1.

- a. Define half adder.Half adder is a circuit which is used to add two 1 bit binary digits.
- b. Draw a truth table for the sum and carry of half adder.

A	В	SUM=(A XOR B)	CARRY= (A.B)
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

c. Write the sop expression from the truth table.

d. Draw the circuit using logsim.

2.

a. Draw the truth table for the outputs of the full adder.

A	В	С	X=(A.B'+A'.B)	A.B	X.C	X.C'+X'.C	(X.C)+(A.B)
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	1	0	0	1	0
0	1	1	1	0	1	0	1
1	0	0	1	0	0	1	0
1	0	1	1	0	1	0	1
1	1	0	0	1	0	0	1
1	1	1	0	1	0	1	1

b. Write the corresponding sop expression for sum and carry of full adder and simplify the expression

c. Draw full adder using two half adder and an OR gate.

Prepared by : Karan Sunar

3. Using the three stages of design, construct the circuits for the following input /output values. Here A, B and C are the inputs whereas D, E, F, G, H and I are outputs. *Note: Draw circuit diagram using logsim corresponding to the simplified expression of outputs D, E, F, G, H and I.*

Α	В	С	D	E	F	G	Н	I
0	0	0	1	0	1	0	1	1
0	0	1	1	0	1	1	0	1
0	1	0	1	0	1	1	1	1
1	0	0	1	0	0	1	0	1
1	1	1	1	1	1	1	1	1
1	1	0	1	1	0	1	0	1
1	0	1	1	1	1	1	1	0
0	1	1	0	0	0	1	1	1

D=A'B'C'+A'B'C+A'BC'+AB'C'+ABC+ABC'+AB'C=B'+BC'+AC

Prepared by: Karan Sunar

E=ABC+ABC'+AB'C=A(B+C)

F=A'B'C'+A'B'C+A'BC'+ABC+AB'C=A'(B'+C')+AC

G=A'B'C+A'BC'+AB'C'+ABC+ABC'+AB'C+A'BC=A+A'(B+C)

Prepared by: Karan Sunar

H=A'B'C'+A'BC'+ABC+AB'C+A'BC=AC+A'(B+C)

I = A'B'C' + A'B'C + A'BC' + AB'C' + ABC + ABC' + A'BC = A' + A(B + C')

Prepared by: Karan Sunar