# Optimizing Video Prediction via Video Frame Interpolation

Ruchi Manikrao Dhore | W1652116

#### Introduction

- Video prediction has many practical applications, such as robotics planning, autonomous driving, and video manipulations
- Most video prediction methods require additional information about the scene
- These requirements limit the applicability of the methods to specific videos only
- A need for a video prediction method that can be applied to any video

#### **Objective**

- To propose new optimization framework for video prediction via video frame interpolation to solve an extrapolation problem based on an interpolation model
- To optimize optical flow by using video frame interpolation
- To optimize image level distance and consistency constraint between the predicted flow

### Extrapolation vs Interpolation

- Extrapolation is the process to make predictions about future frames beyond the end of the input sequence
- Interpolation is the process of filling in missing frames within the input sequence

## **Literature Survey**

|           | Video Prediction                                                                | Video Frame<br>Interpolation                                               | Optimization-based<br>Methods                                                    |
|-----------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Main idea | Use of extrapolation<br>and parameters<br>semantic maps, depth<br>dimension map | Worked on interpolation using three algorithms, learning methods were used | Optimization methods applied on algorithms explored in video frame interpolation |

Computer Vision I

#### **Problem Formulation**

- In time vector dimension, let's say  $\mathbf{x}_{t}$  is the video frame at any given time t
- Input being two RGB frames  $x_{t-1}$  and  $x_t$ , the idea is to predict the motion with accuracy in future frames  $x_{t+1}$ ,  $x_{t+2}$ , ...

#### Main idea



Computer Vision I

#### **Mathematics**

| 1 ã                                                  | $E_{t+1}^* = \underset{\tilde{x}_{t+1}}{\operatorname{argmin}} E(G(x_{t-1}, \tilde{x}_{t+1}), x_t),$                                                                                                                         |                                                                                                                                                    |
|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Flow initialization                                  | Video Frame Interpolation Network                                                                                                                                                                                            | Flow implanting                                                                                                                                    |
| $2  \tilde{f}_{t+1 \to t} = \delta(-f_{t \to t-1}).$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                        | $9  \phi(\mathbf{p}) = \begin{cases} 1 & if & \left\  \Delta \tilde{f}_{t+1 \to t}(\mathbf{p}) \right\ _1 > \alpha, \\ 0 & otherwise. \end{cases}$ |
|                                                      | $oxed{6} oxedsymbol{\mathcal{L}_{img}} = egin{Vmatrix} I_{t+1}^G - x_t ig\ _1$                                                                                                                                               |                                                                                                                                                    |
|                                                      | $oxed{7} egin{aligned} \mathcal{L}_{cons} = \sum_{\mathbf{p}} \left\  \Delta 	ilde{f}_{t+1  ightarrow t}(\mathbf{p})  ight\ _{1} \end{aligned}$                                                                              |                                                                                                                                                    |
|                                                      | $8  \begin{array}{ccc} \Delta \tilde{f}_{t+1 \to t}(\mathbf{p}) & = & \mathbf{p} - \left(\mathbf{p}' + f_{t \to t+1}^G(\mathbf{p}')\right) \\ \mathbf{p}' & = & \mathbf{p} + \tilde{f}_{t+1 \to t}(\mathbf{p}). \end{array}$ |                                                                                                                                                    |

Computer Vision I

## **Experimentation & Results | Driving datasets**



## **Experimentation & Results | Driving datasets**

|              |                      | Cityscapes |         |         |                |          | KITTI |                  |       |       |                |       |       |
|--------------|----------------------|------------|---------|---------|----------------|----------|-------|------------------|-------|-------|----------------|-------|-------|
|              |                      | MS-S       | SIM (×1 | e-2)↑   | LPIPS (×1e−2)↓ |          |       | MS-SSIM (×1e−2)↑ |       |       | LPIPS (×1e−2)↓ |       |       |
|              | Input                | t+1        | t+3     | t+5     | t+1            | t+3      | t+5   | t+1              | t+3   | t+5   | t+1            | t+3   | t+5   |
|              |                      |            |         | Externo | al learnii     | ng metho | ds    |                  |       |       |                |       |       |
| PredNet [22] | RGB                  | 84.03      | 79.25   | 75.21   | 25.99          | 29.99    | 36.03 | 56.26            | 51.47 | 47.56 | 55.35          | 58.66 | 62.95 |
| MCNET [42]   | RGB                  | 89.69      | 78.07   | 70.58   | 18.88          | 31.34    | 37.34 | 75.35            | 63.52 | 55.48 | 24.05          | 31.71 | 37.39 |
| DVF [20]     | RGB                  | 83.85      | 76.23   | 71.11   | 17.37          | 24.05    | 28.79 | 53.93            | 46.99 | 42.62 | 32.47          | 37.43 | 41.59 |
| Vid2vid [43] | RGB+S.               | 88.16      | 80.55   | 75.13   | 10.58          | 15.92    | 20.14 | N/A              | N/A   | N/A   | N/A            | N/A   | N/A   |
| Seg2vid [31] | RGB+S.               | 88.32      | N/A     | 61.63   | 9.69           | N/A      | 25.99 | N/A              | N/A   | N/A   | N/A            | N/A   | N/A   |
| FVS [45]     | RGB+S.+I.            | 89.10      | 81.13   | 75.68   | 8.50           | 12.98    | 16.50 | 79.28            | 67.65 | 60.77 | 18.48          | 24.61 | 30.49 |
|              |                      |            |         | Opti    | mization       | methods  |       |                  |       |       |                |       |       |
| Ours         | No external training | 94.54      | 86.89   | 80.40   | 6.46           | 12.50    | 17.83 | 82.71            | 69.50 | 61.09 | 12.34          | 20.29 | 26.35 |

## **Experimentation & Results | Diverse datasets**



## **Experimentation & Results | Diverse datasets**

|                           | DAVIS            |       |                                      |       | Middlebury                           |       |                |       | Vimeo90K                             |                |  |
|---------------------------|------------------|-------|--------------------------------------|-------|--------------------------------------|-------|----------------|-------|--------------------------------------|----------------|--|
|                           | MS-SSIM (×1e−2)↑ |       | LPIPS ( $\times 1e-2$ ) $\downarrow$ |       | MS-SSIM ( $\times 1e-2$ ) $\uparrow$ |       | LPIPS (×1e−2)↓ |       | MS-SSIM ( $\times 1e-2$ ) $\uparrow$ | LPIPS (×1e−2)↓ |  |
|                           | t+1              | t+3   | t+1                                  | t+3   | t+1                                  | t+3   | t+1            | t+3   | t+1                                  | t+1            |  |
| External learning methods |                  |       |                                      |       |                                      |       |                |       |                                      |                |  |
| DVF [20]                  | 68.61            | 55.47 | 23.23                                | 34.22 | 83.98                                | 65.54 | 13.57          | 25.70 | 92.11                                | 7.73           |  |
| DYAN [18]                 | 78.96            | 70.41 | 13.09                                | 21.43 | 92.96                                | 83.91 | 7.98           | 15.03 | N/A                                  | N/A            |  |
| Optimization methods      |                  |       |                                      |       |                                      |       |                |       |                                      |                |  |
| Ours                      | 83.26            | 73.85 | 11.40                                | 18.21 | 94.49                                | 87.96 | 6.07           | 10.82 | 96.75                                | 3.59           |  |

## **Experimentation & Results | Comparison**

| External learning methods |                   |              |              |              |  |  |  |  |  |
|---------------------------|-------------------|--------------|--------------|--------------|--|--|--|--|--|
|                           | External training | Semantic     | Instance     | Depth        |  |  |  |  |  |
| PredNet [22]              | ✓                 | ×            | ×            | ×            |  |  |  |  |  |
| MCNET [42]                | $\checkmark$      | ×            | ×            | ×            |  |  |  |  |  |
| DVF [20]                  | $\checkmark$      | ×            | ×            | ×            |  |  |  |  |  |
| Vid2vid [43]              | $\checkmark$      | $\checkmark$ | ×            | ×            |  |  |  |  |  |
| Qi et al. [35]            | $\checkmark$      | $\checkmark$ | ×            | $\checkmark$ |  |  |  |  |  |
| Seg2vid [31]              | $\checkmark$      | $\checkmark$ | ×            | ×            |  |  |  |  |  |
| FVS [45]                  | $\checkmark$      | $\checkmark$ | $\checkmark$ | ×            |  |  |  |  |  |
| HVP [15]                  | $\checkmark$      | $\checkmark$ | ×            | ×            |  |  |  |  |  |
| SADM [4]                  | $\checkmark$      | $\checkmark$ | ×            | ×            |  |  |  |  |  |
|                           | Optimization      | methods      |              |              |  |  |  |  |  |
| Ours                      | ×                 | ×            | ×            | ×            |  |  |  |  |  |

#### Conclusion

- Ability to apply to any video at any resolution
- Outperforms state-of-the-art methods in terms of accuracy

#### Limitations

- The optimization process takes more time than other external learning-based methods
- Most of the run time of their model is spent on gradient propagation inside the VFI network

## Thank you!