Universidade Federal do Ceará Campus de Quixadá Programação Funcional, 2019-1 Primeira Avaliação Professor Ricardo Reis

16 de Abril de 2019

1. O algoritmo de Euler para determinação do máximo divisor comum de dois números inteiros não negativos, a e b, é dada pela função,

$$f(a,b) = \begin{cases} a & \text{se } b = 0\\ b \mid f(a,b) \end{cases}$$
 (1)

desde que a > 0. O operador | representa resto de divisão (por exemplo, $5 \mid 3 = 2, 13 \mid 5 = 3$). Implemente a função Haskell mdc(a,n) que determina o máximo divisor comum pelo método de Euler.

- 2. Considere o seguinte algoritmo de ordenação aplicado a uma lista \mathcal{L} de tamanho n.
 - (a) $i \leftarrow n-1$;
 - (b) Determinar o maior valor de \mathcal{L} no intervalo $\{0,i\}$ e colocá-lo na posição i;
 - (c) $i \leftarrow i 1$;
 - (d) Se i > 0, voltar para (b);

Adaptar o algoritmo anterior para o paradigma funcional implementando em Haskell a função sort(L) que efetua a ordenação da lista L.

- 3. Dada uma lista \mathcal{L} de inteiros quaisquer, construir uma função Haskell que determine a subseqüência de \mathcal{L} que possua a maior soma entre todas as subseqüências de \mathcal{L} .
- 4. Considere a aproximação,

$$\frac{4}{\pi} = 1^2 + \frac{1}{2^2 + \frac{1}{3^2 + \frac{1}{4^2 + \cdots}}} \tag{2}$$

Construa função Haskell getPi() que determine π baseando-se em (2)