A factor is a special character vector where the elements have pre-defined groups or 'levels'. You can think of these as qualitative or categorical variables:

```
x <- c("yellow", "red", "red", "blue", "yellow", "blue")
class(x)

## [1] "character"

x_fact <- factor(x) # factor() is a function
class(x_fact)

## [1] "factor"</pre>
```

Factors have **levels** (character types do not).

```
x
## [1] "yellow" "red" "red" "blue" "yellow" "blue"
x_fact
## [1] yellow red red blue yellow blue
## Levels: blue red yellow
```

Note that levels are, by default, in alphanumerical order.

Extract the levels of a factor vector using levels():

```
levels(x_fact)
## [1] "blue" "red" "yellow"
```

forcats package

A package called forcats is really helpful for working with factors.

factor() vs as_factor()

factor() is from base R and as_factor() is from forcats

Both can change a variable to be of class factor.

- factor() will order alphabetically unless told otherwise.
- as_factor() will order by first appearance unless told otherwise.

If you are assigning your levels manually either function is fine!

as_factor() function

```
x <- c("yellow", "red", "red", "blue", "yellow", "blue")
x_fact_2 <- as_factor(x)
x_fact_2

## [1] yellow red red blue yellow blue
## Levels: yellow red blue

## Compare to factor() method:
x_fact

## [1] yellow red red blue yellow blue
## Levels: blue red yellow</pre>
```

A Factor Example

We will use data on heat-related visits to the ER from the State of Colorado, separated by age category, for 2011-2022. More on this data can be found here: https://coepht.colorado.gov/heat-related-illness

You can download the data from the DaSEH website here: https://daseh.org/data/CO_ER_heat_visits_by_age_data.csv

This dataset is also available in the dasehr package.

We will limit the data to only one of the **gender** categories - we will choose "Both genders" because of data missingness.

```
library(dasehr)
er_visits_age <- CO_heat_ER_byage

#er_visits_age <- read_csv("https://daseh.org/data/CO_ER_heat_visits_by_age_data.csv")
er_visits_age <- er_visits_age %>%
   filter(str_detect(GENDER, "Both genders"))
```

The data

head(er_visits_age)

```
## # A tibble: 6 × 7
##
     YEAR GENDER
                       AGE
                                       RATE L95CL U95CL VISITS
##
    <db1> <chr>
                       <chr>
                                       <dbl> <dbl> <dbl>
                                                         <fdb>>
     2011 Both genders 0-4 years old
                                       3.52
                                             1.82
                                                   6.16
                                                            12
## 2 2011 Both genders 15-34 years old
                                       7.34
                                             5.95 8.74
                                                           106
## 3 2011 Both genders 35-64 years old
                                       5.84
                                             4.80
                                                           121
                                                   6.88
## 4 2011 Both genders 5-14 years old
                                       5.20
                                             3.50 6.90
                                                            36
## 5 2011 Both genders 65+ years old
                                             5.98 10.7
                                       8.34
                                                           48
## 6 2011 Both genders All ages
                                       6.30
                                             5.62 6.99
                                                           323
```

Notice that AGE is a chr variable. This indicates that the values are **character** strings.

R does not realize that there is any order related to the AGE values. It will assume that it is **alphabetical** (for numbers, this means ascending order).

However, we know that the order is: 0-4 years old, 5-14 years old, 15-34 years old, 35-64 years old, 65+ years old, and All ages.

For the next steps, let's take a subset of data.

Use set.seed() to take the same random sample each time.

```
set.seed(123)
er_visits_age_subset <- slice_sample(er_visits_age, n = 32)</pre>
```

Plot the data

Let's make a plot first.

```
er_visits_age_subset %>%
  ggplot(mapping = aes(x = AGE, y = RATE)) +
  geom_boxplot() +
  theme_bw(base_size = 8) # make all labels size 8
```


OK this is very useful, but it is a bit difficult to read. We expect the values to be plotted by the order that we know, not by alphabetical order.

Change to factor

Currently AGE is class character but let's change that to class factor which allows us to specify the levels or order of the values.

```
er_visits_age_fct <-
    er_visits_age_subset %>%
    mutate(AGE = factor(AGE,
        levels = c("0-4 years old", "5-14 years old", "15-34 years old", "35-64 year
    ))

er_visits_age_fct %>%
    pull(AGE) %>%
    levels()

## [1] "0-4 years old" "5-14 years old" "15-34 years old" "35-64 years old"
## [5] "65+ years old" "All ages"
```

Change to a factor

head(er_visits_age_fct)

```
## # A tibble: 6 × 7
##
     YEAR GENDER
                      AGE
                                       RATE L95CL U95CL VISITS
                      <fct>
##
    <dbl> <chr>
                                      <dbl> <dbl> <dbl>
                                                        <dbl>
## 1
                                            2.29 7.03
     2016 Both genders 0-4 years old 4.19
                                                           14
    2019 Both genders 35-64 years old 7.19 6.07 8.30
## 2
                                                          159
    2013 Both genders 15-34 years old
                                      8.13 6.69 9.58
## 3
                                                          121
## 4 2022 Both genders 0-4 years old
                                      NA
                                            NA
                                                 NA
                                                          NA
## 5 2017 Both genders All ages
                                       5.77 5.14 6.40
                                                          323
## 6 2019 Both genders 15-34 years old 8.34 6.94 9.73
                                                          137
```

Plot again

Now let's make our plot again:

```
er_visits_age_fct %>%
   ggplot(mapping = aes(x = AGE, y = RATE)) +
   geom_boxplot() +
   theme_bw(base_size = 8)
```


Now that's more like it! Notice how the data is automatically plotted in the order we would like.

What about if we arrange() the data by grade?

Character data is arranged alphabetically (if letters) or by ascending first number (if numbers).

```
er_visits_age_subset %>%
  arrange(AGE)
## # A tibble: 32 × 7
      YEAR GENDER
                        AGE
                                       RATE L95CL U95CL VISITS
                                        <dbl> <dbl> <dbl> <dbl>
      <dbl> <chr>
                        <chr>
##
  1 2016 Both genders 0-4 years old
                                         4.19 2.29 7.03
                                                              14
  2 2022 Both genders 0-4 years old
                                        NA
                                              NA
                                                    NA
                                                              NA
      2018 Both genders 0-4 years old
                                         3.91 2.08 6.68
                                                              13
  4 2015 Both genders 0-4 years old
                                        NA
                                              NA
                                                    NA
                                                              NA
      2021 Both genders 0-4 years old
                                              NA
                                                              NA
                                        NA
                                                    NA
   6 2012 Both genders 0-4 years old
                                         3.58 1.85 6.25
                                                              12
      2020 Both genders 0-4 years old
                                        NA
                                              NA
                                                    NA
                                                              NA
      2014 Both genders 0-4 years old
                                              NA
##
                                        NA
                                                    NA
                                                              NA
      2013 Both genders 15-34 years old 8.13 6.69 9.58
                                                             121
      2019 Both genders 15-34 years old 8.34 6.94 9.73
## 10
                                                             137
## # 🛘 22 more rows
```

Notice that the order is not what we would hope for!

Arranging Factors

Factor data is arranged by level.

```
er_visits_age_fct %>%
  arrange(AGE)
```

```
## # A tibble: 32 × 7
##
      YEAR GENDER
                        AGE
                                        RATE L95CL U95CL VISITS
                                       <dbl> <dbl> <dbl> <dbl>
     <dbl> <chr>
                        <fct>
##
   1 2016 Both genders 0-4 years old
                                      4.19 2.29 7.03
                                                             14
      2022 Both genders 0-4 years old
                                             NA
                                                   NA
                                                             NA
      2018 Both genders 0-4 years old
                                        3.91 2.08 6.68
##
                                                             13
      2015 Both genders 0-4 years old
##
                                             NA
                                                   NA
                                                             NA
      2021 Both genders 0-4 years old
##
                                             NA
                                                   NA
                                                             NA
      2012 Both genders 0-4 years old
##
                                        3.58 1.85 6.25
                                                             12
      2020 Both genders 0-4 years old
                                             NA
                                                   NA
                                                             NA
##
      2014 Both genders 0-4 years old
## 8
                                             NA
                                                   NA
                                                             NA
      2022 Both genders 5-14 years old 3.75 2.31 5.19
##
                                                             26
      2015 Both genders 5-14 years old 5.03 3.38 6.67
                                                             36
## # 0 22 more rows
```

Nice! Now this is what we would want!

Making tables with characters

Tables grouped by a character are arranged alphabetically (if letters) or by ascending first number (if numbers).

```
er_visits_age_subset %>%
  group_by(AGE) %>%
  summarize(total_visits = sum(VISITS, na.rm = T))
## # A tibble: 6 × 2
                     total_visits
## AGE
## <chr>
                            <dbl>
## 1 0-4 years old
                               39
## 2 15-34 years old
                              831
## 3 35-64 years old
                              649
## 4 5-14 years old
                              62
## 5 65+ years old
                              389
## 6 All ages
                             1943
```

Making tables with factors

Tables grouped by a factor are arranged by level.

```
er_visits_age_fct %>%
  group_by(AGE) %>%
  summarize(total_visits = sum(VISITS, na.rm = T))
## # A tibble: 6 × 2
                     total_visits
  AGE
## <fct>
                            <dbl>
## 1 0-4 years old
                               39
## 2 5-14 years old
                               62
## 3 15-34 years old
                              831
## 4 35-64 years old
                            649
## 5 65+ years old
                             389
## 6 All ages
                             1943
```

forcats for ordering

What if we wanted to order AGE by increasing `RATE``?

```
library(forcats)

er_visits_age_fct %>%
   ggplot(mapping = aes(x = AGE, y = RATE)) +
   geom_boxplot() +
   theme_bw(base_size = 8)
```


This would be useful for identifying easily which age group to focus on.

forcats for ordering

We can order a factor by another variable by using the fct_reorder() function of the forcats package.

fct_reorder({column getting changed}, {guiding column}, {summarizing function})

forcats for ordering

We can order a factor by another variable by using the fct_reorder() function of the forcats package.

```
library(forcats)

er_visits_age_fct %>%
    ggplot(mapping = aes(x = fct_reorder(AGE, RATE, mean), y = RATE)) +
    geom_boxplot() +
    labs(x = "Age Category") +
    theme_bw(base_size = 8)
```


forcats for ordering.. with .desc = argument

```
library(forcats)

er_visits_age_fct %>%
    ggplot(mapping = aes(x = fct_reorder(AGE, RATE, mean, .desc = TRUE), y = RATE)) +
    geom_boxplot() +
    labs(x = "Age Category") +
    theme_bw(base_size = 8)
```


forcats for ordering.. can be used to sort datasets

```
er_visits_age_fct %>% pull(AGE) %>% levels() # By year order

## [1] "0-4 years old" "5-14 years old" "15-34 years old" "35-64 years old"

## [5] "65+ years old" "All ages"

er_visits_age_fct <- er_visits_age_fct %>%
    mutate(
        AGE = fct_reorder(AGE, RATE, mean)
)

er_visits_age_fct %>% pull(AGE) %>% levels() # by increasing mean dropouts

## [1] "0-4 years old" "5-14 years old" "35-64 years old" "All ages"

## [5] "65+ years old" "15-34 years old"
```

Checking Proportions with fct_count()

The fct_count() function of the forcats package is helpful for checking that the proportions of each level for a factor are similar. Need the prop = TRUE argument otherwise just counts are reported.

```
er visits age fct %>%
 pull(AGE) %>%
 fct count(prop = TRUE)
## # A tibble: 6 × 3
    f
##
                       n
## <fct>
                   <int> <dbl>
## 1 0-4 years old
                       8 0.25
## 2 5-14 years old 2 0.0625
## 3 35-64 years old 5 0.156
## 4 All ages
                     5 0.156
## 5 65+ years old 6 0.188
## 6 15-34 years old 6 0.188
```

Summary

- the factor class allows us to have a different order from alphanumeric for categorical data
- we can change data to be a factor variable using mutate and a factor creating function like factor() or as_factor
- the as_factor() is from the forcats package (first appearance order by default)
- the factor() base R function (alphabetical order by default)
- with factor() we can specify the levels with the levels argument if we want a specific order
- the fct_reorder({variable_to_reorder}, {variable_to_order_by}, {summary function}) helps us reorder a variable by the values of another variable
- · arranging, tabulating, and plotting the data will reflect the new order

Lab

- Class Website
- Lab

Image by Gerd Altmann from Pixabay