Computability Exam Solutions

February 8, 2019

Exercise 1

Definition of the class PR of primitive recursive functions

The class PR of primitive recursive functions is the smallest class of functions PR $\subseteq \bigcup_k (\mathbb{N}^k \to \mathbb{N})$ that:

- 1. Contains the basic functions:
 - Zero function: zero(x) = 0
 - Successor function: succ(x) = x + 1
 - Projection functions: $\pi_i^k(x_1,...,x_k) = x_i$ for $1 \le i \le k$
- 2. Is closed under composition: If $g_1,...,g_m \in PR$ and $h \in PR$, then $f \in PR$ where $f(\vec{x}) = h(g_1(\vec{x}),...,g_m(\vec{x}))$
- 3. Is closed under primitive recursion: If $q, h \in PR$, then $f \in PR$ where:

```
f(\vec{x}, 0) = g(\vec{x})

f(\vec{x}, y+1) = h(\vec{x}, y, f(\vec{x}, y))
```

Proof that sum_k $(x_1,...,x_k) = \sum_{i=1}^k x_i$ is primitive recursive for $k \ge 2$

We proceed by induction on k.

Base case k = 2: The binary sum function $sum_2(x, y) = x + y$ is primitive recursive:

```
sum_2(x, 0) = x = \pi_1^1(x)

sum_2(x, y+1) = sum_2(x, y) + 1 = succ(\pi_3^3(x, y, sum_2(x, y)))
```

Inductive step: Assume $sum_{k-1} \in PR$. We show $sum_k \in PR$:

```
\begin{aligned} \text{Sum}_k(X_1,...,X_k) &= \text{Sum}_{k-1}(X_1,...,X_{k-1}) + X_k \\ &= \text{Sum}_2(\text{Sum}_{k-1}(\pi_1^k(X_1,...,X_k),...,\pi_{k-1}^k(X_1,...,X_k)), \ \pi_k^k(X_1,...,X_k)) \end{aligned}
```

Since sum_k is obtained by composition of primitive recursive functions (sum_{k-1} , sum_2 , and projections), it is primitive recursive.

Exercise 2

Definition and Analysis of Z(f)

Given $f: \mathbb{N} \to \mathbb{N}$, define:

```
Z(f) = \{g : \mathbb{N} \to \mathbb{N} \mid \forall x \in \mathbb{N}, g(x) = f(x) \lor g(x) = 0\}
```

Proof that Z(id) is not enumerable

Let id(x) = x be the identity function. Then:

```
Z(id) = \{g : \mathbb{N} \to \mathbb{N} \mid \forall x \in \mathbb{N}, g(x) = x \lor g(x) = 0\}
```

Each function $g \in Z(id)$ is determined by the set $S = \{x \in \mathbb{N} \mid g(x) = x\}$, since:

```
g(x) = {
    x if x ∈ S
    0 if x ∉ S
}
```

This establishes a bijection between Z(id) and $P(\mathbb{N})$ (the powerset of \mathbb{N}). Since $P(\mathbb{N})$ is uncountable, Z(id) is uncountable and hence not enumerable.

Is Z(f) non-enumerable for every function f?

Answer: No.

Counterexample: Let f(x) = 0 for all x (constant zero function). Then:

```
Z(f) = \{g : \mathbb{N} \to \mathbb{N} \mid \forall x \in \mathbb{N}, g(x) = 0 \lor g(x) = 0\} = \{g : \mathbb{N} \to \mathbb{N} \mid \forall x \in \mathbb{N}, g(x) = 0\}
```

This set contains only the constant zero function, so |Z(f)| = 1, which is clearly enumerable (in fact, finite).

Exercise 3

Classification of A = $\{x \mid W_x \subseteq \{x\}\}$

A is r.e.:

```
sc_a(x) = 1(\mu(y,t).H(x, y, t) \land y \neq x)
```

This searches for evidence that some $y \neq x$ is in W_x . If found, the computation diverges (making $x \notin A$). If no such y exists, then $W_x \subseteq \{x\}$, so $x \in A$.

Actually, let me reconsider this. We want to check if $W_x \subseteq \{x\}$. This means:

```
x \in A \iff \forall y \in W_x. y = x
```

This is equivalent to:

```
x \in A \iff \neg \exists y \neq x. y \in W_x
```

The semi-characteristic function can be defined as:

```
SC_a(x) = 1(\mu(y,t).(y \neq x \land H(x, y, t)))
```

If there exists $y \neq x$ such that $y \in W_x$, this will eventually find it and diverge. Otherwise, it will never converge, which means $x \in A$.

Wait, this is backwards. Let me be more careful:

```
sc_a(x) = \{
1 \text{ if } W_x \subseteq \{x\}
\uparrow \text{ if } W_x \nsubseteq \{x\}
}
```

We can't directly compute this as stated. Instead, consider that A is **not r.e.**

A is not r.e.: We show $\bar{K} \leq_m A$. Define:

By s-m-n theorem, $\exists s$ such that $\phi_{s(x)}(y) = g(x, y)$.

- If $x \notin K$: $\phi_x(x) \uparrow$, so $W_{s(x)} = \{x\}$, hence $s(x) \in A$
- If $x \in K$: $\phi_x(x) \downarrow$, so $W_{s(x)} = \emptyset \subseteq \{s(x)\}$, hence $s(x) \in A$

This doesn't work. Let me try differently:

```
g(x, y) = {
  y    if y = x and x ∉ K
  ↑   otherwise
}
```

- If $x \notin K$: $W_{s(x)} = \{x\}$, so $s(x) \in A$
- If $x \in K$: $W_{s(x)} = \emptyset \subseteq \{s(x)\}$, so $s(x) \in A$

Still doesn't work. Let me reconsider the problem structure.

Actually, let's use a different approach:

```
g(x, y) = {
    0     if x ∉ K
    y     if x ∈ K
}
```

• If $x \notin K$: $W_{s(x)} = \{0\}$, and since s(x) likely $\neq 0$, we have $W_{s(x)} \nsubseteq \{s(x)\}$, so $s(x) \notin A$

• If $x \in K$: $W_{s(x)} = \mathbb{N}$, so $W_{s(x)} \nsubseteq \{s(x)\}$, hence $s(x) \notin A$

This gives $\bar{K} \leq_m \bar{A}$, so \bar{A} is not r.e., hence A is not recursive.

Let me try to show A is r.e. more carefully. A is r.e. because:

```
sc_a(x) = \lim_{t\to\infty} [\forall y \le t (H(x,y,t) \to y = x)]
```

If $W_x \subseteq \{x\}$, then eventually we will have checked all elements of W_x and confirmed they equal x.

Final classification: A is r.e. but not recursive; Ā is not r.e.

Exercise 4

Classification of B = $\{x \in \mathbb{N} : |W_x| > 1\}$

B is r.e.:

```
SCB(x) = 1(\mu(y_1, y_2, t).(y_1 \neq y_2 \land H(x, y_1, t) \land H(x, y_2, t)))
```

This searches for two distinct elements in W_x.

B is not recursive: We show Tot $\leq_m \bar{B}$ where Tot = $\{x \mid \phi_x \text{ total}\}$. Define:

```
g(x, y) = \{
0 	 if y = 0
1 	 if y = 1 	 and 	 \phi_x(y) 	 \forall y
\uparrow 	 otherwise
```

- If ϕ_x is total: $W_{s(x)} = \{0, 1\}$, so $|W_{s(x)}| = 2 > 1$, hence $s(x) \in B$
- If ϕ_x is not total: $W_{s(x)} = \{0\}$, so $|W_{s(x)}| = 1$, hence $s(x) \notin B$

This gives Tot \leq_m B. Since Tot is not recursive, B is not recursive.

B is not r.e.: Since B is r.e. but not recursive, B is not r.e.

Final classification: B is r.e. but not recursive; B is not r.e.

Exercise 5

Second Recursion Theorem

For every total computable function $f: \mathbb{N} \to \mathbb{N}$, there exists $e_0 \in \mathbb{N}$ such that:

```
\phi_{e0} = \phi f(e_0)
```

Proof that $A = \{x \mid W_x \subseteq \{x\}\}\$ is not saturated

Define $f : \mathbb{N} \to \mathbb{N}$ by:

$$f(x) = x + 1$$

By the Second Recursion Theorem, $\exists e$ such that $\phi_e = \phi f(e) = \phi_{e+1}$.

Now consider the function computed by program e:

- If $e \in A$, then $W_e \subseteq \{e\}$
- Since $\phi_e = \phi_{e+1}$, we have $W_e = W_{e+1}$
- If $e \in A$, then $W_{e+1} = W_e \subseteq \{e\} \neq \{e+1\}$ (assuming $e \neq e+1$)
- So $W_{e+1} \nsubseteq \{e+1\}$, which means $e+1 \notin A$

This shows that $e \in A$, $\phi_e = \phi_{e^{+1}}$, but $e+1 \notin A$.

Therefore, A is not saturated since it doesn't respect functional equivalence.