## 第七次习题课群文件《期中 & 期末试题》

## 期末试题

1.期末 2015-2016 一 3.

设  $\alpha_1, \alpha_2, \alpha_3$  是非齐次线性方程组 Ax = b 的解,若  $\sum_{i=1}^3 c_i \alpha_i$  也是 Ax = b 的解,则  $\sum_{i=1}^3 c_i =$ \_\_\_\_\_。

解:

由题得:  $A\alpha_1 = b, A\alpha_2 = b, A\alpha_3 = b, A\sum_{i=1}^3 c_i\alpha_i = A(c_1\alpha_1 + c_2\alpha_2 + c_3\alpha_3) = b.$ 

所以 
$$A\alpha_1 + A\alpha_2 + A\alpha_3 = 3b$$
,即  $A\left(\frac{1}{3}\alpha_1 + \frac{1}{3}\alpha_2 + \frac{1}{3}\alpha_3\right) = b = A(c_1\alpha_1 + c_2\alpha_2 + c_3\alpha_3)$ ,所以  $\sum_{i=1}^3 c_i = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 1$ 。  $\diamondsuit$  2.期末 2015-2016  $\longrightarrow$  5.

任意 3 维实列向量都可以由向量组  $\alpha_1=(1,0,1)^T,\alpha_2=(1,-2,3)^T\alpha_3=(t,1,2)^T$  线性表示,则 t 应满足条件\_\_\_\_。

解:

任意 3 维实列向量都可以由向量组  $\alpha_1,\alpha_2,\alpha_3$  线性表示,则  $e_1=[1,0,0]^T,e_2=[0,1,0]^T,e_3=[0,0,1]^T$  也可由  $\alpha_1,\alpha_2,\alpha_3$  线性表示,而  $e_1,e_2,e_3$  可以表示任意三维实列向量,即向量组  $\alpha_1,\alpha_2,\alpha_3$  和  $e_1,e_2,e_3$  可以相互线性表示,所以  $r(\alpha_1,\alpha_2,\alpha_3)=r(e_1,e_2,e_3)=3$ . 所以  $|\alpha_1,\alpha_2,\alpha_3|=2t-6\neq 0$ ,即  $t\neq 3$ 。

3.期末 2015-2016 四 2.

设向量组  $\alpha_1,\alpha_2,\alpha_3$  线性无关,向量  $\beta$  可由  $\alpha_1,\alpha_2,\alpha_3$  线性表示,向量  $\gamma$  不能由  $\alpha_1,\alpha_2,\alpha_3$  线性表示,证 明向量组  $\alpha_1,\alpha_2,\alpha_3,\beta+\gamma$  线性无关。

证明:

向量  $\beta$  可由  $\alpha_1, \alpha_2, \alpha_3$  线性表示,即存在一组不全为 0 的  $k_i$  (1  $\leq i \leq 3$ ),使得

$$\beta = k_1 \alpha_1 + k_2 \alpha_2 + k_3 \alpha_3 \tag{1}$$

反证: 假设向量组  $\alpha_1, \alpha_2, \alpha_3, \beta + \alpha$  线性相关。则存在一组不全为 0 的  $l_i(1 < i < 3)$  和  $l_i$  使得

$$l_1\alpha_1 + l_2\alpha_2 + l_3\alpha_3 + l(\beta + \gamma) = 0 \tag{2}$$

若 l=0, 则  $l_1\alpha_1+l_2\alpha_2+l_3\alpha_3+l(\beta+\gamma)=l_1\alpha_1+l_2\alpha_2+l_3\alpha_3=0$ , 此时  $\alpha_1,\alpha_2,\alpha_3$  线性相关,与题中的条件矛盾,所以  $l\neq 0$ 。所以 (1) 式可变形为

$$\beta + \gamma = -\frac{1}{l}(l_1\alpha_1 + l_2\alpha_2 + l_3\alpha_3)$$

代入 (1) 式:

$$\gamma = -\frac{1}{l}(l_1\alpha_1 + l_2\alpha_2 + l_3\alpha_3) - k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3$$

可以看出此时  $\gamma$  可以由  $\alpha_1,\alpha_2,\alpha_3$  线性表示,与题目矛盾,所以假设错误,即向量组  $\alpha_1,\alpha_2,\alpha_3,\beta+\gamma$  线性无关。  $\diamondsuit$  4.期末 2016-2017 四 1.

已知  $\alpha_1,\alpha_2,\alpha_3$  是线性无关的向量组,若  $\alpha_1,\alpha_2,\alpha_3,\beta$  线性相关,证明  $\beta$  可以由  $\alpha_1,\alpha_2,\alpha_3$  线性表示并且表示方法唯一。

证明:

 $\alpha_1, \alpha_2, \alpha_3, \beta$  线性相关,则存在一组不全为 0 的  $l_i(1 < i < 3)$  和 l,使得

$$l_1\alpha_1 + l_2\alpha_2 + l_3\alpha_3 + l\beta = 0 (1)$$

若 l=0, 则  $l_1\alpha_1+l_2\alpha_2+l_3\alpha_3+l\beta=l_1\alpha_1+l_2\alpha_2+l_3\alpha_3=0$ , 此时  $\alpha_1,\alpha_2,\alpha_3$  线性相关,与题中的条件矛盾,所以  $l\neq 0$ 。所以 (1) 式可变形为

$$\beta = -\frac{1}{l}(l_1\alpha_1 + l_2\alpha_2 + l_3\alpha_3)$$

即  $\beta$  可以由  $\alpha_1, \alpha_2, \alpha_3$  线性表示。

 $\beta$  可以由  $\alpha_1, \alpha_2, \alpha_3$  线性表示, 不妨设任意两组不全为 0 的数  $m_i, n_i, (1 \le i \le 3)$ , 使得

$$\beta = m_1 \alpha_1 + m_2 \alpha_2 + m_3 \alpha_3 \tag{2}$$

$$\beta = n_1 \alpha_1 + n_2 \alpha_2 + n_3 \alpha_3 \tag{3}$$

(2) 式滅 (3) 式:  $0 = (m_1 - n_1)\alpha_1 + (m_2 - n_2)\alpha_2 + (m_3 - n_3)\alpha_3$ , 因为  $\alpha_1, \alpha_2, \alpha_3$  线性无关,所以有  $m_1 - n_1 = 0, m_2 - n_2 = 0, m_3 - n_3 = 0$ , 即  $m_1 = n_1, m_2 = n_2, m_3 = n_3$ , 由于  $m_i$  和  $n_i$  的任意性,所以可证得表示方法唯一。

5.期末 2017-2018 三 3.

已知  $\alpha_1 = (1, 4, 0, 2)^T$ ,  $\alpha_2 = (2, 7, 1, 3)^T$ ,  $\alpha_3 = (0, 1, -1, a)^T$  及  $\beta_4 = (3, 10, b, 4)^T$ .

(1)a,b 为何值时, $\beta$  不能表示成  $\alpha_1,\alpha_2,\alpha_3$  的线性组合?

(2)a,b 为何值时, $\beta$  可由  $\alpha_1,\alpha_2,\alpha_3$  线性表示? 并写出该表达式。

解:

记  $A = [\alpha_1, \alpha_2, \alpha_3]$ , 则

$$[A|\beta] = \begin{bmatrix} 1 & 2 & 0 & | & 3 \\ 4 & 7 & 1 & | & 10 \\ 0 & 1 & -1 & | & b \\ 2 & 3 & a & | & 4 \end{bmatrix} \xrightarrow{r_2 - 4r_1} \begin{bmatrix} 1 & 2 & 0 & | & 3 \\ 0 & -1 & 1 & | & -2 \\ 0 & 1 & -1 & | & b \\ 0 & -1 & a & | & 2 \end{bmatrix} \xrightarrow{r_3 + r_2} \begin{bmatrix} 1 & 2 & 0 & | & 3 \\ 0 & -1 & 1 & | & -2 \\ 0 & 0 & 0 & | & b - 2 \\ 0 & 0 & a - 1 & | & 0 \\ 0 & 0 & 0 & | & b - 2 \end{bmatrix}$$

$$\xrightarrow{r_3 \leftrightarrow r_2} \begin{bmatrix} 1 & 2 & 0 & | & 3 \\ 0 & -1 & 1 & | & -2 \\ 0 & 0 & a - 1 & | & 0 \\ 0 & 0 & 0 & | & b - 2 \end{bmatrix}$$

(1) 可以看出  $b \neq 2, a \in R$  时,  $Ax = \beta$  无解, 即  $\beta$  不能表示成  $\alpha_1, \alpha_2, \alpha_3$  的线性组合。

(2)b=2 时,  $\beta$  可由  $\alpha_1,\alpha_2,\alpha_3$  线性表示。

当  $a \neq 1, r(A) = r(A, \beta) = 3$ , 此时:  $Ax = \beta$  有唯一解, 即  $\beta$  可由  $\alpha_1, \alpha_2, \alpha_3$  线性表示的方法唯一。

此时  $Ax = \beta$  的解为  $x_1 = -1, x_2 = 2, x_3 = 0$ ,所以  $\beta = x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 = -\alpha_1 + 2\alpha_2 + 0\alpha_3 = -\alpha_1 + 2\alpha_2$ . a = 1 时  $r(A, \beta) = r(A) = 2 < 3$ ,所以  $\beta$  可由  $\alpha_1, \alpha_2, \alpha_3$  线性表示的方法唯一。

$$\xrightarrow{r_1+2r_2} \begin{bmatrix} 1 & 0 & 2 & -1 \\ 0 & -1 & 1 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

所以解得  $x_1 = -1 - 2x_3, x_2 = x_3 + 2$ , 令  $x_3 = k, k \in R$ ,则  $\beta = x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 = -(1+2k)\alpha_1 + (2+k)\alpha_2 + k\alpha_3$  令 6.期末 2018-2019 - 2.

已知向量组  $\alpha_1 = (1,3,1), \alpha_2 = (0,1,1), \alpha_3 = (1,4,k)$  线性无关,则实数 k 满足的条件是\_\_\_\_\_。解:

 $\alpha_1, \alpha_2, \alpha_3$  线性无关,即  $r(\alpha_1, \alpha_2, \alpha_3) = 3$ ,记  $A = (\alpha_1, \alpha_2, \alpha_3)$ ,则  $|A| \neq 0$ 

$$|A| = \begin{vmatrix} 1 & 0 & 1 \\ 3 & 1 & 4 \\ 1 & 1 & k \end{vmatrix} = \frac{c_3 - c_1}{\begin{vmatrix} 1 & 0 & 0 \\ 3 & 1 & 1 \\ 1 & 1 & k - 1 \end{vmatrix}} = k - 2 \neq 0 \quad \Rightarrow k \neq 2$$

7.期末 2018-2019 一 6.

设 3 维列向量组  $\alpha_1,\alpha_2,\alpha_3$  线性无关,3 阶方阵 A 满足  $A\alpha_1=-\alpha_1,A\alpha_2=\alpha_2,A\alpha_3=\alpha_2+\alpha_3$ 。则行列式 |A|=\_\_\_\_。

解:

由题得: 
$$A\alpha_1 = -\alpha_1, A\alpha_2 = \alpha_2, A\alpha_3 = \alpha_2 + \alpha_3$$
 所以

$$A(\alpha_1 \ \alpha_2 \ \alpha_3) = (-\alpha_1 \ \alpha_2 \ \alpha_2 + \alpha_3)$$

即

$$|A(\alpha_1 \ \alpha_2 \ \alpha_3)| = |A| \cdot |\alpha_1 \ \alpha_2 \ \alpha_3| = |-\alpha_1 \ \alpha_2 \ \alpha_2 + \alpha_3|$$

$$|-\alpha_1 \ \alpha_2 \ \alpha_2 + \alpha_3| = \frac{c_3 - c_2}{} |-\alpha_1 \ \alpha_2 \ \alpha_3| = -|\alpha_1 \ \alpha_2 \ \alpha_3|$$

$$|A| = -1$$



 $\Diamond$