This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

RL: TEM (Technical or engineered material use); USES (Uses)

(fluorine-contg., acrylates, coatings, heat-resistant, for optical

fibers)

Coating materials

(heat-resistant, octafluorooctanediol diepichlorohydrin ether di(meth)acrylate polymers, for optical fibers)

139011-87-3 139011-90-8 139011-91-9 IT

RL: TEM (Technical or engineered material use); USES (Uses)

(coatings, heat-resistant, for optical fibers)

79-10-7, Acrylic acid, reactions 79-41-4, Methacrylic acid, reactions ΙT

RL: RCT (Reactant); RACT (Reactant or reagent)

(esterification of, with epoxidized octafluorooctanediols)

83192-87-4 IT

RL: RCT (Reactant); RACT (Reactant or reagent)

(etherification of, with epichlorohydrin)

106-89-8, Epichlorohydrin, reactions IT

RL: RCT (Reactant); RACT (Reactant or reagent) (etherification of, with octafluorooctanediol)

139011-89-5P 139011-88-4P ΙT

RL: RCT (Reactant); PREP (Preparation); RACT (Reactant or reagent)

(prepn. and polymn. of, for coatings for optical

fibers)

139011-90-8 139011-91-9 IT

RL: TEM (Technical or engineered material use); USES (Uses)

(coatings, heat-resistant, for optical fibers)

139011-90-8 HCAPLUS RN .

2-Propenoic acid, 2-methyl-, (3,3,4,4,5,5,6,6-octafluoro-1,8octanediyl)bis[oxy(2-hydroxy-3,1-propanediyl)] ester, polymer with (chloromethyl)oxirane polymer with 4,4'-(1-methylethylidene)bis[phenol] 2-propenoate and (3,3,4,4,5,5,6,6-octafluoro-1,8-octanediyl)bis[oxy(2hydroxy-3,1-propanediyl)] di-2-propenoate (9CI) (CA INDEX NAME)

1 CM

CN

139011-89-5 CRN C22 H30 F8 O8 CMF

PAGE 1-A

PAGE 1-B

2 CM

139011-88-4 CRN C20 H26 F8 O8 CMF

PAGE 1-A

PAGE 1-B

CM 3

CRN 55818-57-0

CMF (C15 H16 O2 . C3 H5 Cl O)x . x C3 H4 O2

CM 4

CRN 79-10-7 CMF C3 H4 O2

CM 5

CRN 25068-38-6

CMF (C15 H16 O2 . C3 H5 C1 O) x

CCI PMS

CM 6

CRN 106-89-8 CMF C3 H5 Cl O

CM 7

CRN 80-05-7 CMF C15 H16 D2

RN 139011-91-9 HCAPLUS
CN 2-Propenoic acid, (3,3,4,4,5,5,6,6-octafluoro-1,8-octanediyl)bis[oxy(2-hydroxy-3,1-propanediyl)] ester, polymer with (chloromethyl)oxirane polymer with 4,4'-(1-methylethylidene)bis[phenol] 2-propenoate (9CI) (CA INDEX NAME)

CM 1

CRN 139011-88-4 CMF C20 H26 F8 O8

PAGE 1-A

PAGE 1-B

CM 2

CRN 55818-57-0 CMF (C15 H16 O2 . C3 H5 Cl O)x . x C3 H4 O2

CM 3

CRN 79-10-7 CMF C3 H4 O2

CM 4

CRN 25068-38-6 CMF (C15 H16 O2 . C3 H5 Cl O)x CCI PMS

Page 30 7/28/03 10/067669 5 CM

> 106-89-8 CRN C3 H5 Cl O CMF

CH2-Cl

CM 6

80-05-7 CRN C15 H16 O2 CMF

COPYRIGHT ANSWER 5 OF 8 HCAPLUS L78

1992:215926 HCAPLUS ΑN

116:215926 DN

Broad-band high-numerical aperture plastic-clad optical fibers ΤI

Nishimoto, Hiroaki; Mishima, Takayuki IN

Sumitomo Electric Industries, Ltd., Japan PA

Jpn. Kokai Tokkyo Koho, 7 pp/ SO

CODEN: JKXXAF

DTPatent

Japanese LΑ

ICM. G02B006-18 IC

38-3 (Plastics Fabrication and Uses) Section cross-reference(s): 73

FAN.CNT 1 APPLICATION NO. DATE DATE KIND PATENT NO. _____ ____ JP 1990-43402 19900223 19911031 A2 JP 03245108 PΙ 20010205 B2 / JP 3132729 US 1991-658876 19910222 19920616 Α US 5123076

19900223 A / PRAI JP 1990-43402 The title optical fibers satisfy conditions of (1) n of the cured clad resin at practical wavelength is 97-98.5% that of edge of the core, AB (2) light transmission of the cured clad resin at a practical wavelength 500-4000 dB/km, and (3) linear expansion coeff. of the cured clad resin .ltoreq.2.0 .times. 10-4/.degree.C. Thus, an optical fiber comprising Ge-doped quartz core and fluorinated acrylate polymer clad had core n 1.474 (at center) and 1.455 (at edge), clad n 1.420, clad light transmission 2960 dB/km, clad linear expansion coeff. 0.00013/.degree.C, transmission band 89 MHz, and transmission loss 6.22

broad band optical fiber; high numerical aperture optical fiber; glass ST core optical fiber; fluorinated acrylate polymer optical

```
L78 ANSWER 7 OF 8 HCAPLUS COPYRIGHT 2003 ACS on STN
```

AN 1992:7996 HCAPLUS

116:7996 DN

Resin compositions and heat-resistant coatings for optical fibers ΤI

Yokoshima, Minoru; Matsumoto, Kanichi IN

Nippon Kayaku Co., Ltd., Japan PA

Jpn. Kokai Tokkyo Koho, 7 pp. SO

CODEN: JKXXAF

DTPatent

Japanese LΑ

IC ICM C08F220-26

ICS C03C025-02; C08F220-22; C08F299-02; C09D004-00; C09D004-02; G02B006-44

42-10 (Coatings, Inks, and Related Products) CC

Section cross-reference(s): 57

FAN.CNT 1

APPLICATION NO. DATE PATENT NO. KIND DATE _____ 19890808 JP 1989-203796 A2 19910325 PΙ JP 03068609 19890808 PRAI JP 1989-203796

The compns. and the coatings, esp. useful for applying on glass optical AΒ fibers used in high temp., comprise epoxy acrylates,

CH2:CRCO2(CH2)a(CF2)4(CH2)bOCOCR:CH2 (R = H, Me; a, b = 1, 2), and imide acrylates. Thus, Epikote 828 acrylate 30, a reaction product of HO(CH2)2(CF2)2(CH2)2OH and acrylic acid (I) 50, a product prepd. from phthalic acid, 3-amino-1-butanol, and I 20, and Irgacure 184 3 parts were mixed to give a compn., whose cured sheet showed Young's modulus at 23.degree. 117 kg/mm2 initially and 118 kg/mm2 after 1 mo at 150.degree.. The compn. was applied on glass optical fiber and UVcured to show no change of transmission loss after 1 mo at 150.degree.. optical glass fiber resin coating; acrylate polymer coating glass fiber Optical fibers (coating of, acrylic polymers for, heat-resistant) Coating materials (heat-resistant, acrylic polymers, prepn. of, on glass

IT

ST IT

optical fibers)

IT 55818-57-0, Epikote 828 acrylate

RL: USES (Uses)

(coatings contg., for glass optical fibers)

137853-66-8P 137853-67-9P 137914-67-1P ΙT 137914-68-2P

> RL: TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)

(coatings, prepn. of, on glass optical fibers, heat-resistant)

IT 86752-95-6P 106646-48-4P 126121-41-3P 126121-42-4P 137799-19-0P 137799-20-3P

RL: PREP (Preparation)

(prepn. of, for manuf. of acrylic polymer coatings)

IT 137853-66-8P 137853-67-9P 137914-67-1P 137914-68-2P

RL: TEM (Technical or engineered material use); PREP (Preparation); USES

(coatings, prepn. of, on glass optical fibers, heat-resistant)

137853-66-8 HCAPLUS RN

CN 2-Propenoic acid, 2-(octahydro-1, 3-dioxo-2H-isoindol-2-yl)ethyl ester, polymer with (chloromethyl) oxirane polymer with 4,4'-(1methylethylidene)bis[phenol] 2-propenoate, and 3,3,4,4,5,5,6,6-octafluoro-1,8-octanediol 2-propenoate (9CI) (CA INDEX NAME)

CM 1

CRN 106646-48-4 CMF C13 H17 N O4

$$CH_2 - CH_2 - O - C - CH = CH_2$$

CM 2

CRN 137799-20-3 CMF C8 H10 F8 O2 . x C3 H4 O2

CRN 83192-87-4 CMF C8 H10 F8 O2

 ${\tt HO-CH_2-CH_2-(CF_2)_4-CH_2-CH_2-OH}$

CM 4

CRN 79-10-7 CMF C3 H4 O2

о || но-с-сн== сн₂

CM 5

CRN 55818-57-0

CMF (C15 H16 O2 . C3 H5 Cl O)x . x C3 H4 O2

CM 6

CRN 79-10-7 CMF C3 H4 O2

о || но- с- сн== сн₂

CM 7

CRN 25068-38-6

CMF (C15 H16 O2 . C3 H5 Cl O) \times

CCI PMS

CM 8

CRN 106-89-8

CMF C3 H5 C1 O

CH₂-Cl

CRN 80-05-7 CMF C15 H16 O2

137853-67-9 HCAPLUS

2-Propenoic acid, 2-(octahydro-1,3-dioxo-2H-isoindol-2-yl)ethyl ester, polymer with (chloromethyl)oxirane polymer with methylenebis[phenol] 2-propenoate, 2,2,3,3,4,4,5,5-octafluoro-1,6-hexanediol 2-propenoate and tricyclo[3.3.1.13,7]decyl 2-propenoate (9CI) (CA INDEX NAME)

CM 1

ŔN

ĆΝ

CRN 129090-25-1 CMF C13 H18 O2 CCI IDS

CM 2

CRN 106646-48-4 CMF C13 H17 N O4

$$CH_2-CH_2-O-C-CH=CH_2$$

CM 3

CRN 137799-19-0

ONG 10/067669 7/28/03 Page 40

CMF C6 H6 F8 O2 . x C3 H4 O2

CM 4

CRN 355-74-8 CMF C6 H6 F8 O2

 $_{\rm HO-CH_2-(CF_2)_4-CH_2-OH}$

CM 5

CRN 79-10-7 CMF C3 H4 O2

O || HO- C- CH== CH₂

см б

CRN 86752-95-6 CMF (C13 H12 O2 . C3 H5 C1 O)× . x C3 H4 O2

CM 7

CRN 79-10-7 CMF C3 H4 O2

 $\begin{matrix} \text{O} \\ || \\ \text{HO-C-CH} = \text{CH}_2 \end{matrix}$

CM 8

CRN 58421-55-9 CMF (C13 H12 O2 . C3 H5 C1 O)×

CCI PMS

cm 9

CRN 1333-16-0 CMF C13 H12 O2 CCI IDS 10/067669 7/28/03 Page 41

D1-OH

1/2 D1-CH2-D1

CM 10

CRN 106-89-8 CMF C3 H5 Cl O

CH2-C1

RN 137914-67-1 HCAPLUS
2-Propenoic acid, 2-(octahydro-4-methyl-1,3-dioxo-2H-isoindol-2-yl)ethyl ester, polymer with (chloromethyl)oxirane polymer with
4,4'-(1-methylethylidene)bis[phenol] 2-propenoate, .alpha.-hydro-.omega.[(1-oxo-2-propenyl)oxy]poly[oxy(1-oxo-1,6-hexanediyl)] diester with
3-hydroxy-2,2-dimethyl-3-hydroxy-2,2-dimethylpropanoate, and
3,3,4,4,5,5,6,6-octafluoro-1,8-octanediol 2-propenoate (9CI) (CA INDEX NAME)

CM 1

CRN 126121-41-3 CMF C14 H19 N O4

CM 2

CRN 102903-35-5 CMF (C6 H10 O2)n (C6 H10 O2)n C16 H24 O6 CCI PMS

PAGE 1-B

CM 3

CRN 137799-20-3

CMF C8 H10 F8 O2 . x C3 H4 O2

CM

CRN 83192-87-4 CMF C8 H10 F8 O2

 ${
m HO-CH_2-CH_2-(CF_2)_4-CH_2-CH_2-OH}$

CM 5

CRN 79-10-7 CMF C3 H4 O2

CM

CRN 55818-57-0

(C15 H16 O2 . C3 H5 Cl O)x . x C3 H4 O2 CMF

CM

CRN 79-10-7

CMF C3 H4 O2

CRN 25068-38-6

CMF (C15 H16 O2 . C3 H5 Cl O) \times

CCI PMS

CM 9

CRN 106-89-8 CMF C3 H5 Cl O

CM 10

CRN 80-05-7 CMF C15 H16 O2

RN 137914-68-2 HCAPLUS

CN 2-Propenoic acid, (2,4,6-trioxo-1,3,5-triazine-1,3,5(2H,4H,6H)-triyl)tri-2,1-ethanediyl ester, polymer with (chloromethyl)oxirane polymer with methylenebis[phenol] 2-propenoate, 3-(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)butyl 2-propenoate and 3,3,4,4,5,5,6,6-octafluoro-1,8-octanediol 2-propenoate (9CI) (CA INDEX NAME)

CM 1

CRN 126121-42-4 CMF C15 H15 N O4

CRN 40220-08-4 CMF C18 H21 N3 O9

$$H_{2}C = CH - C - O - CH_{2} - CH_{2}$$

$$O \quad CH_{2} - CH$$

CM 3

CRN 137799-20-3

CMF C8 H10 F8 O2 . x C3 H4 O2

CM 4

CRN 83192-87-4 CMF C8 H10 F8 O2

 $_{
m HO-CH_2-CH_2-(CF_2)_4-CH_2-CH_2-OH}$

CM 5

CRN 79-10-7 CMF C3 H4 O2

CM 6

7/28/03 Page 45 NG 10/067669

CRN 86752-95-6 (C13 H12 O2 . C3 H5 Cl O)x . x C3 H4 O2 CMF

> 7 CM

CRN 79-10-7 CMF C3 H4 O2

0 $HO-C-CH=CH_2$

> 8 CM

CRN 58421-55-9

(C13 H12 O2 . C3 H5 Cl O) x CMF

CCI

CM

CRN 1333-16-0 CMF C13 H12 O2

CCI IDS

D1-OH

10 CM

106-89-8 CRN CMF C3 H5 C1 O

L78 ANSWER 8 OF 8 HCAPLUS COPYRIGHT 2003 ACS on STN 1990:140561 HCAPLUS AN

112:140561 DN

CH2-O-C-CH=

= CH-

H₂C=

CRN 2223-82-7 CMF C11 H16 O4

- C- O- CH2-

CM 6

CRN 1830-78-0 CMF C11 H16 O5

L78 ANSWER 7 OF 8 HCAPLUS COPYRIGHT 2003 ACS on STN

AN 1992:7996 HCAPLUS

DN 116:7996

TI Resin compositions and heat-resistant coatings for optical fibers

IN Yokoshima, Minoru; Matsumoto, Kanichi

PA Nippon Kayaku Co., Ltd., Japan

SO Jpn. Kokai Tokkyo Koho, 7 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

IC ICM C08F220-26

ICS C03C025-02; C08F220-22; C08F299-02; C09D004-00; C09D004-02;

G02B006-44

CC 42-10 (Coatings, Inks, and Related Products)

Section cross-reference(s): 57

FAN.CNT 1

PATENT NO. KIND DATE APPLICATION NO. DATE
PI JP 03068609 A2 19910325 JP 1989-203796 19890808

PRAI JP 1989-203796 19890808

AB The compns. and the coatings, esp. useful for applying on glass optical fibers used in high temp., comprise epoxy acrylates,

10/067669 7/28/03 Page 37

CH2:CRCO2(CH2)a(CF2)4(CH2)bOCOCR:CH2 (R = H, Me; a, b = 1, 2), and imide acrylates. Thus, Epikote 828 acrylate 30, a reaction product of HO(CH2)2(CF2)2(CH2)2OH and acrylic acid (I) 50, a product prepd. from phthalic acid, 3-amino-1-butanol, and I 20, and Irgacure 184 3 parts were mixed to give a compn., whose cured sheet showed Young's modulus at 23.degree. 117 kg/mm2 initially and 118 kg/mm2 after 1 mo at 150.degree.. The compn. was applied on glass optical fiber and UVcured to show no change of transmission loss after 1 mo at 150.degree.. optical glass fiber resin coating; acrylate polymer coating glass fiber Optical fibers (coating of, acrylic polymers for, heat-resistant) Coating materials (heat-resistant, acrylic polymers, prepn. of, on glass optical fibers) 55818-57-0, Epikote 828 acrylate RL: USES (Uses) (coatings contg., for glass optical fibers) 137853-66-8P 137853-67-9P 137914-67-1P 137914-68-2P RL: TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (coatings, prepn. of, on glass optical fibers, heat-resistant) 126121-42-4P 137799-19-0P 86752-95-6P 106646-48-4P 126121-41-3P 137799-20-3P RL: PREP (Preparation) (prepn. of, for manuf. of acrylic polymer coatings) 137853-66-8P 137853-67-9P 137914-67-1P 137914-68-2P RL: TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (coatings, prepn. of, on glass optical fibers, heat-resistant) 137853-66-8 HCAPLUS 2-Propenoic acid, 2-(octahydro-1,3-dioxo-2H-isoindol-2-yl)ethyl ester, polymer with (chloromethyl) oxirane polymer with 4,4'-(1methylethylidene)bis[phenol] 2-propenoate, and 3,3,4,4,5,5,6,6-octafluoro-1,8-octanediol 2-propenoate (9CI) (CA INDEX NAME)

CM 1

ST IT

IT

IT

IT

IT

IT

RN

CN

CRN 106646-48-4 CMF C13 H17 N O4

$$CH_2 - CH_2 - O - C - CH = CH_2$$

CM 2

CRN 137799-20-3 CMF C8 H10 F8 O2 . x C3 H4 O2 10/067669 7/28/03 Page 38

CM 3

CRN 83192-87-4 CMF C8 H10 F8 O2

 $HO-CH_2-CH_2-(CF_2)_4-CH_2-CH_2-OH$

CM 4

CRN 79-10-7 CMF C3 H4 O2

о || но-с-сн==сн₂

CM 5

CRN 55818-57-0 CMF (C15 H16 O2 . C3 H5 Cl O)x . x C3 H4 O2

CM 6

CRN 79-10-7 CMF C3 H4 O2

о || но-с-сн==сн₂

CM 7

CRN 25068-38-6

CMF (C15 H16 O2 . C3 H5 Cl O) \times

CCI PMS

CM 8

CRN 106-89-8 CMF C3 H5 C1 O

O CH2-C1

CRN 80-05-7 CMF C15 H16 O2

137853-67-9 HCAPLUS

2-Propenoic acid, 2-(octahydro-1,3-dioxo-2H-isoindol-2-yl)ethyl ester, polymer with (chloromethyl)oxirane polymer with methylenebis[phenol] 2-propenoate, 2,2,3,3,4,4,5,5-octafluoro-1,6-hexanediol 2-propenoate and tricyclo[3.3.1.13,7]decyl 2-propenoate (9CI) (CA INDEX NAME)

CM I

CRN 129090-25-1 CMF C13 H18 O2 CCI IDS

CM 2

CRN 106646-48-4 CMF C13 H17 N O4

$$CH_2-CH_2-O-C-CH=CH_2$$

CM 3

CRN 137799-19-0

ONG 10/067669 7/28/03 Page 40 CMF C6 H6 F8 O2 . x C3 H4 O2

CM 4

CRN 355-74-8 CMF C6 H6 F8 O2

 $_{\rm HO-CH_2-\ (CF_2)\ 4-CH_2-OH}$

CM 5

CRN 79-10-7 CMF C3 H4 O2

 $\begin{matrix} \text{O} \\ || \\ \text{HO-C-CH} = \text{CH}_2 \end{matrix}$

см 6

CRN 86752-95-6 CMF (C13 H12 O2 . C3 H5 C1 O) x . x C3 H4 O2

cm 7

CRN 79-10-7 CMF C3 H4 O2

O | | | HO- C- CH== CH₂

CM 8

CRN 58421-55-9 CMF (C13 H12 O2 . C3 H5 C1 O)× CCI PMS

CM 9

CRN 1333-16-0 CMF C13 H12 O2 CCI IDS 10/067669 7/28/03 Page 41

D1-OH

1/2 D1-CH2-D1

CM 10

CRN 106-89-8 CMF C3 H5 C1 O

CH2-C1

RN 137914-67-1 HCAPLUS
2-Propenoic acid, 2-(octahydro-4-methyl-1,3-dioxo-2H-isoindol-2-yl)ethyl ester, polymer with (chloromethyl)oxirane polymer with
4,4'-(1-methylethylidene)bis[phenol] 2-propenoate, .alpha.-hydro-.omega.[(1-oxo-2-propenyl)oxy]poly[oxy(1-oxo-1,6-hexanediyl)] diester with
3-hydroxy-2,2-dimethyl-3-hydroxy-2,2-dimethylpropanoate, and
3,3,4,4,5,5,6,6-octafluoro-1,8-octanediol 2-propenoate (9CI) (CA INDEX NAME)

CM 1

CRN 126121-41-3 CMF C14 H19 N O4

$$\begin{array}{c|c}
 & O \\
 & | \\
 & | \\
 & CH_2 - CH_2 - O - C - CH = CH_2
\end{array}$$

$$\begin{array}{c|c}
 & O \\
 & | \\
 & | \\
 & O \\
 & Me
\end{array}$$

CM 2

CRN 102903-35-5

CMF (C6 H10 O2)n (C6 H10 O2)n C16 H24 O6

CCI PMS

PAGE 1-A

PAGE 1-B

CM 3

CRN 137799-20-3

CMF C8 H10 F8 O2 . x C3 H4 O2

CM 4

CRN 83192-87-4 CMF C8 H10 F8 O2

$${\tt HO-CH_2-CH_2-(CF_2)_4-CH_2-CH_2-OH}$$

CM 5

CRN 79-10-7 CMF C3 H4 O2

CM 6

CRN 55818-57-0

CMF (C15 H16 O2 . C3 H5 C1 O)x . x C3 H4 O2

CM 7

CRN 79-10-7 CMF C3 H4 O2

CRN 25068-38-6

CMF (C15 H16 O2 . C3 H5 Cl O) \times

CCI PMS

CM 9

CRN 106-89-8 CMF C3 H5 C1 O

CM 10

CRN 80-05-7 CMF C15 H16 O2

RN 137914-68-2 HCAPLUS

CN 2-Propenoic acid, (2,4,6-trioxo-1,3,5-triazine-1,3,5(2H,4H,6H)-triyl)tri-2,1-ethanediyl ester, polymer with (chloromethyl)oxirane polymer with methylenebis[phenol] 2-propenoate, 3-(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)butyl 2-propenoate and 3,3,4,4,5,5,6,6-octafluoro-1,8-octanediol 2-propenoate (9CI) (CA INDEX NAME)

CM 1

CRN 126121-42-4 CMF C15 H15 N O4

CRN 40220-08-4 CMF C18 H21 N3 O9

$$H_2C = CH - C - O - CH_2 - CH_2$$
 $CH_2 - CH_2 - O - C - CH = CH_2$
 $CH_2 - CH_2 - O - C - CH = CH_2$
 $CH_2 - CH_2 - O - C - CH = CH_2$

CM 3

CRN 137799-20-3

CMF C8 H10 F8 O2 . x C3 H4 O2

CM 4

CRN 83192-87-4 CMF C8 H10 F8 O2

 ${\rm HO-CH_2-CH_2-(CF_2)_4-CH_2-CH_2-OH}$

CM 5

CRN 79-10-7 CMF C3 H4 O2

CM 6

CRN 86752-95-6 CMF (C13 H12 O2 . C3 H5 C1 O) x . x C3 H4 O2 CM 7 CRN 79-10-7 CMF C3 H4 O2

0 || HO- C- CH== CH₂

CM 8

CRN 58421-55-9 CMF (C13 H12 O2 . C3 H5 C1 O)× CCI PMS

CM 9

CRN 1333-16-0 CMF C13 H12 O2 CCI IDS

D1-OH

.CM 10

CRN 106-89-8 CMF C3 H5 Cl O

L78 ANSWER 8 OF 8 HCAPLUS COPYRIGHT 2003 ACS on STN AN 1990:140561 HCAPLUS

DN 112:140561