Знаходження оптимального керування з повним зворотнім зв'язком в задачі про швидкодію

1^{0} . Постановка задачі

Нехай поведінка моделі об'єкта керування описується рівнянням

$$\dot{\vec{x}}(t) = f(t, \vec{x}(t), \vec{u}(t)). \tag{1}$$

У цьому рівнянні

 $\vec{x} = (x_1, x_2, ..., x_n)^T$ – вектор стану системи (вектор фазових змінних);

$$\vec{u} = (u_1, u_2, ..., u_n)^T$$
 – вектор управління;

t – час;

 $T = [t_0, t_1]$ – проміжок часу функціонування системи;

 $U \subseteq R^q$ – множина допустимих значень керування;

$$\vec{f}(t, \vec{x}, \vec{u}) = (f_1(t, \vec{x}, \vec{u}), f_2(t, \vec{x}, \vec{u}), ..., f_n(t, \vec{x}, \vec{u}))^T$$
.

а критерій якості визначається виразом

$$I(\vec{x}, \vec{u}) = \int_{t_0}^{t_1} f^{\circ}(t, \vec{x}(t), \vec{u}(t)) dt + \psi(t_1, \vec{x}(t_1)) \rightarrow \inf, \qquad (2)$$

Разом з моментом початку процесу задамо початкову умову

$$\vec{x}(t_0) = x_0, \ \vec{x}(t_1) = x_1$$
 (3)

Множина U_n допустимих керувань з повним зворотнім зв'язком (позиційних керувань) утворюють функції $\vec{u}(t,x)\colon T\times R^n\to U$, які для довільних початкових станів породжують відповідні пари $d=\big(x(\cdot),u(\cdot)\big)\in D\big(t_0,x_0\big)$, де програмне керування $u(\cdot)\in U_0$, а $\forall t\in T$ $u(t)=\vec{u}\big(t,x(t)\big)$. Функція $\vec{u}^*\big(t,x(t)\big)\in U_n$ називається оптимальним керуванням з повним зворотнім зв'язком.

20. Рівняння Беллмана.

Введемо функцію Беллмана - $\mu(x(t),t)$. За означенням це є функція, яка в точці $(\vec{x}(t),t)$ $t_0 \le t \le t_1$ дорівнює найменшому значенню функціоналу

$$I_{t}(\vec{x}, \vec{u}) = \int_{1}^{t_{1}} f^{\circ}(\vec{x}(t), \vec{u}(t)) dt + \psi(t_{1}, \vec{x}(t_{1}))$$

$$\tag{4}$$

для усіх припустимих процесів з початковим станом $\vec{x}(t) = \xi$. Тобто

$$\mu(\xi,t) = \min_{\substack{u(t) \in U \\ (t_0 \le t \le t_1)}} \left(\int_t^{t_1} f^{\circ}(\vec{x}(t), \vec{u}(t)) dt + \psi(\vec{x}(t_1), t_1) \right). \tag{5}$$

Тоді при $\xi = x_0$ і $t = t_0$, отримаємо величину $\mu(x_0, t_0)$, що визначає найменше значення функціоналу в (2).

Вважається, що $\forall \xi$ фазового простору та довільного моменту часу $t \in [t_0,t_1]$ існує оптимальна траєкторія з початковою умовою $\vec{x}(t) = \xi$. Таким чином функція $\mu(x(t),t)$ визначена всюди на множині $(\vec{x}(t),t) \in R^n \times (t_0,t_1)$

В задачі (1)-(3) (з закріпленими границями) функція Беллмана залежить лише від фазових змінних у кожен момент часу і не залежить від часу у явному вигляді, тобто: $\mu = \mu(\vec{x}(t))$. Дійсно, за означенням

$$\mu(\vec{x}(t),t) = \int_{t}^{t_1} f^{\circ}(\vec{x}^*(t),\vec{u}^*(t))dt + \psi(\vec{x}^*(t_1))$$

Але згідно властивостям автономного процесу: значення інтегралу

$$\int_{t}^{t_{1}} f^{\circ}\left(\vec{x}^{*}(t), \vec{u}^{*}(t)\right) dt + \psi\left(\vec{x}^{*}(t_{1})\right)$$

при фіксованих $x^*(t)$ і $u^*(t)$ залежить лише від довжини $t_1 - t$ інтервалу інтегрування, який можна визначити з автономної системи (1), по відомим значенням $x^*(t)$ та $x^*(t_1)$ на траєкторії. А це означає, що $t_1 - t$ є функція від цих двох точок, а функція Беллмана μ явно не залежить від часу.

Для задачі (1), (2), (3), де час t_1 невідомий, а відомий стан системи на початку керування, та на правому кінці, **рівняння Беллмана** має вигляд:

$$\min_{u(\tau) \in U} \left[f^{0}\left(x^{*}(\tau), u(\tau)\right) + \left(\operatorname{grad}\mu, \vec{f}\left(x^{*}(\tau), u(\tau)\right)\right) \right] = 0$$
 (6)

або

$$\min_{u(\tau)\in U} \left[f^{0}\left(x^{*}(\tau), u(\tau)\right) + \sum_{i=1}^{n} \frac{\partial \mu}{\partial x_{i}} \Big|_{\left(x^{*}(\tau), \tau\right)} f_{i}\left(x^{*}(\tau), u(\tau)\right) \right] = 0$$
(6')

Приклад

Знайти оптимальне за швидкодією керування з повним зворотнім зв'язком $u^*(\cdot)$ та відповідну йому оптимальну траєкторію $x^*(\cdot)$ системи:

$$\dot{x}_1(t) = x_2(t) - 8;$$

 $\dot{x}_2(t) = u(t), \quad |u(t)| \le 1, \quad 0 \le t \le T,$

і час T, затрачений на перехід із початкового стану $x_1(0) = 6$, $x_2(0) = 4$ у початок координат.

Розв'язання:

Сформулюємо проблему у формі задачі мінімізації функціоналу: функціонал якості тут може бути заданий двома способами:

або $T \rightarrow \min$ (задача Майєра за класифікацією типів задач оптимального керування)

або
$$I = \int_{0}^{T} dt \rightarrow \min$$
 (задача Лагранжа),

де момент закінчення процесу керування T не заданий і підлягає визначенню. У даному прикладі вектор $\vec{x}=(x_1,x_2,...,x_n)^T$ має 2 координати x_1 та x_2 , відповідні швидкості зміни фазових замінних: $\dot{x}_1=f_1(t,x,u)=x_2-8,\ \dot{x}_2=f_2(t,x,u)=u,\ i$ підінтегральний вираз функціоналу якості (в задачі Лагранжа) $f^\circ(t,x,u)=1$, термінальна частина функціоналу якості $\psi(t_1,x(t_1))\equiv 0, \qquad t_1=T, \quad$ граничні умови на лівому кінці $x_1(0)=6,\ x_2(0)=4,$ на правому кінці $x_1(T)=0,\ x_2(T)=0.$

Розв'язується задача Лагранжа.

1) Рівняння Беллмана для цієї проблеми має вигляд (6'):

$$\min_{|u| \le 1} \left[1 + \frac{\partial \mu}{\partial x_1} (x_2 - 8) + \frac{\partial \mu}{\partial x_2} u \right] = 0 \text{ aloo } \min_{|u| \le 1} \left[\frac{\partial \mu}{\partial x_1} (x_2 - 8) + \frac{\partial \mu}{\partial x_2} u \right] = -1,$$
(12)

а гранична умова для функції Беллмана така:

$$\mu(\vec{x}(T),T) = \psi(\vec{x}(T),T) = 0 \tag{13}$$

Будемо вважати, що функція μ неперервна та має неперервні частинні похідні за змінними x_1 та x_2 . Оскільки з постанови задачі виконання цих умов не слідує, то подальший розв'язок має евристичний характер.

2) Знайдемо вираз оптимального керування $u^*(t)$ через функцію Беллмана. з рівняння (12), мінімального значення вираз в дужках набуває за умови, що

$$u^* = -sign\frac{\partial \mu}{\partial x_2} \tag{14}$$

3 урахуванням (14) рівняння Беллмана (12) набуває вигляду:

$$\frac{\partial \mu}{\partial x_1}(x_2 - 8) - \frac{\partial \mu}{\partial x_2} sign\left(\frac{\partial \mu}{\partial x_2}\right) + 1 = 0 \text{ afo } \frac{\partial \mu}{\partial x_1}(x_2 - 8) - \left|\frac{\partial \mu}{\partial x_2}\right| + 1 = 0 (15)$$

Згідно (14) оптимальне керування u^* може набувати значення 1 і -1.

3) Розглянемо на фазовій площині область L_{-1} , що відповідає керуванню

$$u^* = -1$$
. $\left(\frac{\partial \mu}{\partial x_2} > 0\right)$ Рівняння Беллмана (15) тут має вигляд

$$\frac{\partial \mu}{\partial x_1} (x_2 - 8) - \frac{\partial \mu}{\partial x_2} + 1 = 0 \tag{16}$$

Розв'язок неоднорідного рівняння (16) будемо шукати у неявному вигляді $V(\mu, x_1, x_2) = 0$. Використовуючи правило диференціювання функції заданої неявно, знаходимо похідні від функції Беллмана за фазовими змінними:

$$\frac{\partial \mu}{\partial x_1} = -\frac{\frac{\partial V}{\partial x_1}}{\frac{\partial V}{\partial \mu}}, \quad \frac{\partial \mu}{\partial x_2} = -\frac{\frac{\partial V}{\partial x_2}}{\frac{\partial V}{\partial \mu}}$$

$$(17)$$

Підставимо (17) в (16), отримаємо

$$\frac{\partial V}{\partial x_1} (x_2 - 8) - \frac{\partial V}{\partial x_2} - \frac{\partial V}{\partial \mu} = 0 \tag{18}$$

Запишемо рівняння характеристик до рівняння (18)

$$\frac{dx_1}{(x_2 - 8)} = \frac{dx_2}{-1} = \frac{d\mu}{-1} \tag{19}$$

Звідси знаходимо розв'язки системи 2-ох рівнянь з відокремлюванними змінними:

$$\begin{cases} \frac{dx_1}{x_2 - 8} = \frac{dx_2}{-1}, \\ \frac{dx_2}{-1} = \frac{d\mu}{-1} \end{cases} \Rightarrow \begin{cases} x_1 + \frac{(x_2 - 8)^2}{2} = C_1 \\ \mu - x_2 = C_2 \end{cases}$$
 (20)

На фазовій площині (x_1,x_2) побудуємо графіки множин фазових траєкторій, що відповідають $u^*=-1$

 $x_1 + \frac{\left(x_2 - 8\right)^2}{2} = C_1$ - це множина парабол, вершини яких розташовані на прямій $x_2 = 8$ в точках (C,8) на фазовій площині (x_1,x_2) . Напрям руху вздовж парабол у часі визначається рівнянням $\dot{x}_2(t) = u^*(t) = -1 < 0$, тобто рух відбувається у напрямку зменшення x_2 . Зобразимо це на фазовій площині:

Серед множини цих парабол, знайдемо ту яка приводить у початок координат, тобто у точку $x_1(T)=0$, $x_2(T)=0$ з урахуванням умови (13) $\mu(\vec{x}(T),T)=0$. За цих умов у рівняннях (20) маємо $C_1=32$ $C_2=0$. Таким чином, щоб досягти мети керування (перевести систему у початок координат) за допомогою керування $u^*=-1$ необхідно рухатися на фазовій площині вздовж параболи: $(x_1-32)=-\frac{\left(x_2-8\right)^2}{2}$, $x_2\geq 0$ (на графіку ділянка середньої лінії, що лежить вище осі x_1), при цьому $\mu=x_2$.

$$(x_1 - 32) = -\frac{(x_2 - 8)^2}{2}, x_2 \ge 0$$
 -ділянка лінії перемикання .

Розв'язки системи (20) дають два перші інтеграли рівняння (18):

$$\begin{cases} \phi_1(x_1, x_2) = x_1 + \frac{(x_2 - 8)^2}{2} \\ \phi_2(x_1, x_2) = \mu - x_2 \end{cases}$$

Загальний розв'язок рівняння (18) можна записати у вигляді:

$$\Phi\left(x_1 + \frac{(x_2 - 8)^2}{2}; \mu - x_2\right) = 0$$
(21)

де $\Phi(\phi_1,\phi_2)$ - довільна неперервно діференційовна функція. Припустимо, що рівняння (21) можна розв'язати відносно другого аргументу у вигляді $\phi_2 = H(\phi_1)$. Тоді можна записати:

$$\mu = x_2 + H \left(x_1 + \frac{\left(x_2 - 8 \right)^2}{2} \right) \tag{22}$$

тобто отримали вигляд виразу для функції Беллмана в області L_{-1} .

4) Аналогічно пп.3 розглянемо на фазовій площині область $L_{\!_1}$, що відповідає керуванню $u^*=1$ $\left(\frac{\partial \mu}{\partial x_2}\!<\!0\right)$. Рівняння Беллмана (15) тут має вигляд

$$\frac{\partial \mu}{\partial x_1} (x_2 - 8) + \frac{\partial \mu}{\partial x_2} + 1 = 0 \tag{23}$$

Розв'язок неоднорідного рівняння (23) будемо шукати у неявному вигляді $V(\mu,x_1,x_2)=0$. Використовуючи правило диференціювання функції заданої неявно, знаходимо похідні від функції Беллмана за фазовими змінними:

$$\frac{\partial \mu}{\partial x_1} = -\frac{\frac{\partial V}{\partial x_1}}{\frac{\partial V}{\partial \mu}}, \quad \frac{\partial \mu}{\partial x_2} = -\frac{\frac{\partial V}{\partial x_2}}{\frac{\partial V}{\partial \mu}}$$
(24)

Підставимо (24) в (23), отримаємо

$$\frac{\partial V}{\partial x_1} \left(x_2 - 8 \right) + \frac{\partial V}{\partial x_2} - \frac{\partial V}{\partial \mu} = 0 \tag{25}$$

Запишемо рівняння характеристик до рівняння (25)

$$\frac{dx_1}{(x_2 - 8)} = \frac{dx_2}{1} = \frac{d\mu}{-1} \tag{26}$$

Звідси знаходимо розв'язки системи 2-ох рівнянь з відокремлюванними змінними:

$$\begin{cases} \frac{dx_1}{x_2 - 8} = \frac{dx_2}{1}, \\ \frac{dx_2}{1} = \frac{d\mu}{-1} \end{cases} \Rightarrow \begin{cases} x_1 - \frac{(x_2 - 8)^2}{2} = C_1 \\ \mu + x_2 = C_2 \end{cases}$$
 (27)

На фазовій площині (x_1,x_2) побудуємо графіки множин фазових траєкторій, що відповідають $u^*=1$

 $x_1 - \frac{\left(x_2 - 8\right)^2}{2} = C_1$ - це множина парабол, вершини яких розташовані на прямій $x_2 = 8$ в точках (C,8) на фазовій площині (x_1,x_2) . Напрям руху вздовж парабол у часі визначається рівнянням $\dot{x}_2(t) = u^*(t) = 1 > 0$, тобто рух відбувається у напрямку збільшення x_2 . Зобразимо це на фазовій площині:

Серед множини цих парабол, знайдемо ту яка приводить у початок координат, тобто у точку $x_1(T)=0$, $x_2(T)=0$ з урахуванням умови (13) $\mu(\vec{x}(T),T)=0$. За цих умов у рівняннях (20) маємо $C_1=-32$ $C_2=0$. Таким чином, щоб досягти мети керування (перевести систему у початок координат) за допомогою керування $u^*=1$ необхідно рухатися на фазовій

площині вздовж параболи: $(x_1 + 32) = \frac{(x_2 - 8)^2}{2}$, $x_2 \le 0$ (на графіку ділянка середньої лінії, що лежить нижче осі x_1), при цьому $\mu = -x_2$.

$$(x_1 + 32) = \frac{(x_2 - 8)^2}{2}$$
, $x_2 \le 0$ -ділянка лінії перемикання .

Розв'язки системи (27) дають два перші інтеграли рівняння (25):

$$\begin{cases} \phi_3(x_1, x_2) = x_1 - \frac{(x_2 - 8)^2}{2} \\ \phi_4(x_1, x_2) = \mu + x_2 \end{cases}$$

Загальний розв'язок рівняння (25) можна записати у вигляді:

$$\Omega\left(x_{1} - \frac{(x_{2} - 8)^{2}}{2}; \mu + x_{2}\right) = 0$$
(28)

де $\Omega(\phi_3,\phi_4)$ - довільна неперервно діференційовна функція. Припустимо, що рівняння (28) можна розв'язати відносно другого аргументу у вигляді $\phi_4 = H(\phi_3)$. Тоді можна записати:

$$\mu = -x_2 + \Theta\left(x_1 - \frac{(x_2 - 8)^2}{2}\right) \tag{29}$$

тобто отримали вигляд виразу для функції Беллмана в області $L_{\rm i}$.

5) Зробимо висновок з попередніх досліджень пп.3, 4 щодо лінії перемикання та вигляду оптимального керування в данному випадку.

Лінія перемикання виглядає так:

Для того щоб знайти остаточно тип керування, необхідно проаналізувати місце де знаходиться система у початковий момент:

- якщо у початковий момент система знаходиться в одній з точок лінії перемикання, тоді керування ε стала величина (або $u^* = 1$, або $u^* = -1$);
- якщо початкова умова така, що точка лежить вище лінії перемикання, тоді керування має вигляд: $u^* = \begin{cases} -1, & 0 \leq t < \tau; \\ 1, & \tau \leq t \leq T \end{cases}$;
- якщо початкова умова така, що точка лежить нижче лінії перемикання, тоді керування має вигляд: $u^* = \begin{cases} 1, & 0 \leq t < \tau; \\ -1, & \tau \leq t \leq T. \end{cases}$

В нашому випадку $x_1(0) = 6$, $x_2(0) = 4$ точка A(6,4) знаходиться нижче лінії перемикання

і тому

$$u^* = \begin{cases} 1, & 0 \le t < \tau; \\ -1, & \tau \le t \le T. \end{cases}$$

Тобто, спочатку точку A за час τ необхідно перевести на лінію керування за допомогою керування $u^*=1$, а потім система досягне початку координат по лінії керування:

6) Знайдемо тепер розв'язок рівняння Беллмана з урахуванням типу керування, та відомостей про лінію перемикання.

Керування має вигляд:

$$u^* = \begin{cases} 1, & 0 \le t < \tau; \\ -1, & \tau \le t \le T. \end{cases}$$

На кінцевому інтервалі керування $u^* = -1$ необхідно рухатися на фазовій площині вздовж параболи: $(x_1 - 32) = -\frac{(x_2 - 8)^2}{2}$, $x_2 \ge 0$, при цьому $\mu = x_2$.

В точці C маємо перехід з керування $u^* = 1$ на $u^* = -1$. Тобто в точці C:

$$x_1 = 32 - \frac{(x_2 - 8)^2}{2}, \ \mu = x_2$$

Врахуємо це в (27), знайдемо явний вигляд розв'язку рівняння Беллмана (25)

$$\begin{cases} x_1 - \frac{(x_2 - 8)^2}{2} = C_1 \Rightarrow \begin{cases} 32 - (x_2 - 8)^2 = C_1 \\ 2x_2 = C_2 \end{cases} \Rightarrow \left(\frac{C_2}{2} - 8\right)^2 = 32 - C_1$$

враховуючи вирази для C_1, C_2 , маємо

$$\left(\frac{\mu + x_2}{2} - 8\right)^2 = 32 - x_1 + \frac{(x_2 - 8)^2}{2} \Rightarrow \mu = 16 - x_2 + 2\sqrt{32 - x_1 + \frac{(x_2 - 8)^2}{2}}$$

Таким чином функція Беллмана така:

$$\mu = 16 - x_2 + 2\sqrt{32 - x_1 + \frac{(x_2 - 8)^2}{2}}$$

7) Знайдемо час T за який система з початкового стану перейде у початок координат та час τ - точку перемикання керування.

За своїм змістом функція μ при $x_1(0)=6$, $x_2(0)=4$ дає значення функціоналу якості, що мінімізується, тобто

$$T = \mu(x_1(0), x_2(0)) = 16 - 4 + 2\sqrt{32 - 6 + \frac{(4 - 8)^2}{2}} = 12 + 2\sqrt{34}$$

Щоб знайти час τ - точку перемикання керування, використовуємо функцію Беллмана на ділянці від точки C до початку координат. Значення функції Беллмана в точці C - це час за який система найшвидше перейде з точки C у початок координат, тобто $\mu(x_{1C},x_{2C})=T-\tau \Rightarrow \tau=T-\mu(x_{1C},x_{2C})$.

На ділянці від точки перемикання C до початку координат, система рухається вздовж лінії перемикання, що відповідає керуванню $u^*=-1$, $\mu=x_2$. Тобто достатньо знати координату x_2 точки C. Знайдемо її як точку перетину лінії $x_1-\frac{\left(x_2-8\right)^2}{2}=-2$ (що відповідає керуванню $u^*=1$ та проходить через точку A(6,4), тобто в (27) $C_1=-2$), та лінії перемикання $x_1=32-\frac{\left(x_2-8\right)^2}{2}$:

$$\begin{cases} x_1 = \frac{(x_2 - 8)^2}{2} - 2, \\ x_1 = 32 - \frac{(x_2 - 8)^2}{2} \Rightarrow \frac{(x_2 - 8)^2}{2} - 2 = 32 - \frac{(x_2 - 8)^2}{2} \Rightarrow (x_2 - 8)^2 = 34 \Rightarrow x_2 = 8 + \sqrt{34} \end{cases}$$

Додатне значення кореня в останньому виразі взято з геометричних міркувань: координата x_{2C} це є більше значення з двох коренів рівняння $(x_2 - 8)^2 = 34$.

Тепер можемо визначити час τ :

$$\tau = T - \mu(x_{1C}, x_{2C}) = T - x_{2C} = 12 + 2\sqrt{34} - 8 - \sqrt{34} = 4 + \sqrt{34}$$
.

8) Знайдемо фазові змінні, як функції часу з рівнянь руху:

$$\begin{cases} \dot{x}_{1}(t) = x_{2}(t) - 8; \\ \dot{x}_{2}(t) = \begin{cases} 1, & 0 \le t \le \tau; \Rightarrow \\ -1, & \tau < t \le T. \end{cases} \begin{cases} x_{1}(t) = \begin{cases} \frac{\left(t + C_{1} - 8\right)^{2}}{2} + D_{1}, & 0 \le t \le \tau; \\ -\frac{\left(t + C_{2} + 8\right)^{2}}{2} + D_{2}, & \tau < t \le T. \end{cases} \\ x_{2}(t) = \begin{cases} t + C_{1}, & 0 \le t \le \tau; \\ -\left(t + C_{2}\right), & \tau < t \le T. \end{cases}$$

Врахуємо граничні умови:

$$x_1(0) = 6, \Rightarrow \frac{\left(C_1 - 8\right)^2}{2} + D_1 = 6$$

$$x_1(T) = 0, \Rightarrow \frac{\left(T + C_2 + 8\right)^2}{2} = D_2$$

$$x_2(0) = 4, \Rightarrow C_1 = 4 \Rightarrow D_1 = 6 - 8 = -2;$$

$$x_2(T) = 0 \Rightarrow T + C_2 = 0 \Rightarrow C_2 = -T \Rightarrow D_2 = 32.$$

Таким чином, з урахуванням значень T та τ , отримуємо остаточно оптимальний керований процесс:

$$u^* = \begin{cases} 1, & 0 \le t < 4 + \sqrt{34}; \\ -1, & 4 + \sqrt{34} \le t \le 12 + 2\sqrt{34}. \end{cases}$$

$$\begin{cases} x_1(t) = \begin{cases} \frac{(t-4)^2}{2} - 2, & 0 \le t \le 4 + \sqrt{34}; \\ -\frac{(t-4-2\sqrt{34})^2}{2} + 32, & 4 + \sqrt{34} < t \le 12 + 2\sqrt{34}. \end{cases}$$

$$x_2(t) = \begin{cases} t + 4, & 0 \le t \le 4 + \sqrt{34}; \\ -(t-(12+2\sqrt{34})), & 4 + \sqrt{34} < t \le 12 + 2\sqrt{34}. \end{cases}$$