Data Analysis - Logistics Dataset - Classification

Amanpreet Kaur

December 09, 2022

PART A

1. Preliminary Data Preparation

```
##
     Del_AK Vin_AK Pkg_AK Cst_AK Mil_AK Dom_AK Haz_AK
                                                                     Car_AK
## 1
        9.5
                  6
                         6
                                13
                                     1447
                                                С
                                                        H M-Press Delivery
## 2
       11.9
                 18
                         7
                                 7
                                     1874
                                                                   Fed Post
                                                Ι
                                                        N
## 3
       14.6
                  7
                         7
                                 8
                                     1865
                                                Ι
                                                                   Fed Post
## 4
       17.5
                         5
                                16
                                     3111
                                                Ι
                 11
                                                        H M-Press Delivery
## 5
       10.7
                 12
                                10
                                     1319
                                                С
                                                                   Fed Post
## 6
       10.5
                 12
                         3
                                 5
                                     1415
                                                        N M-Press Delivery
```

```
# Statistics for all the variables
stat.desc(Logistics_Dataset)
```

```
Pkg_AK
##
                      Del AK
                                   Vin AK
                                                             Cst AK
                                                                           Mil AK
## nbr.val
                6.332000e+03 6.332000e+03 6.332000e+03 6.332000e+03
                                                                     6.332000e+03
## nbr.null
                0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
                                                                     0.000000e+00
                0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## nbr.na
                                                                     0.00000e+00
## min
                1.000000e-01 2.000000e+00 1.000000e+00 1.000000e+00 -6.200000e+01
                2.260000e+01 2.800000e+01 1.500000e+01 2.100000e+01
## max
                                                                     3.608000e+03
## range
                2.250000e+01 2.600000e+01 1.400000e+01 2.000000e+01
                                                                     3.670000e+03
                6.688820e+04 8.249200e+04 2.530500e+04 5.668100e+04
                                                                     1.034416e+07
## sum
                1.060000e+01 1.300000e+01 4.000000e+00 9.000000e+00
## median
                                                                     1.630000e+03
## mean
                1.056352e+01 1.302780e+01 3.996368e+00 8.951516e+00 1.633633e+03
## SE.mean
                3.905475e-02 4.507398e-02 2.472609e-02 3.734352e-02 6.348855e+00
## CI.mean.0.95 7.656054e-02 8.836027e-02 4.847151e-02 7.320595e-02 1.244591e+01
                9.658031e+00 1.286449e+01 3.871255e+00 8.830219e+00 2.552300e+05
## var
```

```
## std.dev
                3.107737e+00 3.586711e+00 1.967551e+00 2.971568e+00 5.052030e+02
## coef.var
                2.941953e-01 2.753122e-01 4.923347e-01 3.319626e-01 3.092513e-01
##
                Dom AK Haz AK Car AK
## nbr.val
                    NA
                           NA
## nbr.null
                    NA
                           NA
                                  NA
## nbr.na
                    NA
                           NA
                                  NA
## min
                    NA
                           NA
                                  NA
## max
                    NA
                           NA
                                  NA
## range
                    NA
                           NA
                                  NA
## sum
                    NA
                           NA
                                  NA
## median
                    NA
                           NA
                                  NA
                           NA
                                  NA
## mean
                    NA
## SE.mean
                    NA
                           NA
                                  NA
## CI.mean.0.95
                    NA
                           NA
                                  NA
## var
                    NA
                           NA
                                  NA
## std.dev
                    NA
                           NA
                                  NA
## coef.var
                    NA
                           NA
                                  NA
```

Distrubution of manufacturing type

Distrubution of Hazardeous type

Distrubution of carrier service type

Fed Post VS M-Press Delivery

Time for delivery

Vintage of product

Number of packages

How many packages of product have been ordered

Number of customer orders

How many orders the customer has made in the past

Number of Miles

Distance the order needs to be delivered (in km)

densityplot(Logistics_Dataset\$Mil_AK, pch = 10)

#removing data points with Distance the order needs to be delivered (in km) is negative Logistics_Dataset <- subset(Logistics_Dataset , Mil_AK >= 0) # 1. Dom : The domestic or international indicator for the product have two values and is a categorical data free from any outliers. # # 2. Haz : The indicator representing if product is hazardous or not also have two categories and is free from any outliers. # # 3. Car : The indicator representing carrier service of the product have two categories and is free from any outliers. # 4. Del : The delivery time has one outlier but it does not have high influence as the value seems high but normal for the dataset. # 5. Vin : As per the box plot, there vintage time has 5 outliers which seems to normal as there is no unusual value for the variable. # # 6. Pkg : The number of packages has 5 outliers with no high influence these outliers are normal. # # 7. Cst : As per the box plot, the number of orders the customer has made in the past has two outliers with no unusual values.

2. Exploratory Analysis

```
Logistics_Dataset$OT_AK <- as.numeric( as.factor( ifelse(Logistics_Dataset$Del_AK < 10.1, 1,0)))
Logistics_Dataset$Dom_AK <- as.numeric(Logistics_Dataset$Dom_AK)</pre>
Logistics_Dataset$Haz_AK <- as.numeric(Logistics_Dataset$Haz_AK)</pre>
Logistics Dataset$Car AK <- as.numeric(Logistics Dataset$Car AK)
# Removing the delivery column before checking the correlation with in the variables
# as OT_AK column is computed based on the delivery
Logistics_Dataset <- Logistics_Dataset[,-c(1)]</pre>
str(Logistics_Dataset)
## 'data.frame':
                   6328 obs. of 8 variables:
## $ Vin_AK: int 6 18 7 11 12 12 21 12 13 16 ...
## $ Pkg_AK: int 6 7 7 5 4 3 1 4 6 5 ...
## $ Cst_AK: int 13 7 8 16 10 5 10 12 8 10 ...
## $ Mil_AK: int 1447 1874 1865 3111 1319 1415 1599 2361 1394 1121 ...
## $ Dom AK: num 1 2 2 2 1 1 1 1 2 2 ...
## $ Haz AK: num 1 2 2 1 1 2 1 2 2 1 ...
## $ Car AK: num 2 1 1 2 1 2 2 2 1 2 ...
## $ OT_AK : num 2 1 1 1 1 1 1 2 2 ...
#numerical correlation matrix
round(cor(Logistics_Dataset, method="spearman"),2)
         Vin_AK Pkg_AK Cst_AK Mil_AK Dom_AK Haz_AK Car_AK OT_AK
## Vin_AK
          1.00
                0.00
                       0.00
                              0.02
                                      0.00 -0.01 -0.02 -0.01
## Pkg_AK
           0.00
                 1.00
                        0.00 -0.01
                                      0.01 -0.01 0.01 0.01
## Cst_AK
           0.00
                 0.00 1.00
                               0.01
                                      0.02
                                            0.01
                                                    0.02 0.03
## Mil_AK
           0.02 -0.01 0.01
                               1.00
                                      0.00
                                            0.00 -0.01 -0.68
## Dom_AK
           0.00
                 0.01 0.02 0.00
                                      1.00 -0.03 0.01 -0.07
                                                    0.01 0.06
## Haz_AK -0.01 -0.01
                        0.01 0.00 -0.03
                                            1.00
## Car_AK -0.02
                 0.01
                         0.02 -0.01
                                      0.01
                                             0.01
                                                    1.00 0.27
## OT AK
          -0.01
                 0.01 0.03 -0.68 -0.07
                                           0.06
                                                    0.27 1.00
#graphical correlation matrix
corrgram(Logistics Dataset, order=TRUE, lower.panel=panel.shade,
        upper.panel=panel.pie, text.panel=panel.txt,
        main="Correlations")
```

Correlations


```
chisq_AK <- chisq.test(Logistics_Dataset$OT_AK, Logistics_Dataset$Car_AK, correct=FALSE)</pre>
chisq_AK
##
   Pearson's Chi-squared test
##
## data: Logistics_Dataset$OT_AK and Logistics_Dataset$Car_AK
## X-squared = 449.66, df = 1, p-value < 2.2e-16
table_OT_Car <- table(Logistics_Dataset$OT_AK, Logistics_Dataset$Car_AK,
                   dnn=list("On-Time delivery", "Carrier Services"))
table_OT_Car
##
                   Carrier Services
## On-Time delivery
                       1
##
                  1 2193 1403
                  2 931 1801
##
#Vertical Bar Chart
barplot(prop.table(table_OT_Car,2),
                   xlab='On-Time Delivery',
                   ylab='Pct',
                   main="Delivery by carrier service",
```

col=c("cadetblue1","cadetblue4"),

Delivery by carrier service

On-Time Delivery

```
# 1. Numerical Correlation:
#
#
    The mod of correlation between On-Time Delivery and Mil i.e. distance in
#
    kms is approximately 0.68 which represents that there is moderate linear
#
    correlation between these two variables.
#
    Also, there is a weak linear relation between On-Time Delivery and Carrier
#
    Services with correlation of 0.27.
#
#
    The delivery time variable is removed from the data set to avoid co-linear
#
    variables in the data set, as the new variable i.e. On-Time Delivery is
#
    derived from the delivery variable.
#
#
    We can also depict the same about the variables mentioned above from the
#
    graphical representation of the correlation matrix.
#
# 2. Identifying the most significant predictor for On-Time Delivery:
#
#
    We have performed Chi-Squared test to check if there is any relationship
#
    between the Carrier services and On-time delivery as both are categorical
#
    variables.
    After observing the p-value (p-value < 2.2e-16) we can say that there is
```

3. Model Development

```
Logistics_Dataset$OT_AK <- as.factor(Logistics_Dataset$OT_AK)</pre>
Logistics Dataset$Dom AK <- as.factor(Logistics Dataset$Dom AK)
Logistics_Dataset$Haz_AK <- as.factor(Logistics_Dataset$Haz_AK)</pre>
Logistics_Dataset$Car_AK <- as.factor(Logistics_Dataset$Car_AK)</pre>
str(Logistics_Dataset)
## 'data.frame':
                  6328 obs. of 8 variables:
## $ Vin_AK: int 6 18 7 11 12 12 21 12 13 16 ...
## $ Pkg_AK: int 6 7 7 5 4 3 1 4 6 5 ...
## $ Cst AK: int 13 7 8 16 10 5 10 12 8 10 ...
## $ Mil AK: int 1447 1874 1865 3111 1319 1415 1599 2361 1394 1121 ...
## $ Dom_AK: Factor w/ 2 levels "1","2": 1 2 2 2 1 1 1 1 2 2 ...
## $ Haz_AK: Factor w/ 2 levels "1","2": 1 2 2 1 1 2 1 2 2 1 ...
## $ Car_AK: Factor w/ 2 levels "1","2": 2 1 1 2 1 2 2 2 1 2 ...
## $ OT_AK : Factor w/ 2 levels "1", "2": 2 1 1 1 1 1 1 2 2 ...
glm.fit <- glm(OT_AK ~ . , data=Logistics_Dataset, family='binomial')</pre>
summary(glm.fit)
##
## Call:
## glm(formula = OT_AK ~ ., family = "binomial", data = Logistics_Dataset)
##
## Deviance Residuals:
##
      Min
                1Q Median
                                  3Q
                                         Max
## -3.0579 -0.4647 -0.0800 0.4314
                                      3.3751
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.1141551 0.2991127 23.784 < 2e-16 ***
               0.0190389 0.0111076 1.714
## Vin_AK
                                            0.0865 .
                                    1.152
## Pkg_AK
              0.0231762 0.0201096
                                            0.2491
## Cst_AK
              ## Mil_AK
              -0.0061375  0.0001591  -38.586  < 2e-16 ***
              -0.7614948  0.0880635  -8.647  < 2e-16 ***
## Dom_AK2
              0.5528396  0.0924725  5.978  2.25e-09 ***
## Haz_AK2
## Car AK2
              2.4106820 0.0921437 26.162 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
```

```
Null deviance: 8654.1 on 6327 degrees of freedom
## Residual deviance: 4105.9 on 6320 degrees of freedom
## AIC: 4121.9
##
## Number of Fisher Scoring iterations: 6
#backward model
step.fit <- step(glm.fit,direction = "backward", trace = 0)</pre>
summary(step.fit)
##
## Call:
## glm(formula = OT_AK ~ Vin_AK + Cst_AK + Mil_AK + Dom_AK + Haz_AK +
      Car_AK, family = "binomial", data = Logistics_Dataset)
##
## Deviance Residuals:
      Min
               10
                   Median
                                3Q
                                       Max
## -3.0412 -0.4669 -0.0807
                            0.4316
                                    3.3941
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.2027284 0.2896389 24.868 < 2e-16 ***
## Vin_AK
             0.0189733 0.0111066
                                   1.708
                                          0.0876 .
## Cst_AK
              0.0555671 0.0132600
                                   4.191 2.78e-05 ***
## Mil_AK
             ## Dom_AK2
             -0.7605857 0.0880322 -8.640 < 2e-16 ***
                                   5.978 2.26e-09 ***
## Haz_AK2
              0.5526367 0.0924502
## Car AK2
              2.4098809 0.0921050 26.165 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 8654.1 on 6327 degrees of freedom
## Residual deviance: 4107.3 on 6321 degrees of freedom
## AIC: 4121.3
## Number of Fisher Scoring iterations: 6
# Interpretation:
# (1) AIC:
#
#
     AIC for Full model is 4121.9 and AIC for backward model is 4121.3,
#
     which means there is no significant difference based on the AIC.
#
     However as we consider lower AIC value as better, therefore backward
     is better.
# (2) Deviance:
#
#
     The difference between null and residual deviance is 4555 for
```

full model and 4553.6 for backward model. As the difference is

```
more for the full model, full model is better.
#
# (3) Residual symmetry:
#
     The residuals for both the models seems quite symmetrical
#
     Therefore, both models are good in this case.
#
#
# (4) z-values:
#
#
     For the full model, two variables are not statistically significant
#
     i.e., vintage and number of packages.
#
     The other variable and intercept is statistically significant as
#
     the p-value is less than 0.05.
#
#
     For the backward model, there is one variable which is not
#
     statistically significant and other variables are as their p-value
#
     is less than 0.05.
#
#
     After comparing both, backward model has less number of variables
#
     and less number of variable which are not statistically significant
#
     therefore, backward model is better in this case.
# (5) Parameter Co-Efficient:
#
#
     The parameter coefficients for both the models are quite same.
#
#
# Conclusion:
#
#
     Overall, the backward model is slightly better than the full model,
#
     as there are less number of variable and better based on the main
#
     measures interpreted above.
```

PART B

1. Logistic Regression - Backward

```
## Deviance Residuals:
      Min 1Q Median 3Q
                                        Max
## -3.0412 -0.4669 -0.0807 0.4316
                                     3.3941
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.2027284 0.2896389 24.868 < 2e-16 ***
            0.0189733 0.0111066 1.708 0.0876 .
0.0555671 0.0132600 4.191 2.78e-05 ***
## Vin_AK
## Cst AK
           ## Mil_AK
## Dom_AK2 -0.7605857 0.0880322 -8.640 < 2e-16 ***
             ## Haz_AK2
             2.4098809 0.0921050 26.165 < 2e-16 ***
## Car_AK2
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 8654.1 on 6327 degrees of freedom
## Residual deviance: 4107.3 on 6321 degrees of freedom
## AIC: 4121.3
## Number of Fisher Scoring iterations: 6
timetaken M1
## Time difference of 0.4991231 secs
responseM1 <- predict(step.fit_LR_AK, type = "response")</pre>
head(responseM1,10)
                                  3
## 0.828460490 0.022588333 0.020524075 0.000108448 0.474273517 0.880054146
            7
                       8
## 0.681457589 0.031686859 0.296700056 0.944615218
classM1 <- ifelse(responseM1>0.5,2,1)
head(classM1)
## 1 2 3 4 5 6
## 2 1 1 1 1 2
CM1 <- table( Logistics_Dataset$OT_AK, classM1, dnn=list("Actual", "Predicted"))</pre>
        Predicted
##
## Actual 1
##
       1 3164 432
       2 480 2252
##
```

2. Naive-Bayes Classification

```
#Naive-Bayes Classification
starttime <- Sys.time()</pre>
NaiveBayes_AK <- NaiveBayes(OT_AK ~ . , data = Logistics_Dataset, na.action = na.omit)
endtime <- Sys.time()</pre>
timetaken_M2 <- endtime - starttime</pre>
summary(NaiveBayes_AK)
             Length Class
                                Mode
##
## apriori 2 table
                                numeric
## tables 7
                    -none-
                                list
## levels 2
                    -none-
                                character
## call
                  -none- call data.frame list
           3
## x
            7
## usekernel 1 -none- logical
## varnames 7 -none- characte
                    -none- character
timetaken_M2
## Time difference of 0.008337021 secs
responseM2 <- predict( NaiveBayes_AK, Logistics_Dataset )</pre>
CM2 <- table( Logistics_Dataset$OT_AK, Predicted = responseM2$class, dnn=list("Actual", "Predicted"))
CM2
##
         Predicted
## Actual 1
##
        1 3153 443
        2 505 2227
3. Linear Discriminant Analysis
#Linear Discriminant Analysis
start time <- Sys.time()</pre>
LDA_AK <- lda(OT_AK ~ . , data = Logistics_Dataset , na.action=na.omit)
end_time <- Sys.time()</pre>
timetaken_M3 <- end_time - start_time</pre>
summary(step.fit_LR_AK)
##
```

```
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.2027284 0.2896389 24.868 < 2e-16 ***
## Vin_AK 0.0189733 0.0111066 1.708 0.0876 .
              0.0555671 0.0132600 4.191 2.78e-05 ***
## Cst_AK 0.0555671 0.0132600 4.191 2.78e-05 ***
## Mil_AK -0.0061327 0.0001589 -38.607 < 2e-16 ***
## Dom AK2 -0.7605857 0.0880322 -8.640 < 2e-16 ***
## Haz_AK2
              0.5526367 0.0924502 5.978 2.26e-09 ***
## Car_AK2
              2.4098809 0.0921050 26.165 < 2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 8654.1 on 6327 degrees of freedom
## Residual deviance: 4107.3 on 6321 degrees of freedom
## AIC: 4121.3
##
## Number of Fisher Scoring iterations: 6
timetaken_M3
## Time difference of 0.01231909 secs
responseM3<- predict(LDA_AK,Logistics_Dataset)</pre>
CM3 <- table (Actual=Logistics_Dataset$0T_AK, Predicted=responseM3$class)
CM3
##
        Predicted
## Actual 1
       1 3156 440
##
        2 469 2263
##
4. Decision Tree
start_time <- Sys.time()</pre>
tree.fit_AK <- ctree(OT_AK ~ . , data=Logistics_Dataset)</pre>
end_time <- Sys.time()</pre>
timetaken_M4 <- end_time - start_time</pre>
timetaken_M4
## Time difference of 0.139802 secs
plot(tree.fit_AK, gp=gpar(fontsize=5))
```



```
responseM4 <- predict(tree.fit_AK, Logistics_Dataset)
CM4 <- table(Actual=Logistics_Dataset$OT_AK, Predicted=responseM4)
CM4</pre>
```

```
## Predicted
## Actual 1 2
## 1 3193 403
## 2 504 2228
```

5. Compare All Classifiers

```
# Calculating accuracy for Logistic Regression - Backward classifier
TP_M1<- CM1[2,2]
TN_M1<- CM1[1,1]
AccuracyM1 <- (TP_M1+TN_M1)/sum(CM1)

# Calculating accuracy for Naive-Bayes Classification classifier
TP_M2<- CM2[2,2]
TN_M2<- CM2[1,1]
AccuracyM2 <- (TP_M2+TN_M2)/sum(CM2)

# Calculating accuracy for Linear Discriminant Analysis classifier
TP_M3<- CM3[2,2]
TN_M3<- CM3[1,1]</pre>
```

```
AccuracyM3 <- (TP_M3+TN_M3)/sum(CM3)</pre>
# Calculating accuracy for Decision Tree classifier
TP_M4 < - CM4[2,2]
TN_M4<- CM4[1,1]
AccuracyM4 <- (TP_M4+TN_M4)/sum(CM4)</pre>
AccuracyM1
## [1] 0.8558786
AccuracyM2
## [1] 0.8501896
AccuracyM3
## [1] 0.8563527
AccuracyM4
## [1] 0.8566688
#Time taken for Logistic Regression - Backward classifier
timetaken_M1
## Time difference of 0.4991231 secs
#Time taken for Naive-Bayes Classification classifier
timetaken_M2
## Time difference of 0.008337021 secs
#Time taken for Linear Discriminant Analysis classifier
timetaken_M3
## Time difference of 0.01231909 secs
#Time taken for Decision Tree classifier
timetaken_M4
## Time difference of 0.139802 secs
# Extracting values for false postives for all classifiers to a variable
FP_M1<- CM1[1,2]
FP_M2<- CM2[1,2]
FP_M3<- CM3[1,2]
FP_M4 \leftarrow CM4[1,2]
#False positives for Logistic Regression - Backward classifier
FP_M1
```

[1] 432

```
#False positives for Naive-Bayes Classification classifier
FP_M2
## [1] 443
```

#False positives for Linear Discriminant Analysis classifier

[1] 440

FP M3

```
#False positives for Decision Tree classifier
FP_M4
```

[1] 403

```
# Overall comparison of classifiers:
# 1. Accuracy:
#
#
    The decision tree classifier has the highest accuracy as compared to
#
  other models. The Linear Discriminant Analysis classifier has a slightly low
#
    accuracy. Naive-Bayes Classification have the least
#
    accuracy.
# 2. Processing Speed:
#
#
    In case the processing speed is a priority, the Naive-Bayes
    Classification is the best with least processing speed.
#
# 3. Minimize false positives:
#
    To minimize false positive, the decision tree classifier have the least
#
    false positives with value of 403.
#
# 4. Best model overall:
#
    To conclude the best model overall, it is necessary to consider the main
#
#
    requirements.
#
#
    If the accuracy and minimizing false positives is our top
#
    priority then decision tree classifier is the best. However, if we need
#
    the classification to be fast and processing speed is our priority
#
    then decision tree classifier is slower than Naive Bayes.
#
    Else, if fast processing is the requirement then Naive Bayer classifier
#
    is fastest. Naive Bayes have the least accuracy and more number of false positives.
```