UNIVERZITA PAVLA JOZEFA ŠAFÁRIKA V KOŠICIACH Prírodovedecká fakulta

ÚSTAV MATEMATICKÝCH VIED

Monounárna algebra pre Bernoulliho posun

Bc. Radka Schwartzová

Vedúca práce: RNDr. Emília Halušková, CSc.

Motivácia

Definícia

Uvažujme polouzavretý interval reálnych čísel $I=\langle 0,\, 1\rangle.$ Zobrazenie $f\colon I\to I$, s predpisom

$$f(x) = 2x \pmod{1}$$
 pre $x \in I$,

sa nazýva Bernoulliho posun.

BUŠA, Ján; HNATIČ, Michal. Chaos. Úvod do problematiky. Košice: Technická univerzita v Košiciach, 2004. ISBN 80-89061-94-X.

Monounárna algebra

Definícia

Nech $\mathbb N$ je množina kladných celých čísel. Nech množina $\mathbb A \neq \emptyset$ a funkcia f je funkciou z množiny $\mathbb A$ do množiny $\mathbb A$. Označme $f^1(x) = f(x)$. Pre $n \in \mathbb N \setminus \{1\}$ definujme funkciu f^n predpisom

$$f^{n}(x) = f(f^{n-1}(x))$$
 pre každé $x \in \mathbb{A}$.

Nech a je prvok oboru hodnôt zobrazenia f. Označme

$$f^{-1}(a) = \{b \in \mathbb{A}, také, že f(b) = a\}$$

Hovoríme, že funkcia $f \colon \mathbb{A} \to \mathbb{A}$ je unárna operácia. Dvojicu (\mathbb{A}, f) nazývame monounárna algebra.

Dĺžka cyklu čísel tvaru $\frac{1}{q}$, kde q je prvočíslo

	$\frac{1}{q}$	Dĺžka cyklu <i>n</i>		$\frac{1}{q}$	Dĺžka cyklu n		$\frac{1}{q}$	Dĺžka cyklu <i>n</i>
1.	$\frac{1}{3}$	2	13.	$\frac{1}{43}$	14	25.	$\frac{1}{103}$	51
2.	$\frac{1}{5}$	4	14.	$\frac{1}{47}$	23	26.	$\frac{1}{107}$	106
3.	$\frac{1}{7}$	3	15.	$\frac{1}{53}$	52	27.	$\frac{1}{109}$	36
4.	$\frac{1}{11}$	10	16.	$\frac{1}{59}$	58	28.	$\frac{1}{113}$	28
5.	$\frac{1}{13}$	12	17.	$\frac{1}{61}$	60	29.	$\frac{1}{127}$	7
6.	$\frac{1}{17}$	8	18.	$\frac{1}{67}$	66	30.	$\frac{1}{131}$	130
7.	$\frac{1}{19}$	18	19.	$\frac{1}{71}$	35	31.	$\frac{1}{137}$	68
8.	$\frac{1}{23}$	11	20.	$\frac{1}{73}$	9	32.	$\frac{1}{139}$	138
9.	$\frac{1}{29}$	28	21.	$\frac{1}{83}$	82	33.	$\frac{1}{149}$	148
10.	$\frac{1}{31}$	5	22.	$\frac{1}{89}$	11	34.	$\frac{1}{151}$	15
11	$\frac{1}{37}$	36	23.	$\frac{1}{97}$	48	35.	$\frac{1}{157}$	52
12.	$\frac{1}{41}$	20	24.	$\frac{1}{101}$	100	36.	$\frac{1}{163}$	162

Jednoprvkový a dvojprvkový cyklus

Veta

 $\textit{Množina}\ \{0\}\ \textit{je jediný jednoprvkový cyklus algebry}\ (\textit{I},\textit{f}).$

Množina $\{\frac{1}{3},\frac{2}{3}\}$ je jediný 2-prvkový cyklus algebry (I,f).

Racionálne čísla

Veta

Nech p je nepárne prirodzené číslo, $k \in \mathbb{N}, \frac{k}{p} \in I$. Potom:

- **1** $\frac{k}{p}$ je cyklický prvok monounárnej algebry (I, f),
- **2** existuje nekonečná množina $\mathbb{A} \subset I$ taká, že

- funkcia f je na množine A injektívna.

Lema

Nech $k, n, p \in \mathbb{N}$, p je nepárne, $k < 2^n p$, k je nesúdeliteľné s $2^n p$. Potom $\frac{k}{2^n p}$ nie je cyklický prvok algebry (I, f).

Binárny rozvoj

Nech $a \in \langle 0, 1 \rangle$ a postupnosť $\{a_n\}_{n=1}^{\infty}$ je binárny rozvoj čísla a.

Lema

$$f(0, a_1 a_2 a_3 a_4...|_2) = 0, a_2 a_3 a_4 a_5...|_2$$
.

Binárny rozvoj

Veta

Nech $a\in (0,\,1)$, $a=\frac{k}{p}$, kde $k,\,\,p\in\mathbb{N}$, p je nepárne. Ďalej nech $\{a_n\}_{n=1}^\infty$ je binárny rozvoj čísla a. Potom

$$a=0,\overline{a_1a_2...a_m}\mid_2,$$
 pre nejaké $m\in\mathbb{N}.$

Veta

Nech $a\in (0,\,1)$, $a=\frac{k}{2^n\cdot p}$, kde $k,\,n,\,p\in\mathbb{N},p\neq 1,p$ je nepárne a k je nesúdeliteľné s číslom 2^np . Ďalej nech $\left\{a_i\right\}_{i=1}^\infty$ je binárny rozvoj čísla a. Potom v algebre (I,f) číslo $f^n(a)$ leží na cykle dĺžky m pre nejaké $m\in\mathbb{N}$. Ďalej platí

$$a=0, a_1 a_2 \dots a_n \overline{a_{n+1} \dots a_{n+m}}|_2.$$

Binárny rozvoj a iracionálne čísla

Veta

Nech $a\in (0,1)$ a $\{a_n\}_{n=1}^\infty$ je binárny rozvoj čísla a. Potom nasledujúce tvrdenia sú ekvivalentné

- a je racionálne číslo,
- f b existuje nezáporné celé číslo t a $m\in \mathbb{N}$ také, že

$$a=0, a_1 \ldots a_t \ \overline{a_{t+1} \ldots a_m} \mid_2.$$

Veta

Nech $K=\{a\in I\colon a \text{ je iracionálne číslo}\}$. Potom $(K,f_{/K})$ je monounárna algebra, ktorá neobsahuje cyklus.

Zoznam použitej literatúry

CRILLY, T.: *Matematika 50 myšlienok, ktoré by ste mali poznať.*, Bratislava: Slovart, 2004. ISBN 978-80-556-0294-3

JAKUBÍKOVÁ-STUDENOVSKÁ, D.; PÓCS, J.: *Monounary algebras.*, Košice: Univerzita Pavla Jozefa Šafárika. 2009. isbn 978-80-7097-763-7.

HALUŠKOVÁ, E.; MLYNARČÍK, P.: On Discrete Properties of Real Functions: In Computer Algebra Systems in Teaching and Research., Siedlce: University of Natural Sciences a Humanities. 2021. isbn 978-83-66541-85-6.

BUŠA, J.; HNATIČ, M.: *Chaos. Úvod do problematiky.*,Košice: Tech- nická univerzita v Košiciach, 2004. isbn 80-89061-94-X. Dostupné tiež z: http://people.tuke.sk/jan.busa/chaos/ChaosBusaHnatic04.pdf.

Bukovský, L.: *Množiny a všeličo okolo nich.*, Košice: Univerzita Pavla Jozefa Šafárika, 2005. isbn 80-7097-578-4.

UNIVERZITA PAVLA JOZEFA ŠAFÁRIKA V KOŠICIACH Prírodovedecká fakulta

ÚSTAV MATEMATICKÝCH VIED

Ďakujem za pozornosť