Formulating the optimization problem

The optimization problem

Problem: Given two linearly separable sets of points $A^{\pm} \subset \mathbb{R}^k$:

$$A^+ = \{x_1^+, \dots, x_{n_+}^+\}$$

and

$$A^- = \{x_1^-, \dots, x_{n_-}^-\}$$

Find points $p \in C(A^+)$ and $q \in C(A^-)$ so that

$$||p - q|| = \min_{\substack{p' \in C(A^+) \\ q' \in C(A^-)}} ||p' - q'||$$

The optimization problem (continued)

As above, let our linearly separable sets be

$$A^+ = \{x_1^+, \dots, x_{n_+}^+\}$$

and

$$A^{-} = \{x_{1}^{-}, \dots, x_{n_{-}}^{-}\}$$

Problem 1: Let $\lambda^{\pm} = (\lambda_1^{\pm}, \dots, \lambda_{n_{\pm}}^{\pm})$ be two vectors of real numbers of length n_{\pm} respectively. Define

$$w(\lambda^+, \lambda^-) = \sum_{i=1}^{n_+} \lambda_i^+ x_i^+ - \sum_{i=1}^{n_-} \lambda_i^- x_i^-.$$

Find λ^{\pm} such that $\|w(\lambda^+, \lambda^-)\|$ is minimal subject to the conditions that all $\lambda_i^{\pm} \geq 0$ and $\sum_{i=1}^{n_{\pm}} \lambda_i^{\pm} = 1$.

The optimization problem (continued)

Notice	that
LIOUICE	611a6.

- $w(\lambda^+, \lambda^-)$ is a quadratic function in the λ 's with coefficients coming from the dot products of the x_i^{\pm} .

- The constraints are *inequalities* rather than equalities, so a direct application of Lagrange multipliers as we learned in calculus won't work.

- We will describe an iterative algorithm for solving this problem called Sequential Minimal Optimization, due to John Platt and introduced in 1998.

- First, though, we reformulate the problem slightly.

Reformulating the constrained optimization problem.

Problem 2: Let

$$Q(\lambda^+, \lambda^-) = \|w(\lambda^+, \lambda^-)\|^2 - \sum_{i=1}^{n_+} \lambda_i^+ - \sum_{i=1}^{n_-} \lambda_i^-.$$

Let λ^{\pm} be values that minimize $Q(\lambda^+,\lambda^-)$ where all $\lambda_i^{\pm}\geq 0$ and

$$\alpha = \sum_{i=1}^{n_+} \lambda_i^+ = \sum_{i=1}^{n_-} \lambda_i^-.$$

Then $\alpha \neq 0$ at the (λ^+, λ^-) that yield the minimum and $\tau^{\pm} = (1/\alpha)\lambda^{\pm}$ is a solution to optimization problem 1.

Equivalence of the reformulated problem

Proof:

First let all $\lambda_i^{\pm} = 0$ except $\lambda = \lambda_1^{\pm}$. Then

$$Q(\lambda^+, \lambda^-) = Q(\lambda) = \lambda^2 ||x_1^+ - x_1^-||^2 - 2\lambda.$$

This takes its minimum value at $\lambda = 1/\|x_1^+ - x_1^-\|^2$ and at that point

$$Q(\lambda) = -\frac{1}{\|x_1^+ - x_1^-\|^2} < 0.$$

Therefore the minimum value is negative. But if $\alpha=0$, then all $\lambda_i^\pm=0$, so Q=0 at such a point. Therefore $\alpha\neq 0$ at the minimum value.

To show the equivalence, we have (λ^+, λ^-) solving problem 2 and (σ^+, σ^-) solving problem 1; and finally we have $(\tau^+, \tau^-) = (1/\alpha)(\lambda^+, \lambda^-)$.

1. Since (τ^+, τ^-) satisfy the constraints of problem 2, we have:

$$Q(\lambda^+, \lambda^-) = ||w(\lambda^+, \lambda^-)|| - 2\alpha \le ||w(\tau^+, \tau^-)||^2 - 2$$

2. Since (τ^+, τ^-) satisfy the constraints of problem 1, we have

$$||w(\sigma^+, \sigma^-)||^2 \le ||w(\tau^+, \tau^-)||^2$$
.

Equivalence of optimization problems continued

3. From (2), we have

$$||w(\alpha\sigma^+, \alpha\sigma^-)||^2 \le \alpha^2 ||w(\tau^+, \tau^-)||^2 = ||w(\lambda^+, \lambda^-)||^2$$

4. Subtracting 2α from both sides of this inequality yields

$$||w(\alpha\sigma^+, \alpha\sigma^-)||^2 - 2\alpha \le Q(\lambda^+, \lambda^-).$$

Since (λ^+, λ^-) minimize $Q(\lambda^+, \lambda^-)$, this inequality must be an equality. Therefore

$$\alpha^2 \|w(\sigma^+, \sigma^-)\|^2 = \alpha^2 \|w(\tau^+, \tau^-)\|^2$$

so (τ^+, τ^-) also gives a minimal value for problem 1.