Homework 6

Drew Dahlquist

3/20/2022

1. (a) $p(\sigma_1^2|Y,\sigma_2^2,...\sigma_{10}^2,b) \sim InvGamma(a+\frac{1}{2},\frac{1}{2}(Y_1^2+2b))$ $p(b|*) \sim Gamma(1,1)$ (b) Step 1: Select initial values for $\sigma_1^2,\,\sigma_2^2,\,\sigma_3^2,\,\sigma_4^2,\,\sigma_5^2,\,\sigma_6^2,\,\sigma_7^2,\,\sigma_8^2,\,\sigma_{10}^2$ Step 2: For s = 1 ... S, iterate through the following: Step 2a: $p(b|*) \sim Gamma(1,1)$ Step 2b: $p(\sigma_1^2|Y,\sigma_2^2,...,\sigma_{10}^2,b) \sim InvGamma(a+\frac{1}{2},\frac{1}{2}(Y_1^2+2b))$ Step 2c: $p(\sigma_2^2|Y,\sigma_1^2,\sigma_3^2,...,\sigma_{10}^2,b) \sim InvGamma(a+\frac{1}{2},\frac{1}{2}(Y_2^2+2b))$ Step 2d-k: Similar to above for σ_3^2 through σ_{10}^2 . (c)

sig2_1 Density

sig2_2 Density

sig2_4 Density

sig2_6 Density

sig2_8 Density

sig2_10 Density

The trace plots raise questions about the convergence of the chains. They could maybe pass as a caterpillar that just got a fresh shave (i.e., no fuzz).

sig2_1 Trace Plot

sig2_2 Trace Plot

Iteration sig2_3 Trace Plot

sig2_4 Trace Plot

Iteration sig2_5 Trace Plot

sig2_6 Trace Plot

Iteration sig2_7 Trace Plot

sig2_8 Trace Plot

Iteration

sig2_10 Trace Plot

(e)

The results obtained via JAGS (posterior density & trace plots) are identical to those obtained in (c).

```
## Loading required package: coda
## Linked to JAGS 4.3.0
## Loaded modules: basemod, bugs
## Compiling model graph
##
      Resolving undeclared variables
##
      Allocating nodes
## Graph information:
##
      Observed stochastic nodes: 0
##
      Unobserved stochastic nodes: 11
##
      Total graph size: 60
##
## Initializing model
```

Trace of sigma2[1]

Trace of sigma2[2]

Trace of sigma2[3]

Trace of sigma2[4]

Trace of sigma2[5]

Trace of sigma2[6]

Density of sigma2[1]

Density of sigma2[2]

Density of sigma2[3]

Density of sigma2[4]

Density of sigma2[5]

Density of sigma2[6]

The figure is about as expected. The random walk with the greatest c^2 value jumps around the chart more, whereas the one with the lowest c^2 value hardly moves at all in comparison.


```
(3)
## Loading required package: MASS
## ##
  ## Markov Chain Monte Carlo Package (MCMCpack)
   ## Copyright (C) 2003-2022 Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park
## ##
  ## Support provided by the U.S. National Science Foundation
## ## (Grants SES-0350646 and SES-0350613)
##
  ##
##
## Attaching package: 'MCMCpack'
## The following objects are masked from 'package:invgamma':
##
##
       dinvgamma, rinvgamma
 (a)
```

 c^2 was set to 3, and d^2 was set to 600. The acceptance rates are 0.4182 for μ and 0.4084 for σ^2 .

mu Trace Plot

(b) $95\% \mbox{ credible interval for } \mu=(295.6453372,\,298.2930477).$ $95\% \mbox{ credible interval for } \sigma^2=(83.3314509,\,121.0733721)$