Natural GaLore: A Memory Efficient Approach for LLM Training and Finetuning

Arijit Das

October 11, 2024

Outline

- Introduction
- Parameter Optimization
 - Distributed Training Techniques
 - Approximation Techniques
- Natural GaLore
- 4 Benchmarking Experiments
- 5 Application: Fine-Tuning TinyAgents
- 6 Conclusion

Introduction

Advanced Agentic Systems (AAS)

- Since GPT-3 (Brown et al., 2020), the concept of in-context learning, has made LLMs extremely flexible and powerful.
- This has opened the door to build AAS, which can respond to a wide variety of queries and solving complex problems, which may require a combination of: knowledge, reasoning, compute and action.
- However, building reliable AAS for practical applications remains challenging.

Optimizing AAS

- Solving such a complex problem requires systemically breaking it down into modules.
- Each module or agent is a call to an LLM which performs a subtask, requiring its own set of prompts and parameters.
- These modules can then be combined together as a directed graph, which solves the problem.
- Building realiable and robust AAS hence requires good prompt and parameter optimization techniques.

Prompt Optimization

- Prompt optimization is the process of finding the optimal prompt for a given LLM to maximize performance on a specific task.
 - ▶ **Prompt Proposal**: The challenge comes from the fact that they are inherently fuzzy and have a exponentially large solution space.
 - ► **Credit Assignment**: Another issue is to find efficient ways of inferring how each prompt variable contributes to performance.
- Algorithms like OPRO (Yang et al., 2024) and MIPRO (Opsahl-Ong et al., 2024), approach this problem by building efficient prompt proposal sampling, and credit assignment mechanisms following ideas from Bayesian optimization.

Parameter Optimization

- LLM training requires parameter optimization at three steps:
 - ▶ Pre-training: The model is optimized for the Next Token Prediction task on vast amounts of raw natural language text data.
 - Supervised Fine-tuning: Using high quality "Instruction Data", the model is transformed from essentially an autocomplete model, into one which can perform in context learning.
 - ▶ Preference optimization: Here responses are sampled, ranked according to user preferences and then the model is updated to prefer those.

AAS Optimization

• In this work, I focus on the parameter optimization problem

Parameter Optimization

Next Token Prediction

- LLMs are trained to predict the next token based on previously observed tokens (causal prediction).
- Given tokens $x_{< t} = (x_1, x_2, \dots, x_{t-1})$ the model is trained to maximize the probability of the next token x_t

$$\mathsf{Prob}_{\theta}(x) = \prod_{t=1}^{T} \mathsf{Prob}_{\theta}(x_t \mid x_{< t}) \tag{1}$$

Objective: Negative Log-Likelihood (NLL)

 The training objective is to minimize the Negative Log-Likelihood (NLL):

$$\Phi(\theta) = -\sum_{t=1}^{T} \log \mathsf{Prob}_{\theta}(x_t \mid x_{< t}) \tag{2}$$

- Penalizes low probability assignments to correct tokens.
- However is a high-dimensional, non-convex optimization problem.

Adam Optimizer

 Adam (Kingma & Ba, 2014) is an iterative stochastic gradient descent algorithm with adaptive learning rates and momentum

$$\theta_{k+1} = \theta_k - \eta \mathbf{u}_k^*$$

where $\mathbf{g}_k = \nabla_{\theta} \Phi(\theta_k)$ and η is the learning rate.

• The optimal update direction is determined using the momentum term $\mathbf{m}_k \in \mathbb{R}^{r \times m}$ and the second moment estimate $\mathbf{v}_k \in \mathbb{R}^{r \times m}$. With all operations being elementwise, the update direction becomes:

$$\mathbf{m}_k = \beta_1 \mathbf{m}_{k-1} + (1 - \beta_1) \mathbf{g}_k \tag{3}$$

$$\mathbf{v}_k = \beta_2 \mathbf{v}_{k-1} + (1 - \beta_2) \mathbf{g}_k^2$$
 (4)

$$\mathbf{u}_{\mathbf{k}}^{*} = \mathbf{m}_{k}/\sqrt{\mathbf{v}_{k} + \epsilon} \tag{5}$$

Memory Challenges

- Training and fine-tuning LLMs demand enormous computational resources and are highly memory-intensive.
- Memory requirements:
 - Stem from storing billions of parameters, gradients, and optimizer states.
 - For example for pre-training a Llama-7B model using Adam, requires 72GB of memory: 14GB for parameters and gradients each, 42GB for optimizer states and 2GB for activations.
 - This limits the ability to train large models on hardware with limited memory capacity.
 - Increases training costs and environmental impact.
- Objective: Develop a memory-efficient approach for training and fine-tuning LLMs without sacrificing performance.

Distributed Training Techniques

Distributed Training Techniques

Data Parallelism

- ▶ DDP combines data parallelism with efficient gradient synchronization.
- Pros: Efficient gradient updates, good scalability.
- Cons: Memory bottlenecks persist when model size exceeds single GPU capacity.

Model Parallelism

- Partitions model across multiple devices.
- ▶ Techniques: Pipeline parallelism (Huang et al., 2019), Tensor parallelism (Shoeybi et al., 2019), Fully Sharded Data Parallel (FSDP) (Zhao et al., 2020).
- ▶ **Pros**: Allows training of models larger than a single GPU.
- **Cons**: Communication overhead, complex implementation.

Distributed Training Techniques

- Data and Model Parallelism can be augmented with further techniques to reduce memory usage.
 - ► **Gradient Checkpointing** (Chen et al., 2016)
 - ★ Stores subset of activations during forward pass.
 - ★ Recomputes activations during backward pass.
 - ★ Pros: Reduces memory usage.
 - ★ Cons: Increases computational overhead.
 - Memory Offloading
 - ★ Moves optimizer states and gradients to CPU memory.
 - ★ Techniques: ZeRO-Offload (Rajbhandari et al., 2020).
 - **★ Pros**: Significant memory reduction.
 - **★ Cons**: Increased system complexity, operational costs.

Approximation Techniques

Parameter-Efficient Fine-Tuning (PEFT)

- LoRA (Low-Rank Adaptation) (Hu et al., 2022)
 - ► Reparameterizes weight matrices using low-rank adapters

$$W = W_0 + BA, \quad B \in \mathbb{R}^{n \times r}, A \in \mathbb{R}^{r \times m}$$
 (6)

- ▶ Pros: Reduces trainable parameters, lowers memory usage
- ▶ **Cons**: May not match full fine-tuning performance, especially on complex tasks (Xia et al., 2024).
- ReLoRA (Lialin & Schatz, 2023)
 - Extends LoRA for pre-training.
 - Periodically updates frozen weights using learned adapters.
 - ▶ **Pros**: Enables continual learning with lower memory.
 - ► Cons: Requires initial full-rank training phase.

GaLore: Gradient Low-Rank Approximation

- Exploits low-rank structure of gradients to approximate optimizer states (Zhao et al., 2024).
- The gradients $\mathbf{g} \in \mathbb{R}^{n \times m}$ are projected onto a low-rank form using SVD: $\mathbf{g} = \mathbf{P} \mathbf{\Sigma} \mathbf{Q}^T$

$$\mathbf{g}^{\text{low-rank}} = \mathbf{P}^T \mathbf{g}, \quad \mathbf{P} \in \mathbb{R}^{n \times r}$$
 (7)

 Then after applying Adam to glow-rank the full parameter update is reconstructed by applying P.

Pros:

- Significant memory reduction (up to 30% compared to LoRA).
- Full-parameter updates, maintaining model capacity.

Cons:

- Performance may not match full optimizer state methods.
- Low-rank approximation may not capture full optimization dynamics.

Natural GaLore

Natural GaLore: Proposed Approach

- **Goal**: Accelerating convergence of GaLore to bridge the gap with full state optimizers like Adam and AdamW.
- **Key Idea**: Incorporate second-order information into the low rank projected gradients using the Fisher Information Matrix (FIM) to efficiently estimate natural gradients.

Low-Rank Gradient Descent in GaLore

• GaLore restricts updates to an affine subspace defined by its principle components $\mathbf{P}_k \in \mathbb{R}^{n \times r}$:

$$\mathbf{u}_k \in \theta_k + \mathsf{Range}(\mathbf{P}_k)$$

 Then the second-order Taylor series expansion of the loss function along this subspace is:

$$\Phi(\theta_k + \mathbf{P}_k \mathbf{u}_k) \approx \Phi(\theta_k) + \mathbf{g}_k^{\text{low-rank}T} \mathbf{u}_k + \frac{1}{2} \mathbf{u}_k^T \mathbf{H}_k \mathbf{u}_k$$

where $\mathbf{g}_k^{\text{low-rank}} = \mathbf{P}_k^T \nabla_{\theta} \Phi(\theta_k)$ is the projected gradient and $\mathbf{H}_k = \mathbf{P}_k^T \nabla_{\theta}^2 \Phi(\theta_k) \mathbf{P}_k$ is the local Hessian matrix.

Fisher Information Matrix (FIM)

 Key idea: When the loss function can be written in terms of the KL-divergence, the Fisher Information Matrix (FIM) approximates the Hessian matrix:

$$\mathsf{F}_k = \mathbb{E}_{\mathsf{x} \sim p_{\mathsf{data}}}[\mathsf{H}_k]$$

- It captures the curvature of the loss landscape, enabling more efficient optimization.
- Natural gradient descent is Fisher efficient and reduces variance in gradient updates (Amari, 1998):

$$\mathsf{Var}[heta_k] = rac{1}{mk} \mathsf{F}_k^{-1}(heta_k^*) + \mathcal{O}\left(rac{1}{k^2}
ight)$$

Smaller variance translates to faster convergence.

Natural Gradient Transform

- In practice, FIM cannot be calculated efficiently.
- We approximate the empirical FIM using a mini-batch of $h \approx 20$ samples:

$$\hat{\mathbf{F}}_k = rac{1}{h} \sum_{k=1}^h \mathbf{g}_k^{ ext{low-rank}} \mathbf{g}_k^{ ext{low-rank}T}$$

The natural gradient transform can then be computed as:

$$\mathbf{g}_k^* = \mathbf{\hat{F}}_k^{-1} \mathbf{g}_k^{\mathsf{low-rank}}$$

• As with GaLore, after applying Adam to \mathbf{g}_k^* the full parameter update is reconstructed by applying \mathbf{P} .

Natural GaLore Algorithm

Algorithm 1: Natural GaLore, PyTorch-like

```
for weight in model.parameters():
    grad = weight.grad
    # original space -> low rank subspace + natural gradient transform
    lor.grad = project(grad)
    # update by Adam, AdamW, etc.
    lor.update = update(lor.grad)
    # low rank subspace -> original space
    update = project.back(lor.update)
    weight.data += update
```

The algorithm combines low-rank projection from GaLore with efficient second-order updates.

Natural Gradient Computation

- Inverting the empirical FIM is computationally expensive.
- Here we use the Woodbury's Identity to compute the natural gradient efficiently:
 - ▶ By re-writing $\hat{\mathbf{F}}_k = \lambda I + GG^T$, we get:

$$(\lambda I + GG^{T})^{-1} = \frac{1}{\lambda}I - \frac{1}{\lambda^{2}}G(I + \frac{1}{\lambda}G^{T}G)^{-1}G^{T}$$

where $G = [\text{vec}(\mathbf{g}_k^{\text{low-rank}}), \dots, \text{vec}(\mathbf{g}_{k-s}^{\text{low-rank}})]$ is the gradient history.

• Can be computed using Cholesky Decomposition and matrix-vector products in $\mathcal{O}(s^2)$ time:

$$Sz = y$$
, $S = I + \frac{1}{\lambda}G^TG$

Hence enabling scalable low-rank second order optimization.

Advantages of Natural GaLore

• Curvature Information:

- Accounts for the geometry of the loss landscape.
- ► Enables more informed optimization steps in high-dimensional, non-convex spaces.

Variance Reduction:

- Natural gradients reduces variance in gradient estimates.
- ▶ Leads to faster convergence, especially in limited iterations.
- Further, when using a decaying learning rate schedule like with AdamW (Loshchilov & Hutter, 2017), the asymptotic convergence rate can be faster (Martens, 2020) by a significantly large constant factor.

Memory Efficiency:

- ▶ Maintains low memory footprint, as with GaLore.
- ▶ Can be implemented without significant computational overhead.

Benchmarking Experiments

Pre-training Experiments on C4 Dataset

- Models: LLaMA variants with 60M, 130M, 350M, and 1.1B parameters.
- Dataset: C4 dataset.
- Metrics: Validation perplexity, memory consumption.
- Results:
 - Our method achieves lower perplexity than GaLore across all model sizes.
 - Closer performance to full optimizer state methods.
 - Maintains significant memory savings.
- **Conclusion**: Incorporating natural gradients accelerates convergence without significant additional memory overhead.

Pre-training Experiments on C4 Dataset

Table: Comparison of Natural GaLore with other low-rank algorithms on pre-training various sizes of LLaMA models on the C4 dataset. Validation log perplexity is reported (averaged over 5 runs), along with a memory estimate (in gigabytes) of the total parameters and optimizer states based on BF16 format.

	60M	130M	350M	1.1B	
Full-Rank	3.52 (0.36G)	3.22 (0.76G)	2.93 (2.06G)	2.72 (7.80G)	
Natural GaLore	3.53 (0.24G)	3.22 (0.52G)	2.93 (1.22G)	2.80 (4.38G)	
GaLore	3.56 (0.24G)	3.24 (0.52G)	2.95 (1.22G)	2.90 (4.38G)	
Low-Rank	4.35 (0.26G)	3.82 (0.54G)	3.62 (1.08G)	4.96 (3.57G)	
LoRA	3.55 (0.36G)	3.52 (0.80G)	3.24 (1.76G)	2.96 (6.17G)	
ReLoRA	3.61 (0.36G)	3.38 (0.80G)	3.37 (1.76G)	2.91 (6.17G)	
Rank r/d_{model}	128 / 256	256 / 768	256 / 1024	512 / 2048	
Training Tokens	1.1B	2.2B	6.4B	13.1B	

Fine-Tuning on GLUE Benchmark

- Model: RoBERTa-Base.
- Benchmark: GLUE tasks (CoLA, MRPC, STS-B, etc.).
- Comparison with LoRA, GaLore and full fine-tuning.
- Results:
 - Comparable or better performance than LoRA.
 - Achieved an average score of 86.05, close to full fine-tuning baseline of 86.28.
 - Less memory consumption.
- **Conclusion**: Effective for memory-efficient fine-tuning without signficantly sacrificing accuracy.

Fine-Tuning on GLUE Benchmark

Table: Evaluating Natural GaLore for memory-efficient fine-tuning on the GLUE benchmark using pre-trained RoBERTa-Base. We report the average score of all tasks. Memory consumption is reported in millions of parameters (M).

	Memory	CoLA	STS-B	MRPC	RTE	SST-2	MNLI	QNLI	QQP	Avg
Full Fine-Tuning	747M	62.24	90.92	91.30	79.42	94.57	87.18	92.33	92.28	86.28
Natural GaLore (rank=4)	253M	61.50	90.80	92.10	79.50	94.20	87.05	92.30	91.15	86.05
GaLore (rank=4)	253M	60.35	90.73	92.25	79.42	94.04	87.00	92.24	91.06	85.89
LoRA (rank=4)	257M	61.38	90.57	91.07	78.70	92.89	86.82	92.18	91.29	85.61
Natural GaLore (rank=8)	257M	61.70	90.90	92.25	79.80	94.40	87.20	92.35	91.25	86.23
GaLore (rank=8)	257M	60.06	90.82	92.01	79.78	94.38	87.17	92.20	91.11	85.94
LoRA (rank=8)	264M	61.83	90.80	91.90	79.06	93.46	86.94	92.25	91.22	85.93

Application: Fine-Tuning TinyAgents

TinyAgent Framework

- TinyAgent framework (Erdogan et al., 2024) is an AAS for task-specific function-calling pipelines.
- **Goal**: Fulfill user queries through function-calling, respecting function interdependencies and passing correct arguments.
- **Key challenge**: Generating function-calling plans with correct functions, their arguments and interdependencies.

LLMCompiler for Function Calling

- LLMCompiler (Kim et al., 2023) generates function-calling plans with required functions and arguments.
- It can then compile the plan into executable sequences.
- **Key challenge**: Original paper, implmented with 7B+ models. Could we fine tune smaller language models to generate a function plan with correct syntax, argument values, and respect for dependencies.

Challenges with Off-the-Shelf TinyLlama 1.1B

- The off-the-shelf TinyLlama 1.1B (instruct-32k) performs poorly on function-calling tasks.
- Issues include:
 - Incorrect function sets.
 - Hallucinated function names.
 - Incorrect or missing dependencies.
 - Argument misplacement.

Innoculation by Fine-Tuning

- To solve this, we fine-tune TinyLlama 1.1B using the curated TinyAgent dataset (Erdogan et al., 2024).
- Fine-tuning enables the model to learn:
 - Task-specific patterns for function-calling.
 - Precise understanding of task dependencies and arguments.
- Now there are three possibilities after fine-tuning:
 - ▶ Performance improvement ⇒ pre-training/instruction tuning data of the model was weak for this task.
 - No change in performance

 the model doesn't have the capacity to learn this task.
 - Otherwise, annotation artifact.

TinyAgent Dataset: Overview

- A meticulously curated dataset for building agentic systems on Apple MacBooks.
- Contains 40K examples of natural language queries and corresponding function-calling plans.
- Covers 16 distinct tasks such as:
 - ► Email, Contacts, SMS, Calendar, Notes, Reminders.
 - ▶ File Management, Zoom Meetings.
- Dataset split:
 - 38K training examples.
 - 1K validation examples.
 - 1K test examples.

Fine-Tuning Strategy

- During fine-tuning, the prompt includes:
 - Descriptions of the ground-truth functions.
 - Irrelevant functions serving as negative samples.
- The model learns to select the correct functions rather than simply memorizing the ground truth.
- Several in-context examples are used to demonstrate how queries translate into function-calling plans.
- Examples are selected via RAG, leveraging a **DeBERTa-v3-small** model (He et al., 2021) fine-tuned for multi-label classification to retrieve relevant examples from the training set.

Training Objective

- The training objective is to maximize the accuracy of generated function-calling plans.
- Success is defined as:
 - Correct function selection.
 - Correct arguments.
 - Correct order of function-calls.
- Verifying the selection of the correct function set is straightforward: set comparison.
- Ensuring correct argument handling and order requires constructing the associated Directed Acyclic Graph (DAG).
- DAGs check for equality in the structure and dependencies of the function-calls.

Fine-Tuning for Function Calling

- Task: Function calling using TinyAgent framework.
- **Model**: TinyLlama 1.1B fine-tuned for 3 epochs, batch size 32, learning rate 7×10^{-5} .
- Dataset: TinyAgent dataset with 40K examples.
- Metrics: Success rate in generating correct function-calling plans.
- Results:
 - Our method achieves a success rate of 83.09%.
 - ▶ Outperforms 16-bit LoRA (80.06%) and GPT-4-turbo by 4%.
 - ► Uses **30% less memory**.
- **Conclusion**: Enhances performance of smaller models, making them competitive with larger models.

Fine-Tuning for Function Calling

Table: Latency, size, and success rate of TinyAgent models before and after quantization. Latency is the end-to-end latency of the function calling planner, including the prompt processing time and generation.

Model	Weight Precision	Latency (seconds)	Model Size (GB)	Success Rate (%)
GPT-3.5	Unknown	3.2	Unknown	65.04
GPT-4-Turbo	Unknown	3.9	Unknown	79.08
TinyAgent-1.1B	16-bit (Natural GaLore)	3.9	2.2	83.09
	16-bit (LoRA)	3.9	2.2	80.06
TinyAgent-7B	16-bit (Erdogan et al., 2024)	19.5	14.5	84.95

Conclusion

Conclusion

- Presented Natural GaLore, a memory-efficient approach for LLM training and fine-tuning.
- Enhanced GaLore by incorporating natural gradients for better performance.
- Achieved significant memory savings without sacrificing accuracy.
- Validated effectiveness through extensive experiments on pre-training and fine-tuning tasks.
- Demonstrated practical benefits in advanced agentic systems.

Future Work

- Explore low-memory and structured projection matrices for further memory efficiency.
- Conduct more extensive empirical evaluations on fine-tuning tasks in Advanced Agentic Systems.
- Inspire future research on optimizer state approximation for memory-efficient training.
- Make large-scale model training more accessible on consumer-grade hardware.

Questions?

References I

- Shun-ichi Amari. Natural gradient works efficiently in learning. *Neural Computation*, 10(2):251–276, 1998. URL https://ieeexplore.ieee.org/document/6790500.
- Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. In *Advances in Neural Information Processing Systems*, volume 33, pp. 1877–1901, 2020. URL https://arxiv.org/abs/2005.14165.
- Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear memory cost. In *Proceedings of the 20th International Conference on Machine Learning (ICML)*, 2016. URL https://arxiv.org/abs/1604.06174.
- Lutfi Eren Erdogan, Nicholas Lee, Siddharth Jha, Sehoon Kim, Ryan Tabrizi, Suhong Moon, Coleman Hooper, Gopala Anumanchipalli, Kurt Keutzer, and Amir Gholami. TinyAgent: Function calling at the edge. arXiv preprint arXiv:2409.00608, 2024. URL https://arxiv.org/abs/2409.00608.

References II

- Pengcheng He, Jianfeng Gao, and Weizhu Chen. DeBERTaV3: Improving DeBERTa using ELECTRA-style pre-training with gradient-disentangled embedding sharing. arXiv preprint arXiv:2111.09543, 2021. URL https://arxiv.org/abs/2111.09543.
- Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International Conference on Learning Representations*, 2022. URL https://arxiv.org/abs/2106.09685.
- Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Menglong Chen, Denny Chen, Zhifeng Hu, Yuxin Shen, Maxim Krikun, Yonghui Wu, et al. GPipe: Efficient training of giant neural networks using pipeline parallelism. In Advances in Neural Information Processing Systems, volume 32, pp. 103–112, 2019. URL https://arxiv.org/abs/1811.06965.
- Sehoon Kim, Suhong Moon, Ryan Tabrizi, Nicholas Lee, Michael W Mahoney, Kurt Keutzer, and Amir Gholami. An LLM compiler for parallel function calling. *arXiv preprint arXiv:2312.04511*, 2023. URL https://arxiv.org/abs/2312.04511.

References III

- Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. URL https://arxiv.org/abs/1412.6980.
- Vladimir Lialin and Arthur Schatz. ReLoRA: Low-rank fine-tuning reloaded. arXiv preprint arXiv:2307.09769, 2023. URL https://arxiv.org/abs/2307.09769.
- Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017. URL https://arxiv.org/abs/1711.05101.
- James Martens. New insights and perspectives on the natural gradient method. Journal of Machine Learning Research, 21:1–76, 2020. URL https://www.jmlr.org/papers/volume21/17-678/17-678.pdf.
- Krista Opsahl-Ong, Michael J Ryan, Josh Purtell, David Broman, Christopher Potts, Matei Zaharia, and Omar Khattab. Optimizing instructions and demonstrations for multi-stage language model programs, 2024. URL https://arxiv.org/abs/2406.11695.

References IV

- Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. ZeRO: Memory optimizations toward training trillion parameter models. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–16, 2020. URL https://arxiv.org/abs/1910.02054.
- Mohammad Shoeybi, Mostofa Patwary, Rohan Puri, Patrick LeGresley, Jared Casper, and Bryan Catanzaro. Megatron-LM: Training multi-billion parameter language models using model parallelism. *arXiv preprint arXiv:1909.08053*, 2019. URL https://arxiv.org/abs/1909.08053.
- Tianxiang Xia, Hao Peng, Zheyu Chen, Lemao Li, Zhiyuan He, Zhen Yang, and Wei-Ying Ma. Chain-of-thought lora: Efficient adaptation of large language models. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, 2024. To appear.
- Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun Chen. Large language models as optimizers, 2024. URL https://arxiv.org/abs/2309.03409.

References V

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong Tian. GaLore: Memory-efficient LLM training by gradient low-rank projection. arXiv preprint arXiv:2403.03507, 2024. URL https://arxiv.org/abs/2403.03507.

Tianshi Zhao, Zhen Sun, Xiaodong Wang, Fei Zhou, Yang Guo, and Alexander J Smola. Extending torchelastic for stateful training jobs. *arXiv preprint* arXiv:2006.06873, 2020. URL https://arxiv.org/abs/2006.06873.