Advanced Topics in Wireless Networks Low Power Local Area Networks

Parham Alvani

Department of Computer Engineering and Information Technology AmirKabir University of Technology

May 10, 2018

Table of contents

- Introduction to IoT Communication
 - BLE
 - Zigbee

2 A Closer look to Zigbee

Introduction to IoT Communication

- Multitude and variaty
 - diverse Quality of Service (QoS)
 - huge amount of traffic
 - huge address space
- Self-organization
- Reliability and robustness
- Security and privacy

Introduction to IoT Communication

- Capillary M2M
 - low power
 - low cost
 - short range
- Cellular M2M
 - long distance

Introduction to IoT Communication

- LPWAN
 - NB-IoT
 - LoRaWAN
 - Sigfox
- LPLAN
 - BLE
 - Zigbee

IEEE 802.15.1/Bluetooth

- Robustness
- Low Power
- Low Cost

IEEE 802.15.1/Bluetooth

Piconets

- Bluetooth enabled electronic devices connect and communicate wirelessly through short-range, ad hoc networks known as piconets.
- Each device can simultaneously communicate with up to seven other devices within a single piconet.

Features

- Bluetooth wireless technology is geared towards voice and data applications and able to penetrate solid objects.
- It is omni-directional and does not require line-of-sight positioning of connected devices.

IEEE 802.15.1/Bluetooth

PHY Layer

- 2.4 GHz frequency band
- 79 Channels, each channel has 1 MHz bandwidth
- 3 Power class for 1, 10 and 100 meter transmission distance
- Physical Links
 - Data Link: Asynchronous Connectionless (ACL)
 - Voice Link: Synchronous Connection Oriented (SCO)

- IEEE 802.15 serial standards are established by IEEE 802.15 Working Group for Personal Area Network or short distance wireless networks.
- Zigbee is built on the IEEE 802.15.4. The two lower layers: the physical (PHY) layer and the medium access control (MAC) sublayer of Zigbee stack architecture is pecified in IEEE 802.15.4.

IEEE 802.15.4 Features

- Data rates of 250 kbps, 40 kbps, and 20 kbps. Symbol rate is 62.5 ksymbol/sspm
- Two addressing mode: 16-bits short and 64-bit IEEE addressing
- Optional use Star-topology or Peer to Peer topology, and also supposes Cluster Tree nowdays.
- CSMA-CA channel access
- Automatic network establishment by the coordinator
- Full handshake protocol for transfer reliability
- Power management to ensure low power consumption

IEEE 802.15.4 Features

- 16 channels in the 2.4GHz ISM band, 10 channels in the 915MHz and one channel in the 868MHz
- Optinal to use Acknowledgement packet
- Transmit Power: About 1 mW transmit power
- RSSI (Received signal strength indication) measurement

Type of Device

- RFD (Reduced Function Device)
 - Coordinator
 - Router
 - End Device
- FFD (Full Function Device)
 - End Device

IEEE 802.15.4 MAC-PHY

Superframe Structure

- CAP: Contention Access Period
- CFP: Contention Free Period
- GTS: Guaranteed Time Slots

Zigbee Stack

Table of contents

- **1** Introduction to IoT Communication
 - BLE
 - Zigbee

2 A Closer look to Zigbee

A Closer look to Zigbee

Zigbee Problems

- Energy Efficiency
- Routing
- Localization
- Data management
- Reliability
- Security

A Closer look to Zigbee

An Energy Efficient Schedule for IEEE 802.15.4/Zigbee Cluster Tree WSN with Multiple Collision Domains and Period Crossing Constraint

- A collision-free cluster schedule that meets all the data flows deadlines
- Minimization of the energy consumption of the nodes

*

^{*} A. Ahmad and Z. Hanzalek, "An energy efficient schedule for IEEE 802.15.4/ZigBee cluster tree WSN with multiple collision domains and period crossing constraint", IEEE Transactions on Industrial Informatics, vol. 14, no. 1, pp. 12–23, Jan. 2018. DOI: 10.1109/tii.2017.2725907. [Online]. Available: https://doi.org/10.1109/tii.

flow ID	source(s)	sink	e2eDeadline		reqPeriod	sampleSize	sampleACK
k	(α_{f_k})	(β_{f_k})	[s]	[ptu]	[s]	[bit]	
1	1	5	1.5	1563	1	64	0
2	2	6	2	2083	2	16	1
3	7	8	2	2083	1	16	1
4	9	1	2	2083	2	64	0

Average network energy consumption within 40 min

Network retransmitions

