Monte Carlo Tree Search

Alpha-beta : succès et limites

Grand succès permis par alpha-beta

- Jeu d'échec: victoire de Deep Blue sur Kasparov en 1997
- Moteur pour d'autres jeux: Dames, Othello,...

Limites

- Inadapté pour jeu de Go
 - Espace de recherche immense: ~10⁷⁶¹ (rappel: échecs ~ 10¹²⁰)
 - Pas de bonnes heuristiques (problèmes de « retournements de situation »)
- Connaissances pour un jeu non transférables aux autres
 - Une bonne heuristique aux dames ne sert à rien aux échecs
 - -> il faut repartir de zéro à chaque fois, beaucoup de travail humain...

General Game Playing

- Finalité de l'IA ≠ savoir jouer parfaitement à UN jeu!
- Mieux : savoir bien joueur à TOUS les jeux
 - -> General Game Playing
- General Game Playing
 - L'IA connaît juste les règles du jeu
 - Pas d'heuristiques faites main par des grands maîtres humains...
 - Après un éventuel temps d'apprentissage, doit pouvoir joueur au jeu en temps limité
 - Meilleure approche actuelle: Monte-Carlo Tree Search (MCTS)

Monte Carlo Tree Search : idée générale

- Exploration d'un arbre de recherche asymétrique
 - = on ne développe pas tout comme min-max
 - On a plutôt une approche type « best-first » (peut faire penser à A*)
- Pour un nœud à développer
 - On simule des **parties aléatoires** jusqu'à la fin, et on compte les victoires
 - On update les parents avec les résultats des parties aléatoires jouées
- Idée derrière les parties aléatoires
 - Il suffit de connaître les règles du jeu
 - Exploitation d'approches statistiques
 - Il est moins dangereux d'être faible que d'être biaisé!

Sélection

- Partir de la racine
- Utiliser les statistiques des nœuds pour choisir les fils les plus prometteurs
- Stop quand on n'a plus les statistiques de tous les fils

Expansion

- Pour le nœud sur lequel on s'est arrêté à l'étape Sélection :
 - Créer au hasard un nouveau fils

Simulation

- Simuler une ou plusieurs parties aléatoires en partant du nœud courant
- Aussi appelé phase de rollout
- Politique « Default Policy »
 - On respecte les règles du jeu
 - On va jusqu'en fin de partie
 - Jeu peut être random
 - On peut aussi utiliser des heuristiques ici !

Rétropropagation (backpropagation)

• Remonter les résultats de la simulation à la racine

ISTIC M1 info - A. Termier - IA - 2017

Pseudo-code MCTS

```
tant que (il reste du temps) {
      visités = new List<Node>()
      node = racine ; visités.add(node)
      tant que (node n'est pas une feuille)
           node = choixFils(node.children) // tree policy pour choisir un fils
          visités.add(node)
       newFils = expand(node) // créer un nouveau fils au hasard
      visités.add(newFils)
      valeur = rollOut(newFils) // simulation à partir de newFils
      for (node : visités)
          node.updateStats(valeur) // rétropropagation
return fils de la racine avec la meilleure valeur
```

Propriétés de MCTS

- Si temps infini, converge vers min-max
 - mais converge très lentement...
- Algorithme anytime
 - = on peut l'arrêter quand on veut et avoir un résultat

• Il suffit de connaître les règles du jeu (résultat des parties simulées)

Détails sur la phase de Selection

- Idée que l'on veut trouver les nœuds les plus « urgents » à développer
 - Ex: nœud prometteur mais où l'on manque de simulations
- Problème dit de « bandit »
 - Référence aux bandits manchots des casinos
 - Très étudié par les matheux!

Problèmes de bandits

Problème: a partir des 4 bandits à l'air identiques, comment identifier celui qui a les meilleures chances de gain, en un nombre minimal d'essais ?

Dilemme exploration / exploitation

- On trouve une machine avec une chance de gagner raisonnable
 - Ex: la machine 1/20
- On a deux choix :
 - Exploitation: jouer au maximum sur cette machine pour engranger des gains
 - Exploration: jouer aussi sur d'autres machines, au cas où il y en a une meilleure
 - Ici cela permettra de trouver la machine 1/15
 - Mais on va perdre des essais (et des gains) dans cette exploration

Comment gagner à Las Vegas

- Stratégie UCB1 : Upper Confidence Bound
- Jouer la machine *i* qui maximise :

- Augmentation la plus faible (O(ln n)) du regret
 - Exploit: x_i s'améliore, intervalle de confiance précis pour i mais grandit pour les autres -> à un moment une autre machine sera meilleure -> explore

Application à MCTS

- UCT = formule d'UCB adaptée au cas MCTS
- On veut choisir un fils i qui maximise :

- Si i jamais visité, $n_i = 0 \rightarrow UCT_i = +\infty$
 - Garantit que tout fils sera visité au moins une fois
- Augmenter la constante C fera faire plus d'exploration (en pratique : $1/\sqrt{2}$)

Improving the roll-out policy π

```
\pi_0 Put stones uniformly in empty positions \pi_{random} Put stones uniformly in the neighborhood of a previous stone \pi_{MoGo} Put stones matching patterns prior knowledge \pi_{RLGO} Put stones optimizing a value function Silver et al. 07
```

Beware! Gelly Silver 07

 π better π' \Rightarrow $MCTS(\pi)$ better $MCTS(\pi')$

RAVE – Rapid Action Value Estimate

- Au début, exploration de MCTS très aléatoire
- Pourtant il explore beaucoup de nœuds: comment l'exploiter ?

- Dans certains jeux (go), ordre des mouvements n'est pas toujours important – i.e., plusieurs façons d'arriver à la meilleure position
 - Pour une simulation, stocker ses statistiques dans tous les nœuds de l'arbre contenant des mouvements explorés par la simulation
 - Modification légère de la formule d'UCT pour prendre en compte ces statistiques supplémentaires

Ex. RAVE sur Tic-Tac-Toe (wikipedia)

Tous les nœuds modifiés par la simulation du bas indiqués en rouge

MCTS + Go: historique

```
Abramson demonstrates that Monte Carlo simulations can be used to evaluate value of state [1].
1990
1993
       Brügmann [31] applies Monte Carlo methods to the field of computer Go.
1998
       Ginsberg's GIB program competes with expert Bridge players.
1998
       MAVEN defeats the world scrabble champion [199].
       Auer et al. [13] propose UCB1 for multi-armed bandit, laying the theoretical foundation for UCT.
2002
       Coulom [70] describes Monte Carlo evaluations for tree-based search, coining the term Monte Carlo tree search.
2006
       Kocsis and Szepesvari [119] associate UCB with tree-based search to give the UCT algorithm.
2006
       Gelly et al. [96] apply UCT to computer Go with remarkable success, with their program MOGO.
2006
       Chaslot et al. describe MCTS as a broader framework for game AI [52] and general domains [54].
2006
       CADIAPLAYER becomes world champion General Game Player [83].
2007
       MoGo achieves dan (master) level at 9 \times 9 Go [128].
2008
2009
       FUEGO beats top human professional at 9 \times 9 Go [81].
2009
       MOHEX becomes world champion Hex player [7].
```

Octobre 2015 : AlphaGo bat Fan Sui, champion européen, 2ème dan (sur 9)

Mars 2016: AlphaGo bat Lee Sedol, champion mondial, 9ème dan

AlphaGo

AlphaGo = MCTS + Deep Learning

- Deep Learning?
 - Technique de machine learning
 - Apprentissage sur de nombreux exemples (supervised learning)
 - Basé sur des « neurones artificiels »
 - Deep : nombreuses couches, beaucoup de neurones
 - Pas possible avant 2010 car gros besoin en calcul

Convolutional network

- Types de réseaux de neurones adaptés pour les images
- Filtres successifs
- Utilisés dans AlphaGo avec goban = image d'input

Les réseaux profonds d'AlphaGo

- Trois réseaux appris par Deep Learning :
 - Policy network (un rapide + un lent)
 - Proba de victoire pour chaque mouvement possible
 - Value network
 - Valeur d'un goban = estimation de la proba de victoire pour les noirs

Policy network

Value network

Entrainement des réseaux

Policy network

- A partir d'historiques de parties d'experts humains
 - KGS Go Server -> 30 millions de coups
 - Prédiction des coups humains avec une précision de 57%
 - Bon à prédire les humains...mais ça ne suffit pas pour gagner!
- Apprentissage par renforcement
 - Différentes versions du policy network se battent entre elles (version t-1 versus version t)
 - Optimise pour le but de gagner le jeu

Value network

 Apprend la proba de gagner à partir des données d'apprentissage du policy network contre lui même

MCTS dans AlphaGo

- AlphaGo combine les réseaux profonds et le principe MCTS:
 - Policy network lent (mais précis) utilisé pour le guidage de MCTS
 - Valeur d'un état = output value network + simulation

La simulation n'est pas random: utilise version rapide du policy network pour simuler des jeux

Sources

- https://en.wikipedia.org/wiki/Monte Carlo tree search
- https://jeffbradberry.com/posts/2015/09/intro-to-monte-carlo-treesearch/
- http://www.cameronius.com/cv/mcts-survey-master.pdf
- https://en.wikipedia.org/wiki/AlphaGo
- www.nature.com/nature/journal/v529/n7587/full/nature16961.html
- https://www.tastehit.com/blog/google-deepmind-alphago-how-it-works/
- http://scalab.uc3m.es/~seminarios/seminar11/slides/lucas2.pdf
- https://www.cs.swarthmore.edu/~bryce/cs63/s16/slides/2-15_MCTS.pdf
- http://www.deeplearningbook.org/
- https://www.lri.fr/~sebag/Slides/InvitedTutorial_CP12.pdf