

UNIVERSITATEA BABEȘ-BOLYAI Facultatea de Matematică și Informatică

INTELIGENŢĂ ARTIFICIALĂ

Sisteme inteligente

Sisteme care învață singure

- SVM, kNN, arbori de decizie -

Laura Dioşan

Sumar

A. Scurtă introducere în Inteligența Artificială (IA)

B. Rezolvarea problemelor prin căutare

- Definirea problemelor de căutare
- Strategii de căutare
 - Strategii de căutare neinformate
 - Strategii de căutare informate
 - Strategii de căutare locale (Hill Climbing, Simulated Annealing, Tabu Search, Algoritmi evolutivi, PSO, ACO)
 - Strategii de căutare adversială

c. Sisteme inteligente

- Sisteme care învaţă singure
 - Maşini cu Suport Vectorial
 - Cel mai apropiat vecin (kNN k nearest neighbour)
 - Arbori de decizie
 - Reţele neuronale artificiale
 - Maşini cu suport vectorial
 - Algoritmi evolutivi
- Sisteme bazate pe reguli
- Sisteme hibride

Materiale de citit și legături utile

- capitolul VI (18) din S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 1995
- capitolul 10 și 11 din *C. Groșan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011*
- □ capitolul V din D. J. C. MacKey, Information Theory, Inference and Learning Algorithms, Cambridge University Press, 2003
- capitolul 3 din T. M. Mitchell, Machine Learning, McGraw-Hill Science, 1997

Conținut

□ Sisteme inteligente

- Sisteme care învață singure (SIS)
 - Sisteme
 - Logistic regression
 - kNN
 - Arbori de decizie
 - SVM

Sisteme inteligente – SIS – Învățare automată

Tipologie

- În funcție de experiența acumulată în timpul învățării:
 - SI cu învăţare supervizată
 - SI cu învăţare nesupervizată
 - SI cu învăţare activă
 - SI cu învăţare cu întărire
- În funcție de modelul învățat (algoritmul de învățare):
 - Arbori de decizie
 - Reţele neuronale artificiale
 - Maşini cu suport vectorial (MSV)
 - Algoritmi evolutivi
 - Modele Markov ascunse

- Maşini cu suport vectorial (MSV)
 - Definire
 - Tipuri de probleme rezolvabile
 - Avantaje
 - Dificultăţi
 - Tool-uri

Definire

- Dezvoltate de Vapnik în 1970
- Popularizate după 1992
- Clasificatori liniari care identifică un hiperplan de separare a clasei pozitive de clasa negativă
- Au o fundamentare teoretică foarte riguroasă
- Funcţionează foarte bine pentru date de volum mare (analiza textelor, analiza imaginilor)

Reamintim

- Problemă de învăţare supervizată în care avem un set de date de forma:
 - (x^d, t^d), cu:
 - $X^{d} \in \mathbb{R}^{m} \rightarrow X^{d} = (X^{d}_{1}, X^{d}_{2}, ..., X^{d}_{m})$
 - $t^d \in \mathbb{R} \rightarrow t^d \in \{1, -1\}, 1 \rightarrow \text{clasă pozitivă}, -1 \rightarrow \text{clasă negativă}$
 - cu d = 1,2,...,n,n+1,n+2,...,N
- Primele n date (se cunosc x^d şi t^d) vor fi folosite drept bază de antrenament a MSV
- Ultimele N-n date (se cunosc doar x^d, fără t^d) vor fi folosite drept bază de testare a MSV

Definire

■ MSV găseşte o funcție liniară de forma $f(\mathbf{x}) = \langle \mathbf{w} \cdot \mathbf{x} \rangle + b$, $(\mathbf{w} - \text{vector pondere})$ a.î.

$$y_i = \begin{cases} 1 & if \langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b \ge 0 \\ -1 & if \langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b < 0 \end{cases}$$

■ $\langle \mathbf{w} \cdot \mathbf{x} \rangle + b = 0$ → hiperplanul de decizie care separă cele 2 clase

Definire

- Pot exista mai multe hiperplane
 - Care este cel mai bun hiperplan?
- MSV caută hiperplanul cu cea mai largă margine (cel care micşorează eroarea de generalizare)
 - Algoritmul SMO (Sequential minimal optimization)

- Tipuri de probleme rezolvabile
 - Probleme de clasificare → Cazuri de date
 - Liniar separabile
 - Separabile
 - Eroarea = 0

- Se relaxează constrângerile → se permit unele erori
- C coeficient de penalizare

- Cazuri de date
 - Non-liniar separabile
 - Spaţiul de intrare se transformă într-un spaţiu cu mai multe dimensiuni (feature space), cu ajutorul unei funcţii kernel, unde datele devin liniar separabile
 - În MSV, funcţiile kernel calculează distanţa între 2 puncte
 - → kernelul ~ funcţie de similaritate

Cazuri de date

- Non-liniar separabile → Kernele posibile
 - Clasice
 - Polynomial kernel: $K(\mathbf{x}^{d1}, \mathbf{x}^{d2}) = (\mathbf{x}^{d1}, \mathbf{x}^{d2} + 1)^p$
 - RBF kernel: $K(\mathbf{x}^{d1}, \mathbf{x}^{d2}) = exp(-||\mathbf{x}^{d1} \mathbf{x}^{d2}||^2/2\sigma^2)$

Kernele multiple

- Liniare: $K(\mathbf{x}^{d1}, \mathbf{x}^{d2}) = \sum w_i K_i (\mathbf{x}^{d1}, \mathbf{x}^{d2})$
- Ne-liniare
 - Fără coeficienți: $K(\mathbf{x}^{d1}, \mathbf{x}^{d2}) = K_1(\mathbf{x}^{d1}, \mathbf{x}^{d2}) + K_2(\mathbf{x}^{d1}, \mathbf{x}^{d2}) * exp(K_3(\mathbf{x}^{d1}, \mathbf{x}^{d2}))$
 - Cu coeficienţi: $K(\mathbf{x}^{d1}, \mathbf{x}^{d2}) = K_1(\mathbf{x}^{d1}, \mathbf{x}^{d2}) + c_1 * K_2 *(\mathbf{x}^{d1}, \mathbf{x}^{d2})$ $exp(c_2 + K_3(\mathbf{x}^{d1}, \mathbf{x}^{d2}))$
- Kernele pentru stringuri
- Kernele pentru imagini
- Kernele pentru grafe

Configurarea MSV

- Parametrii unei MSV
 - Coeficientul de penalizare C
 - C mic → convergenţă lentă
 - C mare → convergenţă rapidă
 - Parametrii funcţiei kernel (care kernel şi cu ce parametri)
 - Dacă m (nr de atribute) este mult mai mare decât n (nr de instanţe)
 - MSV cu kernel liniar (MSV fără kernel) \rightarrow K(\mathbf{x}^{d1} , \mathbf{x}^{d2}) = $\mathbf{x}^{d1} \cdot \mathbf{x}^{d2}$
 - Dacă m (nr de atribute) este mare, iar n (nr de instanţe) este mediu
 - MSV cu kernel Gaussian $K(\mathbf{x}^{d1}, \mathbf{x}^{d2}) = \exp(-||\mathbf{x}^{d1} \mathbf{x}^{d2}||^2/2\sigma^2)$
 - σ dispersia datelor de antrenament
 - Atributele instanţelor trebuie normalizate (scalate la (0,1))
 - m (nr de atribute) este mic, iar n (nr de instanţe) este mare
 - Se adaugă noi atribute, iar apoi
 - MSV cu kernel liniar

- MSV pentru probleme de clasificare supervizate cu mai mult de 2 clase
 - Una vs. restul (one vs. all)

- MSV structurate
 - Învăţare automată
 - □ Normală $f: \mathcal{X} \rightarrow \mathbb{R}$
 - Intrări de orice fel
 - Ieşiri numerice (naturale, întregi, reale)
 - □ Structurată: X → y
 - Intrări de orice fel
 - Ieşiri de orice fel (simple sau structurate)
 - Informaţii structurate
 - Texte şi hiper-texte
 - Molecule şi structuri moleculare
 - Imagini

MSV structurate

- Aplicaţii
 - Procesarea limbajului natural
 - Traduceri automate (ieşiri → propoziţii)
 - Analiza sintactică şi/sau morfologică a propoziţiilor (ieşiri -> arborele sintactic şi/sau morfologic)
 - Bioinformatică
 - Predicţia unor structuri secundare (ieşirile → grafe bi-partite)
 - Predicţia funcţionării unor enzime (ieşirile → path-uri în arbori)
 - Procesarea vorbirii
 - Transcrieri automate (ieşiri → propoziţii)
 - Transformarea textelor în voce (ieşiri → semnale audio)
 - Robotică
 - Planificare (ieşirile → secvenţe de acţiuni)

Avantaje

- Pot lucra cu orice fel de date (liniar separabile sau nu, distribuit uniform sau nu, cu distribuţie cunoscută sau nu)
 - □ Funcţiile kernel care crează noi atribute (features) → straturile ascunse dintr-o RNA
- Dacă problema e convexă oferă o soluție unică → optimul global
 - RNA pot asocia mai multe soluţii → optime locale
- Selectează automat mărimea modelului învăţat (prin vectorii suport)
 - În RNA straturile ascunse trebuie configurate de către utilizator apriori
- Nu învaţă pe derost datele (overfitting)
 - RNA se confruntă cu problema overfitting-ului chiar şi cand modelul se învaţă prin validare încrucişată

Dificultăţi

- Doar atribute reale
- Doar clasificare binară
- Background matematic dificil

Tool-uri

- LibSVM → http://www.csie.ntu.edu.tw/~cjlin/libsvm/
- Weka → SMO
- SVMLight → http://svmlight.joachims.org/
- SVMTorch → http://www.torch.ch/
- http://www.support-vector-machines.org/

Sisteme inteligente – SIS

kNN (cei mai apropiați k vecini)

- Cel mai simplu algoritm de clasificare
- În etapa de antrenament, algoritmul doar citeşte datele de intrare (atributele şi clasa fiecărei instanţe)
- În etapa de testare, pentru o nouă instanță (fără clasă) se caută (printre instanțele de antrenament) cei mai apropiați k vecini și se preia clasa majoritară a acestor k vecini
- Căutarea vecinilor se bazează pe:
 - distanţa Minkowski (Manhattan, Euclidiană) atribute continue
 - distanţa Hamming, Levensthein analiza textelor
 - alte distanţe (funcţii kernel)

Arbori de decizie

- Scop
- Definire
- Tipuri de probleme rezolvabile
- Exemplu
- Proces
- Tool-uri
- Avantaje şi limite

Scop

- Divizarea unei colecţii de articole în seturi mai mici prin aplicarea succesivă a unor reguli de decizie → adresarea mai multor întrebări
 - Fiecare întrebare este formulată în funcţie de răspunsul primit la întrebarea precedentă
- Elementele se caracterizează prin informaţii non-metrice

Definire

- Arborele de decizie
 - □ Un graf special → arbore orientat bicolor
 - Conţine noduri de 3 tipuri:
 - Noduri de decizie → posibilităţile decidentului (ex. Diversele examinări sau tratamente la care este supus pacientul) şi indică un test pe un atribut al articolului care trebuie clasificat
 - Noduri ale hazardului evenimente aleatoare în afara controlului decidentului (rezultatul examinărilor, efectul terapiilor)
 - Noduri rezultat situaţiile finale cărora li se asociază o utilitate (apreciată aprioric de către un pacient generic) sau o etichetă
 - Nodurile de decizie şi cele ale hazardului alternează pe nivelele arborelui
 - Nodurile rezultat noduri terminale (frunze)
 - Muchiile arborelui (arce orientate) → consecinţele în timp (rezultate) ale decizilor, respectiv ale realizării evenimentelor aleatoare (pot fi însoţite de probabilităţi)
- Fiecare nod intern corespunde unui atribut
- Fiecare ramură de sub un nod (atribut) corespunde unei valori a atributului
- Fiecare frunză corespunde unei clase

Tipuri de probleme

- Exemplele (instanțele) sunt reprezentate printr-un număr fix de atribute, fiecare atribut putând avea un număr limitat de valori
- Funcția obiectiv ia valori de tip discret
- AD reprezintă o disjuncţie de mai multe conjuncţii, fiecare conjuncţie fiind de forma atributul ai are valoarea vi
- Datele de antrenament pot conţine erori
- Datele de antrenament pot fi incomplete
 - Anumitor exemple le pot lipsi valorile pentru unele atribute

Probleme de clasificare

- Binară
 - exemple date sub forma [(atribut_{ij}, valoare_{ij}), clasă_i, i=1,2,...,n, j=1,2,...,m, clasă_i putând lua doar 2 valori]
- Multi-clasă
 - exemple date sub forma [(atribut_{ij}, valoare_{ij}), clasă_i, i=1,2,...,n, j=1,2,...,m, clasă_i putând lua k valori]

Probleme de regresie

- AD se construiesc similar cazului problemei de clasificare, dar în locul etichetării fiecărui nod cu eticheta unei clase se asociază nodului o valoare reală sau o funcție dependentă de intrările nodului respectiv
- Spaţiul de intrare se împarte în regiuni de decizie prin tăieturi paralele cu axele Ox şi Oy
- Are loc o transformare a ieşirilor discrete în funcţii continue
- Calitatea rezolvării problemei
 - Eroare (pătratică sau absolută) de predicție

Exemplu

rec	Age	Income	Student	Credit_rating	Buys_computer(CLASS)
r1	<=30	High	No	Fair	No
r2	<=30	High	No	Excellent	No
r3	3140	High	No	Fair	Yes
r4	>40	Medium	No	Fair	Yes
r5	>40	Low	Yes	Fair	Yes
r6	>40	Low	Yes	Excellent	No
r7	3140	Low	Yes	Excellent	Yes
r8	<=30	Medium	No	Fair	No
r9	<=30	Low	Yes	Fair	Yes
r10	>40	Medium	Yes	Fair	Yes
r11	<=30	Medium	Yes	Excellent	Yes
r12	3140	Medium	No	Excellent	Yes
r13	3140	High	Yes	Fair	Yes
r14	>40	Medium	No	Excellent	No

Exemplu

Sistem medical

Exemplu

Acordarea de credite

aprobat sau nu

ID	Age	Has_Job	Own_House	Credit_Rating	Class
1	young	false	false	fair	No
2	young	false	false	good	No
3	young	true	false	good	Yes
4	young	true	true	fair	Yes
5	young	false	false	fair	No
6	middle	false	false	fair	No
7	middle	false	false	good	No
8	middle	true	true	good	Yes
9	middle	false	true	excellent	Yes
10	middle	false	true	excellent	Yes
11	old	false	true	excellent	Yes
12	old	false	true	good	Yes
13	old	true	false	good	Yes
14	old	true	false	excellent	Yes
15	old	false	false	fair	No

Proces

- Construirea (creşterea, inducţia) arborelui
 - Se bazează pe un set de date de antrenament
 - Lucrează de jos în sus sau de sus în jos (prin divizare splitting)
- Utilizarea arborelui ca model de rezolvare a problemelor
 - Ansamblul decizilor efectuate de-a lungul unui drum de la rădăcină la o frunză formează o regulă
 - Regulile formate în AD sunt folosite pentru etichetarea unor noi date
- Tăierea (curăţirea) arborelui (pruning)
 - Se identifică şi se mută/elimină ramurile care reflectă zgomote sau excepţii

■ Proces → Construirea AD

Divizarea datelor de antrenament în subseturi pe baza caracteristicilor datelor

- □ Un nod → întrebare legată de o anumită proprietate a unui obiect dat
- □ Ramurile ce pleacă din nod → etichetate cu posibilele răspunsuri la întrebarea din nodul curent
- La început toate exemplele sunt plasate în rădăcină
 - La pornire, un atribut va fi rădăcina arborelui, iar valorile atributului vor deveni ramuri ale rădăcinii
- Pe următoarele nivele exemplele sunt partiţionate în funcţie de atribute → ordinea considerării atributelor
 - Pentru fiecare nod se alege în mod recursiv câte un atribut (cu valorile lui pe ramurile descendente din nodul curent)
- □ Divizarea → greedy în luarea decizilor

Proces iterative

- Reguli de oprire
 - toate exemplele aferente unui nod fac parte din aceeaşi clasă → nodul devine frunză şi este etichetat cu Ci
 - Nu mai sunt exemple → nodul devine frunză şi este etichetat cu clasa majoritară în setul de date de antrenament
 - nu mai pot fi considerate noi atribute

□ Proces → Construirea AD

Exemplu

	Age	Income	Student	Credit_rating	Buys_computer(CLASS)
r1	<=30	High	No	Fair	No
r2	<=30	High	No	Excellent	No
r3	3140	High	No	Fair	Yes
r4	>40	Medium	No	Fair	Yes
r5	>40	Low	Yes	Fair	Yes
r6	>40	Low	Yes	Excellent	No
r7	3140	Low	Yes	Excellent	Yes
r8	<=30	Medium	No	Fair	No
r9	<=30	Low	Yes	Fair	Yes
r10	>40	Medium	Yes	Fair	Yes
r11	<=30	Medium	Yes	Excellent	Yes
r12	3140	Medium	No	Excellent	Yes
r13	3140	High	Yes	Fair	Yes
г14	>40	Medium	No	Excellent	No

□ Proces → Construirea AD

- Exemplu
 - Pentru rădăcină se alege atributul age

□ Proces → Construirea AD

- Exemplu
 - Pentru rădăcină se alege atributul age
 - □ Pe ramura <=30 se alege atributul student

□ Proces → Construirea AD

Exemplu

- Pentru rădăcină se alege atributul age
- □ Pe ramura <=30 se alege atributul student
- □ Pe ramura > 40 se alege atributul credit

- Proces → Construirea AD → Algoritmul ID3/C4.5
 - Greedy, recursiv, top-down, divide-and-conquer

```
//D – partiționare a exemplelor de antrenament, A – lista de atribute
Crearea unui nod nou N
Dacă exemplele din D fac parte dintr-o singură clasă C atunci
        nodul N devine frunză și este etichetat cu C
        returnează nodul N
Altfel
        Dacă A=Ø atunci
              nodul N devine frunză și este etichetat cu clasa majoritară în D
              returnează nodul N
        Altfel
              atribut_separare = Selectează_atribut(D, A)
              Etichetează nodul N cu atribut_separare
              Pentru fiecare valoare posibilă vi a lui atribut_separare
                   Fie Dj mulţimea exemplelor din D pentru care atribut_separare = vj
                   Dacă Di = Ø atunci
                        Atașează nodului N o frunză etichetată cu clasa majoritară în D
                   Altfel
                        Ataşează nodului N un nod returnat de generare(Dj, A –atribut_separare)
              Returnează nodul N
```

- □ Proces → Construirea AD → Algoritmul ID3/C4.5
 - Selectează_atribut(D, A) → Alegerea atributului aferent unui nod (rădăcină sau intern)
 - Aleatoare
 - Atributul cu cele mai puţine/multe valori
 - Pe baza unei ordini prestabilite a atributelor
 - Câştigul de informaţie
 - Rata câştigului
 - Indicele Gini
 - Distanţa între partiţiile create de un atribut

- □ Proces → Construirea AD → Algoritmul ID3/C4.5 → Selectare atribut
 - Câştigul de informaţie
 - O măsură de impuritate
 - 0 (minimă) dacă toate exemplele fac parte din aceeaşi clasă
 - 1 (maximă) dacă avem număr egal de exemple din fiecare clasă
 - Se bazează pe entropia datelor
 - măsoară impuritatea datelor
 - numărul sperat (aşteptat) de biţi necesari pentru a coda clasa unui element oarecare din setul de date
 - clasificare binară (cu 2 clase): $E(S) = -p_+log_2p_+ p_-log_2p_-$ unde
 - p_+ proporția exemplelor pozitive în setul de date S
 - p₋ proporția exemplelor negative în setul de date S
 - clasificare cu mai multe clase: $E(S) = \sum_{i=1, 2, ..., k} p_i \log_2 p_i$ entropia datelor relativ la atributul țintă (atributul de ieșire), unde
 - p_i proporția exemplelor din clasa i în setul de date S
 - câştigul de informaţie (information gain) al unei caracterisitici a (al unui atribut al) datelor
 - Reducerea entropiei setului de date ca urmare a eliminării atributului a
 - $Gain(S, a) = E(S) \sum_{v \in valori(a)} |S_v| / |S| E(S_v)$
 - $\sum_{v \in valori(a)} |S_v| / |S| E(S_v)$ informația scontată

- □ Proces → Construirea AD → Algoritmul ID3/C4.5 → Selectare atribut
 - Câştigul de informaţie
 - exemplu

	a1	a2	a3	Clasa
d1	mare	roşu	cerc	clasa 1
d2	mic	roşu	pătrat	clasa 2
d3	mic	roşu	cerc	clasa 1
d4	mare	albastru	cerc	clasa 2

$$S = \{d1, d2, d3, d4\} \rightarrow p_{+} = 2/4, p_{-} = 2/4 \rightarrow E(S) = -p_{+} \log_{2} p_{+} - p_{-} \log_{2} p_{-} = 1$$

$$S_{v=mare} = \{d1, d4\} \rightarrow p_{+} = \frac{1}{2}, p_{-} = \frac{1}{2} \rightarrow E(S_{v=mare}) = 1$$

$$S_{v=mic} = \{d2, d3\} \rightarrow p_{+} = \frac{1}{2}, p_{-} = \frac{1}{2} \rightarrow E(S_{v=mic}) = 1$$

$$S_{v=rosu} = \{d1, d2, d3\} \rightarrow p+ = 2/3, p- = 1/3 \rightarrow E(S_{v=rosu}) = 0.923$$

$$S_{v=a|bastru} = \{d4\} \rightarrow p+=0, p-=1 \rightarrow E(S_{v=a|bastru}) = 0$$

$$S_{v=cerc} = \{d1, d3, d4\} \rightarrow p+ = 2/3, p- = 1/3 \rightarrow E(S_{v=cerc}) = 0.923$$

$$S_{v=patrat} = \{d2\} \Rightarrow p+ = 0, p- = 1 \Rightarrow E(S_{v=patrat}) = 0$$

$$Gain(S, a) = E(S) - \sum_{v \in valori(a)} |S_v| / |S| E(S_v)$$

Gain(S,
$$a_1$$
) = 1 – ($|S_{v=mare}| / |S| E(S_{v=mare}) + |S_{v=mic}| / |S| E(S_{v=mic})$) = 1 – (2/4 * 1 + 2/4 * 1) = 0

$$Gain(S, a_2) = 1 - (|S_{v=rosu}| / |S| |E(S_{v=rosu}) + |S_{v=albastru}| / |S| |E(S_{v=albastru})) = 1 - (3/4 * 0.923 + 1/4 * 0) = 0.307$$

Gain(S,
$$a_3$$
) = 1 – ($|S_{v=cerc}| / |S| |E(S_{v=cerc})| + |S_{v=patrat}| / |S| |E(S_{v=patrat})| = 1 – (3/4 * 0.923 + 1/4 * 0) = 0.307$
Inteligență artificială - sisteme inteligente (SVM, kNN, arbori

- □ Proces → Construirea AD → Algoritmul ID3/C4.5 → Selectare atribut
 - Rata câştigului
 - Penalizează un atribut prin încorporarea unui termen split information – sensibil la gradul de împrăştiere şi uniformitate în care atributul separă datele
 - Split information entropia relativ la valorile posibile ale atributului a
 - Sv proporţia exemplelor din setul de date S care au atributul a evaluat cu valoarea v

$$-\sum_{v=value(a)} \frac{|S_v|}{|S|} \log_2 \frac{|S_v|}{|S|}$$
splitInformation(S,a)=

Studiu de caz - Problema vampirilor

Items	Shadow	Complexio n	Garlic	Accent	Vampir e
i1	?	Pale	Yes	None	No
i2	Yes	Ruddy	Yes	None	No
i3	?	Ruddy	No	None	Yes
i4	No	Average	No	Heavy	Yes
i5	?	Average	No	Odd	Yes
i6	Yes	Pale	No	Heavy	No
i7	Yes	Average	No	Heavy	No
i8	?	Ruddy	Yes	Odd	No

Proces

- Construirea arborelui
- Utilizarea arborelui ca model de rezolvare a problemelor
 - Ideea de bază
 - Se extrag regulile formate în arborele anterior construit → Reguli extrase din arborele dat în exemplul anterior:
 - IF age = "<=30" AND student = "no" THEN buys computer = "no"
 - IF age = "<=30" AND student = "yes" THEN buys_computer = "yes"</p>
 - IF age = "31...40" THEN buys_computer = "yes"
 - IF age = ">40" AND credit_rating = "excellent" THEN buys_computer = "no"
 - IF age = ">40" AND credit_rating = "fair" THEN buys_computer = "yes"
 - Regulile sunt folosite pentru a clasifica datele de test (date noi).
 Fie x o dată pentru care nu se ştie clasa de apartenenţă →
 Regulile se pot scrie sub forma unor predicate astfel:
 - IF $age(x, \le 30)$ AND student(x, no) THEN $buys_computer(x, no)$
 - IF $age(x, \le 30)$ AND student(x, yes) THEN $buys_computer(x, yes)$

Proces

- Construirea arborelui
- Utilizarea arborelui ca model de rezolvare a problemelor
 - Dificultăţi
 - Underfitting (sub-potrivire) → AD indus pe baza datelor de antrenament este prea simplu → eroare de clasificare mare atât în etapa de antrenare, cât şi în cea de testare
 - Overfitting (supra-potrivire, învăţare pe derost) → AD indus pe baza datelor de antrenament se potriveşte prea accentuat cu datele de antrenament, nefiind capabil să generalizeze pentru date noi
 - Soluţii:
 - fasonarea arborelui (pruning) → Îndepărtarea ramurilor nesemnificative, redundante → arbore mai puţin stufos
 - validare cu încrucişare

Proces

- Construirea arborelui
- Utilizarea arborelui ca model de rezolvare a problemelor
- Tăierea (fasonarea) arborelui
 - Necesitate
 - Odată construit AD, se pot extrage reguli (de clasificare) din AD pentru a putea reprezenta cunoştinţele sub forma regulilor if-then atât de uşor de înţeles de către oameni
 - O regulă este creată (extrasă) prin parcurgerea AD de la rădăcină până la o frunză
 - Fiecare pereche (atribut, valoare), adică (nod, muchie), formează o conjuncţie în ipoteza regulii (partea dacă), mai puţin ultimul nod din drumul parcurs care este o frunză şi reprezintă consecinţa (ieşirea, partea atunci) regulii

Tipologie

- Prealabilă (pre-pruning)
 - Se opreşte creşterea arborelui în timpul inducţiei prin sistarea divizării unor noduri care devin astfel frunze etichetate cu clasa majoritară a exemplelor aferente nodului respectiv
- Ulterioară (post-pruning)
 - După ce AD a fost creat (a crescut) se elimină ramurile unor noduri care devin astfel frunze → se reduce eroarea de clasificare (pe datele de test)

■ Tool-uri

- http://webdocs.cs.ualberta.ca/~aixplore/learnin g/DecisionTrees/Applet/DecisionTreeApplet.html
- WEKA → J48
- http://id3alg.altervista.org/
- http://www.rulequest.com/Personal/c4.5r8.tar.g
 <u>Z</u>

Biblio

http://www.public.asu.edu/~kirkwood/DAStuff/d ecisiontrees/index.html

Avantaje

- Uşor de înţeles şi interpretat
- Permit utilizarea datelor nominale şi categoriale
- Logica deciziei poate fi urmărită uşor, regulile fiind vizibile
- Lucrează bine cu seturi mari de date

Dezavantaje

- Instabilitate → modificarea datelor de antrenament
- Complexitate → reprezentare
- Greu de manevrat
- Costuri mari pt inducerea AD
- Inducerea AD necesită multă informație

Dificultăţi

- Existenţa mai multor arbori
 - Cât mai mici
 - Cu o acurateţe cât mai mare (uşor de "citit" şi cu performanţe bune)
 - □ Găsirea celui mai bun arbore → problemă NP-dificilă
- Alegerea celui mai bun arbore
 - Algoritmi euristici
 - ID3 → cel mai mic arbore acceptabil
 - → teorema lui Occam: "always choose the simplest explanation"
- Atribute continue
 - Separarea în intervale
 - Câte intervale?
 - Cât de mari sunt intervalele?
- Arbori prea adânci sau prea stufoşi
 - □ Fasonarea prealabilă (pre-pruning) → oprirea construirii arborelui mai devreme
 - □ Fasonarea ulterioară (post-pruning) → înlăturarea anumitor ramuri

Recapitulare

■ Sisteme care învaţă singure (SIS)

- Regresie logistică
- kNN

Arbori de decizie

- Fiecare nod intern corespunde unui atribut
- Fiecare ramură de sub un nod (atribut) corespunde unei valori a atributului
- Fiecare frunză corespunde unei clase (etichete) conţine toate datele din acea clasă
- Maşini cu suport vectorial
 - Hiperplan de separare
 - Funcţii kernel

Cursul următor

- A. Scurtă introducere în Inteligența Artificială (IA)
- B. Rezolvarea problemelor prin căutare
 - Definirea problemelor de căutare
 - Strategii de căutare
 - Strategii de căutare neinformate
 - Strategii de căutare informate
 - Strategii de căutare locale (Hill Climbing, Simulated Annealing, Tabu Search, Algoritmi evolutivi, PSO, ACO)
 - Strategii de căutare adversială
- c. Sisteme inteligente
 - Sisteme care învaţă singure
 - Arbori de decizie
 - Rețele neuronale artificiale
 - Maşini cu suport vectorial
 - Algoritmi evolutivi
 - Sisteme bazate pe reguli
 - Sisteme hibride

Cursul următor – Materiale de citit și legături utile

- Capitolul VI (19) din S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 1995
- capitolul 8 din Adrian A. Hopgood, Intelligent Systems for Engineers and Scientists, CRC Press, 2001
- capitolul 12 și 13 din *C. Groșan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011*
- Capitolul V din D. J. C. MacKey, Information Theory, Inference and Learning Algorithms, Cambridge University Press, 2003
- Capitolul 4 din T. M. Mitchell, Machine Learning, McGraw-Hill Science, 1997

- Informaţiile prezentate au fost colectate din diferite surse de pe internet, precum şi din cursurile de inteligenţă artificială ţinute în anii anteriori de către:
 - Conf. Dr. Mihai Oltean www.cs.ubbcluj.ro/~moltean
 - Lect. Dr. Crina Groşan www.cs.ubbcluj.ro/~cgrosan
 - Prof. Dr. Horia F. Pop www.cs.ubbcluj.ro/~hfpop