If 90% of the ideas you generate aren't absolutely worthless, then you're not generating enough ideas.

—Michael Artin

1. Carmichael numbers:

- (a) Prove that 1105 is a Carmichael number by showing that for each prime factor $p \mid 1105$, and for every a s.t. (a, 1105) = 1, $a^{1104} \equiv 1 \pmod{p}$, whence the same holds mod 1105.
- (b) Let $n = p_1 p_2 \cdots p_r$ be a product of *distinct* primes such that $p_i 1 \mid n 1$ for every $i = 1, 2, \dots r$. Show that n is a Carmichael number.
- (c) Give three examples of numbers > 2000 which satisfy the hypotheses above and hence are Carmichael numbers.
- 2. Prove or Disprove and Salvage if Possible. Try to prove your salvages.
 - (a) No Carmichael number is divisible by a perfect square > 1.
 - (b) For $p \in \mathbf{Z}^+$, $(p-1)! \equiv -1 \pmod{p} \iff p$ is prime.
 - (c) If $\varphi(n) \mid (n-1)$, then n is a square-free integer.
 - (d) For all $a, m, n \in \mathbf{Z}^+$, $(a^n 1, a^m 1) = (a^{(n,m)} 1)$

3. Numerical Problems

- (a) Find the smallest Fermat witness for 2701.
- (b) Let m = 512,461. Use Wolfram Alpha to check whether any values $2 \le a \le 11$ are Fermat witnesses for m. What do you find? Does this tell you anything for certain about whether m is prime or not?
- (c) Describe an infinite set of integers which all satisfy $\varphi(n) \mid n$.
- (d) Find the last two digits of the decimal representation of 3^{F_5} , where $F_5 = 2^{2^5} + 1$ is the fifth Fermat number.

4. Exploration of squares in \mathbb{Z}/p

(a)	Look at both files "Squares Modulo Primes" and "Primes and Congruence Conditions"
	which both concern primes up to 200, $\mathbf{together}$. Writing \square for an unknown square, con-
	jecture from the files a set of congruence conditions on all primes p which characterize
	those for which $-1 \equiv \Box \mod p$, with finitely many possible exceptions. Your characteristic for which $-1 \equiv \Box \mod p$, with finitely many possible exceptions.
	terization should account for all $p < 200$ for which $-1 \equiv \Box \mod p$ and not include any
	$p < 200$ for which $-1 \not\equiv \square \mod p$.
	Then do the same for each of the conditions $2 \equiv \square \mod p, \ -2 \equiv \square \mod p, \ 3 \equiv \square \mod p$
	$-3 \equiv \square \mod p$, $5 \equiv \square \mod p$, and $-5 \equiv \square \mod p$. The last case, with -5 , will be harden
	than the rest!

- (b) For m=11,14,18, and 22, find a generator for the units mod m and explicitly show that the powers of your generator run through all the units modulo m.

 In the file "Moduli with a Generator for the Units" is a table of all moduli below 302 where the units have a generator. Propose a general characterization of the $m \geq 2$ for which the units modulo m have a generator. Your characterization should not only include all integers $m \leq 302$ which appear in the table but also exclude all positive integers up to 302 which are not in the table. (Hint: Consider first odd m, then even m.)
- 5. Arithmetic in $\mathbb{Z}[\sqrt{\mathbf{d}}]$: For any non-square $d \in \mathbb{Z}$, let

$$\mathbf{Z}[\sqrt{d}] = \{a + b\sqrt{d} : a, b \in \mathbf{Z}\}.$$

For example,

$$\mathbf{Z}[\sqrt{5}] = \{a + b\sqrt{5} : a, b \in \mathbf{Z}\} = \{0, 6, \sqrt{5}, 7 + 4\sqrt{5}, -9 + 11\sqrt{5}, \dots\}.$$

The elements of $\mathbf{Z}[\sqrt{d}]$ are closed under addition, subtraction, and multiplication. (The case d=-1 is the Gaussian integers.) For $\alpha=a+b\sqrt{d}$ in $\mathbf{Z}[\sqrt{d}]$, set the *norm* of α to be $N(\alpha)=(a+b\sqrt{d})(a-b\sqrt{d})=a^2-db^2\in\mathbf{Z}$. For example, the norm of $7+4\sqrt{5}$ is $7^2-5\cdot 4^2=-31$, so norms can be negative.

We say $\alpha \in \mathbf{Z}[\sqrt{d}]$ is a *unit* when it has a multiplicative inverse: $\alpha\beta = 1$ for some $\beta \in \mathbf{Z}[\sqrt{d}]$.

- (a) Show $N(\alpha\beta) = N(\alpha) N(\beta)$ for all α and β in $\mathbf{Z}[\sqrt{d}]$.
- (b) Prove $\alpha \in \mathbf{Z}[\sqrt{d}]$ is a unit if and only if $N(\alpha) = \pm 1$.
- (c) If uv = 1 then $u^nv^n = 1$ for any integer n, so any integral power of a unit is a unit. Show $1 + \sqrt{2}$ is a unit in $\mathbb{Z}[\sqrt{2}]$ and then compute the first 8 powers of $1 + \sqrt{2}$ in the form $a + b\sqrt{2}$. Where have you seen the coefficients of some of these powers earlier in the course?
- (d) Two obvious units in $\mathbf{Z}[\sqrt{d}]$ are ± 1 . For d = 3, 5, 6, 7, 8, 10, 11, and 12, find a unit in $\mathbf{Z}[\sqrt{d}]$ other than ± 1 and list for each unit what its inverse is. (Be sure your inverses are correct!) What can you say about units in $\mathbf{Z}[\sqrt{d}]$ if d < 0 and $d \neq -1$?
- (e) A unit multiple of $\alpha \in \mathbf{Z}[\sqrt{d}]$ is a product αu , where u is a unit in $\mathbf{Z}[\sqrt{d}]$. (For instance, one unit multiple of $5 + \sqrt{2}$ is $(5 + \sqrt{2})(1 + \sqrt{2}) = 7 + 6\sqrt{2}$.) For any unit u in $\mathbf{Z}[\sqrt{d}]$, show u and αu are divisors of α . (Units and unit multiples of α are considered the trivial divisors of α , just like ± 1 and $\pm n$ are trivial divisors of an integer n.)
- (f) When $\alpha \in \mathbf{Z}[\sqrt{d}]$ is not a unit (i.e., $|N(\alpha)| > 1$ by part b), call α prime if its only divisors in $\mathbf{Z}[\sqrt{d}]$ are units and unit multiples of α , as in part e. If $N(\alpha) = \pm p$ for a prime number p, show α is prime in $\mathbf{Z}[\sqrt{d}]$. Then use this to give examples of four primes in $\mathbf{Z}[\sqrt{3}]$ with different norms.
- (g) Call a nonzero $\alpha \in \mathbf{Z}[\sqrt{d}]$ composite if it is not a unit and not a prime. Show α is composite if and only if it has a factorization $\alpha = \beta \gamma$ where $|N(\beta)| < |N(\alpha)|$ and $|N(\gamma)| < |N(\alpha)|$. Then use induction on the absolute value of the norm to prove every $\alpha \in \mathbf{Z}[\sqrt{d}]$ with $|N(\alpha)| > 1$ is a product of primes in $\mathbf{Z}[\sqrt{d}]$.