# SPRING DAO GOVERNANCE MODEL **MARKUS JUNGNICKEL**

# **Agenda**

# The presentation will give a high-level overview with deep-dives reserved for Q&A

PRESENTATION OUTLINE

- Project Objectives
- Governance Analysis
- Governance Model
- Demonstration
- Technical Design
- Evaluation

**CONTRIBUTORS** 



Markus Jungnickel
Pursuing MSc in Computing Science
B.A. in Law

SUPERVISION

# Prof. William Knottenbelt Professor of Applied Quantitative Analysis

Imperial College London

**Dr. Pedro Baiz**Honorary Senior Research Fellow
Imperial College London

# **Objectives & Contributions**

The thesis performed a full loop around the product development cycle

PRODUCT CYCLE





# **Overview of Analysis**

# Compared three governance models across key dimensions

SCOPE OF ANALYSIS

SUMMARY OF RESULTS

### **Governance Models**

Share-Based

Token Gov

Reputation

### **Governance Dimensions**

Centralization

Participation

Controversy

|               | Gini Coefficient | Voter Participation <sup>1</sup> | Median Majority Size |
|---------------|------------------|----------------------------------|----------------------|
| DAO Haus      | 0.74             | 78%                              | 98.15%               |
| DAO Stack     | 0.46             | 97%                              | 97.76%               |
| Protocol DAOs | 0.98             | 99%                              | 96.99%               |
| Snapshot      | N/A              | 92%                              | 90.49%               |
|               |                  |                                  |                      |

= worst performer

# Centralization

# Many DAOs are highly centralized, especially token-based DAOs

GINI COEFFICIENT NAKAMOTO COEFFICIENT





Insight: Transferability, financial value and initial allocation of tokens are problematic

# **Participation**

# Low member engagement is present across governance models

**ON-CHAIN PARTICIPATION** 



### ON VS OFF-CHAIN PARTICIPATION



Insight: Low participation results from centralization and direct democracy

# **Decision Controversy**

# Disagreement and turnout are low, both on and off-chain

CONTROVERCY





Insight: While controversy is lacking, it may be partially masked by low participation

# **Summary of Insights**

The proposed governance model addresses the key issues identified here

**GOVERNANCE CHALLENGES** 



A high degree of centralisation, constant over time



**Votes have low participation** 



Proposals are largely uncontroversial

## **Proposed Solutions**



- Non-transferable token, no financial value, fair initial allocation
- Decrease decisions, focus on representative democracy
- > Optimistic Governance



# **Three Governance Components**

The overall DAO governance will be divided between voting, roles and committees

GOVERNANCE MODEL ♣ HIGH POWER Non-Transferrable **Quadratic Voting Optimistic Gov** Vote Multi-Sig Elected **Decision Power** Committees Elected/Appointed **Decision Power** Member Roles LOW POWER **DECISION FREQUENCY** 

# **Member Lifecycle**

**Governance Token balance across different lifecycle stages** 





# **Prototype Architecture**

The Prototype architecture demonstrates the use of the technical components

PROTOTYPE ARCHITECTURE





# **Zodiac Standard**

# Building on the first open-source modular design standard for DAOs

**ZODIAC STANDARD INTERFACES** 





# **Improved Zodiac Standard**

The Zodiac standard was improved without breaking compatibility

SIMPLE ZODIAC DESIGN ADVANCED ZODIAC DESIGN HR Marketing Module A Modifier Committee Budget Treasury Avatar Module B Modifier Mod Budget Module C Modifier Operations Committee

**Consideration:** The simple design requires many modifiers and does not allow networks of control

# **Proxy Pattern**

**Using the UUPS Proxy Pattern** 

**UPGRADEABILITY COST EFFICIENCY Current Version Proxy Future Version Future Version** Cross-Chain Modifier Committee ■ Proxy ■ Logic

**Consideration:** A flexible and extensible governance model needs cheap & upgradeable contracts

# **Cross-Chain Smart Contracts**

Proxies were used to realize cross-chain interactions

CROSS-CHAIN GOVERNANCE **BRDIGE ARCHITECTURE** 



useBridge() methodC() methodC() Proxy C

useBridge()

Proxy A

methodA()

Mainnet: \$4.65 xDai Chain: <\$0.01

**Consideration:** Cross-chain governance is only attractive if bridge interactions are safe and seamless

Contract A

Contract C

methodB() Contract B

methodA()

useBridge()



# **Prototype Evaluation**

The Prototype was evaluated along three key dimensions









**Conclusion:** Overall good design but security, complexity, interoperability and completeness need improvement



**Thank You!** 



# **Governance Analysis**

# **Deep Dive: Literature Review**

**REVIEW OF EXISTING RESEARCH** 

### Centralization

- Extensive research on tokenbased DAOs
- Limit research on DAO Haus and DAO Stack, including comparison
- Missing focus on comparison of different models

### **Participation**

- Research available on all governance models
- Some comparative analyses
- Insufficient focus on off-chain voting

### Controversy

- Some research on all models,
   but insufficient comparisons
- No focus on understanding share vs voter majorities
- Insufficient analysis of offchain voting

# **Governance Analysis**

Deep Dive: Methodology & data

LIMITATIONS



**Heterogenous across DAOs and Models** 



Possible sample bias and limited sample size



**Limited governance dimensions and metrics** 



**Exploratory without statistical validation** 

METHODOLOGY

### **Voting Power**

Gini Coefficient, Nakamoto Coefficient, Lorenz Curves, Temporal Analysis

### **Participation**

% of votes in which members participate, proposal turnout

### Controversy

majority sizes, voter turnout, comparison of types of majorities

# Centralization

# **Deep Dive: Voting power distribution**

### **LORENZ CURVES**



### **VOTING POWER DISTRIBUTION**



# **Controversy**

# **Deep Dive: Share vs voter majority**

### **MAJORITY SIZES**



# Centralization

# **Deep Dive: DAO Stack and DAO Haus**

### DAO STACK & DAO HAUS







# **Quadratic Voting**

Deep Dive: Decreases centralization and improves preference satisfaction

ADVANTAGES & CHALLENGES



**Preference Optimization** 



**Decreased Centralization** 



**Sybil Attacks** 



**Proposal Gaming** 

QUADRATIC COST CURVES



# **Zodiac Standard**

# **Deep Dive: Generic function call**

**GENERIC FUNCTION CALL** 



# **Bridge Architecture**

**Deep Dive: Cross-Chain Smart Contracts** 

PROBLEMS WITH EXISTING APPROACHES

PROPOSED DESIGN





**Better Usability** 



Improved Interoperability



**One-Directional Bridge** 



**Insufficient Security Precautions** 

PAGE 32

Example dxDAO

# **Bridge Architecture**

**Deep Dive: Security** 

SECURITY RISKS<sup>1</sup>

MITIGATING MEASURES<sup>1</sup>

### 51% Attacks



### Bugs





# **Key Project Challenges**

# Deep Dive: Issues encountered during the project

Accessibility of Data

Voting Mechanism Design

Implementing Modularity

Computer Science Focus

Limited Scope

Limited Scope