```
they can make an announcement to say an have
entered the room.
 Cb) if the
                initial State of Switch is unknown,
                  ron - turn it off and wunter ++
     Counter
                         -) Continue
                       - Continue
    Others
                             first two times? turn it on : continue
      the end, if the counter reaches 2xcp-2)+1=
              then they can make an announcement to
             have entered the room.
 Say all
122
a)
     Code:
                         // the shared variables, booleans
      bool turn, flag[2];
   2
      byte ncrit;
                         // nr of procs in critical section
      active [2] proctype user()
                         // two processes
   5
           assert(_pid == 0 || _pid == 1);
   7
      again:
   8
           flag[\_pid] = 1;
   9
           turn = 1 - _pid;
           (flag[1 - _pid] == 0 || turn == 1 - _pid);
   10
           ncrit++;
           assert(ncrit == 1);  // critical section
   13
   14
           ncrit--;
   15
   16
           flag[\_pid] = 0;
   17
           goto again
   18
```

Trail:	1 -4:-4:-4	
IVant:	2 1:1:0	
	3 2:0:0	
	4 3:1:1	
	5 4:1:2	
	6 5:1:3	
	7 6:1:4	
	8 7:1:5	
	9 8:1:6	
	10 9:0:1	
	11 10:1:7	
	12 11:1:1	
	13 12:1:2	
	14 13:1:3	
	15 14:1:4	
	16 15:1:5	
	17 16:0:2	
	18 17:1:6	
	19 18:1:7	
	20 19:1:1	
	20 19:1:1	
	22 21:1:3	
	23 22:1:4	
	24 23:1:5	
	25 24:1:6	
	26 25:1:7	
	27 26:0:3	
	28 27:1:1	
	29 28:1:2	
	29 28:1:2 30 29:1:3	
	30 29:1:3 31 30:1:4	
	32 31:1:5	
	33 32:1:6	
	34 33:0:4	
	35 34:1:7	
	36 35:1:1	
	36 35:1:1 37 36:1:2	
	38 37:1:3	
	38 37:1:3 39 38:1:4	
	40 39:1:5	
	39:1:3	

```
b) Code:
```

```
bool turn, flag[2];
                                    // the shared variables, booleans
     byte ncrit;
                                    // nr of procs in critical section
     active [2] proctype user()
                                   // two processes
            assert(_pid == 0 || _pid == 1);
     again:
8
            turn = _pid;
9
            flag[\_pid] = 1;
            (flag[1 - _pid] == 0 || turn == 1 - _pid);
10
12
            ncrit++;
                                   // critical section
13
            assert(ncrit == 1);
            ncrit--;
14
15
            flag[\_pid] = 0;
16
            goto again
```

```
-4:-4:-4
                  1:1:0
                  2:0:0
                  4:1:2
                  6:1:4
                  8:1:6
               10
                  9:1:7
                  11:1:1
                  12:1:2
                  13:1:3
                  14:1:4
                  15:1:5
                  16:0:2
               17
                  17:0:3
                  18:0:4
                  19:0:5
 123
 Suppose A has entered level 1, and is about to
 enter level 2. If A pawses for some reason,
 every other thread which completed level 1 may
 overtake A.
(24
 Assume there is N threads. So the previous gate
level should be N-1, and now we reduce it
 as N-L, so that L threads can be in the CS.
 The modified code is as following:
for (int k = 1; k < N - 1 + 1; k++) {
  gate[i] = k; //process i is in gate k
```

```
last[k] = i; //process i is the last one to modify gate k
 int counter = 1 + 1;
while (counter > 1 && last[k] == i) {
    counter = 0;
   for (int j = 0; j < N; j++) {
    if (gate[j] >= k) {
      counter++;
```