العلامة		/ + Év + + + + + + + + + + + + + + + + + +	
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)	
		التمرين الأول: (04 نقاط)	
		1 تعريف النواة المشعة:	
00,5	0,25	النواة المشعة هي نواة غير مستقرة تتفكك تلقائيا لتكون نواة أكثر استقرار مع إصدار اشعاعات.	
	0,25	*خصائص النشاط الاشعاعي:	
	3,23	تلقائي، عشوائي ، حتمي.	
		1.2. إيجاد كلا من A و Z مع تحديد النواة الناتجة:	
01,50	0,25x2	Z=56 ، $A=137$ بتطبيق قانوني الانحفاظ نجد: $A=137$	
	0,25	النواة الناتجة هي: ¹³⁷ ₅₆ Ba	
	0,25	2.2. نمط التفكك و تفسير كيفية حدوثه:	
	0.25	. eta^- تفکك $^-$	
	0,25	-1 $P+{}_{1}^{0}e$:	
	0,25	$N = \frac{N}{N}$.3.2 $N = \frac{N}{N}$	
01 50		82 $\begin{array}{c} {}^{137}_{55}Cs \longrightarrow {}^{137}_{56}Ba + {}^{0}_{1-}e \\ \vdots t_{1/2} \text{ bat item} \end{array}$ $: t_{1/2}$	
01,50	0,25	81	
	0,25	36.2. قانون تناقص النشاط (A(t):	
		53 54 55 56 Z $A(t) = A_0 e^{-\lambda t}$	
	0,25	$\lambda = \frac{\ln 2}{t_{1/2}}$ العبارة $\lambda = \frac{\ln 2}{t_{1/2}}$	
	3,23	$\lambda = \frac{\ln 2}{t_{1/2}}$ الما $\lambda = \frac{\ln 2}{2}$ فإن $A(t_{1/2}) = \frac{A_0}{2}$ بالتعويض بعبارة $A(t)$ بالتعويض بعبارة المطلوبة فإن $A(t_{1/2}) = \frac{A_0}{2}$ فإن $A(t_{1/2}) = \frac{A_0}{2}$ فإن $A(t_{1/2}) = \frac{A_0}{2}$ بالتعويض بعبارة المطلوبة في المحافظة	
	0,25x3	$: m_0(^{137}Cs)$ عساب كتلة السيزيوم الابتدائية (3.3 مساب كتلة السيزيوم الابتدائية (3.4 مساب كتلة السيزيوم الابتدائية (3.4 مساب كتلة السيزيوم الابتدائية (3.5 مساب كتلة المساب كتلة المساب كتلة (3.5 مساب كتلة المساب كتلة المساب كتلة (3.5 مساب كت	
		$m_0 = rac{A_0 M}{N_A \lambda} = rac{A_0 . M . t_{1/2}}{N_A . \ln 2}$: و هنه $N_0 = rac{m_0}{M} N_A$ و $A_0 = \lambda . N_0$	
		$m_0 = 9,39 \times 10^{-3} g$ نجد $m_0 = \frac{3 \times 10^{10} \times 137 \times (30,2 \times 31557600)}{6,02.10^{23} \times 0,693}$: (تطبیق عددي)	
00,25	0,25	4. حساب المدة الزمنية لتفكك $\frac{99\%}{6}$ من السيزيوم $\frac{137}{6}$ للتخلص من الأثار السلبية:	
		$t \approx 200,5 \ ans \ \ i = \frac{t_{1/2}}{Ln2}.Ln100 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	

	تابع الإجابة النموذجية لموضوع امتحان شهادة البكالوريا دورة: 2023					
ات و30د	المدة: 4ساعا	يائية الشعبة: رياضيات + تقني رياضي	اختبار مادة: علوم فيز			
00,25	0,25	نطقة آمنة في الوقت الحالي؟	5. هل اصبحت الم			
) - مدة التخلص من أخطار النشاط الاشعاعي 200,5 ans ، بالمقارنة مع 37 ans فالمنطقة				
		ر الانفجار. (في حدود 2183م تصبح المنطقة آمنة).	غير آمنة من أخطار			
		ل العينة بعد مرور 37 سنة من حدوث الانفجار تكون نسبة نشاط العينة:	ط2)- بحساب نشاه			
		. و بالتالي مازالت المنطقة غير آمنة من أخطار الانفجار $rac{A(37ans)}{A_0}=$	$e^{-\frac{Ln2}{30,2}(37)} = 43\%$			
			التمرين الثاني:(1			
		يديو حركة قذف الكرة المعدنية:	I <u>تحليل ودراسة ف</u>			
00,75	0,25	$: \overrightarrow{OM_0}$ لموضع	1.1. عبارة شعاع ا			
		$\overrightarrow{OM_0} = x_0 \overrightarrow{i} + y_0 \overrightarrow{j} \Rightarrow \overrightarrow{OM_0} = \overrightarrow{i}$	$=0,5\vec{i}+2,1\vec{j}$			
	0,25X2	$\overrightarrow{v_0}$ الابتدائية: $\overrightarrow{v_0}$	2.1. عبارة شعاع ا			
		$v_{0y} = v_0 \sin \alpha$ و $v_{0x} = v_0 \cos \alpha$ حيث	$\overrightarrow{v_0} = v_{0x}\overrightarrow{i} + v_{0y}\overrightarrow{j}$			
			\vec{i} + 12,9 sin $\alpha \vec{j}$			
00,75	0,25X2	لة أرخميدس مهملة أمام قوة الثقل: 				
		و منه دافعة ارخميدس مهملة أمام قوة الثقل $rac{P}{\Pi}=6154$ خجد	-			
	0,25	الاحتكاك مع الهواء مهملة أمام قوة الثقل:				
		يان قوة الاحتكاك مهملة أمام قوة الثقل. $rac{P}{f} = rac{m.g}{0,003v^2} = rac{7,}{0,00}$	$\frac{27 \times 9,8}{03 \times (15)^2} = 105,5$			
02.00	0,25X4	$\overrightarrow{a_G}$ قباره عباره عباره عباره ایم نیوتن، ایم ایم ایم نیوتن، ایم	1.3. بتطبيق قانو <u>ن</u>			
02,00	0,2374	$\overrightarrow{P}=m\overrightarrow{a_{G}}$: نيوتن $\overrightarrow{P}=m\overrightarrow{a_{G}}$	بتطبيق القانون الثانم			
		$0 = ma_x \Rightarrow a_x = 0$	بالاسقاط على Ox:			
		$-mg = ma_y \Rightarrow a_y = -g$	بالاسقاط على Oy:			
		$\overrightarrow{a_G}(t) = a_x \overrightarrow{i} + a_y \overrightarrow{j} = -g \overrightarrow{j} = -9.8 \overrightarrow{j}$ ومنه عبارة)			
	0,25X2	$v_y(t)$ و $v_x(t)$ بنیتان	2.3. المعادلتان الزر			
		$a_x = \frac{dv_x}{dt} = 0 \Rightarrow v_x$	$(t) = v_0 \cos \alpha$			
		$a_{y} = \frac{dv_{y}}{dt} = -g \Rightarrow v_{y}(t) = 0$	$-gt + v_0 \sin \alpha$			
	0,25X2	y(t) و $y(t)$ و $y(t)$				
		$v_x = \frac{dx}{dt} = v_0 \cos \alpha \implies x(t) = 0$	$= v_0(\cos\alpha)t + x_0$			
		$v_y = \frac{dy}{dt} = -gt + v_0 \sin \alpha \implies y(t) = -\frac{1}{2}gt^2$	$+v_0(\sin\alpha)t+y_0$			

المدة: علوم فيزيائية الشعبة: رياضيات + تقني رياضي المدة: 4ساعات و30د

			<u> </u>	سي - اسي ري			- 13	
					افة المُحققة:	<u>α على المس</u>	ر زاوية القذف	II- ابراز تأثير
00,25	0,25					سافة:	لتي تحقق اكبر م	ا α ایجاد α
	ŕ					. 0	$\alpha=42^0$ لبياني	من المنحنى ا
					\[41^6	جال [43 ⁰]	قيم $lpha$ في الم	ملاحظة: تقبل
00,25	0,25				_	_	$: x_{_{M}}$	2.ايجاد قيمة
						$x_M = 19$	— بیانی : 9,47 <i>m</i>	_ من المنحنى ال
							•	
						(1	<u>ث</u> :(06 نقاط	التمرين الثاله
					فاعل:	اركتين في الت	الثنائيتين المث	1.1. استنتاج
01,25	0,25X2				$(H_3O$	$^{+}(aq)/H_{2}(g$	(Mg^{2+})	aq)/Mg(s)
	0,25x3			ı			قدم التفاعل:	2.1. جدول تق
		تفاعل	معادلة الن	Mg(s) +	$2H_3O^+(aq)$	$= Mg^{2+}(aq^{2})$	$H_2(g)$	$+2H_2O(l)$
		حالة الجملة	x تقدم التفاعل			كمية المادة		
		الابتدائية	0	$n_0(Mg)=m_0/M$ $n_0(Mg)-x$	$n_0 = c_0 V_0$ $c_0 V_0 - 2x$	0	0	بوفرة
		الانتقالية	<i>x y</i> – <i>y</i>	n ₀ (Mg)-X	c_0V_0 -2X c_0V_0 -2X _f	X X _f	X X _f	بوفرة
	0.07	النهائية	$X_f = X_{\text{max}}$					بوفرة 1.2. تحديد ال
04,75	0,25X2	,•	التحول تام فار	. H . ه دما أن	$O^+(aa)$] $\neq 0$			
			من بيان الشكل (6) ، وعند نهاية التفاعل $0 \neq 0$ $= [H_3O^+(aq)]_f$ و بما أن التحول تام فإن $Mg(s)$					
						·		
	0,25X3	$m_0(Mg) = n$ (Mg)						
		$n_f(Mg)=n_0(Mg)-X_f=rac{m_0(Mg)}{M(Mg)}-X_f=0$: متفاعل المحّد $m_0(Mg)=M(Mg) imes X_f=0$. $m_0(Mg)=M(Mg) imes X_f=0$						
		$X_f=1,5\ mmol=1,5.10^{-3}\ mol\ (6)$ من بيان الشكل						
			$A_f = 1,3 \ mmol = 1,3.10 \ mol (0)$ من بيان السكل $m_0(Mg) = 0,036 \ g = 36 \ mg$ نجد $m_0(Mg) = 24 \times 1,5.10^{-3} \ mol$ (تطبيق عددي):					
	0.25v2	$V_f(H_2)$ استنتاج قیمة $V_f(H_2)$						
	0,25X2	$V_f(H_2) = V_M.X_f$ و من $n_f(H_2) = \frac{V_f(H_2)}{V_M} = X_f$ من جدول التقدم $N_f(H_2) = \frac{V_f(H_2)}{V_M} = X_f$						
		$V_f(H_2) = 0.036 \ L = 36 \ mL$ نجد $V_f(H_2) = 24 \times 1, 5.10^{-3}$ (تطبیق عددي)						
	0,25							2.2. استنتاج
			1	$1 cm \rightarrow 9 mg$	أي $1 cm o \frac{3\epsilon}{4}$	ن سلم الرسم : -	و منه یکو $\mathit{m}_0(\mathit{I}$	Mg) = 36 mg

		بة النموذجية لموضوع امتحان شهادة البكالوريا دورة: 2023	تابع الإجا
و 30د	المدة: 4ساعات	الشعبة: رياضيات + تقني رياضي	اختبار مادة: علوم فيزيائية
	0,25X2		$: c_0$ إيجاد قيمة $: 3.2$
		$\left[H_3O^+(aq)\right]_0=\frac{C}{C}$	$\frac{C_0 V_0}{V_T} \Rightarrow c_0 = \frac{V_T \cdot \left[H_3 O^+(aq) \right]_0}{V_0}$
		$\left[H_3O^+(aq)\right]_0 = 30.10$	$0^{-2} mol.L^{-1}$:(6)ومن بيان الشكل
			$c_0 = \frac{25 \times 30.10^{-2}}{10}$:(تطبیق عددي)
	0,25X2		4.2. تحديد زمن نصف التفاعل 2
		$t_{1/2} = 5 \mathrm{min}$ بالإسقاط نجد $m(Mg) = \frac{m_0}{2} = \frac{36}{2} = 18 mg$ فإن	$t = t_{1/2}$ لما (5)، لما
	0,25X3		5.2. اثبات عبارة السرعة الحجميا
		$x(t) = n_0 - n_{(Mg)}(t) = rac{m_0 - m(t)}{M(Mg)}$ بالتعويض $n_{(Mg)}(t) = \frac{m_0 - m(t)}{M(Mg)}$	$= n_0 - x(t) \text{a.s.} v_{Vol} = \frac{1}{V_T} \frac{dx}{dt}$
		و هي العبارة المطلوبة $v_{Vol}=rac{1}{V_{T}}^{C}$	$\frac{d(\frac{m_0 - m(t)}{M})}{dt} = -\frac{1}{V_T \cdot M} \frac{dm(t)}{dt}$
	0,25X2	: t = 0 <u>Lot</u> $mol.$	$L^{-1}.min^{-1}$ حساب قيمتها بوحدة *
			$-\frac{36.10^{-3}}{7.5} = -4.8.10^{-3} \mathrm{g \cdot min^{-1}}$
		$v_{Vol(t=0)} = 8.10^{-3} mol.L^{-1}.min^{-1}$ نجد $v_{Vol(t=0)} = -\frac{1}{25.10^{-3} \times 10^{-3}}$	$\frac{1}{24} \times (-4,8.10^{-3})$ (تطبیق عددي):
	0,25X2	لاختفاء شوارد الهيدرونيوم عند اللحظة نفسها:	*استنتاج قيمة السرعة الحجمية ا
		$v_{Vol}(H_3O^+) = 2 \times 8.10^{-3}$:(تطبیق عددي) $v_{Vol}(H_3O^+) = 2$	$ imes v_{Vol}$:حسب معادلة التفاعل فإن
		$v_{Vol}(H_3O)$	$^{+}) = 16.10^{-3} mol.L^{-1}.min^{-1}$ نجد
			التمرين التجريبي: (06 نقاط)
		A UctV	البادلة في الوضع (1):
00,50	0,50		1. المتابعة العملية لتطور التوتر
			الكهربائي بين طرفي المكثفة:
		ن الملك الملك الم	بما أن الفارق الزمني بين ومضتير
		زاز المسلمات المسلمات	صغير، يمكن استعمال راسم اهتز
			ذي ذاكرة أو ExAO
03,25	5 0,50		$u_c(t)$ رسم المنحنى البياني. 1.2
1	1 1		

صفحة 4 من 11

t(ms

0,25x3

2.2. بتطبيق قانون جمع التوترات،

 $u_c(t)$ المعادلة التفاضلية لـ $u_c(t) + u_c(t) = E$

ات و 30د	المدة: 4ساعا	ع الإجابة النموذجية لموضوع امتحان شهادة البكالوريا دورة: 2023 الشعبة: رياضيات + تقنى رياضي	تاب اختبار مادة: علوم فيزيائية
		. د د د کی رو دی	$u_R(t) = RC \frac{du_C}{dt}$
		ات نجد	dt بالتعويض في قانون جمع التوتر
		$(\frac{du_{C}(t)}{dt} + \frac{1}{RC}u_{c}(t) = \frac{E}{RC}$: يمكن كتابتها على الشكل (يمكن كتابتها على الشكل)	$RC\frac{du_{c}(t)}{dt} + u_{c}(t) = E$
	0,25x4		3.2. تحديد عبارتي الثابتير
	0,23A-1	بالتعويض نجد $\frac{du_c(t)}{dt} = \frac{A}{\alpha}e^{-\frac{t}{\alpha}}$ بالتعويض نجد $u_c(t) = A(1 - e^{-\frac{t}{\alpha}})$	حل المعادلة التفاضلية هو
		: و علیه $Ae^{-rac{t}{lpha}}(rac{RC}{lpha}-1)+A=E \ $	$\frac{A}{\alpha}e^{-\frac{t}{\alpha}} + A - Ae^{-\frac{t}{\alpha}} = E$
		$A = E$ α	$=RC$ و منه $(\frac{RC}{\alpha}-1)=0$
	0,25x2	ن الزمن $ au$ مع تحدید طریقة تعیینه:	
	ŕ	$u_c(t)$ حيث من المعادلة الزمنية: $u_c(t)$: حيث من المعادلة الزمنية: $u_c(t)$	-
		$ au \simeq 23~ms$ بالإسقاط على المنحنى البياني نجد: $u_{_c}(au) = 0,6\%$ اس المنحنى لما $t=0$ ، وتقبل قيم $ au$ في مجال $t=0$	
		•	5.2. استنتاج قيمة سعة ال
	0,25x2		
		$C=4,89.10^{-4}F\simeq 490~\mu F$ نجد $C=rac{23.10^{-3}}{47}$:(عددي)	Λ
		$\left[450\mu F - 500\mu F\right]$	ملاحظة: تقبل قيم C في مجال
			البادلة في الوضع(2):
00,25	0,25	اللازمة لتفريغ المكثفة: Δ	1. استنتاج المدة الزمنية 1
			$\Delta t = 8 \ ms$ بیانیا نجد
00.50	0,25	وافق لعملية التفريغ:	ي تعيين ثابت الزمن τ' الم
00,50	0,23	$ au' \simeq 12 ms$ نجد $t=0$ لما	بتمديد مماس منحنى التفري
	0,25		\star مقارنة $\dot{\tau}$ و τ :
		ريغ أصغر من مقاومة دارة الشحن)	مقاومة دارة التف $ au > au'$
00,25	0,25		$:U_s$ تحديد قيمة التوتر $:U_s$
	0,23		$U_{\scriptscriptstyle S}=3,3V$ بيانيا نجد
		نة الكوربائية:	4. *حساب التغير في الطان

 $au = 12 \, ms$ بيانيا t=0 ليمريخ لما t=0 (t=0 هماس متحتى التمريخ أصغر من مقاومة دارة الشحن t=0 (t=0 همارية t=0 و t=0 همارية t=0 (t=0 هماريخ أصغر من مقاومة دارة الشحن t=0 و t=0 t=0 t=0 و t=0 t=0 و t=0

ات و30د	المدة: 4ساع	الشعبة: رياضيات + تقني رياضي	اختبار مادة: علوم فيزيائية
			*شكل الطاقة المستهلكة:
	0,50	ورارة وضوء لأن الصمام الثنائي له مقاومة، غير مثالي.	تستهلك هذه الطاقة على شكل د
	0,50	***************************************	
		<u>الموضوع الثاني</u>	(h 2.4)
			التمرين الأول: (04 نقاط)
			1. تفاعل الاندماج بين الديتيريو
01,50	0,25x2		1.1* تركيب نواتي الديتيريوم و
		N=1:ات: $Z=1$ ، عدد النترونات	- , ,
		N=2: عدد النترونات: $Z=1$	نواة التريتيوم $H_1^{\rm s}$: عدد البروتوناد
	0,25	Aروجين لأن لهما نفس الرقم الذري Z ويختلفان في العدد الكتلي	
	0,25x2		2.1. معادلة تفاعل الاندماج:
		Z=0 ، انحفاظ الشحنة الكهربائية: $A=1$	
		م الجسيم: نترون	${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n$
	0,25	ج النووي حرارة عالية وضغط كبير:	=
		الية وضغط كبير من أجل التغلب على التنافر الكهربائي بين	يتطلب الاندماج النووي حرارة عا
			النواتين المندمجتين.
			2. طاقة تماسك (ترابط) النواة:
01,25	0,25		1.2. اسم المنحنى والفائدة منه:
	·	منحنی أستون: $(-rac{E_{l}({}_{Z}^{n}X)}{A}$	$\frac{f}{dr} = f(A)$ يسمى المنحنى –
	0,25	بط لكل نوية لمختلف الأنوية.	- الفائدة منه: - يحدّد طاقة الرب
	0,25	(ستقرار، ومنطقة الأنوية التي يحدث لها انشطار أو اندماج نووي.	– يحدد منطقة الا
	0,25	ووي:	2.2. تعريف تفاعل الاندماج الن
	0,23	لنواتين خفيفتين بتوفير طاقة عالية، لتشكيل نواة أكثر استقرار	الاندماج هو تحول نووي مفتعل
		يرة.	وأثقل منهما، مع تحرير طاقة كب
	2x0,25	لموضحة في المنحنى حسب استقرارها:	3.2. ترتيب تصاعدي للأنوية ا
	240,23	$rac{E_l({}_1^1H)}{A}\langlerac{E_l({}_1^2H)}{A}\langlerac{E_l({}_1^3H)}{A}\langlerac{E_l({}_1^3H)}{A}\langlerac{E_l({}_2^4He)}{A}\ranglerac{4}{2}He$ ثم ${}_1^3H$ ثم ${}_2^4He$ ثم	النواة H_1^1 أقل استقرار ، ثم H_1^2 نا
		ة كبيرة، كلما كانت النواة أكثر استقرارا.	فكلما كانت طاقة الربط لكل نويا
		<u>زندماج النووي:</u>	3. الطاقة المحررة من تفاعل الا
01,25	0,25		1.3. علاقة تكافؤ: كتلة-طاقة:
			$E = m \times c^2$

ات و30د	المدة: 4ساعا	الشعبة: رياضيات + تقني رياضي	اختبار مادة: علوم فيزيائية			
	0,25x2	<u> </u>	2.3. التحقق من قيمة الطاقة المح			
	- , -	$E_{lib} = (7,07 \times 4) - (1,11 \times 2) - (2,82 \times 3)$: (تطبیق عددي) E_{lib}	$= E_{l}({}_{2}^{4}He) - E_{l}({}_{1}^{2}H) - E_{l}({}_{1}^{3}H)$			
			$E_{lib} = 17,6 MeV$ نجد			
	0,25x2	Δm بوحدة الغرام (g): يستنتاج قيمة Δm بوحدة الغرام (g):				
	ŕ	$\Delta m\left(u ight)=rac{E_{lib}(MeV)}{931,5}$ منه	$E_{lib}(MeV) = \Delta m(u) \times 931,5$			
		$\Delta m = 3,14.10^{-26} \ g$ نجد $\Delta m = \frac{17}{2}$	$\frac{7,6\times1,66.10^{-24}}{931,5}$ (تطبیق عددي)			
			التمرين الثاني: (04 نقاط)			
			*بفرض اهمال مقاومة الهواء:			
00,25	0,25		1. اسم حركة السقوط:			
		ط، فنسمي هذا السقوط بـ السقوط الحر	الجملة (S) خاضعة لثقلها (\vec{P}) فق			
00,50	0,25x2		(S) <u>تحدید طبیعة حرکة</u> (S) <u>بتطبیق</u>			
00,00		$mg = m \times a_G$ بالاسقاط على محور الحركة (oz) نجد	$\vec{P} = m \times \vec{a}_G$ \cdot $\sum \vec{F}_{ext} = m \times \vec{a}_G$			
		الجملة ثابت و المسار مستقيم ⇒الحركة مستقيمة متغيرة بانتظام	تسارع مرکز عطالة $a_G = g \leftarrow$			
			و هي متسارعة.			
00,75	0,25x3	$km.h^{-1}$ لأرض بـ	3. حساب v <u>لحظة الاصطدام بسو</u>			
	·	$v^2=2.g.h$ شروط الابتدائية للحركة تصبح				
		$v = 140 \text{ m.s}^{-1} = 504 \text{ km.h}^{-1}$ $v = \sqrt{2 \times 9,8 \times 1000}$				
		بيرة جدا و خطيرة على المظلي لحظة اصطدامه بسطح الأرض				
		ط.	اذا كان سقوطه تحت تأثير ثقله فق			
			*السقوط بوجود مقاومة الهواء:			
			I- <u>المرحلة</u> الأولى:			
00,75	0,25x3	ة مركز عطالة الجملة (S)، بتطبيق القانون الثاني لنيوتن:	1. إيجاد المعادلة التفاضلية لسرعا			
		$mg-f=m imesrac{dv}{dt}$ بالإسقاط على محور الحركة $ar{o}z$ نجد $ar{f}$	$\vec{F} + \vec{f} = m \times \vec{a}_G \cdot \sum \vec{F}_{ext} = m \times \vec{a}_G$			
			$\frac{dv}{dt} + \frac{k}{m}v^2 = g : a$ و منه			
00,50	0,25x2	المركز عطالة (S) ، وحساب قيمتها:				
		$v_{\text{lim}}^2 = \frac{mg}{k}$ بالتعويض نجد بالتعويض نجد بالتعويض نجد				
		$v_{\text{lim}} = 52,9 \text{ m.s}^{-1}$ نجد $v_{\text{lim}} = \sqrt{\frac{80 \times 9,8}{0,28}}$ (چ	و منه $\frac{mg}{k}$ ، $v_{\text{lim}} = \sqrt{\frac{mg}{k}}$ عدد			

ات و30د	المدة: 4ساعا	الشعبة: رياضيات + تقني رياضي	اختبار مادة: علوم فيزيائية
00,50	0,25x2	البياني $v = f(t)$ وطبيعة الحركة:	3. الأنظمة التي يبرزها المنحنى
		ام الانتقالي:	البيان يظهر نظام واحد وهو النظ
		الة (S) عند $t=12s$ هي $t=12s$ وهي أقل من قيمة	بيانيا آخر قيمة لسرعة مركز عط
			$v_{\rm lim} = 52.9 \ m.s^{-1}$ السرعة الحدية
) بدون انتظام.	الحركة مستقيمة متغيرة (متسارعة
			II- المرحلة الثانية:
00,25	0,25		k' تحدید قیمة .1
			بعد فتح المظلي مظلته تصبح الج
		$k' \simeq 38,7 \ kg.m^{-1}$ نجد $k' = \frac{80 \times 9,8}{4,5^2}$ (طبیق عددي	يّ) $k' = \frac{mg}{v_{\lim}^{'2}}$ ومنه $v_{\lim}^{'2} = \frac{mg}{k'}$
00,50	0,50	كامل السقوط:	v = f(t) يمثيل كيفي لبيان $v = f(t)$ 1.
		v(m.s ⁻¹)	
		52.9	
		10	
		4,5	
		0 4 12 16	t(s)
			(A
			التمرين الثالث: (06 نقاط)
00,25	0,25		$iu_{R0}(t)$ من $i(t)$ من $i(t)$
		ومنه $u_{R0}(t)=i(t)$ أي أن $i(t)$ و $i(t)=\frac{u_{R0}(t)}{R_0}$ ومنه $i(t)=\frac{u_{R0}(t)}{R_0}$	
			و منه تغيرات $i(t)$ هي نفسها تغب
01,75	0,25x2	_ 	1.2. عبارة المقاومة المكافئة في
		$R = R_0 + r$: (RL) الدارة	-
			2.2. <u>ارفاق كل منحنى بالدارة الو</u>
	0,25	$I_{\text{max}} = \frac{E}{R_0 + r}$: (RL) الدارة	U
		الموافق لكل منحنى: $I_{ m max}$ الموافق الكل منحنى:	$(RC) angle I_{\max}(RL)$ نلاحظ أن

المدة: 4ساعات و30د	الشعبة: رياضيات + تقني رياضي	اختبار مادة: علوم فيزيائية
3		" "J" J

ات و30د	المده: 4ساعا	الشعبه: رياضيات + تفني رياضي	احتبار ماده: علوم فيزيائيه
	0,25	$I_{\text{max}} = \frac{U_{R0}}{R_0}$	$=\frac{10}{10}=1 A$:(a) بالنسبة للمنحنى
	0,25	$I_{ m max} = rac{U_{R0}}{R_0} = rac{1}{R_0}$	$\frac{5}{10} = 0.5 A$:(b) بالنسبة للمنحنى
	0,25x2	(RL) والمنحنى (b) يوافق الدارة (RC)	و منه : المنحنى (a) يوافق الدارة
00,50		ى تغيرات شدة التيار:	3. ابراز تأثير المكثفة والوشيعة عل
	0,25	في النظام الانتقالي تكون شدة التيار أعظمية لحظة غلق	- بالنسبة لدارة تحتوي على مكثفة:
		رتيب حتى تنعدم، وفي النظام الدائم تبقى شدة التيار منعدمة.	الدارة $i(0)=I_{ m max}$ الدارة
	0,25	تحريضية: في النظام الانتقالي تكون شدة التيار منعدمة	- بالنسبة لدارة تحتوي على وشيعة
	,	. بشكل رتيب حتى تبلغ قيمة أعظمية، وفي النظام الدائم تبقى	لحظة غلق الدارة $i(0) = 0$ ، لتتزايد
		ية.	شدة التيار ثابتة عند القيمة الأعظم
01,25		بتطبيق قانون جمع التوترات:	4. المعادلة التفاضلية لشدة التيار،
	0,25x3	:باشتقاق العبارة نجد $R_0i(t)+rac{1}{C}q=E$ باشتقاق العبارة نجد $u_{R0}(t)+u$	$_{C}(t)=E$: (RC) بالنسبة للدارة
		$R_0C\frac{di(t)}{dt} + i(t) = 0$ نجد: (C) يالمقدار	ui C
	0,25x2	$L\frac{di(t)}{dt} + ri(t) + R_0 i(t) = E$ أي $u_b(t) + u_b$	
		بالقسمة على المقدار (R_0+r) نجد:	ai.
			$\frac{L}{(R_0+r)}\frac{di(t)}{dt} + i(t) = \frac{E}{(R_0+r)}$
01,00			استنتاج عبارة $ au$ وقيمة I_p لكل الكل
01,00		$ au rac{di(}{di}$	$\frac{t}{t} + i(t) = I_P$ بالتطابق مع العلاقة:
	0,25x2	•	$=R_0C$: (RC) النسبة للدارة –
	0,25x2	$I_P = I_{\text{max}} = 0.5 A$. τ	$=\frac{L}{R_0+r}$: (RL) بالنسبة للدارة –
01.25		:L و r	6. إيجاد قيمة كل من: C ، E .
01,25	0,25x2	$E = 10 V \iff u_{R0}(0) = E$ نعلم أن $t = 0$,
		$C=10^{-3}F$ نجد $C=\frac{0.01}{10}$ (تطبیق عددي) $C=\frac{ au}{R_0}$	$ au=R_{\scriptscriptstyle 0}C$ و $ au=0,01s$ بيانيا –
	0,50	- حسب قانون جمع التوترات في النظام الدائم لدينا:	من المنحنى (b) (الدارة (RL)):
		$rI_{ m max}=E-R_0I_{ m max}=10-5=5V$ و منه $R_0I_{ m max}$	$+rI_{\max}=E$ أي $U_{R0}+U_{b}=E$
			$r = R_0 = 10 \Omega $
		$L\!=\!0,01(10\!+\!10)$ (تطبیق عددي) $L\!=\! au(R_{\scriptscriptstyle 0}\!+\!r) eq au$	$=\frac{L}{R_0+r}$ و $ au=0.01s$ بيانيا -
1	ĺ		

ات و30د	المدة: 4ساع	الشعبة: رياضيات + تقني رياضي	اختبار مادة: علوم فيزيائية
	0,25		نجد L=0,2 <i>H</i>
		كل)	التمرين التجريبي: (06 نقا
		حمض الكربوكسيلي:	I- التعرف على صيغة واسم الـ
00,25	0,25	لكربوكسيلية:	1. الصيغة المجملة للأحماض
00,23	0,23		$C_nH_{2n+1}-COOH$
		$R\!-\!COOH$, $C_n H_{2n} O_2$:الكربوكسيلية الآتية	ملاحظة: تقبل صيغ الأحماض
00,50	0,50	مملية المعايرة مع ذِكر البيانات الكافية:	2. مخطط التركيب التجريبي لـ
		المحلول المعاير —	
		سحاحة	
00,25	0,25		3. معادلة تفاعل المعايرة:
		$C_nH_{2n+1}-COOH+HO$ المحلول المعايَر	$^{-} = C_n H_{2n+1} - COO^{-} + H_2 O$
01,25	0,25		1.4. *احداثيي نقطة التكافؤ
		ايرة نجد احداثيي نقطة التكافؤ E:	عن طريق مماسي منحنى المع
		جهاز الـpH -متر	$(V_{bE} = 12 \ mL \ , \ pH_E = 8,4)$
		المجال: [8,0-8,6]	ملاحظة: تقبل قيمة $pH_{\scriptscriptstyle E}$ في
	2x0,25		: c_1 استنتاج التركيز المولي
		$c_{_1}=rac{c_{_b}V_{_{bE}}}{V_{_1}}$ نسب ستوكيومترية أي $c_{_1}V_{_1}=c_{_b}V_{_{bE}}$ و منه	عند التكافؤ، يكون المتفاعلين ب
		$c_1 = 2, 4.10^{-2} \ mol.L^{-1}$ نجد $c_1 = 2, 4.10^{-2} \ mol.L^{-1}$	$=\frac{2.10^{-2}\times 12}{10}$ (تطبیق عددي)
	2x0,25	: للحمض واسمه:	2.4. استنتاج الصيغة الجزيئية
	240,23	المتواجدة بالمزيج $(C_n H_{2n+1} - COOH(aq) / C_n H_{2n+1} - COO^{-1})$	(aq)) نحدد أولا pK_A الثنائية
		$pH = pK_{A} = 4.8$ بالإسقاط نجد $V_{b} = \frac{V_{bE}}{2} = \frac{12}{2} = 6 mL$	حيث عند نصف التكافؤ يكون
		$C_3H_7CO_2H$ وافق، صيغته الجزيئية المجملة	و حسب الجدول، فالحمض الم
		متفرعة، فيكون اسم الحمض: حمض البوتانويك الموافق للصيغة	و بما أن سلسلته الفحمية غير
		$\cdot CH_3 - CH_2 - CH_2$	CH_2 – $COOH$: نصف منشورة
		<u>.ن</u>	II- <u>تحضير</u> أستر بنكهة الأنانا
00,25	0,25	: <u>·</u>	1. دور حمض الكبريت المركز
		تسريع التفاعل، فهو عبارة عن وسيط للتفاعل.	دور حمض الكبريت المركز هو

المدة: 4ساعات و30د

الشعبة: رياضيات + تقني رياضي

اختبار مادة: علوم فيزيائية

55090				به از و حدیات ۱ صفی رو		· · · · · · · · · · · · · · · · · · ·	٠٠٠٠ عبار ١٠٥٠٠
00,50	0,25					تفاعل الحادث:	2. *معادلة ال
		$C_3H_7COOH(l) + R - OH(l) = C_3H_7COOR(l) + H_2O(l)$					
	0,25					عل الأسترة:	*مميزات التفاء
)، لا حراري.	د (غير تام، عكوس	بطيء ، محدو
01,00	0,50					م التفاعل:	3. * <u>جدول</u> تقد
		تفاعل	معادلة الن	$C_3H_7COOH(l)$ +	R - OH(l) =	$C_3H_7COOR(l)$	+ <i>H</i> ₂ <i>O</i> (<i>l</i>)
		حالة الجملة	x تقدم التفاعل		ادة (<i>mol</i>)	كمية الم	
		الابتدائية	0	$n_0 = 0, 1$	$n_0 = 0,1$	0	0
		الانتقالية	х	$n_0 - x$	$n_0 - x$	x	x
		النهائية	X_f	$n_0 - X_f$	$n_0 - X_f$	X_f	X_f
	2x0,25					r التفاعل r	*استنتاج مردو
		$X_{\text{max}} = n_0$	= 0,1 <i>mol</i>	$r = \frac{X_f}{X_{\text{max}}} \times 100\%$	التفاعل بالعبارة:	اعل، يعطى مردود	عند نهاية التف
				max			
			۱ ان	علما $X_f = n_0 - \frac{m_f(A)}{M(A)}$	m_f ومنه n_f (Activitie)	$ide) = n_0 - X_f = \frac{1}{M}$	ولدينا (Acide)
			$X_f = 0.06$	نجد 37 mol نجد $X_f = 0$	$,1-\frac{2,9}{20}$:(عددي	: (M (Acide) M	$=88 \ g.mol^{-1}$
					00		
00 ==		$r = 67$ نجد $r = \frac{0,067}{0,1}$ نجد $r = 67$ نجد التفاعل					
00,75	0,25x2	4. *التركيب المولي للمزيج عند نهاية التفاعل:					
					n($ester) = n(eau) = X_f$	=0.067mol
		$n(Acide) = n(Alcool) = n_0 - X_f = 0.033mol$					
	0,25			_		: K ثابت التوازن	
			K	$K = 4,12$ نجد $K = \frac{1}{A}$	$\frac{\text{Ester} \left[\times \left[\text{eau} \right] \right]}{\text{cide} \left[\times \left[\text{Alcool} \right] \right]} = \frac{1}{1}$	$n_f(Ester) \times n_f(Ester)$ $n_f(Acide) \times n_f(Alcool)$	$=\frac{(0,033)^2}{(0,067)^2}$
						ميغة نصف المفص	
00,75	3x0,25					العامة: OC _n H _{2n+1}	
		$n=2$ ومنه $M(C_3H_7COOC_nH_{2n+1})=14n+88=116 g.mol^{-1}$					
		ت الإيثيل	ن اسمه: بوتانوا	يکورک <i>CH</i> 3CH2CH2CC	3 ,	2011	_
00,50	2x0,25			3 2 2		- نراحات الصحيحة م	
		ے، المردود	مترة تاما و بتالم	لأنه يجعل تفاعل الأس			
		ي پ		· "	3. 33 .	•	يقترب من %
			ردود الأسترة	اِر في جهة تحسين م	اعل بنزاح باستمر		
				<u> </u>	<i>ــــ يــو</i> ن . ر	· · · · · · · · · · · · · · · · · · ·	عي د ر