Deductive Reasoning in Propositional Logic

haize

August 6, 2024

Contents

Ded	uctive Systems	1
1.1	Basic Components of a deductive System	2
1.2	Soundness and completeness of a deductive system	2
1.3	Propositional natural deduction	3
	1.3.1 NOTE:	
	1.3.2 Rules for propositional connectives	3
Use	ful Resources for Natural deductions	4
1 Deductive Systems		
	1.1 1.2 1.3	1.2 Soundness and completeness of a deductive system

1. Logical Consequence:

$$A_1,...,A_n \models C$$

• and Logical validity:

$$\models C$$

These are semantic notions \rightarrow meaning of formulae.

They require checking truth in all models for logic.

- 2. Deductive systems:
 - Are meant to capture the logical consequence and validity defined by the logical semantics, in terms of logical **logical deductions** (derivations).
 - A Logical derivation is a mechanical procedure, not reffering the meaning of the occurring formulae.

• In deductive systems logical consequence is replaced by **deductive consequence** and valid formulae (tautologies) - by derivable formulae (theorems).

1.1 Basic Components of a deductive System

- Formal Logical language
- Axioms (Rules of inference)
- Inference (deduction) from a set of assumptions in a given deductive System D:

$$A_1,...A_n \vdash_D C$$

• Formulae derivable from no assumptions are called **Theorems** of *D*:

$$\vdash_D C$$

1.2 Soundness and completeness of a deductive system

• A deductive system *D* is **sound** (correct) for a given logical semantics if *D* can **only** derive what is logically correct (valid):

$$A_1, ... A_n C \implies A_1, ... A_n \models C$$

• In particular:

$$\vdash_D C \implies \models C$$

• A system *D* is **Complete** for a given logical semantics if *D* can derive **every** valid logical consequence:

$$A_1, ... A_n \models C \implies A_1, ... A_n C$$

• In particular

$$\models C \implies \vdash_D C$$

• A deductive system is *adequte for a given semantics if it is both sound AND complete:

$$A_1,...A_n \models C \iff A_1,...A_nC$$

• in particular

$$\models C \iff \vdash_D C$$

1.3 Propositional natural deduction

- Natural Deduction (ND): System for structural logic derivation from a set of assumptions, based on rules, specific to the logical connectives.
- There are Introduction and elimination rules for each connective.
- Intro and cancelation of assumptions, assumptions can be reused many times before being discharged.
- Cancelation of assumptions: only when a rule allows it, not an obligation.
- All assumptions left at the end of a derivation must be declared.

1.3.1 NOTE:

The fewer assumptions, the stronger the claim of the derivation.

1.3.2 Rules for propositional connectives

- Refer to notes!
- 1. Examples in notes!

Strategies for ND proofs in propositional logic Given a set of premises Δ and the goal of trying to prove Γ :

- 1. Apply premises $p_i \in \Delta$ to prove Γ
- 2. If you need to use a \vee -premise, then apply \vee -elimination to prove Γ for each disjunct
- 3. Otherwise work backwards from the goal:
 - (a) If the goal Γ is a conditional $(A \implies B)$ then assume A and prove B using \rightarrow -introduction.
 - (b) IF the goal Γ is negative $(\neg A)$, then assume $(\neg \neg A)$ and prove contradiction; use the \neg -introduction.
 - (c) if the goal Γ is a conjunction $(A \wedge B)$ then prove A and prove B; use \wedge -introduction.
 - (d) If the goal Γ is a disjunction (A \vee B) then prove one of A or B; use \vee -introduction.

- $1.\,$ Examples from the oxford pack click on them to go to solutions!
 - sol

$$\vdash P \land Q \rightarrow P \lor Q$$

• sol

$$\neg (P \rightarrow Q) \vdash P \land \neg Q$$

• sol

$$P \vee \neg Q, R \rightarrow \neg P \vdash Q \rightarrow \neg R$$

• sol

$$P \rightarrow Q \vdash \neg P \lor Q$$

• sol

$$\neg P \lor Q, P \lor \neg Q \vdash P \leftrightarrow Q$$

- 2 Useful Resources for Natural deductions
 - Oxford logic pack