Recitation 8

Alex Dong

CDS, NYU

Fall 2020

Singular Value Decomposition

- $ightharpoonup A = U\Sigma V^T$
 - lacksquare $A, \Sigma \in \mathbb{R}^{n \times m}, \quad U \in \mathbb{R}^{n \times n}, \quad V \in \mathbb{R}^{m \times m}$
 - ightharpoonup U, V are orthogonal
 - \blacktriangleright (*U, V* not necessarily the same dimension)
 - \triangleright Σ is "almost diagonal".
 - ▶ All entries off the main diagonal are 0.
- ▶ (!!) Every matrix has a SVD.
- \triangleright SVD provides a framework for understanding the properties of A.
- ► Can use the SVD to create matrices (Psuedo-Inverse, Lec 10).

Questions: SVD

- 1. Explain what the SVD says about the action of any matrix A.
- 2. Recall from Recitation 3 the proof we used to show $rank(A) = rank(A^{T}A)$.

Use the SVD to show that:

$$rank(A) = rank(A^T A) = rank(AA^T) = rank(A^T).$$

Solutions 1: SVD

1. Explain what the SVD says about the action of any matrix A.

Solution

Let A have SVD $A = U\Sigma V^T$.

Transforming any vector x by A is equivalent to transforming it by V^T , Σ and then U.

Applying V^T is applying a rotation/flipping.

Applying Σ scales/squashes each (standard basis) axis, and also transforms V^Tx to a different space.

 $Applying\ U\ also\ applies\ a\ rotation/flipping.$

Solutions 2: SVD

2. Recall from Recitation 3 the proof we used to show $rank(A) = rank(A^{T}A)$.

Use the SVD to show that:

$$\operatorname{rank}(A) = \operatorname{rank}(A^TA) = \operatorname{rank}(AA^T) = \operatorname{rank}(A^T).$$

Solution

Recall that if B, C are invertible, then rank(BAC) = rank(A).

$$A = U\Sigma V^T$$

$$A^T A = V \Sigma^T \Sigma V^T$$

$$AA^T = U\Sigma\Sigma^T U^T$$

$$A^T = V \Sigma^T U^T$$

Based on the definition of Σ , we can easily do the matrix multiplication, and see that:

$$rank(\Sigma) = rank(\Sigma^T \Sigma) = rank(\Sigma \Sigma^T) = rank(\Sigma^T).$$

We can then deduce that:

$$rank(A) = rank(A^T A) = rank(AA^T) = rank(A^T).$$

Questions: More SVD

Let $A \in \mathbb{R}^{n \times m}$, where n > m, have SVD $A = U \Sigma V^T$.

Let $e_{i,m}, e_{i,n}$ denote the *i*th standard basis vector in \mathbb{R}^m , and \mathbb{R}^n .

- 1. Give basis transformations for U, Σ, V^T . (Your answer should look like T(a) = b. where you select convenient a's that form a basis for the origin space of T. Be careful about the dimensions w/ Σ !)
- 2. Let $x \in \mathbb{R}^m$ s.t $x = \sum_{i=1}^m \alpha_i v_i$, where v_i are the columns of V. and write the expressions for $V^T x$, $\Sigma V^T x$, and $U \Sigma V^T x$.
- 3. Which vectors span the Im(A)? Which vectors span the Ker(A)? Which vectors span $Im(A^T)$? Which vectors span $Ker(A^T)$?

Solutions 1: More SVD

Let $A \in \mathbb{R}^{n \times m}$, where n > m, have SVD $A = U \Sigma V^T$.

Let $e_{i,m}, e_{i,n}$ denote the *i*th standard basis vector in \mathbb{R}^m , and \mathbb{R}^n .

1. Give basis transformations for U, Σ, V^T . (Your answer should look like T(a) = b. where you select convenient a's that form a basis for the origin space of T. Be careful about the dimensions w/ Σ !)

Solution

$$\begin{split} V^T(v_i) &= e_{i,m} \quad \textit{for } i \in \{1,...,m\} \\ \Sigma(e_{i,m}) &= \sigma_i e_{i,n} \quad \textit{for } i \in \{1,...,m\} \ \textit{(Note the } m \textit{ here)} \\ U(e_{i,n}) &= u_i \quad \textit{for } i \in \{1,...,n\} \end{split}$$

Solutions 2: More SVD

Let $A \in \mathbb{R}^{n \times m}$, where n > m, have SVD $A = U \Sigma V^T$.

Let $e_{i,m}, e_{i,n}$ denote the *i*th standard basis vector in \mathbb{R}^m , and \mathbb{R}^n .

2. Let $x \in \mathbb{R}^m$ s.t $x = \sum_{i=1}^m \alpha_i v_i$, where v_i are the columns of V. Write the expressions for $V^T x \Sigma V^T x$, and $U \Sigma V^T x$.

Solution

Let $e_{i,m}$ denote the ith standard basis vector in \mathbb{R}^m .

$$x = \sum_{i=1}^{m} \alpha_i v_i$$

$$V^T x = \sum_{i=1}^m \alpha_i e_{i,m}$$

$$\Sigma V^T x = \sum_{i=1}^{min(m,n)} \sigma_i \alpha_i e_{i,n}$$

$$U\Sigma V^T x = \sum_{i=1}^{\min(m,n)} \sigma_i \alpha_i u_i$$

Solutions 3: More SVD

Let $A \in \mathbb{R}^{n \times m}$, where n > m, have SVD $A = U \Sigma V^T$.

Let $e_{i,m}, e_{i,n}$ denote the *i*th standard basis vector in \mathbb{R}^m , and \mathbb{R}^n .

3. Which vectors span the Im(A)? Which vectors span the Ker(A)? Which vectors span $Im(A^T)$? Which vectors span $Ker(A^T)$?

Solution

```
Let \sigma_1, ..., \sigma_k > 0, and \sigma_{k+1}, ..., \sigma_{\min(m,n)} = 0.

Let u_1, ..., u_n be the columns of U and v_1, ..., v_m be the columns of V.

u_1, ..., u_k span the Im(A).

v_{k+1}, ..., v_m span Ker(A).

v_1, ..., v_k span Im(A^T).

u_{k+1}, ..., u_n span Ker(A^T).
```

Note the u's and v's!

Questions: SVD, Midterm, Regression

Midterm Q6 using SVD Let $M \in \mathbb{R}^{n \times m}$. Let n > m, and M have full rank. Let M have SVD $M = U\Sigma V^T$.

- 1. Show that M^TM is invertible.
- 2. Which vectors span the Im(M)? Write the matrix of orthogonal projection onto Im(M) and give a basis transformation for that matrix.
- 3. Let $w \in \mathbb{R}^n$, and u be the orthogonal projection of w onto Im(M). Show that $M^T u = M^T w$.
- 4. Show that $M(M^TM)^{-1}M^T$ is the matrix of an orthogonal projection onto Im(M).

Solutions 1: SVD, Midterm, Regression

Midterm Q6 using SVD Let $M \in \mathbb{R}^{n \times m}$. Let n > m, and M have full rank. Let M have SVD $M = U\Sigma V^T$.

Solution

- Show that M^TM is invertible.
 "Questions: SVD" Question 2 earlier in recitation.
 M is full rank in this case.
- 2. Which vectors span the Im(M)? Write the matrix of orthogonal projection onto Im(M) and give a basis transformation for that matrix.

"Questions: More SVD" Question 3 earlier in recitation. $u_1, ..., u_m$ span Im(M). $P_{Im(M)} = U_r U_r^T$ where:

$$U_r = \begin{bmatrix} | & & | \\ u_1 & \dots & u_m \\ | & | & \end{bmatrix}$$

$$U_r U_r^T(u_i) = u_i \text{ for } i \in \{1, \dots, m\}.$$

$$U_r U_r^T(u_i) = 0 \text{ for } i \in \{m+1, \dots, n\}.$$

Solutions 2: SVD, Midterm, Regression

Midterm Q6 using SVD Let $M \in \mathbb{R}^{n \times m}$. Let n > m, and M have full rank. Let M have SVD $M = U\Sigma V^T$.

3. Let $w \in \mathbb{R}^n$, and u be the orthogonal projection of w onto Im(M). Show that $M^T u = M^T w$.

Solution

Let
$$w = \sum_{i=1}^{n} \alpha_i u_i$$
.
 $u = P_{Im(M)}(w)$, so
 $u = U_r U_r^T w$, and
 $u = \sum_{i=1}^{m} \alpha_i u_i$. (note change in summation).
Now,
 $M^T u = \sum_{i=1}^{m} \sigma_i \alpha_i v_i$, and
 $M^T w = \sum_{i=1}^{min(m,n)} \sigma_i \alpha_i v_i$ (From More SVD Q2)
Since $n > m$. $M^T u = M^T w$.

1. Show that $M(M^TM)^{-1}M^T$ is the matrix of an orthogonal projection onto Im(M).

Solutions 2: SVD, Midterm, Regression

Midterm Q6 using SVD Let $M \in \mathbb{R}^{n \times m}$. Let n > m, and M have full rank. Let M have SVD $M = U\Sigma V^T$.

4. Show that $M(M^TM)^{-1}M^T$ is the matrix of an orthogonal projection onto Im(M).

Solution

First, note that $(M^TM)^{-1} = (V(\Sigma^T\Sigma)^{-1}V^T)$, and that $\Sigma^T\Sigma$ has rank m and is invertible, where the diagonal entries of $(\Sigma^T\Sigma)^{-1}$ are reciprocals of the entries in $(\Sigma^T\Sigma)$.

Now,

$$\begin{array}{l} M(M^TM)^{-1}M^T = (U\Sigma V^T)(V(\Sigma^T\Sigma)^{-1}V^T)(V\Sigma^TU^T) \\ M(M^TM)^{-1}M^T = U\Sigma(\Sigma^T\Sigma)^{-1}\Sigma^TU^T \end{array}$$

Doing the matrix multiplication of $\Sigma(\Sigma^T \Sigma)^{-1} \Sigma^T$ gives $\Sigma(\Sigma^T \Sigma)^{-1})\Sigma^T = I_{m,n}$,

where $I_{m,n}$ is the $n \times n$ matrix where the first m diagonal entries are 1. Finally, its easy to show that $UI_{m,n}U^T = U_rU_r^T$.

Concluding Remarks

- ► Throughout the course, we've emphasized viewing problems from different points of view
- ► Matrix multiplication
 - ► Inner product interpretation
 - ▶ Linear combination of columns interpretation
- ► Linear transformations
 - ▶ as matrices (matrix mechanics)
 - ▶ as letters (transformations on basis vectors)
- ► This recitation really emphasizes fluid switching between all of these frameworks
- ▶ All the things we've covered are deeply connected to eachother.