# Fourier series, introduction

If we consider the two series  $\cos kx$  and  $\sin kx$ :

$$\cos x, \cos 2x, \cos 3x \dots \cos kx$$

$$\sin x$$
,  $\sin 2x$ ,  $\sin 3x$ ...  $\sin kx$ 

where  $k \in \mathbb{N}$  (k = 1, 2, 3...)

Any function in this set is *orthogonal* to each of the others, by which we mean that:

$$\int f(x) \ g(x) \ dx = 0$$

Thus, considering the cosine-cosine pair, for  $m, n \in \mathbb{N}$ :

$$\int \cos mx \cos nx \, dx = \begin{cases} 0, & m \neq n \\ \pi, & m = n \neq 0 \\ 2\pi, & m = n = 0 \end{cases}$$

The usual intervals over which we will integrate are  $[0, 2\pi]$  and especially  $[-\pi, \pi]$  — these are bounds that are each a multiple of  $\pi$  and the length of the interval is equal to  $2\pi$ .

The sine-sine pair is almost the same, except that the only non-zero case is  $m = n \neq 0$ , where the result is  $\pi$ .

$$\int \sin mx \sin nx \ dx = \begin{cases} 0, & m \neq n \\ \pi, & m = n \neq 0 \\ 0, & m = n = 0 \end{cases}$$

And finally, for the sine-cosine pair all cases are zero.

If you want to be really fancy, you can use what's called the Kronecker Delta:

$$\delta_{ij} = \begin{cases} 0 & \text{for } i \neq j \\ 1 & \text{for } i = j \end{cases}$$

Then

$$\int \cos mx \cos nx \ dx = \pi \delta_{mn}$$

$$\int \sin mx \sin nx \ dx = \pi \delta_{mn}$$

$$\int \cos mx \sin nx \ dx = 0$$

http://mathworld.wolfram.com/FourierSeries.html

(This doesn't cover the special behavior of the first function for m = n = 0).

We will use these facts to develop Fourier series that approximate f(x) as an infinite sum of sine and cosine functions.

#### cosine-cosine

Before we do that, let's look at all three integrals in more detail.

Recalling the cosine addition formulas:

$$\cos(s+t) = \cos s \cos t - \sin s \sin t$$
$$\cos(s-t) = \cos s \cos t + \sin s \sin t$$

Add them together and multiply through by 1/2:

$$\frac{1}{2} \left[ \cos(s+t) + \cos(s-t) \right] = \cos s \cos t$$

So then

$$\int \cos mx \cos nx \, dx$$

$$= \frac{1}{2} \int \cos(m+n)x + \cos(m-n)x \, dx$$

For the first case, m = n = 0, we have

$$\frac{1}{2} \int \cos 0 + \cos 0 \, dx = \int dx$$

and so we obtain just x evaluated between some limits.

We will choose as the bounds  $[-\pi, \pi]$ .

$$\int_{-\pi}^{\pi} dx = 2\pi$$

For this integral  $(\int dx)$  no matter what limits separated by  $2\pi$  we might choose, whether  $\int_0^{2\pi}$  or any  $\int_{-\pi}^{\pi}$  or  $\int_a^{a+2\pi}$ , we would obtain  $2\pi$  for the result.

On the other hand, if  $m = n \neq 0$ , then in exactly the same way, we obtain the value of  $\pi$  as the result from the second term (remember the factor of  $\frac{1}{2}$ ). The first term is zero, as follows:

For any non-zero integer k, whether k = m + n or k = m - n (as we will have below):

$$\int_{-\pi}^{\pi} \cos kx \ dx = \frac{\sin kx}{k} \Big|_{-\pi}^{\pi}$$

whether we choose bounds  $\int_0^{2\pi}$  or  $\int_{-\pi}^{\pi}$  or some other  $[a, a + 2\pi]$ , we obtain 0 for the result.

Graph the sine function between any bounds separated by  $2\pi$  and the area of the function above zero is equal to the area below zero, no matter what the value of a. This is also true for the cosine.

sine-sine

$$\int \sin mx \sin nx \ dx$$

Go back to the sum of cosines above and subtract the first equation from the second to obtain

$$\frac{1}{2}(\cos s - t - \cos s + t) = \sin s \sin t$$

Hence

$$\int \sin mx \sin nx \ dx$$
$$= \frac{1}{2} \int \cos(m-n)x - \cos(m+n)x \ dx$$

This is very similar to what we had before. The difference is the minus sign. Here, if m = n = 0 the two terms are identical  $(\cos(0) = 1)$  and they cancel.

On the other hand, if  $m = n \neq 0$  we get a value of  $\pi$  from the first term as before.

For any non-zero k in the argument to the cosine, we have

$$\int_{-\pi}^{\pi} \cos kx \ dx = \frac{\sin kx}{k} \Big|_{-\pi}^{\pi}$$

which, again as we saw before is zero for any  $\int_a^{a+2\pi}$ .

#### sine-cosine

One way to do this is to remember the addition formula for sine:

$$\sin(s+t) = \sin s \cos t + \sin t \cos s$$
$$\sin(s-t) = \sin s \cos t - \sin t \cos s$$
$$\frac{1}{2} \left[ \sin(s+t) + \sin(s-t) \right] = \sin s \cos t$$

So we have

$$\int \sin mx \cos nx \ dx$$
$$= \frac{1}{2} \int \sin(m+n)x + \sin(m-n)x \ dx$$

Here, the case with m = n = 0 is  $\int \sin(0) dx$  which is just 0.

For  $m = n \neq 0$ , the second term is zero and the first is

$$\int_{a}^{b} \sin kx \, dx = -\frac{\cos kx}{k} \Big|_{-\pi}^{\pi}$$

which is zero for any  $\int_a^{a+2\pi}$ .

Lastly, for  $m \neq n$  we obtain

$$\int_{-\pi}^{\pi} \sin(m+n)x + \sin(m-n)x \, dx$$

$$= -\frac{\cos(m+n)x}{m+n} - \frac{\cos(m-n)x}{m-n} \Big|_{-\pi}^{\pi}$$

which is zero for any  $\int_a^{a+2\pi}$  for the same reason. Hence all the cases for sine-cosine are zero.

### writing a series

Now, suppose we try to represent a function f(x) as a series using sine and cosine

$$f(x) = \frac{a_0}{2} + a_1 \cos x + a_2 \cos 2x + \dots + b_1 \sin x + b_2 \sin 2x + \dots$$

We need to determine the cofactors (and we'll see the reason for the factor of 1/2 on  $a_0$  shortly). If we multiply both sides by  $\cos mx$  and integrate over the interval  $[-\pi, \pi]$ , all of the infinite number of terms on the right-hand side vanish except for the one with cofactor  $a_m$ :

$$\int_{-\pi}^{\pi} f(x) \cos mx \, dx = a_m \int_{-\pi}^{\pi} \cos mx \cos mx \, dx$$

Remember from the previous section that for  $m=n\neq 0$  the right-hand integral is equal to  $\pi$  so

$$\int_{-\pi}^{\pi} f(x) \cos mx \, dx = \pi a_m$$

Thus

$$a_m = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos mx \ dx$$

Similarly, we can determine the coefficients  $b_m$  by multiplying by  $\sin mx$  and integrating. By the same reasoning as before, we obtain:

$$b_m = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin mx \ dx$$

Last, we have m = 0,

$$\int_{-\pi}^{\pi} f(x) \cos 0 \ dx = \frac{1}{2} \int_{-\pi}^{\pi} a_0 \cos 0 \ dx$$

$$\int_{-\pi}^{\pi} f(x) \ dx = \frac{a_0}{2} \ 2\pi = a_0 \pi$$

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \ dx$$

We can use any interval of length  $2\pi$ , here it was  $[-\pi, \pi]$  as given here.

For reference then, the cofactors are

$$\begin{cases} a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \ dx \\ a_m = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos mx f(x) \ dx \\ b_m = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin mx f(x) \ dx \end{cases}$$

### application: odd step function

Consider the step function:

$$\begin{cases} f(x) = -1 & x < 0 \\ f(x) = 1 & x > 0 \end{cases}$$

This function is an *odd* function: f(x) = -f(-x), while the cosine is an even function ( $\cos x = \cos -x$ ). An even function times an odd function is an odd function. The integral of an odd function that is symmetric across zero vanishes.

Therefore, on the interval  $[-\pi, \pi]$ , all the terms with cosine vanish:

$$a_m = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos mx \ dx = 0$$

To drive this point home:

$$= \frac{1}{\pi} \left[ \int_{-\pi}^{0} f(x) \cos mx \, dx + \int_{0}^{\pi} f(x) \cos mx \, dx \right]$$

For every value x from  $0 < x < \pi$  from the second term and its f(x), there is a value f(-x) from the first term with opposite sign, multiplied by the same value  $\cos(-mx) = \cos mx$ , and they all cancel.

Thus the coefficients that do remain are those for sine:

$$b_m = \frac{1}{\pi} \left[ \int_{-\pi}^0 f(x) \sin mx \, dx + \int_0^{\pi} f(x) \sin mx \, dx \right]$$
$$= \frac{1}{\pi} \left[ -\int_{-\pi}^0 \sin mx \, dx + \int_0^{\pi} \sin mx \, dx \right]$$

For the sine function, the integral over  $[-\pi, 0]$  is equal and opposite in sign to the integral over  $[0, \pi]$ 

$$= \frac{1}{\pi} \left[ \int_0^{\pi} \sin mx \, dx + \int_0^{\pi} \sin mx \, dx \right]$$
$$= \frac{2}{\pi} \int_0^{\pi} \sin mx \, dx$$
$$= -\frac{2}{m\pi} \left[ \cos mx \right]_0^{\pi}$$

For even m, the terms  $(\cos 2\pi, \cos 4\pi...)$  are all the same as at the lower bound, leaving us with zero, while for odd m we get a factor of -2 from the integral so the whole thing is

$$b_m = \frac{4}{m\pi}$$

We also have

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$

$$= \frac{1}{\pi} \left[ \int_{-\pi}^{0} f(x) dx + \int_{0}^{\pi} f(x) dx \right]$$

$$= \frac{1}{\pi} (-\pi + \pi) = 0$$

If that was confusing, just remember that f(x) is odd, and the interval of integration is symmetric around 0.

So the series is  $4/\pi$  times the values  $\sin kx/k$  for odd k:

$$f(x) = \frac{4}{\pi} \left[ \sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \frac{1}{7} \sin 7x + \dots \right]$$

which we can approximate with four terms



Notice there is one little hump in the step for each term we include.

# application: even step function

Consider the step function centered on zero:

$$\begin{cases} f(x) = 1 & -\frac{\pi}{2} < x < \frac{\pi}{2} \\ f(x) = 0 & \text{otherwise} \end{cases}$$

Since this is an even function, all the  $b_m$  will be zero:

$$b_m = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin mx \ dx = 0$$

The cosine terms are:

$$a_m = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos mx \ dx = 0$$

f(x) = 0 outside  $[-\pi/2, \pi/2]$ :

$$= \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} f(x) \cos mx \, dx$$

f(x) = 1 inside  $[-\pi/2, \pi/2]$ :

$$= \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} \cos mx \ dx$$

Cosine is an even function so:

$$= \frac{2}{\pi} \int_0^{\pi/2} \cos mx \, dx$$
$$= \frac{2}{\pi m} \sin mx \Big|_0^{\pi/2}$$

Only the odd terms survive, and these terms alternate in sign. Check  $a_0$ 

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$$
$$= \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} dx$$
$$= 1$$

Recall that the  $a_0$  term has a coefficient of  $\frac{1}{2}$ 

$$f(x) = \frac{1}{2} + \frac{2}{\pi} \left[ \cos x - \frac{\cos 3x}{3} + \frac{\cos 5x}{5} + \dots \right]$$



application: f(x) = x

This function is an odd function: f(x) = -f(-x), while the cosine is an even function ( $\cos x = \cos -x$ ). An even function times an odd function is an odd function, and so all the cosine terms vanish (between  $[-\pi, \pi]$ , as before.

Thus the coefficients that do remain are those for sine:

$$b_m = \frac{1}{\pi} \left[ \int_{-\pi}^{\pi} f(x) \sin mx \, dx \right]$$
$$= \frac{1}{\pi} \left[ \int_{-\pi}^{\pi} x \sin mx \, dx \right]$$

We can integrate  $x \sin x$  using integration by parts, or we can just guess:

$$\int x \sin x \, dx = -x \cos x + \sin x$$

Check

$$\frac{d}{dx} - x\cos x + \sin x = x\sin x - \cos x + \cos x = x\sin x$$

We do have that factor of m

$$\frac{d}{dx} \frac{1}{m} (-x \cos mx + \sin mx)$$

$$= x \sin mx - \frac{\cos mx}{m} + \frac{\cos mx}{m} = x \sin mx$$

The limits are  $[-\pi, \pi]$ . We do not forget the factor of  $1/\pi$  in front.

$$b_m = \frac{1}{\pi m} (-x \cos mx + \sin mx) \Big|_{-\pi}^{\pi}$$

Now the second term  $\sin k\pi$  is zero for any integer k. That leaves

$$b_{m} = \frac{1}{\pi m} (-x \cos mx) \Big|_{-\pi}^{\pi}$$

$$= -\frac{1}{\pi m} (x \cos mx) \Big|_{-\pi}^{\pi}$$

$$= -\frac{1}{\pi m} [\pi \cos m\pi - (-\pi) \cos m(-\pi)]$$

$$= -\frac{1}{\pi m} [\pi \cos m\pi + \pi \cos m(-\pi)]$$

$$= -\frac{1}{\pi m} [\pi \cos m\pi + \pi \cos m\pi]$$

$$= -\frac{2}{\pi m} [\pi \cos m\pi]$$

$$= -\frac{2}{\pi m} [\cos m\pi]$$

The terms for odd m are

$$a_m = \frac{2}{m}$$

while the even terms are

$$a_m = -\frac{2}{m}$$

For  $a_0$ :

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} x \ dx$$

x is an odd function so the integral is zero

$$=\frac{1}{2\pi}x^2\bigg|_{-\pi}^{\pi}=0$$

So finally we have that

$$f(x) = 2 \left[ \sin x - \frac{\sin 2x}{2} + \frac{\sin 3x}{3} - \frac{\sin 4x}{4} + \dots \right]$$

Here are 10 terms



# complex exponential

The derivation that we did previously can be accomplished in a simpler way using the complex exponential (Euler's formula):

$$e^{i\theta} = \cos\theta + i\sin\theta$$

switching to x

$$e^{ix} = \cos x + i \sin x$$
$$e^{-ix} = \cos x - i \sin x$$

Adding or subtracting gives:

$$\cos x = \frac{1}{2}(e^{ix} + e^{-ix})$$

$$\sin x = \frac{1}{2i} (e^{ix} - e^{-ix})$$

So why don't we investigate the orthogonality of the function  $e^{ikx}$  where  $k, m \in \mathbb{N}$ :

$$\int_{-\pi}^{\pi} e^{ikx} e^{-imx} \ dx$$

What we find is that, as before, the result is zero when  $k \neq m$ :

$$\int_{-\pi}^{\pi} e^{ikx} e^{-imx} dx = \int_{-\pi}^{\pi} e^{i(k-m)x} dx$$
$$= \frac{e^{i(k-m)x}}{k-m} \Big|_{-\pi}^{\pi}$$

Convert back to sin and cos to see the result more easily:

$$\int_{-\pi}^{\pi} e^{i(k-m)x} = \frac{1}{i(k-m)} \left[ \cos(k-m)x + i\sin(k-m)x \right] \Big|_{-\pi}^{\pi}$$

Consider n = k - m. Since n is an integer, the sine term is zero  $(\sin n\pi = 0)$ . If n is odd, the cosine term is equal to 1 at both the upper and lower bounds, while if n is even the cosine term is equal to -1 at both the upper and lower bounds, so the difference is zero in both cases.

Actually, the total integral is zero for any bounds  $\int_a^{a+2\pi}$  since

$$\cos a = \cos(a + 2\pi), \quad \sin a = \sin(a + 2\pi)$$

On the other hand, if k = m then

$$\int_0^{2\pi} e^{ikx} e^{-imx} \ dx = \int_0^{2\pi} \ dx = 2\pi$$

So again, we will try to approximate f(x) by a series with terms  $c_k e^{ikx}$ 

$$f(x) = \sum_{k=-\infty}^{\infty} c_k e^{ikx}$$

Notice that in this series we have negative integer k as well.

To determine the coefficient  $c_k$ , multiply both sides by  $e^{-ikx}$  and integrate over the interval  $[-\pi, \pi]$ . As before, all the terms of the series except those with  $c_k e^{ikx} e^{-ikx}$  drop out and the result for the one remaining is just  $c_k$  times  $2\pi$  so:

$$c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-ikx} dx$$

$$c_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \ dx$$

# application: odd step function

Consider the step function:

$$\begin{cases} f(x) = -1 & x < 0 \\ f(x) = 1 & x > 0 \end{cases}$$

For  $k \in \{\dots -3, -2, -1, 0, 1, 2, 3 \dots\}$ :

$$c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} dx$$

Hamming solves this quickly but I couldn't follow a key step.

Let us go more slowly and carefully and write it as the cosine plus sine:

$$c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \left[ \cos -kx + i \sin -kx \right] dx$$

$$c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \left[ \cos kx - i \sin kx \right] dx$$

f(x) is an odd function, while cosine is an even function, hence the cosine term vanishes when integrated from  $\int_{-\pi}^{\pi}$ , so we have

$$c_k = -\frac{i}{2\pi} \int_{-\pi}^{\pi} f(x) \sin kx \ dx$$

Substitute for f(x)

$$= -\frac{i}{2\pi} \left[ \int_{-\pi}^{0} -\sin kx \, dx + \int_{0}^{\pi} \sin kx \, dx \right]$$
$$= -\frac{i}{2\pi k} \left[ \cos kx \right]_{-\pi}^{0} - \cos kx \right]_{0}^{\pi}$$

Consider the two evaluations separately:

$$\cos kx \Big|_{-\pi}^{0}$$

$$\cos 0 - \cos(-k\pi) = 1 - \cos k\pi$$

For even k this is 1-1=0. Alternatively just recall that the integral for sine or cosine over any interval of length  $2\pi$  is equal to 0. So all the even k terms drop out.

For odd k this is 1 - (-1) = 2.

Similarly

$$-\cos kx \Big|_0^{\pi}$$

for even k this is -(1-1) = 0, and again there are no even terms. For odd k we have -(-1-1) = 2. Adding them together, the total is 4 and we have then:

$$c_k = -\frac{2i}{\pi k}$$

so our series for f(x) is

$$f(x) = \sum c_k e^{ikx}$$
$$= -\frac{2i}{\pi k} (\cos kx + i \sin kx)$$

At this point, we recall that the sum is over both negative and positive k. So if we consider the terms with the same absolute value |k| as a pair, replace k with |k| and put in minus signs appropriately.

For the first term in each pair we have -k, which gives  $\cos -kx = \cos kx$  and  $\sin -kx = -\sin kx$  so we obtain:

$$= -\frac{2i}{\pi(-k)}(\cos kx - i\sin kx) - \frac{2i}{\pi k}(\cos kx + i\sin kx)$$
$$= \frac{2i}{\pi k}(\cos kx - i\sin kx) - \frac{2i}{\pi k}(\cos kx + i\sin kx)$$

We see that the imaginary (cosine) terms cancel. The result is purely real has the form

$$= \frac{2}{\pi k} \sin kx + \frac{2}{\pi k} \sin kx$$
$$= \frac{4}{\pi k} \sin kx$$

for odd k only. That gives

$$f(x) = \sum \frac{4}{\pi} \cdot \frac{\sin kx}{k}$$
$$= \frac{4}{\pi} \left[ \frac{\sin x}{1} + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \dots \right]$$

Compare with what we had before:

$$f(x) = \frac{4}{\pi} \left[ \sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \frac{1}{7} \sin 7x + \dots \right]$$

Now the only issue is that we have ignored  $c_0$  so far.

Recall

$$c_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \ dx$$

Since f(x) switches value from -1 to +1 at 0, we split the integral and substitute for f(x)

$$= -\frac{1}{2\pi} \int_{-\pi}^{0} dx + \frac{1}{2\pi} \int_{0}^{\pi} dx$$

The second term is clearly 1/2, while the first integral is

$$x \Big|_{-\pi}^{0} = 0 - (-\pi) = \pi$$

times  $-1/2\pi$ , which equals -1/2 and cancels the second term. So we have that  $c_0 = 0$ .

This is a *lot* harder than Hamming's sketch of the proof, but he had a step I couldn't justify. We reach the same result.

$$f(x) = x$$

Once again, the Fourier series with the complex exponential is

$$f(x) = \sum_{k=-\infty}^{\infty} c_k \ e^{ikx}$$

The individual  $c_k$  can be found by multiplying both sides by  $e^{-ikx}$  and integrating:

$$\int f(x) e^{-ikx} dx = \int c_k e^{ikx} e^{-ikx} dx$$
$$= c_k \int dx$$

On the right-hand side all the other terms drop out due to orthogonality, leaving the one shown. We use the bounds  $[-\pi, \pi]$ , obtaining

$$\int_{-\pi}^{\pi} f(x) e^{-ikx} dx = 2\pi c_k$$

$$c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} dx$$

For this problem, we have f(x) = x so

$$c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} x \ e^{-ikx} \ dx$$

For  $c_0$  (k = 0):

$$c_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} x \ dx = \frac{1}{2\pi} \frac{x^2}{2} \Big|_{-\pi}^{\pi} = 0$$

or just say: x is odd, -(x) = (-x), and so the integral is zero.

For the general term with integer k, a good approach is to replace the exponential using Euler's equation:

$$c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} x \ e^{-ikx} \ dx$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} x \ (\cos -kx + i\sin -kx) \ dx$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} x \ (\cos kx - i\sin kx) \ dx$$

We notice that  $x \cos kx$  is odd  $\times$  even = odd, so that term is zero. We're left with

$$= -\frac{i}{2\pi} \int_{-\pi}^{\pi} x \sin kx \ dx$$

To be safe, we use IBP

$$x = u, \quad dx = du$$

$$dv = \sin kx \ dx, \quad v = \frac{-\cos kx}{k}$$

So the integral is

$$-\frac{i}{2\pi} \left[ x - \frac{\cos kx}{k} \right]_{-\pi}^{\pi} - \int_{-\pi}^{\pi} \frac{-\cos kx}{k} dx \right]$$

I've seen web pages say that the right-hand term is obviously zero (if it were  $\cos x$  in the numerator, I would agree, but  $\cos kx$  doesn't just cancel over an interval of length  $2\pi$  like  $\cos x$  does). Instead, we do the integration:

$$-\frac{i}{2\pi}\left[x - \frac{\cos kx}{k}\right]_{-\pi}^{\pi} + \frac{\sin kx}{k^2}\right]_{-\pi}^{\pi}$$

And now we see that the right-hand side really is zero, since  $\sin k\pi$  for integer k is always 0. We go slowly so as not to mess up the minus signs:

$$= -\frac{i}{2\pi} \left[ x \frac{-\cos kx}{k} \right]_{-\pi}^{\pi}$$

$$= -\frac{i}{2\pi} \left[ \pi \frac{-\cos k\pi}{k} - (-\pi) \frac{-\cos k(-\pi)}{k} \right]$$

$$= -\frac{i}{2\pi} \left[ \pi \frac{-\cos k\pi}{k} + \pi \frac{-\cos k(-\pi)}{k} \right]$$

$$= -\frac{i}{2\pi} \left[ \pi \frac{-\cos k\pi}{k} + \pi \frac{-\cos k\pi}{k} \right]$$

$$= \frac{i}{\pi} \left[ \pi \frac{\cos k\pi}{k} \right]$$

$$= i \frac{\cos k\pi}{k}$$

$$= \frac{i}{k} (-1)^k$$

A dramatic simplification. Now, the series is

$$f(x) = \sum_{k=-\infty}^{\infty} c_k \ e^{ikx}$$

For every |k| there are two terms which are very similar, it is really  $\pm k$ .

And we especially need the negative k terms because we have to lose everything with i... (according to Hamming every term for -k is the complex conjugate of the +k term). We want a purely real answer.

k = 1

So, for example, suppose k = 1 then we have for the cofactor:

$$\frac{i}{k} (-1)^k = \frac{i}{1} (-1)^1 = -i$$

and that term is

$$-ie^{ikx}$$

while for k = -1 we have

$$\frac{i}{k} (-1)^k = \frac{i}{-1} (-1)^{-1} = i$$

and that term is

$$ie^{-ikx}$$

Adding them together we get

$$(-i)(e^{ikx} - e^{-ikx})$$

Recall that

$$2i\sin\theta = e^{i\theta} - e^{-i\theta}$$

So we have

$$= \frac{-i}{1} 2i \sin kx$$
$$= 2 \frac{\sin x}{1}$$

Every odd k will behave the same way

$$=2\frac{\sin x}{k}$$

k = 2

Suppose k = 2 then we have for the cofactor:

$$\frac{i}{k} (-1)^k = \frac{i}{2} (-1)^2 = \frac{i}{2}$$

and that term is

$$\frac{i}{2}e^{ikx}$$

while for k = -2 we have

$$\frac{i}{k} (-1)^{-2} = \frac{i}{-2}$$

and that term is

$$-\frac{i}{2}e^{-ikx}$$

Adding them together we get

$$(\frac{i}{2})(e^{ikx} - e^{-ikx})$$

Again,

$$2i\sin\theta = e^{i\theta} - e^{-i\theta}$$

So we have

$$=\frac{i}{2} \, 2i \sin kx$$

$$= -2 \, \frac{\sin 2x}{2}$$

Every even k will behave this way

$$=-2\frac{\sin x}{k}$$

This gives us the series

$$f(x) = 2 \left[ \frac{\sin x}{x} - \frac{\sin 2x}{2} + \frac{\sin 3x}{3} \dots \right]$$

which matches what we had before.

After fooling around with this, I'm not convinced that complex is better. The original proof was easier, but the particular cases are very tricky. I worked much longer than I will admit on this last example. And as you can see, we go fairly quickly back to the trigonometric view of the the equations anyway.