

Группа РЗ110 Студент Лисенко Ю.С. Преподаватель Куробков И.Л.	К работе допущен
Рабочий прото	окол и отчет по
лабораторн	ой работе № 3.07
lizyrenne choûcth	PRAPOMONETUKO
венный маний пракуаеный ч В. Объект исследования. Вероманий	
. Метод экспериментального исследовани Мложкрайные измеримы и их (Safation
Рабочие формулы и исходные данные. "" Ку. X = " L.	f. ; G=0,47 u<9±10%;

6. Измерительные приборы.

Nº п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Ougustarpage	Juggodan		3%
2	0 / 13	0 1/		
3				
4				

7. Схема установки (перечень схем, которые составляют Приложение 1).

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов). С. Примети примеры (таблиза 1-3).

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Sup = 6,29 ger? (Obra narymena nyu narayu nogeneta mei cu)
$$\mathcal{X} = 0,001$$
 BT

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

 $E_{F} = \sqrt{(E_{R}^{2})^{2} + (E_{E}^{2})^{2} + (E_{E}^{2})^{2} + (E_{SHN}^{2})^{2}} = \sqrt{(O_{1})^{2} + (O_{1})^{2} + (O_{1}O_{2})^{2}} = O_{1}^{2}C}$ $\Delta P = E_{P} \cdot P = O_{1} \cdot O_{1}CC_{7} B_{T} = C_{1}OO \cdot 10B_{7}$ $\Delta M_{max} = 4570_{1}B.$ $\Delta S_{TIP} = 121. \ \, \frac{1}{2} \cdot \frac{1}{100} = C_{1} \cdot 6 \text{ ges}^{2} \cdot (S_{EN} \text{ ucnoses obour } K_{CSGMMyers}^{2} + hyrrighter for the source of the sour$

- 11. Графики (перечень графиков, которые составляют Приложение 2). Петле чистеретия, кривах начального начальный протучености об наприменности ментиров ноля
- 12. Окончательные результаты.

 Ис = 31, 39 #; В = 0,27 Гл; Ит = 69,06 #; В т = 0,36 Гл; Ит = 4100,16 гл

 Р = 0,0070-1 0,001и 67, Ер-20%

 Ипат = 4510,18 Гт
- 13. Выводы и анализ результатов работы.

 При вымения лаборайорной работы бые рассинате испранен вырым в оперреманиямие, органов польтой испраненной перешной в полученной облатанно бытый получение получения испораменной получение получение получение вы получение вы с мощады с ев получение вы высот и получение и с мощады и има в обощи высот место мощади има в обощи способ медамета интока.

14. Дополнительные задания. 15. Выполнение дополнительных заданий. 16. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт). 1. Пункты 1-13 Протокола-отчета Примечание: обязательны для заполнения. 2. Необходимые исправления выполняют непосредственно в протоколе-отчете. 3. Для построения графиков используют только миллиметровую бумагу. 4. Приложения 1 и 2 вкладывают в бланк

протокола-отчета.

Mueino Danna P3110 Tasmya 1. X1, gal Yv, ger Hc, A/M B, 11 Tabringa 2. Xn, ga Ym, ger Mm, A/M Bm, T1 Am 69,06 0,356 4100,16 23.03.21

Приложение

Таблица 3: Результаты прямых измерений и расчетов

U, B	Х, дел.	$K_x, \frac{\mathrm{B}}{\mathrm{дел}}$	H, A/M	Ү, дел.	$K_y, rac{B}{дел}$	B , T_{Λ}	μ
20	2,2	0,1	69,06	2	0,05	9356	410016
19	2	0,1	62,78	2	9,05	c ₁ 356	451919
19	2	0,1	62,78	1,9	0,05	9338	4284,6
17	1,6	0, (56,50	1,8	0,05	0,320	45/0,18
16	1,7	0,1	53,37	1,7	0,05	9302	4510,18
15	1,6	\circ_{ι}	50,23	1,5	0,05	0,267	4228,29
14	3	0,05	47,09	1,4	0,05	ozug	4209,50
(3)	2,8	0,05	43,95	1,3	0,05	0,231	4189102
12	2,6	0,05	40,31	1,2	0,05	0,213	4163,24
11	2,5	0,05	39,24	3	0,02	0,213	4329,27
10	2,4	0,05	37,67	2,8	0,02	0,199	4203,50
9	2,2	0,05	34,53	44	0,02	0,171	3936,15
8	2	0,05	31,39	2,1	0,02	0,149	3788,56
7	1,9	0,05	29,82	1,9	0,02	0,135	>3608,14
6	11,8	0,01	26,25	1,6	0,02	CILL	3207,24
/	1,6	0,05	25,11	28	0,01	0,100	3157,12
5	1,6	0,05	25,11	28	0,01	Olloc	3157,12

