Μάθημα 1.3: Ασυμπτωτικοί Συμβολισμοί

Δημήτρης Ψούνης

ПЕРІЕХОМЕНА

Α. Σκοπός του Μαθήματος

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 1.3: Ασυμπτωτικοί Συμβολισμοί

Β.Θεωρία

- 1. Ασυμπτωτικοί Συμβολισμοί
 - 1. Ο ασυμπτωτικός συμβολισμός Ο
 - 2. Ο ασυμπτωτικός συμβολισμός ο
 - 3. Ο ασυμπτωτικός συμβολισμός Ω
 - 4. Ο ασυμπτωτικός συμβολισμός ω
 - 5. Ο ασυμπτωτικός συμβολισμός Θ
- 2. Χρήση Ορίων για την απόδειξη ισχύος ασυμπτωτικών συμβολισμών
- 3. Λήμματα στους ασυμπτωτικούς συμβολισμούς

Γ. Ασκήσεις

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 1.3: Ασυμπτωτικοί Συμβολισμοί

Α. Σκοπός του Μαθήματος

Οι στόχοι του μαθήματος είναι:

Επίπεδο Α

Ερμηνεία των ασυμπτωτικών συμβολισμών (να ξέρουμε πως μεταφράζεται κάθε συμβολισμός)

Επίπεδο Β

Χρήση των ορίων για την απόδειξη ότι ισχύει ένας ασυμπτωτικός συμβολισμός

Επίπεδο Γ

 Ορισμοί των ασυμπτωτικών συμβολισμών και απόδειξη με τον ορισμό ότι ισχύει ένας ασυμπτωτικός συμβολισμός Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 1.3: Ασυμπτωτικοί Συμβολισμοί

Β. Θεωρία

1. Ασυμπτωτικοί Συμβολισμοί

- Εισάγουμε τους ασυμπτωτικούς συμβολισμούς ο,Ο,Θ,Ω,ω για να μπορούμε να περιγράψουμε την πολυπλοκότητα αγορίθμων μέσω άνω και κάτω φραγμάτων.
- > Έστω δύο συναρτήσεις πολυπλοκότητας f(n) και g(n). Τότε:

Συμβολίζουμε	Διαβάζουμε	Εμπειρικά καταλαβαίνουμε ότι	
f=o(g)	Ασυμπτωτικά, η f έχει ως γνήσιο άνω φράγμα την g	f <g< td=""></g<>	
f=O(g)	Ασυμπτωτικά, η f έχει ως άνω φράγμα την g	f≤g	
f=Θ(g)	Ασυμπτωτικά, η f έχει ως άνω και κάτω φράγμα την g	f=g	
$f=\Omega(g)$	Ασυμπτωτικά, η f έχει ως κάτω φράγμα την g	f≥g	
$f=\omega(g)$	Ασυμπτωτικά, η f έχει ως γνήσιο κάτω φράγμα την g	f>g	

1. Ασυμπτωτικοί Συμβολισμοί

1. Ο συμβολισμός Ο

- > Διαισθητικά, όταν βλέπουμε f=O(g), καταλαβαίνουμε ότι ασυμπτωτικά : f≤g.
- Τυπικά ο ορισμός λέει:

f(n) = O(g(n)) αν και μόνο αν $\exists n_0 > 0, c > 0$: $0 \le f(n) \le c \cdot g(n)$ για κάθε $n \ge n_0$

Που με απλά λόγια ερμηνεύεται ότι μετά από κάποια σταθερά n₀, η f(n) είναι πάντα μικρότερη ή ίση από την cg(n) για κάποια κατάλληλη σταθερά c.

> Η σχέση f(n)=O(g(n)) θα διαβάζεται «η f έχει ως άνω φράγμα την g»

Β. Θεωρία

1. Ασυμπτωτικοί Συμβολισμοί

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 1.3: Ασυμπτωτικοί Συμβολισμοί

1. Ο συμβολισμός Ο

Ας δούμε πως χρησιμοποιούμε τον ορισμό:

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 1.3: Ασυμπτωτικοί Συμβολισμοί

www.peounis.gr

Β. Θεωρία

1. Ασυμπτωτικοί Συμβολισμοί

2. Ο συμβολισμός ο

- > Διαισθητικά, όταν βλέπουμε f=o(g), καταλαβαίνουμε ότι ασυμπτωτικά : f<g.
- > Τυπικά ο ορισμός λέει:

f(n) = o(g(n)) αν και μόνο αν $\forall c > 0 : \exists n_0 : 0 \le f(n) < c \cdot g(n)$ για κάθε $n \ge n_0$

- > που με απλά λόγια ερμηνεύεται ότι για κάθε θετική σταθερά c η f(n) είναι πάντα μικρότερη από την cg(n) μετά από κάποια σταθερά n₀
- Η σχέση f(n)=o(g(n)) θα διαβάζεται «η f έχει ως ΓΝΗΣΙΟ άνω φράγμα την g»
- Προσοχή!!
 - > n=O(n)
 - > n≠o(n)
 - $> n = o(n^2)$
 - \rightarrow n=o(n³)
 - ➤ ...K.O.K.
- Η απόδειξη είναι πιο δύσκολη γιατί πρέπει να γίνεται για κάθε σταθερά c>0.

Δημήτρης Ψούνης, ΠΛΗ3ο, Μάθημα 1.3: Ασυμπτωτικοί Συμβολισμοί

www.paounia.gr

Β. Θεωρία

1. Ασυμπτωτικοί Συμβολισμοί

2. Ο συμβολισμός ο

> Ας δούμε πως χρησιμοποιούμε τον ορισμό:

```
Παράδειγμα 2
Να αποδείξετε ότι: 2n=o(n^2)

Απόδειξη: Έστω c>0:
f(n) < cg(n) \Rightarrow
2n < cn^2 \Rightarrow
2 < cn \Rightarrow
2/c < n
Άρα υπάρχει επιλέγουμε ως n_0 το \lceil 2/c \rceil
```


1. Ασυμπτωτικοί Συμβολισμοί

4. Ο συμβολισμός Ω

- Σαισθητικά, όταν βλέπουμε f=Ω(g), καταλαβαίνουμε ότι ασυμπτωτικά : f≥g.
- Τυπικά ο ορισμός λέει:

$$f(n) = \Omega(g(n))$$
 αν και μόνο αν $\exists n_0 > 0, c > 0$: $f(n) \ge c \cdot g(n) \ge 0$ για κάθε $n \ge n_0$

Που με απλά λόγια ερμηνεύεται ότι μετά από κάποια σταθερά n₀, η f(n) είναι πάντα μεγαλύτερη ή ίση από την cg(n) για κάποια κατάλληλη σταθερά c.

> Η σχέση f(n)= $\Omega(g(n))$ θα διαβάζεται «η f έχει ως κάτω φράγμα την g»

Β. Θεωρία

1. Ασυμπτωτικοί Συμβολισμοί

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 1.3: Ασυμπτωτικοί Συμβολισμοί

4. Ο συμβολισμός Ω

Ας δούμε πως χρησιμοποιούμε τον ορισμό:

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 1.3: Ασυμπτωτικοί Συμβολισμοί

www.psounis.gr

Β. Θεωρία

1. Ασυμπτωτικοί Συμβολισμοί

5. Ο συμβολισμός ω

- > Διαισθητικά, όταν βλέπουμε f=ω(g), καταλαβαίνουμε ότι ασυμπτωτικά: f>g.
- Τυπικά ο ορισμός λέει:

$$f(n) = \omega(g(n))$$
 αν και μόνο αν $\forall c > 0 : \exists n_0 : f(n) > c \cdot g(n) \ge 0$ για κάθε $n \ge n_0$

- > που με απλά λόγια ερμηνεύεται ότι για κάθε θετική σταθερά c η f(n) είναι πάντα μεγαλύτερη από την cg(n) μετά από κάποια σταθερά n₀
- Η σχέση f(n)=ω(g(n)) θα διαβάζεται «η f έχει ως ΓΝΗΣΙΟ κάτω φράγμα την g»
- Προσοχή!!
 - $> n = \Omega(n)$
 - > n≠ω(n)
 - $> n = \omega(\log n)$
 - > n=ω(loglogn)
 - ➤ ...K.O.K.
- Η απόδειξη είναι πιο δύσκολη γιατί πρέπει να γίνεται για κάθε σταθερά c>0.

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 1.3: Ασυμπτωτικοί Συμβολισμοί

Β. Θεωρία

1. Ασυμπτωτικοί Συμβολισμοί

5. Ο συμβολισμός ω

Ας δούμε πως χρησιμοποιούμε τον ορισμό:

```
Παράδειγμα 4
Να αποδείξετε ότι: 0.5n^2 = \omega(n)

Απόδειξη: Έστω c > 0:
f(n) > cg(n) \Rightarrow
0.5n^2 > cn \Rightarrow
n > \frac{c}{0.5} \Rightarrow
n > 2c
Άρα υπάρχει επιλέγουμε ως n_0 το 2c
```

1. Ασυμπτωτικοί Συμβολισμοί

5. Ο συμβολισμός Θ

- > Διαισθητικά, όταν βλέπουμε f=Θ(g), καταλαβαίνουμε ότι ασυμπτωτικά f=g.
- Τυπικά ο ορισμός λέει:

$$f(n) = \Theta(g(n))$$
 αν και μόνο αν $\exists n_0 > 0, c_1, c_2 > 0$: $0 < c_1 g(n) \le f(n) \le c_2 g(n)$ για κάθε $n \ge n_0$

Που με απλά λόγια ερμηνεύεται ότι μετά από κάποια σταθερά n₀, η f(n) φράσσεται από πάνω και από κάτω από την g(n), όταν αυτή πολλαπλασιάζεται αντίστοιχα με κάποιες κατάλληλες σταθερές:

ightarrow Η σχέση f(n)=Θ(g(n)) θα διαβάζεται «η f είναι ασυμπτωτικά ίση με την g»

Δημήτρης Ψούνης, ΠΛΗ3ο, Μάθημα 1.3: Ασυμπτωτικοί Συμβολισμοί

Β. Θεωρία

2. Όρια και Ασυμπτωτικοί Συμβολισμοί

- Για να αποδείξουμε ότι ισχύει ένας ασυμπτωτικός συμβολισμός μεταξύ 2 συναρτήσεων:
 - > Είτε χρησιμοποιούμε τον αντίστοιχο ορισμό,
 - > Είτε κάνουμε χρήση του ακόλουθου θεωρήματος:

$$\lim_{n \to +\infty} \frac{f(n)}{g(n)} = \begin{cases} c \neq 0, & \text{ if } \tau \in f(n) = \Theta(g(n)) \\ 0, & \text{ if } \tau \in f(n) = o(g(n)) \\ + \infty, & \text{ if } \tau \in f(n) = \omega(g(n)) \end{cases}$$

- Συνεπώς ένας εναλλακτικός (και πιο εύκολος) τρόπος να εξετάσουμε αν ισχύει ένας ασυμπτωτικός συμβολισμός είναι:
 - > Υπολογίζουμε το παραπάνω όριο
 - Ανάλογα με το αποτέλεσμά του να αποφασίσουμε αν ισχύει ή όχι ο αντίστοιχος ασυμπτωτικός συμβολισμός

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 1.3: Ασυμπτωτικοί Συμβολισμοί

einuoeq.www

Β. Θεωρία

1. Ασυμπτωτικοί Συμβολισμοί

5. Ο συμβολισμός Θ

Ας δούμε πως χρησιμοποιούμε τον ορισμό:

Παράδειγμα 5

Να αποδείξετε ότι: 4n=Θ(n)

Απόδειξη:

 $\overline{\text{Εχουμε f(n)}}$ =4n, g(n)=n

Επιλέγουμε n_0 =1, c1=2.

$$f(n) \ge c_1 g(n) \Longrightarrow$$

 $4n \ge 2n \Longrightarrow$

 $4 \ge 2$

που ισχύει για κάθε η≥1

Επιλέγουμε n_0 =1, c_2 =6.

$$f(n) \le cg(n) \Rightarrow$$

 $4n \le 6n \Rightarrow$

4≤6

που ισχύει για κάθε n≥1

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 1.3: Ασυμπτωτικοί Συμβολισμοί

Β. Θεωρία

2. Όρια και Ασυμπτωτικοί Συμβολισμοί

> Ας δούμε πως χρησιμοποιούμε τον ορισμό:

Παράδειγμα 6

Nα αποδείξετε ότι: $0.5n^2=ω(n)$

Απόδειξη:

$$\lim_{n \to +\infty} \frac{f(n)}{g(n)} = \lim_{n \to +\infty} \frac{0.5n^2}{n} = \lim_{n \to +\infty} (0.5n) = +\infty$$

Συνεπώς 0.5n²=ω(n)

Παράδειγμα 6

Να αποδείξετε ότι: 2ⁿ=o(3ⁿ)

Απόδειξη:

$$\lim_{n \to +\infty} \frac{f(n)}{g(n)} = \lim_{n \to +\infty} \frac{2^n}{3^n} = \lim_{n \to +\infty} \left(\frac{2}{3}\right)^n = \lim_{n \to +\infty} (0.66)^n = 0$$

Συνεπώς 2ⁿ=o(3ⁿ)

3. Λήμματα στους ασυμπτωτικούς συμβολισμούς

Ισχύουν οι ακόλουθες προφανείς προτάσεις για τους ασυμπτωτικούς συμβολισμούς:

Λήμμα 1: $f(n) = \Theta(g(n))$ αν και μόνο αν f(n) = O(g(n)) και $f(n) = \Omega(g(n))$

- > Διαισθητικά: f=g αν και μόνο αν f≤g και f≥g
- > Θα ξέρουμε ότι όταν ισχύει το Θ ισχύει και το Ο και το Ω

Λήμμα 2: Av f(n) = O(g(n)) τοτε f(n) = O(g(n))

- Σιαισθητικά: Αν f<g τότε f≤g</p>
- > Θα ξέρουμε ότι όταν ισχύει το ο ισχύει και το Ο
- > (Δεν ισχύει το αντίστροφο)

Λήμμα 3: Av
$$f(n) = \omega(g(n))$$
 τοτε $f(n) = \Omega(g(n))$

- Σιαισθητικά: Αν f>g τότε f≥g
- > Θα ξέρουμε ότι όταν ισχύει το ω ισχύει και το Ω
- ▶ (Δεν ισχύει το αντίστροφο)

Δημήτρης Ψούνης, ΠΛΗ3ο, Μάθημα 1.3: Ασυμπτωτικοί Συμβολισμοί

<u>Γ. Ασκήσεις</u> <u>Ασκηση Κατανόησης 1</u>

> Στον πίνακα που ακολουθεί για κάθε ζευγάρι συναρτήσεων f και g σημειώστε με $\sqrt{}$ αν ισχύει η σχέση του αντίστοιχου συμβολισμού της f με την g.

f(n)	g(n)	o	0	Θ	Ω	ω
n ²	n³	\checkmark	\checkmark			
n ^{1.5}	n					
4logn	8logn					
5n ²	0.5n ²					
n³-5n	8 ^{logn}					

ightarrow Π.χ. έχει σημειωθεί με $\sqrt{10}$ το 1° κελί, διότι n^2 =0(n^3)

Β. Θεωρία

4. Οι ασυμπτωτικοί Συμβολισμοί ως Σύνολα

- ➤ Έστω η παράσταση O(n²):
- Ισχύουν τα εξής:
 - $> 1 = O(n^2)$
 - > n+2=O(n²)
 - \triangleright logn=O(n²)
 - ➤ logn+5loglogn=O(n²)
 - $> 3n^2 = O(n^2)$
- > Στην πραγματικότητα ο συμβολισμός O(n²) εκφράζει όλες τις συναρτήσεις που είναι ασυμπτωτικά μικρότερες ή ίσες από την n².
- > Άρα το O(n²) θα έπρεπε να απεικονίζεται ως σύνολο συναρτήσεων και να γράφουμε αντίστοιχα:
 - $> 1 \in O(n^2)$
 - $> n+2 \in O(n^2)$
- Αλλά ευτυχώς έχει επικρατήσει ο συμβολισμός με την ισότητα.

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 1.3: Ασυμπτωτικοί Συμβολισμοί

<u>Γ. Ασκήσεις</u> Ασκηση Κατανόησης 2

Στον πίνακα που ακολουθεί για κάθε ζευγάρι συναρτήσεων f και g
 σημειώστε με Θ ή ο ή ω ανάλογα με το ποιος από τους 3 ασυμπτωτικούς
 συμβολισμούς ισχύει μεταξύ της f και της g

	g(n)=5	g(n)=logn	g(n)=n²	g(n)=2 ⁿ	g(n)=5 ⁿ	g(n)=n ⁿ
f(n)=loglogn	ω					
f(n)=4logn						
f(n)=n						
f(n)=2n ²						
f(n)=6n ⁵ +n						
f(n)=3 ⁿ						
f(n)=n!						

▶ Π.χ. στο 1° κελί έχει σημειωθεί ω αφού loglogn=ω(1)

Γ. Ασκήσεις Εφαρμογή 1

Να αποδείξετε, κάνοντας χρήση του αντιστοιχου ορισμού ασυμπτωτικού συμβολισμού ότι:

- 1. $n = O(n \log n)$
- 2. $4n^2 + n = \Theta(n^2)$
- 3. $\log^2 n = \Omega(\log n)$
- 4. $6n + 4 = \Theta(n)$
- 5. $2^n = o(3^n)$
- 6. $n^n = \omega(n^2)$

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 1.3: Ασυμπτωτικοί Συμβολισμοί

Γ. Ασκήσεις Εφαρμογή 2

Να αποδείξετε, κάνοντας χρήση του ορισμού των ορίων ότι:

- 1. $n = O(n \log n)$
- 2. $4n^2 + n = \Theta(n^2)$
- 3. $\log^2 n = \Omega(\log n)$
- 4. $6n + 4 = \Theta(n)$
- 5. $2^n = o(3^n)$
- 6. $n^n = \omega(n^2)$