Modeling and Estimation of COVID-19 Under-Reported Counts

Eric Baron¹ and Michael Baron²

 1 University of Connecticut, Storrs CT, and 2 American University, Washington DC

Supported by the U.S. National Science Foundation

Data Science Conference on COVID-19 [DSCC-19], August 28, 2020

Plan

Under-Reported Counts

- Modeling
 - Untested people
 - Unconfirmed transmissions
 - Under-reported recoveries
 - Parameters and their dynamics
- Estimation
 - Bayesian approach
 - MCMC
- Discussion

Epidemic modeling

SIR epidemic model

Population consists of 3 groups: Susceptible, Infected, Recovered.

Any individual can move through the states in order, $S \to I \to R$

 $S_t = \#$ of individuals not infected at time t

 $I_t = \#$ of individuals infected

 $R_t = \#$ of individuals infected and then recovered

- ▶ Infection rate θ
- ightharpoonup Recovery rate δ

Kermack and McKendrick 1927

SIR Model

$$\begin{cases} \frac{dS(t)}{dt} &= -\beta r \frac{I(t)}{N} \\ \frac{dI(t)}{dt} &= \beta r \frac{I(t)}{N} - \delta I(t) \end{cases} \quad \text{with} \quad \begin{cases} S(0) &= N \\ I(0) &= 1 \\ R(0) &= 0 \end{cases}$$

$$r = \text{number of contacts per unit of time} \ N = \text{population size}$$

$$\frac{dS}{dt} + \frac{dI}{dt} + \frac{dR}{dt} = 0$$

SIR Model

beta = 0.05, delta = 0.05, r = 2, lo = 10, N = 1e+06, R/N = 80 %

SIR Model. Does not quite fit the USA data...

Data from:

Humanitarian Data Exchange (HDX) https://data.humdata.org/dataset/

SIR Model. Does not quite fit USA, Iran...

Iran - 367796 confirmed cases, 2190 yesterday, slope = -18

Data from:

Humanitarian Data Exchange (HDX) https://data.humdata.org/dataset/

7/24

SIR Model. Does not quite fit USA, Iran, Florida...

Florida - 611983 confirmed cases, 3269 yesterday, slope = -209

Data from:

Humanitarian Data Exchange (HDX) https://data.humdata.org/dataset/

8/24

SIR Model. Does not quite fit USA, Iran, FL, M-D county

E. Baron eric.baron@uconn.edu, M. Baron baron@american.edu

Modeling and Estimation of Under-Reported Counts

Why are the states so different?

SIR model

Problem 1: some people do not recover

SIRD model

Problem 2: many people are not tested.

USA: Population 331M; 75M tested; 5.9M confirmed

SICRD model

Died Problem 3: under-reported counts

Inconsistency of reported counts: USA

US: Consistency of reported counts

Officially:

2.69M reported confirmed cases in the USA by July 1st 1.95M recovered and 0.17M perished by August 20th

566,298 not reported (actually, many more)

Inconsistency of reported counts: Canada

Canada: Consistency of reported counts

Officially: 23,848 people recovered on July 17

No more than 2,630 people recovered on any other day

SICROUD model

SICROUD model

SICROUD model

Unobserved

Died

Parameters: θ , γ , δ , ζ , η

Problem 4: SIR model is deterministic.

Bayesian Modeling: Counts and Data

$$|\Delta S_t| \sim \operatorname{Binomial}(S_t, \theta_t)$$
 $\Delta R_t \sim \operatorname{Binomial}(C_t, \gamma_t)$
 $\Delta D_t \sim \operatorname{Binomial}(C_t, \delta_t)$
 $\Delta R_t' \sim \operatorname{Binomial}(I_t, \gamma_t)$
 $\Delta D_t' \sim \operatorname{Binomial}(I_t, \delta_t)$
 $\Delta O_t \sim \operatorname{Binomial}(I_t, \delta_t)$
 $\Delta U_t = R_t - \Delta O_t$
 $\Delta C_t \sim \operatorname{Binomial}(I_t, \zeta_t) - \Delta R_t - \Delta D_t$
 $\Delta I_t = |\Delta S_t| - \Delta C_t - \Delta R_t' - \Delta D_t'$
 $I_t \sim \operatorname{Poisson}(\rho_t)$

Problem 5:

Parameters are not constant.

R'

D'

R

 D^*

 $C_t, O_t, D_t, \Delta C_t, \Delta O_t, \Delta D_t$ are observed

Bayesian Modeling: Parameters

Daily rates:

Infection rate $\theta_t \sim \operatorname{Beta}(\alpha^{(\theta)}, \beta^{(\theta)})$ Recovery rate $\gamma_t \sim \operatorname{Beta}(\alpha^{(\gamma)}, \beta^{(\gamma)})$ Mortality rate $\delta_t \sim \operatorname{Beta}(\alpha^{(\delta)}, \beta^{(\delta)})$ Prior Testing rate $\zeta_t \sim \operatorname{Beta}(\alpha^{(\zeta)}, \beta^{(\zeta)})$ Reporting rate $\eta_t \sim \operatorname{Beta}(\alpha^{(\gamma)}, \beta^{(\gamma)})$ Currently infected $\rho_t \sim \operatorname{Gamma}(\alpha^{(\rho)}, \lambda^{(\rho)})$

Posterior Distributions: Update of Hyper-Parameters

$$\begin{cases} \begin{array}{l} \theta \,|\, I \quad \sim \quad \operatorname{Beta}(\alpha^{(\theta)} + I, \ \beta^{(\theta)} + S - I) \\ \gamma \,|\, R \quad \sim \quad \operatorname{Beta}(\alpha^{(\gamma)} + R, \ \beta^{(\gamma)} + C - R) \\ \delta \,|\, D \quad \sim \quad \operatorname{Beta}(\alpha^{(\delta)} + D, \ \beta^{(\delta)} + C - D) \\ \zeta \,|\, C \quad \sim \quad \operatorname{Beta}(\alpha^{(\zeta)} + C, \ \beta^{(\zeta)} + I - C) \\ \eta \,|\, O \quad \sim \quad \operatorname{Beta}(\alpha^{(\eta)} + O, \ \beta^{(\eta)} + R - O) \\ \rho \,|\, I \quad \sim \quad \operatorname{Gamma}(\alpha^{(\theta)} + I, \ \beta^{(\theta)} + 1) \\ I \,|\, C \quad \sim \quad \operatorname{Poisson}(\rho), \operatorname{shifted by } C \end{cases}$$

- Dynamics of the COVID-19 pandemic:
- Observed counts induce daily updates of hyper-parameters
- The Beta-Binomial model is ready for forecasting

Parameter Estimates: USA

Latest Estimates: USA (08/28/2020)

Infection rate	heta	=	0.00012
Transmission rate	eta	=	0.056
Recovery rate	γ	=	0.066
Mortality rate	δ	=	0.0.0023
Testing rate	ζ	=	0.369
Currently infected, not tested	ho	=	88,944
Basic reproduction number	R_0	=	0.831
Mean disease duration	$\frac{1}{\gamma + \delta}$	=	$14.7~\mathrm{days}$
Total infected	$\sum \Delta S_t $	=	6,964,213
Confirmed	C	=	5,801,712
Total recovered	R + R'	=	6,014,168
Reported recoveries	O	=	2,065,066
Total casualties	D + D'	=	258,993
Reported casualties	D	=	179,066

Discussion

- ► This approach fills *some* gaps in official reports
- It brings consistency among observed counts
- But it may not recover everything that is hidden
- It allows parameters to change, reflecting the epidemic dynamics
- It provides natural forecasting
- It can be extended accounting for new types of data

Any questions? Thank you!

