Rees products of posets, lexicographical shellability and multiset derangements

Michelle Wachs University of Miami

Based on joint work with John Shareshian

Rees Product-Björner & Welker, 2003

The Rees product of pure (ranked) posets P and Q is defined by

$$P*Q:=\{(p,q)\in P\times Q: r(p)\geq r(q)\}$$

 $(p_1, q_1) \leq (p_2, q_2)$ if the following holds

- $p_1 \leq_P p_2$
- $q_1 \leq_Q q_2$
- $r(p_2) r(p_1) \ge r(q_2) r(q_1)$

Rees Product-Björner & Welker, 2003

Theorem (Björner & Welker)

The Rees product of any Cohen-Macaulay poset with any acyclic Cohen-Macaulay poset is Cohen-Macaulay (CM means that homology of each interval vanishes below its top dimension.)

Conjecture (Björner & Welker)

$$\dim \tilde{H}_{n-1}((B_n\setminus\{\emptyset\})*C_n)=\#\ \text{derangements in }\mathfrak{S}_n.$$

Proved by Jonsson using discrete Morse theory.

Lexicographic Shellability

Theorem (Björner 1980)

Suppose P is pure and admits an EL-labeling with \mathbf{m} ascent-free maximal chains. Then $P - \{\hat{0}, \hat{1}\}$ has the homotopy type of a wedge of \mathbf{m} spheres of dimension $\ell(P) - 2$.

Example: Number of ascent-free chains is 1.

Theorem (Shareshian & MW)

Let $d_n = \#$ derangements in \mathfrak{S}_n . Then R_n admits an EL-labeling with d_n ascent-free chains.

Poset of labels: product order on $\{1 < 2 < \cdots < n < \infty\} \times \{0,1\}$

Edge	Label	Code
$(S,i) \longrightarrow (S \cup \{a\},i)$	(a, 0)	а
$(S,i) \longrightarrow (S \cup \{a\},i+1)$	(a, 1)	ā
$([n],i)\longrightarrow \hat{1}$	$(\infty,0)$	∞

View bottom element $\hat{0}$ as $(\emptyset, 0)$.

$\overline{\mathsf{EL}\text{-labeling of } R_n := ((B_n \setminus \{\emptyset\}) * C_n) \cup \{\hat{0},\hat{1}\}}$

Maximal chains of R_n correspond bijectively to barred permutations in which the first letter is unbarred.

Ascent-free maximal chains correspond bijectively to the set W_n of barred permutations ω satisfying

- ullet $\omega(1)$ is unbarred
- $\omega(n)$ is barred
- for each ascent $|\omega(i)|<|\omega(i+1)|$, first entry $\omega(i)$ is barred and second entry $\omega(i+1)$ is unbarred

Ascent-free maximal chains correspond bijectively to the set \mathcal{W}_n of barred permutations ω satisfying

- ullet $\omega(1)$ is unbarred
- $\omega(n)$ is barred
- for each ascent $|\omega(i)|<|\omega(i+1)|$, first entry $\omega(i)$ is barred and second entry $\omega(i+1)$ is unbarred

Examples: $3\overline{1}5\overline{2}7\overline{6}\overline{4}$ and $3\overline{1}5\overline{2}7\overline{6}\overline{4} \in \mathcal{W}_7$

Ascent-free maximal chains correspond bijectively to the set \mathcal{W}_n of barred permutations ω satisfying

- $\omega(1)$ is unbarred
- $\omega(n)$ is barred
- for each ascent $|\omega(i)| < |\omega(i+1)|$, first entry $\omega(i)$ is barred and second entry $\omega(i+1)$ is unbarred

Examples:
$$3\bar{1}5\bar{2}7\overline{64}$$
 and $3\bar{1}5\bar{2}7\overline{64} \in \mathcal{W}_7$

$$\mathcal{W}_3=\{32\overline{1},3\overline{2}\overline{1}\}$$

$$\mathcal{W}_4 = \{2\bar{1}4\bar{3}, 3\bar{1}4\bar{2}, 3\bar{2}4\bar{1}, 4\bar{1}3\bar{2}, 4\bar{2}3\bar{1}, 432\bar{1}, 4\bar{3}2\bar{1}, 43\bar{2}\bar{1}, 4\bar{3}\bar{2}\bar{1}\}$$

Ascent-free maximal chains correspond bijectively to the set \mathcal{W}_n of barred permutations ω satisfying

- $\omega(1)$ is unbarred
- $\omega(n)$ is barred
- for each ascent $|\omega(i)|<|\omega(i+1)|$, first entry $\omega(i)$ is barred and second entry $\omega(i+1)$ is unbarred

Examples:
$$3\overline{1}5\overline{2}7\overline{6}\overline{4}$$
 and $3\overline{1}5\overline{2}7\overline{6}\overline{4} \in \mathcal{W}_7$

$$\mathcal{W}_3 = \{32\bar{1}, 3\bar{2}\bar{1}\}$$

$$\mathcal{W}_4 = \{2\bar{1}4\bar{3}, 3\bar{1}4\bar{2}, 3\bar{2}4\bar{1}, 4\bar{1}3\bar{2}, 4\bar{2}3\bar{1}, 432\bar{1}, 4\bar{3}2\bar{1}, 43\bar{2}\bar{1}, 4\bar{3}\bar{2}\bar{1}\}$$

Claim:
$$|\mathcal{W}_n| = d_n$$

 $B_n(q) :=$ lattice of subspaces of \mathbb{F}_q^n . $\mathcal{D}_n :=$ set of derangements in \mathfrak{S}_n

 $B_n(q) :=$ lattice of subspaces of \mathbb{F}_q^n . $\mathcal{D}_n :=$ set of derangements in \mathfrak{S}_n

Theorem (Shareshian & MW (2006))

$$(B_n(q)\setminus\{(0)\})*C_n$$
 has the homotopy type of a wedge of
$$\sum_{\sigma\in\mathcal{D}_n}q^{\binom{n}{2}-\mathrm{maj}(\sigma)+\mathrm{exc}(\sigma)}$$

(n-1)-spheres.

 $B_n(q) :=$ lattice of subspaces of \mathbb{F}_q^n . $\mathcal{D}_n :=$ set of derangements in \mathfrak{S}_n

Theorem (Shareshian & MW (2006))

$$(B_n(q)\setminus\{(0)\})*C_n$$
 has the homotopy type of a wedge of
$$\sum_{\sigma\in\mathcal{D}_n}q^{\binom{n}{2}-\mathrm{maj}(\sigma)+\mathrm{exc}(\sigma)}$$

(n-1)-spheres.

Proof relies on (q, r)-analog of a formula of Euler for Eulerian polynomials due to Shareshian & MW (2006):

$$\sum_{n>0} A_n(q,t,r) \frac{z^n}{[n]_q!} = \frac{(1-tq)\exp_q(rz)}{\exp_q(ztq) - tq\exp_q(z)},$$

where

$$A_n(q,t,r) := \sum_{\sigma \in \mathfrak{S}_n} q^{\mathrm{maj}(\sigma)} t^{\mathrm{exc}(\sigma)} r^{\mathrm{fix}(\sigma)}.$$

There is an EL-labeling of $B_n(q)$ such that

- the label sequence of each maximal chain is a permutation in \mathfrak{S}_n
- the number of maximal chains with label sequence σ is $q^{inv(\sigma)}$.

We use this to show that

$$\dim ilde{H}_{n-1}((B_n(q)\setminus\{(0)\})*C_n)=\sum_{\omega\in\mathcal{W}_n}q^{\operatorname{inv}(|\omega|)}$$

Problem: Find a bijection $\phi: \mathcal{W}_n \to \mathcal{D}_n$ for which

$$\operatorname{inv}(|\omega|) = \binom{n}{2} - \operatorname{maj}(\phi(\omega)) + \operatorname{exc}(\phi(\omega))$$

Let $\lambda = (\lambda_1, \dots, \lambda_k)$ be a weak composition of n. Set

$$B_{\lambda} := C_{\lambda_1+1} \times \cdots \times C_{\lambda_k+1}$$

If $\lambda_i = 1$ for all i then $B_{\lambda} = B_n$.

A derangement of the multiset $M_{\lambda} := \{1^{\lambda_1}2^{\lambda_2}\dots k^{\lambda_k}\}$ is a permutation σ of M_{λ} such that there are distinct entries in each column of the $2\times n$ array whose top row is the increasing arrangement of M_{λ} and whose bottom row is σ

Let \mathcal{D}_{λ} denote the set of derangements of M_{λ} .

$$33121 \in \mathcal{D}_{\lambda}$$

$$\left[\begin{array}{cccccc}
1 & 1 & 2 & 3 & 3 \\
3 & 3 & 1 & 2 & 1
\end{array}\right]$$

Theorem

 $(B_{\lambda} \setminus {\hat{0}}) * C_n$ has the homotopy type of a wedge of $|\mathcal{D}_{\lambda}|$ (n-1)-spheres.

Proof Idea: There is an natural EL-labeling of B_{λ} for which maximal chains of B_{λ} correspond bijectively to the permutations of M_{λ} .

We use this EL-labeling of B_{λ} to obtain an EL-labeling of

$$((B_{\lambda}\setminus\{\hat{0}\})*C_n)\cup\{\hat{0},\hat{1}\}$$

Ascent-free maximal chains correspond bijectively to the set W_{λ} of barred multiset permutations ω of M_{λ} satisfying

- $\omega(1)$ is unbarred
- $\omega(n)$ is barred
- for each ascent $|\omega(i)| \leq |\omega(i+1)|$, first entry $\omega(i)$ is barred and second entry $\omega(i+1)$ is unbarred

We use this EL-labeling of B_{λ} to obtain an EL-labeling of

$$((B_{\lambda}\setminus\{\hat{0}\})*C_n)\cup\{\hat{0},\hat{1}\}$$

Ascent-free maximal chains correspond bijectively to the set W_{λ} of barred multiset permutations ω of M_{λ} satisfying

- \bullet $\omega(1)$ is unbarred
- $\omega(n)$ is barred
- for each ascent $|\omega(i)| \leq |\omega(i+1)|$, first entry $\omega(i)$ is barred and second entry $\omega(i+1)$ is unbarred

Then we show that $W_{\lambda} = D_{\lambda}$.

Excedance in a multiset permutation:

$$33121 \in \mathfrak{S}_{\lambda}$$

$$\begin{bmatrix} 1 & 1 & 2 & 3 & 3 \\ 3 & 3 & 1 & 2 & 1 \end{bmatrix}$$

$$\operatorname{exc}(33121) = 2$$

Excedance in a multiset permutation:

$$33121 \in \mathfrak{S}_{\lambda}$$

$$\begin{bmatrix} 1 & 1 & 2 & 3 & 3 \\ 3 & 3 & 1 & 2 & 1 \end{bmatrix}$$

$$\operatorname{exc}(33121) = 2$$

Theorem (Shareshian and MW (2009))

$$\sum_{\omega \in \mathcal{W}_{\lambda}} t^{\# \mathit{bars}(\omega)} = \sum_{\sigma \in \mathcal{D}_{\lambda}} t^{\mathrm{exc}(\sigma)}$$

Proof uses a symmetric function result of Gessel on words with no double ascents and a symmetric function result of Askey and Ismail on multiset derangements.

Is there a q-analog of

Theorem

 $(B_{\lambda} \setminus {\hat{0}}) * C_n$ has the homotopy type of a wedge of $|\mathcal{D}_{\lambda}|$ (n-1)-spheres.

Is there a q-analog of

Theorem

```
(B_{\lambda} \setminus {\hat{0}}) * C_n has the homotopy type of a wedge of |\mathcal{D}_{\lambda}| (n-1)-spheres.
```

There is a *p*-analog.

Is there a q-analog of

Theorem

 $(B_{\lambda} \setminus {\hat{0}}) * C_n$ has the homotopy type of a wedge of $|\mathcal{D}_{\lambda}|$ (n-1)-spheres.

There is a p-analog.

Let $B_{\lambda}(p)$ be the lattice of subgroups of the abelian p-group

$$\mathbb{Z}_{p^{\lambda_1}} \oplus \cdots \oplus \mathbb{Z}_{p^{\lambda_k}}$$

Is there a q-analog of

Theorem

 $(B_{\lambda} \setminus {\hat{0}}) * C_n$ has the homotopy type of a wedge of $|\mathcal{D}_{\lambda}|$ (n-1)-spheres.

There is a p-analog.

Let $B_{\lambda}(p)$ be the lattice of subgroups of the abelian p-group

$$\mathbb{Z}_{p^{\lambda_1}} \oplus \cdots \oplus \mathbb{Z}_{p^{\lambda_k}}$$

Theorem (Butler (1986?)

There is an EL-labeling of $B_{\lambda}(p)$ such that the label sequence of each maximal chain is a permutation of multiset M_{λ} and the number of maximal chains with label sequence $w \in M_{\lambda}$ is $p^{\text{cocharge}(w)}$.

Lift this to an EL-labeling of the Rees product and conclude that

$$\dim \tilde{H}_{n-1}((B_{\lambda}(p)\setminus\{(0)\})*C_n)=\sum_{\omega\in\mathcal{W}_{\lambda}}p^{\operatorname{cocharge}(|\omega|)}$$

Use a bijection $\phi: \mathcal{D}_{\lambda} \to \mathcal{W}_{\lambda}$ to get

$$\dim \tilde{H}_{n-1}((B_{\lambda}(p)\setminus\{(0)\})*C_n) = \sum_{\sigma\in\mathcal{D}_{\lambda}} p^{\operatorname{cocharge}(|\phi(\sigma)|)}$$

Problem: Find a ϕ for which $\operatorname{cocharge}(|\phi(\sigma)|)$ is a nice statistic on multiset derangements which generalizes $\binom{n}{2} - \operatorname{maj}(\sigma) + \operatorname{exc}(\sigma)$.

t-analog of a chain

Let $T_{t,n}$ be the poset whose Hasse diagram is the complete t-ary tree of height n-1 with the root at the bottom.

t-analog of a chain

Let $T_{t,n}$ be the poset whose Hasse diagram is the complete t-ary tree of height n-1 with the root at the bottom.

$$T_{3,3} =$$

Theorem (Shareshian & MW (2009))

 $(B_{\lambda}(p)\setminus\{(0)\})*T_{t,n}$ has the homotopy type of a wedge of

$$\sum_{w \in \mathcal{D}_{\lambda}} p^{\mathrm{stat}(\sigma)} t^{\mathrm{exc}(w)}$$

(n-1)-spheres.

When
$$\lambda = 1^n$$
, $\operatorname{stat}(\sigma) = \binom{n}{2} - \operatorname{maj}(\sigma) + \operatorname{exc}(\sigma)$

We use $\sum_{\omega \in \mathcal{W}_{\lambda}} t^{\#bars(\omega)} = \sum_{\sigma \in \mathcal{D}_{\lambda}} t^{\operatorname{exc}(\sigma)}$ in the proof.

Related work

- nontruncated version (Eulerian numbers) Shareshian & MW (2005)
- equivariant version (representation of symmetric group) -Shareshian & MW (2005)
- type B analog Shareshian & MW (2006), Muldoon and Readdy (2008)
- noncrossing partition lattice Linusson and MW (2008)