AWS Container Services Landscape

MANAGEMENT

Deployment, Scheduling, Scaling & Management of containerized applications

Amazon Elastic Container Service

Amazon Elastic Container Service for Kubernetes

Containers on AWS

HOSTING

Where the containers run

Week 8.4

AWS Fargate

IMAGE REGISTRY

Container Image Repository

Amazon Elastic Container Registry

What you will Learn

- Explain the purpose and function of containers and the AWS services that support container usage.
- Characterize containers and the benefits of containers.

The Problem

- "It ran on my machine, why not in production?!"
- "You need to update your computer's operating system!"
- "You don't have all the software you need to run that!"

Containers

- Similar to how virtual machines virtualize hardware, containers virtualize an operating system.
- Amazon EC2 runs virtual machines, where an entire operating system—such as Linux or Microsoft Windows—has been virtualized.
- Containers are smaller and do not contain an entire operating system.
- Instead, containers share a virtualized operating system and run as resource-isolated processes, which ensure quick, reliable, and consistent deployments.
- Containers hold everything that the software needs to run, such as libraries, system tools, code, and runtime.

Benefits of using Containers

- Containers deliver environmental consistency because the application's code, configurations, and dependencies are packaged into a single object.
 - They serve as a building block that can be deployed on any compute resource regardless of software, operating system, or hardware configurations.
- Containers also provide process isolation.
 - They have no shared dependencies or incompatibilities because each container is isolated from the other.
 - Whatever you package as a container locally will deploy and run the same way, whether in testing or production.
 - Process isolation provides operational efficiency.

Benefits of using Containers

- Containers also enable to you run multiple applications on the same instance.
 - You can specify the exact amount of memory, disk space, and central processing unit (CPU) that a container will use on an instance.
 - Containers boot quickly, and the reduced footprint enables you to create and terminate applications or tasks that are encapsulated in a container.
 - These features enable you to scale applications up and down rapidly.
- Containers increase developer productivity by removing cross-service dependencies and conflicts.
 - Each application component can be broken into different containers that run a different microservice.
 - Containers are isolated from each other, so you do not have to worry about synchronizing libraries or dependencies for each service.
 - Developers can independently upgrade each service because the libraries have no conflicts.

Benefits of using Containers

- Containers enable you to track versions of your application code and their dependencies. Docker container images have a manifest file (Dockerfile) that enables you to:
 - Easily maintain and track versions of a container
 - Inspect differences between versions
 - Roll back to previous versions
- Containers help us solve some of the problems with new and updated software, but how do we create and run a container? manage and deploy multiple containers?

Docker

 Docker is a software platform that packages software (such as applications) into containers that holds everything that the software needs to run.

Docker

- Docker is installed on each server that will host containers, and it provides simple commands that you can
 use to build, start, or stop containers.
- Docker containers include only the things an application needs to run, so this enables applications to be moved between environments quickly and easily.
- Docker is best used as a solution when you want to:
 - Standardize environments
 - Reduce conflicts between language stacks and versions
 - Use containers as a service
 - Run microservices by using standardized code deployments
 - Require portability for data processing

Virtual Machine vs Docker

	VM	
App 1	App 2	Арр 3
Bins/Libs	Bins/Libs	Bins/Libs
Guest OS	Guest OS	Guest OS
Hypervisor		
Host OS		
Server (Host)		

Amazon Elastic Container Registry

- Amazon Elastic Container Registry (Amazon ECR) is a fully-managed Docker container registry.
- With Amazon ECR, it is easy for developers to store, manage, and deploy Docker container images.
- A docker container image is a blueprint for creating containers. Images are immutable and all containers created from the same image are exactly alike.
- It is integrated with Amazon Elastic Container Service (Amazon ECS) so that you can store, run, and manage container images for applications that run on Amazon ECS.
- Specify the Amazon ECR repository in your task definition, and Amazon ECS will retrieve the appropriate images for your applications.
- Amazon ECR stores your container images in Amazon Simple Storage Service (Amazon S3) so it benefits from the high availability and durability of Amazon S3.

Amazon Elastic Container Registry

- You can organize your repositories based on your team's existing workflows by using namespaces.
- Amazon ECR uses AWS IAM for access control. It enables you to control who and what (for example, EC2 instances) can access your container images through defined policies.
- You can transfer your container images to and from Amazon ECS via HTTPS.
- Your images are also automatically encrypted at rest by using Amazon S3 server-side encryption.

Amazon Elastic Container Service

- Amazon Elastic Container Service (Amazon ECS) is a highly scalable, high-performance container management service that supports Docker containers.
- It enables you to run applications on a managed cluster of EC2 instances.
- It provides flexible scheduling Amazon ECS uses a built-in scheduler or it uses a third-party scheduler.
- The Amazon ECS application programming interfaces (APIs) make it straightforward to integrate third-party solutions—such as schedulers—or support your software delivery process.
- Amazon ECS launches your containers in your VPC, which enables you to use your VPC security groups and network ACLs.
- No compute resources are shared with other customers.
- With AWS IAM, you can assign granular access permissions for each of your containers, restrict access to each service and configure which resources a container can access.

Amazon Elastic Container Service

- These configurable isolation features of Amazon ECS are designed to help you build secure and reliable applications.
- You can use Amazon ECS to launch tens (or tens of thousands) of Docker containers in seconds, with no additional complexity.
- Amazon ECS tasks are defined through a declarative JSON template that is called a task definition.
- With this template, you can specify one or more containers that are required for your task, including
 - The Docker repository and image
 - Memory and CPU requirements
 - Shared data volumes
- You can launch as many tasks as you want from a single task definition, which you register with the service.

Kubernetes

- Kubernetes is open-source software for container management and orchestration software that is open source.
- It enables you to deploy and manage containerized applications at scale.
- With Kubernetes, you can run any type of containerized application by using the same toolset onpremises and in the cloud.
- Kubernetes works by managing a cluster of compute instances.
- It runs scheduling containers on the cluster, based on where compute resources are available.
- This scheduling also considers the resource requirements of each container that you will run to support your applications.

Kubernetes

- Containers are run in logical groupings that are called pods, and you can run and scale one or many containers together as a pod.
- Kubernetes enables you to define complex, containerized applications and run them at scale across a cluster of servers.
- Applications can be seamlessly moved from local development machines to production deployments on the cloud by using the same operational tooling.

Amazon Elastic Kubernetes Service

- You can manage the Kubernetes infrastructure yourself by running it on EC2 instances.
- Or, you can use an automatically provisioned, managed Kubernetes control plane with Amazon Elastic Kubernetes Service (Amazon EKS).
- Amazon EKS makes it easy to deploy, manage, and scale containerized applications by using Kubernetes.
- It runs the Kubernetes management infrastructure for you across multiple AWS Availability Zones to avoid having a single point of failure.
- Amazon EKS is a certified Kubernetes conformant, so you can use existing tools and plugins from AWS
 Partners and the Kubernetes community.
- Applications that run on any standard Kubernetes environment are fully compatible and can be migrated to Amazon EKS.

AWS Fargate: Run containers without managing servers

- AWS Fargate is a technology for Amazon ECS that enables you to run containers without needing to manage servers or clusters.
- Amazon ECS can use containers that are provisioned by Fargate to automatically scale, load balance, and manage the scheduling of your containers for availability.
- This method provides an easier way to build and operate containerized applications.
- It removes the need to choose server types, decide when to scale your clusters or optimize cluster packing.
- All Amazon ECS clusters are heterogeneous—you can run both Fargate and Amazon ECS tasks in the same cluster.
- You pay by the task size and only for the time for which the task consumes resources.
- The price for CPU and memory is charged on a per-second basis and the minimum charge is for one minute.

Key Takeaways

- Containers hold everything that the software needs to run, such as libraries, system tools, code, and runtime.
- Docker is a software platform that packages software (such as applications) into units that are called containers.
- Kubernetes is open-source software for container orchestration. It enables you to deploy and manage containerized applications at scale.

