HW10

April 18, 2025

- 1 Chem 30324, Spring 2025, Homework 10
- 2 Due April 26, 2025
- 2.1 Reactions from scratch
- 2.1.1 In 1996, Schneider and co-workers used DFT to compute the reaction pathway for unimolecular decomposition of trifluoromethanol, a reaction of relevance to the atmospheric degradation of hydrofluorocarbon refrigerants (*J. Phys. Chem.* 1996, 100, 6097- 6103, doi:10.1021/jp952703m):

$$\mathsf{CF_3OH} \to \mathsf{COF}_2 + \mathsf{HF}$$

2.1.2 Following are some of the reported results, computed at 298 K:

	$\mathrm{CF_3OH}$	$C(O)F_2$	HF	_
$E^{ m elec}$	-412.90047	-312.57028	-	(Hartree)
			100.31885	
ZPE	0.02889	0.01422	0.00925	(Hartree)
$U^{ m vib}$	4.3	1.2	0	(kJ
				mol^{-1})
$q^{\rm trans}/V$	7.72×10^{32}	1.59×10^{32}	$8.65 \times$	(m^{-3})
			10^{31}	
$q^{ m rot}$	61830	679	9.59	unitless
$q^{ m vib}$	2.33	1.16	1	unitless

- 2.1.3 1. Compute $\Delta \bar{U}^{\text{trans}}$ (298 K) in kJ/mol.
- 2.1.4 2. Compute $\Delta \bar{U}^{\rm rot}(298 \text{ K})$ in kJ/mol. Don't forget that HF is linear!
- 2.1.5 3. Combine your answers with the table to determine $\Delta \bar{U}^{\circ}(298 \text{ K})$, in kJ mol⁻¹.
- 2.1.6 4. Determine $\Delta \bar{H}^{\circ}(298 \text{ K})$, in kJ mol⁻¹, assuming all species are ideal gases.
- 2.1.7 5. Determine $\Delta \bar{G}^{\circ}$ (298 K) in kJ mol⁻¹, assuming ideal behavior and 1 bar standard state. Recall that $\bar{G}^{\circ} = E^{\mathsf{elec}} + \mathsf{ZPE} RT \ln(q^{\circ})$, where $q^{\circ} = ((q^{\mathsf{trans}}/V)q^{\mathsf{rot}}q^{\mathsf{vib}})/c^{\circ}$ and $c^{\circ} = P^{\circ}/RT$.
- 2.1.8 6. Determine $\Delta \bar{S}^{\circ}(\mathbf{298~K})$, in J mol $^{-1}$ K $^{-1}$, assuming a 1 bar standard state. Recall that S=(H-G)/T.
- 2.1.9 7. Using the data provided, determine K_p (298 K), assuming a 1 bar standard state.
- 2.1.10 8. 1 bar of CF_3OH is introduced into a 20 L vessel at 298 K and left long enough to come to equilibrium with respect to its decomposition reaction. What is the composition of the gas mixture (mole fractions of all the components) at equilibrium?
- 2.1.11 9. How, directionally, would your answer to Question 8 change if the vessel was at a higher temperature? Provide a sketch incorporating the Boltzmann distribution to rationalize your answer.
- 2.1.12 10. Use the van'T Hoff relationship to determine the equilibrium constant and equilibrium mole fractions at 273 and 323 K.
- 2.1.13 11. How, directionally, would your answer to Question 8 change if the vessel was compressed to a smaller volume? Rationalize your answer in terms of partition functions.
- 2.1.14 12. Check your answer to Question 11 by computing the equilibrium composition after compressing the vessel to 5 L.
- 2.1.15 13. Consult a thermodynamics source (e.g. https://webbook.nist.gov/chemistry/) to determine $\Delta H^{\circ}(298 \text{ K})$, $\Delta S^{\circ}(298 \text{ K})$, and $\Delta G^{\circ}(298 \text{ K})$ for the homologous reaction CH₃OH (g) \rightarrow H₂ (g) + H₂CO (g). Does the substitution of F by H make the reaction lean more or less towards products?