COMP-4200 Formal Languages

FROM: Midas Oden

TO: Dr. Anh Nguyen

DATE: September 6, 2021

LAB SECTION: 001

Homework #2

Problem 1

Draw the state diagram of DFAs recognizing the following languages. Alphabet $\Sigma = \{0, 1\}$.

a. $A = \{w|w \text{ starts with } 0 \text{ and has odd length, or starts with } 1 \text{ and has even length}\}$

b. $B = \{w|w \text{ is any string except } 11 \text{ and } 111\}$

c.
$$C = \{\epsilon, 0\}$$

Problem 2

Example of set difference: $A = \{0,01\}$, and $B = \{0,11\}$. Then, $A - B = \{01\}$.

Prove that regular languages are closed under the set *difference* operation. That is, if A and B are regular languages, then, A — B is also a regular language.

Hint: One can prove the statement above by either (1) contradiction or (2) construction. For the proof, you may make use of the theorems that regular languages are closed under *union*, *intersection*, and *complement*

ANSWER:

 \rightarrow We know that A — B = The intersection of A and B complement. Also we know that regular languages are closed under union and under complement. That is ... $A^C = \Sigma^* - A$

→ A — B denotes the elements which exists in A but not in B

L(A):

 $A = \{\text{empty}, a, b, aa, ab, bb, ...\}$

L(B):

 $B = \{ab, aab, abb, aabb, ...\}$

 \rightarrow We can prove A — B is regular by applying proof by contradiction by assuming A — B is not regular and by taking all elements which belong in A and removing elements within B.

L(A — B):

 $A - B = \{\text{empty, a, b, aa, bbb, ...}\}$

 \rightarrow Since, A — B has an automata, L(A — B) is regular, hence proved.