

Epidemiology, Biostatistics and Prevention Institute, Epidemiology Department +41 44 634 46 34

www.ebpi.uzh.ch

Multiple Imputation using STATA

Sarah R Haile (sarah.haile@uzh.ch)

Version 1.1 of March 3, 2016

Contents

1	Basic steps	2
2	Complete Cases analysis	2
3	Logistic regression 3.1 A basic example	4 4 4 4 5 8
4	Linear regression	12
5	Cox proportional hazards regression	15
6	Multiple imputation with clustered data	18
7	Postestimation commands after mi estimate 7.1 Testing coefficients	19 19 19
8	Frequently Asked Questions 8.1 Which variables should be included in the mi impute step? 8.2 Are they any additional variables I should include in mi impute when preforming Cox regression? 8.3 Which method do I use to impute the variables? 8.4 How many imputations? 8.5 Note on categorical variables 8.5.1 Other things to consider	21 21 21 21 21 21 22
A	Recent Changes	23

Multiple imputation (MI) is a common statistical method used to analyze datasets where some values are missing. In this document we describe multiple imputation briefly, and show how to perform the analysis in STATA. The main and extended examples show a dataset where the outcome is binary, and logistic regression is used. After that, we show shorter examples for linear regression and Cox proportional hazards regression.

For more information about multiple imputation, you might find these other references helpful:

```
1. UW-Madison (2013) (http://www.ssc.wisc.edu/sscc/pubs/stata_mi_intro.htm)
```

```
2. Stata Corp (2013) (http://www.stata.com/manuals13/mi.pdf)
```

```
3. White et al. (2011) (http://doi.org/10.1002/sim.4067)
```

- 4. Royston and White (2011) (http://www.jstatsoft.org/v45/i04), and
- 5. White and Royston (2009) (http://doi.org/10.1002/sim.3618).

Papers 3 and 4 specifically deal with MI using STATA, however they use an older version of the code. Nevertheless they provide a good overview. Finally, paper 5 discusses multiple imputation when survival data are present.

1 Basic steps

The basic steps in STATA are as follows:

```
mi set wide Declare your data to be mi, and tell STATA which "style" to use.
```

mi register imputed Tell STATA which variable need to be imputed (also: mi passive)

mi impute chained Impute all missing variables in one step.

mi estimate Analyze each of the imputed datasets and combine the results.

2 Complete Cases analysis

The mheart5 dataset has 6 variables, two of which have missing observations: age (n = 12), and bmi (n = 28).

```
. webuse mheart5 (Fictional heart attack data)
```

. describe

```
Contains data from http://www.stata-press.com/data/r13/mheart5.dta
  obs:
                 154
                                                Fictional heart attack data
 vars:
                   6
                                                19 Jun 2012 10:50
               1,848
 size:
                         display
              storage
                                    value
                         format
                                    label
                                               variable label
variable name
                type
```

Obs<.

attack	byte	%9.0g	Outcome (heart attack)
smokes	byte	%9.0g	Current smoker
age	float	%9.0g	Age, in years
bmi	float	%9.0g	Body Mass Index, kg/m^2
female	byte	%9.0g	Gender
hsgrad	byte	%9.0g	High school graduate

Sorted by:

. misstable summ, all

					1		
 Variable 	Obs=.	Obs>.	Obs<.	+ +	Unique values	Min	Max
attack			154	ŀ	2	0	1
smokes			154	-	2	0	1
age	12		142	-	142	20.73613	83.78423
bmi	28		126	-	126	17.22643	38.24214
female			154	-	2	0	1
hsgrad			154	 	2	0	1

First, let's do the usual (complete cases) analysis of the association of our 5 predictors on the *probability of a heart attack* (attack), using only the complete cases.

. logistic attack smokes age bmi hsgrad female

Logistic regression Log likelihood = -75.802314					r of obs i2(5) > chi2 o R2	= = =	126 22.56 0.0004 0.1295
attack	Odds Ratio	Std. Err.	z	P> z	 [95%	Conf.	Interval]
smokes	4.545809	1.844206	3.73	0.000	2.052	505	10.06788
age	1.030523	.0181677	1.71	0.088	.9955	232	1.066754
bmi	1.104937	.0553865	1.99	0.047	1.001	543	1.219004
hsgrad	1.381645	.6161839	0.72	0.469	.576	473	3.311418
female	1.321851	.6152168	0.60	0.549	.5309	038	3.291163
_cons	.0050166	.0090925	-2.92	0.003	.0001	438 	.1750652

We would like to see if our results are affected by the missing values in age and bmi.

3 Logistic regression

3.1 A basic example

Now, we use MI to guess what the missing age and bmi "might have been", and then use our imputed datasets to estimate the regression coefficients again.

3.1.1 Declare your data to be mi using mi set.

```
mi set wide
```

We used mi set wide below to set the data as mi, but there are other "styles" (see help mi styles) we could have used. The wide style produces new imputed variables as we would expect to see. However, it is not the most efficient of the 4 styles, and may not work very well for very large datasets. If you have already set your mi data as wide and want to convert them, try mi convert mlong, clear or mi convert flongsep, clear.

```
mi describe
mi misstable summarize
tab _mi_miss
* tab _mi_miss _mi_m
```

At any point, you can use mi describe to see what variables have been imputed or mi misstable summarize to examine which variables have missing observations. Among the variables that are created is _mi_miss, which tells you whether the observation has missing values or not, and, if you are using style mlong or flong, _mi_m, which indicates which imputed dataset an observation belongs to, and _mi_id, indicating the subject.

3.1.2 Tell mi which variables we want to impute

Tell mi which variables have missing values that we want to impute. We'll look at the other main option (passive) in a later example. For now, just tell STATA which variables with missing values you want to include in your regression models.

```
mi register imputed age bmi
```

3.1.3 Impute the missing observations using mi impute.

There are various methods used to impute missing values for multiple variables at once. Unless you only have 1 continuous predictor with missing values, we recommend using mi impute chained ("multivariate imputation using chained equations") and specifying which regression method you want to use for each variable with missing values. Here we use the regress command to impute 20 additional datasets for both age and bmi, using all other variables (including the outcome!) as predictors in the imputation procedure (see Section 8.1). We also used a seed here (with option rseed(#), or alternately with the command set seed #) to ensure that we will get the same results any time we run the code. For more on which regression methods to use or how many datasets to impute see Sections 8.3 and 8.4.

```
mi impute chained (regress) age bmi = attack smokes hsgrad female, add(20) rseed(158720)
```

3.1.4 Run our regression models on imputed data, and combine the results using mi estimate.

The MI estimation procedure mi estimate by default only prints the estimated coefficients. If you want odds ratios, use the option or (for other commands, the usual eform, hr, rrr, etc are available), and to save the estimates as miest use saving(miest, replace). For more details on the variability seen in the analysis of the imputed datasets, use the vartable option. See Section 7) if are interested in making predictions or testing coefficients after mi estimate, in which case be sure to use the saving() option.

```
mi estimate, or saving(miest, replace): logistic attack smokes age bmi hsgrad female
mi predict xbmi using miest
mi xeq: generate predprobmi = invlogit(xbmi)
mi xeq: generate ORmi = exp(xbmi)
 . mi set wide
 . mi describe
   Style: wide
           last mi update 06aug2015 10:48:57, 0 seconds ago
   Obs.:
           complete
                            154
                            0 (M = 0 imputations)
           incomplete
                             154
           total
   Vars.: imputed: 0
```

passive: 0

regular: 0

system: 1; _mi_miss

(there are 7 unregistered variables)

. mi misstable summarize

Variable	 Obs=.	0bs>.	Obs<.	I	Unique values	Min	Max
age bmi predprobcc	12 28		142 126 126	 	142 126 126	20.73613 17.22643 .1455459	83.78423 38.24214 .9103615
	· 			·			

. tab _mi_miss

Ohec

Cum.	Percent	Freq.	_mi_miss F	
100.00	100.00	154	0	
	100.00	154	Total	

•

. mi register imputed age bmi

. mi describe

Style: wide

last mi update 06aug2015 10:48:57, 0 seconds ago

Obs.: complete 126

incomplete 28 (M = 0 imputations)

-----total 154

Vars.: imputed: 2; age(12) bmi(28)

passive: 0

regular: 0

system: 1; _mi_miss

(there are 5 unregistered variables)

.

. set seed 29390

. mi impute chained (regress) age bmi = attack smokes hsgrad female, add(20) note: missing-value pattern is monotone; no iteration performed

Conditional models (monotone):

age: regress age attack smokes hsgrad female bmi: regress bmi age attack smokes hsgrad female

Performing chained iterations ...

Multivariate imputation Imputations = 20 Chained equations added = 20 Imputed: m=1 through m=20 updated = 0

burn-in = 0

age: linear regression
bmi: linear regression

	Observations per m						
Variable	-	Incomplete	-	Total			
age bmi	142 126	12 28	12 28	154 154			

(complete + incomplete = total; imputed is the minimum across m
 of the number of filled-in observations.)

. mi describe

Style: wide

last mi update 06aug2015 10:48:57, 0 seconds ago

Obs.: complete 126

incomplete 28 (M = 20 imputations)

total 154

Vars.: imputed: 2; age(12) bmi(28)

passive: 0

regular: 0

system: 1; _mi_miss

(there are 5 unregistered variables)

. $\mbox{mi estimate, or saving(miest, replace): logistic attack smokes age bmi hsgrad}$

> female

Multiple-imputat	ion estimates	Imputati	ons =	20
Logistic regress	sion	Number o	f obs =	154
		Average	RVI =	0.0779
		Largest	FMI =	0.2439
DF adjustment:	Large sample	DF:	min =	331.67
			avg =	150865.39
		1	max =	759562.93

Model F test:	Equal FMI	F(5,12152	2.8) =	3.15
Within VCE type:	OIM	Prob > F	=	0.0076

attack	Odds Ratio	Std. Err.	t	P> t	[95% Conf.	Interval]
smokes	3.180032	1.134821	3.24	0.001	1.580028	6.40027
age	1.030013	.0167176	1.82	0.069	.9977382	1.063331
bmi	1.103508	.0563454	1.93	0.055	.9980537	1.220105
hsgrad	1.140957	.4595155	0.33	0.743	.5181403	2.512414
female	.9063112	.3739501	-0.24	0.812	.4037061	2.034648
_cons	.0071372	.0126159	-2.80	0.005	.0002214	.2301282

. mi predict xbmi using miest
(option xb assumed; linear prediction)

- . quietly: mi xeq: generate predprobmi = invlogit(xbmi)
- . quietly: mi xeq: generate ORmi = exp(xbmi)

We see in the graph that the predicted probabilities are quite close, but the MI probabilities are slight lower than those in the CC analysis.

3.2 Extended example

Now let's suppose that we want to consider age and bmi as categorical variables, and further that smoking status has some missing values. Here, we probably should impute age and bmi as contin-

uous variables, and then convert the imputed variables to age55 and bmicut using the mi passive command (also see Section 8.5). (Note that you will get an error if, for example, age55 has been defined in your dataset before you define it with mi passive. Therefore, you should rename these variables, or wait to define them until you perform the mi analysis.)

When we impute the 3 variables, we need to also tell to use logit to impute values for smokes, rather than regress. We can do that by writing

mi impute chained (regress) age bmi (logit) smokes2 = attack hsgrad female, add(20)

- . webuse mheart5
 (Fictional heart attack data)
- . gen smokes2 = smokes
- . replace smokes2 = . if age > 60 & female==1 (15 real changes made, 15 to missing)
- . tab smokes smokes2, miss

Current	1	smokes2		
smoker	0	1		Total
	-+			+
0	84	0	6	90
1	0	55	9	l 64
	-+			+
Total	l 84	55	15	1.

. mi set wide

. mi misstable summarize

					UDS<.		
Variable	•	Obs>.	Obs<.	1	Unique values	Min	Max
age	12		142	+- 	142	20.73613	83.78423
bmi	28		126	1	126	17.22643	38.24214
smokes2	15		139	I	2	0	1

. mi register imputed age bmi smokes2

. mi passive: egen age55 = cut(age), at(20 55 85) label m=0:

(12 missing values generated)

. mi passive: egen bmicut = cut(bmi), at(10 16 18.5 25 30 35 40) label

m=0:

(28 missing values generated)

.

. mi impute chained (regress) age bmi (logit) smokes2 = attack hsgrad female, add(20)

Conditional models:

age: regress age i.smokes2 bmi attack hsgrad female smokes2: logit smokes2 age bmi attack hsgrad female bmi: regress bmi age i.smokes2 attack hsgrad female

Performing chained iterations ...

Multivariate imputation Imputations = 20
Chained equations added = 20
Imputed: m=1 through m=20 updated = 0

burn-in = 10

age: linear regression
bmi: linear regression
smokes2: logistic regression

(complete + incomplete = total; imputed is the minimum across m
 of the number of filled-in observations.)

. mi describe

Style: wide

last mi update 06aug2015 10:49:16, 5 seconds ago

Obs.: complete 114

incomplete 40 (M = 20 imputations)

-----total 154

Vars.: imputed: 3; age(12) bmi(28) smokes2(15)

passive: 2; age55(12) bmicut(28)

regular: 0

system: 1; _mi_miss

(there are 4 unregistered variables; attack smokes female hsgrad)

. mi estimate, or saving (miest2, replace): logistic attack smokes2 age55 bmicut hs grad female $\,$

Multiple-imputati	ion estimates	Imputations	=	20
Logistic regression		Number of obs	=	126
		Average RVI	=	0.0424
		Largest FMI	=	0.0888
DF adjustment:	Large sample	DF: min	=	2451.89
		avg	=	57738.66
		max	=	154114.16
Model F test:	Equal FMI	F(5,46357.8)	=	3.25
Within VCE type:	OIM	Prob > F	=	0.0062

attack	Odds Ratio	Std. Err.	t	P> t	[95% Conf.	Interval]
smokes2	4.876346	2.134777	3.62	0.000	2.066663	11.50587
age55	1.561686	.6232266	1.12	0.264	.7143059	3.41431
bmicut	1.542118	.3785125	1.76	0.078	.9532098	2.494864
hsgrad	1.526762	.6917138	0.93	0.350	.6282369	3.710387
female	1.573723	.7395976	0.96	0.335	.6262893	3.954407
_cons	.0795238	.0707164	-2.85	0.004	.0139169	.4544137

[.] mi predict xbmi2 using miest2
(option xb assumed; linear prediction)
(28 missing values generated)

. quietly: mi xeq: generate predprobmi2 = invlogit(xbmi2)

4 Linear regression

In this example, we examine how BMI is associated with the other covariates, again using the mheart5 dataset. Here, we compare the results obtained when we impute age and bmi with the regress command, with those obtained using the pmm (predictive mean matching).

. webuse mheart5
(Fictional heart attack data)

. regress bmi female age smokes attack hsgrad

Source	SS	df	MS	Number of obs = 12	26
+				F(5, 120) = 0.9	90
Model	73.1449691	5	14.6289938	Prob > F = 0.485	53
Residual	1956.28756	120	16.3023963	R-squared = 0.036	30
+				Adj R-squared = -0.004	₽1
Total	2029.43253	125	16.2354602	Root MSE = 4.037	76

bmi	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
female	109108	.8372703	-0.13	0.897	-1.766845	1.548629
age	0240674	.0318764	-0.76	0.452	0871805	.0390457
smokes	2470361	.7820658	-0.32	0.753	-1.795472	1.3014
attack	1.545	.7775581	1.99	0.049	.0054888	3.084511
hsgrad	4092541	.8225038	-0.50	0.620	-2.037754	1.219246
_cons	26.31799	1.961478	13.42	0.000	22.4344	30.20158

- . mi set wide
- . mi register impute age bmi
- . mi impute chained (regress) age bmi, add(20)
 note: missing-value pattern is monotone; no iteration performed

Conditional models (monotone):

age: regress age
bmi: regress bmi age

Performing chained iterations ...

Multivariate imputation	Imputations =	20
Chained equations	added =	20
<pre>Imputed: m=1 through m=20</pre>	updated =	0
Initialization: monotone	<pre>Iterations =</pre>	0

burn-in = 0

age: linear regression
bmi: linear regression

	Observations per m					
Variable	Complete	Incomplete	Imputed	Total		
age bmi	142 126	12 28	12 28	154 154		

(complete + incomplete = total; imputed is the minimum across m
 of the number of filled-in observations.)

. mi estimate: regress bmi female age smokes attack hsgrad

Multiple-imputati	ion estimates	Imp	utations	=	20
Linear regression	ı	Num	ber of obs	=	154
		Ave	rage RVI	=	0.2243
		Lar	gest FMI	=	0.2791
		Com	plete DF	=	148
DF adjustment:	Small sample	DF:	min	=	75.64
			avg	=	98.57
			max	=	118.80
Model F test:	Equal FMI	F(5, 136.4)	=	0.65
Within VCE type:	OLS	Pro	b > F	=	0.6606

bmi	 -	Coef.	Std. Err.	t 	P> t	[95% Conf.	_
female age	 	.0130089	.8064126	0.02 -0.69	0.987 0.489	-1.583796 0857989	1.609813 .0413518
smokes		1754602	.8069476	-0.22	0.828	-1.782759	1.431838
attack hsgrad	 	1.305557 2516483	.7720149 .8441186	1.69 -0.30	0.094 0.766	2277497 -1.927272	2.838864 1.423976
_cons	1	26.20658	1.891125	13.86	0.000	22.46062	29.95254

. mi impute chained (pmm) age bmi, add(20) replace note: missing-value pattern is monotone; no iteration performed

 ${\tt Conditional\ models\ (monotone):}$

age: pmm age
bmi: pmm bmi age

Performing chained iterations ...

Multivariate imputation Imputations = 40
Chained equations added = 20
Imputed: m=1 through m=40 updated = 20
Initialization: monotone Iterations = 0

burn-in =

age: predictive mean matching
bmi: predictive mean matching

1	Observations per m					
Variable	-	Incomplete	Imputed	Total		
age bmi	142 126	12 28	12 28	154 154		

(complete + incomplete = total; imputed is the minimum across m
 of the number of filled-in observations.)

. mi estimate: regress bmi female age smokes attack hsgrad

Multiple-imputat:	ion estimates	Im	outat	ions	=	40
Linear regression	ı	Nu	nber o	of obs	=	154
		Av	erage	RVI	=	0.0813
		La	gest	FMI	=	0.1095
		Con	plete	e DF	=	148
DF adjustment:	Small sample	DF		min	=	125.51
				avg	=	132.08
				max	=	138.33
Model F test:	Equal FMI	F(5,	145.1)	=	0.96
Within VCE type:	OLS	Pro	b > I	7	=	0.4452

bmi	Coef.	Std. Err.	t	P> t		Interval]
female age	166588 0375009	.7663968 .0295147	-0.22 -1.27	0.828 0.206	-1.681955 0958795	1.348779
smokes	.1029344	.7134225	0.14	0.886	-1.308559	1.514428
attack hsgrad	1.280091 0299699	.7186201 .7815607	1.78 -0.04	0.077 0.969	1420903 -1.576108	2.702273 1.516169
_cons	26.6825	1.805129	14.78	0.000	23.11263	30.25238

5 Cox proportional hazards regression

In the data we use here, the survival time and event indicator have already been set with stset. As this is already taken care of, we don't need to do this for our mi data. If, however, we had not set this information prior to starting our MI analysis with mi set, we would have to use the command mi stset instead of the usual stset. (The same is true for other set commands, like xtset.) Here we include two additional variables, HT and _d, in the imputation process. For more details see Section 8.2.

```
. webuse drugtr
(Patient Survival in Drug Trial)
. gen age2 = age
. replace age2 = . if (drug == 1 & age > 60)
(6 real changes made, 6 to missing)
. replace age2 = . if (drug == 0 & age < 50)
(3 real changes made, 3 to missing)
. describe
Contains data from http://www.stata-press.com/data/r13/drugtr.dta
                                               Patient Survival in Drug Trial
  obs:
                  48
 vars:
                   9
                                               3 Mar 2013 02:12
 size:
                 768
              storage
                        display
                                    value
variable name
                type
                        format
                                    label
                                               variable label
                                               Months to death or end of exp.
studytime
                int
                        %8.0g
died
                int
                        %8.0g
                                               1 if patient died
                                               Drug type (0=placebo)
drug
                int
                        %8.0g
                                               Patient's age at start of exp.
                int
                        %8.0g
age
_st
                byte
                        %8.0g
                        %8.0g
_d
                byte
_t
                byte
                        %10.0g
_t0
                byte
                        %10.0g
                float
                        %9.0g
age2
Sorted by:
     Note: dataset has changed since last saved
. misstable summ
                                                                Obs<.
                                                 | Unique
```

Variable	Obs=.	Obs>.	Obs<.	1	values	Min	Max
age2	9		39		18	47	67

- . * data set already has stset information
- . stcox drug age2, nolog

failure _d: died analysis time _t: studytime

Cox regression -- Breslow method for ties

=	39		Number	of ob	s =	39
=	25					
=	621					
			LR chi2	2(2)	=	29.31
= -60.864	1 773		Prob >	chi2	=	0.0000
Haz. Ratio	Std. Err.	Z	P> z	[95%	Conf.	Interval]
	= = = -60.864	= 25 = 621 = -60.864773 	= 25 = 621 = -60.864773	= 25 = 621 LR chi2 = -60.864773 Prob >	= 25 = 621 LR chi2(2) = -60.864773 Prob > chi2	= 25 = 621 LR chi2(2) = = -60.864773 Prob > chi2 =

 	naz. natio				[95% COIII.	Incervar]
 drug	.114668	.0633757	-3.92	0.000	.0388144 1.026836	

- . sts gen HT = na
- . mi set wide
- . mi register impute age2
- . mi impute chained (regress) age2 = HT _d drug, add(20) note: missing-value pattern is monotone; no iteration performed

Conditional models (monotone):

age2: regress age2 HT _d drug

Performing chained iterations ...

Multivariate imputation	Imputations =	20
Chained equations	added =	20
Imputed: m=1 through m=20	updated =	0
Initialization: monotone	<pre>Iterations =</pre>	0
	burn-in =	0

age2: linear regression

	Observations per m					
Variable	Complete	Incomplete	Imputed	Total		
age2	39	9	9	48		

(complete + incomplete = total; imputed is the minimum across m
 of the number of filled-in observations.)

. mi estimate, hr: stcox drug age2

Multiple-imputat	tion estimates	Im	outations	=	20
Cox regression:	Breslow method for t	ies Nu	mber of obs	=	48
		Ave	erage RVI	=	0.0992
		La:	rgest FMI	=	0.1501
DF adjustment:	Large sample	DF	: min	=	865.68
			avg	=	22335.80
			max	=	43805.93
Model F test:	Equal FMI	F(2, 3791.4)	=	12.28
Within VCE type	: OIM	Pro	ob > F	=	0.0000

_t	Haz. Ratio	Std. Err.	t	P> t	[95% Conf.	Interval]
0	.1562903 1.127032		-4.04 2.54		.0635593 1.02739	.3843125 1.236338

6 Multiple imputation with clustered data

Missing data of course also occur in settings with clustered or repeated data, where random effects should be included, as in with the mixed command (formerly xtmixed). The STATA FAQ (Eddings and Marchenko, 2015) suggests 3 strategies for dealing with such clustering:

- 1. Include indicator variables for clusters in the imputation model.
- 2. Impute data separately for each cluster.
- 3. Use a multivariate normal model to impute all clusters simultaneously.

Strategy 1 is appropriate if there are few clusters with many observations. Using the code from the STATA FAQ, this is equivalent to

```
use http://www.stata.com/support/faqs/data1, clear
mi set wide
mi register imputed x
mi impute regress x y i.cluster, add(5) noisily
mi estimate: mixed y x || cluster:
```

Note the use of i.cluster in the mi impute statement.

With Strategy 2, we allow the regression models in the imputation procedure to vary by cluster. In the above example, we replace the mi impute command with

```
mi impute regress x y, add(5) by(cluster)
```

If you try the imputation by(cluster) and run into problems, consider the option nostop in the by() option. Strategy 3 can be used if a) only continuous repeated outcomes have missing observations, and b) observations only occur at fixed timepoints. See the above FAQ for an example.

Multiple imputation in multilevel data is an area of ongoing methodological research. One additional possibility is including the clusters as random effects in the imputation step, which is not yet possible in STATA, but can be performed in some cases in R. See van Buuren and Groothuis-Oudshoorn (2011) for more details. If none of these 4 strategies work, and the estimated random effects are small in the complete cases model, you may consider ignoring the clustering in the imputation process.

7 Postestimation commands after mi estimate

After fitting and combining model results with mi estimate, you may wish to

- 1. perform tests of the (transformed) coefficients with mi test (mi testtransform); or
- 2. obtain (nonlinear) predictions with mi predict (mi predictnl).

Each of these postestimation commands assumes that results from mi estimate have been saved using the saving() option. Then the postestimation command calls the saved estimates with using. Suppose we want to save the estimates with the name "myest", and make sure that they can replace previous results with that name. We could then write:

```
mi estimate, saving(myest, replace): regress y x1 x2 x3
mi test x1 x2 using myest
mi predict using myest
```

7.1 Testing coefficients

To test that a subset of coefficients, for example x1 and x2, are *jointly* equal to zero (x1 = x2 = 0), use for example

```
mi estimate, saving(miest): regress y x1 x2
mi test x1 x2 using miest
```

If, however, we want to instead test that x1 = x2, we need to first tell mi estimate to also estimate diff = x1 - x2, and then use mi testtransform to test diff. For example, as shown in the example for mi test:

Note the use of parentheses around the definition of diff. Multiple differences or transformations would be defined individually in parentheses:

```
mi estimate (diff1: _b[x1]-_b[x2]) (diff2: _b[x1]-_b[x3]), saving(miest3): ... mi testtransform diff1 diff2 using miest3
```

Similar code could be used to estimate and test a ratio of two variables.

7.2 Generating predictions

Linear predictions xb_mi (default) and their standard errors se_mi (with the option stdp for "standard error of the prediction") can be calculated using

```
mi estimate, saving(mi_est): regress y x1 x2 x3
mi predict xb_mi using mi_est
mi predict se_mi using mi_est, stdp
```

For cases where the outcome is non-linear, it is not possible to predict, say, probabilities (for logistic regression) directly. We can however easily convert the linear predictions to predicted probabilities using invlogit as follows:

```
mi estimate, saving(mi_est2): logistic y x1 x2 x3
mi predict xb_mi using mi_est2
mi xeq: generate phat = invlogit(xb_mi)
```

A similar procedure with exp instead of invlogit should theoretically work for poisson or nbreg models. The non-linear version mi predictnl can additionally be used to calculate a wide range of statistics related to the coefficients (predict(), xb(), se(), var(), wald(), p(), ci()) as well as the imputation process (bvar() [between-imputation variance], wvar() [within-imputation variance], rvi() [relative-variance increase], fmi() [fraction of missing information], re() [relative efficiency]). All of these options require the name(s) of the new variable(s) within the parentheses. Of particular interest is perhaps the confidence interval:

```
mi predictnl xb_mi = predict(xb) using miest, ci(lower upper) fmi(fmi)
```

In this line of code, we have simultaneously predicted the linear predictor xb_mi, corresponding confidence limits lower and upper, and the fraction of missing information fmi.

The usual postestimation commands such as estat ic, estat gof, margins, predict and test do *not* work after mi estimate. While clear rules exist for how to combine estimated coefficients across imputed datasets, it is unclear how likelihood estimates, random effects estimates, covariance matrixes or \mathbb{R}^2 estimates, for example, should be combined. Thus, it is of great importance of consider issues related to model fit, variable selection, and so on prior to the multiple imputation process.

8 Frequently Asked Questions

8.1 Which variables should be included in the mi impute step?

All variables you were considering as predictors or confounders, as well as the outcome. White et al. (2011, Section 5) recommend using covariates and the outcome from the analysis models, as well as predictors of the incomplete variable. In general, you should include all variables and interactions in this step that you want to include in your final model, even if that means imputing more than just the outcome variable. In addition, if you plan on stratifying on any factors (e.g. sex), you should do this when you impute the data using the by() option (however it is not possible to both impute sex and perform the imputation by(sex)).

8.2 Are they any additional variables I should include in mi impute when preforming Cox regression?

All variables you were considering as predictors or confounders, as well as the outcome. White et al. (2011, Section 5) recommend using covariates and the outcome from the analysis models, as well as predictors of the incomplete variable. Further, White and Royston (2009) recommend using the

- the Nelson-Aalen estimate of the cumulative hazard (HT computed using: sts gen HT = na), as well as
- the event indicator (_d), which is created with stset command.

8.3 Which method do I use to impute the variables?

Assuming you have missing values in more than one variable, using mi impute chained to impute them all at once. Then, you have to specify in parentheses which type of regression (regress, logit, ologit, mlogit, poisson, nbreg, as well as pmm [good for continuous but skewed/non-normal variables], truncreg [for variables with a truncated range], intreg [interval censored]) you will use for each variable. The specific choice of regression methods here depends only on the type of variable with missing observations, and not on the method you will use in your final analysis. For example, we use regress here because age and bmi are continuous variables, even though we will use logistic to analyze associations with attack in the main analysis.

8.4 How many imputations?

White et al. (2011, Section 7.3) suggest a rule of thumb that we should impute at least 100 (incomplete / total) (that is, the percentage of incomplete cases, which we can find using mi describe). Here we have 28 / 154 = 0.18 incomplete cases. This would indicate we need at least 20 imputations.

8.5 Note on categorical variables

Be careful when setting the categories on imputed variables. I had a number of errors when imputing and using bmicut until I made the lowest category large enough that a) all subjects were in a category, and b) all category had at least a few subjects. In other words, make sure the lowest and highest categories are large enough to cover imputed values more extreme than in the original dataset. For example, starting the lowest category at say bmi = 13 may fail to include subjects if they have an imputed value of 12.5. On the other hand, if we have categories for bmi 10 to 14 and

bmi 14 to 16, we will have trouble with the mi estimate command if there are no subjects with bmi between 10 and 14.

8.5.1 Other things to consider

If your imputation step is taking a long time, you may want to use the dots option. If your imputation step is producing errors, try the noisily option to help you figure out where the problem is occuring.

References

EDDINGS, W. and MARCHENKO, Y. (2015). How can I account for clustering when creating imputations with mi impute?

URL http://www.stata.com/support/faqs/statistics/clustering-and-mi-impute/

ROYSTON, P. and WHITE, I. R. (2011). Multiple imputation by chained equations (MICE): Implementation in STATA. *Journal of Statistical Software* **45** 1–20.

URL http://www.jstatsoft.org/v45/i04

STATA CORP (2013). *STATA 13 Multiple Imputation Reference Manual*. Stata Press, College Station, TX. URL http://www.stata.com/manuals13/mi.pdf

UW-Madison, S. S. C. C. (2013). Multiple imputation in STATA: Introduction.

URL http://www.ssc.wisc.edu/sscc/pubs/stata_mi_intro.htm

VAN BUUREN, S. and GROOTHUIS-OUDSHOORN, K. (2011). mice: Multivariate imputation by chained equations in R. *Journal of Statistical Software* **45**.

URL https://www.jstatsoft.org/article/view/v045i03

WHITE, I. R. and ROYSTON, P. (2009). Imputing missing covariate values for the Cox model. *Statistics in Medicine* **28** 1982–1998.

URL http://dx.doi.org/10.1002/sim.3618

WHITE, I. R., ROYSTON, P. and WOOD, A. M. (2011). Multiple imputation using chained equations: Issues and guidance for practice. *Statistics in Medicine* **30** 377–399.

URL http://dx.doi.org/10.1002/sim.4067

A Recent Changes

Version 1.1

- multiple imputation for clustered data, where models with random effects are used;
- "postestimation" commands available after mi estimate.
- Frequently asked questions have been moved to a separate section.