Introduction

Latent Gaussian Compression

Problem Setup

Suppose we have a dataset $D = \{Cat, Dog\}$ with two classes and we want to train a classifier.

- The Problem:
 - \circ Cannot store or transmit full dataset D because of
 - Network bandwidth constraints.
 - Space constraints
 - Privacy constraints.
- ullet Can we share compressed dataset D' instead?

Problem Assumptions

Dataset Assumptions

Gaussian Mixture Modeling

- In the reduced space $R^k(A', B')$, the data looks smoother than in R^n .
- We can approximate the class distributions using Gaussian Mixture Models (GMMs):
 - Represent the class distributions as linear combinations of Gaussian distributions.

$$N(\mu_A, \Sigma_A), \quad N(\mu_B, \Sigma_B)$$

Visualizing GMM Distribution Learning

- The image shows the learning of Gaussian Mixture Models (GMMs) with different numbers of clusters (k=2 and k=5).
- GMM Objective:
 - \circ Learn the parameters μ_k and Σ_k to best fit the data distributions.

Compression with Autoencoders

- Goal: Reduce the dimensionality of the input while retaining essential information.
- Latent space acts as a compressed representation.
- Applications:
 - Image compression.
 - Dimensionality reduction.

Encoder-Decoder Architecture

Step 1: Projection

- 1. Use an **encoder** to project the dataset $R^n(A,B)$ into a lower-dimensional space R^k where $k\ll d$.
- 2. Reconstruct the dataset back to \mathbb{R}^n .

Compression Step

To compress the data:

- Learn μ_A , Σ_A , μ_B , Σ_B using Gaussian Mixture Model Distribution Learning (GMM).
- Compressed dataset becomes:
 - $\circ \ \mu_A, \Sigma_A, \mu_B, \Sigma_B.$
- ullet The decoder maps $R^k o R^n$.

Reconstruction Step

Given $\mu_A, \Sigma_A, \mu_B, \Sigma_B$, and the decoder:

Step 1: Sampling

• Sample from $N(\mu_A, \Sigma_A)$ and $N(\mu_B, \Sigma_B)$.

Step 2: Pass Samples Through Decoder

• The samples are passed through the decoder to reconstruct the dataset in \mathbb{R}^n .

Reconstructed Dataset

- The reconstructed dataset approximates the original $\mathbb{R}^n(A,B)$.
- This approach provides an efficient way to compress, store, and reconstruct datasets.