)		(False 2's for g's)	
	:	:	:		:	
	g	n_{q1}	n _{q2}		ngg	
		(False g's for 1's)	(False g's for 2's)		(True g's)	

- n_{ii} : the number of *i* instances classified as *j*.
- $n_i = \sum_{j=1}^g n_{ji}$ the total number of i instances.
- Class-specific metrics:
 - True positive rate (**Recall**): $\rho_{TPR_i} = \frac{n_i}{n_i}$
 - True negative rate $\rho_{TNR_i} = \frac{\sum_{j \neq i} n_{jj}}{n n_i}$
 - Positive predictive value (**Precision**) $ho_{PPR_j} = \frac{n_{jj}}{\sum_{i=1}^g n_{ij}}$.

MACRO F₁ SCORE

• Average over classes to obtain a single value:

$$ho_{\textit{mMETRIC}} = rac{1}{g} \sum_{i=1}^{g}
ho_{\textit{METRIC}_i},$$

where $METRIC_i$ is a class-specific metric such as PPV_i , TPR_i of class i.

• With this, one can simply define a **macro** F_1 score:

$$ho_{\textit{mF}_1} = 2 \cdot rac{
ho_{\textit{mPPV}} \cdot
ho_{\textit{mTPR}}}{
ho_{\textit{mPPV}} +
ho_{\textit{mTPR}}}$$

- Problem: each class equally weighted → class sizes are not considered.
- How about applying different weights to the class-specific metrics?

WEIGHTED MACRO F₁ SCORE

- For imbalanced data sets, give more weights to minority classes.
- $w_1, \ldots, w_g \in [0, 1]$ such that $w_i > w_j$ iff $n_i < n_j$ and $\sum_{i=1}^g w_i = 1$.

$$ho_{\mathit{WMMETRIC}} = rac{1}{g} \sum_{i=1}^g
ho_{\mathit{METRIC}_i} w_i,$$

where $METRIC_i$ is a class-specific metric such as PPV_i , TPR_i of class i.

- Example: $w_i = \frac{n n_i}{(q 1)n}$ are suitable weights.
- Weighted macro F_1 score:

$$ho_{\mathit{wmF}_1} = 2 \cdot rac{
ho_{\mathit{wmPPV}} \cdot
ho_{\mathit{wmTPR}}}{
ho_{\mathit{wmPPV}} +
ho_{\mathit{wmTPR}}}$$

- This idea gives rise to a weighted macro G score or weighted BAC.
- **Usually**, weighted F_1 score uses $w_i = n_i/n$. However, for imbalanced data sets this would **overweight** majority classes.

OTHER PERFORMANCE MEASURES

- "Micro" versions, e.g., the micro TPR is $\frac{\sum_{i=1}^{g} TP_i}{\sum_{i=1}^{g} TP_i + FN_i}$
- MCC can be extended to:

$$\rho_{MCC} = \frac{n \sum_{i=1}^{g} n_{ii} - \sum_{i=1}^{g} \hat{n}_{i} n_{i}}{\sqrt{(n^{2} - \sum_{i=1}^{g} \hat{n}_{i}^{2})(n^{2} - \sum_{i=1}^{g} n_{i}^{2})}},$$

where $\hat{n}_i = \sum_{i=1}^g n_{ij}$ is the total number of instances classified as *i*.

 Cohen's Kappa or Cross Entropy (see Grandini et al. (2021)) treat "predicted" and "true" classes as two discrete random variables.

WHICH PERFORMANCE MEASURE TO USE?

- Since different measures focus on other characteristics → No golden answer to this question.
- Depends on application and importance of characteristics.
- Be careful with comparing the absolute values of the different measures, as these can be on different "scales", e.g., MCC and BAC.

