Algebraic Topology - Dunkin's Torus 3 -

KYB

Thrn, it's a Fact
mathrnfact@gmail.com

September 14, 2021

Overview

The Fundamental Group

■ Covering Spaces

Definition

Let $p: E \to B$ be a continuous surjective map.

- The open set U of B is said to be *evenly covered* by p if the inverse image $p^{-1}(U)$ can be written as the union of disjoint open sets V_{α} in E such that for each α , the restriction of p to V_{α} is a homeomorphic of V_{α} onto U.
- The collection $\{V_{\alpha}\}$ will be called a partition of $p^{-1}(U)$ into slices.
- If every point b of B has a neighborhood U that is evenly covered by p, then p is called a *covering map*, and E is said to be a *covering space* of B.

Remark

• If U is evenly covered by p and W is an open set contained in U, then W is also evenly covered by p.

Suppose p is a covering map.

- For each $b \in B$, the subspace $p^{-1}(B)$ of E has the discrete topology.
- For each slice V_{α} is open in E and intersects the set $p^{-1}(b)$ in a single point; therefore this point is open in $p^{-1}(b)$.
- p is an open map.

Example

Let X be any space.

- Let $i: X \to X$ be the identity map. Then i is a covering map.
- More generally, let E be the space $X \times \{1, \dots, n\}$ consisting of n disjoint copies of X. The map $p : E \to X$ given by p(x, i) = x for all i is again a covering map.

Theorem (53.1)

The map $p:\mathbb{R}\to S^1$ given by the equation

$$p(x) = (\cos 2\pi x, \sin 2\pi x)$$

is a covering map.

Remark

If $p:E\to B$ is a covering map, then p is a local homeomorphism of E with B.

Example

The map $p: \mathbb{R}_+ \to S^1$ given by the equation

$$p(x) = (\cos 2\pi x, \sin 2\pi x)$$

is surjective, and it is a local homeomorphism. But it is not a covering map, for the point $b_0 = (1,0)$ has no neighborhood U that is evenly covered by p.

This example shows that the map obtained by restricting a covering map may not be a covering map.

Example

Consider the map $p:S^1\to S^1$ given in equation by

$$p(z)=z^2.$$

Then p is a covering map.

Theorem (53.2)

Let $p: E \to B$ be a covering map. If B_0 is a subspace of B, and if $E_0 = p^{-1}(B_0)$, then the map $p_0: E_0 \to B_0$ obtained by restricting p is a covering map.

Theorem (53.3)

If $p:E\to B$ and $p':E'\to B'$ are covering maps, then

$$p\times p': E\times E'\to B\times B'$$

is a covering map.

Example

Consider $\mathsf{T} = \mathsf{S}^1 \times \mathsf{S}^1$, the torus. The product map

$$p\times p:\mathbb{R}\times\mathbb{R}\to S^1\times S^1$$

is a covering of the torus by the plane \mathbb{R}^2 .

Example

Let b_0 denoted the point p(0) of S^1 ; let B_0 denote the subspace

$$B_0 = (S^1 \times b_0) \cup (b_0 \times S^1)$$

of $S^1 \times S^1$. Then B_0 is the union of two circles that have a point in common, we sometimes call it the *figure-eight space*. The space $E_0 = p^{-1}(B_0)$ is the infinite grid

$$E_0 = (\mathbb{R} \times \mathbb{Z}) \cup (\mathbb{Z} \times \mathbb{R}).$$

The map $p_0:E_0\to B_0$ obtained by restricting $p\times p$ is thus a covering map.

Example

Consider the covering map

$$p \times i : \mathbb{R} \times \mathbb{R}_+ \to S^1 \times \mathbb{R}_+.$$

If we take the standard homeomorphism of $S^1 \times \mathbb{R}_+$ with $\mathbb{R}^2 - 0$, sending $x \times t$ to tx, the composite gives us a covering

$$\mathbb{R}\times\mathbb{R}_+\to\mathbb{R}^2-0$$

of the punctured plane by the open upper half-plane.

Ex 53.1

Let Y have the discrete topology. Show that if $p: X \times Y \to X$ is projection on the first coordinate, then p is a covering map.

Ex 53.2

Let $p: E \to B$ be continuous and surjective. Suppose that U is an open set of B that is evenly covered by p. Show that if U is connected, then the partition of $p^{-1}(U)$ into slices is unique.

Ex 53.3

Let $p: E \to B$ be a covering map; let B be connected. Show that if $p^{-1}(b_0)$ has k elements for some $b_0 \in B$, then $p^{-1}(b)$ has k elements for every $b \in B$. In such a case, E is called a k-fold covering of B.

Ex 53.4

Let $q: X \to Y$ and $r: Y \to Z$ be covering maps; let $p = r \circ q$. Show that if $r^{-1}(z)$ is finite for each $z \in Z$, then p is a covering map.

Ex 53.6

Let $p: E \to B$ be a covering map.

- (a) If B is Hausdorff, regular, completely regular, or locally compact Hausdorff, then so is E.
- (b) If B is compact and $p^{-1}(b)$ is finite for each $b\in B,$ then E is compact.