MATH 2250, SPRING 2017, PRACTICE SHEET FOR EXAM 2

(1) Find the derivative of the function

$$f(x) = \frac{x^{x}(x^{2} - 4)^{5}(x - 1)^{3}}{e^{x}\sqrt{x + e^{x}}}$$

(2) Solve for $\frac{dy}{dx}$ given that

$$x^2 - 4y^2 = \sin(xy)$$

(3) Solve for $\frac{dx}{dt}$ given that

$$e^{xy} + \ln(x+y) = y$$

(4) Given that

$$x + 3y - \sin(y) = 17$$
, and $\frac{dy}{dt} = 3$

solve for $\frac{dx}{dt}$ when y = 0.

(5) Water is draining from a cylindrical tank with a radius of 100cm at a constant rate of $20 \text{cm}^3/\text{min}$. Find the rate of change of the height of the water in the tank when the water's height is 500cm.

Recall that the formula for the volume of a cylinder is given by $V = \pi r^2 h$, where r is the radius and h is the height

- (6) Water is in a conical tank with a height of 800cm and radius at the top of 300cm. If the water is draining out at a constant rate of $20\text{cm}^3/\text{min}$, find the rate of change of the height of the water in the tank when the water's height is 100cm. Recall that the formula for the volume of a circular cone is given by $V = \frac{1}{3}\pi r^2 h$, where r is the radius and h is the height
- (7) Water is draining from a cylindrical tank with a radius of 100cm at a rate inversely proportional to the amount of water in the tank given by the formula:

$$\frac{dV}{dt} = -1/10V$$

where V is the volume of the tank in cc's (cubic centimeters), and where the speed is given in cc/sec. Find the rate of change of the height of the water in the tank when the water's height is $500 \, \mathrm{cm}$.

- (8) Consider the function $f(x) = x(6-2x)^2$.
 - (a) Find all the critical points of f(x)
 - (b) Find the intervals on which f(x) is increasing or decreasing
 - (c) Find all local minima and maxima
 - (d) Find all absolute minima and maxima
- (9) Suppose that we have functions f(x), g(x) such that

$$f(g(x)) - 3g(x) + 2f(x + f(x)) = 9x.$$

Solve for g'(x).