Geoprocessamento //

Prof. Diego Camargo

Aula 05 – Estimador de intensidade: Kernel

OBJETIVO DA AULA

1. Conceitos sobre o estimador de intensidade de Kernel;

2. Exemplo de utilização no QGIS (Mapa de calor).

COMPORTAMENTO PONTOS

Uma alternativa simples para analisar o comportamento de padrões de pontos é estimar a intensidade pontual do processo em toda a região de estudo.

A densidade de Kernel quantifica as relações dos pontos dentro de um raio (R) de influência, analisando os padrões traçados por determinado conjunto de dados pontuais

senvolvimento

COMPORTAMENTO PONTOS

Função realiza uma contagem de todos os pontos dentro de uma região de influência, ponderando-os pela distância de cada um à localização de interesse

esenvolvimento

COMPORTAMENTO PONTOS

Para a aplicação da densidade de Kernel, adotam-se dois parâmetros definidores básicos. São eles: o raio de influência (R) e a função de estimação (k).

onclusão

RAIO DE INFLUÊNCIA

O raio de influência define a área centrada no ponto de estimação, que indica quantos eventos contribuem para a estimativa da função intensidade.

A amplitude do raio pode influenciar na suavização dos dados, ou seja, estimar o valor de R é um passo muito importante.

RAIO DE INFLUÊNCIA

A literatura apresenta algumas formas de se estimar o raio de influência:

- 1. $R = \overline{X} \pm \overline{X}_{\sigma}$ (Onde \overline{X} é a média das distâncias médias e \overline{X}_{σ} é a média do desvio padrão).
- 2. Utilizar o valor do Vizinho mais próximo médio.
- 3. Algoritmo de Silverman.
- 4. Alguns softwares, como o TerraView, o cálculo do R é automático.

RAIO DE INFLUÊNCIA

Além de estimar o raio de influência, através de métodos citados, conhecer o fenômeno também é muito importante. O objeto de estudo, pode dar ao pesquisador/técnico liberdade de escolha do raio de influência.

FUNÇÃO DE ESTIMAÇÃO

Função Kernel (k)	Descrição	Equação k(x)		
Quártica	Pondera com maior peso os pontos mais próximos do que pontos distantes, mas o decrescimento é gradual.	$\frac{15}{16}(1-x^2)^2$		
Triangular	Dá maior peso aos pontos próximos do que os pontos distantes dentro do círculo, mas o decréscimo é mais rápido.	1- x		
Uniforme	Pondera todos os pontos dentro do círculo igualmente.	$\frac{1}{2}$		
Epanechnikov	É o ideal no sentido de variância mínima.	$\frac{3}{4}(1-x^2)$		
Gaussiana ou normal	Pondera os pontos dentro do círculo de forma que os pontos mais próximos têm maior peso comparados com os mais afastados.	$\frac{1}{\sqrt{2\pi}}e^{-\left(\frac{x^2}{2}\right)}$		

KERNEL DENSITY ESTIMATION (KDE)

Kernel Density Estimation (KDE) utiliza funções de kernel para estimar a densidade de ocorrências em uma divisão regular da área de estudo.

O KDE é uma forma não paramétrica para estimar uma Função densidade probabilidade (FDP), utilizando uma função de kernel K.

Há 20 pontos distribuídos aleatoriamente no polígono.

Essa é a matriz de distância entre os 20 pontos

ID	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	. 0	1272,734	2544,555	2101,58	2723,042	3766,592	1473,747	549,809	812,4103	2290,16	2702,295	2707,823	2178,118	1050,012	2698,666	870,5931	2366,901	2886,045	1683,044	2016,542
2	1272,734	0	1736,388	3066,904	2125,023	3595,055	2442,561	1358,622	1120,356	2281,324	3632,02	3717,92	1744,072	1228,49	1480,326	1977,037	3250,479	2498,896	1441,1	2701,406
3	2544,555	1736,388	0	3319,654	533,4896	2190,696	2874,666	2218,996	1816,582	1478,021	3712,241	3923,549	709,8046	1649,492	1190,495	2765,03	3331,985	1061,174	1077,07	2649,905
4	2101,58	3066,904	3319,654	0	3129,056	3142,331	637,5814	1733,783	1959,228	2054,566	601,3705	654,4595	2631,217	1930,408	4098,805	1235,88	336,8037	2909,06	2268,872	746,1427
5	2723,042	2125,023	533,4896	3129,056	0	1657,355	2767,776	2311,666	1931,743	1130,677	3452,991	3691,85	569,2828	1720,938	1720,212	2776,506	3090,358	533,9664	1072,446	2413,027
6	3766,592	3595,055	2190,696	3142,331	1657,355	0	3108,927	3236,869	2977,502	1477,235	3172,627	3476,804	1856,596	2736,462	3370,869	3432,903	2935,661	1146,52	2200,788	2435,481
7	1473,747	2442,561	2874,666	637,5814	2767,776	3108,927	0	1098,542	1350,812	1805,018	1232,813	1278,023	2226,541	1356,994	3546,322	624,8916	894,9022	2646,031	1798,617	747,1525
8	549,809	1358,622	2218,996	1733,783	2311,666	3236,869	1098,542	0	404,1774	1760,001	2319,227	2376,053	1747,462	590,7286	2606,727	636,4964	1954,825	2409,959	1241,449	1518,045
9	812,4103	1120,356	1816,582	1959,228	1931,743	2977,502	1350,812	404,1774	0	1510,43	2514,433	2613,203	1375,639	241,5765	2237,799	1006,851	2130,927	2073,692	874,4072	1591,827
10	2290,16	2281,324	1478,021	2054,566	1130,677	1477,235	1805,018	1760,001	1510,43	0	2330,714	2580,907	793,8595	1271,89	2561,437	2005,876	1978,752	856,2635	842,9995	1315,539
11	2702,295	3632,02	3712,241	601,3705	3452,991	3172,627	1232,813	2319,227	2514,433	2330,714	0	311,4246	3005,875	2457,421	4581,498	1837,247	393,3463	3154,778	2707,54	1063,992
12	2707,823	3717,92	3923,549	654,4595	3691,85	3476,804	1278,023	2376,053	2613,203	2580,907	311,4246	0	3223,272	2583,344	4743,368	1837,545	602,3165	3417,818	2893,094	1280,499
13	2178,118	1744,072	709,8046	2631,217	569,2828	1856,596	2226,541	1747,462	1375,639	793,8595	3005,875	3223,272	0	1157,424	1771,209	2208,334	2628,36	763,3664	506,0328	1945,688
14	1050,012	1228,49	1649,492	1930,408	1720,938	2736,462	1356,994	590,7286	241,5765	1271,89	2457,421	2583,344	1157,424	0	2189,747	1120,654	2066,984	1838,75	651,7332	1479,759
15	2698,666	1480,326	1190,495	4098,805	1720,212	3370,869	3546,322	2606,727	2237,799	2561,437	4581,498	4743,368	1771,209	2189,747	0	3238,427	4188,632	2251,334	1892,503	3533,125
16	870,5931	1977,037	2765,03	1235,88	2776,506	3432,903	624,8916	636,4964	1006,851	2005,876	1837,247	1837,545	2208,334	1120,654	3238,427	0	1517,031	2774,931	1717,553	1285,535
17	2366,901	3250,479	3331,985	336,8037	3090,358	2935,661	894,9022	1954,825	2130,927	1978,752	393,3463	602,3165	2628,36	2066,984	4188,632	1517,031	0	2817,912	2317,628	682,6893
18	2886,045	2498,896	1061,174	2909,06	533,9664	1146,52	2646,031	2409,959	2073,692	856,2635	3154,778	3417,818	763,3664	1838,75	2251,334	2774,931	2817,912	0	1210,067	2166,79
19	1683,044	1441,1	1077,07	2268,872	1072,446	2200,788	1798,617	1241,449	874,4072	842,9995	2707,54	2893,094	506,0328	651,7332	1892,503	1717,553	2317,628	1210,067	0	1648,519
20	2016,542	2701,406	2649,905	746,1427	2413,027	2435,481	747,1525	1518,045	1591,827	1315,539	1063,992	1280,499	1945,688	1479,759	3533,125	1285,535	682,6893	2166,79	1648,519	0

Sumário da matriz de distância

InputID	Média	Desvio Padrão	MIN	MAX
1	2036,561428	828,4775435	549,808952	3766,59156
2	2245,826913	851,3599118	1120,356484	3717,91954
3	2146,515407	989,2945274	533,4895528	3923,549489
4	2029,35268	1070,684656	336,8036966	4098,804791
5	2071,126582	961,9283868	533,4895528	3691,850449
6	2732,488048	754,0468214	1146,519522	3766,59156
7	1784,837854	870,9079301	624,8916455	3546,32171
8	1688,075684	772,1008448	404,1774047	3236,868637
9	1607,557614	728,4717008	241,5765399	2977,501956
10	1701,350925	560,5990113	793,859466	2580,906607
11	2378,097627	1168,302332	311,4246404	4581,498367
12	2521,751261	1208,074187	311,4246404	4743,367642
13	1739,060841	806,7684752	506,0327774	3223,272371
14	1543,305757	668,5494493	241,5765399	2736,462453
15	2836,921055	1041,918344	1190,494948	4743,367642
16	1835,227366	831,9050373	624,8916455	3432,902952
17	2078,236545	1073,370581	336,8036966	4188,631856
18	2074,597491	867,4269571	533,9663565	3417,81802
19	1581,34014	665,5689388	506,0327774	2893,094018
20	1748,508546	743,2960658	682,6892977	3533,124681
Média	2019,036988	873,1525851		

Resultado para o valor de R

$$R = \bar{X} \pm \bar{X}_{\sigma}$$
(1145,884403)

Resultado para o valor de R utilizando o vizinho mais próximo médio

Observed mean distance: 576.5155068098246

Expected mean distance: 382.5506032703386

Nearest neighbour index: 1.507030708829953

Number of points: 20

RESULTADO 1

R = 1145,88

R = 2892,19

RESULTADO 2

R = 576,51

R = 1145,88

