Applications Systems Standardization Working Group

Interface Specification

Interface 2

(ASAM MCD 2MC / ASAP2)

Version 1.51

Release

2003-03-11

ASAP2: STANDARDIZED

DESCRIPTION DATA

Status of Document

Date:	2003-03-11				
Author:	Brian Pavlik, Ford				
	William Debs, GM				
	Tom Zagotta, Siena Systems				
	Don Nutter, ETAS				
	Joe Pallatin, SII				
	Dr. H. Schelling, Vector Informatik				
	DiplIng. P.Lampert, Vector Informatik				
	Dr. C. Dallmayr, Softing				
	DiplInf. G.Luderböck, Softing				
	DiplIng. M.Eisele, Vector Informatik				
	DiplMath. E.Schnorr, Vector Informatik				
Version:	Version 1.51				
Doc-ID:					
Status:	Release				
Type	Specification				

Contents

1	Int	troduction	7				
2	ASAP: Goals, Method, Interfaces						
3	Division						
4		stem Description (SG Verbund)					
5	_	_					
)		scription Application Devices					
		Control unit management data					
		General description data (control unit internal structures)					
		Interface Parameters (general parameters)					
	5.3.						
	5.3.						
	5.3.						
	5.3.	· · · · · · · · · · · · · · · · · · ·					
	5.3.						
		Adjustment objects					
	5.4.	of positional [emmater 22105 fre]					
	5.4.	1 ' 1 '					
	5.4.	.3 Function orientation (Reference)	19				
	5.5 I	Measurement channel					
	5.5.						
	5.5.	· · · · · · · · · · · · · · · · · · ·					
	5.5.	.3 Function orientation (reference)	21				
	5.6	Conversion method	21				
	5.7	Conversion tables	21				
	5.8	Function description	22				
		Record layout					
6		rmat of the description file					
v							
	6.1]	Hierarchic division of the keywords	23				
	6.2]	Predefined data types	28				
	6.3	Alphabetical list of keywords	30				
	6.3.	.1 A2ML	30				
	6.3.	.2 A2ML_VERSION	31				
	6.3.	.3 ADDR_EPK	32				
	6.3.						
	6.3.	-					
	6.3.	<u> </u>					
	6.3.						
	6.3.	-					
	6.3.	-					
	6.3.						
	6.3.	-					
	6.3.						
	6.3.	-					
	6.3. 6.3.	-					
	6.3.	-					
	6.3.	——————————————————————————————————————					
	0.5.	,					

6.3.18	AXIS_PTS_REF	
6.3.19	AXIS_PTS_X/_Y/_Z	55
6.3.20	AXIS_RESCALE_X/_Y/_Z	56
6.3.21	BIT_MASK	58
6.3.22	BIT_OPERATION	59
6.3.23	BYTE ORDER	60
6.3.24	CALIBRATION_ACCESS	61
6.3.25	CALIBRATION HANDLE	
6.3.26	CALIBRATION_METHOD	
6.3.27	CHARACTERISTIC	
6.3.28	CHECKSUM	
6.3.29	COEFFS	
6.3.30	COMPARISON_QUANTITY	
6.3.31	COMPU_METHOD	
6.3.32	COMPU TAB	
6.3.33	COMPU TAB REF	
6.3.34	COMPU_TAB_REF	
6.3.35	COMPU_VTAB_RANGE	
6.3.36	CPU_TYPE	
6.3.37	CURVE AXIS REF	
	CURVE_AXIS_REFCUSTOMER	
6.3.38		
6.3.39	CUSTOMER_NO	
6.3.40	DATA_SIZE	
6.3.41	DEF_CHARACTERISTIC	
6.3.42	DEFAULT_VALUE	
6.3.43	DEPENDENT_CHARACTERISTIC	
6.3.44	DEPOSIT	
6.3.45	DISPLAY_IDENTIFIER	
6.3.46	DIST_OP_X/_Y/_Z	
6.3.47	ECU	
6.3.48	ECU_ADDRESS	
6.3.49	ECU_ADDRESS_EXTENSION	
6.3.50	ECU_CALIBRATION_OFFSET	
6.3.51	EPROP MASK	
6.3.52	ERROR_MASK	
6.3.53	EVENT_GROUP	
6.3.54	EXTENDED_LIMITS	
6.3.55	FIX_AXIS_PAR	
6.3.56	FIX_AXIS_PAR_DIST	
6.3.57	FIX_AXIS_PAR_LIST	
6.3.58	FIX_NO_AXIS_PTS_X/_Y/_Z	
6.3.59	FNC_VALUES	
6.3.60	FORMAT	
6.3.61	FORMULA DIV	
6.3.62	FORMULA_INV	
6.3.63	FRAME	
6.3.64	FRAME_MEASUREMENT	
6.3.65	FUNCTION LIGT	
6.3.66	FUNCTION_LIST	
6.3.67	FUNCTION_VERSION	
6.3.68	GROUP	
6.3.69	GUARD_RAILS	
6.3.70	HEADER	
6.3.71	IDENTIFICATION	
6.3.72	IF_DATA (AXIS_PTS, CHARACTERISTIC, MEMORY_LAYOUT)	
6.3.73	IF_DATA (MEASUREMENT)	
6.3.74 6.3.75	IF_DATA ASAPIB_ADDRESS (MEASUREMENT)	
6.3.76	IF_DATA ASAP1B_CAN (MEASUREMENT) IF_DATA (FRAME)	
0.5.70	II_DATA (FRANC)	. 133

6.3.77	IF_DATA (MEMORY_SEGMENT)	134
6.3.78	IF_DATA (MODULE)	135
6.3.79	IN_MEASUREMENT	137
6.3.80	LEFT_SHIFT	138
6.3.81	LOC MEASUREMENT	
6.3.82	MAP_LIST	
6.3.83	MATRIX DIM	
6.3.84	MAX GRAD	
6.3.85	MAX REFRESH	
6.3.86	MEASUREMENT	
6.3.87	MEMORY_LAYOUT	
	MEMORY SEGMENT	
6.3.88	-	
6.3.89	MODULE	
6.3.90	MOD_COMMON	
6.3.91	MOD_PAR	
6.3.92	MONOTONY	
6.3.93	MULTIPLEX	
6.3.94	NO_AXIS_PTS_X/_Y	
6.3.95	NO_OF_INTERFACES	
6.3.96	NO_RESCALE_X/_Y/_Z	164
6.3.97	NUMBER	165
6.3.98	OFFSET_X/_Y/_Z	166
6.3.99	OUT_MEASUREMENT	167
6.3.100	PHONE_NO	
	PROJECT	
	PROJECT_NO	
	RASTER	
	READ_ONLY	
	READ WRITE	
	RECORD LAYOUT	
	REF_CHARACTERISTIC	
	REF_GROUP	
	REF_MEASUREMENT	
	REF_MEMORY_SEGMENT	
	REF_UNIT	
	RESERVED	
	RIGHT_SHIFT	
	RIP_ADDR_X/_Y/_Z/_W	
	ROOT	
	SEED_KEY	
6.3.117	SIGN_EXTEND	193
6.3.118	SHIFT_OP_X/_Y/_Z	194
6.3.119	SI_EXPONENTS	195
6.3.120	SOURCE	196
	SRC ADDR X/ Y/ Z	
	SUB_FUNCTION	
	SUB_GROUP	
	SUPPLIER	
	SYSTEM_CONSTANT	
	S_REC_LAYOUT	
	UNIT	
	UNIT_CONVERSION	
	USER	
	USER_RIGHTS	
	VARIANT_CODING	
	VAR_ADDRESS	
	VAR_CHARACTERISTIC	
	VAR_CRITERION	
6.3.135	VAR_FORBIDDEN_COMB	215

	6	3.136 VAR_SELECTION_CHARACTERISTIC	216
		3.3.137 VAR_MEASUREMENT	
		3.3.138 VAR_NAMING	
		3.3.139 VAR_SEPARATOR	
		3.141 VIRTUAL	
		3.142 VIRTUAL_CHARACTERISTIC	
7	I	nclude mechanism	224
	7.1	Description of complex projects	224
	7.2	Description of interface-specific parameters	224
8	I	nterface-specific description data	225
	8.1	Format of the ASAP2 metalanguage	226
	8.2	Designing A2ML-file	228
	8.3	Structure of BLOBs	232
	8.4	Example of ASAP2 metalanguage	
	8.5	Example of description file	
	8.6	AML example for ASAP1a-CCP	
	8.7	Win32 API for the ASAP1a CCP Seed&Key Algorithm DLL	
	8.8	Win32 API for the ASAP1a Checksum Algorithm DLL	
9		Appendix A: Record layouts	
10		Appendix B: IEEE-Floating-Point-Format	
		1 32-Bit Format	
		2 64-Bit Format	
11		Appendix C: Using Reference Curves as Normalization Axes for Maps	
		Background	
		2 Example	
12		Appendix D: modifications from version 1.0 to version 1.21	
13		Appendix E: modifications from version 1.21 to version 1.31	
14		Appendix F: modifications from version 1.31 to version 1.4	
15		Appendix G: modifications from version 1.4 to version 1.5	
10		Appendix H: Glossary	
17	7 A	Appendix I: ASAP2 kevwords	273

1 Introduction

This document is based on specification "Application Systems Standardization Working Group: Interface Specifications - Interface 2, Version 1.0 of 31 March 1994". The new requirements result form experience applying this standard. The modifications are decided at the meeting of ASAP2 Working Group at 24 January 1996. Appendix D contains a list of modifications relating to version 1.0. At the meeting of ASAP-plenum on 11 March 1997 the acceptance of the present first draft of this specification had been decided.

At ASAP2-Plenum on 24 June 1997 a final revision was decided to correct some details (version 1.21: no functional extensions).

The version 1.3 contains the decisions made during the ASAP2 workgroup meeting at 8th and 9th September 1998 at Vector Informatik. In the current version 1.31 the results of the inconsistency meeting at Vector Informatik GmbH on 02/24/1999 have been added. All modifications between version V1.31 and V1.21 are listed in Appendix E.

The version 1.4 contains the decisions made during the ASAM-MCD-MC2 meeting at Robert Bosch GMBH K5 on 18 th January 2000. All modifications between version V1.31 and V1.4 are listed in Appendix F. *Note*: They are no longer marked on the outside border.

Version 1.5 contains decisions made during the ASAM-MCD-MC2 P05-01 workgroup in session over the course of the year 2001 and finalized in November, 2002. All modifications are listed in Appendix G and are marked on the outside border.

2 ASAP: Goals, Method, Interfaces

The working group for the standardization of application systems (ASAP) was created in the autumn of 1991 at the initiative of the development boards of the German automobile manufacturers. The motivation is cost reduction based on co-operation in non-product relevant fields. The initiative is supported by the automobile manufacturers Audi, BMW, Mercedes-Benz, Porsche and VW together with the contractors active in this segment Bosch, Hella, Siemens, Temic, VDO and free suppliers and automation suppliers such as AVL, Erphi, FEV, Schenk, Softing and Vector.

The working group for the standardization of application systems (ASAP) aims at making the tools and methods generated during the development phase of vehicle electronics compatible with each other and hence interchangeable.

To this end the system parts required for the application as well as for verification and testing are adapted to the current, technical requirements in parallel with the design and development phase of the actual control units and thus brought to a high maturity level. In practice these efforts make it possible to incorporate individual components of the overall system into the process chain and to integrate them with other application environments.

To reach these goals, the ASAP group has agreed to subdivide the overall system into subcomponents (Figure 1) using commonly defined interfaces that are compatible and interchangeable.

Figure 1: Overall system and interfaces

The individual application systems (AS) of the measurement, application and diagnostic system (MCD) are linked to the automation via interface ASAP3, they obtain information about the control unit's internal elements, its interfaces and communication methods from the ASAP2 description file, and are in turn linked to the control units (ECU) and the control unit dependent measurement technology (ADC) via the ASAP1 interface via ROM emulators, CAN or ABUS or the diagnostic bus (D bus). This structure allows current monolithic applications to be divided into compatible subsystems.

Via the ASAP1b interface the standard connection of the control units and of the control unit dependent measurement technology is realised independently of the chosen communication path or the relevant supplier of the control unit. To obtain this functionality, the control unit or the measurement system is linked to the measurement, application and diagnostic system via the transport path, the interface hardware and a driver in accordance with the ASAP specifications. This subsystem below interface 1b is identified by the ASAP device (Figure 2):

Figure 2: ASAP device (principle structure)

Page 8 of 277 Version 1.51 Release 2002-02-05

An ASAP device thus defined may be composed of different elements depending on the selected connection :

Figure 3: Various versions of the ASAP device

The ASAP 1b interface is a functional interface which was initially defined independently of the MCD operating system. It offers a range of services controlling the exchange of parameters and data via the ASAP 1b. These ASAP services are:

Service	Name	Function description
1	INIT_READ	Initialisation of the measurement system
2	INIT_ACCESS	Initialisation of the adjustment system
3	SYNC	Synchronisation of the individual subsystems
4	READ	Data transfer upstream of ASAP 1b
5	ACCESS	Data transfer downstream of ASAP 1b
6	STOP	End of measurement data collection for
		intelligent module type 24
7	FREE_HANDLES	Enable references - reject subsystem measure-
		ment data
8	GIVE_STATUS	Explicit status interrogation in the event of an
		error
9	COMMAND	Handling of manufacturer defined commands

Table 1: ASAP Services Interface 1b

This allows similar subsystems such as ROM emulators of the firms AB and XY to be accessed in the same way. This 'similarity' is related to the use of the above-mentioned ASAP services which imply above all commonly agreed communication procedures. Special features and different communication methods within the ASAP device are embedded in this device, the setting of parameters occurs by allocating equally special binary objects and parameters from the ECU description file. Interpretation of the objects is only possible by the ASAP device. Furthermore, uniform communication with the control unit is possible independently of the selected connection. Different features of the various control unit connec-

tions can be balanced within the ASAP device, while the functional communication, e.g. the setting of parameters, is also standardised.

The ASAP description file (ASAP2) is used to describe the ECU internal data. This ASAP subsystem can be created from a number of different subelements:

Figure 4: ASAP description file

The subelements of the ASAP description file are:

- ? project relevant information,
- ? data structure in the control unit,
- ? external interfaces,
- ? communication methods as ASAP device, and
- ? the conversion procedures for representation in physical units.

An ASAP description file constitutes the reference for an individual control unit and its link to the ASAP interface 1b. It contains the following information :

Subelement	Contents	Examples
1	project-related data	Name of the relevant user of the subcontractor, data
		reference number
2	ECU-internal structures	Status and structure of the warm-up characteristic
		map, content of the user information field
3	Conversion rules	Scaling values for conversion from hexadecimal to
		physical for subelements 2, 4 and 7
4	Measurement channels	Addresses, resolution and update rates of the measur-
		able RAM cells
5	Methods	Parameters of ASAP device for communication setup
		with the ECU, e.g. hexcode for emulator
6	HW layout	Segmentation of the related memory modules in the
		ECU e.g. data block size
7	SW interfaces	Description of the communication contents on the
		CAN bus or ABUS, e.g. identifier and data content of
		the messages

Table 2: Subelements of ASAP interface 2

The individual subelements differ in terms of content, supplier and person functionally responsible as well as in terms of customer and his application system. However, the same information storage method is used throughout to allow for the global management of the individual components.

Figure 5: Customers and suppliers of the ASAP 2 subelements

This makes it possible to replace independent subelements e.g. in the case of a functional extension of the CAN interface: subelement 7, SW interfaces, section CAN, as well as subelement 1, project-related data, and thus to generate different description files corresponding to the current state of the control unit, which may then serve as input for other application systems.

Interface ASAP3 links up the measurement, application and diagnostic system (MCD) to an automation system (AuSy). From the standpoint of the AuSy it can therefore be considered as an intelligent device as e.g. an indexing device or a fuel scale. It incorporates both the various methods for access to control units as well as the individual structures in the control units and offers the following higher-level functions:

- ? starting an application on the MCD
- ? executing the diagnostic function
- ? executing the application function
- ? executing the measurement system function

These functions are offered by applications with an ASAP3 interface (e.g. give current engine speed, give content of warm-up characteristic map, give error memory) without the AuSy having to know the control unit specific details. The MCD offers its services to the AuSy at a quasi higher level. These services are based on the information on addresses, scalings, methods etc. in control units, interfaces and ASAP devices, which is obtained from the ASAP2 description file:

Figure 6: Interworking of Automation system, Application system, DME with ASAP interfaces

The AuSy does not require any special knowledge about the methodology and the parameter setting of the interfaces to the control units for its automation sequences. This service is provided by the MCD. The connection is established via the ASAP 3 interface.

Page 12 of 277 Version 1.51 Release 2002-02-05

PART A: DIVISION OF THE DESCRIPTION DATA

3 Division

The definition of the ASAP 2 interface and hence the specification of the ASAP2 data base is aimed at defining a database independently of a computer or an operating system in such a way that a transparent and manufacturer-independent standard is established.

From the application point of view the database in accordance with the ASAP 2 interface contains the complete description of all control unit relevant data in a project. A project consists of project specific header data and one or more control unit specific descriptions. These control unit descriptions (= description of an ASAP device) include all conversion formulas and explanations about the applicable (adjustable) and measurable (non-adjustable) quantities and present a format description of the interface specific parameters (for ASAP interface 1b). The measurement, application and diagnostic system need only evaluate the quantities (and their conversion etc.), but not the interface specific parameters. The latter are only passed on to the structures of the ASAP 1b driver. To make sure that these structures are correctly filled the MCD must know the parameter type. The type is communicated with the ASAP2 metalanguage (see part C).

A project may include the control unit descriptions of various control units from different suppliers. The descriptions differ in terms of content, but use a common information storage methodology to allow for a global management of the project components. An INCLUDE mechanism allows to summarize the various control unit descriptions of various projects (Single-Source-Concept).

The ASAP2 database thus consists of a number of different subcomponents structured in accordance with the following diagram. The MODULE keyword denotes an independent ASAP device.

```
PROJECT
                                     /* Project description */
    HEADER{...}
     MODULE ASAP_DEVICE1
                                     /* Control unit management data */
         MOD PAR{...}
         MOD_COMMON {...}
                                     /* Module-wide (ECU specific) definitions */
         CHARACTERISTIC{...}
                                     /* Adjustable objects */
         CHARACTERISTIC{...}
                                     /* Measurement objects */
         MEASUREMENT{...}
         MEASUREMENT{...}
         COMPU_METHOD{...}
                                     /* Conversion method */
         COMPU_METHOD{...}
         COMPU_TAB{...}
                                     /* Conversion tables */
         COMPU_TAB{...}
```

```
/* Function allocations */
     FUNCTION{...}
     FUNCTION{...}
     RECORD_LAYOUT{...}
                                /* Record layouts of adjustable objects */
     RECORD_LAYOUT{...}
MODULE ASAP_DEVICE2
                                /* Control unit management data */
     MOD_PAR{...}
                                /* Module-wide (ECU specific) definitions */
     MOD_COMMON {...}
     CHARACTERISTIC{...}
                                /*Adjustable objects*/
     CHARACTERISTIC{...}
                                /* Measurement objects */
     MEASUREMENT{...}
     MEASUREMENT{...}
                                /* Conversion method */
     COMPU_METHOD{...}
     COMPU_METHOD{...}
                                /* Conversion tables */
     COMPU_TAB{...}
     COMPU TAB{...}
                                /* Function allocations */
     FUNCTION{...}
     FUNCTION{...}
     RECORD_LAYOUT{...}
                                /* Record layouts of adjustable objects */
     RECORD_LAYOUT{...}
MODULE ASAP DEVICE 3
     {
     }
}
                                /* END OF PROJECT */
```

The keywords defined in the ASAP2 database are described in Part B.

4 System Description (SG Verbund)

Within the scope of the standardization of application systems, it is intended to simultaneously apply control units of various manufacturers (e.g. engine control/ transmission control/anti-slip control). The ASAP2 database supports this: under one project header, which describes the overall system, the control unit descriptions (ASAP devices) of a number of manufacturers can be included, e.g. by 'INCLUDE'. Thus, an efficient overall standardization can be implemented with a common application system.

Figure 7 gives a schematic representation of the ASAP devices to be commonly applied, summarized under one project

Figure 7: Model application system

An ASAP device can thus be a control unit with related interface and ASAP 1b driver or only an interface with driver. The second case applies if e.g. quantities, exchanged via the bus as message, are monitored via ABUS or CAN (bus monitor).

The project header (keyword HEADER, page 119) is typically created by the project manager and includes the following entries:

- ? version of the parameter file format [keyword VERSION, page 220]
- ? project
- ? project identifier
- ? project number [keyword PROJECT_NO, page 170]
- ? remarks, comments

5 Description Application Devices

For each ASAP device a complete description (keyword MODULE, page 151) is created. The description is supplied by the relevant supplier of the control unit. The components of this description are:

- ? control unit management data (e.g. users responsible,...)[MOD_PAR, page 158]
- ? control unit internal structures (e.g. standard record layout) [MOD_COMMON, page 156]
- ? communication interfaces [IF_DATA, see Part C]
- ? adjustable and measurement objects [CHARACTERISTIC, page 61 and MEASUREMENT, page 145]
- ? conversion rules [COMPU_METHOD, page 71]

5.1 Control unit management data

The control unit management data are created with the MOD_PAR (page 158) keyword. Using optional parameters the following can be specified:

? data status [VERSION, page 220]

? comments, remarks

? EPROM identifier address [ADDR_EPK, page 31]

? EPROM identifier [EPK, page 96]

? Manufacturer or supplier
 ? Firm or customer
 ? Customer number
 [SUPPLIER, page 199]
 [CUSTOMER, page 83]
 ? Customer number
 [CUSTOMER_NO, page 86]

? User [USER, page 203]

? Telephone numbers (applications engineer responsible) [PHONE_NO, page 168]

? Control unit [ECU, page 95]

? Processor [CPU_TYPE, page 80]

? Number of interfaces [NO_OF_INTERFACES, page

163]

? Memory layout [MEMORY_LAYOUT, page 149]? System constants [SYSTEM CONSTANT, page

201]

? Project-basis-address (see MEMORY_LAYOUT: memory layout)

5.2 General description data (control unit internal structures)

These description data (keyword MOD_COMMON, page 156) makes it possible to specify a number of parameters for the module as a whole (i.e. for this ASAP device). The following optional parameters can be specified:

? Standard record layout (is there one standard layout?) [S_REC_LAYOUT, page 202]

? Standard deposit mode of the axis points (difference, absolute values)

[DEPOSIT, page 89]

? Byte order? Data size in bits[BYTE_ORDER, page 59][DATA_SIZE, page 87]

5.3 Interface Parameters (general parameters)

A format description of the interface specific parameters must be made available by the supplier in ASAP2 metalanguage (A2ML: see Part C). The measurement, application, diagnostic system need not know the driver parameter settings: to read the interface specific parameters only a description of the data types is required.

5.3.1 Interface module (memory emulator)

These parameters describe the access methods to the measurement data collection:

- ? Display table type (code patch in the ECU for measurement data output), address display table(s), maximum length of the display table(s)
- ? Output: which memory address
- ? Triggering: trigger segment address

5.3.2 CAN bus

If in a specific project a number of application devices have access to the CAN bus, a consistency check must be carried out for these parameters in the conversion program (physically only one CAN bus, all corresponding data records of the 'interface parameter' type must match).

- ? Bus timing
- ? Configuration
- ? Bus parameters
- ? Access methods fo measurement data collection:
 - ? Collection through passive hearing or remote frames
 - ? Note: Here there is no description of the CAN identifier
- ? possible description of a protocol for data adjustment

5.3.3 ABUS

These parameters describe the communication via the ABUS (VW):

- ? Bus operating mode (reference, difference)
- ? Bus parameters (number of scannings, error figures etc.)
- ? ADEX functions realised in the drivers

5.3.4 Bus parameters for serial protocols (ISO)

Here parameters describing serial communication are stored:

- ? Protocol identification (which serial protocol)
- ? Protocol parameters (timing), protocol specific
 - ? byte interval of tester
 - ? byte time-out of control unit
 - ? lock sequence time of tester
 - ? block time-out of control unit
 - ? timeout during communication setup
 - ? entry time during free-running
- ? ECU address
- ? Access methods
 - ? telegram answer
 - ? telegram-answer-answer ... (free-running)
 - ? display table (free-running)
 - ? length and structure of the display table
- ? Communication setup process (if necessary according to the protocol)
 - ? type of trigger
 - ? none
 - ? 5 Baud
 - ? low level
 - ? fast trigger (10.4 kBaud)
 - ? send telegram for initialisation (dummy)

- ? source type
 - ? time synchronous
 - ? crankshaft synchronous
 - ? event synchronous
 - ? asynchronous

5.3.5 Analog interface

Does not require any interface parameters!

5.4 Adjustment objects

Each adjustment object must have its own description to be created with the CHARACTERISTIC keyword (see page 61). Between the /begin CHARACTERISTIC and /end CHARACTERSITIC brackets further keywords can be nested (as may also be the case for other keywords).

Example:

```
/* Description of a characteristic map */
...
/* Description of a characteristic map */
...
/* axis description for x axis */
/* ...nesting depth 2 */
...

MAX_GRAD 7.0
/* gradient limited, nesting depth 3 */
/end AXIS_DESCR
/* axis description for Y axis */
...
/* axis description for Y axis */
/* axis description for Y axis */
...
/* axis description for Y axis */
```

/end CHARACTERISTIC

The description of the adjustment objects contains references to (possibly) common conversion methods for a number of adjustment objects, record layouts or functions. The referenced objects are described only once under their own keyword.

5.4.1 Deposit structure [CHARACTERISTIC]

Mandatory parameters:

- ? Name of the adjustable object
- ? Comment, function description
- ? Type of adjustable object
 - ? value, value block, curve, map, ASCII, pointer
 - ? fixed curve, fixed map
 - ? group curve, group map, axis point distribution,
 - ? vector curve, vector map
- ? address, address location, addressing type

- ? record layout (enumeration or reference)
- ? maximum increment for incrementing or decrementing a function value

Optional parameters:

- ? Axis description [AXIS_DESCR, page 46]
 - ? reference to input quantities
 - ? fixed curve or field: parameters for calculation of the axis point values
- ? Maximum gradient of the adjustable object between two neighbouring axis points (Delta_W/Delta_St)
- ? Monotony (with reference to an axis)

Remark:

The orientation (deposit: in rows or columns) as well as the word length of the axis points and function values (8 bit or 16 bit) is given in the layout.

5.4.2 Bit pattern conversion (axis points and function values)

- ? Reference to the list of conversion methods
- ? Byte order [BYTE_ORDER, page 59], signed-unsigned information
- ? Plausibilities (limit values)
- ? Physical representation: see Conversion method

5.4.3 Function orientation (Reference)

? List of those 'functions' that are allocated to this object. The referencing occurs by names.

Remark:

This solution does not correspond with the current method realised in DAMOS (reference occurs inversely with an allocation list in the 'Function Record'.

5.5 Measurement channel

For each measurement (e.g. AD value, CAN signal, source data, RAM cell) a description is created with the keyword MEASUREMENT (page 145). The description of the interface-specific data must be supplied by the supplier in A2ML.

As for the adjustable objects the description of the measurement object contains a reference to common conversion methods and function descriptions that can be referenced from various measurement objects.

Mandatory parameters:

- ? name of the measurement channel
- ? comments, function description
- ? word length, bit mask for individual bit sizes

5.5.1 Deposit structure (measurement channel)

5.5.1.1 Description of the interface module deposit structure

Here the following can be described (see Part C):

? addresses, address location, address length (e.g. for entry in the display table)

5.5.1.2 Description of the CAN deposit structure

Here the following can be described (see Part C):

- ? Name of the CAN message
- ? CAN identifier
- ? Message length
- ? Sender
- ? Signal type (mode signal, mode dependent signal, standard signal)
- ? Reference to a mode signal (optional: if signal type = = mode dependent signal)
- ? start bit, signal length

5.5.1.3 Description of the ABUS deposit structure

Here the following can be described (see Part C):

- ? Name of the ABUS telegram
- ? ABUS identifier
- ? Repetition rate of the sender
- ? Faulty reactions and receiver timeouts

5.5.1.4 Description of the series protocol deposit structure (ISO)

Here the following can be described (see Part C):

- ? Send telegram (containing full telegram with dummy for address/length)
 - ? Command byte
 - ? Command data (detailing the components of 2.3.4)
 - ? address
 - ? number of bytes
- ? Result data
 - ? position in answer telegram
 - ? deposit type (byte order, signed-unsigned information)
- ? Display tables
 - ? address, address location, address length
 - ? deposit type (byte order, signed-unsigned information)

5.5.1.5 Analog interface deposit structure

Here the following an be described (see Part C):

- ? Analog input (No. 1-8)
- ? Resolution in bits
- ? Gain, prescaler

5.5.2 Bit pattern conversion

- ? Reference to conversion method list
- ? byte order [BYTE_ORDER, page 59], signed-unsigned information

Physical representation: see conversion methods

5.5.3 Function orientation (reference)

Under the keyword FUNCTION_LIST (page 118) a list of the functions allocated to this object is given. Referencing occurs via names (see comment in chapter 6.3.66 page 118).

5.6 Conversion method

The keyword COMPU_METHOD (repeatedly possible, see page 71) creates a list of the conversion methods used during the data adjustment and the collection of measurement data (conversion from the internal format in the emulation memory to the 'physical' representation of a quantity).

Parameters for the conversion method:

- ? Name of the conversion method
- ? Comment, function description
- ? Conversion method type (table with/without interpolation, polynome, verbal conversion table)
- ? Reference to conversion table [COMPU_TAB_REF, page 77]
- ? Physical representation (significant positions, decimal places, physical unit)
- ? Coefficients for fractional rational function [COEFFS, page 69]

Remark:

The 'physical representation' and 'plausibilities' parameters are allocated to the conversion method, as this significantly benefits the size of the description file (empirically there are fewer conversion methods than adjustable objects or measurement objects).

5.7 Conversion tables

Under the keyword COMPU_TAB (page 76) a list is given of the conversion tables used during the data adjustment and the measurement data collection (physical conversion and verbal conversion). It contains the mandatory parameters:

- ? Name of the conversion table
- ? Conversion table type (table without/with linear interpolation)
- ? number of value pairs
- ? value pairs

For the visualisation of the bit patterns verbal conversion tables (COMPU_VTAB, page 78) can be used (allocation table: bit pattern <--> string)).

5.8 Function description

All functions referenced under CHARACTERISTIC and MEASUREMENT can be described as follows:

- ? Name of the function
- ? Comment, description of the function

5.9 Record layout

Description of the various record layouts of the adjustable objects (see also Appendix B).

Page 22 of 277 Version 1.51 Release 2002-02-05

PART B: FORMAT OF THE DESCRIPTION FILE

6 Format of the description file

6.1 Hierarchic division of the keywords

Keyword	(*)=multiple	Meaning	
ASAP2_VERSION		ASAP2 version identification	
A2ML_VERSION		Version number of ASAP2 Meta Language	
PROJECT		Project description	
HEADER		Project header description	
PROJECT_NO		Project number	
VERSION		Project version number	
MODULE	(*)	Description of the ASAP devices	
A2ML		ASAP2-Meta-Language (interface-specific descripition data)	
	(*)		
AXIS_PTS	(*)	Axis points distribution	
ANNOTATION	(*)	Set of notes	
ANNOTATION_LABE		Title of annotation	
ANNOTATION_ORIGI	N	Creator of annotation	
ANNOTATION_TEXT		Text of annotation	
BYTE_ORDER		Byte order of axis points	
CALIBRATION_ACCESS		Access for calibration	
DEPOSIT		Absolute or difference axis points	
ABSOLUTE			
DIFFERENCE			
DISPLAY_IDENTIFIER		Optional display name	
EXTENDED_LIMITS		extended range of values	
ECU_ADDRESS_EXTENS	SION	Address extension of the ECU address	
FORMAT		Display format of axis points	1
FUNCTION_LIST		Function orientation	
GUARD_RAILS		Indicates the use of guardrails	
IF_DATA	(*)	Interface-specific description data	
_	(·)		
READ_ONLY	TT	'Read Only' attribut	
REF_MEMORY_SEGMEN		reference to memory segment	
CHARACTERISTIC	(*)	Adjustable objects	
VALUE			
CURVE			
MAP			
CUBOID			
VAL_BLK			
ASCII			
ANNOTATION	(*)	Description	
ANNOTATION_LABE	L	Title of annotation	
ANNOTATION_ORIGI	N	Creator of annotation	
ANNOTATION_TEXT		Text of annotation	
AXIS_DESCR	(*)	Axis description	
STD_AXIS	. ,	•	
FIX_AXIS			
COM_AXIS			
RES_AXIS			
CURVE_AXIS			1
ANNOTATION	(*)	Set of notes	I
ANNOTATION_LA	. ,	Title of annotation	
		Creator of annotation	
ANNOTATION_OR		Text of annotation	
ANNOTATION_TEX	Λ1		
AXIS_PTS_REF		Reference to axis point distribution	ı
CURVE_AXIS_REF		Used to normalize or scale an axis	
BIT_MASK		Bit mask to decode single-bit values	
BYTE_ORDER		Byte order of axis points	
DEPOSIT		Absolute or difference axis points	
FIX_AXIS_PAR		Fixed axis parameters	
FIX_AXIS_PAR_DIST		Fixed axis parameters (variant)	

Keyword (*)=multi	ple	Meaning
FIX_AXIS_PAR_LIST		Fixed axis values
FORMAT		Display format of axis points
MAX_GRAD		Maximum gradient with respect to this axis
MONOTONY		Monotony with respect to this axis
MON_INCREASE		
MON_DECREASE		
STRICT_INCREASE		
STRICT_DECREASE		
READ_ONLY		'Read Only' attribut
BYTE_ORDER		Byte order
BIT MASK		Bit mask
CALIBRATION_ACCESS		Access for calibration
COMPARISON_QUANTITY		Comparison quantity
DEPENDENT_CHARACTERISTIC		References to characteristics
DISPLAY_IDENTIFIER		Optional display name
ECU_ADDRESS_EXTENSION		Address extension of the ECU address
EXTENDED_LIMITS		Extended limits, e.g. hard limits
FORMAT		Display format of values
FUNCTION_LIST		Function orientation
GUARD_RAILS		Indicates the use of guardrails
IF_DATA	(*)	Interface-specific description data
MAP_LIST		For cuboids: compricing maps
MATRIX_DIM		Dimensions of multidimensioned arrays
MAX_REFRESH		Maximum refresh rate
NUMBER		Number of ASCII characters or fixed values
READ_ONLY		'Read Only' attribut
REF_MEMORY_SEGMENT		reference to memory segment
VIRTUAL_CHARACTERISTIC		mark for being virtual
COMPU_METHOD	(*)	Conversion method
TAB_INTP		
TAB_NOINTP		
TAB_VERB		
RAT_FUNC		
FORM		
COEFFS		Coefficients for fractional rational function
COMPU_TAB_REF		Reference to conversion table
FORMULA		Conversion formula
FORMULA_INV		Invers conversion formula
REF_UNIT		Reference to a measurement unit
COMPU_TAB	(*)	Conversion table
TAB_INTP		
TAB_NOINTP		
DEFAULT_VALUE		default output string
COMPU_VTAB	(*)	Verbal conversion table
TAB_VERB		
DEFAULT_VALUE		Default output string
COMPU_VTAB_RANGE	(*)	Description of range based verbal conversion tables
DEFAULT_VALUE		Default output string
FRAME		Frame
FRAME_MEASUREMENT		Frame measurement objects
IF_DATA	(*)	Interface-specific description data
FUNCTION	(*)	Function description
ANNOTATION	(*)	Set of notes
ANNOTATION_LABEL		Title of annotation
ANNOTATION_ORIGIN		Creator of annotation
ANNOTATION_TEXT		Text of annotation
DEF_CHARACTERISTIC		Defined adjustable objects

	(*)=multiple	Meaning	
FUNCTION_VERSION		Version of the function	
IN_MEASUREMENT		Input quantity	
LOC_MEASUREMENT		Local quantity	
OUT_MEASUREMENT		Output quantity	
REF_CHARACTERISTIC		Referencedd adjustable objects	
SUB_FUNCTION		Subfunction of respectiv function	
GROUP	(*)	Declaration of groups	
ANNOTATION	(*)	Set of notes	
ANNOTATION_LABEL	()	Title of annotation	
ANNOTATION_ORIGIN		Creator of annotation	
ANNOTATION_ORIGIN ANNOTATION_TEXT		Text of annotation	
-			
ROOT		Flag for root node	
REF_CHARACTERISTIC		Reference to characteristic objects	
REF_MEASUREMENT		Reference to measurement objects	
FUNCTION_LIST		Function list	
SUB_GROUP		Sub group	
IF_DATA	(*)	Interface-specific description data	
MEASUREMENT	(*)	Measurement object	
ANNOTATION	(*)	Set of notes	
ANNOTATION_LABEL		Title of annotation	
ANNOTATION_ORIGIN		Creator of annotation	
ANNOTATION_TEXT		Text of annotation	
ARRAY_SIZE		Array size of measurement objects	
BIT_MASK		Bit mask to decode single-bit values	
BIT_OPERATION		Bit operation	
LEFT_SHIFT		Number of bit positions to shift left	
RIGHT_SHIFT		Number of bit positions to shift right	
SIGN_EXTEND		sign extension for measurement data	
BYTE_ORDER		Byte order of measurement object	
DISPLAY_IDENTIFIER		Optional display name	
ECU_ADDRESS	ON	Address	
ECU_ADDRESS_EXTENSI	ON	Address extension of the ECU address	
ERROR_MASK		Mask error bits	
FORMAT		Display format of measurement object	
FUNCTION_LIST		Function orientation	
IF_DATA	(*)	Interface-specific description data	
MATRIX_DIM		Dimensions of multidimensioned arrays	
MAX_REFRESH		Refresh rate in the control unit	
READ_WRITE		'Writeable'	
REF_MEMORY_SEGMENT		reference to memory segment	
VIRTUAL		Virtual measurement	
MOD COMMON		Module-wide (ECU specific) valid definitions	
ALIGNMENT_BYTE		Alignment border for byte values	
ALIGNMENT_FLOAT32_IE	EEE	Alignment border for float32 values	
ALIGNMENT_FLOAT64_IE		Alignment border for float64 values	
ALIGNMENT_LONG		Alignment border for long values	
ALIGNMENT_WORD		Alignment border for word values	
BYTE_ORDER		Byte order	
DATA_SIZE		Data size in bits	
DEPOSIT		Standard deposit mode for axis	
S_REC_LAYOUT		Reference to the standard record layout	
		Control unit management data	
MOD_PAR			
ADDR_EPK		Address of EPROM identifier	
CPU_TYPE		CPU	
CUSTOMER		Firm or customer	
CUSTOMER_NO		Customer number	
CALIBRATION_METHOD	(*)	Access method	
CALIBRATION_HANDL	Æ	Handle for calibration method	
ECU		Control unit	
LCU			

Keyword	(*)=multiple	Meaning
EPK		EPROM identifier
MEMORY_LAYOUT	(*)	Memory layout
PRG_CODE		
PRG_DATA		
PRG_RESERVED IF_DATA	(*)	Interfece anguific description data
MEMORY_SEGMENT	(*)	Interface-specific description data Memory segment
CODE	()	Memory segment
DATA		
OFFLINE_DATA		
VARIABLES		
SERAM		
RESERVED		
CALIBRATION_VARIA	ABLES	
EXCLUDE_FROM_FLA	ASH	
RAM		
EEPROM		
EPROM		
ROM REGISTER		
FLASH		
INTERN		
EXTERN		
IF_DATA	(*)	Interface-specific description data
NO_OF_INTERFACES		Number of interfaces
PHONE_NO		Phone number of application engineer responsible
SUPPLIER		Manufacturer or supplier
SYSTEM_CONSTANT	(*)	System-defined constants
USER		User
VERSION	(*)	Module-specific version identifier
RECORD_LAYOUT ALIGNMENT_BYTE	(*)	Description of the record layout Alignment border for byte values
ALIGNMENT_FLOAT32_I	FFF	Alignment border for float32 values
ALIGNMENT_FLOAT64_I		Alignment border for float64 values
ALIGNMENT_LONG		Alignment border for long values
ALIGNMENT_WORD		Alignment border for word values
AXIS_PTS_X		X axis points
AXIS_PTS_Y		Y axis points
AXIS_PTS_Z		Z axis points
AXIS_RESCALE_X		rescaling X axis points
AXIS_RESCALE_Y		rescaling Y axis points
AXIS_RESCALE_Z		rescaling Z axis points X axis: parameter 'distance' for fixed characteristics
DIST_OP_X DIST_OP_Y		Y axis: parameter 'distance' for fixed characteristics
DIST_OP_Z		Z axis: parameter 'distance' for fixed characteristics
FIX_NO_AXIS_PTS_X		Fixed number of X axis points
FIX_NO_AXIS_PTS_Y		Fixed number of Y axis points
FIX_NO_AXIS_PTS_Z		Fixed number of Z axis points
FNC_VALUES		Table values
IDENTIFICATION		Identification
NO_RESCALE_X		number of rescale pairs for X axis
NO _RESCALE_Y		number of rescale pairs for Y axis
NO _RESCALE_Z		number of rescale pairs for Z axis
NO_AXIS_PTS_X		Number of X axis points
NO_AXIS_PTS_Y NO_AXIS_PTS_Z		Number of Y axis points Number of Z axis points
OFFSET_X		X axis: parameter 'offset' for fixed characteristics
OFFSET_Y		Y axis: parameter 'offset' for fixed characteristics
OFFSET_Z		Z axis: parameter 'offset' for fixed characteristics
·· <u>-</u>		1

Keyword	(*)=multiple	Meaning
RESERVED	(*)	Parameter is skipped (not interpreted)
RIP_ADDR_W		Table value: Address 'result of interpolation'
RIP_ADDR_X		X axis: Address 'result of interpolation'
RIP_ADDR_Y		Y axis: Address 'result of interpolation'
RIP_ADDR_Z		Z axis: Address 'result of interpolation'
SHIFT_OP_X		X axis: parameter 'shift' for fixed characteristics
SHIFT_OP_Y		Y axis: parameter 'shift' for fixed characteristics
SHIFT_OP_Z		Z axis: parameter 'shift' for fixed characteristics
SRC_ADDR_X		X axis: Address of input quantity
SRC_ADDR_Y		Y axis: Address of input quantity
SRC_ADDR_Z		Z axis: Address of input quantity
UNIT	(*)	Measurement unit
EXTENDED_SI		
DERIVED		
REF_UNIT		Reference to another unit
SI_EXPONENTS		Exponents of base dimensions
UNIT_CONVERSION		Specifies relationship between two units
USER_RIGHTS	(*)	Groups with constitute access rights
REF_GROUP	(*)	List of referenced groups
READ_ONLY		Read only
VARIANT_CODING		Variant coding
VAR_CHARACTERISTIC	(*)	Definition of variant coded adjustable objects
VAR_ADDRESS		Adjustable objects address list (start address of variants)
VAR_CRITERION	(*)	Definition of variant criterion
VAR_MEASUREMEN	Γ	Measurement object which indicates criterion value
VAR_SELECTION_CH		3
VAR_FORBIDDEN_COM	В	Forbidden combinations of different variants
VAR_NAMING		Naming of variant coded adjustable objects
NUMERIC		
VAR_SEPARATOR		Separator of ajustable objects names

6.2 Predefined data types

ident

typedef char [MAX_IDENT + 1] ident;

String with MAX_IDENT (at present = 255) alphanumerical characters including points and brackets, interpreted as hierarchical concatenation of partial strings seperated by points. Every partial string may not exceed MAX_PARTIAL_IDENT (at present = 32) characters, including the length of an optional array index (numeric or as a symbolic string) in brackets at the end of the partial string. One string without a point in between is also possible, in this case MAX_IDENT = MAX_PARTIAL_IDENT. The number of partial strings within ident is not limited. The character chain must correspond with the identifier laws defined in programming language C. Identifiers can represent instances of array elements or instances of elements of complex C types or nested combinations of these. An instance of the element of a struct type would be represented by the concatenation of the instance name, a point and the element name. An instance of an array element would be represented by an instance name followed by a pair of brackets which contain either a numeric value or a symbolic string which is defined as an enumerator of an ENUM definition of the C program. Identifiers are random names which may contain characters A through Z, a through z, underscore (_), numerals 0 through 9, points ('.') and brackets ('[',']'). However, the following limitations apply: the first character must be a letter or an underscore, brackets must occur in pairs at the end of a partial string and must contain a number or an alphabetic string (description of the index of an array element).

Note:

Identifiers consisting of partial identifiers seperated by points (concatenation of instance name and element name) may be presented by the MCD system in a hierarchical manner (show instance name first, then allow access to an element of the instance). This allows existing MCD systems to restrict the display length of the identifier to MAX_PARTIAL_IDENT.

Note:

Identifiers generally must not match to the following defined ASAP2 keywords. The ASAP2 keywords are completely listed in Appendix G.

Note:

A lower case "x" and a upper case "X" can be used as unique identifiers. In other words, variables are case sensitive so that x and X are different identifiers.

string

typedef char [MAX_STRING + 1] string:

ANSI C compliant 'C type' string with maximum MAX_STRING (at present = 255) characters. Begin and end of the string are indicated by a double inverted comma. Only the following sequence of escape characters is allowed: "\r\n", which describes a carriage return. MCD systems may ignore the carriage return sequence and/or apply wrapping or scrolling of strings when displayed. If the string contains one or more double inverted commas, a backslash (escape char. indicator) concatenated with a double inverted comma must be inserted (example: "hello \"world\" how are you?"). Alternatively, two double inverted commas can be inserted in this case (example: "hello ""world" how are you?") for compatibility with ASAP2 V1.2 and prior.

float 8-byte floating point number (IEEE format)

Note:

The character for a decimal point is fixed as a dot ".". A comma "," is not allowed for use as a decimal point.

int 2-byte signed integer

Note:

The notation of hexadecimal values is fixed, e.g. 0xE0, 0xFF, etc.

long 4-byte signed long

datatype typedef enum datatype UBYTE, SBYTE, UWORD, SWORD,

> ULONG, SLONG, FLOAT32 IEEE, FLOAT64 IEEE

> Enumeration for description of the basic data types in the ECU program (format

of FLOAT32_IEEE: see Appendix B: IEEE-Floating-Point-Format).

datasize typedef enum datasize {BYTE, WORD, LONG}

Enumeration for description of the word lengths in the ECU program

Enumeration for description of the addressing of table values or axis point valaddrtype

ues:

PBYTE: The relevant memory location has a 1 byte pointer to this table

value or axis point value.

PWORD: The relevant memory location has a 2 byte pointer to this table

value or axis point value.

PLONG: The relevant memory location has a 4 byte pointer to this table

value or axis point value.

DIRECT: The relevant memory location has the first table value or axis

point value, all others follow with incrementing address.

byteorder typedef enum byteorder { LITTLE_ENDIAN, BIG_ENDIAN,

MSB_LAST, MSB_FIRST}

Enumeration for description of the byte order in the control unit program.

Note: Use of LITTLE_ENDIAN and BIG_ENDIAN defined with keyword BYTE_ORDER leads to mistakes because it is in contradiction to general use of terms "little endian" and "big endian". The keywords LITTLE_ENDIAN and

BIG_ENDIAN should no longer be used, they should be replaced by

MSB_LAST and MSB_FIRST which are equivalent (definition of MSB_LAST

and MSB_FIRST: see keyword BYTE_ORDER).

indexorder Enumeration for description of the axis point sequence in the memory.

> INDEX_INCR: Increasing index with increasing address INDEX_DECR: decreasing index with increasing address

6.3 Alphabetical list of keywords

Some individual elements of the database are delimited by '/begin' and '/end' keywords, similarly to the opening '{' and closing '}' brackets in 'C'. The delimiters are applied to those elements that contain an optional part, to prevent ambiguous expressions. The delimiters following defined with the ASAP2 keywords are mendatory, i.e. the delimiters have to be used if defined and mustn't be used if not defined.

To reduce the size of description files the short delimiters '{' and '}' can be used:

```
<keyword> { <description_body> }
```

instead of:

```
/begin <keyword> <description_body> /end <keyword>
```

The short delimiters should preferably be used. The delimiters should not be mixed, i.e. don't use short delimiters and '/begin' or '/end' respectively in the same ASAP2 description file.

<u>Note</u>: Since version 1.31 the usage of `{` and `}` is no more recomended. None of the currently existing systems uses brackets, so the useage of brackets will probably cause problems.

6.3.1 A2ML

Prototype:

/begin A2ML /end A2ML **FormatSpecification**

Parameters:

FormatSpecification

A2ML code for description of interface specific description

data.

Description:

This keyword identifies the format description of the interface specific description data

Example:

See page 237: file SUPP1_IF.AML and file SUPP2_IF.AML

6.3.2 A2ML_VERSION

Prototype:

A2ML_VERSION Version Upgrade

Parameters:

int VersionNo: Version number of AML part int UpgradNo: Upgrade number of AML part

Description:

The keyword A2ML_VERSION is new in ASAP2 version 1.31. The reason for this keyword is, to declare what kind of BLOBs should be generated from the A2ML parts. Since ASAP2 version 1.31 we have a specification for the storage layout of the BLOBs. The keyword is optional. When the keyword is omitted, or the version number is below 1.31 then the ASAP2 parser may produce the old BLOB format. When the A2ML version number is 1.31, then the new format must be generated.

The A2ML version can be expressed by two numerals:

- VersionNo
- UpgradNo

where 'VersionNo' represents the main version number and 'UpgradNo' the upgrade number (fractional part of version number). The upgrade number will be incremented if additional functionality is added to ASAP2 Meta Language standard which has no effect on existing applications (compatible modifications). The version number will be incremented in case if incompatible modifications.

Example:

A2ML_VERSION 1 31 /* Version 1.31 */

6.3.3 ADDR_EPK

Prototype:

ADDR_EPK Address

Parameters:

long Address: Address of the EPROM identifier

Description:

Address of the EPROM identifier

Example:

ADDR_EPK 0x145678

Page 32 of 277 Version 1.51 Release 2002-02-05

6.3.4 ADDRESS_MAPPING

Prototype:

ADDRESS_MAPPING Orig_Address Mapping_Address Length

Parameters:

long Orig_Address: Base address of the memory segment to be mapped. long Mapping_Address: Address to which the base address is to be mapped

long Length Length of the segment to be mapped

Description:

Remapping of the address space of the ECU to an access address. This is needed for special application methods (for example, special address calculation is needed in KWP2000, where only 24 bit addresses are available.) The address mapping may only be used inside an IF_DATA section of a MEMORY_SEGMENT.

Example:

ADDRESS_MAPPING 0x4000 0x6000 0x0200

/end IF_DATA

6.3.5 ALIGNMENT_BYTE

Prototype:

ALIGNMENT_BYTE AlignmentBorder

Parameters:

int AlignmentBorder: describes the border at which the value is aligned to, i.e. its

memory address must be dividable by the value Alignment-

Border.

Description:

In complex objects (maps and axis) the alignment of a value may not coincide with the bitwidth of a value. This keyword is used to define the alignment in the case of bytes. Used in MOD_COMMON and RECORD_LAYOUT.

Example:

ALIGNMENT_BYTE 4 /* bytes have a 4-byte alignment */

6.3.6 ALIGNMENT_FLOAT32_IEEE

Prototype:

ALIGNMENT_FLOAT32_IEEE AlignmentBorder

Parameters:

int AlignmentBorder: describes the border at which the value is aligned to, i.e. its

memory address must be dividable by the value Alignment-

Border.

Description:

In complex objects (maps and axis) the alignment of a value may not coincide with the bitwidth of a value. This keyword is used to define the alignment in the case of 32bit floats.

Used in MOD_COMMON and RECORD_LAYOUT.

Example:

ALIGNMENT_ FLOAT32_IEEE 4 /* 32bit floats have a 4-byte alignment */

6.3.7 ALIGNMENT_FLOAT64_IEEE

Prototype:

ALIGNMENT_FLOAT64_IEEE AlignmentBorder

Parameters:

int AlignmentBorder: describes the border at which the value is aligned to, i.e. its

memory address must be dividable by the value Alignment-

Border.

Description:

In complex objects (maps and axis) the alignment of a value may not coincide with the bitwidth of a value. This keyword is used to define the alignment in the case of 64bit floats.

Used in MOD_COMMON and RECORD_LAYOUT.

Example:

ALIGNMENT_FLOAT64_IEEE 4 /* 64bit floats have a 4-byte alignment */

6.3.8 ALIGNMENT_LONG

Prototype:

ALIGNMENT_LONG AlignmentBorder

Parameters:

int AlignmentBorder: describes the border at which the value is aligned to, i.e. its

memory address must be dividable by the value Alignment-

Border.

Description:

In complex objects (maps and axis) the alignment of a value may not coincide with the bitwidth of a value. This keyword is used to define the alignment in the case of longs.

Used in MOD_COMMON and RECORD_LAYOUT.

Example:

ALIGNMENT_LONG 8 /* longs have a 8-byte alignment */

6.3.9 ALIGNMENT_WORD

Prototype:

ALIGNMENT_WORD AlignmentBorder

Parameters:

int AlignmentBorder: describes the border at which the value is aligned to, i.e. its

memory address must be dividable by the value Alignment-

Border.

Description:

In complex objects (maps and axis) the alignment of a value may not coincide with the bitwidth of a value. This keyword is used to define the alignment in the case of words. The alignment is 2 if the parameter is missing.

Used in MOD_COMMON and RECORD_LAYOUT.

Example:

ALIGNMENT_WORD 4 /* words have a 4-byte alignment */

6.3.10 ANNOTATION

Prototype:

/begin ANNOTATION

[-> ANNOTATION_LABEL]
[-> ANNOTATION_ORIGIN]
[-> ANNOTATION_TEXT]

/end ANNOTATION

Parameters:

none

Optional Parameters:

-> ANNOTATION_LABEL: label or title of the annotation creator or creating system of the

annotation

-> ANNOTATION_TEXT: text of the annotation, voluminous

description text

Description:

One ANNOTATION may represent a voluminous description. Its purpose is to be e.g. an application note which explains the function of an identifer for the calibration engineer.

Note: An ANNOTATION may occur several times within a definition (due to compatibility with MSR/MEDOC SW-DTD, the future ASAP2 V2.0).

Example:

```
/begin CHARACTERISTIC annotation.example1
```

...

/begin ANNOTATION

ANNOTATION_LABEL "Luftsprungabhängigkeit"

ANNOTATION_ORIGIN "Graf Zeppelin"

/begin ANNOTATION TEXT

"Die luftklasseabhängigen Zeitkonstanten t_hinz\r\n"

"& t_kunz können mit Hilfe von Luftsprüngen ermittelt werden.\r\n"

"Die Taupunktendezeiten in großen Flughöhen sind stark "

"schwankend."

/end ANNOTATION_TEXT

/end ANNOTATION

/begin ANNOTATION

ANNOTATION_LABEL "Taupunktendezeiten"

/begin ANNOTATION_TEXT

"Flughöhe Taupunktendezeit\r\n"

" 13000ft 20 sec\r\n"
" 25000ft 40 sec\r\n"
" 35000ft 12 sec"
/end ANNOTATION_TEXT
/end ANNOTATION

....

/end CHARACTERISTIC

6.3.11 ANNOTATION_LABEL

Prototype:

ANNOTATION_LABEL label

Parameters:

string label label or title of the annotation

Description:

Assign a title to an annotation. Useful as a definition can contain more than one annotation. Recommendation: The ANNOTATION_LABEL shall describe the usecase of the ANNOTATION, e.g. "Calibration Note".

Example:

ANNOTATION_LABEL "Calibration Note"

6.3.12 ANNOTATION_ORIGIN

Prototype:

ANNOTATION_ORIGIN origin

Parameters:

string origin creator or creating system of the annotation

Description:

To identify who or which system has created an annotation.

Example:

ANNOTATION_ORIGIN "from the calibration planning department"

Page 42 of 277 Version 1.51 Release 2002-02-05

6.3.13 ANNOTATION_TEXT

Prototype:

```
/begin ANNOTATION_TEXT {annotation_text}*
/end ANNOTATION_TEXT
```

Parameters:

string annotation_text

Description:

One ANNOTATION_TEXT may represent a multi-line ASCII description text (voluminous description). Its purpose is to be an application note which explains the function of an identifer for the calibration engineer.

Example:

```
/begin CHARACTERISTIC annotation.example2 ...

/begin ANNOTATION

ANNOTATION_LABEL "Calibration Note"

/begin ANNOTATION_TEXT

"Blariblara plumpaquatsch. Oder sonst ein beliebiger "

"Text.\r\n"

"Lediglich, wenn ein Doppelhochkomma "

"auftritt, muß man das als \" oder "" markieren."

/end ANNOTATION_TEXT

/end ANNOTATION

....

/end CHARACTERISTIC
```

6.3.14 ARRAY_SIZE

Prototype:

ARRAY_SIZE Number

Parameters:

int Number: Number of measurement values included in respective

measurement object (maximum value of 'Number': 32767).

Description:

This keyword marks a measurement object as an array of <Number> measurement values.

Note: The use of this keyword should be replaced by MATRIX_DIM.

Example:

/begin MEASUREMENT	N "Engine speed" UWORD R_SPEED_3 2 2.5 120.0	/* name */ /* long identifier */ /* datatype */ /* conversion */ /* resolution */ /* accuracy */ /* lower limit */
	8400.0	/* upper limit */
ARRAY_SIZE	8	/* array of 8 values */
BIT_MASK	0x0FFF	
BYTE_ORDER	MSB_FIRST	
/begin FUNCTION_LIST	ID_ADJUSTM	FL_ADJUSTM
/end FUNCTION_LIST		
/begin IF_DATA	ISO SND 0x10 0	0x00 0x05 0x08 RCV 4 long
/end IF_DATA		_
/end MEASUREMENT		

Page 44 of 277 Version 1.51 Release 2002-02-05

6.3.15 ASAP2_VERSION

Prototype:

ASAP2_VERSION Version Upgrad

Parameters:

int VersionNo: Version number of ASAP2 standard int UpgradNo: Upgrade number of ASAP2 standard

Description:

The ASAP2 version can be expressed by two numerals:

- VersionNo
- UpgradNo

where 'VersionNo' represents the main version number and 'UpgradNo' the upgrade number (fractional part of version number). The upgrade number will be incremented if additional functionality is implemented to ASAP2 standard which has no effect on existing applications (compatible modifications). The version number will be incremented in case if incompatible modifications.

Example:

ASAP2_VERSION 1 31 /* Version 1.31 */

6.3.16 AXIS_DESCR

Prototype:

/begin AXIS_DESCR Attribute InputQuantity Conversion MaxAxisPoints

LowerLimit UpperLimit [-> READ_ONLY]

[-> FORMAT]

{-> ANNOTATION} *
[-> AXIS_PTS_REF]
[-> MAX_GRAD]
[-> MONOTONY]

[-> BYTE_ORDER]

[-> EXTENDED_LIMITS]

[-> FIX_AXIS_PAR]

[-> FIX_AXIS_PAR_DIST] [->FIX_AXIS_PAR_LIST]

[-> DEPOSIT]

[-> CURVE_AXIS_REF]

/end AXIS DESCR

Parameters:

enum Attribute: Description of the axis points:

STD_AXIS: Standard axis

FIX_AXIS: This is a curve or a map with virtual axis

points that are not deposited at EPROM. The axis points can be calculated from parameters defined with keywords FIX_AXIS_PAR, FIX_AXIS_PAR_DIST and FIX AXIS PAR LIST. The axis points

can't be modified.

COM_AXIS: Group axis points or description of the axis

points for SIEMENS deposit. For this variant of the axis points the axis point values are separated from the table values of the curve or map in the emulation memory and must be described by a special AXIS_PTS data record. The reference to this record occurs with the keyword 'AXIS_PTS_REF'.

RES_AXIS: Rescale axis. For this variant of the axis

points the axis point values are separated from the table values of the curve or map in the emulation memory and must be described by a special AXIS_PTS data record. The reference to this record occurs with the

keyword 'AXIS_PTS_REF'.

CURVE_AXIS:Curve axis. This axis type uses a separate CURVE CHARACTERISTIC to rescale the

axis. The referenced CURVE is used to lookup an axis index, and the index value is used by the controller to determine the operating point in the CURVE or MAP. See Appendix C for more details.

ident InputQuantity: Reference to the data record for description of the input

quantity (see MEASUREMENT). If there is no input quantity assigned, parameter 'InputQuantity' should be set to "NO_INPUT_QUANTITY" (application systems must be

capable to treat this case).

ident Conversion: Reference to the relevant record of the description of the

conversion method (see COMPU_METHOD). If there is no conversion method, as in the case of CURVE_AXIS, the parameter 'Conversion' should be set to "NO_COMPU_METHOD" (application systems must be

able to handle this case).

int MaxAxisPoints: Maximum number of axis points

Note: The application system can change the dimensions of a characteristic (increase or decrease the number of axis points). The number of axis points may not be increased at random as the address range reserved for each characteristic in the ECU program by the application system cannot be

changed.

float LowerLimit: Plausible range of axis point values, lower limit float UpperLimit: Plausible range of axis point values, upper limit

Note: The limit values are to be interpreted as physical val-

ues and not internal values.

Optional parameters:

-> READ_ONLY: This keyword can be used to indicate that the axis points of

adjustable object cannot be changed (but can be read only). *Note*: This optional keyword used at CHARACTERISTIC

record indicates the adjustable object to be read only at all

(table values and axis points).

-> FORMAT: With deviation from the display format specified with key-

word COMPU_TAB referenced by parameter <Conversion> a special display format can be specified to be used to dis-

play the axis points.

-> AXIS_PTS_REF: Reference to the AXIS_PTS record for description of the

axis points distribution.

-> MAX_GRAD: This keyword can be used to specify a maximum permissi-

ble gradient for the adjustable object with respect to this axis

 $(MaxGrad = max (abs((W_{i,k}-W_{i-1,k})/(X_i-X_{i-1})))).$

-> MONOTONY: This keyword can be used to specify a monotonous behav-

iour for the adjustable object with respect to this axis.

Where the standard value does not apply this parameter can -> BYTE ORDER:

be used to specify the byte order (Intel format, Motorola

format) of the axis point value.

For curves or maps, the axis points distribution is not stored -> FIX AXIS PAR:

> in memory but it is computed on the basis of the offset (initial value) and a difference. For the record layouts used today, these parameters must be included in the description The specification with keyword file. occurs

'FIX_AXIS_PAR'.

-> FIX_AXIS_PAR_DIST: Similar to FIX_AXIS_PAR but with a different computing method.

-> FIX_AXIS_PAR_LIST: The original values of the axis are directly contained in

the file. The assigned COMPU METHOD is applied to achieve the actual display values from the values with this

keyword.

-> DEPOSIT: The axis points of a characteristic can be deposited in two

different ways:

The individual axis point values are deposited as absolute values.

b) The individual axis point are stored as differences. Each axis point value is determined from the adjacent axis point (predecessor).

Where the standard value does not appply this parameter can be used to specify the axis point deposit.

Set of notes (represented as multi-line ASCII description -> ANNOTATION:

> texts) which are related. Can serve e.g. as application note. When a COM_AXIS is referenced it is sufficient to place the ANNOTATION with its AXIS_PTS in order to avoid

redundant information.

-> EXTENDED LIMITS: This keyword can be used to specify an extended range of

values. In the application system, for example, when leaving the standard range of values (lower limit...upper limit) a warning could be generated (extended limits enabled only

for "power user").

-> CURVE_AXIS_REF: When the axis type is CURVE_AXIS, this keyword must be

used to specify the CURVE CHARACTERISTIC that is

used to normalize or scale this axis.

Description:

Axis description within an adjustable object

Note:

For the BOSCH group characteristics and for the SIEMENS standard curves or maps, the mandatory parameters 'input quantity', 'conversion', 'max axis points', 'lower limit', and 'upper limit' can be specified with the keyword AXIS_DESCR as well as with the keyword AXIS_PTS. This redundancy has been introduced to simplify the process-

ing program. For these redundant parameters the processing programs should include a consistency check.

With the 'input quantity' parameter reference is made to a measurement object (MEASUREMENT, Page 145). The MEASUREMENT keyword also specifies the 'conversion', 'lower limit' and 'upper limit' parameters.

These parameters are <u>not</u> always identical to the parameters specified under AXIS_DESCR, as for the relevant measurement object either another conversion method (e.g. other solution) or other plausibility limits can apply than for the axis points of the relevant characteristic.

<u>Note</u>: The keywords FIX_AXIS_PAR, FIX_AXIS_PAR_DIST, DEPOSIT and FIX_AXIS_PAR_LIST are mutually exclusive, i.e. please use at most one of these keywords at the same AXIS_DESCR record.

Example:

/begin AXIS_DESCR	STD_AXIS	/* Standard axis points */
	N	/* Reference to input quantity */
	CONV_N	/* Conversion */
	14	/* Max.number of axis points*/
	0.0 5800.0	/* Upper limit, lower limit*/
MAX_GRAD	20.0	/* Axis: maximum gradient*/
/end AXIS_DESCR		_

6.3.17 AXIS PTS

Prototype:

/begin AXIS_PTS Name LongIdentifier Address InputQuantity Deposit Max-

Diff Conversion MaxAxisPoints LowerLimit UpperLimit

[-> DISPLAY_IDENTIFIER]

[-> READ_ONLY]
[-> FORMAT]
[-> DEPOSIT]
[-> BYTE_ORDER]
[-> FUNCTION_LIST]

[-> REF_MEMORY_SEGMENT]

[-> GUARD_RAILS]
[-> EXTENDED_LIMITS]
{-> ANNOTATION} *
{-> IF_DATA } *

[-> CALIBRATION_ACCESS]
[-> ECU_ADDRESS_EXTENSION]

/end AXIS PTS

Parameters:

identName: unique identifier in the ECU program

Note:

The name of the axis points object has to be unique within all measurement objects and adjustable objects of the ASAP2 MODULE, i.e. there must not be another AXIS_PTS, CHARACTERISTIC or MEASUREMENT object with the the same identifier in the MODULE.

string LongIdentifier: comment, description

long Address: address of the adjustable object in the emulation memory

ident InputQuantity: reference to the data record for description of the input

quantity (see MEASUREMENT). If there is no input quantity assigned, parameter 'InputQuantity' should be set to "NO_INPUT_QUANTITY" (application systems must be

capable to treat this case).

ident Deposit: reference to the relevant data record for description of the

record layout (see RECORD_LAYOUT)

float MaxDiff: maximum float with respect to the adjustment of a table

value

ident Conversion: Reference to the relevant record of the description of the

conversion method (see COMPU_METHOD). If there is no conversion method, as in the case of CURVE_AXIS, the parameter 'Conversion' should be set to "NO COMPU METHOD" (application systems must be

able to handle this case).

int MaxAxisPoints: maximum number of axis points

float LowerLimit: plausible range of axis point values, lower limit plausible range of axis point values, upper limit float UpperLimit:

Note: The limit values are to be interpreted as physical val-

ues and not internal values.

Note: The parameters of AXIS_PTS are dominate. The values defined at AXIS_DESCR have to be ignored in case of

COM AXIS.

Optional parameters:

-> DISPLAY_IDENTIFIER: Can be used as a display name (alternative to the 'name' attribute).

This keyword can be used to indicate that the axis points of -> READ_ONLY:

axis points distribution cannot be changed (but can be read

only).

Note: This optional keyword used at CHARACTERISTIC record indicates the adjustable object to be read only at all

(table values and axis pts).

With deviation from the display format specified with key--> FORMAT:

> word COMPU_TAB referenced by parameter <Conversion> a special display format can be specified to be used to dis-

play the axis points.

-> DEPOSIT: The axis points of a characteristic can be deposited in one of

the following two modes:

a) the individual axis points are deposited as absolute val-

ues:

b) the individual axis points are deposited as differences. Each axis point is determined from the adjacent point

(predecessor). Where the standard value does not apply, this parameter can be used to specify the deposit of axis

points.

-> BYTE ORDER: Where the standard value does not apply, this parameter can

be used to specify the byte order (Intel format, Motorola

format) of the axis points.

This keyword can be used to specify a list of 'functions' to -> FUNCTION LIST:

which the axis points distribution is allocated (function ori-

entation).

Note: Since ASAP2 version 1.20 the keyword FUNCTION comprises some additional features to describe functional

dependencies. keyword structure and The FUNCTION_LIST is going to be canceled at ASAP2 ver-

sion 2.00.

-> REF_MEMORY_SEGMENT: Reference to the memory segment which is needed

if the address is not unique (this occurs in the case of lap-

ping address ranges (overlapping memory segments).

-> GUARD_RAILS: This keyword is used to indicate that an AXIS_PTS uses

guard rails. The Measurement and Calibration System does not allow the user to edit the outermost axis breakpoints (see

GUARD RAILS).

-> IF_DATA: Data record for description of the interface specific descrip-

tion data (BLOB: binary large object). The parameters associated with this keyword are described in the ASAP2 metalanguage (in short A2ML) by the control unit supplier or interface module supplier. The structure of this data record corresponds with the structure of the interface-specific description data of the CHARACTERISTIC data record.

-> ANNOTATION: Set of notes (represented as multi-line ASCII description

texts) which are related. Can serve e.g. as application note.

-> EXTENDED_LIMITS: This keyword can be used to specify an extended range of

values. In the application system, for example, when leaving the standard range of values (lower limit...upper limit) a warning could be generated (extended limits enabled only

for "power user").

-> CALIBRATION_ACCESS: This keyword specifies the access of the axis points for calibration. It replaces the READ_ONLY attribute.

-> ECU_ADDRESS_EXTENSION: This keyword is an additional address information. For instance it can be used, to distinguish different address spaces of an ECU (multi-microcontroller devices).

Description:

Specification of parameters for the handling of an axis points distribution.

Example:

```
/begin AXIS_PTS
                              STV_N
                                            /* name */
                              "axis points disrtribution speed"
                                                               /* long identifier
                              */
                              0x9876
                                             /* address */
                                             /* input quantity */
                              N
                                             /* deposit */
                              DAMOS SST
                                            /* maxdiff */
                              100.0
                                             /* conversion */
                              R SPEED
                                             /* maximum number of axis points */
                              21
                                             /* lower and upper limit */
                              0.0 5800.0
                              GUARD_RAILS /* uses guard rails*/
      REF_MEMORY_SEGMENT Data3
      /begin FUNCTION LIST ID ADJUSTM FL ADJUSTM SPEED LIM
      /end FUNCTION LIST
      /begin IF_DATA
                              DIM EXTERNAL DIRECT
      /end IF DATA
      CALIBRATION_ACCESS CALIBRATION
/end AXIS_PTS
```

6.3.18 AXIS_PTS_REF

Prototype:

AXIS_PTS_REF AxisPoints

Parameters:

ident AxisPoints: Name of the AXIS_PTS data record which describes the

axis points distribution (group axis points and SIEMENS

record layout: see AXIS_PTS).

Description:

In the BOSCH adjustable types 'group characteristic curve' and 'group characteristic map' and in the SIEMENS record layout, the addresses of the axis point values are separated from the table values in the emulation memory and must be described by a special AXIS_PTS data record. This data record is referenced by means of the keyword AXIS_PTS_REF.

Example:

```
/* Group characteristic curve with reference to axis points distribution GRP_N */
                                               /* name */
/begin CHARACTERISTIC
                             TORQUE
                             "Torque limitation" /* long identifier */
                                              /* type, address */
                             CURVE 0x1432
                             DAMOS_GKL 0.2 /* deposit, maxdiff */
                                               /* conversion */
                             R TOROUE
                             0.0 43.0
                                               /* lower limit, upper limit */
      /begin IF_DATA
                             DIM EXTERNAL INDIRECT
      /end IF_DATA
      /begin AXIS DESCR
                             /* description of X-axis points */
                             COM AXIS N
                                              /* common axis points, input quantity
                             */
                                               /* conversion, max. no. of axis p.*/
                             CONV_N 14
                             0.0 5800.0
                                               /* lower limit, upper limit */
                            GRP_N
         AXIS_PTS_REF
```

/end AXIS_DESCR /end CHARACTERISTIC

/* Axis points distribution data record */ /begin AXIS_PTS GRP_N /* name */ "Group axis points speed" /* long identifier */ /* address, input quantity */ 0x1032 N /* deposit */ DAMOS_GST /* maxdiff, conversion */ 50.0 CONV_N /* max. no. of axis points */ 11 /* lower limit, upper limit */ 0.0 5800.0 /begin IF_DATA DIM EXTERNAL INDIRECT /end IF_DATA /end AXIS_PTS

Page 54 of 277 Version 1.51 Release 2002-02-05

6.3.19 AXIS_PTS_X/_Y/_Z

Prototype:

AXIS_PTS_X/_Y/_Z Position Datatype IndexIncr Addressing

Parameters:

int Position: Position of the axis point values in the deposit structure (de-

scription of sequence of elements in the data record).

datatype Datatype: Data type of the axis point values

indexorder IndexIncr: Decreasing or increasing index with increasing addresses

addrtype Addressing: Addressing of the table values (see enum addrtype).

Description:

Description of the X axis points or Y axis points in the memory (see keyword RECORD_LAYOUT).

<u>Note</u>: If the Alternate option is used with FNC_VALUES, the position parameter determines the order of values and axis points.

Example:

AXIS_PTS_X 3 ULONG INDEX_INCR DIRECT

6.3.20 AXIS_RESCALE_X/_Y/_Z

Prototype:

AXIS_RESCALE_X/_Y/_Z Position Datatype MaxNumberOfRescalePairs IndexIncr

Adressing

Parameters:

int Position: position of the rescale axis point value pairs in the deposit

structure (description of sequence of elements in the data re-

cord).

datatype DataType: Data type of the rescale axis point values

int MaxNumberOfRescalePairs:

maximum number of rescaling axis point pairs

(see NO_RESCALE_PTS_X/_Y/_Z)

indexorder IndexIncr: Decreasing or increasing index with increasing addresses

addrtype Adressing: Addressing of the table values (see enum addrtype).

Description:

Description of rescaling the axis values of an adjustable object. A rescale axis consists mainly of a number of rescaling axis points pairs $(axis_i, virtual_i)$ which describe a rescale mapping between the axis points and a virtual axis that is used for the access of the table function values deposited in the control unit. Between two pairs the mapping is linear. Both, the axis points and the virtual axis points must be in ascending order. Consider, for example, the three rescale pairs (0x00, 0x00), (0x64, 0xC0) and (0xD8, 0xFF). Then all axis points between 0x00 and 0x64 are mapped linear to the virtual axis [0x00, 0xC0], and all axis points between 0x64 and 0xD8 are mapped linear to the virtual axis [0xC0, 0xFF]:

Accordingly, to each axis point there is a virtual axis point. The virtual axis points are distributed equidistantly on the virtual axis including the axis limits, e.g. the virtual axis points can be derived from the size of the virtual axis and the number of axis points. According to the rescale mapping the axis point can be computed from the virtual axis points. The following algorithm can be applied, where D is the length of the (equidistant) intervals on virtual axis:

$$D ? \frac{\text{last virtual axis point - first virtual axis point + 1}}{no_axis_pts? 1}$$
 $k ? 1$

FOR
$$i = 1$$
 TO $no_rescale_x?1$?

FOR
$$k * d$$
? $virtual_{i?1}$? $virtual_{i?1}$

/* repeat for the number of points in the interval on the virtual axis */

$$X_1$$
? $axis_1$
 $X_{no_axis_pts}$? $axis_{no_rescale_x}$

It is recommended that D is a power of 2, i.e. if the size of the virtual axis is 256, the number of axis points should be no_axis_pts ? 2^n ? $1 = \{3, 5, 9, 17, 33\}$.

The following example makes clear how the evaluation of the formula can be used to derive the actual axis points. We have no_of_rescale_pairs = 3 and virtual_1 = 0x00 = 0, virtual_2 = 0xC0 = 192, virtual_3 = 0xFF = 255, axis_1 = 0x00 = 0, axis_2 = 0x64 = 100, axis_3 = 0xD8 = 216. Assume no_axis_pts = 9, and therefore D = 32. The first of the two executions of the inner loop (j-loop) is on virtual_2 – virtual_1/D = 192/32 = 6 iterations. For each iteration (axis_2 – axis_1)/(virtual_2 – virtual_1) = 100/192, and therefore

$$X_2 = 0 + 32 * 100/192 = 16,666,$$

$$X_3 = 0 + 64 * 100/192 = 33,333,$$

$$X_4 = 0 + 96 * 100/192 = 50,$$

$$X_5 = 0 + 128 * 100/192 = 66,666,$$

$$X_6 = 0 + 160 * 100/192 = 83,333.$$

For the second execution there are virtual₃ – virtual₂ / D = 2 iterations with (axis₃ – axis₂)/(virtual₃ – virtual₂) = 116/64. Consequently

$$X_7 = 100 + (192 - 192) * 116/64 = 100$$
 and

$$X_8 = 100 + (224 - 192) * 116/64 = 158.$$

Also
$$X_1 = axis_1 = 0$$
 and $X_9 = axis_3 = 216$.

Used in RECORD LAYOUT.

Example:

AXIS RESCALE X

3 UBYTE 5 INDEX INCR DIRECT

6.3.21 BIT_MASK

Prototype:

BIT_MASK Mask

Parameters:

long Mask: mask to mask out single bits

Description:

The BIT_MASK keyword can be used to mask out single bits of the value to be processed. The least significant bit in BIT_MASK determines how far the masked value is shifted to the right.

Example:

BIT	MASK	0x00000FFF

Value to be masked	BIT_MASK	Result
10110110	0x1 = 1 (bin)	0 (bin)
10110110	0x2 = 10 (bin)	1 (bin)
10110110	0x6 = 110 (bin)	11 (bin)
10110110	0xC = 1100 (bin)	01 (bin)
10111010	0xC = 1100 (bin)	10 (bin)
10111110	0xC = 1100 (bin)	11 (bin)
10111110	0xA = 1010 (bin)	101 (bin)

Note:

The newly added comments about the least significant bit and the inserted samples are valid only while no keyword BIT_OPERATION is used. If the keyword BIT_OPERATION is used then its defined parameters dominate those parameters of the BIT_MASK keyword.

If it is required to use BIT_MASK without a shift operation, then use BIT_OPERATION with a right or left shift of zero, as shown in the following example.

Example:

6.3.22 BIT_OPERATION

Prototype:

/begin BIT_OPERATION

[-> LEFT_SHIFT]

[-> RIGHT_SHIFT]

[-> SIGN_EXTEND]

/end BIT_ OPERATION

Parameters:

Optional parameters

-> LEFT_SHIFT: Number of positions to left shift data, zeros will be shifted in

from the right.

-> RIGHT_SHIFT: Number of positions to right shift data, zeros will be shifted

in from the left.

-> SIGN_EXTEND: Gives a sign extention of sign bit for measurement data.

Description:

The BIT_OPERATION keyword can be used to perform operation on the masked out value.

First BIT_MASK will be applied on measurment data, then LEFT_SHIFT/(RIGHT_SHIFT) is performed and last the SIGN_EXTEND is carried out.

SIGN_EXTEND means that the sign bit (masked data's leftmost bit) will be copied to all bit positions to the left of the sign bit. This results in a new datatype with the same signed value as the masked data.

Example:

/begin BIT_OPERATION

RIGHT_SHIFT 4 /*4 positions*/

SIGN_EXTEND

/end BIT_OPERATION

Explanation	Data	Comment
Data after mask operation	0000000000100000	
Data after shift operation	0000000000000010	shifted right 4 positions
Data after sign extend	1111111111111111	

6.3.23 BYTE_ORDER

Prototype:

BYTE_ORDER ByteOrder

Parameters:

byteorder ByteOrder: Byte order of the relevant quantity in the ECU program

Note: Use of LITTLE_ENDIAN and BIG_ENDIAN defined with keyword BYTE_ORDER in version 1.0 leads to mistakes because it is in contradiction to general use of terms "little endian" and "big endian". Since version 1.2 the keywords LITTLE_ENDIAN and BIG_ENDIAN are permissible but should not longer be used. They should be replaced by MSB_LAST and MSB_FIRST which are equivalent: MSB_LAST corresponds to the Intel format (equivalent

former keyword is BIG_ENDIAN).

MSB_FIRST corresponds to the Motorola format (equiva-

lent former keyword is LITTLE_ENDIAN).

Description:

Where the standard value does not apply this parameter can be used to specify the byte order (Intel format, Motorola format).

Example:

BYTE_ORDER MSB_LAST

Byte Order	Keyword	Former Keyword	Increasing address>				
			n	n+1		n + (N-1)	n + N
Motorola Format	MSB_FIRST	LITTLE_ENDIAN	Byte _N (Most Significant Byte)	Byte _{N-1}		Byte ₁	Byte ₀ (Least Significant Byte)
Intel Format	MSB_LAST	BIG_ENDIAN	Byte ₀ (Least Significant Byte)	Byte ₁		Byte _{N-1}	Byte _N (Most Significant Byte)

Table 3: Byte order - memory data deposition

6.3.24 CALIBRATION ACCESS

Prototype

CALIBRATION_ACCESS Type

Parameters

enum Type: Possible Types:

CALIBRATION: Characteristic or axis points with calibration allowed.

NO_CALIBRATION: This keyword can be used to indicate that the axis points cannot be changed (but can be read only)

<u>Note</u>: This optional keyword used at CHARACTERISTIC record indicates the adjustable object to be read only at all (table values and axis pts).

NOT_IN_MCD_SYSTEM: Internal characteristic or axis points which are not readable or writable by the MCD-System. If there are references between AXIS_PTS and CHARACTERISTICS with one of them gets this value of CALIBRATION_ACCESS, the other one must get this value too.

OFFLINE_CALIBRATION

Variables which can be flashed but not emulated ore calibrated, e.g. values representing savety relevant property while driving.

Optional Parameters

Description

This keyword specifies the access of a CHARACTERISTIC or AXIS_PTS for calibration. It substitudes the READ_ONLY attribute since ASAM-MCD-2MC V1.4

Example

CALIBRATION_ACCESS

CALIBRATION

6.3.25 CALIBRATION_HANDLE

Prototype:

```
/begin CALIBRATION_HANDLE (Handle)*
/end CALIBRATION_HANDLE
```

Parameters:

long Handle Handle for the calibration method

Description:

Definition of the calibration method specific. The interpretation of this data depends on the calibration method used. Used in CALIBRATION_METHOD

Example:

```
/begin CALIBRATION_HANDLE 0x10000 \qquad /* \text{ start address of pointer table */} \\ 0x200 \qquad /* \text{ length of pointer table */} \\ 0x4 \qquad /* \text{ size of one pointer table entry */} \\ 0x30000 \qquad /* \text{ start address of flash section */} \\ 0x20000 \qquad /* \text{ length of flash section */} \\ /\text{end CALIBRATION_HANDLE}
```

Page 62 of 277 Version 1.51 Release 2002-02-05

6.3.26 CALIBRATION METHOD

Prototype:

/begin CALIBRATION_METHOD Method Version

{-> CALIBRATION_HANDLE}*

/end CALIBRATION_METHOD

Parameters:

string Method: the string identifies the calibration method to be used. A

convention regarding the meaning of the calibration methods. The following strings are already in use: 'InCircuit',

'SERAM', 'DSERAP', 'BSERAP'

long Version Version number of the method used

Optional Parameters:

-> CALIBRATION_HANDLE Contains the (method specific) arguments for the calibration method. The arguments themselves and their meaning are dependent of the calibration method.

Description:

This keyword is used to indicate the different methods of access that are implemented in the ECU and that can be used regardless of the actual interface of the ECU. Used in MOD_PAR.

Example:

```
/begin CALIBRATION_METHOD

"InCircuit"

2
/begin CALIBRATION_HANDLE

0x10000 /* start address of pointer table */
0x200 /* length of pointer table */
0x4 /* size of one pointer table entry */
0x10000 /* start address of flash section */
/end CALIBRATION_HANDLE
/end CALIBRATION_METHOD
```

6.3.27 CHARACTERISTIC

Prototype:

/begin CHARACTERISTIC Name LongIdentifier Type Address Deposit MaxDiff

Conversion LowerLimit UpperLimit

[-> DISPLAY_IDENTIFIER]

[-> FORMAT]

[-> BYTE_ORDER] [-> BIT_MASK]

[-> FUNCTION_LIST]

[-> NUMBER]

[-> EXTENDED_LIMITS]

[-> READ_ONLY] [-> GUARD_RAILS] [-> MAP_LIST]

[-> MAX_REFRESH]

[-> DEPENDENT_CHARACTERISTIC]
[-> VIRTUAL_CHARACTERISTIC]
[-> REF MEMORY SEGMENT]

{-> ANNOTATION} *

[-> COMPARISON_QUANTITY]

{-> IF_DATA } * {-> AXIS_DESCR } *

[-> CALIBRATION_ACCESS]

[-> MATRIX_DIM]

[-> ECU_ADDRESS_EXTENSION]

/end CHARACTERISTIC

Parameters:

ident Name: unique identifier in the ECU program

Note:

The name of the adjustable object has to be unique within all measurement objects and adjustable objects of the ASAP2 MODULE, i.e. there must not be another AXIS PTS, CHARACTERISTIC or MEASUREMENT

object with the same identifier in the MODULE.

string LongIdentifier: comment, description

enum Type: possible types: VALUE

CURVE MAP CUBOID

VAL_BLK (array of values)

ASCII (string)

long Address: address of the adjustable object in the emulation memory

ident Deposit: reference to the corresponding data record for description of

the record laout (see RECORD_LAYOUT)

float Maxdiff: maximum float with respect to an adjustment of a table

value

Note: This value is interpreted as an absolute value, not as a

percentage.

ident Conversion: Reference to the relevant record of the description of the

conversion method (see COMPU_METHOD). If there is no conversion method, as in the case of CURVE_AXIS, the parameter 'Conversion' should be set to "NO_COMPU_METHOD" (application systems must be

able to handle this case).

float LowerLimit: plausible range of table values, lower limit float UpperLimit: plausible range of table values, upper limit

Note: The limit values are to be interpreted as physical val-

ues and not internal values.

Optional parameters

-> DISPLAY_IDENTIFIER: Can be used as a display name (alternative to the 'name'

attribute).

-> FORMAT: With deviation from the display format specified with key-

word COMPU_TAB referenced by parameter <Conversion> a special display format can be specified to be used to dis-

play the table values.

-> BYTE_ORDER: Where the standard value does not apply this parameter can

be used to specify the byte order (Intel format, Motorola

format) if the standard value is not to be used.

-> BIT_MASK: This parameter can be used to specify a bit mask for the

handling of single bits.

-> FUNCTION_LIST: This keyword can be used to specify a list of 'functions' to

which the relevant adjustable object is allocated (function

orientation).

Note: Since ASAP2 version 1.20 the keyword FUNCTION comprises some additional features to describe functional structure and dependencies. The keyword FUNCTION_LIST is going to be canceled at ASAP2 ver-

sion 2.00.

-> NUMBER: For the adjustable object types 'fixed value block'

(VAL_BLK) and 'string' (ASCII), this keyword specifies the

number of fixed values and characters respectively.

-> EXTENDED LIMITS: This keyword can be used to specify an extended range of

values. In the application system, for example, when leaving the standard range of values (lower limit...upper limit) a warning could be generated (extended limits enabled only

for "power user").

-> READ_ONLY: This keyword can be used to indicate that the adjustable

> object cannot be changed (but can be read only). This keyword indicates the adjustable object to be read only at all (table values and axis points). The optional keyword used at AXIS_DESCR record indicates the related axis points to be

read only.

-> GUARD_RAILS: This keyword is used to indicate that an adjustable CURVE

> or MAP uses guard rails. The Measurement and Calibration System does not allow the user to edit the outermost values

of the adjustable object (see GUARD_RAILS).

For the adjustable object type CUBOID which are 'sliced', -> MAP_LIST:

this keyword specifies the MAPs which comprise the cu-

boid.

-> MAX REFRESH: Maximum refresh rate of this (adaptive) characteristic in the

> control unit. The existence of the keyword implies that the value of the characteristic is changed by the control unit

(adaptive characteristics).

-> DEPENDENT_CHARACTERISTIC: Describes the formula and references to characteristics, upon which this characteristic depends on.

> Note: The dependence graph described by the dependence relation must be acyclic. This must be ensured by the producer of the ASAP2 file. This keyword is only valid for

characteristics of type VALUE

Marks a characteristic as being virtual, -> VIRTUAL_CHARACTERISTIC:

i.e. not existing in the memory of the control unit. The address can therefore be ignored for virtual characteristic. Initial value of the virtual characteristic depends on the values

of other characteristic.

Note: The corresponding graph (in analogy to the dependence graph) must also be acyclic and each sink of the graph must be a non virtual characteristic. This must be ensured by the producer of the ASAP2 file. This keyword is only valid for characteristics of type VALUE.

-> REF_MEMORY_SEGMENT: Reference to the memory segment which is needed if the address is not unique (this occurs in the case of lap-

ping address ranges (overlapping memory segments).

Date record to describe the interface specific description -> IF DATA:

> data (BLOB:binary large object). The parameters associated with this keyword are described in the ASAP2 metalanguage (in short A2ML) by the control unit supplier or the interface

module supplier.

This keyword is used to specify the parameters for the axis -> AXIS_DESCR

> description (with characteristic curves and maps). The first parameter block describes the X-axis, the second parameter

block the Y-axis.

-> ANNOTATION: Set of notes (represented as multi-line ASCII description

texts) which are related. Can serve e.g. as application note.

This keyword references a valid -> COMPARISON_QUANTITY: MEASUREMENT in the ASAP2 file. Semantic Interpreta-

Page 66 of 277 Version 1.51 Release 2002-02-05 tion (for a CURVE, a CHARACTERISTIC with only one AXIS_DESC): The conventional workpoint for a -CURVE has only one input quantity (assigned to AXIS_DESCR) and moves on the CURVE. The 'free-moving' workpoint in an xy diagram of a CURVE is described by two quantities (the conventional input quantity with the AXIS DESC, the xaxis, and an additional comparison quantity described as an optional attribute directly with the CURVE, the y-axis). The 'free-moving' workpoint does not move on the CURVE, but on the xy-diagram in which the CURVE is located. The crossing of the free-moving workpoint and the CURVE would describe an EVENT. Such display is required by calibration engineers of automatic transmission control (EVENT=gear shift). When this keyword with a CURVE is present, the workpoint display of the MCD system shall ap-INPUT QUANTITY the COMPARISON_QUANTITY in the xy-diagram.

-> CALIBRATION_ACCESS: This keyword specifies the access of the characteristic for calibration. Use it instead of the READ_ONLY Attribute.

-> MATRIX_DIM

Shows the size and dimension of a multidimensional characteristic (e.g. VAL_BLK). If the MATRIX_DIM keyword is used, then the option NUMBER is not needed. However, if the keywords NUMBER and MATRIX_DIM are both used, the resulting value in NUMBER must be the same as xDim * yDim * zDim for MATRIX_DIM. If the keyword is missing the array has only one dimension with the size given at NUMBER.

-> ECU_ADDRESS_EXTENSION: This keyword is an additional address information. For instance it can be used, to distinguish different address spaces of an ECU (multi-microcontroller devices).

Description:

Specification of the parameters for the processing of an adjustable object.

Example:

```
/begin CHARACTERISTIC
                                             /* name */
                              PUMKF
                              "Pump characteristic map"
                                                                /* long identifier
                              */
                                             /* type */
                              MAP
                                             /* address */
                              0x7140
                                             /* deposit */
                              DAMOS KF
                                             /* maxdiff */
                              100.0
                              R_VOLTAGE
                                             /* conversion */
                              0.0 5000.0
                                             /* lower limit, upper limit */
      MAX REFRESH
                              3 15 /* 15 msec */
      /begin DEPENDENT_CHARACTERISTIC "sin(X1)" ALPHA
      /end DEPENDENT_CHARACTERISTIC
      /begin VIRTUAL CHARACTERISTIC "sqrt(X1)" B AREA
      /end VIRTUAL_CHARACTERISTIC
      REF_MEMORY_SEGMENT Data1
      /begin FUNCTION_LIST NL_ADJUSTMENT FL_ADJUSTMENT SPEED_LIM
      /end FUNCTION_LIST
      /begin IF_DATA
                              DIM EXTERNAL INDIRECT /end IF_DATA
                              /* description of X-axis points */
      /begin AXIS_DESCR
                              STD AXIS
                                             /* standard axis points */
                                             /* reference to input quantity */
                              N
                              CON_N
                                             /* conversion */
                                             /* maximum number of axis points */
                              13
                                             /* lower limit, upper limit */
                              0.0 5800.0
                                             /* X-axis: maximum gradient */
                              20.0
            MAX_GRAD
      /end AXIS DESCR
      /begin AXIS_DESCR
                              /* description of Y-axis points */
                                             /* standard axis points */
                              STD AXIS
                                             /* reference to input quantity */
                              AMOUNT
                                             /* conversion */
                              CON_ME
                                             /* maximum number of axis points */
                              17
                                             /* lower limit, upper limit */
                              0.0 43.0
      /end AXIS_DESCR
/end CHARACTERISTIC
```

6.3.28 CHECKSUM

Prototype:

/begin CHECKSUM /end CHECKSUM ChecksumDll

Parameters:

string ChecksumDll: Reference to DLL file name containing the ECU checksum

algorithm.

Description:

Description of the checksum algorithm implemented in the ECU. The ECU supplier provides a DLL.

<u>Note</u>: This keyword is only used in the context of the IF_DATA(MODULE) applied for the ASAP1a-CCP.

<u>Note</u>: The usage of the DLL is based on a standard API definition published in the Annex.

Example:

/begin CHECKSUM /end CHECKSUM "crc16.dll"

6.3.29 COEFFS

Prototype:

COEFFS a b c d e f

Parameters:

float a, b, c, d, e, f: coefficients for the specified formula: f(x) = (axx + bx + c) / (dxx + ex + f)

Description:

Specification of coefficients for the formula f(x) = (axx + bx + c) / (dxx + ex + f). This term describes the conversion from physical values to control unit internal values:

$$INT = f(PHYS);$$

<u>Important</u>: For these coefficients restrictions have to be defined because this general equation cannot always be inverted.

Example:

```
COEFFS 0 4 8 0 0 5

/* Control unit internal values of revolutions (INT) is calculated from
/* physical values (PHYS: unit of PHYS is [rpm]) as follows:
/*

INT = (4/5) * PHYS/[rpm] + (8/5)
/* inverted:
PHYS/[rpm] = 1.25 * INT - 2.0

*/
```

6.3.30 COMPARISON QUANTITY

Prototype:

COMPARISON_QUANTITY Name

Parameters:

ident Name: Unique identifier in the program (Reference to a valid

MEASUREMENT)

Description:

This keyword references a valid MEASUREMENT in the ASAP2 file. Semantic Interpretation (for a CURVE, a CHARACTERISTIC with only one AXIS_DESC): The conventional workpoint for a -CURVE has only one input quantity (assigned to AXIS_DESCR) and moves on the CURVE. The 'free-moving' workpoint in an xy diagram of a CURVE is described by two quantities (the conventional input quantity with the AXIS_DESC, the x-axis, and an additional comparison quantity described as an optional attribute directly with the CURVE, the y-axis). The 'free-moving' workpoint does not move on the CURVE, but on the xy-diagram in which the CURVE is located. The crossing of the free-moving workpoint and the CURVE would describe an EVENT. Such display is required by calibration engineers of automatic transmission control (EVENT=gear shift). When this keyword with a CURVE is present, the workpoint display of the MCD system shall apply the INPUT_QUANTITY and the COMPARISON_QUANTITY in the xy-diagram.

6.3.31 COMPU_METHOD

Prototype:

/begin COMPU_METHOD Name LongIdentifier ConversionType Format Unit

[-> FORMULA] [-> COEFFS]

[-> COMPU_TAB_REF]

[-> REF_UNIT]

/end COMPU METHOD

Parameters:

ident Name: unique identifier in the program for the conversion method

Note:

The name of the conversion method has to be unique within all conversion methods of the ASAP2 MODULE, i.e. there must not be another COMPU_METHOD object with the the

same identifier in the MODULE.

string LongIdentifier: comment, description

enum ConversionType: possible types:

TAB_INTP: table with interpolation
TAB_NOINTP: table without interpolation
TAB_VERB: verbal conversion table

RAT_FUNC: fractional rational function of the fol-

lowing type

f(x)=(axx + bx + c)/(dxx + ex + f)

for which:

INT = f(PHYS)

Coefficients a, b, c, d, e, f are specified by the optional COEFFS keyword.

Important: For these coefficients

restrictions have to be defined because this general equation cannot

always be inverted.

FORM: conversion based on the formula

specified by the optional FORMULA

keyword.

string Format: display format in %[length].[layout]; length indicates the

overall length; layout indicates the decimal places. The for-

mat string should never be empty as "".

string Unit: physical unit

Optional parameters:

-> FORMULA: Formula to be used for the conversion

-> COEFFS: This keyword is used to specify coefficients a, b, c, d, e, f

for the fractional rational function of the following type

(axx + bx + c) / (dxx + ex + f)

-> COMPU_TAB_REF: This keyword is used to specify a conversion table (refer-

ence to COMPU_TAB data record).

-> REF_UNIT: This keyword is used to reference a measurement unit (e.g.

an object of type UNIT). The string parameter Unit is a redundant information because the record referenced by REF_UNIT contain it too. Just for the purpose of compatibility with previous versions of ASAP2 the parameter REF_UNIT is optional. The string parameter Unit is going

to be canceled at ASAP2 version 2.00.

Description:

Specification of a conversion method

Example:

/end COMPU_METHOD

/begin COMPU_METHOD /* name */ TMPCON1 "conversion method for engine temperature" /* convers type */ TAB NOINTP "%4.2" /* display format */ "°C" /* physical unit */ MOTEMP1 COMPU_TAB_REF /end COMPU_METHOD /* name */ /begin COMPU METHOD TMPCON2 "conversion method for air temperature" /* convers_type */ FORM /* display format */ "%4.2" "°C" /* physical unit */ "3*X1/100 + 22.7" /end FORMULA /begin FORMULA /end COMPU_METHOD /* name */ /begin COMPU_METHOD CM_DiagStatus /*convers_type */ /*convers type */ TAB VERB /* display format */ "%0.0" ** ** /* physical unit */ COMPU_TAB_REF CT_DiagStatus /end COMPU_METHOD /* name */ /begin COMPU_METHOD CM_RPM "conversion method for engine rpm" TAB INTP /*convers_type */ "%7.1" /* display format */ "rpm " /* physical unit */ COMPU TAB REF CT RPM

/begin COMPU_METHOD CM_NM /* name */

" conversion method for air temperature " TAB_INTP /* convers_type */

"%7.1" /* display format */
"nm " /* physical unit */

COMPU_TAB_REF /end COMPU_METHOD CT_NM

/begin COMPU_METHOD FIXED_UW_03

"Conversion method for FIXED_UW_03"
RAT_FUNC /* convers_type */
"%8.3" /* display format */

"NO_PHYSICAL_QTY" COEFFS 0 8 0 0 0 1

/end COMPU_METHOD

/begin COMPU_METHOD BYTE

"Conversion method for BYTE"

RAT_FUNC /* convers_type */
"%3.0" /* display format */

"NO_PHYSICAL_QTY" COEFFS 0 1 0 0 0 1

/end COMPU METHOD

/begin COMPU_METHOD SHORTINT

"Conversion method for SHORTINT"

RAT_FUNC "%4.0"

"NO_PHYSICAL_QTY"

COEFFS 0 1 0 0 0 1

/end COMPU_METHOD

/begin COMPU_METHOD WORD

"Conversion method for WORD"

RAT_FUNC "%5.0"

"NO_PHYSICAL_QTY" COEFFS 0 1 0 0 0 1

/end COMPU_METHOD

/begin COMPU_METHOD INTEGER

"Conversion method for INTEGER"

RAT_FUNC "% 6.0"

"NO_PHYSICAL_QTY" COEFFS 0 1 0 0 0 1

/end COMPU_METHOD

/begin COMPU_METHOD LONGWORD

"Conversion method for LONGWORD"

RAT_FUNC "% 10.0"

"NO_PHYSICAL_QTY" COEFFS 0 1 0 0 0 1

/end COMPU_METHOD

/begin COMPU_METHOD LONGINT

"Conversion method for LONGINT"

RAT_FUNC "%11.0"

"NO_PHYSICAL_QTY" COEFFS 0 1 0 0 0 1

/end COMPU_METHOD

<u>Note</u>: For the next example, X is overall length of the display format which is sum of number of whole number digits, value one for radix point and number of fractional digits. Y is number of decimal places for radix point.

<Physical_Units> can be"NO_PHYSICAL_QTY"

Z is the coefficient required for the conversion.

 $Z = 2^{\c}adix$.

/begin COMPU_METHOD FIXED_<sign><length>_<radix>

"Conversion method for FIXED_<sign><length>_<radix>"

RAT_FUNC "%X.Y"

"<Physical_Units>" COEFFS 0 Z 0 0 0 1

/end COMPU_METHOD

6.3.32 COMPU_TAB

Prototype:

/begin COMPU_TAB Name LongIdentifier ConversionType NumberValuePairs

{ InVal OutVal }*

[->DEFAULT_VALUE]

/end COMPU_TAB

Parameters:

ident Name: unique identifier in the program for the conversion table

Note:

The name of the conversion table has to be unique within all conversion tables of the ASAP2 MODULE, i.e. there must not be another COMPU_TAB, COMPU_VTAB or COMPU_VTAB_RANGE object with the the same identi-

fier in the MODULE.

string LongIdentifier: comment, description

enum ConversionType: following types are possible:

TAB_INTP: table with interpolation TAB_NOINTP: table without interpolation

<u>Note</u>: This parameter is redundant information because the record defined with COMPU_METHOD also contains it.

int NumberValuePairs: number of successive value pairs for this conversion table

float InVal: axis point float OutVal: axis value

Optional parameters

-> DEFAULT_VALUE: string used as OutVal for display when the ECU value is out

of any declared range. This string shall not be selectable for

calibration (when writing to the ECU).

Description:

Conversion table for conversions that cannot be represented as a function.

Example:

/begin COMPU_TAB TT /* name */

"conversion table for oil temperatures"
TAB_NOINTP /* convers_type */

7 /* number value pairs */

1 4.3 2 4.7 3 5.8 4 14.2

5 16.8 6 17.2 7 19.4 /* value pairs */

/end COMPU TAB

6.3.33 COMPU_TAB_REF

Prototype:

COMPU_TAB_REF ConversionTable

Parameters:

ident ConversionTable: reference to the data record which contains the conversion table (see COMPU_TAB).

Description:

Reference to the data record which contains the conversion table (see keyword COMPU_TAB).

<u>Note</u>: COMPU_TAB_REF may only refer to objects of type COMPU_TAB, COMPU_VTAB or COMPU_VTAB_RANGE.

Example:

COMPU_TAB_REF TEMP_TAB /* TEMP_TAB: conversion table */

6.3.34 COMPU VTAB

Prototype:

/begin COMPU_VTAB Name LongIdentifier ConversionType NumberValuePairs

{ InVal OutVal }*

[->DEFAULT_VALUE]

/end COMPU_VTAB

Parameters:

ident Name: unique identifier in the program for the verbal conversion

table

Note:

The name of the conversion table has to be unique within all conversion tables of the ASAP2 MODULE, i.e. there must not be another COMPU_TAB, COMPU_VTAB or COMPU_VTAB_RANGE object with the same identi-

fier in the MODULE.

string LongIdentifier: comment, description

enum ConversionType: at present only the following types are possible:

TAB_VERB: verbal conversion table

<u>Note</u>: This parameter is a redundant information because the record defined with COMPU_METHOD also contains it. Therefore this parameter is going to be canceled at ASAP2

version 2.00.

int NumberValuePairs:

float InVal:

number of successive value pairs for this conversion table

internal value

Note: Datatype "float" is used for the input value of COMPU_TAB and COMPU_VTAB. Since the accepted use case of COMPU_VTAB input values are intergers, all float values are rounded to the nearest integer by following the formula (0.5 <= x_raw < 1.5 lead to x = 1). Only float input values used with COMPU_VTAB_RANGE remain float values without truncation. If you want to use float as internal values (without truncation), you should use COMPU_VTAB_RANGE.

string OutVal: description (meaning) of the corresponding byte value

Optional parameters

-> DEFAULT_VALUE: string used as OutVal for display when the ECU value is out

of any declared range. This string shall not be selectable for

calibration (when writing to the ECU).

Description:

Conversion table for the visualisation of bit patterns

Example:

```
/begin COMPU_VTAB
                                               /* name */
                            TT
                             "engine status conversion"
                            TAB_VERB
                                               /* convers_type */
                                               /* number_value_pairs */
                            4
                            0 "engine off"
                                               /* value pairs */
                            1 "idling"
                             2 "partial load"
                             3 "full load"
/end COMPU_VTAB
/begin COMPU_VTAB
                             CT_DiagStatus
                                               /* convers_type */
                             TAB_VERB
                             3
                                               /* number_value_pairs */
                             0 "C_Fail"
                             1 "C_Pass"
                             2 "C_Indeterminate"
/end COMPU_VTAB
```

6.3.35 COMPU_VTAB_RANGE

Prototype:

/begin COMPU_VTAB_RANGE

Name LongIdentifier NumberValueTriples

{ InValMin InValMax OutVal }*

[->DEFAULT_VALUE]

/end COMPU_VTAB_RANGE

Parameters:

ident Name: unique identifier in the program for the verbal range based

conversion table

Note:

The name of the conversion table has to be unique within all conversion tables of the ASAP2 MODULE, i.e. there must not be another COMPU_TAB, COMPU_VTAB or COMPU_VTAB_RANGE object with the same identi-

fier in the MODULE.

string LongIdentifier: comment, description

int NumberValueTriples:

number of successive value triples for this verbal range

based conversion table

float InValMin: lower limit as float value, needs to be integer ECU value

when assigned to "non-float" definitions.

float InValMax: upper limit as float value, needs to be integer ECU value

when assigned to "non-float" definitions.

string OutVal: display string for the value range

Optional parameters

-> DEFAULT_VALUE: string used as OutVal for display when the ECU value is out

of any declared range. This string shall not be selectable for

calibration (when writing to the ECU).

Description:

Conversion table for the assignment of display strings to a value range. In particular this is useful for ASAP2 definitions with the data type 'floating point' (referred as FLOAT definitions).

For FLOAT definitions, the declared string is displayed for

InValMin <= ECU value < InValMax, with InValMin, InValMax as floating point values.

For non-FLOAT definions, the declared string is displayed for

InValMin <= ECU value <= InValMax, with InValMin, InVal as integer values.

<u>Note</u>: InValMin and InValMax can have the same value to express an assignment of one ECU value to a string (as in COMPU_VTAB); this is not realistic for floating point (and therefore not supported).

Note: Overlapping ranges may not be declared. The ASAP2 file is invalid in case of overlapping ranges within COMPU_VTAB_RANGE. But still, the upper limit of one range may be the same FLOAT value than the lower limit of the following range in case of a FLOAT definition (see display rules).

<u>Note</u>: When a COMPU_METHOD with COMPU_VTAB_RANGE is used for calibration (writing of values to ECU), the InValMin is used when the assigned STRING(OutVal) is selected in the user interface.

<u>Note</u>: If the optional DEFAULT_VALUE is declared, this string is displayed when the ECU value is out of any declared range. This string shall not be selectable for calibration.

Example:

```
/begin COMPU_VTAB_RANGE
TT /* name */

"engine status conversion"
5
0 0 "ONE"
1 2 "first_section"
3 3 "THIRD"
4 5 "second_section"
6 500 "usual_case"
DEFAULT_VALUE "Value_out_of_Range"
/end COMPU_VTAB_RANGE
```

6.3.36 CPU_TYPE

Prototype:

CPU_TYPE CPU

Parameters:

string CPU: CPU identifier

Description:

CPU identification

Example:

CPU_TYPE "INTEL 4711"

Page 82 of 277 Version 1.51 Release 2002-02-05

6.3.37 CURVE_AXIS_REF

Prototype:

CURVE_AXIS_REF CurveAxis

Parameters:

ident CurveAxis: Name of the CURVE CHARACTERISTIC that is used to

normalize or scale the axis that references the curve.

Description:

This keyword is used in conjunction with AXIS_DESCR definitions that use the CURVE_AXIS attribute. It is used to specify the adjustable CURVE CHARACTERISTIC that is used to normalize or scale the axis. See Appendix C for more details.

Note: The same parameters for MaxAxisPoints apply as those for AXIS_DESCR.

Example:

/begin CHARACTERISTIC FUEL_ADJ /* name */

"Air fuel table" /* long identifier */

MAP /* type */

0x7140 /* address */

DEP_12E /* deposit */

1.0 /* maxdiff */

R MULT /* conversion */

0.0 2.0 /* lower limit, upper limit */

/begin AXIS_DESCR /* description of X-axis points */

CURVE AXIS /* curve axis points */

SPEED /* reference to input quantity */

NO_COMPU_METHOD /* conversion */

13 /* maximum number of axis points */

0 12 /* lower limit, upper limit */

CURVE_AXIS_REF SPD_NORM

/end AXIS DESCR

/begin AXIS DESCR /* description of Y-axis points */

CURVE AXIS /* curve axis points */

LOAD /* reference to input quantity */

NO_COMPU_METHOD /* conversion */

17 /* maximum number of axis points */

0 16 /* lower limit, upper limit */

CURVE_AXIS_REF MAF_NORM

/end AXIS_DESCR /end CHARACTERISTIC

/begin RECORD_LAYOUT DEP_12E FNC_VALUES 1 FLOAT32_IEEE ROW_DIR DIRECT /end RECORD_LAYOUT /begin CHARACTERISTIC SPD_NORM /* name */ "Speed normalizing function" /* long identifier */ CURVE /* type */ 0x8210 /* address */ SPD_DEP /* deposit */ 100 /* maxdif */ R_NORM /* conversion */ 0 6 /* lower limit, upper limit */ /begin AXIS_DESCR /* description of X-axis points */ STD AXIS /* standard axis */ SPEED /* reference to input quantity */ R SPEED /* conversion */ 7 /* maximum number of axis points */ 0 10000 /* lower limit, upper limit */ /end AXIS_DESCR /end CHARACTERISTIC /begin RECORD_LAYOUT SPD_DEP AXIS PTS X 1 FLOAT32 IEEE INDEX INCR DIRECT FNC VALUES 2 FLOAT32 IEEE ALTERNATE WITH X DIRECT /end RECORD_LAYOUT /begin CHARACTERISTIC MAF_NORM /* name */ "Load normalizing function" /* long identifier */ CURVE /* type */ 0x8428 /* address */ LOAD_DEP /* deposit */ 100 /* maxdif */ R NORM /* conversion */ 0 16 /* lower limit, upper limit */ /begin AXIS_DESCR /* description of X-axis points */ STD_AXIS /* standard axis */ LOAD /* reference to input quantity */ R_LOAD /* conversion */ 17 /* maximum number of axis points */ 0.0 100.0 /* lower limit, upper limit */ /end AXIS DESCR /end CHARACTERISTIC

6.3.38 CUSTOMER

Prototype:

CUSTOMER Customer

Parameters:

string Customer: customer name

Description:

This keyword allows a customer name to be specified.

Example:

CUSTOMER "LANZ - Landmaschinen"

6.3.39 CUSTOMER_NO

Prototype:

CUSTOMER_NO Number

Parameters:

string Number: customer number

Description:

Customer number as string.

Example:

CUSTOMER_NO "191188"

Page 86 of 277 Version 1.51 Release 2002-02-05

6.3.40 DATA_SIZE

Prototype:

DATA_SIZE Size

Parameters:

int Size: data size in bits

Description:

Data size in bits

Example:

DATA_SIZE 16

6.3.41 DEF_CHARACTERISTIC

Prototype:

/begin DEF_CHARACTERISTIC { Identifier } *
/end DEF_CHARACTERISTIC

Parameters:

ident Identifier: Identifier of those adjustable objects that are defined in re-

spective function.

Description:

This keyword can be used to declare some adjustable objects to be defined in respective function (function orientation).

<u>Note</u>: DEF_CHARACTERISTIC may only refer to objects of type AXIS_PTS or CHARACTERISTIC.

Example:

/begin DEF_CHARACTERISTIC INJECTION_CURVE DELAY_FACTOR /end DEF_CHARACTERISTIC

6.3.42 DEFAULT_VALUE

Prototype:

DEFAULT_VALUE display_string

Parameters:

string display_string

Description:

Optional String which can be applied with COMPU_TAB, COMPU_VTAB and COMPU_VTAB_RANGE, used as OutVal for display when the ECU value is out of any declared range. This string shall not be selectable for calibration (when writing to the ECU).

Example:

DEFAULT_VALUE "overflow_state"

6.3.43 DEPENDENT_CHARACTERISTIC

Prototype:

/begin DEPENDENT_CHARACTERISTIC /end DEPENDENT_CHARACTERISTIC

Formula (Characteristic)*

Parameters:

string Formula: Formula to be used for the calculation of the physical value

of the characteristic from the physical value of other char-

acteristics.

ident Characteristic: Identifier of those adjustable objects that are used for the

calculation of this characteristic.

Description:

This keyword allows dependent characteristics to be specified. For this, other characteristics can be combined into one characteristic whose consistent value is automatically derived by the application system. Upon adjusting one of the characteristics, this characteristic is then also automatically adjusted according to the chosen formula (see also VIRTUAL_CHARACTERISTIC). Consider for example a rectangular triangle with a hypothenuse of length 1,

where the length of the other sides are the characteristics A and B. When adjusting A the characteristic B has to be adjusted accordingly to B = sqrt (1- A*A). The relation between the involved characteristics is described on the physical level. Also other characteristic might depend on B, e.g. $B_AREA = B*B$. A dependent characteristic should not be adjustable by itself, but only through the adjustment of a characteristic it depends on.

The following example makes clear how the calibration process takes place. Assume for each of the characteristics A, B, and B_AREA a conversion formula of hex = f(phys) = 100 * phys and assume that the value A_{hex} is 60 (decimal). Then $A_{phys} = A_{hex} / 100 = 0.6$. According to the formula B = sqrt (1 - A*A), $B_{phys} = 0.8$ and $B_{hex} = B_{phys} * 100 = 80$ (decimal). According to B_AREA = B*B, we have B_AREA_{phys} = 0.64 and therefore B_AREA_{hex} = 64 (decimal).

Used in CHARACTERISTIC.

Example:

/begin DEPENDENT_CHARACTERISTIC "sqrt(1-X1*X1)" A /end DEPENDENT_CHARACTERISTIC

6.3.44 DEPOSIT

Prototype:

DEPOSIT Mode

Parameters:

enum Mode: Deposit of the axis points of a characteristic curve or map:

ABSOLUTE: absolute axis points DIFFERENCE: difference axis points

Description:

The axis points of a characteristic can be deposited in two different ways in the memory:

- a) The individual axis point values are deposited as absolute values.
- b) The individual axis points are deposited as differences. Each axis point value is determined on the basis of the adjacent axis point (predecessor) and the corresponding difference. As reference point for the first axis point <maxvalue> is used:

```
1-byte-size: <maxvalue> = 2^8 (256)
2-byte-size: <maxvalue> = 2^{16} (65536)
4-byte-size: <maxvalue> = 2^{32}
```

Example:

DEPOSIT DIFFERENCE

6.3.45 DISPLAY_IDENTIFIER

Prototype:

DISPLAY_IDENTIFIER display_name

Parameters:

ident display_name

Description:

This identifier can be used as a alternative name in the Measurement and Calibration System. DISPLAY_IDENTIFIERs can constitute an alternative set of names.

<u>Note</u>: The display_name does not have to be unique and is not referenced elsewhere. But is recommended that the display identifier shall be unique in order to avoid confusion in the user interface of the MCD system.

Example:

DISPLAY_IDENTIFIER load_engine

6.3.46 DIST_OP_X/_Y/_Z

Prototype:

DIST_OP_X/_Y/_Z Position Datatype

Parameters:

int Position: Position of the distance operand in the deposit structure.

datatype Datatype: Data type of the distance operand.

Description:

Description of the distance operand in the deposit structure to compute the axis points for fixed characteristic curves and fixed characteristic maps (see also keyword FIX_AXIS_PAR_DIST). The axis points distribution for fixed characteristic curves or fixed characteristic maps is derived from the two 'offset' and 'distance' parameters as follows:

$$X_i = Offset + (i - 1)*Distance$$
 $i = \{1...number of axispts\}$

or

$$Y_k = Offset + (k - 1)^* Distance$$
 $k = \{1...number of axispts\}$

or

$$Z_m = Offset + (m - 1)^* Distance$$
 $m = \{ 1...number of axispts \}$

Example:

DIST_OP_X 21 UWORD

6.3.47 ECU

Prototype:

ControlUnit **ECU**

Parameters:

string ControlUnit: control unit identifier

Description:

String for identification of the control unit.

Example:

ECU "Steering control"

6.3.48 ECU_ADDRESS

Prototype:

ECU_ADDRESS Address

Parameters:

long Address Address of the measurement in the memory of the control

unit.

Description:

ECU_ADDRESS is used to describe the address of a measurement. It should replace the specific IF_DATA (IF_DATA ASAP1B_ADDRESS). It can be used in MEASUREMENT only.

Example:

ECU_ADDRESS 0x12FE

6.3.49 ECU_ADDRESS_EXTENSION

Prototype:

ECU_ADDRESS_EXTENSION Extension

Parameters:

int Extension: Address extension of the ECU address

Description:

This keyword is used to specify additional address information. For instance it can be used, to distinguish different address spaces of an ECU (multi-microcontroller devices). ECU_ADDRESS_EXTENSION is an optional keyword of MEASUREMENT, AXIS_PTS and CHARACTERISTIC.

Example:

```
/begin MEASUREMENT
                              N
                                              /* name */
                              "Engine speed"
                                             /* long identifier */
                                              /* datatype */
                              UWORD
                              R_SPEED_3
                                              /* conversion */
                              2
                                             /* resolution */
                                             /* accuracy */
                              2.5
                              120.0
                                             /* lower limit */
                                              /* upper limit */
                              8400.0
      ECU_ADDRESS 0x12345
      ECU_ADDRESS_EXTENSION 1
/end MEASUREMENT
                              MAX_N
                                             /* name */
/begin CHARACTERISTIC
                              "max speed"
                                              /* long identifier */
                              VALUE
                                              /* type */
                                              /* address */
                              0x7140
                              DAMOS_Word /* deposit */
                                             /* maxdiff */
                               100.0
                              R_SPEED
                                             /* conversion */
                              0.0 5000.0
                                              /* lower limit, upper limit */
      ECU_ADDRESS_EXTENSION 1
/end CHARACTERISTIC
```

6.3.50 ECU_CALIBRATION_OFFSET

Prototype:

ECU_CALIBRATION_OFFSET

Offset

Parameters:

long Offset Offset that has to be added to each address of a characteris-

tic

Description:

ECU_CALIBRATION_OFFSET is used to describe a fixed address offset when accessing characteristics in the control unit due to

- ? near pointers in calibration objects. Some record layouts include near pointers inside a calibration objects from which the calibration system has to compute the absolute values by adding the ECU_CALIBRATION_OFFSET (CDAMOS)
- ? variant coding. Some ECU projects include multiple data sets for different engine or vehicle projects served by one common ECU. By using the ECU_CALIBRATION_OFFSET, a selection for project base address can be made Used in MOD_PAR.

Example:

ECU_CALIBRATION_OFFSET

0x1000

6.3.51 EPK

Prototype:

EPK Identifier

Parameters:

string Identifier: EPROM identifier

Description:

EPROM identifier string.

Example:

EPK "EPROM identifier test"

6.3.52 ERROR_MASK

Prototype:

ERROR_MASK Mask

Parameters:

long Mask: mask to mask out selected bits

Description:

The ERROR_MASK keyword can be used to mask bits of a MEASUREMENT which indicate that the value is in error. The Measurement and Calibration System may apply this mask to display the error status of a measurement value. The error mask is usually a single bit; separate measurements should be defined in situations where each bit indicates a different type of error.

Example:

ERRROR_MASK 0x00000001

6.3.53 EVENT_GROUP

Prototype:

/begin EVENT_GROUP RasterGrpName ShortName

{RasterID}*

/end EVENT_GROUP

Parameters:

string RasterGrpName: Name of the Group of Event Channels (name for one sample

rate of an ECU supported data acquisition mechanism, i.e.

the ASAP1a-CCP)

string ShortName: Short Display Name of the Event Channel Name

Recommendation: The string length shall not exceed 9

characters

int RasterID: Event Channel No., references to the data acquisition event

channels of the ECU which are a member of this group.

Description:

Each available "service" can be described by one ECU_DAQ_EVENT within IF_DATA(Module) and then can be referenced within the ASAP1b-QP_BLOB statement of the SOURCE keyword.

<u>Note</u>: This keyword is only used in the context of the IF_DATA(MODULE) applied for the ASAP1a-CCP.

Example:

/begin EVENT_GROUP "Group of Events" "G1" 2 5 8 9 /end EVENT_GROUP

6.3.54 EXTENDED_LIMITS

Prototype:

EXTENDED_LIMITS LowerLimit UpperLimit

Parameters:

float LowerLimit: extended range of table values, lower limit float UpperLimit: extended range of table values, upper limit

Note: The limit values are to be interpreted as physical val-

ues and not internal values.

Description:

This keyword can be used to specify an extended range of values. In the application system, for example, when leaving the standard range of values (mandatory parameters 'lower limit' and 'upper limit' in the CHARACTERISTIC data record) a warning could be generated (extended limits enabled only for "power user")

Example:

EXTENDED_LIMITS 0 6000.0

6.3.55 FIX AXIS PAR

Prototype:

FIX_AXIS_PAR Offset Shift Numberapo

Parameters:

int Offset: 'offset' parameter to calculate the axis points of fixed char-

acteristic curves or maps (see description).

int Shift: 'shift' parameter to calculate the axis points of fixed charac-

teristic curves or maps (see description).

int Numberapo: number of axis points

Description:

Typical of fixed characteristic curves and fixed characteristic maps is that, in contrast with standard and group characteristics, the axis points are not deposited individually in the program data of the ECU program but are derived from the two parameters 'offset' and 'shift'. In the current deposit methods both parameters are contained in the description file. In future deposit methods both methods could well be part of the deposit structure of the adjustable objects.

The axis points of fixed characteristic curves or maps are calculated as follows:

$$X_i = Offset + (i - 1)*2^{Shift}$$
 $i = \{1...numberapo\}$

or

$$Y_k = Offset + (k - 1)*2^{Shift}$$
 $k = \{1...numberapo\}$

or

$$Z_m = Offset + (m-1)*2^{Shift} \quad m = \{ 1...numberapo \}$$

Remark:

This keyword is equivalent to FIX_AXIS_PAR_DIST but differs in parameter 'Shift' (see FIX_AXIS_PAR_DIST).

Example:

FIX_AXIS_PAR 0 32 8

6.3.56 FIX_AXIS_PAR_DIST

Prototype:

FIX_AXIS_PAR_DIST Offset Distance Numberapo

Parameters:

int Offset: 'offset' parameter to calculate the axis points of fixed char-

acteristic curves or maps (see description).

int Distance: 'distance' parameter to calculate the axis points of fixed

characteristic curves or maps (see description).

int Numberapo: number of axis points

Description:

Typical of fixed characteristic curves and fixed characteristic maps is that, in contrast with standard and group characteristics, the axis points are not deposited individually in the program data of the ECU program but are derived from the two parameters 'offset' and 'distance'. In the current deposit methods both parameters are contained in the description file. In future deposit methods both methods could well be part of the deposit structure of the adjustable objects.

The axis points of fixed characteristic curves or maps are calculated as follows:

$$X_i = Offset + (i - 1)*Distance$$
 $i = \{ 1...numberapo \}$

or

$$Y_k = Offset + (k - 1)*Distance$$
 $k = \{ 1...numberapo \}$

or

$$Z_m = Offset + (m - 1)*Distance$$
 $m = \{1...numberapo\}$

Note:

This keyword is equivalent to FIX_AXIS_PAR but differs in parameter 'Distance' (see FIX_AXIS_PAR).

Example:

FIX_AXIS_PAR_DIST 0 100 8

6.3.57 FIX_AXIS_PAR_LIST

Prototype:

/begin FIX_AXIS_PAR_LIST
{ AxisPts_Value }*
/end FIX_AXIS_PAR_LIST

Parameters:

float AxisPts_Value

List of "ECU-Original" Values as implied by the ECU algorithm. The number of values must match with the MaxAxisPoints attribute of the AXIS_DESCR referencing FIX_AXIS_PAR_LIST. The COMPU_METHOD assigned to the AXIS_DESCR shall be applied to achieve the actual display values.

<u>Note</u>: The data type shall be integer in case of an assignment to a non-float definition).

Description:

Allows the description of any value combination of a virtual axis (FIX_AXIS, axis points not in the ECU memory). Other methods (FIX_AXIS_PAR, FIX_AXIS_PAR_DIST) implicitely assume an interpolation algorithm in the ECU. But axis descriptions are also used e.g. to span status tables.

The values are the input for the COMPU_METHOD assigned to the axis. Even a verbal table could be applied as COMPU_METHOD (i.e for the axis description of status tables on which no interpolation is applied).

Example:

/begin FIX_AXIS_PAR_LIST 2 5 9 /end FIX_AXIS_PAR_LIST

6.3.58 FIX_NO_AXIS_PTS_X/_Y/_Z

Prototype:

FIX_NO_AXIS_PTS_X/_Y/_Z NumberOfAxisPoints

Parameters:

int NumberOfAxisPoints: Dimensioning of characteristic curves or characteristic maps with a fixed number of axis points

Description:

This keyword indicates that all characteristic curves or characteristic maps are allocated a fixed number of X-axis and Y-axis points. In a RECORD_LAYOUT data record, this keyword cannot be used simultaneously with the keyword NO_AXIS_PTS_X (for FIX_NO_AXIS_PTS_X) or NO_AXIS_PTS_Y (for FIX_NO_AXIS_PTS_Y)

Example:

FIX_NO_AXIS_PTS_X 17

6.3.59 FNC_VALUES

Prototype:

FNC_VALUES Position Datatype IndexMode Addresstype

Parameters:

int Position: position of table values (function values) in the deposit

structure (description of sequence of elements in the data re-

cord).

data type of the table values

enum IndexMode: for characteristic maps, this attribute is used to describe how

the 2-dimensional table values are mapped onto the 1-

dimensional address space:

COLUMN_DIR deposited in columns ROW_DIR deposited in rows

Both concepts 'columns' and 'rows' relate to the XY coordi-

nate system (see also Appendix B: Record layouts).

For characteristic cuboids each XY plane is mapped as above. The cuboid is stored as an array of maps with incre-

mental Z coordinates.

Additional indexMode (since version 1.2):

ALTERNATE_WITH_X

maps: deposited in columns, the columns of table

values alternate with the respective X-

coordinates.

curves: table values and X-coordinate values are de-

posited alternating.

ALTERNATE WITH Y

maps: deposited in rows, the rows of table values

alternate with the respective Y-coordinates

(maps only).

ALTERNATE_CURVES

curves: curves which share a common axis are deposited in columns; each row of memory contains values for all the shared axis curves at a given axis breakpoint. Required in order to represent characteristics which correspond to arrays of structures in ECU program code. In the example code below, DT10, DT20, etc are treated as separate curves which may have different conversions or limits:-

```
typedef struct {
        int DT10;
        int DT20;
        int DT30;
        int DT40;
    } VXP_TYPE;

const VXP_TYPE VX_PLUS_DELAY_TIMES[5] = {
        { 10, 3, 4, 8 },
        { 12, 2, 4, 6 },
        { 17, 9, 5, 8 },
        { 10, 1, 4, 8 },
        { 18, 3, 8, 8 },
    };
```

addrtype Addresstype: addressing of the table values (see enum addrtype).

Description:

Description of the table values (function values) of an adjustable object. If the ALTERNATE option is used, the position paramter of values and axis-points indicates their order.

Example:

FNC_VALUES

7 SWORD COLUMN_DIR DIRECT

6.3.60 FORMAT

Prototype:

FORMAT FormatString

Parameters:

string FormatString: display format in %[length].[layout]; length indicates the

overall length; layout indicates the decimal places

Description:

This keyword allows a special display format to be specified for some MEASUREMENT, CHARACTERISTIC or AXIS_PTS object. If exists this display format is used instead of display format specified in respective COMPU_METHOD data record. The format string should never be empty as "".

Example:

FORMAT "%4.2"

6.3.61 FORMULA

Prototype:

/begin FORMULA f(x)

[-> FORMULA_INV]

/end FORMULA

Parameters:

string f(x):

function to calculate the physical value from the hexadecimal, control unit internal value. The interpretation proceeds from left to right. Operator preferences, such as power before product/quotient before sum/difference, are taken into account. Brackets are allowed. The following operation symbols can be used:

Basic operations:

for sums
for differences
for products
for quotients
for powers

Logical operators: interpretation from left to right

& logical AND
| logical OR
>> shift right
<< shift left
XOR exclusive OR
| logical NOT

Trigonometric functions: sin(x), cos(x), tan(x) arcsin(x), arccos(x), arctan(x)sinh(x), cosh(x), tanh(x)

Exponential function:

exp(x)

Logarithmic functions:

ln(x)log(x)

Square root, absolute amount:

sqrt(x) abs(x)

Note: Parameter names should be used as follows:

X or X1 if only one input quantity is possible,

X1, X2, ... in case of several input quantities (applies only to VIRTUAL_MEASUREMENT), it is suggested to not use

X, Y, Z ... in this case.

Optional parameters:

-> FORMULA INV:

function to calculate the hexadecimal, control unit internal value from the physical value. This parameter is <u>mandatory</u> in formulas used for the conversion of adjustable objects. It is optional only for measurement objects.

Note:

Certain functions in the application system can only be used for those measurement objects for which this parameter is

specified (e.g. scalable DAC output, triggering).

Description:

This keyword allows any kind of formula to be specified for the conversion of measurement values, axis points or table values of an adjustable object from their hexadecimal (ECU internal) format into the physical format. The interpretation of the formula must be supported by a formula interpreter in the operating system.

<u>Note</u>: When converting from internal values to physical values, the use of "X" is customary. For reasons of backward compatibility, if only one input value is necessary, use either X or X1.

Example:

/begin FORMULA /end FORMULA "sqrt($3 - 4*(\sin(X1))^2$)"

Note: Do not use FORMULA to describe rational fractions if the conversion can be defined using the COEFFS keyword.

6.3.62 FORMULA_INV

Prototype:

 $FORMULA_INV$ g(x)

Parameters:

string g(x): function for calculation of the hexadecimal, control unit in-

ternal value from the physical value. The interpretation proceeds from left to right. Operator preferences, such as power before product/quotient before sum/differenc, are taken into account. Brackets are allowed. Permissible operation sym-

bols: see keyword FORMULA, page 110.

Description:

This keyword allows any kind of formula to be specified for the conversion of measurement values, axis points or table values of an adjustable object from their physical format into the hexadecimal (ECU internal) format. The interpretation of the formula must be supported by a formula interpreter in the operating system.

<u>Note</u>: FORMULA_INV is necessary if used for CHARACTERISTIC objects. Only MEASUREMENT objects do not need an inverse formula.

Example:

Inversion function e.g. for keyword FORMULA (see page 110)

FORMULA_INV "arcsin(sqrt((3 - (X1)^2)/4))"

6.3.63 FRAME

Prototype:

/begin FRAME Name

LongIdentifier ScalingUnit

Rate

[-> FRAME_MEASUREMENT]

{-> IF_DATA} *

/end FRAME

Parameters:

ident Name: unique identifier in the program, referencing is based on this

'name' *Note*:

The name of the frame has to be unique within all frames of the ASAP2 MODULE, i.e. there must not be another FRAME object with the the same identifier in the

MODULE.

string LongIdentifier: comment, description

int ScalingUnit: This parameter defines the basic scaling unit. The following

parameter 'Rate' relates on this scaling unit. The value of ScalingUnit is coded as shown in 'Table 4: Codes for scal-

ing units (CSE)' (page144).

long Rate: The maximum refresh rate of the concerning measurement

source in the control unit. The unit is defined with parameter

'ScalingUnit'.

Optional parameters:

-> FRAME_MEASUREMENT:

Use this keyword to define the frames measurementobjects.

-> IF_DATA: Interface-specific description data (BLOB: binary large ob-

ject) used at ASAP1b device at call of the command InitRead(). The parameters associated with this keyword are described in the ASAP2 metalanguage (in short A2ML) by

the ECU supplier or the interface module supplier.

Description:

For the structuring of a car network involving a very large number of measuring channels, function frames can be defined.

These function frames shall be used in the application system to allow the selection lists for the selection of measuring channels to be represented in a structured manner on the basis of functional viewpoints (function orientation).

This will also be used to describe the packaging of measurment data into sources for CAN frames in a network environment.

Example:

/begin FRAME ABS_ADJUSTM

"function group ABS adjustment"

3

2 /* 2 msec. */

FRAME_MEASUREMENT LOOP_COUNTER TEMPORARY_1

/end FRAME

Page 114 of 277 Version 1.51 Release 2002-02-05

6.3.64 FRAME_MEASUREMENT

Prototype:

FRAME_MEASUREMENT { Identifier } *

Parameters:

ident Identifier: Identifier of quantity of respective FRAME (reference to

measurement object).

Description:

This keyword can be used to define quantities of respective FRAME.

Example:

FRAME_MEASUREMENT WHEEL_REVOLUTIONS ENGINE_SPEED

6.3.65 FUNCTION

Prototype:

/begin FUNCTION Name LongIdentifier

{-> ANNOTATION} *

[-> DEF_CHARACTERISTIC] [-> REF_CHARACTERISTIC] [-> IN_MEASUREMENT] [-> OUT_MEASUREMENT] [-> LOC_MEASUREMENT]

[-> SUB_FUNCTION]

[-> FUNCTION_VERSION]

/end FUNCTION

Parameters:

ident Name: unique Identifier in the program, referencing is based on this

'name' *Note*:

The name of the function has to be unique within all functions of the ASAP2 MODULE, i.e. there must not be another FUNCTION object with the the same identifier in the

MODULE.

string LongIdentifier: comment, description

Optional parameters:

-> ANNOTATION: Set of notes (represented as multi-line ASCII de-

scription texts) which are related. Can serve e.g. as

application note.

-> DEF_CHARACTERISTIC: This keyword can be used to define those adjustable

objects which are **defined** in respective function.

-> REF_CHARACTERISTIC: If the function contains references to some adjust-

able objects, this keyword can be used to describe

this references.

-> IN_MEASUREMENT: Use this keyword to define the input measurement

objects of respective function (input variables).

-> OUT MEASUREMENT: Use this keyword to define the output measurement

objects of respective function (output variables).

-> LOC_MEASUREMENT: Use this keyword to define the local measurement

objects of respective function (local variables: scope

is limited to this function).

-> SUB_FUNCTION: This keyword can be used to describe the function

hierarchy. If the respective function is subdivided into subfunctions, use this keyword to define the

subfunctions.

-> FUNCTION_VERSION: String to define the version of the function. An ap-

plication tool should be able to handle function ori-

ented characteristic data.

Description:

For the structuring of projects involving a very large number of adjustable objects and measuring channels, functions can be defined. These functions shall be used in the application system to allow the selection lists for the selection of adjustable objects and measuring channels to be represented in a structured, hierarchial manner following the order of input on the basis of functional viewpoints (function orientation).

Note: Since ASAP2 version 1.20 the references between functions and measurement objects resp. adjustable objects can be described either with keyword CHARACTERISTIC, AXIS_PTS and MEASUREMENT (see FUNCTION_LIST) or with keyword FUNCTION.

Example:

/begin FUNCTION ID_ADJUSTM /* name */
"function group idling adjustment"

/begin DEF_CHARACTERISTIC INJECTION_CURVE

/end DEF CHARACTERISTIC

/begin REF_CHARACTERISTIC FACTOR_1

/end REF_CHARACTERISTIC

/begin IN_MEASUREMENT WHEEL_REVOLUTIONS ENGINE_SPEED

/end IN_MEASUREMENT

/begin OUT_MEASUREMENT OK_FLAG SENSOR_FLAG

/end OUT_MEASUREMENT

/begin LOC MEASUREMENT LOOP COUNTER TEMPORARY 1

/end LOC MEASUREMENT

/begin SUB_FUNCTION ID_ADJUSTM_SUB

/end SUB FUNCTION

/end FUNCTION

6.3.66 FUNCTION_LIST

Prototype:

/begin FUNCTION_LIST
/end FUNCTION_LIST

(Name) *

Parameters:

ident Name: list of references to higher-order functions (see

FUNCTION)

Description:

This keyword can be used to specify a list of 'functions' to which the relevant adjustable object has been allocated (function orientation).

<u>Note</u>: Since ASAP2 version 1.20 the keyword FUNCTION comprises some additional features to describe functional structure and dependencies. The keyword FUNCTION_LIST is going to be canceled at ASAP2 version 2.00.

Example:

/begin FUNCTION_LIST /end FUNCTION_LIST ID_ADJUSTM FL_ADJUSTM SPEED_LIM

6.3.67 FUNCTION_VERSION

Prototype:

FUNCTION_VERSION VersionIdentifier

Parameters:

string VersionIdentifier: short identifier for the version

Description:

String for identification of the version of a function with maximum MAX_STRING (at present 255) characters.

Example:

FUNCTION_VERSION "BG5.0815"

6.3.68 GROUP

Prototype:

/begin GROUP GroupName GroupLongIdentifier

{-> ANNOTATION} *

[-> ROOT]

[-> REF_CHARACTERISTIC]
[-> REF_MEASUREMENT]
[-> FUNCTION_LIST]
[-> SUB_GROUP]

/end GROUP

Parameters:

ident GroupName: unique identifier of the group

Note:

The name of the group has to be unique within all groups of the ASAP2 MODULE, i.e. there must not be another GROUP object with the the same identifier in the

MODULE.

string GroupLongIdentifier: Comment, description of the group within a grouping mechanism.

Optional parameters:

-> ANNOTATION: Set of notes (represented as multi-line ASCII de-

scription texts) which are related. Can serve e.g. as

application note.

-> ROOT This keyword indicates that the group constitutes an

independent grouping mechanism (root level) which the MCD system may use as a root point for the hierarchical presentation of groups. All groups referenced via SUB_GROUP (including nested references) constitute a set of groups belonging to the

grouping mechanism.

Examples for such grouping mechanisms : Group Name = {Software_Components, Calibra-

tion_Components, Editor_Selection_Lists}

-> REF_CHARACTERISTIC: If the group contains **references** to some adjustable

objects, this keyword can be used to describe these

references.

-> REF_MEASUREMENT: If the group contains **references** to some measure-

ment objects, this keyword can be used to describe

these references.

-> FUNCTION_LIST: This keyword can be used to specify a list of refer-

ences to functions.

-> SUB_GROUP: This keyword can be used to describe the group hier-

archy. If the respective group is subdivided into

sub-groups, use this keyword to define the sub-groups. In particular, SUB_GROUP references the groups belonging to a grouping mechanism indicated with the optional keyword ROOT (see above).

Description:

These GROUPs shall be used in the application system to provide selection lists (groups) of adjustable objects and measuring channels.

For the structuring of projects involving a very large number of adjustable objects and measuring channels, an **unlimited number of grouping mechanisms, each constituted from a root group containing subgroups** (including nested references), can be defined. Such root groups are used in the MCD system for initial display of the available groups, as the root of a tree containing the referenced subgroups. Use cases are e.g. software_components which define the C file assignment, calibration_components which describe the calibration engineer's viewpoint, editor_selection_lists which can define the presentation of calibration objects and their related measurement quantities.

Example:

```
/begin GROUP
                              SOFTWARE_COMPONENTS
     "assignment of the definitions to C files"
     ROOT
     /begin SUB GROUP INJE C6TD
     /end SUB GROUP
/end GROUP
/begin GROUP INJE "Subsystem Injection"
     /begin SUB_GROUP
                              injec1 injec2
     /end SUB_GROUP
/end GROUP
/begin GROUP Injec1 "Module filename Injec1"
     /begin REF CHARACTERISTIC
                                         INJECTION CURVE
     /end REF_CHARACTERISTIC
     /begin REF_MEASUREMENT LOOP_COUNTER TEMPORARY_1
     /end REF_MEASUREMENT
/end GROUP
/begin GROUP Injec2 "Module filename Injec2"
     /begin REF CHARACTERISTIC
                                         INJECTION ADJUST
     /end REF_CHARACTERISTIC
     /begin REF_MEASUREMENT GAS_INPUT WHEEL_SPEED
     /end REF_MEASUREMENT
/end GROUP
```

```
/begin GROUP C6TD "Shift Point Control"
     /begin SUB_GROUP
                              c6tdvder c6tdertf
     /end SUB_GROUP
/end GROUP
/begin GROUP c6tdvder "Module filename c6tdvder"
     /begin REF_CHARACTERISTIC
                                         SHIFT23_CURVE
     /end REF_CHARACTERISTIC
     /begin REF_MEASUREMENT LOOP_COUN2 NO_GEAR
     /end REF_MEASUREMENT
/end GROUP
/begin GROUP c6tderft "Module filename c6tderft"
     /begin REF_CHARACTERISTIC
                                         LUP23_CURVE
     /end REF_CHARACTERISTIC
     /begin REF_MEASUREMENT TRANSMISSION_SP ENGINE_SPEED
     /end REF_MEASUREMENT
/end GROUP
/begin GROUP
                              CALIBRATION_COMPONENTS
     "assignment of the definitions to calibration components"
     ROOT
     /begin SUB_GROUP
      Winter_Test
      Summer_Test
     /end SUB_GROUP
/end GROUP
/begin GROUP
                               CALIBRATION_COMPONENTS_L4
     "L4-PCM 2002 cals"
     ROOT
                         LUFT CLOSED LOOP
     /begin SUB_GROUP
     /end SUB GROUP
/end GROUP
/begin GROUP
                         LUFT
     "Cals in LUFT Subsystem"
     /begin REF_CHARACTERISTIC
      KfLUFT n EngSpdThrsh
      KtLUFT ScaledVE
      KaLUFT_AirPerCylCoeff
     /end REF CHARACTERISTIC
/end GROUP
```

```
/begin GROUP
                         CLOSED_LOOP
     "Cals in FCLS, FCLP & FCLL Subsystem"
     /begin REF_CHARACTERISTIC
      KaFCLP_U_O2LeanThrsh
      KfFCLP_t_O2AgainstMax
     /end REF CHARACTERISTIC
/end GROUP
/begin GROUP Winter_Test "Flash this in winter time"
     /begin REF_CHARACTERISTIC
                                          GASOLINE_CURVE
     /end REF_CHARACTERISTIC
/end GROUP
/begin GROUP Summer_Test "Flash that in summer time"
     /begin REF_CHARACTERISTIC
                                          SUPER_CURVE
     /end REF CHARACTERISTIC
/end GROUP
/begin GROUP
                         SOFTWARE_COMPONENTS
     "L4-PCM 2002 C modules"
     ROOT
     /begin SUB_GROUP
      luftkmgr.c
      fclpkout.c
      viosmeng.c
      /end SUB_GROUP
/end GROUP
/begin GROUP
                         luftkmgr.c
     "Objects in luftkmgr.c"
     /begin REF_CHARACTERISTIC
      KtLUFT_ScaledVE
      /end REF CHARACTERISTIC
/end GROUP
/begin GROUP
                         fclpkout.c
      "Objects in fclpkout.c"
     /begin REF_CHARACTERISTIC
      KaFCLP_U_O2LeanThrsh
      KfFCLP t O2AgainstMax
     /end REF CHARACTERISTIC
/end GROUP
```

/begin GROUP viosmeng.c

"Objects in viosmeng.c"

/begin REF_CHARACTERISTIC

VfVIOS_n_EngSpdLORES

VfVIOS_p_AmbientAirPres

/end REF_CHARACTERISTIC

/end GROUP

Page 124 of 277 Version 1.51 Release 2002-02-05

6.3.69 GUARD_RAILS

Prototype:

GUARD_RAILS

Description:

This keyword is used to indicate that an adjustable CURVE, MAP or AXIS_PTS uses guard rails. The Measurement and Calibration System does not allow the user to edit the outermost values or axis points of the adjustable object, but calculates them as follows:-

_AXIS_PTS	CURVE	MAP
$(X_0) = AXIS_PTS.LowerLimit$	$(\mathbf{X}_0) = (\mathbf{X}_1)$	$(X_i, Y_0) = (X_j, Y_1)$
$(X_m) = AXIS_PTS.UpperLimit$	$(X_m) = (X_{m-1})$	$(X_i, Y_n) = (X_j, Y_{n-1})$
		$(X_0, Y_j) = (X_1, Y_j)$
		$(X_m, Y_j) = (X_{m-1}, Y_j)$

0 < i < m, m = Number of X-axis points <math>0 < j < n, n = Number of Y-axis points

Example:

/begin CHARACTERISTIC	F_INJ_CORR	/* name */
_	"Injector correction factor" /* long identifier */	
	CURVE	/* type */
	0x7140	/* address */
	REC12	/* deposit */
	10.0	/* maxdiff */
	C_INJF	/* conversion */
	0.0 199.0	/* lower limit, upper limit */
	GUARD_RAILS	/* uses guard rails */
/begin AXIS_DESCR		/* description of X-axis points */
	STD_AXIS	/* standard axis points */
	N	/* reference to input quantity */
	C_TEMP	/* conversion */
	10	/* maximum number of axis points */
	-40.0 150.0	/* lower limit, upper limit */
/end AXIS_DESCR		
/end CHARACTERISTIC		

6.3.70 HEADER

Prototype:

/begin HEADER Comment

[-> VERSION]

[-> PROJECT_NO]

/end HEADER

Parameters:

string Comment: comment, description

Optional parameters:

-> VERSION: version number -> PROJECT_NO: project number

Description:

Header information on a project. A project can comprise several ASAP devices.

Example:

/begin HEADER "see also specificatio XYZ of 01.02.1994"

VERSION "BG5.0815" PROJECT_NO M4711Z1

/end HEADER

6.3.71 IDENTIFICATION

Prototype:

IDENTIFICATION Position Datatype

Parameters:

int Position: position of the 'identifier' in the deposit structure.

datatype Datatype: word length of the 'identifier"

Description:

Description of an 'identifier' in an adjustable object (see BOSCH: C-DAMOS de-

posit).

Example:

IDENTIFICATION 1 UWORD

6.3.72 IF_DATA (AXIS_PTS, CHARACTERISTIC, MEMORY_LAYOUT)

Prototype:

/begin IF_DATA Name

[-> DP_BLOB Dp_Data] [-> PA_BLOB Pa_Data]

/end IF_DATA

Parameters:

ident Name: identifier of ASAP device. This string must be defined in

the A2ML-file and should match to ASAP1b. See chapter

8.2 (Designing A2ML-file) for details.

Optional parameters:

-> DP_BLOB: Interface-specific description data (BLOB: binary large ob-

ject) used at ASAP1b device at call of the command InitAccess(). The parameters associated with this keyword are described in the ASAP2 metalanguage (in short A2ML) by the

ECU supplier or the interface module supplier.

-> PA_BLOB: Interface-specific description data (BLOB: binary large ob-

ject) used at ASAP1b device at call of the command Access(). The parameters associated with this keyword are described in the ASAP2 metalanguage (in short A2ML) by the

ECU supplier or the interface module supplier.

Description:

Definition of interface-specific description data (topic keyword AXIS_PTS, CHARACTERISTIC and MEMORY_LAYOUT).

Example:

```
/begin IF_DATA
ASAP1B_CCP /* Name of ASAP device */
DP_BLOB /* interface-specific parameters described in A2ML */
0x12129977 0xFF
PA_BLOB /* interface-specific parameters described in A2ML */
"Pumpenkennfeld" 1 2 17
/end IF_DATA
```

6.3.73 IF_DATA (MEASUREMENT)

Prototype:

/begin IF_DATA Name

[-> KP_BLOB KP_Data] [-> DP_BLOB Dp_Data] [-> PA_BLOB Pa_Data]

/end IF_DATA

Parameters:

ident Name: identifier of ASAP device. This string must be defined in

the A2ML-file. See chapter 8.2 (Designing A2ML-file) for

details.

Optional parameters:

-> KP_BLOB: Interface-specific description data (BLOB: binary large ob-

ject) used at ASAP1b device at call of the command InitRead(). The parameters associated with this keyword are described in the ASAP2 metalanguage (in short A2ML) by

the ECU supplier or the interface module supplier.

-> DP_BLOB: Interface-specific description data (BLOB: binary large ob-

ject) used at ASAP1b device at call of the command InitAccess(). The parameters associated with this keyword are described in the ASAP2 metalanguage (in short A2ML) by the

ECU supplier or the interface module supplier.

<u>Note</u>: This keyword is required only if MCD wants to 'write' to the corresponding measurement object (see keyword

READ_WRITE of topic MEASUREMENT).

-> PA_BLOB: Interface-specific description data (BLOB: binary large ob-

ject) used at ASAP1b device at call of the command Access(). The parameters associated with this keyword are described in the ASAP2 metalanguage (in short A2ML) by the

ECU supplier or the interface module supplier.

<u>Note</u>: This keyword is required only if MCD wants to 'write' to the corresponding measurement object (see keyword

READ_WRITE of topic MEASUREMENT).

Description:

Definition of interface-specific description data (topic keyword MEASUREMENT).

Example:

```
/begin IF_DATA
ASAP1B_CCP /* Name of ASAP device */
KP_BLOB 0x12FE 17 3 /* interface-specific parameters described in A2ML */
DP_BLOB 0x121277 0xFF /* interface-specific parameters described in A2ML */
PA_BLOB /* interface-specific parameters described in A2ML */
"Pumpenkennfeld" 1 2 17

/end IF_DATA
```

Minimal Requirements for Data Acquisition:

The interface-specific parameters of measurement objects can be described using keyword IF_DATA.

On the one hand this keyword is optional, i.e. the description file is ASAP2-conform even if this keyword is missing. On the other hand in real application access to any measurement object is only possible if a suitable IF_DATA record is available.

Recommendation: If the description file doesn't include any interface-specific parameters corresponding to real application system, description file should either contain a record to describe an emulator address (IF_DATA ASAP1B_ADDRESS) or description parameters to acquire the measurement data from CAN-bus (IF_DATA ASAP1B_CAN). Usage of one or both of this IF_DATA-records depends on real case.

6.3.74 IF_DATA ASAP1B_ADDRESS (MEASUREMENT)

Prototype:

/begin IF_DATA ASAP1B_ADDRESS KP_BLOB Address /end IF_DATA

Parameters:

ASAP1B_ADDRESS: Identifier of ASAP device.

KP_BLOB: This keyword marks the interface-specific parameters used

at ASAP1b device at call of the command InitRead().

long Address: Address of measurement object (e.g. emulator RAM ad-

dress)

Description:

Definition of interface-specific description data (topic keyword MEASUREMENT). This record is recommended if there isn't any other record available, corresponding to a real application system.

Example:

/begin IF_DATA ASAP1B_ADDRESS KP_BLOB 0x12FE /end IF_DATA

6.3.75 IF_DATA ASAP1B_CAN (MEASUREMENT)

Prototype:

/begin IF_DATA ASAP1B_CAN

/begin KP_BLOB MessageName Identifier MessageSize

MessageSource Startbit DataSize

[-> MULTIPLEX]

/end KP_BLOB

/end IF DATA

Parameters:

ASAP1B_CAN: Identifier of ASAP device.

KP_BLOB: This keyword marks the interface-specific parameters used

at ASAP1b device at call of the command InitRead().

ident MessageName: Description of CAN-message.

long Identifier: CAN-Identifier of that message, the expected measurement

object is included in.

int MessageSize: Size of CAN-message (message data only).

string MessageSource: Description of message sender.

int Startbit: The expected measurement data are included in message

data at offset 'Startbit' (in bits, index of first bit of message

data is 0).

int DataSize: Size of measurement data included in message data.

Optional parameters:

-> MULTIPLEX: In case of multiplexed message data this keyword can be

used to define the 'mode-signal' (see MULTIPLEX).

Description:

Definition of interface-specific description data (topic keyword MEASUREMENT). This record is recommended if there isn't any other record available corresponding to a real application system.

Example:

/begin IF_DATA ASAP1B_CAN

/begin KP_BLOB "MOTOINFO" 0x123 8 "MOTOR-SG" 5 8

/end KP_BLOB

/end IF DATA

6.3.76 IF_DATA (FRAME)

Prototype:

/begin IF_DATA Name

[-> QP_BLOB QP_Data]

/end IF_DATA

Parameters:

ident Name: identifier of ASAP device. This string must be defined in

the A2ML-file. See chapter 8.2 (Designing A2ML-file) for

details.

Optional parameters:

-> QP_BLOB: Interface-specific description data (BLOB: binary large object)

used at ASAP1b device at call of the command InitRead(). The parameters associated with this keyword are described in the ASAP2 metalanguage (in short A2ML) by the ECU supplier or

the interface module supplier.

Description:

Definition of interface-specific description data (topic keyword FRAME).

6.3.77 IF_DATA (MEMORY_SEGMENT)

Prototype:

/begin IF_DATA Name

{-> ADDRESS_MAPPING } *

/end IF_DATA

Parameters:

ident Name: identifier of ASAP device. This string must be defined in

the A2ML-file. See chapter 8.2 (Designing A2ML-file) for

details.

Optional parameters:

-> ADDRESS_MAPPING: This keyword can be used to remap the address space of the ECU to an access address.

Description:

Remapping of the address space.

Example:

/begin MEMORY_SEGMENT ext_Ram "external RAM"

DATA RAM EXTERN 0x30000 0x1000 -1 -1 -1 -1 -1
/begin IF_DATA ASAP1B_KWP2000

/* ADDRESS_MAPPING orig_addr mapping_addr length */
ADDRESS_MAPPING 0x4000 0x6000 0x0200
/end IF_DATA
/end MEMORY_SEGMENT

6.3.78 IF_DATA (MODULE)

Prototype:

/begin IF_DATA Name

{-> SOURCE } * {-> RASTER } *

{-> EVENT_GROUP}*

[-> SEED_KEY] [-> CHECKSUM]

[-> TP_BLOB TP_Data]

/end IF_DATA

Parameters:

ident Name: Identifier of ASAP device. This string must be defined in

the A2ML-file. See chapter 8.2 (Designing A2ML-file) for

details.

Optional parameters:

-> SOURCE: This keyword can be used to describe different 'sources' of

measurement, e.g. different acquisition modes (e.g. time

synchronous 10 msec, time synchronous 50 msec etc.)

-> RASTER: This keyword can be used to declare an event channel which

is part of the SOURCE of data acquisition.

Only used in context of the ASAP 1a-CCP.

-> EVENT_GROUP: This keyword can be used to declare a group of event chan-

nels (group of ECU_DAQ_EVENT)

Only used in context of the ASAP 1a-CCP.

-> SEED_KEY: Description of the authentification process. References to

dynamic link libraries with a standard API, which contain

the authentification algorithms.

-> CHECKSUM: Description of the ECU checksum algoritm. References to

dynamic link libraries with a standard API, which contain

the checksum algorithm.

-> TP_BLOB: Interface-specific description data (BLOB: binary large ob-

ject) used at ASAP1b device at call of the command InitRead(), InitAccess() and Command(). The parameters associated with this keyword are described in the ASAP2 metalanguage (in short A2ML) by the ECU supplier or the inter-

face module supplier.

Description:

Definition of interface-specific description data (topic keyword MODULE).

Example:

/begin IF_DATA

ASAP1B_CCP /* Name of ASAP device */
/begin SOURCE Time10ms 4 1 /* Source parameter */
/end SOURCE /begin SOURCE Time50ms 4 5 /* Source parameter */
/end SOURCE TP_BLOB 0xFF 0xFA 0x0A /* interface-specific parameters */
/end IF_DATA

Page 136 of 277 Version 1.51 Release 2002-02-05

6.3.79 IN_MEASUREMENT

Prototype:

/begin IN_MEASUREMENT { Identifier } * /end IN_MEASUREMENT

Parameters:

ident Identifier: Identifier of input quantity of respective function (reference

to measurement object).

Description:

This keyword can be used to define input quantities of respective function. *Note*: IN_MEASUREMENT may only refer to objects of type MEASUREMENT.

Example:

/begin IN_MEASUREMENT WHEEL_REVOLUTIONS ENGINE_SPEED /end IN_MEASUREMENT

6.3.80 LEFT_SHIFT

Prototype:

LEFT_SHIFT **Bitcount**

Parameters:

long bitcount: Shift ,bitcount' bits to the left

Description:

The LEFT_SHIFT keyword is only used within the BIT_OPERATION keyword. See description of BIT_OPERATION.

Version 1.51 Release

6.3.81 LOC_MEASUREMENT

Prototype:

/begin LOC_MEASUREMENT { Identifier } * /end LOC_MEASUREMENT

Parameters:

ident Identifier: Identifier of local quantity of respective function (reference

to measurement object).

Description:

This keyword can be used to define local quantities of respective function. *Note*: LOC_MEASUREMENT may only refer to objects of type MEASUREMENT.

Example:

/begin LOC_MEASUREMENT /end LOC_MEASUREMENT

LOOP_COUNTER TEMPORARY_1

6.3.82 MAP_LIST

Prototype:

/begin MAP_LIST { Name } * /end MAP_LIST

Parameters:

ident Name: identifier of a MAP (see CHARACTERISTIC)

Description:

This keyword can be used to specify the list of MAPs which comprise a CUBOID. This keyword is required because CUBOID data will not be at contiguous memory locations if a CUBOID is composed of several MAPs.

6.3.83 MATRIX_DIM

Prototype:

MATRIX_DIM xDim yDim zDim

Parameters:

int xDim: number of values in dimension of x int yDim: number of values in dimension of y int zDim: number of values in dimension of z

Description:

This keyword is used to describe the dimensions of a multidimensioned array of values (MEASUREMENT or CHARACTERISTIC).

xDim * yDim *zDim = number of values.

If NUMBER or ARRAY_SIZE are used in the CHARACTERISTIC or MEASUREMENT record the result must be the same as the value given at this option.

Example:

MATRIX_DIM 2 4 3

6.3.84 MAX_GRAD

Prototype:

MAX_GRAD MaxGradient

Parameters:

float MaxGradient: maximum permissible gradient

Description:

This keyword is used to specify a maximum permissible gradient for an adjustable object in relation to an axis:

 $MaxGrad_x = maximum(absolut((W_{i,k} - W_{i-1,k})/(X_i - X_{i-1})))$

 $MaxGrad_y = maximum(absolut((W_{i,k} - W_{i,k-1})/(Y_i - Y_{k-1})))$

Example:

MAX_GRAD 200.0

6.3.85 MAX_REFRESH

Prototype:

MAX_REFRESH ScalingUnit Rate

Parameters:

int ScalingUnit: this parameter defines the basic scaling unit. The following

parameter 'Rate' relates on this scaling unit. The value of ScalingUnit is coded as shown below in 'Table 4: Codes for

scaling units (CSE)'.

long Rate: the maximum refresh rate of the concerning measurement

object in the control unit. The unit is defined with parameter

'ScalingUnit'.

Description:

This optional keyword can be used to specify the maximum refresh rate in the control unit.

Example:

MAX_REFRESH 3 15 /* ScalingUnit = 1 msec --> refresh rate = 15 msec */

MAX_REFRESH 998 2 /* ScalingUnit = 998 --> Every second frame */

Code	Unit	Referred to	Comment
0	1?sec	Time	
1	10 ?sec	Time	
2	100 ?sec	Time	
3	1 msec	Time	
4	10 msec	Time	
5	100 msec	Time	
6	1 sec	Time	
7	10 sec	Time	
8	1 min	Time	
9	1 hour	Time	
10	1 day	Time	
100	Angular degrees	Angle	
101	Revolutions 360 degrees	Angle	
102	Cycle 720 degrees	Angle	e.g. in case of IC engines
103	Cylinder segment	Combustion	e.g. in case of IC engines
998	When frame available	Event	Source defined in keyword Frame
999	Always if there is new		Calculation of a new upper range limit after
	value		receiving a new partial value, e.g. when cal- culating a complex trigger condition
1000	Non deterministic		Without fixed scaling

Table 4: Codes for scaling units (CSE)

Page 144 of 277 Version 1.51 Release 2002-02-05

6.3.86 MEASUREMENT

Prototype:

/begin MEASUREMENT Name LongIdentifier Datatype Conversion Resolution

Accuracy LowerLimit UpperLimit [-> DISPLAY_IDENTIFIER]

[-> READ_WRITE]
[-> FORMAT]
[-> ARRAY_SIZE]
[-> BIT_MASK]
[-> BIT_OPERATION]

[-> BYTE_ORDER] [-> MAX_REFRESH]

[-> VIRTUAL]

[->FUNCTION_LIST] [-> ECU_ADDRESS] [-> ERROR_MASK]

[-> REF_MEMORY_SEGMENT]

{-> ANNOTATION} *
{-> IF_DATA } *
[-> MATRIX_DIM]

[-> ECU_ADDRESS_EXTENSION]

/end MEASUREMENT

Parameters:

ident Name: unique identifier in the ECU program

Note: The name of the measuement object has to be unique within all measurement objects and adjustable objects of the ASAP2 MODULE, i.e. there must not be another AXIS_PTS, CHARACTERISTIC or MEASUREMENT object with the the same identifier in the MODULE.

string LongIdentifier: comment, description

datatype Datatype: data type of the measurement

ident Conversion: Reference to the relevant record of the description of the

conversion method (see COMPU_METHOD). If there is no conversion method, as in the case of CURVE_AXIS, the parameter 'Conversion' should be set to "NO_COMPU_METHOD" (application systems must be

able to handle this case).

int Resolution: smallest possible change in bits

float Accuracy: possible variation from exact value in % float LowerLimit: plausible range of table values, lower limit float UpperLimit: plausible range of table values, upper limit

Note: The limit values are to be interpreted as physical val-

ues and not internal values.

Optional parameters

-> DISPLAY_IDENTIFIER: Can be used as a display name (alternative to the 'name'

attribute).

-> READ_WRITE: Keyword to mark this measurement object as 'writeable'.

-> FORMAT: With deviation from the display format specified with key-

word COMPU_TAB referenced by parameter <Conversion> a special display format can be specified to be used to dis-

play the measurement values.

-> ARRAY_SIZE: This keyword marks a measurement object as an array of

measurement values.

-> BIT_MASK: With deviation from the standard value 0xFFFFFFF this

parameter can be used to mask out bits.

-> BIT_OPERATION: The BIT_OPERATION keyword can be used to perform

operation on the masked out value.

-> BYTE_ORDER: With deviation from the standard value this parameter can

be used to specify the byte order (Intel format, Motorola

format)

-> MAX_REFRESH: Maximum refresh rate of this measurement in the control

unit

-> VIRTUAL: For description of a virtual measurement (see VIRTUAL)

-> ERROR_MASK: With deviation from the standard value 0x00000000 this pa-

rameter can be used to mask bits of a MEASUREMENT

which indicate that the value is in error.

-> FUNCTION_LIST: This keyword can be used to specify a list of 'functions' to

which this measurement object has been allocated.

Remark: Since ASAP2 version 1.20 the keyword FUNCTION comprises some additional features to describe functional structure and dependencies. The keyword FUNCTION_LIST is going to be canceled at ASAP2 ver-

sion 2.00.

-> IF_DATA: Date record to describe the interface specific description

data. The parameters associated with this keyword are described in A2ML by the control unit supplier or the interface

module supplier.

-> ECU_ADDRESS: Addess of the measurement in the memory of the control

unit.

-> REF_MEMORY_SEGMENT: Reference to the memory segment

which is needed if the address is not unique (this occurs in the case of lapping address ranges (overlapping memory

segments).

-> ANNOTATION: Set of notes (represented as multi-line ASCII description

texts) which are related. Can serve e.g. as application note.

-> MATRIX_DIM Shows the size and dimension of a multidimensional meas-

urement. If the MATRIX_DIM keyword is used, then the option ARRAY_SIZE is not needed. However, if the keywords ARRAY_SIZE and MATRIX_DIM are both used, the resulting value in ARRAY_SIZE must be the same as xDim * yDim *zDim for MATRIX_DIM. If the keyword is

missing the array has only one dimension with the size given at ARRAY_SIZE.

-> ECU_ADDRESS_EXTENSION: This keyword is an additional address information. For instance it can be used, to distinguish different address spaces of an ECU (multi-microcontroller devices).

Description:

The MEASUREMENT keyword is used to describe the parameters for the processing of a measurement object.

Example:

```
/* name */
/begin MEASUREMENT
                              N
                              "Engine speed"
                                            /* long identifier */
                              UWORD
                                             /* datatype */
                              R SPEED 3
                                            /* conversion */
                              2
                                             /* resolution */
                              2.5
                                            /* accuracy */
                                            /* lower limit */
                              120.0
                                             /* upper limit */
                              8400.0
      BIT MASK
                              0x0FFF
      /begin BIT_OPERATION
                              RIGHT_SHIFT 4 /*4 positions*/
                              SIGN_EXTEND
      /end BIT OPERATION
      BYTE ORDER
                              MSB FIRST
      REF_MEMORY_SEGMENT Data2
      /begin FUNCTION LIST
                             ID ADJUSTM FL ADJUSTM
      /end FUNCTION_LIST
      /begin IF_DATA ISO
                              SND 0x10 0x00 0x05 0x08 RCV 4 long
      /end IF_DATA
/end MEASUREMENT
/begin MEASUREMENT
                              VdiagStatus
                                             /* name */
                              "VdiagStatus"
                                             /* long identifier */
                              SWORD
                                             /* datatype */
                              CM_DiagSTatus /* conversion */
                              16
                                             /* resolution */
                                            /* accuracy */
                              1
                                             /* lower limit */
                              -32768
                              32767
                                            /* upper limit */
      ECU ADDRESS
                              0x003FDFE0
/end MEASUREMENT
```

/begin MEASUREMENT ECU_ADDRESS	VfSpinLoss "VfSpinLoss" UWORD CM_RPM 16 1 -4096 4095.875 0x003FE380	/* name */ /* long identifier */ /* datatype */ /* conversion */ /* resolution */ /* accuracy */ /* lower limit */ /* upper limit */
/end MEASUREMENT		

Page 148 of 277 Version 1.51 Release 2002-02-05

6.3.87 MEMORY_LAYOUT

Prototype:

/begin MEMORY_LAYOUT PrgType Address Size Offset

{ -> IF_DATA}*

/end MEMORY_LAYOUT

Parameters:

enum PrgType: Description of the program segments divided into:

PRG_CODE = program code PRG_DATA = program data

PRG_RESERVED = other

long Address: Initial address of the program segment to be described.

long Size: Length of the program segment to be described.

long [5] Offset: BOSCH feature: In special ECU programs, so-called 'mir-

rored segments' may occur (see Figure 8). A mirrored segment is a copy of another program segment. During adjustment the data changes are introduced in the relevant mem-

ory segment as well as in all mirrored segments.

Optional parameters

-> IF_DATA: Date record to describe the interface specific description

data used at ASAP1b device. The parameters associated with this keyword are described in the ASAP2 metalanguage (in short A2ML) by the control unit supplier or the interface

module supplier.

Description:

This data record is used to describe an ECU program. The description indicates how the emulation memory is divided into the individual segments.

Example:

See also Figure 8.

/begin MEMORY_LAYOUT	PRG_RES	ERVED					
	0x0000	0x0400	-1	-1	-1	-1	-1
/end MEMORY_LAYOUT							
/begin MEMORY_LAYOUT	PRG_COI	DΕ					
	0x0400	0x3C00	-1	-1	-1	-1	-1
/end MEMORY_LAYOUT							
/begin MEMORY_LAYOUT	PRG_DAT	ГΑ					
	0x4000	0x0200	0x10000	0x20000	-1	-1	-1
/end MEMORY_LAYOUT							
/begin MEMORY_LAYOUT	PRG_DAT	ГΑ					
	0x4200	0x0E00	-1	-1	-1	-1	-1

/end MEMORY_LAYOUT /begin MEMORY_LAYOUT PRG_DATA 0x14200 0x0E00 -1 -1 -1 -1 -1 /end MEMORY_LAYOUT /begin MEMORY_LAYOUT PRG_DATA 0x24200 0x0E00 -1 -1 -1 -1 /end MEMORY_LAYOUT

Figure 8: Memory layout (mirrored segments)

6.3.88 MEMORY_SEGMENT

Prototype:

/begin MEMORY_SEGMENT Name LongIdentifier PrgType MemoryType

Attribute Address Size Offset

{ -> IF_DATA}*

/end MEMORY_SEGMENT

Parameters:

ident Name: identifier, reference to IF_DATA Blob is based on this

'name'

string LongIdentifier: comment, description

enum PrgType: PrgTypes:

CODE = program code

DATA = program data allowed for online

calbration

OFFLINE_DATA = program data allowed only for offline

calibration

VARIABLES = program variables

SERAM = program data for serial emulation

RESERVED = reserved segments

CALIBRATION VARIABLES

= Values which are available in the ECU but do not exist in the Hex-file. There is no upload required to get access to the ECU data. The ECU will never be touched by the instrumentation

tool except by upload.

EXCLUDE_FROM_FLASH

= values existing in the ECU but not droped down in the binary file. There should no upload be needed to get access to the ECU data. The ECU will never be touched by the instrumentation

tool except by upload.

enum MemoryType: Description of the type of memory used

RAM = segment of RAM
EEPROM = segment of EEPROM
EPROM = segment of EPROM
ROM = segment of ROM
REGISTER = segment of CPU registers
FLASH = segment of FLASH

enum Attribute: attributes:

INTERN = internal segment EXTERN = external segment

long Address: Initial address

long Size: Length of the segment

long[5] Offset: Offset address of mirrored segments

Optional Parameters:

-> IF_DATA: Date record to describe the interface specific description

data used at ASAP1b device. The parameters associated with this keyword are described in the ASAP2 metalanguage (in short A2ML) by the control unit supplier or the interface

module supplier

Description:

The new keyword MEMORY_SEGMENT is used to replace the existing keyword MEMORY_LAYOUT. The advantages of MEMORY_SEGMENT are that they are given a name which can be used for references from IF_DATA Blobs and the more accurate description of the memory by memory types and attributes (INTERN and EXTERN).

Used in MOD_PAR. The keywords MEMORY_SEGMENT and MEMORY_LAYOUT can be used in parallel. The parameter Offset is to be used (as within the former MEMORY_LAYOUT) to describe several mirrored segments.

MEMORY_SEGMENTS with the same MemoryType and the same Attribute may not overlap. Also all MEMORY_SEGMENTS with the PrgType CODE, DATA, OFFLINE_DATA, RESERVED may not overlap mutually to get a linear address space for access on calibration data. All other MEMORY_SEGMENTS with different MemoryType or different Attribute may however overlap, e.g. internal and external memory segments.

The following table gives a description for some useful combinations of PrgType and MemoryType and their meanings:

Combination	Meaning
CODE / FLASH	Executable code, has to be preserved for download and HEX-
	file generation
DATA / FLASH or	Calibration data, can be modified by the user via calibration
DATA / EEPROM	systems.
RESERVED /	ECU specific code or data, has to be preserved for HEX-file
FLASH	generation but not for download.
DATA / RAM	Calibration data, will be modified by ECU and calibration
	systems.
OFFLINE_DATA /	Calibration data, will be modified only without ECU access,
FLASH	online calibration is not allowed.
VARIABLES /	RAM of the ECU for variables (measurement values and oth-
RAM	ers).
REGISTER / RAM	RAM of the ECU for special purpose values.

SERAM / RAM

ECU-RAM section available for serial application. For usage see also: CALIBRATION_METHOD.

Note: The MemoryType FLASH has been used as synonym for EPROM and ROM

Example:

/begin MEMORY_SEGMENT Data1 "Data internal Flash"
DATA FLASH INTERN 0x4000 0x0200 0x10000 -1 -1 -1 -1 -1 /end MEMORY_SEGMENT

/begin MEMORY_SEGMENT Data2 "Data external Flash" DATA FLASH EXTERN 0x7000 0x2000 -1 -1 -1 -1 -1 /end MEMORY_SEGMENT

/begin MEMORY_SEGMENT Code1 "Code external Flash" CODE FLASH EXTERN 0x9000 0x3000 -1 -1 -1 -1 -1 /end MEMORY_SEGMENT

/begin MEMORY_SEGMENT ext_Ram "external RAM"
DATA RAM EXTERN 0x30000 0x1000 -1 -1 -1 -1 -1 /end MEMORY_SEGMENT

/begin MEMORY_SEGMENT int_Ram "internal RAM" DATA RAM INTERN 0x0000 0x0200 -1 -1 -1 -1 -1 /end MEMORY_SEGMENT

/begin MEMORY_SEGMENT Seram1 "emulation RAM 1" SERAM RAM EXTERN 0x7000 0x1000 -1 -1 -1 -1 -1 /end MEMORY_SEGMENT

/begin MEMORY_SEGMENT Seram2 "emulation RAM 2" SERAM RAM INTERN 0x8000 0x1000 -1 -1 -1 -1 -1 /end MEMORY_SEGMENT

6.3.89 MODULE

Prototype:

/begin MODULE Name LongIdentifier

[-> A2ML]

 $[-> MOD_PAR]$

[-> MOD_COMMON]

 $\{-> IF_DATA\}*$

{-> CHARACTERISTIC}*

 $\{-> AXIS_PTS\}*$

{-> MEASUREMENT}*
{-> COMPU_METHOD}*
{-> COMPU_TAB}*
{-> COMPU_VTAB}*

{-> COMPU_VTAB_RANGE}*

{-> FUNCTION}*
{-> GROUP}*

{-> RECORD_LAYOUT}*
[-> VARIANT_CODING]

[-> FRAME]

{-> USER_RIGHTS}*

{-> UNIT}*

/end MODULE

Parameters:

ident Name: ASAP device identifier string LongIdentifier: comment, description

Optional parameters:

-> A2ML: Format description of the interface-specific parameters.

Attention: The interface-specific parameters must be specified directly after the last mandatory parameter 'long identi-

fier'.

/begin MODULE ENGINE_ECU "Comment"

/begin A2ML /end A2ML

:

/end MODULE

-> MOD_PAR: Keyword for the description of module-specific (ASAP de-

vice-specific) management data.

-> MOD_COMMON: Module-wide description data

-> IF_DATA: Data record for the description of interface-specific descrip-

tion data (BLOB: binary large object). The parameters associated with this keyword are described in the ASAP2 metalanguage (in short A2ML) by the ECU supplier or the inter-

face module supplier.

-> CHARACTERISTIC: Keyword for the description of the adjustable objects

-> AXIS_PTS: Keyword for the description of the axis points

-> MEASUREMENT: Keyword for the description of the measurement objects -> COMPU_METHOD: Keyword for the description of the conversion method -> COMPU_TAB: Keyword for the description of the conversion tables

-> COMPU_VTAB: Keyword for the description of the verbal conversion tables -> COMPU_VTAB_RANGE: Keyword for the description of range-based verbal

conversion tables

-> FUNCTION: Keyword for the description of the functions

-> GROUP: Keyword for the declaration of groups -> FRAME: Keyword for the declaration of frames

-> RECORD_LAYOUT: Keyword for the description of the record layouts

-> VARIANT_CODING: Keyword to describe the variant coding of adjustable

objects.

-> USER_RIGHTS: Keyword to reference the groups which constitute access

rights.

->UNIT: Keyword for the description of the measurement units

Description:

The MODULE keyword describes a complete ASAP device with all adjustable and measurement objects, conversion methods and functions. To this, the format description of the interface-specific parameters by the ECU supplier must be added.

<u>Note</u>: It <u>is</u> possible to have a measurement object and a computation method with equal names within the same MODULE. It <u>is NOT</u> possible to have a measurement object and a calibration object with equal names within the same MODULE.

Example:

see part C: file engine_ecu.a2l, abs_ecu.a2l

6.3.90 MOD_COMMON

Prototype:

/begin MOD_COMMON Comment

[-> S_REC_LAYOUT]

[-> DEPOSIT]

[-> BYTE_ORDER] [-> DATA_SIZE]

[->ALIGNMENT_BYTE] [->ALIGNMENT_WORD] [->ALIGNMENT_LONG]

[->ALIGNMENT_FLOAT32_IEEE] [->ALIGNMENT_FLOAT64_IEEE]

/end MOD_COMMON

Parameters:

string Comment: comment, description

Optional parameters:

-> S_REC_LAYOUT: Reference to the standard record layout

-> DEPOSIT: Standard deposit mode for axis points: ASBOLUTE or

DIFFERENCE

-> BYTE_ORDER: Byte order for the whole ASAP device. If this optional pa-

rameter is not declared, MSB_LAST (Intel format) is used

as a default.

-> DATA SIZE: Data size in bits

-> ALIGNMENT_BYTE: Declares the alignment of bytes in the complete module.

The alignment is 1 if parameter is missing.

-> ALIGNMENT_WORD: Declares the alignment of words in the complete module.

The alignment is 2 if parameter is missing.

-> ALIGNMENT_LONG: Declares the alignment of longs in the complete module. The alignment is 4 if parameter is missing.

-> ALIGNMENT_FLOAT32_IEEE: Declares the alignment of 32 bit floats in the complete module. The alignment is 4 if parameter is missing.

-> ALIGNMENT_FLOAT64_IEEE: Declares the alignment of 64 bit floats in the complete module. The alignment is 4 if parameter is missing.

Description:

This keyword is used to specify general description data for the module, which are then used as standard in this module. Should other methods be used for an object (e.g. adjustable object or measurement object) of this module, this must then be indicated in the description of the relevant object.

Example:

/begin MOD COMMON "Characteristic maps always deposited in same mode"

S_REC_LAYOUT SIEMENS_ABL DEPOSIT ABSOLUTE BYTE_ORDER MSB_LAST

DATA_SIZE 16 ALIGNMENT_BYTE 2

/end MOD_COMMON

6.3.91 MOD_PAR

Prototype:

/begin MOD_PAR Comment

[-> VERSION]

{-> ADDR_EPK}*

[-> EPK]

[-> SUPPLIER]
[-> CUSTOMER]
[-> CUSTOMER_NO]

[-> COSTONIEK_NO

[-> USER]

[-> PHONE_NO]

[-> ECU]

[-> CPU_TYPE]

[-> NO_OF_INTERFACES]

[-> ECU_CALIBRATION_OFFSET] {-> CALIBRATION_METHOD}*

{-> MEMORY_LAYOUT}*
{-> MEMORY_SEGMENT}*
{-> SYSTEM_CONSTANT}*

/end MOD_PAR

Parameters:

string Comment: comment, description relating to the ECU-specific manage-

ment data

Optional parameters:

-> CALIBRATION_METHOD: Declares the implemented calibration methods in the control unit.

-> MEMORY_SEGMENT: Declares the available memory segments.

-> VERSION: Version identifier

-> ADDR_EPK: Address of EPROM identifier

-> EPK: EPROM identifier

-> SUPPLIER: Manufacturer or supplier

-> CUSTOMER: Firm or customer -> CUSTOMER NO: Customer number

-> USER: User

-> PHONE_NO: Phone number of the applications engineer responsible

-> ECU: Control unit

-> CPU TYPE: CPU

-> ECU_CALIBRATION_OFFSET: Offset that has to be added to each address of a

characteristic.

-> NO_OF_INTERFACES: Number of interfaces -> MEMORY_LAYOUT: Memory layout

-> SYSTEM_CONSTANT: System-defined constants

Description:

The MOD_PAR keyword describes the management data to be specified for an ASAP device. Except for the comment all parameters are optional.

Example:

```
/begin MOD_PAR
                         "Note: Provisional release for test purposes only!"
                         "Test version of 01.02.1994"
      VERSION
     ADDR EPK
                         0x45678
                         EPROM identifier test
     EPK
                         "Mustermann"
     SUPPLIER
                         "LANZ-Landmaschinen"
     CUSTOMER
     CUSTOMER_NO
                         "0123456789"
     USER
                         "A.N.Wender"
                         "09951 56456"
     PHONE_NO
                         "Engine control"
     ECU
     CPU_TYPE
                         "Motorola 0815"
     NO OF INTERFACES 2
     /begin MEMORY_SEGMENT ext_Ram "external RAM"
           DATA RAM EXTERN 0x30000 0x1000 -1 -1 -1 -1 -1
           /begin IF_DATA ASAP1B_KWP2000
           /* ADDRESS_MAPPING
                                                                 length */
                                   orig_addr
                                               mapping_addr
             ADDRESS_MAPPING
                                   0x4000
                                               0x6000
                                                                 0x0200
           /end IF_DATA
     /end MEMORY SEGMENT
     /begin MEMORY_LAYOUT PRG_RESERVED
                         0x0000 0x0400 -1 -1 -1 -1 -1
     /end MEMORY_LAYOUT
     /begin MEMORY_LAYOUT PRG_CODE
                         0x0400 0x3C00 -1 -1 -1 -1 -1
     /end MEMORY_LAYOUT
     /begin MEMORY_LAYOUT PRG_DATA
                         0x4000 0x5800 -1 -1 -1 -1 -1
     /end MEMORY LAYOUT
     SYSTEM CONSTANT "CONTROLLERx constant1" "0.33"
      SYSTEM CONSTANT "CONTROLLERx constant2" "2.79"
/end MOD_PAR
```

6.3.92 MONOTONY

Prototype:

MONOTONY Monotony

Parameters:

enum Monotony: Description of the monotony:

MON_INCREASE: monotonously increasing
MON_DECREASE: monotonously decreasing
STRICT_INCREASE: strict monotonously increasing
STRICT_DECREASE: strict monotonously decreasing

Description:

This keyword can be used to specify the monotony of an adjustment object. The monotony is always related to an axis (see keyword "AXIS_DESCR"). With each adjustment operation the application system (user interface) verifies whether the monotony is guaranteed. Changes that do not correspond to the monotony are not allowed.

Note:

Monotony is used in reference to internal values, not physical values.

Example:

MONOTONY MON_INCREASE

6.3.93 MULTIPLEX

Prototype:

MULTIPLEX Startbit DataSize Tag

Parameters:

int Startbit: The 'mode-signal' is included in CAN-message at offset

'Startbit' (in bits, index of first bit of message data is 0).

int DataSize: Size of 'mode-signal'.

long Tag: The corresponding measurement data are valid only if the

value of 'mode'signal' included in CAN-message agrees

with the value specified with 'Tag'.

Description:

In 'Standard-Mode' a fixed data segment is assigned to each data object of CAN-message. 'Multiplexing' is a special method to transmit different data objects using the same CAN-message data segment. For that purpose an additional 'mode-signal' is used indicating the data object contained in multiplexed data segment.

Example:

/begin IF_DATA ASAP1B_CAN

/begin KP_BLOB "MOTOINFO" 0x123 8 "MOTOR-SG" 5 8

MULTIPLEX 48 16 0x4321

/end KP_BLOB

/end IF_DATA

This example describes the measurement object "MOTO-INFO" contained in data segment bit5...bit12 of CAN-message transmitted from "MOTOR-SG". This data segment is a multiplexed segment. That means, that the measurement object "MOTO-INFO" is contained in data segment bit5...bit12 only if the 'mode-signal' (data segment bit48...bit63) agrees to the value 0x4321.

6.3.94 NO_AXIS_PTS_X/_Y

Prototype:

NO_AXIS_PTS_X/_Y/_Z Position Datatype

Parameters:

int Position: Position of the number of axis points in the deposit structure

datatype Datatype: Data type of the number of axis points

Description:

Description of the number of axis points in an adjustable object

Example:

NO_AXIS_PTS_X 2 UWORD

6.3.95 NO_OF_INTERFACES

Prototype:

NO_OF_INTERFACES Num

Parameters:

int Num: Number of interfaces

Description:

Keyword for the number of interfaces

Example:

NO_OF_INTERFACES 2

6.3.96 NO_RESCALE_X/_Y/_Z

Prototype:

NO_RESCALE_X/_Y/_Z Position Datatype

Parameters:

int Position: position of the actual number of rescale axis point value

pairs in the deposit structure (description of sequence of

elements in the data record).

datatype DataType: Data type of the number of rescale axis point value pairs

Description:

Actual number of rescaling axis point value pairs. Used in RECORD_LAYOUT.

Example:

NO_RESCALE_X 1 UBYTE

6.3.97 NUMBER

Prototype:

NUMBER Number

Parameters:

int Number: Number of values (array of values) or characters (string).

Description:

In the CHARACTERISTIC data record, this keyword can be used to specify the number of values and characters for the adjustable object types 'array of values' (VAL_BLK) and 'string' (ASCII) respectively.

<u>Note</u>: The use of this keyword should be replaced by MATRIX_DIM.

Example:

NUMBER 7

6.3.98 OFFSET_X/_Y/_Z

Prototype:

OFFSET_X/_Y/_Z Position Datatype

Parameters:

int Position: Position of the 'offset' parameter in the deposit structure to

compute the X-axis points for fixed characteristic curves

and fixed characteristic maps.

datatype Datatype: Data type of the 'offset' parameter.

Description:

Description of the 'offset' parameter in the deposit structure to compute the axis points for fixed characteristic curves and fixed characteristic maps (see also keyword FIX_AXIS_PAR). The axis points for fixed characteristic curves or fixed characteristic maps are derived from the two 'offset' and 'shift' parameters as follows:

$$X_i = Offset + (i - 1)*2^{Shift}$$
 $i = \{1...number of axispts \}$

or

$$Y_k = Offset + (k - 1)*2^{Shift}$$
 $k = \{ 1...number of axispts \}$

or

$$Z_m = Offset + (m - 1)*2^{Shift}$$
 $m = \{1...number of axispts \}$

Example:

OFFSET_X 16 UWORD

6.3.99 OUT_MEASUREMENT

Prototype:

/begin OUT_MEASUREMENT { Identifier } * /end OUT_MEASUREMENT

Parameters:

ident Identifier: Identifier of output quantity of respective function (reference

to measurement object).

Description:

This keyword can be used to define output quantities of respective function. *Note*: OUT_MEASUREMENT may only refer to objects of type MEASUREMENT.

Example:

/begin OUT_MEASUREMENT /end OUT_MEASUREMENT OK_FLAG SENSOR_FLAG

6.3.100 PHONE_NO

Prototype:

PHONE_NO Telnum

Parameters:

string Telnum: phone number

Description:

This keyword is used to specify a phone number, e.g. of the applications engineer responsible.

Example:

PHONE_NO "09498 594562"

6.3.101 PROJECT

Prototype:

/begin PROJECT Name LongIdentifier

[-> HEADER]

{-> MODULE}*

/end PROJECT

Parameters:

ident Name: Project identifier in the program

string LongIdentifier: Comment, description

Optional parameters:

-> HEADER: Project header

-> MODULE: This keyword is used to describe the module (ASAP device)

belonging to the project.

Description:

Project description with project header and all ASAP devices belonging to the project. The PROJECT keyword covers the description of several control units, and possibly also of several suppliers.

Example:

/begin PROJECT RAPE-SEED ENGINE

"Engine tuning for operation with rape oil"

/begin HEADER "see also specification XYZ of 01.02.1994"

VERSION "BG5.0815"

PROJECT_NO M4711Z1

/end HEADER

/include ENGINE_ECU.A2L /* Include for engine control module */

/include ABS_ECU.A2L /* Include for ABS module */

/end PROJECT

6.3.102 PROJECT_NO

Prototype:

PROJECT_NO ProjectNumber

Parameters:

ident ProjectNumber: Short identifier of the project number

Description:

String used to identify the project number with maximum MAX_IDENT (at present $MAX_IDENT = 10$) characters.

Example:

PROJECT_NO M4711Z1

6.3.103 RASTER

Prototype:

/begin RASTER RasterName ShortName RasterID ScalingUnit Rate

/end RASTER

Parameters:

string RasterName: Event channel name (name for one sample rate of an ECU

supported data acquisition mechanism, i.e. the ASAP1a-

CCP)

string ShortName: Short display name of the event channel name.

Recommendation: The string length shall not exceed 9

characters.

int RasterID: Event channel No., e.g. for ASAP1a-CCP START_STOP.

This parameter can be used as a reference, therefore the

number must be unique among all declared RASTER.

int ScalingUnit: Period definition: basic scaling unit (see Table 4: Codes

for scaling unit)

long Rate: ECU sample rate of the event channel, period definition

based on the scaling unit

Description:

Applied for ECU supported data acquisition mechanisms, i.e. the DAQ lists of the ASAP1a-CCP (CAN Calibration Protocol) or the monitoring copy routines for the microcontroller internal RAM memory when using a memory probe. Such mechanisms typically provide "services" based on a sample rate (periodic event) or a cyclic event.

Each available "service" can be described by one RASTER (data acquisition event supported by the ECU) within IF_DATA(Module) and then can be referenced within the ASAP1b-QP_BLOB statement of the SOURCE keyword.

<u>Note</u>: This keyword is only used in the context of the IF_DATA(MODULE) applied for the ASAP1a-CCP.

Example:

/begin RASTER "Segment synchronous cylinder" "CYL1" 1 103 1 /end RASTER

6.3.104 READ_ONLY

Prototype:

READ_ONLY

Description:

This keyword is used to indicate that an adjustable object cannot be changed (but can only be read).

Example:

```
/begin CHARACTERISTIC KI "I-share for speed limitation"
```

VALUE /* type: fixed value */

/* interface-specific parameters: address location, addressing */
/begin IF_DATA "DIM" EXTERNAL DIRECT /end IF_DATA

/begin FUNCTION_LIST V_LIM /* Reference to functions */
/end FUNCTION_LIST
READ_ONLY
/end CHARACTERISTIC

6.3.105 READ_WRITE

Prototype:

READ_WRITE

Description:

This keyword is used to mark a measurement object to be writeable.

Example:

/end MEASUREMENT

/begin MEASUREMENT	N	/* name */
	"Engine speed"	/* long identifier */
	UWORD	/* datatype */
	R_SPEED_3	/* conversion */
	2	/* resolution */
	2.5	/* accuracy */
	120.0	/* lower limit */
	8400.0	/* upper limit */
READ_WRITE		
/begin IF_DATA ISO	SND 0x10 0x00 0x05 0x08 RCV 4 long /end IF_DATA	

6.3.106 RECORD_LAYOUT

Prototype:

/begin RECORD_LAYOUT Name

[-> FNC_VALUES]

[-> IDENTIFICATION]

[-> AXIS_PTS_X]

[-> AXIS_PTS_Y]

 $[-> AXIS_PTS_Z]$

[-> AXIS_RESCALE_X]

[-> AXIS_RESCALE_Y]

[-> AXIS_RESCALE_Z]

[-> NO_AXIS_PTS_X]

[-> NO_AXIS_PTS_Y]

[-> NO_AXIS_PTS_Z]

[-> NO_RESCALE_X]

[-> NO_RESCALE_Y]

[-> NO_RESCALE_Z]

[-> FIX_NO_AXIS_PTS_X]

[-> FIX NO AXIS PTS Y]

[-> FIX_NO_AXIS_PTS_Y]

[-> SRC_ADDR_X]

 $[-> SRC_ADDR_Y]$

 $[-> SRC_ADDR_Z]$

[-> RIP_ADDR_X]

[-> RIP_ADDR_Y]

 $[-> RIP_ADDR_Z]$

 $[-> RIP_ADDR_W]$

[-> SHIFT_OP_X]

[-> SHIFT_OP_Y]

 $[-> SHIFT_OP_Z]$

[-> OFFSET_X]

[-> OFFSET_Y]

[-> OFFSET_Z]

 $[-> DIST_OP_X]$

 $[-> DIST_OP_Y]$

 $[-> DIST_OP_Z]$

[->ALIGNMENT_BYTE]

[->ALIGNMENT_WORD]

[->ALIGNMENT_LONG]

[->ALIGNMENT_FLOAT32_IEEE]

[->ALIGNMENT_FLOAT64_IEEE]

{-> RESERVED}*

/end RECORD LAYOUT

Parameters:

ident Name: Identification of the record layout, which is referenced via

this 'name'.

Note:

The name of the record layout has to be unique within all record layouts of the ASAP2 MODULE, i.e. there must not be another RECORD_LAYOUT object with the same

identifier in the MODULE.

Optional parameters:

-> FNC_VALUES: This keyword describes how the table values (function val-

ues) of the adjustable object are deposited in memory.

-> IDENTIFICATION: This keyword is used to describe that an 'identifier' (see

BOSCH: C-DAMOS) is deposited in a specific position in

the adjustable object.

only characteristic curves or characteristic maps:

-> AXIS_PTS_X: This keyword describes where the X-points are deposited in

memory.

-> AXIS_PTS_Y: This keyword describes where the Y-points are deposited in

memory.

-> AXIS_PTS_Z: This keyword describes where the Z-points are deposited in

memory.

-> NO_AXIS_PTS_X: This keyword describes in which position the parameter

'number of X-axis points' is deposited in memory.

-> NO_AXIS_PTS_Y: This keyword describes in which position the parameter

'number of Y-axis points' is deposited in memory.

-> NO_AXIS_PTS_Z: This keyword describes in which position the parameter

'number of Z-axis points' is deposited in memory.

-> FIX_NO_AXIS_PTS_X: This keyword indicates that all characteristic curves or

characteristic maps relating to the X-axis points are allocated a fixed number of axis points. In a RECORD_LAYOUT data record, this keyword may not be used simultaneously with the keyword

'NO_AXIS_PTS_X(!!).

-> FIX_NO_AXIS_PTS_Y: This keyword indicates that all characteristic curves or

characteristic maps relating to the Y-axis points are allocated a fixed number of axis points. In a RECORD_LAYOUT data record, this keyword may not be used simultaneously with the keyword 'NO_AXIS_PTS_Y

(!!).

-> FIX_NO_AXIS_PTS_Z: This keyword indicates that all characteristic curves or

characteristic maps relating to the Z-axis points are allocated a fixed number of axis points. In a RECORD_LAYOUT data record, this keyword may not be used simultaneously

with the keyword 'NO AXIS PTS Z (!!).

-> SRC_ADDR_X: This keyword describes in which position the address of the

input quantity of the X-axis points is deposited in memory.

-> SRC_ADDR_Y: This keyword describes in which position the address of the

input quantity of the Y-axis points is deposited in memory.

-> SRC_ADDR_Z:

This keyword describes in which position the address of the input quantity of the Z-axis points is deposited in memory.

-> RIP_ADDR_X:

Future record layouts: When the ECU program accesses a characteristic curve it determines an output value based on an input quantity. First it searches the adjacent axis points of the current value of the input quantities (X_i, X_{i+1}) . The output value is derived from these axis points and the allocated table values by means of interpolation. This produces an 'intermediate result' known as the RIP_X quantity (Result of Inter- polation), which describes the relative distance between the current value and the adjacent axis points:

 $RIP_X = (X(t) - X_i)/(X_{i+1} - X_i).$

This keyword is used to describe in which position the address of this RIP_X quantity is deposited, which contains the current value of the ECU-internal interpolation.

-> RIP_ADDR_Y/_Z:

See RIP_ADDR_Y, but for Y/Z-axis points.

-> RIP_ADDR_W:

Final result (table value) of the ECU-internal inter- polation.

-> RESERVED:

This keyword can be used to skip specific elements in the adjustable object whose meaning must not be interpreted by the application system (e.g. for extensions: new parameters in the adjustable objects).

- -> AXIS_RESCALE_X: This keyword describes where the rescale mapping for the x- axis is deposited in memory.
- -> AXIS_RESCALE_Y: This keyword describes where the rescale mapping for the y-axis is deposited in memory.
- -> AXIS_RESCALE_Z: This keyword describes where the rescale mapping for the z-axis is deposited in memory.
- -> NO_RESCALE_X: This keyword describes at which position the parameter 'actual number of rescale pairs' for the x-axis is deposited (see AXIS_RESCALE).
- -> NO_RESCALE_Y: This keyword describes at which position the parameter 'actual number of rescale pairs' for the y-axis is deposited (see AXIS_RESCALE).
- -> NO_RESCALE_Z: This keyword describes at which position the parameter 'actual number of rescale pairs' for the z-axis is deposited (see AXIS RESCALE).
- -> ALIGNMENT_BYTE: Declares the alignment of bytes for all characteristics who use this record layout.. The alignment is 1 if parameter is missing.
- -> ALIGNMENT_WORD: Declares the alignment of words for all characteristics who use this record layout. The alignment is 2 if parameter is missing.
- -> ALIGNMENT_LONG: Declares the alignment of longs for all characteristics who use this record layout. The alignment is 4 if parameter is missing.
- -> ALIGNMENT_FLOAT32_IEEE: Declares the alignment of 32 bit floats for all characteristics who use this record layout. The alignment is 4 if parameter is missing.

-> ALIGNMENT_FLOAT64_IEEE: Declares the alignment of 64 bit floats for all characteristics who use this record layout. The alignment is 4 if parameter is missing.

Only for fixed curves or fixed maps:

-> SHIFT_OP_X: Shift operand to compute the X-axis points
-> SHIFT_OP_Y: Shift operand to compute the Y-axis points
-> SHIFT_OP_Z: Shift operand to compute the Z-axis points
-> OFFSET_X: Offset to compute the X-axis points
-> OFFSET_Y: Offset to compute the Y-axis points
-> OFFSET_Z: Offset to compute the Z-axis points
-> DIST_OP_X: 'Distance' parameter to compute the X-axis points

-> DIST_OP_X: Distance parameter to compute the X-axis points
-> DIST_OP_Y: 'Distance' parameter to compute the Y-axis points
-> DIST_OP_Z: 'Distance' parameter to compute the Y-axis points

Description:

The 'RECORD_LAYOUT' keyword is used to specify the various record layouts of the adjustable objects in the memory. The structural buildup of the various adjustable object types must be described in such a way that a standard application system will be able to process all adjustable object types (reading, writing, operating point display etc.).

In particular, if the ALTERNATE option is used with FNC_VALUES, the position parameter determines the order of values and axis points.

Important:

To describe the record layouts, use is made of a predefined list of parameters which may be part of an adjustable object (characteristic) in the emulation memory. This list represents the current status of the record layouts. With each change or extension of the record layouts contained in this predefined list of parameters the ASAP2 description file format must be modified accordingly.

Example:

/begin RECORD_LAYOUT FNC_VALUES AXIS_PTS_X AXIS_PTS_Y NO_AXIS_X NO_AXIS_Y SRC_ADDR_X SRC_ADDR_Y ALIGNMENT_BYTE /end RECORD_LAYOUT	DAMOS_KF 7 SWORD COLUMN_DIR DIRECT 3 SWORD INDEX_INCR DIRECT 6 UBYTE INDEX_INCR DIRECT 2 UBYTE 5 UBYTE 1 4 2
/begin RECORD_LAYOUT NO_RESCALE_X RESERVED AXIS_RESCALE_X	RESCALE_SST 1 UBYTE 2 BYTE 3 UBYTE 5 INDEX_INCR DIRECT

/end RECORD_LAYOUT

/begin RECORD_LAYOUT SHORTINT

FNC_VALUES 1 SBYTE ROW_DIR DIRECT

/end RECORD_LAYOUT

/begin RECORD_LAYOUT BYTE

FNC_VALUES 1 UBYTE ROW_DIR DIRECT

/end RECORD_LAYOUT

/begin RECORD_LAYOUT INTEGER

FNC_VALUES 1 SWORD ROW_DIR DIRECT

/end RECORD_LAYOUT

/begin RECORD_LAYOUT WORD

FNC_VALUES 1 UWORD ROW_DIR DIRECT /end RECORD_LAYOUT

/begin RECORD_LAYOUT LONGINT

FNC_VALUES 1 SLONG ROW_DIR DIRECT

/end RECORD_LAYOUT

/begin RECORD_LAYOUT LONGWORD

FNC_VALUES 1 ULONG ROW_DIR DIRECT

/end RECORD_LAYOUT

/begin RECORD_LAYOUT 2D_structure_table_int

NO_AXIS_PTS_X 1 UWORD

FNC_VALUES 2 SWORD ROW_DIR DIRECT

/end RECORD_LAYOUT

/begin RECORD_LAYOUT 2D_structure_table_word

NO AXIS PTS X 1 UWORD

FNC_VALUES 2 UWORD ROW_DIR DIRECT

/end RECORD_LAYOUT

/begin RECORD_LAYOUT 2D_structure_table_byte

NO_AXIS_PTS_X 1 UBYTE RESERVED 2 BYTE

FNC VALUES 3 UBYTE ROW DIR DIRECT

/end RECORD_LAYOUT

/begin RECORD_LAYOUT 2D_structure_table_shortint

NO_AXIS_PTS_X 1 UBYTE RESERVED 2 BYTE

FNC_VALUES 3 SBYTE ROW_DIR DIRECT

/end RECORD_LAYOUT

/begin RECORD_LAYOUT 3D_structure_table_int NO_AXIS_PTS_X 1 UWORD NO_AXIS_PTS_Y 2 UWORD FNC_VALUES 3 SWORD ROW_DIR DIRECT /end RECORD_LAYOUT /begin RECORD_LAYOUT 3D_structure_table_word NO_AXIS_PTS_X 1 UWORD NO_AXIS_PTS_Y 2 UWORD FNC_VALUES 3 UWORD ROW_DIR DIRECT /end RECORD_LAYOUT /begin RECORD LAYOUT 3D_structure_table_byte NO_AXIS_PTS_X 1 UBYTE NO_AXIS_PTS_Y 2 UBYTE 3 BYTE **RESERVED** FNC_VALUES 4 UBYTE ROW_DIR DIRECT /end RECORD_LAYOUT /begin RECORD_LAYOUT 3D_structure_table_shortint NO_AXIS_PTS_X 1 UBYTE NO_AXIS_PTS_X 2 UBYTE **RESERVED** 3 BYTE FNC_VALUES 4 SBYTE ROW_DIR DIRECT /end RECORD_LAYOUT /begin RECORD_LAYOUT 2D_array_table_int FNC_VALUES 1 SWORD ROW_DIR DIRECT /end RECORD_LAYOUT /begin RECORD_LAYOUT 2D_array_table_word FNC_VALUES 1 UWORD ROW_DIR DIRECT /end RECORD_LAYOUT /begin RECORD_LAYOUT 2D_array_table_byte FNC_VALUES 1 UBYTE ROW_DIR DIRECT /end RECORD_LAYOUT /begin RECORD_LAYOUT 2D_array_table_shortint FNC VALUES 1 SBYTE ROW DIR DIRECT /end RECORD_LAYOUT /begin RECORD_LAYOUT 3D array table int 1 SWORD ROW_DIR DIRECT FNC_VALUES /end RECORD_LAYOUT /begin RECORD_LAYOUT 3D_array_table_word FNC_VALUES 1 UWORD ROW_DIR DIRECT /end RECORD_LAYOUT

/begin RECORD_LAYOUT FNC_VALUES /end RECORD_LAYOUT 3D_array_table_byte 1 UBYTE ROW_DIR DIRECT

/begin RECORD_LAYOUT FNC_VALUES

3D_array_table_shortint
1 SBYTE ROW_DIR DIRECT

/end RECORD_LAYOUT

Page 180 of 277 Version 1.51 Release 2002-02-05

6.3.107 REF_CHARACTERISTIC

Prototype:

/begin REF_CHARACTERISTIC { Identifier } *
/end REF_CHARACTERISTIC

Parameters:

ident Identifier: Identifier of those adjustable objects that are referred to re-

spective function or group.

Description:

This keyword can be used to define some adjustable objects that are referenced in respective function or group.

<u>Note</u>: REF_CHARACTERISTIC may only refer to objects of type CHARACTERISTIC or AXIS_PTS.

Example:

/begin REF_CHARACTERISTIC ENG_SPEED_CORR_CURVE /end REF_CHARACTERISTIC

6.3.108 REF_GROUP

Prototype:

/begin REF_GROUP { Identifier } *

/end REF_GROUP

Parameters:

ident Identifier: Identifier of those groups which are refered in

USER_RIGHTS

Description:

This keyword can be used to refer groups which control the access rights of users logging into an .MCD system.

Example:

/begin REF_GROUP GROUP_1 GROUP_2

/end REF_GROUP

6.3.109 REF_MEASUREMENT

Prototype:

/begin REF_MEASUREMENT { Identifier } *
/end REF_MEASUREMENT

Parameters:

ident Identifier: Identifier of those measurement quantities which are refered

to the group.

Description:

This keyword can be used to define measurement quantities which are member of the respective function.

Example:

/begin REF_MEASUREMENT LOOP_COUNTER TEMPORARY_1 /end REF_MEASUREMENT

6.3.110 REF_MEMORY_SEGMENT

Prototype:

REF_MEMORY_SEGMENT Name

Parameters:

ident Name: Name of memory segments

Description:

The reference to a memory segment is needed in characteristics and measurements. The memory segment, the characteristic belongs to can not be detected by the address itself in the case of overlapping memory segments.

Used in CHARACTERISTIC, AXIS_PTS, MEASUREMENT.

Example:

REF_MEMORY_SEGMENT Data1

6.3.111 REF_UNIT

Prototype:

REF_UNIT Unit

Parameters:

ident Unit: reference to the data record which describes a measurement

unit

Description:

This keyword can be used to reference to the data record which describes a measurement unit. It can be used in COMPU_METHOD and UNIT.

REF_UNIT may only refer to objects of type UNIT.

Note: The string parameter Unit of a COMPU_METHOD is a redundant information because the record referenced by REF_UNIT contain it too. Just for the purpose of compatibility with previous versions of ASAP2 the parameter REF_UNIT is optional. Therefore the string parameter Unit is going to be canceled at ASAP2 version 2.00.

```
/begin COMPU_METHOD

Velocity

"conversion method for velocity"

RAT_FUNC

"%6.2"

"[km/h]" /* to be canceled at ASAP2 version 2.00 */

COEFFS 0 100 0 0 0 1

REF_UNIT kms_per_hour /* new (optional) parameter */
/end COMPU_METHOD
```

6.3.112 RESERVED

Prototype:

RESERVED Position DataSize

Parameters:

int Position: Position of the reserved parameter in the deposit structure

datasize DataSize: Word length of the reserved parameter.

Description:

This keyword can be used to skip specific elements in an adjustable object whose meaning must not be interpreted by the application system (e.g. for extensions: new parameters in the adjustable objects).

Example:

RESERVED 7 LONG

<u>Note</u>: Only BYTE, WORD and LONG are valid *datasize* values. A *datatype* (UBYTE, SBYTE, UWORD, etc.) can-

not be used in place of the datasize.

6.3.113 RIGHT_SHIFT

Prototype:

RIGHT_SHIFT Bitcount

Parameters:

long bitcount: Shift ,bitcount' bits to the right

Description:

The RIGHT_SHIFT keyword is only used within the BIT_OPERATION keyword. See description of BIT_OPERATION.

6.3.114 RIP_ADDR_X/_Y/_Z/_W

Prototype:

RIP_ADDR_X/_Y/_Z/_W Position Datatype

Parameters:

int Position: Position of the address to the result of the ECU-internal in-

terpolation (see below) in the deposit structure.

datatype Datatype: Data type of the address.

Remark: Relating to version 1.0 of ASAP2-Specification

this is an additional parameter.

Description:

The description of this parameter should be based on the example of a characteristic curve (RIP: Result of Interpolation).

When the ECU program accesses the characteristic curve it first determines the adjacent axis points of the current value of the input quantity (see Figure 9: X_i , X_{i+1}). The output value is derived from these axis points and the two allocated table values by means of interpolation. This produces as intermediate results the quantities RIP_X and RIP_Y, which describe the distance between the current value and the adjacent axis points:

$$RIP_X = (X_{current} - X_i)/(X_{i+1} - X_i)$$

For a characteristic map the ECU program determines this intermediate result both in the X-direction and in the Y-direction. For a characteristic cuboid the result in the direction of all three axes are calculated.

$$RIP_Y = (Y_{current} - Y_k)/(Y_{k+1} - Y_k)$$

RIP
$$Z = (Z_{current} - Z_m)/(Z_{m+1} - Z_m)$$

For a characteristic curve the result of the interpolation is calculated as follows:

$$RIP_{W} = W_{i} + (RIP_{X} * (W_{i+1} - W_{i}))$$

for a characteristic map as follows:

$$RIP_{-}W = (W_{i,k} * (1 - RIP_{-}X) + W_{i+1,k} * RIP_{-}X)) * (1 - RIP_{-}Y) +$$

$$(W_{i,k+1} * (1 - RIP_{-}X) + W_{i+1,k+1} * RIP_{-}X)) * RIP_{-}Y$$

and for a characteristic cuboid as follows:

Interpolation for the map
$$Z = m$$

 $RIP_{-}W_{m} = (W_{i,k,m} * (1 - RIP_{-}X) + W_{i+1,k,m} * RIP_{-}X)) * (1 - RIP_{-}Y) +$

$$(W_{i,k+1,m}*(1 - RIP_X) + W_{i+1,k+1,m}*RIP_X))*RIP_Y$$

Interpolation for the map Z = m+1

$$RIP_W_{m+1} = (W_{i,k,m+1} * (1 - RIP_X) + W_{i+1,k,m+1} * RIP_X)) * (1 - RIP_Y) + \\$$

$$(W_{i,k+1,m+1}*(1 - RIP_X) + W_{i+1,k+1,m+1}*RIP_X))*RIP_Y$$

Interpolation in Z direction between the two points RIP_W $_{m}$ and RIP_W $_{m+1}.$

$$RIP_W = RIP_W_m + (RIP_Z*(\ RIP_W_{m+1} - RIP_W_m)$$

Figure 9: Linear interpolation for a characteristic curve

Example:

RIP_ADDR_X 19 UWORD

6.3.115 ROOT

Prototype:

ROOT

Parameters:

none

Description:

This keyword ROOT indicates that the related group is presented as a root of a navigation tree in the group selection mechanism of the MCD system. The keyword ROOT can indicate that groups refered to this root group constitute a grouping mechanism.

Example:

/begin GROUP SOFTWARE_COMPONENTS

"assignment of the definitions to C files"

ROOT

/begin SUB_GROUP INJE C6TD

/end SUB_GROUP

/end GROUP

6.3.116 SEED_KEY

Prototype:

/begin SEED_KEY

CalDll DaqDll PgmDll

/end SEED_KEY

Parameters:

string CalDll: Reference to DLL file name for CAL (ECU Calibration) ac-

cess priviledge.

string DaqDll: Reference to DLL file name for DAQ (ECU Data Acquisi-

tion) access priviledge.

string PgmDll: Reference to DLL file name for PGM (ECU Flash Pro-

gramming) access priviledge.

Description:

Description of the authentification process (standardized interface to the confidential seed-key algorithms for serial ECU access). References to dynamic link libraries (DLL) with a standard application interface (API), contain the authentification algorithms. The ECU supplier provides the DLLs, the MCD systems reads them to enable calibration, data acquisition or reprogramming access to the ECU.

<u>Note</u>: This keyword is only used in the context of the IF_DATA(MODULE) applied for the ASAP1a-CCP.

Note: The usage of the DLL is based on a standard API definition published in chapter 8.7.

Example:

/begin SEED_KEY /end SEED KEY "access.dll" "access.dll" "access.dll"

6.3.117 SIGN_EXTEND

Pro	oto	tvr	e:
		- , ,	

SIGN_EXTEND

Parameters:

Description:

The SIGN_EXTEND keyword is only used within the BIT_OPERATION keyword. See description of BIT_OPERATION.

6.3.118 SHIFT_OP_X/_Y/_Z

Prototype:

SHIFT_OP_X/_Y/_Z Position Datatype

Parameters:

int Position: Position of the shift operand in the deposit structure.

datatype Datatype: Data type of the shift operand.

Description:

Description of the shift operand in the deposit structure to compute the axis points for fixed characteristic curves and fixed characteristic maps (see also keyword FIX_AXIS_PAR). The axis points distribution for fixed characteristic curves or fixed characteristic maps is derived from the two 'offset' and 'shift' parameters as follows:

$$X_i = Offset + (i - 1)*2^{Shift}$$
 $i = \{1...number of axispts \}$

or

$$Y_k = Offset + (k - 1)*2^{Shift}$$
 $k = \{1...number of axispts \}$

or

$$Z_m = Offset + (m - 1)*2^{Shift}$$
 $m = \{1...number of axispts \}$

Example:

SHIFT_OP_X 21 UWORD

6.3.119 SI_EXPONENTS

Prototype:

SI_EXPONENTS Length Mass Time ElectricCurrent Temperature Amoun-

tOfSubstance LuminousIntensity

Parameters:

int Length: exponent of the base dimension length with unit metre int Mass: exponent of the base dimension mass with unit kilogram int Time: exponent of the base dimension time with unit second

int ElectricCurrent: exponent of the base dimension electric current with unit

ampere

int Temperature: exponent of the base dimension thermodynamic temperature

with unit kelvin

int AmountOfSubstance: exponent of the base dimension amount of substance with

unit mole

int Luminous Intensity: exponent of the base dimension luminous intensity with unit

candela

Description:

Specification of the seven base dimensions required to define an extended SI unit.

Example:

```
/begin UNIT
newton
"extended SI unit for force"
"[N]"
EXTENDED_SI
SI_EXPONENTS 1 1 -2 0 0 0 0
```

$$/* [N] = [m] * [kg] * [s]^{-2} */$$

/end UNIT

6.3.120 SOURCE

Prototype:

/begin SOURCE Name ScalingUnit Rate

[-> DISPLAY_IDENTIFIER]
[-> QP_BLOB QP_Data]

/end SOURCE

Parameters:

ident Name: Identifier of measurement source (data acquisition mode).

This parameter defines the basic scaling unit. The following

parameter 'Rate' relates on this scaling unit. The value of ScalingUnit is coded as shown in 'Table 4: Codes for scal-

ing units (CSE)' (page 144).

long Rate: The maximum refresh rate of the concerning measurement

source in the control unit. The unit is defined with parameter

'ScalingUnit'.

Optional parameters:

-> DISPLAY_IDENTIFIER: Display name for the data acquisition channel of the

SOURCE.

-> QP_BLOB: Interface-specific description data (BLOB: binary large ob-

ject) used at ASAP1b device at call of the command InitRead(). The parameters associated with this keyword are described in the ASAP2 metalanguage (in short A2ML) by

the ECU supplier or the interface module supplier.

Description:

This keyword can be used to describe different 'sources' of measurement, e.g. different data acquisition modes (e.g. time synchronous 10 msec, time synchronous 50 msec etc.).

Example:

/* refresh rate of acquisition mode 'Time35' is 35 milli-seconds, */

/* (value of ScalingUnit = 3 corrensponds to 1 msec) */

/begin SOURCE Time35 3 35

/end SOURCE

6.3.121 SRC_ADDR_X/_Y/_Z

Prototype:

SRC_ADDR_X/_Y/_Z Position Datatype

Parameters:

int Position: Position of the address of the input quantity in the deposit

structure.

datatype Datatype: Data type of the address.

<u>Remark:</u> Relating to version 1.0 of ASAP2-Specification this is an additional parameter. The appropriate parameter in the corresponding measuring channel data record is not any

longer used.

Description:

Description of the address of the input quantity in an adjustable object

Example:

SRC_ADDR_X 1 UWORD

6.3.122 SUB_FUNCTION

Prototype:

/begin SUB_FUNCTION /end SUB_FUNCTION { Identifier } *

Parameters:

ident Identifier: Reference to function record. This function record is de-

clared as subfunction of resprectiv function.

Description:

This keyword can be used to define the hierarchical structur of functions. *Note*: SUB_FUNCTION may only refer to objects of type FUNCTION.

Example:

/begin SUB_FUNCTION /end SUB_FUNCTION ID_ADJUSTM_SUB

6.3.123 SUB_GROUP

Prototype:

/begin SUB_GROUP { Identifier } *

/end SUB_GROUP

Parameters:

ident Identifier: Reference to a group record. This group record is declared

as sub-group of the respective GROUP.

Description:

This keyword can be used to define the hierarchical structure of groups. In particular, a set of groups referenced from a root group (with optional keyword ROOT) constitute a grouping mechanism.

Example:

/begin SUB_GROUP ID_ADJUSTM_SUB /end SUB_GROUP

6.3.124 SUPPLIER

Prototype:

SUPPLIER Manufacturer

Parameters:

string Manufacturer: Name of the ECU manufacturer

Description:

String used to identify the manufacturer or supplier.

Example:

SUPPLIER "Smooth and Easy"

6.3.125 SYSTEM_CONSTANT

Prototype:

SYSTEM_CONSTANT Name Value

Parameters:

string Name: system constant identifier

string Value: value of the system constant as a string

Description:

System-defined constant.

Example:

SYSTEM_CONSTANT "CONTROLLER_CONSTANT12" "2.7134"

6.3.126 S_REC_LAYOUT

Prototype:

S_REC_LAYOUT Name

Parameters:

ident Name: Name of the standard record layout (see

RECORD_LAYOUT)

Description:

This keyword can be used to specify the name of a standard record layout which will then apply to all characteristics in the entire module. Exceptions can be specified for the relevant characteristics.

Note: S_REC_LAYOUT may only refer to objects of type RECORD_LAYOUT.

Example:

S_REC_LAYOUT SIEMENS_ABL /* Siemens record layout */

6.3.127 UNIT

Prototype:

/begin UNIT Name LongIdentifier Display Type

[-> SI_EXPONENTS]

[-> REF_UNIT]

[-> UNIT_CONVERSION]

/end UNIT

Parameters:

ident Name: identifier in the program, referencing is based on this name

Note:

The name of the unit has to be unique within all units of the ASAP2 MODULE, i.e. there must not be another UNIT ob-

ject with the same identifier in the MODULE.

string LongIdentifier: comment, description

string Display: string to be used to display the measurement unit of a physi-

cal value

enum Type: Type of the Unit:

EXTENDED SI: extended SI unit.

Recommendation: The principle of describing "real" measurement units is to refer to SI units. Therefore, this relationship should be given by using the optional pa-

rameter SI_EXPONENTS.

DERIVED: measurement unit derived from another one

referenced by the optional parameter

REF UNIT.

Optional Parameters:

-> SI_EXPONENTS: This keyword is used to specify the exponents of the seven

base dimensions required to define an extended SI unit.

-> REF_UNIT: This keyword is used to reference to another measurement

unit from which the one using REF_UNIT is derived.

-> UNIT_CONVERSION: This keyword is used to specify the linear relationship

between two measurement units.

Description:

Specification of a measurement unit.

Example:

/begin UNIT

metres_per_second

"extended SI unit for velocity"

```
"[m/s]"
  EXTENDED_SI
                                           /* [m] * [s]<sup>-1</sup> */
  SI_EXPONENTS 10-10000
/end UNIT
/begin UNIT
  kms_per_hour
  "derived unit for velocity: kilometres per hour"
  "[km/h]"
  DERIVED
  REF_UNIT metres_per_second
  UNIT_CONVERSION 3.6 0.0
                                            /* y [km/h] = (60*60/1000) * x [m/s] + 0.0
/end UNIT
/begin UNIT
  miles_per_hour
  "derived unit for velocity: miles per hour"
  "[mph]"
  DERIVED
  REF_UNIT metres_per_second
  UNIT_CONVERSION 2.237 0.0
                                            /* y [mph] = (60*60/1609) * x [m/s] + 0.0
                             */
/end UNIT
```

6.3.128 UNIT_CONVERSION

Prototype:

UNIT_CONVERSION Gradient Offset

Parameters:

float Gradient, Offset: gradient and offset of the linear relationship between two

measurement units:

f(x) = gradient * x + offset

Description:

Specification of the linear relationship between two measurement units given by describing the conversion from the referenced unit to the derived unit:

```
derived_unit = f(referenced_unit)
```

The referenced measurement unit had to be specified with parameter REF_UNIT.

```
/begin UNIT
  kelvin
  "base unit for temperature: Kelvin"
  "[K]"
  EXTENDED_SI
  SI_EXPONENTS 0000100
/end UNIT
/begin UNIT
  degC
  "unit for temperature: degree Celsius"
  "[°C]"
  DERIVED
  REF UNIT kelvin
                                              /* y [°C] = 1.0 * x [K] + (-273.15) */
  UNIT_CONVERSION 1.0 -273.15
/end UNIT
```

6.3.129 USER

Prototype:

USER UserName

Parameters:

string UserName: Name of the user

Description:

Specification of the user name.

Example:

USER "Nigel Hurst"

Page 206 of 277

6.3.130 USER RIGHTS

Prototype:

/begin USER_RIGHTS UserLevelId

{-> REF_GROUP} *

[-> READ_ONLY]

/end USER_RIGHTS

Parameters:

ident UserLevelId: When a user logs into the MCD system, a UserLevelId is as-

signed.

Optional parameters:

-> REF_GROUP: Reference to groups.

Only the CHARACTERSITIC and MEASUREMENT members of the referenced groups including the members of nested subgroups (and functions nested in such groups) are visible to the user of the MCD system. If the READ_ONLY attribute is set, the CHARACTERISTICs are visible but not

available for calibration (not tuneable).

The restrictions are applied by the MCD system as a global filter in the user interface (active for all manual selection or calibration operations). When navigating by GROUPs, only the GROUPs declared in USER_RIGHTS need to be

provided in the selection list.

-> READ_ONLY: This keyword can be used to define all characteristics of the

groups referenced by this USER_RIGHT statement as

READ_ONLY (not tunable).

Use Case: A group can be defined to specify a set of characteristics to be not tunable for a group of users (control of access rights). In order to achieve this, the group is referenced in a USER_RIGHT statement with the READ_ONLY

attribute, related to the user group.

When a login to the MCD system identifies the user as member of a group for which the USER_RIGHT statement contains the READ_ONLY attribute, all CHARACTERISTICs of this group shall be treated as if the READ_ONLY attribute was directly related to the CHARACTERISTICs.

Description:

This keyword can be used to define groups accessible for certain users. All USER-RIGHTS groups are listed to the user who can select one of these groups. All measurements and characteristics belonging to that group and its subgroubs (and subsubgroups and so on) are accessible (i.e. visible) to the user. The keyword

READ_ONLY is used to define the refered group(s) as containing characteristics that are only readable but not writable (i.e. they can not be adjusted). This property is also inherited by subgroups, i.e. if a group is marked as READ_ONLY all its subgroups (with respect to that USER RIGHT) are also only READ_ONLY.

Example:

/begin USER_RIGHTS application_engineers
/begin REF_GROUP group_1 /end REF_GROUP
/end USER_RIGHTS

/begin USER_RIGHTS measurement_engineers
/begin REF_GROUP group_1 /end REF_GROUP
READ_ONLY
/end USER_RIGHTS

/begin GROUP group_1
/begin REF_CHARACTERISTIC
KF1 KF2
/end REF_CHARACTERISTIC
/begin REF_MEASUREMENT
NMOT TMOT

/end REF_MEASUREMENT /end GROUP

6.3.131 VARIANT_CODING

Prototype:

/begin VARIANT_CODING [->VAR_SEPARATOR]

[->VAR_NAMING] {->VAR_CRITERION } *

{->VAR_FORBIDDEN_COMB } *

{->VAR_CHARACTERISTIC } *

/end VARIANT CODING

Optional Parameters:

->VAR_SEPARATOR: This keyword can be used to define the separating

symbol between the two parts of adjustable objects

name: 1.) identifier 2.) variant extension.

<u>Remark:</u> The identifier of description record of variant coded adjustable objects contains no variant extension. This extension is needed to distinguish

the variants at MCD.

->VAR_NAMING: This keyword defines the format of variant extern-

sion (index) of adjustable objects name (index is

used at MCD to distinguish the variants).

->VAR_CRITERION: This keyword describes a variant criterion, i.e.

some adjustable objects are multiple deposited in control unit software corresponding to the enu-

meration of variant criterion values.

->VAR FORBIDDEN COMB: This keyword describes a forbidden combination of

different variant criteria.

->VAR_CHARACTERISTIC: This keyword defines one adjustable object to be

variant coded, i.e. this adjustable objects is multiple deposited in control unit software corresponding to

the assigned variant criteria.

Description:

The information of variant coding is grouped to this keyword. Variant coding means, that control unit software contains several variants (copies) of some adjustable objects, whereas description file contains only one record to describe. In real application only one variant is in use, depending on car-specific parameters.

```
/begin VARIANT_CODING
                                 "."
      VAR SEPARATOR
                                           /* PUMKF.1 */
      VAR NAMING
                                 NUMERIC
      /* variant criterion "Car body" with three variants */
                                 Car "Car body" Limousine Kombi Cabrio
      /begin VAR CRITERION
      /end VAR_CRITERION
      /* variant criterion "Type of gear box" with two variants */
      /begin VAR CRITERION
                                 Gear "Type of gear box" Manual Automatic
      /end VAR_CRITERION
      /begin VAR_FORBIDDEN_COMB
                                           /* forbidden: Limousine - Manual */
                                 Car Limousine
                                  Gear Manual
      /end VAR_FORBIDDEN_COMB
                                           /* forbidden: Cabrio - Automatic */
      /begin VAR_FORBIDDEN_COMB
                                 Car Cabrio
                                  Gear Automatic
      /end VAR_FORBIDDEN_COMB
      /begin VAR CHARACTERISTIC PUMKF /* define PUMKF as variant coded */
                                           /* Gear box variants */
                                 Gear
                                 /begin VAR_ADDRESS
                                           0x7140 0x7168
                                 /end VAR_ADDRESS
      /end VAR_CHARACTERISTIC
      /begin VAR_CHARACTERISTIC NLLM /* define NLLM as variant coded */
                                  Gear Car /* car body and gear box variants */
                                 /begin VAR ADDRESS
                                           0x8840 0x8858 0x8870 0x 8888
                                 /end VAR ADDRESS
      /end VAR_CHARACTERISTIC
/end VARIANT_CODING
```

Type of gear box	MANUAL	AUTOMATIC
Car body		
Limousine	doesn't exist	NLLM.3
		(address = 0x8870)
Kombi	NLLM.1	NLLM.4
	(address = 0x8840)	(address = 0x8888)
Cabrio	NLLM.2	doesn't exist
	(address = 0x8858)	

Type of gear box			
MANUAL	AUTOMATIC		
PUMKF.0	PUMKF.1		
(address = 0x7140)	(address = 0x7168)		

Table 5: Example of NLLM and PUMKF - variants coding

6.3.132 VAR ADDRESS

Prototype:

```
/begin VAR_ADDRESS { Address }*
/end VAR ADDRESS
```

Parameters:

long Address: Start address of one variant of variant coded adjustable object.

Description:

This keyword can be used to define a list of start addresses of variant coded adjustable objects (see keyword VAR_CHARACTERISTIC). The number of addresses agrees with number of valid combinations of adjustable objects variant criteria (forbidden combinations excluded). The order of addresses corresponds to the order of variant criteria defined with parameter 'CriterionName' at keyword VAR_CHARACTERISTIC. The priority of index increment is according to the following rules:

- ? the priority of index increment is invers to the order of variant criteria definition at keyword VAR_CHARACTERISTIC, e.g.:
 - ? the first variant criterion has the lowest priority
 - ? the last variant criterion has the highest priority

The following example describes the order of addresses of an adjustable object depending on three variant criterions with 'L', 'N', and 'M' criterion values: Example:

```
Crit1 = \{ Val_{1,1}, Val_{1,2}, ...Val_{1,L} \}

Crit2 = \{ Val_{2,1}, Val_{2,2}, ...Val_{2,M} \}

Crit3 = \{ Val_{3,1}, Val_{3,2}, ...Val_{3,N} \}
```

Corresponding address list:

```
\begin{array}{lll} Address[0] & = Address \, (Val_{1,1}, \, Val_{2,1}, \, Val_{3,1}) \\ Address[1] & = Address \, (Val_{1,1}, \, Val_{2,1}, \, Val_{3,2}) \\ \vdots \\ Address[N-1] & = Address \, (Val_{1,1}, \, Val_{2,1}, \, Val_{3,N}) \\ Address[N] & = Address \, (Val_{1,1}, \, Val_{2,2}, \, Val_{3,1}) \\ Address[N+1] & = Address \, (Val_{1,1}, \, Val_{2,2}, \, Val_{3,2}) \\ \vdots \\ Address[N+N-1] & = Address \, (Val_{1,1}, \, Val_{2,2}, \, Val_{3,N}) \\ \vdots \\ \end{array}
```

```
/begin VAR_ADDRESS
0x8840 0x8858 0x8870 0x 8888 /* see example, page 211 */
/end VAR_ADDRESS
```

6.3.133 VAR CHARACTERISTIC

Prototype:

/begin VAR_CHARACTERISTIC Name { CriterionName }*

[->VAR_ADDRESS]

/end VAR_CHARACTERISTIC

Parameters:

ident Name: Identifier of variant coded adjustable object (refers to

CHARACTERISTIC or AXIS PTS record).

ident CriterionName: Corresponding to each combination of variant criteria de-

fined with this parameter the control unit software contains

variants of concerning adjustable object.

Optional Parameters:

->VAR_ADDRESS: Definition of start address of adjustable objects variants.

Description:

This keyword defines one adjustable object to be variant coded, i.e. this adjustable objects is multiple deposited in control unit software corresponding to the assigned variant criteria. The number of variants results on valid combinations (forbidden combinations excluded) of variant criteria.

Note: If an AXIS_PTS object is variant coded, the curves and maps using this common axis must be variant coded in the same way, i.e. they have to refer the same variant criterions in the same order.

```
/begin VAR_CHARACTERISTIC /* define NLLM as variant coded */
NLLM
Gear Car
/* gear box including the 2 variants "Manual" and "Automatic" */
/* car body including the 3 variants "Limousine", "Kombi" and "Cabrio" */

/* four addresses corresponding to the four valid combinations */
/* of criterion 'Gear' and 'Car' (see example, page 211*/
/begin VAR_ADDRESS 0x8840 0x8858 0x8870 0x 8888
/end VAR_ADDRESS
/end VAR_CHARACTERISTIC
```

6.3.134 VAR CRITERION

Prototype:

/begin VAR_CRITERION Name LongIdentifier { Value }*

[-> VAR_MEASUREMENT]

[-> VAR_SELECTION_CHARACTERISTIC]

/end VAR_CRITERION

Parameters:

ident Name: Identifier of variant criterion.

string LongIdentifier: Comment to describe the variant criterion.

ident Value: Enumeration of criterion values.

Optional Parameters:

->VAR_MEASUREMENT: This keyword can be used to specify a special

measurement object. This measurement object indicates with its current value the variant which has

effect on running control unit software.

-> VAR_SELECTION_CHARACTERISTIC:

This keyword is used to specify a special characteristic to change the variant of software which is

running on control unit.

Description:

This keyword describes a variant criterion, i.e. some adjustable objects are multiple deposited in control unit software corresponding to the emuneration of variant criterion values.

Example:

/* variant criterion "Car body" with three variants */
/begin VAR_CRITERION Car "Car body"

/* Enumeration of criterion values */

Limousine Kombi Cabrio

VAR_MEASUREMENT S_CAR
VAR_SELECTION_CHARACTERISTIC V_CAR
/end VAR_CRITERION

6.3.135 VAR_FORBIDDEN_COMB

Prototype:

```
/begin VAR_FORBIDDEN_COMB { CriterionName CriterionValue }*
/end VAR_FORBIDDEN_COMB
```

Parameters:

ident CriterionName: Identifier of variant criterion.

ident CriterionValue: Value of variant criterion ' CriterionName '.

Description:

This keyword describes a forbidden combination of values of different variant criteria.

```
/* forbidden variant combination (doesn't exist in control unit software): */
/begin VAR_FORBIDDEN_COMB

Car Limousine /* variant value 'Limousine' of criterion 'Car' */
Gear Manual /* variant value 'Manual' of criterion 'Gear' */
/end VAR_FORBIDDEN_COMB
```

6.3.136 VAR SELECTION CHARACTERISTIC

Prototype:

VAR_SELECTION_CHARACTERISTIC Name

Parameters:

ident Name: Identifier of characteristic object which indicates the actual

criterion value. This parameter refers to a

CHARACTERISTIC record of description file.

Description:

This keyword can be used to specify a special characteristic object. This characteristic object changes with its current value the variant which has effect on running control unit software. Referenced VAR_SELECTION_CHARACTERISTIC could have a 'verbal conversion table' and the strings defined at COMPU_VTAB could correspond to criterion values at VAR_CRITERION record.

```
/begin COMPU_VTAB V_GEAR_BOX
"variants of criterion ""Type of Gear Box"""
3
17 "Limousine"
39 "Kombi"
41 "Cabrio"
/end COMPU_VTAB
```

<u>Note</u>: VAR_SELECTION_CHARACTERISTIC may only refer to objects of type CHARACTERISTIC.

```
/begin VAR_CRITERION Car "Car body" Limousine Kombi Cabrio VAR_SELECTION_CHARACTERISTIC S_GEAR_BOX /end VAR CRITERION
```

6.3.137 VAR MEASUREMENT

Prototype:

VAR_MEASUREMENT Name

Parameters:

ident Name: Identifier of measurement object which indicates the actual

criterion value. This parameter refers to a

MEASUREMENT record of description file.

Description:

This keyword can be used to specify a special measurement object. This measurement object indicates with its current value the variant which has effect on running control unit software. The value 0 (zero) of measurement object corresponds to the first variant value defined at relative VAR_CRITERION record (see parameter 'Value' at keyword VAR_CRITERION), the value 1 to the second and so on.

Question:

Which value of measurement object should be used to get the effective variant?

- a) internal value acquired from control unit software or?
- b) physical value computed from internal value using COMPU METHOD record?
- c) Referenced COMPU_METHOD record could be a 'verbal conversion table' and the strings defined at COMPU_VTAB could correspond to criterion values at VAR_CRITERION record?

```
/begin COMPU_VTAB V_GEAR_BOX

"variants of criterion ""Type of Gear Box"""

3
17 "Limousine"
39 "Kombi"
41 "Cabrio"
/end COMPU_VTAB
```

Note: VAR_MEASUREMENT may only refer to objects of type MEASUREMENT.

Example:

6.3.138 VAR_NAMING

Prototype:

VAR_NAMING Tag

Parameters:

enum Tag: Format of variant extension (index). Possible values:

NUMERIC: variant extension is a number

(integer: 0,1,2,3...).

This parameter is reserved for future extension

 $(e.g. ALPHA = \{ A, B, C, D.... \}).$

Description:

This keyword defines the format of variant externsion (index) of adjustable objects name. The extension is used at MCD to distinguish the different variants of adjustable objects.

Example:

/* variant extension: see example page 211*/ VAR_NAMING NUMERIC

6.3.139 VAR_SEPARATOR

Prototype:

VAR_SEPARATOR Separator

Parameters:

string Separator: This parameter defines the separating symbol of variant ex-

tension.

Description:

This keyword can be used to define the separating symbol between the two parts of adjustable objects name: 1.) identifier 2.) variant extension.

<u>Remark:</u> The identifier of description record of variant coded adjustable objects contains no variant extension. The extension is needed to distinguish the variants at MCD.

Example:

6.3.140 VERSION

Prototype:

VERSION VersionIdentifier

Parameters:

string VersionIdentifier: short identifier for the version

Description:

String for identification of the version with maximum MAX_STRING (at present 255) characters.

Example:

VERSION "BG5.0815"

6.3.141 VIRTUAL

Prototype:

/begin VIRTUAL (MeasuringChannel) *
/end VIRTUAL

Parameters:

ident MeasuringChannel: Reference to a measurement (MEASUREMENT) or a virtual measurement (MEASUREMENT, VIRTUAL)

Description:

This keyword allows virtual measurements to be specified. For this, constants, measurements and virtual measurements can be combined into one quantity. The list specified with the VIRTUAL keyword indicates the quantities to be linked (reference). These quantities are combined into one measurement by means of a <u>single</u> conversion formula. The conversion formula must be capable of processing several input quantities.

Example:

/begin MEASUREMENT	PHI_FIRING	/* Name */
	"Firing angle"	/* Long identifier */
	UWORD	/* Data type */
	R_PHI_FIRING	/* Conversion */
	1	/* Resolution */
	0.01	/* Accuracy */
	120.0	/* Lower limit */
	8400.0	/* Upper limit */
	-	linked: 2 measurements */
/begin VIRTUAL	PHI_BASIS PHI_	CORR
/end VIRTUAL		
/end MEASUREMENT		
/begin COMPU_METHOD	R_PHI_FIRING	/* Name */
_	"Addition of two n	
	FORM	/* Convers_type */
	"%4.2"	/* Display format */
	"GRAD_CS"	/* physical unit */
/begin FORMULA	"X1 + X2"	/* X1 -> PHI_BASIS */
		/* X2 -> PHI_CORR */
/end FORMULA		
/end COMPU_METHOD		

6.3.142 VIRTUAL CHARACTERISTIC

Prototype:

/begin VIRTUAL_CHARACTERISTIC /end VIRTUAL_CHARACTERISTIC

Formula (Characteristic)*

Parameters:

string Formula Formula to be used for the calculation of the initial physical

value of the characteristic from the physical value of other

characteristics.

ident Characteristic Identifier of those adjustable objects that are used for the

calculation of this characteristic.

Description:

This keyword allows to define characteristics that are not deposited in the memory of the control unit, but can be used to indirectly calibrate other characteristic values in the control unit, if these are declared to be dependent on this characteristic. The introduction of virtual characteristic is therefore useful for saving memory in the case the calibration with dependent characteristics is used.

For the initial value of the virtual characteristic must be derived from the values of other characteristics. The mechansim to implement this is the same as for dependent characteristics by a list of characteristics and a formula, e.g. $? = \arcsin(B)$. Also B might be virtual, i.e. its value has to be derived from B_AREA.

The following example makes clear how the calibration process takes place. When the virtual characteristic? is initialized, the value of? is calculated from the value of B. Therefore B_{hex} is read from the ECU and $B_{phys} = B_{hex}/100$ is computed. Assuming the value $B_{hex} = 80$, $B_{phys} = 0.8$ and $?_{phys} = \arcsin(B_{phys}) = 53.13$. Since virtual characteristics are not in the memory of an ECU, $?_{hex}$ and $?_{phys}$ may coincide if the datatype for $?_{hex}$ is choosen an float datatype and the conversion formula is the identity (one to one formula).

Used in CHARACTERISTIC.

Example:

 $\label{eq:characteristic} \begin VIRTUAL_CHARACTERISTIC \\ \begin{subarray}{c} \begin Sin(X1) \$

7 Include mechanism

7.1 Description of complex projects

For the description of projects involving several control units or application devices of various manufacturers the Include statement can be used.

/include <filename>

This statement allows several description files to be integrated into one project description. The filename may be put between quotation marks. If the filename contains spaces the quotation marks are required.

Example:

File PROJECT1.A2L		
/begin PROJECT /begin HEADER VERSION PROJECT_NO /end	1188	RAPE-SEED ENGINE "Engine tuning for operation with rape oil" "General project description" "0815"
/include ENG_ECU.A2L /include ABS_ECU.A2L /include ?SPEC_ECU.A2L" /end		
		End of file PROJECT1.A2L

7.2 Description of interface-specific parameters

For parameterization of the drivers and for access to the adjustable and measurement objects different parameters have to be used within the various drivers. The user interface, which does not need to know these parameters, in fact only requires a description of the data types to be able to read in these interface-specific parameters. This description, based on the ASAP2 metalanguage described hereafter, occurs either INLINE within the description file, or in separate files. In the second case the Include statement can be used to integrate the description of interface- specific parameters:

```
/begin MODULE ...
/include <filename>
....
/end MODULE
```

PART C: ASAP2 METALANGUAGE

8 Interface-specific description data

Between the control part of the standardised application system and the program parts for access to the application interface an interface (ASAP 1b) has been defined. The program parts for access to the application interface shall in future be realised as linkable drivers.

Furthermore, the description data in the application system are divided into two categories:

- 1) Parameters that are used by the control interface.
- 2) Parameters that are only analysed by the driver and whose meaning is hidden to the control interface (interface-specific parameters). They are transferred to the driver as a binary block.

These two measures should make it possible that new interface module types can be handled without having to introduce any changes in the control part of the application system but simply by incoporating a new driver.

For the description of the *interface-specific parameters* a description language (ASAP2 metalanguage, in short **A2ML**) will be defined on the following pages. Each manufacturer can specify a special set of parameters for their own interface module types (format description). Using this format description (in A2ML) the standardised application system must be capable of reading in the *interface-specific parameters* of the description file and transferring them to the drivers (see Figure 10).

Figure 10: Schematic data flow of description data

8.1 Format of the ASAP2 metalanguage

To describe the grammar of the ASAP2 metalanguage, an extended Backus-Naur format is used:

? A non-terminal is represented as a simple identifier:

block definition

? The symbol used as inference symbol in the production rules is '::='

```
type_definition ::= type_name
```

? A terminal (keyword) is enclosed within quotes:

"struct"

? Non-formally defined parts are enclosed within angle brackets. In the description given hereafter the following two identifiers are used in particular:

<tag>: <tag> is used to define the keywords of the ASAP2 descrip-

tion file by means of a character sequence enclosed within

double inverted commas.

<id>dentifier>: identifier for the definition of data structures.

? An optional part is enclosed within square brackets:

```
[ <identifier> ]
```

? Alternative parts are separated by '|':

? Explanations are enclosed within comment symbols:

```
/* comment */
```

Grammar in the extended Backus-Naur format

declaration ::= type_definition ";" | block_definition ";"

Definition of a data structure to be used for defining a data record of the description file.

type_definition ::= type_name

```
type_name ::= predefined_type_name |
struct_type_name |
taggedstruct_type_name |
taggedunion_type_name |
enum_type_name

predefined_type_name ::= "char" |
"int" |
"long" |
"uchar" |
"uint" |
"ulong" |
"double" |
"float"
```

Definition of a block. A block consists of a special begin keyword ("/begin"), a keyword identifying the record type (e.g. "FUNCTION_LIST"), the relevant data record and an end keyword ("/end"). Nested blocks are also possible.

```
block_definition ::= "block" <tag> type_name
```

Definition of an enumeration:

```
enum_type_name ::= "enum" [ <identifier> ] "{" enumerator_list "}" |
```

"enum" <identifier>

enumerator_list ::= enumerator |

enumerator "," enumerator_list

enumerator ::= <keyword> ["=" <constant>]

Definition of data records of the ASAP2 description file with fixed sequence of the data record elements.

```
struct_type_name ::= "struct" [ <identifier> ] "{" [ struct_member_list ] "}" |
```

"struct" <identifier>

struct_member_list ::= struct_member |

struct_member_list

struct_member ::= member ";"

member ::= type_name [array_ s pecifier]

array_specifier ::= "[" <constant> "]" |

"[" <constant> "]" array_specifier

Definition of data records of the ASAP2 description file whose elements can specified in a random sequence. All elements are optional and each element is identified by its tag.

For the description of lists with a variable number of elements, the symbols "(" and ")*" are used. The sequences identified by these symbols can be repeated any number of times.

Definition of variants in data records of the ASAP2 description file. Similar to the 'union' data type used in programming language C, the ASAP2 description file allows only one variant to be specified at a time in a 'taggedunion'. Each variant is assigned a tag for identification purposes (see <tag>).

8.2 Designing A2ML-file

This chapter is describing how to design an A2ML-file for interface-specific data used together with a ASAP1b compatible driver.

To be compatible with ASAP2 V1.2 a tag "IF_DATA" should be defined in the A2ML-file. This tag is then used by the MCD to interpret the data that is written in the various IF_DATA-fields in the ASAP2-file. Figure 12 shows a template that preferably should be used to design a A2ML-file for interface-specific data.

The string "ASAP1B_*" in the beginning of Figure 12 is a tag which is used to separate different interfaces. This makes it possible to define different types of data for different interfaces. The *-character in the template could be substituted with a string that describes the interface (e.g. ASAP1B_RS232 for a serial interface).

The tag SOURCE is described by the ASAP2 specification but because it is located in the IF_DATA it should be defined in the A2ML-file.

Note: The syntax of user-defined tags in AML must follow the rule of an 'ident'.

```
Example: "IF_DATA 4EXAMPLE...." is not valid.
```

The different BLOB tags are used to define interface dependent data that should be put into BLOB-objects and sent to the ASAP1b-driver when different services are called. Figure 11

shows which BLOB-objects that is used by the various ASAP1b-services. The ASAP1b-services missing in the figure does not use any BLOB-objects.

ASAP1b service	BLOB-objects used
INIT_READ	TP_BLOB, QP_BLOB and KP_BLOB
INIT_ACCESS	TP_BLOB and DP_BLOB
ACCESS	PA_BLOB
COMMAND	TP_BLOB

Figure 11: Description of BLOB-objects used in ASAP1b-services

There are two interfaces already defined in the ASAP2 documentation, ASAP1B_CAN and ASAP1B_ADRESS, these interfaces define a minimum of information that could be used to reference measurement parameters inside an ECU respectively on a CAN-network. The A2ML-file for these interfaces is displayed in Figure 13.

```
/begin A2ML
/* By: Volvo Car Corporation, 961011
/* Template for designing IF_DATA fields for ASAP2 files and BLOB's
/* for ASAP1b interface.
block "IF_DATA" taggedunion if_data
    "ASAP1B_*"
                            /* The tag of ASAP1b specific information should
                            /* start with ASAP1B_ then the * character can be
                            /* substituted with a name of manufacturer's choice.
   taggedstruct
                            /* optional parameters */
       (block "SOURCE" struct
           struct
                            /* indispensable */
           {
               char [101];
                           /* source name (string)*/
                            /* min period ( conforming together with min factor */
                            /* the fastest samplingrate available ).
                            /* min factor */
               long;
           };
           taggedstruct
                            /* optional parameters */
               block "QP_BLOB" struct
                                               /* QP_BLOB for ASAP1b */
                   /* QP_BLOB specification */
           };
       )*; /* multiple SOURCE may exist */
       block "TP_BLOB" struct
                                               /* TP_BLOB for ASAP1b */
           /* TP_BLOB specification */
       };
       block "DP_BLOB" struct
                                               /* DP_BLOB for ASAP1b */
           /* DP_BLOB specification */
       };
       block "PA_BLOB" struct
                                               /* PA_BLOB for ASAP1b */
           /* PA_BLOB specification */
       };
       block "KP_BLOB" struct
                                               /* KP_BLOB for ASAP1b */
           /* KP_BLOB specification */
       /* for MODULE
                                      may only TP_BLOB and SOURCE be specified
                                      may only DP_BLOB and PA_BLOB be specified
       /* for CHARACTERISTIC
                                      may only DP_BLOB and PA_BLOB be specified
       /* for AXIS_PTS
       /* for MEMORY_LAYOUT
                                      may only DP_BLOB and PA_BLOB be specified
       /* for MEASUREMENT
                                      may only KP_BLOB, DP_BLOB and PA_BLOB be specified
   };
   /* Extra tags can be defined here */
};
/end A2ML
```

Figure 12: Template for A2ML-file

```
/begin A2ML
/* By: Volvo Car Corporation, 961217
                                                                              */
/* A2ML-file defining the interfaces ASAP1B_ADDRESS and ASAP1B_CAN.
block "IF_DATA" taggedunion if_data
    "ASAP1B_ADDRESS" taggedstruct
                                      /* optional parameters */
       (block "SOURCE" struct
           struct
                                       /* indispensable */
           {
               char [101];
                                       /* source name (string)*/
                                       /* min period (conforming together with min factor the fastest */
                                       /* ...samplingrate available ). */
               long;
                                       /* min factor */
           };
       )*;
                                       /* multiple SOURCE may exist */
       block "KP_BLOB" struct
                                       /* KP_BLOB specification for ASAP1b */
                                       /* address of measurement object (e.g. emulator RAM addressing) */
           long;
   };
    "ASAP1B_CAN" taggedstruct
                                       /* optional parameters */
       (block "SOURCE" struct
                                       /* indispensable */
           struct
               char [101];
                                       /* source name (string)*/
               int;
                                       /* min period ( conforming together with min factor */
                                       /* the fastest samplingrate available ).
                                       /* min factor */
               long;
           };
       )*;
                                       /* multiple SOURCE may exist */
       block "KP_BLOB" struct
                                       /* KP_BLOB specification for ASAP1b */
           char[33];
                                       /* messagename */
                                       /* identifier */
           long;
           int;
                                       /* messagesize */
           char[101];
                                       /* messagesource */
                                       /* startbit */
           int;
           int;
                                       /* datasize */
           taggedstruct
               "MULTIPLEX" struct
                   int;
                                       /* startbit */
                   int;
                                       /* datasize */
                                       /* tag */
                   long;
               };
           };
       };
                                       /* end of: block "KP_BLOB" */
                                       /* end of: "ASAP1B_CAN" taggedstruct */
   };
};
                                       /* end of: taggedunion if_data */
                  **********************
/end A2ML
```

Figure 13: A2ML-file for ASAP2 standard interfaces

8.3 Structure of BLOBs

As described at ASAP1b specification the ASAP1b device needs some 'binary large objects' (BLOBs) containing interface depending parameters. As long as the structure of BLOB's doesn't contain any optional parts or any parameter arrays with variable length, the structure of BLOBs at ASAP1b device need no further explanation:

? The structure of BLOBs is equivalent to the structure described at A2ML-file (also see "6.2 Predefined data types").

Since ASAP2 Version 1.31 there is a specification for the storage layout of the BLOBs which also describes BLOBs with optional parts.

8.4 Example of ASAP2 metalanguage

The following example illustrates the ASAP2 metalanguage (A2ML) on the basis of the format definition of ASAP2 version 1.0. It is not adjusted to the modifications of version 1.20 and version 1.21.

Note:

The ASAP2 metalanguage shall be used to specify the format of the interface-specific parameters. The following format specification for the complete ASAP2 description file is only intended as an **example** to illustrate the ASAP2 metalanguage.

```
File EXAMPLE.AML
block "PROJECT" struct project;
struct project (
                                                             /* mandatory part */
 struct (
   char[20];
                                                             /* name */
   char[100];
                                                             /* long identifier */
 taggedstruct {
                                                             /* optional part */
   block "HEADER" struct projectheader;
    ( block "MODULE" struct modul )*;
                                                             /* block "MODULE" can occur several times */
}:
struct modul {
                                                             /* mandatory part */
  struct
    char[20];
                                                              * name */
   char[100];
                                                             /* description */
 taggedstruct {
                                                             /* optional part */
   block "MOD PAR"
                              struct mod par:
   block "MOD_COMMON"
                                        struct mod_common;
   /* taggedunion interface_param: to be specified by manufacturer */
   (block "IF DATA"
                                        taggedunion interface_param )*;
    (block "CHARACTERISTIC"
                                        struct characteristic )*;
                                                                       /* (0...n) times */
    (block "AXIS_PTS"
                                        struct axis_pts )*;
   ( block "MEASUREMENT"
                                        struct measurement )*;
    ( block "COMPU_METHOD"
                                        struct conversion )*:
    ( block "COMPU_TAB"
                                        struct conv_tab )*;
   (block "COMPU_VTAB"
                                        struct conv_tab_verb )*;
    ( block "FUNCTION"
                              struct function )*:
    (block "RECORD_LAYOUT"
                                        taggedstruct record_layout )*;
 }:
};
```

```
struct projectheader {
     char[100];
                                                                                                                                          /* comment */
     taggedstruct {
           "VERSION"
                                                    char[100];
           "PROJECT_NO"
                                                         char[100];
     };
};
enum\ prg\_type\ \{\ "PRG\_CODE" = 0,\ "PRG\_DATA" = 1,\ "PRG\_RESERVED = 2\ \}; \\ \ /*\ prg\_type\ */\ A = 1,\ A =
     long;
                                                                                                                                          /* offset */
     long [5]
struct sdk {
     char[20]
                                                                                                                                          /* label_name */
     char[20]
                                                                                                                                          /* value */
struct mod_par {
     char[100];
                                                                                                                                        /* comment */
     taggedstruct {
                                                                                                                  /* optional part */
           "VERSION"
                                                                    char[100];
                                                                                                                                                               /* data status */
          "ADD_EPK"
                                                                    long;
                                                                    char[100];
           "EPK"
           "SUPPLIER"
                                                                    char[100];
          "CUSOTMER"
                                                                    char[100];
           "CUSTOMER_NO"
                                                                    char[40];
           "USER"
                                                                    char[40];
                                                                                                                                        /* applications engineer */
          "PHONE_NO"
                                                                    char[40];
                                                                    char[40];
          "ECU"
           "CPU_TYPE"
                                                                    char[40];
          "NO_OF_INTERFACES"
                                                                  uint:
          ( "MEMORY_LAYOUT" struct memory_loc )*;
          ( "SYSTEM_CONSTANT" struct sdk )*;
     };
};
enum endian { "BIG_ENDIAN" = 2, "LITTLE_ENDIAN" = 1 };
enum datatype { "UBYTE" = 0, "SBYTE" = 1, "UWORD" = 2, "SWORD" = 3, "ULONG" = 4, "SLONG" = 5 };
struct mod_common {
     char[100];
                                                                                                                                        /* comment */
     taggedstruct {
           "S_REC_LAYOUT"
                                                                    char[20];
           "DEPOSIT"
                                                                    enum { "DIFFERENCE" = 0, "ABSOLUTE" = 1 };
          "BYTE_ORDER"
                                                                    enum endian;
          "DATA_SIZE"
                                                                    int;
                                                                                                                                        /* 8/16 bit */
     };
};
```

```
struct axis descr {
                                                             /* mandatory part */
    enum { "STD_AXIS" = 0, "COM_AXIS" = 1, "FIX_AXIS" = 2 };
    char[20];
                                                             /* input quantity */
    char[20];
                                                             /* conversion *
                                                             /* maximum number of axis points */
    int:
    double;
                                                             /* lower limit */
    double;
                                                             /* upper limit */
  };
  taggedstruct {
                                                             /* optional part */
    "MAX_GRAD" double;
                                                             /* maximum gradient */
    "MONOTONY" enum { "MON_INCREASE" = 0, "MON_DECREASE" = 1 }; /* monotony */
    "BYTE_ORDER" enum endian;
                                                             /* byte order */
    "FIX_AXIS_PAR" struct {
                                                             /* parameters of fixed characteristic curve/map */
                                                             /* offset */
      int;
                                                             /* shift */
                                                             /* number of axis points */
      int;
    "DEPOSIT" enum { "DIFFERENCE" = 0, "ABSOLUTE" = 1 }; /* with deviation from standard */
    "AXIS_PTS_REF" char[20];
                                                             /* reference to axis points distribution */
  };
};
struct characteristic {
  struct {
                                                             /* mandatory part */
    char[20];
                                                             /* name
                                                             /* descr
    char[120];
    enum { "VALUE"=0, "CURVE"=1, "MAP"=2, "CUBOID"=3, "VAL_BLK"=4, "ASCII"=5}; /* type */
                                                             /* address */
    long;
                                                             /* deposit */
    char[20];
                                                             /* maxdiff */
    double;
    char[20];
                                                             /* conversion */
    double;
                                                             /* lower limit */
    double:
                                                             /* upper limit */
  taggedstruct {
                                                             /* optional part */
    "BYTE_ORDER" enum endian;
                                                             /* byte order */
    "BIT_MASK" long;
                                                             /* bit mask */
    "FUNCTION_LIST" (char[20])*;
                                                             /* functions */
    "NUMBER" int:
                                                             /* number of constants or characters */
    "EXTENDED_LIMITS" struct {
                                                             /* extended lower limit */
      double;
      double;
                                                             /* extended upper limit */
     };
    ( block "AXIS_DESCR" struct axis_descr )*;
                                                             /* axis description */
    ("IF_DATA" taggedunion ifp_characteristic )*;
                                                             /* interface-specific part */
         /* taggedunion ifp_characteristic: to be specified by manufacturer */
};
/* ******* Description of axis point distributions ******** */
struct axis_pts {
  struct {
                                                             /* mandatory part */
    char[20]:
                                                             /* name
                                                             /* descr */
    char[120];
    long;
                                                             /* address */
    char[20];
                                                             /* input quantity */
    char[20];
                                                             /* deposit */
                                                             /* maxdiff */
    double:
    char[20];
                                                             /* conversion */
    int;
                                                             /* maximum number of axis points */
    double;
                                                             /* lower limit */
    double;
                                                             /* upper limit */
  taggedstruct {
                                                             /* optional part */
    "DEPOSIT" enum { "DIFFERENCE" = 0, "ABSOLUTE" = 1 };
    "BYTE_ORDER" enum endian;
                                                             /* byte order */
    "FUNCTION_LIST" (char[20])*;
                                                             /* functions */
    ("IF_DATA" taggedunion ifp_characteristic )*;
                                                             /* interface-specific part */
         /* taggedunion ifp_characteristic: to be specified by manufacturer */
  };
};
```

```
struct measurement {
  struct {
                                                            /* mandatory part */
    char[20];
                                                            /* name */
                                                            /* descr */
    char[120];
    enum datatype;
                                                            /* data type */
                                                            /* conversion method */
    char[20];
    int;
                                                            /* resolution in bits */
    double;
                                                            /* accuracy */
                                                            /* lower limit */
    double:
    double;
                                                            /* upper limit */
  };
  taggedstruct {
                                                            /* optional part */
    "BIT_MASK"
                                                            /* bit mask */
                              long;
                             enum endian;
    "BYTE ORDER"
                                                            /* byte order */
    "FUNCTION_LIST"
                              ( char[20] )*;
                                                            /* functions: keyword only once,
                                                            /* followed by list of function names */
    "MAX_REFRESH struct {
      double;
      enum { "MSEC" = 0, "GRAD_CS" = 1 };
                                                           /* value in 'msec' or in 'crankshaft grad' */
    "VIRTUAL"
                                                           /* list of measurements to be linked */
                             (char[20])*;
         /* taggedunion ifp_measurement: to be specified by manufacturer */
    ( "IF_DATA" taggedunion ifp_measurement )*;
                                                           /* interface-specific part */
  };
};
/* ************* Description of conversion method ************* */
struct conversion {
  struct {
                                                                      /* mandatory part */
    char[20];
                                                                      /* name
                                                                      /* descr
                                                                               */
    char[120];
    enum { "TAB_INTP" = 0, "TAB_NOINTP" = 1, "RAT_FUNC" = 2, "FORM" = 3}; /* type */
                                                                      /* format (number of digits or fractional digits) */
    char[30];
  }
  taggedstruct {
    "COEFFS" double[6];
"COMPU_TAB" char [20]
                                                                      /* coefficients */
                                                                      /* reference to table */
    "FORMULA" char [100]
                                                                      /* formula */
};
/* ******** Description of conversion tables ************* //
struct conv_tab {
  char[20];
                                                                      /* name
                                                                     /* descr */
  char[120]:
  enum { "TAB_INTP" = 0, "TAB_NOINTP" = 1};
                                                                      /* value_pairs_no */
  int;
  struct tab {
    long;
                                                                      /* int_val
                                                                      /* phys_val
    double:
                                                                      /* tab
  } [256];
/* ******* Description of verbal conversion tables ******* */
struct conv_tab_verb {
                                                                                   */
  char[20];
                                                                      /* name
  char[120];
                                                                      /* descr
                                                                      /* type
  int;
  int;
                                                                      /* value_pairs_no */
  struct tab {
                                                                      /* int val
    long;
    char[40];
                                                                      /* text
  } [20];
};
```

```
/* ****** Description of functions ******** */
struct function {
  char[20];
                                                                       /* name
  char[120];
                                                                       /* descr
};
/* ********** Description of record layouts *********** */
enum addrtype { "PBYTE" = 1, "PWORD" = 2, "PLONG" = 3, "DIRECT" = 4 };
struct fnc_values {
  int no;
  enum datatype;
                                                             /* data type of table values */
  enum { "COLUMN_DIR" = 1, "ROW_DIR" = 2 };
                                                             /* row or column oriented */
                                                             /* addressing */
  enum addrtype;
struct axis_pts {
  enum datatype;
                                                            /* data type of axis points */
  enum { "INDEX_INCR" = 1, "INDEX_DECR" = 2 };
                                                             /* increasing, decreasing index */
  enum addrtype;
                                                             /* addressing */
struct abl_addr {
  int no;
};
struct abl_datatype {
  int no;
                                                            /* data type */
  enum datatype;
struct record_layout {
  struct {
                                                                       /* optional part */
    char[20];
                                                                       /* name */
  };
  taggedstruct {
                                                                       /* mandatory part */
     "FNC_VALUES"
                              struct fnc_values;
    "IDENTIFICATION"
                              struct abl_datatype;
    ("RESERVED"
                              struct abl_datatype) *;
     "AXIS_PTS_X"
                              struct axis_pts;
    "AXIS_PTS_Y"
                              struct axis_pts;
    "NO_AXIS_PTS_X"
                              struct abl_datatype;
    "NO_AXIS_PTS_Y"
                              struct abl_datatype;
    "FIX_NO_AXIS_PTS_X"
                              int;
                                                                       /* number of axis points */
    "FIX_NO_AXIS_PTS_Y"
                                                                      /* number of axis points */
                              int;
    "SCR_ADDR_X"
                              struct abl_addr;
    "SCR_ADDR_Y"
                              struct abl_addr;
    "RIP_ADDR_X"
                              struct abl_addr;
    "RIP_ADDR_Y"
                              struct abl_addr;
    "SHIFT_OP_X"
                              struct abl_datatype;
                                        struct abl_datatype;
    "SHIFT
                    OP_Y"
    "OFFSET_X"
                              struct abl_datatype;
     "OFFSET_Y"
                              struct abl_datatype;
};
                                       _ End File EXAMPLE.AML _
```

8.5 Example of description file

Figure 14: Project example

On the basis of the example shown in Figure 14 it is assumed that the drivers for DIM and CANIM are supplied by supplier 1 and the driver for EDIC by supplier 2. Both suppliers must then specify the formats for the interface-specific parameters. This is done below in the two files SUPP1_IF.AML and SUPP2.IF.AML.

```
File SUPP1_IF.AML
/begin A2ML
/* A2ML-file defining the interfaces ASAP1B_DIM and ASAP1B_CAN.
enum mem_typ { "INTERN" = 0, "EXTERN" = 1 };
enum addr_typ { "BYTE" = 1, "WORD" = 2, "LONG" = 4 };
enum addr_mode { "DIRECT" = 0, "INDIRECT" = 1 };
taggedunion if_data {
    "ASAP1B_DIM" taggedstruct {
                                         /* optional parameters */
        (block "SOURCE" struct {
                                         /* indispensable */
            struct {
                char [101];
                                         /* source name (string)*/
                int;
                                         /* min period ( conforming together with min factor the fastest */
                                         /* ...samplingrate available ). */
                                         /* min factor */
                long;
            };
            taggedstruct {
                block "QP_BLOB" struct {
                                         /* adr_distab */
                    long;
                    int;
                                         /* len_distab */
                    long;
                                         /* addr_outp */
                                         /* trgid
                    long;
            };
                                         /* multiple SOURCE */
```

```
block "TP_BLOB" struct {
                                           /* display table type */
             int;
        block "KP_BLOB" struct {
                                           /* KP_BLOB specification for ASAP1b */
                                           /* address */
             long;
                                           /* addr_size */
             enum addr_typ;
        };
        block "DP_BLOB" struct {
                                           /* DP_BLOB specification for ASAP1b */
             enum mem_typ;
                                           /* mem_typ */
                                           /* PA_BLOB specification for ASAP1b */
        block "PA_BLOB" struct {
             enum addr_mode;
                                           /* addressing mode */
        };
    };
                                           /* end of: "ASAP1B_DIM taggedstruct */
    "ASAP1B_CAN" taggedstruct {
                                           /* optional parameters */
        (block "SOURCE" struct {
                                           /* indispensable */
            struct {
                 char [101];
                                           /* source name (string)*/
                 int;
                                           /* min period ( conforming together with min factor */
                                           /* the fastest samplingrate available ).
                 long;
                                           /* min factor */
             };
        };
        )*;
                                           /* multiple SOURCE may exist */
        block "TP_BLOB" struct {
             int;
                                           /* bus timing */
        };
        block "KP_BLOB" struct {
                                           /* KP_BLOB specification for ASAP1b */
             char[33];
                                           /* messagename */
                                           /* identifier */
             long;
                                           /* messagesize */
             int:
             char[101];
                                           /* messagesource */
             int;
                                           /* startbit */
                                           /* datasize */
             int:
             taggedstruct {
                 "MULTIPLEX" struct {
                                           /* startbit */
                     int:
                     int;
                                           /* datasize */
                                           /* tag */
                     long;
                 };
             };
                                           /* end of: block "KP_BLOB" */
        };
    };
                                           /* end of: "ASAP1B_CAN" taggedstruct */
                                           /* end of: taggedunion if_data */
};
/end A2ML
                                                End of file SUPP1_IF.AML
                                                File SUPP2_IF.AML _
/begin A2ML
taggedunion if_data {
    "ASAP1B_EDIC" taggedstruct {
                                           /* optional parameters */
        (block "SOURCE" struct {
                                           /* indispensable */
             struct {
                 char [101];
                                           /* source name (string)*/
                                           /* min period ( conforming together with min factor the fastest */
                 int;
                                           /* ...samplingrate available ). */
                                           /* min factor */
                 long;
             };
            taggedstruct {
                 block "QP_BLOB" struct {
                 };
             };
        )*;
                                           /* multiple SOURCE */
        block "TP_BLOB" struct {
```

```
};
       block "KP_BLOB" struct {
                                    /* KP_BLOB specification for ASAP1b */
       };
       block "DP_BLOB" struct {
                                    /* DP_BLOB specification for ASAP1b */
       };
       block "PA_BLOB" struct {
                                    /* PA_BLOB specification for ASAP1b */
       };
                                     /* end of: "ASAP1B_EDIC" taggedstruct */
   };
                                     /* end of: taggedunion if_data */
/end A2ML
                                          end of file SUPP2_IF.AML
The ASAP2 description files of both suppliers could look as follows:
                                          File MST_ABS.A2L
                      MST_ABS "Project example see Figure 14"
/begin PROJECT
  /begin HEADER
                      "General project description"
    VERSION
                      "0815"
    PROJECT NO
                      1188
  /end HEADER
 /include engine_ecu.a2l
 /include abs_ecu.a21
/end PROJECT
                                       __ end of file MST_ABS.A2L _
                                          File ENGINE_ECU.A2L
/begin MODULE DIM "Comment on module"
                                                       /* Detailed description of an application device */
 /include "supp1_if.aml"
                                                       /* Specification of the interface-specific parts */
  /begin MOD_PAR
                                     "Comment"
    VERSION
                                     "Test version 09.11.93"
    ADDR_EPK
                                     0x12345
    EPK
                                     "EPROM identifier test"
    SUPPLIER
                                     "Mustermann"
    CUSTOMER
                                     "LANZ-Landmaschinen"
    CUSTOMER_NO
                                     "0987654321"
    USER
                                                                /* Applications engineer */
                                              "Ignaz Lanz"
    PHONE_NO
                                     "(01111) 22222"
    ECU
                                     "Engine control"
    CPU_TYPE
                                     "Intel 0815"
    NO_OF_INTERFACES
    /begin MEMORY_LAYOUT
                                                       0x0000 0x8000 -1 -1 -1 -1 -1
                                    PRG_DATA
         /begin IF_DATA ASAP1B_DIM
                  /begin DP_BLOB EXTERN /end DP_BLOB
                                                                 /* memory type */
                  /begin PA_BLOB DIRECT /end PA_BLOB
                                                                /* addressing mode */
         /end IF_DATA
    /end MEMORY_LAYOUT
    SYSTEM_CONSTANT
                                     "CONTROLLERx CONSTANT1" "0.99"
    SYSTEM_CONSTANT
                                     "CONTROLLERx CONSTANT2" "2.88"
                                     "CONTROLLERx CONSTANT3" "-7"
    SYSTEM_CONSTANT
    SYSTEM_CONSTANT
                                     "ANY-PARAMETER"
                                                               "3.14159"
  /end MOD_PAR
  /begin MOD_COMMON
                                     "Characteristic maps always deposited in same mode"
    DEPOSIT
                                     ABSOLUTE
    BYTE_ORDER
                                     BIG_ENDIAN
    DATA_SIZE
                                                       /* bit */
  /end MOD_COMMON
```

```
/begin IF_DATA ASAP1B_DIM
       /begin SOURCE "angular synchonous" 101 1
                 /begin QP_BLOB 0x5661 20 0xE001 2
                 /end QP_BLOB
       /end SOURCE
       /begin SOURCE "time synchronous, rate 20ms" 4 2
                 /begin QP_BLOB 0x3441 20 0xE041 3
                 /end QP_BLOB
       /end SOURCE
       /begin TP_BLOB 14 /end TP_BLOB
/end IF_DATA
/begin IF_DATA ASAP1B_CAN
       /begin SOURCE "observing CAN-objects" 1000 1 /end SOURCE
       /begin TP_BLOB $FA /end TP_BLOB
/end IF_DATA
/begin CHARACTERISTIC KI "I share for speed limitation"
                                     VALUE
                                                        /* type: constant */
                                    0/408F
                                                        /* address */
                                    DAMOS_FW
                                                        /* deposit */
                                    5.0
                                                        /* max_diff */
                                    FACTOR01
                                                        /* conversion */
                                    0.0
                                                        /* lower limit */
                                    255.0
                                                        /* upper limit */
       /* interface-spec. parameters: address location, addressing */
       /begin IF_DATA ASAP1B_DIM
                 /begin DP_BLOB EXTERN /end DP_BLOB
                                                                  /* memory type */
                 /begin PA_BLOB DIRECT /end PA_BLOB
                                                                  /* addressing mode */
       /end IF_DATA
       /begin FUNCTION_LIST
                                    V_LIM
                                                                  /* reference to functions */
       /end FUNCTION_LIST
/end CHARACTERISTIC
/begin CHARACTERISTIC PUMCD "Pump characteristic map"
                                    MAP
                                                                  /* type: characteristic map
                                    0x7140
                                                                  /* address */
                                    DAMOS_KF
                                                                  /* deposit */
                                    100.0
                                                                  /* max_diff */
                                                                  /* conversion */
                                     VOLTAGE
                                    0.0
                                                                  /* lower limit */
                                    5000.0
                                                                  /* upper limit */
                                                                  /* interface-spec. parameters: address location, addressing */
       /begin IF_DATA ASAP1B_DIM
                 /begin DP_BLOB EXTERN /end DP_BLOB
                                                                  /* memory type */
                 /begin PA_BLOB INDIRECT /end PA_BLOB
                                                                           /* addressing mode */
       /end IF_DATA
       /begin AXIS_DESCR
                                                        /* X-axis: */
                                    STD_AXIS
                                                                  /* standard axis (no group or fixed characteristic map) */
                                                                  /* input quantity */
                                    N_RULE
                                                                  /* conversion */
                                    16
                                                                  /* maximum number of axis points */
                                    0.0
                                                                  /* lower limit */
                                    5800.0
                                                                  /* upper limit */
                 MAX_GRAD
                                    20.0
                                                                  /* max_grad */
       /end AXIS_DESCR
       /begin FUNCTION_LIST
                                    CLDSTRT FLLD
                                                                  /* reference to functions */
       /end FUNCTION_LIST
/end CHARACTERISTIC
```

```
M_ECORR
/begin MEASUREMENT
                                      "corrected fuel mass"
                                     UWORD
                                                                   /* data type */
                                     M_E
                                                                   /* reference to conversion method */
                                                                   /* resolution in bits */
                                     0.001
                                                                   /* accuracy in '%' */
                                                                   /* lower limit */
                                     0.0
                                     43.0
                                                                   /* upper limit */
        BIT_MASK
                                                                   /* bit mask */
                                     0xOFF
       /begin IF_DATA ASAP1B_DIM
                  /begin DP_BLOB EXTERN /end DP_BLOB
                                                                   /* memory type */
                  /begin PA_BLOB DIRECT /end PA_BLOB
                                                                   /* addressing mode */
                  /begin KP_BLOB 0x8038 WORD /end KP_BLOB
                                                                   /* address, address length */
       /end IF_DATA
       /begin IF_DATA ASAP1B_CAN
                  /begin KP_BLOB
                                                                    /* interface-specific part */
                                      "message-x'
                                                                   /* message name */
                                     0x0123
                                                                   /* identifier */
                                                                   /* message length */
                                                         /* sender */
                                      "sender-Y'
                                     5
                                                                   /* start bit */
                                      16
                                                                   /* bit length */
                 /end KP_BLOB
        /end IF_DATA
       /begin FUNCTION_LIST
                                     CLDSTRT FLLD
                                                                   /* reference to functins */
       /end FUNCTION_LIST
/end MEASUREMENT
/begin MEASUREMENT
                           N
                                      "current speed'
                                     UWORD
                                                                   /* data type */
                                                                   /* reference to conversion method */
                                     N_RULE
                                                                   /* resolution in bits */
                                     0.006
                                                                   /* accuracy in '%' */
                                     0.0
                                                                   /* lower limit */
                                     5800.0
                                                                   /* upper limit */
       BIT_MASK
                                                                   /* bit mask */
                                     0xFFFF
       /begin IF_DATA ASAP1B_DIM
                  /begin DP_BLOB EXTERN /end DP_BLOB
                                                                   /* memory type */
                  /begin PA_BLOB DIRECT /end PA_BLOB
                                                                   /* addressing mode */
                  /begin KP_BLOB 0x8020 WORD /end KP_BLOB
                                                                   /* address, address length */
       /end IF_DATA
       /begin IF_DATA ASAP1B_CAN
                 /begin KP_BLOB
                                                         /* interface-specific part */
                                      "message-x'
                                                                   /* message name */
                                     0x0123
                                                                    /* identifier */
                                     8
                                                                   /* message length */
                                      "sender-Y"
                                                         /* sender */
                                     21
                                                                    /* start bit */
                                                                   /* bit length */
                                     16
                 /end KP_BLOB
       /end IF_DATA
       /begin FUNCTION_LIST
                                     V_LIM CLDSTRT FLLD
                                                                   /* reference to functions */
        /end FUNCTION_LIST
/end MEASUREMENT
/begin COMPU_METHOD FACTOR01
                                                                   /* name */
                                      "factor 1"
                                                                   /* long identifier */
                                     RAT_FUNC
                                                                    /* fractional rational function */
                                                                   /* format string */
                                      "%4.0"
                                                                   /* unit */
                                                                   /* coefficients for polynome conversion */
       COEFFS
                                     0.0 1.0 0.0 0.0 1.0 0.0
/end COMPU_METHOD
/begin COMPU_METHOD
                                                                   /* name */
                                      "amount"
                                                                    /* long identifier */
                                     TAB INTP
                                                                   /* conversion table with interpolation */
                                      "%4.0"
                                                                   /* format string */
                                      "mg/H"
                                                                   /* unit */
       COMPU_TAB
                                      "AMOUNT"
                                                                   /* reference to table */
/end COMPU_METHOD
```

```
/begin COMPU_METHOD
                            N_RULE
                                                                     /* name /*
                                       "speed"
                                                                     /* long identifier */
                                      RAT_FUNC
                                                                     /* fractional rational function */
                                       "%4.0"
                                                                     /* format string */
                                       "1/min
                                                                     /* unit */
                                                                      /* coefficients for polynome conversion: "don't care" */
        COEFFS
                                      0.0 255.0 0.0 0.0 5800.0 0.0
/end COMPU_METHOD
/begin COMPU_METHOD
                            VOLTAGE
                                                                     /* name */
                                       "voltage"
                                                                     /* long identifier */
                                      RAT_FUNC
                                                                     /* fractional rational function */
                                       "%4.0"
                                                                     /* format string */
                                       "mV"
                                                                     /* unit */
                                                                     /* coefficients for polynome conversion: "don't care" */
        COEFFS
                                      0.0\ 255.0\ 0.0\ 0.0\ 5000.0\ 0.0
/end COMPU_METHOD
/begin COMPU_TAB
                            AMOUNT
                                                                     /* name */
                                       "conversion table for AMOUNT"
                                      TAB_INTP
                                                                     /* table with interpolation */
                                                                     /* number of value pairs */
                                      0\ 0.0\ 100\ 10.0\ 156\ 30.0\ 255\ 43.0
                                                                            /* value pairs */
/end COMPU_TAB
/begin FUNCTION
                                      V_LIM "speed limitation"
                                                                     /end FUNCTION
                                                                     /end FUNCTION
                                      CLDSTRT "cold start"
/begin FUNCTION
/begin FUNCTION
                                      FLLD "full load"
                                                                     /end FUNCTION
                                                                     /* BOSCH record layout */
/begin RECORD_LAYOUT DAMOS_FW
                                                                     /* DAMOS constant */
       FNC_VALUES
                                                                     /* description of function value: */
                                                                     /* position in memory */
                                      UBYTE
                                                                     /* data type of the constant */
                                      COLUMN_DIR
                                                                     /* deposited in columns (don't care) */
                                      DIRECT
                                                                     /* direct addressing */
/end RECORD_LAYOUT
/begin RECORD_LAYOUT DAMOS_KF
                                                           /* DAMOS characteristic diagram
                                                           /* description of the addresses of the X-input quantities */
       SRC_ADDR_X
                                                                     /* position in memory */
                                      UWORD
                                                                     /* datatype */
       NO_AXIS_PTS_X
                                                           /* description of the number of X-axis points */
                                                                     /* position in memory */
                                      UBYTE
                                                                     /* word length */
        AXIS_PTS_X
                                                                     /* description of the X-axis point values */
                                                                     /* position in memory */
                                      UBYTE
                                                                     /* data type of the axis point values */
                                      INDEX_INCR
                                                                     /* increasing index with increasing addresses */
                                      DIRECT
                                                                     /* direct addressing */
       SRC_ADDR_Y
                                                           /\!\!\!* description of the addresses of the Y-input quantities */
                                                                     /* position in memory */
                                                                     /* datatype */
                                      UWORD
       NO_AXIS_PTS_Y
                                                           /* description of the number of Y-axis points */
                                                                     /* position in memory */
                                      UBYTE
                                                                     /* word length */
        AXIS_PTS_Y
                                                                     /* description of the Y-axis point values */
                                                                     /* position in memory */
                                      UBYTE
                                                                     /* data type of the axis point values */
                                      INDEX_INCR
                                                                     /* increasing index with increasing addresses */
                                                                     /* direct addressing */
                                      DIRECT
       FNC_VALUES
                                                           /* description of the function values */
                                                                     /* position in memory */
                                      UBYTE
                                                                     /* data type of the table values */
                                      COLUMN_DIR
                                                                     /* deposited in columns */
                                      DIRECT
                                                                     /* direct addressing */
/end RECORD_LAYOUT
```

```
/* SIEMENS record layout */
  /begin RECORD_LAYOUT SIEMENS_KF
                                                         /* SIEMENS characteristic map */
                                                         /* description of the function values: axis points */
                                                         /* are described in an additional specification */
                                                                   /* position in memory */
                                      UWORD
                                                                   /* data type of the table values */
                                      COLUMN_DIR
                                                                   /* deposited in columns */
                                                                   /* direct addressing */
                                      DIRECT
  /end RECORD_LAYOUT
  /begin RECORD_LAYOUT SIEMENS_SST
                                                         /* SIEMENS axis points distribution */
         AXIS_PTS_X
                                                         /* description of the axis point values */
                                                                   /* position in memory */
                                                                   /* data type of the axis point values */
                                      UWORD
                                      INDEX_INCR
                                                                   /* increasing index with increasing addresses */
                                      DIRECT
                                                                   /* direct addressing */
  /end RECORD_LAYOUT
/end MODULE
                                      end of file ENGINE_ECU.A2L _
                                             file ABS.ECU.A2L
/begin MODULE EDIC "Comment on module"
                                                         /* detailed description of an application device */
  /include "supp2_if_aml"
                                                         /* specification of the interface-specific parts */
  /begin MOD_PAR
                             "comments"
    VERSION
                             "test version 09.11.93"
    ECU
                                      "ABS control"
  /end MOD_PAR
  /begin MOD_COMMON
                             "comments on these parameters"
    DEPOSIT
                             ABSOLUTE
    BYTE_ORDER
                             BIG_ENDIAN
                             16 /* bit */
    DATA_SIZE
  /end MOD_COMMON
  /begin IF_DATA ASAP1B_EDIC
         /begin SOURCE
                   /begin QP_BLOB
                   /end QP_BLOB
         /end SOURCE
         /begin TP_BLOB
         /end TP_BLOB
  /begin IF_DATA
  /begin CHARACTERISTIC
  /end CHARACTERISTIC
```

```
/begin MEASUREMENT
                                      "engine speed"
                                      UWORD
                                                                  /* data type */
                                      R_SPEED_3
                                                                  /* reference to conversion method */
                                                                  /* resolution in bits */
                                      2
                                      2.5
                                                                  /* accuracy in '%' */
                                      120.0
                                                                  /* lower limit */
                                      8400.0
                                                                  /* upper limit */
         BIT_MASK
                                      0x0FFF
                                                                  /* bit mask */
                                      LITTLE_ENDIAN
         BYTE_ORDER
         /begin IF_DATA ASAP1B_EDIC
                  /begin KP_BLOB
                                                                  /* interface-specific part */
                                      "SND" 0x10 0x00 0x05 0x08
"RCV" 4 UWORD
                   /end KP_BLOB
                   /begin PA_BLOB
                   /end PA_BLOB
                   /begin DP_BLOB
                   /end DP_BLOB
         /end IF_DATA
         /begin FUNCTION_LIST
                                      ID_ADJUSTM FL_ADJUSTM /* reference to functions */
         /end FUNCTION_LIST
  /end MEASUREMENT
/end MODULE
                                   end of file ABS_ECU.A2L
```

Page 244 of 277 Version 1.51 Release 2002-02-05

8.6 AML example for ASAP1a-CCP

Note:

- 1. Some elements in this example are not compatible with ASAP2 V1.2. Therefore extensions are necessary which lead to new keywords in ASAP2 V1.3
- 2. The example is only valid with ASAP2 V1.3 and higher (new keywords)

```
ASAP2 Meta Language for CCP CAN Calibration Protocol V2.1
    Assumes ASAP2 V1.2 or later
    AML Version V2.6, 18.10.2002
    Vector Informatik, Zaiser
    Hewlett Packard, Krueger
    ETAS, Maier
    Vector Informatik, Schuermans
    Datatypes:
               ASAP2
                              Windows Erlaeuuterung
                       BYTE
                              BYTE unsigned 8 Bit
char signed 8 Bit
WORD unsigned integer 16 Bit
int signed integer 16 Bit
    uchar UBYTE
    char
                SBYTE
               UWORD WORD signed integer 16 BIL ULONG DWORD unsigned integer 32 Bit SLONG LONG signed integer 32 Bit float 32 Bit
    uint.
    int
    ulong ULONG
long SLONG
float FLOAT32_IEEE
"ASAP1B_CCP" taggedstruct {
    /* Beschreibung der DAQ-Listen */
    (block "SOURCE" struct {
      struct {
       char [101];
                    /* Name of the DAQ-List (data acquisition list),
                         measurement source .
                      /* If the DAQ-Liste only supports one fixed ECU
                         sampling rate, it can be declared below
                         to achieve compatibility with the ASAP2 standard.
                         Otherwise description of the possible ECU
                         sampling rates in QP_BLOB
                      /* Period definition : Basic scaling unit in
                         CSE defined in ASAP1b (CSE=Code for Scaling Unit) */
                      /* Period definition : Rate in Scaling Units */
       long;
      taggedstruct {
        DISPLAY_IDENTIFIER char[32];
       block "QP_BLOB" struct {
          uint;
                                      /* Number of the DAQ-List 0..n
          taggedstruct {
            "LENGTH" uint;
                             /* Length of the DAQ-Liste, maximum number of
                                  the useable ODTs
            "CAN_ID_VARIABLE"; /* CAN-Message-ID is variable
            "CAN_ID_FIXED" ulong;
                                /* CAN-Message-ID of the DTOs is fixed,
                                  Default DTO
                                  Bit31 = 1: extended Identifier
                                  Bit31 = 0: standard Identifier
                               /* Not applied if the ECU uses the DTM-Id
            ("RASTER" uchar )*;
                               /* Supported CCP Event Channel Names
                                  of this DAQ List */
            ("EXCLUSIVE" int )*;
                                /* Exclusion of other DAQ-Lists
            "REDUCTION_ALLOWED";
                                /* Data reduction possible
            "FIRST_PID" uchar; /* First Packet ID (PID) of the DAQ List
     )*; /* end of SOURCE */
      Description of the available ECU Sampling Rates (Event Channels)
    (block "RASTER" struct {
                    /* CCP Event Channel Name
      char [101];
```

```
/ \, {\rm \star} Short Display Name of the Event Channel Name
   char [9];
   uchar;
                  /* Event Channel No., used for CCP START_STOP)
                  /* Period definition : basic scaling unit in CSE
   int;
                     as defined in ASAP1b
                   /* ECU sample rate of the event channel,
                     period definition based on the basic scaling unit
   taggedstruct {
     ("EXCLUSIVE" uchar )*;
                  /* Exclusion of other CCP Event Channels
})*; /* end of RASTER */
^{\prime \star} Group several event channels to form one combined event ^{\star \prime}
/* e.g. group all cylinder synchronous events to one combined element */
(block "EVENT_GROUP" struct {
   char [101]; /* Event group name */
   char [9];
                  /* Short name for the event group */
   taggedstruct {
     ("RASTER" uchar )*;
                  /* all event channels beloging to group
                     (CCP Event Channel Numbers for START_STOP)
})*; /* end of EVENT_GROUP */
/* Description of the authentification process */
block "SEED_KEY" struct {
                  /* Name of the Seed&Key DLL for CAL Priviledge,
   char[256];
                     including file-Extension without path */
   char[256];
                  /* Name of the Seed&Key DLL for DAQ Priviledge,
                     including file-Extension without path */
                  /* Name of the Seed&Key DLL for PGM Priviledge,
   char[256];
                     including file-Extension without path */
}; /* end of SEED_KEY */
/* Description of the checksum calculation process */
block "CHECKSUM" struct {
   char[256]; /* Name of the Checksum DLL representing the ECU Algorithm,
                     including file-Extension without path */
}; /* end of CHECKSUM */
block "TP_BLOB" struct {
   uint; /* CCP Version,
                                     High Byte: Version
                                   Low Byte : subversion (dec.)
                                     High Byte: Version
            /* Blob-Version,
                                   Low Byte : subversion (dec.)
             /* CAN-Message ID for 'Transmitting to ECU (CRM)'
   ulong;
                                   Bit31 = 1: extended Identifier
Bit31 = 0: standard Identifier
            /* CAN-Message ID for 'Receiving from ECU (DTM)
   ulong;
                                   Bit31 = 1: extended Identifier
Bit31 = 0: standard Identifier
              /* Logical CCP-Address of the (station address)
   uint;
              /* Byte order of Multiple-byte-items
                                    1 = high Byte first, 2 = low byte first */
   taggedstruct {
     block "CAN_PARAM" struct {

wint: /* Quartz freq. of the elec. control unit
                                 /* BTR0
                                 /* BTR1
                                                                                * /
       uchar;
     };
      "BAUDRATE" ulong;
                                /* Baud rate in Hz.
     "SAMPLE_POINT" uchar;
"SAMPLE_RATE" uchar;
                                 /* sampling point of time in percent
                                /* number of samples per Bit (1 oder 3)
     "BTL_CYCLES" uchar;
                                /* number of BTL-cycles
                                /* SJW-parameter in BTL-cycles
     "SJW" uchar;
     "SYNC_EDGE" enum {
    "SINGLE" = 0,
                                /* Synchronisation only on fallende edge
                                /* Synchr. on falling and rising edge
         "DUAL" = 1
      "DAQ_MODE" enum {
                                /* mode of cylcic data acquisition
         "ALTERNATING" = 0,
                                /* ECU is sending one ODT per cycle
         "BURST" = 1
                                 /* ECU is sending a complete DAQ
      "BYTES_ONLY";
                                 /* ECU supports max. elements of one Byte size */
                                /* otherwise ECU supports different dataTypes */
                                 /* ECU supports the Resume function
      "RESUME_SUPPORTED";
                                 /* ECU supports the Store function
     "STORE_SUPPORTED";
      "CONSISTENCY" enum {
                                /* consistency of a complete DAQ ist guaranteed */
         "DAO" = 0,
         "ODT" = 1
                                /\,{}^\star consistency of a complete ODT ist guaranteed ^\star/\,
      "ADDRESS_EXTENSION" enum { /* address extension
                                    /* ECU supports only one Address extension
        "DAQ" = 0,
                                       within an DAQ
        "ODT" = 1
                                    /* ECU supports only one Address extension
                                       within an ODT
```

2002-02-05

```
block "CHECKSUM_PARAM" struct {
                                     /* checksum calculation procedure
                                   standard types not yet defined,
                                   if greater of equal 1000 : manufacturer specific */
            ulong;
                                   /* Maximum block length used by an ASAPla-CCP
                                       command, for checksum calculation procedure */
            taggedstruct {
              "CHECKSUM_CALCULATION" enum {
                 "ACTIVE_PAGE" = 0,
                 "BIT_OR_WITH_OPT_PAGE" = 1
              };
           }; '
/* end of CHECKSUM_PARAM */
          (block "DEFINED_PAGES" struct {
             struct {
                                   /* Logical No. of the memory page (1,2,...)
                uint;
                                   /* Name of the memory page
/* Adress-Extension of the memory page (only
                char[101];
                uint;
                                      Low Byte significant)
                                   /* Base address of the memory page
                ulong;
                                   /* Length of the memory page in Bytes
                ulong;
             taggedstruct {
                                     /* memory page in RAM */
                "RAM";
                                     /* memory page in ROM */
               "ROM";
                                     /* memory page in FLASH */
                "FLASH";
                                      /* memory page in EEPROM */
               "EEPROM";
                "RAM_INIT_BY_ECU"; /* memory page is initialised by ECU start-up */
               "RAM_INIT_BY_TOOL"; /* RAM- memory page is initialised by the MCS */
               "AUTO_FLASH_BACK"; /* RAM memory page is automatically flashed back */
"FLASH_BACK"; /* feature available to flash back the RAM memory page */
               "DEFAULT";
                                      /* memory page is standard (fallback mode) */
              *; /* end of DEFINED_PAGES */
            "OPTIONAL_CMD" uint )*; /* CCP-Code of the optional command available
                                           in the ECU. It is recommended to declare all
                                           non-standard ECU commands here */
    };
}; /* end of TP_BLOB */
    /* for MEMORY_SEGMENT */
    ("ADDR_MAPPING" struct {
   ulong; /* from */
       ulong;
                 /* to
                 /* length */
       ulong;
    })*; /* end of ADDR_MAPPING */
    /* for CHARACTERISTIC and AXIS_PTS and MEMORY_LAYOUT */
    "DP_BLOB" struct {
              /* Address extension of the calibration data
       uint;
                    (only Low Byte significant) */
       ulong; /* Base address of the calibration data */
ulong; /* Number of Bytes belonging to the calibration data */
    }; /* end of DP_BLOB */
    /* for MEASUREMENT */
    block "KP_BLOB" struct {
       uint;
               /* Address extension of the online data
                     (only Low Byte significant) */
       ulong; /* Base address of the online data */
ulong; /* Number of Bytes belonging to the online data (1,2 or 4) */
       taggedstruct {
           ("RASTER" uchar)*;
                  /* Array of event channel initialization values */
    };
}; /* end of KP_BLOB */
}; /* end of ASAP1B_CCP */
```

8.7 Win32 API for the ASAP1a CCP Seed&Key Algorithm DLL

Author: Michael Rossmann, SIEMENS

In order to have a common implementation of the Seed&Key algorithms used for getting access to a locked, CCP accessed ECU, the following API is proposed:

Function name:	ASAP1A_CCP_ComputeKeyFromSeed
Parameter 1:	Pointer to the Seed data, retrieved from ECU's GET_SEED cmd,
	4 BYTEs of data.
Parameter 2:	Pointer to 6 BYTEs of data, returning the calculated Key.

An example of an implementation of such an API written in C++ is like follows:

```
// Header file for ASAP1a CCP V2.1 Seed&Key Algorithm
#ifndef _SEEDKEY_H_
#define _SEEDKEY_H_
#ifndef DllImport
                      __declspec( dllimport )
#define DllImport
#endif
#ifndef DllExport
#define DllExport
                         declspec( dllexport )
#endif
#ifdef SEEDKEYAPI_IMPL
                            // only defined by implementor of SeedKeyApi
#define SEEDKEYAPI DllExport __cdecl
#define SEEDKEYAPI DllImport __cdecl
#endif
#ifdef __cpl:
extern "C" {
         _cplusplus
#endif
BOOL SEEDKEYAPI ASAP1A_CCP_ComputeKeyFromSeed (BYTE *Seed,
                                                     unsigned short SizeSeed,
                                                     BYTE *Key,
                                                     unsigned short MaxSizeKey,
                                                     unsigned short *SizeKey);
            Pointer to seed data
// SizeSeed:Size of seed data (length of ,Seed')
              Pointer, where DLL should insert the calculated key data.
// MaxSizeKey: Maximum size of ,Key'.
// SizeKey: Should be set from DLL corresponding to the number of data
// inserted to ,Key' (at most ,MaxSizeKey')
// Result: The value FALSE (= 0) indicates that the key could not be
              calculated from seed data (e.g. ,MaxSizeKey' is too small). TRUE (!= 0) indicates success of key calculation.
//
#ifdef __cplusplus
#endif
#endif //_SEEDKEY_H
```

```
// Implementation of Seed&Key DLL for ASAP1a CCP V2.1
#include <windows.h>
#include <memory.h>
#define SEEDKEYAPI_IMPL
#include "..\seedkey.h"
extern "C" {
BOOL SEEDKEYAPI ASAP1A_CCP_ComputeKeyFromSeed (BYTE *Seed,
                                                unsigned short SizeSeed,
                                                BYTE *Key,
                                                unsigned short MaxSizeKey,
                                                unsigned short *SizeKey)
       /* ... implementation of seed&key algorithm.
             The result should be written in Key.
             the result of the CCP 2.1 cmd GET_SEED.
      MessageBox(NULL, "Call to ASAP1A_CCP_ComputeKeyFromSeed", "Seed&Key",
MB_OK);
}
```

8.8 Win32 API for the ASAP1a Checksum Algorithm DLL

Author: Michael Rossmann, SIEMENS

In order to have a common interface to the implementation of the checksum algorithms used for verifying ECU calibration and program data, the following API is proposed:

Function name:	BOOL CalcChecksum(struct TRange *ptr, int nRanges, BYTE
	*pnChecksum, int *pnSignificant, WORD nFlags)
Parameter 1:	Pointer to an array of ranges, stored in structures of type TRange.
Parameter 2:	Number of ranges stored in the array which parameter 1 points to.
Parameter 3:	Pointer to a byte array where the checksum has to be stored. A maxi-
	mum of 8 bytes will be written by the DLL, so the caller should reserve
	space for 8 bytes of data.
Parameter 4:	Length of actually calculated checksum (1 8)
Parameter 5:	Flag field for commanding the way how the algorithm should work.
	Currently, only bit 0 is defined:
	Bit $0 = 0$ means: pnChecksum shall receive the result of the
	checksum calculation of the algorithm.
	Bit $0 = 1$ means: pnChecksum points to a checksum which shall
	be compared within the DLL with the checksum calculated by the
	algorithm. Return TRUE if checksums are identical, FALSE
	otherwise.
	All other bits are reserved and should be set to zero.

A TRange is defined as follows:

The Calling convention is like defined in "WIN32 API specification for ASAP1b", chapter 2.4.

An example of an implementation of such an API written in C++ is like follows:

```
// checksum.h
// Header file for ASAP1a CCP V2.1 Checksum Algorithm
#ifndef _CHECKSUM_H
#define _CHECKSUM_H
#ifdef __cplusplus
extern "C" {
#endif
#ifndef DllImport
#define DllImport
                     __declspec( dllimport )
#endif
#ifndef DllExport
                    __declspec( dllexport )
#define DllExport
#endif
#ifdef CHECKSUMAPI_IMPL // only defined by implementor of ChecksumApi
#define CHECKSUMAPI DllExport __cdecl
#define CHECKSUMAPI DllImport __cdecl
#endif
struct TRange
{
      char
                         *pMem;
      unsigned long
                       lLen;
};
#ifdef __cplusplus
extern "C" {
#endif
BOOL CHECKSUMAPI CalcChecksum(struct TRange *ptr, int nRanges, BYTE
*pnChecksum, int *pnSignificant, WORD nFlags);
#ifdef __cplusplus
#endif
#endif //_CHECKSUM_H
```

```
// Implementation of checksum DLL for ASAP1a CCP V2.1
#include <windows.h>
#include <memory.h>
#define CHECKSUMAPI_IMPL
#include "checksum.h"
extern "C" {
BOOL CHECKSUMAPI CalcChecksum(struct TRange *ptr, int nRanges,
                              BYTE *pnChecksum, int *pnSignificant,
                              WORD nFlags)
{
    int i;
    unsigned long crc32_value = 0xffffffff; /* pre-condition - bits all
                                                  ones */
    BOOL bRet = TRUE;
    *pnSignificant = 4;
    for(i = 0; i < nRanges; i++)</pre>
        crc32_value = calculate_crc32(ptr[i].pMem, ptr[i].lLen,
                                       crc32_value);
    crc32_value = crc32_value ^ 0xffffffff; /* post-condition - one's
                                                 complement */
    if(nFlags & 0x0001)
        if(memcmp(&crc32_value,pnChecksum,*pnSignificant) == 0)
            bRet = TRUE;
        else
            bRet = FALSE;
    memcpy(pnChecksum, &crc32_value, sizeof(unsigned long));
    return bRet;
  // extern "C"
```

9 Appendix A: Record layouts

BOSCH: DAMOS, MSA15

CC, CD, AP distribution

FV, FVB, FCC, FCD, GCC, GCD, ASCII:

Address points directly to the function value

VFV, VFCC, VFCD:

Function values are addressed indirectly (via vector table)

BOSCH: KEBUSS

FV, CC, CD

BOSCH: C-DAMOS

CC, CD, AP distribution

FCC, FCD, GCC, GCD, ASCII

FV, FVB:

Address points directly to the value(s)

VFCC, VFCD:

Indirect addressing via vector table (in all other respects identical to FCC, FCD)

Siemens: Record layout

FV, CC, CD (other types???)

10 Appendix B: IEEE-Floating-Point-Format

10.1 32-Bit Format

Sign	Biases Exponent				Significant							
S	e7	e6		e1	e0	B1	b2	b3		b21	b22	b23
3	31				,	23						

Table 6: IEEE-Floating-Point-Format (32-Bit)

Representation of real numbers: $?? 1 ?? 2^{E}? b_{0?} b_{1}b_{2}b_{3}...b_{23}$

s: 0 or 1

E: any integer between -126 and +127 (E = e - 127)

 b_i : 0 or 1 (where $b_0 = 1$)

RealNumber =
$$?? 1?^{s}$$
 ? $2^{(?127)?} \frac{?}{?^{2}} \frac{?e_{i}? 2^{i}?}{?^{2}}$? $\frac{?^{23}}{?^{2}} \frac{?b_{i}?}{?^{2}}$ where $b_{0} = 1$

10.2 64-Bit Format

Sign	Biases Exponent				Significant							
S	e10	e9		e1	e0	b1	b2	b3		b50	b51	b52
63						52						

Table 7: IEEE-Floating-Point-Format (64-Bit)

Representation of real numbers: $?? 1? ?? 2^E ?b_{0?} b_1 b_2 b_3 ... b_{52}$

s: 0 or 1

E: any integer between -1022 and +1023 (E = e -1023)

 b_i : 0 or 1 (where $b_0 = 1$)

RealNumber = ?? 1 ?? 2
$$(? 1023)? ? ? 2 i? 2 i? 2 i? 2 i? 2 i? ? 2 i? 2 i? 2 i? 2 i? ? 2 i? 2 i??$$
 where $b_0 = 1$

11 Appendix C: Using Reference Curves as Normalization Axes for Maps

11.1 Background

In certain calibration environments, the use of the same curves for normalization of two or more maps can save time during calibration and ROM storage while providing calibration control of resolution. A map specifies an axis as a CURVE_AXIS (See keywords AXIS_DESCR and CURVE_AXIS_REF) with a reference to the name of an existing curve defined elsewhere in the symbolic information. Typically, two such curves would be specified, one to normalize the map in the X direction, and one to normalize the map in the Y direction. Because of the interpolation within the curve and then in the map, the number of pairs in the curve does not have to match the number of points along the corresponding map axis.

Overall Technique

Two curves are needed; one for the map X direction and one for the map Y direction. The X values for the curves must be ordered such that their values are always staying the same or increasing. The output of each curve are indices used to determine four cells within a map, whose values are interpolated to result in a single Z value. Since the output of a curve is a floating-point value, the value is truncated to determine one cell in the map, with the adjacent cell one larger. The interpolation is done twice in the X direction (once for each row) resulting in two Z values. These two Z values are then interpolated to result in a final Z value. The interpolation uses the identical-slope method, where for two existing known points, (X1,Y1) and (X2,Y2), the corresponding Y value for a given X value that lies on the line between the two points is given by: Y = Y1 + (X-X1)((Y2-Y1)/(X2-X1))

Determining the Map Indices

When the input value to a reference curve is less than or equal to the lowest X value, the result is set to the Y value corresponding to the lowest X value. When the input value to a curve is greater than or equal to the highest X value, the result is set to the Y value corresponding to the highest X value. When the input value matches an X value, the result is set to the corresponding Y value. Otherwise, the result is determined by interpolation between the two adjacent pairs whose X values form boundaries around the input value.

Determining the Map Normalized Value

The map cells are artificially numbered with integers beginning with 0 in both the X and Y direction. Two floating-point values are obtained from two curves, one for the X direction and one for the Y direction.

If the X direction floating-point value is less than 0, then the corresponding two column indices are set to 0. Otherwise the first column index is set to the whole number portion of the value and the second column index is set to one larger. Now, if the second column index is greater than or equal to the number of columns in the map, the first and second column indices are set to the number of columns minus 1.

If the Y direction floating-point value is less than 0, then the corresponding two row indices are set to 0. Otherwise the first row index is set to the whole number portion of the value and the second row index is set to one larger. Now, if the second row index is greater than or

equal to the number of rows in the map, the first and second row indices are set to the number of rows minus 1.

The intersection of the rows and columns determine four cells whose values are interpolated to result in a single Z value. The two values at the intersecting columns of one row are interpolated to obtain an intermediate result, and likewise for the other row. The two intermediate results are then interpolated in the Y direction to come up with the final Z result.

11.2 Example

The following example shows a map (Z_MAP) with 7 columns and 6 rows. The normalization curve for the column is a referenced curve (X_NORM) that contains 5 pairs. The normalization curve for the row is a referenced curve (Y_NORM) that contains 4 pairs. The number of pairs for each normalizing curve does not match the number of row and columns in the map. An input value of 850.0 into X_NORM produces a Y output of 3.9, and an input value of 60.0 for Y_NORM produces a Y output of 1.7. The four points in the table to interpolate would be the intersection of columns 3 and 4, and rows 1 and 2. First the two points in row 1, columns 3 and 4 (5.6, 3.2) are interpolated to get a value of 3.44. Then the two points in row 2, column 3 and 4 (2.2, 1.6) are interpolated to get a value of 1.66. These two resulting values are then interpolated to produce a final Z value of 2.194.

12 Appendix D: modifications from version 1.0 to version 1.21

ARRAY_SIZE - additional keyword: array of quantities (MEASUREMENT record)	44, 147
ASAP2 keywords: complete list	
ASAP2 keywords: prohibited as ident	28
ASAP2_VERSION: additional keyword	31, 45
AXIS_DESCR: No input quantity assigned	47
AXIS_PTS: No input quantity assigned	50
AXIS_PTS_X, -Y	
faulty example corrected with version 1.21	178
BYTE_ORDER: contradiction to general use	
COEFFS: Datatype of coefficients expanded to float	71
COMPU_TAB: redundant information (note)	
COMPU_VTAB: redundant information (note)	79
DEF_CHARACTERISTIC: additional keyword (function orientiation)	
delimiters added with version 1.21	
Delimiters (use of /begin, /end), final definition with version 1.21	30
Designing A2ML-file	
DIST_OP_X: additional keyword	
DIST_OP_Y: additional keyword	
FIX_AXIS_PAR_DIST: additional keyword (see AXIS_DESCR)	
FIX_AXIS_PAR_LIST: additional keyword (see AXIS_DESCR)	
FLOAT32_IEEE: additional datatype	
FNC_VALUES: additional enumerations of 'IndexMode'	
FORMAT - additional keyword	
display format of adjustable object	66, 110
display format of axis points	
display format of measurement	
FORMULA: delimiters added with version 1.21	
FUNCTION_LIST: additional features	
FUNCTION_LIST: delimiters added with Version 1.21	
IF_DATA	
ASAP1B_ADDRESS (mininal requirements for data acquisition)	131, 132
ASAP1B_CAN (mininal requirements for data acquisition)	
AXIS_PTS, CHARACTERISTIC, MEMORY_LAYOUT: revised	
MEASUREMENT: revised.	130
MEMORY_SEGMENT: revised	135
MODULE: revised	136
Supplemented to MEMORY_LAYOUT	150
IN_MEASUREMENT: additional keyword (function orientiation)	117, 138
IN_MEASUREMENT: delimiters added with version 1.21	138
LOC_MEASUREMENT: additional keyword (function orientiation)	
LOC_MEASUREMENT: delimiters added with version 1.21	
MAX_GRAD: absolut value of maximum gradient	47, 143
MAX_REFRESH - revised	
MEMORY_LAYOUT: delimiters added with version 1.21	
MONOTONY	
strict montonous behavior	161
MULTIPLEX: see IF_DATA ASAP1B_CAN	
OUT_MEASUREMENT: additional keyword (function orientiation)	
OUT_MEASUREMENT: delimiters added with version 1.21	
READ_ONLY	
supplemented to AXIS_DESCR	47. 67
supplemented to AXIS_PTS	51, 67
READ_WRITE - additional keyword: measurement object write access permissible	
REF_CHARACTERISTIC: additional keyword (function orientiation)	
REF_CHARACTERISTIC: delimiters added with version 1.21	

REF_MEASUREMENT: additional keyword (function orientiation)	121
RIP_ADDR_X, _Y, _W: additional parameter 'Datatype'	
SOURCE: additional keyword, see keyword IF_DATA(MODULE)	197
SOURCE: delimiters added with version 1.21	197
SRC_ADDR_X, _Y: additional parameter 'Datatype'	198
Structure of BLOBs	
SUB_FUNCTION: additional keyword (function orientiation)	117, 199
SUB_FUNCTION: delimiters added with version 1.21	199
SUB_GROUP: additional keyword (grouping)	122, 200
VAR_ADDRESS: additional keyword (variant coding)	213, 214
VAR_ADDRESS: delimiters added with version 1.21	213
VAR_CHARACTERISTIC: additional keyword (variant coding)	210, 214
VAR_CRITERION: additional keyword (variant coding)	210, 215
VAR_FORBIDDEN_COMB: additional keyword (variant coding)	210, 216
VAR_MEASUREMENT: additional keyword (variant coding)	215, 218
VAR_NAMING: additional keyword (varaint coding)	210, 219
VAR_SEPARATOR: additional keyword (variant coding)	
VARIANT_CODING: additional keyword (variant coding)	
VIRTUAL: delimiters added with version 1.21	222

13 Appendix E: modifications from version 1.21 to version 1.31

\boldsymbol{A}	
ADDRESS_MAPPING: description of new keyword	33
ALIGNMENT FLOAT32 IEEE	
decription of new keyword	35
use in MOD_COMMON	
use in RECORD_LAYOUT	175
ALIGNMENT_FLOAT64_IEEE	
decription of new keyword	
use in MOD_COMMON	
use in RECORD_LAYOUT	
ALIGNMENT_BYTE	
decription of new keyword	
use in MOD_COMMON	
use in RECORD_LAYOUT	
ALIGNMENT_LONG	
decription of new keyword	
use in MOD_COMMON	
use in RECORD_LAYOUT	175
ALIGNMENT_WORD	
decription of new keyword	
use in MOD_COMMON	
use in RECORD_LAYOUT	
ALTERNATE_CURVES: new keyword in enum IndexMode	109
ANNOTATION	20
decription of new keyword	
use in AXIS_DESCR	
use in AXIS_PTSuse in CHARACTERISTIC	
use in FUNTIONuse in MEASUREMENT	
ANNOTATION_LABEL: decription of new keyword	
ANNOTATION_DRIGIN: decription of new keyword	
ANNOTATION_TEXT: decription of new keyword	
AXIS_RESCALE_X	
description of new keywords	57
use in RECORD LAYOUT	
AXIS RESCALE Y	2.0
description of new keywords	57
use in RECORD_LAYOUT	
AXIS_RESCALE_Z	
description of new keywords	57
use in RECORD_LAYOUT	
B	
BIT_MASK: use in MEASUREMENT	146
BIT_OPERATION	
description of new keyword	
use in MEASUREMENT	146
\boldsymbol{C}	
CALIBRATION_HANDLE: description of new keyword	63
CALIBRATION_METHOD	~ A
description of new keyword	
use in MOD_PAR	
CHECKSUM description of new keyword	70
description of new keyword	

use in IF_DATA	136
COMPARISON_QUANTITY	130
description of new keyword	72
use in CHARACTERISTIC	
COMPU VTAB RANGE	
description of new keyword	81
use in MODULE	
D	
DEFAULT_VALUE description of new keyword	00
use in COMPU_TAB	
use in COMPU VTAB	
DEPENDENT_CHARACTERISTIC	,
description of new keyword	91
use in CHARACTERISTIC	
DISPLAY_IDENTIFIER	
description of new keyword	
use in AXIS_PTS	
use in CHARACTERISTIC	
use in MEASUREMENT	
use in SOURCE	197/
E	
ECU_ADDRESS	
description of new keyword	97
use in MEASUREMENT	
ECU_CALIBRATION_OFFSET	
description of new keyword	99
use in MOD_PAR	159
ERROR_MASK	
description of new keyword	
use in MEASUREMENT	146
EVENT_GROUP description of new keyword	102
use in IF DATA	
use III IF_DATA	130
F	
FIX AXIS PAR LIST	
description of new keyword	106
use in AXIS_DESCR	
FLOAT64_IEEE: new keyword in enum datatype	29
FRAME	
description of new keyword	
use in MODULE.	
FRAME_MEASUREMENT: description of new keyword	
FUNCTION_LIST: use III MEASUREMENT	140
G	
GROUP	
description of new keyword	121
use in MODULE	155
GUARD_RAILS	
description of new keyword	
use in AXIS_PTS	
use in CHARACTERISTIC	65
I	
ident	

additional characters allowed	
M	
MAP LIST	
description of new keyword	141
use in CHARACTERISTIC	
MAX_REFRESH	
description of new keyword	144
use in CHARACTERISTIC	
MAX_REFRESH: new scaling unit	
MEMORY_SEGMENT	
new keyword	
use in MOD_PAR	139
N	
NO_RESCALE_X	
description of new keywords	
use in RECORD_LAYOUT	
NO_RESCALE_Y	
description of new keywords	
use in RECORD_LAYOUT	
NO_RESCALE_Z	1.05
description of new keywords	
use in RECORD_LAYOUT	
R	
RASTER	
description of new keyword	
use in IF_DATA	
REF_GROUP: description of new keyword	
REF_MEASUREMENT: description of new keyword	
REF_MEMORY_SEGMENT	
description of new keyword	
use in AXIS_PTS	
use in CHARACTERISTICuse in MEASUREMENT	
RES_AXIS: new keyword in enum Attribute	
ROOT: description of new keyword	192
S	
SEED_KEY	
description of new keyword	
use in IF_DATA	
string: maximal length changed to 255	
SUB_GROUP: description new keyword	
U	
USER_RIGHTS	
new keyword	208
use in MODULE	
V	
VIRTUAL_CHARACTERISTIC	
description of new keyword	
use in CHARACTERISTIC	

14 Appendix F: modifications from version 1.31 to version 1.40

B	
BYTE_ORDER: default value MSB_LAST	157
\boldsymbol{c}	
CALIBRATION_ACCESS	
description of new keyword	62
use in AXIS_PTS	50
use in CHARACTERISTIC	
CALIBRATION_HANDLE: multiple use in CALIBRATION_METHOD possible	64
F	
FLOAT64_IEEE:faulty description corrected	257
FNC_VALUES: use of the ALTERNATE option	56, 109
FUNCTION_VERSION	
description of new keyword	
use in FUNCTION	117
M	
MATRIX_DIM	
description of new keyword	142
MEMORY_SEGMENT: new keywords in enum PrgType	152
R	
REF UNIT	
description of new keyword	186
use in COMPU_METHOD	
S	
SI_EXPONENTS: description of new keyword	196
$oldsymbol{U}$	
UNIT	
description of new keyword	204
use in MODULE	
UNIT_CONVERSION: description of new keyword	
V	
VAR_CHARACTERISTIC: restriction for axis points	214
VAR SELECTION CHARACTERISTIC	
description of new keyword	
use in VAR_CRITERION	
VERSION: maximal length corrected	221

15 Appendix G: modifications from version 1.40 to version 1.50

A	
Appendix C	
Using Reference Curves as Normalization Axes for Maps	258
Appendix G	
modifications from version 1.4 to version 1.5	267
AXIS_DESCR	
as used in CURVE_AXIS_REF with CHARACTERISTIC	84
for use with multiple inputs	
B	
BIT_MASK	
least significant bit determines shifting	
Value to be masked	59
\boldsymbol{C}	
CHARACTERISTIC	
as used in CURVE_AXIS_REF for MAF_NORM	84
as used in CURVE AXIS REF with FUEL ADJ	
use with CURVE_AXIS_REF for SPD_NORM	
COMPU_METHOD	
conversion method for air temperature	75
conversion method for BYTE	
conversion method for FIXED_ <sign><length><radix></radix></length></sign>	
conversion method for FIXED_UW_03	
conversion method for INTEGER.	
conversion method for LONGINT	76
conversion method for LONGWORD	76
conversion method for SHORTINT	
conversion method for WORD	75
for DiagStatus	74
for RPM	
where to use NO_PHYSICAL_QUANTITY	
COMPU_TAB:new datatype for input values	77
COMPU_VTAB	
for DiagStatus	
COMPU_VTAB:new datatype for input values	79
CURVE_AXIS	
used to rescale axis	46
CURVE_AXIS_REF	4.4
use in AXIS_DESCR	
CURVE_AXIS_REF	84
E	
ECU_ADDRESS_EXTENSION	
description of new keyword	98
use at AXIS_PTS	
use in CHARACTERISTIC	
use in MEASUREMENT	
F	
	20
float:fixing of thedecimal point	29
FUNCTION	116
added "hierarchial manner" to description	118
G	
GROUP	

•	123
as used fir objects in "luftmgr.c"	124
as used for CLOSED_LOOP	124
as used for objects in "fclpkout.c"	124
as used for pbjects in "viosmeng.c"	
as used with CALIBRATION_COMPONENTS for "L4-PCM 2002 cals"	
as used with SOFTWARE_COMPONENTS for "L4_PCM 2002 C modules"	124
H	
hexadecimal values:fixing of the notation	29
I	
identifier	
case sensitivity	28
name spaces	121, 146, 156, 176, 204
IF_DATA	
clarification of parameter ident Name string	
must match ASAP1b	129
M	
MEASUREMENT	
example as used for VdiagStatus	148
example as used for VfSpinLoss	149
MinMax values:interpretation	47, 51, 66, 103, 146
MODULE	
clarifiaction of description for use	156
MONOTONY:interpretation	161
N	
NO_COMPU_METHOD	
for Conversion setting.	47, 51, 66, 146
	······································
RECORD_LAYOUT	
RECORD_LAYOUT use with 2D_array_table_byte	180
RECORD_LAYOUT use with 2D_array_table_byte use with 2D_array_table_int	180
RECORD_LAYOUT use with 2D_array_table_byte use with 2D_array_table_int use with 2D_array_table_shortint	180 180 180
RECORD_LAYOUT use with 2D_array_table_byte use with 2D_array_table_int use with 2D_array_table_shortint use with 2D_array_table_word	
RECORD_LAYOUT use with 2D_array_table_byte use with 2D_array_table_int use with 2D_array_table_shortint use with 2D_array_table_word use with 2D_structure_table_byte	
RECORD_LAYOUT use with 2D_array_table_byte	
RECORD_LAYOUT use with 2D_array_table_byte use with 2D_array_table_int use with 2D_array_table_shortint use with 2D_array_table_word use with 2D_structure_table_byte use with 2D_structure_table_int use with 2D_structure_table_word use with 2D_structure_table_word use with 3D_array_table_byte use with 3D_array_table_int use with 3D_array_table_shortint use with 3D_array_table_shortint use with 3D_array_table_shortint use with 3D_array_table_word	
RECORD_LAYOUT use with 2D_array_table_byte use with 2D_array_table_int use with 2D_array_table_shortint use with 2D_array_table_word use with 2D_structure_table_byte use with 2D_structure_table_int use with 2D_structure_table_shortint use with 2D_structure_table_word use with 3D_array_table_byte use with 3D_array_table_int use with 3D_array_table_shortint use with 3D_array_table_shortint use with 3D_array_table_word use with 3D_array_table_word use with 3D_array_table_word use with 3D_array_table_word use with 3D_array_table_byte.	
RECORD_LAYOUT use with 2D_array_table_byte use with 2D_array_table_int. use with 2D_array_table_shortint use with 2D_array_table_word use with 2D_structure_table_byte. use with 2D_structure_table_int use with 2D_structure_table_shortint use with 2D_structure_table_word use with 3D_array_table_byte use with 3D_array_table_int use with 3D_array_table_shortint use with 3D_array_table_word use with 3D_array_table_word use with 3D_array_table_word use with 3D_array_table_byte. use with 3D_structure_table_byte. use with 3D_structure_table_int	
RECORD_LAYOUT use with 2D_array_table_byte	
RECORD_LAYOUT use with 2D_array_table_byte use with 2D_array_table_int use with 2D_array_table_shortint use with 2D_array_table_word use with 2D_structure_table_byte use with 2D_structure_table_int use with 2D_structure_table_shortint use with 2D_structure_table_word use with 3D_array_table_byte use with 3D_array_table_int use with 3D_array_table_int use with 3D_array_table_word use with 3D_array_table_byte use with 3D_array_table_shortint use with 3D_structure_table_byte. use with 3D_structure_table_byte. use with 3D_structure_table_int use with 3D_structure_table_shortint use with 3D_structure_table_shortint use with 3D_structure_table_word use with 3D_structure_table_word use with 3D_structure_table_word use with 3D_structure_table_word use with BYTE use with CURVE_AXIS_REF for SPD_DEP. use with INTEGER	
RECORD_LAYOUT use with 2D_array_table_byte use with 2D_array_table_int use with 2D_array_table_shortint use with 2D_array_table_word use with 2D_structure_table_byte use with 2D_structure_table_int use with 2D_structure_table_shortint use with 2D_structure_table_word use with 2D_array_table_word use with 3D_array_table_byte use with 3D_array_table_int use with 3D_array_table_int use with 3D_array_table_shortint use with 3D_array_table_word use with 3D_structure_table_byte use with 3D_structure_table_byte use with 3D_structure_table_byte use with 3D_structure_table_int use with 3D_structure_table_shortint use with 3D_structure_table_shortint use with 3D_structure_table_word use with 3D_structure_table_word	
RECORD_LAYOUT use with 2D_array_table_byte use with 2D_array_table_int use with 2D_array_table_shortint use with 2D_array_table_word use with 2D_structure_table_byte use with 2D_structure_table_int use with 2D_structure_table_shortint use with 2D_structure_table_word use with 3D_array_table_byte use with 3D_array_table_int use with 3D_array_table_int use with 3D_array_table_word use with 3D_array_table_byte use with 3D_array_table_shortint use with 3D_structure_table_byte. use with 3D_structure_table_byte. use with 3D_structure_table_int use with 3D_structure_table_shortint use with 3D_structure_table_shortint use with 3D_structure_table_word use with 3D_structure_table_word use with 3D_structure_table_word use with 3D_structure_table_word use with BYTE use with CURVE_AXIS_REF for SPD_DEP. use with INTEGER	

16 Appendix H: Glossary

ABUS

Automobile Bit-serial Universal Interface

Record layout

Description of the data structure with which an adjustable object of the control unit program is stored in memory.

ADC

Analog-Digital Converter

ADEX

Application Data Exchange System: Communication between a higher-order application system and the control units of a vehicle for the exchange of data.

AS

Application System

ASAP

Arbeitskreis zur Standardisierung von Applikationshilfsmitteln (Working Group on the Standardisation of Application Tools)

ASAP 1b

Programmed standardised interface in the application system for access to the ASAP device (see Figure 10).

ASAP 2

Standardised interface for the description data (description of control unit program: see Figure 10 and Figure 14).

ASAP device

The concept 'ASAP device' denotes a driver in the application system and the corresponding application device and control unit (if a control can be assigned).

ASAP2 metalanguage

Formal description language for the description of non-standardised, interface-specific ASAP2 description data.

ASCII

Adjustable object of the string type.

AuSy

Automation System

Description data

For the application of a control unit program it must be possible to display and edit adjustable objects. In addition, it must be possible to display, collect and store measurements. This requires a description of the control unit program, which must contain all information needed to read and write adjustable objects in the emulation memory and to collect measurements. Moreover, information is needed which describes the display format of the adjustable and measurement objects.

Byte order

This concept denotes how the inidvidual bytes of a multibyte of the control unit program are to be interpreted (Intel format or Motorola format).

CAN

Control Area Network

C-DAMOS deposit

This concept denotes a specific data structure with which the adjustable objects (characteristics) are deposited in memory (BOSCH control units).

D-bus

Diagnostics bus

DAMOS deposit

This concept denotes a specific data structure with which the adjustable objects (characteristics) are deposited in memory (BOSCH control units).

Display table

Method for the output of control unit internal measurements (BOSCH):

- 1) The application system manipulates an address table in the data area of the control unit program.
- 2) The control unit program reads these tables in a predefined time pattern and outputs the corresponding data on defined addresses in the dual-ported RAM.

EPROM identifier

String in the data area of the control unit program for the description of the control unit program.

Fixed characteristic curve, fixed characteristic map

Characteristic curve or characteristic map in which the axis point values are contained as absolute or difference values in the data record but are calculated as follows (equidistant axis points):

$$Apo_i = offset + (i - 1)*2^{shift}$$
 $i = \{1...number of axis points\}$

Both parameters <offset> and <shift> are contained either in the description file or in the data record of the control unit program.

Function orientation

For the structuring of projects involving a very large number of adjustable objects and measurement objects, functions can be defined in ASAP2. These functions shall be used in the application system to allow the selection lists for the selection of the adjustable objects and measuring channels to be represented in a structured manner on the basis of functional viewpoints.

Group characteristic curve, group characteristic map

In a number of BOSCH control unit programs, "group characteristic curve" or "group characteristic map" denotes those characteristic curves or characteristic maps that have axis point distributions in common with other characteristic curves or characteristic map. Such an axis point distribution is allocated not to a single characteristic curve or characteristic map but to several characteristic curves and characteristic maps. If such an axis point distribution is changed, the behaviour of all allocated characteristic curve or characteristic map changes accordingly.

HW interface

Hardware interface, interface converter

KEBUSS deposit

This concept denotes a specific data structure with which the adjustable objects (characteristics) are deposited in memory (BOSCH control units).

Characteristic block

List of characteristics of the same data type (equal conversion method), which are stored sequentially in the data area of the control unit program (array) and which are considered as representing an adjustable object.

MCD

Measuring, Calibration and Diagnostics system

MSA15 deposit

This concept denotes a specific data structure with which the adjustable objects (characteristics) are deposited in memory (BOSCH control units).

MT

Module Type

ROM

Read-Only Memory

SG

Steuergerät (control unit)

SIEMENS deposit

This concept denotes a specific data structure with which the adjustable objects (characteristics) are deposited in memory (SIEMENS control units).

Deposit of axis points

This concept describes how the axis point values of a characteristic curve or characteristic map are deposited in memory:

Figure 15: data deposition

Verbal conversion table

Conversion table for the visualisation of bit patterns. This conversion method is used for special measurements. As a rule, parts of the measurements are masked out via bit masks. Each bit sample of the quantity thus obtained is allocated a string in the verbal conversion table, which describes the state of this quantity.

Page 272 of 277 Version 1.51 Release 2002-02-05

17 Appendix I: ASAP2 keywords

/begin	30
/end	
A2ML	30
ABSOLUTE	93
ADDR_EPK	32
ADDRESS_MAPPING	33
ALIGNMENT_FLOAT32_IEEE	35
ALIGNMENT_ FLOAT64_IEEE	36
ALIGNMENT_BYTE	34
ALIGNMENT_LONG	37
ALIGNMENT_WORD	38
ALTERNATE_CURVES	109
ALTERNATE_WITH_X	108
ALTERNATE_WITH_Y	108
ANNOTATION	39
ANNOTATION_LABEL	41
ANNOTATION_ORIGIN	42
ANNOTATION_TEXT	43
ARRAY_SIZE	44
ASAP2_VERSION	31, 45
ASCII	65
AXIS_DESCR	46
AXIS_PTS	50
AXIS_PTS_ Z	56
AXIS_PTS_REF	
AXIS_PTS_X	
AXIS_PTS_Y	
AXIS_RESCALE_X	
AXIS RESCALE Y	
AXIS RESCALE Z	
BIG_ENDIAN	29
BIT_MASK	59, 139
BIT_OPERATION	60
BYTE	29
BYTE_ORDER	61
CALIBRATION	
CALIBRATION_ACCESS	62
CALIBRATION_HANDLE	
CALIBRATION_METHOD	64
CALIBRATION_VARIABLES	
CHARACTERISTIC	65
CHECKSUM	
CODE	
COEFFS	
COLUMN_DIR	
COM_AXIS	
COMPARISON_QUANTITY	72
COMPU_METHOD	
COMPU_TAB	77

COMPU_TAB_REF	
COMPU_VTAB	79
COMPU_VTAB_RANGE	81
CPU_TYPE	83
CUBOID	65
CURVE	65
CURVE AXIS	46
CURVE_AXIS_REF	84
CUSTOMER	
CUSTOMER NO	
_	
DATA	152
DATA_SIZE	88
DEF CHARACTERISTIC	89
DEFAULT_VALUE	
DEPENDENT CHARACTERISTIC	
DEPOSIT	
DERIVED	
DIFFERENCE	
DIRECT	
DISPLAY_IDENTIFIER	
DIST_OP_X	
DIST_OP_Y	
DIST_OP_Z	
DP BLOB	
DI_DEOD	127, 130
ECU	96
ECU ADDRESS	
ECU_ADDRESS_EXTENSION	
ECU_CALIBRATION_OFFSET	
EEPROM	
EPK.	
EPROM	
ERROR_MASK	
EVENT_GROUP	
EXCLUDE FROM FLASH	
EXTENDED_LIMITS	
EXTENDED_SI	
EXTERN	
EIIIE	
FIX_AXIS	46
FIX_AXIS_PAR	104
FIX_AXIS_PAR_DIST	
FIX_AXIS_PAR_LIST	106
FIX_NO_AXIS_PTS_X	
FIX_NO_AXIS_PTS_Y	
FIX_NO_AXIS_PTS_Z	
FLASH	
FLOAT32_IEEE	
FLOAT64_IEEE	
FNC_VALUES	
FORM	
FORMAT	
FORMULA	
FORMULA_INV	
FRAME	
1 10 IV.	117

FRAME_MEASUREMENT	
FUNCTION	117
FUNCTION_LIST	119
FUNCTION_VERSION	120
GROUP	121
GUARD RAILS	
GUARD_RAILS	120
HEADER	127
IDENTIFICATION	128
IF_DATA	
INDEX_DECR	
INDEX_DECK	
INTERN	
INTERN	133
KP_BLOB	130
LITTLE_ENDIAN	29
LONG	29
MAP	
MAP_LIST	
MATRIX_DIM	142
MAX_GRAD	143
MAX_REFRESH	
MEASUREMENT	
MEMORY_LAYOUT	
MEMORY_SEGMENT	
MOD_COMMON	
MOD_PAR	
MODULE	
MON_DECREASE	
MON_INCREASE	
MONOTONY	
MSB_FIRST	
MSB_LAST	
MULTIPLEX	162
NO AVIC DECV	162
NO_AXIS_PTS_X NO_AXIS_PTS_Y	
NO_AXIS_PTS_Z	
NO_AAIS_PTS_Z NO_CALIBRATION	
NO_INPUT_QUANTITY	
NO_OF_INTERFACES	
NO_RESCALE_X	
NO_RESCALE_XNO_RESCALE_Y	
NO_RESCALE_I	
NOT_IN_MCD_SYSTEM	
NUMBER	
NUMERIC	

OFFLINE_CALIBRATION	62
OFFLINE_DATA	152
OFFSET_X	167
OFFSET_Y	167
OFFSET_Z	167
PA_BLOB	129, 130
PBYTE	
PHONE_NO	169
PLONG	
PRG_CODE	
PRG_DATA	
PRG_RESERVED	
PROJECT	
PROJECT_NO	
PWORD	29
QP_BLOB	134, 197
RAM	
RASTER	
RAT_FUNC	
READ_ONLY	
READ_WRITE	
RECORD_LAYOUT	
REF_CHARACTERISTIC	
REF_MEASUREMENT	
REF_MEMORY_SEGMENT	
REF_UNIT	
REGISTER	
RESERVED	
RIGHT_SHIFT	
RIP_ADDR_W	
RIP_ADDR_X	
RIP_ADDR_Y	
RIP_ADDR_Z	
ROM	
ROOT	
ROW_DIR	108
C DEC LAYOUT	202
S_REC_LAYOUT	
SBYTE	
SEED_KEY	
SERAM	
SHIFT_OP_X	
SHIFT_OP_Y	
SHIFT_OP_Z	
SI_EXPONENTS	
SIGN_EXTEND	
SLONG	
SOURCE	
SRC_ADDR_X	
SRC_ADDR_Y	198

SRC_ADDR_Z	198
STD_AXIS	46
STRICT_DECREASE	161
STRICT_INCREASE	161
SUPPLIER	201
SWORD	29
SYSTEM_CONSTANT	202
TAB_INTP	73 77
TAB NOINTP	
TAB_VERB	•
TP BLOB	
Tr_blob	130
UBYTE	
ULONG	
UNIT	
UNIT_CONVERSION	206
USER	
USER_RIGHTS	208
UWORD	29
VAL BLK	65
VAL_BLKVALUE	
VAR_ADDRESS	
VAR_ADDRESSVAR_CHARACTERISTIC	
VAR_CRITERION	
VAR FORBIDDEN COMB	
VAR_TORBIDDEN_COMB	
VAR_NAMING	
VAR_SELECTION_CHARACTERISTIC	
VAR_SEPARATOR	
VARIABLES	
VARIANT CODING	
VERSION	
VIRTUAL	
VIRTUAL CHARACTERISTIC	
TICLE_CILINITETERISTIC	223
w.o.p.	