Denitrification example

Jordi Petchamé

June 2025

4 1 Introduction

- ⁵ We consider a simplified denitrification process in a clean aquifer, where polluted water enters through the inflow. The aqueous
- species are $H^+, Cl^-, N_{2(aq)}, CH_2O_{(aq)}, HCO_3^-, O_{2(aq)}, NO_3^-, CO_3^{2-}$, and the gases are $CO_{2(g)}, O_{2(g)}$ and $N_{2(g)}$.
- We consider the following equilibrium reactions.
 - Bicarbonate dissociation:

$$HCO_3^- = CO_3^{2-} + H^+$$

• Atmospheric CO_2 :

$$H^+ + HCO_3^- = CO_{2(q)} + H_2O$$

• Atmospheric O_2 :

$$O_{2(aq)} = O_{2(q)}$$

- 11 and kinetic reactions:
 - Aerobic oxidation of DOC:

$$CH_2O_{(aq)} + O_{2(aq)} \to H^+ + HCO_3^-$$

• Denitrification $(NO_3^- \to N_2)$:

$$CH_2O_{(ag)} + 0.8NO_3^- \rightarrow HCO_3^- + 0.2H^+ + 0.4N_2 + 0.4H_2O_3^-$$

The kinetic reaction rates are governed by the Monod formula (Monod (2012)):

$$\begin{split} r_{K,1} &= \mu_1 \frac{[CH_2O_{(aq)}]}{k_{DOC} + [CH_2O_{(aq)}]} \frac{[O_{2(aq)}]}{k_{O_2} + [O_{2(aq)}]} \\ r_{K,2} &= \mu_2 \frac{I_{O_2}}{I_{O_2} + [O_{2(aq)}]} \frac{[CH_2O_{(aq)}]}{k_{DOC} + [CH_2O_{(aq)}]} \frac{[NO_3^-]}{k_{NO_3^-} + [NO_3^-]} \end{split}$$

The boundary water is in equilibrium with atmospheric O_2 and CO_2 , therefore the stoichiometric matrix at the inflow is

$$\mathbf{S}_e^{inf} = \begin{pmatrix} H^+ & Cl^- & N_{2(aq)} & CH_2O_{(aq)} & HCO_3^- & O_{2(aq)} & NO_3^- & CO_3^{2-} & H_2O & CO_{2(g)} & O_{2(g)} \\ -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

s since there are no kinetic reactions. In the domain, there are only aqueous reactions, therefore the equilibrium stoichiometric matrix in the domain is

$$\mathbf{S}_e^{dom} = \begin{pmatrix} H^+ & Cl^- & N_{2(aq)} & CH_2O_{(aq)} & HCO_3^- & O_{2(aq)} & NO_3^- & CO_3^{2-} & H_2O \\ 1 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

and the kinetic stoichiometric matrix in the domain is

$$\mathbf{S}_K = \begin{pmatrix} H^+ & Cl^- & N_{2(aq)} & CH_2O_{(aq)} & HCO_3^- & O_{2(aq)} & NO_3^- & CO_3^{2-} & H_2O \\ 1 & 0 & 0 & -1 & 1 & -1 & 0 & 0 & 0 \\ 0.2 & 0 & 0.4 & -1 & 1 & 0 & -0.8 & 0 & 0.4 \end{pmatrix}.$$

There are 7 primary species; therefore, the component matrix is

$$\mathbf{U} = (\mathbf{I} \mid \mathbf{U}_2)$$

20 where

$$\mathbf{U}_2 = \begin{pmatrix} CO_3^{2-} \\ -1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}.$$

We choose a mesh made of 11 nodes with a separation of 0.1m between them. The time step (in days) is 10^{-1} . To solve transport, we consider $\phi = 0.5, q = 5m/d, D = 0.25m^2/d$. Regarding the boundary conditions, we prescribe the mass flux at the inflow and we assume no dispersive flux at the outflow. Moreover, we have considered 1 initial water ("clean" aquifer) and 1 inflow water ("polluted" water in equilibrium with atmospheric CO_2 and atmospheric O_2). The initial and boundary concentrations are in Table 1.

	initial	inflow
$\overline{H^+}$	10^{-7}	10^{-8}
Cl^-	10^{-16}	10^{-3}
$N_{2(aq)}$	$5 \cdot 10^{-4}$	$5 \cdot 10^{-4}$
$CH_2O_{(aq)}$	10^{-5}	$2 \cdot 10^{-3}$
HCO_3^{-}	10^{-3}	$5.3761 \cdot 10^{-4}$
$O_{2(aq)}$	10^{-6}	$2.5295 \cdot 10^{-4}$
NO_3^{-}	10^{-5}	10^{-3}

Table 1: Primary species concentrations of initial and boundary waters (in molalities)

2 Data Input

```
'TITLE OF THE PROBLEM: Denitrification with 2 reactions'
'DEFINITION OF THE GEOCHEMICAL SYSTEM'
'PRIMARY AQUEOUS SPECIES'
'h2o(p)'
'h+'
'cl-'
'n2(aq)(p)'
'ch2o(aq)'
'hco3-'
'o2(aq)'
'no3-'
'AQUEOUS COMPLEXES'
'MINERALS'
'*' .true. .true.
'GASES'
'co2(g)' .true. .true.
                                          ! name of gas, flag equilibrium, flag constant activity
'o2(g)' .true. .true.
'n2(g)' .true. .true.
'*' .false. .false.
'REDOX REACTIONS'
'aerobic oxidation of DOC' .false.
                                          ! name of redox reaction, flag equilibrium
'denitrification' .false.
'*' .false.
'end'
```

Figure 1: Chemical system file

3 Pseudocode

31

40

41

- 1. Define path to databases
- 2. Define path to input files for denitrification problem
- 3. Choose option for transport: either compute or read lambdas.

If option is to compute lambdas:

- $\bullet \ \ {\rm Read\ transport\ data:\ call\ subroutine\ } initial ise_transport_1D_transient_RT$
- Allocate transport arrays: call subroutines allocate_arrays_PDE_1D and allocate_conc
- Compute lambdas: call compute_mixing_ratios_Delta_t_homog
- Set transport attribute in reactive transport object: call set_transport_trans

If option is to read lambdas:

- Set transport attribute in reactive transport object: call set_transport_trans
- Read time discretisation: call read_time_discretisation
- Read transport data to apply WMA: call read_transport_data_WMA
- 4. Read chemistry: call read_chemistry
- 5. Call reactive mixing solver: there will be different solvers depending on the model for activity coefficients (ideal or not) and the WMA method (lumped or consistent):
 - If lumped and ideal: call solve_reactive_mixing_ideal_lump
 - If consistent and ideal: call solve_reactive_mixing_ideal_cons
 - If lumped and non-ideal: call solve_reactive_mixing_lump
 - If consistent and non-ideal: call solve_reactive_mixing_cons
- 6. Set chemistry attribute in reactive transport object: call set_chemistry
- 7. Write data and results: call write_RT_1D

```
'TITLE OF THE PROBLEM: Denitrification with 2 reactions'
'INITIAL AND BOUNDARY WATER TYPES'
                             ! activity coefficients model
                             ! n° water types
2
! iwtype initial, temp (C)
'INITIAL AND BOUNDARY GAS ZONES'
1
1 25 1d9
                                      !ngtype= number of gas zones
                                      !igtype, temp (°C), volume
            ! name of gas zone
partial pressure' ! pressure in atm
3.5d-4
'atmosphere'
                                      ! name of gas zone
 'gas
                   3.5d-4
 'co2(g)'
 'o2(g)'
                        2d-1
            0.00
 'n2(g)'
                        7.99965d-1
 'end'
```

Figure 2: Local chemistry file

• References

Monod, J. (2012). The growth of bacterial cultures. Selected Papers in Molecular Biology by Jacques Monod, 139:606.

```
'TITLE OF THE PROBLEM: Denitrification with 2 reactions'

'CHEMICAL OPTIONS'

1 ! Chemical input data option (1: CHEPROO-based, 2: PHREEQC, 3: PFLOTRAN)

1 ! Option to compute Jacobians (0:incremental coefficients, 1:analytically)

.true. ! Lumping flag

2 ! Consistent WMA option (1: explicit, 2: upstream to downstream)

2 ! Estimation of downstream waters reaction amounts

2 ! Average of reaction rates option (1: concentrations, 2: reaction rates)

'end'
```

Figure 3: Chemical options