MICROECONOMÍA I AYUDANTÍA 1

JORGE ARENAS, KEVIN SEPÚLVEDA, ALBERTO UNDURRAGA

Doctorado y Magíster en Economía Facultad de Economía y Negocios Universidad de Chile

17 de abril de 2021

PREGUNTA 1)

Sea una estructura de elección $(\mathcal{B}, C(\cdot))$ que satisface el Axioma Débil de la Preferencia Revelada (ADPR). Considere las siguientes 2 posibles relaciones de preferencias reveladas, $\succ^* y \succ^{**}$:

- 1) $x \succ^* y \iff$ existe algún $B \in \mathcal{B}$ tal que $x, y \in B$, $x \in C(B)$ y $y \notin C(B)$
- 2) $x \succ^{**} y \iff x \succsim^{*} y \text{ pero no } y \succsim^{*} x$

Donde \succeq^* es la relación revelada "al menos tan buena como" tal que: $x \succeq^* y \iff$ existe algún $B \in \mathscr{B}$ tal que $x, y \in B$, y $x \in C(B)$.

Responda lo siguiente:

- A) Muestre que $\succ^* y \succ^{**}$ producen la misma relación sobre X, esto es, para cualquier $x, y \in X, x \succ^* y \iff x \succ^{**} y$. Esto se cumple si $(\mathscr{B}, C(\cdot))$ no satisface ADRP?
- B) Es \succ^* transitiva?
- C) Muestre que si \mathcal{B} incluye todos los subconjuntos de 3 elementos de X, entonces \succ^* es transitiva

PREGUNTA 1.A) R.

Suponga que $x \succ^* y$, esto implica que existe un $B \in \mathcal{B}$ tal que $x,y \in B$, $x \in C(B)$ y $y \notin C(B)$. Luego, $x \succsim^* y$. Suponga por contradicción que $y \succsim^* x$, entonces existe $B \in \mathcal{B}$ tal que $x,y \in B$ y $y \in C(B)$, pero ADRP (ver definición 1.C.1 MWG) implica que $x \in C(B)$, esto es una contradicción, Por qué? Luego, si $x \succ^* y$ no podemos tener que $y \succsim^* x$, esto es, $x \succ^{**} y$.

Ahora mostraremos que $x \succ^{**} y \implies x \succ^{*} y$. Luego, suponga que $x \succ^{**} y$, esto implica que $x \succsim^{*} y$ pero no $y \succsim^{*} x$. Por lo tanto, existe un $B \in \mathcal{B}$, $x,y \in B$, $x \in C(B)$ y para cualquier $B' \in \mathcal{B}$ si $x,y \in B'$ entonces $y \notin C(B')$. En particular, $x \in C(B)$ y $y \notin C(B)$. Concluimos que $x \succ^{*} y$ y para cualquier $x,y \in X$, $x \succ^{*} y \iff x \succ^{**} y$.

Por otro lado, la equivalencia de las relaciones anteriores no se garantiza sin ADRP como lo muestra el siguiente contraejemplo:

Defina $X = \{x, y, z\}$, $\mathscr{B} = \{\{x, y\}, \{x, y, z\}\}$, $C(\{x, y\}) = \{x\}$, $C(\{x, y, z\}) = \{y\}$. Luego, $x \succ^* y$ y $y \succ^* x$, pero no se cumple $x \succ^{**} y$ ni $y \succ^{**} x$.

PREGUNTA 1.B) R.

≻* no es transitiva como lo muestra el siguiente contraejemplo:

Defina
$$X = \{x, y, z\}$$
, $\mathscr{B} = \{\{x, y\}, \{y, z\}\}$, $C(\{x, y\}) = \{x\}$, $C(\{y, z\}) = \{y\}$. Tenemos que $x \succ^* y$ y $y \succ^* z$ pero no se cumple que $x \succ^* z$ (porque ninguno de los dos sets en \mathscr{B} incluye $\{x, z\}$).

PREGUNTA 1.C) R.

Denote $x,y,z\in X$ $x\succ^* y$ y $y\succ^* z$. Luego, $x,y,z\in \mathscr{B}$ y por A) tenemos que $x\succ^{**} y$ y $y\succ^{**} z$, esto implica que $y\not\succsim^* x$ y $z\not\succsim^* y$. Como $x\succsim^* y$ racionaliza $(\mathscr{B},C(\cdot))$ (ver proposición 1.D.2 MWG) , $y\notin C(\{x,y,z\})$ y $z\notin C(\{x,y,z\})$. Además, como $C(\{x,y,z\})\neq\emptyset$ sigue que $C(\{x,y,z\})=\{x\}$, por lo tanto $x\succ^* z$.

Considere el siguiente problema de maximización de utilidad:

$$max \quad u(x)$$

$$s.t. \quad p \cdot x \le w$$

Donde $u: \mathbb{R}^n_+ \to \mathbb{R}$.

Determine el grado de homogeneidad de las demandas Walrasianas (óptimas) x(p,w). Adicionalmente, muestre que si las \succeq son LNS entonces se cumple la Ley de Walras, esto es, muestre que se cumple $p \cdot x = w$, $\forall x \in x(p,w)$.

Recordemos que una función $f(x_1,...,x_n)$ es homogénea de grado k (en sus argumentos) si cumple que:

$$f(\alpha x_1, \alpha x_2, ..., \alpha x_n) = \alpha^k f(x_1, ..., x_n), \quad \forall \alpha > 0$$

Y es es homogénea de grado k en x_1 (por ejemplo) si cumple que:

$$f(\alpha x_1, x_2, ..., x_n) = \alpha^k f(x_1, ..., x_n), \quad \forall \alpha > 0$$

Primero definamos el conjunto de canastas presupuestariamente factibles como:

$$B(p,w) \equiv \left\{ x \in \mathbb{R}^n_+ : p \cdot x \le w \right\}$$

Notemos que $B(p, w) = B(\alpha p, \alpha w)$ con $\alpha > 0$. Luego, $x(p, w) = x(\alpha p, \alpha w)$, esto es, las demandas Walrasianas son h-g-0 en (p, w).

Ahora demostraremos que si las \succeq son LNS entonces $p \cdot x = w$, $\forall x \in x(p,w)$. Suponga por contradicción que $p \cdot x < w$, como las preferencias son LNS existe un $y \in \mathbb{R}^n_+$ en un vecindario de x tal que $\|y-x\| \le \varepsilon$ para cada $\varepsilon > 0$, con $y \succ x$, esto es, existe un $y \in B(p,w)$ tal que u(y) > u(x), una contradicción con la optimalidad de $x \in x(p,w)$.

Considere una extensión al conjunto presupuestario competitivo B a un conjunto de consumo arbitrario X tal que $B(p,w) = \{x \in X : p \cdot x \le w\}$. Asuma que $(p,w) \gg 0$.

- A) Si X es un conjunto de consumo donde solo un bien puede ser consumido simultáneamente, B(p, w) es convexo?
- B) Muestre que si X es un conjunto convexo, entonces B(p, w) también lo es.

PREGUNTA 3.A) R.

No, tome $x, x' \in B(p, w)$ con $x, y \in \mathbb{R}_+^L \setminus \{0\}$ y defina $x'' \equiv \alpha x + (1 - \alpha)x'$ con $\alpha \in (0, 1)$. Luego, x'' tiene coordenadas positivas de más de un bien, concluimos por tanto que $x'' \notin B(p, w)$.

PREGUNTA 3.B) R.

Nuevamente, tome $x, x' \in B(p, w)$ y defina $x'' \equiv \alpha x + (1 - \alpha)x'$ con $\alpha \in (0, 1)$. En este caso como X es convexo, $x'' \in X$. Adicionalmente, $p \cdot x'' = \alpha(p \cdot x) + (1 - \alpha)(p \cdot x') \le \alpha w + (1 - \alpha)w = w$. Por lo tanto, $x'' \in B(p, w)$.

Muestre que si x(p,w) es homogénea de grado 1 (h-g-1) en w y satisface la Ley de Walras, entonces $\varepsilon_{l,w}(p,w)=1$ para cada l. Interprete. Puede decir algo sobre $D_wx(p,w)$ y la forma de las funciones y curvas de Engel en este caso?

Recordemos que $\varepsilon_{l,w}(p,w) = \frac{\mathrm{d}x_l(p,w)}{x_l(p,w)} \frac{w}{\mathrm{d}w}$ (reemplace w por k y el diferencial es respecto a p_k).

Entonces, de la h-g-1 en w tenemos que $x(p, \alpha w) = \alpha x(p, w), \forall \alpha > 0$. Diferenciando esta expresión con respecto a α y evaluando en $\alpha = 1$ obtenemos:

$$wD_w x(p, w) = x(p, w) \implies D_w x(p, w) = (1/w)x(p, w)$$

Concluimos por tanto que $\varepsilon_{l,w}(p,w) = \frac{\mathrm{d}x_l(p,w)}{y_l(p,w)} \frac{w}{\mathrm{d}w} = 1$.

Este resultado nos dice que un 1% de aumento (o disminución) en la riqueza produce un aumento (disminución) en el consumo de todos los bienes en un 1%.

Como (1/w)x(p,w)=x(p,1) Por qué? Luego, $D_wx(p,w)$ es una función solo de p y por lo tanto la curva de Engel $E_p=\{x(p,w):w>0\}$ es una recta a través de x(p,1).

Suponga que x(p,w) es una función de demanda que es h-g-1 en w, satisface la Ley de Walras y h-g-0 (en (p,w)). Suponga también que todas las derivadas cruzadas respecto a precios son cero, esto es, que $\partial x_l(p,w)/\partial p_k=0$ cuando $k\neq l$. Muestre que esto implica que para cada l, $x_l(p,w)=\alpha_l w/p_l$, donde $\alpha_l>0$ es una constante independiente de (p,w).

Como x(p,w) es h-g-1 en w tenemos que $x(p,\alpha w)=\alpha x(p,w), \forall \alpha>0$. Tome $\alpha=1/w$ esto implica que $x_l(p,1)=(1/w)x_l(p,w)$. Adicionalmente, $\partial x_l(p,1)/\partial p_k=\partial x_l(p)/\partial p_k=0$ cada vez que $k\neq l$, luego $x_l(p,1)$ es una función de p_l solamente. Sigue que podemos escribir $x_l(p,w)=x_l(p_l)$.

Dado que x(p,w) es h-g-0 (en(p,w)), $x_l(p_l)$ debe ser homogénea de grado -1 (*) y por lo tanto concluimos que existe $\alpha > 0$ tal que $x_l(p_l) = \alpha_l/p_l$, ya que:

$$x_l(\alpha p_l) = \alpha^{-1} x_l(p_l)$$
, tomando $\alpha = 1/p_l$ tenemos que:
 $\iff x_l(1) = p_l x_l(p_l)$
 $\iff cte = p_l x_l(p_l)$
 $\implies x_l(p_l) = cte/p_l$

Denotando esta constante por α_l tenemos que $x_l(p_l) = a_l/p_l$

De las relaciones anteriores esto implica que $x_l(p, w) = \alpha_l w/p_l$.

Finalmente, por la Ley de Walras sabemos que $\sum_l p_l x_l = \sum_l p_l (\alpha_l w/p_l) = \sum_l \alpha_l w = w \sum_l \alpha_l = w$ luego, los α_l satisfacen que $\sum_l \alpha_l = 1$

(*) Nota: como x(p, w) es h-g-1 en w y h-g-0 en (p, w) sigue que:

 $x(p,\alpha w)=\alpha x(p,w)$ y $x(\alpha p,\alpha w)=\alpha^0 x(p,w) \Longrightarrow x(\alpha p,w)=\alpha^{-1} x(p,w)$ (No es por la propiedad de la derivada parcial dicha en la ayudantía).

Suponga que x(p,w) es diferenciable, satisface el Axioma Débil de la Preferencia Revelada (ADPR), la Ley de Walras y h-g-0. Muestre que si $x(\cdot,\cdot)$ es h-g-1 en w, entonces la Ley de Demanda se cumple incluso para cambios de precios no-compensados. Establezca lo anterior para el caso discreto y continuo.

Nota: recuerde que una matriz M de $N \times N$ es semidefinida negativa (positiva) si:

$$z^T M z \le 0$$
 $(z^T M z \ge 0), \forall z \in \mathbb{R}^N.$

Adicionalmente si la desigualdad es estricta $\forall z \neq 0$ entonces M es definida negativa (positiva).

Probaremos primero la versión discreta:

Por la h-g-1 en w tenemos que x(p,1) = (1/w)x(p,w), por lo tanto, es suficiente demostrar que: $(p'-p)\cdot(x(p',1)-x(p,1)) < 0$ para cada p,p'.

Notemos que podemos reescribir la diferencia de las demandas como (nuevamente por la homogeneidad de las demandas):

$$\begin{split} x(p',1) - x(p,1) &= \frac{1}{p' \cdot x(p,1)} \left(x(p',p' \cdot x(p,1)) - x(p,1) \right) \\ &+ \left(x(p,\frac{1}{p' \cdot x(p,1)}) - x(p,1) \right) \end{split}$$

Nota: el primer término de la izquierda de la igualdad anterior es equivalente al primer término del lado derecho de la igualdad (por la h-g-1 en w), esto es:

$$\frac{1}{p' \cdot x(p,1)} x(p',p' \cdot x(p,1)) = x(p', \frac{p' \cdot x(p,1)}{p' \cdot x(p,1)}) = x(p',1)$$

Los otros términos siguen la misma lógica.

Luego, es suficiente mostrar que:

$$\begin{aligned} &(p'-p)\cdot(x(p',p'\cdot x(p,1))-x(p,1))\leq 0 \quad (*)\\ &y\\ &(p'-p)\cdot\left(x(p,\frac{1}{p'\cdot x(p,1)})-x(p,1)\right)\leq 0 \quad (**) \end{aligned}$$

Para (*) note que:

$$\begin{split} &(p'-p) \cdot \left(x(p',p' \cdot x(p,1)) - x(p,1) \right) \\ &= p' \cdot x(p',p' \cdot x(p,1)) - p' \cdot x(p,1) - p \cdot x(p',p' \cdot x(p,1)) + p \cdot x(p,1) \\ &= p' \cdot x(p,1) - p' \cdot x(p,1) - p \cdot x(p',p' \cdot x(p,1)) + 1 \\ &= -p \cdot x(p',p' \cdot x(p,1)) + 1 \end{split}$$

Por qué? Aquí ocupamos que se cumple la Ley de Walras, esto implica que:

$$p \cdot x(p, w) = w$$

En particular en este caso $p' \cdot x(p', p' \cdot x(p, 1)) = p' \cdot x(p, 1)$ y $p \cdot x(p, 1) = 1$

Es decir tenemos que notar que en $p' \cdot x(p', p' \cdot x(p, 1))$ la riqueza es $w = p' \cdot x(p, 1)$, esto hace eliminar los términos multiplicados por p' que es lo que está más arriba, además queda 1 donde estaba $p \cdot x(p, 1)$.

Si $x(p',p'\cdot x(p,1))=x(p,1)$ entonces la expresión anterior es igual a cero. Si por el contrario $x(p',p'\cdot x(p,1))\neq x(p,1)$, ADRP (en este contexto ver definición 2.F.1 MWG) implica que $p\cdot x(p',p'\cdot x(p,1))>1$. Esto es, la expresión anterior es ≤ 0 .

Nota: Respecto a ADRP, tenemos que a precios p' el agente podía comprar la canasta x(p,1) ya que su riqueza es precisamente $w=p'\cdot x(p,1)$ cuando demandó la canasta $x(p',p'\cdot x(p,1))$ pero no lo hizo ya que eligió la canasta $x(p',p'\cdot x(p,1))$ que asumimos distinta a x(p,1), por lo tanto ADRP implica que bajo precios p y riqueza w=1 la canasta $x(p',p'\cdot x(p,1))$ no la puede consumir ya que le cuesta más que su riqueza, esto es, $p\cdot x(p',p'\cdot x(p,1))>1$ (por eso cuando se pasa a precios p y w=1 no consume $x(p',p'\cdot x(p,1))$ y consume x(p,1)). Eso fue lo que ocupamos más arriba.

Para (**) note que:

$$\begin{split} &(p'-p) \cdot \left(x(p, \frac{1}{p' \cdot x(p, 1)}) - x(p, 1) \right) \\ &= p' \cdot x(p, \frac{1}{p' \cdot x(p, 1)}) - p' \cdot x(p, 1) - \frac{1}{p' \cdot x(p, 1)} + 1 \\ &= 2 - \left[p' \cdot x(p, 1) + \frac{1}{p' \cdot x(p, 1)} \right] \\ &\leq 2 - 2 \sqrt{(p' \cdot x(p, 1))(\frac{1}{p' \cdot x(p, 1)})} \\ &= 2 - 2 = 0 \end{split}$$

Nota: Nuevamente ocupamos la propiedades de homogeneidad de las demandas. Adicionalmente, denote $x=\sqrt{p'\cdot x(p,1)}$ y $y=\sqrt{\frac{1}{p'\cdot x(p,1)}}$. Sumando $2\sqrt{(p'\cdot x(p,1))(\frac{1}{p'\cdot x(p,1)})}=2xy$ en la tercera y cuarta línea tenemos que: $-[x-y]^2\leq 0$, por lo tanto la desigualdad de cumple.

Ahora Probaremos la versión continua:

Tenemos que $x(p, \alpha w) = \alpha x(p, w)$, $\forall \alpha > 0$. Diferenciando esta expresión con respecto a α y evaluando en $\alpha = 1$ obtenemos:

$$wD_w x(p, w) = x(p, w) \implies D_w x(p, w) = (1/w)x(p, w)$$

Luego, sabemos que la matriz de Slutzky satisface que $S(p,w) = D_p x(p,w) + D_w x(p,w) x(p,w)^T = D_p x(p,w) + (1/w) x(p,w) x(p,w)^T$ (por lo anterior). Esto implica que:

$$D_p x(p, w) = S(p, w) - (1/w)x(p, w)x(p, w)^T$$

Sabemos que S(p,w) es semidefinida negativa. Adicionalmente, $(1/w)x(p,w)x(p,w)^T$ es semidefinida positiva. Concluimos que $D_px(p,w)$ es semidefinida negativa.

Muestre que si $u(\cdot)$ es una función de utilidad continua que representa \succsim , entonces \succsim es continua.

Para esta demostración utilizaremos la caracterización secuencial de la continuidad en las preferencias (ver definción 3.C.1 MWG).

Luego, tomemos una secuencia de vectores (x_n, y_n) tal que:

- $x_n \succeq y_n, \forall n$
- \bullet $x_n \to x$
- $y_n \rightarrow y$

Esto implica que $u(x_n) \ge u(y_n)$, $\forall n$. Adicionalmente la continuidad de $u(\cdot)$ asegura que $u(x) \ge u(y)$ y por tanto $x \succeq y$.

Sea \succsim una relación de preferencia definida sobre \mathbb{R}_+^L , completa, transitiva, continua, fuertemente monótona y estrictamente convexa. Demuestre que la solución al problema de maximización de la utilidad es única, $\forall (p,w) \in \mathbb{R}_{++}^{L+1}$.

Suponga por contradicción que existen dos solución al problema anterior $(x,x') \in B(p,w)^2$ que cumple $x \sim x' \succsim z$, $\forall z \in B(p,w)$. Como las preferencias son estrictamente convexas (ver definición 3.B.5 MWG) $\alpha x + (1-\alpha)x' \succ x \sim x'$, $\forall \alpha \in (0,1)$. Adicionalmente:

$$p \cdot (\alpha x + (1 - \alpha)x') = \alpha p \cdot x + (1 - \alpha)p \cdot x'$$

$$\leq \alpha w + (1 - \alpha)w$$

$$= w$$

Luego, $\alpha x + (1 - \alpha)x' \in B(p, w)$. Una contradicción con la optimalidad de $(x, x') \in B(p, w)^2$.