ANÁLISE MATEMÁTICA IV

FICHA AVANÇADA 2 - EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM

(estes exercícios destinam-se a quem já domina bem os exercícios das fichas normais)

(1) Demonstre o teorema seguinte, ou exiba um contra-exemplo: Se f e g são funções contínuas $\mathbb{R} \to \mathbb{R}$ com $|f(t)| \leq |g(t)|$, $\forall t$, e se toda a solução de

$$\frac{dy}{dt} + fy = 0$$

satisfaz $\lim_{t\to +\infty} y(t)=0$, então toda a solução de

$$\frac{dy}{dt} + gy = 0$$

satisfaz $\lim_{t\to+\infty} y(t) = 0$.

- (2) Seja n um inteiro positivo maior do que 1. Existe alguma função diferenciável $y:[0,+\infty[\to \mathbb{R} \text{ cuja derivada seja a sua } n\text{-}\text{\'esima potência}, \ y^n, \ \text{e cujo valor na origem seja positivo?}$
- (3) Determine todas as soluções constantes da equação

$$\frac{dy}{dt} = \frac{y^3 - y}{1 + e^y} \ .$$

Qual é o limite $t \to +\infty$ de uma solução y(t) que satisfaça $y(0) = \frac{1}{2}$?

- (4) Seja $f:\mathbb{R}\to\mathbb{R}$ uma função continuamente diferenciável. Mostre que qualquer solução de $\dot{y}=f(y(t))$ é monótona.
- (5) Mostre que qualquer solução y(t) (para $t \ge 0$) da equação

$$\frac{dy}{dt} = y^2 - y^6$$

com y(0) > 0 satisfaz $\lim_{t \to +\infty} y(t) = 1$.