# Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)»

(национальный исследовательский университет)» Физтех-школа физики и исследований им. Ландау

Физтех-кластер академической и научной карьеры (Математические методы современной физики)

**Направление подготовки / специальность:** 03.03.01 Прикладные математика и физика **Направленность (профиль) подготовки:** Общая и прикладная физика

#### СЕМЕЙСТВА ВЕКТОРОВ С БИНАРНЫМИ СКАЛЯРНЫМИ ПРОИЗВЕДЕНИЯМИ

(бакалаврская работа)

| Студент:                        |
|---------------------------------|
| Царёв Дмитрий Вячеславович      |
|                                 |
| (подпись студента)              |
| (поопись стуоента)              |
| Научный руководитель:           |
| Купавский Андрей Борисович,     |
| д-р физмат. наук                |
|                                 |
| (подпись научного руководителя) |
| Консультант (при наличии):      |
|                                 |
| (подпись консультанта)          |

Москва 2023

#### Аннотация

Вопросы, связанные с оценками числа вершин и граней двухуровневых политопов, мотивируют изучение семейств векторов  $\mathcal{A}, \mathcal{B} \subseteq \mathbb{R}^d$  таких что  $\forall a \in \mathcal{A}, b \in \mathcal{B}$  скалярное произведение  $\langle a, b \rangle \in \{0,1\}$ . В данной работе приведены некоторые подходы к работе с такими семействами и получены некоторые улучшения оценки на произведение размеров таких семейств  $|\mathcal{A}| \cdot |\mathcal{B}|$ .

#### Abstract

Questions on possible number of vertices and faces in two-level polytopes motivate the study of vector families  $\mathcal{A}, \mathcal{B} \subseteq \mathbb{R}^d$  with a property that  $\forall a \in \mathcal{A}, b \in \mathcal{B}$  the dot product  $\langle a, b \rangle \in \{0,1\}$ . In this work we give some approaches to dealing with such families and obtain some improvements on the upper bounds on the product  $|\mathcal{A}| \cdot |\mathcal{B}|$ .

# Оглавление

| 1 | Введение                                       | 4  |
|---|------------------------------------------------|----|
|   | 1.1 Обозначения                                | 4  |
| 2 | Дискретизация, корреляция                      | 6  |
| 3 | Стабильность оценки максимального произведения | 12 |
| 4 | Заключение                                     | 20 |

## Введение

Многогранник называется двухуровневым, если для каждой гипеплоскости H, определяющей фасету, существует параллельная гиперплоскость H' такая, что все вершины лежат в объединении  $H \cup H'$ . Простейшими примерами таких политопов могут служить симплекс, гиперкуб и кросс-политоп, но двухуровневыми также являются широкий круг семейств политопов, например политопы Биркгофа, Ханнера, политопы порядка и политопы цепей для частично упорядоченных множеств, политопы стабильных браков и политопы антиклик совершенных графов [1]. Вопросы, связанные с комбинаторной структурой таких политопов, изучались также в [2], а в [3] был описан алгоритм перечисления всех двухуровневых политопов, и на основе перебора в малых размерностях сформулирована гипотеза о максимальном возможном произведении числа вершин и фасетов d-мерного двухуровнего политопа. Эта гипотеза была доказана в [4] с помощью более общей теоремы 1 об оценке произведения размеров двух семейств векторов с бинарными скалярными произведениями:

**Теорема 1.** Пусть оба  $\mathcal{A}, \mathcal{B} \subseteq \mathbb{R}^d$  содержат базис  $\mathbb{R}^d$  и  $\langle a, b \rangle \in \{0,1\}$  для любых  $a \in \mathcal{A}, b \in \mathcal{B}$ . Тогда  $|\mathcal{A}| \cdot |\mathcal{B}| \leq (d+1)2^d$ .

В статье [5] теорема 1 обобщается для нескольких семейств 0-1 векторов. Для этого используются корреляционные неравенства, и там же приводится изящное доказательство теоремы 1 для случая 0-1 векторов, описанное ниже.

В первой части этой работы исследуется возможность применения подхода с корреляционными неравенствами к теореме 1, в частности задача о семействах векторов в  $\mathbb{R}^d$  сводится к дискретной, что позволяет проверять результаты в малых размерностях компьютерным перебором. Во второй части доказывается стабильность теоремы 1, с основным результатом в виде теоремы 5.

#### 1.1 Обозначения

Множество целых чисел от 1 до n обозначается [n]. Скалярное произведение двух векторов  $a=(a_1,\ldots,a_d)$  и  $b=(b_1,\ldots,b_d)$  будем обозначать  $\langle a,b\rangle=\sum_{i=1}^d a_ib_i$ . Семейства в  $\mathbb{R}^d$  будут иногда рассматриваться как наборы векторов, а иногда как наборы

точек в афинном пространстве, в частности для  $\mathcal{A} \subset \mathbb{R}^d$  будем обозначать афинную размерность семейства как dim  $\mathcal{A}$ , а линейную оболочку векторов – как span  $\mathcal{A}$ . Размер семейства –  $|\mathcal{A}|$ . В решётке  $\wedge$  будет обозначать точную нижнюю грань двух элементов, а  $\vee$  – точную верхнюю грань. Для подмножеств X и Y решётки  $X \vee Y$  обозначает множество  $\{x \vee y : x \in X, y \in Y\}$ , а  $X \wedge Y = \{x \wedge y : x \in X, y \in Y\}$ .

# Дискретизация задачи, препятствия в применении корреляции

Для начала приведём формулировки корреляционного неравенства из [6] в общей форме и в интересном частном случае. Функция  $\mu:L\to\mathbb{R}^+$ , где L – конечная дистрибутивная решётка, называется лог-супермодулярной, если

$$\forall x, y \in L : \mu(x)\mu(y) \le \mu(x \lor y)\mu(x \land y)$$

Функция  $f: L \to \mathbb{R}^+$  возрастает если из  $x \le y$  следует  $f(x) \le f(y)$  и убывает если из  $x \le y$  следует  $f(x) \ge f(y)$ .

**Теорема** (FKG-неравенство). Пусть L – конечная дистрибутивная решётка,  $\mu$ :  $L \to \mathbb{R}^+$  – лог-супермодулярная функция. Тогда для любых возрастающих функций  $f, g: L \to \mathbb{R}^+$  выполняется

$$\left(\sum_{x \in L} \mu(x) f(x)\right) \cdot \left(\sum_{x \in L} \mu(x) g(x)\right) \le \left(\sum_{x \in L} \mu(x) f(x) g(x)\right) \cdot \left(\sum_{x \in L} \mu(x)\right)$$

Выбирая в качестве L решётку подмножеств конечного множества, в качестве  $\mu$  тождественную единицу, а в качестве f и g характеристические функции двух замкнутых вниз семейств подмножеств, получаем

**Следствие.** Пусть  $\mathcal{A}$  и  $\mathcal{B}$  – замкнутые вниз семейства подмножеств d-элементного множества. Тогда

$$|\mathcal{A}| \cdot |\mathcal{B}| \le |\mathcal{A} \cap \mathcal{B}| \cdot 2^d \tag{2.1}$$

Теперь мы можем привести изящное доказательство теоремы 1 для семейств из 0-1 векторов:

**Теорема 2.** Пусть  $\mathcal{A}, \mathcal{B} \subseteq \{0,1\}^d$  и  $\langle a,b \rangle \in \{0,1\}$  для любых  $a \in \mathcal{A}, b \in \mathcal{B}$ . Тогда  $|\mathcal{A}| \cdot |\mathcal{B}| \leq (d+1)2^d$ .

 $\mathcal{A}$ оказательство. Проинтерпретируем вектора в  $\{0,1\}^d$  как индикаторы подмножеств d-элементного множества.  $\mathcal{A}$  и  $\mathcal{B}$  тогда становятся семействами подмножеств, а условие на них заключается в том, что любые два множества из разных семейств либо не пересекаются, либо пересекаются по одному элементу. Поэтому если множество лежит и в  $\mathcal{A}$ , и в  $\mathcal{B}$ , то оно либо пустое, либо одноэлементное, и в частности

 $|\mathcal{A} \cap \mathcal{B}| \leq d+1$ . Заметим, что семейства  $\mathcal{A}$  и  $\mathcal{B}$  можно считать замкнутыми вниз, так как замыкание их вниз не нарушает накладываемого условия, и лишь увеличивает произведение размеров. Наконец, 2.1 даёт нам

$$|\mathcal{A}| \cdot |\mathcal{B}| \le |\mathcal{A} \cap \mathcal{B}| \cdot 2^d \le (d+1) 2^d$$

Это красивое рассуждение было бы приятно обобщить на семейства векторов в  $\mathbb{R}^d$  – например, это могло бы помочь в обобщении теоремы 1 на несколько семейств, аналогично результатам в [5]. Следуя этому желанию, мы сведём задачу в  $\mathbb{R}^d$  к дискретной, заведём соответствующее отношение порядка на векторах семейств, и после перебора в малых размерностях пронаблюдаем препятствия к прямому обобщению доказательства теоремы 2.

Итак, пусть  $\mathcal{A}$  и  $\mathcal{B}$  – семейства векторов, удовлетворяющие условиям теоремы 1. Записывая вектор-столбцы в стандартном базисе, будем считать  $\mathcal{A}$  и  $\mathcal{B}$  матрицами размеров  $d \times |\mathcal{A}|$  и  $d \times |\mathcal{B}|$  соответственно. Выберем базис столбцов в  $\mathcal{A}$  и обозначим его A, двойственный к нему базис  $\mathbb{R}^d$  задаётся столбцами матрицы  $A^{-T}$ , и из условия на скалярное произведение векторов разных семейств следует, что  $\mathcal{B} = A^{-T}\mathcal{B}_{01}$ , где  $\mathcal{B}_{01} \in \operatorname{Mat}_{d \times |\mathcal{B}|}$  состоит из нулей и единиц (это семейство  $\mathcal{B}$ , записанное в базисе, двойственном к  $\mathcal{A}$ ). Пусть теперь B – базис в  $\mathcal{B}$ , мы имеем  $B = A^{-T}B_{01}$ , где  $B_{01} \in \operatorname{Mat}_{d \times d}$  – невырожденная матрица, состоящая из нулей и единиц. Базис  $\mathbb{R}^d$ , двойственный к B, это  $B^{-T} = AB_{01}^{-T}$ , и в нём  $\mathcal{A}$  записывается матрицей из нулей и единиц:  $\mathcal{A} = B^{-T}\mathcal{A}_{01} = AB_{01}^{-T}\mathcal{A}_{01}$ . Теперь, когда каждому вектору  $a \in \mathcal{A}$  соответствует  $a_{01} \in \{0,1\}^d$ , и  $b \in \mathcal{B}$  соответствует  $b_{01} \in \{0,1\}^d$ , имеем

$$\langle a, b \rangle = \langle AB_{01}^{-T} a_{01}, A^{-T} b_{01} \rangle = \langle B_{01}^{-T} a_{01}, b_{01} \rangle = \langle a_{01}, B_{01}^{-1} b_{01} \rangle$$

Замечательным образом скалярное произведение не зависит напрямую от A, так что максимизация  $|\mathcal{A}| \cdot |\mathcal{B}|$  с соблюдением условия о бинарных скалярных произведений эквивалентно максимизации  $|\mathcal{A}_{01}| \cdot |\mathcal{B}_{01}|$ , где  $\mathcal{A}_{01}$  и  $\mathcal{B}_{01}$  – подмножества булевого куба  $\{0,1\}^d$  с условием

$$\forall \ a_{01} \in \mathcal{A}_{01}, \ b_{01} \in \mathcal{B}_{01} : \ \langle a_{01}, B_{01}^{-1} b_{01} \rangle \in \{0, 1\}$$
 (2.2)

где  $B_{01}$  – невырожденная матрица из нулей и единиц. Заметим, что можно полагать  $B_{01} \subseteq \mathcal{B}_{01}$  и  $B_{01}^T \subseteq \mathcal{A}_{01}$ , так как условие 2.2 автоматически выполняется для столбцов этих матриц.

Для наглядного изображения возможных выборов  $\mathcal{A}_{01}$  и  $\mathcal{B}_{01}$  заведём матрицу C размера  $d \times 2^d$ , столбцы которой – все вектора  $\{0,1\}^d$ , и будем рассматривать матрицу  $G = G(B_{01}) = C^T B_{01}^{-1} C$  размера  $2^d \times 2^d$ . Выбор  $\mathcal{A}_{01}$  и  $\mathcal{B}_{01}$  соответствует выбору подмножества строк и столбцов G так, что индуцированная ими подматрица в G состоит из нулей и единиц. Несколько примеров матриц G для трёхмерных семейств приведено на рисунке 2.1.



Рис. 2.1: Матрицы  $G(B_{01})$  для различных матриц  $B_{01}$ . Стрелками указаны столбцы, соответствующие  $B_{01}^T$ . Чёрныи обозначены нули.

Для применения корреляционного неравенства аналогично теореме 2 необходимо на векторах булевого куба завести такое отношение частичного порядка, что меньший вектор всегда можно добавить в семейство, если там уже есть больший. Это делает естественным следующие определения: индексируя столбцы и строки G элементами  $\{0,1\}^d$ , введём для  $x \in \{0,1\}^d$ 

$$R_x = \left\{ y \in \{0,1\}^d : G_{y,x} \in \{0,1\} \right\} \text{ if } C_x = \left\{ y \in \{0,1\}^d : G_{x,y} \in \{0,1\} \right\}$$

Введём отношения эквивалентности на  $\{0,1\}^d$  и частичные порядки на множестве классов эквивалентности как

$$x \sim_R y \iff R_x = R_y, \quad [x] \leq_R [y] \iff R_x \supseteq R_y$$
  
 $x \sim_C y \iff C_x = C_y, \quad [x] \leq_C [y] \iff C_x \supseteq C_y$ 

Для получения одного частично упорядоченного множества, из которого выбираются и  $\mathcal{A}_{01}$ , и  $\mathcal{B}_{01}$ , нам необходимо сопоставить столбцы и строки G биекцией  $\varphi: \{0,1\}^d \to \{0,1\}^d$ , после чего ввести отношение эквивалентности и частичный порядок

$$x \sim y \iff (x \sim_R y \text{ if } \varphi(x) \sim_C \varphi(y)), \quad [x] \leq [y] \iff (R_x \supseteq R_y \text{ if } C_{\varphi(x)} \supseteq C_{\varphi(y)})$$

Для того чтобы избавиться от свободы выбора  $\varphi$  ограничимся сейчас случаями, когда  $B_{01}$  симметрична. Тогда  $G(B_{01})$  тоже симметрична,  $\sim_R = \sim_C$ ,  $\leq_R = \leq_C$  и естественное  $\varphi$  = id даёт те же классы эквивалентности и частичный порядок. Диаграмму Хассе такого чума будем рисовать с весами в узлах, обозначающими размер соответствующего класса эквивалентности (в случае успешного применения корреляционного неравенства этот вес будет играть роль  $\mu$ ).

На рисунке 2.2 изображены все три не изоморфных чума для трёхмерного пространства и симметричных матриц  $B_{01}$ . Сразу видно, что 2.2а не является решёткой,



Рис. 2.2: Три разных частично упорядоченных множества, получающихся из симметричных  $B_{01}$ .

так как не содержит максимального элемента. 2.2b не является дистрибутивной решёткой, но получено из неё факторизацией. К сожалению, пример на рисунке 2.3 не является даже полурешёткой (для которых, несмотря на отсутствие точной верхней грани, определено понятие дистрибутивности, необхолимое в корреляционном неравенстве).

Крупнейшим же препятствием к применению корреляционного неравенства является следующее наблюдение: в доказательстве теоремы 2 было существенно, что  $|\mathcal{A} \cap \mathcal{B}| \leq d+1$  из-за того что лишь для стандартного базиса и нулевого вектора выполнено  $x \in R_x$ . Иначе говоря, у G(E) на диагонали лишь d+1 элемент, являющийся нулём или единицей, что даёт оценку сверху на  $|\mathcal{A} \wedge \mathcal{B}|$ . Оказывается, для некоторых симметричных  $B_{01}$  мощность множества  $|\{x \in \{0,1\}^d : x \in R_x\}|$  экспоненциально велика, а именно верно следующее утверждение, техническую проверку которого мы опускаем.

**Утверждение 1.** Пусть  $B_{01}$  имеет единицы на побочной диагонали и выше неё, а нули ниже неё. Тогда количество  $x \in \{0,1\}^d$ , таких что  $\langle x, B_{01}^{-1} x \rangle \in \{0,1\}$ , равно  $\binom{n}{\lfloor \frac{n}{2} \rfloor}$ .

Утверждение 1 вместе с численным исследованием распределения значений

$$|\{x \in \{0,1\}^d : x \in R_x\}|$$

в размерностях до пяти ставит под сильное сомнение возможность даже непрямого применения корреляционного неравенства для получения оценки, близкой к полученной в теореме 1. Тем не менее возникшие структуры любопытны сами по себе и порождают множество интересных вопросов о структуре чумов семейств векторов в  $\mathbb{R}^d$ . В завершение приведём рисунок 2.4 с матрицей G для примера из утверждения 1, а также некоторые примеры частично упорядоченных множеств на рисунке 2.5.



Рис. 2.3: Частично упорядоченное множество, соответствующее

$$B_{01} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix}.$$



Рис. 2.4: Матрица G для размерности d=6 с максимальным возможным количеством нулей и единиц на диагонали. Нули обозначены чёрным.



Рис. 2.5: Примеры частично упорядоченных множеств при d=5.

# Стабильность оценки максимального произведения

Вспомним теорему 1, а также приведём обозначения и промежуточные результаты, доказанные в [4].

**Теорема 1.** Пусть оба  $\mathcal{A}, \mathcal{B} \subseteq \mathbb{R}^d$  содержат базис  $\mathbb{R}^d$  и  $\langle a, b \rangle \in \{0,1\}$  для любых  $a \in \mathcal{A}, b \in \mathcal{B}$ . Тогда  $|\mathcal{A}| \cdot |\mathcal{B}| \leq (d+1)2^d$ .

Обозначим  $b_d \in \mathcal{B}$  вектор, с максимальным значением  $\max (\dim \mathcal{A}_0, \dim \mathcal{A}_1)$ , где  $\mathcal{A}_i = \{a \in \mathcal{A} : \langle a, b_d \rangle = i\}$  для i = 0, 1. Ортогональную проекцию на  $U = b_d^{\perp}$  обозначим  $\pi : \mathbb{R}^d \to U$ .

**Утверждение 2.** Параллельным перенесом  $\mathcal{A}$  и заменой некоторых векторов  $\mathcal{B}$  на противоположные можно добиться того что

- 1.  $\mathcal{A} = \mathcal{A}_0 \sqcup \mathcal{A}_1 \ u \ |\mathcal{A}_0| > |\mathcal{A}_1|$
- 2. Всё ещё  $\langle a,b \rangle \in \{0,1\}$  для любого  $a \in \mathcal{A}_0$  и  $b \in \mathcal{B}$
- 3. Множество  $\pi(\mathcal{B})$  не содержит противоположных точек.

**Утверждение 3.** Каждая точка  $\pi(\mathcal{B})$  имеет не более двух прообразов в  $\mathcal{B}$ .

Неравенство 1. 
$$|\mathcal{A}| \, |\mathcal{B}| \le 2 \, |\mathcal{A}_0| \, |\pi(\mathcal{B})| + |\mathcal{A}_1| \, |\mathcal{B} \backslash \mathcal{B}_*|$$

Линейную оболочку  $\mathcal{A}_0$  обозначим  $U_0$  и введём ортогональную проекцию  $\tau: U \to U_0$ . Через  $\mathcal{B}_* \subseteq \mathcal{B}$  обозначим множество  $b \in \mathcal{B}$  для которых  $\pi(b)$  имеет ровно один прообраз при проекции на U.

Утверждение 4.  $|\pi(\mathcal{B})| \leq 2^{d-1-\dim U_0} |\tau(\pi(\mathcal{B}))|$ .

**Утверждение 5.**  $\mathcal{B} \backslash \mathcal{B}_* = \mathcal{B}_0 \sqcup \mathcal{B}_1$  с выполнением для i = 0, 1

$$\forall b \in \mathcal{B}_i : |\{\langle a, b \rangle : a \in \mathcal{A}_i\}| = 1$$

Утверждение 6. Для i=0,1 выполняется  $|\mathcal{A}_i| |\mathcal{B}_i| \leq 2^d$ .

Неравенство 2. 
$$|\mathcal{A}| \cdot |\mathcal{B}| \le (\dim U_0 + 1) 2^d + |\mathcal{A}_0| |\mathcal{B}_0| + |\mathcal{A}_1| |\mathcal{B}_1|$$

Поймём, на каких семействах в теореме 1 достигается равенство. Без ограничения общности будем полагать  $|\mathcal{A}| \geq |\mathcal{B}|$ .

**Теорема 3.**  $|\mathcal{A}| \cdot |\mathcal{B}| = (d+1)2^d$  только если  $|\mathcal{B}| = d+1$ , а  $\mathcal{A}$  афинно изоморфно  $\{0,1\}^d$ .

Доказательство. Будем вести индукцию по d, в размерности 1 утверждение очевидно. Предпологая выполнение леммы в размерностях меньших d, докажем её в размерности d. Разобьём случаи по значению  $\dim U_0$ :

1.  $\dim U_0 < d-2$ . Тогда из неравенства 2 и утверждения 6

$$|\mathcal{A}| \cdot |\mathcal{B}| \le (\dim U_0 + 3) \, 2^d \le d2^d \tag{3.1}$$

2.  $\dim U_0 = d-2$ . Заметим, что мы можем свободно полагать  $0, b_d \in \mathcal{B}_0$  или  $0, b_d \in \mathcal{B}_1$ , поэтому из доказательства утверждения 6 следует

$$|\mathcal{A}_1| |\mathcal{B}_1| \le 2^d, |\mathcal{A}_0| (|\mathcal{B}_0| + 2) \le 2^d$$

Поэтому по неравенству 2 и утверждению 6

$$|\mathcal{A}| \cdot |\mathcal{B}| \le (d-1) 2^d + 2 \cdot 2^d - 2 |\mathcal{A}_0| \le (d+1) 2^d - |\mathcal{A}| < (d+1) 2^d$$

- 3. dim  $U_0=d-1$ . Тогда, полагая  $0,b_d\in\mathcal{B}_1$ , имеем  $\mathcal{B}_0=\varnothing$ . Рассмотрим два случая:
  - а)  $\mathcal{B}_* \neq \varnothing$ . Тогда для вырождения неравенства 1 в равенство необходимо  $|\mathcal{A}_0| = |\mathcal{A}_1|$ , а для вырождения неравенства  $2 |\mathcal{A}_0| |\pi(\mathcal{B})| = d2^{d-1}$ . По предположению индукции последнее возможно в одном из двух случаев:
    - і)  $\mathcal{A}_0$  афинно изоморфно  $\{0,1\}^{d-1}$ . Тогда  $|\mathcal{A}| = |\mathcal{A}_0| + |\mathcal{A}_1| = 2^d$ , что возможно только если  $\mathcal{A}$  афинно изоморфно  $\{0,1\}^d$ ,  $\mathcal{B}$  может состоять только из базиса и нуля.
    - іі)  $|\mathcal{A}_0| = d$ . Тогда  $|\mathcal{B}| \le |\mathcal{A}| = 2d$  и  $|\mathcal{B}| \cdot |\mathcal{A}| \le 4d^2$ , что меньше  $(d+1)\,2^d$  для  $d \ge 4$ . При d=3 неравенство  $|\mathcal{B}| \cdot |\mathcal{A}| \le 32$  не может вырождаться, так как  $|\mathcal{A}| = 6$ . Наконец, в случае d=2 мы имеем  $|\mathcal{A}_1| = 2^d$  как в і).
  - б)  $\mathcal{B}_* = \varnothing$ . Тогда  $\mathcal{B}_1 = \mathcal{B}$  и, следовательно,  $\dim(\operatorname{span}(\mathcal{B}_1)) = d$ . В таком случае  $(\forall b \in \mathcal{B}_1 \; \exists \xi : \forall a \in \mathcal{A}_1 \; \langle a,b \rangle = \xi) \Rightarrow \dim(\mathcal{A}_1) \leq d \dim(\operatorname{span}(\mathcal{B}_1)) = 0 \Rightarrow |\mathcal{A}_1| = 1$  Как и в б), для вырождения неравенства по предположнию индукции необходимо одно из двух:
    - i)  $|\mathcal{A}_0| = d$ . Тогда  $|\mathcal{A}| \cdot |\mathcal{B}| \le (d+1)^2 < (d+1) 2^d$ .
    - іі)  $|\mathcal{A}_0| = 2^{d-1}$ ,  $|\pi(\mathcal{B})| = d$ . Тогда  $|\mathcal{A}| \cdot |\mathcal{B}| = 2d \left(2^{d-1} + 1\right)$ , что меньше  $(d+1)2^d$  для d>2. При d=2 же  $|\mathcal{A}| \cdot |\mathcal{B}| \le |\mathcal{A}|^2 = 9 < 3 \cdot 2^2$ .

Улучшим оценку для семейств, отличающихся от эктремального примера. Докажем для этого вспомогательное

13

**Неравенство 3.** Для целого  $2 \le f \le d$  выполняется  $(d+f)(2^{d-1}+2^{d-f}) \le d2^d+2d$ .

Доказательство. Доказываем индукцией по d: при d=k выполнено равенство, проведём шаг от d к d+1. Обозначая левую и правую стороны неравенства l(d,f) и r(d,f) соответственно, имеем

$$r(d+1,f) - l(d+1,f) \ge (r(d+1,f) - r(d,f)) - (l(d+1,f) - l(d,f))$$

$$= (d2^{d} + 2^{d+1} + 2) - (d+f+2)(2^{d-1} + 2^{d-f})$$

$$= 2^{d-f}(d-f+2)\left(2^{f-1} - 1 - \frac{2f}{d-f+2}\right) + 2$$

$$\ge 2^{d-f}(d-f+2)(2^{f-1} - 1 - f)$$

Полученное выражение неотрицательно при f>2. Для  $f=2, d\geq 4$  выполняется  $2^{f-1}-1-\frac{2f}{d-f+2}\geq 0$ , и для f=2, d=2,3 изначальное неравенство проверяется явно.

**Теорема 4.** Пусть оба  $\mathcal{A}, \mathcal{B} \subseteq \mathbb{R}^d$  содержат базис  $\mathbb{R}^d$  и  $\langle a, b \rangle \in \{0,1\}$  для любых  $a \in \mathcal{A}, b \in \mathcal{B}$ . Если при этом семейства максимальны по включению и размер каждого хотя бы d+2, то  $|\mathcal{A}| \cdot |\mathcal{B}| \leq (d+\lambda(d)) \, 2^d$ , где  $0 < \lambda(d) \leq 1$  – некая (нестрого) убывающая функция.

Доказательство.  $\lambda(d)$  будем обозначать  $\lambda_d$ . Как и в доказательстве леммы 3, будем вести индукцию по d. Для базы можно выбрать  $\lambda = 1$ , предполагая верность для меньших размерностей, докажем утверждение для d. Рассматриваем возможные значения  $\dim U_0$ :

- 1. dim  $U_0 < d 2$ . Тогда  $|\mathcal{A}| \cdot |\mathcal{B}| \le (\dim U_0 + 3) \, 2^d \le d2^d$
- 2.  $\dim U_0 = d-2$ . Применяя предположение индукции и лемму 3 для семейств  $\tau(\pi(\mathcal{B}))$  и  $\mathcal{A}_0$ , имеем три варианта:
  - а)  $\mathcal{A}_0$  афинно изоморфно  $\{0,1\}^{d-2}$ ,  $\tau(\pi(\mathcal{B}))$  состоит из нуля и базиса  $U_0$ . Из утверждения 6 и предположения  $0, b_d \in \mathcal{B}_1$  следует  $|\mathcal{B}_0| \leq 2$ . С учётом чётности  $|\mathcal{B}_0|$  имеется два варианта:
    - і)  $|\mathcal{B}_0| = 0$ . Тогда из неравенства 1 и утверждения 6 получаем

$$|\mathcal{A}| \cdot |\mathcal{B}| \le 4(d-1)2^{d-2} + 2^d = d2^d$$

іі)  $|\mathcal{B}_0| = 2$ . Пусть в  $\tau(\pi(\mathcal{B}))$  имеется k+1 векторов с двумя прообразами под действием  $\tau$  ( $k \geq 0$ , так как  $\mathcal{B}_0 \subset U_0^{\perp}$  не пусто). Из этих k+1 обозначим через  $t_2$  количество тех, у которых оба прообраза лежат в  $\pi(\mathcal{B}_1)$ , а через  $t_1$  – тех, у которых в  $\pi(\mathcal{B}_1)$  ровно один из прообразов. У  $k-t_1-t_2$  оба прообраза лежат в  $\pi(\mathcal{B}_*)$ . Пусть так же вектора  $\tau(\pi(\mathcal{B}))$  с одним прообразом под действием  $\tau$  состоят из q проекций  $\pi(\mathcal{B}_1)$  и d-2-k-q проекций  $\pi(\mathcal{B}_*)$ . Имеем

$$|\mathcal{B}| = |\mathcal{B}_*| + |\mathcal{B}_0| + |\mathcal{B}_1|$$

$$= (k - t_1 - 2t_2 + d - 2 - q) + 2 + (2 + 4t_2 + 2t_1 + 2q)$$

$$= d + k + q + t_1 + 2t_2 + 2$$

Рассмотрим для начала случай  $t_2 > 0$ . Тогда  $U_0^{\perp} \subset \operatorname{span}(\mathcal{B}_1)$ , поэтому

$$\dim(\operatorname{span}(\mathcal{B}_1)) = t_1 + t_2 + q + 2 \implies |\mathcal{A}_1| \le 2^{d - t_1 - t_2 - q - 2},$$
$$|\mathcal{A}| = |\mathcal{A}_0| + |\mathcal{A}_1| \le 2^{d - 2} + 2^{d - 2 - t_1 - t_2 - q}$$

$$|\mathcal{A}| \cdot |\mathcal{B}| \le \left(2^{d-2} + 2^{d-2-t_1-t_2-q}\right) (d+k+q+t_1+2t_2+2)$$

$$\le \left(2^{d-2} + 2^{d-2-t_1-t_2-q}\right) (2d+t_1+2t_2) \tag{3.2}$$

$$\le \left(2^{d-1} + 2^{d-1-t_1-t_2-q}\right) (d+t_1+t_2) \tag{3.3}$$

$$\le \left(2^{d-1} + 2^{d-1-t_1-t_2}\right) (d+t_1+t_2+1)$$

$$< d2^d + 2d \tag{3.4}$$

Где второе неравенство следует из  $k+q \le d-2$ , а последнее из неравенства 3. При  $t_2=0$  немного более слабая оценка

$$\dim(\operatorname{span}(\mathcal{B}_1)) \ge t_1 + t_2 + q + 1$$

означает что 3.3 становится  $(2^{d-1}+2^{d-t_1})(d+t_1)$ , что не больше 3.4 при  $t_1 \geq 2$  по неравенству 3. Наконец, при  $t_2 = 0$  и  $t_1 = 0,1$  выражение 3.2 даёт оценки  $d2^d$  и  $(2^{d-2}+2^{d-3})(2d+1) = d2^d - \left(d-\frac{3}{2}\right)2^{d-2} \leq d2^d$  соответственно.

б)  $\mathcal{A}_0$  состоит из нуля и базиса  $U_0$ . Тогда

$$|\mathcal{A}| \cdot |\mathcal{B}| \le |\mathcal{A}|^2 \le 4(d-1)^2 \le d2^d + 2d$$

в)  $|\mathcal{A}_0|\cdot|\tau(\pi(\mathcal{B}))|\leq (d-2+\lambda_{d-2})\,2^{d-2}$ . Тогда пользуясь неравенствами 1, 2 и утверждением 4 имеем

$$|\mathcal{A}| \cdot |\mathcal{B}| \le 4 \cdot (d - 2 + \lambda_{d-2}) 2^{d-2} + 2 \cdot 2^d = (d + \lambda_{d-2}) 2^d$$

- 3. dim  $U_0 = d 1$ . Вновь применяя предположение индукции к  $\pi(\mathcal{B})$  и  $\mathcal{A}_0$ , имеем три варианта (помним, что из предположения  $0, b_d \in \mathcal{B}_1$  имеем  $\mathcal{B}_0 = \emptyset$ ):
  - а)  $\mathcal{A}_0$  изоморфно  $\{0,1\}^{d-1},\,\pi(\mathcal{B})$  базис с нулём.
    - і)  $\dim \mathcal{B}_1 = 1$ . В этом случае  $|\mathcal{B}| = d+1$ , то есть условие из формулировки леммы не выполнено.
    - іі)  $\dim \mathcal{B}_1=k\geq 2$ . Тогда  $|\mathcal{B}_1|=2k,\,|\mathcal{A}_1|\leq 2^{d-k}$  и мы имеем

$$|\mathcal{A}| \cdot |\mathcal{B}| \le (2^{d-1} + 2^{d-k})(d+k) \le d2^d + 2d$$

по неравенству 3.

- б)  $|\mathcal{A}_0| = d$ . Тогда  $|\mathcal{A}|^2 \le 4d^2$ , что не больше  $d2^d + 2d$  для d > 3.
- в)  $|\mathcal{A}_0|\cdot|\pi(\mathcal{B})|\leq (d-1+\lambda_{d-1})\,2^{d-1}.$  Финальный раз из неравенства 1 и утверждения 6 получаем

$$|\mathcal{A}| \cdot |\mathcal{B}| \le 2 \cdot (d - 1 + \lambda_{d-1}) 2^{d-1} + 2^d = (d + \lambda_{d-1}) 2^d.$$

Найдём теперь оптимальное значение  $\lambda(d)$  из леммы 4:

**Теорема 5.** Пусть оба  $\mathcal{A}, \mathcal{B} \subseteq \mathbb{R}^d$  содержат базис  $\mathbb{R}^d$  и  $\langle a, b \rangle \in \{0,1\}$  для любых  $a \in \mathcal{A}, b \in \mathcal{B}$ . Если при этом семейства максимальны по включению и размер каждого хотя бы d+2, то  $|\mathcal{A}| \cdot |\mathcal{B}| \leq d2^d + 2d$ .

Доказательство. Будем вновь вести индукцию по d и без ограничения общности считать  $|\mathcal{A}| \geq |\mathcal{B}|$ , для d < 3 оценка совпадает с теоремой 1. Желаемая оценка уже получена во всех подслучаях доказательства леммы 4, за исключением двух индукционных шагов — 2в) и 3в), поэтому достаточно получить нужную оценку в них:

2в')  $|\mathcal{A}_0| \cdot |\tau(\pi(\mathcal{B}))| \le 2 (d-2) \left(2^{d-3}+1\right)$ . Пользуясь неравенствами 1, утверждением 4 и 3.1 имеем

$$|\mathcal{A}| \cdot |\mathcal{B}| \le 4 \cdot (d-2) \left(2^{d-2} + 2\right) + 2 \cdot 2^d - 2 |\mathcal{A}_0| = 2d(2^{d-1} + 1) + 2(3d - 8 - |\mathcal{A}_0|)$$

Это завершает доказательство при  $|\mathcal{A}_0| \ge 3d - 8$  в противном случае:

$$|\mathcal{A}| \cdot |\mathcal{B}| \le 4 |\mathcal{A}_0|^2 \le 4 (3d - 8)^2$$

Это меньше  $d2^d + 2d$  при всех d кроме d = 5, 6, для которых желаемую оценку можно получить перебором.

3в') Оба  $|\mathcal{A}_0|$  и  $|\pi(\mathcal{B})|$  имеют размер хотя бы d+1. По предположению индукции  $|\mathcal{A}_0|\cdot|\pi(\mathcal{B})| \leq (d-1)\left(2^{d-1}+2\right)$ . Тогда из утверждения 3, 6 и того что  $\mathcal{B}_0=\varnothing$  следует

$$|\mathcal{A}| \cdot |\mathcal{B}| = 2 |\mathcal{A}_{0}| |\pi(\mathcal{B})| + |\mathcal{A}_{1}| |\mathcal{B}_{1}| - (|\mathcal{A}_{0}| - |\mathcal{A}_{1}|) |\mathcal{B}_{*}|$$

$$\leq 2 (d-1) (2^{d-1} + 2) + |\mathcal{A}_{1}| |\mathcal{B}_{1}| - (|\mathcal{A}_{0}| - |\mathcal{A}_{1}|) |\mathcal{B}_{*}|$$

$$\leq 2 (d-1) (2^{d-1} + 2) + 2^{d} - (|\mathcal{A}_{0}| - |\mathcal{A}_{1}|) |\mathcal{B}_{*}|$$

$$= d2^{d} + 2d - (|\mathcal{A}_{0}| - |\mathcal{A}_{1}|) |\mathcal{B}_{*}| + (2d - 4)$$

$$(3.5)$$

Поэтому достаточно, например, показать  $(|\mathcal{A}_0| - |\mathcal{A}_1|) |\mathcal{B}_*| \ge 2d - 4$ . Рассмотрим случай dim  $A_1 = d - 1$ : тогда  $\mathcal{B}_1 = \{0, b_d\}$ , и пользуясь

$$|\mathcal{A}| \cdot |\mathcal{B}| = |\mathcal{A}| |\pi(\mathcal{B})| + |\mathcal{A}| \cdot \frac{1}{2} |\mathcal{B}_1| \le d2^d + 2d - 2^d + |\mathcal{A}| + (2d - 4)$$

Получаем желаемое неравенство при  $|\mathcal{A}| \leq 2^d - 2d + 4$ .  $|\mathcal{A}| > 2^d - 2d + 4$  действительно невозможно, ведь тогда

$$|\mathcal{A}_0| \cdot |\pi(\mathcal{B})| > (2^{d-1} - d + 2) \cdot (d+1) \ge (d-1)(2^{d-1} + 2)$$

что противоречит предположению индукции. Таким образом далее можем считать  $\dim A_1 < d-1$ . Заметим, что вследствие этого также можно полагать

 $|\mathcal{A}_0| > |\mathcal{A}_1|$ , ведь если  $|\mathcal{A}_0| = |\mathcal{A}_1|$ , то можно изначально сдвинуть семейство  $\mathcal{A}$  и поменять знаки некоторых векторов  $\mathcal{B}$  так, чтобы все условия остались в силе, а  $\mathcal{A}_0$  и  $\mathcal{A}_1$  поменялись местами, сводя ситуацию к случаю где dim  $U_0 < d - 1$ .

Рассмотрим ортогональную проекцию  $\pi_{\mathcal{B}_1}: \mathbb{R}^d \to \operatorname{span}(\mathcal{B}_1)$ . В силу определения  $\mathcal{A}_1$  мы имеем  $|\pi_{\mathcal{B}_1}(\mathcal{A}_1)| = 1$ . Обозначим  $k = \dim(\operatorname{span}(\mathcal{B}_1))$ . Так как  $\mathcal{B}$  содержит базис  $\mathbb{R}^d$ , мы имеем

$$|\mathcal{B}_*| \ge d - k, \ (|\mathcal{A}_0| - |\mathcal{A}_1|) \, |\mathcal{B}_*| \ge d - k$$
 (3.8)

Разберёмся с одним крайним случаем, прежде чем перейти к чуть более систематическому перебору, а именно поймём, что мы можем полагать  $|\pi_{\mathcal{B}_1}(\mathcal{A}_0)| = k$ : во-первых,  $|\pi_{\mathcal{B}_1}(\mathcal{A}_0)| \geq k$  так как  $0 \in \mathcal{A}_0$  и  $\mathrm{span}(\pi_{\mathcal{B}_1}(\mathcal{A}_0)) = \mathrm{span}(\pi_{\mathcal{B}_1}(\mathrm{span}(\mathcal{A}_0))) = \mathrm{span}(\mathcal{B}_1) \cap b_d^{\perp}$ , то есть  $\pi_{\mathcal{B}_1}(\mathcal{A}_0)$  содержит 0 и базис (k-1)-мерного пространства. Во-вторых, если  $|\pi_{\mathcal{B}_1}(\mathcal{A}_0)| \geq k+1$  то применяя теорему 1 к  $\mathcal{B}_1$  и  $\pi_{\mathcal{B}_1}(\mathcal{A})$  имеем

$$|\mathcal{B}_{1}| \cdot |\pi_{\mathcal{B}_{1}}(\mathcal{A})| \leq (k+1) \, 2^{k}, \ |\pi_{\mathcal{B}_{1}}(\mathcal{A})| \geq k+2 \Rightarrow |\mathcal{B}_{1}| \leq 2^{k} \left(1 - \frac{1}{k+2}\right) \Rightarrow |\mathcal{B}_{1}| \, |\mathcal{A}_{1}| \leq 2^{d} \left(1 - \frac{1}{k+2}\right) \Rightarrow |\mathcal{A}| \cdot |\mathcal{B}| \leq d2^{d} + 2d + (2d-4) - \frac{2^{d}}{k+2} - (d-k)$$

что доказывает необходимую оценку для всех  $d \notin \{3,4,5\}$ , так как при  $d \ge 6$ 

$$d+k-4-\frac{2^d}{k+2} \le 2d-4-\frac{2^d}{d+2} = -\frac{2}{d+2}\left(2^{d-1}-(d+2)(d-2)\right) \le 0$$

Для  $d \in \{3,4,5\}$  производится перебор.

Итак, мы можем полагать  $|\pi_{\mathcal{B}_1}(\mathcal{A}_0)| = k$ , то есть  $\pi_{\mathcal{B}_1}(\mathcal{A}_0)$  состоит из нуля и базиса  $\operatorname{span}(\mathcal{B}_1) \cap b_d^{\perp}$ , а  $\pi_{\mathcal{B}_1}(\mathcal{A})$  – из нуля и базиса  $\operatorname{span}(\mathcal{B}_1)$ . Произведём перебор по возможным значениям k:

і) k=1, то есть  $\mathcal{B}_1=\{0,b_d\}$ . Так как  $\dim \mathcal{A}_1< d-1$ , из доказательства утверждения 6 следует  $|\mathcal{A}_1|\leq 2^{d-2}$ . Подставляя это в 3.6 получаем

$$|\mathcal{A}| \cdot |\mathcal{B}| \le d2^d + 2d + (2d - 4 - 2^{d-1}) \le d2^d + 2d$$

іі) k=2. Из доказательства утверждения 6 следует, что  $|\mathcal{B}_1| \leq 4$  и  $|\mathcal{A}_1| \leq 2^{d-2}$ . Вследствие 3.8  $|\mathcal{B}_*| \geq d-2$ , так что если  $|\mathcal{A}_0| - |\mathcal{A}_1| \geq 2$ , 3.7 даёт нужную оценку. Аналогично 3.7 завершает доказательство если  $|\mathcal{A}_0| - |\mathcal{A}_1| = 1$  и  $|\mathcal{B}_*| \geq 2d-4$ . Если же  $|\mathcal{A}_0| - |\mathcal{A}_1| = 1$  и  $|\mathcal{B}_*| < 2d-4$ , то

$$|\mathcal{A}| \cdot |\mathcal{B}| = (2|\mathcal{A}_1| + 1) \cdot (|\mathcal{B}_*| + |\mathcal{B}_1|) < (2^{d-1} + 1) \cdot (2d - 4 + 4) = d2^d + 2d$$

ііі) k=d и  $\mathcal{B}_*=\varnothing$ . Отметим, что в силу 3.8  $\mathcal{B}_*=\varnothing$  невозможно при других значениях k. По определению  $\mathcal{B}_1$  из его полноразмерности следует, что  $\mathcal{A}_1$  состоит из лишь одной точки, поэтому 3.6 превращается в

$$|\mathcal{A}| \cdot |\mathcal{B}| \le 2(d-1)\left(2^{d-1} + 2\right) + |\mathcal{B}|$$

что завершает доказательство при  $|\mathcal{B}| \leq 2^d - 2d + 4$ . Обратное действительно невозможно, ведь тогда получается противоречие с теоремой 1:

$$|\mathcal{A}| \cdot |\mathcal{B}| \ge |\mathcal{B}|^2 \ge (2^d - 2d + 4)^2 > (d+1) 2^d$$

iv)  $2 < k \le d$  и  $\mathcal{B}_* \ne \varnothing$ . Обозначим элементы  $\pi_{\mathcal{B}_1}(\mathcal{A})$  как  $a_0 = 0, a_1, \ldots, a_k$ , а их прообразы при проекции как  $\mathbb{A}_j = \pi_{\mathcal{B}_1}^{-1}(a_j)$ , нумерацию выберем так чтобы  $\mathbb{A}_1 = \mathcal{A}_1$ . Пусть  $b_{11}, b_{12}, \ldots, b_{1k}$  – базис  $\mathcal{B}_1$ , двойственный  $a_1, \ldots, a_k$ . В соответствии с выбором нумерации,  $b_{11} = b_d$ . Заметим, что в силу максимальности  $\mathcal{B}$  по включению все  $b_{1j}$  лежат в  $\mathcal{B}_1$  (иначе их, вместе с  $b_{1j} + b_d$  для j > 1, можно было добавить в  $\mathcal{B}$ ). Если dim  $\mathcal{A}_1 < d - k$ , то подобно пункту i) получаем  $|\mathcal{A}_1| \le 2^{d-2}$  и желаемую оценку, так что далее можно считать dim  $\mathcal{A}_1 = d - k$ . Мы запишем  $\mathcal{A}$  в удобном базисе и увидим, что благодаря dim  $\mathcal{A}_1 = d - k$  каждый из векторов  $b_{1j}$  можно выбрать в качестве  $b_d$  в самом начале рассуждения, и удачный выбор приведёт к уже рассмотренному случаю или к достаточно сильной нижней оценке на  $(|\mathcal{A}_0| - |\mathcal{A}_1|) |\mathcal{B}_*|$ . Итак, дополним  $\{b_{11}, \ldots, b_{1k}\}$  элементами  $\mathcal{B}_*$  до базиса  $\mathbb{R}^d$  и запишем  $\mathcal{A}$  в двойственном базисе. Вместе вектор-столбцы  $\mathcal{A}$  тогда будут выглядеть как



Ранк серого блока совпадает с афинной размерностью  $\mathbb{A}_1 = \mathcal{A}_1$ , то есть равен d-k, поэтому

$$\forall j > 1 \colon d - 1 = \dim(\operatorname{span}(\mathcal{A} \setminus \mathbb{A}_j)) = \dim(\mathcal{A} \cap b_{1j}^{\perp})$$

А значит, действительно, любой из  $b_{1j}$  может быть изначально выбран в качестве  $b_d$ . Выберем  $b_{1j}$  с минимальным размером  $\mathbb{A}_j$  и повторим все рассуждения с ним в качестве  $b_d$ . Отметим, что тогда  $|\mathcal{A} \setminus \mathbb{A}_j| > |\mathbb{A}_j|$ , поэтому

сдвига  $\mathcal{A}$ , меняющего местами  $\mathcal{A}_0$  и  $\mathcal{A}_1$ , произведено не будет, и в результате мы просто можем полагать

$$\forall j > 1 \colon |\mathbb{A}_1| \le |\mathbb{A}_j| \Longrightarrow$$
$$|\mathcal{A}_0| - |\mathcal{A}_1| = |\mathbb{A}_0| + \sum_{j>1} |\mathbb{A}_j| \ge (k-1) |\mathcal{A}_1| \ge 2 |\mathcal{A}_1| \tag{3.9}$$

Если  $|\mathcal{A}_0| - |\mathcal{A}_1| \ge 2d - 4$ , то из непустоты  $\mathcal{B}_*$  и 3.7 следует желаемая оценка. Иначе

$$|\mathcal{A}_0| - |\mathcal{A}_1| < 2d - 4 \stackrel{3.9}{\Longrightarrow} |\mathcal{A}| < 2 \cdot (2d - 4) \Longrightarrow$$
$$|\mathcal{A}| \cdot |\mathcal{B}| \le |\mathcal{A}|^2 < (4d - 8)^2 < d2^d + 2d,$$

завершая доказательство.

Приведём примеры, демонстрирующие точность оценки в лемме 5:

**Пример 1** (Куб с щупальцами). Обозначая стандартный базис  $\{e_i\}$ ,

$$\mathcal{A} = \left\{ \sum_{i=2}^{d} \delta_{i} e_{i} \right\} \cup \left\{ e_{1} \right\}, \; \mathcal{B} = \left\{ \delta_{1} e_{1} + e_{j} \right\} \cup \left\{ e_{1}, 0 \right\}, \; \textit{ide } \delta_{i} \; \textit{npoberaiom} \; \left\{ 0, 1 \right\} \; \textit{u} \; j > 1.$$

$$3\partial ecb |\mathcal{A}| = 2^{d-1} + 1 u |\mathcal{B}| = 2d.$$

**Пример 2** (Кросс-политоп). Обозначая стандартный базис  $\{e_i\}$ ,

$$\mathcal{A} = \left\{ e_d + \sum_{i=1}^{d-1} \varepsilon_i e_i \right\} \cup \left\{ 0 \right\}, \; \mathcal{B} = \left\{ \frac{1}{2} \left( e_d + \varepsilon_i e_i \right) \right\}, \; \text{rde } \varepsilon_i \; \text{npoberanom} \; \left\{ -1, 1 \right\}.$$

Как и в примере 1,  $|A| = 2^{d-1} + 1$  и |B| = 2d.

## Заключение

В первой части этой работы исследована возможность применения корреляционного неравенства к постановке теоремы 1, обобщающего изящное доказательство теоремы 2. Задача сведена к дискретной проблеме о бинарных векторах и матрицах, введена конструкция частично упорядоченного множества, обобщающего решётку подмножеств в доказательстве теоремы 2 и найдены существенные препятствия к дальнейшему обобщению рассуждений. Во второй части доказана теорема 3 о единственности примера, на котором достигается равенство в теореме 1, и получен основной новый результат о стабильности оценки теоремы 1 — теорема 5.

В дальнейшем было бы интересно подробнее изучить структуру множества чумов из первой части, и получить более сильные оценки в теореме 1, предполагая ограничение снизу на размер каждого из семейств  $\mathcal{A}$  и  $\mathcal{B}$ . Сформулируем две гипотезы, связанные с этими вопростами:

**Гипотеза 1.** Количество неизоморфных частично упорядоченных множеств, возникающих из всевозможных симметричных  $B_{01} \in \operatorname{Mat}_{d \times d}$  равно  $|\operatorname{Gr}\left(\left[\frac{d}{2}\right], \mathbb{F}_2^d\right)|$ , то есть равно гауссовому биномиальному коэффициенту  $\binom{d}{k}_q$  с q=2 и  $k=\left[\frac{d}{2}\right]$ .

Гипотеза 2. Пусть натуральные d и  $k \leq d$  таковы что  $2^{d-k} + k > 2^k (d-k+1)$ , оба  $\mathcal{A}, \mathcal{B} \subseteq \mathbb{R}^d$  содержат базис  $\mathbb{R}^d$  и  $\langle a, b \rangle \in \{0,1\}$  для любых  $a \in \mathcal{A}$ ,  $b \in \mathcal{B}$ , при этом каждое из  $\mathcal{A}$  и  $\mathcal{B}$  имеют размер строго больше  $2^{k-1} (d-k+2)$ . Тогда  $|\mathcal{A}| \cdot |\mathcal{B}| \leq (d-k+1)2^k(2^{d-k}+k)$ .

Перебор в малых размерностях сильно поддерживает гипотезу 2.

## Литература

- [1] Aprile, Manuel. On 2-Level Polytopes Arising in Combinatorial Settings / Manuel Aprile, Alfonso Cevallos, Yuri Faenza // SIAM Journal on Discrete Mathematics. 2018. Vol. 32, no. 3. Pp. 1857—1886.
- [2] Fiorini, Samuel. Two-Level Polytopes with a Prescribed Facet / Samuel Fiorini, Vissarion Fisikopoulos, Marco Macchia. 2016. Pp. 285–296.
- [3] Enumeration of 2-level polytopes / Adam Bohn, Yuri Faenza, Samuel Fiorini et al. // Mathematical Programming Computation. 2018. Vol. 11.
- [4] Kupavskii, Andrey. Binary scalar products / Andrey Kupavskii, Stefan Weltge // Journal of Combinatorial Theory, Series B. 2022. Vol. 156.
- [5] Kupavskii, Andrey. Octopuses in the Boolean cube: Families with pairwise small intersections, part I / Andrey Kupavskii, Fedor Noskov // Journal of Combinatorial Theory, Series B. 2023.
- [6] Alon, Noga. The Probabilistic Method / Noga Alon, Joel H. Spencer. Second edition. New York: Wiley, 2004.