<u>Página Principal</u> / Mis cursos / <u>IE TC II</u> / 7 de septiembre - 13 de septiembre / <u>EXÁMEN FINAL TC-II - 09 SEPTIEMBRE 2020</u>

Comenzado	el sábado, 12 de septiembre de 2020, 20:00
Estad	
Finalizado e	sábado, 12 de septiembre de 2020, 22:15
Tiemp emplead	
Calificació	5,82 de 10,00 (58 %)
Comentario	- BUENO
Pregunta 1 Parcialmente correcta	Dado el circuito RLC serie de la figura y su función transformada de la corriente, complete y responda las consignas :

Pregunta **2**Parcialmente correcta

Puntúa 0,29
sobre 1,00

Dado el circuito de la figura, cuya función de transferencia tiene el formato mostrado, determine los valores de los coeficientes A, B y C, a continuación cambie P → jω, separe en parte Real y parte Imaginaria, calcule los valores para las pulsaciones dadas en la Tabla y responda a las consignas .

NOTA: PONGA EL SIGNO (-) EN CASO DE QUE UN VALOR SEA NEGATIVO Y TRES (3) DECIMALES SIN REDONDEO, DONDE CORRESPONDA.

$$F_{(P)} = -\frac{1}{R}$$

$$R1 = R2 = 1500 [\Omega]$$

$$C1 = C$$

Valor del coeficiente A de la Función de Transferencia $F_{(P)}$:

1,666

Valor del coeficiente B de la Función de Transferencia F(P) :

5

Valor del coeficiente C de la Función de Transferencia $F_{(P)}$:

2,777

Valor de ω	Valor Parte Real	Valor Parte (sin
0	×	
0,25	×	
0,5	×	
1	×	
2	×	
10	×	
∞	×	

El circulto Atenua o No Atenua po	ara ω→υ	А	IENUA		×
El circuito Atenua ó No Atenúa para ω→∞ ATEN			NÚA	~	
El circuito Adelanta o Atraza la Fas	e para ω	= 0	EN FASE		~
El comportamiento del circuito es	ATRAZA	ADOR		~	de

Fase

Pregunta **3**Correcta
Puntúa 1,00
sobre 1,00

Dado el siguiente diagrama de Bode de Módulo determine la función de transferencia F(P) y el valor del pedestal marcado .

- A) Indique el valor de la constante = 17,500 ✓
- B) Raíces del numerador:

C) Raíces del denominador:

$$P^{\land}$$
 0 \checkmark x (P+ 1 \checkmark) $^{\land}$ 2 \checkmark x (P+ 200 \checkmark) $^{\land}$ 1 \checkmark x (P+ 5000 \checkmark) $^{\land}$ 2 \checkmark

D) Indique el valor en dB que tendrá el pedestal indicado =

24,506 **✓ [dB]**

Pregunta **4**Parcialmente correcta

Puntúa 0,90 sobre 1,00

Dada la siguiente función de transferencia F_(P) , responda si las consig FALSAS, si respondió VERDADERO en VALOR CORRECTO elija VERDAL FALSO, indique el VALOR CORRECTO y si de los valores propuestos nir cálculos, elija NINGUNO.

$$F_{(P)} = \frac{75*(P+65)^2*(P+820)^2(P+820)^2}{P^2*(P+610)^*(5P^2+4575)P+7}$$

CONSIGNAS	VERDADERO Ó FALSO		
1) Si se realiza el escaleo de frecuencia, el diagrama de Bode de Módulo y de Fase, se podrá trazar correctamente con w _{MIN} = 1 [rad/seg] y w _{MAX} = 10000 [rad/seg] .	FALSO 🗸	ú	
2) Si se realiza el escaleo de amplitud de la Fase, el diagrama de Bode de Fase, se podrá trazar correctamente con fase mínima -90° y fase máxima +90°.	FALSO 🗸		
3) El Diagrama de Bode de Módulo a bajas frecuencias tendrá una pendiente de –40 dB/octava.	FALSO		
4) El Diagrama de Bode de Fase a bajas frecuencias tendrá una pendiente de –180 °/década.	FALSO 🗸		
5) El Diagrama de Bode de Módulo a <u>altas</u> f <u>recuencias</u> tendrá una pendiente de 0 dB/octava.	FALSO		
6) El valor de la asíntota de la constante total (KTE _{TOTAL}) será de + 76,437 dB.	FALSO 🗸		
7) El diagrama Asintótico de Bode de Módulo tendrá una zona plana ó meseta con pendiente de 0 dB/dec entre 65 < w < 610 [rad/seg].	VERDADERO ✓	\	
8) La función de 2º grado del denominador tiene una pulsación natural ωο = 2750 [rad/seg]	FALSO 🗸		
9) La función de 2° grado del denominador tiene un factor de amortiguamiento ζ = 0,61	FALSO ✓		
10) En la función de 2º grado del denominador, será necesario utilizar la tabla o curvas de corrección de 2º al trazar al diagrama de Bode de módulo y de fase.	VERDADERO ✓		

Pregunta **5**Parcialmente correcta

Puntúa 0,41 sobre 1,00

Dada la siguiente Función de Lazo Abierto $G_{(P)}H_{(P)}$ trace el Diagramo de Nyquist. Responda a las consignas propuestas.

$$GH_{(P)} = \frac{10 \cdot P - 10}{P^3 + 4 \cdot P^2 + 8 \cdot P}$$

<u>NOTA :</u> en lugar de<u> infinito</u> escriba <u>1e20</u> donde corresponda.

1) Inic	io del di	iagram	a para	P → 0 . I	MÓDULO	1e20	✓
FASE	-360		× Gi	rados			
2) Find	al del di	agram	a para l	P → ∞ . /	МÓDULO	0	✓ FASE
-180		✓ G	rados				
3) Exi	ste cort	e al eje	Real ?	NO	×		
			-	-		<u>or positiv</u> ba el <u>NO</u>	o de la
NO		×					
5) Si e	existe co	orte al	eje rea	l, indiqu	ıe el <u>val</u>	or de cort	<u>:e</u> , si no existe
corte,	escriba	<u>NO</u>	NO	×			
6) Exi	ste cort	e al eje	e Imagi	inario ?	SI	~	
7) Si e	existe co	orte al	eje Imo	aginario	, indiqu	e el <u>valor</u>	positivo de
<u>la pul</u>	sación (<u>de cort</u>	e, si no	existe	corte, es	criba <u>NO</u>	2
×							
			-		_	e el <u>valor</u> xiste corte	<u>de corte</u> (No e,
escrib	a <u>NO</u>	1,25		×			
9) Ind	ique la c	antida	d de ro	deos que	se prod	ucen al pu	nto -1+j0 , al
cerrar	el Diagi	rama P	Polar y d	aplicar C	riterio d	e Nyquist	= 1
10) Si	gno de l	os rode	os al pi	unto -1+	j0 = P	OSITIVO	~
			erio de	Nyquist	el sisten	na será =	
ESTA	ARLE	×					
12) Si	el Sister	na fuei	ra Inest	able, po	dría esta	bilizarse r	educiendo la

ganancia ?

Pregunta **6**Parcialmente correcta

Puntúa 0,97

sobre 1,00

Dada la siguiente función $G_{(P)}$ $H_{(P)}$. Aplique criterio de Routh Hourwitz e indique: número de raices a parte real positiva, de numerador y denominador de $G_{(P)}$ $H_{(P)}$ + 1, indique si el sistema es estable (SI), inestable (NO) o no se sabe (N / S). Indique cuantos rodeos tendría el diagrama de Nyquist correspondiente, alrededor de -1+j0.

$$G_{(P)}H_{(P)} = \frac{48 P + 64}{8 P^7 - 18 P^6 + 24 P^5 + 24 P^4 + 16 P^3 + 32 P^4}$$

Pregunta **7**Parcialmente correcta

Puntúa 0,37

sobre 1,00

Dado el cuadripolo de la figura responda a las consignas planteadas :

D) DETERMINE EL VALOR DE LOS PARÁMETROS DE TRANSMISIÓN DIRECTA Y LAS UNIDADES CORRESPONDIENTES DEL CUADRIPOLO PROPUESTO :

Parámetro	A		В		С	
Valor	1,911	~	597,375	~	0,0204	~
Unidades	[Adim]	~	[Ω]	~	[mho]	~

E) EN BASE A SUS CONCLUSIONES DE LOS ITEMS A), B) Y C), DETERMINE EL VALOR DE LA FUNCIÓN DE PROPAGACIÓN DEL CUADRIPOLO PROPUESTO.

FUNCIÓN PROPAGACIÓN =	×	×
	**	• •

F) EN BASE A SUS CONCLUSIONES DEL ITEM E) INDIQUE EL VALOR DE LA CONSTANTE DE ATENUACIÓN EN NEPERS Y EN DECI-BELLS

Pregunta **8**Parcialmente correcta

Puntúa 0,69
sobre 1,00

Dado el filtro de la figura indique : Tipo de Filtro, si corresponde pulsación de corte ó de resonancia (ω 0) , si corresponde Ancho de Banda (BW), pulsación de corte inferior (ω C1), pulsación de corte superior (ω C2) . Calcule el valor de la impedancia característica Z0.

Pregunta **9**Parcialmente correcta

Puntúa 0,29
sobre 1,00

Dado el siguiente filtro, indique Tipo de Filtro, pulsación de corte (ω_c), frecuencia de corte (fc), valor de la impedancia característica Zo, valor de "m" y valor de la pulsación a la cual la atenuación es infinita (ω_∞).

Pregunta **10**Sin contestar
Puntúa como
1,00

Dado el siguiente filtro Elimina Banda (EB) normalizado de Chevishev, calcule los valores de los componentes, para una frecuencia de corte inferior f_{C1} = 477,465 (Hertz), una frecuencia de corte superior f_{C2} = 1273,24 (Hertz), y una impedancia de carga Ro = 250 Ω .

RESPONDA A LAS CONSIGNAS EMPLEANDO TRES DECIMALES SIN REDONDEO DONDE CORRESPONDA Y PRESTE MUCHA ATENCIÓN A LAS UNIDADES INDICADAS DE LOS COMPONENTES.

A) Valor de la pulsación natural o de resonancia ω_o = \mathbf{x} [rad/seg]

B) Valor del Ancho de Banda BW = \mathbf{x} [rad/seg]

C) Valor de la pulsación normalizada ω_{on^2} = \mathbf{x} [nF]

G) Valor del capacitor "L2" = x [mH]

H) Valor del capacitor "C3" = × [nF]

I) Valor del inductor "L3" = × [mH]

 CUESTIONARIO 10 -CUADRIPOLOS ADAPTADORES Y
 ATENUADORES - 2020

Ir a...

ENCUESTA SOBRE
EXÁMEN FINAL VIRTUAL
- DÍA 09/09/2020 ►