

RAW SEQUENCE LISTING ERROR REPORT

The Biotechnology Systems Branch of the Scientific and Technical Information Center (STIC) detected errors when processing the following computer readable form:

Application Serial Number: 09/840,277ASource: 1600Date Processed by STIC: 9/28/2003

THE ATTACHED PRINTOUT EXPLAINS DETECTED ERRORS.
PLEASE-FORWARD-THIS INFORMATION TO THE APPLICANT BY EITHER:

- 1) INCLUDING A COPY OF THIS PRINTOUT IN YOUR NEXT COMMUNICATION TO THE APPLICANT, WITH A NOTICE TO COMPLY or,
- 2) TELEPHONING APPLICANT AND FAXING A COPY OF THIS PRINTOUT, WITH A NOTICE TO COMPLY

FOR CRF SUBMISSION AND PATENTIN SOFTWARE QUESTIONS, PLEASE CONTACT MARK SPENCER, 703-308-4212.

TO REDUCE ERRORED SEQUENCE LISTINGS, PLEASE USE THE <u>CHECKER</u> <u>VERSION 4.0 PROGRAM</u>, ACCESSIBLE THROUGH THE U.S. PATENT AND TRADEMARK OFFICE WEBSITE. SEE BELOW FOR ADDRESS:

http://www.uspto.gov/web/offices/pac/checker

Applicants submitting genetic sequence information electronically on diskette or CD-Rom should be aware that there is a possibility that the disk/CD-Rom may have been affected by treatment given to all incoming mail. Please consider using alternate methods of submission for the disk/CD-Rom or replacement disk/CD-Rom. Any reply including a sequence listing in electronic form should NOT be sent to the 20231 zip code address for the United States Patent and Trademark Office, and instead should be sent via the following to the indicated addresses:

- 1. EFS-Bio (http://www.uspto.gov/ebc/efs/downloads/documents.htm, EFS Submission User Manual ePAVE)
- 2. U.S. Postal Service: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450
- 3. Hand Carry directly to:

U.S. Patent and Trademark Office, Technology Center 1600, Reception Area, 7th Floor, Examiner Name, Sequence Information, Crystal Mall One, 1911 South Clark Street, Arlington, VA 22202

U.S. Patent and Trademark Office, Box Sequence, Customer Window, Lobby, Room 1B03, Crystal Plaza Two, 2011 South Clark Place, Arlington, VA 22202

 Federal Express, United Parcel Service, or other delivery service to: U.S. Patent and Trademark Office, Box Sequence, Room 1B03-Mailroom, Crystal Plaza Two, 2011 South Clark Place, Arlington, VA 22202

Revised 04/24/2003

ERROR DETECTED	SUGGESTED CORRECTION SERIAL NUMBER: 09/840,277A	
ATTN: NEW RULES CASE	es: Please disregard english "Alpha" Headers, Which Yere inserted by Pto So	FTWARE
1Wrapped Nucleics Wrapped Aminos	The number/text at the end of each line "wrapped" down to the next line. This may occur if your file was retrieved in a word processor after creating it. Please adjust your right margin to .3; this will prevent? wrapping."	
2Invalid Line Length	The rules require that a line not exceed 72 characters in length. This includes white spaces.	-
3 Missligned Amino Numbering	The numbering under each 5th amino acid is misaligned. Do not use tab codes between numbers; to use space characters, instead.	
4Non-ASCII	The submitted file was not saved in ASCII(DOS) text, as required by the Sequence Rules. Please ensure your subsequent submission is saved in ASCII text.	
5 Variable Length	Sequence(s) Toontain n's or Xaa's representing more than one residue. Per Sequence Rules, each n or Xaa can only represent a single residue. Please present the maximum number of each residue having variable length and indicate in the <220><223> section that some may be missing.	
6PatentIn 2.0 "bug"	A "bug" in PatentIn version 2.0 has caused the <220>-<223> section to be missing from amino acid sequences(s) Normally, PatentIn would automatically generate this section from the previously coded nucleic acid sequence. Please manually copy the relevant <220>-<223> section to the subsequent amino acid sequence. This applies to the mandatory <220>-<223> sections for Artificial or Unknown sequences.	
7Skipped Sequences (OLD RULES)	Sequence(s)missing. If intentional, please insert the following lines for each skipped sequence: (2) INFORMATION FOR SEQ ID NO:X: (insert SEQ ID NO where "X" is shown) (i) SEQUENCE CHARACTERISTICS: (Do not insert any subheadings under this heading) (xi) SEQUENCE DESCRIPTION:SEQ ID NO:X: (insert SEQ ID NO where "X" is shown) This sequence is intentionally skipped	
8 Skipped Sequences (NEW RULES)	Please also adjust the "(ii) NUMBER OF SEQUENCES:" response to include the skipped sequences. Sequence(s) 10 missing. If Intentional, please insert the following lines for each skipped sequence. <210> sequence id number <400> sequence id number 000	
9Use of n's or Xaa's (NEW RULES)	Use of n's and/or Xaa's have been detected in the Sequence Listing. Per 1.823 of Sequence Rules, use of <220>-<223> is MANDATORY if n's or Xaa's are present. In <220> to <223> section, please explain location of n or Xaa, and which residue n or Xaa represents.	
10Invalid <213> Response	Per 1.823 of Sequence Roles, the only valld <213> responses are: Unknown, Artificial Sequence, or scientific name (Genus/species). <220><223> section frequired when <213> response is Unknown or six Artificial Sequence	LE E
11Use of <220>	Sequence(s) missing the <220> "Feature" and associated numeric identifiers and responses. Use of <220> to <223> is MANDATORY if <213> "Organism" response is "Artificial Sequence" or "Unknown." Please explain source of genetic material in <220> to <223> section. (See "Federal Register," 06/01/1998, Vol. 63, No. 104, pp. 29631-32) (Sec. 1.823 of Sequence Rules)	,
Patentin 2.0 "bug"	Please do not use "Copy to Disk" function of Patentin version 2.0. This causes a corrupted file, resulting in missing mandatory numeric identifiers and responses (as indicated on raw sequence listing). Instead, please use "File Manager" or any other manual means to copy file to floppy disk.	
13Misuse of n	n can only be used to represent a single nucleotide in a nucleic acid sequence. N is not used to represent any value not specifically a nucleotide.	•

AMC/MH - Biotechnology Systems Branch - 08/21/2001

1600

RAW SEQUENCE LISTING DATE: 07/28/2003 PATENT APPLICATION: US/09/840,277A TIME: 09:45:54

Input Set : A:\A-688A.ST25.txt

Output Set: N:\CRF4\07282003\I840277A.raw

```
3 <110> APPLICANT: FEIGE, ULRICH
             KOHNO, TADAHIKO
             LACEY, DAVID
      5
             BOONE, THOMAS CHARLES
      8 <120> TITLE OF INVENTION: ADHESION ANTAGONISTS (as amended)
    10 <130> FILE REFERENCE: A-688A
    12 <140> CURRENT APPLICATION NUMBER: US 09/840,277A
C--> 13 <141> CURRENT FILING DATE: 2003-04-23
    15 <150> PRIOR APPLICATION NUMBER: US 60/198,919
    16 <151> PRIOR FILING DATE: 2000-04-21
    18 <150> PRIOR APPLICATION NUMBER: US 60/201,394
    19 <151> PRIOR FILING DATE: 2000-05-03
    21 <160> NUMBER OF SEQ ID NOS: 135
    23 <170> SOFTWARE: PatentIn version 3.1
    25 <210> SEQ ID NO: 1
    26 <211> LENGTH: 684
                                                          Does Not Comply
    27 <212> TYPE: DNA
                                                      Corrected Diskette Needec
    28 <213> ORGANISM: Homo sapiens
    30 <220> FEATURE:
                                                        M4-6
    31 <221> NAME/KEY: CDS
    32 <222> LOCATION: (1)..(684)
    33 <223> OTHER INFORMATION:
W--> 36 <400> 1
    37 atg gac aaa act cac aca tgt cca cct tgt cca gct ccg gaa ctc ctg
                                                                              48
    38 Met Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu
                                            10
    41 ggg gga ccg tca gtc ttc ctc ttc ccc cca aaa ccc aag gac acc ctc
                                                                              96
    42 Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu
    43
                   20
                                        25
    45 atg atc tcc cgg acc cct gag gtc aca tgc gtg gtg gtg gac gtg agc
    46 Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser
                                    40
                                                                             192
    49 cac gaa gac cct gag gtc aag ttc aac tgg tac gtg gac ggc gtg gag
    50 His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu
                               55
    53 gtg cat aat gcc aag aca aag ccg cgg gag gag cag tac aac agc acg
                                                                             240
    54 Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr
    57 tac cgt gtg gtc agc gtc ctc acc gtc ctg cac cag gac tgg ctg aat
                                                                             288
    58 Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn
                        85
                                            90
    61 ggc aag gag tac aag tgc aag gtc tcc aac aaa gcc ctc cca gcc ccc
                                                                             336
    62 Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro
```

RAW SEQUENCE LISTING DATE: 07/28/2003 PATENT APPLICATION: US/09/840,277A TIME: 09:45:54

Input Set : A:\A-688A.ST25.txt
Output Set: N:\CRF4\07282003\I840277A.raw

63	100				105					110			
65 atc gag aaa													384
66 Ile Glu Lys		[le Ser	Lys		Lys	Gly	Gln	Pro	_	Glu	Pro	Gln	
67 115				120					125				
69 gtg tac acc													432
70 Val Tyr Thi	Leu F	Pro Pro		Arg	Asp	Glu	Leu		Lys	Asn	Gln	Val	
71 130			135					140					
73 agc ctg acc													480
74 Ser Leu Thi	Cys I			Gly	Phe	Tyr		Ser	Asp	Ile	Ala		
75 145		150					155					160	
77 gag tgg gag													528
78 Glu Trp Glu			Gln	Pro	Glu		Asn	Tyr	Lys	Thr	Thr	Pro	
79		. 65				170					175		
81 ccc gtg ctg													576
82 Pro Val Leu		Ser Asp	Gly	Ser		Phe	Leu	Tyr	Ser	Lys	Leu	Thr	
83	180	_			185					190			
85 gtg gac aag													624
86 Val Asp Lys		Arg Trp	Gln	Gln	Gly	Asn	Val	Phe	Ser	Cys	Ser	Val	
87 195				200					205				
89 atg cat gag													672
90 Met His Glu	Ala I	∟eu His		His	Tyr	Thr	Gln	Lys	Ser	Leu	Ser	Leu	
91 210			215					220					
93 tct ccg ggt													684
94 Ser Pro Gly	' Lys												
95 225													
98 <210> SEQ I													
98 <210> SEQ I 99 <211> LENGT	H: 228												
98 <210> SEQ I 99 <211> LENGT 100 <212> TYPE	H: 228	3											
98 <210> SEQ I 99 <211> LENGT 100 <212> TYPE 101 <213> ORGA	H: 228 : PRT NISM:	Homo s	apier	ıs									
98 <210> SEQ I 99 <211> LENGT 100 <212> TYPE 101 <213> ORGA 103 <400> SEQU	H: 228 : PRT NISM: ENCE:	Homo s						- 1		a 1		_	
98 <210> SEQ I 99 <211> LENGT 100 <212> TYPE 101 <213> ORGA 103 <400> SEQU 105 Met Asp Ly	H: 228 : PRT NISM: ENCE:	Homo s 2 His Th) Pro		Pro	Ala	Pro	Glu		Leu	
98 <210> SEQ I 99 <211> LENGT 100 <212> TYPE 101 <213> ORGA 103 <400> SEQU 105 Met Asp Ly 106 1	H: 228 : PRT NISM: ENCE:	Homo s 2 His Th 5	r Cys	: Pro		10					15		
98 <210> SEQ I 99 <211> LENGT 100 <212> TYPE 101 <213> ORGA 103 <400> SEQU 105 Met Asp Ly 106 1 109 Gly Gly Pr	H: 228 : PRT NISM: ENCE: 's Thr	Homo s 2 His Th 5	r Cys	: Pro	e Pro	10				Asp	15		
98 <210> SEQ I 99 <211> LENGT 100 <212> TYPE 101 <213> ORGA 103 <400> SEQU 105 Met Asp Ly 106 1 109 Gly Gly Pr 110	H: 228 : PRT .NISM: ENCE: s Thr	Homo s 2 His Th 5 Val Ph	r Cys	Pro	Pro 25	10 Pro	Lys	Pro	Lys	Asp 30	15 Thr	Leu	
98 <210> SEQ I 99 <211> LENGT 100 <212> TYPE 101 <213> ORGA 103 <400> SEQU 105 Met Asp Ly 106 1 109 Gly Gly Pr 110 113 Met Ile Se	H: 228 : PRT NISM: ENCE: S Thr O Ser 20 r Arg	Homo s 2 His Th 5 Val Ph	r Cys	Pro Phe Val	Pro 25	10 Pro	Lys	Pro	Lys Val	Asp 30	15 Thr	Leu	
98 <210> SEQ II 99 <211> LENGTI 100 <212> TYPE 101 <213> ORGA 103 <400> SEQUI 105 Met Asp Ly 106 I 109 Gly Gly Pr 110 113 Met Ile Se 114	H: 228 : PRT :NISM: ENCE: s Thr o Ser 20 r Arg	Homo s 2 His Th 5 Val Ph	r Cys e Leu o Glu	Pro Phe Val	Pro 25 Thr	10 Pro	Lys Val	Pro Val	Lys Val 45	Asp 30 Asp	15 Thr Val	Leu	
98 <210> SEQ II 99 <211> LENGT 100 <212> TYPE 101 <213> ORGE 103 <400> SEQU 105 Met Asp Ly 106 1 109 Gly Gly Pr 110 113 Met Ile Se 114 35 117 His Glu As	H: 228 : PRT :NISM: ENCE: s Thr o Ser 20 r Arg	Homo s 2 His Th 5 Val Ph	r Cys e Leu o Glu l Lys	Pro Phe Val	Pro 25 Thr	10 Pro	Lys Val	Pro Val	Lys Val 45	Asp 30 Asp	15 Thr Val	Leu	
98 <210> SEQ II 99 <211> LENGT 100 <212> TYPE 101 <213> ORGE 103 <400> SEQU 105 Met Asp Ly 106 1 109 Gly Gly Pr 110 113 Met Ile Se 114 35 117 His Glu As 118 50	H: 228 : PRT :NISM: ENCE: s Thr O Ser 20 r Arg	Homo s 2 His Th 5 Val Ph Thr Pr	r Cys e Leu o Glu l Lys 55	Pro Phe Val 40 Phe	Pro 25 Thr	10 Pro Cys	Lys Val Tyr	Pro Val Val 60	Val 45 Asp	Asp 30 Asp Gly	15 Thr Val	Leu Ser	
98 <210> SEQ II 99 <211> LENGT 100 <212> TYPE 101 <213> ORGA 103 <400> SEQU 105 Met Asp Ly 106 1 109 Gly Gly Pr 110 113 Met Ile Se 114 35 117 His Glu As 118 50 121 Val His As	H: 228 : PRT :NISM: ENCE: s Thr O Ser 20 r Arg	Homo s 2 His Th 5 Val Ph Thr Pr Glu Va	r Cys e Leu o Glu l Lys 55 r Lys	Pro Phe Val 40 Phe	Pro 25 Thr	10 Pro Cys	Lys Val Tyr Glu	Pro Val Val 60	Val 45 Asp	Asp 30 Asp Gly	15 Thr Val	Leu Ser Glu	
98 <210> SEQ II 99 <211> LENGT 100 <212> TYPE 101 <213> ORGA 103 <400> SEQU 105 Met Asp Ly 106 1 109 Gly Gly Pr 110 113 Met Ile Se 114 35 117 His Glu As 118 50 121 Val His As 122 65	H: 228 PRT NISM: ENCE: S Thr O Ser 20 r Arg p Pro n Ala	Homo s 2 His Th 5 Val Ph Thr Pr Glu Va Lys Th 70	r Cys e Leu o Glu l Lys 55 r Lys	Phe Val 40 Phe	Pro 25 Thr Asn Arg	10 Pro Cys Trp	Lys Val Tyr Glu 75	Val Val 60 Gln	Val 45 Asp	Asp 30 Asp Gly Asn	15 Thr Val Val	Leu Ser Glu Thr	
98 <210> SEQ II 99 <211> LENGTI 100 <212> TYPE 101 <213> ORGA 103 <400> SEQUI 105 Met Asp Ly 106 I 109 Gly Gly Pr 110 113 Met Ile Se 114 35 117 His Glu As 118 50 121 Val His As 122 65 125 Tyr Arg Va	H: 228 PRT NISM: ENCE: S Thr O Ser 20 r Arg P Pro n Ala l Val	Homo s 2 His Th 5 Val Ph Thr Pr Glu Va Lys Th 70 Ser Va	r Cys e Leu o Glu l Lys 55 r Lys	Phe Val 40 Phe	Pro 25 Thr Asn Arg	10 Pro Cys Trp Glu	Lys Val Tyr Glu 75	Val Val 60 Gln	Val 45 Asp	Asp 30 Asp Gly Asn	15 Thr Val Val Ser	Leu Ser Glu Thr	
98 <210> SEQ II 99 <211> LENGT 100 <212> TYPE 101 <213> ORGA 103 <400> SEQU 105 Met Asp Ly 106 1 109 Gly Gly Pr 110 113 Met Ile Se 114 35 117 His Glu As 118 50 121 Val His As 122 65 125 Tyr Arg Val 126	H: 228 : PRT :NISM: ENCE: s Thr O Ser 20 r Arg p Pro n Ala	Homo s 2 His Th 5 Val Ph Thr Pr Glu Va Lys Th 70 Ser Va 85	r Cys e Leu o Glu 1 Lys 55 r Lys	Property Phenomena Phenome	Pro 25 Thr Asn Arg	10 Pro	Lys Val Tyr Glu 75 His	Val Val 60 Gln	Val 45 Asp Tyr	Asp 30 Asp Gly Asn	15 Thr Val Val Ser Leu 95	Leu Ser Glu Thr 80 Asn	
98 <210> SEQ II 99 <211> LENGTI 100 <212> TYPE 101 <213> ORGAI 103 <400> SEQUI 105 Met Asp Ly 106 I 109 Gly Gly Pr 110 113 Met Ile Se 114 35 117 His Glu As 118 50 121 Val His As 122 65 125 Tyr Arg Val 126 129 Gly Lys Gl	H: 228 PRT NISM: ENCE: S Thr O Ser 20 r Arg p Pro n Ala l Val u Tyr	Homo s 2 His Th 5 Val Ph Thr Pr Glu Va Lys Th 70 Ser Va 85	r Cys e Leu o Glu 1 Lys 55 r Lys	Property Phenomena Phenome	e Pro 25 Thr Asn Arg Val	10 Pro	Lys Val Tyr Glu 75 His	Val Val 60 Gln	Val 45 Asp Tyr	Asp 30 Asp Gly Asn Trp	15 Thr Val Val Ser Leu 95 Ala	Leu Ser Glu Thr 80 Asn	
98 <210> SEQ II 99 <211> LENGT 100 <212> TYPE 101 <213> ORGE 103 <400> SEQU 105 Met Asp Ly 106 I 109 Gly Gly Pr 110 113 Met Ile Se 114 35 117 His Glu As 118 50 121 Val His As 122 65 125 Tyr Arg Val 126 129 Gly Lys Gl 130	H: 228 PRT NISM: ENCE: S Thr O Ser 20 r Arg P Pro n Ala l Val u Tyr 100	Homo s 2 His Th 5 Val Ph Thr Pr Glu Va Lys Th 70 Ser Va 85 Lys Cy	r Cys e Leu o Glu l Lys 55 r Lys l Leu s Lys	Property Pro	e Pro 25 Thr Asn Arg Val	10 Pro Cys Trp Glu Leu 90 Asn	Lys Val Tyr Glu 75 His	Pro Val Val 60 Gln Ala	Val 45 Asp Tyr Asp	Asp 30 Asp Gly Asn Trp Pro	15 Thr Val Val Ser Leu 95 Ala	Leu Ser Glu Thr 80 Asn	
98 <210> SEQ II 99 <211> LENGTI 100 <212> TYPE 101 <213> ORGAI 103 <400> SEQUI 105 Met Asp Ly 106 1 109 Gly Gly Pr 110 113 Met Ile Se 114 35 117 His Glu As 118 50 121 Val His As 122 65 125 Tyr Arg Val 126 129 Gly Lys Gl 130 133 Ile Glu Ly	H: 228 : PRT :NISM: ENCE: s Thr O Ser 20 r Arg p Pro n Ala l Val u Tyr 100 s Thr	Homo s 2 His Th 5 Val Ph Thr Pr Glu Va Lys Th 70 Ser Va 85 Lys Cy	r Cys e Leu o Glu l Lys 55 r Lys l Leu s Lys	Property Phenomena Phenome	Pro 25 Thr Asn Arg Val Ser 105 Lys	10 Pro Cys Trp Glu Leu 90 Asn	Lys Val Tyr Glu 75 His	Pro Val Val 60 Gln Ala	Val 45 Asp Tyr Asp Leu	Asp 30 Asp Gly Asn Trp Pro 110 Glu	15 Thr Val Val Ser Leu 95 Ala	Leu Ser Glu Thr 80 Asn	
98 <210> SEQ II 99 <211> LENGT 100 <212> TYPE 101 <213> ORGA 103 <400> SEQU 105 Met Asp Ly 106 1 109 Gly Gly Pr 110 113 Met Ile Se 114 35 117 His Glu As 118 50 121 Val His As 122 65 125 Tyr Arg Val 126 129 Gly Lys Gl 130 133 Ile Glu Ly 134	H: 228 : PRT :NISM: ENCE: s Thr O Ser 20 r Arg p Pro n Ala l Val u Tyr 100 s Thr 5	Homo s 2 His Th 5 Val Ph Thr Pr Glu Va Lys Th 70 Ser Va 85 Lys Cy Ile Se	r Cys e Leu o Glu l Lys 55 r Lys l Leu s Lys	Property Phenomena Phenome	Pro 25 Thr Asn Arg Val Ser 105 Lys	10 Pro Cys Trp Glu Leu 90 Asn	Val Tyr Glu 75 His Lys	Val Val 60 Gln Gln Ala	Val 45 Asp Tyr Asp Leu Arg	Asp 30 Asp Gly Asn Trp Pro 110 Glu	15 Thr Val Val Ser Leu 95 Ala	Leu Ser Glu Thr 80 Asn Pro	
98 <210> SEQ II 99 <211> LENGTI 100 <212> TYPE 101 <213> ORGA 103 <400> SEQUI 105 Met Asp Ly 106 I 109 Gly Gly Pr 110 113 Met Ile Se 114 35 117 His Glu As 118 50 121 Val His As 122 65 125 Tyr Arg Val 126 129 Gly Lys Gl 130 133 Ile Glu Ly 134 11 137 Val Tyr Th	H: 228 : PRT :NISM: ENCE: s Thr O Ser 20 r Arg p Pro n Ala l Val u Tyr 100 s Thr 5	Homo s 2 His Th 5 Val Ph Thr Pr Glu Va Lys Th 70 Ser Va 85 Lys Cy Ile Se	r Cys e Leu o Glu l Lys 55 r Lys l Leu s Lys r Lys	Property Pro	Pro 25 Thr Asn Arg Val Ser 105 Lys	10 Pro Cys Trp Glu Leu 90 Asn	Val Tyr Glu 75 His Lys	Proval Value of Control of Contro	Val 45 Asp Tyr Asp Leu Arg 125 Lys	Asp 30 Asp Gly Asn Trp Pro 110 Glu	15 Thr Val Val Ser Leu 95 Ala	Leu Ser Glu Thr 80 Asn Pro	
98 <210> SEQ II 99 <211> LENGT 100 <212> TYPE 101 <213> ORGA 103 <400> SEQU 105 Met Asp Ly 106 1 109 Gly Gly Pr 110 113 Met Ile Se 114 35 117 His Glu As 118 50 121 Val His As 122 65 125 Tyr Arg Val 126 129 Gly Lys Gl 130 133 Ile Glu Ly 134	H: 228 : PRT :NISM: ENCE: s Thr o Ser 20 r Arg p Pro n Ala l Val u Tyr 100 s Thr 5 r Leu	Homo s 2 His Th 5 Val Ph Thr Pr Glu Va Lys Th 70 Ser Va 85 Lys Cy Ile Se Pro Pr	r Cys e Leu o Glu l Lys 55 r Lys l Leu s Lys r Lys o Ser 135	Property Phenomena Phenome	Pro 25 Thr Asn Arg Val Ser 105 Lys	10 Pro Cys Trp Glu Leu 90 Asn Gly	Lys Val Tyr Glu 75 His Lys Gln Leu	Val Val 60 Glm Ala Pro	Val 45 Asp Tyr Asp Leu Arg 125 Lys	Asp 30 Asp Gly Asn Trp Pro 110 Glu	15 Thr Val Ser Leu 95 Ala Pro	Leu Ser Glu Thr 80 Asn Pro Gln Val	

RAW SEQUENCE LISTING DATE: 07/28/2003 PATENT APPLICATION: US/09/840,277A TIME: 09:45:54

Input Set: A:\A-688A.ST25.txt

Output Set: N:\CRF4\07282003\1840277A.raw

142 145 150 155 145 Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro 165 170 149 Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr 150 180 185 153 Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val 154 195 200 157 Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 158 210 215 220 161 Ser Pro Gly Lys 162 225 165 <210> SEQ ID NO: 3 166 <211> LENGTH: 8 167 <212> TYPE: PRT 168 <213> ORGANISM: Artificial Sequence 170 <220> FEATURE: 171 <223> OTHER INFORMATION: Preferred linker 173 <400> SEQUENCE: 3 175 Gly Gly Gly Lys Gly Gly Gly 176 1 179 <210> SEQ ID NO: 4 180 <211> LENGTH: 8 181 <212> TYPE: PRT 182 <213> ORGANISM: Artificial Sequence 184 <220> FEATURE: 185 <223> OTHER INFORMATION: Preferred linker 187 <400> SEQUENCE: 4 189 Gly Gly Gly Asn Gly Ser Gly Gly 190 1 193 <210> SEQ ID NO: 5 194 <211> LENGTH: 8 195 <212> TYPE: PRT 196 <213> ORGANISM: Artificial Sequence 198 <220> FEATURE: 199 <223> OTHER INFORMATION: Preferred linker 201 <400> SEQUENCE: 5 203 Gly Gly Gly Cys Gly Gly Gly 204 1 207 <210> SEQ ID NO: 6 208 <211> LENGTH: 5 209 <212> TYPE: PRT 210 <213> ORGANISM: Artificial Sequence 212 <220> FEATURE: 213 <223> OTHER INFORMATION: Preferred linker 215 <400> SEQUENCE: 6 217 Gly Pro Asn Gly Gly 221 <210> SEQ ID NO: 7 222 <211> LENGTH: 5

DATE: 07/28/2003

TIME: 09:45:54

```
Input Set: A:\A-688A.ST25.txt
                      Output Set: N:\CRF4\07282003\1840277A.raw
     223 <212> TYPE: PRT
     224 <213> ORGANISM: Artificial Sequence
     226 <220> FEATURE:
     227 <223> OTHER INFORMATION: Laminin peptide
     229 <400> SEQUENCE: 7
     231 Tyr Ile Gly Ser Arg
     232 1
     235 <210> SEO ID NO: 8
     236 <211> LENGTH: 49
     237 <212> TYPE: PRT
     238 <213> ORGANISM: Artificial Sequence
     240 <220> FEATURE:
     241 <223> OTHER INFORMATION: Echistatin peptide
     243 <400> SEQUENCE: 8
     245 Glu Cys Glu Ser Gly Pro Cys Cys Arg Asn Cys Lys Phe Leu Lys Glu
     249 Gly Thr Ile Cys Lys Arg Ala Arg Gly Asp Asp Met Asp Asp Tyr Cys
     250 20
                                           25
     253 Asn Gly Lys Thr Cys Asp Cys Pro Arg Asn Pro His Lys Gly Pro Ala
     257 Thr
     261 <210> SEQ ID NO: 9
     262 <211> LENGTH: 7
     263 <212> TYPE: PRT
     264 <213> ORGANISM: Artificial Sequence
     266 <220> FEATURE:
     267 <223> OTHER INFORMATION: RGD, NGR derivative peptide
     269 <220> FEATURE:
    270 <221> NAME/KEY: misc feature
     271 <222> LOCATION: (2, 5 and)..(7)
     272 <223> OTHER INFORMATION: Xaa is any amino acid
     275 <400> SEQUENCE: 9
W--> 277 Arg Xaa Glu Thr Xaa Trp Xaa
     278 1
                                             delete this-these lines are not reeded in an intentionally shipped sequence (see item 8 on Error furnmany theet)
     281 <210> SEQ ID NO: 10
     282 <211> LENGTH: 0
     28/3 <212> TYPE: PRT
     284 <213> ORGANISM: Deleted Sequence
     286 <400> SEQUENCE: 10
W--> 287 000
     288 <210> SEQ ID NO: 11
     289 <211> LENGTH: 9
     290 <212> TYPE: PRT
     291 <213> ORGANISM: Artificial Sequence
     293 <220> FEATURE:
     294 <223> OTHER INFORMATION: RGD, NGR derivative peptide
     296 <220> FEATURE:
     297 <221> NAME/KEY: misc feature
     298 <222> LOCATION: (2, 3, 7 \text{ and})..(8)
```

RAW SEQUENCE LISTING

PATENT APPLICATION: US/09/840,277A

```
RAW SEQUENCE LISTING
                                                                DATE: 07/28/2003
                      PATENT APPLICATION: US/09/840,277A
                                                                TIME: 09:45:54
                      Input Set: A:\A-688A.ST25.txt
                      Output Set: N:\CRF4\07282003\I840277A.raw
     299 <223> OTHER INFORMATION: Xaa is any amino acid
     302 <400> SEQUENCE: 11
W--> 304 Cys Xaa Xaa Arg Leu Asp Xaa Xaa Cys
     305 1
     308 <210> SEQ ID NO: 12
     309 <211> LENGTH: 7
     310 <212> TYPE: PRT
     311 <213> ORGANISM: Artificial Sequence
     313 <220> FEATURE:
     314 <223> OTHER INFORMATION: RGD, NGR derivative peptide
     316 <220> FEATURE:
     317 <221> NAME/KEY: misc feature
     318 <222> LOCATION: (2 and)..(3)
     319 <223> OTHER INFORMATION: Xaa is any amino acid
     322 <400> SEQUENCE: 12
W--> 324 Cys Xaa Xaa Arg Gly Asp Cys
     325 1
     328 <210> SEQ ID NO: 13
     329 <211> LENGTH: 9
     330 <212> TYPE: PRT
     331 <213> ORGANISM: Artificial Sequence
     333 <220> FEATURE:
     334 <223> OTHER INFORMATION: RGD, NGR derivative peptide
     336 <220> FEATURE:
     337 <221> NAME/KEY: misc feature
     338 <222> LOCATION: (1, 2, 3, 7, 8 and)..(9)__
     339 <223> OTHER INFORMATION: Xaa is any amino acid with Xaa at 1, 3, 7 and 9 capable of
formin
     340
               g a bridge.
     343 <400> SEQUENCE: 13
W--> 345 Xaa Xaa Xaa Arg Gly Asp Xaa Xaa Xaa
     346 1
     349 <210> SEQ ID NO: 14
     350 <211> LENGTH: 9
     351 <212> TYPE: PRT
     352 <213> ORGANISM: Artificial Sequence
     354 <220> FEATURE:
     355 <223> OTHER INFORMATION: RGD, NGR derivative peptide
                                          Xaa can only represent one amend acid

(to 5) amino acids. (see them 5 on Euron Summary

Cys

Sheet)
     357 <220> FEATURE:
     358 <221> NAME/KEY: misc_feature
     359 <222> LOCATION: (2 ) ... (8)
     360 <223> OTHER INFORMATION: (Xaa is,
     364 <400> SEQUENCE: 14
W--> 366 Cys Xaa Cys Arg Gly Asp Cys Xaa Cys
     367 1
     370 <210> SEQ ID NO: 15
     371 <211> LENGTH: 8
     372 <212> TYPE: PRT
     373 <213> ORGANISM: Artificial Sequence
     375 <220> FEATURE:
```

RAW SEQUENCE LISTING ERROR SUMMARY
PATENT APPLICATION: US/09/840,277A
TIME

DATE: 07/28/2003 TIME: 09:45:55

Input Set : A:\A-688A.ST25.txt

Output Set: N:\CRF4\07282003\I840277A.raw

Please Note:

Use of n and/or Xaa have been detected in the Sequence Listing. Please review the Sequence Listing to ensure that a corresponding explanation is presented in the <220> to <223> fields of each sequence which presents at least one n or Xaa.

```
Seq#:9; Xaa Pos. 2,5,7
Seg#:11; Xaa Pos. 2,3,7,8
Seq#:12; Xaa Pos. 2,-3-
Seq#:13; Xaa Pos. 1,2,3,7,8,9
Seq#:14; Xaa Pos. 2,8
Seq#:15; Xaa Pos. 1,2,5,6,7,8
Seg#:16; Xaa Pos. 1,2,3,6,7,8,9,10
Seq#:17; Xaa Pos. 3,5,6,13,15
Seq#:18; Xaa Pos. 2,3,4,7,15
Seq#:19; Xaa Pos. 3,4,5,6,8,13,15,18
Seq#:20; Xaa Pos. 2,5,6,7,12,13,14
Seq#:21; Xaa Pos. 1,3,6,9,12,13
Seq#:40; Xaa Pos. 3,4
Seq#:50; Xaa Pos. 2,3
Seq#:58; Xaa Pos. 5
Seq#:59; Xaa Pos. 6
Seq#:86; Xaa Pos. 3,15
Seq#:87; Xaa Pos. 13,15
```

VERIFICATION SUMMARY

PATENT APPLICATION: US/09/840,277A T

DATE: 07/28/2003 TIME: 09:45:55

Input Set: A:\A-688A.ST25.txt

Output Set: N:\CRF4\07282003\I840277A.raw

```
L:13 M:271 C: Current Filing Date differs, Replaced Current Filing Date
L:36 M:258 W: Mandatory Feature missing, <223> Blank for SEQ#:1, Line#:33
L:277 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:9 after pos.:0
L:287 M:300 W: (50) Intentionally skipped Sequence, : Sequence Id (10) SEQUENCE:
L:304 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:11 after pos.:0
L:324 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:12 after pos.:0
L:345 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:13 after pos.:0
L:366 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:14 after pos.:0
L:406 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:15 after pos.:0
L:459 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:16 after pos.:0
L:479 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:17 after pos.:0
L:503 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:18 after pos.:0
L:523 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:19 after pos.:0
M:341 Repeated in SeqNo=19
L:547 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:20 after pos.:0
L:567 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:21 after pos.:0 L:839 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:40 after pos.:0
L:985 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:50 after pos.:0
L:1131 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:58 after pos.:0
L:1151 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:59 after pos.:0
L:1547 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:86 after pos.:0
L:1567 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:87 after pos.:0
L:1889 M:258 W: Mandatory Feature missing, <223> Blank for SEQ#:108,Line#:1880
```