INFORMATION TRANSMISSION METHOD USING PAPER INCORPORATING IC CHIP

Patent Number:

JP2000285203

Publication date:

2000-10-13

Inventor(s):

TANAKA AKIRA; TANIGUCHI KAZUHIKO; YUASA TOSHIYUKI; KAGAMI AKIRA

Applicant(s):

HITACHI LTD

Requested Patent:

JP2000285203

requested ratems

Application Number: JP19990087833 19990330

Priority Number(s):

IPC Classification:

G06K17/00; G06F3/12; G06K19/00; G09B21/00; G09B29/00

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To deliver, communicate, and preserve information by using paper integrated with an electronic storage medium like paper incorporating an IC chip. SOLUTION: A central processing unit temporarily stores document data inputted from an input device in a storage device 30. The central processing unit converts document data to pixel data and sends it to a printer in an output device, and the printer prints data on a paper part 2 of paper incorporating an IC chip on the basis of pixel data. In parallel with this processing, the central processing unit converts document data to electronic data in a preliminarily prescribed format. An IC reader/writer 50 records converted lectronic data in an IC part 3 of paper incorporating the IC chip. A user who uses the paper 1 incorporating the IC chip where information is recorded in this manner reads printed contents to recognize contents of information. The IC reader/writer 50 reads out electronic data from the IC part, and the central processing unit converts this electronic data to send it to the output device 10, and the output device 10 outputs electronic data in such form that it can be recognized by persons.

Data supplied from the esp@cenet database - I2

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-285203

(43) Date of publication of application: 13.10.2000

(51)Int.CI.

(22)Date of filing:

G06K 17/00 G06F 3/12 G06K 19/00 G09B 21/00 G09B 29/00 // B42D 1/00 B42D 11/00

(21)Application number: 11-087833

30.03.1999

(71)Applicant: HITACHI LTD

(72)Inventor: TANAKA AKIRA

TANIGUCHI KAZUHIKO YUASA TOSHIYUKI KAGAMI AKIRA

(54) INFORMATION TRANSMISSION METHOD USING PAPER INCORPORATING IC CHIP (57)Abstract:

PROBLEM TO BE SOLVED: To deliver, communicate, and preserve information by using paper integrated with an electronic storage medium like paper incorporating an

SOLUTION: A central processing unit temporarily stores document data inputted from an input device in a storage device 30. The central processing unit converts document data to pixel data and sends it to a printer in an output device, and the printer prints data on a paper part 2 of paper incorporating an IC chip on the basis of pixel data. In parallel with this processing, the central processing unit converts document data to electronic data in a preliminarily prescribed format. An IC reader/writer 50 records converted electronic data in an IC part 3 of paper incorporating the IC chip. A user who uses the paper 1 incorporating the IC chip where information is recorded in this manner reads printed contents to recognize contents of information. The IC reader/writer 50 reads out electronic data from the IC

part, and the central processing unit converts this electronic data to send it to the output device 10, and the output device 10 outputs electronic data in such form that it can be recognized by persons.

LEGAL STATUS

[Date of request for examination] [Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than

the examiner's decision of rejection or application converted registration]
[Date of final disposal for application]
[Patent number]
[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-285203 (P2000-285203A)

(43)公開日 平成12年10月13日(2000.10.13)

(51) Int.Cl. ⁷		識別記号		FΙ			Ť	-マコード(参考)
G06K	17/00			G 0	6 K 17/00		В	2 C 0 3 2
G06F	3/12			G 0 (5 F 3/12		Z	5B021
G06K	19/00			G 0 9	9 B 21/00		D	5B035
G 0 9 B	21/00				29/00		F	5B058
	29/00						Z	
			審查請求	未請求	請求項の数10	OL	(全 28 頁)	最終頁に続く

(21)出願番号

特願平11-87833

(22)出願日

平成11年3月30日(1999.3.30)

(71)出願人 000005108

株式会社日立製作所

東京都千代田区神田駿河台四丁目6番地

(72)発明者 田中 晶

神奈川県川崎市麻生区王禅寺1099番地 株

式会社日立製作所システム開発研究所内

(72)発明者 谷口 和彦

神奈川県川崎市麻生区王禅寺1099番地 株

式会社日立製作所システム開発研究所内

(74)代理人 100068504

弁理士 小川 勝男

最終頁に続く

(54) 【発明の名称】 I Cチップ入りペーパを用いた情報伝達方法

(57)【要約】

一体になった紙を用いて情報を配布・授受・保存する。 【解決手段】中央処理装置は入力装置から入力される文 書データをいったん記憶装置へ格納する。中央処理装置 は文書データを画素データに変換し、出力装置内の印刷 装置に送り、印刷装置が画素データに基づいてICチップ 入りペーパの紙部分に印刷する。並行して中央処理装置 は文書データをあらかじめ規定された形式の電子データ に変換する。変換された電子データをICリーダライタが ICチップ入りペーパのIC部分に記録する。以上のように 情報記録されたICチップ入りペーパを利用する者は印刷 内容を読んで情報の内容を認識する。また、ICリーダラ

イタがIC部分から電子データを読み出し、中央処置装置はその電子データを変換して出力装置へ送り、出力装置は電子データを人間に認識可能な形態で出力する。

【課題】ICチップ入りペーパのような電子記憶媒体と

【特許請求の範囲】

【請求項1】文字や図形や音声などを含む情報を入力装置によって電子データに変換し、

1

前記電子データに含まれる第1のデータを、電子データの記録と読み出しが可能な【Cチップを紙面に設けた【Cチップ入りペーパの紙部分に出力し、

前記電子データに含まれる第2のデータを、ICリーダ ライタによって、前記ICチップ入りペーパの前記IC チップに記録し、

前記第2のデータを、前記ICリーダライタによって前 10 記ICチップから読み出し、

前記読み出した第2のデータを、データの種類に応じた 出力装置によって出力することを特徴とする I Cチップ 入りペーパを用いた情報伝達方法。

【請求項2】文書データを入力し、

前記入力された文書データをイメージデータに変換し、 前記変換されたイメージデータをICチップ入りペーパの 紙部分に印刷し、

前記入力された文書データを少なくとも一つの種類の電子データに変換し、

前記変換された電子データを前記ICチップ入りペーパの IC部分に記録し、

前記ICチップ入りペーパのIC部分に記録された前記電子 データを読み出し、

前記読み出した電子データを所定の形式の電子データに変換し、

前記変換された電子データを前記電子データの種類に応じた出力手段に出力し、

前記変換された電子データを所定の手順で処理すること を特徴とする [Cチップ入りペーパを用いた情報伝達方 30 法。

【請求項3】前記ICチップ入りペーパは、通常の紙の一部にICチップを貼りつけたもの、ICチップを梳き込んだ紙、あるいは、前記ICチップ入りペーパの紙部分に印刷された画像と同一の箇所にICチップを貼り付けたもの、のいずれかであることを特徴とする請求項2に記載のICチップ入りペーパを用いた情報伝達方法。

【請求項4】前記ICチップ入りペーパのICチップ部分に記録する情報は、前記ICチップ入りペーパの紙部分へ印刷する情報と同一の内容、任意の情報、あるいは、前記 40 ICチップ入りペーパの紙部分に印刷された情報と関連性のある情報、の少なくとも一つであることを特徴とする請求項2に記載の I Cチップ入りペーパを用いた情報伝達方法。

【請求項5】前記ICチップ入りペーパのICチップ部分に記録する情報は、前記ICチップ入りペーパの紙部分に印刷された情報と同一の情報を異なる形式で記録したもの、あるいは、前記ICチップ入りペーパの紙部分に印刷された情報の一部を記録したもの、あるいは、前記ICチップ入りペーパの紙部分に印刷された情報とは異なる情 50

報を記録したもの、の少なくとも一つであることを特徴とする請求項2に記載のICチップ入りペーパを用いた情報伝達方法。

【請求項6】前記ICチップ入りペーパのICチップ部分に 記録する情報は、文字コード、音声データ、点字デー タ、画像データ、あるいは、表形式のデータの少なくと も一つであることを特徴とする請求項2に記載のICチップ入りペーパを用いた情報伝達方法。

【請求項7】前記ICチップ入りペーパのIC部分に情報記録されたものを収集して、各ICチップ入りペーパのIC部分より該情報を読み出し、読み出した情報を表形式に整理して表示することを特徴とする請求項2に記載のICチップ入りペーパを用いた情報伝達方法。

【請求項8】前記ICチップ入りペーパのICチップ部分に記録する情報は、前記ICチップ入りペーパの紙部分へ印刷する情報に関連した情報、特に、音声や高精細画像のように紙部分では表現できない情報や、紙部分に記載しきれないような大量の情報、あるいは、前記ICチップ入りペーパに記録する情報の本体と前記情報本体の概要を示すヘッドライン情報とからなる情報、の少なくとも一つであることを特徴とする請求項2に記載のICチップ入りペーパを用いた情報伝達方法。

【請求項9】前記ICチップ入りペーパの紙部分へは地図を印刷し、IC部分にはICが埋め込まれた位置の画像の地図上での位置情報を記録し、位置情報を利用して情報を提供する装置への情報入力媒体として用いることができる地図を提供することを特徴とする請求項2に記載のICチップ入りペーパを用いた情報伝達方法。

【請求項10】前記ICチップ入りペーパの紙部分へテレビジョン放送番組表を印刷し、IC部分にはICが埋め込まれた位置の番組の情報を記録し、テレビジョン受像装置、あるいはテレビジョン録画装置への情報入力媒体として用いることができるテレビジョン放送番組表を記載した紙を提供することを特徴とする請求項2に記載のICチップ入りペーパを用いた情報伝達方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、情報伝達方法に関わり、特に、「Cチップ入りペーパのような電子記憶媒体と一体になった紙を用いて情報を配布・授受・保存する方法に関わる。

[0002]

【従来の技術】従来から、情報を伝達する方法として、 文字や図を紙に書いて授受するということが広く行なわ れている。音声によるなどの紙以外の媒体による情報伝 達も可能であるが、紙は情報の授受だけでなく配布や保 存の機能を有し、一覧性にも優れた情報伝達媒体であ る。

[0003]

【発明が解決しようとする課題】しかし、紙に文字や図

3

を書いて情報を伝達する場合には次のような問題があっ

【0004】第1に、偽造、追記、削除が比較的容易で ある。

【0005】第2に、視覚健常者しか利用できない。

【0006】第3に、光学複写機を用いて複写を繰り返 すうちに、劣化する。

【0007】第4に、コンピュータ処理する場合に、O CRなど特別な装置による認識が必要である。

れる場合がある。

【0009】第6に、紙に書かれた情報は(視覚健常者 であれば)誰にでも見えてしまい、見ることを許可する 人を制限することが困難である。

【0010】第7に、大量の紙から所望のものを見つけ 出すのが困難である。

【0011】本発明の目的は、ペーパに記載された情報 と電子記憶媒体に記憶された情報を組み合わせた情報伝 達方法を提供することにある。

[0012]

【課題を解決するための手段】本発明の目的を達成する ために、本発明では、情報伝達手段としてICチップ入 りペーパを用い、ICチップ入りペーパの、紙部分には 従来通り文字や図を記載し、IC部分には紙部分に記録 した文字や図に関連する情報を表す電子データや、全く 関連のない情報を表す電子データを記録する、という方 法を採用することとした。

[0013]

【発明の実施の形態】 [本発明の基本的な方法] まず、 本発明を実施するための基本的な方法を示す。図1に本 30 発明の処理を行わせる装置構成の一例をブロック図とし て示す。装置全体は、入力装置10、中央処理装置20、記 億装置30、出力装置40、ICリーダライタ60から成る。各 々の接続関係は図1に示すとおりである。ここで、入力 装置10はマウス、キーボード、マイクのように、人間が 認識する文字や形状や音声などを中央処理装置20が処理 可能な電子信号に変換するための1個または複数の装置 である。また、出力装置40は、ディスプレイ、印刷装 置、スピーカーのように、電子信号を人間が認識できる 形態に変換するための1個または複数の装置である。ま 40 た、ICリーダライタ60は、半導体ICへ電子データを記録 する機能(ライト機能)、または、半導体ICから電子デ ータを読み出す機能(リード機能)の、少なくとも一方 を備える装置である。その電子データの記録または読み 出しは、半導体ICとICリーダライタが接触していなくて も可能である。

【0014】図1において、破線で囲んだ部分1はICチ ップ入りペーパを示している。ICチップ入りペーパと は、ICチップを載せた紙であり、紙の部分とICチップの 部分は一体となったものとする。ICチップ入りペーパ

は、通常の紙の一部にICチップを貼り付けたものであっ てもよいし、ICチップを梳き込んだ紙であってもよい。 図1において、2はICチップ入りペーパの紙部分を、3 はIC部分を示している。ただし、これらの部分について は便宜的に分離して図示したものであり、構造上は必ず しも分離していなくてもよい。

【0015】通常のパーソナルコンピュータやワードプ ロセッサは少なくとも入力装置10、中央処理装置20、記 憶装置30、出力装置40を具備している。このようなパー 【0008】第5に、情報を記載するスペースが限定さ 10 ソナルコンピュータやワードプロセッサにおいて、出力 装置40として印刷装置を接続し、文書作成ソフトや描画 ソフトのプログラムを中央処理装置20で実行させること により、従来の紙への情報記載を実現することができ る。本発明は、さらにICリーダライタ50を追加すること により、ICチップ入りペーパのIC部分への電子データの 記録、あるいは、IC部分からの電子データの読み出しを 可能にしている。

> 【0016】図2に本発明を実施する方法の基本的なフ ローを示す。この方法のフローは大きく2つの部分に分 20 かれる。一つはICチップ入りペーパに情報を記録する過 程、もう一つは記録された情報を利用する過程である。 前者の過程はフローの「始め」からステップ200までで あり、後者の過程はステップ300からフローの「終り」 までである。

【0017】情報を記録する過程では、以下のようなス テップの処理を行う。まず、ステップ100で情報を発し ようとするもの、または、情報を保存しようとする者 (以下では合わせて情報発信者と呼ぶ) が文書データを 入力する。文書データには文字に関するデータや図に関 するデータを含む。このような文書データは文書作成ソ フトや描画ソフトがインストールされたパーソナルコン ピュータやワードプロセッサを利用して入力することが できる。文字に関するデータには文字の位置や色などの データ、および文字コードを含む。図に関するデータに は、図の形状、図を構成する特徴点の位置、図の色など のデータを含む。

【0018】ステップ100で入力された文書データを用 いて、ステップ110およびステップ130でデータの変換を 行なう。ステップ110ではステップ100で入力された文書 データを印刷イメージの画素データに変換する。すなわ ち、文書データに含まれる文字や図のデータを一つずつ 解析し、1連の画素データを作成する。ステップ130で は、ステップ100で入力された文書データのすべてまた は一部を変換して新たな電子データを作成する。ここで は後の便に好都合な変換を行なう。特にどのような形式 の電子データに変換するかは限定しない。また、ステッ プ100で入力された文書データを全く変換せずにそのま ま新たな電子データとして次のステップ140へ移っても よい。あるいは、ステップ140で入力された文書データ 50 の一部を削除し、残った文書データを新たな電子データ

とするのでもよい。

【0019】ステップ120ではステップ110で作成された 画素データに基づいてICチップ入りペーパ1の紙部分2に 印刷を行なう。ステップ140ではステップ130で作成され た電子データをICチップ入りペーパ1のIC部分3に記録す

【0020】ステップ100からステップ110、ステップ12 0〜至る流れは従来の文書作成の流れと同様である。こ れらのステップの処理を、パーソナルコンピュータ用の 文書作成ソフトや描画ソフトあるいはワードプロセッ サ、および印刷装置に行わせることによって、紙に情報 を記載することができる。本発明は、さらにステップ13 0とステップ140を付加することにより、紙に記載した情 報と同内容の電子データを、後の便に好都合な形式に記 録できるようにしている。

【0021】以上のステップの処理を、図1に示した装 置構成で行わせることができる。ただし、出力装置40と しては印刷装置を含む必要があり、ICリーダライタはラ イト機能を有している必要がある。

【0022】ステップ100の処理は入力装置10を通して 行なう。情報発信者が入力装置10を通して文書データを 入力し、中央処理装置20がその文書データを受ける。中 央処理装置20は受け付けた文書データをその都度いった ん記憶装置30へ格納する。出力装置40がディスプレイモ ニタを含んでいる場合には入力内容を表示して確認でき るようにする。

【0023】ステップ110の変換処理は中央処理装置20 で行なう。中央処理装置20はいったん記憶装置30に記憶 された文書データを読み出して画素データに変換する。 変換するためのプログラムは記憶装置30内の別の領域に 30 あらかじめ格納しておき、これを中央処理装置20が逐次 読み出して実行する。変換プログラムのアルゴリズムに ついては周知のものを用いるものとする。ステップ120 は出力装置40が含む印刷装置で行なう。中央処理装置20 が変換して作成した画素データを印刷装置に送り、印刷 装置が該画素データに基づいてICチップ入りペーパ1の 紙部分2に印刷を行なう。なお、ステップ110とステッ プ120の処理は中央処置装置20と印刷装置で分担しても よい。たとえば、印刷装置がポストスクリプトのような 場合には、中央処理装置20がまず文書データを画像ベク トルデータに変換して印刷装置に送り、印刷装置が該画 像ベクトルデータを画素データに変換して印刷する、と いう方法を用いてもよい。

【0024】ステップ130の処理は中央処理装置20で行 なう。中央処理装置20は記憶装置30に記憶されている文 書データを読み出してあらかじめ規定された形式の電子 データに変換する。変換するためのプログラムは記憶装 置30内の別の領域にあらかじめ格納しておき、これを中 央処理装置20が逐次読み出して実行する。ステップ140 50 ダライタ50および中央処理装置20で行なう。ICリーダラ

の処理はICリーダライタ50が有するライト機能が行な

【0025】ステップ200では、ここまでの処理で情報 を記録したICチップ入りペーパを、情報発信者の意図に 基づいて配布または送付または保存する。以上が情報を 記録する過程である。

【0026】情報を利用する過程では、以下のようなス テップの処理を行う。まずステップ200に対応するステ ップ300が本過程の最初にあたる。ステップ300では、配 10 布されたICチップ入りペーパを受け取る、または、送付 されたICチップ入りペーパを受領する、または、保存さ れたICチップ入りペーパを取り出す。

【0027】ステップ310では、情報の記録されたICチ ップ入りペーパ1を受け取った者、あるいは、受領した 者、あるいは、取り出した者(以下では合わせて情報受 信者と呼ぶ)が、紙部分2に印刷された画像を視覚によ って読み取り、その情報の内容を認識する。

【0028】ステップ320ではICチップ入りペーパ1のI C部分3に記録された電子データを読み出し、後の便に 好都合な形式の電子データに変換する。ここでは、特に どのような形式の電子データに変換するかは限定しな い。また、読み出した電子データを全く変換せずにその まま新たな電子データとして次のステップ330またはス テップ340へ移ってもよい。あるいは、読み出した電子 データの一部を削除し、残った電子データを新たな電子 データとしてもよい。

【0029】ステップ330では、ステップ320で変換して 作成された電子データを音声や形状など人間が認識可能 な何らかのメディアとして復元し、情報受信者がそのメ ディアを通して情報の内容を認識する。ステップ340で は、ステップ320で変換して作成された電子データを加 工・処理することによって、情報の内容を他の目的に利

【0030】ステップ300からステップ310に至る流れ は、従来の紙による情報伝達の流れである。本発明はこ れにステップ320、ステップ330、ステップ340を付加す ることによって、情報伝達方法の多様化させるととも に、情報活用の可能性を向上させている。

【0031】以上のような、情報の記録されたICチップ 画像ベクトルデータを読み込むことができるものである 40 入りペーパを利用するための処理は、図1に示したブロ ック図の装置構成で行なうことができる。すなわち、装 置全体は、入力装置10、中央処理装置20、記憶装置30、 出力装置40、ICリーダライタ50から成る。各々の接続関 係は図1に示すとおりである。ただし、ICリーダライタ 50はリード機能を必要とする。また、この中の入力装置 10、中央処理装置20、記憶装置30はパーソナルコンピュ ータで構成してもよい。

> 【0032】ステップ300およびステップ310の処理で は、装置を必要としない。ステップ320の処理はICリー

イタ50がリード機能によってICチップ入りペーパ1のIC 部分3から電子データを読み出し、読み出した電子デー タを中央処理装置20へ送り、中央処置装置20はその電子 データを変換する。変換するためのプログラムは記憶装 置30内の別の領域にあらかじめ格納しておき、これを中 央処理装置20が逐次読み出して実行する。

【0033】ステップ330の処理は出力装置40を通して 行なう。中央処理装置20がステップ320で変換した電子 データを出力装置40へ送り、出力装置80は電子データを 人間に認識可能な形態で出力する。ステップ340の処理 は中央処理装置20で行なう。

【0034】以上がICチップ入りペーパに記録された情 報を利用する過程の処理である。もし、情報を利用し て、さらにICチップ入りペーパに情報を追加(または編 集)する必要が生じた場合は、ステップ100に戻り、再 び、情報を記録する過程の処理を行なえば良い。

【0035】以下では、上述の本発明の基本的な方法に 沿って実現できる具体的な実施例を挙げ、詳細に説明す

【0036】 [第1の実施例] 第1の実施例は、【Cチ 20 ップ入りペーパを用いて視覚障害者にも情報を伝えるこ とができるビラ広告を配布する方法の例である。

【0037】ビラ広告を作成するための装置構成例を図 3に示す。入力装置としてキーボード1001を具備し、出 力装置としてディスプレイ1002および印刷装置1003を具 備するものとする。さらに、中央処理装置20、記憶装置 30、およびICライタ1004を具備する。ICライタ1004は半 導体ICにデータを記録する機能(ライト機能)を有する 装置である。

【0038】ビラ作成者がビラ広告を作成する過程のフ 30 ローを図4に示す。まず、ステップ1100において、ビラ 作成者がキーボード1001から文字列を入力する。中央処 理装置20は入力内容を受けると、逐次ディスプレイ1002 に出力するとともに、文字コード列としていったん記憶 装置30に保持させる。例えば「こうえんへあつまれ」と いう文字列が入力されたとすると、16進数表現で、

[82b1, 82a4, 82a6, 82f1, 82d6, 82a0, 82c2, 82dc, 82ea」(以下、第1のコード列と称す)という文字コー ド列を記憶装置30にいったん格納する。ただし、ここで はコード化の方式として「シフトJIS」を用いた。な お、本発明ではコード化の方式はシフトJISに限定しな い。さらに、ビラ作成者がキーボードから漢字変換要求 を入力したとすると、要求に応じて漢字コードに変換す る。例えば、前記の例の文字列を「公園へ集まれ」に変 換する要求であった場合、コード列は16進数表現で、

「8cf6,8980,82d6,8f57,82dc,82ea」(以下、第2 のコード列と称す)となり、このコード列もいったん記 億装置30に格納する。

【0039】ステップ1101では、ステップ1100で得た文 字コード列のうち第2のコード列を変換して、印刷イメ 50 字コード列を記録する例を説明する。図7に広告ビラの

ージとなる画像データを得る。あらかじめ、記憶装置30 の別の領域にフォントと呼ばれる文字毎の画像データを 格納しておき、これを読み出して全体の画像データを作 成する。例えば、上記例の第2のコード列では、まずコ ード8cf6に対応するフォントを読み出して左端に配置 し、次にコード8980に対応するフォントを読み出して左 から2番目に配置し、以下同様にして、最終的に「公園 へ集まれ」という文字列が紙面上に書かれたイメージの 画像データを作成する。ステップ1102では中央処理装置 10 20がこの画像データを印刷装置1003へ送信し、ICチップ 入りペーパ1の紙部分2への印刷を実行する。

【0040】ステップ1103では、ステップ1100で得た文 字コード列のうち第1のコード列 (仮名のみの文字列) を変換して音声データを得る。あらかじめ、記憶装置30 の別の領域に後述する音源装置用の音声データを仮名毎 に格納しておき、これを読み出して全体の音声データを 作成する。例えば、上記例の第1のコード列では、まず コード82b1に対応する音声データを読み出して、それを 先頭の音声データとし、次にコード82a4に対応する音声 データを読み出して、そのデータを先頭の音声データに つなげ、以下、順々に音声データをつなげて、全体の音 声データとする。ステップ1104では中央処理装置20がこ の音声データをICライタ1004へ送信し、ICチップ入りペ ーパ1のIC部分3への記録を実行する。

【0041】以上のように作成されたビラ広告の内容を 認識するための装置構成例を図5に示す。出力装置とし て音源装置1201を具備し、さらに、中央処理装置20、記 憶装置30、およびICリーダ1202を具備する。ICリーダ12 02は半導体ICからデータを読み取る機能 (リード機能) を有する装置である。

【0042】ビラ広告の内容を認識する過程のフローを 図6に示す。まず、ステップ1301でビラ広告の配布がな される。ビラ広告の配布を受けた者が視覚健常者である 場合などは、ステップ1302で視覚によってビラ広告に印 刷された内容(例えば「公園へ集まれ」)を認識する。 この場合は、図5の装置を必要としない。視覚障害者な どがビラ広告の配布を受けた場合は図5の装置を用い て、ステップ1303へと進む。ステップ1303では、ICリー ダ1202がビラ広告であるICチップ入りペーパ1のIC部分3 40 から音声データを読み出しながら中央処理装置20に送 る。中央処理装置は受けた音声データを記憶装置30〜溜 めていく。ICリーダ1202が音声データをすべて読み出し 終わったら、中央処理装置20は記憶装置30に溜めた音声 データを音源装置1201へ送信し、音声(上記例では「こ うえんへあつまれ」)を出力する。ステップ1304では、 視覚障害者などが出力された音声を聞き、ビラ広告の内 容を認識する。

【0043】[第1の実施例の変形例1]第1の実施例 の変形例として、視覚障害者用の広告ビラのIC部分に文

作成過程のフローを示す。実施する装置構成は図3と同様でよい。まずステップ1401で文字コード列をキーボード1001より入力する。ステップ1402では入力文字列を画像データに変換し、ステップ1403で該画像データを印刷装置1003へ送信し、ICチップ入りペーパ1の紙部分2に印刷する。ステップ1401、1402、1403はそれぞれ第1の実施例の図4のステップ1100、1101、1102と同様である。ステップ1404では、ステップ1401で入力された文字列(前記の例では第1の文字コード列)をそのままICライタ1004を通じてICチップ入りペーパ1のIC部分3に記録す 10る。

【0044】図8に広告ビラを受けて内容を認識するフローを示す。実施する装置構成は図5において音源装置1201の部分が音声合成装置(文字コードの入力を受けるもの)に置き換わったものとする。ステップ1501で広告ビラの配布を受ける。ステップ1502では、視覚健常者などが広告ビラの紙部分の印刷内容を見て情報を認識する。ステップ1501、1502はそれぞれ第1の実施例の図6のステップ1301、1302と同様である。ステップ1503では、中央処理装置20が広告ビラのIC部分に記録された文20字コードをICリーダ1202から読み込んで記憶装置30にいったん蓄積する。さらに、蓄積した該文字コードを音声合成装置に送信して、音声を発生させる。ステップ1504では、視覚障害者などが音声を聞いてビラ広告の内容を認識する。

【0045】[第1の実施例の変形例2]第1の実施例のもう一つの変形例として、点字を利用する例を説明する。図9に広告ビラの作成過程のフローを示す。実施する装置構成は図3と同様でよい。まずステップ1601で文字データや描画データをキーボード1001(またはマウス)より入力する。ステップ1602では入力したデータを画像データに変換し、ステップ1603で該画像データを印刷装置1003へ送信し、ICチップ入りペーパ1の紙部分2に印刷する。ステップ1601、1602、1603は通常の描画ソフトや文書作成ソフトを利用して文書を印刷するのと同様である。ステップ1604では、ステップ1601で入力されたデータをそのままICライタ1004を通じてICチップ入りペーパ1のIC部分3に記録する。

【0046】図10に広告ビラを受けて内容を認識するフローを示す。実施する装置構成は図5において音源装 40置1201の部分が点字印刷装置に置き換わったものとする。ステップ1701で広告ビラの配布を受ける。ステップ1702では、視覚健常者などが広告ビラの紙部分の印刷内容を見て情報を認識する。ステップ1701、1702はそれぞれ第1の実施例の図6のステップ1301、1302と同様である。ステップ1703では、中央処理装置20が広告ビラのIC部分に記録されたデータをICリーダ1202から読み込んで記憶装置30にいったん蓄積する。さらに、蓄積したデータを中央処理装置20が点字データに変換する。変換するためのプログラムはあらかじめ記憶装置30内に格納して 50

おき、中央処理装置20が該プログラムを逐次読み出して 実行するものとする。ステップ1704では変換された点字 データを点字印刷装置に送信して、点字印刷させる。ス テップ1504では、視覚障害者などが点字印刷された紙に 触れることにより、ビラ広告の内容を認識する。

【0047】 [第2の実施例] 第2の実施例は、ICチップ入りペーパを用いて製品カタログを作成し、製品仕様データの収集・整理を簡単化する方法の例である。

【0048】図11にICチップ入りペーパの製品カタログを作成する方法の流れを示す。この方法は第1の実施例で示した図3の装置構成を利用して実現できる。まず、ステップ2101でカタログに記載する情報を入力する。あらかじめ記憶装置30に文書作成ソフトや描画ソフトや表作成ソフトなどをインストールしておいて、これらを中央処理装置20で実行させてマウス付キーボード1001から文字や形状を入力したり、あらかじめ用意した画像を指定したりして、カタログ紙面の絵柄と文字を作成する。作成した絵柄や文字は前記ソフトウェアによってその都度ディスプレイ1002に表示されて確認できる。

【0049】ステップ2102では中央処理装置20がステップ2101で作成した絵柄や文字を画像データに変換していったん記憶装置30に格納する。ステップ2103では、中央処理装置20が該画像データを記憶装置30から取り出して、印刷装置1003に送信し、ICチップ入りペーパ1の紙部分2に印刷する。ステップ2102およびステップ2103の処理も前記ソフトウェアのプログラムによって実行される。

【0050】図12に印刷したカタログ画像の例を示す。本例では、カタログ画像は製品の仕様に関する表22 30 01、製品の実物写真の画像2202、および、その他の文字列から成る。すなわち、ステップ2101で、製品仕様に関する表データ、製品の実物写真の画像データ、および、その他の文字列データを入力したことになる。また、ステップ図13に、製品仕様に関する表2201の詳細を示す。表は、項目と値から成り、表作成ソフトによって作成することができる。

【0051】ステップ2104では、中央処理装置20が前記の表をXML (eXtensible Markup Language) 形式のデータに変換する。変換したデータは記憶装置30にいったん格納する。なお、XMLの仕様はWWWのhttp://www.w3.org/TR/PR-xm1-971208に公開されている。この仕様に基づいて、図13の表を変換した例を図14に示す。ただし、本発明はXML形式に限定するものではなく、一定の規則に従った他の形式を用いてもよい。

【0052】ステップ2105では、中央処理装置20が前記のXML形式のデータと、前記ステップ2101で入力したカタログ情報のデータをICライタ1004に送信し、ICチップ入りペーパ1のIC部分3に記録する。以上が製品カタログを作成する過程である。

【0053】図15にカタログを収集して製品比較する

過程のフローを示す。同類製品のカタログを収集して製品の比較・検討を行ないたい場合、通常はまずステップ2301でカタログを収集し、ステップ2302で収集したカタログを見比べる。このとき装置は必要としない。しかし、この場合カタログ数が多くなると、見比べが困難となる。そこで、図16に示すような構成の装置で、ステップ2303~ステップ2305の処理を行なう。

【0054】まず、前記方法で作成されたICチップ入りペーパ製の製品カタログを、ステップ2301で収集する。ステップ2303では、製品カタログのIC部分に記録されて 10いるデータをICリーダ1202から読み込む。中央処理装置20はこのデータを受け、いったん記憶装置30に格納する。

【0055】ステップ2304では、中央処理装置20が前記データのうちの製品パラメータに関する仕様のXML形式データのみを取り出して解析する。仮に、製品の型名と消費電力と価格のデータを価格の高い順に表示するように定められていたとすると、例えば図14のデータでは、〈型名〉と〈/型名〉で挟まれた部分、〈消費電力 単位="\">">と〈/消費電力〉で挟まれた部分、〈消費電力 単位="\"">">と〈/消費電力〉で挟まれた部分、〈倘格 単位="円">20と〈/価格〉で挟まれた部分を抽出する。すなわち、抽出されるのは、それぞれ「HD33221100BP987」、「1.5」、「10000」である。このような処理を他の収集した製品カタログのデータについても行なう。ステップ2305ではこれらの抽出したデータを価格の高い順に並べて表示する。表示結果例を図17に示す。

【0056】上記の例ではあらかじめ表示項目や表示形式を定められているものとして説明したが、本発明はこれに限定するものではなく、キーボード1001から表示する項目や表示形式を指定できるようにしてもよい。

【0057】[第3の実施例]第3の実施例は、[Cチ ップ入りペーパを用いて流通性書類を作成する方法の例 である。ここで流通性書類とは、複数の企業や部署間で やり取りされる文書を指し、各種の申込書や契約書がそ の代表例である。ここでは、貿易金融取引で用いられる 書類を例に説明する。貿易金融取引においては、輸出 者、輸入者を始め、銀行、保険会社、船会社や航空会 社、通関業者、税関などの複数の関与者が存在し、その 関与者間で、種々の書類が取り交わされており、また、 その書類に記載される情報の大部分は、複数の書類間で 40 共通的に用いられるものが多い。新規の書類を作成する 際には、先に他の関与者から送付されてきた書類に記載 されている内容を、目視により確認しながら新たにタイ プする方法や、一度、自社内や自部署内のDBに入力 し、再度、プリンタを通して印字する方法などが採られ ている。しかしながら、前記の方法では、目視による作 業が原因となる転記ミスや入力ミスなどが発生してお り、結果として、流通性書類の作成および授受の際に手 間や時間などを要することとなる。第3の実施例では、 この転記ミスや入力ミスを削減するために、流通性書類 50

にICチップ入りペーパを用いる方法について示す。

【0058】流通性書類を作成するための装置構成例を図18に示す。入力装置としてキーボード3001を具備し、出力装置としてディスプレイ3002および印刷装置3003を具備するものとする。さらに、中央処理装置20、記憶装置30、およびICリーダライタ3004を具備する。ICリーダライタ3004は半導体ICからデータを読み出す機能

(リード機能) およびデータを記録する機能 (ライト機能) を有する装置である。

【0059】流通性書類作成者が書類を作成する過程のフローを図19に示す。まず、ステップ3100において、流通性書類作成者がキーボード3001から文字列を入力する。中央処理装置20は入力内容を受けると、逐次ディスプレイ3002に出力するとともに、文字コード列としていったん記憶装置30に保持させる。ここで、入力された文字列を記憶装置に格納する方法、および、コード化の方法、入力された文字列の変換方法(例として漢字変換)などについては、第1の実施例と同様である。

【0060】ステップ3200では、ステップ3100で得た文字コード列を変換して、印刷イメージとなる画像データを得る。あらかじめ、記憶装置30の別の領域にフォントと呼ばれる文字毎の画像データを格納しておき、これを読み出して全体の画像データを作成する方法は、第1の実施例と同様である。

【0061】ステップ3300では中央処理装置20がこの画像データを印刷装置3003へ送信し、ICチップ入りペーパ1の紙部分2への印刷を実行する。

【0062】ステップ3400では、ステップ3100で得た文字コード列をそのままICリーダライタ3004を通じてICチップ入りペーパ1のIC部分3に記憶する。

【0063】ここで、ステップ3100の文字コード列入力の詳細フローを図20に示す。まず、ステップ3110において、キーボード3001から参照データの有無を入力する。ここで、参照データとは、作成対象となる流通性書類に記載すべき各種の情報のうち、他の書類から引用される情報を指す。参照データがある場合には、参照データを選択する際に必要となる検索キー項目も合わせて入力する。検索キーの例としては、貿易対象商品名や輸出者名、輸入者名などがある。

【 0 0 6 4 】 ステップ3120では、参照データの有無を判断する。

【0065】ステップ3130では、記憶装置30から、検索 キーを元に参照データを読み出す。

【0066】ステップ3140では、中央処理装置20へ参照 データを送信する。

【0067】ステップ3150では、作成対象となる流通性 書類に記載すべき各種の情報のうち、不足分文字コード (参照データ以外のデータ)を、入力装置3001から入力 する

【0068】ここでさらに、ステップ3130において参照

データを読み出す際に、文書間の項目の関連を示したマ ッピングテーブルを用いることで、参照データを自動的 に選択することが可能となる。図21にマッピングテー ブルの例を示す。作成文書名3131、項目名3132、参照文 書名3133、参照項目名3134などで構成されている。

【0069】また、ステップ3150で不足分文字コードを 入力する直前の画面イメージを図22に示す。当該文書 を作成するに必要なデータのうち、既存文書からの引用 が可能である情報については、図21に示したマッピン グテーブルを用いて既に入力済みになっている。

【0070】図19における最終的なICチップ入りペー パのイメージ、つまり、紙部分への印字(ステップ330 0) 、および、文字コード列をIC部分へ記録 (ステップ3 400) の各ステップを終了した状態のものを図23に示 す。ICチップ入りペーパ1のIC部分3には、ICチップ入 りペーパ1の紙部分2の紙面に印字されている情報と同 等のものが印字されているが、必ずしも完全に同一であ る必要はない。IC部分3に格納されている情報が、紙面 に印字されている情報のダイジェストである場合やその 逆の場合、IC部分3に流通性書類を受け渡しした企業や 20 部署に関する情報などを記録しても良い。また、IC部分 3への格納方法は、格納されている情報を判別すること が可能であれば、どのような方法であっても構わない。 例えば、第2の実施例に示されるようにXML形式のデー タであっても良いし、また、予め情報の記録順序を定め ている場合には、CSV形式 (カンマ区切り) などの方法 によっても良い。

【0071】ここで、図20において用いられる参照デ ータの格納方法について簡単に示す。他企業や部署から 書類を受け取った際に、図18に示したICリーダライタ 30 3004を用いて、IC部分3に記録されている情報を中央処 理装置20に読み込み、これを記憶装置30に格納する。

【0072】「第4の実施例]第4の実施例は、ICチ ップ入りペーパを用いて、紙から、紙に記載の情報に関 連した情報(以下、関連情報とする)、特に、音声や高 精細画像などの紙では表現できない情報や、紙に記載し きれないような大量の情報を、取得・利用できるように する方法の例である。

【0073】図24に本実施例において、情報受信者が 紙面記載情報の関連情報を利用する時に用いる装置の構 40 成および情報の流れの一例を示す。ICチップ入りペー パ1は、図1のICチップ入りペーパ1であり、紙部分2 と I C部分3を有する。 I Cリーダ4140は、通信媒体414 1によって情報出力装置4142と接続された、図1の「C リーダライタ30に相当するものである。 I C リーダ4140 は、ICチップ入りペーパ1のIC部分3から電子デー タを読み出し、通信媒体4141を介して情報出力装置4142 に送信する機能を持つが、ICへの電子データ記録機能 を有していなくてもよい。通信媒体4141は、RS-232C、U SB、1EEE1394、1rBus、TVIRといった有線・無線を問わ 50 込めるスキャナのような入力装置を用いて入力したデー

ず複数装置間でデータ通信を行うために用いられるもの であり、公知のものである。情報出力装置4142は、通信 媒体4141によってICリーダ4140と接続された、図1の 中央処理装置20、記憶装置30、出力装置40を具備する情 報処理装置であり、例えば、出力装置40として画像や文 字を表示するためのディスプレイ、音声を出力するため のスピーカを備えたパーソナルコンピュータやテレビジ ョンである。情報出力装置4142は、通信媒体4141を介し て【Cリーダ4140から【Cチップ入りペーパ】の【C部 分3の電子データを受信し、出力装置40に出力する機能 10 を持つ。情報受信者4143は、ICチップ入りペーパ1か ら情報を取得する者であり、紙部分2に印刷された情報 については視覚で読み取り、その情報内容を認識し、IC 部分3に記録された情報については、情報出力装置4142 の出力を通じて、その情報内容を認識する。

【0074】図25に本実施例のICチップ入りペーパ

【0075】【Cチップ入りペーパ4150は、「鳥の生 態」の情報が紙面に記載された紙4151であり、複数の【 Cチップ (IC4153、IC4155) が埋め込まれている。 紙4151の紙面上には鳥の写真4152、説明文4154などの可 視情報が記載されている。 I C4152は、鳥の写真4152の 関連情報である「鳥の鳴き声」(音声データ)を記録し たICチップであり、対応する紙面記載情報である鳥の 写真4152の印刷された位置に埋め込まれている。同様に I C4155は説明文4154の関連情報である「生息地の写真 画像」(画像データ)を記録した【Cチップであり、説 明文4153の印刷された位置に埋め込まれている。

【0076】なお、図25では、関連情報ごとに【Cチ ップを埋め込んでいるが、ICチップは1つで、ICリ ーダとデータの通信する手段(アンテナ部分)を複数持 たせる形でもよい。この場合、ICチップがICリーダ と通信しているアンテナを特定し、その位置に依存した データをICリーダに渡すようにすればよい。

【0077】図26に本実施例の【Cチップ入りペーパ の作成過程のフローを示す。

【0078】図26は、図2に示した本発明の基本的な フローのうち、ICチップ入りペーパ1に情報を記録す る過程である「始め」からステップ200までを本実施例 に適用したものである。以下、図26のフローを用い て、本実施例のICチップ入りペーパ1に情報を記録す る過程を説明する。

【0079】ステップ4000は、図2のステップ100に対 応し、情報提供者が I Cチップ入りペーパ1の紙部分2に 印刷する情報のデータを入力する。印刷情報データは文 書作成ソフトや描画ソフト等を用いてパーソナルコンピ ュータ等で作成された電子文書データである必要はな く、印刷のための画素データに変換できるものでよい。 例えば、印刷物の紙面記載情報を画像データとして取り

6

タでもよい。

【0080】ステップ4010は、図2のステップ110に対応し、ステップ4000で入力されたデータを印刷イメージの画素データに変換する。ステップ4020は、図2のステップ120に対応し、ステップ4010で作成された画素データに基づいて【Cチップ入りペーパ1の紙部分2に印刷を行う。

【0081】ステップ4030は、図2のステップ100およびステップ130に対応し、情報提供者が【Cチップ入りペーパ1の【C部分3に記録する関連情報のデータを入力 10する。関連情報データは文書作成ソフトや描画ソフト等を用いて作成された電子文書データであり、ファイル拡張子、MIMEタイプなどの電子データの形式を判別する情報が含まれていれば、形式は限定しない。例えば、JIS、UNICODE等の文字コードで表現された文字列データ、WAV、AIFF等の形式の音声データ、GIF、JPEG画像等の形式の画像データのようなもの、およびそれらを複数まとめたものである。

【0082】ステップ4040は、図2のステップ140に対応し、ステップ4030で作成した電子データをICチップ 20入りペーパ1のIC部分3に記録する。

【0083】なお、図25のICチップ入りペーパ4150のように、複数のICチップを埋め込んだICチップ入りペーパの場合は、ICチップの数だけステップ4030、ステップ4040を繰り返す。

【0084】以上の過程により、関連情報を記録した I C チップ入りペーパIが作成される。また、以上の過程は、図2の I C チップ入りペーパIに情報を記録する過程と同様、図1に示した装置構成で行わせることができる

【0085】図27に本実施例のICチップ入りペーパの情報利用の過程のフローを示す。

【0086】図27は、図2に示した本発明の基本的なフローのうち、ICチップ入りペーパに記録された情報を利用する過程であるステップ300から「終り」までを本実施例に適用したものである。以下、図27のフローを用いて、本実施例のICチップ入りペーパの情報を利用する過程を説明する。

【0087】ステップ4110は、図2のステップ310に対応し、情報受信者4143はICチップ入りペーパ1の紙部分2に印刷された画像を視覚によって読み取り、その情報の内容を認識する。

【0088】ステップ4120、ステップ4121、ステップ4123、ステップ4125は、図2のステップ320に対応する。まず、ステップ4120では、「Cリーダ4140が「Cチップ入りペーパ1の「C部分3に記録された関連情報電子データを読み出し、通信媒体4141を介して情報出力装置4142へ送信する。電子データを受け取った情報出力装置4142は、電子データのメディアの違いにより以後の過程を振り分ける。

【0089】電子データが音声データの場合、ステップ4121で、情報出力装置4142は音声データを音声出力対応の出力装置(スピーカ)に出力できる形式に変換し、出力する。その結果、ステップ4122で、情報受信者4143は、関連情報の内容(音声)を認識することができる。【0090】電子データが画像データの場合、ステップ4123で、情報出力装置4142は画像データを画像出力対応の出力装置(ディスプレイ)に出力できる形式に変換し、出力する。その結果、ステップ4124で、情報受信者

【0091】以上の過程により、情報受信者4143は、I Cチップ入りペーパに記録された紙面記載情報およびそ の関連情報の内容を参照できる。

4143は、関連情報の内容(画像)を認識することができ

【0092】図25のICチップ入りペーパ4150を例に すると、まず、情報受信者4143は紙面記載の「鳥の生 態」の情報を認識する(ステップ4110)。次に、鳥の写 真4152の印刷された位置に I Cリーダ4140を近づける と、ICリーダ4140が近くに埋め込まれている「鳥の鳴 き声」を記録した【C4152から「鳥の鳴き声」電子デー タを読み出し、情報出力装置4142に送信する。情報出力 装置4142は、受信した電子データに含まれるデータ形式 情報からこのデータが音声データだと判別し(ここまで ステップ4120)、データをスピーカに出力できる形式に 変換し、出力する (ステップ4121)。情報受信者4143 は、鳥の写真4152の関連情報として「鳥の鳴き声」の音 声情報を認識する (ステップ4122)。また、説明文4154 の印刷された位置にICリーダ4140を近づけると、IC リーダ4140が近くに埋め込まれている「生息地の写真画 像」を記録した [C4155にから「生息地の写真画像」電 子データを読み出し、情報出力装置4142に送信する。情 報出力装置4142は、受信した電子データに含まれるデー タ形式情報からこのデータが画像データだと判別し(こ こまでステップ4120)、データをディスプレイに出力で きる形式に変換し、出力する(ステップ4123)。情報受 信者4143は、説明文4154の関連情報として「生息地の写 真画像」の画像情報を認識する(ステップ4124)。

【0093】以上の過程により、図25のICチップ入りペーパ4150の例では、紙面記載情報である「鳥の生40態」情報、およびその関連情報である「鳥の鳴き声」、「生息地の写真画像」を参照できる。

【0094】なお、上記フローの説明では、電子データのメディアとして音声と画像についての処理のみを示したが、文字データや映像データなど、【Cチップに記録でき、かつ情報出力装置4142で出力できるような他のメディアも同様に、図27のフローの中で処理することができる。

【0095】なお、これまでの説明では、【Cリーダ4140は、【Cチップから電子データを読み出した時点ですぐに情報出力装置4142~電子データを送信したが、電子

データを読み出した後、0.5秒後、1秒後といった一定時間の間をおいてから情報出力装置4142へ送信するようにし、情報出力装置4142に出力する前にICリーダ4140をICチップから離す間を与えることで、情報受信者は情報出力装置4142に出力する電子データを取捨選択できるようになる。また、情報出力装置4142の方で、電子データを受信した後に一定時間の間をおいてから出力装置に出力することでも、同様の効果が得られる。

【0096】なお、これまでの説明では、ICリーダ41 40は、ICチップから電子データを読み出した時点です 10 くに情報出力装置4142へ電子データを送信したが、IC リーダ4140にボタンやスイッチを装備し、情報受信者がそれを押した時点で送信するようにすることで、情報受信者が電子データの送信の取捨選択ができるようになる。また、電子データを読み出し可能になるまでICチップに近づいたことを情報受信者に知らせる手段、例えば、光ったり、音を出したり、振動したりする手段をICリーダ4140に装備することで、情報受信者がどの紙面記載情報に電子データ(関連情報)が存在しているかを知ることができるようになり、これも電子データ送信の 20 取捨選択の助けとなる。

【0097】図28に、上記のように機能拡張したIC リーダの一例の外観図を示す。

【0098】 I Cリーダ4160は、ペン形状になっており、ペン先を I Cチップ入りペーパに埋め込まれた I C チップに近づけることで、 I Cチップの電子データを読み出すことができる。ペン横とペン先には、 I Cチップの電子データの読み出しと情報出力装置への送信を決定するための、ボタン4161、ボタン4162が装備され、ペンの末尾には、電子データ読み出し可能な I Cチップが存 30 在することを通知する通知部4163が装備されている。

【 0 0 9 9 】図 2 9 に、ペン形状 I C リーダ4160の装置 構成図を示す。

【0100】データリード部4170は.I Cチップから電子データを読み出すための手段であり、データ送信部4172は情報出力装置へ電子データを送信するための手段である。この二つは通常のICリーダが具備するものである。

【0101】ボタン部4171は、情報受信者に押されたことを他の手段に通知できるできる手段であり、通知部41 40 73はLED、音源とスピーカ、モータを用いて光、音、振動を発生させることのできる手段である。

【0102】図30に、ペン形状ICリーダ4160の処理フローを示す。

【0103】図30のフローで示した処理は、図27のステップ4120の一部である電子データ読み出し過程に対応する。以下、図30のフローを用いて、ペン形状ICリーダ4160の実行動作を説明する。

【 O 1 O 4 】ステップ4200では、ペン形状 I C リーダ41 タを読み出して情報出力装置4142へ送信するようになっ 60は、まず近づいたことで通信可能となった I C チップ 50 ていたが、先に I C チップから電子データを読み出して

と電子データ読み出しの前準備の通信を行う。

【0105】ステップ4210では、ペン形状【Cリーダ4160は、通知部4163の状態を変化させることで、電子データを読み出し可能な【Cチップが存在することを情報受信者4143に通知する。これはデータリード部4170の入力を通知部4173に反映させることで実現される。

【0106】ステップ4220では、ペン形状 I C リーダ41 60のボタン4161あるいはボタン4162が押されたかどうかの判別を行い、押されていた場合はステップ4230に進み、そうでない場合はステップ4250へ進む。

【0107】ステップ4230では、ペン形状【Cリーダ4160は、【Cチップから電子データを読み出し、つづくステップ4240では、ペン形状【Cリーダ4160は、情報出力装置4142へ電子データを送信し、処理を終える。

【0108】一方、ステップ4250では、ペン形状ICリーダ4160が、ICチップから離れたか(ICチップと通信不能になったか) どうかの判別を行い、離れた場合は処理を終了し、そうでない場合は、ステップ4210へ戻る。

【0109】以上の処理により、情報受信者4143は、ペン形状 I C リーダ4160を用いて、紙面のどの記載情報に関連情報が存在しているかを知ることができ、また、情報出力装置4142で出力する関連情報を取捨選択することができるようになる。

【0110】図25で示した【Cチップ入りペーパ4150 を例にすると、情報受信者4143がペン形状 I Cリーダ41 60を鳥の写真4152の印刷された位置に近づけることによ り、近くに埋め込まれた「鳥の鳴き声」を記録したIC 4152と通信を行う (ステップ4200)。すると、鳥の写真 4152に電子データを読み出し可能な【Cチップが存在す ることを通知するためペン形状 I Cリーダ4160の通知部 4163の状態が変化する (例えば、光る) (ステップ421 0) 。情報受信者4143がペン形状 I C リーダ4160のボタ ン4161を押すと (ステップ4220; Yes) 、 I C4152から 「鳥の鳴き声」の電子データを読み出し(ステップ423 0) 、情報出力装置4142へ送信して(ステップ4240)、 処理を終える。情報受信者4143がペン形状【Cリーダ41 60のボタン4161を押さず (ステップ4220;No)、ペン形 状【Cリーダ4160を鳥の写真4152とその位置にある【C 4152から離した場合 (ステップ4250; Yes) 、処理が終わ

【0111】以上の処理により、図25の【Cチップ入りペーパ4150の例では、情報受信者4143は、鳥の写真4152に関連情報が存在しているかを知ることができ、また、情報出力装置4142で出力する関連情報を取捨選択することができるようになる。

【0112】なお、上記フローの説明では、ICリーダ 4160は、ボタンが押された後にICチップから電子デー タを読み出して情報出力装置4142へ送信するようになっ ていたが、先にICチップから電子データを読み出して おいて、ボタンが押された後には送信のみをするように してもよい。この場合、電子データを送信するときに、 ICリーダ4160は、ICチップから離れていてもよくな る。この場合、図30の処理フローのステップ4250が処 理されないだけである。

【0113】また、上記フローの説明では、「Cリーダ 4160は、ボタンと通知部4173を備えたペン形状のものと しているが、ボタンと通知部を備えていれば、どのよう な形状でもよい。

【0114】また、上記フローの説明では、ICリーダ 10 4160はボタンと通知部4173を共に備えているが、電子デ ータを読み出し可能なICチップの存在(関連情報の存 在)を通知する機能が必要なければ、通知部は省略して もよい。この場合、図30の処理フローのステップ4210 が処理されないだけである。また、ICリーダ4160はボ タンを二つ装備しているが、図30の処理フローはボタ ンの数には依らず適用可能である。

【0115】また、上記フロー説明では、電子データを 読み出し可能なICチップの存在(関連情報の存在)を いるが、【Cチップの方に【Cリーダとの通信を通知す る手段を追加し、情報受信者4143に関連情報の存在を通 知するようにしてもよい。

【0116】なお、これまでの説明では、【Cチップに 記録する関連情報は単数のメディアデータとしていた が、複数のメディアデータを記録してもよい。この場 合、情報受信者4143は、複数メディアによる表現力豊か な関連情報を参照することが可能になる。

【0117】図31に、複数のメディアデータを用いた 関連情報の情報出力装置での出力画面例を示す。

【0118】図31で示した関連情報4190は、図25で 示した I Cチップ入りペーパ4150の説明文4154の関連情 報として I C4155に記録されたものとする。関連情報41 90は、「生息地の写真画像」4191、「生息地の説明文」 4192、他の情報、などの複数のメディアを組み合わせた ものであり、情報出力装置4142のディスプレイに組み合 わさった画像として出力される。

【0119】図32に、紙面記載情報の関連情報4190を 構成する複数の電子データを記録したICチップの内容 の一例を示す。

【0120】 I Cチップ内の関連情報データ4180は、複 数のメディア電子データの出力レイアウトを指定するレ イアウト情報4181、「生息地の説明文」4192の電子デー タ4182、「生息地の写真画像」4192の電子データ4183、 他のデータ、などの複数のメディアの電子データから構 成される。レイアウト情報4181は、HTML(HyperText Mar kup Language)のような複数のメディアの出力レイアウ トを指定する言語などで記述されたものである。

【0121】図33に、ICチップ入りペーパの複数の 電子データを含んだ関連情報利用の過程のフローを示

す。図33は、図27に示したフローに、レイアウト情 報を読み出し記憶するステップ4310を追加している。ま た、電子データの変換と、対応した出力装置への出力を 行うステップ4121、ステップ4122、ステップ4123、ステ ップ4124をステップ4320にまとめている。また、複数の 電子データを扱うため、ステップ4310、ステップ4320 が、ステップ4300に接続され、全ての電子データを出力 するまでループするように変更している。以下、図33 のフローを用いて、本実施例のICチップ入りペーパの 情報を利用する過程を説明する。

【0122】ステップ4300は、図27のステップ4120と 同様に、【Cリーダ4140から【Cチップ入りペーパ1か ら関連情報電子データを一つ読み出し、電子データのメ ディアの違いにより以後の処理を振り分ける。

【0123】電子データがレイアウト情報の場合、ステ ップ4310で、情報出力装置4142はレイアウト情報を記憶 装置に一時保存し、ステップ4300へ戻る。

【0124】電子データが音声、画像などのメディアデ ータの場合、ステップ4320で、情報出力装置4142は、メ 通知するための通知部4173をICリーダ4160に持たせて 20 ディアに対応した出力装置、例えば音声ならスピーカ、 画像ならディスプレイ、に出力できる形式に変換し、読 み込み済みのレイアウト情報に基づいて出力し、ステッ プ4300へ戻る。

> 【0125】すべての電子データを読み終えた時、関連 情報の出力は完了し、その結果、ステップ4330で、情報 受信者4143は、複数メディアを組み合わせて表現された 関連情報の内容を認識することができる。

【0126】以上の過程により、情報受信者4143は、1 Cチップ入りペーパに記録された複数メディアによって 30 表現される関連情報の内容を参照することが可能にな る。

【0127】図25で示したICチップ入りペーパ4150 を例にすると、情報受信者4143が説明文4154の印刷され た位置に【Cリーダ4140を近づけると、【Cリーダ4140 が近くに埋め込まれている I C4155の内容4180のうち、 まずレイアウト情報4181を読み出し、情報出力装置4142 に送信する。情報出力装置4142は、受信した電子データ をレイアウト情報と判別し(ここまでステップ4300)、 データを記憶装置に保存する(ステップ4310)。つづい 40 て、ICリーダ4140はIC4155から「生息地の説明文」 4192の電子データ4182を読み出し、情報出力装置4142に 送信する。情報出力装置4142は、受信した電子データを 文字データと判別し(ここまでステップ4300)、ステッ プ4310で保存したレイアウト情報に従い、データをディ スプレイに出力できる形式に変換し、出力する(ステッ プ4320)。つづいて、ICリーダ4140はIC4155から 「生息地の写真画像」4191の電子データ4183を読み出 し、情報出力装置4142に送信する。情報出力装置4142 は、受信した電子データを画像データと判別し(ここま 50 でステップ4300)、ステップ4310で保存したレイアウト

情報に従い、データをディスプレイに出力できる形式に変換し、出力する(ステップ4320)。このような過程を繰り返し、I C4155の内容4180に含まれるすべての電子データを出力し終わると(ステップ4300)、関連情報4190の出力は完了し、その結果、ステップ4330で、情報受信者4143は、複数メディアを組み合わせて表現された関連情報4190の内容を認識することができる。

【0128】以上の過程により、情報受信者4143は、I Cチップ入りペーパ4150に記録された複数メディアによって表現される関連情報4190の内容4180を参照すること 10 が可能になる。

【0129】なお、上記フローの説明では、情報出力装置4142は、関連情報を構成する電子データを【Cチップから一つずつ読み出して出力装置に出力しているが、複数の電子データを一括して読み出してから、レイアウト情報に従ってまとめて出力するようにしてもよい。この場合、ステップ4320では電子データの変換と記憶装置への保存を行い、ステップ4300の「終了」の場合に、記憶装置に保存された電子データを出力するというステップが追加されることになる。また、このステップでは、レ20イアウト情報がHTMLで記述されている場合は、HTMLに従って電子データを出力するブラウザであるWWW(World Wide Web)ブラウザのような、公知のソフトウェアを用いることもできる。

【0130】また、上記フローの説明では、情報出力装置4142は、【Cチップから取得したレイアウト情報に従って、【Cチップから取得した関連情報を構成する電子データを出力していたが、情報出力装置4142が記憶装置にあらかじめレイアウト情報を保持しておき、それに従って【Cチップの電子データを出力するようにしてもよ 30い。この場合、【Cチップには必ずしもレイアウト情報が記録されていなくてもよい。

【0131】なお、これまでの説明では、紙面記載情報の関連情報を構成する電子データは、すべて紙面記載情報の印刷された位置に埋め込まれているICチップに記録されている必要があったが、電子データの代わりにICチップには電子データの所在を示すリンク情報、例えば、CD-ROMドライブ上にある電子データではそれが格納しているファイルのパス名、外部のWWWサーバ上にある電子データではそれにアクセスできるURL、といったものを記録するようにしてもよい。

【0132】図34に、上記のようなICチップ入りペーパの関連情報を構成する電子データの中に、ICチップでは記録していない外部の電子データを用いている場合に、情報受信者が紙面記載情報の関連情報を利用する時に用いる装置の構成および情報の流れの一例を示す。

【0133】図34の装置構成図は、図24の装置構成 図の情報出力装置に、CD-ROMドライブ、DVD-ROMドライ ブのような外部記憶装置4144を接続し、各種情報を蓄積 ・配信する外部の情報サーバである情報蓄積サーバ4145 50 とインターネットのような通信回線を介して接続したものである。

【0134】図35に、紙面記載情報の関連情報4190を構成する複数の電子データと外部の電子データへのリンク情報を記録したICチップの内容の一例を示す。ICチップ内のデータ4430は、図32で示したICチップの内容4180の「生息地の写真画像」4191の電子データ4182を、外部記憶装置に格納されたファイルのファイル名"Photo.jpg"(4433)としたものである。すなわち、複数のメディア電子データの出力レイアウトを指定するレイアウト情報4431、「生息地の説明文」4192の電子データ4432、「生息地の写真画像」4192へのリンク情報4433、他のデータ、などの複数のメディアの電子データから構成される。

【0135】図36に、ICチップ入りペーパの関連情報を構成する電子データの中に、ICチップでは記録していない外部の電子データを用いている場合の関連情報利用の過程のフローを示す。図36は、図33に示したフローに、リンク情報を用いて外部記憶装置4144または情報蓄積サーバ4155から電子データを取得するステップ4840、電子データの変換と対応した出力装置への出力を行うステップ4850を追加している。以下、図36のフローを用いて、本実施例のICチップ入りペーパの情報を利用する過程を説明する。

【0136】ステップ4800は、図33のステップ4300と 同様に、ICリーダ4140からICチップ入りペーパ1か ら関連情報電子データを一つ読み出し、電子データのメ ディアの違いにより以後の処理を振り分ける。

【0137】電子データがレイアウト情報の場合、ステップ4810で、情報出力装置4142はレイアウト情報を記憶装置に一時保存し、ステップ4800へ戻る。

【0138】電子データが音声、画像などのメディアデータの場合、ステップ4820で、情報出力装置4142は、メディアに対応した出力装置、例えば音声ならスピーカ、画像ならディスプレイ、に出力できる形式に変換し、読み込み済みのレイアウト情報に基づいて出力し、ステップ4800へ戻る。

【0139】電子データが外部の電子データへのリンク情報の場合、情報出力装置4142は、ステップ4840で、リンク情報を解釈し、外部記憶装置4144、または情報蓄積サーバ4155から電子データを取得する。ステップ4850で、メディアに対応した出力装置、例えば音声ならスピーカ、画像ならディスプレイ、に出力できる形式に変換し、読み込み済みのレイアウト情報に基づいて出力し、ステップ4800へ戻る。

【0140】すべての電子データを読み終えた時、関連情報の出力は完了し、その結果、ステップ4830で、情報受信者4143は、複数メディアを組み合わせて表現された関連情報の内容を認識することができる。

【0141】以上の過程により、情報受信者4143は、1

Cチップ入りペーパに記録されていない外部の電子デー タも含んだ関連情報の内容を参照することが可能にな

【0142】図25で示した【Cチップ入りペーパ4150 の説明文4154の位置に埋め込まれている【C4155に、図 35で示したICチップの内容を保持する場合を例にす ると、情報受信者4143が説明文4154の印刷された位置に 【Cリーダ4140を近づけると、【Cリーダ4140が近くに 埋め込まれている I C4155の内容4430のうち、まずレイ アウト情報4431を読み出し、情報出力装置4142に送信す 10 る。情報出力装置4142は、受信した電子データをレイア ウト情報と判別し(ここまでステップ4800)、データを 記憶装置に保存する(ステップ4810)。つづいて、【C リーダ4140は [C4155から「生息地の説明文」4192の電 子データ4432を読み出し、情報出力装置4142に送信す る。情報出力装置4142は、受信した電子データを文字デ ータと判別し(ここまでステップ4800)、ステップ4810 で保存したレイアウト情報に従い、データをディスプレ イに出力できる形式に変換し、出力する(ステップ482 0) 。つづいて、ICリーダ4140はIC4155から生息地 の写真画像へのリンク情報であるファイル名4433の電子 データ4183を読み出し、情報出力装置4142に送信する。 情報出力装置4142は、受信した電子データをリンク情報 と判別し(ここまでステップ4800)、ファイル名の示す 先である外部記憶装置4144から画像データを取得する

(ステップ4840)。ステップ4810で保存したレイアウト 情報に従い、データをディスプレイに出力できる形式に 変換し、出力する(ステップ4850)。このような過程を 繰り返し、I C4155の内容4430に含まれるすべての電子 データを出力し終わると (ステップ4800) 、関連情報44 30 30の出力は完了し、その結果、ステップ4830で、情報受 信者4143は、複数メディアを組み合わせて表現された関 連情報4190の内容を認識することができる。

【0143】以上の過程により、情報受信者4143は、[Cチップ入りペーパに記録されていない外部の電子デー タも含んだ関連情報の内容4330を参照することが可能に なる。

【0144】なお、これまでの説明では、1個の紙面記 載情報に対して関連情報は1個、すなわち1個のICチ ップには関連情報は1個に限定していたが、「Cチップ 40 に複数の関連情報を記録してもよい。以降、1個の関連 情報を「ページ」と呼ぶ。

【0145】図37に、紙面記載情報の複数ページの関 連情報を記録したICチップの内容の一例を示す。

【0146】 「 C チップ内の関連情報データ4400は、関 連情報ページ1(4402)、関連情報ページ2(4405)、他の ページで構成される。関連情報ページ1(4402)は、画像 データ4403のみを含む単数メディアの関連情報であり、 関連情報ページ2 (4405)は、複数のメディア電子データ

データ4407、画像データ4408、他のデータ、などの複数 のメディアの電子データから構成される関連情報であ る。また、ページ間にはページの区切りを示す区切りデ ータ4401、4404が存在する。

【0147】複数ページの関連情報の参照には、情報出 力装置4142に出力するページを選択する方法が必要とな るが、例えば、図28で示したようなボタンを装備した ICリーダ4160に、ボタンを押すことで関連情報を1ペ ージずつ情報出力装置4142に送信するような機構を設け ることで、情報出力装置4142に出力する関連情報を選択 するということが可能である。

【0148】図38に、ボタンを装備した【Cリーダ41 60を用いた複数ページの関連情報の利用の過程のフロー を示す。図38のフローで示した過程は、これまで説明 してきた関連情報利用の過程のフローを包含するもので ある。以下、図38のフローを用いて、本実施例のIC チップ入りペーパの情報を利用する過程を説明する。

【0149】ステップ4500では、「Cリーダ4160は、I Cチップから関連情報ページを構成する電子データ(以 下、ページデータ)を1ページ分読み出し、通信媒体41 41を介して情報出力装置4142へ送信する。

【0150】ステップ4510では、ページデータが読み出 せたどうかの判別を行う。もしページデータが読み出せ なかった場合は、フローを終了し、そうでない場合はそ のままステップ4520へ進む。

【0151】ステップ4520では、情報出力装置4142は、 ページデータを出力する。出力の過程はこれまで説明し てきた関連情報利用の過程と同じである。

【0152】その結果、ステップ4530で、情報受信者41 43は、1ページ分の関連情報ページの内容を認識するこ とができる。

【0153】ステップ4540では、【Cリーダ4160のボタ ン4161あるいはボタン4162が押されたかどうかの判別を 行い、押されていた場合は次のページデータの読み出し のためにステップ4500へ戻り、そうでない場合は、次の ステップ4550に進む。

【0154】ステップ4540では、ICリーダ4160がIC チップから離れたかどうかの判別を行い、離れた場合は フローを終了し、そうでない場合は、ステップ4540へ戻 る。

【0155】以上の過程により、情報受信者4143は、複 数ページの関連情報の内容を1ページずつ参照すること が可能になる。

【0156】図37で示したICチップの内容4440を例 にすると、情報受信者4143が I C リーダ4160を I C チッ プに近づけると、ICリーダ4160はICから関連情報ペ ージ1(4402)を読み出し、情報出力装置4142に送信する (ステップ4500)。ページデータは存在するので(ステ ップ4510;No)、情報出力装置4142は、関連情報ページ の出力レイアウトを指定するレイアウト情報4406、文字 50 1 (4402)として画像データ4403を出力する (ステップ45 20)。情報受信者4143は、関連情報ページ1の画像デー タ4403を画像情報として認識する (ステップ4530) 。情 報受信者4143が I Cリーダ4160のボタン4161を押すと

(ステップ4540; Yes)、ICリーダ4160は、ICから次 のページである関連情報ページ2(4405)を読み出す(ス テップ4500)。ページデータは存在するので(ステップ 4510;No)、情報出力装置4142は、関連情報ページ2(44 02)の文字データ4407、画像データ4408などをレイアウ ト情報4406に従って出力する (ステップ4520)。情報受 信者4143は、関連情報ページ1を認識する(ステップ45 10 30)。情報受信者4143が I Cリーダ4160のボタン4161を 押すと (ステップ4540; Yes) 、ステップ4500へ戻り、ペ ージの読み出しと送信を繰り返す。ページデータをすべ て読み出した場合 (ステップ4510; Yes) 、あるいは、I Cリーダ4160をICチップから離した場合(ステップ45 50; Yes) は、フローを終了する。

【0157】以上の過程により、情報受信者4143は、複 数ページの関連情報の内容を1ページずつ参照すること が可能になる。

【0158】なお、上記の過程は、図30で示したIC 20 リーダ4160の装備するボタンを用いて関連情報を取捨選 択する過程と併用することもできる。すなわち、ICリ ーダ4160を I'Cチップに近づけると I Cリーダ4160の通 知部4163の状態が変化することで、関連情報を記録した ICがあることを情報受信者4143に通知され、最初にボ タン4161を押した時は関連情報データの情報出力装置41 42への送信開始を意味するが、同時に最初のページデー タの送信でもある。また2度目以降は、つづいたページ データの送信となる。

【0159】また、上記フローの説明では、ICリーダ 30 4160の装備するボタンを押すことで関連情報ページを送 信しているが、30秒、1分といった一定間隔で自動的に ページデータを送信するようにしてもよい。ボタンを装 備していないICリーダでも上記フローの処理を適用す ることが可能になる。この場合、図38のフローのステ ップ4540は、30秒間待ってからステップ4500へ戻る、と いうようなステップとなる。

【0160】また、上記フローの説明では、【Cリーダ 4160は、関連情報ページの1ページ分のデータを一括し て情報出力装置4142へ送信しているが、特に関連情報ペ 40 ージを構成する電子データの送信手順については限定さ れない。つまり、これまでの説明でもあったように、ペ ージを構成する電子データを一つずつ送信してもよい。

【0161】また、上記フローの説明では、【Cリーダ 4160は、ボタンが押される毎にページデータをICチッ プから1ページ分ずつ読み出し、情報出力装置4142へ送 信しているが、あらかじめすべてのページの関連情報ペ ージデータを一括して読み出し送信してもよい。また、 ICリーダ4160がすべてのページのページデータを一括 して読み出しておき、ボタンが押された時に1ページ分 50 わせた関連情報である。ヘッドライン情報4421は、電子

のページデータを送信するようにしてもよい。

【0162】また、上記フローの説明では、【Cリーダ 4160の装備するボタンを押すたびに、次の関連情報ペー ジを情報出力装置4142で出力するようにしているが、ボ タンAを押すと1番目のページ、ボタンBを押すと3番 目のページ、ボタンCでは最終ページを出力する、とい うように任意のページを出力できるようにしてもよい。 この場合、図38のフローのステップ4540は、ボタンA が押されたら1番目のページを指定し、ステップ4500~ 戻ってICチップからページデータを読み出す、という ようなステップとなる。

【0163】なお、上記フローの説明では、【Cリーダ 4160の装備するボタンを押すことで関連情報ページを送 信しているが、図39の情報出力装置4142の画面4410の ように、関連情報ページ4411の出力の他に、「次ペー ジ」ボタン4412、「前ページ」ボタン4413を設け、キー ボード、マウス、タッチパネル、リモートコントローラ などの入力装置により「次ページ」ボタン4412、あるい は「前ページ」ボタン4413を選択することで、関連情報 4411を次の関連情報ページ、あるいは前の関連情報ペー ジに切り替えるというようにしてもよい。

【0164】また、図39の画面4410では、ページの選 択手段として「次ページ」ボタン4412と「前ページ」ボ タン4413の前後のページへの切替を行う2個のボタンの みが用いられているが、任意のページへ移動するボタン などを付け加えてもよい。

【0165】また、図39の画面4410では、ページの選 択手段としては画面上のボタンのみ用いられているが、 例えばページの縮小イメージを入力装置で選択しページ を切り替えるというような、入力装置からの入力を利用 してページを選択できるものなら、どの方法でもよい。 【0166】なお、ICチップに、これまでの説明の関

連情報の他に、例えば、関連情報の概略を説明する短い 文章など、関連情報よりもデータサイズの小さい「見出 し」を表すヘッドライン情報を追加し、情報出力装置が ICチップから関連情報を読み出す前にヘッドライン情 報を読み出して出力することにより、関連情報を読み出 さずに関連情報の概要を知ることができるようになるた め、情報受信者は、関連情報の取捨選択がさらに便利に できるようになる。

【0167】図40に、紙面記載情報の関連情報とその ヘッドライン情報を記録したICチップの内容の一例を 示す。

【0168】 [Cチップ内の関連情報データ4420は、関 連情報の電子データ本体4423と、関連情報のヘッドライ ン情報4421で構成される。電子データ4423は、これまで 説明してきた、電子データ、ページデータなどをすべて 含むものであり、この例では、レイアウト情報4424、文 字データ4425、他のデータを含む複数メディアを組み合

データ本体4423の内容の概要である「見出し」を表す情 報であり、電子データ本体4423よりもデータサイズが小 さいことを特徴とするものである。この例では、「鳥の 生息地の説明」という電子データ本体を説明する文字列 である。

27

【0169】図41に、ヘッドライン情報を含んだ関連 情報利用の過程のフローを示す。図41のフローで示し た過程は、これまで説明してきた関連情報4420の利用の 過程のフローを包含するものである。以下、図41のフ ローを用いて、本実施例のICチップ入りペーパの情報 10 を利用する過程を説明する。

【0170】ステップ4700では、情報出力装置4142は、 ICリーダ4140を用いてICチップからヘッドライン情 報4421を読み出す。

【0171】ステップ4710では、情報出力装置4142は、 ヘッドライン情報4421を出力する。出力の過程はこれま で説明してきた関連情報利用の過程と同じである。

【0172】ステップ4715では、ICリーダ4140がIC チップから離れたかどうかの判別を行い、離れた場合は フローを終了し、そうでない場合は、ステップ4720へ進 20

【0173】ステップ4720では、ヘッドライン情報4421 の内容を参照した情報受信者4143が、関連情報データ本 体4423の出力開始を選択するかどうかを判別を行い、出 力を選択した場合はそのままステップ4730へ進み、ステ ップ4715へ戻る。関連情報データ本体4423の出力を選択 の手段は、例えば、ボタンを装備する I C リーダ4160の ボタン4161である。

【0174】ステップ4730では、情報出力装置4142は、 【Cリーダ4140を用いて【Cチップから関連情報の電子 30 データ本体4423を読み出す。

【0175】ステップ4740では、情報出力装置4142は、 関連情報の電子データ本体4423を出力する。出力の過程 はこれまで説明してきた関連情報利用の過程と同じであ

【0176】ステップ4750では、関連情報の出力は完了 し、情報受信者4143は、関連情報の内容を認識すること ができる。

【0177】以上の過程により、情報受信者4143は、情 報出力装置4142が関連情報を出力する前に出力するヘッ 40 ドライン情報を参考に、出力する関連情報を選択するこ とが出来るようになる。

【0178】図40で示した1Cチップの内容4420を例 にすると、情報受信者4143が I Cリーダ4160を I Cチッ プに近づけると、ICリーダ4160はICからヘッドライ ン情報4421を読み出し、情報出力装置4142に送信する (ステップ4700)。情報出力装置4142は、ヘッドライン 情報4421の内容である「鳥の生息地の説明」という文字 列4422を出力する (ステップ4710)。情報受信者4143が ICリーダ4160をICチップから離さずに(ステップ47 50 報出力装置4142でも上記フローの処理を適用することが

15;No)、ボタン4161を押すと(ステップ4720;Yes)、 【Cリーダ4160は【Cから電子データ本体4423を読み出 し、情報出力装置4142に送信する (ステップ4730)。情 報出力装置4142は、電子データ本体4423の内容である文 字データ4425などをレイアウト情報4424に従って出力す る (ステップ4740)。情報受信者4143は、電子データ本 体4423の内容を認識する (ステップ4750)。

【0179】以上の過程により、情報受信者4143は、情 報出力装置4142が関連情報4423を出力する前に出力する ヘッドライン情報4421を参考に、出力する関連情報4423 を選択することが出来るようになる。

【0180】なお、上記フローの説明では、【Cリーダ 4140は、ヘッドライン情報4421と関連情報の電子データ 本体4423をそれぞれステップ4700とステップ4730で別個 に読み出していたが、一度に両者を読み出すようにして もよい。この場合、ステップ4730をステップ4700に統合 しヘッドライン情報4421と関連情報の電子データ本体44 23を一度に読み出すようにするだけでよい。

【0181】なお、上記の過程は、図30で示したIC リーダ4160の装備するボタンを用いて関連情報を取捨選 択する過程と併用することもできる。すなわち、ICリ ーダ4160を【Cチップに近づけると【Cリーダ4160の通 知部4163の状態が変化することで、関連情報を記録した ICがあることを情報受信者4143に通知されるととも に、 I Cリーダ4160が I Cチップからヘッドライン情報 4421を読み出し、情報出力装置4142に送信することで、 情報出力装置4142がヘッドライン情報4421を出力する。 情報受信者4143は、通知部の状態変化とヘッドライン情 報4421の出力を参照して、出力する関連情報4423を取捨 選択できるようになる。この場合、図41のフローのス テップ4720の「ボタンが押された?」の前に、【Cリー ダ4160の通知部4163の状態を変化させる、というステッ プが追加される。

【0182】なお、上記フローの説明では、ICリーダ 4160の装備するボタンを押すことで関連情報の電子デー タ本体4423の出力開始を指定するようにしているが、情 報出力装置4142の出力装置の出力画面上に、ヘッドライ ン情報4411の内容4422の出力の他に、例えば「情報本体 を読み出す」というボタンを設け、情報出力装置4142の キーボード、マウス、タッチパネル、リモートコントロ ーラなどの入力装置により「情報本体を読み出す」ボタ ンを選択することで、関連情報の電子データ本体4423を 読み出して出力するようにしてもよい。

【0183】なお、上記フローの説明では、【Cリーダ 4160の装備するボタンを押すことで関連情報の電子デー タ本体4423の出力開始を指定するようにしているが、30 秒、1分といった一定間隔で自動的に関連情報の電子デ ータ本体4423の出力を開始するようにしてもよい。ボタ ンを装備していないICリーダや入力装置を持たない情 可能になる。この場合、図41のフローのステップ4720 は、30秒間待ってからステップ4730へ進む、というよう なステップとなる。

【0184】なお、これまでの説明では、情報受信者4143が関連情報の内容を認識するための出力手段である出力装置を情報出力装置4142が装備していたが、関連情報を出力する出力装置をICリーダ4140と一体化してもよい

【0185】例えば、ICリーダ4140に、音声を聞くスピーカ、画像や文字列を表示するディスプレイを装備す 10 ることで、図25のICチップ入りペーパ4150の例では、ICリーダ4141を鳥の写真4152の印刷された位置に近づけるとICリーダ4140のスピーカから「鳥の鳴き声」が聞こえるようになり、図37のICチップの内容の例では、ICリーダ4160のボタン4161を押すたびにICリーダ4140のディスプレイの関連情報ページ出力が切り替わるようになり、図40のICチップの内容の例では、ICリーダ4160をICチップに近づけるとICリーダ4140のディスプレイにヘッドライン情報4421が出力され、ボタン4161を押すと関連情報本体が出力されるよう 20 になる。

【0186】この場合、ICリーダ4140のみで関連情報を出力できるようになるため、情報出力装置4142を省略できるが、併用してもよい。例えば、音声データはICリーダ4140で出力するがその他のメディアデータは情報出力装置4142で出力する、関連情報のヘッドライン情報をICリーダ4140で出力し関連情報の本体は情報出力装置4142で出力する、などのように用いる。

【0187】 [第5の実施例] 第5の実施例は、ICチップ入りペーパを用いて地図を作成し、地図上に記載の 30 施設・店舗などの関連情報と位置情報の取得・利用を簡単化する方法の例である。

【0188】図42に本実施例のICチップ入りペーパの一例を示す。

【0189】図42で示したICチップ入りペーパ5000は、図26で示したICペーパ作成過程の手順を利用して作成できるICチップ入りペーパである。ICチップ入りペーパ5000は地図であり、紙面上には道路を示す線分、「A店」の位置を表す記号5001、「B社」の位置を表す記号5003などの店舗や会社を表す記号といった地図40を構成する基本的な要素(可視情報)が記載されている。さらに、ICチップ入りペーパ5000には複数のICチップ(IC5002、IC5004)が埋め込まれている。IC5002は、「A店」の関連情報と位置情報を記録したICチップであり、対応する紙面記載情報である記号5001の印刷された位置に埋め込まれている。同様にIC5004は「B社」の関連情報と位置情報を記録したICチップであり、記号5003の印刷された位置に埋め込まれている。

【0190】図43に、地図記載記号5001の関連情報と 50

位置情報を記録したICチップの内容の一例を示す。

【0191】ICチップ内のデータ5010は、地図記載記号5001の関連情報の電子データ5011は、これまで説明してきた、電子データ、ページデータなどをすべて含むものであり、この例では、レイアウト情報5012、文字データ5013、他のデータを含む複数メディアを組み合わせた関連情報である。位置情報5014は、地図記載記号5001の位置を指示する情報であり、この例では、緯度情報5016である。

【0192】図44に、地図記載記号の関連情報と位置情報の利用の過程のフローを示す。図44のフローで示した過程は、図34の装置構成もしくはその変形を利用して実現できるものであるが、この例では図34の情報出力装置4142は、ICチップ3に記録された関連情報の出力の他に、ICチップ3の位置情報とCD-ROMドライブのような外部記憶装置4144からの情報などを利用して、新たに情報を生成して出力する機能、例えば、出発地と目的地の位置を指定することで、その区間の最適経路を示してくれる機能、を有する装置であるナビゲーションシステムのようなものになる。また、図44のフローで示した過程は、これまで説明してきた関連情報の利用の過程のフローを包含するものである。

【0193】以下、図44のフローを用いて、本実施例のICチップ入りペーパの情報を利用する過程を説明する。

【0194】ステップ5100では、情報出力装置4142は、 ICリーダ4140を用いてICチップから地図記載記号の 関連情報を読み出す。

【0195】ステップ5110では、情報出力装置4142は、 関連情報を出力する。出力の過程はこれまで説明してき た関連情報利用の過程と同じである。その結果、ステッ プ5120では、情報受信者4143は、関連情報の内容を認識 することができる。

【0196】ステップ5130では、情報出力装置4142は、 ICリーダ4140を用いてICチップから地図記載記号の 位置情報を読み出す。

【0197】ステップ5140では、情報出力装置4142は、 読み出した位置情報を新たな情報生成のための入力とし て利用する。ナビゲーションシステムの場合は、出発地 もしくは目的地の座標として利用する。

【0198】以上の過程により、情報受信者4143は、地図上に記載の施設・店舗などの関連情報と位置情報を取得・利用できるようになる。

【0199】図43で示したICチップの内容5010を例にすると、情報受信者4143が地図5000に記載の「A店」を示す記号5001の印刷された位置にICリーダ4140を近づけると、ICリーダ4140は、近くに埋め込まれているIC5002から「A店」の関連情報5011を読み出し、情報出力装置4142に送信する(ステップ5100)。情報出力装

置4142は、関連情報5011の内容である文字データ5013などをレイアウト情報5012に従って出力する(ステップ5110)。情報受信者4143は、関連情報5011の内容を認識する(ステップ5120)。さらにICリーダ4140は「A店」の位置情報5014を読み出し、情報出力装置4142に送信する(ステップ5130)。情報出力装置4142は、読み出した位置情報5014の内容(経度情報5015「東経139度46分」、緯度情報5016「北緯35度41分」)を、「A店」の位置情報として利用する。ナビゲーションシステムの場合は、出発地もしくは目的地の座標として利用する(ス 10 テップ5140)。。

【0200】以上の過程により、情報受信者4143は、地 図5000に記載の「A店」5001の関連情報5011と位置情報 5014を取得・利用できるようになる。

【0201】なお、上記フローの説明では、ICリーダ4140は、関連情報5011と位置情報5014をそれぞれステップ5100とステップ5130で別個に読み出していたが、一度に両者を読み出すようにしてもよい。この場合、ステップ5130をステップ5100に統合し、関連情報5011と位置情報5014を一度に読み出すようにするだけでよい。また、別個に読み出す場合も、関連情報と位置情報の読み出し順序は逆でもよい。この場合、ステップ5130、ステップ5140、ステップ5100、ステップ5110、ステップ5120と並んだフローとなる。

【0202】なお、上記フローの説明では、ICチップには関連情報5011と位置情報5014を記録していたが、位置情報のみでもよい。この場合、情報出力装置4142では、関連情報5011の出力のための出力装置は必要なくなり、位置情報5014を用いた情報の作成のみを行う。

【0203】なお、上記フローの説明では、地図記載の 30 記号の位置に関連情報と位置情報を記録した I C を埋め 込んだ例を示しているが、 I C チップ入りペーパが地図 ではなくても上記フローの過程は適用できる。 すなわ ち、地図の場合でも紙面全体が地図ではなくてもよい し、地図ではなく例えば、施設の写真の関連情報として、施設の位置情報が入っていてもよい。

【0204】なお、上記フローの説明では、位置情報として緯度経度を用いていたが、位置情報を利用する情報出力装置が位置を特定できる形式ならば、どのようなものでもよい。

【0205】 [第6の実施例] 第6の実施例は、ICチップ入りペーパを用いてテレビ番組表を作成し、番組表に記載の番組の関連情報の参照と、テレビチャンネル切替やビデオ録画予約を簡単化する方法の例である。

【0206】図45に本実施例のICチップ入りペーパの一例を示す。

【0207】図45で示したICチップ入りペーパ6000は、図26で示したICペーパ作成過程の手順を利用して作成できるICチップ入りペーパである。ICチップ入りペーパ6000はテレビ番組の放映スケジュールを示し 50

たテレビ番組表であり、紙面上には番組6001「朝のニュース」、番組6003「特選お料理」といった放映番組のタイトルなどの可視情報がテレビチャンネルごとに記載されている。さらに、ICチップ入りべーパ6000には複数のICチップ(IC6002、IC6004)が埋め込まれている。IC6002は、「朝のニュース」の関連情報と、番組放映開始時刻と終了時刻といった番組放映情報を記録したICチップであり、対応する紙面記載情報である番組6001の印刷された位置に埋め込まれている。同様にIC5004は「特選お料理」の関連情報と番組放映情報を記録したICチップであり、番組6003の印刷された位置に埋め込まれている。

【0208】図46に、番組表6000に記載の番組6001の 関連情報と位置情報を記録したICチップの内容の一例 を示す。

【0209】ICチップ内のデータ6010は、番組表6000に記載の番組6001の関連情報の電子データ6011と、番組放映情報6014で構成される。電子データ6011は、これまで説明してきた、電子データ、ページデータなどをすべて含むものであり、この例では、レイアウト情報6012、文字データ6013、他のデータを含む複数メディアを組み合わせた関連情報である。番組放映情報60144は、番組6001の放映スケジュールを指示する情報であり、この例では、番組のチャンネル6015、開始時刻6016、終了時刻6016である。

【0210】図47に、番組表記載の番組の関連情報の 参照と番組放映情報の利用によるテレビチャンネル切替 あるいはテレビやビデオ録画のタイマー予約の過程のフ ローを示す。

【0211】図47のフローで示した過程は、図34の装置構成もしくはその変形を利用して実現できるものであるが、この例では図451の情報出力装置4142は、ICチップ3に記録された関連情報の出力の他に、テレビ番組を受信するためのチューナを装備した装置であるテレビジョン受像機やビデオレコーダのようなものになる。また、図44のフローで示した過程は、これまで説明してきた関連情報の利用の過程のフローを包含するものである。

【0212】以下、図47のフローを用いて、本実施例 40 のICチップ入りペーパの情報を利用する過程を説明す

【0213】ステップ6100では、情報出力装置4142は、 【Cリーダ4140を用いて【Cチップから地図記載記号の 関連情報を読み出す。

【0214】ステップ6110では、情報出力装置4142は、 関連情報を出力する。出力の過程はこれまで説明してき た関連情報利用の過程と同じである。その結果、ステッ プ6120では、情報受信者4143は、関連情報の内容を認識 することができる。

【0215】ステップ6130では、情報出力装置4142は、

【Cリーダ4140を用いて【Cチップから番組表記載の番組の放映情報を読み出す。

【0216】ステップ6140では、情報出力装置4142は、 読み出した放映情報を参照して、番組を受信できる状態 にする。例えば、放映中の番組の場合はチューナのチャ ンネルを番組のチャンネルに切り替え、放映前の番組な らば、その時刻に自動的にチャンネルを切り替えるよう なタイマー予約を設定したり、録画を開始するようなビ デオ録画予約を設定したりする。

【0217】以上の過程により、情報受信者4143は、番 10 組表記載の番組の関連情報の参照と番組放映情報の利用によるテレビチャンネル切替あるいはテレビやビデオ録画のタイマー予約を簡単化に行うことができる。

【0218】図46で示したICチップの内容6010を例 にすると、情報受信者4143が番組表6000に記載の番組60 01「朝のニュース」の印刷された位置に【Cリーダ4140 を近づけると、【Cリーダ4140は、近くに埋め込まれて いる [C6002から「朝のニュース」の関連情報6011を読 み出し、情報出力装置4142に送信する(ステップ610 0)。情報出力装置4142は、関連情報6011の内容である 文字データ6013などをレイアウト情報6012に従って出力 する (ステップ6110)。情報受信者4143は、関連情報60 11の内容を認識する (ステップ6120)。さらに [C リー ダ4140は「朝のニュース」の番組放映情報6014を読み出 し、情報出力装置4142に送信する(ステップ6130)。情 報出力装置4142は、読み出した番組放映情報6014の内容 (チャンネル6015「1」、開始時刻6016「6時0分」、 終了時刻6017「6時55分」)を参照し、もし、現在の 時刻が放映時間(6時から6時55分の間)であった ら、テレビチューナのチャンネルを「1」に切り替え、 そうでなければ、6時にチャンネル「1」に切り替わる ようにタイマー予約を設定する。情報出力装置4142がビ デオレコーダの場合は、録画予約を設定する。

【0219】以上の過程により、情報受信者4143は、番組表6000に記載の番組6001の関連情報6011の参照と番組放映情報6014の利用によるテレビチャンネル切替あるいはテレビやビデオ録画のタイマー予約を簡単に行うことができる。

【0220】なお、上記フローの説明では、「Cリーダ4140は、関連情報6011と番組放映情報6014をそれぞれス40テップ6100とステップ6130で別個に読み出していたが、一度に両者を読み出すようにしてもよい。この場合、ステップ6130をステップ6100に統合し、関連情報6011と位置情報6014を一度に読み出すようにするだけでよい。また、別個に読み出す場合も、関連情報と位置情報の読み出し順序は逆でもよい。この場合、ステップ6130、ステップ6140、ステップ6100、ステップ6110、ステップ6120と並んだフローとなる。

【0221】なお、上記フローの説明では、【Cチップには関連情報6011と番組放映情報6014を記録していた

が、番組放映情報6014のみでもよい。この場合、情報出力装置4142では、関連情報6011の出力のための出力装置は必要なくなり、番組放映情報6014によるチューナやビデオレコーダの制御のみを行う。

【0222】なお、上記フローの説明では、番組表6000 に関連情報6011と番組放映情報6014を記録した I C を埋め込んだ例を示しているが、 I C チップ入りペーパが番組表ではなくても上記フローの過程は適用できる。 すなわち、テレビ情報誌の番組紹介ページのように番組そのものを記載したものでもよい。

【0223】なお、上記フローの説明では、番組放映情報6014としてチャンネル6015、開始時刻6016、終了時刻6017を用いていたが、番組のチャンネルと放映開始時刻と終了時刻、もしくは放映時間が位置を特定できる形式ならば、どのようなものでもよい。例えば、ビデオレコーダの録画予約によく用いられるチャンネル、放映開始時刻、終了時刻を符号化したGコードのようなものでもよい。

[0224]

【発明の効果】以上のように、ICチップ入りペーパのような電子記憶媒体と一体となった紙を用いて情報伝達を行なうことにより、次のような効果を得ることができる。

【0225】第1に、紙部分へ印刷する情報と同一の内容の情報を、形態を変えてIC部分へ記録しておくことにより、情報の偽造、追記、削除が比較的困難となる。

【0226】第2に、紙部分へ印刷する情報と同一の内容の情報をIC部分へ記録し、音声や点字などの形態で出力できるようにすることで、視覚健常者に伝達する情報を視覚障害者にも容易に伝達できる。

【0227】第3に、情報を複製したい場合に、紙部分へ印刷する情報と同一の内容の情報をIC部分へ記録しておくことにより、IC部分への記録内容を読み出して複製すれば、光学複写機を用いて複写する必要がなくなるので、劣化の問題がなくなる。

【0228】第4に、情報をコンピュータ処理する場合に、IC部分から記録内容を読み出して処理すればよいので、OCRなど特別な装置による認識が必要ない。

【0229】第5に、情報を記載するスペースが限定されている場合でも、IC部分に比較的多くの情報を記録することができ、さらに音声、画像のような文書以外の情報も記録することができる。

【0230】第6に、必要な情報を紙部分に印刷せずに IC部分だけに記録するようにすれば、情報が不特定多数 の人の目に触れるのを防ぐことができる。

【0231】第7に、大量な情報から所望のものを見つけ出したい場合に、IC部分に記録されている情報をコンピュータ処理で検索することにより、見つけ出す作業が容易になる。

【図面の簡単な説明】

【図1】本発明を実施するための装置構成を示すブロッ ク図。

【図2】本発明を実施する方法の基本的な流れを示すフ 口一図。

【図3】第1の実施例において、広告ビラを作成するた めの装置構成例を示すプロック図。

【図4】第1の実施例において、広告ビラを作成する過 程を示したフロー図。

【図5】第1の実施例において、広告ビラの内容を認識 するための装置構成例を示すブロック図。

【図6】第1の実施例において、広告ビラの内容を認識 する過程を示したフロー図。

【図7】第1の実施例の変形例1において、広告ビラを 作成する過程を示したフロー図。

【図8】第1の実施例の変形例1において、広告ビラの 内容を認識する過程を示したフロー図。

【図9】第1の実施例の変形例2において、広告ビラを 作成する過程を示したフロー図。

【図10】第1の実施例の変形例2において、広告ビラ の内容を認識する過程を示したフロー図。

【図11】第2の実施例において、製品カタログを作成 する過程を示したフロー図。

【図12】第2の実施例において作成される製品カタロ グの一例を示したイメージ図。

【図13】製品カタログ中に記載される製品パラメータ 情報に関する仕様表の一例を示す図。

【図14】製品パラメータ情報に関する仕様をXML形 式でデータ記述した一例を示す図。

【図15】第2の実施例において、製品カタログを収集 して利用する過程を示したフロー図。

【図16】第2の実施例において、製品カタログを収集 して利用するための装置構成例を示すブロック図。

【図17】第2の実施例において、製品パラメータ情報 に関する仕様のデータを解析して表示した比較結果の例 を表す図。

【図18】第3の実施例において、流通性書類を作成す るための装置構成例を示すブロック図。

【図19】第3の実施例において、流通性書類を作成す る過程を示したフロー図。

理の詳細を示したフロー図。

【図21】第3の実施例において、参照データを読み出 す際に用いるマッピングテーブルの例を表す図。

【図22】第3の実施例において、文字コード入力画面 の一例を表す図。

【図23】第3の実施例において作成される流通性書類 の一例を表す図。

【図24】第4の実施例において、紙面記載情報の関連 情報を利用する時に用いる装置構成例を示したブロック 図。

【図25】第4の実施例において、紙面記載情報の関連 情報を記録したICチップ入りペーパの一例を示したイ メージ図。

【図26】第4の実施例において、紙面記載情報の関連 情報を記録したICチップ入りペーパを作成する過程を 示したフロー図。

【図27】第4の実施例において、紙面記載情報の関連 情報を記録したICチップ入りペーパの内容を認識する 過程を示したフロー図。

【図28】第4の実施例において、入力手段であるボタ ンとICチップからのデータ取得が可能であることを通 知する通知手段を備えたICリーダの一例を示したイメ ージ図。

10

【図29】第4の実施例において、入力手段であるボタ ンとICチップからのデータ取得が可能であることを通 知する通知手段を備えたICリーダの装置構成例を示し たブロック図。

【図30】第4の実施例において、入力手段であるボタ ンとICチップからのデータ取得が可能であることを通 20 知する通知手段を備えた【Cリーダの処理手順を示すフ 口一図。

【図31】第4の実施例において、複数のメディアデー タで構成された関連情報の出力画面の一例を示したイメ ージ図。

【図32】第4の実施例において、複数の電子データか ら構成された、紙面記載情報の関連情報を記録したIC チップの内容の一例を示した図。

【図33】第4の実施例において、複数の電子データか ら構成された、紙面記載情報の関連情報を記録したIC チップ入りペーパの内容を認識する過程を示したフロー 30 図。

【図34】第4の実施例において、ICチップに記録さ れていない外部情報を含む、紙面記載情報の関連情報を 利用する時に用いる装置構成例を示したブロック図。

【図35】第4の実施例において、ICチップに記録さ れていない外部情報を含む、紙面記載情報の関連情報を 記録した【Cチップの内容の一例を示した図。

【図36】第4の実施例において、「Cチップに記録さ れていない外部情報を含む、紙面記載情報の関連情報を 【図20】第3の実施例において、文字コード列入力処 40 記録した I C チップ入りペーパの内容を認識する過程を 示したフロー図。

> 【図37】第4の実施例において、複数の関連情報で構 成された、紙面記載情報の関連情報を記録したICチッ プの内容の一例を示した図。

> 【図38】第4の実施例において、複数の関連情報で構 成された、紙面記載情報の関連情報を記録したICチッ プ入りペーパの内容を認識する過程を示したフロー図。

【図39】第4の実施例において、複数の関連情報ペー ジを選択する手段を含む情報出力装置の出力画面の一例 50 を示したイメージ図。

【図40】第4の実施例において、紙面記載情報の関連 情報と、そのヘッドライン情報を記録したICチップの 内容の一例を示した図。

【図41】第4の実施例において、ヘッドライン情報を 含んだ、紙面記載情報の関連情報を記録した【Cチップ 入りペーパの内容を認識する過程を示したフロー図。

【図42】第5の実施例において、紙面記載の記号に関 する関連情報と位置情報を記録した地図の一例を示すイ メージ図。

【図43】第5の実施例において、地図記載の記号に関 10 示したフロー図。 する関連情報と位置情報を記録した【Cチップの内容の 一例を示した図。

【図44】第5の実施例において、紙面記載の記号に関 する関連情報と位置情報を記録した地図の認識と、情報 出力装置における位置情報の利用の過程を示したフロー 図。

【図45】第6の実施例において、紙面記載の番組に関 する関連情報と番組放映情報を記録した番組表の一例を 示すイメージ図。

【図46】第6の実施例において、番組表記載の番組に 関する関連情報と番組放映情報を記録したICチップの 内容の一例を示した図。

【図47】第6の実施例において、紙面記載の番組に関 する関連情報と番組放映情報を記録した番組表の認識 と、情報出力装置における番組放映情報の利用の過程を

【符号の説明】

1…ICチップ入りペーパ、2…ICチップ入りペーパの紙 部分、3…ICチップ入りペーパのIC部分、10…入力装 置、20…中央処理装置、30…記憶装置、40…出力 装置、50…ICリーダライタ。

【図1】

[図4]

【図2】

【図12】

【図15】

【図11】

【図13】

【図14】

図14

xml version="1.0" encoding="shift_jis"?
<製品仕様>
<メーカ名>日立製作所 メーカ名
<製品名>マイクロコンピュータ 製品名
<型名>HD33221100BP987 型名
〈電源電圧 単位="V">3.3 電源電圧
<動作周波数 単位="MHz">200 動作周波数
<処理速度>
<mips>360</mips>
<flops 単位="G">1.4</flops>
処理速度
<消費電力 単位="W">1.5 消費電力
<価格 単位="円">10000 価格
製品仕様

【図21】

【図31】

【図22】

図22

【図41】

凶41

【図44】

図44

【図43】

四43

【図46】

因46

				6014			
6010 —	関連情報電子データ			番組放映情報			
	レイアウト 情報	文字テータ		チャンネル	開始時刻 6時00分	終了時刻 6時55分	
	6012	<u>6</u>	013	L ₆₀₁₅	L 6016	L 6017	

【図45】

図45

【図47】

四47

フロントページの続き

(51) Int. Cl. 7	識別記号	FI		テーマコード(参考)
G O 9 B 29/	00	B 4 2 D	1/00	F
// B42D 1/	00		11/00	P
11/	00			Q
				Α
		G 0 6 K	19/00	Q

(72)発明者 湯浅 俊之

神奈川県川崎市麻生区王禅寺1099番地 株 式会社日立製作所システム開発研究所内

(72) 発明者 加賀美 晃

神奈川県川崎市麻生区王禅寺1099番地 株 式会社日立製作所システム開発研究所内

Fターム(参考) 2C032 HA01 HA22 HB06 HC05

5B021 AA23 AA30 CC05 CC06 QQ07 5B035 AA13 BA01 BA03 BB09 CA01 5B058 KA01 KA04 KA11 KA31 YA18