Ciência de Dados Quântica 2021/22

Variational Quantum Circuits: barren plateaus

LUÍS PAULO SANTOS

Material de Consulta

- ► [Schuld2021] Sec. 5.3.3
- [Tacchino2021] 2021 Qiskit Global Summer School on Quantum Machine Learning: Barren Plateaus, Trainability Issues and How to Avoid Them https://learn.giskit.org/summer-school/2021/lec8-2-barren-plateaus-trainability-issues-how-avoid-them
- [Qiskit] –Qiskit Quantum Machine Learning Course:
 Training parameterized quantum circuits
 https://learn.giskit.org/course/machine-learning/training-quantum-circuits

Parameterized quantum circuits

$$\hat{y}(x) = \langle 0 | U^{\dagger}(x, \vec{\theta}) M U(x, \vec{\theta}) | 0 \rangle$$

$$U(x, \vec{\theta}) = \left[\prod_{l=1}^{L} W_{l}(\vec{\theta}_{l}) \right] S(x) = \mathcal{W}(\vec{\theta}) S(x)$$

The ansatz

Vanishing Gradients / Barren plateaus

5

 $\langle O \rangle_{\theta^t}$

 θ^{t+1}

Classical Optimization

$$\theta^{t+1} = f(C(\theta^t))$$

$$\theta^* = \underset{\theta}{\operatorname{argmin}} (C(\theta))$$

Vanishing Gradients / Barren plateaus

- Hardware efficient ansatz
 - ▶ "Deep" random parameterized circuits : $depth \sim \mathcal{O}(poly(n))$
 - Random initialization of parameters

Gradient vanishes exponentially fast with the number of qubits, n

Barren plateaus

[Schuld2021]

Barren Plateaus

The variance of the gradients decreases exponentially with the number of qubits

$$L = 10n \sim \mathcal{O}(poly(n))$$

Barren plateaus

The problem of barren plateaus becomes more acute as the number of qubits increases

Trainability becomes exponentially more difficult with the number of qubits

Interesting problems from the real world are expected to require a large number of qubits

Observables

Global Observable

Local Observable

Vanishing Gradients

Global Observable

Gradients

$$\operatorname{Var}[\partial_j C_G] = \frac{1}{8} \left(\frac{3}{8}\right)^{n-1}$$

$$\operatorname{Var}[\partial_j C_L] = \frac{1}{8n^2}$$

Local Observable

Vanishing Gradients

		Depth	
		$\mathcal{O}(\log(n))$	$\mathcal{O}(\operatorname{poly}(n))$
Observable	Global	•	•
	Local		•

Noise induced barren plateaus

Gradients do vanish exponentially with depth, independently of using global or local measurements

Noise induced barren plateaus

Mitigating barren plateaus: layerwise learning

- ▶ Learn parameters of the first set of layers
- Add layers, fixing the previous learnt parameters
- ▶ Initialize the new set of layers parameters such that it implements identity

Mitigating barren plateaus: initialization

Effective depth is limited The gradients will not vanish exponentially fast at least in the 1st training step

- Partition the circuit into shallow blocks
- Initialize some parameters with random values
- Fix the remaining such that the block implements identity