Day 14: Stochastic Integrals for Martingales 2

Dain Kim

January 23rd

Today's Reading

[L] Section 5.1.

Review: Stochastic Integrals for Martingales

For any $M \in \mathbb{H}^2$ and $H \in \mathcal{E}$ of the form

$$H_s(\omega) = \sum_{i=0}^{p-1} H_{(i)}(\omega) \mathbb{1}_{(t_i, t_{i+1}]}(s),$$

the process $H \cdot M$ defined as

$$(H \cdot M)_t = \sum_{i=0}^{p-1} H_{(i)} (M_{t_{i+1} \wedge t} - M_{t_i \wedge t})$$

belongs to \mathbb{H}^2 .

The mapping $H \mapsto H \cdot M$ extends to an isometry from $L^2(M)$ to \mathbb{H}^2 . We write

$$\int_0^t H_s dM_s = (H \cdot M)_t.$$

A Characterization of Stochastic Integrals

Proposition

The process $H \cdot M$ is the unique martingale of \mathbb{H}^2 such that for any $N \in \mathbb{H}^2$,

$$\langle H \cdot M, N \rangle = H \cdot \langle M, N \rangle.$$

Proof sketch. It is known that

$$\mathbf{E}\left[\int_0^\infty |H_s||d\langle M,N\rangle_s\right] \leq ||H||_{L^2(M)}||N||_{\mathbb{H}^2},$$

which gives that $\int_0^\infty H_s d\langle M, N \rangle_s = (H \cdot \langle M, N \rangle)_\infty$ is well-defined. Assume that H is an elementary process of the form

$$H = \sum_{i=0}^{p-1} H_{(i)} \mathbb{1}_{(t_i,t_{i+1}]}.$$

A Characterization of Stochastic Integrals

Define
$$M_t^i = H_{(i)}(M_{t_{i+1}\wedge t} - M_{t_i\wedge t})$$
. Then
$$\langle H\cdot M, N\rangle_t = \sum_{i=0}^{p-1} \langle M_t^i, N\rangle$$

$$= \sum_{i=0}^{p-1} H_{(i)}\left(\langle M, N\rangle_{t_{i+1}\wedge t} - \langle M, N\rangle_{t_i\wedge t}\right)$$

$$= \int_0^t H_s d\langle M, N\rangle_s$$

 $= (H, \langle M, N \rangle).$

Then we may show the equality for general $H \in L^2(M)$ using that \mathcal{E} is dense in $L^2(M)$.

A Characterization of Stochastic Integrals

By the proposition, in particular we have

$$\langle H \cdot M, K \cdot N \rangle = H \cdot (K \cdot \langle M, N \rangle) = HK \cdot \langle M, N \rangle.$$

This gives that

$$\langle \int_0^{\bullet} H_s dM_s, \int_0^{\bullet} K_s dN_s \rangle_t = \int_0^t H_s K_s d\langle M, N \rangle_s.$$

Associativity of Stochastic Integrals

Proposition

Let $H \in L^2(M)$ and K a progressive process. Then $KH \in L^2(M)$ if and only if $K \in L^2(H \cdot M)$. If the latter holds, then

$$(KH) \cdot M = K \cdot (H \cdot M).$$

Proof. The first assertion follows from

$$\mathbf{E}\left[\int_0^\infty K_s^2 H_s^2 d\langle M, M \rangle_s\right] = \mathbf{E}\left[K_s^2 d\langle H \cdot M, H \cdot M \rangle_s\right].$$

For any $N \in \mathbb{H}^2$,

$$\langle (KH)\cdot M,N\rangle = KH\cdot \langle M,N\rangle = K\cdot (H\cdot \langle M,N\rangle) = K\cdot \langle H\cdot M,N\rangle.$$

By the uniqueness, we conclude that $(KH) \cdot M = K \cdot (H \cdot M)$.

Moments of Stochastic Integrals

Suppose that $M, N \in \mathbb{H}^2$ and $H \in L^2(M)$, $K \in L^2(N)$. Since $H \cdot M$ and $K \cdot N$ are martingales, by the proposition, we have

$$\begin{split} \mathbf{E}\left[\int_0^t H_s dM_s\right] &= 0, \\ \mathbf{E}\left[\left(\int_0^t H_s dM_s\right) \left(\int_0^t K_s dN_s\right)\right] &= \mathbf{E}\left[\int_0^t H_s K_s d\langle M,N\rangle_s\right]. \end{split}$$

Next: Stochastic Integrals for Local Martingales

Recall that if M is a martingale with continuous paths, we defined

$$L^2(M) = \left\{ \text{progressive process } H \text{ s.t. } \mathbf{E} \left[\int_0^\infty H_s^2 d\langle M, M \rangle_s \right] < \infty \right\} / \sim$$

where $H \sim H'$ if H = H' = 0, $d\langle M, M \rangle_s$ a.e., a.s.

If M is a continuous local martingale, we define

$$L^2_{\mathrm{loc}}(M) = \left\{ \text{progressive process } H \text{ s.t. } \mathbf{E} \left[\int_0^t H_s^2 d\langle M, M \rangle_s \right] < \infty \text{ a.s.} \right\} / \sim M_s$$

Then we may define the stochastic integrals for continuous local martingales similarly.