ECE 235: Introduction to Solid State Electronics

Discussion

Week 9

Md Mobinul Haque

Drift and Diffusion Current

$$J_e(drift) = n \, e \mu_e E$$

$$J_h(drift) = p e \mu_h E$$

$$J_{e(diffusion)} = e D_e \frac{dn}{dx}$$

$$J_{h(diffusion)} = -e D_h \frac{dp}{dx}$$

$$J(diffusion) = J_e(diffusion) + J_h(diffusion)$$

Generation and Recombination

Continuity Equations

Practice Problem 1

Consider an infinitely large, homogeneous n-type semiconductor with zero applied electric field. Assume that 10^{14} electron-hole pairs have been uniformly created per cm³ at t=0, and assume the minority carrier hole lifetime is $\tau_{p0}=50~\mathrm{ns}$. Determine the time at which the minority carrier hole concentration reaches (a) 1/e of its initial value and (b) 10% of its initial value.

Practice Problem 2

Consider an infinitely large, homogeneous n-type semiconductor with zero applied electric field. Assume that, for t < 0, the semiconductor is in thermal equilibrium and that, for $t \geq 0$, a uniform generation rate $g_0 = 5 \times 10^{21} \text{ cm}^3 \text{ s}^{-1}$ exists in the crystal and let po $\tau_{p0} = 10^{-7} \text{ s}$. Determine $\Delta p(t)$ at $t = 10^{-7} \text{ s}$

Practice Problem 3

Calculate Δn at $x = 30 \mu m$.

Consider a p-type semiconductor that is homogeneous and infinite in extent. Assume a zero applied electric field. For a one-dimensional crystal, assume that excess carriers are being generated at x=0 only. Assume $\tau_{n0}=5\times 10^{-7}~s$, $D_n=25~\frac{cm^2}{s}$, $\Delta n(0)=10^{15}~cm^{-3}$ (a) Calculate the value of diffusion length. (b)