Requested Patent:

SU655373A1

Title:

METHOD OF IMPROVING SOIL STRUCTURE;

Abstracted Patent:

SU655373;

Publication Date:

1979-04-05;

Inventor(s):

KOZHEVNIKOVA NINA V;

Applicant(s):

KOZHEVNIKOVA NINA V (SU);

Application Number:

SU19762425763 19761119;

Priority Number(s):

SU19762425763 19761119;

IPC Classification:

A01N7/02;

Equivalents:

.

ABSTRACT:

Союз Советских Социалистических Республик

Государственный комитет CCCP по делом изобретений и открытий

ПИСАН ИЗОБРЕТЕНИ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(61) Дополнительное к авт. свид-ву 🐱

(22) Занвлено 19.11.76 (21) 2425763/30-15

с присоединением заявки №

(23) Приоритет -

Опубликовано О5.О4.79 Бюллетень № 13 | (53) УДК 631.417

Дата опубликования описания 09.04.79

(51) М. Кл. A 01 N 7/02

 $_{(11)}655373$

(088.8)

(72) ABTOD изобретения

н. В. Кожевникова

(71) Заявитель

(54) СПОСОБ УЛУЧШЕНИЯ СТРУКТУРЫ ПОЧВЫ

Изобретение относится к почвоведению, в частности к использованию неорганических удобрений для улучшения структуры почвы.

В настоящее время органические вещества в почве увеличивают путем внесения заранее приготовленных гуминовых удобрений в почву. Обычно гуминовые удобрения готовят из каустобенитов бурого угля, торфа, лигнина жестким химическим воздействием: кислотами, щепочами, высокой температурой, парем, давлением, даже упьтразвуком и затем вносят в почву обычным способом как удобрения [1].

Также известен способ улучшения структуры почвы, включающий внесение полиметафосфата щелочных металлов [2].

Недостатком этого способа является преимущественное физическое оструктуривание без значительного увеличения содержания органического вещества почвы.

Ценью изобретения является повышение сопержания органического вещества в почве.

Поставленная цель достигается тем, что в почну предверительно или вместе с аммонийными и кальциевыми удобрениями вносят фосфиты при рН ≥7. Фосфиты уявляясь активными химическими агентами, взаимодействуют со сложным органическим веществом почвы или образуют органические вещества в почве из простейших органических веществ (например, производных карбоновых кислот) и неорганических веществ (например, азотистых), которые образуют органо-минеральные комплексы с участнем азота, карбоксиль. ных, фосфоновых групп и нона кальция. Оптимальными условиями комплексообразования для иона кальция является рН 🧈 7.

Одна из возможных структур органоминерального коминекса:

Фосфиты неустойчивы и, если не встунают во взаимодействие с органическим. веществом почвы, разлагаются до фосфатов.

Пример 1. В три вегетационных сосуда с отверствями в дне закладывают смесь следующих компонентов (табл. 1): сосуд № 1 - 9.4 кг почвы, 4,2 г NH₄NO₃, 2,7 г Са(ОН)₂ и 5.06 г К₂НРО₄; сосуд № 2 - 9.4 кг почвы, 7,2 г NH₄ NO₃, 2,7 г Са(ОН)₂, 3,09 г К₂НРО₄; сосуд № 3 - 9,4 кг почвы, 7,2 г NH₄ NO₃, 2,7 г Са(ОН)₂.

Почва чернозем из-под многодетней. травы костер, которую сеяли 5 лет подряд (земля непаханная). Вететационные оныты проводят при комнатной температуре (20°C), влажность почвы поддерживалась 30%-ной ежедневным добавлением дистиплированной воды, рН 6,5-7.1: срок опыта 32 и 49 дней. Определение гумуса в почве: 0,3 г тонко измельченной, с удаленными корешками почвы обрабатывают 10 мл О,4н. хромовой кислоты, помещают на 20 мин в термостат при 140°C, затем титруют избыток хромовой кислоты О,1н. раствором соли Мора: содержание гумуса рассчитывают по формуле:

гле: а — количество О,1н. соли Мора, ношедшей на титрование контроля, мл;

в - количество О.1н. сони Мора, пошедшей на титрование пробы, мл;

 К – поправочный ковфициент к титру сони Мора;

Р - навеска воздушно-сухой почвы, г. Непонвижный гумус (А) определяют спенующим образом: по 2 г обрабатывают 50 мл 0,5н, уксусной кислоты, сопержимое вобалтывают в течение 2 ч, отфильтровывают, 3 раза промывают тем же раствором. Затем почву (не промывая водой) обрабатывают 50 мл 4%-но-, то раствора аммиака, взбалтывают 1 ч, фильтруют, 1 раз промывают тем же раствором, сущат и определяют содержание гумуса в почве. В фильтрате определяют также неорганический и затем органический фосфор (В) сжиганием части вытяжки в смеси H_2 \$04, $HClO_4(1:4)$ по "монибленовой сини". Определяли общий фосфор из исходной почвы (из сосудов) и определяют количество устойчивых фосфористых соединений в почве по разности между общим фосфором и подвижным. Определяют количество вновы

образовавшегося (от внесенных удобрений) устойчивого фосфора (С) по разности содержания устойчивого фосфора в сосуде и в исходной почве.

Результаты работы представлены в табл. 1. Цобавление фосфита в сосуд № 2 дало незначительную прибавку гумуса (0,94%).

Пример 2. В 4 вегетационных сосуда с отверстиями в дне закладывают смесь спедующих компонентов: по
8 кг почвы (той же, что и в примере 1).
в сосуды №№4 - 6 помещают по 10 г

15 Св(ОН)₂: в сосуд № 7 - 2,7 Св(ОН)₂:
в сосуд № 4 - 16,8 г №Н₄№О3 и 50,8 г

К₂НРО₃: в сосуд № 5 - 19,2 г К₂НРО₃;
в сосуд № 6 помещают те же компонен-

ты, что и в сосуп № 5, и микроелементы: 1,4 г Си\$О₄, 0,94 г ZпСР₂, 1,64 г Мп\$О₄. В сосуде № 7 смешивают 9,5 г почвы с 2,7 г Са(ОН)₂; 2,1 г NН₄ОН; 3,4 г К₂НРО₃. Сосуды выдерживают 20 и 37 дней (сосуд № 13 - 13 дней)

в тех же условиях, что и в примере 1, при рН 7.6-8.0. Все определения проводили аналогично примеру 1. Результаты работы представлены в табл. 2.

При уровне вероятности P=0,05, и=8 среднее содержание гумуса иля 20 дией выдержки составляет 4,40 т 0,02% при ошибке определения 0,5%. При уровне вероятности P=0,05, и=30 среднее содержание гумуса составляет 4,46 - 0,08% при ошибке определения 1,9% (при всех сроках).

Пля срока 20 дней при увеличении абсолютного количества гумуса на 0,14, что составляет 3,30%, веподвижный гумус увеличивается на 0,56, что составляет

$$\frac{A-A_0}{A_0} = \frac{0.56 \cdot 100}{1.40} = 40\%.$$

Результаты сосуда № 6 показывают, что микроэлементы "не работают" при рН 7.

Количество органического подвижного фосфора на одну дозу внесенного фосфата (5 г на 100 г почвы) увеличивается по сравнению с исходной почвой от 1,8 до 4,0 раза (до 60 мг/100 г почвы) за срок 18-49 дней. При этом количество устойчивого фосфора прибавляется от внесения одной дозы фосфата в 7,5 - 2,0 раза меньше, чем от одной дозы фосфата и достигает минимума при сочетании фосфита с аммонийными удобрениями (обратная зависимость).

а 6 п и ц в

Номер	Упобрение	Ca (OH) ₂	8	NH4 NO3	ో	к₂нР0₄		Срок вы- Содер- держива- жание	Содер . жание	Увеличе- Содержа ние содер- ние не-	Содержа-	Д	<u></u>	ć
(сосуда)		Mr-ekb, Bec, Cat r		Mr~akb N	BeC,	Mr—3KB P·	Bec,			гумуса жания гу- (сред- муса, нее), %	подвиж- ного гу- муса (среднее),		<u>ក្</u> មេ	,
О (исходнаяя почва)]	' 1	•					4,26	t .	1,40 (As)	11,4 (B ₁)	ı	1
r-1	Ca ₁ N ₂ PO ₃ 0,08	90,0	2,7	90'0	2, 4	0,03	5,06	32 49	4,52 4,55	5,85	2,45 3,06	18,9 35,8	1,16	I
	÷	. 1	ŧ	i	,	ı	•	. 40	4,48	1	t		I .	1,
7	Ca, Ng PO, Ca N5 PO,	90,0	4,8	0,09 7,2	7,2	0,03	3,09	8. 8. 8. 9.	4,31	0,94		4 4 5 5	0,37	62,0 62,0 (C ₁)
3	Ca,N3.	0,03	2,1	0,09 7,2	7,2		1	32	4,27		-	1		- 1

Изменение сопержания гумуса в почве при использовании фосфитов

Сосупа	} ! ! !		•	8	9			, neu	OHN TWWCS . HIS CO.	Had Con	,		α	:	_
4		Mr-exb Bec, Ca+2 r	Bec,	мг-экв	Bec,	Mr-eks bec, P	B Bec,		(средний), %		∢	m	្យ់ក្ន	ပ)তি
	Ca ₄ N _W (PU ₃) _W	0,11	10,0	08'0 0	16,8 0,32	0,32	50,8	22	4,40	3,30	1,95	19.8		12.7	
								37. a	4,41		3,00		1,80	11,1	0,2
			•					D-	Ç †			:	•		
ιo	Ca4 (POs)4	•	*		1	0,12	19,2	8, 8	4,40	3,30	2,86		2.02	29,3	C A
	•		•					37	4,45 4,67		2,62	23,8		23,3	<u>.</u>
9	Ca4 (POg)4							20	4,40	3,30	2,02	31,0	2,70	25,8	0,4
	микро <i>эл</i> е- менты		•	•				37.	4,47		2,62			-	·
				7		- Complete C									
7	Ca, Ne (PO,), 0,03	, 0,03	2,7	90'0	2,1 0,20		31,4	13.	13. 4,42	3,70	2,20	78,9	3,95	7,5	0,1
								34	4,44						,
8 2	Ca, N5 (PO3)			0,15	11,4 0,32	I	50,8	3.4	4,45	4,35	1		1		

Формула изобретения Способ улучшения структуры почвы, включающий внесение солей фосфорных кислот, от личающий вся тем, что, с целью повышения органического вещества почвы, в нее предварительно или вместе: с аммонийными и кальциевыми удобрениями вносят фосфиты при рН >7. Источники информации, принятые во внимание при экспертизе

1. Овчаренко Ф. Л. Кн. "Комплексные биоминеральные удобрения", Академия Наук УССР, Проблемная комиссия БМУ, Киев, 1970 г.

Авторское свидетельство СССР
 № 298318, кл. А 01 № 7/02, 1969.

Составитель В. Квашини
Редактор И. Квачадзе Техред Н. Бабурка Корректор П. Макаревич
Заказ 1378/2 Тираж 754 Подписное
ПНИИПИ Государственного комитета СССР
по делам изобретений и открытий
113035, Москва, Ж-35, Раушская наб., д. 4/5

Филиал ППП "Патент", г. Ужгород, ул. Проектная, 4