CS60010: Deep Learning

Sudeshna Sarkar

Spring 2019

23 Jan 2019

BACKPROPAGATION: INTRODUCTION

How do we learn weights?

Backpropagation

- Feedforward Propagation: Accept input x, pass through intermediate stages and obtain output \hat{y}
- **During Training**: Use \hat{y} to compute a scalar cost $J(\theta)$
- Backpropagation allows information to flow backwards from cost to compute the gradient

Backpropagation

- We don't know what the hidden units should do
- But, we can compute how fast the error changes as we change a hidden activity
- Use error derivatives w.r.t hidden activities
- Each hidden unit can affect many output units and have separate effects on error – combine these effects
- Can compute error derivatives for hidden units efficiently (and once we have error derivatives for hidden activities, easy to get error derivatives for weights going in)

Computational Graph

- Formalize computation as graphs
- Nodes indicate variables (scalar, vector, tensor or another variable)
- Operations are simple functions of one or more variables

$$f(x, y, z) = (x + y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$f(x,y,z) = (x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z) = (x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z) = (x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z) = (x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z) = (x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z) = (x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z) = (x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$

$$f=qz \hspace{1cm} rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$$

$$f(x,y,z) = (x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z) = (x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Chain rule:

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y}$$

$$f(x,y,z) = (x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z) = (x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x}$$

 ∂x

Backpropagation: local process.

Every gate gets some inputs and can compute two things:

- 1. its output value
- 2. the *local* gradient of its inputs with respect to its output value.

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Another backprop example:

$$f(x) = e^x$$
 o $\dfrac{df}{dx} = e^x$ $f(x) = \dfrac{1}{x}$ o $\dfrac{df}{dx} = -1/x^2$ $f_a(x) = ax$ o $\dfrac{df}{dx} = a$ $f_c(x) = c + x$ o $\dfrac{df}{dx} = 1$

29

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x \ f_a(x) = ax &
ightarrow & rac{df}{dx} = a \ \hline \end{pmatrix} \qquad f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x^2 \ f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \ \hline \end{pmatrix}$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x \ f_a(x) = ax &
ightarrow & rac{df}{dx} = a \ \hline \end{pmatrix} \qquad f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x^2 \ f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \ \hline \end{pmatrix}$$

$$f(x) = e^x \qquad o \qquad rac{df}{dx} = e^x \qquad f(x)$$
 $f_a(x) = ax \qquad o \qquad rac{df}{dx} = a \qquad f_c$

$$f(x)=rac{1}{x}
ightarrow rac{df}{dx}=-1/x$$
 $f_c(x)=c+x
ightarrow rac{df}{dx}=1$

Another example:

Another example:

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$\sigma(x) = \frac{1}{1+e^{-x}}$$

sigmoid function

$$\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1+e^{-x})^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = (1-\sigma(x))\sigma(x)$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$\sigma(x) = rac{1}{1+e^{-x}}$$

sigmoid function

$$\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1+e^{-x})^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = (1-\sigma(x))\sigma(x)$$

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Patterns in backward flow

add gate: gradient distributor

max gate: gradient router

mul gate: gradient... "switcher"?

Gradients add at branches

Implementation: forward/backward API

Graph (or Net) object. (Rough psuedo code)

```
class ComputationalGraph(object):
   # . . .
    def forward(inputs):
        # 1. [pass inputs to input gates...]
        # 2. forward the computational graph:
        for gate in self.graph.nodes topologically sorted():
            gate.forward()
        return loss # the final gate in the graph outputs the loss
    def backward():
        for gate in reversed(self.graph.nodes topologically sorted()):
            gate.backward() # little piece of backprop (chain rule applied)
        return inputs gradients
```

Implementation: forward/backward API

(x,y,z are scalars)

Implementation: forward/backward API


```
class MultiplyGate(object):
    def forward(x,y):
       z = x*y
        self.x = x # must keep these around!
        self.y = y
        return z
    def backward(dz):
       dx = self.y * dz # [dz/dx * dL/dz]
       dy = self.x * dz # [dz/dy * dL/dz]
        return [dx, dy]
```

(x,y,z are scalars)

Q: Why is it back-propagation?

outputs y

complex graph

Why is it back-propagation? i.e. why go backwards?

reverse-mode differentiation (if you want effect of many things on one thing)

 $\frac{\partial y}{\partial x}$ for many different x

forward-mode differentiation (if you want effect of one thing on many things)

 $\frac{\partial y}{\partial x}$ for many different y

Why is it back-propagation? i.e. why go backwards?

reverse-mode differentiation (if you want effect of many things on one thing)

$$\frac{\partial y}{\partial x}$$
 for many different x

More common simply because many nets have a scalar loss function as output.

Gradients for vector data

Chain Rule

- Consider $\mathbf{x} \in \mathbb{R}^m, \mathbf{y} \in \mathbb{R}^n$
- Let $g: \mathbb{R}^m \to \mathbb{R}^n$ and $f: \mathbb{R}^n \to \mathbb{R}$
- Suppose $\mathbf{y} = g(\mathbf{x})$ and $z = f(\mathbf{y})$, then

$$\frac{\partial z}{\partial x_i} = \sum_j \frac{\partial z}{\partial y_j} \frac{\partial y_j}{\partial x_i}$$

In vector notation:

$$\begin{pmatrix} \frac{\partial z}{\partial x_1} \\ \vdots \\ \frac{\partial z}{\partial x_m} \end{pmatrix} = \begin{pmatrix} \sum_j \frac{\partial z}{\partial y_j} \frac{\partial y_j}{\partial x_1} \\ \vdots \\ \sum_j \frac{\partial z}{\partial y_j} \frac{\partial y_j}{\partial x_m} \end{pmatrix} = \nabla_{\mathbf{x}} z = \begin{pmatrix} \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \end{pmatrix}^T \nabla_{\mathbf{y}} z$$

Chain Rule

$$abla_{\mathbf{x}}z = \left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)^T
abla_{\mathbf{y}}z$$

- \bullet $\left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)$ is the $n \times m$ Jacobian matrix of g
- Gradient of $\mathbf x$ is a multiplication of a Jacobian matrix $\left(\frac{\partial \mathbf y}{\partial \mathbf x}\right)$ with a vector i.e. the gradient $\nabla_{\mathbf v} z$
- Backpropagation consists of applying such Jacobian-gradient products to each operation in the computational graph
- In general this need not only apply to vectors, but can apply to tensors w.l.o.g