Summary of Basic Statistical Tests in R

Type of data	What you want to know	If data are	then, in R, do
1 numerical vector	normal distribution?		<pre>shapiro.test(), ks.test()</pre>
	equal probabilities?	counts	<pre>chisq.test()</pre>
	location of mean?	normal	t.test()
		non-normal	<pre>wilcox.test()</pre>
2 independent vectors	same distribution?		ks.test(), w jitter
	same means?	normal	t.test()
		non-normal	<pre>wilcox.test()</pre>
	same variances?	normal	<pre>var.test()</pre>
2 paired vectors	same means?	normal	<pre>t.test(paired = T)</pre>
		non-normal	<pre>wilcox.test(paired = T)</pre>
	functional relation?	normal	$lm()^1$
	correlated?	normal	<pre>cor.test()</pre>
		non-normal	<pre>cor.test(method='spearman')</pre>
1 numerical vector + 1 factor	different group means?	normal, same variances	$lm()^1$, anova() ² , aov()
		different variances	<pre>kruskal.test()</pre>
2 numerical vectors + 1 factor	different means? interactions?	normal	lm()
2 vectors of counts	different proportions?		<pre>chisq.test(), fischer.test()</pre>

¹In linear regression, watch out for outliers and nonlinear covariates.

(adapted from Lab Syntax lecture on Baayen ch. 4 by Joan Bresnan, February 2011)

²In anova with factor levels > 2, multiple comparisons inflate chances of a significant result; use Bonferroni correction or Tukey's HSD.