COT4210 Exam I

Noah Fuhrman March 7, 2025

Solution to Problem 1

Step 1: Construct an NFA for the language ${\cal L}$

- Let $M=(Q_c,\Sigma,\delta,q_0,F)$ be an NFA that recognizes language L where...
 - $\circ~Q=\{q_0,q_1,q_2,q_3,q_4\}$ is the set of states
 - $\sum = \{a, b, c, d\}$
 - \circ δ :

	a	b	С	d
q_0	q_0	\emptyset (no transition)	q_1	q_0
	\emptyset (no transition)		q_1	q_1
q_2	\emptyset (no transition)	q_3	\emptyset (no transition)	q_4
q_3	\emptyset (no transition)	\emptyset (no transition)	\emptyset (no transition)	q_4
q_4	\emptyset (no transition)	\emptyset (no transition)	\emptyset (no transition)	q_2

- $\circ \ q_0$ is the start state
- $\circ \ F = \{q_3\}$ is the set of accept states

Step 2: Visualize the NFA

Step 3: Prove that the machine accepts ${\cal L}$

- By definition, a language is called a regular language if some finite automaton recognizes it.
- Since we have already constructed an NFA that recognizes L, we have shown that L is regular. (end of solution)

Solution to Problem 2

Step 1: Establish Conditions

- L is a regular language
- h is a homomorphism on the alphabet of ${\cal L}$
- Since L is regular, there must exist an NFA $M=(Q,\sum,\delta,q_0,F)$ that recognizes L

Step 2: Construct an NFA that accepts h(L)

- Let $M' = (Q', \sum', \delta', q'_0, F')$ be the NFA that recognizes h(L)
 - $\circ Q'$ includes all states from Q plus new intermediate states needed for longer transitions (the strings)
 - $\circ \sum'$ is the alphabet of h(L)
 - $\circ \ q_0' = q_0$ (same start state)
 - $\circ F' = F$ (same accept states)
 - $\circ~$ For each transition $\delta(p,a)=q$ in the original NFA:
 - If $h(a) = \epsilon$ (empty string): Add an ϵ -transition from p to q
 - If $h(a) = w_1 w_2 \dots w_k$ (k \geq 1): Create a path of k transitions with k-1 new intermediate states that reads the string h(a) character by character.
- The resulting NFA M' accepts a string y if and only if y = h(s) for some $s \in L$

Step 3: Conclusion

- Since M' is an NFA and NFAs recognize regular languages, h(L) must be regular
- Therefore, the class of regular languages is closed under homomorphism

Solution to Problem 3

Step 1: Construct an NFA with at most five states that accepts any string containing a comment (L)

- Let $M=(Q,\Sigma,\delta,q_0,F)$ be an NFA that recognizes language L where...
 - $\circ~Q=\{q_0,q_1,q_2,q_3,q_4\}$ is the set of states
 - $\circ \sum = \{a, b, /, \#\}$
 - \circ δ :

	a	b	/	#	ϵ
q_0	q_0	q_0	q_1	\emptyset (no transition)	q_0
q_1	\emptyset (no transition)	\emptyset (no transition)	\emptyset (no transition)	q_2	\emptyset (no transition)
q_2	q_2	q_2	\emptyset (no transition)	\emptyset (no transition)	q_2
q_3	\emptyset (no transition)	\emptyset (no transition)	q_4	\emptyset (no transition)	\emptyset (no transition)
q_4	q_4	q_4	\emptyset (no transition)	\emptyset (no transition)	q_4

Step 2: Visualize the NFA

Step 3: Prove that the machine accepts L

- By definition, a language is called a regular language if some finite automaton recognizes it.
- ullet Since we have already constructed an NFA that recognizes L, we have shown that L is regular. (end of solution)

Solution to Problem 4

Step 1: Understand the Language

- The language L is defined as $L = \{ccc\#cc\#c \text{ with } c \in \{a,b\}^*\}$
- This means that the language consists of strings that follow the pattern ccc#cc#c where each c is the same string from $\{a,b\}^*$ (including the empty string).

Step 2: Assume L is regular so that we can use the pumping lemmma

- ullet Let p be the pumping length given by the pumping lemma
- Let $c = a^p$ (a string of p consecutive 'a's)
- Let $s=a^pa^pa^p\#a^p\#a^p\#a^p$
- $ullet \ s \in L$ since it follows the pattern ccc#cc#c where each $c=a^p$
- $ullet |s|=6p+2\geq p$, so the pumping lemma applies

Step 3: Apply Rule 1 and 3 of the pumping lemma

- Since $|s| \ge p$, we can split s into three substrings s = xyz where |y| > 0, $|xy| \le p$, and x, y, z are substrings of s
- Since $|xy| \le p$, both x and y must be contained within the first block of a's

Step 4: Apply and Evaluate Rule 2 of the pumping lemma

- By rule 2, the middle portion y must be repeatable $o xy^iz\in L$ for all $i\geq 0$
- $\bullet \ \ \mathsf{Let} \ i = 2$
- Let $s' = xy^2z$

$$\circ x = a^j$$
, $0 \le j < p$

•
$$y = a^k$$
, $k > 0$, and $j + k \le p$

$$\circ z = a^{p-j-k}a^pa^p \# a^pa^p \# a^p$$

• xyz still follows the pattern ccc#cc where $xyz = a^pa^pa^p\#a^p\#a^p$

$$\circ \ s' = a^j \cdot a^k \cdot a^k \cdot a^{p-j-k} a^p a^p \# a^p \# a^p$$

$$\circ = a^{p+k}a^pa^p\#a^pa^p\#a^p$$

- For s' to be in L, it must follow the pattern ccc#cc#c where each c is the same string
- ullet However, the first $c=a^{p+k}$ while all other c's are still a^p
- Since k>0 , we have $a^{p+k}
 eq a^p$
- Therefore, s'
 otin L

Step 5: Conclude

- We've shown that $xy^2z
 otin L$, which contradicts the pumping lemma's requirement that $xy^iz\in L$ for all $i\ge 0$
- ullet Therefore, L is not regular

Solution to Problem 5

Step 1: Determine the quantity of states of the DFA

- There are 3 states in the NFA, so there will be $2^3 = 8$ states in the DFA.
- We would have the following states in the DFA:
 - 1: state 1
 - o 2: state 2
 - 3: state 3
 - o 12: state 1, 2
 - o 13: state 1, 3
 - o 23: state 2, 3
 - o 123: state 1, 2, 3
 - ∘ Ø: empty set

Step 2: Determine the Accept States of the DFA

- Given that the NFA accepts at states 1 and 3, the DFA accepts at any of the states that include 1 or 3
- Therefore, the accept states of the DFA are:
 - 1: state 1
 - 3: state 3
 - 13: state 1,3
 - o 123: state 1,2,3

Step 3: Determine the starting state and transitions of the DFA

- Given that state 1 is the starting state and there are no ϵ -transitions from state 1, the starting state of the DFA is $\{1\}$
- The transitions of the DFA are as follows:

	a	b	c	d
{1}	{2}	Ø	{2}	Ø
{2}	Ø	{23}	Ø	{123}
{3}	{12}	{1}	Ø	Ø
{1,2}	{2}	{23}	{2}	{123}
{1,3}	{12}	{1}	{2}	Ø

{2,3}	{12}	{123}	Ø	{123}
{1,2,3}	{12}	{123}	{2}	{123}
Ø	Ø	Ø	Ø	Ø

Step 4: Visualize the DFA

Solution to Problem 6

- To reduce the DFA, we need to remove states that are not reachable from the starting state.
- The only states that cannot be reached from the starting state are q_3 and q_{13}

Solution to Problem 7

Step 1: Determine start and accept states of GFNA

- The start state s will come before q_1 (old start state) with a ϵ -transition in-between them
- accepting state a will be above q_1 (old accepting state) with a ϵ -transition in-between them

Step 2: Choose a state to rip and construct the ripping table

- Given that q_1 has the most transitions, we'll rip it $(q_1$ will be our r)

- There are five transitions coming in and out of q_1 (including the ϵ -transitions between s and a)

a	r	b	R_{ar}	R_r	R_{rb}	R_{ab}	$(R_{ar})(R_r)^*(R_{rb}) \mid (R_{ab})$	Reduced
s	1	a	ϵ	Ø	ϵ	Ø	$(\epsilon)(\emptyset)^*(\epsilon) \mid (\emptyset)$	ϵ
s	1	2	ϵ	Ø	a c	Ø	$(\epsilon)(\emptyset)^*(a c) \mid (\emptyset)$	a c
s	1	3	ϵ	Ø	b d	Ø	$(\epsilon)(\emptyset)^*(b d) \mid (\emptyset)$	b d
2	1	a	b d	Ø	ϵ	Ø	$(b d)(\emptyset)^*(\epsilon) \mid (\emptyset)$	b d
3	1	a	b d	Ø	ϵ	Ø	$(b d)(\emptyset)^*(\epsilon) \mid (\emptyset)$	b d

Step 3: Repair Machine After Ripping q_1

Step 4: Rip/Repair q_2

a	r	b	R_{ar}	R_r	R_{rb}	R_{ab}	$(R_{ar})(R_r)^*(R_{rb}) \mid (R_{ab}) \mid$	Reduced
s	2	a	a c	Ø	b d	ϵ	$(a c)(\emptyset)^*(b d) \mid (\epsilon)$	$(a c)(b d) \epsilon$
s	2	3	a c	Ø	a c	b d	$(a c)(\emptyset)^*(a c) \mid (b d)$	(a c)(a c) b d
3	2	a	a c	Ø	b d	b d	$(a c)(\emptyset)^*(b d) \mid (b d)$	(a c)(b d) b d

Step 5: Rip/Repair q_3

a r b	R_{ar}	R_r	R_{rb}	R_{ab}	$(R_{ar})(R_r)^*(R_{rb})\mid (R_{ab})$	Reduced
s 3 a (a c)(a c) b d	Ø	$\overline{(a c)(b d) b d}$	$(a c)(b d) \epsilon$	$\overline{((a c)(a c) b d)(\emptyset)^*((a c)(b d) b d) ((a c)(b d) \epsilon)}$	$((a c)(a c)^*(b d) (b d)(b d))^*$

Step 6: Convert to Regular Expression (Final Answer)

- The regular expression is: $((a|c)(a|c)^*(b|d) \mid (b|d)(b|d))^*$