Spring 2016

1. Assume $f \in L^1[0,1]$. Compute

$$\lim_{k \to \infty} \int_{[0,1]} |f|^{1/k} \ dx.$$

Solution. Let's split this integral into three regions.

$$\int_{[0,1]} |f|^{1/k} dx = \int_{f=0} |f|^{1/k} dx + \int_{0 < |f| \le 1} |f|^{1/k} dx + \int_{|f| > 1} |f|^{1/k} dx.$$

The integral over the first region is clearly zero for all k. On the second region we have that $|f|^{1/k} \le 1$ for all k. Since the interval [0,1] has finite measure, we have that the constant function 1 is in $L^1(\{x:0<|f|\le 1\})$, so the dominated convergence theorem says that the integral over the second region goes to $m(\{0<|f|\le 1\})$. Similarly, on the third region we have that $|f|^{1/k} \le |f|$, which is in L^1 , so the dominated convergence theorem says that the third integral goes to $m(\{|f|>1\})$. Combining these, we have that

$$\lim_{k \to \infty} \int_{[0,1]} |f|^{1/k} dx = m(\{|f| > 0\}).$$

2. Let $\{f_n\}$ be a sequence of measurable functions on [0,1] and $0 \le f_n \le 1$ a.e. Assume that

$$\lim_{n \to \infty} \int_{[0,1]} f_n g \ dx = \int_{[0,1]} f g \ dx$$

for some $f \in L^1[0,1]$ and any $g \in C[0,1]$. Prove that $0 \le f \le 1$ a.e.

Solution. Since $f \in L^1[0,1]$, by the Lebesgue differentiation theorem we have that

$$\frac{1}{m(E)} \int_{E} f(t) dt \to f(x) \tag{1}$$

as E shrinks to x for almost all x. Furthermore, since $0 \le f_n \le 1$ we also have that

$$\frac{1}{m(E)} \int_E f_n(t) \ dt \to f_n(x) \in [0, 1]$$

as E shrink to x for almost all x. Intuitively, we'd like to replace the integral of f in (1) with a limit of integrals of f_n .

We claim that the function g in the given hypothesis can be replaced with the indicator function of an interval χ_I . To see this, let g_m be a sequence of continuous functions with $g_m \to \chi_I$ in L^1 and $0 \le \chi_I \le 1$. By extracting a subsequence we can assume that $g_m \to \chi_I$ a.e. as well. We then have

$$\int_0^1 |f_n \chi_I - f \chi_i| \le \int_0^1 |f_n \chi_I - f_n g_m| + \int_0^1 |f_n g_m - f g_m| + \int_0^1 |f g_m - f \chi_i|.$$

Since $||f_n||_{L^{\infty}} \leq 1$, we have that the first integral on the RHS can be made small uniformly in n by picking m large. The second integral goes to zero as $n \to \infty$ by hypothesis since g_m is continuous. The third integral can be made small for m large by dominated convergence since $|fg_m| \leq |f| \in L^1$.

For almost all x, if I_k is a sequence of intervals shrinking to x then

$$\frac{1}{m(I_k)} \int_{I_k} f \ dx = \frac{1}{m(I_k)} \int f \chi_{I_k} \ dx$$
$$= \lim_{n \to \infty} \frac{1}{m(I_k)} \int f_n \chi_{I_k} \ dx.$$

Since $0 \le f_n \le 1$, the RHS is in [0,1] for almost all x. By the Lebesgue differentiation theorem we then have that $0 \le f \le 1$ a.e.

3. Let $f, g \in L^2(\mathbb{R}, \mathcal{M}_L, \mu_L)$. Show that f * g is a continuous function on \mathbb{R} vanishing at infinity, that is, $f * g \in C(R)$ and $\lim_{|x| \to \infty} (f * g)(x) = 0$.

Proof. For any h we have by Hölder's inequality

$$|(f * g)(x+h) - (f * g)(x)| = \left| \int f(t)[g(x+h-t) - g(x-t)] dt \right|$$
 (2)

$$\leq \|f\|_{L^2} \cdot \|g_h - g\|_{L^2},\tag{3}$$

where $F_h(x) = F(x+h)$ for any function F. Now for any $\epsilon > 0$ we can find $\varphi \in C_0(\mathbb{R})$ with $\|g - \varphi\|_{L^2} = \|g_h - \varphi_h\|_{L^2} < \epsilon$. By the triangle inequality we then have

$$||g_h - g||_{L^2} \le ||g_h - \varphi_h||_{L^2} + ||\varphi_h - \varphi||_{L^2} + ||\varphi - g||_{L^2}$$

$$< ||\varphi_h - \varphi||_{L^2} + 2\epsilon.$$

Suppose that φ has support contained in the compact set K. If we pick h small enough then we can guarantee that $\varphi_h - \varphi$ is supported on a set with measure at most $2 \cdot m(K)$. Now since φ is continuous with compact support, it is uniformly continuous, so we can choose h small enough that $|\varphi_h(x) - \varphi(x)| = |\varphi(x+h) - \varphi(x)| < \epsilon$ for all x in the support of $\varphi_h - \varphi$. For such h we have

$$\|\varphi_h - \varphi\|_{L^2} \le \epsilon \cdot (2 \cdot m(K))^{1/2},$$

so (2) can be made arbitrarily small, which shows that f * g is continuous.

First we claim that if φ and ψ are continuous with compact support then $\varphi * \psi$ vanishes at infinity. By definition we have that

$$(\varphi * \psi)(x) = \int \varphi(t)\psi(x-t) dt.$$

The product $\varphi(t)\psi(x-t)$ is nonzero only if t is in the support of φ and x-t is in the support of φ . If pick x large enough then supports of $t \mapsto \varphi(t)$ and $t \mapsto \psi(x-t)$ are disjoint, so this integral is zero.

Let f_n and g_n be sequences in $C_0(\mathbb{R})$ converging in L^2 to f and g, respectively. We then have

$$|(f * g)(x) - (f_n * g_n)(x)| \le |(f * g)(x) - (f_n * g)(x)| + |(f_n * g)(x) - (f_n * g_n)(x)|$$

$$\le ||g||_{L^2} \cdot ||f - f_n||_{L^2} + ||f_n||_{L^2} \cdot ||g - g_n||_{L^2}.$$

Since $f_n \to f$ and $g_n \to g$ in L^2 , we have that $f_n * g_n$ converges uniformly to f * g. Since $f_n * g_n$ vanishes at infinity, we must then have that f * g vanishes at infinity.

4. Let (X, \mathcal{A}, μ) be a finite measure space, and let $p_1 \in (1, \infty]$. Let $\{f_n\}$ be a uniformly bounded sequence in $L^{p_1}(X, \mathcal{A}, \mu)$. Suppose $f = \lim_{n \to \infty} f_n$ exists μ -a.e. Prove that $f \in L^p(X, \mathcal{A}, \mu)$ for all $p \in [1, p_1]$ and $f_n \to f$ in $L^p(X, \mathcal{A}, \mu)$ for all $p \in [1, p_1)$.

Proof. Suppose that $||f_n||_{L^{p_1}} \leq M$ for all n. First we claim that the f_n are in $L^p(X, \mathcal{A}, \mu)$ for all $p \in [1, p_1]$. In fact, they are uniformly bounded:

$$\int_{X} |f_{n}|^{p} = \int_{|f_{n}|<1} |f_{n}|^{p} + \int_{|f_{n}|\geq 1} |f_{n}|^{p}$$

$$\leq \int_{|f_{n}|<1} 1 + \int_{|f_{n}|\geq 1} |f_{n}|^{p_{1}}$$

$$\leq \mu(\{f \leq 1\}) + M^{1/p_{1}}.$$

Since (X, \mathcal{A}, μ) is a finite measure space, this quantity is finite, so $f_n \in L^p(X, \mathcal{A}, \mu)$ for all n and $p \in [1, p_1]$. We can then use the fact that $f_n \to f$ a.e. and Fatou's lemma to show that $f \in L^p(X, \mathcal{A}, \mu)$ for $p \in [1, p_1]$:

$$\int_X |f|^p \le \liminf_{n \to \infty} \int_X |f_n|^p < \infty,$$

where the finiteness follows from the L^p uniform-boundedness of the f_n .

To establish convergence in L^p , $p \in [1, p_1)$ our plan is to use the Vitali convergence theorem. The family f_n is tight over X since X is a finite measure space and we're given that $f_n \to f$ a.e., so it only remains to show that the f_n 's are uniformly integrable. Intuitively, since the f_n 's are in L^p , the measure of the set $\{f_n \geq N\}$ should shrink as N grows. Now since $p < p_1$, if N > 1 then

$$|f_n|^p \chi_{\{|f_n| \ge N\}} N^{p_1 - p} \le |f_n|^{p_1}.$$

If we integrate both sides over any measurable set E we have

$$\int_{E \cap \{|f_n| \ge N\}} |f_n|^p \le \frac{M}{N^{p_1 - p}}.$$

On the complement we have

$$\int_{E \cap \{|f_n| < N\}} |f_n|^p \le N^p \cdot \mu(E).$$

Putting these together, we have that

$$\int_{E} |f_{n}|^{p} = \int_{E \cap \{|f_{n}| \ge N\}} |f_{n}|^{p} + \int_{E \cap \{|f_{n}| < N\}} |f_{n}|^{p}$$

$$\leq \frac{M}{R^{p_{1}-p}} + R^{p} \cdot \mu(E).$$

If we choose R so that $M/R^{p_1-p} < \epsilon/2$ and E so that $R^p \cdot \mu(E) < \epsilon/2$ then we'll have that $\int_E |f_n|^p < \epsilon$ for any E of sufficiently small measure, so the f_n 's are uniformly integrable. By the Vitali convergence theorem we have that $f_n \to f$ in L^p for $p \in [1, p_1)$.

5. Let (X, \mathcal{A}, μ) be a measure space, and let $f: X \to [0, \infty)$ be \mathcal{A} -measurable. Consider the measure space $(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \mu_L)$, where $\mathcal{B}_{\mathbb{R}}$ is the Borel σ -algebra on \mathbb{R} and μ_L is the Lebesgue measure, and form the product measure space $(X \times \mathbb{R}, \sigma(\mathcal{A} \times \mathcal{B}_{\mathbb{R}}), \mu \times \mu_L)$. Define $E \subset X \times R$ by $(x, y) \in E \iff y \in [0, f(x))$. Prove that $E \in \sigma(\mathcal{A} \times \mathcal{B}_{\mathbb{R}})$ and $(\mu \times \mu_L)(E) = \int_X f \ d\mu$.

Proof. A function is measurable if it pulls measurable sets back to measurable sets. The plan is then to write E is a union and/or intersection of preimages of measurable sets under measurable functions. The function F(x,y) = f(x) is measurable since

$$F^{-1}[(-\infty, \alpha]) = \{(x, y) : f(x) \le \alpha\} = \{x : f(x) \le \alpha\} \times \mathbb{R} \in \sigma(\mathcal{A} \times \mathcal{B}_{\mathbb{R}}),$$

as f is μ -measurable. We also clearly have that the function G(x,y) = y is measurable. Now consider the function H(x,y) = y - f(x). H is measurable as it is the difference of the measurable functions G and F. We then have that E is measurable through the following decomposition

$$E = \{(x, y) : 0 \le y < f(x)\}$$

$$= \{(x, y) : y \ge 0\} \cap \{(x, y) : y < f(x)\}$$

$$= G^{-1}[[0, \infty)] \cap H^{-1}[(-\infty, 0)].$$

If $\{f > 0\}$ is σ -finite we can use Tonelli's theorem to say

$$(\mu \times \mu_L)(E) = \int_{X \times \mathbb{R}} \chi_E(x, y) \ d(\mu \times \mu_L)$$
$$= \int_X \int_{\mathbb{R}} \chi_E(x, y) \ d\mu_L d\mu$$
$$= \int_X \int_{\mathbb{R}} \chi_{[0, f(x))}(y) \ dy d\mu$$
$$= \int_X f(x) \ d\mu.$$

On the other hand, suppose that $\{f > 0\}$ is note σ -finite. We claim that $\int_X f \ d\mu = +\infty$. Indeed, since we can decompose this set into a countable union,

$$\{f > 0\} = \bigcup_{m=1}^{\infty} \left\{ \frac{1}{m+1} < f \le \frac{1}{m} \right\} \cup \bigcup_{n=1}^{\infty} \left\{ n < f \le n+1 \right\},\tag{4}$$

we must have that one of these sets has infinite measure. We need to show that $(\mu \times \mu_L)(E) = +\infty$ too. For any $\alpha, \beta > 0$ we have that if $\alpha \leq f(x) < \beta$ then the product set

$$\{x:\alpha\leq f(x)<\beta\}\times\{y:0\leq\alpha\}$$

is contained in E. This product set has measure $\alpha \cdot \mu_L \{\alpha \leq f < \beta\}$, so by monotonicity we have that

$$\alpha \cdot \mu_L \{ \alpha \le f < \beta \} \le (\mu \times \mu_L)(E)$$

for all $\alpha, \beta > 0$. But by the decomposition (4), we have that some set of the form $\{\alpha \leq f(x) < \beta\}$ must have infinite measure, so we must have $(\mu \times \mu_L)(E) = +\infty$.

6. Let $f \in L^1(\mathbb{R})$ and let $a_1, \ldots, a_k \in \mathbb{R}$ and $b_1, \ldots, b_k \in \mathbb{R} \setminus \{0\}$. Assume that the quotients $\frac{a_j}{b_j}$ are all distinct. Determine

$$\lim_{t \to \infty} \int \left| \sum_{j=1}^k f(b_j x + t a_j) \right| dx.$$

Solution. Let $\varphi \in C_0(\mathbb{R})$ be such that $||f - \varphi||_{L^1} < \epsilon$. Our plan is to compute the desired limit with φ in place of f and then argue that the difference can be made small. We have

$$\int \left| \sum_{j=1}^{k} \varphi(b_j x + t a_j) \right| dx = \int \left| \sum_{j=1}^{k} \varphi\left[b_j \left(x + \frac{a_j}{b_j} t \right) \right] \right| dx$$

Now $\varphi(b_j x + ta_j)$ is φ stretched horizontally by a factor of b_j and shifted over a_j/b_j . Since the support of φ is compact and the a_j/b_j are distinct, the supports of these transformations are disjoint for sufficiently large t. When these supports are disjoint we then have

$$\int \left| \sum_{j=1}^{k} \varphi(b_j x + t a_j) \right| dx = \int \sum_{j=1}^{k} |\varphi(b_j x + t a_j)| dx$$

$$= \|\varphi\|_{L^1} \cdot \sum_{j=1}^k \frac{1}{b_j}.$$

That we can approximate the desired sum for $f \in L^1$ follows from the reverse triangle inequality.

$$\left| \int \left| \sum_{j=1}^{k} f(b_j x + t a_j) \right| dx - \int \left| \sum_{j=1}^{k} \varphi(b_j x + t a_j) \right| dx \right| \le \sum_{j=1}^{k} \int \left| f(b_j x + t a_j) - \varphi(b_j x + t a_j) \right| dx$$

$$= \epsilon \cdot \sum_{j=1}^{k} \frac{1}{b_k}.$$

Fall 2015

1. Let E be a measurable subset of $[0, 2\pi]$. Assume that $f \in C(\mathbb{R})$ is 1-periodic, i.e. f(x+1) = f(x). Compute

$$\lim_{n \to \infty} \int_E f(nx) \ dx.$$

Solution. We rewrite the integral over E as an integral over \mathbb{R} against the indicator function of E:

$$\int_{E} f(nx) \ dx = \int f(nx) \chi_{E}(x) \ dx.$$

Now let $\varphi \in C_0^{\infty}(\mathbb{R})$. Since $f \in C(\mathbb{R})$ is 1-periodic, it has a 1-periodic continuous primitive F with F' = f. By the chain rule we have $\left[\frac{1}{n}F(nx)\right]' = f(nx)$. Integration by parts gives

$$\int f(nx)\varphi(x) \ dx = -\frac{1}{n} \int F(nx)\varphi'(x) \ dx.$$

F(nx) is bounded since F is 1-periodic and $\varphi \in C_0^{\infty}(\mathbb{R})$, so it's integrable. We then have

$$\left| \int f(nx)\varphi(x) \ dx \right| \le \frac{1}{n} ||F||_{\infty} \cdot ||\varphi'||_{L^{1}}$$

$$\to 0.$$

Since E is a measurable subset of $[0, 2\pi]$, it has finite measure and $\chi_E \in L^1(\mathbb{R})$. We can then find $\varphi \in C_0^{\infty}(\mathbb{R})$ with $\|\chi_E - \varphi\|_{L^1} < \epsilon$. Since f is continuous and 1-periodic, it is bounded and we have

$$\left| \int f(nx)\chi_E(x) \ dx - \int f(nx)\varphi(x) \ dx \right| \le ||f||_{\infty} \cdot ||\chi_E - \varphi||_{L^1}$$

$$\le ||f||_{\infty} \cdot \epsilon.$$

Since $\int f(nx)\varphi(x) dx \to 0$, we must have $\int_E f(nx) \to 0$.

2. Suppose $f \in L^1[0,1]$ and assume that there exists C > 0 such that for all measurable subsets $E \subset [0,1]$ we have

$$\int_{E} |f(x)| \ dx \le C\mu(E)^{1/2}.$$

Show that $f \in L^p[0,1]$ for $1 \leq p < 2$. Show that the statement fails for p=2 by giving a counterexample.

Proof. We have that

$$|f(x)|^p - 1 \le \sum_{n=1}^{\infty} \chi_{\{|f|^p \ge n\}}(x) \le |f(x)|^p.$$

Since [0,1] is a finite measure space, integrating through this inequality shows that $f \in L^p[0,1]$ if and only if the series

$$\sum_{n=1}^{\infty} \mu\{|f(x)|^p \ge n\} = \sum_{n=1}^{\infty} \mu\{|f(x)| \ge n^{1/p}\}.$$

converges. By Chebyshev's inequality and the given hypotheses we have

$$n^{1/p}\mu\{|f|\geq n^{1/p}\}\leq \int_{\{|f|>n^{1/p}\}}|f|\ dx\leq C\mu\{|f|\geq n^{1/p}\}^{1/2}.$$

Dividing through by $n^{1/p}\mu\{|f| \ge n^{1/p}\}^{1/2}$ and squaring gives

$$\sum_{n=1}^{\infty} \mu\{|f(x)| \ge n^{1/p}\} \le \sum_{n=1}^{\infty} \frac{C^2}{n^{2/p}},$$

which converges for all $p \in [1, 2)$.

3. Show that a function $f: \mathbb{R}^n \to \mathbb{R}^+$ is measurable if and only if $E = \{(x,y) : 0 \le y \le f(x)\}$ is a measurable set of \mathbb{R}^{n+1} .

Proof. Suppose f is measurable. Then the function F(x,y) = f(x) is a measurable function $\mathbb{R}^{n+1} \to \mathbb{R}$. Since G(x,y) = y is also measurable, H(x,y) = y - f(x) is measurable as the difference of measurable functions. We can then write E as the intersection of two measurable sets:

$$E = G^{-1}[[0, \infty)] \cap H^{-1}[(-\infty, 0]].$$

Thus, E is measurable if f is measurable.

Conversely, suppose that E is a measurable set. Then for any $\alpha \geq 0$ the set $A \cap G^{-1}(\alpha) = F^{-1}[[\alpha,\infty)]$. This shows that F, and therefore f, is measurable.

4. Let $f \in L^1(\mathbb{R})$ and set

$$f_h(x) = \frac{1}{2h} \int_{x-h}^{x+h} f(t) dt, \quad h > 0.$$

Show that $f_h \in L^1(\mathbb{R})$ and $f_h \to f$ in $L^1(\mathbb{R})$.

Proof. Let's integrate f_h . By Tonelli we have

$$\int |f_h(x)| dx = \frac{1}{2h} \int \left| \int f(t) \chi_{[x-h,x+h]}(t) dt \right| dx$$

$$\leq \frac{1}{2h} \int \int |f(t)| \chi_{[t-h,t+h]}(x) dx dt$$

$$= \|f\|_{L^1}.$$

$$(5)$$

Since $f \in L^1(\mathbb{R})$, we have that this quantity is finite and $f_h \in L^1(\mathbb{R})$.

Now since $f \in L^1(\mathbb{R})$, $f_h \to f$ a.e. by the Lebesgue differentiation theorem. By Fatou's lemma and (5), we have for any sequence $h_n \to 0$

$$\int |f| \, dx \le \liminf_{n \to \infty} \int |f_{h_n}| \, dx$$

$$\le \int |f| \, dx,$$

so $\liminf_{n\to\infty} \int |f_{h_n}| = \int |f|$. By the triangle inequality we have $|f_{h_n}| + |f| - |f - f_{h_n}| \ge 0$. Since $|f_{h_n}| + |f| - |f - f_{h_n}|$ converges to 2|f| a.e., another application of Fatou's lemma gives

$$2\int |f| \ dx \le \liminf_{n \to \infty} \int (|f_{h_n}| + |f| - |f - f_{h_n}|) \ dx$$

$$\iff \limsup_{n \to \infty} \int |f - f_{h_n}| \ dx \le 0.$$

We then have $\int |f - f_{h_n}| \to 0$, so $f_{h_n} \to f$ in L^1 for any $h_n \to 0$.

5. Let (X, \mathcal{A}, μ) be a measure space and let $f_k : X \to \mathbb{R}$ be a sequence of measurable functions satisfying the following:

$$\int_{X} |f_k|^2 d\mu \le 2015, \quad \text{for all } k,$$

and

$$\int_X f_j f_k \ d\mu = 0, \quad \text{for all } j \neq k.$$

Prove that for all $\beta > 3/2$,

$$\lim_{n \to \infty} \frac{1}{n^{\beta}} \sum_{k=1}^{n^2} f_k(x) = 0, \quad \text{for a.a. } x \in X.$$

Proof. Let's compute the L^2 norm of the sum

$$\left\| \frac{1}{n^{\beta}} \sum_{j=1}^{n^2} f_j \right\|_{L^2}^2 = \frac{1}{n^{2\beta}} \left(\sum_{j=1}^{n^2} f_j, \sum_{k=1}^{n^2} f_k \right)$$

$$= \frac{1}{n^{2\beta}} \sum_{j=1}^{n^2} \sum_{k=1}^{n^2} (f_j, f_k)$$

$$= \frac{1}{n^{2\beta}} \sum_{j=1}^{n^2} \|f_j\|_{L^2}^2$$

$$\leq \frac{2015}{n^{2\beta - 2}}.$$

Now if $\beta > 3/2$, $2\beta - 2 > 1$, so the above quantity is summable in n. Summability and wanting to show that something holds for almost all x leads us to thing Borel-Cantelli might be useful.

For any fixed $\epsilon > 0$, Chebyshev gives us

$$\mu\left\{x: \left|\frac{1}{n^{\beta}} \sum_{j=1}^{n^2} f_j\right|^2 \ge \epsilon\right\} \le \frac{1}{\epsilon^2} \int_X \left(\frac{1}{n^{\beta}} \sum_{j=1}^{n^2} f_j\right)^2 dx$$
$$\le \frac{2015}{\epsilon^2 n^{2\beta - 2}}.$$

If we call the set on the LHS A_n , then we have $\sum \mu(A_n) < \infty$. By Borel-Cantelli we have $\mu(\limsup_{n\to\infty} A_n) = 0$, i.e., the set of x that belong to infinitely many A_n has measure zero, so the sum is zero for almost all x.

Spring 2015

1. Show that if $f \in L^4(\mathbb{R})$ then

$$\lim_{c \to 1} \int_{\mathbb{R}} |f(cx) - f(x)|^4 dx = 0.$$

Proof. Suppose φ is continuous with compact support. Then $\varphi(cx)$ converges to $\varphi(x)$ uniformly, and since the support of φ is compact, we have that the desired limit holds with φ in place of f.

Now let $\varphi \in C_0(\mathbb{R})$ be such that $||f - \varphi||_{L^4} < \epsilon$. Since $|a + b|^p \le 2^p (|a|^p + |b|^p)$ for all p > 0 we have

$$\int |f(cx) - f(x)|^4 dx = \int |f(cx) - \varphi(cx) + \varphi(cx) - \varphi(x) + \varphi(x) - f(x)|^4 dx$$

$$\leq 2^4 \int |f(cx) - \varphi(cx)|^4 dx$$

$$+ 2^8 \int |\varphi(cx) - \varphi(x)|^4 dx + 2^8 \int |\varphi(x) - f(x)|^4 dx.$$

The first and third integrals are small since $||f - \varphi||_{L^4} < \epsilon$ and the second integral can be made small as $c \to 1$ since $\varphi(cx) \to \varphi(x)$ uniformly on a compact set.

2. Let $f_n:(0,\infty)\to\mathbb{R}$, be a sequence of Lebesgue measurable functions such that $f_n\to f$ a.e. as $n\to\infty$. Assume that there exists $g:(0,\infty)\to\mathbb{R}$ such that $|f_n|\leq g$ for all n and $g\in L^1(0,a)$ for all $0< a<\infty$. Assume furthermore that

$$\int_{1}^{\infty} |f_n(\sqrt{x})| \ dx \le C,$$

for all n and for some constant C > 0. Show that $f_n \in L^1(0, \infty)$, $f \in L^1(0, \infty)$ and $f_n \to f$ in $L^1(0, \infty)$ as $n \to \infty$.

Proof. First let's show that $f_n \in L^1(0,\infty)$ for all n. Write

$$\int_0^\infty |f_n| \ dx = \int_0^1 |f_n| \ dx + \int_1^\infty |f_n| \ dx. \tag{6}$$

For the first integral, since $|f_n| \leq g$ and $g \in L^1(0,1)$ we have

$$\int_0^1 |f_n| \ dx \le \int_0^1 g \ dx < \infty.$$

For the second integral in (6) we use the hypothesis about $f_n(\sqrt{x})$.

$$C \ge \int_{1}^{\infty} |f_{n}(\sqrt{x})| dx$$
$$= 2 \int_{1}^{\infty} t|f_{n}(t)| dt$$
$$\ge \int_{1}^{\infty} |f_{n}(t)| dt.$$

Both integrals in (6) are then finite, so $f_n \in L^1(0,\infty)$. In fact, we actually have that the f_n are uniformly bounded in $L^1(0,\infty)$ by $\int_0^1 g \ dx + C$. Since $f_n \to f$ a.e. we can apply Fatou's lemma to show that $f \in L^1(0,\infty)$:

$$\int_0^\infty |f| \ dx \le \liminf_{n \to \infty} \int_0^\infty |f_n| \ dx$$

$$\le \int_0^1 g \ dx + C$$

$$< \infty.$$

Finally, since $|f - f_n| \to 0$ a.e. and $|f - f_n| \le |f| + g \in L^1(0, \infty)$, we can apply the dominated convergence theorem to show that $f_n \to f$ in $L^1(0, \infty)$.