



# **Aggregation of Abstract Argumentation Frameworks**

Weiwei Chen (Joint work with Ulle Endriss)

## Motivation

When a group of agents are engaged in a debate, they may:

- disagree on many details
- but agree on high-level ideas

How should we model such scenarios of collective argumentation?

# **Abstract Argumentation Frameworks**

An abstract argumentation framework (AF) is a pair AF =  $\langle Arg, - \rangle$ , where,

- Arg is a finite set of arguments
- → is an irreflexive binary attack-relation on Arg

P.M. Dung. On the Acceptability of Arguments and its Fundamental Role in NMR, LP and *n*-Person Games. *Artificial Intelligence*, 77(2):321–357, 1995.

### **Semantics**

Given an AF, we say that  $\Delta \subseteq Arg$  is:

- conflict-free if there exist no arguments A, B ∈ Δ such that A → B.
- admissible if it is conflict-free and defends every single one of its members.



{A, D} is conflict-free but not admissible

More semantics: stable semantics, preferred semantics, complete semantics, etc.

A set of arguments is call an *extension* if it is acceptable under a given semantics.

### **Grounded Semantics**

The characteristic function of AF is the function  $f_{AF}: 2^{Arg} \rightarrow 2^{Arg}$  with  $f_{AF}: \Delta \mapsto \{A \in Arg \mid \Delta \text{ defends } A\}$ .

The grounded extension of AF is the least fixed point of its characteristic function  $f_{AF}$ .



$$f_{AF}^1(\emptyset) = \{A\}, f_{AF}^2(\emptyset) = \{A, C\}, f_{AF}^3(\emptyset) = \{A, C\}, f_{AF}^2(\emptyset) = f_{AF}^3(\emptyset)$$
  
so the grounded extension of AF is  $\{A, C\}$ .

# **Collective Argumentation**

Fix a set of arguments. Given n agents and a profile of attack relations  $\rightarrow = (\rightarrow_1, \dots, \rightarrow_n)$ . How should we aggregate this information?

#### Outline of this talk:

- Aggregation rules
- Axioms: properties of aggregation rule
- Preservation of semantic properties of AFs

# **Aggregation Rules**

An *aggregation rule* is a function *F* mapping any profile of attack-relations *n* to a single attack-relation.

### **Examples:**

- Quota Rule: for  $q \in \mathbb{N}$ ,  $F_q(\_) = \left\{ att \in Arg \times Arg \mid \#N_{att}^{\_} \geqslant q \right\}$ ,  $N_{att}^{\_}$  denotes the set of supporters of the attack att in profile  $\_$ .
- Oligarchic rule: for  $C \subseteq N$ ,  $F_c(\rightharpoonup) = \left\{ att \in Arg \times Arg \mid C \subseteq N_{att}^{\rightharpoonup} \right\}$ .

## **Axioms**

Recall that  $N_{att}^{\rightarrow}$  denotes the set of supporters of the attack att in profile  $\rightarrow$ .

Examples for desirable properties of aggregation rules F:

- anonymous:  $F(\rightarrow_1, \ldots, \rightarrow_n) = F(\rightarrow_{\pi(1)}, \ldots, \rightarrow_{\pi(n)})$
- neutral:  $N_{att}^{\rightarrow} = N_{att'}^{\rightarrow}$  implies  $att \in F(\rightarrow) \Leftrightarrow att' \in F(\rightarrow)$
- independent:  $N_{att}^{\rightarrow} = N_{att}^{\rightarrow'}$  implies  $att \in F(\rightarrow) \Leftrightarrow att \in F(\rightarrow')$
- monotonic: N<sup>→</sup><sub>att</sub> ⊆ N<sup>→</sup><sub>att</sub> for all profiles →, →' and all attacks att.
- unanimous:  $F(\rightarrow_1, \ldots, \rightarrow_n) \supseteq (\rightarrow_1) \cap \cdots \cap (\rightarrow_n)$
- grounded:  $F(\rightarrow_1, \ldots, \rightarrow_n) \subseteq (\rightarrow_1) \cup \cdots \cup (\rightarrow_n)$

# **Preservation of AF-Properties**

What AF-properties are preserved under aggregation?

We are interested in semantic properties such as:

- Acyclicity
- Nonemptiness of the grounded extension
- $A \in Arg$  being acceptable (under a given semantics)
- $\Delta \subseteq Arg$  being an extension (according to a given semantics)

So, in case all agents agree on one of them being satisfied, we would like to see it preserved under aggregation.

# Example

Let F be the *majority rule*, consider the following example:



#### Observations:

- The majority rule does not preserve acyclicity.
- All of AF<sub>1</sub>, AF<sub>2</sub>, and AF<sub>3</sub> satisfy *nonemptiness* of the grounded extension.

### **Preservation of Conflict-Freeness**

**Theorem 1** Every aggregation rule *F* that is *grounded* preserves *conflict-freeness*.

<u>Idea of the Proof</u> Any grounded aggregation rule would not *invent* an attack between two conflict-free arguments.

### **Preservation of Grounded Extensions**

**Theorem 3** For  $|Arg| \ge 5$ , any unanimous, grounded, neutral, and independent aggregation rule *F* that preserves *grounded extensions* must be a *dictatorship*.

#### Idea of the Proof

- The proof of this theorem makes use of a technique developed by Endriss and Grandi for graph aggregation
- It is a generalisation of Arrow's seminal result for preference aggregation

U. Endriss and U. Grandi. Graph Aggregation. Artificial Intelligence, 245:86-114, 2017.

K.J. Arrow. Social Choice and Individual Values, 2nd ed., John Wiley and Sons, 1963. First edition published in 1951.

# **Preservation of Acyclicity**

Acyclicity is associated with the existence of *single extension*.

**Theorem 4** If  $|Arg| \ge n$ , then under any neutral and independent aggregation rule F that preserves *acyclicity* at least one agent must have *veto powers*.

### Idea of the Proof

- The proof of this theorem relies on the result for a more general property which is called *k*-exclusiveness.
- Acyclicity is a *k*-exclusive property.

# **Preservation Results**

| Property                 | Dictator?    | Veto?        | Preserve Rule(s)   |
|--------------------------|--------------|--------------|--------------------|
| Argument accetability    | ✓            | -            | -                  |
| (This holds for all four |              |              |                    |
| semantics)               |              |              |                    |
| Conflict-freeness        | -            | -            | All grounded rules |
| Admissibility            | -            | -            | Nomination rule    |
| Grounded extension       | $\checkmark$ | -            | -                  |
| Stable extension         | -            | -            | Nomination rule    |
| Coherence                | $\checkmark$ | -            | -                  |
| Nonempty of the GE       | -            | $\checkmark$ | -                  |
| Acyclicity               | -            | $\checkmark$ | -                  |
| Anti-transitivity        | -            | $\checkmark$ | -                  |

# Summary

#### In this talk, we have:

- defined a model for aggregation of AFs
- defined the desirable properties of AFs
- drawn a picture of the capabilities and limitations of aggregation of AFs

### Things could be done in the future:

- study the preservation of preferred and complete extensions
- study further semantic properties of AAF go beyond four classical semantics

• ...