Rotorkarakteristieken van een

sleepringankermotor

1 Doel van de oefening

- De geïnduceerde rotor-emk bij geblokkeerde rotor meten;
- De rotorfrequentie en de rotorspanning in functie van de slip bepalen;
- De invloed van de rotorweerstand op de rotorstroom, lijnstroom, rotorsnelheid, rotorfrequentie en rotorspanning bepalen.

2 Schakeling

3 Benodigdheden

Witti	
Zie bijlage	
Rem + toebehoren	
Zie bijlage	

Ampèremeters

Voltmeters

Wattmeters

Frequentiemeter

Tachometer

Driepolige schakelaar

Ster-driehoekschakelaar

Labosnoeren

4 Uitvoering

4.1 Meten van de rotorspanning bij open rotorkring

Opstellingsschema

$$U_L = 240V$$
_____; $n_s = 25tr/s$ ___; $I_L = 3.3A$ ___=± nullaststroom.

Stel E_{ro} = 240V

$$f_s = 50 \; Hz$$

4.2 De frequentie en grootte van de rotor-emk bepalen in functie van de slip

Stel R_r= 9.5 Ω en X_{ro} = 38 Ω ; Opstelling: zie bijlage (simulatie)

Instellen	Meten of berekenen							
I _L (A)	n,(tr/s)	T _{as} (Nm)	s(%)	f,(Hz)	<i>E,(V)</i>	I _r (A)		
Nullast I _L = 3.3A	23.545	1.99	5.82	2.91	13.97	1.432		
I _L = 0,7.I _n =15.96A	21.36	34.35	14.56	7.28	34.94	3.18		
I _L = 0,8.I _n =18.24A	20.86	40.17	16.56	8.28	39.74	3.49		
I _L = 0,9.I _n =20.52A	20.323	45.58	18.7	9.35	44.9	3.78		
I _L = 1.I _n =22.8A	19.7	50.52	21.2	10.6	50.88	4		
I _L = 1,1.I _n =25.08A	19	54.86	24	12	57.6	4.37		

Formules:

$$s = (n_s - n_r)/n_s$$
; $I_r = s.E_{ro}/(\sqrt{(R_r^2 + (s.X_{ro})^2)}$; $f_r = s.f_s$; $E_r = s.E_{ro}$

4.3 De invloed van de aanzetweerstand op de rotorgrootheden bepalen-karakteristiek

Behoud de vorige opstelling.

Simuleer de aanzetweerstand door de netspanning aan te passen volgens de onderstaande tabel.

Hou het askoppel constant op de waarde horende bij 0,8. I_n.

$$T_{as} = 42.39$$
 ; $U_L = 240$; $n_s = 1500$

Stel
$$R_{az} = 50 \quad \Omega$$

Instellen	Berekenen of meten							
	Netspanning simulatie (V)	$R_{az}(\Omega)$	<i>I</i> _L (A)	I, (A)	n _r (s ⁻¹)	s (%)	U _r (V)	f _r (Hz)
R _{az} = max	<mark>285</mark>	50	18.55	0.61	21.18	15.28	36.67	7.64
R _{az} .3/4	<mark>309</mark>	37.5	18.1	0.72	21.46	14.16	34	7

R _{az} .2/4	333	25	18.5	0.94	21.59	13.64	32.74	6.82
R _{az} .1/4	<u>357</u>	12.5	18.2	1.37	21.78	12.88	30.91	6.44
$R_{az} = 0$	<mark>380</mark>	0	18.65	2.84	21.86	12.56	30.14	6.28

Formules:

$$s = (n_s - n_r)/n_s$$
; $I_r = s.E_{ro}/(\sqrt{((R_{r+}R_{az})^2 + (s.X_{ro})^2)}$; $f_r = s.f_s$; $U_r = s.E_{ro}$

4.4 De invloed van de aanzetweerstand op de aanzetstroom

Behoud de vorige opstelling.

Simuleer de aanzetweerstand door de netspanning aan te passen volgens de onderstaande tabel.

Belast de machine niet. Dus telkens nullast!

Ongeveer 5 keer de nullaststroom is de aanzettroom en dit zowel voor de lijals rotorstroom.

$$T_{as} = \underline{Variabel}$$
; $U_L = Variabel$; $n_s = \underline{1500}$
 $Stel R_{az} = 50 \Omega$

Instellen		Berekenen of meten						
	Netspanning simulatie (V)	R _{az} (Ω)	I _L (A)	I _{Laz} (A)	n _r (s ⁻¹)	s (%)	I, (A)	I _{raz} (A)
R _{az} = max	<mark>285</mark>	50	3.36	20.16	23.58	5.68	1.4	0.23
R _{az} .3/4	<mark>309</mark>	37.5	3.6	21.6	23.6	5.64	1.39	0.29
R _{az} .2/4	<u>333</u>	25	3.87	23.22	23.6	5.6	1.38	0.39
R _{az} .1/4	<mark>357</mark>	12.5	4.14	24.84	23.6	5.6	1.38	0.6
$R_{az} = 0$	<mark>380</mark>	0	4.41	26.46	23.6	5.5	1.36	1.36

Formules:

$$s = (n_s - n_r)/n_s; I_r = s.E_{ro}/(\sqrt{((R_{r+}R_{oz})^2 + (s.X_{ro})^2)}; f_r = s.f_s; U_r = s.E_{ro}$$

5 Opgaven

5.1 Voor een sleepringankermotor is de rotor-emk bij geblokkeerde of stilstaande rotor gelijk aan:

$E_{ro} = E$	•

5.2 Indien de slip toeneemt, zal:

```
X E<sub>r</sub> toenemen;
X f<sub>r</sub> toenemen.

o E<sub>r</sub> afnemen;
o f<sub>e</sub> afnemen.
```

5.3 Welke grootheden wijzigen indien je de aanzetweerstand wijzigt?

XI_L
O U_L
O f_{net}
O n_e

5.4 Hoe bepaal je de rotorfrequentie met een gelijkstroomampèremeter

Teken het cirkeldiagram en bepaal uit het cirkeldiagram de naar de rotorfrequentie.

5.5 Hoe verhoudt het motorkoppel in ster zich t.o.v. driehoek bij eenzelfde snelheid?

De snelheid blijft dezelfde maar de stroom in de fasewikkelingen zal veranderen.

5.6 Als het askoppel T_{as} toeneemt, zal (schrap wat niet past):

- I_L stijgen / constant blijven / dalen;
- I_r stijgen / constant blijven / dalen;
- n_r stijgen / constant blijven / dalen;
- f_r stijgen / constant blijven / dalen.

5.7 Welke rotorgrootheden wijzigen als je de aanzetweerstand wijzigt?

 XI_r

 XE_r

o f₄

o n,

- 5.8 Indien de weerstandswaarde van de aanzetweerstand toeneemt, zal (schrap wat niet past):
 - I₁ stijgen / constant blijven / dalen;
 - I_r stijgen / constant blijven / dalen;
 - U_r stijgen / constant blijven / dalen;
 - n_r-stijgen / constant blijven / dalen;
 - f_r stijgen / constant blijven / dalen.
- 5.9 Bij een 2-polige sleepringankermotor meet men een spanning van 100 V tussen de sleepringen bij geblokkeerde rotor. Hoe groot is de rotor-emk van deze motor indien hij aangesloten is op een net met frequentie 50 Hz en als de rotatiefrequentie 45 s⁻¹ is?

Gegeven: $E_{ro} = 100 \text{ V}$; p = 1; f= 50 Hz; $n_r = 45 \text{ s}^{-1}$

Gevraagd: E_r?

Oplossing:

s=(ns-ns)/ns=(50-45)/50=10%

Er=Er0*s=100V*0.1=10V

- 5.10 De rotorweerstanden worden gebruikt om bij het aanlopen de aanloopstroom te beperken en tijdens het bedrijf de slip te regelen.
- 5.11 Op welke twee manieren kan je de snelheid van een sleepringankermotor regelen?

X door de instelling van de aanzetweerstand te wijzigen;

o door de fasevolgorde te veranderen;

X door de netfrequentie te wijzigen.

6 Besluiten

Berekening van de slip, rotor-emk en rotorfrequentie

 Je berekent de relatieve slip s met behulp van de snelheid van het statordraaiveld van de motor, ook synchrone motorsnelheid n_s genoemd, en de rotorsnelheid van de motor n_r. De synchrone motorsnelheid n_s kan je afleiden met behulp van de gegevens op de kenplaat van de motor. De rotorsnelheid van de motor n_r meet je met de tachometer.

$$s = \frac{n_{\rm s} - n_{\rm r}}{n_{\rm s}}$$

- Je meet, bij geblokkeerde rotor, de rotorspanning U_{ro} met een voltmeter tussen twee sleepringen.
 Bij geblokkeerde rotor vloeit er geen stroom en is bijgevolg de rotorspanning U_{ro} gelijk aan de rotor-emk E_{ro}.
- Bij een willekeurige rotorsnelheid n_r kan je de rotor-emk E_r berekenen met de relatieve slip s en de rotor-emk bij geblokkeerde rotor E_{ro}.

$$E_r = s \cdot E_{ro}$$

 De frequentie van de rotor-emk f_r bereken je met behulp van de frequentie van de aangelegde statorspanning f_s en de relatieve slip s.

$$f_{\rm r} = s \cdot f_{\rm s}$$

De rotorstroom kun je berekenen met de onderstaande formule:

$$I_r = s.E_{ro}/(\sqrt{((R_{r+}R_{oz})^2 + (s.X_{ro})^2)})$$

▶ Het schema van de proef

Sleepringmachines, gebruikt bij de laboratoria

Opmerkingen:

Sleepring 1;2;4 en 5

Stel
$$R_r = 9.5\Omega$$
 en $X_{ro} = 38\Omega$

Stel
$$R_{az} = 50\Omega$$

Sleepring 3

Stel
$$R_r = 24,5\Omega$$
 en $X_{ro} = 73\Omega$

Stel
$$R_{oz} = 120\Omega$$

Sleepring 6 en 7

Stel
$$R_r = 3\Omega$$
 en $X_{ro} = 9\Omega$

Stel
$$R_{az} = 14\Omega$$