Job sequencing with deadlines

- Given a set of n jobs and one machine for processing jobs, and each job contains a deadline $d_i > 0$ (where d_i is an integer) and a profit $p_i > 0$. For any job i the profit p_i is earned iff the job is completed by its deadline. To complete a job, one has to process the job on a machine for one unit of time.
- The problem is to find an optimal subset of jobs that can be scheduled on a machine and all the jobs in the selected subset can be completed by its deadline.
- A **feasible solution** for this problem is a **subset J of jobs** such that each job in this subset can be **completed by its deadline**.
- .The value of a **feasible solution J** is the sum of the profits of the jobs in J, or $\sum_{i \in J} p_i$
- An **optimal solution** is a feasible solution with **maximum value**.

Example

Let n=4, (p1,p2,p3,p4)=(100,10,15,27) and (d1,d2,d3,d4)=(2,1,2,1). The feasible solutions and their values are

S. No	Possibilities	Feasible ?
1	{1}	Yes
2	{2}	Yes
3	{3}	Yes
4	{4}	Yes
5	{1, 2}	Yes
6	{1, 3}	Yes
7	{1, 4}	Yes
8	{2, 3}	Yes
9	{2, 4}	No
10	{3, 4}	Yes
11	{1, 2, 3}	No
12	{1, 2, 4}	No
13	{1, 3, 4}	No
14	{2, 3, 4}	No
15	{1, 2, 3, 4}	No

machine

	slot1	slot2	
(0	1	2

S.No	Feasible Solution	Processing Sequence	Value
1	(1,2)	2,1	110
2	(1,3)	1,3 or 3,1	115
3	(1,4)	4,1	127
4	(2,3)	2,3	25
5	(3,4)	4,3	42
6	(1)	1	100
7	(2)	2	10
8	(3)	3	15
9	(4)	4	27

Greedy Solution to JS with deadlines

Let n=4, (p1,p2,p3,p4)=(100,10,15,27) and (d1,d2,d3,d4)=(2,1,2,1).

- Arrange the jobs in the decreasing (non-increasing) order of their profits. So, the job selection order is (J_1,J_4,J_3,J_2)
- Number of slots of the machine = min(n, max(deadline of jobs)) = min(4, 2) = 2

S.No	Job Selected	Slot allotted	Slots Available	Profit
			0 1 2	0
1	${ m J}_1$	Is feasible? Yes Allot: [0,1]	$egin{bmatrix} oldsymbol{J_1} \ oldsymbol{0} \ oldsymbol{1} \ oldsymbol{2} \ oldsymbol{2} \ oldsymbol{0} \ oldsymbol{1} \ oldsymbol{2} \ oldsymbol{0} \ oldsymbol{0} \ oldsymbol{1} \ oldsymbol{0} \ oldsymbol{$	100
2	${ m J}_4$	Is feasible? Yes Move the job J_1 to $[1,2]$ slot and allot $[0,1]$ to job J_4	$egin{bmatrix} J_4 & J_1 \ 0 & 1 & 2 \end{bmatrix}$	127

Job	P _i	d _i
J ₁	100	2
J ₄	27	1
J ₃	15	2
J ₂	10	1

```
1 Algorithm JS(d,j,n)
2 // d[i] >= 1,1 <= i <= n are the deadlines, n >= 1. The jobs are ordered such that p[1] >= p[2] >= ..... >= p[n].
3 // J[i] is the ith job in the optimal solution,1<=i<=k. Also, at termination d[J[i]]<d[J[i+ 1]], 1<=i<k.
4 {
5
         d[0]:=J[0]:=0; // Initialize.
6
         J[1]:=1; // Include job1.
         k:=1;
8
         for i := 2 to n do
9
         // Consider jobs in nonincreasing order of p[i]. Find position for i and check feasibility of insertion.
10
11
                   r :=k;
12
                   while ((d[J[r]]>d[i]) and (d[J[r]]!= r)) do r :=r -1;
13
                   if ((d[J[r]]<=d[i])and (d[i] >r)) then
14
15
                             // Insert i into J[].
16
                             for q := k \text{ to } (r + 1) \text{ step } -1 \text{ do}
17
                                       J[q+1]:=J[q];
18
                             J[r+1]:=i; k := k+1;
19
20
21
         return k;
22 }
```