Probabilités

Amnézic

Contents

1 Définition 3

1 Définition

Définition

Soit X une variable aléatoire finie entière. On note $X(\Omega)=[0,n]$ l'ensemble de ses valeurs possibles. Sa fonction génératrice est alors la fonction G_X définie pour tout $t\in R$ par :

$$G_X(t) = E(t^X) = \sum_{k=0}^{n} P(X=k)t^k$$

Remarques

1. La fonction G_X est un polynôme en t :

$$G_X(t) = \sum_{k=0}^{n} P(X=k)t^k = p_0 + p_1t + \dots + p_nt^n$$

2. Si $\forall k \in [O,n], P(X=k)=P(Y=k) \Longrightarrow X=Y$

2 Calculs de l'espérance et de la variance

Théorème

Soient X une variable aléatoire finie entière et ${\rm G}_X$ sa fonction génératrice. On a alors :

- $G_X(1) = 1$
- $E(X) = G_X'(1)$
- $Var(X) = G_X''(1) + G_X'(1) (G_X'(1))^2$

La fonction G_X contient toute l'information donnée par la loi de X. En particulier, on peut en déduire l'espérance et la variance de X.

3 Somme de varaibles aléatoire

Théorème Soient 2 variables aléatoires finies entières X et Y **indépendantes**, de fonctions génératrices $G_X(t)$ et $G_Y(t)$. La somme X + Y admet alors une fonction génératrice :

$$G_{X+Y}(t) = G_X(t) \times G_Y(t)$$

(loi binomiale à revoir)

4 Séries entières

4.1 Définition

Soit $x \in R$. Une série entière est une série $\sum a_n x^n$ où $(a_n)_{n \in N}$ est une suite réelle.