| 1. D | 7. D  | 13. B | 19. B | 25. D |
|------|-------|-------|-------|-------|
| 2. A | 8. C  | 14. B | 20. C | 26. A |
| 3. A | 9. A  | 15. B | 21. C | 27. B |
| 4. D | 10. E | 16. A | 22. D | 28. A |
| 5. C | 11. A | 17. A | 23. D | 29. B |
| 6. C | 12. B | 18. D | 24. D | 30. D |

## **Solutions:**

1. **D.** The height of the triangle will be 5, from the y-coordinate of T. The base will have length (x-1) from the x-coordinates of Q and R.

$$\frac{1}{2}(5)(x-1) = 45$$
. x=19.

- 2. **A.** (2x+50)+(x-5)=180. **x=45**. So  $m \angle NAP = 45 - 5 = 40$ . Vertical angle  $\angle LAE$  has the same measure so 3y + 4 = 40. y=12.
- 3. **A.** 180((n+1)-2)-180(n-2) simplifies to 180 degrees.
- 4. **D.** Using the Pythagorean Theorem, ( $\Delta RTU$  is a multiple of a 3-4-5 triple) we get TR=28.  $m \angle STR = 360 - 90 - 150 = 120$ . In  $\triangle STR$ drop the height from T to SR. This creates two 30-60-90 triangles, each with hypotenuse 28. RS is then twice the long leg, or  $28\sqrt{3}$ .
- 5. **C.** Consider the right triangle with one leg the height of the pyramid and the other lea half of the square's

diagonal. 
$$(5\sqrt{2})^2 + h^2 = 194$$
. h=12.

So 
$$V = \frac{1}{3}(100)(12) = 400$$
.

6. **C**. One chord will have length 2(4) and the other will have length 2(3) for a difference of 2.



 $\sqrt{194}$ 

- 7. **D.** The shaded region is  $4\pi \pi = 3\pi$ . The unshaded region is  $9\pi$  minus the shaded area which gives  $6\pi$ . The ratio of unshaded to shaded it 6:3=2:1.
- 8. **C.** A regular quadrilateral is a square. Perimeter 200 gives side length 50. Diagonal has length  $50\sqrt{2}$
- 9. **A.** Draw only the two sides involved.



we have a right triangle with legs (5-1) and (5+8). This gives shortest distance  $\sqrt{185}$ .

- 10. E. Consider the triangle with vertices of Sam, R and T. Let Sam be point M. RM=40 and MT=52. So by the triangle inequality theorem, 12 < RT < 92. Since RT is an integer, the least it could be is 13. So the space labels are 6.5 feet apart. And RU=3(6.5) = 19.5 feet.
- 11. A. Consider triangle LDR and LBE which are similar (below). LE= $2\sqrt{13}$ .

$$\frac{6}{10} = \frac{2\sqrt{13}}{LR}$$
. LR= $\frac{10}{3}\sqrt{13}$ 



12. **B.** Area=
$$\frac{1}{2}d_1d_2 = \frac{1}{2}(x)(x+8) = 120$$

x(x+8) = 240. You can use algebra or find two factors with a difference of 8.

$$x^2 + 8x - 240 = 0$$
.  $(x + 20)(x - 12) = 0$ .

x=12. The longest diagonal has length x+8 = 20.

## Geometry Individual Answers and Solutions March Regional Competition

13. <u>B.</u> For center P,  $\triangle PRS$  is equilateral. The sector is  $\frac{1}{6}(18 \cdot 18)\pi = 54\pi$ . Subtract the triangle with area  $\frac{18 \cdot 18}{4}\sqrt{3} = 81\sqrt{3}$  to get choice B.

14. **B.**

$$4\pi r^2 = K \cdot \frac{4}{3}\pi r^3 = 12K \text{ so}$$

$$\frac{4}{3}\pi r^3 = 12(4\pi r^2) \cdot \text{r=36}$$

15. B. Quadrilateral F4 P4 Q4 G PQJK is a trapezoid so its 12 area is  $\frac{1}{2}h(4+12)$ . Н The height is the base of  $\Delta LFK$ which is the base 12 of an isosceles triangle with legs 12 and vertex angle 120 degrees. Drop the height of the triangle from L to get two 30-60-90 triangles. Each has long leg  $6\sqrt{3}$  and so  $h = 12\sqrt{3}$ .  $\frac{1}{2}(12\sqrt{3})(4+12) = 96\sqrt{3}$ 

16. <u>A.</u>  $V = \pi(3^2)12$  for the cylinder. The spheres are each  $\frac{4}{3}\pi(3)^3$  in volume.

$$\frac{\pi(3^2)12}{(4\pi/3)(3^3)} = \frac{(3^2)12}{(3^3)} \cdot \frac{3}{4} \frac{\pi(3^2)12}{(4\pi/3)(3^3)} = 3.$$

17. **A.** 4(6) = x(11-x).  $x^2 - 11x + 24 = 0$ . (x-8)(x-3) = 0. So the segments have lengths 3 and 8. |PS - RP| = 5



The area of  $\Delta PSQ$  is half of that of the rectangle, so area is 30.  $\Delta PMN$  has the same height as  $\Delta PSQ$ , if we consider the base  $\overline{SQ}$ , and  $\Delta PMN$  has 1/3 of the base length. So the area of  $\Delta PMN$  is 1/3 of the area of  $\Delta PSQ$ , which gives area 10.

- 19. **B.** The area of the original triangle is  $\frac{1}{2}bh$ . The area of the new triangle is  $\frac{1}{2}(1.1b)(0.95h) = 0.5225bh$ . The decrease is (0.5225-0.5)bh = 0.0225bh. Divide by the original to get 0.045. Easier would be to assume a base of 2 and height of 1 to get area 1. Then compare a triangle with base 2.2 and height 0.95 to get 1.045. This is an increase of 0.045 which is 4.5%
- 20. <u>C.</u> Let the sides be 3:4:6 = ST:SR:RT and SR=4k, RT=6k and ST=3k. ST=12 so sides are now 12, 16, 24. Using the angle bisector similarity formula of  $\frac{16}{SP} = \frac{24}{12 SP}$ . 2(12 SP) = 3(SP).  $SP = \frac{24}{5}$ .
- 21. **C**.  $90-a = \frac{1}{2}(180-a)-7$ .  $\frac{1}{2}a = 7$ . a = 14.

## Geometry Individual Answers and Solutions March Regional Competition

22. <u>D.</u> The radius of

the circle would be  $\frac{4}{\sqrt{3}}$  and the side of the square would be twice that, or  $\frac{8\sqrt{3}}{3}$ 



23. <u>D.</u> Perimeter 54 gives semi-perimeter 27. Let sides be 20, x and (34-x). x+20>34-x gives x>7 by the Triangle Inequality Theorem, as well as 54-x>x x < 27. So we can list possible side lengths:

20, 8, 26 for x=8. 20, 9, 25 for x=9

20, 10, 24 for x=10. 20, 11, 23 x=11

20, 12, 22 for x=12.

20, 13, 21 for x=13.

x=14 and 17 gives an isosceles.

20, 15, 19 for x=15.

20, 16, 18 for x=16.

After that, we repeat triangles. Using Heron's Formula, area is

 $\sqrt{27(27-20)(27-x)(27-(34-x))}$ 

$$= \sqrt{27(7)(27-x)(x+7)} =$$

 $3\sqrt{21(27-x)(x+7)}$  . Now we try x

values above (or just the choices on A through D on the test) to see when we get area that is an integer. x=8 gives  $3\sqrt{21(19)(15)}$ , not an integer, for example. The only x-value that gives an integer for area is 13.

24. <u>D.</u> Using Geometric Mean formulas we have  $ST = \sqrt{RT(PT)}$ . 25 = 6PT.

PT = 
$$\frac{25}{6}$$
, so RP=  $6 - \frac{25}{6} = \frac{11}{6}$ . SP =

$$\sqrt{\left(\frac{11}{6}\right)\left(\frac{25}{6}\right)} = \frac{5\sqrt{11}}{6} = \frac{a\sqrt{b}}{c}$$
. So in this particular case, a+c=b.

25. <u>D.</u> The contrapositive is "If not q then not p." The converse of this is "If not p then not q."

**26.** 
$$\underline{\mathbf{A}}$$
.  $\frac{a}{10} = \frac{a+b}{15}$ .  $\frac{a}{2} = \frac{a+b}{3}$ .  $3a = 2a+2b$ .

27. **B.** The area of  $\triangle RTP$  is  $\frac{1}{2}(10)(12) = 60$ 

The area of the rest of the rectangle is 120-60=60. So the shaded to the unshaded is 60:60=1:1. The division caused by P is irrelevant.

28. A. Let the square have side length 2x. For center C, (GC)(CK)=
(FC)(CQ). (x-8)(x-8) = (x-12)(x) since we have intersecting chords of the small circle.



 $x^2 - 16x + 64 = x^2 - 12x$ . 4x=64 and x=16. So the square has side 32.

- 29. **B.** The angles can be equal due to vertical angle positives, or due to angles of parallel lines. The two angles can be supplementary due to being a linear pair or by the parallel lines. So if they are equal, x=36. If they are supplementary x=33. II is not possible.
- 30. <u>D.</u> The radii to the points of tangency are perpendicular.
  Due to the radii then being



perpendicular to the same line, they are parallel and the triangles shown above

are similar.  $\frac{6}{3} = \frac{x}{12 - x}$  PD=x. x = 8.

RD=10 and DS=5 for RS=15.