알고리즘 Dynamic Programming

이영석

동적프로그래밍

- Dynamic programming (DP)
 - 문제해결 패러다임
 - 문제를 해결하기 위해 더 작은 문제를 해결하고 해를 재활용하는 방식
 - "기억하며 풀기"
- 분할 정복 기법과 유사

Fibonacci with DP

memoization

```
    f(n) = f(n-1) + f(n-2)
    if f(n) > 0 (n!= 0, 1)
     계산값 저장
```

```
def fibo(n):
         if n < 2:
 3
             return n
         cache = [0 for _ in range(n+1)]
 4
         cache[1] = 1
 5
 6
         for i in range(2, n+1):
             cache[i] = cache[i-1] + cache[i-2]
         return cache[n]
 8
10
     for n in range(0, 51):
11
         print(n, fibo(n))
```

배낭(Knapsack) 채우기 문제

- 문제
 - 값(value)를 최대로!

$$\max_{i \in T} v_i$$
 subject to $\sum_{i \in T} w_i \leq W$

- 제한조건
 - 。 배낭의 무게는 w보다 작아야함

Item #	Weight	Value
1	1	8
2	3	6
3	5	5

Recursive Formula

$$V[k, w] = \begin{cases} V[k-1, w] & \text{if } w_k > w \\ \max\{V[k-1, w], V[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

- V[k, w]: 1, ..., k개 아이템, weight w의 의한 가치 ∨
 방법: k-1개 있는 집합에 k번째 item 포함할 것인지? 아닌지?
- First case: *w_k>w* item *k* 넣을 수 없음
- Second case: $w_k \le w$
 - \circ item k 포함할 수 있음, 대신 w_k 무게만큼 뺀 상태에서

Knapsack Algorithm

```
for w = 0 to W
  V[0,w] = 0
for i = 1 to n
  V[i,0] = 0
for i = 1 to n
  for w = 0 to W
              if w_i \le w // item i can be part of the solution
                            if b_i + V[i-1, w-w_i] > V[i-1, w]
                                          V[i,w] = b_i + V[i-1,w-w_i]
                            else
                                          V[i,w] = V[i-1,w]
             else V[i,w] = V[i-1,w] // w_i > w
```

Example

무게 최대 5 가방 n = 4 (# of elements) W = 5 (max weight)

4개 아이템 (weight, benefit): (2,3), (3,4), (4,5), (5,6)

Example (2): V(k, w) 행렬 채우기

i∖W	<u> </u>	1	2	3	4	5
0	0	0	0	0	0	0
1						
2						
3						
4						

for
$$w = 0$$
 to W

$$V[0,w] = 0$$

Example (3)

i∖W	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0					
2	0					
3	0					
4	0					

for
$$i = 1$$
 to n

$$V[i,0] = 0$$

Example (4)

무게 제한 1인 경우 1번 물건 무게 2이기때문에 X 0번 물건 넣었을 경우 그대로

Items:

- 1: (2,3)
- 2: (3,4)
- 3: (4,5)

$i \setminus W$	V 0	1	2	3	4	5
0	0	10	0	0	0	0
1	0	+ 0				
2	0					
3	0					
4	0					

$$i=1$$
 4: (5,6)

$$b_i=3$$

$$w_i=2$$

$$w=1$$

$$w-w_i = -1$$

$$\begin{split} &\text{if } w_i <= w \text{ // item i can be part of the solution} \\ &\text{if } b_i + V[i\text{-}1,w\text{-}w_i] > V[i\text{-}1,w] \\ &V[i,w] = b_i + V[i\text{-}1,w\text{-}w_i] \\ &\text{else} \\ &V[i,w] = V[i\text{-}1,w] \\ &\text{else } V[i,w] = V[i\text{-}1,w] \text{ // } w_i > w \end{split}$$

Example (5)

무게 제한 2인 경우 1번 물건 무게 2이기때문에 O 1번 넣으면(1번 무게 빼고 0번까지 가치)과 0번만 있을 경우 가치 비교

Items:

- 1: (2,3)
- 2: (3,4)
- 3: (4,5)

$i \setminus V$	V 0	1	2	3	4	5
0	0 ~	0	0	0	0	0
1	0	0	3			
2	0					
3	0					
4	0					

$$i=1$$
 4: (5.6)

$$b_i=3$$

$$w_i=2$$

$$w=2$$

$$w-w_i = 0$$

if
$$\mathbf{w_i} \le \mathbf{w}$$
 // item i can be part of the solution if $\mathbf{b_i} + \mathbf{V[i-1,w-w_i]} > \mathbf{V[i-1,w]}$
$$\mathbf{V[i,w]} = \mathbf{b_i} + \mathbf{V[i-1,w-w_i]}$$
 else
$$\mathbf{V[i,w]} = \mathbf{V[i-1,w]}$$
 else $\mathbf{V[i,w]} = \mathbf{V[i-1,w]}$ // $\mathbf{w_i} > \mathbf{w}$

무게 제한 3인 경우 1번 물건 무게 2이기때문에 o 1번 넣으면(1번 무게 빼고 0번까지 가치)과 e번만 있을 경우 가치 비교

Items:

1: (2,3)

2: (3,4)

$$b_i=3$$

$$w_i=2$$

$$w=3$$

$$w-w_i = 1$$

if
$$\mathbf{w_i} \le \mathbf{w}$$
 // item i can be part of the solution if $\mathbf{b_i} + \mathbf{V[i-1,w-w_i]} > \mathbf{V[i-1,w]}$
$$\mathbf{V[i,w]} = \mathbf{b_i} + \mathbf{V[i-1,w-w_i]}$$
 else
$$\mathbf{V[i,w]} = \mathbf{V[i-1,w]}$$
 else $\mathbf{V[i,w]} = \mathbf{V[i-1,w]}$ // $\mathbf{w_i} > \mathbf{w}$

무게 제한 4인 경우 1번 물건 무게 2이기때문에 o 1번 넣으면(1번 무게 빼고 0번까지 가치)과 **Example** (7) 0번만 있을 경우 가치 비교

Items:

1: (2,3)

2: (3,4)

$$b_i=3$$

$$w_i=2$$

$$w=4$$

$$w-w_i = 2$$

if
$$\mathbf{w_i} \le \mathbf{w}$$
 // item i can be part of the solution if $\mathbf{b_i} + \mathbf{V[i-1,w-w_i]} > \mathbf{V[i-1,w]}$
$$\mathbf{V[i,w]} = \mathbf{b_i} + \mathbf{V[i-1,w-w_i]}$$
 else
$$\mathbf{V[i,w]} = \mathbf{V[i-1,w]}$$
 else $\mathbf{V[i,w]} = \mathbf{V[i-1,w]}$ // $\mathbf{w_i} > \mathbf{w}$

무게 제한 5인 경우 1번 물건 무게 2이기때문에 0 $Example~(8)^{1번 넣으면(1번 무게 빼고 0번까지 가치)과 0번만 있을 경우 가치 비교$

Items:

1: (2,3)

2: (3,4)

$$b_i=3$$

$$w_i=2$$

$$w=5$$

$$w-w_i = 3$$

if
$$\mathbf{w_i} \le \mathbf{w}$$
 // item i can be part of the solution if $\mathbf{b_i} + \mathbf{V[i-1,w-w_i]} > \mathbf{V[i-1,w]}$
$$\mathbf{V[i,w]} = \mathbf{b_i} + \mathbf{V[i-1,w-w_i]}$$
 else
$$\mathbf{V[i,w]} = \mathbf{V[i-1,w]}$$
 else $\mathbf{V[i,w]} = \mathbf{V[i-1,w]}$ // $\mathbf{w_i} > \mathbf{w}$

무게 제한 1인 경우 2번 물건 무게 3이기때문에 x

Example (9)

Items: 1: (2,3) 2: (3,4)

i∖W	<i>y</i> 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	10	3	3	3	3
2	0	0				
3	0					
4	0					

$$i=2$$
 4: (5,6)

$$w_i=3$$
 $w=1$
 $w-w_i=-2$

$$\begin{split} &\text{if } w_i <= w \text{ // item i can be part of the solution} \\ &\text{if } b_i + V[i\text{-}1\text{,}w\text{-}w_i] > V[i\text{-}1\text{,}w] \\ &V[i\text{,}w] = b_i + V[i\text{-}1\text{,}w\text{-}w_i] \\ &\text{else} \\ &V[i\text{,}w] = V[i\text{-}1\text{,}w] \\ &\text{else } \textbf{V[i,w]} = \textbf{V[i\text{-}1,w]} \text{ // } w_i > w \end{split}$$

Example (10)

무게 제한 2인 경우 2번 물건 무게 3이기때문에

1: (2,3)

Items:

2: (3,4)

$$b_i=4$$

$$w_i=3$$

$$w=2$$

$$w-w_i = -1$$

$$\begin{split} &\text{if } w_i <= w \text{ // item i can be part of the solution} \\ &\text{if } b_i + V[i\text{-}1,w\text{-}w_i] > V[i\text{-}1,w] \\ &V[i,w] = b_i + V[i\text{-}1,w\text{-}w_i] \\ &\text{else} \\ &V[i,w] = V[i\text{-}1,w] \\ &\text{else } V[i,w] = V[i\text{-}1,w] \text{ // } w_i > w \end{split}$$

무게 제한 3인 경우 2번 물건 무게 3이기때문에 0 2번 넣고, 2번 무게(3) 뺀 1번까지의 가치와 1번까지의 가치 비교

Items:

1: (2,3)

2: (3,4)

i∖W	V 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	→ 4		
3	0					
4	0					

$$i=2$$
 4: (5.6)

$$b_i=4$$

$$w_i = 3$$

$$w=3$$

$$\mathbf{w} - \mathbf{w}_{i} = 0$$

if
$$\mathbf{w_i} \le \mathbf{w}$$
 // item i can be part of the solution if $\mathbf{b_i} + \mathbf{V[i-1,w-w_i]} > \mathbf{V[i-1,w]}$
$$\mathbf{V[i,w]} = \mathbf{b_i} + \mathbf{V[i-1,w-w_i]}$$
 else
$$\mathbf{V[i,w]} = \mathbf{V[i-1,w]}$$
 else $\mathbf{V[i,w]} = \mathbf{V[i-1,w]}$ // $\mathbf{w_i} > \mathbf{w}$

Example (12)

Items: 1: (2,3)

i∖W	<i>y</i> 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0 _	3	3	3	3
2	0	0	3	4	→ 4	
3	0					
4	0					

$$b_i=4$$

$$w_i = 3$$

$$w=4$$

$$w-w_i = 1$$

if
$$\mathbf{w_i} \le \mathbf{w}$$
 // item i can be part of the solution if $\mathbf{b_i} + \mathbf{V[i-1,w-w_i]} > \mathbf{V[i-1,w]}$
$$\mathbf{V[i,w]} = \mathbf{b_i} + \mathbf{V[i-1,w-w_i]}$$
 else
$$\mathbf{V[i,w]} = \mathbf{V[i-1,w]}$$
 else $\mathbf{V[i,w]} = \mathbf{V[i-1,w]}$ // $\mathbf{w_i} > \mathbf{w}$

무게 제한 5인 경우 2번 물건 무게 3이기때문에 O 2번 넣고, 2번 무게(3) 뺀 1번까지의 가치와 T번까지의 가치 비교

Items:

- 1: (2,3)
- 2: (3,4)
- 3: (4,5)

$$\begin{split} &\text{if } \mathbf{w_i} <= \mathbf{w} \text{ // item i can be part of the solution} \\ &\text{if } \mathbf{b_i} + \mathbf{V[i\text{-}1,}\mathbf{w}\text{-}\mathbf{w_i}] > \mathbf{V[i\text{-}1,}\mathbf{w}] \\ &\mathbf{V[i,}\mathbf{w}] = \mathbf{b_i} + \mathbf{V[i\text{-}1,}\mathbf{w}\text{-}\mathbf{w_i}] \\ &\text{else} \\ &\mathbf{V[i,}\mathbf{w}] = \mathbf{V[i\text{-}1,}\mathbf{w}] \\ &\text{else } \mathbf{V[i,}\mathbf{w}] = \mathbf{V[i\text{-}1,}\mathbf{w}] \text{ // } \mathbf{w_i} > \mathbf{w} \end{split}$$

Example (14)

i∖W	<u> </u>	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	10	13	4	4	7
3	0	+ 0	+ 3	+ ₄		
4	0					

Items:

1: (2,3)

2: (3,4)

3: (4,5)

i=3 4: (5,6)

 $b_i = 5$

 $w_i=4$

w = 1...3

$$\begin{split} & \text{if } w_i <= w \text{ // item i can be part of the solution} \\ & \text{if } b_i + V[i\text{-}1\text{,}w\text{-}w_i] > V[i\text{-}1\text{,}w] \\ & V[i\text{,}w] = b_i + V[i\text{-}1\text{,}w\text{-}w_i] \\ & \text{else} \\ & V[i\text{,}w] = V[i\text{-}1\text{,}w] \\ & \text{else } V[i\text{,}w] = V[i\text{-}1\text{,}w] \text{ // } w_i > w \end{split}$$

Example (15)

i∖W	7 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	4	3	4	4	7
3	0	0	3	4	→ 5	
4	0					

Items:

1: (2,3)

2: (3,4)

3: (4,5)

i=3 4: (5,6)

 $b_i = 5$

 $w_i=4$

w=4

 $w-w_i=0$

if $\mathbf{w_i} \le \mathbf{w}$ // item i can be part of the solution if $\mathbf{b_i} + \mathbf{V[i-1,w-w_i]} > \mathbf{V[i-1,w]}$ $\mathbf{V[i,w]} = \mathbf{b_i} + \mathbf{V[i-1,w-w_i]}$ else $\mathbf{V[i,w]} = \mathbf{V[i-1,w]}$ else $\mathbf{V[i,w]} = \mathbf{V[i-1,w]}$ // $\mathbf{w_i} > \mathbf{w}$

Example (16)

$i \setminus W$	V 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	+ ₇
4	0					

$$\begin{split} &\text{if } \mathbf{w_i} \mathrel{<=} \mathbf{w} \text{ // item i can be part of the solution} \\ &\text{if } b_i + V[i\text{-}1\text{,}w\text{-}w_i] > V[i\text{-}1\text{,}w] \\ &V[i\text{,}w] = b_i + V[i\text{-}1\text{,}w\text{-}w_i] \\ &\text{else} \\ &V[i\text{,}w] = V[i\text{-}1\text{,}w] \\ &\text{else } V[i\text{,}w] = V[i\text{-}1\text{,}w] \text{ // }w_i > w \end{split}$$

Example (17)

i∖W	V 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	10	3	4	5	7
4	0	0	+3	4	+ 5	

Items:

1: (2,3)

2: (3,4)

3:(4,5)

i=4

4: (5,6)

 $b_i = 6$

 $w_i = 5$

w = 1..4

$$\begin{split} &\text{if } w_i <= w \text{ // item i can be part of the solution} \\ &\text{if } b_i + V[i\text{-}1,w\text{-}w_i] > V[i\text{-}1,w] \\ &V[i,w] = b_i + V[i\text{-}1,w\text{-}w_i] \\ &\text{else} \\ &V[i,w] = V[i\text{-}1,w] \\ &\text{else } V[i,w] = V[i\text{-}1,w] \text{ // } w_i > w \end{split}$$

Example (18)

i∖V	<i>y</i> 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	† 7

Items:

1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)

b_i=6
w_i=5

w-3 $w-w_i=0$

if $\mathbf{w_i} \leftarrow \mathbf{w}$ // item i can be part of the solution if $b_i + V[i-1,w-w_i] > V[i-1,w]$ $V[i,w] = b_i + V[i-1,w-w_i]$ else $\mathbf{V[i,w]} = \mathbf{V[i-1,w]}$ else V[i,w] = V[i-1,w] // $w_i > w$

Finding the Items

i∖W	V 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

```
Items:
b_i = 6
w_i = 5
V[i,k] = 7
V[i-1,k] = 7
```

```
i=n, k=W

while i,k > 0

if V[i,k] \neq V[i-1,k] then

mark the i^{th} item as in the knapsack

i=i-1, k=k-w_i

else

i=i-1
```

Finding the Items (2)

$i \setminus W$	<u> </u>	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

```
Items:
i=4
k=5
b_i = 6
w_i = 5
V[i,k] = 7
V[i-1,k] = 7
```

i=n, k=W while i,k > 0
if
$$V[i,k] \neq V[i-1,k]$$
 then mark the i^{th} item as in the knapsack $i=i-1, k=k-w_i$ else $i=i-1$

Finding the Items (3)

$i \setminus W$	<u> </u>	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

```
i=3
k=5
b_i = 5
w_i=4
V[i,k] = 7
V[i-1,k] = 7
```

Items:

```
i=n, k=W while i,k > 0 

if V[i,k] \neq V[i-1,k] then mark the i^{\text{th}} item as in the knapsack i=i-1, k=k-w_i else i=i-1
```

Finding the Items (4)

else


```
1: (2,3)
        2: (3,4)
        3: (4,5)
        4: (5,6)
i=2
k=5
b_i=4
w_i=3
V[i,k] = 7
V[i-1,k] = 3k - w_i = 2
```

Items:

while i,k > 0if $V[i,k] \neq V[i-1,k]$ then mark the i^{th} item as in the knapsack $i = i - 1, k = k - w_i$ i = i-1

Finding the Items (5)


```
Items:
        1: (2,3)
        2: (3,4)
        3: (4,5)
        4: (5,6)
i=1
k=2
b_i=3
w_i=2
V[i,k] = 3
V[i-1,k] = 0k - w_i = 0
```

```
i=n, k=W while i,k > 0  
if V[i,k] \neq V[i-1,k] then mark the i^{\text{th}} item as in the knapsack i=i-1, k=k-w_i else i=i-1
```

Finding the Items (6)

i∖W	7 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

```
i=n, k=W while i,k > 0 if V[i,k] \neq V[i-1,k] then mark the n^{\text{th}} item as in the knapsack i=i-1, k=k-w_i else i=i-1
```

Items:

1: (2,3)

2: (3,4)

3: (4,5)

i=0

4: (5,6)

k= (

The optimal knapsack should contain {1, 2}

Finding the Items (7)


```
i=n, k=W while i,k > 0  
if V[i,k] \neq V[i-1,k] then mark the n^{\text{th}} item as in the knapsack i=i-1, k=k-w_i else i=i-1
```

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

The optimal knapsack should contain {1, 2}

알고리즘 Dynamic Programming

이영석

동적프로그래밍

- Dynamic programming (DP)
 - 문제해결 패러다임
 - 문제를 해결하기 위해 더 작은 문제를 해결하고 해를 재활용하는 방식
 - "기억하며 풀기"
- 분할 정복 기법과 유사

최장 공통 부분 수열 Longest Common Subsequence (LCS)

AGCAT LCS? AC GC GAC GA

최장 공통 부분수열 문제는 LCS라고도 불린다. 이는 주어진 여러 개의 수열 모두의 부분수열이 되는 수열들 중에 가장 긴 것을 찾는 문제다.(종종 단 두 개중 하나가 되기도 한다.) 컴퓨터 과학에서 고전으로 통하는 문제이며, diff 유틸리티의 근간이 되며, 생물정보학에서도 많이 응용되고 있다.

이 문제는 연속되어 있는 공통 문자열을 찾는 최장 공통 부분문자열(longest common substring) 문제와 혼동해서는 안 된다.

두 개의 수열에 대한 해 [편집]

LCS 문제는 최적의 부분구조를 가진다. 이 문제는 더 작은, "부분문제"로 쪼개질 수 있고, 이것은 반복해서 자명한 부분문제가 될 때 까지 더 간단한 부분문제로 쪼개질 수 있다. LCS는 또한 겹치는 부분문제를 가진다. 더 높은 부분문제에 대한 풀이는 몇몇의 하위 부분문제의 풀이에 의존한다. "최적의 부분구조"와 "겹치는 부분문제"는 동적 프로그래밍이라는 가장 간단한 부분문제에서 출발하는 문제 풀이 기법으로 접근될 수 있다. 이 과정은 부분문제의 해답을 표에 저장하는 방식인 메모이제이션을 통하여 상위 단계의 부분문제에서 해답을 접근할 수 있도록 하는 과정을 필요로 한다. 이 방법은 다음과 같이 묘사된다. 두 수열 $X_{1...m}$ and $Y_{1...n}$ 이 주어졌을 때, 주어진 두 수열의 최장 공통 부분수열(longest common subsequence)은 다음과 같이 표현된다.

접두사 [편집]

부분문제는 수열이 짧아질 수록 간단해진다. 짧은 수열은 접두사라는 용어로 간단히 묘사된다. 어떤 수열의 접두사는 말단이 잘려나간 수열이다. S를 수열 (AGCA)라 둔다. 그러면 S의 접두사는 수열 (AG)이다. 접두사는 그 수열의 이름과 그 접두사가 포함하는 문자의 수로 정의된다. $^{[3]}$ 따라서 접두사 (AG)는 S_2 로 명명된다. S의 가능한 접두사들은

 $S_1 = (A)$ $S_2 = (AG)$

 $S_3 = (AGC)$

 $S_{\Delta} = (AGCA)$

이다.

임의의 두 수열 X와 Y에서, LCS문제의 해법, 즉 최장 공통 부분 수열, LCS(X, Y)는 다음의 두 속성에 의존한다

첫 속성 [편집]

두 수열이 같은 원소로 끝난다고 가정해보자. 그들의 LCS를 찾기 위해 마지막 원소를 지움으로써 수열의 길 이름 줄이고, 짧아진 수열에 대한 LCS를 찾은 후 삭제한 원소를 붙여준다.

예를 들어, 같은 마지막 원소를 가진 두 수열 (BANANA)와 (ATANA)가 존재하다.

마지막 원소를 삭제한다. 이 과정을 공통된 마지막 원소가 존재하지 않을때까지 반복한다. 삭제된 수열 은 ANA이다.

이제 연산해야 하는 수열은 다음과 같다. (BAN)와 (AT)

이 두 수열의 LCS는 (A)가 된다.

삭제했던 부분수열 (ANA)를 다시 결합시키면 (AANA)가 되고, 이것이 원 수열의 LCS가 된다.

접두사에서.

 $LCS(X_{n}, Y_{m}) = (LCS(X_{n-1}, Y_{m-1}), X_{n})$

반점은 원소 xn가 이 수열에 붙게되는 부분을 말한다.

 X_n 과 Y_m 의 LCS를 계산하려면 더 짧은 수열 X_{n-1} 와 Y_{m-1} 의 LCS를 계산해야 하는 점에 유의한다.

두 번째 속성 [편집]

두 수열 X, Y가 같은 기호로 끝나지 않는다고 가정한다. 그러면 X와 Y의 LCS는 LCS(Xn,Ym-1)와 LCS(Xn-1,Ym)중 더 긴 수열이다. 이 특징을 이해하기위해 다음 두 수열을 보도록 한다. 수열 X: ABCDEFG (n개의 원소) 수열 Y: BCDGK (m개의 원소) 이 두 수열의 LCS의 마지막 문자는 수열 X의 마지막 원소인 G로 끝나거나, 그렇지 않을것이다.

첫 번째 경우: LCS가 G로 끝나는 경우

이 경우 LCS는 K로 끝날 수 없다. 따라서 수열 Y에서 K를 제거하여도 손실이 일어나지 않는다. 만약 K가 LCS 에 있었다면 결과적으로 K는 LCS에 존재하지 않으므로 마지막 문자였을것이다. 따라서 이렇게 표기할 수 있다. $LCS(X_n,Y_m) = LCS(X_n,Y_{m-1})$.

두 번째 경우: LCS가 G로 끝나지 않는 경우

이 경우 위와 같은 이유로 수열 X에서 G를 제거하여도 손실이 일어나지 않는다. 즉 이렇게 쓸 수 있다.

 $LCS(X_n,Y_m) = LCS(X_{n-1}, Y_m).$

어떤 경우에서든지 우리가 찾는 LCS는 $LCS(X_n, Y_{m-1})$ 이거나 $LCS(X_{n-1}, Y_m)$ 이다. 이 두 LCS는 둘다 X와 Y의 공통 부분수열이다. LCS(X,Y)는 최장이다. 따라서 그 값은 $LCS(X_n, Y_{m-1})$ 와 $LCS(X_{n-1}, Y_m)$ 중의 최장 수열이다.

LCS 함수의 정의 [편집]

두 수열을 다음과 같이 정의한다. $X = (x_1, x_2...x_m)$, $Y = (y_1, y_2...y_n)$. X의 접두사는 $X_{1, 2,...m}$ 이고, Y의 접두사는 $Y_{1, 2,...n}$ 이다. $Y_{2, 2,...n}$ 이고, $Y_{2, 2,...n}$ 이다. $Y_{2, 2,...n}$ 이고, $Y_{2, 2,...n}$ 이다. $Y_{2, 2,...n}$ 이다. $Y_{2, 2,...n}$ 이다. $Y_{2, 2,...n}$ 이다. $Y_{2, 2,...n}$ 이고, $Y_{2, 2,...n}$ 이고,

$$LCS\left(X_{i},Y_{j}\right) = \begin{cases} \emptyset & \text{if } i=0 \text{ or } j=0 \\ LCS\left(X_{i-1},Y_{j-1}\right) + 1 & \text{if } x_{i}=y_{j} \\ \text{longest}\left(LCS\left(X_{i},Y_{j-1}\right), LCS\left(X_{i-1},Y_{j}\right)\right) & \text{if } x_{i} \neq y_{j} \end{cases}$$

 X_i 와 Y_j 의 최장 공통 부분 수열을 찾기 위해서, 두 원소 X_i 와 Y_j 를 비교한다. 만약 그들이 같다면 수열 $LCS(X_i-1, Y_{j-1})$ 는 X_i 원소로 확장된다. 만약 그들이 같지 않다면 두 수열 $LCS(X_i, Y_{j-1})$, 와 $LCS(X_{i-1}, Y_j)$ 증 더 긴 것이 얻어진다. (만약 그 둘이 길이가 같지만 동일하지 않다면 둘다 얻어진다.) 이 공식들에서 첨자가 1씩 감소했음을 주목하라. 이것은 첨자가 0이 되는 상황을 만들 수 있다. 수열의 원소들은 1부터 시작하는 것으로 정의되어 있으므로, 첨자가 0일때 LCS는 비어있다는 필요조건을 추가할 필요가 있다.

예시 [편집]

C = (AGCAT)와 R = (GAC)의 최장 공통 부분순열을 찾을것이다. LCS 함수는 "0번째"원소를 이용하기 때문에, 이 수열에서 비어있는 0번째 접두사를 정의하는 것이 편리하다. $C_0 = \emptyset$, 그리고 $R_0 = \emptyset$ 이다. 모든 접두사들은 C를 첫 번째 행에 위치하고, R을 첫 열에 위치시킨 표에 자리잡는다.

LCS Strings

	0	Α	G	C	Α	T	
0	Ø	Ø	Ø	Ø	Ø	Ø	
G	Ø						
Α	Ø						
C	Ø						

이 표는 연산의 각 단계에서 LCS 수열을 저장하는데 이용된다. 두 번째 행과 두 번째 열은 Ø로 채워지는데, 빈 수열이 비어있지 않은 수열과 비교될때 가장 긴 공통 부분 수열이 항상 빈 수열이 되기 때문이다.

"G" Row Completed

	Ø	Α	G	C	Α	Т
Ø	Ø	Ø	Ø	Ø	Ø	Ø
G	Ø	← [↑] Ø	<a>⟨G⟩	← (G)	← (G)	←(G)
Α	Ø					
C	Ø					

 $LCS(R_1, C_1)$ 는 각 수열의 첫 원소를 비교함으로써 결정된다. G와 A는 일치하지 않기 때문에, 이것의 LCS는 두 번째 속성에 의해 두 수열 $LCS(R_1, C_0)$ 와 $LCS(R_0, C_1)$ 중 긴 것을 갖게 된다.

표에서 보면, 이 둘 모두 비어있기 때문에 $LCS(R_1, C_1)$ 도 마찬가지로 아래쪽 표에서 볼 수 있듯이 비어있게된다. 화살표는 수열이 위쪽의 두 셀 $LCS(R_0, C_1)$ 과 그 왼쪽 셀인 $LCS(R_1, C_0)$ 에서 온다는 것을 가리킨다.

 $LCS(R_1, C_2)$ 는 G와 G를 비교함으로써 결정된다. 그들은 동일하므로, 왼쪽 위의 (\emptyset) 의 수열 $LCS(R_0, C_1)$ 뒤에 붙어서 $(\emptyset G)$ 가 되므로 결과적으로 (G)가 된다.

 $LCS(R_1, C_3)$ 에서, G와 C는 일치하지 않는다. 그 위의 수열은 비어있고, 그 왼쪽의 것은 G라는 하나의 원소를 포함한다. 이들증 가장 긴 것을 선택하면 $LCS(R_1, C_3)$ 는 (G)가 된다. 화살표는 왼쪽을 가리키는데, 그것이 둘중 가장 긴 것이기 때문이다.

LCS(R₁, C₄)는 같은 방법으로 (G)이다.

LCS(R₁, C₅)또한 같은 방법으로 (G)이다.

"G" & "A" Rows Completed

	Ø	Α	G	С	Α	T
Ø	Ø	Ø	Ø	Ø	Ø	Ø
G	Ø	$\leftarrow^{\uparrow_{\coloredge op}}$	<	←(G)	← (G)	←(G)
Α	Ø	<(A)	<u></u> (A) & (G)	<u></u> (A) & (G)	へ(GA)	←(GA)
С	Ø					

LCS(R2, C1)에서, A는 A와 비교된다. 두 원소가 동일하므로, A는 Ø에 첨가되어 (A)가 된다.

 $LCS(R_2, C_2)$ 에서, A와 G는 같지 않다. 따라서 두 수열 $LCS(R_1, C_2)$ 와 $LCS(R_2, C_1)$ 중 가장 긴 것, 즉 (G)와 (A)중 가장 긴 것이 사용된다. 이 예시에서 그들은 하나의 원소만들 포함하므로, LCS는 두 부분 수열 (A)와 (G)로 주어진다.

LCS(R₂, C₃)에서, A는 C와 동일하지 않다. LCS(R₂, C₂)는 수열 (A) 와 (G)를 포함한다. LCS(R₁, C₃)는 (G)로, TCS(R₂, C₂)에 이미 포함되어있다. 결과적으로 LCS(R₂, C₃) 또한 두 수열 (A) 와 (G)를 포함한다.

LCS(R2, C4)의 경우, A는 A와 같으므로, 왼쪽 위 셀에 붙어, (GA)가 된다.

*LCS(R*₂, *C*₅)<mark>의</mark> 경우에서, A는 T와 같지 않다. 두 수열 (GA) 와 (G)를 비교했을 때, 가장 긴것은 (GA)이므로*LCS(R*₂, *C*₅) 는 (GA)이다.

Completed LCS Table

	Ø	Α	G	С	Α	Т
Ø	Ø	Ø	Ø	Ø	Ø	Ø
G	Ø	← [↑] Ø	乀(G)	←(G)	←(G)	←(G)
Α	Ø	<(A)	<u></u> (A) & (G)	← ^{↑(A)} & (G)	<	←(GA)
С	Ø	↑(A)	<u></u> (A) & (G)	√(AC) & (GC)	<u>←</u> (AC) & (GC) & (GA)	<u></u> (AC) & (GC) & (GA)

LCS(R₃, C₁)에서, C 와 A 는 같지 않으므로, LCS(R₃, C₁) 는 가장 긴 수열 (A)를 갖는다.

 $LCS(R_3, C_2)$ 에서, C 와 G는 같지 않다. $LCS(R_3, C_1)$ 와 $LCS(R_2, C_2)$ 모두 단 하나의 원소를 가지므로 $LCS(R_3, C_2)$ 는 두 원소 (A) 와 (G)를 가지게 된다.

 $LCS(R_3, C_3)$ 에서, C 와 C는 동일하므로, C는 두 부분수열 (A)와 (C)를 포함하는 $LCS(R_2, C_2)$ 에 붙어 (AC) 와 (GC)가 된다.

 $LCS(R_3, C_4)$ 에서, C와 A는 같지 않다. (AC)와 (GC)를 포함하는 $LCS(R_3, C_3)$ 와 (GA)를 포함하는 $LCS(R_2, C_4)$ 를 조합하면 총 세 개의 수열 (AC), (GC), 그리고 (GA)를 준다.

마지막으로, $LCS(R_3, C_5)$ 에 대해서, C와 T는 일치하지 않는다. 결과적으로 $LCS(R_3, C_5)$ 또한 세 수열 (AC), (GC), 그리고 (GA)를 갖는다.

역추적 접근 [편집]

LCS 표의 한 행의 LCS를 계산하는 데에는 현재 행의

Storing length, rather than

sequences

	Ø	Α	G	C	Α	T
Ø	0	0	0	0	0	0
G	0	\ 0	₹1	←1	←1	← 1
Α	0	₹1	\leftarrow^{\uparrow_1}	← ¹	₹2	← 2
c	0	↑1	← 1	₹2	← ¹ 2	_ ^2

실제 부분수열들은 표의 마지막 셀로부터 시작하여 화살표들을 거슬러 "역추적"함으로써 추론할 수 있다. 길이가 줄어들 때, 각 수열들은 반드시 공통 원소를 가진다. 두 화살표가 한 셀 안에서 있으면 여러 경로가 가능하다. 아래는 길이가 감소하는 셀에 대해 색이 칠해진 수들이 나타난 분석 과정을 나타낸 표이다. 굵은 숫자는 (GA) 수열을 찾아내는 경로이다.^[4]

Traceback example

	Ø	Α	G	С	Α	T
Ø	0	0	0	0	0	0
G	0	← 0	N 1	←1	←1	←1
Α	0	√1	\leftarrow^{\uparrow_1}	← 1	√2	←2
C	0	↑1	← 1	₹2	\leftarrow^{\uparrow_2}	$\leftarrow^{\uparrow 2}$

AC GC GA

알고리즘 Dynamic Programming

이영석

동적프로그래밍

- Dynamic programming (DP)
 - 문제해결 패러다임
 - 문제를 해결하기 위해 더 작은 문제를 해결하고 해를 재활용하는 방식
 - "기억하며 풀기"
- 분할 정복 기법과 유사

최대증가부분수열(LIS: Longest Increasing Subsequence)

어떤 임의의 수열이 주어질 때, 몇 개의 수들을 제거해서 부분수열을 만들 수 있다. 부분수열 중 오름차순으로 정렬된 최대 증가 부분수열 찾기

35792148

위 수열에서 몇 수를 제거해 부분수열 만들기

35792148 (5, 2 제거): LIS No 35792148 (3, 5, 2, 4 제거): LIS No 35792148 (9, 2, 1, 4 제거): LIS OK 35792148 (3, 5, 7, 9, 2 제거): LIS OK

세번째, 네번째 수열은 오름차순으로 정렬 '증가 부분 수열' 증가 부분 수열 중 가장 긴 수열을 '최대 증가 부분 수열 (LIS)'이라 한다. 부분수열 **3 5 7 8**은 LIS

한 수열에서 여러 개의 LIS가 나올 수도 있다.

5162738

에서 부분수열

5 1 6 2 7 3 8: 1 2 3 8 5 1 6 2 7 3 8: 5 6 7 8

은 모두 길이가 4인 LIS이다.

LIS해결방법: DP

- DP (dynamic programming: 동적계획법)
 - 복잡도 O(n^2)
- 주어진 배열
 - input[n] : n개의 문자열
- 답
 - L[x]: x 번째 수를 마지막 원소로 가지는 LIS 길이
 - · L[x] 를 찾았다면, 다음에 찾아야할 것
 - x보다 큰 위치 y의 배열값 input[y] > input[x]보다 크다면 LIS 에 포함됨!!!
 - 가장 긴 이전 LIS 찾기!
 - L[y] = max(L[x]) + 1

LIS Example

- input: [0] 3 5 7 9 2 1 4 8
 - $0.3 \rightarrow L[0] = 1$
 - 0.3.5 -> L[1] = 2
 - 0.357 -> L[2] = 3
 - $0.3579 \rightarrow L[3] = 4$
 - 0 3 5 7 9 2 -> L[4] = 1
 - 0 다음에
 - 0 3 5 7 9 2 1 -> L[5] = 1
 - 0 다음에
 - 0 3 5 7 9 2 1 4 -> L[6] = 2
 - 0, 3 다음에
 - $035792148 \rightarrow L[7] = 4$
 - 0, 3, 5, 7 다음에

LIS해결방법: Lower Bound

- Lower bound를 이용한 O(n log n)
 - lower bound는 정렬된 배열에 어떤 값이 삽입될 수 있는 가장 작은 인덱스
 - 현재값이 배열의 마지막 원소보다 크면 추가
 - 작으면, lower bound 위치의 값을 대체
 - 예) 3 5 7 9 2 1 4 8

```
3
3 5
3 5 7 (크면 추가)
3 5 7 9
2 5 7 9
1 5 7 9
1 4 7 9
1 4 7 8 (8이 9를 대체)
```