Appl. No. 10/808,741 Amdt. Dated Feb. 14, 2006 Reply to Office action of November 16, 2005

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently Amended) A rotary shaft for use in the drive line of a motor vehicle, the shaft comprising:

a liner, including a cardboard layer and a ceramic layer, internal dampening means wherein the liner is selectively coupled to a portion of the shaft to absorb vibration energy of the rotary shaft and increase the resonant frequency of bending of the shaft.

- 2. (Withdrawn) A rotary shaft as in claim 1, wherein the dampening means comprises a layer of ceramic material deposited on an inside surface of the shaft.
- 3. (Currently Amended) A rotary shaft as in claim 1, wherein the <u>liner further dampening means</u> comprises an insert comprising: a heat resistant layer; a substantially rigid a substrate, and the; and a ceramic layer is deposited atop the substrate.
- 4. (Currently Amended) A rotary shaft as in claim 3, wherein the <u>liner dampening means</u> is removable from the shaft.
- 5. (Currently Amended) A rotary shaft as in claim 3, wherein the <u>liner dampening means</u> is attached to an inside surface of the shaft.
- 6. (Currently Amended) A rotary shaft as in claim 3, wherein the heat resistant layer comprises cardboard layer is a heat resistant layer.
- 7. (Original) A rotary shaft as in claim 3, wherein the substrate comprises a wire mesh.
- 8. (Original) A rotary shaft as in claim 7, wherein the wire mesh is comprised of stainless steel.

Appl. No. 10/808,741 Amdt. Dated Feb. 14, 2006 Reply to Office action of November 16, 2005

- 9. (Withdrawn) A rotary shaft as in claim 2, wherein said layer of ceramic is arranged on a predetermined section of the shaft.
- 10. (Currently Amended) A rotary shaft as in claim 1, wherein said the liner dampening means increases the resonant frequency of bending of the shaft by about approximately 35%.
- 11. (Currently Amended) A shaft for use in a motor vehicle, said shaft comprising including;
 a tube-like section; and
 a ceramic insert liner having a heat resistant layer and a ceramic layer, wherein the liner is coupled
 to arranged on or near a surface of said tube section, said ceramic insert liner increases the resonant frequency of the shaft.
- 12. (Currently Amended) The shaft of claim 11, wherein said ceramic insert liner is bonded to an inside surface of said tube section.
- 13. (Currently Amended) The shaft of claim 11 12, wherein said eeramic insert liner is attached to a arranged on predetermined sections of said tube section.
- 14. (Currently Amended) The shaft of claim 12, wherein said eeramic insert liner is arranged along the entire length of said tube section.
- 15. (Canceled)
- 16. (Currently Amended) The shaft of claim 15 12, wherein said eeramic insert liner further comprises including a substantially rigid substrate at least partially coated with a said ceramic.
- 17. (Currently Amended) The shaft of claim 16, wherein said heat resistant layer is a cardboard.
- 18. (Currently Amended) The shaft of claim 17, wherein said substantially rigid substrate is a stainless steel mesh.

Appl. No. 10/808,741 Amdt. Dated Feb. 14, 2006 Reply to Office action of November 16, 2005

- 19. (Currently Amended) The shaft of claim 11, wherein said eeramic insert liner increases said resonant frequency by approximately 35%.
- 20. (Currently Amended) The shaft of claim 11, wherein said eeramic insert liner is removable.
- 21. (Original) The shaft of claim 11, wherein said tube section is made of steel or aluminum.