

Questions 1. If the fourth term in the expansion of $(x + x^{\log_2 x})^7$ is 4480, then the value of x where $x \in N$ is equal to:

1.	If the fourth te	erm in th	e expansion	01 (a	$(x + x^{10})^{-1}$ 1s	4480	, then the value	or x	where $x \in \mathbb{N}$ is	equ	ai to:					
	(1) 2							(2)								
14.							mathongo	(4)	1 mathongo							
2.	The sum of the	e rationa	l terms in th	ne exp	pansion of $(\sqrt{2})$	2 + 3	$\left(\frac{1}{5}\right)^{-1}$ is									
	(1) 46								42 n ₄₃ thongo							
3										,	\n .	. 5				
3.	If the ratio of									`	***					
	(1) 17 ongo (3) 19								18 thongo 20							
4.	If some three	consecut	ive coefficie	ents in	n the binomial	expai	nsion of $(x+1)$	` ′		in t	ne ratio 2 : 15 :	70, t	hen the average	e of tl	nese three	
	coefficients is						mathongo									
	(1) 227								964							
<u>/</u> 4.	(3) 625 The coefficient	///. m			mathon 120	14.	mathongo	(4)	232 mathongo							
5.		ıt of t ²⁴ i	n the expan	sion o	of $(1 + t^2)^{12}$ (1 + t	12) $(1+t^{24})$ is	(2)	$^{12}\mathrm{C}_5$							
	(1) ${}^{12}C_6 + 2$ (3) ${}^{12}C_6$								12C7nongo							
6.	The coefficien							(1 + i)	$(x)^{498} + \ldots + x^{198}$	⁵⁰⁰ i	s					
	(1) $^{501}C_{301}$		1		(')	. (, ,		$^{'}_{500}C_{301}$							
	300							(4)	none of these							
7.	The remainder	r when 3	³⁷ is divided	l by 8	30 is											
	(1) 78 (3) 2							(2)	3 mgthongo							
8.	The remainder	r obtaine	d when (25) ¹⁵ is	divided by 13	is eau	ıal to	(1)	00							
///	(1) 1				mathongo			(2)	n ¹² athongo							
	(3) 0							(4)	2							
9.	If $\{x\}$ denotes	the frac	tional part o	of x th	nen $\left\{\frac{3^{2n}}{8}\right\}$, $n \in$	$\in N$	is									
	$(1)^{-\frac{3}{8}}$								n <u>7</u> athongo							
4.0	$(3) \frac{5}{8}$			041	00 •			(4)	8							
10.	Sum of last tw (1) 5	o digits	of the numb	er 3*	rnathongo			(2)	mathongo							
	(3) 2							(4)								