# Aggression and Misogyny Detection using BERT: A Multi-Task Approach

Niloofar Safi Samghabadi\*, Parth Patwa\*, Srinivas PYKL, Prerana Mukherjee, Amitava Das, Thamar Solorio



# **Motivation**

- Social Media: <u>Important</u> and <u>influential</u> means of communication.
- Some people <u>misuse</u> them by engaging in <u>aggressive</u> <u>behavior</u> and by spreading <u>hateful content</u>.
- This antisocial behavior causes disharmony in society.
- It is **not possible** to moderate online content manually due to the <u>time</u> and <u>cost</u>.
- Solution: Build automatic model to identify aggression and hate-speech.



# **Problem Statement**

- Let's assume that  $\{w_1, w_2, ..., w_n\}$  is the sequence of words in a comment.
- We aim at creating a model that given this input
  - > Task 1: identify whether it is aggressive.
  - > Task 2: identify whether it is gendered.

|         | Train | Dev   |         | Test  | NAG, OAG. CAG    |
|---------|-------|-------|---------|-------|------------------|
| English | 4,263 | 1,066 | English | 1,200 |                  |
| Hindi   | 3,984 | 997   | Hindi   | 1,200 |                  |
| Bengali | 3,826 | 957   | Bengali | 1,188 | GEN, NGEN        |
|         |       |       |         |       | SEI I, I I SEI I |

# Data Statistics: Sub-task A



# **Data Statistics: Sub-task B**



# Co-occurrence of Sub-task Labels

- The probability that an example belonging to an aggression class is also GEN increases as directness of aggression increases ( P(GEN | NAG) < P(GEN | CAG) < P(GEN | OAG) ).
- Hence, the two sub-tasks are related.



# **Model Architecture**



# **Experimental Setup**

- ❖ We used pre-trained BERT models (which are not fine-tuned):
  - English: bert\_base\_uncased
  - Hindi & Bengali: bert\_base\_multilingual\_cased
- Binary cross entropy loss (sum for task A and B).
- Class weights used in loss function to address data imbalance.
- Adam optimizer.
- ❖ Learning rate: 10<sup>-5</sup>.
- Run for 200 epochs, save on best validation F1.
- Trained on Tesla P40 GPU, Approx 1.5min/epoch.

# **Results: Sub-tasks**

- Best rank on English-B (3rd out of 15).
- Misogyny (2 classes) is relatively easier to detect than Aggression (3 classes).
- System lags behind the winner on English-B (0.8715 F1), and Bengali-B (0.9365 F1) by 0.0136 and 0.0159, which makes it competitive.

| Sub-task | English | Hindi  | Bengali |
|----------|---------|--------|---------|
| Α        | 0.7143  | 0.7183 | 0.7369  |
| В        | 0.8579  | 0.8008 | 0.9206  |

Table 1: Weighted F1 scores for all sub-tasks

# **Results: Class-wise**

- CAG least score hence most challenging aggression class.
- English least OAG, CAG scores due to higher data imbalance (79% train examples NAG).
- Max difference in NGEN F1 and GEN F1 on English due to higher data imbalance (93% train examples NGEN).

| 1        |      | Sub-task A | Sub-task B |      |      |
|----------|------|------------|------------|------|------|
| Language | NAG  | CAG        | OAG        | GEN  | NGEN |
| English  | 0.86 | 0.40       | 0.62       | 0.53 | 0.91 |
| Hindi    | 0.68 | 0.43       | 0.82       | 0.77 | 0.83 |
| Bengali  | 0.84 | 0.45       | 0.71       | 0.75 | 0.96 |

Table 2: Class-wise F1 scores for all sub-tasks.

# **Confusion Matrices: Sub-task A**



- CAG more likely to be wrongly predicted as NAG than OAG, due to lack of abusive/explicit words in CAG.
- In Hindi, OAG-NAG confusion (100) is high, as majority of the train instances are NAG (56.35%), whereas the majority of the test instances are OAG (57.00%).

# **Confusion Matrices: Sub-task B**



❖ GEN-NGEN confusion for Hindi (180) is higher than that in other languages, as the distribution of classes across the test data (47% GEN) is significantly different from that in training data (17% GEN).

# **Error Analysis: CAG-NAG**

- Due to the indirect/sarcastic nature and lack of profanity in CAG, it is often confused with NAG:
  - > "Fat shaming is good. Why not?'"
  - "They have no right to live"
  - "Inko hospital bejo..ye mentally hille hue log han" (Send them to hospital, they are mentally disturbed people.)

# **Error analysis: Noise in the Data**

| Sub-task  | Text                                                                                                                                                                                             | Annotated | Predicted |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| English-A | "Also Veere Di Wedding Fake Feminist Piece Of Shit"                                                                                                                                              | NAG       | OAG       |
| Hindi-A   | "Mujhe bhi jand lagi movie lakin maine chutiyo ke samne<br>jaban nahi kholi or nahi kholuga" (I also found this movie stupid,<br>but I didn't open my mouth in front of idiots and won't do so.) | NAG       | OAG       |
| English-B | "kapil why are u listening to these chutiaasssssgive them shut upcallinsane idiots"                                                                                                              | GEN       | NGEN      |
| Hindi-B   | "Kaunsi charas ya afeem phoonk ke aayi hai ye. Gandee aurat.<br>Aurat ke naam pe dhabba." (Which weed or poppy has she<br>smoked? Dirty lady. Blot on the name of a woman.)                      | NGEN      | GEN       |

Table 3: Instances where predicted labels seem more likely to be correct than annotated labels.

# **Conclusion and Future Work**

#### Conclusion

- > Sub-tasks A and B are related.
- > CAG is the most difficult class to detect and is often confused with NAG.

### Future Work

- Finetune BERT.
- More features for better identification of CAG.

# **Thank You**



THANK YOU FOR YOUR LISTENING

DO YOU HAVE ANY QUESTIONS?

Contact: <a href="mailto:nsafisamghabadi@uh.edu">nsafisamghabadi@uh.edu</a>, <a href="mailto:parthprasad.p17@iiits.in">parthprasad.p17@iiits.in</a>
Paper link: <a href="mailto:http://panlingua.co.in/trac-2/pdf/2020.trac2-1.20.pdf">http://panlingua.co.in/trac-2/pdf/2020.trac2-1.20.pdf</a>
Code and model weights: <a href="mailto:https://github.com/NiloofarSafi/TRAC-2">https://github.com/NiloofarSafi/TRAC-2</a>



## Classes

#### Sub-task A

- > NAG (Not Aggressive) No aggression in text. E.g. "hats off brother".
- > CAG (Covertly Aggressive) Indirect aggression, sarcasm, no explicit words. E.g., "You are not wrong, you are just ignorant.".
- > OAG (Overtly Aggressive) Direct attack, explicit words. E.g., "Liberals are retards".

### Sub-Task B

- ➤ Gen (Gendered) Targets a person or a group based on gender, sexuality, or lack of fulfillment of stereotypical gender roles. E.g., "Homosexuality should be banned"
- NGEN (Not Gendered) Texts that are not gendered. E.g.. "you are absolutely true bro...but even politicians supports them"

# **Related Research**

- NLP community has shown interest in aggression detection and related areas.
- Several related workshops and share tasks have been conducted:
  - Abusive Language online (ALW) [1]
  - > SemEval shared task on Identifying Offensive Language in Social Media (OffensEval) [2]
- Deep learning has become popular for hate speech identification. [3,4]
- Sexism, a subset of hate-speech has been analyzed and further categorized. [5,6]
- The first Shared Task on Aggression Identification aimed to identify aggressive social media posts and provided datasets in Hindi and English. [7]

## References

- [1] Sarah T. Roberts, et al., editors. (2019). Proceedings of the Third Workshop on Abusive Language Online. Association for Computational Linguistics.
- [2] Zampieri, M., Nakov, P., Rosenthal, S., Atanasova, P., Karadzhov, G., Mubarak, H., Derczynski, L., Pitenis, Z., and Coltekin, c. (2020). SemEval-2020 Task 12: Multi-lingual Offensive Language Identification in Social Media (OffensEval 2020). In Proceedings of SemEval.
- [3] Zhang, Z., Robinson, D., and Tepper, J. (2018). Detecting Hate Speech on Twitter Using a Convolution-GRUBased Deep Neural Network. In Lecture Notes in Computer Science. Springer Verlag.
- [4] Dadvar, M. and Eckert, K.(2018). Cyberbullying detection in social networks using deep learning based models; a reproducibility study. arXiv preprint arXiv:1812.08046.
- [5] Jha, A. and Mamidi, R. (2017). When does a compliment become sexist? analysis and classification of ambivalent sexism using twitter data. In Proceedings of the Second Workshop on NLP and Computational Social Science.
- [6] Sharifirad, S. and Matwin, S. (2019). When a tweet is actually sexist. A more comprehensive classification of different online harassment categories and the challenges in NLP. CoRR, abs/1902.10584
- [7] Ritesh Kumar, et al., editors, Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying (TRAC-2018). Association for Computational Linguistics., 2018

# **Model Architecture**

