Political Methodology

Political Methodology

- Using research designs and statistical methods to analyze data and test hypotheses derived from theory.
- Name of the game: making inferences about unknown quantities of interest based on known quantities of interest.
 - Most frequently: From sample to population.
 - Generalization; knowledge claims about political phenomena
- Causal inference: What is the causal effect of X on Y?
- Communicating uncertainty; probabilistic modeling, so there is sampling uncertainty.
 - Notion of infinite sampling; classical probability theory

Causality

Causality and the notion of ceteris paribus

Definition of causal effect of x on y:

How does variable y change if variable x is changed but all other relevant factors are held constant?

- x is our independent variable (explanatory, causal variable); y is our dependent variable (the outcome variable we want to explain).
 - X explains y; x causes y

Causality

Causality and the notion of ceteris paribus

Definition of causal effect of x on y:

How does variable y change if variable x is changed but all other relevant factors are held constant?

- Most questions are ceteris paribus questions
- It is important to define which causal effect one is interested in
- It is useful to describe how an experiment would have to be designed to infer the causal effect in question

Causal Inference

- Experimental Data
- Observational Data

Different kinds of data sets in political science

- Cross-sectional data
- Time series data
- Pooled cross sections
- Panel/Longitudinal data
- Multilevel (hierarchical) data
- Methods depend on the nature of the data used
 - Use of inappropriate methods may lead to misleading results

Cross-sectional data sets

- Sample of individuals, households, firms, cities, states, countries,
 or other units of interest at a given point of time/in a given period
- Cross-sectional observations assumed to be independent
- For example, pure random sampling from a population
- Sometimes pure random sampling is violated, e.g. units refuse to respond in surveys, or if sampling is characterized by clustering
- Cross-sectional data in political science

Cross-sectional data set on wages and other characteristics

				er Individual Ch	
obsno	wage	educ	exper	female	married
1	3.10	11	2	1	0
2	3.24	12	22	1	1
3	3.00	11	2	0	0
4	6.00	8	44	0	1
5	5.30	12	7	0	
. 1					•
. \					•
	•				•
525	11.56	16	5	0	1
526	3.50	14	5	1	О

Indicator variables (1=yes, 0=no)

Observation number

Hourly wage

Cross-sectional data on growth rates and country characteristics

TABLE 1.2	A Data Set on Econon	nic Growth I	Rates and Country Chara	acteristics
obsno	country	gpcrgdp	govcons60	second60
1	Argentina	0.89	9	32
2	Austria	3.32	16	50
3	Belgium	2.56	13	69
4	Bolivia	1.24	18	12
		1.	1	*
٠	•	/	/ .	
•	. /			
61	Zimbabwe	2.30	17	6
				\
	Growth rate o		Government consumti	
	per capita GD	P	as percentage of GDP	educati

Time series data

- Observations of a variable or several variables over time
- For example, stock prices, money supply, consumer price index,
 gross domestic product, annual homicide rates, automobile sales, ...
- Time series observations are typically serially correlated
- Ordering of observations conveys important information
- Data frequency: daily, weekly, monthly, quarterly, annually, ...
- Typical features of time series: trends and seasonality

■ Time series data on minimum wages and related variables

TABLE 1.3	Minimum Wa	ge, Unemploym	ent, and Relate	d Data for Puer	to Rico
obsno	year	avgmin	avgcov	prunemp	prgnp
1	1950	0.20	20.1	15.4	878.7
2	1951	0.21	20.7	16.0	925.0
3	1952	0.23	22.6	14.8	1015.9
	٠		1	1	. •
	. /				
•					
37	1986	3.35	58.1	18.9	4281.6
38	1987	3.35	58.2	16.8	4496.7
				\	
verage minim age for given		verage overage rate		Unemploy rate	/ment (

Pooled cross sections

- Two or more cross sections are combined in one data set
- Cross sections are drawn independently of each other
- Pooled cross sections often used to evaluate policy changes
- Example:
 - Evaluate effect of change in property taxes on house prices
 - Random sample of house prices for the year 1993
 - A new random sample of house prices for the year 1995
 - Compare before/after (1993: before reform, 1995: after reform)

	Pooled	cross sect	ions on	housing	prices	Property tax
--	--------	------------	---------	---------	--------	--------------

TADIE 1 A	Pooled C	ross Sactions	Two Voors of	f Housing Price	nc -	
obsno	year	hprice	proptax	sqrft	bdrms	bthrms
1	1993	85500	42	1600	3	2.0
2	1993	67300	36	1440	3	2.5
3	1993	134000	38	2000	4	2.5
•						·
	•	•		•	÷	•
250	1993	243600	41	2600	4	3.0
251	1995	65000	16	1250	2	1.0
252	1995	182400	20	2200	4	2.0
253	1995	97500	15	1540	3	2.0
•			•	<u>.</u>	•	•
•						
520	1995	57200	16	1100	2	1.5

Size of house in square feet

Number of bathrooms

reform

eform

Panel or longitudinal data

- The same cross-sectional units are followed over time
- Panel data have a cross-sectional and a time series dimension
- Panel data can be used to account for time-invariant unobservables
- Panel data can be used to model lagged responses
- Example:
 - City crime statistics; each city is observed in two years
 - Time-invariant unobserved city characteristics may be modeled
 - Effect of police on crime rates may exhibit time lag

Two-year panel data on city crime statistics

TABLE 1.	5 A Two-Ye	ear Panel Dat	a Set on City	Crime Statistic	s		
obsno	city	year	murders	population	unem	police	Each city has two ti
1	1	1986	5	350000	8.7	440	series observations
2	1	1990	8	359200	7.2	471	
3	2	1986	2	64300	5.4	75	
4	2	1990	1	65100	5.5	75	Number of
				•		•	police in 1986
•	•	•	•		•		
						· · /	
297	149	1986	10	260700	9.6	286	Number of
298	149	1990	6	245000	9.8	334	police in 1990
299	150	1986	25	543000	4.3	520	Cengage Le
300	150	1990	32	546200	5.2	493	Ocero

Hierarchical Data

Student	School	Y	X1	X2	Х3	X4
1	1	54	2	32	1	44
2	1	64	4	25	1	44
3	1	87	9	45	1	44
4	2	24	4	44	0	36
5	2	98	7	32	0	36
6	2	65	6	22	0	36
7	3	45	9	19	0	22
8	3	32	5	15	0	22
9	3	37	2	25	0	22
10	4	84	7	30	1	45
11	4	45	4	38	1	45
12	4	65	3	36	1	45
13	5	21	8	41	1	18
14	5	65	6	22	1	18
15	5	98	1	18	1	18

• X1 and X2 are level-1 variables

• X3 and X4 are level-2 variables.

• Balanced data: cluster sizes are equal

Levels of Measurement

- Levels of measurement
 - three levels of measurement:
 - interval (continuous)
 - ordinal
 - nominal
 - Type of variable(s) you have dictates how you analyze, summarize, and generalize about it.
 - E.g., scatterplots, bar graphs, histograms

- Type of **dependent variable** you have dictates the type of method you use.
 - Interval/continuous: linear regression (OLS).
- Other types of dependent variables:
 - Binary: logit/probit via MLE
 - Ordinal: ordered logit/probit via MLE
 - Nominal: multinomial logit/probit via MLE
 - Duration (time until event): duration, event history models via MLE