BEST AVAILABLE COPY

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 5 June 2003 (05.06.2003)

PCT

(10) International Publication Number WO 03/046923 A1

- (51) International Patent Classification7: G11C 11/22, 7/10, 8/18
- (21) International Application Number: PCT/NO02/00389
- (22) International Filing Date: 29 October 2002 (29.10.2002)
- (25) Filing Language:

English

(26) Publication Language:

English

- (30) Priority Data: 20015879
 - 30 November 2001 (30.11.2001) NO
- (71) Applicant (for all designated States except US): THIN FILM ELECTRONICS ASA [NO/NO]; P.O. Box 1872 Vika, N-0124 Oslo (NO).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): BRÖMS, Per [SE/SE]; Apelgatan 14, S-582 46 Linköping (SE). KARLSSON, Christer [SE/SE]; Långgatan 81, S-589 55 Linköping (SE).
- (74) Common Representative: THIN FILM ELECTRON-ICS ASA; Leistad, Geirr, I., P.O. Box 1872 Vika, N-0124 Oslo (NO).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: A METHOD FOR READING A PASSIVE MATRIX-ADDRESSABLE DEVICE AND A DEVICE FOR PERFORM-ING THE METHOD

(57) Abstract: In a method for reading of a passive matrix-addressable device, particularly a memory device or a sensor device with individually addressable cells of a polarizable material, the cells store data in the form of one of two polarization states +Pt.-Pt in each cell, and the polarization states in the cells are written and read by addressing via electrodes which form word and bit lines (WL;BL) in an orthogonal electrode matrix, and wherein the cells are provided in or at the crossings between the word and bit lines (WL;BL) a voltage pulse protocol is used according to which electric potentials on all word and bit lines are controlled coordinated in time. During reading a word line (WL) is activated by applying voltage which relative to the potential on all crossing bit lines (BL) corresponds to the voltage VS and data stored in the cells connected to this active word line (AWL) are determined by detecting the charge values of the cells in a detection means (SA). In a device for performing the method electric potentialson all word and bit lines (WL;BL) are controlled coordinated in time by therewith connected control means which implements the voltage pulse protocol. -Use in passive matrix-addressable memory and sensor devices.

10

15

20

25

30

35

A method for reading a passive matrix-addressable device and a device for performing the method

The present invention concerns a method for reading a passive matrix-addressable device, particularly a memory device or a sensor device with individually addressable cells, for storing a logical value as given by charge value set in a cell, wherein the device comprises electrically polarizable material exhibiting hysteresis, particularly a ferroelectric material, wherein the device comprises a first and a second electrode set with parallel electrodes which respectively form word lines and bit lines in the device, wherein the word line electrodes and the bit line electrodes are provided mutually orthogonal and contacting the polarizable material at opposite surfaces thereof, such that the cells of the device comprise capacitor-like structures defined in a volume of the polarizable material in or at the crossings between word lines and bit lines, wherein a cell in the device can be set to one of two polarization states or switched between these by applying a voltage V_s larger than the coercive voltage V_c of the polarizable material between a word line and a bit line addressing the cell, wherein each bit line is connected with a detection means, wherein the method comprises a voltage pulse protocol with a read cycle such that each detection means during the read cycle detects charges flowing between its associated bit line and cells connected with this bit line; as well as a device for performing the method for reading a passive matrix-addressable device, particularly a memory device or a sensor device with individually addressable cells, for storing a logical value as given by charge value set in a cell, wherein the device comprises electrically polarizable material exhibiting hysteresis. particularly a ferroelectric material, wherein the device comprises a first and a second electrode set with parallel electrodes which respectively form word lines and bit lines in the device, wherein the word line electrodes and the bit line electrodes are provided mutually orthogonal and contacting the polarizable material at opposite surfaces thereof, such that the cells of the device comprise capacitor-like structures defined in a volume of the polarizable material in or at the crossings between word lines and bit lines, wherein a cell in the device can be set to one of two polarization states or switched between these by applying a voltage V_s larger than the coercive voltage V_c of the polarizable material between a word line and a bit line addressing the cell, wherein each bit line is connected with a detection means, wherein the method comprises a voltage pulse protocol with a read

10

15

20

25

30

35

cycle such that each detection means during the read cycle detects charges flowing between its associated bit line and cells connected with this bit line.

Particularly the present invention as mentioned above concerns a method for reading all cells connected between a selected word line and the crossing bit lines in parallel, a so-called full row read. This is known from among other US patent No. 6 157 578 which concerns a device and method for accessing a row of data in a semiconductor memory device in one single operation, in other words, in parallel.

As an example of the state of the art concerning active matrix-addressable devices, reference can be made to A. Sheikholeslami and P. Glenn Gulak, "Survey of Circuit Innovations in Ferroelectric Random-Access Memories", Proceedings of the IEEE, volume 88, no. 5, pp. 667-689, May 2000. This paper discloses active memory devices and methods for their addressing and particularly active ferroelectric memory devices of the kind wherein each cell is realized as a capacitor-like structure connected in series with a so-called access transistor which controls the access to the capacitor. The material in the capacitor-like structure is a ferroelectric material which can be polarized and exhibits hysteresis. Such active memory cells connected with a transistor are called cells of the type 1T-1C, but may also comprise two transistors and two capacitors etc. It is also possible that a larger number n capacitors can be connected with a single transistor, such that active memory cell is denoted as a cell of the type 1T-nC. The intention is that the capacitor of the memory cell when the latter is not addressed, can be disconnected and then be uninfluenced by the matrix stray capacitance which may cause voltage disturbs and sneak currents when another cell of the matrix shall be addressed.

Matrix-addressable devices with active cells hence have obvious advantages, but also disadvantages. The use of access or switch transistors comports increased power consumption and results in a lower integration density, something which for instance reduces the storage density in memory devices.

In passive matrix-addressable memory devices all cells, e.g. the memory cells of a memory matrix, will all the time be connected in the network formed by the electrodes, usually called word lines and bit lines of the matrix, each cell being provided at or between a word line or a crossing bit line and hence forming the capacitive structure. A single passive cell of this kind is

10

15

20

25

30

35

addressed by applying a voltage on the word line and/or bit line in question such that a potential difference is obtained over the memory cell between these electrodes. Depending on the value of the potential difference it will be possible to influence the polarization state of the cell, e.g. by setting a permanent positive polarization in the cell or a permanent negative polarization in the cell. By applying a sufficiently large potential difference corresponding to a voltage difference V_s which must be larger than coercive voltage V_c of the ferroelectric material, it will be possible to switch from one polarization state to the other.

Writing of data in a cell of this kind comprises polarizing a virgin cell, i.e. a non-polarized cell, to one of the two permanent polarization states or reversing the polarization which already has been set in the cell by switching it from a permanent positive to a permanent negative polarization state or vice versa. In reading the polarization state of the cell is detected in a corresponding manner, e.g. by setting the word line to the voltage level V_s while the corresponding bit line is kept at zero potential. Dependent on the polarization state the polarization of the cell either is maintained or switched. something which respectively results in a low or high charge current on the bit line. The charge current can be detected as a current value and the logic state of the cell can e.g. be read as respectively a logic zero or logic one dependent on the polarity. This method for readout which in practice has shown to be the only one that can be performed, is destructive in the sense that it destroys the original data content stored in the cell when the polarization stated thereof is switched to the polarization state of the opposite polarity. This provides a reliable detection of the logical value, but it implies also that the original logic value as is the case must be rewritten to the cell by performing a write operation as mentioned above.

Both in writing and reading to the cell it is necessary with relatively large potential differences and in a passive matrix this in addressing operations to an individual cell causes disturb voltages and sneak currents in the passive network of the cells, such that their polarization state can be influenced. If addressing shall take place in parallel to several cells, e.g. all cells connected with a particular word line, the problem is amplified by disturbs in the passive matrix-addressable network and the problem is aggravated further by the matrices being large, e.g. with several million cells.

20

25

30

The object of the present invention is thus to obviate the problems caused by non-destructive readout of cells in a passive matrix-addressable device, and particularly the object is to eliminate disturb voltages and sneak currents which influence the non-addressed cells in the passive matrix-addressable device during a read operation. Further it is also the object to perform reading of several cells in parallel and in particular the so-called full row read, such that all cells connected to a word line can be read in parallel, but with a minimal disturb of the remaining non-addressed cells in passive matrix-addressable devices.

10 Finally it is also an object of the present invention to obviate corresponding problems connecting with writing to such cells in a passive matrix-addressable network and then particularly rewrite to read cells after the read operation such that the original polarization state before reading of these cells is restored or the stored logical values or data values are reset to their original values.

The above objects and other features and advantages are achieved according to the present invention with a method which is characterized by controlling electric potentials on all word and bit lines in a time-coordinated manner according to the voltage pulse protocol, said voltage pulse protocol comprising timing sequences for the electric potentials on all word and bit lines, whereby a word line at least during a part of the read cycle is activated by an applied potential which relative to the potential of all crossing bit lines at least corresponds to the voltage V_s and the logical value stored in individual cells connected with the active word line determined by detecting the charge values in the detection means.

In the method according to the invention it is regarded as advantageous using sense amplifiers as detection means.

It is also regarded as advantageous that in the method according to the invention four different voltage values are used in the control of the electrical potentials, and in that connection the voltage values 0, $V_s/3$, $2V_s/3$ and V_s are preferably used.

The above-mentioned objects as well as further features and advantages are also achieved according to the present invention with a device which is characterized in that the word lines and bit lines are connected with a control

15

means which controls electrical potentials on all word and bit lines in a time-coordinated manner and implements a voltage pulse protocol comprising timing sequences for the electric potentials on all word and bit lines, said control device being adapted for activating a word line during at least a part of the read cycle, such that a potential which relative to the potential of all crossing bit lines at least corresponds to the voltage V_s , is applied to this word line.

In the device according to the invention it is regarded advantageous that the polarizable material is a ferroelectric polymer.

It is also regarded as advantageous that the detection means in the device according to the invention are sense amplifiers.

The invention shall now be explained in more detail with an exposition of the general background for the realization of passive matrix-addressable devices and how they are addressed according to the invention, and with discussion of exemplary embodiments, all with reference to the accompanying drawing figures, wherein

fig. 1 shows the hysteresis loop for a polarizable material, in casu a ferroelectric memory material,

fig. 2 schematically a passive matrix-addressable device,

fig. 3 a first embodiment of a voltage pulse protocol for full row read with a subsequent rewrite/refresh cycle, and

fig. 4 a second embodiment of a voltage pulse protocol for full row read with a subsequent rewrite/refresh cycle.

Fig. 1 shows the hysteresis loop of a polarizable material. Generally will

ferroelectric and electret materials have hysteresis loops of this kind. In the
hysteresis loop -P_r and +P_r respectively denote the positive and negative
remanent polarization, while P_s shown on the y axis is the so-called
saturation polarization. On the x axis -V_c and +V_c respectively denote the
positive and negative coercive voltage, while V_s denotes a selected switching
voltage larger than the coercive voltage V_c and the value of 1/3 V_s indicates
according to the present invention a fractional voltage level which is a part of
the voltage pulse protocol used and shall be discussed further below. If it is
supposed that the polarizable material initially is unpolarized, it is polarized

10

15

20

25

30

35

by applying a voltage, e.g. substantially larger than V_{c} and preferably corresponding to V_s . The polarization will then move from 0 till it reaches the point P_s on the hysteresis loop. This point indicates the ferroelectric or electret saturation polarization Ps of the material and it is then of no use increasing the voltage further. When the applied voltage is removed, i.e. a zero potential now lies over the polarizable material, the polarization P will drift back along the hysteresis loop to the remanent or permanent polarization P, where the hysteresis loop crosses the y axis. Correspondingly, a large negative voltage V_s can be applied for polarizing the material to the remanent polarization state -P_r. The polarization state can be changed from +P_r to -P_r by applying a voltage -V_s and correspondingly the polarization state -P_r is changed to +Pr by applying a correspondingly large positive voltage +Vs. This conforms to the protocol for write and read in a passive matrix-addressable device which comprises a polarizable material of this kind and it shall be obvious that in order to achieve this the potential difference over the cell, i.e. the capacitor-like structure, must correspond to the applied voltage level +V_s or -V_s, something which is achieved by setting a word line in question to this voltage and keeping one or more of the bit lines on zero potential. If only one of the cells connected with the active word line shall be written or read, it must be seen to that the potential of the remaining bit lines which contacts non-addressed cells are kept on the same voltage as the active word line, such that the potential difference over these cells thus becomes equal to zero.

Fig. 2 shows schematically an embodiment of the passive matrix-addressable device. A first electrode set consists of parallel electrodes WL which form word lines in the matrix. It may e.g. be m such word lines WL. A second electrode set consists of parallel electrodes BL which crosses the word lines WL orthogonally. The former are bit lines BL of the matrix and can be provided in a number n such that an m·n matrix is obtained. Each of the electrode sets is provided in respective parallel planes and the polarizable material can be provided as a global layer in sandwich between the electrode sets, possibly above the electrode sets if word lines WL and bit lines BL are provided in bridged arrangement with a mutual interlayer of insulation in the crossings. Thus a matrix-addressable device is obtained where each single cell now is defined in the active material which is located in or at the crossings between the word lines WL and the bit lines BL. This passive

10

15

35

addressable matrix hence becomes a matrix with m·n addressable cells (the matrix may of course be square such that m = n). Both word lines and bit lines are connected to common detection means as well as driving and control circuits for selection and addressing. These are not shown, but their use in both active and passive matrix-addressable devices is well-known to persons skilled in the art and they are hence deleted in fig. 2. Further is each of the bit lines connected with a detection means which in practice advantageously may be embodied as a sense amplifier SA.

In addressing a word line is selected and a determined voltage is applied thereto. This word line is shown as an active word line AWL in fig. 2 while all the remaining word lines WL are denoted as inactive word lines (IWL). If now a potential difference exists between the active word line AWL and the bit lines BL which cross this word line, an addressing operation can be performed to the memory cell in the crossings between the word line AWL and the bit lines BL. In a so-called full row addressing (full row read) the same potential difference will be present over all cells which are connected to the active word line AWL, and for reading charges which flow in the bit lines are then detected by the respective detection means or the sense amplifiers SA

In a preferred embodiment of the device for performing the method according to the invention the polarizable material is a ferroelectric polymer. Any ferroelectric polymer material can be used, including but not limited to polyvinylidene difluoride (PVDF). As further examples can be mentioned polyamides (odd nylons), cyanopolymers, copolymers of vinylidene difluoride (VDF) and trifluoroethylene (TrFE), polyureas, polytiureas, biopolymers such as polypeptides and cyanoethyl celluloses. The ferroelectric polymer thin film can be deposited by use of well-known methods such as spin coating, e.g. deposition of VDF-TrFE (75/25) copolymer from a suitable solvent, e.g. dimethyl formamide (DMF), cyclohexanone or methyl ethyl ketone (MEK).

Now various embodiments of the method according to the invention shall be discussed. A first embodiment is illustrated by the diagram in fig. 3 which shows a voltage pulse protocol with voltage levels between 0 and V_s and time markings for points in time and numbered from 0 to 6 at the upper edge of the figure as shown. According to the voltage pulse protocol in fig. 3 all

word lines WL and bit lines BL of the device are kept on a quiescent voltage equal to 0 when no addressing operation takes place, i.e. when no cell in the matrix is read or written to. During the read cycle the voltage V, between the time markings 1 and 2 is applied to an active word line AWL, while the 5 inactive word lines IWL are kept at zero potential. In a cell which is in the remanent polarization state +P_r the application of a large positive voltage +V_s does not cause any essential change in the polarization state of the cell and there will in other words flow no charge in the bit line BL, possibly only a small charge which represents a difference between the saturation 10 polarization P_s and the remanent polarization +P_r as shown in fig. 1. If the cell on the contrary is in the remanent polarization state -P_r the polarization state now according to the protocol will switch to +Pr and a large charge current is obtained on the bit line BL and a high output signal to the detection means. If the positive polarization state +P_r e.g. represents a logical 0 it is 15 not necessary with any refresh or rewrite, but in the cell which was in the negative remanent polarization -P, the readout will cause switching to the positive remanent polarization state +P_r and the logical value of the cell must be restored by a rewrite to the memory cell. This is achieved by keeping the active word line on zero potential and setting the indicated bit line on a 20 potential which applies a voltage to the cell equal to -V_s. During the write cycle simultaneously all inactive word lines IWL are kept on 2V_s/3 and inactive bit lines on V_s/3. Only the potential difference between an active word line AWL and a bit line BL activated for refresh will hence be equal to V_s, while all inactive word lines IWL are kept on the same potential, e.g. 25 $2V_s/3$ and all inactive bit lines correspondingly on the potential $V_s/3$. The potential difference between inactive word line and active bit lines will hence be substantially less than V_s and this contributes to reducing disturb voltages or capacitive couplings etc. in the matrix during the addressing operation for rewrite.

As will be seen, four voltage levels are used, viz. 0, V_s/3 and 2V_s/3 and V_s in the voltage pulse protocol in fig. 3. The fractional levels of the voltage V_s, i.e. V_s/3 and 2V_s/3 follows from a so-called voltage selection rule or scheme which is used for modifying the pulse protocol with selected voltage values between 0 and V_s/3 in order to reduce disturb voltages and sneak currents and other circumstances which may influence the polarization state of the memory cells in a detrimental manner. In the present case the selection rule

10

15

20

25

30

35

used is a so-called 1/3 selection. It is possible to show that $V_s/3$ is the minimum average voltage level which can be present on all word and bit lines in the matrix during an addressing operation.

Regarding the theoretical background for the use of voltage pulse protocols and voltage selection rules reference can be made to the present applicant's Norwegian patent No. 312 699 which furnishes the theory of voltage pulse protocols and their use, independent of whether the addressing shall take place to individual cells or several cells in parallel in large passive matrix-addressable memory devices with a ferroelectric or electret memory material.

Fig. 4 shows another voltage pulse protocol according to the invention and with corresponding markings of points in time. Also this one uses four voltage levels from 0 to V_s and the so-called 1/3 selection rule, but different from the protocol in fig. 3 now all word lines and bit lines when no cell in the matrix are read or written are kept on a quiescent voltage V_s/3. This has the advantage that in an addressing operation for read or write this voltage level which in any case must be applied e.g. to an active word line AWL or an active bit line BL will be substantially less than V_s, e.g. at most amount to 2V_s/3, and this has in its turn obvious advantages with regard to disturb voltages and sneak currents in the network and will simultaneously reduce the access time. Hence the active word line in the read cycle of the protocol switch from V_s/3 to V_s at marking 2 and the bit lines from V_s/3 to zero voltage. Simultaneously also inactive word lines IWL are set to zero voltage such that there are no potential difference between inactive word lines IWL and inactive bit lines BL. After a read cycle which can be performed in parallel, the refresh takes place by setting all word and bit lines back to the quiescent voltage V_s/3 and in the cycle for rewrite or refresh a zero voltage is applied to the active word line AWL, while the active bit lines BL which addresses memory cells which shall be reset or refreshed are set at the potential V_s, implicitly with the appropriate polarity in order to cause the actual reset. The inactive bit lines, i.e. those which contact cells where no refresh shall take place, are kept on V_s/3, while inactive word lines IWL are set to $2V_s/3$. The potential difference between the inactive word lines and an inactive bit line will hence be V_s/3 and between the inactive word lines and an active bit line similarly V_s/3, while the potential difference between the active word line and the active bit line for rewrite of course now becomes

equal to V_s (possibly $-V_s$). The potential difference between an active word line AWL and an inactive bit line where no rewrite takes place is $V_s/3$.

5

10

15

20

25

30

35

The voltage pulse protocol in the embodiment shown in fig. 3 provides a very simple read of the matrix-addressable device and this implies that the not shown driver circuits for the word lines and the bit lines WL;BL can be made relatively simple while the somewhat more complicated voltage pulse protocol shown in the embodiment in fig, 4 requires that the potential on all word and bit lines are changed according to the protocol, but simultaneously now the immunity of the device to disturb voltages and sneak currents are improved to a substantial degree. It shall be understood that during the write cycle the actual potential on active bit lines can be positive and negative depending on which logic values that should be rewritten and the initial state of the cells after the destructive readout operation. It should also be noted that the time markings indicated in the figures for the timing sequences can be selected relatively freely and it can e.g. be the case that the time interval 2-1 and 4-3 in fig. 4 for instance may be zero or negative, also that the time values will depend on the dynamic properties of the polarizable material, e.g. on the time constant of the hysteresis loop of the selected material. It is also to be understood that the absolute values of the voltage levels and the number of voltage levels itself according to the pulse protocol can be selected arbitrarily provided the conditions for performing a so-called full row read is achieved, namely a potential Vs over each cell on the active word line and zero voltage over the non-addressed cells on the inactive word lines IWL. It shall also be possible to apply a substantially higher voltage than V_s in order to activate the cells, without this being able to influence the remanent polarization state of the memory material. It shall in that connection also be noted that a phenomenon such as fatigue, i.e. a gradual reduction of the remanent polarization values of the memory cells, shall aggravate and cause problems for reading of the cells. Also so-called "imprint" will be manifest, i.e. the circumstance that the cell which for a long period of time has been in a particular polarization state will be disposed to maintain this polarization state and hence require high voltage or longer voltage pulses when a possible addressing of operation shall be performed.

Full row read hence is performed when all bit lines BL in the passive matrix are read during the same read cycle with the use of a suitable voltage pulse protocol. Only one of m word lines is active during the same period of time

where all n bit lines BL are active. In order to achieve this each bit line in the matrix must be connected with a sense amplifier. Full row read can be used when a matrix for some reason is divided in a number of submatrices. The concept full row read is hence meant to include the circumstance wherein all cells on a complete word line in a submatrix is read during the same read cycle. The full row read provides a number of advantages compared with partial row read or readout of a single cell, namely

5

10

15

- a) during the read cycle all non-addressed cells are subjected to a zero potential, something which will reduce the number of disturb signals which could result in a loss of data content (logical value) as well as eliminate during a read operation all disturb which could cause background currents; b) the data transfer rate will be the maximum rate which is allowed by the number of bit lines in a matrix or submatrix;
- c) the readout voltage V_s can be selected much higher that the coercive voltage without causing partial switching on non-addressed cells, which implies that switching speed shall be the highest possible switching speed for the polarizable material of the cells; and
 - d) the readout scheme is compatible with large matrices and matrix groups.

For readout of data the potential difference between the active word line

AWL and the bit lines BL is set on the potential V_s, which will cause charge
to flow from the cells and to the contacting bit lines. The charge value (or
current) depends on the polarization state of each cell and is detected by the
sense amplifiers, one for each bit line. By using appropriate measuring
circuitry, the logic state of each cell can hence be determined.

As stated in the introduction of the application, the passive matrix-addressable device may be a memory device and applied to storage of data such that the polarization state in each cell either represent a logical 1 or a logical 0. A corresponding device can also be used as a sensor device such that the logical values being stored in each cell are assigned to the value of each single sensor element of the sensor device. In principle there will, however, be no difference with regard to the method for reading and refreshing data stored in the cell in the one application or the other.

10

15

20

25

30

CLAIMS

- A method for reading a passive matrix-addressable device, particularly 1. a memory device or a sensor device with individually addressable cells for storing a logical value as given by charge value set in a cell, wherein the device comprises electrically polarizable material exhibiting hysteresis, particularly a ferroelectric material, wherein the device comprises a first and a second electrode set with parallel electrodes which respectively form word lines and bit lines in the device, wherein the word line electrodes (WL) and the bit line electrodes (BL) are provided mutually orthogonal and contacting the polarizable material at opposite surfaces thereof, such that the cells of the device comprise capacitor-like structures defined in a volume of the polarizable material in or at the crossings between word lines and bit lines, wherein a cell in the device can be set to one of two polarization states or switched between these by applying a voltage V_s larger than the coercive voltage V_c of the polarizable material between a word line (WL) and a bit line (BL) addressing the cell, wherein each bit line (BL) is connected with a detection means, wherein the method comprises a voltage pulse protocol with a read cycle such that each detection means during the read cycle detects charges flowing between its associated bit line (BL) and cells connected with this bit line, and wherein the method is characterized by controlling electric potentials on all word and bit lines in a time-coordinated manner according to the voltage pulse protocol, said voltage pulse protocol comprising timing sequences for the electric potentials on all word and bit lines, whereby a word line at least during a part of the read cycle is activated by an applied potential which relative to the potential of all crossing bit lines at least corresponds to the voltage V_s and the logical value stored in individual cells connected with the active word line is determined by detecting the charge values in the detection means.
 - 2. A method according to claim 1, characterized by using a sense amplifier as detection means.
 - 3. A method according to claim 1, characterized by using four different voltage values in the control of the electric potentials.

. 30

- 4. A method according to claim 3, characterized by the voltage values used respectively being 0, $V_s/3$, $2V_s/3$ and V_s .
- A device for performing the method for reading a passive 5. matrix-addressable device, particularly a memory device or a sensor device 5 with individually addressable cells, for storing a logical value as given by charge value set in a cell, wherein the device comprises electrically polarizable material exhibiting hysteresis, particularly a ferroelectric material, wherein the device comprises a first and a second electrode set with parallel electrodes which respectively form word lines and bit lines in the 10 device, wherein the word line electrodes (WL) and the bit line electrodes (BL) are provided mutually orthogonal and contacting the polarizable material at opposite surfaces thereof, such that the cells of the device comprise capacitor-like structures defined in a volume of the polarizable material in or at the crossings between word lines and bit lines, wherein a 15 cell in the device can be set to one of two polarization states or switched between these by applying a voltage V_s larger than the coercive voltage V_c of the polarizable material between a word line (WL) and a bit line (BL) addressing the cell, wherein each bit line (BL) is connected with a detection means, wherein the method comprises a voltage pulse protocol with a read 20 cycle such that each detection means during the read cycle detects charges flowing between its associated bit line (BL) and cells connected with this bit line, characterized in that the word lines and bit lines (WL;BL) are connected with 25
 - characterized in that the word lines and bit lines (WL;BL) are connected with a control means which controls electrical potentials on all word and bit lines in a time-coordinated manner and implements a voltage pulse protocol comprising timing sequences for the electric potentials on all word and bit lines, said control device being adapted for activating a word line (WL) during at least a part of the read cycle, such that a potential which relative to the potential of all crossing bit lines at least corresponds to the voltage V_s, is applied to this word line (AWL).
 - 6. A device according to claim 5, characterized in the polarizable material being a ferroelectric polymer.
- 7. A device according to claim 5,35 characterized in the detection means (SA) being sense amplifiers.

Fig. 1

Fig.

Fig.3

Fig.4

INTERNATIONAL SEARCH REPORT

International application No.

PCT/NO 02/00389

	•		/NU 02/00389					
A. CLASSIFICATION OF SUBJECT MATTER								
IPC7: G11C 11/22, G11C 7/10, G11C 8/18 According to International Patent Classification (IPC) or to both national classification and IPC								
B. FIELDS SEARCHED								
Minimum documentation searched (classification system followed by classification symbols)								
IPC7: G11C								
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched								
SE,DK,FI,NO classes as above								
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)								
EPO-INTERNAL, WPI DATA, PAJ								
C. DOCUMENTS CONSIDERED TO BE RELEVANT								
Category*	Citation of document, with indication, where ap	propriate, of the relevant p	assages Relevant to claim No.					
P,X	WO 0205287 A1 (THIN FILM ELECTR 17 January 2002 (17.01.02), line 30 - page 16, line 19; line 22 - page 24, line 20	1-7						
A	 US 5550770 A (KENICHI KURODA), (27.08.96), column 5, line	1-7'						
P,A	WO 0225665 A2 (THIN FILM ELECTRO 28 March 2002 (28.03.02), poline 21 - page 12, line 13	1-7						
Further documents are listed in the continuation of Box C. See patent family annex.								
* Special categories of cited documents "A" document defining the general state of the art which is not considered to be of particular relevance "I later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention								
"E" earlier a filing da	pplication or patent but published on or after the international de	"X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive						
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified).		step when the document	t is taken alone relevance: the claimed invention cannot be					
-	nt referring to an oral disclosure, use, exhibition or other	considered to involve as combined with one or n	n inventive step when the document is more other such documents, such combination					
"P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family								
Date of the actual completion of the international search Date of mailing of the international search report								
25 Febr	uary 2003	2 8 -02- 2203						
Name and mailing address of the ISA/ Authorized officer								
Swedish Patent Office Box 5055, S-102 42 STOCKHOLM Bo Gustavsson/E1s								
Facsimile No. + 46 8 666 02 86 Telephone No. + 46 8 782 25 00								

INTERNATIONAL SEARCH REPORT

Information on patent family members

30/12/02

International application No.
PCT/NO 02/00389

	Patent document cited in search report		Publication date	Patent family member(s)		Publication date	
WO	0205287	A1	17/01/02	AU NO NO US US	9441001 A 312699 B 20003508 A 2002024835 A 2002060923 A	17/06/02 08/01/02 28/02/02	
US	5550770	A	27/08/96	JP US	6077434 A 5487029 A		
WO	0225665	A2	28/03/02	AU NO NO US	2315902 A 20004236 A 20014136 A 2002024835 A	25/02/02 25/02/02	

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES

☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

COLOR OR BLACK AND WHITE PHOTOGRAPHS

LINES OR MARKS ON ORIGINAL DOCUMENT

☐ GRAY SCALE DOCUMENTS

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.