Aufgabe 1 (????). Sei G die Isometriegruppe der Euklidische Ebene, unter der ein gleichseitiges Dreieck Δ invariant ist. Zeigen Sie, daß G zur symmetrischen Gruppe \mathfrak{S}_3 isomorph ist.

Aufgabe 2 (Frühjahr 1973). G sei eine Gruppe, Q(G) das Erzeugnis der Quadrate:

$$Q(G) := \langle g^2 ; g \in G \rangle.$$

- (a) Man bestimme die Elemente von $Q(\mathfrak{S}_4)$, wobei \mathfrak{S}_4 die symmetrische Gruppe vierten Grades ist.
- (b) Man beweise, daß Q(G) bei jedem Automorphismus von G im ganzen festbleibt.
- (c) Man bestätige, daß $Q(\mathfrak{A}_n) = \mathfrak{A}_n$ ist, wobei \mathfrak{A}_n die alternierende Gruppe n-ten Grades ist.
- (d) Man zeige: Hat G eine Untergruppe vom Index 2, so ist $Q(G) \neq G$.

Aufgabe 3 (Herbst 2013). Zeigen Sie, daß die alternierende Gruppe A_4 keine Untergruppe der Ordnung 6 beztzt.

Aufgabe 4 (Herbst 2013). (a) Eine Permutation sei das Produkt zweier disjunkter Zykel der teilerfremden Längen k und l. Welche Ordnung hat σ ?

(b) Sei $\alpha(n)$ die größte Elementordnung in der symmetrischen Gruppe S_n . Man zeige $\lim_{n\to\infty}\frac{\alpha(n)}{n}=\infty$.

Aufgabe 5 (??). Geben Sie eine Untergruppe von \mathfrak{S}_7 der Ordnung 21 an.