TTIC 31230 Fundamentals of Deep Learning

Problems for Rate Distortion Autoencoders.

Problem 1 The mutual information between two random variables x and y is defined by

$$I(x,y) = E_{x,y} \ln \frac{p(x,y)}{p(x)p(y)} = KL(p(x,y), p(x)p(y))$$

Mutual information has an interpretation as a channel capacity.

- (a) Suppose that we draw a random bit $y \in \{0,1\}$ with P(0) = P(1) = 1/2 and send it across a noisy channel to a receiver who gets $y' = y \oplus \epsilon$ where ϵ is an independent "noise variable" with $\epsilon \in \{0,1\}$, where \oplus is exclusive or $(y \text{ gets flipped when } \epsilon = 1)$, and where the "noise" ϵ has a probability P of being 1.
- (a) Solve for the channel capacity I(y, y') as a function of P in units of bits. When measured in bits, this channel capacity has units of bits received per message sent.
- (b) Explain why your answer to part (a) makes sense in terms of what the receiver knows for P=1/2 and when P=1.

Problem 2. Consider a rate-distortion autoencoder.

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} \ I_{\Phi}(y, z) + \lambda E_{y \sim \operatorname{Pop}, \ z \sim p_{\Phi}(z|y)} \ \operatorname{Dist}(y, y_{\Phi}(z)).$$

Here $I_{\Phi}(y,z)$ is defined by the distribution where we draw y from Pop and z from $P_{\Phi}(z|y)$. The distribution $p_{\Phi}(z|y)$ is typically defined by $z = z_{\Phi}(y) + \epsilon$ for some form of random noise ϵ .

(a) Starting from the definition of $I_{\Phi}(y,z)$ given in problem 1, show

$$I_{\Phi}(y,z) = E_{y \sim \text{Pop}} KL(p_{\Phi}(z|y), p_{\Phi}(z))$$

where $p_{\Phi}(z) = \sum_{y} \text{Pop}(y) P_{\Phi}(z|y)$.

(b) Show the variational equation

$$I(y,z) = \inf_{q} E_{y \sim \text{Pop}} KL(p_{\Phi}(z|y), q(z)).$$

Hint: It suffices to show

$$I(y,z) \le E_{y \sim \text{Pop}} KL(p_{\Phi}(z|y), q(z))$$

and that there exists a q achieving equality.

Problem 3. Consider a rate-distortion autoencoder

$$\Phi^*, \Psi^* = \underset{\Phi, \Psi}{\operatorname{argmin}} \ E_{y \sim \operatorname{Pop}} KL(p_{\Phi}(z|y), p_{\Psi}(z)) + \lambda E_{y \sim \operatorname{Pop}, \ z \sim p(z|y)} \ \operatorname{Dist}(y, y_{\Phi}(z)).$$

Define $p_{\Phi}(z|y)$ by $z = z_{\Phi}(y) + \epsilon$ with $z_{\Phi}[y] \in \mathbb{R}^d$ and ϵ drawn uniformly from $[0,1]^d$. In other words, we add noise drawn uniformly from [0,1] to each component of $z_{\Phi}(y)$.

Define $p_{\Psi}(z)$ to be log-uniform in each dimension. More specifically $p_{\Psi}(z)$ is defined by drawing s[i] uniformly from the interval $[0, s_{\max}]$ and then setting $z[i] = e^s$ so that $\ln z[i]$ is uniformly distributed over the interval $[0, s_{\max}]$. This gives

$$dz = e^{s}ds = zds$$

$$dp = \frac{1}{s_{\text{max}}} ds$$

$$p_{\Psi}(z[i]) = \frac{dp}{dz} = \frac{1}{s_{\text{max}}z[i]}$$

Assume That we have that $z_{\Phi}(y) \in [1, e^{s_{\max}} - 1]^d$ so that with probability 1 over the draw of ϵ we have $\ln(z_{\Phi}(y) + \epsilon) \in [0, s_{\max}]$.

- (a) For $z \in [z_{\Phi}(y), z_{\Phi}(y) + 1]$ what is $p_{\Phi}(z|y)$?
- (b) Solve for $KL(p_{\Phi}(z|y), p_{\Psi}(z))$ in terms of $z_{\Phi}(y)$ under the above specifications and simplify your answer for the case of $z_{\Phi}(y)[i] >> 1$.
- (b) Explain how these specifications model rounding down each number in $z_{\Phi}(y)$ to the nearest integer.