

Regression and Demand Forecasting

Hakim Qahtan
Department of Information and Computing Sciences
Utrecht University

)

Classification

4

Utrecht University

Topics Classification Train-Test Split Classification Algorithms Evaluation Evaluation Utrecht University

Building a Classification Model

- Split the data into training and testing
- Train the classifier on the training data
- Select a set of performance measures
 - Accuracy, Balanced Accuracy, Precision, Recall, F-Score, ...
- Evaluate the classifier on the test set

NOTE: NEVER USE THE TEST SET FOR TRAINING!

9

Utrecht University

Train-Test Split

- Problem
 - The training/testing set may not include examples from one of the classes
- Solution
 - · Split with stratification
 - Ensures that each class is represented with approximately equal proportions in both subsets

Utrecht University

11

Classification – A Three-Step Process

- Model construction
 - describing a set of predetermined classes
- Model evaluation
 - · testing if the model will perform well on unseen data
 - labels are available but not provided to the model (classifier)
- Model usage
 - for classifying future or unknown objects

Utrecht University

Nearest Neighbors Classifiers (Cont.)

- Three requirements:
 - Set of records (training set)
 - Distance metric
 - The number of neighbors to be considered k
- Classifying unknown record x:
 - Compute the distance from x to the other training records
 - Identify the k-Nearest Neighbors (kNN(x))
 - Use class labels of the kNN records to determine the class of x .. How?

Utrecht University

21

Decision Trees

Outcome: Buys_computer

• Resulting tree:

income	student	credit rating	buys computer
high	no	fair	no
high	no	excellent	no
high	no	fair	yes
medium	no	fair	yes
low	yes	fair	yes
low	yes	excellent	no
low	yes	excellent	yes
medium	no	fair	no
low	yes	fair	yes
medium	yes	fair	yes
medium	yes	excellent	yes
medium	no	excellent	yes
high	yes	fair	yes
medium	no	excellent	no
			22
	high high medium low low medium low medium medium medium medium medium	high no high no high no high no medium no low yes low yes low yes medium no low yes medium yes medium yes medium yes medium no high yes	high no excellent high no fair medium no fair low yes fair low yes excellent low yes excellent medium no fair low yes fair medium yes fair medium yes fair medium yes excellent medium yes fair medium yes excellent medium no excellent high yes fair

Neural Network

Output vector

Output layer

Input layer

Input vector: XUtrecht University

Support Vector Machines (SVM) Find linear hyperplane (decision boundary) that will separate the data One possible separators Utrecht University

26

Evaluation: Confusion Matrix

ENRICHMENT FOR ALL

Focus on the predictive capability of a model
 Confusion Matrix:

	Predicted Label			
		Class = Y	Class = N	
Actual Label	Class = Y	TP	FN	
	Class = N	FP	TN	

TP = True Positive

FP = False Positive FN = False Negative

TN = Ture Negative

The basic used metric:

$$Accuracy = \frac{TP + TN}{TP + FN + FP + TN}$$

T.

Utrecht University

Evaluation Measures Formula Measure TP + TNAccuracy (acc.) TP+FP+TN+FN Precision (P) TPTP+FP TPRecall (R) TP+FN $2^{\frac{1}{P \times R}}$ F1-Score Sensitivity (TPR) Recall (TPR) TNSpecificity (TNR) TN+FP Sensitivity + Specificity **Balanced** Accuracy (BA) 2 Utrecht University

29

Accuracy

- Limitation of accuracy metric:
 - The problem of unbalanced classes
 - Consider a 2-class problem
 - Number of class 1 examples = 9990
 - Number of class 0 examples = 10
 - If the model predict everything as class 1
 - $Accuracy = \frac{9990}{10000} = 99.9\%$
- Accuracy is misleading because the classifier didn't predict any class 0 examples
- Weighted Accuracy = $\frac{w_1 TP + w_4 TN}{w_1 TP + w_2 FN + w_3 FP + w_4 TN}$

30

Model and Data Bias

Vtrecht University

Who's Paid the Biggest Worker **Abuse Fines? The Answer May** Surprise You. Big banks not only mistreat customers. They've also faced some of the heaviest fines for mistreating their employees. Parent Companies with the Highest Disclosed Discrimination Penalties Parent Bank of America \$210.296.593 Coca-Cola \$200,616,000 Novartis \$183,000,000 Morgan Stanley \$150,385,000 5 Abercrombie & Fitch \$90,115,600 4 FedEx \$80,035,138 Boeing \$79,935,059 7 https://inequality.org/research/penalties-workplace-abuse/ Verizon Communications 8 \$71.504.891 6 9 Wells Fargo \$68,099,000 Utrecht University 36 10 SoftBank (parent of Sprint) \$62,852,756

Reasons

- Historical bias in the decision variable
- Limited / less informative features
- Biased data collection
- Imbalanced representation of different demographic groups

Utrecht University

37

Consequences

- One gets more than is needed
- · Huge disparity is created

Utrecht University

What Should be Done?

- Equality: everyone benefits from the same support
- Equity: everyone gets the needed support
- Justice: remove the causes of inequity

Utrecht University

39

What do you think is fair?

"Fairness is the absence of any prejudice or favoritism towards an individual or a group based on their intrinsic or acquired traits in the decision-making context"

41

41

- What if you do not even collect sensitive data?
 - Useful to have the sensitive features to check for fairness
- Removing the protected attributes does not always work
 - Proxy attributes

42

Statistical Parity People of different groups should have the same probability of getting the positive outcome Disparate Impact Ratio Base rate unprivileged / base rate privileged Should be between 0.8 and 1.25

43

Utrecht University

Bias Mitigation Algorithms • Pre-Processing Algorithms • In-Processing Algorithms • Post-Processing Algorithms

45

Utrecht University

Reading Material for Interested Students

Introduction to Data Science, Ch 5.
 Supervised Learning

Data Mining: Concepts-and-Techniques
 Ch 6. Classification

Acknowledgement: parts of the material were prepared by Xiangliang Zhang, Fenna Woudstra and Begum Hattatoglu

Utrecht University

47

