Factor model of cross-sectional US stock returns

(linear regression diagnostics)

Problem statement

Main **metric of interest**:

(rate of) return = 100* (yesterday close price – today price) / today price

Stock universe – Russell 3000 Index.

US Stocks only. Representative of all US liquid investable stocks Total US stocks ~ 13,000
Total stocks in the world ~ 70,000

Dates: main analysis done for March 24, 2017. Data available for last year.

Main goal:

Explain the returns of Russell 3000 stocks on a given date as a sum of factor returns on a given date

Cross-sectional factor models

```
Stock return_i ~ sum( factor_loading * factor_return )
```

Two types of factors:

Style factors:

- Size (large vs small)
- Value vs growth
- Momentum

Industry factors: GICS (Global Industry Classification Standard)

Factors: style

Vanguard Mid Cap Index Institutional VMCIX

https://awrd.morningstar.com/SBT/Tools/MR/Default.aspx?fullversion=1&ticker=VMCIX

GICS

$Classification^{\lfloor 4\rfloor} \ [\ \text{edit}\]$

- 11 Sectors
- 24 Industry Groups
- 68 Industries
- 157 Sub-Industries

	Sector Industry Group		Industry Group		Industry	Sub-Industry		
	Energy	1010	Energy	101010	Energy Equipment & Services	10101010	Oil & Gas Drilling	
						10101020	Oil & Gas Equipment & Services	
				101020	Oil, Gas & Consumable Fuels	10102010	Integrated Oil & Gas	
10						10102020	Oil & Gas Exploration & Production	
						10102030	Oil & Gas Refining & Marketing	
						10102040	Oil & Gas Storage & Transportation	
						10102050	Coal & Consumable Fuels	

DataFrame used in regression

	CHG_PCT_1D	CHG_PCT_365D	CUR_MKT_CAP	EV_TO_T12M_SALES	GICS_1	GICS_2	GICS_3	GICS_4
Α	-0.19	50.39	17107.73	3.66	35	3520	352030	35203010
AA	-2.25	46.90	5997.71	0.51	15	1510	151040	15104010
AAC	2.18	-70.18	189.05	2.18	35	3510	351020	35102020

smf.ols(formula=CHG_PCT_1D~CHG_PCT_365D + LOG_CUR_MKT_CAP + LOG_SALES_TO_EV +C(GICS_1)

Ford EV/Sales=0.24

IBM EV/Sales=2.4

Snapchat EV/Sales = 25

Variable transformations

Variable transformations

Three-factor model (no industry factors)

smf.ols(formula='CHG_PCT_1D ~ CHG_PCT_365D + LOG_CUR_MKT_CAP + LOG_SALES_TO_EV'

OLS Regression Results CHG PCT 1D Dep. Variable: R-squared: 0.020 Model: OLS Adj. K-squared: 0.019 F-statistic: Method: Least Squares 17 35 Wed, 29 Mar 2017 Prob (F-statistic): 3.78e-11 Date: Log-Likelihood: Time: -5235.5 21:59:57 No. Observations: 2554 AIC: 1.048e+04 Df Residuals: 2550 BIC: 1.050e+04 Df Model: Covariance Type: nonrobust P>|t| [0.025 coef std err 0.9751 0.932 -0.070 Intercept 0.0032 0.037 0.085 0.076 CHG PCT 365D 0.1970 0.038 5.157 0.000 0.122 0.272 LOG_CUR_MKT_CAP 0.0296 -0.045 0.775 0.438 0.105 0.038 LOG SALES TO EV -0.1647 0.037 -4.417 0.000 -0.238 -0.092 ______ Omnibus: 1497.381 Durbin-Watson: 1.993 Prob(Omnibus): 0.000 Jarque-Bera (JB): 326945.264 Prob(JB): Skew: -1.650 0.00 Kurtosis: 58.330 Cond. No. 1.26

Residuals: conditional heteroscedasticity

Squared residual ~ market cap

LOG (CHG_PCT_1D^2) ~ -0.48 * LOG_CUR_MKT_CAP

Weighted least squares (WLS)

weights = pow(df_norm['CUR_MKT_CAP'].values, 0.48)
sm.WLS(Y,X, weights=weights)

Dep. Variable:	у	R-squared:	0.025
Model:	WLS	Adj. R-squared:	0.024
Method:	Least Squares	F-statistic:	21.95
Date:	Wed, 29 Mar 2017	Prob (F-statistic):	4.96e-14
Time:	22:00:12	Log-Likelihood:	-4684.3
No. Observations:	2554	AIC:	9377.
Df Residuals:	2550	BIC:	9400.
Df Model:	3		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	0.0399	0.033	1.227	0.220	-0.024	0.104
x1	0.0875	0.029	3.020	0.003	0.031	0.144
x2	-0.0597	0.023	-2.605	0.009	-0.105	-0.015
х3	-0.2200	0.031	-7.101	0.000	-0.281	-0.159

Omnibus:	764.916	Durbin-Watson:	2.000
Prob(Omnibus):	0.000	Jarque-Bera (JB):	28818.487
Skew:	0.717	Prob(JB):	0.00
Kurtosis:	19.394	Cond. No.	2.33

Adding GICS categories to the WLS model

smf.wls('CHG_PCT_1D_WIN~CHG_PCT_365D+LOG_CUR_MKT_CAP+LOG_SALES_TO_EV + C(GICS_1)'

Dep. Variable:	CHG_PCT_1D_WIN	R-squared:	0.129	
Model:	WLS	Adj. R-squared:	0.125	
Method:	Least Squares	F-statistic:	29.00	
Date:	Wed, 29 Mar 2017	Prob (F-statistic):	2.57e-67	
Time:	22:26:01	Log-Likelihood:	-4291.6	
No. Observations:	2554	AIC:	8611.	
Df Residuals:	2540	BIC:	8693.	
Df Model:	13			
Covariance Type:	nonrobust			

C(GICS_1) R^2 0.13

C(GICS_2) R^2 0.15

C(GICS_3) R^2 0.20

C(GICS_4) R^2 0.26

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.1242	0.092	-1.343	0.179	-0.305	0.057
C(GICS_1)[T.15.0]	-0.8381	0.134	-6.273	0.000	-1.100	-0.576
C(GICS_1)[T.20.0]	-0.1499	0.110	-1.367	0.172	-0.365	0.065
C(GICS_1)[T.25.0]	0.3633	0.107	3.403	0.001	0.154	0.573
C(GICS_1)[T.30.0]	0.1283	0.125	1.030	0.303	-0.116	0.373
C(GICS_1)[T.35.0]	0.7405	0.108	6.859	0.000	0.529	0.952
C(GICS_1)[T.40.0]	-0.0766	0.115	-0.665	0.506	-0.302	0.149
C(GICS_1)[T.45.0]	0.3483	0.105	3.304	0.001	0.142	0.555
C(GICS_1)[T.50.0]	0.6529	0.204	3.195	0.001	0.252	1.054
C(GICS_1)[T.55.0]	0.5415	0.142	3.809	0.000	0.263	0.820
C(GICS_1)[T.60.0]	-0.0151	0.124	-0.122	0.903	-0.259	0.228
CHG_PCT_365D	0.1085	0.026	4.215	0.000	0.058	0.159
LOG_CUR_MKT_CAP	-0.0813	0.020	4.044	0.000	0.121	-0.042
LOG_SALES_TO_EV	-0.1576	0.030	5.280	0.000	0.216	-0.099

Deeper GICS levels

C(GICS_1) R^2 0.13

C(GICS_2) R^2 0.15

C(GICS_3) R^2 0.20

C(GICS_4) R^2 0.26

Classification^[4]

- 11 Sectors
- 24 Industry Groups
- 68 Industries
- 157 Sub-Industries

Five-fold cross-validation to determine the best level of GICS

GICS_1, mse=3.44754086155, std=1.1499772895 GICS_2, mse=3.42538655171, std=1.1402301803 CRASH!!!

Future directions

- Cross-validate, select the right GICS variables
- Add more style factors (Bloomberg model uses 10)
- Add events: earnings announcement, etc.
- Try non-linear models: Random Forest Regressor

Conclusions

- It is important to transform the variables correctly.
- Regressions diagnostics is extremely important
- Linear regression model requires a lot of work to be specified correctly as adding or removing regressors changes the significance of the original regressors