

## **Training and Test Set**

#### We want to use this data to train a RUL estimator

We will use 75% of the experiments for training, 25% for testing

```
In [2]: tr, ts = util.split_train_test_machines(data, tr_ratio=0.75, seed=42)
    print(f'#Examples: {len(tr)} (traning), {len(ts)} (test)')
    print(f'#Experiments: {len(tr["machine"].unique())} (traning), {len(ts["machine"].unique())}

#Examples: 45385 (traning), 15864 (test)
    #Experiments: 186 (traning), 63 (test)
```

We have more than enough data for training and for testing

#### What if we didn't?

Things would become more complicated, but there are a few options:

- Choose a less data-hungry approach
- Try to use lower-quality data (e.g. unsupervised data)
- Rely on external knowledge (empirical rules, physics...)

# Rescaling

## We will standardiza all input attributes and normalize the RUL

In [4]: tr\_s, ts\_s, nparams = util.rescale\_CMAPSS(tr, ts)
 tr\_s.describe()

#### Out[4]:

|                     | machine      | cycle        | <b>p1</b>     | p2            | р3            | s1            | s2            | s3            |
|---------------------|--------------|--------------|---------------|---------------|---------------|---------------|---------------|---------------|
| count               | 45385.000000 | 45385.000000 | 4.538500e+04  | 4.538500e+04  | 4.538500e+04  | 4.538500e+04  | 4.538500e+04  | 4.538500e+04  |
| mean                | 122.490955   | 133.323896   | 2.894775e-16  | 1.302570e-16  | 1.178889e-16  | 4.664830e-15  | 2.522791e-15  | 1.727041e-15  |
| std                 | 71.283034    | 89.568561    | 1.000000e+00  | 1.000000e+00  | 1.000000e+00  | 1.000000e+00  | 1.000000e+00  | 1.000000e+00  |
| min                 | 1.000000     | 1.000000     | -1.623164e+00 | -1.838222e+00 | -2.381839e+00 | -1.055641e+00 | -1.176507e+00 | -1.646830e+00 |
| 25%                 | 61.000000    | 62.000000    | -9.461510e-01 | -1.031405e+00 | 4.198344e-01  | -1.055641e+00 | -8.055879e-01 | -6.341243e-01 |
| 50%                 | 125.000000   | 123.000000   | 6.868497e-02  | 4.154560e-01  | 4.198344e-01  | -3.917563e-01 | -6.336530e-01 | -4.718540e-01 |
| 75%                 | 179.000000   | 189.000000   | 1.218855e+00  | 8.661917e-01  | 4.198344e-01  | 6.926385e-01  | 7.407549e-01  | 7.495521e-01  |
| max                 | 248.000000   | 543.000000   | 1.219524e+00  | 8.726308e-01  | 4.198344e-01  | 1.732749e+00  | 1.741030e+00  | 1.837978e+00  |
| 8 rows × 27 columns |              |              |               |               |               |               |               |               |

## **Building an MLP with Keras**

#### We will use the following function to build our model

- The output activation function can be specified when calling the code
- We build the layers one by one (in a list)
- For each of them we specify the number of neurons and the activation function

### This is an alternative method to use the Keras sequential API

## A Linear Regression Model for RUL Estimation

#### We will start by building a Linear Regressor

```
In [5]: hidden = []
nn = util.build_ml_model(input_size=(len(dt_in),), output_size=1, hidden=hidden, output_act:
util.plot_ml_model(nn)

Out[5]:

dense (Dense)

Input shape: (None, 24)

Output shape: (None, 1)
```

- The plot we obtain contains a few more details
- Since the Sequential object was able to process all layers in one go

## A Linear Regression Model for RUL Estimation

#### Next, we trigger the training process

We will use an early stoppping callback to prevent overfitting

```
In [6]: history = util.train_ml_model(nn, tr_s[dt_in], tr_s['rul'], epochs=20, validation_split=0.2
         nn.save('lr_model.keras')
         util.plot_training_history(history, figsize=figsize)
          0.12
          0.10
          0.08
          0.04
          0.02
                                                                                                17.5
                                                              10.0
         Final loss: 0.0142 (training), 0.0106 (validation)
```

#### An MLP for RUL Estimation

#### Let's switch to a Neural Network with 2 hidden layers



- Now we have two hidden layers with 16 neurons each
- The activation function for this is not displayed
- ...But we know we are using a ReLU

### An MLP for RUL Estimation

#### Let's train this new model



We are doing better with this one (but only slighly)

# **Evaluating Our Model**

## Let's check the prediction quality for our model



The Linear Regression model does not seem to work very well

# **Evaluating Regression Models**

### Here are the results for the deeper network



The deeper model does not work much better