Critérios de escolha de linhagens e de metodologias de sequenciamento

Desirrê Petters-Vandresen

Módulo I – Genômica no Estudo de Microrganismos

Por que sequenciar um genoma de um microrganismo?

- Entender melhor um sistema biológico ou um organismo modelo
- Compreender as bases genéticas e genômicas da interação entre parasitas e hospedeiros
- Compreender processos evolutivos
- Bioprospecção e aplicação agrícola, médica ou industrial

Perguntas a serem respondidas e/ou hipóteses a serem testadas!

• O sequenciamento é apenas <u>o começo</u> de um projeto de genômica

• Embora os custos de sequenciamento tenham reduzido ao longo dos anos, ainda não é uma técnica extremamente barata e trivial (dependendo do contexto)

 Escolher uma linhagem adequadamente é importante para maximizar os resultados em termos econômicos e científicos, <u>principalmente quando os recursos são</u> <u>limitados!</u>

- A seleção da linhagem a ser sequenciada deve ser cuidadosa. Antes de escolher, é necessário pensar em perguntas como:
 - Quais questões científicas e práticas podem ser respondidas ao sequenciar esta linhagem?
 - A espécie possui importância agrícola, médica, industrial ou ecológica?
 - Quais recursos genéticos já estão disponíveis para a espécie ou espécies próximas?
 - Existe algum conhecimento genômico ou genético sobre a espécie em questão? Há estimativas quanto ao tamanho do genoma e nível de ploidia do organismo?

- A seleção da linhagem a ser sequenciada deve ser cuidadosa. Antes de escolher, é necessário pensar em perguntas como:
 - Existem genomas disponíveis de outras linhagens da mesma espécie? Se sim, por que ainda é necessário sequenciar outra linhagem?
 - É possível obter DNA puro e em boa qualidade? Quão difícil será obter DNA suficiente?
 - Existe algum transcriptoma disponível para a espécie ou espécies próximas?

 A seleção da linhagem a ser sequenciada deve ser cuidadosa. Antes de escolher, é necessário pensar em perguntas como:

- Se ainda não existe transcriptoma, será possível desenvolver o projeto sem estes dados?
- Caso o transcriptoma seja necessário, é possível obter RNA puro, em boa qualidade e quantidade suficiente?
- Sequenciar apenas uma linhagem será suficiente? Quantas linhagens são necessárias?

- A seleção da linhagem a ser sequenciada deve ser cuidadosa. Antes de escolher, é necessário pensar em perguntas como:
 - Há conhecimento sobre as diferentes etapas do projeto que serão necessárias (e. g. montagem, anotação gênica, anotação funcional...)?
 - Há recursos humanos, biológicos e financeiros disponíveis para as diferentes etapas do projeto?
 - Material biológico para sequenciamento e especialistas para sua obtenção
 - Equipamentos para sequenciamento e especialistas para sequenciamento
 - Recursos computacionais para montagem e anotação e especialistas para realização destes processos

Qual estratégia de sequenciamento devo utilizar?

- Para escolher a estratégia de sequenciamento, é preciso levar em consideração:
 - Quais perguntas serão respondidas com estes dados?
 - Qual a cobertura de sequenciamento necessária?
 - Qual a contiguidade que montagem deve apresentar?

Quais perguntas serão respondidas com estes dados?

- As perguntas de um projeto podem ser respondidas com diferentes tipos de "montagem":
 - Genoma completo
 - Genoma rascunho
 - Somente genes

 Montagens mais completas permitem com que mais perguntas sejam respondidas, mas aumentam os custos envolvidos e o tempo de execução do projeto

Genoma completo

- Um genoma é considerado completo quando a qualidade da sequência atende aos "Bermuda standards":
 - Taxa de erro de nucleotídeo: 1 a cada 10.000 bases ou menos para a maior parte da sequência (99,99% de acurácia)
 - Ausência de gaps na montagem
- Muitos genomas eucarióticos apresentam regiões complexas (e. g. regiões repetitivas) que são difíceis de sequenciar e montar: difícilmente um genoma completo (de acordo com a definição) é obtido
- Termos como "working draft" e "essencialmente completo" são usados para descrever genomas de qualidade superior à genomas rascunho, mas que ainda não são genomas completos

Genoma rascunho

 Não há um padrão absoluto para reconhecer genomas rascunho (como no caso de genoma completo)

• Em geral, um bom genoma rascunho apresenta sequências com boa qualidade, cobertura e completude, e baixo nível de fragmentação

• Não é incomum encontrar genomas rascunho altamente fragmentados, com má qualidade e incompletos

Somente genes

- Sequenciamento de RNA mensageiro (regiões transcritas) e produção de transcriptoma
- Custo mais baixo se comparado à genoma completo
- Melhor aproveitado se já existe um genoma de referência para a espécie
- Limitações:
 - Somente genes transcritos na condição avaliada serão sequenciados
 - Ausência de informação sobre regiões e sequências repetitivas, arquitetura genômica, organização cromossômica ou coordenadas dos genes

Quais perguntas serão respondidas com estes dados?

Qual a cobertura de sequenciamento necessária?

 A cobertura se refere à quantidade de vezes que o genoma foi sequenciado

 Alta cobertura: maior precisão e redução de erros nas montagens

• $Cobertura = \frac{Tamanho dos reads \times quantidade de reads}{Tamanho total do genoma}$

Qual a contiguidade que montagem deve apresentar?

 A contiguidade está relacionada ao grau de fragmentação do genoma. Quanto maior a fragmentação, menor a contiguidade

 Para maior contiguidade, é necessária uma boa cobertura e uma técnica de sequenciamento com reads longos e capaz de resolver regiões repetitivas

Qual estratégia de sequenciamento devo utilizar?

Somente genes e/ou genoma rascunho: Illumina

• Genoma essencialmente completo: PacBio ou Nanopore, ou combinações entre dois ou três métodos

Método	Illumina	PacBio	Nanopore
Comprimento dos reads	100 – 300 pb	10 – 100 kb	Variável (até 1000 kb)
Taxa de erro	0.1%	5 – 15%*	5 – 20%*
Eficiência (bases por corrida)	200 – 600 Gb	10 – 20 Gb	5 – 10 Gb
Prós	Alta confiabilidade	Reads longos, velocidade e alta eficiência	Reads longos, velocidade e alta eficiência
Contras	Reads curtos, velocidade	Taxa de erro elevada	Taxa de erro elevada

^{*} Em baixa cobertura