Подборка экзаменов по теории вероятностей. Факультет экономики, НИУ ВШЭ

Коллектив кафедры математической экономики и эконометрики, талантливые студенты, фольклор

5 июля 2018 г.

Содержание

Описание	1
Минимумы Минимум к кр 1	2
Контрольная работа 1 2017-2018	7 7
Ответы	8

Описание

Свежую версию можно скачать с github-репозитория https://github.com/bdemeshev/probability_hse_exams

Уникальное предложение для студентов факультета экономики НИУ-ВШЭ:

Найдите ошибки в этом документе или пришлите отсутствующие решения в техе и получите дополнительные бонусы! Найденные смысловые ошибки поощряются сильнее, чем просто опечатки. Замеченные ошибки и новые решения оформляйте в виде запросов на https://github.com/bdemeshev/probability_hse_exams/issues/. Перед публикацией запроса, пожалуйста, свертесь со свежей версией подборки.

В создании подборки храбро участвовали Андрей Зубанов, Кирилл Пономарёв, Александр Левкун, Оля Гнилова, Настя Жаркова, Гарик Варданян и другие :)

Доброе напутствие пишущим эту подборку :)

Здесь перечислены стилевые особенности коллекции и самые популярные ошибки. Узнать технические подробности по теху можно, например, в учебнике К.В. Воронцова.

- 1. Дробную часть числа отделяй от целой точкой: 3.14 хорошо, 3.14 плохо. Это нарушает русскую традицию, но облегчает копирование-вставку в любой программный пакет.
- 2. Существует длинное тире, —, которое отличается от просто дефиса и нужно, чтобы разделять части предложения. Инструкция в картинках по набору тире :)
- 3. Выключные формулы следует окружать \[...\]. Никаких \$\$...\$\$!

- 4. Про остальные окружения: для системы уравнений подойдёт cases, для формул на несколько строк multline*, для нумерации enumerate.
- 5. Русский текст внутри формулы нужно писать в \text{...}.
- 6. Для многоточий существует команда \ldots.
- 7. В преамбуле определены сокращения! Самые популярные: \P, \E, \Var, \Cov, \Corr, \cN.
- 8. Названия функций тоже идут со слэшем: \ln, \exp, \cos...
- 9. Таблицы нужно оформлять по стандарту booktabs. Самый удобный способ сделать это зайти на tablesgenerator и выбрать там опцию booktabs table style вместо default table style.
- 10. Уважай букву ё ставь над ней точки! :)

Минимумы

Минимум к кр 1

Теоретический минимум

- 1. Классическое определение вероятности
- 2. Определение условной вероятности
- 3. Определение независимости случайных событий
- 4. Формула полной вероятности
- 5. Формула Байеса
- 6. Функция распределения случайной величины. Определение и свойства.
- 7. Функция плотности. Определение и свойства.
- 8. Математическое ожидание. Определения для дискретного и абсолютно непрерывного случаев. Свойства.
- 9. Дисперсия. Определение и свойства.
- 10. Законы распределений. Определение, $\mathbb{E}(X)$, Var(X):
 - а) Биномиальное распределение
 - б) Распределение Пуассона
 - в) Геометрическое распределение
 - г) Равномерное распределение
 - д) Экспоненциальное распределение

Задачный минимум

- 1. Пусть $\mathbb{P}(A) = 0.3, \mathbb{P}(B) = 0.4, \mathbb{P}(A \cap B) = 0.1.$ Найдите
 - a) $\mathbb{P}(A|B)$
 - б) $\mathbb{P}(A \cup B)$
 - в) Являются ли события A и B независимыми?
- 2. Пусть $\mathbb{P}(A) = 0.5, \mathbb{P}(B) = 0.5, \mathbb{P}(A \cap B) = 0.25$. Найдите
 - a) $\mathbb{P}(A|B)$
 - б) $\mathbb{P}(A \cup B)$
 - в) Являются ли события A и B независимыми?
- 3. Карлсон выложил кубиками слово КОМБИНАТОРИКА. Малыш выбирает наугад четыре кубика и выкладывает их в случайном порядке. Найдите вероятность того, что при этом получится слово КОРТ.
- 4. Карлсон выложил кубиками слово КОМБИНАТОРИКА. Малыш выбирает наугад четыре кубика и выкладывает их в случайном порядке. Найдите вероятность того, что при этом получится слово РОТА.
- 5. В первой урне 7 белых и 3 черных шара, во второй урне 8 белых и 4 черных шара, в третьей урне 2 белых и 13 черных шаров. Из этих урн наугад выбирается одна урна. Какова вероятность того, что шар, взятый наугад из выбранной урны, окажется белым?
- 6. В первой урне 7 белых и 3 черных шара, во второй урне 8 белых и 4 черных шара, в третьей урне 2 белых и 13 черных шаров. Из этих урн наугад выбирается одна урна. Какова вероятность того, что была выбрана первая урна, если шар, взятый наугад из выбранной урны, оказался белым?
- 7. В операционном отделе банка работает 80% опытных сотрудников и 20% неопытных. Вероятность совершения ошибки при очередной банковской операции опытным сотрудником равна 0.01, а неопытным 0.1. Найдите вероятность совершения ошибки при очередной банковской операции в этом отделе.
- 8. В операционном отделе банка работает 80% опытных сотрудников и 20% неопытных. Вероятность совершения ошибки при очередной банковской операции опытным сотрудником равна 0.01, а неопытным 0.1. Известно, что при очередной банковской операции была допущена ошибка. Найдите вероятность того, что ошибку допустил неопытный сотрудник.
- 9. Пусть случайная величина X имеет таблицу распределения:

$$egin{array}{cccccc} X & -1 & 0 & 1 \\ \mathbb{P}_X & 0.25 & c & 0.25 \\ \end{array}$$

- а) константу c
- б) $\mathbb{P}(\{X \ge 0\})$
- B) $\mathbb{P}(\{X < -3\}])$
- r) $\mathbb{P}(\{X \in [-\frac{1}{2}; \frac{1}{2}]\})$
- д) функцию распределения случайной величины X

- е) имеет ли случайная величина X плотность распределения?
- 10. Пусть случайная величина X имеет таблицу распределения:

X	-1	0	1
\mathbb{P}_X	0.25	c	0.25

Найдите

- а) константу c
- б) $\mathbb{E}(X)$
- в) $\mathbb{E}(X^2)$
- Γ) Var(X)
- \mathbf{z}) $\mathbb{E}(|X|)$
- 11. Пусть случайная величина X имеет таблицу распределения:

X	-1	0	1
\mathbb{P}_X	0.25	c	0.5

Найдите

- а) константу c
- б) $\mathbb{P}(\{X \ge 0\})$
- B) $\mathbb{P}(\{X < -3\}])$
- r) $\mathbb{P}(\{X \in [-\frac{1}{2}; \frac{1}{2}]\})$
- д) функцию распределения случайной величины X
- е) имеет ли случайная величина X плотность распределения?
- 12. Пусть случайная величина X имеет таблицу распределения:

$$egin{array}{cccccc} X & -1 & 0 & 1 \\ \mathbb{P}_X & 0.25 & c & 0.5 \\ \end{array}$$

- а) константу c
- б) $\mathbb{E}(X)$
- в) $\mathbb{E}(X^2)$
- Γ) Var(X)
- $\mathbf{\pi}$) $\mathbb{E}(|X|)$
- 13. Пусть случайная величина X имеет биномиальное распределение с параметрами n=4 и $\mathbb{P}=\frac{3}{4}.$ Найдите
 - a) $\mathbb{P}(\{X = 0\})$
 - б) $\mathbb{P}(\{X > 0\})$
 - B) $\mathbb{P}(\{X < 0\})$
 - r) $\mathbb{E}(X)$
 - \mathbf{g}) Var(X)

- е) наиболее вероятное значение, которое принимает случайная величина X
- 14. Пусть случайная величина X имеет биномиальное распределение с параметрами n=5 и $\mathbb{P}=\frac{2}{5}.$ Найдите
 - a) $\mathbb{P}(\{X = 0\})$
 - б) $\mathbb{P}(\{X > 0\})$
 - B) $\mathbb{P}(\{X < 0\})$
 - r) $\mathbb{E}(X)$
 - $\mathbf{д}$) Var(X)
 - е) наиболее вероятное значение, которое принимает случайная величина X
- 15. Пусть случайная величина X имеет распределение Пуассона с параметром $\lambda = 100$. Найдите
 - a) $\mathbb{P}(\{X = 0\})$
 - б) $\mathbb{P}(\{X > 0\})$
 - B) $\mathbb{P}(\{X < 0\})$
 - r) $\mathbb{E}(X)$
 - \mathbf{g}) Var(X)
 - е) наиболее вероятное значение, которое принимает случайная величина X
- 16. Пусть случайная величина X имеет распределение Пуассона с параметром $\lambda=101$. Найдите
 - a) $\mathbb{P}(\{X = 0\})$
 - б) $\mathbb{P}(\{X > 0\})$
 - **B)** $\mathbb{P}(\{X < 0\})$
 - r) $\mathbb{E}(X)$
 - \mathbf{g}) Var(X)
 - e) наиболее вероятное значение, которое принимает случайная величина X
- 17. В лифт 10-этажного дома на первом этаже вошли 5 человек. Вычислите вероятность того, что на 6-м этаже выйдет хотя бы один человек.
- 18. В лифт 10-этажного дома на первом этаже вошли 5 человек. Вычислите вероятность того, что на 6-м этаже не выйдет ни один человек.
- 19. При работе некоторого устройства время от времени возникают сбои. Количество сбоев за сутки имеет распределение Пуассона. Среднее количество сбоев за сутки равно 3. Найти вероятность того, что в течение суток произойдет хотя бы один сбой.
- 20. При работе некоторого устройства время от времени возникают сбои. Количество сбоев за сутки имеет распределение Пуассона. Среднее количество сбоев за сутки равно 3. Найти вероятность того, что за двое суток не произойдет ни одного сбоя.
- 21. Пусть случайная величина X имеет плотность распределения

$$f_X(x) = egin{cases} c, \ \text{при} \ x \in [-1;1] \ 0, \ \text{при} \ x
otin [-1;1] \end{cases}$$

- а) константу c
- б) $\mathbb{P}(\{X \leqslant 0\})$
- B) $\mathbb{P}(\{X \in [\frac{1}{2}; \frac{3}{2}]\})$
- r) $\mathbb{P}(\{X \in [2;3]\}$
- д) $F_X(x)$
- 22. Пусть случайная величина X имеет плотность распределения

$$f_X(x) = egin{cases} c, \ \text{при} \ x \in [-1;1] \\ 0, \ \text{при} \ x
otin [-1;1] \end{cases}$$

Найдите

- а) константу c
- б) $\mathbb{E}(X)$
- в) $\mathbb{E}(X^2)$
- Γ) Var(X)
- \mathbf{g}) $\mathbb{E}(|X|)$
- 23. Пусть случайная величина X имеет плотность распределения

$$f_X(x) = egin{cases} cx, \ ext{при} \ x \in [0;1] \ 0, \ ext{при} \ x
otin [0;1] \end{cases}$$

Найдите

- a) константу c
- 6) $\mathbb{P}(\{X \leq \frac{1}{2}\})$
- B) $\mathbb{P}(\{X \in [\frac{1}{2}; \frac{3}{2}]\})$
- r) $\mathbb{P}(\{X \in [2;3]\}$
- д) $F_X(x)$
- 24. Пусть случайная величина X имеет плотность распределения

$$f_X(x) = egin{cases} cx, \ ext{при} \ x \in [0;1] \ 0, \ ext{при} \ x
otin [0;1] \end{cases}$$

- а) константу c
- б) $\mathbb{E}(X)$
- в) $\mathbb{E}(X^2)$
- r) Var(X)
- \mathbf{g}) $\mathbb{E}(\sqrt{X})$

Контрольная работа 1

2017-2018

Минимум

- 1. Функция распределения случайной величины: определения и свойства.
- 2. Экспоненциальное распределение: определение, математическое ожидание и дисперсия.
- 3. В операционном отделе банка работает 80% опытных сотрудников и 20% неопытных. Вероятность совершения ошибки при очередной банковской операции опытным сотрудником равна 0.01, а неопытным -0.1. Известно, что при очередной банковской операции была допущена ошибка. Найдите вероятность того, что ошибку допустил неопытный сотрудник.
- 4. При работе некоторого устройства время от времени возникают сбои. Количество сбоев за сутки имеет распределение Пуассона. Среднее количество сбоев за сутки равно 3. Найдите вероятность того, что за двое суток не произойдет ни одного сбоя.

Задачи

- 1. Правильный кубик подбрасывают один раз. Событие A выпало чётное число, событие B выпало число кратное трём, событие C выпало число, большее трёх.
 - а) Сформулируйте определение независимости двух событий;
 - б) Определите, какие из пар событий $A,\,B$ и C будут независимыми.
- 2. Теоретический минимум (ТМ) состоит из 10 вопросов, задачный (ЗМ) из 24 задач. Каждый вариант контрольной содержит два вопроса из ТМ и две задачи из ЗМ. Чтобы получить за контрольную работу оценку 4 и выше, необходимо и достаточно правильно ответить на каждый вопрос ТМ и задачу ЗМ доставшегося варианта. Студент Вася принципиально выучил только k вопросов ТМ и две трети ЗМ.
 - а) Сколько всего можно составить вариантов, отличающихся хотя бы одним заданием в ТМ или ЗМ части? Порядок заданий внутри варианта не важен.
 - б) Найдите вероятность того, что Вася правильно решит задачи ЗМ;
 - в) Дополнительно известно, что Васина вероятность правильно ответить на вопросы ТМ, составляет 1/15. Сколько вопросов ТМ выучил Вася?
- 3. Производитель молочных продуктов выпустил новый низкокалорийный йогурт Fit и утверждает, что он вкуснее его более калорийного аналога Fat. Четырем независимым экспертам предлагают выбрать наиболее вкусный йогурт из трёх, предлагая им в одинаковых стаканчиках в случайном порядке два Fat и один Fit. Предположим, что йогурты одинаково привлекательны. Величина ξ число экспертов, отдавших предпочтение Fit.
 - а) Какова вероятность, что большинство экспертов выберут Fit?
 - б) Постройте функцию распределения величины ξ ;
 - в) Каково наиболее вероятное число экспертов, отдавших предпочтение йогорту Fit?
 - г) Вычислите математическое ожидание и дисперсию ξ .

4. Дядя Фёдор каждую субботу закупает в магазине продукты по списку, составленному котом Матроскином. Список не изменяется, и в него всегда входит 1 кг сметаны, цена которого является равномерно распределённой величиной α , принимающей значения от 250 до 1000 рублей. Стоимость остальных продуктов из списка в тысячах рублей является случайной величиной ξ с функцией распределения

$$F(x) = egin{cases} 1 - \exp(-x^2), \ \mathrm{ec}$$
ли $x \geqslant 0 \ 0, \ \mathrm{uhave}. \end{cases}$

- а) Какую сумму должен выделить кот Матроскин дяде Фёдору, чтобы её достоверно хватало на покупку сметаны?
- б) Какую сумму должен выделить кот Матроскин дяде Фёдору, чтобы Дядя Фёдор с вероятностью 0.9 мог оплатить продукты без сметаны?
- в) Найдите математическое ожидание стоимости продуктов без сметаны;
- г) Найдите математическое ожидание стоимости всего списка.
- д) Какова вероятность того, что общие расходы будут в точности равны их математическому ожиданию?

Подсказка:
$$\int_0^\infty \exp(-x^2) dx = \sqrt{\pi}/2$$
.

5. Эксперт с помощью детектора лжи пытается определить, говорит ли подозреваемый правду. Если подозреваемый говорит правду, то эксперт ошибочно выявляет ложь с вероятностью 0.1. Если подозреваемый обманывает, то эксперт выявляет ложь с вероятностью 0.95.

В деле об одиночном нападении подозревают десять человек, один из которых виновен и будет лгать, остальные невиновны и говорят правду.

- а) Какова вероятность того, что детектор покажет, что конкретный подозреваемый лжёт?
- б) Какова вероятность того, что подозреваемый невиновен, если детектор показал, что он лжёт?
- в) Какова вероятность того, что эксперт точно выявит преступника?
- г) Какова вероятность того, что эксперт ошибочно выявит преступника, то есть покажет, что лжёт невиновный, а все остальные говорят правду?

Ответы

Ответы на минимумы

Ответы на минимум к кр 1

- 1. a) 0.25
 - б) 0.6
 - в) нет
- 2. a) 0.5
 - б) 0.75
 - в) нет
- 3. $\frac{4}{10 \cdot 11 \cdot 12 \cdot 13}$

- 4. $\frac{4}{10 \cdot 11 \cdot 12 \cdot 13}$
- 5. 0.5
- 6. 0.42
- 7. 0.028
- 8. $\frac{5}{7}$
- 9. a) 0.5
 - б) 0.75
 - в) 0
 - г) 0.5
- 10. a) 0.5
 - б) 0
 - в) 0.5
 - r) 0.5
 - д) 0.5
- 11. a) 0.25
 - б) 0.75
 - в) 0
 - г) 0.5
- 12. a) 0.25
 - б) 0.25
 - в) 0.75
 - г) 0.5
 - д) 0.75
- 13. a) $(\frac{1}{4})^4$
 - б) $1 \left(\frac{1}{4}\right)^4$
 - в) 0
 - r) 3
 - д) 0.75
 - e) 2, 3
- 14. a) $(\frac{3}{5})^5$
 - б) $1 (\frac{3}{5})^5$
 - в) 0
 - r) 2
 - д) 1.2
 - e) 2

- 15. a) e^{-100}
 - б) $1 e^{-100}$
 - в) 0
 - г) 100
 - д) 100
- 16. a) e^{-101}
 - б) $1 e^{-101}$
 - в) 0
 - г) 101
 - д) 101
- 17. $1 \frac{8^5}{9^5}$
- 18. $\frac{8^5}{9^5}$
- 19. $1 e^{-3}$
- 20. e^{-3}
- 21. a) 0.5
 - б) 0.25
 - в) 0.125
 - г) 1
- 22. a) 0.5
 - б) 0.5
 - **B**) $\frac{1}{3}$
 - r) $\frac{1}{12}$
 - д) 1
- 23. a) 2
 - б) 0.25
 - **B**) $\frac{3}{4}$
 - r) 1
- 24. a) 2
 - б) 0.5
 - в) 0.5
 - r) 0
 - д) 0.8

Решения контрольной номер 1

2017-2018

- 1. а) События называются независимыми, если $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$
 - б) Запасёмся всеми нужными вероятностями:

$$\mathbb{P}(A) = \frac{1}{2}$$

$$\mathbb{P}(B) = \frac{1}{3}$$

$$\mathbb{P}(C) = \frac{1}{3}$$

 $\mathbb{P}(C) = \frac{1}{2}$

 $\mathbb{P}(A\cap C)=rac{1}{3}$ — выпадет чётое число больше трёх

 $\mathbb{P}(A\cap B)=rac{1}{6}$ — выпадет чётное число, кратное трём

 $\mathbb{P}(A\cap C)=rac{1}{6}$ — выпадет число, большее трёх и кратное трём

Теперь можно проверять независимость:

 $\mathbb{P}(A\cap C) \neq \mathbb{P}(A)\cdot \mathbb{P}(C) \Rightarrow$ не являются независимыми

 $\mathbb{P}(A\cap B)=\mathbb{P}(A)\cdot\mathbb{P}(B)\Rightarrow$ являются независимыми

 $\mathbb{P}(B\cap C)=\mathbb{P}(B)\cdot\mathbb{P}(C)\Rightarrow$ являются независимыми

- 2. а) Количество возможных вариантов ТМ: C_{10}^2 , количество возможных вариантов ЗМ: C_{24}^2 . Количество их возможных сочетаний: $C_{10}^2 \cdot C_{24}^2$, где $C_n^k = \frac{n!}{k!(n-k)!}$.
 - б) По классическому определению вероятностей, предполагая исходы равновероятными, искомая вероятность равна $\frac{C_{16}^2}{C_{24}^2}$
 - в) По тому же принципу:

$$\frac{C_k^2}{C_{10}^2} = \frac{1}{15} \Rightarrow \frac{\frac{k!}{2!(k-2)!}}{\frac{10!}{2! \cdot 8!}} = \frac{1}{15} \Rightarrow \frac{(k-1)k}{2} \frac{2}{9 \cdot 10} = \frac{1}{15}$$

Получаем квадратное уравнение вида $k^2-k-6=0$ с корнями -2 и 3. Так как k не может быть отрицательным, ответ 3.

3. а) Если эксперт отдаёт предпочтение Fit, то это можно интерпретировать как «успех» в схеме Бернулли. Так как ξ - количество успехов, $k \in [0;4]$, $p=\frac{1}{3}$, то

$$\mathbb{P}(\xi = k) = C_n^k(p)^k (1 - p)^{n-k}$$

Большинство означает, что либо три, либо четыре эксперта выбрали Fit.

$$\mathbb{P}(\xi=3) = C_4^3 \left(\frac{1}{3}\right)^3 \left(\frac{2}{3}\right)^1 = \frac{8}{81}$$

$$\mathbb{P}(\xi = 4) = C_4^4 \left(\frac{1}{3}\right)^4 \left(\frac{2}{3}\right)^0 = \frac{1}{81}$$

$$\mathbb{P}(\xi > 2) = \frac{9}{81}$$

б) Аналогично:

$$\mathbb{P}(\xi = 0) = C_4^0 \left(\frac{1}{3}\right)^0 \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$

$$\mathbb{P}(\xi = 1) = C_4^1 \left(\frac{1}{3}\right)^1 \left(\frac{2}{3}\right)^3 = \frac{32}{81}$$

11

Рис. 1: Функция распределения

$$\mathbb{P}(\xi=2) = C_4^2 \left(\frac{1}{3}\right)^2 \left(\frac{2}{3}\right)^2 = \frac{24}{81}$$

- в) Все вероятности посчитаны, видим, что наибольшая достигается при $\xi=1.$
- r) $\mathbb{E}(X) = np = \frac{4}{3}, Var(X) = npq = \frac{8}{9}$
- 4. а) Так как указано, что цена сметаны распределена равномерно на отерзке [250, 1000], максимальное значение цены -1000, это и есть необходимая сумма.
 - б) Вспомним, что функция распределения $F(x) = \mathbb{P}(X \leqslant x)$, нужно найти такой x, что $\mathbb{P}(X \leqslant x) = 0.9$:

$$0.9 = 1 - \exp(-x^2) \Rightarrow \exp(-x^2) = 0.1 \Rightarrow -x^2 = \ln(0.1) \Rightarrow x = \sqrt{-\ln(0.1)}$$

в) Взяв производную от функции распределения списка без сметаны, получим функцию плотности:

$$f_X(x) = \begin{cases} 2x \exp(-x^2) & x \geqslant 0 \\ 0 & \text{иначе} \end{cases}$$

Найдём математическое ожидание:

$$\int_0^{+\infty} 2x^2 \exp(-x^2) dx = -x \exp(-x^2) \Big|_0^{+\infty} + \int_0^{+\infty} \exp(-x^2) dx = \frac{\sqrt{\pi}}{2}$$

- г) Математическое ожидание суммы случайных величин равно сумме математических ожиданий случайных влечин, если они существуют. Математическое ожидание от цены сметаны равно: $\frac{1000+250}{2}=625$ Математическое ожидание списка без сметаны было найдено в предыдущем пункте, его осталось перевести в рубли. Получаем ответ: $625+\frac{\sqrt{\pi}}{2}\cdot 1000$.
- д) Так как обе величины имеют абсолютно непрерывные распределения, вероятность попасть в конкретную точку равна нулю.
- 5. а) \mathbb{P} (детектор показал ложь и подозреваемый лжёт) = $0.9 \cdot 0.1 + 0.1 \cdot 0.95 = 0.185$
 - б) $\mathbb{P}($ невиновен|детектор показал ложь $)=rac{0.9\cdot0.1}{0.185}=rac{90}{185}$
 - в) $\mathbb{P}($ эксперт точно выявит преступника $) = (0.9)^9 \cdot 0.95$
 - г) $\mathbb{P}($ эксперт ошибочно выявит преступника $) = 9 \cdot 0.1 \cdot 0.9^8 \cdot 0.05$