Introduction to Reinforcement Learning

CS 294-112: Deep Reinforcement Learning
Sergey Levine

Class Notes

- 1. Homework 1 is due next Wednesday!
 - Remember that Monday is a holiday, so no office hours
- 2. Remember to start forming final project groups
 - Final project assignment document and ideas document released

Today's Lecture

- 1. Definition of a Markov decision process
- 2. Definition of reinforcement learning problem
- 3. Anatomy of a RL algorithm
- 4. Brief overview of RL algorithm types
- Goals:
 - Understand definitions & notation
 - Understand the underlying reinforcement learning objective
 - Get summary of possible algorithms

Terminology & notation

Imitation Learning

Images: Bojarski et al. '16, NVIDIA

Reward functions

which action is better or worse?

 $r(\mathbf{s}, \mathbf{a})$: reward function 最大化所有时间上reward

tells us which states and actions are better

high reward

low reward

Markov chain

$$\mathcal{M} = \{\mathcal{S}, \mathcal{T}\}$$

 \mathcal{S} – state space

 \mathcal{T} – transition operator

why "operator"?

states $s \in \mathcal{S}$ (discrete or continuous)

s_t的所有状态,和为1 -[0.1, 0.2, 0.4, 0.3] 第一种状态概率为0.1

let
$$\mu_{t,i} = p(s_t = i)$$

岁为0.1

 $\vec{\mu}_t$ is a vector of probabilities

let
$$\mathcal{T}_{i,j} = p(s_{t+1} = i | s_t = j)$$

then $\vec{\mu}_{t+1} = \mathcal{T}\vec{\mu}_t$

Andrey Markov

Markov property independent of \mathbf{s}_{t-1}

Markov decision process

$$\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{T}, r\}$$

 \mathcal{S} – state space

states $s \in \mathcal{S}$ (discrete or continuous)

 \mathcal{A} – action space

actions $a \in \mathcal{A}$ (discrete or continuous)

 \mathcal{T} – transition operator (now a tensor!)

let
$$\mu_{t,j} = p(s_t = j)$$

let
$$\xi_{t,k} = p(a_t = k)$$

let
$$\underline{\mathcal{T}_{i,j,k}} = p(s_{t+1} = i | s_t = j, a_t = k)$$

$$\mu_{t,i} = \sum_{j,k} \mathcal{T}_{i,j,k} \mu_{t,j} \xi_{t,k}$$

Andrey Markov

Richard Bellman

Markov decision process

$$\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{T}, r\}$$

 \mathcal{S} – state space

states $s \in \mathcal{S}$ (discrete or continuous)

 \mathcal{A} – action space

actions $a \in \mathcal{A}$ (discrete or continuous)

 \mathcal{T} – transition operator (now a tensor!)

r – reward function

 $r: \mathcal{S} imes \mathcal{A} o \mathbb{R}$

 $r(s_t, a_t)$ – reward

Andrey Markov

Richard Bellman

partially observed Markov decision process

$$\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{O}, \mathcal{T}, \mathcal{E}, r\}$$

 \mathcal{S} – state space

states $s \in \mathcal{S}$ (discrete or continuous)

 \mathcal{A} – action space

actions $a \in \mathcal{A}$ (discrete or continuous)

 \mathcal{O} – observation space

observations $o \in \mathcal{O}$ (discrete or continuous)

 \mathcal{T} – transition operator (like before)

 \mathcal{E} – emission probability $p(o_t|s_t)$

r – reward function

 $r: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$

The goal of reinforcement learning

里面的sas...序列是trajectory
$$p_{\theta}(\mathbf{s}_1, \mathbf{a}_1, \dots, \mathbf{s}_T, \mathbf{a}_T) = p(\mathbf{s}_1) \prod_{t=1}^T \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$$
$$p_{\theta}(\tau)$$

就是要学 theta
$$\theta^{\star} = \arg\max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$

The goal of reinforcement learning

The goal of reinforcement learning

Finite horizon case: state-action marginal

$$\begin{split} \theta^{\star} &= \arg\max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] & \underbrace{\mathbb{E}}_{\mathbf{t}} \mathbf{E}_{\mathbf{s}_{t}, \mathbf{a}_{t}} \mathbf{E}_{(\mathbf{s}_{t}, \mathbf{a}_{t}) \sim p_{\theta}(\mathbf{s}_{t}, \mathbf{a}_{t})} \left[r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \\ &= \arg\max_{\theta} \sum_{t=1}^{T} E_{(\mathbf{s}_{t}, \mathbf{a}_{t}) \sim p_{\theta}(\mathbf{s}_{t}, \mathbf{a}_{t})} \left[r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] & p_{\theta}(\mathbf{s}_{t}, \mathbf{a}_{t}) \quad \text{state-action marginal} \end{split}$$

Infinite horizon case: stationary distribution

$$\theta^* = \arg\max_{\theta} \sum_{t=1}^{T} E_{(\mathbf{s}_t, \mathbf{a}_t) \sim p_{\theta}(\mathbf{s}_t, \mathbf{a}_t)} [r(\mathbf{s}_t, \mathbf{a}_t)]$$

what if $T = \infty$?

does $p(\mathbf{s}_t, \mathbf{a}_t)$ converge to a stationary distribution?

 $\mu = \mathcal{T}\mu$ stationary = the same before and after transition

$$(\mathcal{T} - \mathbf{I})\mu = 0$$

1 11

 $\mu = p_{ heta}(\mathbf{s}, \mathbf{a})$ stationary distribution

 μ is eigenvector of \mathcal{T} with eigenvalue 1!

(always exists under some regularity conditions)

 $\begin{array}{c|c} \hline (\mathbf{a}_1) \\ \hline \end{array}$

state-action transition operator

$$\left(egin{array}{c} \mathbf{s}_{t+1} \ \mathbf{a}_{t+1} \end{array}
ight) = \mathcal{T} \left(egin{array}{c} \mathbf{s}_t \ \mathbf{a}_t \end{array}
ight) \ \left(egin{array}{c} \mathbf{s}_{t+k} \ \mathbf{a}_{t+k} \end{array}
ight) = \mathcal{T}^k \left(egin{array}{c} \mathbf{s}_t \ \mathbf{a}_t \end{array}
ight)$$

Infinite horizon case: stationary distribution

$$\theta^* = \arg\max_{\theta} \frac{1}{T} \sum_{t=1}^{T} E_{(\mathbf{s}_t, \mathbf{a}_t) \sim p_{\theta}(\mathbf{s}_t, \mathbf{a}_t)} [r(\mathbf{s}_t, \mathbf{a}_t)] \to E_{(\mathbf{s}, \mathbf{a}) \sim p_{\theta}(\mathbf{s}, \mathbf{a})} [r(\mathbf{s}, \mathbf{a})]$$
(in the limit as $T \to \infty$)

what if $T = \infty$?

does $p(\mathbf{s}_t, \mathbf{a}_t)$ converge to a stationary distribution?

 $\mu = \mathcal{T}\mu$ stationary = the same before and after transition

$$(\mathcal{T} - \mathbf{I})\mu = 0$$

 μ is eigenvector of \mathcal{T} with eigenvalue 1!

(always exists under some regularity conditions)

state-action transition operator

 $\mu = p_{\theta}(\mathbf{s}, \mathbf{a})$ stationary distribution

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Expectations and stochastic systems

$$\theta^{\star} = \arg\max_{\theta} E_{(\mathbf{s}, \mathbf{a}) \sim p_{\theta}(\mathbf{s}, \mathbf{a})}[r(\mathbf{s}, \mathbf{a})] \qquad \qquad \theta^{\star} = \arg\max_{\theta} \sum_{t=1}^{I} E_{(\mathbf{s}_{t}, \mathbf{a}_{t}) \sim p_{\theta}(\mathbf{s}_{t}, \mathbf{a}_{t})}[r(\mathbf{s}_{t}, \mathbf{a}_{t})]$$
infinite horizon case
$$\qquad \qquad \text{finite horizon case}$$

In RL, we almost always care about expectations

$$p_{ heta}(\mathrm{fall}) = heta$$
 $r(\mathrm{fall}) - not \; \mathrm{smooth}$ $E_{p_{ heta}}[r(\mathrm{fall})] - smooth \; \mathrm{in} \; heta!$

theta的目标函数是一个复杂的不连续函数。因为是一个复杂分布的期望, 所以我们很在意期望,期望可以让这个东西变得连续

Algorithms

The anatomy of a reinforcement learning algorithm

Another example: RL by backprop

collect data

update the model f

update the policy with backprop

Which parts are expensive?

real robot/car/power grid/whatever: 1x real time, until we invent time travel

MuJoCo simulator: up to 10000x real time

 $J(\theta) = E_{\pi} \left| \sum_{t} r_{t} \right| \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t} r_{t}^{i}$

fit a model/

trivial, fast

learn $\mathbf{s}_{t+1} \approx f_{\phi}(\mathbf{s}_t, \mathbf{a}_t)$ expensive

generate samples (i.e. run the policy)

improve the policy

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$

backprop through f_{ϕ} and r to train $\pi_{\theta}(\mathbf{s}_t) = \mathbf{a}_t$

Why is this not enough?

- Only handles deterministic dynamics
- Only handles deterministic policies
- Only continuous states and actions
- Very difficult optimization problem
- We'll talk about this more later!

How can we work with stochastic systems?

Conditional expectations

$$\sum_{t=1}^T E_{(\mathbf{s}_t, \mathbf{a}_t) \sim p_{\theta}(\mathbf{s}_t, \mathbf{a}_t)}[r(\mathbf{s}_t, \mathbf{a}_t)]$$

$$I E_{\mathbf{s}_1 \sim p(\mathbf{s}_1)} \left[E_{\mathbf{a}_1 \sim \pi(\mathbf{a}_1 | \mathbf{s}_1)} \left[r(\mathbf{s}_1, \mathbf{a}_1) + E_{\mathbf{s}_2 \sim p(\mathbf{s}_2 | \mathbf{s}_1, \mathbf{a}_1)} \left[E_{\mathbf{a}_2 \sim \pi(\mathbf{a}_2 | \mathbf{s}_2)} \left[r(\mathbf{s}_2, \mathbf{a}_2) + \ldots | \mathbf{s}_2 \right] | \mathbf{s}_1, \mathbf{a}_1 \right] \right]$$

$$\text{what if we knew this part?}$$

$$Q(\mathbf{s}_1, \mathbf{a}_1) = r(\mathbf{s}_1, \mathbf{a}_1) + E_{\mathbf{s}_2 \sim p(\mathbf{s}_2 | \mathbf{s}_1, \mathbf{a}_1)} \left[E_{\mathbf{a}_2 \sim \pi(\mathbf{a}_2 | \mathbf{s}_2)} \left[r(\mathbf{s}_2, \mathbf{a}_2) + \ldots | \mathbf{s}_2 \right] | \mathbf{s}_1, \mathbf{a}_1 \right]$$

$$E_{\mathbf{s}_1 \sim p(\mathbf{s}_1)} \left[E_{\mathbf{a}_1 \sim \pi(\mathbf{a}_1 | \mathbf{s}_1)} \left[Q(\mathbf{s}_1, \mathbf{a}_1) | \mathbf{s}_1 \right] \right]$$

$$\text{easy to modify } \pi_{\theta}(\mathbf{a}_1 | \mathbf{s}_1) \text{ if } Q(\mathbf{s}_1, \mathbf{a}_1) \text{ is known!}$$

$$\text{example: } \pi(\mathbf{a}_1 | \mathbf{s}_1) = 1 \text{ if } \mathbf{a}_1 = \arg\max_{\mathbf{a}_1} Q(\mathbf{s}_1, \mathbf{a}_1)$$

Definition: Q-function

$$Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}} [r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t, \mathbf{a}_t]$$
: total reward from taking \mathbf{a}_t in \mathbf{s}_t

Definition: value function

$$V^{\pi}(\mathbf{s}_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}} [r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t]$$
: total reward from \mathbf{s}_t

$$V^{\pi}(\mathbf{s}_t) = E_{\mathbf{a}_t \sim \pi(\mathbf{a}_t | \mathbf{s}_t)}[Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t)]$$

$$E_{\mathbf{s}_1 \sim p(\mathbf{s}_1)}[V^{\pi}(\mathbf{s}_1)]$$
 is the RL objective!

state version of Q function

Using Q-functions and value functions

```
Idea 1: if we have policy \pi, and we know Q^{\pi}(\mathbf{s}, \mathbf{a}), then we can improve \pi:
```

```
set \pi'(\mathbf{a}|\mathbf{s}) = 1 if \mathbf{a} = \arg \max_{\mathbf{a}} Q^{\pi}(\mathbf{s}, \mathbf{a})
  this policy is at least as good as \pi (and probably better)!
  and it doesn't matter what \pi is
     用 Q
Idea 2: compute gradient to increase probability of good actions a:
```

if $Q^{\pi}(\mathbf{s}, \mathbf{a}) > V^{\pi}(\mathbf{s})$, then **a** is better than average (recall that $V^{\pi}(\mathbf{s}) = E[Q^{\pi}(\mathbf{s}, \mathbf{a})]$ under $\pi(\mathbf{a}|\mathbf{s})$)

modify $\pi(\mathbf{a}|\mathbf{s})$ to increase probability of \mathbf{a} if $Q^{\pi}(\mathbf{s},\mathbf{a}) > V^{\pi}(\mathbf{s})$

These ideas are very important in RL; we'll revisit them again and again!

Review

- Definitions
 - Markov chain
 - Markov decision process
- RL objective
 - Expected reward
 - How to evaluate expected reward?
- Structure of RL algorithms
 - Sample generation
 - Fitting a model/estimating return
 - Policy Improvement
- Value functions and Q-functions

Break

Types of RL algorithms

$$\theta^* = \arg\max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_t, \mathbf{a}_t) \right]$$

make a sample based approximation to

- Policy gradients: directly differentiate the above objective
- Value-based: estimate value function or Q-function of the optimal policy (no explicit policy) MRNN表示,然后recover optimal policy with argmax trick
- Actor-critic: estimate value function or Q-function of the current policy, use it to improve policy 是上面两个的总结,先NN估计
- Model-based RL: estimate the transition model, and then...
 - Use it for planning (no explicit policy)
 - Use it to improve a policy
 - Something else

Model-based RL algorithms

Model-based RL algorithms

improve the policy

a few options

- 1. Just use the model to plan (no policy)
 - Trajectory optimization/optimal control (primarily in continuous spaces) essentially backpropagation to optimize over actions
 - Discrete planning in discrete action spaces e.g., Monte Carlo tree search
- 2. Backpropagate gradients into the policy
 - Requires some tricks to make it work
- 3. Use the model to learn a value function
 - Dynamic programming
 - Generate simulated experience for model-free learner (Dyna)

一般不好搞, 还是需要 tricks

还可以加入其 他那三种来产 生fake experience

Value function based algorithms

Direct policy gradients

Actor-critic: value functions + policy gradients

Tradeoffs

Why so many RL algorithms?

- Different tradeoffs
 - Sample efficiency
 - Stability & ease of use
- Different assumptions
 - Stochastic or deterministic?
 - Continuous or discrete?
 - Episodic or infinite horizon?
- Different things are easy or hard in different settings
 - Easier to represent the policy?
 - Easier to represent the model?

Comparison: sample efficiency

- Sample efficiency = how many samples do we need to get a good policy?
- Most important question: is the algorithm off policy?
 - Off policy: able to improve the policy without generating new samples from that policy
 - On policy: each time the policy is changed, even a little bit, we need to generate new samples

Comparison: sample efficiency off-policy ◀ on-policy More efficient Less efficient (fewer samples) (more samples) model-based model-based off-policy actor-critic on-policy policy evolutionary or shallow RL **Q**-function gradient-free deep RL style gradient algorithms methods algorithms learning

Why would we use a *less* efficient algorithm? Wall clock time is not the same as efficiency!

Comparison: stability and ease of use

- Does it converge?
- And if it converges, to what?
- And does it converge every time?

Why is any of this even a question???

- Supervised learning: almost always gradient descent
- Reinforcement learning: often not gradient descent
 - Q-learning: fixed point iteration
 - Model-based RL: model is not optimized for expected reward
 - Policy gradient: is gradient descent, but also often the least efficient!

Comparison: stability and ease of use

- Value function fitting
 - At best, minimizes error of fit ("Bellman error")
 - Not the same as expected reward
 - At worst, doesn't optimize anything
 - Many popular deep RL value fitting algorithms are not guaranteed to converge to anything in the nonlinear case
- Model-based RL
 - Model minimizes error of fit
 - This will converge
 - No guarantee that better model = better policy
- Policy gradient
 - The only one that actually performs gradient descent (ascent) on the true objective

Comparison: assumptions

满足马尔可夫

- Common assumption #1: full observability
 - Generally assumed by value function fitting methods
 - Can be mitigated by adding recurrence
- Common assumption #2: episodic learning
 - Often assumed by pure policy gradient methods
 - Assumed by some model-based RL methods
- Common assumption #3: continuity or smoothness
 - Assumed by some continuous value function learning methods
 - Often assumed by some model-based RL methods

- Value function fitting methods
 - Q-learning, DQN
 - Temporal difference learning
 - Fitted value iteration
- Policy gradient methods
 - REINFORCE
 - Natural policy gradient
 - Trust region policy optimization
- Actor-critic algorithms
 - Asynchronous advantage actor-critic (A3C)
 - Soft actor-critic (SAC)
- Model-based RL algorithms
 - Dyna
 - Guided policy search

We'll learn about most of these in the next few weeks!

Example 1: Atari games with Q-functions

- Playing Atari with deep reinforcement learning, Mnih et al. '13
- Q-learning with convolutional neural networks

Example 2: robots and model-based RL

- End-to-end training of deep visuomotor policies, L.*, Finn* '16
- Guided policy search (model-based RL) for image-based robotic manipulation

Example 3: walking with policy gradients

- High-dimensional continuous control with generalized advantage estimation, Schulman et al. '16
- Trust region policy optimization with value function approximation

Iteration 0

Example 4: robotic grasping with Q-functions

- QT-Opt, Kalashnikov et al. '18
- Q-learning from images for real-world robotic grasping

