단일대상 다층메타분석

장애학생을 위한 가상조작물을 활용한 수학 중재

신미경

West Texas A&M University

2021년 12월 11일

목차

- 단일대상 다층메타분석의 필요성
- 장애학생을 위한 가상조작물을 활용한 수학 중재의 필요성
- 단일대상 다층메타분석 연구 방법과 적용 실제
- 논의 및 제한점
- 연구의 시사점

본 자료는 온라인에서 다운로드 가능합니다. https://github.com/mshin77/ksse_ld.git

단일대상 다층메타분석의 필요성

- 단일대상 연구
 - 대상자의 문제행동을 감소시키거나 바람직한 행동을 증진
 - 개별(혹은 소집단)로 중재를 계획하고 실행함
 - 연구설계를 통하여 체계적으로 실험 통제(내적 타당도)를 확인
- 다층(메타)분석
 - 대상자별로 시간에 따른 행동 변화를 반복측정
 - 종단자료 분석을 통한 다층모형 분석
 - 위계적 다층자료 모형 설정 (메타분석)

위계적 다층자료 구조

• 1수준(반복 측정 자료) 2수준(학생 수준), 3수준(연구 수준)

장애학생을 위한 가상조작물을 활용한 수학 중재의 필요성

예시: 재미난 분수 http://funfraction.net

가상조작물은 ...

- 웹 등의 환경에서 작동되는 역동적인 시각적 모형
- 수학 교수 및 학습에 활용되는 구조적인 도식
- 다양한 형태로 확장, 변환, 선택하여 사용 가능
- 개념적인 수학 학습에 활용
- 상호작용적이고 다양한 수학 학습 기회 제공

단일대상 다층메타분석 연구 방법과 적용 실제

- Shin 외(2021)의 데이터를 재분석하여 예시로 활용함
- 온라인 공개 데이터 https://doi.org/10.17605/OSF.IO/WVTXG
- 연구 목적:
 - 단일대상 다층메타분석을 활용하여 장애학생을 위한 가상조작물을 활용한 수학 중재의 중재 및 조절 효과 분석
- 연구 질문:
 - 장애학생을 위한 가상조작물을 활용한 수학 중재는 어떠한 즉각적인 평균 효과크기 및 변화 추이를 보이는가?
 - 가상조작물을 활용한 수학 중재의 즉각적인 평균 효과크기는 학생 및 연구 관련 특성에 따라 어떻게 다른가?
 - 가상조작물을 활용한 수학 중재의 변화 추이는 학생 및 연구 관련 특성에 따라 어떻게 다른가?

연구 방법

- 연구의 포함 기준:
 - 2000년부터 2020년까지 영어로 발표된 학위논문 및 학술지 논문
 - 유치원, 초등학교, 중학교, 고등학교 장애학생을 대상으로한 연구
 - 。 종속변인: 수학 정확도
 - 독립변인: 가상조작물을 활용한 수학 중재
 - 연구설계: 반전설계(기초선 포함), 대상자간 중다 기초선/중다간헐 설계, 기준변경 설계
- 자료 탐색: 온라인 추가 자료 그림 1 참고: 총 35편 연구 포함됨
- 자료 코딩:
 - 단일대상 데이터 추출: GetData Graph Digitizer (GetData Graph Digitizer, 2013) 웹 어플리케이션 활용
 - 학생 관련 변인 코딩: 성별, 학년, 장애유형
 - 연구 관련 변인 코딩: 사전훈련 목적, 교수 방법, 개발자, 기기, 가상조작물 유형, 도식 모형
 - 연구에 대한 질적 평가: Council for Exceptional Children (2014)

본 연구에서 활용된 위계적 다층 자료 구조

Study	Case	Session	Time.m	Time	Intervention	Intervention_Time	Outcome	Elementary	Middle	High	LD	ID	ASD	EBD	ОНІ	No.train	Devi
Shin & Bryant (2017)	1	1	0	-3	0	0	20	0	1	0	1	0	0	0	0	0	
Shin & Bryant (2017)	1	2	1	-2	0	0	20	0	1	0	1	0	0	0	0	0	
Shin & Bryant (2017)	1	3	2	-1	0	0	0	0	1	0	1	0	0	0	0	0	
Shin & Bryant (2017)	1	4	3	0	1	0	40	0	1	0	1	0	0	0	0	0	
Shin & Bryant (2017)	1	5	4	1	1	1	60	0	1	0	1	0	0	0	0	0	
Ol-: 0																	•

• 데이터 보기: https://osf.io/s6qx4/?show=view

그래프 데이터 보기

살펴보기

- 비연속적 변화 모형
- 기초선에서의 절편과 기울기
- 중재 첫번째 회기에서의 즉각적인 효과
- 중재 구간 내 기울기 변화

연구 결과 모형 1

• 고정 효과

	모형 1
	고정 효과
즉각적 효과(<i>γ₀1₀₀</i>)	70.95*** (3.74)
변화 추이(γ ₀₂₀₀)	1.73*** (0.39)
	랜덤 효과
연구 간 분산	
즉각적 효과 $(\sigma^2_{ u_1})$	453.10* (121.07)
변화 추이 $(\sigma^2_{v_2})$	3.04* (1.23)
대상자 간 분산	
즉각적 효과 $(\sigma_{u_1}^2)$	92.60* (34.78)
변화 추이 $(\sigma_{u_2}^2)$	0.68* (0.43)

• 램덤효과

연구 결과 모형 $\mathbf{2}$, 모형 $\mathbf{3}$

	모형 2	모형 3		
	고정 효과			
즉각적 효과(yo100)	88.21* (37.99)	70.44*** (3.73)		
변화 추이(yozoo)	1.99*** (0.44)	-1.01 (6.99)		
학년				
중학교(y0300)	-18.62 (12.79)	3.28 (2.12)		
고등학교 (<i>yo40</i> 0)	27.78* (13.50)	1.99 (2.73)		
장애유형				
지적장애(<i>yosoo</i>)	-7.58 (4.63)	-0.24 (0.88)		
자폐성장애(<i>yosoo</i>)	-3.52 (4.87)	0.32 (0.91)		
정서 • 행동장애(⑺0700)	30.83* (12.95)	3.71 (3.49)		
다른 건강장애(<i>yosoo</i>)	-6.66 (5.35)	-0.89 (1.01)		
사전훈련 목적				
기기 사용(₇₀₉₀₀)	-8.05 (13.42)	3.36 (3.20)		
기기 사용, 교수 (y1000)	-25.23 (14.41)	1.21 (2.27)		
교수 방법				
안내된 교수(y1100)	-14.95 (31.08)	1.32 (5.96)		
교사 주도(yı200)	-25.64 (31.35)	1.43 (5.98)		
개발자				
상업분야(y1300)	46.60*** (12.39)	-0.21 (2.09)		
기기				
컴퓨터 (ソュ400)	28.00* (11.83)	-0.26 (1.96)		
가상조작물 유형				
단일 표상(y1500)	-7.69 (10.62)	-2.01 (1.91)		
개별 지도 (<i>γ1600</i>)	-44.15* (17.81)	-2.43 (3.18)		
게임 (₇₁₇₀₀)	-66.15 (37.40)	0.71 (6.80)		
도식 모형	. ,			
영역 모형(yıs∞)	-7.55 (12.02)	-0.26 (2.39)		
선형 모형(γ ₁₉₀₀)	-4.37 (10.09)	-1.54 (1.83)		
십진법 블록(y2000)	2.63 (10.64)	-1.00 (1.91)		
대수학 저울(y2100)	27.64 (19.70)	0.95 (3.04)		
다중 모형(y ₂₂₀₀)	-45.95** (15.82)	4.17 (2.46)		

논의 및 제한점

- 가상조작물을 활용한 수학 중재는 통계적으로 유의한 즉각적인 중재 효과 및 긍정적인 변화 추이를 나타냈음.
- 즉각적 중재 효과 크기는 학생의 학년, 장애 유형, 개발자, 기기, 가상조작물 유형에 따라 다양한 조절 효과를 보였음.
- 학생 및 연구 관련 변인은 중재 기간 중의 수학 성적(정확성) 변화 추이에 큰 영향을 미치지 않았음.
- 본 연구에서는 단일대상 연구에서 중요하게 여겨지는 시각적인 분석이 이루어지지 않았음.
- 단일대상 연구설계 유형(예: 반전설계, 대상자간 중다 기초선/중다간헐 설계)에 따른 차별적인 분석이 고려되지 않았음

연구의 시사점

- 가상조작물을 활용한 수학 중재는 교육 현장에서 다양한 형태로 활용 가능함
- 단일대상 연구 설계의 데이터 구조를 기반으로 지속적인 검증이 이루어져야 함
- 오픈사이언스를 기반으로한 투명한 연구 과정을 특수교육 분야에 적용
- 후속 연구자들이 반복검증할 수 있도록 공공 자료 마련 및 실천