ECE5884 Wireless Communications Assignmental Control of the Contro

https://powcoder.com

ARC Future Fellow at The University of Melbourne Sessional Lecturer at Monash University

Add Wechatopowcoder

Course outline

This week: Ref. Ch. 4 of [Goldsmith, 2005]

Week 1: Overview of Wireless Communications

ssignment-Projects Exam Help

- Week 3: Wireless Channel Models
- Week 4: Capacity of Wireless Channels
- Week 6: Performance Analysis
- Week 7: Equalization
- Week 9: Diversity Yethirques nat powcoder
- Week 10: Multiple-Antenna Systems (MIMO Communications)
- Week 11: Multiuser Systems
- Week 12: Guest Lecture (Emerging 5G/6G Technologies)

Data rate

Capacity in AWGN

1 For a discrete-time AWGN channel, *h* = 1, input/out relationship at time *i*:

Assignment Project Example 101 output, and n[i] is a white Gaussian noise random process.

Shannon Capacity:

- 3 Shannon proved that capacity is the maximum error-free data rate a channel can support.
- channel can support.

 So this held icanimi tray to be action WCOder
- **6** Only dependent on channel characteristic, but not dependent on design techniques.
- **6** *C* [bits/sec]; P_r received signal power [W]; N_0 Noise power spectral density [W/Hz]; B channel bandwidth [Hz].
- \bigcirc Any code with rate R > C has a probability of error bounded away from zero.

Capacity at asymptotic regimes

1 Large bandwidth regime:

$$\lim_{B \to \infty} B \log_2 \left(1 + \frac{P_r}{BN_0} \right) = \log_2(e) \frac{P_r}{N_0}; \text{ as } \lim_{x \to \infty} x \log_2 \left(1 + \frac{a}{x} \right) = a \log_2(e)$$
 (3)
$$SSIgner Project Exam Help$$
bandwidth available.

• Capacity no longer depends on the channel bandwidth.

Low power regime:
$$P_r$$
 power oder. Com
$$B \log_2 \left(1 + \frac{P_r}{BN_0}\right) \approx \log_2(e) \frac{P_r}{N_0}$$
; as $\log_e (1 + x) \approx x$ for small x (4)

• Capacity of longer depends on the channel bandwidth.

3 How capacity calls with bandwidth (Etb & VV (21) at high power:

$$\lim_{P_r \to \infty} \frac{kB \log_2\left(1 + \frac{P_r}{kBN_0}\right)}{B \log_2\left(1 + \frac{P_r}{BN_0}\right)} \approx \lim_{P_r \to \infty} \frac{kB \log_2\left(\frac{P_r}{kBN_0}\right)}{B \log_2\left(\frac{P_r}{BN_0}\right)} = k$$
 (5)

4 *C* is also defined as channel's maximum mutual information (Not discussing here!) - Information theoretic perspective ...

Capacity of flat fading channels

Figure 1: Flat fading channel and system model.

1 Time of the Sandel BOW Cood of FgCOM
2 The channel gain g[i], called as channel state information or channel

- 2 The channel gain g[i], called as channel state information or channel side information (CSI), can change at each time i, e.g., an i.i.d. process.
- 3 Block fading channel; g[i] is constant over some blocklength T, after which the g[i] changes to a lever dependent of the distribution $f_g(t)$.
- The instantaneous received SNR:

$$\gamma[i] = \frac{\bar{P}g[i]}{N_0B}$$
; Expected value: $\bar{\gamma} = \frac{\bar{P}\bar{g}}{N_0B}$; \bar{P} is the average Tx power (6)

5 The CSI g[i] changes during the transmission of the codeword.

CSI Knowledge

Assignment Project Fixamshite p and receiver (Rx) [Goldsmith, 1997, Goldsmith, 1999, Caire, 1999].

- Channel distribution information (CDI): The distribution of g[i] is known to the Tx and Phow Coder Com
- 2 Rx CSI: The value of g[i] is known to the receiver at time i, and both the TX and Rx know the distribution of g[i].
- 3 Tx and Rx CSI: The value of g[i] is known to the Tx and Rx at time i, and behind x and Rx (ow the listric g[i]) g[i]

Channel estimation for CSI

Figure 2: GSM (2G) frame structure.

with Leas Acide (Leas Acide) (L

For a single bit training:
$$y = hs + n \Rightarrow \hat{h} = \frac{y}{s}$$

For *m* bits training:
$$\mathbf{y} = h\mathbf{s} + \mathbf{n} \Rightarrow \hat{h} = (\mathbf{s}^T\mathbf{s})\mathbf{s}^T\mathbf{y}$$
 (8)

where $\mathbf{y} = [y_1, ..., y_m]^T$; $\mathbf{s} = [s_1, ..., s_m]^T$; $\mathbf{n} = [n_1, ..., n_m]^T$

(7)

Channel estimation error/Imperfect CSI

Due to pilot contamination from neighboring cells, channel frequency offset, Doppler effect, time synchronization mismatch, etc.

$$\hat{h} \sim \mathcal{CN}(0, \sigma_h^2 - \sigma_\epsilon^2) \tag{10}$$
 SNR with the stimation of the contraction of the

$$y = hs + n \tag{11}$$

$$Add^{\hat{h}} W_{\hat{h}}^{\hat{h}^*(\hat{h}} Ch_{\hat{h}^*\hat{t}_s)} pow_{\hat{h}} coder \qquad \begin{picture}(12) \\ (13) \\ (13) \\ (13) \\ (13) \\ (13) \\ (14) \\ (14) \\ (15) \\ (15) \\ (16) \\ (16) \\ (16) \\ (17) \\ (18)$$

channel estimation error

SNR
$$\gamma = \frac{\text{Received signal power}}{\text{Est. error power+ Noise power}} = \frac{|\hat{h}|^2 \bar{P}}{\sigma_{\epsilon}^2 \bar{P} + N_0}$$
 (14)

CSI at receiver

 Shannon (ergodic) capacity: Shannon capacity for an AWGN channel with SNR γ , and then averaged over the distribution of γ .

Assignment Project Exam Help

$$= \mathbf{E}_{\gamma} \left[B \log_2(1+\gamma) \right] \tag{16}$$

$$\leq B \log_2(1 + \mathbf{E}_{f}[\gamma]);$$
 using Jensen's inequality (17)

$$\begin{array}{ll} & \underset{\longrightarrow}{\text{high}_{2}}(1+\textbf{E}_{1}[\gamma]); \text{ using Jensen's inequality} \\ & \underset{\longrightarrow}{\text{high}_{2}}(1+\textbf{E}_{1}[\gamma]); \text{ using Jensen's inequality}$$

- $C_{AWGN} = B \log_2 (1 + \bar{\gamma})$ is equivalent to the capacity of AWGN channel
- with the average SNR $\bar{\gamma}$.

 Ergodic Color of Golden and power of the length of the

$$C_{Rayleigh} = \int_0^\infty B \log_2(1+\gamma) \frac{1}{\bar{\gamma}} e^{-\frac{\gamma}{\bar{\gamma}}} d\gamma = -\frac{B}{\log(2)} e^{\frac{1}{\bar{\gamma}}} \operatorname{Ei}\left(-\frac{1}{\bar{\gamma}}\right)$$
(19)

where Ei (x) is the Exponential Integral, Ei $(x) = -\int_{-x}^{\infty} \frac{e^{-t}}{t} dt$.

Numerical example

Figure 3: Capacity (bits/sec/Hz) vs average SNR (dB) over AWGN and Rayleigh channels for B = 1 Hz.

Capacity outage probability

 The capacity outage probability is the probability that the (instantaneous) capacity C falls below a certain predetermined

Assignment Project Exam Help

$$C_{out} = \Pr\left[C < C_{th}\right] \tag{20}$$

For Rayleigh fading:

$$C_{out} = 1 - e^{-\frac{2\frac{C_{th}}{B} - 1}{\tilde{\gamma}}}$$
 (23)

 Similarly, you can evaluate the capacity outage probabilities for Rician and Nakagami-m fading channels!

Numerical example

Figure 4: Capacity outage vs average SNR over Rayleigh channel for $C_{th} = 10$ bits/sec and $C_{th} = 100$ kbits/sec at B = 30 kHz.

CSI at transmitter and receiver

 If both the transmitter and receiver have CSI then the transmitter can adapt its transmission strategy (e.g., Tx power and code) relative to this CSI.

CSI at transmitter and receiver

• Let us allow the transmit power $P(\gamma)$ to vary with instantaneous SNR γ subject to an average power constraint \bar{P} .

Aurels duling red coding and decoding Goldsmith, 2051

- 1 The range of fading values is quantized to a finite set $\{\gamma_j, 1 \le j \le N\}$.
- 2 For each γ_j , an encoder-decoder pair for an AWGN channel with SNR γ_i .
- 3 The input x_j for encoder has average power $P(\gamma_j)$ and data rate C_j where C_j is the capacity of time-invariant AWGN channel with received SNR $P(\gamma_j)\gamma_j/\bar{P}$.

CSI at Tx and RX: Power allocation

1 an average power constraint \bar{P} :

Assignment when the project is:
$$Exam$$
 $Help_{P(\gamma)>0}$ (25)

Optimization problem: power allecation we derive $\int_{0}^{\infty} B \log_{2} \left(1 + \frac{P(\gamma)\gamma}{\bar{P}}\right) f_{\gamma}(\gamma) d\gamma$

$$\max_{P(\gamma)} \int_{0}^{\infty} B \log_{2} \left(1 + \frac{P(\gamma)\gamma}{\bar{P}} \right) f_{\gamma}(\gamma) \, d\gamma$$
subject to
$$\int_{0}^{\infty} P(\gamma) f_{\gamma}(\gamma) \, d\gamma \leq \bar{P}$$

$$P(\gamma) > 0$$
(28)

Optimal power allocation

1 Lagrangian

$$Assignment Project Exam Help Differentiate the Lagrangian and set the derivative equal to zero:$$

$$\frac{\partial J(P(\gamma),\lambda)}{\inf_{P(\gamma)} S} = \int_{0}^{\infty} \frac{B}{\ln(2)} \frac{\frac{\gamma}{P}}{\frac{P(\gamma)\gamma}{P}} f_{\gamma}(\gamma) d\gamma - \lambda \int_{0}^{\infty} f_{\gamma}(\gamma) d\gamma = 0 \quad (29)$$

$$\frac{B}{\ln(2)} \frac{\frac{\beta}{P}}{\left(1 + \frac{P(\gamma)\gamma}{P}\right)} - \lambda = 0 \Rightarrow \left(1 + \frac{P(\gamma)\gamma}{P}\right) = \frac{B}{\ln(2)} \frac{\gamma}{\lambda \bar{P}} \quad (30)$$

Add We Chat who we coder
$$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty}$$

3 Solution:

$$\frac{P(\gamma)}{\bar{P}} = \begin{cases} \frac{1}{\gamma_0} - \frac{1}{\gamma}; & \gamma \ge \gamma_0 \\ 0; & \gamma < \gamma_0 \end{cases}$$
 (32)

where γ_0 is a cutoff/threshold value.

Optimal power allocation: water-filling

Figure 7: Water-filling technique [Goldsmith, 2005]. The better channel, the more power and the higher data rate!

The line $1/\gamma$ sketches out the bottom of a bowl, and power is poured into the bowl to a constant water level of $1/\gamma_0$.

Calculate $\gamma_0!$

Since sing the maximum available power will always be optimar, wp have eq. (25) as

$$\int_{\gamma_0}^{\infty} \left(\frac{1}{\gamma_0} - \frac{1}{\gamma}\right) f_{\gamma}(\gamma) \, d\gamma = 1 \tag{35}$$

• The value for 0 may be our direction for typical continuous distributions $f_{\gamma}(\gamma)$ [Goldsmith, 1999].

Numerical Example (from the text book) [Goldsmith, 2005]

Received SNR γ_i Probability $p(\gamma_i)$

Assign $m_{\gamma_2=83.33}$ Project Exam Help

When B latters://powcoder.com

- 1 the capacity for AWGN channel
- 2 the ergodic capacity assuming that only Rx has CSI
- 3 the ergodic capacity assuming that both Tx and Rx have CSI.

Average Strate 1 Average Strate 1 Average Strate 1 Average Strategy 1

- 1 the capacity for AWGN channel: $C = B \log_2(1 + \bar{\gamma}) = 223.80 \text{ kbits/sec}$
- 2 the ergodic capacity assuming that only Rx has CSI:

$$C = \int_0^\infty B \log_2 (1 + \gamma) \, f_{\gamma}(\gamma) \, d\gamma = \sum_{i=1}^3 B \log_2 (1 + \gamma_i) \, p(\gamma_i) = 199.26 \, kbits/sec.$$

3 the ergodic capacity when both Tx and Rx have CSI (next pages).

Example

• Calculate γ_0 : Use average power constraint in eq. (35)

Assignment Project Exam Help

$$0.1\left(\frac{1}{\gamma_{0}} - \frac{1}{0.833}\right) + 0.5\left(\frac{1}{\gamma_{0}} - \frac{1}{83.33}\right) + 0.4\left(\frac{1}{\gamma_{0}} - \frac{1}{333.33}\right) = 1$$

$$https://powcoder.com^{116}$$

- Neglect channel's SNR with $\gamma_i < \gamma_0$, i.e., no data is transmitted over the *i*th time interval. In this case we avoid γ_1 .
- Again Alcolate γ_0 with the empiring channel (8.5) NRS: (1.5)
- Again check for $\gamma_i < \gamma_0$. Now all SNRs satisfy $\gamma_i \ge \gamma_0$ condition! So start power allocation \odot

Example

• The ergodic capacity assuming that both Tx and Rx have

A single of the change can be evaluated by p

Susilged (13) Ent Project Example can be evaluated by p

$$\mathbf{http_{S}^{\circ}} = \int_{0.5 \log_{2}}^{\infty} B \log_{2} \left(\frac{\gamma}{\gamma_{0}} \right) f_{\gamma}(\gamma) d\gamma = \sum_{s=3}^{3} B \log_{2} \left(\frac{\gamma_{i}}{\gamma_{0}} \right) p(\gamma_{i}) \\
= 30 \times 10^{3} \left[0.5 \log_{2} \left(\frac{893566}{0.893566} \right) + 0.4 \log_{2} \left(\frac{363}{0.893566} \right) \right] \\
= 200.82 \text{ kbits/sec}$$
(36)

 This rate 250.82 kbits/set) is only slightly bigher than of the case of receiver CSI only (199.26 kbits/sec), and it is still significantly below that of an AWGN channel with the same average SNR (199.26 kbits/sec). However, this may not be the case always!

References

Assignment Project Exam Help A. Goldenith, Wireless Communications, Combridge University Press, USA, 2005.

G. Caire Ind S. Shanai / On the capacity of some fabriels wit Gained state information," *IEEE Trans. Inform. Theory*, pp. 2007–19, September 1999.

M.-S. Alouini and A. J. Goldsmith, "Capacity of Rayleigh fading channels under different adaptive transmission and diversity combining techniques," *IEEE Trans-Veh. Tech.* pp. 1165–8 Au Course Well at powcoder

Assignment Project Exam Help Thank You!

https://powcoder.com

Add WeChat powcoder