ВАРИАНТЫ КУРСОВОЙ РАБОТЫ

1. В таблице 1 приведены определения трех множеств: U — множество геометрических векторов, V — множество действительных матриц (в частности, строк); W — множество действительных функций одной переменной (в частности, многочленов). Образует ли каждое из этих множеств векторное пространство над полем действительных чисел относительно обычных операций сложения элементов и умножения элемента на число? Если нет, то указать, какие именно свойства векторного пространства не выполнены. Если образует, то найти его размерность и базис.

Таблица 1.

Bap.	Мн-во	Определение множества
	U	Множество всех геометрических векторов, являющихся линейными ком-
		бинациями данных ненулевых векторов \overline{a} , \overline{b} , \overline{c} , \overline{d} .
1	V	Множество всех строк из 4 чисел, сумма крайних элементов каждой из
		которых равна 1.
	W	Множество всех нечетных многочленов не выше третьей степени.
	U	Множество всех единичных геометрических векторов пространства.
2	V	Множество всех строк из 4 чисел.
	W	Множество всех четных многочленов не выше третьей степени.
	U	Множество всех приложенных к точке O геометрических радиусвекторов, концы которых принадлежат плоскости, проходящей через точку O .
3	V	Множество всех строк из 4 чисел, сумма элементов каждой из которых равна 1.
	W	Множество всех линейных комбинаций функций: $1, \sin^2 t, \cos^2 t, \sin 2t, \cos 2t$.
	U	Множество всех приложенных к точке O геометрических радиусвекторов, концы которых принадлежат прямой, не проходящей через точку O .
4	V	Множество всех строк из 4 чисел, сумма элементов каждой из которых равна 0.
	W	Множество всех линейных комбинаций функций: $1, e^t, e^{t+1}, e^{t-1}, te^t$.
	U	Множество всех геометрических векторов, векторное произведение каж-
5	V	дого из которых с данным вектором \overline{a} равно 0 . Множество всех верхних треугольных матриц третьего порядка.
		імножество всех верхних треугольных матриц третьего порядка.
	W	Множество функций, монотонных на [-1;1].
	U	Множество всех приложенных к точке O геометрических радиус-векторов, концы которых принадлежат прямой, проходящей через точку O .
6	V	Множество всех невырожденных квадратных матриц второго порядка.
	W	Множество многочленов $p(x)$ не выше второй степени, удовлетворяющих условию $p'(1) = 0$.

	11	Множество всех геометрических векторов, скалярное произведение каж-
	U	дого из которых с данным вектором \overline{a} равно 1.
_	\overline{V}	Множество всех квадратных матриц третьего порядка с нулевыми эле-
7	V	ментами на главной диагонали.
	\overline{W}	Множество многочленов $p(x)$ не выше второй степени, удовлетворяю-
	VV	щих условию $p(1) = 0$.
	1 7	Множество всех геометрических векторов пространства, перпендику-
	U	лярных данной плоскости.
0	\overline{V}	Множество всех квадратных матриц второго порядка, сумма элементов
8	,	каждой из которых равна 1.
	\overline{W}	Множество многочленов $p(x)$ не выше второй степени, удовлетворяю-
	,,,	щих условию $p(0) + p'(0) = 0$.
	U	Множество всех геометрических векторов пространства, перпендику-
	U	лярных данной прямой.
9	V	Множество всех вырожденных квадратных матриц второго порядка.
		Миожаетра миотанданар и(х) на ринца рторой станани удорнатрория
	W	Множество многочленов $p(x)$ не выше второй степени, удовлетворяю-
		щих условию $p(0) + p(1) = 0$.
	U	Множество всех геометрических векторов пространства, принадлежащих
		данной прямой или параллельных ей.
10	V	Множество всех строк из 4 чисел, произведение двух крайних элементов каждой из которых равно 0.
		Множество многочленов $p(x)$ не выше второй степени, удовлетворяю-
	W	щих условию $p(0) + p'(0) = 0$.
	U	Множество всех геометрических векторов пространства, принадлежащих данной плоскости или параллельных ей.
	V	Множество всех квадратных матриц второго порядка, для каждой из ко-
11		торых столбец $(1 \ 2)^T$ является собственным вектором, соответствую-
		щим нулевому собственному значению. Множество многочленов $p(x)$ не выше второй степени, удовлетворяю-
	W	
		щих условию $p'(1) = 1$.
	U	Множество всех приложенных к точке О геометрических радиусвекторов, являющихся аффинными комбинациями данных некомпланар-
	C	
12		ных векторов \overline{a} , \overline{b} , \overline{c} . Множество всех строк из 5 чисел, два крайних элемента каждой из кото-
	V	рых равны.
	\overline{W}	
		Множество всех линейных комбинаций функций: e^t , $e^{t-1}\sin t$, $e^{t+1}\cos t$.
	U	Множество всех приложенных к точке О геометрических радиус-
	U	векторов, являющихся неотрицательными линейными комбинациями
13	T7	данных некомпланарных векторов \overline{a} , b , \overline{c} .
	V	Множество всех нижних треугольных матриц третьего порядка.
	\overline{W}	Множество многочленов степени не выше второй, сумма коэффициентов
		каждого из которых равна нулю.
	U	Множество всех геометрических векторов пространства, каждый из ко-
	T 7	торых имеет равную нулю абсциссу.
14	V	Множество всех диагональных матриц третьего порядка.
	W	Множество многочленов степени не выше второй, сумма коэффициентов
		каждого из которых равна 1.

	7.7	Множество всех геометрических векторов пространства, каждый из ко-
	U	торых имеет хотя бы одну нулевую координату.
15	V	Множество всех матриц размеров 2×3.
	W	Множество многочленов третьей степени.
	U	Множество всех геометрических векторов пространства, все координаты
4.5		каждого из которых равны.
16	V	Множество всех кососимметрических матриц третьего порядка.
	W	Множество функций $f(x)$, удовлетворяющих условию $f(0) = 1$.
	U	Множество всех геометрических векторов пространства, сумма коорди-
		нат каждого из которых равна 1.
17	V	Множество всех симметрических матриц второго порядка.
	W	Множество многочленов $p(x)$ не выше третьей степени, удовлетворяю-
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	щих условию $p''(1) = 0$.
	U	Множество всех геометрических векторов пространства, сумма коорди-
		нат каждого из которых равна 0.
		Множество всех квадратных матриц второго порядка, для каждой из ко-
18	V	торых столбец $(1 \ 2)^T$ является собственным вектором, соответствую-
		щим собственному значению $\lambda = 1$.
	117	Множество многочленов $p(x)$ не выше второй степени, удовлетворяю-
	W	щих условию $p(1) = p'(1)$.
		Множество всех геометрических векторов пространства, каждый из ко-
	U	
10		торых образует с данной прямой угол α ($0^{\circ} \le \alpha \le 90^{\circ}$). Множество всех строк из 4 чисел, произведение крайних элементов каж-
19	V	дой из которых равно 1.
	W	Множество многочленов $p(x)$ не выше второй степени, удовлетворяю-
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	щих условию $p(-1) = p(1)$.
	U	Множество всех геометрических векторов, являющихся линейными ком-
		бинациями данных ненулевых векторов \overline{a} , \overline{b} , \overline{c} , \overline{d} .
20	V	Множество всех строк из 4 чисел, сумма крайних элементов каждой из
		которых равна 1.
	W	Множество всех нечетных многочленов не выше третьей степени.
	U	Множество всех единичных геометрических векторов пространства.
21	V	Множество всех строк из 4 чисел.
	W	Множество всех четных многочленов не выше третьей степени.
		Множество всех приложенных к точке О геометрических радиус-
	U	векторов, концы которых принадлежат плоскости, проходящей через
		точку O .
22	V	Множество всех строк из 4 чисел, сумма элементов каждой из которых
		равна 1.
	W	Множество всех линейных комбинаций функций: 1, $\sin^2 t$, $\cos^2 t$, $\sin 2t$,
		$\cos 2t$.
23	U	Множество всех приложенных к точке О геометрических радиус-
23		векторов, концы которых принадлежат прямой, не проходящей через
		точку O .

	V	Множество всех строк из 4 чисел, сумма элементов каждой из которых равна 0.
	W	Множество всех линейных комбинаций функций: $1, e^t, e^{t+1}, e^{t-1}, te^t$.
	U	Множество всех геометрических векторов, векторное произведение каж-
24		дого из которых с данным вектором \overline{a} равно 0 .
27	V	Множество всех верхних треугольных матриц третьего порядка.
	W	Множество функций, монотонных на [-1;1].
	U	Множество всех приложенных к точке O геометрических радиус-век-
		торов, концы которых принадлежат прямой, проходящей через точку O .
25	V	Множество всех невырожденных квадратных матриц второго порядка.
	W	Множество многочленов $p(x)$ не выше второй степени, удовлетворяю-
	,,	щих условию $p'(1) = 0$.
	U	Множество всех геометрических векторов, скалярное произведение каж-
	C	дого из которых с данным вектором \bar{a} равно 1.
26	V	Множество всех квадратных матриц третьего порядка с нулевыми эле-
20	,	ментами на главной диагонали.
	W	Множество многочленов $p(x)$ не выше второй степени, удовлетворяю-
	,,	щих условию $p(1) = 0$.
	U	Множество всех геометрических векторов пространства, перпендику-
		лярных данной плоскости.
27	V	Множество всех квадратных матриц второго порядка, сумма элементов
		каждой из которых равна 1.
	W	Множество многочленов $p(x)$ не выше второй степени, удовлетворяю-
		щих условию $p(0) + p'(0) = 0$.
	U	Множество всех геометрических векторов пространства, перпендику-
		лярных данной прямой.
28	V	Множество всех вырожденных квадратных матриц второго порядка.
	W	Множество многочленов $p(x)$ не выше второй степени, удовлетворяю-
	,,	щих условию $p(0) + p(1) = 0$.
	U	Множество всех геометрических векторов пространства, принадлежащих
	O	данной прямой или параллельных ей.
29	V	Множество всех строк из 4 чисел, произведение двух крайних элементов
2)		каждой из которых равно 0.
	W	Множество многочленов $p(x)$ не выше второй степени, удовлетворяю-
		щих условию $p(0) + p'(0) = 0$.
	U	Множество всех геометрических векторов пространства, каждый из ко-
		торых образует с данной плоскостью угол α ($0^{\circ} \le \alpha \le 90^{\circ}$).
30	V	Множество всех строк из 4 чисел, сумма крайних элементов каждой из
	, , , , , , , , , , , , , , , , , , ,	которых равна 1.
	W	Множество многочленов $p(x)$ не выше третьей степени, удовлетворяю-
	,,	щих условию $p'(-1) = p'(1)$.

2. Доказать, что каждая из систем векторов $(a) = (a_1, a_2, a_3)$ и $(b) = (b_1, b_2, b_3)$, приведенных в таблице 2, образует базис в пространстве \mathbb{R}^3 . Найти матрицу перехода от базиса (a) к базису (b) и координаты вектора x в базисе (a) и (b), если известны его координаты в стандартном базисе $(e) = (e_1, e_2, e_3)$, где $e_1 = (1, 0, 0)^T$, $e_2 = (0, 1, 0)^T$, $e_1 = (0, 0, 1)^T$.

		(-1) -2)	3// 1		, - 2	· / / · [(·	Таблица 2
Bap.	a_1	a_2	a_3	b_1	b_2	b_3	x
1	$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 4 \\ 7 \\ 3 \end{pmatrix}$	$\begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 0 \\ -1 \\ -1 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$
2	$\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 3 \\ -5 \\ 4 \end{pmatrix}$	$\begin{pmatrix} -5 \\ 12 \\ -4 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$	$\begin{pmatrix} -1 \\ 3 \\ -5 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 2 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix}$
3	$\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -2\\3\\-3 \end{pmatrix}$	$\begin{pmatrix} 4 \\ -3 \\ 10 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -1 \\ -1 \\ -2 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -1\\1\\2 \end{pmatrix}$
4	$\begin{pmatrix} -1 \\ -1 \\ -2 \end{pmatrix}$	(5) (6) (11)	$\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -3 \\ -2 \end{pmatrix}$	$\begin{pmatrix} -2\\7\\6 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -4 \\ -3 \end{pmatrix}$	$\begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$
5	$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 5 \\ 3 \end{pmatrix}$	$\begin{pmatrix} -5 \\ -6 \\ -2 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$	$\begin{pmatrix} -3 \\ -8 \\ -8 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}$
6	$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -2 \\ -5 \\ -3 \end{pmatrix}$	$\begin{pmatrix} -3 \\ -1 \\ 3 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$	$\begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix}$	$\begin{pmatrix} -7\\ -10\\ 14 \end{pmatrix}$	$\begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$
7	$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -5 \\ -5 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$	$\begin{pmatrix} -3 \\ -5 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -4 \\ -6 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$
8	$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$	$ \begin{array}{c} 3 \\ 5 \\ 2 \end{array} $	$\begin{pmatrix} -6 \\ -8 \\ -1 \end{pmatrix}$	$ \begin{array}{ c c } \hline \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix} \end{array} $	$ \begin{array}{ c c } \hline \begin{pmatrix} -3 \\ -8 \\ 4 \end{pmatrix} $	$ \begin{array}{ c c } \hline -7 \\ -18 \\ 9 \end{array} $	$\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$
9	$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -4 \\ -7 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 0 \\ -3 \end{pmatrix}$	$ \begin{pmatrix} 3 \\ -1 \\ -4 \end{pmatrix} $	$\begin{pmatrix} 0 \\ -1 \\ -2 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -1\\1\\1\end{pmatrix}$

10	$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -4 \\ -7 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -1 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$	$\begin{pmatrix} -2 \\ -3 \\ 3 \end{pmatrix}$	$\begin{pmatrix} -5 \\ -9 \\ 7 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$
11	$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -4 \\ -7 \\ -3 \end{pmatrix}$	$\begin{pmatrix} -5 \\ -9 \\ -5 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$	$\begin{pmatrix} -1 \\ -1 \\ -2 \end{pmatrix}$	$\begin{pmatrix} -1\\1\\-7 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$
12	$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -3 \\ -5 \\ -2 \end{pmatrix}$	$\begin{pmatrix} -2 \\ -7 \\ -6 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$	$\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -4 \\ -2 \\ -1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$
13	$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -3 \\ -5 \\ -2 \end{pmatrix}$	$\begin{pmatrix} -4 \\ -3 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -3 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -2\\7\\-3 \end{pmatrix}$	$ \begin{pmatrix} 3 \\ -11 \\ 6 \end{pmatrix} $	$\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$
14	$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -4 \\ -7 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 3 \\ 1 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -2 \\ -3 \end{pmatrix}$	$\begin{pmatrix} -1 \\ 3 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -1\\1\\6 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$
15	$\begin{pmatrix} -1\\2\\1 \end{pmatrix}$	$\begin{pmatrix} -2\\3\\1 \end{pmatrix}$	$\begin{pmatrix} 5 \\ -7 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix}$	$\begin{pmatrix} -2 \\ -5 \\ 4 \end{pmatrix}$	$\begin{pmatrix} -1 \\ -4 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$
16	$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -5 \\ -9 \\ -4 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 0 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -3 \\ -3 \\ 2 \end{pmatrix}$	$\begin{pmatrix} -2 \\ -2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$
17	$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix}$	$\begin{pmatrix} -3 \\ -1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 4 \\ -9 \\ -5 \end{pmatrix}$	$\begin{pmatrix} 0 \\ -3 \\ -2 \end{pmatrix}$	$\begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$
18	$\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$	$\begin{pmatrix} 3 \\ 5 \\ -2 \end{pmatrix}$	$\begin{pmatrix} -6 \\ -8 \\ 3 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$	$\begin{pmatrix} 2 \\ -1 \\ 8 \end{pmatrix}$	$\begin{pmatrix} -3\\1\\-12 \end{pmatrix}$	$\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$
19			$\begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$	$ \begin{array}{ c c } \hline \begin{pmatrix} 4 \\ 0 \\ -1 \end{pmatrix} \end{array} $	$ \begin{array}{ c c } \hline \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} $	$ \begin{array}{ c c } \hline \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} \end{array} $	
20	$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 4 \\ 7 \\ 3 \end{pmatrix}$	$\begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 0 \\ -1 \\ -1 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$

21	$\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 3 \\ -5 \\ 4 \end{pmatrix}$	$\begin{pmatrix} -5\\12\\-4 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$	$\begin{pmatrix} -1\\3\\-5 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 2 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix}$
22	$\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -2\\3\\-3 \end{pmatrix}$	$\begin{pmatrix} 4 \\ -3 \\ 10 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -1 \\ -1 \\ -2 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -1\\1\\2 \end{pmatrix}$
23	$\begin{pmatrix} -1 \\ -1 \\ -2 \end{pmatrix}$	$\begin{pmatrix} 5 \\ 6 \\ 11 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -3 \\ -2 \end{pmatrix}$	$\begin{pmatrix} -2\\7\\6 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -4 \\ -3 \end{pmatrix}$	$\begin{pmatrix} -1\\2\\1 \end{pmatrix}$
24	$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 5 \\ 3 \end{pmatrix}$	$\begin{pmatrix} -5 \\ -6 \\ -2 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$	$\begin{pmatrix} -3 \\ -8 \\ -8 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}$
25	$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -2 \\ -5 \\ -3 \end{pmatrix}$	$\begin{pmatrix} -3 \\ -1 \\ 3 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$	$\begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix}$	$\begin{pmatrix} -7\\ -10\\ 14 \end{pmatrix}$	$\begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$
26	$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 2\\3\\1 \end{pmatrix}$	$\begin{pmatrix} -5 \\ -5 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$	$\begin{pmatrix} -3 \\ -5 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -4 \\ -6 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$
27	$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 3 \\ 5 \\ 2 \end{pmatrix}$	$\begin{pmatrix} -6 \\ -8 \\ -1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix}$	$\begin{pmatrix} -3 \\ -8 \\ 4 \end{pmatrix}$	$\begin{pmatrix} -7\\ -18\\ 9 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$
28	$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -4 \\ -7 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 0 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 3 \\ -1 \\ -4 \end{pmatrix}$	$\begin{pmatrix} 0 \\ -1 \\ -2 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -1\\1\\1\end{pmatrix}$
29	$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -4 \\ -7 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -1 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$	$\begin{pmatrix} -2 \\ -3 \\ 3 \end{pmatrix}$	$\begin{pmatrix} -5 \\ -9 \\ 7 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$
30	$\begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 5 \\ -5 \end{pmatrix}$	$\begin{pmatrix} -5\\ -11\\ 15 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$	$\begin{pmatrix} -1\\2\\-3 \end{pmatrix}$	$\begin{pmatrix} 3 \\ -4 \\ 8 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$

3. Найти размерность и базис каждого из подпространств A , B , их алгебраической суммы A+B и пересечения $A\cap B$, если подпространство A задано линейной оболочкой

своих образующих $\pmb{A} = Lin(a_1, a_2, a_3, a_4)$, а подпространство \pmb{B} — системой уравнений $\pmb{B} \pmb{x} = 0$. Образующие a_1, a_2, a_3, a_4 и матрица \pmb{B} системы уравнений приведены в таблице 3.

Таблица 3.

P	~	a	a	a	Таолица 3.
Bap.	a_1	a_2	a_3	a_4	В
1	$ \begin{pmatrix} -1 \\ 0 \\ -3 \\ 2 \end{pmatrix} $	$ \begin{pmatrix} 5 \\ 9 \\ 0 \\ -7 \end{pmatrix} $	$\begin{pmatrix} 3 \\ 9 \\ -6 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 3 \\ 6 \\ 1 \\ -4 \end{pmatrix}$	$\begin{pmatrix} 1 & -1 & -2 & -1 \\ 3 & -3 & -3 & -2 \\ 2 & -2 & -1 & -1 \end{pmatrix}$
2	$\begin{pmatrix} -2\\9\\7\\3 \end{pmatrix}$	$\begin{pmatrix} -4\\1\\1\\5 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 8 \\ 6 \\ -2 \end{pmatrix}$	$ \begin{pmatrix} -3 \\ 5 \\ 6 \\ 4 \end{pmatrix} $	$ \begin{pmatrix} 1 & 2 & -2 & 3 \\ 3 & 2 & -5 & -4 \\ 5 & 6 & -9 & 2 \end{pmatrix} $
3	$\begin{pmatrix} 1 \\ -5 \\ -3 \\ 2 \end{pmatrix}$	$ \begin{pmatrix} -2 \\ 8 \\ 6 \\ -1 \end{pmatrix} $	$\begin{pmatrix} 0 \\ -2 \\ 0 \\ 3 \end{pmatrix}$	$\begin{pmatrix} -1\\3\\3\\2 \end{pmatrix}$	$\begin{pmatrix} -1 & 1 & -1 & 1 \\ 3 & -1 & 0 & -2 \\ 5 & -1 & -1 & -3 \end{pmatrix}$
4	$ \begin{pmatrix} -1 \\ 7 \\ -6 \\ -2 \end{pmatrix} $	$ \begin{pmatrix} 5 \\ -8 \\ 6 \\ -5 \end{pmatrix} $	$\begin{pmatrix} 3 \\ 6 \\ -6 \\ -9 \end{pmatrix}$	$\begin{pmatrix} 4 \\ 3 \\ 0 \\ -7 \end{pmatrix}$	$\begin{pmatrix} 1 & -2 & -3 & 0 \\ -4 & -1 & 1 & 1 \\ 3 & 3 & 2 & -1 \end{pmatrix}$
5	$\begin{pmatrix} -1 \\ 6 \\ 4 \\ -2 \end{pmatrix}$	$\begin{pmatrix} 5 \\ -6 \\ 7 \\ 7 \end{pmatrix}$	$\begin{pmatrix} 2 \\ -4 \\ 1 \\ 3 \end{pmatrix}$	$\begin{pmatrix} 3 \\ -2 \\ 4 \\ 4 \end{pmatrix}$	$\begin{pmatrix} -1 & 2 & 1 & 3 \\ 3 & 2 & -4 & 2 \\ 1 & 6 & -2 & 8 \end{pmatrix}$
6	$\begin{pmatrix} -1 \\ 5 \\ 2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -4\\8\\1\\3 \end{pmatrix}$	$\begin{pmatrix} -2 \\ -2 \\ -3 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 3 \\ -3 \\ 1 \\ 2 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 & 1 & 1 \\ 3 & 1 & -2 & 2 \\ -2 & 1 & 3 & -1 \end{pmatrix}$
	$\begin{pmatrix} -1\\4\\2\\-3 \end{pmatrix}$				
8	$\begin{pmatrix} -1\\3\\-2\\3 \end{pmatrix}$	$\begin{pmatrix} -1\\8\\-5\\5 \end{pmatrix}$	$\begin{pmatrix} -2\\1\\-1\\4 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 5 \\ -3 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 & 4 & 1 \\ 3 & 5 & 6 & 7 \\ -1 & -1 & 2 & -5 \end{pmatrix}$

9	$ \begin{pmatrix} -1 \\ 2 \\ -2 \\ 4 \end{pmatrix} $	$ \begin{pmatrix} -1 \\ 7 \\ -2 \\ 9 \end{pmatrix} $	$\begin{pmatrix} 1 \\ -2 \\ 0 \\ -4 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 3 \\ 4 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 & -1 & 0 \\ 2 & 3 & -1 & 1 \\ 3 & 4 & -1 & 2 \end{pmatrix}$
10	$\begin{pmatrix} -2\\1\\3\\-1 \end{pmatrix}$	$\begin{pmatrix} -5\\7\\7\\0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -5 \\ -1 \\ -2 \end{pmatrix}$	$\begin{pmatrix} -3 \\ 6 \\ 4 \\ 2 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 & -1 & 1 \\ -3 & 1 & -4 & 1 \\ 5 & -2 & 7 & -1 \end{pmatrix}$
11	$\begin{pmatrix} 3 \\ 0 \\ -2 \\ 1 \end{pmatrix}$	$ \begin{pmatrix} 7 \\ -4 \\ -8 \\ -3 \end{pmatrix} $	$\begin{pmatrix} 1 \\ -4 \\ -4 \\ -5 \end{pmatrix}$	$\begin{pmatrix} 2\\4\\2\\3 \end{pmatrix}$	$ \begin{pmatrix} 1 & -1 & 0 & 2 \\ -3 & 0 & -4 & 3 \\ 2 & 1 & 4 & -5 \end{pmatrix} $
12	(2) 9 1 4)	$ \begin{pmatrix} -3 \\ 2 \\ 3 \\ -1 \end{pmatrix} $	$\begin{pmatrix} 11 \\ 3 \\ -8 \\ 7 \end{pmatrix}$	$\begin{pmatrix} -1\\2\\4\\3 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 & -1 & -2 \\ -2 & -3 & 7 & 1 \\ 3 & 4 & -8 & -3 \end{pmatrix}$
13	(2) 8 1 7)	$\begin{pmatrix} 3 \\ 6 \\ -2 \\ 3 \end{pmatrix}$	$\begin{pmatrix} -1\\2\\3\\4 \end{pmatrix}$	$\begin{pmatrix} 4 \\ 4 \\ -5 \\ 2 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 & 0 & -1 \\ -3 & 1 & 1 & -1 \\ 2 & -2 & -1 & 2 \end{pmatrix}$
14		$\begin{pmatrix} 4 \\ 9 \\ -1 \\ 0 \end{pmatrix}$			$\begin{pmatrix} 1 & -1 & 5 & 4 \\ 4 & -5 & 3 & -3 \\ 3 & -4 & -2 & -7 \end{pmatrix}$
15	$\begin{pmatrix} 2 \\ 6 \\ -1 \\ -2 \end{pmatrix}$	$\begin{pmatrix} 0 \\ -2 \\ 3 \\ 4 \end{pmatrix}$	$\begin{pmatrix} -1 \\ -4 \\ 2 \\ 3 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 & 1 & -4 \\ 3 & -4 & 2 & 3 \\ 4 & -3 & 3 & -1 \end{pmatrix}$
16	(2) 5 1 1)	$ \begin{pmatrix} 4 \\ 8 \\ -1 \\ -3 \end{pmatrix} $	$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 5 \end{pmatrix}$		$\begin{pmatrix} -1 & 1 & -1 & 1 \\ 3 & -1 & 4 & -2 \\ 4 & -2 & 5 & -3 \end{pmatrix}$
17	$\begin{pmatrix} 1 \\ 4 \\ -1 \\ 2 \end{pmatrix}$	$\begin{pmatrix} -1\\9\\-4\\5 \end{pmatrix}$	$\begin{pmatrix} 5 \\ 7 \\ 0 \\ 3 \end{pmatrix}$	$\begin{pmatrix} 4 \\ 3 \\ 1 \\ 2 \end{pmatrix}$	$\begin{pmatrix} 1 & -1 & 0 & -1 \\ 5 & -4 & -1 & -6 \\ 3 & -2 & -1 & -4 \end{pmatrix}$

18	$\begin{pmatrix} 1 \\ 3 \\ 1 \\ -2 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 2 \\ 8 \\ -2 \end{pmatrix}$	$\begin{pmatrix} -1 \\ -2 \\ 3 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 5 \\ -2 \\ 0 \end{pmatrix}$	$\begin{pmatrix} -1 & -6 & -1 & 2 \\ 2 & 5 & 1 & 1 \\ 1 & -1 & 0 & 3 \end{pmatrix}$
19	$\begin{pmatrix} 2 \\ -1 \\ 3 \\ 2 \end{pmatrix}$	$\begin{pmatrix} 3 \\ 2 \\ 1 \\ -1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -4 \\ 5 \\ 5 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 3 \\ 2 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 1 & -2 & -1 & -1 \\ 3 & -1 & 6 & -4 \\ 2 & 1 & 7 & -3 \end{pmatrix}$
20	$ \begin{pmatrix} -1 \\ 0 \\ -3 \\ 2 \end{pmatrix} $	5 9 0 -7	$\begin{pmatrix} 3 \\ 9 \\ -6 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 3 \\ 6 \\ 1 \\ -4 \end{pmatrix}$	$\begin{pmatrix} 1 & -1 & -2 & -1 \\ 3 & -3 & -3 & -2 \\ 2 & -2 & -1 & -1 \end{pmatrix}$
21	$\begin{pmatrix} -2\\9\\7\\3 \end{pmatrix}$	$\begin{pmatrix} -4\\1\\1\\5 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 8 \\ 6 \\ -2 \end{pmatrix}$	$\begin{pmatrix} -3 \\ 5 \\ 6 \\ 4 \end{pmatrix}$	$ \begin{pmatrix} 1 & 2 & -2 & 3 \\ 3 & 2 & -5 & -4 \\ 5 & 6 & -9 & 2 \end{pmatrix} $
22	$\begin{pmatrix} 1 \\ -5 \\ -3 \\ 2 \end{pmatrix}$	$\begin{pmatrix} -2\\8\\6\\-1 \end{pmatrix}$	$\begin{pmatrix} 0 \\ -2 \\ 0 \\ 3 \end{pmatrix}$	$\begin{pmatrix} -1\\3\\3\\2 \end{pmatrix}$	$\begin{pmatrix} -1 & 1 & -1 & 1 \\ 3 & -1 & 0 & -2 \\ 5 & -1 & -1 & -3 \end{pmatrix}$
23				(4 3 0 -7)	$\begin{pmatrix} 1 & -2 & -3 & 0 \\ -4 & -1 & 1 & 1 \\ 3 & 3 & 2 & -1 \end{pmatrix}$
24	$\begin{pmatrix} -1 \\ 6 \\ 4 \\ -2 \end{pmatrix}$	$\begin{pmatrix} 5 \\ -6 \\ 7 \\ 7 \end{pmatrix}$	$\begin{pmatrix} 2 \\ -4 \\ 1 \\ 3 \end{pmatrix}$	$\begin{pmatrix} 3 \\ -2 \\ 4 \\ 4 \end{pmatrix}$	$\begin{pmatrix} -1 & 2 & 1 & 3 \\ 3 & 2 & -4 & 2 \\ 1 & 6 & -2 & 8 \end{pmatrix}$
25	1 (I <i>)</i>	$\begin{pmatrix} -4\\8\\1\\3 \end{pmatrix}$	(1)	$\begin{pmatrix} 3 \\ -3 \\ 1 \\ 2 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 & 1 & 1 \\ 3 & 1 & -2 & 2 \\ -2 & 1 & 3 & -1 \end{pmatrix}$
26	$ \begin{pmatrix} -1 \\ 4 \\ 2 \\ -3 \end{pmatrix} $	$\begin{pmatrix} 2 \\ -3 \\ 1 \\ 2 \end{pmatrix}$	$\begin{pmatrix} -1\\9\\7\\-7 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ 3 \\ 2 \end{pmatrix}$	$\begin{pmatrix} -1 & -1 & 1 & 1 \\ 2 & 1 & -2 & -3 \\ 3 & 2 & -3 & -4 \end{pmatrix}$

27	$\begin{pmatrix} -1\\3\\-2\\3 \end{pmatrix}$	$\begin{pmatrix} -1\\8\\-5\\5 \end{pmatrix}$	$\begin{pmatrix} -2\\1\\-1\\4 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 5 \\ -3 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 & 4 & 1 \\ 3 & 5 & 6 & 7 \\ -1 & -1 & 2 & -5 \end{pmatrix}$
28	$\begin{pmatrix} -1\\2\\-2\\4 \end{pmatrix}$	$\begin{pmatrix} -1\\7\\-2\\9 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -2 \\ 0 \\ -4 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 3 \\ 4 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 & -1 & 0 \\ 2 & 3 & -1 & 1 \\ 3 & 4 & -1 & 2 \end{pmatrix}$
29	$\begin{pmatrix} -2\\1\\3\\-1 \end{pmatrix}$	$\begin{pmatrix} -5\\7\\7\\0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -5 \\ -1 \\ -2 \end{pmatrix}$	$\begin{pmatrix} -3 \\ 6 \\ 4 \\ 2 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 & -1 & 1 \\ -3 & 1 & -4 & 1 \\ 5 & -2 & 7 & -1 \end{pmatrix}$
30	$\begin{pmatrix} 1 \\ -2 \\ 2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -3\\0\\1\\1 \end{pmatrix}$	$\begin{pmatrix} -4\\2\\-1\\0 \end{pmatrix}$	$\begin{pmatrix} 5 \\ 2 \\ -4 \\ -1 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 & -4 & 5 \\ 3 & 1 & 2 & 1 \\ 2 & 1 & -2 & 6 \end{pmatrix}$

4. Можно ли в векторных пространствах \mathbb{R}^2 (столбцов из двух действительных чисел) и P_2 (многочленов степени не выше второй) задать скалярное произведение формулами (1) или (2), приведенными в таблице 4? Если можно, то найти угол между первыми двумя векторами стандартного базиса.

Таблица 4.

Bap.	Пр-во	Формула (1)	Формула (2)
	\mathbb{R}^2	$(x,y) = x_1 y_1 - x_1 y_2 - x_2 y_1 + 3x_2 y_2$	$(x,y) = 2x_1y_1 + x_2y_2 + 1$
1	P_2	(p,q) = p(0)q(0) + p(1)q(1)	$(p,q) = \int_{-1}^{1} p(x)q(x)dx + p'(0)q'(0)$
	\mathbb{R}^2	$(x,y) = x_1 y_1 + x_1 y_2 + x_2 y_1 + x_2 y_2$	$(x,y) = 2x_1y_1 - x_1y_2 - x_2y_1 + x_2y_2$
2	P_2	$(p,q) = p(0)q(0) + p^{2}(1)q^{2}(1)$	$(p,q) = \int_{0}^{1} [p(x)q(x) + p'(x)q'(x)]dx$
	\mathbb{R}^2	$(x,y) = x_1 y_1 - x_1 y_2 - x_2 y_1 + 2x_2 y_2$	$(x, y) = x_1 y_1 - x_2 y_2$
3	P_2	(p,q) = p(0)q(0) + p(1)q(1) + 2p(2)q(2)	$(p,q) = \int_{0}^{1} [p(x)q(x) - p'(x)q'(x)]dx$

	\mathbb{R}^2	$(x,y) = 2x_1y_1 - 2x_1y_2 - 2x_2y_1 + 3x_2y_2$	$(x,y) = 2x_1y_1 - 2x_1y_2 - 2x_2y_1 + x_2y_2$
4	P ₂	(p,q) = p(0)q(0) + p'(1)q'(1)	$(p,q) = \int_{-1}^{1} [p(x)q(x) + p''(x)q''(x)]dx$
	\mathbb{R}^2	$(x,y) = x_1 y_1 + x_1 y_2 - x_2 y_1 + 3x_2 y_2$	$(x, y) = 2x_1y_1 + x_2y_2$
5	P ₂	(p,q) = p(1)q(1) + p'(1)q'(1) + p''(1)q''(1)	$(p,q) = \int_{0}^{1} [p'(x)q'(x) + p''(x)q''(x)]dx$
	\mathbb{R}^2	$(x,y) = -x_1y_1 + x_1y_2 + x_2y_1 + 2x_2y_2$	$(x, y) = 2x_1y_1 + x_1y_2 + x_2y_1 + 2x_2y_2$
6	P_2	(p,q) = p(1)q(1) - p'(1)q'(1) + p''(1)q''(1)	$(p,q) = \int_{0}^{1} [p(x)q(x) + 2p'(x)q'(x)]dx$
	\mathbb{R}^2	$(x,y) = x_1 y_1 + 2x_1 y_2 + 2x_2 y_1 + 5x_2 y_2$	$(x, y) = x_1 y_1 + x_1 y_2 + x_2 y_1$
7	P_2	(p,q) = p(0)q(0) + p(1)q(1) + p'(2)q'(2)	$(p,q) = \int_{-1}^{1} p(x)q'(x)dx$
	\mathbb{R}^2	$(x, y) = x_1 y_2 + x_2 y_1 + 2x_2 y_2$	$(x,y) = x_1 y_1 - 2x_1 y_2 - 2x_2 y_1 + 5x_2 y_2$
8	P_2	(p,q) = p(0)q(0) + p(1)q(1) + p''(1)q''(1)	$(p,q) = \int_{-1}^{1} p'(x)q''(x)dx$
	\mathbb{R}^2	$(x,y) = 5x_1y_1 - 2x_1y_2 - 2x_2y_1 + x_2y_2$	$(x,y) = 2x_1y_1 + x_2y_1 + x_2y_2$
9	P ₂	(p,q) = p'(0)q'(0) + p'(1)q'(1) + p(1)q(1)	$(p,q) = \int_{-1}^{1} p''(x)q''(x)dx$
	\mathbb{R}^2	$(x, y) = x_1 y_1 + x_1 y_2 + 2x_2 y_2$	$(x,y) = 5x_1y_1 + 2x_1y_2 + 2x_2y_1 + x_2y_2$
10	P_2	(p,q) = p(0)q(0) + p''(1)q''(1)	$(p,q) = \int_{-1}^{1} p(x)q(x)dx + p(0)q(0)$
	\mathbb{R}^2	$(x,y) = x_1 + y_1 + x_2 y_2$	$(x,y) = 3x_1y_1 - x_1y_2 - x_2y_1 + 2x_2y_2$
11	P ₂	(p,q) = p(0)q(0) + 2p(1)q(1) + p(2)q(2)	$(p,q) = \int_{-1}^{1} p'(x)q'(x)dx$
	\mathbb{R}^2	$(x,y) = 4x_1y_1 - x_1y_2 - x_2y_1 + x_2y_2$	$(x,y) = x_1 + y_1 + x_2y_2 $
12	P ₂	(p,q) = p'(0)q'(0) + p(1)q(1) - p(2)q(2)	$(p,q) = \int_{-1}^{1} p'(x)q'(x)dx + p(0)q(0)$

	\mathbb{R}^2	$(x,y) = x_1^2 + y_1^2 + x_2^2 + y_2^2$	$(x,y) = 4x_1y_1 + x_1y_2 + x_2y_1 + x_2y_2$
13	P ₂	(p,q) = p'(0)q'(0) + p(1)q(1) + p'(2)q'(2)	$(p,q) = \int_{-1}^{1} p''(x)q''(x)dx + p(0)q(0)$
	\mathbb{R}^2	$(x,y) = 4x_1y_1 - 2x_1y_2 - 2x_2y_1 + 2x_2y_2$	$(x,y) = x_1^2 y_1^2 + x_2^2 y_2^2$
14	P_2	(p,q) = p'(0)q'(0) + p''(1)q''(1)	$(p,q) = \int_{0}^{1} p'(x)q'(x)dx + 2p(0)q(0)$
1.5	\mathbb{R}^2	$(x,y) = x_1^2 y_1^2 + x_2 y_2$	$(x,y) = 4x_1y_1 + 2x_1y_2 + 2x_2y_1 + 2x_2y_2$
15	P_2	(p,q) = p''(0)q''(0) + p''(1)q''(1)	$(p,q) = \int_{0}^{1} p(x)q(x)dx + 2p(0)q(0)$
	\mathbb{R}^2	$(x,y) = x_1 y_1 - 2x_1 y_2 - 2x_2 y_1 + 5x_2 y_2$	$(x,y) = x_1 y_1 + 2x_2 y_2 + 1$
16	P ₂	(p,q) = p(1)q'(1) + p'(1)q(1)	$(p,q) = \int_{0}^{1} p(x)q(x)dx + p'(0)q'(0)$
	\mathbb{R}^2	$(x,y) = x_1 \cdot y_1 + x_2 y_2$	$(x,y) = x_1 y_1 + 2x_1 y_2 + 2x_2 y_1 + 5x_2 y_2$
17	P ₂	(p,q) = p(1)q(1) + p(1)q'(1) + p'(1)q(1)	$(p,q) = \int_{-1}^{1} p(x)q(x)dx + p''(0)q''(0)$
	\mathbb{R}^2	$(x,y) = 2x_1y_1 - 2x_1y_2 - 2x_2y_1 + 3x_2y_2$	$(x,y) = x_1 y_2 - x_2 y_1$
18	P ₂	(p,q) = p(0)q(0) + 2p(1)q(1) + 3p(2)q(2)	$(p,q) = \int_{-1}^{1} p'(x)q'(x)dx + p''(0)q''(0)$
40	\mathbb{R}^2	$(x,y) = x_1 y_1 + x_1 y_2 + x_2 y_1 - x_2 y_2$	$(x,y) = 2x_1y_1 + 2x_1y_2 + 2x_2y_1 + 3x_2y_2$
19	P ₂	(p,q) = p(1)q(1) + 2p(2)q(2) + 3p(3)q(3)	$(p,q) = \int_{-1}^{1} p(x)q(x)dx + p(-1)q(1)$
	\mathbb{R}^2	$(x, y) = x_1 y_1 - x_1 y_2 - x_2 y_1 + 3x_2 y_2$	$(x, y) = 2x_1y_1 + x_2y_2 + 1$
20	P ₂	(p,q) = p(0)q(0) + p(1)q(1)	$(p,q) = \int_{-1}^{1} p(x)q(x)dx + p'(0)q'(0)$
21	\mathbb{R}^2	$(x,y) = x_1 y_1 + x_1 y_2 + x_2 y_1 + x_2 y_2$	$(x,y) = 2x_1y_1 - x_1y_2 - x_2y_1 + x_2y_2$

	P_2	$(p,q) = p(0)q(0) + p^{2}(1)q^{2}(1)$	$(p,q) = \int_{0}^{1} [p(x)q(x) + p'(x)q'(x)]dx$	
	\mathbb{R}^2	$(x,y) = x_1 y_1 - x_1 y_2 - x_2 y_1 + 2x_2 y_2$	$(x, y) = x_1 y_1 - x_2 y_2$	
22	P_2	(p,q) = p(0)q(0) + p(1)q(1) + 2p(2)q(2)	$(p,q) = \int_{0}^{1} [p(x)q(x) - p'(x)q'(x)]dx$	
	\mathbb{R}^2	$(x,y) = 2x_1y_1 - 2x_1y_2 - 2x_2y_1 + 3x_2y_2$	$(x,y) = 2x_1y_1 - 2x_1y_2 - 2x_2y_1 + x_2y_2$	
23	P_2	(p,q) = p(0)q(0) + p'(1)q'(1)	$(p,q) = \int_{-1}^{1} [p(x)q(x) + p''(x)q''(x)]dx$	
	\mathbb{R}^2	$(x,y) = x_1 y_1 + x_1 y_2 - x_2 y_1 + 3x_2 y_2$	$(x,y) = 2x_1y_1 + x_2y_2$	
24	P ₂	(p,q) = p(1)q(1) + p'(1)q'(1) + p''(1)q''(1)	$(p,q) = \int_{0}^{1} [p'(x)q'(x) + p''(x)q''(x)]dx$	
	\mathbb{R}^2	$(x,y) = -x_1y_1 + x_1y_2 + x_2y_1 + 2x_2y_2$	$(x, y) = 2x_1y_1 + x_1y_2 + x_2y_1 + 2x_2y_2$	
25	P_2	(p,q) = p(1)q(1) - p'(1)q'(1) + p''(1)q''(1)	$(p,q) = \int_{0}^{1} [p(x)q(x) + 2p'(x)q'(x)]dx$	
	\mathbb{R}^2	$(x,y) = x_1 y_1 + 2x_1 y_2 + 2x_2 y_1 + 5x_2 y_2$	$(x, y) = x_1 y_1 + x_1 y_2 + x_2 y_1$	
26	P_2	(p,q) = p(0)q(0) + p(1)q(1) + p'(2)q'(2)	$(p,q) = \int_{-1}^{1} p(x)q'(x)dx$	
25	\mathbb{R}^2	$(x, y) = x_1 y_2 + x_2 y_1 + 2x_2 y_2$	$(x,y) = x_1 y_1 - 2x_1 y_2 - 2x_2 y_1 + 5x_2 y_2$	
27	P_2	(p,q) = p(0)q(0) + p(1)q(1) + p''(1)q''(1)	$(p,q) = \int_{-1}^{1} p'(x)q''(x)dx$	
	\mathbb{R}^2	$(x, y) = 5x_1y_1 - 2x_1y_2 - 2x_2y_1 + x_2y_2$	$(x,y) = 2x_1y_1 + x_2y_1 + x_2y_2$	
28	P ₂	(p,q) = p'(0)q'(0) + p'(1)q'(1) + p(1)q(1)	$(p,q) = \int_{-1}^{1} p''(x)q''(x)dx$	
29	\mathbb{R}^2	$(x, y) = x_1 y_1 + x_1 y_2 + 2x_2 y_2$	$(x,y) = 5x_1y_1 + 2x_1y_2 + 2x_2y_1 + x_2y_2$	

	P ₂	(p,q) = p(0)q(0) + p''(1)q''(1)	$(p,q) = \int_{-1}^{1} p(x)q(x)dx + p(0)q(0)$
	\mathbb{R}^2	$(x,y) = 3x_1y_1 - 2x_1y_2 - 2x_2y_1 + 2x_2y_2$	$(x,y) = x_1 y_1 - x_1 y_2 - x_2 y_1 - x_2 y_2$
20	P ₂	(p,q) = p'(1)q'(1) + p(1)q'(1) + p'(1)q(1)	$(p,q) = \int_{0}^{1} p(x)q(x)dx + 2p(0)q(0)$

5. Элементы a_1, a_2, a_3, a_4 евклидова пространства \mathbb{R}^4 со стандартным скалярным произведением $(x,y) = x^T y$ приведены в таблице 5. Применяя процесс ортогонализации к системе элементов a_1, a_2, a_3, a_4 , найти ортогональный базис подпространства $\mathbf{A} = Lin(a_1, a_2, a_3, a_4)$. Дополнить этот базис до ортогонального базиса всего пространства \mathbb{R}^4 .

Таблица 5.

Bap.	a_1	a_2	a_3	a_4	Bap.	a_1	a_2	a_3	a_4
1	$\begin{pmatrix} -2\\-1\\3\\1 \end{pmatrix}$	$\begin{pmatrix} -2\\-1\\6\\7 \end{pmatrix}$	$\begin{pmatrix} -3 \\ -4 \\ 3 \\ -4 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -2 \\ 3 \\ 6 \end{pmatrix}$	2	$\begin{pmatrix} 0 \\ -2 \\ -2 \\ -1 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 4 \\ 5 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 2 \\ 3 \\ -1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -2 \\ -3 \\ 1 \end{pmatrix}$
3	$\begin{pmatrix} 1 \\ -2 \\ 0 \\ 3 \end{pmatrix}$	$\begin{pmatrix} -4\\2\\0\\-2 \end{pmatrix}$	$\begin{pmatrix} -2 \\ -2 \\ 0 \\ 4 \end{pmatrix}$	(8) 3 4)	4	$\begin{pmatrix} -1 \\ -2 \\ -2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 5 \\ 4 \\ -2 \end{pmatrix}$	$\begin{pmatrix} -3 \\ -1 \\ -2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -3 \\ -1 \\ 3 \end{pmatrix}$
5	$\begin{pmatrix} 1 \\ 1 \\ -1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 2\\2\\-2\\1 \end{pmatrix}$	$\begin{pmatrix} 4 \\ -1 \\ 0 \\ -1 \end{pmatrix}$	$\begin{pmatrix} 4 \\ -1 \\ 0 \\ 1 \end{pmatrix}$	6	$\begin{pmatrix} -2 \\ -2 \\ 2 \\ 2 \end{pmatrix}$	5 4 -4 -3	$\begin{pmatrix} 2\\2\\-4\\0 \end{pmatrix}$	$\begin{pmatrix} -4 \\ -2 \\ 0 \\ 2 \end{pmatrix}$
7	$\begin{pmatrix} -1\\2\\1\\-1 \end{pmatrix}$	$\begin{pmatrix} -2 \\ 5 \\ 0 \\ -2 \end{pmatrix}$	$\begin{pmatrix} -1\\3\\4\\4 \end{pmatrix}$	$\begin{pmatrix} -1 \\ 5 \\ 0 \\ 4 \end{pmatrix}$	8	$\begin{pmatrix} -2\\3\\-1\\-1 \end{pmatrix}$	$\begin{pmatrix} 5 \\ -6 \\ 0 \\ 2 \end{pmatrix}$	$\begin{pmatrix} 7 \\ -2 \\ 1 \\ -6 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 4 \\ 3 \\ -8 \end{pmatrix}$

9	$\begin{pmatrix} -2\\1\\-2\\-1 \end{pmatrix}$	$\begin{pmatrix} -4\\2\\-3\\-4 \end{pmatrix}$	$ \begin{pmatrix} -2 \\ 6 \\ -1 \\ 2 \end{pmatrix} $	$\begin{pmatrix} -2 \\ 6 \\ 1 \\ -2 \end{pmatrix}$	10	$\begin{pmatrix} 0 \\ 2 \\ 2 \\ -2 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 5 \\ 5 \\ -2 \end{pmatrix}$	$ \begin{pmatrix} -1 \\ 2 \\ 0 \\ -4 \end{pmatrix} $	$\begin{pmatrix} -1\\4\\2\\0 \end{pmatrix}$
11	$\begin{pmatrix} -2\\-1\\3\\3\end{pmatrix}$	$\begin{pmatrix} -1\\3\\-6\\-9 \end{pmatrix}$	$\begin{pmatrix} -7\\0\\3\\0 \end{pmatrix}$	$\begin{pmatrix} 3 \\ 1 \\ 3 \\ 7 \end{pmatrix}$	12	$\begin{pmatrix} 0 \\ 3 \\ -1 \\ -2 \end{pmatrix}$	$\begin{pmatrix} 0 \\ -5 \\ 5 \\ 4 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -5 \\ 5 \\ -3 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -1 \\ -3 \\ -7 \end{pmatrix}$
13	$\begin{pmatrix} -2\\2\\1\\2 \end{pmatrix}$	$ \begin{pmatrix} 5 \\ -4 \\ -2 \\ -3 \end{pmatrix} $	$ \begin{pmatrix} 2 \\ -4 \\ -1 \\ 0 \end{pmatrix} $	$\begin{pmatrix} -4\\0\\1\\2 \end{pmatrix}$	14	$\begin{pmatrix} 1 \\ -1 \\ 2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -2\\3\\-4\\-1 \end{pmatrix}$	$\begin{pmatrix} -3\\1\\-2\\1 \end{pmatrix}$	$\begin{pmatrix} -1 \\ -3 \\ 2 \\ 1 \end{pmatrix}$
15	$\begin{pmatrix} 2\\1\\-2\\-1 \end{pmatrix}$	$\begin{pmatrix} -2\\1\\3\\1 \end{pmatrix}$	$\begin{pmatrix} 2\\3\\-1\\-1 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0 \\ -5 \\ 0 \end{pmatrix}$	16	$\begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 3 \\ -2 \\ 1 \\ 2 \end{pmatrix}$	$\begin{pmatrix} -1 \\ -2 \\ 1 \\ 2 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -2 \\ -1 \\ 2 \end{pmatrix}$
17	$\begin{pmatrix} 1 \\ -1 \\ 2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 2 \\ -1 \\ 1 \\ 2 \end{pmatrix}$	$\begin{pmatrix} 0 \\ -1 \\ 3 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 2\\4\\-3\\1 \end{pmatrix}$	18	$\begin{pmatrix} 2\\1\\-2\\1 \end{pmatrix}$	$ \begin{pmatrix} -3 \\ -2 \\ 4 \\ -4 \end{pmatrix} $	$\begin{pmatrix} 1 \\ 0 \\ 5 \\ -2 \end{pmatrix}$	$\begin{pmatrix} 3 \\ 2 \\ 1 \\ 4 \end{pmatrix}$
19	$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -1 \\ 1 \\ 4 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 3 \\ 1 \\ 3 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 2 \\ 0 \\ 2 \end{pmatrix}$	20	$\begin{pmatrix} -2\\-1\\3\\1 \end{pmatrix}$	$\begin{pmatrix} -2\\-1\\6\\7 \end{pmatrix}$	$\begin{pmatrix} -3 \\ -4 \\ 3 \\ -4 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -2 \\ 3 \\ 6 \end{pmatrix}$
21	$\begin{pmatrix} 0 \\ -2 \\ -2 \\ -1 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 4 \\ 5 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 2 \\ 3 \\ -1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -2 \\ -3 \\ 1 \end{pmatrix}$	22	$\begin{pmatrix} 1 \\ -2 \\ 0 \\ 3 \end{pmatrix}$	$\begin{pmatrix} -4\\2\\0\\-2 \end{pmatrix}$	$\begin{pmatrix} -2 \\ -2 \\ 0 \\ 4 \end{pmatrix}$	(8) 3 3 4)
23	$\begin{pmatrix} -1 \\ -2 \\ -2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 5 \\ 4 \\ -2 \end{pmatrix}$	$\begin{pmatrix} -3 \\ -1 \\ -2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -3 \\ -1 \\ 3 \end{pmatrix}$	24	$\begin{pmatrix} 1 \\ 1 \\ -1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 2\\2\\-2\\1 \end{pmatrix}$	$\begin{pmatrix} 4 \\ -1 \\ 0 \\ -1 \end{pmatrix}$	$\begin{pmatrix} 4 \\ -1 \\ 0 \\ 1 \end{pmatrix}$
25	$\begin{pmatrix} -2 \\ -2 \\ 2 \\ 2 \end{pmatrix}$	5 4 -4 -3	$\begin{pmatrix} 2 \\ 2 \\ -4 \\ 0 \end{pmatrix}$	$\begin{pmatrix} -4 \\ -2 \\ 0 \\ 2 \end{pmatrix}$	26	$\begin{pmatrix} -1\\2\\1\\-1 \end{pmatrix}$	$\begin{pmatrix} -2 \\ 5 \\ 0 \\ -2 \end{pmatrix}$	$\begin{pmatrix} -1\\3\\4\\4 \end{pmatrix}$	$\begin{pmatrix} -1 \\ 5 \\ 0 \\ 4 \end{pmatrix}$

27	$\begin{pmatrix} -2\\3\\-1\\-1 \end{pmatrix}$	$\begin{pmatrix} 5 \\ -6 \\ 0 \\ 2 \end{pmatrix}$	$\begin{pmatrix} 7 \\ -2 \\ 1 \\ -6 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 4 \\ 3 \\ -8 \end{pmatrix}$	28	$\begin{pmatrix} -2\\1\\-2\\-1 \end{pmatrix}$	$\begin{pmatrix} -4\\2\\-3\\-4 \end{pmatrix}$	$\begin{pmatrix} -2\\6\\-1\\2 \end{pmatrix}$	$\begin{pmatrix} -2 \\ 6 \\ 1 \\ -2 \end{pmatrix}$
29	$\begin{pmatrix} 0 \\ 2 \\ 2 \\ -2 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 5 \\ 5 \\ -2 \end{pmatrix}$	$\begin{pmatrix} -1\\2\\0\\-4 \end{pmatrix}$	$\begin{pmatrix} -1\\4\\2\\0 \end{pmatrix}$	30	$\begin{pmatrix} 1 \\ 2 \\ 2 \\ -1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ -5 \\ 3 \end{pmatrix}$	$\begin{pmatrix} 3 \\ 2 \\ 8 \\ -7 \end{pmatrix}$	$\begin{pmatrix} 4 \\ 2 \\ -4 \\ 0 \end{pmatrix}$

- **6.** В пространстве \mathbb{R}^4 со стандартным скалярным произведением $(x,y)=x^Ty$ заданы столбцы a_1,a_2,a_3 и подпространство \pmb{B} множество решений однородной системы Bx=0. Столбцы a_1,a_2,a_3 и матрица B приведены в таблице 6.Найти:
 - а) величину угла между вектором x (см. табл.6) и подпространством $Lin(a_1, a_2, a_3)$;
- б) ортогональную проекцию $b \in \pmb{B}$ вектора y (см. табл.6) на подпространство \pmb{B} и его ортогональную составляющую (перпендикуляр) $h \in \pmb{B}^\perp$ относительно подпространства \pmb{B} .

Таблица 6.

Bap.	a_1	a_2	a_3	x	В	у
1	$\begin{pmatrix} 0 \\ -1 \\ 2 \\ 2 \end{pmatrix}$	$\begin{pmatrix} -1\\0\\2\\1 \end{pmatrix}$	$\begin{pmatrix} 2\\-1\\-2\\0 \end{pmatrix}$	$\begin{pmatrix} -2\\-1\\3\\-2 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 & 2 & 2 \\ -1 & -4 & -2 & -6 \end{pmatrix}$	$\begin{pmatrix} -1\\3\\3\\4 \end{pmatrix}$
2	$\begin{pmatrix} 1 \\ 2 \\ 0 \\ 2 \end{pmatrix}$	$\begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 2 \end{pmatrix}$	$ \begin{pmatrix} -3 \\ -3 \\ 1 \\ -1 \end{pmatrix} $	$\begin{pmatrix} 1 & 2 & 3 & 4 \\ -3 & -2 & -1 & -4 \end{pmatrix}$	$\begin{pmatrix} -2 \\ -3 \\ 0 \\ -1 \end{pmatrix}$
3	$\begin{pmatrix} 2\\1\\-1\\-1 \end{pmatrix}$	$\begin{pmatrix} 2 \\ -1 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 2 \\ -3 \\ 1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -1\\1\\5\\1 \end{pmatrix}$	$\begin{pmatrix} 1 & -1 & -1 & -1 \\ 2 & 2 & 1 & -1 \end{pmatrix}$	$\begin{pmatrix} -5 \\ -1 \\ 1 \\ -1 \end{pmatrix}$
4	$\begin{pmatrix} 2 \\ 2 \\ -1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 3 \\ 2 \\ 0 \\ -2 \end{pmatrix}$	$\begin{pmatrix} 2\\4\\-4\\4 \end{pmatrix}$	$\begin{pmatrix} -1\\1\\1\\3 \end{pmatrix}$	$ \begin{pmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & -2 & -1 \end{pmatrix} $	$\begin{pmatrix} -1\\1\\5\\3 \end{pmatrix}$

5	$\begin{pmatrix} 2 \\ 1 \\ 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} -4 \\ -1 \\ -1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} -1 \\ -1 \\ -1 \\ 1 \end{pmatrix}$	$ \begin{pmatrix} 1 & -2 & 0 & -2 \\ 1 & -1 & 1 & -1 \end{pmatrix} $	$\begin{pmatrix} -2\\1\\-2\\3 \end{pmatrix}$
6	$\begin{pmatrix} 2 \\ 0 \\ -1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 2 \\ -1 \\ 1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 6 \\ -2 \\ 1 \\ 2 \end{pmatrix}$	$\begin{pmatrix} -1 \\ 5 \\ 1 \\ -1 \end{pmatrix}$	$ \begin{pmatrix} 2 & 1 & 2 & 1 \\ -2 & -1 & 0 & 1 \end{pmatrix} $	$\begin{pmatrix} 2 \\ 2 \\ -1 \\ 0 \end{pmatrix}$
7	$\begin{pmatrix} -1\\0\\2\\1 \end{pmatrix}$	$\begin{pmatrix} -1 \\ -1 \\ 4 \\ 3 \end{pmatrix}$	$\begin{pmatrix} 0 \\ -1 \\ 2 \\ 2 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 3 \\ 3 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 & -1 & 2 & -1 \\ 1 & 0 & 2 & 1 \end{pmatrix}$	$\begin{pmatrix} -3\\0\\-1\\-1 \end{pmatrix}$
8	$\begin{pmatrix} 2 \\ 0 \\ 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \\ 1 \\ -1 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 2 \\ 2 \\ -2 \end{pmatrix}$	$\begin{pmatrix} -2\\2\\0\\0\end{pmatrix}$	$\begin{pmatrix} 2 & -1 & -1 & 1 \\ 2 & 0 & 1 & -1 \end{pmatrix}$	$\begin{pmatrix} -4\\1\\1\\1\end{pmatrix}$
9	$\begin{pmatrix} 1 \\ 0 \\ 2 \\ -1 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 2 \\ 2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -2 \\ 0 \\ -2 \end{pmatrix}$	$\begin{pmatrix} -1 \\ -1 \\ 0 \\ -4 \end{pmatrix}$	$ \begin{pmatrix} 1 & 1 & -1 & 2 \\ 1 & 2 & -2 & 2 \end{pmatrix} $	$\begin{pmatrix} -1\\1\\1\\-2 \end{pmatrix}$
10	$\begin{pmatrix} 1 \\ 2 \\ 2 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 3 \\ 4 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 4 \\ 2 \\ 2 \\ 0 \end{pmatrix}$	$ \begin{pmatrix} 1 & -1 & 1 & 0 \\ 1 & 0 & -1 & -2 \end{pmatrix} $	$\begin{pmatrix} 0 \\ -3 \\ 0 \\ 3 \end{pmatrix}$
11	$\begin{pmatrix} 1 \\ 0 \\ 1 \\ -1 \end{pmatrix}$				$\begin{pmatrix} 1 & 0 & 1 & -1 \\ -1 & 2 & 1 & -1 \end{pmatrix}$	
12	$\begin{pmatrix} 1 \\ 2 \\ 2 \\ 0 \end{pmatrix}$				$ \begin{pmatrix} 2 & 1 & 1 & -1 \\ 2 & 0 & 1 & 0 \end{pmatrix} $	
13	$\begin{pmatrix} 1 \\ 2 \\ 0 \\ 2 \end{pmatrix}$	$\begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}$	$ \begin{pmatrix} 1 \\ 1 \\ 1 \\ 2 \end{pmatrix} $	$ \begin{array}{c c} \hline \begin{pmatrix} -3 \\ -3 \\ 1 \\ -1 \end{pmatrix} $	$ \begin{pmatrix} 1 & -2 & 1 & 0 \\ 1 & -1 & 2 & 2 \end{pmatrix} $	$\begin{pmatrix} -4 \\ -1 \\ 1 \\ 3 \end{pmatrix}$

14	$\begin{pmatrix} -1\\1\\1\\1\end{pmatrix}$	$\begin{pmatrix} 2 \\ 2 \\ 1 \\ -1 \end{pmatrix}$	$\begin{pmatrix} -2 \\ -2 \\ -1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -5 \\ -1 \\ 1 \\ -1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & -1 & -2 \\ 2 & -1 & -1 & -1 \end{pmatrix}$	$\begin{pmatrix} -1\\2\\2\\1 \end{pmatrix}$
15	$\begin{pmatrix} 2 \\ 0 \\ 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \\ 1 \\ -1 \end{pmatrix}$	$\begin{pmatrix} 2\\1\\2\\-1 \end{pmatrix}$	$\begin{pmatrix} -2\\2\\0\\0\end{pmatrix}$	$ \begin{pmatrix} 1 & 2 & 2 & 1 \\ 1 & -2 & 2 & -1 \end{pmatrix} $	$\begin{pmatrix} -3 \\ -2 \\ -1 \\ -1 \end{pmatrix}$
16	$\begin{pmatrix} 2 \\ 0 \\ -1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 2 \\ -1 \\ 1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 4 \\ -1 \\ 0 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -1 \\ 5 \\ 1 \\ -1 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 & 0 & 2 \\ -1 & -1 & -1 & -3 \end{pmatrix}$	$\begin{pmatrix} -1\\1\\3\\4 \end{pmatrix}$
17	$\begin{pmatrix} -1\\1\\1\\1\end{pmatrix}$	$\begin{pmatrix} 2 \\ 2 \\ 1 \\ -1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 3 \\ 2 \\ 0 \end{pmatrix}$	$\begin{pmatrix} -3\\1\\-3\\3 \end{pmatrix}$	$ \begin{pmatrix} 1 & 2 & -1 & 1 \\ 1 & 3 & 0 & 1 \end{pmatrix} $	$\begin{pmatrix} 0 \\ 4 \\ 1 \\ 2 \end{pmatrix}$
18	$\begin{pmatrix} 1 \\ 2 \\ 2 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 2\\3\\2\\-1 \end{pmatrix}$	$\begin{pmatrix} 4 \\ 2 \\ 2 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 2 & 1 \\ 1 & 0 & 1 & -1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \\ 3 \\ 3 \end{pmatrix}$
19	$\begin{pmatrix} 1 \\ 2 \\ 2 \\ -2 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 0 \\ 1 \\ -1 \end{pmatrix}$	$\begin{pmatrix} -1\\4\\1\\-1 \end{pmatrix}$	$\begin{pmatrix} -1 \\ -1 \\ 3 \\ -1 \end{pmatrix}$	$ \begin{pmatrix} 1 & 1 & 1 & -1 \\ 1 & -1 & 2 & 0 \end{pmatrix} $	$\begin{pmatrix} -1\\1\\5\\-1 \end{pmatrix}$
20	$\begin{pmatrix} 0 \\ -1 \\ 2 \\ 2 \end{pmatrix}$	$\begin{pmatrix} -1\\0\\2\\1 \end{pmatrix}$	$\begin{pmatrix} 2 \\ -1 \\ -2 \\ 0 \end{pmatrix}$	$\begin{pmatrix} -2\\-1\\3\\-2 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 & 2 & 2 \\ -1 & -4 & -2 & -6 \end{pmatrix}$	$\begin{pmatrix} -1\\3\\3\\4 \end{pmatrix}$
21	$\begin{pmatrix} 1 \\ 2 \\ 0 \\ 2 \end{pmatrix}$				$\begin{pmatrix} 1 & 2 & 3 & 4 \\ -3 & -2 & -1 & -4 \end{pmatrix}$	
22	$\begin{pmatrix} 2\\1\\-1\\-1 \end{pmatrix}$	$\begin{pmatrix} 2 \\ -1 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 2 \\ -3 \\ 1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -1\\1\\5\\1 \end{pmatrix}$	$\begin{pmatrix} 1 & -1 & -1 & -1 \\ 2 & 2 & 1 & -1 \end{pmatrix}$	$\begin{pmatrix} -5 \\ -1 \\ 1 \\ -1 \end{pmatrix}$

23	$\begin{pmatrix} 2 \\ 2 \\ -1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 3 \\ 2 \\ 0 \\ -2 \end{pmatrix}$	$\begin{pmatrix} 2\\4\\-4\\4 \end{pmatrix}$	$\begin{pmatrix} -1\\1\\1\\3 \end{pmatrix}$	$ \begin{pmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & -2 & -1 \end{pmatrix} $	$\begin{pmatrix} -1\\1\\5\\3 \end{pmatrix}$
24	$\begin{pmatrix} 2\\1\\1\\0 \end{pmatrix}$	$\begin{pmatrix} -1\\0\\0\\0\end{pmatrix}$	$\begin{pmatrix} -4 \\ -1 \\ -1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} -1 \\ -1 \\ -1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 & -2 & 0 & -2 \\ 1 & -1 & 1 & -1 \end{pmatrix}$	$\begin{pmatrix} -2\\1\\-2\\3 \end{pmatrix}$
25	$\begin{pmatrix} 2 \\ 0 \\ -1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 2 \\ -1 \\ 1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 6 \\ -2 \\ 1 \\ 2 \end{pmatrix}$	$\begin{pmatrix} -1 \\ 5 \\ 1 \\ -1 \end{pmatrix}$	$\begin{pmatrix} 2 & 1 & 2 & 1 \\ -2 & -1 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 2 \\ -1 \\ 0 \end{pmatrix}$
26	$\begin{pmatrix} -1\\0\\2\\1 \end{pmatrix}$	$\begin{pmatrix} -1 \\ -1 \\ 4 \\ 3 \end{pmatrix}$	$\begin{pmatrix} 0 \\ -1 \\ 2 \\ 2 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 3 \\ 3 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 & -1 & 2 & -1 \\ 1 & 0 & 2 & 1 \end{pmatrix}$	$\begin{pmatrix} -3\\0\\-1\\-1 \end{pmatrix}$
27	$\begin{pmatrix} 2 \\ 0 \\ 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \\ 1 \\ -1 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 2 \\ 2 \\ -2 \end{pmatrix}$	$\begin{pmatrix} -2\\2\\0\\0\end{pmatrix}$	$\begin{pmatrix} 2 & -1 & -1 & 1 \\ 2 & 0 & 1 & -1 \end{pmatrix}$	$\begin{pmatrix} -4\\1\\1\\1\end{pmatrix}$
28	$\begin{pmatrix} 1 \\ 0 \\ 2 \\ -1 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 2 \\ 2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -2 \\ 0 \\ -2 \end{pmatrix}$	$\begin{pmatrix} -1\\ -1\\ 0\\ -4 \end{pmatrix}$	$ \begin{pmatrix} 1 & 1 & -1 & 2 \\ 1 & 2 & -2 & 2 \end{pmatrix} $	$\begin{pmatrix} -1\\1\\1\\-2 \end{pmatrix}$
29	$\begin{pmatrix} 1 \\ 2 \\ 2 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 3 \\ 4 \\ 1 \end{pmatrix}$	(0)	$ \begin{pmatrix} 1 & -1 & 1 & 0 \\ 1 & 0 & -1 & -2 \end{pmatrix} $	(3)
30	$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 2\\1\\2\\1 \end{pmatrix}$	(4) 3 4 1)	$\begin{pmatrix} 3 \\ -1 \\ -2 \\ 4 \end{pmatrix}$	$ \begin{pmatrix} 1 & -1 & 1 & 0 \\ 2 & -1 & 3 & 1 \end{pmatrix} $	$\begin{pmatrix} -1 \\ -4 \\ 0 \\ -2 \end{pmatrix}$

^{7.} Отображение $\mathcal{A}: P_1 \to P_2$ пространства P_1 многочленов не выше первой степени с действительными коэффициентами в пространство P_2 многочленов не выше второй степени задано в таблице 7. Для отображения $\mathcal{A}:$

а) выяснить является ли оно инъективным, сюръективным, биективным, обратимым;

- б) доказать линейность;
- в) найти ядро, образ, дефект, ранг;
- г) составить матрицу отображения относительно стандартных базисов.

Таблица 7.

Bap.	Отображение	Bap.	Таблица 7. Отображение
1	$\mathcal{A}(p(x)) = 2\int_{0}^{x} tp'(t)dt + 3p(x)$	2	$\mathcal{A}(p(x)) = 4 \int_{0}^{x} p(t)dt - xp'(x)$
3	$\mathcal{A}(p(x)) = 4 \int_{0}^{x} tp'(t)dt + xp'(x)$	4	$\mathcal{A}(p(x)) = 2\int_{0}^{x} p(t)dt + 5xp(x)$
5	$\mathcal{A}(p(x)) = 6 \int_{0}^{x} tp'(t)dt - 2p(x)$	6	$\mathcal{A}(p(x)) = 6 \int_{0}^{x} p(t)dt - x^{2}p'(x)$
7	$\mathcal{A}(p(x)) = \int_{0}^{x} tp'(t)dt - x^{2}p'(x)$	8	$\mathcal{A}(p(x)) = 2\int_{0}^{x} p(t)dt + 3xp(x)$
9	$\mathcal{A}(p(x)) = 4 \int_{0}^{x} tp'(t)dt + p'(x)$	10	$\mathcal{A}(p(x)) = 4 \int_{0}^{x} p(t)dt - xp'(x)$
11	$\mathcal{A}(p(x)) = 6 \int_{0}^{x} tp'(t)dt + x^{2}p'(x)$	12	$\mathcal{A}(p(x)) = 2\int_{0}^{x} p(t)dt + xp(x)$
13	$\mathcal{A}(p(x)) = 4 \int_{0}^{x} tp'(t)dt - 3xp(x)$	14	$\mathcal{A}(p(x)) = 4 \int_{0}^{x} p(t)dt - x^{2}p'(x)$
15	$\mathcal{A}(p(x)) = 2\int_{0}^{x} tp'(t)dt + x^{2}p'(x)$	16	$\mathcal{A}(p(x)) = 6 \int_{0}^{x} p(t)dt - xp(x)$
17	$\mathcal{A}(p(x)) = 6 \int_{0}^{x} tp'(t)dt + 2xp(x)$	18	$\mathcal{A}(p(x)) = 4 \int_{0}^{x} p(t)dt + x^{2}p'(x)$
19	$\mathcal{A}(p(x)) = 4 \int_{0}^{x} tp'(t)dt + 3p'(x)$	20	$\mathcal{A}(p(x)) = 2\int_{0}^{x} tp'(t)dt + 3p(x)$
21	$\mathcal{A}(p(x)) = 4 \int_{0}^{x} p(t)dt - xp'(x)$	22	$\mathcal{A}(p(x)) = 4 \int_{0}^{x} tp'(t)dt + xp'(x)$

23	$\mathcal{A}(p(x)) = 2\int_{0}^{x} p(t)dt + 5xp(x)$	24	$\mathcal{A}(p(x)) = 6 \int_{0}^{x} tp'(t)dt - 2p(x)$
25	$\mathcal{A}(p(x)) = 6 \int_{0}^{x} p(t)dt - x^{2}p'(x)$	26	$\mathcal{A}(p(x)) = \int_{0}^{x} tp'(t)dt - x^{2}p'(x)$
27	$\mathcal{A}(p(x)) = 2\int_{0}^{x} p(t)dt + 3xp(x)$	28	$\mathcal{A}(p(x)) = 4 \int_{0}^{x} tp'(t)dt + p'(x)$
29	$\mathcal{A}(p(x)) = 4 \int_{0}^{x} p(t)dt - xp'(x)$	30	$\mathcal{A}(p(x)) = 2\int_{0}^{x} p(t)dt - 3xp(x)$

- **8.** Преобразование $\mathcal{A}: V_3 \to V_3$ пространства V_3 геометрических векторов задано в таблице 8. Для этого преобразования:
 - а) выяснить является ли оно инъективным, сюръективным, биективным, обратимым;
 - б) доказать линейность;
 - в) найти ядро, образ, дефект, ранг;
 - Γ) составить матрицу A преобразования относительно стандартного базиса.

Таблица 8.

Bap.	Преобразование					
1	Ортогональное проектирование на плоскость, содержащую векторы \bar{i} и \bar{j} .					
2	Зеркальное отражение в плоскости, содержащей векторы \bar{i} и \bar{j} .					
3	Поворот на угол $\frac{\pi}{2}$ вокруг оси, содержащей вектор \bar{i} в направлении от вектора					
	\bar{j} к вектору \bar{k} .					
4	Ортогональное проектирование на ось, содержащую вектор $\overline{i} + \overline{k}$.					
5	Зеркальное отражение в оси, содержащей вектор $\overline{i} + \overline{k}$.					
6	Ортогональное проектирование на плоскость, содержащую векторы $\bar{i} + \bar{k}$ и \bar{j} .					
7	Зеркальное отражение в плоскости, содержащей векторы $\overline{i} + \overline{k}$ и \overline{j} .					
8	Поворот на угол $\frac{\pi}{2}$ вокруг оси, содержащей вектор \bar{i} в направлении от вектора					
	\overline{k} к вектору \overline{j} .					
9	Ортогональное проектирование на ось, содержащую вектор $\bar{i} + \bar{j}$.					
10	Зеркальное отражение в оси, содержащей вектор $\bar{j} - \bar{k}$.					
11	Ортогональное проектирование на плоскость, содержащую векторы $\overline{i} - \overline{k}$ и \overline{j} .					
12	Зеркальное отражение в плоскости, содержащей векторы $\bar{i} - \bar{k}$ и \bar{j} .					
13	Поворот на угол $\frac{2\pi}{3}$ вокруг оси, содержащей вектор $\overline{i} + \overline{j} + \overline{k}$ в направлении от					
	вектора \bar{i} к вектору \bar{j} .					

$ar{k} - ar{j}$. векторы $ar{i} + ar{j}$ и $ar{k}$.
<u>і́и k</u> .
J .
в направлении от
$\overline{\overline{i}}-\overline{\overline{j}}$.
векторы \bar{i} и \bar{j} .
\bar{j} .
авлении от вектора
авлении от вектора
авлении от вектора $ar{i} + ar{k}$.
$\overline{i} + \overline{k}$.
$\overline{i}+\overline{k}$. векторы $\overline{i}+\overline{k}$ и \overline{j} .
$ar{i}+ar{k}$. векторы $ar{i}+ar{k}$ и $ar{j}$. $ar{k}$ и $ar{j}$.
$ar{i}+ar{k}$. векторы $ar{i}+ar{k}$ и $ar{j}$. $ar{k}$ и $ar{j}$.
$ar{i}+ar{k}$. векторы $ar{i}+ar{k}$ и $ar{j}$. $ar{k}$ и $ar{j}$. авлении от вектора
векторы \overline{i} и \overline{j}

- **9.** Преобразование $\mathcal{A}: V_3 \to V_3$ пространства V_3 геометрических векторов задано в таблице 8. Для этого преобразования:
 - а) найти собственные векторы и собственные значения;
 - б) определить алгебраическую и геометрическую кратности собственных значений;
 - в) указать одномерные и двумерные инвариантные подпространства.
- **10.** Линейные преобразования \mathcal{A} и \mathcal{B} в некотором базисе имеют соответственно матрицы A, B, приведенные в таблице 9. Найти жордановы нормальные формы J_A и J_B матриц этих преобразований, а также матрицы перехода S_A и S_B к жорданову базису. Выполнить проверку, используя равенства $S_AJ_A=AS_A$ и $S_BJ_B=BS_B$.

Таблица 9.

Bap.	A	В	Bap.	A	В
1	$ \begin{pmatrix} 7 & -4 & 4 \\ 7 & -4 & 7 \\ 3 & -3 & 6 \end{pmatrix} $	$ \begin{pmatrix} 4 & -1 & 1 \\ 3 & -1 & 1 \\ -3 & -1 & 0 \end{pmatrix} $	2	$ \begin{pmatrix} 0 & -2 & 2 \\ 3 & -5 & 3 \\ 1 & -1 & -1 \end{pmatrix} $	$ \begin{pmatrix} -5 & 1 & 5 \\ 3 & -2 & -4 \\ -4 & 1 & 4 \end{pmatrix} $
3	$ \begin{pmatrix} 4 & 2 & 3 \\ 1 & 3 & -3 \\ -1 & 2 & 8 \end{pmatrix} $	$ \begin{pmatrix} 1 & 3 & -1 \\ -1 & -2 & 1 \\ -1 & -1 & 1 \end{pmatrix} $	4	$ \begin{pmatrix} 2 & -4 & 4 \\ 7 & -9 & 7 \\ 3 & -3 & 1 \end{pmatrix} $	$ \begin{pmatrix} -3 & 3 & 2 \\ -1 & 2 & 3 \\ 1 & -4 & -5 \end{pmatrix} $
5	$ \begin{pmatrix} -3 & -2 & 2 \\ 3 & -8 & 3 \\ 1 & -1 & -4 \end{pmatrix} $	$ \begin{pmatrix} 4 & 4 & 1 \\ -1 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix} $	6	$ \begin{pmatrix} 2 & 2 & 3 \\ 1 & 1 & -3 \\ -1 & 2 & 6 \end{pmatrix} $	$ \begin{pmatrix} 3 & 2 & 1 \\ -1 & -1 & 0 \\ -5 & -3 & -2 \end{pmatrix} $
7	$ \begin{pmatrix} -6 & 2 & 3 \\ 1 & -7 & -3 \\ -1 & 2 & -2 \end{pmatrix} $	$ \begin{pmatrix} 5 & -4 & -5 \\ 3 & -2 & -4 \\ 1 & -1 & 0 \end{pmatrix} $	8	$ \begin{pmatrix} -3 & 7 & 7 \\ -3 & 7 & 3 \\ -4 & 4 & 8 \end{pmatrix} $	$ \begin{pmatrix} 1 & -1 & 2 \\ 1 & -2 & 1 \\ -1 & 0 & -2 \end{pmatrix} $
9			10	$ \begin{pmatrix} 5 & -8 & 4 \\ 1 & -1 & 2 \\ 1 & -4 & 5 \end{pmatrix} $	$ \begin{pmatrix} -1 & 2 & 1 \\ -2 & 2 & 1 \\ -2 & 3 & 2 \end{pmatrix} $
11	$ \begin{pmatrix} -3 & 1 & -1 \\ 2 & -2 & -2 \\ 3 & 3 & -7 \end{pmatrix} $	$ \begin{pmatrix} 0 & 1 & -3 \\ 1 & -1 & -2 \\ 0 & 1 & -2 \end{pmatrix} $	12	$ \begin{pmatrix} -2 & 7 & 7 \\ -3 & 8 & 3 \\ -4 & 4 & 9 \end{pmatrix} $	$ \begin{pmatrix} -2 & 1 & -1 \\ -3 & 0 & 4 \\ 1 & 0 & -4 \end{pmatrix} $
13	$ \begin{pmatrix} 7 & -8 & 4 \\ 1 & 1 & 2 \\ 1 & -4 & 7 \end{pmatrix} $	$ \begin{pmatrix} -8 & 5 & 9 \\ -3 & 1 & 4 \\ -4 & 3 & 4 \end{pmatrix} $	14	$ \begin{pmatrix} 4 & 1 & -4 \\ 4 & 4 & -8 \\ 2 & 1 & -2 \end{pmatrix} $	$ \begin{pmatrix} 5 & 4 & -3 \\ 0 & 1 & 1 \\ 1 & -1 & 3 \end{pmatrix} $
15		$ \begin{pmatrix} -3 & 9 & 5 \\ -4 & 9 & 3 \\ -3 & 4 & 6 \end{pmatrix} $	16	$ \begin{pmatrix} 1 & 3 & -3 \\ 4 & 2 & -4 \\ 7 & 7 & -9 \end{pmatrix} $	$ \begin{pmatrix} -3 & -3 & 4 \\ 1 & -5 & -1 \\ 0 & 1 & -7 \end{pmatrix} $
17	$ \begin{pmatrix} 5 & 1 & -4 \\ 4 & 5 & -8 \\ 2 & 1 & -1 \end{pmatrix} $	$ \begin{pmatrix} 4 & -4 & 3 \\ 9 & -8 & 5 \\ 4 & -3 & 1 \end{pmatrix} $	18	$ \begin{bmatrix} -2 & -2 & 2 \\ 3 & -7 & 3 \\ 1 & -1 & -3 \end{bmatrix} $	$ \begin{pmatrix} -5 & 5 & 9 \\ -3 & 4 & 4 \\ -4 & 3 & 7 \end{pmatrix} $
		$ \begin{pmatrix} 4 & 1 & -1 \\ -2 & 4 & 5 \\ 1 & 0 & 1 \end{pmatrix} $			
21	$ \begin{pmatrix} 0 & -2 & 2 \\ 3 & -5 & 3 \\ 1 & -1 & -1 \end{pmatrix} $	$ \begin{pmatrix} -5 & 1 & 5 \\ 3 & -2 & -4 \\ -4 & 1 & 4 \end{pmatrix} $	22	$ \begin{pmatrix} 4 & 2 & 3 \\ 1 & 3 & -3 \\ -1 & 2 & 8 \end{pmatrix} $	$ \begin{pmatrix} 1 & 3 & -1 \\ -1 & -2 & 1 \\ -1 & -1 & 1 \end{pmatrix} $

				$ \begin{bmatrix} -3 & -2 & 2 \\ 3 & -8 & 3 \\ 1 & -1 & -4 \end{bmatrix} $	
				$ \begin{pmatrix} -6 & 2 & 3 \\ 1 & -7 & -3 \\ -1 & 2 & -2 \end{pmatrix} $	
27	$ \begin{pmatrix} -3 & 7 & 7 \\ -3 & 7 & 3 \\ -4 & 4 & 8 \end{pmatrix} $	$ \begin{pmatrix} 1 & -1 & 2 \\ 1 & -2 & 1 \\ -1 & 0 & -2 \end{pmatrix} $	28	$ \begin{pmatrix} -1 & -2 & 2 \\ 3 & -6 & 3 \\ 1 & -1 & -2 \end{pmatrix} $	$ \begin{pmatrix} -2 & 1 & 1 \\ -1 & -1 & 1 \\ -1 & 1 & 0 \end{pmatrix} $
29	$ \begin{pmatrix} 5 & -8 & 4 \\ 1 & -1 & 2 \\ 1 & -4 & 5 \end{pmatrix} $	$ \begin{pmatrix} -1 & 2 & 1 \\ -2 & 2 & 1 \\ -2 & 3 & 2 \end{pmatrix} $	30	$ \begin{pmatrix} 7 & 3 & -3 \\ 4 & 8 & -4 \\ 7 & 7 & -3 \end{pmatrix} $	$ \begin{array}{ c c c c c } \hline (1 & -3 & 3 \\ -2 & -6 & 13 \\ -1 & -4 & 8 \end{array} $

- **11.** Найти степень A^{20} матрицы, заданной в таблице 10, двумя способами:
- а) приводя матрицу к жордановой нормальной форме;
- б) используя характеристический многочлен матрицы как аннулирующий.

Таблица 10.

Bap.	A	Bap.	A	Bap.	A	Bap.	A	Bap.	А
1	$\begin{pmatrix} 8 & -4 \\ 1 & 12 \end{pmatrix}$	2	$\begin{pmatrix} 1 & 2 \\ -8 & 9 \end{pmatrix}$	3	$\begin{pmatrix} -1 & 1 \\ -4 & 3 \end{pmatrix}$	4	$ \begin{pmatrix} -2 & -1 \\ 4 & -6 \end{pmatrix} $	5	$\begin{pmatrix} -2 & 2 \\ -8 & 6 \end{pmatrix}$
6	$\begin{pmatrix} -3 & 1 \\ -4 & 1 \end{pmatrix}$	7	$ \begin{pmatrix} -4 & 1 \\ -4 & 0 \end{pmatrix} $	8	$ \begin{pmatrix} 2 & -3 \\ 12 & -10 \end{pmatrix} $	9	$\begin{pmatrix} 2 & 1 \\ -4 & 6 \end{pmatrix}$	10	$\begin{pmatrix} -3 & -1 \\ 4 & -7 \end{pmatrix}$
11	$\begin{pmatrix} -9 & -1 \\ 1 & -11 \end{pmatrix}$	12	$ \begin{pmatrix} 2 & -2 \\ 6 & -8 \end{pmatrix} $	13	$ \begin{pmatrix} 5 & -2 \\ 8 & -3 \end{pmatrix} $	14	$\begin{pmatrix} 12 & -1 \\ 4 & 8 \end{pmatrix}$	15	$\begin{pmatrix} 3 & -2 \\ 8 & -5 \end{pmatrix}$
16	$\begin{pmatrix} 2 & -2 \\ 8 & -6 \end{pmatrix}$	17	$ \begin{pmatrix} -7 & -2 \\ 2 & -3 \end{pmatrix} $	18	$ \begin{pmatrix} -6 & 1 \\ -4 & -2 \end{pmatrix} $	19	$ \begin{pmatrix} 8 & -2 \\ 8 & 0 \end{pmatrix} $	20	$\begin{pmatrix} 8 & -4 \\ 1 & 12 \end{pmatrix}$
21	$\begin{pmatrix} 1 & 2 \\ -8 & 9 \end{pmatrix}$	22	$ \begin{pmatrix} -1 & 1 \\ -4 & 3 \end{pmatrix} $	23	$ \begin{pmatrix} -2 & -1 \\ 4 & -6 \end{pmatrix} $	24	$ \begin{pmatrix} -2 & 2 \\ -8 & 6 \end{pmatrix} $	25	$ \begin{pmatrix} -3 & 1 \\ -4 & 1 \end{pmatrix} $
26	$\begin{pmatrix} -4 & 1 \\ -4 & 0 \end{pmatrix}$	27		28	$\begin{pmatrix} 2 & 1 \\ -4 & 6 \end{pmatrix}$	29	$\begin{pmatrix} -3 & -1 \\ 4 & -7 \end{pmatrix}$	30	$\begin{pmatrix} 9 & -2 \\ 8 & 1 \end{pmatrix}$

12. Ортогональное преобразование $\mathcal A$ и самосопряженное преобразование $\mathcal B$ пространства геометрических векторов V_3 в ортонормированном базисе $\overline i$, $\overline j$, $\overline k$ имеют соответственно

матрицы A и B, приведенные в таблице 11. Каждое преобразование привести к каноническому виду, т.е. найти ортонормированный базис \overline{s}_1 , \overline{s}_2 , \overline{s}_3 , в котором матрица преобразования имеет канонический вид (8.1) или (8.2), и найти эту матрицу. Выяснить геометрический смысл каждого преобразования.

Таблица 11.

Den	4	D	Don	4	Таблица 11.
Bap.	A	В	Bap.	A	В
1	$\frac{1}{3} \begin{pmatrix} 2 & -1 & 2 \\ 2 & 2 & -1 \\ -1 & 2 & 2 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix}$	2	$ \begin{array}{ c c c c c } \hline \frac{1}{27} \begin{pmatrix} 2 & 25 & 10 \\ 10 & -10 & 23 \\ 25 & 2 & -10 \end{pmatrix} $	$ \begin{pmatrix} 1 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix} $
3	$\frac{1}{9} \begin{pmatrix} 1 & 8 & 4 \\ 4 & -4 & 7 \\ 8 & 1 & -4 \end{pmatrix}$	$ \begin{pmatrix} -1 & 2 & -2 \\ 2 & 2 & 1 \\ -2 & 1 & 2 \end{pmatrix} $	4	$ \frac{1}{11} \begin{pmatrix} 6 & 2 & 9 \\ -6 & 9 & 2 \\ 7 & 6 & -6 \end{pmatrix} $	$ \begin{pmatrix} 2 & 1 & 2 \\ 1 & 2 & 2 \\ 2 & 2 & 5 \end{pmatrix} $
5	$\frac{1}{19} \begin{pmatrix} 1 & 18 & 6 \\ 6 & -6 & 17 \\ 18 & 1 & -6 \end{pmatrix}$	$ \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix} $	6	$ \frac{1}{3} \begin{pmatrix} 2 & 2 & -1 \\ 2 & -1 & 2 \\ -1 & 2 & 2 \end{pmatrix} $	$ \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix} $
7	$ \frac{1}{27} \begin{pmatrix} 25 & 2 & 10 \\ -10 & 10 & 23 \\ 2 & 25 & -10 \end{pmatrix} $	$ \begin{pmatrix} 1 & -2 & 2 \\ -2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix} $	8	$\frac{1}{9} \begin{pmatrix} 8 & 1 & 4 \\ -4 & 4 & 7 \\ 1 & 8 & -4 \end{pmatrix}$	$ \begin{pmatrix} 0 & -1 & -2 \\ -1 & 0 & 2 \\ -2 & 2 & 3 \end{pmatrix} $
9	$ \frac{1}{11} \begin{pmatrix} 2 & 6 & 9 \\ 9 & -6 & 2 \\ 6 & 7 & -6 \end{pmatrix} $	$ \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} $	10	$ \frac{1}{19} \begin{pmatrix} 18 & 1 & 6 \\ -6 & 6 & 17 \\ 1 & 18 & -6 \end{pmatrix} $	$ \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix} $
11	$\frac{1}{3} \begin{pmatrix} 2 & 2 & -1 \\ -1 & 2 & 2 \\ 2 & -1 & 2 \end{pmatrix}$	$ \begin{pmatrix} 4 & -2 & 2 \\ -2 & 4 & 2 \\ 2 & 2 & 4 \end{pmatrix} $	12	$ \begin{array}{c cccc} \hline & 1 & 25 & 2 \\ \hline & 27 & 23 & -10 & 10 \\ & -10 & 2 & 25 \end{array} $	$ \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} $
1				$ \frac{1}{11} \begin{pmatrix} 9 & 2 & 6 \\ 2 & 9 & -6 \\ -6 & 6 & 7 \end{pmatrix} $	
15	$\frac{1}{19} \begin{pmatrix} 6 & 18 & 1 \\ 17 & -6 & 6 \\ -6 & 1 & 18 \end{pmatrix}$	$ \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix} $	16	$ \frac{1}{27} \begin{pmatrix} 10 & 2 & 25 \\ 23 & 10 & -10 \\ -10 & 25 & 2 \end{pmatrix} $	$ \begin{pmatrix} 1 & -1 & -2 \\ -1 & 1 & 2 \\ -2 & 2 & 4 \end{pmatrix} $
17	$\frac{1}{9} \begin{pmatrix} 4 & 8 & 1 \\ 7 & -4 & 4 \\ -4 & 1 & 8 \end{pmatrix}$	$ \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & 1 \\ -2 & 1 & 5 \end{pmatrix} $	18	$ \frac{1}{11} \begin{pmatrix} 2 & 9 & -6 \\ -6 & 6 & 7 \\ 9 & 2 & 6 \end{pmatrix} $	$ \begin{pmatrix} 3 & -2 & 2 \\ -2 & 3 & 2 \\ 2 & 2 & 3 \end{pmatrix} $

13. Преобразование пространства геометрических векторов V_2 задано в таблице 12. Выяснить геометрический смысл сопряженного преобразования, найти его инвариантные подпространства и матрицу в стандартном базисе \overline{i} , \overline{j} .

Таблица 12.

Bap.	Преобразование
1	Проектирование на $L_1 = Lin(\overline{i} + \overline{j})$ параллельно $L_2 = Lin(\overline{i} - 2\overline{j})$.
2	Отражение в $L_1 = Lin(\overline{i} - \overline{j})$ параллельно $L_2 = Lin(\overline{i} + 2\overline{j})$.
3	Проектирование на $L_1 = Lin(\overline{i} - \overline{j})$ параллельно $L_2 = Lin(2\overline{i} + \overline{j})$.
4	Отражение в $L_1 = Lin(\bar{i} + \bar{j})$ параллельно $L_2 = Lin(2\bar{i} - \bar{j})$.
5	Проектирование на $L_1 = Lin(\overline{i} + 2\overline{j})$ параллельно $L_2 = Lin(\overline{i} - \overline{j})$.
6	Отражение в $L_1 = Lin(\overline{i} - 2\overline{j})$ параллельно $L_2 = Lin(\overline{i} + \overline{j})$.
7	Проектирование на $L_1 = Lin(2\overline{i} + \overline{j})$ параллельно $L_2 = Lin(\overline{i} - \overline{j})$.

8	Отражение в $L_1 = Lin(2\overline{i} + \overline{j})$ параллельно $L_2 = Lin(\overline{i} + \overline{j})$.
9	Проектирование на $L_1 = Lin(\bar{i} + \bar{j})$ параллельно $L_2 = Lin(\bar{i} - 2\bar{j})$.
10	Отражение в $L_1 = Lin(\overline{i} + \overline{j})$ параллельно $L_2 = Lin(\overline{i} - 2\overline{j})$.
11	Проектирование на $L_1 = Lin(\bar{i} + 2\bar{j})$ параллельно $L_2 = Lin(\bar{i} + \bar{j})$.
12	Отражение в $L_1 = Lin(\overline{i} - 2\overline{j})$ параллельно $L_2 = Lin(\overline{i} + \overline{j})$.
13	Проектирование на $L_1 = Lin(3\overline{i} + \overline{j})$ параллельно $L_2 = Lin(\overline{i} - \overline{j})$.
14	Отражение в $L_1 = Lin(3\overline{i} - \overline{j})$ параллельно $L_2 = Lin(\overline{i} + \overline{j})$.
15	Проектирование на $L_1 = Lin(\bar{i} + 3\bar{j})$ параллельно $L_2 = Lin(\bar{i} - \bar{j})$.
16	Отражение в $L_1 = Lin(\overline{i} - 3\overline{j})$ параллельно $L_2 = Lin(\overline{i} + \overline{j})$.
17	Проектирование на $L_1 = Lin(\bar{i} + \bar{j})$ параллельно $L_2 = Lin(\bar{i} - 3\bar{j})$.
18	Отражение в $L_1 = Lin(\overline{i} - \overline{j})$ параллельно $L_2 = Lin(\overline{i} + 3\overline{j})$.
19	Проектирование на $L_1 = Lin(\bar{i} + \bar{j})$ параллельно $L_2 = Lin(3\bar{i} - \bar{j})$.
20	Проектирование на $L_1 = Lin(\bar{i} + \bar{j})$ параллельно $L_2 = Lin(\bar{i} - 2\bar{j})$.
21	Отражение в $L_1 = Lin(\overline{i} - \overline{j})$ параллельно $L_2 = Lin(\overline{i} + 2\overline{j})$.
22	Проектирование на $L_1 = Lin(\bar{i} - \bar{j})$ параллельно $L_2 = Lin(2\bar{i} + \bar{j})$.
23	Отражение в $L_1 = Lin(\overline{i} + \overline{j})$ параллельно $L_2 = Lin(2\overline{i} - \overline{j})$.
24	Проектирование на $L_1 = Lin(\overline{i} + 2\overline{j})$ параллельно $L_2 = Lin(\overline{i} - \overline{j})$.
25	Отражение в $L_1 = Lin(\overline{i} - 2\overline{j})$ параллельно $L_2 = Lin(\overline{i} + \overline{j})$.
26	Проектирование на $L_1 = Lin(2\overline{i} + \overline{j})$ параллельно $L_2 = Lin(\overline{i} - \overline{j})$.
27	Отражение в $L_1 = Lin(2\overline{i} + \overline{j})$ параллельно $L_2 = Lin(\overline{i} + \overline{j})$.
28	Проектирование на $L_1 = Lin(\overline{i} + \overline{j})$ параллельно $L_2 = Lin(\overline{i} - 2\overline{j})$.
29	Отражение в $L_1 = Lin(\overline{i} + \overline{j})$ параллельно $L_2 = Lin(\overline{i} - 2\overline{j})$.
30	Отражение в $L_1 = Lin(\overline{i} - \overline{j})$ параллельно $L_2 = Lin(3\overline{i} + \overline{j})$.

14. Преобразование $\mathcal{A}:V_2\to V_2$ пространства V_2 — геометрических векторов в стандартном базисе \overline{i} , \overline{j} имеет матрицу A, приведенную в таблице 13. Представить эту матрицу в виде произведения A=SQ неотрицательной симметрической матрицы S и ортогональной матрицы Q. Выяснить геометрический смысл преобразования A, рассматривая его как композицию A=SQ неотрицательного самосопряженного преобразования S (с матрицей S) и ортогонального преобразования S (с матрицей S) и ортогонального преобразования S

Таблица 13

_				_		_			юлица 13.
Bap.	A								
1		2	$ \begin{pmatrix} 8 & 4 \\ -1 & 4 \end{pmatrix} $	3	$ \begin{pmatrix} 6 & 5 \\ -4 & 6 \end{pmatrix} $	4	$ \begin{pmatrix} 6 & 4 \\ -1 & 6 \end{pmatrix} $	5	
6	$ \begin{pmatrix} 3 & 6 \\ 6 & -2 \end{pmatrix} $	7	$\begin{pmatrix} 6 & 6 \\ 1 & 6 \end{pmatrix}$	8	$ \begin{pmatrix} 3 & 7 \\ 1 & -3 \end{pmatrix} $	9	$ \begin{pmatrix} 8 & 4 \\ -4 & 7 \end{pmatrix} $	10	$ \begin{pmatrix} 6 & 7 \\ -2 & 6 \end{pmatrix} $
11	$ \begin{pmatrix} 1 & 6 \\ 6 & -4 \end{pmatrix} $	12	$\begin{pmatrix} 6 & 2 \\ -3 & 6 \end{pmatrix}$	13	$\begin{pmatrix} 9 & 4 \\ -4 & 6 \end{pmatrix}$	14	$\begin{pmatrix} 6 & 3 \\ -3 & 2 \end{pmatrix}$	15	$ \begin{pmatrix} 6 & 1 \\ -4 & 6 \end{pmatrix} $
16	$ \begin{pmatrix} 5 & 3 \\ -3 & 3 \end{pmatrix} $	17	$ \begin{pmatrix} 6 & 3 \\ -2 & 6 \end{pmatrix} $	18	$ \begin{pmatrix} 4 & -8 \\ 4 & 1 \end{pmatrix} $	19	$\begin{pmatrix} 4 & 4 \\ -2 & 4 \end{pmatrix}$	20	$\begin{pmatrix} 2 & -2 \\ 1 & 2 \end{pmatrix}$
21	$ \begin{pmatrix} 8 & 4 \\ -1 & 4 \end{pmatrix} $	22	$\begin{pmatrix} 6 & 5 \\ -4 & 6 \end{pmatrix}$	23	$\begin{pmatrix} 6 & 4 \\ -1 & 6 \end{pmatrix}$	24	$ \begin{pmatrix} 5 & 4 \\ -4 & 1 \end{pmatrix} $	25	
26	$\begin{pmatrix} 6 & 6 \\ 1 & 6 \end{pmatrix}$	27	$\begin{pmatrix} 3 & 7 \\ 1 & -3 \end{pmatrix}$	28	$\begin{pmatrix} 8 & 4 \\ -4 & 7 \end{pmatrix}$	29	$\begin{pmatrix} 6 & 7 \\ -2 & 6 \end{pmatrix}$	30	$ \begin{pmatrix} 7 & 3 \\ -3 & 1 \end{pmatrix} $

15. Найти ортогональную замену переменных x = Sy, приводящую квадратичную форму, заданную в таблице 14, к главным осям. В ответе указать канонический вид и матрицу S.

Таблица 14.

Bap.	Квадратичная форма	Bap.	Квадратичная форма
1	$x_1^2 + 4x_2^2 + 4x_3^2 - 4x_1x_2 + 4x_1x_3 + 2x_2x_3$	2	$2x_1^2 + 2x_2^2 + 2x_3^2 - 2x_1x_2 + 2x_1x_3 - 2x_2x_3$
3	$2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 + 2x_2x_3$	4	$x_1^2 + x_2^2 + x_3^2 - 4x_1x_2 + 4x_1x_3 - 4x_2x_3$
5	$x_1^2 + 2x_2^2 + 2x_3^2 + 4x_1x_2 - 4x_1x_3 + 2x_2x_3$	6	$-4x_1^2 - 4x_2^2 - x_3^2 + 8x_1x_2 - 4x_1x_3 + 4x_2x_3$
	$2x_1^2 + 2x_2^2 + 2x_3^2 - 2x_1x_2 - 2x_1x_3 - 2x_2x_3$	8	$x_1^2 + x_2^2 + 4x_3^2 - 2x_1x_2 - 4x_1x_3 + 4x_2x_3$
9	$2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 + 2x_2x_3$	10	$3x_1^2 + 3x_2^2 + 3x_3^2 - 4x_1x_2 + 4x_1x_3 + 4x_2x_3$
11	$x_1^2 + 4x_2^2 + 4x_3^2 - 4x_1x_2 - 4x_1x_3 - 2x_2x_3$	12	$x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + 2x_1x_3 - 2x_2x_3$

13	$x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 - 2x_1x_3 - 2x_2x_3$	14	$2x_1^2 + 2x_2^2 + 5x_3^2 + 2x_1x_2 + 4x_1x_3 + 4x_2x_3$
15	$2x_1^2 + 2x_2^2 + 2x_3^2 - 2x_1x_2 - 2x_1x_3 + 2x_2x_3$	16	$x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 - 2x_1x_3 + 2x_2x_3$
17	$2x_1^2 + 2x_2^2 + 2x_3^2 - 2x_1x_2 + 2x_1x_3 + 2x_2x_3$	18	$3x_1^2 + 3x_2^2 + 3x_3^2 - 2x_1x_2 + 2x_1x_3 + 2x_2x_3$
19	$5x_1^2 + 5x_2^2 + 8x_3^2 - 8x_1x_2 + 4x_1x_3 + 4x_2x_3$	20	$x_1^2 + 4x_2^2 + 4x_3^2 - 4x_1x_2 + 4x_1x_3 + 2x_2x_3$
21	$2x_1^2 + 2x_2^2 + 2x_3^2 - 2x_1x_2 + 2x_1x_3 - 2x_2x_3$	22	$2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 + 2x_2x_3$
23	$x_1^2 + x_2^2 + x_3^2 - 4x_1x_2 + 4x_1x_3 - 4x_2x_3$	24	$x_1^2 + 2x_2^2 + 2x_3^2 + 4x_1x_2 - 4x_1x_3 + 2x_2x_3$
25	$-4x_1^2 - 4x_2^2 - x_3^2 + 8x_1x_2 - 4x_1x_3 + 4x_2x_3$	26	$2x_1^2 + 2x_2^2 + 2x_3^2 - 2x_1x_2 - 2x_1x_3 - 2x_2x_3$
27	$x_1^2 + x_2^2 + 4x_3^2 - 2x_1x_2 - 4x_1x_3 + 4x_2x_3$	28	$2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 + 2x_2x_3$
29	$3x_1^2 + 3x_2^2 + 3x_3^2 - 4x_1x_2 + 4x_1x_3 + 4x_2x_3$	30	$x_1^2 + 2x_2^2 + 2x_3^2 - 2x_1x_2 + 2x_1x_3 - 2x_2x_3$

16. Найти линейную невырожденную замену переменных, приводящую одну из пары квадратичных форм, указанных в таблице 15, к каноническому виду, а другую – к нормальному. В ответе указать канонический вид и замену переменных.

Таблица 15.

Bap.	Квадратичные формы	
1	$14x^2 - 22xy + 8.5y^2$	$10x^2 - 14xy + 5y^2$
2	$36x^2 - 40xy + 11y^2$	$-13x^2 + 16xy - 5y^2$
3	$-25x^2 + 40xy - 16y^2$	$17x^2 - 26xy + 10y^2$
4	$-5.2x^2 + 2xy$	$-34x^2 + 26xy - 5y^2$
5	$-9.8x^2 + 28xy - 20y^2$	$2x^2 - 6xy + 5y^2$
6	$24x^2 - 20xy + 4y^2$	$-13x^2 + 10xy - 2y^2$
7	$-4x^2 + 8xy - 3y^2$	$5x^2 - 16xy + 13y^2$
8	$49x^2 - 28xy + 4y^2$	$-25x^2 + 14xy - 2y^2$
9	$-29x^2 + 34xy - 10y^2$	$29x^2 - 34xy + 10y^2$
10	$5x^2 - 2xy + 0.2y^2$	$-5x^2 + 6xy - 2y^2$
11	$-12x^2 - 20xy - 8y^2$	$10x^2 + 14xy + 5y^2$
12	$-51x^2 - 64xy - 20y^2$	$-13x^2 - 16xy - 5y^2$

13	$25x^2 + 40xy + 16y^2$	$17x^2 + 26xy + 10y^2$
14	$-26x^2 - 10xy$	$-34x^2 - 26xy - 5y^2$
15	$-0.2x^2 + 0.8xy - 0.8y^2$	$2x^2 + 6xy + 5y^2$
16	$-24x^2 + 20xy - 4y^2$	$-13x^2 + 10xy - 2y^2$
17	$-5x^2 + 16xy - 12y^2$	$5x^2 - 16xy + 13y^2$
18	$-49x^2 + 28xy - 4y^2$	$-25x^2 + 14xy - 2y^2$
19	$-24x^2 + 38xy - 14y^2$	$29x^2 - 34xy + 10y^2$
20	$14x^2 - 22xy + 8.5y^2$	$10x^2 - 14xy + 5y^2$
21	$36x^2 - 40xy + 11y^2$	$-13x^2 + 16xy - 5y^2$
22	$-25x^2 + 40xy - 16y^2$	$17x^2 - 26xy + 10y^2$
23	$-5.2x^2 + 2xy$	$-34x^2 + 26xy - 5y^2$
24	$-9.8x^2 + 28xy - 20y^2$	$2x^2 - 6xy + 5y^2$
25	$24x^2 - 20xy + 4y^2$	$-13x^2 + 10xy - 2y^2$
26	$-4x^2 + 8xy - 3y^2$	$5x^2 - 16xy + 13y^2$
27	$49x^2 - 28xy + 4y^2$	$-25x^2 + 14xy - 2y^2$
28	$-29x^2 + 34xy - 10y^2$	$29x^2 - 34xy + 10y^2$
29	$5x^2 - 2xy + 0.2y^2$	$-5x^2 + 6xy - 2y^2$
30	$0.8x^2 + 0.8xy + 0.2y^2$	$-5x^2 + 6xy - 2y^2$