Table des matières

	Ren	nercier	nents	1			
1	Intr	ntroduction					
	1.1	Tellus	Environment - Missions Principales	5			
		1.1.1	Géophysique et cartographie haute-définition	5			
		1.1.2	Collecte des données géophysique	5			
		1.1.3	Traitement des données	6			
	1.2	Activi	té R&D	7			
	1.3	Projet	Symeter V2	7			
		1.3.1	Symeter V1	7			
		1.3.2	Symeter V2 : Objectifs	7			
2	Tec	hnolog	ies, Contraintes et Plan de Projet	8			
	2.1	_	urs	8			
		2.1.1	LIDAR Hyukyo Blabla	8			
		2.1.2	IMU	8			
		2.1.3	GPS en mode RTK	9			
	2.2	Enviro	onnement de programmation : ROS	10			
	2.3		atils mathématiques	10			
		2.3.1	Positionnement en Robotique : Poses	10			
		2.3.2	Localisation par fusion de données	10			
		2.3.3	Traitement des nuages de points	11			
	2.4	Contra	aintes de développement	11			
		2.4.1	Capacités de tests en grandeur limitées	11			
		2.4.2	Plateformes de test disponibles	12			
			2.4.2.1 Environnement de simulation Gazebo	12			
			2.4.2.2 Prototype monté sur Camionnette	12			
	2.5	Les gr	andes parties du projet	12			
3	Sim	ulation	n d'un tracteur évoluant sur un chantier d'ensilage à l'aide d	\mathbf{e}			
		S/Gaze		13			
		,	ntation de ROS	13			
		3.1.1	Architecture de ROS	13			
		3.1.2	Gestion des transformations	14			
		3.1.3	Gestions des Capteurs	14			
	3.2		ntation de Gazebo	14			
		3.2.1	Construction d'un robot virtuel	14			
		3.2.2	Vérification de disponibilité des capteurs	14			

	3.3	Contraintes de mise en oeuvre
		3.3.1 Quelques bugs génants
		3.3.2 Simulation mécanique, frottements, adhérence
		3.3.3 Conclusions sur les contraintes
	3.4	Mise en Oeuvre : simulation d'un environnement de tassage de silo 15
		3.4.1 Montage d'un tracteur simulé
		3.4.1.1 Description Physique
		3.4.1.1.1 Chassis
		3.4.1.1.2 Actuateurs et Contrôleurs
		3.4.1.2 Propulsion et Guidage
		3.4.1.2.1 Algorithme
		3.4.1.2.2 Implémentation sous ROS
		5.4.1.2.2 Implementation sous NOS
4	Mis	e en place du processus de localisation
_	4.1	Présentation du problème
	4.2	Filtres de Kalman
	1.2	4.2.1 Filtres de Kalman Linéaires
		4.2.2 Filtres de Kalman Etendus
	4.3	Mise en oeuvre
	4.0	Muse en oeuvre
5	Exp	loitation des données LIDAR 17
	5.1	Présentation de la chaine de traitement des données LIDAR
	5.2	Acquisition des données LIDAR
		5.2.1 Transformation trame LIDAR en un nuage de points
		5.2.2 Filtrage de la ligne par traitement Voxel
	5.3	Accumulation des nuages de points
	0.0	5.3.1 Le principe de fonctionnement
		5.3.2 Principe de stockage des données 3D
		5.3.2.1 Les B-Trees
		5.3.2.2 Les Octrees
		5.3.2.3 Le choix : octree correspond à notre besoin
		•
	5.4	5.3.3 Mise en oeuvre : octomap
	0.4	
		5.4.2 Analyse du nuage de point généré
		5.4.2.1 Outil pour l'analyse de nuage de points : Paraview 20
		5.4.2.2 Points à améliorer sur le nuage de points
6	Mis	e en oeuvre à partir de mesures réelles 21
•	6.1	Protocol de test
	6.2	Données générée - visualisation sous google maps
	6.3	Exploitation des données
	0.5	Exploitation des données
7	Res	te à faire et Améliorations 22
Δ	Pos	itionnement En Robotique 23
- 		Géometrie projective, Coordonnées Homogènes
		Une autre descriptions des rotations en 3D : Quaternions Unitaires
	41.4	- O I O WANTO GODOLIDATORO GOD LOUGUIOUD OH OLO , WAGGULHUUNG CHIUGHUG 40

A.3 Application : Simulation de couverture d'un faiseau LIDAR orienté vers le sol	23
B Filtres de Kalman	24
C ROS : Architecture et Concepts	25
D Point Cloud Library	26
Bibliographie	27