第十六届全国非线性泛函分析会议

鞍点约化下的临界群及变系数椭圆共振 问题

刘轼波

汕头大学数学系

http://www.liusb.com

刘轼波

Contents

1	SPR and critical groups	3
2	Applications of SPR 2.1 Elliptic BVP: 0 is loc min $(p_0 < \lambda_1)$ 2.2 Elliptic BVP: 0 is not loc min $(p_0 > \lambda_1)$	
3	Variable coefficients problems	16
4	Proof of Thm12	19

1. SPR and critical groups

Let u be an isolated critical point of $f \in C^1(X, R)$, f(u) = c.

$$C_q(f,u) = H_q(f_c,f_c \setminus u), \qquad C_q(f,\infty) = H_q(X,f_\alpha)$$

are the critical groups of f, see [Cha93,BL97].

Exm-1. (1)
$$u$$
 is loc. min. $\implies C_q(f, u) = \delta_{q,0} \mathcal{G}$.

- (2) u is loc. max. $\implies C_q(f, u) = \delta_{q, \dim X} \mathcal{G}$.
- (3) *u* nondegenerate, ind $(f, u) = \mu \implies C_a(f, u) = \delta_{a,u} \mathcal{G}$.

Pro-1 (Morse inequality). Let

$$M_q = \sum_{f'(u)=0} \operatorname{rank} C_q(f,u), \qquad \beta_q = \operatorname{rank} C_q(f,\infty).$$

Then
$$\sum_{q=0}^{\infty} M_q t^q = \sum_{q=0}^{\infty} \beta_q t^q + (1+t)Q(t).$$

[Cha93] K.-c. Chang, Infinite-dimensional Morse theory and ..., 1993.

[BL97] T. Bartsch, S. Li, Nonlinear Anal., 28(1997) 419-441.

Pro-2. $X = X^- \oplus X^+$, $f \in C^1(X, R)$, $\kappa > 0$, $\nu \in X^-$, $w_{1,2} \in X^+$: $\pm \langle \nabla f(v + w_1) - \nabla f(v + w_2), w_1 - w_2 \rangle \ge \kappa \|w_1 - w_2\|^2$. (E_{\pm}) Then $\exists \psi : X^- \to X^+$,

- (1) if (E_+) then $\varphi(v) \triangleq f(v + \psi(v)) = \min_{w \in X^+} f(v + w)$.
- (2) if (E_-) then $\varphi(v) \triangleq f(v + \psi(v)) = \max f(v + w)$.

Moreover, $\varphi \in C^1(X, R)$, ν critical for φ $v + \psi(v)$ critical for f.. \Leftrightarrow

Rek-1. In most applications min $\{\dim X^-, \dim X^+\} < \infty$.

Pob-1. What is the relation between the critical groups of f and φ ?

Thm-1 ([LL03]). In the setting of Pro2,

- (1) in case (E_+) we have $C_q(f, \infty) \cong C_q(\varphi, \infty)$.
- (2) in case (E_{-}) with $\ell = \dim X^{+} < \infty$, then $C_{q}(f, \infty) \cong C_{q-\ell}(\varphi, \infty)$.

Thm-2 ([Liu07]). In Pro2,
$$(E_+)$$
, $C_q(f, v + \psi(v)) \cong C_q(\varphi, v)$.

Since ψ is bounded if ∇f is ([Liu08, Lem 2.1]),

$$\nabla \varphi(\nu) = P_{-} \nabla f(\nu + \psi(\nu)),$$

if $\nabla f = \mathbf{1}_X - K$ with $K : X \to X$ compact, then $\nabla \varphi = \mathbf{1}_{X^-} - Q$.

The L-S index

$$\operatorname{ind}(\nabla f, \nu + \psi(\nu))$$
 and $\operatorname{ind}(\nabla \varphi, \nu)$. make sense

[LL03] S. Liu, S. Li, Commun. Contemp. Math., 5(2003) 761–773.

[Liu07] S. Liu, J. Math. Anal. Appl., 336(2007) 498–505.

[Liu08] S. Liu, Proc. Roy. Soc. Edinburgh Sect. A, 138(2008) 1281–1289.

Cor-1 ([LM85]).
$$E_+$$
: ind($\nabla \varphi$, ν) = ind(∇f , $\nu + \psi(\nu)$)..

Pf. By Poincaré-Hopf,
$$= \operatorname{ind}(\nabla f, v + \psi(v)).$$
$$\operatorname{ind}(\nabla \varphi, v) = \sum_{q=0}^{\infty} (-1)^q \operatorname{rank} C_q(\varphi, v) = \sum_{q=0}^{\infty} (-1)^q \operatorname{rank} C_q(f, v + \psi(v))$$

The dual of Thm2 for the case (E_{-}) remains open until recently.

Thm-3. In Pro2 with case (E_-) , if $\ell = \dim X^+ < \infty$, then $C_{\alpha}(f, \bar{\nu} + \psi(\bar{\nu})) \cong C_{\alpha-\ell}(\varphi, \bar{\nu})$. (1)

$$C_q(f, \bar{\nu} + \psi(\bar{\nu})) \cong C_{q-\ell}(\varphi, \bar{\nu}).. \tag{1}$$

$$\mathsf{Cor-2}. \ (E_-) \Rightarrow \mathsf{ind}(\nabla \varphi, \nu) = (-1)^{\ell} \mathsf{ind}(\nabla f, \nu + \psi(\nu)).$$

Cor-2. $(E_-) \Rightarrow \operatorname{Ind}(\nabla \varphi, V) = (-1)^x \operatorname{Ind}(\nabla f, V + \psi(V)).$

Pf of Thm3. Assume $\varphi(\bar{v}) = f(\bar{v} + \psi(\bar{v})) = a$. Note that

Rek-2. It follows from (1) that $C_q(f, \bar{v} + \psi(\bar{v})) = 0$ for $q < \ell$..

$$\varphi(v) = f(v + \psi(v)) = \alpha. \text{ Note that}$$

$$\varphi(v) = f(v + \psi(v)) = \max_{w \in X^+} f(v + w).$$

[LM85] A. C. Lazer, P. J. McKenna, J. Math. Anal. Appl., 107(1985) 371–395.

if $\varphi(v) \le \alpha$, then for any $w \in X^+$ we have $f(v + w) \le \alpha$. Thus

$$f_\alpha = (\varphi_\alpha \times X^+) \cup \{(v,w)| f(v+w) \leq \alpha, \varphi(v) > \alpha\}.$$

It has been shown in the proof of Thm1 that

$$f_{\alpha} \simeq A \triangleq (\varphi_{\alpha} \times X^{+}) \cup \{ (v, w) | \varphi(v) > \alpha, w \neq \psi(v) \}$$

$$\simeq (\varphi_{\alpha} \times X^{+}) \cup ((X^{-} \setminus \varphi_{\alpha}) \times S) \triangleq B,$$

where $S = \{w \in X^+ | w \neq 0\}$. Define $H : [0, 1] \times B \rightarrow B$,

$$H(t,(v,w)) = \left\{ \begin{array}{ll} (v,w), & \text{if } (v,w) \in \varphi_\alpha \times X^+, \\ ((1-t)v+t\bar{v},w), & \text{if } (v,w) \in (X^- \backslash \varphi_\alpha) \times S.. \end{array} \right.$$

 $H(1, \cdot)$ is a homotopy equivalance between B and $\varphi_a \times X^+$. We can deform f_a to $\varphi_a \times X^+$, with $(\bar{\nu}, \psi(\bar{\nu}))$ to $(\bar{\nu}, 0)$.

Noting that
$$(\varphi_a \times X^+) \setminus (\bar{v}, 0) = (\varphi_a \times S) \cup ((\varphi_a \setminus v) \times X^+)$$
, we have $(f_a, f_a \setminus (\bar{v}, \psi(\bar{v}))) \simeq (\varphi_a \times X^+, (\varphi_a \times X^+) \setminus (\bar{v}, 0))$.
$$= (\varphi_a \times X^+, (\varphi_a \times S) \cup ((\varphi_a \setminus v) \times X^+))$$

$$= (\varphi_a, \varphi_a \setminus \bar{v}) \times (X^+, S)$$
.

Passing to homology and apply Künneth,

Passing to nomology and apply kunneth,
$$C_*(f, \bar{v} + \psi(\bar{v})) = H_*(f_a, f_a \setminus (\bar{v}, \psi(\bar{v})))$$

$$\cong H_*((\varphi_a, \varphi_a \setminus \bar{v}) \times (X^+, S)).$$

$$= H_*(\varphi_a, \varphi_a \setminus \bar{v}) \otimes H_*(X^+, S) = H_{*-\ell}(\varphi_a, \varphi_a \setminus \bar{v}) = C_{*-\ell}(\varphi, \bar{v})..$$

Pro-3 ([Liu08, Cor 2.2]). In Pro2, if $\nabla f: X \to X$ is bounded and $\exists K: X \to X$ compact such that $\nabla f = \mathbf{1}_X - K$, then $\nabla \varphi = \mathbf{1}_{(X^-)} - Q$ for some compact $Q: X^- \rightarrow X^-$.

[Liu08] S. Liu, Proc. Roy. Soc. Edinburgh Sect. A, 138(2008) 1281–1289.

Thm-4 ([LS01, Thm 2.1]). Let $f \in C^1(X, \mathbb{R})$ satisfy (*PS*), bounded from below. If $C_{\ell}(f, \mathbf{0}) \neq 0$ for some $\ell \neq 0$, then f has three critical points. homological 3 Cr.Pts.Thm.

刘轼波

2. Applications of SPR

SPR was introduced by [Ama79], and used by many people. [Cha93,Lon90] used SPR for periodic solutions of HS:

$$-J\dot{z}=H'(t,z)$$

in the case $|H''(t,z)| \leq C$.

Strongly indefinite functional reduces to finite dim function.

In [Liu09], an approach for computing $C_*(f, \infty)$ via SPR (Thm1), Alexander dual theorem, is developed.

```
[Ama79] H. Amann, Math. Z., 169(1979) 127–166.
```

[Cha93] K.-c. Chang, Infinite-dimensional Morse theory and ..., 1993.

[Lon90] Y. M. Long, Sci. China Ser. A, 33(1990) 1409–1419.

[Liu09] S. Liu, Nonlinear Anal., 70(2009) 1965–1974.

Elliptic BVP: 0 is loc min ($\rho_0 < \lambda_1$)

Notations
$$\lim_{|t| \to 0} \frac{p(x,t)}{t} = p_0$$
, $\lim_{|t| \to \infty} \frac{p(x,t)}{t} = p_\infty$,
$$-\Delta u = p(x,u), \quad u \in H_0^1(\Omega). \tag{2}$$

$$f(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx - \int_{\Omega} P(x, u) dx.$$

Thm-5 ([CC94]). $p \in C^1(\mathbb{R})$, $p_0 < \lambda_1$, $p'(t) \le \gamma < \lambda_{m+1}$. If $p_\infty \in (\lambda_m, \lambda_{m+1})$, then (2) has 5 solutions.

[CC94] A. Castro, J. Cossio, SIAM J. Math. Anal., 25(1994) 1554–1561.

Thm-6 ([LZ99]). $p \in C^1(\mathbb{R}), p_0 < \lambda_1, p'(t) \le \gamma < \lambda_{m+1}$. If $p_{\infty} = \lambda_m$,

$$(p_{3}) \exists \alpha \in [0, 1), |p(t) - \lambda_{m} t| \leq C(1 + |t|^{\alpha}),$$

$$\lim_{|t| \to \infty} \frac{1}{|t|^{2\alpha}} \left(P(t) - \frac{1}{2} \lambda_{m} t^{2} \right) = +\infty,$$

then (2) has 5 solutions...

Thm-7 ([Liu07]).
$$p \in C^1(\mathbb{R}), p_0 < \lambda_1, p'(t) \le \gamma < \lambda_{m+1}$$
. If $p_{\infty} = \lambda_m$,

$$\lim_{|t|\to\infty}\left(P(t)-\frac{1}{2}\lambda_mt^2\right)=+\infty,$$

then (2) has 5 solutions.

[LZ99] S. Li, Z. Zhang, Discrete Contin. Dynam. Systems, 5(1999) 489–493.[Liu07] S. Liu, J. Math. Anal. Appl., 336(2007) 498–505.

2.2. Elliptic BVP: 0 is not loc min $(p_0 > \lambda_1)$

Assume f has a local linking at $\mathbf{0}$.

Thm-8 ([LW98]).
$$p \in C^{1}(\Omega \times \mathbb{R})$$
,
 $(p_{3}^{-}) \exists \alpha \in [0, 1), |p(x, t) - \lambda_{m}t| \leq C(1 + |t|^{\alpha}).$ (so $p_{\infty} = \lambda_{m}$)

$$\lim_{|t| \to \infty} |t|^{-2\alpha} (2P(x, t) - \lambda_{m}t^{2}) = -\infty,$$

 $\partial_t p(x,t) \ge \gamma > \lambda_{m-1}$, then (2) has 3 solutions.

used to control ind(f, u), and compute $C_*(f, u)$.

Thm-9 ([LTW00]).
$$p \in C(\Omega \times \mathbb{R})$$
, $\exists \beta < \lambda_{m+1}$, (2) has 3 sols if $\frac{p(x,t) - p(x,s)}{t-s} \le \beta$, $\lim_{|t| \to \infty} \left(2P(x,t) - \lambda_m t^2\right) = +\infty$.

[LW98] S. Li, M. Willem, NoDEA, 5(1998) 479–490. [LTW00] S. Liu, C. Tang, X. Wu, J. Math. Anal. Appl., 249(2000) 289–299.

Thm-10 ([Liu08]).
$$p \in C(\Omega \times \mathbb{R})$$
, $\exists \beta > \lambda_{m-1}$, (2) has 3 sols if $\left| \frac{p(x,t)}{t} \right| \le \Lambda$, $\frac{p(x,t) - p(x,s)}{t-s} \ge \beta$, $\lim_{|t| \to \infty} \left(2P(x,t) - \lambda_m t^2 \right) = -\infty$.

- (1) In Thm 9, since dim $X^- < \infty$, [LTW00] first observed that although f not (PS), the reduced φ anti-coercive...
- (2) In Thm 10,

$$X^{-} = \bigoplus_{i \geq m} \ker(-\Delta - \lambda_i).$$

Since dim $X^- = \infty$, it is difficult to prove φ coercive.. To overcome we proved a non vanishing lemma (Lem2)...

(3) Thm9, Thm10 rely on the fact that if f has a local linking at 0, so has φ

NOT TRUE if p_0 and p_{∞} depend on x.

[Liu08] S. Liu, Proc. Roy. Soc. Edinburgh Sect. A, 138(2008) 1281–1289. [LTW00] S. Liu, C. Tang, X. Wu, J. Math. Anal. Appl., 249(2000) 289–299.

(a) for constant case, decompose at 0 and ∞ W.R.T.

$$-\Delta u = \lambda u, \qquad u \in H_0^1(\Omega).$$

(b) for variable case, at 0 and ∞ decomp W.R.T.

$$-\Delta u = \lambda p_0(x)u$$
 and $-\Delta u = \lambda p_\infty(x)u$.

There is a twist!

Local linking of f does not descend to φ .

We need Thm3.

3. Variable coefficients problems

Consider

$$-\Delta u = p(x, u), \qquad u \in H_0^1(\Omega). \tag{3}$$

Assume $p \in C(\Omega \times \mathbb{R}, \mathbb{R})$,

$$|p(x,t)| \le \Lambda |t| \,. \tag{4}$$

Set $\mathscr{C} = C(\bar{\Omega})$. The for $p \in \mathscr{C}$,

$$-\Delta u = \lambda p(x)u, \qquad u \in H_0^1(\Omega) \tag{5}$$

has eigenvalues $-\infty < \lambda_1(p) < \lambda_2(p) < \cdots$. Assume $\exists p_0 \in \mathscr{C}$,

$$G(x,t) \triangleq P(x,t) - \frac{1}{2}p_0(x)t^2 = o(t^2),$$
 as $|t| \to 0$.

If $\lambda_k(p_0) = 1$, assume further

$$(P_0^{\pm}) \ \exists \delta > 0, \ \pm G(x, t) > 0 \text{ for } 0 < |t| \le \delta.$$
 (local linking)

$$(P_{\infty}^{\pm}) \exists p_{\infty} \in \mathscr{C}, \lambda_m(p_{\infty}) = 1, \lim_{|t| \to \infty} \left(P(x, t) - \frac{1}{2} p_{\infty}(x) t^2 \right) = \pm \infty.$$

Rek-3. If
$$\lim_{|t|\to\infty}\frac{p(x,t)}{t}=p_\infty(x)$$
, $\forall i,\ 1\neq\lambda_i(p_\infty)$, no (P_\pm^∞) .

Denote $\lambda_i^0 = \lambda_i(p_0)$, $\lambda_i^\infty = \lambda_i(p_\infty)$,

$$d_n^0 = \sum_{i=1}^n \ker(-\Delta - \lambda_i^0 p_0), \qquad d_n^\infty = \sum_{i=1}^n \ker(-\Delta - \lambda_i^\infty p_\infty).$$

For $a, b \in C(\bar{\Omega})$, $a \leq b$ if $a \leq b$ and a < b on $\tilde{\Omega} \subset \Omega$, $|\tilde{\Omega}| > 0$.

Thm-11. Assume (4), (P_{∞}^+) . If $\exists \beta \leq \lambda_{m+1}^{\infty} p_{\infty}$ s.t.

$$(p(x,t)-p(x,s))(t-s) \le \beta(x)(t-s)^2,$$

then (3) has two nontrivial solutions in one of

- (1) (P_0^+) , $d_k^0 \neq d_m^\infty$,
- (2) (P_0^-) , $d_{k-1}^0 \neq d_{\infty}^{\infty}$.

Thm-12. Assume (4), (P_{∞}^{-}) . If $\exists \beta \succeq \lambda_{m-1}^{\infty} p_{\infty}$ s.t.

$$(p(x,t)-p(x,s))(t-s)\geq \beta(x)(t-s)^2,$$

then (3) has two nontrivial solutions in one of

- $(1) \ (P_0^+), \, d_k^0 \neq d_{m-1}^\infty,$
- (2) (P_0^-) , $d_{k-1}^0 \neq d_{m-1}^\infty$.
- **Rek-4**. (1) Thm11 is easier than Thm12: the reduced functional is finite dim.
 - (2) In Thm11, instead of (4), it suffices to assume subcritical growth.

4. Proof of Thm 12

We find critical points of $f: H_0^1(\Omega) \to \mathbb{R}$,

$$f(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx - \int_{\Omega} P(x, u) dx.$$

Lem-1.
$$(P_0^+) \Longrightarrow C_{d_k^0}(f, \mathbf{0}) \neq 0$$
. $(P_0^-) \Longrightarrow C_{d_{k-1}^0}(f, \mathbf{0}) \neq 0$..

Pf. For (P_0^-) , set $V_0 = \ker(-\Delta - \lambda_k^0 p_0)$,

$$V_{-} = \bigoplus_{i < k} \ker(-\Delta - \lambda_i^0 p_0), \qquad V_{+} = \overline{\bigoplus_{i > k} \ker(-\Delta - \lambda_i^0 p_0)}.$$

Then dim $V_- = d_{k-1}^0$. We can show that for ||u|| small $f(u) \le 0$, $u \in V_-$, f(u) > 0, $u \in V_0 \oplus V_+ \setminus \mathbf{0}$. (local linking) The desired result will then follow from [Liu89].

[Liu89] J. Q. Liu, Systems Sci. Math. Sci., 2(1989) 32–39.

$$X^{-} = \overline{\bigoplus_{i \geq m} \ker(-\Delta - \lambda_{i}^{\infty} p_{\infty})}, \qquad X^{+} = \bigoplus_{i < m} \ker(-\Delta - \lambda_{i}^{\infty} p_{\infty}).$$

 $\beta \succeq \lambda_{m-1}^{\infty} p_{\infty}$ implies

$$-\langle \nabla f(\nu+w_1) - \nabla f(\nu+w_2), \, w_1-w_2 \rangle \geq \kappa \|w_1-w_2\|.$$

Applying Pro 2, we obtain a reduced $\varphi \in C^1(X^-, \mathbb{R})$. Coercive?.

Pob-2. For $||v_n|| \to \infty$, since dim $X^- = \infty$, the weak limit of $\|v_n\|^{-1}v_n$ may be the zero element in X^- , (P_{∞}^-) not apply.

As [Liu08], we consider $f_1 = f|_{X^-}$. Then $f_1 \in C^1(X^-, \mathbb{R})$.

Lem-2 (NVL). Let $\{v_n\} \subset X^-$ such that $f_1(v_n) \leq c$ and $\|v_n\| \to c$ ∞ . Set $v_n^0 = ||v_n||^{-1} v_n$. Then up to sub, $v_n^0 \to v^0 \neq \mathbf{0}$..

Pf (In [Liu08], $\nabla f_1(v_n) \rightarrow 0$). Up to sub, $v_n^0 \rightarrow v^0$ in X^- , and $v_n^0 \to v^0$ in $L^2(\Omega)$.

[Liu08] S. Liu, Proc. Roy. Soc. Edinburgh Sect. A, 138(2008) 1281–1289.

By (4), $|2P(x,t)| \le \Lambda |t|^2$,

$$2c \ge 2f_1(v_n) = \int_{\Omega} |\nabla v_n|^2 \, dx - \int_{\Omega} 2P(x, v_n) dx.$$

$$\ge \int_{\Omega} |\nabla v_n|^2 \, dx - \Lambda \int_{\Omega} |v_n|^2 \, dx = ||v_n||^2 - \Lambda |v_n|_2^2 \, .$$

Div by $\|v_n\|^2$ yields $2c\|v_n\|^{-2} \ge 1 - \Lambda |v_n|^2$, we get $|v^0|_2^2 \ge \Lambda^{-1}$.

Lem-3. f_1 is coercive and bounded from below.

Pf. Assume for contradiction

$$f_1(v_n) \le c, \qquad ||v_n|| \to \infty.$$
 (6)

Let $v_n^0 = ||v_n||^{-1} v_n$, by Lem2, up to sub $v_n^0 \to v^0 \neq \mathbf{0}$. Let

$$\Theta = \left\{ x \in \Omega | \ \nu^0(x) \neq 0 \right\},\,$$

then $|\Theta| > 0$. For $x \in \Theta$ we have $|v_n(x)| = ||v_n|| |v_n^0(x)| \to \infty$.

By (P_{∞}^{-}) and Fatou,

$$\int_{\Theta} \left(\frac{1}{2} p_{\infty}(x) v_n^2 - P(x, v_n) \right) dx \to +\infty, \quad \text{as } n \to \infty.$$

 (P_{∞}^{-}) implies $\exists M > 0$ such that

$$\frac{1}{2}p_{\infty}(x)t^2 - P(x,t) \ge -M, \qquad (x,t) \in \Omega \times \mathbb{R}.$$

Therefore
$$f_1(v_n) = \frac{1}{2} \int_{\Omega} |\nabla v_n|^2 dx - \int_{\Omega} P(x, v_n) dx$$

$$\geq \int_{\Omega} \left(\frac{1}{2} p_{\infty}(x) v_n^2 - P(x, v_n) \right) dx.$$

$$= \left(\int_{\Theta} + \int_{\Omega \setminus \Theta} \right) \left(\frac{1}{2} p_{\infty}(x) v_n^2 - P(x, v_n) \right) dx$$

$$\geq \int_{\Theta} \left(\frac{1}{2} p_{\infty}(x) v_n^2 - P(x, v_n) \right) dx - M |\Omega \setminus \Theta| \to +\infty.$$

Rek-5. In [Liu08], old NVL (Lem 2) is used to show f_1 (PS), then obtain coerciveness of f_1 via [Li86].

The new approach does not use derivative information and much simpler..

Lem-4. In Thm12, φ is coercive, bounded from below, (PS)...

Pf. From the coerciveness of f_1 and

$$\varphi(v) = \max_{w \in X^+} f(v+w) \ge f(v) = f_1(v),$$

 φ is also coercive and b.f.b.. In particular, any (PS) sequence of φ is bounded. By Pro 3, $\nabla \varphi = \mathbf{1} - \text{comp. So } \varphi$ satisfies (PS).

Pf of Thm12. We prove the case (i). By Lem4, φ satisfies the (*PS*) condition, and bounded from below. Note that

$$\ell = \dim X^+ = d_{m-1}^{\infty},$$

by Thm3 and Lem1 we obtain

$$C_{d_k^0 - d_{m-1}^{\infty}}(\varphi, \mathbf{0}) \cong C_{d_k^0}(f, \mathbf{0}) \neq 0.$$
 (7)

Now, if $d_k^0 \neq d_{m-1}^{\infty}$, the result follows from Thm4..

Rek-6. (1) Seems to be the first real application of Thm4.

(2) In our paper, actually we study elliptic systems.

$$\begin{cases} -\Delta u = F_u(x, u, v), & \text{in } \Omega, \\ -\Delta v = F_v(x, u, v), & \text{in } \Omega, \\ u = v = 0, & \text{on } \partial \Omega, \end{cases}$$

Our results improve those of [FdP].

[FdP] M. F. Furtado, F. O. V. de Paiva, Bull. Aust. Math. Soc, (in press).

Thank you!

http://www.liusb.com

刘轼波

