Сегментация и автоэнкодер

Автоэнкодер

- шумоподавление данных
- уменьшение размерности

Слой


```
Conv2DTranspose(64, (2, 2),
strides=(2, 2), padding='same',
activation='relu')
```

Обработка МНИСТ

Сегментация

SegNet

Работает!

Сеть UNet

input

Loss: Дице

output

segmentation map

	DeepMask	Instance-Aware Segmentation	Mask-RCNN	Mask-Lab	
	U-Net	V-Net	FC-DenseNet	Path Aggregation Network	TensorMask
	ReSeg	RefineNet	Global Convolutional Net	Dense-ASSP	CC-Net: Criss-Cross Attention
	Deconvolution Network	SegNet	DeepLab V3	Exfuse	Dual Attention Network
CNN+CRF	Dilated Convolutional Net	E-Net	Feature Pyramid Network (FPN)	Discriminative Feature Network	FastFCN
FCN (VGG-16)	ParseNet	Pyramid Scene Parsing Network	DeepLab	Context Encoding Net	Dynamic Multi-Scale Filters
2014	2015	2016	2017	2018	2019

1. Попробуйте обучить нейронную сеть U-Net на любом другом датасете.

Опишите в комментарии к уроку - какой результата вы добились от нейросети? Что помогло вам улучшить ее точность?

*2. Попробуйте свои силы в задаче Carvana на Kaggle - https://www.kaggle.com/c/carvana-image-masking-challenge/overview

*3. Сделайте свою реализацию U-Net на TensorFlow