Feedback — Week 4 Quiz **Please Note: No Grace

Period**

You submitted this quiz on **Tue 30 Dec 2014 5:39 PM PST**. You got a score of **10.00** out of **10.00**. However, you will not get credit for it, since it was submitted past the deadline.

Question 1

What is produced at the end of this snippet of R code?

set.seed(1)
rpois(5, 2)

Your Answer		Score	Explanation
A vector with the numbers 1, 1, 2, 4, 1	~	1.00	Because the `set.seed()' function is used, `rpois()' will always output the same vector in this code.
A vector with the numbers 3.3, 2.5, 0.5, 1.1,1.7			
A vector with the numbers 1, 4, 1, 1, 5			
It is impossible to tell because the result is random			
Total		1.00 / 1.00	

Question 2

What R function can be used to generate standard Normal random variables?

Your Answer		Score	Explanation
o pnorm			
o dnorm			
rnorm	~	1.00	Functions beginning with the `r' prefix are used to simulate random variates.
o qnorm			
Total		1.00 / 1.00	

Question Explanation

Standard probability distributions in R have a set of four functions that can be used to simulate variates, evaluate the density, evaluate the cumulative density, and evaluate the quantile function.

Question 3

When simulating data, why is using the set.seed() function important?

Your Answer		Score	Explanation
It ensures that the random numbers generated are within specified boundaries.			
It ensures that the sequence of random numbers is truly random.			
It ensures that the sequence of random numbers starts in a specific place and is therefore reproducible.	~	1.00	
It can be used to generate non-uniform random numbers.			
Total		1.00 /	

Which function can be used to evaluate the inverse cumulative distribution function for the Poisson distribution?

Your Answer	Score	Explanation
dpois		
ppois		
qpois	1.00	Probability distribution functions beginning with the `q' prefix are used to evaluate the quantile (inverse cumulative distribution) function.
o rpois		
Total	1.00 / 1.00	

Question 5

What does the following code do?

```
set.seed(10)
x <- rbinom(10, 10, 0.5)
e <- rnorm(10, 0, 20)
y <- 0.5 + 2 * x + e</pre>
```

Your Answer	Score	Explanation
Generate random exponentially distributed data		
Generate uniformly distributed random data		
Generate data from a Normal linear model	✓ 1.00	

Generate data from a Poisson generalized linear model					
Total	1.00 / 1.00				

What R function can be used to generate Binomial random variables?

Your Answer		Score	Explanation
Opbinom			
O dbinom			
qbinom			
• rbinom	~	1.00	
Total		1.00 / 1.00	

Question 7

What aspect of the R runtime does the profiler keep track of when an R expression is evaluated?

Your Answer Score Explanation the working directory the package search list the function call stack ✓ 1.00 the global environment			
 the package search list the function call stack✓ 1.00	Your Answer	Score	Explanation
● the function call stack✓ 1.00	 the working directory 		
	the package search list		
the global environment	• the function call stack	1.00	
- the global environment	the global environment		
	- the global environment		

Consider the following R code

```
library(datasets)
Rprof()
fit <- lm(y ~ x1 + x2)
Rprof(NULL)</pre>
```

(Assume that y, x1, and x2 are present in the workspace.) Without running the code, what percentage of the run time is spent in the 'lm' function, based on the 'by.total' method of normalization shown in 'summaryRprof()'?

Your Answer	Sco	ore Ex	planation
It is not possible to tell			
● 100%	✓ 1.0		nen using `by.total' normalization, the top-level function (in s case, `lm()') always takes 100% of the time.
50%			
23%			
Total	1.0 1.0		

Question 9

When using 'system.time()', what is the user time?

Your Answer		Score	Explanation
It is a measure of network latency			
It is the time spent by the CPU evaluating an expression	~	1.00	
It is the "wall-clock" time it takes to evaluate an expression			
 It is the time spent by the CPU waiting for other tasks to 			

finish	
Total	1.00 /
	1.00

If a computer has more than one available processor and R is able to take advantage of that, then which of the following is true when using 'system.time()'?

Your Answer		Score	Explanation
elapsed time is 0			
user time is always smaller than elapsed time			
user time is 0			
elapsed time may be smaller than user time	~	1.00	
Total		1.00 / 1.00	