Espaces métriques

$$\alpha 13 - MP^*$$

1 Généralités

1.1 Notion d'espace métrique et de distance

Un ensemble E est un espace métrique lorsqu'on le munit d'une distance, c'est à dire une application $d: E \times E \longrightarrow \mathbb{R}^+$ vérifiant les axiomes suivants :

- 1. Séparation: $\forall (x,y) \in E^2$, $(d(x,y) = 0) \iff (x = y)$
- 2. Symétrie : $\forall (x,y) \in E^2, d(x,y) = d(y,x)$
- 3. Inégalité triangulaire : $\forall (x,y,z) \in E^3, d(x,z) \leq d(x,y) + d(y,z)$

On a alors, en conséquence : $% \left\{ \left\{ \left\{ \left\{ \right\} \right\} \right\} \right\} =\left\{ \left\{ \left\{ \left\{ \left\{ \left\{ \right\} \right\} \right\} \right\} \right\} \right\}$

- $|d(x,z) d(y,z)| \leq d(x,y)$
- $\forall z \in E, x \longmapsto d(x, z)$ est 1-lipschitzienne
- Si E est un \mathbb{R} ou \mathbb{C} ev normé, on peut le munir de la distance $d:(x,y) \longmapsto ||x-y||$

Construction d'espaces métriques :

1. Soit $(E_i, d_i)_{1 \le i \le n}$ une famille d'espaces métriques, on peut munir $E = \prod_{i=1}^n E_i$ de l'une des trois distances suivantes : si $X = \prod_{i=1}^n E_i$

$$\begin{pmatrix} x_1 \in E_1 \\ \vdots \\ x_n \in E_n \end{pmatrix} \in E, Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, D_1(X,Y) = \sum_{i=1}^n d_i(x_i,y_i), D_2(X,Y) = \sqrt{\sum_{i=1}^n (d_i(x_i,y_i))^2}, D_\infty(X,Y) = \max_{1 \leqslant i \leqslant n} d_i(x_i,y_i).$$

$$E \text{ est alors un espace métrique}$$

2. Soit (E,d) un espace métrique, $F \subset E$, on munit F de $d_F = d|_{F \times F}$; (F,d_F) est alors un espace métrique.

1.2 Continuité

1.2.1 Continuité en un point

Soient (E,d) et (E',d') deux espaces métriques, $f:E\longrightarrow E'$. Soit $x_0\in E$, f est continue en x_0 si $\forall \varepsilon>0$, $\exists \alpha>0/\forall x\in E$, $d(x,x_0)\leqslant \alpha\Longrightarrow d'(f(x),f(x_0))\leqslant \varepsilon$. On a les propriétés suivantes :

- Soit $(E,d) \xrightarrow{f} (E',d') \xrightarrow{g} (E'',d'')$; si f est continue en x_0 et g en $f(x_0)$, alors $g \circ f$ est continue en x_0 .
- Soit $f:(E,d) \longrightarrow \prod_{i=1}^m (E_i,d_i)$, $E' = \prod_{i=1}^m (E_i,d_i)$ muni de $D \in \{D_1,D_2,D_\infty\}$. On peut écrire f sous la forme $f:x \longmapsto (f_1(x),\ldots,f_m(x))$. Alors f est continue en x ssi chaque f_i est continue en x.
- Soit $f: E' = \prod_{i=1}^{m} (E_i, d_i) \longrightarrow (E, d)$, E' étant muni de $D \in \{D_1, D_2, D_\infty\}$. Si f est continue en $x = (x_1, \dots, x_m)$ alors chaque f_i est continue en x_i (pas de réciproque!)
- Soit (E, d) un espace métrique, $F \subset E$ muni de d_F . Soit $x_0 \in F$; si f est continue en x_0 au sens de d, alors $f|_F$ l'est aussi au sens de d_F . La réciproque est fausse.

1.2.2 Continuité sur E

 $f: E \longrightarrow E'$ est continue sur E si elle l'est en tout point de E. Si $A \subset E$, $f: A \longrightarrow E'$, on peut envisager deux notions

- \bullet f est continue en tout point de A
- $f': (A, d_A) \longrightarrow E'$ est continue

Ces deux notions sont équivalentes.

1.2.3 Uniforme continuité

 $f: E \longrightarrow E'$ est uniformément continue si $\forall \varepsilon > 0$, $\exists \alpha > 0 / \forall (x, x') \in E^2$, $d(x, x') \leqslant \alpha \Longrightarrow d'(f(x), f(x')) \leqslant \varepsilon$. Si f est uniformément continue, alors f est continue. (réciproque fausse)

1.2.4 Applications lipschitziennes

 $f: E \longrightarrow E'$ est k – lipschitzienne si $\forall (x, x') \in E^2$, $d'(f(x), f(x')) \leqslant kd(x, x')$. Toute application lipschitzienne est uniformément continue.

1.3 Suites

Soit (E,d) un espace métrique. Une suite $(x_n) \in E^{\mathbb{N}}$ admet $l \in E$ comme limite si $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} / \forall n \geqslant n_0, d(x_n, l) \leqslant \varepsilon$. l est alors unique.

Une suite (x_n) est de Cauchy si $\forall \varepsilon > 0$, $\exists n_0 / \forall n \ge n_0$, $\forall p \ge 1$, $d(x_n, x_{n+p}) \le \varepsilon$. Toute suite convergente est de Cauchy. E est dit complet si toute suite de Cauchy de E converge. Par exemple, $(\mathbb{Q}, |\cdot|)$ n'est pas complet.

Si $(x_n) \in E^{\mathbb{N}}$, une valeur d'adhérence de (x_n) est la limite d'une suite extraite $(x_{\varphi(n)})$ convergente, s'il en existe. Si $A \subset E$, $l \in A$, $(x_n) \in A^{\mathbb{N}}$, dire que $x_n \xrightarrow[n \to +\infty]{} l$ équivaut à dire que $x_n \xrightarrow[n \to +\infty]{} l$ dans (A, d_A) . Dire que (x_n) est de Cauchy équivaut à dire que (x_n) est de Cauchy dans (A, d_A) .

On a une caractérisation séquentielle de la continuité : soit $f:(E,d)\longrightarrow (E',d'), x\in E, f$ est continue en x ssi pour toute suite (x_n) dans E de limite $x, f(x_n)\longrightarrow f(x)$.

1.4 Ouverts d'un espace métrique

(E,d) un espace métrique. Soit $x \in E$, $\rho \in \mathbb{R}^{+*}$, on définit :

- $B(x,\rho) = \{y \in E/d(x,y) < \rho\}$ boule ouverte de centre x et de rayon ρ
- B' $(x, \rho) = \{y \in E/d(x, y) \leq \rho\}$ boule fermée de centre x et de rayon ρ

Une partie $\Omega \subset E$ est dite ouverte si $\forall x \in \Omega, \exists \rho \in \mathbb{R}^{+*}/\mathrm{B}(x,\rho) \subset \Omega$. Si $E = \mathbb{R}$, un intervalle est une partie ouverte ssi il est de la forme]a,b[avec $-\infty \leqslant a < b \leqslant +\infty$. On a les propriétés suivantes :

- 1. E et \varnothing sont des ouverts
- 2. Si $\mathcal I$ est un ensemble d'indices (fini ou non) et si $(\theta_i)_{i\in\mathcal I}$ est une famille d'ouverts, alors $\bigcup_{i\in\mathcal I}\theta_i$ est un ouvert
- 3. Si $(\theta_i)_{1\leqslant i\leqslant n}$ est une famille finie d'ouverts, alors $\bigcap_{i=1}^n \theta_i$ est un ouvert
- 4. Dans un espace métrique produit, tout produit cartésien d'ouverts est ouvert.

Caractérisation : soit $f: E \longrightarrow E'$, f est continue ssi pour tout ouvert $\theta' \subset E'$, $f^{-1}(\theta')$ est un ouvert de E.

Soit (E,d) un espace métrique, $(A,d_A) \subset E$, si $\Omega \subset A$, Ω est un ouvert de (A,d_A) ssi il existe un ouvert Ω' de E tel que $\Omega = \Omega' \cap A$.

1.5 Fermés

Soit (E,d) un espace métrique, F est un fermé si $E \setminus F$ est un ouvert. Si $E = \mathbb{R}$, un intervalle est un fermé ssi il est de la forme $]-\infty,a],[a,+\infty[$ ou [a,b] avec a et b finis. On a les propriétés suivantes :

- E et \varnothing sont des fermés
- toute intersection (finie ou non) de fermés est fermée

• toute réunion finie de fermés est fermée

Caractérisation séquentielle : (E,d) un espace métrique, $F \subset E$. F est un fermé ssi pour toute suite $(x_n) \in F^{\mathbb{N}}$ convergente, $\lim_{n \to +\infty} x_n \in F$.

- Dans un espace métrique produit, tout produit cartésien de fermés est fermé
- (A, d_A) espace métrique induit par (E, d). $F \subset A$ est un fermé ssi il est de la forme $F' \cap A$ où F' est un fermé de E.

1.6 Intérieur d'une partie

(E,d) un espace métrique, $A \subset E$. $x \in E$ est dit intérieur à A si $\exists \rho > 0/B(x,\rho) \subset A$. On note $\overset{\circ}{A}$ l'ensemble des points intérieurs à A. On a les propriétés :

- 1. $\stackrel{\circ}{E} = E, \stackrel{\circ}{\varnothing} = \varnothing$
- 2. Si $A \subset E$, $\overset{\circ}{A}$ est un ouvert et c'est le plus grand : si Ω est un ouvert inclus dans A, alors $\Omega \subset \overset{\circ}{A}$
- 3. Si $A' \subset A$, $\mathring{A'} \subset \mathring{A}$
- 4. Si A, B sont deux parties de E, alors : $(A \overset{\circ}{\cap} B) = \overset{\circ}{A} \cap \overset{\circ}{B}, (A \overset{\circ}{\bigcup} B) \supset \overset{\circ}{A} \bigcup \overset{\circ}{B}$

1.7 Adhérence d'une partie

(E,d) un espace métrique, $A \subset E$. $x \in E$ est adhérent à A si toute boule ouverte non vide de centre x rencontre $A: \forall \rho > 0$, $B(x,\rho) \cap A \neq \varnothing$, ou encore : $\forall \varepsilon > 0$, $\exists y \in A/d(x,y) \leqslant \varepsilon$. Soit $x \in E$; x est adhérent à A sis il existe une suite $(x_n)_{n \in \mathbb{N}}$ d'éléments de A tels que $x = \lim x_n$. On note \overline{A} l'adhérence de A, c'est à dire l'ensemble des points adhérents à A. Propriétés :

- 1. $\overline{A} \supset A$; de plus, si F est un fermé contenant A, alors $\overline{A} \subset F$
- 2. si $A \subset E$, $\overline{A} = E \setminus (E \setminus A)$
- 3. si $A \subset B$, $\overline{A} \subset \overline{B}$
- 4. $\overline{A \bigcup B} = \overline{A} \bigcup \overline{B}$; $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$

Si E est un espace métrique, on dit que A est dense dans E si $\overline{A} = E$; si $A \subset B \subset E$, on dit que A est dense dans B si $B \subset \overline{A}$.

- Soit $A \subset B \subset E$, $f,g:(E,d) \xrightarrow{\mathcal{C}^0} (E',d')$. Si $f|_A = g|_A$ et A est dense dans B, alors f = g.
- $f, g: B \xrightarrow{\mathcal{C}^0} \mathbb{R}$. Si $\forall x \in A, f(x) \leq g(x)$ et A dense dans B, alors $f \leq g$.

2 Compacité

2.1 Définitions

Soit (E,d) un espace métrique. E est dit compact si toute suite dans E admet au moins une valeur d'adhérence. Une partie $A \subset E$ est dite compacte si toute suite dans A admet au moins une valeur d'adhérence dans A. Si $A \subset E$ est compacte, l'espace métrique induit (A,d_A) est compact.

2.2 Propriétés

- 1. Si E est compact, tout fermé de E est compact
- 2. Soit $F \subset E$; si F est compact, F est fermé et borné.
- 3. Soit $(E,D) = \prod_{i=1}^{n} (E_i, d_i)$ où $D \in \{D_1, D_2, D_\infty\}$. Si pour tout i, A_i est un compact de E_i , alors $\prod_{i=1}^{n} A_i$ est un compact de E.
- 4. (E,d), (E',d') deux espaces métriques, $f: A \subset E \xrightarrow{\mathcal{C}^0} E'$; si A est compacte alors f(A) est compacte.

- 5. Caractérisation des compacts : Soit $E = \mathbb{K}^n$, où $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , produit cartésien de $(\mathbb{K}, | \cdot|)$, muni de $D \in \{D_1, D_2, D_\infty\}$. Une partie de E est compacte ssi elle est fermée bornée. (Remarque : cela reste vrai dans les \mathbb{K} ev de dimension finie.)
- 6. Théorème de Heine :
 - (a) Soit (E, d) un espace métrique et $A \subset E$ une partie compacte non vide. Si $f: A \xrightarrow{\mathcal{C}^0} \mathbb{R}$, f est bornée et atteint ses bornes.
 - (b) E, E' deux espaces métriques, A compact inclus dans E et $f: A \xrightarrow{C^0} E'$. Alors f est uniformément continue.

2.3 Applications (exercices)

2.3.1 Modèles de compacts

- 1. On munit $\mathfrak{M}_n(\mathbb{R})$ d'une norme, alors $\mathcal{O}_n(\mathbb{R})$ est compact.
- 2. Soit E un plan affine euclidien, muni de la distance euclidienne. Tout cercle est alors un compact.
- 3. Soit E un espace métrique, $(x_n)_{n\in\mathbb{N}}\in E^{\mathbb{N}}$ une suite convergente de limite x. Alors $A=\{x,x_1,\ldots\}$ est compact.

2.4 Compacité, convergence uniforme et intégrales

2.4.1 Convergence uniforme

Soit E, E' deux espaces métriques, $A \subset E$, (u_n) une suite de fonctions $A \longrightarrow E'$. On dit que (u_n) converge simplement vers $u: A \longrightarrow E'$ si $\forall x \in A$, $\lim u_n(x) = u(x)$. On dit que (u_n) converge uniformément vers u si $\forall \varepsilon > 0$, $\exists n_0 / \forall n \ge n_0$, $\forall x \in A$, $d'(u_n(x), u(x)) \le \varepsilon$.

Si toutes les u_n sont continues en $x_0 \in A$ (resp. sur A) et si (u_n) converge uniformément vers u, alors u est continue en x_0 (resp. sur A).

2.4.2 Intégrales à paramètres

Soit E un espace métrique, $A \subset E$, I un segment de \mathbb{R} , $f: A \times I \xrightarrow{\mathcal{C}^o} \mathbb{C}$. Alors $x \longmapsto \int_I f(x,t) \mathrm{d}t$ est continue.

3 Espaces métriques complets

(E,d) est dit complet si toute suite de Cauchy dans E converge. $A \subset E$ est dite complète si (A,d_A) est complet.

3.1 Propriétés

- 1. Soit A une partie d'un espace métrique E quelconque, si A est complète, alors A est fermée.
- 2. Soit E un espace métrique complet, si $A \subset E$ est fermée, alors A est complète.
- 3. Soit E un espace métrique, si $A \subset E$ est compacte, alors A est complète.
- 4. Soit $E = \prod_{i=1}^{n} E_i$, $D \in \{D_1, D_2, D_\infty\}$. Si pour tout $i, A_i \subset E_i$ est complète, alors $A = \prod_{i=1}^{n} A_i$ est complète.

3.2 Théorème du point fixe (hors programme)

Soit E un espace métrique, $A \subset E$. $f: A \longrightarrow A$ est une contraction (est contractante) s'il existe k < 1 tel que f soit k – lipschitzienne. Dans ce cas :

- 1. Il existe au plus un $l \in A$ tel que f(l) = l.
- 2. Soit $a \in A$ et soit (u_n) la suite récurrente telle que $u_0 = a$ et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$. Si (u_n) converge, sa limite est un point fixe de f.
- 3. Si f admet un point fixe l, alors pour tout $a \in A$, la suite précédente converge vers l.

Le théorème du point fixe : Soit E un espace métrique, $A \subset E$ une partie complète, $f: A \longrightarrow A$ contractante. Dans ce cas,

- 1. f admet un unique point fixe $l \in A$.
- 2. $\forall a \in A$, la suite (u_n) définie par $u_0 = a$ et $u_{n+1} = f(u_n)$ converge vers l.

3.3 Théorème de projection sur un convexe

Soit E un espace préhilbertien (réel ou complexe) muni de la norme associée au produit scalaire. Si $A \subset E$ est convexe et complète, alors $\forall x \in E, \exists ! a \in A$ tel que $d(x,a) = \inf\{d(x,y), y \in A\} \stackrel{def}{=} d(x,A)$.
Remarques :

- 1. Soit (E,d) un espace métrique, et $A \subseteq E$ compacte non vide. Alors $\forall x \in E, \exists a \in A/d(x,a) = d(x,A)$.
- 2. Soit E un espace vectoriel normé de dimension finie et F un fermé non vide de E. Alors $\forall x \in E, \exists y \in F/d(x,y) = d(x,F)$.

4 Connexité par arc

4.1 Généralités

Soit E un espace métrique, $A \subset E$; si $a,b \in A$, un arc joignant a et b est la donnée d'une application $f:[0,1] \xrightarrow{C^0} A$ telle que f(0) = a et f(1) = b. On définit la relation $\mathcal{R}: a\mathcal{R}b$ ssi a et b peuvent être joints par arc dans A. C'est une relation d'équivalence. On dit que A est connexe par arcs si deux éléments quelconques de A peuvent être joints par un arc.

4.2 Propriétés

- Les connexes par arcs de R sont les intervalles.
- 2. Si E est un espace vectoriel réel (ou complexe) normé, tout convexe est connexe par arcs.
- 3. $A \subset E$ est dite étoilée si il existe $a_0 \in A$ tel que $\forall x \in A, [a_0, x] \subset A$. Un partie étoilée est connexe par arcs.
- 4. Soit (E,d) et (E',d') deux espaces métriques, A un connexe par arcs de E, $f:A \xrightarrow{C^{\circ}} E'$; alors A' = f(A) est connexe par arcs. Conséquence: si $E' = \mathbb{R}$, f(A) est un intervalle. Si $c \in [f(t), f(t')]$, alors $\exists t'' \in A/f(t'') = c$.
- 5. Soit $(E, D) = \prod_{i=1}^{n} (E_i, d_i), D \in \{D_1, D_2, D_\infty\}$. Si A_i est un connexe par arcs de E_i pour tout i, alors $A = \prod_{i=1}^{n} A_i$ est connexe par arcs.

4.3 Complément : connexité

Soit E un espace métrique, $A \subset E$ est dite *connexe* si dans l'espace métrique induit (A, d_A) , A et \varnothing sont les seules parties ouvertes et fermées à la fois. Cela équivaut à : pour tous ouverts θ et θ' de E tels que $\theta \cap \theta' = \varnothing$, si $A \subset \theta \cup \theta'$, alors $A \subset \theta$ ou $A \subset \theta'$. On a les propriétés suivantes :

- R est connexe
- tout intervalle de R est connexe
- tout connexe par arcs est connexe

5