Atty Dkt No. ARC920030073US1 Mintz No. 5075-0040

This listing of the claims replaces any and all prior versions and listings of claims in the application:

LISTING OF THE CLAIMS

1. (Withdrawn) An alkene fluoroalkanol having the structure of formula (III)

(III)
$$\begin{array}{c}
R_{c}^{1} \\
R^{2}
\end{array}$$

$$\begin{array}{c}
R^{4} \\
R^{5}
\end{array}$$

wherein:

 R^1 is selected from hydrogen, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, C_1 - C_{24} alkoxy, and substituted C_1 - C_{24} alkoxy;

R² is selected from hydrogen, C₁-C₂₄ alkyl and substituted C₁-C₂₄ alkyl;

 R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_{24} alkyl, and substituted C_1 - C_{24} alkyl, and further wherein any two of R^1 , R^2 , R^3 , R^4 , and R^5 may be taken together to form a ring;

 R^{6A} is selected from hydrogen, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, and -(CO)-R in which R is hydrogen, hydroxyl, halo, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, amino, C_1 - C_{24} alkylamino, or di(C_1 - C_{24} alkyl)amino; and

 R^{7A} is C_1 - C_{24} alkyl or substituted C_1 - C_{24} alkyl, and further wherein R^{6A} and R^{7A} may be taken together to form a ring, with the proviso that at least one of R^{6A} and R^{7A} is fluorinated.

2. (Withdrawn) The alkene fluoroalkanol of claim 1, wherein:

 R^1 is selected from hydrogen, C_1 - C_{12} alkyl, C_1 - C_{12} hydroxyalkyl, fluorinated C_1 - C_{12} alkyl, fluorinated C_3 - C_{12} hydroxyalkyl, fluorinated C_3 - C_{12} alkyl substituted with a protected hydroxyl group, and C_1 - C_{12} alkoxy;

 R^2 is selected from hydrogen, C_1 - C_{12} alkyl, and substituted C_1 - C_{12} alkyl;

 R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_{12} alkyl, C_1 - C_{12} hydroxyalkyl, fluorinated C_1 - C_{12} alkyl, fluorinated C_1 - C_{12} hydroxyalkyl, and fluorinated C_1 - C_{12} alkyl substituted with a protected hydroxyl group, and further wherein any two of R^1 , R^2 , R^3 , R^4 , and R^5 may be taken together to form a C_3 - C_{30} alicyclic group;

 R^{6A} is selected from hydrogen, C_1 - C_{12} alkyl, C_1 - C_{12} haloalkyl, and carboxyl; and R^{7A} is C_1 - C_{12} alkyl or fluorinated C_1 - C_{12} alkyl.

3. (Withdrawn) The alkene fluoroalkanol of claim 2, wherein:

 R^1 is selected from hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkoxy, and fluorinated hydroxyalkyl having the structure - $(L^1)_{n1}$ - CR^8R^9 -OH in which n1 is zero or 1, L^1 is C_1 - C_6 aliphatic, R^8 is selected from hydrogen, C_1 - C_8 alkyl, and fluorinated C_1 - C_8 alkyl, and R^9 is fluorinated C_1 - C_8 alkyl;

 R^2 is hydrogen or C_1 - C_8 alkyl;

 R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_8 alkyl, and fluorinated hydroxyalkyl having the structure - $(L^2)_{n2}$ - $CR^{8A}R^{9A}$ -OH in which n2 is zero or 1, L^2 is C_1 - C_6 aliphatic, R^{8A} is selected from hydrogen, C_1 - C_8 alkyl, and fluorinated C_1 - C_8 alkyl, and R^{9A} is fluorinated C_1 - C_8 alkyl, and further wherein any two of R^1 , R^2 , R^3 , R^4 , and R^5 may be taken together to form a C_3 - C_{18} alicyclic group;

 R^{6A} is selected from hydrogen, C_1 - C_8 alkyl, and fluorinated C_1 - C_8 alkyl; and R^{7A} is C_1 - C_8 alkyl or fluorinated C_1 - C_8 alkyl.

4. (Withdrawn) The alkene fluoroalkanol of claim 3, wherein:

 R^1 is selected from hydrogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, and - $(L^1)_{n1}$ - CR^8R^9 -OH in which n1 is zero or 1, L^1 is C_1 - C_4 aliphatic, R^8 is selected from hydrogen, methyl, trifluoromethyl, difluoromethyl, and fluoromethyl, and R^9 is selected from methyl, trifluoromethyl, difluoromethyl, and fluoromethyl;

R² is hydrogen or C₁-C₄ alkyl;

 R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_4 alkyl, and - $(L^2)_{n2}$ - $CR^{8A}R^{9A}$ -OH in which n2 is zero or 1, L^2 is C_1 - C_4 aliphatic, R^{8A} is selected from hydrogen, methyl, trifluoromethyl, difluoromethyl, and fluoromethyl, and R^{9A} is selected from methyl,

trifluoromethyl, difluoromethyl, and fluoromethyl, and further wherein any two of R^1 , R^2 , R^3 , R^4 , and R^5 may be taken together to form a C_3 - C_{12} alicyclic group;

 R^{6A} is selected from hydrogen, C_1 - C_4 alkyl, semi-fluorinated C_1 - C_4 alkyl, and perfluorinated C_1 - C_4 alkyl; and

 R^{7A} is selected from C_1 - C_4 alkyl, semi-fluorinated C_1 - C_4 alkyl, and perfluorinated C_1 - C_4 alkyl.

- 5. (Withdrawn) The alkene fluoroalkanol of claim 4, wherein R^{6A} and R^{7A} are both trifluoromethyl.
- 6. (Withdrawn) The alkene fluoroalkanol of claim 4, wherein one of R^{6A} and R^{7A} is methyl and the other is trifluoromethyl.
- 7. (Currently amended) A method for synthesizing an alkene fluoroalkanol, comprising contacting (a) an olefinic reactant directly substituted on an olefinic carbon atom with a substituted or unsubstituted methyl group with (b) a fluorinated ketone, under reaction conditions and for a time period effective to allow addition of the olefinic reactant to the carbonyl carbon of the fluorinated ketone, wherein the substituted or unsubstituted methyl group is of the formula CHR¹R², such that the olefinic reactant has the structure of formula (I)

$$R^{2}$$

$$R^{4}$$

$$R^{5}$$

wherein:

 R^1 is selected from hydrogen, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, C_1 - C_{24} alkoxy, and substituted C_1 - C_{24} alkoxy;

R² is selected from hydrogen, C₁-C₂₄ alkyl and substituted C₁-C₂₄ alkyl;

 R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_{24} alkyl, and substituted C_1 - C_{24} alkyl; and further wherein any two of R^1 , R^2 , R^3 , R^4 , and R^5 may be taken together to form a ring,

and wherein the fluorinated ketone has the structure of formula (II)

(II)
$$\mathbb{R}^6 \longrightarrow \mathbb{R}^7$$

wherein:

 R^6 is a fluorinated group selected from substituted C_1 - C_{24} alkyl, (fluorinated C_2 - C_{24} acyl)-substituted methyl, (fluorinated C_2 - C_{24} acyl)-substituted difluoromethyl, and -(CO)-R in which R is halo, substituted C_1 - C_{24} alkyl, C_1 - C_{24} alkylamino, or di(C_1 - C_{24} alkyl)amino; and

R⁷ is fluorinated C₁-C₂₄ alkyl, with the proviso that, when the olefinic reactant is not isobutylene, pinene, butenyl methyl ether, isopropenyl methyl ether, exo-2-methylene norbornane, 5-vinyl-2-norbornene, exo-methylene cyclopentane, or exo-methylene cyclohexane, R⁶ and R⁷ are different or taken together to form a ring.

- 8. (Canceled).
- 9. (Previously presented) The method of claim 7, wherein:

 R^1 is selected from hydrogen, C_1 - C_{12} alkyl, C_1 - C_{12} hydroxyalkyl, fluorinated C_1 - C_{12} alkyl, fluorinated C_1 - C_{12} hydroxyalkyl, fluorinated C_1 - C_{12} alkyl substituted with a protected hydroxyl group, and C_1 - C_{12} alkoxy;

R² is selected from hydrogen, C₁-C₁₂ alkyl, and substituted C₁-C₁₂ alkyl;

 R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_{12} alkyl, C_1 - C_{12} hydroxyalkyl, fluorinated C_1 - C_{12} alkyl, fluorinated C_1 - C_{12} hydroxyalkyl, and fluorinated C_1 - C_{12} alkyl substituted with a protected hydroxyl group; and

further wherein any two of R¹, R², R³, R⁴, and R⁵ may be taken together to form a C₃-C₃₀ alicyclic group.

10. (Original) The method of claim 9, wherein:

 R^1 is selected from hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkoxy, and fluorinated hydroxyalkyl having the structure - $(L^1)_{n1}$ - CR^8R^9 -OH in which n1 is zero or 1, L^1 is C_1 - C_6 aliphatic, R^8 is selected from hydrogen, C_1 - C_8 alkyl, and fluorinated C_1 - C_8 alkyl, and R^9 is fluorinated C_1 - C_8 alkyl;

R² is hydrogen or C₁-C₈ alkyl;

 R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_8 alkyl, and fluorinated hydroxyalkyl having the structure - $(L^2)_{n2}$ - $CR^{8A}R^{9A}$ -OH in which n2 is zero or 1, L^2 is C_1 - C_6 aliphatic, R^{8A} is selected from hydrogen, C_1 - C_8 alkyl, and fluorinated C_1 - C_8 alkyl, and R^{9A} is fluorinated C_1 - C_8 alkyl; and

further wherein any two of R¹, R², R³, R⁴, and R⁵ may be taken together to form a C₃-C₁₈ alicyclic group.

11. (Original) The method of claim 10, wherein:

 R^1 is selected from hydrogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, and - $(L^1)_{n1}$ - CR^8R^9 -OH in which n1 is zero or 1, L^1 is C_1 - C_4 aliphatic, R^8 is selected from hydrogen, methyl, trifluoromethyl, difluoromethyl, and fluoromethyl, and R^9 is selected from methyl, trifluoromethyl, difluoromethyl, and fluoromethyl;

R² is hydrogen or C₁-C₄ alkyl;

 R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_4 alkyl, and - $(L^2)_{n2}$ - $CR^{8A}R^{9A}$ -OH in which n2 is zero or 1, L^2 is C_1 - C_4 aliphatic, R^{8A} is selected from hydrogen, methyl, trifluoromethyl, difluoromethyl, and fluoromethyl, and R^{9A} is selected from methyl, trifluoromethyl, difluoromethyl, and fluoromethyl; and

further wherein any two of R¹, R², R³, R⁴, and R⁵ may be taken together to form a C₃-C₁₂ alicyclic group.

12. (Original) The method of claim 11, wherein the olefinic reactant is selected from isobutylene, pinene, butenyl methyl ether, isopropenyl methyl ether, exo-2-methylene norbornane, 5-vinyl-2-norbornene, exo-methylene cyclopentane, and exo-methylene cyclohexane.

13-14 (Canceled).

15. (Previously presented) The method of claim 14, wherein R^6 is selected from substituted C_1 - C_{24} alkyl, (fluorinated C_2 - C_{24} acyl)-substituted methyl, and (fluorinated C_2 - C_{24} acyl)-substituted difluoromethyl.

- 16. (Previously presented) The method of claim 15, wherein:
- R⁶ is selected from C₁-C₁₂ haloalkyl, (fluorinated C₂-C₁₂ acyl)-substituted methyl, and (fluorinated C2-C12 acyl)-substituted difluoromethyl; and

Mintz No. 5075-0040

 R^7 is fluorinated C_1 - C_{12} alkyl.

- 17. (Previously presented) The method of claim 16, wherein:
- R⁶ is selected from fluorinated C₁-C₈ alkyl, (fluorinated C₂-C₈ acyl)-substituted methyl, and (fluorinated C2-C8 acyl)-substituted difluoromethyl; and

 R^7 is fluorinated C_1 - C_8 alkyl.

- 18. (Previously presented) The method of claim 17, wherein:
- R⁶ is selected from semi-fluorinated C₁-C₄ alkyl, perfluorinated C₁-C₄ alkyl, and R¹²-(CO)-CR¹⁰R¹¹- in which R¹⁰ and R¹¹ are H or F and R¹² is methyl or trifluoromethyl; and R^7 is selected from semi-fluorinated C_1 - C_4 alkyl, and perfluorinated C_1 - C_4 alkyl.
 - 19. (Canceled).
 - 20. (Original) The method of claim 18, wherein R⁶ is R¹²-(CO)-CR¹⁰R¹¹-.
- 21. (Previously presented) The method of claim 20, wherein the fluorinated ketone is hexafluoroacetylacetone.
- 22. (Currently amended) A method for synthesizing an alkene fluoroalkanol, comprising contacting (a) an olefinic reactant directly substituted on an olefinic carbon atom with a substituted or unsubstituted methyl group with (b) a fluorinated carbonyl compound under reaction conditions and for a time period effective to allow addition of the olefinic reactant to the carbonyl carbon of the fluorinated carbonyl compound, wherein the substituted or unsubstituted methyl group is of the formula -CHR¹R², such that the olefinic reactant has the structure of formula (I)

(I)
$$\mathbb{R}^{2}$$

$$\mathbb{R}^{4}$$

$$\mathbb{R}^{5}$$

wherein:

 R^1 is selected from hydrogen, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, C_1 - C_{24} alkoxy, and substituted C_1 - C_{24} alkoxy;

 R^2 is selected from hydrogen, C_1 - C_{24} alkyl and substituted C_1 - C_{24} alkyl, provided that at least one of R^1 and R^2 is other than hydrogen;

 R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_{24} alkyl, and substituted C_1 - C_{24} alkyl; and further wherein any two of R^1 , R^2 , R^3 , R^4 , and R^5 may be taken together to form a ring, and wherein the fluorinated carbonyl compound has the structure of formula (II)

wherein:

 R^6 is a fluorinated group selected from substituted C_1 - C_{24} alkyl, (fluorinated C_2 - C_{24} acyl)-substituted methyl, (fluorinated C_2 - C_{24} acyl)-substituted difluoromethyl, and -(CO)-R in which R is halo, substituted C_1 - C_{24} alkyl, C_1 - C_{24} alkylamino, or di(C_1 - C_{24} alkyl)amino; and

R⁷ is fluorinated C₁-C₂₄ alkyl,

with the proviso that the fluorinated carbonyl compound is other than hexafluoroacetone.

- 23. (Previously presented) The method of claim 22, wherein any two of R¹, R², R³, R⁴, and R⁵ may be taken together to form an alicyclic group.
 - 24. (Original) The method of claim 23, wherein:

 R^1 is selected from hydrogen, C_1 - C_{12} alkyl, C_1 - C_{12} hydroxyalkyl, fluorinated C_1 - C_{12} alkyl, fluorinated C_1 - C_{12} hydroxyalkyl, fluorinated C_1 - C_{12} alkyl substituted with a protected hydroxyl group, and C_1 - C_{12} alkoxy;

R² is selected from hydrogen, C₁-C₁₂ alkyl, and substituted C₁-C₁₂ alkyl;

 R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_{12} alkyl, C_1 - C_{12} hydroxyalkyl, fluorinated C_1 - C_{12} alkyl, fluorinated C_1 - C_{12} hydroxyalkyl, and fluorinated C_1 - C_{12} alkyl substituted with a protected hydroxyl group; and

further wherein any two of R¹, R², R³, R⁴, and R⁵ may be taken together to form a C₃-C₃₀ alicyclic group.

25. (Original) The method of claim 24, wherein:

 R^1 is selected from hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkoxy, and fluorinated hydroxyalkyl having the structure - $(L^1)_{n1}$ - CR^8R^9 -OH in which n1 is zero or 1, L^1 is C_1 - C_6 aliphatic, R^8 is selected from hydrogen, C_1 - C_8 alkyl, and fluorinated C_1 - C_8 alkyl, and R^9 is fluorinated C_1 - C_8 alkyl;

R² is hydrogen or C₁-C₈ alkyl;

 R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_8 alkyl, and fluorinated hydroxyalkyl having the structure - $(L^2)_{n2}$ - $CR^{8A}R^{9A}$ -OH in which n2 is zero or 1, L^2 is C_1 - C_6 aliphatic, R^{8A} is selected from hydrogen, C_1 - C_8 alkyl, and fluorinated C_1 - C_8 alkyl, and R^{9A} is fluorinated C_1 - C_8 alkyl; and

further wherein any two of R¹, R², R³, R⁴, and R⁵ may be taken together to form a C₃-C₁₈ alicyclic group.

26. (Original) The method of claim 25, wherein:

 R^1 is selected from hydrogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, and - $(L^1)_{n1}$ - CR^8R^9 -OH in which n1 is zero or 1, L^1 is C_1 - C_4 aliphatic, R^8 is selected from hydrogen, methyl, trifluoromethyl, difluoromethyl, and fluoromethyl, and R^9 is selected from methyl, trifluoromethyl, difluoromethyl, and fluoromethyl;

R² is hydrogen or C₁-C₄ alkyl;

 R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_4 alkyl, and - $(L^2)_{n2}$ - $CR^{8A}R^{9A}$ -OH in which n2 is zero or 1, L^2 is C_1 - C_4 aliphatic, R^{8A} is selected from hydrogen, methyl, trifluoromethyl, difluoromethyl, and fluoromethyl, and R^{9A} is selected from methyl, trifluoromethyl, difluoromethyl, and fluoromethyl; and

further wherein any two of R¹, R², R³, R⁴, and R⁵ may be taken together to form a C₃-C₁₂ alicyclic group.

- 27. (Original) The method of claim 26, wherein the olefinic reactant is selected from isobutylene, pinene, butenyl methyl ether, isopropenyl methyl ether, exo-2-methylene norbornane, 5-vinyl-2-norbornene, exo-methylene cyclopentane, and exo-methylene cyclohexane.
 - 28. (Canceled).
 - 29. (Canceled).
- 30. (Previously presented) The method of claim 22, wherein R^6 is selected from substituted C_1 - C_{24} alkyl, (fluorinated C_2 - C_{24} acyl)-substituted methyl, and (fluorinated C_2 - C_{24} acyl)-substituted difluoromethyl.
 - 31. (Previously presented) The method of claim 30, wherein:
- R^6 is selected from C_1 - C_{12} haloalkyl, (fluorinated C_2 - C_{12} acyl)-substituted methyl, and (fluorinated C_2 - C_{12} acyl)-substituted difluoromethyl; and
 - R^7 is fluorinated C_1 - C_{12} alkyl.
 - 32. (Previously presented) The method of claim 31, wherein:
- R^6 is selected from fluorinated C_1 - C_8 alkyl, (fluorinated C_2 - C_8 acyl)-substituted methyl, and (fluorinated C_2 - C_8 acyl)-substituted difluoromethyl; and
 - R⁷ is fluorinated C₁-C₈ alkyl.
 - 33. (Previously presented) The method of claim 32, wherein:
- R^6 is selected from semi-fluorinated C_1 - C_4 alkyl, perfluorinated C_1 - C_4 alkyl, and R^{12} -(CO)- $CR^{10}R^{11}$ in which R^{10} and R^{11} are H or F and R^{12} is methyl or trifluoromethyl; and R^7 is selected from semi-fluorinated C_1 - C_4 alkyl, and perfluorinated C_1 - C_4 alkyl.
- 34. (New) A method for synthesizing an alkene fluoroalkanol, comprising contacting (a) an olefinic reactant directly substituted on an olefinic carbon atom with a substituted or

unsubstituted methyl group with (b) a fluorinated carbonyl compound under reaction conditions and for a time period effective to allow addition of the olefinic reactant to the carbonyl carbon of the fluorinated carbonyl compound, wherein the substituted or unsubstituted methyl group is of the formula -CHR¹R², such that the olefinic reactant has the structure of formula (I)

(I)
$$\mathbb{R}^{2}$$

$$\mathbb{R}^{4}$$

$$\mathbb{R}^{5}$$

wherein:

 R^{1} is selected from hydrogen, C_{1} - C_{24} alkyl, substituted C_{1} - C_{24} alkyl, C_{1} - C_{24} alkoxy, and substituted C_{1} - C_{24} alkoxy;

R² is selected from hydrogen, C₁-C₂₄ alkyl and substituted C₁-C₂₄ alkyl;

 R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_{24} alkyl, and substituted C_1 - C_{24} alkyl; and further wherein any two of R^1 , R^2 , R^3 , R^4 , and R^5 may be taken together to form a ring, and wherein the fluorinated carbonyl compound has the structure of formula (II)

wherein:

 R^6 is a fluorinated group selected from substituted C_1 - C_{24} alkyl, (fluorinated C_2 - C_{24} acyl)-substituted methyl, (fluorinated C_2 - C_{24} acyl)-substituted difluoromethyl, and -(CO)-R in which R is halo, substituted C_1 - C_{24} alkyl, C_1 - C_{24} alkylamino, or di(C_1 - C_{24} alkyl)amino; and

R⁷ is fluorinated C₁-C₂₄ alkyl,

with the proviso that R^6 and R^7 are not the same group such that the fluorinated carbonyl compound is asymmetric.

35. (New) The method of claim 34, wherein:

 R^1 is selected from hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkoxy, and fluorinated hydroxyalkyl having the structure - $(L^1)_{n1}$ - CR^8R^9 -OH in which n1 is zero or 1, L^1 is C_1 - C_6 aliphatic, R^8 is

selected from hydrogen, C₁-C₈ alkyl, and fluorinated C₁-C₈ alkyl, and R⁹ is fluorinated C₁-C₈ alkyl;

R² is hydrogen or C₁-C₈ alkyl;

 R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_8 alkyl, and fluorinated hydroxyalkyl having the structure - $(L^2)_{n2}$ - $CR^{8A}R^{9A}$ -OH in which n2 is zero or 1, L^2 is C_1 - C_6 aliphatic, R^{8A} is selected from hydrogen, C_1 - C_8 alkyl, and fluorinated C_1 - C_8 alkyl, and R^{9A} is fluorinated C_1 - C_8 alkyl; and

further wherein any two of R¹, R², R³, R⁴, and R⁵ may be taken together to form a C₃-C₁₈ alicyclic group.

- 36. (New) The method of claim 34, wherein the olefinic reactant is selected from isobutylene, pinene, butenyl methyl ether, isopropenyl methyl ether, exo-2-methylene norbornane, 5-vinyl-2-norbornene, exo-methylene cyclopentane, and exo-methylene cyclohexane.
- 37. (New) A method for synthesizing an alkene fluoroalkanol, comprising contacting (a) an olefinic reactant directly substituted on an olefinic carbon atom with a substituted or unsubstituted methyl group with (b) a fluorinated carbonyl compound under reaction conditions and for a time period effective to allow addition of the olefinic reactant to the carbonyl carbon of the fluorinated carbonyl compound, wherein the substituted or unsubstituted methyl group is of the formula -CHR¹R², such that the olefinic reactant has the structure of formula (I)

(I)
$$\mathbb{R}^{2} \xrightarrow{\mathbb{R}^{3}} \mathbb{R}^{3}$$

wherein:

 R^1 is selected from hydrogen, C_1 - C_{24} alkyl, substituted C_1 - C_{24} alkyl, C_1 - C_{24} alkoxy, and substituted C_1 - C_{24} alkoxy;

 R^2 is selected from hydrogen, $C_1\text{-}C_{24}$ alkyl and substituted $C_1\text{-}C_{24}$ alkyl;

 R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_{24} alkyl, and substituted C_1 - C_{24} alkyl; and further wherein any two of R^1 , R^2 , R^3 , R^4 , and R^5 may be taken together to form a ring, and wherein the fluorinated carbonyl compound has the structure of formula (II)

wherein:

 R^6 is a fluorinated group selected from substituted C_1 - C_{24} alkyl, (fluorinated C_2 - C_{24} acyl)-substituted methyl, (fluorinated C_2 - C_{24} acyl)-substituted difluoromethyl, and -(CO)-R in which R is halo, substituted C_1 - C_{24} alkyl, C_1 - C_{24} alkylamino, or di(C_1 - C_{24} alkyl)amino; and

 R^7 is fluorinated C_1 - C_{24} alkyl, with the proviso that R^6 and R^7 are taken together to form a cycle.

38. (New) The method of claim 37, wherein:

 R^1 is selected from hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkoxy, and fluorinated hydroxyalkyl having the structure - $(L^1)_{n1}$ - CR^8R^9 -OH in which n1 is zero or 1, L^1 is C_1 - C_6 aliphatic, R^8 is selected from hydrogen, C_1 - C_8 alkyl, and fluorinated C_1 - C_8 alkyl, and R^9 is fluorinated C_1 - C_8 alkyl;

R² is hydrogen or C₁-C₈ alkyl;

 R^3 , R^4 , and R^5 are independently selected from hydrogen, C_1 - C_8 alkyl, and fluorinated hydroxyalkyl having the structure - $(L^2)_{n2}$ - $CR^{8A}R^{9A}$ -OH in which n2 is zero or 1, L^2 is C_1 - C_6 aliphatic, R^{8A} is selected from hydrogen, C_1 - C_8 alkyl, and fluorinated C_1 - C_8 alkyl, and R^{9A} is fluorinated C_1 - C_8 alkyl; and

further wherein any two of R¹, R², R³, R⁴, and R⁵ may be taken together to form a C₃-C₁₈ alicyclic group.

39. (New) The method of claim 37, wherein the olefinic reactant is selected from isobutylene, pinene, butenyl methyl ether, isopropenyl methyl ether, exo-2-methylene norbornane, 5-vinyl-2-norbornene, exo-methylene cyclopentane, and exo-methylene cyclohexane.