

版本/修订历史

版本	日期	修订内容	拟制/修订人
V1.0	2021-09-30	初版释放	LH

一、IP5389 选型说明

1、支持 LED 灯/188 数码管 pin 选的型号

IP5389 型号	选型参考	功能数目
IP5389_BZ	1、主要用于带 LED 和数码管	1、支持 LED 和 188 自动识别
_	2、支持 A+A+C+B+Lightning 接口	2、支持 2-6S 电芯串数选择
	的方案	3、支持 pin 选功率、充满电压、
		NTC 等功能
		4、支持 SCP 协议输入输出
IP5389_BZ_2H	1、主要用于带 LED 和数码管	1、支持 LED 和 188 自动识别
	2、支持 A+A+C+B+Lightning 接口的	
	方案	3、支持 pin 选功率、充满电压、
	3、支持"常开"模式,长摁按键 2s 开	NTC 等功能
	启,保持放电 2h 不关机。	4、支持 SCP 协议输入输出
IP5389_BZ_AACC	1、主要用于带 LED 和数码管	1、支持 LED 和 188 自动识别
	2、支持支持 A+A+(DRP)+ C(DRP)	
	双C接口的方案	3、支持 pin 选功率、充满电压、
		NTC 等功能
IDEANA DE LLOC AIX		4、支持 SCP 协议输入输出
IP5389_BZ_AACC_2H	1、主要用于带 LED 和数码管	1、支持 LED 和 188 自动识别
	2、支持 A+A+C+B+Lightning 接口	2、支持 2-6s 电芯串数选择
	的方案	3、支持 pin 选功率、充满电压、 NTC 等功能
	3、支持"常开"模式,长摁按键 2s 开启,保持放电 2h 不关机。	4、支持 SCP 协议输入输出
	月,从1寸从电 ZII 小人机。	一、文持 SCF 阶及相入制山
IP5389_BZ_ABCCO	1、主要用于带 LED 和数码管	1、支持 LED 和 188 自动识别
H 3007_DZ_NDCCO	2、支持 A+C (DFP) +B+C(DRP)接	
	口的方案	3、支持 pin 选功率、充满电压、
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NTC 等功能
		4、支持 SCP 协议输入输出
IP5389_FPP_AACC	1、支持高压快充边充边放(C1口快	
	充输入的同时 C2 口快充输出;	2、支持 2-6S 电芯串数选择
	C2 口快充输入的同时 C1 口快充	3、支持 pin 选充满电压、NTC 等
	输出; C1 或 C2 口快充输入同时 功能	
	A 口快充输出) 4、支持 SCP 协议输入输出	
	2、支持 C (DRP) + C (DRP) + A+A	
	双 C (DRP) 接口方案	
IP5389_OCV_AACC	1、主要用于带 LED 和数码管	1、支持 LED 和 188 自动识别
	2、支持支持 A+A+(DRP)+ C(DRP)双 C	2、支持 2-6S 电芯串数选择
	接口的方案	3、支持 pin 选功率、充满电压、等
	3、支持大功率照明灯(需外挂 LED 灯	」功能。暂不支持 NTC 功能 pin 选。

驱动 IC),并且支持照明灯电流采样 4、支持 SCP 协议输入输出

以上方案各个口支持的协议如下:

输入输出口	支持的快充协议
USBA 口输出	QC2.0、QC3.0、FCP、AFC、低压 SCP、低压 VOOC
MicroB 口输入	AFC、高压 SCP、FCP
Type-C 口输入	PD、AFC、高压 SCP、FCP
Type-C 口输出	PD、QC2.0、QC3.0、FCP、AFC、高压 SCP、低压 VOOC
Lightning 口输入	PD (最高 12V)

上述方案中,只有 IP5389_BZ 和 IP5389_BZ_2H 的 C 口输出、A 口输出额外支持 QC3+协议。

2、支持 I2C 控制的型号

IP5389 型号	选型参考	功能数目	
IP5389_I2C_AACC	1、主要用于配合 MCU 使用,可通	1、支持电量计可读	
	过 I2C 访问内部的信息;	2、支持 2~6s 电芯串数选择	
	2、支持支持 A+A+(DRP)+ C(DRP)	3、可通过 I2C 自定义各项功能,如	
	双C接口的方案	输入输出功率、PDO 电流包信	
		息等	
		4、只支持 SCP 协议输出	
IP5389_I2C_BC	1、主要用于配合 MCU 使用,可通	1、支持电量计可读	
	过 I2C 访问内部的信息;	2、支持 2~6s 电芯串数选择	
	2、支持 1 个 C (DRP)口双向输入输	可通过 I2C 自定义各项功能,如	
	出;	输入输出功率、PDO 电流包信	
	3、VIN 口接 DC 电源输入支持太阳	息等	
	能输入、DC 直流适配器输入,支持	3、只支持 SCP 协议输出	
	MPPT、自适应适配器输出能力等功		
	能		
IP5389_I2C_AACD	1、主要用于配合 MCU 使用 通过		
	I2C 访问内部的信息;	2、支持 2~6s 电芯串数选择	
	2、支持 A+A+ C(DRP) C 口双向输	可通过 I2C 自定义各项功能,如输	
	入输出的方案;	入输出功率、PDO 电流包信息等	
	3、VIN 口接 DC 电源输入支持太阳	3、只支持 SCP 协议输出	
	能输入、DC 直流适配器输入,支持		
	MPPT、自适应适配器输出能力等功		
	能		
IP5389_I2C_DC_IP65	1、主要用于配合 MCU 使用 通过	1、支持电量计可读	
	I2C 访问内部的信息;	2、支持 2~6s 电芯串数选择	
	2、可以外挂 IP6538、IP6525S 等车 可通过 I2C 自定义各项功能		
	充IC来达到双快充的效果(只支	入输出功率、PDO 电流包信息等	
	持我司的车充 IC, 具体支持的快	3、只支持 SCP 协议输出	
	充协议由使用的车充 IC 决定)		
	3、支持 Lightning+B+C (DRP) +2A		
	或者 A+C(DFP)接口方案		

以上方案各个口支持的协议如下:

输入输出口	支持的快充协议
USBA 口输出	QC2.0、QC3.0、FCP、AFC、低压 SCP、低压 VOOC
MicroB 口输入	AFC, FCP
Type-C 口输入	PD、AFC、FCP
Type-C 口输出	PD、QC2.0、QC3.0、FCP、AFC、高压 SCP、低压 VOOC
Lightning 口输入	PD (最高 12V)

3、可外加 DC-DC 的型号

IP5389 型号	选型参考	功能数目
IP5389_DC_IP65	1、可以外挂 IP6538、IP6525S 等车充	1、支持双口同时快充输出,互相独立
	IC 来达到双快充的效果(只支持我司	支持 LED 和 188 自动识别
	的车充 IC,具体支持的快充协议由使	2、支持 2-6S 电芯串数选择
	用的车充 IC 决定)	3、支持 pin 选功率、充满电压、NTC
	2、支持 Lightning+B+C (DRP) +A+A	等功能
	或者 A+C(DFP)接口方案	4、支持 SCP 输入输出
	支持"常开"模式,长摁按键 2s 开启,	
	保持放电 2h 不关机。	
	3、支持智能功率和高功率模式选择,	
	可通过电阻 pin 选	

以上方案各个口支持的协议如下:

输入输出口	支持的快充协议
USBA 口输出	QC2.0、QC3.0、FCP、AFC、低压 SCP、低压 VOOC
MicroB 口输入	AFC、高压 SCP、FCP
Type-C 口输入	PD、AFC、高压 SCP、FCP
Type-C 口输出	PD、QC2.0、QC3.0、FCP、AFC、高压 SCP、低压 VOOC
Lightning 口输入	PD (最高 12V)

二、IP5389 layout 布局建议

1.各个输出口电流采样走线

在 IP5389 中,每个输出输入口都有两根采样线,以 VOUT1 口为例,这两根采样线名为 VOUT1 与 VOUT1_I。在走线时,需要将 VOUT1 和 VOUT1_I **分别单独**走到 VOUT1 路径 MOS 两端(如下图)。值得注意的是,VOUT1_I 与 VIO 属于同一网络,但是绝不可直接将其随意就近连入 VIO 网络中,必须走在指定路径 MOS 边上。

2.VIO 端和 BAT 端采样线需要单独从采样电阻两端引出,且越短越好

在原理图中,引脚 BAT、CSP2 属于同一网络,但是走线时**必须单独分别**从采样电阻右侧引出; CSN2 和 PCON 也需要**单独分别**从采样电阻左侧引出,如下面的 layout 图所示:

VIO 端的采样电阻走线同理:

3.VIO 和 BAT 端电容需要靠近采样电阻

以BAT 端为例,该端的采样电阻旁边**必须至少**放置一个22uF 电容。在这个前提下尽可能使电容的GND 靠近BAT 功率回路下管的GND,另外**地孔越多越好**。否者可能会对电流ADC的采样的精确与稳定造成影响。

4. NTC 电容需要靠近 NTC pin 脚

实现 NTC 功能所用的 0.1uF 电容需要靠近 IC 的 NTC pin 脚,如下面的 layout 图所示。另外说明,不需要 NTC 功能的时候,直接将 NTC pin 脚接 10k 电阻到地即可,使用 NTC 功能的时候,要将下图中的 10k 电阻 NC.

5. 功率布局参考

针对双 NMOS 和单 NMOS 两种情况,我们提供了以下两种布局作为参考:

双 NMOS 功率布局参考

单 NMOS 功率布局参考

无论是采用哪种方案,在电容负端和功率下管负端都请打够足够多的地孔。

另外,为了应对开关瞬间的振铃干扰,我们建议加上 RC 吸收回路。RC 的具体取值需要根据实际的器件型号和布局来决定,更大的 C 可以增加尖峰的吸收能力,但随之而来的效率降低也是需要考虑的,根据内部实验,固定 R 为 2R,在满载(100W)放电情况下,改变 C 的取值,其对振铃最大幅值和效率的影响如下表:

R	С	振铃最 高幅值	效率	效率比 值,以
				2R1nF 为
				基准

2R	10nF	42	0.9539	0.9945
2R	6.8nF	43.4	0.9558	0.9964
2R	3.3nF	44.4	0.9576	0.9983
2R	1nF	52.6	0.9592	1.0000

振铃的幅值与输出电流的大小成正相关,所以需要根据实际的应用场景来选择合适的 RC 取值。我们建议,如果 PMAX<=65W,我们推荐 2R 1nF 的 RC 组合,如果 PMAX>65W,我们推荐 2R 3.3nF 的组合。

三、IP5389 常见问题汇总

器件选型相关问题:

1、IP5389 对 H 桥 MOS 的驱动要求,比如 Ciss 电容值等等,如何匹配达到最高效率。

一般而言,对于 H 桥的 NMOS,我们推荐的参数如下表:

各项属性	推荐参数
$R_{DS\ (ON)}$	<10mR
V_{DSS}	>=30V >8V
V_{GSS}	>8V
I_{S}	>15A
C_{iss}	<1000pF
$t_{r(on)}$	<10ns
r(on)	
$t_{r(off)}$	<40ns

H 桥 NMOS 影响效率的主要因素包括 $R_{DS\ (ON)}$, C_{iss} 和 C_{oss} ,IP5389 的 V_{gs} 驱动电压来自VCC5V,寄生电容对效率的影响比较小,主要考虑 $R_{DS\ (ON)}$ 越小越好,在 $R_{DS\ (ON)}$ 差别不大的情况下,寄生电容越小越好。对于导通和关闭时间,也都是越短越好。

2、各个输入输出口的路径 NMOS 应当如何选型

各个输入输出口的 NMOS 只是作为路径开关,对开关速度的要求并不高。关于导通阻抗 $R_{DS\ (ON)}$,我们推荐路径 NMOS 的 $R_{DS\ (ON)}$ <10mR.,这个值越小,整体的效率越高。 V_{DS} 耐 压则需要根据实际情况选择,例如,选用的方案最高支持 20V 充放电,则路径 NMOS 的 V_{DS} 耐压需要大于 20V(考虑到裕量,建议大于 25V);如果选用的方案最高支持 15V 充放电,则路径 NMOS 的 V_{DS} 耐压需要大于 15V(考虑到裕量,建议大于 20V)。

3、电感如何选型,为何推荐使用 10uH 的电感?

我们预设 IP5389 功率回路输出电流为 I_{out} ,开关频率为f,输入电压 V_{in} ,输出电压为 V_{out} .根据项目具体要求,我们按下表设置以上参数:

各项参数	值
V_{in_min}	5V
V_{in_max}	20V
V_{out_max}	5V
V_{out_min}	20V
f	250kHz
I_{out_max}	6A

电感纹波电流 ΔI_L 一般取 $0.2I_{out}\sim0.4I_{out}$,这里取 0.3 倍,则 ΔI_L =1.8A,电感电流计算公式如下:

$$I_{L(max)} = I_{out} + 0.5 * \Delta I_L$$

$$I_{L(min)} = I_{out} - 0.5 * \Delta I_L$$

计算得到 $I_{L(max)}$ =6.9A, $I_{L(min)}$ =5.1A.

在 BUCK 工作模式下,令 $V_{(in)}$ =20V, $V_{(out)}$ =5V, ΔI_L =1.8A,忽略 NMOS 导通阻抗,得到下列公式:

$$I_{L~(min)} = \frac{v_L*d_t}{d_i} - \frac{(v_{in} - v_{out})*\frac{v_{out}}{v_{in}}*\frac{1}{f}}{\Delta I_L}$$

计算得到I_{L (min)} =5.6uH,

在 BOOST 工作模式下,令 $V_{(in)}$ =5V, $V_{(out)}$ =20V, ΔI_L =1.8A,同样忽略 NMOS 导通阻抗,得到下列公式:

$$I_{L \ (min)} = \frac{V_{L} * d_{t}}{d_{i}} = \frac{(V_{out} - V_{in}) * (1 - \frac{V_{out} - V_{in}}{V_{out}}) * \frac{1}{f}}{\Delta I_{L}}$$

我们得到 $I_{L\ (min)}$ =8.3uH.

电感的感值取 10uH 即可,额定电流看具体使用场景而定,一般来说最少需要大于 7A,直流阻抗则越低越好。

4、CSP2/CSN2 及 CSP1/CSN1 脚的采样精度值是多少? 采样电路上的电阻和电容作用是什么,如何取值?

电流采样的精度受内部修调基准、采样放大倍数匹配误差、以及采样电阻自身精度、PCB 走线和焊接效果的影响。在不考虑采样电阻误差的情况下,采样精度仅能保证<2%,要实现更高的精度,需要再贴片完成之后,在正常工作中测试实际的偏差,通过软件对偏差进行系数修调。

我们抽测了 3 块 IP5389 的 demo 板, 平均电流采样精度在 1.3%左右。

采样电路上的电阻和电容的作用是作为低通滤波器,阻值选择 10R,容值选择 1uF,则该滤波器的截止频率为 16KHz,与开关频率(250kHz)相差 16 倍,主要是对采样电流的开关纹波进行滤波。

5、两颗自举电容容值如何选择?

在 IP5389 中,自举电容的供电来源是 VCC5V,为了上管导通时 BST 电容电压的稳定,一般需要符合 $C_{Vcc5V}>C_{BST}>>C_{iss}$,大部分情况下, $C_{BST}=100C_{iss}$,在 H 桥 MOS 的 C_{iss} 不超过 1nF(1000pF)的情况下,常规取值为 100nF(0.1uF)。

6、各个输入输出口的滤波电容一般多少合适?

一般来说,输出口的电容容值建议最大不要超过22uF,不然可能会影响EMI认证的通过,而且过大的输出口电容可能会带来负载检测误触发等问题。所以我们推荐使用10uF,也可以额外并联一个0.1uF电容来减少EMI干扰。

7、在实际应用中,CC/D+/D-上一般都会增加一些电阻电容,它们的取值有什么 公式吗?

大部分情况下,在 CC/D+/D-上增加电阻和电容是为了通过一些认证,具体的取值不太容易靠理论计算出来,影响这些参数的因素有很多,比如 PCB 的布局和走线,很多时候都需要在实际的板子上进行一步步调整,最后才能得到合适的参数。

8、VIO 和 BAT 的电容如何选择? 为何 VIO 推荐 3 个 22uF 并联 1 个 100uF, 而 BAT 推荐 2 个 22uF 并联 1 个 100uF.

根据开关电源的电容计算公式, VIO 和 BAT 的电容容值最小为 100uF, 又考虑到在实际的使用过程中, 电容容值可能会随着使用时间的增加或者温度上升而减少, 我们进行了大量的充放电实验, 最后才得出 VIO 使用 3 个 22uF 和 1 个 100uF, BAT 使用 2 个 22uF 和 1 个 100uF 的电容推荐参数。另外,各个输出口的电容只是进行简单的滤波,使用 10uF 即可。

系统功能相关问题:

1、A口的负载检测触发逻辑是怎样的,检测电压/拉载电流值是多少?

IP5389 的 A 口是靠检测电压来判断负载的,在 A 口待机时,IC 会通过 VOUT1/VOUT2 放出一个 2.4V 的检测电压到 A1/A2 口,负载能力为 5uA,当负载(等效阻抗<400kΩ)插入时,输出口的 2.4V 会迅速被拉低,当该电压低于触发检测阈值(2.0V)时,判定为有负载插入。

在 IP5389 进行单口快充放电时,如果另外一输出口检测到负载插入,那么此时便会切换到 双口 5V 放电状态。当检测到某一输出口的电流小于单口轻载阈值时(目前该值为 80mA,默 认路径 NMOS 内阻为 10mR),该输出口会被关闭,随后剩下的一口便可以恢复快充放电状态。

2、IP5389 的 FCAP 容量 pin 选具体应当如何使用?

在这里我们详细描述一下 IP5389 的 FCAP 容量 pin 选功能,通过改变 FCAP 到地的电阻阻值来配置不同的容量,这里的容量指的是**单节串联电池**的容量,举例说明,4节 5000mah 的电芯串联,那么容量配置为 5000mah,电阻设置为 5000/0.8=6.2k 即可;4节 5000mah 的电芯两两并联后再串联,那么这里节数选 2 节,容量配置为 10000mah,电阻设置为 10000/0.8=12.4k.

3、IP5389 在应用时, 功率和节数应当如何匹配设置, 2 节可以配置 100W 吗?

由于当前的限流值最大为 8.8A,而目前支持的磷酸铁锂电池关机电压为 2.75V, 2 节磷酸铁锂电池在低电输出下的 BAT 端功率最大为 2.75V*2*8.8A=48.4W,考虑到效率,VIO 端是无法满足 45W 放电的,而且这种情况下,BAT 电流很大,发热会比较严重,所以我们建议 2 节电池时,PMAX 最高配置 30W。同理,3 节电池时,我们建议 PMAX 最高配置 45W。只有当电池节数大于 4 节时,我们才建议 PMAX>=60W。

另外,配置PMAX为65W和100W需要额外的Emark电路,具体电路请参考原理图。

4、功率 PMAX 指的是什么功率,比如配置为 45W, A 口可以输出 45W 吗?

PMAX 指的是 IP5389 的 VBUS 或者 VIN 支持的最大的输入输出功率,VOUT 口最大只支持输出 24W,目前 IP5389 非 I2C 方案只能设置同样的输入输出功率,如果需要设置不同的输出和输入功率,请使用 I2C 方案。

当 PMAX 配置为 45W 时, VBUS 支持 45W 充放电。在 VIN 作为 DC 口的方案中, VIN 的最大输入功率也为 45W, A 口输出功率仍为 24W。

5、VBUS 口和 VIN 口什么时候需要使用对管?

- 一般情况下 VBUS 口和 VIN 口使用一个 NMOS 作为路径管即可, 在使用时注意源极 (S) 朝向座子端,漏极 (D) 朝向 VIO 端即可。
 - 一般在以下两种情况下,需要设置对管:
 - 1、在通过一些认证的时候,需要在 VBUS 口设置对管,达到双向完全关断的效果,在使用对管时候,我们建议从座子到 VIO 端按照 D1---S1---S2---D2 这个顺序来摆放对管。
 - 2、当有一口作为 DC 输入时,需要在该口路径设置对管。假设 VIN 口作为 DC 输入,VBUS 作为 Type-C 口,如果不设置对管,在 VIN 口插入高压时,该高压会通过 NMOS 的寄生二极管直接灌到 IP5389 的 VIO 路径上,如果此时 Type-C 正在给手机 5V 充电,由于无法及时关闭 VBUS 的路径管,这个高压也会灌到 VBUS,这就很可能导致手机损坏。

6、IP5389 可以自由烧录不同型号的固件吗?

目前是无法跨型号烧录固件的,一个型号的 IP5389 就只能烧录该型号的固件,无法烧录其他型号的固件。在尝试使用我们提供的烧录器进行跨型号烧录时,你会发现无法连接,也可以通过这点来判断拿到的 IP5389 是否与提供的固件为同一型号。

7、能否详细描述一下 VIN 作为 DC 输入口时抽取电流的策略?

VIN 作为 DC 输入口时,具备 MPPT 功能,其外接电源一般分两类: 1、太阳能板输出; 2、DC 输出适配器。IP5389 会通过 try 电流的方式来区分以上两类电源,如果是太阳能电源,IC 会实时根据太阳能电源的输出功率来智能调节抽取的电流大小,以求能量利用最大化。抽取的电流定义为 Iset, 范围 0~5A, DC 口正常工作时, Vsys 需要满足 4.5V~25V。

以下为 VIN 口的 MPPT 流程框图:

8、充电时发现电流很久才开始增加,而且增加的很慢,这是正常的吗?

IP5389 的充电机制就是如此。检测到 VIN/VBUS 有电后,需要先处理多口状态,判断下其它口的状态,随后才会进入充电状态,这个时间大概为 2s。随后电流的慢慢增加是为了防止适配器过流保护。

9、为何我设置电池结束 4 节,电池满电电压 4.2V,设置 VBAT=13V 上电,激活后电量依然为 0?

目前,第一次上电的时候如果 VBAT<N*3.4V,电量都判定为 0。主要是考虑到如果上次大功率放电时,锂保提前低电关闭,那么在随后的充电激活后,电量会突然变成一个非 0 的电量,为了避免这种情况才做了如上修改。

10、在实际应用过程中,可以删掉一些输出口吗,如果可以的话,相应输出口的功能 pin 应当如何处理呢?

可以删除。

如果删除的输出口是 USB-A 口,比如在某个应用中,不需要 USB-A2 口,那么与 USB-A2 相关的 VOUT2、DPA2、DMA2、VOU2_I 也就没有作用了,此时,可以将 IP5389 的 VOUT2、DPA2、DMA2 引脚悬空,而 VOUT2 I 则需要通过一个 10k 上拉到 VCCIO.

如果删除的是 Type-C 口或者 Micro-B 口,那么相应的引脚直接悬空即可。

11、使用 I2C 版本的方案时,为何 IP5389 一直无法关机?

首先对照寄存器文档检查 IP5389 的轻载关机相关的寄存器,看看是否关闭了轻载关机功能;随后再检查是否有将 INT 一直拉高,目前在 IP5389 将要关机的时候,IC 会将 INT 配为输入来检测外部电压,如果为高,则不会关机。

12、是否能够加入一个异常 IO 口,在 IP5389 出现异常时及时告知 MCU?

目前 IP5389 的 INT 就有这个功能,参考 IP5389 的寄存器文档,在 0xEA 的 0x0C 的 bit6,可以将其写 1,随后在 IP5389 发生异常时,INT 每间隔 500ms 都会拉低一次,每次 1~2ms. MCU 可以通过检测这个信号来判断 IP5389 是否发生异常。

13、为何 C 口输出只支持高压 SCP?

在 IP5389 的 C 口给华为手机充电时,手机优先申请的是 PD 高压协议,随后才会申请 SCP, 所以我们会优先选择使用高压 SCP 协议给华为手机充电。

我们调低了 C 口输出时的低压 SCP 优先级,删除了 C 口输出支持低压 SCP 的说明。但并未移除 C 口的低压 SCP 输出功能,所以在使用诱骗器进行测试时,也是可以单独诱骗低压 SCP 的。