Introduction to Robotics

Julien Carpentier, Stéphane Caron, Yann de Mont-Marin Class notes by Antoine Groudiev

Last modified 23rd October 2024

Contents

1	Intr	roduction	2
2	Position and Orientation		
	2.1	Introduction	2
	2.2	Points, frames and transformations	3
		2.2.1 Position of a point in space	3
		2.2.2 Position and orientation of a body in space	3
		2.2.3 Rotation matrices	4
	2.3	Rotation representations	4
		2.3.1 Euler angles	4
		2.3.2 Axis-angle and quaternions	5
	2.4	Angular velocity	5
	2.5	Exponential and logarithm map	6
	2.6	Rigid Body Transformations	7
3	For	ward Kinematics	7
	3.1	The various possible articulations	7
4	Inve	erse Kinematics	7
5	Mo	tion planning	8
	5.1	Configuration space	8
		5.1.1 Definitions	8
		5.1.2 Joints	8
		5.1.3 Examples	8
	5.2	Obstacles and collisions	9
6	Rei	nforcement Learning	10
7	Loc	comotion	10

Abstract

This document is Antoine Groudiev's class notes while following the class *Motion* planning in robotics and graphical animation (Planification de mouvement en robotique et en animation graphique) at the Computer Science Department of ENS Ulm. It is freely inspired by the lectures of Justin Carpentier, Stéphane Caron, and Yann de Mont-Marin.

1 Introduction

2 Position and Orientation

2.1 Introduction

Kinematics studies the *movement* of an object – in our case of a robot – without taking into acount the *forces* generating it. Instead, it only handles aspects such as position, orientation, speed and momentum of bodies in movement.

Consider for instance a robotic arm. We can design a simplified scheme of the robot and its environment, to create a kinematic pipeline and reference frames associated to each of these objects.

Figure 2.1: Simplified scheme of the robot feature the kinematic pipeline and reference frames.

Direct kinematics allows to compute the position and orientation of the terminal organ given, for instance, the angles of the articulations.

Invert kinematics answers the question the other way around: given the position and orientation of a boyd, how can we compute the values of the articulations angles. Invert kinematics is used for instance for trajectory tracking: given a reference trajectory, how can we compute the speed of the articulations?

2.2 Points, frames and transformations

2.2.1 Position of a point in space

Once that a reference frame $\{A\}$ is defined, we can localize any point of the universe given a position vector:

Figure 2.2: Vector and position of the point established in the frame $\{A\}$.

2.2.2 Position and orientation of a body in space

To define the orientation of a body in space, we need to define a reference frame $\{B\}$ attached to this body. The orientation is therefore defined as the expression of this coordinate system in the reference frame $\{A\}$.

Figure 2.3: Expression of the coordinate system $\{B\}$ in the reference frame $\{A\}$, and the associated position and orientation of the body.

Each element of the matrix ${}_{B}^{A}R$ is the scalar product between the vectors of the two coordinate systems $\{B\}$ and $\{A\}$:

$${}_{B}^{A}R = \begin{bmatrix} {}^{A}\hat{X}_{B} & {}^{A}\hat{Y}_{B} & {}^{A}\hat{Z}_{B} \end{bmatrix} = \begin{bmatrix} \hat{X}_{B} \cdot \hat{X}_{A} & \hat{Y}_{B} \cdot \hat{X}_{A} & \hat{Z}_{B} \cdot \hat{X}_{A} \\ \hat{X}_{B} \cdot \hat{Y}_{A} & \hat{Y}_{B} \cdot \hat{Y}_{A} & \hat{Z}_{B} \cdot \hat{Y}_{A} \\ \hat{X}_{B} \cdot \hat{Z}_{A} & \hat{Y}_{B} \cdot \hat{Z}_{A} & \hat{Z}_{B} \cdot \hat{Z}_{A} \end{bmatrix}$$

The lines correspond to the axes of the frame $\{A\}$ expressed in the frame $\{B\}$. Note that the invert of a rotation matrix is its transpose:

$${}_B^A R^T = {}_B^A R^{-1} = {}_A^B R$$

2.2.3 Rotation matrices

We showed that the orientation of the body in space could be expressed as a 3-dimensional rotation matrix. The group of 3-dimensional rotation matrices is denoted SO(3), and is composed of all the matrices that are orthonormal, that is orthogonal and with a determinant equal to 1:

$$SO(3) = \left\{ R \in \mathcal{M}_3(\mathbb{R}) \mid RR^T = I_3 \text{ and } \det(R) = +1 \right\}$$
 (2.2.1)

If we write:

$$R = \begin{bmatrix} \hat{X} & \hat{Y} & \hat{Z} \end{bmatrix}$$

Then $R \in SO(3)$ if and only if:

$$\begin{cases} \hat{X} \cdot \hat{Y} = 0 \\ \hat{Y} \cdot \hat{Z} = 0 \\ \hat{Z} \cdot \hat{X} = 0 \end{cases} \quad \text{and} \quad \begin{cases} \hat{X} \cdot \hat{X} = 1 \\ \hat{Y} \cdot \hat{Y} = 1 \\ \hat{Z} \cdot \hat{Z} = 1 \end{cases}$$

Note that we have 9 degrees of freedom and 6 independent constraints, so the group SO(3) is 3-dimensional.

2.3 Rotation representations

There are several ways to represent a rotation matrix, each with its own advantages and drawbacks. The most common representations are:

- Orthonormal 3 by 3 matrices 9 components
- Euler angles 3 components
- Axis-angle representation 3 components
- Quaternions 4 components

The number of components used to be an important factor when computers were slow and memory was expensive. Nowadays, the choice of representation is more about the ease of use and the properties of the representation.

2.3.1 Euler angles

Each rotation can be represented by the composition of three elementary rotations around the fixed axes of the frame $\{A\}$.

Figure 2.4: Euler angles representation of a rotation.

In terms of rotation matrices, any rotation matrix can be written as ${}_{B}^{A}R(\gamma,\beta,\alpha)$, defined by:

$${}_{B}^{A}R(\gamma,\beta,\alpha) = R_{Z}(\alpha)R_{Y}(\beta)R_{X}(\gamma)$$

$$= \begin{bmatrix} \cos\alpha & -\sin\alpha & 0\\ \sin\alpha & \cos\alpha & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\beta & 0 & \sin\beta\\ 0 & 1 & 0\\ -\sin\beta & 0 & \cos\beta \end{bmatrix} \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos\gamma & -\sin\gamma\\ 0 & \sin\gamma & \cos\gamma \end{bmatrix}$$

The Euler angles are not unique, as the same rotation can be represented by different sets of Euler angles. This is called gimbal lock, and is a major drawback of the Euler angles representation.

We can also express the Euler angles given the rotation matrix:

$${}_{B}^{A}R(\gamma,\beta,\alpha) = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \implies \begin{cases} \beta = \operatorname{atan2}(-r_{31}, \sqrt{r_{11}^{2} + r_{21}^{2}}) \\ \alpha = \operatorname{atan2}(r_{21}/\cos\beta, r_{11}/\cos\beta) \\ \gamma = \operatorname{atan2}(r_{32}/\cos\beta, r_{33}/\cos\beta) \end{cases}$$

2.3.2 Axis-angle and quaternions

We are given a vector \vec{k} and an angle θ ; the rotation represented by these two elements is the rotation of angle θ around the axis \vec{k} . We can define:

$$\begin{cases} \varepsilon_1 = k_x \sin \frac{\theta}{2} \\ \varepsilon_2 = k_y \sin \frac{\theta}{2} \\ \varepsilon_3 = k_z \sin \frac{\theta}{2} \\ \varepsilon_4 = \cos \frac{\theta}{2} \end{cases}$$

we have $\varepsilon_1^2 + \varepsilon_2^2 + \varepsilon_3^2 + \varepsilon_4^2 = 1$, creating a unit quaternion. The rotation matrix associated to the quaternion is:

$$R_{\varepsilon} = \begin{bmatrix} 1 - 2\varepsilon_2^2 - 2\varepsilon_3^2 & 2(\varepsilon_1\varepsilon_2 - \varepsilon_3\varepsilon_4) & 2(\varepsilon_1\varepsilon_3 + \varepsilon_2\varepsilon_4) \\ 2(\varepsilon_1\varepsilon_2 + \varepsilon_3\varepsilon_4) & 1 - 2\varepsilon_1^2 - 2\varepsilon_3^2 & 2(\varepsilon_2\varepsilon_3 - \varepsilon_1\varepsilon_4) \\ 2(\varepsilon_1\varepsilon_3 - \varepsilon_2\varepsilon_4) & 2(\varepsilon_2\varepsilon_3 + \varepsilon_1\varepsilon_4) & 1 - 2\varepsilon_1^2 - 2\varepsilon_2^2 \end{bmatrix}$$

The invert operation is also simple to compute:

$${}_{B}^{A}R(\gamma,\beta,\alpha) = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \implies \begin{cases} \varepsilon_{1} = \frac{r_{32} - r_{23}}{4\varepsilon_{4}} \\ \varepsilon_{2} = \frac{r_{13} - r_{31}}{4\varepsilon_{4}} \\ \varepsilon_{3} = \frac{r_{21} - r_{12}}{4\varepsilon_{4}} \\ \varepsilon_{4} = \frac{1}{2}\sqrt{1 + r_{11} + r_{22} + r_{33}} \end{cases}$$

2.4 Angular velocity

The angular velocity of a body is a vector that describes the rotation of the body in space. It is defined as the derivative of the rotation matrix with respect to time. Angular velocity matrices are skew-symmetric matrices, i.e. matrices of the tangent space of SO(3), denoted so(3):

$$so(3) = \left\{ W \in \mathcal{M}_3(\mathbb{R}) \mid W^{\top} = -W \right\} = \left\{ \begin{bmatrix} 0 & -w_z & w_y \\ w_z & 0 & -w_x \\ -w_y & w_x & 0 \end{bmatrix} \middle| w_x, w_y, w_z \in \mathbb{R} \right\}$$

Indeed, consider the rotation matrix $R(t) \in SO(3)$, and denote $\dot{R}(t) = \frac{\partial R(t)}{\partial t}$ the derivative of R(t) with respect to time. We have:

$$R(t)R(t)^{\top} = I_3$$
$$\dot{R}R^{\top} + R\dot{R}^{\top} = 0_3$$
$$\dot{R}R^{\top} = -R\dot{R}^{\top}$$
$$\dot{R}R^{\top} = -\left(\dot{R}R^{\top}\right)^{\top}$$

Hence, by defining $W := \dot{R}R^{\top}$, we have $W \in \text{so}(3)$.

Note that R(t) is the solution of the differential equation $\dot{R} = WR$, with $R(0) = R_0 \in SO(3)$. The solution is:

$$R(t) = R_0 \exp(Wt)$$
 where $\exp(Wt) = \sum_{n=0}^{+\infty} \frac{(Wt)^n}{n!}$

This gives us a new parameterization of the group SO(3), using the angular velocity matrices. Recall that a matrix $W \in so(3)$ is associated to a vector $w = (w_x, w_y, w_z) \in \mathbb{R}^3$; we denote $\hat{w} = W$. The main question associated to this representation is to compute the infinite sum of the exponential function:

$$\exp(tW) = \sum_{n=0}^{+\infty} \frac{(tW)^n}{n!}$$
 (2.4.1)

We can use the fact that any skew-symmetric matrix $W \in so(3)$ is nilpotent, i.e. there exists an integer $n \in \mathbb{N}$ such that $W^n = 0_3$. This allows us to compute the exponential function:

$$\hat{w} = W = \begin{bmatrix} 0 & -w_z & w_y \\ w_z & 0 & -w_x \\ -w_y & w_x & 0 \end{bmatrix} = w \times \cdot$$

Therefore, $\hat{w}^2 = ww^{\top} - I_3$, and $\hat{w}^3 = -\hat{w}$. We can then regroup the different terms of the exponential function, by transforming the exponents greater than 3:

$$\exp(tW) = I_3 + \sin(t)\hat{w} + \frac{1 - \cos(t)}{t}\hat{w}^2$$
(2.4.2)

2.5 Exponential and logarithm map

We saw that the exponential map is an application from the tangent space of SO(3), so(3) to the group SO(3), defined by:

$$\exp: so(3) \longrightarrow SO(3)$$

$$tW \longmapsto \exp(tW) = I_3 + \sin(t)\hat{w} + \frac{1 - \cos(t)}{t}\hat{w}^2$$

This function is surjective and 2π -periodic.

We can define a reciprocal function, the logarithm map, that is the inverse of the exponential map:

$$\log: R \in SO(3) \longrightarrow w \in so(3)$$

Note that

$$||w|| = \cos^{-1}\left(\frac{\operatorname{Tr}(R) - 1}{2}\right)$$

and therefore:

$$w = \frac{\|w\|}{2\sin(\|w\|)} \begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{bmatrix}$$

This gives us a way to compute the distance between two rotations:

$$d(R_1, R_2) = \|\log(R_1^{\top} R_2)\|$$

Such a construction comes handy when we want to minimize the distance between two rotations, for instance in the context of trajectory tracking.

2.6 Rigid Body Transformations

3 Forward Kinematics

Forward kinematics allows to compute the position and orientation of the kinematic chain given the joint parameters (e.g. angles, lengths, etc.). For instance, we can compute the position and orientation of the terminal organ given the angles of the articulations.

The kinematic chain is composed of rigid bodies interconnect by joints. The joins define the degrees of freedom of the cinematic chain, which are the parameters that we can control.

3.1 The various possible articulations

4 Inverse Kinematics

5 Motion planning

Motion planning is the problem of finding a sequence of valid actions that will transform the robot from its initial configuration to a desired configuration. Such actions can be constrained: we might ask the robot to avoid obstacles, to respect its kinematic limits, or to minimize energy consumption.

We will first introduce a mathematical framework to describe the robot's configuration space, obstacles, and collision, then we will present some algorithms to solve the motion planning problem.

5.1 Configuration space

5.1.1 Definitions

The ambient space, also called the *workspace*, is in most cases the Euclian manifold \mathbb{E}^3 . In this ambient space, a physical system can be described as a set of compacts subsets called *bodies*. The vector of the considered physical systems must be in the *state space* \mathcal{S} , the set of all possible sets:

$$(K_1,\ldots,K_N)\in\mathcal{S}\subseteq\mathcal{K}(\mathbb{E}^3)^N$$

The state space is parametrized with a transformation q in the configuration space C:

$$q = (\phi_1, \ldots, \phi_M) \in \mathcal{C}$$

where each ϕ_i is a transformation of a system, that is:

$$\phi_i: \mathcal{K}(\mathbb{E}^3) \to \mathcal{K}(\mathbb{E}^3)$$

Note that M corresponds to the number of systems of the robot, the other physical systems being obstacles. Therefore, given a configuration q, the space S_q is:

$$S_q = \underbrace{\phi_1(K_1^{\circ}), \dots, \phi(K_M^{\circ})}_{\text{robot}}, \underbrace{K_{M+1}, \dots, K_N}_{\text{obstacles}}$$

where the K_i° are compacts representing each body, intuitively in their own frames. We will see below that they can be represented numerically with meshes or polynomials.

In general, \mathcal{C} is a manifold, its dimension being the number of degrees of freedom of the system. Note that the numerical dimension used to represent \mathcal{C} is not necessarily the same as the actual dimension of the manifold: for instance, quaternions of dimension 4 can be used to represent rotations of SO(3), a manifold of dimension 3.

5.1.2 Joints

Multiple types of joints can be used to connect the different parts of a robot. Formally, a joint is a mapping from a manifold of dimension $1 \le p \le 6$ into the solid placement SE(3). The difference between the joints is the dimension of the manifold, which can also be seens as the number of degrees of freedom of the joint.

5.1.3 Examples

Moving solid Let us consider the Euclidian manifold \mathbb{E}^2 as a workspace, that is 2D objects. A solid object K is described as a compact subset of \mathbb{E}^2 . The configuration space is the set of transformations of this object, SE(2), the special Euclidian group of dimension 2.

Figure 5.1: Different types of joints.

Double pendulum In the case of a double pendulum, the workspace remains \mathbb{E}^2 . Because of the physical constraints on the structure of the system, the pendulum is parametrized by two angles θ_1 and θ_2 . The configuration space is therefore a torus $T^2 = S^1 \times S^1$, but can also be seen as $[0, 2\pi) \times [0, 2\pi)$.

Rigid poly-articulated body The same general framework can be applied to more complex systems, such as humanoid robots. The workspace is \mathbb{E}^3 , and the configuration q of a robot is represented by the concatenation of the parameters of each joint:

$$q \in \underbrace{SE(3)}_{\text{Position}} \times \underbrace{S_1 \times \cdots \times S_1}_{\text{Revolute joints}} \times \underbrace{[0,1] \times \cdots \times [0,1]}_{\text{Prismatic \& bounded joints}}$$

Recall that the forward kinematic can be used to compute the position of each joint in the global frame, given the configuration q.

A humanoid robot

The associated configuration tree

5.2 Obstacles and collisions

- 6 Reinforcement Learning
- 7 Locomotion