

Insight into the role of light exposure in radical-driven decomposition of graphitic carbon nitride

Mengqiao Li, Dairong Liu, Xing Chen, Zhihong Yin, Hongchen Shen, Ashlee Aiello, Kevin R. McKenzie Jr., Nan Jiang, Xue Li, Michael J. Wagner, David P. Durkin, Hanning Chen, Danmeng Shuai*

* Corresponding author, danmengshuai@gwu.edu, Department of Civil and Environmental Engineering

Background

2D Graphitic carbon nitride (g-C₃N₄): a promising engineered nanomaterial

Figure 1. Various applications of g-C₃N₄ nanosheet

- ❖ >5800 publications by October 2021
- Global market is expected to grow
- Release into nature is inevitable
- Chemical transformation kinetics and pathways remain unknown

Objectives

- ➤ Systematically study the influence of light exposure on the decomposition of g-C₃N₄ nanosheets
- Provide a fundamental understanding of the decomposition pathway

<u>Methods</u>

1. Use different methods to synthesize two g-C₃N₄ nanosheets, D and M2

2. Continuously feed O_3 (and H_2O_2) to create a high concentration of hydroxyl radical (•OH, 10⁻¹³-10⁻¹² M)

3. Use LED lamps that irradiate photos at 395 nm (L1), 455 nm (L2), and 525 nm (L3) to excite D and M2

Figure 3. Nitrogen release rate (decomposition rate) of D and M2 under various experimental conditions

> Light exposure and photoreactivity play an essential role in g-C₃N₄ decomposition

Figure 4. Energy profile for a bulk-phase or edgesite heptazine unit in the dark or under light exposure (with a h⁺)

Synergistic effect of •OH and h*

Figure 5. g-C₃N₄ decomposition in the dark

Figure 6. g-C₃N₄ decomposition under irradiation

<u>Publication</u>

Environ. Sci. Technol. 2021, 55, 12414