ALGORITMOS Y ESTRUCTURAS DE DATOS AVANZADAS Take Home / 18-NOV-2015

Fecha de entrega: 4-DIC-2015.

- 1. Dado un grafo $G = (V = \{v_1, \dots, v_n\}, E)$, la matriz de distancias de G es una matriz D de $n \times n$ donde d_{ij} es la longitud (cantidad de aristas) de camino más corto entre v_i y v_j y la matriz de sucesores de G es una matriz S también de $n \times n$ donde $v_{s_{ij}}$ es el primer vertice después de v_i de algun camino mínimo entre v_i y v_j recorriendo desde v_i .
 - (a) Justificar por qué conviene tener la matriz S en lugar de calcular explícitamente un camino mínimo para cada par de vertices de G dados G y D.
 - (b) Dar algoritmos eficientes para computar S dados G y D.
 - (c) En el caso que el grado máximo de los vertices de G está acotado por un valor constante k. ¿Qué mejora se podría hacer?
 - (d) En el caso que el diámetro de G (la distancia máxima entre pares de vertices de G) está acotado por un valor constante k. ¿Qué mejora se podría hacer?
- 2. Dar un algoritmo exacto para listar todos los bicliques maximales (cliques bipartitos maximales) de un grafo bipartito. Un subconjunto de vertices B es un biclique de un grafo bipartito $G = (V_1 \cup V_2, E)$ si $B \cap V_1 \neq \emptyset$, $B \cap V_2 \neq \emptyset$ y cada vértice de $B \cap V_1$ es adyacente a todos los vértices de $B \cap V_2$. Mostrar la correctitud y determinar la complejidad del algoritmo propuesto. El algoritmo debe tener time delay polinomial (el tiempo que demora en encontrar la primera solución y el tiempo máximo entre dos soluciones consecutivas) y el espacio requerido también sea polinomial.
- 3. Da un algoritmo exacto lo más eficiente posible para determinar un clique transversal de menor cardinalidad en un grafo sin diamantes. Mostrar la correctitud y determinar la complejidad del algoritmo propuesto.