Homework 5

1.

a.
$$P \Rightarrow \neg Q, Q \Rightarrow \neg P$$

 $P \Rightarrow \neg Q \equiv \neg P \lor \neg Q$
 $Q \Rightarrow \neg P \equiv \neg Q \lor \neg P$

Р	Q	P⇒¬Q	Q⇒¬P
Т	Т	F	F
Т	F	Т	Т
F	Т	Т	Т
F	F	Т	Т

$$\begin{split} &M(P\Rightarrow \neg Q)=\{w_2,\,w_3,\,w_4\}\\ &M(Q\Rightarrow \neg P)=\{w_2,\,w_3,\,w_4\}\\ &M(P\Rightarrow \neg Q)=M(Q\Rightarrow \neg P), \text{ so the sentences are equivalent.} \end{split}$$

$$\begin{array}{ll} b. & \underline{P \Leftrightarrow \neg Q. \; ((P \land \neg Q) \lor (\neg P \land Q))} \\ & P \Leftrightarrow \neg Q \equiv (P \Rightarrow \neg Q) \land (\neg Q \Rightarrow P) \end{array}$$

Р	Q	P⇔¬Q	$((P \land \neg Q) \lor (\neg P \land Q))$
Т	Т	F	F
Т	F	Т	Т
F	Т	Т	Т
F	F	F	F

$$\begin{split} &M(P \Leftrightarrow \neg Q) = \{w_2, \, w_3\} \\ &M((P \land \neg Q) \lor (\neg P \land Q)) = \{w_2, \, w_3\} \\ &M(P \Leftrightarrow \neg Q) = M((P \land \neg Q) \lor (\neg P \land Q)), \text{ so the sentences are equivalent.} \end{split}$$

2.

a. $(Smoke \Rightarrow Fire) \Rightarrow (\neg Smoke \Rightarrow \neg Fire)$

Smoke	Fire	$(Smoke \Rightarrow Fire) \Rightarrow (\neg Smoke \Rightarrow \neg Fire)$
Т	Т	Т
Т	F	Т
F	Т	F
F	F	Т

The sentence is satisfiable since it holds in worlds w_1 , w_2 , and w_4 . It is not valid since it does not satisfy all worlds.

b. $(Smoke \Rightarrow Fire) \Rightarrow ((Smoke \lor Heat) \Rightarrow Fire)$

Smoke	Fire	Heat	$(Smoke \Rightarrow Fire) \Rightarrow ((Smoke \lor Heat) \Rightarrow Fire)$
Т	Т	Т	Т
Т	T	F	Т
Т	F	Т	Т
Т	F	F	Т
F	Т	Т	Т
F	Т	F	Т
F	F	Т	F
F	F	F	Т

The sentence is satisfiable since it holds in worlds w_1 , w_2 , w_3 , w_4 , w_5 , w_6 , and w_8 . It is not valid since it does not satisfy world w_7 .

c. $((Smoke \land Heat) \Rightarrow Fire) \Leftrightarrow ((Smoke \Rightarrow Fire) \lor (Heat \Rightarrow Fire))$

Smoke	Fire	Heat	$((Smoke \land Heat) \Rightarrow Fire) \Leftrightarrow ((Smoke \Rightarrow Fire) \lor (Heat \Rightarrow Fire))$
Т	T	Т	Т
Т	Т	F	Т
Т	F	Т	Т
Т	F	F	Т
F	Т	Т	Т
F	Т	F	Т
F	F	Т	Т
F	F	F	Т

The sentence is satisfiable in all worlds.

The sentence is valid since it satisfied all worlds.

3. a. Knowledge Base

Let the Propositional Symbols be:

- A = Mythical
- B = Immortal
- C = Mammal
- D = Horned
- E = Magical
- 1. $A \Rightarrow B$
- 2. $\neg A \Rightarrow (\neg B \lor C)$
- 3. $(B \lor C) \Rightarrow D$
- 4. $D \Rightarrow E$

b. Converting to CNF

- 1. $A \Rightarrow B$
 - ≡ ¬A ∨ B
- 2. $\neg A \Rightarrow (\neg B \land C)$
 - **■** A ∨ (¬B ^ C)
 - \equiv (A \vee \neg B) \wedge (A \vee C)
- 3. $(B \lor C) \Rightarrow D$
 - $\equiv \neg (B \lor C) \lor D$
 - **≡** (¬B ∧ ¬C) ∨ D
 - $\equiv (\neg B \lor D) \land (\neg C \lor D)$
- 4. $D \Rightarrow E$
 - **=** ¬D ∨ E

$$\textbf{CNF:} \ (\neg A \lor B) \land (A \lor \neg B) \land (A \lor C) \land (\neg B \lor D) \land (\neg C \lor D) \land (\neg D \lor E)$$

C.

- i. Prove that the unicorn is mythical (A)
 - 1. ¬A ∨ B
 - 2. A ∨ ¬B
 - 3. A ∨ C
 - 4. ¬B ∨ D
 - 5. ¬C ∨ D
 - 6. ¬D ∨ E
 - 7. ¬A (-α)
 - 8. ¬B (2,7)
 - 9. C (3,7)
 - 10. D (5,9)
 - 11. E (6,10)

We cannot apply any more rules, and since we did not find any contradictions, $\Delta ^ -\alpha$ is satisfiable, and we cannot use the knowledge base to prove that the unicorn is mythical.

- ii. Prove that the unicorn is magical
 - 1. ¬A ∨ B
 - 2. A ∨ ¬B
 - $3. A \lor C$
 - 4. $\neg B \lor D$
 - 5. ¬C ∨ D
 - 6. ¬D ∨ E
 - 7. ¬E (-α)
 - 8. ¬D (6,7)
 - 9. ¬C (5,8)
 - 10. ¬B (4,8)
 - 11. ¬A (1,10)
 - 12. A (3,9)
 - 13. Contradiction (11,12)

Since we found a contradiction, Δ ^ - α is unsatisfiable, and we proved that the unicorn is magical.

- iii. Prove that the unicorn is horned
 - 1. ¬A ∨ B
 - 2. A \vee \neg B
 - 3. A ∨ C
 - 4. $\neg B \lor D$
 - 5. ¬C ∨ D
 - 6. ¬D ∨ E
 - 7. ¬D (-α)
 - 8. ¬B (4,7)
 - 9. ¬C (5,7)
 - 10. ¬A (1,8)
 - 11. A (3,9)
 - 12. Contradiction (10,11)

Since we found a contradiction, $\Delta ^- - \alpha$ is unsatisfiable, and we proved that the unicorn is horned.

The NNF is decomposable because all of the sub-circuits feeding into the 'and' gates do not share variables.

The NNF is not deterministic because the topmost 'or' gate does not have at most 1 true input. For example, the assignment A=True, B=False, C=True, D=False will result in 2 true inputs being fed into the 'or' gate.

The NNF is not smooth because the subcircuits feeding into the second 'or' gate in the 3rd level is composed of {C} vs. {C,D} and the third 'or' gate in the 3rd level is composed of {A,B} vs. {A}, and these sub-circuits do not share variables.

The NNF is decomposable because all of the sub-circuits feeding into the 'and' gates do not share variables.

The NNF is not deterministic because the first and third 'or' gate on the third level receive 2 true inputs with the assignment A=False, B=True.

The NNF is smooth because all of the sub-circuits feeding into the 'or' gates share variables.

5.

a)
$$\omega(A) = 0.1$$

 $\omega(\neg A) = 0.9$
 $\omega(B) = 0.3$
 $\omega(\neg B) = 0.7$
 $\omega(C) = 0.5$
 $\omega(\neg C) = 0.5$
 $\omega(D) = 0.7$
 $\omega(\neg D) = 0.3$

Α	В	(¬A ∧ B) ∨ (¬B ∧ A)
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

$$(\neg A \land B) \lor (\neg B \land A)$$

WMC = $\omega(\neg A)\omega(B) + \omega(\neg B)\omega(A) = (0.9)(0.3) + (0.7)(0.1) = 0.34$

b)

1st 'and' gate: $\omega(\neg A)\omega(B) = (0.9)(0.3) = 0.27$ 2nd 'and' gate: $\omega(\neg B)\omega(A) = (0.7)(0.1) = 0.07$ (root node) top 'or' gate: 0.27+0.07 = 0.34

The formula for the root node is $(\neg A \land B) \lor (\neg B \land A)$. The count for the root node is equal to the WMC of its formula = $\omega(\neg A)\omega(B) + \omega(\neg B)\omega(A) = 0.34$

c) Formula of the NNF:

= ((0.9)(0.3)+(0.7)(0.1))*((0.5)(0.7) + (0.5)(0.3)) + ((0.9)(0.7)+(0.1)(0.3))*((0.5)(0.3)+(0.5)(0.7)) = 0.5

