Series de tiempo

Diplomado en Ciencia de Datos Dora Suárez

Serie de tiempo

Es una secuencia de valores, medidos en determinados momentos y ordenados de forma cronológica.

Las series de tiempo capturan información del mismo fenómeno en diferentes momentos de tiempo

Media móvil

Es el resultado del promedio de conjuntos de observaciones de forma agrupada, sirve para suavizar líneas de tendencia

Ej:
$$X = [1, 4, 9, 15, 22, 31]$$

Media móvil tamaño 2:

$$Y = [2.5, 6.5, 12, 18.5, 26.5]$$

Componentes de una serie de tiempo

Tendencia: Comportamiento general de la serie de tiempo

Estacionalidad: Comportamientos periódicos a corto plazo

Error: Comportamientos aleatorios

$$Y_t = T_t + S_t + \epsilon_t$$
 Componente Aleatoria

Componente Determinística

Componentes de una serie de tiempo

$$Y_t = T_t + S_t + \epsilon_t$$

Descripción de una serie de tiempo

- 1. Indicarle al software que la base de datos es de tipo temporal
- 2. Analizar los posibles ciclos existentes en la serie temporal
- Descomponer la serie en cada una de las partes (Tendencia, estacionalidad y error)

Transformaciones de una serie de tiempo

- 1. Estabilización de la varianza -> Logaritmo
- 2. Eliminación de la tendencia -> Primera diferencia finita $diff(x_t) = x_t x_{t-1}$
- 3. Eliminar la estacionalidad -> Doceava diferencia finita $diff(x_t) = x_t x_{t-12}$

Correlograma de una serie de tiempo

Permite conocer las posibles correlaciones temporales, es decir, la ocurrencia de los hechos de el momento t ¿cuántos momentos impacta adelante?

Modelaje de la tendencia

$$Y_t = T_t + S_t + \epsilon_t$$

Lineal
$$T_t = \beta_0 + \beta_1 t$$

Cuadrático

$$T_t = \beta_0 + \beta_1 t + \beta_2 t^2$$

Cubico

$$T_t = \beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 t^3$$

Exponencial

$$T_t = \exp(\beta_0 + \beta_1 t)$$

Logístico

$$T_t = \frac{\beta_2}{1 + \beta_1 \exp(-\beta_0 t)}$$

Series estacionarias y no estacionarias

Como hacer que una serie sea estacionaria?

1. Aplicando logaritmos

2. Diferencias finitas (para corregir estacionariedad y tendencia)

Pronósticos basados en la tendencia

$$\hat{Y}_{t+j} = E(Y_{t+j}|Y_1, Y_2, ..., Y_t)$$

- 1. Dividir los datos en entrenamiento y prueba
- 2. Calcular los modelos correspondientes como regresiones lineales
- 3. Medir el desempeño del modelo con criterios como AIC y BIC
- 4. Seleccionar el modelo y probarlo con los datos de prueba

Suavizadores – Descomposición

Regresión Local Loess: Busca encontrar una línea de tendencia basada en métodos no paramétricos

- 1. Se escoge $q \in \mathbb{Z}^+$ tal que $q \leq n$.
- 2. Se escogen los q valores x_i más cercanos a x

3. Defina
$$w(x) = \begin{cases} (1-x^3)^3 & , \ 0 \le x \le 1 \\ 0 & , \ x \ge 1 \end{cases}$$

- 4. Defina $\lambda_q(x)$ la distancia de x al x_i más alejado entre los q escogidos.
- 5. Defina $v_i(x) = w\left(\frac{|x_i x|}{\lambda_q(x)}\right)$, para cada x_i escogido.
- 6. Ajuste $Y_i = a + bx_i$ ó $Y_i = a + bx_i + cx_i^2$ con MCP ponderando cada x_i con $v_i(x)$.
- 7. Defina g(x) como el valor estimado de la regresión en x.

Algoritmos de suavizamiento exponencial

Se basan en formas de recurrencia:

$$N_t = \alpha y_t + (1 - \alpha) N_{t-1}$$

Se asume que la serie tiene un determinado nivel N_t asociado a la tendencia. Cuanto menor sea el valor de α , mayor peso es dado a la estimativa anterior. Suponemos que la mejor predicción que podemos tener de "mañana" es la observación que tenemos "hoy"

Algoritmo de Holt

Se asume que la dinámica de la serie es determinada por dos componentes no observables que no necesitan ser fijas (nivel y tendencia)

Algoritmo: $N_t = 0$

 $N_t = \alpha y_t + (1 - \alpha)(N_{t-1} + T_{t-1})$ $T_t = \beta(N_t - N_{t-1}) + (1 - \beta)T_{t-1}$

Inicialización: $N_2 = y_2$; $T_2 = y_2 - y_1$

Pronósticos: $\hat{y}_t(h) = N_t + hT_t$, h = 1, 2, ...

Algoritmo de Holt

Ventajas:

Aprende de los errores

Predicciones sencillas

Desventajas:

No tiene en cuenta la estacionalidad Las predicciones a largo plazo son malas

Algoritmo de Holt - Winters

Es una ampliación del modelo anterior, se tienen en cuenta las componentes estacionales

Algoritmo aditivo:
$$N_t = \alpha(y_t - F_{t-s}) + (1 - \alpha)(N_{t-1} + T_{t-1})$$

$$T_t = \beta(N_t - N_{t-1}) + (1 - \beta)T_{t-1}$$

$$F_t = \gamma(y_t - N_t) + (1 - \gamma)F_{t-s}$$

Inicialización: $N_2 = y_2$; $T_2 = y_2 - y_1$; $F_1 = (y_1 - N_1)$; ... $F_S = (y_S - N_S)$ Pronósticos: $\hat{y}_t(h) = N_t + hT_t$, $+F_{t+h+S}h = 1, 2, ...$

Algoritmo de Holt Winters

Ventajas:

Ajusta la tendencia a los errores de pronostico Predicciones sencillas Tiene en cuenta el efecto de la estacionalidad

Desventajas:

No tiene en cuenta la estacionalidad Las predicciones a largo plazo son malas No tiene en cuenta cambios en las variaciones a lo largo del tiempo Depende de la cantidad de observaciones para ajustar buenas predicciones de la estacionalidad

Algoritmo de Holt - Winters

Es una ampliación del modelo anterior, se tienen en cuenta las componentes estacionales

Algoritmo Multiplicativo:

$$N_{t} = \alpha(y_{t})/F_{t-s} + (1 - \alpha)(N_{t-1} + T_{t-1})$$

$$T_{t} = \beta(N_{t} - N_{t-1}) + (1 - \beta)T_{t-1}$$

$$F_{t} = \gamma(y_{t})/N_{t} + (1 - \gamma)F_{t-s}$$

Inicialización: $N_2 = y_2$; $T_2 = y_2 - y_1$; $F_1 = (y_1 - N_1)$; ... $F_S = (y_S - N_S)$ Pronósticos: $\hat{y}_t(h) = N_t + hT_t$, $+F_{t+h+S}$ h = 1, 2, ...

Algoritmo de Holt Winters

Ventajas:

Ajusta la tendencia a los errores de pronostico Predicciones sencillas Tiene en cuenta el efecto de la estacionalidad

Tiene en cuenta las variaciones a lo largo del tiempo

Desventajas:

No tiene en cuenta la estacionalidad

Las predicciones a largo plazo son malas

Depende de la cantidad de observaciones para ajustar buenas predicciones de la estacionalidad

Funciones de autocorrelación

La función de autocorrelación (ACF)

Mide la correlación entre dos variables separadas por k periodos.

Mide el grado de asociación lineal que existe entre dos variables del mismo proceso estocástico.

La función de autocorrelación parcial (PACF)

Mide la correlación entre dos variables separadas por k periodos cuando no se considera la dependencia creada por los retardos intermedios existentes entre ambas.

Mide la autocorrelación que existe entre dos variables separadas k períodos descontando los posibles efectos debidos a variables intermedias

Modelos de medias móviles

Se asume que el valor que toma la variable en el momento t depende de forma lineal de el valor actual y de un término estocástico. Se asume que el proceso es estacionario (tendencia cero)

Modelo medias móviles de orden 1

$$y_t = \mu + u_t + \theta u_{t-1}$$

$$u_t \sim RB(0, \sigma^2)$$

Modelo medias móviles de orden p

$$y_t = \mu_t + u_t + \theta u_{t-1} + \theta u_{t-p}$$

$$u_t \sim RB(0, \sigma^2)$$

Modelos Autorregresivos

Modelos que asumen que el comportamiento de la variable a través del tiempo depende de sus propios valores anteriores

Modelo Autorregresivo de orden 1

$$y_t = c + \phi y_{t-1} + u_t$$

$$u_t \sim RB(0, \sigma^2)$$

Modelo Autorregresivo de orden p

$$y_t = c + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + u_t$$

 $u_t \sim RB(0, \sigma^2)$

Modelos Autorregresivos de promedios móviles ARMA

Modelos que asumen que el comportamiento de la variable a través del tiempo depende de sus propios valores anteriores y un término estocástico

Modelo ARMA de orden 1

$$y_t = c + \phi y_{t-1} + u_t + \theta u_{t-1}$$

$$u_t \sim RB(0, \sigma^2)$$

Modelos Autorregresivos de promedios móviles con estacionalidad ARIMA

Modelos que asumen que el comportamiento de la variable a través del tiempo depende de sus propios valores anteriores y un término estocástico

Modelo ARIMA de orden p

$$Y_t = -(\Delta^d Y_t - Y_t) + \phi_0 + \sum_{i=1}^p \phi_i \Delta^d Y_{t-i} - \sum_{i=1}^q heta_i arepsilon_{t-i} + arepsilon_t$$