CS 228 : Logic in Computer Science

Krishna, S

Given FO formula φ over an alphabet Σ, construct an edge labeled graph G_φ: a graph whose edges are labeled by Σ.

Given FO formula φ over an alphabet Σ, construct an edge labeled graph G_φ: a graph whose edges are labeled by Σ.

Each path in the graph gives rise to a word over Σ , obtained by reading off the labels on the edges

Given FO formula φ over an alphabet Σ, construct an edge labeled graph Gφ: a graph whose edges are labeled by Σ.

- Each path in the graph gives rise to a word over Σ , obtained by reading off the labels on the edges
- G_{ω} has some special kinds of vertices
 - ► There is a unique vertex called the start vertex (blue vertex)
 - ► There are some vertices called good vertices (magenta vertex)

Given FO formula φ over an alphabet Σ, construct an edge labeled graph Gφ: a graph whose edges are labeled by Σ.

- Each path in the graph gives rise to a word over Σ , obtained by reading off the labels on the edges
- G_{ω} has some special kinds of vertices
 - ► There is a unique vertex called the start vertex (blue vertex)
 - ► There are some vertices called good vertices (magenta vertex)
- ▶ Read off words on paths from the start vertex to any final vertex and call this set of words $L(G_{\omega})$
- ▶ Ensure that G_{φ} is constructed such that $L(\varphi) = L(G_{\varphi})$.

Languages, Machines and Logic

A language $L \subseteq \Sigma^*$ is called regular iff there exists some DFA A such that L = L(A).

Languages, Machines and Logic

A language $L \subseteq \Sigma^*$ is called regular iff there exists some DFA A such that L = L(A).

A language $L \subseteq \Sigma^*$ is called FO-definable iff there exists an FO formula φ such that $L = L(\varphi)$.

What we plan to show: L is FO-definable $\Rightarrow L$ is regular. Note that the converse is not true.

3/44

Every state on every symbol goes to a unique state

- Every state on every symbol goes to a unique state
 - $\delta: Q \times \Sigma \to Q$ is a transition function
- ▶ Given a string $w \in \Sigma^*$ and a state $q \in Q$, iteratively apply δ

- Every state on every symbol goes to a unique state
 - $\delta: Q \times \Sigma \to Q$ is a transition function
- ▶ Given a string $w \in \Sigma^*$ and a state $q \in Q$, iteratively apply δ
 - $\mathbf{w} = aab$
 - $\delta(q,a)=q_1,$

- Every state on every symbol goes to a unique state
 - $\delta: Q \times \Sigma \rightarrow Q$ is a transition function
- ▶ Given a string $w \in \Sigma^*$ and a state $q \in Q$, iteratively apply δ
 - \triangleright w = aab
 - $\delta(q, a) = q_1, \, \delta(\delta(q, a), a) = \delta(q_1, a) = q_2,$

- Every state on every symbol goes to a unique state
 - $\delta: Q \times \Sigma \to Q$ is a transition function
- ▶ Given a string $w \in \Sigma^*$ and a state $q \in Q$, iteratively apply δ
 - w = aab
 - $\delta(q, a) = q_1, \, \delta(\delta(q, a), a) = \delta(q_1, a) = q_2,$ $\delta(\delta(\delta(q, a), a), b) =$

- Every state on every symbol goes to a unique state
 - $\delta: Q \times \Sigma \to Q$ is a transition function
- ▶ Given a string $w \in \Sigma^*$ and a state $q \in Q$, iteratively apply δ
 - $\mathbf{w} = aab$
 - $\delta(q, a) = q_1, \, \delta(\delta(q, a), a) = \delta(q_1, a) = q_2, \\ \delta(\delta(\delta(q, a), a), b) = \delta(\delta(q_1, a), b) = \delta(\delta(\delta(q_1, a), a), b) = \delta(\delta(q_1, a), a) = \delta(\delta(q_1, a),$

- Every state on every symbol goes to a unique state
 - $\delta: Q \times \Sigma \to Q$ is a transition function
- ▶ Given a string $w \in \Sigma^*$ and a state $q \in Q$, iteratively apply δ
 - \triangleright w = aab
 - $\delta(q, a) = q_1, \, \delta(\delta(q, a), a) = \delta(q_1, a) = q_2,$ $\delta(\delta(\delta(q, a), a), b) = \delta(\delta(q_1, a), b) = \delta(q_2, b) = q_3$

- Every state on every symbol goes to a unique state
 - $\delta: Q \times \Sigma \to Q$ is a transition function
- ▶ Given a string $w \in \Sigma^*$ and a state $q \in Q$, iteratively apply δ
 - w = aab
 - $\delta(q, a) = q_1, \, \delta(\delta(q, a), a) = \delta(q_1, a) = q_2,$ $\delta(\delta(\delta(q, a), a), b) = \delta(\delta(q_1, a), b) = \delta(q_2, b) = q_3$
 - $\hat{\delta}: Q \times \Sigma^* \to Q$ extension of δ to strings
 - $\hat{\delta}(q,\epsilon) = q$
 - $\hat{\delta}(q, wa) = \delta(\hat{\delta}(q, w), a)$

DFA: Transition Function on Words

DFA: Transition Function on Words

- $\delta(q, wa) = s = \delta(\hat{\delta}(q, w), a) = \delta(r, a)$
- $\hat{\delta}(q, wb) = t = \delta(\hat{\delta}(q, w), b) = \delta(r, b)$

DFA Acceptance

- $w \in \Sigma^*$ is accepted iff $\hat{\delta}(q_0, w) \in F$
- $w \in \Sigma^*$ is rejected iff $\hat{\delta}(q_0, w) \notin F$

DFA Acceptance

- $w \in \Sigma^*$ is accepted iff $\hat{\delta}(q_0, w) \in F$
- $w \in \Sigma^*$ is rejected iff $\hat{\delta}(q_0, w) \notin F$
- ▶ Any string $w \in \Sigma^*$ is either accepted or rejected by a DFA A

DFA Acceptance

- $w \in \Sigma^*$ is accepted iff $\hat{\delta}(q_0, w) \in F$
- $w \in \Sigma^*$ is rejected iff $\hat{\delta}(q_0, w) \notin F$
- ▶ Any string $w \in \Sigma^*$ is either accepted or rejected by a DFA A
- $L(A) = \{ w \in \Sigma^* \mid \hat{\delta}(q_0, w) \in F \}$
- $\blacktriangleright \ \Sigma^* = L(A) \cup \overline{L(A)}$

▶ $L = \{w \in \{a, b\}^* \mid |w|_a \text{ is odd and } |w|_b \text{ is even}\}$

- ▶ $L = \{w \in \{a, b\}^* \mid |w|_a \text{ is odd and } |w|_b \text{ is even}\}$
- ▶ Show that for any $w \in \Sigma^*$,
 - $\hat{\delta}(q_{00}, w) = q_{ij}$ with $i, j \in \{0, 1\}$, parity of i same as $|w|_a$ and parity of j same as $|w|_b$

► Prove by induction on |w|

- ► Prove by induction on |w|
- ▶ Base case : For $|w| = \epsilon$, $\hat{\delta}(q_{00}, \epsilon) = q_{00}$

- ▶ Prove by induction on |w|
- ▶ Base case : For $|w| = \epsilon$, $\hat{\delta}(q_{00}, \epsilon) = q_{00}$
- ▶ Assume the claim for $x \in \Sigma^*$, and show it for $xc, c \in \{a, b\}$.

9/44

- $\hat{\delta}(q_{00},xc) = \delta(\hat{\delta}(q_{00},x),c)$
- By induction hypothesis, $\hat{\delta}(q_{00}, x) = q_{ij}$ iff
 - parity of *i* and $|x|_a$ are the same
 - ▶ parity of j and $|x|_b$ are the same

- ► Case Analysis : If $|x|_a$ odd and $|x|_b$ even, then i = 1, j = 0
 - $\delta(q_{10},a) = q_{00}, \delta(q_{10},b) = q_{11}$
 - ▶ $|xa|_a$ is even and $|xa|_b$ is even
 - ▶ $|xb|_a$ is odd and $|xb|_b$ is odd
- Other Cases : Similar
- $\hat{\delta}(q_{00},x)=q_{10}$ iff $|x|_a$ odd and $|x|_b$ even

Closure Properties : DFA

Closure under Complementation

- ▶ If *L* is regular, so is \overline{L}
 - Let $A = (Q, q_0, \Sigma, \delta, F)$ be the DFA such that L = L(A)
 - For every $w \in L$, $\hat{\delta}(q_0, w) = f$ for some $f \in F$
 - ▶ For every $w \notin L$, $\hat{\delta}(q_0, w) = q$ for some $q \notin F$
 - ▶ Construct $\overline{A} = (Q, q_0, \Sigma, \delta, Q F)$
 - $w \in L(\overline{A})$ iff $\hat{\delta}(q_0, w) \in Q F$ iff $w \notin L(A)$
 - $L(\overline{A}) = L(\overline{A})$

aaab

aaab

► aaab

► aaab

17/4

▶ aaab

aabba

aabba

aabba

► aabba

► aabba

► aabba

- $A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$
- $A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)$
- A = (Q₁ × Q₂, Σ, δ, (q₀, s₀), F),
 - $\delta((q,s),a) = (\delta_1(q,a),\delta_2(s,a))$
 - $F = F_1 \times F_2$

- $A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$
- $A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)$
- $A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),$
 - $\delta((q,s),a) = (\delta_1(q,a),\delta_2(s,a))$
 - $F = F_1 \times F_2$
- ▶ Show that for all $x \in \Sigma^*$, $\hat{\delta}((p,q),x) = (\hat{\delta}_1(p,x), \hat{\delta}_2(q,x))$

$$x \in L(A)$$
 iff $\hat{\delta}((q_0, s_0), x) \in F$

 $\blacktriangleright A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$

```
► A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)

► A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),

► \delta((q, s), a) = (\delta_1(q, a), \delta_2(s, a))

► F = F_1 \times F_2

► Show that for all x \in \Sigma^*, \hat{\delta}((p, q), x) = (\hat{\delta}_1(p, x), \hat{\delta}_2(q, x))

x \in L(A) iff \hat{\delta}((q_0, s_0), x) \in F iff (\hat{\delta}_1(q_0, x), \hat{\delta}_2(s_0, x)) \in F_1 \times F_2
```

 $\blacktriangleright A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$

```
▶ A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)

▶ A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),

▶ \delta((q, s), a) = (\delta_1(q, a), \delta_2(s, a))

▶ F = F_1 \times F_2

▶ Show that for all x \in \Sigma^*, \hat{\delta}((p, q), x) = (\hat{\delta}_1(p, x), \hat{\delta}_2(q, x))

x \in L(A) iff \hat{\delta}((q_0, s_0), x) \in F iff (\hat{\delta}_1(q_0, x), \hat{\delta}_2(s_0, x)) \in F_1 \times F_2 iff \hat{\delta}_1(q_0, x) \in F_1 and \hat{\delta}_2(s_0, x) \in F_2
```

```
A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)
A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)
```

- $A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),$
 - $\delta((q,s),a) = (\delta_1(q,a),\delta_2(s,a))$

$$F = F_1 \times F_2$$

▶ Show that for all $x \in \Sigma^*$, $\hat{\delta}((p,q),x) = (\hat{\delta_1}(p,x), \hat{\delta_2}(q,x))$

$$x \in L(A) \text{ iff } \hat{\delta}((q_0, s_0), x) \in F \text{ iff } (\hat{\delta}_1(q_0, x), \hat{\delta}_2(s_0, x)) \in F_1 \times F_2 \text{ iff } \hat{\delta}_1(q_0, x) \in F_1 \text{ and } \hat{\delta}_2(s_0, x) \in F_2 \text{ iff } x \in L(A_1) \text{ and } x \in L(A_2)$$

Closure under Union

- $A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$
- $A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)$
- ▶ $A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),$
 - $\delta((q,s),a) = (\delta_1(q,a),\delta_2(s,a))$

Closure under Union

- $A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$
- $A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)$
- $A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),$
 - $\delta((q,s),a) = (\delta_1(q,a),\delta_2(s,a))$
 - $F = (F_1 \times Q_2) \cup (Q_1 \times F_2)$
- ▶ Show that for all $x \in \Sigma^*$, $\hat{\delta}((p,q),x) = (\hat{\delta_1}(p,x), \hat{\delta_2}(q,x))$

$$x \in L(A)$$
 iff $x \in L(A_1)$ or $x \in L(A_2)$

Moving on to Non-determinism

- We looked at DFA
- ▶ Showed closure under union, intersection and complementation
- Before we examine closure under concatenation, we look at a more relaxed model, which is as good as a DFA

- Assume we relax the condition on transitions, and allow
 - ▶ $\delta: Q \times \Sigma \rightarrow 2^Q$
 - $\delta(q_0, a) = \{q_0, q_1\}, \delta(q_2, a) = \emptyset$

- Assume we relax the condition on transitions, and allow
 - ▶ $\delta: Q \times \Sigma \rightarrow 2^Q$
 - $\delta(q_0, a) = \{q_0, q_1\}, \delta(q_2, a) = \emptyset$
 - ► Is *aabb* accepted?

- Assume we relax the condition on transitions, and allow
 - $\delta: Q \times \Sigma \rightarrow 2^Q$
 - $\delta(q_0, a) = \{q_0, q_1\}, \delta(q_2, a) = \emptyset$
 - ▶ Is aabb accepted?

One run of aabb

Is aabb accepted?

One run of aabb

One run of aabb

Is aabb accepted?

► A non-accepting run for *aabb*

Is aabb accepted?

► A non-accepting run for *aabb*

Is aaab accepted?

► A non-accepting run for aaab

Is aaab accepted?

Is aaab accepted?

► An accepting run for aaab

Nondeterministic Finite Automata(NFA)

- \triangleright $N = (Q, \Sigma, \delta, Q_0, F)$
 - Q is a finite set of states
 - ▶ $Q_0 \subseteq Q$ is the set of initial states
 - $\delta: Q \times \Sigma \to 2^Q$ is the transition function
 - ▶ $F \subseteq Q$ is the set of final states
- Acceptance condition: A word w is accepted iff it has atleast one accepting path