МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Машинное обучение»

Тема: Частотный анализ

Студент гр. 6304	Доброхвалов М. О
Преподаватель	Жангиров Т. Р.

Санкт-Петербург

Цель работы

Ознакомиться с методами частотного анализа из библиотеки

MLxtend

Загрузка данных

1. Скачан и загружен датасет в датафрейм.

```
import pandas as pd
import numpy as np
all_data = pd.read_csv('dataset_group.csv', header=None)
```

2. Получен список всех id покупателей, которые есть в файле.

```
unique_id = list(set(all_data[1]))
print(len(unique_id))
```

1139

3. Получен список всех товаров, которые есть в файле.

```
items = all_data[2].unique()
print(items.size)
```

38

4. Сформирован датасет подходящий для частотного анализа.

```
dataset = [[elem for elem in all_data[all_data[1] == id][2] if
elem in items] for id in unique_id]
```

Подготовка данных

1. Датасет был закодирован в виде матрицы с использование TransactionEncoder

```
te = TransactionEncoder()
te_ary = te.fit_transform(dataset)
df = pd.DataFrame(te_ary, columns=te.columns_)
```

2. Результат кодирования (рис. 1)

	all- purpose	aluminum foil	bagels	beef	butter	cereals	cheeses	coffee/tea	dinner rolls	dishwashing liquid/detergent	 shampoo	soap	soda	spaghetti sauce	sugar	toilet paper	tortillas	vegetables	waffles	yogurt
0	True	True	False	True	True	False	False	False	True	False	 True	True	True	False	False	False	False	True	False	True
1	False		False	False	False			False	False			False	False	False	False					
2	False	False		False	False			False		False					False		False		False	False
3		False	False	False	False		False	False	False	False	False	False		False	False		False	False	False	False
4		False	False	False	False	False	False	False		False	False	False			False					
1134		False	False		False								False	False		False	False	False	False	False
1135	False	False	False	False	False						False		False		False	False	False		False	False
1136	False	False			False	False	False	False					False	False		False			False	
1137		False	False		False	False		False	False	False	False						False			
1138	False	False	False	False	False	False	False	False	False	False		False		False	False	False	False		False	False
1139	rows ×	38 col	.umns																	

Рис. 1 — Зависимость объясненной дисперсии от количества компонент

Таким образом, минимальное количество компонент, при котором объясненная дисперсия не менее 85% - 4.

Ассоциативный анализ с использованием алгоритма Apriori

1. Был применен алгоритм apriori с минимальным уровнем поддержки 0.3. Результатом являются товары или наборы товаров, которые встречаются не реже, чем в 0.3 наборах товаров.

support	itemsets	length	support	itemsets	length
0,37	(all- purpose)	1	0,37	(sandwich bags)	1
0,38	(aluminum foil)	1	0,35	(sandwich loaves)	1
0,39	(bagels)	1	0,37	(shampoo)	1
0,37	(beef)	1	0,38	(soap)	1
0,37	(butter)	1	0,39	(soda)	1
0,40	(cereals)	1	0,37	(spaghetti sauce)	1
0,39	(cheeses)	1	0,36	(sugar)	1
0,38	(coffee/tea)	1	0,38	(toilet paper)	1
0,39	(dinner rolls)	1	0,37	(tortillas)	1
0,39	(dishwashing liquid/detergent)	1	0,74	(vegetables)	1
0,39	(eggs)	1	0,39	(waffles)	1
0,35	(flour)	1	0,38	(yogurt)	1
0,37	(fruits)	1	0,31	(vegetables, aluminum foil)	2
0,35	(hand soap)	1	0,30	(vegetables, bagels)	2
0,40	(ice cream)	1	0,31	(cereals, vegetables)	2
0,38	(individual meals)	1	0,31	(cheeses, vegetables)	2
0,38	(juice)	1	0,31	(vegetables, dinner rolls)	2

0,37	(ketchup)	1	0,31	(vegetables, dishwashing liquid/detergent)	2
0,38	(laundry detergent)	1	0,33	(vegetables, eggs)	2
0,40	(lunch meat)	1	0,30	(ice cream, vegetables)	2
0,38	(milk)	1	0,31	(laundry detergent, vegetables)	2
0,38	(mixes)	1	0,31	(lunch meat, vegetables)	2
0,36	(paper towels)	1	0,33	(poultry, vegetables)	2
0,37	(pasta)	1	0,31	(soda, vegetables)	2
0,36	(pork)	1	0,32	(waffles, vegetables)	2
0,42	(poultry)	1	0,32	(yogurt, vegetables)	2

2. Был применен алгоритм apriori с тем же уровнем поддержки, но ограничим максимальный размер набора единицей. В результате были получены товары, встречающиеся не менее, чем в 0.3 наборах.

support	itemsets	length	support	itemsets	length
0,37	(all- purpose)	1	0,40	(lunch meat)	1
0,38	(aluminum foil)	1	0,38	(milk)	1
0,39	(bagels)	1	0,38	(mixes)	1
0,37	(beef)	1	0,36	(paper towels)	1
0,37	(butter)	1	0,37	(pasta)	1
0,40	(cereals)	1	0,36	(pork)	1
0,39	(cheeses)	1	0,42	(poultry)	1
0,38	(coffee/tea)	1	0,37	(sandwich bags)	1
0,39	(dinner rolls)	1	0,35	(sandwich loaves)	1
0,39	(dishwashing liquid/detergent)	1	0,37	(shampoo)	1
0,39	(eggs)	1	0,38	(soap)	1
0,35	(flour)	1	0,39	(soda)	1
0,37	(fruits)	1	0,37	(spaghetti sauce)	1
0,35	(hand soap)	1	0,36	(sugar)	1
0,40	(ice cream)	1	0,38	(toilet paper)	1
0,38	(individual meals)	1	0,37	(tortillas)	1
0,38	(juice)	1	0,74	(vegetables)	1
0,37	(ketchup)	1	0,39	(waffles)	1
0,38	(laundry detergent)	1	0,38	(yogurt)	1

3. Был применим алгоритм apriori и выведены только те наборы, которые имеют размер 2, а также количество таких наборов.

support	itemsets	length
0,31	(vegetables, aluminum foil)	2
0,30	(vegetables, bagels)	2
0,31	(cereals, vegetables)	2
0,31	(cheeses, vegetables)	2
0,31	(vegetables, dinner rolls)	2
0,31	(vegetables, dishwashing liquid/detergent)	2
0,33	(vegetables, eggs)	2
0,30	(ice cream, vegetables)	2
0,31	(laundry detergent, vegetables)	2
0,31	(lunch meat, vegetables)	2
0,33	(poultry, vegetables)	2
0,31	(soda, vegetables)	2
0,32	(waffles, vegetables)	2
0,32	(yogurt, vegetables)	2

4. Была построена зависимость количества наборов от уровня поддержки.

Рис. 2 — Диаграмма рассеяния исходных и восстановленных данных

5. Был создан датасет только из тех элементов, которые попадают в наборы размером 1 при уровне поддержки 0.38. Датасет был приведен к формату, подходящему для обработки.

```
results = apriori(df, min_support=0.38, use_colnames=True,
max_len=1)
new_items = [ list(elem)[0] for elem in results['itemsets']]
new_dataset = [[elem for elem in all_data[all_data[1] == id][2]
if elem in new_items] for id in unique_id]
te = TransactionEncoder()
te_ary = te.fit_transform(new_dataset)
df_new = pd.DataFrame(te_ary, columns=te.columns_)
```

6. Был проведен анализ для уровня поддержки 0.3 нового датасета. Отличие от исходного датасета состоит в том, что в новом датасете присутствуют наборы длины 1, только с минимальным уровнем поддержки 0.38.

support	itemsets	length	support	itemsets	length
0,38	(aluminum foil)	1	0,39	(dishwashing liquid/detergent)	1
0,39	(bagels)	1	0,31	(vegetables, aluminum foil)	2
0,40	(cereals)	1	0,30	(vegetables, bagels)	2
0,39	(cheeses)	1	0,31	(cereals, vegetables)	2
0,39	(dinner rolls)	1	0,31	(cheeses, vegetables)	2
0,38	(yogurt)	1	0,31	(vegetables, dinner rolls)	2
0,39	(eggs)	1	0,31	(dishwashing liquid/detergent, vegetables)	2
0,40	(ice cream)	1	0,33	(vegetables, eggs)	2
0,40	(lunch meat)	1	0,30	(ice cream, vegetables)	2
0,38	(milk)	1	0,31	(lunch meat, vegetables)	2
0,42	(poultry)	1	0,33	(poultry, vegetables)	2
0,39	(soda)	1	0,31	(soda, vegetables)	2
0,74	(vegetables)	1	0,32	(waffles, vegetables)	2
0,39	(waffles)	1	0,32	(yogurt, vegetables)	2

7. Был проведен ассоциативный анализ при уровне поддержки 0.15 для нового датасета. Были выведены все наборы размер которых больше 1 и в котором есть 'yogurt' или 'waffles'

support	itemsets	length	support	itemsets	length
0,17	(waffles, aluminum foil)	2	0,16	(yogurt, ice cream)	2
0,18	(yogurt, aluminum foil)	2	0,18	(waffles, lunch meat)	2
0,16	(waffles, bagels)	2	0,16	(yogurt, lunch meat)	2
0,16	(yogurt, bagels)	2	0,17	(yogurt, milk)	2
0,16	(cereals, waffles)	2	0,17	(poultry, waffles)	2
0,17	(yogurt, cereals)	2	0,18	(poultry, yogurt)	2
0,17	(waffles, cheeses)	2	0,18	(waffles, soda)	2
0,17	(yogurt, cheeses)	2	0,17	(yogurt, soda)	2
0,17	(waffles, dinner rolls)	2	0,32	(waffles, vegetables)	2
0,17	(yogurt, dinner rolls)	2	0,32	(yogurt, vegetables)	2
0,18	(waffles, dishwashing liquid/detergent)	2	0,17	(yogurt, waffles)	2
0,16	(yogurt, dishwashing liquid/detergent)	2	0,15	(vegetables, yogurt, aluminum foil)	3
0,17	(waffles, eggs)	2	0,16	(yogurt, vegetables, eggs)	3
0,17	(yogurt, eggs)	2	0,16	(waffles, lunch meat, vegetables)	3
0,17	(ice cream, waffles)	2	0,15	(poultry, yogurt, vegetables)	3

8. Был построен датасет, из тех элементов, которые не попали в датасет в п. 6 и приведите его к удобному для анализа виду.

```
diff = set(list(df)) - set(list(df_new))
diff_items = [ list(elem)[0] for elem in results['itemsets']]
diff_dataset = [[elem for elem in all_data[all_data[1] == id][2]
if elem not in diff_items] for id in unique_id]
te = TransactionEncoder()
te_ary = te.fit_transform(diff_dataset)
df_new = pd.DataFrame(te_ary, columns=te.columns_)
```

support	itemsets	support	itemsets
0,37	(all- purpose)	0,37	(sandwich bags)
0,38	(aluminum foil)	0,35	(sandwich loaves)
0,39	(bagels)	0,37	(shampoo)
0,37	(beef)	0,38	(soap)
0,37	(butter)	0,39	(soda)
0,40	(cereals)	0,37	(spaghetti sauce)
0,39	(cheeses)	0,36	(sugar)
0,38	(coffee/tea)	0,38	(toilet paper)
0,39	(dinner rolls)	0,37	(tortillas)

0,39	(dishwashing liquid/detergent)	0,74	(vegetables)
0,39	(eggs)	0,39	(waffles)
0,35	(flour)	0,38	(yogurt)
0,37	(fruits)	0,31	(vegetables, aluminum foil)
0,35	(hand soap)	0,30	(vegetables, bagels)
0,40	(ice cream)	0,31	(vegetables, cereals)
0,38	(individual meals)	0,31	(cheeses, vegetables)
0,38	(juice)	0,31	(dinner rolls, vegetables)
0,37	(ketchup)	0,31	(vegetables, dishwashing liquid/detergent
0,38	(laundry detergent)	0,33	(eggs, vegetables)
0,40	(lunch meat)	0,30	(vegetables, ice cream)
0,38	(milk)	0,31	(vegetables, laundry detergent)
0,38	(mixes)	0,31	(vegetables, lunch meat)
0,36	(paper towels)	0,33	(poultry, vegetables)
0,37	(pasta)	0,31	(vegetables, soda)
0,36	(pork)	0,32	(waffles, vegetables)
0,42	(poultry)	0,32	(vegetables, yogurt)

9. Было написано правило, для вывода всех наборов, в которых хотя бы два элемента начинаются на 's'

10. Было написано правило, для вывода всех наборов, для которых уровень поддержки изменяется от 0.1 до 0.25

```
def subset_10_25(df):
    return df[np.logical_and(df.support>=0.1, df.support <=
0.25)]</pre>
```

Вывод

Были изучены методы частотного анализа из библиотеки MLxtend. Основной упор сделан на алгоритм apriori. Возможными вариантами применения этих алгоритмов является построение рекомендаций.