Теория фигур планет и гравиметрия 2018

Практическое занятие № 1

Введение. Краткие сведения из математики и высшей геодезии

9 февраля 2018 г.

1 Организационные вопросы

Курс «Теория фигур планет и гравиметрия» читается на третьем (весенний семестр) и четвёртом (осенний семестр) курсах для студентов геодезического факультета МИИГАиК специальности «Прикладная геодезия».

Весенний семестр посвящен изучению поля тяготения и его свойств, а также измерениям силы тяжести на поверхности Земли. Осенний семестр будет включать в себя вопросы моделирования гравитационного поля планет и решение геодезических задач с использованием информации о гравитационном поле Земли.

1.1 Контакты

Канал в Телеграм (для оповещений и анонсов): miigaik_tfpg_course_2018

Почта: oshchepkov@miigaik.ru

Материалы курса доступны в git-репозитории на GitHub: ioshchepkov/physical-geodesy-courses

Репозиторий находится в стадии наполнения и будет обновляться по ходу курса.

1.2 Программа практических занятий (весенний семестр)

- 1. Введение. Краткие сведения из математики и высшей геодезии.
- 2. Притяжение. Основные понятия и свойства.
- 3. Притяжение тел простой формы I.
- 4. Притяжение тел простой формы II.
- 5. Притяжение тел сложной формы. Гармонические функции.
- 6. Гравитационное поле Земли и планет. Общая характеристика.
- 7. Гравитационное поле Земли и планет. Изменение гравитационного поля во времени.
- 8. Наземные методы и средства измерений. Абсолютные измерения силы тяжести.
- 9. Статический метод измерения силы тяжести.
- 10. Исследования статических гравиметров I.
- 11. Исследования статических гравиметров II.
- 12. Метрология. Сравнения и эталонирование гравиметров.
- 13. Гравиметрический рейс.
- 14. Обработка гравиметрического рейса. Гравиметрические сети.

1.3 Контроль знаний и выставление оценок

В курсе (весенний семестр) предусмотрены следующие формы контроля знаний:

- лабораторные работы,
- домашние задания,
- самостоятельные работы,
- контрольные работы,
- зачёт.

На практических занятиях будут разбираться основные понятия для закрепления теоретического материала лекций, а также будут решаться и разбираться простейшие и/или типовые примеры и задачи. Только на практических занятиях будут выполняться лабораторные работы с гравиметрами и разбираться отдельные темы по разделу курса «гравиметрия». Пропуски занятий с гравиметрами не допускаются, ибо в связи с большим числом студентов и ограниченным числом преподавателей, у нас нет возможности заниматься с вами вне аудиторных часов. Лабораторные работы с гравиметрами должны быть аккуратно оформлены и защищены. Оцениваются работы по двоичной системе (зачёт/незачёт).

1.3.1 Домашние задания

Домашние задания (ДЗ) будут выдаваться после (почти) каждого практического занятия и будут состоять из контрольных вопросов, обязательных типовых задач, а также дополнительных задач повышенной сложности. Каждый вопрос и каждая задача в задании будут иметь свою «стоимость» в баллах. Общая оценка за одно домашнее задание равна сумме баллов за все вопросы, примеры и задачи. Максимальное число баллов за каждое домашнее задание — 5,0. Баллы, заработанные за решение задач повышенной сложности могут быть зачтены в другие задания и формы контроля. Все домашние задания должны быть защищены, что включает в себя несколько контрольных вопросов по теме и/или ходу решения. Незащищённые задания не могут быть зачтены. Крайний срок сдачи — две недели с момента выдачи задания. После дедлайна домашние задания не принимаются и могут полностью войти в программу зачёта для несдавшего студента. Задания можно высылать как в электронном (что крайне приветствуется) виде вне занятий, так и сдавать их в рукописном виде в часы занятий. За использование системы компьютерной вёрстки БТрХ (читается как латех) при сдаче работ будет начисляться дополнительный балл.

1.3.2 Самостоятельные работы

Самостоятельные работы (CP) будут проводиться в течение 5-8 минут в начале (почти) каждого практического занятия по пройденному материалу, включая лекции. Они будут состоять из 2-3 вопросов и/или простых задач. Максимальное число баллов за одну самостоятельную -5.0.

1.3.3 Контрольные работы

В середине семестра будет проведена первая (KP \mathbb{N} 1) контрольная работа (KP), а в конце семестра (скорее всего, на зачётном занятии) – вторая (KP \mathbb{N} 2). Обе продолжительностью в один академический час (половина пары). Программа контрольных будет включать в себя теоретические и практические вопросы по пройденному материалу, в том числе лекционному. Максимальное число баллов за контрольную — 5,0.

Сдача обеих контрольных работ на положительную оценку ($\geqslant 3,0$) является условием допуска студента к зачёту.

1.3.4 Зачёт

При условии всех сданных и защищённых лабораторных работах, итоговая оценка за семестр выставляется следующим образом. По всем видам контроля выводятся средние оценки, которые затем подставляются в выражение

O
$$И = 0.5*O$$
 ДЗ + 0.2*O $CP + 0.3*O$ KP ,

где О_И – итоговая оценка, О_ДЗ – средняя оценка по домашним заданиям, О_СР – средняя оценка по самостоятельным работам, О КР – средняя оценка по двум контрольным.

Если итоговая оценка на конец семестра получается не менее 4,0 ($O_{M} >= 4,0$), то студент получает зачёт автоматом.

К зачету студент собирает портфолио, то есть всё, что он сделал за семестр:

- лабораторные работы;
- домашние задания;
- дополнительные задания, если имеются;
- конспекты практических занятий и лекций;
- контрольные работы, независимо от оценки.

Зачёт будет состоять из письменной и устной части. Письменно студент выполняет задания, по которым за семестр он получил неудовлетворительную (< 3.0) оценку (прежде всего – контрольные работы). Устная часть включает вопросы по практическим и лекционным занятиям.

1.3.5 Теоретический минимум

Особое внимание необходимо обратить на вопросы теоретического минимума. Незнание уверенных ответов на них автоматически влечёт за собой неудовлетворительную оценку (0,0) по всем видам контроля знаний (домашние задания, самостоятельные и контрольные работы, зачёт). Обратное неверно, знание ответов только на эти вопросы зачёта не гарантирует. Вопросы из этого списка будут включаться в контроль по мере их появления в курсе.

1.3.6 Бонусы

При желании, студенту могут быть даны дополнительные «творческие» задания, которые могут быть выполнены как индивидуально, так и коллективно (2–3 человека). За выполнение таких заданий будут начисляться бонусные баллы. Штрафных санкций не предусмотрено.

1.4 Литература

Рекомендуемая литература

- [1] Л. В. Огородова. Основы теории потенциала. Гравитационное поле Земли, Луны и планет. Учебное пособие. М.: Изд-во МИИГАиК, 2013, с. 108.
- [2] Б. П. Шимбирев. Теория фигуры Земли. М.: Недра, 1975, с. 432.
- [3] А. П. Юзефович. Поле силы тяжести и его изучение: учебное пособие. М.: Изд-во МИИГАиК, 2014, с. 194.

Дополнительная литература

- [1] Б. Гофман-Велленгоф и Г. Мориц. *Физическая геодезия*. Под ред. Неймана, Ю. М. М.: Изд-во МИИГАиК, 2007, с. 426.
- [2] Г. Мориц. Современная физическая геодезия. М.: Недра, 1983, с. 391.
- [3] Л. В. Огородова. Высшая геодезия. Часть III. Теоретическая геодезия: Учебник для вузов. М.: Геодезкартиздат, 2006, с. 384.
- [4] Л. В. Огородова. Нормальное поле и определение аномального потенциала (текст лекций по геодезической гравиметрии и теории фигуры Земли): Учебное пособие. М.: Изд-во МИИГАиК, 2011, с. 105.
- [5] Л. П. Пеллинен. Высшая геодезия (Теоретическая геодезия). М.: Недра, 1978, с. 264.
- [6] В. Торге. *Гравиметрия*. Под ред. А. П. Юзефовича, пер. с англ. Г. А. Шанурова. М.: Мир, 1999, с. 429.
- [7] Юзефович, А. П. и Огородова, Л. В. *Гравиметрия: Учебник для вузов.* М.: Недра, 1980, с. 320.

2 Предмет и задачи курса

Название курса состоит из двух частей: «теория фигур планет» и «гравиметрия». Под планетой мы, конечно, будем в первую очередь иметь ввиду Землю. Однако рассматриваемые методы (а также и другие, которые на Земле не используются) могут быть успешно применены и применяются для исследования других планет, особенно твёрдых, а также их естественных спутников, поэтому по ходу курса мы будем иногда обращать внимание и во внеземное пространство.

Вспомним, что основной научной задачей геодезии является определение фигуры и внешнего гравитационного поля Земли и их изменений во времени. Теория фигуры Земли решает эту задачу с использованием преимущественно гравиметрических данных (то есть по измерениям величин, характеризующих гравитационное поле Земли). Синонимами являются дисциплины «физическая геодезия» и «геодезическая гравиметрия». Решением той же задачи, но с использованием всей совокупности существующих исходных данных (например, спутниковых) занимается теоретическая геодезия, которая преподается обычно на последних курсах геодезических специальностей.

Итак, теория фигуры Земли — это наука, главной задачей которой является определение внешнего гравитационного поля и фигуры Земли по гравиметрическим данным. Задача же получения этих данных с необходимой плотностью и точностью стоит перед другой наукой, которая называется «гравиметрия» (или «экспериментальная гравиметрия»).

Вообще говоря, задача изучения внешнего гравитационного поля Земли в сущности является задачей гефизики также, как и изучение магнитного поля (теория которого очень близка к гравитационному) и других физических полей. Но, как мы увидим по ходу курса, внешнее гравитационное поле и фигура Земли на самом деле определяются одновременно из обработки одних и тех же исходных данных. Более того, эти задачи неотделимы друг от друга, а потому и входят в основную задачу геодезии и её подразделов[3].

Действительно, ведь абсолютно все («геометрические») геодезические измерения выполняются в гравитационном поле Земли и связаны с ним. В этом легко убедиться, ответив на вопросы:

- 1. Назовите основные геометрические условия в нивелирах и угломерных приборах.
- 2. Что происходит с геодезическими приборами, когда мы выставляем их по уровням?
- 3. В какой системе координат выполняются измерения на поверхности Земли?
- 4. Чему равна сумма измеренных углов в треугольнике на поверхности Земли, если измерения считать безошибочными?
- 5. Как расположена визирная ось поверенного и выставленного по уровням нивелира?

Оказывается, в теории во все наземные и спутниковые измерения, даже выполненные исправными инструментами и оборудованием, необходимо вводить те или иные поправки, связанные с гравитационным полем Земли.

На практике же необходимость учёта неоднородности гравитационного поля Земли всегда определяется требованиями к точности результатов измерений. Например, при нивелировании I и II классов вводить поправки в измеренные превышения за переход к разностям нормальных высот необходимо (в том числе, по нормативным документам), а в нивелировании низших классов (III, IV, техническое) – нет.

Перейдём теперь к более тонкому понятию — фигуре планеты. Что это такое? Понятие фигуры планеты неоднозначно и может подразумевать под собой

- геометрическую фигуру простой и правильной формы (сфера, эллипсоид);
- фигуру конкретной эквипотенциальной (уровенной) поверхности (Земля геоид, Луна селеноид, Марс ареоид);
- фигуру её физической поверхности.

Исторически дисциплина развивалась точно также, от простого к сложному (см. [2, 4]), но мы начнём с конца, с современных взглядов. Снова будем рассматривать близкую нам Землю. Что такое физическая поверхность Земли?

Прежде всего, мы исключаем из этого понятия газовую оболочку Земли (атмосферу). В будущем нам с этим придётся постоянно считаться, поскольку измерения и деятельность человека точно также проходят в атмосфере, как и в гравитационном поле.

В областях суши физическая поверхность ограничена физической твёрдой оболочкой Земли. Эта же поверхность изображается на картах, аэро— и космо— снимках. На ней проходит большая часть деятельности человека.

Мировой океан занимает около 71% земной поверхности и находится в постоянном движении и возмущении, кторые вызваны разностями температуры, атмосферного давления, солёности, ветровыми нагонами и т.д. Поэтому за физическую поверхность здесь принимается невозмущенная поверхность воды, называемая морской топографической поверхностью.

Итак, в настоящее время, под фигурой Земли понимают форму её физической поверхности, которая образуется в областях суши поверхностью твёрдой оболочки Земли, а на территории океанов и морей – их невозмущенной поверхностью.

Физическая поверхность Земли является очень сложной, не всегда однозначно определена и не имеет строгого математического описания. Вместо неё, а также для решения ряда научных и практических задач за приближённую фигуру Земли может быть принята одна из уровенных поверхностей силы тяжести, которая близка (но не совпадает) к невозмущенной поверхности окезна

При решении целого ряда научных и практических задач можно использовать еще более простую фигуру Земли, эллипсоид или сферу. Эллипсоид вращения является основой для геодезической системы координат. Определение параметров (геометрических и физических) такого эллипсоида, близкого к геоиду, является одной из современных задач теории фигуры Земли.

Что значит определить поверхность Земли? Что вообще значит определить и задать геометрическую поверхность? В геодезии в настоящее время под определением физической поверхности Земли подразумевается определение положения её точек в единой системе координат.

3 Системы координат

Вообще говоря, сама задача установления системы координат в настоящее время не входит в задачи теории фигуры Земли, хотя и тесно с ней связана.

3.1 Прямоугольная система координат

В геодезии используют прямоугольную систему координат, начало O которой находится в центре масс Земли, ось Z направлена по оси вращения Земли, ось X совмещена с линией

пересечения плоскостей экватора и начального меридиана, ось Y дополняет систему до правой[1]. Это геоцентрическая или общеземная система координат. В ней положение точек определяется по всей Земле. Если начало системы координат по той или иной причине смещено относительно центра масс, то система называется референцной.

3.2 Сферическая система координат

Сферические (полярные) координаты определяются геоцентрической широтой Φ (или полярным расстоянием ϑ), долготой Λ и полярным радиус—вектором r. Геоцентрической широтой Φ называется угол между радиусом—вектором заданной точки и плоскостью экватора. Долгота Λ есть угол между плоскостью меридиана заданной точки и плоскостью меридиана, принятого в качестве начального. Полярное расстояние ϑ является дополнением широты Φ до 90°:

$$\vartheta = 90^{\circ} - \Phi.$$

Сферические координаты связаны с прямоугольными следующими соотношениями

$$X = r \cos \Phi \cos \Lambda,$$

$$Y = r \cos \Phi \sin \Lambda,$$

$$Z = r \sin \Phi,$$

или

$$X = r \sin \theta \cos \Lambda,$$

$$Y = r \sin \theta \sin \Lambda,$$

$$Z = r \cos \theta.$$

3.3 Астрономические координаты

Астрономичесие координат естественным образом возникают при измерениях в гравитационном поле и определяют направление силовой линии поля силы тяжести. Астрономическая широта φ – это дополнение до 90° угла между линией, параллельной оси вращения Земли, и отвесной линией. Долгота равна двугранному углу между плоскостями начального астрономического меридиана и астрономического меридиана данной точки.

3.4 Эллипсоид. Геодезическая система координат

Во многих геодезических приложениях применяют системы геодезических координат B, L, H, связанных с выбранным эллипсоидом вращения. Эллипсоид обычно задается его большой полуосью a и сжатием α . Вспомним, что

$$\alpha = \frac{a-b}{a}, \quad e^2 = \frac{a^2 - b^2}{a^2},$$

где b — малая полуось эллипсоида, e — его первый эксцентриситет.

Геоодезическая широта B для некоторой точки P есть угол между опущенной из P нормалью к эллипсоиду и плоскостью экватора. Геодезическая долгота L — угол между плоскостью начального меридиана и плоскостью меридиана точки P (равна сферической долготе Λ). Геодезическая высота H — (кратчайшее) расстояние от точки P по нормали до поверхности эллипсоида.

Важно отметить, что именно геодезическая система координат подразумевается, когда мы говорим об определении физической поверхности Земли в единой системе координат. Подумайте, всегда ли в этой системе координат поверхность Земли может быть определена однозначно?

Геодезические координаты связаны с прямоугольными следующими соотношениями

$$X = (N+H)\cos B \cos L,$$

$$Y = (N+H)\cos B \sin L,$$

$$Z = (N+H-Ne^{2})\sin B,$$

где N — радиус кривизны первого вертикала, который, как известно из курса сфероидической геодезии, вычисляется так

$$N = \frac{a}{\sqrt{1 - e^2 \sin^2 B}}.$$

Геодезическая долгота L совпадает со сферической долготой Λ , если начала и ориентация координатных осей систем совпадают. Геоцентрическая широта отличается от геодезической. Опуская вывод (см. лекции), приведем здесь окончательное выражение

$$\operatorname{tg} \Phi = \left(1 - e^2\right) \operatorname{tg} B.$$

В некоторых геодезических выводах также полезно использовать приведенную широту u — геоцентрическую широту точки P', которая является проекцией точки P_0 (пересечение нормали точки P с эллипсоидом) на вспомогательную сферу радиуса a (большая полуось) нормальной к плоскости экватора. Приведенная широта связана с геодезической следующим выражением (вывод см. в лекциях):

$$\operatorname{tg} u = \sqrt{1 - e^2} \operatorname{tg} B.$$

Геодезические широта и долгота отличаются от соответствующих астрономических координат, поскольку направление отвесной линии отличается от направления нормали к эллипсоиду. Угол между направлением отвесной линии и нормалью к эллипсоиду называется астрономогеодезическим уклонением отвеса. Удобно этот угол разложить на две составляющие — проекции угла в плоскости первого вертикала η и в плоскости меридиана ξ , тогда

$$\xi = \varphi - B,$$

 $\eta = (\lambda - L)\cos\varphi.$

В дальнейшем мы познакомимся и с другими видами уклонения отвеса.

4 Связь с другими науками

Математика. Изучение гравитационного поля и фигуры Земли — сложная задача. В ходе курса мы будет пользоваться различными разделами математики, с некоторыми из которых вам придется познакомиться впервые:

- векторный анализ,
- теория поля,
- теория ньютоновского потенциала,
- специальные функции,
- дифференциальные уравнения, обыкновенные и в частных производных,
- краевые задачи.

Исторически так сложилось, как и в случае теории математической обработки геодезических измерений, обогатившей теорию вероятностей, теория фигуры Земли обогатила многие разделы математики, которые теперь прочно служат её основой.

Геофизика и геология. Гравитационное поле на поверхности Земли отражает распределение масс внутри неё. И хотя, как мы очень скоро убедимся, одних только гравиметрических данных недостаточно для изучения внутреннего строения, они, наряду с другими геоифизическими методами, служат важным источником информации.

Гравиметрический метод является одним из основных при поиске и разведке полезных ископаемых. Высокоточные регулярные измерения используются для монторинга месторождений в процессе добычи нефти и газа. **Археология и строительство.** Локальная информация о гравитационном поле может быть полезна для поиска пустот (карст), провалов, древних подземных ходов и тоннелей, объектов археологического наследия.

Гляциология и уровень моря. Океанология. Таяние ледников, вызванное изменением климата, уменьшает их массу, следовательно, меняется и гравитационное поле. По спутниковым гравиметрическим данным (миссия GRACE) получены важнейшие данные о ледниках Гренландии и Антарктиды. Таяние льдов вызывает рост среднего уровня Мирового океана, следовательно, изменение высоты морской топографической поверхности, то есть физической поверхности Земли. Эти процессы изучаются методом спутниковой альтиметрии.

Гидрология. Перераспределение водных масс на всей поверхности Земли вызвано не только таянием льдов, но и другими климатическими явлениями. Локальные измерения слы тяжести позволяют изучать местный гидрологический режим, а спутниковые гравиметрические миссии — региональный и даже глобальный.

Орбиты ИСЗ. Для вычисления орбит искусственных спутников для определения его положения относительно центра масс Земли необходимо знание гравитационного поля вне поверхности Земли (на высоте полета спутника). Этот нюанс свидетельствует о том, что, казалось бы, чисто геометрический метод определения координат при помощи глобальных навигационных спутниковых систем, на самом деле также связан с гравитационным полем.

Кроме всего вышеперечисленного, высокоточные измерения силы тяжести используются в метрологии и при изучении геодинамических процессов, а также в других областях науки и техники.

Список литературы

- [1] Л. В. Огородова. Высшая геодезия. Часть III. Теоретическая геодезия: Учебник для вузов. М.: Геодезкартиздат, 2006, с. 384.
- [2] Л. В. Огородова. Основы теории потенциала. Гравитационное поле Земли, Луны и планет. Учебное пособие. М.: Изд-во МИИГАиК, 2013, с. 108.
- [3] Л. П. Пеллинен. Высшая геодезия (Теоретическая геодезия). М.: Недра, 1978, с. 264.
- [4] А. П. Юзефович. Поле силы тяжести и его изучение: учебное пособие. М.: Изд-во МИИГАиК, 2014, с. 194.