Chapitre 2 : Étude de fonctions polynomiales du second degré

Premières Spécialité Mathématiques

1 Rappel: Fonctions affines

Définition 1. Une fonction affine est une fonction f définie sur \mathbb{R} telle que pour tout $x \in \mathbb{R}$:

$$f(x) = ax + b$$

avec $a \neq 0$ et b deux réels.

Le réel a est appelé coefficient directeur de f.

Le réel b est appelé ordonnée à l'origine de f.

Remarque. Quand b = 0, c'est-à-dire quand f(x) = ax, on dit que la fonction est **linéaire**.

Proposition 1. Soit $f: x \mapsto ax + b$ une fonction affine avec $a \neq 0$ et b deux nombres réels; et (O; I; J) un repère orthonormée. Alors, la courbe représentative de f dans ce repère est une droite.

Proposition 2. Soit (O; I; J) un repère orthonormée, et f une fonction définie sur \mathbb{R} dont la courbe représentative est une droite. Alors, f est une fonction affine telle que f(x) = ax + b pour tout $x \in \mathbb{R}$ où :

- son coefficient directeur a est donnée par la pente de la droite;
- son ordonnée à l'origine b est l'ordonnée du point de la droite d'abscisse 0.

Exercice 1. Sur le repère (0; I; J) ci-contre, on a tracé la courbe représentative de deux fonctions affines f et g.

En déduire l'expression algébrique de f et g.

Proposition 3. Soit $f: x \mapsto ax + b$ une fonction affine, et $x_1 < x_2$ deux réels distincts. Alors,

$$a = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$
 et $b = f(x_1) - ax_1$

Proposition 4. Soit $f: x \mapsto ax + b$ une fonction affine.

- Si a < 0, alors f est décroissante sur \mathbb{R} .
- Si a > 0, alors f est croissante sur \mathbb{R} .

Méthode 1. Pour dresser le tableau de signes d'une fonction affine $f: x \mapsto ax + b$, il faut :

- 1. Déterminer l'antécédant de 0 de f, autrement dit, trouver x tel que ax+b=0 :
- 2. Le tableau de signes s'obtient en suivant la variation de la fonction, autrement dit, cela dépend du signe de a

Exercice 2. Dresser le tableau de signes des fonctions trouvées dans l'exercice 1.

2 Fonction polynomiale du second degré

Définition 2. Une fonction polynomiale du second degré est une fonction f définie sur les réels qui à tout nombre x associe un réel f(x) de la forme :

$$ax^2 + bx + c$$

où a, b et c sont des réels avec $a \neq 0$.

Remarque. L'hypothèse $a \neq 0$ est essentielle, sinon la fonction est polynomiale de degré au plus 1.

On trace la courbe représentative de deux fonctions polynomiales du second degré : une avec a>0 et une avec a<0.

Définition 3. Soit f une fonction polynomiale de degré 2. Sa courbe représentative est appelée une **parabole**.

Proposition 5. Soit f une fonction polynomiale de degré 2. telle que $f(x) = ax^2 + bx + c$. Alors :

- Si a > 0, il existe une valeur de x, notée x_m telle que f est décroissante sur $]-\infty; x_m]$ et croissante sur $[x_m; +\infty[$
- Si a < 0, il existe une valeur de x, notée x_M telle que f est croissante sur $]-\infty; x_M]$ et décroissante sur $[x_M; +\infty[$

Remarque.

- Dans le cas a > 0, les « branches de la paraboles sont tournées vers le haut ». Dans le cas contraire (a < 0), elles sont « tournées vers le bas ».
- Dans le cas a > 0, f admet un unique minimum, et ce minimum est atteint en x_m . Dans le cas contraire (a < 0), f admet un maximum, et ce maximum est atteint en x_M .

3 Recherche de l'extremum

3.1 Forme canonique

Proposition 6. Soit f une fonction polynomiale du second degré telle que $f(x) = ax^2 + bx + c$. Alors il existe α et β tel que

$$f(x) = a(x - \alpha)^2 + \beta$$

Remarque. Dans ce cas, $\alpha = \frac{-b}{2a}$ et $\beta = f(\alpha)$.

Exemple. Soit l'expression polynomiale du second degré $-x^2 + 2x - 5$. Déterminer sa forme canonique.

Méthode 2 (Par identification).

Méthode 3 (En utilisant les développements limités).

3.2 Extremum

Proposition 7. Soit une fonction polynomiale du second degré $f: x \mapsto ax^2 + bx + c$. On suppose que $f(x) = a(x - \alpha)^2 + \beta$ pour tout x réel. Alors, f admet un extremum qu'il atteint en α et ayant pour valeur β .

Remarque. Comme dit précédemment, si a > 0, alors f admet un minimum qu'il attent en $\alpha = \frac{-b}{2a}$. Sinon, si a < 0, alors f admet un maximum qu'il atteint en $\alpha = \frac{-b}{2a}$. Dans les deux cas, cet extremum vaut $\beta = f(\alpha)$.

Exemple. Soit la fonction polynomiale $g: x \mapsto 4x^2 + 32x - 5$.

- a) Cette fonction admet-elle un minimum ou un maximum?
- b) En quelle valeur cet extremum est-il atteint?
- c) Que vaut cet extremum?

Proposition 8. Soit $f: x \mapsto ax^2 + bx + c$ une fonction polynomiale du second degré. On suppose que $f(x) = a(x - \alpha)^2 + \beta$. Alors la courbe représentative C_f est une parabole admettant comme axe de symétrie la droite $x = \alpha$.

Exemple. Soit $f: x \mapsto x^2 - 2x + 1$. Alors f admet un minimum (car a > 0) atteint en $\alpha = -\frac{b}{2a} = -\frac{-2}{2} = 1$. Alors C_f admet la droite x = 1 comme axe de symétrie.

4 Racines

4.1 Définition

Définition 4. Soit f une fonction. On appelle **racine** de la fonction f un nombre r tel que f(r) = 0.

Exemple. Vérifier que $r_1 = 1$ et $r_2 = -3$ sont deux racines de la fonction $f: x \mapsto 2x^2 + 4x - 6$.

Proposition 9. Soit $f: ax^2+bx+c$ une fonction polynomiale du second degré. Alors, seuls trois cas sont à considérer :

- a) f n'admet aucune racine réelle, c'est-à-dire que pour tout réel x, on a $f(x) \neq 0$.
- b) f admet une unique racine notée r. Dans ce cas, f peut être factorisée en $f(x) = a(x-r)^2$ pour tout x.
- c) f admet deux racines, notées r_1 et r_2 . Dans ce cas, f peut être factorisée en $f(x) = a(x r_1)(x r_2)$ pour tout x.

Exemple. Soient trois fonctions polynomiales du second degré f, g et h, dont les courbes C_f , C_g et C_h sont représentées ci-après. Combien de racines ont chacune de ces fonctions?

4.2 Signe

Proposition 10. Soit $f: x \mapsto ax^2 + bx + c$ une fonction polynomiale du second degré. Alors:

- a) Si f n'admet pas de racine, alors f est du même signe que a sur \mathbb{R} .
- b) Si f admet une unique racine r, alors f est du même signe que a $sur \]-\infty; r[\ et\ sur\]r; +\infty[.$
- c) Si f admet deux racines distinctes $r_1 < r_2$, alors f est du même signe que a sur $]-\infty; r_1[$ et sur $]r_2; +\infty[$, et est du signe opposé à a sur $]r_1; r_2[$

Remarque. Une phrase pour retenir cette proposition:

Une fonction polynomiale du second degré est du même signe que a à **l'extérieur** de ses racines, et est de signe opposé à a à **l'intérieur** de ses racines.

Exemple. En reprenant l'exemple précédent, donner le tableau de signes des fonctions f, g et h.

4.3 Calcul des racines

4.3.1 En identifiant une racine évidente

Soit $f(x) = -x^2 + 6x$ pour $x \in \mathbb{R}$. Alors, l'équation f(x) = 0 admet deux solutions évidentes : 0 et 6. Comme f est une fonction polynomiale du second degré, alors on sait que ce sont les seules solutions réelles possibles.

4.3.2 En utilisant une identité remarquable

Soit $f(x) = 2x^2 - 128$ pour $x \in \mathbb{R}$. Alors, la troisième identité remarquable nous donne un factorisation de f(x) = 2(x-8)(x+8). Donc les deux racines distinctes de la fonction polynomiale du second degré f sont 8 et -8.

4.3.3 Avec le produit et la somme des racines

Proposition 11. Soit $f: x \mapsto ax^2 + bx + c$ une fonction polynomiale du second degré. Si r_1 et r_2 sont les deux racines (possiblement confondues) de f, alors

$$r_1 + r_2 = \frac{-b}{a} \qquad r_1 \times r_2 = \frac{c}{a}$$

Exemple. Soit $f(x) = x^2 + x - 20$. On remarque que 4 est une racine de f. En déduire une autre racine de f, puis une factorisation de f.

4.3.4 Avec le discriminant

Définition 5. Soit $f: x \mapsto ax^2 + bx + c$ une fonction polynomiale du second degré. Alors on appelle **discriminant de f**, noté Δ , la quantité

$$\Delta = b^2 - 4ac$$

theorem 1. Soit $f: x \mapsto ax^2 + bx + c$ une fonction polynomiale de second degré, et Δ son discriminant. Alors :

- a) Si $\Delta < 0$, alors f n'admet pas de racine réelle.
- b) Si $\Delta = 0$, alors f admet une unique racine réelle r, telle que

$$r = -\frac{b}{2a}$$

c) Si $\Delta > 0$, alors f admet deux racines réelles distinctes $r_1 < r_2$, telles que

$$r_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 $r_2 = \frac{-b + \sqrt{\Delta}}{2a}$

Démonstration