IN THE CLAIMS

Please amend the claims as follows:

1. (Currently Amended) A method of noise filtering an image sequence (V1), comprising the steps of:

determining a spatial spread of a set of original pixel values (Pt, Mi) in at least one image of the image sequence (V1);

determining statistics from a—said_spatial spread—of a set of original pixel values (P_{t} , $M_{\dot{t}}$) in said at least one image of the image sequence (V1); and

calculating at least one filtered pixel value (P_t ') from the set of original pixel values (P_t , M_i) obtained from the said at least one image, wherein the original pixel values (P_t , M_i) are weighted under control of the statistics.

2. (Previously Presented) The method of noise filtering as claimed in claim 1, wherein the step of calculating comprises the steps of:

weighting the set of original pixel values (P_t, M_i) under control of the statistics to obtain a weighted set of pixel values (P_t, N_i) ; and

5

furnishing the weighted set of pixel values (P_t, N_i) to a static filter, in which the at least one filtered pixel value (P_t') is calculated from the weighted set of pixel values (P_t, N_i) .

3. (Currently Amended) The method of noise filtering as claimed in claim 1, wherein said method further comprising comprises the step of:

determining a temporal spread (S_{temp}) of <u>a pixel $(P_{\underline{t}})$ of</u> the set of original pixel values $(P_{\underline{t}}, M_{\underline{i}})$ and a corresponding pixel from at least one other image of the image sequence.

- 4. (Previously Presented) The method of noise filtering as claimed in claim 1, wherein the spread (S) is a sum of absolute differences, a given absolute difference being obtained by subtracting an average pixel value from a given original pixel value (P_t , M_i).
- 5. (Currently Amended) The method of noise filtering as claimed in claim 1, wherein the set of original pixel values (P_t , M_i) includes a central pixel value (P_t) and surrounding pixel values (M_i), wherein as a result of the noise filtering, the central pixel value (P_t) is replaced by the filtered pixel value (P_t).

- 6. (Previously Presented) The method of noise filtering as claimed in claim 2, wherein the set of weighted pixel values (P_t , N_i) is obtained by taking, for each pixel value in the set of original pixel values (P_t , M_i), a combination of a portion α of said each pixel value in the set of original pixel values (P_t , M_i) and a portion 1- α of a central pixel value (P_t).
- 7. (Previously Presented) The method of noise filtering as claimed in claim 1,

wherein the statistics are furnished to a look-up table, a control signal (α) being obtained from said look-up table, said control signal (α) controlling the weighting.

8. (Previously Presented) The method of noise filtering as claimed in claim 2,

wherein the at least one filtered pixel value (P_{t}') is obtained by calculating a median of the weighted set of pixel values (P_{t} , N_{i}).

9. (Previously Presented) The method of noise filtering as claimed in claim 2,

wherein the at least one filtered pixel value ($P_{t'}$) is obtained by calculating an average of the weighted set of pixel values (P_{t} , N_{i}).

10. (Currently Amended) The method of noise filtering as claimed in claim 3,

wherein the spatial spread (S_{spat}) is calculated from spatially displaced original pixel values in the set of original pixel values (P_t, M_i) ; and,

wherein the temporal spread (S_{temp}) is calculated from temporally displaced original pixel values (P_t, P_{t1}, P_{t2}) in the set of original pixel values (P_t, M_i) in said at least one image and in sets of original pixel values in other images in said image sequence; and

weighting wherein the spatially displaced original pixel values (P_t, M_i) —are weighted under control of the spatial spread $(S_{spat})_{,}$ and the temporally displaced original pixel values (P_t, P_{t1}, P_{t2}) are weighted under control of the temporal spread (S_{temp}) .

11. (Currently Amended) The method of noise filtering as claimed in claim 10, wherein the weighting step comprises:

5

5

10

dividing the weighted temporally displaced original pixel values (WP_1, WP_2) are divided to lessen their weight in the filtering.

- 12. (Previously Presented) The method of noise filtering as claimed in claim 10, wherein the temporally displaced original pixel values include two original pixel values (P_{t1} , P_{t2}) from different fields in a same frame (F_{0}) and at least one original pixel value of a previous frame (F_{-1}).
- 13. (Previously Presented) The method of noise filtering as claimed in claim 12, wherein said temporally displaced original pixel values are temporally filtered.
- 14. (Currently Amended) A method of encoding an image sequence (V1), said method comprising the steps of:

encoding a plurality of filtered images, wherein the filtered images are

obtained by the steps of:

determining a spatial spread of a set of original pixel values $(P_{\underline{t}}, M_{\underline{i}})$ in each image of the image sequence (V1);

5

5

determining statistics from a said spatial spread of a set of original pixel values (P_{t} , $M_{\dot{t}}$) in each image of the image sequence (V1); and

calculating a filtered pixel value (P_t ') from a set of original pixel values (P_t , M_i) obtained from each image, wherein the original pixel values (P_t , M_i) are weighted under control of the statistics.

15. (Currently Amended) A device for noise filtering an image sequence, the device comprising:

computing means for determining a spatial spread of a set of original pixel values $(P_{\underline{t}}, M_{\underline{i}})$ in at least one image of the image sequence (V1);

computing means for determining statistics from a—said spatial spread—of a set of original pixel values (P_{t}, M_{i}) in said at least one image of the image sequence (V1); and

filtering means for calculating at least one filtered pixel value (P_t ') from a set of original pixel values (P_t , M_i) obtained from the at least one image, wherein the original pixel values (P_t , M_i) are weighted under control of the statistics.

16. (Currently Amended) A device for encoding an image sequence (V1), the device comprising:

10

5

receiving means for receiving filtered images, ; and

a device for generating wherein the filtered images of the

image sequence created by a, said generating device comprising:

computing means for determining a spatial spread of a set

of original pixel values (Pt, Mi) in each image of the image

sequence (V1);

computing means for determining statistics from a said spatial spread of a set of original pixel values (P_{t}, M_{i}) in each image of the image sequence (V1); and

filtering means for calculating a filtered pixel value (P_{t}') from a—the set of original pixel values (P_{t}, M_{i}) obtained from each image, wherein the original pixel values (P_{t}, M_{i}) are weighted under control of the statistics.

10