Math 425 Homework	Applied & Comput. Lin. Algebra	Fall 2024
	Homework III	

For this homework, include all code and computations in a MATLAB file named math425hw3.m. You will need to submit this file along with a document containing your answers which do not involve MATLAB.

- **1.a)** Let $\mathbf{v} \in \mathbb{R}^m$ and $\mathbf{w} \in \mathbb{R}^n$. Show that the $m \times n$ matrix $\mathbf{v}\mathbf{w}^T$ has rank equal to 1.
- b) Conversely, show that if A is an $m \times n$ matrix with rank(A) = 1, then $A = \mathbf{v}\mathbf{w}^T$ for some $\mathbf{v} \in \mathbb{R}^m$ and $\mathbf{w} \in \mathbb{R}^n$.

2. Is
$$\begin{pmatrix} 3 \\ 0 \\ -1 \\ -2 \end{pmatrix}$$
 a linear combination of $\begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ -1 \\ 3 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 0 \\ 1 \\ -1 \end{pmatrix}$? Give an answer using MATLAB.

3. Let

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, \, \mathbf{v}_2 = \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}, \, \mathbf{v}_3 = \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}, \, \mathbf{v}_4 = \begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix}.$$

Use MATLAB, if convenient, to answer the following questions.

- a) Do $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ span \mathbb{R}^3 ? Why or why not?
- b) Are v₁, v₂, v₃, v₄ linearly independent? Why or why not?
 c) Do v₁, v₂, v₃, v₄ form a basis for R³? Why or why not? If not, is it possible to choose some subset which is a basis?
- d) What is the dimension of the span of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$? Justify your answer.
- **4.a)** Create a function called myGS which takes as input an $m \times n$ matrix A where rank $(A) = n \le m$. The output is an $m \times n$ matrix B whose columns form an orthonormal basis of the vector space spanned by the columns of A. Use the Gram-Schmidt process.
- b) Use myGS to compute an orthonormal basis for \mathbb{R}^4 starting with the following set of vectors:

$$\begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix}, \quad \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}.$$

c) Modify your function to myGS2 so that it computes an orthonormal basis "on the fly" (as we have learned last week). Use myGS2 on the input in part b).

1