

UNIVERSIDAD DE ANTIOQUIA

Integrales de Trayectoria y Espacios Curvos

por

Diego Alberto Barón Moreno

Asesor:

Nelson Vanegas Arbeláez

Tesis para optar por el título de: Físico

en la

Facultad de Ciencias Exactas y Naturales Instituto de Física

Abril 2016

Resumen

The Thesis Abstract is written here (and usually kept to just this page). The page is kept centered vertically so can expand into the blank space above the title too...

A grade cimientos

The acknowledgements and the people to thank go here, don't forget to include your project advisor...

Tabla de Contenidos

Agradecimientos	11
Índice de Figuras	
Índice of Tablas	v
1. Introducción	
2. Integrales de trayectoria en espacio plano.	:
2.1. La ecuación de Schrödinger	
2.1.1. Teoría de Perturbaciones	
2.1.2. Matriz S	
2.2. El experimento de la doble rendija	10
2.3. Campos escalares	10
2.4. Campos fermiónicos	10
2.5. Teorías Gauge y campos de Yang-Mills	10
2.6. La teoria de Yukawa	10
3. Integrales de trayectoria en espacios curvos.	1:
3.1. Teoría clásica de campos en espacios curvos	1
3.1.1. A Subsection	1
3.2. La ecuación de Schrodinger en espacio curvo	15
3.3. Cambios de coordenadas	15
3.4. Campos fermiónicos	15
3.5. El átomo de Hidrógeno	1
A. An Appendix	1;

Índice de figuras

2.1.	Esquema del experimento de la doble rendija	
2.2.	Diagrama de Feynmann primera cuantización	Ć
2.3.	Diagrama de Feynmann primera cuantización	Ć
2.4.	Diagrama de Feynmann primera cuantización	Ć
2.5.	Diagrama de Feynmann primera cuantización	Ć
3.1.	Esto es lo que aparece en la tabla de figuras	11

Índice de tablas

Dedicado a mi madre...

Capítulo 1

Introducción

Capítulo 2

Integrales de trayectoria en espacio plano.

El formalismo mas común de la mecánica cuantica se deriva de cambiar las variables clasicas de posición y momentum $(p \ y \ q)$ por operadores que obedecen el álgebra:

$$[\hat{q}, \hat{p}] = i\hbar \tag{2.1}$$

Esta relación se conoce como la condción de cuantización de Heisenberg, en general en la mecánica cuantica de operadores estos últimos viven en un espacio de Hilbert.

La formulación de integrales de camino se basa en la noción de **propagador**, esta función es tal que dada una funcion de onda en un instante de tiempo t_1 , $\psi(x_1, t_1)$ da la evolucion hasta un instante de tiempo t_2 , entregando $\psi(x_2, t_2)$. En cierta manera es parecido al principio de Huygens:

$$\psi(x_f, t_f) = \int K(q_f, t_f; q_i, t_i) \psi(q_i, t_i) dq_i$$
(2.2)

De acuerdo con la mecánica cuántica $\psi(q_f, t_f)$ representa la probabilidad de que una partícula se encuentre en un punto q_f en el instante de tiempo t_f , por tanto $K(q_f, t_f; q_i, t_i)$ representa la amplitud de probabilidad de transición entre un estado (q_i, t_i) y (q_f, t_f) .

$$P(q_f, t_f; q_i, t_i) = ||K(q_f, t_f; q_i, t_i)||^2$$
(2.3)

Si dividimos el intervalo de tiempo en $t_i \to t \to t_f$, tenemos de la definición de K:

$$\psi(q_f, t_f) = \int \int K(q_f, t_f; q, t) K(q, t; q_i, t_i) dq dq_i$$

$$\Rightarrow K(q_f, t_f; q_i, t_i) = \int dq K(q_f, t_f; q, t) K(q, t; q_i, t_i)$$
(2.4)

Como ejemplo de la anterior podemos analizar el experimento de la doble rendija. En la Figura 1 encontramos un esquema de este: Si K(2A, 1) es la probabilidad de que un

FIGURA 2.1: Experimento de la doble rendija.

electrón pase por la rendija 2A, entonces podemos escribir:

$$K(3,1) = K(2A,1)K(3,2A) + K(2B,1)K(3,2B)$$
(2.5)

Al tomar el módulo cuadrado de la expresión (2.5) se generarán los términos de interferencia necesarios para describir el patrón de difracción. No podemos decir que el electrón tomó un camino u el otro, de una manera más simple: este siguió todos los caminos posibles!

2.1. La ecuación de Schrödinger.

En el cuadro de Schrodinger la evolución de un sistema cuántico afecta al ket que representa al estado del sistema, la ecuación que rige la dinámica del mismo es la **Ecuación** de Schrödinger

$$i\hbar \frac{\partial}{\partial t} |\psi\rangle_S = \hat{H} |\psi\rangle_S$$
 (2.6)

Sabemos que $\psi(q,t) = \langle q|\psi\rangle_S$ donde $|q\rangle$ son autoestados de la posición, la relacion entre el cuadro de Heisenberg y el de Schrödinger es $|\psi\rangle_H = e^{iHt/\hbar}|\psi\rangle_S$. Si definimos $|qt\rangle \equiv e^{iHt/\hbar}|q\rangle$, entonces $\psi(q,t) = \langle qt|\psi\rangle_H$.

Vamos a mostrar que $K(q_f, t_f; q_i, t_i) = \langle q_f t_f | q_i t_i \rangle$, la relación de completez nos permite escribir:

$$\langle q_f t_f | \psi \rangle = \int \langle q_f t_f | q_i t_i \rangle \langle q_i t_i | \psi \rangle dq_i$$

$$= \int \langle q_f t_f | q_i t_i \rangle \psi(q_i, t_i) dq_i \qquad (2.7)$$

Y comparando (2.7) y (2.2), vemos que:

$$K(q_f, t_f; q_i, t_i) = \langle q_f t_f | q_i t_i \rangle \tag{2.8}$$

Así, el propagador es proporcional a la amplitud de probabilidad de transición entre el estado inicial $|q_it_i\rangle$ y final $|q_ft_f\rangle$. La idea ahora es expresar el propagador como una integral de trayectoria. Partamos el intervalo temporal (t_i, t_f) en n+1 piezas de igual duración τ , así:

$$\langle q_f t_f | q_i t_i \rangle \int dq_1 dq_2 ... dq_n \langle q_f t_f | q_n t_n \rangle \langle q_n t_n | q_{n-1} t_{n-1} \rangle ... \langle q_1 t_1 | q_i t_i \rangle$$
 (2.9)

Calculemos uno de estos elementos:

$$\langle q_{j+1}t_{j+1}|q_{j}t_{j}\rangle = \langle q_{j+1}|e^{-iHt_{j+1}/\hbar}e^{iHt_{j}/\hbar}|q_{j} = \langle q_{j+1}|e^{-i\tau H/\hbar}|q_{j}\rangle \quad \text{A primer orden,}$$

$$= \langle q_{j+1}|1 - i\tau H/\hbar|q_{j}\rangle = \delta(q_{j+1} - q_{j}) - i\tau \hbar \langle q_{j+1}|H|q_{j}\rangle$$

$$= \frac{1}{2\pi\hbar} \int dp \operatorname{Exp}\left[\frac{ip}{\hbar}(q_{j+1} - q_{j})\right] - \frac{i\tau}{\hbar}\langle q_{j+1}|H|q_{j}\rangle \qquad (2.10)$$

Si asumimos que el Hamiltoniano es una función de p y qde la forma: $H = \frac{p^2}{2m} + V(q)$, entonces:

$$\langle q_{j+1}|\frac{p^{2}}{2m}|q_{j}\rangle = \int dpdp'\langle q_{j+1}|p'\rangle\langle p'|\frac{p^{2}}{2m}|p\rangle\langle p|q_{j}\rangle$$

$$= \int \frac{dpdp'}{2\pi\hbar} \operatorname{Exp}\left[\frac{i}{\hbar}(p'q_{j+1}-pq_{j})\right]\frac{p^{2}}{2m}\delta(p-p')$$

$$= \int \frac{dp}{2\pi\hbar} \operatorname{Exp}\left[\frac{i}{\hbar}p(q_{j+1}-q_{j})\right]\frac{p^{2}}{2m}$$
(2.11)

De una manera similar:

$$\langle q_{j+1}|V(q)|q_{j}\rangle = V(\frac{q_{j+1}+q_{j}}{2})\langle q_{j+1}|q_{j}\rangle$$

$$= V(\frac{q_{j+1}+q_{j}}{2})\delta(q_{j+1}-q_{j})$$

$$\langle q_{j+1}|V(q)|q_{j}\rangle = V(\frac{q_{j+1}+q_{j}}{2})\int \frac{dp}{2\pi\hbar} \operatorname{Exp}[\frac{i}{\hbar}p(q_{j+1}-q_{j})]$$
(2.12)

Por tanto $\langle q_{j+1}|H|q_j\rangle=\int \frac{dp}{\hbar} \, {\rm Exp}[\frac{i}{\hbar}p(q_{j+1}-q_j)]H(p,q)$ y:

$$\langle q_{j+1}t_{j+1}|q_{j}t_{j}\rangle = \frac{1}{h}\int dp_{j} \operatorname{Exp}\left[\frac{i}{\hbar}[p_{j}(q_{j+1}-q_{j})-\tau H(p_{j},q_{j})]\right]$$
 (2.13)

Finalmente:

$$\langle q_f t_f | q_i t_i \rangle = \lim_{N \to \infty} \int \prod_{j=1}^N dq_j \prod_{j=0}^N \frac{dp_j}{h} \operatorname{Exp} \left\{ \frac{i}{\hbar} \sum_{j=0}^N [p_j (q_{j+1} - q_j) - \tau H(p_j, q_j)] \right\}$$
 (2.14)

En el continuo:

$$\langle q_f t_f | q_i t_i \rangle = \int \frac{\mathcal{D}q \mathcal{D}p}{h} \text{Exp} \left\{ \frac{i}{\hbar} \int_{t_i}^{t_f} (p\dot{q} - H(p, q)) dt \right\}$$
 (2.15)

En el continuo q se vuelve una función de t y la integral anterior, es una integral funcional. La expresión (2.15) es la integral de trayectoria para la amplitud de transición entre (q_i, t_i) y (q_f, t_f) . Esta integral se hace sobre todas las posibles trayectorias en el espacio de fase y q(t), p(t) son funciones y no operadores, sin embargo es natural preguntarse por la convergencia de (2.15), esto es algo no trivial, sin embargo, de ahora en adelante asumiremos que esta integral existe y converge.

Si el Hamiltoniano es tal que $H = \frac{p^2}{2m} + V(q)$

$$\langle q_f t_f | q_i t_i \rangle = \lim_{N \to \infty} \int \prod_{j=1}^N dq_j \prod_{j=0}^N \frac{dp_j}{h} \, \operatorname{Exp} \left\{ \frac{i}{\hbar} \sum_{j=0}^N [p_j (q_{j+1} - q_j) - \tau \frac{p_j^2}{2m} - V(q) \tau] \right\}$$
(2.16)

Y sabiendo que: $\int_{-\infty}^{\infty} \exp[-ax^2 + bx + c] dx = \exp\left[\frac{b^2}{4a} + c\right] \left(\frac{\pi}{a}\right)^{\frac{1}{2}}, \text{ entonces:}$

$$\langle q_f t_f | q_i t_i \rangle = \lim_{N \to \infty} \left[\frac{1}{h} \left(\frac{\pi \hbar 2m}{\tau} \right)^{\frac{1}{2}} \right]^N \int \prod_{1}^{N} dq_j \operatorname{Exp} \left\{ \frac{i}{\hbar} \sum_{0}^{N} \left(\left(\frac{q_{j+1} - q_j}{\tau} \right)^2 \frac{m}{2} - V \right) \tau \right\}$$
(2.17)

En el continuo:

$$\langle q_f t_f | q_i t_i \rangle = \mathcal{N} \int \mathcal{D}q \operatorname{Exp} \left\{ \frac{i}{\hbar} \int_{t_i}^{t_f} \mathcal{L}(q, \dot{q}) dt \right\}$$
 (2.18)

Donde $\mathcal{L}(q,\dot{q})$ es el lagrangiano clásico, sin embargo esto solo pasa si asumimos una forma específica del Hamiltoniano, cuando esto no es asi se tiene una acción efectiva. En teorñia de campos por ejemplo esta descomposición solo se puede hacer en el caso de campos Abelianos.

2.1.1. Teoría de Perturbaciones.

Vamos a ilustrar cómo usar el método de integrales de trayectoria en procesos de dispersión, este tipo de procesos involucran la interacción de una partícula con un potencial V(x). Debido a que no siempre podemos calcular analíticamente la integral (2.18) entonces es necesario acudir a la teoría de perturbaciones, esta es aplicable en el regimen en que la energía de interacción $E_I < \hbar$. En este caso podemos escribir:

$$\operatorname{Exp}\left[\frac{-i}{\hbar} \int_{t_i}^{t_f} V(x,t)dt\right] = 1 - \frac{i}{\hbar} \int_{t_i}^{t_f} V(x,t)dt + \left(\frac{i}{\hbar}\right)^2 \frac{1}{2!} \left[\int_{t_i}^{t_f} V(x,t)dt\right]^2 + \dots (2.19)$$

Cuando reemplazamos esto en la expresión (2.18) obtenemos:

$$K = K_0 + K_1 + K_2 + \dots \text{ donde } K_0 = \mathcal{N} \int \mathcal{D}x \text{Exp} \left[\frac{i}{\hbar} \int \frac{1}{2} m \dot{x}^2 dt \right]$$
 (2.20)

Para calcular K_0 , escribamos la forma discretizada de (2.20)

$$K_{0} = \lim_{n \to \infty} \left(\frac{m}{i\hbar\tau}\right)^{\left(\frac{n+1}{2}\right)} \int_{-\infty}^{\infty} \prod_{j=1}^{n} dx_{j} \operatorname{Exp}\left[\frac{im}{2\hbar\tau} \sum_{j=0}^{n} (x_{j+1} - x_{j})^{2}\right]$$

$$= \lim_{n \to \infty} \left(\frac{m}{i\hbar\tau}\right)^{\left(\frac{n+1}{2}\right)} \frac{1}{(n+1)^{\frac{1}{2}}} \left(\frac{i\hbar\tau}{m}\right)^{\frac{n}{2}} \operatorname{Exp}\left[\frac{im}{2\hbar(n+1)\tau} (x_{f} - x_{i})^{2}\right]$$

$$K_{0}(x_{f}t_{f}, x_{i}t_{i}) = \Theta(t_{f} - t_{i}) \left(\frac{m}{i\hbar(t_{f} - t_{i})}\right)^{1/2} \operatorname{Exp}\left[\frac{im}{2\hbar(t_{f} - t_{i})} (x_{f} - x_{i})^{2}\right]$$
(2.21)

Calculemos ahora K_1 :

$$K_1 = \lim_{n \to \infty} \frac{-i}{\hbar} N^{(n+1)/2} \sum_{i=1}^n \int \exp\left[\frac{im}{2\hbar\tau} \sum_{j=0}^n (x_{j+1} - x_j)^2\right] V(x_i, t_i) dx_1 ... dx_n$$
 (2.22)

Ahora como solo V(x) depende de x_i , separamos (2.22) como:

$$K_{1} = \lim_{n \to \infty} \frac{-i}{\hbar} \sum_{i=1}^{n} \left\{ \int N^{(n-i+1)/2} \operatorname{Exp} \left[\frac{im}{2\hbar\tau} \sum_{j=i}^{n} (x_{j+1} - x_{j})^{2} \right] dx_{i}...dx_{n} \right\}$$

$$\times \left\{ \int N^{i/2} \operatorname{Exp} \left[\frac{im}{2\hbar\tau} \sum_{j=0}^{i-1} (x_{j+1} - x_{j})^{2} \right] dx_{1}...dx_{i-1} \right\} V(x_{i}, t_{i})$$
(2.23)

Los dos términos en corchetes en (2.23) son $K_0(xt, x_ft_f)$ y $K_0(x_it_i, xt)$, así:

$$K_1(x_f t_f, x_i t_i) = -\frac{i}{\hbar} \int_{t_i}^{t_f} dt \int_{-\infty}^{\infty} K_0(x_f t_f. x_i t) V(x, t) K_0(x_f t_i. x_i t_i) dx$$
 (2.24)

Como $K_0(x_f t_f, xt) = 0$ si $t > t_f$ y $K_0(xt, x_i t_i) = 0$ si $t < t_i$, entonces podemos escribir:

$$K_1(x_f t_f, x_i t_i) = -\frac{i}{\hbar} \int_{-\infty}^{\infty} dt \int_{-\infty}^{\infty} K_0(x_f t_f. xt) V(x, t) K_0(x_f t_i) dx$$
 (2.25)

De la misma manera se puede probar que:

$$K_2(x_f t_f, x_i t_i) = \left(\frac{-i}{\hbar}\right)^2 \int_{-\infty}^{\infty} dt_1 dt_2 dx_1 dx_2 K_0(x_f t_f, x_2 t_2) V_2 K_0(x_2 t_2, x_1 t_1) V_1 K_0(x_1 t_1, x_i t_i)$$
(2.26)

Esta es una solución en series para K y recibe el nombre de Serie de Born, en la expresión general para K_n no se tiene el factor n! ya que hay ese mismo numero de formas para ordenar los n potenciales V(x) que entran en el propagador.

Por último mostraremos que **el propagador es la función de Green de la ecuación de Schrödinger.** Para esto sustituyamos la expresión para la serie de Born en la ecuación (2.2):

$$\psi(\vec{x}_{f}, t_{f}) = \int K_{0}(\vec{x}_{f}t_{f}, \vec{x}_{i}t_{i})\psi(\vec{x}_{i}, t_{i})d\vec{x}_{i}
-\frac{i}{\hbar} \int K_{0}(\vec{x}_{f}t_{f}, \vec{x}t)V(\vec{x}, t)K_{0}(\vec{x}t, \vec{x}_{i}t_{i})\psi(\vec{x}_{i}, t_{i})d\vec{x}dtd\vec{x}_{i} + O(\hbar^{2})(2.27)$$

Hemos cambiado a tres dimensiones espaciales y los otros términos en la serie hacen converger el último K_0 a K, por tanto:

$$\psi(\vec{x}_f, t_f) = \int K_0(\vec{x_f} t_f, \vec{x_i} t_i) \psi(\vec{x_i}, t_i) d\vec{x_i} - \frac{i}{\hbar} \int K_0(\vec{x_f} t_f, \vec{x} t) V(\vec{x}, t) \psi(\vec{x}, t) d\vec{x} dt \quad (2.28)$$

Cuando $t_i \to -\infty$,
no hay presencia de potencial por tanto ψ se vuelve una onda plana.
Así:

$$\psi(\vec{x}_f, t_f) = \phi(\vec{x}_f t_f) - \frac{i}{\hbar} \int K_0(\vec{x}_f t_f, \vec{x}_f t) V(\vec{x}, t) \psi(\vec{x}, t) d\vec{x}_f dt$$
 (2.29)

Aplicando el operador $\hat{H} = \frac{\hbar^2}{2m} \nabla_{\vec{x}_f t_f} + i\hbar \frac{\partial}{\partial t_f}$ en la ecuación (2.29) y usando $\hat{H}\psi(x,t) = V(x,t)\psi(x,t)$:

$$\hat{H}(\psi(\vec{x}_f, t_f)) = \hat{H}(\phi(\vec{x}_f t_f)) - \frac{i}{\hbar} \int \hat{H}(K_0(\vec{x}_f t_f, \vec{x}_f)) V(\vec{x}, t) \psi(\vec{x}, t) d\vec{x} dt$$

$$V(\vec{x}_f, t_t) \psi(\vec{x}_f, t_f) = 0 - \frac{i}{\hbar} \int \hat{H}(K_0(\vec{x}_f t_f, \vec{x}_f)) V(\vec{x}, t) \psi(\vec{x}, t) d\vec{x} dt$$

Por tanto:

$$\left(\frac{\hbar^2}{2m}\nabla_{\vec{x}_f t_f} + i\hbar \frac{\partial}{\partial t_f}\right) K_0(\vec{x}_f t_f, \vec{x}_f) = i\hbar \delta(\vec{x} - \vec{x}_f)\delta(t - t_f)$$
(2.30)

Esto último era lo que queríamos probar.

2.1.2. Matriz S.

En un experimento de dispersión es razonable suponer que las partículas al principio y al final del proceso son partículas libres, estas ondas planas están distribuidas en todo el espacio. Sin embargo esto último lleva a una contradicción ya que la presencia del centro dispersor no permite que en sus cercanias la solución sea una onda plana. Para resolver este inconveniente se puede proponer lo que se llama una fuente dinámica, que se "prenda y apague" lentamente tal que las partículas en los estados (final/incial) puedan ser libres y por tanto la aproximación de ondas planas sea válida en este regimen.

Para empezar definamos $\psi_{in}(\vec{x}_i, t_i)$, $\psi_{out}(\vec{x}_f, t_f)$ como ondas planas para $t \to -\infty$, $t \to \infty$ respectivamente, la amplitud de dispersión se define como:

$$S = \int \psi_{out}^*(\vec{x}_f t_f) \psi^{(+)}(\vec{x}_f t_f) d\vec{x}_f$$
 (2.31)

En (2.31) el superíndice (+) denota que $\psi^{(+)}(\vec{x}t)$ era una onda libre en $t \to -\infty$, usando la serie de Born obtenemos:

$$S = \int \psi_{out}^*(\vec{x}_f t_f) \psi^{(+)}(\vec{x}_f t_f) d\vec{x}_f = \int \psi_{out}^*(\vec{x}_f t_f) K_0(\vec{x}_f t_f, \vec{x}_i t_i) \psi_{in}(\vec{x}_i t_i) d\vec{x}_f d\vec{x}_i$$

$$-\frac{i}{\hbar} \int \psi_{out}^*(\vec{x}_f t_f) K_0(\vec{x}_f t_f, \vec{x}_t) V(\vec{x}_t) K_0(\vec{x}_t, \vec{x}_i t_i) \psi_{in}(\vec{x}_i t_i) d\vec{x}_f d\vec{x}_i d\vec{x}_d t$$

$$= \int \psi_{out}^*(\vec{x}_f t_f) \phi(\vec{x}_f t_f) d\vec{x}_f$$

$$-\frac{i}{\hbar} \int \psi_{out}^*(\vec{x}_f t_f) K_0(\vec{x}_f t_f, \vec{x}_t) V(\vec{x}_t) K_0(\vec{x}_t, \vec{x}_i t_i) \psi_{in}(\vec{x}_i t_i) d\vec{x}_f d\vec{x}_i d\vec{x}_d t \qquad (2.32)$$

Si los momentos iniciales y finales son $\vec{p_i} = \hbar \vec{k_i}, \vec{p_f} = \hbar \vec{k_f}$ respectivamente, entonces tenemos que:

$$\psi_{in}(\vec{x}t) = \frac{1}{\sqrt{\tau}} \text{Exp}\left(\frac{i}{\hbar}(\vec{p}_i \cdot \vec{x} - E_i t)\right)$$
 (2.33)

$$\psi_{out}(\vec{x}t) = \frac{1}{\sqrt{\tau}} \text{Exp}\left(\frac{i}{\hbar}(\vec{p}_f \cdot \vec{x} - E_f t)\right)$$
 (2.34)

Donde $E^2 = \frac{p^2}{2m}$ y τ es el volumen de integración, el cual es arbitrario. Si sustituimos las expresiones (2.33) y (2.34) en (2.32) obtenemos:

$$S_{fi} = \delta(\vec{k}_f - \vec{k}_i) - \frac{i}{\hbar} \int \psi_{out}^*(\vec{x}_f t_f) K_0(\vec{x}_f t_f, \vec{x}_t) V(\vec{x}_f t_f) K_0(\vec{x}_f t_f, \vec{x}_t) \psi_{in}(\vec{x}_i t_i) d\vec{x}_f d\vec{x}_i d\vec{x}_f d\vec{x}$$

Lo cual nos permite ver la amplitud de dispersion S_{fi} como el elemento de una matriz, la **matriz** S **de dispersión**. En (2.35) el primer término solo es representativo cuando no hay interacción y $\vec{k}_i = \vec{k}_f$. Las interacciones están representadas en el segundo término.

Es posible representar este segundo término mediante una serie de diagramas a los cuales se les asocian ciertas reglas, estos diagramas reciben el nombre de **Diagramas** de **Feynmann**. Si nombramos:

$$\mathcal{A} = -\frac{i}{\hbar} \int \psi_{out}^*(\vec{x}_f t_f) K_0(\vec{x}_f t_f, \vec{x}_t) V(\vec{x}_f t_f) K_0(\vec{x}_f t_f, \vec{x}_i t_i) \psi_{in}(\vec{x}_i t_i) d\vec{x}_f d\vec{x}_i d\vec{x}_i$$

FIGURA 2.2: Representación de \mathcal{A}

Este diagrama lo podemos descomponer usando la siguiente convención:

$$\overline{\mathbf{x_1}t_1}$$
 $\overline{\mathbf{x_2}t_2}$ FIGURA 2.3: Representación de $K_0(x_2t_2,x_1t_1)$

Por ejemplo el diagrama correspondiente a término de segundo orden:

$$\mathcal{A}^{(2)} = \left(-\frac{i}{\hbar}\right)^2 \int d\vec{x}_f d\vec{x}_i d\vec{x}' dt' d\vec{x}' dt K_0(\vec{x}t, \vec{x}_i t_i) V(\vec{x}t) K_0(\vec{x}'tt', \vec{x}t)$$

$$\times V(\vec{x}'tt') K_0(\vec{x}_f t_f, \vec{x}'tt') \psi_{out}^*(\vec{x}_f t_f) \psi_{in}(\vec{x}_i t_i)$$
(2.37)

Es el siguiente: En algunos casos es útil conocer una expresión para el propagador K_0 en

el espacio de momentos, definimos $\mathcal{K}_0(\vec{p}_1t_1,\vec{p}_2t_2)$ como la amplitud de que una partícula con momento \vec{p}_2 en un instante t_2 , sea observada un instante de tiempo después en t_1 con momento \vec{p}_1 . Así:

- 2.2. El experimento de la doble rendija.
- 2.3. Campos escalares.
- 2.4. Campos fermiónicos.
- 2.5. Teorías Gauge y campos de Yang-Mills
- 2.6. La teoria de Yukawa

Capítulo 3

Integrales de trayectoria en espacios curvos.

FIGURA 3.1: Este es el caption que aparece debajo de la figura.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus at pulvinar nisi. Phasellus hendrerit, diam placerat interdum iaculis, mauris justo cursus risus, in viverra purus eros at ligula. Ut metus justo, consequat a tristique posuere, laoreet nec nibh. Etiam et scelerisque mauris. Phasellus vel massa magna. Ut non neque id tortor pharetra bibendum vitae sit amet nisi. Duis nec quam quam, sed euismod justo. Pellentesque eu tellus

vitae ante tempus malesuada. Nunc accumsan, quam in congue consequat, lectus lectus dapibus erat, id aliquet urna neque at massa. Nulla facilisi. Morbi ullamcorper eleifend posuere. Donec libero leo, faucibus nec bibendum at, mattis et urna. Proin consectetur, nunc ut imperdiet lobortis, magna neque tincidunt lectus, id iaculis nisi justo id nibh. Pellentesque vel sem in erat vulputate faucibus molestie ut lorem.

3.1. Teoría clásica de campos en espacios curvos.

Quisque tristique urna in lorem laoreet at laoreet quam congue. Donec dolor turpis, blandit non imperdiet aliquet, blandit et felis. In lorem nisi, pretium sit amet vestibulum sed, tempus et sem. Proin non ante turpis. Nulla imperdiet fringilla convallis. Vivamus vel bibendum nisl. Pellentesque justo lectus, molestie vel luctus sed, lobortis in libero. Nulla facilisi. Aliquam erat volutpat. Suspendisse vitae nunc nunc. Sed aliquet est suscipit sapien rhoncus non adipiscing nibh consequat. Aliquam metus urna, faucibus eu vulputate non, luctus eu justo.

3.1.1. A Subsection

Donec urna leo, vulputate vitae porta eu, vehicula blandit libero. Phasellus eget massa et leo condimentum mollis. Nullam molestie, justo at pellentesque vulputate, sapien velit ornare diam, nec gravida lacus augue non diam. Integer mattis lacus id libero ultrices sit amet mollis neque molestie. Integer ut leo eget mi volutpat congue. Vivamus sodales, turpis id venenatis placerat, tellus purus adipiscing magna, eu aliquam nibh dolor id nibh. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Sed cursus convallis quam nec vehicula. Sed vulputate neque eget odio fringilla ac sodales urna feugiat.

- 3.2. La ecuación de Schrodinger en espacio curvo.
- 3.3. Cambios de coordenadas.
- 3.4. Campos fermiónicos.
- 3.5. El átomo de Hidrógeno.

Apéndice A

An Appendix

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus at pulvinar nisi. Phasellus hendrerit, diam placerat interdum iaculis, mauris justo cursus risus, in viverra purus eros at ligula. Ut metus justo, consequat a tristique posuere, laoreet nec nibh. Etiam et scelerisque mauris. Phasellus vel massa magna. Ut non neque id tortor pharetra bibendum vitae sit amet nisi. Duis nec quam quam, sed euismod justo. Pellentesque eu tellus vitae ante tempus malesuada. Nunc accumsan, quam in congue consequat, lectus lectus dapibus erat, id aliquet urna neque at massa. Nulla facilisi. Morbi ullamcorper eleifend posuere. Donec libero leo, faucibus nec bibendum at, mattis et urna. Proin consectetur, nunc ut imperdiet lobortis, magna neque tincidunt lectus, id iaculis nisi justo id nibh. Pellentesque vel sem in erat vulputate faucibus molestie ut lorem.

Quisque tristique urna in lorem laoreet at laoreet quam congue. Donec dolor turpis, blandit non imperdiet aliquet, blandit et felis. In lorem nisi, pretium sit amet vestibulum sed, tempus et sem. Proin non ante turpis. Nulla imperdiet fringilla convallis. Vivamus vel bibendum nisl. Pellentesque justo lectus, molestie vel luctus sed, lobortis in libero. Nulla facilisi. Aliquam erat volutpat. Suspendisse vitae nunc nunc. Sed aliquet est suscipit sapien rhoncus non adipiscing nibh consequat. Aliquam metus urna, faucibus eu vulputate non, luctus eu justo.

Donec urna leo, vulputate vitae porta eu, vehicula blandit libero. Phasellus eget massa et leo condimentum mollis. Nullam molestie, justo at pellentesque vulputate, sapien velit ornare diam, nec gravida lacus augue non diam. Integer mattis lacus id libero ultrices sit amet mollis neque molestie. Integer ut leo eget mi volutpat congue. Vivamus sodales, turpis id venenatis placerat, tellus purus adipiscing magna, eu aliquam nibh dolor id nibh. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Sed cursus convallis quam nec vehicula. Sed vulputate neque eget odio fringilla ac sodales urna feugiat.

Phasellus nisi quam, volutpat non ullamcorper eget, congue fringilla leo. Cras et erat et nibh placerat commodo id ornare est. Nulla facilisi. Aenean pulvinar scelerisque eros eget interdum. Nunc pulvinar magna ut felis varius in hendrerit dolor accumsan. Nunc pellentesque magna quis magna bibendum non laoreet erat tincidunt. Nulla facilisi.

Duis eget massa sem, gravida interdum ipsum. Nulla nunc nisl, hendrerit sit amet commodo vel, varius id tellus. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nunc ac dolor est. Suspendisse ultrices tincidunt metus eget accumsan. Nullam facilisis, justo vitae convallis sollicitudin, eros augue malesuada metus, nec sagittis diam nibh ut sapien. Duis blandit lectus vitae lorem aliquam nec euismod nisi volutpat. Vestibulum ornare dictum tortor, at faucibus justo tempor non. Nulla facilisi. Cras non massa nunc, eget euismod purus. Nunc metus ipsum, euismod a consectetur vel, hendrerit nec nunc.