試験開始の指示があるまで、この問題冊子の中を見てはいけません。

情 報〔『情報Ⅰ』『旧情報』〕

(100点)

I 注 意 事 項

1 出題科目、ページ及び選択方法は、下表のとおりです。

〔新教育課程履修者〕

出	題 科	目	ページ	選	択	方	法
『情	報	IJ	4~36	左の科目を	を解答した	なさい。	

[旧教育課程履修者等]

出	題 科	目	ページ	選	択	方	法
『情	報	ΙĴ	4~36	左の2科目	のうちた	から1科	目を選択し.
『旧	情	報』	37~81	解答しなさい) o		

2 解答用紙の記入・マークについて

- ① 解答用紙に、正しく記入・マークされていない場合は、採点できないことがあります。特に、解答用紙の解答科目欄にマークされていない場合又は複数の科目にマークされている場合は、0点となります。
- ② 新教育課程履修者が、解答科目欄で旧教育課程の科目をマークしている場合は、0点となります。
- 3 試験中に問題冊子の印刷不鮮明,ページの落丁・乱丁及び解答用紙の汚れ等に 気付いた場合は、手を高く挙げて監督者に知らせなさい。
- 4 選択問題がある科目については、各科目の先頭ページの指示に従って選択し、 その問題番号の解答欄に解答しなさい。
- 5 問題冊子の余白等は適宜利用してよいが、どのページも切り離してはいけません。
- 6 試験終了後、問題冊子は持ち帰りなさい。

Ⅱ 解答上の注意

解答上の注意は, 裏表紙に記載してあります。問題冊子を裏返して必ず読みなさい。

Ⅱ 解答上の注意

1 解答は、解答用紙の問題番号に対応した解答欄にマークしなさい。例えば、第 2問の ア と表示のある問いに対して ③ と解答する場合は、次の例のよう に問題番号 ② の解答記号アの解答欄の ③ にマークしなさい。

例 1	2	解					答					欄			
		0	1	2	3	4	5	6	7	8	9	а	b	С	d
	ア	0	1	2	0	4	⑤	6	0	8	9	a	6	©	0

- 2 この試験では、選択肢から選んで答える問題と、解答欄の数字 $(0 \sim 9)$ 又は 文字 $(a \sim d)$ から選んで答える問題があります。各問題の指示に従って解答し なさい。
- 3 問題の文中の **イ**, **ウ エ**などの に, 数字(0~9)又は文字(a~d)を入れるよう指示された場合, **イ**, **ウ**, **エ**…の一つ一つは, これらのいずれか一つに対応します。それらを解答用紙の**イ**, **ウ**, **エ**…で示された解答欄にマークして答えなさい。

例2 ウエに38と答えたいとき

ゥ	0	1	2	0	4	6	6	0	8	9	a	6	0	0
I	0	1	2	3	4	6	6	0	0	9	a	6	0	0

 4 同一の問題文中に
 ア , ウ エ などが2度以上現れる場合,原則として,

 2度目以降は, ア , ウ エ のように細字で表記します。

問題訂正

情報『情報I』

	29ページ 第4問 問1
訂正箇所	ウ・エの解答群の選択肢
	(下から5~6行目)
<u>=</u>	① …旅行者数が最も…
誤	① …旅行者数が最も…
ਜ:	① …旅行者数が <u>すべての地方の中で</u> 最も…
正	① …旅行者数が <u>すべての地方の中で</u> 最も…

訂正箇所	30ページ 第4問 問2 選択肢
	③ 各都道府県について、ある目的の旅行者
誤	<u>数が多くなる</u> ほど、他の目的の旅行者数も
	多くなる傾向にある
	③ ある目的の旅行者数が多い都道府県ほ
正	ど、他の目的の旅行者数も多くなる傾向に
	ある

情 報 I

(全 問 必 答)

第1問 次の問い(問1~4)に答えよ。(配点 20)

問 1 次の問い(a・b)に答えよ。

a 次の文章中の空欄 ア に入れるのに最も適当なものを、後の 0~ 0 つっちから一つ選べ。

インターネットで情報をやり取りする際、発信者が本人であることを確認 するためにデジタル署名が利用できる。また、デジタル署名を用いると、そ の情報が **ア** を確認できる。

- ◎ 複製されていないか
- ① 暗号化されているか
- ② 改ざんされていないか
- ③ どのような経路で届いたか
- ④ 盗聴されていないか

b 近年,128ビットで構成されるIPアドレスが利用されるようになった理由の一つとして最も適当なものを、次の**②**~**④**のうちから一つ選べ。

1

- ∮ 有線 LAN だけでなく無線 LAN にも対応するため。
- 大容量データの送受信に対応するため。
- ② インターネットに直接接続する機器の増加に対応するため。
- ③ 漢字など英数字以外の文字で表されるドメイン名に対応するため。
- 4 HTMLの仕様変更に対応するため。

問2 次の文章を読み、空欄ウ~カに当てはまる数字をマークせよ。

図 1 に示した部品は、棒状の 7 個の LED ② \sim ⑧を使って数字や一部のアルファベットを表示するものである。この部品を 7 セグメント LED と呼び、例えば数字の $0 \sim 9$ は図 2 のように LED を点灯させて表示することができる。

図1 7セグメント LED

図 2 7 セグメント LED で表示した 0 ~ 9 の数 字

7 セグメント LED における、②~⑤を点灯させる組合せは、すべての LED が消灯している状態を含めて全部で ウエオ 通りである。

図1に示した部品は、アルファベットとして図3に示す13種類を表示できる。

図3 7セグメント LED で表示したアルファベット(下線は小文字を示す)

これらの大文字 8 種類、小文字 5 種類のアルファベットに加え、数字 10 種類を用いて、ある製品のエラーコードを表示する。図 4 のように、1 桁目を大文字のアルファベット、2 桁目を小文字のアルファベット、3 桁目以降の桁については数字のみを用いる場合、図 1 の 7 セグメント LED の部品が全部で少なくとも 力 個あれば 5,000 種類のエラーコードを表示することができる。

図4 7 セグメント LED の部品で表示したエラーコード

問3 次の文章を読み、空欄 **キ**に当てはまる数字をマークせよ。また、空欄 **ク** に入れるのに最も適当なものを、後の解答群のうちから一つ選べ。

チェックディジットは、書籍の ISBN コードなどで数字の入力ミスを検出するためなどに利用されている。ここでは、5 桁の数字 $(N_5N_4N_3N_2N_1)$ の利用者 ID に、チェックディジット1 桁(C)を加えた6 桁の識別番号 $(N_5N_4N_3N_2N_1C)$ を考える。チェックディジットの生成方法として、次の2 種類を考える。

【生成方法A】 利用者 ID の各桁の値を足し合わせ、10 で割った余り R を求め、10 から R を引いた値をチェックディジットとする。

【生成方法 B】 利用者 ID の各奇数桁 (N_5, N_3, N_1) の値をそれぞれ 3 倍にした値と、各偶数桁 (N_4, N_2) の値を足し合わせ、10 で割った余り R を求め、10 から R を引いた値をチェックディジットとする。

なお、いずれの生成方法も、Rが0の場合は、チェックディジットを0とする。

例えば、ある利用者 ID が [22609] の場合にチェックディジットを計算すると、生成方法Aでは [1] になり、生成方法Bでは [+] となる。

これらのチェックディジットでは、1桁の入力ミスは検出できても、2桁の入力ミスは、検出できないことがある。生成方法Bはこの点について多少検出できるように工夫されている。例えば、 ク 入力ミスをした場合は、生成方法Aでは検出できることはないが、生成方法Bでは検出できることがある。

- ク の解答群 -
- ◎ 奇数桁の数字を二つ間違える
- ① 連続する二つの桁の数字をそれぞれ間違える
- ② 奇数桁のうちの二つの桁の数字の順序を逆にする
- ③ 連続する二つの桁の数字の順序を逆にする

問 4 次の文章を読み、後の問い(a・b)に答えよ。

マウスカーソルをメニューやアイコンなどの対象物に移動する操作をモデル化し、Web サイトやアプリケーションのユーザインタフェースをデザインする際に利用されている法則がある。この法則では、次のことが知られている。

- 対象物が大きいほど、対象物に移動するときの時間が短くなる。
- 対象物への距離が短いほど、対象物に移動するときの時間が短くなる。
- a 次の文章中の空欄 **ケ** に入れるのに最も適当なものを,図5の**0**~**3** のうちから一つ選べ。

この法則では、PCなどでマウスを操作する場合、マウスカーソルはディスプレイの端で止まるため、ディスプレイの端にある対象物は実質的に大きさが無限大になると考える。

この法則に基づくと、図5の**②**~**③**で示した対象物のうち、現在ディスプレイ上の黒矢印 ▼ で示されているマウスカーソルの位置から、最も短い時間で指し示すことができるのは ケ である。

図5 ディスプレイ上の対象物

b 次の文章中の空欄 コ・サーに入れるのに最も適当なものを、後 の解答群のうちから一つずつ選べ。

操作時間を短くするためにこの法則を適用した事例として、利用頻度に基づいてメニュー項目を配置する方法がある。

ここでは、マウスを右クリックした際に、マウスカーソルに対して図6に示すような位置で表示されるメニュー項目の配置について考える。マウスカーソルで選択できる各メニュー項目の大きさは同じであるとし、この法則のみに沿って設計されたとすると、「項目5」は、他の項目と比べ利用頻度がコープ目なので、意図的にサープに配置されていると考えられる。

図6 右クリックした際のメニュー項目

 口の解答群
 ① 同程度の
 ② 高 い

 り 低 い ① 同程度の
 ② 高 い

 サ の解答群
 ② 高 い

 ① メニューの中で一番目立つ場所
 ① マウスカーソルの位置から遠い場所

 ② マウスで素早く選択できる場所

第2問 次の問い(A・B)に答えよ。(配点 30)

- A 高校生のYさんは、職業体験のため全国チェーンの総合スーパーマーケット 「LikeWing」 駒谷南店を訪れている。レジを担当したYさんと店長の会話文を読み、後の問い(問1~4)に答えよ。
 - Yさん:レシートにはたくさんの情報が印字されていますね(図1)。このレシートには「ポイント会員 ID」が載っていますが、ポイントカードは店側にとってどんなよいことがあるのですか?
 - 店 長: LikeWing では、ポイントカードを作成する際に、お客様の名前、性別、生年の三つの属性情報をポイント会員情報として登録してもらっています。そして、(A)ポイント会員情報とレシートに印字されている情報を組み合わせて分析することで販売促進につなげています。
 - Yさん:それらの情報には大切な情報も多いですよね。どう管理されているので すか?
 - 店 長:はい。ポイント会員情報とレシートに印字されている情報は、LikeWingの本部の情報システムで一括して管理しています。(B)本部、各店舗、商品を製造するメーカー、商品を店舗に配送する配送センターの間で情報をやり取りしていて、商品は本部が一括して発注し、配送の指示を出します。
 - Yさん: LikeWing のネットショッピングサイトは有名ですね。そのネットショッピングサイトと、この情報システムはつながっているのですか?
 - 店 長:今まさに、連携を検討しているところです。これらが(C)連携するメリットは多くあります。

図1 レシートの例

問 1 次の文章を読み、空欄 ア ~ ウ に入れるのに最も適当なものを、図1の**0**~**8**のうちから一つずつ選べ。ただし、空欄 イ ・ の解答の順序は問わない。

LikeWing 全体での「時間帯ごとの総売上額(消費税込)」の比較を行うには、図1の「購入時刻」と「o」に表されている情報から分析する。また、「曜日別の各商品の購買の状況」を把握するには、図1の「購入日、曜日」と「o」と「o」と「o」に表されている情報から分析する。

- 問 2 下線部(A)の分析によって得られない情報として最も適当なものを,次の
 - ◎~③のうちから一つ選べ。 エ
 - ◎ 顧客が商品を購入した理由。
 - ① 同じ顧客に、繰り返し購入される傾向がある商品。
 - ② ある商品を多く購入している顧客の年齢層。
 - ③ 年齢や性別の違いによる、来店する時間帯の傾向。

問3 図2は、下線部(B)に示す LikeWing の情報システムにおける主な情報の流れと商品の流れを表している。なお、顧客は必ずポイントカードを提示して商品を購入するものとする。

図 2 LikeWing の情報システムにおける主な情報の流れと商品の流れ

- I 店コード オ オ ポイント会員 ID カ の あ ① い ② う
 -) あ, う ⑤ い, う ⑥ あ, い, う

③ あ, い

問 4 下線部(C)の連携するメリットとして、次のI~Ⅲが考えられる。これらを実現するために、後の【条件】あ~うのうち、LikeWing の情報システムに求められる条件はどれか。空欄 キー~ ケーのそれぞれについて、【条件】あ~うを過不足なく含むものを、後の解答群のうちから一つずつ選べ。なお、LikeWing のポイント会員であるか否かにかかわらず、ネットショッピングを利用する顧客は、ネットショッピングのアカウントを作成して、宅配のための自宅の住所を登録するものとする。

連携するメリット	条件
I 顧客がネットショッピングサイトにログインしたとき に、現在のポイントカードのポイント数と自宅に近い実店 舗の広告チラシが自動的に表示される。	+
II 顧客がネットショッピングで商品を購入しようとするとき、その顧客がポイントカードをよく利用する実店舗のうちで、その商品の在庫がある実店舗の情報が表示される。	9
Ⅲ 顧客がネットショッピングサイトにログインしたとき に、商品の購入傾向が実店舗も含めて類似している他の顧 客の購入履歴をもとに、おすすめ商品を画面に表示する。	5

【条件】

- **あ** ポイント会員 ID とネットショッピングのアカウントが対応付けられている。
- い ネットショッピングで扱われている商品に実店舗で用いられている商品コードが割り当てられている。
- **う** 商品コードと店コードから実店舗における商品の在庫数を調べることができる。

 キー
 ケ の解答群

 ① あ ① い ② う ③ あ, い

 ④ あ, う ⑤ い, う ⑥ あ, い, う

B 次の文章を読み、後の問い(問1~3)に答えよ。

M さんは、あるグループの会計係をしており10人のメンバーから一人6.000 円ずつ集めることになった。M さんは、以前集金をしたときにおつりに困った ことがあったので、メンバー全員におつりを渡すための千円札を何枚用意してお くのがよいか、次の条件でシミュレーションすることにした。

- グループのメンバーは、来た順番に一人ずつ M さんにお金を支払う。
- メンバーは、必ず千円札6枚(6,000円)または一万円札(10,000円)のいずれか でMさんに支払う。
- ・メンバーが一万円札で支払った場合、おつりの4,000円は千円札4枚で渡す。
- メンバーが千円札6枚で支払う確率を30%,一万円札で支払う確率を70% と考える。

シミュレーションは表計算ソフトウェアで1以上10以下の整数が同じ確率で 出現する乱数 r を用い、次のように考えて行った。

rが3以下の場合: 千円札6枚で支払う

rが4以上の場合:一万円札1枚で支払う

問 1 次の文章を読み、空欄コートで出てはまる数字をマークせよ。

M さんの手元の千円札の枚数を最初 0 枚として、シミュレーションをした結果、表 1 のようになった。

		,	r	,
	乱数 <i>r</i> の値	手元の一万円 札の枚数	手元の千円札の 枚数	1 人目が一万円
初期値		0	0 .	札で支払ったので、おつりとし
1人目	8	1	-4 2	て渡す千円札4
2 人目	1	1	2	枚が不足する。
3人目	6	2	- 2	2人目が千円札
4 人目	10	3	- 6	6 枚で支払った
5 人目	9	?	?	ので、不足して
6人目	4	п	?	いた1人目のおし、千
7 人目	5	?	?	円札2枚が残る。
8人目	3	?	ーサシ	
9人目	7	?	?	
10 人目	2	?	?	

表1 乱数ァの値と手元の一万円札,千円札の枚数変化

(表の一部を"?"で隠してある)

なお、この表の「手元の千円札の枚数」が負の数の場合、M さんが渡さなければならないおつりの千円札が、その数の絶対値の枚数分不足していることを意味する。そこで M さんは、「手元の千円札の枚数」の最小値を調べ、その絶対値の枚数の千円札を事前に準備しておけば、おつりに困らないと考えた。この考えによると、今回行った1回のシミュレーションの場合、千円札 ス セ 枚を事前に準備しておけば、一度も千円札が不足することなく集金できることになる。

- 問2 Mさんは、1回のシミュレーション結果では判断できないと考え、このシミュレーションを10,000回行った。図3は、各シミュレーションでの「手元の千円札の枚数」の最小値を横軸に、その回数を縦軸に表したものである。この結果に関する考察として最も適当なものを、次の◎~③のうちから一つ選べ。 ソ

 - ① 最後まで千円札が不足しなかったのは、全回数の1割以下である。
 - ② 別の乱数を使って 10,000 回シミュレーションを行っても、最終的な結果のグラフはまったく同じになる。
 - ③ 全員が千円札でお金を支払ったケースが1回以上ある。

図3 「手元の千円札の枚数」の最小値の回数

- **問 3** 次に M さんは、事前に千円札を 20 枚用意した場合について考えた。この場合、メンバー 10 人から順に集金した際に**起こることがない**ケースを、次の**②**~**③**のうちから一つ選べ。 **夕**

 - ① 用意された千円札をまったく使うことなく全員からの集金を終えるケース。
 - ② 千円札で支払った人が5人いて、途中でおつりの千円札が不足するケース。
 - ③ 一万円札で支払った人が8人いて、途中でおつりの千円札が不足せず全 員からの集金を終えるケース。

第3問 次の文章を読み、後の問い(問1~3)に答えよ。(配点 25)

Kさんが所属する工芸部では毎年、文化祭に向けた集中製作合宿を開催し、複数の工芸品を部員全員で分担して製作している。Kさんは今年、工芸品を製作する担当の割当て作業を行うことになった。

問 1 次の文章を読み、空欄 アートオ に当てはまる数字をマークせよ。

表1は今年製作する各工芸品(1から順に番号を振る。)の製作日数である。 製作日数は部員によって変わることはなく、例えば工芸品1の製作日数はどの 部員が製作しても4日である。なお、一つの工芸品の製作は一人の部員が担当 し、完了するまでその部員は他の工芸品の製作には取り掛からない。

表1 各工芸品の製作日数

工芸品	1	2	3	4	5	6	7	8	9
製作日数	4	1	3	1	3	4	2	4	3

K さんは図1の割当図を作成し、今年の工芸部の部員3名について、工芸品の番号順に割当てを決めていくことにした。

日付(日目)		2	3	4	5	6	7	8	9	10	
部員1	<		<u>l</u>								_
部員2	<u>2</u> ←→	4									
部員3	€	3							_		

図1 割当図(工芸品4まで)

図1では、最上段に日付を合宿初日から順に1日目、2日目、…と表して記載している。その下に各部員(1から順に番号を振る。)に割り当てた工芸品の番号を、その製作期間を表す矢印とともに記載している。例えば、工芸品4は部員 7 が 1 日目から1日間製作することが、図1から読み取れる。

図1では工芸品4までが割り当てられており、部員1が5日目で割当てがない。このことを、部員1は5日目で**空き**であるという。

K さんは各工芸品の担当と期間を割り当てていく際、次の規則を用いた。

最も早く空きになる部員(複数いる場合はそのうち最小の番号の部員)が、 空きになった日付から次の工芸品を担当する。

K さんは、工芸品 5 以降についても上の規則を用いて割り当て、各工芸品の担当と期間を一覧にした図 2 のような文面のメールを部員全員に送信した。

工芸品1 … 部員1:1日目~4日目

工芸品2 … 部員2:1日目~1日目

工芸品3 … 部員3:1日目~3日目

工芸品4 … 部員ア: 1 日目~1 日目

工芸品 5 … 部員 ウ : エ 日目~ オ 日目

工芸品9 … 部員1:7日目~9日目

図2 各工芸品の担当と期間を一覧にしたメールの文面

以上を手作業で作成するのが手間だと感じた K さんは、図 2 のような文面 を自動的に表示するプログラムを作成しようと考えた。

問 2 次の文章を読み、空欄**力**、**ク** に当てはまる数字をマークせよ。また、空 欄 **キ** に入れるのに最も適当なものを、後の解答群のうちから一つ選べ。

K さんはまず、次の規則(再掲)に従い、いくつかの工芸品がすでに割り当てられた状況で、その次の工芸品の担当部員を表示するプログラムを作ることにした。

最も早く空きになる部員(複数いる場合はそのうち最小の番号の部員)が、 空きになった日付から次の工芸品を担当する。

最も早く空きになる部員の番号を求めるために、各部員が空きになる日付を 管理する配列 **Akibi** を用意する。この配列の添字(1から始まる。)は部員の番 号であり、要素はその部員が空きになる日付である。

例えば、図1の状況では、配列 **Akibi** は図3のようになる。図1で部員1 は5日目に空きになるため、図3で要素 **Akibi**[1]は5となる。同様に要素 **Akibi**[3]は**力**となる。

日付(日目)		2	3	4	5	6	7	8	9	10	
部員1	€										
部員 2	<u>2</u> →	4		1							
部員3		3	و								

図1 割当図(工芸品4まで)(再掲)

図3 図1の状況に対応する配列 Akibi

図3において、要素 Akibi [ウ]が配列 Akibi の最小の要素であることから、部員 ウ が最も早く空きになることがわかる。

この考え方に基づき、K さんは配列 Akibi の要素と、部員数が代入された変数 buinsu を用いて、次に割り当てる工芸品の担当部員を表示するプログラムを作成した(図4)。ここでは例として、(01)行目で図3のように配列 Akibi を設定している。

図4 次に割り当てる工芸品の担当部員を表示するプログラム

仮に部員数が変わったとしても、配列 Akibi と変数 buinsu を適切に設定すれば、このプログラムを用いることができる。部員が5名に増えた場合、(01)行目を例えば Akibi = [5, 6, 4, 4, 4] に、(02)行目をbuinsu = 5 に変更して図4のプログラムを実行すると、(06)行目の代入が $\boxed{2}$ 回行われ、「次の工芸品の担当は部員3です。」と表示される。

問 3 次の文章を読み、空欄 ケー~ シーに入れるのに最も適当なものを、 後の解答群のうちから一つずつ選べ。

次に K さんは、工芸部の部員数と、表 1 のような各工芸品の製作日数を用いて、図 2 のような一覧を表示するプログラムを作ることにした。

表1 各工芸品の製作日数(再掲)

I	芸品	1	2	3	4	5	6	7	8	9
製作	乍日数	4	1	3	1	3	4	2	4	3

工芸品1 … 部員1:1日目~4日目

工芸品2 … 部員2:1日目~1日目

工芸品3 … 部員3:1日目~3日目

工芸品4 … 部員 ア : | イ | 日目 ~ | イ | 日目

工芸品 5 … 部員 ウ : エ 日目~ オ 日目

工芸品9 … 部員1:7日目~9日目

図2 各工芸品の担当と期間を一覧にしたメールの文面(再掲)

表 1 をプログラムで扱うために、K さんは工芸品の番号順に製作日数を並べた配列 Nissu(添字は 1 から始まる。)を用意した。さらに、工芸品数 9 が代入された変数 kougeihinsu、各部員が空きになる日付を管理する配列 Akibi、部員数 3 が代入された変数 buinsu を用いて、図 2 の一覧を表示するプログラムを作成した(図 5)。最初はどの部員も合宿初日すなわち 1 日目で空きであるため、(03) 行目で配列 Akibi の各要素を 1 に設定している。

工芸品の番号を表す変数 kougeihin を用意し、 $(05) \sim (11)$ 行目で各工芸品に対して順に担当と期間を求めていく。破線で囲まれた $(06) \sim (09)$ 行目は問 $(05) \sim (06)$ 行目と同じもので、次に割り当てる工芸品の担当部員の番号を変数 tantou に代入する処理を行う。(10) 行目で図 $(05) \sim (06)$ 行目で担当部員が空きになる日付を更新する。

```
(01) Nissu = [4, 1, 3, 1, 3, 4, 2, 4, 3]
 (02) kougeihinsu = 9
 (03) Akibi = [1, 1, 1]
 (04) buinsu = 3
 (05)
       ケ を1から
                       まで1ずつ増やしながら繰り返す:
         tantou = 1
 (06)
(07)
        buin を 2 から buinsu まで 1 ずつ増やしながら繰り返す:
                     ならば:
            もし
(08)
(09)
              tantou = buin
         表示する("工芸品", kougeihin, " … ",
 (10)
                "部員", tantou, ":",
                Akibi[tantou], "日目~",
                Akibi[tantou] + | サ | , "日目")
         Akibi[tantou] = Akibi[tantou] +
 (11)
      図5 各工芸品の担当と期間の一覧を表示するプログラム
```

0 3	buin ① kouge buinsu ④ kouge		
(O) (Q) (Q)	サ・シの解答群 — Nissu[kougeihin] Nissu[kougeihin] - 1 Nissu[kougeihin - 1]	0 3 6	Nissu[tantou] Nissu[tantou] - 1 Nissu[tantou - 1]

第4問 次の文章を読み,後の問い(問1~4)に答えよ。(配点 25)

旅行が好きなUさんは、観光庁が公開している旅行・観光消費動向調査のデータのうち、2019年の結果を用いて、さまざまな観点で旅行に関する実態を分析してみることにした。なお、以下では延べ旅行者数を旅行者数と呼ぶ。

表1には、地方ごとに、その地方を主な目的地として宿泊旅行をした旅行者数が まとめられている。また、この表では、旅行の目的を出張等、帰省等、観光等の三 つに分け、それぞれの旅行者数とその合計が集計されている。

		旅行者数(千人)			
番号	地方	出張等	帰省等	観光等	合計
1	北海道	3652	5052	9768	18472
2	東北	6161	. 9410	12365	27936
3	関東	14401	19138	45943	79482
~~~~~ <del>~</del>					
10	沖縄	662	1127	5446	7235

表1 地方ごとの旅行者数と旅行目的別の内訳(抜粋)

問 1 次の文章を読み、空欄 ア ~ エ に入れるのに最も適当なものを、 後の解答群のうちから一つずつ選べ。ただし、空欄 ウ ・ エ の解答 の順序は問わない。

Uさんは、表1を見せながら、T先生に相談した。

Uさん: この表からわかる情報を把握しやすくするために, グラフを作ろうと 思っています。

T先生:グラフを作る前に、表の各項目の尺度水準を確認してみましょう。地 方については、どの尺度水準だと思いますか。

Uさん:郵便番号などと同じで, **ア** だと思います。

T先生:そうですね。では、番号と地方以外の項目については、どうでしょう

Uさん: これらの項目は旅行者数を示すので、 イ でしょうか。

T先生:はい、そのとおりです。それでは、地方による旅行者数の違いがわか りやすくなるように、棒グラフと帯グラフを作ってみましょう。

Uさんは、図1のグラフを作成した。これらのグラフから、 **ウ** ことや **エ** ことなど、地方による傾向の違いを読み取ることができた。



図1 表1のデータに基づいて作成した棒グラフと帯グラフ

 ア・イの解答群

 0 比例尺度
 ① 間隔尺度
 ② 順序尺度
 ③ 名義尺度

ウ・エの解答群

- ◎ 帰省等を目的とする旅行者数が最も多い地方は関東である
- (1) 観光等を目的とする旅行者数が最も多い地方は沖縄である
- ② 地方ごとの旅行者数の合計に対する出張等の旅行者数の割合は、関東 よりも東北の方が高い
- ③ 地方ごとの旅行者数の合計に対する観光等の旅行者数の割合は、中部 よりも近畿の方が高い

問 2 次の文章を読み、空欄 オ · カ に入れるのに最も適当なものを、 後の解答群のうちから一つずつ選べ。ただし、解答の順序は問わない。

続いてUさんは、都道府県ごとの旅行者数と旅行目的別の内訳が集計されている表2をもとに、さらに詳細な分析を進めることにした。

Uさんはここで、目的別の旅行者数の間にどのような関係があるかについて 関心をもった。そこでUさんは、図2のように、各目的の旅行者数を組み合わ せた散布図を作成し、相関係数を求めた。

**これらの散布図と相関係数のみから読み取れること**は、 オ ことや, カ ことなどである。

## 

- ⑤ 二つの都道府県を比較して、観光等の旅行者数が多い方の都道府県は 帰省等の旅行者数も必ず多い
- ① すべての都道府県で、出張等の旅行者数は帰省等の旅行者数の 1.5 倍を下回る
- ② それぞれの散布図で最も上に位置する都道府県は異なる
- ③ 各都道府県について、ある目的の旅行者数が多くなるほど、他の目的 の旅行者数も多くなる傾向にある
- ④ 各都道府県で観光地をアピールすることで観光等の旅行者数を増やす ことができれば、帰省等と出張等のいずれの旅行者数も増える

表 2 都道府県ごとの旅行者数と旅行目的別の内訳(抜粋)

		旅行者数(千人)			
番号	都道府県	出張等	帰省等	観光等	合計
1	北海道	3652	5052	9768	18472
2	青森県	1015	1566	1097	3678
3	岩手県	1158	1537	1606	4301
***************************************					
47	沖縄県	662	1127	5446	7235



図2 目的の組合せによる散布図と相関係数

**問 3** 次の文章を読み、空欄 **キ** ・ **ク** に入れるのに最も適当なものを、 後の解答群のうちから一つずつ選べ。

Uさんは、各都道府県の出張等と観光等の旅行者数の関係に着目し、縦軸と横軸の値が等しい直線を記入した散布図(図3)を作成した。この散布図中に完全に重なっている点はないが、多くの都道府県が観光等の旅行者数が3000千人以下の範囲に集中しているため、異なる指標を使った散布図も作成することにした。

Uさんは、人口が多い都道府県には旅行の目的地になる場所(企業や観光名所など)が多く、旅行先になりやすいのではないかと考え、「出張等と観光等の旅行者数を、旅行先の各都道府県の人口で割った値」を指標とし、それぞれを出張/人口、観光/人口と呼ぶことにした。これらの指標は、旅行先の人口を基準として相対的に各目的の旅行者が多いか少ないかの程度を示すことになる。そこでUさんは、総務省統計局が公開している 2019 年度の都道府県ごとの人口のデータ(表3)を入手し、「出張/人口」と「観光/人口」の組合せについて、縦軸と横軸の値が等しい直線を記入した散布図(図4)を作成した。なお、この散布図中に完全に重なっている点はない。

図3と図4のいずれの散布図にも、直線の上側に白抜きの丸で示した二つの点がある。各図の白抜きの二つの点について、 キー。

また、これらの散布図上にある点 X と点 Y は、それぞれ同じ都道府県を示している。二つの散布図でこれらの点について、縦軸と横軸の両方で値の大小が逆転している理由は、点 X の都道府県よりも点 Y の都道府県の方が クーためである。

表3 都道府県ごとの人口(抜粋)

番号	都道府県	人口(千人)
1	北海道	5259
2	青森県	1253
3	岩手県	1226
********	**********	
47	沖縄県	1462





図3 出張等と観光等の旅行者数の組合せによる散布図

図4 「出張/人口」と「観光/人口」の組 合せによる散布図

## キ の解答群

- ◎ 両方の図で同じ二つの都道府県を示している
- ① 一つは両方の図で同じ都道府県を示し、もう一つは異なる都道府県を示している
- ② 両方の図で異なる二つの都道府県を示している
- ③ これらの図からだけでは、同じ都道府県であるかはわからない

#### クの解答群

- ◎ 出張等の旅行者数が多い
- ① 観光等の旅行者数と出張等の旅行者数の差が大きい
- ② 観光等の旅行者数を出張等の旅行者数で割った値が小さい
- ③ 人口が少ない

問 4 次の文章を読み、空欄 ケ に当てはまる数字をマークせよ。また、空欄 ケ に当てはまる数字をマークせよ。また、空欄 っ つずつ選べ。

Uさんは、「出張/人口」と「観光/人口」の関係について、より詳しく分析することにした。そこで、図4の散布図の各軸に沿って各指標の分布を表す箱ひげ図(外れ値は。で表記)を併記したもの(図5)を作成した。

図5を見ると、例えば、観光等の旅行者が人口の4倍以上訪れる都道府県を 表す点の数は ケ 個である。このように、指標の値を見ることで、都道府県の 人口に対して目的別の旅行者数がどの程度であったかを知ることができる。

そこでUさんは、今回の分析において、「出張/人口」がその第3四分位数より大きい都道府県を出張等が多めの都道府県、「観光/人口」がその第3四分位数より大きい都道府県を観光等が多めの都道府県と呼ぶことにした。このように決めた場合、 コーが最も多い。

Uさんは、「出張等も観光等も多めの都道府県」と、「出張等は多めではないが観光等は多めの都道府県」がなぜそのような状況になっているのかに興味をもった。図5においてA~Fで示した都道府県のうち、「出張等も観光等も多めの都道府県」は サ である。一方、「出張等は多めではないが観光等は多めの都道府県」は複数あるが、その中で「出張/人口」を「観光/人口」で割った値が最も小さい都道府県を考えると、 シ となる。



図5 「出張/人口」と「観光/人口」の組合せによる散布図(各軸に沿って、各指標の分布を表す箱ひげ図を併記)

□ の解答群

○ 出張等も観光等も多めの都道府県

○ 出張等は多めではないが観光等は多めの都道府県

② 出張等は多めだが観光等は多めではない都道府県

出張等も観光等も多めではない都道府県

 サ・シの解答群

 O A の都道府県
 ① B の都道府県
 ② C の都道府県

 ③ D の都道府県
 ④ E の都道府県
 ⑤ F の都道府県

## 情報 I

(下書き用紙)

— 36 —