Lista de Exercícios 1

Disciplina: Inferência Estatística Monitores: Ezequiel Braga & Eduardo Adame

Agosto 2023

Cap. 6.2 (Revisão de Probabilidade)

- 1. **[1, pág 358]** Para cada inteiro n, seja X_n uma variável aleatória não negativa com média finita μ_n . Prove que se $\lim_{n\to\infty}\mu_n=0$, então $X_n\stackrel{p}{\to}0$.
- 2. **[6, pág 359]** Suponha que X_1, \ldots, X_n formem uma amostra aleatória de tamanho n de uma distribuição na qual a média é 6.5 e a variância é 4. Determine qual deve ser o valor de n para que a seguinte relação seja satisfeita: $\Pr(6 \le X_n \le 7) \ge 0.8$.
- 3. **[9, pág 359]** Sejam Z_1, Z_2, \ldots uma sequência de variáveis aleatórias e suponha que, para $n=1,2,\ldots$, a distribuição de Z_n seja a seguinte: $\Pr(Z_n=n^2)=\frac{1}{n}$ e $\Pr(Z_n=0)=1-\frac{1}{n}$. Mostre que $\lim_{n\to\infty} E(Z_n)=\infty$, mas Z_n convergindo em probabilidade para 0.

Cap. 6.3 (Revisão de Probabilidade)

- 4. [3, pág 370] Suponha que a distribuição do número de defeitos em qualquer pedaço de tecido seja a distribuição de Poisson com média 5, e o número de defeitos em cada pedaço de tecido é contado para uma amostra aleatória de 125 pedaços. Determine a probabilidade de que a média do número de defeitos por pedaço na amostra seja menor que 5.5.
- 5. **[15, pág 370]** Sejam $X_1, X_2, ...$ uma sequência de variáveis aleatórias independentes e identicamente distribuídas (i.i.d.), cada uma tendo a distribuição uniforme no intervalo $[0, \theta]$ para algum número real $\theta > 0$. Para cada n, defina Y_n como o máximo de $X_1, X_2, ..., X_n$.
 - (a) Mostre que a função de distribuição acumulada (c.d.f.) de Y_n é dada por:

$$F_n(y) = egin{cases} 0 & ext{se } y \leq 0, \ \left(rac{y}{ heta}
ight)^n & ext{se } 0 < y < heta, \ 1 & ext{se } y > heta. \end{cases}$$

Dica: Leia o Exemplo 3.9.6.

(b) Mostre que $Z_n = n(Y_n - \theta)$ converge em distribuição para a distribuição com a função de distribuição acumulada (c.d.f.).

$$F^*(z) = \begin{cases} e^{\frac{z}{\theta}} & \text{if } z < 0, \\ 1 & \text{if } z > 0. \end{cases}$$

Dica: Aplique o Teorema 5.3.3 após encontrar a função de distribuição acumulada (c.d.f.) de Z_n .

(c) Use o Teorema 6.3.2 para encontrar a distribuição aproximada de Y_n^2 quando n é grande.

Cap. 7.5 (Estimador de Máxima Verossimilhança)

6. **[1, pág 425]** Sejam $x_1, ..., x_n$ números distintos. Seja Y uma variável aleatória discreta com a seguinte função de probabilidade (p.f.):

$$f(y) = \begin{cases} 1/n & \text{se } y \in \{x_1, \dots, x_n\}, \\ 0 & \text{caso contrário.} \end{cases}$$

Prove que $Var(Y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}_n)^2$.

- 7. **[4, pág 425]** Suponha que X_1, \ldots, X_n formem uma amostra aleatória de uma distribuição Bernoulli com parâmetro θ , que é desconhecido, mas sabe-se que θ está no intervalo aberto $0 < \theta < 1$. Mostre que o Estimador de Máxima Verossimilhança (M.L.E.) de θ não existe se todos os valores observados forem 0 ou se todos os valores observados forem 1.
- 8. **[9, pág 425]** Suponha que X_1, \ldots, X_n formem uma amostra aleatória de uma distribuição para a qual a função de densidade de probabilidade (p.d.f.) $f(x|\theta)$ é a seguinte:

$$f(x \mid \theta) = \begin{cases} \theta x^{\theta - 1} & \text{para } 0 < x < 1, \\ 0 & \text{caso contrário.} \end{cases}$$

Além disso, suponha que o valor de θ é desconhecido ($\theta > 0$). Encontre o Estimador de Máxima Verossimilhança (M.L.E.) de θ .

Cap. 7.6 (Método dos Momentos)

- 9. [20, pág 442] Prove que o estimador do método dos momentos da média de uma distribuição de Poisson é o Estimador de Máxima Verossimilhança (M.L.E.).
- 10. **[22, pág 442]** Sejam $X_1, ..., X_n$ uma amostra aleatória da distribuição uniforme no intervalo $[0, \theta]$.
 - (a) Encontre o estimador do método dos momentos de θ .
 - (b) Mostre que o estimador do método dos momentos não é o Estimador de Máxima Verossimilhança (M.L.E.).
- 11. **[23, pág 442]** Suponha que X_1, \ldots, X_n formem uma amostra aleatória da distribuição beta com parâmetros α e β . Seja $\theta = (\alpha, \beta)$ o vetor de parâmetros.
 - (a) Encontre o estimador do método dos momentos de θ .

Referências

[1] M. H. DeGroot and M. J. Schervish, *Probability and Statistics*, 4th ed. Pearson Education Limited, 2014.