Alma Mater Studiorum University of Bologna

Artificial Intelligence - Deep Learning

Deep Deblurring project

Alessandro Dicosola [Matr. 935563]

Introduction

Problem

Remove blurring artifact from images

- ► CIFAR10[1]
- ► REDS[2]

Introduction

Hardware

► CPU: i7-8750H@2.20GHz

► GPU: Nvidia GTX 1060 (6 GB)

Autoencoders

Networks implemented:

- ► ResUNet
- ► EDDenseNet
- ► CAESSC
- ► SRNDeblur

Autoencoders - ResUNet[3][4]

- The backbone is a UNet architecture
- Use of ResBlock at each level improves the flow of the information
- Conv2DTranspose at the end for learning additional information

Autoencoders - ResUNet[3][4]

Figure: ResUNet1 - Run test for ResUNet1

Figure: ResUNet3 - Run test for ResUNet3

number of	MSE	PSNR	SSIM
ResBlock			
1	0.0018	28.49	0.930
3	0.0016	29.03	0.935

Autoencoders - EDDenseNet[5]

- ► Growth rate: 16
- ► Encoder: [6,6,3]
- ▶ Decoder: [3,6]
- ▶ Use of DenseBlock
- Conv2DTranspose at the end

Autoencoders - EDDenseNet[5]

Figure: EDDenseNet - Run test for EDDenseNet

kernel	MSE	PSNR	SSIM	
type				
gaussian	0.0021	27.62	0.90	

Autoencoders - CAESSC[6]

- ▶ Simple structure
- Use of symmetric skip connections between with a fixed interval
- Use of highway skip connection improve the outcome
- Use of Sigmoid/ReLU in the last layer

Autoencoders - CAESSC[6]

Figure: Run test for CAESSC_d22_f128_half_no_sigmoid

Figure: Run test for CAESSC_d22_f128_half

Figure: Run test for CAESSC_d30_f64

	network	MSE	PSNR	SSIM
	RED30 ¹	-	34.49	-
C	CAESSC_d22_f128_half_no_sigmoid	0.00389	24.85	0.839
	CAESSC_d22_f128_half	0.0020	28.12	0.916
	CAESSC_d30_f64	0.0018	28.95	0.919

¹RED30 is composed by 30 layers with skip connections every 2 layers, 128 filters, kernel size equal to 3 and no downsampling. Taken from https:
//github.com/ved27/RED-net/blob/master/model/REDNet_ch3.prototxt
and /model/debluring/gaussian.caffemodel

- ► FCNN
- Use of Blocks
- Encoder-Decoder architecture
- ResBlocks and skip connections
- Multi-Scale network
- Recurrent layer

Training

- Run test for SRNDeblur_cifar_no_ltsm
- ► Run test for SRNDe-blur_cifar_lstm

Figure: Test image generated by SRNDeblur_cifar network

CIFAR10 network	MSE	PSNR	SSIM
Without LSTM	0.00175	29.23	0.9225
With LSTM	0.00174	29.38	0.9188

Figure: High resolution test image generated by SRNDeblur_reds network.

Run test for SRNDeblur_reds with high resolution images

	SRNDeblur_reds			SRN-De	eblurNet
dataset	MSE	PSNR	SSIM	PSNR	SSIM
REDS	0.002	27.23	0.8105	-	-
COPro				30.26	0.0342

Results

Figure: Low resolution test image generated by SRNDeblur_reds network.

Bibliography

A. Krizhevsky, "Learning multiple layers of features from tiny images," 2009.

S. Nah, S. Baik, S. Hong, G. Moon, S. Son, R. Timofte, and K. M. Lee, "Ntire 2019 challenge on video deblurring and super-resolution: Dataset and study," in *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops*, June 2019.

O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," *CoRR*, vol. abs/1505.04597, 2015.

K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," CoRR, vol. abs/1512.03385, 2015.

G. Huang, Z. Liu, and K. Q. Weinberger, "Densely connected convolutional networks," CoRR, vol. abs/1608.06993, 2016.

X. Mao, C. Shen, and Y. Yang, "Image restoration using convolutional auto-encoders with symmetric skip connections," *CoRR*, vol. abs/1606.08921, 2016.

X. Tao, H. Gao, Y. Wang, X. Shen, J. Wang, and J. Jia, "Scale-recurrent network for deep image deblurring," *CoRR*, vol. abs/1802.01770, 2018.