Ideas

Simon Pohmann

April 8, 2022

1 (d, ϵ) -structures

Let p be a prime. Consider the category EC defined by

$$Ob(EC) := \{E \text{ elliptic curve over } \mathbb{F}_{p^2}\}$$
$$Hom_{EC}(E, E') := \{\psi : E \to E' \text{ isogeny}\}$$

Have a functor

and a functor

$$\hat{\cdot}: EC \to EC^{op}, E \mapsto E, \phi \mapsto \hat{\phi}$$

 (d,ϵ) -structures and their isogenies are given by the category $\mathrm{ES}_{d,\epsilon}$ defined by

$$Ob(ES) := \{ (E, \psi) \mid E \in EC, \ \psi : E \to E^{(p)}, \ \hat{\psi} = \epsilon \psi^{(p)} \}$$

$$Hom_{ES}((E, \psi), (E', \psi')) := \{ \phi : E \to E' \mid \psi' \circ \phi = \phi^{(p)} \circ \psi \}$$

2 j-invariant and modular polynomials

Consider the j-invariant

$$j:\mathcal{H}\to\mathbb{C}$$

that assigns to a complex elliptic curve given by a lattice $\mathcal{L}\{\tau,1\}$ its j-invariant $j(\tau)$. Then it is a fact that for $N \in \mathbb{N}$ the map

$$j_N: \mathcal{H} \to \mathbb{C}, \quad \tau \mapsto j(N\tau)$$

is algebraic over $\mathbb{C}(j)$ and its minimal polynomial is $\Phi_N(X,j)$. This Φ_N is called modular polynomial, and we have $\Phi_N \in \mathbb{Q}[X,Y]$ and furthermore $\Phi_N(X,Y) = \Phi_N(Y,X)$.

Furthermore, it holds that

$$\Phi_N(j(E), j(E')) = 0$$

for any E' such that there is an N-isogeny $E \to E'$ (No idea how to prove that). We see then that for all primes p, have

$$\Phi_N(j(E), j(E')) = 0$$

for elliptic curves E, E' defined over $\overline{\mathbb{F}}_p$ such that there is an N-isogeny $E \to E'$. This shows that if we have a (d, ϵ) -structure (E, ψ) then

$$\Phi_d(j(E), j(E^{(p)})) = \Phi_d(j(E), j(E)^p) = 0$$

as there is the *d*-isogeny $\psi: E \to E^{(p)}$.

2.1 Supersingularity Polynomials

Let p be prime and consider

$$K = \mathbb{F}_p(A, B)$$
 and $E: z = w^3 + Awz^2 + Bz^3$

Now consider the local ring R = K[t] and the subring (in fact ideal) $R_t := tR$. Have

$$E(R_t) := E(R) \cap \mathbb{P}^2_{R_t} = \{ (t, \omega(t)) \mid t \in R \}$$

where $\omega \in R_t$.

Now we analyse the group law * on $E(R_t)$ given by

$$(u * v, \underline{\hspace{1ex}}) := (u, \omega(u)) +_E (v, \omega(v))$$

As e.g. discussed in Silverman, have

$$u * v = F(u, v)$$

where

$$\begin{split} F := -T - S - \frac{2A\lambda(T,S)\nu(T,S) + 3B\lambda(T,S)^2\nu(T,S)}{1 + A\lambda(T,S)^2 + B\lambda(T,S)^3} \in K[\![T,S]\!], \\ \lambda := \frac{\omega(T) - \omega(S)}{T - S} \in K[\![T,S]\!], \\ \nu := \omega(T) - \lambda(T,S)T \in K[\![T,S]\!] \end{split}$$

Note that F is a power series in T, S and so we can evaluate F(u, v) in R_t as for $u, v \in R_t$ have that $|u|_t, |v|_t < 1$ have small t-adic valuation, so F(u, v) converges.

Slightly different approach

Assume $x_1 = x, x_2 = \dots$ and

$$x_{n+1} = -x_n - x + \frac{q(x_n) + q(x) + 2yy_n}{(x_n - x)^2}$$

Polynomial division yields

$$x_{n+1} = -x_n - x + x_n + 2x + \frac{(A+x^2)x_n - x^3 + Ax + 2B + 2yy_n}{(x_n - x)^2}$$
$$= x + \frac{(A+x^2)x_n - x^3 + Ax + 2B + 2yy_n}{(x_n - x)^2}$$

Substituting $w_n = x_n - x$ yields

$$w_{n+1} = \frac{(A+x^2)w_n + 2Ax + 2B + 2yy_n}{w_n^2} = \frac{A+x^2}{w_n} + \frac{2Ax + 2B}{w_n^2} + \frac{2yy_n}{w_n^2}$$