Name:_____ Matrikel-Nr:_____

Das dynamische Verhalten des Feder-Masse-Dämpfer-Systems im Bild soll analysiert werden. Die Modellbildung ist auf Basis der Bewegungsgleichungen für eine Schreibe J, m_R ,

$$J \cdot \ddot{\varphi} + c_R \cdot \varphi \cdot \frac{R^2}{4} + d_R \cdot \dot{\varphi} \cdot \frac{R^2}{4} + c_2 \cdot (z_2 - z_1) \cdot R = 0$$
 (1)

und für m_1

$$m_1 \cdot \ddot{z}_1 + c_2 \cdot (z_1 - z_2) + c_1 \cdot (z_1 - z_h) + c_p \cdot (z_p - z_h) = 0$$
 (2)

sowie mittels der Kräftebilanz im Punkt P

$$d_P \cdot (\dot{z}_p - \dot{z}_1) + c_p \cdot (z_p - z_h) = 0$$

(3) mit
$$J = \frac{1}{2} m_R R^2$$
 und $z_2 = \varphi R$ möglich.

Emgangsgroße, die vertikale i östhöli $\zeta_h(t)$.

1. Eingabedaten in m-file mit Ihrem Nachname. Erstellen Sie nach den Systemgleichungen ein Modell mit Simulink im Zeitbereich, (beginnend vom unten angegebenen Bild):

b) Chirp Signal:

Initial frequency: 0.01; Target time: 20; Frequency at target time: 20

Wählen Sie die Amplitude $z_h(t)$ als Systemeingang jeweils a) und b) (mit Manual Switch), simulieren Sie die Federkraft $F_2 = c_2(z_2(t) - z_1(t))$ und den relativen Weg $z_1(t) - z_p(t)$.

Simulation time für a) 10 sec, für b) 20 sec mit Fixed-step 0.01.

Name:	
Matrikel-Nr:	

2. Leiten Sie anhand der mechanischen Systemgleichungen einen formelmäßigen Ausdruck in A, B, C, D Matrizen her.

Systemeingänge: $z_h(t)$;

Ausgänge: die Federkraft $F_2 = c_2(z_2(t) - z_2(t))$ und der relativer Weg $z_1(t) - z_p(t)$

Zustandsgrößen: $\begin{bmatrix} \varphi & z_1 & \dot{\varphi} & \dot{z}_1 & z_P \end{bmatrix}^T = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \end{bmatrix}^T$

$$B = \begin{bmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{bmatrix}$$

$$B = \begin{bmatrix} \cdot \\ \cdot \\ \cdot \end{bmatrix}$$

$$C = \begin{bmatrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{bmatrix}$$

$$D = \begin{bmatrix} \cdot \\ \cdot \end{bmatrix}$$

A =

В	=

C=

D=

3. Verwenden Sie dazu ein m-file, in das Sie die gegebenen Parameter eingegeben und ihre Matrizen A, B, C, D mit den Parameter erstellt haben. Berechnen Sie die Eigenwerte des Systems.

+	
±	
±	

Name:_____ Matrikel-Nr:_____

Tragen Sie die Eigenwerte des Systems in die komplexe Ebene ein.

Ist das mechanische System stabil? Begründung!

Berechnen Sie die ungedämpfte, gedämpfte Eigenfrequenzen und Dämpfungsgrad:

Ungedämpfte f_0 (Hz)	gedämpfte $f_{\rm d}$ (Hz)	Dämpfungsgrad ξ

- 4. Polten Sie die Übertragungsfunktion $\left|\frac{F_2}{z_h}\right|$ und Phasenwinkel bis $f=20~{\rm Hz}$ in einer Figure (Bodediagramm) mit dem Titel "Übertragungsfunktion".
- Speichern Sie m-File und mdl-File mit Ihrem Nachnamen plus Aufgabennummer ab!
 (Beispiel: wang_mfile.m und wang_modell.mdl)

<u>Anmerkung:</u> Senden Sie die Dateien per Email an: xiaofeng.wang@hs-rm.de Viel Erfolg!

Name:_____ Matrikel-Nr:_____

Musterlösung:

Eigenwerte =	f_0 (Hz)	$f_{\rm d}\left({\rm Hz}\right)$	ξ(-)
-7.1314 + 0i (in rad/s)	3.5638	3.4249	0.129
/:1311 · 01 (III 144/8)	14.7726	14.7721	0.0086
-2.8002 ± 21.519i			
-0.80074 ± 92.816i			

Dmat= [0;0];

Mechatronische Systeme WS 2018/19 Bildschirmtest (90 min) am 07. Feb. 2019

Name:_____ Matrikel-Nr:


```
Amat = [0 0 1 0 0;

0 0 0 1 0;

-(cR*R^2/4+c2*R^2)/J c2*R/J -dR*R^2/4/J 0 0

c2*R/m1 -(c1+c2)/m1 0 0 -cp/m1;

0 0 0 1 -cp/dp];

Bmat = [0; 0; 0; (c1+cp]/m1; cp/dp];

Cmat = [R*c2 -c2 0 0 0;

0 1 0 0 -1];
```

Eigenwerte =	f_0 (Hz)	$f_{\rm d}\left({\rm Hz}\right)$	ξ(-)
-4.303 ± 68.338i	1.3176	1.3163	0.044183
1.303 = 00.3301	10.898	10.876	0.062842
-0.36577 ± 8.2705i			
-099586 + 0i (in rad/s)			

Name:	
Matrikel-Nr:	

```
clear; clc;
mR=50+0*49.0151285813; m1=5+0*5.85075; R=0.2;
J=1/2*mR*R^2;%kq
cR=10*1000; c2=15*1000; c1=20*1000; cp=7*1000;
                                                   %N/m
dR=0.5*1000; dp=0.75*1000;%Ns/m
zh=0.01; % m
%A1 simulinkmodell und A4 Eigenwerte:
[A,B,C,D]=linmod('BT_Modell3_WS1819');
Eigenwerte=eigs(A);
Eigenfrqcplx=eigs(A)/(2*pi);
ungedampfq=abs(Eigenfrqcplx);
gedampfq=imag(Eigenfrqcplx);
dampgrad=abs(real(Eigenfrqcplx)./ungedampfq);
%A3: A, B, C, D Matrizen herleiten
Amat= [0 0 1 0 0;
       0 0 0 1 0;
  -(cR*R^2/4+c2*R^2)/J c2*R/J
                                   -dR*R^2/4/J
                                                 0
                                                    0;
  c2*R/m1
                       -(c1+c2)/m1
                                                    -cp/m1;
                                     0
                                                 0
                             0
                                      0
                                                 1
                                                    -cp/dp];
[wn,xin,pn]=damp(Amat);
eigs(Amat)/2/pi
figure(1);
plot(real(pn),imag(pn),'r*'); % Plot real and imag_parts
xlabel('Real'); ylabel('Imaginary');
title('Eigenwerte der Systemmatrix A'); axis([-10 2 -100
100]); grid;
Bmat = [0; 0; 0; (c1+cp)/m1; cp/dp];
Cmat = [ R*c2 -c2 0 0 0;
        0
               1
                  0 0 -1];
Dmat= [0;0];
% A5: Plot der Übertragungsfunktion
[Zaehler, Nenner] = ss2tf(Amat, Bmat, Cmat, Dmat);
fhz=0:0.1:20*2*pi; % input frequenz
figure (3)
bode(Zaehler(1,:), Nenner, fhz); grid; %(1,:)
[Zaehler, Nenner] = ss2tf(A,B,C,D);
bode(Zaehler(1,:), Nenner, fhz); grid;
```