DESIGN II

a new algorithm for designing any logic circuits, given truth table

Y	X	$F=m_0+m_1$
0	0	1
0	1	1
1	0	0
1	1	

Y	X	$F=m_0+m_1$
0	0	1
0	1	1
1	0	
1	1	

Y	X	$E=m_0+m_1$	$E'=m_2+m_3$
0	0	1	
0	1	1 -	
1	0		
1	1		

Y	X	$\widehat{F}=m_0+m_1$	$F'=m_2+m_3$	$(F')'=(m_2+m_3)'$
0	0	1	0	7 1
0	1	1	0	1
1	0		1	\rightarrow
1	1		1	0

Augustus De Morgan (1806–1871) Mathematician Logician

DE MORGAN'S LAWS

$$(YX)^{0} = Y^{0} + X^{0}$$

$$(Y + X)' = Y' X'$$

MAXTERM aka. Standard Sum

X' vs. X

1 binary variable appear either:

- in its normal form X, or
- in its complement form X'

$$M_0 = m'_0$$
 $(X') = (X')' = X$
 $M_1 = m'_1$ X'

2 binary variables appear either in one of these forms:

Augustus De Morgan (1806–1871) Mathematician Logician

DE MORGAN'S LAWS

$$(YX)' = Y' + X'$$

$$(Y+X)'=Y'X'$$

$$M_0 = m_0'$$
 $(Y'X')' = Y + X'$
 $M_1 = m_1'$ $(Y'X)' = Y + X'$
 $M_2 = m_2'$ $(YX')' = Y' + X'$
 $M_3 = m_3'$ $(YX)' = Y' + X'$

$$Z+Y+X$$
 vs. $Z+Y+X'$ vs. ...

3 binary variables appear either in one of these forms: how many?

$$Z+Y+X$$
 vs. $Z+Y+X'$ vs. ...

3 binary variables appear either in one of these forms: how many? Each variable can take 2 forms (normal and complement) We have 3 variables, $2 \times 2 \times 2 = 2^3 = 8$

$$A_n + ... A_2 + A_1 + A_0 \text{ VS. } A_n + ... A_2 + A_1 + A_0 \text{ ...}$$

n binary variables appear either in one of these forms: how many? Each variable can take 2 forms (normal and complement) We have n variables, $2 \times 2 \times 2 \times \cdots \times 2 = 2^n$

TRUTH TABLE en.wikipedia.org/wiki/Truth_table

Y	X	$F=m_0+m_1$
0	0	1
0	1	1
1	0	0
1	1	0

Y	X	$F=m_0+m_1$	$F'=m_2+m_3$
0	0	1	0
0	1	1	0
1	0	0	1
1	1		1

Y	X	$F=m_0+m_1$	$F'=m_2+m_3$	$(F')' = (m_2 + m_3)^{(1)}$
0	0	1	0	1
0	1	1	0	1
1	0		1	0
1	1	0	1	0

X	$F=(F')'=(m_2+m_3)'=m'_2m'_3$
0	1
1	1
0	0
1	
	X010

V	X	$F=(F')'=M_2M_3+\prod M(2,3)$
_	/\	1 – (1) – 14121413 – 1 1 141(4,5)
0	0	1
0	1	1
1	0	0
1	1	

Y	X	$F = \prod M(2,3) = (Y'+X)(Y'+X')$
0	0	1 OR AND OR
0	1	1
1	0	
1	1	

PRODUCT OF SUMS (POS)

2 LEVELS OR → AND

Y	X	$F=F(Y,X)=m_0+m_1+m_3=\sum m(0,1,3)$
0	0	1
0	1	1
1	0	
1	1	1

Y	X	$F = \sum m(0,1,3)$	$F'=m_2$
0	0	1	0
0	1	1	0
1	0	0	1
1	1	1	0

Y	X	$F = \sum m(0,1,3)$	$F'=m_2$	$(F')'=m'_2$
0	0	1	0	1
0	1	1	0	1
1	0	0	1	0
1	1	1	0	1

Y	X	$F = \sum m(0,1,3)$	$F'=m_2$	$(F')' = M_2$
0	0	1	0	1
0	1	1	0	1
1	O	0	1	0
1	1	1	0	1

DESIGN I vs. II SoP vs. PoS

Lecture Assignment

Given 3 inputs, design a circuit to determine if there is even number of 1

Z	Y	X	F(Z,Y,X)=?
0	0	0	?
0	0	1	?
0	1	0	?
0	1	1	?
1	0	0	?
1	0	1	?
1	1	0	?
1	1	1	?

Z	Y	X	F(Z,Y,X)=?
0	0	0	1
0	0	1	0
0	1	0	_>
0	1	1	1
1	0	0	\bigcirc
1	0	1	1
1	1	0	1
1	1	1	0

Z	Y	X	$F(Z,Y,X)=\Sigma m(0,3,5,6)$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Z	Y	X	$F(Z,Y,X)=M_1$
0	0	0	1
0	0	1	$\left(\mathcal{M}_{1} \right)$
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Z	Y	X	$F(Z,Y,X) = M_1M_2$
0	0	0	1
0	0	1	0
0	1	0	$\left(m_{2}\right)^{\prime}$
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Z	Y	X	$F(Z,Y,X) = M_1 M_2 M_4$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Z	Y	X	$F(Z,Y,X) = M_1 M_2 M_4 M_7$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Z	Y	X	$F(Z,Y,X) = M_1M_2M_4M_7 = \prod M (1,2,4,7)$
0	0	0	1
0	0		0
0	1	0	0
0	1	1	\sim 1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

UNIVERSALITY