Class core values

- 1. Be **respect**ful to yourself and others
- 2. Be **confident** and believe in yourself
- 3. Always do your **best**
- 4. Be **cooperative**
- 5. Be **creative**
- 6. Have **fun**
- 7. Be **patient** with yourself while you learn
- 8. Don't be shy to **ask "stupid" questions**

Learning Objectives

- Describe applications of machine learning in protein engineering
- 2. Identify challenges in the application of neural nets
- 3. Evaluate learning literature based on performance and application

Machine learning

Machine learning

learns from large databases for prediction, classification, generation

Machine learning

learns from large databases for prediction, classification, generation

Advantage	Disadvantage
The computational power is getting better	Needs large amount of data
It can uncover new patterns and rules that we can't	Can't be specific/target-based (great for general cases)
Fully reproducible	Can sample new sequences but in the neighborhood of what exist
Can take in multiple considerations into account	

Basic components of a learning module

The inputs define the model to use

1. How much data do I have?

The number of inputs defines types of ML model

- How much data do I have?
- 2. What is my data type?
 - a. Sequence
 - b. Structure
 - c. Image
 - d. ...

- How much data do I have?
- What is my data type?
- 3. How much noise do I have in my data?
 - a. How can I clean it?

- How much data do I have?
- What is my data type?
- 3. How much noise do I have in my data?
- 4. What is my data distribution?

Proteins can be represented in many different ways

Each representation fits a different model better

Sequences are natural inputs for NLP (natural language processing) models

Recurrent Neural Nets (RNNs)

Sequences are natural inputs for NLP (natural language processing) models

Long Short Term Memory (LSTM)

Sequences are natural inputs for NLP (natural language processing) models

Transformer

Each representation fits a different model better

Each representation fits a different model better

Sequence / MSA profile Secondary structure elements Classical learning methods Support vector machine Random forests Deep learning methods **CNNs**

Olechnovic & Venclovas, Proteins 2017; Correia, Bronstein et al. Nat Met 2020 Igashov et al. Bioinformatics 2021; Olechnovic et al. Proteins 2021

Convolutional neural nets (CNNs) are the preferred methods for images

Convolutional neural nets (CNNs) are the preferred methods for images

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0
	In	nag	e	

Convolved Feature

Each representation fits a different model better

The underlying idea behind convolution on graphs is message passing

Each representation fits a different model better

Sequence / MSA profile

Secondary structure elements Distance / HB / Contact matrix

Molecular graph

Classical learning methods Support vector machine Random forests

Deep learning methods Geodesic learning Point clouds

Set of balls / Point cloud Gaussian clouds

classical statistical potentials; Eismann et al. 2020

Derevyanko et al. Bioinformatics 2018; Pages et al. Bioinformatics 2019:

Molecular surface

Olechnovic & Venclovas, Proteins 2017; Correia, Bronstein et al. Nat Met 2020

3D tessellation

Igashov et al. Bioinformatics 2021: Olechnovic et al. Proteins 2021

Basic components of a learning module

ML applications in protein engineering

Machine learning guided directed evolution

Generative models

Predicting interactions with other molecules

Representation learning

Predicting stability

Classification and annotation

Unsupervised variant prediction

Predicting structure from sequence

Predicting sequence from structure

ML applications in protein engineering

Machine learning guided directed evolution

Generative models

Predicting interactions with other molecules

Representation learning

Predicting stability

Classification and annotation

Unsupervised variant prediction

Predicting structure from sequence

Predicting sequence from structure

3D CNN for prediction of stability

ML-based models for the specific case of GPCRs

ML applications in protein engineering

Machine learning guided directed evolution

Generative models

Predicting interactions with other molecules

Representation learning

Predicting stability

Classification and annotation

Unsupervised variant prediction

Predicting structure from sequence

Predicting sequence from structure

Using GCNs for function prediction

Deep sequence model for protein classification

2. Finetuning Classifier on Downstream Task

ML applications in protein engineering

Machine learning guided directed evolution

Generative models

Predicting interactions with other molecules

Representation learning

Predicting stability

Classification and annotation

Unsupervised variant prediction

Predicting structure from sequence

Predicting sequence from structure

Machine learning assisted directed evolution

low-N protein engineering

ML-accelerated protein sequence optimization

ML applications in protein engineering

Machine learning guided directed evolution

Generative models

Predicting interactions with other molecules

Representation learning

Predicting stability

Classification and annotation

Unsupervised variant prediction

Predicting structure from sequence

Predicting sequence from structure

Sequence design with a learned potential

Autoregressive models

Deep GCNs to design protein sequences

ML applications in protein engineering

Machine learning guided directed evolution

Generative models

Predicting interactions with other molecules

Representation learning

Predicting stability

Classification and annotation

Unsupervised variant prediction

Predicting structure from sequence

Predicting sequence from structure

Variational Autoencoders (VAEs)

Variational Autoencoders (VAEs)

VAEs for protein design

Transformers for translating from protein to sequence space

Generative Adversarial Networks (GANs)

Input random variables.

The generative network is trained to **maximise** the final classification error.

The generated distribution and the true distribution are not compared directly.

The discriminative network is trained to **minimise** the final classification error.

The classification error is the basis metric for the training of both networks.

GANs for protein design

GANs for protein design

Protein design by reversing protein structure prediction

In class activity:

Design new proteins using deep hallucination

For the next lecture:

- 1. Read journal for the next lecture
 - a. Moderated by group IV
- 2. W7L2 assignment due next lecture

Next lecture: Design of proteins with functional sites

