Minimalni končni modeli prostorov

Filip Bezjak Fakulteta za matematiko in fiziko Oddelek za matematiko

29.11.2021

Moja tema sodi na področje algebraične topologije. Topologije na končnih prostorih so večkrat spregledane, saj je vsaka T_2 topologija na končnem prostoru diskretna. Če pa lastnosti T_2 ne zahtevamo, postanejo veliko bolj zanimive. Poglejmo si naslednji primer: imamo prostor $X = \{a, b, c, d\}$ s topologijo $\{0, \{a\}, \{b\}, \{a, b, c\}, \{a, b, d\}, X\}$. Ni T_2 , saj c in d nimata disjunktnih okolic. Definirajmo preslikavo $\varphi : [0, 1] - > X$ ii $\varphi((0, 1) = a, \varphi(1) = c$. Ta preslikava je zvezna, saj je praslika vsake odprte množice odprta. Vidimo, da je možno interval zvezno in nekonstantno preslikati v X, torej v tem prostoru obstajajo nekonstantne poti.

Poglejmo še preslikavo $\psi: S^1: X$, ki -1in1 preslika v c in d, odprta loka pa v a in b. Tudi ta preslikava je zvezna. (in Homotopsko netrivialna?). Torej obstaja tudi nekonstantna preslikava iz krožnice v X. Poglejmo še si naslednjo topologijo na 6 točkah $\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}$. Podobno lahko v ta prostor preslikamo trikotnik, s preslikavo —. Topologije smo do zdaj navajali z eksplicitnim naštevanjem odprtih množic, ampak to hitro postane precej zamudno in nepregledno, predvsem pri zato se temu radi izognemo. Za vsako točko x obstaja najmanjša odprta množica U_x , ki jo vsebuje. Oziroma presek vseh odprtih množic, ki vsebujejo x. Ta množica je odprta, saj je topologija zaprta za končne preseke. Točke lahko uredimo s pravilom $x \leq y \Leftrightarrow U_x \subseteq U_y$. Če točke tako uredimo, dobimo šibko urejenost. Torej refleksivno in tranzitivno relacijo. To je očitno. Šibka urejenost postane delna, natanko takrat, ko je topologija t_0 . In disktretna, ko je Topologija T_2 . Vse zanimivo se torej dogaja v precepu med T_0 in T_2 . Če torej prejšnji množici uredimo na tak način, dobimo To Naslenja Hassejeva diagrama:— Homotopski razred preslikav K -> X, [K,X] je ekvivalenčni razred, kjer sta si 2 preslikavi ekvivalentni, če sta homotopni. Za X rečemo, da je končni model geometrijskega prostora P, Ce za vsak polieder K obstaja bijekcija med [K,P] in [K,X]. Torej če obstaja preslikava μ : P-> X, ki preko kompozicije inducira preslikavo μ_* : [K,P] ->

[K,X]. Preslikavi μ pravimo McCordova preslikava. Končni model je minimalni, če ima izmed vseh modelov najmanjšo kardinalnost. končni prostor X je model prostorq (simplicialnega kompleksa) P, če obstaja preslikava mi: P -> X, ki preko kompozicije inducira bijekcijo med homotopskimi razredi preslikav $mi_*: [K, P] --> [K, X]$ zapoljubensimplicialnikompleks K

$$\begin{split} Y &= \{a,b,c,d,e,f\} \\ \tau &= \{\emptyset,X,\{a\},\{b\},\{a,b,c\},\{a,b,d\}\} \\ \text{[height} X &= \{a,b,c,d\} \\ \tau &= \{\emptyset,X,\{a\},\{b\},\{a,b,c\},\{a,b,d\}\} \\ \gamma &: I \to X\gamma(t) = a, \text{ za } t \in [0,1), \gamma(1) = c \end{split}$$

$$\psi:S^1\to X$$

$$\psi(-1)=c, \psi(1)=d$$

$$\psi(e^{it})=a \text{ , za } t\in(0,\pi), \psi(e^{it})=b \text{ , za } t\in(\pi,2\pi)$$

 $\overline{\text{height}}Y = \{a, b, c, d, e, f\}\tau = \{\emptyset, Y, \{e\}, \{f\}, \{c, e, f\}, \{d, e, f\}, \{a, c, d, e, f\}, \{b, c, d, e, f\}\}\varphi := \{a, b, c, d, e, f\}\tau$ Y

 φ, γ in ψ so zvezne.

Poliedri se dajo nekonstantno preslikati v končne prostore.

heightNaj bo U_x najmanjša odprta množica, ki vsebuje $x \forall x \in X$ obstaja $U_x \cdot x \leq X$

 $y \Leftrightarrow U_x \subseteq U_y$ Za T_0 topologije je to delna urejenost, za T_2 pa diskretna T_0 topologije na končnih p $\overline{\text{height}}X = \{a, b, c, d\}\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b, c\}, \{a, b, d\}\}U_a = \{a\}, U_b =$

 $\{b\}, U_c = \{a, b, c\}, U_d = \{a, b, d\}Y = \{a, b, c, d, e, f\}\tau = \{\emptyset, Y, \{e\}, \{f\}, \{c, e, f\}, \{d, e, f\}, \{a, c, d, e\}\}$ $\{e\}, U_f = \{f\}, U_c = \{c, e, f\}, U_d = \{d, e, f\}, U_a = \{a, c, f, e, d\}, U_b = \{b, c, f, e, d\}$