CSC 316 – Data Structures Introduction to Graphs

George N. Rouskas

Department of Computer Science North Carolina State University

NC STATE UNIVERSITY

Outline

- 1. Definition
- 2. Terminology
- 3. Implementation
- 4. Trees as Graphs

Undirected Graphs

- An undirected graph is a pair (V, E):
 - $V = \{v_1, v_2, \cdots, v_n\}$ is a set of nodes \rightarrow vertex set
 - $E = \{e_1, e_2, \cdots, e_m\}$ is a set of unordered pairs of vertices \rightarrow edge set
- Vertices:
 - represent arbitrary entities (e.g., cities)
 - store auxiliary information (e.g., city code)
- ullet Edge $e = \{v, u\} \in E$
 - implies a relationship between v and u (e.g., highway exists between two cities)
 - relationship is symmetrical → order of vertices unimportant
 - v and u are adjacent or neighbors \rightarrow endpoints of edge e

Undirected Graph Example

Undirected Graph Example (2)

Directed Graphs

- lacksquare A directed graph is a pair (V, A)
 - ullet V is the vertex set
 - $A = \{a_1, a_2, \cdots, a_m\}$ is a set of ordered pairs of vertices \rightarrow arc set
- - ullet departs from v and enters u
 - u is adjacent to (neighbor of) of v
 - the reverse is not true unless $< u, v > \in A$

Directed Graph Example

NC STATE UNIVERSITY

Applications

- Transportation networks:
 - highway network
 - flight network
- Computer networks:
 - campus network
 - internet
 - web
- Databases: entity-relationship diagrams
- Electronic circuits:
 - printed circuit board
 - integrated circuit
- Scheduling
- . . .

© by George N. Rouskas – p.

Terminology

- **Endpoints** of an edge $\rightarrow U, V$ endpoints of a
- **9** Edges incident on a vertex $\rightarrow a, b, d$ incident on V
- ullet Adjacent vertices ullet U and V are adjacent
- **Degree** of a vertex $\rightarrow X$ has degree 5
- **Parallel** edges $\rightarrow h$ and i are parallel
- **Self-loop** \rightarrow edge j

Terminology: Paths

- **Path** from vertex v_0 to n:
 - a sequence of vertices v_0, v_1, \cdots, v_n
 - $\{v_0, v_1\}, \{v_1, v_2\}, \cdots, \{v_{n-1}, v_n\}$ are edges of the graph
- Simple path: all vertices in the path are distinct
- Cycle: a path with $v_0 = v_n$, no two successive edges are the same

Terminology: Subgraphs

- ullet Graph G = (V, E)
- ullet Subgraph G'=(V',E') of G
 - $V' \subseteq V$
 - $E' \subseteq E$
- Spanning subgraph: V' = V

NC STATE UNIVERSITY

Terminology: Connected Components

- **●** Connected graph: $\forall u, v \in V$, there exists a path between u and v → each vertex is reachable from any other vertex
- ullet Connected component: a maximal connected subgraph of a graph G
- Two extreme cases:
 - connected graph → single connected component
 - graph with no edges → each vertex is a connected component

Terminology: Connected Components (2)

- Directed graph (digraph) G = (V, A)
- Strongly connected graph: connected in both directions
- Strongly connected component: a maximal strongly connected subgraph of G

Complete Graphs

- Undirected graph with an edge between every distinct pair of vertices
- Property:

$$|E| = \frac{|V|(|V|-1)}{2}$$

Planar Graphs

Can be drawn so that their edges intersect only at the vertices

Bipartite Graphs

- The vertex set V can be partitioned into two sets, V_1 and V_2 $\to V_1 \cap V_2 = \phi$, $V_1 \cup V_2 = V$
- For all edges $\{u,v\}\in E \to u\in V_1$ and $v\in V_2$, or vice versa

Properties

- Simple undirected graph with:
 - $\stackrel{\bullet}{}$ nodes
 - m edges
 - degree deg(v) of vertex v
- Property 1:

$$\sum_{v \in V} deg(v) = 2m$$

Property 2: if there are no parallel edges/self-loops, then:

$$m \leq \frac{n(n-1)}{2}$$

Properties (2)

- Simple directed graph with:

 - \bullet m arcs
 - in-degree indeg(v) and out-degree outdeg(v) of vertex v
- Property 1:

$$\sum_{v \in V} indeg(v) = \sum_{v \in V} outdeg(v) = m$$

Property 2:

$$m \leq n(n-1)$$

NC STATE UNIVERSITY

Data Structures for Graphs

- 1. Edge List structure → list of edge and vertex records
- 2. Adjacency Matrix
- 3. Adjacency List

Adjacency Matrix

- **●** Integer index associated w/ vertex \rightarrow vertices labeled v_0, \cdots, v_{n-1}
- lacksquare A n imes n matrix M defined as:

$$M[i,j] = \begin{cases} 1, & \text{if there is an edge (arc) from } v_i \text{ to } v_j \\ 0, & \text{otherwise} \end{cases}$$

• Space requirements: $O(n^2)$

Adjacency Matrix Example

	0	1	2	3	4
0	0	1	0	1	0
1	1	0	1	0	1
2	0	1	0	1	1
3	1	0	1	0	1
4	0	1	1	1	0

Adjacency Matrix, v.2

ullet Redefine matrix M as:

- Edge object holds references to:
 - the two vertices incident on this edge
 - the information (element) associated with the edge

Adjacency Matrix, v.2 Example

Adjacency List

- ullet Adjacency list for vertex v
 ightharpoonup list of vertex records \forall neighbors of v
- Vertex record contains:
 - ullet neighbor vertex u of v
 - the information (element) associated with edge (v, u)
 - pointer to next vertex record in the adjacency list
- Space requirements: O(n+m)
- More efficient for sparse graphs $\to m \approx O(n)$

Adjacency List Example

NC STATE UNIVERSITY

Comparison: Assumptions

- \triangleright n vertices
- lacksquare m edges
- No parallel edges
- No self-loops

Asymptotic Performance

	Adjacency List	Adjacency Matrix
Space	O(n+m)	$O(n^2)$
incidentEdges(v)	O(deg(v))	O(n)
areAdjacent(v,w)	$O(\min\{deg(v), deg(w)\})$	O(1)
insertVertex(v)	O(1)	$O(n^2)$
insertEdge((v,w))	O(1)	O(1)
removeVertex(v)	O(deg(v))	$O(n^2)$
removeEdge((v,w))	$O(\min\{deg(v), deg(w)\})$	O(1)

Trees as Graphs

- **Definition:** a directed tree is a directed acyclic graph (DAG) such that:
 - there is exactly one vertex, the root, which no arcs enter
 - every vertex except the root has exactly one entering arc
 - there is a unique path from the root to each vertex

Trees as Graphs (2)

- **Definition:** an undirected graph G is a tree if and only if:
 - $\forall u, v \in G$, there exists a unique simple path from u to v
- lacktriangle Undirected trees \rightarrow "root" not important \rightarrow any vertex can be root

Graph Properties

- Undirected graph G = (V, E) with
 - n = |V| vertices
 - m = |E| edges
- Properties:
 - 1. G is connected $\Rightarrow m \ge n-1$
 - 2. G is acyclic $\Rightarrow m \leq n-1$
- Proof:
 - 1. Graph w/ n vertices, no edges \rightarrow add edges to make it connected
 - 2. By induction on number k of vertices of the graph

Checking for Tree Property

- lacksquare A graph G with n vertices is a tree if any of these conditions are true:
 - 1. G is connected and acyclic
 - 2. G is connected and has exactly n-1 edges
 - 3. G is acyclic and has exactly n-1 edges
 - 4. G is connected, but deleting any edge disconnects the graph
 - 5. G is not complete, and adding any edge creates exactly one cycle that contains the new edge