Dynamische Erde

Übung 3 – Silikatmineralien

5. Oktober 2020

Alex Guthauser alexg@student.ethz.ch D-ERDW, ETH Zürich

Übung 3 – Silikatmineralien

- Ziel der Übung
- Repetition: Mineralien
- Silikatemineralien
- Bestimmungskriterien
- Aufgaben 1 bis 5

➤Ziel der Übung

- Repetition: Mineralien
- Silikatemineralien
- Bestimmungskriterien
- Aufgaben 1 bis 5

Ziel der Übung

Ihr kennt:

- die wichtigsten gesteinsbildenden Silikate
- die Zusammenhänge Eigenschaften und Struktur der Silikate
- die Hauptelemente der verschiedenen Silikate

Ziel der Übung

> Repetition: Mineralien

- Silikatemineralien
- Bestimmungskriterien
- Aufgaben 1 bis 5

Repetition: Mineralien

- Natürliches Vorkommen
- Homogen (in der Regel)
- Bestimmte chemische Zusammensetzung
- Bestimmter Stabilitätsbereich (P, T, Redox)
- Kristall: Kristallstruktur mit periodischer Anordnung und Symmetrie

Repetition: Mineralien

- Ziel der Übung
- Repetition: Mineralien
- ➤ Silikatemineralien
- Bestimmungskriterien
- Aufgaben 1 bis 5

Silikatmineralien

- Wichtigste gesteinsbildende Mineralien
- SiO₄-Tetraeder + Kationen
- Gliederung aufgrund der Anordnung

- Ziel der Übung
- Repetition: Mineralien
- Silikatemineralien
- Bestimmungskriterien
- Aufgaben 1 bis 5

Bestimmungskriterien

- Aggregat oder Einzelkristall, Habitus und Morphologie
- Spaltbarkeit
- Farbe
- Glanz
- · Härte, Biegeverhalten
- Kristallsystem
- Mineralvergesellschaftungen

- Ziel der Übung
- Repetition: Mineralien
- Silikatemineralien
- Bestimmungskriterien
- ➤ Aufgaben 1 bis 5

Silikatstrukturen — drei Bauprinzipien

(1) SiO_4 -Tetraeder ($r_O : r_{Si} \sim 0.3$) mit stark kovalenter Si — O - Bindung

(2) Verknüpfung von Tetraedern über gemeinsame Sauerstoff - Ecken

(3) 1 ○ - Ladung pro Einzel - Sauerstoff O:

→ Ausgleich durch (+) Kationen

Aufgabe 2

Inselsilikate (Nesosilikate) Isolierte SiO ₄ -Tetrader oder isolierte SiO ₄ - Tetrader-Gruppen: Si:O Verhältnis: 1:4 [SiO ₄] ⁴ -	Beispiele: Olivin, Zirkon, Granat
Gruppensilikate (Sorosilikate) Gruppen (Duos) von SiO_4 -Tetrader: Tetraeder über einen Brückensauerstoff eckenverknüpft Si:O Verhältnis: 2:7 $[Si_2O_7]^{6-} = [SiO_{3.5}]^{3-}$	Beispiele: Epidot, Vesuvian
Ringsilikate (Cyclosilikate) Geschlossenen Ketten: Tetraeder über 2 Brückensauerstoffe mit Nachbartetraedern verknüpft $[Si_nO_{3n}]^{2n-} = [SiO_3]^{2-}, n = 3, 4, 6$ • $[Si_3O_9]^{6-}$	Beispiele: Beryll, Turmalin
 [Si₄O₁₂]⁸⁻ [Si₆O₁₈]¹²⁻ 	

Ketten- und Bändersilikate (Inosilikate)

Offene Ketten, gestreckt: Tetraeder über 2 Brückensauerstoffe mit Nachbartetraedern verknüpft

Einfachketten (*Kettensilikate*)

Si:O Verhältnis: 1:3

$$[Si_nO_{3n}]^{2n}$$
 = $[SiO_3]^{2}$, n = 2, 3, 4, 5, 6, 7, 9, 12, 24

Doppelketten (Bändersilikate)

Verknüpfung von Einfachketten, z.B.

Zweierbänder, bei denen 2 Einfachketten

miteinander verknüpft sind

Si:O Verhältnis: 4:11 $[Si_4O_{11}]^{6-} = [SiO_{2.75}]^{1.5-}$

Beispiele:

Pyroxene

Amphibole

Unterscheidung: Amphibol – Pyroxen

Abb. 3.19 Pyroxene und Amphibole sehen oft sehr ähnlich aus, doch unterscheiden sich die Winkel ihrer Spaltbarkeit. Diese Spaltwinkel werden häufig zur Erkennung und Klassifikation herangezogen

Schichtsilikate (Phyllosilikate)

2-dimensionale Schichten durch Verknüpfung der Tetraeder über 3 Brückensauerstoffe

Si:O Verhältnis: 2:5

 $[Si_2O_5]^{2-}$ bzw. $[Si_4O_{10}]^{4-}$ = $[SiO_{2.5}]^{-}$

Beispiele: Glimmer, Chloritgruppe, Talk, Serpentin, Tonminerale

Gerüstsilikate (Tektosilikate)

Jedes Sauerstoffanion gehört gleichzeitig zwei benachbarten Tetraedern an. Dadurch entstehen dreidimensionale geschlossene räumliche Gerüste durch Verknüpfung der Tetraeder über alle 4 Brückensauerstoffe mit den Nachbartetraedern: [Si_nO_{2n}]⁰

Ausgangsbaueinheit ist elektrisch neutral, Kationen können nur eingefügt werden, wenn Si durch Al ersetzt wird:

 $[SiO_4]^{4-}$ zu $[AlO_4]^{5-}$, z.B. Feldspat-Gruppe $[AlSi_3O_8]^{1-}$

Beispiele: Quarz, Feldspäte, Zeolite, Feldspatvertreter (Foid)

Aufgabe 4: Mischkristalle

Alex Guthauser 19 Dynamische Erde I - HS 2020

Aufgabe 5: Mischkristalle und polymorphe Mineralien

Isomorphie: Granate

Polymorphie: Alumosilikate

