

NATIONAL OPEN UNIVERSITY OF NIGERIA 14-16 AHMADU BELLO WAY, VICTORIA ISLAND LAGOS MARCH/APRIL 2016 EXAMINATION

SCHOOL OF SCIENCE AND TECHNOLOGY

COURSE CODE: CHM407

COURSE TITLE: REACTION KINETICS

Time: 2½hours

Answer any four questions

Question 1

(a) (i) At 323 K, the rate of reaction for the decomposition of N_2O_5 at a particular instant is 2.74 $\times 10^{-4}$ M s⁻¹. Calculate the rate of formation of O_2 . The reaction is represented below:

$$2N_2O_5(g) \rightarrow 4 NO_2(g) + O_2(g)$$
 (2 marks)

- (ii) In the decomposition of hydrogen iodide, what is the relationship between the rate of decomposition of HI and the rate of formation of H_2 ? (2 marks)
- (b) An experiment is done to determine the rate of the following reaction:

$$2Al_{(s)} + 6HCl_{(aq)} \rightarrow 3H_{2(g)} + 2AlCl_{3(aq)}$$

The following data are collected:

TIME (s)	MASS OF FLASK PLUS CONTENTS (g)		
0.0	270.230		
30.0	270.200		
60.0	270.170		

- (i) Calculate the rate of formation of H₂ in g/sec (2 marks)
- (ii) Calculate the rate of formation of H₂ in mol/min. (2 marks)
- (iii) Calculate the rate of consumption of Al in g/sec. (2 marks)
- (c) Consider the following mechanism for a reaction:

Step 3:
$$2HOBr + 2HBr \rightarrow 2Br_2 + 2H_2O$$

Identify the (i) reactant, (ii) product, (iii) catalyst and (iv) intermediate in thereaction. (4 marks)

Question 2

- (a) Discuss briefly any FOUR experimental methods of rate studies (2 marks each; = 8 marks)
- (b) State the name of a suitable experimental method that can be used to monitor the reaction rate in each following cases. (1 marks each; = 3 marks)
 - (i) H₂ (*g*) + Br₂(*g*) → 2HBr (*g*)
 Hint: Bromine absorbs strongly in the visible region, while hydrogen and hydrogen bromide do not.
 - (ii) $CH_3COOC_2H_5(aq) + OH^-(aq) \rightarrow CH_3COO^-(aq) + C_2H_5OH(aq)$
 - (iii) $CH_3CHO(g) \rightarrow CH_4(g) + CO(g)$
- (c) An elementary reaction, $\mathbf{2} \ \mathbf{A} + \mathbf{C} \to \mathbf{D}$, is second order in A and first order in C. The rate of this reaction is $2.5 \times 10^{-1} \ \text{M/s}$ when the concentrations of A, C, and D are all 1.00 mM. What is the rate constant for the reaction? (3 marks)

Question 3

(a) Consider the following reaction:

Identify the graph that shows the relationship between rate of consumption of H_2O_2 and time; explain your answer (4 marks).

(b) On heating cyclopropane to 770 K, it is converted into propene. In one experiment, the following data were obtained:

Tollowing data were obtained.						
T (secs)	0	300	600	900		
[Cyclopropane] (M)	1.50 ×10 ⁻³	1.24 ×10 ⁻³	1.00 ×10 ⁻³	8.3 ×10 ⁻⁴		

- (i) Using graphical method, test whether the above data satisfy first order rate equation.
- (5 marks)
- (ii) Calculate the rate constant (2 marks).
- (c) Consider the first order reaction

A \rightarrow products, which has a rate constant, k = 2.95 x10⁻³ s⁻¹. What percent of A remains after 150 s ?(3 marks)

Question 4

- (a) Explain how a catalyst affects the rate of a reaction. (2 marks)
- (b) The decomposition of hydrogen iodide on gold at 323 K is zeroth order reaction and the rate constant is 1.20×10^{-4} M s⁻¹
- (i) If the initial concentration of hydrogen iodide is 0.500M, calculate its concentration after 3.00×10^3 s. (3 marks)
- (ii) How long will it take for all of the hydrogen iodide to decompose? (4 marks)
- (c) Consider the following experiments, each involving equal masses of zinc and 10.0 mL of acid:

Identify the fastest and the slowest reactions. Explain your answer.(5 marks)

Question 5

- (a) What do you understand by the terms: order and molecularity. Distinguish between the two. (4 marks)
- (b) (c) Consider the following reaction:

- (i) List and discuss briefly (using collision theory), **four** factors that would increase the rate of the above reaction. (1 $\frac{1}{2}$ marks each; = 6 marks)
- (c) The rate constant for the reaction

$$H_2(g) + I_2(g) \rightarrow 2HI(g)$$

is $5.4 \times 10^{-4} \,\mathrm{M}^{-1} \mathrm{s}^{-1}$ at $326 \,^{\circ} \mathrm{C}$. At $410 \,^{\circ} \mathrm{C}$ the rate constant was found to be $2.8 \times 10^{-2} \,\mathrm{M}^{-1} \mathrm{s}^{-1}$.

Calculate

(i)the activation energy (ii) the pre-exponential factor, A (4 marks)

Question 6

- (a) What do you understand by the following terms?
 - (i) Physisorption (ii) Chemisorption (4 marks)
- (b) List any THREE assumptions of the Langmuir Adsorption Isotherm (3 marks)
- (c) List THREE modern methods of surface studies (3 marks)
- (d) (i) What is a catalyst? (1 marks)
 - (ii) List the three known types of catalysts (3 marks)

QUESTION 7

a) How will the rate of reaction change if the volume of reaction vessel is diminished to one-third of its initial value?

$$2NO(g) + O2(g)$$
 \longrightarrow $2NO2(g) (3 \frac{1}{2} \text{ marks})$

b) Assuming a reaction of the form, Aa + Bb products, and if the rate law for this reaction is given as,

Rate =
$$K[A]^{1/2}$$
 [B]² (3 ½ marks)

Find the order of the reaction and the unit of the rate constant.

- c) The half-life t $\frac{1}{2}$ of a chemical reaction is 2234 seconds. Find the first order constant for the reaction. (3 $\frac{1}{2}$ marks)
- d) The decomposition of sulphuric acid occurs according to the following mechanism:

$$H_2SO_4 \longrightarrow H^+ + HSO_4^- --- slow$$

 $HSO_4^- \longrightarrow H^+ + SO_4^2 ---- fast$

The experimentally determined rate law is given as Rate = $K [H_2SO_{4]}$ since $[H_2SO_{4]}$ = 1. Is this an acceptable mechanism? (3 ½ marks)