# Presentation Title Optional Subtitle

K. Cong

Faculty of Electrical Engineering, Mathematics and Computer Science Delft University of Technology

2017

### Background

TrustChain

### My Thesis

TrustChain with Checkpoints

Protocol Overview

Promoter Registration

Consensus

Validation

### Background TrustChain

### My Thesis

TrustChain with Checkpoints

Protocol Overview

Promoter Registration

Consensus

Validation

### TrustChain



Figure: TX block is a six-tuple:  $t_{i,j} = (h(b_{i,j-1}), h_s, h_r, s_s, s_r, m)$ , one transaction results in two TX blocks—a pair.

### TrustChain



Figure: Fork is two correctly signed TX blocks that has the same  $h_s$  but involve different receivers. Only one TX block may be in consensus.

### TrustChain

- Everyone has their own chain
- Transactions are on arbitrary data m
- Transactions make the chains intertwined
- Transactions are irrefutable due to hash pointers
- No consensus (my thesis)

### Background

TrustChain

### My Thesis

### TrustChain with Checkpoints

Protocol Overview

Promoter Registration

Consensus

Validation

# TrustChain with Checkpoints



Figure: CP block is a five-tuple:  $c_{i,j} = (h(b_{i,j-1}), h(\mathcal{C}_r), r, p, s)$ ,  $\mathcal{C}_r$  is the consensus result at round r, p = promoter indicator, s = signature.

# Background

TrustChain

### My Thesis

TrustChain with Checkpoints

#### Protocol Overview

Promoter Registration

Consensus

Validation

### Protocol Overview

- 1. *n* lucky nodes are selected at random to act as promoters.
- 2. Promoters run a BFT (Byzantine Fault Tolerant) consensus algorithm to agree on a set of CP blocks.
- 3. Disseminate the consensus result (the CP blocks).
- 4. Repeat for next round.
- 5. Any interested node can validate that their transaction.

# Background

TrustChain

### My Thesis

TrustChain with Checkpoints

### Promoter Registration

Consensus

Validation



Figure: We start in the state where  $C_{r-1}$  has just been agreed but not yet propagated.



Figure: Nodes receive consensus result and set promoters indicator p, then send the new CP blocks to promoters of round r.



Figure: Transactions carry on as usual in round r. Note that our CP blocks (round r-1) has not reached consensus yet.



Figure: CP blocks at round r-1 should be in  $C_r$ . If we're lucky:  $h(k_i||c_{i,j}) < T$ , then we're responsible for consensus of round r+1.

# Background

TrustChain

### My Thesis

TrustChain with Checkpoints
Protocol Overview
Promoter Registration

#### Consensus

Validation Implementatior

#### Consensus

- 1. Nodes send CP blocks to the promoters.
- 2. The promoters' identities are encoded in the consensus result.
- 3. Promoters run the some asynchronous BFT consensus algorithm to agree on a set of CP blocks— $C_r$ .
- 4. n = 3t + 1 is the optimal for BFT consensus.
- 5.  $C_r$  and the signatures are disseminated.
- 6. Nodes create new CP blocks when they receive t+1 good signatures and  $C_r$ .

#### **Theorem**

Assuming the promoters satisfy n=3t+1. The promoter registration and the consensus protocol satisfied agreement, total order and liveness.

# Background

TrustChain

### My Thesis

TrustChain with Checkpoints

Protocol Overview

Promoter Registration

Consensus

### Validation

### Validation

Assume node u is aware of all the past consensus results  $C_r$ . Suppose u wish to validate  $t_{i,j}$ . It performs the following.

- 1. Determine the pair  $t_{i',j'}$ .
- 2. Find the agreed enclosure for  $t_{i,j}$  and  $t_{i',j'}$  from  $C_r$ , otherwise return "unknown".
- 3. Query i and i' for the agreed pieces and ensure hash pointers are correct. Otherwise return "unknown".
- 4. Check that  $t_{i,j}$  and  $t_{i',j'}$  are in the agreed pieces and are created correctly using newtx. Otherwise return "invalid".
- 5. Check the checkpoints  $c_{i,k}$  and  $c_{i',k'}$  that immediately follow  $t_{i,j}$  and  $t_{i',j'}$  are in the agreed pieces and are created in the same round, i.e.  $\operatorname{round}(c_{i,k}) = \operatorname{round}(c_{i',k'})$ . Otherwise return "invalid".
- 6. Return "valid".

### Validation

In essence, given a TX, ask the receiver to proof that it has a set of transactions that produces some CP block, the CP block should be in the consensus result and the pair of the TX should be in that set.

#### **Theorem**

If at least one party of every transaction is honest, then forking and other forms of tampering is guaranteed to be detected if the malicious party is alive.

# Background

TrustChain

### My Thesis

TrustChain with Checkpoints

Protocol Overview

Promoter Registration

Consensus

Validation

- Currently on going—using Python and Twisted
- Completed BFT consensus algorithm
- Completed local TrustChain
- Next step is networked TrustChain and validation protocol