Tarea 03 Representación del ambiente^{*}

Robots Móviles (TSM I, TSM II, TSCR), FI, UNAM, 2025-2

Nombre:		
Nombro:		
NOHIDIE.		

1. Actividades

1. Abra el archivo catkin_ws/src/navigation/map_augmenter/scripts/map_inflater.py y pegue el siguiente código en la línea 31 para implementar el algoritmo de inflado de mapas:

Agregue su nombre completo en la línea 18.

2. Abra una terminal y corra la simulación con el comando (revise las instrucciones en el README del repositorio):

```
roslaunch fiat_lux movement_planning.launch
```

3. En otra terminal, corra el inflado de mapas con el comando:

```
rosrun map_augmenter map_inflater.py _inflation_radius:=0.2
```

Observe lo que sucede en el visualizador RViz. Se debería visualizar el mapa inflado como se muestra en la figura:

4. Detenga el programa (Ctrl + C) y ejecútelo nuevamente con radios de inflado diferentes, por ejemplo:

^{*}Material elaborado con apoyo del proyecto PAPIME PE112525

```
rosrun map_augmenter map_inflater.py _inflation_radius:=0.3
```

Observe qué sucede. ¿Qué pasaría si el radio de inflado es muy grande o muy pequeño?

5. Abra el archivo catkin_ws/src/navigation/map_augmenter/scripts/split_and_merge.py y pegue el siguiente código en la línea 45 para implementar la parte de ajuste de líneas del algoritmo split and merge:

```
if len(points) < min_points:
    return lines

rho, theta, xm, ym, length = adjust_line(points)

idx, dist = find_farthest_point(points, rho, theta)

if dist < threshold:

return [[rho, theta, xm, ym, length]]

lines1 = split(points[0:idx], threshold, min_points)

lines2 = split(points[idx+1:len(points)], threshold, min_points)

lines = lines1 + lines2</pre>
```

6. En la línea 64 del mismo archivo, pegue el siguiente código para implementar la mezcla de líneas parecidas del algoritmo *split and merge*:

```
if len(lines) < 2:
       return lines
65
66 for i in range(1, len(lines)):
       \verb|rho1|, \verb|theta1|, \verb|xm1|, \verb|ym1|, \verb|length1| = \verb|lines[i]|
67
       rho2, theta2, xm2, ym2, length2 = lines[i-1]
68
              = abs((rho1 - rho2)/min(rho1, rho2))
69
       e_rho
       e_{theta} = abs(theta1 - theta2)
70
71
       if e_rho < rho_tol and e_theta < theta_tol:
            new\_lines.append([(rho1+rho2)/2, (theta1+theta2)/2, (xm1+xm2)/2, (ym1+ym2)/2,
72
       length1+length2])
73
       else:
            new_lines.append([rho1, theta1, xm1, ym1, length1])
74
            new_lines.append([rho2, theta2, xm2, ym2, length2])
76 return new_lines
```

7. En otra terminal, corra el algoritmo split and merge con el comando:

```
rosrun map_augmenter split_and_merge.py _dist:=0.01 _points:=3 _rho:=0.05 _theta :=0.05
```

8. Detenga la detección de líneas y ejecútela nuevamente con diferentes parámetros de sintonización. Con la GUI, mueva el robot a diferentes puntos del mapa para verificar la correcta sintonización de dichos parámetros. Se deberían observar segmentos de línea coincidentes con las paredes, como se muestra en la figura:

9. En otra terminal, corra el algoritmo *Brushfire* para obtener un Diagrama de Voronoi Generalizado a partir del mapa inflado (el inflado de mapas debe estar corriendo):

rosrun map_augmenter gvd.py

Debería observar un GVD como el de la figura:

- 10. Detenga el GVD y abra el archivo catkin_ws/src/navigation/map_augmenter/scripts/gvd.py y en las líneas 53 y 56 cambie la distancia Euclideana por distancia de Manhattan (revise los comentarios arriba de cada línea).
- 11. Ejecute nuevamente la obtención del GVD y observe lo que sucede en el visualizador RViz.

2. Entregables

- Código modificado en la rama correspondiente
- Documento impreso con los siguientes puntos:
 - Captura de pantalla del inflado de mapas con una vista diferente a la mostrada en este documento.
 - Capturas de pantalla de la extracción de líneas resultante con varios conjuntos de parámetros. Incluir una discusión sobre los parámetro que mejor hayan funcionado.
 - Captura de pantalla del GVD funcionando con una vista diferente a la mostrada en este documento.

No es necesario pegar el código modificado en el documento escrito. Para eso está el repositorio en línea.

3. Evaluación

Para la evaluación se utilizará la siguiente lista de cotejo:

- [0 puntos] Los cambios al código se subieron a la rama correspondiente con las credenciales de cada alumno. Este punto es requisito para evaluar los demás.
- [1 punto] El programa de inflado de mapas funciona correctamente.
- [1 punto] Captura de pantalla del inflado de mapas con una vista diferente a la mostrada en este documento.
- [1 punto] El programa de extracción de líneas funciona correctamente.
- [1 punto] Al menos una captura de pantalla de la extracción de líneas funcionando.
- [1 punto] Se incluye más de una captura de pantalla de la extracción de líneas, con diferentes parámetros de sintonización.

- [1 punto] Se incluye una discusión sobre cómo elegir los parámetros del algoritmo split and merge.
- [1 punto] El programa para la obtención del GVD funciona correctamente.
- [1 punto] Captura de pantalla del algoritmo brushfire funcionando (se muestra el GVD) utilizando distancia euclideana.
- [1 punto] Captura de pantalla del algoritmo brushfire funcionando (se muestra el GVD) utilizando distancia de Manhattan.
- [1 punto] Se incluye una discusión sobre el uso de las distancias Euclideana y de Manhattan para la obtención del GVD.