Heavysnow Transformation

Guebin Choi and Hee-Seok Oh Department of Statistics Seoul National University Seoul 08826, Korea

Draft: version of December 28, 2019

Abstract

This paper presents a new multiscale transforms, termed 'heavy-snow transform', which is motivated by observing snow accumulation. Heavy-snow transform provides multiscale visualization which can capture the shape of land (or data structure) with different resolution. Some measures based on heavy-snow transform are newly defined to describe dissimilarity between data and the importance of data. Furthermore, some statistical applications are studied.

Keywords: Graph function; Similarity; Distance; Multiscale method.

1 Introduction

In this study we will propose a new method which can measure the distance between nodes in graph function. In here, graph function f is real valued function such that $f: \mathcal{V} \to \mathbb{R}$ where \mathcal{V} is set of nodes (or vertices). We are interested in the distance or similarity(which is usually defined as the inverse of distance) in graph function.

Let ν_i and ν_j be a specific nodes in \mathcal{V} and $f(\nu_1)$ and $f(\nu_2)$ be a value at ν_i and ν_j . How to measure the similarity or disimilarity between $f(\nu_i)$ and $f(\nu_i)$? In other words, how can we define distance between $f(\nu_i)$ and $f(\nu_i)$?. The naive approach for measuring the distance between $f(\nu_i)$ and $f(\nu_i)$ is to use the Euclidean distance like: $||f(\nu_i) - f(\nu_j)||_2 := \sqrt{(f(\nu_i) - f(\nu_j))^2}$. Of course, someone can use other measures such as Gaussian kernel weighting function. Those measures do not have a problem when they measure the distance of points which resides Euclidean space. However, it is reasonable to think that the graph function resides in not only Euclidean space but also graph space. (Note that $f(\nu) \in \mathbb{R}$ but $\nu \in \mathcal{V}$.) The problem is here. Distance between $f(\nu_i)$ and $f(\nu_i)$ depends on disimilarity in Euclidean domains but distance between ν_i and ν_i depends on disimilarity in graph domains, which is determined by links (or edges), i.e., \mathcal{E} . However the methods presented above have limitations in that they do not consider the $\mathcal E$ when measuring the distance between observations. In here, considering links between observation means that consider the structure of indices, i.e., \mathcal{E} . Let's move to Figure 1 to understand why you should consider the structure of index set in the graph function.

Figure 1 is made from example introduced in Shuman (2012). There are three graph function in Figure 1. The interesting fact is that those three graph have exactly same $f(\nu_i)$ for each $\nu_i \in \mathcal{V}$. The only difference between them is \mathcal{E} which are represented in dotted lines. Due to \mathcal{E} all connected nodes in (a)

seems to have a similar values but (c) is not. In other words, (a) looks like a low-frequency signal, while (c) looks like a high-frequency signal. (b) feels halfway between (a) and (c). You can easily check this is true by comparing the spectral density of (a)-(c) represented in second row of Figure 1.

Figure 1: Example 1 in Shuman (2012)

The underlying structure of graph function \mathcal{E} affects distance between ν_i and ν_j , and it affects the similarity (or disimilarity) between $f(\nu_i)$ and $f(\nu_j)$ as discussed in Figure 1. Therefore, when analyzing graph function, measuring the distance between ν_i and ν_j is no less important than measuring the distance between $f(\nu_i)$ and $f(\nu_j)$. In other words, the distance in the graph domain is just as important as the distance in the Euclidean domain.

Various methods have been developed to measure the differences between nodes. The most common method is the shortest path, which measures the shortest distance between two nodes. Klein and Randić (1993) suggest the resistance distance which can measure the distance between nodes in undirected graph. Lafon and Lee (2006) suggest the diffusion distance. However,

those methods have limitations such that they are only interested in distance between ν_i and ν_j . That is, those methods could be suitable for graph $(\mathcal{V}, \mathcal{E})$ but not suitable for graph funtion $f: \mathcal{V} \to \mathbb{R}$.

Thus, our goal is that: Develope new distance considering the distance in vertex domain and the distance in the Euclidean domain simultaneously. To do this, we propose a new distance that takes into account the distance between the vertex domain and the distance from the Euclidean domain at the same time through an elegant technique called *heavysnow transform*. We will formally define heavysnow transform in Section 2, instead, in this section, we will just breifly introduce the main idea and motivation of heavy transform. After that we will explain why our proposed distance is a reasonable measure which can properly mix the information of the graph and Euclidean domains.

The heavysnow transform is invented by observing snow accumulation over the land or ground. In this study, you can consider the ground as graph function f and snow as some positive constant b we will stack on f. Let τ be the number of falling snow. Our propose distance, named *snow distance*, is defined

$$sdist(\nu_i, \nu_i; \tau) := \mathbb{E} \|h(\nu_i; \tau) - h(\nu_i; \tau)\|_2.$$

In here, $h(\nu_i; \tau)$ will be defined more strictly at Section 2. In this section, you can consider $h(\nu_i; \tau)$ as the updated value of $f(\nu_i)$ after τ . In other words you consider $h(\nu_i; \tau)$ as snowy ground. If we set $\tau = 2$, then $h(\nu_i; \tau)$ will be one of $f(\nu_i)$, $f(\nu_i) + b$ and $f(\nu_i) + 2b$.

As you can see, when $\tau = 0$, the snowdist between two nodes ν_i and ν_j becomes $||f(\nu_i) - f(\nu_j)||_2$, which is exactly same as Euclidean distance. However, as τ increases, the snow distance starts to mix the distance in the Euclidean domain and the distance in the graph domain. That is, as τ increases, the structure of \mathcal{E} is additionally reflected in dissimilarity between $f(\nu_i)$ and $f(\nu_j)$. This is the key to considering both graph and Euclidean domains simultaneously.

How is this possible? This is due to the very unique feature of snow accumulation. For your easy and intuitive understanding, let's see Figure 2. In Figure 2-(a), (b), and (c), the curved lines which are located in the bottom of each figure represents ground or graph function f. If you put a less viscous material like rain on f, it would look like (a). If we add a highly viscous material to f, it would look like (c). If material has medium viscosity like snow, it would look like (b). In other words, to have a shape like (b), the snow stacked on v_i with following characteristics:

- (i) Snow can flow to adjacent areas.
- (ii) Snow cannot flow to higher ground.

Note that (i) needs the information of \mathcal{E} , i.e., it needs information of graph domain since (i) is determined by whether or not v_i and v_j are connected. On the other hand, (ii) relates to the values of $f(v_i)$ and $f(v_j)$ which is information of Euclidean domain. Therefore, the process of snow accumulation can be reproduced only with the information of both domains. As a result, the distance between snowy ground $h(v_i, \tau)$ and $h(v_j, \tau)$ is surprisingly mixed with information from both domains. (This is covered more closely in Section 2.)

If the viscosity is too high, the shape of the snow accumulations will always like (c), regardless of the structure of the index set \mathcal{E} . This is the result of considering only the values defined in the Euclidean domain and ignoring the graph domain information. Conversely, (a) tends to ignore information in the Euclidean domain too much. In (b), the information from the Euclidean domain and the vertex domain are well balanced.

The remaining of this paper is organized as follows. Section 2 defines heavy-snow transformation and proposes some statistics based on heavys-now transformation. Section 3 introduces some visualization techniques that can effectively show the results of heavysnow transform. Section 4 presents

Figure 2: The underlying signal and accumulations with different viscosity. In here, τ represent that amount of stacked accumulations.

possible applications of heavysnow with various numerical experiments and real data analysis. Finally, concluding remarks are given in Section 5 where a possible use for smoothing is briefly discussed as a future research topic.

2 Heavy-Snow Transform

2.1 Definition of Heavy-Snow Transform

Before defining heavy-snow transform, we would like to explain data structure to which the transformation is applicable. Let \mathcal{V} be set of nodes (or vertices) and \mathcal{E} be set of links (or edges). In the context of heavy-snow transformation, the link means a way that snow can move in. Basically, you can consider $\mathcal{V} = \{\nu_1, \ldots, \nu_n\}$ as given index set such as $\mathcal{V} = \{1, 2, \ldots, n\}$. However, it is often reasonable to view node as realization of some random variable X. This can be illustrated by setting node as $v = X(\nu)$.

Let $X: \mathcal{V} \to \mathbb{R}^M$ be a random vector and $V = \{v_1, v_2, \dots, v_n\}$ where v_1, v_2, \dots, v_n is i.i.d. realization of X. Note that $\forall v \in V: X^{-1}(v) \in \sigma(X)$ where $\sigma(X)$ is smallest σ -field which makes X as random variable. Thus $X^{-1}(v_i)$ is always well defined. Let \mathbf{E} be the $n \times n$ matrix whose (i, j)-th element is defined by

$$E_{ij} = \begin{cases} 1 & (\nu_i, \nu_j) \in \mathcal{E} \\ 0 & (\nu_i, \nu_j) \notin \mathcal{E}. \end{cases}$$

Furthermore, let's define another $n \times n$ matrix \mathbf{W} , where each element $w_{ij} = w(v_i, v_j) = w(\nu_i, \nu_j)$ represents the similarity between two node ν_i and ν_j (or v_i and v_j). Define $(V, \mathbf{E}, \mathbf{W})$ triple as weighted graph \mathcal{G} . The graph function f is real valued function such that

$$f:V\to\mathbb{R}.$$

Thanks to the well defined X, for all f there exists $f^*: \mathcal{V} \to \mathbb{R}$ such that

 $f^*: f \circ X^{-1}$. Furthermore, we define a set of linked vertices with a particular vertex v_i as $\mathcal{N}_{v_i} = \{v_j : (\nu_i, \nu_j) \in \mathcal{E}\} = \{v_j : E_{ij} = 1\}$.

From now on, we explain how to implement the phenomenon of snow accumulation. Let's come back to Figure 2 for easy understanding. Figure 2 (a), (b) and (c) show different viscous materials stacked on the same ground. For the case of Figure 2 (a), material flows to local minimum, which might be similar to the accumulation of rainwater. On the other hand, the material in Figure 2 (c) does not flow and just stacks up above ground. The most important property of the material in (a) is 'continue to flow until blocked'. Note that small viscous materials do not accumulate. Those small viscous materials such as water accumulate only when they reach the local minimum. On the other hand, the most important property of highly viscous materials such as (c) is 'stacking.' They only accumulate and never flow.

The snow can be interpreted as having a medium viscosity between two materials of Figure 2 (a) and (c), as metioned in Section 1. In order to express the viscosity of the snow, we assume that snow has both feature of (a) and (c). In other words, snow continues to accumulate AND flow until blocked. For your easy understanding let's assume some specific situation as follows:

- 1. (snow falls) Draw u from V with probability $\frac{1}{n}$. Suppose that snow falls at u as much as b.
- 2. (accumulation) Like (c) snow stacks on u. Thus, in this case, value on u, i.e., f(u) will be updated by f(u) + b.
- 3. (flows or blocked) After accumulation, snow can move to one of \mathcal{N}_u which is neighborhood of u. Of course, if $\mathcal{N}_u = \emptyset$, the snow will no longer flow. Then snow can always flow from u to $v \in \mathcal{N}_u$ in the case of $\mathcal{N}_u \neq \emptyset$? The answer is NO since snow cannot flow high. In otherwords, $\mathcal{N}_u \neq \emptyset$ does not necessarily mean that snow can flow. Thus, we should compare value of f(u) + b and f(v) to check flowbility of snow, i.e., we should check

 $\mathcal{U}_u := \mathcal{N}_u \cap \{v : f(v) \leq f(u) + b\}$ (which can be considered as downstream area of u) is emptyset or not.

- (flow) In the case of $\mathcal{U}_u \neq \emptyset$, which is an unblocked situation, snow (which stays in v) can flow to u that is randomly sampled element from \mathcal{U}_u with probability $\frac{w(u,v)}{\sum_{v\in\mathcal{U}}w(u,v)}$.
- (blocked) If $\mathcal{U}_u = \emptyset$, which is a blocked situation, snow can't flow anymore. In this cases, the next node is randomly selected from V with probability $\frac{1}{n}$.
- 4. (next iteration) In the cases of 'flows', go back to step 1 and repeat above procedure with assuming that snow falls at v (which is element of \mathcal{U}_u) as much as γb . In here $\gamma \in (0,1)$ is parameter adjusting viscosity of snow. (If you choose very small γ , shape of snow accumulation will be (c) in Figure 2.) For 'blocked' situation, go back to step 1 with assuming that snow falls at v^* (which is randomly selected node in V with probability $\frac{1}{n}$) as much as b.

The following is the formal definition of heavy-snow transform.

Definition 1. Let $\mathcal{G} = (V, \boldsymbol{E}, \boldsymbol{W})$ be the weighted graph with |V| = n and f be the graph function defined on \mathcal{G} . Let b be the amount of falling snow and τ be the number of falling snows. Draw \tilde{v}^0 from V with probability 1/n and define $\{\tilde{v}^0, \tilde{v}^1, \dots, \tilde{v}^{\tau}\}$ as traces of snow which is determinded by the transition probabilities

$$p^{\ell}(u,v) = \operatorname{Prob}(\tilde{v}^{\ell} = v | \tilde{v}^{\ell-1} = u) = \begin{cases} \frac{w(v,u)}{\sum_{v \in \mathcal{U}_u} w(v,u)} & v \in \mathcal{U}_u \\ \frac{d(v)}{\sum_{i=1}^n d(v_i)} & v \notin \mathcal{U}_u \end{cases}$$

where Define $h^{\ell}(v)$, $\xi^{\ell}(v)$, and \mathcal{U}^{ℓ} as ℓ -th snowyground, ℓ -th snow, and ℓ -th downstream area, respectively, i.e.,

$$h^{\ell}(v) = h^{\ell-1}(v) + \xi^{\ell}(v), \ \ell = 1, 2, \dots, \tau$$

with $h^0 = f$ and

$$\xi^{\ell}(v) = \begin{cases} 0 & v \neq \tilde{v}^{\ell} \\ \gamma \xi^{\ell}(\tilde{v}^{\ell-1}) & v = \tilde{v}^{\ell} \text{ and } \mathcal{U}^{\ell-1} \neq \emptyset \\ b & v = \tilde{v}^{\ell} \text{ and } \mathcal{U}^{\ell-1} = \emptyset \end{cases}$$

with fixed $\gamma \in (0,1)$ and

$$\mathcal{U}^{\ell} = \left\{ v : h^{\ell}(v) \le h^{\ell}(\tilde{v}^{\ell}) + \xi^{\ell}(\tilde{v}^{\ell}), v \in \mathcal{N}_{\tilde{v}^{\ell}} \right\}$$

with $\mathcal{U}^0 = V$. Define $\mathcal{H}(f, \mathcal{G}; \tau) := \{h^{\ell}(v)\}_{v \in V, \ell \leq \tau}$ as heavy-snow transform of f.

The Heavy-snow transform is very similar with random walk in graph function. The traces of snow can be considered as walks. The difference is transition probability $p^{\ell}(u, v)$ depends on ℓ in our method.

Thm 2.1. The heavy-snow transform is *ergodic*, i.e., there exists unique stationary distribution $\pi^*(v)$ such that

$$\pi^0(v) \prod_{\tau=1}^{\infty} \mathbf{P}^{\tau} = \pi^{\star}(v)$$

Thm 2.2. The heavy-snow transform is *reversible*, i.e., it verifies the following:

$$\pi^{\star}(u)p^{\star}(u,v) = \pi^{\star}(v)p^{\star}(v,u).$$

2.2 Snowdistance and some properties

Definition 2. Let $\mathcal{G} = (V, \mathbf{E}, \mathbf{W})$ be the weighted graph with |V| = n and f be the graph function defined on \mathcal{G} . Let $\mathcal{H}(f, \mathcal{G}; \tau)$ be heavy-snow transform for f. Define the *heavy-snow distance matrix* as \mathbf{H} its (i, j)-th element is

$$h_{ij} = \frac{\|\boldsymbol{h}_i - \boldsymbol{h}_j\|_2^2}{d_i d_j} = \widetilde{\boldsymbol{W}} (\widetilde{\boldsymbol{W}}' \widetilde{\boldsymbol{W}})^{-1} \widetilde{\boldsymbol{W}}'$$

where $\mathbf{h}_i = (h^0(v_i), \dots, h^{\tau}(v_i))'$ and $d_i = \sum_{j=1}^n \|\mathbf{h}_i - \mathbf{h}_j\|_2$.

Remark 2.1. If weighted graph $(V, \mathbf{E}, \mathbf{W})$ satisfing $\sum_{u \in V} w_{vu} > 0$ for all $v \in V$, then $(\widetilde{\mathbf{W}}'\widetilde{\mathbf{W}})^{-1}$ exists.

Thm 2.3. Let $\rho^{\star}(\nu_i, \nu_j) = \tilde{\rho}^{\infty}(X(\nu_i), X(\nu_j)).$

Proof. We want to show that

$$\rho^{\star}(\nu_i, \nu_j) \le \rho^{\star}(\nu_i, \nu_k) + \rho^{\star}(\nu_k, \nu_j).$$

Thm 2.4. Let $\mathcal{H}(\mathbf{f};\tau)$ be the heavy-snow transform of \mathbf{f} and b_{τ} be the amount of falling snow. Assume followings:

- f is continuous on V.
- $b_{\tau} \to 0$ and $\tau b_{\tau} \to \infty$ as $\tau \to 0$.

Then there is homotopy function between $\rho^{(0)}$ and $\rho^{(\infty)}$.

Proof. Define $H: V \times [0,1] \to \mathbb{R}$ such that $H(v,\ell/\tau) := h^{(\ell)}(v)$ and $H^*: V \times [0,1] \to \mathbb{R}$ such that $H^*(v,\cdot) := \lim_{\tau \to \infty} H(v,\cdot)$. H^* is continuous function.

2.2.1 Regular graph

Remark 2.2. Suppose $f(v_1), \ldots, f(v_n)$ is i.i.d random sample and (V, E, W) be the regular graph. Let $\mathcal{H}(\mathbf{f}; \tau)$ be a heavysnow transform of \mathbf{f} . Since $f(v_i)$ is i.i.d. random variable \mathbf{h}_i can be thought as i.i.d. random vector (need to prove, using 'regular graph') such that

$$h_1,\ldots,h_n\sim F$$
.

Define functional T(F)

$$T(F) := \int g(\mathbf{h}) dF.$$

Let F_n empirical distribution function of $\mathbf{h}_1, \dots, \mathbf{h}_n$, i.e.,

$$F_n(\mathbf{h} \le t) := \frac{1}{n} \sum_{i=1}^n 1(\mathbf{h}_i \le t).$$

From Glivenko-Cantelli lemma we have $F_n \to F$. Thus for sufficiently large n, we can say that F_n is neighborhood of F. Thus

$$T(F_n) \approx T(F) + \int IF(\mathbf{h}, T, F)d(F_n - F)$$

= $T(F) + \int IF(\mathbf{h}, T, F)dF_n$

where $IF(\boldsymbol{h};T,F,\tau)=\lim_{t\downarrow 0}\frac{T\left((1-t)F(\boldsymbol{h})+t\delta(\boldsymbol{h})\right)-T(F(\boldsymbol{h}))}{t}$ is influence function of T. In here $\int IF(\boldsymbol{h},T,F)dF=0$ is used. Thus

$$\sqrt{n}\Big(T(F_n) - T(F)\Big) \to N(0, V(T, F))$$

where $V(T, F) = \int IF(\mathbf{h}, T, F)^2 dF$.

Remark 2.3. Let $d_{ij} = \|\mathbf{h}_i - \mathbf{h}_j\|_2$. Using above remark, we get $d_{ij} \sim N(T(F), V(T, F)/n)$ where $T(F) := \int d_{ij}dF$. Note that $T(F) \to 0$ as $\tau \to \infty$. Further, we can conclude that $V(T, F)/n \to 0$ as $\tau \to \infty$. Thus $\mathbf{D} \to \mathbf{0}$.

Remark 2.4. Define sensitivity curve as

$$SC_n(\mathbf{h}; \tau) = \frac{T((1 - 1/n)F_{n-1}(\mathbf{h}) + 1/n \ \delta(\mathbf{h})) - T(F_{n-1}(\mathbf{h}))}{1/n}.$$

This is sample version of $IF(\mathbf{h}, T, F)$.

2.2.2 Spectral decomposition

2.2.3 Smoothing tools

3 Numerical Experiments

3.1 Simulated Data

Data dercription

3.2 Real Data Analysis

3.2.1 Avenger's

Data dercription

What movie is important?

Leskovec (2009) : 연구그룹들을 네트워크화해서 중심연구그룹(?)을 찾 았음.

Decomposition

3.2.2 Seoul Metro data

Data description

In this example, we analyze subway passenger data of Seoul Metro Line 2 on March 7, 2014, which is represented in Figure 3. In this figure, x-axis denotes station, y-axis represents time, and color shows the number of people to get on Line 2. As one can see, each cell looks highly associated with vertical ones and horizontal ones; thus the data are spatially and temporally linked data. Another interesting point is that Line 2 is a circular line, so the next station of City Hall is Chungjeongno. Therefore, the data are arranged (linked) in a cylindrical shape.

So the exact data structure looks like Figure 4. Each point connected with temporally, and spatially. So this is a spatio-temporal data. If we fixed time then this is the circular data, and if we fixed the station then this data is time series.

Oneday analysis

Figures 5 to 10 show the importance plot of subway passenger data with $\mathcal{T} = 10, 100, 200, 300, 400, 500$. In local scale analysis, the most important cell is Gangnam station at 6 pm. It looks like a very reasonable result because Gangnam station is considered the hottest place in Seoul at that time. In addition to Gangnam station, some stations or group of stations are also

Figure 3: Subway passenger data of Seoul Metro Line 2 in March 7, 2014.

Figure 4: Data structure of subway passenger data with Seoul metro line 2 in March 7, 2014.

considered to be important. In the morning of rush hour time, the residence area such as Sindorim, Guro Digital Complex, Sillim, Seoul National University and Jamsil stations are considered to be important. In the evening of rush hour time, the office area such as Guro Digital Complex, Gangnam, Yeoksam, Seolleung, Samsung and Euljiro 1-ga are considered to be important as well.

When growing scale up to $\mathcal{T} = 300$, the importance of Euljiro 1-ga station surpass the Gangnam station, and in the case of growing scale more, the importance of Sillim station surpasses the Gangnam and Euljiro 1-ga stations. Why the importance of each cell changes over scale? Look at the Figure 3 again. We easily check that vertical array from Gangnam station at 18:00 to Gangnam station at 24:00 have high values, and we also check that horizontal array from Gangnam station at 18:00 to Samsung station at 18:00 have high values, too. Thus, we expect that the value of Gangnam station at 18:00 will be high since it is cross point of those two arrays. But, the situation is something different in Sillim station at 7:00–9:00. The values of these two cells cannot be expected by any linked data because these are extremely high than other linked cells. In summary, the value of Gangnam station at 18:00 can be expected by linked data, but those of Sillim station at 7:00–9:00 cannot be expected by linked data. So if we examine data with global scale, that means if we more widely consider the linked data, then the value of Gangnam station at 18:00 is more predictable than Sillim stations at 7:00-9:00. Thus the value of Gangnam station is less important than Sillim station.

Type of area: commercial, residential, and office area.

When is the peak time for each region?

What is the most important day of the week in each region??

3.2.3 Les Misérables

Data dercription

Who is important in Les Misérables?

3.2.4 Distribution of Species of Animals

Data dercription

Smoothing

Where do the habitats overlap?

4 Concluding Remarks

Heavy-snow transform is a new multiscale visualization technique which is motivated by observing how snowfall accumulates. The concept of heavy-snow transform is shared with that of scale-space theory in computer vision. Heavy-snow transform is useful for evaluating some probabilistic structures of linked data whether a particular set of observations is similar to nearby other or not. We define the dissimilarity of the data and define the importance of the data based on it. We also introduced useful applications such as change-point detection and smoothing.

References

- [1] Klein, D. J., and Randić, M. (1993). Resistance distance. Journal of mathematical chemistry, 12(1), 81-95.
- [2] Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A., and Vandergheynst, P. (2012). The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. arXiv preprint arXiv:1211.0053.
- [3] Breunig, M. M., Kriegel, H. P., Ng, R. T., and Sander, J. (2000, May). LOF: identifying density-based local outliers. In ACM sigmod record (Vol. 29, No. 2, pp. 93-104). ACM.
- [4] He, X., and Niyogi, P. (2004). Locality preserving projections. In Advances in neural information processing systems (pp. 153-160).
- [5] Belkin, M., and Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural computation, 15(6), 1373-1396.
- [6] Ng, A. Y., Jordan, M. I., and Weiss, Y. (2002). On spectral clustering: Analysis and an algorithm. In Advances in neural information processing systems (pp. 849-856).
- [7] Tsang, I. W., and Kwok, J. T. (2007). Large-scale sparsified manifold regularization. In Advances in Neural Information Processing Systems (pp. 1401-1408).
- [8] Lafon, S., and Lee, A. B. (2006). Diffusion maps and coarse-graining: A unified framework for dimensionality reduction, graph partitioning, and data set parameterization. IEEE transactions on pattern analysis and machine intelligence, 28(9), 1393-1403.

[9] Leskovec, J., Lang, K. J., Dasgupta, A., and Mahoney, M. W. (2009). Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters. Internet Mathematics, 6(1), 29-123.

Appendix A: Figures

Figure 5: Importance plot of subway passenger data with $\mathcal{T} = 10$.

Figure 6: Importance plot of subway passenger data with $\mathcal{T} = 100$.

Figure 7: Importance plot of subway passenger data with $\mathcal{T} = 200$.

Figure 8: Importance plot of subway passenger data with $\mathcal{T} = 300$.

Figure 9: Importance plot of subway passenger data with $\mathcal{T} = 400$.

Figure 10: Importance plot of subway passenger data with $\mathcal{T} = 500$.