复变函数与拉普拉斯变换

第三章 复变函数的积分

第3.1节 复变函数的积分及其性质

一 复积分的定义及计算

定义:设 C 是复平面上一有向曲线, f(z) 在 C上有定义。分割曲线 C, 分点为 $a=z_0,z_1,z_2,\cdots,z_{n-1},z_n=b$,

任取 $\xi_k \in Z_{k-1}Z_k$,作和

$$S_n = \sum_{k=1}^n f(\xi_k) \Delta z_k, \quad (\Delta z_k = z_k - z_{k-1})$$

若令 $\sigma = \max_{1 \le k \le n} \{|z_{k-1}z_k|\} \to 0$, S_n 都收敛到同一极限,则称 函数 f(z) 沿曲线 C可积,此极限值称为 f(z) 沿曲线

$$C$$
 的积分,记为:
$$\int_C f(z)dz = \lim_{\sigma \to 0} \sum_{k=1}^n f(\xi_k) \Delta z_k.$$

注: 当曲线 C是区间 $a \le x \le b$ 而 f(z) = u(x) 时,复积分为实函数的定积分。

例 设 C是连接复数点 a, b的任意曲线,用定义计算积分 $\int_{C} dz$.

解:
$$\int_C dz = \lim_{\sigma \to 0} \sum_{k=1}^n 1 \cdot (z_k - z_{k-1})$$
$$= \lim_{\sigma \to 0} (b - a) = b - a.$$

一般而言,大多积分用定义难以计算。

复积分与曲线积分的关系

设函数 f(z) = u(x, y) + iv(x, y) 在曲线 C上 连续,则 f(z) 在C 上可积,且 $\int_{C} f(z)dz = \int_{C} udx - vdy + i \int_{C} vdx + udy$ $= \lim_{\sigma \to 0} \sum_{k=1}^{n} (u(\xi_k) + i\nu(\xi_k))(\Delta x_k + i\Delta y_k)$ $= \lim_{\sigma \to 0} \sum_{k=0}^{\infty} \left[\left(u(\xi_k) \Delta x_k - v(\xi_k) \Delta y_k \right) + i \left(v(\xi_k) \Delta x_k + u(\xi_k) \Delta y_k \right) \right]$ $= \int u dx - v dy + i \int v dx + u dy.$

复积分的计算方法

设曲线 C的参数方程: z = z(t) = x(t) + iy(t),

$$(\alpha \le t \le \beta)$$
 满足 $z'(t) = x'(t) + iy'(t) \ne 0$,则

$$\int_{C} f(z)dz = \int_{\alpha}^{\beta} f[z(t)]z'(t)dt$$

$$\Big(= \int_{\alpha}^{\beta} [u(x(t), y(t)) + iv(x(t), y(t))](x'(t) + iy'(t)) dt. \Big)$$

证:由复积分与曲线积分的关系及曲线积分的计算方法可得。

例2. 验证

$$\oint_C \frac{1}{(z-a)^n} dz = \begin{cases} 2\pi i, & n=1\\ 0, & n \neq 1 \text{ (\underline{x})}. \end{cases}$$

其中 C是以 a 为中心, R 为半径的正向圆周曲线。

$$\mathbf{R}$$: $C: z = z(t) = \operatorname{Re}^{it} + a, (0 \le t \le 2\pi).$

$$\therefore \oint_C \frac{1}{(z-a)^n} dz = \int_0^{2\pi} \frac{1}{R^n e^{\text{int}}} Rie^{it} dt$$

$$=\frac{i}{R^{n-1}}\int_{0}^{2\pi}e^{(1-n)it}dt=\begin{cases} 2\pi i, & n=1\\ \\ 0, & n\neq 1 \text{ (整数)}.\end{cases}$$

二 复积分的性质

(1)
$$\int_{C} (k_1 f(z) + k_2 g(z)) dz = k_1 \int_{C} f(z) dz + k_2 \int_{C} g(z) dz.$$

(2) 设曲线 $C = C_1 + C_2$, 其中 C_1 的终点为 C_2 的起

点,则
$$\int_C f(z)dz = \int_{C_1} f(z)dz + \int_{C_2} f(z)dz.$$

(3) 记 $^{-}$ 是有向曲线 $^{\, C}$ 的反向曲线,则:

$$\int_{C^{-}} f(z)dz = -\int_{C} f(z)dz.$$

(4) 设 l 为曲线 C的长度, $|f(z)| \leq M, \forall z \in C$,

$$\iiint_{C} |\int_{C} f(z)dz| \leq \int_{C} |f(z)| ds \leq Ml.$$

证:用积分定义易证,略。

例4. 计算积分 $\int_{C} \operatorname{Re} z dz$, 其中 C 是连接 O 与 A 的曲线,路径见图3-2:

(1) 直线段 OA; (2) 折线段 OB 与 BA.

解: (1) $OA: z = t + it, t: 0 \rightarrow 1$

$$\therefore \int_C \operatorname{Re} z dz = \int_0^1 t(1+i) dt = \frac{1+i}{2}.$$

(2) $OB: z = t, t: 0 \to 1;$ $BA: z = 1 + it, t: 0 \to 1.$

第3.2节 柯西积分定理

定理(柯西积分定理)设函数 f(z) 在封闭曲线 C 上及其所包围的单连通区域 D 内解析,则

$$\oint_C f(z)dz = 0.$$

证:
$$\oint_C f(z)dz$$
 (不妨设 C 正向)
$$= \oint_C udx - vdy + i(vdx + udy) \text{ (Th 3.1.1)}$$

$$= \iint_D \left[-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right] dxdy + i \iint_D \left[\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right] dxdy \text{ (格林公式)}$$

$$= 0. (C - R 条件)$$

推论1. 如果 f(z) 在单连通区域 D 内解析,则积分 $\int_C f(z)dz$ 与路径无关,只与 C的起点终点有关。

证:设 C_1 , C_2 是 D 内任意两条起点为 Z_0 , 终点为 Z_1 的曲线,由柯西积分定理

$$\oint f(z)dz = 0$$

$$\Rightarrow \int_{C_1} f(z)dz = \int_{C_2} f(z)dz$$

推论2. (多连通区域 D的柯西积分定理)设函数 f(z) 在多连通区域 D及其正向边界 C上解析,则

$$\oint_C f(z)dz = 0.$$

证: 与单连通情况一样可证, 略。

如右图,设D的正向边界

$$C = C_0 + C_1^- + C_2^- + \cdots + C_n^-,$$

则:
$$\oint_{C_0} f(z)dz = \sum_{k=1}^n \oint_{C_k} f(z)dz.$$

特别,
$$n=1$$
 时, $\oint_{C_0} f(z)dz = \oint_{C_1} f(z)dz$. (形变公式)

例5 计算 $\int_{C}^{\infty} \frac{1}{(z-a)^n} dz$, C为光滑闭曲线, a 不在 C上, n为整数。

解: 当 a 在 C 所围区域 D 的外部时,由柯西积

分定理:
$$\oint_C \frac{1}{(z-a)^n} dz = 0;$$

当 a 在 C 所围区域 D 的内部时,由形变公式:

$$\oint_C \frac{1}{(z-a)^n} dz = \oint_{|z-a|=R} \frac{1}{(z-a)^n} dz$$

$$= \begin{cases} 2\pi i, & n=1 \\ 0, & n \neq 1 \text{ (\underline{x})} \end{cases}$$

二. 原函数定理

若 f(z) 在单连通区域 D内解析,积分与路径无关。

记

$$F(z) = \int_{z_0}^{z} f(\zeta)d\zeta \qquad (z \in D) \qquad (积分上限函数)$$

其中 z_0 为积分曲线 γ 的起点,z 为终点, $\gamma \subset D$.

$$F'(z) = f(z).$$

证: 因为 f(z) 在 D内连续,对 $\forall \varepsilon > 0$, $\exists \delta > 0$, $\exists |\zeta - z| < \delta$ 时, $f(\zeta) - f(z) | < \varepsilon$.

推论1. 设 G(z) 也是 f(z) 的原函数 (G'(z) = f(z)), 则:

$$G(z) = F(z) + C = \int_{z_0}^{z} f(\zeta) d\zeta + C$$
 (C常数).

推论2. 若 f(z) 在单连通区域 D 内解析,G(z) 是 f(z) 的一个原函数,则:

$$\int_C f(z)dz = G(z_1) - G(z_0)$$

其中曲线 $C \subset D$, z_0, z_1 是 C 的起点和终点。

III:
$$G(z) = F(z) + C = \int_{z_0}^{z} f(\zeta) d\zeta + C$$

取
$$z = z_0$$
得: $C = G(z_0)$

$$\therefore \int_{z_0}^z f(\zeta)d\zeta = G(z) - G(z_0)$$

再取
$$z=z_1$$
 即可得证。

例7. 计算 $\int_{C} \frac{dz}{z}$, 其中 C 是连接 1+i 与 2i 的直线段。

解: 在
$$D = \{re^{i\theta}: 0 < r < +\infty, -\pi < \theta < \pi\}$$
 中,有 $(\ln z)' = \frac{1}{z}$ 解析,且 $C \subset D$,

$$\therefore \int_C \frac{dz}{z} = \ln z \, \big|_{1+i}^{2i} = \ln 2i - \ln(1+i) = \frac{1}{2} \ln 2 + \frac{\pi}{4}i.$$

(注:也可用参数方程直接计算)

第3.3节 柯西积分公式

定理 (柯西积分公式)设 函数 f(z) 在有界闭区域 $\overline{D} = D + C$ 上解析, $C = \partial D$ 正向,则

$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz, \quad \forall z_0 \in D.$$

注:(1) D 为单连通或多连通区域,定理都成立。

(2) 当
$$z_0 \notin \overline{D}$$
 时,
$$\oint_C \frac{f(z)}{z - z_0} dz = 0.$$

证: 因为 f(z) 在 z_0 连续,对 $\forall \varepsilon > 0$, $\exists \delta > 0$, 当 $|z - z_0| < \delta$ 时,有 $|f(z) - f(z_0)| < \varepsilon$. 记 $C_{\rho}: |z - z_0| = \rho \in (0, \delta)$ 逆时针。由柯西积分定理

$$\oint_{C} \frac{f(z)}{z - z_{0}} dz$$

$$= \oint_{C_{\rho}} \frac{f(z)}{z - z_{0}} dz$$

$$= \oint_{C_{\rho}} \frac{f(z) - f(z_{0})}{z - z_{0}} dz + f(z_{0}) \oint_{C_{\rho}} \frac{1}{z - z_{0}} dz$$
由例2,
$$f(z_{0}) \oint_{C_{\rho}} \frac{1}{z - z_{0}} dz = 2\pi i f(z_{0})$$

$$|\oint_{C_{\rho}} \frac{f(z) - f(z_0)}{z - z_0} dz|$$

$$\leq \oint_{C_{\rho}} \frac{|f(z) - f(z_0)|}{|z - z_0|} ds \leq \frac{\varepsilon}{\rho} \cdot 2\pi \rho = 2\pi \varepsilon.$$

由 $\varepsilon > 0$ 的任意性知:

$$\oint_{C_{\rho}} \frac{f(z) - f(z_0)}{z - z_0} dz = 0.$$

∴
$$\oint_C \frac{f(z)}{z - z_0} dz = 2\pi i f(z_0) \Rightarrow \text{ $\stackrel{\checkmark}{\Rightarrow}$ $i \& .}$$

解析函数的积分平均值定理

定理: 设函数 f(z) 在 $|z-z_0| \leq R$ 上解析,则

$$f(z_0) = \frac{1}{2\pi} \int_{0}^{2\pi} f(z_0 + \text{Re}^{i\theta}) d\theta.$$

证: 在柯西积分公式中,取 $C = C_R : |z - z_0| = R$ 逆时针,则

$$f(z_0) = \frac{1}{2\pi i} \oint_{C_R} \frac{f(z)}{z - z_0} dz = \frac{1}{2\pi} \int_{0}^{2\pi} f(z_0 + Re^{i\theta}) d\theta.$$

例9. 计算
$$\int_{C}^{\frac{e^{z}+z}{z-2}}dz$$
, 其中 C :

- (1) 单位圆周, 逆时针;
- (2) 中心在原点,半径为3的圆周曲线,逆时针。

解: (1)
$$\frac{e^z + z}{z - 2}$$
 在 $|z| \le 1$ 上解析,由柯西积分定理
$$\oint \frac{e^z + z}{z - 2} dz = 0.$$

(2) 应用柯西积分公式

$$\oint_{|z|=3} \frac{e^z + z}{z - 2} dz = 2\pi i (e^z + z) \big|_{z=2} = 2\pi i (e^z + 2).$$

例 10. 求积分
$$I = \oint_{|z|=2} \frac{\sin z}{z^2 - 1} dz$$
.

$$\mathbf{P}: I = \frac{1}{2} \left[\oint_{|z|=2} \frac{\sin z}{z-1} dz - \oint_{|z|=2} \frac{\sin z}{z+1} dz \right]
= \frac{1}{2} \cdot 2\pi i \left[(\sin z) \big|_{z=1} - (\sin z) \big|_{z=-1} \right] = 2\pi i \sin 1.$$

$$\mathbf{PT} : I = \oint_{|z+1|=1/2} \frac{\sin z}{z^2 - 1} dz + \oint_{|z-1|=1/2} \frac{\sin z}{z^2 - 1} dz.$$

$$= \oint_{|z+1|=1/2} \frac{\sin z/(z-1)}{z+1} dz + \oint_{|z-1|=1/2} \frac{\sin z/(z+1)}{z-1} dz.$$

$$=2\pi i \left[\frac{\sin z}{z-1}\Big|_{z=-1} + \frac{\sin z}{z+1}\Big|_{z=1}\right] = 2\pi i \sin 1.$$

|z| = 2

第3.4 解析函数的无穷可微性

定理(高阶导数的柯西积分公式)设 f(z) 在有界闭区域 $\overline{D} = D + C$ 上解析, $C = \partial D$ 正向,则 f(z) 在 D内的任意阶导数存在,且

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{n+1}} dz, \quad \forall z_0 \in D. \quad (n = 0, 1, 2, \dots)$$

证:略,P74。形式上,在柯西积分公式两边对变量 Z_0 求 n 阶导数可得。

注:实函数不具有此性质。

例11. 计算 $\oint_C \frac{\cos z}{(z-i)^3} dz$, 其中 C是绕 i 一周的闭曲线。

例13. 计算
$$I = \oint_C \frac{e^z}{(z^2-1)^2} dz$$
, $C:|z|=r>1$ 逆时针。

$$\mathbf{F}: \quad I = \oint_{|z-1|<\delta} \frac{e^{z}/(z+1)^{2}}{(z-1)^{2}} dz + \oint_{|z+1|<\delta} \frac{e^{z}/(z-1)^{2}}{(z+1)^{2}} dz$$

$$=2\pi i\left[\left(\frac{e^{z}}{(z+1)^{2}}\right)'|_{z=1}+\left(\frac{e^{z}}{(z-1)^{2}}\right)'|_{z=-1}\right]=\frac{\pi}{e}i.$$

其中: $\delta < \min\{1, r-1\}$.

定理(柯西不等式) 设f(z) 在 $|z-z_0| \le R$ 上解析,则

$$\mid f^{(n)}(z_0) \mid \leq \frac{n!}{R^n} M,$$

其中:
$$M = \max_{|z-z_0|=R} |f(z)|$$
.

$$\mathbf{ii}: |f^{(n)}(z_0)| = |\frac{n!}{2\pi i} \oint_{|z-z_0|=R} \frac{f(z)}{(z-z_0)^{n+1}} dz|$$

$$\leq \frac{n!}{2\pi} \cdot \frac{M}{R^{n+1}} \cdot 2\pi R = \frac{n!}{R^n} M.$$

定理(柳维尔定理)有界整函数必为常数。

证:设 f(z) 在复平面 C 上解析,且 $|f(z)| \le M, z \in C$.

由柯西不等式, $\forall z_0 \in C$,有

$$|f'(z_0)| \le \frac{M}{R} \to 0, \quad (R \to +\infty).$$

$$\therefore f'(z) \equiv 0, z \in C \Rightarrow f(z) \equiv 常数.$$

注:实函数不具有此性质,如 $\sin x$ 在 R 上有界且任意阶可导,但不是常数。

定理 (代数学基本定理) 设 a_0, a_1, \dots, a_n 是复常数, $p(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$, $n \ge 1, a_n \ne 0$, 则至少 $\exists z_0 \in C$ 使得 $p(z_0) = 0$.

证:(反证) 设 $p(z) \neq 0$, $\forall z \in C$,则 $f(z) = \frac{1}{p(z)}$ 是整函数,且 $f(z) \rightarrow 0$, $(z \rightarrow \infty)$. 因此存在 R > 0 使 f(z) 在 $C \setminus B_R$ 上有界;而 f(z) 在 \overline{B}_R 上连续,有界,所以 f(z) 在复平面上有界。由 柳维尔定理, f(z), p(z) 是常数,矛盾。

补充题

(6分)设 f = u + iv 是整函数,且当 $x^2 + y^2 \rightarrow \infty$ 时 $u \rightarrow 0$,证明: $u \equiv 0$ 。

证明: 由 $x^2 + y^2 \rightarrow \infty$ 时 $u \rightarrow 0$ 可得u 有界 即 $\exists M > 0$ 使得|u| < M

令 $g = e^f$ 则 g 是整函数,且 $|g| = e^u < e^M$ ⇒ g 为常数

即 $g' = f'e' = 0 \Rightarrow f' = 0 \Rightarrow f = c \Rightarrow u$ 为常数

因为 $u \rightarrow 0$ 所以 $u \equiv 0$

二、计算积分(每题8分,共16分)

1) $\oint_c [(z+1)|z| - z\sin(e^z + z^2)] dz$,其中积分曲线 C是:连接 -1 到 1 的直线段,再从 1 由下半单位圆到 -1;

第1页共3页

解:
$$z\sin(e^z+z^2)$$
 是整函数 所以 $\oint_c z\sin(e^z+z^2)dz=0$ 原积分 = $\oint_c (z+1)|z|dz=\int_{-1}^1 (x+1)|x|dx+\int_{c_1} (z+1)|z|dz=\int_0^1 2xdx+\int_1^{-1} (z+1)dz=$ = $1+(z+1)^2/2\Big|_1^{-1}=-1$ 其中 c_1 是从 1 由到 -1 的下半单位圆。