компьютерные сети

Лекция 8 Информатика

Основные понятия

Компьютерная сеть (Computer NetWork, net - сеть, и work - работа) - это система обмена информацией между компьютерами.

Основная цель: обеспечение пользователям потенциальной возможности доступа к локальным ресурсам всех компьютеров сети.

Требования

- Производительность
- Надежность и безопасность
- Расширяемость и масштабируемость
- Прозрачность и управляемость
- Совместимость (гетерогенность)

Компьютерные сети классифицируются по следующим признакам:

- степень географического распространения;
- масштаб производственного подразделения;
- способ управления;
- структура (топология) связей.

По степени географического распространения различают:

- локальные сети (Local Area Network, LAN);
- глобальные сети (Wide Area Network, WAN);
- городские сети (Metropolitan Area Network, MAN).

По масштабу производственного подразделения различают:

- сети отделов;
- сети кампусов;
- корпоративные сети.

По способу управления различают:

- сети «Клиент сервер»;
 - **Клиент** объект (компьютер или программа), запрашивающий некоторые услуги.
 - Сервер объект (компьютер или программа),
 предоставляющий некоторые услуги.
- одноранговые сети.

По топологии связей различают:

- сети с топологией «Общая шина»;
- сети с топологией «Звезда»;
- сети с топологией «Кольцо»;
- сети с древовидной топологией;
- сети со смешанной топологией.

Топология «Общая шина»

Топология «Звезда»

Топология «Кольцо»

Древовидная топология

Смешанная топология

Частные виды сетей

- **Интернет** это сообщество множества международных и национальных компьютерных сетей.
- Интранет внутренняя сеть организации, использующая стандарты, протоколы и технологии Интернет.
- Экстранет корпоративная Интранет.

Компоненты сети

- Компьютеры:
 - ПК; ноутбуки; мэйнфреймы.
- Коммуникационное оборудование:
 - коммутаторы; маршрутизаторы; линии связи.
- Операционные системы:
 - Windows; Novell NetWare; Unix.
- Сетевые приложения:
 - сетевой принтер; сетевой диск; базы данных.

Проблемы взаимодействия компьютеров в сети

- Согласование сигналов в линиях связи
- Определение правил доступа к среде передачи
- Согласование способов повышения надежности передачи информации
- Определение маршрута передачи информации и способов адресации

Многоуровневая модель взаимодействия систем

Основные определения

Протокол - это правила, определяющие взаимодействие между системами в рамках одного уровня.

Интерфейс - это набор функций, который нижележащий уровень предоставляет вышележащему.

Стек протоколов - это набор протоколов разных уровней, достаточный для организации взаимодействия систем.

Mодель OSI/RM

APPLICATION
PRESENTATION
SESSION
TRANSPORT
NETWORK
DATA LINK
PHYSICAL

Layer 7ПРИКЛАДНОЙLayer 6ПРЕДСТАВИТ.Layer 5СЕАНСОВЫЙLayer 4ТРАНСПОРТНЫЙLayer 3СЕТЕВОЙLayer 2КАНАЛЬНЫЙLayer 1ФИЗИЧЕСКИЙ

OSI/RM

1984 г. – OSI/RM – метод описания сетевых сред и открытых архитектур.

Цель: стандартизация и простота написания драйверов определенного уровня, возможность организации стеков протоколов. -

Уровни в модели OSI/RM

прикладной	Общий доступ к сети, поток данных, Ex: telnet.
представления данных	Определяет формат для обмена данными (переводчик), перевод данных свыше в общепринятый стандарт, шифрование, смена кодовой таблицы, сжатие данных.
сеансовый	Установление, использование и завершение сеанса связи, распознавание имен и защита, расстановка checkpoints, чтоб в случае неудачной передачи начинать с плохого места, некорректное завершение сеанса.
транспортный	Гарантирует доставку пакетов без ошибок, в той же последовательности, без потерь и дублирования. Переупаковка пакетов: длинные разбиваются, короткие объединяются. Сигнал подтверждения приема.

Уровни в модели OSI/RM

сетевой	Адресация и маршрутизация в глобальных сетях. На основании конкретных сетевых условий, приоритета услуги определяется маршрут пакета. Коммутация пакетов, маршрутизация, перегрузки. Деление на более мелкие пакеты, если адаптер компьютера не может передавать пакеты поступившей длины. Принимающая сторона их обратно соберет.
канальный	Передача кадров с сетевого в среду передачи (паралл. в послед. и наоборот), иногда спец. кодирование. Кадр содержит: адреса получателя и отправителя, управляющую инфу (данные о верхнем уровне), данные и СКС поле. Сетевой уровень считает передачу данных безошибочной.
физический	Сырой поток битов. Электрический, оптический, механический (разъемы) и функциональный (способ передачи данных) интерфейсы сетевой платы с кабелем. Устанавливается длительность передачи каждого бита и правила перевода его в эл и опти- сигналы.

OSI и архитектура компьютеров

Пользователь
Операционная система
Драйверы
Аппаратура

Структура пакетов (кадров)

Название порций данных для различных уровней: прикладной - поток байт (бит), транспортный - сегмент данных, сетевой - пакет, канальный - кадр.

Перед подачей в сеть все данные разбиваются на пакеты. На каждом уровне к пакету добавляется доп. форматирующая или адресная информация. На принимающей стороне по мере поднимания пакета по уровням эта информация отсекается.

Сетевая карта обеспечивает формирование пакетов (-> пакет -> пакет -> пакет ->), их передачу и сбор с контролем ошибок.

Основные компоненты пакета: адрес источника, адрес места назначения, передаваемые данные, инструкции о дальнейшем маршруте, информация по сбору фрагментированного пакета из кадров, информация для коррекции ошибок передачи.

Структура пакетов (кадров)

Разделы:

заголовок (сигнал о самом факте передачи пакета, адреса источника и получателя, инфа, синхронизующая передачу),

данные (от 512 байт до 4кб),

трейлер (CRC поле, после получения также вычисляется контрольная сумма и сравнивается с исходной).

Преамбула	Заголовки	Данные	Трейлер
кадра	шести уровней		канального уровня

Передача данных по сети

Формирование пакета происходит последовательно на всех уровнях, при получении пакета – отсечение.

Виртуальная связь между соответствующими уровнями для удаленных машин (прозрачное взаимодействие на нижних уровнях).

Протоколы

Протоколы — набор правил и процедур, регулирующих порядок осуществления некоторой связи.

- 1) Их много. Есть преимущества и недостатки.
- 2) Работают на разных уровнях OSI RM. Если, например, протокол работает на физ. уровне, значит, он обеспечивает прохождение пакетов через плату адаптера в сетевой кабель.
- 3) Несколько протоколов могут работать совместно (стек).

Маршрутизируемые и немаршрутизируемые протоколы.

Стеки протоколов

Лекции

	_						
Уровень OSI/RM	Apple Computer	DECnet	Microsoft Networking	Novell Netware	TCP/IP Internet	Xerox XNS	
Прикладн.	Прикладные программы, напр. почтовый клиент, веб-сервер, сетевые утилиты						
Представл.	AppleTalk Filling Protocol	Network Application	Server Message Block	Netware Core Protocols	Telnet, SMTP, FTP, HTTP	Control and Process Interaction	
Сеансовый	AppleTalk Session Protocol	Session	NetBIOS	NetBIOS	ТСР		
Транспорт.	AppleTalk Transaction Protocol	End Communi- cations	NetBEUI	Sequenced Packet Exchange	UDP	Sequenced Packet Protocol	
Сетевой	Datagram Delivery Protocol	Routing		Internet Packet Exchange	Internet Protocol (IP)	Internet Datagram Protocol	
Канальный	Сетевые архитектуры: Ethernet, Token Ring, FDDI, ATM, LocalTalk, др.						
Физическ.	Среда передачи: витая пара, оптоволокно, радиоволны						

Практика

Стеки протоколов

- - *TCP/IP* (Transmission Control Protocol / internet Protocol) стандарт для гетерогенных сетей, популярный межсетевой протокол, спец. разработанные для него протоколы SMTP, FTP, SNMP. Недостатки большой размер и неторопливость. Проблемы с нехваткой IP адресов
 - **NetBEUI** (Network Basic Extended User Interface) связан с NetBIOS (IBM интерфейс сеансового уровня с ЛВС), а сам NetBEIU трансп. протокол Микрософта. Небольшой, быстрый, эффективный. Не поддерживает маршрутизацию.
 - *X.25* сети с коммутацией пакетов, полное соответствие OSI/RM.
 - **XNS** Xerox Network System. Большой и медленный, много широковещательных пакетов.
 - *IPX/SPX* и *NWLink* (реализация от Microsoft) наследник XNS, небольшой и достаточно быстрый.
 - **DECnet** собственный стек маршрутизируемых протоколов, на нем впоследствии вырос И-нет, т.к. он ставился на VAX (Virtual Address Extension) машины с операционной системой VMS.

Набор протоколов OSI

Стек протоколов ТСР/ІР

- Уровень сетевого доступа
- Межсетевой уровень
- Транспортный уровень
- Уровень приложений

Уровень сетевого доступа

Уровень сетевого доступа (физический уровень) обеспечивает передачу кадра данных между любыми узлами в сетях с типовой топологией или между двумя соседними узлами в сетях со смешанной топологией. Для идентификации узла назначения используется локальный (аппаратный) адрес компьютера (00:E0:29:78:96:FF). К физическому уровню относятся протоколы Ethernet, Token Ring, FDDI, SLIP, PPP, ATM, Frame Relay и другие.

Межсетевой уровень

На этом уровне определяются правила передачи данных между сетями. пакетов идентификации узла назначения используется числовой составной ІР-адрес (194.85.160.050), состоящий из двух частей: номера сети и номера узла в этой сети. Основным протоколом этого уровня является протокол IP (Internet Protocol межсетевой протокол), который определяет формат адресов и маршрут передачи.

Транспортный уровень

Этот уровень обеспечивает передачу данных между любыми узлами сети с требуемым уровнем надежности. Для этого на транспортном уровне имеются средства установления соединения, нумерации, буферизации и упорядочивания пакетов. Основной протокол данного уровня ТСР (Transmission Control Protocol - протокол управления передачей)

Уровень приложений

На этом уровне определяются правила построения сетевых приложений (служб).

Сетевое приложение - это программа, которая состоит из нескольких частей и обеспечивает доступ к определенному типу ресурсов.

В стеке TCP/IP к уровню приложений относятся протоколы HTTP, FTP, SMTP, POP, Telnet.

Процесс преобразования данных

Т - Заголовок ТСР; І - Заголовок ІР.

Порт и сокет

Порт - это целое число, определяющее прикладной процесс запущенный на компьютере.

Сокет - совокупность IP-адресов и портов клиента и сервера, идентифицирующий TCP-соединение ТСР-соединение 1

Адрес клиента: 172.20.187.22 Адрес сервера: 10.12.45.56

Порт клиента: 1045 Порт сервера: 80

ТСР-соединение 2

Адрес клиента: 172.20.187.22 Адрес сервера: 10.12.45.56

Порт клиента: 1046 Порт сервера: 80

Сетевая технология

Сетевая технология - это согласованный набор стандартных протоколов и реализующих их программно-аппаратных средств, достаточный для построения компьютерной сети.

Сетевые технологии:

- Ethernet;
- Token Ring.

Ethernet

- •Это наиболее популярная сетевая технология в мире.
- •Сетевая технология согласованный набор стандартных протоколов и реализующих их программно-аппаратных средств, достаточный для построения вычислительной сети.
- •Основной принцип, заложенный в основу Ethernet, случайный метод доступа к разделяемой среде передачи данных.
- •В качестве такой среды может использоваться:
- а) толстый и тонкий коаксиальный кабель;
- б) витая пара;
- в) оптоволокно;
- г) радиоволны.
- •Управление доступом осуществляется сетевыми адаптерами.

Случайный метод доступа

- •Узел может передавать данные по сети, только если сеть свободна. Процедура определения доступности среды является одной из важнейших частей технологии Ethernet.
- •Когда узел убедился, что сеть свободна, он «захватывает» среду и начинает передачу.
- •Кадр единица данных, которыми обмениваются узлы в сети Ethernet. Кадр имеет фиксированный формат, содержит служебную информацию (в т.ч. адреса отправителя и получателя) и поле данных. При попадании кадра в разделяемую среду все сетевые адаптеры начинают его принимать. Если адрес назначения совпадает с их адресом, то кадр попадает во внутренний буфер адаптера.

Коллизии

- •Коллизия ситуация, когда два и более компьютера одновременно начинают передавать информацию. Вероятность возникновения коллизий зависит от интенсивности сетевого трафика.
- •После обнаружения коллизии сетевые адаптеры прекращают передачу, а после паузы случайной длины пытаются снова получить доступ к среде.
- •Время связи не гарантированно, поэтому в сетях для систем реального времени применяется маркерный доступ

Оборудование компьютерных сетей

- Линия связи и интерфейсы
- Сетевая карта
- Трансивер (transceiver)
- Повторитель (Repeater)
- Концентратор (Hub)
- Mocт (Bridge)
- Kommytatop (Switch)
- Маршрутизатор (Router)

Линии связи

Кабельные линии связи

Беспроводные линии связи

Интерфейсы

Интерфейс RJ-45

Интерфейс BNC

Сетевая карта

Сетевая карта воспринимает команды и данные от сетевой операционной системы, преобразует эту информацию в один из стандартных форматов и передает ее в сеть через подключенный к карте кабель. Каждая карта имеет уникальный номер.

Пример архитектуры сети на коаксиальном кабеле

Технология: Ethernet 10 Мбит/с

Среда передачи: Коаксиал

Трансивер

Трансивер устанавливается непосредственно на кабеле и питается от сетевой карты компьютера. С сетевой картой трансивер соединяется интерфейсным кабелем AUI (Attachment Unit Interface).

Повторитель

ER-200

Повторители соединяют сегменты, использующие одинаковые или разные типы носителя, восстанавливают сигнал, увеличивая дальность передачи, передают информацию в обоих направлениях. Использование повторителя позволяет расширить сеть, построенную с использованием коаксиального кабеля.

Концентратор

MicroHub TP1008C

Концентратором называется повторитель, который имеет несколько портов и соединяет несколько физических линий связи. Концентратор всегда изменяет физическую топологию сети, но при этом оставляет без изменения ее логическую топологию. Если на какой-либо его порт поступает сообщение, он пересылает его на все остальные.

Пример концентратора с тремя портами

Обозначение: Т-передатчик; R-приемник

Пример сети на концентраторе

Технология: Ethernet 10 Мбит/с

Среда передачи: Витая пара

Мост

Мост делит физическую среду передачи сети на части, передавая информацию из одного сегмента в другой только в том случае, если адрес компьютера назначения принадлежит другой подсети.

TinyBridge

Пример использования моста

Узел	Порт
1	1
2	2
3	1
4	2

Коммутатор

Коммутатор по назначению не отличается от моста, но обладает более высокой производительностью так, как мост в каждый момент времени может осуществлять передачу кадров только между одной парой портов, а коммутатор одновременно поддерживает потоки данных между всеми своими портами.

Пример использования коммутатора

Узел	Порт
1	1
2	1
3	5
4	2
5	4
6	3

Технология: Ethernet 10/100 Мбит/с

Среда передачи: Коаксиал/Витая пара

Маршрутизатор

Маршрутизатор делит физическую среду передачи сети на части более эффективно, чем мост или коммутатор. Он может пересылать пакеты на конкретный адрес, выбирать лучший путь для прохождения пакета и многое другое. Чем сложней и больше сеть, тем больше выгода от использования маршрутизаторов.

Адресация компьютеров

- •При объединении компьютерных устройств в одну сеть неизбежно возникает задача адресации:
- а) адрес устройства должен однозначно идентифицировать компьютер в сети;
- б) схема назначения адресов должна сводить к минимуму вероятность дублирования;
- в) схема назначения адресов должна сводить к минимуму ручной труд администраторов;
- г) адрес должен иметь структуру, подходящую для организации больших сетей;
- д) адрес должен быть удобен для пользователей.
- •Часто одно устройство имеет несколько имен, поскольку на практике исопльзуются несколько схем адресации.

Аппаратные адреса

- •Особенности:
- а) такие адреса обычно используются аппаратурой;
- б) предназначены для небольших сетей;
- в) не имеют иерархической структуры;
- г) записывается обычно в шестнадцатиричном представлении;
- д) эти адреса обычно присваиваются автоматически при изготовлении или при запуске оборудования.
- •Недостатки:
- а) при замене адаптера меняется адрес компьютера;
- б) при установке двух и больше адаптеров у компьютера появлется несколько адресов.

Символьные адреса

- •Иногда их называют «именами»:
- а) обычно они предназначены для запоминания людьми;
- б) несут смысловую нагрузку;
- в) могут иметь иерархическую структуру (например, faculty.ifmo.ru);
- г) в рамках работы в маленькой подсети обычно можно использовать только младшую составляющую имени.
- •Недостатки:
- а) длина адреса;
- б) необходимость ручной работы;
- в) переменный формат;
- г) проблема при использовании различных языков и кодировок.

Числовые составные адреса

- •При работе в больших сетях в качестве адресов узлов используют числовые составные адреса фиксированного формата. В этой схеме используется деление адреса на номер сети (старшая часть) и номер узла (младшая часть).
- •Типичными представителями являются IP- и IPX-адреса.
- •При использовании протокола IPv6 адрес имеет шесть составляющих.
- •В современных сетях обычно используются все три схемы. Задачу сопоставления имен при использовании различных схем решают службы разрешения имен. Иногда каждый компьютер решает такую задачу, например, рассылая сообщения всем компьютерам.

Рекомендуемая литература

- Олифер В. Г., Олифер Н. А. Компьютерные сети. Принципы, технологии, протоколы: Учебник для вузов. 2-е изд. СПб.: изд. «Питер», 2005 864 стр.
- Бойдо В.Л. Вычислительные системы, сети и телекоммуникации
 СПб.: изд. «Питер», 2002. 688 с.
- Мелехин В.Ф., Павловский Е.Г. Вычислительные машины, системы и сети М.: Академия, 2006 560 с.
- Пятибратов А. П. Вычислительные системы, сети и телекоммуникации. Учебник для ВУЗов М.: Финансы и статистика, 2003 560 с.
- Назаров С. В. Администрирование локальных сетей Windows NT/2000/. NET М.: Финансы и статистика, 2003 480 с.