Xiangyu Yue^{1,*} Zangwei Zheng^{2,*} Shanghang Zhang¹ Yang Gao³ Trevor Darrell¹ Kurt Keutzer¹ Alberto Sangiovanni Vincentelli¹ ¹UC Berkeley ²Nanjing University ³Tsinghua University

2021-10-20 Yujeong Lee

Methods

Prototypical Cross-domain Self-supervised Learning for Few-shot Unsupervised Domain Adaptation

(1) In-domain Prototypical Contrastive Learning

$$\mathcal{D}_s = \{(\mathbf{x}_i^s, y_i^s)\}_{i=1}^{N_s} \quad \mathcal{D}_{su} = \{(\mathbf{x}_i^{su})\}_{i=1}^{N_{su}} \quad \mathcal{D}_{tu} = \{(\mathbf{x}_i^{tu})\}_{i=1}^{N_{tu}}$$

Stored vectors, V

feature encoder F.

feature vector $\mathbf{f}_i^s = F(\mathbf{x}_i^s)$

$$\mathbf{v}_i \leftarrow m\mathbf{v}_i + (1-m)\mathbf{f}_i$$

 \mathbf{v}_i is the stored feature vector of \mathbf{x}_i

$$V^s = [\mathbf{v}_1^s, \cdots, \mathbf{v}_{(N_s+N_{su})}^s], \ V^t = [\mathbf{v}_1^t, \cdots, \mathbf{v}_{N_{tu}}^t]$$

Normalized prototypes

$$\mu_j^s = rac{\mathbf{u}_j^s}{\|\mathbf{u}_j^s\|} \quad \mathbf{u}_j^s = rac{1}{|C_j^{(s)}|} \sum_{\mathbf{v}_i^s \in C_j^{(s)}} \mathbf{v}_i^s$$

normalized source prototypes $\{\mu_j^s\}_{j=1}^k$ target prototypes $\{\mu_i^t\}_{j=1}^k$

Get cluster by k-means clustering

$$C^{s} = \{C_{1}^{(s)}, C_{2}^{(s)}, \dots, C_{k}^{(s)}\}\$$

$$P_{i}^{s} = [P_{i,1}^{s}, P_{i,2}^{s}, \dots, P_{i,k}^{s}]$$

$$P_{i,j}^{s} = \frac{\exp(\mu_{j}^{s} \cdot \mathbf{f}_{i}^{s}/\phi)}{\sum_{r=1}^{k} \exp(\mu_{r}^{s} \cdot \mathbf{f}_{i}^{s}/\phi)}$$

$$\mathcal{L}_{PC} = \sum_{i=1}^{N_s + N_{su}} \mathcal{L}_{CE}(P_i^s, c_s(i)) + \sum_{i=1}^{N_{tu}} \mathcal{L}_{CE}(P_i^t, c_t(i))$$

where $c_s(\cdot)$ and $c_t(\cdot)$ return the cluster index of the instance

Perform k-means on the samples M times with different number of cluster

$$\mathcal{L}_{\text{InSelf}} = \frac{1}{M} \sum_{m=1}^{M} \mathcal{L}_{PC}^{(m)}$$
 (5)

(2) Cross-domain Instance-Prototype SSL

$$P_{i,j}^{s \to t} = \frac{\exp(\mu_j^t \cdot \mathbf{f}_i^s / \tau)}{\sum_{r=1}^k \exp(\mu_r^t \cdot \mathbf{f}_i^s / \tau)} \qquad \mathcal{L}_{\text{CrossSelf}} = \sum_{i=1}^{N_s + N_{su}} H(P_i^{s \to t}) + \sum_{i=1}^{N_{tu}} H(P_i^{t \to s})$$

(3) Adaptive Prototypical Classifier Learning

$$\mathcal{L}_{\text{cls}} = \mathbb{E}_{(\mathbf{x},y) \in \mathcal{D}_s} \mathcal{L}_{CE}(\mathbf{p}(\mathbf{x}), y)$$

Prototype Classifier Update

cosine classifier C consists of weight vectors $\mathbf{W} = [\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_{n_c}]$

$$\mathbf{p}(\mathbf{x}) = \sigma(\frac{1}{T}\mathbf{W}^{\mathrm{T}}\mathbf{f}) \ \mathbf{p}(\mathbf{x}) = [\mathbf{p}(\mathbf{x})_{1}, \dots, \mathbf{p}(\mathbf{x})_{n_{c}}]$$

$$\mathcal{D}_s^{(i)} = \{ \mathbf{x} | (\mathbf{x}, y) \in \mathcal{D}_s, y = i \} \quad \mathcal{D}_{su}^{(i)} = \{ \mathbf{x} | \mathbf{x} \in \mathcal{D}_{su}, \mathbf{p}(\mathbf{x})_i > t \}$$

$$\hat{\mathbf{w}}_{i}^{s} = \frac{1}{|\mathcal{D}_{s^{+}}^{(i)}|} \sum_{\mathbf{x} \in \mathcal{D}_{s^{+}}^{(i)}} \mathbf{V}^{s}(\mathbf{x}) \quad \hat{\mathbf{w}}_{i}^{t} = \frac{1}{|\mathcal{D}_{tu}^{(i)}|} \sum_{\mathbf{x} \in \mathcal{D}_{tu}^{(i)}} \mathbf{V}^{t}(\mathbf{x})$$

$$\mathcal{D}_{s+}^{(i)} = \mathcal{D}_{s}^{(i)} \cup \mathcal{D}_{su}^{(i)} \qquad \mathbf{w}_{i} = \begin{cases} unit(\hat{\mathbf{w}}_{i}^{s}) & \text{if } |\mathcal{D}_{tu}^{(i)}| < t_{w} \\ unit(\hat{\mathbf{w}}_{i}^{t}) & \text{otherwise} \end{cases}$$

Mutual Information Maximization

- (1) To promote the network to have diversified outputs over the dataset
 → Maximize the entropy of expected network prediction
- (2) To get high confident prediction for each sample
 → entropy minimization on the network output

$$\mathcal{I}(y; \mathbf{x}) = \mathcal{H}(\mathbf{p}_0) - \mathbb{E}_{\mathbf{x}}[\mathcal{H}(p(y|\mathbf{x}; \theta))]$$
$$\mathcal{L}_{\text{MIM}} = -\mathcal{I}(y; \mathbf{x})$$

Figure 2: An overview of the PCS framework. In-domain and cross-domain self-supervision are performed between normalized feature vectors \mathbf{f} and prototypes μ computed by clustering vectors \mathbf{v} in memory banks. Features with confident predictions (\mathbf{p}) are used to adaptively update classifier vectors \mathbf{w} . MI maximization and classification loss are further used to extract discriminative features.

Table 1: Adaptation accuracy (%) comparison on 1-shot and 3-shots per class on the Office dataset.

Method	Office: Target Acc. on 1-shot / 3-shots								
	$A \rightarrow D$	$A \rightarrow W$	D→A	$D \rightarrow W$	$ $ W \rightarrow A	$ $ W \rightarrow D	Avg		
SO	27.5 / 49.2	28.7 / 46.3	40.9 / 55.3	65.2 / 85.5	41.1 / 53.8	62.0 / 86.1	44.2 / 62.7		
MME [59]	21.5 / 51.0	12.2 / 54.6	23.1 / 60.2	60.9 / 89.7	14.0 / 52.3	62.4 / 91.4	32.3 / 66.5		
CDAN [45]	11.2 / 43.7	6.2 / 50.1	9.1 / 65.1	54.8 / 91.6	10.4 / 57.0	41.6 / 89.8	22.2 / 66.2		
SPL [71]	12.0 / 77.1	7.7 / 80.3	7.3 / 74.2	7.2 / 93.5	7.2 / 64.4	10.2 / 91.6	8.6 / 80.1		
CAN [38]	25.3 / 48.6	26.4 / 45.3	23.9 / 41.2	69.4 / 78.2	21.2 / 39.3	67.3 / 82.3	38.9 / 55.8		
MDDIA [35]	45.0 / 62.9	54.5 / 65.4	55.6 / 67.9	84.4 / 93.3	53.4 / 70.3	79.5 / 93.2	62.1 / 75.5		
CDS [39]	33.3 / 57.0	35.2 / 58.6	52.0 / 67.6	59.0 / 86.0	46.5 / 65.7	57.4 / 81.3	47.2 / 69.3		
DANN + ENT [18]	32.5 / 57.6	37.2 / 54.1	36.9 / 54.1	70.1 / 87.4	43.0 / 51.4	58.8 / 89.4	46.4 / 65.7		
MME + ENT	37.6 / 69.5	42.5 / 68.3	48.6 / 66.7	73.5 / 89.8	47.2 / 63.2	62.4 / 95.4	52.0 / 74.1		
CDAN + ENT	31.5 / 68.3	26.4 / 71.8	39.1 / 57.3	70.4 / 88.2	37.5 / 61.5	61.9 / 93.8	44.5 / 73.5		
CDS + ENT	40.4 / 61.2	44.7 / 66.7	<u>66.4</u> / 73.1	71.6 / 90.6	58.6 / 71.8	69.3 / 86.1	58.5 / 74.9		
CDS + MME + ENT	39.4 / 61.6	43.6 / 66.3	66.0 / <u>74.5</u>	75.7 / 92.1	53.1 / 73.0	70.9 / 90.6	58.5 / 76.3		
CDS + CDAN + ENT	52.6 / 65.1	55.2 / 68.8	65.7 / 71.2	76.6 / 88.1	59.7 / 71.0	73.3 / 87.3	63.9 / 75.3		
CDS / MME + ENT^{\dagger}	<u>55.4</u> / 75.7	57.2 / 77.2	62.8 / 69.7	<u>84.9</u> / 92.1	<u>62.6</u> / 69.9	<u>77.7</u> / 95.4	65.3 / 80.0		
CDS / CDAN + ENT^{\dagger}	53.8 / 78.1	<u>65.6</u> / <u>79.8</u>	59.5 / 70.7	83.0 / <u>93.2</u>	57.4 / 64.5	77.1 / <u>97.4</u>	<u>66.1</u> / <u>80.6</u>		
PCS (Ours)	60.2 / 78.2	69.8 / 82.9	76.1 / 76.4	90.6 / 94.1	71.2 / 76.3	91.8 / 96.0	76.6 / 84.0		
Improvement	+4.8 / +0.1	+4.2 / +3.1	+9.7 / +1.9	+5.7 / +0.9	+8.6 / +3.3	+14.1 / -1.4	+10.5 / +3.4		

[†] Two-stage training results reported in [39].

Table 2: Performance contribution of each part in PCS framework on Office.

Method	Office: Target Acc. on 1-shot / 3-shots								
	A→D	$A{ ightarrow}W$	$D{\rightarrow}A$	$D{ ightarrow}W$	$W{\rightarrow}A$	$W \rightarrow D$	Avg		
$\mathcal{L}_{ ext{cls}}$	27.5 / 49.2	28.7 / 46.3	40.9 / 55.3	65.2 / 85.5	41.1 / 53.8	62.0 / 86.1	44.2 / 62.7		
$+\mathcal{L}_{ ext{InSelf}}$	39.0 / 55.6	38.6 / 55.1	47.2 / 68.5	71.7 / 89.4	50.9 / 68.4	65.1 / 90.6	52.1 / 71.3		
$+\mathcal{L}_{ ext{CrossSelf}}$	47.2 / 71.1	52.7 / 70.6	59.0 / 75.5	76.4 / 90.3	58.5 / 74.1	66.9 / 91.8	60.1 / 78.9		
$+\mathcal{L}_{ ext{MIM}}$	52.8 / 73.5	57.5 / 71.2	67.2 / 76.3	78.9 / 91.4	64.2 / 74.3	68.7 / 92.2	64.9 / 79.8		
+APCU (PCS)	60.2 / 78.2	69.8 / 82.9	<u>76.1</u> / 76.4	90.6 / 94.1	71.2 / 76.3	91.8 / 96.0	76.6 / 84.0		
PCS w/o MIM	59.0 / 75.9	58.6 / 76.5	76.2 / 76.4	87.8 / 93.2	68.7 / 74.7	89.8 / 95.0	73.5 / 82.0		

Figure 4: t-SNE visualization of ours and baselines on Office (left) and Office-Home (right). Top row: Coloring represents the class of each sample. Features with PCS are more discriminative than the ones with other methods. Bottom row: Cyan represents source features and Red represents target features. Feature from PCS are better-aligned between domains compared to other methods.

Figure 5: Sample efficiency comparison from DSLR to Amazon in Office dataset.

Top

Color: class of each sample

bottom

Cyan : source samples Red : target samples