Práctica Calificada 2 CCOC2

Fecha de entrega: 12 de octubre

Puntaje máximo: 20 puntos

Entrega del proyecto: 8 puntos

Exposición del proyecto: 12 puntos

Debes presentar un repositorio donde se encuentre todos tus resultados.

Instrucciones generales:

- 1. Cada grupo debe estar compuesto por 1 o 2 estudiantes.
- 2. Los proyectos serán asignados por orden de elección, asegurando que cada grupo trabaje en un proyecto diferente.
- 3. La fecha límite para la entrega del proyecto es el 12 de octubre.
- 4. Las exposiciones tendrán lugar en la misma fecha de entrega. Se asignarán 15 minutos a cada grupo para exponer su proyecto, seguidos de 5 minutos para preguntas.
- 5. Referencia: Naive Bayes, Text Classification, and Sentiment y Logistic Regression.

Proyectos disponibles:

Proyecto 1: Integración de modelos Naive Bayes y regresión logística multinomial para clasificación multiclase con evaluación

Descripción: Desarrolla un sistema de clasificación de texto que combine modelos generativos (Naive Bayes) y discriminativos (Regresión Logística Multinomial) para tareas de clasificación multiclase, como la categorización de noticias. Implementa técnicas de descenso de gradiente estocástico con mini-lotes y regularización para optimizar los modelos. Evalúa el rendimiento utilizando métricas como precisión, recall, medida F y realiza pruebas de significancia estadística, incluyendo la prueba bootstrap pareada.

Resultados esperados:

- Implementación funcional de Naive Bayes y Regresión Logística Multinomial.
- Sistema de clasificación que integra ambos modelos para mejorar la precisión.
- Optimización mediante descenso de gradiente estocástico con mini-lotes y regularización.
- Evaluación exhaustiva utilizando precisión, recall, medida F, y pruebas de significancia.
- Análisis comparativo entre modelos generativos y discriminativos.
- Documentación detallada de la implementación y los resultados.

Entradas:

- Conjunto de datos etiquetado para clasificación multiclase (e.g., Reuters News Dataset).
- Parámetros de optimización y regularización.
- Configuraciones para pruebas estadísticas.

Salidas:

- Modelos entrenados de Naive Bayes y Regresión Logística Multinomial.
- Reporte de métricas de evaluación (precisión, recall, F1) para cada modelo.
- Resultados de pruebas de significancia estadística.
- Visualizaciones de la convergencia del descenso de gradiente.
- Análisis interpretativo de los modelos.

Proyecto 2: Desarrollo de un modelo de lenguaje basado en Naive Bayes con evaluación de perplejidad y entropía

Descripción: Construye un modelo de lenguaje utilizando Naive Bayes y explora su capacidad como modelo generativo. Implementa métricas de evaluación avanzadas, como la perplejidad y la entropía, para medir la calidad del modelo. Analiza cómo la perplejidad se relaciona con la entropía y utiliza esta relación para optimizar el modelo. Realiza evaluaciones en conjuntos de entrenamiento y prueba para analizar la generalización y evitar el sobreajuste.

Resultados esperados:

- Modelo de lenguaje Naive Bayes funcional.
- Cálculo y análisis de perplejidad y entropía del modelo.
- Evaluación detallada de la capacidad de generalización del modelo.
- Estrategias implementadas para evitar el sobreajuste.
- Reporte sobre la relación entre perplejidad y entropía.
- Documentación completa de la metodología y los resultados.

Entradas:

- Corpus de texto grande (e.g., Wikipedia).
- Configuraciones de suavización y regularización.

Salidas:

- Perplejidad y entropía calculadas para el modelo.
- Reporte de métricas de evaluación en conjuntos de entrenamiento y prueba.
- Análisis de resultados y estrategias de optimización.
- Visualizaciones que muestren la relación entre perplejidad y entropía.

Proyecto 3: Implementación de clasificadores generativos y discriminativos para análisis de sentimientos con evaluación

Descripción: Desarrolla e implementa clasificadores generativos (Naive Bayes) y discriminativos (Regresión Logística Multinomial) para la tarea de análisis de sentimientos. Optimiza ambos modelos utilizando descenso de gradiente estocástico con mini-lotes y técnicas de regularización. Realiza una evaluación exhaustiva utilizando precisión, recall, medida F, y aplica pruebas de significancia estadística, incluyendo la prueba bootstrap pareada, para comparar el rendimiento de ambos enfoques.

Resultados esperados:

- Implementación funcional de ambos clasificadores.
- Modelos optimizados para la tarea de análisis de sentimientos.
- Evaluaciones detalladas y comparativas utilizando múltiples métricas.
- Resultados de pruebas de significancia que demuestren diferencias de rendimiento
- Análisis interpretativo sobre las fortalezas y debilidades de cada clasificador.
- Documentación completa y estructurada.

Entradas:

- Conjunto de datos etiquetado para análisis de sentimientos (e.g., IMDB Reviews).
- Parámetros de optimización y regularización.

Salidas:

- Modelos entrenados de Naive Bayes y Regresión Logística Multinomial.
- Reporte de métricas de evaluación para ambos modelos.
- Resultados de pruebas de significancia estadística.
- Visualizaciones comparativas del rendimiento de los clasificadores.
- Análisis interpretativo de los resultados.

Proyecto 4: Análisis semántico de vectores y clasificación de Ddocumentos usando TF-IDF y Embeddings

Descripción: Crea un sistema de análisis semántico que utilice representaciones vectoriales avanzadas, incluyendo TF-IDF, Word2Vec (CBOW y Skip-Gram), GloVe y técnicas de factorización de matrices como PPMI y Shifted PPMI. Implementa clasificadores como Naive Bayes y Regresión Logística Multinomial para la clasificación de documentos. Evalúa el impacto de diferentes representaciones vectoriales en la precisión, recall y medida F, y realiza pruebas de significancia estadística para comparar los resultados.

Resultados esperados:

- Implementación funcional de múltiples técnicas de representación vectorial.
- Clasificadores entrenados utilizando diferentes embeddings.
- Evaluación comparativa de la efectividad de cada representación vectorial en la clasificación de documentos.
- Análisis de la influencia de las dimensiones y métodos de embedding en las métricas de rendimiento.
- Resultados de pruebas de significancia que validen las diferencias observadas.
- Documentación detallada y estructurada.

Entradas:

- Corpus de texto grande (e.g., Wikipedia, Reuters).
- Parámetros para la construcción de vectores (dimensiones, métodos de ponderación).

Salidas:

- Vectores de palabras y documentos generados por diferentes técnicas.
- Métricas de clasificación (precisión, recall, F1) para cada método de representación.
- Resultados de pruebas de significancia estadística.
- Visualizaciones comparativas de rendimiento.
- Reporte de análisis sobre la efectividad de cada técnica.

Proyecto 5: Desarrollo y evaluación de un sistema de clasificación multiclase usando embeddings y regresión logística multinomial optimizada

Descripción: Implementa un sistema de clasificación multiclase que utilice embeddings avanzados (Word2Vec, GloVe) como representaciones vectoriales de palabras y documentos. Utiliza Regresión Logística Multinomial optimizada con descenso de gradiente estocástico, minilotes y regularización para entrenar el modelo. Evalúa el rendimiento utilizando métricas como precisión, recall, medida F, y aplica pruebas de significancia estadística para comparar diferentes configuraciones de embeddings y técnicas de optimización.

Resultados esperados:

- Sistema de clasificación multiclase funcional utilizando embeddings avanzados.
- Implementación optimizada de Regresión Logística Multinomial con técnicas de regularización.
- Evaluación comparativa del rendimiento con diferentes tipos de embeddings y configuraciones de optimización.
- Resultados de pruebas de significancia que demuestren diferencias significativas entre configuraciones.
- Análisis interpretativo sobre el impacto de los embeddings y las técnicas de optimización.
- Documentación completa de la implementación y los resultados.

Entradas:

- Conjunto de datos etiquetado para clasificación multiclase (e.g., 20 Newsgroups).
- Parámetros para la construcción de embeddings y optimización del modelo.

Salidas:

- Modelos entrenados con diferentes embeddings y configuraciones de optimización.
- Reporte de métricas de evaluación para cada configuración.
- Resultados de pruebas de significancia estadística.
- Visualizaciones comparativas del rendimiento de los modelos.
- Análisis interpretativo de los resultados obtenidos.

Proyecto 6: Implementación de un sistema de similaridad semántica basado en coseno y embeddings con evaluación de perplejidad y entropía

Descripción: Desarrolla un sistema que mida la similaridad semántica entre palabras y documentos utilizando el cálculo del coseno aplicado a diferentes representaciones vectoriales (TF-IDF, Word2Vec, GloVe). Implementa un modelo de lenguaje basado en n-gramas para calcular perplejidad y entropía, y analiza cómo estas métricas afectan la calidad de las representaciones vectoriales. Realiza una evaluación exhaustiva utilizando pruebas de significancia estadística para validar las relaciones encontradas.

Resultados esperados:

- Sistema funcional de medición de similaridad semántica utilizando diferentes técnicas vectoriales.
- Implementación de modelos de lenguaje n-grama para calcular perplejidad y entropía.

- Análisis detallado de cómo perplejidad y entropía influyen en la calidad de las representaciones vectoriales.
- Resultados de pruebas de significancia estadística que validen las relaciones observadas.
- Visualizaciones que muestren las similitudes semánticas y las métricas de evaluación.
- Documentación completa de la metodología y los resultados.

Entradas:

- Corpus de texto grande (e.g., Wikipedia).
- Parámetros para la construcción de vectores y modelos de lenguaje.

Salidas:

- Vectores de palabras y documentos generados por diferentes técnicas.
- Métricas de similaridad semántica calculadas.
- Perplejidad y entropía del modelo de lenguaje.
- Reporte de análisis y visualizaciones de los resultados obtenidos.
- Resultados de pruebas de significancia estadística.

Proyecto 7: Optimización de regresión logística multinomial para clasificación de texto con embeddings y regularización

Descripción: Implementa una Regresión Logística Multinomial para clasificación de texto, optimizada mediante descenso de gradiente estocástico con mini-lotes y técnicas avanzadas de regularización (L1, L2). Utiliza diferentes representaciones vectoriales (TF-IDF, Word2Vec, GloVe) como características de entrada. Evalúa el impacto de estas representaciones y las técnicas de regularización en la precisión, recall, y medida F, realizando también pruebas de significancia estadística para validar los resultados.

Resultados esperados:

- Implementación optimizada de Regresión Logística Multinomial.
- Clasificador entrenado utilizando diferentes representaciones vectoriales.
- Evaluación comparativa del rendimiento con distintas técnicas de regularización y embeddings.
- Resultados de pruebas de significancia que demuestren diferencias significativas entre configuraciones.
- Análisis interpretativo sobre la influencia de las representaciones y regularización en el rendimiento del modelo.
- Documentación completa de la implementación y los resultados obtenidos.

Entradas:

- Conjunto de datos etiquetado para clasificación de texto (e.g., 20 Newsgroups)
- Parámetros para la construcción de vectores y optimización del modelo.

Salidas:

- Modelos entrenados con diferentes embeddings y configuraciones de regularización.
- Reporte de métricas de evaluación para cada configuración.
- Resultados de pruebas de significancia estadística.
- Visualizaciones comparativas del rendimiento de los modelos.
- Análisis interpretativo de los resultados obtenidos.

Proyecto 8: Desarrollo de un sistema de desambiguación de sentidos basado en similaridad de vectores y clasificación multiclase

Descripción: Crea un sistema de desambiguación de sentidos de palabras que combine técnicas de similitud semántica basadas en vectores (Word2Vec, GloVe, TF-IDF) con clasificadores multiclase como Naive Bayes y Regresión Logística Multinomial. Implementa métodos avanzados de evaluación, incluyendo precisión, recall, medida F, y pruebas de significancia estadística, para medir la efectividad del sistema en diferentes contextos y corpus.

Resultados esperados:

- Sistema funcional de desambiguación de sentidos utilizando diferentes técnicas de vectorización.
- Implementación de clasificadores multiclase optimizados para la tarea.
- Evaluación comparativa de la efectividad de diferentes representaciones vectoriales y clasificadores.
- Resultados de pruebas de significancia estadística que validen las diferencias observadas.
- Análisis interpretativo sobre las fortalezas y debilidades del sistema.
- Documentación completa y estructurada de la metodología y los resultados.

Entradas:

- Conjunto de datos etiquetado para desambiguación de sentidos (e.g., WordNet Sense Inventory).
- Parámetros para la construcción de vectores y optimización de clasificadores.

Salidas:

- Vectores de palabras generados por diferentes técnicas.
- Modelos de clasificación entrenados para desambiguación de sentidos.

- Reporte de métricas de evaluación para cada configuración.
- Resultados de pruebas de significancia estadística.
- Visualizaciones comparativas del rendimiento del sistema.
- Análisis interpretativo de los resultados obtenidos.

Consideraciones adicionales para todos los proyectos

1. Documentación:

- Cada proyecto debe incluir una documentación detallada que explique la lógica detrás de las implementaciones, las decisiones técnicas tomadas, y cómo ejecutar el proyecto correctamente.
- Incluir comentarios claros en el código y una estructura modular que facilite la comprensión y el mantenimiento.

2. Pruebas y Validación:

- Implementar pruebas unitarias y de integración para asegurar la funcionalidad correcta de cada componente.
- Utilizar conjuntos de datos de validación y prueba adecuados para evaluar el rendimiento de los modelos.

3. Optimización:

- Considerar la eficiencia del código, especialmente en proyectos que manejan grandes volúmenes de datos.
- Utilizar técnicas de optimización como el procesamiento paralelo o el uso de bibliotecas optimizadas (e.g., NumPy, pandas).

4. Resultados y análisis:

- Presentar los resultados de manera clara, utilizando gráficos y tablas para facilitar la interpretación.
- Incluir un análisis crítico sobre el rendimiento de los modelos y las posibles mejoras futuras.

Rúbricas de evaluación:

1. Entrega del proyecto (8 puntos):

La entrega debe incluir el código fuente, la documentación del proyecto, y los resultados de las pruebas realizadas con el corpus asignado.

Criterio	Puntos	Descripción
Funcionalidad del código	3	El código debe implementar
		correctamente el proyecto
		propuesto y ser
		completamente funcional, sin
		errores que afecten su
		desempeño.
Eficiencia del algoritmo	2	El código debe demostrar
		eficiencia en el
		procesamiento,
		especialmente en proyectos
		que tratan con grandes
		volúmenes de datos.
Claridad y estructura del	1.5	El código debe estar bien
código		estructurado, con
		comentarios claros y buenas
		prácticas de programación
		(modularización, nombres
		descriptivos, etc.).
Documentación del proyecto	1.5	La documentación debe
		explicar la implementación,
		las decisiones técnicas y
		cómo ejecutar el proyecto
		correctamente.

2. Exposición del proyecto (12 puntos):

Cada grupo tendrá 15 minutos para exponer su proyecto, seguidos de 5 minutos de preguntas y respuestas.

Criterio	Puntos	Descripción
----------	--------	-------------

Claridad en la explicación	4	El grupo debe explicar el
		proyecto de manera clara,
		estructurada y coherente,
		destacando los aspectos
		clave de su implementación.
Entendimiento técnico	3	El grupo debe demostrar un
		entendimiento profundo de
		los conceptos aplicados en el
		proyecto (ej: tokenización,
		modelos n-grama,
		suavizado).
Resultados y análisis	3	El grupo debe presentar los
		resultados obtenidos de
		manera clara, con análisis
		crítico sobre el rendimiento
		del modelo o algoritmo
		implementado.
Manejo de preguntas	2	El grupo debe ser capaz de
		responder a las preguntas de
		los compañeros o del
		profesor de manera
		adecuada y demostrando
		comprensión del tema.