#### Overview

- Instance-based Learning: kNN
- Instance-based Learning Using Kernels
- Kernel Logistic Regression and Kernel SVMs
- Kernel Regression

#### Instance-based Learning: kNN



- Training data:  $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots, (x^{(m)}, y^{(m)})\}$
- Given new input x, find the nearest point in the training data e.g.  $x^{(2)}$  and use its label e.g.  $y^{(2)}$  as our prediction
- Can generalise to finding the k nearest neighbours (hence kNN) and predicting the label by majority vote
- We can use the same idea for both real valued outputs and for classification.
- How do we measure distance i.e. decide which points are nearest? Recall x is a vector. Often use Euclidean distance  $\sum_{i=1}^{n} x_i^2$ .

- Define a weighting function K(x, z) that is maximum when x = z and decays as the distance between x and z increases.
- This function is often called a **kernel**, although this requires K(x, z) to be of the form  $\phi(x)^T \phi(z) = \phi(z)^T \phi(x)$  for some mapping  $\phi$ .
- E.g. Gaussian kernel  $K(x,z)=e^{\frac{\sum_{j=1}^n(x_j-z_j)^2}{\sigma^2}}$ . Parameter  $\sigma_i$  controls how quickly the weighting decays i.e how narrow or wide the bell shape is.
- Example:  $z = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$







• Use prediction  $sign(\sum_{i=1}^{m} \alpha_i y^{(i)} K(x, x^{(i)}))$  where  $\alpha_i \ge 0$ , i = 1, ..., m are parameters to be chosen.



- Plot is of  $\sum_{i=1}^{m} \alpha y^{(i)} K(x, x^{(i)})$  with  $K(x, x^{(i)}) = e^{\frac{(x-x^{(i)})^2}{\sigma^2}}$  (use same  $\alpha$  and  $\sigma$  values for all points i).
- Notice the edge effects. When no training data then with Gaussian kernel prediction reverts to zero.



- Increasing  $\sigma$  makes the kernel broader. Tends to underfit the training data points.
- Decreasing  $\sigma$  makes the kerner narrower. Tends to overfit the training data points.

# Example: Nonlinear Decision Boundary

Generate training data using  $y = sign((x_1 - 1)^2 + (x_2 - 1)^2 - 1)$ .



# Example: Nonlinear Decision Boundary

Fit  $sign(\sum_{j=1}^{m} \alpha y^{(j)} K(x, x^{(j)}))$ , using Gaussian kernel with  $\alpha = 0.5$  and various values of  $\sigma^2$ .



### Kernel Logistic Regression

- Replace  $\theta^T x$  with  $\sum_{j=1}^m \alpha_j y^{(j)} K(x, x^{(j)})$
- Hypothesis:  $sign(\sum_{i=1}^{m} \alpha_i y^{(i)} K(x, x^{(i)}))$
- Cost:  $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \log(1 + e^{-y^{(i)} \sum_{j=1}^{m} \alpha_j y^{(j)} K(x^{(i)}, x^{(j)})})$
- Use gradient descent to select  $\theta$  as usual. Select  $\sigma$  (kernel parameter) and  $\lambda$  using cross-validation.
- Use of kernels provides another way to handle nonlinear decision boundaries. The extra flexibility comes at greater computational cost (more parameters to choose) and with risk of overfitting.

#### Kernel SVMs<sup>1</sup>

- Replace  $\theta^T x$  with  $\sum_{i=1}^m \alpha_i y^{(i)} K(x, x^{(i)})$  as before
- Hypothesis:  $sign(\sum_{i=1}^{m} \alpha_i y^{(i)} K(x, x^{(j)}))$
- Cost:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \max(0, 1 - y^{(i)} \sum_{j=1}^{m} \alpha_{j} y^{(j)} K(x^{(i)}, x^{(j)})) + \lambda \theta^{T} \theta$$

• What about  $\theta^T \theta$  term ? We'd like cost to be only in terms of  $\alpha$ 

 $<sup>^1\</sup>mathrm{Training}$  a Support Vector Machine in the Primal. Olivier Chapelle, Neural Computation 2007

#### Kernel SVMs

What about  $\theta^T \theta$  term ?

- There's another way to think about kernel approaches. What we're doing is replacing x by  $\phi(x)$ , generalising what we did when we used polynomials to fit nonlinear decision boundaries.
- Changing  $\theta^T x$  to  $\theta^T \phi(x)$ , define  $\theta = \sum_{j=1}^m \alpha_j y^{(j)} \phi(x^{(j)})$
- Then  $\theta^T \phi(x) = \sum_{j=1}^m \alpha_j y^{(j)} \phi(x^{(j)})^T \phi(x) = \sum_{j=1}^m \alpha_j y^{(j)} K(x, x^{(j)})$

$$\theta^{T}\theta = \sum_{j=1}^{m} \alpha_{j} y^{(j)} \phi(x^{(j)})^{T} \sum_{i=1}^{m} \alpha_{i} y^{(i)} \phi(x^{(i)})$$
$$= \sum_{i=1}^{m} \sum_{i=1}^{m} \alpha_{j} y^{(j)} K(x^{(j)}, x^{(i)}) y^{(i)} \alpha_{i} = \alpha^{T} M \alpha$$

where M is matrix with  $M_{ij} = y^{(j)}K(x^{(j)},x^{(i)})y^{(i)}$  and  $\alpha$  is parameter vector.

• Cost:  $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \max(0, 1 - y^{(i)} \sum_{i=1}^{m} \alpha_{i} y^{(j)} K(x^{(i)}, x^{(j)})) + \lambda \alpha^{T} M \alpha$ 

# Kernel SVMs: Summary

- Hypothesis:  $sign(\sum_{j=1}^{m} \alpha_j y^{(j)} K(x, x^{(j)}))$
- Cost:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \max(0, 1 - y^{(i)} \sum_{j=1}^{m} \alpha_{j} y^{(j)} K(x^{(i)}, x^{(j)})) + \lambda \alpha^{T} M \alpha^{T}$$

• Use gradient descent to select  $\alpha$  as usual. Select  $\sigma$  (kernel parameter) and  $\lambda$  using cross-validation.

### Kernalised Ridge Regression

- Replace  $\theta^T x$  with  $\sum_{j=1}^m \alpha_j y^{(i)} K(x, x^{(j)})$
- Use  $\theta^T \theta = \alpha^T M \alpha$  where M is matrix with  $M_{ij} = y^{(j)} K(x^{(j)}, x^{(i)}) y^{(i)}$  and  $\alpha$  is parameter vector.
- Hypothesis:  $\sum_{j=1}^{m} \alpha_j y^{(i)} K(x, x^{(j)})$
- Cost:  $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} (y^{(i)} \sum_{j=1}^{m} \alpha_j y^{(i)} K(x^{(i)}, x^{(j)}))^2 + \lambda \alpha^T M \alpha$
- Use gradient descent to select  $\alpha$  as usual, or can use closed-form solution. Select  $\sigma$  (kernel parameter) and  $\lambda$  using cross-validation.
- Use of kernels provides another way to fit nonlinear curves.
- Regression with a Gaussian kernel is also known as Radial Basis Function Regression (or sometimes as a Radial Basis Function Network)