Implicit differentiation

October 17th, 2024

Here are s	some key	ideas	from	section	3.5

• The chain rule says

• The chain rule helps us with implicit differentiation, which is used when we can't isolate the variable.

• Here's an example:

Midterm practice (Vojta MT2 '22): Find the following derivatives.

a)
$$\frac{d}{dx}e^x \cos x$$

b)
$$\frac{d}{dx} \frac{\sin x}{x^2+1}$$
.

My Attempt:

Solution:

a) Write $\frac{d}{dx}$ on both sides. Simplify the right hand side, and expand the k	eft hand side with the sum rule.
b) Use a technique from the example to simplify	
c) Solve for $\frac{dy}{dx}$.	ax ·
My Attempt:	Solution:
Problem 2: (Stewart 3.5) Suppose $2\sqrt{x} + \sqrt{y} = 3$. implicit differentiation.	Use the same steps as in the previous problem to find $\frac{dy}{dx}$ by
My Attempt:	Solution:
Problem 3: (Stewart 3.5) Suppose $e^{x/y} = x - y$. Find	d $rac{dy}{dx}$ by implicit differentiation.
My Attempt:	Solution:
ing interrept	

Problem 1: Suppose $x^3 + y^3 = 1$. In this problem, we will find $\frac{dy}{dx}$ by implicit differentiation.

Problem 4: (Stewart 3.7) Two important properties are

$$\frac{d}{dx}\log_b x = \frac{1}{x\ln b} \qquad \quad \frac{d}{dx}\ln x = \frac{1}{x}.$$

Find

$$\frac{d}{dz}\ln\sqrt{\frac{a^2-z^2}{a^2+z^2}}.$$

My Attempt:

Solution:

Problem 5: (Stewart 3.7) Logarithmic differentiation is helpful when want to take the derivative of a complicated function (i.e. lots of products, fractions, exponents, etc.). Here are the steps we can use:

- 1. Take natural logarithms of both sides and use logarithm laws to simplify.
- 2. Implicitly differentiate with respect to x.
- 3. Solve for y'.

Use these steps to differentiate

$$y = \frac{x^{3/4}\sqrt{x^2 + 1}}{(3x + 2)^2}.$$

My Attempt:

Solution:

Problem 6: If $y = \tan^-$	$^{1} x$, then $\tan y = x$.	Use implicit dif	ferentiation to fir	nd the derivative o	of the inverse ta	angent
function.		-				

My Attempt: Solution:

Problem 7: (Stewart 3.7) Find $\frac{d}{dx}x \arctan \sqrt{x}$.

My Attempt: Solution:

Challenge problem: Show that

$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x$$

for any x > 0.