ECEN 611 Homework 1

Shuxuan Chen | UIN: 132006082 | Fall 2024

Table of Contents

Energy Stored in Magnetic Field	1
Energy Stored in Magnetic Field Exercise 1	1
(a) DC Voltage Source	
(b) Stored Field Energy	3
Exercise 2	3
Determination of Force from Energy	
Determination of Force from Coenergy	
Exercise 3	
(a) Coil Inductance	
(b) Energy stored in the air-gap	6
(c) Force of attraction between both sides of the air-gap	
Exercise 4	
(a) Inductance L = f(g)	7
(b) Mechanical Force Fm	
(c) Maximum Force before Saturation	
Exercise 5	
(a) Stored Magnetic Energy Wf = f(plunger position x)	
(b) Generated Force	
Exercise 6	
Exercise 7	

clearvars clc

Energy Stored in Magnetic Field

```
% syms lambda i
% Wfld = int(i,lambda,[0 lambda],'Hold',true)
```

Exercise 1

Exercise 1

The dimensions of a relay system are shown in figure below. The magnetic core is made of cast steel whose B-H characteristic is also shown. The coil has 300 turns, and the coil resistance is 6 ohms. For a fixed air-gap length I_g = 4 mm, a dc source is connected to the coil to produce a flux density of 1.1 Tesla in the air-gap. Calculate

- (a) The voltage of the dc source.
- (b) The stored field energy.


```
N = 300;  % number of turns of coil
Rcoil = 6; % coil total resistance [ohms]
lg = 4e-3; % airgap length [m]
Bg = 1.1; % airgap flux density [T]
Depth = 10e-2; % [m]

uo = 4*pi*1e-7; % H/m
ug = uo;
Ag = 5e-2 * Depth % airgap cross-sectional area [m^2]
```

Ag = 0.0050

Ai = Ag; % steel cross-sectional area facing airgap

(a) DC Voltage Source

Flux is the "currency" that holds constant across the steel and the airgap. Use this nature to obtain the flux density in the steel.

```
fluxg = Bg * Ag; % flux in the airgap
fluxi = fluxg; % flux in the steel

Bi = fluxi / Ai % steel flux density
```

Bi = 1.1000

Read Hi corresponding to Bi from the characteristic

```
% Read from B-H characteristic
Hi = 800; % [A·turns/m]
```

Permeability of steel can hence be calculated

ui = 0.0014

Construct flux paths and calculate relunctances for steel and airgap segments, respectively

Ri = 8.7273e + 04

```
Rg = 2*1g / (ug*Ag)
```

Rg = 1.2732e + 06

Use Ohm's law in both magnetic and electric fields to calculate current and hence voltage

VDC = 149.6563

(b) Stored Field Energy

```
L = N^2 / (Ri+Rg);
Wfld = 1/2 * L * icoil^2 % [J]

Wfld = 20.5777

% use more general method instead (safer!)
```

Exercise 2

Exercise 2

The λ -i relationship for an electromagnetic system is given by

$$i = \left(\frac{\lambda g}{0.09}\right)^2$$

which is valid for the limits 0 < i < 4 A and 3 < g < 10 cm. For current i = 3A and airgap length g = 5 cm, find the mechanical force on the moving part using coenergy and energy of the field.

The problem statement asks for a snapshot of the force under a specific circumstance dictated by the current and airgap length. This is calculated from the perspectives of energy and coenergy and the results match.

```
thisCurrent = 3;

thisAirGap = 5e-2;

syms i lambda g positive

% assume( (i>0) && (i<4) )

assume( 3e-2 < g < 10e-2 )

currentFun = (lambda*g/0.09)^2

currentFun = \frac{10000 \, g^2 \, \lambda^2}{81}
expr = i == (lambda*g/0.09)^2;
lambdaFun(i,g) = solve(expr,lambda)
lambdaFun(i,g) = \frac{9 \, \sqrt{i}}{100 \, g}
thisLambda = lambdaFun(thisCurrent,thisAirGap)
thisLambda = \frac{9 \, \sqrt{3}}{3}
```

Determination of Force from Energy

```
energyFun(g,lambda) = int(currentFun,lambda)
```

```
energyFun(g, lambda) = \frac{10000 g^2 \lambda^3}{243} forceFun(g lambda)
```

forceFun(g,lambda) = -diff(energyFun,g)

forceFun(g, lambda) = $-\frac{20000 g \lambda^3}{243}$

force = double(forceFun(thisAirGap,thisLambda))

force = -124.7077

Determination of Force from Coenergy

```
coenergyFun = int(lambdaFun,i)

coenergyFun(i, g) = 3i^{3/2}
```

forceFun = diff(coenergyFun,g)

forceFun(i, g) = $-\frac{3 i^{3/2}}{50 g^2}$

 $\overline{50 g}$

force = double(forceFun(thisCurrent,thisAirGap))

force = -124.7077

Q: In this case, forces obtained from energy and coenergy are the same. However, in Exercise 4 and 5, they differ in polarity. Why?

Exercise 3

Exercise 3

• The magnetic system shown in the figure has the following parameters:

N = 400, i = 3 A Width of air-gap = 2.5 cm Depth of air-gap = 2.5 cm Length of air-gap = 1.5 mm

- Neglect the reluctance of the core, leakage flux and the fringing flux. Determine:
 - (a) The force of attraction between both sides of the air-gap
 - (b) The energy stored in the air-gap.
 - (c) Coil Inductance

N = 400;

```
i = 3;
Width = 2.5e-2;  % cm --> m
Depth = 2.5e-2;  % cm --> m
lg = 1.5e-3;  % mm --> m

MMF = N*i;
H = MMF / lg
```

H = 800000

```
% Neglect the reluctance of the core, leakage flux and the fringing flux
% H drops only across the air gap
Ag = Width * Depth
```

Ag = 6.2500e - 04

```
Rg = lg / (ug*Ag)
```

Rg = 1.9099e + 06

```
flux = MMF / Rg
```

flux = 6.2832e-04

```
Bg = flux / Ag
```

Bg = 1.0053

```
lambda = N*flux
```

lambda = 0.2513

```
% lambda-i relationship: linear
% k = lambda / i
```

(a) Coil Inductance

```
L = lambda / i % [H]
```

L = 0.0838

(b) Energy stored in the air-gap

```
Wfld = 1/2 * Bg^2/uo * Ag * lg
```

Wfld = 0.3770

(c) Force of attraction between both sides of the air-gap

```
% Wfld = 1/2 * L * i^2 % [J]
force = -Wfld / lg
```

```
force = -251.3274
```

```
syms g
RgFun = g/(ug*Ag);
Lfun = vpa(N^2/RgFun,4);
```

```
forceFun(g) = 1/2 * diff(Lfun,g) * i^2;
force = forceFun(lg)
```

force = -251.3

Exercise 4

Exercise 4

- The magnetic circuit shown below is made of high permeability steel so that its reluctance can be negligible. The movable part is free to move about an x-axis. The coil has 1000 turns, the area normal to the flux is (5 cm × 10 cm), and the length of a single air gap is 5 mm.
 - Derive an expression for the inductance, L, as a function of air gap, g.
 - Determine the force, F_m , for the current i =10 A.
 - The maximum flux density in the air gaps is to be limited to approximately 1.0 Tesla to avoid excessive saturation of the steel. Compute the maximum force.

(a) Inductance L = f(g)

```
% ui/uo > 1e3 ==> ui >> uo ==> H drops only in airgap
N = 1000;
A = (5*10) * 1e-4;
thisAirGap = 5e-3;

syms i g K positive
syms Rg(g)
Rg(g) = 2*g/(uo*A);

digits(4)
Lfun = vpa(N^2/Rg)
```

```
\frac{\text{Lfun(g)} = 0.003142}{\sigma}
```

(b) Mechanical Force Fm

```
% i = 10;
% MMF = N*i;
% H = MMF/g;

% Determination of Force from Coenergy
% K*x from the spring side
coenergyFun(i,g) = 1/2 * Lfun * i^2
```

```
coenergyFun(i, g) =
```

```
\frac{0.001571 \, i^2}{g}
```

```
forceFun = diff(coenergyFun,g)
```

```
forceFun(i, g) = -\frac{0.001571 i^2}{g^2}
```

```
thisCurrent = 10;
force = forceFun(thisCurrent,thisAirGap)
```

force = -6283.0

(c) Maximum Force before Saturation

```
Bsat = 1;
fluxsat = Bsat * A;
% R*flux = Ni
isat = vpa(Rg(thisAirGap)*fluxsat/N)
```

isat = 7.958

```
maxForce = forceFun(isat,thisAirGap)
```

maxForce = -3979.0

Exercise 5

Exercise 5

- Figure below shows a relay made of infinitely-permeable magnetic material with a moveable plunger (infinitely-permeable material). The height of the plunger is much greater than air gap length (h>>g). Calculate
 - The magnetic storage energy W_f as a function of plunger position (0 < x < d) for N = 1000 turns, g = 2 mm, d= 0.15 m, ι = 0.1 m and i = 10 A.
 - The generated force, F_m

(a) Stored Magnetic Energy Wf = f(plunger position x)

```
% clear Rg g
N = 1000;
g = 2e-3;
d = 0.15;
l = 0.1;
```

```
i = 10;

syms x positive
Ag = (d-x)*1;
% no flux directly travels through the airgap
% without passing the plunger

Rg = vpa(2*g/(ug*Ag));
L = N^2 / Rg;
MMF = N*i;
flux = MMF/Rg;
lambda = N*flux;
coenergyFun(x) = 1/2 * L * i^2
```

coenergyFun(x) = 235.6 - 1571.0 x

```
Wf(x) = i*lambda - coenergyFun
```

Wf(x) = 235.6 - 1571.0 x

(b) Generated Force

```
Fm = -diff(Wf,x)
```

Fm(x) = 1571.0

Fm = diff(coenergyFun,x)

Fm(x) = -1571.0

Exercise 6

Exercise 6

 $\begin{tabular}{ll} \hline \begin{tabular}{ll} \hline \end{tabular} \end{$


```
syms N i g h theta r_1
r1 = r_1;

MMF = N*i;
Ag = r1 * theta * h;
Rg = 2*g/(uo*Ag);
flux = vpa( MMF/Rg );
lambdaFun = N*flux;
```

coenergyFun = int(lambdaFun,i);
T = diff(coenergyFun,theta)

T =

$$\frac{3.142\text{e-}7 \, N^2 \, h \, i^2 \, r_1}{g}$$

Q: Different coefficient

Exercise 7

Exercise 7

The magnetic circuit below consists of a single coil stator and an oval rotor. Because of the air-gap is non uniform, the coil inductance varies with the rotor angular position. Given the coil inductance L(θ) = L_o + L₂cos2θ, where L_o= 10.6 mH and L₂= 2.7 mH,

Find torque as a function of $\boldsymbol{\theta}$ for a coil current of 2 A.


```
Lo = 10.6e-3;

L2 = 2.7e-3;

i = 2;

syms theta

L = Lo + L2*cos(2*theta)
```

$$L = \frac{27\cos(2\theta)}{10000} + \frac{53}{5000}$$

$$T = i^2/2 * diff(L,theta)$$

T =

$$-\frac{27\sin(2\theta)}{2500}$$