6. óra

Adatelemzési platformok, BME, 2018. Február 28., III. elméleti óra.

Üzleti probléma

Mikroszegmentáció: mintha az adott ügyfélre szóló ajánlatot tudna adni. Ügyfélcsoportok vagy szegmensek képzésén alapszik.

Klaszterezés

- Viszonylag ritkábban használt
- Az sorok felett olyan csoporotokat (klasztereket) alkossunk, amelyek viszonylag közel vannak egymáshoz, míg a csoportok távol vannak egymástól.
- Lehet persze az oszolopokon is klaszterezni.

Főbb típusok

- 1. Hierarchikus
- 2. Partícionáló

Mind a kettő 'mohó' algoritmus, elsősorban lokális optimumokat fog elérni.

A képzett klaszterek leginkább gömbszerűek.

1. Hierarchikus

Itt annyi klaszter lesz a végén, ahány sor van, és ezekből mi fogjuk kiválasztani a végső csoportosítást.

Agglomeratív (egyesítő)

- Kiinudlópont: Minden egyes sor vagy elem külön klaszterbe tartozik.
- Iteratíve elkezdi csoportosítani őket amíg minden egyes elem egy klasztrbe tartozik.

Divizív (felosztó)

• Kiinudlópont: Minden egyes sor vagy elem egy klaszterbe tartozik.

Iteratíve elkezdi szétszedni őket amíg mind külön sorba tartozik.

2. Partícionáló

Meg kell adni neki, hogy hány darab klasztert szeretnénk létrehozni, és paraméterek alapján meg megpróbálja ezeket ráoptimalizálni.

- K-means (k-közép): Átlag alapján alkot központokat (fiktív értékek) és ezek köré szervez egy klasztert.
- K-medoid: adatpontokat használ a klaszterek közponjaként és a Manhattan-szabályt alkalmazza a távolság számításhoz (abszolút érték alapján).

Távolságfüggvények

Ezek segítségével határozzák meg, hogy mennyire messzire vannak egymástól.

1. Euklideszi távolság

Négyzetösszegek gyöke: 'átló'.

$$d(i,j) = \sqrt{\sum_{i=1}^n (x_i - x_j)^2}$$

2. Manhattan távolság

Abszolut távolság: A vektorok értékének összege.

$$d(i,j) = \sum_{i=1}^n |(x_i-x_j)|$$

3. Csebisev távolság

A legnagyobb távolság.

$$d(i,j) = \max_i |(x_i - x_j)|$$

Minkovszki távolság

Általánosan ezeket Minkovszki távolságnak tekintjük.

$$d(i,j) = (\sum_{i=1}^n |x_i - x_j|^p)^{1/p}$$

Adatelőkészítési lépések

- 1. Hiányzó értékek: Ezekre nem tudunk távolságfüggvényt számolni.
- Mérési szint, a változók értékkészlete: Nagyobb értékkészletű változók túldominálhatják a távolságfüggvényeket.
 - o Standardizálásal vagy normalizálással lehet ezt megoldani.
- 3. Kategória változók: Nem lehet értelmezni a távolságot a különböző dimenziókban.
 - 1. Bináris változókkal nincs probléma.
 - 2. Dummy változó képzés:
 - 1. Túl sok új változót kreálhat
 - 2. A sok értékkel bíró változók túldominálhatják
 - 3. A távolságfüggvényt kell módosítani
 - Kategória változókat csak összehasonlítani tudjuk.
 - Olyan függvényt használunk, ami egyenlőséget vizsgál.
- 4. Egyértékű változók

Ezeket kihagyjuk.

5. Véletlenszerű változók

Ezeket is kihagyjuk.

6. Kiugró értékek

A Hierarchikusnál nem okoznak nagy problémát, de a Partícionálóknál igen.

K-means

A klaszterekben vett távolságokat akarja minimalizálni

K darab klasztert akarunk létrehozni.

$$SSW = \sum_{i=1}^k \sum_{j=1}^{n_j} (x_{ij} - ar{x}_i)^2$$

- SSW = Sum of squares within
- k = Klaszterek száma
- n_i = Klaszter tagjainak száma
- x_i = Klaszter tagjainak átlaga
- x_{ij} = Klaszterre vonatkozó mérés

Olyan klasztereket próbálunk csinálni, amelyekben a klaszterek elemei közötti távolság minimális.

Iterációs lépések

- 1. Meghatározuuk a k értékét.
- 2. Véletlenszerűen kialakítunk k darab pontot, és elnevezzük őket a klaszterek középpontjának.
- Minden egyes pontot besorolunk egy középponthoz, amelyhez a távolsága a legkisebb. Ez kialakítja a klasztereinket.
- 4. Új klaszterközéppontot hozunk létre.
- 5. Iteráljuk a 3. és 4. pontokat.

Leállási feltételek

- 1. Nem változik a pontok klaszterbesorolása.
- 2. Az előző kritérium puhítása: leáll, ha már csak egy csekély mennyiségű klaszter változik.
- 3. SSW távolságfüggvény minimális.
- 4. Általunk megadott iteráció után.

Tulajdonságok

- 1. Probléma lehet, ha az elején **rossz kezdőpontokat** választunk ki
 - 1. Brute force: Lefuttatjuk az összes lehetőségre
 - 2. Lefuttatjuk több kezdőpont-halmazra
 - 3. A legtávolabbi k darab pontból indulunk ki
- 2. Kiugró értékek: Ha az elején nincs beválasztva, a 4. iterációs lépésben eltolja a klaszterközéppontot. A 4-es lépésben ne az átlag alapján számoljuk a középpontot, helyette:
 - 1. K-medián érték
 - 2. Az átlaghoz legközelebbi valós pont (bár a kiugró értékeket nem tudja kezelni)
 - K-medoidhoz hasonló: azt a pontot választjuk ki, amitől vett klaszteren belüli távolság minimális.
 - 1. Ez viszont felerősíti a kezdőpontok hatását.
 - 2. Számításigénye nagyon nagy lesz

K értéke

- 1. Hüvejkujjszabály: A sorok számának a felénél a gyökéből induljunk ki $k=\sqrt{\frac{n}{2}}$. Ez nagy adatnál azonban ugyancsak nagyon nagy lenne, ezért nem érdemes használni.
- 2. Próbálgatással találjuk ki, az SSW-t próbáljuk minimalizálni (ez a javasolt).
- 3. A partícionáló algoritmusokat meg lehet előzni egy hierarchikussal, ami már ad egy k értéket.

Próbálgatás

Klaszterezés nem felügyelt tanulás: itt nem tudjuk a célváltozót, ezért nem tudunk meghatározott választ adni erre.

SSW: Klaszteren belüli távolság

$$SSW = \sum_{i=1}^k \sum_{j=1}^{n_j} (x_{ij} - ar{x}_i)^2$$

- SSW = Sum of squares within
- k = Klaszterek száma
- n_i = Klaszter tagjainak száma
- x_i = Klaszter tagjainak átlaga
- x_{ij} = Klaszterre vonatkozó mérés

SSB: klaszterek közötti távolság

$$SSB = \sum_{i=1}^k n_i (ar{x_i} - ar{ar{x}})^2$$

- SSB = Sum of squares between
- \bar{x} = Nagy átlag (az értékek átlaga)

SST: teljes eltérés négyzet

$$SST = SSB + SSW$$

$$\sum_{i=1}^k \sum_{i=j}^{n_j} (x_{ij} - ar{ar{x}})^2$$

Az SSB/SST könyökpontjánál érdemes a k értékét meghatározni (inflexiós pont).

Elemszám

• A klaszterezés nagyon eltérő elemszámú klasztereket tud alkotni

Davies Boulding index

Visszamérési függvényt

$$R_{i,j} = rac{S_i + S_j}{M_{i,j}}$$

Where

 $R_{i,j}$ = A klaszterezés 'jósága'

 S_i = A klaszter belső 'szóródása'

 $M_{i,j}$ = A klaszterek közötti távolság

$$DB = rac{\sum_{i=1}^k \max_{i
eq j} R_{i,j}}{k}$$

Minél kisebb, annál jobb.

Hierarchikus klaszterezés

A felosztó nagyon hasonló mint az egyesítő, ezért csak az utóbbit vesszük.

Távolságok definiálása

Hogyan nézzük meg két többelemű klaszter számolását?

- 1. Single Linkage: legközelebbi pontok távolsága
- 2. Complete linkage: legtávolabbi pontok távolsága
- 3. Average linkage: Átlagos távolság
- 4. Centroidok távolsága

Példa

Minden elem külön klaszterbe tartozik Egy dimnezió

- 0. Példa, 10 elemű adatsor: 2, 5, 9, 15, 16, 18, 25, 33, 33, 45
- 1. Két legközelebbit összevonva (33-ak), már csak kilenc elem.
- 2. Távolságok számolás, példa lépések (single linkage):
 - (15, 16)
 (15, 16, 18)
 (2, 5)
 (2, 5, 9)
 (2, 5, 9, 15, 16, 18)
 stb...
- A fenti teljesítményfüggvényeket lehet használni
- Lánc alakú klasztereket képez

 Ha egy lépést megtettünk, az a lépés már nem fog változni. Nem biztos, hogy értelmesek lesznek a klaszterek.

Klaszterezésnek és felügyelet nélküli tanításnak ez egy nagy problémája, ezért is ritka. Hüvejkujjszabályként, az a jó klaszterezés, amely eredményeként a klasztereknek maximum egy mondatos nevet tudunk adni. Ez azt sugallja, hogy valami erősen jellemző rájuk, tehát valószínüleg van értelmük.