データマイニング

第4回 対応分析

2023年春学期

宮津和弘

本日の講義・演習

日付	講義·演習内容
04/14/23	(1) イントロダクション
04/21/23	(2) ビジネスシミュレーション
04/28/23	(3) ID-POSデータ分析
05/12/23	(4) 対応分析
05/19/23	(5) クラスター分析
05/26/23	(6) 自己組織化マップ
06/02/23	(7) 線形判別分析
06/09/23	(8) 非線形判別分析
06/16/23	(9) ツリーモデル
06/23/23	(10) 集団学習
06/30/23	(11) サポートベクターマシン
07/04/23	(12) ネットワーク分析
07/14/23	(13) 共分散構造分析
07/21/23	(14) テキスト分析
07/28/23	(15) まとめ

本日の演習概要とポイント

- 量的データ、質的データに対する分析手法
- サンプルデータの差の検定、データの次元削減
- 対応分析(コレスポンデンス分析、数量化皿類)

データの特性により統計手法は異なる

例)「TOEFL500点以上かどうか」と「TOEFL500点獲得した」では、データの意味は異なる!

連続的データ(量的)で数値の大きさに意味がある

→ 平均値、分散

有無の意向(質的)を表し数値の大小に意味がない

	差の検定	次元削減	
量的 データ	t 検定	因子分析	
 質的 データ	χ ² 検定	対応分析	

次元削減とは?

多次元情報を、元の意味を可能な限り維持しながら、より少ない次元情報で表す

t 検定とカイ二乗検定の違い

分散分析(カイ二乗検定)

期待度数 (E_{ij}) に対して、実際の観測度数 (n_{ij}) が統計的有意に異なるかを検定する

 \Rightarrow 以下では、 $k \times m$ の二元配置における独立性を考える

自由度(k-1)(m-1)のカイ二乗分布に従う

$$\sum_{i=1}^{k} \sum_{j=1}^{m} \frac{(n_{ij} - E_{ij})^2}{E_{ij}} \sim \chi^2(k-1)(m-1)$$

	F_1	F_2	F_3	合計
R_1	n_{11}	n_{12}	n_{13}	r_1
R_2	n_{21}	n_{22}	n_{23}	r_2
合計	f_1	f_2	f_3	k+m

観測度数 (n_{ij})

	F_1	F_2	F_3	合計
R_1	E_{11}	E_{12}	E_{13}	r_1
R_2	E_{21}	E_{22}	E_{23}	r_2
合計	f_1	f_2	f_3	k+m

期待度数(E_{ij})

カイ二乗分布

 $N(\mu, \sigma^2)$ に従う確率変数 $x_1, x_2, x_3 ..., x_n$ に対して、正規化した 変数の二乗和 $\frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu)^2$ はカイ二乗分布に従う

カイ二乗分布の確率密度分布

カイ二乗分布の確率密度関数は x > 0 に対し

$$f(x;k) = rac{1}{2^{k/2}\Gamma(k/2)} x^{k/2-1} e^{-x/2}$$

また $x \le 0$ に対し $f_k(x) = 0$ という形をとる。ここで Γ はガンマ関数である。

https://ja.wikipedia.org/wiki

どちらのデジカメが好みですか?

どちらのデジカメが好みか、大学生の男女100人に聞きました。

VS.

クロス集計表:デジカメの好みに男女差はあるか?

以下の結果から、2つのデジカメの好みに男女差があると言えるか?

	男性	女性	合計
Connection	30	22	52
Koda as	23	25	48
合計	53	47	100

観測値と期待値

観測値

	男性	女性	合計	
	30	22	52	_
Table 10 C	23	25	48	
合計	53	47	100	
				+

男性と女性でデジカメの好みに差異が無ければ、男女とも同じ割合で観測されるはずである。

期待值

	男性	女性	合計
	27.56	24.44	52
Transaction (Control of Control o	25.44	22.56	48
合計	53	47	100

カイ二乗検定

$$> A < -c(30,22)$$

$$> B < -c(23,25)$$

> camera<-rbind(A,B)</pre>

> camera

A 30 22

B 23 25

	男性	女性	合計
	30	22	52
THAT IS A SECOND OF THE SECOND	23	25	48
合計	53	47	100

> chisq.test(camera)

Pearson's Chi-squared test with Yates' continuity correction

data: camera X-squared = 0.60532, df = 1, p-value = 0.4366

95%有意性で異ならない → デジカメの好みに差がない!

イェーツ連続補正: データが少ない場合等で検定を厳しくする

$$\sum_{i=1}^{k} \sum_{j=1}^{m} \frac{(|n_{ij} - E_{ij}| - 0.5)^2}{E_{ij}} \sim \chi^2(k-1)(m-1)$$

統計的有意性の解釈

確率密度分布は、-∞~+∞で積分すると1となる関数である。以下の確率密度関数の網掛け部分が0.05のとき95%の確率的有意性で起こりえないこと、白い部分については95%で起こり得ることと捉える。この網掛け部分の数値がp値で、これが0.05より大きいと、確率的有意性95%で起こり得る(前例では、異ならないということ!)

質的データと量的データの分析手法

大学生男女100人に対して、デジカメ商品AとBの評価を5尺度で点数をつけてもらった。

量的データ

男性	3.85	3.06
女性	3.10	3.27

商品と性別ごとに平均値を 算出する

⇒ 因子分析

回答者	商品A	商品B
1	3	5
2	2	3
3	5	4
4	1	4
5	2	1
6	4	3
7	3	5
8	4	1
9	2	2
10	5	3
11	1	2
12	3	3
:	:	:
N	3	5

質的データ

男性	30	23
女性	22	25

商品と性別ごとに4以上評価をカウントする

⇒ 対応分析

対応分析とは?

カイ二乗検定が<u>質的データに対する差異の有無</u>を検定するように、対応分析も 質的データに対して行う分析手法の一つである。質的データは量的データのよう に値の大きさに意味を持たない。しかし、**対応分析**では**質的データに潜在的な 量的データを割り当てる**ことで量的なデータ処理が可能となる。

例)

	男性	女性	合計
	30	22	52
CO C	23	25	48
合計	53	47	100

← 大学生の男女100人に対して、 どちらのデジカメが好みかのアンケート

対応分析のデータ収集例

アンケート調査(N人対象)を実施して、年代ごとに好みのシャンプーブランドを選択する

アンケート結果

回答者	年齢	ブランド
1	50以上	Т
2	34以下	L
3	34-49	М
4	34以下	L
5	50以上	T
:	÷	:
419	34-49	М

加ス集計結果

	L	М	Р	Т
34以下	27	19	38	26
34-49	46	31	34	65
50以上	43	41	20	29

⇒ 質的データでは定量分析ができない!

対応分析における潜在変数の導入

質的データ(年齢、ブランド)が定量評価できるように、背後に潜在定量データを仮定する

年齡	潜在変数
34以下	ν1
39-49	ν2
50以上	ν3

ブランド	潜在変数
L	w1
М	w2
Р	w3
Т	w4

この仮定より、以下のように定量化が可能となる

$$M_{x} = \frac{n_{1}v_{1} + n_{2}v_{2} + n_{3}v_{3}}{N}$$

$$M_{y} = \frac{n_{1}w_{1} + n_{2}w_{2} + n_{3}w_{3}}{N}$$

$$s_{x}^{2} = \frac{n_{1}v_{1}^{2} + n_{2}v_{2}^{2} + n_{3}v_{3}^{2}}{N} - M_{x}^{2}$$

$$s_{y}^{2} = \frac{n_{1}w_{1}^{2} + n_{2}w_{2}^{2} + n_{3}w_{3}^{2}}{N} - M_{y}^{2}$$

質的データ数量化の仮定

クロス集計結果

	L	М	Р	Т
34以下	n ₁₁	n 12	n 13	n ₁₄
35-49	n 21	n 22	n 23	n ₂₄
50以上	n 31	n 32	n 13	n ₃₄

(総サンプル数)
$$N = \sum_{j=1}^{4} \sum_{i=1}^{3} n_{i,j}$$

回答者	年齢 <i>x</i>	ブランド <i>y</i>
1	ν3	w4
2	ν1	w1
3	ν2	w2
4	ν1	w1
5	ν3	w4
÷	:	:
N	ν2	W2

$$M_x = M_x = 0$$
$$s_x^2 = s_x^2 = 1$$

x, y の平均 0 および分散 1

対応分析の定式化

以下の条件の下、

$$n_1 \cdot v_1^2 + n_2 \cdot v_2^2 + \dots + n_l \cdot v_l^2 = N$$

$$n_1 \cdot w_1^2 + n_2 \cdot w_2^2 + \dots + n_l \cdot w_m^2 = N$$

 r_{xy} を最大にする v,w を求める

$$r_{xy} = n_{11}v_1w_1 + \dots + n_{1m}v_1w_m + \dots + n_{l1}v_lw_1 + \dots + n_{lm}v_lw_m$$

 $H = G^T G$ の固有値と固有ベクトルを λ およびzのとき

$$G = \begin{pmatrix} \frac{n_{11}}{\sqrt{n_{1}.n_{.1}}} & \cdots & \frac{n_{1m}}{\sqrt{n_{1}.n_{.m}}} \\ \vdots & \ddots & \vdots \\ \frac{n_{l1}}{\sqrt{n_{l}.n_{.1}}} & \cdots & \frac{n_{lm}}{\sqrt{n_{l}.n_{.m}}} \end{pmatrix}$$

$$w_{j} = \frac{z_{j}}{\sqrt{n_{.j}}} \quad (j = 1, 2, ..., l)$$

$$v_{i} = \frac{n_{i1}w_{1} + \cdots + n_{im}w_{m}}{n_{i}.\sqrt{\lambda}}$$

$$(i = 1, 2, ..., l)$$

FactoMineR のインストール

※ CRANのミラーサイトはJapanを選択

install.packages("Rcmdr")
install.packages("FactoMineR")
install.packages("RcmdrPlugin.FactoMineR")

Rのコンソール画面に下記のように入力します。 library(Rcmdr)

Rコマンダーの画面が表示されます。 (ツール)のRcmdrプラグインのロードを選んで、 RcmdrPlugin.FactoMineRを選択します。

再起動後、RコマンダーのメニューにFactoMineRが表示されます。

※ Rcmdr起動時、毎回ツールからFactoMineRを立ち上げる

ファイルの入出力を指定する

演習データも保存しておく!

Camera.txt

R_workingなどを作成して、ワーキングディレクトリとして指定する

Rコマンダー

データ ⇒ データのインポート

⇒ テキストファイルまたはクリップボード

 \Rightarrow OK

作業ディレクトリから演習ファイルを選択

Camera.txt

データセットがロードされる

演習データの確認

⇒ データセットの編集/表示

10種類のカメラ製品に対する評価データ 500人が各カメラの項目について〇または×をつけた 以下の表は集計データを100で除した値である

データエディタ: Dataset

ファイル 編集 ヘルプ

行の追加	列の追加										
		1	2	3	4	5	6	7	8	9	11
	rowname	番号	デザイン	画質	操作性	バッテリー	携帯性	機能性	液晶	ホールド感	満足原
1	1	1	4.78	4.77	4.72	4.67	4.64	4.72	4.84	4.84	4.9
2	2	2	4.8	4.8	4.4	4	5	4.8	4.9	4.4	4.
3	3	3	4.02	3.95	3.83	2.71	3.3	4.03	4.71	3.23	4.8
4	4	4	4.72	4.66	4.38	4.29	4.14	4.77	4.54	4.39	4
5	5	5	4.6	4.66	4.24	3.83	4.42	4.63	4.72	4.79	4.8
6	6	6	4.54	4.77	3.69	4.22	4.22	4.51	4.28	3.96	4.7
7	7	7	4.51	4.43	4.13	4.18	4.77	4.45	4.38	3.85	4.7
8	8	8	4	4.9	4.3	2.05	4.11	3.51	4.1	3.61	4.7
9	9	9	4.73	4.45	4.64	4.64	3.91	4.64	4.73	5	4.
10	10	10	4.64	4.82	4.11	4.36	4.67	4.72	4.91	3.48	4.

CA(対応分析)起動

各商品と特性項目を同じ平面上で同時に評価する

行の分析結果

二次元変換後、Dim.1とDim.2で元の78%を表せる

Eigenv	alues		小				
		Dim.1 Din	1.2 Dim.3	Dim.4 Di	m.5 Dim.6	Dim.7	
Varian	ce	0.004 0.0	0.001	0.000 0.	0.000	0.000	
% of v	ar.	55.391 22 4	40 14.205	4.045 3.	222 0.611	0.085	
Cumula	tive % of var	. 55.391 77.8	92.036	96.082 99.	304 99.915 10	0.000	
Rows	1						
	Iner*1000	Dim.1 ctr	cos2 Di	m.2 ctr	cos2 Dim.	3 ctr	cos2
1	0.282	0.039 4.511	0.581 0.	023 3.905	0.204 0.01	5 2.493	0.082
2	0.135	-0.008 0.210	0.056 -0.	016 1.857	0.202 0.01	5 2.586	0.178
3	1.042	-0.068 10.985	0.383 0.	004 0.075	0.001 -0.08	6 68.303	0.611
4	0.174	0.031 2.786	0.581 0.	015 1.601	0.135 -0.00	6 0.433	0.023
5	0.220	0.000 0.001	0.000 0.	033 7.844	0.525 0.01	2 1.492	0.063
6	0.371	0.036 3.568	0.349 -0.	029 5.479	0.217 0.01	1 1.305	0.033
7	0.325	0.023 1.491	0.167 -0.	041 11.347	0.514 0.02	3 5.851	0.168
8	2.542	-0.165 65.434	0.935 0.	016 1.513	0.009 0.03	7 12.593	0.046
9	0.849	0.060 10.324	0.442 0.	065 29.854	0.518 -0.01	1 1.328	0.015
10	0.618	0.016 0.691	0.041 -0.	072 36.526	0.870 -0.01	8 3.617	0.055

列の分析結果

商品と特性を 同一平面に プロットする

※ 製品番号(●)と商品特性(▲)を同一軸を用いて、同一面で評価

課題:スポーツウエアのコレスポンデンス分析

20~40代男女各100名に対して、スポーツウエアを購入する際のポイントをアンケート調査した。 あてはまるものをすべて(複数回答)選んでもらった結果が以下の表である。この結果に対してコレスポンデンス 分析を実施して、結果を考察せよ。

	伸縮性	デザイン	速乾性	ブランド	值段
20代男性	68	52	82	56	62
20代女性	11	89	13	29	61
30代男性	65	38	73	60	41
30代女性	13	74	25	41	46
40代男性	67	24	62	71	23
40代女性	18	72	31	53	38

データマイニングを楽しもう!