

Comentário de Conjuntura Estimando um modelo de correção de erros entre a Produção de Veículos e a Produção Industrial

Vítor Wilher, Mestre em Economia e Cientista de Dados 07 de janeiro de 2020

Abstract

Nesse comentário, fazemos uma análise de cointegração entre a produção de veículos da ANFAVEA e a produção industrial divulgada pelo IBGE.

Contents

1	Pacotes e atualizações	2
2	Coleta de Dados	2
3	Visualização de Dados	2
4	Cointegração	4
5	Comentário	5
Re	eferências	6

1 Pacotes e atualizações

```
library(ggplot2)
library(xtable)
library(forecast)
library(gridExtra)
library(readxl)
library(magrittr)
library(scales)
library(sidrar)
library(vars)
library(dynlm)
```

2 Coleta de Dados

3 Visualização de Dados

Produção de Veículos

Fonte: ANFAVEA

Exportação de Veículos

Fonte: ANFAVEA

```
filter(veiculos, dates > '2002-01-01') %>%
  inner_join(industria, by='dates') %>%
  ggplot(aes(x=Produção...5/1000, y=geral))+
  geom_point()+
  geom_smooth(se=FALSE, method='lm', colour='red')+
```

```
labs(x='Produção de Veículos', y='Produção Industrial',
title='Produção de Veículos vs. Produção Industrial',
caption='Fonte: analisemacro.com.br')
```

Produção de Veículos vs. Produção Industrial

Fonte: analisemacro.com.br

4 Cointegração

```
data = filter(veiculos, dates > '2002-01-01') %>%
 inner_join(industria, by='dates') %>%
  dplyr::select("Produção...5", geral)
colnames(data) = c('veiculos', 'industria')
### Passo 01
reg <- lm(industria~veiculos, data=data)</pre>
ur <- ur.df(resid(reg), type='trend')</pre>
ur@teststat
##
                  tau3
## statistic -5.429977 9.874461 14.8087
unitrootTable(statistic='t', trend='ct')
        0.010 0.025 0.050 0.100 0.900 0.950 0.975 0.990
##
##
   25 -4.374 -3.945 -3.603 -3.238 -1.146 -0.820 -0.525 -0.173
## 50 -4.153 -3.795 -3.502 -3.181 -1.198 -0.882 -0.594 -0.251
## 100 -4.052 -3.727 -3.455 -3.153 -1.223 -0.911 -0.627 -0.289
## 250 -3.995 -3.687 -3.428 -3.137 -1.237 -0.929 -0.647 -0.311
## 500 -3.976 -3.673 -3.419 -3.132 -1.242 -0.935 -0.653 -0.318
## Inf -3.958 -3.660 -3.410 -3.127 -1.246 -0.940 -0.660 -0.326
## attr(,"control")
##
        table
                   trend statistic
                    "ct"
## "unitroot"
```

```
### Passo 02
data = ts(data, start=c(2002,01), freq=12)
resid <- ts(resid(reg), start=start(data), freq=12)
ecm <- dynlm(d(industria)~stats::lag(resid,-1)+d(veiculos), data=data)
stargazer(ecm, header=FALSE)</pre>
```

Table 1:

Table 1.		
	Dependent variable:	
	d(industria)	
stats::lag(resid, -1)	-0.245^{***}	
	(0.046)	
d(veiculos)	0.0001***	
	(0.00001)	
Constant	0.006	
	(0.241)	
Observations	214	
\mathbb{R}^2	0.653	
Adjusted R ²	0.649	
Residual Std. Error	3.530 (df = 211)	
F Statistic	198.212*** (df = 2; 211)	
Note:	*p<0.1; **p<0.05; ***p<0.01	

5 Comentário

Uma exceção ao caso de regressão espúria visto anteriormente vem à tona quando dois processos aleatórios compartilham a mesma tendência estocástica. Para ilustrar, considere, como Verbeek (2012), duas séries integradas de ordem 1, Y_t e X_t , e suponha que exista uma relação linear entre elas, dada por $Y_t = \beta X_t + \epsilon_{Yt}$. Isso implica no fato de existir algum valor de β tal que $Y_t - \beta X_t$ seja integrado de ordem zero, mesmo com as séries originais sendo ambas não estacionárias. Nesses casos, diz-se que as séries são **cointegradas** e as mesmas compartilham a mesma tendência. Para ilustrar, considere, como Verbeek (2012), duas séries integradas e as mesmas compartilham a mesma tendência.

Sendo um pouco mais formal, com base em Pfaff (2008), a ideia por trás do conceito de cointegração é \textbf{encontrar uma combinação linear entre duas variáveis I(d) de tal sorte que isso leve a uma variável de menor ordem de integração. Isto é,

Os elementos do vetor x_t são ditos cointegrados de ordem d, b, denominado por $x_t \sim CI(d,b)$, se todos os elementos de x_t são I(d) e o vetor $\alpha \neq 0$ existe tal que $z_t = \alpha' x_t \sim I(d-b)$, onde b > 0. O vetor α é então chamado cointegrante.

¹Para uma demostração detalhada, ver Enders (2009).

²Observe, por suposto, que a relação entre X_t e Y_t poderá ser caracterizada pelo vetor $[1, -\beta]'$.

Para os economistas, por exemplo, esse tipo de análise permite estabelecer relações de longo prazo entre variáveis não estacionárias. O problema, por suposto, passa a como estimar o vetor cointegrante e como modelar o comportamento dinâmico das variáveis I(d). Para resolver, vamos ilustrar o método de dois passos de Engle-Granger, exposto em Pfaff (2008). No primeiro passo, estimamos o seguinte modelo contendo variáveis não estacionárias de mesma ordem de integração³

$$y_t = \alpha_1 x_{t,1} + \alpha_2 x_{t,2} + \alpha_K x_{t,K} + z_t \tag{1}$$

para t=1,...,T, onde z_t é um termo de erro. O vetor cointegrante (K+1) $\hat{\alpha}$ estimado é dado por $\hat{\alpha} = [1, -\hat{\alpha}^*]'$, onde $\hat{\alpha}^* = (\hat{\alpha}_1, ..., \hat{\alpha}_K)$. Assim, acaso exista uma relação de cointegração entre as variáveis, z_t nada mais é do que o erro em relação ao **equilíbrio de longo prazo** entre elas. Nesse caso, z_t será necessariamente estacionário.⁴

Se conseguirmos evidências de que z_t é de fato estacionário, podemos passar adiante. O passo seguinte é especificar um modelo de correção de erros (ECM, no inglês). Para simplificar, vamos considerar, como em Pfaff (2008), o caso bivariado, onde y_t e x_t são cointegradas, sendo ambas I(1). O ECM é então especificado, de forma geral, como segue

$$\Delta y_{t} = \psi_{0} + \gamma_{1} z_{t-1}^{\hat{}} + \sum_{i=1}^{K} \psi_{1,i} \Delta x_{t-i} + \sum_{i=1}^{L} \psi_{2,i} \Delta y_{t-i} + \varepsilon_{1,t}$$

$$\Delta x_{t} = \xi_{0} + \gamma_{2} z_{t-1}^{\hat{}} + \sum_{i=1}^{K} \xi_{1,i} \Delta y_{t-i} + \sum_{i=1}^{L} \xi_{2,i} \Delta x_{t-i} + \varepsilon_{2,t}$$
(2)

$$\Delta x_t = \xi_0 + \gamma_2 \hat{z}_{t-1} + \sum_{i=1}^K \xi_{1,i} \Delta y_{t-i} + \sum_{i=1}^L \xi_{2,i} \Delta x_{t-i} + \varepsilon_{2,t}$$
(3)

onde $\hat{z_t}$ é o erro do modelo estimado em 1 e $\varepsilon_{1,t}$ $\varepsilon_{2,t}$ são ruídos brancos. Nesses termos, o ECM na equação 2 implica que mudanças em y_t são explicadas pela sua própria estória, mudanças defasadas em x_t e pelos erros obtidos da relação de equilíbrio no passo 1. O valor do coeficiente γ_1 determina, por suposto, a velocidade de ajustamento e deveria ser sempre negativo. De outra forma, o sistema poderia divergir da sua trajetória de equilíbrio de longo prazo.

Referências

Enders, W. 2009. Applied Econometric Times Series. Wiley Series in Probability and Statistics. Wiley. Pfaff, B. 2008. Analysis of Integrated and Cointegrated Time Series with R. Second. New York: Springer. Verbeek, M. 2012. A Guide to Modern Econometrics. Editora Wiley.

³A suposição implícita é que as séries são integradas de primeira ordem.

 $^{^4}$ Pelo fato de z_t ser uma variável estimada, é preciso testar a presença de raiz unitária com outros valores críticos. No R, esses valores podem ser obtidos com a função unitrootTable do pacote fUnitRoots.