# Simultech, Porto July 2018



# Comparison of Linear State Signal Shaping Model Predictive Control with Classical Concepts for Active Power Filter Design

Kathrin Weihe<sup>1,2</sup>, Carlos Cateriano Yáñez<sup>1,2</sup>, Georg Pangalos<sup>1</sup>, and Gerwald Lichtenberg<sup>2</sup>

<sup>1</sup>Fraunhofer ISIT, Application Center Power Electronics for Renewable Energy Systems, Steindamm 94, 20099 Hamburg 
<sup>2</sup>Hamburg University of Applied Sciences, Faculty Life Sciences, Ulmenliet 20, 21033 Hamburg

{kathrin.weihe, carlos.cateriano.yanez, georg.pangalos}@isit.fraunhofer.de, gerwald.lichtenberg@haw-hamburg.de

#### INTRODUCTION

- High order harmonics in the electrical grid introduced by switching converters need to be compensated to avoid damage and energy loss
- Classic active power filter (APF) controllers are capable of compensating harmonics, but are not flexible under variable load scenarios
- A classic well-tested method to compensate harmonics relies on the instantaneous reference frame (IRP) theory
- A new model predictive control approach which uses shape classes (LSSS MPC) could be utilized to compensate harmonics without the need to design filters for different load scenarios

#### APPLICATION PROBLEM

- Could the novel LSSS MPC control approach improve the overall grid quality compared to a standard IRP APF controller?
- Solution: Evaluate simulations with both controller types under different load scenarios

## CLASSIC IRP CONTROLLER



- Clarke and p-q transformation are used
- A high pass filter extracts harmonics
- A hysteresis band controller steers the voltage source converter

#### PREDICTIVE CONTROLLER

An MPC solves the optimization problem

$$\min_{\Delta U} \|\mathbf{X}(k) - \Xi(k)\|_{\mathbf{Q}}^2 + \|\Delta \mathbf{U}(k)\|_{\mathbf{R}}^2.$$

An internal model enables prediction. The unconstrained solution leads to a linear closed loop behaviour.



#### 3-PHASE GRID MODEL



Active power filter in shunt configuration

 $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) + \mathbf{E}\mathbf{d}(t)$ 

WHITE-BOX MODELING

Linear state space model of the grid

#### LINEAR SHAPE CLASS

The shape of a sine wave is described by the homogeneous ODE

$$\frac{\mathrm{d}^2 x(t)^2}{\mathrm{d}t} + \omega^2 x(t) = 0$$

and approximated in discrete time with

$$\frac{\left(2+\omega^2 t_s^2\right) x(k)-5 x(k+1)+4 x(k+2)-x(k+3)}{t_s^2}=0.$$

From this difference equation the *linear* shape class<sup>3</sup> V is given as

$$\mathbf{V} = \frac{1}{t_2^2} \left( 2 + (\omega t_s)^2 \quad 5 \quad 4 \quad -1 \right) \in \mathbb{R}^{1 \times 4} .$$

The state error weight matrix Q is built using V by transferring the control goal to the optimization problem

$$\min_{\mathbf{X}(k)} (\mathbf{VX}(k))^2$$
,

where

$$X(k) = (x(k) x(k+1) x(k+2) x(k+3))^{T}$$

for all times k.

<sup>3</sup>Cateriano Yáñez, C., Pangalos, G., and Lichtenberg, G. (2018). An approach to linear state signal shaping by quadratic model predictive control. In *European Control Conference (ECC) 2018* 

## SIMULATION STUDIES

IRP APF harmonic current compensation:



#### LSSS MPC harmonic current compensation:



#### **Total harmonic distortion (THD):**



Results for different load scenarios:

| Load     | THD (V <sub>f</sub> ) |       | THD (i <sub>f</sub> ) |       |
|----------|-----------------------|-------|-----------------------|-------|
| scenario | IRP                   | MPC   | IRP                   | MPC   |
| 100 Ω    | 0.65%                 | 0.17% | 4.35%                 | 0.78% |
| 9Ω       | 0.45%                 | 0.35% | 0.75%                 | 1.57% |
| 2Ω       | 1.15%                 | 0.35% | 3.75%                 | 1.33% |

#### CONCLUSION

- The LSSS MPC approach has the potential to successfully control an APF
- Classic IRP controllers rely on high pass filter design to achieve good compensation results in a given load scenario
- The LSSS MPC is capable of adapting to a wider variety of load scenarios



where

 $\mathbf{A} \in \mathbb{R}^{3 \times 3}$ ,  $\mathbf{B} \in \mathbb{R}^{3 \times 1}$ ,  $\mathbf{E} \in \mathbb{R}^{3 \times 1}$ .

 $\mathbf{x}(t) = \begin{pmatrix} v_I & \frac{di_c}{dt} & \frac{di_l}{dt} \end{pmatrix}^\mathsf{T} \in \mathbb{R}^3 \qquad u(t) = \frac{\mathsf{d}^2 i_c}{\mathsf{d}t^2} \\ d(t) = \frac{\mathsf{d}^2 i_l}{\mathsf{d}t^2}$