MA210 - Class 8

EXERCISE 1 Calculate the # of labelled trees on InJ, where vertex 1 has degree 2 and vertex 2 has degree 3.

MD <u>i OEA</u> ① Prii fer codes \longrightarrow labelled trees. (|trees| \Longrightarrow | Rhii fer codes|)

② $V \in T$ has degree $n \Longleftrightarrow V$ appears $\in X \land C \vdash L \lor K \vdash 1$ times

in Prii fer (T)

Hence, 2 has degree 2 in Tiff 1 appears once in Briter (7).

IT: d(1)=2 1 d(2)=3 | = | | Pm = cooleg: t appears once and z appears twice |

= (m-2) (m-2-1) (m-2-3)

1 appears (m-2-3) Vertices

Rem In order to prove $\Gamma(G) = k$ we need to prove two things:

The volowing shows $\chi(G) \geq 3$. $k_3 \leq G_1$ shows $\chi(G) > 3$.

Q Can w (a) and or (b) help my on this?

EXERCISE 2 (Blow-up of the even cycle).

-> stoot with the cycle on 2k vertices

-> suplace each vertex of the cycle with k.

-> two vertices in different cliques are ady.

iff the two original restrices were adjacent

 $V_{z}V_{1}UV_{2}U...UV_{2n}$ ~ $S|V|_{z}$ 2kS $|E(G_{2n}S)|_{z}$ $(zn)(S_{z}^{S})+zn(S^{2})$

Prove that x (G) = 25

- $\chi(\alpha)$ > 25. Indeed, we need 5 colours to colour V_1 and some colours to colour V_2
- · x (m) & z s .

EXTRA EXERCISE Find a (G) and w (G)

mis i <u>oea</u> if we take v, w, & from three different cliques, we have at least one missing edge. 2 If we take A an indep. set, no two vertices can come from adj. clusters.

Question 2

(a) For $m,n\geq 3$, let $G_{m,n}$ be the graph formed in the following two steps. First take two cycles C_m and C_n , whose vertex sets are disjoint; then add edges from each vertex of C_m to each vertex of C_n .

We denote the vertex set of C_m by $X=\{x_1,x_2,\ldots,x_m\}$, and the vertex set of C_n by $\underline{Y}=\{y_1,y_2,\ldots,y_n\}$.

- (i) Make a sketch of G_{4,3}.
- (ii) Formulate Euler's Theorem.

Use Euler's Theorem to decide the values of $m,n\geq 3$ for which $G_{m,n}$ has an Euler tour.

- (iii) For what values of $m, n \ge 3$ does $G_{m,n}$ have a Hamilton cycle?
- (iv) For what values of $m, n \ge 3$ is $G_{m,n}$ a bipartite graph?
- (v) Determine the chromatic number $\chi(G_{m,n})$ of $G_{m,n}$ for all values of $m,n \geq 3$.

which means

* (Cm, m) = * (Cm) + * (Cm)

- (b) (i) Determine and display by means of a sketch the tree with vertex set $\{1,2,\ldots,8\}$ whose Prüfer code is (5,7,2,6,8,5).
 - (ii) For every integer $n \geq 3$, find the number of trees with vertex set $\{1,2,\ldots,n\}$ and with exactly n-2 leaves.

ways to choose # of two digit

the non-leaves seq. of length n-2