Formelsammlung Theorie der Programmierung

Inhaltsverzeichnis

1. Kontextfreie Grammatik	3	4.2.1. Beta	12
1.1. Operationen	3	4.2.2. Let	12
1.2. Konstanten	3	4.2.3. Applikation	13
1.3. Werte	3	5. Typsystem	14
1.4. Ausdrücke	3	5.1. Basistypen	14
1.5. Typen	4	5.2. Operationen	14
2. Small step Semantik	5	5.3. Konstanten	
2.1. Operationen		5.4. Namen	14
2.2. Beta Value	5	5.5. Bedingungen	14
2.3. Applikation	5	5.6. Let	14
2.4. Bedingungen	5	5.7. Abstraktion	14
2.5. Let	5	5.8. Rekursion	15
2.6. Rekursion	5	5.9. Listen	15
2.7. Listen	6	5.10. Paare	15
2.8. Paare	6	5.11. Polymorphie	16
2.9. Boolsche Ausdrücke	6	5.12. Imperative Konzepte	16
2.9.1. And	6	5.13. Referenzen und Polymorphie	16
2.9.2. Or	6	5.14. Objekte	17
2.10. Imperative Konzepte	7	5.14.1. Subtyping	17
2.11. Objekte	7	6. Typinferenzalgorithmus	18
3. Big step Semantik	8	6.1. Teqns	18
3.1. Werte	8	6.1.1. Konstanten	18
3.2. Operationen	8	6.1.2. Namen	18
3.3. Beta Value	8	6.1.3. Applikation	
3.4. Applikation	8	6.1.4. Bedingungen	18
3.5. Bedingungen		6.1.5. Let	18
3.6. Let	8	6.1.6. Abstraktion	18
3.7. Rekursion	8	6.1.7. Rekursion	18
3.8. Listen	9	6.1.8. Paare	18
3.9. Paare	9	6.1.9. Listen	18
3.10. Exceptions	9	6.1.10. Imperative Konzepte	19
3.11. Boolsche Ausdrücke	9	6.2. Unify	19
3.11.1. And	9	6.2.1. Imperative Konzepte	19
3.11.2. Or	10	6.3. Solution	
3.11.3. Not	10	6.3.1. Konstanten	19
3.12. Imperative Konzepte	10	6.3.2. Namen	19
3.13. Objekte	11	6.3.3. Applikation	19
4. Call by name		6.3.4. Bedingungen	
4.1. Small step		6.3.5. Paare	20
4.1.1. Beta		6.3.6. Let	20
4.1.2. Let		6.3.7. Abstraktion	
4.1.3. Applikation	12	6.3.8. Rekursion.	20
4.2. Big step	12		

1. Kontextfreie Grammatik

1.1. Operationen

```
op ::= + | - | * | / | mod | < | > | \leq | \geq | = | :=
```

1.2. Konstanten

1.3. Werte

```
\begin{array}{ll} v & ::= & c \\ & \mid id \\ & \mid op \, n \\ & \mid \lambda \, id.e \\ & \mid (v_1,v_2) \\ & \mid cons \; v \\ & \mid \textbf{object method} \; id_1 = v_1 \ldots \textbf{method} \, id_n = v_n \; \textbf{end} \end{array}
```

1.4. Ausdrücke

```
\begin{array}{lll} \mathbf{e} & ::= & \mathbf{c} \\ & \mid & \mathrm{id} \\ & \mid & \mathbf{e}_1 \mathbf{e}_2 \\ & \mid & \mathbf{if} \ \mathbf{e}_0 \ \mathbf{then} \ \mathbf{e}_1 \mathbf{else} \ \mathbf{e}_2 \\ & \mid & \lambda \mathrm{id.e} \\ & \mid & \mathbf{let} \mathrm{id} = \mathbf{e}_1 \ \mathbf{in} \ \mathbf{e}_2 \\ & \mid & \mathbf{rec} \mathrm{id.e} \\ & \mid & (\mathbf{e}_1, \mathbf{e}_2) \\ & \mid & \mathbf{e}_1; \mathbf{e}_2 \quad \text{steht für} \quad \mathbf{let} \mathrm{id} = \mathbf{e}_1 \mathbf{in} \ \mathbf{e}_2 \ wobei id \not\in \mathit{free} \ (e_2) \\ & \mid & \mathbf{if} \ \mathbf{e}_0 \ \mathbf{then} \ \mathbf{e}_1 \quad \text{steht für} \quad \mathbf{if} \ \mathbf{e}_0 \ \mathbf{then} \ \mathbf{e}_1 \mathbf{else} () \\ & \mid & \mathbf{while} \ \mathbf{e}_0 \ \mathbf{do} \ \mathbf{e}_1 \quad \text{steht für} \quad \mathbf{rec} \ \mathrm{id.if} \ \mathbf{e}_0 \ \mathbf{then} \ (\mathbf{e}_1; \mathrm{id}) \\ & \mid & \mathbf{object} \ \mathbf{method} \ \mathrm{id}_1 = \mathbf{e}_1 \ \dots \ \mathbf{method} \ \mathrm{id}_n = \mathbf{e}_n \ \mathbf{end} \\ & \mid & \mathbf{e} \# \mathrm{id} \end{array}
```

1.5. Typen

2. Small step Semantik

2.1. Operationen

(OP) $op n_1 n_2 \rightarrow op^{I}(n_1, n_2)$

2.2. Beta Value

(BETA-V) $(\lambda id.e)v \rightarrow e[v/id]$

2.3. Applikation

(APP-LEFT)
$$\frac{e_1 \rightarrow e_1'}{e_1 e_2 \rightarrow e_1' e_2}$$

(APP-LEFT-EXN)
$$\frac{e_1 \rightarrow exn}{e_1 e_2 \rightarrow exn}$$

(APP-RIGHT)
$$\frac{e \rightarrow e'}{v e \rightarrow v e'}$$

(APP-RIGHT-EXN)
$$\frac{e \rightarrow exn}{v e \rightarrow exn}$$

2.4. Bedingungen

(COND-EVAL)
$$\frac{e_0 \rightarrow e_0'}{\text{if } e_0 \text{ then } e_1 \text{ else } e_2 \rightarrow \text{if } e_0' \text{ then } e_1 \text{ else } e_2}$$

(COND-EVAL-EXN)
$$\frac{e_0 \rightarrow exn}{\text{if } e_0 \text{ then } e_1 \text{ else } e_2 \rightarrow exn}$$

(COND-TRUE) if true then e_1 else $e_2 \rightarrow e_1$

(COND-FALSE) if false then e_1 else $e_2 \rightarrow e_2$

2.5. Let

(LET-EVAL)
$$\frac{e_1 \rightarrow e_1'}{\text{let id} = e_1 \text{in } e_2 \rightarrow \text{let id} = e_1' \text{in } e_2}$$

(LET-EVAL-EXN)
$$\frac{e_1 \rightarrow exn}{\text{let id} = e_1 \text{ in } e_2 \rightarrow exn}$$

(LET-EXEC) let $id = v \text{ in } e \rightarrow e [v/id]$

2.6. Rekursion

(UNFOLD) $\operatorname{rec} \operatorname{id.e} \to \operatorname{e} [\operatorname{rec} \operatorname{id.e} / \operatorname{id}]$

2.7. Listen

(HD)
$$\text{hd } (\cos{(v_1,v_2)}) \rightarrow v_1$$

(TL)
$$tl (cons(v_1, v_2)) \rightarrow v_2$$

(TL-EXN)
$$t1[] \rightarrow emptylist$$

(IS-EMPTY-FALSE) is_empty
$$(cons(v_1, v_2)) \rightarrow false$$

2.8. Paare

(FST) fst
$$(v_1, v_2) \rightarrow v_1$$

(SND) snd
$$(v_1, v_2) \rightarrow v_2$$

(PAIR-LEFT)
$$\frac{e_1 \rightarrow e_1'}{(e_1, e_2) \rightarrow (e_1', e_2)}$$

(PAIR-RIGHT)
$$\frac{e \rightarrow e'}{(v,e) \rightarrow (v,e')}$$

2.9. Boolsche Ausdrücke

2.9.1. And

(AND-EVAL)
$$\frac{e_{1} \rightarrow e_{1}'}{e_{1} \&\& e_{2} \rightarrow e_{1}' \&\& e_{2}}$$

(AND-TRUE) true &&
$$e \rightarrow e$$

(AND-FALSE) false &&
$$e \rightarrow false$$

2.9.2. Or

(OR-EVAL)
$$\frac{e_1 \rightarrow e_1'}{e_1 \parallel e_2 \rightarrow e_1' \parallel e_2}$$

(OR-TRUE) true
$$\parallel$$
 e \rightarrow true

$$(OR\text{-}FALSE) \hspace{1cm} false \parallel e \! \rightarrow \! e$$

2.10. Imperative Konzepte

(BETA-V)
$$((\lambda id.e) v, \sigma) \rightarrow (e[v/id], \sigma)$$

(APP-LEFT)
$$\frac{(e_1, \sigma) \rightarrow (e_1', \sigma')}{(e_1 e_2, \sigma) \rightarrow (e_1' e_2, \sigma')}$$

(APP-RIGHT)
$$\frac{(e,\sigma)\rightarrow(e',\sigma')}{(ve,\sigma)\rightarrow(ve',\sigma')}$$

(REF)
$$(\text{ref } \mathbf{v}, \sigma) \rightarrow (\mathbf{X}, \sigma[\mathbf{v}/\mathbf{X}]) \quad \textit{mit } \mathbf{X} = \textit{alloc } (\sigma)$$

(ASSIGN)
$$(X := v, \sigma) \rightarrow ((), \sigma[v/X]) \quad \textit{falls } X \in \textit{dom} \ (\sigma)$$

(DEREF)
$$(!X,\sigma) \to (\sigma(X),\sigma)$$
 falls $X \in dom(\sigma)$

2.11. Objekte

$$e_{i+1} \rightarrow e_{i+1}'$$

$$(OBJECT) \begin{tabular}{ll} & e_{i+1} \rightarrow e_{i+1}' \\ & \textbf{object method } id_1 = v_1 \dots \textbf{method } id_i = v_i \textbf{ method } id_{i+1} = e_{i+1} \dots \textbf{end} \\ & \rightarrow \textbf{object method } id_1 = v_1 \dots \textbf{method } id_i = v_i \textbf{ method } id_{i+1} = e_{i+1}' \dots \textbf{end} \\ \end{tabular}$$

(METHOD-EVAL)
$$\frac{e \rightarrow e'}{e \# id \rightarrow e' \# id}$$

(METHOD-EXEC) (**object method**
$$id_1 = v_1 \dots end$$
)# $id_i \rightarrow v_i$ für $i = 1 \dots n$

3. Big step Semantik

3.1. Werte

 $(VAL) v \Downarrow v$

3.2. Operationen

(OP)
$$\operatorname{op} \operatorname{n}_{1} \operatorname{n}_{2} \operatorname{\Downarrow} \operatorname{op}^{\operatorname{I}}(\operatorname{n}_{1}, \operatorname{n}_{2})$$

$$\frac{e_1 \stackrel{\Downarrow}{\forall} n_1 \quad e_2 \stackrel{\Downarrow}{\vee} n_2}{e_1 op \, e_2 \stackrel{\Downarrow}{\vee} op^I(n_1, n_2)}$$

3.3. Beta Value

(BETA-V)
$$\frac{e[v/id] \stackrel{\Downarrow}{\downarrow} v'}{(\lambda id.e) v \stackrel{\Downarrow}{\downarrow} v'}$$

3.4. Applikation

$$(APP) \qquad \qquad \frac{e_1 \stackrel{\complement}{\Downarrow} v_1 \quad e_2 \stackrel{\complement}{\Downarrow} v_2 \quad v_1 v_2 \stackrel{\complement}{\Downarrow} v}{e_1 e_2 \stackrel{\complement}{\Downarrow} v}$$

$$(APP^*) \qquad \qquad \frac{e_1 \, \mathbb{I} \, v_1 \ldots e_n \, \mathbb{I} \, v_n \quad v_1 \ldots v_n \, \mathbb{I} \, v}{e_1 \ldots e_n \, \mathbb{I} \, v}$$

3.5. Bedingungen

3.6. Let

(LET)
$$\frac{\mathbf{e}_1 \stackrel{\Downarrow}{\vee} \mathbf{v}_1 \quad \mathbf{e}_2 [\mathbf{v}_1/\mathrm{id}] \stackrel{\Downarrow}{\vee} \mathbf{v}_2}{\mathbf{let} \, \mathrm{id} = \mathbf{e}_1 \, \mathbf{in} \, \mathbf{e}_2 \stackrel{\Downarrow}{\vee} \mathbf{v}_2}$$

3.7. Rekursion

(UNFOLD)
$$\frac{e[\mathbf{rec} \, \mathrm{id}.e/\mathrm{id}] \stackrel{\Downarrow}{\vee} v}{\mathbf{rec} \, \mathrm{id}.e \stackrel{\Downarrow}{\vee} v}$$

3.8. Listen

$$(\text{HD}) \qquad \qquad \frac{e \stackrel{\text{\downarrow}}{v} cons \ (v_1, v_2)}{hd \ (e) \stackrel{\text{\downarrow}}{v} v_1}$$

$$\frac{e \ \ \ [\]}{hd \ (e) \ \ \ \ empty_list_exn}$$

$$\frac{\text{e}\,\, \mathbb{I}\,\, \text{cons}\,\, (v_1,v_2)}{\text{hd}\,\, (\text{e})\,\, \mathbb{I}\,\, v_2}$$

$$\frac{e \ \ \ []}{tl \ (e) \ \ \ \ empty_list_exn}$$

(IS-EMPTY-TRUE)
$$\frac{e \ \ \ []}{\text{is_empty } (e) \ \ \ \text{true}}$$

(IS-EMPTY-FALSE)
$$\frac{e \ \ \text{$\stackrel{\downarrow}{$}$ cons } (v_1, v_2)}{\text{is empty } (e) \ \ \text{$\stackrel{\downarrow}{$}$ false}}$$

3.9. Paare

(FST)
$$fst (v_1, v_2) \stackrel{\mathbb{I}}{\vee} v_1$$

$$\mathsf{(SND)} \qquad \qquad \mathsf{snd} \; (\mathsf{v}_1, \mathsf{v}_2) \Downarrow \mathsf{v}_2$$

$$\frac{e_1 \stackrel{\Downarrow}{\vee} v_1 \quad e_2 \stackrel{\Downarrow}{\vee} v_2}{(e_1, e_2) \stackrel{\Downarrow}{\vee} (v_1, v_2)}$$

3.10. Exceptions

(EXN-i)
$$\frac{e_1 \stackrel{\Downarrow}{\vee} v_1 \dots e_{i-1} \stackrel{\Downarrow}{\vee} v_{i-1} \quad e_i \stackrel{\Downarrow}{\vee} exn}{e \stackrel{\Downarrow}{\vee} exn}$$

3.11. Boolsche Ausdrücke

3.11.1. And

$$(AND-TRUE) \qquad \qquad \frac{e_{_{1}} \Downarrow true \quad e_{_{2}} \Downarrow v}{e_{_{1}} \&\& \ e_{_{2}} \Downarrow v}$$

$$(AND\text{-}FALSE) \qquad \qquad \frac{e_1 \, \, \, \, \, \text{false}}{e_1 \, \, \&\& \, e_2 \, \, \, \, \, \, \text{false}}$$

3.11.2. Or

(OR-TRUE)
$$\frac{e_1 \Downarrow true}{e_1 \parallel e_2 \Downarrow true}$$

$$(\text{OR-FALSE}) \qquad \qquad \frac{e_1 \, \sqrt[q]{\text{false}} \quad e_2 \, \sqrt[q]{\text{v}}}{e_1 \parallel e_2 \, \sqrt[q]{\text{v}}}$$

3.11.3. Not

(NOT-TRUE)
$$\frac{e^{\ \ }\ \text{true}}{\text{not } e^{\ \ }\ \text{false}}$$

(NOT-FALSE)
$$\frac{e \, \, \, \text{ln false}}{\text{not e} \, \, \text{ln true}}$$

3.12. Imperative Konzepte

(VAL)
$$(\mathbf{v}, \sigma) \ \ (\mathbf{v}, \sigma)$$

(BETA-V)
$$\frac{(e[v/id], \sigma_0) \sqrt[3]{(v', \sigma_1)}}{((\lambda id.e)v, \sigma_0) \sqrt[3]{(v', \sigma_1)}}$$

(LET)
$$\frac{(e_1, \sigma_0) \, \mathbb{I} \, (v_1, \sigma_1) \quad (e_2[v_1/id], \sigma_1) \, \mathbb{I} \, (v_2, \sigma_2)}{(\text{let } id = e_1 \, \text{in} \, e_2, \sigma_0) \, \mathbb{I} \, (v_2, \sigma_2)}$$

$$(APP) \frac{(e_1, \sigma_0) \, \mathbb{I} \, (v_1, \sigma_1) \quad (e_2, \sigma_1) \, \mathbb{I} \, (v_2, \sigma_2) \quad (v_1 v_2, \sigma_2) \, \mathbb{I} \, (v, \sigma_3)}{(e_1 e_2, \sigma_0) \, \mathbb{I} \, (v, \sigma_3)}$$

$$(\text{REF}) \qquad \qquad (\text{ref } \mathbf{v}, \sigma) \Downarrow (\mathbf{X}, \sigma[\mathbf{v}/\mathbf{X}]) \qquad \textit{mit } \mathbf{X} = \textit{alloc } (\sigma)$$

(ASSIGN)
$$(X := v, \sigma) \, \mathbb{V} \, ((), \sigma[v/X]) \quad \text{falls } X \in \text{dom } (\sigma)$$

(DEREF)
$$(!X,\sigma) \Downarrow (\sigma(X),\sigma) \quad \text{falls } X \in \text{dom } (\sigma)$$

$$(SEQ) \qquad \qquad \frac{(\mathbf{e}_1, \sigma_0) \stackrel{\mathbb{I}}{\vee} (\mathbf{v}_1, \sigma_1) \quad (\mathbf{e}_2, \sigma_1) \stackrel{\mathbb{I}}{\vee} (\mathbf{v}_2, \sigma_2)}{(\mathbf{e}_1; \mathbf{e}_2, \sigma_0) \stackrel{\mathbb{I}}{\vee} (\mathbf{v}_2, \sigma_2)}$$

(COND-1-TRUE)
$$\frac{(\mathbf{e}_0, \sigma_0) \Downarrow (\mathsf{true}, \sigma_1) \quad (\mathbf{e}_1, \sigma_1) \Downarrow (\mathbf{v}, \sigma_2)}{(\mathbf{if} \ \mathbf{e}_0 \ \mathbf{then} \ \mathbf{e}_1, \sigma_0) \Downarrow (\mathbf{v}, \sigma_2)}$$

(COND-1-FALSE)
$$\frac{(e_0, \sigma_0) \stackrel{\mathbb{I}}{\vee} (false, \sigma_1)}{(\mathbf{if} e_0 \, \mathbf{then} \, e_1, \sigma_0) \stackrel{\mathbb{I}}{\vee} ((), \sigma_1)}$$

3.13. Objekte

$$(OBJECT) \begin{tabular}{c} & e_1 \stackrel{\Downarrow}{\lor} v_1 \ ... \ e_n \stackrel{\Downarrow}{\lor} v_n \\ \hline \textbf{object method} \ id_1 = e_1 \ ... \ \textbf{method} \ id_n = e_n \ \textbf{end} \\ \stackrel{\Downarrow}{\lor} \textbf{object method} \ id_1 = v_1 \ ... \ \textbf{method} \ id_n = v_n \ \textbf{end} \\ \hline \end{tabular}$$

$$(\text{METHOD-EXEC}) \quad \frac{\text{e} \ ^{\text{\downarrow}} \ \text{object method} \ \text{id}_{_{1}} \! = \! \text{v}_{_{1}} \ldots \text{end}}{\text{e} \# \text{id}_{_{i}} \ ^{\text{\downarrow}} \ \text{v}_{_{i}}} \qquad \textit{für } i \! = \! 1 ... n$$

4. Call by name

4.1. Small step

Call by value

Call by name

4.1.1. Beta

$$(\lambda id.e) v \rightarrow e[v/id]$$

nicht vorhanden

nicht vorhanden

 $(\lambda id.e_1)e_2 \rightarrow e_1[e_2/id]$

4.1.2. Let

$$\frac{\mathbf{e}_1 \rightarrow \mathbf{e}_1'}{\mathbf{let} \, \mathrm{id} = \mathbf{e}_1 \, \mathbf{in} \, \mathbf{e}_2 \rightarrow \mathbf{let} \, \mathrm{id} = \mathbf{e}_1' \, \mathbf{in} \, \mathbf{e}_2}$$

nicht vorhanden

(LET-EXEC)

let
$$id = v$$
 in $e \rightarrow e[v/id]$

let $id = e_1$ in $e_2 \rightarrow e_2[e_1/id]$

4.1.3. Applikation

$$\frac{e \rightarrow e'}{ve \rightarrow ve'}$$

$$\frac{e \rightarrow e'}{ve \rightarrow ve'}$$
falls v nicht von der Form $\lambda id.e_0$

4.2. Big step

Call by name

4.2.1. Beta

$$\frac{e[v/id] \sqrt[n]{v'}}{(\lambda id.e)v \sqrt[n]{v'}}$$

nicht vorhanden

nicht vorhanden

$$\frac{e_1[e_2/id] \sqrt[3]{v}}{(\lambda id.e_1)e_2 \sqrt[3]{v}}$$

4.2.2. Let

$$\frac{\mathbf{e}_1 \stackrel{\mathbb{I}}{\vee} \mathbf{v}_1 \qquad \mathbf{e}_2[\mathbf{v}_1/\mathrm{id}] \stackrel{\mathbb{I}}{\vee} \mathbf{v}_2}{\mathbf{let} \, \mathrm{id} = \mathbf{e}_1 \, \mathbf{in} \, \mathbf{e}_2 \stackrel{\mathbb{I}}{\vee} \mathbf{v}_2}$$

$$\frac{e_2[e_1/id] \sqrt[n]{v}}{\mathbf{let} id = e_1 \mathbf{in} e_2 \sqrt[n]{v}}$$

4.2.3. Applikation

$$(APP\text{-LEFT}) \qquad \qquad \textit{nicht vorhanden} \qquad \qquad \frac{e_1 \mathbb{V} \ v_1 \quad v_1 e_2 \mathbb{V} \ v}{e_1 e_2 \mathbb{V} \ v}$$

(APP-RIGHT)
$$\begin{array}{ccc} & & & & \frac{e_2 \sqrt[3]{v_2} & v_1 v_2 \sqrt[3]{v_1}}{v_1 e_2 \sqrt[3]{v_2}} v \\ & & & & v_1 e_2 \sqrt[3]{v_2} \end{array}$$

$$falls v_1 nicht von der Form \lambda id.e$$

5. Typsystem

5.1. Basistypen

 (UNIT)
 ()::unit

 (BOOL)
 b::bool

 (INT)
 n::int

5.2. Operationen

(AOP) $op::int \rightarrow int \rightarrow int$ (ROP) $op::int \rightarrow int \rightarrow bool$

5.3. Konstanten

(CONST) $\frac{\mathbf{c} :: \tau}{\Gamma \triangleright \mathbf{c} :: \tau}$

5.4. Namen

(ID) $\Gamma \circ id :: \tau \quad falls id \in dom(\Gamma) und \Gamma(id) = \tau$

 $\frac{\varGamma \, \, \, \, e_1 \! :: \! \tau \! \to \! \tau' \quad \varGamma \, \, \, e_2 \! :: \! \tau}{\varGamma \, \, \, \, \, e_1 e_2 \! :: \! \tau'}$

5.5. Bedingungen

 $\frac{\varGamma \circ e_0 :: \mathbf{bool} \qquad \varGamma \circ e_1 :: \tau \qquad \varGamma \circ e_2 :: \tau}{\varGamma \circ \mathbf{if} \ e_0 \ \mathbf{then} \ e_1 \ \mathbf{else} \ e_2 :: \tau}$

5.6. Let

(LET) $\frac{\Gamma \triangleright e_1 :: \tau \qquad \Gamma[\tau/id] \triangleright e_2 :: \tau'}{\Gamma \triangleright \mathbf{let} id = e_1 \mathbf{in} e_2 :: \tau'}$

5.7. Abstraktion

(ABSTR) $\frac{\Gamma[\tau/\mathrm{id}] \, ^{\triangleright} \, \mathrm{e} :: \tau'}{\Gamma \, ^{\triangleright} \, \lambda \, \mathrm{id} : \tau . \, \mathrm{e} :: \tau \to \tau'}$

(ABSTR') $\frac{\Gamma[\tau/\mathrm{id}] \circ e :: \tau'}{\Gamma \circ \lambda \, \mathrm{id.e} :: \tau \to \tau'}$

5.8. Rekursion

(REC)
$$\frac{\Gamma[\tau/\mathrm{id}] \circ e :: \tau}{\Gamma \circ \mathbf{rec} \, \mathrm{id} : \tau . e :: \tau}$$

(REC')
$$\frac{\Gamma[\tau/\mathrm{id}] \circ e :: \tau}{\Gamma \circ \mathbf{rec} \mathrm{id}.e :: \tau}$$

5.9. Listen

(EMPTY)
$$[]::\tau$$
 list

(CONS)
$$cons::\tau * \tau list \rightarrow \tau list$$

(HD)
$$hd::\tau \mathbf{list} \to \tau$$

(TL)
$$tl::\tau \mathbf{list} \to \tau \mathbf{list}$$

(IS-EMPTY) is_empty::
$$\tau$$
 list \rightarrow bool

(LIST)
$$\frac{\Gamma \triangleright e_1 :: \tau \dots \Gamma \triangleright e_n :: \tau}{\Gamma \triangleright [e_1 \dots e_n] :: \tau \mathbf{list}}$$

5.10. Paare

(FST)
$$fst:: \tau_1 * \tau_2 \rightarrow \tau_1$$

(SND)
$$\operatorname{snd} :: \tau_1 * \tau_2 \rightarrow \tau_2$$

(PAIR)
$$\frac{\Gamma \triangleright e_1 :: \tau_1 \quad \Gamma \triangleright e_2 :: \tau_2}{\Gamma \triangleright (e_1, e_2) :: \tau_1 * \tau_2}$$

5.11. Polymorphie

(P-LET)
$$\frac{\Gamma \triangleright e_1 :: \tau \quad \Gamma[\text{Closure}_{\Gamma}(\tau)/\text{id}] \triangleright e_2 :: \tau'}{\Gamma \triangleright \text{let id} = e_1 \text{in } e_2 :: \tau'}$$

(P-ID)
$$\Gamma \stackrel{\triangleright}{\text{id}} :: \tau [\tau_1/\alpha_1 ... \tau_n/\alpha_n]$$
$$falls id \in dom(\Gamma) und \Gamma(id) = \forall \alpha_1 ... \alpha_n. \tau$$

(P-CONST)
$$\frac{\mathbf{c} :: \pi}{\Gamma \triangleright \mathbf{c} :: \tau} \quad \text{falls } \tau \text{ Instanz von } \pi$$

(P-EMPTY)
$$[]:: \forall \alpha. \alpha \mathbf{list}$$

(P-CONS)
$$cons::\tau * \tau list \rightarrow \tau list$$

(P-HD)
$$hd:: \forall \alpha. \alpha \mathbf{list} \rightarrow \alpha$$

(P-TL)
$$tl:: \forall \alpha . \alpha \mathbf{list} \rightarrow \alpha \mathbf{list}$$

(P-IS-EMPTY) is_empty::
$$\forall \alpha . \alpha$$
 list $\rightarrow \alpha$ list

(P-FST)
$$fst:: \forall \alpha_1, \alpha_2. \alpha_1 * \alpha_2 \rightarrow \alpha_1$$

(P-SND)
$$\operatorname{snd} :: \forall \alpha_1, \alpha_2 . \alpha_1 * \alpha_2 \rightarrow \alpha_2$$

5.12. Imperative Konzepte

(DEREF)
$$! :: \tau \operatorname{ref} \to \tau$$

(ASSIGN)
$$:= :: \tau \operatorname{ref} \to \tau \to \operatorname{unit}$$

(REF)
$$\operatorname{ref} :: \tau \to \tau \operatorname{ref}$$

(SEQ)
$$\frac{\Gamma \triangleright e_1 :: \tau_1 \qquad \Gamma \triangleright e_2 :: \tau_2}{\Gamma \triangleright e_1 ; e_2 :: \tau_2}$$

(COND-1)
$$\frac{\Gamma \circ e_0 :: bool \qquad \Gamma \circ e_1 :: unit}{\Gamma \circ if e_0 then e_1 :: unit}$$

(WHILE)
$$\frac{\Gamma \triangleright e_0 :: bool \qquad \Gamma \triangleright e_1 :: \tau}{\Gamma \triangleright \mathbf{while} e_0 \mathbf{do} e_1 :: unit}$$

$$(LOC) \hspace{1cm} \varSigma \,, \varGamma \, \, ^{\triangleright} \, X :: \tau \, \text{ref} \hspace{5mm} \textit{falls} \, X \in \textit{dom}(\varSigma) \, \textit{und} \, \varSigma \, (X) = \tau \, \textit{ref}$$

5.13. Referenzen und Polymorphie

(P-LET-V)
$$\frac{\Gamma \triangleright v :: \tau \quad \Gamma[\text{Closure}_{\Gamma}(\tau)/\text{id}] \triangleright e :: \tau'}{\Gamma \triangleright \text{let id} = v \text{ in } e :: \tau'}$$

(LET-E)
$$\frac{\Gamma \triangleright e_1 :: \tau \qquad \Gamma[\tau/id] \triangleright e_2 :: \tau'}{\Gamma \triangleright \mathbf{let} \ id = e_1 \mathbf{in} \ e_2 :: \tau'} falls \ e \notin Val$$

5.14. Objekte

$$\frac{\varGamma \circ e_1 :: \tau_1 \ ... \ \varGamma \circ e_n :: \tau_n}{\varGamma \circ \textbf{object method} \ id_1 = e_1 \ ... \ \textbf{method} \ id_n = e_n \, \textbf{end} \ :: < id_1 : \tau_1 ; \ ... \ ; id_n : \tau_n > 1$$

(METHOD)
$$\frac{\Gamma \circ e :: \langle id_1 : \tau_1; ...; id_n : \tau_n \rangle}{\Gamma \circ e \# id_i :: \tau_i} \quad \text{für } i = 1...n$$

5.14.1. Subtyping

(SUBSUME)
$$\frac{\tau_1 <: \tau_2 \quad \Gamma \triangleright e :: \tau_1}{\Gamma \triangleright e :: \tau_2}$$

(S-OBJ-WIDTH)
$$\langle id_1 : \tau_1; ...; id_{n+k} : \tau_{n+k} \rangle <: \langle id_1 : \tau_1; ...; id_n : \tau_n \rangle$$

(S-OBJ-PERMUTE)
$$\langle id_1 : \tau_1; ...; id_n : \tau_n \rangle \langle id_{i_1} : \tau_{i_1}; ...; id_{i_n} : \tau_{i_n} \rangle$$
 $falls \{ i_1 ... i_n \} = \{ 1 ... n \}$

$$(S\text{-}OBJ\text{-}DEPTH) \qquad \frac{\tau_1 <: \ \tau_1' \ ... \ \tau_n <: \ \tau_n'}{< \mathrm{id}_1 : \tau_1; \ ... \ ; \mathrm{id}_n : \tau_n > \ <: \ < \mathrm{id}_1 : \tau_1'; \ ... \ ; \mathrm{id}_n : \tau_n' >}$$

(S-REFL)
$$\tau <: \tau$$

(S-TRANS)
$$\frac{\tau_1 <: \tau_2 \quad \tau_2 <: \tau_3}{\tau_1 <: \tau_3}$$

(S-PRODUCT)
$$\frac{\tau_1 <: \tau_1' \quad \tau_2 <: \tau_2'}{\tau_1 * \tau_2 <: \tau_1' * \tau_2'}$$

(S-LIST)
$$\frac{\tau <: \tau'}{\tau \, \text{list} <: \tau' \, \text{list}}$$

(S-ARROW)
$$\frac{\tau_1' <: \tau_1 \quad \tau_2 <: \tau_2'}{\tau_1 \rightarrow \tau_2 <: \tau_1' \rightarrow \tau_2'}$$

(S-ARROW-LEFT)
$$\frac{\tau_1' <: \tau_1}{\tau_1 \rightarrow \tau_2 <: \tau_1' \rightarrow \tau_2}$$

(S-ARROW-RIGHT)
$$\frac{\tau_2 <: \tau_2'}{\tau_1 \rightarrow \tau_2 <: \tau_1 \rightarrow \tau_2'}$$

(S-REF)
$$\frac{\tau <: \tau' \quad \tau' <: \tau}{\tau \text{ref} <: \tau' \text{ref}}$$

6. Typinferenzalgorithmus

6.1. Tegns

6.1.1. Konstanten

(CONST)

teqns
$$(\Gamma, c, \alpha) = \{\alpha = \tau\}$$
 falls $c :: \tau$

6.1.2. Namen

teqns
$$(\Gamma, id, \alpha) = \begin{cases} \{\alpha = \Gamma(id)\} & falls id \in dom(\Gamma) \} \\ \text{'unbekannter Name'} & sonst \end{cases}$$

6.1.3. Applikation

teqns
$$(\Gamma, e_1 e_2, \alpha) =$$

teqns $(\Gamma, e_1, \alpha_1) \cup$ teqns $(\Gamma, e_2, \alpha_2) \cup \{\alpha_1 = \alpha_2 \rightarrow \alpha\}$

6.1.4. Bedingungen

teqns
$$(\Gamma, \mathbf{if} \, \mathbf{e}_0 \, \mathbf{then} \, \mathbf{e}_1 \, \mathbf{else} \, \mathbf{e}_{2,} \alpha) =$$

teqns $(\Gamma, \mathbf{e}_{0,} \alpha_0) \cup \mathbf{teqns} \, (\Gamma, \mathbf{e}_{1,} \alpha_1) \cup$
teqns $(\Gamma, \mathbf{e}_2 \alpha_2) \cup \{\alpha_0 = \mathbf{bool}, \alpha = \alpha_1, \alpha = \alpha_2\}$

6.1.5. Let

teqns
$$(\Gamma, \text{let id} = e_1 \text{ in } e_2, \alpha) =$$

teqns $(\Gamma, e_1, \alpha_1) \cup \text{teqns } (\Gamma[\alpha_1/\text{id}], e_2, \alpha_2)$
 $\cup \{\alpha = \alpha_2\}$

6.1.6. Abstraktion

teqns
$$(\Gamma, \lambda \text{ id.e.}, \alpha) =$$

teqns $(\Gamma[\alpha_1/\text{id.e.}, \alpha_2) \cup \{\alpha = \alpha_1 \rightarrow \alpha_2\}$

6.1.7. Rekursion

teqns
$$(\Gamma, \mathbf{rec} \, \mathrm{id.e.}, \alpha) =$$

teqns $(\Gamma[\alpha_1/\mathrm{id}], e, \alpha_2) \cup \{\alpha = \alpha_1, \alpha = \alpha_2\}$

6.1.8. Paare

teqns
$$(\Gamma, (e_1, e_2), \alpha) =$$

teqns $(\Gamma, e_1, \alpha_1) \cup$ teqns $(\Gamma, e_2, \alpha_2) \cup \{\alpha = \alpha_1 * \alpha_2\}$

6.1.9. Listen

teqns
$$(\Gamma, \cos, \alpha) = \{\alpha = \alpha_1 * \alpha_1 \operatorname{list} \rightarrow \alpha_1 \operatorname{list} \}$$

teqns
$$(\Gamma, [], \alpha) = {\alpha = \alpha_1 \text{ list }}$$

6.1.10. Imperative Konzepte

(DEREF)
$$\text{teqns } (\Gamma,!,\alpha) = \{\alpha = \alpha_1 \text{ref} \to \alpha_1\}$$
(ASSIGN)
$$\text{teqns } (\Gamma,:=,\alpha) = \{\alpha = \alpha_1 \text{ref} \to \alpha_1 \to \text{unit}\}$$
(REF)
$$\text{teqns } (\Gamma,\text{ref},\alpha) = \{\alpha = \alpha_1 \to \alpha_1 \text{ref}\}$$

6.2. Unify

unify
$$(\emptyset) = []$$

unify $(\{\tau = \tau\} \cup E) = \text{unify } (E)$
unify $(\{\alpha = \tau\} \cup E) = \text{unify } (\{\tau = \alpha\} \cup E)$
 $= \begin{cases} s_1 s_2 \text{ mit } s_1 = [\tau/\alpha] \text{ und } s_2 = \text{unify } (Es_1) & \text{falls } \alpha \notin \text{tvar } (\tau) \\ \text{'nicht unifizierbar'} & \text{falls } \alpha \in \text{tvar } (\tau) \text{ und } \alpha \neq \tau \end{cases}$
unify $(\{\tau_1 \rightarrow \tau_2 = \tau_1' \rightarrow \tau_2'\} \cup E) = \text{unify } (\{\tau_1 = \tau_1', \tau_2 \rightarrow \tau_2'\} \cup E)$
unify $(\{\tau_1 = \tau_2\} \cup E) = \text{'nicht unifizierbar' in allen anderen F\"{allen}}$

6.2.1. Imperative Konzepte

unify
$$(\{\tau_1 \text{ ref} = \tau_2 \text{ ref}\} \cup E) = \text{unify } (\{\tau_1 = \tau_2\} \cup E)$$

6.3. Solution

6.3.1. Konstanten

solution
$$(\Gamma, c, \tau) = \text{unify } (\{\tau = \tau'\})$$
 falls $c :: \pi$ und τ' neue Instanz von π

6.3.2. Namen

solution
$$(\Gamma, id, \tau) = \text{unify } (\{\tau = \tau'\})$$
 falls $id \in dom(\Gamma)$ und τ' neue Instanz von $\Gamma(id)$

6.3.3. Applikation

solution
$$(\Gamma, e_1 e_2, \tau) = s_1 s_2$$

 $s_1 = \text{solution } (\Gamma, e_1, \alpha \rightarrow \tau)$ mit neuer Typvariablen α
 $s_2 = \text{solution } (\Gamma s_1, e_2, \alpha s_1)$

6.3.4. Bedingungen

solution
$$(\Gamma, \mathbf{if} \ \mathbf{e}_0 \ \mathbf{then} \ \mathbf{e}_1 \ \mathbf{else} \ \mathbf{e}_2, \tau) = \mathbf{s}_0 \mathbf{s}_1 \mathbf{s}_2$$

 $\mathbf{s}_0 = \text{solution} \ (\Gamma, \mathbf{e}_0, \mathbf{bool})$
 $\mathbf{s}_1 = \text{solution} \ (\Gamma \mathbf{s}_0, \mathbf{e}_1, \tau \mathbf{s}_0)$
 $\mathbf{s}_2 = \text{solution} \ (\Gamma \mathbf{s}_0 \mathbf{s}_1, \mathbf{e}_2, \tau \mathbf{s}_0 \mathbf{s}_1)$

6.3.5. Paare

6.3.6. Let

6.3.7. Abstraktion

```
\begin{array}{l} \text{solution } (\varGamma,\lambda\,\text{id.e},\tau) = s_1 s_2 \\ s_1 = \text{solution } (\varGamma\,[\,\alpha_1/\text{id}\,],e,\alpha_2) \quad \textit{mit neuen Typvariablen }\alpha_1,\alpha_2 \\ s_2 = \text{unify } (\{\tau\,s_1 = \alpha_1 s_1 {\rightarrow} \alpha_2 s_1\}) \end{array}
```

6.3.8. Rekursion

```
solution (\Gamma, \mathbf{rec} \, \mathrm{id.e.}, \tau) = \mathrm{solution} (\Gamma[\tau/\mathrm{id.e.}, \tau))
```