SCALABLE EARTH OBSERVATION ANALYTICS WITH SCIDB

Marius Appel marius.appel@uni-muenster.de

LANDSAT 8

LC08_L1TP_196024 _20170826_201709 13_01_T1_ANG.txt

LC08_L1TP_196024 _20170826_201709 13 01 T1 B1.TIF

LC08_L1TP_196024 _20170826_201709 13 01 T1 B2.TIF

LC08_L1TP_196024 _20170826_201709 13 01 T1 B3.TIF

LC08_L1TP_196024 _20170826_201709 13_01_T1_B4.TIF

LC08_L1TP_196024 _20170826_201709 13_01_T1_B5.TIF

LC08_L1TP_196024 _20170826_201709 13_01_T1_B6.TIF

LC08_L1TP_196024 _20170826_201709 13_01_T1_B7.TIF

LC08_L1TP_196024 _20170826_201709 13_01_T1_B8.TIF

LC08_L1TP_196024 _20170826_201709 13_01_T1_B9.TIF

LC08_L1TP_196024 _20170826_201709 13_01_T1_B10.TIF

LC08_L1TP_196024 _20170826_201709 13_01_T1_B11.TIF

LC08_L1TP_196024 _20170826_201709 13_01_T1_BQA.TIF

LC08_L1TP_196024 _20170826_201709 13_01_T1_MTL.txt

Name	Änderungs	Тур	Größe
S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KFC_B01.jp2	14.05.2016	JP2-Datei	3.663 KB
S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KFC_B02.jp2	14.05.2016	JP2-Datei	119.141 KB
S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KFC_B03.jp2	14.05.2016	JP2-Datei	123.402 KB
S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KFC_B04.jp2	14.05.2016	JP2-Datei	129.554 KB
S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KFC_B05.jp2	14.05.2016	JP2-Datei	32.858 KB
S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KFC_B06.jp2	14.05.2016	JP2-Datei	32.773 KB
S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KFC_B07.jp2	14.05.2016	JP2-Datei	32.792 KB
S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KFC_B08.jp2	14.05.2016	JP2-Datei	129.694 KB
S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KFC_B8A.jp2	14.05.2016	JP2-Datei	32.999 KB
S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KFC_B09.jp2	14.05.2016	JP2-Datei	3.662 KB
S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KFC_B10.jp2	14.05.2016	JP2-Datei	2.281 KB
S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KFC_B11.jp2	14.05.2016	JP2-Datei	32.995 KB
S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KFC_B12.jp2	14.05.2016	JP2-Datei	32.927 KB

- EO image deployment is file-based
- GDAL interfaces EO imagery with GIS software
- Difficult to analyze large image collections due to
 - data volume
 - Irregularities
 - lack of time support in GDAL
- Higher-level data organization as an alternative to files?
 - Key requirement: scalability

SCIDB INTRODUCTION

- Array-based data management and analytical system [1]
- Relies on shared nothing architectures
- Open-source version available, extensible by UDFs
- Basic data representation as multidimensional arrays:
 - -n dimensions, m attributes with different data types

[1] Stonebraker, M., Brown, P., Zhang, D., & Becla, J. (2013). SciDB: A database management system for applications with complex analytics. Computing in Science & Engineering, 15(3), 54-62.

SCIDB ARCHITECTURE

Instance

6

Worker Node

Instance

Instance

Worker Node

SCIDB ARCHITECTURE

- arrays are divided into equally sized chunks
- chunks are distributed over many SciDB instances
- Size and shape of chunks are defined by users per array and have strong effects on computation times
- Storage is nearly sparse

QUERY LANGUAGE AND FUNCTIONALITY

- SciDB query language: Array Functional Language (AFL)
- Built in functionality:
 - Load / write arrays from / to files
 - Arithmetic operations
 - subsetting by dimensions, attributes, or values
 - Aggregations
 - Joins
 - Changing array schemas (repartitioning, redimensioning)
 - Linear algebra routines: (GEMM, GESVD, basic statistics)
 - **–** ...

EXTENSIONS FOR EO DATA

- scidb4geo (https://github.com/appelmar/scidb4geo)
 - SciDB plugin adds metadata and simple operations on spacetime referenced arrays
- scidb4gdal (https://github.com/appelmar/scidb4gdal)
 - ingest / download to / from GDAL supported files
 - spacetime mosaicing

- R package scidbst (https://github.com/flahn/scidbst)
 - mimics functionality of common packages on SciDB arrays

SCIDB CLIENTS

Low-level clients: iquery, Shim

- High-level R client (similar for Python)
 - overrides standard methods, e.g. %*%
 - make extensive use of proxy objects
 - lazy evaluation:
 - compute things when result is being read
 - ignore computations for unread parts of the results

SCIDB STREAMING

 Run external programs (e.g., R, python) within SciDB at chunk level parallelism

→ chunk size selection must be adapted to the analysis

STUDY CASE: LAND USE CHANGE MONITORING IN SOUTH WEST ETHIOPIA FROM LANDSAT 7 IMAGERY

- Landsat 7 data from 12 tiles captured between 2003-07-21 and 2014-12-27 → 1975 scenes
- approx. 325,000 km²
- monitor changes starting with 2010-01-01
- using R and Breaks For Additive Season and Trend and its R implementation [1]

EO DATA AS REGULAR ARRAYS

LANDSAT 7 IN SCIDB

Images form a single three-dimensional array with **daily temporal resolution** and

- 49548 x 47713 x 4177 cells in total
- Only 0.5% (54 \cdot 10⁹) of the cells contain data \rightarrow sparse storage

STUDY CASE IMPLEMENTATION

- 1. Ingestion using GDAL
- Preprocessing (with built-in SciDB functionality)
 - remove any values <= -9999 or >10000
 - compute NDVI vegetation index
 - Reorganize chunks such that one chunk stores complete time series of 64 x 64 pixels
- 3. Run R scripts on all chunks using streaming
- 4. Postprocessing (with built-in SciDB functionality)
 - Reshape one-dimensional result array to form a two-dimensional map
- 5. Export results using GDAL

STUDY CASE: RESULTS

STUDY CASE SCALABILITY

16 SciDB instances

running change analysis repeatedly with different number of available CPU cores

CONCLUSIONS

- The array model with chunking and sparse storage seems well-suited to represent large EO datasets from many scenes at a higher level than files
- Analyses scale well with available hardware
- Little reimplementation needed to scale complex time-series processing through streaming (and no need to care about parallelization / external memory)
- Installation and data ingestion not straightforward and time-consuming
- Mostly useful for re-analysis but not real-time processing
- Missing interactive(!) user interfaces (á la Google Earth Engine) to make the technology more accessible to end users?

THANK YOU

Questions?

Hands-on with SciDB tomorrow!

 Slides available at GitHub: https://github.com/appelmar/edcforum2017

• Contact marius.appel@uni-muenster.de