Unit 2 logarithms

1. Define scientific notation.

A number written in scientific notation written as:

$$a \times 10^n$$
, where $1 \le a < 10$ and $n \in Z$

Here a is called the coefficient or base number.

Note:

- If the number is greater than 1, then n is positive.
- If the number is less than 1, then n is negative.

2. What is the logarithm of a real number?

The logarithm of a real number tells us how many times one number must be multiplied by itself to get another number.

The general form of a logarithm is: $\log_b x = y$. Where

- b is the base,
- $\triangleright x$ is the result or the number whose logarithm is being taken, and
- \triangleright y is the exponent or the logarithm of x to the base b.

This means that $b^y = x$.

OR

The logarithm of x to the base b is y, means that when b is raised to the power y, it equals x. The relationship between logarithmic form and exponential form is given below:

$$\log_b x = y \iff b^y = x$$

where
$$b > 0, x > 0$$
 and $b \neq 1$

3. Define common logarithm or Brigg's logarithm.

If the base of logarithm is taken as 10 then logarithm is called common logarithm or Brigg's logarithm. It is written as \log_{10} or simply as \log (when no base is mentioned, it is usually assumed to be base 10).

4. Define Natural logarithm.

Logarithm having base *e* is called Napier logarithm or Natural logarithm.

$$ln(0) =$$
undefined $ln(1) = 0$ $ln(e) = 1$

5. Differentiate between characteristic and mantissa.

The integral part of the logarithm of any number is called the **characteristic** and the decimal part of the logarithm of a number is called the **mantissa** and is always positive.

For example, if log 278.23 = 2.4443 then characteristic is 2 and mantissa is 0.4443

6. Define antilog.

The number whose logarithm is given is called antilogarithm. *i. e.* if $\log y = x$, then y is the antilogarithm of x, or $y = Anti \log x$

In other words, antilog is the inverse of a logarithm.

7. What is the difference between Common and Natural Logarithms?

Common Logarithm	Natural Logarithm
The base of a common logarithm is 10.	The base of a natural logarithm is e .
It is written as $\log_{10}(x)$ or simply $\log(x)$ when no base is specified.	It is written as $ln(x)$.
Common logarithms are widely used in	, ,
everyday calculations, especially in scientific	mathematics, particularly calculus and applications
and engineering applications.	involving growth/decay processes.

Prepared By: M. Tayyab, SSE (Math) Govt Christian High School, Daska. Mobile: 03338114798