Exercise 3.18 [Boyd & Vandenberghe, 2004]

Adapt the proof of concavity of the log-determinant function in §3.1.5 to show the following.

- (a) $f(\mathbf{X}) = \mathbf{tr}(X^{-1})$ is convex on $\mathbf{dom} f = \mathbf{S}_{++}^n$. (b) $f(\mathbf{X}) = (\det X)^{1/n}$ is concave on $\mathbf{dom} f = \mathbf{S}_{++}^n$.

Ans: Here only does part (a).

Exercise 3.19 [Boyd & Vandenberghe, 2004]

Nonnegative weighted sums and integrals.

- (a) Show that $f(x) = \sum_{i=1}^{r} \alpha_i x_{[i]}$ is a convex function of x, where $\alpha_1 \geq \alpha_2 \geq \cdots \geq \alpha_r \geq 0$, and $x_{[i]}$ denotes the ith largest component of x. (You can use the fact that $f(x) = \sum_{i=1}^{k} x_{[i]}$ os convex on \mathbb{R}^n .)
- (b) Let $T(x,\omega)$ denote the trigonometric polynomial

$$T(x,\omega) = x_1 + x_2 \cos \omega + x_3 \cos 2\omega + \dots + x_n \cos(n-1)\omega.$$

Show that the function

$$f(x) = -\int_{0}^{2x} \log T(x, \omega) d\omega$$

is convex on $\{x \in \mathbb{R}^n \mid T(x,\omega) > 0, 0 \le \omega \le 2\pi\}.$

Ans: Here only does part (a).

Exercise 3.22 [Boyd & Vandenberghe, 2004]

- Composition rules. Show that the following functions are convex. (a) $f(x) = -\log(-\log(\sum_{i=1}^{m} e^{a_i^T x + b_i}))$ on $\operatorname{dom} f = \{x \mid \sum_{i=1}^{m} e^{a_i^T x + b_i} < 1\}$. You can use the fact that $\log(\sum_{i=1}^{n} e^{y_i})$ is convex. (b) $f(x, u, v) = -\sqrt{uv - x^T x}$ on $\mathbf{dom} f = \{(x, u, v) \mid \underline{uv} > x^T x, u, v > 0\}$. Use the fact
- that $x^T x/u$ is convex in (x, u) for u > 0, and that $-\sqrt{x_1 x_2}$ is convex on \mathbb{R}^2_{++} .
- (c) $f(x, u, v) = -\log(uv x^T x)$ on $\mathbf{dom} f = \{(x, u, v) \mid uv > x^T x, u, v > 0\}.$
- (d) $f(x,t) = -(t^p ||x||_p^p)^{1/p}$ where p > 1 and $\mathbf{dom} f = \{(x,t) \mid t \ge ||x||_p\}$. You can use the fact that $||x||_p^p/u^{p-1}$ is convex in (x,u) for u > 0 (see exercise 3.23), and that $-x^{1/p}y^{1-1/p}$ is convex on \mathbb{R}^2_+ (see exercise 3.16).
- (e) $f(x,t) = -\log(t^p ||x||_p^p)$ where p > 1 and $\mathbf{dom} f = \{(x,t) \mid t > ||x||_p\}$. You can use the fact that $||x||_p^p/u^{p-1}$ is convex in (x,u) for u>0 (see exercise 3.23).

Ans: Here only does part (c).

Additional Exercise 2.5 [Boyd & Vandenberghe, 2017]

hi

Ans: Here only does part (a) and (b).

Additional Exercise 2.30 [Boyd & Vandenberghe, 2017]

hi

Ans:

Additional Exercise 2.31 [Boyd & Vandenberghe, 2017]

hi

Ans:

Additional Exercise 3.17 [Boyd & Vandenberghe, 2017]

hi

Ans: