PX920 Workshop:

Computation of the effective elasticity matrix

Łukasz Figiel

WMG, University of Warwick

Effective modulus from the theory of homogenization

The effective (homogenized) (Young's modulus) as derived from the theory of homogenization (*0th-order terms*) is given by

$$E^{eff} = \frac{1}{|\Theta|} \int_0^{\Theta} E(y) \left(\frac{\partial \chi}{\partial y} + 1 \right) dy \tag{1}$$

Substituting the linear elastic law

$$\bar{\sigma} = E^{\text{eff}} \bar{\varepsilon} \tag{2}$$

into (1) one obtains the material law as follows

$$\bar{\sigma} = \frac{1}{|\Theta|} \int_0^{\Theta} E(y) \left(\frac{\partial \chi}{\partial y} + 1 \right) dy \ \bar{\varepsilon}$$
 (3)

where $\bar{\sigma}$ and $\bar{\varepsilon}$ are average stresses and strains, respectively.

Effective elastic modulus/elasticity matrix

The average stress $\bar{\sigma}$ is given by

$$\bar{\sigma} = \frac{1}{L} \int_{L} \sigma \, \, \mathrm{d}y \tag{4}$$

Then, if one assumed $\bar{\varepsilon}=1$, then effective modulus can be given by

$$E^{eff} = \bar{\sigma} = \frac{1}{L} \int_{L} \sigma \, \, \mathrm{d}y \tag{5}$$

The above can be generalised into 3D

$$\mathbf{C}^{\text{eff}} = \bar{\boldsymbol{\sigma}} = \frac{1}{V} \int_{V} \boldsymbol{\sigma} \, dV \tag{6}$$

where C^{eff} denotes the effective elasticity matrix.

Unit strain cases

The RVE problem is solved using the finite-element method, and it must be solved for as many right-hand side vectors as there are unit strain components in the problem - here (2D), there are three strain components. The unit strain vectors (Voigt notation) are applied to each element as

$$\varepsilon_{u11} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} , \ \varepsilon_{u22} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} , \ \gamma_{u12} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 (7)

Unit strain cases

Each strain state results in a nodal displacement field, where stresss in each element of the RVE must be calculated. The calculated element stresses represent a column in the elasticity matrix of the element as

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix}^{e} = \begin{bmatrix} C_{1111} & C_{1122} & C_{1112} \\ C_{2211} & C_{2222} & C_{2212} \\ C_{1211} & C_{1222} & C_{1212} \end{bmatrix}^{e} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{bmatrix}^{e}$$
(8)

Pseudo-code for the linear homogenisation - Part 1

Input and Mesh Generation

- Coordinates of the RVE boundaries: top,bot,left,right
- Material/element properties: Young's modulus E, Poisson's ratio v, thickness (th), PlaneStrain/PlaneStress
- Call mesh: returns arrays of nodal coordinates (XYZ), element node numbers (CON), element DOFs (DOF)
- Call BCcorner_fun: returns an array (BCcorner) containing IDs of corner nodes of an RVE

Pseudo-code for the linear homogenisation - Part 2

- Calculate element's constitutive matrix C^e
- Call **T**_matrix: returns the transformation matrix **T**
- Call **K_matrix**: returns the global stiffness matrix K one needs to evaluate element contributions B^e , det J^e and K^e
- ullet Calculate the modified stiffness matrix $oldsymbol{K}_m$

for i in range(3):

Calculate HomoC (effective elasticity matrix)

```
egin{align*} egin{align*} egin{align*} egin{align*} egin{align*} egin{align*} egin{align*} egin{align*} E[i,0] = 1 \\ & \text{Call } \textbf{r\_vector} \text{: } \text{returns the global right-hand side vector } \textbf{r} \text{ (see Eq. (29) in Lecture 2) - requires element right-hand side vectors } \textbf{r}^e \\ & \text{Calculate the modified external load vector } \textbf{r}_m = \textbf{T}^T \textbf{r} \\ & \text{Calculate modified nodal displacements } \textbf{d}_m = \textbf{K}_m^{-1} \textbf{r}_m \\ & \text{Calculate nodal displacements } \textbf{d} = \textbf{T} \textbf{d}_m \\ & \text{Call } \textbf{sigmaHomo\_vector} \text{: } \text{returns } \textbf{sigmaHomo} \\ & \textbf{HomoC[:,i]} = \textbf{sigmaHomo} \end{aligned}
```

Average stress calculation (**sigmaHomo_vector**) - Part 1

1. Input

- ε_u : unit strain
- d: total displacement vector including corner DOFs
- location of Gauss points: **Gauss**=[-1 1 1 -1, -1 -1 1 1]/ $\sqrt{3}$
- weight functions: **w**= 1
- zero volume: vol= 0
- create stress array: sigma = np.zeros(3, 1)

Average stress calculation (sigmaHomo_vector) - Part 2

2. Loop over all elements

```
for i in range(number of elements):
      C^e: constitutive (elasticity matrix) for element i
      id: DOF number for element i
      d^e = d (id): nodal element displacements of element i
            for j in range(number of Gauss points):
               xi = Gauss[0,i]
               eta=Gauss[1,i]
               Call function dispstrain_B to calculate B_I and det J
               sigmaGauss=C^e(B_Id^e + \varepsilon_{\mu})
               sigma=sigma + sigmaGauss det J w
               vol = vol + det J
```

sigmaHomo=sigma/vol

Element RHS vector (r_vector_e)

```
1. Input parameters: xyze, Ce, th, eps
           r_{\text{vector}} = \text{np.zeros}((8,1))
           a=1/(np.sqrt(3))
           \mathbf{w} = 1
           Gauss = np.array([[-a, a, a, -a], [-a, -a, a, a]])
2. Loop over all integration points within an element
           for j in range(number of Gauss points):
                  \mathcal{E}=Gauss[0.i]
                  \eta = Gauss[1.i]
                  Call function dispstrain_B to calculate B_i and det J
                  rhs=B_i^T C^e \varepsilon_u
                  r_vector_e=r_vector_e + rhs det J w
```

Global RHS vector (r_vector)

```
1. Input parameters: XYZ, CON, DOF, C, th, eps, BCcorner
       nel=len(CON)
        ndof=2*len(XYZ)
        r_{\text{vector}} = \text{np.zeros}((\text{ndof},1))
2. Loop over all elements
       for i in range(number of elements):
               id = DOF[i,:]
               xyze=XYZ[CON[i,:],:]
               Ce = C[3*i:3*i+3,0:3]
               Call function r_vector_e(xyze,Ce,th,eps_u)
               r_{\text{vector}}[\text{np.ix\_(id)}] = r_{\text{vector}}[\text{np.ix\_(id)}] + r_{\text{vector\_e}}
       r_vector= - r_vector[np.ix_(BCcorner)]
```