Formas Normales

Índice

¿Qué es la Normalización?	3
¿Qué y cuáles son las Formas Normales?	3
La primera forma normal (1FN):	3
La segunda forma normal (2FN):	4
La tercera forma normal (3FN):	5
Forma Normal de Boyce-Codd (FNBC):	7
Ejemplo general las Formas Normales (1FN-2FN-3FN-FNBC):	9
Webgrafía:	15

¿Qué es la Normalización?

La Normalización es el proceso que consiste en la designación y aplicación de unas reglas específicas cuya funcionalidad será la de evitar las duplicidades de datos, facilitando así su gestión.

¿Qué y cuáles son las Formas Normales?

Las Formas Normales son las que se encargan de evitar las "irregularidades" de las bases de datos, buscando así dar un formato menos vulnerable.

Las Formas Normales que vamos a tratar de explicar aquí son las siguientes:

- Primera forma normal (1FN)
- Segunda forma normal (2FN)
- Tercera forma normal (3FN)
- Forma Normal de Boyce-Codd (FNBC)

La primera forma normal (1FN):

Una tabla se considera que está en 1FN principalmente cuando los campos son individuales y no se repiten en la misma fila.

Ejemplo de tabla sin normalizar:

Cliente	Producto	Precio Total
Pedro	Portátil Lenovo Legion 5 Pro, ratón Xiaomi	1223'15€,12'18€
Martín	Impresora HP Envy Inspire 7920e	169,9€
Tobías	Apple Airpods pro	219€

Como se puede ver en la tabla, *Producto* y *Precio Total* contienen varios campos, y como explicamos anteriormente, deben ser individuales.

Por lo que debemos de crear una nueva fila para el cliente Pedro en la que se recojan los campos de *Producto* y *Precio Total* de forma que así todos los atributos de los dominios sean individuales:

Cliente	Producto	Precio Total
Pedro	Portátil Lenovo Legion 5 Pro	1223'15€
Pedro	Ratón Xiaomi	12′18€
Martín	Impresora HP Envy Inspire 7920e	169,9€
Tobías	Apple Airpods pro	219€

La segunda forma normal (2FN):

La segunda forma normal, se basa y se establece según la dependencia y relación entre los campos principales.

Es indispensable saber que para convertir una tabla a 2FN, primero debe de estar en 1FN.

Ejemplo de Tabla en 1FN:

<u>Id_Cliente</u>	N_Cliente	Producto	Cod_Producto	Precio
12	Juan	Chaqueta	001	40€
13	Miguel	Pantalón	002	30€
13	Miguel	Camiseta	003	15€
15	Elisa	Chándal	004	45€

Para convertir esta tabla a 2FN debemos de analizar las dependencias que tienen los campos principales entre sí y cuál es la clave principal:

Id_Cliente → **Clave Principal**

Cod_Producto → **Clave Principal**

$Id_Cliente \rightarrow N_Cliente$

El *N_Cliente* depende de la existencia de *Id_Cliente* y debe ir siempre acompañado de él si aparece en una tabla.

$Cod_Producto \rightarrow Precio+Producto$

Precio y *Producto* dependen completamente de *Cod_Producto*, por lo que generará una tabla.

Para qué está tabla sea más óptima a la hora de guardar datos o de modificarlos, debemos de añadir la entidad *Precio_Total* para así poder registrar el valor de las compras de los clientes y así no perder datos.

Una vez explicadas estas dependencias, podríamos generar dos tablas diferentes siguiendo esa lógica para así completar la transformación de 1FN a 2FN:

Tablas en 2FN:

Tabla Cliente		
<u>Id Cliente</u>	N_Cliente	
12	Juan	
13	Miguel	
15	Elisa	

Tabla Producto			
Cod_Producto	Producto	Precio	
001	Chaqueta	40€	
002	Pantalón	30€	
003	Camiseta	15€	
004	Chándal	45€	

La tercera forma normal (3FN):

Una tabla se dice que está en tercera forma normal cuando los atributos dependen sólo y únicamente de la clave principal.

Para transformar una tabla a 3FN debe de estar previamente normalizada hasta 2FN. <u>Ejemplo de tabla en 2FN:</u>

Id Empleado	Nombre	Dirección	Teléfono	Empresa	Especialidad _Empresa
123	Lena	Calle 10	634643642	Messenger	Informática
124	Igor	Avenida 29	654757357	Lawyers & Justice	Derecho
125	Igor	Ronda de Outeiro 33	676845757	Hermanos Matías	Mecánica

<u>Id_Trabajo</u>	Trabajo	Sueldo
123	Programadora J	1.200€
124	Abogado	3.000€
125	Agricultor	1.100€

El primer paso para la transformación de estas tablas en 2FN a 3FN será el de analizar las dependencias y eliminar las que sean transitivas:

¿Qué es una dependencia transitiva?

Las dependencias transitivas son aquellas que dependen de una forma secundaria de la dependencia de la que provienen, como por ejemplo:

Si un Local depende de una Empresa y de ese Local dependen sus Productos, se podría decir que Productos tiene una dependencia transitiva con Empresa a través de Local.

Una vez explicadas lo que son las dependencias transitivas procedemos a analizar las dependencias de las tablas anteriores:

Id_Empleado → Clave Principal Id_Trabajador → Clave Principal Empresa → Clave Principal

Id_Trabajador → **(Trabajo,Sueldo)**

Trabajo y *Sueldo* dependen completamente de *Id_Trabajador* y podemos confirmarlo al ver la tabla y con el uso de la lógica.

Id_Empleado → (Nombre,Dirección,Teléfono,Empresa,Especialidad_Empresa)

Podemos confirmar que *Nombre, Dirección, Teléfono* y *Empresa* dependen completamente de *Id_Trabajador* mediante el uso de la lógica, **pero** *Especialidad_Empresa* tiene una dependencia transitiva con *Id_Empleado* mediante *Empresa*, por lo que podremos generar una tabla para eliminarla.

Tras analizar las dependencias de la tabla anterior podemos proceder al paso a 3FN aplicando los cambios necesarios como la creación de la tabla *Empresa* junto a *Especialidad_Empresa* para eliminar la dependencia transitiva anteriormente mencionada.

Tablas en 3FN:

Id Empleado	Nombre	Dirección	Teléfono
123	Lena	Calle 10	634643642
124	Igor	Avenida 29	654757357
125	Ramón	Ronda de Outeiro 33	676845757

<u>Id_Trabajo</u>	Trabajo	Sueldo
123	Programadora J	1.200€
124	Abogado	3.000€
125	Agricultor	1.100€

<u>Empresa</u>	Especialidad_Empresa
Messenger	Informática
Lawyers & Justice	Derecho
Hermanos Matías	Mecánica

Forma Normal de Boyce-Codd (FNBC):

Una tabla se dice que está en FNBC cuando está en 1FN y los únicos determinantes son claves candidatas.

¿Qué es un determinante en una tabla de datos?

Es un campo del cual depende completamente otro campo.

Ejemplo tabla en 1FN:

<u>Dni</u>	Trabajo	Sueldo	Edificio	Dirección
12b	Contable-Secretario	1100€	Oficinas Abanca	Calle Empresa
13c	Policía	2000€	Estación de Policia	Avenida de Santiago
14d	Progamador	3800€	Oficinas Microsoft	Calle de las TIC

Como podemos ver en el ejemplo, sus dependencias en está forma (1FN) serían las siguientes:

Dni \rightarrow **Clave Principal**

Trabajo → **Clave Principal**

Edificio \rightarrow Clave Principal

Dni → (Trabajo, Sueldo, Edificio, Dirección)

Analizando las dependencias para pasar a FNBC y generar nuevas tablas serían las siguientes:

Dni → (Trabajo)

Trabajo depende de la clave principal Dni.

Trabajo → (Sueldo, Edificio)

Sueldo y Edificio dependen completamente de Trabajo, por lo que generaría una tabla.

Edificio → (**Dirección**)

Pero *Dirección* depende solamente de *Edificio*, por lo que generará otra nueva tabla.

Tablas en FNBC:

<u>Dni</u>	Trabajo
12b	Contable
13c	Policía
14d	Progamador

<u>Trabajo</u>	Sueldo	Edificio
Contable	1100€	Oficinas Abanca
Policía	2000€	Estación de Policia
Progamador	3800€	Oficinas Microsoft

<u>Edificio</u>	Dirección	
Oficinas Abanca	Calle Empresa	
Estación de Policía	Avenida de Santiago	
Oficinas Microsoft	Calle de las TIC	

Ejemplo general las Formas Normales (1FN-2FN-3FN-FNBC):

Tabla sin normalizar:

Id Alumno	Nombre_ Alumno	Academia	Fecha_ Nacimiento	C.P_ Acade mia	Asignatura_ Alumno	Profesor	Especialidad_ Profesor
1	Juan	Las Flores	06/07/2004	15000	Matemáticas	Luis	Matemáticas- Física
2	María	Las Flores	03/01/2003	15000	Física-Inglés	Luis- Helena	Física-Inglés

Tabla Primera Forma Normal (1FN):

Lo primero que debemos observar para pasar la tabla a 1FN son los dominios que contienen varios campos, en este caso *Asignatura_Alumno,Profesor* y *Especialidad_Profesor*.

Debemos generar una tabla que contenga esos campos de forma individual para que la normalización se cumpla, que quedaría de la siguiente forma:

Id_Alumno	Nombre_ Alumno	Academia	Fecha_ Nacimiento	C.P_ Acade mia	Asignatura_ Alumno	Profesor	Especialidad_ Profesor
1	Juan	Las Flores	06/07/2004	15000	Matemáticas	Luis	Matemáticas
1	Juan	Las Flores	06/07/2004	15000	Física	Luis	Física
2	María	Las Flores	03/01/2003	15000	Física	Luis	Física
2	María	Las Flores	03/01/2003	15000	Inglés	Helena	Inglés

Así estaría en 1FN pero podría seguir normalizando a 2FN.

<u>Tablas Segunda Forma Normal (2FN):</u>

Dada la tabla 1FN obtenida anteriormente, necesaria para pasar a 2FN, debemos analizar las dependencias de sus campos:

Id_Alumno	Nombre_ Alumno	Academia	Fecha_ Nacimiento	C.P_ Academia	Asignatura_ Alumno	Profesor	Especialidad - Profesor
1	Juan	Las Flores	06/07/2004	15000	Matemáticas	Luis	Matemáticas
1	Juan	Las Flores	06/07/2004	15000	Matemáticas	Luis	Física
2	María	Las Flores	03/01/2003	15000	Física	Luis	Física
2	María	Las Flores	03/01/2003	15000	Inglés	Helena	Inglés

Tabla 1FN obtenida anteriormente.

Dependencias para 2FN:

 $Id_Alumno \rightarrow Clave Principal$

Profesor → **Clave Principal**

 $Id_Alumno \rightarrow (Nombre_Alumno + Academia + C.P_Academia$

+Fecha_Nacimiento)

Como podemos deducir, *Nombre_Alumno, Academia, C.P_Academia, Fecha_Nacimiento* y *C.P_Alumno* dependen completamente de *Id_Alumno*.

(Menos C.P_Academia que lo veremos en la 3FN).

$(Id_Alumno) \rightarrow (Asignatura_Alumno)$

Asignatura_Alumno depende de la clave principal Id_Alumno.

(Profesor) → (Especialidad_Profesor)

Especialidad_Profesor depende completamente de la clave principal *Profesor*. Analizadas las dependencias las tablas 2FN quedarían de la siguiente forma:

<u>Id_Alumno</u>	Nombre_ Alumno	Academia	Fecha_ Nacimiento	C.P_ Academia
1	Juan	Las Flores	06/07/2004	15000
2	María	Las Flores	03/01/2003	15000

<u>Id_Alumno</u>	Asignatura_ Alumno
1	Matemáticas
1	Matemáticas
2	Física
2	Inglés

<u>Profesor</u>	Especialidad_ Profesor
Luis	Matemáticas
Luis	Física
Luis	Física
Helena	Inglés

<u>Tablas Tercera Forma Normal (3FN):</u>

Dadas las tablas de la 2FN obtenidas anteriormente, y necesarias para pasar las tablas 3FN, necesitamos eliminar todas las dependencias transitivas existentes para que esté en 3FN.

En este caso existe 1 dependencia transitiva que sería la de *Id_Alumno* con *C.P_Academia*, debido a que *C.P_Academia* depende completamente de *Academia* y esta misma de *Id_Alumno*.

Por lo que debemos de crear una tabla con *Academia y C.P_Academia*, separando *C.P_Academia* de la primera tabla.

Siendo el resultado final en 3FN el siguiente:

<u>Id Alumno</u>	Nombre_ Alumno	Academia	Fecha_ Nacimiento
1	Juan	Las Flores	06/07/2004
2	María	Las Flores	03/01/2003

<u>Id_Alumno</u>	Asignatura_ Alumno
1	Matemáticas
1	Matemáticas
2	Física
2	Inglés

<u>Profesor</u>	Especialidad_ Profesor
Luis	Matemáticas
Luis	Física
Luis	Física
Helena	Inglés

<u>Academia</u>	C.P_Academia
Las Flores	15000

Tablas en Boyce-Codd (FNBC):

Partimos de la tabla en 1FN del principio del ejercicio, necesaria para empezar la normalización en FNBC, buscando que los únicos determinantes si existen sean claves candidatas.

Id_Alumno	Nombre_ Alumno	Academia	Fecha_ Nacimiento	C.P_ Acade mia	Asignatura_ Alumno	Profesor	Especialidad_ Profesor
1	Juan	Las Flores	06/07/2004	15000	Matemáticas	Luis	Matemáticas
1	Juan	Las Flores	06/07/2004	15000	Física	Luis	Física
2	María	Las Flores	03/01/2003	15000	Física	Luis	Física
2	María	Las Flores	03/01/2003	15000	Inglés	Helena	Inglés

Analizamos las dependencias de la tabla:

Id_Alumno → Clave Principal Profesor → Clave Principal Academia → Clave Principal

Id_Alumno → (Nombre_Alumno, Academia, Fecha_Nacimiento)

Nombre_Alumno, Academia y Fecha_Nacimiento dependen completamente de Id_Alumno.

Id_Alumno → (Asignatura_Alumno)

Asignatura_Alumno depende completamente de Id_Alumno.

Profesor → (Especialidad_Profesor)

Especialidad_Profesor depende completamente de Profesor.

Academia → (C.P_Academia)

C.P_Academia depende completamente de Academia.

<u>Id Alumno</u>	Nombre_ Alumno	Academia	Fecha_ Nacimiento
1	Juan	Las Flores	06/07/2004
2	María	Las Flores	03/01/2003

<u>Id_Alumno</u>	Asignatura_ Alumno
1	Matemáticas
1	Matemáticas
2	Física
2	Inglés

<u>Profesor</u>	Especialidad_ Profesor
Luis	Matemáticas
Luis	Física
Luis	Física
Helena	Inglés

<u>Academia</u>	C.P_Academia
Las Flores	15000

Webgrafía:

- https://www.ctisoluciones.com/blog/normalizacion-base-de-datos
- https://picodotdev.github.io/blog-bitix/2018/02/las-6-plus-2-formas-normales-de-las-bases-de-datos-relacionales/
- https://es.wikipedia.org/wiki/Forma normal (base de datos)
- Apuntes de Bases de Datos del curso Dam1 [IES Fernando Wirtz]
- https://es.education-wiki.com/6559663-second-normal-form
- https://blog.bi-geek.com/modelo-relacional-formas-normales/
- http://basesdedatosjc.blogspot.com/2012/04/segunda-forma-normal-en-bases-de-datos.html
- https://programas.cuaed.unam.mx/repositorio/moodle/pluginfile.php/872/modresource/content/1/contenido/index.html
- https://conclase.net/mysql/curso/cap4
- Base de datos | Normalización (1FN, 2FN y 3FN) YouTube
- Definición de un determinante en una base de datos | TecnoNautas