Section R.5 Factoring Polynomials

EXAMPLE Identifying Common Monomial Factors

Polynomial	Common Monomial Factor	Remaining Factor	Factored Form
2x + 4	2	x + 2	2x + 4 = 2(x + 2)
3x - 6	3	x-2	3x - 6 = 3(x - 2)
$2x^2 - 4x + 8$	2	$x^2 - 2x + 4$	$2x^2 - 4x + 8 = 2(x^2 - 2x + 4)$
8x - 12	4	2x - 3	8x - 12 = 4(2x - 3)
$x^2 + x$	X	x + 1	$x^2 + x = x(x+1)$
$x^3 - 3x^2$	x^2	x - 3	$x^3 - 3x^2 = x^2(x - 3)$
$6x^2 + 9x$	3x	2x + 3	$6x^2 + 9x = 3x(2x + 3)$

1 Factor the Difference of Two Squares and the Sum and Difference of Two Cubes

Difference of Two Squares

$$x^2 - a^2 = (x - a)(x + a)$$

 Perfect Squares
 $x^2 + 2ax + a^2 = (x + a)^2$
 $x^2 - 2ax + a^2 = (x - a)^2$

 Sum of Two Cubes
 $x^3 + a^3 = (x + a)(x^2 - ax + a^2)$

 Difference of Two Cubes
 $x^3 - a^3 = (x - a)(x^2 + ax + a^2)$

EXAMPLE Factoring the Difference of Two Squares

Factor completely: $x^2 - 4$

Notice that $x^2 - 4$ is the difference of two squares, x^2 and 2^2 .

$$x^2 - 4 = (x - 2)(x + 2)$$

Difference of Two Squares

$$x^2 - a^2 = (x - a)(x + a)$$

 Perfect Squares
 $x^2 + 2ax + a^2 = (x + a)^2$
 $x^2 - 2ax + a^2 = (x - a)^2$

 Sum of Two Cubes
 $x^3 + a^3 = (x + a)(x^2 - ax + a^2)$

 Difference of Two Cubes
 $x^3 - a^3 = (x - a)(x^2 + ax + a^2)$

Factoring the Difference of Two Cubes

Factor completely: $x^3 - 1$

Because $x^3 - 1$ is the difference of two cubes, x^3 and 1^3 ,

$$x^3 - 1 = (x - 1)(x^2 + x + 1)$$

Difference of Two Squares

$$x^2 - a^2 = (x - a)(x + a)$$

 Perfect Squares
 $x^2 + 2ax + a^2 = (x + a)^2$
 $x^2 - 2ax + a^2 = (x - a)^2$

 Sum of Two Cubes
 $x^3 + a^3 = (x + a)(x^2 - ax + a^2)$

 Difference of Two Cubes
 $x^3 - a^3 = (x - a)(x^2 + ax + a^2)$

Factoring the Sum of Two Cubes

Factor completely: $x^3 + 8$

Because $x^3 + 8$ is the sum of two cubes, x^3 and 2^3 ,

$$x^3 + 8 = (x + 2)(x^2 - 2x + 4)$$

Difference of Two Squares

$$x^2 - a^2 = (x - a)(x + a)$$

 Perfect Squares
 $x^2 + 2ax + a^2 = (x + a)^2$
 $x^2 - 2ax + a^2 = (x - a)^2$

 Sum of Two Cubes
 $x^3 + a^3 = (x + a)(x^2 - ax + a^2)$

 Difference of Two Cubes
 $x^3 - a^3 = (x - a)(x^2 + ax + a^2)$

EXAMPLE | Factoring the Difference of Two Squares

Factor completely: $x^4 - 16$

Because $x^4 - 16$ is the difference of two squares, $x^4 = (x^2)^2$ and $16 = 4^2$, $x^4 - 16 = (x^2 - 4)(x^2 + 4)$

But $x^2 - 4$ is also the difference of two squares. Then,

$$x^4 - 16 = (x^2 - 4)(x^2 + 4) = (x - 2)(x + 2)(x^2 + 4)$$

2 Factor Perfect Squares

Factoring a Perfect Square

Factor completely:

$$x^2 + 6x + 9$$

The first term, x^2 , and the third term, $9 = 3^2$, are perfect squares. Because the middle term 6x is twice the product of x and 3, we have a perfect square.

$$x^2 + 6x + 9 = (x + 3)^2$$

$$9x^2 - 6x + 1$$

The first term, $9x^2 = (3x)^2$, and the third term, $1 = 1^2$, are perfect squares. Because the middle term, -6x, is -2 times the product of 3x and 1, we have a perfect square.

$$9x^2 - 6x + 1 = (3x - 1)^2$$

$$25x^2 + 30x + 9$$

The first term, $25x^2 = (5x)^2$, and the third term, $9 = 3^2$, are perfect squares. Because the middle term, 30x, is twice the product of 5x and 3, we have a perfect square.

$$25x^2 + 30x + 9 = (5x + 3)^2$$

3 Factor a Second-Degree Polynomial: $x^2 + Bx + C$

To factor a second-degree polynomial $x^2 + Bx + C$, find integers whose product is C and whose sum is B. That is, if there are numbers a, b, where ab = C and a + b = B, then

$$x^2 + Bx + C = (x + a)(x + b)$$

Factoring a Trinomial

Factor completely: $x^2 + 7x + 10$

Integers whose product is 10	1, 10	-1, -10	2, 5	-2, -5
Sum	11	11	7	-7

The integers 2 and 5 have a product of 10 and add up to 7, the coefficient of the middle term. As a result,

$$x^2 + 7x + 10 = (x + 2)(x + 5)$$

Factoring a Trinomial

Factor completely: $x^2 - 6x + 8$

Integers whose product is 8	1, 8	-1, -8	2, 4	-2, -4
Sum	9	-9	6	-6

Since -6 is the coefficient of the middle term,

$$x^2 - 6x + 8 = (x - 2)(x - 4)$$

Factoring a Trinomial

Factor completely: $x^2 - x - 12$

Integers whose product is -12	1, -12	-1, 12	2, -6	-2, 6	3, -4	-3, 4
Sum	-11	11	-4	4	-1	1

Since -1 is the coefficient of the middle term,

$$x^2 - x - 12 = (x + 3)(x - 4)$$

Factor completely: $x^2 + 4x - 12$

The integers -2 and 6 have a product of -12 and have the sum 4. So,

$$x^2 + 4x - 12 = (x - 2)(x + 6)$$

Identifying a Prime Polynomial

Show that $x^2 + 9$ is prime.

Integers whose product is 9	1, 9	-1, -9	3, 3	-3, -3
Sum	10	-10	6	-6

Since the coefficient of the middle term in $x^2 + 9 = x^2 + 0x + 9$ is 0 and none of the sums equals 0, we conclude that $x^2 + 9$ is prime.

Theorem

Any polynomial of the form $x^2 + a^2$, a real, is prime.

4 Factor by Grouping

Factoring by Grouping

Factor completely by grouping:

$$(x^2 + 2)x + (x^2 + 2) \cdot 3$$

Notice the common factor $x^2 + 2$. By applying the Distributive Property, we have $(x^2 + 2)x + (x^2 + 2) \cdot 3 = (x^2 + 2)(x + 3)$

Since $x^2 + 2$ and x + 3 are prime, the factorization is complete.

EXAMPLE

$$3(x-1)^{2}(x+2)^{4} + 4(x-1)^{3}(x+2)^{3}$$

$$= (x-1)^{2}(x+2)^{3}[3(x+2) + 4(x-1)]$$

$$= (x-1)^{2}(x+2)^{3}[3x+6+4x-4]$$

$$= (x-1)^{2}(x+2)^{3}(7x+2)$$

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Factoring by Grouping

Factor completely by grouping:

$$x^{3} - 4x^{2} + 2x - 8 = (x^{3} - 4x^{2}) + (2x - 8)$$
$$= x^{2}(x - 4) + 2(x - 4)$$
$$= (x - 4)(x^{2} + 2)$$

5 Factor a Second-Degree Polynomial: $Ax^2 + Bx + C$, $A \ne 1$

Steps for Factoring $Ax^2 + Bx + C$, where $A \neq 1$, and A, B, and C Have No Common Factors

STEP 1: Find the value of AC.

STEP 2: Find integers whose product is AC that add up to B. That is, find a and b so that ab = AC and a + b = B.

STEP 3: Write $Ax^2 + Bx + C = Ax^2 + ax + bx + C$.

STEP 4: Factor this last expression by grouping.

Factoring a Trinomial

Factor completely: $2x^2 + 5x + 3$

Comparing $2x^2 + 5x + 3$ to $Ax^2 + Bx + C$, we find that A = 2, B = 5, and C = 3.

STEP 1: The value of AC is $2 \cdot 3 = 6$.

STEP 2: Determine the pairs of integers whose product is AC = 6 and compute their sums.

Integers whose product is 6	1, 6	-1, -6	2, 3	-2 , -3
Sum	7	-7	5	-5

STEP 3: The integers whose product is 6 that add up to B = 5 are 2 and 3.

$$2x^2 + 5x + 3 = 2x^2 + 2x + 3x + 3$$

STEP 4: Factor by grouping.

$$2x^{2} + 2x + 3x + 3 = (2x^{2} + 2x) + (3x + 3)$$
$$= 2x(x + 1) + 3(x + 1) = (x + 1)(2x + 3)$$

EXAMPLE Factoring a Trinomial

Factor completely: $2x^2 - x - 6$

Comparing $2x^2 - x - 6$ to $Ax^2 + Bx + C$, we find that A = 2, B = -1, and C = -6.

STEP 1: The value of AC is $2 \cdot (-6) = -12$.

STEP 2: Determine the pairs of integers whose product is AC = -12 and compute their sums.

Integers whose product is -12	1, -12	-1, 12	2, -6	-2, 6	3, -4	-3, 4
Sum	-11	11	-4	4	-1	1

STEP 3: The integers whose product is -12 that add up to B = -1 are -4 and 3.

$$2x^2 - x - 6 = 2x^2 - 4x + 3x - 6$$

STEP 4: Factor by grouping.

$$2x^{2} - 4x + 3x - 6 = (2x^{2} - 4x) + (3x - 6)$$
$$= 2x(x - 2) + 3(x - 2) = (x - 2)(2x + 3)$$

Summary		
Type of Polynomial	Method	Example
Any polynomial	Look for common monomial factors. (Always do this first!)	$6x^2 + 9x = 3x(2x + 3)$
Binomials of degree 2 or higher	Check for a special product: Difference of two squares, $x^2 - a^2$	$x^2 - 16 = (x - 4)(x + 4)$
	Difference of two cubes, $x^3 - a^3$ Sum of two cubes, $x^3 + a^3$	$x^{3} - 64 = (x - 4)(x^{2} + 4x + 16)$ $x^{3} + 27 = (x + 3)(x^{2} - 3x + 9)$
Trinomials of degree 2	Check for a perfect square, $(x \pm a)^2$ (p. 47)	$x^{2} + 8x + 16 = (x + 4)^{2}$ $x^{2} - 10x + 25 = (x - 5)^{2}$
	Factoring $x^2 + Bx + C$ (p. 48)	$x^2 - x - 2 = (x - 2)(x + 1)$
	Factoring $Ax^2 + Bx + C$ (p. 50)	$6x^2 + x - 1 = (2x + 1)(3x - 1)$
Three or more terms	Grouping	$2x^3 - 3x^2 + 4x - 6 = (2x - 3)(x^2 + 2)$

6 Complete the Square

Completing the Square

Identify the coefficient of the first-degree term. Multiply this coefficient by $\frac{1}{2}$ and then square the result. That is, determine the value of b in $x^2 + bx$ and compute $\left(\frac{1}{2}b\right)^2$.

Completing the Square

Determine the number that must be added to each expression to complete the square. Then factor the expression.

Start	Add	Result	Factored Form
$y^2 + 8y$			
$x^2 + 12x$			
$a^2 - 20a$			
p ² – 5p			

Are you wondering why we call making an expression a perfect square "completing the square"? Look at the square in Figure 27. Its area is $(y + 4)^2$. The yellow area is y^2 and each orange area is 4y (for a total area of 8y). The sum of these areas is $y^2 + 8y$. To complete the square, we need to add the area of the green region: $4 \cdot 4 = 16$. As a result, $y^2 + 8y + 16 = (y + 4)^2$.

Figure 27

