

Dr/Mai Ramadan Ibraheem

Lecturer at Information Technology Dept.,
Faculty of Computers and Information – KFS
University

Outline

- ONetwork Design Methodology
- ONetwork Structure Models.
- OEnterprise LAN Design.
- OData Center Design.

- OCisco Architectures for the Enterprise
- OPPDIOO life cycle
- Oldentifying Customer Design Requirements
- OCharacterizing the Existing Network
- ODesigning the Network Topology and Solutions

- O You need to not only talk to network engineers, but also talk to business unit personnel and company managers.
- O Networks are designed to **support** applications; you want to determine the network **services** that you need to **support**.

- O The steps to identify customer requirements are as follows:
- O Step 1. Identify network applications and services.
- O Step 2. Define the organizational goals.
- O Step 3. Define the possible **organizational** constraints.
- O Step 4. Define the **technical** goals.
- O Step 5. Define the possible technical constraints.

- O After you complete these steps, you then *analyze* the data and *develop* a network design.
- O You need determine the **importance** of each application. Is *email* as important as *customer support*? Is **IP telephony** being *deployed*?
- O High-availability and *high-bandwidth* applications need to be **identified** for the design to **accommodate** their network requirements.

- A table *identifying applications* should **list** the following:
- O Planned application types: Such as email, collaboration, voice, web browsing, file sharing, database
- O Concrete applications: Such as Outlook,MeetingPlace

- O Business importance: Labeled as critical, important,or unimportant
- Comment: Any additional information critical to the design of the network

- O Planned **infrastructure services** should also be gathered.
- O Network services include *security*, *quality of service* (QoS), network management, high availability, unified communications, mobility, and virtualization. (Task)

- O For **organizational goals**, you should identify whether the company's goal is to *improve* customer support, *add* new customer services, *increase* competitiveness, or *reduce* costs.
- O It might be a *combination* of these goals, with some of them being more important than others.

- O Some organizational goals are as follows:
- **○** Increase competitiveness
- **○** Reduce costs
- **○** Improve customer support
- O Add new customer services

- O Organizational constraints include budget, personnel, policy, and schedule. The company might limit you to a certain budget or timeframe.
- O The organization might require the project to be completed in an unreasonable *timeframe*. It might have limited personnel to support the assessment and design efforts, or it might have *policy limitations* to use certain *protocols*.

- O Technical goals support the organization's objectives and the supported applications.
- O Technical goals include the following:
- **○** *Improve* the network's *response-time throughput*
- O Decrease network failures and downtime (high availability)

- **○** Simplify network management
- **○** Improve network security
- O Improve reliability of mission-critical applications
- O Modernize outdated technologies (technology refresh)
- O Improve the network's scalability

- O Network design might be *constrained* by *parameters* that limit the solution.
- O Legacy applications might still exist that must be supported going forward, and these applications might require a legacy protocol that may limit a design.

- O Technical constraints include the following:
- O Existing wiring does not support new technology.
- O Bandwidth might not **support** new applications.
- O The network must support exiting **legacy** equipment.
- C Legacy applications must be supported (application compatibility).

- OCisco Architectures for the Enterprise
- OPPDIOO life cycle
- Oldentifying Customer Design Requirements
- OCharacterizing the Existing Network
- ODesigning the Network Topology and Solutions

Steps in Gathering Information

- O information. Here are the steps for gathering information:
- O Step 1. Identify all existing organization information and documentation.
- O Step 2. Perform a network audit that adds detail to the description of the network.
- O Step 3. Use traffic analysis information to augment information on applications and protocols used.

Steps in Gathering Information

- O When gathering exiting *documentation*, you look for **site information** such as site *names*, site *addresses*, site *contacts*, site *hours* of operation, and building and room access.
- O Network infrastructure information includes locations and types of servers and network devices, data center and closet locations, LAN wiring, WAN technologies and circuit speeds, and power used.

- O Logical network information includes IP addressing, routing protocols, network management, and security access lists used.
- O You need to find out whether voice or video is being used on the network.

- O When performing a network audit, you have three primary sources of information:
- O Existing documentation
- O Existing network management software tools
- O New network auditing tools

- O After gathering the existing documentation, you must obtain **access** to the existing management software.
- O The client may already have CiscoWorks tools from which you can obtain hardware models and components and software versions.
- O You can also obtain the existing router and switch configurations.

- O The network audit should provide the following information:
- ■ Network device list
- **○** Hardware models
- **○** Software versions
- ■ Configuration of network devices
- O Auditing tools output information

- **○** Interface speeds
- O Link, CPU, and memory utilization
- O WAN technology types and carrier information

- O In small network, you might be able to obtain the required information via a manual assessment.
- O For **larger** network, a manual assessment might be too **time-consuming**. Network assessment tools include the following:
- **○** Manual assessment
 - O Manual commands: Review of device configuration and operation though the use of show
 - O Scripting tools

Network assessment

- O When performing manual auditing on network devices, you can use the following commands to obtain information:
- O show tech-support
- o show processes cpu (provides the average CPU utilization information)
- **○** show version

Network assessment

- **○** show processes memory
- O show log
- **○** show interface
- O show policy-map interface
- O show running-config (provides the full router or switch configuration)

show version command

- O This command shows:
- O The operating system version,
- O The router type,
- O The amount of flash and RAM memory,
- O The router uptime, and interface types.

- O Provides extremely granular and accurate traffic measurements and a high-level collection of aggregated traffic.
- O The output of **NetFlow** information is displayed via the *show ip cache flow* command on routers.
- O The next table shows a description of the fields for **NetFlow** output.

NetFlow

Field	Description
Bytes	Number of bytes of memory that are used by the NetFlow cache
Active	Number of active flows
Inactive	Number of flow buffers that are allocated in the NetFlow cache
Added	Number of flows that have been created since the start of the summary
Exporting flows	IP address and User Datagram Protocol (UDP) port number of the worksta- tion to which flows are exported
Flows exported	Total number of flows export and the total number of UDP datagrams
Protocol	IP protocol and well-known port number
Total flows	Number of flows for this protocol since the last time that statistics were cleared
Flows/sec	Average number of flows this protocol per second
Packets/flow	Average number of packets per flow per second
Bytes/pkt	Average number of bytes for this protocol
Packets/sec	Average number of packets for this protocol per second

- O To obtain application-level information, the IP packet needs to be further **inspected**.
- O Cisco devices or dedicated hardware or software analyzers capture packets or use Simple Network Management Protocol (SNMP) to gather specific information.

Network Analysis Tools

- O Network analysis tools include the following:
- O Netformx DesignXpert Enterprise: An integrated desktop tool for discovery, design, configuration, quoting and proposing integrated communications network solutions.
- **○ CNS NetFlow Collector Engine**: Cisco hardware that *gathers* every flow in a network segment.

Network Analysis Tools

- O Cisco Embedded Resource Manager (ERM):
 Allows for granular *monitoring* on a task basis within the Cisco IOS software. It monitors the internal system resource utilization for specific resources, such as the buffer, memory, and CPU.
- O Third-party tools: Such as Sniffer, AirMagnet Wifi Analyzer, BVS Yellowjacket 802.11, NetIQ Vivinet Assessor, Netcordia NetMRI, and SolarWinds Orion.

- O The *network checklist* can be used to determine a network's health status:
- O New segments should use switched and not use dated hub/shared technology.
- O No WAN links are saturated (no more than 70 percent sustained network utilization).
- O The *response time* is less than 100ms (one-tenth of a second); more commonly, less than 2ms in a LAN.

Network Checklist

- O No segments have more than 20 percent broadcasts or multicast traffic. Broadcasts are sent to all hosts in a network and should be limited. Multicast traffic is sent to a group of hosts but should also be controlled and limited to only those hosts registered to receive it.
- O No segments have more than one cyclic redundancy check (CRC) error per million bytes of data.
- No segments have more than one cyclic redundancy check (CRC) error per million bytes of data.

Network Checklist

- O On the *Ethernet segments*, less than 0.1 percent of the packets result in *collisions*.
- O A CPU utilization at or more than 75 percent for a 5-minute interval likely suggests network problems.
 Normal CPU utilization should be much lower during normal periods.
- The number of *output queue drops* has not exceeded100 in an hour on any Cisco router.

Network Checklist

- The number of *input queue drops* has not exceededin an hour on any Cisco router.
- The number of buffer misses has not exceeded 25 in an hour on any Cisco router.
- The number of *ignored packets* has not exceeded 10 in an hour on any interface on a Cisco router.
- O *QoS* should be *enabled* on network devices to allow for *prioritization* of *time-sensitive* or bandwidth-sensitive applications.

