

How to generate HEPData submission using HEPData_lib

Jakub Kvapil

LA-UR-25-25779

What is HEPData_lib?

- HEPData_lib is the official tool by HEPData to generate its submissions
 - https://www.hepdata.net/submission
 - https://github.com/HEPData/hepdata_lib/ (repo with examples)
 - https://hepdata-lib.readthedocs.io/en/latest/usage.html (lib documentation)
- Continuously improved, easy to use, many example macros and documentation!
- It can read directly ROOT objects (TH1, TH2, TGraph, TGraphAsymmErrors) and parse TGraph.C and txt objects
- HEPData_lib manipulates python lists, if you already use pyplot for your plots, no ROOT handling is needed!
- It can be installed on SDCC or local using: python -m pip install hepdata_lib
- If you want to read ROOT files and are missing pyroot in your SDCC environment you can install both as:
 - conda config --set channel_priority strict
 - conda create -c conda-forge --name <my-environment> root hepdata-lib
 - conda activate <my-environment>

Using HEPData_lib – Initiate submission

Check the documentation and example codes for all the submission features! submission.read_abstract("abstract.txt") # add abstract submission.add_link("arXiv","https link") # add arXiv link submission.add_record_id(123456,"inspire") # add inspire number submission.add additional resource("data file","data.root", copy file=True) # add file

Using HEPData_lib – Creating table with keywords

Table holds one figure with multiple histograms that share axis – ideally one Table per Figure

Using HEPData_lib – Reading the data from ROOT file

```
# Get data from TH1D and TGraphAsymmErrors
hist = reader.read hist 1d("hist stat")
graph = reader.read_graph("graph_asym")
# This is the structure of the loaded objects (dictionary of lists)
#print(graph.keys())
#dict keys(['x', 'y', 'dx', 'dy'])
# Define x-axis (independent)
histogram_x = Variable("$p_{T}$", is_independent=True, is_binned=False, units="GeV")
histogram x.values = hist["x"]
# Define y-axis values (since we have 1D plot, this is dependent - ir depends on the independent variable x)
histogram_y = Variable("Cross-section", is_independent=False, is_binned=False, units="mb")
histogram y.values = hist["y"]
#Define urcertainties, vou have have anv number vou want, vou are namina them: norm.lumi, etc.
stat unc = Uncertainty("stat", is symmetric=True)
stat unc.values = hist["dy"]
sys unc = Uncertainty("sys", is symmetric=False)
sys unc.values = graph["dy"]
#accidentelly saved symetrical errors in Assymerrors? No problem!
#sys unc = Uncertainty("sys", is symmetric=True)
#sys_unc.values =[high for (_, high) in graph["dy"]]
# Add uncertainty to data
histogram_y.add_uncertainty(stat_unc)
histogram_y.add_uncertainty(sys_unc)
# Add variables to the table
table1.add variable(histogram x)
table1.add variable(histogram y)
#lets add another histogram in the same table, without any uncertainties
hist halved = reader.read hist 1d("hist halved")
histogram_y_halved = Variable("cross-section halved", is_independent=False, is_binned=False, units="mb") Let's add another histogram that shares x axis to the same Figure
histogram v halved.values = hist halved["v"]
table1.add variable(histogram y halved)
```

Read TH1D and TGraphAsymmErrors

Data is loaded into dictionary, you can easily validate them and manipulate

Define what is independent variable (the x-axis in 1D case)

- Is binned specifies if you are providing bin centers (False) or bin edges (True)
- "True" supports also asymmetrical x axis bins

Define what the dependent variable (y axis) on the independent x Take symmetrical uncertainties of the TH1D as statistical errors Take asymmetrical uncertainties of the TGraph as systematical errors

• You can have as many unc. You want – global, lumi, norm etc.

Accidentally stored symmetrical uncertainties in TGraphAsymmError? No problem! Easy list operation

Appends the uncertainties to a corresponding variable

Add variables to a table

Using HEPData_lib – Lets add another Table - TH2

```
# ----- Table 2: Correlation Matrix ------
#lib also supports 2D hsitograms!
table2 = Table("Bin-to-bin Correlation Matrix")
table2.description = "Random symmetric bin-to-bin correlation matrix used for uncertainty modeling."
table2.add image("corr matrix.png")
corr matrix = reader.read hist 2d("corr matrix")
                                                                                                        2D histograms can be also loaded!
# Create variable objects, since we have 2D histogram, x and y are independent variables
Providing bin edges, so is binned=True
x.values = corr matrix["x edges"]
y = Variable("Second Axis", is independent=True, is binned=True)
y.values = corr matrix["y edges"]
correlation = Variable("Correlation coefficient", is independent=False, is binned=False)
correlation.values = corr matrix["z"]
#Uncertainties can be added similarly to the 1D case
for var in [x,y,correlation]:
   table2.add variable(var)
```

Now Add both Tables to the submission and generate the submission files as:

```
# Add tables to submission
submission.add_table(table1)
submission.add_table(table2)

**Real Now Log in to HEPData and upload the submission
to Sandbox to see if it looks like you wanted!

**If there is some error in generated YAML
it will tell you when you create files

**Path Search HEPData

**Search HEPData

**Sea
```


Using HEPData_lib - Created submission - Table 1

Using HEPData_lib - Created submission - Table 2

HEPData_lib supports very complex Figures!

$\sqrt(s)$	13 TeV											
Luminosity	$25.81 \pm 0.43\mathrm{nb^{-1}}$											
Clustering algorithm	anti- $k_{ m T}$											
Recombination scheme	PT											
R	0.2				0.4				0.6			
$ \eta_{ m ch~jet} $	< 0.7				< 0.5				< 0.3			
₽T,ch jet	5-7 GeV/ c	7-10 GeV/ c	10-15 GeV/ c	15-50 GeV/ c	5-7 GeV/ c	7-10 GeV/ c	10-15 GeV/ c	15-50 GeV/ c	5-7 GeV/ c	7-10 GeV/ c	10-15 GeV/ c	15-50 GeV/ c
$p_{ m T,D^0}$	2-7 GeV/ c	4-10 GeV/ c	5-15 GeV/ c	10-50 GeV/ c	2-7 GeV/ c	3-10 GeV/ c	5-15 GeV/ c	5-50 GeV/ c	2-7 GeV/ c	3-10 GeV/ c	5-15 GeV/ c	5-50 GeV/ c
$z_{\parallel}^{\mathrm{ch}}$	$1/N_{ m jets}{ m d}N/{ m d}z_{\parallel}^{ m ch}$											
0.4 - 0.6	0.51945 ±0.068089	0.20871 ±0.043386 stat	0.40759 ±0.077445 stat	0.48996 ±0.093217 stat	1.5269 ±0.10523 stat	1.4924 ±0.099393 stat	1.4037 ±0.10528 stat	1.4125 ±0.14737 stat	2.2938 ±0.15294 stat	2.5011 ±0.13117 stat	2.3535 ±0.13892 stat	2.1864 ±0.17812 stat
	+0.087268 -0.097137 Sys	+0.058646 -0.06929 Sys	+0.11779 -0.14551 Sys	+0.1514 -0.16414 Sys	+0.21072 -0.22599 Sys	+0.18655 -0.22833 Sys	+0.1909 -0.22319 Sys	+0.20906 -0.30228 Sys	+0.29361 -0.30508 sys	+0.2326 -0.26262 Sys	+0.26359 -0.28948 Sys	+0.24707 -0.31922 Sys
0.6 - 0.7	0.7099 ±0.078096 stat	0.95137 ±0.089444 stat	1.1023 ±0.12904 stat	1.2999 ±0.18411 stat	1.7852 ±0.11118 stat	1.6925 ±0.11142 stat	2.0189 ±0.15283 stat	2.2414 ±0.21035 stat	1.762 ±0.13682 stat	1.8494 ±0.12935 stat	2.0818 ±0.17239 stat	2.0579 ±0.22692 stat
	+0.085188 -0.10081 Sys	+0.086574 -0.10275 Sys	+0.09921 -0.12456 Sys	+0.14429 -0.15729 Sys	+0.11782 -0.13211 Sys	+0.14217 -0.15402 sys	+0.14132 -0.15546 Sys	+0.16362 -0.17483 Sys	+0.14624 -0.15305 sys	+0.12946 -0.13686 Sys	+0.099925 -0.11033 Sys	+0.13582 -0.14405 sys
0.7 - 0.8	1.018 ±0.075462 stat	1.1593 ±0.084887 stat	1.5094 ±0.12816 stat	2.1979 ±0.1957 stat	1.6201 ±0.088144 stat	1.7695 ±0.094709 stat	1.8041 ±0.12837 stat	1.978 ±0.17774 stat	1.6203 ±0.1054 stat	1.5626 ±0.098353 stat	1.519 ±0.13303 stat	1.9581 ±0.1879 stat
	+0.08246 -0.096712 Sys	+0.090424 -0.1055 Sys	+0.12377 -0.13434 Sys	+0.14067 -0.15166 Sys	+0.10855 -0.11827 Sys	+0.10263 -0.11148 Sys	+0.099226 -0.10825 Sys	+0.1523 -0.16022 Sys	+0.097217 -0.1037 sys	+0.087507 -0.093757 Sys	+0.12152 -0.12759 sys	+0.11749 -0.12532 Sys
0.8 - 0.9	1.3333 ±0.071417 stat	1.6037 ±0.089907 stat	1.6886 ±0.12329 stat	2.0046 ±0.17454 stat	1.5141 ±0.069213 stat	1.6223 ±0.082881 stat	1.693 ±0.11004 stat	1.6082 ±0.14679 stat	1.1508 ±0.074409 stat	0.98789 ±0.074119 stat	1.1019 ±0.10073 stat	1.0279 ±0.12978 stat
	+0.094662 -0.10666 Sys	+0.13151 -0.14273 Sys	+0.10132 -0.11483 Sys	+0.12228 -0.13632 Sys	+0.12567 -0.13172 Sys	+0.079494 -0.087606 Sys	+0.059255 -0.081264 Sys	+0.082018 -0.090058 Sys	+0.10012 -0.10242 Sys	+0.068164 -0.074092 Sys	+0.060604 -0.067215 Sys	+0.088397 -0.090453 sys
0.9 - 1.0	5.8999 ±0.11019 stat	5.8682 ±0.13431 stat	4.8844 ±0.1676 stat	3.5176 ±0.19471 stat	2.0267 ±0.062927 stat	1.931 ±0.073915 stat	1.6766 ±0.091214 stat	1.3473 ±0.11593 stat	0.87933 ±0.053867 stat	0.59789 ±0.050273 stat	0.59039 ±0.064858 stat	0.58327 ±0.084454 stat
	+0.34219 -0.38939 SVS	+0.23473 -0.28754 SV5	+0.20515 -0.24911 SVS	+0.31658 -0.33417 SVS	+0.14795 -0.15808 \$V5	+0.11779 -0.12745 SVS	+0.11904 -0.12574 SV5	+0.12665 -0.128 SV5	+0.083536 -0.085295 SVS	+0.063376 -0.064572 5V5	+0.067895 -0.068485 SVS	+0.062993 -0.062993 SV5

https://www.hepdata.net/record/134049

Using HEPData_lib – example on sPHENIX/tutorials

https://github.com/sPHENIX-Collaboration/tutorials/tree/master/HEPData

