

COMP 2211 Exploring Artificial Intelligence

Practice Problems: Digital Image Processing, CNN, Minimax and Alpha-beta Pruning and Ethics of Al Dr. Desmond Tsoi

Department of Computer Science & Engineering HKUST, Hong Kong SAR, China

Digital Image Processing

A 3-bit/pixel (i.e. pixel value is in range 0 and $2^3=8$) of size 3×3 is given below.

3	7	6
2	4	6
4	7	2

- (a) Find the output of a 3×3 averaging kernel at (1,1).
- (b) Find the output of a 3×3 median kernel at (1,1).
- (c) Find the edge magnitude at (1,1) using the Sobel masks shown below.

-1	-2	-1
0	0	0
1	2	1

-1	0	1	
-2	0	2	
-1	0	1	

Sobel kernel for extracting horizontal edges

Sobel kernel for extracting vertical edges

Note: Edge magnitude = $\sqrt{horizontal_edge_value^2 + vertical_edge_value^2}$.

Convolutional Neural Network

Consider a convolutional neural network that is used to classify images into two classes. The architecture of the network is as follows:

- Input: 100×100 grayscale images
- ullet Layer 1: Convolutional layer with 100 5 imes 5 kernels
- Layer 2: Convolutional layer with 100 5×5 kernels
- \bullet Layer 3: A max pooling layer that down-samples Layer 2 by a factor of 4 (from 100 \times 100 to 50 \times 50)
- Layer 4: Flatten layer
- Layer 5: Dense layer with 100 units
- Layer 6: Dense layer with 100 units
- Layer 7: Single output unit

How many parameters does this network have?

Minimax and Alpha-Beta Pruning

Consider the game tree below filled with the values returned by the standard minimax algorithm.

- (a) State the best initial move for the first player (i.e. E-1 or E-2).
- (b) Apply alpba-beta pruning on the given tree and state the branches that need not be examined or considered by putting down the edge label(s) (e.g. E-1, E-2, E-3, ..., E-30).

Ethics of Artificial Intelligence

Match the European Union Principles with the given Common Grounds by completing the following table with numbers.

Seven European Union Principles

- (A) Human agency and oversight
- (B) Technical robustness and safety
- (C) Privacy and data governance
- (D) Transparency
- (E) Diversity, non-discrimination and fairness
- (F) Societal and environmental well-being
- (G) Accountability

A B C D E F G

Common Grounds

- (1) Autonomy
- (2) Beneficence
- (3) Non-maleficence
- (4) Justice
- (5) Explicability

Digital Image Processing (Solution)

(a) The output value of a 3×3 averaging kernel at (1,1) is

$$\frac{3+7+6+2+4+6+4+7+2}{9} = \frac{41}{9}$$

(b) The output of a 3×3 median filter at (1,1) is

Sorted pixel values
$$:2,2,3,4,4,6,6,7,7$$

Median value $:4$

(c) Horizontal edge value

$$=1 \times 3 + 2 \times 7 + 1 \times 6 + 0 \times 2 + 0 \times 4 + 0 \times 6 + (-1) \times 4 + (-2) \times 7 + (-1) \times 2$$

=3 + 14 + 6 - 4 - 14 - 2 = 3

Vertical edge value

$$=1 \times 3 + 0 \times 7 + (-1) \times 6 + 2 \times 2 + 0 \times 4 + (-2) \times 6 + 1 \times 4 + 0 \times 7 + (-1) \times 2)$$

=3 - 6 + 4 - 12 + 4 - 2 = -9

Edge magnitude =
$$\sqrt{(3)^2 + (-9)^2} = \sqrt{90} = 9.49$$

Convolutional Neural Network (Solution)

- The number of parameters in each of the layers:
 - Layer 1: $100 \times 5 \times 5 + 100 = 2600$
 - Layer 2: $100 \times 100 \times 5 \times 5 + 100 = 250100$
 - Layer 3: 0
 - Layer 4: 0
 - Layer 5: $50 \times 50 \times 100 \times 100 + 100 = 25000100$
 - Layer 6: $100 \times 100 + 100 = 10100$
 - Layer 7: $100 \times 1 + 1 = 101$
- The parameters this network have
 - = 2600 + 250100 + 0 + 0 + 25000100 + 10100 + 101 = 25263001.

Minimax and Alpha-Beta Pruning (Solution)

- (a) E-1
- (b) E-18, E-22, E-26, E-28, and E-30.

Ethics of Artificial Intelligence (Solution)

Α	В	С	D	Е	F	G
5	3	1	5	4	2	1