EPITA / InfoSup		Janvier 2013
VOM :	PRENOM :	GROUPE :

Partiel 1 de Physique

Les calculatrices et les documents ne sont pas autorisés. Réponses exclusivement sur le sujet

•
Exercice 1 (Sur 6 points)
L'électron de masse m tournant autour du noyau décrit la trajectoire définie par les équations horaires: $O\tilde{M} \begin{cases} x(t) = 2a.\cos(\omega t) \\ y(t) = a.\sin(\omega t) \end{cases}$ a et ω sont des constantes positives.
$y(t) = a.\sin(\omega t)$ a et ω sont des constantes positives.
1- Déterminer l'équation de la trajectoire du mouvement, donner sa nature.
2- a) Déterminer les composantes des vecteurs vitesse \vec{V} et accélération \vec{a} .
b) Exprimer les modules de \vec{V} et de \vec{a} .

3- a) Exprimer la force \vec{F}	agissant sur la particule en fonction du vecteur $O\vec{M}$ sachant \vec{G}	que $\vec{F}=m.\vec{a}$.
	,	
b) Interpréter ce résult	·•	

Exercice 2 Système en équilibre (6 points)

Une enseigne de magasin est composée d'une barre OA de masse m et de longueur L mobile autour d'un point O. A l'extrémité A de la barre est suspendu un objet décoratif de masse M. En un point B tel que $(OB = \frac{1}{4}.L)$ est fixée une tige BC **perpendiculaire à la barre OA**. Lorsque l'enseigne est placée sur son support, la barre OA fait un angle $\alpha = 30^{\circ}$ avec la verticale.

	,	

2- a) Ecrire la condition d'équilibre de rotation, en déduire l'expression littérale de la force \vec{F} exercée par la tige BC sur la barre OA sachant qu'elle est dirigée le long de la tige BC.

Exercice 3 Partie A (Sur 3 points)

a) Exprimer le moment d'inertie I_{Oz}, d'un disque plein de rayon R, de hauteur h, d'axe Oz, de masse M et de masse volumique constante ρ. Donner le résultat en fonction de M et de R.

Partie B (Sur 5 points)

Un objet ponctuel de masse m est lâché du point A sans vitesse initiale ($V_A = 0$). Le guide, hémicylindrique de rayon R, est immobile et son axe est horizontal.

- 1- On suppose que les frottements sont négligeables, représenter les forces appliquées sur la masse m en un point quelconque entre A et B.
- 2- Appliquer le théorème d'énergie cinétique pour exprimer la vitesse au point B. Faire le calcul pour $m = 10^{-2} kg$, $g = 10 ms^{-2}$, R = 1m.

- - a) Exprimer le travail de $\vec{f}:W(\vec{f})$ en appliquant le théorème d'énergie mécanique entre les points A et B sachant que $V_A = 0$ et $V_B = 3ms^{-1}$.

b) Utiliser la définition du travail d'une force pour calculer la valeur de la force de frottemen (On prend $\pi \approx 3$).					
			•		

<u>Formules</u>

1- Elément de volume en coordonnées cylindriques

$$d\,\tau_{cyl}=rdrd\;\theta dz$$

2- Moment d'inertie pour une distribution de masse volumique ρ

$$I_{\Delta} = \iiint_{\tau} \rho . d^{2} . d \tau$$