9. Probability

- Probability: a mathematical model for chance (random) phenomena.
- random process are everywhere:
 - (1) Weather prediction and climate modelling,
 - (2) Physics: theory of gases, quantum mechanics
 - (3) Actuarial science, insurance
 - (4) Statistics: procedures for analysing data, especially data that has a random character
 - (5) Genetics and oncology: model for mutations
 - (6) Transmission of data affected by noise
 - (7) Games of chance: tossing a coin, rolling a die, card games,
- randomness implies a lack of predictability, we cannot compute the outcome before the event, but we can try to estimate the likelihood of each possible outcome
- **Definition 9.1.** A statistical experiment is a process by which we observe something uncertain. An outcome is a result of a statistical experiment. The set of all outcomes is denoted by Ω . An event is a subset of Ω . By Events of Interest we mean any set $\mathscr E$ of events, such that
 - (E1) $\emptyset \in \mathscr{E}$,
 - (E2) $\{\omega\} \in \mathscr{E}, \text{ for all } \omega \in \Omega,$
 - (E3) If $A \in \mathcal{E}$, then $A^c := \Omega \backslash A \in \mathcal{E}$,
 - (E4) If $A_i \in \mathcal{E}$, for integers $n \geq 1$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{E}$

We call the pair (Ω, \mathcal{E}) the sample space of the experiment.

Remark 9.2. If Ω has only finitely many outcomes, then \mathcal{E} may contain all subsets of Ω , that is, \mathcal{E} . If Ω is infinite, then we have to restrict \mathcal{E} to "certain" subsets.

Example 9.3. (1) Experiment: "Rolling a die"

Outcome: "Throwing a six"

Sample space: $\Omega = \{1, 2, 3, 4, 5, 6\}$

Event: $A = "Throwing an even number". Then <math>A = \{2, 4, 6\}$

(2) Experiment: "Tossing a coin", Sample space: $\Omega = \{heads, tails\}$

Event: B = "Throwing heads". Then $B = \{heads\}$

- (3) Experiment: "Picking from a full stack of cards" Sample space: Ω = {2 of spades, 3 of spades, ..., ace of spades, 2 of hearts,..., ace of clubs} Event: C = "Picking hearts". Then C = {2 of hearts,..., ace of hearts}
- (4) Experiment: "Picking two balls from an urn with red and blue balls" Sample space: $\Omega = \{RR, RB, BR, BB\}$ Event: D = "Picking two different colours". Then $D = \{RB, BR\}$ Event: E = "Picking blue the second time". Then $D = \{RB, BB\}$ Event: $F = D \cap E = \{RB\}$
- (5) Experiment: "Cycling through 3 traffic lights, which are red or green" Sample space: $\Omega = \{RRR, RRG, RGR, GRR, RGG, GRG, GGR, GGG\}$ Event: $G = \text{"Stopping at most once. Then } G = \{RGG, GRG, GGR, GGG\}$

We want to be able to talk about the relative likelihood of "events of interest" in a sample space.

Definition 9.4. Let (Ω, \mathcal{E}) be the sample space of an experiment. A probability measure is a function $P : \mathcal{E} \to \mathbb{R}$, such that the following axioms of probability hold:

- (AP1) $P(\Omega) = 1$;
- (AP2) If $A \in \mathscr{E}$ then $P(A) \geq 0$;
- (AP3) If A and B are disjoint events in \mathcal{E} , then $P(A \cup B) = P(A) + P(B)$.

For any outcome $\omega \in \Omega$, we set $P(\omega) := P(\{\omega\})$. We call the triplet (Ω, \mathcal{E}, P) a **probability space**.

Lemma 9.5. Let (Ω, \mathcal{E}, P) be a probability space of an experiment and let $A, B \in \mathcal{E}$ be events. Then

- (1) $P(A^c) = 1 P(A)$
- (2) $P(\emptyset) = 0$
- (3) If $A \subseteq B$ then $P(A) \leq P(B)$.
- $(4) P(A) \in [0,1]$
- (5) $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- (6) If $A = \{\omega_1, \dots, \omega_n\}$, then $P(A) = P(\omega_1) + \dots + P(\omega_n)$

Proof. (1) We have that A and A^c are disjoint and $\Omega = A \cup A^c$. Hence by (PA1) and (PA3) we get

$$1 = P(\Omega) = P(A \cup A^c) = P(A) + P(A^c).$$

- (2) As $\emptyset = \Omega^c$, it follows from (1) and (PA1) that $P(\emptyset) = P(\Omega^c) = 1 P(\Omega) = 0$.
- (3) Note that $B = A \cup (B \setminus A)$, where A and $B \setminus A$ are disjoint. Also $P(B \setminus A) \ge 0$, by (PA2). Hence by (PA3) we have

$$P(A) \le P(A) + P(B \backslash A) = P(A \cup (B \backslash A)) = P(B).$$

- (4) We have $P(A) \ge 0$, by (PA2). As $A \subseteq \Omega$, it follows from (3) and (PA1) that $P(A) \le P(\Omega) = 1$.
- (5) Note that $A \cup B = A \cup (B \setminus A)$, where A and $B \setminus A$ are disjoint. Hence, by (PA3),

$$P(A \cup B) = P(A) + P(B \backslash A).$$

Next observe that $B = (A \cap B) \cup (B \setminus A)$, where $(A \cap B)$ and $B \setminus A$ are disjoint. Hence, by (PA3),

$$P(B) = P(A \cap B) + P(B \backslash A).$$

Putting both equations together we get (5).

- (6) The sets $\{\omega_1\}, \ldots, \{\omega_n\}$ are pairwise disjoint and thus a repeated application of (PA3) gives the result.
- **Lemma 9.6.** Let $\Omega = \{\omega_1, \dots, \omega_n\}$. Furthermore assume that $P : \Omega \to [0, 1]$, such that

$$\sum_{i=1}^{n} P(\omega_i) = 1.$$

Then P becomes a probability measure on the sample space $(\Omega, \mathcal{P}(\Omega))$ by setting

$$P(A) = \sum_{\omega \in A} P(\omega)$$

- **Example 9.7.** (1) A coin is tossed. Hence we have the sample space $(\Omega, \mathcal{P}(\Omega))$, where $\Omega = \{heads, tails\}$. Now $P(heads) = P(tails) = \frac{1}{2}$, gives rise to a probability space $(\Omega, \mathcal{P}(\Omega), P)$. In this case we call the coin fair. Likewise Q(heads) = 0.1 and Q(tails) = 0.9 gives rise to a probability space $(\Omega, \mathcal{P}(\Omega), Q)$.
- (2) In a presidential race there are four candidates C1, C2, C3 and C4 and polling suggests that their respective chance of winning is 25%, 15%, 30% and 30%. Consider the probability space $(\Omega, \mathcal{P}(\Omega), P)$, where $\Omega = \{C1, C2, C3, C4\}$ and P(C1) = 0.25, P(C2) = 0.15 and P(C3) = P(C4) = 0.3. If A is the event of C1 or C3 winning, then P(A) = P(C1) + P(C3) = 0.25 + 0.3 = 0.55. Note

that $A^c = \{C2, C4\}$ and so $P(A^c) = 1 - P(A) = 0.45 = P(C2) + P(C4)$. If B is the event of C3 or C4 winning, then P(B) = P(C3) + P(C4) = 0.3 + 0.3 = 0.6. Note that $A \cap B = \{C3\}$ and so $P(A \cap B) = P(C3) = 0.3$. Finally, $A \cup B = \{C1, C3, C4\}$ and $P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.55 + 0.6 - 0.3 = 0.85 = P(C1) + P(C3) + P(C4)$.

Corollary 9.8. Let $(\Omega, \mathcal{P}(\Omega), P)$ be a finite probability space, where each outcome occurs with the same probability. Then for every event A

$$P(A) = \frac{|A|}{|\Omega|} = \frac{number\ of\ ways\ A\ can\ occur}{total\ number\ of\ outcomes}$$

Example 9.9. (1) Toss a fair coin, with outcomes "H" and "T", twice. Then $\Omega = \{HH, HT, TH, TT\}$. Note that $|\Omega| = 4$ and so each outcome has probability 0.25. Next let A be the event of heads on first toss and B the event of heads on first or second toss. Then $A = \{HH, HT\}$, $B = \{HT, TH, HH\}$. Now

$$P(A) = \frac{|A|}{|\Omega|} = \frac{2}{4} = 0.5$$
 and $P(B) = \frac{|B|}{|\Omega|} = \frac{3}{4} = 0.75$.

(2) Two fair dice are rolled in succession. Let A denote the event of rolling an 8 in total. What is P(A)? Observe that $\Omega = \{(i,j) \mid 1 \leq i,j \leq 6\}$, where each outcome (i,j) is equally likely, that is, $P(i,j) = \frac{1}{|\Omega|} = \frac{1}{36}$. Then

$$A = \{(2,6), (3,5), (4,4), (5,3), (6,2)\},\$$

and so $P(A) = \frac{|A|}{|\Omega|} = \frac{5}{36}$.