

Sistema de Protección Térmica del Space Shuttle

Tomás Ley Oliver

Índice

- Introducción
- Requisitos del Sistema de Control Térmico (TCS)
- Recubrimiento
 - Reinforced Carbon-Carbon
 - High Temperature RSI
 - Advanced Flexible RSI
- Desarrollo a futuro
- Referencias

Introducción

- Utilizado por la NASA desde 1977 hasta 2011 para el transporte de astronautas y carga de pago a órbita LEO.
- Primer vehículo espacial reutilizable.
- Reentrada en la atmósfera a $M \sim 10 25$.
- El TCS debe proteger la nave y su tripulación durante toda la operación.

Requisitos del Sistema de Control Térmico

- →Temperatura de la estructura < 170 °C.
- → Reutilizable en 100 misiones.
- → Superficie aerodinámica.
- → Mínimo peso, mantenimiento y renovación.

Recubrimiento

RCC – Reinforced Carbon-Carbon:

Componentes estructurales de borde de ataque.

RSI – Reusable Surface Insulation:

- HRSI High-Temperature RSI
 - Resistente a temperaturas hasta 1260 °C.
- LRSI Low-Temperature RSI
 - Resistente a temperaturas hasta 650 °C.
- FRSI Flexible RSI
 - Resistente a temperaturas hasta 370 °C.
 - Versión Advanced hasta 816 °C.

Distribución de los recubrimientos del transbordador *Endeavour*

Reinforced Carbon-Carbon

- Fibra de carbono con matriz de carburo de silicio.
- Temperaturas de operación entre -130 y 1650 °C.
- 22 paneles de RCC en cada borde de ataque.
- Radiación interna ($\varepsilon \sim 0.8$).

High-Temperature RSI

- Losetas cuadradas de 15x15 cm, con espesores desde 2,5 a 12,7 cm.
- 10% fibras de sílice puro (1-3 μm) y 90% aire.
- Recubrimiento negro de borosilicato para:
 - · Aumentar emisividad.
 - Mejorar aerodinámica.
- 20548 losetas para proteger las superficies inferiores de la nave.

Densidad	Emisividad	Conductividad
144 kg/m ³	≥ 0,8	~0,1 W/m·K

High-Temperature RSI

Ingeniero de la NASA demostrando la baja conductividad de las losetas HRSI

High-Temperature RSI

- Ventajas:
 - Rendimiento térmico extremadamente bueno.
 - · Reutilizable.
 - Fácil mantenimiento.
- Desventajas:
 - Baja resistencia al impacto.
 - Pérdida de rellenos de huecos (calentamiento localizado).

Advanced Flexible RSI

- Tejido exterior de sílice e interior de fibra de vidrio.
- Incorporados en el *Challenger* y posteriores orbitadores.
- Reemplazan la mayoría de las losetas LRSI:
 - Menor mantenimiento.
 - Propiedades térmicas similares.
 - Mejor resistencia al daño.

Desarrollo a futuro

- Avance en el desarrollo de materiales para escudos térmicos.
 - Evolución a lo largo de la vida del proyecto.
 - Escudos de estructura metálica + aislante (~1100 °C)
- Utilización de losetas remplazables en naves reutilizables de dimensiones constantes (Starship).
- Reducir el mantenimiento entre lanzamientos.

Referencias

- Dotts, R. L., Curry, D. M., & Tillian, D. J. (1985, January). Orbiter thermal protection system. In *Space Shuttle Tech. Conf., Pt. 2*.
- Curry, D. M. (1993). Space shuttle orbiter thermal protection system design and flight experience (Vol. 104773). Lyndon B. Johnson Space Center.
- Cleland, J., & Iannetti, F. (1989). Thermal Protection System of the Space Shutt1e.
- Jacobson, N. S. (2014). *High Temperature Chemistry at NASA: Hot Topics* (No. GRC-E-DAA-TN18321)