

Felipe Solanet - Computer Engineer

Group #26

Jordi Niebla – Electrical Engineer

Michael Gendreau - Electrical Engineer

Mentor: Dr. Chung Yong Chan

PROJECT MOTIVATION

- LAW ENFORCEMENT OFFICIALS ARE INVOLVED IN COUNTLESS STRESSFUL SITUATIONS AND HIGHLY REACTIVE ENVIRONMENTS
- HIGHER PRECISION INFORMATION IS NEEDED DURING LAW ENFORCEMENT INTERACTIONS WITH THE PUBLIC
- BODY & DASH CAM RECORDINGS DO NOT ALWAYS CAPTURE OPTIMAL FIELD OF VIEWS AND ANGLES

GOALS AND OBJECTIVES

- TO DESIGN AND IMPLEMENT A SYSTEM CAPABLE OF CAPTURING AND RECORDING VALUABLE INFORMATION DURING LAW ENFORCEMENT INTERACTION WITH THE PUBLIC
- Utilize machine vision algorithms to track law enforcement officer, with a pan and tilt vehicle roof mounted camera, in 180 degrees of rotation
- INTEGRATE A WIRELESS HANDHELD SPEECH RECOGNITION DEVICE THAT SUPPORTS USER INTERFACE

SPECIFICATIONS AND REQUIREMENTS

HARDWARE REQUIREMENTS

- 180-degree pan angle, 180-degree tilt angle for vehicle roof mounted camera
- CAMERA SYSTEM SHALL BE POWERED BY 12V CAR BATTERY
- XBEE DEVICE FOR WIRELESS
 COMMUNICATION BETWEEN HANDHELD
 DEVICE & CAMERA SYSTEM (UP TO 300FT)
- HANDHELD MICROPHONE DEVICE:
 - POWERED BY RECHARGEABLE LITHIUM POLYMER BATTERIES
 - ACTIVATE/DEACTIVATE CAMERA SYSTEM

SOFTWARE REQUIREMENTS

- TRAINED OBJECT DETECTION MODEL FOR POLICE OFFICERS
- Less than 500ms response time on image inferences
- 32GB MAX STORAGE OF CAMERA RECORDED FOOTAGE
- SMOOTH AND ACCURATE CAMERA RESPONSE MOVEMENTS
- OFFICER-SYSTEM INTERFACE ON HANDHELD DEVICE
- KEYWORD RECOGNITION FOR AT LEAST 5
 WORDS, ON HANDHELD SPEECH RECOGNITION
 DEVICE

HARDWARE DESIGN

EMBEDDED MICROPHONE DEVICE

- USER INTERFACE THAT INCLUDES 3 BUTTONS, ALONG WITH AN LCD SCREEN
- SPEECH RECOGNITION MODULE TO DETECT KEYWORDS DURING POLICE TRAFFIC STOP
- COMMUNICATE WITH ODROID THROUGH WIRELESS XBEE MODULES
- DIMENSIONS ARE ABOUT 4 x 3.7 INCHES

MSP430FR6989 FEATURES:

- MAX CLOCK FREQUENCY OF 16MHZ
- UP TO 128KB FRAM PROGRAM MEMORY SIZE
- 2KB RAM SIZE
- 2 UART AND I²C INTERFACES
- Cost effectiveness and low power consumption
- POPULAR MCU THROUGHOUT THE UCF CPE COURSES

SPEECH RECOGNITION MODULE

- DIMENSIONS: 30MM X 47.5MM
- REQUIRES A SUPPLY OF 4.5 5.5V, WITH LESS THAN 40MA
- UART COMMUNICATION TO MSP
- FIVE WORDS CAN BE STORED IN A GROUP, AND UP TO THREE GROUPS CAN BE RECORDED THROUGH SERIAL PORT INTERFACE
- HEX STRINGS ARE SENT FROM THE MSP TO THE MODULE TO SIGNAL A COMMAND

MICROPHONE DEVICE SCHEMATIC

LCD AND PUSH BUTTONS

- Three push buttons used for user interface
- C0220BIZ NewHaven Display
 - 20 x 2 display format
 - 75.70mm x 27.10mm x 6.80mm outline
 - I²C interface
- Requires 2.7 3.5V

Push Button and LEDs

XBEE SERIES 1 MODULE

- XBEE SERIES 1 RF MODULE WILL BE USED FOR WIRELESS COMMUNICATION BETWEEN MSP & ODROID
- Can support up to 90 meters of outdoor line-of-sight

- THE TYPICAL NOMINAL VOLTAGE OF A RECHARGEABLE LITHIUM POLYMER BATTERY IS ABOUT 3.7V.
- THE BATTERY CHARGER USED FOR THE DEVICE IS THE BQ21040DBVR IC
 - CAN BE OPERATED THROUGH USB PORT (POLICE OFFICERS HAVE LAPTOPS IN THEIR CAR)
 - LED TO INDICATE WHETHER THE BATTERY IS STILL CHARGING

- •TPS613221 IC Boost Converter will boost Li-Pol battery to 5V.
- •TPS73633DBV is a low dropout voltage regulator used to drop the Li-Pol battery to 3.3V.
- •3.3V regulation is needed for the MSP, XBee module, and LCD

Embedded Microphone Device PCB

Front View

Rear View

Actual Populated PCB

HARDWARE BLOCK DIAGRAMS - CAMERA

- CAMERA SUBSYSTEM CONSISTS OF STEPPER MOTORS, DRIVER AND CONTROLLER CIRCUIT, POWER AND INTERCONNECT BOARDS, SENSORS, CAMERA, AND MECHANICAL SUBASSEMBLIES
- I/O CONSISTS OF 5V AND 12V DC POWER INPUT WITH UART AND USB COMMUNICATION TO HOST SINGLE-BOARD COMPUTER

HARDWARE BLOCK DIAGRAMS – SINGLE-BOARD COMPUTER

- SINGLE-BOARD COMPUTER ENCLOSURE
 SUBSYSTEM CONSISTS OF COMPUTER AND POWER/COMMUNICATIONS BOARD
- POWER/COMMUNICATIONS BOARD FACILITATES UART AND USB COMMS WITH VOLTAGE REGULATION FOR SUBSYSTEMS USING THE HOST VEHICLE'S 12V BUS

COMMUNICATION BETWEEN SUBSYSTEMS

- DEVICES COMMUNICATE WITH EACH OTHER PRIMARILY THROUGH UART SERIAL PROTOCOL
- MULTI-SLAVE UART PROTOCOL ACHIEVED THROUGH FPGA-BASED BUS MANAGER
- Wireless communication achieved over XBEE digital radios

- MOTION ACHIEVED BY TWO 12V STEPPER MOTORS DRIVEN BY TI DRV8846 MOTOR DRIVER IC's
- ONE MOTOR CONTROLS THE PAN AXIS, ONE CONTROLS THE TILT AXIS
- DISCRETE STEPS IN ROTATION ARE PROCESSED BY XILINX SPARTAN 7 FPGA TO GENERATE SMOOTH MOTION PROFILE

<u>MCU</u>

- FIXED HARDWARE DESIGN, PIPELINED ARCHITECTURE
- READY-MADE PERIPHERALS AND ASSOCIATED HARDWARE-SOFTWARE INTERFACE, FIXED PERFORMANCE
- HIGHER LATENCY FOR A GIVEN SEQUENCE OF OPERATIONS THAT CAN BE PARALLELED IN HARDWARE
- EASY PCB LAYOUT, FEW EXTERNAL COMPONENTS NEEDED, LOW COST

FPGA

- FLEXIBLE HARDWARE DESIGN
- LARGE CAPACITY FOR PARALLEL PROCESSING
- HIGHER COST, LESS SPACE EFFICIENT
- Huge amount of customization using proven
 IP's from digital designers
- MUCH HIGHER PERFORMANCE FOR DEDICATED, HIGH-SPEED PROCESSING TASKS LIKE MOTOR CONTROL
- COMPLEX PCB LAYOUT

- XILINX SPARTAN 7 FPGA USED FOR RAPID COMPUTATION OF MOTOR ANGULAR VELOCITY PROFILES, GENERATES STEP PULSES
- 12 MHz system clock
- UART TRANSCEIVER INTEGRATED IN HDL
- LOW VOLTAGE DIGITAL ELECTRONICS ISOLATED FROM HIGHER VOLTAGE POWER ELECTRONICS

- PERFORMS LOCAL FILTERING AND REGULATION OF 12V BUS VOLTAGE FOR DIGITAL ELECTRONICS (1.0V, 1.8V, AND 3.3V)
- LOGIC AND LED INDICATORS FOR MOTOR FAULT FLAGS

MOTOR CONTROL PCB DESIGN – BOTTOM BOARD

WORK DISTRIBUTION

Mic	hael	l Gen	dreau

Primary: Motor Control,

Enclosure Design + Assembly,

System Power Regulation

Secondary: Handheld Device

Hardware

Jordi Niebla

Primary: Handheld

Device Hardware,

Keyword Recognition

<u>Felipe Solanet</u>

Primary: Camera Integration,

Officer Image Processing,

Device Communication System

Secondary:

Communication

Interface Testing

Secondary: Embedded Software

SOFTWARE DESIGN

CAMERAS - GIGE

MER-500-14GC-P

- 1280 x 960 Resolution
- 54 FPS
- \$218

MER-133-54GC

- 2592 x 1944 Resolution
- 14 FPS
- \$196

CAMERAS – FLIR Firefly DL

- USB 3.0
- 1440 x 1080 Resolution
- 60 FPS
- \$300
- Built-In Intel Movidius Chip

TRAINING - DATASET

Real Dataset

- Data better represents reality
- Labels must be compatible
- Test data won't match dataset
- More time spent training

Custom Dataset

- Full control of data
- Creation takes time
- Easier to acquire test data
- Less time spent training

TRAINING - PREPARATION

Recorded 4 minutes of video in different environments

Sampled ~1800 frames for dataset

Labeled images with PascalVOC format

TRAINING - ALGORITHM

ODROID - OVERVIEW

- Cortex A15 + Cortex A7 2Ghz CPU
- 2GB DDR3 RAM
- 2x USB 3.0 Ports + 1x USB 2.0 Port
- HDMI Port
- Ethernet Port
- Runs Ubuntu Mate 16.04

ODROID - SOFTWARE

- C++
- FLIR Spinnaker SDK
- OpenCV

Footage Recording

Officer Commands

Motor Commands

FPGA Motion Control Demo

Testing

Project Budget

95	
ASSOC .	i

Component/Item	Expected # of units	Estimated Price/Unit	Estimated Price
Mechanical Components			\$160.00
FireFly DL Camera	1	\$320.00	\$320.00
S Mount Lens	1	\$12.00	\$12.00
ODROID-XU4 (SBC)	1	\$80.00	\$80.00
MSP430FR6989	1	\$9.00	\$9.00
Lattice MachXO2-1200 FPGA	1	\$10.00	\$10.00
Xilinx Spartan 7 FPGA	1	\$17.00	\$17.00
PCB Design + Components		\$120	\$120
Speech Recognition Module	1	\$35.00	\$35.00
Zigbee Radio	2	\$12.50	\$25.00
Micro SD Card + Reader	1	\$25.00	\$25.00
LCD	1	\$11.50	\$11.50
Total Estimated Cost			\$824.50

- SELF FUNDED AND TOTAL COST SPLIT BETWEEN THE GROUP
- THE PROJECT TOTAL (INCLUDING SHIPPING) WAS CALCULATED TO BE ABOUT \$800-850.
- This includes the camera, PCB design & extra components needed, microcontroller, FPGAs, and the Odroid