Dualność w programowaniu liniowym

Badania operacyjne Wykład 2

Plan wykładu

- Przykład zadania dualnego
- Sformułowanie zagadnienia dualnego
 - Symetryczne zagadnienie dualne
 - Niesymetryczne zagadnienie dualne
- Własności zagadnień dualnych
- Interpretacja zagadnienia dualnego

Przykład

Mały warsztat naprawia trzy rodzaje urządzeń B1, B2, B3. Każde urządzenie zawiera trzy podstawowe elementy: E_1 , E_2 , E_3 . Naprawa polega na demontażu i/lub montażu elementów E_1 , E_2 , E_3 według określonej technologii. Tabela przedstawia przebieg każdej naprawy, zysk z naprawy urządzenia określonego typu oraz zapas elementów E_1 , E_2 , E_3 w firmie.

Przykład zastosowania PL

Urządzenie	E1	E2	E3	zysk
				zysk [\$/szt]
B1	3	-2	-4	-1
B2	-1	4	3	3
B3	2	0	8	-2
Zapas [szt.]	7	12	10	

Aby określić optymalny z punktu widzenia maksymalizacji zysku zakres napraw budujemy model liniowy problemu.

Przykład

Załóżmy, że warsztat może po prostu sprzedać zapasy elementów E_1 , E_2 , E_3 zamiast naprawiać urządzenia. Znalazł się nabywca. Jaka jest cena elementów E_1 , E_2 , E_3 , przy której nabywca nabędzie cały zapas po najniższych kosztach nie powodując strat warsztatu?

Sformułowanie problemu

Niech y₁ oznacza cenę elementu E₁

y₂ oznacza cenę elementu E₂

y₃ oznacza cenę elementu E₃

Całkowity koszt zakupu elementów:

$$7y_1 + 12y_2 + 10y_3$$

Zysk warsztatu na naprawie urządzenia B₁

$$3y_1 - 2y_2 - 4y_3 \ge -1$$

Podobnie dla urządzeń B₂ i B₃:

$$-y_1 + 4y_2 + 3y_3 \ge 3$$

 $2y_1 + 8y_3 \ge -2$

Zysk z naprawy urządzenia B₁ wynosi -1

Sformułowanie problemu

Zminimalizować

$$7y_1 + 12y_2 + 10y_3$$

Przy ograniczeniach

$$3y_1 - 2y_2 - 4x_3 \ge -1$$

$$-y_1 + 4y_2 + 3y_3 \ge 3$$

$$2y_1 + 8y_3 \ge -2$$

$$y_1, y_2, y_3 \ge 0$$

Zagadnienie dualne

zmaksymalizować \mathbf{cx} przy ograniczeniach $\mathbf{Ax} = \mathbf{b}$ $\mathbf{x} \ge 0$

zminimalizować yb przy ograniczeniach $A^Ty = c^T$ $y \ge 0$

$$\mathbf{c} = [c_1, c_2, \dots, c_n] \qquad \mathbf{y} = [\mathbf{y}_1, \dots, \mathbf{y}_m]$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} \quad \mathbf{A} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_m \end{bmatrix}$$

Twierdzenie o dualności

Jeżeli zagadnienie pierwotne (dualne) ma skończone rozwiązanie optymalne, to odpowiednie zagadnienie dualne (prymalne) ma również skończone rozwiązanie optymalne i ekstrema tych funkcji celu są równe, to znaczy $\mathbf{cx}^* = \mathbf{y}^*\mathbf{b}$.

Jeżeli rozwiązanie optymalne jednego z zagadnień (prymalnego lub dualnego) jest nieograniczone, to odpowiadające mu zagadnienie dualne (prymalne) nie ma rozwiazań dopuszczalnych.

Twierdzenie uzupełniające o różnicach dopełniających

Dla optymalnych rozwiązań dopuszczalnych zagadnień prymalnego i dualnego, jeżeli tylko występuje nierówność w k-tej zależności dowolnego układu (odpowiednia zmienna osłabiająca jest dodatnia), to k-ta zmienna w jego układzie dualnym jest równa zero. Jeżeli k-ta zmienna jest dodatnia w dowolnym układzie, to kta nierówność w jego układzie dualnym jest rownością (odpowiednia zmienna osłabiająca jest równa zero).

i	В	CB	-1	3	-2	0	0	0	RHS
			X ₁	X ₂	X ₃	S ₁	S ₂	S ₃	
1	X ₁	-1	1	0	4/5	2/5	1/10	0	4
2	X ₂	3	0	1	2/5	1/5	3/10	0	5
3	S ₃	0	0	0	10	1	-1/2	1	11
4			0	0	-12/5	-1/5	-4/5	0	11

i	В	CB	-1	3	-2	0	0	0	RHS
			X ₁	X ₂	X ₃	S ₁	S ₂	S ₃	
1	X ₁	-1	1	0	4/5	2/5	1/10	0	4
2	X ₂	3	0	1	2/5	1/5	3/10	0	5
3	S ₃	0	0	0	10	1	-1/2	1	11
4			0	0	-12/5	-1/5	-4/5	0	11

i	В	CB	-1	3	– 2	0	0	0	RHS
			X ₁	X ₂	X ₃	S ₁	S ₂	S ₃	
1	X ₁	-1	1	0	4/5	2/5	1/10	0	4
2	X ₂	3	0	1	2/5	1/5	3/10	0	5
3	S ₃	0	0	0	10	1	-1/2	1	11
4			0	0	-12/5	-1/5	-4/5	0	11

i	В	CB	-1	3	-2	0	0	0	RHS
			X ₁	X ₂	X ₃	S ₁	S ₂	S ₃	
1	X ₁	-1	1	0	4/5	2/5	1/10	0	4
2	X ₂	3	0	1	2/5	1/5	3/10	0	5
3	S ₃	0	0	0	10	1	-1/2	1	11
4			0	0	-12/5	-1/5	-4/5	0	11

i	В	CB	-1	3	-2	0	0	0	RHS
			X ₁	X ₂	X ₃	S ₁	S ₂	S ₃	
1	X ₁	-1	1	0	4/5	2/5	1/10	0	4
2	X ₂	3	0	1	2/5	1/5	3/10	0	5
3	S ₃	0	0	0	10	1	-1/2	1	11
4			0	0	-12/5	-1/5	-4/5	0	11

zmienne uzupełniające w zagadnieniu dualnym

Interpretacja rozwiązania

Zagadnienie Prymalne

- Maksymalny zysk to 11\$.
- Należy naprawić 4 szt. urządzenia B1 i 5 szt. urządzenia B2, natomiast nie należy przyjmować zleceń na naprawę urządzenia B3.
- Wartości zmiennych uzupełniających oznaczają zapas części, który pozostanie w magazynie po zakończeniu produkcji.
- Elementy E1 i E2 zostaną
 zużyte, natomiast pozostanie
 11 szt. Elementu E3.

Zagadnienie dualne

- Minimalny koszt zakupu 11\$.
- Należy sprzedać element E₁ po 0,2\$/szt., E₂ po 0,8\$/szt., a E₃ można oddać za darmo.
- Wartości zmiennych uzupełniających oznaczają dodatkową wartość uzyskaną ze sprzedaży elementów, niewykorzystanych do naprawy urządzenia typu B1, B2 i B3.
- Sprzedaż elementów zużytych do naprawy B1 i B2 nie przyniesie zysku. Naprawa B3 przynosi 12/5 \$/szt strat w porównaniu ze sprzedażą na części.

Podsumowanie

- Sformułowanie problemu dualnego do LP
- Interpretacja zagadnienia dualnego
- Własności rozwiązania dualnego