# Database Management System – 17 (ER- Relational Mapping)

Ajay James
Asst. Prof in CSE
Government Engineering College Thrissur

### Outline

#### **ER-to-Relational Mapping Algorithm**

- Step 1: Mapping of Regular Entity Types
- Step 2: Mapping of Weak Entity Types
- Step 3: Mapping of Binary 1:1 Relation Types
- Step 4: Mapping of Binary 1:N Relationship Types
- Step 5: Mapping of Binary M:N Relationship Types
- Step 6: Mapping of Multivalued attributes
- Step 7: Mapping of N-ary Relationship Types





#### **ER to Relational Mapping**

- Seven-step algorithm
- Convert the basic ER model constructs
  - Entity types (strong and weak)
  - Binary relationships (with various structural constraints)
  - n-ary relationships
  - attributes (simple, composite, and multivalued)
- Relations

#### **ER-to-Relational Mapping Algorithm**

- Step 1: Mapping of Regular Entity Types
- Step 2: Mapping of Weak Entity Types
- Step 3: Mapping of Binary 1:1 Relation Types
- Step 4: Mapping of Binary 1:N Relationship Types
- Step 5: Mapping of Binary M:N Relationship Types
- Step 6: Mapping of Multivalued attributes
- Step 7: Mapping of N-ary Relationship Types

#### Step 1: Mapping of Regular Entity Types

- For each regular (strong) entity type E in the ER schema
- Create a relation R that includes all the simple attributes of E
- Choose one of the key attributes of E as the primary key for R
- If the chosen key of E is composite, the set of simple attributes that form it will together form the primary key of R





### Step 2: Mapping of Weak Entity Types

- For each weak entity type W with owner entity type E
- Create a relation R and include all simple attributes of W as attributes of R
- In addition, include as *foreign key* attributes of R the primary key attribute(s) of the relation(s) that correspond to the owner entity type(s) (E)
- Primary key of R is the combination of the primary key(s) of the owner(s) and the partial key of the weak entity type W, if any





## Step 3: Mapping of Binary 1:1 Relation Types

- For each binary 1:1 relationship type R in the ER schema
- Identify the relations S and T that correspond to the entity types participating in R
- Three possible approaches:
- (1) Foreign Key approach:
  - Choose one of the relations-S
  - Include a foreign key in S the primary key of T
  - It is better to choose an entity type with total participation in R in the role of S



#### After Step 3

 1:1 relation MANAGES is mapped by choosing the participating entity type DEPARTMENT to serve in the role of S, because its participation in the MANAGES relationship type is total



# Step 3: Mapping of Binary 1:1 Relation Types

- (2) Merged relation option:
- Merging the two entity types and the relationship into a single relation
- Appropriate when both participations are total
- (3) <u>Cross-reference or relationship relation option:</u>
- Set up a third relation R for the purpose of cross-referencing the primary keys of the two relations S and T representing the entity types

### Step 4: Mapping of Binary 1:N Relationship Types

- For each regular binary 1:N relationship type R
- Identify the *relation S* that represent the participating entity type at the *N-side* of the relationship type
- Include as foreign key in S the primary key of the relation T that represents the other entity type participating in R
- Include any simple attributes of the 1:N relation type as attributes of S







# Step 5: Mapping of Binary M:N Relationship Types

- For each regular binary M:N relationship type R
- Create a new relation S to represent R
- Include as foreign key attributes in S the primary keys of the relations that represent the participating entity types
- Their combination will form the *primary key of S*
- Also include any simple attributes of the M:N
  relationship type (or simple components of composite
  attributes) as attributes of S





# Step 6: Mapping of Multivalued attributes

- · For each multivalued attribute A
- Create a new relation R
- Include an attribute corresponding to A
- Plus the primary key attribute K as a foreign key in
   R of the relation that represents the entity type of relationship type that has A as an attribute
- The *primary key of R* is the combination of A and K
- If the multivalued attribute is *composite*, we include its simple components





# Step 7: Mapping of N-ary Relationship Types

- For each n-ary relationship type R, where n>2
- Create a new relationship S to represent R
- Include as foreign key attributes in S the primary keys of the relations that represent the participating entity types
- Also include any simple attributes of the n-ary relationship type (or simple components of composite attributes) as attributes of S



### ER – Relational Model

| ER MODEL                     | RELATIONAL MODEL                           |
|------------------------------|--------------------------------------------|
| Entity type                  | Entity relation                            |
| 1:1 or 1:N relationship type | Foreign key (or relationship relation)     |
| M:N relationship type        | Relationship relation and two foreign keys |
| n-ary relationship type      | Relationship relation and n foreign keys   |
| Simple attribute             | Attribute                                  |
| Composite attribute          | Set of simple component attributes         |
| Multivalued attribute        | Relation and foreign key                   |
| Value set                    | Domain                                     |
| Key attribute                | Primary (or secondary) key                 |



### Reference

 Elmasri R. and S. Navathe, Database Systems: Models, Languages, Design and Application Programming, Pearson Education 6<sup>th</sup> edition and 7<sup>th</sup> edition

Thank you