STA 1013 : Statistics through Examples

Lecture 30: Correlation Coefficient

Hwiyoung Lee

November 22, 2019

Department of Statistics, Florida State University

Correlation

A correlation exists between two variables

- when the values of one variable are somehow associated with the values of the other variable
- when higher values of one variable consistently go with higher values of another variable
- when higher values of one variable consistently go with lower values of another variable

Examples

- amount of smoking and likelihood of lung cancer
 heavier smokers were more likely to get lung cancer
- 2. height and weight for people: taller people tend to weigh more than shorter people
- 3. practice time and skill among piano player: those who practice more tend to be more skilled
- 4. demand for apples and price of apples :demand tends to decrease as price increases

Types of Correlation

- Positive correlation: Both variables tend to increase (or decrease) together.
- Negative correlation: The two variables tend to change in opposite directions, with one increasing while the other decreases.
- 3. **No correlation:** There is no apparent (linear) relationship between the two variables.
- 4. **Nonlinear relationship:** The two variables are related, but the relationship results in a scatterplot that does not follow a straight-line pattern.

Scatter plot

- A scatterplot is a graph in which each point represents the values of two variables
- We can identify relation between two variables

Types of Correlation

• Positive correlation

• Negative correlation

Types of Correlation

• No relation

• Nonlinear relation

Measuring the Strength of a Correlation

Statisticians measure the strength of a linear correlation with a number called the correlation coefficient.

Correlation coefficient

$$r = \frac{\sum_{i=1}^{n} \left(\frac{(x_i - \bar{x})(y_i - \bar{y})}{s_x s_y} \right)}{n - 1}$$

$$= \frac{n(\sum_{i=1}^{n} x_i y_i) - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}{\sqrt{n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2} \sqrt{n \sum_{i=1}^{n} y_i^2 - (\sum_{i=1}^{n} y_i)^2}}$$

Use Calculator

Properties of a Correlation

 The correlation coefficient, r, is a measure of the strength of a correlation. Its value can range only from -1 to 1.

$$-1 \leqslant r \leqslant 1$$

- If there is no correlation, the value of r is close to 0.
- If there is a positive correlation, the correlation coefficient is positive ($0 < r \le 1$). Values of r close to 1 indicate a strong positive correlation and positive values closer to 0 indicate a weak positive correlation.
- If there is a negative correlation, the correlation coefficient is negative $(-1 \le r < 0)$: Values of r close to -1 indicate a strong negative correlation and negative values closer to 0 indicate a weak negative correlation.

Properties of a Correlation

• Positive correlation

• Negative correlation

Testing a Linear relation between two variables

Is there a Linear Correlation?

- To claim that there is a linear correlation is to claim that the population linear correlation coefficient ρ is different from 0.
- Hypothesis

$$H_0: \rho = 0$$
 (There is no linear correlation)

$$H_a: \rho \neq 0$$
 (There is a linear correlation)

Test statistic

$$t = \frac{r}{\sqrt{\frac{1-r^2}{n-2}}}$$

• Use a p-value approach

Calculating the Correlation Coefficient r

LinRegTTest

- 1. Press the stat and highlight **TESTS**
- 2. Scroll down to F: LinRegTTest
- 3. Enter values
 - Xlist : L_1
 - Ylist : L_2
 - Freq : 1
 - $\beta \& \rho : \neq 0, < 0, > 0$

Note: To view the Correlation Coefficient, turn on

- **DiaGnosticOn**: [2nd] "Catalog" (above the '0'). Scroll to DiaGnosticOn. [Enter] [Enter]
- or STATDIAGNOSITICS : [mode] Scroll to STATDIAGNOSITICS : ON

Example

Brain Size	IQ	Brain Size	IQ
965	90	1,077	97
1,029	85	1,037	124
1,030	86	1,068	125
1,285	102	1,176	102
1,049	103	1,105	114

- ullet Calculate the sample correlation coefficient r
- Does the value of r indicate that brain size is related to IQ (Test linear correlation with $\alpha=0.05)$

Beware of outliers

Correlation is very sensitive to outliers

- The left panel contains an outlier : r = 0.76
- ullet Outlier is removed in the right panel : r=0.1

Example: Beware of outliers

Χ	Υ	Χ	Υ
1	1	2	3
1	2	3	1
1	3	3	2
2	1	3	3
2	2	9	9

- 1. Draw a scatter plot
- 2. Find the correlation coefficient
- 3. Remove the last observation (9,9), then find the correlation coefficient

Solution: Beware of outliers

1. Draw a scatter plot

2. Find the correlation coefficient

$$r=0.88$$
 ; the left panel

3. Remove the last observation (9,9), then find the correlation coefficient

$$r=0$$
; the right panel

Hours of TV and high School GPA data

hours per week of TV	GPA	hours per week of TV	GPA
2	3.2	9	2.5
4	3.0	9	2.9
4	3.1	10	3.4
5	2.5	12	3.6
5	2.9	12	2.5
5	3.0	14	3.5
6	2.5	14	2.3
7	2.7	15	3.7
7	2.8	16	2.0
8	2.7	20	3.6
		20	1.9

Hours of TV and high School GPA data

- The scatterplot shows virtually no correlation
- ullet the correlation coefficient for the data is about r=-0.063
- The lack of correlation seems to suggest that TV viewing habits are unrelated to academic achievement

However, one astute researcher realizes that

- some of the students watched mostly educational programs
- while others tended to watch **comedies**, **dramas**, **and movies**

Hours of TV and high School GPA data by Group

Group 1 : Educational	programs	Group 2: watched reg	gular TV
hours per week of TV	GPA	hours per week of TV	GPA
5	2.5	2	3.2
7	2.8	4	3.0
8	2.7	4	3.1
9	2.9	5	2.9
10	3.4	5	3.0
12	3.6	6	2.5
14	3.5	7	2.7
15	3.7	9	2.5
20	3.6	12	2.5
		14	2.3
		16	2.0
		20	1.9

- A strong positive correlation for the students who watched educational programs (r=0.855)
- A strong negative correlation for the other students (r=-0.951)
- Correlations can also be misinterpreted when data are grouped inappropriately

Example: Effects of Clusters

Grou	ıp 1	Gro	u p 2
Χ	Υ	Χ	Υ
1	1	9	9
1	2	9	10
2	1	10	9
2	2	10	10

- 1. Draw a scatter plot
- Find the correlation coefficient of the whole data (using all eight points)
- 3. Find the correlation coefficient of the group 1 (using only the four points in the lower left corner)
- 4. Find the correlation coefficient of the group 2 (using the four points in the upper right corner)

Solution: Effects of Clusters

1. Draw a scatter plot

2. The correlation coefficient of the whole data : r = 0.98

Note:

- The apparent correlation of the full data set occurs because of the separation between the two clusters of points
- The data set as a whole shows a strong correlation

Solution: Effects of Clusters

3. Find the correlation coefficient of the each group

 $\bullet \ \ \mathsf{Group} \ \mathbf{1} : \ r = 0 \text{, Group 2} : \ r = 0$

Note: If we analyze these subgroups separately, neither shows any correlation: