In [2]: import pandas as pd
 df=pd.read\_csv("D:\mokshith\data\_banknote\_authentication (1).csv")
 df

## Out[2]:

|      | variance | skewness  | curtosis | entropy  | class |
|------|----------|-----------|----------|----------|-------|
| 0    | 3.62160  | 8.66610   | -2.8073  | -0.44699 | 0     |
| 1    | 4.54590  | 8.16740   | -2.4586  | -1.46210 | 0     |
| 2    | 3.86600  | -2.63830  | 1.9242   | 0.10645  | 0     |
| 3    | 3.45660  | 9.52280   | -4.0112  | -3.59440 | 0     |
| 4    | 0.32924  | -4.45520  | 4.5718   | -0.98880 | 0     |
|      |          |           |          |          |       |
| 1367 | 0.40614  | 1.34920   | -1.4501  | -0.55949 | 1     |
| 1368 | -1.38870 | -4.87730  | 6.4774   | 0.34179  | 1     |
| 1369 | -3.75030 | -13.45860 | 17.5932  | -2.77710 | 1     |
| 1370 | -3.56370 | -8.38270  | 12.3930  | -1.28230 | 1     |
| 1371 | -2.54190 | -0.65804  | 2.6842   | 1.19520  | 1     |
|      |          |           |          |          |       |

1372 rows × 5 columns

```
In [3]: x=df.drop('class',axis=1)
x
```

## Out[3]:

|      | variance | skewness         | curtosis | entropy  |
|------|----------|------------------|----------|----------|
| 0    | 3.62160  | 8.66610          | -2.8073  | -0.44699 |
| 1    | 4.54590  | 8.16740          | -2.4586  | -1.46210 |
| 2    | 3.86600  | -2.63830         | 1.9242   | 0.10645  |
| 3    | 3.45660  | 9.52280          | -4.0112  | -3.59440 |
| 4    | 0.32924  | <b>-</b> 4.45520 | 4.5718   | -0.98880 |
|      |          |                  |          |          |
| 1367 | 0.40614  | 1.34920          | -1.4501  | -0.55949 |
| 1368 | -1.38870 | <b>-</b> 4.87730 | 6.4774   | 0.34179  |
| 1369 | -3.75030 | -13.45860        | 17.5932  | -2.77710 |
| 1370 | -3.56370 | -8.38270         | 12.3930  | -1.28230 |
| 1371 | -2.54190 | -0.65804         | 2.6842   | 1.19520  |

1372 rows × 4 columns

```
In [4]: y=df['class']
        У
Out[4]:
                0
        1
                0
        2
                0
        3
                0
                0
        1367
                1
        1368
                1
                1
        1369
        1370
                1
        1371
                1
        Name: class, Length: 1372, dtype: int64
        from sklearn.model_selection import train_test_split
In [5]:
        xtrain,xtest,ytrain, ytest=train_test_split(x,y,test_size =0.20,random_state=0
        print("xtrain shape : ", xtrain.shape)
        print("xtest shape : ", xtest.shape)
        print("ytrain shape : ", ytrain.shape)
        print("ytest shape : ", ytest.shape)
        xtrain shape : (1097, 4)
        xtest shape : (275, 4)
        ytrain shape :
                        (1097,)
        ytest shape : (275,)
In [6]: from sklearn.linear model import LogisticRegression
        model=LogisticRegression()
        model.fit(xtrain,ytrain)
Out[6]:
         LogisticRegression
         LogisticRegression()
In [7]: | test_prediction=model.predict(xtest)
        test_prediction
Out[7]: array([1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0,
               0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0,
               1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1,
               1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0,
               0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1,
               0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0,
               0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0,
               1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0,
               0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0,
               1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0,
               0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1,
               1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1,
               0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, dtype=int64)
```

```
BankNoteAunthentication1 - Jupyter Notebook
In [8]: | train_Acuracy=model.score(xtrain,ytrain)
         print('Train_Accuracy:',train_Acuracy)
         test_Acuracy=model.score(xtest,ytest)
         print('Test_Accuracy:',test_Acuracy)
         Train_Accuracy: 0.9899726526891522
         Test_Accuracy: 0.99272727272727
In [24]: from sklearn.metrics import classification report
         print(classification report(ytest,test prediction))
                                      recall f1-score
                        precision
                                                          support
                     0
                             1.00
                                        0.99
                                                  0.99
                                                              157
                     1
                             0.98
                                        1.00
                                                  0.99
                                                              118
                                                  0.99
                                                              275
              accuracy
             macro avg
                             0.99
                                        0.99
                                                  0.99
                                                              275
         weighted avg
                             0.99
                                        0.99
                                                  0.99
                                                              275
```

```
In [9]: from sklearn.ensemble import RandomForestClassifier
    regressor=RandomForestClassifier()
    regressor.fit(xtrain,ytrain)
```

```
Out[9]: RandomForestClassifier
RandomForestClassifier()
```

```
In [20]: test_prediction=model.predict(xtest)
    test_prediction
```

```
In [21]: train_Acuracy=model.score(xtrain,ytrain)
    print('Train_Accuracy:',train_Acuracy)
    test_Acuracy=model.score(xtest,ytest)
    print('Test_Accuracy:',test_Acuracy)
```

Train\_Accuracy: 0.9899726526891522 Test\_Accuracy: 0.9927272727272727

```
In [23]: | from sklearn.metrics import classification_report
         print(classification report(ytest,test prediction))
                       precision
                                     recall f1-score
                                                        support
                    0
                            1.00
                                       0.99
                                                 0.99
                                                            157
                            0.98
                                                 0.99
                    1
                                       1.00
                                                            118
                                                 0.99
                                                            275
             accuracy
                            0.99
                                       0.99
                                                 0.99
                                                            275
            macro avg
         weighted avg
                            0.99
                                       0.99
                                                 0.99
                                                            275
In [12]:
         from sklearn.metrics import accuracy score
         from sklearn.neural network import MLPClassifier
In [13]:
         ann model = MLPClassifier()
         ann_model.fit(xtrain, ytrain)
Out[13]:
          ▼ MLPClassifier
          MLPClassifier()
In [14]:
         ann predictions = ann model.predict(xtest)
         ann_predictions
Out[14]: array([1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0,
                0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0,
                1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1,
                1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0,
                0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1,
                0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0,
                0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0,
                1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0,
                0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0,
                1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0,
                0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1,
                1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1,
                0, 0, 1, 1, 0, 1, 1, 0, 1, 1], dtype=int64)
         ann accuracy = accuracy score(ytest, ann predictions)
In [15]:
         print("ANN Accuracy:", ann_accuracy)
         ANN Accuracy: 1.0
In [16]: | train_Acuracy=ann_model.score(xtrain,ytrain)
         print('Train_Accuracy:',train_Acuracy)
         test Acuracy=ann model.score(xtest,ytest)
         print('Test Accuracy:',test Acuracy)
         Train Accuracy: 1.0
```

Test Accuracy: 1.0

In [17]: from sklearn.metrics import classification\_report
 print(classification\_report(ytest,ann\_predictions))

```
precision
                             recall f1-score
                                                 support
            0
                    1.00
                               1.00
                                          1.00
                                                     157
            1
                    1.00
                               1.00
                                          1.00
                                                     118
                                          1.00
                                                     275
    accuracy
   macro avg
                    1.00
                               1.00
                                          1.00
                                                     275
weighted avg
                                          1.00
                                                     275
                    1.00
                               1.00
```

```
In [18]: import matplotlib.pyplot as plt
    x=0.9899726526891522
    y= 0.9899726526891522
    z=1.0
    accuracy_scores = [x,y,z]
    model_names = ['Logistic Regression', 'RandomForestClassifier','ANN']
    plt.bar(model_names, accuracy_scores)
    plt.xlabel('Regression Models')
    plt.ylabel('Train Accuracy')
    plt.title('Comparison of Train Accuracy: Logistic regression vs RandomForestClaplt.show()
```

## Comparison of Train Accuracy: Logistic regression vs RandomForestClassifier vs ANN



```
In [ ]:
```