For this purpose, algorithms are classified into orders using so-called Big O notation, which expresses resource use, such as execution time or memory consumption, in terms of the size of an input. Methods of measuring programming language popularity include: counting the number of job advertisements that mention the language, the number of books sold and courses teaching the language (this overestimates the importance of newer languages), and estimates of the number of existing lines of code written in the language (this underestimates the number of users of business languages such as COBOL). The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problems. Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. For example, COBOL is still strong in corporate data centers often on large mainframe computers, Fortran in engineering applications, scripting languages in Web development, and C in embedded software. Trade-offs from this ideal involve finding enough programmers who know the language to build a team, the availability of compilers for that language, and the efficiency with which programs written in a given language execute. In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form. There exist a lot of different approaches for each of those tasks. The first computer program is generally dated to 1843, when mathematician Ada Lovelace published an algorithm to calculate a sequence of Bernoulli numbers, intended to be carried out by Charles Babbage's Analytical Engine. Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. Whatever the approach to development may be, the final program must satisfy some fundamental properties. Various visual programming languages have also been developed with the intent to resolve readability concerns by adopting non-traditional approaches to code structure and display. Ideally, the programming language best suited for the task at hand will be selected. For example, COBOL is still strong in corporate data centers often on large mainframe computers, Fortran in engineering applications, scripting languages in Web development, and C in embedded software. Readability is important because programmers spend the majority of their time reading, trying to understand, reusing and modifying existing source code, rather than writing new source code. Many applications use a mix of several languages in their construction and use. It affects the aspects of quality above, including portability, usability and most importantly maintainability. A similar technique used for database design is Entity-Relationship Modeling (ER Modeling). Proficient programming usually requires expertise in several different subjects, including knowledge of the application domain, details of programming languages and generic code libraries, specialized algorithms, and formal logic. Following a consistent programming style often helps readability. Debugging is a very important task in the software development process since having defects in a program can have significant consequences for its users. The Unified Modeling Language (UML) is a notation used for both the OOAD and MDA. However, because an assembly language is little more than a different notation for a machine language, two machines with different instruction sets also have different assembly languages. Text editors were also developed that allowed changes and corrections to be made much more easily than with punched cards. This can be a non-trivial task, for example as with parallel processes or some unusual software bugs.