

دورة: 2019

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

الديوان الوطني للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

الحتبار في مادة: الرياضيات المدة: 03 سا و 30 د

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

التمرين الأول: (04 نقاط)

 $u_{n+1} = \frac{1}{5}u_n + \frac{4}{5}$, n acc description $u_0 = 13$: $u_0 = 13$

. $u_n > 1$ ، n برهن بالتراجع أنه: من أجل كل عدد طبيعي (أ (1

ب) أدرس اتجاه تغير المتتالية (u_n) واستنتج أنها متقاربة.

. $v_n = \ln(u_n - 1)$: ب \mathbb{N} ب المتتالية العددية المعرفة على \mathbb{N} ب المتتالية العددية المعرفة على أثبت أنّ المتتالية (v_n) حسابية يطلب تعيين أساسها وحدها الأول.

. $\lim_{n\to +\infty}u_n$ غندئذ من أجل كل عدد طبيعي $u_n=1+\frac{12}{5^n}$ ، من أجل كل عدد طبيعي v_n واحسب عندئذ v_n

 $(u_0-1)(u_1-1)\times...\times(u_n-1)=\left(\frac{12}{5^{\frac{n}{2}}}\right)^{n+1}$ ، من أجل كل عدد طبيعي (4

التمرين الثاني: (04 نقاط)

يحتوي كيس على خمس كريات حمراء منها أربع كريات تحمل الرقم 1 وكرية واحدة تحمل الرقم 2 وسبع كريات خضراء منها أربع كريات تحمل الرقم 1 وثلاث كريات تحمل الرقم 2 (كل الكريات متماثلة 1 نفرق بينها عند اللمس). نسحب عشوائيا كريتين من الكيس في آن واحد ونعتبر الحادثتين 1 و 1 حيث: 1 سحب كريتين من نفس اللون 1 ، 1 سحب كريتين تحملان نفس الرقم 1 .

- A بيّن أنّ احتمال الحادثة A هو $P(A) = \frac{31}{66}$ واحسب احتمال الحادثة A
- 2) علما أنّ الكريتين المسحوبتين من نفس اللون، ما احتمال أن تحملا نفس الرقم؟
- 3) ليكن X المتغير العشوائي الذي يرفق بكل عملية سحب عدد الكريات الحمراء المتبقية في الكيس. عرف قانون الاحتمال للمتغير العشوائي X واحسب أمله الرياضياتي E(X)

التمرين الثالث: (05 نقاط)

 $(z-i)(z^2-4z+5)=0$ المعادلة ذات المجهول z التالية: $(z-i)(z^2-4z+5)=0$.I

B ، A النقط ، $\left(0;\overrightarrow{u},\overrightarrow{v}\right)$ ، النقط المتعامد والمتجانس $\left(0;\overrightarrow{u},\overrightarrow{v}\right)$ ، النقط .II و C و C التي لاحقاتها C و C على الترتيب.

. ABC على الشكل الأسي، ثم استنتج طبيعة المثلث (1 المركب $\frac{z_{c}-z_{A}}{z_{c}-z_{B}}$

 $f(z) = \frac{i z - 1 - 2i}{2z - 4 - 2i}$ من أجل كل عدد مركب z يختلف عن z + i نضع (2

 $|f(z)| = \frac{1}{2}$ النقط E من المستوي ذات اللاحقة E التي تحقق: E عين المجموعة (E) عين أن العدد E حقيقى موجب.

. $\frac{\pi}{2}$ نعتبر الدوران r الذي مركزه C الذي مركزه (3

أ) عيّن لاحقة D صورة B بالدوران r وبيّن أنّ النقط D ه و D في استقامية.

ب) استنتج أنّ D هي صورة النقطة A بتحويل نقطي بسيط يطلب تحديد طبيعته وعناصره .

التمرين الرابع: (07 نقاط)

. $f(x) = \frac{1}{x-2} + \ln x$: بالدّالة العددية المعرفة على $f(x) = \frac{1}{x-2} + \ln x$ بالدّالة العددية المعرفة على $f(x) = \frac{1}{x-2} + \ln x$

 $C_f(0; \overrightarrow{i}, \overrightarrow{j})$ المتعامد والمتجانس في المستوي المنسوب إلى المعلم المتعامد والمتجانس ($C_f(0; \overrightarrow{i}, \overrightarrow{j})$

ا احسب f(x) ا $\lim_{x \to 0} f(x)$ و $\lim_{x \to 0} f(x)$ ا $\lim_{x \to 0} f(x)$ النتائج بیانیا. $\lim_{x \to 0} f(x)$ احسب (ب) احسب (ب)

ادرس اتجاه تغیّر الدّالة f علی $[0;2[\,\cup\,]2;+\infty[$ وشکِّل جدول تغیّراتها.

(٦) نسمي (٦) المنحنى البياني للدّالة اللّوغاريتمية النّيبيرية "In" في المعلم السابق.

أ) احسب $\lim_{x\to +\infty} (f(x) - \ln x)$ أم فسِّر النَّتيجة بيانيا.

.(Γ) ادرس وضعية المنحنى (C_f) بالنِّسبة إلى المنحنى (Γ).

 (C_f) ارسم بعناية المنحنى (Γ) ثمَّ المنحنى (Φ

. الدّالة المعرفة على المجال $= \int_3^x \ln(t) dt$ بـ: $[3;+\infty[$ بـ الدّالة المعرفة على المجال $= 3;+\infty[$ بـ الدّالة المعرفة على المجال $= 3;+\infty[$

. x باستعمال المكاملة بالتّجزئة، عيّن عبارة H(x) بدلالة

ب) احسب \mathcal{A} مساحة الحيِّز المستوي المحدَّد بالمنحنى (C_f) وحامل محور الفواصل x=4 و المعادلتين: x=4 و المعادلتين: x=4

. g(x) = f(-2x): ب $]-\infty;-1[\cup]-1;0[$ بالدّالة المعرَّفة على g (6

دون حساب عبارة g(x) حدّد اتجاه تغیّر الداله g علی مجموعة تعریفها.

انتهى الموضوع الأول

الموضوع الثاني

التمرين الأوّل: (04 نقاط)

يحتوي صندوق على 10 كريات لا نفرق بينها عند اللّمس منها كريتان تحملان الرقم 0 وثلاث تحمل الرقم 1 والكريات الأخرى تحمل الرقم 2. نسحب عشوائياً وفي آنِ واحدٍ ثلاث كريات من الصندوق.

ليكن X المتغيّر العشوائي الذي يرفق بكل سحب، جداء الأرقام المسجّلة على الكريات المسحوبة.

- E(X) عرّف قانون الاحتمال للمتغير العشوائي Xثم احسب أمله الرياضياتي (1
- $\frac{7}{24}$ بيّن أنّ احتمال الحصول على ثلاث كريات كل منها تحمل رقماً زوجياً هو $\frac{7}{24}$
- 3) نسحب الآن من الصندوق كريتين على التوالي دون إرجاع. ما احتمال الحصول على كريتين تحملان رقمين مجموعهما فردي علما أن جداءهما زوجي؟

التمرين الثاني: (04 نقاط)

. $f(x) = \sqrt{x+2} + 4$ بالدّالة المعرّفة على المجال [4; 7] با

1) أ) بيّن أنّ الدالة f متزايدة تماما على المجال [7; 4].

. $f(x) \in [4;7[$ فإنَّه: من أجل كل عدد حقيقي x من المجال [4;7[فإنَّه: من أجل كل عدد حقيقي

 $f(x) - x = \frac{-x^2 + 9x - 14}{x - 4 + \sqrt{x + 2}}$ فإنّ [4;7] فإنّ عدد حقيقي x من المجال عدد حقيقي (2

f(x)-x>0 قَانٌ [4; 7] فإنّ عدد حقيقي x من المجال عدد عند من أجل كل عدد عند من المجال

- $u_{n+1}=f(u_n)$ ، $u_n=4$ عدد طبيعي ، $u_0=4$ المتتالية العددية المعرّفة ب $u_0=4$
 - $.4 \le u_n < 7$ n برهن بالتّراجع أنّه: من أجل كل عدد طبيعي (أ
 - ب) استنتج اتجاه تغيّر المتتالية (u_n) ثمّ بيّن أنّها متقارية.
- . (u_n) استنتج أنّه: من أجل كلّ عدد طبيعي n عدد طبيعي n عدد طبيعي (ب u_n) عدد طبيعي أنّه: من أجل كلّ عدد طبيعي

التمرين الثالث: (05 نقاط)

 $(O; \overline{u}, \overline{v})$ المستوي المركب منسوب إلى المعلم المتعامد والمتجانس

نعتبر النّقط A، B و C التي لاحقاتها C و B، A على التّرتيب حيث:

$$z_{C} = -2z_{A}$$
 g $z_{B} = \overline{z_{A}}$ $z_{A} = \sqrt{2} + i\sqrt{6}$

. على الشكل الأسي العدد المركب z_A على الشكل الأسي

.
$$\left(\frac{z_A}{2\sqrt{2}}\right)^{2019} + \left(\frac{z_B}{2\sqrt{2}}\right)^{2019}$$
 باحسب العدد

- Z_D عيّن Z_D الانسحاب الذي يحوِّل Z_D إلى Z_D عيّن Z_D لاحقة النّقطة Z_D صورة Z_D بالانسحاب Z_D باستنتج طبيعة الرّباعي Z_D .
 - اكتب العدد المركب $z_{C}-z_{A}$ على الشكل الأسي.
 - عددا حقيقياً. $\left(\frac{-6\sqrt{2}}{z_c-z_A}\right)^n$ عددا حقيقياً عدد الطّبيعي التي يكون من أجلها العدد المركب (4
 - . C نقطة كيفيّة من المستوي لاحقتها z حيث M تختلف عن A وتختلف عن D لتكن D لتكن D نقطة كيفيّة من المستوي لاحقتها D التي من أجلها يكون D عيّن D مجموعة النّقط D التي من أجلها يكون D عددا حقيقيا موجبا تماما.

التمرين الرابع: (07 نقاط)

المستوي منسوب إلى المعلم المتعامد والمتجانس $(O; \vec{i}, \vec{j})$. تُؤخذ وحدة الطول \mathbb{R} كما يلي: g و g المعرّفتين على \mathbb{R} كما يلي:

$$f(x) = e^{x} - \frac{1}{2}ex^{2}$$
 $g(x) = e^{x} - ex$

- 1) أ) ادرس اتجاه تغير الدالة g.
- ب) استنتج اشارة g(x) حسب قيم x الحقيقية.
 - . f ادرس اتجاه تغیّر الداله (2
- . f احسب كلاً من $\lim_{x \to -\infty} f(x)$ و $\lim_{x \to -\infty} f(x)$ ؛ ثمّ شكّل جدول تغيّرات الدالة (3
 - \mathbb{R} ادرس الوضع النسبي للمنحنيين $\left(\mathcal{C}_{f}
 ight)$ على $\left(\mathbf{4}
 ight)$
- $(e^2-2e\approx 2$ ارسم على المجال (0;2] المنحنيين (\mathcal{C}_g) و (\mathcal{C}_g) في نفس المعلم (0;i,j). (يُعطى (0;2)
 - . (\mathcal{C}_g) و (\mathcal{C}_f) احسب بالسنتمتر المربّع، مساحة الحيّز المستوي المحدّد بالمنحنيين (\mathcal{C}_g) و
- $h(x) = \frac{1}{2}ex^2 e^{|x|}$ كما يلي: $h(x) = \frac{1}{2}ex^2 e^{|x|}$
 - أ) بيّن أنّ h دالة زوجية.
- ب) من أجل $x \in [0; 2]$ انطلاقا من h(x) + f(x) ثم استنتج كيفية رسم $x \in [0; 2]$ ثم ارسمه.

العلامة		/ t \$ti
مجم	مجزأة	عناصر الإجابة (الموضوع الأول)
		التمرين الأول: (04 نقاط)
	0.75×2	$u_n > 1$ ، n عدد طبیعي عدد بانتراجع أنه من أجل كل عدد طبیعي (1 1
		: براسة اتجاه تغير المتتالية (u_n) واستنتاج تقاربها
	0.50	$\mathbb N$ متناقصة تماما على (u_n)
	0.50	بما أن (u_n) متناقصة ومحدودة من الأسفل فهي متقاربة
		: إثبات أن المتتالية (v_n) حسابية وتعيين أساسها وحدها الأول (2)
	0.25	من أجل كل عدد طبيعي $v_{n+1}-v_n=-\ln 5$: n عدد طبيعي
04	0.25	$v_0 = \ln(12)$: دها الأول $v_0 = \ln(12)$
	0.25	$v_n = \ln\left(\frac{12}{5^n}\right)$: n بدلالة v_n بدلالة (3)
	0.25	$u_n = 1 + \frac{12}{5^n}$ تبیان أن
	0.25	$\lim_{n o +\infty} u_n = 1$: (u_n) نهاية المتتالية $u_n = 1$
	0.25	$(u_0-1)(u_1-1)\times\times (u_n-1) = \left(\frac{12}{5^{\frac{n}{2}}}\right)^{n+1}$: تبیان أن (4)
		التمرين الثاني: (04 نقاط)
	01	$P(A) = \frac{31}{66}$: تبیان أن (1)
	01	$P(B) = \frac{17}{33}$
3.75	0.25	$P(B/A) = \frac{P(A \cap B)}{P(A)} = \frac{15}{31}$ احتمال أن تحملا نفس الرقم: (2
		3) أ) قانون الاحتمال للمتغير العشوائي X:
	025×3	x _i 3 4 5
	0.25×3	$P(X = x_i) \qquad \frac{10}{66} \qquad \frac{35}{66} \qquad \frac{21}{66}$
0.25	0.25	$E(X) = \frac{275}{66}$ الأمل الرياضياتي $E(X)$

العلامة		عناصر الإجابة (الموضوع الأول)
مجموع	مجزأة	, , , ,
		التمرين الثالث: (05 نقاط)
	0.5×3	ا. حلول المعادلة هي i , $2-i$, $2+i$
	0.75	$\frac{z_C - z_A}{z_C - z_B} = -i = e^{-i\frac{\pi}{2}} $ (1.11)
	0.50	المثلث ABC قائم في C ومتساوي الساقين
05	0.75	E) أ) (حور القطعة [BC]
	0.75	$\dots \qquad \left[f(i) \right]^{1440} \in \mathbb{R}^+ \text{g} \qquad f(i) = \frac{\sqrt{2}}{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) (\neg - \neg $
	0.5	$\overline{CD} = -\overline{CA}$ النقط في استقامية. $\overline{CD} = -\overline{CA}$ أي $z_C - z_A = -1$ و $z_D = 4 + i$ (أ $-$ (3)
	0.25	-ب $)$ هي صورة A بتحاك مركزه C ونسبته 1 او بدوران مركزه C وزاويته D
		π أو بتناظر مركزي بالنسبة لـ C أو بتشابه مباشر نسبته 1 مركزه
		التمرين الرابع: (07 نقاط)
	0.5×3	$\lim_{x \to 2} f(x) = +\infty \lim_{x \to 2} f(x) = -\infty \lim_{x \to 0} f(x) = -\infty (1)$
2.5	0.25×2	x=2 و $x=2$ معادلتين للمستقيمين المقاربين للمنحنى $x=0$
	0.5	$\lim_{x \to +\infty} f(x) = +\infty (\hookrightarrow$
	0.5	$f'(x) = \frac{x^2 - 5x + 4}{x(x-2)^2}$ لتجاه تغیر الدّالة f : لدینا $f'(x) = \frac{x^2 - 5x + 4}{x(x-2)^2}$
01.75	0.50	f'(x) إشارة
	3×0.25	متزایدة تماما علی کل من المجالین: $]\infty+;+$] و $[0;1]$ و متناقصة تماما علی کل من f
		المجالين]2;2] و [2;4] وتشكيل جدول التغيرات
0.75	0.5	$\lim_{x \to +\infty} (f(x) - \ln x) = 0 (1)$
	0.25	. $+\infty$ التّفسير البياني: Γ منحنى مقارب للمنحنى المنحنى البياني: Γ
		$f(x) - \ln x = \frac{1}{x-2}$ ب) وضعية المنحنى (C _f) بالنسبة إلى المنحنى (C _f): لدينا
0.5	0.5	(Γ) يقع تحت (C_f) : $]0;2[$ المجال $]0;2[$
		\cdot وعلى المجال $]2;+\infty$: $]2;+\infty$ وعلى المجال
0.5	0.5	4) الرسم

تابع الإجابة النموذجية لموضوع اختبار مادة: الرياضيات / الشعب(ة): علوم تجريبية / بكالوريا: 2019

العلامة		عناصر الإجابة (الموضوع الأول)
مجموع	مجزأة	عناصر الإجابة (الموصوع الأول)
0.5	0.25	$H(x) = \int_{3}^{x} (\ln t) dt = -x + 3 + x \ln x - 3 \ln 3$. : باستعمال المكاملة بالتّجزئة نجد (5)
	0.25	. $\mathcal{A} = (-1 + 9 \ln 2 - 3 \ln 3) \; (u.a)$. ب $)$ المساحة
0.5	0.25	. $g(x) = f(-2x)$: ب $]-\infty;-1[\cup]-1;0[$ بالدّالة المعرَّفة على المجموعة $g'(x) = -2f'(-2x)$
	0.25	$g(x) = -2f(-2x)$ $]-2;-1[U]-1;\frac{-1}{2}[$ ومتزایدة علی $]-\infty;-2[U]\frac{-1}{2};0[$ ومتزایدة علی $g(x)=-2f(-2x)$

العلامة		
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		التمرين الأول: (04 نقاط)
02.5	0.5	1)عدد الامكانيات هو 120 ،
	01.5	قانون الاحتمال: . قيم X هي $1،0،$ 2 ، 4 ، 8 مع احتمالاتها
	0.50	$\frac{231}{120}$ الامل الرياضياتي هو
01	01	$\frac{7}{24}$ احتمال الحصول على 3كريات تحمل كل منها رقما زوجيا $\frac{7}{24}$
0.5	0.25×2	$\frac{1}{2}$ احتمال الحصول على كرتين تحملان رقمين مجموعهما فردي علما أن الجداء زوجي هو $\frac{1}{2}$
		التمرين الثاني: (04 نقاط)
01.25	0.75	$f'(x) = \frac{1}{2\sqrt{x+2}}$ (أ $f'(x) = \frac{1}{2\sqrt{x+2}}$
01.23	0.5	$f(x) \in [4;7]$ يكون: $[4;7]$ من أجل كلّ عدد حقيقي x من المجال
0.75	0.75	$f(x)-x>0$: [4;7] ومن أجل كلّ x من المجال $f(x)-x=\frac{-x^2+9x-14}{\sqrt{x+2}+x-4}$ (2
	0.75	$4 \le u_n < 7 : n$ برهان بالتّراجع أنّه من أجل كلّ عدد طبيعي أ برهان بالتّراجع أنّه من أجل كلّ عدد طبيعي
01.25	0.25	ب) لدينا: $u_n = u_n + u_n = u_n$ إذن: $u_n > 0$ ومنه $u_{n+1} - u_n = u_n = u_n$ متزايدة تماما.
	0.25	متقاربة. $\left(u_{n} ight)$
	0.25	$.7-u_{n+1}<rac{1}{4}(7-u_{n}):n$ غدد طبيعي أ $.7-u_{n+1}<rac{1}{4}$
0.75	0.25	$0 < 7 - u_n < \frac{3}{4^n}$ ، n عدد طبیعي عدد طبیعي استنتاج أنّه من أجل كلّ عدد طبیعي
	0.25	. حسب مبرهنة الحصر $\lim_{n \to +\infty} u_n = 7$
		التمرين الثالث: (05 نقاط)
	01	z_A الشكل الآسي لـ z_A الشكل الآسي الآسي ال
01.5	0.5	$\left(\frac{z_A}{2\sqrt{2}}\right)^{2019} + \left(\frac{z_B}{2\sqrt{2}}\right)^{2019}$ با حساب (ب
0.4.	0.75	T أ z_D حساب عصورة z_D بواسطة z_D
01.5	0.75	ب) الرّباعي ABDC متوازي أضلاع.
0.75	0.75	$\sim 6\sqrt{2}e^{irac{4\pi}{3}}$ هو z_C-z_A الشكل الأسّي للعدد المركب z_C-z_A هو
0.5	0.5	$\left(\frac{-6\sqrt{2}}{z_C - z_A}\right)^n = e^{-in\frac{\pi}{3}}$ لدينا (4
V. S	V. 2	$k\in\mathbb{Z}_{-}$ عدد حقیقي یعني أن: $n=-3k$ عدد حقیقي یعني أن $\left(\frac{-6\sqrt{2}}{z_{C}-z_{A}}\right)^{n}$

العلامة		/ Aliibi
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
0.75	0.75	$_{\mathcal{C}}$ نقطة كيفية من المستوي لاحقتها تختلف عن A و $_{\mathcal{Z}}$
		(E) (AC) المستقيم (AC) المستقيمة المستقيمة المستقيمة (AC) المستقيم (AC) المستقيم (AC)
		التمرين الرابع: (07 نقاط)
	0.5×2	$g'(x)=e^x-e:x\in\mathbb{R}$ دراسة اتجاه تغیّر الدالة $g:g$ لیکن (1
02	0.5×2	ب) الدالة g تقبل قيمة حدّية صىغرى:
	0.3^2	$g(x) \ge 0$: $x \in \mathbb{R}$ اذن من أجل كل $g(1) = e^1 - e = 0$
	0,50	$f'(x) = e^x - ex = g(x) : x \in \mathbb{R}$ دراسة اتجاه تغیّر الدالة f : لیکن (2)
01	0,50	لدينا $g(x) > 0: x \in \mathbb{R} - \{1\}$ ومن أجل $f'(x) > 0$ أي $f'(x) = g(1) = 0$ إذاً
	0,50	\mathbb{R} الدالة f متزايدة تماماً على
		$\lim_{x \to +\infty} f(x)$ او $\lim_{x \to +\infty} f(x)$ حساب کلاً من
	0.25	1
		$\lim_{x \to \infty} -\frac{1}{2}ex^2 = -\infty, \lim_{x \to \infty} e^x = 0 \text{if } \lim_{x \to \infty} f(x) = \lim_{x \to \infty} e^x - \frac{1}{2}ex^2 = -\infty$
0.75	0.25	$\lim_{x \to +\infty} x^2 = +\infty \text{if} \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(e^x - \frac{1}{2} e x^2 \right) = \lim_{x \to +\infty} x^2 \left(\frac{e^x}{x^2} - \frac{1}{2} e \right) = +\infty$
		$\lim_{x \to +\infty} \frac{e^x}{x^2} = +\infty \ $
	0.25	جدول التغيرات
		دراسة الوضعية النسبية للمنحنيين (\mathcal{C}_{f}) و (\mathcal{C}_{g}) .
0.50	0,50	$f(x)-g(x)=ex\left(-\frac{1}{2}x+1\right)$: $x \in \mathbb{R}$ ليكن
		$\left(\mathcal{C}_{g}\right)$ تحت $\left(\mathcal{C}_{f}\right)$: $x \in]-\infty;0[\cup]2;+\infty[$
0.75	0,75	$\left(\mathcal{C}_{g}^{}\right)$ فوق $\left(\mathcal{C}_{f}^{}\right)$: $x\in\left]0;2\right[$
		و $\left(\mathcal{C}_{g} ight)$ متقاطعان $\left(\mathcal{C}_{f} ight)$. $x\in\left\{ 0;2\right\}$
0.50	0.25	$(\mathcal{C}_{\!f})$: الرسم (5
0.50	0.25	$\left(\mathcal{C}_{g}\right)$

تابع الإجابة النموذجية لموضوع اختبار مادة: الرياضيات / الشعب(ة): علوم تحريبية / بكالوريا: 2019

العلامة		
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		$\cdot \left(\mathcal{C}_{g} ight)$ حساب بالسنتمتر المربّع، مساحة الحيّز المستوي المحدّد بالمنحنيين $\left(\mathcal{C}_{f} ight)$ و $\left(\mathcal{C}_{g} ight)$
0.5	0.25	$A = \int_{0}^{2} \left[g(x) - f(x) \right] dx = \int_{0}^{2} \left(-\frac{1}{2} ex^{2} + ex \right) dx = \left[-\frac{1}{6} ex^{3} + \frac{1}{2} ex^{2} \right]_{0}^{2}$
0.5		$A = -\frac{8e}{6} + \frac{4e}{2} = -\frac{4e}{3} + 2e = \frac{2e}{3}ua$
	0.25	$A = \frac{8e}{3}cm^2$
	0.25	7) أ) الله زوجية
01	0.25	$h(x) + f(x) (\psi)$
01	0.25	استنتاج کیفیة رسم (Γ) انطلاقا من $(\mathcal{C}_{f}$)
	0.25	الرسم