TABLE 2.2 Properties of Conventional and Mechatronic Design Systems

Conventional Design

Added components

1	Bulky	Compact
2	Complex mechanisms	Simple mechanisms
3	Cable problems	Bus or wireless communication
4	Connected components	Autonomous units
	Simple control	Integration by information processing (software)
5	Stiff construction	Elastic construction with damping by electronic feedback
6	Feedforward control, linear (analog) control	Programmable feedback (nonlinear) digital control
7	Precision through narrow tolerances	Precision through measurement and feedback control
8	Nonmeasurable quantities change arbitrarily	Control of nonmeasurable estimated quantities
9	Simple monitoring	Supervision with fault diagnosis
10	Fixed abilities	Learning abilities

Mechatronic Design

Integration of components (hardware)

- 1. Definition of flows
 - · energy flow (electrical, mechanical, thermal conductance)
 - · energy and material flow (fluidic, thermal transfer, thermodynamic, chemical)
- 2. Definition of process elements: flow diagrams
 - · sources, sinks (dissipative)
 - · storages, transformers, converters
- 3. Graphical representation of the process model
 - · multi-port diagrams (terminals, flows, and potentials, or across and through variables)
 - · block diagrams for signal flow
 - · bond graphs for energy flow
- 4. Statement of equations for all process elements
 - (i) Balance equations for storage (mass, energy, momentum)
- (ii)Constitutive equations for process elements (sources, transformers, converters)
- (iii)Phenomenological laws for irreversible processes (dissipative systems: sinks)
- 5. Interconnection equations for the process elements
 - · continuity equations for parallel connections (node law)
 - · compatibility equations for serial connections (closed circuit law)
- 6. Overall process model calculation
 - · establishment of input and output variables
 - · state space representation
 - · input/output models (differential equations, transfer functions)

	Precision Mechanics	Mechanical Elements	Machines
Pure mechanical system			
Addition of sensors, actuators, microelectronics, control functions Integration of components (hardware integration)			
Integration by information processing (software integration) Redesign of mechanical system			0
5. Creation of synergetic effects	\Diamond	Ò	†
Fully integrated mechatronic systems		Ŏ	Ŏ
Examples	Sensors actuators disc-storages cameras	Suspensions dampers clutches gears brakes	Electric drive combustion engines mach. tools robots

The size of a circle indicates the present intensity of the respective mechatronic develmedium, little. opment step: large,

- design and testing of the control hardware and software without operating a real process ("moving the process field into the laboratory");
- testing of the control hardware and software under extreme environmental conditions in the laboratory (e.g., high/low temperature, high accelerations and mechanical shocks, aggressive media, electro-magnetic compatibility);
- · testing of the effects of faults and failures of actuators, sensors, and computers on the overall system;
- · operating and testing of extreme and dangerous operating conditions;
- · reproducible experiments, frequently repeatable;
- easy operation with different man-machine interfaces (cockpit-design and training of operators); and
- · saving of cost and development time.

