Analiza III

Jeżeli f - holomorficzna na  $R(z_0, 0, r_2)$ , to

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

Mamy

$$a_n = \frac{1}{2\pi i} \int_{\partial K(z_0, r)} \frac{f(\xi)}{(\xi - z_0)^{n+1}}, \quad r_1 < r < r_2.$$

ale możemy zauważyć, że

$$a_n = \frac{f^{(n)}(z_0)}{n!}$$

Przykład 1. Policzyć

$$I = \int_{\partial K(i,1)} \frac{\cos(z)}{(1+z^2)^2} dz.$$

Zauważmy, że

$$\frac{\cos(z)}{(1+z^2)^2} = \frac{\cos(z)}{(1+iz)^2(1-iz)^2}.$$

Niech  $f(z) = \frac{\cos(z)}{(1-iz)^2}$ , f - holomorficzna na K(i,1). W związku z tym piszemy

$$I = \int_{\partial K(i,1)} \frac{f(z)}{(1+iz)^2} dz = \frac{1}{(i)^2} \int_{\partial K(i,1)} \frac{f(z)dz}{(z-i)^2} = (i)^2 \cdot 2\pi i \ f'(z)|_{z=i}.$$

## Przedłużenie analityczne (oho)

Mieliśmy np.  $\sin(x)$  dla  $x \in \mathbb{R}$  i pytanie skąd my wiemy, że  $\sin(z) = \frac{1}{2i} \left( e^{iz} - e^{-iz} \right)$ , dla  $z \in \mathbb{C}$ 

Twierdzenie 1. Niech  $\mathcal{O} \subset \mathbb{C}$ , f - holomorficzna na  $\mathcal{O}$ ,  $z_n \in \mathcal{O}$  - ciąg  $z \in \mathcal{O}$  taki, że  $z_n \xrightarrow[n \to \infty]{} z_0 \bigvee_{n \in \mathbb{N}} f(z_n) = 0$ .

W'owczas

$$\exists_{r>0} \quad \forall f(z) = 0.$$

Dowód. przez sprzeczność  $(\neg(p\Longrightarrow q)\Longleftrightarrow (p\wedge\neg q))$ . Załóżmy, że  $\exists\limits_{z\in K(z_0,r)}f(z)\neq 0$  i założenia twierdzenia są spełnione. Skoro f - holomorficzna na  $\mathcal O$ , to możemy zapisać, że

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

i wiemy, że  $f(z) \neq 0$ , czyli  $\exists k$  takie, że

$$\frac{f^{(k)}(z_0)}{k!} \neq 0. \tag{*}$$

Weźmy najmniejszy indeks, dla którego (??) jest prawdziwe. Oznaczmy ten indeks przez j. Oznacza to, że

$$f(z) = (z - z_0)^j \left( \frac{f^{(j)}(z_0)}{j!} + \frac{f^{(j+1)}(z_0)}{(j+1)!} (z - z_0) + \dots \right).$$

Czyli

$$f(z) = (z - z_0)^j g(z), \quad f(z) \neq 0,$$

czyli  $g(z) \neq 0$ . Skoro f - holomorficzna, to g(z) też jest holomorficzna na  $\mathcal{O}$ , czyli między innymi g(z) jest ciągła na  $\mathcal{O}$ . Ale wiemy, że  $f(z_n) = 0$ , czyli  $g(z_n) = 0$  i g - ciągła na  $\mathcal{O}$ . Oznacza to, że

$$0 = g(z_n) \xrightarrow[z_n \to z_0]{} g(z_0) = 0$$

i sprzeczność, bo  $g(z_n)$  jest ciągiem samych zer, a  $g(z_0) \neq 0$ , bo

$$\frac{f^{(j)}(z_j)}{j!} \neq 0.$$

Obserwacja: Weźmy funkcję

$$f(x) = x^2 \sin\left(\frac{1}{x}\right), \quad x \in \mathbb{R}.$$

Widzimy, że dla ciągu  $a_n \to 0$ ,

$$f(a_n) \longrightarrow 0$$

$$i f(x) \neq 0, \quad x \neq a_n$$

Analiza III 3



Rysunek 0.1: f(x)

Twierdzenie 2. Niech f(z), g(z) - holomorficzne na  $\mathcal{O}$ ,

$$\forall f(z_n) = g(z_n)$$

 $a\ ciag\ z_n \to z_0.\ W\'owczas$ 

$$f(z) = g(z) \underset{z \in \mathcal{O}}{\forall}.$$

Dowód. Niech

$$h(z) = f(z) - g(z).$$

Wówczas  $h(z_n)=0$  i  $z_n\to z_0.$  Skoro h(z) - holomorficzna, to znaczy, że

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

$$g(z) = \sum_{n=0}^{\infty} b_n (z - z_0)^n$$

oraz

$$h(z) = \sum_{n=0}^{\infty} (a_n - b_n)(z - z_0)^n$$

i dowodzimy tak jak wcześniej.

## Przykład 2.

$$f(z) = 1 + z + z^2 + z^3 + \dots, |z| < 1$$

$$g(z) = 1 + \left(\frac{z+1}{2}\right) + \left(\frac{z+1}{2}\right)^2 + \dots \quad \left|\frac{z+1}{2}\right| < 1$$



Rysunek 0.2: f i g

Definicja 1. Niech f - holomorficzna na  $U_1$  i g - holomorficzna na  $U_2$  i

$$\exists_{z_0} \in U_1 \cap U_2 \implies \exists r : K(z_0, r) \subset U_1 \cap U_2$$

oraz

$$\forall_{z \in U_1 \cap U_2} \quad f(z) = g(z).$$

Mówimy wówczas, że f jest przedłużeniem holomorficznym (analitycznym funkcji g).

Przykład 3. Co się stanie jak będziemy przedłużać aż do kółka

$$ln(z) = (z-1) - \frac{1}{z}(z-1)^2 + \dots$$
$$ln(re^{i\varphi}) = ln(r) + ln\left(e^{i\varphi}\right) = ln(r) + i\varphi$$

## Punkty osobliwe

**Definicja 2.** Punkt w którym f(z) nie jest holomorficzna nazywamy punktem osobliwym.

Analiza III 5

**Definicja 3.** Niech f(z) - taka,  $\dot{z}e$ 

$$f(z) = \varphi(z) + \frac{B_1}{z - a} + \frac{B_2}{(z - a)^2} + \dots + \frac{B_N}{(z - a)^N}$$

 $i \varphi(z)$  - holomorficzna na  $\mathcal{O}$  i f(z) - holomorficzna na  $\mathcal{O} - \{a\}$ . O takiej funkcji powiemy, że ma w punkcie a biegun rzędu N.

Pytanie: czy f może nie być holomorficzna np. na krzywej  $\gamma\subset\mathbb{C}$ ? Odpowiedź: gdyby f nie była holomorficzna na  $\gamma\subset\mathbb{C}$ , to

$$g(z) = \frac{1}{f(z)} = 0, \quad \forall z \in \gamma,$$

a to oznacza, że  $g(z) \equiv 0$  także dla  $z \not \in \gamma$ .