Tamarin: Concolic Disequivalence for MIPS

Abel Nieto

Given MIPS program P_1 and P_2 , when are they equivalent?

Attempt 1: two programs are equivalent if they give the same output (resp.) for all inputs.

Attempt 1: two programs are equivalent if they give the same output (resp.) for all inputs.

Attempt 1: two programs are equivalent if they give the same output (resp.) for all inputs.

What's an input?

Attempt 1: two programs are equivalent if they give the same output (resp.) for all inputs.

What's an input? Register \$1 and \$2.

Attempt 1: two programs are equivalent if they give the same output (resp.) for all inputs.

What's an input? Register \$1 and \$2. What's an output?

Attempt 1: two programs are equivalent if they give the same output (resp.) for all inputs.

What's an input? Register \$1 and \$2. What's an output? Register \$3.

Attempt 1: two programs are equivalent if they give the same output (resp.) for all inputs.

What's an input? Register \$1 and \$2. What's an output? Register \$3.

Don't care about (most) CPU interrupts/IO.

Attempt 1: two programs are equivalent if they give the same output (resp.) for all inputs.

Attempt 1: two programs are equivalent if they give the same output (resp.) for all inputs.

Problem: undecidable via Rice's theorem.

Attempt 2: two programs are *S*-equivalent if they cannot be told apart after *S* steps.

S-equivalent (e.g. for S = 10), but not equivalent:

R_1	R_2	S-equiv
-------	-------	---------

R_1	R_2	S-equiv
V	V	yes

R_1	R_2	S-equiv
V	V	yes
V	$w \neq v$	no

R_1	R_2	S-equiv
V	V	yes
V	$w \neq v$ error	no
V	error	no

R_1	R_2	S-equiv
V	V	yes
V	$w \neq v$	no
V	error	no
error	error	yes

R_1	R_2	S-equiv
V	V	yes
V	$w \neq v$	no
V	error	no
error	error	yes
non-termination	???	yes

Attempt 2: two programs are *S*-equivalent if they cannot be told apart after *S* steps.

Which inputs?

Attempt 2: two programs are *S*-equivalent if they cannot be told apart after *S* steps.

Which inputs?

Try some inputs by hand: low coverage, fast (unit tests)

Attempt 2: two programs are S-equivalent if they cannot be told apart after S steps.

Which inputs?

Try some inputs by hand: low coverage, fast (unit tests)

Try all 2⁶⁴ values of \$1 and \$2: high coverage, slow (but decidable)

Attempt 2: two programs are *S*-equivalent if they cannot be told apart after *S* steps.

Which inputs?

Try some inputs by hand: low coverage, fast (unit tests)

Try all 2⁶⁴ values of \$1 and \$2: high coverage, slow (but decidable)

Tamarin: use concolic execution: higher coverage(?), not too slow(?)


```
# P_1
    bne $1, 42, end
    add $3, $1, $2

add $3, $3, $0

end:
    add $3, $1, $2

end:
# P_2
add $3, $1, $2

bne $2, 100, end
add $3, $3, $2

end:
```

Alternating concolic execution

```
# P_1
bne $1, 42, end
add $3, $1, $2
add $3, $3, $0
bne $2, 100, end
end:
add $3, $1, $2
end:
```

Run | Driver | Verifier | \$1 | \$2 | Path $|R_D| R_V$

```
# P_1
    bne $1, 42, end
    add $3, $1, $2

add $3, $3, $0

end:
    add $3, $1, $2

end:
# P_2
add $3, $1, $2

bne $2, 100, end
add $3, $3, $2

end:
```

Run	Driver	Verifier	\$1	\$2	Path	R_D	R_V
1	P_1	P_2	1	1	\$1 ≠ 42	2	2

```
# P_1
    bne $1, 42, end
    add $3, $1, $2

add $3, $3, $0

end:
    add $3, $1, $2

end:
# P_2
add $3, $1, $2

bne $2, 100, end
add $3, $3, $2

end:
```

Run	Driver	Verifier	\$1	\$2	Path	R_D	R_V
1	P_1	P_2	1	1	\$1 ≠ 42	2	2
2	P_2	P_1	1	1	\$2 \neq 100	2	2

```
# P_1
    bne $1, 42, end
    add $3, $1, $2

add $3, $3, $0

end:
    add $3, $1, $2

end:
# P_2
add $3, $1, $2

bne $2, 100, end
add $3, $3, $2

end:
```

Run	Driver	Verifier	\$1	\$2	Path	R_D	R_V
1	P_1	P_2	1	1	\$1 \neq 42	2	2
2	P_2	P_1	1	1	\$2 \neq 100	2	2
3	P_1	P_2	42		\$1 = 42	2	2

```
# P_1
    bne $1, 42, end
    add $3, $1, $2

add $3, $3, $0

end:
    add $3, $1, $2

end:
# P_2
add $3, $1, $2

bne $2, 100, end
add $3, $3, $2

end:
```

Run	Driver	Verifier	\$1	\$2	Path	R_D	R_V
1	P_1	P_2	1	1	\$1 ≠ 42	2	2
2	P_2	P_1	1	1	\$2 \neq 100	2	2
3	P_1	P_2	42	1	\$1 = 42	2	2
4	P_2	P_1	1	100	$$1 \neq 42$ $$2 \neq 100$ \$1 = 42 \$2 = 100	201	2