МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Санкт-Петербургский Национальный исследовательский университет информационных технологий, механики и оптики

Д.Н. Герасимов, А.В. Парамонов, В.О. Никифоров

АДАПТИВНОЕ И РОБАСТНОЕ УПРАВЛЕНИЕ ДИНАМИЧЕСКИМИ СИСТЕМАМИ УЧЕБНОЕ ПОСОБИЕ ДЛЯ ВЫПОЛНЕНИЯ ЛАБОРАТОРНЫХ, ПРАКТИЧЕСКИХ И КУРСОВЫХ РАБОТ

Санкт-Петербург

Миссия Университета ИТМО — открывать возможности для гармоничного развития конкурентоспособной личности и вдохновлять на решение глобальных задач.

В пособии приводятся рекомендации к выполнению лабораторных, практических и курсовых работ по курсу "Адаптивное и робастное управление". Работы направлены на освоение принципов синтеза адаптивных и робастных систем управления объектами в условиях неполной информации о состоянии и параметрах объекта либо внешнего возмущения, при нарушении условий согласования.

Каждая работа содержит основные теоретические сведения, отражающие суть изучаемой темы, последовательность расчетных и модельных экспериментов и перечень вопросов и задач, необходимых для закрепления материала.

Работы могут выполняться как независимо друг от друга в составе лабораторных практикумов, так и группами в составе более сложных практических и курсовых работ (см. раздел "Комплексы учебных работ")

Пособие предназначено для студентов, обучающих по направлениям подготовки 15.04.06 "Мехатроника и робототехника", 27.04.03 "Системный анализ и управление", 27.04.04 "Управление в технических системах". Пособие может быть полезно для аспирантов и специалистов в области систем автоматического управления.

Содержание

ВВЕДЕНИЕ	5
КОМПЛЕКСЫ УЧЕБНЫХ РАБОТ	6
Основные понятия и определения, используемые в работе12	2
Работа №1. ПРИНЦИП ПОСТРОЕНИЯ СИСТЕМ АДАПТИВНОГО	
УПРАВЛЕНИЯ НЕВОЗМУЩЕННЫМИ ОБЪЕКТАМИ14	4
Работа №2. ПРИНЦИП ПОСТРОЕНИЯ СИСТЕМ АДАПТИВНОГО И	
РОБАСТНОГО УПРАВЛЕНИЯ ВОЗМУЩЕННЫМИ ОБЪЕКТАМИ 2	1
Работа № 3. АДАПТИВНОЕ УПРАВЛЕНИЕ ЛИНЕЙНЫМ	
МНОГОМЕРНЫМ ОБЪЕКТОМ ПО СОСТОЯНИЮ29	9
Работа № 4. РОБАСТНОЕ УПРАВЛЕНИЕ ЛИНЕЙНЫМ	
МНОГОМЕРНЫМ ОБЪЕКТОМ ПО СОСТОЯНИЮ39	9
Работа №5. ПАРАМЕТРИЗАЦИЯ МОДЕЛИ ОБЪЕКТА УПРАВЛЕНИЯ	
(СПОСОБ №1)	5
Работа №6. СИНТЕЗ АДАПТИВНОГО НАБЛЮДАТЕЛЯ СОСТОЯНИЯ	
ЛИНЕЙНОГО ОБЪЕКТА54	4
Работа №7. ПАРАМЕТРИЗАЦИЯ МОДЕЛИ ОБЪЕКТА УПРАВЛЕНИЯ	
(СПОСОБ 2). АДАПТИВНОЕ УПРАВЛЕНИЕ ОБЪЕКТОМ ПО ВЫХОДУ	
6	0
Работа №8. АДАПТИВНОЕ УПРАВЛЕНИЕ ЛИНЕЙНЫМ ОБЪЕКТОМ	
ПО ВЫХОДУ НА ОСНОВЕ АЛГОРИТМА АДАПТАЦИИ С	_
РАСШИРЕННОЙ ОШИБКОЙ	9
Работа №9. АДАПТИВНОЕ УПРАВЛЕНИЕ ЛИНЕЙНЫМ ОБЪЕКТОМ	
ПО ВЫХОДУ НА ОСНОВЕ АЛГОРИТМА АДАПТАЦИИ ВЫСОКОГО	_
ПОРЯДКА	7
Работа №10. СИНТЕЗ НАБЛЮДАТЕЛЯ СОСТОЯНИЯ МОДЕЛИ	
ГЕНЕРАТОРА ВНЕШНЕГО ВОЗДЕЙСТВИЯ	6
Работа № 11. АДАПТИВНАЯ КОМПЕНСАЦИЯ ВНЕШНЕГО	
ВОЗМУЩЕНИЯ	2
Работа № 12. АДАПТИВНОЕ ВОСПРОИЗВЕДЕНИЕ ВНЕШНИХ	_
ВОЗДЕЙСТВИЙ	9
Работа № 13. АЛГОРИТМЫ АДАПТАЦИИ С УСКОРЕННОЙ	
ПАРАМЕТРИЧЕСКОЙ СХОДИМОСТЬЮ. СХЕМА №1	
(КРЕЙССЕЛЬМЕЙЕРА)	6
Работа № 14. АЛГОРИТМЫ АДАПТАЦИИ С УЛУЧШЕННОЙ	
ПАРАМЕТРИЧЕСКОЙ СХОДИМОСТЬЮ. СХЕМА №2 (ЛИОНА) 11:	5

Работа № 15. АДАПТИВНОЕ УПРАВЛЕНИЕ ОБЪЕКТАМИ ПРИ	
НАРУШЕНИИ УСЛОВИЙ СОГЛАСОВАНИЯ. БАЗОВЫЕ СХЕМЫ	.123
Приложение А. ОПРЕДЕЛЕНИЯ УСТОЙЧИВОСТИ И МЕТОД	
ФУНКЦИЙ ЛЯПУНОВА	.139
Приложение Б. СВОЙСТВО СТРОГОЙ ПОЛОЖИТЕЛЬНОЙ	
ВЕЩЕСТВЕННОСТИ	.145
Приложение В. ЛЕММА О ПЕРЕСТАНОВКЕ	.147
Приложение Г. ОБРАЗЕЦ ТИТУЛЬНОГО ЛИСТА	. 148
СПИСОК ЛИТЕРАТУРЫ	. 149

ВВЕДЕНИЕ

Целью работ является освоение методов синтеза систем адаптивного и робастного управления с использованием аппарата функций Ляпунова и развитие на основе полученных знаний навыков ведения научноисследовательской работы. В ходе выполнения работ предусматривается изучение базовых алгоритмов адаптивного и робастного управления скалярными и многомерными объектами в случае измеримости и неизмеримости вектора состояния, при удовлетворении и при нарушении согласования. Уделяется внимание способам сходимости алгоритмов адаптации. Изучаются методы параметризации моделей объектов, на основе которых синтезируются адаптивные наблюдатели состояния объекта и законы адаптивного управления объектами по выходу. В отдельные работы вынесен синтез алгоритмов адаптивной компенсации и адаптивного воспроизведения внешних мультигармонических воздействий.

Работы могут быть использованы для проведения лабораторных практикумов, комплексов практических и курсовых работ в зависимости от содержания курса (см. раздел "Комплексы учебных работ").

Предполагается, что к работам приступают студенты, освоившие курсы линейных и нелинейных систем управления и курс идентификации систем.

Для выполнения работ необходимо предварительно изучить теоретический материал, относящийся к работе, и освоить пакет программ *MatLab* со встроенной средой моделирования *Simulink*.

Выполнение каждой лабораторной, практической или курсовой работы включает проведение компьютерного моделирования, создание в печатной форме отчета (пояснительной записки) и завершается защитой. Защита работы предполагает индивидуальную дискуссию преподавателя со студентом, в ходе которой выявляется качество приобретенных студентом знаний и навыков.

Отчет должен содержать:

- 1. Титульный лист, выполненный согласно образцу, представленному в Приложении Г;
- 2. Цель работы и постановку задачи;
- 3. Теоретическую часть: используемые формулы, диаграммы, схемы и т.п. с пояснениями;
- 4. Экспериментальную часть, в которой приводятся расчеты и результаты моделирования в виде схем и графиков.
- 5. Выводы по работе.

Отчет необходимо оформлять согласно правилам ГОСТ 2.105-95 ЕСКД.

КОМПЛЕКСЫ УЧЕБНЫХ РАБОТ

Для наиболее эффективного освоения и закрепления основ теории адаптивного и робастного управления представленные в учебном пособии работы объединены в лабораторные практикумы, комплексы практических и курсовых работ. Использование предложенных комплексов зависит от содержания преподаваемой дисциплины и может охватывать как весь перечень работ, так и их часть.

Лабораторные практикумы включают представленные в пособии работы и ориентированы на освоение и закрепление теоретических положений, изучаемых на лекциях либо самостоятельно.

Таблица 0.1. Лабораторные практикумы

<u> </u>		
Наименование	Работы	Тематика
Лабораторный	1-6	Базовый курс / Семестр №1:
практикум 1		
		- основные принципы синтеза
		адаптивного и робастного управления;
		- параметризация линейных объектов;
		- синтез адаптивных наблюдателей
		состояния линейных объектов.
Лабораторный	7-12	Дополнительный курс / Семестр №2:
практикум 2		71
		- адаптивное управление линейными
		объектами по выходу. Метод
		расширенной ошибки. Алгоритм
		адаптации высокого порядка;
		- адаптивное воспроизведение
		внешних мультисинусоидальных
		воздействий в линейных системах;
		- адаптивная компенсация
		мультисинусоидальных внешних
		воздействий в линейных системах.

Целью практических работ является выработка у студентов практических умений, связанных с получением, обобщением и интерпретацией теоретических и экспериментальных результатов. Перечень тем рекомендуемых практических работ приведен в Таблице 0.2. Работы выполняются в соответствии с вариантами заданий (см. соотв. колонку в Таблице 0.2).

Порядок выполнения практических работ определяется преподавателем в зависимости от объема и содержания аудиторных занятий.

Таблица 0.2. Темы практических работ

	Таолица 0.2. Темог приктических рисст					
No	Исп.	Тема	Задание			
	работы	2 2 3 3 3 3				
1	1, 13	Увеличение скорости	Показать, что с помощью схемы			
	(либо 1,	настройки параметров в	Крейссельмейера (работа №13) или			
	14)	законах адаптивного	схемы Лиона (работа №14)			
		управления	нивелируется недостаток алгоритма			
			управления (1.6), (1.9), связанный с			
			ограниченной скоростью			
			сходимости (см. работу №1, анализ			
			замкнутой системы, свойство 4).			
2	1, 2	Обобщение задач	Обобщить процедуру синтеза			
	(либо 3,	адаптивного и	алгоритма адаптивного управления,			
	4)	робастного управления	приведенную в работе №3 на класс			
		на некоторые классы	нелинейных объектов,			
		нелинейных систем,	удовлетворяющих условиям			
		удовлетворяющих	согласования (по аналогии с			
		условиям согласования	условиями (3.6) для линейного			
			объекта). Описать класс объектов			
			$(\dot{x} = Ax + b(\theta^T \varphi(x) + u)).$			
3	1, 6	Идентификационный	Показать, что задача адаптивного			
	· ·	(непрямой) и	управления, представленная в работе			
	6)	безидентификационный	№1 и решенная посредствам методов			
		(прямой) подход в	прямого адаптивного управления,			
		задачах адаптивного	может быть решена с помощью			
		управления	идентификационного подхода.			
4	5	Параметризация	Показать, что для некоторых			
		некоторого класса	нелинейных систем возможна			
		нелинейных систем,	процедура параметризации			
		параметризация	выходных переменных и их			
		производных выходных	_			
		сигналов	представленной в работе №5			

			процедуры
5	5	Влияние начальных	Рассмотреть задачи 3 и 4,
		условий объекта на	представленные после работы №5
		поведение	
		параметризованных	
		моделей линейных	
		систем	
6	6	Условие	Экспериментально исследовать
		неисчезающего	связь количества гармоник входного
		возбуждения при	сигнала и с выполнением условия
		идентификации	неисчезающего возбуждения
		параметров линейного	регрессора ю в алгоритме (6.5) и,
		объекта	как следствие, с качеством
			идентификации параметров объекта,
			используемых в алгоритме
			адаптивного наблюдения.
7	6,	Увеличение скорости	Применить схему
	(13/14)	настройки адаптивных	Крейссельмейера/Лиона к синтезу
		наблюдателей	адаптивного наблюдателя и показать
		состояния	эффективность этой схемы на основе
			сравнения с результатами работы
			№ 6.
8	8, 2	Робастные	На базе работ №8 и №2 представить
		модификации	решение задачи робастного
		алгоритма адаптивного	управления параметрически
		управления по выходу	неопределенным линейным
		линейным	объектом по выходу при наличии на
		возмущенным объектом	входе объекта ограниченных
			возмущений.
9	9, 2	Робастные	На базе работ №9 и №2 представить
		модификации	решение задачи робастного
		алгоритма высокого	управления параметрически
		порядка при	неопределенным линейным
		управлении линейным	объектом по выходу при наличии на
		возмущенным объектом	входе объекта ограниченных
		по выходу	возмущений.
10	15	Принципы синтеза	Представить основные принципы
		алгоритмов	управления линейными объектами в
		адаптивного	случае, если нарушены условия (3.6).
		управления объектами	
		при нарушении условий	
		согласования	

Основной целью курсовых работ является выработка и развитие у студентов навыков применения знаний, полученных в ходе освоения курса, в научно-исследовательской деятельности. В ходе выполнения работы студенту предлагается самостоятельно применить опыт выполнения ряда теоретических и экспериментальных исследований, полученный при выполнении лабораторных и практических работ, для решения комплексной задачи. Перечень рекомендуемых тем курсовых работ представлен в Таблице 0.3. Работы выполняются в соответствии с вариантами заданий (см. соответствующую колонку в Таблице 0.3).

Ход и порядок выполнения курсовых работ определяется преподавателем в зависимости от объема и содержания аудиторных занятий.

Таблица 0.3. Темы курсовых работ

таолица 0.3. темы курсовых риоот				
Исп. работы	Тема	Задание		
	Алаптивная	Для возмущенного объекта (11.1)		
	, ,	синтезировать управление u ,		
	•	гарантирующее ограниченность всех		
		сигналов в системе и обеспечивающее		
	-	цель (12.2). Возмущающее воздействие f		
	дальных	и задающее воздействие д относятся к		
	воздействий	классу мультисинусоидальных		
		воздействий с априори неизвестными		
		амплитудами, фазами и частотами		
		гармоник. Исходные данные для работы		
		используются из вариантов работ №11 и		
		№ 12.		
3, 4, 13	Адаптивное	Решить задачу адаптивного управления по		
	управление	состоянию (см. работу №3) с		
	объектами по	использованием схемы Крейссельмейера с		
	состоянию на	ускоренной параметрической сходимостью		
		(см. работу №13). Сравнить полученный		
	Крессельмейера	результат с результатом выполнения		
		работы №3.		
3, 4, 14	Адаптивное	Решить задачу адаптивного управления по		
	управление	состоянию (см. работу №3) с		
	объектами по	использованием схемы Лиона с		
	состоянию на	ускоренной параметрической сходимостью		
	базе схемы	(см. работу №14). Сравнить полученный		
	Лиона	результат с результатом выполнения		
		работы №3.		
	Исп. работы 10, 11, 12	Исп. работы 10, 11, Адаптивная компенсация и адаптивное воспроизведение мультисинусои-дальных воздействий 3, 4, 13 Адаптивное управление объектами по состоянию на базе схемы Крессельмейера 3, 4, 14 Адаптивное управление объектами по состоянию на базе схемы крессельмейера		

4	7, 8, 13	Адаптивное	Решить задачу адаптивного управления по
		управление	выходу (см. работу №8) с использованием
		объектами по	схемы Крейссельмейера с ускоренной
		выходу на базе	параметрической сходимостью (см. работу
		схемы	№13). Сравнить полученный результат с
		Крейссельмейера	результатом выполнения работы №8.
5	7, 8, 14	Адаптивное	Решить задачу адаптивного управления по
		управление	выходу (см. работу №8) с использованием
		объектами по	схемы Лиона с ускоренной
		выходу на базе	параметрической сходимостью (см. работу
		схемы Лиона	№14). Сравнить полученный результат с
			результатом выполнения работы №8.
6	5, 6, 13	Синтез	Решить задачу синтеза адаптивного
		адаптивного	наблюдателя (см. работу №5) с
		наблюдателя с	применением схемы Крейссельмейера с
		ускоренной	ускоренной параметрической сходимостью
		сходимостью на	(см. работу №13). Сравнить полученный
		базе схемы	результат с результатом выполнения
		Крейссельмейера	работы №6.
7	5, 6, 14	Синтез	Решить задачу синтеза адаптивного
		адаптивного	наблюдателя (см. работу №5) с
		наблюдателя с	применением схемы Лиона с ускоренной
		ускоренной	параметрической сходимостью (см. работу
		сходимостью на	№14). Сравнить полученный результат с
		базе схемы	результатом выполнения работы №6.
		Лиона	
8	7, 8, 9	Адаптивное	Решить задачу синтеза адаптивного
		управление	управления линейным объектом по
		линейными	выходу, сформулированную в работе №7:
		объектами по	при помощи алгоритма адаптации с
		выходу.	расширенной ошибкой (см. работу №8);
		Алгоритм	при помощи алгоритма адаптации
		адаптации	высокого порядка (см. работу №9).
		высокого	Сравнить полученные результаты.
		порядка и	
		алгоритм с	
		расширенной	
	1.7	ошибкой	T
9	15	Адаптивное	Курсовая работа выполняется на базе
		управление	работы №15 в соответствии с выбранным
		нелинейными	вариантом.
		объектами при	
		нарушении	

		условий согласования. Базовые схемы	
10	2, 4, 15	Робастное управление возмущенными нелинейными объектами при нарушении условий согласования. Базовые схемы	Необходимо разработать робастную σ-модификацию алгоритмов адаптации, используемых в решениях задачи управления нелинейными объектами при нарушении условий согласования (см. работу №15).

Основные понятия и определения, используемые в работе

Адаптация — процесс автоматической настройки параметров или структуры регулятора с целью достижения определенных свойств замкнутой системы управления при начальной неопределенности или изменяющихся внешних условиях ее функционирования.

Адаптивная система — это система управления, обеспечивающая компенсацию неопределенностей объекта и/или влияния внешней среды за счет автоматической настройки параметров или структуры регулятора в ходе рабочего функционирования.

Неопределенный объект — объект, математическая модель которого содержит неизвестные (неточно известные) постоянные параметры или функциональные компоненты, существенно влияющие на поведение этого объекта.

Формально неопределенности объекта можно разделить на четыре типа:

- параметрические неопределенности, подразумевающие наличие в модели неизвестных постоянных параметров;
- сигнальные неопределенности, представляющие собой неизвестные функции времени (например, неизвестные переменные во времени параметры или внешние возмущения);
- функциональные неопределенности, представляющие собой неизвестные функции переменных состояния объекта;
- структурные неопределенности, предполагающие наличие в модели неизвестной структуры (например, неучтенной динамики датчиков или исполнительных механизмов).

Робастная (грубая) система — это система управления неопределенным объектом, обеспечивающая заданное качество функционирования без компенсации неопределенностей. Для робастной системы характерно малое отклонение переменной управления и выходной переменной объекта при малых вариациях параметров объекта, изменения структуры или действия возмущающих воздействий.

Список основных обозначений

```
R^n — линейное пространство n-мерных вещественных векторов; H(s),W(s),L(s) — передаточная функция (символьная форма записи дифференциального уравнения); s — оператор Лапласа; y(t) = H(s)[f(t)] — преобразование оператором H(s) сигнала f(t); grad \{f(x)\} — градиент функции; \|x\|, \|P\| — евклидова норма вектора или спектральная норма матрицы;
```

Работа №1. ПРИНЦИП ПОСТРОЕНИЯ СИСТЕМ АДАПТИВНОГО УПРАВЛЕНИЯ НЕВОЗМУЩЕННЫМИ ОБЪЕКТАМИ

Цель работы: освоение принципов построения систем адаптивного управления на примере задачи слежения выхода скалярного объекта за эталонным сигналом.

Методические рекомендации. До начала работы студенты должны ознакомиться с анализом устойчивости нелинейных систем методом функций Ляпунова.

Теоретические сведения. Рассмотрим решение задачи адаптивного слежения, начиная с постановки и заканчивая анализом свойств замкнутой системы.

Постановка задачи. Дан объект

$$\dot{x} = \theta x + u \,, \tag{1.1}$$

где x — выход объекта (совпадает с переменной состояния), u — сигнал управления, θ — неизвестный постоянный параметр.

Цель управления заключается в компенсации неопределенности θ и обеспечении следующего целевого равенства:

$$\lim_{t \to \infty} (x_m(t) - x(t)) = \lim_{t \to \infty} \varepsilon(t) = 0, \tag{1.2}$$

где $\varepsilon = x_m - x$ — ошибка управления, x_m — эталонный сигнал, являющийся выходом динамической модели (э*талонной модели*)

$$\dot{x}_m = -\lambda \, x_m + \lambda \, g \,, \tag{1.3}$$

где g — кусочно-непрерывный ограниченный сигнал задания, $\lambda > 0$ — параметр, задающий время переходного процесса. Эталонная модель (1.3) определяет желаемое качество слежения объекта (1.1) за сигналом задания g.

Решение задачи. Временно предположим, что параметр θ известен. Тогда, вычисляя производную ошибки слежения ϵ по времени с учетом (1.1) и (1.3), получим:

$$\dot{\varepsilon} = \dot{x}_m - \dot{x} = -\lambda x_m + \lambda g - \theta x - u. \tag{1.4}$$

Ошибка слежения будет экспоненциально стремиться к нулю, если будет выполняться равенство

$$\dot{\varepsilon} = -\lambda \varepsilon$$
.

Приравнивая правые части последнего уравнения и модели (1.4), находим искомый закон управления:

$$-\lambda x_m + \lambda g - \theta x - u = -\lambda \varepsilon = -\lambda x_m + \lambda x,$$

$$u = -\theta x - \lambda x + \lambda g.$$
(1.5)

Таким образом, в случае известного значения параметра θ закон управления (1.5) обеспечивает для объекта (1.1) выполнение целевого равенства (1.2).

Пусть теперь, как в исходной постановке задачи, параметр θ неизвестен. Тогда для реализуемости закона управления (1.5) заменим величину θ на ее оценку $\hat{\theta}$:

$$u = -\hat{\Theta}x - \lambda x + \lambda g . \tag{1.6}$$

Дальнейшее решение задачи сводится к задаче нахождения функции $\hat{\theta}(t)$, которая обеспечит устойчивость замкнутой системы и цель управления (1.2). Для нахождения $\hat{\theta}(t)$ проведем ряд алгебраических преобразований и воспользуемся методом функций Ляпунова [6, 13, 15]. Подставим последнее выражение в модель (1.1) и получим:

$$\dot{x} = \theta x - \hat{\theta} x - \lambda x + \lambda g = \widetilde{\theta} x - \lambda x + \lambda g,$$

где $\tilde{\theta} = \theta - \hat{\theta}$ — параметрическая ошибка. Сформируем модель ошибки управления:

$$\dot{\varepsilon} = \dot{x}_m - \dot{x} = -\lambda x_m + \lambda g - \widetilde{\theta} x + \lambda x - \lambda g = -\lambda \varepsilon - \widetilde{\theta} x$$

или

$$\dot{\varepsilon} = -\lambda \,\varepsilon - \widetilde{\theta} \,x. \tag{1.7}$$

Выберем функцию Ляпунова

$$V = \frac{1}{2}\varepsilon^2 + \frac{1}{2\gamma}\widetilde{\Theta}^2,\tag{1.8}$$

где $\gamma > 0$ — параметр. Вычислим производную по времени функции V с учетом (1.7):

$$\dot{V} = \frac{1}{2} 2\varepsilon \dot{\varepsilon} + \frac{1}{2\gamma} 2\widetilde{\theta} \dot{\widetilde{\theta}} = \varepsilon \left(-\lambda \varepsilon - \widetilde{\theta} x \right) - \frac{1}{\gamma} \widetilde{\theta} \dot{\widehat{\theta}} = -\lambda \varepsilon^2 - \widetilde{\theta} x\varepsilon - \widetilde{\theta} \frac{1}{\gamma} \dot{\widehat{\theta}}.$$

В соответствии с методом функций Ляпунова выберем алгоритм формирования оценки $\hat{\theta}(t)$ (т.е. правило определения производной $\hat{\theta}(t)$) из условия отрицательности производной функции Ляпунова. Нетрудно видеть, что при выборе

$$\dot{\hat{\theta}} = -\gamma x \varepsilon \tag{1.9}$$

производная функции Ляпунова будет отрицательной:

$$\dot{V} = -\lambda \varepsilon^2 < 0 \ \forall \varepsilon \neq 0.$$

Алгоритм (1.9), формирующий оценку $\hat{\theta}$, называется алгоритмом адаптации, а параметр γ — коэффициентом адаптации.

Таким образом, алгоритм адаптивного управления, обеспечивающий цель (1.2), представляется настраиваемым регулятором (1.6) и алгоритмом адаптации (1.9). При любых начальных условиях x(0), $\hat{\theta}(0)$ и любом ограниченном сигнале g алгоритм управления наделяет замкнутую систему следующими свойствами:

- С.1. ограниченность всех сигналов в замкнутой системе;
- С.2. асимптотическое стремление ошибки слежения є к нулю;
- С.3. экспоненциальное стремление $\hat{\theta}$ к θ при выполнении условия

$$\int_{t}^{t+T} x^{2}(\tau)d\tau > \alpha I > 0$$

(частного случая условия (3.14), почти всегда выполняемого в задаче управления скалярным объектом при $g(t) \neq 0$), что следует из свойства C.2 и выражения (1.7);

С.4. увеличение скорости сходимости параметрической ошибки $\tilde{\theta}$ к нулю при увеличении коэффициента γ до некоторого оптимального значения. Дальнейшее повышение γ приведет к снижению скорости сходимости ошибки и появлению колебаний в системе [20].

Порядок выполнения работы

- 1. На основе заданных в Таблице 1.1 значений параметров объекта (1.1) и эталонной модели (1.3) построить неадаптивную систему управления на базе регулятора (1.5). Провести моделирование системы в условиях скачкообразного трехкратного увеличения параметра θ и построить два графика. На одном вывести x(t) и $x_m(t)$ (или $\varepsilon(t)$), на другом u(t).
- 2. Синтезировать алгоритм адаптации (1.9) и подключить его к настраиваемому регулятору (1.6). Повторить эксперимент для адаптивной системы управления, замкнутой регулятором (1.6) с алгоритмом адаптации (1.9) с $\hat{\theta}(0) = 0$. Коэффициент адаптации γ выбрать экспериментально. Дополнительно построить график параметрической ошибки $\tilde{\theta} = \theta \hat{\theta}$.
- 3. Провести моделирование адаптивной системы управления при разных коэффициентах γ .
 - 4. Сделать выводы на основе сравнения результатов моделирования.

Таблица 1.1. Варианты заданий

Bap.	Параметр объекта θ	Параметр эталонной модели λ	Сигнал задания $g(t)$	Bap.	Параметр объекта 0	Параметр эталонной модели λ	Сигнал задания $g(t)$
1	6	1	$\cos t + 3$	16	7	1	sin 2t
2	2	2	4	17	8	2	$\cos 4t$
3	4	3	$\cos 3t + 2$	18	9	3	$sign(\sin 3t) + 2$
4	1	4	$3\sin t$	19	1	4	2
5	5	5	$0.5\cos 8t + 1$	20	2	5	$2\sin 5t$
6	8	6	$\sin 2t + 6$	21	3	6	1
7	3	7	9	22	4	7	$7\sin t$
8	9	8	$\cos t + 4$	23	5	8	$5\sin 0,5t+6$
9	10	9	$9\sin 0,5t+12$	24	6	9	$sign(\cos t) + 3$
10	15	1	$\sin 8t + 2$	25	7	10	$sign(\sin 2t) + 5$
11	4	2	10	26	8	1	$\sin 5t + 0,5\cos 0,2t + 2$
12	8	3	$\cos 2t + 2$	27	3	2	$2sign(\sin 0,4t)+3$
13	6	4	$sign(\cos t) + 8$	28	1	3	$3\sin 0,5t+3$
14	7	5	$3sign(\sin t) + 4$	29	2	4	$2\sin 0, 2t + \sin 0, 1t + 8$
15	11	6	$3\sin t + 10$	30	3	5	$4sign(\cos 2t) + 5$

Задачи и вопросы

1. Решить задачу адаптивного слежения для объекта вида

$$\dot{x} = \theta_1 x^5 + \theta_2 u ,$$

где θ_1 , θ_2 — неизвестные параметры ($\theta_2 > 0$). Цель управления задается равенством (1.2).

2. Решить задачу адаптивного слежения для объекта вида

$$\dot{x} = -x + \theta_1 u + \theta_2 ,$$

где θ_1 , θ_2 — неизвестные параметры ($\theta_1 > 0$). Цель управления задается равенством (1.2).

3. Решить задачу адаптивного слежения для объекта вида

$$\dot{x} = \theta x^3 + u ,$$

где θ — неизвестный параметр. Цель управления задается равенством (1.2).

4. Решить задачу адаптивного слежения для объекта вида

$$\dot{x} = \Theta(t)x + u ,$$

где $\theta(\omega) = c_0 + c_1 \omega + c_2 \omega^2$, c_0 , c_1 , c_2 — неизвестные коэффициенты, ω — известная функция времени. Цель управления задается равенством (1.2).

5. Решить задачу адаптивного слежения для объекта вида

$$\dot{x} = \theta_1 x + u + \theta_2 \sin \omega t ,$$

где θ_1 , θ_2 — неизвестные параметры, ω — известная частота. Цель управления задается равенством (1.2).

6. Решить задачу адаптивного слежения для объекта вида

$$\dot{x} = \theta_1 x + u + \theta_2 x^2,$$

где θ_1 , θ_2 — неизвестные параметры. Цель управления задается равенством (1.2).

7. Решить задачу адаптивного слежения для объекта, модель которого представлена апериодическим звеном

$$y = \frac{K}{Ts+1}[u],$$

где K, T — неизвестные параметры (K > 0). Цель управления задается равенством вида

$$\lim_{t\to\infty} (y_m(t) - y(t)) = \lim_{t\to\infty} \varepsilon(t) = 0,$$

где y_m — эталонный сигнал, генерируемый эталонной моделью

$$\dot{y}_m = -\lambda y_m + \lambda g ,$$

g — сигнал задания.

8. Найти алгоритм адаптации для системы управления, представленной в работе, с помощью функции Ляпунова

$$V(\varepsilon, \widetilde{\Theta}) = |\varepsilon| + \frac{1}{2}\widetilde{\Theta}^2$$
.

- 9. Сформулировать критерии асимптотической и экспоненциальной устойчивости, используя функции Ляпунова.
- 10. Обязательно ли для решения поставленной в работе задачи обеспечивать сходимость параметрических ошибок к нулю?

Задачи и вопросы повышенной сложности

1. Система управления включает объект $\dot{x}=\theta x+u$, настраиваемый регулятор $u=-\hat{\theta}x-\lambda x+\lambda g$, в котором λ — положительный параметр эталонной модели $\dot{x}_m=-\lambda x_m+\lambda g$, g — сигнал задания. Оценка $\hat{\theta}$ генерируется следующим алгоритмом адаптации:

$$\dot{\hat{\theta}} = -\gamma x sign(\varepsilon),$$

где γ — коэффициент адаптации, $\varepsilon = x_m - x$.

Доказать асимптотическое стремление ошибки є к нулю.

2. Доказать асимптотическое стремление ошибки є к нулю в системе, приведенной в предыдущей задаче, если алгоритм адаптации определен как

$$\dot{\hat{\theta}} = -\gamma \frac{1}{s+\lambda} [x] \hat{\epsilon},$$

где
$$\hat{\varepsilon} = \varepsilon - \frac{1}{s+\lambda} [\hat{\theta} x] + \hat{\theta} \frac{1}{s+\lambda} [x].$$

3. Пусть в замкнутой устойчивой системе, представленной моделью сигнальной ошибки

$$\dot{\varepsilon} = -\lambda \, \varepsilon - \widetilde{\Theta} \, x$$

и моделью параметрической ошибки

$$\dot{\tilde{\theta}} = \gamma x \varepsilon$$
,

x = c = const. Найти в символьном виде диапазон значений коэффициента γ , при которых в системе возникают колебания.

4. Решить задачу адаптивного слежения для объекта вида

$$\dot{x} = \theta_1 x + u,$$

$$y = \theta_2 x + u,$$

где θ_1 , θ_2 — неизвестные параметры ($\theta_1 < 0$). Цель управления заключается в обеспечении равенства

$$y = g$$
,

где g — сигнал задания. При каких θ_1 и θ_2 задача не разрешима приведенным в работе способом?

5. Для скалярных систем

$$\dot{x} = -\frac{1}{1+t}x$$
, $\dot{x} = -x^3$, $\dot{x} = -3x$

определить вид устойчивости положения равновесия $x^* = 0$ и найти предел

$$\lim_{t\to\infty} \left(\int_0^t x^2(\tau) d\tau \right).$$

Объяснить полученный результат.

Работа №2. ПРИНЦИП ПОСТРОЕНИЯ СИСТЕМ АДАПТИВНОГО И РОБАСТНОГО УПРАВЛЕНИЯ ВОЗМУЩЕННЫМИ ОБЪЕКТАМИ

Цель работы: освоение принципов построения систем адаптивного и робастного управления на примере задачи слежения выхода скалярного объекта за эталонным сигналом.

Методические рекомендации. До начала работы студенты должны ознакомиться с анализом устойчивости нелинейных систем методом функций Ляпунова [6, 13, 15] (см. также приложение A).

Теоретические сведения. Рассмотрим пример задачи слежения выхода параметрически неопределенного возмущенного объекта за эталонным сигналом. Приведем два решения поставленной задачи. При этом воспользуемся результатами, приведенными в работе №1.

Постановка задачи. Дан объект, представленный моделью вида

$$\dot{x} = \theta \, x + u + \delta \,, \tag{2.1}$$

где δ — ограниченное внешнее возмущение, удовлетворяющее неравенству $\left|\delta(t)\right| \leq \overline{\delta}$. Как и ранее, x — выход объекта (совпадает с переменной состояния), u — сигнал управления, θ — неизвестный постоянный параметр.

Цель управления заключается в построении закона управления, обеспечивающего следующее целевое неравенство:

$$|x_m(t) - x(t)| \le \Delta, \qquad \forall t \ge T,$$
 (2.2)

где Δ , T — точность работы системы управления и время ее настройки соответственно, $x_m(t)$ — эталонный сигнал, генерируемый моделью (1.2). Предполагается, что параметры Δ и T можно изменять в соответствии с требованиями, предъявляемыми к системе.

Рассмотрим возможность использования в качестве решения сформулированной задачи регулятор (1.6) и (1.9). Построим модель ошибки $\varepsilon = x_m - x$:

$$\dot{\varepsilon} = -\lambda \,\varepsilon - \widetilde{\theta} \,x - \delta. \tag{2.3}$$

Далее проведем анализ устойчивости замкнутой системы с помощью функции Ляпунова (1.8). Учитывая последнее выражение и алгоритм адаптации (1.9), для производной функции Ляпунова получим:

$$\begin{split} \dot{V} &= \frac{1}{2} 2 \varepsilon \dot{\varepsilon} + \frac{1}{2 \gamma} 2 \widetilde{\theta} \dot{\widetilde{\theta}} = \varepsilon \left(-\lambda \varepsilon - \widetilde{\theta} x - \delta \right) - \frac{1}{\gamma} \widetilde{\theta} \dot{\widetilde{\theta}} = -\lambda \varepsilon^2 - \widetilde{\theta} x \varepsilon - \delta \varepsilon + \widetilde{\theta} \frac{1}{\gamma} \gamma x \varepsilon = \\ &= -\lambda \varepsilon^2 - \delta \varepsilon = -\frac{\lambda}{2} \varepsilon^2 - \frac{\lambda}{2} \varepsilon^2 - \delta \varepsilon \pm \frac{1}{2 \lambda} \delta^2 = -\frac{\lambda}{2} \varepsilon^2 - \left(\sqrt{\frac{\lambda}{2}} \varepsilon + \sqrt{\frac{1}{2 \lambda}} \delta \right)^2 + \frac{1}{2 \lambda} \delta^2 \leq \\ &\leq -\frac{\lambda}{2} \varepsilon^2 + \frac{1}{2 \lambda} \delta^2 \leq -\frac{\lambda}{2} \varepsilon^2 + \frac{1}{2 \lambda} \overline{\delta}^2. \end{split}$$

Из полученного неравенства следует асимптотическое стремление ошибки ε к некоторому ограниченному множеству, определяемому верхней границей сигнала возмущения δ и параметром δ . При этом точность системы управления может быть увеличена путем увеличения δ . Однако из приведенного анализа не следует ограниченности сигнала $\hat{\theta}$. Если продолжить анализ и рассмотреть частный случай, когда переменная δ и ошибка δ стремятся к ненулевым постоянным значениям ввиду влияния возмущения, то

$$\dot{\hat{\theta}} = -\gamma x_{vcm} \varepsilon_{vcm} = C = const,$$

откуда следует, что

$$\hat{\theta} = Ct$$
,

и неограниченный рост оценки $\hat{\theta}$ с течением времени. Данное явление получило название неограниченного параметрического дрейфа.

Таким образом, представленный регулятор (1.6) и (1.9) в общем случае не обеспечивает ограниченность всех сигналов и не является робастным по отношению к внешнему возмущению.

Предложенный подход не является практически применимым и требует модификации алгоритма управления. Рассмотрим два возможных решения.

Решение № 1. Представим модификацию алгоритма (1.9) в форме

$$\hat{\theta} = -\gamma x \varepsilon. \tag{2.4}$$

Подставляя (2.4) в (1.6), получаем алгоритм управления

$$u = \gamma x^2 \varepsilon - \lambda x + \lambda g . \tag{2.5}$$

Данный алгоритм является статическим, так как не содержит интегральной обратной связи, и нелинейным, так как содержит член $\gamma x^2 \epsilon$.

Покажем, что предложенный алгоритм управления (2.5) гарантирует ограниченность сигналов ϵ и $\hat{\theta}$. Для этого выберем функцию Ляпунова

$$V = \frac{1}{2}\varepsilon^2 \tag{2.6}$$

и рассчитаем ее производную. Учитывая (2.5) и модель ошибки (2.3), проведем алгебраические преобразования:

$$\begin{split} \dot{V} &= \frac{1}{2} 2 \varepsilon \dot{\varepsilon} = -\lambda \, \varepsilon^2 - \widetilde{\theta} \, x \varepsilon - \delta \varepsilon = -\frac{\lambda}{2} \, \varepsilon^2 - \frac{\lambda}{2} \, \varepsilon^2 - \left(\theta - \hat{\theta}\right) x \varepsilon - \delta \varepsilon = \\ &= -\frac{\lambda}{2} \, \varepsilon^2 - \frac{\lambda}{2} \, \varepsilon^2 - \delta \varepsilon \pm \frac{1}{\lambda} \, \delta^2 - \left(\theta + \gamma x \varepsilon\right) x \varepsilon = \\ &= -\frac{\lambda}{2} \, \varepsilon^2 - \left(\sqrt{\frac{\lambda}{2}} \, \varepsilon + \sqrt{\frac{1}{2\lambda}} \, \delta\right)^2 + \frac{1}{2\lambda} \, \delta^2 \, \pm \frac{\theta^2}{4\gamma} - \theta x \varepsilon - \gamma x^2 \varepsilon^2 = \\ &= -\frac{\lambda}{2} \, \varepsilon^2 - \left(\sqrt{\frac{\lambda}{2}} \, \varepsilon + \sqrt{\frac{1}{2\lambda}} \, \delta\right)^2 + \frac{1}{2\lambda} \, \delta^2 \, - \left(\frac{\theta}{2\sqrt{\gamma}} + \sqrt{\gamma} x \varepsilon\right)^2 + \frac{\theta^2}{4\gamma} \le \\ &\leq -\frac{\lambda}{2} \, \varepsilon^2 + \frac{1}{2\lambda} \, \overline{\delta}^2 + \frac{\theta^2}{4\gamma} = -\lambda V + \frac{1}{2\lambda} \, \overline{\delta}^2 + \frac{\theta^2}{4\gamma} = -\lambda V + \overline{\Delta}, \end{split}$$

где $\overline{\Delta} = \overline{\delta}^2 / 2\lambda + \theta^2 / 4\gamma$ — постоянная величина. Решая полученное дифференциальное неравенство, получаем:

$$V(\varepsilon(t)) \le e^{-\lambda t} V(0) + \frac{\overline{\Delta}}{\lambda} - \frac{\overline{\Delta}}{\lambda} e^{-\lambda t},$$

откуда с учетом (2.6) следует, что

$$\frac{1}{2}\varepsilon^{2} \leq e^{-\lambda t}V(0) + \frac{\overline{\Delta}}{\lambda} - \frac{\overline{\Delta}}{\lambda}e^{-\lambda t}$$

или

$$\left| \varepsilon(t) \right| \le \sqrt{2 \left(e^{-\lambda t} V(0) + \frac{\overline{\Delta}}{\lambda} - \frac{\overline{\Delta}}{\lambda} e^{-\lambda t} \right)}.$$
 (2.7)

Из последнего неравенства следует экспоненциальная сходимость ошибки управления ϵ к ограниченному множеству с границей $\Delta = \sqrt{2\overline{\Delta}/\lambda}$. уменьшить величину Δ онжом путем При ЭТОМ увеличения γ . Как следствие, величина $\hat{\theta}$ коэффициентов λ И становится ограниченной.

Таким образом, алгоритм управления (2.5) обеспечивает устойчивость в замкнутой системе и является робастным по отношению к внешнему возмущению. В то же время этот алгоритм имеет следующие недостатки:

- даже при отсутствии возмущения установившаяся ошибка $\varepsilon(t)$ может быть отлична от нуля, что видно из неравенства (2.7);
- управление пропорционально величине x^2 . Следовательно, при росте x амплитуда управления возрастает квадратично, в связи с чем практическая применимость такого закона (1.6) имеет существенные ограничения.

Рассмотрим решение, лишенное недостатков алгоритмов (1.6), (1.9) и (1.6), (2.4) за счет наделения нового алгоритма управления адаптивными и робастными свойствами.

Решение № 2. Рассмотрим совместно с настраиваемым регулятором (1.6) алгоритм адаптации, параметрический дрейф в котором ограничивается обратной связью по величине настраиваемого параметра:

$$\dot{\hat{\theta}} = -\sigma \hat{\theta} - \gamma x \varepsilon \,, \tag{2.8}$$

где σ — постоянная положительная величина.

Проведем анализ устойчивости замкнутой системы, представленной объектом (2.1), регулятором (1.6) и алгоритмов адаптации (2.8) с помощью функции Ляпунова (1.8). Возьмем производную от функции и проведем ряд преобразований:

$$\begin{split} \dot{V} &= \frac{1}{2} 2\varepsilon \dot{\varepsilon} + \frac{1}{2\gamma} 2\widetilde{\theta} \dot{\widetilde{\theta}} = \varepsilon \left(-\lambda \varepsilon - \widetilde{\theta} x - \delta \right) - \frac{1}{\gamma} \widetilde{\theta} \dot{\widetilde{\theta}} = -\lambda \varepsilon^2 - \widetilde{\theta} x \varepsilon - \delta \varepsilon - \frac{\widetilde{\theta}}{\gamma} \left(-\sigma \hat{\theta} - \gamma x \varepsilon \right) = \\ &= -\lambda \varepsilon^2 - \delta \varepsilon + \frac{\sigma}{\gamma} \widetilde{\theta} \dot{\theta} = -\lambda \varepsilon^2 - \delta \varepsilon + \frac{\sigma}{\gamma} \widetilde{\theta} \left(-\widetilde{\theta} + \theta \right) = -\lambda \varepsilon^2 - \delta \varepsilon - \frac{\sigma}{\gamma} \widetilde{\theta}^2 + \frac{\sigma}{\gamma} \widetilde{\theta} \theta = \\ &= -\frac{\lambda}{2} \varepsilon^2 - \frac{\lambda}{2} \varepsilon^2 - \delta \varepsilon \pm \frac{1}{2\lambda} \delta^2 - \frac{\sigma}{2\gamma} \widetilde{\theta}^2 - \frac{\sigma}{2\gamma} \widetilde{\theta}^2 + \frac{\sigma}{\gamma} \widetilde{\theta} \theta \pm \frac{\sigma}{2\gamma} \theta^2 = \\ &= -\frac{\lambda}{2} \varepsilon^2 - \frac{\sigma}{2\gamma} \widetilde{\theta}^2 - \left(\sqrt{\frac{\lambda}{2}} \varepsilon + \sqrt{\frac{1}{2\lambda}} \delta \right)^2 - \frac{\sigma}{\gamma} \left(\sqrt{\frac{1}{2}} \widetilde{\theta} + \sqrt{\frac{1}{2}} \theta \right)^2 + \frac{1}{2\lambda} \delta^2 + \frac{\sigma}{2\gamma} \theta^2 \leq \\ &\leq -\frac{\lambda}{2} \varepsilon^2 - \frac{\sigma}{2\gamma} \widetilde{\theta}^2 + \frac{1}{2\lambda} \delta^2 + \frac{\sigma}{2\gamma} \theta^2 \leq -\frac{\lambda}{2} \varepsilon^2 - \frac{\sigma}{2\gamma} \widetilde{\theta}^2 + \frac{1}{2\lambda} \overline{\delta}^2 + \frac{\sigma}{2\gamma} \theta^2. \end{split}$$

Введем обозначение $\kappa = \min \{ \lambda, \sigma \}$. Тогда, считая λ, σ положительными, имеем:

$$\dot{V} \leq -\kappa \left(\frac{1}{2}\varepsilon^2 - \frac{1}{2\gamma}\tilde{\theta}^2\right) + \frac{1}{2\lambda}\bar{\delta}^2 + \frac{\sigma}{2\gamma}\theta^2$$

или

$$\dot{V} \leq -\kappa V + \overline{\Delta}$$
,

где $\overline{\Delta} = \overline{\delta}^2/2\lambda + \sigma\theta^2/2\gamma$ — постоянная величина. Далее, решая данное дифференциальное неравенство, получаем:

$$V(\varepsilon(t)) \leq e^{-\kappa t}V(0) + \frac{\overline{\Delta}}{\kappa} - \frac{\overline{\Delta}}{\kappa}e^{-\kappa t},$$

откуда следует, что

$$\left| \varepsilon(t) \right| \leq \sqrt{2 \left(e^{-\kappa t} V(0) + \frac{\overline{\Delta}}{\kappa} - \frac{\overline{\Delta}}{\kappa} e^{-\kappa t} \right)}.$$

Из последнего неравенства следует экспоненциальная сходимость ошибки управления к ограниченному множеству с границей $\Delta = \sqrt{2\overline{\Delta}/\kappa}$.

Алгоритм управления (1.6), основанный на алгоритме адаптации (2.8), также обеспечивает устойчивость замкнутой системы и является робастным по отношению к внешнему возмущению. В то же время алгоритм (1.6), (2.8) позволяет парировать недостатки робастного алгоритма управления (2.5). Так, при отсутствии внешнего возмущения или при его несущественном влиянии верхняя граница $\overline{\Delta}$ может быть снижена до нуля за счет обнуления коэффициента σ (т.н. гибридная σ -модификация). Кроме того, для уменьшения Δ нет необходимости в значительном увеличении γ , которое влечет за собой рост амплитуды управляющего воздействия. Снижение Δ можно обеспечить путем уменьшения коэффициента σ .

Порядок выполнения работы

1. На основе данных, приведенных в Таблице 1.1, провести моделирование адаптивной системы управления, полученной в Работе №1, в условиях действия на объект возмущения вида [12]

$$\delta(t) = (1+t)^{-1/8} \left[1 - \theta(1+t)^{-1/4} - \frac{3}{8} (1+t)^{-5/4} \right].$$

При моделировании использовать следующие значения параметров: $\gamma=0.25,\ x(0)=1$ и $\hat{\theta}(0)=1$. Сигнал задания g(t) принять равным нулю. По результатам моделирования построить три графика. На первом вывести x(t) и $x_m(t)$, на втором — u(t), на третьем — $\tilde{\theta}(t)=\theta-\hat{\theta}(t)$. Время моделирования выбрать 1000 с.

2. Заменить алгоритм адаптации (1.9) на статическую обратную связь (2.4) и провести эксперимент для трех различных значений коэффициента γ и отличного от нуля сигнала задания g(t) из Таблицы 1.1. Определить влияние этого коэффициента на свойства системы. По результатам

моделирования для каждого γ построить два графика. На первом вывести x и x_m , на втором — u.

3. Заменить алгоритм адаптации (1.9) на робастную σ -модификацию (2.8). Повторить эксперимент для трех различных значений коэффициента σ . Сигнал задания g(t) выбрать из Таблицы 1.1 согласно варианту. Определить влияние этого коэффициента на свойства системы. По результатам моделирования для каждого σ построить два графика. На первом вывести x и x_m , на втором — u.

Задачи и вопросы

- 1. Показать, что приведенные в работе алгоритмы робастного управления обеспечивают устойчивость замкнутых систем при незначительных отклонениях параметра θ .
- 2. Является ли асимптотически устойчивая система грубой по отношению к внешним возмущениям? Ответ пояснить.
- 3. Является ли экспоненциально устойчивая система грубой по отношению к внешним возмущениям? Ответ пояснить.
- 4. Следует ли из роста параметра σ в алгоритме (2.8) рост максимальной установившейся ошибки управления ε? Ответ пояснить.
- 5. Следует ли из роста параметра γ в алгоритме (2.8) снижение максимальной установившейся ошибки управления ε? Ответ пояснить.
 - 6. Решить задачу робастного управления для объекта вида

$$\dot{x} = x^4 + \theta x + u,$$

- где θ неизвестный параметр. Цель управления заключается в построении закона управления, обеспечивающего выполнение неравенства (2.2).
- 7. Доказать устойчивость робастной системы управления, включающей объект (2.1), регулятор (1.6) и нелинейную обратную связь вида

$$\hat{\theta} = -\gamma x sign(\varepsilon),$$

где ү — положительный параметр.

8. Доказать устойчивость робастной системы управления, включающей объект (2.1), регулятор (1.6) и модифицированный алгоритм адаптации вида

$$\dot{\hat{\theta}} = -\sigma \hat{\theta} - \gamma x sign(\varepsilon),$$

где γ , σ — положительные параметры.

9. Решить задачу робастного управления объектом вида

$$\dot{x} = \theta (x^2 + 1) + u + \delta,$$

где θ — неизвестный параметр, δ — ограниченное возмущение, удовлетворяющее неравенству $|\delta(t)| \leq \overline{\delta}$. Цель управления заключается в построении закона управления, обеспечивающего выполнение неравенства (2.2).

10. Решить задачу робастного управления для объекта вида

$$\dot{x} = \theta \sin(x) + u + \delta,$$

где θ — неизвестный параметр, δ — ограниченное возмущение, удовлетворяющее неравенству $|\delta(t)| \leq \overline{\delta}$. Цель управления заключается в построении закона управления, обеспечивающего выполнение неравенства (2.2).

Задачи и вопросы повышенной сложности

1. Решить задачу робастного управления для объекта вида

$$\dot{x} = \theta \left(x^2 + 1 \right) u ,$$

где $\theta \ge \theta_0 > 0$ — неизвестный параметр. Цель задачи заключается в построении закона управления, обеспечивающего выполнение неравенства (2.2), в котором $x_m(t) = 0$.

2. Решить задачу робастного управления для объекта вида

$$\dot{x} = \theta_1 x + \theta_2 \frac{x}{1 + x^2} + u + \delta,$$

где θ_1 , θ_2 — неизвестные параметры, δ — ограниченное возмущение, удовлетворяющее неравенству $|\delta(t)| \leq \overline{\delta}$. Цель управления заключается в построении закона управления, обеспечивающего выполнение неравенства (2.2).

3. Система стабилизации описывается следующими уравнениями:

$$\dot{x} = \theta x + u + \delta,$$

$$u = -\hat{\theta}x,$$

$$\dot{\hat{\theta}} = \gamma x^{2},$$

где θ — неизвестный параметр, δ — ограниченное возмущение, $\hat{\theta}$ — настраиваемый параметр регулятора. Проанализировать устойчивость

замкнутой системы и ее робастность по отношению к внешнему возмущению.

4. Решить предыдущую задачу для случая, когда $\hat{\theta}$ генерируется нелинейной обратной связью вида

$$\hat{\theta} = \gamma x^2$$
.

5. Решить задачу робастного управления для объекта вида

$$\dot{x} = \theta_1 x + u + \theta_2 \sin t + \delta,$$

где θ_1 , θ_2 — неизвестные параметры, δ — ограниченное возмущение, удовлетворяющее неравенству $|\delta(t)| \leq \overline{\delta}$. Цель управления заключается в построении закона управления, обеспечивающего выполнение неравенства (2.2).

Работа № 3. АДАПТИВНОЕ УПРАВЛЕНИЕ ЛИНЕЙНЫМ МНОГОМЕРНЫМ ОБЪЕКТОМ ПО СОСТОЯНИЮ

Цель работы: освоение принципов построения адаптивной системы управления многомерным объектом.

Методические рекомендации. До начала работы студенты должны ознакомиться с принципом построения алгоритмов адаптации на основе стандартной модели ошибки с измеряемым состоянием [2, 20].

Теоретические сведения. Рассмотрим задачу адаптивного управления многомерным объектом с использованием эталонной модели. При этом воспользуемся принципами решения аналогичной задачи для объекта первого порядка (см. Работу №1).

Постановка задачи. Дан объект

$$\dot{x} = Ax + bu, \qquad x(0) \tag{3.1}$$

$$y = C x, (3.2)$$

где $x \in \mathbb{R}^n$ — вектор состояния, u — управление, $y \in \mathbb{R}$ — регулируемая переменная,

$$A = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_0 & -a_1 & -a_2 & \cdots & -a_{n-1} \end{bmatrix}, b = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ b_0 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \end{bmatrix},$$

 a_i , $i = \overline{0, n-1}$ — неизвестные параметры, b_0 — известный коэффициент.

Задача управления заключается в компенсации параметрической неопределенности объекта и обеспечении следующего целевого равенства:

$$\lim_{t \to \infty} ||x_M(t) - x(t)|| = \lim_{t \to \infty} ||e(t)|| = 0,$$
 (3.3)

где $e = x_M - x$ — вектор ошибки управления, $x_M \in \mathbb{R}^n$ — вектор, генерируемый эталонной моделью

$$\dot{x}_M = A_M \ x_M + b_M g \,, \tag{3.4}$$

$$y_M = C_M x_M \tag{3.5}$$

с задающим воздействием g(t) и матрицами

$$A_{M} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_{M0} & -a_{M1} & -a_{M2} & \cdots & -a_{Mn-1} \end{bmatrix}, b_{M} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ a_{M0} \end{bmatrix},$$

$$C_{M} = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \end{bmatrix}.$$

Параметры эталонной модели $a_{M\,i},\,i=\overline{1,n-1}$ строятся на основе метода стандартных характеристических полиномов [4, 5] для обеспечения желаемого качества воспроизведения задающего воздействия g(t). Другими словами, модель (3.4), (3.5) определяет желаемое качество замкнутой системы после завершения процессов настройки адаптивного управления.

Отметим, что в задаче класс объектов (3.1), (3.2) ограничен следующим допущением.

Допущение (Условие согласования). Для некоторого n - мерного вектора θ и скаляра к матрицы A , b , A_M и b_M связаны соотношениями

$$A_M = A + b\theta^T, \qquad b = \kappa b_M. \tag{3.6}$$

Решение задачи. Предполагая параметры объекта известными, синтезируем регулятор, который обеспечит условие (3.3) с заданными динамическими показателями качества — временем переходного процесса t_n и перерегулированием $\bar{\sigma}$.

Для синтеза регулятора сформируем ошибку слежения $e = x_M - x$, рассчитаем ее производную в силу (3.1), (3.4) и условия (3.6):

$$\dot{e} = \dot{x}_M - \dot{x} = A_M x_M + b_M g - Ax - bu =$$

$$= \underline{A_M x_M} + \frac{1}{\kappa} \underline{b} g - (\underline{A_M} - \underline{b} \theta^T) x - \underline{b} u = A_M e + b \left(\theta^T x - u + \frac{1}{\kappa} g \right), \tag{3.7}$$

где $\theta^T = [\theta_1, \theta_2, ..., \theta_n]$ — вектор постоянных параметров, определяемый параметрическими рассогласованиями между матрицами A и A_M ,

$$\theta_1 = \frac{-a_{M0} + a_0}{b_0}$$
, $\theta_2 = \frac{-a_{M1} + a_1}{b_0}$, ..., $\theta_n = \frac{-a_{Mn-1} + a_{n-1}}{b_0}$, $\kappa = \frac{b_0}{a_{M0}}$

— коэффициенты, рассчитываемые из условия (3.6).

Выражение (3.7) сводится к виду

$$\dot{e} = A_M e + b \left(\theta^T x - u + \frac{1}{\kappa} g \right), \tag{3.8}$$

позволяющему синтезировать управление

$$u = \theta^T x + \frac{1}{\kappa} g. ag{3.9}$$

После подстановки (3.9) в (3.8) получаем закон экспоненциальной сходимости ошибки управления неадаптивной системы:

$$\dot{e} = A_M e$$
.

Однако в исходной постановке задачи параметры матрицы A неизвестны. Следовательно, закон (3.9) физически нереализуем. Так как параметры a_i неизвестны, то вектор θ также неизвестен. Заменим в (3.9) этот вектор на оценку $\hat{\theta}$ и получим настраиваемый закон управления:

$$u = \hat{\Theta}^T x + \frac{1}{\kappa} g. \tag{3.10}$$

Подставим последнее выражение в (3.8) и получим модель ошибок

$$\dot{e} = A_M e + b \, \widetilde{\Theta}^T x, \tag{3.11}$$

где $\tilde{\theta} = \theta - \hat{\theta}$ — вектор параметрических ошибок.

Расширяя подход, приведенный в Работе №1, на многомерный случай, выберем функцию Ляпунова

$$V = \frac{1}{2}e^{T}Pe + \frac{1}{2\gamma}\widetilde{\Theta}^{T}\widetilde{\Theta},$$

где $P = P^T \succ 0$ — положительно определенная симметричная матрица, удовлетворяющая уравнению Ляпунова

$$A_M^T P + P A_M = -Q (3.12)$$

с произвольно выбранной симметричной положительно определенной матрицей Q. Далее, вычисляя производную функции Ляпунова в силу модели ошибок (3.11), получаем:

$$\dot{V} = -\frac{1}{2}e^{T}Qe + \tilde{\theta}^{T}xb^{T}Pe + \frac{1}{\gamma}\tilde{\theta}^{T}\dot{\tilde{\theta}}.$$

Из анализа последнего выражения видно, что если алгоритм адаптации выбрать в виде

$$\dot{\hat{\theta}} = \gamma x b^T P e , \qquad \hat{\theta}(0) = 0$$
 (3.13)

то производная функции Ляпунова будет удовлетворять неравенству

$$\dot{V} = -\frac{1}{2}e^T Q e \leq 0,$$

откуда следует выполнение целевого условия (3.3).

Отметим, что в выражении (3.13) коэффициент $\gamma > 0$ носит название коэффициента адаптации, и его величина определяет скорость настройки коэффициентов регулятора (3.10).

Таким образом, алгоритм адаптивного управления состоит из настраиваемого регулятора (3.10), алгоритма адаптации (3.13), в котором матрица P находится из (3.12).

Адаптивный регулятор (3.10), (3.13) для любых начальных условий x(0), $\hat{\theta}(0)$ и ограниченного g обеспечивает [20]:

- С.1. ограниченность всех сигналов в замкнутой системе;
- C.2. асимптотическое стремление ошибки e к нулю;
- С.3. ограниченность сигнала $\hat{\theta}$. Вектор $\hat{\theta}$ экспоненциально стремится к θ , если вектор x удовлетворяет условию неисчезающего возбуждения:

$$\int_{t}^{t+T} x(\tau)x^{T}(\tau)d\tau > \alpha I, \qquad (3.14)$$

где $\alpha > 0$, T > 0 — постоянные величины.

Условие (3.14) эквивалентно условию наличия не менее (n+1)/2 гармоник (спектральных линий) в векторе x. Отметим, что в рамках решаемой задачи слежения характер поведения регрессора x целиком определяется характером задающего воздействия g. Поэтому условие неисчезающего возбуждения может быть переформулировано в терминах сигнала g;

С.4. если вектор x удовлетворяет условию (3.14), то существует оптимальное значение коэффициента γ , при котором скорость сходимости параметрических ошибок $\widetilde{\theta}$ к нулю максимальна.

Порядок выполнения работы

- 1. На основе заданных в Таблице 3.1 значений времени переходного процесса t_n и максимального перерегулирования $\bar{\sigma}$ сформировать эталонную модель в форме (3.4), (3.5). Построить график переходной функции модели, на котором показать время переходного процесса t_n и перерегулирование $\bar{\sigma}$;
- 2. На основе предположения, что параметры объекта известны, построить и промоделировать систему управления с регулятором (3.9). Провести три эксперимента, в которых:
- использовать расчетные значения параметров объекта, заложенные в θ_1 и θ_2 ;
- незначительно отклонить параметры объекта так, чтобы система не потеряла устойчивость;
- отклонить параметры объекта так, чтобы система потеряла устойчивость.

По результатам каждого эксперимента построить траектории x(t) и $x_M(t)$ на одном графике и e(t) — на другом.

- 3. Провести моделирование адаптивной системы управления с регулятором (3.10) и алгоритмом адаптации (3.13). В ходе моделирования проиллюстрировать свойства 1-4 алгоритма управления. Для этого необходимо:
- повторить три эксперимента п.п. 2 для фиксированного значения γ ;
- используя расчетные значения параметров объекта, провести эксперимент с тремя различными значениями γ ;
- провести один из предыдущих экспериментов данного пункта при g(t) = 1.

По результатам каждого эксперимента построить траектории x(t) и $x_M(t)$ на одном графике, e(t) — на втором, $\widetilde{\theta} = \theta - \hat{\theta}$ — на третьем.

4. Сделать выводы по каждому пункту работы.

Таблица 3.1. Варианты заданий

	аолица 5.	1. Вариант	ы задании	3.6	
Bap.	Матрица <i>А</i>	Коэфф. передачи b_0	Время переходного процесса, t_n	Максимальное перерегулирование $\bar{\sigma}$, %	Сигнал задания $g(t)$
1	$\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$	1	0,16	0	$3sign(\cos 0, 2t) + 3$
2	$\begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$	2	0,3	0	$sign(\sin 0,5t) + 2$
3	$\begin{bmatrix} 0 & 1 \\ 4 & 0 \end{bmatrix}$	3	0,9	0	$0,8\sin 2t + \cos 0,8t + 2$
4	$\begin{bmatrix} 0 & 1 \\ 1 & 4 \end{bmatrix}$	4	0,2	0	$sign(\sin 0,3t)+1,5$
5	$\begin{bmatrix} 0 & 1 \\ -2 & 5 \end{bmatrix}$	5	0,6	0	$7sign(\cos 0,9t) + 8$
6	$\begin{bmatrix} 0 & 1 \\ 9 & -1 \end{bmatrix}$	6	0,3	0	$0, 4\sin 3t + \cos 0, 1t + 1.5$
7	$\begin{bmatrix} 0 & 1 \\ -2 & 3 \end{bmatrix}$	7	0,7	0	$6sign(\sin 0,1t) + 9$
8	$\begin{bmatrix} 0 & 1 \\ 2 & 2 \end{bmatrix}$	8	0,1	0	$2sign(\sin t) + 4$
9	$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$	9	0,9	0	$9\sin 0, 2t + 9\cos 0, 1t + 15$
10	$\begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix}$	1	3,5	<15	$4sign(\sin 6t) + 5$
11	$\begin{bmatrix} 0 & 1 \\ -1 & 6 \end{bmatrix}$	2	0,6	<15	$4sign(\cos t) + 3$
12	$\begin{bmatrix} 0 & 1 \\ 10 & 1 \end{bmatrix}$	3	0,9	<15	$\sin 0, 1t + \cos 5t + 2$
13	$\begin{bmatrix} 0 & 1 \\ -1 & 5 \end{bmatrix}$	4	0,4	<15	$9sign(\sin 0,1t)+12$
14	$\begin{bmatrix} 0 & 1 \\ 9 & 0 \end{bmatrix}$	5	0,2	<15	$3sign(\sin 4t) + 8$
15	$\begin{bmatrix} 0 & 1 \\ -9 & 1 \end{bmatrix}$	6	0,5	<15	$7\sin 0, 3t + 8\cos t + 20$
16	$\begin{bmatrix} 0 & 1 \\ -7 & 6 \end{bmatrix}$	7	0,5	<15	$2sign(\cos t) + 3$
17	$\begin{bmatrix} 0 & 1 \\ -1 & 7 \end{bmatrix}$	8	0,45	<15	$\cos t + 3\sin 2t + 5$

18	$\begin{bmatrix} 0 & 1 \\ -10 & 6 \end{bmatrix}$	9	0,15	<15	sign(cos 2t)
19	$\begin{bmatrix} 0 & 1 \\ 2 & 2 \end{bmatrix}$	1	0,7	<15	$sign(\sin 0,5t)+2$
20	$\begin{bmatrix} 0 & 1 \\ -15 & 6 \end{bmatrix}$	2	1,2	0	$10\cos 0, 5t + 2\sin t + 12$
21	$\begin{bmatrix} 0 & 1 \\ 11 & 1 \end{bmatrix}$	3	1,5	0	$sign(\sin 0,5t)+3$
22	$\begin{bmatrix} 0 & 1 \\ 3 & 3 \end{bmatrix}$	4	0,8	0	$0.5sign(\sin 0.7t) + 1$
23	$\begin{bmatrix} 0 & 1 \\ 12 & 6 \end{bmatrix}$	5	0,9	0	$5\sin 0, 5t + 4\cos 0, 1t + 8$
24	$\begin{bmatrix} 0 & 1 \\ 0 & 11 \end{bmatrix}$	6	0,2	0	$sign(\cos t) + 3$
25	$\begin{bmatrix} 0 & 1 \\ 13 & 2 \end{bmatrix}$	7	0,5	0	$sign(\sin 2t)$
26	$\begin{bmatrix} 0 & 1 \\ 15 & 6 \end{bmatrix}$	8	0,9	0	$\sin 5t + 0,5\cos 0,2t + 2$
27	$\begin{bmatrix} 0 & 1 \\ 13 & -1 \end{bmatrix}$	9	1,3	0	$2sign(\sin 0,4t)+3$
28	$\begin{bmatrix} 0 & 1 \\ 4 & 4 \end{bmatrix}$	1	1,6	0	$3sign(\sin 0,5t) + 3$
29	$\begin{bmatrix} 0 & 1 \\ 9 & 7 \end{bmatrix}$	2	0,75	15	$2\sin 0, 2t + \sin 0, 1t + 8$
30	$\begin{bmatrix} 0 & 1 \\ -1 & 9 \end{bmatrix}$	3	0,65	15	$4sign(\cos 2t) + 5$

Задачи и вопросы

- 1. Выполняется ли условие (3.14) в задаче адаптивного управления скалярным объектом, решаемой в Работе №1 при g(t) = 1?
- 2. Может ли решением уравнения Ляпунова (3.12) являться отрицательно определенная матрица P? Ответ пояснить.
- 3. Может ли решением уравнения Ляпунова (3.12) являться диагональная матрица P? Ответ пояснить.
 - 4. При каких у адаптивная система может быть неустойчива?
- 5. Привести пример скалярной функции x(t), не удовлетворяющей условию (3.14).
 - 6. Решить задачу адаптивной стабилизации для объекта вида

$$\dot{x}_1 = x_2,$$

 $\dot{x}_2 = \theta_1 x_1 + \theta_2 x_1^3 + u,$

где $\theta_1=2$, $\theta_2=5$ — неизвестные коэффициенты. Задать неадаптивной системе нулевое перерегулирование и время переходного процесса $t_n=1c$.

7. Решить задачу адаптивного управления для объекта

$$\dot{x}_1 = x_2,$$

 $\dot{x}_2 = \theta_1 x_1 x_2 + \theta_2 (x_1^2 + 1) + u,$

где θ_1 , θ_2 — неизвестные коэффициенты. Цель управления задается равенством (3.3). Задать неадаптивной системе нулевое перерегулирование и время переходного процесса $t_n = 1c$. В качестве сигнала задания использовать $g = 2sign(\sin t) + 1$.

8. Решить задачу адаптивного управления для объекта вида

$$\dot{x}_1 = x_2,$$

$$\dot{x}_2 = \theta x_1 + u,$$

где θ — неизвестный коэффициент. Цель управления задается равенством (3.3).

9. Решить задачу адаптивного управления для объекта вида

$$\dot{x}_1 = 3x_2,$$

 $\dot{x}_2 = \theta_1 x_1 + \theta_2 x_2 + u,$

где $\theta_1 = 1$, $\theta_2 = 2$ — неизвестные коэффициенты. Цель управления задается равенством (3.3). Задать неадаптивной системе нулевое перерегулирование и время переходного процесса $t_n = 1c$. В качестве сигнала задания использовать $g = 3sign(\sin 2t) + 2$.

10. Решить задачу адаптивного управления для объекта вида

$$\dot{x}_1 = x_2,$$

 $\dot{x}_2 = \theta_1 x_1 + \theta_2 x_2 + \theta_3 u,$

где θ_1 , θ_2 , $\theta_3 \ge \theta_{03} > 0$ — неизвестные коэффициенты. Цель управления задается равенством (3.3).

Задачи и вопросы повышенной сложности

- 1. Обеспечивает ли представленный в работе алгоритм адаптивного управления цель (3.3) для объекта с переменными параметрами? Ответ пояснить.
- 2. Как бы изменился ход решения задачи, если бы в объекте (3.1) параметр b_0 был бы положителен и неизвестен? Решить задачу адаптивного управления для данного случая, модифицировав имеющееся решение.
 - 3. Удовлетворяет ли вектор

$$\omega(t) = \left[\sin t, \cos t + k \sin 2t\right]^T$$

условию (3.14) при k = 0 и k = 1? Ответ пояснить.

4. Удовлетворяет ли вектор

$$\omega(t) = \left[\sin\sqrt{t}\,,\,\cos\sqrt{t}\right]^T$$

условию (3.14)? Ответ пояснить.

5. Решить задачу адаптивного управления для объекта, представленного дискретной моделью вида 1

$$x_1(k+1) = x_2(k),$$

 $x_2(k+1) = \theta_1 x_1(k) + \theta_2 x_2(k) + u(k),$

где θ_1 , θ_2 — неизвестные коэффициенты, k — дискретное время. Цель управления задается следующим равенством:

$$\lim_{k\to\infty} (x_M(k) - x(k)) = \lim_{k\to\infty} (e(k)) = 0.$$

Вектор x_M генерируется эталонной моделью вида

$$x_M(k+1) = A_M x_M(k) + b_M g(k)$$

 $^{^{1}}$ При построении дискретной реализации алгоритма адаптации необходимо нормировать вектор измеряемых функций (регрессор) с целью предотвращения неограниченного роста оценок. Так, например, в модификации алгоритма (3.13) необходимо использовать $x/(1+x^Tx)$ вместо x.

с задающим воздействием g и матрицами

$$A_{M} = \begin{bmatrix} 0 & 1 \\ a_{M0} & a_{M1} \end{bmatrix}, b_{M} = \begin{bmatrix} 0 \\ 1 + a_{M1} + a_{M0} \end{bmatrix}.$$

Параметры эталонной модели $a_{M\,0},\,a_{M\,1}$ задаются, исходя из условия устойчивости эталонной модели и заданных динамических показателей качества.

Работа № 4. РОБАСТНОЕ УПРАВЛЕНИЕ ЛИНЕЙНЫМ МНОГОМЕРНЫМ ОБЪЕКТОМ ПО СОСТОЯНИЮ

Цель работы: освоение принципов построения робастной системы управления многомерным объектом на основе метода функций Ляпунова.

Методические рекомендации. До начала работы студенты должны ознакомиться с принципом построения алгоритмов робастного управления на основе стандартной модели ошибки с измеряемым состоянием.

Теоретические сведения. Рассмотрим задачу робастного управления многомерным объектом с использованием эталонной модели. При этом воспользуемся результатами решения аналогичной задачи для объекта первого порядка (см. Работу №2).

Постановка задачи. Дан возмущенный объект, модель которого описывается уравнениями вида

$$\dot{x} = Ax + bu + \delta, \quad x(0) \tag{4.1}$$

$$y = C x, (4.2)$$

где δ — вектор возмущающих воздействий, удовлетворяющий неравенству $\|\delta(t)\| \leq \overline{\delta}$. В модели $x \in R^n$ — вектор состояния, y — регулируемая переменная, матрицы A, b и C идентичны соответствующим матрицам объекта (3.1), (3.2).

Цель управления заключается в обеспечении целевого неравенства

$$||x_M(t) - x(t)|| \le \Delta, \ \forall t \ge T, \tag{4.3}$$

где Δ , T — точность работы системы управления и время ее настройки соответственно, $x_M(t) \in R^n$ — эталонный сигнал, генерируемый моделью (3.4), (3.5).

Приведем два решения поставленной задачи, основанных на алгоритмах робастного управления скалярным объектом (см. Работу №2) и разработанном в Работе №3 базовом алгоритме адаптивного управления.

Решение №1. Решение основано на законе управления (3.10) и модификации алгоритма (3.13), представленной в следующей статической форме:

$$\hat{\boldsymbol{\theta}} = \gamma x \boldsymbol{b}^T \boldsymbol{P} \boldsymbol{e} \,, \tag{4.4}$$

где $\gamma > 0$ — коэффициент нелинейной обратной связи, P — матрица, определяемая из решения (3.12), $e = x_M(t) - x(t)$ — ошибка управления.

Анализ замкнутой системы может быть проведен на основе модели ошибки (3.11) и функции Ляпунова вида

$$V = \frac{1}{2}e^T Pe. (4.5)$$

В результате анализа можно установить, что система управления, замкнутая алгоритмом робастного управления (3.10), (4.4), обладает свойствами, аналогичными свойствам алгоритма (1.6), (2.4) в системе управления скалярным объектом (2.1). Для любых начальных условий e(0) система обладает следующими свойствами:

- С1.1. ограниченность всех сигналов;
- С1.2. экспоненциальная сходимость нормы вектора ошибки e к ограниченной окрестности нулевого положения равновесия $e^* = 0$. При этом радиус окрестности можно уменьшить путем увеличения коэффициента γ ;
- С1.3. при отсутствии возмущения установившаяся ошибка e(t) отлична от нуля.

Заметим, что после подстановки (4.4) в (3.10) в законе управления появляется "сильная" обратная связь в виде члена x^Tx , которая позволяет исключить настройку регулятора и подавить влияние как неопределенности θ , так и возмущения δ .

Решение №2. Решение также основано на законе управления (3.10) и модификации алгоритма (3.13), представленной в виде

$$\dot{\hat{\boldsymbol{\theta}}} = -\sigma \hat{\boldsymbol{\theta}} + \gamma x b^T P e , \qquad (4.6)$$

где $\gamma > 0$ — коэффициент адаптации, $\sigma > 0$ — коэффициент параметрической обратной связи, P — матрица, определяемая из решения (3.12).

Анализ замкнутой системы может быть проведен на основе модели ошибки (3.11) и функции Ляпунова

$$V = \frac{1}{2}e^{T}Pe + \frac{1}{2\gamma}\tilde{\Theta}^{T}\tilde{\Theta},$$

где $\tilde{\theta} = \theta - \hat{\theta}$ — вектор параметрических ошибок.

В результате анализа можно установить, что система управления, замкнутая алгоритмом робастного управления (3.10), (4.6), обладает свойствами, аналогичными свойствам алгоритма (1.6), (2.7) в системе управления объектом первого порядка (2.1). Для любых начальных условий e(0) система обладает следующими свойствами:

С2.1. ограниченность всех сигналов;

- С2.2. экспоненциальная сходимость норм векторов ошибки e и $\tilde{\theta}$ к ограниченным окрестностям нулевых положений равновесия $e^* = 0$ и $\tilde{\theta}^* = 0$. Радиус окрестности можно уменьшить путем увеличения коэффициента γ и снижения параметра σ ;
- С2.3. в общем случае при отсутствии возмущения в установившемся режиме e и $\tilde{\theta}$ отличны от нулей, но при этом их максимальные значения могут быть уменьшено путем уменьшения σ .

Порядок выполнения работы

1. На основе результатов, полученных при выполнении работы №3, модифицировать алгоритм адаптации (3.13) и сформировать закон нелинейного робастного управления (3.10), (4.4) и закон адаптивного и робастного управления (3.10), (4.6). Построить в пакете Simulink модели соответствующих замкнутых систем управления, приняв в качестве возмущения следующую вектор-функцию:

$$\delta(t) = [0,6\sin 10t + 0,1\sin 50t, \quad 0,5\cos 12t + 0,2\sin 30t]^{T}.$$

2. Провести эксперименты с системой робастного управления, замкнутой алгоритмом (3.10), (4.4), для трех различных коэффициентов γ при отсутствии и наличии возмущения $\delta(t)$.

По результатам каждого эксперимента построить траектории x(t) и $x_M(t)$ на одном графике, e(t) — на другом.

3. Провести эксперименты с системой робастного управления, замкнутой алгоритмом (3.10), (4.6), для выбранного параметра σ и двух различных коэффициентов γ , принятых в п.п.2, при отсутствии и наличии возмущения $\delta(t)$. Далее уменьшить параметр σ и повторить предыдущий эксперимент (при отсутствии и наличии возмущения $\delta(t)$) для одного из выбранных коэффициентов γ .

По результатам каждого эксперимента построить траектории x(t) и $x_M(t)$ на одном графике, e(t) — на втором и $\widetilde{\theta}(t)$ — на третьем.

4. Сделать выводы по каждому пункту работы.

Задачи и вопросы

- 1. Доказать свойство экспоненциальной сходимости ошибки управления к ограниченному множеству для замкнутой системы с управлением (3.10) и нелинейной обратной связью (4.4).
- 2. Доказать свойство экспоненциальной сходимости ошибки управления к ограниченному множеству для замкнутой системы с управлением (3.10) и алгоритмом адаптации (4.6).
- 3. С какой целью в алгоритм (4.6) добавляется параметрическая обратная связь с коэффициентом σ ?
- 4. Будет ли равна нулю ошибка управления в алгоритмах робастного управления (3.10), (4.4) и (3.10), (4.6) при отсутствии возмущений? Ответ пояснить.
- 5. Как изменится гарантированный радиус окрестности, в которую попадет норма ошибки $\|x_M(t) x(t)\|$ при использовании в системе управления алгоритма (4.6) и одновременном двукратном увеличении коэффициентов γ и σ ?
- 6. Будет ли устойчива система робастного управления с регулятором (3.10) и нелинейной обратной связью (4.4), если коэффициент γ положителен, матрица A_{M} гурвицева и задана в канонической управляемой форме, а матрица P имеет одно из следующих значений:

a)
$$P = \begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix}$$
; 6) $P = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$; B) $P = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$; $P = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$?

7. Решить задачу робастного управления для маятника, представленного моделью вида

$$\dot{x}_1 = x_2,$$

 $\dot{x}_2 = \theta_1 \sin(x_1) + \theta_2 x_2 + u + \delta,$

где $\theta_1,\ \theta_2$ — неизвестные параметры, δ — ограниченное возмущение, удовлетворяющее неравенству $|\delta(t)| \leq \overline{\delta}$. Цель управления заключается в построении закона управления, обеспечивающего выполнение неравенства (4.3).

8. Решить задачу робастного управления для объекта вида

$$\begin{aligned} \dot{x}_1 &= x_2, \\ \dot{x}_2 &= \theta + x_2 + u + \delta, \end{aligned}$$

где θ — неизвестный параметр, δ — ограниченное возмущение, удовлетворяющее неравенству $|\delta(t)| \leq \overline{\delta}$. Цель управления заключается в

построении закона управления, обеспечивающего выполнение неравенства (4.3). В ходе синтеза задействовать алгоритм адаптации (4.6).

9. Промоделировать замкнутую систему робастного управления, синтезированную согласно одному из вариантов выполнения работы, с использованием следующей модификации алгоритма адаптации:

$$\dot{\hat{\boldsymbol{\theta}}} = \begin{cases} -\sigma \hat{\boldsymbol{\theta}} + \gamma x k^T P e, & ecnu & \left\| \hat{\boldsymbol{\theta}} \right\|_2 \ge \theta_0 \\ \gamma x k^T P e, & ecnu & \left\| \hat{\boldsymbol{\theta}} \right\|_2 < \theta_0, \end{cases}$$

где $\theta_0 = 1.5 \|\theta\|_2$. Значения коэффициентов γ и σ принять идентичными значениям в п. 3 порядка выполнения работы. Функцию возмущения принять равной функции в п. 1 порядка выполнения работы.

Сравнить результат с результатом, полученным при использовании алгоритма адаптации (4.6). Пояснить достоинство данной модификации.

10. Решить задачу робастного управления для объекта вида

$$\dot{x}_1 = 2x_2,$$

 $\dot{x}_2 = \theta_1 x_1 + \theta_2 x_2 + u + \delta,$

где θ_1 , θ_2 — неизвестные параметры, δ — ограниченное возмущение, удовлетворяющее неравенству $\left|\delta(t)\right| \leq \overline{\delta}$. Цель управления заключается в построении закона управления, обеспечивающего выполнение неравенства (4.3).

Задачи и вопросы повышенной сложности

- 1. Показать, что система управления, замкнутая управлением (3.10) с нелинейной обратной связью (4.4), робастна по отношению к незначительным вариациям параметров θ .
 - 2. Решить задачу робастного управления для объекта вида

$$\dot{x}_1 = x_2,$$

 $\dot{x}_2 = \theta_1 x_1 + x_2 + \theta_2 u + \delta,$

где θ_1 , $\theta_2 \ge \theta_{02} > 0$ — неизвестные параметры, δ — ограниченное возмущение, удовлетворяющее неравенству $|\delta(t)| \le \overline{\delta}$. Цель управления заключается в построении закона управления, обеспечивающего выполнение неравенства (4.3).

3. Решить задачу робастного управления для объекта вида

$$\dot{x}_1 = x_2,$$

 $\dot{x}_2 = x_3,$
 $\dot{x}_3 = x_1^2 - \theta u + \delta,$

где $\theta \ge \theta_0 > 0$ — неизвестный параметр, δ — ограниченное возмущение, удовлетворяющее неравенству $\left|\delta(t)\right| \le \overline{\delta}$. Цель управления заключается в построении закона управления, обеспечивающего выполнение неравенства (4.3).

4. Решить задачу робастного управления для электропривода, описываемого уравнениями вида

$$\dot{x} = -ax + bu,$$

$$\dot{y} = x + \delta,$$

где $a,b\geq b_0>0$ — неизвестные параметры, δ — ограниченное возмущение, удовлетворяющее неравенству $|\delta(t)|\leq \overline{\delta}$, x, y — скорость и положение ротора соответственно. Цель управления заключается в построении управления, обеспечивающего выполнение следующего неравенства:

$$|y_M(t) - y(t)| \le \Delta, \ \forall t \ge T,$$

где Δ , T — точность работы системы управления в установившемся режиме и время настройки системы соответственно, y_{M} — выход эталонной модели

$$y_M = \frac{\omega^2}{s^2 + 2\omega s + \omega^2} [g] ,$$

- ω положительная величина (среднегеометрический корень), g сигнал задания.
- 5. Решить задачу повышенной сложности №5 в Работе №3 с использованием дискретной версии алгоритма адаптации (4.6). Привести доказательство экспоненциальной сходимости ошибок управления к ограниченным множествам.

Работа №5. ПАРАМЕТРИЗАЦИЯ МОДЕЛИ ОБЪЕКТА УПРАВЛЕНИЯ (СПОСОБ №1)

Цель работы: освоение способа параметрического представления выходной переменной и вектора состояния линейной модели объекта.

Методические рекомендации. До начала работы студенты должны ознакомиться с параметризованным представлением линейных моделей "вход-состояние-выход" [6, 7, 13, 16, 20] и построить схему моделирования параметризованного объекта.

Теоретические сведения. Параметризацией модели объекта, вообще говоря, называется выделение параметров модели из ее структуры. В частности для класса линейных динамических объектов говорят о линейной параметризации, являющей собой представление выходной переменной (или вектора состояния) модели объекта в виде линейной регрессионной модели — произведения вектора (матрицы) постоянных параметров и вектора (матрицы) известных функций.

Допущение. Для простоты изложения материала в работе начальные условия в дифференциальных уравнениях будем принимать нулевыми.

Для пояснения принципа составления параметризованных форм моделей рассмотрим простую задачу. Дан объект управления первого порядка

$$\begin{cases} \dot{x} = -ax + bu, & x(0) \\ y = x, \end{cases}$$
 (5.1)

где a, b — параметры объекта, x — переменная состояния, u, y — входная и выходная переменная соответственно. Необходимо представить переменную y в параметризованной форме, т.е. в виде линейной регрессионной модели вида

$$y = \theta^T \omega, \tag{5.2}$$

где θ — вектор постоянных параметров, ω — вектор известных (т.н. базисных) функций.

Применим к правой и левой части уравнения состояния линейный оператор с передаточной функцией

$$H(s) = \frac{1}{s+k},$$

где s — оператор дифференцирования, k — положительная константа. После применения оператора получим:

$$\frac{1}{s+k}[\dot{x}] = -\frac{1}{s+k}[ax] + \frac{1}{s+k}[bu].$$

Проводя простейшие алгебраические преобразования, имеем:

$$\frac{s}{s+k}[x] = -a\frac{1}{s+k}[x] + b\frac{1}{s+k}[u],$$

$$\frac{s \pm k}{s+k}[x] = -a\frac{1}{s+k}[x] + b\frac{1}{s+k}[u],$$

$$x = \frac{k}{s+k}[x] - a\frac{1}{s+k}[x] + b\frac{1}{s+k}[u] = (k-a)\frac{1}{s+k}[x] + b\frac{1}{s+k}[u].$$

Введем обозначения:

$$\xi_0 = \frac{1}{s+k} [x],$$
 $v_0 = \frac{1}{s+k} [u].$

После замены x на y окончательно получим выражение вида (5.2):

$$y = (k - a)\xi_0 + bv_0 = \theta^T \omega,$$

где $\theta = [k - a, b]^T$ — вектор постоянных параметров, а $\omega = [\xi_0, v_0]^T$ — вектор известных функций.

Рассуждая аналогичным образом, можно построить параметризованное представление для объекта n-ого порядка, представленного в форме "вход-выход":

$$y^{(n)} + a_{n-1}y^{(n-1)} + a_{n-2}y^{(n-2)} + \dots + a_0y = b_mu^{(m)} + b_{m-1}u^{(m-1)} + \dots + b_0u,$$
 (5.3)

Выберем гурвицеву передаточную функцию

$$H(s) = \frac{1}{K(s)} = \frac{1}{s^n + k_{n-1}s^{n-1} + k_{n-2}s^{n-2} + \dots + k_0}.$$

Полагая начальные условия $y^{(i)}(0)$, $i = \overline{0, n-1}$ равными нулю, применим оператор с передаточной функцией H(s) к правой и левой части уравнения (5.3). Проводя ряд алгебраических преобразований, получаем общее параметризованное представление регулируемой переменной:

$$y = \sum_{i=0}^{n-1} (k_i - a_i) \frac{s^i}{K(s)} [y] + \sum_{i=0}^m b_i \frac{s^i}{K(s)} [u]$$

ИЛИ

$$y = \theta^T \omega, \tag{5.4}$$

где

$$\boldsymbol{\Theta}^{T} = \left[k_{0} - a_{0}, k_{1} - a_{1}, ..., k_{n-1} - a_{n-1}, b_{0}, b_{1}, ..., b_{m}\right],$$

$$\boldsymbol{\omega}^{T} = \left[\frac{1}{K(s)}[y], \frac{s}{K(s)}[y], ..., \frac{s^{n-1}}{K(s)}[y], \frac{1}{K(s)}[u], \frac{s}{K(s)}[u], ..., \frac{s^{m}}{K(s)}[u]\right].$$

Решим задачу параметризации вектора состояния модели "вход-состояние-выход" вида

$$\begin{cases} \dot{x} = Ax + bu, & x(0), \\ y = Cx. \end{cases}$$
 (5.5)

Матрицы модели представлены в канонической (фробениусовой) форме:

$$A = \begin{bmatrix} -a_{n-1} & 1 & \cdots & 0 \\ -a_{n-2} & 0 & & 0 \\ \vdots & & \ddots & 1 \\ -a_0 & 0 & & 0 \end{bmatrix}, \qquad b = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ b_m \\ \vdots \\ b_0 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}.$$

Полагая начальные условия x(0) равными нулю, применим к правой и левой частям уравнения состояния модели (5.5) оператор матричной передаточной функции

$$\Phi(s) = \left(Is - A_0\right)^{-1},$$

где I — единичная матрица размерности $n \times n$, A_0 — гурвицева матрица, заданная в канонической форме

$$A_0 = \begin{bmatrix} -k_{n-1} & 1 & \cdots & 0 \\ -k_{n-2} & 0 & & 0 \\ \vdots & & \ddots & 1 \\ -k_0 & 0 & & 0 \end{bmatrix}.$$

Далее проведем алгебраические преобразования:

$$(Is - A_0)^{-1}[\dot{x}] = (Is - A_0)^{-1}A[x] + (Is - A_0)^{-1}b[u],$$

$$(Is - A_0)^{-1}s[x] = (Is - A_0)^{-1}A[x] + (Is - A_0)^{-1}b[u],$$

$$(Is - A_0)^{-1}(s \pm A_0)[x] = (Is - A_0)^{-1}A[x] + (Is - A_0)^{-1}b[u],$$

$$(Is - A_0)^{-1}(s - A_0)[x] + (Is - A_0)^{-1}A_0[x] = (Is - A_0)^{-1}A[x] + (Is - A_0)^{-1}b[u],$$

$$x = -(Is - A_0)^{-1}A_0[x] + (Is - A_0)^{-1}A[x] + (Is - A_0)^{-1}b[u],$$

$$x = (Is - A_0)^{-1}(A - A_0)[x] + (Is - A_0)^{-1}b[u].$$
(5.6)

Учитывая структуры матриц A, A_0 и равенство $y = x_1$ (в силу значения матрицы C), имеем:

$$(A-A_0)[x] = \begin{pmatrix} -\begin{bmatrix} -k_{n-1} & 1 & \cdots & 0 \\ -k_{n-2} & 0 & & 0 \\ \vdots & & \ddots & 1 \\ -k_0 & 0 & & 0 \end{bmatrix} + \begin{bmatrix} -a_{n-1} & 1 & \cdots & 0 \\ -a_{n-2} & 0 & & 0 \\ \vdots & & \ddots & 1 \\ -a_0 & 0 & & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} k_{n-1} - a_{n-1} \\ k_{n-2} - a_{n-2} \\ \vdots \\ k_0 - a_0 \end{bmatrix} y.$$

Подставляя последнее выражение в (5.6), окончательно получаем:

$$x = (Is - A_0)^{-1} \begin{bmatrix} k_{n-1} - a_{n-1} \\ k_{n-2} - a_{n-2} \\ \vdots \\ k_0 - a_0 \end{bmatrix} [y] + (Is - A_0)^{-1} \begin{bmatrix} 0 \\ \vdots \\ 0 \\ b_m \\ \vdots \\ b_0 \end{bmatrix} [u] =$$

$$= \sum_{i=0}^{n-1} (k_i - a_i) (Is - A_0)^{-1} e_{n-i} [y] + \sum_{j=0}^{m} b_j (Is - A_0)^{-1} e_{n-j} [u],$$

где $e_i^T = \left[0,...,0,\frac{1}{i},0,...,0\right]$. Перепишем окончательный результат в форме

$$x = \sum_{i=0}^{n-1} (k_i - a_i) (Is - A_0)^{-1} e_{n-i} [y] + \sum_{j=0}^{m} b_j (Is - A_0)^{-1} e_{n-j} [u],$$

или с учетом определения θ

$$x = \sum_{i=0}^{n-1} \theta_{i+1} (Is - A_0)^{-1} e_{n-i} [y] + \sum_{j=0}^{m} \theta_{j+1+n} (Is - A_0)^{-1} e_{n-j} [u], \quad (5.7)$$

Из (5.7) видно, что для параметризации вектора x достаточно измерять входную и выходную переменные.

Следует отметить, что выражение (5.7) представляет собой наблюдатель состояния, аналогичный известному в классической теории управления наблюдателю Люенбергера [4,5].

Для удобства моделирования в пакете программ Simulink векторные передаточные функции $(Is-A_0)^{-1}e_{n-i}$ можно представить как выходы блока "State-Space" библиотеки "Linear", в котором в качестве матриц A, b, C, d задаются как A_0 , e_{n-i} , единичная матрица размерности $n \times n$ (в MatLab функция eye) и нулевой вектор размерности $n \times 1$ соответственно.

Порядок выполнения работы

1. На основе исходных данных, приведенных в Таблице 5.1, построить в программе Simulink модель объекта (5.3) в параметризованной форме (5.4). Обеспечить возможность задания начальных условий $y^{(i)}(0)$, $i = \overline{0, n-1}$ в (5.3). Рассчитать элементы вектора θ в параметризованной модели (5.4). Построить эту модель в *Simulink*.

В результате моделирования построить график выходных переменных y моделей 5.3 и 5.4 при ненулевых начальных условиях модели объекта (5.3).

2. На основе исходных данных, приведенных в Таблице 5.1, построить в программе Simulink модель объекта (5.3). Обеспечить возможность задания начальных условий $x_i(0)$, $i = \overline{1,n}$. Построить параметризованную модель (5.7) в программе Simulink.

Провести моделирование при ненулевых начальных условиях модели (5.3). Построить два графика, отражающих поведение переменных состояния моделей 5.3 и 5.7. На первом графике показать переменные x_1 , на втором — переменные x_2 .

3. Сделать выводы по каждому пункту работы.

Таблица 5.1. Варианты заданий

Bap.	пере	Коэффинедаточно объекта	циенты й функ	щии	Коэффициенты фильтра		Сигнал для проверки параметризованной
	a_1	a_0	b_1	b_0	k_1	k_{0}	модели
1	1	1	1	2	0,2	0,01	
2	2	1	1	3	$\sqrt{0,02}$	0,01	
3	3	1	1	4	0,4	0,04	
4	4	1	1	5	$\sqrt{0,08}$	0,04	
5	5	1	1	6	0,6	0,09	
6	1	2	1	7	$\sqrt{0,18}$	0,09	
7	2	2	1	8	0,8	0,16	$u = \sin t + 0, 5\cos 2t$
8	3	2	1	9	$\sqrt{0,32}$	0,16	
9	4	2	2	3	1	0,25	
10	5	2	2	4	$\sqrt{0,5}$	0,25	
11	1	3	2	5	1,2	0,36	
12	2	3	2	6	$\sqrt{0,72}$	0,36	
13	3	3	2	7	1,6	0,64	

14	4	3	2	8	$\sqrt{1,28}$	0,64	
15	5	3	2	9	2	1	
16	1	4	3	4	$\sqrt{2}$	1	
17	2	4	3	5	4	4	
18	3	4	3	6	$2\sqrt{2}$	4	
19	4	4	3	7	6	9	
20	5	4	3	8	$3\sqrt{2}$	9	
21	1	5	3	9	8	16	
22	2	5	4	5	$4\sqrt{2}$	16	
23	3	5	4	6	1	0,25	
24	4	5	4	7	$\sqrt{0,5}$	0,25	
25	5	5	4	8	1,2	0,36	
26	1	6	4	9	$\sqrt{0,72}$	0,36	
27	2	6	5	6	1,6	0,64	
28	3	6	5	7	$\sqrt{1,28}$	0,64	
29	4	6	5	8	2	1	
30	5	6	5	9	$\sqrt{2}$	1	

Задачи и вопросы

1. Параметризовать выходную переменную дискретного объекта вида

$$y(k+n) + a_{n-1}(k+n-1) + ... + a_0 y(k) = b_m u(k+m) + b_{m-1} u(k+m-1) + ... + b_0 u(k),$$

где k — шаг дискретизации.

- 2. Используя выражение (5.4), параметризовать первую производную величины y.
- 3. Показать, что, если начальные условия в объекте (5.3) отличны от нуля (т.е. *Допущение*, принятое в работе, ослабляется), то параметризованное представление выходной переменной имеет вид

$$y = \theta^T \omega + \sigma_{v1},$$

где σ_{y1} — первый элемент вектора σ_{y} , экспоненциально затухающего согласно закону $\dot{\sigma}_{y} = A_{0}\sigma_{y}$.

4. Показать, что, если начальные условия в объекте (5.5) отличны от нуля (т.е. *Допущение*, принятое в работе, ослабляется), то параметризованное представление переменной состояния будет иметь вид

$$x = \sum_{i=0}^{n-1} (k_i - a_i)(sI - A_0)^{-1} e_{n-i}[y] + \sum_{j=0}^{m} b_j(sI - A_0)^{-1} e_{n-j}[u] + \sigma_x,$$

где σ_x — векторная величина, экспоненциально затухающая согласно закону $\dot{\sigma}_x = A_0 \sigma_x$.

- 5. В рамках одного из вариантов выполнения работы параметризовать первую производную вектора x.
- 6. Представить в параметризованной форме $y = \omega_0 + \theta^T \omega$ выходную переменную модели вида

$$\ddot{y} + \theta_1 \dot{y} + \theta_2 y = \theta_3 \ddot{u} + \theta_4 \dot{u} + \theta_5 u,$$

где $\theta = [\theta_1,...,\theta_5]^T$ — вектор параметров модели, $\omega = [\omega_1,...,\omega_5]^T$ — вектор измеряемых функций, ω_0 — измеряемая функция. Предполагается, что при формировании фильтров измерению доступны величины y и u.

7. Представить в параметризованной форме $y = \omega_0 + \theta^T \omega$ выходную переменную модели маятника вида

$$\ddot{y} + \theta_1 \dot{y} + \theta_2 \sin(y) = \theta_3 u,$$

где $\theta = [\theta_1, \theta_2, \theta_3]^T$ — вектор параметров модели, $\omega = [\omega_1, \omega_2, \omega_3]^T$ — вектор измеряемых функций, ω_0 — измеряемая функция. Предполагается, что при формировании фильтров измерению доступны величины y и u.

8. Представить в параметризованной форме $x = \omega_0 + \theta_1 \omega_1 + \theta_2 \omega_2 + \theta_3 \omega_3$ вектор состояния модели

$$\dot{x}_1 = \theta_1 x_1 + x_2,$$

 $\dot{x}_2 = \theta_2 x_1 + x_1^2 + \theta_3 u,$
 $y = x_1,$

где $\theta_1, \theta_2, \theta_3$ — параметры модели, $\omega_1, \omega_2, \omega_3$ — векторы измеряемых функций, ω_0 — измеряемая функция. Предполагается, что при формировании фильтров измерению доступны величины y и u.

9. Как изменятся свойства параметризованной модели выходной переменной у, если в характеристическом полиноме

$$K(s) = s^2 + 2\omega s + \omega^2.$$

образующим фильтры, параметр ω увеличить в 10 раз?

10. Представить в параметризованной форме $y = \omega_0 + \theta^T \omega$ выходную переменную колебательного звена

$$y = \frac{k}{T^2 s^2 + 2\zeta T s + 1} [u],$$

где k — коэффициент передачи, T — постоянная времени, ζ — коэффициент затухания, лежащий в пределах $0 < \zeta < 1$, $\theta \in R^{3x1}$ — вектор, элементы которого зависят от k, T, ζ , $\omega \in R^{3x1}$ — вектор измеряемых функций, ω_0 — измеряемая функция. Предполагается, что при формировании фильтров измерению доступны величины y и u.

Задачи и вопросы повышенной сложности

- 1. Используя выражение (5.4), параметризовать вторую производную выходной переменной y.
- 2. Показать, что в выражении (5.7) достаточно использовать только два фильтра:

$$\xi_* = (Is - A_0)^{-1} e_n[y], \quad v_* = (Is - A_0)^{-1} e_n[u].$$

3. Представить в параметризованной форме $y = \omega_0 + \theta^T \omega$ выходную переменную модели вида

$$\ddot{y} + 3\theta_1 y^2 \dot{y} + \theta_2 y = u,$$

где $\theta = [\theta_1, \theta_2]^T$ — вектор параметров модели, $\omega = [\omega_1, \omega_2]^T$ — вектор измеряемых функций, ω_0 — измеряемая функция. Предполагается, что при формировании фильтров измерению доступны величины y и u.

4. Представить в параметризованной форме $y = \omega_0 + \theta^T \omega$ выходную переменную модели вида

$$\ddot{y} + \theta_1 \kappa \dot{y} + \theta_2 \kappa^2 y = u,$$

$$\dot{\kappa} = \gamma y^2,$$

где $\theta = [\theta_1, \theta_2]^T$ — вектор параметров модели, $\omega = [\omega_1, \omega_2]^T$ — вектор измеряемых функций, ω_0 — измеряемая функция. Предполагается, что при формировании фильтров измерению доступны величины κ , y и u.

5. Представить в параметризованной форме $z = \omega_0 + \theta^T \omega$ выходную переменную модели вида

$$\ddot{y} + a_1 \dot{y} + a_0 y = b_1 \dot{u} + b_0 u,$$

$$z = \frac{\beta}{s + \alpha} [y],$$

где $\theta = [a_1, a_0, b_1, b_0]^T$ — вектор параметров модели, $\omega = [\omega_1, ..., \omega_4]^T$ — вектор измеряемых функций, ω_0 — измеряемая функция, β , α — известные величины. Предполагается, что при формировании фильтров измерению доступны величины z и u.

При решении задачи использовать фильтры не выше второго порядка.

Работа №6. СИНТЕЗ АДАПТИВНОГО НАБЛЮДАТЕЛЯ СОСТОЯНИЯ ЛИНЕЙНОГО ОБЪЕКТА

Цель работы: освоение процедуры синтеза адаптивного наблюдателя линейного объекта.

Методические рекомендации. До начала работы студенты должны ознакомиться с принципом параметризованного представления вектора состояния линейного объекта (см. Работу №5) и с построением алгоритмов адаптации на основе стандартных моделей ошибок [2, 13, 16, 20].

Теоретические сведения. На основе результата, полученного в разделе "Теоретические сведения" Работы №5, рассмотрим задачу адаптивного наблюдения вектора состояния параметрически неопределенного линейного объекта.

Постановка задачи. Дан асимптотически устойчивый объект управления:

$$\begin{cases} \dot{x} = Ax + bu, & x(0), \\ y = Cx, \end{cases}$$
(6.1)

где x — недоступный прямому измерению вектор состояния, u, y — входной и выходной сигналы объекта, доступные прямым измерениям,

$$A = \begin{bmatrix} -a_{n-1} & 1 & \cdots & 0 \\ -a_{n-2} & 0 & & 0 \\ \vdots & & \ddots & 1 \\ -a_0 & 0 & & 0 \end{bmatrix}, \qquad b = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ b_m \\ \vdots \\ b_0 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix},$$

 a_i , $i = \overline{0, n-1}$, b_j , $j = \overline{0, m}$ — неизвестные коэффициенты модели.

Рассматриваемая задача состоит в построении оценки вектора состояния \hat{x} такой, что

$$\lim_{t \to \infty} ||x(t) - \hat{x}(t)|| = 0.$$
 (6.2)

Синтезируемый адаптивный наблюдатель должен одновременно оценивать неизвестные параметры объекта управления θ и генерировать оценку вектора состояния \hat{x} .

Отметим, что в задаче класс объектов (6.1) ограничен следующим допущением.

Допущение (Условие согласования). Для некоторого n-мерного вектора $\overline{\theta}$ матрицы A, C и A_0 связаны следующим соотношением:

$$A_0 = A - \overline{\theta} C.$$

Можно показать (см. Работу №5), что для рассматриваемого класса объектов

$$\overline{\theta} = \begin{bmatrix} k_{n-1} - a_{n-1} \\ k_{n-2} - a_{n-2} \\ \vdots \\ k_0 - a_0 \end{bmatrix}.$$

Решение задачи. Для решения задачи используется параметризованное представление выходной переменной (5.4) и вектора состояния (5.7). Заменим в (5.4) параметры θ на оценки $\hat{\theta}$ и сформируем настраиваемую модель объекта:

$$\hat{\mathbf{y}} = \hat{\mathbf{\theta}}^T \mathbf{\omega}, \tag{6.3}$$

где \hat{y} — оценка переменной y. Введем в рассмотрение ошибку идентификации

$$\varepsilon = y - \hat{y}$$
.

Учитывая (5.4), (6.3), получаем:

$$\varepsilon = \widetilde{\Theta}^T \omega, \tag{6.4}$$

где $\tilde{\theta} = \theta - \hat{\theta}$ — вектор параметрических ошибок. Последнее выражение представляет собой стандартную статическую модель ошибок, на основе которой при помощи функции Ляпунова $V = \tilde{\theta}^T \tilde{\theta} / 2 \gamma$ и анализа ее производной строится алгоритм адаптации

$$\dot{\hat{\theta}} = \gamma \omega \varepsilon$$
, (6.5)

где $\gamma > 0$ — коэффициент адаптации.

Действительно, расчет производной \dot{V} дает

$$\dot{V} = \frac{1}{\gamma} \tilde{\Theta}^T \dot{\tilde{\Theta}} = -\frac{1}{\gamma} \tilde{\Theta}^T \dot{\hat{\Theta}}.$$

При выборе структуры алгоритма адаптации (6.5) имеем:

$$\dot{V} = -\frac{1}{\gamma} \tilde{\Theta}^T \gamma \omega \varepsilon = -\varepsilon^2 < 0.$$

Из последнего неравенства при условии ограниченности функции ω и ее первой производной $\dot{\omega}$ (условие накладывается на входной сигнал u) следуют свойства системы, состоящей (6.4), (6.5):

- С.1. все сигналы в системе ограничены;
- С.2. ошибка є стремится к нулю асимптотически;
- С.3. параметрические ошибки $\tilde{\theta}$ стремятся к нулю экспоненциально, если вектор ω удовлетворяет условию неисчезающего возбуждения (3.14) (вывод представлен в [13, 20]). Условие (3.14) в конечном итоге зависит от частотной насыщенности сигнала u, который должен содержать "достаточное" количество гармоник;
- С.4. если ошибки $\tilde{\theta}$ стремятся к нулю, то оценка вектора состояния \hat{x} также стремится к x .

После замены в (5.7) параметров θ на оценки $\hat{\theta}$ получаем оценку вектора состояния:

$$\hat{x} = \sum_{i=0}^{n-1} \hat{\theta}_{i+1} (sI - A_0)^{-1} e_{n-i} [y] + \sum_{j=0}^{m} \hat{\theta}_{j+1+n} (sI - A_0)^{-1} e_{n-j} [u].$$
 (6.6)

Таким образом, адаптивный наблюдатель, обеспечивающий выполнение условия (6.2) (при выполнении условия неисчезающего возбуждения (3.14)), состоит из настраиваемой модели (6.3), алгоритма адаптации (6.5) и алгоритма оценивания вектора состояния (6.6).

Порядок выполнения работы

- 1. На основе результатов, полученных в Работе №5, промоделировать адаптивный наблюдатель вектора состояния объекта (6.3), (6.5), (6.6). Входной сигнал выбрать в виде $u(t) = 10\sin t$. Коэффициент адаптации γ выбрать экспериментальным путем. Построить два графика моделирования. На первом отобразить переменные состояния норму разности $\|x(t) \hat{x}(t)\|$. На втором графике параметрические ошибки $\tilde{\theta}$.
- 2. Повторить эксперимент при $u(t) = 10\sin t + 5\cos 2t + 4\cos 4t + 3\cos 8t$.
 - 3. По результатам моделирования сделать выводы.

Задачи и вопросы

1. Из теории адаптивных систем известно, что алгоритм адаптации в общем виде может быть представлен как [13, 20, 22]

$$\dot{\hat{\theta}} = \gamma \operatorname{grad}_{\widetilde{\theta}} \{ V(\varepsilon, \widetilde{\theta}) \}. \tag{6.7}$$

Показать, что, если $V = \varepsilon^2/2$ (где ошибка ε определяется выражением (6.4)), то алгоритм адаптации (6.7) принимает форму (6.5).

2. На основе выражения (6.7) и функции Ляпунова

$$V = |\varepsilon|$$
,

где ошибка є определяется выражением (6.4), построить алгоритм адаптации и выполнить с полученным алгоритмом пункты 1, 2 порядка выполнения работы.

- 3. Используя исходные данные одного из вариантов, построить алгоритм восстановления первой производной выходной переменной y.
- 4. Как изменится алгоритм синтеза адаптивного наблюдателя, если исходная модель объекта представляется в неканонической форме?
 - 5. Построить наблюдатель вектора состояния линейного объекта

$$\dot{x}_1 = x_2 - x_1,$$

 $\dot{x}_2 = \theta u - x_1,$
 $y = x_1,$

где $\theta=3$ — неизвестный параметр. Предполагается, что измерению доступны величины y и u. В ходе синтеза свести к минимуму динамический порядок фильтров и алгоритма адаптации. Промоделировать систему адаптивного наблюдения, приняв $u=5\sin t + \cos 0.5t$.

6. Обеспечит ли цель (6.2) адаптивный наблюдатель состояния, если объект устойчив, наблюдаем и описывается уравнениями вида

$$\dot{x}_1 = -a_1 x_1 + x_2,$$

$$\dot{x}_2 = -a_0 x_1 + b_0 u,$$

$$y = x_1,$$

где a_0, a_1, b_0 — неизвестные положительные параметры, а u=1? Ответ пояснить.

7. Как изменятся свойства наблюдателя, если алгоритм (6.5) заменить на робастную модификацию

$$\dot{\hat{\theta}} = -\sigma \hat{\theta} + \gamma \omega \epsilon,$$

где σ — положительная константа? Ответ пояснить.

8. Обеспечит ли цель (6.2) адаптивный наблюдатель состояния объекта, если:

a)
$$A = \begin{bmatrix} -5 & 1 \\ -6 & 0 \end{bmatrix}, b = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \end{bmatrix};$$

6) $A = \begin{bmatrix} -5 & 1 \\ -6 & 0 \end{bmatrix}, b = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \end{bmatrix};$
B) $A = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix}, b = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 3 & 1 \end{bmatrix}?$

Ответ пояснить.

9. Построить наблюдатель вектора состояния линейного объекта

$$\dot{x}_1 = -x_1 + x_2,$$

 $\dot{x}_2 = \theta x_1 + u,$
 $y = x_1,$

где $\theta = -4$ — неизвестный параметр. Предполагается, что измерению доступны величины y и u. В ходе синтеза свести к минимуму динамический порядок фильтров и алгоритма адаптации. Промоделировать систему адаптивного наблюдения, приняв $u = 2sign(\sin t) + 3$.

10. Построить адаптивный наблюдатель угловой скорости маятника \dot{y} , модель которого имеет следующий вид:

$$\ddot{y} + \theta_1 \dot{y} + \theta_2 \sin(y) = \theta_3 u,$$

где $\theta_1, \theta_2, \theta_3$ — неизвестные параметры модели. Предполагается, что измерению доступны величины y и u .

Задачи и вопросы повышенной сложности

1. На основе равенства (6.7) и функции Ляпунова

$$V = \frac{1}{2} \int_{0}^{t} \varepsilon^{2}(t, \tau) d\tau,$$

где $\varepsilon(t,\tau) = \widetilde{\theta}^T(t)\omega(\tau)$ вывести физически реализуемый алгоритм адаптации. При этом необходимо учесть, что измерению подлежат $\widehat{\theta}^T(t)$, $\varepsilon(t) = \widetilde{\theta}^T(t)\omega(t)$ и $\omega(t)$.

Выполнить пункт 1 работы с полученным алгоритмом, приняв коэффициент адаптации γ равным $\rho \left(I + \int\limits_0^t \omega^T(\tau) \omega(\tau) d\tau\right)^{-1}$ с некоторой положительной константой ρ .

- 2. Возможно ли восстановление вектора состояния, когда нарушается условие (3.14)? Ответ пояснить.
- 3. Возможно ли восстановление вектора состояния, если объект неустойчив? Ответ пояснить.
- 4. Является ли робастным по отношению к внешним возмущениям представленный в работе адаптивный наблюдатель? Ответ пояснить.
 - 5. Построить наблюдатель вектора состояния линейного объекта

$$\dot{x}_1 = \theta_1 x_1 + x_2,$$

 $\dot{x}_2 = \theta_2 x_1 + \theta_3 u,$
 $y = x_1,$

если известно, что выходная переменная y измеряется с помощью инерционного звена

$$z = \frac{\beta}{s + \alpha} [y],$$

где $\theta_1 = -5$, $\theta_2 = -6$, $\theta_3 = 1$ — неизвестные параметры, $\alpha = 3$, $\beta = 4$ — известные величины. Предполагается, что измерению доступны величины z и u. Промоделировать систему адаптивного наблюдения, приняв $u = 4sign(\sin t) + 10$.

Работа №7. ПАРАМЕТРИЗАЦИЯ МОДЕЛИ ОБЪЕКТА УПРАВЛЕНИЯ (СПОСОБ 2). АДАПТИВНОЕ УПРАВЛЕНИЕ ОБЪЕКТОМ ПО ВЫХОДУ

Цель работы: освоение альтернативного способа параметрического представления выходной переменной и освоение метода синтеза адаптивного управления по выходу.

Методические рекомендации. До начала работы студенты должны ознакомиться с принципом параметрического представления выходной переменной и вектора состояния линейного объекта [6, 7, 13, 20].

Теоретические сведения. Рассмотрим минимально-фазовую линейную модель объекта, представленную в форме "вход-выход":

$$y^{(n)} + a_{n-1}y^{(n-1)} + a_{n-2}y^{(n-2)} + \dots + a_0y = b_mu^m + b_{m-1}u^{m-1} + \dots + b_0u$$
, (7.1)

где $a_i,\ i=\overline{0,n-1}\,,\ b_j=\overline{0,m}$ — неизвестные параметры объекта. Предполагается, что знак величины b_m известен. Пусть в решаемой задаче $b_m \geq b_{\min} > 0\,,\ b_{\min}$ — известная величина.

Вместе с моделью рассмотрим динамические фильтры

$$\dot{v}_1 = \Lambda v_1 + e_{n-1} u, \tag{7.2}$$

$$\dot{v}_2 = \Lambda v_2 + e_{n-1} y,\tag{7.3}$$

где $v_1 \in R^{n-1}, v_2 \in R^{n-1}$ — векторы состояния фильтров, $e_{n-1} = col(0, ..., 0, 1)$, $e_{n-1} \in R^{n-1}$,

$$\Lambda = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-k_0 & -k_1 & -k_2 & \cdots & -k_{n-2}
\end{bmatrix}.$$

Матрица Л имеет сопровождающий полином

$$K(s) = s^{n-1} + k_{n-2}s^{n-2} + k_{n-3}s^{n-3} + ... + k_0$$

В [6] доказано, что для любых нормированных устойчивых полиномов K(s) и $K_M(s)$ степени n-1 и n-m соответственно существует единственный постоянный вектор $\psi \in R^{2n-1}$, зависящий от неизвестных параметров объекта, такой, что объект (7.1) может быть представлен в виде

$$y(t) = \frac{1}{K_M(s)} \left[\psi^T \omega(t) + b_m u(t) \right] + \delta(t), \qquad (7.4)$$

где $\omega^T = [v_1^T, v_2^T, y]$, $\delta(t)$ — экспоненциально затухающая функция, определяемая ненулевыми начальными условиями.

Параметризованное представление (7.4) позволяет синтезировать управление, компенсирующее неопределенности модели, сосредоточенные в векторе ψ .

Постановка задачи управления по выходу. Рассмотрим задачу слежения выходной переменной y за эталонным сигналом y_M , формируемым эталонной моделью вида

$$y_M(t) = \frac{k_0}{K_M(s)} [g(t)],$$
 (7.5)

где g — сигнал задания, $K_M(s)$ — гурвицевый полином, определяющий желаемую динамику замкнутой системы. Полином $K_M(s)$ строится на основе метода стандартных полиномов, исходя из заданных динамических характеристик [4, 5].

Цель управления заключается в синтезе управления u, компенсирующего неопределенности объекта и обеспечивающего при условии ограниченности всех сигналов выполнение целевого равенства

$$\lim_{t \to \infty} \left(y_M(t) - y(t) \right) = 0. \tag{7.6}$$

Решение задачи. Сформируем ошибку управления по выходу $\varepsilon = y_M - y$ и с учетом (7.4), (7.5), проведем простейшие преобразования²:

$$\varepsilon = \frac{k_0}{K_M(s)} \left[g \right] - \frac{1}{K_M(s)} \left[\psi^T \omega + b_m u \right] = \frac{1}{K_M(s)} \left[k_0 g - \psi^T \omega - b_m u \right] = \frac{1}{K_M(s)} \left[k_0 g - \psi^T \omega - b_m u \right].$$

Окончательно имеем:

 $\varepsilon = \frac{1}{K_M(s)} \left[k_0 g - \psi^T \omega - b_m u \right]. \tag{7.7}$

Выражение (7.7) позволяет сформировать компенсирующий закон управления вида

 $^{^2}$ Экспоненциально затухающая величина $\delta(t)$ не влияет на устойчивость замкнутой системы, в связи с чем исключена из анализа.

$$u = \frac{1}{\hat{b}_m} \left(-\hat{\psi}^T \omega + k_0 g \right), \tag{7.8}$$

где $\hat{\psi}$ — вектор оценок ψ , $\hat{b}_{\scriptscriptstyle m}$ — оценка $b_{\scriptscriptstyle m}$.

Замечание 7.1. С целью предотвращения деления на ноль в законе управления (7.8) необходимо использовать алгоритм адаптации с добавлением оператора проекции (см. [13], [17]). В работе опускается подробное описание оператора и приводится итоговое выражение алгоритма адаптации с проекцией.

Для формирования алгоритма адаптации, генерирующего оценки $\hat{\psi}$ и \hat{b}_m , подставим (7.8) в (7.7) и получим динамическую модель ошибок с измеряемым выходом [2, 7, 8, 20]:

$$\varepsilon = \frac{1}{K_M(s)} \left[-\widetilde{\psi}^T \omega - \widetilde{b}_m u \right] = \frac{1}{K_M(s)} \left[\widetilde{\psi}_p^T \omega_p \right], \tag{7.9}$$

где $\widetilde{\psi} = \psi - \hat{\psi}$, $\widetilde{b}_m = b_m - \hat{b}_m$ — параметрические ошибки, $\widetilde{\psi}_p^T = [\widetilde{\psi}^T, \widetilde{b}_m]$, $\omega_p^T = [-\omega^T, -u]$.

В случае, если передаточная функция

$$H(s) = \frac{1}{K_M(s)}$$

является строго положительно вещественной (СПВ), алгоритм адаптации для настройки регулятора (7.8) может быть представлен в следующей форме [6, 7, 13, 20]:

$$\dot{\hat{\psi}}_p = \gamma \Gamma \omega_p \varepsilon \,, \tag{7.10}$$

где $\gamma > 0$ — коэффициент адаптации, $\hat{\psi}_p^T = [\hat{\psi}^T, \hat{b}_m]$,

$$\Gamma = \begin{cases} I_{2n}, & ecnu \quad \hat{b}_m(t) \ge b_{\min} \\ I_{2n} - \varsigma_{2n} \varsigma_{2n}^T, & ecnu \quad \hat{b}_m(t) < b_{\min} \end{cases}$$
(7.11)

 $\varsigma_{2n} = [0,0,...,0,1]$ — координатный вектор размерности 2n. Вторая строка в последнем выражении позволяет "остановить" функцию $\hat{b}_m(t)$ в момент пересечения границы b_{\min} в целях избежать деление на ноль в (7.8) (см. Замечание 7.1).

Определение СПВ функции приведено в Приложении Б, а также может быть найдено в [2, 9, 20].

С помощью выражений (7.10), (7.11) можно показать, что оценки $\hat{\psi}$ и \hat{b}_m , необходимые для закона управления (7.8), генерируются согласно следующим правилам:

$$\dot{\hat{\Psi}} = -\gamma \omega \varepsilon \,, \tag{7.12}$$

$$\dot{\hat{b}}_{m} = \begin{cases}
-\gamma u \varepsilon, & e c \pi u \quad \hat{b}_{m}(t) \ge b_{\min}, \\
0, & e c \pi u \quad \hat{b}_{m}(t) < b_{\min}
\end{cases}$$
(7.13)

Таким образом, закон адаптивного управления, построенный на основе параметризованного представления (7.4), состоит из эталонной модели (7.5), настраиваемого регулятора (7.8) и алгоритмов адаптации (7.12), (7.13). Закон управления формируется на основе измерения выходной переменной и не использует информацию о состоянии объекта, что является его отличительной особенностью.

Важно отметить, что начальное условие $\hat{b}_m(0)$ в алгоритме (7.13) выбирается из условия $\hat{b}_m(0) \ge b_{\min}$.

Порядок выполнения работы

1. На основе фильтров (7.2), (7.3), настраиваемого регулятора (7.8), алгоритма адаптации (7.10), (7.11) и данных, представленных в Таблице 7.1, построить стабилизирующее адаптивное управление (g=0). Начальное условие в алгоритме адаптации (7.13) $\hat{b}_m(0)=1$. Согласно вариантам заданий m=1, $\hat{b}_m \equiv \hat{b}_1$, $b_m \equiv b_1$.

Провести моделирование для трех различных коэффициентов γ . По результатам моделирования построить три графика. На первом графике отобразить выходную переменную y, на втором графике — управляющее воздействие u, на третьем — оценки параметров $\hat{\psi}_n$.

В ходе моделирования обеспечить искусственное ограничение (блок насыщения "Saturation" в пакете MatLab/Simulink) оценки \hat{b}_m с целью предотвращения деления на ноль в выражении (7.8). Значение нижнего порога насыщения на выходе алгоритма адаптации (7.13) (см. рис. 7.1) принять равным $b_{\min} = 0,1$.

2. На основе эталонной модели (7.5), фильтров (7.2), (7.3), настраиваемого регулятора (7.8), алгоритма адаптации (7.10), (7.11) и данных, представленных в Таблице 7.1, построить следящее адаптивное управление.

Провести моделирование для трех различных коэффициентов γ . По результатам моделирования построить три графика. На первом графике отобразить выходную переменную y и ее желаемое значение y_M , на втором графике — управляющее воздействие u, на третьем — оценки параметров $\hat{\psi}_p$.

3. По результатам моделирования сделать выводы.

Таблица 7.1. Варианты заданий

Коэффициенты модели Вар. объекта			Параметр полинома	Параметр полинома $K_{M}(s)$	Сигнал задания $g(t)$		
ъар.	a_0	a_1	b_0	$b_{\scriptscriptstyle 1}$	$K(s)$ k_0	k_{M0}	стпал задания да
1	0	0	1	1	1	0,5	$2sign(\cos t)$
2	0	-1	1	2	2	0,5	$\cos t + 3\sin 2t$
3	0	-2	1	3	3	0,6	$sign(\cos 2t)$
4	-1	-2	1	4	4	0,6	$sign(\sin 0,5t)$
5	-2	-3	1	5	5	0,7	$10\cos 0, 5t + 2\sin t$
6	-3	-4	2	1	6	0,7	$sign(\sin 0,5t)$
7	-4	-5	3	2	7	0,8	$0.5 sign(\sin 0.7t)$
8	1	-2	4	1	8	0,8	$5\sin 0,5t + 4\cos 0,1t$
9	2	-3	4	2	9	0,9	$sign(\cos t)$
10	3	-4	5	3	10	0,9	$sign(\sin 2t)$
11	4	-5	5	2	1	1,0	$\sin 5t + 0.5\cos 0.2t$
12	5	-6	6	4	2	1,0	$2sign(\sin 0, 4t)$
13	6	-7	6	6	3	1,2	$3sign(\sin 0,5t)$
14	4	-4	2	2	4	1,2	$2\sin 0, 2t + \sin 0, 1t$
15	6	-5	2	3	5	0,4	$4sign(\cos 2t)$
16	8	-6	5	5	6	0,4	$3sign(\cos 0, 2t)$
17	9	-6	2	8	7	0,5	$sign(\sin 0,5t)$
18	12	-7	3	1	8	0,5	$0,8\sin 2t + \cos 0,8t$
19	15	-8	3	4	9	0,6	$sign(\sin 0,3t)$
20	16	-8	8	2	10	0,6	$7sign(\cos 0,9t)$
21	-9	6	9	6	1 0,7		$0,4\sin 3t + \cos 0,1t$
22	-5	-6	8	1	2	0,7	$6sign(\sin 0,1t)$
23	-6	-7	4	6	3	0,8	$2sign(\sin t)$
24	-4	-4	4	8	4	0,8	$9\sin 0, 2t + 9\cos 0, 1t$
25	-6	-5	1	8	5	0,9	$4sign(\sin 6t)$
26	-8	-6	2	5	6	0,9	$4sign(\cos t)$
27	-10	-7	8	8	7	1,0	$\sin 0, 1t + \cos 5t$
28	-9	-6	9	1	8	1,0	$9sign(\sin 0,1t)$
29	-15	-8	7	1	9	1,2	$3sign(\sin 4t)$
30	-7	-10	9	9	10	1,2	$7\sin 0, 3t + 8\cos t$

Задачи и вопросы

- 1. Пояснить принятое в работе допущение о минимально-фазовом объекте.
- 2. Пояснить принятое в работе допущение о свойстве строгой положительной вещественности передаточной функции H(s).
- 3. На основе выражений (7.2)-(7.4) построить параметризованное представление производной выходной переменной у для объекта вида

$$\ddot{y} + a_1 \dot{y} + a_0 y = b_0 u$$

где a_0 , a_1 , b_0 — неизвестные параметры.

- 4. Обеспечит ли синтезированный в работе адаптивный регулятор цель управления, если объект неустойчив? Ответ пояснить.
- 5. Обязательно ли для достижения цели управления обеспечивать сходимость по параметрам ψ и b_m ? Ответ пояснить.
- 6. Для какого класса передаточных функций модели объекта представленный в работе адаптивный регулятор гарантирует достижение цели управления (7.6)?
 - 7. Решить задачу адаптивного управления объектом вида

$$\dot{x}_1 = \theta x_1 + x_2 + u,$$

 $\dot{x}_2 = -x_1 - 3x_2,$
 $y = x_1,$

где $\theta = 2$ — неизвестный параметр. Вектор состояния предполагается недоступным прямому измерению. Цель управления задается выражением (7.6), где

$$y_M = \frac{1}{s+1} [g],$$

 $g = \sin t + 2$ — сигнал задания. В ходе синтеза регулятора свести к минимуму динамический порядок алгоритма адаптации и количество фильтров. Промоделировать замкнутую систему.

8. Решить задачу адаптивного управления объектом вида

$$\dot{x}_1 = x_2 + \theta u,$$

 $\dot{x}_2 = -6x_1 - 5x_2,$
 $y = x_1,$

где $\theta = 1$ — неизвестный параметр. Вектор состояния предполагается недоступным прямому измерению. Цель управления задается выражением (7.6), где

$$y_M = \frac{1}{s+5} [g],$$

 $g = \cos t + 0.5 \sin 0.5t + 2$ — сигнал задания. В ходе синтеза регулятора свести к минимуму динамический порядок алгоритма адаптации и количество фильтров. Промоделировать замкнутую систему.

9. Решить задачу адаптивного управления объектом вида

$$\dot{x}_1 = \theta_1 x_2 + 4u,$$

 $\dot{x}_2 = \theta_2 x_1 - 2x_2,$
 $y = x_1,$

где θ_1, θ_2 — неизвестные параметры. Вектор состояния предполагается недоступным прямому измерению. Цель управления задается выражением (7.6), где

$$y_M = \frac{1}{s + k_0} [g],$$

g — сигнал задания. При каких θ_1 , θ_2 задача не имеет решение?

10. Решить задачу адаптивного управления объектом вида

$$\begin{split} \dot{x}_1 &= x_2 + u, \\ \dot{x}_2 &= \theta_1 x_1, \\ y &= \theta_2 x_1, \end{split}$$

где θ_1, θ_2 — неизвестные параметры. Вектор состояния предполагается недоступным прямому измерению. Цель управления задается выражением (7.6), где

$$y_M = \frac{1}{s + k_0} [g],$$

g — сигнал задания. При каких $\theta_1, \, \theta_2$ задача не имеет решение?

Задачи и вопросы повышенной сложности

1. Гарантирует ли синтезированный в работе регулятор цель управления, если в модели объекта

$$\ddot{y} + a_1 \dot{y} + a_0 y = b_1 \dot{u} + b_0 u$$
:

a)
$$a_1 = 9$$
 $a_0 = 20$, $b_1 = 1$, $b_0 = 1$;

6)
$$a_1 = 9$$
 $a_0 = 20$, $b_1 = 1$, $b_0 = -1$;

B)
$$a_1 = 9$$
 $a_0 = 20$, $b_1 = 1$, $b_0 = 4$;

$$a_1 = 9$$
 $a_0 = 20$, $b_1 = 0$, $b_0 = 1$?

- 2. Доказать справедливость представления (7.4).
- 3. Решить задачу адаптивного управления по выходу для минимально-фазового объекта вида

$$\ddot{y} + a_1 \dot{y} + a_0 y = b_2 \ddot{u} + b_1 \dot{u} + b_0 u$$
,

где a_0 , a_1 , b_0 , b_1 , $b_2 \ge b_0 > 0$ — неизвестные параметры. Эталонная модель представлена как $y_M = g$, где g — сигнал задания.

4. Решить задачу адаптивного управления по выходной переменной у для минимально-фазового объекта вида

$$\ddot{y} + a_1 \dot{y} + a_0 y = b_2 \ddot{u} + b_1 \dot{u} + b_0 u,$$

 $\dot{z} = -\alpha z + \beta y,$

где a_0 , a_1 , b_0 , b_1 , $b_2 \ge b_0 > 0$ — неизвестные параметры, α , β — известные положительные величины. Предполагается, что прямому измерению доступны только z и u. Цель управления задается равенством (7.6), где y_M генерируется эталонной следующей моделью:

$$y_M = g$$
,

где д — сигнал задания.

5. Гарантируется ли устойчивость замкнутой системы, если алгоритм адаптации (7.11) заменить на нелинейную обратную связь вида

$$\hat{\psi} = -\gamma \omega \epsilon$$
 ?

Ответ пояснить.

Работа №8. АДАПТИВНОЕ УПРАВЛЕНИЕ ЛИНЕЙНЫМ ОБЪЕКТОМ ПО ВЫХОДУ НА ОСНОВЕ АЛГОРИТМА АДАПТАЦИИ С РАСШИРЕННОЙ ОШИБКОЙ.

Цель работы: освоение метода расширенной ошибки в задачах адаптивного управления по выходу.

Методические рекомендации. До начала работы студенты должны ознакомиться с методом расширенной ошибки [7, 8, 20] и его применением в задачах адаптивного управления линейными объектами. Работа основана на результатах работы №7 и является ее логическим продолжением.

Теоретические сведения. Решение задачи адаптивного управления по выходу, приведенное в работе №7, предполагает ограниченный класс объектов вида (7.1). Класс ограничивается СПВ передаточными функциями. Так, например, передаточная функция модели ошибки (7.9)

$$H(s) = \frac{1}{K_M(s)}$$

при порядке полинома $K_M(s)$ больше единицы не является СПВ, а значит, алгоритм адаптации (7.10) не применим.

Для решения этой проблемы преобразуем динамическую модель ошибки (7.9) следующим образом:

$$\begin{split} \varepsilon &= \frac{1}{K_{M}(s)} \left[\widetilde{\boldsymbol{\psi}}_{p}^{T} \boldsymbol{\omega}_{p} \right] = \frac{1}{K_{M}(s)} \left[\boldsymbol{\psi}_{p}^{T} \boldsymbol{\omega}_{p} - \widehat{\boldsymbol{\psi}}_{p}^{T} \boldsymbol{\omega}_{p} \right] = \boldsymbol{\psi}_{p}^{T} \frac{1}{K_{M}(s)} \left[\boldsymbol{\omega}_{p} \right] - \frac{1}{K_{M}(s)} \left[\widehat{\boldsymbol{\psi}}_{p}^{T} \boldsymbol{\omega}_{p} \right] = \\ &= \left(\widetilde{\boldsymbol{\psi}}_{p}^{T} + \widehat{\boldsymbol{\psi}}_{p}^{T} \right) \frac{1}{K_{M}(s)} \left[\boldsymbol{\omega}_{p} \right] - \frac{1}{K_{M}(s)} \left[\widehat{\boldsymbol{\psi}}_{p}^{T} \boldsymbol{\omega}_{p} \right] = \widetilde{\boldsymbol{\psi}}_{p}^{T} \frac{1}{K_{M}(s)} \left[\boldsymbol{\omega}_{p} \right] + \widehat{\boldsymbol{\psi}}_{p}^{T} \frac{1}{K_{M}(s)} \left[\boldsymbol{\omega}_{p} \right] - \\ &- \frac{1}{K_{M}(s)} \left[\widehat{\boldsymbol{\psi}}_{p}^{T} \boldsymbol{\omega}_{p} \right] \end{split}$$

С учетом обозначения $\overline{\omega}_p = \frac{1}{K_M(s)} [\omega_p]$ перепишем полученный результат:

$$\varepsilon = \widetilde{\psi}_{p}^{T} \overline{\omega}_{p} + \widehat{\psi}_{p}^{T} \overline{\omega}_{p} - \frac{1}{K_{M}(s)} [\widehat{\psi}_{p}^{T} \omega_{p}]. \tag{8.1}$$

Введем в рассмотрение сигнал расширенной ошибки:

$$\hat{\varepsilon} = \varepsilon - \hat{\psi}_p^T \overline{\omega}_p + \frac{1}{K_M(s)} [\hat{\psi}_p^T \omega_p]. \tag{8.2}$$

Тогда с учетом (8.1) последнее равенство примет следующий вид:

$$\hat{\mathbf{\varepsilon}} = \widetilde{\mathbf{\Psi}}_p^T \overline{\mathbf{\omega}}_p. \tag{8.3}$$

Последнее выражение представляет собой статическую модель ошибки, на базе которой строится алгоритм адаптации (см. синтез алгоритма адаптации в работе N = 0)

$$\dot{\hat{\psi}}_p = \gamma \Gamma \frac{\bar{\omega}_p}{1 + \bar{\omega}_p^T \bar{\omega}_p} \hat{\varepsilon}, \tag{8.4}$$

 Γ де Γ определена выражением (7.11).

Таким образом, закон адаптивного управления состоит из настраиваемого регулятора (7.8), расширенной ошибки (8.2) и алгоритма адаптации (8.4). Алгоритм адаптации генерирует настраиваемые параметры регулятора, содержащиеся в векторе $\hat{\psi}_p^T = [\hat{\psi}^T, \hat{b}_m]$.

По аналогии с анализом устойчивости замкнутой системы, приведенным в Работе №6 для статической модели (6.4), введем в рассмотрение функцию Ляпунова $V = \widetilde{\psi}_p^T \widetilde{\psi}_p / 2\gamma$ и проанализируем ее производную с учетом (8.4)

$$\dot{V} = \frac{1}{\gamma} \tilde{\Psi}_{p}^{T} \dot{\tilde{\Psi}}_{p} = -\frac{1}{\gamma} \tilde{\Psi}_{p}^{T} \dot{\hat{\Psi}}_{p} = -\frac{\tilde{\Psi}_{p}^{T} \overline{\omega}_{p}}{1 + \overline{\omega}_{p}^{T} \overline{\omega}_{p}} \hat{\varepsilon} = -\frac{1}{1 + \overline{\omega}_{p}^{T} \overline{\omega}_{p}} \hat{\varepsilon}^{2} < 0.$$

Из последнего неравенства следует, что сигналы $\hat{\epsilon}$, $\hat{\psi}_p$ стремятся к нулю асимптотически. Далее, применяя к (8.2) Лемму о перестановке (см. Приложение В), получаем

$$\hat{\varepsilon} = \varepsilon - \hat{\psi}_{p}^{T} \overline{\omega}_{p} + \frac{1}{K_{M}(s)} \left[\hat{\psi}_{p}^{T} \omega_{p} \right] = \varepsilon - \hat{\psi}_{p}^{T} \overline{\omega}_{p} + \hat{\psi}_{p}^{T} \overline{\omega}_{p} -$$

$$-H_{KC}(s) \left[H_{KB}(s) \left[\omega_{p}^{T} \right] \dot{\psi}_{p} \right] = \varepsilon - H_{KC}(s) \left[H_{KB}(s) \left[\omega_{p}^{T} \right] \dot{\psi}_{p} \right].$$

$$(8.5)$$

В последнем выражении $H_{KC}(s) = C_K (Is - A_K)^{-1}$, $H_{KB}(s) = (Is - A_K)^{-1}b_K$ — передаточные матрицы, получаемые на основе модификации передаточной функции

$$\frac{1}{K_M(s)} = C_K (Is - A_K)^{-1} b_K,$$

которая рассчитывается на основе тройки матриц (A_K, b_K, C_K) — минимальной реализации передаточной функции $1/K_M(s)$.

-

 $^{^3}$ В алгоритм адаптации вводится нормирующий сомножитель $1/(1+\overline{\omega}_p^T\overline{\omega}_p)$ с целью ограничения скорости настройки параметров при неограниченном росте $\overline{\omega}_p$, что гарантирует стремление к нулю расширенной и сигнальной ошибок.

Так как $\hat{\epsilon}$, $\dot{\hat{\psi}}_p$ стремятся к нулю асимптотически, а передаточная функция $1/K_M(s)$ устойчива, то из выражения (8.5) следует сходимость ошибки управления ϵ к нулю асимптотически.

Таким образом, для любых начальных условий $y(0),...,y^{(n-1)}(0),\hat{\psi}_p(0)$ закон адаптивного управления обеспечивает следующие свойства в замкнутой системе [6, 7, 9, 13, 20]:

- С1. все сигналы в системе ограничены;
- С2. ошибка є стремится к нулю асимптотически;
- С3. параметрические ошибки $\widetilde{\psi}_p$ стремятся к нулю, если вектор $\overline{\omega}_p$ удовлетворяет условию неисчезающего возбуждения (3.14). Условие (3.14) в конечном итоге зависит от частотной насыщенности сигнала задания g, который должен содержать "достаточное" количество гармоник.

Порядок выполнения работы

1. На основе фильтров (7.2), (7.3), настраиваемого регулятора (7.8), алгоритма адаптации (8.4), расширенной ошибки (8.2) и данных, представленных в Таблице 8.1, построить стабилизирующее адаптивное управление (g=0). Начальное условие в алгоритме адаптации (8.4) $\hat{b}_m(0)=1$. Согласно вариантам заданий $m=1, \hat{b}_m\equiv \hat{b}_1, b_m\equiv b_1$.

Провести моделирование для трех различных коэффициентов γ . По результатам моделирования построить три графика. На первом графике отобразить выходную переменную y, на втором графике — управляющее воздействие u, на третьем — оценки параметров $\hat{\psi}_p$.

В ходе моделирования обеспечить искусственное ограничение (блок насыщения "Saturation" в пакете MatLab/Simulink) оценки \hat{b}_m с целью предотвращения деления на ноль в выражении (7.8). Значение нижнего порога насыщения величины \hat{b}_m в (7.8) принять равным 0,1.

2. На основе эталонной модели (7.5), фильтров (7.2), (7.3), настраиваемого регулятора (7.8), алгоритма адаптации (8.4) и данных, представленных в Таблице 8.1, построить следящий адаптивный регулятор.

Провести моделирование для трех различных коэффициентов γ . По результатам моделирования построить три графика моделирования. На первом графике отобразить выходную переменную y и ее желаемое

значение y_M , на втором графике — управляющее воздействие u , на третьем — оценки параметров $\hat{\psi}_p$.

3. По результатам моделирования сделать выводы.

Таблица 8.1. Варианты заданий

Bap.	ица о.1 Коэффі	. <u>Бариа</u> щиенты объекта	· ·	Параметры полинома $K_{\scriptscriptstyle M}(s)$		Параметр полинома $K(s)$	Сигнал задания $g(t)$	
	a_0	a_1	b_0	k_{M1}	k_{M0}	k_0		
1	0	0	1	2	1	1	$2sign(\cos t)$	
2	0	1	1	4	4	2	$\cos t + 3\sin 2t$	
3	0	2	1	6	9	3	$sign(\cos 2t)$	
4	1	2	1	8	16	4	$sign(\sin 0,5t)$	
5	2	3	1	10	25	5	$10\cos 0, 5t + 2\sin t$	
6	3	4	2	12	36	6	$sign(\sin 0,5t)$	
7	4	5	3	2	1	7	$0.5sign(\sin 0.7t)$	
8	0	2	4	4	4	8	$5\sin 0,5t + 4\cos 0,1t$	
9	2	3	4	6	9	9	$sign(\cos t)$	
10	3	4	5	8	16	10	$sign(\sin 2t)$	
11	4	5	5	10	25	1	$\sin 5t + 0, 5\cos 0, 2t$	
12	5	6	6	12	36	2	$2sign(\sin 0, 4t)$	
13	6	7	6	2	1	3	$3sign(\sin 0,5t)$	
14	4	4	2	4	4	4	$2\sin 0, 2t + \sin 0, 1t$	
15	6	5	2	6	9	5	$4sign(\cos 2t)$	
16	8	6	5	8	16	6	$3sign(\cos 0, 2t)$	
17	9	6	2	10	25	7	$sign(\sin 0.5t)$	
18	0	7	3	12	36	8	$0.8\sin 2t + \cos 0.8t$	
19	15	8	3	2	1	9	$sign(\sin 0,3t)$	
20	16	8	8	4	4	10	$7sign(\cos 0.9t)$	
21	9	6	9	6	9	1	$0, 4\sin 3t + \cos 0, 1t$	
22	5	6	8	8	16	2	$6sign(\sin 0,1t)$	
23	6	7	4	10	25	3	$2sign(\sin t)$	
24	4	4	4	12	36	4	$9\sin 0, 2t + 9\cos 0, 1t$	
25	6	5	1	2	1	5	$4sign(\sin 6t)$	
26	0	6	2	4	4	6	$4sign(\cos t)$	
27	1	7	8	6	9	7	$\sin 0.1t + \cos 5t$	
28			_	0	1.6	0	0 : (: 0 1)	
20	9	6	9	8	16	8	9 sign $(\sin 0,1t)$	
29	9 15	6 8	7	10	25	9	$\frac{9sign(\sin 0,1t)}{3sign(\sin 4t)}$	

Задачи и вопросы

- 1. С какой целью формируется расширенная ошибка?
- 2. Каким образом выбирается относительная степень функции H(s)?
- 3. Гарантируется ли асимптотическое стремление к нулю ошибок $\hat{\epsilon}$ и ϵ в алгоритме (8.2) (8.4)? Ответ пояснить.
- 4. Гарантируется ли экспоненциальное стремление к нулю ошибки ε в алгоритме (8.2) (8.4)? Ответ пояснить.
 - 5. Решить задачу адаптивного слежения для объекта вида

$$\dot{x} = \theta x + u,$$

$$y = x,$$

где θ — неизвестный параметр, величина y измеряется с помощью динамического сенсора

$$z = \frac{\beta}{s^2 + \alpha_1 s + \alpha_0} [y]$$

с известными положительными параметрами α_1 , α_0 , β . Доступны прямому измерению только величины z и u. Цель управления заключается в обеспечении целевого равенства (1.2).

6. Решить задачу адаптивного слежения для объекта вида

$$y = \frac{K}{Ts+1} [U],$$

где $K \ge K_0 > 0$, T — неизвестные параметры, величина U является выходом исполнительного механизма, модель которого задается уравнением вида

$$U = \frac{\beta}{s^2 + \alpha_1 s + \alpha_0} [u].$$

Параметры α_1 , α_0 , β предполагаются известными и положительными. Доступны прямому измерению только величины y и u. Цель управления заключается в обеспечении целевого равенства (1.2).

7. Решить задачу адаптивного слежения для объекта вида

$$\dot{x} = \theta x + U,$$

$$y = x,$$

где θ — неизвестный параметр, величина y измеряется с помощью динамического сенсора

$$z = \frac{\alpha}{s + \alpha} [y]$$

с известным положительным параметром α . Величина U является выходом исполнительного механизма, модель которого задается уравнением первого порядка:

$$U = \frac{\beta}{s+\beta} [u].$$

Параметр β является положительным и известным. Предполагается, что только переменные z и u доступны прямому измерению. Цель управления заключается в обеспечении целевого равенства (1.2).

8. С помощью метода расширенной ошибки решить задачу адаптивного слежения для объекта вида

$$\dot{x}_1 = x_2,$$

 $\dot{x}_2 = \theta_1 x_1 + \theta_2 x_2 + u,$
 $y = x_1,$

где $\theta_1 = 2$, $\theta_2 = 6$ — неизвестные параметры, величина y измеряется с помощью динамического сенсора

$$z = \frac{1}{3s+1} [y].$$

Предполагается, что доступны прямому измерению только переменные z и u. Цель управления заключается в обеспечении целевого равенства

$$\lim_{t\to\infty} (y_M - y) = 0,$$

где

$$y_M = \frac{1}{(s+1)^2} [\sin t + 0.5\cos 2t + 3].$$

Промоделировать работу замкнутой системы.

9. С помощью метода расширенной ошибки решить задачу адаптивного слежения для объекта вида

$$\dot{x}_1 = \theta_1 x_1 + x_2,$$

 $\dot{x}_2 = \theta_2 x_1 + u,$
 $y = x_1,$

где $\theta_1 = 1$, $\theta_2 = 8$ — неизвестные параметры, величина y измеряется с помощью динамического сенсора

$$z = \frac{1}{s+1} [y].$$

Предполагается, что доступны прямому измерению только переменные z и u. Цель управления заключается в обеспечении целевого равенства

$$\lim_{t\to\infty} (y_M - y) = 0,$$

где

$$y_M = \frac{1}{(s+1)^2} [\cos t + 2].$$

Промоделировать работу замкнутой системы.

10. С помощью метода расширенной ошибки решить задачу адаптивного слежения для объекта вида

$$\dot{x}_1 = \theta_1 x_1 + u,$$

 $\dot{x}_2 = \theta_2 x_2 + 4u,$
 $y = x_1,$

где $\theta_1 = 1$, $\theta_2 = 2$ — неизвестные параметры, величина y измеряется с помощью динамического сенсора

$$z = \frac{1}{s+1} [y].$$

Предполагается, что доступны прямому измерению только переменные z и u . Цель управления заключается в обеспечении целевого равенства

$$\lim_{t\to\infty} (y_M - y) = 0,$$

где

$$y_M = \frac{1}{(s+1)} \left[\cos t + 2 \right].$$

Промоделировать работу замкнутой системы.

Задачи и вопросы повышенной сложности

1. Построить алгоритм адаптации с расширенной ошибкой для статической модели вида

$$\varepsilon = d\widetilde{\Theta}^T \omega$$
,

где $d \ge d_0 > 0$ — неизвестный постоянный параметр, $\tilde{\theta} = \theta - \hat{\theta}$ — вектор параметрических ошибок, ω — вектор измеряемых функций.

2. Построить алгоритм адаптации с расширенной ошибкой для динамической модели с измеряемым выходом вида

$$\varepsilon = dH(s) \left[\widetilde{\Theta}^T \omega \right] ,$$

где $d \ge d_0 > 0$ — неизвестный постоянный параметр, $\tilde{\theta} = \theta - \hat{\theta}$ — вектор параметрических ошибок, ω — вектор измеряемых функций, H(s) — гурвицева передаточная функция.

3. Решить задачу адаптивного слежения для объекта вида

$$\dot{y} = \theta_1 \ y + \theta_2 u \,,$$

где $\theta_1,\ \theta_2 \ge \theta_0 > 0$ — неизвестные параметры. Величина y измеряется с помощью динамического сенсора

$$z = \frac{\beta}{s^2 + \alpha_1 s + \alpha_0} [y]$$

с известными положительными параметрами α_1 , α_0 , β . Доступны прямому измерению величины z и u. Цель управления заключается в обеспечении целевого равенства (1.2).

4. С помощью метода расширенной ошибки решить задачу синтеза адаптивного наблюдателя состояния для объекта вида

$$\dot{x} = \theta_1 x + \theta_2 u,$$

$$y = x,$$

где $\theta_1,\; \theta_2$ — неизвестные параметры, величина y измеряется с помощью динамического сенсора

$$z = \frac{\beta}{s^2 + \alpha_1 s + \alpha_0} [y]$$

с известными положительными параметрами α_1 , α_0 , β . Доступны прямому измерению величины z и u. Цель управления заключается в построении оценки \hat{x} такой, что

$$\lim_{t\to\infty} (x-\hat{x}) = 0.$$

5. Показать, что именно при нормировании регрессора $\overline{\omega}_p$ в выражении (8.4) гарантируется ограниченность всех сигналов в замкнутой системе управления (разбор статьи [11]).

Работа №9. АДАПТИВНОЕ УПРАВЛЕНИЕ ЛИНЕЙНЫМ ОБЪЕКТОМ ПО ВЫХОДУ НА ОСНОВЕ АЛГОРИТМА АДАПТАЦИИ ВЫСОКОГО ПОРЯДКА

Цель работы: освоение метода высокого порядка в задачах адаптивного управления по выходу.

Методические рекомендации. До начала работы студенты должны ознакомиться с алгоритмом адаптации высокого порядка [6, 7, 19] (в [19] принята терминология High order tuner) и его применением в задачах адаптивного управления линейными объектами. Работа основана на результатах работы №7 и является ее логическим продолжением.

Теоретические сведения. В системах адаптивного управления с расширенной ошибкой, представленной в работе №8, нормирующий сомножитель $1/(1+\overline{\omega}_p^T\overline{\omega}_p)$ в алгоритме адаптации (8.4) в общем случае замедляет скорость настройки параметров и, как следствие, ухудшает качество переходных процессов замкнутой системы. Для преодоления этой проблемы в [19] предложено альтернативное решение задачи адаптивного управления по выходу, которое основано на *алгоритме адаптации высокого порядка*.

Постановка задачи в настоящей работе идентична постановке задачи в работе №7 (и работе №8) за исключением дополнительного ограничения на неизвестный параметр: $b_{m} \in [b_{\min}, b_{\max}]$, где b_{\max}, b_{\min} — известные величины такие, что $b_{\max} > b_{\min} > 0$.

Решение задачи.

Перепишем модель ошибки (7.7) в следующем виде:

$$\varepsilon = \frac{b_m}{K_M(s)} \left[\frac{k_0}{b_m} g - \frac{\psi^T}{b_m} \omega - u \right]$$

ИЛИ

$$\varepsilon = \frac{b_m}{K_M(s)} \left[\psi_p^T \omega_p - u \right], \tag{9.1}$$

где $\psi_p^T = \left[\frac{\psi^T}{b_m}, \frac{k_0}{b_m}\right]$ — новый вектор неизвестных параметров, $\omega_p^T = \left[-\omega^T, g\right]$ — расширенный регрессор.

Выражение (9.1) позволяет ввести закон управления

$$u = K_M(s) \left[\hat{\psi}_p^T \overline{\omega}_p \right], \tag{9.2}$$

где $\overline{\omega}_p = \frac{1}{K_M(s)} \left[\omega_p \right]$ — фильтрованный регрессор. После подстановки (9.2) в (9.1) получаем

$$\varepsilon = \frac{b_m}{K_M(s)} \left[\psi_p^T \omega_p \right] - \frac{b_m}{K_M(s)} \left[K_M(s) \left[\hat{\psi}_p^T \overline{\omega}_p \right] \right] = \frac{b_m \psi_p^T}{K_M(s)} \left[\omega_p \right] - b_m \hat{\psi}_p^T \overline{\omega}_p$$

или

$$\varepsilon = b_m \tilde{\Psi}_n^T \overline{\omega}_n. \tag{9.3}$$

Главной особенностью формируемой схемы адаптивного регулятора является необходимость в формировании производных старшего порядка $\hat{\psi}_p^{(i)}, \overline{\omega}_p^{(i)}, i = \overline{0, n-m} \quad (n-m$ относительная степень объекта (7.1) и эталонной модели (7.5)), "скрытых" в настраиваемом регуляторе (9.2). Если производные $\overline{\omega}_p^{(i)}, i = \overline{0, n-m}$ доступны прямому измерению, т.е.

$$\overline{\omega}_p^{(i)} = \frac{s^i}{K_M(s)} \Big[\omega_p \Big], \tag{9.4}$$

то производные $\hat{\psi}_p^{(i)}$ требуют расчета, который невозможен с помощью алгоритма адаптации вида (7.11), (7.12) или (8.4). Действительно, алгоритм адаптации

$$\dot{\widehat{\Psi}}_{p} = \gamma \overline{\omega}_{p} \, \varepsilon, \tag{9.5}$$

мотивированный моделью ошибки (9.3) (анализ модели вида (9.3) представлен в работе №6), позволяет рассчитать $\hat{\psi}_p$, $\dot{\hat{\psi}}_p$ и соответственно реализовать систему управления объектом с единичной относительной степенью с использованием полинома $K_M(s)$ первого порядка.

Так, например, если n-m=1 и

$$K_M(s) = s + 1,$$

то закон управления (9.2), представленный с учетом (9.5) как

$$u = (s+1) \left[\hat{\psi}_{p}^{T} \overline{\omega}_{p} \right] = \dot{\psi}_{p}^{T} \overline{\omega}_{p} + \hat{\psi}_{p}^{T} \dot{\overline{\omega}}_{p} + \hat{\psi}_{p}^{T} \overline{\omega}_{p} =$$

$$= \gamma \overline{\omega}_{p}^{T} \varepsilon \overline{\omega}_{p} + \hat{\psi}_{p}^{T} \frac{s}{s+1} \left[\omega_{p} \right] + \hat{\psi}_{p}^{T} \overline{\omega}_{p} = \gamma \overline{\omega}_{p}^{T} \overline{\omega}_{p} \varepsilon + \hat{\psi}_{p}^{T} \omega_{p},$$

физически реализуем.

При n-m>1 алгоритм адаптации (9.5) не позволяет получить старшие производные вектора настраиваемых параметров $\hat{\psi}$. Например, если

$$K_M(s) = s^2 + 2s + 1$$
,

то соответствующее управление

$$u = (s^{2} + 2s + 1) \left[\hat{\psi}_{p}^{T} \overline{\omega}_{p} \right] = (\ddot{\psi}_{p}^{T} \overline{\omega}_{p} + 2\dot{\psi}_{p}^{T} \dot{\overline{\omega}}_{p} + \hat{\psi}_{p}^{T} \ddot{\overline{\omega}}_{p}) + 2(\dot{\psi}_{p}^{T} \overline{\omega}_{p} + \hat{\psi}_{p}^{T} \dot{\overline{\omega}}_{p}) + \hat{\psi}_{p}^{T} \omega_{p}$$

не реализуемо из-за отсутствия механизма вычисления $\ddot{\hat{\psi}}_{p}$.

В этом случае предлагается следующий алгоритм адаптации высокого порядка:

$$\begin{cases}
\dot{\hat{\theta}}_{i} = \overline{\omega}_{pi} \varepsilon, \\
\dot{\eta}_{i} = (1 + \mu \overline{\omega}_{p}^{T} \overline{\omega}_{p}) (\overline{A} \eta_{i} + \overline{b} \hat{\theta}_{i}), \\
\dot{\psi}_{pi} = \overline{C} \eta_{i},
\end{cases} (9.6)$$

где $\overline{\omega}_{pi}$, $\hat{\psi}_{pi}$, $i=\overline{1,2n}$ — i-й элемент вектора $\overline{\omega}_{p}$ и вектора $\hat{\psi}_{p}$ соответственно, $\mu > n \Big(b_{\max} \left\| \overline{C} \right\| + \left\| P \overline{A}^{-1} \overline{b} \right\| \Big)^2$ — постоянная величина, $P = P^T \succ 0$ — решение уравнения Ляпунова $\overline{A}^T P + P \overline{A} = -2I$, $(\overline{C}, \overline{A}, \overline{b})$ — тройка матриц, представляющая минимальную реализацию передаточной функции

$$\frac{\overline{\alpha}(0)}{\overline{\alpha}(s)} = \overline{C}(Is - \overline{A})^{-1}\overline{b}$$

с относительной степенью n-m-1, гурвицевым нормированным полиномом $\overline{\alpha}(s)$ степени n-m-1.

Отметим, что тройка $(\bar{C}, \bar{A}, \bar{b})$ обладает следующим важным для дальнейших расчетов структурным свойством линейной системы с относительной степенью n-m-1:

$$\overline{CA}^{i-1}\overline{b} = 0, \ i = \overline{1, n-m-2},$$

$$\overline{CA}^{-1}\overline{b} = -1.$$
(9.7)

Приведенные равенства позволяют на основе алгоритма (9.6) получить первые n-m производных настраиваемых параметров $\hat{\psi}_p$ [7, 19].

Рассмотрим пример расчета производных настраиваемых параметров для случая n-m=2 ($\bar{A},\bar{b}\,,\bar{C}$ скалярные):

$$\dot{\hat{\psi}}_{pi} = \bar{C}\dot{\eta}_{i} = \bar{C}(1 + \mu \bar{\omega}_{p}^{T} \bar{\omega}_{p})(\bar{A}\eta_{i} + \bar{b}\hat{\theta}_{i})$$

$$\ddot{\hat{\psi}}_{pi} = 2\bar{C}\mu \bar{\omega}_{p}^{T} \dot{\bar{\omega}}_{p}(\bar{A}\eta_{i} + \bar{b}\hat{\theta}_{i}) + \bar{C}(1 + \mu \bar{\omega}_{p}^{T} \bar{\omega}_{p})(\bar{A}\dot{\eta}_{i} + \bar{b}\dot{\hat{\theta}}_{i}) =$$

$$= 2\bar{C}\mu \bar{\omega}_{p}^{T} \dot{\bar{\omega}}_{p}(\bar{A}\eta_{i} + \bar{b}\hat{\theta}_{i}) + \bar{C}\bar{A}(1 + \mu \bar{\omega}_{p}^{T} \bar{\omega}_{p})^{2}(\bar{A}\eta_{i} + \bar{b}\hat{\theta}_{i}) +$$

$$+\bar{C}(1 + \mu \bar{\omega}_{p}^{T} \bar{\omega}_{p})\bar{b}\bar{\omega}_{pi}\varepsilon.$$
(9.8)

Для анализа свойств замкнутой системы с алгоритмом адаптации (9.6) выберем функцию Ляпунова

$$V = \frac{1}{2} \sum_{i=1}^{2n} z_i^T P z_i + \frac{b_m}{2} \sum_{i=1}^{2n} \tilde{\theta}_i^2,$$
 (9.9)

в которой переменные z_i и $\tilde{\psi}_{pi}$ определены следующим равенствами:

$$z_i = \eta_i + \overline{A}^{-1} \overline{b} \,\hat{\theta}_i, \tag{9.10}$$

$$\tilde{\theta}_i = \psi_{pi} - \hat{\theta}_i, \ i = \overline{1, 2n}. \tag{9.11}$$

Перед расчетом производной функции Ляпунова проведем предварительные вычисления.

1. Дифференцирование (9.10) и (9.11) с учетом (9.6) дает следующие выражения:

$$\dot{z}_i = (1 + \mu \overline{\omega}_p^T \overline{\omega}_p) \overline{A} z_i + \overline{A}^{-1} \overline{b} \overline{\omega}_{pi} \varepsilon, \ i = \overline{1, 2n}. \tag{9.12}$$

$$\dot{\tilde{\theta}}_{i} = -\overline{\omega}_{ni}\varepsilon, \ i = \overline{1,2n}. \tag{9.13}$$

2. Выражая η_i через уравнение (9.10) с учетом (9.7), запишем $\hat{\psi}_{pi}$ как

$$\hat{\Psi}_{ni} = \overline{C}z_i - \overline{C}\overline{A}^{-1}\overline{b}\,\hat{\theta}_i = \overline{C}z_i + \hat{\theta}_i, \ i = \overline{1,2n}. \tag{9.14}$$

3. Складывая равенства (9.11) и (9.14), имеем:

$$\tilde{\theta}_i = \psi_{pi} - \hat{\psi}_{pi} + \overline{C}z_i = \tilde{\psi}_{pi} + \overline{C}z_i, \ i = \overline{1, 2n}. \tag{9.15}$$

С учетом предварительных результатов (9.12), (9.13), (9.15) проанализируем производную функции Ляпунова (9.9) по времени:

$$\begin{split} \dot{V} &= \frac{1}{2} \sum_{i=1}^{2n} \left\{ z_i^T (1 + \mu \overline{\omega}_p^T \overline{\omega}_p) (\overline{A}^T P + P \overline{A}) z_i + (\overline{b}^T \overline{A}^{-T} P z_i + z_i^T P \overline{A}^{-1} \overline{b}) \overline{\omega}_{pi} \varepsilon \right\} - \\ b_m \sum_{i=1}^{2n} \tilde{\theta}_i \overline{\omega}_{pi} \varepsilon &= -\sum_{i=1}^{2n} (1 + \mu \overline{\omega}_p^T \overline{\omega}_p) \|z_i\|^2 + \sum_{i=1}^{2n} z_i^T P \overline{A}^{-1} \overline{b} \overline{\omega}_{pi} \varepsilon - b_m \sum_{i=1}^{2n} (\widetilde{\psi}_{pi} + \overline{C} z_i) \overline{\omega}_{pi} \varepsilon \leq \\ &- \sum_{i=1}^{2n} \|z_i\|^2 - \sum_{i=1}^{2n} \mu \overline{\omega}_{pi}^2 \|z_i\|^2 + \sum_{i=1}^{2n} \|z_i\| \|\overline{\omega}_{pi} \|\varepsilon\| \|P \overline{A}^{-1} \overline{b}\| - \varepsilon^2 - b_m \sum_{i=1}^{2n} \overline{C} \|z_i\| \|\overline{\omega}_{pi} \|\varepsilon\| \leq \\ &- \sum_{i=1}^{2n} \|z_i\|^2 - \frac{\varepsilon^2}{2} - \sum_{i=1}^{2n} \left\{ \mu \overline{\omega}_{pi}^2 \|z_i\|^2 - \left(b_m \|\overline{C}\| + \|P \overline{A}^{-1} \overline{b}\| \right) \|z_i\| \|\overline{\omega}_{pi} \|\varepsilon\| + \frac{\varepsilon^2}{4n} \right\}. \end{split}$$
 Если μ выбрано из условия $\mu > n \left(b_{\max} \|\overline{C}\| + \|P \overline{A}^{-1} \overline{b}\| \right)^2$, то
$$\dot{V} \leq - \sum_{i=1}^{2n} \|z_i\|^2 - \frac{\varepsilon^2}{2} - \sum_{i=1}^{2n} \left\{ \frac{\varepsilon}{2\sqrt{n}} - \sqrt{n} \left(b_{\max} \|\overline{C}\| + \|P \overline{A}^{-1} \overline{b}\| \right) |\overline{\omega}_{pi} \|z_i\| \right\}^2 \leq \\ &- \sum_{i=1}^{2n} \|z_i\|^2 - \frac{\varepsilon^2}{2} \leq 0 \end{split}$$

Таким образом, закон адаптивного управления состоит из настраиваемого регулятора (9.3) и алгоритма адаптации (9.6), которые обеспечивают в замкнутой системе ограниченность всех сигналов и выполнение целевого равенства (7.6).

Отметим, что в отличие от алгоритма адаптации с расширенной ошибкой (8.4) алгоритм адаптации с расширенной ошибкой (9.6) не содержит нормирующего множителя, в результате чего скорость настройки регулятора не будет снижена при увеличении амплитуды регрессора $\overline{\omega}_p$. С другой стороны, предложенное альтернативное решение требует знания верхней границы параметра объекта b_m .

Порядок выполнения работы

1. На основе фильтров (7.2), (7.3), настраиваемого регулятора (9.3), алгоритма адаптации (9.6), производных настраиваемых параметров (9.8) и данных, представленных в Таблице 8.1, построить стабилизирующее адаптивное управление (g=0). Начальное условие в алгоритме адаптации (9.6) $\hat{\psi}_{p,2n}^T(0) = 1$.

Провести моделирование для трех различных коэффициентов μ . По результатам моделирования построить три графика. На первом графике отобразить выходную переменную y, на втором графике — управляющее воздействие u, на третьем — оценки параметров $\hat{\psi}_n$.

2. На основе эталонной модели (7.5), фильтров (7.2), (7.3), настраиваемого регулятора (9.3), алгоритма адаптации (9.6), производных настраиваемых параметров (9.8) и данных, представленных в Таблице 8.1, построить следящий адаптивный регулятор. Сигнал задания g(t) взять из Таблицы 8.1.

Провести моделирование для трех различных коэффициентов μ . По результатам моделирования построить три графика моделирования. На первом графике отобразить выходную переменную y и ее желаемое значение y_M , на втором графике — управляющее воздействие u, на третьем — оценки параметров $\hat{\psi}_n$.

3. По результатам моделирования сделать выводы.

Задачи и вопросы

- 1. Сравнить достоинства и недостатки алгоритма адаптации высокого порядка (9.6) и алгоритма адаптации с расширенной ошибкой (8.4).
- 2. Сравнить динамические порядки (количество интегралов при реализации) алгоритмов адаптивного управления с алгоритмом адаптации высокого порядка (9.6) и с алгоритмом адаптации с расширенной ошибкой (8.4) для одного и того же порядка объекта.
 - 3. Для чего в выражении (9.6) используется коэффициент µ?
- 4. Требуется ли нормирующий сомножитель в алгоритме адаптации высокого порядка (9.6)?
- 5. Обеспечивает ли алгоритм высокого порядка устойчивость замкнутой системы при неустойчивом объекте?
 - 6. Решить задачу адаптивного слежения для объекта вида

$$\dot{x} = \theta x + u,$$

$$y = x,$$

где θ — неизвестный параметр. Величина y измеряется с помощью динамического сенсора

$$z = \frac{\beta}{\alpha_2 s^2 + \alpha_1 s + 1} [y]$$

с известными положительными параметрами α_1 , α_2 , β . Доступны прямому измерению только величины z и u. Цель управления заключается в обеспечении целевого равенства (1.2).

7. Решить задачу адаптивного управления скоростью *у* для двигателя постоянного тока с моделью

$$y = \frac{K}{s+a} [U],$$

в которой $K \ge K_0 > 0$, a — неизвестные параметры, величина U — напряжение на выходе усилителя мощности, модель которого задается уравнением вида

$$U = \frac{\beta}{\alpha_2 s^2 + \alpha_1 s + 1} [u].$$

Параметры α_1 , α_2 , β предполагаются известными и положительными. Доступны прямому измерению только величины y и u. Цель управления заключается в обеспечении целевого равенства (1.2).

8. С помощью предложенного в работе метода решить задачу адаптивного слежения для объекта вида

$$\dot{x}_1 = x_2,$$

 $\dot{x}_2 = \theta_1 x_1 + \theta_2 x_2 + u,$
 $y = x_1,$

где $\theta_1 = 3$, $\theta_2 = 4$ — неизвестные параметры, величина y измеряется с помощью динамического сенсора

$$z = \frac{3}{s+2} [y].$$

Предполагается, что доступны прямому измерению только переменные z и u . Цель управления заключается в обеспечении целевого равенства

$$\lim_{t\to\infty} (y_M - y) = 0,$$

где

$$y_M = \frac{1}{(s+1)^2} [2\cos 3t + 4\sin t + 1].$$

Промоделировать работу замкнутой системы.

9. С помощью предложенного в работе метода решить задачу адаптивного слежения для объекта вида

$$\dot{x}_1 = \theta_1 x_1 + x_2,$$

 $\dot{x}_2 = \theta_2 x_1 + 2u,$
 $y = x_1,$

где $\theta_1 = 1$, $\theta_2 = 3$ — неизвестные параметры, величина y измеряется с помощью динамического сенсора

$$z = \frac{1}{s+1} [y].$$

Предполагается, что доступны прямому измерению только переменные z и u . Цель управления заключается в обеспечении целевого равенства

$$\lim_{t\to\infty} (y_M - y) = 0,$$

где

$$y_M = \frac{1}{(s+1)^2} [\sin 2t + 6].$$

Промоделировать работу замкнутой системы.

10. С помощью предложенного в работе метода решить задачу адаптивного слежения для объекта вида

$$\dot{x}_1 = \theta_1 x_1 + u,$$

$$\dot{x}_2 = \theta_2 x_2 + 3u,$$

$$y = x_1,$$

где $\theta_1 = 1$, $\theta_2 = 5$ — неизвестные параметры, величина y измеряется с помощью динамического сенсора

$$z = \frac{1}{s+1} [y].$$

Предполагается, что доступны прямому измерению только переменные z и u. Цель управления заключается в обеспечении целевого равенства

$$\lim_{t\to\infty} (y_M - y) = 0,$$

где

$$y_M = \frac{1}{\left(s+1\right)} \left[\cos 3t + 4\right].$$

Промоделировать работу замкнутой системы.

Задачи и вопросы повышенной сложности

- 1. Объяснить назначение переменных z_i из выражения (9.10).
- 2. Решить задачу адаптивного управления с использованием алгоритма адаптации высокого порядка для класса нелинейных объектов вида

$$\dot{x} = A_0 x + b_0 \left(\theta^T \varphi(x) + u \right),$$

$$y = C_0 x,$$

где y, u — выходная и входная переменные соответственно, $x \in \mathbb{R}^n$ — измеряемый вектор состояния, A_0, b_0, C_0 — известные матрицы соответствующих размерностей, $\theta \in \mathbb{R}^m$ — вектор неизвестных параметров, $\phi(x)$ — известная достаточно гладкая функция. Относительная степень объекта ρ . Цель задачи определяется равенством (7.6), в котором y_M генерируется эталонной моделью порядка ρ .

- 3. Привести дискретную версию закона управления с алгоритмом адаптации высокого порядка для управления дискретным объектом. Проанализировать и доказать свойства замкнутой системы.
- 4. Привести робастную схему алгоритма адаптации высокого порядка с нелинейной статической обратной связью. Проанализировать и доказать свойства замкнутой системы.
- 5. Привести робастную схему алгоритма адаптации высокого порядка с параметрической обратной связью. Проанализировать и доказать свойства замкнутой системы.

Работа №10. СИНТЕЗ НАБЛЮДАТЕЛЯ СОСТОЯНИЯ МОДЕЛИ ГЕНЕРАТОРА ВНЕШНЕГО ВОЗДЕЙСТВИЯ

Цель работы: освоение процедуры синтеза наблюдателя состояния модели генератора внешнего воздействия.

Методические рекомендации. До начала работы студенты должны ознакомиться с подходом построения редуцированных наблюдателей [4, 5] и принципом параметризации выходной переменной линейного объекта (см. работу \mathbb{N}° 5).

Теоретические сведения.

Постановка задачи. Рассмотрим возмущенный объект управления вида

$$\dot{x} = Ax + bu + df, \quad x(0)$$

$$y = Cx,$$
(10.1)

где $x \in \mathbb{R}^n$ — измеряемый вектор состояния, u, y — измеряемые вход и выход объекта, A, b, C, d — известные матрицы соответствующих размерностей, f — неизмеряемое возмущение. Предполагается, что возмущение может быть промоделировано как выход автономного генератора

$$f^{(r)} + l_{r-1}f^{(r-1)} + l_{r-2}f^{(r-2)} + \dots + l_0f = 0,$$
 (10.2)

 $f^{(i)}(0), i = \overline{0, r-1},$ где $l_i, i = \overline{0, r-1}$ — неизвестные параметры модели.

Требуется на основе измерения u и x построить оценку \hat{f} такую, что

$$\lim_{t\to\infty} (f-\hat{f}) = 0.$$

Решение задачи. На основе принципа параметризации выходной переменной объекта, изложенного в работе №5, представим величину f в следующей форме:

$$f = \left(k_{f\,r-1} - l_{r-1}\right) \frac{s^{r-1}}{K_{f}(s)} [f] + \left(k_{f\,r-2} - l_{r-2}\right) \frac{s^{r-2}}{K_{f}(s)} [f] + \dots + \left(k_{f\,0} - l_{0}\right) \frac{1}{K_{f}(s)} [f]$$

или

$$f = \theta_f^T \xi_f, \tag{10.3}$$

где

$$\theta_f^T = [k_{f0} - l_0, k_{f1} - l_1, ..., k_{fr-1} - l_{r-1}],$$

$$\xi_f^T = \left[\frac{1}{K_f(s)} [f], \frac{s}{K_f(s)} [f], ..., \frac{s^{n-1}}{K_f(s)} [f] \right].$$

Вектор ξ_f является вектором состояния фильтра

$$\dot{\xi}_f = A_{0f} \xi_f + b_{0f} f, \qquad (10.4)$$

где

$$A_{0f} = \begin{bmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & 1 \\ -k_{f0} & -k_{f1} & \cdots & -k_{fr-1} \end{bmatrix}, b_{0f} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

— известные матрицы.

Так как вход фильтра f неизмеряемый, то вектор состояния ξ_f не доступен прямому измерению, в связи с чем возникает необходимость в его оценке. В [7] предложена следующая структура наблюдателя вектора ξ_f :

$$\hat{\xi}_f = \eta + Nx, \qquad (10.5)$$

$$\dot{\eta} = A_{0f} \eta + (A_{0f} N - NA)x - Nbu,$$
 (10.6)

где матрица N находится из равенства

$$Nd = b_{0f}$$
.

Для доказательства сходимости оценки $\hat{\xi}_f$ к неизмеряемому вектору ξ_f сформируем ошибку наблюдения $e=\xi_f-\hat{\xi}_f$ и рассчитаем ее производную по времени с учетом (10.1), (10.4), (10.5), (10.6):

$$\dot{e} = \dot{\xi}_{f} - \dot{\hat{\xi}}_{f} = A_{0f}\xi_{f} + b_{0f}f - \dot{\eta} - N\dot{x} = A_{0f}\xi_{f} + b_{0f}f - A_{0f}\eta - (A_{0f}N - NA)x + Nbu - NAx - Nbu - Ndf = A_{0f}\xi_{f} - A_{0f}\hat{\xi}_{f} = A_{0f}e.$$

В итоге имеем:

$$\dot{e} = A_{0f} e ,$$

откуда в силу гурвицевости матрицы A_{0f} следует экспоненциальная сходимость ошибки e к нулевому вектору.

На основе соотношения (10.3) и наблюдателя (10.5), (10.6) формируется оценка выходной переменной генератора внешнего воздействия:

$$\hat{f} = \theta_f^T \hat{\xi}_f. \tag{10.7}$$

Выражение (10.7) является результатом линейной параметризации по параметрам θ_f оценки внешнего сигнала \hat{f} и позволяет в дальнейшем обеспечить компенсацию величины f в задачах адаптивного управления в том случае, когда параметры θ_f будут неизвестными.

Порядок выполнения работы

1. На основе данных, приведенных в Таблице 10.1, построить модель генератора возмущения, рассчитать параметры вектора θ_f , найти матрицу N и построить наблюдатель внешнего воздействия.

Провести моделирование наблюдателя в программе Simulink, по результатам которого построить два графика. На одном графике построить сигналы f и \hat{f} , на другом — ξ_f и $\hat{\xi}_f$. В качестве входного сигнала взять $u=4\sin t+2\cos 2t$.

- 2. Повторить эксперимент п.п. 1 для u = 1.
- 3. Повторить эксперимент п.п. 1 при увеличенных значениях коэффициентов (k_{f1} в 10 раз, k_{f0} в 100 раз).
 - 4. По результатам моделирования сделать выводы.

Таблица 10.1. Варианты заданий

Bap.	Коэффициенты модели объекта			Функция возмущающего	Коэффициенты полинома $\pmb{K}_f(s)$	
	a_0	a_1	b_0	воздействия f	k_{f1}	k_{f0}
1	1	1	1	sin t	0,2	0,01
2	2	1	1	$\cos 2t$	$\sqrt{0,02}$	0,01
3	3	1	1	$\sin(3t+2)$	0,4	0,04
4	4	1	1	$\cos(t+1)$	$\sqrt{0,08}$	0,04
5	5	1	1	$2\sin t$	0,6	0,09
6	1	2	1	$3\cos 4t$	$\sqrt{0,18}$	0,09
7	2	2	1	$4\sin(t+1)$	0,8	0,16
8	3	2	1	$10\cos\left(8t+1\right)$	$\sqrt{0,32}$	0,16
9	4	2	2	$2\sin t$	1	0,25
10	5	2	2	$5\cos 3t$	$\sqrt{0,5}$	0,25
11	1	3	2	$2\sin\left(8t+1\right)$	1,2	0,36

12	2	3	2	$6\cos(3t+3)$	$\sqrt{0,72}$	0,36
13	3	3	2	15 sin 9 <i>t</i>	1,6	0,64
14	4	3	2	$7\cos 3t$	$\sqrt{1,28}$	0,64
15	5	3	2	$9\sin\left(t+0,5\right)$	2	1
16	1	4	3	$0.5\cos(t+1)$	$\sqrt{2}$	1
17	2	4	3	3 sin 5 <i>t</i>	4	4
18	3	4	3	$4\cos 8t$	$2\sqrt{2}$	4
19	4	4	3	$7\sin(9t+2,5)$	6	9
20	5	4	3	$5\cos(5t+1,5)$	$3\sqrt{2}$	9
21	1	5	3	$20\sin t$	8	16
22	2	5	4	$2\cos 2t$	$4\sqrt{2}$	16
23	3	5	4	$8\sin\left(3t+0,5\right)$	1	0,25
24	4	5	4	$10\cos(2t+1)$	$\sqrt{0,5}$	0,25
25	5	5	4	12 sin 3 <i>t</i>	1,2	0,36
26	1	6	4	6 cos 5 t	$\sqrt{0,72}$	0,36
27	2	6	5	$8\sin(t+1)$	1,6	0,64
28	3	6	5	$8\cos(6t+2)$	$\sqrt{1,28}$	0,64
29	4	6	5	$\sin 3t$ 2		1
30	5	6	5	$9\cos 4t$	$\sqrt{2}$	1

Задачи и вопросы

1. Для объекта

$$\begin{cases} \dot{x} = -6x + u + 2f \\ y = x \end{cases}$$

построить параметризованное представление неизмеряемого внешнего воздействия f, если известно, что f является выходом линейной модели автономного генератора не выше второго порядка. Измерению доступны величины y и u.

- 2. Каким образом управляющий сигнал u влияет на ошибку наблюдения e?
- 3. Каким образом можно ускорить сходимость вектора $\hat{\xi}_f$ к вектору ξ_f ?
- 4. Какие из ниже перечисленных функций f можно восстановить с помощью наблюдателя (10.5)-(10.7):

6)
$$f = e^{-t} \sin 2t$$
; e) $f = e^{-t^2}$;
B) $f = te^{-t}$; $\pm t \sin 2t$;

Ответ пояснить.

- 5. Восстанавливает ли наблюдатель (10.5)-(10.7) неограниченные внешние воздействия? Ответ пояснить.
- 6. Восстанавливает ли наблюдатель (10.5)-(10.7) ограниченные внешние воздействия, действующие на неустойчивый объект? Ответ пояснить.
 - 7. Для объекта

$$y = \frac{K}{Ts+1}[u+f],$$

построить параметризованное представление неизмеряемого внешнего воздействия $f = A \sin \omega t$. Параметры K, T предполагаются положительными и известными. Параметры A, ω неизвестны. Измерению доступны величины y и u.

8. Для объекта

$$y = \frac{5}{s^2 + s + 1}[u + 2f],$$

построить параметризованное представление неизмеряемого внешнего воздействия $f = A \sin \omega t$. Параметры A = 4, $\omega = 1$ неизвестны. Измерению доступны величины y, \dot{y} и u.

Сравнить в программе Simulink функцию f и ее оценку \hat{f} , приняв $u=5\cos 2t$.

9. Для объекта, структурная схема которого представлена на рис. 10.1, построить параметризованное представление неизмеряемого внешнего воздействия f.

Рис.10.1 Иллюстрация к задаче №9

Параметры A=5, $\omega=1$ неизвестны. Измерению доступны только величины у и u .

Сравнить в программе $\mathit{Simulink}$ функцию f и ее оценку \hat{f} , приняв $u=10\cos 3t$.

10. При каких матрицах d приведенное в работе решение задачи наблюдения неприменимо? Ответ пояснить.

Работа № 11. АДАПТИВНАЯ КОМПЕНСАЦИЯ ВНЕШНЕГО ВОЗМУЩЕНИЯ

Цель работы: освоение принципа адаптивной компенсации возмущения на примере решения задачи стабилизации многомерного линейного объекта.

Методические рекомендации. До начала работы студенты должны ознакомиться с подходом построения наблюдателей внешних воздействий, приведенным в работе №10, и методом компенсации возмущений на базе принципа внутренней модели [4, 5, 7].

Теоретические сведения.

Постановка задачи. Рассмотрим задачу компенсации внешнего возмущения, действующего на объект

$$\dot{x} = Ax + bu + df, \quad x(0)$$

$$y = Cx,$$
(11.1)

где $x \in \mathbb{R}^n$ — измеряемый вектор состояния, u, y — измеряемые вход и выход объекта, A, b, C, d — известные матрицы соответствующих размерностей, f — неизмеряемое мультисинусоидальное возмущение с априори неизвестными амплитудами, частотами и фазами гармоник. Предполагается, что f моделируется с помощью автономного генератора (10.2) — однородного дифференциального уравнения с неизвестными начальными условиями и неизвестными коэффициентами. Корни характеристического полинома модели (10.2) являются чисто мнимыми и некратными.

Примем допущение, что сигналы u и f согласованы и $b = d^4$.

Цель задачи заключается в построении управления, компенсирующего неизвестное возмущение так, чтобы

$$\lim_{t \to \infty} ||x(t)|| = 0. \tag{11.2}$$

Решение задачи. Воспользуемся решением задачи параметризации сигнала возмущения, приведенном в работе №10. С помощью наблюдателя (10.5)-(10.7), в котором матрица N находится из равенства $Nb = b_{0f}$, представим объект (11.1) в следующей форме:

$$\dot{x} = Ax + b\left(u + \theta_f^T \hat{\xi}_f\right), \quad x(0). \tag{11.3}$$

⁴ Допущение согласования возмущения и управляющего воздействия принято для наиболее простого пояснения принципа компенсации.

Далее, используя метод непосредственной компенсации, построим стабилизирующее управление в виде

$$u = -Kx - \hat{\theta}_f^T \hat{\xi}_f, \qquad (11.4)$$

где K — матрица линейных обратных стационарных связей такая, что матрица замкнутой системы $A_M = A - bK$ гурвицева и рассчитывается методом модального управления [4, 5], $\hat{\theta}_f$ — вектор оценки θ_f .

Подставляя (11.4) в (11.3), получаем динамическую модель ошибок с измеряемым состоянием:

$$\dot{x} = A_M x + b \tilde{\theta}_f^T \hat{\xi}_f \,, \tag{11.5}$$

где $\tilde{\theta}_f = \theta_f^T - \hat{\theta}_f^T$ — вектор параметрических ошибок. Структура модели (11.5) позволяет сформировать алгоритм адаптации вида (см. принцип построения алгоритма адаптации в работе №3)

$$\dot{\hat{\theta}} = \gamma \hat{\xi}_f b^T P x , \qquad \hat{\theta}(0) = 0 , \qquad (11.6)$$

где P — симметричная положительно определенная матрица, являющаяся решением уравнения Ляпунова:

$$A_M^T P + P A_M = -Q, (11.7)$$

где Q — произвольно выбранная симметричная положительно определенная матрица.

Свойства алгоритма адаптации (11.6) аналогичны свойствам алгоритма (3.13).

Порядок выполнения работы

1. Используя данные из Таблицы 11.1, проверить объект (11.1) на предмет управляемости. Построить матрицу линейных обратных стационарных связей K с помощью метода модального управления [4, 5]. Матрица K может быть найдена как

$$K = HM^{-1}$$
,

где H — матрица, выбранная из условия полной наблюдаемости пары $(A_{\mathcal{H}}, H)$, M находится из решения уравнения Сильвестра:

$$AM - MA_{\mathcal{H}} = bH$$
.

Матрица A_{∞} определяет желаемое качество поведения системы при отсутствии возмущения, представляется, как правило, в каноническом

управляемом базисе и составляется из коэффициентов стандартного полинома (например, Ньютона или Баттерворта):

$$A_{\infty} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \\ -\omega_0^n & -C_1\omega_0^{n-1} & -C_2\omega_0^{n-2} & \cdots & -C_{n-1}\omega_0 \end{bmatrix},$$

где C_i , $i=\overline{1,n-1}$ — коэффициенты стандартного полинома, выбираемые на основе максимального перерегулирования, ω_0 — среднегеометрический корень, рассчитываемый как

$$\omega_0 = \frac{t_n^*}{t_n},$$

где t_n — желаемое время переходного процесса, задаваемое в Таблице 11.1, t_n^* — нормированное время переходного процесса.

- 2. На основе данных, приведенных в Таблице 10.1, и результатов выполнения работы №10 построить наблюдатель вектора состояния модели возмущения $\hat{\xi}_f$ (10.5), (10.6).
- 3. Построить и промоделировать замкнутую систему с адаптивным компенсирующим управлением (11.4), (11.6). Для двух различных коэффициентов адаптации γ построить два графика. На первом графике представить компоненты вектора x, на втором графике управляющее воздействие u.
 - 4. По результатам моделирования сделать выводы.

Таблица 11.1. Варианты заданий

Bap.	Матрица <i>А</i>	Матрица <i>b</i>	Время переходного процесса, t_n	Максимальное перерегулирование, $\overline{\sigma}$, %
1	$\begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	0,16	0
2	$\begin{bmatrix} 2 & 8 \\ 3 & 6 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$	0,3	0
3	$\begin{bmatrix} 0 & 3 \\ 4 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 2 \end{bmatrix}$	0,9	0
4	$\begin{bmatrix} 3 & 1 \\ 1 & 4 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 4 \end{bmatrix}$	0,2	0
5	$\begin{bmatrix} 4 & 1 \\ -2 & 5 \end{bmatrix}$	$\begin{bmatrix} 5 \\ 1 \end{bmatrix}$	0,6	0
6	$\begin{bmatrix} 5 & -4 \\ 9 & -1 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 6 \end{bmatrix}$	0,3	0
7	$\begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$	$\begin{bmatrix} 3 \\ 1 \end{bmatrix}$	0,7	0
8	$\begin{bmatrix} 3 & -1 \\ -2 & 2 \end{bmatrix}$	$\begin{bmatrix} 8 \\ 8 \end{bmatrix}$	0,1	0
9	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 4 \end{bmatrix}$	0,9	0
10	$\begin{bmatrix} 4 & 1 \\ 0 & 9 \end{bmatrix}$	$\begin{bmatrix} -1 \\ 3 \end{bmatrix}$	3,5	15
11	$\begin{bmatrix} 7 & -4 \\ 5 & 6 \end{bmatrix}$	$\begin{bmatrix} 5 \\ 2 \end{bmatrix}$	0,6	15
12	$\begin{bmatrix} -9 & 1 \\ -4 & 1 \end{bmatrix}$	$\begin{bmatrix} 3 \\ 3 \end{bmatrix}$	0,9	15
13	$\begin{bmatrix} 5 & -1 \\ -1 & 5 \end{bmatrix}$	$\begin{bmatrix} 4 \\ 1 \end{bmatrix}$	0,4	15
14	$\begin{bmatrix} 0 & 10 \\ 9 & 6 \end{bmatrix}$	$\begin{bmatrix} 10 \\ 6 \end{bmatrix}$	0,2	15
15	$\begin{bmatrix} -9 & 1 \\ -9 & 1 \end{bmatrix}$	$\begin{bmatrix} 4 \\ 1 \end{bmatrix}$	0,5	15
16	$\begin{bmatrix} 0 & 0 \\ 0 & -6 \end{bmatrix}$	$\begin{bmatrix} 5 \\ 8 \end{bmatrix}$	0,5	15
17	$\begin{bmatrix} 1 & 2 \\ -4 & 7 \end{bmatrix}$	$\begin{bmatrix} 15 \\ 1 \end{bmatrix}$	0,45	15

18	$\begin{bmatrix} 0 & 0 \\ 11 & 3 \end{bmatrix}$	$\begin{bmatrix} 7 \\ 7 \end{bmatrix}$	0,15	15
19	$\begin{bmatrix} 3 & 11 \\ 9 & -5 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0,7	15
20	$\begin{bmatrix} 1 & -4 \\ -7 & -5 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 2 \end{bmatrix}$	1,2	0
21	$\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$	$\begin{bmatrix} 3 \\ 5 \end{bmatrix}$	1,5	0
22	$\begin{bmatrix} 0 & 0 \\ 3 & 3 \end{bmatrix}$	$\begin{bmatrix} 6 \\ 5 \end{bmatrix}$	0,8	0
23	$\begin{bmatrix} 7 & 0 \\ 0 & -6 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 10 \end{bmatrix}$	0,9	0
24	$\begin{bmatrix} 6 & -1 \\ 0 & -1 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 11 \end{bmatrix}$	0,2	0
25	$\begin{bmatrix} 2 & 3 \\ 3 & 2 \end{bmatrix}$	$\begin{bmatrix} 8 \\ 4 \end{bmatrix}$	0,5	0
26	$\begin{bmatrix} -12 & 1 \\ 6 & 2 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 7 \end{bmatrix}$	0,9	0
27	$\begin{bmatrix} 0 & 1 \\ 13 & -1 \end{bmatrix}$	$\begin{bmatrix} 5 \\ 7 \end{bmatrix}$	1,3	0
28	$\begin{bmatrix} -9 & 3 \\ 1 & 7 \end{bmatrix}$	$\begin{bmatrix} -1 \\ -4 \end{bmatrix}$	1,6	0
29	$\begin{bmatrix} 8 & -1 \\ 6 & 4 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 9 \end{bmatrix}$	0,75	15
30	$\begin{bmatrix} 9 & 9 \\ -5 & 9 \end{bmatrix}$	$\begin{bmatrix} 6 \\ 6 \end{bmatrix}$	0,65	15

Задачи и вопросы

- 1. Как будет выглядеть алгоритм адаптивного робастного управления для объекта (10.1), если в возмущении f будет присутствовать нерегулярная составляющая, не подлежащая компенсации?
- 2. Возможна ли компенсация возмущения в объекте рассмотренным в работе способом, если

$$A = \begin{bmatrix} -3 & 6 \\ 6 & -3 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 \end{bmatrix}?$$

3. Решить задачу компенсации возмущения для объекта вида

$$\dot{x} = x + u + f ,$$

где $f = \sin \theta t$. Значение частоты θ неизвестно.

4. Решить задачу компенсации возмущения для нелинейного объекта вида

$$\dot{x} = x^2 + u + f + \theta_1,$$

где $f = \cos \theta_2 t$, параметры θ_1 , θ_2 полагаются неизвестными.

5. Решить задачу компенсации возмущения для нелинейного объекта вида

$$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -\sin x_1 - 2x_2 + u + f, \end{cases}$$

где $f = \cos \theta t$. Частота θ неизвестна. Параметры фильтров при параметризации переменной f и параметры гурвицевой матрицы $A_{\mathcal{H}}$ выбрать произвольно.

Промоделировать работу замкнутой системы и построить графики x_1 и x_2 при отсутствии компенсирующей компоненты и при ее наличии.

6. Для объекта

$$y = \frac{2}{s^2 + 1}[u + 3f],$$

построить компенсатор неизмеряемого внешнего воздействия $f = A \sin \left(\omega t + \varphi\right)$. Параметры A = 4, $\omega = 1$, $\varphi = \pi/4$ неизвестны. Измерению доступны величины y, \dot{y} и u. Параметры фильтров при параметризации переменной f, а также параметры гурвицевой матрицы A_{∞} выбрать произвольно.

Промоделировать работу замкнутой системы и построить графики у при отсутствии компенсирующей компоненты и при ее наличии.

7. При каком наименее затратном управлении компенсируется возмущение $f = A\sin(\omega t + \phi)$, если $A \neq 0$, $\omega \neq 0$, ϕ — произвольная константа, для объекта вида

$$y = \frac{s^2 + \omega^2}{s^2 + a_1 s + a_0} [u],$$

где a_1, a_0 — произвольные положительные константы?

8. Возможна ли компенсация возмущения в объекте рассмотренным в работе способом с выполнением целевого условия (11.2), если $f = 2\sin 6t + 5\cos 7t$,

$$A_{0f} = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix}, b_{0f} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}?$$

9. Для объекта

$$y = \frac{2s+4}{s^2+s+1}[u+f]$$

Промоделировать работу замкнутой системы и построить графики у при отсутствии компенсирующей компоненты и при ее наличии.

10. Решить задачу №9 при условии, что объект описывается уравнением вида

$$y = \frac{2s^2 + 4s + 4}{s^2 + s + 1}[u + f].$$

Работа № 12. АДАПТИВНОЕ ВОСПРОИЗВЕДЕНИЕ ВНЕШНИХ ВОЗДЕЙСТВИЙ

Цель работы: освоение принципа адаптивного слежения за эталонным сигналом для неустойчивого многомерного линейного объекта.

Методические рекомендации. До начала работы студенты должны ознакомиться с методом параметризации линейных моделей, представленным в работе №5, и методом синтеза следящих регуляторов на базе принципа внутренней модели [3-5, 7].

Теоретические сведения.

Постановка задачи. Рассмотрим задачу управления объектом

$$\dot{x} = Ax + bu, \quad x(0)$$

$$v = Cx,$$
(12.1)

где $x \in \mathbb{R}^n$ — измеряемый вектор состояния, u, y — измеряемые вход и выход объекта соответственно, A, b, C, — известные матрицы соответствующих размерностей.

Цель задачи заключается в построении управления, обеспечивающего ограниченность всех сигналов и слежение выхода объекта за эталонным сигналом так, чтобы

$$\lim_{t \to \infty} \left(g(t) - y(t) \right) = 0, \tag{12.2}$$

где g — мультисинусоидальное задающее воздействие с априори неизвестными амплитудами, частотами и фазами гармоник. Функция g измеряема и может быть представлена в виде решения линейного однородного дифференциального уравнения (аналогичного модели (10.2))

$$g^{(r)} + l_{r-1}g^{(r-1)} + l_{r-2}g^{(r-2)} + \dots + l_0g = 0$$
 (12.3)

с неизвестными начальными условиями $g^{(i)}(0)$, $i=\overline{0,r-1}$ и неизвестными постоянными коэффициентами l_i , $i=\overline{0,r-1}$. Корни характеристического полинома модели (12.3) лежат на мнимой оси, не кратны и не совпадают с собственными числами матрицы A.

Решение задачи. На основе принципа параметризации выходной переменной объекта, изложенного в работах №5 и №10, представим величину g в следующей форме:

$$g = \theta_g^T \xi_g \,, \tag{12.4}$$

где

$$\theta_{g}^{T} = \left[k_{g0} - l_{0}, k_{g1} - l_{1}, ..., k_{gr-1} - l_{r-1}\right],$$

$$\xi_{g}^{T} = \left[\frac{1}{K_{g}(s)}[g], \frac{s}{K_{g}(s)}[g], ..., \frac{s^{r-1}}{K_{g}(s)}[g]\right].$$

Вектор $\xi_g \in R^r$ является измеряемым вектором состояния фильтра

$$\dot{\xi}_{g} = A_{0g} \xi_{g} + b_{0g} g , \qquad (12.5)$$

где

$$A_{0g} = \begin{bmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & 1 \\ -k_{g0} & -k_{g1} & \cdots & -k_{gr-1} \end{bmatrix}, b_{0g} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

— известные матрицы.

После подстановки (12.4) в (12.5) получим каноническую управляемую форму модели "вход-состояние-выход" генератора (12.3):

$$\dot{\xi}_g = \left(A_{0g} + b_{0g}\theta_g^T\right)\xi_g,
g = \theta_g^T\xi_g.$$
(12.6)

Далее введем в рассмотрение ошибки по состоянию и по выходу могут быть заданы в виде [3-5]

$$e = M_{g}\xi_{g} - x, \tag{12.7}$$

$$\varepsilon = g - y, \tag{12.8}$$

где $M_g \in \mathbb{R}^{n \times r}$ — матрица преобразования базиса модели (12.6) в базис объекта (12.1). Из классической теории управления [3—5], согласно которой неадаптивное управление (параметры θ_g в (12.4) известны) синтезируется как сумма стабилизирующей обратной и прямой связей

$$u = -Kx + \overline{\Psi}_{g}^{T} \xi_{g},$$

известно, что матрицы M_{g} , $\overline{\psi}_{g}$ удовлетворяют уравнениям вида

$$M_{g}(A_{0g} + b_{0g}\theta_{g}^{T}) - A_{M}M_{g} = b\bar{\Psi}_{g}^{T},$$

$$CM_{g} = \theta_{g}^{T}.$$
(12.9)

В уравнениях $A_{0g} + b_{0g} \theta_g^T$ — матрица состояния генератора задающего воздействия (12.6), $A_M = A - bK$ — гурвицева матрица (см. работу №11 и порядок ее выполнения) и определяющая желаемое качество поведения замкнутой системы после ее настройки, $\overline{\psi}_g \in R^r$ в классической (неадаптивной) задаче управления — вектор прямых связей. В текущей задаче M_g , $\overline{\psi}_g$ представляют собой априори неизвестные постоянные величины.

Рассчитаем производную ошибки e в силу (12.7), (12.6) и (12.1):

$$\dot{e} = M_{g} \left(A_{0g} + b_{0g} \theta_{g}^{T} \right) \xi_{g} - Ax - bu = M_{g} \left(A_{0g} + b_{0g} \theta_{g}^{T} \right) \xi_{g} - A \left(M_{g} \xi_{g} - e \right) - bu =$$

$$= Ae + \left[M_{g} \left(A_{0g} + b_{0g} \theta_{g}^{T} \right) - AM_{g} + bKM_{g} \right] \xi_{g} - bu - bKM_{g} \xi_{g}.$$

Учитывая первое уравнение в системе (12.9) и равенство $A_{M} = A - bK$, после приведения подобных слагаемых перепишем полученный результат:

$$\dot{e} = Ae + b\left(\overline{\psi}_{g}^{T}\xi_{g} - KM_{g}\xi_{g} - u\right)$$

или

$$\dot{e} = Ae + b\left(\psi_g^T \xi_g - u\right),\tag{12.10}$$

где $\psi_g = \overline{\psi}_g - M_g^T K^T$ — новый вектор неизвестных параметров.

Так как вектор e неизмеряемый, то модель (12.10) не пригодна для синтеза управления. В связи с этим рассмотрим ошибку выхода (12.8) с учетом вторых уравнений систем (12.1) и (12.6):

$$\varepsilon = g - y = \theta_o^T \xi_o - Cx.$$

Учитывая определение (12.7) и второе уравнение (12.9), имеем:

$$\varepsilon = \theta_g^T \xi_g - Cx = \theta_g^T \xi_g - C(M_g \xi_g - e) = Ce.$$

Объединяя последнее выражение с (12.10), перепишем полученную систему в форме передаточной функции

$$\varepsilon = W(s) \left[\psi_g^T \xi_g - u \right], \tag{12.11}$$

где $W(s) = C(sI - A_M)^{-1}b$ — устойчивая передаточная функция стабилизированной части системы.

Последнее выражение позволяет синтезировать настраиваемый регулятор в виде

$$u = \hat{\Psi}_{\varrho}^{T} \xi_{\varrho}, \tag{12.12}$$

где $\hat{\psi}_g$ — вектор настраиваемых параметров. После подстановки (12.12) в (12.11) получаем модель ошибки

$$\varepsilon = W(s) \left[\tilde{\psi}_{g}^{T} \xi_{g} \right], \tag{12.13}$$

в которой $\tilde{\psi}_g = \psi_g - \hat{\psi}_g$.

Поскольку в общем случае передаточная функция W(s) не является СПВ, то в рамках модели (12.13) применим алгоритм адаптации с расширенной ошибкой (см. работу №8):

$$\dot{\hat{\psi}}_{g} = \gamma W(s) \left[\xi_{g} \right] \hat{\epsilon} \tag{12.14}$$

$$\hat{\varepsilon} = \varepsilon - \hat{\psi}_g^T W(s) \left[\xi_g \right] + W(s) \left[\hat{\psi}_g^T \xi_g \right] . \tag{12.15}$$

Свойства алгоритма адаптации (12.14) аналогичны свойствам алгоритма с расширенной ошибкой (8.4). Отметим, что в отличие от алгоритма (8.4) в алгоритме (12.14) не требуется нормирование регрессора, так как сигнал задания g и, как следствие, вектор ξ_g являются ограниченными.

Порядок выполнения работы

Параметры объекта управления приведены в Таблице 11.1. Остальные данные, требуемые для решения задачи, приведены в Таблице 12.1.

- 1. Используя параметры объекта, построить матрицу линейных обратных стационарных связей K (см. порядок выполнения работы №11).
- 2. На основе данных, приведенных в Таблице 12.1, синтезировать фильтр (12.5), формирующий вектор ξ_g .
- 3. Построить и промоделировать замкнутую систему, включающую объект (12.1), настраиваемый регулятор (12.12), фильтр (12.5) и алгоритм адаптации (12.14) с расширенной ошибкой (12.15) . Функцию задающего воздействия g взять из Таблицы 12.1. Для двух различных коэффициентов адаптации γ построить два графика. На первом графике представить ошибку слежения ϵ . На втором графике управляющее воздействие u.
 - 4. По результатам моделирования сделать выводы.

Таблица 12.1. Варианты заданий

Bap.	g(t)	Коэффициенты полинома $K_g(s)$		Bap.	g(t)	Коэффициенты полинома $K_{g}(s)$	
		k_{g1} k_{g0}		1		k_{g1}	k_{g0}
1	sin t	0,8	0,16	16	$0.5\cos(t+1)$	2	1
2	$\cos 2t$	0,2	0,01	17	3 sin 5 <i>t</i>	$\sqrt{2}$	1
3	$\sin(3t+2)$	$\sqrt{0,02}$	0,01	18	$4\cos 8t$	4	4
4	$\cos(t+1)$	0,4	0,04	19	$7\sin(9t+2,5)$	$2\sqrt{2}$	4
5	$2\sin t$	$\sqrt{0,08}$	0,04	20	$5\cos(5t+1,5)$	6	9
6	$3\cos 4t$	0,6	0,09	21	20 sin <i>t</i>	$3\sqrt{2}$	9
7	$4\sin(t+1)$	$\sqrt{0,18}$	0,09	22	$2\cos 2t$	8	16
8	$10\cos\left(8t+1\right)$	0,8	0,16	23	$8\sin\left(3t+0,5\right)$	$4\sqrt{2}$	16
9	$2\sin t$	$\sqrt{0,32}$	0,16	24	$10\cos(2t+1)$	1	0,25
10	$5\cos 3t$	1	0,25	25	$12\sin 3t$	$\sqrt{0,5}$	0,25
11	$2\sin\left(8t+1\right)$	$\sqrt{0,5}$	0,25	26	$6\cos 5t$	1,2	0,36
12	$6\cos(3t+3)$	1,2	0,36	27	$8\sin(t+1)$	$\sqrt{0,72}$	0,36
13	15 sin 9 <i>t</i>	$\sqrt{0,72}$	0,36	28	$8\cos(6t+2)$	1,6	0,64
14	$7\cos 3t$	1,6	0,64	29	sin 3t	$\sqrt{1,28}$	0,64
15	$9\sin\left(t+0,5\right)$	$\sqrt{1,28}$	0,64	30	$9\cos 4t$	2	1

Задачи и вопросы

1. Будет ли обеспечено выполнение задачи слежения для объекта рассмотренным в работе способом с выполнением целевого условия (12.2), если $g = 3\sin 2t + \cos 5t$,

$$A_{0g} = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}, b_{0g} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}?$$

2. Будет ли обеспечено выполнение задачи слежения для объекта рассмотренным в работе способом с выполнением целевого условия (12.2), если

$$A = \begin{bmatrix} -1 & 7 \\ 7 & -1 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 \end{bmatrix}$$
?

3. Будет ли обеспечено выполнение задачи слежения для объекта рассмотренным в работе способом с выполнением целевого условия (12.2), если

$$A = \begin{bmatrix} 3 & -8 \\ -8 & 3 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, C = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$
?

4. Будет ли обеспечено выполнение задачи слежения для объекта рассмотренным в работе способом с выполнением целевого условия (12.2), если $g = 2\cos 4t$,

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -3 & -3 \end{bmatrix}, b = \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}, C = \begin{bmatrix} 16 & 0 & 1 \end{bmatrix}?$$

5. Будет ли обеспечено выполнение задачи слежения для объекта

$$y = \frac{s^2 + 9}{s^2 + 6s + 5}[u]$$

рассмотренным в работе способом с выполнением целевого условия (12.2), если $g = 7 \sin 3t$?

6. Решить задачу адаптивного слежения за эталонным сигналом $g = \cos \theta t$ рассмотренным в работе способом для объекта

$$\begin{cases} \dot{x} = x + 3u, \\ y = x. \end{cases}$$

Значение частоты θ неизвестно.

7. Решить задачу слежения за эталонным сигналом $g = \sin \theta t$ для нелинейного объекта

$$\begin{cases} \dot{x} = \sin x + u, \\ y = x \end{cases},$$

параметр θ полагается неизвестными.

8. Решить задачу слежения за эталонным сигналом $g = \sin \theta t$ для нелинейного объекта

$$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -\sin x_1 - 4x_2 + u, \\ y = x_1 \end{cases}$$

Частота θ неизвестна. Параметры фильтров при параметризации переменной g и параметры гурвицевой матрицы A_{M} выбрать произвольно.

Промоделировать работу замкнутой системы и построить графики x_1 и x_2 .

9. Для объекта

$$y = \frac{5}{s^2 + 2}[u],$$

построить алгоритм слежения за эталонным сигналом $g = A\sin(\omega t + \phi)$. Параметры A = 2, $\omega = 3$, $\phi = \pi/6$ неизвестны. Измерению доступны величины y, \dot{y} и u. Параметры фильтров при параметризации переменной g, а также параметры гурвицевой матрицы A_M выбрать произвольно.

Промоделировать работу замкнутой системы и построить графики y .

10. Для объекта

$$y = \frac{s+4}{s^2+3s+1}[u]$$

построить алгоритм слежения за эталонным сигналом $g = A\cos\omega t$. Параметры $A=2,\ \omega=3$ неизвестны. Измерению доступны величины y, \dot{y} и u. Параметры фильтров при параметризации переменной g, а также параметры гурвицевой матрицы A_{M} выбрать произвольно.

Промоделировать работу замкнутой системы и построить графики y .

Работа № 13. АЛГОРИТМЫ АДАПТАЦИИ С УСКОРЕННОЙ ПАРАМЕТРИЧЕСКОЙ СХОДИМОСТЬЮ. СХЕМА №1 (КРЕЙССЕЛЬМЕЙЕРА)

Цель работы: освоение метода улучшения параметрической сходимости в алгоритмах адаптации с помощью схемы предложенной Крейссельмейером [16, 20] на основе линейного оператора с "памятью".

Методические рекомендации. До начала работы студенты должны ознакомиться с методом улучшения параметрической сходимости на основе линейного оператора с "памятью" [16, 20]⁵ и его применением в задачах синтеза алгоритмов адаптации.

Теоретические сведения.

1. Статическая модель ошибки

Отправной точкой в исследовании вопроса увеличения быстродействия адаптивных систем управления будет служить статическая модель ошибки

$$\varepsilon = \omega^T \tilde{\theta}, \tag{13.1}$$

к которой так или иначе могут сводиться задачи адаптивного управления, адаптивного наблюдения или идентификации. В приведенной модели ε — сигнал ошибки, $\omega \in R^m$ — вектор измеряемых ограниченных функций (регрессор), $\tilde{\theta} = \theta - \hat{\theta}$ — вектор параметрических ошибок, $\theta \in R^m$ — вектор неизвестных постоянных параметров, $\hat{\theta} \in R^m$ — вектор настраиваемых параметров регулятора (в задаче управления) или оценок параметров объекта (в задаче идентификации).

В рамках модели ошибки (13.1) с помощью функции Ляпунова

$$V = \frac{1}{2\gamma} \tilde{\Theta}^T \tilde{\Theta} = \frac{1}{2\gamma} \left\| \tilde{\Theta} \right\|^2 \tag{13.2}$$

синтезируется алгоритм адаптации (см. работу №6)

$$\dot{\hat{\theta}} = \gamma \omega \varepsilon,$$
 (13.3)

который для любых начальных условий $\hat{\theta}(0)$ обладает следующими свойствами [16, 20]:

передаточных функций произвольного порядка.

⁵ Под оператором с "памятью" понимается оператор, результат действия на функцию времени которого зависит не только от текущего значения этой функции, но и от ее предыдущего значения. В [16, 20] в качестве линейных операторов с "памятью" рассматриваются интегратор и апериодическое звено первого порядка. В настоящем пособии в качестве линейных операторов используется класс

- С1.1. если ω и $\dot{\omega}$ ограничены, то сигналы ϵ , $\tilde{\theta}$, $\hat{\theta}$ ограничены;
- С1.2. ошибка є стремится к нулю асимптотически;
- С1.3. параметрические ошибки $\tilde{\theta}$ стремятся к нулю экспоненциально, если вектор ω удовлетворяет условию неисчезающего возбуждения (3.14);
- С1.4. если вектор ω удовлетворяет условию (3.14), то существует оптимальное значение коэффициента γ , при котором скорость сходимости параметрических ошибок $\widetilde{\theta}$ к нулю максимальна.

Свойство С1.4 является существенным недостатком алгоритма (13.3), так как наивысшая скорость сходимости параметрических ошибок при оптимальном у может быть произвольно плохой или же недостаточной в рамках конкретной практической задачи. В целях преодоления указанного недостатка предлагается модифицировать алгоритм (13.3).

Путем подстановки (13.1) в (13.3) с заменой $\hat{\hat{\theta}} = -\dot{\hat{\theta}}$ получим линейную нестационарную модель параметрических ошибок

$$\dot{\tilde{\boldsymbol{\theta}}} = -\gamma \boldsymbol{\omega} \boldsymbol{\omega}^T \tilde{\boldsymbol{\theta}} . \tag{13.4}$$

Отметим, что свойство С.4 связано с вырожденностью матрицы состояния линейной системы $(\det(\omega\omega^T)\equiv 0)$ и, как следствие, с тождественным равенством нулю ее минимального собственного числа $(\lambda_{\min}\left\{\omega\omega^T\right\}\equiv 0)$, определяющего скорость сходимости $\tilde{\theta}$. В связи с этим модифицируем модель (13.4) следующим образом:

$$\dot{\tilde{\theta}} = -\gamma L(s) \left[\omega \omega^T \right] \tilde{\theta}, \qquad (13.5)$$

где L(s) — оператор с "памятью", в качестве которого используем устойчивую минимально-фазовую передаточную функцию такую, что $L(0) > 0^{-6}$, s = d / dt — оператор дифференцирования.

Можно показать [13], что при выполнении условия (3.14) справедливо неравенство

$$L(s) \left[\omega \omega^T \right] \ge \alpha_0 I > 0, \tag{13.6}$$

где α_0 — положительная константа. В этом случае производная функции Ляпунова (13.2), рассчитанная в силу (13.5) и (13.6), будет иметь вид

-

 $^{^6}$ Выбор операторов с "памятью" не ограничивается передаточными функциями. В качестве L(s) могут выступать звенья чистого запаздывания и их комбинации, нестационарные передаточные функции, неминимально-фазовые передаточные функции и т.д.

$$\dot{V} = \frac{1}{\gamma} \tilde{\theta}^T \dot{\tilde{\theta}} = -\tilde{\theta}^T L(s) \left[\omega \omega^T \right] \tilde{\theta} \le -\alpha_0 \left\| \tilde{\theta} \right\|^2 = -2\gamma \alpha_0 V. \tag{13.7}$$

Из последнего равенства следует экспоненциальная сходимость параметрических ошибок $\tilde{\theta}$ к нулю (аналогично свойству С1.3 алгоритма (13.3)). При этом существует возможность неограниченного увеличения скорости сходимости $\tilde{\theta}$ путем увеличения γ .

Физически реализуемый алгоритм адаптации, соответствующей модели параметрических ошибок (13.5) представляется в следующей форме:

$$\dot{\hat{\theta}} = \gamma \Big(L(s) \big[\omega \varepsilon \big] + L(s) \big[\omega \omega^T \hat{\theta} \big] - L(s) \big[\omega \omega^T \big] \hat{\theta} \Big). \tag{13.8}$$

Алгоритм совместно с моделью ошибок (13.1) для любых начальных условий $\hat{\theta}(0)$ имеет следующие свойства:

- C2.1. если ω и $\dot{\omega}$ ограничены, то сигналы ϵ , $\tilde{\theta}$ ограничены;
- С2.2. Ошибка є стремится к нулю асимптотически;
- С2.3. Параметрические ошибки $\hat{\theta}$ стремятся к нулю экспоненциально, если вектор ω удовлетворяет условию неисчезающего возбуждения (3.14);
- С2.4. Если вектор ω удовлетворяет условию (3.14), то скорость сходимости параметрических ошибок $\tilde{\theta}$ к нулю может быть произвольно увеличена путем увеличения коэффициента γ .

Свойства C2.1-C2.3 идентичны свойствам C1.1-C1.3 алгоритма (13.3). В то же время свойство C2.4, в отличии от свойства C1.4, позволяет ускорить процесс адаптации замкнутой системы и, как следствие, ускорить ее быстродействие.

Важно отметить, что неограниченное быстродействие гарантируется в идеальном случае, когда в модели ошибки (13.1) отсутствует возмущение. При наличии даже затухающих возмущений существует предел скорости сходимости $\tilde{\theta}$, который не будет преодолен при дальнейшем увеличении γ .

2. Динамическая модель ошибки с измеряемым состоянием

Покажем, что динамическая модель ошибки с измеряемым состоянием (см. работу №3)

$$\dot{e} = Ae + b\omega^T \tilde{\theta} \tag{13.9}$$

может быть сведена к форме (13.1), что позволит в дальнейшем синтезировать на базе этой модели алгоритм адаптации с ускоренной сходимостью. Как было показано в работе №3 (см. [2, 13, 20]), в рамках

модели (13.9) при помощи функции Ляпунова $V = e^T P e / 2 + \tilde{\theta}^T \tilde{\theta} / 2 \gamma$ можно построить базовый алгоритм адаптации

$$\dot{\hat{\Theta}} = \gamma \omega b^T P e \tag{13.10a}$$

или, с использованием вспомогательной переменной $\varepsilon_f = b^T P e$,

$$\dot{\hat{\theta}} = \gamma \omega \varepsilon_f$$
, (13.106)

где $P = P^T \succ 0$ — решение уравнения Ляпунова $A^T P + PA = -Q$ с матрицей $Q = Q^T \succ 0$.

Алгоритм (13.10) совместно с моделью ошибки (13.9) для любых начальных условий e(0), $\hat{\theta}(0)$ обеспечивает следующие свойства:

- C3.1. если ω и $\dot{\omega}$ ограничены, то сигналы $e, \tilde{\theta}$ ограничены;
- С3.2. норма ошибки $\|e\|$ стремится к нулю асимптотически;
- С3.3. параметрические ошибки $\tilde{\theta}$ стремятся к нулю экспоненциально, если вектор ω удовлетворяет условию неисчезающего возбуждения (3.14);
- С3.4. если вектор ω удовлетворяет условию (3.14), то существует оптимальное значение коэффициента γ , при котором скорость сходимости параметрических ошибок $\widetilde{\theta}$ к нулю максимальна.

Свойство С3.4 (по аналогии со свойством С1.4) является недостатком алгоритма и не позволяет в общем случае обеспечивать желаемые переходные процессы в замкнутой системе. Для преодоления недостатка дополним модель (13.9) переменной $\varepsilon_f = b^T Pe$, используемой в качестве выхода линейной системы, и перепишем полученную модель в форме "вход-состояние-выход":

$$\varepsilon_f = H(s) \left[\omega^T \tilde{\theta} \right] \tag{13.11}$$

где $H(s) = b^T P(sI - A)^{-1}b$ — передаточная функция, которая в силу леммы Якубовича-Калмана-Попова [9, 20] является СПВ (см. приложение Б).

Далее в соответствии с методом расширенной ошибки (см. принцип синтеза регулятора в работе №8) введем сигнал расширения

$$\tilde{\varepsilon}_f = \varepsilon_f + H(s) \left[\omega^T \hat{\theta} \right] - \omega_f^T \hat{\theta} , \qquad (13.12)$$

в котором $\omega_f = H(s)[\omega]$ — фильтрованный регрессор. Подставляя (13.11) в (13.12), получаем статическую модель ошибки

$$\tilde{\varepsilon}_f = \omega_f^T \tilde{\Theta} \,. \tag{13.13}$$

Аналогия между (13.13) и (13.1) позволяет без промежуточных вычислений представить алгоритм адаптации с ускоренной сходимостью

$$\dot{\hat{\theta}} = \gamma \Big(L(s) \Big[\omega_f \tilde{\varepsilon}_f \Big] + L(s) \Big[\omega_f \omega_f^T \hat{\theta} \Big] - L(s) \Big[\omega_f \omega_f^T \Big] \hat{\theta} \Big), \qquad (13.14a)$$

аналогичный алгоритму (13.8). Подстановка (13.12) в (13.14а) с учетом $\varepsilon_f = b^T P e$ позволяет переписать (13.14а) в упрощенной форме:

$$\dot{\hat{\theta}} = \gamma \left(L(s) \left[\omega_f b^T P e \right] + L(s) \left[\omega_f H(s) \left[\omega^T \hat{\theta} \right] \right] - L(s) \left[\omega_f \omega_f^T \right] \hat{\theta} \right). \quad (13.146)$$

Алгоритм (13.14) совместно с моделью ошибки (13.9) для любых начальных условий e(0), $\hat{\theta}(0)$ обеспечивает следующие свойства:

- С4.1. если ω и $\dot{\omega}$ ограничены, то сигналы e, ε_f , $\tilde{\varepsilon}_f$, $\tilde{\theta}$ ограничены;
- С4.2. норма ошибки $\|e\|$ стремится к нулю асимптотически;
- С4.3. параметрические ошибки $\dot{\theta}$ стремятся к нулю экспоненциально, если вектор ω удовлетворяет условию неисчезающего возбуждения (3.14);
- С4.4. если вектор ω удовлетворяет условию (3.14), то скорость сходимости параметрических ошибок $\tilde{\theta}$ к нулю может быть произвольно увеличена путем увеличения коэффициента γ .

Последнее свойство позволяет ускорить процесс адаптации замкнутой системы и, как следствие, увеличить ее быстродействие.

3. Динамическая модель ошибки с измеряемым выходом Динамическая модель ошибки с измеряемым выходом (см. работы №7 и 8)

$$\varepsilon = W(s) \left[\omega^T \tilde{\Theta} \right] \tag{13.15}$$

имеет структуру, схожую со структурой модели (13.11). Отличие моделей заключается только в том, что в общем случае передаточная функция W(s) не является СПВ. Однако это не препятствует применению метода расширенной ошибки и дальнейшему синтезу алгоритма адаптации с ускоренной сходимостью.

Используя результат, полученный в рамках модели ошибки (13.11), перепишем алгоритм адаптации (13.14а) с точностью до обозначений:

$$\dot{\hat{\theta}} = \gamma \Big(L(s) \Big[\overline{\omega} \tilde{\varepsilon} \Big] + L(s) \Big[\overline{\omega} \overline{\omega}^T \hat{\theta} \Big] - L(s) \Big[\overline{\omega} \overline{\omega}^T \Big] \hat{\theta} \Big), \qquad (13.16)$$

$$\tilde{\varepsilon} = \varepsilon + W(s) \Big[\omega^T \hat{\theta} \Big] - \overline{\omega}^T \hat{\theta} ,$$

$$\overline{\omega} = W(s) [\omega] .$$

Свойства системы, состоящей из модели ошибки (13.15) и алгоритма адаптации (13.16), с точностью до обозначений совпадают со свойствами С4.1-С4.4 алгоритма (13.14) с моделью ошибки (13.9).

В Таблицу 13.1 сведены типовые модели ошибок, соответствующие им базовые алгоритмы адаптации и алгоритмы адаптации с ускоренной параметрической сходимостью. Кроме того, приведены ссылки на работы настоящего пособия, в которых возможно ускорение параметрической сходимости приведенным методом.

Таблица 13.1. Модели ошибок и алгоритмы адаптации с памятью регрессора

Тип модели ошибок	Приведенная статическая форма модели	Работы, в которых применимы алгоритмы	Базовый алгоритм адаптации	Алгоритм с ускоренной сходимостью
Статическая модель: $\varepsilon = \omega^T \tilde{\theta}$	$\varepsilon = \omega^T \tilde{\Theta}$	№6, №8, №12	$\dot{\hat{\theta}} = \gamma \omega \varepsilon$	$\dot{\hat{\theta}} = \gamma \Big(L(s) \big[\omega \varepsilon \big] + L(s) \big[\omega \omega^T \hat{\theta} \big] - L(s) \big[\omega \omega^T \big] \hat{\theta} \Big)$
Динамическая модель с измеряемым состоянием: $\dot{e} = Ae + b\omega^T \tilde{\theta}$	$\tilde{\varepsilon}_f = \omega_f^T \tilde{\theta},$ $\omega_f = H(s)[\omega],$ $H(s) = b^T P(sI - A)^{-1} b$	№1, №3, №11	$\dot{\hat{\theta}} = \gamma \omega e_f,$ $e_f = H(s)[\omega^T \tilde{\theta}]$	$\begin{split} \dot{\hat{\boldsymbol{\theta}}} &= \gamma \Big(L(s) \Big[\boldsymbol{\omega}_f \boldsymbol{b}^T \boldsymbol{P} \boldsymbol{e} \Big] + L(s) \Big[\boldsymbol{\omega}_f \boldsymbol{H}(s) \Big[\boldsymbol{\omega}^T \hat{\boldsymbol{\theta}} \Big] \Big] - \\ &- L(s) \Big[\boldsymbol{\omega}_f \boldsymbol{\omega}_f^T \Big] \hat{\boldsymbol{\theta}} \Big), \\ \tilde{\boldsymbol{\varepsilon}}_f &= \boldsymbol{b}^T \boldsymbol{P} \boldsymbol{e} + \boldsymbol{H}(s) \Big[\boldsymbol{\omega}^T \hat{\boldsymbol{\theta}} \Big] - \boldsymbol{\omega}_f^T \hat{\boldsymbol{\theta}}, \\ \boldsymbol{\omega}_f &= \boldsymbol{H}(s) [\boldsymbol{\omega}] = \boldsymbol{b}^T \boldsymbol{P} (s\boldsymbol{I} - \boldsymbol{A})^{-1} \boldsymbol{b} [\boldsymbol{\omega}]. \end{split}$
Динамическая модель с измеряемым выходом: $\varepsilon = W(s)[\omega^T \tilde{\theta}]$	$\widetilde{\varepsilon} = \overline{\omega}^T \widetilde{\theta},$ $\overline{\omega} = W(s)[\omega]$	№7, №8	$\hat{\Delta} = \overline{a}T\hat{\Omega}$	$\begin{vmatrix} \dot{\hat{\theta}} = \gamma \Big(L(s) \Big[\overline{\omega} \tilde{\varepsilon} \Big] + L(s) \Big[\overline{\omega} \overline{\omega}^T \hat{\theta} \Big] - L(s) \Big[\overline{\omega} \overline{\omega}^T \Big] \hat{\theta} \Big), \\ \tilde{\varepsilon} = \varepsilon + W(s) \Big[\omega^T \hat{\theta} \Big] - \overline{\omega}^T \hat{\theta} , \\ \overline{\omega} = W(s) [\omega] . \end{vmatrix}$

Порядок выполнения работы

- 1. Выполнить работу № 6, в рамках которой синтезируется адаптивный наблюдатель состояния линейной системы (6.3), (6.6) с базовым алгоритмом адаптации (6.5) (или (13.3)).
- 2. Синтезировать адаптивный наблюдатель состояния (6.3), (6.6), в котором базовый алгоритм адаптации (6.5) (или (13.3)) заменить на алгоритм с ускоренной сходимостью (13.8).

Начальные условия на всех интеграторах, коэффициенты адаптации γ и входные воздействия u выбрать из п.1. Повторить все эксперименты из п.1. В качестве оператора с "памятью" использовать апериодическое звено первого порядка

$$L(s) = \frac{1}{s + \mu} \tag{13.17}$$

с параметром µ. Параметр µ выбрать экспериментально, исходя из наивысшего быстродействия, и зафиксировать для всех экспериментов.

- 3. Выполнить работу №3, в рамках которой с использованием базового алгоритма адаптации (3.13) (или алгоритма вида (13.10)) синтезировать адаптивное управление по состоянию (3.10) линейным объектом (3.1).
- 4. Синтезировать адаптивное управление (3.10), в котором базовый алгоритм адаптации (3.13) (или алгоритм вида (13.10)) заменить на алгоритм с ускоренной сходимостью (13.146).

По аналогии с алгоритмом адаптации (8.2), (8.4) в алгоритм (13.14б) включить нормирующий фактор $1/\left(1+\left\|L(s)\left[\omega_f\omega_f^T\right]\right\|^2\right)$:

$$\dot{\hat{\theta}} = \frac{\gamma}{1 + \left\| L(s) \left[\omega_f \omega_f^T \right] \right\|^2} \left(L(s) \left[\omega_f b^T P e \right] + L(s) \left[\omega_f H(s) \left[\omega^T \hat{\theta} \right] \right] - L(s) \left[\omega_f \omega_f^T \right] \hat{\theta} \right).$$

Начальные условия на всех интеграторах, коэффициенты адаптации γ и входные воздействия u выбрать из п.3. Повторить все эксперименты из п.3. В качестве оператора с "памятью" использовать (13.17).

- 5. Выполнить работу №8, в рамках которой с использованием базового алгоритма адаптации (8.2), (8.4) синтезировать адаптивное управление по выходу (7.8) линейным объектом (7.1).
- 6. Синтезировать адаптивное управление (7.8), в котором базовый алгоритм адаптации (8.2) (8.4) заменить на алгоритм с ускоренной сходимостью (13.16).

Начальные условия на всех интеграторах, коэффициенты адаптации γ и входные воздействия u выбрать из п.5. Повторить все эксперименты из п.5. В качестве оператора с "памятью" использовать (13.17).

По аналогии с алгоритмом адаптации (8.2), (8.4) в алгоритм (13.16) включить нормирующий фактор $1/\left(1+\left\|L(s)\left[\overline{\omega}\overline{\omega}^{T}\right]\right\|^{2}\right)$ с евклидовой нормой:

$$\dot{\hat{\theta}} = \frac{\gamma}{1 + \left\| L(s) \left[\overline{\omega} \overline{\omega}^T \right] \right\|^2} \Big(L(s) \left[\overline{\omega} \widetilde{\epsilon} \right] + L(s) \left[\overline{\omega} \overline{\omega}^T \hat{\theta} \right] - L(s) \left[\overline{\omega} \overline{\omega}^T \right] \hat{\theta} \Big).$$

Задачи и вопросы

- 1. Доказать на примере звена первого порядка (13.17), что при выполнении условия (3.14) справедливо неравенство (13.6).
- 2. Показать, что из модели (13.5) можно синтезировать алгоритм адаптации (13.8)
 - 3. Доказать свойство С2.2.
 - 4. Доказать свойство С4.2.
- 5. Объяснить требование о минимально-фазовости передаточной функции L(s) и о положительности ее коэффициента L(0).
 - 6. Дана модель ошибки

$$\varepsilon = \omega^T \tilde{\theta} + \upsilon$$

- где υ экспоненциально затухающая функция. Существует ли возможность произвольного ускорения оценок в алгоритме адаптации (13.8) путем увеличения коэффициента γ ? Ответ пояснить.
 - 7. Показать, что из (13.14а) можно получить (13.14б).
 - 8. Сформулировать лемму Якубовича-Калмана-Попова.
- 9. Гарантируется ли асимптотическое стремление ошибки e к нулю в задаче адаптивного слежения по состоянию (см. порядок выполнения работ, п.4) при $L(s) = 1/(s + \mu)$ и $L(s) = 1/(s \mu)$, где μ положительная константа?
- 10. Гарантируется ли асимптотическое стремление ошибки e к нулю в задаче адаптивного слежения по состоянию (см. порядок выполнения работ, п.4) при: а) L(s) = s / (s+1); б) L(s) = 1 / s; в) $L(s) = (s-\tau) / (s+\tau)$; г) $L(s) = 1 + e^{-2s}$?

Работа № 14. АЛГОРИТМЫ АДАПТАЦИИ С УЛУЧШЕННОЙ ПАРАМЕТРИЧЕСКОЙ СХОДИМОСТЬЮ. СХЕМА №2 (ЛИОНА)

Цель работы: освоение метода улучшения параметрической сходимости в алгоритмах адаптации с помощью схемы предложенной Лионом [18] на основе динамического расширения регрессора⁷.

Методические рекомендации. До начала работы студенты должны ознакомиться с методом улучшения параметрической сходимости на основе динамического расширения регрессора [10, 18, 20] и его применением в задачах синтеза алгоритмов адаптации.

Теоретические сведения. В работе №13 приводится схема ускорения параметрической сходимости с использованием линейных операторов с "памятью" (схема Крейссельмейера). Рассмотрим альтернативный подход, основанный на динамическом расширении регрессора статической модели ошибки и применимый для решения задач адаптивного управления и идентификации с использованием концепции моделей ошибок.

Учитывая теоретические сведения работы №13, основное внимание сфокусируем на модификациях моделей параметрических ошибок и построенных на их основе алгоритмов адаптации.

1. Статическая модель ошибки

Модель параметрических ошибок (13.4), соответствующая алгоритму адаптации (13.3) и статической модели ошибки (13.1), может быть модифицирована за счет динамического расширения регрессора ω следующим образом:

$$\dot{\tilde{\boldsymbol{\theta}}} = -\gamma \boldsymbol{\Xi}^T \boldsymbol{\Xi} \tilde{\boldsymbol{\theta}} , \qquad (14.1)$$

где

 $\Xi = col(H_1(s)[\omega^T], H_2(s)[\omega^T], \dots, H_q(s)[\omega^T])$

— матрица размерности $q \times m$, $H_i(s)$, $i = \overline{1,q}$ — линейно независимые минимально-фазовые передаточные функции.

Если выполняется условие неисчезающего возбуждения (3.14), то справедливо неравенство [20]:

$$\Xi^T \Xi \ge \lambda_0 I > 0, \tag{14.2}$$

 $^{^{7}}$ Термин "динамическое расширение регрессора", которого мы придерживаемся в настоящем пособии, введен в [10]. В [22] был введен термин "множественные модели" ("multiple models")..

где λ_0 — положительная константа. Тогда производная функции Ляпунова (13.2) с учетом (14.1) и (14.2) будет иметь вид

$$\dot{V} = \frac{1}{\gamma} \tilde{\theta}^T \dot{\tilde{\theta}} = -\tilde{\theta}^T \Xi^T \Xi \tilde{\theta} \le -\lambda_0 \left\| \tilde{\theta} \right\|^2 = -2\gamma \lambda_0 V.$$

Физически реализуемый алгоритм адаптации, соответствующий модели параметрических ошибок вида (14.1), имеет вид

$$\dot{\hat{\theta}} = \gamma \Xi^T \left(\Xi_{\varepsilon} + \Xi_{\theta} - \Xi \hat{\theta} \right), \tag{14.3}$$

где

$$\begin{split} \Xi_{\varepsilon} &= col\Big(H_1(s)\big[\varepsilon\big], H_2(s)\big[\varepsilon\big], \cdots, H_q(s)\big[\varepsilon\big]\Big), \\ \Xi_{\theta} &= col\Big(H_1(s)\big[\omega^T\,\hat{\theta}\big], H_2(s)\big[\omega^T\,\hat{\theta}\big], \cdots, H_q(s)\big[\omega^T\,\hat{\theta}\big]\Big). \end{split}$$

Алгоритм совместно с моделью ошибок (13.1) для любых начальных условий $\hat{\theta}(0)$ обеспечивает систему следующими свойствами:

- С1.1. если ω и $\dot{\omega}$ ограничены, то сигналы ϵ , $\tilde{\theta}$ ограничены;
- С1.2. ошибка є стремится к нулю асимптотически;
- С1.3. параметрические ошибки θ стремятся к нулю экспоненциально, если вектор ω (матрица Ξ) удовлетворяет условию неисчезающего возбуждения (3.14);
- С1.4. если вектор ω (матрица Ξ) удовлетворяет условию (3.14), то скорость сходимости параметрических ошибок $\widetilde{\theta}$ к нулю может быть произвольно увеличена путем увеличения коэффициента γ .

Таким образом, алгоритм адаптации (14.3), как и алгоритм адаптации (13.8), позволяет при выполнении условия (14.2) произвольно ускорить сходимость оценок.

2. Динамическая модель ошибки с измеряемым состоянием

В рамках динамической модели ошибки с измеряемым состоянием (13.9)

$$\dot{e} = Ae + b\omega^T \tilde{\Theta}$$

после сведения последней к статической форме (см. выражения (13.11)- (13.13) в работе №13) реализуется следующий алгоритм адаптации с динамическим расширением регрессора:

$$\dot{\hat{\theta}} = \gamma \Xi_f^T \left(\Xi_e + \Xi_{f\theta} - \Xi_f \hat{\theta} \right) \tag{14.4}$$

где $\omega_f = H(s) \big[\omega \big]$ — отфильтрованный регрессор, $H(s) = b^T P(sI - A)^{-1} b$, $\Xi_f = col \Big(H_1(s) \Big[\omega_f^T \Big], H_2(s) \Big[\omega_f^T \Big], \cdots, H_q(s) \Big[\omega_f^T \Big] \Big),$ $\Xi_e = col \Big(H_1(s) \Big[b^T Pe \Big], H_2(s) \Big[b^T Pe \Big], \cdots, H_q(s) \Big[b^T Pe \Big] \Big),$ $\Xi_{f\theta} = col \Big(H_1(s) \Big[H(s) \Big[\omega^T \hat{\theta} \Big] \Big], H_2(s) \Big[H(s) \Big[\omega^T \hat{\theta} \Big] \Big], \cdots, H_q(s) \Big[H(s) \Big[\omega^T \hat{\theta} \Big] \Big] \Big).$

Алгоритм адаптации (14.4) совместно с моделью ошибки (13.9) для любых начальных условий e(0), $\hat{\theta}(0)$ обеспечивает следующие свойства:

- C2.1. если ω и $\dot{\omega}$ ограничены, то сигналы $e, \tilde{\theta}$ ограничены;
- С2.2. норма ошибки ||e|| стремится к нулю асимптотически;
- С2.3. параметрические ошибки $\ddot{\theta}$ стремятся к нулю экспоненциально, если вектор ω удовлетворяет условию неисчезающего возбуждения (3.14);
- С2.4. если вектор ω удовлетворяет условию (3.14), скорость сходимости параметрических ошибок $\tilde{\theta}$ к нулю может быть произвольно увеличена путем увеличения коэффициента γ .
 - 3. Динамическая модель ошибки с измеряемым выходом

В рамках динамической модели ошибки с измеряемым выходом (13.15)

$$\varepsilon = W(s) \left[\omega^T \tilde{\theta} \right]$$

после сведения последней к статической форме (см. выражения (13.11) — (13.13) в работе №13) реализуется алгоритм адаптации с динамическим расширением регрессора:

$$\dot{\hat{\theta}} = \gamma \bar{\Xi}^T \left(\bar{\Xi}_{\varepsilon} + \bar{\Xi}_{\theta} - \bar{\Xi} \hat{\theta} \right)$$

$$\tilde{\varepsilon} = \varepsilon + W(s) \left[\omega^T \hat{\theta} \right] - \bar{\omega}^T \hat{\theta} ,$$

$$\bar{\omega} = W(s) [\omega] ,$$
(14.5)

где

$$\begin{split} &\bar{\Xi} = col\Big(H_1(s)\Big[\bar{\varpi}^T\Big], H_2(s)\Big[\bar{\varpi}^T\Big], \cdots, H_q(s)\Big[\bar{\varpi}^T\Big]\Big), \\ &\bar{\Xi}_{\varepsilon} = col\Big(H_1(s)\big[\tilde{\varepsilon}\big], H_2(s)\big[\tilde{\varepsilon}\big], \cdots, H_q(s)\big[\tilde{\varepsilon}\big]\Big), \\ &\bar{\Xi}_{\theta} = col\Big(H_1(s)\Big[\bar{\varpi}^T\hat{\theta}\big], H_2(s)\Big[\bar{\varpi}^T\hat{\theta}\big], \cdots, H_q(s)\Big[\bar{\varpi}^T\hat{\theta}\big]\Big). \end{split}$$

Свойства системы, состоящей из модели ошибки (13.15) и алгоритма адаптации (14.5), с точностью до обозначений совпадают со свойствами С3.1-С3.4 алгоритма (14.4) с моделью ошибки (13.9).

В Таблицу 14.1 сведены типовые модели ошибок, соответствующие им базовые алгоритмы адаптации и алгоритмы адаптации с динамическим расширением регрессора.

Таблица 14.1. Модели ошибок и алгоритмы адаптации с динамическим расширением регрессора

Тип модели ошибок	Приведенная статическая форма модели	Работы, в которых применимы алгоритмы	Базовый алгоритм адаптации	Алгоритм с ускоренной сходимостью
Статическая модель: $\varepsilon = \omega^T \tilde{\theta}$	$\varepsilon = \omega^T \tilde{\Theta}$	№6, №8, №12	$\dot{\hat{\Theta}} = \gamma \omega \varepsilon$	$\begin{split} \dot{\hat{\theta}} &= \gamma \Xi^T (\Xi_{\varepsilon} + \Xi_{\theta} - \Xi \hat{\theta}) , \\ \Xi &= col \Big(H_i(s) \Big[\omega^T \Big] \Big), \ \Xi_{\varepsilon} = col \Big(H_i(s) \Big[\varepsilon \Big] \Big), \\ \Xi_{\theta} &= col \Big(H_i(s) \Big[\omega^T \hat{\theta} \Big] \Big), \ i = \overline{1, q} . \end{split}$
Динамическая модель с измеряемым состоянием: $\dot{e} = Ae + b\omega^T \tilde{\theta}$	$\tilde{\varepsilon}_f = \omega_f^T \tilde{\theta},$ $\omega_f = H(s)[\omega],$ $H(s) = b^T P(sI - A)^{-1}b$	№1, №3, №11	$\dot{\hat{\theta}} = \gamma \omega e_f,$ $e_f = H(s)[\omega^T \tilde{\theta}]$	$\begin{split} \dot{\hat{\theta}} &= \gamma \Xi_f^T (\Xi_e + \Xi_{f\theta} - \Xi_f \hat{\theta}), \\ \Xi_f &= col \Big(H_i(s) \Big[\omega_f^T \Big] \Big), \ \Xi_e = col \Big(H_i(s) \Big[b^T P e \Big] \Big), \\ \Xi_{f\theta} &= col \Big(H_i(s) \Big[H(s) \Big[\omega^T \hat{\theta} \Big] \Big] \Big), \ i = \overline{1, q}, \\ \tilde{\epsilon}_f &= b^T P e + H(s) \Big[\omega^T \hat{\theta} \Big] - \omega_f^T \hat{\theta}, \\ \omega_f &= H(s) [\omega] = b^T P (sI - A)^{-1} b [\omega]. \end{split}$
Динамическая модель с измеряемым выходом: $\varepsilon = W(s)[\omega^T \tilde{\theta}]$	$\widetilde{\varepsilon} = \overline{\omega}^T \widetilde{\theta},$ $\overline{\omega} = W(s)[\omega]$	№ 7, № 8	$\dot{\hat{\theta}} = \gamma \overline{\omega} \hat{\varepsilon},$ $\hat{\varepsilon} = \varepsilon - \overline{\omega}^T \hat{\theta} +$ $+ W(s) \left[\omega^T \hat{\theta} \right]$	$\begin{split} \dot{\hat{\theta}} &= \gamma \overline{\Xi}^T \left(\overline{\Xi}_{\varepsilon} + \overline{\Xi}_{\theta} - \overline{\Xi} \hat{\theta} \right), \\ \overline{\Xi} &= col \left(H_i(s) \left[\overline{\omega}^T \right] \right), \ \overline{\Xi}_{\varepsilon} = col \left(H_i(s) \left[\widetilde{\varepsilon} \right] \right), \\ \overline{\Xi}_{\theta} &= col \left(H_i(s) \left[\overline{\omega}^T \hat{\theta} \right] \right), \ i = \overline{1, q}, \\ \widetilde{\varepsilon} &= \varepsilon + W(s) \left[\omega^T \hat{\theta} \right] - \overline{\omega}^T \hat{\theta}, \ \overline{\omega} = W(s) [\omega]. \end{split}$

Порядок выполнения работы

- 1. Выполнить работу № 6, в рамках которой синтезируется адаптивный наблюдатель состояния линейной системы (6.3), (6.6) с базовым алгоритмом адаптации (6.5) (или (13.3)).
- 2. Промоделировать систему адаптивного наблюдения со схемой Лиона (6.1), (6.3), (6.6), (14.3).

Начальные условия на всех интеграторах, коэффициенты адаптации γ и входные воздействия u выбрать из п.1. Повторить все эксперименты из п.1. Сравнить полученные результаты с результатами, полученными в п.1. В качестве линейно независимых операторов использовать апериодические звенья первого порядка

$$H_1(s) = \frac{1}{s + \mu_1}, \ H_2(s) = \frac{1}{s + \mu_2}$$
 (14.6)

с параметрами μ_1 и μ_2 ($\mu_1 \neq \mu_2$). Параметры μ_1 и μ_2 выбрать экспериментально, исходя из наивысшего быстродействия, и зафиксировать для всех экспериментов.

- 3. Выполнить работу №3, в рамках которой с использованием базового алгоритма адаптации (3.13) (или алгоритм вида (13.10)) синтезировать адаптивное управление по состоянию (3.10) линейным объектом (3.1).
- 4. Промоделировать систему адаптивного слежения со схемой Лиона (3.1), (3.4), (3.10), (14.4).

Начальные условия на всех интеграторах, коэффициенты адаптации γ и входные воздействия u выбрать из п.3. Повторить все эксперименты из п.3. Сравнить полученные результаты с результатами, полученными в п.3. В качестве линейно независимых операторов использовать (14.6).

В алгоритм (14.4) необходимо включить нормирующий фактор $1/\left(1+\left\|\Xi_f^T\Xi_f\right\|\right)$:

$$\dot{\hat{\boldsymbol{\theta}}} = \frac{\boldsymbol{\gamma}}{1 + \left\|\boldsymbol{\Xi}_{f}^{T}\boldsymbol{\Xi}_{f}\right\|} \boldsymbol{\Xi}_{f}^{T} \left(\boldsymbol{\Xi}_{e} + \boldsymbol{\Xi}_{f\boldsymbol{\theta}} - \boldsymbol{\Xi}_{f} \hat{\boldsymbol{\theta}}\right).$$

- 5. Выполнить работу №8, в рамках которой с использованием базового алгоритма адаптации (8.2), (8.4) синтезировать адаптивное управление по выходу (7.8) линейным объектом (7.1).
- 6. Промоделировать систему адаптивного слежения со схемой Лиона (7.1), (7.2), (7.3), (7.8), (8.2), (14.5).

Начальные условия на всех интеграторах, коэффициенты адаптации γ и входные воздействия u выбрать из п.5. Повторить все эксперименты из п.5. В качестве линейно независимых операторов использовать (14.6).

В алгоритм (14.5) включить нормирующий фактор $1/(1+\|\overline{\Xi}^T\overline{\Xi}\|)$ с евклидовой нормой:

$$\dot{\hat{\boldsymbol{\theta}}} = \frac{\boldsymbol{\gamma}}{1 + \left\| \boldsymbol{\Xi}^T \boldsymbol{\Xi} \right\|} \boldsymbol{\Xi}^T (\boldsymbol{\Xi}_{\varepsilon} + \boldsymbol{\Xi}_{\theta} - \boldsymbol{\Xi} \boldsymbol{\hat{\boldsymbol{\theta}}}).$$

Задачи и вопросы

- 1. Каким образом параметры μ_1 и μ_2 операторов (14.6) влияют на скорость параметрической сходимости?
- 2. Показать, что из модели (14.1) можно синтезировать алгоритм адаптации (14.3)
 - 3. Объяснить использование нормирующего фактора в п.4 и п.6.
- 4. Сравнить количество интеграторов и операций умножения, требуемых при реализации алгоритмов адаптации на базе линейного оператора с "памятью" (13.16) и на базе динамического расширения регрессора (14.5) для модели ошибки (13.15) при а) m=2, q=1, n=2, $L(s)=1/(s+\mu)$, $H_1(s)=1/(s+\mu_1)$; б) m=2, q=2, n=2, $L(s)=1/(s+\mu)$, $H_1(s)=1/(s+\mu_1)$, $H_2(s)=1/(s+\mu_2)$; в) m=2, q=2, n=2, $L(s)=1/(s+\mu_2)$; где m=2, $L(s)=1/(s^2+\mu s+\mu_0)$, $L(s)=1/(s+\mu_1)$, $L(s)=1/(s+\mu_1)$, $L(s)=1/(s+\mu_1)$, $L(s)=1/(s+\mu_1)$, $L(s)=1/(s+\mu_2)$; где $L(s)=1/(s+\mu_2)$; где L
- 5. Привести робастные схемы алгоритмов адаптации (14.3), (14.4), (14.5) с параметрической обратной связью. Проанализировать и доказать свойства замкнутой системы.
- 6. Для модели ошибки (13.9) применить смешанную (гибридную) схему алгоритма адаптации, представляющую собой сумму базового и улучшенного алгоритмов

$$\dot{\hat{\boldsymbol{\theta}}} = \gamma \boldsymbol{\omega} \boldsymbol{b}^T \boldsymbol{P} \boldsymbol{e} + \overline{\gamma} \boldsymbol{\Xi}_f^T (\boldsymbol{\Xi}_e + \boldsymbol{\Xi}_{f\theta} - \boldsymbol{\Xi}_f \hat{\boldsymbol{\theta}}).$$

Проанализировать и доказать свойства замкнутой системы с помощью функции Ляпунова $V = e^T P e / 2 + \tilde{\theta}^T \tilde{\theta} / 2 \gamma$.

7. Доказать стремление ошибки управления e к нулю в случае, если регрессор ω — непрерывный и ограниченный, и расширенная ошибка $\tilde{\epsilon}_f$ стремится к нулю асимптотически.

- 8. Гарантируется ли экспоненциальная сходимость параметрических ошибок к нулю, если в условии (14.2) при $\lambda_0 = 1/(t+1)$?
- 9. Гарантируется ли асимптотическое стремление ошибки e к нулю в задаче адаптивного слежения по состоянию (см. порядок выполнения работ, п.4) при $H_1(s) = k_1$, $H_2(s) = k_2$, где k_1 , k_2 положительные постоянные коэффициенты?
- 10. Гарантируется ли асимптотическое стремление ошибки e к нулю в задаче адаптивного слежения по состоянию (см. порядок выполнения работ, п.4) при: а) $H_1(s) = \exp(-\tau s)$, $H_2(s) = \exp(-3\tau s)$; б) $H_1(s) = 1$, $H_2(s) = -1/(s+\tau)$; в) $H_1(s) = 1$, $H_2(s) = s/(s+\tau)$; г) $H_1(s) = 1/s$, $H_2(s) = 1/$

Работа № 15. АДАПТИВНОЕ УПРАВЛЕНИЕ ОБЪЕКТАМИ ПРИ НАРУШЕНИИ УСЛОВИЙ СОГЛАСОВАНИЯ. БАЗОВЫЕ СХЕМЫ

Цель работы: освоение базовых решений задачи адаптивного управления нелинейными системами при нарушении условий согласования управления и неопределенностей.

Методические рекомендации. До начала работы студенты должны ознакомиться с методами неадаптивного [15] и адаптивного [6, 7, 17] бэкстеппинга (в русскоязычной литературе так же принят термин "алгоритм обратного обхода интегратора") для класса нелинейных параметрически неопределенных объектов.

Теоретические сведения. Рассмотрим объект, представленный в параметризованной по неизвестным параметрам форме:

$$\dot{x}_{1} = x_{2} + \theta^{T} \varphi_{1}(x_{1}),
\dot{x}_{2} = x_{3} + \theta^{T} \varphi_{2}(x_{1}, x_{2}),
\vdots
\dot{x}_{n-1} = x_{n} + \theta^{T} \varphi_{n-1}(x_{1}, ..., x_{n-1}),
\dot{x}_{n} = u + \theta^{T} \varphi_{n}(x),
y = x_{1},$$
(15.1)

где $x = col(x_1,...,x_n)$ — измеряемый вектор состояния, $\theta \in R^q$ — вектор неизвестных параметров, $\phi_i(x_1,...,x_i) \in R^q$ — вектор достаточно гладких измеряемых функций.

Предполагается, что объект полностью управляем.

Задача управления заключается в синтезе управления u, обеспечивающего ограниченность всех сигналов в системе, компенсацию параметрических неопределенностей объекта и стремление выхода объекта к выходу эталонной модели

$$y_M(t) = \frac{k_0}{K_M(s)} [g(t)],$$
 (15.2)

где g — сигнал задания, $K_M(s)$ — гурвицевый полином порядка n, определяющий желаемую динамику замкнутой системы после настройки всех параметров регулятора. Полином $K_M(s)$ строится на основе метода стандартных полиномов, исходя из заданных динамических характеристик [4,5].

Задача имеет несколько базовых решений, для ознакомления с которыми предлагается использовать [14, 17]. Приведем два из них.

Первое решение основано на прямом применении процедуры бэкстеппинга с разработкой алгоритмов адаптации на каждом шаге и называется бэкстеппинг с избыточной параметризацией (в англоязычной литературе используется термин "overparameterization") [14]. Во втором решении настраиваемый закон управления состоит из двух компонент. Первая компонента обеспечивает компенсацию влияния нелинейностей и динамики объекта. Вторая компонента компенсирует влияние динамики настраиваемых параметров регулятора. Обе компоненты настраиваются с помощью так называемой функции настройки (в англоязычной литературе принят термин "tuning function"), составляющей базис алгоритма адаптации.

Для простоты изложения основных принципов адаптивного бэкстеппинга ограничимся объектом второго порядка

$$\dot{x}_1 = x_2 + \theta^T \phi_1(x_1),
\dot{x}_2 = u + \theta^T \phi_2(x_1, x_2),
y = x_I.$$
(15.3)

Выберем эталонную модель (15.2) с полиномом второго порядка $K_M(s) = s^2 + k_1 s + k_0$. Структура эталонной модели позволяет в дальнейшем рассчитать производные \dot{y}_M , \ddot{y}_M .

Решение задачи №1 (с избыточной параметризацией).

Задача решается в два шага (n шагов для произвольного порядка объекта).

Шаг 1. Сформируем ошибку управления по выходу $\varepsilon = e_1 = y_M - y$ и вычислим ее производную в силу (15.2) и (15.3):

$$\dot{e}_1 = \dot{y}_M - x_2 - \theta^T \phi_1(x_1). \tag{15.4}$$

Временно выбирая в качестве виртуального управления α_1 переменную x_2 (т.е. $\alpha_1 = x_2$), с помощью принципа непосредственной компенсации и результатов работы №1 получаем:

$$\alpha_1 = c_1 e_1 + \dot{y}_M - \hat{\vartheta}_1^T \varphi_1(x_1), \tag{15.5}$$

где c_1 — положительная константа, $\hat{\vartheta}_1 \in R^q$ — первый вектор настраиваемых параметров (первая оценка вектора θ), генерируемый алгоритмом адаптации

$$\dot{\hat{\Theta}}_1 = -\gamma_1 \phi_1(x_1) e_1 \tag{15.6}$$

с положительным коэффициентом адаптации γ_1 . По аналогии с работой N_2 1 устойчивость замкнутой подсистемы, полученной на первом шаге, доказывается с помощью функции Ляпунова

$$V_{1} = \frac{1}{2}e_{1}^{2} + \frac{1}{2\gamma_{1}}\left(\theta - \hat{\vartheta}_{1}\right)^{T}\left(\theta - \hat{\vartheta}_{1}\right)$$
 (15.7)

и анализа ее производной в силу (15.5), (15.6).

Шаг 2. Так как, вообще говоря, $\alpha_1 \neq x_2$, то определим вторую ошибку управления

$$e_2 = \alpha_1 - x_2,$$

из которой выразим x_2 и подставим в (15.4):

$$\dot{e}_1 = \dot{y}_M + e_2 - \alpha_1 - \theta^T \varphi_1(x_1).$$

Подставляя в последнее выражение виртуальное управление (15.5), получаем:

$$\dot{e}_1 = -c_1 e_1 + e_2 - \left(\theta - \hat{\vartheta}_1\right)^T \varphi_1(x_1). \tag{15.8}$$

Далее, вычисляя производную от функции Ляпунова V_1 , в силу (15.8) и (15.6) имеем

$$\dot{V}_1 = e_1 \dot{e}_1 - \frac{1}{\gamma_1} \left(\theta - \hat{\vartheta}_1 \right)^T \dot{\hat{\vartheta}}_1 = -c_1 e_1^2 + e_1 e_2. \tag{15.9}$$

Рассчитаем производную $\dot{e}_2 = \dot{\alpha}_1 - \dot{x}_2$ с учетом (15.5) и (15.3):

$$\dot{e}_{2} = \ddot{y}_{M} + c_{1}\dot{y}_{M} + \frac{\partial\alpha_{1}}{\partial x_{1}}\dot{x}_{1} + \frac{\partial\alpha_{1}}{\partial\hat{\theta}_{1}}\dot{\hat{\theta}}_{1} - u - \theta^{T}\phi_{2}(x_{1}, x_{2}) =$$

$$= \ddot{y}_{M} + c_{1}\dot{y}_{M} + \frac{\partial\alpha_{1}}{\partial x_{1}}\left(x_{2} + \theta^{T}\phi_{1}(x_{1})\right) - \gamma_{1}\frac{\partial\alpha_{1}}{\partial\hat{\theta}_{1}}\phi_{1}(x_{1})e_{1} - (15.10)$$

$$- u - \theta^{T}\phi_{2}(x_{1}, x_{2}),$$

где частные производные $\partial \alpha_1 / \partial x_1$, $\partial \alpha_1 / \partial \hat{\vartheta}_1$, используемые в расчетах для компактной записи, вычисляются как:

$$\frac{\partial \alpha_1}{\partial x_1} = -c_1 - \hat{\vartheta}_1^T \frac{\partial \varphi_1(x_1)}{\partial x_1}, \qquad \frac{\partial \alpha_1}{\partial \hat{\vartheta}_1} = -\varphi_1^T(x_1).$$

В целях синтеза актуального управления u выберем вторую функцию Ляпунова в виде

$$V_2 = V_1 + \frac{1}{2}e_2^2 + \frac{1}{2\gamma_2}(\theta - \hat{\vartheta}_2)^T(\theta - \hat{\vartheta}_2),$$

где $\hat{\vartheta}_2 \in R^q$ — второй вектор настраиваемых параметров (вторая оценка вектора θ). Вычисляя производную \dot{V}_2 в силу (15.9), (15.10), получаем:

$$\dot{V}_{2} = \dot{V}_{1} + e_{2}\dot{e}_{2} - \frac{1}{\gamma_{2}} \left(\theta - \hat{\vartheta}_{2} \right)^{T} \dot{\hat{\vartheta}}_{2} = -c_{1}e_{1}^{2} + e_{2} \left(e_{1} + \ddot{y}_{M} + c_{1}\dot{y}_{M} + c_{2}\dot{y}_{M} + c_{2}\dot{$$

Последнее выражение мотивирует синтез актуального управления

$$u = c_2 e_2 + e_1 + \ddot{y}_M + c_1 \dot{y}_M + \frac{\partial \alpha_1}{\partial x_1} x_2 + \left(\frac{\partial \alpha_1}{\partial x_1} \varphi_1^T(x_1) - \varphi_2^T(x_1, x_2)\right) \hat{\vartheta}_2 - \gamma_1 \frac{\partial \alpha_1}{\partial \hat{\vartheta}_1} \varphi_1(x_1) e_1,$$

$$(15.11)$$

где c_2 — положительная константа. Подставляя (15.11) в выражение для \dot{V}_2 , продолжаем анализ производной:

$$\dot{V}_{2} = -c_{1}e_{1}^{2} - c_{2}e_{2}^{2} + \left(\theta - \hat{\vartheta}_{2}\right)^{T} \left(\frac{\partial \alpha_{1}}{\partial x_{1}} \varphi_{1}^{T}(x_{1}) - \varphi_{2}^{T}(x_{1}, x_{2})\right) e_{2} - \frac{1}{\gamma_{2}} \left(\theta - \hat{\vartheta}_{2}\right)^{T} \dot{\hat{\vartheta}}_{2}.$$

Далее, выбирая второй алгоритм адаптации в виде

$$\dot{\hat{\boldsymbol{\vartheta}}}_2 = \gamma_2 \left(\frac{\partial \alpha_1}{\partial x_1} \boldsymbol{\varphi}_1^T(x_1) - \boldsymbol{\varphi}_2^T(x_1, x_2) \right) e_2, \tag{15.12}$$

получаем условие

$$\dot{V}_2 = -c_1 e_1^2 - c_2 e_2^2 \le 0$$
,

из которого следует асимптотическая сходимость $e_{\scriptscriptstyle 1}$, $e_{\scriptscriptstyle 2}$ к нулю, т.е. достижение цели управления.

Таким образом, первое решение задачи состоит из настраиваемого (актуального) управления (15.11), алгоритмов адаптации (15.6) и (15.12) и эталонной модели (15.2). Решение обеспечивает ограниченность всех сигналов в замкнутой системе и асимптотическую сходимость ошибки управления $\varepsilon = e_1 = y_M - y$ к нулю.

В случае если порядок объекта (15.1) превышает два, то в качестве второго виртуального управления принимается выражение (15.11). Процедура анализа новых функций Ляпунова и их производных

продолжается совместно с выводами новых алгоритмов адаптации и виртуальных управлений. Процедура заканчивается выводом актуального настраиваемого закона управления u и алгоритма адаптации, генерирующего n-ую оценку вектора θ . Производная функции Ляпунова на последнем шаге определяется как $\dot{V_n} = -\sum_{i=1}^n c_i e_i^2 \leq 0$.

Существенным недостатком представленного решения является высокий динамический порядок регулятора, обусловленный необходимостью в независимой настройке виртуального (в общем случае виртуальных) и актуального управления *и*. Создание на каждом шаге итеративной процедуры алгоритма адаптации существенно усложняет искомое решение и приводит к избыточной параметризации регулятора — избыточному числу его параметров относительно числа неизвестных параметров объекта.

В целях решения данной проблемы в литературе предложен ряд решений [7, 17, 21], в котором количество настраиваемых параметров регулятора не превышает количество неизвестных параметров объекта. Рассмотрим одно из таких решений, которое базируется на специальной функции настройки (tuning function) и которое, в отличие от всех предыдущих работ настоящего пособия, не использует принцип непосредственной компенсации.

Решение задачи №2 (при помощи функции настройки).

Искомое решение задачи будем искать в виде управления

$$u = u_H + u_{\pi}, (15.13)$$

состоящего из двух компонент — основной $u_{\scriptscriptstyle H}$ и дополнительной $u_{\scriptscriptstyle {\it I}\!\!{\it I}}$.

Структура основной компоненты выбирается идентичной структуре неадаптивного регулятора, в основе синтеза которого лежит допущение о том, что все параметры известны. Структура дополнительной компоненты выбирается из условия устойчивости системы замкнутой контуром адаптации. Приведем поэтапный синтез обеих компонент.

В предположении, что все параметры объекта (15.3) известны, построим ненастраиваемый регулятор $u_H = u_H(\theta,x)$, обеспечивающий цель управления объектом

$$\dot{x}_1 = x_2 + \theta^T \phi_1(x_1),$$

 $\dot{x}_2 = u_H(\theta, x) + \theta^T \phi_2(x_1, x_2),$
 $y = x_I.$

Используем классическую процедуру бэкстеппинга (см., например, [15]).

Шаг 1 (Ненастраиваемый регулятор). Временно предположим, что $x_2 = \overline{\alpha}_1$ — первое виртуальное ненастраиваемое управление. В целях

компенсации нелинейности и обеспечения экспоненциальной сходимости $y = x_1$ к y_M в первом уравнении (15.3) выберем

$$\overline{\alpha}_1 = c_1 e_1 + \dot{y}_M - \theta^T \varphi_1(x_1),$$
 (15.14)

где $e_1 = y_M - y$ — сигнал ошибки по выходу, c_1 — положительная константа. Тогда ошибка e_1 будет удовлетворять уравнению

$$\dot{e}_1 = \dot{y}_M - \dot{y} = \dot{y}_M - \overline{\alpha}_1 - \theta^T \varphi_1(x_1) = -c_1 e_1.$$

Шаг 2 (**Ненастраиваемый регулятор**). Так как в общем случае $x_2 \neq \overline{\alpha}_1$, то введем второй сигнал ошибки $e_2 = \overline{\alpha}_1 - x_2$ и выразим из него x_2 :

$$x_2 = \overline{\alpha}_1 - e_2 = c_1 e_1 + \dot{y}_M - \theta^T \varphi_1(x_1) - e_2.$$
 (15.15)

Далее пересчитаем производную \dot{e}_1 с учетом последнего выражения и (15.14):

$$\dot{e}_1 = \dot{y}_M - \dot{y} = \dot{y}_M - x_2 - \theta^T \phi_1(x_1) = \dot{y}_M - c_1 e_1 - \dot{y}_M + \theta^T \phi_1(x_1) + e_2 - \theta^T \phi_1(x_1) = -c_1 e_1 + e_2$$

или

$$\dot{e}_1 = -c_1 e_1 + e_2. \tag{15.16}$$

В целях синтеза неадаптивного управления вычислим производную $e_2 = \overline{\alpha}_1 - x_2$ с учетом (15.14) и (15.3):

$$\dot{e}_{2} = \dot{\overline{\alpha}}_{1} - \dot{x}_{2} = c_{1}\dot{y}_{M} + \ddot{y}_{M} - \left(c_{1} + \theta^{T} \frac{\partial \varphi_{1}}{\partial x_{1}}\right) \left(x_{2} + \theta^{T} \varphi_{1}(x_{1})\right) - u_{H} - \theta^{T} \varphi_{2}(x_{1}, x_{2}),$$

где $u_H = u_H(\theta, x)$ — ненастраиваемый закон управления. Выберем закон управления в следующем виде:

$$u_{H} = e_{1} + c_{2}e_{2} + c_{1}\dot{y}_{M} + \ddot{y}_{M} - \left(c_{1} + \theta^{T} \frac{\partial \varphi_{1}}{\partial x_{1}}\right) \left(x_{2} + \theta^{T} \varphi_{1}(x_{1})\right) - \theta^{T} \varphi_{2}(x_{1}, x_{2}),$$
(15.17)

где c_2 — положительная константа. Тогда после подстановки (15.17) в выражение для \dot{e}_2 получаем второе уравнение для ошибки:

$$\dot{e}_2 = -e_1 - c_2 e_2. \tag{15.18}$$

Объединяя (15.16) и (15.18), получаем экспоненциально устойчивую модель замкнутой системы

$$\begin{bmatrix} \dot{e}_1 \\ \dot{e}_2 \end{bmatrix} = \begin{bmatrix} -c_1 & 1 \\ -1 & -c_2 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix}.$$

Действительно, выбирая функцию Ляпунова⁸

$$V_H(\theta, x, t) = \frac{1}{2}e_1^2(\theta, x, t) + \frac{1}{2}e_2^2(\theta, x, t)$$

и рассчитывая ее производную в силу (15.16) и (15.18), имеем условие экспоненциальной устойчивости нулевого положения равновесия замкнутой системы:

$$\dot{V}_{H} = \frac{\partial V_{H}}{\partial col(e_{1}, e_{2})} \begin{bmatrix} \dot{e}_{1} \\ \dot{e}_{2} \end{bmatrix} = e_{1} \dot{e}_{1} + e_{2} \dot{e}_{2} = -c_{1} e_{1}^{2} + e_{1} e_{2} - e_{2} e_{1} - c_{2} e_{2}^{2} = -2\kappa V_{H}$$

или

$$\dot{V}_H(\theta, x, t) = -2\kappa V_H(\theta, x, t), \qquad (15.19a)$$

где $\kappa = \min\{c_1, c_2\}$.

Выражение (15.19а) может быть получено путем дифференцирования функции $V_H(\theta,x,t)$ не по e_1 , e_2 , а по x , y_M и \dot{y}_M :

$$\dot{V}_{H} = \frac{\partial V_{H}}{\partial x} \begin{bmatrix} x_{2} + \theta^{T} \varphi_{1}(x_{1}) \\ u_{H}(\theta, x, t) + \theta^{T} \varphi_{2}(x_{1}, x_{2}) \end{bmatrix} + \frac{\partial V_{H}}{\partial y_{M}} \dot{y}_{M} + \frac{\partial V_{H}}{\partial \dot{y}_{M}} \ddot{y}_{M} = -2\kappa V_{H}.$$
(15.196)

Для синтеза искомого адаптивного управления введем в рассмотрение расширенную функцию Ляпунова

$$V(\hat{\theta}, x, t) = V_H(\hat{\theta}, x, t) + \frac{1}{2\gamma} \tilde{\theta}^T \tilde{\theta},$$

в которой $\tilde{\theta} = \theta - \hat{\theta} \in \mathbb{R}^q$ — вектор параметрических ошибок,

$$\begin{split} V_{H}(\hat{\theta},x,t) &= V_{H}(\theta,x,t) \Big|_{\theta=\hat{\theta}} = \frac{1}{2} e_{1}^{2}(\hat{\theta},x,t) + \frac{1}{2} e_{2}^{2}(\hat{\theta},x,t), \\ e_{1}(\hat{\theta},x,t) &= e_{1}(\theta,x,t) \Big|_{\theta=\hat{\theta}} = y_{M} - x_{1}, \\ e_{2}(\hat{\theta},x,t) &= e_{2}(\theta,x,t) \Big|_{\theta=\hat{\theta}} = \overline{\alpha}_{1} \Big|_{\theta=\hat{\theta}} - x_{2} = c_{1}y_{M} - c_{1}x_{1} + \dot{y}_{M} - \hat{\theta}^{T}\phi_{1}(x_{1}). \end{split}$$

Рассчитаем производную $V(\hat{\theta}, x, t)$ в силу (15.3) и (15.13):

129

⁸ Здесь и далее в работе зависимость функции от времени t является сокращенной формой записи зависимости от выходной переменной эталонной модели $y_{M}(t)$ и ее производных $\dot{y}_{M}(t)$.

$$\begin{split} \dot{V}(\hat{\theta},x,t) &= \frac{\partial V_{H}(\hat{\theta},x,t)}{\partial \hat{\theta}} \dot{\hat{\theta}} + \frac{\partial V_{H}(\hat{\theta},x,t)}{\partial x} \dot{x} + \frac{\partial V_{H}(\hat{\theta},x,t)}{\partial y_{M}} \dot{y}_{M} + \\ &\quad + \frac{\partial V_{H}(\hat{\theta},x,t)}{\partial \dot{y}_{M}} \ddot{y}_{M} - \frac{1}{\gamma} \tilde{\theta}^{T} \dot{\hat{\theta}} = \frac{\partial V_{H}(\hat{\theta},x,t)}{\partial \hat{\theta}} \dot{\hat{\theta}} + \\ &\quad + \frac{\partial V_{H}(\hat{\theta},x,t)}{\partial x} \begin{bmatrix} x_{2} + \theta^{T} \varphi_{1}(x_{1}) \\ u_{H}(\hat{\theta},x,t) + u_{H}(\hat{\theta},x,t) + \theta^{T} \varphi_{2}(x_{1},x_{2}) \end{bmatrix} + \frac{\partial V_{H}(\hat{\theta},x,t)}{\partial y_{M}} \dot{y}_{M} + \\ &\quad + \frac{\partial V_{H}(\hat{\theta},x,t)}{\partial \dot{y}_{M}} \ddot{y}_{M} - \frac{1}{\gamma} \tilde{\theta}^{T} \dot{\hat{\theta}} \pm \frac{\partial V_{H}(\hat{\theta},x,t)}{\partial x} \begin{bmatrix} \hat{\theta}^{T} \varphi_{1}(x_{1}) \\ \hat{\theta}^{T} \varphi_{2}(x_{1},x_{2}) \end{bmatrix}, \end{split}$$

где

$$u_{H}(\hat{\theta}, x, t) = u_{H}(\theta, x, t)\Big|_{\theta = \hat{\theta}} = e_{1} + c_{2}e_{2}(\hat{\theta}, x, t) + c_{1}\dot{y}_{M} + \ddot{y}_{M} - \left(c_{1} + \hat{\theta}^{T}\frac{\partial\varphi_{1}}{\partial x_{1}}\right)\left(x_{2} + \hat{\theta}^{T}\varphi_{1}(x_{1})\right) - \hat{\theta}^{T}\varphi_{2}(x_{1}, x_{2})$$
(15.20)

— физически реализуемая основная компонента управления, подлежащая настройке. Компонента получена путем замены θ в (15.17) на $\hat{\theta}$.

Перед тем как продолжить расчет, установим три факта.

1. Путем замены в (15.19б) θ на $\hat{\theta}$ имеем:

$$\dot{V}_{H}(\hat{\theta}, x, t) = \frac{\partial V_{H}(\hat{\theta}, x, t)}{\partial x} \begin{bmatrix} x_{2} + \hat{\theta}^{T} \varphi_{1}(x_{1}) \\ u_{H}(\hat{\theta}, x, t) + \hat{\theta}^{T} \varphi_{2}(x_{1}, x_{2}) \end{bmatrix} + \frac{\partial V_{H}(\hat{\theta}, x, t)}{\partial y_{M}} \dot{y}_{M} + \frac{\partial V_{H}(\hat{\theta}, x, t)}{\partial \dot{y}_{M}} \ddot{y}_{M} = -2\kappa V_{H}(\hat{\theta}, x, t).$$
(15.21)

2. Рассчитаем частную производную $\partial V_H / \partial x$ с учетом определений e_1 , e_2 и $\overline{\alpha}_1(\hat{\theta},x,t)$:

$$\frac{\partial V_H(\hat{\theta}, x, t)}{\partial x} = e_1(\hat{\theta}, x, t) \frac{\partial e_1(\hat{\theta}, x, t)}{\partial x} + e_2(\hat{\theta}, x, t) \frac{\partial e_2(\hat{\theta}, x, t)}{\partial x} =$$
(15.22)

$$= e_{1}(\hat{\theta}, x, t) \begin{bmatrix} -1 \\ 0 \end{bmatrix}^{T} + e_{2}(\hat{\theta}, x, t) \left(\frac{\partial \overline{\alpha}_{1}(\hat{\theta}, x, t)}{\partial x} - \frac{\partial x_{2}}{\partial x} \right) =$$

$$= -e_{1}(\hat{\theta}, x, t) \begin{bmatrix} 1 \\ 0 \end{bmatrix}^{T} - e_{2}(\hat{\theta}, x, t) \begin{bmatrix} c_{1} + \hat{\theta}^{T} \frac{\partial \phi_{1}(x_{1})}{\partial x_{1}} \end{bmatrix}^{T}.$$

3. Рассчитаем частную производную $\partial V_H / \partial \hat{\theta}$ с учетом определений e_1 , e_2 и $\overline{\alpha}_1$:

$$\frac{\partial V_H(\hat{\theta}, x, t)}{\partial \hat{\theta}} = e_1(\hat{\theta}, x, t) \frac{\partial e_1(\hat{\theta}, x, t)}{\partial \hat{\theta}} + e_2(\hat{\theta}, x, t) \frac{\partial e_2(\hat{\theta}, x, t)}{\partial \hat{\theta}} = \\
= -e_2(\hat{\theta}, x, t) \varphi_1^T(x_1).$$
(15.23)

Учитывая промежуточные расчеты (15.21), (15.23), продолжим анализ $\dot{V}(\hat{\theta},x,t)$:

$$\begin{split} \dot{V}(\hat{\theta},x,t) &= -2\kappa V_H(\hat{\theta},x,t) - e_2(\hat{\theta},x,t) \phi_1(x_1) \dot{\hat{\theta}} + \\ &+ \frac{\partial V_H(\hat{\theta},x,t)}{\partial x} \begin{bmatrix} \theta^T \phi_1(x_1) \\ u_J(\hat{\theta},x,t) + \theta^T \phi_2(x_1,x_2) \end{bmatrix} - \\ &- \frac{1}{\gamma} \tilde{\theta}^T \dot{\hat{\theta}} - \frac{\partial V_H(\hat{\theta},x,t)}{\partial x} \begin{bmatrix} \hat{\theta}^T \phi_1(x_1) \\ \hat{\theta}^T \phi_2(x_1,x_2) \end{bmatrix}. \end{split}$$

Приводя подобные слагаемые и используя обозначение $\tilde{\theta} = \theta - \hat{\theta}$, получаем выражение для производной, позволяющее выбрать структуру алгоритма адаптации и дополнительной компоненты настраиваемого регулятора $u_{\mathcal{I}}(\hat{\theta},x,t)$:

$$\begin{split} \dot{V}(\hat{\boldsymbol{\theta}}, \boldsymbol{x}, t) &= -2\kappa V_{H}(\hat{\boldsymbol{\theta}}, \boldsymbol{x}, t) - e_{2}(\hat{\boldsymbol{\theta}}, \boldsymbol{x}, t) \phi_{1}(\boldsymbol{x}_{1}) \dot{\hat{\boldsymbol{\theta}}} + \\ &+ \frac{\partial V_{H}(\hat{\boldsymbol{\theta}}, \boldsymbol{x}, t)}{\partial \boldsymbol{x}} \begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{u}_{H}(\hat{\boldsymbol{\theta}}, \boldsymbol{x}, t) \end{bmatrix} + \left(\frac{\partial V_{H}(\hat{\boldsymbol{\theta}}, \boldsymbol{x}, t)}{\partial \boldsymbol{x}} \begin{bmatrix} \phi_{1}^{T}(\boldsymbol{x}_{1}) \\ \phi_{2}^{T}(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}) \end{bmatrix} - \frac{1}{\gamma} \dot{\hat{\boldsymbol{\theta}}}^{T} \right) \tilde{\boldsymbol{\theta}}. \end{split}$$

Выберем структуру алгоритма адаптации так, чтобы обнулить выражение в скобках:

$$\dot{\hat{\theta}} = \gamma \left[\phi_1(x_1), \phi_2(x_1, x_2) \right] \left(\frac{\partial V_H(\hat{\theta}, x, t)}{\partial x} \right)^T.$$
 (15.24)

Следуя терминологии, принятой в [17], функция

$$\left[\phi_1(x_1),\phi_2(x_1,x_2)\right]\left(\frac{\partial V_H(\hat{\theta},x,t)}{\partial x}\right)^T$$

называется функцией настройки (tuning function).

Компоненту $u_{\mathcal{I}}(\hat{\theta},x,t)$ выберем из условия

$$-e_2(\hat{\theta}, x, t)\phi_1^T(x_1)\dot{\hat{\theta}} + \frac{\partial V_H(\hat{\theta}, x, t)}{\partial x} \begin{bmatrix} 0 \\ u_{\mathcal{A}}(\hat{\theta}, x, t) \end{bmatrix} = 0,$$

которое с учетом (15.22), (15.24) примет вид

$$-e_{2}(\hat{\theta}, x, t)\varphi_{1}^{T}(x_{1})\dot{\hat{\theta}} - e_{2}(\hat{\theta}, x, t)u_{\mathcal{A}}(\hat{\theta}, x, t) = 0$$

или

$$-\varphi_1^T(x_1)\gamma\Big[\varphi_1(x_1) \ \vdots \ \varphi_2(x_1,x_2)\Big]\left(\frac{\partial V_H(\hat{\theta},x,t)}{\partial x}\right)^T - u_{\mathcal{A}}(\hat{\theta},x,t) = 0.$$

Из последнего равенства получаем

$$u_{\mathcal{A}}(\hat{\theta}, x, t) = -\gamma \varphi_1(x_1) \left[\varphi_1(x_1) : \varphi_2(x_1, x_2) \right] \left(\frac{\partial V_H(\hat{\theta}, x, t)}{\partial x} \right)^T. \quad (15.25)$$

В итоге, с учетом последнего выражения, производная расширенной функции Ляпунова примет вид

$$\dot{V}(\hat{\theta}, x, t) = -2\kappa V_H(\hat{\theta}, x, t) \le 0,$$

из которого следует асимптотическая (неэкспоненциальная) устойчивость замкнутой системы.

Таким образом, второе решение задачи состоит из настраиваемого управления (15.13), включающего основную компоненту (15.20) и дополнительную компоненту (15.25), алгоритма адаптации (15.24) и эталонной модели (15.2). Решение обеспечивает ограниченность всех сигналов в замкнутой системе и асимптотическую сходимость ошибки управления $\varepsilon = e_1 = y_M - y$ к нулю.

В отличие от первого решения, во втором решении динамический порядок алгоритма адаптации не зависит от порядка объекта, а определяется только количеством неизвестных параметров θ . Из хода второго решения можно сделать вывод, что основная компонента u_H компенсирует влияние нелинейностей, неопределенностей и динамики объекта, а также динамики эталонной модели, в то время как дополнительная компонента u_{II} , будучи пропорциональной $\hat{\theta}$, парирует

негативное влияние переходных процессов в алгоритме адаптации на устойчивость всей замкнутой системы.

Порядок выполнения работы

В работе класс нелинейных объектов ограничивается вторым порядком (n=2). Все начальные условия в работе принимаются нулевыми.

- 1. Используя данные из таблицы 15.1 (либо результаты работы №3), методом стандартных характеристических полиномов синтезировать эталонную модель в форме (15.2) с полиномом $K_M(s) = s^2 + k_1 s + k_0$.
- 2. На основе данных из таблицы 15.1 и теоретических сведений получить первое и второе решения. Провести моделирование замкнутых систем адаптивного управления. Коэффициенты адаптации $\gamma_1,\ \gamma_2$ (первое решение) и ү (второе решение) выбрать равными друг другу, исходя из удобства иллюстрации результатов экспериментов. Параметры c_1 и c_2 выбрать идентичными для обоих решений. Для каждого решения построить четыре графика. На первом графике вывести значения ошибки управления $\varepsilon = e_1 = y_M - y$, на втором выходу ПО норму $||col(e_1,e_2)|| = \sqrt{e_1^2 + e_2^2}$, третьем на $\|col((\theta - \hat{\theta}_1), (\theta - \hat{\theta}_2))\| = \sqrt{(\theta - \hat{\theta}_1)^T(\theta - \hat{\theta}_1) + (\theta - \hat{\theta}_2)^T(\theta - \hat{\theta}_2)}$ (для первого решения), $\|\tilde{\theta}\| = \sqrt{\tilde{\theta}^T \tilde{\theta}}$ (для второго решения), на четвертом — u.
 - 3. Сравнить полученные результаты. Сделать выводы.

Таблица 15.1. Варианты заданий

Bap.	Вектор		ные функции бъекта	Время перех.	Макс. перерегули-	Сигнал задания $g(t)$
Бар.	θ	$\varphi_1(x_1)$	$\varphi_2(x_1, x_2)$	проц. <i>t</i> _n	рование σ̄, %	Сигнал задания g(t)
1	$\begin{bmatrix} 3 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ \sin x_1 \end{bmatrix}$	$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$	0.16	0	$2sign(\cos t) + 3$
2	$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$	$\begin{bmatrix} \sin x_1 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ x_2 \end{bmatrix}$	0.3	0	$\cos t + 3\sin 2t + 5$
3	$\begin{bmatrix} 2 \\ 4 \end{bmatrix}$	$\begin{bmatrix} \sin x_1 \\ \cos x_1 \end{bmatrix}$	$\begin{bmatrix} x_1 \\ 1 \end{bmatrix}$	0.9	0	$sign(\cos 2t)$
4	$\begin{bmatrix} 2 \\ -3 \end{bmatrix}$	$\begin{bmatrix} x_1 \\ \sin x_1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ \sin(x_1 + x_2) \end{bmatrix}$	0.2	0	$sign(\sin 0,5t) + 2$
5	$\begin{bmatrix} -2 \\ 5 \end{bmatrix}$	$\begin{bmatrix} \sin x_1 \\ x_1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ \cos(x_1 + x_2) \end{bmatrix}$	0.6	0	$10\cos 0,5t + 2\sin t + 12$
6		$ \mathcal{X}_1 $	$\begin{bmatrix} \sin(x_1 + x_2) \\ 1 \end{bmatrix}$	0.3	0	$sign(\sin 0,5t)+3$
7	$\begin{bmatrix} 2 \\ -3 \end{bmatrix}$	$\begin{bmatrix} 1 + \frac{x_1^3}{10} \\ \sin x_1 \end{bmatrix}$	$\begin{bmatrix} \cos(x_1 + x_2) \\ 1 \end{bmatrix}$	0.7	0	$0,5sign(\sin 0,7t)+1$
8		$\begin{bmatrix} x_1 - \frac{x_1^3}{10} \\ x_1 \end{bmatrix}$	$\begin{bmatrix} x_1 + x_2 \\ x_2 \end{bmatrix}$	0.1	0	$5\sin 0, 5t + 4\cos 0, 1t + 8$
9	$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$	$\begin{bmatrix} 1 - \frac{x_1^3}{10} \\ \sin x_1 \end{bmatrix}$	$\begin{bmatrix} x_1 \\ x_1 + x_2 \end{bmatrix}$	0.9	0	$sign(\cos t) + 3$
10	$\begin{bmatrix} 6 \\ 1 \end{bmatrix}$	$\begin{bmatrix} \sin^3 x_1 \\ \cos^2 x_1 \end{bmatrix}$	$\begin{bmatrix} x_1^3 \\ x_2^3 \end{bmatrix}$	3.5	15	$sign(\sin 2t)$
11	$\begin{bmatrix} -5 \\ 2 \end{bmatrix}$	$\begin{bmatrix} x_1 \sin x_1 \\ x_1 \end{bmatrix}$	$\begin{bmatrix} \sin x_1 \\ \cos x_2 \end{bmatrix}$	0.6	15	$\sin 5t + 0,5\cos 0,2t + 2$
12	$\begin{bmatrix} -7 \\ -3 \end{bmatrix}$	$\begin{bmatrix} 1 \\ \cos x_1 \end{bmatrix}$	$\begin{bmatrix} x_1 x_2 \\ 1 \end{bmatrix}$	0.9	15	$2sign(\sin 0,4t)+3$

13	[3,3]	$\begin{bmatrix} \cos x_1 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ x_1 x_2 \end{bmatrix}$	0.4	15	$3sign(\sin 0,5t)+3$
14	$\begin{bmatrix} -2 \\ 4 \end{bmatrix}$	$\begin{bmatrix} x_1 - 1 \\ x_1 \end{bmatrix}$	$\begin{bmatrix} x_2 \sin x_1 \\ x_1 \cos x_2 \end{bmatrix}$	0.2	15	$2\sin 0, 2t + \sin 0, 1t + 8$
15	$\begin{bmatrix} -1 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 1 - x_1 \\ \sin x_1 \end{bmatrix}$	$ \begin{bmatrix} \sin(x_1 + x_2) \\ \sin(x_1 - x_2) \end{bmatrix} $	0.5	15	$4sign(\cos 2t) + 5$
16	$\begin{bmatrix} -5 \\ 3 \end{bmatrix}$	$\begin{bmatrix} -1 \\ 3\sin x_1 \end{bmatrix}$	$\begin{bmatrix} 2x_1 \\ x_1 + x_2 \end{bmatrix}$	0.5	15	$3sign(\cos 0, 2t) + 3$
17	$\begin{bmatrix} 6 \\ 6 \end{bmatrix}$	$\begin{bmatrix} -\sin x_1 \\ 3 \end{bmatrix}$	$\begin{bmatrix} -x_2^3 \\ x_2 \end{bmatrix}$	0.45	15	$sign(\sin 0,5t) + 2$
18	$\begin{bmatrix} -7 \\ 1 \end{bmatrix}$	$\begin{bmatrix} \sin^2 x_1 \\ \cos^2 x_1 \end{bmatrix}$	$\begin{bmatrix} x_1 - x_2 \\ x_1 \end{bmatrix}$	0.15	15	$0,8\sin 2t + \cos 0,8t + 2$
19	$\begin{bmatrix} 8 \\ -1 \end{bmatrix}$	$\begin{bmatrix} -x_1 \\ 2\sin x_1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ \sin(x_1 - x_2) \end{bmatrix}$	0.7	15	$sign(\sin 0,3t)+1,5$
20	$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 2\sin x_1 \\ 3x_1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ \cos(x_1 - x_2) \end{bmatrix}$	1.2	0	$7sign(\cos 0,9t) + 8$
21	$\begin{bmatrix} 3 \\ -1 \end{bmatrix}$	$\begin{bmatrix} x_1^{5/3} \\ x_1 \end{bmatrix}$	$\begin{bmatrix} \sin(x_1 + x_2) \\ \cos(x_1 + x_2) \end{bmatrix}$	1.5	0	$0, 4\sin 3t + \cos 0, 1t + 1, 5$
22	$\begin{bmatrix} 1 \\ -5 \end{bmatrix}$	$\begin{bmatrix} x_1^{5/3} \\ \sin x_1 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$	0.8	0	$6sign(\sin 0,1t) + 9$
23	$\begin{bmatrix} -4 \\ -4 \end{bmatrix}$	$\left[\frac{\left(1+x_1\right)^3}{5}\atop x_1\right]$	$\begin{bmatrix} x_1 + x_1 x_2 \\ x_2 \end{bmatrix}$	0.9	0	$2sign(\sin t) + 4$
24	$\begin{bmatrix} 3 \\ -1 \end{bmatrix}$	$\begin{bmatrix} 1 - x_1^{4/3} \\ \sin x_1 \end{bmatrix}$	$\begin{bmatrix} x_1 \\ x_1 + x_1 x_2 \end{bmatrix}$	0.2	0	$9\sin 0, 2t + 9\cos 0, 1t + 15$
25	$\begin{bmatrix} 5 \\ 5 \end{bmatrix}$	$\begin{bmatrix} \sin^2 x_1 \\ \cos^3 x_1 \end{bmatrix}$	$\begin{bmatrix} x_1^{1/3} \\ x_2^{1/3} \end{bmatrix}$	0.5	0	$4sign(\sin 6t) + 5$
26	$\begin{bmatrix} 1 \\ -7 \end{bmatrix}$	$\begin{bmatrix} x_1 \cos x_1 \\ 2x_1 \end{bmatrix}$	$\begin{bmatrix} \sin^2 x_1 \\ \cos^2 x_2 \end{bmatrix}$	0.9	0	$4sign(\cos t) + 3$
27	$\begin{bmatrix} 6 \\ -1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 6\cos x_1 \end{bmatrix}$	$\begin{bmatrix} x_1 x_2 \\ 1 + x_1 x_2 \end{bmatrix}$	1.3	0	$\sin 0, 1t + \cos 5t + 2$

28	$\begin{bmatrix} 4 \\ 4 \end{bmatrix}$	$\begin{bmatrix} \cos 2x_1 \\ 1 \end{bmatrix}$	$\begin{bmatrix} -1 \\ 3x_1x_2 \end{bmatrix}$	1.6	0	$9sign(\sin 0,1t)+12$
29	$\begin{bmatrix} -1 \\ 4 \end{bmatrix}$	$\begin{bmatrix} \exp x_1 \\ 1 \end{bmatrix}$	$\begin{bmatrix} x_1 \sin x_2 \\ x_2 \cos x_1 \end{bmatrix}$	0.75	15	$3sign(\sin 4t) + 8$
30	$\begin{bmatrix} 7 \\ 3 \end{bmatrix}$	$\begin{bmatrix} 1 \\ \exp x_1 \end{bmatrix}$	$\begin{bmatrix} \sin(x_1 x_2) \\ 1 \end{bmatrix}$	0.65	15	$7\sin 0, 3t + 8\cos t + 20$

Задачи и вопросы

- 1. Требуется ли в обоих решениях задачи для достижения цели управления условие неисчезающего возбуждения, накладываемое на регрессоры в алгоритмах адаптации? Ответ обосновать.
- 2. Привести требования (допущения) к классу объектов вида (15.3), при которых рассматриваемая задача разрешима.
- 3. Дан линейный объект, представленный в форме "вход-состояниевыход"

$$\dot{x} = Ax + bu, \qquad x(0)$$

$$y = Cx,$$

где $x \in \mathbb{R}^2$ — измеряемый вектор состояния, $y \in \mathbb{R}^1$ — регулируемая переменная,

$$A = \begin{bmatrix} a_2 & 1 \\ -a_0 & -a_1 \end{bmatrix}, b = \begin{bmatrix} 0 \\ b_0 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \end{bmatrix},$$

 a_i , $i = \overline{0,2}$ — неизвестные параметры, b_0 — известный коэффициент.

Задача управления заключается в компенсации параметрической неопределенности объекта и обеспечении следующего целевого равенства:

$$\lim_{t\to\infty} ||x_M(t)-x(t)|| = 0,$$

где $x_M \in \mathbb{R}^2$ — вектор, генерируемый эталонной моделью

$$\dot{x}_M = A_M x_M + b_M g ,$$

$$y_M = C_M x_M$$

с задающим воздействием g(t) и матрицами вида

$$A_{M} = \begin{bmatrix} 0 & 1 \\ -a_{M0} & -a_{M1} \end{bmatrix}, b_{M} = \begin{bmatrix} 0 \\ a_{M0} \end{bmatrix}, C_{M} = \begin{bmatrix} 1 & 0 \end{bmatrix}.$$

Использовать решение задачи, основанное на функции настройки (второе решение).

- 4. Привести условие разрешимости задачи, приведенной в п.3.
- 5. Решить задачу, приведенную в п.3, с помощью функции настройки при модифицированной матрице состояния объекта

$$A = \begin{bmatrix} a_2 & a_3 \\ -a_0 & -a_1 \end{bmatrix},$$

в которой a_i , $i = \overline{0,3}$ — неизвестные параметры, $a_3 \ge \overline{a}_3 > 0$. Остальные условия принять идентичными условиям в п.3.

- 6. Решить задачу, приведенную в п.3, с помощью функции настройки при неизвестном параметре $b_0 \ge \overline{b_0} > 0$. Остальные условия принять идентичными условиям в п.3.
- 7. Возможно ли решить задачу адаптивного управления объектом (15.3) приведенными способами, если объект полностью управляем и:

Ответы пояснить.

- 8. Можно ли применить приведенные в теоретических исследованиях решения задачи, если в объекте (15.3) функция φ_1 будет зависеть от x_2 ?
 - 9. Решить задачу адаптивного управления объектом вида

$$\dot{x}_1 = x_2 + \theta^T \varphi_1(x_1),$$

$$\dot{x}_2 = x_3,$$

$$\dot{x}_3 = u,$$

$$y = x_I$$

одним из приведенных способов.

10. Разрешима ли задача одним из приведенных способов для объекта вида

$$\dot{x}_1 = x_2 + \theta^T \phi_1(x_1),$$

 $\dot{x}_2 = u + x_3,$
 $\dot{x}_3 = -x_3 + x_1,$
 $y = x_1$?

Ответ пояснить.

Приложение А. ОПРЕДЕЛЕНИЯ УСТОЙЧИВОСТИ И МЕТОД ФУНКЦИЙ ЛЯПУНОВА

А.1. Определенные функции

Определение А.1. Скалярная функция v(x) векторного аргумента x называется знакопостоянной положительной, если $v(x) \ge 0$ для всех x и v(0) = 0.

Определение А.2. Скалярная функция v(x) векторного аргумента x называется определенно положительной, если v(x) > 0 для всех $x \neq 0$ и v(0) = 0.

Знакопостоянные отрицательные и определенно отрицательные функции определяются так же с точностью до замены знаков неравенств на противоположные.

В теории функций Ляпунова используют следующие условные обозначения:

 $v(x) \ge 0$ или $v(x) \le 0$ — для знакопостоянных функций;

v(x) > 0 или v(x) < 0 — для определенных функций.

Наиболее часто в качестве определенно положительных функций используют квадратичные формы вида (см. работы 1-4):

$$v(x) = x^T P x, (A.1)$$

где $P = P^T \succ 0$ — симметрическая положительно определенная матрица. Напомним, что для квадратичной формы (A.1) справедлива оценка (неравенство Релея):

$$\lambda_{\min} \|x\|^2 \le x^T P x \le \lambda_{\max} \|x\|^2, \tag{A.2}$$

где λ_{\min} и λ_{\max} — минимальное и максимальное собственные значения матрицы P соответственно.

А.2. Определения устойчивости

Будем рассматривать нестационарную нелинейную систему вида

$$\dot{x} = f(x, t), \tag{A.3}$$

где x — n-мерный вектор состояния. Обозначим через x_0 начальное значение вектора состояния, т.е. значение вектора x в начальный момент времени t_0 . Решение системы (A.3), полученное при начальных условиях x_0 и t_0 , обозначим через $x(t,x_0,t_0)$.

Замечание A.1. Более простым является класс *стационарных* нелинейных систем, т. е. систем, правые части дифференциальных уравнений которых не зависят в явном виде от времени t:

$$\dot{x} = f(x). \tag{A.3a}$$

Свойства стационарных систем не изменяются с течением времени и, поэтому без потери общности в качестве начального момента времени можно выбрать нулевое значение $t_0=0$. При этом начальное значение вектора состояния обозначается x(0).

Пусть точка $x^* = 0$ является состоянием равновесия системы (A.3), т.е. $f(x) \Big|_{x^* = 0} = 0$ для всех t .

Определение А.3. Состояние равновесия $x^* = 0$ системы (A.3) называется:

1) устойчивым по Ляпунову (или просто — устойчивым), если для любого сколь угодно малого числа $\varepsilon_1 > 0$ существует число $\delta_1(\varepsilon_1, t_0) > 0$ (зависящее в общем случае от ε_1 и t_0), такое, что из выполнения неравенства $\|x_0\| < \delta_1(\varepsilon_1, t_0)$ следует справедливость неравенства

$$\|x(t, x_0, t_0)\| < \varepsilon_1$$
 для всех $t > t_0$; (A.4)

2) асимптотически устойчивым, если оно устойчиво по Ляпунову и, дополнительно, для любого положительного числа $\varepsilon_2 < \varepsilon_1$ существуют положительные числа $\Delta_1(t_0)$ и $T_1(\varepsilon_1,t_0)$, такие, что из выполнения неравенства $\|x_0\| < \Delta_1(t_0)$ следует справедливость неравенства

$$||x(t, x_0, t_0)|| < \varepsilon_2 \ \partial \pi \ \sec x \ t > t_0 + T_1(\varepsilon_2, t_0);$$
 (A.5)

- 3) равномерно асимптотически устойчивым, если оно асимптотически устойчиво и, дополнительно, константы Δ_1 и T_1 не зависят от начального момента времени t_0 ;
- 4) экспоненциально устойчивым, если существует такое положительное число $\Delta_2>0$, что из выполнения неравенства $\|x_0\|<\Delta_2$ следует справедливость неравенства

$$||x(t, x_0, t_0)|| < \beta ||x_0|| \exp(-\alpha(t - t_0))$$
 для всех $t > t_0$, (A.6)

где α и β — некоторые положительные константы.

Определение А.4. Состояние равновесия $x^* = 0$ системы (A.3) называется неустойчивым, если оно не является устойчивым по Ляпунову.

Если неравенства (A.5) и (A.6) выполняются при любых начальных значениях x_0 , то соответствующие свойства устойчивости называются глобальными. Если система имеет единственное состояние равновесия с

глобальными свойствами устойчивости, то можно говорить об устойчивости самой системы.

Обсудим введенные определения. Устойчивость по Ляпунову означает, что для любого сколь угодно малого числа ε_1 всегда найдется множество начальных условий с ненулевым радиусом δ_1 , такое, что любая траектория $x(t,x_0,t_0)$, начавшаяся внутри данного множества, не выйдет за пределы ε_1 - окрестности нулевого состояния равновесия.

Асимптотическая устойчивость означает, что для фиксированного множества начальных условий $\|x_0\| < \Delta(t_0)$ всегда можно найти конечный интервал времени T, такой, что норма вектора состояния станет меньше любого сколь угодно малого числа ε_2 . Другими словами, это означает сходимость траекторий к нулевому состоянию равновесия и выполнение условия

$$\lim_{t\to\infty} x(t,x_0,t_0) = 0.$$

Равномерная асимптотическая устойчивость дополнительно означает, что скорость сходимости не зависит от начального момента времени $t_{\rm 0}$.

Наконец, экспоненциальная устойчивость означает, что скорость сходимости не меньше, чем у показательной функции.

Напомним также, что из более строгого типа устойчивости следует менее строгих типов (в определении А.2 типы справедливость устойчивости даны в порядке возрастания их "силы"). Обратное не справедливо, за исключением определенных классов утверждение динамических систем. Так, для линейных стационарных систем из асимптотической устойчивости следует равномерная асимптотическая устойчивость И экспоненциальная устойчивость. Для нестационарных систем из равномерной асимптотической устойчивости следует экспоненциальная устойчивость. Для нелинейных стационарных асимптотической устойчивости следует асимптотическая устойчивость (но не следует экспоненциальная).

Пример А.1. Проиллюстрируем введенные понятия примерами следующих простых систем:

$$\dot{x} = kx \,, \tag{A.7}$$

$$\dot{x} = -\frac{1}{1+t}x,\tag{A.8}$$

$$\dot{x} = -x^3,\tag{A.9}$$

где x — скалярная переменная, k — постоянный коэффициент.

Линейная стационарная система (A.7) является устойчивой по Ляпунову при $k \le 0$, асимптотически устойчивой (равномерно

асимптотически устойчивой, экспоненциально устойчивой) при k < 0 и неустойчивой при k > 0. Линейная нестационарная система (A.8) является устойчивой асимптотически (но не является ΗИ равномерно асимптотически, ни экспоненциально устойчивой), нелинейная система (A.9)является равномерно стационарная асимптотически устойчивой (но не является экспоненциально устойчивой).

А.З. Исследование устойчивости с помощью функций Ляпунова

Метод функций Ляпунова основан на использовании скалярных функций, обладающими вместе со своими производными, вычисленными в силу уравнений исследуемой системы, некоторыми специальными свойствами. При этом для определения типа устойчивости не требуется решения дифференциальных уравнений системы. Заключение делается по свойствам функции Ляпунова и ее производной, вычисленной в силу уравнений системы.

В зависимости от условий конкретной задачи к функциям Ляпунова могут предъявляться различные требования. Наше рассмотрение мы ограничим функциями Ляпунова V(x), являющимися скалярными функциями векторного аргумента x и обладающими следующими свойствами:

- C.1. определенная положительность, т. е. V(x) > 0;
- C.2. дифференцируемость по x;
- C.3. неограниченный рост, т. е. $\lim_{x\to\infty} V(x) = \infty$.

Определение А.5. Производной функции Ляпунова V(x) в силу уравнений системы (А.3) называется скалярная функция вектора x, вычисленная как производная по времени сложной функции

$$\dot{V}(x) = \frac{\partial V(x)}{\partial x} f(x,t).$$

Приведем ряд важных теорем метода функций Ляпунова. Отметим, что все приводимые теоремы определяют *глобальные* свойства устойчивости [1, 6, 15].

Теорема А.1. Состояние равновесия $x^* = 0$ системы (A.3) является устойчивым по Ляпунову, если существует функция Ляпунова V(x), производная которой в силу уравнений системы является знакопостоянной отрицательной, т. е.

$$\dot{V}(x) = \frac{\partial V(x)}{\partial x} f(x,t) \le 0.$$

Теорема А.2. Состояние равновесия $x^* = 0$ системы (А.3) является равномерно асимптотически устойчивым, если существует функция Ляпунова V(x), производная которой в силу уравнений системы является определенно отрицательной, т. е.

$$\dot{V}(x) = \frac{\partial V(x)}{\partial x} f(x,t) < 0.$$

Теорема А.3 (Теорема Н.Н. Красовского). Состояние равновесия $x^* = 0$ системы (A.3) является экспоненциально устойчивым, если существует функция Ляпунова V(x), удовлетворяющая условиям:

$$c_1 ||x||^2 \le V(x) \le c_2 ||x||^2,$$
 (A.10)

$$\dot{V}(x) = \frac{\partial V(x)}{\partial x} f(x,t) < -c_3 ||x||^2, \tag{A.11}$$

$$\left\| \frac{\partial V(x)}{\partial x} \right\| \le c_4 \|x\|, \tag{A.12}$$

где c_1 , c_2 , c_3 , c_4 — положительные константы.

В ряде приложений (например, в задачах адаптивного управления и работах [1—4]) большое значение имеет следующая теорема, позволяющая доказать *сходимость по части переменных* у систем, устойчивых по Ляпунову. Чтобы не использовать математические термины, выходящие за рамки программы инженерной подготовки, утверждение теоремы несколько упрощено. Полная формулировка теоремы может быть найдена в работе [1, 6, 15].

Теорема А.4. Если функция f(x,t) является ограниченной для ограниченных x и любых t, и существует функция Ляпунова V(x), производная которой в силу уравнений системы удовлетворяет неравенству

$$\dot{V}(x) = \frac{\partial V(x)}{\partial x} f(x,t) \le -S(x),$$

где S(x) — знакопостоянная положительная функция, то состояние равновесия $x^*=0$ системы (A.3) является устойчивым по Ляпунову u, дополнительно, все решения системы удовлетворяют условию

$$\lim_{t\to\infty} S(x(t,x_0,t_0)) = 0.$$

В завершение проведем исследование устойчивости линейной системы

$$\dot{x} = Ax \tag{A.13}$$

с помощью квадратичной функции Ляпунова

$$V(x) = x^T P x , (A.14)$$

где симметрическая положительно определенная матрица P является решением матричного уравнения

$$A^T P + PA = -Q \tag{A.15}$$

с произвольной симметрической положительно определенной матрицей Q. Как известно, если матрица A гурвицева (т. е. все собственные значения имеют отрицательные вещественные части), то для произвольной (симметрической положительно определенной) матрицы Q найдется единственная симметрическая положительно определенная матрица P, являющаяся решением уравнения (A.5). Вычислим производную функции (A.14) в силу уравнений (A.13):

$$\dot{V}(x) = \dot{x}^T P x + x^T P x = (Ax)^T P x + x^T P^T A x = x^T A P x + x^T P A x =$$

$$= x^T (A^T P + P A) x.$$

Учитывая равенство (А.15), окончательно получаем

$$\dot{V}(x) = -x^T Qx < 0$$
,

откуда следует равномерная асимптотическая устойчивость состояния равновесия. Покажем, что выбранная функция Ляпунова и ее производная в силу уравнений системы удовлетворяют также условиям теоремы Красовского об экспоненциальной устойчивости. Действительно, в силу неравенства Релея имеем:

$$|c_1||x||^2 \le x^T Px \le |c_2||x||^2$$

И

$$\dot{V}(x) = -x^T Q x \le -c_3 ||x||^2$$

где c_1 и c_2 — минимальное и максимальное собственные значения матрицы P, соответственно, а c_3 — минимальное собственное значение матрицы Q . Наконец,

$$\left\| \frac{\partial V(x)}{\partial x} \right\| = \left\| \frac{\partial}{\partial x} x^T P x \right\| = \left\| 2P x \right\| \le c_4 \|x\|,$$

где $c_4=2\|P\|,$ а $\|P\|$ — спектральная норма матрицы P .

Приложение Б. СВОЙСТВО СТРОГОЙ ПОЛОЖИТЕЛЬНОЙ ВЕЩЕСТВЕННОСТИ

Рассмотрим передаточную функцию вида

$$H(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_0}{s^n + a_{m-1} s^{m-1} + \dots + a_0}.$$
 (B.1)

Передаточная функция H(s) является строго положительно вещественной (СПВ - функцией) только в том случае, если [9, 20]:

С.1. она не имеет полюсов в области $Re[s] \ge 0$;

C.2. Re[$H(j\omega)$] > 0 для всех $-\infty < \omega < \infty$;

C.3. $\lim_{\omega \to \infty} \omega^2 \operatorname{Re}[H(j\omega)] > 0$.

Для пояснения приведенного критерия рассмотрим передаточную функцию апериодического звена первого порядка

$$W(s) = \frac{k}{Ts+1},\tag{5.2}$$

где k>0 — коэффициент усиления, а T>0 — постоянная времени. Покажем, что передаточная функция (Б.2) удовлетворяет условиям С.1. — С.4. Действительно, единственный полюс функции (Б.2) s=-1/T лежит вне области Re[s]>0. Как известно, частотный годограф апериодического звена первого порядка полностью лежит в четвертом квадранте комплексной плоскости, что гарантирует выполнение условия С.2. Наконец, рассмотрим частотную передаточную функцию звена:

$$W(j\omega) = \frac{k}{jT\omega + 1} = \frac{k}{T^2\omega^2 + 1} - j\frac{kT\omega}{T^2\omega^2 + 1}.$$

Тогда

$$\lim_{\omega\to\infty}\omega^2\left(\frac{k}{T^2\omega^2+1}\right)=\frac{k}{T^2}>0,$$

что означает выполнение условия С.3.

Таким образом, можно сделать вывод, что СПВ-функции обладают почти такими же частотными свойствами, что и звено первого порядка, так как их частотные годографы лежат в правой полуплоскости (а значит, фазовый сдвиг, вносимый динамическим звеном с такой передаточной функцией, не превышает 90^{0}). Кроме того, скорость убывания вещественной части частотной передаточной функции при $\omega \rightarrow \infty$ не быстрее, чем у $1/\omega^{2}$. Из сделанного вывода видно, что класс строго положительно вещественных передаточных функций является достаточно

узким, и далеко не все линейные модели реальных объектов будут удовлетворять условиям C.1.-C.3.

Отметим следующие свойства строго положительно вещественных передаточных функций:

- С.1. если H(s) = a(s)/b(s) является СПВ-функцией, то оба многочлена a(s) и b(s) гурвицевы, а их степени отличаются не больше, чем на единицу;
- С.2. если H(s) является СПВ-функцией, то 1/H(s) также СПВ-функция;
- С.3. если $H_1(s)$ и $H_2(s)$ СПВ-функции, то $\alpha H_1(s) + \beta H_2(s)$ также СПВ-функция для любых положительных α и β ;
- С.4. если $H_1(s)$ и $H_2(s)$ являются передаточными функциями прямой и отрицательной обратной связи соответственно, то передаточная функция замкнутой системы $H(s) = H_1(s)/(1+H_1(s)H_2(s))$ также является СПВ-функцией.

Приложение В. ЛЕММА О ПЕРЕСТАНОВКЕ

 Φ ормулировка. Пусть $W(s) = C(Is - A)^{-1}b$ устойчивая передаточная функция, (A,b,C) — тройка матриц размерностей $R^{m\times m}$, $R^{m imes 1}$ и $R^{1 imes m}$ соответственно, составляющая минимальную реализацию $W(s), x(t) \in \mathbb{R}^n, y(t) \in \mathbb{R}^n$ — непрерывные и дифференцируемые векторфункции. Тогда справедливо следующее соотношение:

$$W(s) \left[x^{T}(t) y(t) \right] = W(s) \left[x^{T}(t) \right] y(t) - W_{C}(s) \left[W_{B}(s) \left[x^{T}(t) \right] \dot{y}(t) \right], \quad (B.1)$$

где $W_C(s) = C(Is - A)^{-1}$, $W_B(s) = (Is - A)^{-1}b$ — передаточные матрицы размерностей $1 \times m$ и $m \times 1$ соответственно.

Доказательство.[22] Рассмотрим две системы, представленные в форме "вход-состояние-выход":

$$\begin{cases} \dot{z} = Az + bx^{T} y, \\ q_{1} = Cz, \end{cases}$$

$$\begin{cases} \dot{Z} = AZ + bx^{T}, \\ q_{2} = CZy, \end{cases}$$
(B.2)

$$\begin{cases} \dot{Z} = AZ + bx^{T}, \\ q_{2} = CZy, \end{cases}$$
 (B.3)

где $z \in \mathbb{R}^m$, $Z \in \mathbb{R}^{m \times n}$, $q_1 \in \mathbb{R}^1$, $q_2 \in \mathbb{R}^1$ — функции времени.

Рассчитаем производную (Z y) в силу (B.3):

$$(Z y)' = \dot{Z}y + Z\dot{y} = AZy + bx^{T} y + Z\dot{y}.$$

Далее из полученного выражения вычитаем первое уравнение (В.2) и имеем:

$$(Z y)' - \dot{z} = AZy + bx^T y + Z\dot{y} - Az - bx^T y$$

или

$$(Z y - z)' = A(Zy - z) + Z\dot{y}$$
(B.4)

Завершаем доказательство, рассчитывая разность $q_2 - q_1$ в силу вторых уравнений (В.2), (В.3) и уравнения (В.4), представленного в форме передаточной матрицы:

$$q_2 - q_1 = C(Zy - z) = C(Is - A)^{-1}[Z\dot{y}]$$

или с учетом определений q_1, q_2 и Z

$$W(s) \left\lceil x^{T}(t) \right\rceil y(t) - W(s) \left\lceil x^{T}(t) y(t) \right\rceil = W_{C}(s) \left\lceil W_{B}(s) \right\rceil x^{T}(t) \left\rceil \dot{y}(t) \right\rceil.$$

Приложение Г. ОБРАЗЕЦ ТИТУЛЬНОГО ЛИСТА

Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

ЛАБОРАТОРНАЯ/ПРАКТИЧЕСКАЯ/КУРСОВАЯ РАБОТА №

	(наименование работы)	
	Вариант №	
Автор(н	ы) работы:	(Ф.И.О.)
Группа	_	
Препод	аватель:	(Ф.И.О.)
"	20 г.	

Санкт-Петербург

Γ.

СПИСОК ЛИТЕРАТУРЫ

- 1. Барбашин Е.А. Введение в теорию устойчивости. —М.: Наука, 1967. 223 с.
- 2. Бобцов А.А., Никифоров В.О., Пыркин А.А., Слита О.В., Ушаков А.В. Методы адаптивного и робастного управления нелинейными объектами в приборостроении: учебное пособие для высших учебных заведений. СПб: НИУ ИТМО, 2013. 277 с.: ил. 65.
- 3. Григорьев В.В., Дроздов В.Н., Лаврентьев В.В., Ушаков А.В. Синтез дискретных регуляторов при помощи ЭВМ. Л.: Машиностроение, 1983. 245 с.
- 4. Григорьев В.В., Журавлева Н.В., Лукьянова Г.В., Сергеев К.А. Синтез систем автоматического управления методом модального управления. СПб.: СПбГУ ИТМО, 2007. 108 с.
- 5. Мирошник И.В. Теория автоматического управления. Линейные системы. СПб.: Питер, 2005 336 с.: ил. (Серия "Учебное пособие").
- 6. Мирошник И.В., Никифоров В.О., Фрадков А.Л. Нелинейное и адаптивное управление сложными динамическими системами / Серия "Анализ и синтез нелинейных систем"; под общей редакцией Леонова Г.А. и Фрадкова А.Л. СПб.: Наука, 2000. 549 с., ил. 82.
- 7. Никифоров В.О. Адаптивное и робастное управление с компенсацией возмущений. СПб: Наука, 2003. 282 с.
- 8. Никифоров В.О., Фрадков А.Л. Системы адаптивного управления с расширенной ошибкой // Автоматика и телемеханика. $1994. N_{\odot} 9. C. 3-22.$
- 9. Фомин В.Н., Фрадков А.Л., Якубович В.А. Адаптивное управление динамическими объектами. М.: Наука, 1981. 448 с.
- 10. Aranovskiy S., Bobtsov A., Ortega R. and Pyrkin A. Performance Enhancement of Parameter Estimators via Dynamic Regressor Extension and Mixing // *IEEE Trans. on Automatic Control.* 2017. Vol. 62, No. 7. P. 3546-3550.
- 11. Barabanov N., Ortega R. and Astolfi A. Is normalization necessary for stable model reference adaptive control // *IEEE Trans. on Automatic Control.* 2005. Vol. 50, No. 9. P. 1384-1390.
- 12. Ioannou P. A., Kokotovic P. V. Instability analysis and improvement of robustness of adaptive control // Automatica. 1984. Vol. 20. P. 583-594.

- 13. Ioannou P.A. and Sun J. Robust adaptive control California: Prentice-Hall, 1996. 848 p.
- 14. Kanellakopoulos I., Kokotovic P.V. and Morse A.S. Systematic Design of Adaptive Controllers for Feedback Linearizable Systems // *IEEE Trans. Automatic Control.* 1991 AC-36. P. 1241-1253.
- 15. Khalil H. K., Nonlinear Systems, 3rd Edition, Prentice Hall, Upper Saddle River, 2002. —766 р. (Русский пер.: Халил Х.К. Нелинейные системы. М. Ижевск: НИЦ "Регулярная и хаотическая динамика", Институт компьютерных исследований, 2009. 832 с.)
- 16. Kreisselmeier G. Adaptive Observers with Exponential Rate of Convergence // *IEEE Trans. Automatic Control.* 1977. Vol. 22, No. 1. P. 2-8.
- 17. Krstic M., Kanellakopoulos I. and Kokotovic P. V., *Nonlinear and Adaptive Control Design* Wiley, 1995 563 p.
- 18. Lion P.M. Rapid Identification of Linear and Nonlinear Systems // *AIAA Journal*. 1967 Vol.5. P.1835-1842.
- 19. Morse A. S. High-order Parameter Tuners for the Adaptive Control of Linear and Nonlinear Systems // In A. Isidori, & T. J. Tarneds., Systems, Models and Feedback: Theory and Applications. Basel: BirkhaKuser. 1992. —P.339-364.
- 20. Narendra K.S. and Annaswamy A.M. Stable Adaptive Systems. Englewood Cliffs. N.J.: Prentice-Hall, 1989. 495 p.
- 21. Nikiforov V.O., Voronov K.V. Adaptive Backstepping with High Order Tuner // *Automatica*. 2001. Vol.37. P.1953–1960.
- 22. Sastry S. and Bodson M., Adaptive Control: Stability, Convergence and Robustness. Englewood Cliffs. N.J.: Prentice-Hall, 1989. 377 p.