小小

东南大学考试卷

工程矩阵理论 得 课程名称 考试学期 分 13-14-2 适用专业 工科硕士研究生 考试形式 考试时间长度 150 分钟 卷 闭 题号 四 六 七 五. 得分

 $C^{n\times n}$ 表示 $n\times n$ 复矩阵全体在矩阵加法、数乘下所构成的复数域上的线性空间。

- 一、(18%) 设 $M \in C^{n \times n}$,记 $V(M) = \left\{ X \in C^{n \times n} \mid MX = XM \right\}$ 。
 - 1. 证明: V(M)是 $C^{n\times n}$ 的子空间。

及V(A)+V(B)的各一组基及它们的维数。

- 二、(18%)已知 $A=\begin{pmatrix}1&-1\\-1&1\end{pmatrix}, B=\begin{pmatrix}0&1\\1&0\end{pmatrix}$,线性空间 $C^{2\times 2}$ 上的变换 f 定义如下:对任意 $X\in C^{2\times 2}$, f(X)=AXB。
 - 1. 证明 $f \in C^{2\times 2}$ 上的线性变换。
 - 2. 求f在 $C^{2\times 2}$ 的基 E_{11} , E_{12} , E_{21} , E_{22} 下的矩阵。

3. 问:是否存在 $C^{2\times 2}$ 的一组基,使得f在此基下的矩阵是对角阵?如存在,试给出这样的一组基;若不存在,请给出理由。

三、(14%)设矩阵
$$A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & -1 & 1 \\ 1 & 2 & -1 & 2 \end{pmatrix}$$
, R^4 的子空间 $W = \left\{ x \in R^4 \mid Ax = 0 \right\}$ 。

1. 求W在 R^4 中的正交补空间 W^{\perp} 的一组基;

2. 求 $\eta = (1,1,1,1)^T$ 在 W^{\perp} 中的正投影。

四、(24%)设矩阵
$$A = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
。

1. 求A的若当标准形;

2. 求矩阵函数 e^{At} ;

3. 求A的广义逆矩阵 A^+ 。

- 五、(10%)已知 α, β 都是n维列向量, $\|\alpha\|, \|\beta\|$ 分别表示在 C^n 的标准内积下向量 α, β 的 长度,矩阵 $A = \alpha \beta^H$ 。
 - 1. 证明:关于范数,有 $\|A\|_2 = \|A\|_F = \|\alpha\|\|\beta\|$ 。

六、(8%)设V是n维欧氏空间, $\eta_1,\eta_2,\cdots,\eta_n$ 是V的一个标准正交基,向量 $\delta = \eta_{\rm l} + \eta_{\rm 2} + \dots + \eta_{\rm n}$ 。对非零实数 k ,定义 V 上的线性变换 f 如下:对任意 $x \in V$, $f(x) = x + k < x, \delta > \delta$ 。证明: $f \in V$ 上的正交变换当且仅当 $k = -\frac{2}{n}$ 。

七、(8%)已知A,B都是n阶 Hermite 矩阵,且A是正定的。设AB的特征值全为1。

1. 证明: AB = I。

证明:存在次数小于n的多项式f(x),使得B=f(A)。