# Weather Forecasting using Logistic Regression

Norma Quiroz

GitHub

Kaggle

### Introduction

The <u>Weather Forecast Dataset</u> at Kaggle consists of 2500 observations with six weather conditions: Temperature, Humidity, Wind Speed, Cloud Cover, and Pressure.

Objective: predict the rainfall based on these weather conditions by applying logistic regression.

# Data Exploration

- Rain is a categorical variable with two classes.
- The rest of the variables are continuous.
- ☐ No missing values,no outliers.
- ☐ No correlation between variables.
- ☐ Scatter plots show the different range of values for the *Rain* classes in *Temperature*, *Humidity* and *Cloud Cover*.

The *Rain* variable is slightly imbalanced.





## Data processing



## Logistic regression predictor

#### Considerations:

- In the context of weather, false negatives can be more costly than false positives. Hence, the best metrics to consider are recall and f1-score.
- The data set is a bit imbalanced.

A weighted logistic regression is suitable for these considerations.

The model predicting the probability of rain is given by the function

$$P(y_i = 1|X_i) = \frac{1}{1 + e^{3.76 + 2.1 \, T - 3.01 \, H - 0.06 \, WS - 2.65 \, CC + 0.02 \, P}}$$

with coefficients

|             | Н        | VVS        | CC          | Р         |
|-------------|----------|------------|-------------|-----------|
| Temperature | Humidity | Wind_Speed | Cloud_Cover | Pressure  |
| -2.102817   | 3.011339 | 0.061277   | 2.649962    | -0.024458 |

| Metrics | r       | recision | recall | f1-score |
|---------|---------|----------|--------|----------|
|         | 0       | 0.99     | 0.89   | 0.94     |
|         | 1       | 0.51     | 0.91   | 0.66     |
| a       | ccuracy |          |        | 0.89     |
| ma      | cro avg | 0.75     | 0.90   | 0.80     |
| weigh   | ted avg | 0.93     | 0.89   | 0.90     |

#### Model Evaluation





### Conclusions

- 1. The weighted logistic model reduces the number of false negatives.
- 2. The model has an acceptable accuracy, but recall is much better.
- 3. Humidity is the most influential variable in the model due to its highest coefficient.
- 4. Cloud Cover and Temperature contribute significantly but Temperature does in the opposite direction. Wind Speed and Pressure contribute less.
- 5. The area under the ROC-AUC curve is 0.9 which shows the good performance of the model.