PY. The effect of the yaw on the standard basis vectors \mathbf{e}_1 , \mathbf{e}_2 , and \mathbf{e}_3 is to rotate them to the new directions \mathbf{y}_1 , \mathbf{y}_2 , and \mathbf{y}_3 . So the vectors \mathbf{y}_1 , \mathbf{y}_2 , and \mathbf{y}_3 will define the directions of the x, y, and z axes when we do the pitch. The desired pitch transformation is then a rotation about the new y-axis (i.e., the axis in the direction of the vector \mathbf{y}_2). The vectors \mathbf{y}_1 and \mathbf{y}_3 form a plane, and when the pitch is applied, they are both rotated by an angle v in that plane. The vector \mathbf{y}_2 will remain unaffected by the pitch, since it lies on the axis of rotation. Thus, the composite transformation L has the following effect on the standard basis vectors.

$$\begin{array}{c} \mathbf{e}_{1} \overset{\text{yaw}}{\rightarrow} \mathbf{y}_{1} \overset{\text{pitch}}{\rightarrow} \cos \nu \ \mathbf{y}_{1} + \sin \nu \ \mathbf{y}_{3} \\ \mathbf{e}_{2} \overset{\text{yaw}}{\rightarrow} \mathbf{y}_{2} \overset{\text{pitch}}{\rightarrow} \mathbf{y}_{2} \\ \mathbf{e}_{3} \overset{\text{yaw}}{\rightarrow} \mathbf{y}_{3} \overset{\text{pitch}}{\rightarrow} - \sin \nu \ \mathbf{y}_{1} + \cos \nu \ \mathbf{y}_{3} \end{array}$$

The images of the standard basis vectors form the columns of the matrix representing the composite transformation:

$$(\cos v \, \mathbf{y}_1 + \sin v \, \mathbf{y}_3, \, \mathbf{y}_2, \, -\sin v \, \mathbf{y}_1 + \cos v \, \mathbf{y}_3) = (\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3) \begin{bmatrix} \cos v & 0 & -\sin v \\ 0 & 1 & 0 \\ \sin v & 0 & \cos v \end{bmatrix}$$
$$= YP$$

It follows that matrix representation of the composite is a product of the two individual matrices representing the yaw and the pitch, but the product must be taken in the reverse order, with the yaw matrix Y on the left and the pitch matrix P on the right. Similarly, for a composite transformation of a yaw with angle u, followed by a pitch with angle v, and then a roll with angle w, the matrix representation of the composite transformation would be the product YPR.

SECTION 4.2 EXERCISES

- Refer to Exercise 1 of Section 4.1. For each linear transformation L, find the standard matrix representation of L.
- **2.** For each of the following linear transformations L mapping \mathbb{R}^3 into \mathbb{R}^2 , find a matrix A such that $L(\mathbf{x}) = A\mathbf{x}$ for every \mathbf{x} in \mathbb{R}^3 :
 - (a) $L((x_1, x_2, x_3)^T) = (x_1 + x_2, 0)^T$
 - **(b)** $L((x_1, x_2, x_3)^T) = (x_1, x_2)^T$
 - (c) $L((x_1, x_2, x_3)^T) = (x_2 x_1, x_3 x_2)^T$
- For each of the following linear operators L on R³, find a matrix A such that L(x) = Ax for every x in R³:
 - (a) $L((x_1, x_2, x_3)^T) = (x_3, x_2, x_1)^T$
 - **(b)** $L((x_1, x_2, x_3)^T) = (x_1, x_1 + x_2, x_1 + x_2 + x_3)^T$
 - (c) $L((x_1, x_2, x_3)^T) = (2x_3, x_2 + 3x_1, 2x_1 x_3)^T$

4. Let L be the linear operator on \mathbb{R}^3 defined by

$$L(\mathbf{x}) = \begin{cases} 2x_1 - x_2 - x_3 \\ 2x_2 - x_1 - x_3 \\ 2x_3 - x_1 - x_2 \end{cases}$$

Determine the standard matrix representation A of L, and use A to find $L(\mathbf{x})$ for each of the following vectors \mathbf{x} :

- (a) $\mathbf{x} = (1, 1, 1)^T$
- **(b)** $\mathbf{x} = (2, 1, 1)^T$
- (c) $\mathbf{x} = (-5, 3, 2)^T$
- **5.** Find the standard matrix representation for each of the following linear operators:
 - (a) L is the linear operator that rotates each \mathbf{x} in \mathbb{R}^2 by 45° in the clockwise direction.

- (c) L doubles the length of \mathbf{x} and then rotates it 30° in the counterclockwise direction.
- (d) L reflects each vector \mathbf{x} about the line $x_2 = x_1$ and then projects it onto the x_1 -axis.
- **6.** Let

$$\mathbf{b}_1 = \left(\begin{array}{c} 1\\1\\0 \end{array}\right), \ \mathbf{b}_2 = \left(\begin{array}{c} 1\\0\\1 \end{array}\right), \ \mathbf{b}_3 = \left(\begin{array}{c} 0\\1\\1 \end{array}\right)$$

and let L be the linear transformation from \mathbb{R}^2 into \mathbb{R}^3 defined by

$$L(\mathbf{x}) = x_1 \mathbf{b}_1 + x_2 \mathbf{b}_2 + (x_1 + x_2) \mathbf{b}_3$$

Find the matrix A representing L with respect to the ordered bases $\{\mathbf{e}_1, \mathbf{e}_2\}$ and $\{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$.

7. Let

$$\mathbf{y}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{y}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \ \mathbf{y}_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

and let \mathcal{I} be the identity operator on \mathbb{R}^3 .

- (a) Find the coordinates of $\mathcal{I}(\mathbf{e}_1)$, $\mathcal{I}(\mathbf{e}_2)$, and $\mathcal{I}(\mathbf{e}_3)$ with respect to $\{\mathbf{y}_1,\mathbf{y}_2,\mathbf{y}_3\}$.
- (b) Find a matrix A such that $A\mathbf{x}$ is the coordinate vector of \mathbf{x} with respect to $\{\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3\}$.
- **8.** Let $\mathbf{y}_1, \mathbf{y}_2$, and \mathbf{y}_3 be defined as in Exercise 7, and let L be the linear operator on \mathbb{R}^3 defined by

$$L(c_1\mathbf{y}_1 + c_2\mathbf{y}_2 + c_3\mathbf{y}_3)$$

= $(c_1 + c_2 + c_3)\mathbf{y}_1 + (2c_1 + c_3)\mathbf{y}_2 - (2c_2 + c_3)\mathbf{y}_3$

- (a) Find a matrix representing L with respect to the ordered basis $\{y_1, y_2, y_3\}$.
- (b) For each of the following, write the vector \mathbf{x} as a linear combination of $\mathbf{y}_1, \mathbf{y}_2$, and \mathbf{y}_3 and use the matrix from part (a) to determine $L(\mathbf{x})$:

(i)
$$\mathbf{x} = (7, 5, 2)^T$$

(ii)
$$\mathbf{x} = (3, 2, 1)^T$$

(iii)
$$\mathbf{x} = (1, 2, 3)^T$$

9. Let

$$R = \left[\begin{array}{ccccc} 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{array} \right]$$

The column vectors of R represent the homogeneous coordinates of points in the plane.

(a) Draw the figure whose vertices correspond to the column vectors of *R*. What type of figure is it?

(b) For each of the following choices of *A*, sketch the graph of the figure represented by *AR* and describe geometrically the effect of the linear transformation:

191

(i)
$$A = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(ii)
$$A = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 1 \end{bmatrix}$$

$$(\mathbf{iii}) A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{bmatrix}$$

- 10. For each of the following linear operators on \mathbb{R}^2 , find the matrix representation of the transformation with respect to the homogeneous coordinate system:
 - (a) The transformation L that rotates each vector by 120° in the counterclockwise direction
 - (b) The transformation L that translates each point 3 units to the left and 5 units up
 - (c) The transformation *L* that contracts each vector by a factor of one-third
 - (d) The transformation that reflects a vector about the y-axis and then translates it up 2 units
- **11.** Determine the matrix representation of each of the following composite transformations.
 - (a) A yaw of 90°, followed by a pitch of 90°
 - **(b)** A pitch of 90° , followed by a yaw of 90°
 - (c) A pitch of 45° , followed by a roll of -90°
 - (d) A roll of -90° , followed by a pitch of 45°
 - (e) A yaw of 45° , followed by a pitch of -90° and then a roll of -45°
 - (f) A roll of -45° , followed by a pitch of -90° and then a yaw of 45°
- **12.** Let Y, P, and R be the yaw, pitch, and roll matrices given in equations (1), (2), and (3), respectively, and let Q = YPR.
 - (a) Show that *Y*, *P*, and *R* all have determinants equal to 1.
 - (b) The matrix Y represents a yaw with angle u. The inverse transformation should be a yaw with angle -u. Show that the matrix representation of the inverse transformation is Y^T and that $Y^T = Y^{-1}$.
 - (c) Show that Q is nonsingular and express Q^{-1} in terms of the transposes of Y, P, and R.

13. Let L be the linear transformation mapping P_2 into \mathbb{R}^2 defined by

$$L(p(x)) = \left[\int_0^1 p(x) \, dx \right]$$

Find a matrix A such that

$$L(\alpha + \beta x) = A \left[\begin{array}{c} \alpha \\ \beta \end{array} \right]$$

14. The linear transformation L defined by

$$L(p(x)) = p'(x) + p(0)$$

maps P_3 into P_2 . Find the matrix representation of L with respect to the ordered bases $[x^2, x, 1]$ and [2, 1 - x]. For each of the following vectors p(x) in P_3 , find the coordinates of L(p(x)) with respect to the ordered basis [2, 1 - x]:

- (a) $x^2 + 2x 3$
- **(b)** $x^2 + 1$
- (c) 3x
- **(d)** $4x^2 + 2x$
- **15.** Let *S* be the subspace of C[a, b] spanned by e^x , xe^x , and x^2e^x . Let *D* be the differentiation operator of *S*. Find the matrix representing *D* with respect to $[e^x, xe^x, x^2e^x]$.
- **16.** Let L be a linear operator on \mathbb{R}^n . Suppose that $L(\mathbf{x}) = \mathbf{0}$ for some $\mathbf{x} \neq \mathbf{0}$. Let A be the matrix representing L with respect to the standard basis $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$. Show that A is singular.
- **17.** Let L be a linear operator on a vector space V. Let A be the matrix representing L with respect to an ordered basis $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ of V [i.e.,

$$L(\mathbf{v}_j) = \sum_{i=1}^n a_{ij} \mathbf{v}_i, j = 1, \dots, n$$
]. Show that A^m is the matrix representing L^m with respect to $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$.

18. Let $E = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3}$ and $F = {\mathbf{b}_1, \mathbf{b}_2}$, where

$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \ \mathbf{u}_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \ \mathbf{u}_3 = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$

and

$$\mathbf{b}_1 = (1, -1)^T, \qquad \mathbf{b}_2 = (2, -1)^T$$

For each of the following linear transformations L from \mathbb{R}^3 into \mathbb{R}^2 , find the matrix representing L with respect to the ordered bases E and F:

- (a) $L(\mathbf{x}) = (x_3, x_1)^T$
- **(b)** $L(\mathbf{x}) = (x_1 + x_2, x_1 x_3)^T$
- (c) $L(\mathbf{x}) = (2x_2, -x_1)^T$
- **19.** Suppose that $L_1 \colon V \to W$ and $L_2 \colon W \to Z$ are linear transformations and E, F, and G are ordered bases for V, W, and Z, respectively. Show that, if A represents L_1 relative to E and F and B represents L_2 relative to F and G, then the matrix C = BA represents $L_2 \circ L_1 \colon V \to Z$ relative to E and G. Hint: Show that $BA[\mathbf{v}]_E = [(L_2 \circ L_1)(\mathbf{v})]_G$ for all $\mathbf{v} \in V$.
- **20.** Let V and W be vector spaces with ordered bases E and F, respectively. If $L \colon V \to W$ is a linear transformation and A is the matrix representing L relative to E and F, show that
 - (a) $\mathbf{v} \in \ker(L)$ if and only if $[\mathbf{v}]_E \in N(A)$.
 - (b) $\mathbf{w} \in L(V)$ if and only if $[\mathbf{w}]_F$ is in the column space of A.

4.3 Similarity

If L is a linear operator on an n-dimensional vector space V, the matrix representation of L will depend on the ordered basis chosen for V. By using different bases, it is possible to represent L by different $n \times n$ matrices. In this section, we consider different matrix representations of linear operators and characterize the relationship between matrices representing the same linear operator.

Let us begin by considering an example in \mathbb{R}^2 . Let L be the linear transformation mapping \mathbb{R}^2 into itself defined by

$$L(\mathbf{x}) = (2x_1, x_1 + x_2)^T$$

Since

$$L(\mathbf{e}_1) = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 and $L(\mathbf{e}_2) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Thus, the matrix representing L with respect to $\{y_1, y_2, y_3\}$ is

$$D = \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{array} \right]$$

We could have found D by using the transition matrix $Y = (\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3)$ and computing

$$D = Y^{-1}AY$$

This was unnecessary due to the simplicity of the action of L on the basis $\{y_1, y_2, y_3\}$.

In Example 2, the linear operator L is represented by a diagonal matrix D with respect to the basis $\{y_1, y_2, y_3\}$. It is much simpler to work with D than with A. For example, it is easier to compute $D\mathbf{x}$ and $D^n\mathbf{x}$ than $A\mathbf{x}$ and $A^n\mathbf{x}$. Generally, it is desirable to find as simple a representation as possible for a linear operator. In particular, if the operator can be represented by a diagonal matrix, this is usually the preferred representation. The problem of finding a diagonal representation for a linear operator will be studied in Chapter 6.

SECTION 4.3 EXERCISES

- 1. For each of the following linear operators L on \mathbb{R}^2 , determine the matrix A representing L with respect to $\{e_1, e_2\}$ (see Exercise 1 of Section 1.2) and the matrix B representing L with respect to $\{\mathbf{u}_1 = (1,1)^T, \mathbf{u}_2 = (-1,1)^T\}:$
 - (a) $L(\mathbf{x}) = (-x_1, x_2)^T$ (b) $L(\mathbf{x}) = -\mathbf{x}$ (c) $L(\mathbf{x}) = (x_2, x_1)^T$ (d) $L(\mathbf{x}) = \frac{1}{2}\mathbf{x}$
- (e) $L(\mathbf{x}) = x_2 \mathbf{e}_2$
- **2.** Let $\{\mathbf{u}_1, \mathbf{u}_2\}$ and $\{\mathbf{v}_1, \mathbf{v}_2\}$ be ordered bases for \mathbb{R}^2 , where

$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

and

$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Let L be the linear transformation defined by

$$L(\mathbf{x}) = (-x_1, x_2)^T$$

and let B be the matrix representing L with respect to $\{\mathbf{u}_1, \mathbf{u}_2\}$ [from Exercise 1(a)].

(a) Find the transition matrix S corresponding to the change of basis from $\{\mathbf{u}_1, \mathbf{u}_2\}$ to $\{\mathbf{v}_1, \mathbf{v}_2\}$.

- **(b)** Find the matrix A representing L with respect to $\{\mathbf{v}_1, \mathbf{v}_2\}$ by computing SBS^{-1} .
- (c) Verify that

$$L(\mathbf{v}_1) = a_{11}\mathbf{v}_1 + a_{21}\mathbf{v}_2$$

$$L(\mathbf{v}_2) = a_{12}\mathbf{v}_1 + a_{22}\mathbf{v}_2$$

3. Let L be the linear transformation on \mathbb{R}^3 defined by

$$L(\mathbf{x}) = \begin{cases} 2x_1 - x_2 - x_3 \\ 2x_2 - x_1 - x_3 \\ 2x_3 - x_1 - x_2 \end{cases}$$

and let A be the standard matrix representation of L (see Exercise 4 of Section 4.2). If $\mathbf{u}_1 = (1, 1, 0)^T$, $\mathbf{u}_2 = (1, 0, 1)^T$, and $\mathbf{u}_3 = (0, 1, 1)^T$, then $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an ordered basis for \mathbb{R}^3 and $U = (\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3)$ is the transition matrix corresponding to a change of basis from $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ to the standard basis $\{e_1, e_2, e_3\}$. Determine the matrix B representing L with respect to the basis $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ by calculating $U^{-1}AU$.

4. Let L be the linear operator mapping \mathbb{R}^3 into \mathbb{R}^3 defined by $L(\mathbf{x}) = A\mathbf{x}$, where

$$A = \begin{bmatrix} 3 & -1 & -2 \\ 2 & 0 & -2 \\ 2 & -1 & -1 \end{bmatrix}$$

and let

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \ \mathbf{v}_3 = \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix}$$

Find the transition matrix V corresponding to a change of basis from $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ to $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$, and use it to determine the matrix B representing L with respect to $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.

5. Let L be the operator on P_3 defined by

$$L(p(x)) = xp'(x) + p''(x)$$

- (a) Find the matrix A representing L with respect to $[1, x, x^2]$.
- (b) Find the matrix B representing L with respect to $[1, x, 1 + x^2]$.
- (c) Find the matrix S such that $B = S^{-1}AS$.
- (d) If $p(x) = a_0 + a_1x + a_2(1 + x^2)$, calculate $L^n(p(x))$.
- **6.** Let V be the subspace of C[a,b] spanned by $1, e^x, e^{-x}$, and let D be the differentiation operator on V.
 - (a) Find the transition matrix S representing the change of coordinates from the ordered basis $[1, e^x, e^{-x}]$ to the ordered basis $[1, \cosh x, \sinh x]$. $[\cosh x = \frac{1}{2}(e^x + e^{-x}), \sinh x = \frac{1}{2}(e^x e^{-x}).]$
 - **(b)** Find the matrix A representing D with respect to the ordered basis $[1, \cosh x, \sinh x]$.
 - (c) Find the matrix B representing D with respect to $[1, e^x, e^{-x}]$.
 - (d) Verify that $B = S^{-1}AS$.
- 7. Prove that if *A* is similar to *B* and *B* is similar to *C*, then *A* is similar to *C*.

- **8.** Suppose that $A = S\Lambda S^{-1}$, where Λ is a diagonal matrix with diagonal elements $\lambda_1, \lambda_2, \ldots, \lambda_n$.
 - (a) Show that $A\mathbf{s}_i = \lambda_i \mathbf{s}_i, i = 1, \dots, n$.
 - **(b)** Show that if $\mathbf{x} = \alpha_1 \mathbf{s}_1 + \alpha_2 \mathbf{s}_2 + \dots + \alpha_n \mathbf{s}_n$, then $A^k \mathbf{x} = \alpha_1 \lambda_1^k \mathbf{s}_1 + \alpha_2 \lambda_2^k \mathbf{s}_2 + \dots + \alpha_n \lambda_n^k \mathbf{s}_n$
 - (c) Suppose that $|\lambda_i| < 1$ for i = 1, ..., n. What happens to $A^k \mathbf{x}$ as $k \to \infty$? Explain.
- **9.** Suppose that A = ST, where S is nonsingular. Let B = TS. Show that B is similar to A.
- **10.** Let *A* and *B* be $n \times n$ matrices. Show that if *A* is similar to *B* then there exist $n \times n$ matrices *S* and *T*, with *S* nonsingular, such that

$$A = ST$$
 and $B = TS$

- 11. Show that if A and B are similar matrices, then det(A) = det(B).
- **12.** Let *A* and *B* be similar matrices. Show that
 - (a) A^T and B^T are similar.
 - **(b)** A^k and B^k are similar for each positive integer k.
- **13.** Show that if *A* is similar to *B* and *A* is nonsingular, then *B* must also be nonsingular and A^{-1} and B^{-1} are similar.
- **14.** Let *A* and *B* be similar matrices and let λ be any scalar. Show that
 - (a) $A \lambda I$ and $B \lambda I$ are similar.
 - **(b)** $det(A \lambda I) = det(B \lambda I)$.
- **15.** The *trace* of an $n \times n$ matrix A, denoted tr(A), is the sum of its diagonal entries; that is,

$$tr(A) = a_{11} + a_{22} + \dots + a_{nn}$$

Show that

- (a) tr(AB) = tr(BA)
- **(b)** if *A* is similar to *B*, then tr(A) = tr(B).

Chapter Four Exercises

MATLAB EXERCISES

1. Use MATLAB to generate a matrix W and a vector **x** by setting

$$W = \mathtt{triu}(\mathtt{ones}(5))$$
 and $\mathbf{x} = [1:5]'$

The columns of W can be used to form an ordered basis

$$F = {\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4, \mathbf{w}_5}$$

Let $L: \mathbb{R}^5 \to \mathbb{R}^5$ be a linear operator such that

$$L(\mathbf{w}_1) = \mathbf{w}_2, \qquad L(\mathbf{w}_2) = \mathbf{w}_3, \qquad L(\mathbf{w}_3) = \mathbf{w}_4$$

and

$$L(\mathbf{w}_4) = 4\mathbf{w}_1 + 3\mathbf{w}_2 + 2\mathbf{w}_3 + \mathbf{w}_4$$

 $L(\mathbf{w}_5) = \mathbf{w}_1 + \mathbf{w}_2 + \mathbf{w}_3 + 3\mathbf{w}_4 + \mathbf{w}_5$

- (a) Determine the matrix A representing L with respect to F, and enter it in MATLAB.
- (b) Use MATLAB to compute the coordinate vector $\mathbf{y} = W^{-1}\mathbf{x}$ of \mathbf{x} with respect to F.