离散数学 2017 试题解析

无 68 何昊天

以下是 2017 级的期末试题 (按考试时的顺序排列,原题是英文的),其中前 8 题每题 12 分,第 9 题 4 分,我给出了每道题的一个参考解法。由于我很菜,所以这份试题解析难免有不少疏漏之处,发现谬误的同学欢迎指正,各题目的解法可能也不唯一,同学们可以多加讨论。希望这份解析对同学们有所帮助,祝大家考试顺利!

Problem 1 化简下列和式:

- (1) $\sum_{k=1}^{n} \frac{1}{k(k+1)}$
- (2) $\sum_{k=m}^{n} C_{n}^{k} C_{k}^{m}$

Solution:

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n} (\frac{1}{k} - \frac{1}{k+1}) = \sum_{k=1}^{n} \frac{1}{k} - \sum_{k=2}^{n+1} \frac{1}{k} = 1 - \frac{1}{n+1} = \frac{n}{n+1}$$

$$\sum_{k=m}^{n} C_{n}^{k} C_{k}^{m} = \sum_{k=m}^{n} C_{n}^{m} C_{n-m}^{k-m} = C_{n}^{m} \sum_{k=m}^{n} C_{n-m}^{k-m} = C_{n}^{m} \sum_{k=0}^{n-m} C_{n-m}^{k} = C_{n}^{m} \cdot 2^{n-m}$$

现在所有求和号都被约去,则和式已化为最简。•

Problem 2 假设某小朋友有 n 元钱,他每天可以购买一件价值为 1 元的物品 A 或价值为 2 元的物品 B,其中物品 B 有两种,计算小朋友花完所有钱的方案数

Solution: 假设 J_n 表示小朋友花完 n 元钱的方案数,考虑他最后一天购买的物品,一共有三种不同情况,且这些情况之间是互斥的,所以有 $J_n = J_{n-1} + 2J_{n-2}$

下一步是构造 a,b 使得 $J_n - aJ_{n-1} = b(J_{n-1} - aJ_{n-2})$,易知 a+b=1 且 ab=-2,取一组解 a=-1,b=2,则有 $J_n+J_{n-1}=2(J_{n-1}+J_{n-2})$,进行递推得:

$$J_n + J_{n-1} = 2(J_{n-1} + J_{n-2}) = 2^2(J_{n-2} + J_{n-3}) = \dots = 2^{n-1}(J_1 + J_0)$$

根据题意, $J_1 = J_0 = 1$, 所以 $J_n + J_{n-1} = 2^n$, 接下来进行错位相加:

$$J_n + J_{n-1} = 2^n$$

$$-J_{n-1} - J_{n-2} = -2^{n-1}$$

$$J_{n-2} + J_{n-3} = 2^{n-2}$$

$$\cdots$$

$$(-1)^{n-1}(J_1 + J_0) = (-1)^{n-1}2^1$$

上式全部相加后得 $J_n + (-1)^{n-1}J_0 = 2^n - 2^{n-1} + \cdots + (-1)^{n-1}2$,注意到等号右边是等比数列,其首项为 $(-1)^{n-1}2$,公比为 -2,项数为 n,所以:

$$J_n + (-1)^{n-1} J_0 = (-1)^{n-1} 2 \cdot \frac{(1 - (-2)^n)}{1 + 2}$$
$$= (-1)^{n-1} \frac{2}{3} - \frac{1}{3} (-1)^{n-1} (-1)^n 2^{n+1}$$
$$= (-1)^{n-1} \frac{2}{3} + \frac{2^{n+1}}{3}$$

又因为 $J_0=1$,所以 $J_n=\frac{2^{n+1}+(-1)^n}{3}$,注意刚才的推导过程默认了 $n\geq 1$,因此需要对通项公式验证 n=0 的情况,发现仍然满足,所以花完所有钱的方案数就是 $J_n=\frac{2^{n+1}+(-1)^n}{3}$ \bullet

Problem 3 求解同余方程 $x^2 \equiv 5x \pmod{6}$

Solution: 移项并化简原方程可得 $x(x-5) \equiv 0 \pmod{6}$, 由于 $6 \equiv 2 \cdot 3 \equiv 3 \cdot 4 \pmod{6}$, 故可能有以下六种情况:

若 $x \equiv 0 \pmod{6}$, 可解得 x = 0

若 $x-5 \equiv 0 \pmod{6}$, 可解得 x=5

若 $x \equiv 2 \pmod{6}$ 且 $x - 5 \equiv 3 \pmod{6}$,可解得 x = 2

若 $x \equiv 3 \pmod{6}$ 且 $x - 5 \equiv 2 \pmod{6}$, 此时 x 无解

若 $x \equiv 3 \pmod{6}$ 且 $x - 5 \equiv 4 \pmod{6}$,可解得 x = 3

若 $x \equiv 4 \pmod{6}$ 且 $x - 5 \equiv 3 \pmod{6}$, 此时 x 无解

故原方程的解为 x = 0, x = 2, x = 3 或 x = 5 •

Problem 4 试证 Weinstein 定理: 从 Fibonacci 数列的前 2n 项 F_1, F_2, \dots, F_{2n} 中任选 n+1 个数,则一定包含两个数,使得其中一个数能够被另一个整除

Solution: 先证明 $\forall k, m \geq 1$, 如果 k|m, 则 $F_k|F_m$, 不妨设 m = tk, 对 t 做数学归纳 假设 $F_k|F_{(t-1)k}$, 考虑 $F_{tk} = F_{(t-1)k+k-1+1} = F_{(t-1)k}F_{k-1} + F_{(t-1)k+1}F_k$, 由 $F_k|F_{(t-1)k}$ 知 $F_k|F_{(t-1)k}F_{k-1}$, 但显然 $F_k|F_{(t-1)k+1}F_k$, 故 $F_k|F_{tk}$, 由归纳假设,命题得证

设选出来的 n+1 个数为 $F_{k_1}, F_{k_2}, \cdots, F_{k_{n+1}}$,根据刚才的结论,只需证 $k_1, k_2, \cdots, k_{n+1}$ 中存在一个数能够被另一个整除即可

对于 $1,2,3,\cdots,2n$,将第 i 个数写成 $a_i\cdot 2^{p_i}$ 的形式,其中 a_i 是奇数,易知 a_i 的可能取值只有 $1,3,5,\cdots,2n-1$ 共 n 种,则根据鸽巢原理, k_1,k_2,\cdots,k_{n+1} 中一定存在两个数 k_i,k_j ,使得 $a_i=a_j$,不妨设 $p_i< p_j$,则此时必有 $a_i\cdot 2^{p_i}|a_j\cdot 2^{p_j}$,即 $k_i|k_j$,故 $F_{k_i}|F_{k_j}$,原定理得证 •

Problem 5 设图 G 有欧拉回路,证明存在 G 中的图 C_1, C_2, \dots, C_k ,使得 G 的边集 $E(G) = E(C_1) \cup E(C_2) \cup \dots \cup E(C_k)$,且 $\forall i, j, E(C_i) \cap E(C_j) = \emptyset$

Solution: 设 G 的欧拉回路为 $v_0e_1v_1e_2v_2\cdots e_nv_n$, 其中所有的边不重复,但顶点可能有重复,若顶点无重复,则 G 本身就是一个圈,命题成立

若欧拉回路中有顶点重复,不妨设 $v_i=v_j$ 且 v_i,v_j 之间无其它重复顶点,则 $v_ie_{i+1}v_{i+1}\cdots e_jv_j$ 构成一个圈,设其为 C_1 ,将 C_1 从 G 中删除,得到 $G-C_1$ 的欧拉回路 $v_0e_1v_1\cdots e_iv_ie_{j+1}v_{j+1}\cdots e_nv_n$ 重复以上操作,由于每次操作后剩余图的欧拉回路严格变短,故至多进行有限次操作,假设依次得到 C_1,C_2,\cdots,C_{k-1} 后, $G-C_1-C_2-\cdots-C_{k-1}$ 中无顶点重复,则它构成一个圈,记为 C_k 由于欧拉回路上每条边出现且仅出现过一次,根据刚才的构造规则,易知 C_1,C_2,\cdots,C_k 满足条件,原命题得证 \bullet

Problem 6 两名玩家在图 G 上玩一个游戏,每个人轮流每次从图中选出一个节点来,得到节点序列 v_0, v_1, v_2, \cdots ,要求每次选取的节点必须和之前已经被选出过的节点不同,且 v_{i+1} 必须与 v_i 相邻,如果轮到某位玩家时没有可以选的节点了,则该玩家输掉游戏,证明如果 G 没有完美匹配,则先手玩家有必胜策略

Solution: 任取 G 的一个最大匹配,将 G 中的边分为匹配边和未匹配边两种,由于 G 没有完美匹配,则此时一定存在未匹配点,下面我们来构造一个先手必胜策略

先手玩家任取一个未匹配点作为 v_0 ,则后手玩家取到的 v_1 一定是匹配点,否则 v_0 和 v_1 可以匹配,与之前取的是最大匹配矛盾

设与 v_1 匹配的点是 v_2 ,先手玩家选取这个点后,后手玩家取到的下一个点 v_3 也一定是匹配点,否则 $v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow v_3$ 形成增广路,与最大匹配矛盾

以此类推,如果某次后手玩家选择的点 u 是匹配点,则与 u 匹配的点一定没有被取过,因为路径中除了第一个点是未匹配点外,恰好每两个相邻的点相互匹配,因此先手玩家总是可以选择与 u 相配对的点将游戏继续下去

如果某次后手玩家选择的点 u 是未匹配点,则选出来的节点构成的路径是增广路,与最开始取的最大匹配矛盾

综上所述,由于游戏一定在有限步内结束,故只可能出现轮到后手玩家时没有节点可选的情况,即先手玩家依此策略必胜,原命题得证 ●

Problem 7 设图 G 有 11 个顶点,证明 G 和其补图 \bar{G} 至少有一个不是平面图

Solution: 易知 G 和 \bar{G} 的边数之和 $|E(G)| + |E(\bar{G})| = \frac{|V(G)| \cdot (|V(G)| - 1)}{2} = 55$ 假设 G 和 \bar{G} 都是平面图,则 $|E(G)| \le 3|V(G)| - 6 = 27, |E(\bar{G})| \le 3|V(\bar{G})| - 6 = 27,$ 两式相加得 $|E(G)| + |E(\bar{G})| \le 54$,矛盾,故 G 和 \bar{G} 至少有一个不是平面图 \bullet

Problem 8 能否找到一个合适的安排,使得 9 个女生每天分成 3 组、每组 3 人出去散步, 4 天后任意两人都曾共同散步过一次且仅一次?

Solution:

这道题的解法来源于 Tictactoe 平面

假设女生的编号依次为 A, B, C, D, E, F, G, H, I, 可以给出方案如下:

- (1) 第 1 天: (A, B, C)(D, E, F)(G, H, I)
- (2) 第 2 天: (A, D, G)(B, E, H)(C, F, I)
- (3) 第 3 天: (A, E, I)(B, F, G)(C, D, H)
- (4) 第 4 天: (A, F, H)(B, D, I)(C, E, G)

综上所述,存在可行的安排方案如上。

Problem 9 设图 G 中每个顶点至多位于 k 个奇圈上, 试求 G 的最大色数

Solution: 我们令 t 是满足 $k \leq C_t^2 - 1 = \frac{t^2 - t - 2}{2}$ 的最小正整数,即 $t = \lceil \frac{1 + \sqrt{8k + 9}}{2} \rceil$,我们首先证明 G 的色数 $\chi(G) \leq t$,当 k = 0 时 G 是二分图,显然有 $\chi(G) \leq 2$,当 $k \geq 1$ 时,实际上必须有 $t \geq 3$,下面的证明只考虑 $t \geq 3$ 的情形

对 G 的顶点数 n 做归纳,当 $n \le t$ 时,显然有 $\chi(G) \le t$,故初始情况成立,对某个 $n \ge t$,我们假设所有顶点数量不超过 n 且每个顶点至多位于 k 个奇圈上的图 H 都满足 $\chi(H) \le t$,下证对一个顶点数量为 n 且每个顶点至多位于 k 个奇圈上的图 G 满足 $\chi(G) \le t$

考虑图 G 去掉某个顶点 v 后得到的图 G-v,由于 |V(G-v)|=n 且 G-v 中每个顶点显然 也至多位于 k 个奇圈上,根据归纳假设,G-v 可以被 t- 着色

考虑这 t 种颜色两两组合形成的二元组,共有 C_t^2 种,在考虑 v 所在的所有奇圈,每个奇圈 上与 v 相邻的两个顶点构成一个二元组,共有 k 组,由于 $C_t^2 > k$,因此必定存在一种颜色的二元组,使得不存在一个顶点的二元组,使得后者的两个顶点恰好被染成前者的两种颜色,不妨设这个颜色的二元组为红色和蓝色,换句话说,不存在一个红色的顶点 u 和一个蓝色的顶点 w,使得 u,w 都与 v 相邻,且 u,v,w 位于同一个奇圈上

取出 G-v 的所有红色顶点和蓝色顶点,得到 G-v 的一个二分子图 G',假设 G' 中没有红色顶点与 v 相邻,则 v 可以染成红色,即 G 可以 t- 着色

假设 G' 中有红色顶点 u 与 v 相邻,下面我们证明不存在蓝色顶点 w 与 u 相邻,使得 u,w 处于 G' 的同一个连通块中,如果存在这样的节点 w,则 G' 中存在 $u \to w$ 的路径 P,且由于 G' 是二分图,P 的长度为奇数,而 P 再加上 < u,v>,< v,w> 两条边后得到一个奇圈,这与之前的结论矛盾,所以当前结论成立

现在考虑 G' 中所有与 v 相邻的红色顶点 u_1, u_2, \cdots, u_m ,将它们所在的 G' 的连通块内的红色顶点改为蓝色、蓝色顶点改为红色,易知修改之后的着色方案仍然是 G-v 的一个 t- 着色,且现在在 G' 中没有红色顶点与 v 相邻,则 v 可以染成红色,即 G 可以 t- 着色

综上所述, $\chi(G) \le t$ 对所有的 $k \ge 0, t = \lceil \frac{1+\sqrt{8k+9}}{2} \rceil$ 成立

事实上,依照上述证明过程,不难构造出每个顶点至多位于 k 个奇圈上的图 G,使得图 G 不能被 (t-1)— 着色,因此 G 的最大色数 $\chi(G) = \lceil \frac{1+\sqrt{8k+9}}{2} \rceil$ •