__座位号__

考场号_

_姓名__

密封线密封线密封线

推考证号_

孙校

鱼币

第九届全国大学生数学竞赛决赛试卷 (非数学类, 2018年3月)

题号	1	11	111	四	五.	六	七	总分
满分	30 分	11 分	11 分	12 分	12 分	12 分	12 分	100分
得分								

注意: 本试卷共七大题, 满分100分, 考试时间为180分钟.

- 1 所有答题都须写在此试题纸密封线右边,写在其他纸上无效.
- 2 密封线左边请勿答题,密封线外不得有姓名及相关标记.
- 3 当题空白不够,可写在当页背面,并注明题号.

得分	
评阅人	

一(填空题,本题满分30分,共5小题,每小题6分)

1. 极限
$$\lim_{x\to 0} \frac{\tan x - \sin x}{x \ln(1 + \sin^2 x)} = \underline{\hspace{1cm}}$$

- 2. 设一平面过原点和点(6,-3,2),且与平面4x-y+2z=8垂直,则此平面方程为______.
- 5. 设a,b,c,d 是互不相同的正实数, x,v,z,w 是实数, 满足 $a^x = bcd$, $b^y = cda$,

$$c^z = dab$$
 , $d^w = abc$, 则行列式 $\begin{vmatrix} -x & 1 & 1 & 1 \\ 1 & -y & 1 & 1 \\ 1 & 1 & -z & 1 \\ 1 & 1 & 1 & -w \end{vmatrix} = _____.$

得分 评阅人

二(本题满分11分)

设函数 f(x) 在区间 (0,1) 内连续, 且存在两两互

异的点 $x_1, x_2, x_3, x_4 \in (0,1)$, 使得

$$\alpha = \frac{f(x_1) - f(x_2)}{x_1 - x_2} < \frac{f(x_3) - f(x_4)}{x_3 - x_4} = \beta,$$

证明:对任意 $\lambda \in (\alpha,\beta)$, 存在互异的点 $x_5,x_6 \in (0,1)$, 使得 $\lambda = \frac{f(x_5) - f(x_6)}{x_5 - x_6}$.

座位号_ 考场号 姓名 密封线密封线密封线 准考证号 徐市

得分评阅人

三 (本题满分11分)

设函数 f(x) 在闭区间[0,1] 上连续且 $\int_0^1 f(x) dx \neq 0$,证明: 在区间[0,1] 上存在三个不同的点 x_1 , x_2 , x_3 , 使得

$$\frac{\pi}{8} \int_0^1 f(x) dx = \left[\frac{1}{1 + x_1^2} \int_0^{x_1} f(t) dt + f(x_1) \arctan x_1 \right] x_3$$
$$= \left[\frac{1}{1 + x_2^2} \int_0^{x_2} f(t) dt + f(x_2) \arctan x_2 \right] (1 - x_3).$$

得分	
评阅人	

四(本题满分12分)

求极限: $\lim_{n\to\infty} \left[\sqrt[n+1]{(n+1)!} - \sqrt[n]{n!} \right].$

座位号	
- 考场号	
推考证号	
~ ~	

密封线密封线密封线

得分	
评阅人	

五 (本题满分 12 分)

- (1) 证明: 对任一非零 $x \in \mathbb{R}^n$, H(x) > 0;
- (2) 求H(x)满足条件 $x_n = 1$ 的最小值.

得分	
评阅人	

六 (本题满分12分)

设函数 f(x, y) 在区域 $D = \{(x, y) | x^2 + y^2 \le a^2 \}$ 上具

有一阶连续偏导数,且满足
$$f(x,y)|_{x^2+y^2=a^2}=a^2$$
,以及

$$\max_{(x,y)\in D} \left[\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2 \right] = a^2, \quad \cancel{\sharp} + a > 0. \quad \cancel{\text{iff}} : \quad \left| \iint_D f(x,y) dx dy \right| \le \frac{4}{3} \pi a^4.$$

推考证号	
- 学校 	
東 東	

密封线密封线密封线

得分	
评阅人	

七(本题满分12分)

设 $0 < a_n < 1, n = 1, 2, \dots$,且 $\lim_{n \to \infty} \frac{\ln \frac{1}{a_n}}{\ln n} = q$ (有限或 $+\infty$).

- (1) 证明: 当q > 1时级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 当q < 1时级数 $\sum_{n=1}^{\infty} a_n$ 发散;
- (2) 讨论 q=1 时级数 $\sum_{n=1}^{\infty} a_n$ 的收敛性并阐述理由.