Prediction of Used Car Prices using Regression Models

Data science approach

[Abdulwahid] - [30/10/2022]

Agenda

- 1. Problem Definition
- 2. CRISP Methodology
- 3. Findings and Insights
- 4. Recommendations

Problem Definition

Determining the worthiness of cars based on their characteristics

What features impact the price?

What are the best prices for used cars?

CRISP Methodology

The main stages for a successful data science project

(Data Science Process Alliance, 2022)

Business Understanding

Business Tasks

 Improving a company's advertising approach (used car selling company)

Predicting the best prices to sell their recent used cars

Data Understanding

- Data was obtained from GitHub as a part of a data science challenge
- ➤ The dataset has 16 features with target variable price

- Conducted a descriptive and exploratory data analysis
- > To find trends and insights
- To determine the best price predictors

Data Preparation

Data cleaning

- ✓ Handling missing values for training and testing set
- ✓ Checking feature data types
- ✓ Checking for inconsistent data

Data Transformation

- ✓ Label encoding (from categorical to numerical)
- ✓ Feature scaling (range of 0 to 1)
- ✓ Dropping unwanted features

Model Development

- Training and testing are provided
- > Split data features from target variable
- Models are built by fitting training set
- Model testing using testing set

Model Evaluation

Model evaluation matrix (Mean Absolute Error)

Model Evaluation

Model evaluation matrix (Mean Square Error, R square)

Pearson Correlation (Heatmap)

- Year produced has the highest correlation with price
- Exchangeable has the lowest correlation to the price

Regression Plots

P-value = 0.0

P-value = 0.0

Regression Plots

P-value = 0.0

Regression Plots

P-value = 1.0242198585534666e-39

P-value = 9.732002080958092e-16

Recommendations

Features that can be utilized to improve the advertising approach.

- ✓ Manufacturer name
- √ transmission
- ✓ color
- ✓ Odometer value
- ✓ Year produced
- ✓ Engine fuel
- ✓ Engine capacity
- ✓ Body type
- ✓ Has warranty
- ✓ ownership
- ✓ Type of drive
- ✓ Number of photos

Random Forest's Plot

Reference

1. CRISP-DM - Data Science Process Alliance. (2022). Data Science Process Alliance. https://www.datascience-pm.com/crisp-dm-2/

Thank You