UNIVERSITY OF NEVADA LAS VEGAS. DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING LABORATORIES.

CPI	E100L - 1002		Semester:	Spring 2020			
	Document author:	Kristy Nguyen					
	Author's email:	nguyek20@unlv.nevada.edu					
	Document topic:	Postlab 7					
Instructor's comments:							
		Author's email: Document topic:	Document author: Kristy Nguyer Author's email: nguyek20@ur Document topic: Postlab 7	Document author: Kristy Nguyen Author's email: nguyek20@unlv.nevada.ed Document topic: Postlab 7			

1. Introduction / Theory of Operation

Lab 7 is about 2-bit ALU and 7-segment display, where we design 1-bit and 2-bit arithmetic logic units and implement the circuits on the DE2 board. We will also learn how to use DE2's 7-segment display.

2. Prelab Report

My prelab report will be attached with the submission.

3. Results of the Experiments

4. Answer the questions

- 1. Table 1 shows a common anode display, where displaying numerals from 0-9 requires enabling logical high wherever there is a 0 for each respective input.
- 2. In a 1-bit ALU, 00 represents SUM, 10 represents AND, 01 represents OR, and 11 represents XOR. In a 2-bit ALU, the operations are the same, but with more inputs.

5. Conclusions

In this lab, we learned how to implement the 1-bit ALU and 2-bit ALU on the DE0 board. We realized that the 2-bit ALU is simply two 1-bit ALUs, but it was slightly more difficult to demonstrate the 2-bit ALU because we did not remove the inverters on the 1-bit ALU schematic so the 2-bit ALU was being inverted twice for the inputs. Thankfully, due to the TA's understanding, we managed to successfully demonstrate the 2-bit ALU. We learned that different selectors for S0 and S1 allows the ALU to perform different operations such as sum, and, or, and xor.