共 7 页 第 1 页

(luobin考研复习卷)

姓名

7.	制造晶体管一般是在高	5杂质浓度的 n 型衬底上外延-	一层 n 型的外延层,再在外延层中				
	扩散硼、磷而成。n型和	硅单晶衬底是掺锑的,锑的电	离能为 $0.039eV$,室温下时的 E_F				
	位于导带底下方0.026	eV 处,半导体的状态为	(填"简并","弱简并"				
	或"非简并"),判断的]依据为。					
8.	影响器件性能。半导	体器件的热载流子由于具	还可能使载流子成为热载流子, 备高能量,常常会导致载流子 包离,利用这一原理可以制备				
9.	早期锗硅等半导体材料	常利用测其电阻率的办法来	估计纯度,室温下较纯 Ge 样品的				
	电子迁移率 $\mu_{\scriptscriptstyle n}=3900cm^2/V\cdot s$,锗原子密度 $\rho=4.42\times 10^{22}cm^{-3}$,若测得室温下电阻						
	率为 $10\Omega \cdot cm$,则利用	引此方法测得 n 型锗的掺杂浓质	度为,这种测量方法				
	来估计纯度的局限性是。						
10.	0. 金属的费米能级位于导带之上, n 型半导体与金属接触形成整流接触,那么半导位金属的功函数哪个大?。由于半导体与金属之间存在整体载流子水平,所以会产生载流子(电子)的扩散,形成内建电场;内建电场几乎全部建立各导体一侧的原因是。具有整流接触的金-半接触称为肖特基接触,肖特相比普通 pn 结,在高频高速器件具有更重要的作用,其原因在于肖特基接触不电荷存储现象。肖特基接触不存在电荷存储现象的原因是。制造 p可选用的技术主要有合金、扩散、外延生长、等,用掺杂制作 pn 结服了金-半接触的一大缺点:。						
11.	下图是 p 型半导体的能	是带图。三图中哪些图表明半	导体存在电流?。图				
	b 中电子的运动方向为	月(填"向左"或	\mathfrak{d} "向右"); 图 c 左边与右边哪边				
	电势高?	_,空穴的扩散方向为	(填"向左"或"向右")。				
	E_{C}^{-}	E_{c}	E_{c}				
			E_{F}				
	$E_{\scriptscriptstyle F}$	E_F	E_{V}				
	$\overline{E_{V}}$	E_{V}	,				
	图 <i>a</i>	图 $oldsymbol{b}$	图 <i>c</i>				
		共 7 页 第 2 页	(luobin 考研复习卷)				

12. 非平衡载流子通过 _______作用而消失,非平衡载流子的 ________叫做寿命 τ ,寿命 τ 与 ______在 _____中的位置密切相关。对于 p 型半导体,本征载流子浓度为 n_i ,电子浓度为 n_0 ,复合系数为 r,忽略间接复合,小注入条件下由直接复合决定的非平衡载流子寿命 τ 约为 。

二、 简答题(共72分)

1.(14分)下图分别是半导体材料Si、Ge和GaAs的能带结构示意图。

- (1) **Si**、**Ge** 为间接带隙半导体,**GaAs** 为直接带隙半导体,判断的依据是什么?直接带隙半导体相对于间接带隙半导体具有什么优势?
- (2) **GaAs** 导带不止一个极小值(能谷),在[111]方向布里渊区边界 L 处还有一个极小值,有效质量为 $0.55m_0$ 。 L 处的能量极小值比布里渊区中心处的仅高0.29eV,**GaAs** 这两个能量接近的能谷使其电学特性有别于**Si** 和**Ge**,试解释说明这种区别。
- (3) Si、Ge和GaAs导带底的电子有效质量是张量还是标量,判断的依据是什么?

2.(10分) 硅 pn 结 p 区掺杂浓度远小于 n 区掺杂浓度,在小注入条件下,分析在偏压下电子和空穴在中性区、扩散区和势垒区中的运动情况(漂移和扩散的方向及相对大小)。
3.(12分) pn 结击穿主要有哪些?说明各种击穿产生的原因和条件,并分析影响它们的主要因素。
4.(12分) 半导体中有几种导电粒子,各有什么特性?何谓电中性?
5.(10分)何为扩散电容和势垒电容?为什么大的正偏电压以扩散电容为主,反向偏压下以势垒电容为主?
共 7 页 第 4 页 (luobin 考研复习卷)

6.(14分) 一个半导体棒,光照前处于热平衡态,光照后处于稳定态,分别由下图给出的能带图来描述。设室温时的本征载流子浓度 $n_i=1\times 10^{10}$ cm^{-3} 。

- (1)解释说明热平衡态、非平衡态和稳态三个概念;
- (2) 当棒被光照射时,"小注入"条件成立吗? 试说明理由;
- (3) 恒定光照在半导体棒上,非平衡载流子的产生率 $G_{op} = 4 \times 10^{15} \, cm^{-3} \, s^{-1}$,求撤去光照5us 时准费米能级之间的差。

三、 计算题(共43分)

1.(13分) 单晶硅中均匀地掺入两种杂质:掺硼 1.5×10^{16} cm^{-3} ,掺磷 5.0×10^{15} cm^{-3} 。 室温 下: $\mu_n=1350$ cm^2 $/V\cdot s$, $\mu_p=480$ cm^2 $/V\cdot s$, $n_i=1.5\times10^{10}$ cm^{-3} , $N_C=2.8\times10^{19}$ cm^{-3} , $N_V=1.1\times10^{19}$ cm^{-3} ; 600 K 时: $n_i=6\times10^{10}$ cm^{-3} 。

(1) 求室温下费米能级位置及电导率;

(2) 求 **600K** 下载流子浓度。

2.(15分) 如果稳定光照射在一块均匀掺杂的n型半导体中均匀产生非平衡载流子,产生率为 $G_{op}=3\times10^{14}cm^{-3}s^{-1}$,且无外场作用,空穴迁移率 $\mu_p=430cm^2/V\cdot s$, $\tau_p=5us$,半导体的长度远远大于空穴的扩散长度,如图所示。假设样品左侧存在表面复合,表面复合率为 $U_s=7.5\times10^{11}cm^{-2}s^{-1}$,比例系数(表面复合速度)为s。

- (1) 求比例系数s;
- (2)什么位置时非平衡载流子的浓度为1.25×10°cm-3?

(提示:非平衡载流子的复合只是在表面非常薄的一层内发生,所以非平衡载流子的表面 复合率只是以边界条件出现: $U_s = D_p \frac{d\Delta p}{dx} \Big|_{\epsilon 0}$, 非平衡载流子的连续性方程为

$$\frac{\partial p}{\partial t} = D_p \frac{\partial^2 p}{\partial x^2} - p \mu_p \frac{d\varepsilon}{dx} - \varepsilon \mu_p \frac{\partial p}{\partial x} - \frac{\Delta p}{\tau_p} + g_p$$

3.(15分)下表列出了T=300K下Si和Ge的相关系数:

各项参数	$m_{_t}$	m_l	$(m_p)_h$	$(m_p)_l$	$m_{_{dn}}$	m_{dp}	$E_g(eV)$
Si	$0.197m_0$	$0.92m_0$	$0.49m_0$	$0.16m_0$		$0.55m_0$	1.12
Ge	$0.082m_0$	1.64 <i>m</i> ₀	$0.28m_0$	$0.044m_0$	$0.56m_0$		0.67

- (1) 计算并补充完表格;
- (2) 已知室温下(T=300K)Ge 的 $N_{\rm C}=1.05\times 10^{19}$ cm^{-3} 、 $N_{\rm V}=3.9\times 10^{18}$ cm^{-3} ,求 室温下 Ge 的本征载流子浓度;
- (3) 解释说明有效质量、状态密度有效质量和电导有效质量这三个概念;
- (4) 证明Si沿[010]方向的电导有效质量 m_c 满足 $\frac{1}{m_c} = \frac{1}{3}(\frac{2}{m_t} + \frac{1}{m_l})$ 。