- Cov[aX, bY] = abCov[X, Y]
- $\operatorname{Cov}\left[X + a, Y + b\right] = \operatorname{Cov}\left[X, Y\right]$

• Cov
$$\left[\sum_{i=1}^{n} X_i, \sum_{j=1}^{m} Y_j\right] = \sum_{i=1}^{n} \sum_{j=1}^{m} \text{Cov}\left[X_i, Y_j\right]$$

Correlation

$$\rho\left[X,Y\right] = \frac{\operatorname{Cov}\left[X,Y\right]}{\sqrt{\mathbb{V}\left[X\right]\mathbb{V}\left[Y\right]}}$$

Independence

$$X \perp\!\!\!\perp Y \implies \rho\left[X,Y\right] = 0 \iff \operatorname{Cov}\left[X,Y\right] = 0 \iff \mathbb{E}\left[XY\right] = \mathbb{E}\left[X\right]\mathbb{E}\left[Y\right]$$

Sample variance

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X}_{n})^{2}$$

Conditional variance

- $\mathbb{V}[Y|X] = \mathbb{E}[(Y \mathbb{E}[Y|X])^2|X] = \mathbb{E}[Y^2|X] \mathbb{E}[Y|X]^2$
- $\mathbb{V}[Y] = \mathbb{E}[\mathbb{V}[Y|X]] + \mathbb{V}[\mathbb{E}[Y|X]]$

6 Inequalities

CAUCHY-SCHWARZ

$$\mathbb{E}\left[XY\right]^{2} \leq \mathbb{E}\left[X^{2}\right] \mathbb{E}\left[Y^{2}\right]$$

Markov

$$\mathbb{P}\left[\varphi(X) \ge t\right] \le \frac{\mathbb{E}\left[\varphi(X)\right]}{t}$$

CHEBYSHEV

$$\mathbb{P}\left[\left|X - \mathbb{E}\left[X\right]\right| \ge t\right] \le \frac{\mathbb{V}\left[X\right]}{t^2}$$

CHERNOFF

$$\mathbb{P}\left[X \ge (1+\delta)\mu\right] \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right) \quad \delta > -1$$

Hoeffding

$$X_1, \ldots, X_n$$
 independent $\wedge \mathbb{P}[X_i \in [a_i, b_i]] = 1 \wedge 1 \leq i \leq n$

$$\mathbb{P}\left[\bar{X} - \mathbb{E}\left[\bar{X}\right] \ge t\right] \le e^{-2nt^2} \quad t > 0$$

$$\mathbb{P}\left[|\bar{X} - \mathbb{E}\left[\bar{X}\right]| \ge t\right] \le 2\exp\left\{-\frac{2n^2t^2}{\sum_{i=1}^{n}(b_i - a_i)^2}\right\} \quad t > 0$$

JENSEN

$$\mathbb{E}\left[\varphi(X)\right] \ge \varphi(\mathbb{E}\left[X\right]) \quad \varphi \text{ convex}$$

7 Distribution Relationships

Binomial

- $X_i \sim \text{Bern}(p) \implies \sum_{i=1}^n X_i \sim \text{Bin}(n, p)$
- $X \sim \text{Bin}(n, p), Y \sim \text{Bin}(m, p) \implies X + Y \sim \text{Bin}(n + m, p)$
- $\lim_{n\to\infty} \text{Bin}(n,p) = \text{Po}(np)$ (n large, p small)
- $\lim_{n\to\infty} \text{Bin}(n,p) = \mathcal{N}(np, np(1-p))$ (n large, p far from 0 and 1)

Negative Binomial

- $X \sim \text{NBin}(1, p) = \text{Geo}(p)$
- $X \sim \text{NBin}(r, p) = \sum_{i=1}^{r} \text{Geo}(p)$
- $X_i \sim \text{NBin}(r_i, p) \implies \sum X_i \sim \text{NBin}(\sum r_i, p)$
- $X \sim \text{NBin}(r, p)$. $Y \sim \text{Bin}(s + r, p) \implies \mathbb{P}[X \leq s] = \mathbb{P}[Y \geq r]$

Poisson

•
$$X_i \sim \text{Po}(\lambda_i) \wedge X_i \perp \!\!\!\perp X_j \implies \sum_{i=1}^n X_i \sim \text{Po}\left(\sum_{i=1}^n \lambda_i\right)$$

•
$$X_i \sim \text{Po}(\lambda_i) \wedge X_i \perp \!\!\!\perp X_j \implies X_i \left| \sum_{j=1}^n X_j \sim \text{Bin}\left(\sum_{j=1}^n X_j, \frac{\lambda_i}{\sum_{j=1}^n \lambda_j}\right) \right|$$

Exponential

- $X_i \sim \text{Exp}(\beta) \wedge X_i \perp \!\!\!\perp X_j \implies \sum_{i=1}^n X_i \sim \text{Gamma}(n,\beta)$
- Memoryless property: $\mathbb{P}[X > x + y \mid X > y] = \mathbb{P}[X > x]$

Normal

- $X \sim \mathcal{N}\left(\mu, \sigma^2\right) \implies \left(\frac{X-\mu}{\sigma}\right) \sim \mathcal{N}\left(0, 1\right)$
- $X \sim \mathcal{N}(\mu, \sigma^2) \wedge Z = aX + b \implies Z \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$
- $X_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right) \wedge X_i \perp \!\!\!\perp X_j \implies \sum_i X_i \sim \mathcal{N}\left(\sum_i \mu_i, \sum_i \sigma_i^2\right)$
- $\mathbb{P}\left[a < X \le b\right] = \Phi\left(\frac{b-\mu}{\sigma}\right) \Phi\left(\frac{a-\mu}{\sigma}\right)$
- $\Phi(-x) = 1 \Phi(x)$ $\phi'(x) = -x\phi(x)$ $\phi''(x) = (x^2 1)\phi(x)$
- Upper quantile of $\mathcal{N}(0,1)$: $z_{\alpha} = \Phi^{-1}(1-\alpha)$

Gamma

- $X \sim \text{Gamma}(\alpha, \beta) \iff X/\beta \sim \text{Gamma}(\alpha, 1)$
- Gamma $(\alpha, \beta) \sim \sum_{i=1}^{\alpha} \text{Exp}(\beta)$
- $X_i \sim \text{Gamma}(\alpha_i, \beta) \wedge X_i \perp \!\!\!\perp X_j \implies \sum_i X_i \sim \text{Gamma}(\sum_i \alpha_i, \beta)$