ЛАБОРАТОРНА РОБОТА № 2 ПОРІВНЯННЯ МЕТОДІВ КЛАСИФІКАЦІЇ ДАНИХ

Мета роботи: використовуючи спеціалізовані бібліотеки та мову програмування Python дослідити різні методи класифікації даних та навчитися їх порівнювати.

Хід роботи

Завдання 1. Класифікація за допомогою машин опорних векторів (SVM)

```
import numpy as np
max datapoints = 25000
      for line in f.readlines():
                  X.append(data)
X_encoded = np.empty(X.shape)
for i, item in enumerate(X[0]):
    if item.isdigit():
```

Змн.	Арк.	№ докум.	Підпис	Дата	ДУ «Житомирська політехн	іка».22.1	21.07.806	5 — ІПЗк	
Розроб. Кияшенко А.С. Перевір.		Літ. Арк. Ар		Аркушів					
					Системи штучного		1	14	
Реценз.					інтелекту				
Н. Контр.					Лабораторна №2	ФІК	ФІКТ Гр. ІПЗк-19-1		
Затверд.					лаоораторна №2		•		

```
y = X encoded[:, -1].astype(int)
classifier = OneVsOneClassifier(LinearSVC(random state=0))
f1 = cross_val_score(classifier, X, y, scoring='f1_weighted', cv=3)
print("F1 score: " + str(round(100 * f1.mean(), 2)) + "%")
predicted class = classifier.predict(input data encoded)
```

```
F1 score: 56.15%

Process finished with exit code 1
```

Завдання 2. Порівняння якості класифікаторів SVM з нелінійними ядрами

Поліноміальне ядро

```
import numpy as np
from sklearn import preprocessing
from sklearn.svm import SVC
from sklearn.multiclass import OneVsOneClassifier
from sklearn.model_selection import train_test_split, cross_val_score
input file = 'income data.txt'
```

		Кияшенко А.С.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
max datapoints = 10000
        X.append(data)
X = np.array(X)
y = X encoded[:, -1].astype(int)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
```

		Кияшенко А.С.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
else:
    input_data_encoded[i] =
int(label_encoder[count].transform(input_data[i]))
    count += 1

input_data_encoded = np.array(input_data_encoded)

predicted_class = classifier.predict(input_data_encoded)

print(label_encoder[-1].inverse_transform(predicted_class)[0])
```

Гаусове ядро

```
import numpy as np
            X.append(data)
            X.append(data)
X = np.array(X)
X encoded = np.empty(X.shape)
y = X encoded[:, -1].astype(int)
classifier = OneVsOneClassifier(SVC(random state=0, kernel='rbf'))
```

		Кияшенко А.С.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
F1 score: 71.95%

Process finished with exit code 1
```

Сигмоїдальне ядро

		Кияшенко А.С.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
X.append(data)
            X.append(data)
X = np.array(X)
X encoded = np.empty(X.shape)
y = X encoded[:, -1].astype(int)
classifier = OneVsOneClassifier(SVC(random state=0, kernel='sigmoid'))
classifier.fit(X, y)
X_train, X_test, y_train, y_test = train test split(X, y, test size=0.2,
f1 = cross_val_score(classifier, X, y, scoring='f1_weighted', cv=3)
predicted class = classifier.predict(input data encoded)
```

 $\hbox{C:\Users\land Admin\AppData\Local\Microsoft\Windows\Apps\python 3.10. exe D:\LabsPoli/AI/Lab2/LR_2_task_2_3.py F1 score: 63.77\% }$

		Кияшенко А.С.		
Змн.	Арк.	№ докум.	Підпис	Дата

Завдання 3. Порівняння якості класифікаторів на прикладі класифікації сортів ірисів

```
dataset = read csv('url', names=names)
dataset.plot(kind='box', subplots=True, layout=(2, 2), sharex=False,
pyplot.show()
dataset.hist()
pyplot.show()
scatter matrix(dataset)
pyplot.show()
array = dataset.values
models = []
models.append(('LR', LogisticRegression(solver='liblinear',
```

```
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC(gamma='auto')))
results = []
names = []
    results.append(cv results)
    names.append(name)
pyplot.boxplot(results, labels=names)
pyplot.title('Algorithm Comparison')
pyplot.show()
model = SVC(gamma='auto')
model.fit(X train, Y train)
predictions = model.predict(X_validation)
import numpy as np
X_new = np.array([[5, 2.9, 1, 0.2]])
print("Форма масиву X_new: {}".format(X_new.shape))
prediction = knn.predict(X new)
```

Форма масиву та зріз даних

		Кияшенко А.С.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
*******shape*****
(150, 5)
*******3piз даних******
    sepal-length sepal-width petal-length petal-width
                                                               class
             5.1
0
                         3.5
                                       1.4
                                                    0.2 Iris-setosa
             4.9
                         3.0
                                       1.4
                                                    0.2 Iris-setosa
                         3.2
                                       1.3
                                                    0.2 Iris-setosa
             4.6
                         3.1
                                       1.5
                                                    0.2 Iris-setosa
             5.0
                         3.6
                                       1.4
                                                    0.2 Iris-setosa
             5.4
                                       1.7
                                                    0.4 Iris-setosa
                         3.9
                                                    0.3 Iris-setosa
             4.6
                         3.4
                                       1.4
             5.0
                         3.4
                                       1.5
                                                    0.2 Iris-setosa
8
             4.4
                         2.9
                                       1.4
                                                    0.2 Iris-setosa
             4.9
                         3.1
                                       1.5
                                                    0.1 Iris-setosa
10
             5.4
                         3.7
                                       1.5
                                                    0.2 Iris-setosa
                                                    0.2 Iris-setosa
11
             4.8
                         3.4
                                       1.6
                                       1.4
12
             4.8
                         3.0
                                                    0.1 Iris-setosa
             4.3
                                       1.1
                                                    0.1 Iris-setosa
13
                         3.0
             5.8
                         4.0
                                       1.2
                                                    0.2 Iris-setosa
14
            5.7
                                       1.5
15
                         4.4
                                                    0.4 Iris-setosa
16
            5.4
                         3.9
                                       1.3
                                                    0.4 Iris-setosa
17
             5.1
                         3.5
                                       1.4
                                                    0.3 Iris-setosa
18
             5.7
                         3.8
                                                    0.3 Iris-setosa
19
             5.1
                         3.8
                                       1.5
                                                    0.3 Iris-setosa
```

Статистичне зведення та розподіл за класом.

*****	*******Опис даних*****					
	sepal-length	sepal-width	petal-length	petal-width		
count	150.000000	150.000000	150.000000	150.000000		
mean	5.843333	3.054000	3.758667	1.198667		
std	0.828066	0.433594	1.764420	0.763161		
min	4.300000	2.000000	1.000000	0.100000		
25%	5.100000	2.800000	1.600000	0.300000		
50%	5.800000	3.000000	4.350000	1.300000		
75%	6.400000	3.300000	5.100000	1.800000		
max	7.900000	4.400000	6.900000	2.500000		
*****	**Розподіл за	класом*****	*			
class						
Iris-s	etosa 5	0				
Iris-versicolor		0				
Iris-v	irginica 5	0				
dtype:	int64					

		Кияшенко А.С.		
Змн.	Арк.	№ докум.	Підпис	Дата

Діаграма розмаху

Гістограма розподілу атрибутів датасета

		Кияшенко А.С.		
Змн.	Арк.	№ докум.	Підпис	Дата

Матриця діаграм розсіювання

Порівняння алгоритмів

		Кияшенко А.С.		
Змн.	Арк.	№ докум.	Підпис	Дата

Найкращий результат має алгоритм SVM.

Мій прогноз

```
Форма масиву X_new: (1, 4)
Прогноз: ['Iris-setosa']
Спрогнозированная метка: 0 Iris-setosa
```

Квітка належить до класу Iris-setosa

Завдання 4. Класифікація даних лінійним класифікатором Ridge

```
mport numpy as np
import matplotlib.pyplot as plt
print('Precision:', np.round(metrics.precision score(ytest, ypred,
mat = confusion matrix(ytest, ypred)
sns.heatmap(mat.T, square=True, annot=True, fmt='d', cbar=False)
plt.xlabel('true label')
```

		кияшенко А.С.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
plt.ylabel('predicted label')
plt.savefig("Confusion.jpg")
# Save SVG in a fake file object.
f = BytesIO()
plt.savefig(f, format="svg")
```

Accuracy: 0.75									
Precision: 0.8333									
Recall: 0.7556									
F1 Score: 0.7503									
Cohen Kappa Score: 0.6431									
Matthews Corrcoef: 0.6831									
Classification Report:									
	precision	recall	f1-score	support					
Θ	1.00	1.00	1.00	16					
1	0.44	0.89	0.59	9					
2	0.91	0.50	0.65	20					
accuracy			0.76	45					
macro avg	0.78	0.80	0.75	45					
weighted avg	0.85	0.76	0.76	45					
				<u> </u>					

		Кияшенко А.С.		
Змн.	Арк.	№ докум.	Підпис	Дата

ДУ «Житомирська політехніка».22.121.07. 806— ІПЗк

Ця картинка показує, що програма прогнозує 16 із 16 класів 0, 8 з 18 класів 1 та 10 з 11 класів 2.

Посилання на Git: https://github.com/Grum74/AI

Висновок

Я, використовуючи спеціалізовані бібліотеки та мову програмування Python дослідив різні методи класифікації даних та навчився їх порівнювати.

		Кияшенко А.С.		
Змн.	Арк.	№ докум.	Підпис	Дата