adiovy onstrukter

ROČNÍK VI 1970

V letošním roce předkládáme čtenářům Radiového konstruktéra další "pokračování" přehledu zajímavých zapojení, jak se během doby objevovala v předních radiotechnických, elektronických a radioamatérských časopisech celého světa a v publikacích výrobců polovodičových součástek. Některá ze zapojení nelze uvést do chodu prostou náhradou cizích součástek za naše, u některých

pojení, v němž tranzistor pracuje jako běžný zesilovač (např. u nf zesilovacích stupňů), stačí většinou dosáhnout malou změnou původních odporů v obvodu toho stavu, kdy bude mít tranzistor na svých elektrodách taková napětí, aby byl otevřen a zesiloval. Jindy ovšem tato práce nebude tak snadná – u spínacích obvodů bude náhrada tranzistoru pravděpodobně poněkud nesnadnější apod.

The autit?

je tento postup možný a u dalších ani přibližné náhradní součásti nejsou na našem trhu dostupné. Dostáváme se tedy k otázce v titulku: jak začít, chceme-li realizovat některé z uvedených zapojení?

Cesty k tomuto cíli jsou různé – prvním předpokladem však je, aby ten, kdo chce použít některé ze zapojení uvedených v tomto RK, důkladně promyslel jeho činnost, musí mu být zřejmá činnost každé součástky, každého tranzistoru, každého odporu a kondenzátoru. Je si třeba uvědomit, že nestačí vyhledat v katalogu přibližný ekvivalent např. tranzistoru, je třeba též vědět, jaké vlastnosti v tom či onom pracovním bodu tranzistor má a určit, zda tyto vlastnosti odpovídají vlastnostem tranzistoru, použitého v originálním zapojení. Někdy lze tento problém vyřešit snadno – jde-li např. o za-

U některých z uvedených zapojení však náhrada našimi součástkami nebude vůbec možná – tyto obvody jsou uvedeny především pro seznámení s novými součástkami a s jejich použitím.

V každém případě však zůstává základním pravidlem: chci-li se dopracovat úspěšného výsledku, musím bezpečně ovládat činnost obvodu a jeho součástek. Těžko se lze divit, že neuspěje takový čtenář, který mi napsal, že se snažil uvést do chodu obvod s tranzistory OC170 podle prvního čísla Zajímavých zapojení, že to však nedokázal proto, že tranzistory OC170 mají čtyři vývody a ve schématu jsou nakresleny jen se třemi a on že neví, co to ten čtvrtý vývod vlastně je a kam se zapojuje a jestli není ve schématu chyba. Konečně podobné dotazy se objevují v Amatérském radiu v rubrice

"Čtenáři se ptají" – pro tento druh čtenářů toto číslo Radiového konstruktéra rozhodně určeno není – pro ně vychází v AR Dílna mladého radioamatéra a konečně redakce obou časopisů na ně pamatuje i některými čísly RK – důkazem toho je např. první číslo tohoto roku – Tranzistorové přijímače pro KV.

Abychom se však nakonec vrátili ještě k původní otázce – jak pokračovat po prostudování činnosti zapojení je v moci každého čtenáře podle jeho zkušeností, vybavení měřicími přístroji a materiálových možností. K tomu je těžko něco radit. Snad jen jedno: všechny obvody a zapojení jsou popisovány vzhledem k originálu podstatně stručněji. Kdo by neporozuměl funkci zapojení, které ho zajímá, může si vyhledat původní pra-

men (časopisy a publikace jsou k dispozici ve velkých knihovnách, výzkumných ústavech a někdy i ve výrobních závodech) a v něm si najít to, co ho zajímá. Z tohoto důvodu je za každým jednotlivým článkem uvedeno jméno časopisu nebo publikace, z něhož je schéma převzato, měsíc a rôk vydání, popř. další údaje.

Závěrem nezbývá než popřát všem čtenářům šťastnou ruku při výběru náhradních součástí a mnoho zdaru při realizaci zapojení; snad se s některými z nich (s našimi součástkami) setkáme i na stránkách našich časopisů. Pomůže-li toto číslo RK najít zájemcům vhodné zapojení obvodů, které právě potřebují, nebo dá-li jim alespoň vodítko k řešení jejich "obvodových problémů", pak splnilo svůj účel.

Zajímavá praktická ZAPOJENÍ 3

Zdeněk Svobodný

Vybrat vhodná zapojení moderní koncepce tak, aby se alespoň část z nich dala realizovat s našimi součástkami, je stále větší problém. Ve světě ovládly pole integrované obvody a např. americké časopisy uveřejňují návody ke stavbě jednoduchých rozhlasových přijímačů s jedním integrovaným obvodem, feritovou anténou a dvěma koncovými nf tranzistory (pomineme-li několik málo odporů a kondenzátorů) - ke stavbě takového přijímače opravdu není třeba mnoho vědět o elektronice; u nás však pravděpodobně budeme muset zůstat ještě po nějakou dobu u klasických krystalek apod., i když pro začátečníky stavba výše uvedeného přijímače-superhetu by byla snazší, než stavba krystalky. Nejsou výjimkou ani návody k amatérské stavbě číslicových měřicích přístrojů, elektronických hodin s číslicovými integrovanými obvody, přijímačů pro barevnou televizi apod. Věřím, že by byl o tyto přístroje velký zájem, ovšem součástková základna nutná k jejich stavbě bude u nás nedostupná ještě asi velmi dlouhou dobu. Nezbývá než vyhledávat obvody s klasickými součástkami a pouze sem tam popsat nějaký skutečně zajímavý a přitom jednoduchý obvod, jenž by se dal předělat na naše součástky i za cenu změny (zhoršení) původních parametrů. Při výběru zapojení byly jako v loňském roce vodítkem dopisy čtenářů – snažil jsem se vyhovět požadavkům, často vzájemně protichůdným, co nejvíce; současně jsem se snažil o co největší pestrost ve výběru zapojení.

Obsah je opět zpracován podle jednotlivých oborů elektroniky; zapojení, která nešla zařadit do některé ze skupin, jsou uvedena v závěrečné části prvního oddílu pod názvem Aplikovaná elektronika.

Druhý oddíl tohoto čísla RK je věnován několika vyzkoušeným konstrukcím z nejrůznějších oborů elektroniky. Uvedené přístroje by měly fungovat na první zapojení, neboť byla ověřena i jejich reprodukovatelnost; jedinou výjimkou bude asi pouze měřič kapacit, v němž jsem použil výprodejní měřidlo ze svých starých zásob, o němž se mi nepodařilo zjistit bližší údaje. Náhrada měřidlem nového typu nebude však jistě dělat při jednoduchosti zapojení žádné obtíže.

Závěrem bych chtěl znovu upozornit na to, že uvedená zapojení (v prvním oddílu RK) jsem nezkoušel ani s našimi. ani s původními součástkami, jsou to zapojení převzatá z literatury. Nemohu tedy při případných dotazech sdělit žádné bližší podrobnosti kromě skutečností, které byly uveřejněny v původních článcích. Nemohu samozřejmě ručit ani za případné chyby, pokud se vyskytly již v původním pramenu (i když jsem při přípravě RK na některé přišel a samozřejmě opravil). Ze zkušeností s minulými čísly RK s touto tématikou je však třeba říci, že se v nich vyskytl zcela minimální počet chyb nepodstatného významu.

U některých obvodů neuvádím náhrady zahraničních součástek; je to všude tam, kde může čtenář náhrady vyhledat v katalogu zahraničních tranzistorů, který vychází na pokračování v AR. Náhrady nejsou uvedeny také tam, kde se mi nepodařilo zjistit bližší údaje v dostupných katalozích a informacích výrobců. Při náhradách nenormalizovaných hodnot odporů a kapacit doporučuji jako pomůcku k rychlému sestavení požadované hod-

noty článek a tabulky z rubriky Jak na to, AR 5/70.

Pokud jde o použitou symboliku (ve schématech i v textu), je volena podle doporučení z dvanáctého čísla AR loňského roku a prvního čísla AR letošního roku. Výjímkou je pouze obr. 38; vzhledem k tomu, že byl kreslen v loňském roce, používají se v něm staré značky.

Napáječe, usměrňovače, řízené zdroje

Použití tyristorů v napáječích a různých řízených zdrojích stejnosměrného i střídavého napětí má některé přednosti proti obvyklým a dosud používaným klasickým součástkám (tranzistorům a diodám). Rozhodně přináší (kromě jiného) úsporu celkového počtu součástek při stejných vlastnostech zařízení. Ukážeme si na několika příkladech, jak lze s pomocí tyristoru konstruovat některá jednoduchá zařízení.

Řízení rychlosti otáčení malých motorků s trvalým magnetem a univerzální stabilizovaný zdroj

Obvod k řízení rychlosti otáčení malých motorků s trvalým magnetem nebo s odděleným buzením (stejnosměrných,

Obr. 1. Napájecí zdroj pro malé motorky s trvalým magnetem nebo pro stejnosměrné motorky s odděleným buzením

Obr. 2a. Zdroj stabilizovaného napětí 60 V s možností odběru proudu až 1,6 A

příp. i střídavých) je na obr. 1. Použitý vyhlazovací kondenzátor má záměrně velmi malou kapacitu, aby motor pracoval s málo vyhlazeným usměrněným napětím. Během doby, kdy usměrňovač nevede, spotřebuje rezonanční obvod, tvořený indukčností a odporem vinutí motoru (a kapacitou elektrolytického konveškerou nashromážděnou denzátoru) energii v obvodu. Pro malé motorky s velmi malou účinností se napájecí proud v tomto okamžiku zmenší až k nule, takže proud neteče až do doby, kdy usměrňovač opět vede. To znamená, že referenční napětí Zenerovy diody, které určuje zapínání a vypínání tyristoru, sleduje skutečnou "protielektromotorickou" sílu motorku. Obvod je proto relativně necitlivý na změny odporu motorku a má snahu pracovat za stále stejných podmínek nezávisle na zátěži. V praxi to znamená, že po připojení motorku se zátěží k napájecímu obvodu se samočinně poněkud zvětší napájecí napětí a tak zůstane rychlost otáčení motorku bez zátěže i se zátěží stejná. Jestliže je motorek zabrzděn, je na něm téměř plné napětí napájecího zdroje. Toto uspořádání je mnohem účinnější, než např. při napájení motorku běžným stabilizovaným napájecím zdrojem.

Je zřejmé, že tohoto principu lze využít ve většině obvodů regulujících otáčky motorů, neboť malou úpravou obvodu lze stejných účinků dosáhnout i u motorků, napájených střídavým napětím. V principu závisí tedy správná činnost obvodu na získání (vzniku) protielektromotorické síly ze zbytkového magnetismu magnetického pole motorku.

Je třeba jen podotknout, že někdy bude nutné (při použití málo citlivých tyristorů), zesílit proud pro řídicí elektrodu tyristoru běžným jednotranzistorovým zesilovačem.

Obvod má ještě jednu vlastnost – rychlost motorku lze řídit od nuly do jmenovité rychlosti (je-li přepínač v poloze, "start"). V poloze "stop" se motorek neotáčí. Časový úsek, během něhož se rychlost motorku plynule zvětšuje až do maximální rychlosti, je dána nastavením proměnného odporu R_1 . Obvod má kromě toho pojistku proti přetížení (tranzistor T_2), jež zabraňuje zničení tyristoru.

Tento obvod doplněný elektronickou pojistkou se hodí pro napáječe bateriových vláčků, elektrických autodráh apod.

Na obr. 2a je zapojení stabilizovaného zdroje, jenž dodává napětí 60 V a proud až 1,6 A. Obvod je vhodný především pro nf zesilovače, osazené křemíkovými tranzistory, kde se s výhodou využívá vyšších napájecích napětí.

Tlumivka L_1 v sérii se sekundárním vinutím síťového transformátoru zabraňuje nežádoucímu "zapálení" tyristoru. Obvod nemá ani pojistku, ani regulaci výstupního napětí. Velmi snadno lze však původní zapojení doplnit podle obr. 2b

Obr. 2b. Upravený zdroj z obr. 2a s možností nastavení výstupního napětí a s elektronickou pojistkou (pro $R=0.6~\Omega$ je $I_{\rm max}=1~A$, pro $R=1.2~\Omega$ je $I_{\rm max}=0.5~A$)

tak, aby bylo možno nastavit přesně žádané výstupní napětí a aby se obvod samočinně vypínal při překročení odběru proudu zátěží. Vypínací proud se nastavuje odporem R (při $R=0.6~\Omega$ je vypínací proud 1 A, při $R=1.2~\Omega$ je proud 0.5 A).

Zdroj stabilizovaného napětí tohoto typu je velmi výhodný - výstupní napětí se vzhledem ke stavu bez zátěže zmenší při jmenovité zátěži pouze asi o jeden volt a výhodný je i malý ztrátový výkon stabilizačního prvku - tyristoru. Vezme-li se v úvahu, že regulační prvek regulovatelného zdroje běžného provedení (se sériovými tranzistory) s maximálním výstupním napětím 60 V pro proud 5 A vyžaduje při jmenovité zátěži a polovičním napětí ztrátový výkon asi 150 W, v témž zdroji s tyristorem je ztrátový výkon na regulačním prvku asi 6 až 8 W. Vzhledem k tomu, že zdroj se sériovým tranzistorem má však velmi dobré regulační vlastnosti a velmi malé zvlnění výstupního proudu, zdá se velmi výhodné kombinovat popsaný tyristorový zdroj s běžným zdrojem se sériovým regulačním tranzistorem - ušetří se tak na drahých regulačních tranzistorech s velkou kolektorovou ztrátou.

Wireless World č. 1406, srpen 1969, str. 390.

Spínací obvody s tyristory

Základní obvod "blikače" pro sítové napětí s jedním tyristorem je na obr. 3. Zapojení samočinně rozsvěcí žárovku 100 W za každé kladné půlvlny napájecího napětí. Vzhledem k tomu, že tyristor vede pouze při každé kladné půlvlně, pracuje obvod jako půlvlnný usměrňovač a žárovka svítí tedy jen polovičním jasem vzhledem k přímému napájení ze sítě. Sepneme-li tedy spínač S, bude žárovka pravidelně blikat v rytmu kladných půlvln napájecího napětí. Dioda D zabraňuje průchodu záporných půlvln na řídicí elektrodu tyristoru.

Stejný obvod pro celovlnné napájení zátěže (žárovka 100 W) je na obr. 4. Síťové napětí se usměrňuje můstkovým usměrňovačem D_1 až D_4 . Stejnosměrné

Obr. 3. Základní obvod s tyristorem pro spínání a vypínání činné zátěže v obvodu střídavého proudu

napětí se přivádí na tyristor. Je-li spínač S vypnut, tyristor nevede a žárovkou neteče proud. Sepne-li se spínač S, "zapálí" tyristor těsně po začátku každé kladné půlvlny nevyhlazeného usměrněného napětí – žárovka se rozsvítí. Tyristor se pak vypne samočinně na konci každé půlvlny, kdy se zmenší jeho anodový proud na nulu.

Sepne-li se tedy spínač S, bude žárovka pravidelně svítit během téměř celé kladné půlvlny napájecího napětí téměř plným jasem.

Obvod nepotřebuje pojistku, neboť např. při zkratu v usměrňovacím můstku je proud obvodem omezen odporem vlákna žárovky. Žárovka je zařazena do obvodu střídavého napětí – obvod může tedy sloužit i jako kontrola zátěže střídavého napětí.

Ke kontrole zátěže v obvodu stejnosměrného napětí slouží obvod na obr. 5. Jde vlastně pouze o obdobu zapojení z obr. 4. Navíc přibyla pouze sítová pojistka; žárovka (spotřebič s činným odporem) je umístěna v obvodu stejnosměrného napětí. Obr. 6 je pak další modifikací základního zapojení, rozepnutí tlačítka Tl₂ přerušuje činnost tyristoru.

Obr. 4. Obvod z obr. 3 s "celovlnným" napájením zátěže

Obr. 5. Spínaní a vypínání činné zátěže v obvodu stejnosměrného proudu

Obr. 6. Upravený obvod podle obr. 5. Stisknutím Tl₂ se "zapáli" tyristor

Při použití tranzistoru UJT by bylo možné stejný princip přerušování napájecího proudu do zátěže použít i při napájení obvodu stejnosměrným napětím. Radio-Electronics, červen 1969, str. 50.

Stabilizovaný regulovatelný zdroj napětí

Zdroj na obr. 7a a 7b může dodávat proud o napětí 8 až 65 V při maximálním odběru proudu 0,7 A. Zapojení pracuje na principu fázového zpoždění řídicích pulsů (Phasenanschnittsteuerung). Zdroj nemá regulační transformátor, celé napájení obstarává jeden síťový transformátor se dvěma sekundárními vinutími.

Jako spínací prvek slouží tranzistor T_4 (křemíkový tranzistor n-p-n). Protože se tranzistor T_4 během kladných půlvln (vztaženo k bodu B_2 , obr. 7a) nezavírá, je třeba, aby sinusové napětí bylo řádně usměrněno.

Obvody před tímto spínacím tranzistorem slouží jednak jako zdroj budicího (řídicího) signálu pro spínací tranzistor, jednak jako zdroj referenční úrovně pro

řídicí obvody. K napájení těchto obvodů slouží zvláštní zdroj (obr. 7b). Obvody pracují takto: Vyhlazovacím účinkem kondenzátoru C_1 je v bodě B_3 stejnosměrné napětí s nepatrným zvlněním. Omezovací odpory R_1 , R_3 a R_4 jsou vybrány tak, aby v bodě B_4 (na potenciometru P) bylo stejnosměrné napětí (v závislosti na poloze běžce potenciometru) asi 20 až 75 V. Toto měnitelné stejnosměrné napětí určuje prahové napětí pro spínání. Tranzistor T_1 je svým emitorem připojen na výstup obvodu na obr. 7b a bází (přes odpory R_7 a R_{11} a diodu D_4) do obvodu prahového napětí v bodě A_1 . ${
m V}$ tomto uspořádání tranzistor T_1 vede po tu dobu, po níž je napětí na jeho bázi zápornější, než napětí na jeho emitoru. Vzhledem k tomu, že k ovládání činnosti spínacího tranzistoru T_4 je třeba proud 500 mA, je do obvodu přidán jako proudový zesilovač tranzistor T_2 . Aby zůstala zachována polarita signálu, je tranzistor T₂ zapojen jako emitorový sledovač. Aby se nemohlo zvětšit napětí $U_{
m EB0}$ tranzistoru T₁ nad dovolenou mez, používá se omezující odpor R_{10} a odpor \bar{R}_{KA} diody D_4 . K dokonalému uzavření tranzistorů T_2 a T_4 (v době, kdy nevedou) slouží odpory R_{13} a R_{15} .

Za spínacím tranzistorem T_4 je zapojena dioda D_6 , která zabraňuje změně polarity napětí na elektrodách tranzistoru T_4 , je-li provozní napětí menší než napětí na nabíjecím kondenzátoru. Zmenšuje-li se napětí na kondenzátoru C_4 v závislosti na odebíraném proudu, je třeba tuto změnu převést na činnost spínacího tranzistoru (na změny velikosti prahového napětí) tak, aby se napětí na C_4 opět zvětšilo na nastavenou velikost. K tomu slouží změna úbytku napětí na odporu R_{16} (úbytek napětí se zvětší vzhledem k provozu za jmenovitých podmínek) a změna napětí báze-emitor $U_{
m BE}$ tranzistoru T_4 . Napětí na bázi tranzistoru T_4 se usměrňuje diodou D_5 a vyhlazuje kondenzátorem C₃. Odpovídající stejnosměrné napětí ovládá pak činnost tranzistoru T₃. Tak např. zvětší-li se napětí na bázi T_4 , je tranzistor T_3 více otevřen a teče větší kolektorový proud. To vede k většímu spádu napětí na odporech R_7 a R_8 . Tím se zvětší prahové napětí, což vede

 $\mathbf{R}_{\mathbf{K}} \stackrel{\frac{2}{70}}{\bullet} \mathbf{7}$

obvodu při malých odebíraných proudech (kolem 1 mA), je na výstup regulátoru připojena "předzátěž" R₂₁.

Napájecí zdroj celého regulátoru je konstruován tak, že není potřeba žádné

dodatečné jištění proti přetížení.

Budicí proud báze tranzistoru T_4 je pevně nastaven na 500 mA. Tím je omezen (vzhledem k proudovému zesílení tranzistoru) maximální kolektorový proud T_4 , jímž se nabíjí kondenzátor C_4 .

V případě spojení výstupu dokrátka bude Zenerova dioda D_3 spojena přes přechod báze-emitor s bodem B_2 , tím bude prahové napětí omezeno asi na 10,7 V (bude dáno napětím Zenerovy diody D_3 a napětím báze-emitor tranzistoru T_5). Spínací tranzistor bude řízen půlvlnným sinusovým napětím asi 10 V, čímž se podstatně zmenší ztrátové výkony na tranzistorech T_4 a T_6 a na odporu R_{16} . Vzhledem k tomu, že dioda D_3 a dráha emitorbáze T_5 přemosťují vlastně odpory R_1 a R_5 , může (podle nastavení potenciometru P) téci regulačním obvodem maximální proud 70 mA.

Aby se ani tranzistor T_5 nemohl zničit nadměrným proudem, byla k omezení proudu použita kombinace D_7 , R_{19} . V případě krátkého spojení na výstupu zdroje otevře napěťový spád na odporu R_{19} diodu a největší část budicího proudu teče potom diodou D_7 .

Technické údaje obvodu jsou velmi zajímavé; výstupní napětí lze řídit v mezích 8 až 65 V, maximální odebíraný proud je 700 mA, brumové napětí maximálně 50 mV, účinnost při výstupním napětí 8 V a proudu 0,5 A je 20 %, při výstupním napětí 65 V a stejném proudu 50 %. Změna výstupního napětí mezi chodem naprázdno a při jmenovité zátěži je při 8 V asi 1 %, při 65 V asi 5 %.

Transformátor je na jádru MD85/45 a má na primární straně 468 závitů drátu o \emptyset 0,55 mm CuL, L_2 má 159 závitů drátu o \emptyset 1,2 mm CuL a L_3 má 15 závitů drátu

o Ø 0,4 mm CuL.

Halbleiter-Schaltbeispiele, Siemens 1968.

Řídicí obvody tyristorů

K ovládání tyristorů je třeba používat řídicí obvody. Řídicí obvody mohou být různé, osvědčilo se používání pulsních obvodů, u nichž je střední rozptýlený výkon mnohem menší vzhledem k výkonu, potřebnému k sepnutí. Tesla Rožnov vyvinula dva typy řídicích pulsních obvodů pro napájení ze sítě, které lze použít k řízení obvodů s tyristory. Regulační rozsah fáze řídicích obvodů je od 10 do 170 elektrických stupňů. Mezi vstupním řídicím napětím a fázovým posuvem výstupních pulsů je lineární vztah. Na obr. 8 je první typ řídicího obvodu. Obvod dodává na výstupu během každé půlperiody síťového napětí jeden řídicí puls o napětí 7 V a proudu 0,5 A. Rídicí puls trvá 1 ms a

Obr. 8. Řídicí obvod pro tyristorové spínače a činnou zátěž

jeho délku lze regulovat. Přidáním dalšího tranzistoru lze zvětšit rozsah regulace ještě o dalších 10°. Obvod je vhodný k řízení dvojice tyristorů ve dvoucestném zapojení při činné zátěži.

Na obr. 9 je další typ řídicího obvodu, tentokrát pro obvody s indukční zátěží. Obvod během každé půlperiody sítového napětí vyrábí sérii řídicích pulsů o napětí 7 V a proudu l A. Jednotlivé řídicí pulsy jsou dlouhé 100 μs a mají opakovací kmitočet 5 kHz. Vstupní napětí potřebné k řízení fázového zpoždění řídicích pulsů je 3 V (na impedanci 0,1 MΩ).

Tyristory jsou velmi výhodné spínací prvky, především v obvodech střídavého proudu. Velmi výhodné je i jejich použití např. v řízených usměrňovačích. Příkladem použití byl např. obvod na obr. 1. Z domácích součástek bylo vyvinuto např. zapojení pro řízení teploty v laboratorní míchačce (obr. 10). Výkon topného tělesa se reguluje tyristory v můstkovém zapojení. Úhel otevření tyristorů se ovládá tranzistorovým řídicím obvodem. Jako čidlo pro snímání teploty kapaliny v míchačce se používá termistor 16NR15, na němž se získává ovládací napětí pro řídicí obvod. Zapojení je konstruováno tak, aby samočinně regulovalo topný výkon teplota kapaliny v míchačce zůstává konstantní; přesnost regulace je lepší než \pm 1 % v rozsahu regulace teplot od +50do +150 °C.

Aktivní stavební prvky. Tesla Rožnov, leden 1969.

Regulátor výkonu

Japojení na obr. 11 je vhodné k řízení rychlosti otáčení motorků navíjecích strojů, šicích strojů apod., k regulaci osvětlení ateliérů, bytů apod. - všude tam, kde ovládaný výkon nepřekročí 550 W. Pro výkony na horní hranici je třeba tyristor chladit – chladič má mít rozměry $100 \times 100 \times 2$ mm. Bez chlazení lze regulovat (i dlouhodobě) výkony do 300 W. Celé zapojení má tři základní obvody: můstkový usměrňovač s tyristorem, řídicí obvod pro spínání tyristoru a odrušovací obvod (proti rušení rozhlasu). Jak je známo, zapálí tyristor pouze tehdy, je-li na jeho anodě (vzhledem ke katodě) kladné napětí a přivede-li se na jeho řídicí elektrodu kladné napětí 3 V nebo větší (vzhledem ke katodě).

Řídicí napětí potřebné k zapálení tyristoru dodávají tranzistory T_1 a T_2 . Vzhledem k fázovému posuvu signálu na emitoru T_1 vůči signálu v bodě, v němž se spojují R_4 a R_5 , lze proměnným odpo-

rem R_2 (součást článku RC) řídit zapálení tyristoru během každé kladné půlvlny síťového napětí. Úhel otevření tyristoru lze měnit v rozmezí 25 až 170 elektrických stupňů. Velikost fázového posuvu a tím i okamžik zapálení

Obr. 10. Zapojení k regulaci teploty v laboratorní míchačce

tyristoru lze plynule měnit změnou odporu R_2 . Jako R_2 lze použít potenciometr 50 až 500 k Ω s logaritmickým nebo lineárním průběhem podle toho, jaké jsou požadavky na regulaci.

Indukčnost tlumivek a kapacita kondenzátoru C_1 tvoří síťový filtr, neboť při činnosti regulátoru dochází ke vzniku rušících signálů, které sahají až do kmitočtů řádu MHz.

das elektron international, č. 16—18, 1969, str. 273.

Napájení modelové železnice

Na obr. 12 je schéma napáječe pro modelové železnice. Zapojení má dva výstupy (oddělené) pro napájení motorků

lokomotiv, každý z výstupů dodává napětí 0 až 14 V a proud až 1 A. Další výstup slouží k napájení světelných zařízení na železnici – intenzitu světel (tzn. výstupní napětí) lze též regulovat. Přepínačem $P\tilde{r}_3$ lze zvolit poměr rozjezdové a brzdné dráhy, popř. ho nastavit regulačními odpory R_{10} . Napáječ má i samočinnou pojistku pro případ zkratů nebo přetížení a tlačítko, jímž lze okamžitě zastavit celý provoz na modelové železnici (při srážce vlaků nebo jiných havarijních událostech).

Síťový transformátor dodává na sekundární straně střídavé napětí 2 × 20 V. Z jedné poloviny jednoho ze sekundárních vinutí se odebírá napětí 10 V pro obvod napájení světel. Usměrněné napětí pro napájení motorků musí být dobře vy-

Obr. 11. Zapojení k řízení rychlosti otáčení motorků do 550 W

hlazeno ($C_1 + C_2$ musí mít kapacitu minimálně 700 μ F, aby dobře pracovaly obvody pro řízení rychlosti vlaků a pojistka). Pro napájení světel stačí jednocestně usměrněné a navyhlazené napětí.

Vyhlazené a usměrněné napětí pro napájení vlaků se stabilizuje sériovými stabilizátory z tranzistorů T_5 a T_8 . Zdroj referenčního napětí tvoří dioda D_4 a tranzistor T_2 . Regulační stupně v Darlingtonově zapojení $(T_3, T_4; T_6, T_7)$ dovolují použít malé proudy k řízení "výkonových stupňů".

Napětí na bázi T_2 je stabilizováno Zenerovou diodou D_4 a odporem R_5 na 17 až 18 V. Kondenzátor C_3 zamezuje rozkmitání obvodu. Tranzistory T_9 a T_{10} se otevírají a zavírají v závislosti na nastavení běžce potenciometru R_7 – výstupní napětí pro světla lze nastavit až do 6 V.

Obr. 12. Zdroj stabilizovaných a regulovatelných napětí pro modelovou železnici

Oba dva výstupy pro napájení lokomotiv vlaků jsou identické. Regulační obvod např. pro výstup I (horní výstup) pracuje takto: Je-li přepínač Př₃ v poloze vypnuto (kontakty vpravo), je báze tranzistoru T₃ spojena se zdrojem referenčního napětí přes odpor R_9 . Napětí na výstupu závisí pouze na poloze běžců potenciometrů R_8 a R_{13} . Je-li přepínač $P\tilde{r}_3$ v levé poloze, tvoří R_8 , R_9 , R_{10} a C_4 článek RC, který zpožďuje výsledek změny polohy běžce R₈. Zpoždění závisí na nastavení proměnného odporu $R_{\scriptscriptstyle 10}$ a je asi 7 až 30 vteřin. Potenciometrem R_{13} se nastaví takové napětí na výstupech I a II, při němž se vlaky právě rozjíždějí - potom lze rychlost vlaků regulovat v celém rozsahu otáčení potenciometrů R_8 a R_{12} .

Relé pojistky se uvede v činnost tehdy, je-li výstupní proud výstupů I a II větší než 1 A. Jeho kontakty přeruší přívod napájecího napětí pro tranzistory T_5 a T_8 , současně se rozsvítí varovné světlo \check{Z} . Stejně je tomu při zmáčknutí tlačítka Tl. Tranzistor T_1 za běžného provozu nevede; odpory R_3 a R_4 jsou vybrány tak, aby úbytek napětí na odporech R_1 a R_2 větší než 5 V (odpovídá většímu odběru proudu na výstupech I a II než 1 A) okamžitě otevřel tranzistor T_1 a aby přepnulo relé (signalizace poruchy nebo zvětšeného od-

běru proudu).

Pro ovládací potenciometry a proměnné odpory doporučuje autor drátové potenciometry. Odpory R_1 a R_2 jsou na zatížení 20 W, R, a R, na 2 W, stejně tak R_8 a R_{12} . Potenciometr R_{12} je běžný dvojitý lineární potenciometr; všechny ostatní odpory jsou na zatížení 0,5 W. Diody D_1 a D_2 jsou na napětí 50 V a proud 3 A, diody D_3 , D_5 a D_6 na stejné napětí pro proud 1 A, D_4 je Zenerova dioda se Zenerovým napětím 18 V a ztrátou 1 W, tranzistory kromě T_5 , T_8 a T_{10} mohou být libovolné tranzistory s kolektorovou ztrátou do 3 W, koncové tranzistory jsou křemíkové typy s kolektorovou ztrátou 115 W (při menším odběru proudu by šly nahradit našimi KU605 nebo germaniovými tranzistory řady NU74). Relé je pro 24 V.

Koncové tranzistory používají jako chladič kovové šasi přístroje – to je vhodné udělat co největší, aby i při maximál-

ním odběru proudu nepřekročila teplota tranzistorů dovolenou mez.

Radio-Electronics, listopad 1969, str. 42.

Řízení rychlosti otáčení motorů

K řízení rychlosti otáčení např. elektrických vrtaček se používá obvod podle obr. 13.

Velikost odporu R_1 určuje rychlost nabíjení kondenzátoru C. Když se kondenzátor nabije na takové napětí, aby zapálila doutnavka (neonka), vybije se náboj kondenzátoru přes řídicí elektrodu tyristoru, tyristor se otevře a propustí proud vinutím elektromotoru. Otevření tyristoru tedy ovlivňuje průchod proudu elektromotorem a tím i rychlost jeho otáčení. Závislost rychlosti otáčení na poloze běžce proměnného odporu R₁ je zřejmá z obrázku, přičemž rychlost motoru se zvětšuje při pohybu běžce od polohy 1 k poloze 2. Přepínač Př₁ odpojuje motor od napájecího napětí a přepínač Př₂ odpojuje v poloze 2 regulační obvod.

Použití jednoho tyristoru (popř. jedn**é** diody) umožňuje řízení průtoku proud**u** motorem pouze při jedné půlvlně napás

Obr. 13. Regulace rychlosti otáčení motorů doutnavkou a tyristorem

Obr. 14. Regulace rychlosti otáčení motorů dvěma diodami

jecího napětí a tím jen omezenou možnost regulace rychlosti otáčení. Na obr. 14 je "celovlnná" verze zapojení z obr. 13.

Je-li přepínač $P\check{r}_1$ v poloze zapnuto (na obr. 14), $P\check{r}_2$ v poloze l a $P\check{r}_3$ v poloze l, běží motor na nejvyšší otáčky, plnou rychlostí.

Přepneme-li přepínač $P\tilde{r}_2$ do polohy 2, rychlost otáčení motoru se zmenší. Dioda D_1 je zapojena do obvodu a zabraňuje průtoku proudu při záporných půlvlnách napájecího napětí. Je-li přepínač $P\tilde{r}_2$ v poloze 3, je dioda D_2 připojena paralelně k vinutí motoru – rychlost otáčení se dále zmenší. Je-li přepínač $P\tilde{r}_3$ v poloze 1, jsou obě cívky motoru zapojeny do série – rychlost se ještě více zmenší. Přepne-li se přepínač $P\tilde{r}_2$ do polohy 2 nebo 3, připojí se dioda D_1 (D_2) tak, jak je to zřejmé ze zapojení na pravé dolní straně obrázku a rychlost motoru se stále zmenšuje.

Toto řízení rychlosti má pro některé účely určité nevýhody, především tu, že nelze rychlost řídit plynule. Tuto nevýhodu odstraňuje zapojení na obr. 15. Je to zapojení pro plynulé řízení rychlosti otáčení motorků např. u mixerů, šlehačů a pod.

Kondenzátor C a odpor R_1 pracují jako zdroj lineárně se zvětšujícího referenčního napětí. Průchod proudu motorem se ovládá otevíráním a zavíráním tyristoru, tj. nastavením potenciometru pro řízení rychlosti otáčení P_1 a proměnného odporu R_3 (nastavení maximální rychlosti otáčení).

V poslední době se s výhodou využívá k řízení rychlosti motorů u nás zatím nedostupných polovodičových součástek – triaců a tranzistorů UJT ve spojení s tyristory.

Radio-Electronics, červen 1967, str. 42.

Obr. 15. Regulace rychlosti otáčení motorů tyristorem

Regulace rychlosti otáčení motorku v bateriovém magnetofonu

K udržení stálé rychlosti otáčení motorku u bateriových magnetofonů se dosud ještě používá odstředivý regulátor, který bývá provozně nespolehlivý a nadto

Obr. 16. Regulace rychlosti otáčení motorku v bateriovém magnetofonu

často zanáší do reprodukce nežádoucí pazvuky. Regulace rychlosti elektronickým obvodem (pro motor s napájecím napětím 3 V a se spotřebou 180 mA) je na obr. 16. Obvod je v podstatě zdroj konstantního napětí se záporným odporem na výstupu. Ten je nastaven tak, aby byl poněkud menší než činný odpor vinutí motorku (10 Ω). Tím způsobem se udržuje protielektromotorická síla motorku na konstantní úrovni. Provozní napětí pro motorek jde přes tranzistor AD161. Jeho velikost je dána Zenerovým napětím diody D_1 , zapojením tranzistoru BC109 a napětím, snímaným na odporu 5,6 Ω (to se mění podle proudu motoru). Článek RC, 2,2 k Ω a 0,1 μ F, zabraňuje vlivu náhlých a krátkých změn v odběru proudu na obvody regulátoru. Odpory v bázi a kolektoru tranzistoru T_1 , BC109, se nastavují pracovní podmínky obvodu.

Obvod je prakticky nezávislý na napájecím napětí a změnách teploty.

Wireless World, prosinec 1969, str. 556.

Obrk 17. Předzesilovač pro magnetickou přenosku s lineárním integrovaným obvodem TAA151

Nf technika

Předzesilovač pro magnetickou přenosku

Na obr. 17 je schéma jednoduchého předzesilovače pro magnetickou přenosku s integrovaným obvodem TAA151, jenž odpovídá našemu typu MAA325. Vlastní zesílení signálu obstarává integrovaný lineární zesilovač TAA151, vnější prvky slouží ke korekci vstupního signálu tak, aby celková kmitočtová charakteristika předzesilovače byla inverzní k nahrávací charakteristice (viz např. i obr. 41 v RK 3/69). Potřebné kmitočtové charakteristiky (obr. 18) se dosahuje kmitočtově závislou zpětnou vazbou z výstupu na emitor druhého stupně integrovaného zesilovače.

Předzesilovač se napájí napětím 5 V, odebíraný proud je 10 mA. Výstupní napětí je 85 mV při vstupním napětí 4,5 mV (na kmitočtu 1 000 Hz). Maximální možné vstupní napětí je 25 mV, vstupní odpor je 50 kΩ. Odstup signálu od hluku je 47 dB. Halbleiter-Schaltbeispiele. Siemens 1968.

Předzesilovač pro výkonové stupně

V poslední době se stále více objevu j nové a nové aplikace vynikajícího diferenciálního zesilovače μΑ709. Tento integrovaný obvod se používá i jako měřicí

Obr. 18. Kmitočtová charakteristika předzesilovače z obr. 17

zesilovač mikroampérmetrů a jiných měřicích přístrojů, stabilizovaných zdrojů apod. Podrobně bylo jeho zapojení a jeho aplikace a náhrada tuzemským výrobkem popsáno v AR 10 a 11/1969 v seriálu článků pod společným názvem Integrovaná elektronika.

Na obr. 19 je další možný způsob použití tohoto diferenciálního integrovaného zesilovače. Jde o předzesilovač, který pracuje jako zdroj budicího proudu pro koncový stupeň nf zesilovače. Kmitočtová charakteristika předzesilovače je rovná v rozmezí 1,5 Hz až 150 kHz (3 dB). Předzesilovač má velmi malé zkreslení, neboť zpětná vazba je velmi silná (55 dB na nízkých kmitočtech). Vstupní napětí kolem 200 mV vybudí koncový stupeň na výkon 10 W.

Mezní kmitočet předzesilovače závisí na kapacitě kondenzátoru C1. S uvedeným kondenzátorem (nepolarizovaný kondenzátor 500 µF) lze dosáhnout kmitočtového rozsahu uvedeného na začátku článku. Pro zesílení signálů v akustickém spektru kmitočtů je možno kondenzátor C_1 zmenšit až na 50 μ F. Zdroj signálu musí mít malý vnitřní odpor, asi do 5 k Ω , jinak je nebezpečí vzniku oscilací na vysokých kmitočtech. Diody mezi vstupy integrovaného diferenciálního obvodu vylučují možnost zahlcení vstupu z jakéhokoli důvodu. Integrovaný obvod je kmitočtově kompenzován sériovým článkem RC, 470 pF a 1,5 k Ω . Všechny odpory a kondenzátory jsou s toleranci 10%, pouze odpory R_1 , R'_1 , R_2 , R'_2 a R_3 , R'_3 mají toleranci 2 %.

Wireless World č. 1409, listopad 1969, str. 530.

Obr. 19. Předzesilovač s diferenciálním integrovaným zesilovačem µA709

Předzesilovač s pevně nastavenými korekcemi

Předzesilovač s pevně nastavenými korekcemi, jehož schéma je na obr. 20, slouží k zesilování signálů z magnetické přenosky (poloha I přepínače $P\check{r}_1$), k úpravě signálu z rozhlasového přijímače (poloha 2 přepínače $P\check{r}_1$) a k úpravě signálu piezokrystalové přenosky (poloha 3 přepínače $P\check{r}_1$).

Zapojení využívá tranzistorů s malou kolektorovou ztrátou a s velkým činitelem zesílení, AC126. Celkové zesílení je asi 20 dB. Kmitočtová charakteristika

zesilovače vykazuje v oblasti vyšších kmitočtů sklon 6 dB/oktávu (sleduje přibližně křivku R.I.I.A.). Napájecí napětí je 18 V, předzesilovač má velmi malou spotřebu, několik miliampér. Toute l'Electronique č. 315, 1968.

Tranzistorový předzesilovač s nastavitelnými korekcemi

Předzesilovač s moderními epitaxněplanárními křemíkovými tranzistory, s regulací hlasitosti a s regulací hloubek a výšek je na obr. 21. Vstupní napětí 200 mV zesílí předzesilovač na výstupní na-pětí 2 V. Zesilovač se napájí napětím 27 V a má spotřebu asi 9 mA. Regulace vysokých tónů je možná v rozmezí —14 až +15 dB (na kmitočtu 20 kHz), hluboké tóny lze regulovat v rozmezí -20 až +13 dB (na kmitočtu 20 Hz). Tranzistory lze bez změny zapojení nahradit našimi typy KC507 a KC508. Předzesilovač lze s výhodou propojit se zdrojem signálu, s napáječem a výkonovým zesilovačem pětikolíkovým konektorem, na vývod 1 konektoru se připojuje vstupní

Obr. 20. Předzesilovač pro tři zdroje signálu s pevně nastavenými korekcemi

signál, na 2 šasi, na 3 kladný pól napájecího napětí, na 4 výstupní signál a na 5 záporný pól napájecího napětí.

236 Pins

nt zesilovač

R₁₅ 5k6

Vstupní nf signál jde přes kondenzátor C_1 na potenciometr pro řízení hlasitosti s fyziologickou regulací. Je-li běžec potenciometru P_1 u zemního konce odporové dráhy (malá hlasitost), zdůrazňuje kondenzátor C_3 hluboké a kondenzátor C_2 vysoké tóny v reprodukci. Tím se vyrovnává menší vnímavost lidského ucha pro okrajové kmitočty akustického spektra při málo hlasité reprodukci. Z potenciometru hlasitosti se vede signál přes kondenzátor C_4 na vstupní tranzistor T_1 , který je zapojen jako měnič impedance. Z emitoru T_1 jde signál na články RC, které tvoří regulátory hloubek a výšek. Obvod k regulaci hloubek sestává z odporů R_7 a R_8 a z kondenzátorů C_8 a C_9 . Proměnným regulačním prvkem pro nízké kmitočty je potenciometr P_2 . Obvod k regulaci vysokých kmitočtů se skládá z kondenzátorů C_{10} a C_{11} a potenciometru P_3 .

Za obvodem k regulací hloubek a výšek následují dva zesilovací stupně s tranzistory v zapojení se společným emito-

Obr. 21. Tranzistorový nf předzesilovač s proměnnými korekcemi ($T_1 = BC109$)

rem. Jejich zesílení vyrovnává ztráty (zeslabení signálu) v korekčním obvodu. Zesílený signál se odebírá z kolektoru T_3 přes kondenzátor C_{14} k dalšímu zpracování.

Celý předzesilovač se při použití běžných miniaturních součástek vejde do pouzdra o rozměrech 90 × 50 mm.

Funk-technik č. 16/1969, str. 608.

Tranzistorový mikrofonní předzesilovač

Tranzistorový mikrofonní předzesilovač na obr. 22 má vstup jak pro připojení mikrofonu s malou impedancí, tak s velkou impedancí. Pro zmenšení šumu se jako zesilovací prvky používají tranzistory BC109 a BC107, z nichž především tranzistor BC109C má velmi malý vlastní šum.

Mikrofonní předzesilovač je dvoustupňový. K připojení mikrofonů s velkou impedancí slouží vstup A, za nímž následuje měnič impedance s tranzistorem T_1 . Mikrofony s malou impedancí se zapojují do vstupu B. Zesílení tranzistoru T_1 je menší než jedna. Vlastní zesílení obstarávají tranzistory T_2 a T_3 . Zesílení je asi 45 dB. Oba tranzistory mají přímou galvanickou vazbu. Přes odpor R_4 je zavedena stejnosměrná zpětná vazba, která stabilizuje pracovní body obou zesilujících tranzistorů. Střídavá nf napětí (po-

Obr. 22. Tranzistorový mikrofonní předzesilovač

Obr. 23. Přídavný zesilovač Tesla AZZ941 jako citlivý mikrofonní zesilovač pro dynamické mikrofony s malou impedancí

kud by se objevila ve větvi zpětné vazby) jsou svedena k zemi kondenzátorem C_4 , $100 \mu F$. Zesílené nízkofrekvenční napětí se odvádí z kolektoru tranzistoru T_3 přes kondenzátor C_5 .

Po zapojení celého předzesilovače lze jeho činnost vyzkoušet malým sinusovým napětím asi 2 mV, přivedeným na vstup A. Na výstupu se musí objevit zesílené napětí asi 350 mV.

Předzesilovač se napájí napětím 24 V, odběr proudu je asi 4 mA. Celý předzesilovač se vejde na destičku s rozměry 65 × 35 mm.

Funk-technik č. 19/1969, str. 764.

Přídavný zesilovač Tesla AZZ941 jako citlivý mikrofonní zesilovač

Přídavný zesilovač k magnetofonu B4, AZZ941, lze snadno upravit k zesilování signálu z dynamických mikrofonů s malou impedancí. Upravený zesilovač lze pak velmi dobře používat např. pro magnetofon Tesla ANP401, Uran, jako velmi citlivý mikrofonní zesilovač. Zesilovač lze však samozřejmě používat ve spojení s jakýmkoli nf zesilovačem nebo magnetofonem, který má impedanci mikrofonního vstupu maximálně 10 kΩ.

Zapojení zesilovače Tesla AZZ941 po úpravě je na obr. 23, na obr. 24 je schéma zapojení konektorů, přepínače a baterií. K napájení se hodí nejlépe baterie z pěti niklokadmiových článků. Zvětšováním

Obr. 24. Zapojení konektorů, přepínače a napájecích niklokadmiových článků pro zesilovač z obr. 23

napájecího napětí se zvětšuje i citlivost mikrofonního zesilovače. Pro signály běžné hlasitosti stačí k napájení jeden až dva články.

Výhodné je použití niklokadmiových akumulátorů i proto, že vydrží bez nabíjení až 1 000 provozních hodin.

Funkamateur č. 11/1969, str. 537.

Nf zesilovač 9 V, 2 W

Třístupňový zesilovač s přímou vazbou mezi stupni pro napájení napětím 9 V je na obr. 25.

Zesilovač má bez buzení spotřebu asi 22 mA, při vybuzení na plný výkon 330 mA. Vstupní napětí pro maximální výkon (2 W) je 11 mV. Vstupní odpor zesilovače je 35 k Ω , maximální výstupní výkon pro zkreslení 10 % je 2 W. Zatěžovací impedance je 4 Ω , kmitočtový rozsah pro 3 dB je 65 až 19 000 Hz. Výkonové zesílení je asi 87 dB, odstup cizích napětí 63 dB. Údaje jsou uváděny pro výstupní výkon 100 mW a vnitřní odpor generátoru signálu 10 k Ω .

Kombinací křemíkových tranzistorů obou typů vodivostí se při poměrné jednoduchosti dosáhlo dobrých vlastností zesilovače. Na prvním stupni zesilovače se používá tranzistor p-n-p, na druhém tranzistor n-p-n, koncová dvojice jsou doplňkové germaniové tranzistory středního výkonu. Vzhledem k tomu, že kolektorová ztráta jednoho koncového tranzistoru by měla být bez chladiče asi 0,6 W, je třeba oba tranzistory připevnit na chladič s teplotním odporem ne menším než 25 stupňů/W. Tomu odpovídá chladič z hliníkového plechu o ploše asi 20 cm². Klidový proud dvojice koncových tranzistorů se nastaví na uvedenou velikost odporovým trimrem 250 Ω . Spodní mezní kmitočet závisí kromě jiného také na kapacitě kondenzátoru C_1 . Je-li $C_1 = 100 \mu F$, je spodní mezní kmitočet 130 Hz, je-li $C_1 = 250 \mu F$, je kmitočet 65 Hz.

Teplotní stabilizaci koncových tranzistorů zajišťuje termistor 100 Ω, stabilizaci klidového proudu při změnách napájecího napětí křemíková dioda BA103. Obě závislosti (tj. závislost klidového proudu na napájecím napětí a na okolní teplotě) jsou graficky vyjádřeny na obr. 26.

Obr. 26. Závislost klidového proudu na změnách napájecího napětí a okolní teploty pro zesilovač z obr. 25

Zesilovač má do výkonu 1 W zkreslení maximálně 2 % pro signály kmitočtů 100 až 10 000 Hz, teprve nad tímto výkonem se zkreslení velmi prudce zvětšuje až na 10 % při výkonu 2 W.

Halbleiter-Schaltbeispiele. Siemens 1968.

Nf zesilovač 18 V, 8 W s plynule měnitelnými korekcemi

Zesilovač na obr. 27 se skládá ze vstupního zesilovacího stupně s tranzistorem BC149, jenž má velmi malý vlastní šum, z předzesilovače s křemíkovým tranzistorem p-n-p, BC158, korekčních obvodů a koncového stupně s doplňkovými germaniovými tranzistory AD161 a AD162.

Obr. 28. Kmitočtová charakteristika zesilovače z obr. 27

Tranzistor T_1 je zapojen běžným způsobem. Zesílený signál z jeho kolektoru se vede přes kondenzátor 5 μF na potenciometr hlasitosti a z jeho běžce na další zesilovací stupeň, za nímž následuje korekční obvod ve formě článku měnitelné záporné zpětné vazby. Potenciometrem H se nastavují hloubky, potenciometrem V výšky. Celková kmitočtová charakteristika zesilovače s korekcemi je na obr. 28. Klidový proud koncových tranzistorů je opět stabilizován proti změnám okolní teploty a napájecího napětí jednak termistorem 25 Ω, jednak křemíkovou diodou D, BA103. Základní klidový proud se nastavuje na uvedenou velikost odporovým trimrem 50 Ω. Oba koncové tranzistory jsou na chladiči s teplotním odporem větším než 10 stupňů/W (pro každý tranzistor koncové dvojice zvláštní chladič!).

Obr. 27. Nf zesilovač 18 V s výkonem 8 W a regulací barvy tónu

Obvod se napájí napětím 18 V, odběr bez vybuzení je 68 mA, při maximálním výstupním výkonu 660 mA. Vstupní napětí pro maximální výstupní výkon je 66 mV. Vstupní odpor zesilovače je 120 k Ω . Výstupní výkon je při zkreslení 10 % 8 W, při zkreslení 2 % 5 W. Zatěžovací impedance je 4 Ω .

Halbleiter-Schaltbeispiele. Siemens 1968.

Regulátor barvy tónu k tranzistorovému přijímači

Některé tranzistorové přijímače, které nemají regulaci hloubek a výšek, lze upravit obvodem na obr. 29. Jde vlastně opět v podstatě o regulovatelnou zápornou zpětnou vazbu, která upravuje zesílení nebo potlačení vysokých, popř. nízkých kmitočtů. Obsah vyšších kmitočtů v reprodukovaném signálu lze regulovat změnou nastavení potenciometru P_2 , 50 k Ω , v obvodu kondenzátorů C_3 , C_7 a C_6 . Do obvodu regulace vyšších kmitočtů patří i odpor R_5 . Tóny nízkých kmitočtů v reprodukci se regulují potenciometrem P_1 , 50 k Ω , v obvodu kondenzátorů C_4 , C_5 a odporu R_3 . V pravých krajních polohách obou potenciometrů je záporná zpětná vazba pro oba okrajové kmitočty akustického pásma největší a tedy v této poloze běžců potenciometrů je potlačení jak horních tak dolních krajních kmitočtů největší.

IEEE transactions on BTR, č. 3/1967.

Obr. 29. Regulace barvy tónu, vhodná pro přijímače. Jako tranzistor lze použít libovolný typ s malou kolektorovou ztrátou (např. z řady NU70)

Obr. 30. Dvojitý článek T jako filtr

Aktivní pásmová propust

Na obr. 30 je dvojitý článek T jako pásmová propust. Zapojí-li se takový článek do obvodu záporné zpětné vazby v zesilovači, můžeme regulovat odporem R/2 propustné pásmo propusti (filtru). Výhodné je zapojení podle obr. 31, kdy přidané tranzistory vyrovnávají útlum filtru. Tranzistory T_1 a T_2 tvoří emitorově vázaný pár. Tranzistor T2 má v kolektoru velký odpor k získání velkého zesílení. Toto zapojení má však jednu nevýhodu - obvod má velmi velkou výstupní impedanci. To vyžaduje použít další tranzistor, T₃, který pracuje jako emitorový sledovač a transformuje velkou vstupní impedanci na malou impedanci výstupní. Aktivní pásmová propust (filtr) na obr. 31 má výkonový zisk asi 30 dB. Větší vstupní signál než 30 mV přivede tranzistor T_2 do stavu nasycení.

Obr. 31. Aktivní filtr s dvojitým článkem T podle obr. 30

Na to je třeba brát zřetel při měření a použití filtru.

Dvojitý článek T se součástkami jako na obr. 30 lze použít jako pásmovou propust v oblasti kmitočtů 800 až 20 000 Hz. Střední kmitočet propusti je dán vztahem $f_0 = 1/2\pi 8RC$.

Radio-Electronics č. 10/1969.

Třípásmová elektronická "výhybka"

Základní elektronický filtr se směrnicí 12 dB/oktávu je na obr. 32a. Obvod je navržen tak, aby měl na výstupu signál stejné úrovně jako na vstupu. Součástky jsou vybrány tak, aby při napájení stejnosměrným napětím a při použití tranzistorů se zesilovacím činitelem asi 100 byl skutečný vstupní i výstupní signál stejně velký. Vstupní a výstupní obvod (první a třetí tranzistor) jsou zapojeny jako emitorové sledovače. Vzhledem k tomu, že emitorové sledovače mají zesílení asi jedna a prostřední stupeň zesílení čtyři, je zavedena zpětná vazba z emitoru třetího na bázi prvního tranzistoru. Vazba zmenšuje zesílení vstupního napětí čtyřikrát, čímž jednak zlepšuje přenosové vlastnosti "výhybky" a jednak způsobuje, že vstupní napětí je stejné jako výstupní.

Přitom lze snadno z původního zapojení pouze změnou několika součástek udělat dolní, horní nebo pásmovou propust s dělicími kmitočty podle libovolných požadavků. Tak na obr. 32b je kombinace horní propust – dolní propust s dělicím kmitočtem 600 Hz. Na obr. 32c je pásmová propust 500 až 2 000 Hz. V tabulce jsou přehledně uvedeny kapacity kondenzátorů pro případ, kdybychom chtěli volit jiné dělicí kmitočty než 600 Hz.

V obvodu se mohou použít libovolné nf tranzistory vodivosti p-n-p. Při použití tranzistorů n-p-n je třeba změnit polaritu všech elektrolytických kondenzátorů a napájecího napětí. Dolní propust tohoto typu může např. zastávat úlohu tzv. rumble filtru, tj. filtru, který se používá v nf zesilovačích pro potlačení hluku nízkých kmitočtů (např. dunění při přehrávce gramofonových desek, in-

Obr. 32. a) základní filtr se směrnicí 12 dB/ /oktávu; b) dolní a horní pásmová propust ze základního filtru; c) změnou několika součástek lze z původního zapojení vytvořit např. pásmovou propust 500 až 2 000 Hz

dukovaná napětí odvozená z napětí sítě

apod.).

Napájení uvedených obvodů je velmi jednoduché – napájecí napětí je 12 V a při malém odběru proudu (21,5 mA) není problémem ani filtrace napájecího napětí (při usměrňování ze síťového zdroje). Autor použil tyto tři popsané filtry, pásmovou propust, dolní propust a horní propust k napájení tří reproduktorů reproduktorové soustavy – výškového, hloubkového a středotónového k jakostní reprodukci hudby.

Radio-Electronics č. 10/1969, str. 42.

Dělicí kmitočet [Hz]	Kapacita kondenzátorů v [μF] pro	
	dolní propust	horní propust
30	16	1,6
30	10,5	1,05
40	8	0,8
50	6,3	0,63
60	5,3	0,53
80	4	0,4
100	3,2	0,32
150	2,1	- 0,21
200	1,6	0,16
300	1,05	0,105
400	0,8	0,08
500	0,63	0,063
600	0,53	0,053
800	0,4	0,04
1 000	0,32	0,032
1 500	0,21	0,021
2 000	0,16	0,016
2 500	0,13	0,013
3 000	0,105	0,0105
4 000	0,08	0,008
5 000	0,063	0,0063
6 000	0,053	0,0053
8 000	0,04	0,004
10 000	0,032	0,0032
12 000	0,027	0,0027
15 000	0,021	0,0021
20 000	0,016	0,0016

Zlepšení jakosti reprodukce malých tranzistorových přijímačů

Většina malých kapesních tranzistorových přijímačů má velmi špatnou reprodukci – to je pochopitelně dáno především reproduktorem malých rozměrů. Malý reproduktor není však jedinou příčinou špatné reprodukce. Autor článku měřením např. zjistil, že jsou často nastaveny špatně pracovní body tranzistorů a případně i klidový proud koncové dvojice, což má za následek zkreslení reprodukce zvláště při malých hlasitostech. Při hlasité reprodukci jsou zkresleny především hluboké tóny, což vyplývá z fyzikálních vlastností přijímače a reproduktoru.

První úpravou, kterou autor udělal pro zlepšení reprodukce, bylo zvětšení klido-

Obr. 33. Úprava nf zesilovače běžných tranzistorových přijímačů k zlepšení jakosti reprodukce: a) původní zapojení, b) zapojení po úpravě

vého proudu dvojice koncových tranzistorů; již touto jednoduchou úpravou (zmenšení emitorového odporu paralelním připojením dalšího odporu vhodné velikosti) se reprodukce poněkud zlepšila především při malých hlasitostech reprodukce. Pro další úpravu přijímače použil ještě kladnou a zápornou zpětnou vazbu.

Záporná zpětná vazba, odvozená z napětí na reproduktoru a přivedená na vstup nf zesilovače (obr. 33b), výrazně zlepšuje reprodukci přijímače (i když za cenu menšího zisku nf zesilovače). K vyrovnání zesílení nf zesilovače před a po úpravě se používá další zpětná vazba, tentokrát kladná, a to ze sekundárního vinutí budicího transformátoru. Vhodnou volbou odporů na koncích potenciometru hlasitosti lze nastavit takové zesílení nf zesilovače, jaké měl před úpravou. Kladná zpětná vazba se používá i proto, že by bez ní mohlo dojít k nestabilitě zesilovače na velmi nízkých a velmi vysokých kmitočtech, na nichž je fázový posuv celého zesilovače bez zpětné vazby 180°.

Wireless World č. 1402, duben 1969, str. 175.

Obr. 34. Jednoduché a účinné vibráto. Vibrátový jev se získává oscilátorem s dvojitým článkem T, jehož signál moduluje vstupní signál odebíraný z elektrody S. Vstupní a výstupní impedance jsou velmi velké

Tranzistorové vibráto

Na obr. 34 je velmi jednoduché vibráto se dvěma tranzistory. Použití tranzistoru FET s vodivým kanálem typu n zaručuje velký vstupní odpor vibráta; velký vstupní odpor umožňuje připojit na vstup nejen kytarové snímače, ale i např. běžné mikrofony s velkou impedancí, kromě toho lze vibráto používat i v obvodech elektrofonických varhan a jiných elektronických nástrojů.

Vibráto má zisk asi 6 až 8 dB, takže stačí vybudit většinu výkonových zesilovačů a nepotřebuje žádné další dodatkové předzesilovače.

Tranzistor T_1 je zapojen jako oscilátor, jehož kmitočet je dán hodnotami součástek dvojitého článku T v obvodu kolektoru a báze. Se součástkami podle obr. 34 osciluje tranzistor na kmitočtu 6 Hz a jeho signál má sinusový průběh. Signál o kmitočtu 6 Hz se pak z tranzistoru T_1 vede na elektrodu S tranzistoru T_2 , kde amplitudově moduluje vstupní signál. Amplitudu modulace lze měnit ve značném rozmezí proměnným odporem R_A (hloubka modulace). Kmitočet vibráta lze v malých mezích řídit proměnným odporem R_{11} , popř. je možné vibráto vůbec vypnout spínačem S_1 a zařízení používat jako běžný předzesilovač.

Při uvádění do chodu je výhodné nastavit oba proměnné odpory asi do poloviny jejich dráhy a zkoušet zprvu činnost vibráta jen na jednoduchých tónech. Při dalším nastavování je pak možné změnou proměnných odporů nastavit takovou hloubku modulace a takový kmitočet vibráta, jaký nám vyhovuje.

Napájecí napětí pro vibráto je 27 V. Lze ho snadno získat ze tří malých devítivoltových baterií, spojených v sérii. Baterie mají dlouhou dobu života, neboť odběr proudu je velmi malý.

Radio-Electronics č. 4/1969, str. 45.

Stereofonní zesilovač pro sluchátka

Na obr. 35 je zapojení jednoho kanálu stereofonního zesilovače pro sluchátka. Zesilovač je konstruován tak, že slouží i jako zdroj stereofonního signálu vhodné

úrovně pro nahrávání na magnetofon, popř. jako budicí zesilovač pro výkonové zesilovače. Každý kanál zesilovače se skládá ze vstupního zesilovacího tranzistoru, za nímž následují dva další zesilovací obvody se dvěma tranzistory a na výstupu je měnič impedance – emitorový sledovač.

Tranzistor T_1 je zapojen běžně, za ním následuje regulátor hlasitosti P a první zesilovací obvod s tranzistory T_2 a T_3 . Oba tranzistory jsou galvanicky spojené a jejich pracovní bod se nastavuje volbou odporů R, a R₈. V obvodě je zavedena zpětná vazba odporem R_{11} a kondenzátorem C_6 , která zmenšuje zkreslení a stabilizuje zesílení obvodu. Zpétná vazba je volena tak, aby vyrovnávala kmitočtové zesílení stupně podle křivky, inverzní k nahrávací charakteristice R.I.A.A. Clánek R_{11} , C_6 zdůrazňuje nízké kmitočty v oblasti 20 Hz až 1 kHz. Další úpravu vstupního signálu v oblasti vysokých kmitočtů obstarává zpětnovazební kondenzátor druhého zesilovacího obvodu (tranzistory T_4 a T_5). Tento kondenzátor, C_s, potlačuje vysoké kmitočty od 1 000 Hz. Vzhledem ke správné přenosové charakteristice je třeba, aby oba zpětnovazební kondenzátory, C_6 a C_8 , měly pokud možno přesně takovou kapacitu, jaká je uvedena na obr. 35.

Výstupní obvod, emitorový sledovač, umožňuje přímé připojení sluchátek k ze-

silovači s malou impedancí. Oddělovací kondenzátor C_{10} určuje spodní mezní přenášený kmitočet. Má-li kapacitu podle obrázku, je spodní přenášený kmitočet asi 25 Hz (—3 dB vzhledem ke kmitočtu 1 000 Hz).

* Zesilovač pro sluchátka lze používat ve spojení s jakoukoli magnetickou přenoskou a jakýmikoli sluchátky s malou impedancí. Maximální nezkreslený signál na výstupu je 0,8 V. Minimální výstupní napětí z přenosky je (pro plné vybuzení) asi 1,5 mV.

Při uvádění do chodu má být na kolektoru T_3 napětí 1,5 V (měřeno přístrojem s vnitřním odporem 20 000 Ω /V). Toho se dosáh je případnou změnou odporu R_7 , který volíme podle potřeby v rozmezí 180 až 330 k Ω . Na emitoru T_6 má být napětí maximálně 0,9 V. Napětí ize nastavit změnou odporu R_{14} . Uvedené údaje platí samozřejmě pro původní tranzistory, 2N1308 a 2N1309, což jsou levné germaniové tranzistory pro univerzální použití.

Napájecí napětí pro zesilovač je 3 V. Výstup přes C_9 a R_{21} slouží k napájení výkonového zesilovače nebo k nahrávání na magnetofon. Zesilovač lze použít i pro zesílení signálů z tuneru FM; v tom případě připojíme výstup z tuneru přes paralelní kombinaci R_5C_4 , 2,2 nF a 0,33 M Ω v sérii s kondenzátorem C_{11} , 0,1 μ F, do bodu X (na horní konec potenciometru

hlasitosti). Celkový odběr proudu z baterie je maximálně kolem 100 mA pro celý stereofonní zesilovač.

Radio-Electronics č. 3/1966, str. 59.

Nastavení šířky stereofonního vjemu

Často je třeba při reprodukci desek zvětšit nebo zmenšit prostor stereofonního vjemu, a to především tehdy, je-li vlivem přeslechů nebo nedokonalé nahrávky stereofonní vjem omezen na malý poslechový prostor. Lineární kontroly a nastavení stereofonního vjemu lze dosáhnout zařízením na obr. 36. Jestliže označíme šířku běžného stereofonního vjemu za 100 %, lze popsaným zařízením měnit stereofonní vjem v rozmezí 0 až 165 %, přičemž 0 % odpovídá monofonní reprodukci.

Zařízení na obr. 36 pracuje se vstupním signálem 250 mV a s jednotkovým ziskem. Vstup je navržen pro možnost přebuzení až 18 dB (obvod omezuje až při úrovni vstupního signálu 1,75 V). Tranzistory T_3 a T_4 umožňují oddělit stejnosměrnou a střídavou zátěž kolektorů tranzistorů T_1 a T_2 . K dosažení malé výstupní impedance pracují tranzistory T_3 a T_4 jako emitorové sledovače. Pracovními odpory tranzistorů T_1 a T_2 jsou vlastně odpory R_8 a R_{11} , zapojené para-

lelně s împedancí zátěže a "násobené" zesilovacím činitelem $h_{21\rm E}$ tranzistorů T_3 a T_4 . Jejich nejvhodnější velikost je tedy asi 30 k Ω , mnohem větší než R_7 , R_6 , R_{14} a R_{13} .

Pro provoz zařízení platí jedna podmínka – zdroj vstupního signálu musí mít malou impedanci, aby se teoretické výsledky rovnaly praktickým. Pro určení optimální vstupní impedance platí vztah

$$R_{\rm E} = \frac{R_{\rm z}}{h_{\rm atE}},$$

kde $R_{\rm E}$ je velikost emitorového odporu a $R_{\rm z}$ vnitřní odpor zdroje signálu. Přes celé zapojení je zavedena záporná zpětná vazba (přes odpory R_1 , R_{17}) ke stabilizaci pracovních podmínek. Obě větve této zpětné vazby mají společný kondenzátor C_5 (decoupling capacitor), což vylučuje vznik driftu v jedné z větví zpětné vazby.

Závislost zesílení na kmitočtu je rovná v mezích ±0,5 % pro signály kmitočtů 15 až 50 000 Hz. Minimální vstupní impedance k dosažení maximálního výstupního výkonu je 750 O

ního výkonu je 750 Ω .

V zapojení byly použity tranzistory 2N930 se zesilovacím činitelem průměrně kolem 400. Lze je beze změny v zapojení nahradit tranzistory BC109 (popř. našimi typy KC509).

Wireless World č. 1410, prosinec 1969, str. 579.

Obr. 36. Zapojení k řízení šířky stereofonního vjemu

napětí v závorkách měřena při záznamu, bez závorek při reprodukci

Magnetofon Grundig C200

V poslední době jsem měl možnost slyšet a porovnat reprodukci několika kazetových magnetofonů předních světových výrobců. Jakostí reprodukce, pěkným provedením a snadnou a vtipně řešenou obsluhou mě zaujal především magnetofon Grundig C200 (obr. 37).

Kazetové magnetofony, používající jako záznamový materiál pásek o šířce 3,81 mm, prakticky ovládly v poslední době trh v oblasti přenosných magnetofonů. Důvodem je jednak neobyčejně

Obr. 37. Schéma zapojení kazetového magnetofonu Grundig C200

 $R_{K}^{\frac{2}{70}} \cdot 27$

jednoduchá obsluha těchto přístrojů, jednak možnost použití slabších motorků (oproti typům s běžnými cívkami) a z toho vyplývající úspora napájecí energie. Se stejnými zdroji mají kazetové magnetofony oproti klasickým cívkovým přístrojům podstatně delší hrací dobu pro jednu náplň baterií. Naopak je však nutno připomenout, že kazetové přístroje v žádným případě nemohou soutěžit s cívkovými v oblasti reprodukce Hi-Fi, neboť použitá rychlost posuvu pásku (4,75 cm/s) nedovoluje záznam kmitočtů nad 10 kHz. Též sama podstata kazetového uspořádání neumožňuje takové provedení dráhy pásku, aby byla za všech okolností dodržena přesná kolmost roviny pásku ke štěrbině hlavy. Výsledkem je proto určitá nestabilita přenosové charakteristiky právě v oblasti nejvyšších kmitočtů. Se stávajícím typem používaných kazet se tuto otázku doposud nepodařilo vyřešit žádnému světovému výrobci. Přesto však je mezi sortimentem těchto přístrojů mnoho velmi jakostních kazetových magnetofonů, jejichž reprodukci lze (i při uvedených nedostatcích) označit za velmi dobrou (pro běžného posluchače). Jedním z nich je i magnetofon, vyráběný firmou GRUNDIG a označený jako C200 (obr. 38).

Jde o přenosný kufříkový přístroj o velikosti $25 \times 15 \times 7$ cm, celkové váhy (bez baterií) asi 2 kg. Magnetofon je napájen pěti malými monočlánky, a pokud se používají kvalitní baterie, vydrží v provozu více než 8 hodin s jednou sadou baterií. Přístroj lze doplnit síťovým napáječem

Obr. 38. Magnetofon Grundig C200

typu TN12, jehož připojením se automaticky odpojí vestavěný zdroj. Výměna baterií je vyřešena velmi jednoduše odejmutím zadní stěny bez nutnosti použití jakéhokoli nástroje.

K pohonu magnetofonu se používá komutátorový motorek, opatřený dnes nejrozšířenější dvoutranzistorovou regulací. Mechanika magnetofonu je poměrně jednoduchá, přístroj se ovládá jediným knoflíkem a vyznačuje se velmi dobrou provozní spolehlivostí. Zcela shodnou mechaniku používá proto firma Grundig u celé řady svých kazetových magnetofonů. Jako koncový zesilovač se používá doplňková dvojice tranzistorů AC187K a AC188K, která dává nf výkon 0,8 W. Vzhledem k tomu, že je v přístroji použit velmi dobrý reproduktor i vzhledem k výborným akustickým vlastnostem uspořádání skříně, je jakost i hlasitost reprodukce (přímo z magnetofonu) vynikající.

Zapojení magnetofonu se zásadně neliší od běžně užívaných způsobů, za zmínku stojí pouze velmi jednoduše vyřešené automatické odpojení napájení motorku na konci pásku mechanickým vypínačem, umístěným v dráze pásku. Magnetofon je dále opatřen dálkovým ovládáním chodu přímo z tělesa mikrofonu, který je dodáván jako zvláštní příslušenství k přístroji. Jeho typové označení je GDM305.

Magnetofon typu C200 je dodáván ve dvou variantách, jednak jako C200L s ručním ovládáním záznamové úrovně (ručkový profilový indikátor) bez možnosti hlasitého kontrolního příposlechu při záznamu, jednak jako varianta C200A s automatickou regulací záznamové úrovně a s možností hlasitého příposlechu při záznamu. Obě varianty mají své přednosti i nedostatky. V prvém případě je možno libovolně ovlivňovat záznamovou úroveň, signál kupř. kdykoli stáhnout, avšak během záznamu nemáme indikaci napětí baterií, neboť indikátor je přepnut do funkce ukazatele záznamové úrovně. V druhé variantě ukazatel indikuje napětí zdrojů i při záznamu, není však možno v žádném případě ovlivnit záznamovou úroveň, kdyby to bylo zapotřebí.

Obě varianty magnetofonu používají kazety typu CC a jsou pro ně doporučo-

vány jako nejvhodnější kazety CC60. Nevylučuje se ovšem možnost použití kazet CC90 nebo dokonce CC120, které umožňují o 50, popř. 100 % delší hrací dobu, nedostatky ve vedení pásku se však u nich projevují podstatněji, než u kazet CC60.

Na závěr zbývá pouze dodat, že kromě další varianty C201FM, což je v podstatě typ C200A, spojený s přijímačem pro kmitočtově modulované rozhlasové pásmo VKV, se v této výrobní řadě dodává ještě typ AC220. Tento typ je odvozen od typu C200A, nemá však koncový nf stupeň, neboť je určen pro provoz v automobilu ve spojení s vozovým rozhlasovým přijímačem a jeho reproduktorem.

Přijímací technika

Reflexní přijímač se třemi tranzistory

Na obr. 39 je zapojení velmi jednoduchého reflexního přijímače se třemi tranzistory.

Vf signál z feritové antény L_1 (nebo z vnější drátové antény, připojené přes kondenzátor s malou kapacitou) jde přes

Obr. 39. Reflexní přijímač se třemi tranzistory (OC1075 = OC75)

vazební cívku L_2 na bázi prvního tranzistoru, zapojeného s uzemněným emitorem. Pracovním odporem tohoto tranzistoru (pro zesilování střídavého vf napětí) je primární vinutí neladěného vf transformátoru. Sekundární vinutí tohoto transformátoru je připojeno k detekčnímu obvodu, jehož zatěžovacím odporem je potenciometr hlasitosti P. Z běžce potenciometru hlasitosti jde nf signál po detekci přes oddělovací kondenzátor C_4 znovu na vstup prvního tranzistoru. Při zesilování signálu nízkofrekvenčních kmitočtů je tranzistor OC170 zapojen tak, že jako jeho pracovní odpor slouží tranzistor T_2 v zapojení se společným kolektorem. To umožňuje kromě zesílení nf signálu i dobré navázání vstupního tranzistoru na další zesilovací stupeň, neboť obvod má v tom případě malý výstupní odpor. Koncový stupeň přijímače je opět s tranzistorem v zapojení se společným emitorem. Koncový tranzistor je s předchozím stupněm vázán galvanicky (přímá vazba) a má jako zatěžovací odpor vinutí autotransformátoru, z jehož odbočky se napájí reproduktor.

Anténní cívka feritové antény má 90 závitů vf lanka 10×0.05 mm. Sekundární vinutí feritové antény (vazební) má 7 závitů drátu o Ø 0.3 mm CuL. Feritová tyčka má délku 110 mm. Vf neladěný transformátor je ve feritovém hrníčku o Ø 10 mm. Primární vinutí má 120 závitů a sekundární 80 závitů drátu

o Ø 0,2 mm CuL. Autotransformátor je na jádru o průřezu 0,5 cm² (střední sloupek). Autotransformátor má celkem 460 závitů, z nichž 400 je navinuto drátem o Ø 0,1 mm CuL a zbývajících 60 závitů (k nimž se připojuje reproduktor) je z drátu o Ø 0,4 mm CuL.

Statický proudový zesilovací činitel β tranzistorů T_1 a T_2 byl 65 až 100, tranzistoru T_3 asi 130. Citlivost přijímače lze zvětšit zavedením řiditelné kladné zpětné vazby sériovým článkem RC (kondenzátor – trimr 3 až 15 pF, odpor 2,2 k Ω), jenž se zapojí mezi kolektor tranzistoru T_1 a horní konec ladicího kondenzátoru (ten má kapacitu 4 až 220 pF).

Rádiótechnika č. 1/1969.

Miniaturní reflexní přijímač se třemi tranzistory

Použijí-li se pro přijímač na obr. 40 miniaturní součásti, lze z něho udělat skutečně miniaturní přijímač "do kapsičky".

Tranzistor T_1 přijímače se využívá dvakrát – jednou pracuje jako vf zesilovač a podruhé jako nf předzesilovač. Potenciometr hlasitosti P je třeba vybrat tak, aby měl vstupní tranzistor největší zesílení (je přes něj napájen kolektor tranzistoru T_1). Kladnou zpětnou vazbu, zlepšující selektivitu a zvětšující zesílení přijímače lze nastavit proměnným kondenzá-

Obr. 40. Miniaturní přijímač v reflexním zapojení se třemi tranzistory

Obr. 41. Jednoduchý přijímač s pěti tranzistory

torem C_4 (4 až 30 pF). Pracovním kolektorovým odporem prvního tranzistoru pro vysoké kmitočty je vf tlumivka L_2 . Signál po detekci na diodách D_1 a D_2 se znovu zavádí na bázi prvního tranzistoru, který pracuje tentokrát jako nf zesilovač. Pracovním odporem tranzistoru T_1 jako nf zesilovače je odpor R_3 (pro signál nf kmitočtů má tlumivka L_2 zanedbatelně malý odpor). Nf signál jde potom na dvoustupňový nf zesilovač s tranzistory T_2 a T_3 .

Tranzistor T_1 musí mít co největší proudový zesilovací činitel. Tranzistory T_2 a T_3 mohou být libovolné nf tranzistory bez zvláštních nároků na jakost.

Anténní cívka je na feritové tyčce délky 45 mm; L_1 má 64 závitů drátu o \varnothing 0,15 až 0,1 mm CuL s odbočkou na 12. závitu. Vf tlumivka je navinuta ve feritovém hrníčku o \varnothing 10 mm a má 100 až 200 závitů drátu o \varnothing 0,1 mm CuL. Diody jsou libovolné detekční diody (např. GA201).

Practical Wireless č. 12/1969.

Jednoduchý přijímač

Přijímač pro příjem signálů tří různých vysílačů je na obr. 41. Zapojení je velmi jednoduché, pouze je třeba při konstrukci používat (a to především ve vf zesilovači) tranzistory a s co největším proudovým zesilovacím činitelem. Jako detektor slouží v tomto přijímači tranzistor, jehož činnost je obdobná činnosti detektoru s elektronkou a mřížkovým svodem. Odpor R_1

slouží jednak k nastavení předpětí T. blízko stavu otevření, jednak se jím zavádí zpětná vazba 10 dB. Klidový proud přijímače je 10 až 15 mA, při střední hlasitosti reprodukce se proud zvětší asi na 25 mA.

Wireless World č. 1/1967.

Středovlnný přijímač s křemíkovými tranzistory

Křemíkové tranzistory mají mnoho výhod, proto se v zahraničí konstruují přijímače vyšších cenových skupin dnes již výhradně s nimi. Příkladem takového přijímače je zapojení na obr. 42.

Přijímač má na vstupu feritovou anténu, z níž jde signál na směšovací tranzistor, který směšuje signál oscilátoru a vstupní signál na signál mezifrekvenčního kmitočtu. Oscilátor pracuje v zapojení se společnou bází s proudem emitoru 1 mA. Proti změnám napájecího napětí je pracovní bod tranzistoru oscilátoru stabilizován selenovým článkem. Tím se dosáhlo toho, že oscilátor pracuje uspokojivě ještě při polovičním napájecím napětí. Paralelně k ladicímu kondenzátoru oscilátoru je zapojen odpor R_1 , 330 k Ω . To má za následek, že amplituda kmitů oscilátoru je přes celý ladicí rozsah téměř konstantní. Signál oscilátoru se vede přes kondenzátor C_1 na směšovač. Optimálního poměru mezi zesílením směšovače a odstupem signál/šum se dosáhlo při napětí oscilátorového signálu 110 mV.

3

Ž I

ļş

vují odporovým trimrem \hat{R}_2 , 100 k Ω . Přijímač se napájí napětím 9 V, odběr proudu (bez AVC) je asi 6,5 mA. Vstupní napětí na bázi směšovacího tranzistoru pro dosažení odstupu signál/šum 26 dB (na kmitočtu 1 MHz) je 17 μ V, tomu odpovídá síla pole asi 370 μ V/m. Nf napětí na zatěžovacím odporu 6,8 k Ω je při vstupním napětí 17 μ V asi 40 mV. Vstupní napětí, při němž začíná omezo-

vat nf zesilovač, je 200 mV.

Feritová anténa je na feritové tyčce B61610-J1011-X025 a má 50 závitů vf lanka 10×0.05 mm, indukčnost tohoto ladicího obvodu je 240 μ H. Vazební vinutí má 5 závitů stejným vodičem. Cívka oscilátoru má tyto počty závitů: Vinutí $L_2 - 16$ z drátu o \varnothing 0,1 mm CuL, vinutí

 L_4 – 125 závitů vf lanka 8 × 0,05 mm (indukčnost je 150 μ H), L_5 – 2,5 závitů drátu o \varnothing 0,16 mm CuL a vinutí L_6 – 2 závity stejného drátu.

Mf transformátory jsou výrobky Siemens, typ B92 154 a B92 153, poslední mf transformátor je typu B92 155.

Zvláštností přijímače je i odlaďovač mf kmitočtu v bázi prvního tranzistoru (kondenzátor 150 pF a cívka).

Halbleiter-Schaltbeispiele. Siemens 1968.

Tranzistořový superhet pro příjem středních a krátkých vln

Přijímač moderní koncepce a s dobrými vlastnostmi je na obr. 43. Přijímač lze téměř bez úprav sestavit z našich tranzistorů a jediná součást, která není na našem trhu – piezokeramický filtr – je běžně k dostání např. v radioamatérské prodejně v Drážďanech nebo v Berlíně. Piezokeramické filtry lze ovšem nahradit našimi elektromechanickými filtry – koncepce zapojení přitom zůstane stejná.

Celé zapojení přijímače lze rozdělit na tři základní díly – nf zesilovač, mf zesilovač a vf díl se směšovačem.

Nf zesilovač je osazen běžnými germaniovými tranzistory (u nás velmi často publikované zapojení beztransformátorového zesilovače s doplňkovými tranzistory). První tranzistor nf zesilovače T_4 by měl být vybrán s ohledem na co nejmenší šum (pravděpodobně by bylo nejlepší použít křemíkový tranzistor KC509). Za tímto tranzistorem je jednoduchá tónová clona (25 k Ω a elektrolyt 20 μ F). Následující tranzistory T_5 a T_6 jednak vyrovnávají ztráty signálu v obvodu tónové clony a jednak slouží jako budicí zesilovač (T₆) pro koncový nf zesilovač doplňkovými tranzistory. Koncové tranzistory jsou zapojeny ve třídě B, jejich klidový proud je asi 4,6 mA, proud při plném vybuzení je až 90 mA. Výstupní výkon nf zesilovače je asi 1 W.

Mf zesilovač je konstruován s piezokeramickými filtry typu SPF, první má označení SPF 455-A6 (modrá tečka) a druhý SPF 455-9 (červená tečka). Oba filtry jsou výrobky NDR. Použitím filtrů je dán i mf kmitočet – 455 kHz a odpadá pracné nastavování a ladění mf zesilova-

če. Při uvádění do chodu je třeba nastavit pouze vstupní obvod prvního filtru; zabrání se tím rozkmitání filtru na vedlejších rezonančních kmitočtech (parazitní rezonance). Podrobně je tento typ mf filtru popsán např. v časopisu Funkamateur č. 1/1967 a v č. 3/1968. Dioda D_1 je zapojena jako tlumicí dioda prvního mf zesilovacího stupně. Jako detekční obvod slouží tzv. počítačový diskriminátor, který byl i v naší literatuře několikrát popsán a zde se používá v poněkud upraveném zapojení jako zdvojovač napětí. Z detekčního obvodu je zavedena i zpětná vazba (AVC), která upravuje zesílení mf zesilovače podle síly signálu. Je-li signál velmi silný, přivírá napětí AVC oba mf zesilovače a tím zmenšuje celkové zesílení.

Vstupní tranzistor přijímače je zapojen jako kmitající směšovač. Celý vstupní díl přijímače je zkonstruován na tlačítkové soupravě a umožňuje příjem středních vln a krátkých vln v pásmu 49 a 41 m. Pro náročnější použití (např. pro auta) by bylo pravděpodobně výhodnější postavit vstupní díl klasickým způsobem – použít zvláštní tranzistory pro oscilátor a pro směšovač. Mf díl při pečlivé konstrukci má tak dobré vlastnosti, že by stálo za to postavit k němu i odpovídající vstupní obvody.

Signál z feritové antény jde na bázi tranzistoru – kmitajícího směšovače (při příjmu středních vln). Při příjmu krátkých vln je možné použít vstupní cívku na feritové anténě, popř. lze signál přijímat na teleskopickou nebo drátovou anténu.

Cívky v přijímači jsou z výprodeje součástek k přijímači T100 (podrobný popis přijímače byl v časopisu Radio und Fernsehen, č. 4 roku 1962).

Funkamateur č. 8/1969, str. 376.

Jakostní konvertor pro UKV

Konvertor na obr. 44a slouží k příjmu televizních signálů ve IV. a V. televizním pásmu a jejich převedení na signál, který lze přijímat na 2., a 3. nebo 4. kanálu prvního televizního pásma. Pro použití konvertoru uvádí autor několik možností

Obr. 43. Tranzistorový superhet pro příjem středních a krátkých vln s piezokeramickými filtry

(T_s je typu GF122; u T_s má směřovat šipka na emitoru opačným směrem — tranzistor je n-p-n)

- jako nejvýhodnější však doporučuje montáž konvertoru přímo u antény, neboť především při dlouhém svodu od antény k přijímači jsou na nižším výstupním kmitočtu konvertoru podstatně menší ztráty oproti ztrátám na vysokých vstupních kmitočtech IV. a V. televizního pásma. Konvertor lze pak napájet ze sítě i z baterií a jako napájecí vodiče použít anténní svod s patřičnými výhybkami (jako např. u anténního zesilovače Tesla, který byl publikován v AR 1/68).

Použije-li se pro svod od antény dvoulinka, připojíme ji k oběma koncům cívky L_{12} ; scuosý kabel se připojí opletením na kostru konvertoru a středním vodičem na spodní konec cívky L_{12} .

Zapojení vstupního tranzistoru je velmi

Obr. 44. Konvertor pro příjem signálů ve IV. a V. televizním pásmu

Obr. 44b. Výstupní obvod pro vývod souosým kabelem

Obr. 44c. Konstrukce cívky L₁₂

odolné proti křížové modulaci. Tranzistor má pevně nastavenou indukční vazbu se vstupním laděným obvodem (tvoří ji přívodní drát z emitoru T_1 k průchodkovému kondenzátoru C_3). Tranzistor zesílí vstupní signál a zesílený signál jde přes pásmovou propust na kmitající směšovač T_2 (jako vazební vinutí slouží opět přívodní drát z emitoru T₂ k průchodkovému kondenzátoru C_{11}). K lepší činnosti oscilátoru je emitor tranzistoru T_2 spojen s pouzdrem tranzistoru (tzn. nemá jako tranzistor T₁ pouzdro spojeno se šasi konvertoru). Báze obou tranzistorů konvertoru jsou co pejkratší cestou připojeny na šasi konvertoru přes kondenzátory C_6 a C_7 . Co nejkratší musí být též spojení kondenzátoru C_5 s kolektorem T_2 a kapacitním trimrem C_4 obvodu oscilátoru.

Průchodkový kondenzátor C_8 lze v nouzi zhotovit z běžného trubičkového kondenzátoru. Ohřeje-li se vnější přívod kondenzátoru páječkou, lze ho opatrně odmotat a na stejném místě zapájet kondenzátor do stěny konvertoru. Na vnitřní přívod kondenzátoru lze pak připájet neizolovaný vodič a protáhnout jej trubičkou kondenzátoru. Výstupní transformátor L_2 , L'_2 je na kostřičce o \varnothing 5 až 6 mm s feritovým jádrem a vývody cívky L'_2 jsou z konvertoru vyvedeny přes keramické průchodky. Výstupní impedance

je 240 Ω . Pro vývod souosým kabelem je výstupní obvod uspořádán tak (obr. 44b), že výstupní signál jde z kondenzátoru C_8 na přidanou cívku L_4 a z jejího konce přes průchodkový kondenzátor 8 pF na střední vodič souosého kabelu. V místě spojení kondenzátoru C_8 a cívky L_4 je zapojena ještě laditelná cívka L_{2a} , která je svým druhým koncem "uzemněna" na šasi konvertoru přes kondenzátoru 32 pF. V místě spojení kondenzátoru 32 pF a cívky L_{2a} je připojena ještě další cívka L_3 , která je svým druhým koncem spojena se šasi konvertoru. (Údaje všech cívek jsou uvedeny na konci článku). Opletení

výstupního souosého kabelu je připojeno k šasi konvertoru.

Přesné konstrukční údaje ke stavbě konvertoru jsou na obr. 45, rozměry jednotlivých přepážek konvertoru na obr. 46.

Vstupní cívka L_{12} je na jádru z mosazného plechu tloušťky 0,5 mm o rozměrech 30×17 mm, který je stočen do válce (tvoří trubičku, obr. 44c). Cívky laděných obvodů (u kondenzátorů C_1 , C_2 , C_3 a C_4) jsou zhotoveny z trubiček náplní kuličkových per, pečlivě vyčištěných lihem. Šasi konvertoru je výhodné udělat z tlustého plechu, aby se během různých prací nebo časem neměnily jeho rozměry.

Obr. 45. Skutečné rozměry a rozmístění součástek v konvertoru

Obr. 46. Rozměry přepážek konvertoru (číslování dílů souhlasí s číslováním na obr. 45)

 $36 \cdot \frac{2}{70} R_{K}$

Celé šasí (tzn. vnitřek krabice) je třeba postříbřit. Při pájení pravděpodobně nevyhoví transformátorová páječka, neboť je třeba pájet rychle a páječka musí mít dostatečnou teplotu. Rychle se musí pájet především každý průchodkový kondenzátor a tranzistor. Předem je vhodné připájet do každého rohu krabičky jednu matici M3; matice slouží k přišroubování víka.

Výstupní obvod, jak již bylo řečeno, lze ladit v rozmezí kmitočtů 2. až 4. kanálu prvního televizního pásma (CCIR-G). Napájecí napětí může být libovolné v rozmezí 12 až 14 V bez podstatnějších změn vlastností konvertoru.

Konvertor lze nejlépe nastavovat rozmítačem kmitočtů. Protože však tento přístroj není právě nejběžnější (především pro tak vysoké kmitočty) uvedu stručně nastavení podle televizního signálu z antény. Napětí z antény se přivede nejprve na vazební smyčku směšovače a to tak, že jeden pól antény se připojí na šasi a druhý přes kondenzátor 5 až 10 pF na spojovací bod emitor T_2 – stínění T_2 . Pak by se (při dobrém vstupním signálu) měl objevit při změně kapacity trimru C_4 na obrazovce televizoru obraz. V každém kanálu UKV se tak může stát při dvojí poloze kapacitního trimru - správná je však ta poloha, při níž je šroub trimru zašroubován co nejhlouběji. Pak se doladěním oscilátoru na televizním přijímači snažíme dosáhnout co nejlepšího obrazu.

Dále se postupuje tak, že se doladí vstupní obvody na nejlepší obraz a zvuk a současně se naladí výstupní transformátor na střed zvoleného kanálu tak, aby byl opět co nejlepší souběh zvuku a obrazu.

Cívka L_1 má 8 závitů drátu o \varnothing 0,3 mm CuL, je vzduchová a je navinuta na \varnothing 3 mm. Cívky L_2 a L'_2 jsou na kostřičce o \varnothing 5 až 6 mm s vf jádrem a mají 6, popř. 2×2 závity drátu o \varnothing 3 mm CuL. Cívka L'_2 je navinuta těsně pod cívkou L_2 . Cívka L'_2 je navinuta těsně pod cívkou L_2 . Cívka L_{12} má 7 závitů postříbřeného drátu o \varnothing 0,5 mm CuAg a je podložena izolační páskou; jádro bylo popsáno dříve. Cívka L_{2a} (pro výstup 75 Ω) má 12 závitů drátu o \varnothing 0,3 mm CuL, kostřička má průměr 5 až 6 mm, vysokofrekvenční jádro je feritové. Cívky L_3 a L_4 mají po 10 závitech drátu

o ø 0,3 mm CuL, jsou vzduchové a vinuty na průměru 3 mm. Dráty kreslené ve schématu středně tlustými čarami jsou z vodiče o Ø 3 mm CuAg. Vazební cívka je z drátu o Ø 1 mm CuAg.

Konvertor má vzhledem k laděnému vstupnímu zesilovači velmi dobrou citlivost při minimálním šumu. Uvedené tranzistory lze beze změny v zapojení nahradit našimi typy (např. KF507), konvertor bude mít však v tom případě menší citlivost a větší šum.

Funk-technik č. 15/1969, str. 573.

Neobvyklý superregenerační detektor

Každý superregenerační detektor je charakterizován velkou citlivostí a malou selektivitou. V současné době se používá převážně při dálkovém řízení modelů jako přijímač, neboť je konstrukčně jednoduchý, lehký a lze ho sestavit na velmi malém prostoru. Superregenerační detektor na obr. 47 byl zkonstruován zaměstnancem firmy Collins, která je jednou z nejlepších amerických firem, vyrábějících vysílací a přijímací zařízení pro amatéry.

Opomineme-li krystal, zapojený mezi kolektorem a emitorem tranzistoru T_2 , můžeme říci, že zapojení je v podstatě obvyklý multivibrátor kmitající na kmitočtu 20 až 30 kHz. Odmyslíme-li si ze zapojení kondenzátory C_1 a C_2 (20 nF), tranzistor T_1 a odpor R_1 , dostaneme krystalem řízený oscilátor. Nahradíme-li krystal kondenzá-

Obr. 47. Superregenerační přijímač

torem s kapacitou 5 až 10 pF, dostaneme oscilátor, jehož kmitočet lze řídit laděným obvodem v kolektoru.

V zapojení na obr. 47 je kombinován multivibrátor s oscilátorem řízeným krystalem, čímž vznikl superregenerační přijímač se superreakčním oscilátorem multivibrátorového typu. Detekované vf napětí se odebírá ze spodního konce odporu R_4 . Před dalším zesílením se detekovaný signál zbavuje superregeneračního kmitočtu průchodem filtračním článkem T (nebo podobným filtrem).

Radio-Electronics č. 10/1969.

Stereofonní dekodér

Při stavbě jakéhokoli dekodéru pro příjem stereofonních signálů je třeba vyřešit čtyři základní problémy: I. oddělení signálu pilotního kmitočtu 19 kHz, 2. použití signálu pilotního kmitočtu jako referenčního signálu k obnovení vzorkovacího signálu ve správné fázi, 3. oddělení informací levého a pravého kanálu použitím fázově citlivého detektoru a konečně 4. tzv. maticování (matrixing), které je nutné vždy, nepracuje-li fázově citlivý detektor naprosto správně. Pak je totiž třeba, aby se signál upravil tak, aby došlo k přesnému oddělení informací pravého a levého kanálu.

Stereofonní dekodér, splňující všechny požadavky na jakostní příjem stereofonního signálu je na obr. 48.

Jeho základní vlastnosti jsou: možnost příjmu jak stereofonních tak monofonních signálů, oddělení kanálů lepší než 30 dB v rozmezí kmitočtů 50 až 15 000 Hz, zesílení pro stereofonní signál 0,3, pro monofonní 0,6, vstupní impedance větší než 10 k Ω , zkreslení menší než 0,1 % (pro monofonní signál), šum při příjmu monofonních signálů menší než 100 μ V, při stereofonním příjmu je neměřitelný. Dekodér se napájí napětím 9 V, při monofon-

Obr. 48. Stereofonní dekodér

ním příjmu je odběr 8 mA, při stereofonním příjmu 60 mA (včetně indikační žárovky stereofonního příjmu 6 V/50 mA).

Pilotní kmitočet se ze směsi vybírá laděným obvodem tranzistoru T_4 , jenž je zapojen jako násobič jakosti Q. Vstupní signál se vede z laděného obvodu LC přes sekundární vinutí transformátoru na bázi tranzistoru T_4 . Aby obvod nepropouštěl jiné kmitočty (především pod 19 kHz) vede se výstupní signál z emitoru T_4 na spodní konec laděného obvodu Tr_1 , přičemž se (za rezonance) laděný obvod chová jako velmi velká impedance, která se prudce zmenší při jakékoli změně kmitočtu vstupního signálu. Výstupní signál přesného pilotního kmitočtu se odebírá z kolektoru T_4 .

K obnovení pomocného nosného kmitočtu (vzorkovacího signálu) lze použít tři metody: synchronizovat oscilátor 38 kHz signálem pilotního kmitočtu, zdvojovačem upravit kmitočet pilotního signálu nebo konečně usměrnit a filtrovat signál pilotního kmitočtu. Autor článku uvádí, že vyzkoušel všechny tři metody; první dvě se ukázaly jako nevyhovující vzhledem k tomu, že se mění fázové poměry mezi vstupním a výstupním signálem při změně úrovně signálu pilotního kmitočtu. Tím se mění přesnost oddělení kanálů podle velikosti vstupního signálu. Při celovlnném usměrnění pilotního signálu k tomuto jevu nedochází a proto se této metody využívá i v popisovaném dekodéru. Ukázalo se výhodné vést usměrněný signál přímo do jednoduchého zesilovacího obvodu, jehož tranzistor má v kolektoru obvod, naladěný na kmitočet 38 kHz. Předpětí pro tento zesilovač je voleno tak, že tranzistor T_6 je zavřen do té doby, dokud amplituda signálu 19 kHz není na žádoucí úrovni. Dokud je tranzistor zavřen, nedostane se též žádný signál na báze tranzistorů T_2 a T_3 . Jestliže má signál pilotního kmitočtu dostatečnou úroveň, tranzistor T_6 se otevře a signál se zesílí. Zesílený signál pak otevře i tranzistory T₂ a T₃, které jsou normálně zavřeny (např. při příjmu monofonního signálu). Stejný "spínací" pochod se používá k indikaci stereofonního příjmu (rozsvícení žárovky 6 V/50 mA).

Fázově citlivou detekci obstarávají

diody D_1 a D_2 (měly by být párované). Vzhledem k tomu, že se může v tomto zapojení objevit část informace pravého kanálu v levém kanálu a obráceně (symbolicky vyjádřeno v pravém kanálu R může být přítomna informace z levého kanálu L, tj. v pravém kanálu může být např. signál R+0,1L), zavádí se do obou kanálů část informace z opačných kanálů (tj. např. -0,1L). Pak je oddělení kanálů skutečně v mezích, daných technickými údaji na začátku článku. Signál v protifázi se odebírá z kolektoru T_1 a jeho velikost lze regulovat potenciometry pro každý kanál zvlášť.

K osazení stereofonního dekodéru byly

použity tyto tranzistory:

$$T_1$$
, T_4 a T_5 BC108, 2N3706, 2N914, BCY42, T₂ a T_3 BC108, OC139, 2N1304, T₆ a T₇ BC108, BCY42, 2N3706, ACY22, OC72, OC83, 2N404 a diody D_1 , D_2 OA47, OA5, AAZ13.

Transformátor Tr_1 (v bázi tranzistoru T_4) má jako primární vinutí 112 závitů drátu o \emptyset 0,2 mm CuL, indukčnost je 7,02 mH; sekundární vinutí má 116 závitů stejného drátu. Transformátor v kolektoru T_5 má primární i sekundární vinutí stejné a to 112 závitů drátu o \emptyset 0,2 mm CuL s odbočkou přesně v polovině, tj. na 56. závitu, indukčnost obou vinutí je 7,02 mH. Třetí transformátor (v kolektoru T_6) má primární vinutí 56 závitů drátu o \emptyset 0,2 mm CuL s odbočkou na 28. závitu. Indukčnost je 1,755 mH.

Obr. 49. Aktivní filtr pro nahrávání signálu z dekodéru na magnetofon

Obr. 50. Kmitočtový průběh filtru z obr. 49

Sekundární vinutí je přesně stejné. Všechny transformátory jsou navinuty ve feritových hrníčkových jádrech o Ø 18 mm.

Vhodným doplňkem stereofonního dekodéru je i aktivní filtr. Tento filtr potlačuje kmitočty, které by mohly při nahrávání na magnetofon tvořit např. zázněje se signálem oscilátoru pro předmagnetizaci (obr. 49). Kmitočtový průběh filtru podle obr. 49 je na obr. 50.

Wireless World č. 1/1967.

Antény a anténní zesilovače

Pokojová anténa pro příjem ve IV. a V. televizním pásmu

V místech se silným signálem vyhoví dobře udělená tzv. vnitřní (pokojová) anténa i pro příjem na vyšších televizních kanálech. Vzhledem k tomu, že rozměry antén pro vyšší kmitočty jsou poměrně malé, lze antény např. pro IV. a V. televizní pásmo (většinou k příjmu jednoho programu, jediného kanálu) umístit v bytě a to i za jinak stísněných prostorových podmínek. Podrobný návod ke stavbě takové antény byl uveřejněn v časopise Funk-technik, stručný obsah článku se základními vztahy k výpočtu délek jednotlivých prvků antény pro různé kanály obou horních televizních pásem je v následujícím textu.

K výpočtu délky jednotlivých prvků antény potřebujeme znát především střední kmitočet (střední délku vlny) kanálu, který chceme přijímat. Za střední kmitočet f_s je v tomto článku brán aritmetický průměr mezi kmitočtem nosné obrazu a nosné zvuku. Tedy např. pro 21. kanál (CCIR-G) je střední kmitočet f_s o 4 MHz vyšší než je spodní mezní kmitočet kanálu (kanál 21 je v pásmu 470 až 477 MHz) tj. $f_s = 474$ MHz. Podle vztahu

$$\lambda_{\rm s} = \frac{300}{f_{\rm s}} \qquad [\rm m; MHz]$$

je tedy střední vlnová délka pro kanál 21

$$\lambda_{\rm s} = \frac{300}{474} = 0,6329 \, \rm m.$$

Obecně lze napsat, že střední kmitočet libovolného kanálu ve IV. a V. televizním pásmu je dán vztahem

$$f_{\rm s n} = (n.8) + 306 \, \text{MHz}.$$

Použijeme-li tento vztah k výpočtu středního kmitočtu např. kanálu 21, dostaneme stejný výsledek jako výše:

$$f_{\text{s}}_{21} = (21.8) + 306 = 474 \text{ MHz}.$$

Abychom mohli stanovit délku dipólu $\lambda/2$ pro zvolený kanál, upravíme předchozí vztahy pro výpočet střední vlnové délky libovolného kanálu UKV

Obr. 51. Pokojová anténa pro UKV (IV. a V. televizní pásmo)

$$\lambda_{\rm s n} = \frac{300}{(n.8) + 306} \, \rm m,$$

nebo ve formě, vhodnější pro další výpočty

$$\lambda_{\rm s \, n} = \frac{37,5}{n+38,5} \, \rm m.$$

Za n dosazujeme vždy číslo příslušného kanálu (platí pouze pro kanály CCIR-G).

Teoretický vztah pro délku půlvlnného dipólu je tedy

$$l_s = \lambda_{s n}/2$$
 [m; m].

Skutečnou délku dipólu $\lambda/2$ však ovlivňují různí součinitelé, na něž se při výpočtu musí brát zřetel. Protože je výpočet dosti složitý, jsou vztahy, podle nichž lze spočítat délky jednotlivých prvků vnitřní antény (obr. 51), uvedeny v následující tabulce.

Tloušťka drátu s, z něhož jsou zhotoveny jednotlivé prvky antény, je 3 mm (měděný drát).

Obvykle se dělává dipól poněkud tlustší než ostatní prvky, i když čím tenčí je drát, z něhož je zhotoven, tím více se blíží vztah k určení jeho délky teoretickému vztahu. Hranice tloušťky drátu je ovšem omezená, nelze ji zmenšovat zcela libovolně. K výpočtu délky dipólu se totiž zavádí tzv. zkracovací činitel, který je funkcí tloušťky drátu (nebo trubky) a střední vlnové délky. Zkracovací činitel se obvykle označuje K a pro výpočet délky dipólu se uplatní v původním vztahu takto

$$l_{\rm n} = K_{\rm n} (0.45 \text{ až } 0.477) \lambda_{\rm s n}.$$

V této podobě je tento vztah uveden i v tabulce. Pro jednotlivé kanály lze zkracovací činitel dipólu určit ze vztahu

$$K_{\rm n} = 0.8912 + \frac{\lambda_{\rm s.n.}}{15.7}$$

(Např. K_n v tabulce pro 28. kanál je tedy při $\lambda_{s 28} = 0.566$ m $K_{28} = 0.9273$).

Ke konstrukci antény je třeba podotknout, že nezáleží ani tak na přesné vzdálenosti jednotlivých prvků jako na jejich délce. Vzdálenost direktorů a reflektoru od dipólu však určuje impedanci antény, při uvedených vzdálenostech je impedance antény asi 290 Ω (bez reflektoru), s reflektorem 250 Ω bez direktorů, s reflektorem a direktory kolem 100 Ω .

Označení prvku podle obr. 51	Vztah pro výpočet	Příklad výpočtu pro kanál 28 (CCIR-G)		
ı	$K_{\rm n}$ (0,45 až 0,477) $\lambda_{\rm s~n}$	$0,9273 \cdot 0,477.566 = 250 \text{ mm}$		
\boldsymbol{a}	20 až 30 mm	30 mm		
r	$(0,194~{ m až}~0,25)~\lambda_{ m s~n}$	0,222.566 = 126 mm		
R	$(0,48 \text{ až } 0,53) \ \hat{\lambda}_{s \text{ n}}$	0.53.566 = 300 mm		
d_1	$(0.08 \text{ až } 0.4) \lambda_{\text{s n}}$	0.085.566 = 48 mm		
D_1	$(0,4 \text{ až } 0,475) \ \lambda_{s \text{ n}}$	0.4.566 = 226 mm		
$oldsymbol{d_2}$	$(0,15 \text{ až } 0,25) \lambda_{s n}$	0.15.566 = 85 mm		
D_2	$(0,38 \text{ až } 0,47) \ \lambda_{s n}$	0.38.566 = 215 mm		
d_3	$(0,2 \text{ až } 0,25) \lambda_{s n}$	0.2.566 = 113 mm		
D_3	$(0,36~{ m až}~0,465)~\lambda_{ m s~n}$	0.36.566 = 204 mm		
d_4	$(0,2 \text{ až } 0,25) \lambda_{\text{s n}}$	0.2.566 = 113 mm		
D_4	$(0,34 \text{ až } 0,46) \lambda_{\text{s n}}$	0.34.566 = 192 mm		

Obr. 52. Jednotlivé mechanické díly antény pro UKV a její sestava

Vlastní anténa, jejíž rozměry vycházejí ze schématického náčrtku na obr. 51, je na obr. 52. Proti schématickému náčrtku se liší v mechanickém provedení reflektoru a direktorů. Reflektor je poněkud ohnut do oblouku, jednotlivé direktory jsou složeny ze tří částí (díl 8 na obr. 52).

Díl 1 je stojánek pro anténu. Díl 2 je z pertinaxu a umožňuje případné otáčení antény. Díl 3 je nosná tyčka vlastního anténního "systému". Díl 4 je nosné ráhno antény, 5 držák jednotlivých prvků, 6 skládaný dipól, 7 detail připevnění dipólu k nosné tyčce 3, 8 provedení jednotlivých direktorů a 9 reflektor.

Funk-technik č. 14/1969, str. 541.

Anténní zesilovač pro IV. a V. televizní pásmo

Vzhledem k tomu, že ke stejně jakostnímu obrazu v pásmu IV a V je třeba (oproti nižším pásmům) mnohem větší výkon vysílače (nebo citlivější kanálové voliče), používají se při příjmu na těchto pásmech v mnohem větší míře anténní zesilovače, které umožňují dobrý příjem i na větší vzdálenosti.

Příkladem takového anténního zesilovače je zesilovač s malým šumem na obr. 53. S uvedeným tranzistorem má zesilovač maximální šumové číslo menší než 3; je to vf germaniový mesa tranzistor, výrobek firmy Siemens.

Popisovaný zesilovač lze sestavit poměrně snadno a s naším tranzistorem GF507 bude jistě pracovat bez změny součástek, i když s menším zesílením a větším šumem. Vstup zesilovače je přizpůsoben k připojení přímo k anténě s impedancí 60 až 75 Ω, výstup je navržen pro souosý kabel o stejné impedanci. Vstupní obvody zesilovače jsou řešeny jako širokopásmové s minimální křížovou modulací (technické údaje zesilovače jsou na konci článku). Vazební kondenzátor s malou kapacitou chrání tranzistor před účinky nebezpečných indukovaných napětí. Tranzistor je zapojen se společnou bází k dosažení rovnoměrného zesílení v celém rozsahu kmitočtů IV. a V. televizního pásma. Na kolektor tranzistoru je navázáno čtvrtvlnné vedení L_2 , které lze na-

Obr. 53. Zapojení anténního zesilovače s malým šumem pro IV. a V. televizní pásmo

Obr. 54. Schematické uspořádání a rozměry anténního zesilovače z obr. 53

stavit do rezonance pro libovolný kanál IV. a V. televizního pásma. Vzhledem k malému zpětnému působení tranzistoru je zesilovač velmi stabilní i při nepřesném přizpůsobení na vstupu a výstupu. V extrémních případech lze provozovat zesilovač až do teploty okolí +80 °C.

Rozměry pouzdra anténního zesilovače a umístění jednotlivých prvků jsou zřejmé z obr. 54.

Zesilovač se napájí napětím 15 V a má spotřebu 2,7 mA. Pracovní rozsah kmitočtů je 470 až 790 MHz. Výkonové zesílení je 11 až 13,5 dB, šumové číslo v celém pásmu menší než 4, šířka pásma 15 až 40 MHz. L_2 je z postříbřeného měděného drátu o \varnothing 1,5 mm, kolektor tranzistoru se připojuje ve vzdálenosti 9 mm od toho konce drátu, jenž je spojen s dolaďovacím kondenzátorem; výstup z L_2 je 5 mm od konce cívky. Cívka L_1 má tři závity měděného drátu o \varnothing 0,6 mm na průměru 3 mm.

Halbleiter-Schaltbeispiele. Siemens 1968.

Vysílací technika

Malý vysílač AM pro pásmo 145 MHz

Na obr. 55 je malý vysílač AM pro amatérské pásmo 145 MHz. Technické údaje: kmitočet krystalu 72,5 MHz, dvoustupňový vysílač, vf výkon 30 mW při napájení napětím 9 V, modulátor je též dvoustupňový, vstup pro mikrofon má malou impedanci, výstup pro anténu má impedanci 60 Ω. Napájecí napětí je 9 V, odebíraný proud je 20 mA. Osazení tranzistory: Modulátor (popř. koncový stupeň nf) používá běžné nf germaniové tranzistory japonské výroby, vlastní vysílač pracuje s vf germaniovými tranzistory AFY11.

Vysílač je konstruován tak, že lze použít modulátor vysílače jako zesilovač přijímače (s externím vf dílem); k tomu slouží sekundární vinutí transformátoru Tr_2 pro připojení reproduktoru.

Vf díl vysílače je osazen tranzistorem T_1 , který pracuje jako oscilátor v zapojení se společnou bází. Napěťový dělič R_2 , R_3 určuje pracovní bod tranzistoru. Protože se proud báze při nasazení osci-

lací zvětší (čímž dojde i ke zvětšení proudu kolektoru), omezuje se jeho velikost odporem R_1 . Odpor R_1 tak dostatečně stabilizuje celý obvod T_1 . Kondenzátor C_1 blokuje vysokofrekvenčně bázi T_1 . Laděný obvod L_1 , C_2 je navržen vzhledem ke kmitočtu použitého krystalu; pro vyhovující činnost vysílače musí být velmi pečlivě nastaven. Tlumivka Tl_1 je zkratem pro vf. Studený konec laděného obvodu je uzemněn přes kondenzátor C_3 .

Signál z oscilátoru se vede na zdvojovač kmitočtu – koncový stupeň vysílače. Obě dvě funkce zastává tranzistor T_2 , jehož pracovní bod je nastaven odporem R_6 .

Dvoustupňový modulátor se skládá z budicího a koncového stupně, které jsou vázány transformátorem Tr_1 . Protože vstupní obvod modulátoru má malou impedanci, musí mít použitý mikrofon též malou impedanci. Jako regulátor hloubky modulace slouží potenciometr P_1 . Odpory R_7 a R_8 určují pracovní bod tranzistoru budicího stupně. Tranzistory koncového stupně modulátoru dostávají kladné předpětí z děliče R_{11} , R_{12} a R_{13} . Klidový proud dvojice koncových tranzistorů se nastavuje termistorem v obvodu bází. Kondenzátor C_{12} zamezuje "divokému" rozkmitání

Obr. 55. Maly vysílač AM pro pásmo 145 MHz

Obr. 56. Rozmístění součástek vysílače pro pásmo 145 MHz

koncového stupně. O významu spodní části sekundárního vinutí Tr_2 jsem již psal. Horní část sekundárního vinutí Tr_2 zavádí modulační signál do kolektoru tranzistoru koncového stupně vysílače. Tlumivka Tl_2 slouží k oddělení modulačního a vf signálu. Velký výstupní odpor koncového stupně vysílače se transformuje cívkou L_3 na 60 Ω . Jako zdířky Zd_2 vyhoví nejlépe souosý konektor.

Při napájecím napětí 15 V se zvětší výstupní vf výkon až na 100 mW. Při větších napájecích napětích se zvětšuje teplota tranzistorů nad únosnou míru a ty se většinou zničí – hranice bezpečného provozu (i s chladičem) je asi 15 V.

Vhodné rozmístění součástek vysílače

je na obr. 56.

Cívka L_1 má indukčnost $0,4~\mu\mathrm{H}$, je navinuta drátem o Ø 1 mm CuAg na průměru 8 mm. Cívka je samonosná a má 7.5 závitu s odbočkou na 2.5 závitu. Cívka L_2 je vinuta na stejném průměru stejným drátem, má indukčnost $0.2~\mu\mathrm{H}$ a 3.5 závitu. Cívka L_3 má jeden závit drátu o Ø $0.5~\mathrm{mm}$ CuAg v bužírce a je umístěna uvnitř cívky L_2 .

Funk-technik č. 2/1969, str. 61.

"A transistor Vackar"

Pod tímto podivuhodným nadpisem se skrývá popis zapojení tranzistorové verze

Obr. 57. Vackářův oscilátor v tranzistorovém provedení

Vackářova oscilátoru, která se rozšířila především v Anglii díky (mj.) radioamatéru G5BB.

Na obr. 57 je zapojení tohoto oscilátoru pro pásmo 21 MHz. Obvod oscilátoru s tranzistorem T_1 (AF114) je vázán s oddělovacím zesilovačem (tranzistor T_2 , OC170) dvěma závity na studeném (horním) konci cívky L_1 . Cívka L_1 má 19 závitů drátu o \emptyset 0,6 až 0,7 mm CuL a cívka L_2 23 závitů stejného drátu na kostřičce o \emptyset 6 mm.

Pro praktické provedení doporučuje autor uzavřít oscilátor do pouzdra z tlustého kovového plechu, neboť oscilátor je velmi citlivý na změny teploty. Dále doporučuje používat tranzistor, který spolehlivě kmitá ještě na kmitočtu desetkrát vyšším, než je pracovní kmitočet zapojení a konečně nepoužívat kapacitní vazbu; vazba podle obrázku se ukázala nejvhodnější. Závěrem doporučuje pro tranzistor oscilátoru nastavit pracovní bod tak, aby tranzistor pracoval ve třídě A.

Radio-Electronics č. 10/1969 (pův. pramen: RSGB Journal).

Měřicí technika

Jednoduchý lineární voltmetr k měření střídavých napětí

K měření střídavých napětí větších než 1 V slouží zapojení na obr. 58. Popsaný voltmetr je vhodný pro taková měření, při nichž není třeba používat citlivý milivoltmetr a při nichž je výhodné mít stupnici voltmetru lineární v celém rozsahu měření (např. při měření efektivních napětí 1 až 10 V).

Měřidlo je zapojeno mezi výstupní a vstupní obvod tranzistorového zesilovače přes jehož vnitřní odpor se zavádí velmi silná záporná zpětná vazba. Při rozboru činnosti obvodu je zřejmé, že zdroj signálu musí dodávat nepatrně větší efektivní proud pro plnou výchylku měřidla, než odpovídá citlivosti použitého měřidla. Jinak řečeno, proud ve větvi záporné zpětné vazby, který teče přes měřidlo na bázi tranzistoru, "ruší" tu část vstupního efektivního proudu, která není třeba k vybuzení vstupního tranzistoru.

Má-li tranzistor velmi velký proudový zesilovací činitel je proud báze tak malý, že ho můžeme v další úvaze zanedbat. Je-li např. proudový zesilovací činitel tranzistoru 200, pak je vstupní efektivní proud pro plnou výchylku měřidla pouze o 0,5 % větší, než jmenovitý proud pro

plnou výchylku ručky měřidla.

K objasnění cesty ke zlepšení linearity stupnice je výhodnější uvažovat napětí vstupního signálu (ne jeho proud). Nelinearita měřidel s usměrňovacím můstkem vyplývá z toho, že usměrňovací diody propouštějí velmi malý proud do té doby, než se překročí jejich "Zenerovo" napětí v propustném směru. Ideální usměrňovač nepropouští žádný proud do té doby, dokud napětí na jeho elektrodách nedosáhne takové velikosti, jakou má jeho "Zenerovo" napětí. Pak se zmenší jeho odpor v propustném směru na nulu a teče jím neomezený proud. V praxi však mají usměrňovače odpor v propustném směru konečný, daný konstrukcí a materiálem usměrňovače. Také jejich voltampérové charakteristiky nejsou přímkové, ale mají nelineární části.

V zapojení na obr. 58 jsou diody v obvodu záporné zpětné vazby. Je-li napětí na diodách menší než "Zenerovo" napětí diod, je zpětná vazba velmi malá, neboť diody nevedou. Důsledkem malé záporné zpětné vazby je velké zesílení tranzistoru. Lze říci, že pro velmi malé signály má vstupní tranzistor téměř takové zesílení, jako bez zpětné vazby. Malé vstupní napětí se tím zesílí tak, že na kolektoru tranzistoru bude signál tak velký, že se diody otevřou, zvětší se záporná zpětná vazba a zesílení vstupního tranzistoru se tak stane víceméně nezávislé na jeho charakteristikách.

Pro praktický příklad s germaniovými diodami na obr. 58 je třeba k otevření diod napětí asi 500 mV. Uvažujeme-li napěťové zesílení vstupního tranzistoru asi 100 (což lze běžně dosáhnout), pak vrcholové napětí 5 mV na bázi vstupního tranzistoru postačí k tomu, aby diody vedly proud. Nelineárnost zapojení se tak zmenšuje s činitelem, přibližně rovným napěťovému zesílení. Tak se projeví mírná nelinearita při měření napětí pouze v první desetině (nebo v ještě menším úseku) měřicího rozsahu, pro většinu praktických měření ji však lze zanedbat.

Měřicí obvod není citlivý na změny napájecího napětí nebo změnu typu tranzistoru (ovšem za předpokladu, že má použitý tranzistor velký proudový zesilovací činitel). S kapacitami kondenzátorů a součástkami v obr. 58 je kmitočtová charakteristika měřicího zesilovače rovná od 7 Hz (pokles 10 %) do 3 MHz. Pro uvedené měřidlo (500 μA) je nejmenší možný odpor $R_{\rm m}=1~{\rm k}\Omega$. Horní mezní kmitočet závisí podstatně na montážních kapaci-

58. Jednoduchý lineární střídavý Obr. voltmetr

tách a rozmístění součástek; pochopitelně i na schopnosti diod usměrňovat signály vyšších kmitočtů. Kdybychom použili kuproxidový usměrňovač, zlepšila by se linearita stupnice, zvýšil by se však dolní mezní kmitočet. Při použití jiného měřidla a jiného tranzistoru lze prvky obvodu určit z následujících vztahů, v nichž $I_{\rm m}$ je proud měřidlem pro plnou výchylku ručky, $R_{\rm i}$ vnitřní odpor měřidla, $U_{\rm f}$ úbytek napětí na diodě při $5I_{\rm m}$: $I_{\rm C}=5I_{\rm m}$, $U_{\rm CE}=5I_{\rm m}R_{\rm i}+2U_{\rm f}$, $R_{\rm i}$ pro křemíkové tranzistory = $h_{\rm 21E}$ ($U_{\rm CE}-0.7$)/ $I_{\rm C}$, pro germaniové = $h_{\rm 21E}$ ($U_{\rm CE}-0.2$)/ $I_{\rm C}$, $R_{\rm 2}=$ = $(U_{\rm bat}-U_{\rm CE})/I_{\rm C}$, $R_{\rm m}=U_{\rm vst}/I_{\rm m}$ ($U_{\rm vst}$ pro plnou výchylku ručky měřidla), $C_{\rm 1} \ge 10/(2\pi f_{\rm min} R_{\rm m} min)$ a konečně $C_{\rm 2} \ge 1/(2\pi f_{\rm min} R_{\rm 2})$.

Wireless World č. 1410, prosinec 1969, str. 578.

Milivoltmetr s křemíkovými tranzistory

Milivoltmetr na obr. 59 je určen k měření malých střídavých napětí v kmitočtovém pásmu 10 Hz až 1 MHz. V tomto rozmezí je kmitočtová charakteristika

rovná v mezích ± 2 dB. Vstupní odpor měřicího přístroje je 0,5 M Ω .

V zapojení se používají tři epitaxněplanární křemíkové tranzistory, vstupní
tranzistor je typ s malým šumem. K získání velkého vstupního odporu je vstupní
tranzistor zapojen se společným kolektorem. V emitoru tohoto tranzistoru je
vstupní dělič, umožňující měření napětí
od 3 mV do 1 V. Vstupní rozsah se volí
šestipolohovým přepínačem $P\tilde{r}_1$. Tranzistory T_2 a T_3 jsou zapojeny se společným
emitorem a mají přímou vazbu. Stejnosměrná záporná zpětná vazba se zavádí
přes odpor R_5 z emitoru T_3 na bázi T_2 .

Napájecí napětí se stabilizuje Zenerovou diodou D_1 . Usměrňovač je sestaven ze čtyř diod, jejichž výběru je třeba věnovat péči – na shodnosti jejich vlastností závisí linearita stupnice. Měřidlo je mikroampérmetr s citlivostí $100 \mu A$.

Přepínačem $P\tilde{r}_2$ se zapíná a vypíná přístroj a kontroluje stav baterií. Odpor R se vybere podle použité Zenerovy diody a změnou odporu $100 \text{ k}\Omega$ se upraví čtení napětí napájecí baterie tak, aby při čerstvých bateriích ukazovala ručka výchylku asi ve 3/4 stupnice.

Practical Wireless č. 2/1968.

Obr. 59. Tranzistorový milivoltmetr

Voltohmmetr s tranzistory FET

Voltohmmetr na obr. 60 má velmi malý drift (posuv nuly) a dobrou linearitu. Linearita voltohmmetru je dána pouze linearitou použitého měřidla. Přístrojem lze měřit stejnosměrná napětí od 150 mV do 1500 V a odpory od 10 do 1 000 000 Ω . Přístroj je velmi jednoduchý a nemá žádné konstrukční záludnosti.

Nejčastěji používanou metodou k omezení posuvu nuly je kompenzace vlastního posuvu posuvem opačné polarity. Tato metoda nedává tak dobré výsledky jako metoda použitá v zapojení na obr. 60 – měřidlo se zapojí do obvodu diferenciálního zesilovače, který jednak nemá žádný vlastní posuv nuly a jednak je pro dobrou stantní. K dosažení velké vstupní impedance jsou tranzistory vlastního diferenciálního zesilovače (T_2 a T_4) "doplněny" tranzistory FET T_1 a T_5 .

Rozsahy měření napětí jsou dány základním rozsahem měřicího přístroje, 150 mV. Předřadné odpory R_1 až R_9 jsou umístěny na devítipolohovém přepínači a umožňují měřit napětí 0 až 0,15 V, 0 až 0,5 V, 0 až 1,5 V atd. po násobcích desíti.

Obvod voltmetru je jednoduchá variace na téma napěťový dělič. Zdrojem napětí k měření odporů je článek 1,5 V. Odpory se měří porovnávací metodou – neznámý odpor se porovnává s odporem zařazeným přepínačem ohmmetru. Jestliže jsou zdířky pro připojení měřeného odporu zkratovány, ručka měřidla bude

Obr. 60. Voltohmmetr s tranzistory FET (a) a jeho napájecí zdroj (b)

stabilitu napájen ze zdroje konstantního proudu.

Obvod diferenciálního zesilovače pracuje takto: zdroj konstantního proudu (tranzistor T_3) udržuje proud tranzistory T_2 a T_4 na určité velikosti, v našem případě na 3 mA. Teče-li vlivem vstupního signálu na bázi T_2 tímto tranzistorem větší proud, zmenší se proud druhým tranzistorem (T_4) tak, že celkový proud emitorovým odporem R_{25} zůstane kon-

ukazovat nulu, budou-li zdířky naprázdno (tj. bude-li mezi nimi nekonečný odpor), bude ručka měřidla ukazovat plnou výchylku, neboť celé napětí baterie se objeví na měřidle.

K napájení přístroje slouží zdroj, dodávající napětí obojí polarity (obr. 60b). Regulační tranzistory jsou zapojeny v podstatě jako emitorové sledovače. Měřicí přístroj je napájen při použití síťového zdroje stálým napětím i při poklesu sítě, což má příznivý vliv na přesnost měření.

Sekundární napětí síťového transformátoru je 24 V. Při půlvlnném usměrnění a vyhlazovacích kondenzátorech s uvedenou kapacitou je zvlnění napájecího na-

pětí nepatrné.

Regulační prvky měřicího přístroje jsou: R_{19} nula hrubě, P nastavení nuly měřidla, R_{23} kalibrace napěťových rozsahů, R_{24} kalibrace pro měření odporů. Přepínač $P\mathring{r}_2$ slouží k přepínání rozsahů při měření napětí, přepínač $P\mathring{r}_3$ při měření odporů, přepínač $P\mathring{r}_4$ je čtyřdeskový třípolohový přepínač k přepínání druhu měření – kladné napětí, záporné napětí, odpory.

Použité měřidlo má citlivost 50 μ A. Diody D_5 a D_6 jsou Zenerovy diody se Zenerovým napětím 16 V, se ztrátou I W. Dioda D_2 je Zenerova dioda, která by se měla (při maximálních nárocích na přístroj) vybrat tak, aby její teplotní součinitel byl přesně opačný než je teplotní součinitel Zenerovy diody D_1 . V originálu je D_1 typ 1N914, D_2 1N750A. Diody D_3 a D_4 jsou běžné usměrňovací diody 100 V; 0,5 A.

Electronics World č. 1/1970, str. 74.

Tranzistorový nf generátor s Wienovým můstkem

Jedním ze základních zapojení různých můstků je i tzv. Wienův můstek. Tento můstek se často používá i jako nf oscilátor, neboť lze s ním poměrně snadno dosáhnout kmitočtového rozsahu oscilátoru od 25 do 200 000 Hz a výstupní sinusový nf signál má malé zkreslení. S elektronkami je zapojení Wienova můstku známé, méně známé je zapojení s bipolárními tranzistory a ještě méně s tranzistory, řízenými elektrickým polem.

Obr. 61. Oscilátor RC s Wienovým můstkem a tranzistorem MOSFET

Jedním z možných způsobů použití tranzistoru řízeného elektrickým polem jako zesilovače odchylky při nerovnováze můstku je na obr. 61. Tranzistor T_2 je zapojen jako běžný napěťový zesilovač a výstupní doplňkové tranzistory pracují jako dvojčinný emitorový sledovač. Emitorový sledovač zabezpečuje požadovanou malou výstupní impedanci. Zapojení pracovalo s tranzistorem MOSFET velmi dobře nad 100 Hz. Pro nižší kmitočty je

Obr. 62. Oscilátor RC s Wienovým můstkem a tranzistorem FET

třeba jako R_2 a R_1 použít odpory značně velkých hodnot, až 30 M Ω , což je při realizaci nevýhodné.

Mnohem výhodnější je zapojení s tranzistorem FET (obr. 62). Při změně rozsahů se v této verzi Wienova můstku přepínají jak odpory tak kondenzátory obvyklých a běžných hodnot. Odpor R je při realizaci nahrazen jedenáctipolohovým přepínačem, v jehož jednotlivých polohách se přepínají odpory od 390 do 3 900 Ω . Jako zpětnovazební člen, kontrolující amplitudu oscilací, slouží žárovka Ž, kterou protéká při napětí 14 V proud asi 6 mA. Generátor RC má na kmitočtu 1000 Hz odstup druhého harmonického kmitočtu 48 dB, vyšší harmonické kmitočty jsou o více jak 50 dB pod úrovní základního kmitočtu. Stálost výstupní amplitudy se pohybuje v celém kmitočtovém rozsahu (25 až 250 000 Hz) v rozmezí

Přístroj se napájí z baterie 22,5 V, odběr proudu je nepatrný. 73 Amateur Radio č. 4/1967, str. 38.

Generátor signálů pravoúhlého, pilovitého a trojúhelníkovitého průběhu

K měření nf zesilovačů i k jiným účelům je často vhodnější než sinusový signál signál jiného průběhu, např. pravoúhlého.

Obr. 63. Generátor signálů pravoúhlého, trojúhelníkovitého a pilovitého průběhu

Napětí trojúhelníkovitého průběhu jsou vhodná např. k zjišťování linearity zesilovačů, v dílně nebo při výzkumu se často využijí i napětí pilovitého průběhu.

Zapojení, které dodává všechny tři uvedené druhy signálů je na obr. 63. Pracuje v podstatě takto: Za běžného provozu se nabíjí kondenzátor C1 konstantproudem $I_{\rm C}$ tranzistoru $(\stackrel{.}{=} U_{\text{bat}}/R_4)$. Dosáhne-li napětí na kondenzátoru určité velikosti, otevře se tranzistor T₂ a kondenzátor se přes něj vybíjí stejnou rychlostí, jakou se nabíjel. Až bude náboj kondenzátoru minimální, kondenzátor se opět začne nabíjet a celý pochod se opakuje. Aby zatěžovací odpor na výstupu trojúhelníkovitého napětí neovlivňoval činnost obvodu, vede se výstupní napětí přes tranzistor FET. Diody D_1 a D_2 slouží k teplotní kompenzaci.

Ze středu děliče R_8 , R_9 v elektrodě Stranzistoru FET se signál vede dále na spoušťový obvod s tranzistory T_4 a T_5 . Uvedený napěťový dělič spolu s odporem R_{10} slouží k prodloužení hystereze spoušťového obvodu. Hystereze spoušťového obvodu je dále upravena odpory R_6 , R_7 a R_{11} . Tím se dosáhlo, že tranzistor T_4 bude otevřen při takovém předpětí báze, které je podstatně vyšší, než napětí potřebné k jeho uzavření. Kmitočet výstupního signálu se řídí proměnným kondenzátorem C_1 . Na výstupu napětí trojúhelníkovitého průběhu se objeví i napětí průběhu pilovitého a to tehdy, bude-li $R_4 \ll R_5$ (pro signál trojúhelníkovitého průběhu je třeba, aby $R_4 = R_5/2$). Souměrnost napětí trojúhelníkovitého průběhu lze nastavit proměnným odporem R₁. Zapojení pracuje v kmitočtovém rozsahu několik Hz $(R_5 \pm 30 \text{ M}\Omega)$ až několik set tisíc Hz $(R_5 \stackrel{.}{=} 3\ 000\ \Omega)$.

Upraví-li se obvod podle obr. 63 tak, aby odpovídal obr. 64, zvýší se mezní kmitočet na 5 MHz. Rychlejšího nabíjení a vybíjení náboje kondenzátoru C_1 se dosáhlo přidáním tranzistorů T_4 a T_7 . Zapojení se vyznačuje i tím, že se při vyšších kmitočtech zvětšuje i amplituda výstupního signálu. Zvětšení amplitudy lze kompenzovat koňdenzátory C_2 a C_3 . Zapojení pracuje uspokojivě až do kmitočtu 5 MHz. Protože jsou kolektorové proudy T_1 a T_2 na těchto vysokých kmitočtech

Obr. 64. Upravené zapojení z obr. 63 k získání výstupních signálů o kmitočtu až 5 MHz

mnohem větší než proud báze T_4 , může se dále zvětšit rychlost spínání a tím i rozšířit kmitočtový rozsah, vynechá-li se při vysokých kmitočtech tranzistor T_3 a báze tranzistoru T_4 se spojí přímo s kolektory T_1 a T_2 .

Funk-technik č. 17/1969, str. 665.

Synchronizovaná časová základna pro osciloskop

Na obr. 65 je schéma přípravku, který lze použít jako synchronizovanou časovou základnu pro osciloskop. Zapojení dodává přesně lineární napětí pilovitého průběhu, jehož kmitočet lze měnit v kmitočtovém rozmezí 1 Hz až 150 kHz. Synchronizační obvod má vstupní impedanci $1 \, \mathrm{M}\Omega$ a lze ho snadno ovládat signály nízkých úrovní ze svislého (vertikálního) zesilovače osciloskopu. Ze zařízení lze odebírat i signál k zatemňování zpětných běhů. Přesně lineární nabíjení ladicího kondenzátoru (vlastně sady výměnných kondenzátorů na přepínači kmitočtu časové základny) zajišťuje tranzistor T_1 , zapojený jako zdroj konstantního proudu. Kmitočet se řídí hrubě změnou kapacit kondenzátorů $C_{\rm T}$; jemně potenciometrem $P_{\rm 1}$.

V původním zapojení byly pro různé kmitočty časové základny použity kondenzátory C_T těchto kapacit:

1 Hz až 15 Hz 20 μF, tantalový, nepolarizovaný, 10 Hz až 150 Hz 2 μF, tantalový, nepolarizovaný, 100 Hz až 1,5 kHz 0,2 μF, mylar, 1 kHz až 15 kHz 20 nF, mylar,

Wireless World č. 1404/1969, str. 269.

10 kHz až 150 kHz 2 nF, mylar.

Elektronický přepínač pro osciloskop

Ke sledování dvou různých průběhů na jednopaprskovém osciloskopu slouží elektronické přepínače. Přepínače tovární výroby jsou velmi drahé, přičemž lze celkem snadno pro amatérskou potřebu postavit levný a jednoduchý přepínač, který je schopen přenést signál až o kmitočtu desítek MHz.

Popsaný elektronický přepínač (obr. 66) má šířku přenášeného pásma 100 kHz; lze ji však celkem snadno zvětšit až na několik MHz, jak je uvedeno v dalším textu.

Obr. 65. Synchronizovaná časová základna pro osciloskop, dodávající
přesně lineární napětí pilovitého průběběhu

Přístroj, jehož schéma je na obr. 66, se skládá ze tří hlavních částí: ze spínacího obvodu s tranzistory T₁ a T₂, z řídicího obvodu s tranzistory T_3 a T_4 a z astabilního multivibrátoru s tranzistory T_5 a T₆. Tranzistory T₃ a T₄ jsou křemíkové typy BC250. Jejich použití přináší v tomto obvodu některé výhody (vzhledem k použití germaniových tranzistorů). Ostatní tranzistory jsou z výprodeje jsou bez označení a prodávají se jako "vf germaniové tranzistory". Při jejich výběru je třeba dbát na to, že mají mít proudový zesilovací činitel h₂₁E větší než 30 a zbytkový proud kolektoru menší než 30 µA při kolektorovém napětí ssi 6 V a teplotě okolí kolem 30 °C.

Tranzistory spínacího obvodu, T_1 a T_2 , pracují v zapojení se společným kolektorovým odporem 3 k Ω . Z tohoto odporu se snímá výstupní napětí. Odpory 3 k Ω v emitorech tranzistorů zaručují silnou zpětnou vazbu v obvodu a tím i dobrou linearitu výstupního signálu. Chceme-li získat větší šířku přenášeného pásma, je třeba především nahradit vstupní potenciometry 1 M Ω kmitočtově kompenzovanými napěťovými děliči pro jednotlivá kmitočtová pásma.

Tranzistory T_1 a T_2 jsou ovládány klopným obvodem s tranzistory T_3 a T_4 . Jeden z tranzistorů T_1 a T_2 je vždy svým emitorem připojen buď přes odpor 8 k Ω (5 k Ω + 3 k Ω) na zápornou větev napájecího napětí (pak nezesiluje signál, přiváděný na bázi) nebo je přes dráhu ko-

lektor-emitor příslušného tranzistoru klopného obvodu připojen na šasi přístroje (pak pracuje jako běžný zesilovací stupeň se silnou zápornou zpětnou vazbou) – vstupní signál na jeho bázi se objeví zesílený na kolektorovém odporu a tím i na stínítku osciloskopu.

Obr. 6 . Elektronický přepínač pro jednopaprskový osciloskop

Předpětí bází a tím i kolektorový proud lze nastavit potenciometrem $50 \, k\Omega$. Spolu se změnou předpětí báze se mění také stejnosměrné napětí na kolektorovém odporu, tzn. poloha nulové čáry na stínítku osciloskopu. Změnou polohy běžce potenciometru se tedy mění u jednoho tranzistoru předpětí báze o tak velké kladné napětí, jako u druhého o stejně velké, avšak záporné napětí; tak lze nastavit pro oba pozorované průběhy jejich

osy různě daleko od sebe.

Diody BA170 tvoří spolu s odpory 56 kΩ jakousi propust, která propouští kladné pulsy z kolektoru na bázi toho tranzistoru klopného obvodu, který právě vede - tím ho uzavřou. Přechod z vodivého do nevodivého stavu vyvolá na příslušném kolektorovém odporu zápornou napěťovou špičku, která otevře dosud nevodivý tranzistor (přes zpětnovazební odpor 20 kΩ s paralelně připojeným kondenzátorem 100 pF). Pochod se opakuje, klopný obvod pracuje ve svém běžném pracovním režimu.

Spouštěcí puls pro klopný obvod se odebírá z osciloskopu (kladná část zatemňovacího pulsu) nebo z volně kmitajícího astabilního multivibrátoru s tranzistory T_5 a T_6 . V uvedeném zapojení pracuje multivibrátor na kmitočtu asi 15 kHz, snadno lze však jeho kmitočet změnit na jiný.

Napětí k napájení přepínače by mělo být pro uspokojivou činnost stabilizované a dobře vyhlazené. Celé zařízení při napájecím napětí 6 V má spotřebu asi necelé tři miliampéry, proto stabilizace a vyhlazení napájecího napětí nejsou obtížné.

Funk-technik 22/1968.

Stejnosměrný mikroampérmetr s integrovaným obvodem

Širokou použitelnost integrovaných obvodů dokumentuje i zapojení na obr. 67. Integrovaný diferenciální zesilovač μA709 (obdoba MAA500 n. p. Tesla) se v něm používá jako měřicí zesilovač k měření malých stejnosměrných proudů.

Vstupní proud teče přes jednotlivé odpory na přepínači rozsahů. Tyto odpory jsou zapojeny mezi zem přístroje a neinvertující vstup (viz AR 11/69, str. 430). Odpory jsou vybrány tak, že je na nich úbytek napětí 3 mV na každém rozsahu.

K ochraně přístroje před přetížením jsou ke vstupu integrovaného obvodu připojeny dvě antiparalelně zapojené diody BAY73. Měřicí zesilovač má zpětnou vazbu přes odpory R_1 a R_2 ; ta zabezpečuje konstantní zesílení integrovaného obvodu. Proud měřidlem je nastaven zatěžovacím odporem $R_{\rm L} = 150~\Omega$ na l mA pro plnou výchylku.

Potenciometrem P_1 se nastavuje pro nulový vstupní proud nulový proud měřidlem. Kondenzátory C_1 , C_2 a odpor R_3

Obr. 67. Stejnosměrný mikroampérmetr s integrovaným diferenciálním zesilovačem µA709C

slouží ke kmitočtové kompenzaci zapojení a ke stabilizaci zesilovače.

Je samozřejmě možné zvolit volbou odporů děliče jiné měřicí rozsahy. Zapojení se hodí i k měření napětí – mezi vstup k měření proudu l μA a měřené napětí je třeba vložit předřadné odpory podle velikosti měřeného napětí. Pro základní napěťový rozsah měřicího přístroje 3 mV má pak voltmetr vstupní odpor 1 MΩ/V. Das elektron international č. 14/15, 1969, str. 266.

Různě aplikovaná elektronika

Oscilátor pro mazání záznamu magnetofonových pásků

Zapojení oscilátoru k napájení mazací hlavy magnetofonu je na obr. 68. Nejdů-

Obr. 68. Oscilátor pro napájení mazací hlavy magnetofonu

ležitější součástí oscilátoru je transformátor. V zapojení byl použit transformátor navinutý v hrníčkovém železovém jádru o \emptyset 30 \times 22 mm, cívka L_1 měla 20 závitů drátu o \emptyset 0,15 mm CuL, cívka L_2

Obr. 69. Zapojení reflexního přijímače se síťovým a bateriovým napájením a s dvěma různými nf zesilovači

10 závitů drátu o \emptyset 0,15 mm CuL a cívka L_3 120 závitů drátu o \emptyset 0,1 mm CuL. V případě, že by oscilátor nekmital, je třeba přehodit konce vinutí cívky L_1 . Změnou odporů děliče v bázi lze nastavit odběr proudu, který by měl být co nejmenší; při napájení napětím 9 V a při odběru proudu asi 80 mA lze získat na mazací hlavě vf napětí až 90 V. Předmagnetizační proud pro záznamovou hlavu lze odebírat přes sériovou kombinaci 1 000 pF a proměnný odpor 0,5 M Ω ; proud lze řídit proměnným odporem.

Jako tranzistor byl v původním zapojení použit typ GC300, lze ho však beze změny v zapojení nahradit tranzistorem

OC74, popř. GC500.

Funkamateur č. 11/1969, str. 536.

Konstrukční část

V této části se vždy snažím uvádět vyzkoušená zapojení, jejichž parametry byly ověřeny a která je možno prostě "okopírovat". Jsou zde běžná zapojení, hodící se pro různé příležitosti.

Jako první je malý přijímač do domácnosti, který může posloužit třeba v ku-

chyni.

Druhé je měřič kapacit kondenzátorů a odporů a třetí stmívač, který se v dnešní době stal úplně světovou módou. Stmívače tohoto typu jsou profesionálně vyráběny a podle našich informací se v zahraničí běžně dodávají do nových staveb, zvláště rodinných domků a jsou trvale žádány.

Měřicí přístroj pak vyhoví pro všechna běžná měření radioamatérské praxe s do-

statečnou přesností.

Druhý přijímač do domácnosti

Pomalu ustává honba za miniaturními přijímači, které kromě svých rozměrů nemají jinou dobrou vlastnost, ba právě naopak – velmi špatná reprodukce, pracnost při výrobě i opravách, špatně vyladitelné stanice, nutnost miniaturních zdrojů atd. je předurčují pouze pro výjimečná použití. Zhotovit je amatérskými prostředky je vzhledem k sortimentu součástek na trhu téměř vyloučené. Je pochopitelně řeč o superhetech; přímozesilující

přijímače malých rozměrů lze zhotovit vzhledem k omezenému množství potřebných součástek poněkud snadněji. Přímozesilující přijímače vyhoví však svou konstrukcí (lépe řečeno svými vlastnostmi) pouze pro některá použití – především jako druhé přijímače pro domácnost. Od těchto přijímačů se vyžaduje, aby měly dobrou a dostatečně hlasitou reprodukci, aby používaly baterie, které vydrží delší dobu bez výměny (popř. aby se daly používat se sítovým zdrojem) a aby bylo možno na nich spolehlivě přijímat program místní stanice, popř. dalších silnějších stanic.

Všechny tyto vlastnosti má přijímač, jehož schéma je na obr. 69. Přijímač je zapojen jako dvoustupňový reflexní přijímač, k němuž lze jako nf zesilovač připojit buď dvoustupňový zesilovač s transformátory (společně s vf dílem na destičce s plošnými spoji, obr. 71) a napájet ho z baterií (dvě ploché baterie, tj. 9 V) nebo použít síťový zdroj (destička s plošnými spoji na obr. 72) a nf zesilovač většího výkonu (destička s plošnými spoji byla v RK 3/69 na str. 60; označení má

Smaragd C39).

Obr. 70. Držák feritové antény (volné místo v levém horním rohu desky na obr. 71 slouží k umístění tohoto držáku)

56 • 2 R

Obr. 72. Deska s plošnými spoji síťového napáječe z obr. 69

R_K -2/70 • 57

Některé díly přijímače byly popsány v minulých číslech RK (především v RK 3/69), vysvětlováním jejich činnosti se tedy nebudeme zabývat. Při popisu stavby přijímače se zaměříme spíše na konstrukční stránku.

Feritová anténa je umístěna v držáku na destičce s plošnými spoji (obr. 71). Držák tyčky je z organického skla a z laminátové (pertinaxové) destičky, jeho jednotlivé díly a jejich sestava je zřejmá z obr. 70. Nebude-li se přijímač přenášet, není třeba (je-li držák pečlivě zhotoven) upevňovat feritovou tyčku v držáku – v opačném případě je možné provléknout kolem tyčky a jednoho držáku "gumičku". Toto upevnění pak vystačí pro všechny případy.

Feritová anténa má 60 až 90 závitů vf lanka 20×0.05 mm. Vazební vinutí je zvlášť a má 3 až 7 závitů drátu o \emptyset asi 0.2 až 0.4 mm CuL. Počet závitů primárního vinutí závisí na použitém ladicím kondenzátoru – čím větší bude jeho kapacita, tím menší bude počet závitů.

Proměnným odporem R_1 lze nastavit velikost zpětné vazby tak, aby byla na obou koncích pásma asi stejně velká a aby nasazovala měkce. Tranzistor T_1 by měl

mít co největší statický proudový zesilovací činitel β . Při nastavování vstupního vf dílu je pouze třeba nastavit napětí na kladné elektrodě kondenzátoru C_6 změnou proměnného odporu R_8 tak, aby bylo asi 4 V nebo poněkud menší. Ostatní části přijímače a jejich nastavování byly popsány v RK 3/69.

Největším problémem při stavbě přijímače je zhotovení skříňky. Lze volit v zásadě dvě cesty: skříňku pracně vyrábět nebo koupit (ne právě lacino a snadno a v malém výběru). Volíme-li druhou možnost, nabízí se jednoduchá a levná cesta koupit starý přijímač (jenž je laciný) a použít z něj ladicí kondenzátor, stupnici, šasi se zdířkami atd. Konečně – když jsou v módě staré petrolejové lampy, starý nábytek apod., proč ne přijímače "starého tvaru"? Přijímač z Bazaru za 30,— Kčs, který jsem použil pro stavbu přijímače je na obr. 73, vnitřní uspořádání s novými součástkami je na obr. 74 (oba obrázky na 3. str. obálky). Ze starého přijímače slouží velmi dobře ladicí kondenzátor (v krytu), stupnice a kovové šasi se zdířkami pro anténu, uzemnění a připojení gramofonu. Je to velmi výhodné řešení i vzhledem k akustickým vlastnostem přijímače, ne-

Obr. 77. Deska se součástkami napájecího síťového zdroje

boť skříň je dřevěná a s novým reproduktorem je reprodukce výborná.

Druhé možné konstrukční uspořádání je zřejmé z titulní strany a z obr. 75 (2. str. obálky). Přijímač je opět v dřevěné skříňce, tentokrát vlastní výroby, jejíž velikost je navržena podle použitého reproduktoru (pro srovnání slouží zapalovač). Ladicí kondenzátor a reproduktor jsou na čelní stěně – používá se samozřejmě napájení pouze z baterií a destička s plošnými spoji podle obr. 71, osazená součástkami podle obr. 76 (2. str. obálky). Ladicí kondenzátor má převod do pomala.

K ostatním dílům přijímače: Tr_1 a Tr_2 jsou miniaturní nf transformátory Adast z Dubnice nad Váhom, které se před časem prodávaly. Budicí transformátor má značku 9WN 669 00, primární vinutí má $1\,600$ závitů a sekundární 2×460 závitů drátu o Ø asi 0,08 až 0,1 mm CuL. Výstupní transformátor 9WN 66901 má primární vinutí 2 × 380 závitů a sekundární 85 + 35 závitů. První ze sekundárních vinutí slouží k připojení reproduktoru s impedancí 5 Ω. Primární vinutí je navinuto drátem o Ø 0,1 až 0,2 mm CuL a sekundární drátem o Ø asi 0.4 mm CuL. Oba transformátory jsou na jádrech o něco menších, než je jádro známých transformátorů typu BT a VT; těmito transformátory (řady 39) je lze též nahradit. Síťový transformátor je typu ST64 družstva Jiskra, primární napětí 220 a 120 V, sekundární 6,3 V, 800 mA. Ostatní součásti jsou běžné, jejich typ je zřejmý z fotografií (obr. 78, 4. str. obálky, obr. 77).

Není samozřejmě nutné, používat přesně ty typy součástek a druh zapojení, jaké jsem použil já. Během doby se každému, kdo se zabývá radiotechnikou, nashromáždí mnoho různých, častokrát použitých součástek - konstrukce např. přijímače do domácnosti, kde nezáleží na rozměrech, dovolí tyto starší součástky při rozmyslném návrhu zapojení vhodně použít. Také způsob přepínání zdrojů a nf zesilovačů není ideální – musel jsem pracně upravit tzv. vlnový přepínač, aby k tomuto účelu vyhověl. Lepší by byl např. tlačítkový přepínač. Pro mírně pokročilé zájemce o radiotechniku je však stavba přístroje tohoto druhu a této složitosti asi nejvhodnější.

Měřič kapacit kondenzátorů

K přesnému měření součástek, jako jsou kondenzátory, odpory, cívky apod. slouží většinou můstky. V praxi však pro tato měření vyhoví i přímoukazující měřiče, u nichž je většinou přesnost měření stejná jako tolerance součástek, tj. kolem 10 %. Přímoukazující měřič kapacit kondenzátorů (popř. i měřič odporů) je na obr. 79 (princip měřiče) a 80 (skutečné zapojení).

Měřicí napětí 50 Hz se vede přes měřený kondenzátor C_x na přepínač rozsahů $P\tilde{r}_{1b}$. Reaktance kondenzátoru (odpor pro střídavý proud) a odpor zařazený přepínačem tvoří dělič napětí. Spád napětí U_R na odporu R děliče (obr. 79) se zesiluje, usměrňuje a měří mikroampérmetrem. Při odpovídajícím cejchování stupnice

Obr. 79. Základní zapojení měřiče kapacit a odporů

Obr. 80. Schéma zapojení měřiče kapacit a odporů

měřidla ukazuje ručka měřidla přímo kapacitu měřeného kondenzátoru.

Tranzistor T_1 (obr. 80) je křemíkový tranzistor p-n-p (např. KF517) a je zapojen jako emitorový sledovač. Jako T_1 lze použít tranzistor s proudovým zesilovacím činitelem nejméně 150, jinak je měření kondenzátorů malých kapacit nepřesné. Tranzistor T₂ zesiluje proud na úroveň, vhodnou k měření. Ostatní součástky jsou běžné – odpory v děliči musí mít ovšem co nejmenší toleranci, aby souhlasila stupnice na všech rozsazích (v poloze 1 přepínače $P\check{r}_{1b}$ odpovídá plná výchylka měřicího přístroje 250 pF, v poloze 2-1 nF, 3-10 nF, 4-0,1 μ F, 5-1 μ F, 6-10 μ F, 7 - 100 μ F, 8 - 1 000 μ F). Pro měřicí rozsahy 1 až 5 se používá měřicí napětí 15 V, pro ostatní 3 V. Potenciometrem P se nastaví pracovní bod tranzistoru T₂ tak, aby při zdířkách naprázdnetekl mikromapérmetrem žádný

proud (ručka na nule). Odpor R* je třeba vybrat tak, aby při zapojení diody D_6 v propustném směru (chrání měřidlo před zničením velkým proudem) netekl měřidlem při maximální výchylce ručky větší proud, než asi 100 µA. Měřidlo ve zkušebním vzorku mělo citlivost asi 60 μA (ze starého přístroje).

Přístroj lze samozřejmě při odpovídajícím cejchování použít i k měření odporů. Při jeho stavbě je třeba dbát toho, aby použitý síťový transformátor dodával tvrdá a přesná měřicí napětí (15 a 3 V), u napájecího napětí pro měřicí zesilovač (10 V) není třeba tyto požadavky respek-

tovat (odběr asi 1 mA).

Měřicí zesilovač je postaven na destičce s plošnými spoji (obr. 81). Osazená destička je na obr. 82 (4. str. obálky). Rozteče děr pro odpory jsou upraveny pro typ TR113. Na desce plošných spojů není dioda D_5 a odpor R, jejichž použití se

Obr. 81. Deska s plošnými spoji měřiče kapacit a odporů (na desce nejsou vzhledem ke schématu odpor R a Zenerova dioda D5, viz text)

$$60 \cdot \frac{2}{70} R_{K}$$

ukázalo (vzhledem k dobře navrženému vinutí transformátoru, jež dodává přesně 10 V) jako zbytečné. Není-li napětí přesně 10 V, je ovšem třeba použít odpor R a popř. i Zenerovu diodu, aby napětí na kondenzátoru $500 \ \mu\text{F}$ (složen ze dvou kondenzátorů $200 \ \mu\text{F}$) bylo asi 13 až 14 V. Jako diodu D_6 lze použít libovolnou diodu i germaniovou (je třeba vyzkoušet).

Stmívač s tyristory

Na obr. 83 je zapojení tyristorového stmívače. Stmívačem lze regulovat výkon na činné zátěži asi do 150 W bez zvláštních nároků na jakost součástek.

Tyristory jsou zapojeny v tzv. antiparalelním zapojení a jejich otvírání a zavírání (tj. výkon na zátěži) lze jemně řídit proměnným odporem R. Při konstrukci je třeba dbát na to, aby proměnný odpor byl na zatížení kolem 2 W. Odpory stmívače jsou na zatížení 0,25 W, lze použít i půlwattové typy; na destičce je pro ně dostatek místa.

Změnou kapacit kondenzátorů C_2 a C_1 lze posunout oblast, v níž lze výkon na zá-

Obr. 83. Zapojení stmívače světel

těži regulovat – zmenšením kapacity na 2 μF lze regulovat výkon asi od poloviny do plného výkonu; s kondenzátory podle schématu (5 μF) lze např. svit žárovky 60 W utlumit tak, že vlákno jen slabě žhne.

Destička s plošnými spoji stmívače (obr. 84) je upravena rozměrově tak, aby se dala vestavět do podstavce stolní lampy. Chceme-listmívač používat k regulaci

Obr. 84. Osazená deska s plošnými spoji podle obr. 83

osvětlení, je vhodné použít jako proměnný odpor potenciometr se spínačem a pů-

vodní spínač odstranit.

Elektrolytické kondenzátory spínače jsou běžné typy s osovými vývody, lze použít jakékoli kondenzátory s dovoleným napětím asi 12 V a více (v originálu jsou použity typy TC904 a TC905). Na jednu věc je však třeba důrazně

upozornit: stmívač je zdrojem značného

rušení rozhlasových přijímačů, především těch, které mají feritovou anténu. Je proto vhodné celé zařízení stínit a stínění připojit na zemní vodič sítě a kromě toho použít odrušovací obvod na vstupu stmívače (člen LC na obr. 83). Tlumivka Lmá indukčnost asi 70 µH a kondenzátor C kapacitu asi 0.2μ F.

Celkový vzhled destičky stmívače osa-

zené součástkami je na obr. 85.

Obr. *85*. Osazená deska stmívače podle obr. 83

OBSAH

Jak začít	1	Vysílací technika		44
Napáječe, usměrňovače, řízené zdroje	3	Měřicí technika		46
Nf technika		Různě aplikovaná elektronika		5 4
Přijímací technika		Konstrukční část		55
Antény a antenní technika	40	.10		

Oprava

V minulém čísle RK je bohužel větší počet chyb (z různých objektivních důvodů). Podstatné chyby a jejich opravy uvádíme:

v obr. 8 má být horní údaj pravé stupnice 2 000 μH (nikoli 20 000)

na str. 11 a 12: správně Thomsonův vzorec (nikoli Thompsonuv)

na str. 18: obr. 14 má být správně obr. 15 a naopak na obr. 34: označení cívek (L_1, L_2) je prohozeno (horní cívka je L_2)

na str. 25: Nejdříve ... potřebujeme destičku Smaragd D14 (nikoli D13)

na str. 27: text pod obr. 42 má být správně: Rozložení součástek na kostře

na str. 28: tranzistor T2 má mít polaritu n-p-n (nikoliv

na str. 31 vlevo: Z nomogramu na obr. 16 (nikoli 18) ... ve stejném smyslu podle obr. 14c a 34 (nikoli 35) na str. 33: na obr. 60 místo C_8 má být C_6

na str. 34 vlevo: místo . . . na destičce s plošnými spoji Smaragd 0005 má být ... na destičce s plošnými spoji Smaragd D16

ua str. 36: v obr. 65 může být mezi přívody napájecího napětí nf zesilovače připojen kondenzátor C_4 (tak jak je tomu na obr. 57), není to však nutné

na str. 37: text pod obr. 66 má být správně Obr. 66. Třmen přepínače

na str. 37: správné označení vlnového přepínače je PN 53318 (nikoli 63318)

na str. 50: ... pro přímozesilující přijímač (str. 37) nikoli (str. 25)

na str. 51: dopinit na obr. 91 v pravém horním rohu obrázku "z obr. 96"

v obr. 96 mají být paralelní kondenzátory správně 470 pF (nikoli 270 pF) Závěrem bychom chtěli ještě upozornit, že v obr. 88

je prohozeno vzhledem ke schématu označení C_3 a C_4 . Proti obr. 60 jsou na obr. 57 a 65 kondenzátory $ilde{C_6}$ a $ilde{C_7}$ připojeny na zemní spoj, nikoli na kladný pól napájecího napětí - na funkci zařízení to však nemá vliv. Omlouváme se čtenářům za tyto nedostatky.

K lepšímu přehledu o destičkách s plošnými spoji, které se používají pro konstrukce z RK 1/70 uveřejňujeme jejich přehled a označení:

- vf předzesilovač detekční obvod

Smaragd D13 cívková souprava 1

- nf předzesilovač

 \mathbf{F} - audion \mathbf{H} nf zesilovač

vstupní a oscilační obvod

mf zesilovač

záznějový oscilátor

- nf propust 400 Hz

Smaragd D14

Smaragd U3 (po úpravě)

Smaragd D14 Smaragd D15 Smaragd D16 Smaragd D17

Smaragd D18 Smaragd D19

Smaragd U3 (po úpravě)

RADIOVÝ KONSTRUKTÉR - vydává Vydavatelství MAGNET, Praha 1, Vladislavova 26, telefon 234355-7 ♠ Šéfredaktor ing. František Smolík ♠ Redakce Praha 2, Lublaňská 57, tel. 223630 ♠ Redakční rada: K. Bartoš, ing. J. Čermák CSc, K. Donát, ing. L. Hloušek, A. Hofhans, Z. Hradiský, ing. J. T. Hyan K. Krbec, K. Novák, ing. O. Petráček, ing. J. Plzák, M. Procházka, ing. P. Pytner, ing. J. Vackář, CSc, laureát st. ceny KG, J. Ženíšek ♠ Ročně vyjde 6 čísel. Cena výtisku 4,50 Kčs, pololetní předplatné 13,50 Kčs, roční předplatné 27,— Kčs ♠ Rozšiřuje PNS, v jednotkách ozbrojených sil MAGNET - administracc, Praha 1, Vladislavova 26. Objednávky přijímá každá pošta i doručovatel ♠ Objednávky do zahraničí vyřizuje PNS - vývoz tisku, Jindřišská 14, Praha 1 ♠ Dohlédací pošta 07 ♠ Tiskne Naše vojsko, závod 01, Na valech 1, Praha - Dejvice ♠ Za původnost příspěvků ručí autor. Redakce rukopis vrátí, bude-li vyžádán a bude-li připojena frankovaná obálka se zpětnou adresou • Toto číslo vyšlo 23. dubna 1970

C Vydavatelství Magnet, Praha

SOUČÁSTKY PRO AMATÉRY?

Žádejte v prodejnách Tesla, zejména v Praze 1, Martinská 3 a v Brně, Františkánská 7 a v Bratislavě, Červenej armády 8 a 10

ZDOKONALUJTE SE VE SVÉM OBORU STUDIEM ODBORNÉ LITERATURY

Můžete si vybrat literaturu z radiotechniky, elektrotechniky a základní matematické příručky:

Ing. Zdeněk Paulín: 100 zajímavostí z radiotechniky

Výběr zajímavých zapojení ze světové literatury – zapojení z měřicí, nízkofrekvenční, magnetofonové a televizní techniky. Příklady jsou vybrány se zřetelem na možnou realizaci jak z hlediska potřeby, tak z hlediska dosažitelnosti použitých materiálů a součástek. Výklad doplňuje na 150 názorných schémat. TVDK – polytechnická knižnice – I. řada, 160 stran, brož. 15,– Kčs.

Ing. Ivan Slavíček: Tranzistory řídí techniku

Poznatky o využívání polovodičové elektroniky v různých oblastech techniky. Autor seznamuje čtenáře mimo jiné s tranzistorovými řídicími zesilovači, s releovým zapojením, klopnými obvody, napájecími zdroji, regulátory apod.

TVDK - polytechnická knižnice, 152 str., 146 obr., brož. 10,- Kčs.

Ing. V. Klepl-J. Klepl: Jak číst schémata v radiotechnice a elektrotechnice

Příručka (s výkladem, názornými příklady a úkoly pro cvičení) obsahuje schémata ze silnoproudé elektrotechniky, značky pro výkresy elektrických instalací, značky pro elektrické sítč, značky pro programování samočinných počítačů atd.

TVDK - polytechnická knižnice, 240 str., 234 obr., brož. 21,- Kčs.

Bohumil Dobrovolný: Matematická rekreace

Druhé vydání knížky, která je souborem zajímavých problémů a hříček z různých oblastí moderní matematiky a logiky, problémy z teorie i praxe, jejichž řešením si čtenář osvojuje základy matematického a technického myš-

TVDK - polytechnická knižnice, 132 str., 100 obr., brož. 15,- Kčs.

Doc. V. Jozifek-J. Novák, CSc.: Počítáme na logaritmickém pravítku

Tato praktická příručka vykládá podstatu logaritmického počítání a ukazuje využití logaritmického pravítka při řešení různých úloh.

TVDK - polytechnická knižnice, 136 str., 118 obr., brož. 8,- Kčs.

Logaritmické a početní tabulky

Tabulky obsahují mocniny, odmocniny, přirozené logaritmy, převrácené hodnoty čísel, obvody a obsahy kruhů, pětimístné log. tabulky od 1 do 10 000, sedmimístné log. tabulky čísel od 1 do 1 000, tabulky funkcí goniometrických, exponenciálních a hyperbolických i důležité konstanty, jejich dekadické logaritmy a jiné údaje.

Technické příručky Práce, 152 str., váz. v PVC 16,- Kčs.

Knížky obdržíte ve všech knihkupectvích vebo si je můžete objednat připojeným objednacím lístkem na adrese:

Nakladatelství

Václavské nám. 17. Praha 1.

(7	
zde odstřih	něte — — — — — — — — — — —
OBJEDNÁVÁM:	
výt. Paulín: 100 zajímavostí z radiotechniky	
výt. Slavíček: Tranzistory řídí techniku	
výt. Klepl-Klepl: Jak číst schémata	•
výt. Dobrovolný: Matematické rekreace	٠,
výt. Jozífek-Novák: Počítáme na logaritmickém pravít	ku
výt. Logaritmické a početní tabulky	
•••••••••	datum
jméno a adresa	podpis

Obr. 75. Umístění součástek a desky s plošnými spoji podle obr. 69 v přijímači z titulní strany

Obr. 76. Osazená deska podle obrázku plošných spojů reflexního přijímače s nf zesilovačem (obr. 69)

Obr. 73. Původní vzhled skříně pro přijímač z obr. 69

Obr. 74. Rozmístění jednotlivých dílů přijímače z obr. 69 ve skříni z obr. 73

Obr. 78. Deska se součástkami nf zesilovače

Obr. 82. Osazená deska s plošnými spoji podle obr. 80