Image Colorization -- LAB to RGB

Convolutional Neural Nets, Autoencoders, and Generative Adversarial Networks

Alex H. Macy

-The online outreach program of the State Archives of Florida.

-Digitizes thousands of historic black and white photos a year.

Client-driven Top-Down approach

Colorization

 Take in a B&W image of any format (.jpg, .jpeg, .png, .tiff) and return a colorized copy

Object Detection

- Informed by colorization, build a database of known objects.
- Archival merit,
 Metadata

Portability

- Web service
- API
- SaaS
- Organizational (IP cheaper, better than \$ service;
 ContentDM)

Purpose

Relevance

- Outreach program
- Capturing attention
- Online interactions

Funding

- State funded
- Determined by public interest
- Politics

Historic merit

- Legibility
- SemanticSegmentation
- Accuracy

Colorization using Machine Learning

MIRFLICKR25K

LAB and RGB Color Space

Convolutional Neural Network

Baseline CNN

- 2 Conv Layers
- 2 Conv2DTranspose
 - 15 epochs

Baseline CNN

- 2 Conv Layers
- 2 Conv2DTranspose
 - 15 epochs

Updated CNN

- 9 Conv Layers
- 3 Upsampling Layers
 - 15 epochs

Improved CNN

- 9 Conv Layers
- Accuracy early stopping
 - 100 epochs

Improved CNN

- 9 Conv Layers
- Accuracy early stopping
 - 100 epochs

Final CNN

- 9 Conv Layers
- Accuracy early stopping
 - 1000 epochs

ImageDataGenerator & Feature Mapping

Multiple attempts, progress

ImageDataGenerator

IDG Second Attempt

Normalized AB, No IDG

Comparisons:

Deep CNN, 1000 epochs

Normalized, Upsampled, 1000 epochs

Actual Target

CNN Conclusion:

- Minimal data augmentation seemed to perform best.
- Time inefficient, impractical.
- CNN may eventually work, but best method?

Second Attempt: Autoencoding

Intake full Black&White photo as X, and RGB copy as Y during training.

Using B&W/Color images as validation data

Encoder:

- 3 Conv Layers
- 1 Flatten Layer

Decoder:

- 1 Dense
- 1 Reshape
- 3 Conv2DTranspose

Autoencoder Progress

1st Attempt

2nd Attempt

Actual Target

Autoencoder Conclusion:

- "The generated images (of Autoencoders) are usually fuzzy and not entirely realistic."
- "Reconstructions may be lossy. We may need to train the model for longer, or make the encoder and decoder deeper, or make the codings larger."

Generative Adversarial Network Approach:

Recommendations

Florida Memory:

- Blogs about progress of model
- Maintain public interest
- In-house knowledge/recs
- Custom datasets (Favs)

For the Data Scientist:

- More time and research is needed.
- Autoencoder model can be made to perform better.
- GAN can reinforce good learning, representations with historic integrity.
- Different data may be useful.