

WKO3-O2: Key exchange mechanisms: DH, ECDH and Kerberos

Securing Fixed and Wireless Networks, COMP4337/9337

Never Stand Still

Sanjay Jha, Nadeem Ahmed

RSA-Based Key Exchange - recap

• Exchange session (symmetric) key with *asymmetric* encryption

Diffie-Hellman Key Exchange

- DH uses a *private-public key pair* to establish a shared secret, typically a symmetric key.
 - The shared secret is then used for symmetric encryption or for further session/temporal key derivation
 - Keys are not exchanged but derived from common knowledge
- In RSA-based key exchange, the actual (encrypted) symmetric key is sent over the wire

Diffie-Hellman Key Exchange

Diffie-Hellman Key Exchange

 $K = A^b \mod p = (g^a \mod p)^b \mod p = g^{ab} \mod p = (g^b \mod p)^a \mod p = B^a \mod p$

- Alice's private key = 5, Bob's private key = 4, g=3, p=7
- Alice's public key = 3⁵ mod 7 = 5, Bob's public key = 3⁴ mod 7 = 4
- Alice's shared key = 4⁵ mod 7 = 2, Bob's shared key = 5⁴ mod 7 = 2

Diffie-Hellman Key Exchange - PiTM

- DH is vulnerable to PiTM
- DH does not authenticate the parties; we need to provide authentication along with DH

Diffie-Hellman Key Exchange – PiTM

- Draw the protocol exchange and show how PiTM works in the previous scenario.
- Read about: Station-to-Station (STS) key exchange protocol developed by Diffie, Van Oorschot, and Wiener in 1992
 - Learn what counter measure is used to avoid the PiTM attack
- Public key changed for every connection between the two parties for forward secrecy
 - Ephemeral DH (DHE)
 - Fundamental design principle used in many real-world protocols e.g WPA-3

IEEE DragonFly Key Exchange SAE in WPA-3 Personal (802.11s)

- DH key exchange is unauthenticated
- SAE is based on DH but involves the PSK in deriving cryptographic keys

IEEE DragonFly Key Exchange (RFC 7664) SAE in WPA-3 Personal

- CONFIRM after the COMMIT Phase
- Generate Master Key (MK) and Key Confirmation Key (KCK) using K_{LT}

Elliptic Curve Cryptography (ECC)

- Elliptic curve cryptography is an approach to public-key cryptography based on the algebraic structure of elliptic curves over finite field.
- ECC presents various benefits over RSA such as:
 - fast computation
 - small key size
 - compact signatures
- For example, to provide equivalent security to 1024-bit RSA, an ECC scheme only needs 160 bits.

ECC Scheme

- Key Agreement through Elliptic Curve Diffie-Hellman (ECDH)
- Digital Signature: Elliptic Curve Digital Signature Algorithm (ECDSA), allows use of public/private key for signing a message and verification of signature, more efficient than RSA based DSA.

Adding Two Points (Geometrically): $xP \neq xQ$

- We skip maths/algebraic $y^2 = x^3-7x+6$ details (beyond scope)
- The line L through P and Q will intersect the curve at one other point.
- Call this third point -R.
- Reflect the point -R about the x-axis to point R.
- P+Q=R

Point Doubling: xP=xQ and yP=yQ

- Since P = Q, the line L through P and Q is tangent to the curve at P.
- Again L will intersect the curve at another point, -R.
- As in Case 1, reflect -R about the x-axis to point R.
- P+P = R
- Notation: 2P = P+P
- Basically this computation (and variants) is more efficient than the standard Diffie-Hellman
- Crypto: Let P and Q be two points on an elliptic curve such that kP = Q, where k is a scalar. Given P and Q, it is hard to compute k.

•
$$y^2 = x^3 - 7x + 6$$

Elliptic Curve Diffie-Hellman Key Exchange

- Alice and Bob publicly agree on an elliptic curve E over a finite field Zp.
- 2. Next Alice and Bob choose a public base point B on the elliptic curve E.
- 3. Alice chooses a random integer $1<\alpha<|E|$, computes P = α B, and sends P to Bob. Alice keeps her choice of α secret.
- 4. Bob chooses a random integer $1<\beta<|E|$, computes $Q=\beta$ B, and sends Q to Alice. Bob keeps his choice of β secret.

- 1. Alice and Bob choose E to be the curve $y^2 = x^3 + x + 6$.
- 2. Alice and Bob choose the public base point to be B=(2,4).
- 3. Alice chooses $\alpha = 4$, computes $P = \alpha B = 4(2,4)$ = (6,2), and sends P to Bob. Alice keeps α secret.
- 4. Bob chooses $\beta = 5$, computes $Q = \beta B = 5(2,4)$ = (1,6), and sends Q to Alice. Bob keeps β secret.

Maths not examinable

ECDH Key Exchange (cont.)

- 5. Alice computes $KA = \alpha Q = \alpha(\beta B)$.
- 6. Bob computes $KB = \beta P = \beta(\alpha B)$.
- 7. The shared secret key is K = KA = KB.
- Even if Eve knows the base point B, or P or Q, she will not be able to figure out α or β , so K remains secret!

- 5. Alice computes $KA = \alpha Q = 4(1,6) = (4,2)$.
- 6. Bob computes KB = $\beta P = 5(6,2) = (4,2)$.
- 7. The shared secret key is K = (4,2).

Kerberos

- Key distribution and user authentication service developed at MIT
- Provides a centralized authentication server whose function is to authenticate users to servers and servers to users
- Relies exclusively on symmetric encryption, making no use of public-key encryption

Two versions are in use

- Version 4 implementations still exist, although this version is being phased out
- Version 5 corrects some of the security deficiencies of version 4 and has been issued as a proposed Internet Standard (RFC 4120)

Kerberos Version 4

- A basic third-party authentication scheme
- Authentication Server (AS)
 - Users initially negotiate with AS to identify self
 - AS provides a non-corruptible authentication credential (ticket granting ticket TGT)
- Ticket Granting Server (TGS)
 - Users subsequently request access to other services from TGS on basis of users TGT

Kerberos Realms

- A set of managed nodes that share the same Kerberos database
- The Kerberos database resides on the Kerberos master computer system, which should be kept in a physically secure room
- A read-only copy of the Kerberos database might also reside on other Kerberos computer systems
- All changes to the database must be made on the master computer system
- Changing or accessing the contents of a Kerberos database requires the Kerberos master password

Kerberos Version 4 vs 5 (self-read)

- Environmental shortcomings
- Encryption system dependence
- Internet protocol dependence
- Message byte ordering
- Ticket lifetime
- Authentication forwarding
- Inter-realm authentication

- Technical deficiencies
- Double encryption
- PCBC encryption
- Session keys
- Password attacks

Kohl, J.; Neuman, B. "The Evolution of the Kerberos Authentication Service"

Recap: How to use keys?

- Rule of thumb
 - Public key cryptography: slow
 - Symmetric key Cryptography: fast
- Do not encrypt large messages with public key cryptography
- Either use DH to arrive at fresh symmetric keys or encrypt a random, fresh symmetric key with public key cryptography
- For digital signatures, use private key to sign only the hash of the message

Acknowledgments

Lecture material covered from William Stallings, CRYPTOGRAPHY AND NETWORK SECURITY: PRINCIPLES AND PRACTICE, (Chapter 4).

Bryant, W. Designing an Authentication System: A Dialogue in Four Scenes. http://web.mit.edu/kerberos/www/dialogue.html

http://www.isi.edu/gost/info/kerberos/

