Tema 6 Problemas de Valor Inicial I

Dra. Paula Triguero Navarro

Máster en Ingeniería Matemática y Computación Escuela Superior en Ingeniería y Tecnología

Contenido

- Introducción
- 2 PVIs definidos por ecuaciones diferenciales de primer orden
- 3 Diseño de métodos numéricos y convergencia
- 4 Métodos numéricos de un paso
 - Método de Euler
 - Método de Euler implícito
 - Método de Heun
 - Método de Runge-Kutta
- 5 PVIs definidos por sistemas de ecuaciones diferenciales
 - Métodos numéricos para resolver sistemas de ecuaciones diferenciales

1

Introducción

Ejemplo 1. Modelo de crecimiento económico

Consideremos el modelo de crecimiento económico de un país:

$$\begin{cases} X(t) = \sigma K(t), \\ \dot{K}(t) = \alpha X(t) + H(t), \\ N(t) = N_0 e^{\rho t}, \end{cases}$$

donde X(t) es la producción total anual, K(t) el stock de capital, H(t) el flujo anual de ayudas del exterior y N(t) es el tamaño de la población, medidos en el instante t.

El modelo se resumen en la ecuación diferencial

$$\dot{K}(t) = \alpha \sigma K(t) + H(t),$$

con la condición inicial $K(0) = K_0$.

Ejemplo 2. Modelo de macroeconomía

En un modelo macroeconómico C(t), I(t) e Y(t) designan respectivamente el consumo, la inversión y la renta nacional de un país en un periodo t. Teniendo en cuenta que

$$\begin{cases} C(t) + I(t) = Y(t), \\ I(t) = k\dot{C}(t), \\ C(t) = aY(t) + b, \end{cases}$$

con a, b y k constantes positivas y a < 1.

Se puede deducir la ecuación diferencial

$$\dot{Y}(t) = \frac{1-a}{ka}Y(t) - \frac{b}{ka},$$

con la condición incial $Y(0) = Y_0 > \frac{b}{1-a}$.

Ejemplo 3. Modelización epidemiológica del COVID-19

La propagación de una enfermedad contagiosa con una tasa de transmisión β y una tasa de recuperación γ se puede modelizar por medio de un modelo SIR:

$$\begin{cases} \frac{dS(t)}{dt} &= -\beta S(t)I(t), \\ \frac{dI(t)}{dt} &= \beta S(t)I(t) - \gamma I(t) \\ \frac{dR(t)}{dt} &= \gamma I(t), \end{cases}$$

siendo S(t) la población susceptible, I(t) la población infectada, R(t) la población recuperada y N=S+R+T es la población total.

Objetivos

- Definir los problemas de valor inicial y los distintos esquemas de ecuaciones diferenciales que los definen.
- Ocomprender la relación entre solución analítica y discreta de un PVI.
- Conocer procesos distintos para diseñar métodos numéricos y el error cometido en el cálculo de la solución de un PVI.
- Estudiar los métodos numéricos de Euler, Heun y Runge-Kutta así como su orden de convergencia obtenido de forma numérica.

Objetivos

- Definir los problemas de valor inicial y los distintos esquemas de ecuaciones diferenciales que los definen.
- Ocomprender la relación entre solución analítica y discreta de un PVI.
- Conocer procesos distintos para diseñar métodos numéricos y el error cometido en el cálculo de la solución de un PVI.
- Estudiar los métodos numéricos de Euler, Heun y Runge-Kutta así como su orden de convergencia obtenido de forma numérica.

Los problemas de valor inicial se pueden definir a partir de diferentes esquemas de ecuaciones diferenciales:

- Una única ecuación diferencial de primer orden
- Sistema de ecuaciones diferenciales de primer orden
- Ecuaciones diferenciales con derivadas de orden mayor que uno

2

PVIs definidos por ecuaciones diferenciales de primer orden

Problemas de valor inicial

Problema de valor inicial

EDO primer orden que expresa la variación de la variable dependiente y con respecto a la variable independiente t:

$$y'(t) = f(t, y(t)), t \in [a, b].$$

El objetivo de un PVI es encontrar la solución y(t) de la ecuación conociendo la condición inicial $y(a)=y_a.$

Problemas de valor inicial

Problema de valor inicial

EDO primer orden que expresa la variación de la variable dependiente y con respecto a la variable independiente t:

$$y'(t) = f(t, y(t)), t \in [a, b].$$

El objetivo de un PVI es encontrar la solución y(t) de la ecuación conociendo la condición inicial $y(a)=y_a.$

Teorema 1

Supongamos que $D=\{(t,y):t\in [a,b],y\in \mathbb{R}\ \}$ y que f(t,y) es continua en D. Si para todo par de puntos $(t_1,y_1),(t_2,y_2)\in D$ existe una constante L>0 tal que f cumple la condición de Lipschitz:

$$|f(t_1, y_1) - f(t_2, y_2)| \le L|y_1 - y_2|,$$

entonces el PVI dado por

$$y'(t) = f(t, y(t)), t \in [a, b], y(a) = y_a,$$

tiene una solución única y(t), $t \in [a,b]$.

Problemas de valor inicial

Problema de valor inicial

EDO primer orden que expresa la variación de la variable dependiente y con respecto a la variable independiente t:

$$y'(t) = f(t, y(t)), t \in [a, b].$$

El objetivo de un PVI es encontrar la solución y(t) de la ecuación conociendo la condición inicial $y(a)=y_a.$

- \rightarrow Técnicas analíticas: solución continua y(t)
- ightharpoonup Técnicas numéricas: solución discreta $y_k \approx y(t_k)$, donde t_k , $k=0,1,2,\ldots,N$, son los nodos de la discretización.

PVIs definidos por ecuaciones diferenciales de primer orden Discretización del problema

■ Dividimos el intervalo [a,b] en N subintervalos $[t_k,t_{k+1}]$ cuyos extremos son los nodos equiespaciados:

$$t_k = a + kh, \qquad k = 0, 1, \dots, N,$$

lacktriangle Obtendremos la solución numérica en los nodos t_k , de forma que $y_kpprox y(t_k)$

Ejemplo 4. y'(t) = (1 - 2t)y(t), $t \in [0, 3]$, y(0) = 1

- Obtendremos la solución discreta tomando como paso h=0.1.
- Implementamos la función de Matlab que define el sistema:

```
function dy = PVI (t,y)
  dy=(1-2*t).*y;
end
```

Definimos la variable independiente discretizada, tomando el paso indicado:

```
>> a=0; b=3; h=0.1;
```

>> td=a:h:b;

Definimos el vector de condiciones iniciales y ejecutamos el comando ode23:

```
>> y0=1;
>> [t,y]= ode23 ('PVI ',td,y0);
```


3

Diseño de métodos numéricos y convergencia

Diseño de métodos numéricos y convergencia

Diseño del método

■ Fórmulas de cuadratura:

Utilizaremos técnicas de integración numérica al aplicar el Teorema Fundamental del Cálculo para transformar el problema de valor inicial

$$y'(t) = f(t, y(t)), t \in [a, b], y(a) = y_a$$

en la siguiente ecuación integral:

$$y(t) = y_a + \int_a^t f(\tau, y(\tau)) d\tau.$$

■ Diferenciación numérica:

Aproximamos la derivada de la variable utilizando la definición de derivada como límite de un cociente incremental:

$$y'(t) = \lim_{h \to 0} \frac{y(t+h) - y(t)}{h} \quad \Rightarrow \quad y'(t) \approx \frac{y(t+h) - y(t)}{h}.$$

■ Desarrollos de Taylor:

$$y(t+h) = \sum_{j=0}^{m} \frac{f^{(j)}(t)}{j!} h^{j} + \frac{f^{(m+1)}(\xi)}{(m+1)!} h^{m+1}, \qquad \xi \in]t, t+h[.$$

Diseño de métodos numéricos y convergencia Errores

Error de discretización o de truncamiento

Cuando aproximamos la función por el cociente incremental o utilizando el polinomio de Taylor truncado, estamos cometiendo en cada nodo $t_k, \ k=0,1,\ldots,N$, un error de truncamiento local, $L_k(h)$.

- Error que cometemos en un solo paso cuando reemplazamos un proceso infinito por uno finito.
- Inherente a cualquier algoritmo que podamos escoger.
- \blacksquare Si se tiene en cuenta el error acumulado en todo el proceso de discretización, tendríamos el error de truncamiento global, L(h), definido como

$$L(h) = \frac{1}{h} \max_{1 \le k \le N} |L_k(h)|.$$

 El error de truncamiento global siempre es una unidad inferior al error de truncamiento local.

Diseño de métodos numéricos y convergencia Errores

Error de redondeo

- Local (en cada nodo) o global (su acumulación).
- Inherente al software utilizado para la resolución, provocado por la limitada precisión de los ordenadores.
- Su magnitud depende del número de dígitos en la mantisa usando aritmética de coma flotante.

Error total local o global

Suma del error de truncamiento y el de redondeo local o global, respectivamente.

lacksquare Si conocemos la solución exacta y(t) en cada nodo t_k , definimos el error exacto local como

$$e_k = y(t_k) - y_k, \qquad k = 0, 1, \dots, N.$$

Diseño de métodos numéricos y convergencia

Consistencia, convergencia y estabilidad

Definición 1 (Convergencia y consistencia)

Sea y(t), $t \in [a,b]$ la solución exacta de un problema de valor inicial e $y_k \approx y(t_k)$ la solución discreta obtenida de forma numérica, donde $t_k = a + kh$, $k = 0,1,\ldots,N$, son los nodos de la discretización. Decimos que un método numérico converge a la solución del PVI si

$$\lim_{h\to 0} |e_k| = 0.$$

Asimismo, decimos que el método numérico es consistente con un problema de valor inicial si verifica

$$\lim_{h \to 0} \max_{1 \le k \le N} |L_k(h)| = 0.$$

Estabilidad

- Una condición necesaria y suficiente para la estabilidad de un método iterativo es que la función f(t,y(t)) sea de Lipschitz.
- Un esquema numérico es estable punto a punto si pequeñas perturbaciones del esquema o de las condiciones iniciales afectan poco a la solución.
- Teorema de Lax: Dado un método numérico asociado a un PVI, si el esquema es consistente entonces es estable punto a punto si, y solo si, es convergente.

4

Métodos numéricos de un paso

Contenidos

- Introducción
- PVIs definidos por ecuaciones diferenciales de primer order
- 3 Diseño de métodos numéricos y convergencia
- Métodos numéricos de un paso
 - Método de Euler
 - Método de Euler implícito
 - Método de Heun
 - Método de Runge-Kutta
- 5 PVIs definidos por sistemas de ecuaciones diferenciales

Diferenciación numérica

Como por definición

$$\frac{dy}{dt} = \lim_{h \to 0} \frac{y(t+h) - y(t)}{h},$$

el enfoque más simple para resolver la ecuación diferencial

$$y'(t) = f(t, y(t)), \qquad t \in [a, b]$$

es aproximarla por

$$\frac{y(t+h)-y(t)}{h}\approx f(t,y(t))\quad \Rightarrow\quad y(t+h)\approx y(t)+hf(t,y(t)),$$

donde h es próximo a 0.

■ De aquí, conocida la condición incial $y(t_0) = y_0$:

$$y_1 = y_0 + hf(t_0, y_0),$$

 $y_2 = y_1 + hf(t_1, y_1),$
:

Método de Euler

$$y_{k+1} = y_k + hf(t_k, y_k), \qquad k = 0, 1, 2, \dots, N-1$$

Integración numérica

Integrando directamente en la ecuación diferencial

$$y'(t) = f(t, y(t)), t \in [a, b], y(a) = y_a,$$

se obtiene

$$y(t) = y_a + \int_a^t f(\tau, y(\tau)) d\tau.$$

■ En particular, tras la discretización de la variable independiente en N subintervalos $[t_k, t_{k+1}], k = 0, 1, ..., N-1$:

$$y(t_{k+1}) = y(t_k) + \int_{t_k}^{t_{k+1}} f(\tau, y(\tau)) d\tau$$

Aproximando la integral con la fórmula de los rectángulos:

$$y(t_{k+1}) \approx y(t_k) + (t_{k+1} - t_k)f(t_k, y(t_k)) = y(t_k) + hf(t_k, y(t_k))$$

donde h es el paso de integración, obtendríamos de nuevo el método de Euler:

$$y_{k+1} = y_k + h f(t_k, y_k), \qquad k = 0, 1, 2, \dots, N-1$$

Desarrollos de Taylor

 $lue{}$ Consideremos la función y(t) solución de la ecuación diferencial

$$y'(t) = f(t, y(t)), t \in [a, b].$$

lacktriangle Dado el paso h, el desarrollo en serie de Taylor de primer orden de la función y(t) está dado por

$$y(t+h) = y(t) + hy'(t) + \mathcal{O}(h^2).$$

■ Sustituyendo y'(t) = f(t, y(t)) en el desarrollo obtenemos

$$y(t+h) = y(t) + hf(t, y(t)) + \mathcal{O}(h^2).$$

• Así, conocida la condición inicial $y(t_0) = y_0$:

$$y(t_1) \approx y_1 = y_0 + hf(t_0, y_0),$$

 $y(t_2) \approx y_2 = y_1 + hf(t_1, y_1),$
 \vdots

■ De forma sucesiva en los siguientes puntos $y(t_{k+1}) \approx y_{k+1}$ se obtiene el método de Euler:

$$y_{k+1} = y_k + h f(t_k, y_k), \qquad k = 0, 1, \dots, N-1.$$

Error y orden

Error y orden

A partir de la deducción de la fórmula de Euler con desarrollos de Taylor, el error local de truncamiento es de orden 2:

$$e_{k+1} = y(t_{k+1}) - (y(t_k) + hy'(t_k)) = \frac{h^2}{2}y''(\xi_k), \qquad \xi_k \in]t_k, t_{k+1}[.$$

■ El error global de truncamiento tras N pasos es de orden 1:

$$\sum_{k=0}^{N-1} \frac{h^2}{2} y''(\xi_k) = \frac{h^2}{2} N y''(\xi) = \frac{1}{2} (b-a) y''(\xi) h = \mathcal{O}(h), \qquad \xi \in [a,b], \quad h = \frac{b-a}{N}$$

El método de Euler tiene orden 1

Teorema 1

Sea f tal que y'(t)=f(t,y(t)), $t\in [a,b]$, con condición inicial $y(a)=y_a$. Si $y(t)\in \mathcal{C}^2[a,b]$ y $\{(t_k,y_k)\}_{k\geq 0}$ es la sucesión de aproximaciones dadas por el método de Euler, entonces

$$|e_k| \le |y(t_k) - y_k| = \mathcal{O}(h^2)$$

У

$$E(h) = \frac{1}{h} \max_{1 \le k \le N} |e_k| = \mathcal{O}(h).$$

Algoritmo del método de Euler

- Entrada:
 - función: f
 - extremos del intervalo: a, b
 - condición inicial: y_a
 - número de subintervalos: N
- Proceso:
 - lacktriangle Cálculo del paso de integración h
 - Obtención de la variable independiente discretizada t
 - lacktriangle Inicialización del vector solución y en a
 - Para k desde 1 hasta N:

$$y_{k+1} = y_k + h f(t_k, y_k)$$

- Fin para k
- Salida: t, y

Método de Euler

Ejemplo 5. Obtén la solución numérica del PVI

$$y'(t) = (1 - 2t)y(t), t \in [0, 3], y(0) = 1,$$

utilizando el método de Euler y $N=\{2,4,8,16,32,64\}$ subintervalos.

■ La solución exacta es: $y(t) = e^{\frac{1}{4} - \left(\frac{1}{2} - t\right)^2}$

N	E_N
2	5.002478
4	0.886193
8	0.353108
16	0.168799
32	0.081921
64	0.040323

¿Cómo estimamos de forma numérica el orden del método?

Estimación numérica del error

 Conocida la solución analítica, podemos estimar numéricamente el orden de un método para resolver un PVI como

$$\log_2\left(\lim_{N\to\infty}\frac{E_{N/2}}{E_N}\right),$$

donde E_N es el error máximo cometido entre la solución exacta $y(t_k)$ y la solución numérica y_k , utilizando N subintervalos:

$$E_N = \max_{1 \le k \le N} |y(t_k) - y_k|.$$

¿Y si no conocemos la solución exacta?

■ Si no conocemos el valor de la solución analítica, comparamos las soluciones discretas obtenidas duplicando el número de subintervalos a partir de

$$\log_2\left(\lim_{N\to\infty}\frac{\epsilon_{N/2}}{\epsilon_N}\right),\,$$

donde

$$\epsilon_N = \left\| y_k^{(N)} - y_{1+2k}^{(2N)} \right\|, \qquad k = 0, 1, \dots, N,$$

siendo $y^{(N)}$ la solución discretizada del PVI utilizando N subintervalos.

Método de Euler

Ejemplo 5. Obtén la solución numérica del PVI

$$y'(t) = (1 - 2t)y(t), t \in [0, 3], y(0) = 1,$$

utilizando el método de Euler y $N=\{2,4,8,16,32,64\}$ subintervalos.

■ La solución exacta es: $y(t) = e^{\frac{1}{4} - \left(\frac{1}{2} - t\right)^2}$

N	E_N	$\log_2\left(E_{N/2}/E_N\right)$
2	5.002478	_
4	0.886193	2.496950
8	0.353108	1.327508
16	0.168799	1.064805
32	0.081921	1.042990
64	0.040323	1.022606

N	ϵ_N	$\log_2\left(\epsilon_{N/2}/\epsilon_N ight)$
2	6.054254	_
4	1.158963	2.385114
8	0.273823	2.081516
16	0.174685	0.648484
32	0.118520	0.559624

Contenidos

- Introducción
- 2 PVIs definidos por ecuaciones diferenciales de primer order
- 3 Diseño de métodos numéricos y convergencia
- Métodos numéricos de un paso
 - Método de Euler
 - Método de Euler implícito
 - Método de Heun
 - Método de Runge-Kutta
- 5 PVIs definidos por sistemas de ecuaciones diferenciales

- **E** Euler es un método explícito: y_{k+1} se obtiene directamente a partir de y_k
- El método de Euler hacia atrás se construye siguiendo los mismos pasos pero aproximando la derivada como

$$\frac{dy}{dt}(t_{k+1}) \approx \frac{y(t_{k+1}) - y(t_k)}{h}$$

con error de truncamiento $L_k(h) = \mathcal{O}(h)$, obteniendo:

$$y_{k+1} = y_k + hf(t_{k+1}, y_{k+1}), \qquad k = 0, 1, 2, \dots, N-1$$

■ Euler hacia atrás es un método implícito, ya que hay que resolver la siguiente ecuación no lineal para obtener y_{k+1} a partir de y_k :

$$g(y_{k+1}) = y_{k+1} - y_k - hf(t_{k+1}, y_{k+1}) = 0.$$

Método de Euler implícito

$$y_{k+1} = y_k + hf(t_{k+1}, y_{k+1}), \qquad k = 0, 1, 2, \dots, N-1$$

Algoritmo del método de Euler implícito

- **Entrada**: f, a, b, N, y_a
- Proceso:
 - Obtención de la variable independiente discretizada t
 - Inicialización del vector solución y en a Para k desde 0 hasta N-1:
 - - Uso de un método de punto fijo (por ejemplo, método de Newton) para encontrar cada nuevo y_{k+1} resolviendo la ecuación no lineal:

$$g(y_{k+1}) = y_{k+1} - y_k - hf(t_{k+1}, y_{k+1}) = 0.$$

- \blacksquare Fin para k
- Salida: t, y

Ejemplo 6. Obtén la solución discreta del PVI definido por el modelo de Malthus utilizando el método de Euler explícito y el método de Euler implícito en $t \in [0,3]$ con k=-10, estimación inicial $y_a=1$ y tomando $N=\{2,4,8,16,32\}$ subintervalos.

Consideremos el PVI definido por el modelo de Malthus

$$y'(t) = -10y(t), t \in [0,3], y(0) = 1,$$

cuya solución analítica es $y(t) = e^{-10t}$.

Ejemplo 6. Obtén la solución discreta del PVI definido por el modelo de Malthus utilizando el método de Euler explícito y el método de Euler implícito en $t \in [0,3]$ con k=-10, estimación inicial $y_a=1$ y tomando $N=\{2,4,8,16,32\}$ subintervalos.

Consideremos el PVI definido por el modelo de Malthus

$$y'(t) = -10y(t), t \in [0, 3], y(0) = 1,$$

cuya solución analítica es $y(t) = e^{-10t}$.

Ejemplo 6. Obtén la solución discreta del PVI definido por el modelo de Malthus utilizando el método de Euler explícito y el método de Euler implícito en $t \in [0,3]$ con k=-10, estimación inicial $y_a=1$ y tomando $N=\{2,4,8,16,32\}$ subintervalos.

Consideremos el PVI definido por el modelo de Malthus

$$y'(t) = -10y(t), t \in [0, 3], y(0) = 1,$$

cuya solución analítica es $y(t) = e^{-10t}$.

N	E_N explícito	E_N implícito
2	81	0.0909
4	256	0.1599
8	25.6289	0.2036
16	0.5365	0.1579
32	0.1603	0.0922

- → Para este problema, el método de Euler explícito es inestable y requiere de muchos puntos para disminuir el error.
- → El método de Euler implícito requiere de pocos puntos para aproximarse a la solución de este PVI.

Contenidos

- Introducción
- 2 PVIs definidos por ecuaciones diferenciales de primer order
- 3 Diseño de métodos numéricos y convergencia
- Métodos numéricos de un paso
 - Método de Euler
 - Método de Euler implícito
 - Método de Heun
 - Método de Runge-Kutta
- 5 PVIs definidos por sistemas de ecuaciones diferenciales

Método de Heun

Integrando directamente en la ecuación diferencial

$$y(t_{k+1}) = y(t_k) + \int_{t_k}^{t_{k+1}} f(\tau, y(\tau)) d\tau$$

y aproximando la integral por trapecios, siendo h el paso de integración:

$$\int_{t_k}^{t_{k+1}} f(\tau, y(\tau)) d\tau \approx \frac{t_{k+1} - t_k}{2} \left(f(t_k, y(t_k)) + f(t_{k+1}, y(t_{k+1})) \right)$$

obtenemos

$$y(t_{k+1}) \approx y(t_k) + \frac{h}{2} \left(f(t_k, y(t_k)) + f(t_{k+1}, y(t_{k+1})) \right)$$

lacktriangle Como no conocemos el valor de $y(t_{k+1})$, predecimos primero un valor con Euler

$$\bar{y}_{k+1} = y_k + hf(t_k, y_k)$$

y lo ajustamos después por trapecios

$$y(t_{k+1}) \approx y_{k+1} = y_k + \frac{h}{2} \left(f(t_k, y_k) + f(t_{k+1}, \bar{y}_{k+1}) \right)$$

Método de Heun

Método de Heun

$$y_{k+1} = y_k + \frac{1}{2}hf(t_k, y_k) + \frac{1}{2}hf\left(t_{k+1}, y_k + hf(t_k, y_k)\right) = y_k + \frac{1}{2}k_1 + \frac{1}{2}k_2,$$
 donde $k_1 = hf(t_k, y_k)$ y $k_2 = hf\left(t_{k+1}, y_k + k_1\right).$

Teorema 2

Sea f tal que y'(t)=f(t,y(t)), $t\in [a,b]$, con condición inicial $y(a)=y_a$. Si $y(t)\in \mathcal{C}^3[a,b]$ y $\{(t_k,y_k)\}_{k\geq 0}$ es la sucesión de aproximaciones dadas por el método de Heun, entonces

$$|e_k| \le |y(t_k) - y_k|$$

$$= \left| y(t_k) - y_{k-1} - \frac{1}{2} h f(t_{k-1}, y_{k-1}) - \frac{1}{2} h f(t_k, y_{k-1} + h f(t_{k-1}, y_{k-1})) \right|$$

$$= \mathcal{O}(h^3)$$

v

$$E(h) = \frac{1}{h} \max_{1 \le k \le N} |e_k| = \mathcal{O}(h^2).$$

ig> El método de Heun tiene orden 2 con un error global de $\mathcal{O}(h^2)$.

Algoritmo del método de Heun

- Entrada: f, a, b, N, y_a
- Proceso:
 - Obtención de la variable independiente discretizada t
 - $lue{}$ Inicialización del vector solución y en a
 - Para k desde 0 hasta N-1:
 - $lue{}$ Cálculo de k_1 y k_2
 - $y_{k+1} = y_k + \frac{k_1}{2} + \frac{k_2}{2}$
 - lacksquare Fin para k
- Salida: t, y

Método de Heun

Ejemplo 7. Obtén la solución numérica del PVI

$$y'(t) = (1 - 2t)y(t), t \in [0, 3], y(0) = 1,$$

utilizando el método de Heun y $N = \{2,4,8,16,32,64\}$ subintervalos

■ La solución exacta es: $y(t) = e^{\frac{1}{4} - \left(\frac{1}{2} - t\right)^2}$

N	E_N	$\log_2(E_{N/2}/E_N)$
2	14.002478	-
4	0.889272	3.976913
8	0.060006	3.889445
16	0.010358	2.534260
32	0.002242	2.207672
64	0.000528	2.086139

Contenidos

- Introducción
- 2 PVIs definidos por ecuaciones diferenciales de primer order
- 3 Diseño de métodos numéricos y convergencia
- Métodos numéricos de un paso
 - Método de Euler
 - Método de Euler implícito
 - Método de Heun
 - Método de Runge-Kutta
- 5 PVIs definidos por sistemas de ecuaciones diferenciales

Integrando directamente en la ecuación diferencial

$$y(t_{k+1}) = y(t_k) + \int_{t_k}^{t_{k+1}} f(\tau, y(\tau)) d\tau$$

y aproximando la integral con la fórmula de Simpson:

$$\int_{t_k}^{t_{k+1}} f(\tau, y(\tau)) d\tau \approx \frac{t_{k+1} - t_k}{6} \left(f(t_k, y_k) + 4f(t_{k+\frac{1}{2}}, y_{k+\frac{1}{2}}) + f(t_{k+1}, y_{k+1}) \right)$$

obtenemos

$$y_{k+1} = y_k + \frac{h}{6} \left(f(t_k, y_k) + 4f(t_{k+\frac{1}{2}}, y_{k+\frac{1}{2}}) + f(t_{k+1}, y_{k+1}) \right),$$

siendo h el paso de la discretización.

 $\blacksquare \ f(t_{k+\frac{1}{2}},y_{k+\frac{1}{2}})$ y $f(t_{k+1},y_{k+1})$ son valores que no conocemos y que debemos aproximar

■ Realizamos las aproximaciones

$$\begin{split} f(t_{k+\frac{1}{2}},y_{k+\frac{1}{2}}) &\approx f\left(t_k + \frac{h}{2},y\left(t_k + \frac{h}{2}\right)\right) \approx \frac{1}{2}(k_2 + k_3), \\ f(t_{k+1},y_{k+1}) &\approx k_4, \end{split}$$

donde

$$k_1 = f(t_k, y_k),$$

$$k_2 = f\left(t_k + \frac{h}{2}, y_k + \frac{h}{2}k_1\right),$$

$$k_3 = f\left(t_k + \frac{h}{2}, y_k + \frac{h}{2}k_2\right),$$

$$k_4 = f(t_{k+1}, y_k + hk_3).$$

Método de Runge-Kutta explícito de orden 4

$$y_{k+1} = y_k + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4), \qquad k = 0, 1, \dots, N-1.$$

Teorema 3

Sea f tal que y'(t)=f(t,y(t)), $t\in [a,b]$, con condición inicial $y(a)=y_a$. Si $y(t)\in \mathcal{C}^5[a,b]$ y $\{(t_k,y_k)\}_{k\geq 0}$ es la sucesión de aproximaciones dadas por el método de Runge-Kutta, entonces

$$|e_k| \le |y(t_k) - y_k| = \mathcal{O}(h^5)$$

y

$$E(h) = \frac{1}{h} \max_{1 \le k \le N} |e_k| = \mathcal{O}(h^4).$$

 \Rightarrow El error global del método de Runge-Kutta es $\mathcal{O}(h^4)$.

Algoritmo del método de Runge-Kutta

- Entrada: f, a, b, N, y_a
- Proceso:
 - Obtención de la variable independiente discretizada t
 - Inicialización del vector solución y en a
 - Para k desde 0 hasta N-1:
 - lacksquare Cálculo de k_1 , k_2 , k_3 y k_4
 - $y_{k+1} = y_k + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$
 - lacksquare Fin para k
- Salida: t, y

Ejemplo 8. Obtén la solución numérica del PVI

$$y'(t) = (1 - 2t)y(t), t \in [0, 3], y(0) = 1,$$

utilizando el método de Runge-Kutta de orden 4 y $N=\{2,4,8,16,32,64\}$ subintervalos.

■ La solución exacta es: $y(t) = e^{\frac{1}{4} - \left(\frac{1}{2} - t\right)^2}$

N	E_N	$\log_2(E_{N/2}/E_N)$
2	3.997933	-
4	0.229210	4.124506
8	0.003400	6.074752
16	1.428132e-4	4.573578
32	7.295871e-6	4.290905
64	4.110425e-7	4.149720

5

PVIs definidos por sistemas de ecuaciones diferenciales

PVIs definidos por sistemas de ecuaciones diferenciales de primer orden

PVIs definidos por sistemas de EDOs de orden 1

$$\begin{cases} y_1'(t) &= f_1(t, y_1(t), y_2(t), \dots, y_m(t)), \\ y_2'(t) &= f_2(t, y_1(t), y_2(t), \dots, y_m(t)), \\ \vdots & \vdots & \vdots \\ y_m'(t) &= f_m(t, y_1(t), y_2(t), \dots, y_m(t)), \end{cases}$$

- m funciones incógnitas: y_1, y_2, \ldots, y_m
- Variable independiente: $t \in [a, b]$
- Tendremos un PVI si conocemos el valor de las m funciones incógnita en el instante inicial:

$$y_1(a) = y_{1,a}, y_2(a) = y_{2,a}, \dots, y_m(a) = y_{m,a}.$$

Ejemplo 9

Consideremos el sistema de ecuaciones diferenciales

$$\begin{cases} y'_1(t) &= y_1^2 + 2y_2, \\ y'_2(t) &= y_1^2 + \sin(y_2), \end{cases} t \in [\pi, 2\pi]$$

sujeto a las condiciones iniciales $y_1(\pi) = 0$, $y_2(\pi) = 1$.

PVIs definidos por ecuaciones diferenciales de orden superior

PVIs definidos por ecuaciones diferenciales de orden $\,m\,$

$$y^{(m)}(t) = f\left(t, y(t), y'(t), \dots, y^{(m-1)}(t)\right)$$

- Función incógnita: y(t)
- Variable independiente: $t \in [a, b]$
- Tendremos un PVI si cononemos los valores de la función incógnita y de sus derivadas hasta orden m-1 en el instante inicial:

$$y(a) = y_{1,a}, \quad y'(a) = y_{2,a}, \quad \dots, \quad y^{(m-1)}(a) = y_{m,a}.$$

Ejemplo 10.

Consideremos la ecuación diferencial de orden 3

$$y'''(t) = 4y''(t) - y'(t)^2 - e^{-t}, t \in [0, 2]$$

sujeta a las condiciones iniciales

$$y(0) = 1,$$
 $y'(0) = 3,$ $y''(0) = -1.$

PVIs definidos por ecuaciones diferenciales de orden superior

Obtención de un sistema de PVIs de primer orden

Realizamos el cambio de variables:

$$y_1(t) = y(t), \quad y_2(t) = y'(t), \quad \dots, \quad y_m(t) = y^{(m-1)}(t),$$

 \rightarrow La ecuación diferencial de orden m se convierte en el sistema de EDOs

$$\begin{bmatrix} y_{1}(t) \\ y_{2}(t) \\ y_{3}(t) \\ \vdots \\ y_{m}(t) \end{bmatrix} = \begin{bmatrix} y(t) \\ y'(t) \\ y''(t) \\ \vdots \\ y^{(m-1)}(t) \end{bmatrix} \Rightarrow \begin{bmatrix} y'_{1}(t) \\ y'_{2}(t) \\ y'_{3}(t) \\ \vdots \\ y'_{m}(t) \end{bmatrix} = \begin{bmatrix} y'(t) \\ y''(t) \\ y'''(t) \\ \vdots \\ y^{(m)}(t) \end{bmatrix}$$

$$= \begin{bmatrix} y_2(t) \\ y_3(t) \\ y_4(t) \\ \vdots \\ f(t, y_1(t), \dots, y_m(t)) \end{bmatrix}$$

con condiciones iniciales

$$y_1(a) = y_{1,a}, \quad y_2(a) = y_{2,a}, \quad \dots, \quad y_m(a) = y_{m,a},$$

PVIs definidos por ecuaciones diferenciales de orden superior

Ejemplo 11.

Consideremos el PVI:

$$y'''(t) = 4y''(t) - y'(t)^2 - e^{-t}, \qquad t \in [0, 2], \qquad y(0) = 1, \quad y'(0) = 3, \quad y''(0) = -1.$$

Realizando el cambio de variables:

$$y_1(t) = y(t),$$
 $y_2(t) = y'(t),$ $y_3(t) = y''(t),$

el PVI se transforma en el siguiente sistema de EDOs de primer orden

$$\begin{cases} y'_1(t) &= y_2(t), \\ y'_2(t) &= y_3(t), \\ y'_3(t) &= 4y_3(t) - y_2(t)^2 - e^{-t}, \end{cases}$$

sujeto a las condiciones iniciales

$$y_1(0) = 1,$$
 $y_2(0) = 3,$ $y_3(0) = -1.$

Contenidos

- Introducción
- 2 PVIs definidos por ecuaciones diferenciales de primer orden
- 3 Diseño de métodos numéricos y convergencia
- Métodos numéricos de un paso
- 5 PVIs definidos por sistemas de ecuaciones diferenciales
 - Métodos numéricos para resolver sistemas de ecuaciones diferenciales

Métodos numéricos para resolver sistemas de ecuaciones diferenciales

PVI

$$\begin{cases} y'_1(t) &= f_1(t, y_1(t), y_2(t), \dots, y_m(t)), \\ y'_2(t) &= f_2(t, y_1(t), y_2(t), \dots, y_m(t)), \\ \vdots & & t \in [a, b] \\ y'_m(t) &= f_m(t, y_1(t), y_2(t), \dots, y_m(t)), \end{cases}$$

sujeto a las condiciones iniciales:

$$y_1(a) = y_{1,a}, y_2(a) = y_{2,a}, \dots, y_m(a) = y_{m,a}.$$

Discretización:

$$h = \frac{b-a}{N}, \qquad t_k = a + kh, \quad k = 0, 1, \dots, N$$

- \rightarrow Vector de estimaciones iniciales: $Ya = (y_{1a}, y_{2a}, \dots, y_{ma})$
- → Solución en el nodo t_k : $Y_k = (y_{1k}, y_{2k}, ..., y_{mk}), k = 0, 1, ..., N-1$

Método de Euler para sistemas

$$Y_{k+1} = Y_k + hF(t_k, y_{1k}, y_{2k}, \dots, y_{mk}), \qquad k = 0, 1, \dots, N-1$$

Métodos numéricos para resolver sistemas de ecuaciones diferenciales Método de Euler para sistemas

EulerSistemas.m

```
function [t,Y] = EulerSistemas(F,a,b,N,Ya)
h=(b-a)/N;
t=a:h:b;
t=t(:);
Y=zeros(N+1,length(Ya));
Y(1,:)=Ya;
for k=1:N
    Y(k+1,:)=Y(k,:)+h*feval(F,t(k),Y(k,:))';
end
end
```

Método de Euler para sistemas

Ejemplo 12.

Utiliza el método de Euler para estimar la solución del PVI

$$x'(t) = 3x + 2y - (2t^{2} + 1)e^{2t}$$

$$y'(t) = 4x + y + (t^{2} + 2t - 4)e^{2t}$$
 $x(0) = 1, \quad y(0) = 1, \quad t \in [0, 1]$

- a) Obtén la aproximación de la solución utilizando un paso $h=\frac{1}{10}$ y representa su evolución respecto a la variable independiente.
- b) Sabiendo que la solución exacta es

$$x(t) = \frac{e^{5t}}{3} - \frac{e^{-t}}{3} + e^{2t}, \qquad y(t) = \frac{e^{5t}}{3} + 2\frac{e^{-t}}{3} + t^2e^{2t},$$

obtén una aproximación numérica del orden de convergencia del método de Euler.

Método de Euler para sistemas

Ejemplo 12.

Utiliza el método de Euler para estimar la solución del PVI

$$x'(t) = 3x + 2y - (2t^{2} + 1)e^{2t}$$

$$y'(t) = 4x + y + (t^{2} + 2t - 4)e^{2t}$$
 $x(0) = 1, \quad y(0) = 1, \quad t \in [0, 1]$

- a) Obtén la aproximación de la solución utilizando un paso $h=\frac{1}{10}$ y representa su evolución respecto a la variable independiente.
- b) Sabiendo que la solución exacta es

$$x(t) = \frac{e^{5t}}{3} - \frac{e^{-t}}{3} + e^{2t}, \qquad y(t) = \frac{e^{5t}}{3} + 2\frac{e^{-t}}{3} + t^2e^{2t},$$

obtén una aproximación numérica del orden de convergencia del método de Euler.

```
function f = ej12(t,z)
x=z(1); y=z(2);
f=[3*x+2*y-(2*t.^2+1).*exp(2*t); 4*x+y+(t.^2+2*t-4).*exp(2*t)];
end
```

Método de Euler para sistemas

Ejemplo 12

```
>> [t,Y]=EulerSistemas('ej12',0,1,10,[1,1]);
```

- >> plot(t,Y(:,1));
- - 25 20 15 10 5 0 0.2 0.4 0.6 0.8 1

t_k	x_k	y_k
0	1.0000	1.0000
0.1	1.4000	1.1000
0.2	1.9154	1.3071
0.3	2.5903	1.6729
0.4	3.4870	2.2732
0.5	4.6940	3.2187
0.6	6.3382	4.6707
0.7	8.6027	6.8629
0.8	11.7532	10.1346
0.9	16.1767	14.9776
1	22.4403	22.1052

Para finalizar...

- Lecciones magistrales
- Material complementario: A fondo
- Bibliografía recomendada

...Y por supuesto:

TEST DE APRENDIZAJE!!

