Prayag Anil Gore

Cincinnati • (513) 836-2211 • gorepa@mail.uc.edu • https://www.linkedin.com/in/Prayag-Gore

EDUCATION

Doctor of Philosophy in Mechanical Engineering (Ph.D.)

Intended Dec 2025

Micro and Nano Manufacturing Laboratory, University of Cincinnati, Cincinnati, OH, USA

GPA: 3.813

Thesis: Machine Learning for Performance Enhancement in Electrochemical Machining via Predictive Diagnostics

Master of Science in Mechanical Engineering (MS)

Dec 2022

Center for Intelligent Maintenance Systems, University of Cincinnati, Cincinnati, OH, USA (IMS Center)

GPA: 3.803

Thesis: PHM Methodology for Location-based Health Evaluation and Fault Classification of Linear Motion Systems\

TECHNICAL SKILLS

Data Analysis & Visualization: Python (Pandas, TensorFlow, Scikit-learn, NumPy), R, MATLAB, SQL, Git, Tableau **Machine Learning**: Deep Learning, SVM, SOM, Random Forest, Signal Processing, Time Series, Image Processing

WORK EXPERIENCE

P&G Digital Accelerator

Jan 2021 - Present

Machine Learning Engineer and Systems Engineer

- **Designed and implemented Image Data Augmentation framework** for training deep learning models for quality control of feminine hygiene <u>products increasing dataset from 10K → 100K images</u> without losing classification accuracy.
- Developed Systems Engineering models of complex manufacturing systems via interviews of subject matter experts.
- Accurately mapped the consumer needs to manufacturing processes and raw materials by analyzing their impacts on final product quality, using model-based systems engineering (MBSE).

Micro and Nano Manufacturing Laboratory

Aug 2023 - Present

Graduate Research Assistant

- **Developed Image processing technique** using "adaptive background modeling" to detect and map spark discharges. Spark detection capability was <u>enhanced by 150% when compared with supervised deep learning</u> methodology
- Extracted gas film dynamics via edge detection on high-speed camera data; applied Gaussian Process Regression (GPR) to model relationships between input parameters and output characteristics.
- Developed data acquisition system to monitor electrolyte behavior and statistically quantify performance degradation.

Intelligent Maintenance Systems

Aug 2020 - Dec 2022

Graduate Research Assistant

- Developed a transfer learning methodology for detection of health degradation and fault classification tasks using data from non-connected ball screw systems, with deep learning techniques.
- Designed a fault classification approach for PCB manufacturing with highly imbalanced datasets, leveraging feature
 engineering and gradient boosting algorithms (PHM Europe Data Challenge 2022 won 2nd place)
- Authored and published research papers on machine learning applications for ball screw health evaluation, fault classification, and PCB manufacturing.

SAE India - Team Pegasus Racing

Aug 2016 - December 2018

Design and Manufacturing Team for Steering

- Developed an Ackerman steering system for formula-3 race car for SAE India's Supra racing competition.
- Designed steering quick release mechanism for maneuverability and safety testing

PUBLICATIONS [Google Scholar Profile]

- 1. **Gore, P.**, Chen, Y.-J., & Sundaram, M. (2024). Unsupervised detection and mapping of sparks in the Electrochemical Discharge Machining (ECDM) process. Manufacturing Letters, 41, 435–441. [Link]
- 2. Kundu, P., Miller, M., **Gore, P.,** Jia, X., & Lee, J. (2023). Detection of inception of preload loss and remaining life prediction for ball screw considering change in dynamics due to worktable position. *Mechanical Systems and Signal Processing*, 189, 110075. [Link]
- 3. **Gore**, **P.**, John Taco, Minami, T., Kundu, P., & Lee, J. (2022). A Novel Methodology for Health Assessment in Printed Circuit Boards. *PHM Society European Conference*, *7*(1), 556–562. [Link]
- 4. Lee, J., **Gore, P.,** Jia, X., Siahpour, S., Kundu, P., & Sun, K. (2022). Stream-of-quality methodology for industrial internet-based manufacturing system. Manufacturing Letters, 34, 58–61. [Link]