Expection

by 刘成锴

Definition of expectation

For a random variable $X\in \mathcal{L}^1=L^1(\Omega,\mathcal{F},P)$, we define the $expectation \ E(X)$ of X by

$$E(X) := \int_{\Omega} X dP = \int_{\Omega} X(\omega) P(d\omega)$$

We also define $E(X)(\leq \infty)$ for $X \in (m\mathcal{F})^+$. In short, E(X) = P(X).

Convergence theorems

Suppose that (X_n) is a sequence of RVs, that X is a RV, and that $X_n o X$ almost surely:

$$P(X_n \to X) = 1$$

The notation E(X; F)

For $X \in \mathcal{L}^1$ or $(m\mathcal{F})^+$ and $F \in \mathcal{F}$, we define

$$E(X;F):=\int_F X(\omega)P(d\omega):=E(XI_F)$$

where,

$$\mathrm{I}_F(\omega) := egin{cases} 1 & ext{if } \omega \in F \ 0 & ext{if } \omega
otin F \end{cases}$$

Jensen's inequality for convex functions

A function $c:G\to \mathbf{R}$, where G is an open subinterval of \mathbf{R} , is called **convex** on G if its graph lies below any of its chords: for $x,y\in G$ and $0\le p=1-q\le 1$,

$$c(px + qy) \le pc(x) + qc(y)$$

Jensen's inequality

Suppose that $c:G\to {\bf R}$ is a convex function on an open subinterval G of ${\bf R}$ and that X is a random variable such that

$$E(|X|) < \infty$$
, $P(X \in G) = 1$, $E|c(X)| < \infty$

Then

$$Ec(X) \ge c(E(X))$$

Monotonicity of \mathcal{L}^p norms

For $1\ leq p < \infty$, we say that $X \in \mathcal{L}^p = \mathcal{L}^p(\Omega, \mathcal{F}, P)$ if

$$E(|X|^p) < \infty$$

define

$$\|X\|_p:=\left\{\mathbf{E}\left(|X|^p
ight)
ight\}^{rac{1}{p}}$$

Monotonicity

If $1 \leq p \leq r < \infty$ and $Y \in \mathcal{L}^r$, then $Y \in \mathcal{L}^p$ and

$$||Y||_p \le ||Y||_r$$

Schwarz inequality

If X and Y are in \mathcal{L}^2 , then $XY \in \mathcal{L}^1$, and

$$|E(XY)| \le E(|XY|) \le ||X||_2 ||Y||_2$$

Hölder inequality

Suppose that $f,g\in\mathcal{L}^p(S,\Sigma,\mu),\;h\in\mathcal{L}^q(S,\Sigma,\mu).$ Then

Hölder's inequality

 $fh \in \mathcal{L}^1(S,\Sigma,\mu)$ and

$$|\mu(fh)| \leq \mu(|fh|) \leq \|f\|_p \|h\|_q$$

Minkowski's inequality

$$\|f+g\|_p \leq \|f\|_p + \|g\|_p$$

Completeness of $\mathcal{L}^p (1 \leq p < \infty)$

Let $p \in [1, \infty)$.

If (X_n) is a Cauchy sequence in \mathcal{L}^p in that

$$\sup_{r,s > k} \|X_r - X_s\|_p o 0 \quad (k o \infty)$$

then there exists X in \mathcal{L}^p such that $X_r \to X$ in \mathcal{L}^p :

$$\|X_r - X\| o 0 \quad (r o \infty)$$

Orthogonal projection

Theorem

Let $\mathcal K$ be a vector subspace of $\mathcal L^2$ which is complete in that whenever (V_n) is a sequence in $\mathcal K$ which has the Cauchy property that

$$\sup_{r,s > k} \|V_r - V_s\| o 0 \quad (k o \infty)$$

then there exists a V in $\mathcal K$ such that

$$\|V_n - V\| o 0 \quad (n o \infty)$$

Then given X in \mathcal{L}^2 , there exists Y in \mathcal{K} such that

(i)
$$\|X - Y\| = \Delta := \inf\{\|X - W\| : W \in \mathcal{K}\}$$

(ii)
$$X-Y\perp Z, \quad \forall Z\in \mathcal{K}$$

Properties (i) and (ii) of Y in $\mathcal K$ are equivalent and if $\tilde Y$ shares either property (i) or (ii) with Y, then

$$\|\tilde{Y} - Y\| = 0$$
 (equivalently, $Y = \tilde{Y}$, a.s.)

Definition

The random variable Y in the theorem is called a version of the *orthogonal projection* of X onto $\mathcal K$. If $\tilde Y$ is another version, then $\tilde Y=Y$, a.s.

Covariance

Civariance and variance

$$\mathrm{Cov}(X,Y) = \mathrm{E}(XY) - \mu_X \mu_Y$$

$$\operatorname{Var}(X) := E[(X - \mu_X)^2] = E(X^2) - \mu_X^2 = \operatorname{Cov}(X, X)$$

Inner product, angle

Inner (or scalar) product

$$\langle U, V \rangle := \mathrm{E}(UV)$$

And if $||U||_2$ and $||V||_2 \neq 0$, we define the cosine of the angle θ between U and V by

$$\cos\theta = \frac{\langle U, V \rangle}{\|U\|_2 \|V\|_2}$$

the correlation ρ of X and Y is $\cos \alpha$ where α is the angle between \tilde{X} and \tilde{Y} .