Адаптация метода главных компонент к данным с пропусками

Рукавишникова Анна Александровна, гр. 422

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: к.ф.-м.н., доцент Алексеева Н. П. Рецензент: д.ф.-м.н., профессор Кривулин Н. К.

Санкт-Петербург 2018 г.

Введение: Данные с пропусками

Таблица: Общий вид табличных данных

	y_1	y_2	 y_j		y_n
1	x_{11}	*	 x_{1j}		x_{1n}
2	*	x_{22}	 *		x_{2n}
	•	•	 •		•
i	x_{i1}	*	 x_{ij}		x_{in}
	•		 •		*
m	x_{m1}	x_{m2}	 *	*	x_{mn}

Причины пропусков:

- невозможность получения или обработки данных,
- искажение или сокрытие информации,
- утеря данных.

Почему данные с пропусками являются проблемой?

Стандартные статистические методы предполагают, что все переменные в указанной модели измерены для всех случаев.

Введение: Метод главных компонент

Идея метода: редукция размерности данных при наименьшей потере информативности.

Определение

Пусть имеется k центрированных $(EX_i=0)$ признаков $X=(X_1,\dots,X_k)^{\mathrm{T}}$ для m индивидов, где $X_i\in\mathbb{R}^m$. Тогда j-ой главной компонентой называется линейная комбинация

$$Y_j = A_j^{\mathrm{T}} X = \sum_{i=1}^k \alpha_{ij} X_i,$$

где A_j — собственные вектора ковариационной матрицы $\Sigma=EXX^{\mathrm{T}},$ соответствующие собственным числам $\lambda_j,$ упорядоченным по неубыванию: $\lambda_1\geq \lambda_2\geq \ldots \geq \lambda_k.$

Актуальность работы

Необходимость использования ортогональных компонент в качестве вещественной и мнимой части реализаций комплексного марковского нормального стационарного (КМНС) процесса $x_j(t)=u_j(t)+iv_j(t),\ j=1,\dots,n,\ t=1,\dots,k$, где n — число наблюдений, k — число временных точек.

Замечание

Важным свойством метода главных компонент является ортогональность (независимость) главных компонент: $EY_mY_n^{\rm T}=0$ при $m\neq n$.

Структура исходных данных

Структура данных с пропусками по больным туберкулёзом лёгких:

- 30 пациентов, из которых:
 - 19 пациентов с улучшениями после лечения,
 - 11 пациентов без улучшений,
- 32 признака,
- 2 временные точки,
- 23% данных отсутствуют.

Таблица: Основные признаки (измерены в 2-х временных точках)

MMP.1 MMP.8 MMP.9	Белки, участвующие в процессах воспаления при туберкулёзе лёгких
TIMP1	Вещество, регулирующее активность ММР в тканях

Постановка задачи

- Заполнить пропуски в имеющихся данных.
- Применить метод главных компонент к полученным полным данным для каждой группы пациентов в отдельности.
- Использовать полученные главные компоненты для исследования корреляционной структуры данных и анализа динамики заболевания на основе модели КМНС процесса.

Метод заполнения пропусков Predictive Mean Matching

 $\Omega=(\omega_1,\ldots,\omega_n)$ — наблюдения по неполным данным: зависимой переменной $\mathcal{Y}(\Omega)=(y(\omega_1),\ldots,y(\omega_n)),$ независимых переменных $\mathcal{X}=(X_1(\Omega),\ldots,X_p(\Omega)).$

Модель линейной регрессии $Y = X\beta + \varepsilon, \ \varepsilon \sim \mathcal{N}(0, \sigma^2)$

- $Y = \mathcal{Y}(\Omega_1)$, $\Omega_1 \subseteq \Omega$ полные наблюдения, $\Omega_2 = \Omega \setminus \Omega_1$,
- $X = (X_{t_1}(\Omega_1), \dots, X_{t_k}(\Omega_1)), (t_1, \dots, t_k) \subseteq (1, \dots, p).$
- ullet $\hat{eta},~\hat{\sigma}^2$ no MHK

Предикторы:

- $\hat{Y}(\Omega_1) = X\hat{\beta},$
- $Y^*(\Omega_2) = X_*\beta^*$, где $X_* = (X_{t_1}(\Omega_2), \dots, X_{t_k}(\Omega_2)),$ $\beta^* \sim \mathcal{N}(\hat{\beta}, \operatorname{Cov}(\hat{\beta})).$

$$\Delta(u,v) = |\hat{Y}(u \in \Omega_1) - Y^*(v \in \Omega_2)|$$

Подбор значений

 $\forall v \in \Omega_2$ подбирается $y(v) = y(u) \in \mathcal{Y}(\Omega_1)$ при условии $\Delta(u,v) \leq \Delta_*$.

Заполнение пропусков в данных

- Используемая среда программирования: R.
- Используемый программный пакет: MICE (Multivariate Imputation by Chained Equations).
- Метод заполнения пропусков: Predictive Mean Matching.
- Количество полученных полных наборов данных: 5.

Применение главных компонент. КМНС процесс

<u>Цель:</u> для двух групп пациентов исследовать корреляционную структуру данных.

Подход к решению: оценка параметров τ и η ковариационной функции комплексного марковского нормального стационарного (КМНС) процесса (Дж.Л. Дуб, 1956)

$$\mathcal{B}(t) = \sigma^2 e^{-\eta|t| - i\tau t}, \quad \eta > 0.$$

Её выборочная оценка с m реализациями в k временных точках имеет вид:

$$\hat{\mathcal{B}}(t) = \frac{1}{(k-t)m} \sum_{l=1}^{k-t} \sum_{j=1}^{m} x_{jl} x_{j,l+t}^*.$$

Реализация

В качестве вещественной и мнимой части независимых реализаций КМНС процесса $x_j(t)=u_j(t)+iv_j(t)=x_{jt}$ берём значения первой и второй главной компоненты, соответственно.

Оценка параметров КМНС процесса

Теорема (А.Г. Барт, 2003, Н.П. Алексеева, 2012)

Пусть $x_j(t)=u_j(t)+iv_j(t)=x_{jt}-m$ независимых реализаций КМНС процесса в k временных точках,

$$A_1 = \sum_{l=1}^k \sum_{j=1}^m x_{jl}^* x_{jl}, \quad A_2 = \sum_{l=2}^{k-1} \sum_{j=1}^m x_{jl}^* x_{jl}.$$

Если $A_1(k-2)=A_2k$, то ОМП $\hat{\tau},\hat{\eta},\hat{\sigma}$ удовлетворяют соотношениям:

$$\operatorname{tg} \hat{\tau} = \frac{\operatorname{Im}(\hat{\mathcal{B}}(1)/\hat{\mathcal{B}}(0))}{\operatorname{Re}(\hat{\mathcal{B}}(1)/\hat{\mathcal{B}}(0))}, \quad \hat{\eta} = -\ln\left|\frac{\hat{\mathcal{B}}(1)}{\hat{\mathcal{B}}(0)}\right|, \quad \hat{\sigma}^2 = \hat{\mathcal{B}}(0),$$

где $\hat{\mathcal{B}}(t)$ — выборочная оценка ковариационной функции КМНС процесса.

Результаты: устойчивость оценок КМНС процесса

Замечание

Главные компоненты определены с точностью до знака.

Утверждение

Пусть ${\bf u}$ и ${\bf v}$ — первая и вторая главные компоненты соответственно. Тогда для оценок параметров КМНС процесса $\hat{\eta}=\hat{\eta}({\bf u},{\bf v})$ и $\hat{\tau}=\hat{\tau}({\bf u},{\bf v})$ верны следующие соотношения:

- $\hat{\eta}(\pm \mathbf{u}, \pm \mathbf{v}) = \hat{\eta}(\mathbf{u}, \mathbf{v}),$
- $\hat{\eta}(\mathbf{v}, \mathbf{u}) = \hat{\eta}(\mathbf{u}, \mathbf{v}),$
- $\hat{\tau}(-\mathbf{u},\mathbf{v}) = \hat{\tau}(\mathbf{u},-\mathbf{v}) = -\hat{\tau}(\mathbf{u},\mathbf{v}),$
- $\hat{\tau}(\mathbf{v}, \mathbf{u}) = -\hat{\tau}(\mathbf{u}, \mathbf{v}).$

Параметрическая модель кривой саногенеза

Оценки $\hat{ au}$ и $\hat{\eta}$ используются для построения вещественной части ковариационной функции КМНС процесса ($\sigma^2=1$)

$$S(t) = e^{-\eta t} \cos \tau t, \quad t > 0, \eta > 0.$$

Рассматриваем модель **кривой саногенеза** (А.Г. Барт, 2003) F(t) = G(S(t)), полученную двойным правым обращением кривой S(t), а именно: $F(t) = (S_{11}^-)_{11}^-(t)$, где $S_{11}^-(t) = \sup\{x: S(x) \geq t\}$.

Критические точки

Важную роль в течении болезни играют **критические точки** T^j_{KP} — моменты времени, в которые возможно изменение характера течения болезни.

Задача

Найти первую критическую точку для двух групп пациентов и выяснить, у кого она раньше.

Решение

По имеющимся оценкам параметров КМНС процесса $\hat{\tau}$ и $\hat{\eta}$ находим первые критические точки по формуле (А.Г. Барт, 2003)

$$T_{\mathsf{Kp}}^1 = \frac{2\pi - \phi}{\tau} + Q,$$

где $\operatorname{tg} \phi = \eta/\tau$, $e^{2\pi\eta/\tau} \left(\cos\tau Q + \frac{\eta}{\tau}\sin\tau Q\right) = e^{\eta Q}$.

Результаты: корреляционная структура

 Puc .: $S(t) = e^{-\eta t}\cos \tau t$, **m** — номер заполнения.

Результаты по 50 заполнениям: в 33 случаях распад корреляционых связей для пациентов с улучшениями больше. По критерию знаков p-значение =0.016<0.05.

Результаты: модели кривых саногенеза

Рис.: Модель кривой саногенеза для обеих групп пациентов при разных заполнениях пропусков (**m** — номер заполнения).

Вывод: для пациентов без улучшений модель кривой саногенеза выше.

Результаты: критические точки

m	T^1_{Kp} для пациентов	T_{kp}^1 для пациентов	
	без улучшений	с улучшениями	
1	6.57	0.77	
2	4.41	3.40	
3	10.96	1.08	
4	11.18	0.94	
5	0.45	2.84	

Таблица: Первая критическая точка при разных заполнениях пропусков (т — номер заполнения).

Результаты по 50 заполнениям: в 38 случаях первая критическая точка для пациентов с улучшениями раньше. По критерию знаков p-значение = 0.0002 < 0.05.

Заключение

- Реализован алгоритм заполнения пропусков в реальных медицинских данных на основе метода РММ.
- Осуществлен анализ корреляционной структуры данных на основе модели КМНС процесса.
- Доказана устойчивость оценок основных параметров КМНС процесса к знакопеременной структуре главных компонент и их перестановке.
- Показана статистическая значимость порядка критических точек для двух групп пациентов.
- Создана программа на языке программирования R, позволяющая производить вычисления от заполнения пропусков до оценки критических точек.