3.5.1. Изучение плазмы газового разряда в неоне.

Давыдов В.О. Группа Б04-005

Цель работы: изучение вольт-амперной характеристики тлеющего разряда, изучение свойств плазмы методом зондовых характеристик.

В работе используются: стеклянная газоразрядная трубка, наполненная изотопом неона, высоковольтный источник питания (ВИП), источник питания постоянного тока, делитель напряжения, резистор, потенциометр, амперметры, вольтметры, переключатели.

Теория

Плазма

В ионизированном газе поле ионов «экранируется» электронами. Для поля ${\bf E}$ и плотности ρ электрического заряда

$$div \mathbf{E} = 4\pi \rho,$$

а с учётом сферической симметрии и $\mathbf{E} = -\mathrm{grad}\ \varphi$:

$$\frac{d^2\varphi}{dr^2} + \frac{2}{r}\frac{d\varphi}{dr} = -4\pi\rho. \tag{1}$$

Плотности заряда электронов и ионов (которые мы считаем бесконечно тяжёлыми и поэтому неподвижными)

$$\rho_e = -ne \cdot \exp\left(\frac{e\varphi}{kT_e}\right),$$

$$\rho_i = ne.$$
(2)

Тогда из (1) в предположении $\frac{e\varphi}{kT_e}\ll 1$ получим

$$\varphi = \frac{Ze}{r}e^{-r/r_D},\tag{3}$$

где $r_D = \sqrt{\frac{kT_e}{4\pi ne^2}}$ – paduyc Дебая. Среднее число ионов в сфере такого радиуса

$$N_D = n \frac{4}{3} \pi r_D^2. (4)$$

Теперь выделим параллелепипед с плотностью n электронов, сместим их на x. Возникнут поверхностные заряды $\sigma=nex$, поле от которых будет придавать электронам ускорение:

$$\frac{d^2x}{dt^2} = -\frac{eE}{m} = -\frac{4\pi ne^2}{m}x.$$

Отсюда получаем плазменную (ленгмюровскую) частоту колебаний электронов:

$$\omega_p = \sqrt{\frac{4\pi n e^2}{m}}. (5)$$

Одиночный зонд

При внесении в плазму уединённого проводника — зонда — с потенциалом, изначально равным потенциалу точки плазмы, в которую его помещают, на него поступают токи электроннов и ионов:

$$I_{e0} = \frac{n\langle v_e \rangle}{4} eS,$$

$$I_{i0} = \frac{n\langle v_i \rangle}{4} eS,$$
(6)

где $\langle v_e \rangle$ и $\langle v_i \rangle$ — средние скорости электронов и ионов, S — площадь зонда, n — плотность электронов и ионов. Скорости электронов много больше скорости ионов, поэтому $I_{i0} \ll I_{e0}$. Зонд будет заряжаться до некоторого равновестного напряжения $-U_f$ — плавающего поменциала.

В равновесии ионный ток мало меняется, а электронный имеет вид

$$I_e = I_0 \exp\left(-\frac{eU_f}{kT_e}\right).$$

Будем подавать потенциал U_3 на зонд и снимать значение зондового тока I_3 . Максимальное значение тока I_{eh} — электронный ток насыщения, а минимальное I_{ih} — ионный ток насыщения. Значение из эмпирической формулы Бомона:

$$I_{iH} = 0.4 neS \sqrt{\frac{2kT_e}{m_i}}. (7)$$

Двойной зонд

Двойной зонд — система из двух одинаковых зондов, расположенных на небольшом расстоянии друг от друга, между которыми создаётся разность потенциалов, меньшая U_f . Рассчитаем ток между ними вблизи I=0. При небольших разностях потенциалов ионные токи на оба зонда близки к току насыщения и компенсируют друг друга, а значит величина результирующего тока полностью связана с разностью электронных токов. Пусть потенциалы на зондах

$$U_1 = -U_f + \Delta U_1,$$

$$U_2 = -U_f + \Delta U_2.$$

Между зондами $U=U_2-U_1=\Delta U_2-\Delta U_1$. Через первый электрод

$$I_1 = I_{iH} + I_{e1} = I_{iH} - \frac{1}{4} neS\langle v_e \rangle \exp\left(-\frac{eU_f}{kT_e}\right) \exp\left(\frac{e\Delta U_1}{kT_e}\right) = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_1}{kT_e}\right)\right). \tag{8}$$

Аналогично через второй получим

$$I_2 = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_2}{kT_e}\right) \right) \tag{9}$$

Из (7) и (8) с учётом последовательного соединение зондов $(I_1 = -I_2 = I)$:

$$\Delta U_1 = \frac{kT_e}{e} \ln \left(1 - \frac{I}{I_{iH}} \right)$$

$$\Delta U_2 = \frac{kT_e}{e} \ln \left(1 + \frac{I}{I_{iii}} \right)$$

Тогда итоговые формулы для разности потенциалов и тока

$$U = \frac{kT_e}{e} \ln \frac{1 - I/I_{iH}}{1 + I/I_{iH}}, I = I_{iH} \ln \frac{eU}{2kT_e}.$$
 (10)

Реальная зависимость выглядит несколько иначе и описывается формулой

$$I = I_{iH} th \frac{eU}{2kT_e} + AU.$$
 (11)

Из этой формулы можно найти формулу для T_e : для U=0 мы найдём $I_{i\mathrm{H}}$, продифференцируем в точке U=0 и с учётом th $\alpha\approx\alpha$ при малых α и $A\to0$ получим:

$$kT_e = \frac{1}{2} \frac{eI_{i_{\rm H}}}{\frac{dI}{dU}} \tag{12}$$

Описание установки

Стеклянная газоразрядная трубка имеет холодный (ненакаливаемый) полый катод, три анода и $\mathit{геттерный}$ узел – стеклянный баллон, на внутреннюю повехность которого напылена газопоглощающая плёнка (remmep). Трубка наполнена изотопом неона 22 Ne при давлении 2 мм рт. ст. Катод и один из анодом (I и II) с помощью переключателя Π_1 подключается через балластный резистор R_6 (≈ 450 кОм) к регулируемому ВИП с выкодным напряжением до 5 кВ.

При подключении к ВИП анода-I между ним и катодом возникает газовый разряд. Ток разряда измеряется миллиамперметром A_1 , а падение напряжения на разрядной трубке – цифровым вольтметром V_1 , подключённым к трубке черезе высокоомный (25 МОм) делитель напряжения с коэффициентом $(R_1 + R_2)/R_2 = 10$.

При подключении к ВИП анода-II разряд возникает в пространстве между катодом и анодом-II, где находятся двойной зонд, используемый для диагностики плазмы положительного столба. Зонды изготовлены из молибденовой проволоки диаметром d=0.2 мм и имеют длину l=5.2 мм. Они подключены к источнику питания GPS через потенциометр R. Переключатель Π_2 позволяет изменять полярность напряжения на зондах. Величина напряжения на зондах изменяеься с помощью дискретного переключателя «V» выходного напряжения источника питания и потенциометра R, а измеряется цифровым вольтметром V_2 . Для измерения зондового тока используется мультиметр A_2 .

Ход работы

Измеряем напряжение зажигания в лампе: $U_{\text{заж}} = 25.7 \pm 0.2 \text{ B}$.

С помощью вольтметра V_1 и амперметра A_1 снимаем ВАХ разряда $U_1 = f(I_p)$ для тока в диапазоне $0.5 \div 5$ мА (см. Таблица 1). Построим график:

Рис. 1: Вольт-амперная характеристика разряда.

По наклону определим максимальное сопротивление заряда (с учётом того, что вольтметр подключен через делитель напряжения с коэффициентом 10): $R_{max}=(8.5\pm0.2)\cdot 10^4$ Ом. С помощью вольтмертра V_2 и амперметра A_2 снимем BAX двойного зонда $I_2=f(U_2)$ при фиксированного токе разряда I_p в трубке в диапозоне $-25\div25$ В, процессе измерений меняя полярность зонда при нулевом токе. Измерения проведём для $I_p=5$ мА, $I_p=3$ мА и $I_p=1.5$ мА (Таблица 2).

Результаты измерений представим на графиках с отцентрованными $\left(I_0 = \frac{1}{2} \sum I\right)$:

(a) ВАХ двойного зонда, I=5.0 мА.

(b) ВАХ двойного зонда, I = 3.0 мА.

(c) ВАХ двойного зонда, I = 1.5 мА.

Найдём токи насыщения I_{i} н и температуры электронов T_e .

Считая концентрации ионов и электронов равными, найдём их, пользуясь формулой (7). Рассчитаем плазменную частоты ω_p по формуле (5) и радиус Дебая r_D , оценим среднее число ионов в дебаевской сфера N_D по формуле (4) и степень ионизации α , приняв $P\approx 1$ мбар, и занесём все результаты в таблицу.

I_p , мА	$T_e, 10^4 \text{ K}$	$n_e, 10^{15} \text{ m}^{-3}$	$\omega_p,~10^4~{ m pag/c}$	$r_D, 10^{-5} \text{ cm}$	N_D	$\alpha, 10^{-7}$
5.0	43 ± 4	58 ± 6	144 ± 10	49 ± 3	30	24
3.0	40 ± 4	33 ± 4	107 ± 9	66 ± 5	40	13
1.5	39 ± 6	16 ± 2	75 ± 8	94 ± 10	57	7

Результаты измерений

U_1 , B	1	1				1	1	1			
I_p , MA	4.60	4.04	3.56	3.12	2.80	2.36	2.00	1.56	1.20	0.80	0.52

Таблица 1: Зависимость $U_1 = f(I_p)$.

$I_p = 5.0 \text{ MA}$		$I_p = 3.0 \text{ MA}$			$I_p = 1.5 \text{ MA}$		
U_2 , B	I_2 , MKA	U_2 , B	I_2 , MKA		U_2 , B	I_2 , мк A	
25.01	126.20	25.13	66.86		25.15	33.67	
22.11	122.84	22.23	65.03		22.09	32.50	
19.23	119.52	19.14	62.97		19.06	31.36	
16.04	114.79	16.23	60.95		16.09	30.18	
13.02	108.13	13.12	57.65		13.13	28.78	
10.00	97.96	10.21	52.78		10.18	26.37	
8.04	86.26	8.04	46.57		7.98	23.24	
6.01	71.00	5.98	37.85		5.99	19.09	
4.12	53.02	4.14	27.46		4.03	13.50	
2.10	28.54	2.04	12.96		2.13	6.61	
0.54	7.63	0.48	0.085		0.52	0.04	
-24.99	-139.73	-24.98	-77.00		-25.11	-40.02	
-22.03	-136.27	-22.09	-74.82		-23.02	-39.05	
-19.02	-132.46	-19.17	-72.64		-18.96	-37.15	
-16.12	-128.01	-16.17	-70.34		-16.12	-35.90	
-13.00	-120.47	-13.25	-67.17		-13.09	-34.20	
-10.13	-109.59	-10.05	-61.57		-10.04	-31.49	
-8.06	-98.48	-8.16	-55.87		-8.03	-28.49	
-6.12	-83.83	-5.98	-46.69		-6.26	-24.73	
-4.02	-64.11	-4.11	-36.10		-4.04	-18.30	
-2.02	-40.20	-2.05	-21.73		-2.05	-11.05	
-0.54	-20.79	-0.57	-10.27		-0.47	-4.56	

Таблица 2: Зависимость $I_2 = f(U_2)$.