

Description

The VSM18P10 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications. It is ESD protested.

General Features

- V_{DS} =-100V, I_{D} =-18A $R_{DS(ON)}$ <100mΩ @ V_{GS} =-10V (Typ:85mΩ) $R_{DS(ON)}$ <120mΩ @ V_{GS} =-10V (Typ:95mΩ)
- Super high dense cell design
- Advanced trench process technology
- Reliable and rugged
- High density cell design for ultra low On-Resistance

Application

- Power management in notebook computer
- Portable equipment and battery powered systems

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM18P10-TC	VSM18P10	TO-220C	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	-100	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	-18	A A A mJ	
Drain Current-Continuous(T _C =100℃)	I _D (100℃)	-12		
Pulsed Drain Current	I _{DM}	-100		
Single pulse avalanche energy (Note 5)	E _{AS}	170		
Maximum Power Dissipation	P _D	70	W	
Derating factor		0.47	W/℃	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$ C	

Thermal Characteristic

Thermal Resistance, Junction-to-Case (Note 2)	R _{θJc}	2.14	°C/W
---	------------------	------	------

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	·		•			
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250μA	-100	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-100V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±20	μA
On Characteristics (Note 3)	·		•			
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =-250μA	-1	-1.9	-3	V
urain Cauras On State Besistance	В	V _{GS} =-10V, I _D =-16A	-	85	100	mΩ
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =-4.5V, I _D =-16A		95	120	
Forward Transconductance	G FS	V _{DS} =-50V,I _D =-10A	5	-	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	\/ 50\/\/ 0\/	-	3810	-	PF
Output Capacitance	Coss	V_{DS} =-50V, V_{GS} =0V, F=1.0MHz	-	129	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0WHZ	-	125	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}	V _{DD} =-50V,I _D =-16A	-	16	-	nS
Turn-on Rise Time	t _r		-	73	-	nS
Turn-Off Delay Time	$t_{d(off)}$	V_{GS} =-10V, R_{GEN} =9.1 Ω	-	34	-	nS
Turn-Off Fall Time	t _f		-	57	-	nS
Total Gate Charge	Qg	\/ 50\/ L 40.4	-	70	-	nC
Gate-Source Charge	Q _{gs}	V_{DS} =-50V, I_{D} =-16A, V_{GS} =-10V	-	12.5	-	nC
Gate-Drain Charge	Q_{gd}	V _{GS} 10V	-	15.5	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-10A	-	-	-1.2	V
Diode Forward Current (Note 2)	Is	-	-	-	-18	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF =-16A	-	88.3	-	nS
Reverse Recovery Charge	se Recovery Charge Qrr di/dt = 100A/µs ^{(Note}		-	65.9	-	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- **3.** Pulse Test: Pulse Width ≤ 300μ s, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}\text{C}$,VDD=-50V,VG=-10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Drain Current vs Case Temperature

Figure 8 Safe Operation Area

Figure 10 Power De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance