Machine Learning

Class	02_titanic
© Created	@Mar 22, 2021 9:47 AM
Materials	
Reviewed	
• Туре	

1) Project Introduction

This week we will use data on titanic passengers. We will try to use data about the passengers to predict whether they survived or not.

1.1) Data

train.csv: The training data for this weeks project.

test.csv: The test data for this weeks project. The dataset on which we do the final evaluation of our model quality.

penguins_simple.csv : Practice / Lecture Dataset. We will use the penguins data in the lectures to explain concepts.

All of the datasets are already on GitHub under week_02/data

1.2) Goals

- Understand the concept of Machine Learning
- Understand the machine learning models Logistic Regression, Decision
 Trees and Random Forests
- Learn which Feature Engineering techniques exist and how to apply them to our data
- · Learn how to evaluate a model
- Build the best model possible in terms of "score"/"accuracy"

Machine Learning

• Ok but fairly easy: 0.76

• Good: > 0.77

• Very Good: > 0.78

• Awesome: > 0.8

(Submit our results to kaggle)

2) Machine Learning

2.1) What is it?

- You give data to the computer and ask the computer to learn about the computer using certain method and tools.
- Model training itself; the more data you put in, the better the model gets
- Providing data, model learns from experience, model improves over time, model makes predictions

2.2) Machine Learning Applications

- Search Engines Rather unsupervised learning
- Social Media Feed, eg. Youtube suggestions Recommender Systems
- Brain All concepts
- Spam Filters Supervised Learning Classification

2.3) Types of Machine Learning

2.3.1) Supervised Learning

- Know the right answer (at least for a sample of the data)
- Existence of an output variable that we want to predict: y
- We use input features X to predict y

Machine Learning 2

2.3.1.1) Regression

• y is a numeric value

2.3.1.2) Classification

- · y is a class Survived or Dead
- y can be binary as in our Titanic case or you can have multiple classes

2.3.2) Unsupervised Learning

- There is no y
- Unsupervised learning algorithms are finding patterns in the data: X

2.3.2.1) Clustering

• Eg. we have customer data from a supermarket in we want to cluster customers into different categories

2.3.2.2) Dimensionality Reduction

2.3.3) Reinforcement Learning

Self-learning systems

Machine Learning 3