Combining Datasets: Merge and Join

Pandas' high-speed, in-memory join and merge operations are an invaluable tool. This kind of data interaction should be familiar to anybody who has dealt with databases. We will examine a few instances of how this may operate in reality, with the pd.merge function serving as the primary interface.

For the sake of clarity, let's begin by redefining the show() feature introduced in the prior section:

Relational Algebra

For most databases, the conceptual basis of possible operations is relational algebra, of which the behavior performed in pd.merge() is a subset. The power of the relational algebra method comes from its proposal of numerous fundamental operations that provide the basis for more advanced operations on any dataset. Many very complex composite operations may be carried out using this language of core operations easily implemented in a database or other application.

Many of these key building components are reflected in the pd.merge() function and the associated join() technique of Series and Dataframes that are implemented in Pandas. As you'll see, they make it easy to combine information from several archives.

Categories of Joins

One-to-one joins, many-to-one joins, and many-to-many joins are all supported by the pd.merge() function. The pd.merge() interface is used in the same way for all three join types; the join type used is determined by the data type of the input. We'll start with some basic examples of each of the three merge types before diving into the options in greater depth down below.

One-to-one joins

The one-to-one join is the simplest form of merge expression and it is very similar to the column-wise concatenation seen in Combining Datasets: Concat & Append. Below are two DataFrames that illustrate this concept and each contain information about multiple employees at the same company:

df1

	employee	group
0	Bob	Accounting
1	Jake	Engineering
2	Lisa	Engineering
3	Sue	HR

df2

	employee	hire_date
0	Lisa	2004
1	Bob	2008
2	Jake	2012
3	Sue	2014

To combine this information into a single DataFrame, we can use the pd.merge() function:

```
df3 = pd.merge(df1, df2)
df3
```

	employee	group	hire_date
0	Bob	Accounting	2008
1	Jake	Engineering	2012
2	Lisa	Engineering	2004
3	Sue	HR	2014

The pd.merge() function recognizes that each DataFrame has an "employee" column, and automatically joins using this column as a key. The result of the merge is a new DataFrame that combines the information from the two inputs. Notice that the order of entries in each column is not necessarily maintained: in this case, the order of the "employee" column differs between df1 and df2, and the pd.merge() function correctly accounts for this. Additionally,

keep in mind that the merge in general discards the index, except in the special case of merges by index (see the left index and right index keywords, discussed momentarily).

Many-to-one joins

Many-to-one joins are joins in which one of the two key columns contains duplicate entries. For the many-to-one case, the resulting DataFrame will preserve those duplicate entries as appropriate. Consider the following example of a many-to-one join:

df3

	employee	group	hire_date
0	Bob	Accounting	2008
1	Jake	Engineering	2012
2	Lisa	Engineering	2004
3	Sue	HR	2014

df4

	group	supervisor
0	Accounting	Carly
1	Engineering	Guido
2	HR	Steve

pd.merge(df3, df4)

	employee	group	hire_date	supervisor
0	Bob	Accounting	2008	Carly
1	Jake	Engineering	2012	Guido
2	Lisa	Engineering	2004	Guido
3	Sue	HR	2014	Steve

The resulting DataFrame has an aditional column with the "supervisor" information, where the information is repeated in one or more locations as required by the inputs.

Many-to-many joins

Many-to-many joins are a bit confusing conceptually, but are nevertheless well defined. If the key column in both the left and right array contains duplicates, then the result is a many-to-many merge. This will be perhaps most clear with a concrete example. Consider the following, where we have a DataFrame showing one or more skills associated with a particular group. By

performing a many-to-many join, we can recover the skills associated with any individual person:

df1

	employee	group
0	Bob	Accounting
1	Jake	Engineering
2	Lisa	Engineering
3	Sue	HR

df5

	group	skills
0	Accounting	math
1	Accounting	spreadsheets
2	Engineering	coding
3	Engineering	linux
4	HR	spreadsheets
5	HR	organization

pd.merge(df1, df5)

	employee	group	skills
0	Bob	Accounting	math
1	Bob	Accounting	spreadsheets
2	Jake	Engineering	coding
3	Jake	Engineering	linux
4	Lisa	Engineering	coding
5	Lisa	Engineering	linux
6	Sue	HR	spreadsheets
7	Sue	HR	organization

These three types of joins can be used with other Pandas tools to implement a wide array of functionality. But in practice, datasets are rarely as clean as the one we're working with here. In the following section we'll consider some of the options provided by pd.merge() that enable you to tune how the join operations work.

Specification of the Merge Key

We've already seen the default behavior of pd.merge(): it looks for one or more matching column names between the two inputs, and uses this as the key. However, often the column names will not match so nicely, and pd.merge() provides a variety of options for handling this.

The on keyword

Most simply, you can explicitly specify the name of the key column using the on keyword, which takes a column name or a list of column names:

```
display('df1', 'df2', "pd.merge(df1, df2, on='employee')")
```

df1

	employee	group
0	Bob	Accounting
1	Jake	Engineering
2	Lisa	Engineering
3	Sue	HR

df2

	employee	hire_date
0	Lisa	2004
1	Bob	2008
2	Jake	2012
3	Sue	2014

pd.merge(df1, df2, on='employee')

	employee	group	hire_date
0	Bob	Accounting	2008
1	Jake	Engineering	2012
2	Lisa	Engineering	2004
3	Sue	HR	2014

This option works only if both the left and right DataFrames have the specified column name.

The left on and right on keywords

At times you may wish to merge two datasets with different column names; for example, we may have a dataset in which the employee name is labeled as "name" rather than "employee". In this case, we can use the left on and right on keywords to specify the two column names:

df1

	employee	group
0	Bob	Accounting
1	Jake	Engineering
2	Lisa	Engineering
3	Sue	HR

df3

	name	salary
0	Bob	70000
1	Jake	80000
2	Lisa	120000
3	Sue	90000

pd.merge(df1, df3, left on="employee", right on="name")

	employee	group	name	salary
0	Bob	Accounting	Bob	70000
1	Jake	Engineering	Jake	80000
2	Lisa	Engineering	Lisa	120000
3	Sue	HR	Sue	90000

The result has a redundant column that we can drop if desired—for example, by using the drop() method of DataFrames:

pd.merge(df1, df3, left_on="employee", right_on="name").drop('name',
axis=1)

	employee	group	salary
0	Bob	Accounting	70000
1	Jake	Engineering	80000
2	Lisa	Engineering	120000

	employee	group	salary
3	Sue	HR	90000

The left_index and right_index keywords

Sometimes, rather than merging on a column, you would instead like to merge on an index. For example, your data might look like this:

```
dfla = dfl.set_index('employee')
df2a = df2.set_index('employee')
display('df1a', 'df2a')
```

df1a

	group
employee	
Bob	Accounting
Jake	Engineering
Lisa	Engineering
Sue	HR

df2a

	hire_date
employee	
Lisa	2004
Bob	2008
Jake	2012
Sue	2014

You can use the index as the key for merging by specifying the <code>left_index</code> and/or right index flags in pd.merge():

df1a

	group
employee	
Bob	Accounting
Jake	Engineering
Lisa	Engineering
Sue	HR

df2a

	hire_date
employee	
Lisa	2004
Bob	2008
Jake	2012
Sue	2014

pd.merge(df1a, df2a, left_index=True, right_index=True)

	group	hire_date
employee		
Lisa	Engineering	2004
Bob	Accounting	2008
Jake	Engineering	2012
Sue	HR	2014

For convenience, DataFrames implement the join() method, which performs a merge that defaults to joining on indices:

```
display('df1a', 'df2a', 'df1a.join(df2a)')
```

df1a

	group
employee	
Bob	Accounting
Jake	Engineering
Lisa	Engineering
Sue	HR

df2a

	hire_date
employee	
Lisa	2004
Bob	2008
Jake	2012
Sue	2014

dfla.join(df2a)

	group	hire_date
employee		
Bob	Accounting	2008
Jake	Engineering	2012
Lisa	Engineering	2004
Sue	HR	2014

If you'd like to mix indices and columns, you can combine <code>left_index</code> with <code>right_on</code> or <code>left_on</code> with <code>right_index</code> to get the desired behavior:

```
display('df1a', 'df3', "pd.merge(df1a, df3, left_index=True,
right_on='name')")
```

df1a

	group
employee	
Bob	Accounting
Jake	Engineering
Lisa	Engineering
Sue	HR

df3

	name	salary
0	Bob	70000
1	Jake	80000
2	Lisa	120000
3	Sue	90000

pd.merge(df1a, df3, left_index=True, right_on='name')

	group	name	salary
0	Accounting	Bob	70000
1	Engineering	Jake	80000
2	Engineering	Lisa	120000
3	HR	Sue	90000

Specifying Set Arithmetic for Joins

In all the preceding examples we have glossed over one important consideration in performing a join: the type of set arithmetic used in the join. This comes up when a value appears in one key column but not the other. Consider this example:

df6

	name	food
0	Peter	fish
1	Paul	beans
2	Mary	bread

df7

	name	drink
0	Mary	wine
1	Joseph	beer

pd.merge(df6, df7)

	name	food	drink
0	Mary	bread	wine

Here we have merged two datasets that have only a single "name" entry in common: Mary. By default, the result contains the *intersection* of the two sets of inputs; this is what is known as an *inner join*. We can specify this explicitly using the how keyword, which defaults to "inner":

```
pd.merge(df6, df7, how='inner')
```

	name	food	drink
0	Mary	bread	wine

Other options for the how keyword are 'outer', 'left', and 'right'. An *outer join* returns a join over the union of the input columns, and fills in all missing values with NAs:

```
display('df6', 'df7', "pd.merge(df6, df7, how='outer')")
```

df6

	name	food
0	Peter	fish
1	Paul	beans
2	Mary	bread

df7

	name	drink
0	Mary	wine
1	Joseph	beer

pd.merge(df6, df7, how='outer')

	name	food	drink
0	Peter	fish	NaN
1	Paul	beans	NaN
2	Mary	bread	wine
3	Joseph	NaN	beer

The *left join* and *right join* return joins over the left entries and right entries, respectively. For example:

```
display('df6', 'df7', "pd.merge(df6, df7, how='left')")
```

df6

	name	food
0	Peter	fish
1	Paul	beans
2	Mary	bread

df7

	name	drink
0	Mary	wine
1	Joseph	beer

pd.merge(df6, df7, how='left')

	name	food	drink
0	Peter	fish	NaN
1	Paul	beans	NaN
2	Mary	bread	wine

The output rows now correspond to the entries in the left input. Using how='right' works in a similar manner.

All of these options can be applied straightforwardly to any of the preceding join types.

Overlapping Column Names: The suffixes Keyword

Finally, you may end up in a case where your two input DataFrames have conflicting column names. Consider this example:

df8

	name	rank
0	Bob	1
1	Jake	2
2	Lisa	3
3	Sue	4

df9

	name	rank
0	Bob	3
1	Jake	1
2	Lisa	4
3	Sue	2

pd.merge(df8, df9, on="name")

	name	rank_x	rank_y
0	Bob	1	3
1	Jake	2	1
2	Lisa	3	4
3	Sue	4	2

Because the output would have two conflicting column names, the merge function automatically appends a suffix $_x$ or $_y$ to make the output columns unique. If these defaults are inappropriate, it is possible to specify a custom suffix using the suffixes keyword:

```
display('df8', 'df9', 'pd.merge(df8, df9, on="name", suffixes=["_L", "_R"])')
```

df8

	name	rank
0	Bob	1
1	Jake	2
2	Lisa	3
3	Sue	4

df9

	name	rank
0	Bob	3
1	Jake	1
2	Lisa	4
3	Sue	2

pd.merge(df8, df9, on="name", suffixes=[" L", " R"])

	name	rank_L	rank_R
0	Bob	1	3
1	Jake	2	1
2	Lisa	3	4
3	Sue	4	2

These suffixes work in any of the possible join patterns, and work also if there are multiple overlapping columns.

.

Example: US States Data

Merge and join operations come up most often when combining data from different sources. Here we will consider an example of some data about US states and their populations.

Let's take a look at the three datasets, using the Pandas read csv() function:

```
pop = pd.read_csv('data/state-population.csv')
areas = pd.read_csv('data/state-areas.csv')
abbrevs = pd.read_csv('data/state-abbrevs.csv')
display('pop.head()', 'areas.head()', 'abbrevs.head()')
pop.head()
```

	state/region	ages	year	population
0	AL	under18	2012	1117489.0
1	AL	total	2012	4817528.0
2	AL	under18	2010	1130966.0
3	AL	total	2010	4785570.0
4	AL	under18	2011	1125763.0

areas.head()

	state	area (sq. mi)
0	Alabama	52423
1	Alaska	656425
2	Arizona	114006
3	Arkansas	53182
4	California	163707

abbrevs.head()

	state	abbreviation
0	Alabama	AL
1	Alaska	AK
2	Arizona	AZ
3	Arkansas	AR
4	California	CA

Given this information, say we want to compute a relatively straightforward result: rank US states and territories by their 2010 population density. We clearly have the data here to find this result, but we'll have to combine the datasets to find the result.

We'll start with a many-to-one merge that will give us the full state name within the population DataFrame. We want to merge based on the state/region column of pop, and the abbreviation column of abbrevs. We'll use how='outer' to make sure no data is thrown away due to mismatched labels.

	state/region	ages	year	population	state
0	AL	under18	2012	1117489.0	Alabama
1	AL	total	2012	4817528.0	Alabama
2	AL	under18	2010	1130966.0	Alabama
3	AL	total	2010	4785570.0	Alabama
4	AL	under18	2011	1125763.0	Alabama

Let's double-check whether there were any mismatches here, which we can do by looking for rows with nulls:

```
merged.isnull().any()
state/region False
ages False
year False
population True
state True
dtype: bool
```

Some of the population info is null; let's figure out which these are!

merged[merged['population'].isnull()].head()

	state/region	ages	year	population	state
2448	PR	under18	1990	NaN	NaN
2449	PR	total	1990	NaN	NaN
2450	PR	total	1991	NaN	NaN
2451	PR	under18	1991	NaN	NaN
2452	PR	total	1993	NaN	NaN

It appears that all the null population values are from Puerto Rico prior to the year 2000; this is likely due to this data not being available from the original source.

More importantly, we see also that some of the new state entries are also null, which means that there was no corresponding entry in the abbrevs key! Let's figure out which regions lack this match:

```
merged.loc[merged['state'].isnull(), 'state/region'].unique()
array(['PR', 'USA'], dtype=object)
```

We can quickly infer the issue: our population data includes entries for Puerto Rico (PR) and the United States as a whole (USA), while these entries do not appear in the state abbreviation key. We can fix these quickly by filling in appropriate entries:

```
merged.loc[merged['state/region'] == 'PR', 'state'] = 'Puerto Rico'
merged.loc[merged['state/region'] == 'USA', 'state'] = 'United States'
merged.isnull().any()
state/region    False
ages         False
year         False
population         True
state         False
dtype: bool
```

No more nulls in the state column: we're all set!

Now we can merge the result with the area data using a similar procedure. Examining our results, we will want to join on the state column in both:

final = pd.merge(merged, areas, on='state', how='left')
final.head()

	state/region	ages	year	population	state	area (sq. mi)
0	AL	under18	2012	1117489.0	Alabama	52423.0
1	AL	total	2012	4817528.0	Alabama	52423.0
2	AL	under18	2010	1130966.0	Alabama	52423.0
3	AL	total	2010	4785570.0	Alabama	52423.0
4	AL	under18	2011	1125763.0	Alabama	52423.0

Again, let's check for nulls to see if there were any mismatches:

```
final.isnull().any()
state/region False
ages False
year False
population True
state False
area (sq. mi) True
dtype: bool
```

There are nulls in the area column; we can take a look to see which regions were ignored here:

```
final['state'][final['area (sq. mi)'].isnull()].unique()
array(['United States'], dtype=object)
```

We see that our areas DataFrame does not contain the area of the United States as a whole. We could insert the appropriate value (using the sum of all state areas, for instance), but in this case we'll just drop the null values because the population density of the entire United States is not relevant to our current discussion:

```
final.dropna(inplace=True)
final.head()
```

	state/region	ages	year	population	state	area (sq. mi)
0	AL	under18	2012	1117489.0	Alabama	52423.0
1	AL	total	2012	4817528.0	Alabama	52423.0
2	AL	under18	2010	1130966.0	Alabama	52423.0
3	AL	total	2010	4785570.0	Alabama	52423.0
4	AL	under18	2011	1125763.0	Alabama	52423.0

Now we have all the data we need. To answer the question of interest, let's first select the portion of the data corresponding with the year 2000, and the total population. We'll use the query() function to do this quickly (this requires the numexpr package to be installed)

```
data2010 = final.query("year == 2010 & ages == 'total'")
data2010.head()
```

	state/region	ages	year	population	state	area (sq. mi)
3	AL	total	2010	4785570.0	Alabama	52423.0
91	AK	total	2010	713868.0	Alaska	656425.0
101	AZ	total	2010	6408790.0	Arizona	114006.0
189	AR	total	2010	2922280.0	Arkansas	53182.0
197	CA	total	2010	37333601.0	California	163707.0

Now let's compute the population density and display it in order. We'll start by re-indexing our data on the state, and then compute the result:

```
data2010.set_index('state', inplace=True)
density = data2010['population'] / data2010['area (sq. mi)']
density.sort_values(ascending=False, inplace=True)
density.head()
state
District of Columbia 8898.897059
Puerto Rico 1058.665149
New Jersey 1009.253268
Rhode Island 681.339159
Connecticut 645.600649
dtype: float64
```

The result is a ranking of US states plus Washington, DC, and Puerto Rico in order of their 2010 population density, in residents per square mile. We can see that by far the densest region in this dataset is Washington, DC (i.e., the District of Columbia); among states, the densest is New Jersey.

We can also check the end of the list:

```
density.tail()
state
South Dakota 10.583512
North Dakota 9.537565
Montana 6.736171
Wyoming 5.768079
Alaska 1.087509
```

dtype: float64

We see that the least dense state, by far, is Alaska, averaging slightly over one resident per square mile.

This type of messy data merging is a common task when trying to answer questions using real-world data sources. I hope that this example has given you an idea of the ways you can combine tools we've covered in order to gain insight from your data!