Introduction to Optical Networks – Physical Layer

PROF. NAVRATI SAXENA

SAN JOSE STATE UNIVERSITY

Optical communications: Why?

Optical fiber advantages

- Huge bandwidth
- Long range transmission (optical amplifiers)
- Strength
- Use flexibility (transparency)
- Low noise
- Low cost
- Interference immunity

Spectrum of transmission media

Electromagnetic Spectrum

$$\lambda = v/f$$
, $v = C = 3 * 10^8 m/s$

Effects of mmWaves

Low Frequency

High Frequency

✓ High frequency => More data

WDM optical networks

- **WDM** = **W**avelength **D**ivision **M**ultiplexing (wavelength = channel)
- WDM layer basic functions
 - Offers optical circuit (LIGTHPATH) for electronic layers
 - Common transport platform for a multiple protocol in L2 and L3

WDM layer fundamentals

- Wavelength Division Multiplexing: data carried on different channels (i.e., different wavelengths) on the same fiber
- Switching: WDM systems switch optical flows in the space (fiber) and wavelength domains

What's a WDM System?

WDM System Function

North American Fiber Routes

California Fiber Routes

Global (Undersea) Fiber Routes

Optical Networks: Summary

- It is **NOT NECESSARILY** all optical
- Characteristics of an optical network
 - Transmission: optical
 - Switching: could be <u>optical</u>, could be <u>electronic</u>, could be <u>hybrid</u> could be <u>circuit</u>, could be <u>packet</u>, could be <u>burst</u>
- Most Used Approach Today
 - Electronic and optical circuit switching
- Example Utility for IP Networking
 - Connect any two IP routers (geographically far apart) with a direct ("virtual") bandwidth pipe... of whatever capacity (1G, 10G, 100G)
 - Increase (or decrease or delete) the capacity on demand
 - Dynamically control the "topology" connecting the IP routers

WDM Network

An example of optical circuits

Optical Transmission Components

Optical Line Terminal (OLT)

- Transmitter/Receiver + Mux/Demux
- Point-to-point application

Optical Add-Drop Multiplexer (OADM)

- Add/drop a small number of wavelengths
- Pass most wavelengths through

Optical Transmission Components

Optical Crossconnect (OXC)

- Flexible connectivity of wavelengths between OLTs and OADMs (wavelength switching)
- Mesh protection

Erbium-Doped Fiber Amplifier (EDFA)

Optical Repeater to boost up the signal strength

Optics in Core, Metro and Access

ONU: Optical Network Unit

SONET: Synchronous Optical Networking

Optical Access Network

Building Blocks

Optical Components

Building Blocks

- ▶ Optical Fibers

- Switching Elements

Optical Fiber: Structure

Total Internal Reflection within a Fiber

- ho refractive index: $n_{\rm mat}=c/c_{\rm mat}$ (n_{air}=1) where c= velocity of light in vacuum $=3\times10^8$ m/s
- > critical angle

$$c_{mat} \cong 2 \times 10^8 \,\mathrm{m/s} \rightarrow \mathrm{n_{fiber}} = 1.5$$

step-index fiber

Thank you