

 $x = 60^{\circ}$ $y = 40^{\circ}$ θ=

In the triangle with *x* and *y*, the third angle is

$$180^{\circ} - x - y$$

= $180^{\circ} - 60^{\circ} - 40^{\circ}$
= 80°

Using one of the theorems,

$$\theta + 80^{\circ} = 180^{\circ}$$

$$\theta = 100^{\circ}$$

 $x = 120^{\circ}$ $y = 70^{\circ}$ $\theta =$

In the triangle with θ and y, the third angle = $180^{\circ} - 120^{\circ} = 60^{\circ}$

$$180^{\circ} = y + \theta + 60^{\circ}$$

 $180^{\circ} = 70^{\circ} + \theta + 60^{\circ}$
 $\theta = 50^{\circ}$

 $y = 40^{\circ}$ θ=

Since x and y together are in the same segment as θ ,

$$\theta = x + y$$

$$\theta = 30^{\circ} + 40^{\circ} = 70^{\circ}$$

 $x = 30^{\circ}$ $\theta =$

Using one of the theorem, the left-most angle is $\frac{1}{2}\theta$

$$\frac{1}{2}\theta + 2x + (360^{\circ} - \theta) = 360^{\circ}$$

 $-\frac{1}{2}\theta + 2(30^{\circ}) = 0$
 $\theta = 2 \times 2(30^{\circ}) = 120^{\circ}$

Using a theorem, ee know \angle OAP and \angle OBP are 90°. In the quadrilateral OAPB, $90^{\circ} + 90^{\circ} + 86^{\circ} + \angle$ AOB = 360° \angle AOB = 94° Since \triangle OAB is isosceles, $2x + 94^{\circ} = 180^{\circ}$ $x = 43^{\circ}$

Since
$$\angle OTP = 90^{\circ}$$
,
 $180^{\circ} - 32^{\circ} - 90^{\circ} = \angle TOP$
 $\angle TOP = 58^{\circ}$

$$\angle$$
SOT + \angle TOP = 180°
 \angle SOT + 58° = 180°
 \angle SOT = 122°

Since \triangle OST is isosceles, $2x + 122^{\circ} = 180^{\circ}$ $x = 29^{\circ}$