Problem: Water Balance for the Flood Control Reservoir

Statement:

A flood control reservoir has been releasing flows in anticipation of a forecast flood event. The reservoir storage is 490,000 m³ at 10 am. The latest forecast inflow (Q_i) and the proposed releases (Q_o) are provided below:

t	Q_i	Q_o
(h)	$(\widetilde{m^3/s})$	(m^3/s)
10 am	57	85
12 noon	74	79
2 pm	122	57
4 pm	164	34
6 pm	136	25
8 pm	102	23

Do the following:

- a. Plot the inflow and outflow (in m³/s) versus time for the forecast flood event.
- b. Compute change in reservoir storage (in m³) for each 2-h time step
- c. Compute the reservoir storage (in m³) at each time (e.g., the times shown in the table above)

Note: The inflows and outflows are instantaneous rates at the time shown. You will need to use these instantaneous rates to estimate inflow and outflow flow **volumes** (in m³) for **each 2-h time step** (e.g., from 10 am to 12 noon, then from 12 noon to 2 pm, and so on). Ignore all other fluxes (e.g., precipitation, evaporation, etc) into and out of the reservoir.

Solution:

Problem-04

Gregory Ewing

February 11, 2019

1 Water Balance for the Flood Control Reservoir

A flood control reservoir has been releasing flows in anticipation of a forecast flood event. The reservoir storage is 490,000 m³ at 10 am. The latest forecast in (Q_i) and the proposed releases (Q_o) are provide below:

t [hr]	Q_i [m ³ /s]	Q _o [m^3/s]
10 am	57	85
12 noon	74	<i>7</i> 9
2 pm	122	57
4 pm	164	34
6 pm	136	25
8 pm	102	23

a) Plot the inflow and outflow (in m^3/s) versus time for the forecast flood event

b) Compute change in reservoir storage (in m³) for each 2-h time step.

The change in storage can be calculated using the average flow rate for each 2-hr time step.

data_interp['DeltaS m3/s'] = data_interp.Q_i_avg - data_interp.Q_o_avg
data_interp['DeltaS m3'] = data_interp['DeltaS m3/s'] * 60 * 60 * 2
print(tabulate(data_interp, headers=data_interp.columns.values, tablefmt='pipe'))

interval	Q_i_avg	Q_o_avg	DeltaS m3/s	DeltaS m3
10:00 - 12:00	65.5	82	-16.5	-118,800
12:00 - 14:00	98	68	30	216,000
14:00 - 16:00	143	45.5	97.5	702,000
16:00 - 18:00	150	29.5	120.5	867,600
18:00 - 20:00	119	24	95	684,000

c) Compute the reservoir storage (in m^3) at each time (e.g., the time shown in the table above)

Reservoir Storage m3	Q_o [m3/s]	Q_i [m3/s]	t [hr]
490,000	85	57	10:00
371,200	79	74	12:00
587,200	57	122	14:00
1,289,200	34	164	16:00
2,156,800	25	136	18:00
2,840,800	23	102	20:00