MA1214 Sheet 6

- (1) The quaternion group Q_8 has elements $\pm 1, \pm i, \pm j, \pm k$. The elements -1 and 1 (the unit) commute with everything, $(-1)^2 = 1$, (-1)i = -i, (-1)(-i) = i and the same for j and k. Furthermore, $i^2 = j^2 = k^2 = ijk = -1$.
 - (i) Compute the products ij, ji, ik, ki, jk, kj.
 - (ii) Is Q_8 isomorphic to the dihedral group D_8 ? Explain your answer.
- (2) Compute the Cayley table of \mathbb{Z}_{12}^* .
- (3) Partition the following list into isomorphism classes.
 - (a) The Klein four group $V_4 = \{1, a, b, c\}$ where $a^2 = b^2 = c^2 = 1$.
 - (b) \mathbb{Z}_4 .
 - (c) \mathbb{Z}_{12}^* .
 - (d) $\mathbb{Z}_2 \times \mathbb{Z}_2$.
- (4) Use the extended Euclidean algorithm to find integers $r, s \in \mathbb{Z}$ with $r*125+s*23 = \gcd(125, 23)$. Deduce that 23 is invertible modulo 125 and find its inverse.