Supervised Learning Capstone

BY: FRANCES CUE

Background

I've acquired a Diabetic Readmission Data Set from kaggle. The dataset is composed of integrated data from 130 U.S. hospitals over the course of 10 years. It includes over 50 features such as length of stay, medications, lab results and primary diagnosis. In the healthcare field, determining the chances of a patient readmission is vital. If risks for readmission is known, better treatment plan can be created for patients.

Objective

To create various models to determine diabetes readmission prediction less than 30 days of previous admission.

Exploratory Data Analysis

- *Categorical values includes gender, race, age (which were group into counts of 10), medications, diagnosis via ICD9 codes, medical specialty of admitting doctor, medication changes and more.
- Numerical columns included patient identifiers such as encounter id and patient number, admission type, number of times a patient was inpatient, outpatient, in emergency, procedures, time in hospital and number of medications.

Object Types

We have a mixture of 37 categorical values and 13 numerical/continuous values:

num_cols.dtypes	
counter_id	int64
tient_nbr	int64
mission type id	int64
scharge disposition id	int64
	int64
me in hospital	int64
	int64
m procedures	int64
	int64
mber_outpatient	int64
mber emergency	int64
mber inpatient	int64
mber diagnoses	int64
rget	int64
e_group	int64
ype: object	
	num_cols.dtypes counter_id tient_nbr mission_type_id scharge_disposition_id mission_source_id me_in_hospital m_lab_procedures m_procedures m_procedures m_medications mber_outpatient mber_emergency mber_inpatient mber_diagnoses rget e_group ype: object

```
3 cat cols.dtypes
                            object
race
                            object
gender
                            object
age
diag_1
                            object
diag_2
                            object
diag 3
                            object
max glu serum
                            object
AlCresult
                            object
                            object
metformin
                            object
repaglinide
nateglinide
                            object
chlorpropamide
                            object
glimepiride
                            object
acetohexamide
                            object
glipizide
                            object
glyburide
                            object
tolbutamide
                            object
                            object
pioglitazone
rosiglitazone
                            object
                            object
acarbose
miglitol
                            object
troglitazone
                            object
tolazamide
                            object
examide
                            object
citoglipton
                            object
insulin
                            object
glyburide-metformin
                            object
glipizide-metformin
                            object
glimepiride-pioglitazone
                             object
metformin-rosiglitazone
                            object
metformin-pioglitazone
                            object
change
                            object
                            object
diabetesMed
readmitted
                            object
dtype: object
```

Readmission Categories

The target chosen for this project is to predict readmission in less than 30 days after previous admission

Looking for missing values

The dataset contained no null values upon first examination. However, it had many '?' values that represent missing values.

Columns with over 90% missing were dropped. Other columns that provide no insight such as insurance payer codes were dropped as well.

```
#looking for ? values.
for col in diabetes.columns:

if diabetes[col].dtype == object:
print(col,diabetes[col][diabetes[col] == '?'].count())
```

```
race 2273
gender 0
age 0
weight 98569
payer_code 40256
medical_specialty 49949
diag_1 21
diag_2 358
diag_3 1423
max_glu_serum 0
AlCresult 0
metformin 0
repaglinide 0
nateglinide 0
chlorpropamide 0
```

There were many medications (27) included in the dataset. Visualization helped determine relationship between target.

Feature Engineering

```
{'[0-10)':0,
 '[10-20)':10,
 '[20-30)':20,
 '[30-40)':30,
 '[40-50)':40,
 '[50-60)':50,
 '[60-70)':60,
 '[70-80)':70,
 '[80-90)':80,
 '[90-100)':90}
'age_group'] = diabete
```

- •New feature was created for age since it was grouped by 10s. This in turn created a new numerical value for age.
- •With discharge dispositions, patients who have expired or was sent to hospice was dropped because there will be no chance for readmission.

Grouped diagnosis by counts/occurrence

	Diagnosis	ICD_code	count
0	Heart Failure	428	6862
1	Other forms of Chronic Heart Disease	414	6581
2	Symptoms involving respiratory system and othe	786	4016
3	Myocardial infarcation	410	3614
4	Pneumonia	486	3508
5	Cardiac Dysrythmias	427	2766
6	Emphysema	491	2275
7	Osteoarthritis	715	2151
8	Cellulitis	682	2042
9	General Symptoms	434	2028

	2nd_diagnosis	ICD_code	count
0	Disorders of fluid electrolyte and acid-base b	276	6752
1	Heart Failure	428	6662
2	Diabetes mellitus without mention of complicat	250	6071
3	Cardiac Dysrythmias	427	5036
4	Essential Hypertension	401	3736
5	Chronic airway obstruction, not elsewhere clas	496	3305
6	Other disorders of urethra and urinary tract	599	3288
7	Hypertensive chronic kidney disease	403	2823
8	Other forms of chronic ischemic heart disease	414	2650
9	Other acute and subacute forms of ischemic hea	411	2566

	Other_diagnosis	ICD_code	count
0	Diabetes mellitus without mention of complicat	250	11555
1	Essential Hypertension\t	401	8289
2	Disorders of fluid electrolyte and acid-base	276	5175
3	Heart Failure	428	4577
4	Cardiac Dysrythmias	427	3955
5	Other forms of chronic ischemic heart disease	414	3664
6	Chronic airway obstruction, not elsewhere clas	496	2605
7	Hypertensive chronic kidney disease	403	2357
8	Chronic Kidney Disease	585	1992
9	Disorders of lipoid metabolism	272	1969

Baseline Models

Scores for measurements

AUC

Accuracy

Recall

Precision

Specificity

```
def calc specificity(y actual, y pred, thresh):
        # calculates specificity
        return sum((y pred < thresh) & (y actual == 0)) /sum(y actual ==0)
    def print report(y actual, y pred, thresh):
        auc = roc auc score(y actual, y pred)
        accuracy = accuracy score(y actual, (y pred > thresh))
11
        recall = recall score(y actual, (y pred > thresh))
        precision = precision score(y actual, (y pred > thresh))
12
13
        specificity = calc specificity(y actual, y pred, thresh)
        print('AUC:%.3f'%auc)
        print('accuracy:%.3f'%accuracy)
16
        print('recall:%.3f'%recall)
17
        print('precision:%.3f'%precision)
18
        print('specificity:%.3f'%specificity)
        print('prevalence:%.3f'%calc prevalence(y actual))
20
        print(' ')
        return auc, accuracy, recall, precision, specificity
    #setting threshold to 50% since our data is now balanced
    thresh = 0.5
```

Baseline Model Scores

	classifier	data_set	auc	accuracy	recall	precision	specificity
0	SVC	train	0.672487	0.621527	0.527337	0.649734	0.693010
1	SVC	valid	0.667575	0.685256	0.542433	0.189116	0.682203
2	KNN	train	0.652335	0.604782	0.518331	0.626687	0.658125
3	KNN	valid	0.624185	0.650426	0.504451	0.162711	0.636577
4	LR	train	0.675219	0.623050	0.550298	0.644002	0.695801
5	LR	valid	0.666753	0.668210	0.571513	0.185728	0.680539
6	NB	train	0.623045	0.572371	0.315489	0.648839	0.829253
7	NB	valid	0.619656	0.769076	0.326409	0.192577	0.825515
8	DT	train	0.729287	0.664595	0.590131	0.693397	0.738298
9	DT	valid	0.637278	0.663647	0.539466	0.176676	0.678874
10	RF	train	0.670875	0.623811	0.586325	0.633845	0.661296
11	RF	valid	0.635109	0.617677	0.586944	0.165109	0.621595
12	GB	train	0.704446	0.694342	0.670303	0.704158	0.718381
13	GB	valid	0.669533	0.613986	0.585757	0.163384	0.617585

We can choose our best models based on this graph.

Learning Curve

Gradient boosting classifier had etter scores than others but the learning curve shows underfitting. Other models show less gap but poorer scores. We will use hyperparameter tuning to alleviate some of these issues.

	importance
number_inpatient	0.183701
time_in_hospital	0.098817
number_emergency	0.093810
discharge_disposition_id_22	0.077494
num_medications	0.057466
num_lab_procedures	0.052790
number_diagnoses	0.045715
number_outpatient	0.028754
number_outpatient	0.023830
insulin_No	0.023613

importance

Feature Importance Random Forest

Feature Importance from Logistic Regression

importance
0.357715
0.188475
0.180301
0.173352
0.156140
0.134689
0.120780
0.119310
0.110808
0.109521

Feature Importance

```
['discharge_disposition_id_22',
'discharge_disposition_id_3',
'number_diagnoses',
'number_inpatient',
'number_emergency',
```

Chi-Squared Top 5 features

Hyperparameter Tuning Results

	classifier	data_set	auc
0	SVC	base	0.667564
1	SVC	optimized	0.667575
2	KNN	base	0.624185
3	KNN	optimized	0.624185
4	LR	base	0.666753
5	LR	optimized	0.667887
6	RF	base	0.635109
7	RF	optimized	0.635109
8	GB	base	0.632191
9	GB	optimized	0.669533

Training: AUC:0.704 accuracy:0.646 recall:0.595 precision:0.662 specificity:0.696 prevalence:0.500

Validation: AUC:0.670 accuracy:0.650 recall:0.582 precision:0.178 specificity:0.658 prevalence:0.113

Test: AUC:0.669 accuracy:0.644 recall:0.589 precision:0.183 specificity:0.652 prevalence:0.117

Gradient Boosting Classifier

Gradient boosting classifier was chosen due to highest AUC scores.

Conclusion

What have we learned from exploring this dataset?

- 1. There is a correlation between number of inpatient visits and being readmitted less than 30 days.
- 2. A patient being discharged from the rehab or a subacute facility has a higher chance of readmission in less than 30 days.
- 3. Since many patients have a primary diagnosis of heart related conditions, it is worth looking at studying readmission rates for this population. Diabetes and heart disease have a known correlation, how does this affect readmission rates?
- 4. If the intention is to truly predict readmission for diabetic patients, it may be helpful to look at diabetes as a primary diagnosis. According to the ICD 10, primary diagnosis requires the most serious attention and is resource intesive while secondary and tertiary diagnoss could be diseases that co-exist during admission or develop thereafter admission.
- 5. Additional information may be needed for this dataset. Information such as procedures and certain blood work could provide more insight into readmission.