Estructuras Algebraicas Primer examen parcial	1 ^{er} Apellido:	17 de abril de 2015 Tiempo 2 h.
Departamento Matem. aplic. TIC ETS de Ingenieros Informáticos Universidad Politécnica de Madrid	Nombre: Número de matrícula:	Calificación:

1. (2 puntos) Sea
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & 3 & 1 & 8 & 2 & 9 & 6 & 4 & 7 \end{pmatrix}$$

- a) Expresar σ en forma de producto de ciclos disjuntos. Determinar si $\sigma \in A_9$.
- b) Calcular el orden de σ . Obtener, en forma de producto de ciclos disjuntos, la permutación σ^{100}

$$\text{2. (2 puntos) Sea } T = \{ \left(\begin{array}{cc} a & b \\ 0 & c \end{array} \right) \in \mathbb{R}^{2 \times 2} : a \cdot c \neq 0 \} \quad \text{y} \quad U = \{ \left(\begin{array}{cc} 1 & x \\ 0 & 1 \end{array} \right) \in \mathbb{R}^{2 \times 2} \}.$$

- a) Demostrar que $U \leq T$
- b) Estudiar si $U \subseteq T$
- 3. (3 puntos) Describir todos los homomorfismos de \mathbb{Z}_{15} en \mathbb{Z}_{18} y para cada uno de ellos:
 - a) Calcular su núcleo y su imagen.
 - b) Obtener todos los elementos $[a]_{15} \in \mathbb{Z}_{15}$ tales que su imagen es $[12]_{18}$.
- 4. (3 puntos) Se considera el grupo $(G_3,*) = (\mathbb{Z}_4 \times U_{12}, (+_4, \cdot_{12}))$ y el subgrupo $H_3 = \langle ([2]_4, [5]_{12}) \rangle$.
 - a) Demostrar que $H_3 \subseteq G_3$.
 - b) Describir cada uno de los elementos del grupo cociente G_3/H_3 .
 - c) Calcular el orden de cada elemento de G_3/H_3 .
 - d) Obtener los factores invariantes de G_3/H_3 .
 - e) Estudiar razonadamente si $G_3/H_3 \approx U_{24}$
 - f) Calcular los divisores elementales y los factores invariantes de $G_4 = \mathbb{Z}_{12} \times \mathbb{Z}_{45} \times \mathbb{Z}_{18}$

Solución:

- a) $\sigma = (1, 5, 2, 3)(4, 8)(6, 9, 7), \sigma \in A_9$
 - b) $|\sigma| = 12, \sigma^{100} = (6, 9, 7)$
- a) $U \leq T$: 2.

$$1) \ \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) \in U \Rightarrow U \neq \emptyset$$

2)
$$\forall h_1 = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}, h_2 = \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix} \in U \text{ es } h_1 h_2^{-1} = \begin{pmatrix} 1 & x - y \\ 0 & 1 \end{pmatrix} \in U$$

$$b) \ \forall g = \left(\begin{array}{cc} a & b \\ 0 & c \end{array} \right) \in T, h = \left(\begin{array}{cc} 1 & x \\ 0 & 1 \end{array} \right) \in U \ \text{es} \ ghg^{-1} = \left(\begin{array}{cc} 1 & \frac{ax}{c} \\ 0 & 1 \end{array} \right) \in U \ \Rightarrow \ U \unlhd T$$

- a) $\varphi_1: \mathbb{Z}_{15} \to \mathbb{Z}_{18}$ definida por $\varphi_1([a]_{15}) = [0]_{18}$,
 - $\varphi_2: \mathbb{Z}_{15} \to \mathbb{Z}_{18}$ definida por $\varphi_2([a]_{15}) = [6a]_{18}$ y
 - $\varphi_3: \mathbb{Z}_{15} \to \mathbb{Z}_{18}$ definida por $\varphi_3([a]_{15}) = [12a]_{18}$
 - b) $\ker(\varphi_1) = \mathbb{Z}_{15}$, $im(\varphi_1) = \{[0]_{18}\}\$

$$\ker(\varphi_2) = \ker(\varphi_3) = \langle [3]_{15} \rangle = \{ [0]_{15}, [3]_{15}, [6]_{15}, [9]_{15}, [12]_{15} \} \approx \mathbb{Z}_5$$

$$\lim_{\varphi_2} \exp(\varphi_3) = \lim_{\varphi_3} \exp(\varphi_3) = \langle [6]_{15} \rangle = \{ [0]_{15}, [6]_{15}, [6]_{15} \rangle \approx \mathbb{Z}_5$$

$$\operatorname{im}(\varphi_2) = \operatorname{im}(\varphi_3) = \langle [6]_{18} \rangle = \{ [0]_{18}, [6]_{18}, [12]_{18} \} \approx \mathbb{Z}_3$$

c)
$$\varphi_1^{-1}([12]_{18}) = \emptyset$$

 $\varphi_2^{-1}([12]_{18}) = [2]_{15} + \ker(\varphi_2) = \{[2]_{15}, [5]_{15}, [8]_{15}, [11]_{15}, [14]_{15}\}$
 $\varphi_3^{-1}([12]_{18}) = [1]_{15} + \ker(\varphi_3) = \{[1]_{15}, [4]_{15}, [7]_{15}, [10]_{15}, [13]_{15}\}$

$$\varphi_3^{-1}([12]_{18}) = [1]_{15} + \ker(\varphi_3) = \{[1]_{15}, [4]_{15}, [7]_{15}, [10]_{15}, [13]_{15}\}$$

- a) $(G_3,*)$ es un grupo abeliano, por tanto todos sus subgrupos son normales. En particular $H_3 \subseteq G_3$
 - b) $G_3/H_3 = \{([0]_4, [1]_{12})H_3, ([0]_4, [5]_{12})H_3, ([0]_4, [7]_{12})H_3, ([0]_4, [11]_{12})H_3, ([1]_4, [1]_{12})H_3, ([1]_4, [1]_4, [1]_4)H_3, ([1]_4, [1]_4, [1]_4, [1]_4)H_4, ([1]_4, [1]_4, [1]_4, [1]_4, [1]_4)H_4, ([1]_4, [1]_$ $([1]_4, [5]_{12})H_3, ([1]_4, [7]_{12})H_3, ([1]_4, [11]_{12})H_3\},$ siendo:

$$([0]_4, [1]_{12})H_3 = \{([0]_4, [1]_{12}) ([2]_4, [5]_{12})\}, \qquad ([1]_4, [1]_{12})H_3 = \{([1]_4, [1]_{12}) ([3]_4, [5]_{12})\},$$

$$([0]_4, [5]_{12})H_3 = \{([0]_4, [5]_{12}) ([2]_4, [1]_{12})\}, ([1]_4, [5]_{12})H_3 = \{([1]_4, [5]_{12}) ([3]_4, [1]_{12})\},$$

$$([0]_4, [7]_{12})H_3 = \{([0]_4, [7]_{12}) ([2]_4, [1]_{12})\}, \qquad ([1]_4, [7]_{12})H_3 = \{([1]_4, [7]_{12}) ([3]_4, [1]_{12})\}, \qquad ([1]_4, [7]_{12})H_3 = \{([1]_4, [7]_{12}) ([2]_4, [1]_{12})\}, \qquad ([1]_4, [2]_4$$

$$([0]_4, [11]_{12})H_3 = \{([0]_4, [11]_{12}) ([2]_4, [7]_{12})\}, \qquad ([1]_4, [11]_{12})H_3 = \{([1]_4, [11]_{12}) ([3]_4, [7]_{12})\}.$$

c) El orden de cada elemento es:

El orden de edda elemento es.								
$ ([0]_4,[1]_{12})H_3 $	$ ([0]_4,[5]_{12})H_3 $	$ ([0]_4, [7]_{12})H_3 $	$\frac{ ([0]_4, [11]_{12})H_3 }{2}$					
1	2	2						
$ ([1]_4,[1]_{12})H_3 $	$ ([1]_4,[5]_{12})H_3 $	$ ([1]_4, [7]_{12})H_3 $	$ ([1]_4,[11]_{12})H_3 $					
4 4		4	4					

- d) $G_3/H_3 \approx \mathbb{Z}_2 \times \mathbb{Z}_4$, sus divisores elementales y sus factores invariantes son (2,4)
- e) $U_{24} = \{[1]_{24}, [5]_{24}, [7]_{24}, [11]_{24}, [13]_{24}, [17]_{24}, [19]_{24}, [23]_{24}\}$

/	21 ([]21/[]21/[]21/[]21/[]21/[]21/[
	$ [1]_{24} $	$ [5]_{24} $	$ [7]_{24} $	$ [11]_{24} $	$ [13]_{24} $	$ [17]_{24} $	$ [19]_{24} $	$ [23]_{24} $
	1	2	2	2	2	2	2	2

$$U_{24} \approx \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$$

Sus factores invariantes son $(2,2,2) \Rightarrow U_{24} \not\approx G_3/H_3$

f) $G_4 \approx \mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_9 \times \mathbb{Z}_9 \times \mathbb{Z}_3 \times \mathbb{Z}_5 \approx \mathbb{Z}_{180} \times \mathbb{Z}_{18} \times \mathbb{Z}_3$ Sus divisores elementales son (2, 4, 3, 9, 9, 5) y sus factores invariantes: (180, 18, 3)