E 1.28: SOLAR/1024-79/04

Aleph 1214299 SOLAR/1024-79/04

Monthly Performance Report

APRIL 1979

U.S. Department of Energy

National Solar Heating and Cooling Demonstration Program

National Solar Data Program

NOTICE ____

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

MONTHLY PERFORMANCE REPORT

LIVING SYSTEMS

APRIL 1979

I. SYSTEM DESCRIPTION

The Living Systems site is a single-family residence in Davis, California. The home has approximately 1700 square feet of conditioned space. The solar energy system consists of two independently controlled systems: an active system for preheating domestic-hot-water (DHW) and a passive system for space heating the home.

The active solar DHW system has an array of flat-plate collectors with a gross area of 46 square feet. The array faces south at an angle of 45 degrees to the horizontal. Potable city water is the transfer medium used throughout the system. In the event of freezing and no insolation, the controller drains the water from the collectors. When water in the collector is sufficiently warmer than the water in the preheat storage tank, the controller starts the circulation between the preheat tank and the collector. The preheat tank holds 82-gallons of water which is supplied, on demand, to a conventional 20-gallon DHW tank. When the water preheated by solar energy is not hot enough to satisfy the hot water load, a natural gas burner in the DHW tank provides auxiliary energy for water heating. The system is shown schematically in Figure 1.

The passive solar space heating system is of the direct-gain type illustrated schematically in Figure 2. Incident solar energy is admitted to the building through both the large south-facing vertical windows (approximately 200 square feet) and the overhead skylight (approximately 80 square feet at 60 degrees from the horizontal). Manually operated insulating curtains provide insulation during the night and sunless days for the south-facing collector windows. Manually operated insulating shutters also provide night insulation for the skylight glazing and are aluminum coated to provide reflection to the space below when open. Solar energy storage is provided by steel tubes that contain approximately 3600 gallons of water. The tubes are painted blue and placed near the south window wall and under the skylight. Additional

Figure 1. LIVING SYSTEMS ACTIVE SOLAR DOMESTIC HOT WATER SYSTEM SCHEMATIC

Figure 2. LIVING SYSTEMS PASSIVE SPACE HEATING SYSTEM

EAST SIDE VIEW

storage is provided by the 6-inch-thick concrete slab floor of the building which is covered by ceramic brown tiles. Collected solar energy is distributed by natural convection, by conduction through the slab floor, and by radiation. Floor covering is minimal: linoleum in the kitchen and eating area and white shag rugs in two bedrooms. The building envelope is well insulated in order to ensure energy conservation, with R-19 insulation in the walls and R-30 insulation in the roof. The effective R-values of the windows (uncovered and covered with curtains and shutters) are in the range of R-2 to R-10. All glass surfaces are double-glazed with minimum window area in nonsouth-facing walls. Auxiliary space heating is provided by a gas-fired wall furnace which distributes the energy by natural convection. Additional auxiliary energy can be supplied from a wood-burning stove.

The building has summer overheat protection which is provided by several means: Roof overhangs over the south-facing glazed areas provide shading; operable windows in the south wall and a vent in the north wall provide cross-ventilation of the house at night, cooling the solar storage mass and moderating daytime building temperatures; the curtains and shutters over the windows prevent collection of incident solar energy during the day; and a ceiling fan assists the heat distribution and the venting process.

II. PERFORMANCE EVALUATION

INTRODUCTION

Performance evaluation is presented in two parts for this solar energy site: The first part covers the active solar DHW system; the second covers the passive solar space heating system.

The active solar DHW system, extensively damaged by freezing on December 8, was repaired during April. However, during the interim period and the repair activities, some sensors became inoperative; therefore, only limited information is available on this system. The active solar DHW system satisfied

14 percent of the hot water load, while the passive solar space heating system satisfied 100 percent of the space heating demand during the month. The wood-burning stove was operated in order to reduce the space heating load, but this occured for only a few hours during the first morning of the month. Daily variations in building temperature were minimal, indicating the presence of substantial amounts of energy storage capacity. Comfort levels remained reasonable throughout the month.

WEATHER CONDITIONS

The average ambient temperature during April was 57°F as compared with the long-term average for April of 58°F. The number of heating degree-days for the month (based on a 65°F reference) was 341 as compared with the long-term average of 227.

During the month, total incident solar energy on the DHW collector array was 2.0 million Btu for a daily average of 1485 Btu per square foot. This was below the estimated average daily solar radiation for this geographical area during April of 2011 Btu per square foot for a south-facing plane with a tilt of 45 degrees to the horizontal.

During the month, total incident solar energy on the passive collector south windows and skylight was 10.3 million Btu for a daily average of 1263 Btu per square foot. This was below the estimated average daily solar radiation for this geographical area during April of 1800 Btu per square foot for a southfacing plane with a tilt of 60 degrees to the horizontal.

THERMAL PERFORMANCE, ACTIVE SOLAR DHW SYSTEM

<u>Collector</u> - The total incident solar radiation on the DHW collector array for the month of March was 2.0 million Btu. The collector system, inoperative due to freeze damage in December, was repaired on April 23. However, while the collectors were inoperative during the first part of the month, the storage, pipes, sensors, etc. were still working. There was leakage of 0.024

million Btu from the passive heating system into the DHW preheat system. When the system was repaired on April 23, the collector pump sensor was made inoperative and the auxiliary fuel sensor load already failed on March 4. In addition to the leakage, solar energy was collected for a total of 0.216 million Btu. The effective solar collector array efficiency was 11 percent, based on total insolation. The operating energy required by the collector loop was not measurable, despite the zeroes indicated in the printed report.

<u>DHW Load</u> - The DHW system consumed 0.216 million Btu of solar energy. The hot water load was 1.6 million Btu. The passive system spill-over and the energy collected after the system was repaired resulted in fossil fuel energy savings of 0.36 million Btu. A daily average of 113 gallons of DHW was consumed at an average temperature of 125°F delivered from the tank.

THERMAL PERFORMANCE, PASSIVE SOLAR SPACE HEATING SYSTEM

The total incident solar radiation on the collector windows for the month of April was 10.3 million Btu. The total collected solar energy for the month of April was 3.9 million Btu. The total solar energy delivered to the space heating load was 3.7 million Btu, resulting in a collector array efficiency of 36 percent, based on total incident insolation. Auxiliary thermal energy was not used to satisfy the space heating load, and the pilot light was turned off to save energy. The result was a fossil fuel energy savings of 6.1 million Btu. The solar fraction of this load was 100 percent. The average storage temperature for the month was 68°F.

During the early morning of the first day in April, the wood-burning stove was used to satisfy a measurable amount of the building load. During April, this renewable energy was only 0.042 million Btu. Assuming a wood-stove energy conversion efficiency of 30 percent, this 0.042 million Btu is less than 1 percent of a cord of dry hardwood (such as oak). In terms of the savings of nonrenewable energy, the renewable thermal energy derived from the wood was equivalent to over 0.07 million Btu of fossil fuel energy.

The interior comfort level was measured at 69°F in both zone 1, the south end of the building, and zone 2, the north end. A slight daily temperature difference is usually expected because comfort zone 2 is heated by conduction through the slab and walls, and by convection and infiltration through the doors.

OBSERVATIONS

During the month of April, the passive solar system completely satisfied the space heating with enough energy left over to raise the storage temperature by 2°F. The woodburning stove was used a few hours during the first day of the month. With the space heating load reduced by milder weather, operation of the reflective (and insulating) shutters and curtains was not as critical, and the operational to incident solar energy went down. This resulted in a lower solar conversion efficiency. The curtains are not yet fully operational. With reasonably large uncurtained windows in the northeast bedroom, some afternoon overheating has occurred. The DHW system was repaired during the month. The monthly average DHW solar fraction was 14 percent for the last seven days of the month; after the repairs, the solar fraction jumped to 41 percent.

Computed comfort levels inside the building were very stable during the entire month in both zones of the building, varying at most by $1^{\circ}F$ over the daily averages.

The fuel meter and collector pump sensors were inoperative and the water meter read high. Installation of insulating curtains has not been completed by the owner.

ENERGY SAVINGS

The solar energy systems yielded a total fossil fuel energy savings of 6.5 million Btu. The DHW system provided an estimated fossil fuel energy savings of 0.36 million Btu, while the space heating system contributed a fossil fuel energy savings of 6.1 million Btu.

III. ACTION STATUS

Boeing has been requested to inspect the sensor anomalies.

SOLAR HEATING AND COCLING DEMONSTRATION PROGRAM

MONTHLY REPORT SITE SUMMARY

SITE: LIVING SYSTEMS (159-1) DAVIS. CALIFORNIA REPORT PERIOD: APRIL, 1979

SOLAR/1046-79/04

ENERAL SITE DATA: Incident solar energy	
	44544
COLLECTED SOLAP ENERGY	*
	**
2 A G	0 70
VERAGE BUIL	5 60
CSS SOLAR C	0.11
CSS OPERATI	000.0
AL SYSTEM	2 000.0
TINH INTO	4.

MILLION BTU WILLION BTU WILLION BTU ETU/SO.FT. DEGREES F

BTU BTU DTR

MILLION MILLION BTU

	(
TOTAL ENERGY CONSUMED	SUBSYSTEM SUMMARY:

	1.572 MILLIDA E	FNECCHO	10	O MILLION	* MILLION	MILLION	MILLION		m
CUDILING	• V • Z	• 0 • 2	• < • 7	• 4 • 2	F1 • A •	• 4 • 7	• 4 • 7	• A • Z	*4 *2
HEAT ING	• Z	• 4 • Z	• X • Z	• 4 • Z	* < * Z	• 4 • 2	• 4 • 7	Z. A.	• d • Z
HOT WATER	1.572	**	0.216	• 4 • Z	#	• 4 • Z	**	7. Z	0 359
SUBSYSTEM SUMMARY:	LOAD	SOLAR FRACTION	SOLAP ENERGY USED	ENM	AUX, THERMAL ENERGY	AUX. FLECTRIC FUEL	AUX FOSSIL FUEL	CTR	FOSSIL SAVINGS

FACTOR:	
PERFORMANCE	
SYSTEM	

-11

* DENOTES UNAVAILABLE DATA DENOTES NULL DATA N.A. DENOTES NOT APPLICABLE DATA USER'S GUIDE TO THE MENTHLY PERFORMANCE REPORT OF THE NATIONAL SOLAP DATA PROGRAM, FERRUARY 28, 1978, SCLAR/0004-78/18 PEFERENCE:

DLAR MEATING AND COPLING DEMONSTRATION PROSPAM

MONTHLY REPORT SITE SUMMARY

DAVIS. CALIFORNI : LIVING SYSTEMS (159-1) RT PERIOD: APRIL, 1979 EPO va

SOLAR/1046-79/04

DIRECTLY DUPHE THE LIVING SYSTEMS SOLAR DOMESTIC HOT WATER SYSTEM DECVIDES TO THE BUILDING DOMESTIC HOT WATER SYSTEM . THIS ACTIVE SYSTEM USES FLAT PLATE COLLECTORS (46 SQ.FT.) TO HEAT WATER IN A 82 GALLON STORAGE TANK. AUXILIARY HOT WATER FUERSY IS BY NATURAL GAS IN THE 20 GALLON HOT WATER HEATER.

GENERAL SITE DATA: Incident solar enfrgy

OLLECTED SOLAR ENERGY

AVERAGE AMBIENT TEMPERATURE
AVERAGE BUILDING TEMPERATURE
ECS SCLAR CONVERSION EFFICIENCY
ECS OPERATING ENERGY
TOTAL SYSTEM CPERATING ENERGY
TOTAL ENERGY CONSUMED

SUBSYSTEM SUMMARY:

LOAD
SOLAR FRACTION
SOLAR ENERGY
ODERATING ENERGY
AUX. THERMAL ENG
AUX. FLSCTRIC FUEL
AUX. FCSSIL FUEL
ELECTRICAL SAVINGS
0.379

GIGA

* A * Z

N.A.

N. A.

N.A.

GIGA

0.000

14. A.

" ! . A .

GIGA JOUL

SIGA

0.223

SYSTEW TOTAL 1.659 GIGA J

N. A.

N. A.

500

JOULES JOULES JOULES

616A 616A 516A

400000

GIGA JOULE KJ/SO.W. GIGA JOULE KJ/SO.W. DEGREES C

53452 5342

SYSTEM PERFORMANCE FACTOR:

* DENOTES UNAVAILABLE DATA @ DENOTES NULL DATA N.A. DENOTES NOT APPLICABLE DATA

.1978, EFERENCE: USFR'S GUIOF TO THE MENTHLY DEPECAMANCE REPORT OF THE NATIONAL SOLAR DATA DEOGRAM, FERRUARY 28 SOLAR/0004-78/18 SOLAR HEATING AND CCOLING DEMONSTRATION PROGRAM

MCNTHLY REPORT ENERGY COLLECTION AND STORAGE SUBSYSTEW (ECSS)

SITE: LIVING SYSTEMS (159-1) DAVIS, CALIFORNIA REPORT PERIOD: APRIL,1979

SOLAR/1046-79/04

1000	00000000000000000000000000000000000000	1	0.105	Z1111
RECSS REJECSS MILLION	SCF AUGTHOAWTH	7		
BL RACI	00000000000000000000000000000000000000	000	000.0	10
THERMAL TO ECSS MILLION	ZC⊢ ∢ЈОП∺∩∢«ПП	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	•	
FNFRGY TD LOADS MILLION BTU	00000000000000000000000000000000000000	• 21	2.007	
AMBIENT TEMP DEG-F	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		57	m I I Z I
INCIDENT SOLAR ENERGY MILLION	00000000000000000000000000000000000000	2.049	3.068	2001
A O O A O O O O O O O O O O O O O O O O		SUM	AVG	OI SEN

* DENOTES UNAVAILABLE DATA. 9 DENOTES NULL DATA. N.A. DENOTES NOT APPLICABLE DATA.

SOLAR HEATING AND CCOLING DEMONSTRATICH PROGRAM

COLLECTOR ARPAY PEPFORMANCE

4					
AD/1046-79/0	COLLECTOR ARRAY EFFICIENCY	************	3 1		Z 1 0 0 1 Z
JOS A INAC	AMBIENT TEMB 0EG F	もらてて、 ららてららてててていいらんらしょうでしょうでしょうできまる。 まるでい ららて でんりっとして よみ 男 きらる しょうていい はご しゅうしょう	1	67	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AVIS, CALIF	COLLECTED SOLAR SOLAR MILLION BTU	******************	*	#	0100
0 (1-96-1)	OPERATIONAL INCIDENT FNERSY MILLION BTU	000000000000000000000000000000000000000	0.00.0	0	
VING SYSTEMS ERIOD: APRIL	INCIDENT SCLAR SCLAR MILLION BTU	00000000000000000000000000000000000000	2.049	0.068	0001
SITE: LIV	MONTH MONTH	-	SUM	AVG	NBSID

* DENOTES UNAVAILABLE DATA. @ DENOTES NULL DATA. N.A. DENCTES NOT APPLICABLE DATA.

SOLAR HEATING AND COCLING DEMONSTRATION PROGRAM

MONTHLY REPORT STORAGE PERFORMANCE

STORAGE STOTAGE	SOF 4UUJHO4DJM:	1	Z	α ς .
STORAGE AVERAGE TEMP DEG F	MEGACHEDS> HOZ		~ ~ ~	
CHANGE IN STORED ENERGY MILLION BTO	MEDPOHEDS HOZ	Z .	•	0000
ENERGY FROM STOFAGE MILLION BTU	00000000000000000000000000000000000000	0.201	0.007	1000
ENERGY ENERGY STOPAGE MILLION BTU	* * * * * * * * * * * * * * * * * * * *	*	*	
M M M M M M M M M M M M M M M M M M M	- ころととろろろろろろろろろろろろろろろろろろろろろろろろろろろろろろろろろろ		i >	

* DENOTES UNAVAILABLE DATA. @ DENOTES NULL DATA. N.A. DENOTES NCT APPLICABLE DATA.

SOLAP HEATING AND CCCLING DEMCNSTRATION PRIGRAM

MONTHLY REPORT HOT WATER SUBSYSTEM SO_AP/1045-79/04

	- 1
	1
	- (
	-
	ı
	-
	1
	-
⋖	_
-	
7	
9	
I	
-	
CALIFOFNIA	
	_
DAVIS,	
S	
2	
0	
	-
1	
0	
(, O,	
979-11	
-0.	
•	_
YSTEMS	
2 11	
Fa.	
NA	
×	-
S	
00	
Z	
= CC	
PER TOD:	
STTE: L	-
·· (X	
MO	
P	
SO	

1 1 1 1 1 1 1 1 1 1
1 2
D < 0 D D D D D D D D D
NX
T
M
M
M I I I I I I I I I I I I I I I I I I I
O C O C U
MOU
M C L C C C C C C C C C C C C C C C C C

* DENOTES UNAVAILABLE DATA. @ DENOTES NULL DATA. N.A. DENOTES NOT APPLICABLE DATA.

SOLAR HEATING AND COOLING DEMONSTRATION PROGRAM

ENVIPONMENTAL SUMMARY

SITE: LIVING SYSTEMS (159-1) DAVIS. CALIFORNIA REPORT PERIOD: APRIL, 1979

SD_AR/1046-79/04

INSOLATIO		16	000	00	φ. γ.	0 00	500	100	138	100		400	8 2	90	10	(4)	1 გ	84	73		14	4 8	1000
ON	1	1							-	m	m 10 (m								1		1
FFUSE	BTU/SQ.FT		⊃ ⊢		Φ Ω	۵		.0	∢ Œ	: _ L	П										Y Z	4	i
BIE	DEG F	1 1 1 1 1 1									100												N L L L
Y I I I I I I I I I I I I I I I I I I I	5	F.4																				29	1
LATIV		144																				62	
WI'VD RECTI	11 1	217	مني ارا	<	\$ W	3	40	100	is t	۲	000 040 040	α	→	352	m 4	0	Ç)	α	4 h	800	1	002	•
N C C C C C C C C C C C C C C C C C C C	M.D.H.		2 C	410	- φ	7	- α	g. t	្រ	411	040) F :	t m	4 4	ω -	t ×	* 9	ر م	4 4			Y	N114

* DENOTES UNAVAILABLE DATA. a DENOTES NULL DATA. N.A. DENOTES NOT APPLICABLE DATA.

SOLAR HEATING AND COOLING DEMONSTRATION PROGRAM

MONTHLY REPORT SITE SUMMARY

DAVIS, CALIFORNIA EDORT PERIOD: APPIL, 1979 Sa

SOLAR/1046-79/04

				l e l		10		
	THE STATE OF THE S	DIRECT		MOVABLE	F	OVERHANGS	3 ¥ A	
0	1000	MIT	AGE IS	10R.	REDUCE	NO HO	IDED B	
000	VELLIN	THE DEL	STOR	B FLC	O REC	TUB A	DRUV	
1	1 × 0 × 1	CYLISH	RMAL	E SLA	I TY I	DED F	SIL	
0	FAMI	JPY S.K	SY THE	NORFI	APABIL	PPUVI	SPACE HEAT IS PROVIDED	
0	ATING FOR A 1700 SQUAPE FOOT SINGLE FAMILY DWELLING. THE	ERESTO	ENERG	CHE CC	IDE CA	INVERHEAT PROTECTION IS PROVIDED PY	SPAC	
0	100 T	AD CLE	SOLAR	AND	PRCV1	FECTIO	AUXILIARY	
Q	JAPEF	ALL AN	SE .	LUBES	LAINS	LOBE 1	AUX 1	
0 1771	00 800	M MOO	HOOS	LED	G CURI	PHEAT	I ION.	
. Z U	A 17(DNING	ER THE	FR FIL	ATING	ER NVE	NT I L A J	L
SCPIPTION	G FIDE	ACINO	ENTE	H WAT	INSUI	ES . SUMMER	TURAL VENTILATION	S FURNACE.
M DESC		DUTHLE	SUN TO	Y BOTH			NA TUR	GAS
TE	CET	u.	NTER	ED E	TER	AT LOS	BY	TURAL
SI TE/S		LAF	-	-	SHC	HE	AND	VAN

GENERAL SITE DATA: INCIDENT SOLAR ENERGY	COLLECTED SOLAR ENERGY	AVERAGE AMBIENT TEMPERATURE	SOLAR CONVERSION EFFIC	TOTAL SYSTEM OPERATING FINERGY	TOTAL ENERGY CONSUMED

MILLION BTU MILLION BTU BTU/SQ.FT. DEGPEES F

BTU

810 810 810

MAMMAN MA

975 970 970 970

BTU

MILLION MILLION MILLION

0 · 0 · 7	• • • • • • • • • • • • • • • • • • •	• V • V	4 4 4 Z Z	AUX. FLECTRIC FUEL
, • V • Z	* * * Z	0 • Z 0 • Z		PERATING
100 0	• 4 • Z	COT		RERAC
3.687 W	. A . Z	ray. n		
NH L S A S	021	HEATING	HOT WATER	SUBSYSTEM SUMMARY:

100.000 DENOTES UNAVAILABLE DATA DENOTES NULL DATA .. DENOTES NOT APPLICAPLE TAC DK: THE CHANGE といった # @ Z S

USER'S GUIDE TO THE MONTHLY PERFORMANCE REPORT OF THE NATIONAL SCLAR DATA PROGRAM, FERRUARY 28,1974, SOLAR/0004-78/18 REFERENCE:

DATA

SOLAR HEATING AND COCLING DEMONSTRATION PROGRAM

MONTHLY PEPORT SITE SUMMARY

SDL AR/1046-79/04

ī0s	OVIDES ING. THE SEPMIT DIPECT STAGE IS PRO- LCCR. MOVABLE PEDUCE NIGHT SOUPED BY A	
DAVIS, CALIFORNIA	SCRIPTION: (YSTEMS PASSIVE SOLAR SPACE HEATING SYSTEM PROVIDES) (STEMS PASSIVE SOLAR SPACE HEATING SYSTEM PROVIDES) (STEMS PASSIVE SOLAR SINGLE FAMILY DWFLLING. THE FEACING WINDOW WALL AND CLERESTORY SKYLIGHT PERMIT DIPECT (O ENTER THE HOUSE, SOLAR ENERGY THERMAL STORAGE IS PRO- THE WATER FILLED TUBES AND THE CONCRETE SLAB FLOOR, MOVABL (INSULATING CURTAINS PROVIDE CAPARILITY TO PEDUCE NIGHT (SUMMER OVERHEAT PROTECTION IS PROVIDED BY A FURNACE.	
SITE: LIVING SYSTEMS (159-2) DA REDORT PERIOD: APRIL, 1979	STIE/SYSTEM DESCRIPTION: THE LIVING SYSTEMS PASSIVE SOLAR SPACE HEATING SYSTEM PROVIDES THE LIVING SYSTEMS PASSIVE SOLAR SPACE HEATING SYSTEM PROVIDES SPACE HEATING FOR A 1700 SQUARE FOOT SINGLE FAMILY DWFLLING. THE LARGE SQUIH-FACING WINDOW WALL AND CLERESTORY SKYLIGHT PEPMIT DIPP WINTER SUN TO ENTER THE HOUSE. SOLAR ENERGY THEPMAL STORAGE IS PROVIDED BY ROTH WATER FILLED TUBES AND THE CONCRETE SLAB FLOOF. MOV. SHUTTERS AND INSULATING CURTAINS PROVIDE CAPARILITY TO PEDUCE NIGHTEAT LOSSES. SUMMER OVERHEAT PROTECTION IS PROVIDED BY ROTHE OVERHEAT BROTELITY TO SPROVIDED BY NATURAL VENTILATION. AUXILIARY SPACE HEAT IS PROVIDED BY NATURAL GAS FURNACE.	

0	4.078 GIGA		0110		GIGA	A. GIG	3.885 GIGA JOULES	
GENERAL SITE DATA: Incident solar energy	COLLECTED SOLAR FNERGY	E AMBIENT TEMPERA	RAGE BUILDING TEMPE	ECSS SOLAP CONVEPSION EFFICIENCY	S OPERAT	IL SYSTE	AL ENE	

SYSTEM TOTAL	7.885 GIGA JOULES	DO PERCE	35 GIGA	A. GIGA	0.000 GIGA JOULES	A. GIGA	ASIS CO	A. GIGA	
DULING	· 4 • ½	- V - V	4 · Z	• A • Z	2. A.	. A . Z	*!. A .	• 4 • 2	• < · Z
HEATING	1.88°	001	(1) (1) (1)	• 4 • Z	000.0	. A. Z	000.0	• A • Z	6.476
HOT WATER	• V • Z	* < * Z	• 4 • Z	* d * Z	* Z	* Z	• Z	* Z	× × ×
SURSYSTEM SUMMARY:	LOAD	SOLAR FRACTION	OLAP	OPERATING SNERGY	AUX. THERMAL ENG	• ELECTRIC	AUX, FOSSIL FUFL	5	FOSSIL SAVINGS

100.000	
FACTOB:	
SYSTEM PERFORMANCE FACTOR:	
SYSTEM	

USER'S GUIDE TO THE MONTHLY PERFORMANCE REPORT OF THE NATIONAL SOLAP DATA PROGRAM.FEBRUARY 28.1078, Solar/0004-78/18 * DENOTES UNAVAILABLE DATA @ DENOTES NULL CATA N.A. DENOTES NOT APPLICABLE DATA REFERENCE:

SOLAR HEATING AND COOLING DEMONSTOATION DEDGEDAM

COLLECTOR ARRAY PERFORMANCE

0	
SOLAR/1046-79/04	
1	
046	
13	
DLAR	
SOL	
U)	
IA	
CALIFORNI	
0	
I. I	
VIS.	
/ 1	
DAVIS	
-	
12-6	7
16.9-21	010
(163-2)	.1079
(169-2)	111,1079
STEMS (199-2)	APP11.1979
(STEMS (19	APPIL,1
(STEMS (19	APPIL,1
(STEMS (19	APPIL,1
VING SYSTEMS (15	DERIOD: APPIL.1
VING SYSTEMS (15	DERIOD: APPIL.1
(STEMS (19	DERIOD: APPIL.1

COLLECTOR ARRAY ARRAY CTTICTTNCY	20⊦ ∢@@기⊷∩∢@기#:		1	1 1
DAY*!WE AMOTENT TEMD DEG F			67	
COLLECTED SCLAP FNERSY MILLION PTU	ZC	3.865		0100
OPERATIONAL INCIDENT ENERGY MILLION BTU	00000000000000000000000000000000000000	.43		
INCIDENT SOLAR FNEPSY MILLION	00000000000000000000000000000000000000	1 34	M	00001
00A Y H			> 1	SI

* DENDTES UNAVAILABLE DATA. DENOTES MULL DATA. N.A. DENOTES NOT APPLICABLE CATA.

SOLAR HEATING AND COOLING DEMONSTRATION PROGRAM

SPACE HEATING SUBSYSTEM

-79/04	IND FOR	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		1
/1046-	BLDG TEMP OFG.	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	1 1	0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
COLAP	1コンバス		* 1 1 3	.20
•	ELECT ENERGY SAVINGS MILLION BTU		* Z	· 1 1/2 1
	I Z		00	
	AUX ELECT FUEL MILLICN	ZC	Z	*
CAL I FORNIA	AUX THERMAL USED MILLION	000000000000000000000000000000000000000	00	011
DAVIS. 0	OPER ENERGY MILLION BTU	IL® POHL D D P HOZ	Z	7 - A - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
(159-2)	SOLAR ENERGY USED MILLICN	00000000000000000000000000000000000000	• 68	0.123
STEMS APRIL,	SOLAR FR.OF LOAD PCT	000000000000000000000000000000000000000		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LIVING SY FPERIOD:	SPACE HEATING LCAD MILLION BTU	00000000000000000000000000000000000000	3.683	0 123
SITE: REPORT	MODA MODA			AVG NBS

* DENGTES UNAVAILABLE DATA. @ DENCTES NULL DATA. N.A. DENGTES NOT APPLICABLE DATA.

SOLAR HEATING AND COOLING DEMONSTRATION PROGRAM

FNVIRCNMENTAL SUMMARY

d	
CALIFOPNIA	
AVIS.	
0	
(159-2	10701
SYSTEMS	APRIL
SZ	: COI ale
-	PEPORT
S	0

SOLAP/1046-79/04

	pref pref pref	9	N114
17 1. 1	NOW LEGINOR MEMORIAN MORE TO THE STREET STRE		N112
1 1 1 0 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V	$\begin{array}{c} 44 $	1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	\$\\ \tag{\pi} \\ \		
AMETENT TYMPERATUE	\rangle \rang	57	m
INSCLATION BTU/SQ.FT		• • • • • • • • • •	i i
INSOLATION BTU/SQ.FT		37904	0001
V AOUY TONTH		SUM	CISEZ

* DENGTES UNAVAILABLE DATA. @ DENGTES MULL DATA. N.A. DENGTES NOT APPLICABLE DATA.

SCLAR HEATING AND COCLING DEMONSTRATION PROGRAM

MONTHLY REPORT PASSIVE SPACE HEATING

California Systems (159-2)		A N	4	エトリフリ	0	0	0	0	0	$\supset c$	> c	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	l l
The property of the property	046-7	N C N C N C N C N C N C N C N C N C N C	1 2 1	0 0	17	27	16	0	0 0 1	200	7 7 7	28	m	45	47	¥	37	42	9	87	11	—. ₩	21	3 1	37	64	27]	03	#	21]	7 7	o m	200	<u>i</u>
The first of the	SOLA	A C G	日日日	I n				•	•	•	• (•				•				•			•			•						
The color of the		AMBI	-	III II																														
The color of the		יוו יוור ו	- 1	11 LL																														
The color of the		N N N N N N N N N N N N N N N N N N N	USED	ILL IO BTU	0	000	000	000	000	000			.00	.00	00.	.00	00.	• 00	.00	00.	000	000	00	00.	00.	000	000	000	000	000	00.	000	000	000
The color of the		SOLA	TIL	# # #	•17	.21	.23	• 23 m	• 4	000	• n) W	(M)	• 31	• (v)	C1 R.	. 22	. 21	.51	• 77	.42	• 33	.32	• (1)	• 78	• 55 C	• 36	• (M	• 16	.22	• 24	• 43	• 34	1
TEER LIVING SYSTEMS CISO-2 DAY LOAD SPACE SOLAR IN ANGE DAY LOAD SPACE SOLAR IN ANGE DAY LOAD SOLOR SOLOR DAY LOAD SOLOR DAY SOLOR SOLOR DAY LOAD SOLOR DAY	AVIS.	VEP AG TORAG	TEMP	ы О	1 4	•	• /	φ,	0, 0	χ. 1 α	• a	0	ω.	0	0	0	6	•	0	œ	7.	•	7.	7.	o	7.	e m	ф Ф	φ ω	7	ů	• 00	φ.	1
TERT LIVING SYSTEMS LOAD LO	9-2)	CHANGE	NERGY	ILLIC BTU	0 0	• 06	• 07	90.	60°	010) C		0.01	• 06	.00	.01	.01	• 0 4	0.00	0.04	0.03	00.	0.00	.01	.01	• 0 0	• 03	• 0 1	• 0 4	• 02	• 03	• 01	• 00	.18
THE PIECE STATE OF ST	STEMS (APRIL, 1	NERRI	USED	ILLIO	.08	• 10	.10	• 10	• 14	91.	1 .	14	• 16	.10	.12	.11	50.	• 03	•17	.17	• 16	• 14	• 12	• 11	• 13	• 14	.12	• 0 9	• 10	60.	· 09	60 •	• 12	68
N	VING SERIOD:	SPACE	LOAD	ILLIO BTU	.08	• 10	• 10	• 10	• 14	• 10	11.	14.	.16	. 10	.12	• 1 1	· 09	• 08	• 17	• 17	• 16	• 14	• 12	• 11	•13	• 14	• 12	• 09	• 10	· 09	· 09	• 09	• 12	.68
	ITE	IVL	0			2	60	4	ហ	01	0	0 0																						SUM

100

300

0.9

15

68

00000

0.356

68.4

90000

0.122

0.122

9202

0400

9402

AVG NBS

N400

N1 15

N1 14

N113

N4 05

Q4C1

* DENOTES UNAVAILABLE DATA. © DENOTES NULL DATA. N.A. DENOTES NOT APPLICABLE DATA.

SOLAR HEATING AND COCLING DEMONSTRATION PROGRAM

MONTHLY REPORT PASSIVE SYSTEM ENVIRONMENT SDE AR/1046-79/04

DAVIS. CALIFOPNIA SITE: LIVING SYSTEMS (159-2) REPORT PERIOD: APRIL, 1979

STAR STAR STAR STAR STAR STAR STAR STAR	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
TO A DE LE LA	
BUILDING TEMP 6 PM DEG F	
BUILDING TENTO TOON TOON TOON TOON TOON TOON TOO	000 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
BUILDING TEMP 6 AM 0EG F	
MIDNIGHT DEG F	
BLDG CCMF ZCNE	
BUILDING COMFORM ZONE	
I A C C	N N N N N N N N N N

* DENOTES UNAVAILABLE DATA.

a DENOTES NULL DATA.

N.A. DENOTES NOT APPLICABLE DATA.

