Range - Différence bet man obs 2 min obs Quartile diviation. Measures which en prins the Spread of observations in terms of distance between the values of selected observation First Quartile = 0, = L + $\frac{N_1 - c.t}{4}$ *h

where L is lower limit of first quartile class

c 1. (1) Second quartile(Q1): s mudian of data

third quartile(Q2), Q3 = L + 3th - cd * h

where L is lower limit of 9 third quartile class

or -111 Quartile Deviation - 03-01 Coefficient of Quartile Deviation = $\frac{03-01}{63+01}$ Mean Deviation - 10:1 where N is total number of observations and Di = X-A; A is central measure (Mean or Median or Mode)

Mean or Median or Mode)

1. tri hution If list=1,2,-- m is frequency distribution thun Mean deviation = \frac{\internal}{N} = · Raw data $O = \int \frac{\sum (N_i)^2}{N} - \frac{\sum N_i}{N} \frac{1}{N} \frac{1}{N} \frac{1}{N} \frac{1}{N} = \frac{1}{N} \frac{1}{N} \frac{1}{N} \frac{1}{N} = \frac{1}{N} \frac{$ Discrete or Continuous data: $\sigma = \int \frac{z di(\pi i)^{2}}{N} \frac{|z di\pi i|^{2}}{N}$ where π is total frequency and $\frac{z di(di)^{2}}{N} = \frac{z di(di)^{2}}{N} = \frac{$ coefficient of variation \$ *100%

Range

Range is the difference between max observation and min observation

Problems

1. Find the range of 1100, 1150, 1080, 1120, 1200, 1160, 1400.

Range= 1400-1080=320

2. Find the range of the following data:

	Χ	1	2	3	4	5	6	7	8	9	10	11	12
ĺ	f	3	8	15	23	35	40	32	28	20	45	14	6

Range=12-1=11

3. Find the range of the following data:

Marks	0-10	10-30	30-60	60-100
No. of students	5	12	25	8

Range=100-0=100

Module - I 24 / 30

Mean Deviation

- For raw data, Mean deviation $=\frac{|D_i|}{N}$ where N is the total number of observations and $D_i = X A$, A is a central measure (Mean or Median or Mode)
- For discrete or continuous data, Mean deviation $=\frac{f_i|D_i|}{N}$ where N is the total frequency.

Problems

1. Calculate the mean deviation about median for the following data:

	Income (Rs.)	1000	1500	800	2000	2500	1800
ĺ	No. of persons	24	26	16	20	6	30

Module - I 27 / 30

Mean Deviation

- For raw data, Mean deviation $=\frac{|D_i|}{N}$ where N is the total number of observations and $D_i = X A$, A is a central measure (Mean or Median or Mode)
- For discrete or continuous data, Mean deviation $=\frac{f_i|D_i|}{N}$ where N is the total frequency.

Problems

1. Calculate the mean deviation about median for the following data:

Income (Rs.)	1000	1500	800	2000	2500	1800
No. of persons	24	26	16	20	6	30

2. Calculate the mean deviation about median for the following data:

Marks	0-10	10-30	30-60	60-100
No. of students	5	12	25	8

Module - I 27 / 30

Standard Deviation

- Raw data: $\sigma = \sqrt{\frac{\sum (x_i)^2}{N}} (\frac{\sum x_i}{N})^2$ where N is the total number of observations.
- Discrete or Continuous data: $\sigma = \sqrt{\frac{\sum f_i(x_i)^2}{N} (\frac{\sum f_ix_i}{N})^2}$ where N is the total frequency.
- Discrete or Continuous data: $\sigma = (\sqrt{\frac{\sum f_i(d_i)^2}{N}} (\frac{\sum f_id_i}{N})^2) * h$ where N is the total frequency and $d_i = \frac{x_i A}{h}$

Problems

1. Calculate standard deviation for the following data:

Χ			12		14
f	3	12	18	12	3

Module - I 28 / 30

Problems

1. Goals scored by two teams in a foot ball season were as follows:

No. of goals scored	0	1	2	3	4	5
No. of matches (Team A)	15	10	7	5	3	2
No. of matches (Team B)	20	10	5	4	2	1

State which team is more consistent. ($C.V_A = 63.29\%$, $C.V_B = 92.57\%$, A is more consistent.)

Module - I 30 / 30

Problems

1. Goals scored by two teams in a foot ball season were as follows:

No. of goals scored	0	1	2	3	4	5
No. of matches (Team A)	15	10	7	5	3	2
No. of matches (Team B)	20	10	5	4	2	1

State which team is more consistent. ($C.V_A = 63.29\%$, $C.V_B = 92.57\%$, A is more consistent.)

2. Two brands of tyres are tested with the following results

Life (in '000 miles)	20-25	25-30	30-35	35-40	40-45
No. of tyres (Brand X)	1	22	64	10	3
No. of tyres (Brand Y)	0	24	76	0	0

- (a) Which brand of tyres have greater average life?
- (b) Compare the variability and state which brand of tyres would you use on your fleet of trucks?

$$\bar{X} = 32.1, \sigma_X = 3.441, C.V_X = 10.72\%, \bar{Y} = 31.3, \sigma_Y = 2.136, C.V_Y = 6.824\%$$
, (a) X has greater average life (b) Y is more consistent.

Module - I 30 / 30