Course: Machine learning Foundations

Solve with Instructor

WEEK 9

Which of the following sets are convex, closed and bounded?

$$egin{align} A &= \{(x,y) \in \mathbb{R}^2; x^2 + y^2 \leq 4\} \ B &= \{(x,y) \in \mathbb{R}^2; y = 2x + 4\} \ C &= \{(x,y) \in \mathbb{R}^2; x + y \leq 2, x \geq 0, y \geq 0\} \ D &= \{(x,y) \in \mathbb{R}^2; y > x^2\} \ E &= \{(x,y) \in \mathbb{R}^2; xy > 1, x \geq 0, y \geq 0\} \ F &= \{(x,y) \in \mathbb{R}^2; xy > 1, x \leq 0, y \leq 0\} \ \end{align}$$

https://www.geogebra.org/m/kuk45ab4

Let $f(x) = 3 + x^2 + x$ and $g(x) = e^{-x}$. What can you say about their composition $h_1 = fog$ and $h_2 = gof$?

- A. h_1 is convex and h_2 is concave
- B. h_1 is concave and h_2 is convex
- C. h_1 and h_2 is convex
- D. h_1 and h_2 is concave

https://www.geogebra.org/m/esqcd4he

Consider the following problem.

Maximize x + y subject to the constraints

$$x \ge 0$$
, $y \ge 0$, $-3x + 2y \le -1$, $x - y \le 2$.

Is the feasible region bounded or unbounded?

https://www.geogebra.org/m/fggdwdsc

☐ Given below is a set of data points and their labels.

X	У
[1,2]	2.5
[2,1.5]	3
[2,3]	5
[3,4]	7

Perform linear regression on this data set. Let initial w at t=1 be $[0.1, 0.1]^T$. Using the gradient descent update equation with a learning rate as 0.1, compute the value of w at t=2.

$$\square X^T y = \begin{bmatrix} 39.5 \\ 52.5 \end{bmatrix}$$

$$\nabla w = \begin{bmatrix} -35.4 \\ -47.07 \end{bmatrix}$$

$$w^2 = \begin{bmatrix} 3.64 \\ 4.807 \end{bmatrix}$$

☐ Given below is the primal form of a LP problem.

maximize
$$3x_1 + 5x_2 + 9x_3$$

subject to
 $x_1 + x_2 + 2x_3 \le 6$,
 $2x_1 + 3x_2 + x_3 \le 8$ and $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$

The dual objective problem has _____ variables.

☐ Given below is a primal objective function of a LP problem.

```
minimize 20x_1 + 40x_2

subject to 36x_1 + 6x_2 \ge 108, 3x_1 + 12x_2 \ge 36, 20x_1 + 10x_2 \ge 100 and x_1 \ge 0, x_2 \ge 0
```

Enter the dual objective function and dual problem constraints.

maximize $108y_1 + 36y_2 + 100y_3$ subject to $36y_1 + 3y_2 + 20y_3 \le 20$, $6y_1 + 12y_2 + 10y_3 \le 40$, and $y_1 \ge 0, y_2 \ge 0, y_3 \ge 0$

□ Using KKT conditions solve the following linear program.

minimize

$$f(x) = 2(x_1 + 1)^2 + 2(x_2 - 4)^2$$

subject to

$$x_1^2 + x_2^2 \le 9$$

$$x_1+x_2\geq 2$$

Enter the values of function variables and Lagrange multipliers.

Thank You

