

Adventures in Bayesian Structural Time Series

Andrew Bates, Josh Gloyd, Tyler Tucker

Structural Time Series Models:

- Structural Time Series Models:
 - Docal level model

- Structural Time Series Models:
 - Docal level model
 - Local linear trend model

- Structural Time Series Models:
 - Docal level model
 - Docal linear trend model

- Structural Time Series Models:
 - Docal level model
 - Docal linear trend model
 - Models with seasonal component
 - Models with regression component

- Structural Time Series Models:
 - Docal level model
 - Docal linear trend model
 - Models with seasonal component
 - Models with regression component
- Bayesian Structural Time Series

- Structural Time Series Models:
 - Docal level model
 - Docal linear trend model
 - Models with seasonal component
 - Models with regression component
- Bayesian Structural Time Series
 - Prior

- Structural Time Series Models:
 - Docal level model
 - Docal linear trend model
 - Models with seasonal component
 - Models with regression component
- Bayesian Structural Time Series
 - Prior

♠ Also called State Space Models

Local Level Model

- \otimes y_t : observed data
- $\otimes \mu_t$: latent state

$$y_t = \mu_t + \varepsilon_t$$
 $\varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$
 $\mu_{t+1} = \mu_t + \xi_t$ $\xi_t \sim N(0, \sigma_{\xi}^2)$

Structural Time Series

- Data comes from unobserved variable called the **state** space

Local Level Model

- \otimes y_t : observed data
- $\otimes \mu_t$: latent state

$$y_t = \mu_t + \varepsilon_t$$
 $\varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$ $\mu_{t+1} = \mu_t + \xi_t$ $\xi_t \sim N(0, \sigma_{\xi}^2)$

Structural Time Series

- Data comes from unobserved variable called the **state** space
- We model the state space instead of the observed data directly

Local Level Model

- \otimes y_t : observed data
- $\otimes \mu_t$: latent state

$$y_t = \mu_t + \varepsilon_t$$
 $\varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$ $\mu_{t+1} = \mu_t + \xi_t$ $\xi_t \sim N(0, \sigma_{\xi}^2)$

Local Level Model

will have plot here

Local Linear Trend Model

- $\Leftrightarrow y_t, \mu_t$: same as before
- $\otimes \nu_t$: slope (additional state component)

$$y_t = \mu_t + \varepsilon_t \qquad \qquad \varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$$

$$\mu_{t+1} = \mu_t + \nu_t + \xi_t \qquad \qquad \xi_t \sim N(0, \sigma_{\xi}^2)$$

$$\nu_{t+1} = \nu_t + \zeta_t \qquad \qquad \zeta_t \sim N(0, \sigma_{\zeta}^2)$$

Local Linear Trend Model

will have picture here

Basic Structural Model

- $\otimes \mu_t$: local trend
- $\otimes \tau_t$: seasonal component

$$y_t = \mu_t + \tau_t + \zeta_t$$
 $\zeta_t \sim N(0, \sigma_c^2)$