Complex Variables Qualifying Exam Fall 1994

- **1.** Let U be open $\subset \mathbb{C}$, $a \in U$, f holomorphic in $U \setminus \{a\}$.
 - (i) What does it mean to say f has a pole at a?
 - (ii) Show that if a is a pole, then $f(U\setminus\{a\})$ is a "neighborhood of ∞ ", that is, its complement in $\mathbb C$ is compact.

HINT: Consider 1/f(z) for z near a.

(iii) Suppose f has a simple pole at a. Prove that

$$\lim_{r \to 0} \int_{\gamma_r} f(z)dz = i\pi Res(f, a),$$

where $\gamma_r(t) := re^{it} + a$ for r > 0 and $0 \le t \le \pi$.

2. The holomorphic function f has an isolated singularity at z_0 and for some $a, M \in \mathbb{R}$ satisfies

$$|f(z)| \le M|z - z_0|^a$$

near z_0 . Show that

- (i) z_0 is a removable singularity if a > -1 and
- (ii) if a satisfies $-n < a \le -1$ for some $n \in \mathbb{N}$, then z_0 is a pole of order at most n-1.

HINT: Use the Cauchy estimates.

- 3. Suppose $\int_{\gamma} f = 0$ for all piecewise smooth loops γ in a region Ω and for all holomorphic functions f in Ω . Show how to **construct** a holomorphic logarithm for any given zero-free holomorphic function in Ω .
- **4.** Explain why the identity function f(z) := z has no holomorphic logarithm in $\Omega := \{z \in \mathbb{C} : 0 < |z| < 1\}$.
- **5.** Ω is an open subset of $\mathbb C$ and $f:\Omega\to\mathbb C$ satisfies $e^{f(z)}=z$ for all $z\in\Omega$ and is continuous on Ω . Show that f is in fact holomorphic in Ω .
- **6.** f is holomorphic by not constant in a neighborhood of a and f(a) = 0. Show that a must be an isolated zero; that is, if r > 0 is small enough, f has no zero in $\{0 < |z a| < r\}$.

HINT: Look at the Taylor series of f at a.

7. (i) The entire function f satisfies

 $z^{-n}f(z)$ is bounded for some $n \in \mathbb{N}$.

Show that f is a polynomial of degree no greater than n.

HINT: Cauchy estimates.

(ii) The entire function F satisfies

$$|F(z)| \to \infty \text{ as } |z| \to \infty.$$

Show that F is a polynomial.

HINT: F has only finitely many zeros (proof?). So for an appropriate polynomial P, f := P/F satisfies the hypothesis of (i) and it has no zeros.