RSA

- by Rivest, Shamir & Adleman of MIT in 1977
- best known & widely used public-key scheme
- based on exponentiation in a finite (Galois) field over integers modulo a prime
 - □ nb. exponentiation takes O((log n)³) operations (easy)
- uses large integers (eg. 1024 bits)
- security due to cost of factoring large numbers
 - □ nb. factorization takes O(e log n log log n) operations (hard)

RSA En/decryption

- to encrypt a message M the sender:
 - □ obtains **public key** of recipient PU={e,n}
 - □ computes: $C = M^e \mod n$, where $0 \le M < n$
- to decrypt the ciphertext C the owner:
 - uses their private key PR={d,n}
 - computes: M = Cd mod n
- note that the message M must be smaller than the modulus n (block if needed)

RSA Key Setup

- each user generates a public/private key pair by:
- selecting two large primes at random: p, q
- computing their system modulus n=p.q
 - □ **note** \emptyset (n)=(p-1)(q-1)
- selecting at random the encryption key e
 - \square where $1 < e < \emptyset(n)$, $gcd(e, \emptyset(n)) = 1$
- solve following equation to find decryption key d
 - \square e.d=1 mod \emptyset (n) and $0 \le d \le n$
- publish their public encryption key: PU={e,n}
- keep secret private decryption key: PR={d,n}

Why RSA Works

- because of Euler's Theorem:
 - \square $a^{\emptyset(n)} \mod n = 1$ where gcd(a,n)=1
- in RSA have:
 - \square n=p.q

 - □ carefully chose e & d to be inverses mod ø(n)
 - \square hence e.d=1+k. \emptyset (n) for some k
- hence:

$$C^{d} = M^{e \cdot d} = M^{1+k \cdot o(n)} = M^{1} \cdot (M^{o(n)})^{k}$$

= $M^{1} \cdot (1)^{k} = M^{1} = M \mod n$

RSA Example - Key Setup

- 1. Select primes: p=17 & q=11
- 2. Calculate $n = pq = 17 \times 11 = 187$
- 3. Calculate $\emptyset(n) = (p-1)(q-1) = 16 \times 10 = 160$
- 4. Select e: gcd(e, 160) = 1i choose e = 7
- 5. Determine d: $de=1 \mod 160$ and d < 160 Value is d=23 since $23 \times 7 = 161 = 10 \times 160 + 1$
- 6. Publish public key $PU = \{7, 187\}$
- Keep secret private key PR={23,187}

RSA Example - En/Decryption

- sample RSA encryption/decryption is:
- given message M = 88 (nb. 88<187)</pre>
- encryption:

```
C = 88^7 \mod 187 = 11
```

decryption:

```
M = 11^{23} \mod 187 = 88
```

Exponentiation

- can use the Square and Multiply Algorithm
- a fast, efficient algorithm for exponentiation
- concept is based on repeatedly squaring base
- and multiplying in the ones that are needed to compute the result
- look at binary representation of exponent
- only takes O(log₂ n) multiples for number n
 - \bullet eg. $7^5 = 7^4 \cdot 7^1 = 3.7 = 10 \mod 11$
 - \bullet eg. $3^{129} = 3^{128} \cdot 3^1 = 5 \cdot 3 = 4 \mod 11$

Efficient Encryption

- encryption uses exponentiation to power e
- hence if e small, this will be faster
 - □ often choose e=65537 (2¹⁶-1)
 - □ also see choices of e=3 or e=17
- but if e too small (eg e=3) can attack
 - using Chinese remainder theorem & 3 messages with different modulii
- if e fixed must ensure gcd(e,ø(n))=1
 - □ ie reject any p or q not relatively prime to e

Efficient Decryption

- decryption uses exponentiation to power d
 - □ this is likely large, insecure if not
- can use the Chinese Remainder Theorem (CRT) to compute mod p & q separately. then combine to get desired answer
 - approx 4 times faster than doing directly
- only owner of private key who knows values of p & q can use this technique

RSA Key Generation

- users of RSA must:
 - □ determine two primes at random p, q
 - select either e or d and compute the other
- primes p, q must not be easily derived from modulus n=p.q
 - means must be sufficiently large
 - typically guess and use probabilistic test
- exponents e, d are inverses, so use Inverse algorithm to compute the other

RSA Security

- possible approaches to attacking RSA are:
 - brute force key search infeasible given size of numbers
 - mathematical attacks based on difficulty of computing ø(n), by factoring modulus n
 - timing attacks on running of decryption
 - chosen ciphertext attacks given properties of RSA

Factoring Problem

- mathematical approach takes 3 forms:
 - factor n=p.q, hence compute ø(n) and then d
 - determine ø(n) directly and compute d
 - find d directly
- currently believe all equivalent to factoring
 - have seen slow improvements over the years
 - as of May-05 best is 200 decimal digits (663) bit with LS
 - biggest improvement comes from improved algorithm
 - of QS to GHFS to LS
 - currently assume 1024-2048 bit RSA is secure
 - ensure p, q of similar size and matching other constraints

Progress in Factoring

Number of Decimal Digits	Approximate Number of Bits	Date Achieved	MIPS-years	Algorithm
100	332	April 1991	7	quadratic sieve
110	365	April 1992	75	quadratic sieve
120	398	June 1993	830	quadratic sieve
129	428	April 1994	5000	quadratic sieve
130	431	April 1996	1000	generalized number field sieve
140	465	February 1999	2000	generalized number field sieve
155	512	August 1999	8000	generalized number field sieve
160	530	April 2003	1000	Lattice sieve
174	576	December 2003	-	Lattice sieve
200	663	May 2005	-	Lattice sieve

Progress in Factoring

Timing Attacks

- developed by Paul Kocher in mid-1990's
- exploit timing variations in operations
 - eg. multiplying by small vs large number
 - or IF's varying which instructions executed
- infer operand size based on time taken
- RSA exploits time taken in exponentiation
- countermeasures
 - use constant exponentiation time
 - add random delays
 - blind values used in calculations

Chosen Ciphertext Attacks

- RSA is vulnerable to a Chosen Ciphertext Attack (CCA)
- attackers chooses ciphertexts & gets decrypted plaintext back
- choose ciphertext to exploit properties of RSA to provide info to help cryptanalysis
 can counter with random pad of plaintext
- or use Optimal Asymmetric Encryption Padding (OASP)

Optimal
Asymmetric
Encryption
Padding (OASP)

P = encoding parameters M = message to be encoded H = hash function DB = data block MGF = mask generating function EM = encoded message

Summary

- have considered:
 - principles of public-key cryptography
 - RSA algorithm, implementation, security