Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ:	Приборостроительный
КАФЕЛРА:	ПС4

Домашнее задание №1

по курсу

«Механика полета и баллистика СВ КА»

На тему:

Расчет траектории полета КА

Выполнил работу студент группы ПС4-101: Голобоков М.М.					
Дата:	Подпись:				
Проверил работу:					
Дата:	Подпись:				

Москва, 2019

Домашнее задание №1 по курсу «Механика полета и баллистика СВ КА» «Расчет траектории полета КА»

Задачи

- 1. Мат модель полета всех ступеней ракеты с учетом допущений.
- 2. Решение задачи оптимальной траектории полета ракеты до пункта назначения
- 3. Решение задачи выхода на орбиту и стыковки с МКС

Требуется:

- 1. Написать программу на любом языке программирования, реализующую математическую модель полета КА.
- 2. Уточнить мат модель за счет добавления в программу допущений.
- 3. Получить в качестве результата отчет по параметрам ракеты во время полета.
- 4. Оформить отчет и приложить результаты работы программы.

Выбранная ракета: ТОПОЛЬ-М

Технические характеристики КА:

Ступени	3
Длина ракеты (L)	22,7 м
Длина без ГЧ	17,5 м
Мах диаметр (D)	1,81 м
Диаметр сопла	1 м
Масса ГЧ	1,2 т
Площадь сечения сопла	0,76 м
Дальность полета	11 000 км
Забрасываемая масса	1,2 т
KBO	200 м

	1 ступень	2 ступень	3 ступень	Все ступени
Длина (L), м	8,04	6	3,1	22,7
Диаметр (d), м	1,81	1,61	1,58	1,81
Macca	28,6	13	6	47,1 + Γ Ч
заправленная, т				
Масса сухая, м	3	1,5	1,2	5,7 + ГЧ
Тяга пустотная, тс	100	50	25	-
Время работы, с	60	64	56	180

Отчет прогона программы:

Ступень 1:

Начало:

t	dt	m_current	dm	theta	g	h	r
Ступень № 1							
0	0.1	48.8	0.42667	-0.0	9.82024	0.0	6371000.0
0.1	0.1	48.75733	0.42667	0.00151	9.82024	0.0	6371000.03529
0.2	0.1	48.71467	0.42667	0.00301	9.82024	0.03529	6371000.14124
0.3	0.1	48.672	0.42667	0.00453	9.82024	0.14124	6371000.318
0.4	0.1	48.62933	0.42667	0.00604	9.82024	0.318	6371000.56572
V	Va	V_x	V_y	a_x	a_y	X	у
464.4459	0.0	464.4459	0	0	0	0.01	6371000
464.44643	0.69908	464.4459	0.70247	0.0	7.02467	46.45459	6371000.03512
464.44805	1.39964	464.44592	1.40641	0.00023	7.03941	92.89918	6371000.14057
464.45082	2.10167	464.44602	2.11183	0.00099	7.05418	139.34378	6371000.31648
464.4548	2.80518	464.44624	2.81873	0.00222	7.069	185.78839	6371000.5630
nhi	alaba	X_N	Y_N	P_N	pitch	nitah a	W
phi	alpha		1_IN	F_IN	pitch	pitch_a	VV
0.0	0.0	0	0.0	822031.4256	1.5708	-1.5708	464.4459
1e-05	0	0.0	0.0	822031.4256	1.57078	1.5708	464.4459
1e-05	-6e-05	0.15404	-0.00029	822031.7355	1.57074	1.57079	464.44591
2e-05	-0.00012	0.61745	-0.00225	822032.66584	1.57067	1.57075	464.44592
3e-05	-0.00018	1.39217	-0.00768	822034.21789	1.57057	1.57069	464.44594

p_h	ro	q	theta_earth
101325.0	1.225	0	nan
101325.0	1.225	0.0	1.57079
101324.53558	1.22499	0.29934	1.57077
101323.14137	1.22498	1.19985	1.57073
101320.81546	1.22495	2.70531	1.57066

Конец:

t	dt	m current	dm	theta	g	h	г
59.5	0.1	23.41333	0.42667	0.53963	9.76543	17854.08999	6388925.06124
59.6	0.1	23.37067	0.42667	0.53968	9.76521	17925.06124	6388996.21477
59.7	0.1	23.328	0.42667	0.53974	9.765	17996.21477	6389067.55086
59.8	0.1	23.28533	0.42667	0.53979	9.76478	18067.55086	6389139.06979
59.9	0.1	23.24267	0.42667	0.53984	9.76456	18139.06979	6389210.77182
V	Va	Vx	Vv	ах	аv	x	V
1354.76729	984.71924	1157.86774	703.37522	27.37842	17.8354	40069.86396	6388799.40553
1358.04083	987.90987	1160.61294	705.16132	27.45203	17.86101	40185.788	6388869.83236
1361.32202	991.10798	1163.36553	706.94999	27.52583	17.88669	40301.98692	6388940.43793
1364.61087	994.31361	1166.12551	708.74123	27.59983	17.91244	40418.46147	6389011.22249
1367.90742	997.52677	1168.89291	710.53505	27.67403	17.93825	40535.21239	6389082.1863
phi	alpha	ΧN	Y N	PN	pitch	pitch a	w
0.00627	0.00081	29881.35788	758.82963	882991.27341	0.7929	0.79138	465.75264
0.00629	0.00073	29799.44157	685.44616	883052.31384	0.79211	0.79067	465.75782
0.00631	0.00066	29716.88488	612.09784	883112.94887	0.79133	0.78996	465.76302
0.00633	0.00058	29633.6944	538.79269	883173.17959	0.79054	0.78926	465.76824
0.00634	0.0005	29549.87675	465.53866	883233.00712	0.78976	0.78855	465.77347

p_h	го	q	theta_earth
9970.39485	0.12054	58064.99182	0.7872
9878.91948	0.11943	57906.02719	0.78647
9788.05165	0.11834	57745.7968	0.78575
9697.78972	0.11724	57584.31329	0.78502
9608.132	0.11616	57421.58937	0.7843

Ступень 2:

Начало:

t	dt	m current	dm	theta	g	h	r
Ступень № 2							
60.0	0.1	20.2	0.17969	0.53989	9.76412	18282.65724	6389282.65724
60.1	0.1	20.18203	0.17969	0.53963	9.76412	18282.65724	6389354.66273
60.2	0.1	20.16406	0.17969	0.53938	9.7639	18354.66273	6389426.72486
60.3	0.1	20.14609	0.17969	0.53912	9.76368	18426.72486	6389498.84369
60.4	0.1	20.12813	0.17969	0.53886	9.76346	18498.84369	6389571.0193
V	Va	V x	Vy	ах	ау	×	V
•	Vu	V_X	·_y	u_x	u_y	^	,
1371.21167	1000.74747	1171.66775	712.33147	27.74842	17.96414	40652.24043	6389153.32963
1372.78084	1002.18314	1173.1788	712.86657	15.11047	5.35102	40769.48275	6389224.58953
1374.35332	1003.6221	1174.69329	713.40222	15.14488	5.35654	40886.87636	6389295.90297
1375.92917	1005.06441	1176.21129	713.93844	15.17999	5.36212	41004.42159	6389367.27
1377.50838	1006.51007	1177.73279	714.4752	15.21501	5.36767	41122.11879	6389438.69068
phi	alpha	X_N	Y_N	P_N	pitch	pitch_a	W
0.00636	0.00042	29191.63612	388.69791	403421.26018	0.78898	0.78785	465.77871
0.00638	0.00035	29380.38657	319.21567	403421.26018	0.7882	0.78716	465.78395
0.0064	0.00026	29190.44565	237.67842	403806.61078	0.78741	0.78646	465.78921
0.00642	0.00017	29001.60459	157.87168	404188.67352	0.78663	0.78577	465.79447
0.00644	9e-05	28813.86001	79.80467	404567.47377	0.78585	0.78507	465.79973

p_h	ro	q	theta_earth
9430.62245	0.11401	56725.58118	0.78358
9430.62245	0.11401	57092.47151	0.78287
9342.84435	0.11295	56723.46867	0.78216
9255.81518	0.1119	56356.57479	0.78145
9169.52916	0.11086	55991.78448	0.78074

Конец:

t	dt	m_current	dm	theta	g	h	r
123.5	0.1	8.78984	0.17969	0.33705	9.58569	77473.93842	6448592.40044
123.6	0.1	8.77188	0.17969	0.33668	9.58534	77592.40044	6448710.95719
123.7	0.1	8.75391	0.17969	0.3363	9.58499	77710.95719	6448829.6088
123.8	0.1	8.73594	0.17969	0.33593	9.58463	77829.6088	6448948.35536
123.9	0.1	8.71797	0.17969	0.33556	9.58428	77948.35536	6449067.19699
V	Va	V_x	V_y	a_x	a_y	x	y
3140.20254	2701.029	2936.66899	1112.13635	47.48892	6.97696	160966.92713	6446583.09458
3144.90108	2705.64431	2941.4287	1112.83423	47.5971	6.97888	161260.83202	6446694.34311
3149.61019	2710.27024	2946.19927	1113.53231	47.70569	6.98079	161555.21342	6446805.66144
3154.3299	2714.90683	2950.98074	1114.23058	47.81471	6.9827	161850.07242	6446917.04958
3159.06026	2719.55412	2955.77316	1114.92904	47.92417	6.98461	162145.41011	6447028.50756
phi	alpha	X_N	Y_N	P_N	pitch	pitch_a	W
0.02496	-0.06168	109.48802	-189.08139	444803.21063	0.35841	0.41961	470.10239
0.02501	-0.06183	108.23886	-187.26734	444803.50054	0.35778	0.41912	470.11103
0.02505	-0.06197	107.00296	-185.46784	444803.78625	0.35715	0.41863	470.11968
0.0251	-0.06211	105.78018	-183.68281	444804.06782	0.35652	0.41815	470.12834
0.02515	-0.06226	104 5704	-181 91216	444804 3453	0.35589	0.41766	470 137

p_h	го	q	theta_earth
4.32554	5e-05	190.11077	0.39862
4.25951	5e-05	187.8483	0.39809
4.19443	5e-05	185.61085	0.39756
4.13029	5e-05	183.39816	0.39703
4.06708	5e-05	181.20998	0.3965

Ступень 3:

Начало:

t	dt	m_current	dm	theta	g	h	r
Ступень № 3							
124.1	0.1	7.2	0.08571	0.33481	9.58322	78305.16591	6449305.16591
124.2	0.1	7.19143	0.08571	0.33445	9.58322	78305.16591	6449424.25808
124.3	0.1	7.18286	0.08571	0.3341	9.58287	78424.25808	6449543.37504
124.4	0.1	7.17429	0.08571	0.33374	9.58251	78543.37504	6449662.51674
124.5	0.1	7.16571	0.08571	0.33338	9.58216	78662.51674	6449781.68318
V	Va	V x	Vy	ах	ау	x	v
3168.55309	2728.881	2965.391	1116.32654	48.14437	6.98842	162737.52598	6447251.63311
3171.28255	2731.53428	2968.2919	1116.36741	29.00905	0.40875	163034.21012	6447363.26781
3174.0159	2734.1915	2971.19694	1116.4075	29.05033	0.40084	163331.18456	6447474.90655
3176.75313	2736.85264	2974.10607	1116.44683	29.09137	0.39333	163628.44971	6447586.54927
3179.49425	2739.51773	2977.01932	1116.48541	29.13249	0.38579	163926.00598	6447698.19588
phi	alpha	X_N	Y_N	P_N	pitch	pitch_a	W
0.02524	-0.06255	100.62176	-175.67684	222402.5769	0.35462	0.41668	470.15435
0.02528	-0.06269	101.01779	-175.67664	222402.5769	0.35399	0.41626	470.16303
0.02533	-0.0629	99.7337	-174.89225	222402.7077	0.35336	0.41584	470.17171
0.02537	-0.06311	98.46586	-173.11439	222402.83653	0.35273	0.41542	470.1804
0.02542	-0.06332	97.21407	-171.35207	222402.96341	0.3521	0.415	470.18908

p_h	ro	q	theta_earth
3.88292	5e-05	174.19245	0.39544
3.88292	5e-05	174.79003	0.39498
3.82332	5e-05	172.44228	0.39451
3.76463	5e-05	170.12568	0.39405
3.70683	4e-05	167.83983	0.39358

Конец:

t	dt	m_current	dm	theta	g	h	r
179.6	0.1	2.44286	0.08571	0.09486	9.38315	146697.8723	6517820.94424
179.7	0.1	2.43429	0.08571	0.0943	9.3828	146820.94424	6517943.98136
179.8	0.1	2.42571	0.08571	0.09374	9.38245	146943.98136	6518066.9833
179.9	0.1	2.41714	0.08571	0.09317	9.38209	147066.9833	6518189.94968
180.0	0.1	2.40857	0.08571	0.09261	9.38174	147189.94968	6518312.88014
V	Va	V x	Vy	ах	ау	x	У
5782.41541	5309.59341	5713.3995	890.72671	90.06185	-13.75607	389480.62086	6506173.58416
5791.13268	5318.27393	5722.43709	889.34325	90.37593	-13.83463	390052.41269	6506262.58765
5799.8813	5326.98593	5731.50631	887.95187	90.69218	-13.91377	390625.10986	6506351.45241
5808.6615	5335.72963	5740.60737	886.55252	91.01062	-13.99347	391198.71554	6506440.17763
5817.47349	5344.50525	5749.7405	885.14515	91.33128	-14.07375	391773.23294	6506528.76251
phi	alpha	X N	ΥN	PN	pitch	pitch a	W
0.05979	-0.15306	0.08147	-0.22528	222411.09882	0.01061	0.16313	475.14915
0.05988	-0.15314	0.08047	-0.22253	222411.09884	0.01	0.16259	475.15812
0.05997	-0.15321	0.07949	-0.21983	222411.09885	0.00938	0.16205	475.16708
0.06005	-0.15328	0.07852	-0.21715	222411.09887	0.00877	0.16151	475.17605
0.06014	-0.15335	0.07756	-0.21451	222411.09889	0.00816	0.16097	475.18501

p_h	го	q	theta_earth
0.00054	0.0	0.09157	0.10864
0.00053	0.0	0.09042	0.10801
0.00052	0.0	0.08928	0.10738
0.00051	0.0	0.08815	0.10676
0.00051	0.0	0.08704	0.10613

Моделирование

Alpha (угол атаки):

Theta:

Theta Earth:

Pitch (тангаж):

Скорости:

Высота:

V(R):

Расход массы:

Сила Х_N:

Сила Y_N:

q (Воздушный поток):

го (Плотность атмосферы):

Краткий отчет по работе каждой ступени

Конец работы ступени № 1:

theta normal = $0.5398 \text{ rad } \sim 30.9307^{\circ}$

theta earth= $0.7843 \text{ rad } \sim 44.937^{\circ}$

phi= $0.0063 \text{ rad } \sim 0.3635^{\circ}$

 $h=18139.0698 \ m \sim 18.1391 \ км$

pitch = $0.7898 \text{ rad } \sim 45.25^{\circ}$

alpha = $0.0005 \text{ rad } \sim 0.0288^{\circ}$

Конец работы ступени № 2:

theta normal = $0.3352 \text{ rad } \sim 19.2045^{\circ}$

theta earth= $0.396 \text{ rad} \sim 22.6874^{\circ}$

phi= $0.0252 \text{ rad } \sim 1.4433^{\circ}$

 $h=78067.197\ m\ \sim 78.0672\ км$

pitch = 0.3553 rad $\sim 20.3547^{\circ}$

 $alpha = -0.0624 \ rad \sim -3.5754^{\circ}$

Конец работы ступени № 3:

theta normal = $0.0926 \text{ rad} \sim 5.306^{\circ}$

theta earth= $0.1061~rad~\sim 6.0805^{\circ}$

phi= $0.0601 \text{ rad } \sim 3.4458^{\circ}$

h= 147189.9497 $m \sim 147.1899$ км

pitch = $0.0082 \text{ rad } \sim 0.4675^{\circ}$

 $alpha = -0.1534 \ rad \sim -8.7864^{\circ}$

Основные допущения:

Ускорение совободного падения: $g = -\frac{\mu r}{R_3}$;

Радиус Земли: $R_3 = 6 \ 371 \ 000 \ [\text{м}]$

Угловая скорость вращения земли: $\omega_{3} = 7,29 \times 10^{5} \, [1/c]$

Давление: $P = \rho RT = \frac{10^5 \times \rho}{1,225}$;

Плотность: $\rho = \rho_0 \times 1,225 \times e(-\frac{h}{7700})$

Тяга земная: $F_3 = F_{\Pi} - S_c \times P$

Коэффициент лобового сопротивления по оси X: $C_x = C_{x0} + C_y^{\alpha} \times sin^2 \alpha$

Коэффициент лобового сопротивления по оси Y: $\mathcal{C}_y = \mathcal{C}_y^{\alpha} \times \sin \alpha$

Аэродинамические силы:

$$X = -qS_mC_x$$
 $Y = qS_mC_y$

Скоростной напор набегающего воздушного потока: $q=rac{
ho v^2}{2}$

Решение:

В соответствии с кинематической схемой движения РКН (рис. 1) составим систему ДУ в проекция на оси стартовой системы координат $0X_cY_c$:

Рис. 1. Кинематическая схема движения РКН.

В качестве системы ДУ мы имеем 5 уравнений: 2 уравнению изменения линейных ускорений, 2 уравнения изменения координат в проекция на оси стартовой системы координат и одно уравнение изменением массы

В результате получились следующая система ДУ:

$$\begin{cases} \dot{V}_{Xc} = \frac{1}{m} \times (-mg \times sin\varphi + P \times cos(\vartheta - \varphi) - Y \times sin(\vartheta_a - \varphi) - X \times cos(\vartheta_a - \varphi)) \\ \dot{V}_{Yc} = \frac{1}{m} \times (-mg \times cos\varphi + P \times sin(\vartheta - \varphi) + Y \times cos(\vartheta_a - \varphi) + X \times sin(\vartheta_a - \varphi)) \\ X_c - \text{ интегрирования линйеных ускорений по соответсвующей оси} \\ Y_c - \text{ интегрирования линйеных ускорений по соответсвующей оси} \\ m = \sum_{i=0}^t M_i - dmt \end{cases}$$

Решение некоторых уравнений системы ДУ движения 1-й ступени, именно проблемы интегрирование линейных ускорений по соответствующим осям, воспользуемся численным методом Эйлера имеющий следующий вид:

$$f_{i+1} = \dot{f}_i \times \Delta t + \frac{\ddot{f}_i \Delta t^2}{2!} + \cdots$$

Для простоты расчета воспользуемся формулой до второй производной.

Однако в случае первой итерации интегрирования линейных ускорений у нас нет информации по второй производной по линейной скорости, чтобы решить эту проблемы воспользуемся следующим приближение:

$$\ddot{f}_i = \frac{\dot{f}_{i+1} - \dot{f}_i}{\Lambda t}$$

Для решения задачи моделирование полета первой ступени РКН необходимо было решить краевую задачу определение коэффициентов k1 и k2 для составления программы тангажа:

$$\vartheta = \frac{\pi}{2} - \frac{k_1 \cdot t + k_3 \cdot t^3}{k_2 + t^2}$$

При выполнение следующих условий:

$$\left\{egin{aligned} |\Theta_1-\Theta_2^*|<\xi_lpha\ |lpha_1|<\xi_\Theta\ t=t_1\ (\mbox{отработка первой ступени}) \end{aligned}
ight.$$

В соответствии с поставленной задачей №3 необходимо было при работе второй ступени осуществить вывод ПГ на заданную орбиту.

Схема работы 2-ой ступени РКН «ТОПОЛЬ-М» представлена на рис. 2.

Рис. 2. Кинематическая схема работы 2-ой ступени РКН «ТОПОЛЬ-М».

Выводы по проделанной работе:

За время работы первой и второй ступени было решена задача вывод ПГ на заданную орбиту по определённой программе тангажа.

Первая и вторая ступень РКН «ТОПОЛЬ-М» в соответствии с принятыми допущениями справилась с поставленными задачами:

- 1. Создали математическую модель полета 1-ой ступени РКН «ТОПОЛЬ-М».
- 2. Определили ускорения, скорости, координаты объекта в пространстве.
- 3. Задали программу тангажа для 1-ой ступени РКН «ТОПОЛЬ-М».
- 4. Решить соответствующую краевую задачу.
- 5. Решить задачу вывода на орбиту полезного груза с учетом работы 2-ой ступени РКН «ТОПОЛЬ-М».

Полные код программы, выполненный на языке Python, приведен в приложенном архиве.

Заключение

В ходе эксперимента была проведена оценка влияния ветра на выходные параметры нашей ракеты. Результаты следующие:

- В случае, когда мы прибавляем постоянную составляющую при расчете ветра мы получаем отрицательный рост силы Y_N. Угол атаки при начале расчета уходит в отрицательную сторону.
- При вычитании постоянной составляющей при расчете ветра мы получаем ровно противоположную ситуацию