Aprendizado de Máquina

Aprendizado profundo

André C. P. L. F. de Carvalho Posdoutorando: Isvani Frias-Blanco ICMC-USP

Principais tópicos

- Introdução
- Extração de características
- Redes profundas
- Aprendizado profundo
- Redes autodecodificadoras
- Redes convolucionais

© André de Carvalho - ICMC/USP

Limitações de AM

- Dificuldade de utilizar os dados no formato original
- Necessário extrair características (atributos)
 - Transformar dados de entrada em um vetor de características
 - Que pode ser usado como novo vetor de entrada por algoritmos de AM

© André de Carvalho - ICMC/USP

Extração de características

- Deve gerar representações que:
 - Selecionam aspectos relevantes para a classificação correta
 - Ignoram aspectos irrelevantes para a classificação
- Alternativa 1: extrair "manualmente" características que considerar relevantes
 - Necessário poder projetar bons extratores e ter bom conhecimento do domínio de aplicação
 - Caro e subjetivo

© André de Carvalho - ICMC/USP

Extração de características

- Alternativa 2: utilizar extrator genérico de características não-lineares
 - Ex.: funções kernel genéricas
 Gaussiana, polinomial, ...
 - Pode ter baixa generalização para exemplos muito diferentes dos de treinamento
- Alternativa 3: aprender a extrair boas características automaticamente
 - Usando um algoritmo genérico de aprendizado
 - Redes neurais profundas

© André de Carvalho - ICMC/USP

RNs profundas (RNP)

- Redes neurais MLP em geral têm 1 camada intermediária
 - Redes neurais rasas (shallow)
 - Poucas camadas dificulta induzir função que represente bem os dados de treinamento
- Muitas camadas + backpropagation levam a soluções pobres
 - Problemas de atribuição de erro e lentidão e
 - Pequena quantidade de exemplos de treinamento

© André de Carvalho - ICMC/USP

Outros problemas do backprop

- Pode convergir para mínimos locais
 - Não é tão problemático quando número de atributos preditivos é grande
- Pode usar apenas dados rotulados
 - Maioria dos dados é gerado sem rótulo
 - Custo de rotular manualmente pode ser elevado

© André de Carvalho - ICMC/USF

RNs profundas (RNP)

- Complexidade em teoria de circuitos
 - Sugere que arquiteturas mais profundas podem ser mais eficientes
 - Quando a tarefa é complexa e existem dados suficientes para capturar essa complexidade
 - Necessário utilizar algoritmos de treinamento apropriados

© André de Carvalho - ICMC/USP

RNs profundas (RNP)

- Qualquer algoritmo pode ser implementado em um circuito Booleano profundo o suficiente
 - Uma camada para cada passo de execução do algoritmo
 - Quanto mais profundo o circuito, mais complexo o algoritmo que pode ser implementado

© André de Carvalho - ICMC/USP

RNs profundas (RNP)

- Redes neurais são mais eficientes que circuitos booleanos
 - Precisam de menos camadas que circuitos Booleanos para o mesmo problema
 - Redes mais profundas (RNPs) ⇒
 - Algoritmos com mais passos ⇒
 - Algoritmos mais poderosos

© André de Carvalho - ICMC/USP

10

RNs profundas (RNP)

- Redes com 2 camadas e poucas unidades escondidas ordenam N números de N bits
 - Impossível fazer com circuito Booleano de 2 camadas
 Precisa de muito mais camadas
 - Neurônios realizam operações de limiar de sinal
- Neurônios naturais são lentos
 - #disparos < 100 vezes por segundo
 - Para resolvermos problema em 0.1s
 - Podemos ter uma sequência de no máximo 10 disparos
 - Rede natural com 10 camadas faz o que fazemos em 0.1s

© André de Carvalho - ICMC/USP

O que podemos fazer em 0.1s

- Reconhecer uma face
- Reconhecer emocão
- Entender uma fala

- Teoricamente, RNPs podem fazer o que seres humanos fazem, em menos tempo
 - Basta encontrar valores corretos para seus pesos

© André de Carvalho - ICMC/USP

Redes profundas

- Arquitetura com várias camadas
 - Mais de uma camada intermediária
 - Camadas podem ter propósitos diferentes
- Aprendizado profundo
 - Algoritmo de treinamento para treinar redes profundas
- Não muda muito em relação às redes MLP e seu treinamento

© André de Carvalho - ICMC/USP

4

Redes profundas

- Desde as redes MLPs
 - Camadas intermediárias extraem características
 - Dificuldades:
 - Algoritmo de treinamento backpropagation funcionava bem até poucas camadas
 - Problema de atribuição de erro
 - Tecnologia computacional disponível
 - Uso de conjuntos de dados pequenos

© André de Carvalho - ICMC/USP

RNs profundas

- Família de técnicas
 - Características são extraídas hierarquicamente por aprendizado
 - Não supervisionado
 - Pode usar dados não rotulados
 - Semi-supervisionado
 - Características cada vez mais complexas são extraídas

© André de Carvalho - ICMC/USF

Deep learning

- Aprendizado profundo
- Técnicas de aprendizado representacional
 - Converter fala em texto em fala
 - Diagnosticar problemas de acordo com sintomas
 - Identificar objetos em imagens

© André de Carvalho - ICMC/USP

16

Deep learning

- Aprendem a extrair representações de dados de entrada
 - Que podem ser utilizadas para tarefas de classificação
 - Usam estruturas (arquiteturas) com vários níveis de representação
 - Composição de módulos (camadas) de processamento simples e não linear
 - Cada camada transforma a representação obtida pela camada anterior

© André de Carvalho - ICMC/USP

Extração de características

- Representações da entrada se tornam cada vez mais abstratas
- Compor de várias camadas permite extrair características complexas
 - Aprender funções complexas
 - Cada transformação amplifica aspectos importantes para a classificação
 - e elimina variações irrelevantes

© André de Carvalho - ICMC/USP

Extração de características

- Inicialmente características simples
- Nível crescente de abstração
 - Cada camada faz uma transformação não linear das características recebidas

partes de objetos

© André de Carvalho - ICMC/USP

Aspectos positivos das RNPs

- Biologicamente plausíveis
- Para dados com n atributos preditivos
 - Número de neurônios necessários em uma rede rasa cresce exponencialmente com n
 - Em uma rede profunda, esse número cresce e no máximo linearmente com n
 - Redes mais profundas podem usar menos pesos e parâmetros
 - Ex.: paridade

© André de Carvalho - ICMC/USP

Primeiras redes

- Neognitron, 1980
- Linsker rede neural com conexões laterais, 1986
- MLP com várias camadas, 1989
- Neural history compressor, 1983
- SOFT-GSN, 1984

© André de Carvalho - ICMC/USF

Principais RNs profundas

- Redes credais profundas (RCP)
- Redes autocodificadoras empilhadas (RAE)
- Redes neurais convolucionais (RNC)
- Redes neurais profundas (RNP)

© André de Carvalho - ICMC/USP

22

Redes neurais profundas

- Redes com mais de uma camada intermediária
 - Em geral, completamente interconectadas
- Geralmente, as camadas intermediárias (ou parte delas) são pré-treinadas
 - Depois, utilizam backpropagation nas camadas finais

© André de Carvalho - ICMC/USF

Ou em toda a rede

Redes autocodificadoras

- Uma das razões para o ressurgimento do interesse em RNAS
 - Rede MLP em que:
 - Número de neurônios da camada de saída = número de entradas
 - Uma camada intermediária com muito menos neurônios que a camada de saída
 - Treinamento ensina a rede a responder com um vetor de saída igual ao vetor de entrada
 - Criadas na década de 1980

© André de Carvalho - ICMC/USP

Redes autocodificadoras

- Rede aprende a codificar a entrada usando poucos bits
 - Camada de saída funciona como decodificador para o tamanho original
 - Quanto menos neurônios na camada intermediária, menor o tamanho do código
 - Semelhante a programas de compressão de arquivos, mas a rede aprende como comprimir

© André de Carvalho - ICMC/USP

25

Redes autocodificadoras

- Poucos neurônios na camada intermediária dificultavam aprendizado
 - Tinham que codificar uma grande quantidade de informação em poucos bits
 - Saíram de moda
 - Cerca de uma década depois uma nova proposta:
 - Usar uma camada intermediária maior que as camadas de entrada e de saída

© André de Carvalho - ICMC/USP

Redes autocodificadoras esparsas

- Cada ajuste dos pesos ignora a maioria dos neurônios da camada intermediária
 - Camada escondida não copia entrada
 - Aprendizado de torna bem mais fácil
- Mais adiante, foi proposto o uso de várias camadas codificadoras
 - Redes autocodificadoras empilhadas

© André de Carvalho - ICMC/USP

20

Rede autocodificadora empilhada

- Empilha autodecodificadores esparsos
 - Camada escondida do primeiro autodecodificador, se torna entrada e saída do segundo
 - Camada escondida do segundo, se torna entrada e saída do terceiro ...
 - Cada camada intermediária aprende uma representação mais sofisticada da entrada
 - Camada intermediária anterior

© André de Carvalho - ICMC/USP

Rede autocodificadora empilhada

- Treina autodecodificadores seguencialmente
 - Abordagem gulosa de treinemnto
 - Altera camada de entrada e de saída a cada vez

© André de Carvalho - ICMC/USP

Rede autocodificadora empilhada

- Última camada da (camada de saída)
 - Classificador softmax
 - Generalização da função logística
 - Transforma um vetor com k valores reais em k valores ∈ (0.0,1.0] cuja soma = 1
 - Treinamento
 - Indução de classificador
 - Treina última camada (ou toda a rede) com backpropagation

© André de Carvalho - ICMC/USP

-

RNs convolucionais

- ConvNets ou CNN
- Propostas para visão computacional
 - Procuram padrões visuais utilizando os pixels das imagens
 - Robustas a distorções e transformações geométricas
- Semelhante a rede neocognitron, proposta na década de 80

© André de Carvalho - ICMC/USP

RNs convolucionais

- Utilizam camadas para convolução de uma imagem
 - Camadas de convolução aplicam transformações a pixels de uma imagem de entrada
- Compostas por dois estágios
 - Sequência de pares de camadas
 - Camada convolucional
 - Extrai mapas de características de uma imagem usando filtros
 - Camada de amostragem (pooling)
 - Mantém apenas as informações mais relevantes dos mapas
 - Rede MLP convencional

© André de Carvalho - ICMC/USP

Redes credais profundas

- Modelos probabilísticos
- Treinamento guloso camada a camada
 - Primeiras camadas recebem conexão top down da camada seguinte
 - Cada camada é uma Máquina de Boltzman restrita
 - Duas últimas camadas têm conexões bidirecionadas
 - Com pesos simétricos entre elas

© André de Carvalho - ICMC/USP

Conclusão

- Introdução
- Extração de características
- Redes profundas
- Aprendizado profundo
- Redes autodecodificadoras
- Redes convolucionais

© André de Carvalho - ICMC/USP

