Question 1: Bisection VS Golden Section

- 1. a. Placing e in the bisector of the larger interval [a,b] is better than placing it in [b,d] because it reduces the search space by a larger amount, thus making it a more effective reduction.
 - b. The new interval is [a, e, b] and the search space is reduced by 0.25.
 - e. Step 2: 13/32 or 0.4063 Step 3: 33/128 or 0.2578

1d

```
In [3]: from IPython.display import Image
Image(filename='image1.png')
```

Out[3]:

In [4]: from IPython.display import Image
Image(filename='image2.png')

Out[4]:

Are my trees ugly? Yes. But they were made with love <3

1f

Golden section converges to a minimum (or maximum) faster than bisection does. In theory this makes sense, but when I typed out a table to compare I saw that bisection (best-case scenario) does better than golden section. I guess golden section is still better because any other case of bisection does not converge as fast, and realistically you will probably rarely get best-case scenario when performing bisection.

In [5]: from IPython.display import Image
Image(filename='image3.png')

Out[5]:	A	В	С	D	E
	Number of steps	Golden section	Bisection (best case)	Bisection (ok case)	Bisection (worst case)
	1	0.618	0.5	0.5	0.75
	2	0.382	0.25	0.375	0.5
	3	0.236	0.125	0.25	0.375

Question 2: Steepest Descent

```
In [6]: def function3d(point):
            This function calculates the value of a function of x and y at a certai
            Parameters
            x, y: the point to evaluate the function at
            Return
             the function value at the point
            x, y = point
            return x**4 - x**2 + y**2 + 2*x*y - 2
In [7]: def first_derivative(point):
            This function calculates the first derivative of a function at a given p
            Parameters
            point: list. Not really a list, more like comma separated variables
            A point, x,y
            Returns
            first_derivative: np.array
            The first derivative (gradient) at the point entered
            x, y = point
            dfdx = (4 * x**3) - (2*x) + 2*y
            dfdy = (2*y) + 2*x
            return np.array([dfdx, dfdy])
```

2a

```
def steepest_descent_one_step(func, gradient, x0, alpha=0.1):
    """
    This function performs a single step of the steepest descent algorithm.
    Parameters
    _____
func:
    function to optimize

    gradient: np.array
    gradient of a function

    x0: np.array
    starting point
```

```
num iter: int
number of times the for loop will run
alpha: float
stepsize
Returns
_____
x1 : new position
value: funciton evaluated at that x1
point searched = []
# calculate the initial function value
prev_value = func(x0)
# print search progress and keep track of the points searched
print(f"searching at {x0} with function value {prev_value}")
point_searched.append(x0)
# calculate the gradient at the current point
g = gradient(x0)
# calculate next point and its function value
x1 = x0 - g * alpha
#value = func(x1)
return print(f"New position is {x1}")
```

In [9]: steepest_descent_one_step(function3d, first_derivative, np.array([1.5, 1.5])

```
searching at [1.5 1.5] with function value 7.5625
New position is [0.15 0.9 ]
func: 'steepest_descent_one_step' took: 0.0006 sec
```

This is a good optimization step because it moves towards the minimum. We will increase the stepsize * 1.2 in the next step.

2b

```
In [10]: from pylab import *
    import numpy.linalg as LA

@timeit
def steepest_descent(func,func_gradient,x0, alpha,tol):
    """
    This function finds a local minimum using the steepest descent method.
    Parameters
    ------
func:
    The function whose minima we plan to find (inputted as a function)

func_gradient:
    first_derivative of func
```

```
x0: np.array
position from which we start searching for the minima
alpha: float
step size
tol: float
tolerance value
Returns
Starting point: entered x0
Evaluation: value of function at x0
Path to minimum: lists all points evaluated on the way to minumum
Steps to converge: counts number of steps until local mimimum is reached
count= 0
visited = [x0]
deriv = func gradient(x0)
while LA.norm(deriv) > tol and count < 1e6:</pre>
    # calculate new point position
    x1 = x0 - deriv * alpha
    if func(x1) < func(x0):
        # Check if new value is less than previous value. If so, this is
        # and start the next search step from the current value
        alpha = alpha * 1.2
        x0 = x1
        deriv = func\_gradient(x0)
        visited.append(x1)
    else:
        # If new value > prev value, we are moving in the wrong direction
        # and redo that step starting from the previous value.
        alpha = alpha * 0.5
        \#visited.append(x0)
    count+=1
return {"Starting point":x0,"Evaluation":func(x0),"Path to minimum":np.a
```

```
In [11]: print(steepest_descent(function3d, first_derivative, np.array([-1.5, 1.5]),
```

```
func:'steepest_descent' took: 0.0005 sec
{'Starting point': array([-1.00000072, 1.0000014]), 'Evaluation': -2.99999
9999997453, 'Path to minimum': array([-1.5]
                                                   , 1.5
                                                                ],
                      1.5
                                ],
       [-0.75]
       [-1.0875]
                      1.32
                                 ],
       [-1.04004413,
                      1.25304
       [-1.05492903,
                      1.17942863],
                      1.12779615],
       [-1.00779561,
       [-1.05181525,
                      1.0680762],
       [-0.98988976,
                      1.06322071],
       [-1.03043727,
                      1.03694491],
       [-1.00445425,
                      1.03554582],
       [-1.00784819,
                      1.02752454],
                      1.021433 ],
       [-1.00410623,
       [-1.00440363,
                      1.01499603],
       [-1.00122119,
                      1.01027389],
       [-1.00344611,
                      1.005431 ],
       [-0.99963579,
                      1.00479389],
       [-1.00218339,
                      1.00280712],
       [-1.00030255,
                      1.00266297],
       [-1.00062139,
                      1.00200836],
       [-1.00025502,
                      1.00154679],
       [-1.00036336,
                      1.00103092],
       [-0.99998637,
                      1.00071101],
       [-1.0002104]
                      1.000502661.
       [-1.00002076,
                      1.00040182],
                      1.00024404],
       [-1.00014415,
       [-1.00002569]
                      1.00021923],
       [-1.00005275,
                      1.00016153],
       [-1.00001618,
                      1.00012262],
       [-1.00003409]
                      1.00007692],
       [-0.99998591,
                      1.00005486],
       [-1.00002464,
                      1.00003355],
       [-0.99999138,
                      1.00003024],
       [-1.0000077]
                      1.0000216],
       [-1.00000319,
                      1.00001789],
       [-1.00000381,
                      1.00001317],
       [-1.00000155,
                      1.00000957],
       [-1.00000239,
                      1.00000587],
       [-0.99999901,
                      1.00000395],
                      1.00000231],
       [-1.00000196,
       [-0.9999897,
                      1.00000217],
                     1.0000014 ]]), 'Steps to converge': 41}
       [-1.00000072,
```

This function took 41 good steps to converge. The total number of steps taken was 51.

2c

```
In [12]: # Conjugate gradient
    x0 = np.array([-1.5, 1.5])

CG_method = minimize(function3d, x0, method='CG', options={'gtol': 1e-5, 'diprint(CG_method)
```

```
Optimization terminated successfully.
                 Current function value: -3.000000
                 Iterations: 6
                 Function evaluations: 39
                 Gradient evaluations: 13
         message: Optimization terminated successfully.
         success: True
          status: 0
             fun: -2.999999999997273
               x: [-1.000e+00 1.000e+00]
             nit: 6
             jac: [ 2.414e-06 5.364e-07]
            nfev: 39
            njev: 13
In [13]: # BFGS
         x0 = np.array([-1.5, 1.5])
         BFGS method = minimize(function3d, x0, method='BFGS', options={'qtol': 1e-5,
         print(BFGS_method)
        Optimization terminated successfully.
                 Current function value: -3.000000
                 Iterations: 7
                 Function evaluations: 27
                 Gradient evaluations: 9
          message: Optimization terminated successfully.
          success: True
           status: 0
              fun: -2.99999999999986
                x: [-1.000e+00 1.000e+00]
              nit: 7
              jac: [ 4.172e-07 2.384e-07]
         hess inv: [[ 1.244e-01 -1.270e-01]
                    [-1.270e-01 6.174e-01]]
             nfev: 27
             njev: 9
```

In terms of number of steps, both conjugate gradient (CG) and BFGS are more efficient than steepest descent. CG is only a bit more efficident (39 steps instead of 41) whie BFGS takes only 27 steps.

Question 3: Local optimization and machine learning using Stochastic Gradient Descent (SGD)

```
In [14]: def rosenbrock_function3d(point):

This function calculates the value of a function of x and y at a certai Parameters

------
x, y: the point to evaluate the function at

Return

-----
```

the function value at the point

```
x, y = point
             return (1 - x)**2 + 10* (y- (x**2))**2
In [15]: def rosenbrock gradient(point):
             This function calculates the first derivative of a function at a given p
             Parameters
             point: list. Not really a list, more like comma separated variables
             A point, x,y
             Returns
             _____
             first derivative: np.array
             The first derivative (gradient) at the point entered
             x, y = point
             dfdx = -2 *(1-x) - 40 * x *(y-x**2)
             dfdy = 20 * (y-x**2)
             return np.array([dfdx, dfdy])
         3a
In [16]: | steepest_descent(rosenbrock_function3d, rosenbrock_gradient,np.array([-0.5,
        func: 'steepest_descent' took: 0.0093 sec
Out[16]: {'Starting point': array([0.99999089, 0.99998153]),
           'Evaluation': 8.361266796946337e-11,
                                                              1.
           'Path to minimum': arrav([[-0.5]
                                                 , 1.5
                             , 0.875
                  [-1.05
                                           ],
                  [-0.845175 , 0.94325
                                           ],
                  [ 0.99999068, 0.99998135],
                  [ 0.99999093, 0.99998135],
                  [ 0.99999089, 0.99998153]]),
           'Steps to converge': 1205}
         3b
In [17]: @timeit
         def stochastic_gradient_descent(func,func_gradient,x0,alpha=0.1,tol=1e-5,sto
             This function finds a local minimum using the stochastic gradient method
             Parameters
             func:
             The function whose minima we plan to find (inputted as a function)
```

func gradient:

```
first derivative of func
x0: np.array
position from which we start searching for the minima
alpha: float
step size
tol: float
tolerance value
stochastic injection: 0 or 1
controls the magnitude of stochasticity (multiplied with stochastic_deri
0 for no stochasticity, equivalent to SD.
Returns
Starting point: entered x0
Evaluation: value of function at x0
Path to minimum: lists all points evaluated on the way to minumum
Steps to converge: counts number of steps until local mimimum is reached
# evaluate the gradient at starting point
deriv = func\_gradient(x0)
count=0
visited=[x0]
while LA.norm(deriv) > tol and count < 1e5:</pre>
    if stochastic injection>0:
        # formulate a stochastic_deriv that is the same norm as your gra
        #dim = deriv.shape
        stochastic deriv= np.random.random(2) * 2 - 1
        stochastic_norm = LA.norm(stochastic_deriv)
        stochastic deriv = stochastic deriv / stochastic norm * LA.norm(
    else:
        stochastic_deriv=np.zeros(len(x0))
    direction=-(deriv + stochastic injection * stochastic deriv)
    # calculate new point position
    x1 = x0 - deriv * alpha
    if func(x1) < func(x0):
        # Check if new value is less than previous value. If so, this is
        # and start the next search step from the current value
        alpha = alpha * 1.2
        x0 = x1
        visited.append(x1)
        deriv = func_gradient(x1)
        #print(f'good step {x1}')
    else:
        # If new_value > prev_value, we are moving in the wrong direction
        # and redo that step starting from the previous value.
        alpha = alpha * 0.5
        #print(f'bad step {x1}')
```

```
count+=1
             return {"x":x0,"evaluation":func(x0),"path":np.asarray(visited), "Number
In [18]: stochastic gradient descent(rosenbrock function3d, rosenbrock gradient, np. a
        func: 'stochastic gradient descent' took: 0.0183 sec
Out[18]: {'x': array([0.99999089, 0.99998153]),
           'evaluation': 8.361266796946337e-11,
           'path': array([[-0.5
                                                   ],
                                       1.5
                            , 0.875
                  [-1.05]
                                          ],
                  [-0.845175 , 0.94325
                  [ 0.99999068, 0.99998135],
                  [ 0.99999093, 0.99998135],
                  [ 0.99999089, 0.99998153]]),
           'Number of steps': 1205}
         3c
In [19]: x0 = np.array([-0.5, 1.5])
         CG_rosenbrock = minimize(rosenbrock_function3d, x0, method='CG', options={'g
         print(CG rosenbrock)
        Optimization terminated successfully.
                 Current function value: 0.000000
                 Iterations: 20
                 Function evaluations: 132
                 Gradient evaluations: 44
         message: Optimization terminated successfully.
         success: True
          status: 0
             fun: 2.0711221375743512e-13
               x: [ 1.000e+00 1.000e+00]
             nit: 20
             jac: [ 4.992e-08 -2.474e-08]
            nfev: 132
            njev: 44
In [20]: BFGS_rosenbrock = minimize(rosenbrock_function3d, x0, method='BFGS', options
         print(BFGS rosenbrock)
```

```
Optimization terminated successfully.
         Current function value: 0.000000
         Iterations: 22
         Function evaluations: 93
         Gradient evaluations: 31
  message: Optimization terminated successfully.
  success: True
   status: 0
      fun: 1.6857105436734322e-13
        x: [ 1.000e+00 1.000e+00]
      nit: 22
      jac: [ 1.153e-07 -1.294e-08]
 hess inv: [[ 5.099e-01 1.020e+00]
            [ 1.020e+00 2.089e+00]]
     nfev: 93
     njev: 31
```

In the case of the Rosenbrock Banana Function, CG and BFGS are far better than SGD. SGD found the minimum in ~1200 steps, while CG and BFGS took 132 and 93, respectively.

3d

No. Because of the stochasticity, number of steps with SGD will vary largely and so you need to take an average value after a few runs for comparison.

3e

I found the performance of SGD to be more consistent than that of steepest descent. For example, at point (-1.5, 1.5), SGD and steepest descent took ~1200 steps to converge. However, as the numbers got bigger the difference in step size grew. At point (-150, 150), SGD took ~79000 steps to converge while steepest descent took ~490000. At (-1500, 1500), SGD still took ~79000 steps while steepest descent took ~790000.

However when comparing CD and BFGS with SGD, their performances (in terms of step sizes) did not increase as quickly as the step size of steepest descent did.

Question 4: Stochastic Gradient Descent with Momentum (SGDM)

4a

In [23]: stochastic_gradient_descent(momentum_function3d, momentum_gradient, np.array
func:'stochastic_gradient_descent' took: 0.0020 sec

```
Out[23]: {'x': array([-1.74755328,
                                      0.87377865]),
           'evaluation': 0.29863844224600855,
           'path': array([[-1.5
                                                     ],
                                           1.5
                   [-1.708125]
                                  1.35
                                             ],
                   [-1.81711465,
                                  1.230975 ],
                                  1.13811871],
                   [-1.72366291,
                   [-1.81648029,
                                  1.04263383],
                   [-1.73077839,
                                  1.01476596],
                   [-1.77260058,
                                  0.97759624],
                                  0.95033542],
                   [-1.73965321,
                   [-1.77022043,
                                  0.92148765],
                   [-1.74397071,
                                  0.91366684],
                   [-1.75467953,
                                  0.90291347],
                   [-1.74553402,
                                  0.89499619],
                   [-1.7540083 ,
                                  0.88673796],
                   [-1.74656205,
                                  0.884568271.
                   [-1.74961089]
                                  0.88154912],
                                  0.87938454],
                   [-1.74682193,
                   [-1.74960838,
                                  0.87708366],
                   [-1.74708789,
                                  0.87655687],
                   [-1.74825522,
                                  0.8757213 ],
                   [-1.74715493,
                                  0.87519094],
                   [-1.74777788,
                                  0.87486877],
                   [-1.74758021,
                                  0.87463399],
                   [-1.74765485]
                                  0.87439135],
                   [-1.74754601,
                                  0.87419677],
                   [-1.74764902,
                                  0.87402131],
                   [-1.74753349,
                                  0.87397242],
                   [-1.74759689,
                                  0.87391111],
                                  0.8738708],
                   [-1.74752418,
                   [-1.74757107,
                                  0.87384747],
                   [-1.74755094]
                                  0.87383152],
                   [-1.74756213,
                                  0.87381419],
                   [-1.74754713,
                                  0.87380191],
                   [-1.74755705,
                                  0.8737956 ],
                   [-1.74755201,
                                  0.87379104],
                   [-1.74755504,
                                  0.87378622],
                   [-1.74755067,
                                  0.87378288],
                   [-1.74755379,
                                  0.87378114],
                   [-1.74755205,
                                  0.87377996],
                   [-1.74755328,
                                  0.87377865]]),
           'Number of steps': 39}
In [24]: x0 = np.array([-1.5, -1.5])
          CG momentum = minimize(momentum function3d, x0, method='CG', options={'qtol'
          print(CG_momentum)
```

```
Optimization terminated successfully.
                 Current function value: 0.298638
                 Iterations: 7
                 Function evaluations: 63
                 Gradient evaluations: 21
         message: Optimization terminated successfully.
         success: True
          status: 0
             fun: 0.29863844223965763
               x: [-1.748e+00 8.738e-01]
             nit: 7
             jac: [ 8.404e-06 7.227e-07]
            nfev: 63
            njev: 21
In [25]: BFGS momentum = minimize(momentum function3d, x0, method='BFGS', options={'d
         print(BFGS_momentum)
        Optimization terminated successfully.
                 Current function value: 0.298638
                 Iterations: 8
                 Function evaluations: 30
                 Gradient evaluations: 10
          message: Optimization terminated successfully.
          success: True
           status: 0
              fun: 0.29863844223686065
                x: [-1.748e+00 8.738e-01]
              nit: 8
              jac: [ 1.341e-07 -7.451e-09]
         hess inv: [[ 8.569e-02 -4.290e-02]
                    [-4.290e-02 5.109e-01]]
             nfev: 30
             njev: 10
         On average, stochastic gradient descent did better than conjugate gradients (~40 steps
```

On average, stochastic gradient descent did better than conjugate gradients (~40 steps VS ~60 steps). Stochastic gradient and BFGS had roughly the same performance (~40 steps and ~30 steps)

4h

```
position from which we start searching for the minima
alpha: float
step size
gamma: float
momentum value
tol: float
tolerance value
stochastic injection: 0 or 1
controls the magnitude of stochasticity (multiplied with stochastic_deri
0 for no stochasticity, equivalent to SD.
Returns
Starting point: entered x0
Evaluation: value of function at x0
Path to minimum: lists all points evaluated on the way to minumum
Steps to converge: counts number of steps until local mimimum is reached
# evaluate the gradient at starting point
deriv = func\_gradient(x0)
count=0
visited=[x0]
while LA.norm(deriv) > tol and count < 1e5:</pre>
    if stochastic_injection>0:
        # formulate a stochastic_deriv that is the same norm as your gra
        stochastic deriv= np.random.random(2) * 2 - 1
        stochastic norm = LA.norm(stochastic deriv)
        stochastic_deriv = stochastic_deriv / stochastic_norm * LA.norm(
    else:
        stochastic deriv=np.zeros(len(x0))
    if count == 0:
        previous direction = -deriv
    direction=-(deriv+stochastic_injection*stochastic_deriv + gamma * pr
    x1 = x0 + alpha * direction
    if func(x1) < func(x0):
        # Check if new value is less than previous value. If so, this is
        # and start the next search step from the current value
        alpha = alpha * 1.2
        x0 = x1
        visited.append(x1)
        deriv = func\_gradient(x0)
    else:
        # If new value > prev value, we are moving in the wrong direction
        # and redo that step starting from the previous value.
        if alpha<1e-5:</pre>
            previous_direction=previous_direction-previous_direction
        else:
            # do the same as SGD here
            alpha = alpha * 0.5
```

```
count+=1
return {"x":x0,"Evaluation":func(x0),"Path":np.asarray(visited), "Number
In [27]: SGDM(momentum_function3d, momentum_gradient, np.array([-1.5, -1.5]))
func:'SGDM' took: 0.0030 sec
```

```
Out[27]: {'x': array([-1.74755242, 0.87377317]),
           'Evaluation': 0.2986384422461035,
           'Path': array([[-1.5
                                                    ],
                                      , -1.5
                  [-1.42887291, -0.99991264],
                  [-1.52341299, -0.95558559],
                  [-1.51358025, -0.93314037],
                  [-1.50819735, -0.90514635],
                  [-1.51171835, -0.87149957],
                  [-1.51193333, -0.8702979],
                  [-1.5138259, -0.86970886],
                  [-1.51209007, -0.86936447],
                  [-1.51013788, -0.86869735],
                  [-1.50914783, -0.86659327],
                  [-1.50780145, -0.86603561],
                  [-1.50810051, -0.86426464],
                  [-1.50881599, -0.86328878],
                  [-1.50874209, -0.86205446],
                  [-1.50871703, -0.86196794],
                  [-1.50859369, -0.86197152],
                  [-1.50861021, -0.86193535],
                  [-1.50862084, -0.86188384],
                  [-1.50860418, -0.86182104],
                  [-1.50856939, -0.86180588],
                  [-1.50857772, -0.86180438],
                  [-1.50862888, -0.86175653],
                  [-1.50857728, -0.86163747],
                  [-1.50853016, -0.8614841],
                  [-1.50859024, -0.86131583],
                  [-1.5086977, -0.86120214],
                  [-1.50868289, -0.86091939],
                  [-1.50877758, -0.8606204],
                  [-1.50864942, -0.86058901],
                  [-1.50865986, -0.86010272],
                  [-1.5083494, -0.85988323],
                  [-1.50825608, -0.85918581],
                  [-1.50857053, -0.85853138],
                  [-1.50877006, -0.85847055],
                  [-1.50849573, -0.85843156],
                  [-1.50899962, -0.85724743],
                  [-1.50935077, -0.85561289],
                  [-1.51029808, -0.8547077],
                  [-1.51118549, -0.85268783],
                  [-1.50958643, -0.85082981],
                  [-1.50861662, -0.8506436],
                  [-1.50822936, -0.85064252],
                  [-1.51060204, -0.84818799],
                  [-1.513403, -0.84562414],
                  [-1.50988777, -0.83994568],
                  [-1.50739991, -0.8315602],
                  [-1.51145361, -0.82912219],
                  [-1.51563708, -0.82707445],
                  [-1.51740927, -0.82671246],
                  [-1.52416621, -0.81224243],
                  [-1.52789236, -0.79137261],
                  [-1.5139853, -0.77658175],
                  [-1.50102341, -0.7515267],
```

```
[-1.50348395, -0.75121575],
       [-1.51786004, -0.74459859],
       [-1.54127613, -0.72579468],
       [-1.52719251, -0.66603555],
       [-1.51817571, -0.66527007],
       [-1.53778436, -0.58585119],
       [-1.56126312, -0.49547162],
       [-1.52436188, -0.39937429],
       [-1.47632375, -0.36966609],
       [-1.50214622, -0.23476685],
       [-1.44060314, -0.16033728],
       [-1.4122792, -0.14722699],
       [-1.37314195,
                      0.0151895 ],
       [-1.4798359, 0.15702739],
       [-1.6047083,
                      0.33006197],
       [-1.73508535, 0.49289655],
       [-1.77033475,
                      0.63790684],
       [-1.64515048, 0.78308844],
       [-1.76231657, 0.83695996],
       [-1.74609625,
                      0.86784473],
       [-1.74631626,
                      0.87044695],
       [-1.7476742
                      0.87151245],
       [-1.74729029,
                      0.87140865],
       [-1.74700886,
                      0.87212268],
       [-1.74809577,
                      0.87290828],
       [-1.74702504,
                      0.87323309],
       [-1.74733609,
                      0.87281383],
       [-1.74728185,
                      0.87308691],
       [-1.7474133,
                      0.87351685],
       [-1.74759802,
                      0.87362149],
       [-1.74753497,
                      0.87372373],
       [-1.74754153,
                      0.87373789],
       [-1.74754202,
                      0.87374692],
                      0.87374306],
       [-1.74754606,
       [-1.74754335,
                      0.87374985],
       [-1.74755902,
                      0.8737628 ],
       [-1.74755931, 0.87377075],
       [-1.74754841, 0.87376586],
       [-1.74755381,
                      0.87377095],
       [-1.74755244, 0.87377015],
       [-1.74755277,
                      0.87377151],
       [-1.74755084, 0.87377256],
       [-1.74755109,
                      0.87377346],
       [-1.74755242,
                      0.87377317]]),
'Number of step to converge': 98}
```

4b

No, I did not get a better result when using SGDM. When comparing number of steps, SGD took the fewest number of steps to find global minimum. This was unexpected, as I thought that SGD with momentum would perform better. Since the momentum takes previous good steps into consideration, I thought momentum would serve as a guiding force to move the search in the right direction.