

Introduction

1) A dataset that published over many years

2 Content has columns for publish date and headline text

Content

Format: CSV; Single File

- 1. publish_date: Date of publishing for the article in yyyyMMdd format
- 2. headline_text: Text of the headline in Ascii , English , lowercase

Start Date: 2003-02-19; End Date: 2021-12-31

Data Analysis

Basic data statistic:

```
# of headlines: 1244184
# of headline tokens in vocabulary: 108058
avg. length of headlines: 41.28453910354096 chars, 6.557524449759843 tokens
publish date range: (20030219, 20211231)
```

2 Word frequency: the top 10 most frequent words

to	238379
in	156203
for	143278
of	95941
on	82062
the	65067
over	54546
police	39850
at	36895
with	36333

Data Preprocessing

Remove stopwords (e.g. "a", "the", "in")

Remove words that don't carry so much meaning

Reduce noises and dimensionality

Use the *stopwords* modules from *nlkt* library.

me my myself we our ours ourselves you you're you've you'll you'd your

Data Preprocessing

2 Deduplication

Remove redundant information

Make sure the model are not baised towards overrepresented headlines

Most frequently occurring				
	publish_date	headline_text	# duplicates	
0	20210301	house prices record sharpest increase since 2003	2	
1	20210601	house prices reach record levels; as investors	2	

Duplication found by the data report

Topic modeling: LSA, LDA

Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA)

Assumption: Distribution Hypothesis

Improve the result: tf-idf

CountVectorizer: compute one hot array for words in headlines

Result

LSA

```
police crash death car killed missing dead search probe attack
Topic 1:
Topic 2:
         new year laws years zealand life named opens gets president
Topic 3:
         man charged murder dies guilty jailed arrested pleads court child
         says minister report pm mp labor trump iraq opposition time
Topic 4:
Topic 5:
         govt plan wa gld water health government calls urged school
Topic 6:
         court accused face case told charges faces high trial murder
Topic 7:
          australia day australian world cup south win china coronavirus test
Topic 8:
         council plan city considers land rejects mayor water seeks backs
         nsw rural sydney news abc country national north hour weather
Topic 9:
           interview gold coast nrl afl extended michael speaks john david
Topic 10:
```


Topic modeling: LSA, LDA

Result

LDA

```
Topic 1:
          new school country china test hour plans england union second
Topic 2:
          australia world cup day report killed calls melbourne farmers power
Topic 3:
          water hospital wins help ban boost gold coronavirus work trial
Topic 4:
          man charged car woman dies home attack dead hit police
Topic 5:
          sa final quilty deal minister labor set open mp asylum
Topic 6:
          interview gld missing election rise search year high public child
Topic 7:
          death man nsw sydney murder court police funding road fears
Topic 8:
          council plan australian wa abc coast health court north south
Topic 9:
          police says government man drug win budget jail say jailed
Topic 10:
           govt urged rural pm trump claims nt iraq case crash
```


Bidirectional Encoder Representations from Transformers

c-TF-IDF: Class-based TF-IDF

c-TF-IDF

For a term x within class c:

$$\mathbf{W}_{x,c} = \|\mathbf{tf}_{x,c}\| \times \log(1 + \frac{\mathbf{A}}{\mathbf{f}_x})$$

tf_{x,c} = frequency of word x in class c

 $\mathbf{f}_{\mathbf{x}}$ = frequency of word \mathbf{x} across all classes

A = average number of words per class

Result

BERTopic

BERTopic

Barchart visualization

Autoencoder + K-means clustering

Autoencoder

- Compress data into a lower-dimensional representation
- Input Layer: Padded sequence of tokens
- Hidden Layer: 32 neurons
- Output Layer: Reconstruction of the input sequence

K-means clustering

- Input: Latent vectors extract from autoencoder
- Generate 10 clusters

Autoencoder + K-means clustering

Result: Cluster Scatter Plot

Autoencoder + K-means clustering

Result: Silhouette Coefficient Score

```
from sklearn.metrics import silhouette_score
score = silhouette_score(latent_vectors[:5000],cluster_labels[:5000])
print(score)

0.55109006
```


Evaluation

Evaluation methods:

- Intrinsic: evaluate using the model's internal structure or data
- Extrinsic: evaluate by conducting tasks, such as document classification

We use Silhouette Coefficient Score to evaluate the model's performance

Model	Score
BERTopics	0.58
Autoencoder + K-means	0.55

Improvement

BERTopic:

- Use c-TF-IDF instead of the basic TF-IDF to compute the performance of the text dataset
- Improve: use the scores which work on a cluster or topic level instead of a document level.

K-means clustering:

- Not only use the token sequence generated by Keras Tokenizer
- Improve: add a deep learning autoencoder to compress the text token sequence.

Conclusion

- LSA, LDA
- BERTopic
- Autoencoder + K-means clustering

The performance of BERTopic and Autoencode are good.

Thank you Q&A