Probabilités

Chapitre 1 : Fondement des probabilités

Lucie Le Briquer

1 Introduction

Objectif. Trouver un cadre pour modéliser l'aléa, le hasard.

- Jeux de hasards, dés, roulettes
- Sondages, échantillons (on capture 1000 tortues, il y en a 543 bleues, est-ce assez significatif pour conclure qu'il y a une proportion $> \frac{1}{2}$ de tortues bleues)
- Situation où on ne maîtrise pas toutes les interactions (météo, cours de la Bourse, physique statistique)

Cadre. (Axiomatique de Kolmogorov) À un problème impliquant l'aléa, on va construire un espace de probabilité $(\Omega, \mathcal{A}, \mathbb{P})$ pour modéliser cet aléa.

Remarque. On ne travaille *jamais* avec plusieurs espaces de probabilités et plus tard on ne précisera pas lequel (sauf pour les chaînes de Markov où Ω est explicite et il y a tout une famille de \mathbb{P}).

1. Ω est un ensemble non vide qui représente l'ensemble des possibles. Un élément $\omega \in \Omega$ est l'aléa. La donnée de ω donne toute l'information sur le modèle. Un seul ω est réalisé, mais on ne sait pas lequel.

Exemple. On jette 3 dés, $\Omega = \{1, ..., 6\}^3$. Tout ce qui dépend de ω est aléatoire, le reste est déterministe.

- 2. $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ qui est une tribu $(\sigma$ -algèbre):
 - non vide : $\Omega \in \mathcal{A}$
 - stable pour $\bigcup_{\mathbb{N}}$: si $A_n \in \mathcal{A} \forall n \Rightarrow \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{A}$
 - stable par complémentarité : $A \in \mathcal{A} \Rightarrow \bar{A} \in \mathcal{A}$

Les éléments A,B,C,... sont des évènements et représentent des propriétés que l'on peut observer sur l'aléa.

Exemple. $A = \text{``Les 3 d\'es sont pairs''} = \{2, 4, 6\}^3$

- 3. $\mathbb{P}: \mathcal{A} \to [0,1]$ est une mesure de probabilité :
 - si les A_n sont disjoints :

$$\mathbb{P}\left(\bigsqcup_{\mathbb{N}} A_n\right) = \sum_{\mathbb{N}} \mathbb{P}(A_n)$$

• $\mathbb{P}(\Omega) = 1$

 $\mathbb{P}(A)$ représente les chances qu'a ω l'aléa d'être dans A ($\mathbb{P}(A)=1 \to \text{sur}$ toutes les observations $\omega \in A$, $\mathbb{P}(A)=0 \to \text{sur}$ toutes les observations $\omega \notin A$, $\mathbb{P}(A)=\frac{1}{3} \to \text{une}$ fois sur trois on observera $\omega \in A$).

On pose un problème :

- 1. on modélise par le choix d'un $(\Omega, \mathcal{A}, \mathbb{P})$ adapté
- 2. on travaille dans cet espace pour résoudre

2 Exemples

2.1 Un premier exemple dans le cadre discret

Problème. on jette 2 dés, quelle est la probabilité que la somme soit paire?

Modélisation. $\Omega=\{1,...,6\}^2,$ $\mathcal{A}=\mathcal{P}(\Omega)$ (toujours si Ω est fini), $\mathbb{P}=$ probabilité uniforme $(\mathbb{P}(A)=\frac{\operatorname{Card}(A)}{36}).$

Résolution. $A = \text{``La somme des dés est paire''} = \{2, 4, 6\}^2 \cup \{1, 3, 5\}^2, \text{ donc}:$

$$\mathbb{P}(A) = \frac{\mathrm{Card}(A)}{36} = \frac{9+9}{36} = \frac{1}{2}$$

2.2 Un second exemple dans le cas continu : l'aiguille de Buffon

Problème. On lance une aiguille de 1cm sur un parquet de lattes de 1cm. Quelle est la probabilité que l'aiguille soit à cheval sur 2 lattes?

Modélisation. On repère l'aiguille par :

- x la distance de son centre au bord de la latte en dessous $0 \leqslant x < 1$
- θ son angle $\theta \in [0, \pi[$

On pose alors comme cadre :

- $\Omega = \{(x, \theta) \in [0, 1] \times [0, \pi]\}$
- $\mathcal{A} = \mathcal{B}([0, 1] \times [0, \pi[)$
- $\mathbb{P} = \frac{1}{\pi} \text{Lebesgue}|_{[0,1[\times[0,\pi[}$

Résolution. A = "L'aiguille touche 2 lattes"

$$\begin{split} \bar{A} &= \text{``L'aiguille ne touche pas 2 lattes''} \\ &= \left\{ (x,\theta) \in [0,1[\times[0,\pi[\ | \ \left(x \leqslant \frac{1}{2} \text{ et } x - \frac{1}{2} \sin \theta \geqslant 0 \right) \text{ ou } \left(x > \frac{1}{2} \text{ et } x + \frac{1}{2} \sin \theta < 1 \right) \right\} \end{split}$$

$$\begin{split} \mathbb{P}(\bar{A}) &= \mathbb{P}\left(\left\{(x,\theta) \in \Omega \mid x \leqslant \frac{1}{2} \text{ et } x - \frac{1}{2}\sin\theta \geqslant 0\right\}\right) + \mathbb{P}\left(\left\{(x,\theta) \in \Omega \mid x > \frac{1}{2} \text{ et } x + \frac{1}{2}\sin\theta < 1\right\}\right) \\ &= \sup_{\text{symétrie}} 2\mathbb{P}\left(\left\{(x,\theta) \in \Omega \mid x \leqslant \frac{1}{2} \text{ et } x - \frac{1}{2}\sin\theta \geqslant 0\right\}\right) \\ &= 2\int_{x \in [0,1[} \int_{0 \leqslant \theta \leqslant \pi} \mathbbm{1}_{\frac{1}{2}\sin\theta \leqslant x \leqslant \frac{1}{2}} \frac{dxd\theta}{\pi} \\ &= 2\int_{0}^{\pi} \frac{1}{2}(1-\sin\theta) \frac{d\theta}{\pi} \\ &= 1 - \frac{2}{\pi} \end{split}$$

Donc,

$$\mathbb{P}(A) = \frac{2}{\pi}$$

2.3 Un troisième exemple plus complexe

Problème. On jette des dés à 6 faces (une infinité de fois), quelle est la probabilité que le premier 6 apparaisse au bout d'un nombre pair de lancers?

Modélisation. $\Omega = \{1, ..., 6\}^{\mathbb{N}}.$ $\omega = (\omega_1, \omega_2,)$ avec ω_i le résultat du i-ème lancer. Soit :

$$A_{i_1,...,i_k} = \{\omega = (\omega_1, \omega_2, ...) \in \Omega \mid \omega_1 = i_1, ..., \omega_k = i_k\}$$

où $k \in \mathbb{N}$ et $(i_1,...,i_k) \in \{1,...,6\}^k$. On veut que les $A_{i_1,...,i_k}$ soient des évènements. On pose donc :

$$\mathcal{A} = \sigma(A_{i_1,...,i_k} \mid k \in \mathbb{N}^*, (i_1,...,i_k) \in \{1,...,6\}^k)$$

(σ = plus petite tribu contenant ...).

et \mathbb{P} la mesure de probabilité telle que $\mathbb{P}(A_{i_1,\ldots,i_k}) = \frac{1}{6^k}$.

Difficultés.

- Pourquoi ce choix de tribu?
- Existe-t-il une telle probabilité \mathbb{P} ?
- Est-elle unique?

Résolution.

P(premier 6 au bout d'un nombre pair de lancers)

$$= \mathbb{P}\left(\bigsqcup_{p \in \mathbb{N}^*} \text{le premier 6 est au bout de } 2p \text{ lancers}\right)$$

$$= \sum_{p \in \mathbb{N}^*} \sum_{i_1, \dots, i_{2p-1} \in \{1, \dots, 5\}^{2p-1}} \mathbb{P}(A_{i_1, \dots, i_{2p-1}, 6})$$

$$= \sum_{p \in \mathbb{N}^*} \sum_{i_1, \dots, i_{2p-1} \in \{1, \dots, 5\}^{2p-1}} \frac{1}{6^{2p}}$$

$$= \sum_{p \in \mathbb{N}^*} \left(\frac{5}{6}\right)^{2p} \frac{1}{5}$$

$$= \frac{5}{6^2} \frac{1}{1 - \left(\frac{5}{6}\right)^2}$$

$$= \frac{5}{11}$$

Existence de \mathbb{P} . Construire une infinité d'évènements indépendants est parfois difficile (on y reviendra). Ici on a une construction directe. $x \in [0,1[$ a un développement 6-adique unique :

$$x = \sum_{i=1}^{+\infty} \frac{x_i}{6^i}$$
 avec $x_i \in \{0, 1, ..., 5\}$ non tous égaux à 5 à partir d'un certain rang

Soit:

$$\varphi: \left\{ \begin{array}{ccc} [0,1[& \rightarrow & \Omega \\ x = \sum \frac{x_i}{6^i} & \rightarrow & (x_1+1, x_2+2, \ldots) \end{array} \right.$$

 φ est mesurable car :

$$\varphi^{-1}(A_{i_1,\dots,i_k}) = \left[\sum_{j=1}^k \frac{i_j - 1}{6^j}; \sum_{j=1}^k \frac{i_j + 1}{6^j} + \frac{1}{6^k} \right]$$

(il suffit de vérifier la mesurabilité sur une partie génératrice car $\varphi^{-1}(\bar{A}) = \overline{\varphi^{-1}(A)}$) On pose $\mathbb P$ la mesure image de Lebesgue par φ :

$$\mathbb{P}(A) = \text{Lebesgue}(\varphi^{-1}(A))$$

et
$$\mathbb{P}(A_{i_1,...,i_k}) = \text{Lebesgue}\left(\left[\sum \frac{i_j-1}{6^j};\sum \frac{i_j-1}{6^j} + \frac{1}{6^k}\right]\right)$$
. Donc \mathbb{P} existe.

Choix de la tribu. $\mathcal{A} = \sigma(A_{i_1,\dots,i_k} \mid \dots)$. Déraisonnable de ne pas prendre les A_{i_1,\dots,i_k} . Choisir une tribu plus grosse mène aux mêmes difficultés que définir Lebesgue sur + que les boréliens. Ce \mathcal{A} est la tribu "cylindrique".

Unicité de \mathbb{P} : \exists une unique probabilité sur (Ω, \mathcal{A}) telle que

$$\mathbb{P}(A_{i_1,\dots,i_k}) = \frac{1}{6^k} \quad \forall i_1,\dots,i_k$$

La raison vient des classes monotones.

- **Rappels 1** (classes) -

- 1. une classe \mathcal{C} est une partie de $\mathcal{A}:\mathcal{C}\subseteq\mathcal{A}$
- 2. c'est une tribu si elle est stable par complémentaire et union dénombrable
- 3. on appelle

$$\sigma(\mathcal{C}) = \text{plus petite tribu qui la contient} = \bigcap_{\mathcal{B} \text{ tribu}, \ \mathcal{C} \subseteq \mathcal{B} \subseteq \mathcal{A}} \mathcal{B}$$

- **Définition 1** (classe monotone) -

 \mathcal{C} est une classe monotone si :

- $\Omega \in \mathcal{C}$
- si $A \subseteq B$ et A, B dans C alors $B \setminus A$
- si A_n est une suite croissante dans \mathcal{C} $(A_n \subseteq A_{n+1})$ alors $\bigcup_{\mathbb{N}} A_n \in \mathcal{C}$

Remarque. Une tribu est une classe monotone.

On définit pour une classe $\mathcal C$:

$$\mathcal{M}(\mathcal{C}) = \text{plus petite classe monotone contenant } \mathcal{C} = \bigcap_{\mathcal{C} \subset \mathcal{M} \subset \mathcal{A}, \ \mathcal{M} \ \text{cl. monotone}} \mathcal{M}$$

Intérêt de la notion :

- simple à vérifier
- si μ et ν sont deux mesures de probabilité, $\{A \in \Omega \mid \mu(A) = \nu(A)\}$ est une classe monotone (si $A \subseteq B$, $\mu(B \setminus A) = \mu(B) \mu(A)$; si A_n suite croissante, $\mu(\bigcup A_n) = \lim \mu(A_n)$)

S'il existe une autre mesure \mathbb{Q} telle que $\mathbb{Q}(A_1,...,i_k)=\frac{1}{6^k}$ on a :

$$\mathbb{P}|_{\mathcal{M}(A_{i_1,\dots,i_k}|\dots)} = \mathbb{Q}|_{\mathcal{M}(A_{i_1,\dots,i_k})|\dots}$$

Il manque un résultat pour dire $\mathcal{M}(A_{i_1,\ldots,i_k}) = \sigma(A_{i_1,\ldots,i_k}) = \mathcal{A}$

- Lemme 1 (lemme des classes monotones) -

Si \mathcal{C} est une classe stable par \bigcap finie alors :

$$\mathcal{M}(\mathcal{C}) = \sigma(\mathcal{C})$$

Ici avec $C = \{A_{i_1,...,i_k} | i_1,...,i_k \in \{1,...,6\}^k, k \in \mathbb{N}^*\} \bigcup \{\emptyset\}$ on vérifie que le lemme s'applique et on montre alors que $\mathbb{P} = \mathbb{Q}$.