#10

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant : Ashkenazi et al.

Appl. No. : 09/902,572

Filed : July 10, 2001

For : SECRETED AND TRANSMEMBRAN

POLYPEPTIDES AND NUCLEIC ACIDS ENCODING THE SAME

Examiner : Unknown

Group Art Unit Unknown

SEQUENCE SUBMISSION STATEMENT

United States Patent and Trademark Office PO Box 2327 Arlington VA 22202

Dear Sir:

This is in response to the Notice to Comply with Requirements for Patent Applications Containing Nucleotide Sequence and/or Amino Acid Sequence Disclosures, mailed May 14, 2002. I hereby state that the amendments, made in accordance with 37 C.F.R. § 1.825(a) and included in the Substitute Sequence Listing submitted herewith, are supported in the application, and that the Substitute Sequence Listing does not include new matter.

I further state that the information recorded in the currently submitted substitute copy of the computer-readable form of the Sequence Listing is identical to the paper form of the Sequence Listing submitted herewith as required in 37 C.F.R. § 1.825(b).

Please charge any additional fees, including any fees for additional extension of time, or credit overpayment to Deposit Account No. 11-1410.

Respectfully submitted,

KNOBBE, MARTENS, OLSON & BEAR, LLP

Dated: July 12, 2002

By:

Adeel S. Akhtar
Registration No. 41,394
Attorney of Record
620 Newport Center Drive, 16th Floor
Newport Beach, CA 92660
(415) 954-4114

W:\DOCS\BGY\BGY-2468.DOC 071202

SEQUENCE LISTING

<110> Generopan Ashkenazi, Avi Botstein, David Desnoyers, Luc Eaton, Dan L. Ferrara, Napoleone Filvaroff, Ellen Fong, Sherman Gao, Wei-Qiang Gerber, Hanspeter Gerritsen, Mary E. Goddard, A. Godowski, Paul J. Grimaldi, Christopher J. Gurney, Austin L. Hillan, Kenneth, J. Kljavin, Ivar J. Mather, Jennie P. Pan, James Paoni, Nicholas F. Roy, Margaret Ann Stewart, Timothy A. Tumas, Daniel Williams, P. Mickey

Wood, William, I.

- <120> Secreted and Transmembrane Polypeptides and Nucleic Acids Encoding the Same
- <130> 10466-14
- <140> 09/902,572
- <141> 2001-07-10
- <150> PCT/US00/04414
- <151> 2000-02-22
- <150> US 60/143,048
- <151> 1999-07-07
- <150> US 60/145,698
- <151> 1999-07-26
- <150> US 60/146,222
- <151> 1999-07-28
- <150> PCT/US99/20594
- <151> 1999-09-08
- <150> PCT/US99/20944
- <151> 1999-09-13
- <150> PCT/US99/21090
- <151> 1999-09-15

```
<150> PCT/US99/21547
<151> 1999-09-15
<150> PCT/US99/23089
<151> 1999-10-05
<150> PCT/US99/28214
<151> 1999-11-29
<150> PCT/US99/28313
<151> 1999-11-30
<150> PCT/US99/28564
<151> 1999-12-02
<150> PCT/US99/28565
<151> 1999-12-02
<150> PCT/US99/30095
<151> 1999-12-16
<150> PCT/US99/30911
<151> 1999-12-20
<150> PCT/US99/30999
<151> 1999-12-20
<150> PCT/US00/00219
<151> 2000-01-05
<160> 423
<210> 1
<211> 1825
<212> DNA
<213> Homo sapiens
<400> 1
actgcacctc ggttctatcg attgaattcc ccggggatcc tctagagatc cctcgacctc 60
gacccacgeg teegggeegg ageageaegg eegeaggaee tggageteeg getgegtett 120
cccgcagege taccegccat gegectgeeg egeegggeeg egetgggget cetgeegett 180
ctgctgctgc tgccgccgc gccggaggcc gccaagaagc cgacgccctg ccaccggtgc 240
cgggggctgg tggacaagtt taaccagggg atggtggaca ccgcaaagaa gaactttggc 300
ggcgggaaca cggcttggga ggaaaagacg ctgtccaagt acgagtccag cgagattcgc 360
ctgctggaga tcctggaggg gctgtgcgag agcagcgact tcgaatgcaa tcagatgcta 420
gaggcgcagg aggagcacct ggaggcctgg tggctgcagc tgaagagcga atatcctgac 480
ttattcgagt ggttttgtgt gaagacactg aaagtgtgct gctctccagg aacctacggt 540
cccgactgtc tcgcatgcca gggcggatcc cagaggccct gcagcgggaa tggccactgc 600
ageggagatg ggagcagaca gggcgaeggg teetgeeggt gecacatggg gtaccaggge 660
ccgctgtgca ctgactgcat ggacggctac ttcagctcgc tccggaacga gacccacagc 720
atetgeacag cetgtgacga gteetgeaag aegtgetegg geetgaceaa cagagaetge 780
ggcgagtgtg aagtgggctg ggtgctggac gagggcgcct gtgtggatgt ggacgagtgt 840
geggeegage egecteectg eagegetgeg eagttetgta agaaegeeaa eggeteetae 900
acgtgcgaag agtgtgactc cagctgtgtg ggctgcacag gggaaggccc aggaaactgt 960
aaagagtgta tototggcta cgcgagggag cacggacagt gtgcagatgt ggacgagtgc 1020
tcactagcag aaaaaacctg tgtgaggaaa aacgaaaact gctacaatac tccagggagc 1080
```

```
tacgtctgtg tgtgtcctga cggcttcgaa gaaacggaag atgcctgtgt gccgccggca 1140
gaggetgaag ccacagaagg agaaagcccg acacagetge cetecegega agacetgtaa 1200
tgtgccggac ttacccttta aattattcag aaggatgtcc cgtggaaaat gtggccctga 1260
ggatgccgtc tectgcagtg gacageggcg gggagagget gcctgctctc taacggttga 1320
ttctcatttq tcccttaaac aqctqcattt cttggttgtt cttaaacaga cttgtatatt 1380
aaaaaaaaaa aaagggcggc cqcqactcta qagtcgacct gcagaagctt ggccgccatg 1500
gcccaacttg tttattgcag cttataatgg ttacaaataa agcaatagca tcacaaattt 1560
cacaaataaa gcatttttt cactgcattc tagttgtggt ttgtccaaac tcatcaatgt 1620
atcttatcat gtctggatcg ggaattaatt cggcgcagca ccatggcctg aaataacctc 1680
tgaaaqagga acttggttag gtaccttctg aggcggaaag aaccagctgt ggaatgtgtg 1740
tcagttaggg tgtggaaagt ccccaggctc cccagcaggc agaagtatgc aagcatgcat 1800
ctcaattagt cagcaaccca gtttt
<210> 2
<211> 353
<212> PRT
<213> Homo sapiens
<400> 2
Met Arg Leu Pro Arg Arg Ala Ala Leu Gly Leu Leu Pro Leu Leu
  1
Leu Leu Pro Pro Ala Pro Glu Ala Ala Lys Lys Pro Thr Pro Cys His
Arg Cys Arg Gly Leu Val Asp Lys Phe Asn Gln Gly Met Val Asp Thr
Ala Lys Lys Asn Phe Gly Gly Gly Asn Thr Ala Trp Glu Glu Lys Thr
Leu Ser Lys Tyr Glu Ser Ser Glu Ile Arg Leu Leu Glu Ile Leu Glu
Gly Leu Cys Glu Ser Ser Asp Phe Glu Cys Asn Gln Met Leu Glu Ala
                8.5
Gln Glu Glu His Leu Glu Ala Trp Trp Leu Gln Leu Lys Ser Glu Tyr
                               105
Pro Asp Leu Phe Glu Trp Phe Cys Val Lys Thr Leu Lys Val Cys
       115
Ser Pro Gly Thr Tyr Gly Pro Asp Cys Leu Ala Cys Gln Gly Gly Ser
                       135
Gln Arg Pro Cys Ser Gly Asn Gly His Cys Ser Gly Asp Gly Ser Arg
145
                   150
                                                          160
Gln Gly Asp Gly Ser Cys Arg Cys His Met Gly Tyr Gln Gly Pro Leu
                                  170
               165
Cys Thr Asp Cys Met Asp Gly Tyr Phe Ser Ser Leu Arg Asn Glu Thr
                               185
His Ser Ile Cys Thr Ala Cys Asp Glu Ser Cys Lys Thr Cys Ser Gly
```

1825

195 200 205

Leu Thr Asn Arg Asp Cys Gly Glu Cys Glu Val Gly Trp Val Leu Asp 215 · 220 Glu Gly Ala Cys Val Asp Val Asp Glu Cys Ala Ala Glu Pro Pro Pro 225 230 235 Cys Ser Ala Ala Gln Phe Cys Lys Asn Ala Asn Gly Ser Tyr Thr Cys 250 Glu Glu Cys Asp Ser Ser Cys Val Gly Cys Thr Gly Glu Gly Pro Gly 265 Asn Cys Lys Glu Cys Ile Ser Gly Tyr Ala Arg Glu His Gly Gln Cys 280 Ala Asp Val Asp Glu Cys Ser Leu Ala Glu Lys Thr Cys Val Arg Lys 295 300 Asn Glu Asn Cys Tyr Asn Thr Pro Gly Ser Tyr Val Cys Val Cys Pro 305 310 315 320 Asp Gly Phe Glu Glu Thr Glu Asp Ala Cys Val Pro Pro Ala Glu Ala 330 Glu Ala Thr Glu Gly Glu Ser Pro Thr Gln Leu Pro Ser Arg Glu Asp Leu <210> 3 <211> 2206 <212> DNA <213> Homo sapiens <400> 3 caggiccaac tgcaccicgg tictatcgat tgaattcccc gggggatcctc tagagatccc 60 tegacetega eccaegegte egecaggeeg ggaggegaeg egeceageeg tetaaaeggg 120 aacageeetg getgagggag etgeagegea geagagtate tgaeggegee aggttgegta 180 ggtgcggcac gaggagtttt cccggcagcg aggaggtcct gagcagcatq qcccqqaqqa 240 gegeetteee tgeegeegeg etetggetet ggageateet eetgtgeetg etggeaetge 300 gggcggaggc cgggccgccg caggaggaga gcctgtacct atggatcgat gctcaccagg 360 caagagtact cataggattt gaagaagata tcctgattgt ttcagagggg aaaatggcac 420 cttttacaca tgatttcaga aaagcgcaac agagaatgcc agctattcct gtcaatatcc 480 attccatgaa ttttacctgg caagctgcag ggcaggcaga atacttctat gaattcctgt 540 ccttgcgctc cctggataaa ggcatcatgg cagatccaac cgtcaatgtc cctctgctgg 600 gaacagtgcc tcacaaggca tcagttgttc aagttggttt cccatgtctt ggaaaacagg 660 atggggtggc agcatttgaa gtggatgtga ttgttatgaa ttctgaaggc aacaccattc 720 tecaaacace teaaaatget atettettta aaacatgtea acaagetgag tgeecaggeg 780 ggtgccgaaa tggaggcttt tgtaatgaaa gacgcatctg cgagtgtcct gatgggttcc 840 acggacctca ctgtgagaaa gccctttgta ccccacgatg tatgaatggt ggactttgtg 900 tgactcctgg tttctgcatc tgcccacctg gattctatgg agtgaactgt gacaaagcaa 960 actgctcaac cacctgcttt aatggaggga cctgtttcta ccctggaaaa tgtatttgcc 1020 ctccaggact agagggagag cagtgtgaaa tcagcaaatg cccacaaccc tgtcgaaatg 1080 gaggtaaatg cattggtaaa agcaaatgta agtgttccaa aggttaccag ggagacctct 1140

```
gttcaaagcc tgtctgcgag cctggctgtg gtgcacatgg aacctgccat gaacccaaca 1200
aatgccaatg tcaagaaggt tggcatggaa gacactgcaa taaaaggtac gaagccagcc 1260
tcatacatgc cctgaggcca gcaggcgccc agctcaggca gcacacgcct tcacttaaaa 1320
aggccgagga gcggcgggat ccacctgaat ccaattacat ctggtgaact ccgacatctg 1380
aaacqtttta aqttacacca aqttcatagc ctttgttaac ctttcatgtg ttgaatgttc 1440
aaataatgtt cattacactt aagaatactg gcctgaattt tattagcttc attataaatc 1500
actgagetga tatttactet teettttaag tittetaagt aegtetgtag eatgatggta 1560
tagattttct tgtttcagtg ctttgggaca gattttatat tatgtcaatt gatcaggtta 1620
aaattttcaq tqtqtaqttq qcaqatattt tcaaaattac aatgcattta tggtgtctgg 1680
qqqcaqqqqa acatcaqaaa qqttaaattq qqcaaaaatq cqtaaqtcac aagaatttgg 1740
atggtgcagt taatgttgaa gttacagcat ttcagatttt attgtcagat atttagatgt 1800
ttaaacaata taatatatto taaacacaat qaaataggga atataatgta tgaacttttt 1980
aaaaaaaaa aaaaaaaaa aaaaaaaaaa gggcggccgc gactctagag tcgacctgca 2160
gaagettgge egecatggee caacttgttt attgeagett ataatg
<210> 4
<211> 379
<212> PRT
<213> Homo sapiens
<400> 4
Met Ala Arq Arq Ser Ala Phe Pro Ala Ala Leu Trp Leu Trp Ser
                                10 .
Ile Leu Leu Cys Leu Leu Ala Leu Arg Ala Glu Ala Gly Pro Pro Gln
           20
                             25
Glu Glu Ser Leu Tyr Leu Trp Ile Asp Ala His Gln Ala Arg Val Leu
Ile Gly Phe Glu Glu Asp Ile Leu Ile Val Ser Glu Gly Lys Met Ala
                     55
Pro Phe Thr His Asp Phe Arg Lys Ala Gln Gln Arg Met Pro Ala Ile
                  70
65
Pro Val Asn Ile His Ser Met Asn Phe Thr Trp Gln Ala Ala Gly Gln
                                90
Ala Glu Tyr Phe Tyr Glu Phe Leu Ser Leu Arg Ser Leu Asp Lys Gly
                                             110
          100
                            105
Ile Met Ala Asp Pro Thr Val Asn Val Pro Leu Leu Gly Thr Val Pro
                        120
His Lys Ala Ser Val Val Gln Val Gly Phe Pro Cys Leu Gly Lys Gln
                     135
Asp Gly Val Ala Ala Phe Glu Val Asp Val Ile Val Met Asn Ser Glu
                                   155
                                                    160
145
Gly Asn Thr Ile Leu Gln Thr Pro Gln Asn Ala Ile Phe Phe Lys Thr
                               170
              165
```

Cys Gln Gln Ala Glu Cys Pro Gly Gly Cys Arg Asn Gly Gly Phe Cys Asn Glu Arg Arg Ile Cys Glu Cys Pro Asp Gly Phe His Gly Pro His Cys Glu Lys Ala Leu Cys Thr Pro Arg Cys Met Asn Gly Gly Leu Cys 215 Val Thr Pro Gly Phe Cys Ile Cys Pro Pro Gly Phe Tyr Gly Val Asn 235 Cys Asp Lys Ala Asn Cys Ser Thr Thr Cys Phe Asn Gly Gly Thr Cys 245 Phe Tyr Pro Gly Lys Cys Ile Cys Pro Pro Gly Leu Glu Gly Glu Gln Cys Glu Ile Ser Lys Cys Pro Gln Pro Cys Arg Asn Gly Gly Lys Cys Ile Gly Lys Ser Lys Cys Lys Cys Ser Lys Gly Tyr Gln Gly Asp Leu Cys Ser Lys Pro Val Cys Glu Pro Gly Cys Gly Ala His Gly Thr Cys 315 His Glu Pro Asn Lys Cys Gln Cys Gln Glu Gly Trp His Gly Arg His 325 Cys Asn Lys Arg Tyr Glu Ala Ser Leu Ile His Ala Leu Arg Pro Ala Gly Ala Gln Leu Arg Gln His Thr Pro Ser Leu Lys Lys Ala Glu Glu 355 360 365 Arq Arg Asp Pro Pro Glu Ser Asn Tyr Ile Trp 370 <210> 5 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 5 agggagcacg gacagtgtgc agatgtggac gagtgctcac tagca 45 <210> 6 <211> 21

<212> DNA

<213> Artificial Sequence

<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 6 agagtgtatc tctggctacg c	21
<210> 7 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 7 taagtccggc acattacagg tc	22
<210> 8 <211> 49 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 8 cccacgatgt atgaatggtg gactttgtgt gactcctggt ttctgcatc	49
<210> 9 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 9 aaagacgcat ctgcgagtgt cc	22
<210> 10 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 10 tgctgatttc acactgctct ccc	23
<210> 11 <211> 2197	

<400> 11 cgqacqcqtg ggcgtccggc ggtcgcagag ccaggaggcg gaggcgcgcg ggccagcctg 60 ggccccagcc cacaccttca ccagggccca ggagccacca tgtggcgatg tccactgggg 120 ctactgctqt tqctqccqct qqctqgccac ttgqctctgg gtgcccagca gggtcgtggg 180 cgccgggagc tagcaccggg tctgcacctg cggggcatcc gggacgcggg aggccggtac 240 tgccaggage aggacetgtg etgeegegge egtgeegaeg aetgtgeeet geeetaeetg 300 ggcgccatct gttactgtga cctcttctgc aaccgcacgg tctccgactg ctgccctgac 360 ttctqqqact tctqcctcqq cqtqccaccc ccttttcccc cgatccaagg atgtatgcat 420 qqaqqtcqta tctatccaqt cttgggaacg tactgggaca actgtaaccg ttgcacctgc 480 caggagaaca ggcagtggca tggtggatcc agacatgatc aaagccatca accagggcaa 540 ctatggctgg caggctggga accacagcgc cttctggggc atgaccctgg atgagggcat 600 tcgctaccgc ctgggcacca tccgcccatc ttcctcggtc atgaacatgc atgaaattta 660 tacagtgctg aacccagggg aggtgcttcc cacagccttc gaggcctctg agaagtggcc 720 caacctgatt catgagcctc ttgaccaagg caactgtgca ggctcctggg ccttctccac 780 agcagetgtg geateegate gtgteteaat ceattetetg ggacacatga egeetgteet 840 gtcgccccag aacctgctgt cttgtgacac ccaccagcag cagggctgcc gcggtgggcg 900 tctcgatggt gcctggtggt tcctgcgtcg ccgaggggtg gtgtctgacc actgctaccc 960 cttctcgggc cgtgaacgag acgaggctgg ccctgcgccc ccctgtatga tgcacagccq 1020 agccatgggt cggggcaagc gccaggccac tgcccactgc cccaacagct atgttaataa 1080 caatgacatc taccaggtca ctcctgtcta ccgcctcggc tccaacgaca aggagatcat 1140 gaaggagetg atggagaatg geeetgteea ageeeteatg gaggtgeatg aggaettett 1200 cctatacaaq qqaqqcatct acaqccacac qccaqtqaqc cttqqqaqqc caqaqaqata 1260 ccqccqqcat qqqacccact caqtcaagat cacaggatgg ggagaggaga cgctgccaga 1320 tggaaggacg ctcaaatact ggactgcggc caactcctgg ggcccagcct ggggcgagag 1380 gggccacttc cgcatcgtgc gcggcgtcaa tgagtgcgac atcgagagct tcgtgctggg 1440 cgtctggggc cgcgtgggca tggaggacat gggtcatcac tgaggctgcg ggcaccacgc 1500 qqqqtccqqc ctqqqatcca qgctaagggc cggcggaaga ggccccaatg gggcggtgac 1560 cccagceteg eccgacagag eccggggege aggegggege eagggegeta ateceggege 1620 gggttccgct gacgcagcgc cccgcctggg agccgcgggc aggcgagact ggcggagccc 1680 ccaqacctcc cagtggggac ggggcagggc ctggcctggg aagagcacag ctgcagatcc 1740 caqqcctctq qcqccccac tcaagactac caaagccagg acacctcaag tctccagccc 1800 caatacccca ccccaatccc gtattctttt ttttttttt ttagacaggg tcttgctccg 1860 ttqcccaqqt tqqaqtqcaq tqqcccatca qgqctcactq taacctccqa ctcctgqqtt 1920 caagtgaccc teceaectea geeteteaag tagetgggae taeaggtgea eeaecaeaec 1980 tggctaattt ttgtattttt tgtaaagagg ggggtctcac tgtgttgccc aggctggttt 2040 cgaactcctg ggctcaagcg gtccacctgc ctccgcctcc caaagtgctg ggattgcagg 2100 catgagccac tgcacccagc cctgtattct tattcttcag atatttattt ttcttttcac 2160 21.97 tgttttaaaa taaaaccaaa gtattgataa aaaaaaa <210> 12 <211> 164 <212> PRT <213> Homo sapiens <400> 12 Met Trp Arg Cys Pro Leu Gly Leu Leu Leu Leu Pro Leu Ala Gly 10

His Leu Ala Leu Gly Ala Gln Gln Gly Arg Gly Arg Glu Leu Ala

Pro Gly Leu His Leu Arg Gly Ile Arg Asp Ala Gly Gly Arg Tyr Cys

40

20

35

30

45

```
Gln Glu Gln Asp Leu Cys Cys Arg Gly Arg Ala Asp Asp Cys Ala Leu
Pro Tyr Leu Gly Ala Ile Cys Tyr Cys Asp Leu Phe Cys Asn Arg Thr
Val Ser Asp Cys Cys Pro Asp Phe Trp Asp Phe Cys Leu Gly Val Pro
Pro Pro Phe Pro Pro Ile Gln Gly Cys Met His Gly Gly Arg Ile Tyr
            100
                                 105
                                                     110
Pro Val Leu Gly Thr Tyr Trp Asp Asn Cys Asn Arg Cys Thr Cys Gln
Glu Asn Arg Gln Trp His Gly Gly Ser Arg His Asp Gln Ser His Gln
                        135
Pro Gly Gln Leu Trp Leu Ala Gly Trp Glu Pro Gln Arg Leu Leu Gly
His Asp Pro Gly
<210> 13
<211> 533
<212> DNA
<213> Homo sapiens
<220>
<221> modified base
<222> (33)..(33)
<223> a, t, c or g
<220>
<221> modified base
<222> (37)..(37)
<223> a, t, c or g
<220>
<221> modified base
<222> (80)..(80)
<223> a, t, c or g
<220>
<221> modified base
<222> (94)..(94)
<223> a, t, c or g
<220>
<221> modified base
<222> (144)..(144)
<223> a, t, c or g
<220>
```

<221> modified_base <222> (188)..(188)

```
<223> a, t, c or g
<400> 13
aggeteettg geeetttte cacageaage tintgenate eegattegtt gieteaaate 60
caattetett gggacacatn acgcetgtee tttngceeca gaacetgetg tettgtacae 120
ccaccagcag cagggctgcc gcgntgggcg tctcgatggt gcctggtggt tcctgcgtcg 180
ccgagggntg gtgtctgacc actgctaccc cttctcgggc cgtgaacgag acgaggctgg 240
ccctgcgccc ccctgtatga tgcacagccg agccatgggt cggggcaagc gccaggccac 300
tgcccactgc cccaacagct atgttaataa caatgacatc taccaggtca ctcctgtcta 360
ccqcctcqqc tccaacqaca aqqaqatcat qaaqqaqctg atggagaatg gccctgtcca 420
agccctcatq qaqqtqcatq aqqacttctt cctatacaag ggaggcatct acagccacac 480
qccaqtqaqc cttqqqaqqc caqaqaqata ccqccqqcat gggacccact cag
                                                                   533
<210> 14
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 14
                                                                   24
ttcgaggcct ctgagaagtg gccc
<210> 15
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 15
                                                                   22
ggcggtatct ctctggcctc cc
<210> 16
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 16
ttctccacag cagctgtggc atccgatcgt gtctcaatcc attctctggg
                                                                   50
<210> 17
<211> 960
<212> DNA
<213> Homo sapiens
<400> 17
gctgcttgcc ctgttgatgg caggcttggc cctgcagcca ggcactgccc tgctgtgcta 60
```

ctcctgcaaa gcccaggtga gcaacgagga ctgcctgcag gtggagaact gcacccagct 120

```
gggggagcag tgctggaccg cgcgcatccg cgcaqttqqc ctcctqaccg tcatcaqcaa 180
aggetgeage ttgaactgeg tggatgacte acaggactae taegtgggea agaagaacat 240
cacgtgctgt gacaccgact tgtgcaacgc cagcggggcc catgccctgc agccggctgc 300
cgccatcctt gcgctgctcc ctgcactcgg cctgctgctc tgggggacccg gccagctata 360
ggctctgggg ggccccgctg cagcccacac tgggtqtqqt gccccaqqcc tctqtqccac 420
tecteacaga ectggeecag tgggageetg teetggttee tgaggeacat ectaacgeaa 480
gtetgaccat gtatgtetge acceetgtee eccaecetga ceeteccatg geeeteteca 540
ggactcccac ccggcagatc agctctagtg acacagatcc gcctgcagat ggcccctcca 600
accetetetg etgetgttte catggeecag cattetecae cettaaccet gtgeteagge 660
acctettece ceaggaagee tteeetgeee acceeateta tgaettgage eaggtetggt 720
ccgtggtgtc ccccgcaccc agcaggggac aggcactcag gagggcccag taaaggctga 780
gatgaagtgg actgagtaga actggaggac aagagtcgac gtgagttcct gggagtctcc 840
agagatgggg cctggaggcc tggaggaagg ggccaggcct cacattcgtg gggctccctq 900
aatggcagcc tgagcacagc gtaggccctt aataaacacc tgttggataa gccaaaaaaa 960
<210> 18
<211> 189
<212> PRT
<213> Homo sapiens
<400> 18
Met Thr His Arg Thr Thr Trp Ala Arg Arg Thr Ser Arg Ala Val
                                     10
Thr Pro Thr Cys Ala Thr Pro Ala Gly Pro Met Pro Cys Ser Arg Leu
Pro Pro Ser Leu Arg Cys Ser Leu His Ser Ala Cys Cys Ser Gly Asp
Pro Ala Ser Tyr Arg Leu Trp Gly Ala Pro Leu Gln Pro Thr Leu Gly
     50
                         55
Val Val Pro Gln Ala Ser Val Pro Leu Leu Thr Asp Leu Ala Gln Trp
Glu Pro Val Leu Val Pro Glu Ala His Pro Asn Ala Ser Leu Thr Met
                                     90
Tyr Val Cys Thr Pro Val Pro His Pro Asp Pro Pro Met Ala Leu Ser
            100
                                105
Arg Thr Pro Thr Arg Gln Ile Ser Ser Ser Asp Thr Asp Pro Pro Ala
                            120
Asp Gly Pro Ser Asn Pro Leu Cys Cys Cys Phe His Gly Pro Ala Phe
    130
                        135
                                            140
Ser Thr Leu Asn Pro Val Leu Arg His Leu Phe Pro Gln Glu Ala Phe
145
                                        155
Pro Ala His Pro Ile Tyr Asp Leu Ser Gln Val Trp Ser Val Val Ser
                165
                                    170
Pro Ala Pro Ser Arg Gly Gln Ala Leu Arg Arg Ala Gln
            180
                                185
```

```
<210> 19
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 19
                                                                   24
tgctgtgcta ctcctgcaaa gccc
<210> 20
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 20
tgcacaagtc ggtgtcacag cacg
                                                                   24
<210> 21
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 21
agcaacgagg actgcctgca ggtggagaac tgcacccagc tggg
                                                                   44
<210> 22
<211> 1200
<212> DNA
<213> Homo sapiens
<400> 22
cccacgcgtc cgaacctctc cagcgatggg agccgcccgc ctgctgccca acctcactct 60
gtgcttacag ctgctgattc tctgctgtca aactcagtac gtgagggacc agggcgccat 120
gaccqaccaq ctqaqcaqqc qqcaqatccq cqaqtaccaa ctctacagca ggaccagtqq 180
caagcacgtg caggtcaccg ggcgtcgcat ctccgccacc gccgaggacg gcaacaagtt 240
tgccaagete atagtggaga eggacaegtt tggcageegg gttegeatea aaggggetga 300
gagtgagaag tacatctgta tgaacaagag gggcaagctc atcgggaagc ccagcgggaa 360
gagcaaagac tgcgtgttca cggagatcgt gctggagaac aactatacgg ccttccagaa 420
cgcccggcac gagggctggt tcatggcctt cacgcggcag gggcggcccc gccaggcttc 480
ccgcagccgc cagaaccagc gcgaggccca cttcatcaag cgcctctacc aaggccagct 540
gcccttcccc aaccacgccg agaagcagaa gcagttcgag tttgtgggct ccgccccac 600
cegeeggaee aagegeacae ggeggeeea geeetteaeg tagtetggga ggeaggggge 660
agcageceet gggeegeete eccaeceett teeettetta atecaaggae tgggetgggg 720
tggcgggagg ggagccagat ccccgaggga ggaccctgag ggccgcgaag catccgagcc 780
cccagctggg aaggggcagg ccggtgcccc aggggcggct ggcacagtgc ccccttcccg 840
gacgggtggc aggccctgga gaggaactga gtgtcaccct gatctcaggc caccagcctc 900
```

tgccggcctc ccagccgggc tcctgaagcc cgctgaaagg tcagcgactg aaggccttgc 960 agacaaccgt ctggaggtgg ctgtcctcaa aatctgcttc tcggatctcc ctcagtctgc 1020 ccccagcccc caaactcctc ctggctagac tgtaggaagg gacttttgtt tgtttgtttg 1080 tttcaggaaa aaagaaaggg agagagagga aaatagaggg ttgtccactc ctcacattcc 1140 acgacccagg cctgcacccc acccccaact cccagccccg gaataaaacc attttcctgc 1200

<210> 23

<211> 205

<212> PRT

<213> Homo sapiens

<400> 23

Met Gly Ala Ala Arg Leu Leu Pro Asn Leu Thr Leu Cys Leu Gln Leu
1 5 10 15

Leu Ile Leu Cys Cys Gln Thr Gln Tyr Val Arg Asp Gln Gly Ala Met
20 25 30

Thr Asp Gln Leu Ser Arg Arg Gln Ile Arg Glu Tyr Gln Leu Tyr Ser 35 40 45

Arg Thr Ser Gly Lys His Val Gln Val Thr Gly Arg Arg Ile Ser Ala
50 55 60

Thr Ala Glu Asp Gly Asn Lys Phe Ala Lys Leu Ile Val Glu Thr Asp 65 70 75 80

Thr Phe Gly Ser Arg Val Arg Ile Lys Gly Ala Glu Ser Glu Lys Tyr 85 90 95

Ile Cys Met Asn Lys Arg Gly Lys Leu Ile Gly Lys Pro Ser Gly Lys
100 105 110

Ser Lys Asp Cys Val Phe Thr Glu Ile Val Leu Glu Asn Asn Tyr Thr 115 120 125

Ala Phe Gln Asn Ala Arg His Glu Gly Trp Phe Met Ala Phe Thr Arg 130 135 140

Gln Gly Arg Pro Arg Gln Ala Ser Arg Ser Arg Gln Asn Gln Arg Glu 145 150 155 160

Ala His Phe Ile Lys Arg Leu Tyr Gln Gly Gln Leu Pro Phe Pro Asn 165 170 175

His Ala Glu Lys Gln Lys Gln Phe Glu Phe Val Gly Ser Ala Pro Thr 180 185 190

Arg Arg Thr Lys Arg Thr Arg Arg Pro Gln Pro Leu Thr 195 200 205

<210> 24

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

```
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 24
                                                                   28
cagtacgtga gggaccaggg cgccatga
<210> 25
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 25
ccggtgacct gcacgtgctt gcca
                                                                   24
<210> 26
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<220>
<221> modified base
<222> (21)..(21)
<223> a, t, c or g
<400> 26
geggatetge egeetgetea netggteggt catggegeee t
                                                                   41
<210> 27
<211> 2479
<212> DNA
<213> Homo sapiens
<400> 27
acttgccatc acctgttgcc agtgtggaaa aattctccct gttgaatttt ttgcacatgg 60
aggacagcag caaagaggc aacacaggct gataagacca gagacagcag ggagattatt 120
ttaccatacg ccctcaggac gttccctcta gctggagttc tggacttcaa cagaacccca 180
tccagtcatt ttgattttgc tgtttatttt ttttttcttt ttcttttcc caccacattg 240
tattttattt ccqtacttca gaaatgggcc tacagaccac aaagtggccc agccatgggg 300
cttttttcct qaagtcttgg cttatcattt ccctggggct ctactcacag gtgtccaaac 360
tectggeetg cectagtgtg tgeegetgeg acaggaactt tgtetactgt aatgagegaa 420
gcttgacctc agtgcctctt gggatcccgg agggcgtaac cgtactctac ctccacaaca 480
accaaattaa taatgctgga tttcctgcag aactgcacaa tgtacagtcg gtgcacacgg 540
tctacctgta tggcaaccaa ctggacgaat tccccatgaa ccttcccaag aatgtcagag 600
ttctccattt gcaggaaaac aatattcaga ccatttcacg ggctgctctt gcccagctct 660
tqaaqcttqa aqaqctqcac ctqqatqaca actccatatc cacagtgggg gtggaagacg 720
gggccttccg ggaggctatt agcctcaaat tgttgttttt gtctaagaat cacctgagca 780
gtgtgcctgt tgggcttcct gtggacttgc aagagctgag agtggatgaa aatcgaattg 840
ctgtcatatc cgacatggcc ttccagaatc tcacgagctt ggagcgtctt attgtggacg 900
ggaacctcct gaccaacaag ggtatcgccg agggcacctt cagccatctc accaagctca 960
```

```
aggaatttte aattgtaegt aattegetgt eccaeeetee teeegatete ecaggtaege 1020
atctgatcag gctctatttg caggacaacc agataaacca cattcctttg acagccttct 1080
caaatctgcg taagctggaa cggctggata tatccaacaa ccaactgcgg atgctgactc 1140
aaggggtttt tgataatete teeaacetga ageageteae tgeteggaat aaceettggt 1200
tttgtgactg cagtattaaa tgggtcacag aatggctcaa atatatccct tcatctctca 1260
acgtgcgggg tttcatgtgc caaggtcctq aacaagtccg ggggatggcc gtcagggaat 1320
taaatatgaa tottttgtoo tgtoccacca cgacccccgg cotgoototo ttoaccccag 1380
ccccaagtac agetteteeg accaeteage eteceaecet etetatteea aaccetagea 1440
gaagetacae geeteeaact eetaceacat egaaaettee caegatteet gaetgggatg 1500
gcagagaaag agtgacccca cctatttctg aacggatcca gctctctatc cattttgtga 1560
atgatactte catteaagte agetggetet etetetteae egtgatggea tacaaactea 1620
catgggtgaa aatgggccac agtttagtag ggggcatcgt tcaggagcgc atagtcagcg 1680
gtgagaagca acacctgagc ctggttaact tagagccccg atccacctat cggatttgtt 1740
tagtgccact ggatgctttt aactaccgcg cggtagaaga caccatttqt tcagaqqcca 1800
ccacccatgc ctcctatctg aacaacggca gcaacacagc gtccagccat gagcagacga 1860
cgtcccacag catgggctcc ccctttctgc tggcgggctt gatcgggggc gcggtgatat 1920
ttgtgctggt ggtcttgctc agcgtctttt gctggcatat gcacaaaaag gggcgctaca 1980
cctcccagaa gtggaaatac aaccggggcc ggcggaaaga tgattattgc gaggcaggca 2040
ccaagaagga caactccatc ctggagatga cagaaaccag ttttcagatc gtctccttaa 2100
ataacgatca actccttaaa ggagatttca gactgcagcc catttacacc ccaaatgggg 2160
gcattaatta cacagactgc catatececa acaacatgcg atactgcaac agcagegtgc 2220
cagacctgga gcactgccat acgtgacagc cagaggccca gcgttatcaa ggcggacaat 2280
tagactettg agaacacact cgtgtgtgca cataaagaca cgcagattac atttgataaa 2340
tgttacacag atgcatttgt gcatttgaat actctgtaat ttatacggtg tactatataa 2400
tgggatttaa aaaaagtgct atcttttcta tttcaagtta attacaaaca gttttgtaac 2460
tctttgcttt ttaaatctt
                                                                  2479
<210> 28
<211> 660
<212> PRT
<213> Homo sapiens
<400> 28
```

Met Gly Leu Gln Thr Thr Lys Trp Pro Ser His Gly Ala Phe Phe Leu

Lys Ser Trp Leu Ile Ile Ser Leu Gly Leu Tyr Ser Gln Val Ser Lys 25

Leu Leu Ala Cys Pro Ser Val Cys Arg Cys Asp Arg Asn Phe Val Tyr 35 40

Cys Asn Glu Arg Ser Leu Thr Ser Val Pro Leu Gly Ile Pro Glu Gly 55

Val Thr Val Leu Tyr Leu His Asn Asn Gln Ile Asn Asn Ala Gly Phe

Pro Ala Glu Leu His Asn Val Gln Ser Val His Thr Val Tyr Leu Tyr

Gly Asn Gln Leu Asp Glu Phe Pro Met Asn Leu Pro Lys Asn Val Arg 105

Val Leu His Leu Gln Glu Asn Asn Ile Gln Thr Ile Ser Arg Ala Ala 115 120 125

Leu Ala Gln Leu Leu Lys Leu Glu Glu Leu His Leu Asp Asp Asn Ser 135 Ile Ser Thr Val Gly Val Glu Asp Gly Ala Phe Arg Glu Ala Ile Ser 150 155 Leu Lys Leu Leu Phe Leu Ser Lys Asn His Leu Ser Ser Val Pro Val 170 Gly Leu Pro Val Asp Leu Gln Glu Leu Arg Val Asp Glu Asn Arg Ile 180 Ala Val Ile Ser Asp Met Ala Phe Gln Asn Leu Thr Ser Leu Glu Arg 200 Leu Ile Val Asp Gly Asn Leu Leu Thr Asn Lys Gly Ile Ala Glu Gly 210 Thr Phe Ser His Leu Thr Lys Leu Lys Glu Phe Ser Ile Val Arg Asn Ser Leu Ser His Pro Pro Pro Asp Leu Pro Gly Thr His Leu Ile Arg 250 Leu Tyr Leu Gln Asp Asn Gln Ile Asn His Ile Pro Leu Thr Ala Phe 260 265 Ser Asn Leu Arg Lys Leu Glu Arg Leu Asp Ile Ser Asn Asn Gln Leu 280 Arg Met Leu Thr Gln Gly Val Phe Asp Asn Leu Ser Asn Leu Lys Gln 300 Leu Thr Ala Arg Asn Asn Pro Trp Phe Cys Asp Cys Ser Ile Lys Trp Val Thr Glu Trp Leu Lys Tyr Ile Pro Ser Ser Leu Asn Val Arg Gly 330 Phe Met Cys Gln Gly Pro Glu Gln Val Arg Gly Met Ala Val Arg Glu 345 Leu Asn Met Asn Leu Leu Ser Cys Pro Thr Thr Pro Gly Leu Pro 360 Leu Phe Thr Pro Ala Pro Ser Thr Ala Ser Pro Thr Thr Gln Pro Pro 370 375 Thr Leu Ser Ile Pro Asn Pro Ser Arg Ser Tyr Thr Pro Pro Thr Pro Thr Thr Ser Lys Leu Pro Thr Ile Pro Asp Trp Asp Gly Arg Glu Arg 405 410

Val Thr Pro Pro Ile Ser Glu Arg Ile Gln Leu Ser Ile His Phe Val

425

420

Asn Asp Thr Ser Ile Gln Val Ser Trp Leu Ser Leu Phe Thr Val Met 435 440 445

Ala Tyr Lys Leu Thr Trp Val Lys Met Gly His Ser Leu Val Gly Gly 450 460

Ile Val Gln Glu Arg Ile Val Ser Gly Glu Lys Gln His Leu Ser Leu 465 470 475 480

Val Asn Leu Glu Pro Arg Ser Thr Tyr Arg Ile Cys Leu Val Pro Leu 485 490 495

Asp Ala Phe Asn Tyr Arg Ala Val Glu Asp Thr Ile Cys Ser Glu Ala 500 505 510

Thr Thr His Ala Ser Tyr Leu Asn Asn Gly Ser Asn Thr Ala Ser Ser 515 520 525

His Glu Gln Thr Thr Ser His Ser Met Gly Ser Pro Phe Leu Leu Ala 530 535 540

Gly Leu Ile Gly Gly Ala Val Ile Phe Val Leu Val Val Leu Leu Ser 545 550 560

Val Phe Cys Trp His Met His Lys Lys Gly Arg Tyr Thr Ser Gln Lys 565 570 575

Trp Lys Tyr Asn Arg Gly Arg Arg Lys Asp Asp Tyr Cys Glu Ala Gly 580 585 590

Thr Lys Lys Asp Asn Ser Ile Leu Glu Met Thr Glu Thr Ser Phe Gln 595 600 605

Ile Val Ser Leu Asn Asn Asp Gln Leu Leu Lys Gly Asp Phe Arg Leu 610 615 620

Gln Pro Ile Tyr Thr Pro Asn Gly Gly Ile Asn Tyr Thr Asp Cys His 625 630 635 640

Ile Pro Asn Asn Met Arg Tyr Cys Asn Ser Ser Val Pro Asp Leu Glu 645 650 655

His Cys His Thr 660

<210> 29

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<400> 29

cggtctacct gtatggcaac c

```
<210> 30
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 30
                                                                22
qcaqqacaac cagataaacc ac
<210> 31
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 31
                                                                22
acqcagattt gagaaggctg tc.
<210> 32
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 32
ttcacgggct gctcttgccc agctcttgaa gcttgaagag ctgcac
                                                                46
<210> 33
<211> 3449
<212> DNA
<213> Homo sapiens
<400> 33
acttggagca agcggcggcg gcggagacag aggcagaggc agaagctggg gctccgtcct 60
qaqqaaqacc cqqqtqqctq cqccctqcc tcqcttccca qqcqccqqcq qctqcaqcct 180
tgcccctctt gctcgccttg aaaatggaaa agatgctcgc aggctgcttt ctgctgatcc 240
teggaeagat egteeteete eetgeegagg eeagggageg gteaegtggg aggteeatet 300
ctaggggcag acacgctcgg acccacccgc agacggccct tctggagagt tcctgtgaga 360
acaagcgggc agacctggtt ttcatcattg acagctctcg cagtgtcaac acccatgact 420
atgcaaaggt caaggagttc atcgtggaca tcttgcaatt cttggacatt ggtcctgatg 480
tcaccegagt gggcctgctc caatatggca gcactgtcaa gaatgagttc tccctcaaga 540
ccttcaaqaq qaaqtccgaq gtggagcgtg ctgtcaagag gatgcggcat ctgtccacgg 600
qcaccatqac tqqqctqqcc atccagtatq ccctgaacat cqcattctca qaaqcagagg 660
qqqcccqqcc cctqaqqqaq aatqtqccac qqqtcataat gatcqtqaca gatqqqaqac 720
ctcaggactc cgtggccgag gtggctgcta aggcacggga cacgggcatc ctaatctttq 780
ccattggtgt gggccaggta gacttcaaca ccttgaagtc cattgggagt gagccccatg 840
aggaccatgt cttccttgtg gccaatttca gccagattga gacgctgacc tccgtgttcc 900
```

```
agaagaagtt gtgcacggcc cacatgtgca gcaccctgga gcataactgt gcccacttct 960
gcatcaacat ccctggctca tacgtctgca ggtgcaaaca aggctacatt ctcaactcgg 1020
atcagacgac ttgcagaatc caggatctgt gtgccatgga ggaccacaac tgtgagcagc 1080
tctgtgtgaa tgtgccgggc tccttcgtct gccagtgcta cagtggctac gccctggctg 1140
aggatgggaa gaggtgtgtg gctgtggact actgtgcctc agaaaaccac ggatgtgaac 1200
atgagtgtgt aaatgctgat ggctcctacc tttgccagtg ccatgaagga tttgctctta 1260
acccagatga aaaaacgtgc acaaggatca actactgtgc actgaacaaa ccgggctgtg 1320
agcatgagtg cgtcaacatg gaggagagct actactgccg ctgccaccgt ggctacactc 1380
tggaccccaa tggcaaaacc tgcagccgag tggaccactg tgcacagcag gaccatggct 1440
gtgagcagct gtgtctgaac acggaggatt ccttcgtctg ccagtgctca gaaggcttcc 1500
tcatcaacga ggacctcaag acctgctccc gggtggatta ctgcctgctg agtgaccatg 1560
gttgtgaata ctcctgtgtc aacatggaca gatcctttgc ctgtcagtgt cctgagggac 1620
acgtgctccg cagcgatggg aagacgtgtg caaaattgga ctcttgtgct ctgggggacc 1680
acggttgtga acattcgtgt gtaagcagtg aagattcgtt tgtgtgccag tgctttgaag 1740
gttatatact ccgtgaagat ggaaaaacct gcagaaggaa agatgtctgc caagctatag 1800
accatggctg tgaacacatt tgtgtgaaca gtgacgactc atacacgtgc gagtgcttgg 1860
agggattccg gctcgctgag gatgggaaac gctgccgaag gaaggatgtc tgcaaatcaa 1920
cccaccatgg ctgcgaacac atttgtgtta ataatgggaa ttcctacatc tgcaaatgct 1980
cagagggatt tgttctagct gaggacggaa gacggtgcaa gaaatgcact gaaggcccaa 2040
ttgacctggt ctttgtgatc gatggatcca agagtcttgg agaagagaat tttgaggtcg 2100
tgaagcagtt tgtcactgga attatagatt ccttgacaat ttcccccaaa gccgctcgag 2160
tggggctget ccagtattcc acacaggtcc acacagagtt cactctgaga aacttcaact 2220
cagccaaaga catgaaaaaa gccgtggccc acatgaaata catgggaaag ggctctatga 2280
ctgggctggc cctgaaacac atgtttgaga gaagttttac ccaaggagaa ggggccaggc 2340
ccctttccac aagggtgccc agagcagcca ttgtgttcac cgacggacgg gctcaggatg 2400
acgtctccga gtgggccagt aaagccaagg ccaatggtat cactatgtat gctgttgggg 2460
taggaaaagc cattgaggag gaactacaag agattgcctc tgagcccaca aacaagcatc 2520
tcttctatgc cgaagacttc agcacaatgg atgagataag tgaaaaactc aagaaaggca 2580
tctgtgaagc tctagaagac tccgatggaa gacaggactc tccagcaggg gaactgccaa 2640
aaacggtcca acagccaaca gaatctgagc cagtcaccat aaatatccaa gacctacttt 2700
cctgttctaa ttttgcagtg caacacagat atctgtttga agaagacaat cttttacggt 2760
ctacacaaaa gctttcccat tcaacaaaac cttcaggaag ccctttggaa gaaaaacacg 2820
atcaatgcaa atgtgaaaac cttataatgt tccagaacct tgcaaacgaa gaagtaagaa 2880
aattaacaca gcgcttagaa gaaatgacac agagaatgga agccctggaa aatcgcctga 2940
gatacagatg aagattagaa atcgcgacac atttgtagtc attgtatcac ggattacaat 3000
gaacgcagtg cagagcccca aagctcaggc tattgttaaa tcaataatgt tgtgaagtaa 3060
aacaatcagt actgagaaac ctggtttgcc acagaacaaa gacaagaagt atacactaac 3120
ttgtataaat ttatctagga aaaaaatcct tcagaattct aagatgaatt taccaggtga 3180
gaatgaataa gctatgcaag gtattttgta atatactgtg gacacaactt gcttctgcct 3240
catcctgcct tagtgtgcaa tctcatttga ctatacgata aagtttgcac agtcttactt 3300
ctgtagaaca ctggccatag gaaatgctgt ttttttgtac tggactttac cttgatatat 3360
gtatatggat gtatgcataa aatcatagga catatgtact tgtggaacaa gttggatttt 3420
ttatacaata ttaaaattca ccacttcag
                                                                  3449
<210> 34
<211> 915
<212> PRT
<213> Homo sapiens
<400> 34
Met Glu Lys Met Leu Ala Gly Cys Phe Leu Leu Ile Leu Gly Gln Ile
Val Leu Leu Pro Ala Glu Ala Arg Glu Arg Ser Arg Gly Arg Ser Ile
             20
```

Ser Arg Gly Arg His Ala Arg Thr His Pro Gln Thr Ala Leu Leu Glu

45

Ser Ser Cys Glu Asn Lys Arg Ala Asp Leu Val Phe Ile Ile Asp Ser 55 Ser Arg Ser Val Asn Thr His Asp Tyr Ala Lys Val Lys Glu Phe Ile Val Asp Ile Leu Gln Phe Leu Asp Ile Gly Pro Asp Val Thr Arg Val Gly Leu Leu Gln Tyr Gly Ser Thr Val Lys Asn Glu Phe Ser Leu Lys 105 110 Thr Phe Lys Arg Lys Ser Glu Val Glu Arg Ala Val Lys Arg Met Arg 120 His Leu Ser Thr Gly Thr Met Thr Gly Leu Ala Ile Gln Tyr Ala Leu Asn Ile Ala Phe Ser Glu Ala Glu Gly Ala Arg Pro Leu Arg Glu Asn 150 Val Pro Arg Val Ile Met Ile Val Thr Asp Gly Arg Pro Gln Asp Ser 170 Val Ala Glu Val Ala Ala Lys Ala Arg Asp Thr Gly Ile Leu Ile Phe Ala Ile Gly Val Gly Gln Val Asp Phe Asn Thr Leu Lys Ser Ile Gly Ser Glu Pro His Glu Asp His Val Phe Leu Val Ala Asn Phe Ser Gln 215 Ile Glu Thr Leu Thr Ser Val Phe Gln Lys Lys Leu Cys Thr Ala His 225 230 Met Cys Ser Thr Leu Glu His Asn Cys Ala His Phe Cys Ile Asn Ile 250 Pro Gly Ser Tyr Val Cys Arg Cys Lys Gln Gly Tyr Ile Leu Asn Ser Asp Gln Thr Thr Cys Arg Ile Gln Asp Leu Cys Ala Met Glu Asp His 280 Asn Cys Glu Gln Leu Cys Val Asn Val Pro Gly Ser Phe Val Cys Gln Cys Tyr Ser Gly Tyr Ala Leu Ala Glu Asp Gly Lys Arg Cys Val Ala 310

Val Asp Tyr Cys Ala Ser Glu Asn His Gly Cys Glu His Glu Cys Val

Asn Ala Asp Gly Ser Tyr Leu Cys Gln Cys His Glu Gly Phe Ala Leu

Asn Pro Asp Glu Lys Thr Cys Thr Arg Ile Asn Tyr Cys Ala Leu Asn Lys Pro Gly Cys Glu His Glu Cys Val Asn Met Glu Glu Ser Tyr Tyr Cys Arg Cys His Arg Gly Tyr Thr Leu Asp Pro Asn Gly Lys Thr Cys Ser Arg Val Asp His Cys Ala Gln Gln Asp His Gly Cys Glu Gln Leu Cys Leu Asn Thr Glu Asp Ser Phe Val Cys Gln Cys Ser Glu Gly Phe Leu Ile Asn Glu Asp Leu Lys Thr Cys Ser Arg Val Asp Tyr Cys Leu Leu Ser Asp His Gly Cys Glu Tyr Ser Cys Val Asn Met Asp Arg Ser Phe Ala Cys Gln Cys Pro Glu Gly His Val Leu Arg Ser Asp Gly Lys Thr Cys Ala Lys Leu Asp Ser Cys Ala Leu Gly Asp His Gly Cys Glu His Ser Cys Val Ser Ser Glu Asp Ser Phe Val Cys Gln Cys Phe Glu Gly Tyr Ile Leu Arg Glu Asp Gly Lys Thr Cys Arg Arg Lys Asp Val Cys Gln Ala Ile Asp His Gly Cys Glu His Ile Cys Val Asn Ser Asp Asp Ser Tyr Thr Cys Glu Cys Leu Glu Gly Phe Arg Leu Ala Glu Asp Gly Lys Arg Cys Arg Arg Lys Asp Val Cys Lys Ser Thr His His Gly Cys Glu His Ile Cys Val Asn Asn Gly Asn Ser Tyr Ile Cys Lys Cys Ser Glu Gly Phe Val Leu Ala Glu Asp Gly Arg Arg Cys Lys Lys Cys Thr Glu Gly Pro Ile Asp Leu Val Phe Val Ile Asp Gly Ser Lys Ser Leu Gly Glu Glu Asn Phe Glu Val Val Lys Gln Phe Val Thr Gly Ile Ile Asp Ser Leu Thr Ile Ser Pro Lys Ala Ala Arg Val Gly Leu Leu

Gln Tyr Ser Thr Gln Val His Thr Glu Phe Thr Leu Arg Asn Phe Asn 660 665 670

Ser Ala Lys Asp Met Lys Lys Ala Val Ala His Met Lys Tyr Met Gly 675 680 685

Lys Gly Ser Met Thr Gly Leu Ala Leu Lys His Met Phe Glu Arg Ser 690 695 700

Phe Thr Gln Gly Glu Gly Ala Arg Pro Leu Ser Thr Arg Val Pro Arg 705 710 715 720

Ala Ala Ile Val Phe Thr Asp Gly Arg Ala Gln Asp Asp Val Ser Glu 725 730 735

Trp Ala Ser Lys Ala Lys Ala Asn Gly Ile Thr Met Tyr Ala Val Gly 740 745 750

Val Gly Lys Ala Ile Glu Glu Glu Leu Gln Glu Ile Ala Ser Glu Pro 755 760 765

Thr Asn Lys His Leu Phe Tyr Ala Glu Asp Phe Ser Thr Met Asp Glu 770 780

Ile Ser Glu Lys Leu Lys Lys Gly Ile Cys Glu Ala Leu Glu Asp Ser 785 790 795 800

Asp Gly Arg Gln Asp Ser Pro Ala Gly Glu Leu Pro Lys Thr Val Gln 805 810 815

Gln Pro Thr Glu Ser Glu Pro Val Thr Ile Asn Ile Gln Asp Leu Leu 820 825 830

Ser Cys Ser Asn Phe Ala Val Gln His Arg Tyr Leu Phe Glu Glu Asp 835 840 845

Asn Leu Leu Arg Ser Thr Gln Lys Leu Ser His Ser Thr Lys Pro Ser 850 860

Gly Ser Pro Leu Glu Glu Lys His Asp Gln Cys Lys Cys Glu Asn Leu 865 870 875

Ile Met Phe Gln Asn Leu Ala Asn Glu Glu Val Arg Lys Leu Thr Gln 885 890 895

Arg Leu Glu Glu Met Thr Gln Arg Met Glu Ala Leu Glu Asn Arg Leu 900 905 910

Arg Tyr Arg 915

<210> 35

<211> 23

<212> DNA

<213> Artificial Sequence

```
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 35
                                                                   23
gtgaccctgg ttgtgaatac tcc
<210> 36
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 36
                                                                   22
acagccatgg tctatagctt gg
<210> 37
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 37
                                                                   45
qcctqtcaqt qtcctqaqqq acacgtgctc cgcagcgatg ggaag
<210> 38
<211> 1813
<212> DNA
<213> Homo sapiens
<400> 38
ggagccgccc tgggtgtcag cggctcggct cccgcgcacg ctccggccgt cgcgcagcct 60
cggcacctgc aggtccgtgc gtcccgcggc tggcgcccct gactccgtcc cggccaggga 120
gggccatgat ttccctcccg gggcccctgg tgaccaactt gctgcggttt ttgttcctgg 180
ggctgagtgc cctcgcgccc ccctcgcggg cccagctgca actgcacttg cccgccaacc 240
ggttgcaggc ggtggaggga ggggaagtgg tgcttccagc gtggtacacc ttgcacgggg 300
aggtgtcttc atcccagcca tgggaggtgc cctttgtgat gtggttcttc aaacagaaag 360
aaaaggagga tcaggtgttg tcctacatca atggggtcac aacaagcaaa cctggagtat 420
cettggtcta etceatgece teceggaace tgteeetgeg getggagggt etceaggaga 480
aagactctgg cccctacagc tgctccgtga atgtgcaaga caaacaaggc aaatctaggg 540
gccacagcat caaaacctta gaactcaatg tactggttcc tccagctcct ccatcctgcc 600
gtctccaggg tgtgccccat gtgggggcaa acgtgaccct gagctgccag tctccaagga 660
gtaagcccgc tgtccaatac cagtgggatc ggcagcttcc atccttccag actttctttg 720
caccagcatt agatgtcatc cgtgggtctt taagcctcac caacctttcg tcttccatgg 780
ctggagtcta tgtctgcaag gcccacaatg aggtgggcac tgcccaatgt aatgtgacgc 840
tggaagtgag cacagggcct ggagctgcag tggttgctgg agctgttgtg ggtaccctgg 900
ttggactggg gttgctggct gggctggtcc tcttgtacca ccgccggggc aaggccctgg 960
aggagecage caatgatate aaggaggatg ceattgetee eeggaceetg eeetggecea 1020
agageteaga cacaatetee aagaatggga eeettteete tgteacetee geacgageee 1080
tecggecace ceatggeet eccaggeetg gtgeattgac ecceaegeee agteteteca 1140
```

```
gccaggccct gccctcacca agactgccca cgacagatgg ggcccaccct caaccaatat 1200
ecceeateee tggtggggtt tetteetetg gettgageeg eatgggtget gtgeetgtga 1260
tggtgcctgc ccagagtcaa gctggctctc tggtatgatg accccaccac tcattggcta 1320
aaggatttgg ggtctctcct tcctataagg gtcacctcta gcacagaggc ctgagtcatg 1380
qqaaaqaqtc acactcctga cccttaqtac tctqcccca cctctctta ctqtqqqaaa 1440
accateteaq taaqaeetaa qtqteeaqqa qacaqaaqqa qaaqaqqaag tggatetgga 1500
attgggagga gcctccaccc accctgact cctccttatg aagccagctg ctgaaattag 1560
ctactcacca agagtgaggg gcagagactt ccagtcactg agtctcccag gcccccttga 1620
tetgtacece acceetatet aacaceaece ttggeteeca etceagetee etgtattgat 1680
ataacctqtc aggctggctt ggttagqttt tactggggca gaggataggg aatctcttat 1740
taaaactaac atgaaatatg tgttgttttc atttgcaaat ttaaataaag atacataatg 1800
tttqtatqaa aaa
<210> 39
<211> 390
<212> PRT
<213> Homo sapiens
<400> 39
Met Ile Ser Leu Pro Gly Pro Leu Val Thr Asn Leu Leu Arg Phe Leu
Phe Leu Gly Leu Ser Ala Leu Ala Pro Pro Ser Arg Ala Gln Leu Gln
                                 25
Leu His Leu Pro Ala Asn Arg Leu Gln Ala Val Glu Gly Gly Glu Val
Val Leu Pro Ala Trp Tyr Thr Leu His Gly Glu Val Ser Ser Gln
                         55
Pro Trp Glu Val Pro Phe Val Met Trp Phe Phe Lys Gln Lys Glu Lys
Glu Asp Gln Val Leu Ser Tyr Ile Asn Gly Val Thr Thr Ser Lys Pro
                                     90
Gly Val Ser Leu Val Tyr Ser Met Pro Ser Arg Asn Leu Ser Leu Arg
            100
Leu Glu Gly Leu Gln Glu Lys Asp Ser Gly Pro Tyr Ser Cys Ser Val
                            120
Asn Val Gln Asp Lys Gln Gly Lys Ser Arg Gly His Ser Ile Lys Thr
    130
                        135
Leu Glu Leu Asn Val Leu Val Pro Pro Ala Pro Pro Ser Cys Arg Leu
                    150
Gln Gly Val Pro His Val Gly Ala Asn Val Thr Leu Ser Cys Gln Ser
                                    170
Pro Arg Ser Lys Pro Ala Val Gln Tyr Gln Trp Asp Arg Gln Leu Pro
            180
Ser Phe Gln Thr Phe Phe Ala Pro Ala Leu Asp Val Ile Arg Gly Ser
```

200

205

195

Leu Ser Leu Thr Asn Leu Ser Ser Ser Met Ala Gly Val Tyr Val Cys 215 Lys Ala His Asn Glu Val Gly Thr Ala Gln Cys Asn Val Thr Leu Glu 230 225 Val Ser Thr Gly Pro Gly Ala Ala Val Val Ala Gly Ala Val Val Gly 250 Thr Leu Val Gly Leu Gly Leu Leu Ala Gly Leu Val Leu Leu Tyr His 265 Arg Arg Gly Lys Ala Leu Glu Glu Pro Ala Asn Asp Ile Lys Glu Asp 280 275 Ala Ile Ala Pro Arg Thr Leu Pro Trp Pro Lys Ser Ser Asp Thr Ile 295 Ser Lys Asn Gly Thr Leu Ser Ser Val Thr Ser Ala Arg Ala Leu Arg 315 320 305 Pro Pro His Gly Pro Pro Arg Pro Gly Ala Leu Thr Pro Thr Pro Ser 330 Leu Ser Ser Gln Ala Leu Pro Ser Pro Arg Leu Pro Thr Thr Asp Gly 345 Ala His Pro Gln Pro Ile Ser Pro Ile Pro Gly Gly Val Ser Ser Ser 360 355 Gly Leu Ser Arg Met Gly Ala Val Pro Val Met Val Pro Ala Gln Ser 380 Gln Ala Gly Ser Leu Val 385 390 <210> 40 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 40 22 agggtctcca ggagaaagac tc <210> 41 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic

oligonucleotide probe

<400> 41 attgtgggcc ttgcagacat agac 2	24
<210> 42 <211> 50 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 42 ggccacagca tcaaaacctt agaactcaat gtactggttc ctccagctcc 5	0
<210> 43 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 43 gtgtgacaca gcgtgggc 1	. 8
<210> 44 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 44 gaccggcagg cttctgcg 1	.8
<210> 45 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 45 cagcagcttc agccaccagg agtgg ' 2	25
<210> 46 <211> 24 <212> DNA <213> Artificial Sequence	

```
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 46
                                                                  24
ctgagccgtg ggctgcagtc tcgc
<210> 47
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 47
ccgactacga ctggttcttc atcatgcagg atgacacata tgtgc
                                                                  45
<210> 48
<211> 2822
<212> DNA
<213> Homo sapiens
<400> 48
cgccaccact gcggccaccg ccaatgaaac gcctcccgct cctagtggtt ttttccactt 60
tgttgaattg ttcctatact caaaattgca ccaagacacc ttgtctccca aatgcaaaat 120
gtgaaatacg caatggaatt gaagcctgct attgcaacat gggattttca ggaaatggtg 180
tcacaatttg tgaagatgat aatgaatgtg gaaatttaac tcagtcctgt ggcgaaaatg 240
ctaattgcac taacacagaa ggaagttatt attgtatgtg tgtacctggc ttcagatcca 300
gcagtaacca agacaggttt atcactaatg atggaaccgt ctgtatagaa aatgtgaatg 360
caaactgcca tttagataat gtctgtatag ctgcaaatat taataaaact ttaacaaaaa 420
tcagatccat aaaagaacct gtggctttgc tacaagaagt ctatagaaat tctgtgacag 480
atctttcacc aacagatata attacatata tagaaatatt agctgaatca tcttcattac 540
taggttacaa gaacaacact atctcagcca aggacaccct ttctaactca actcttactg 600
aatttgtaaa aaccgtgaat aattttgttc aaagggatac atttgtagtt tgggacaagt 660
tatctgtgaa tcataggaga acacatctta caaaactcat gcacactgtt gaacaagcta 720
ctttaaggat atcccagagc ttccaaaaga ccacagagtt tgatacaaat tcaacggata 780
tagcteteaa agttttett tttgatteat ataacatgaa acatatteat eeteatatga 840
atatggatgg agactacata aatatattc caaagagaaa agctgcatat gattcaaatg 900
gcaatgttgc agttgcattt ttatattata agagtattgg tcctttgctt tcatcatctg 960
acaacttctt attgaaacct caaaattatg ataattctga agaggaggaa agagtcatat 1020
cttcagtaat ttcagtctca atgagctcaa acccaccac attatatgaa cttgaaaaaa 1080
taacatttac attaagtcat cgaaaggtca cagataggta taggagtcta tgtgcatttt 1140
ggaattactc acctgatacc atgaatggca gctggtcttc agagggctgt gagctgacat 1200
actcaaatga gacccacacc tcatgccgct gtaatcacct gacacatttt gcaattttga 1260
tgtcctctgg tccttccatt ggtattaaag attataatat tcttacaagg atcactcaac 1320
taggaataat tatttcactg atttgtcttg ccatatgcat ttttaccttc tggttcttca 1380
gtgaaattca aagcaccagg acaacaattc acaaaaatct ttgctgtagc ctatttcttg 1440
ctgaacttgt ttttcttgtt gggatcaata caaatactaa taagctcttc tgttcaatca 1500
ttgccggact gctacactac ttctttttag ctgcttttgc atggatgtgc attgaaggca 1560
tacatctcta tctcattgtt gtgggtgtca tctacaacaa gggattittg cacaagaatt 1620
tttatatctt tggctatcta agcccagccg tggtagttgg attttcggca gcactaggat 1680
acagatatta tggcacaacc aaagtatgtt ggcttagcac cgaaaacaac tttatttgga 1740
gttttatagg accagcatgc ctaatcattc ttgttaatct cttggctttt ggagtcatca 1800
tatacaaagt ttttcgtcac actgcagggt tgaaaccaga agttagttgc tttgagaaca 1860
 taaggtettg tgcaagagga geettegete ttetgtteet teteggeace acetggatet 1920
```

```
ttggggttct ccatgttgtg cacgcatcag tggttacagc ttacctcttc acagtcagca 1980
atgctttcca ggggatgttc atttttttat tcctgtgtgt tttatctaga aagattcaag 2040
aagaatatta cagattgttc aaaaatgtcc cctgttgttt tggatgttta aggtaaacat 2100
agagaatggt ggataattac aactgcacaa aaataaaaat tccaagctgt ggatgaccaa 2160
tgtataaaaa tgactcatca aattatccaa ttattaacta ctagacaaaa agtattttaa 2220
atcagttttt ctgtttatgc tataggaact gtagataata aggtaaaatt atgtatcata 2280
tagatatact atgtttttct atgtgaaata gttctgtcaa aaatagtatt gcagatattt 2340
ggaaagtaat tggtttctca ggagtgatat cactgcaccc aaggaaagat tttctttcta 2400
acacgagaag tatatgaatg teetgaagga aaceaetgge ttgatattte tgtgaetegt 2460
gttgcctttg aaactagtcc cctaccacct cggtaatgag ctccattaca gaaagtggaa 2520
cataaqagaa tgaaqggqca gaatatcaaa cagtgaaaag ggaatgataa gatgtatttt 2580
gaatgaactg ttttttctgt agactagctg agaaattgtt gacataaaat aaagaattga 2640
agaaacacat tttaccattt tgtgaattgt tctgaactta aatgtccact aaaacaactt 2700
agacttctgt ttgctaaatc tgtttctttt tctaatattc taaaaaaaaa aaaaaggttt 2760
2822
<210> 49
<211> 690
<212> PRT
<213> Homo sapiens
<400> 49
Met Lys Arg Leu Pro Leu Leu Val Val Phe Ser Thr Leu Leu Asn Cys
                 5
Ser Tyr Thr Gln Asn Cys Thr Lys Thr Pro Cys Leu Pro Asn Ala Lys
Cys Glu Ile Arg Asn Gly Ile Glu Ala Cys Tyr Cys Asn Met Gly Phe
Ser Gly Asn Gly Val Thr Ile Cys Glu Asp Asp Asn Glu Cys Gly Asn
                        55
Leu Thr Gln Ser Cys Gly Glu Asn Ala Asn Cys Thr Asn Thr Glu Gly
Ser Tyr Tyr Cys Met Cys Val Pro Gly Phe Arg Ser Ser Ser Asn Gln
Asp Arg Phe Ile Thr Asn Asp Gly Thr Val Cys Ile Glu Asn Val Asn
           100
Ala Asn Cys His Leu Asp Asn Val Cys Ile Ala Ala Asn Ile Asn Lys
                           120
Thr Leu Thr Lys Ile Arg Ser Ile Lys Glu Pro Val Ala Leu Leu Gln
Glu Val Tyr Arg Asn Ser Val Thr Asp Leu Ser Pro Thr Asp Ile Ile
                   150
                                      155
Thr Tyr Ile Glu Ile Leu Ala Glu Ser Ser Leu Leu Gly Tyr Lys
               165
                                                      175
```

Asn Asn Thr Ile Ser Ala Lys Asp Thr Leu Ser Asn Ser Thr Leu Thr

Glu	Phe	Val 195	Lys	Thr	Val	Asn	Asn 200	Phe	Val	Gln	Arg	Asp 205	Thr	Phe	Val
Val	Trp 210	Asp	Lys	Leu	Ser	Val 215	Asn	His	Arg	Arg	Thr 220	His	Leu	Thr	Lys
Leu 225	Met	His	Thr	Val	Glu 230	Gln	Ala	Thr	Leu	Arg 235	Ile	Ser	Gln	Ser	Phe 240
Gln	Lys	Thr	Thr	Glu 245	Phe	Asp	Thr	Asn	Ser 250	Thr	Asp	Ile	Ala	Leu 255	Lys
Val	Phe	Phe	Phe 260	Asp	Ser	Tyr	Asn	Met 265	Lys	His	Ile	His	Pro 270	His	Met
Asn	Met	Asp 275	Gly	Asp	Tyr	Ile	Asn 280	Ile	Phe	Pro	Lys	Arg 285	Lys	Ala	Ala
Tyr	Asp 290		Asn	Gly	Asn	Val 295	Ala	Val	Ala	Phe	Leu 300	Tyr	Tyr	Lys	Ser
Ile 305		Pro	Leu	Leu	Ser 310	Ser	Ser	Asp	Asn	Phe 315	Leu	Leu	Lys	Pro	Gln 320
Asn	Tyr	Asp	Asn	Ser 325	Glu	Glu	Glu	Glu	Arg 330	Val	Ile	Ser	Ser	Val 335	Ile
Ser	Val	Ser	Met 340		Ser	Asn	Pro	Pro 345	Thr	Leu	Tyr	Glu	Leu 350	Glu	Lys
Ile	Thr	Phe 355		Leu	Ser	His	Arg 360	Lys	Val	Thr	Asp	Arg 365	Tyr	Arg	Ser
Leu	Cys 370		a Phe	e Trp	Asn	Tyr 375	Ser	Pro	Asp	Thr	Met 380	Asn	Gly	Ser	Trp
Ser 385		c Glu	ı Gly	y Cys	390	ı Lev	ı Thr	Tyr	: Ser	395	Glu	Thr	His	Thr	Ser 400
Суз	s Ar	д Су:	s Ası	n His	s Lev	ı Thi	c His	s Phe	Ala 410	a Ile	e Leu	. Met	Ser	Ser 415	Gly
Pro	Se:	r Il	e Gly		e Lys	s Ası	р Туз	425	ı Ile	e Lei	ı Thr	Arg	3 Ile 430	e Thi	Gln
Le	ı Gl	y Il 43		e Ile	e Se	r Le	u Ile 440	е Су:	s Le	u Ala	a Ile	2 Cys	s Ile	e Phe	e Thr
Ph	e Tr		e Ph	e Se	r Gl	u Il 45	e Gli 5	n Sei	r Th	r Ar	g Thi 460	Thi	r Ile	e His	s Lys
As:		u Cy	s Cy	s Se	r Le		e Le	u Ala	a Gl	u Le	u Val	L Pho	e Lei	ı Val	1 Gly 480
11	e As	n Th	r As	n Th	r As	n Ly	s Le	u Ph	е Су	s Se	r Ile	e Il	e Ala	a Gl	y Leu

485 490 495

Leu His Tyr Phe Phe Leu Ala Ala Phe Ala Trp Met Cys Ile Glu Gly 500 505 510

Ile His Leu Tyr Leu Ile Val Val Gly Val Ile Tyr Asn Lys Gly Phe 515 520 525

Leu His Lys Asn Phe Tyr Ile Phe Gly Tyr Leu Ser Pro Ala Val Val 530 540

Val Gly Phe Ser Ala Ala Leu Gly Tyr Arg Tyr Tyr Gly Thr Thr Lys 545 550 560

Val Cys Trp Leu Ser Thr Glu Asn Asn Phe Ile Trp Ser Phe Ile Gly 565 570 575

Pro Ala Cys Leu Ile Ile Leu Val Asn Leu Leu Ala Phe Gly Val Ile 580 585 590

Ile Tyr Lys Val Phe Arg His Thr Ala Gly Leu Lys Pro Glu Val Ser 595 600 605

Cys Phe Glu Asn Ile Arg Ser Cys Ala Arg Gly Ala Leu Ala Leu Leu 610 615 620

Phe Leu Leu Gly Thr Thr Trp Ile Phe Gly Val Leu His Val Val His 625 630 635 640

Ala Ser Val Val Thr Ala Tyr Leu Phe Thr Val Ser Asn Ala Phe Gln 645 650 655

Gly Met Phe Ile Phe Leu Phe Leu Cys Val Leu Ser Arg Lys Ile Gln
660 665 670

Glu Glu Tyr Tyr Arg Leu Phe Lys Asn Val Pro Cys Cys Phe Gly Cys 675 680 685

Leu Arg 690

<210> 50

<211> 589

<212> DNA

<213> Homo sapiens

<220>

<221> modified base

<222> (61)..(61)

<223> a, t, c or g

<400> 50

tggaaacata tcctcctca tatgaatatg gatggagact acataaatat atttccaaag 60 ngaaaagccg gcatatggat tcaaatggca atgttgcagt tgcatttta tattataaga 120 gtattggtcc ctttgctttc atcatctgac aacttcttat tgaaacctca aaattatgat 180 aattctgaag aggaggaaag agtcatatct tcagtaattt cagtctcaat gagctcaaac 240 ccacccacat tatatgaact tgaaaaaata acatttacat taagtcatcg aaaggtcaca 300

gataggtata ggagtctatg tggcattttg gaatactcac ctgataccat gaatggcagg tggtcttcag agggctgtga gctgacatac tcaaatgaga cccacacctc atgccgctgt aatcacctga cacattttgc aattttgatg tcctctggtc cttccattgg tattaaagat tataatattc ttacaaggat cactcaacta ggaataatta tttcactgat ttgtcttgcc atatgcattt ttaccttctg gttcttcagt gaaattcaaa gcaccagga	420
<210> 51 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 51 ggtaatgagc tccattacag	20
<210> 52 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 52 ggagtagaaa gcgcatgg	18
<210> 53 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 53 cacctgatac catgaatggc ag	22
<210> 54 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 54 cgagctcgaa ttaattcg	18
<210> 55 <211> 18 <212> DNA	

.

```
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 55
                                                                   18
ggatctcctg agctcagg
<210> 56
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 56
                                                                   23
cctagttgag tgatccttgt aag
<210> 57
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 57
atgagaccca cacctcatgc cgctgtaatc acctgacaca ttttgcaatt
                                                                   50
<210> 58
<211> 2137
<212> DNA
<213> Homo sapiens
<400> 58
gctcccagcc aagaacctcg gggccgctgc gcggtgggga ggagttcccc gaaacccggc 60
cgctaagcga ggcctcctcc tcccgcagat ccgaacggcc tgggcggggt caccccggct 120
gggacaagaa gccgccgcct gcctgcccgg gcccggggag ggggctgggg ctggggccgg 180
aggcggggtg tgagtgggtg tgtgcggggg gcggaggctt gatgcaatcc cgataagaaa 240
tgctcgggtg tcttgggcac ctacccgtgg ggcccgtaag gcgctactat ataaggctgc 300
cggcccggag ccgccgcgcc gtcagagcag gagcgctgcg tccaggatct agggccacga 360
ccatcccaac coggcactca cagccccgca gcgcatcccg gtcgccgccc agcctcccgc 420
acceccateg eeggagetge geegagagee eeagggaggt geeatgegga gegggtgtgt 480
ggtggtccac gtatggatcc tggccggcct ctggctggcc gtggccgggc gccccctcgc 540
cttctcggac gcggggcccc acgtgcacta cggctggggc gaccccatcc gcctgcggca 600
cctqtacacc tccggccccc acgggctctc cagctgcttc ctgcgcatcc gtgccgacgg 660
cgtcgtggac tgcgcgcggg gccagagcgc gcacagtttg ctggagatca aggcagtcgc 720
tctgcggacc gtggccatca agggcgtgca cagcgtgcgg tacctctgca tgggcgccga 780
cggcaagatg caggggctgc ttcagtactc ggaggaagac tgtgctttcg aggaggagat 840
ccgcccagat ggctacaatg tgtaccgatc cgagaagcac cgcctcccgg tctccctgag 900
cagtgccaaa cagcggcagc tgtacaagaa cagaggcttt cttccactct ctcatttcct 960
geceatgetg eccatggtee cagaggagee tgaggaeete aggggeeact tggaatetga 1020
catgttctct tcgcccctgg agaccgacag catggaccca tttgggcttg tcaccggact 1080
```

```
tgctgccagg ggctgtggta cctgcagcgt gggggacgtg cttctacaag aacagtcctg 1200
agtccacgtt ctqtttagct ttaggaagaa acatctagaa gttgtacata ttcagagttt 1260
tccattggca gtqccaqttt ctagccaata qacttqtctq atcataacat tqtaaqcctq 1320
tagettgeee agetgetgee tgggeeeeea ttetgeteee tegaggttge tggaeaaget 1380
getgeactgt eteagttetg ettgaatace teeategatg gggaacteae tteetttgga 1440
aaaattetta tgteaagetg aaatteteta atttttete ateaetteee eaggageage 1500
cagaagacag gcagtagttt taatttcagg aacaggtgat ccactctgta aaacagcagg 1560
taaatttcac tcaaccccat gtgggaattg atctatatct ctacttccag ggaccatttg 1620
cccttcccaa atccctccag gccagaactg actggagcag gcatggccca ccaggcttca 1680
ggagtagggg aagcetggag ceceaeteea geeetgggae aaettgagaa tteeeetga 1740
ggccagttct gtcatggatg ctgtcctgag aataacttgc tgtcccggtg tcacctqctt 1800
ccatctccca gcccaccagc cctctgccca cctcacatgc ctccccatgg attggggcct 1860
atttgaagac cccaagtctt gtcaataact tgctgtgtgg aagcagcggg ggaagaccta 1980
gaaccctttc cccagcactt ggttttccaa catgatattt atgagtaatt tattttgata 2040
tgtacatctc ttattttctt acattattta tgcccccaaa ttatatttat gtatgtaagt 2100
gaggtttgtt ttgtatatta aaatggagtt tgtttgt
<210> 59
<211> 216
<212> PRT
<213> Homo sapiens
<400> 59
Met Arg Ser Gly Cys Val Val Val His Val Trp Ile Leu Ala Gly Leu
Trp Leu Ala Val Ala Gly Arg Pro Leu Ala Phe Ser Asp Ala Gly Pro
His Val His Tyr Gly Trp Gly Asp Pro Ile Arg Leu Arg His Leu Tyr
Thr Ser Gly Pro His Gly Leu Ser Ser Cys Phe Leu Arg Ile Arg Ala
     50
                        55
Asp Gly Val Val Asp Cys Ala Arg Gly Gln Ser Ala His Ser Leu Leu
Glu Ile Lys Ala Val Ala Leu Arg Thr Val Ala Ile Lys Gly Val His
Ser Val Arg Tyr Leu Cys Met Gly Ala Asp Gly Lys Met Gln Gly Leu
                               105
Leu Gln Tyr Ser Glu Glu Asp Cys Ala Phe Glu Glu Glu Ile Arg Pro
                           120
Asp Gly Tyr Asn Val Tyr Arg Ser Glu Lys His Arg Leu Pro Val Ser
                       135
Leu Ser Ser Ala Lys Gln Arg Gln Leu Tyr Lys Asn Arg Gly Phe Leu
                   150
                                      155
Pro Leu Ser His Phe Leu Pro Met Leu Pro Met Val Pro Glu Glu Pro
               165
                                   170
```

ggaggccgtg aggagtccca gctttgagaa gtaactgaga ccatgcccgg gcctcttcac 1140

```
Glu Asp Leu Arg Gly His Leu Glu Ser Asp Met Phe Ser Ser Pro Leu
            180
                                185
Glu Thr Asp Ser Met Asp Pro Phe Gly Leu Val Thr Gly Leu Glu Ala
        195
                             200
                                                 205
Val Arg Ser Pro Ser Phe Glu Lys
    210
                        215
<210> 60
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 60
atccgcccag atggctacaa tgtgta
                                                                   26
<210> 61
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 61
gcctcccggt ctccctgagc agtgccaaac agcggcagtg ta
                                                                   42
<210> 62
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 62
                                                                   22
ccagtccggt gacaagccca aa
<210> 63
<211> 1295
<212> DNA
<213> Homo sapiens
<400> 63
eccagaagtt caagggeece eggeeteetg egeteetgee geegggaece tegaceteet 60
cagagcagec ggctgeegec cegggaagat ggcgaggagg agecgeeaec geeteeteet 120
gctgctgctg cgctacctgg tggtcgccct gggctatcat aaggcctatg ggttttctgc 180
cccaaaagac caacaagtag tcacagcagt agagtaccaa gaggctattt tagcctgcaa 240
aaccccaaag aagactgttt cctccagatt agagtggaag aaactgggtc ggagtgtctc 300
```

```
ctttgtctac tatcaacaga ctcttcaagg tgattttaaa aatcgagctg agatgataga 360
tttcaatatc cggatcaaaa atgtgacaag aagtgatgcg gggaaatatc gttgtgaagt 420
taqtqcccca tctqaqcaaq qccaaaacct qqaaqaqqat acaqtcactc tqqaaqtatt 480
agtggctcca gcagttccat catgtgaagt accetettet getetgagtg gaactgtggt 540
agagctacga tgtcaagaca aagaagggaa tccagctcct gaatacacat ggtttaagga 600
tggcatccgt ttgctagaaa atcccagact tggctcccaa agcaccaaca gctcatacac 660
aatgaataca aaaactggaa ctctgcaatt taatactgtt tccaaactgg acactggaga 720
atattcctgt gaagcccgca attctgttgg atatcgcagg tgtcctggga aacgaatgca 780
aqtaqatqat ctcaacataa qtqqcatcat aqcaqccqta qtaqttqtqq ccttaqtqat 840
ttccgtttgt ggccttggtg tatgctatgc tcagaggaaa ggctactttt caaaagaaac 900-
ctccttccag aagagtaatt cttcatctaa agccacgaca atgagtgaaa atgtgcagtg 960
getcaegeet gtaateeeag caetttggaa ggeegeggeg ggeggateae gaggteagga 1020
gttctagacc agtctggcca atatggtgaa accccatctc tactaaaata caaaaattag 1080
ctgggcatgg tggcatgtgc ctgcagttcc agctgcttgg gagacaggag aatcacttga 1140
accogggagg cggaggttgc agtgagctga gatcacgcca ctgcagtcca gcctgggtaa 1200
tgtagaattc ttacaataaa tatagcttga tattc
                                                              1295
```

<210> 64

<211> 312

<212> PRT

<213> Homo sapiens

<400> 64

Met Ala Arg Arg Ser Arg His Arg Leu Leu Leu Leu Leu Leu Arg Tyr

1 10 15

Leu Val Val Ala Leu Gly Tyr His Lys Ala Tyr Gly Phe Ser Ala Pro
20 25 30

Lys Asp Gln Gln Val Val Thr Ala Val Glu Tyr Gln Glu Ala Ile Leu $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Ala Cys Lys Thr Pro Lys Lys Thr Val Ser Ser Arg Leu Glu Trp Lys 50 55 60

Lys Leu Gly Arg Ser Val Ser Phe Val Tyr Tyr Gln Gln Thr Leu Gln 65 70 75 80

Gly Asp Phe Lys Asn Arg Ala Glu Met Ile Asp Phe Asn Ile Arg Ile $85 \hspace{1cm} 90 \hspace{1cm} 95$

Lys Asn Val Thr Arg Ser Asp Ala Gly Lys Tyr Arg Cys Glu Val Ser 100 105 110

Ala Pro Ser Glu Gln Gly Gln Asn Leu Glu Glu Asp Thr Val Thr Leu 115 120 125

Glu Val Leu Val Ala Pro Ala Val Pro Ser Cys Glu Val Pro Ser Ser 130 135 140

Ala Leu Ser Gly Thr Val Val Glu Leu Arg Cys Gln Asp Lys Glu Gly 145 150 155 160

Asn Pro Ala Pro Glu Tyr Thr Trp Phe Lys Asp Gly Ile Arg Leu Leu 165 170 175

Glu Asn Pro Arg Leu Gly Ser Gln Ser Thr Asn Ser Ser Tyr Thr Met Asn Thr Lys Thr Gly Thr Leu Gln Phe Asn Thr Val Ser Lys Leu Asp 200 Thr Gly Glu Tyr Ser Cys Glu Ala Arg Asn Ser Val Gly Tyr Arg Arg 215 Cys Pro Gly Lys Arg Met Gln Val Asp Asp Leu Asn Ile Ser Gly Ile Ile Ala Ala Val Val Val Ala Leu Val Ile Ser Val Cys Gly Leu 245 250 Gly Val Cys Tyr Ala Gln Arg Lys Gly Tyr Phe Ser Lys Glu Thr Ser 265 Phe Gln Lys Ser Asn Ser Ser Ser Lys Ala Thr Thr Met Ser Glu Asn 280 Val Gln Trp Leu Thr Pro Val Ile Pro Ala Leu Trp Lys Ala Ala Ala 295 Gly Gly Ser Arg Gly Gln Glu Phe 305 310 <210> 65 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 65 atcgttgtga agttagtgcc cc 22 <210> 66 <211> 23 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 66 acctgcgata tccaacagaa ttg 23 <210> 67 <211> 48 <212> DNA <213> Artificial Sequence <220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 67 ggaagaggat acagtcactc tggaagtatt agtggctcca gcagttcc 48 <210> 68 <211> 2639 <212> DNA <213> Homo sapiens <400> 68 qacatcqqaq qtqqqctaqc actqaaactq cttttcaaqa cqaqqaaqaq qaqqaaaaq 60 agaaagaaga ggaagatgtt gggcaacatt tatttaacat gctccacagc ccggaccctg 120 gcatcatgct gctattcctg caaatactga agaagcatgg gatttaaata ttttacttct 180 aaataaatga attactcaat ctcctatgac catctataca tactccacct tcaaaaagta 240 catcaatatt atatcattaa ggaaatagta accttctctt ctccaatatg catgacattt 300 ttggacaatg caattgtggc actggcactt atttcagtga agaaaaactt tgtggttcta 360 tggcattcat catttgacaa atgcaagcat cttccttatc aatcagctcc tattgaactt 420 actagcactg actgtggaat ccttaagggc ccattacatt tctgaagaag aaagctaaga 480 tgaaggacat gccactccga attcatgtgc tacttggcct agctatcact acactagtac 540 aagctgtaga taaaaaagtg gattgtccac ggttatgtac gtgtgaaatc aggccttggt 600 ttacacccag atccatttat atggaagcat ctacagtgga ttgtaatgat ttaggtcttt 660 taactttccc agccagattg ccagctaaca cacagattct tctcctacag actaacaata 720 ttgcaaaaat tgaatactcc acagactttc cagtaaacct tactggcctg gatttatctc 780 aaaacaattt atcttcagtc accaatatta atgtaaaaaa gatgcctcag ctcctttctg 840 tgtacctaga ggaaaacaaa cttactgaac tgcctgaaaa atgtctgtcc gaactgagca 900 acttacaaga actctatatt aatcacaact tgctttctac aatttcacct ggagccttta 960 ttggcctaca taatcttctt cgacttcatc tcaattcaaa tagattgcag atgatcaaca 1020 gtaagtggtt tgatgctctt ccaaatctag agattctgat gattggggaa aatccaatta 1080 tcagaatcaa agacatgaac tttaagcctc ttatcaatct tcgcagcctg gttatagctg 1140 gtataaacct cacagaaata ccagataacg ccttggttgg actggaaaac ttagaaagca 1200 tctcttttta cgataacagg cttattaaag taccccatgt tgctcttcaa aaagttgtaa 1260 atctcaaatt tttggatcta aataaaaatc ctattaatag aatacgaagg ggtgatttta 1320 gcaatatgct acacttaaaa gagttgggga taaataatat gcctgagctg atttccatcg 1380 atagtettge tgtggataac etgecagatt taagaaaaat agaagetaet aacaacceta 1440 gattgtctta cattcacccc aatgcatttt tcagactccc caagctggaa tcactcatgc 1500 tgaacagcaa tgctctcagt gccctgtacc atggtaccat tgagtctctg ccaaacctca 1560 aggaaatcag catacacagt aaccccatca ggtgtgactg tgtcatccgt tggatgaaca 1620 tgaacaaaac caacattcga ttcatggagc cagattcact gttttgcgtg gacccacctg 1680 aattccaagg tcagaatgtt cggcaagtgc atttcaggga catgatggaa atttgtctcc 1740 ctcttatagc tcctgagagc tttccttcta atctaaatgt agaagctggg agctatgttt 1800 cettteactg tagagetact geagaaceae ageetgaaat etactggata acacettetg 1860 gtcaaaaact cttgcctaat accctgacag acaagttcta tgtccattct gagggaacac 1920 tagatataaa tggcgtaact cccaaagaag ggggtttata tacttgtata gcaactaacc 1980 tagttggcgc tgacttgaag tctgttatga tcaaagtgga tggatctttt ccacaagata 2040 acaatggctc tttgaatatt aaaataagag atattcaggc caattcagtt ttggtgtcct 2100 ggaaagcaag ttctaaaatt ctcaaatcta gtgttaaatg gacagccttt gtcaagactg 2160 aaaattetea tgetgegeaa agtgetegaa taceatetga tgteaaggta tataatetta 2220 ctcatctgaa tccatcaact gagtataaaa tttgtattga tattcccacc atctatcaga 2280 aaaacagaaa aaaatgtgta aatgtcacca ccaaaggttt gcaccctgat caaaaagagt 2340 atgaaaagaa taataccaca acacttatgg cctgtcttgg aggccttctg gggattattg 2400 gtgtgatatg tettateage tgeetetete cagaaatgaa etgtgatggt ggaeacaget 2460 atgtgaggaa ttacttacag aaaccaacct ttgcattagg tgagctttat cctcctctga 2520 taaatctctg ggaagcagga aaagaaaaaa gtacatcact gaaagtaaaa gcaactgtta 2580 taggtttacc aacaaatatg tcctaaaaac caccaaggaa acctactcca aaaatgaac 2639 <210> 69 <211> 708

<212> PRT

<213> Homo sapiens

<400> 69

Met Lys Asp Met Pro Leu Arg Ile His Val Leu Leu Gly Leu Ala Ile 1 5 10 15

Thr Thr Leu Val Gln Ala Val Asp Lys Lys Val Asp Cys Pro Arg Leu 20 25 30

Cys Thr Cys Glu Ile Arg Pro Trp Phe Thr Pro Arg Ser Ile Tyr Met
35 40 45

Glu Ala Ser Thr Val Asp Cys Asn Asp Leu Gly Leu Leu Thr Phe Pro 50 55 60

Ala Arg Leu Pro Ala Asn Thr Gln Ile Leu Leu Leu Gln Thr Asn Asn 65 70 75 80

Ile Ala Lys Ile Glu Tyr Ser Thr Asp Phe Pro Val Asn Leu Thr Gly
85 90 95

Leu Asp Leu Ser Gln Asn Asn Leu Ser Ser Val Thr Asn Ile Asn Val 100 105 110

Lys Lys Met Pro Gln Leu Leu Ser Val Tyr Leu Glu Glu Asn Lys Leu 115 120 125

Thr Glu Leu Pro Glu Lys Cys Leu Ser Glu Leu Ser Asn Leu Gln Glu 130 135 140

Leu Tyr Ile Asn His Asn Leu Leu Ser Thr Ile Ser Pro Gly Ala Phe 145 150 155 160

Ile Gly Leu His Asn Leu Leu Arg Leu His Leu Asn Ser Asn Arg Leu 165 170 175

Gln Met Ile Asn Ser Lys Trp Phe Asp Ala Leu Pro Asn Leu Glu Ile 180 185 190

Leu Met Ile Gly Glu Asn Pro Ile Ile Arg Ile Lys Asp Met Asn Phe 195 200 205

Lys Pro Leu Ile Asn Leu Arg Ser Leu Val Ile Ala Gly Ile Asn Leu 210 215 220

Thr Glu Ile Pro Asp Asn Ala Leu Val Gly Leu Glu Asn Leu Glu Ser 235 230 235

Ile Ser Phe Tyr Asp Asn Arg Leu Ile Lys Val Pro His Val Ala Leu 245 250 255

Gln Lys Val Val Asn Leu Lys Phe Leu Asp Leu Asn Lys Asn Pro Ile 260 265 270

Asn Arg Ile Arg Arg Gly Asp Phe Ser Asn Met Leu His Leu Lys Glu 280 Leu Gly Ile Asn Asn Met Pro Glu Leu Ile Ser Ile Asp Ser Leu Ala 290 Val Asp Asn Leu Pro Asp Leu Arg Lys Ile Glu Ala Thr Asn Asn Pro Arg Leu Ser Tyr Ile His Pro Asn Ala Phe Phe Arg Leu Pro Lys Leu 325 330 Glu Ser Leu Met Leu Asn Ser Asn Ala Leu Ser Ala Leu Tyr His Gly 345 Thr Ile Glu Ser Leu Pro Asn Leu Lys Glu Ile Ser Ile His Ser Asn 360 Pro Ile Arg Cys Asp Cys Val Ile Arg Trp Met Asn Met Asn Lys Thr 370 Asn Ile Arg Phe Met Glu Pro Asp Ser Leu Phe Cys Val Asp Pro Pro Glu Phe Gln Gly Gln Asn Val Arg Gln Val His Phe Arg Asp Met Met 405 410 Glu Ile Cys Leu Pro Leu Ile Ala Pro Glu Ser Phe Pro Ser Asn Leu 420 Asn Val Glu Ala Gly Ser Tyr Val Ser Phe His Cys Arg Ala Thr Ala Glu Pro Gln Pro Glu Ile Tyr Trp Ile Thr Pro Ser Gly Gln Lys Leu 450 Leu Pro Asn Thr Leu Thr Asp Lys Phe Tyr Val His Ser Glu Gly Thr 470 Leu Asp Ile Asn Gly Val Thr Pro Lys Glu Gly Gly Leu Tyr Thr Cys 490 Ile Ala Thr Asn Leu Val Gly Ala Asp Leu Lys Ser Val Met Ile Lys Val Asp Gly Ser Phe Pro Gln Asp Asn Asn Gly Ser Leu Asn Ile Lys Ile Arg Asp Ile Gln Ala Asn Ser Val Leu Val Ser Trp Lys Ala Ser 530 535 540 Ser Lys Ile Leu Lys Ser Ser Val Lys Trp Thr Ala Phe Val Lys Thr 550

Glu Asn Ser His Ala Ala Gln Ser Ala Arg Ile Pro Ser Asp Val Lys

570

```
Val Tyr Asn Leu Thr His Leu Asn Pro Ser Thr Glu Tyr Lys Ile Cys
                               585
Ile Asp Ile Pro Thr Ile Tyr Gln Lys Asn Arg Lys Lys Cys Val Asn
                           600
Val Thr Thr Lys Gly Leu His Pro Asp Gln Lys Glu Tyr Glu Lys Asn
                       615
Asn Thr Thr Leu Met Ala Cys Leu Gly Gly Leu Leu Gly Ile Ile
                                       635
                   630
Gly Val Ile Cys Leu Ile Ser Cys Leu Ser Pro Glu Met Asn Cys Asp
                                   650
Gly Gly His Ser Tyr Val Arg Asn Tyr Leu Gln Lys Pro Thr Phe Ala
Leu Gly Glu Leu Tyr Pro Pro Leu Ile Asn Leu Trp Glu Ala Gly Lys
                           680
Glu Lys Ser Thr Ser Leu Lys Val Lys Ala Thr Val Ile Gly Leu Pro
    690
                       695
Thr Asn Met Ser
705
<210> 70
<211> 1305
<212> DNA
<213> Homo sapiens
<400> 70
qcccqqqact ggcgcaaggt gcccaagcaa ggaaagaaat aatgaagaga cacatgtgtt 60
agctgcagcc ttttgaaaca cgcaagaagg aaatcaatag tgtggacagg gctggaacct 120
ttaccacqct tgttggagta gatgaggaat gggctcgtga ttatgctgac attccaqcat 180
gaatctggta gacctgtggt taacccgttc cctctccatg tgtctcctcc tacaaagttt 240
tqttcttatq atactgtgct ttcattctgc cagtatgtgt cccaagggct gtctttgttc 300
ttcctctggg ggtttaaatg tcacctgtag caatgcaaat ctcaaggaaa tacctagaga 360
tetteeteet gaaacagtet tactgtatet ggaeteeaat cagateacat etatteecaa 420
tgaaattttt aaggacctcc atcaactgag agttctcaac ctgtccaaaa atggcattga 480
qtttatcqat qaqcatqcct tcaaaqqaqt agctgaaacc ttgcagactc tggacttgtc 540
cgacaatcgg attcaaagtg tgcacaaaaa tgccttcaat aacctgaagg ccagggccag 600
aattgccaac aacccctggc actgcgactg tactctacag caagttctga ggagcatggc 660
gtccaatcat gagacagccc acaacgtgat ctgtaaaacg tccgtgttgg atgaacatgc 720
tggcagacca ttcctcaatg ctgccaacga cgctgacctt tgtaacctcc ctaaaaaaaa 780
taccqattat qccatqctqq tcaccatqtt tggctggttc actatggtga tctcatatgt 840
ggtatattat gtgaggcaaa atcaggagga tgcccggaga cacctcgaat acttgaaatc 900
cctgccaagc aggcagaaga aagcagatga acctgatgat attagcactg tggtatagtg 960
tccaaactga ctgtcattga gaaagaaaga aagtagtttg cgattgcagt agaaataagt 1020
ggtttacttc tcccatccat tgtaaacatt tgaaactttg tatttcagtt ttttttgaat 1080
tatqccactq ctgaactttt aacaaacact acaacataaa taatttgagt ttaggtgatc 1140
caccccttaa ttgtaccccc gatggtatat ttctgagtaa gctactatct gaacattagt 1200
tagatccatc tcactattta ataatgaaat ttatttttt aatttaaaag caaataaaag 1260
1305
```

<211> 259 <212> PRT

<213> Homo sapiens

<400> 71

Met Asn Leu Val Asp Leu Trp Leu Thr Arg Ser Leu Ser Met Cys Leu
1 5 10 15

Leu Leu Gln Ser Phe Val Leu Met Ile Leu Cys Phe His Ser Ala Ser 20 25 30

Met Cys Pro Lys Gly Cys Leu Cys Ser Ser Ser Gly Gly Leu Asn Val 35 40 45

Thr Cys Ser Asn Ala Asn Leu Lys Glu Ile Pro Arg Asp Leu Pro Pro 50 55 60

Glu Thr Val Leu Leu Tyr Leu Asp Ser Asn Gln Ile Thr Ser Ile Pro 65 70 75 80

Asn Glu Ile Phe Lys Asp Leu His Gln Leu Arg Val Leu Asn Leu Ser 85 90 95

Lys Asn Gly Ile Glu Phe Ile Asp Glu His Ala Phe Lys Gly Val Ala 100 105 110

Glu Thr Leu Gln Thr Leu Asp Leu Ser Asp Asn Arg Ile Gln Ser Val 115 120 125

His Lys Asn Ala Phe Asn Asn Leu Lys Ala Arg Ala Arg Ile Ala Asn 130 135 140

Asn Pro Trp His Cys Asp Cys Thr Leu Gln Gln Val Leu Arg Ser Met 145 150 155 160

Ala Ser Asn His Glu Thr Ala His Asn Val Ile Cys Lys Thr Ser Val 165 170 175

Leu Asp Glu His Ala Gly Arg Pro Phe Leu Asn Ala Ala Asn Asp Ala 180 185 190

Asp Leu Cys Asn Leu Pro Lys Lys Thr Thr Asp Tyr Ala Met Leu Val 195 200 205

Thr Met Phe Gly Trp Phe Thr Met Val Ile Ser Tyr Val Val Tyr Tyr 210 215 220

Val Arg Gln Asn Gln Glu Asp Ala Arg Arg His Leu Glu Tyr Leu Lys 225 230 235 240

Ser Leu Pro Ser Arg Gln Lys Lys Ala Asp Glu Pro Asp Asp Ile Ser 245 250 255

Thr Val Val

```
<211> 2290
<212> DNA
<213> Homo sapiens
<400> 72
accgaqccqa qcqqaccqaa qqcqcqcccq aqatqcaqqt qaqcaaqaqq atqctqqcqq 60
qqqqcqtqaq qaqcatqccc aqccccctcc tqqcctqctq qcaqcccatc ctcctqctqq 120
tgctgggctc agtgctgtca ggctcggcca cgggctgccc gccccgctgc gagtgctccg 180
cccaggaccg cgctgtgctg tgccaccgca agtgctttgt ggcagtcccc gagggcatcc 240
ccaccgagac gcgcctgctg gacctaggca agaaccgcat caaaacgctc aaccaggacq 300
agttcgccag cttcccgcac ctggaggagc tggagctcaa cgagaacatc gtgagcqccq 360
tggagccgg cgccttcaac aacctcttca acctccggac gctgggtctc cgcagcaacc 420
gcctgaaget catcccgcta ggcgtcttca ctggcctcag caacctgacc aagcaggaca 480
tcagcgagaa caagatcgtt atcctactgg actacatgtt tcaggacctg tacaacctca 540
agtcactgga ggttggcgac aatgacctcg tctacatctc tcaccgcgcc ttcagcggcc 600
tcaacaqcct qqaqcaqctq acqctqqaqa aatqcaacct gacctccatc cccaccgaqq 660
egetgteeca cetgeacgge etcategtee tgaggeteeg geaceteaac atcaatgeea 720
tccgggacta ctccttcaag aggctgtacc gactcaaggt cttggagatc tcccactqqc 780
cctacttqqa caccatqaca cccaactgcc tctacggcct caacctgacg tccctgtcca 840
teacacactg caatetgace getgtgeeet acetggeegt cegecaceta gtetatetee 900
qcttcctcaa cctctcctac aaccccatca qcaccattga qggctccatg ttgcatgagc 960
tgctccggct gcaggagatc cagctggtgg gcgggcagct ggccgtggtg gagccctatg 1020
cetteegegg ceteaactae etgegegtge teaatgtete tggcaaccag etgaccacae 1080
tggaggaatc agtettecae teggtgggea acetggagae acteatectg gactecaace 1140
egetggeetg egactgtegg etectgtggg tgtteeggeg eegetggegg eteaaettea 1200
accggcagca gcccacgtgc gccacgcccg agtttgtcca gggcaaggag ttcaaggact 1260
tecetqatqt qetactqeec aactaettea eetqeeqeeq eqeeqqate eqggaeeqea 1320
aggeceagea ggtgtttgtg gaegagggee acaeggtgea gtttgtgtge egggeegatg 1380
qcgacccqcc qcccqccatc ctctqqctct caccccgaaa gcacctggtc tcagccaaga 1440
qcaatgggcg gctcacagtc ttccctgatg gcacgctgga ggtgcgctac gcccaggtac 1500
aggacaacgg cacgtacctg tgcatcgcgg ccaacgcggg cggcaacgac tccatgcccg 1560
cccacctgca tgtgcgcagc tactcgcccg actggcccca tcagcccaac aagaccttcg 1620
ctttcatctc caaccagccg ggcgagggag aggccaacag cacccgcgcc actgtgcctt 1680
teceettega cateaagaee eteateateg ceaecaecat gggetteate tettteetgg 1740
qcqtcqtcct cttctqcctq qtqctqctqt ttctctqqaq ccqgqgcaaq ggcaacacaa 1800
agcacaacat cgagatcgag tatgtgcccc gaaagtcgga cgcaggcatc agctccgccg 1860
acgcgccccg caagttcaac atgaagatga tatgaggccg gggcgggggg cagggacccc 1920
cgggcggccg ggcaggggaa ggggcctggt cgccacctgc tcactctcca gtccttccca 1980
cctcctccct acccttctac acacgttctc tttctccctc ccgcctccgt cccctgctgc 2040
cccccgccag ccctcaccac ctgccctcct tctaccagga cctcagaagc ccagacctgg 2100
qgaccccacc tacacagggg cattgacaga ctggagttga aagccgacga accgacacgc 2160
qgcagagtca ataattcaat aaaaaagtta cgaactttct ctgtaacttg ggtttcaata 2220
2290
aaaaaaaaa
<210> 73
<211> 620
<212> PRT
<213> Homo sapiens
Met Gln Val Ser Lys Arg Met Leu Ala Gly Gly Val Arg Ser Met Pro
  1
```

Ser Pro Leu Leu Ala Cys Trp Gln Pro Ile Leu Leu Val Leu Gly

Ser	Val	Leu 35	Ser	Gly	Ser	Ala	Thr 40	Gly	Cys	Pro	Pro	Arg 45	Cys	Glu	Cys
Ser	Ala 50	Gln	Asp	Arg	Ala	Val 55	Leu	Cys	His	Arg	Lys 60	Cys	Phe	Val	Ala
Val 65	Pro	Glu	Gly	Ile	Pro 70	Thr	Glu	Thr	Arg	Leu 75	Leu	Asp	Leu	Gly	Lys 80
Asn	Arg	Ile	Lys	Thr 85	Leu	Asn	Gln	Asp	Glu 90	Phe	Ala	Ser	Phe	Pro 95	His
Leu	Glu	Glu	Leu 100	Glu	Leu	Asn	Glu	Asn 105	Ile	Val	Ser	Ala	Val 110	Glu	Pro
Gly	Ala	Phe 115	Asn	Asn	Leu	Phe	Asn 120	Leu	Arg	Thr	Leu	Gly 125	Leu	Arg	Ser
Asn	Arg 130	Leu	Lys	Leu	Ile	Pro 135	Leu	Gly	Val	Phe	Thr 140	Gly	Leu	Ser	Asn
Leu 145	Thr	Lys	Gln	Asp	Ile 150	Ser	Glu	Asn	Lys	Ile 155	Val	Ile	Leu	Leu	Asp 160
Tyr	Met	Phe	Gln	Asp 165	Leu	Tyr	Asn	Leu	Lys 170	Ser	Leu	Glu	Val	Gly 175	Asp
Asn	Asp	Leu	Val 180	Tyr	Ile	Ser	His	Arg 185	Ala	Phe	Ser	Gly	Leu 190	Asn	Ser
Leu	Glu	Gln 195	Leu	Thr	Leu	Glu	Lys 200	Cys	Asn	Leu	Thr	Ser 205	Ile	Pro	Thr
Glu	Ala 210	Leu	Ser	His	Leu	His 215	Gly	Leu	Ile	Val	Leu 220	Arg	Leu	Arg	His
Leu 225	Asn	Ile	Asn	Ala	Ile 230	Arg	Asp	Tyr	Ser	Phe 235	Lys	Arg	Leu	Tyr	Arg 240
Leu	Lys	Val	Leu	Glu 245	Ile	Ser	His	Trp	Pro 250	Tyr	Leu	Asp	Thr	Met 255	Thr
Pro	Asn	Cys	Leu 260	Tyr	Gly	Leu	Asn	Leu 265	Thr	Ser	Leu	Ser	Ile 270	Thr	His
Cys	Asn	Leu 275	Thr	Ala	Val	Pro	Tyr 280	Leu	Ala	Val	Arg	His 285	Leu	Val	Tyr
Leu	Arg 290	Phe	Leu	Asn	Leu	Ser 295	Tyr	Asn	Pro	Ile	Ser 300	Thr	Ile	Glu	Gly
Ser 305	Met	Leu	His	Glu	Leu 310	Leu	Arg	Leu	Gln	Glu 315	Ile	Gln	Leu	Val	Gly 320
Gly	Gln	Leu	Ala	Val 325	Val	Glu	Pro	Tyr	Ala 330	Phe	Arg	Gly	Leu	Asn 335	Tyr

Leu Arg Val Leu Asn Val Ser Gly Asn Gln Leu Thr Thr Leu Glu Glu 345 Ser Val Phe His Ser Val Gly Asn Leu Glu Thr Leu Ile Leu Asp Ser 360 Asn Pro Leu Ala Cys Asp Cys Arg Leu Leu Trp Val Phe Arg Arg Trp Arg Leu Asn Phe Asn Arg Gln Gln Pro Thr Cys Ala Thr Pro Glu 390 395 Phe Val Gln Gly Lys Glu Phe Lys Asp Phe Pro Asp Val Leu Leu Pro 410 405 Asn Tyr Phe Thr Cys Arg Arg Ala Arg Ile Arg Asp Arg Lys Ala Gln 425 Gln Val Phe Val Asp Glu Gly His Thr Val Gln Phe Val Cys Arg Ala 440 Asp Gly Asp Pro Pro Pro Ala Ile Leu Trp Leu Ser Pro Arg Lys His 455 Leu Val Ser Ala Lys Ser Asn Gly Arg Leu Thr Val Phe Pro Asp Gly 470 475 Thr Leu Glu Val Arg Tyr Ala Gln Val Gln Asp Asn Gly Thr Tyr Leu 490 485 Cys Ile Ala Ala Asn Ala Gly Gly Asn Asp Ser Met Pro Ala His Leu His Val Arg Ser Tyr Ser Pro Asp Trp Pro His Gln Pro Asn Lys Thr 520 Phe Ala Phe Ile Ser Asn Gln Pro Gly Glu Gly Glu Ala Asn Ser Thr 540 530 535 Arg Ala Thr Val Pro Phe Pro Phe Asp Ile Lys Thr Leu Ile Ile Ala 550 555 Thr Thr Met Gly Phe İle Ser Phe Leu Gly Val Val Leu Phe Cys Leu 565 Val Leu Leu Phe Leu Trp Ser Arg Gly Lys Gly Asn Thr Lys His Asn 585 Ile Glu Ile Glu Tyr Val Pro Arg Lys Ser Asp Ala Gly Ile Ser Ser 600 Ala Asp Ala Pro Arg Lys Phe Asn Met Lys Met Ile 615 610

<210> 74

<211> 22

<212> DNA

<213>	Artificial Sequence	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> tcacct	74 aggag cotttattgg co	22
<210> <211> <212> <213>	23	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> atacca	75 agcta taaccagget geg	23
<210> <211> <212> <213>	52	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> caacag gg	76 gtaag tggtttgatg ctcttccaaa tctagagatt ctgatgattg	50 52
<210> <211> <212> <213>	22	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> ccatgt	77 Egtct cctcctacaa ag	22
<210> <211> <212> <213>	23	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> gggaat	78 Lagat gtgatctgat tgg	23
	•	

```
<210> 79
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 79
cacctgtagc aatgcaaatc tcaaggaaat acctagagat cttcctcctg
                                                                   50
<210> 80
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 80
                                                                   22
agcaaccgcc tgaagctcat cc
<210> 81
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 81
                                                                    24
aaggcgcggt gaaagatgta gacg
<210> 82
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 82
gactacatgt ttcaggacct gtacaacctc aagtcactgg aggttggcga
                                                                    50
<210> 83
<211> 1685
<212> DNA
<213> Homo sapiens
<400> 83
cccacgcgtc cgcacctcgg ccccgggctc cgaagcggct cggggggcgcc ctttcggtca 60
acatcgtagt ccacccctc cccatcccca gccccgggg attcaggctc gccagcgccc 120
```

```
agccagggag ccggccggga agcgcgatgg gggccccagc cgcctcgctc ctgctcctgc 180
tcctgctgtt cgcctgctgc tgggcgcccg gcggggccaa cctctcccag gacgacaqcc 240
agccctggac atctgatgaa acagtggtgg ctggtggcac cgtggtgctc aagtgccaag 300
tgaaagatca cgaggactca teeetgeaat ggtetaaeee tgeteageag actetetaet 360
ttggggagaa gagageeett egagataate gaatteaget ggttacetet acgeeecacg 420
ageteageat cageateage aatgtggeee tggeagaega gggegagtae acetgeteaa 480
tcttcactat gcctgtgcga actgccaagt ccctcgtcac tgtgctagga attccacaga 540
agcccatcat cactggttat aaatcttcat tacgggaaaa agacacagcc accctaaact 600
gtcagtcttc tgggagcaag cctgcagccc ggctcacctg gagaaagggt gaccaagaac 660
tccacggaga accaacccgc atacaggaag atcccaatgg taaaaccttc actgtcagca 720
geteggtgae attecaggtt accegggagg atgatgggge gageategtg tgetetgtga 780
accatgaatc tctaaaggga gctgacagat ccacctctca acgcattgaa gttttataca 840
caccaactgc gatgattagg ccagaccete eccateeteg tgagggeeag aagetgttge 900
tacactgtga gggtcgcggc aatccagtcc cccagcagta cctatgggag aaggagggca 960
gtgtgccacc cctgaagatg acccaggaga gtgccctgat cttccctttc ctcaacaaga 1020
gtgacagtgg cacctacggc tgcacagcca ccagcaacat gggcagctac aaggcctact 1080
acacceteaa tgttaatgae eecagteegg tgeeeteete etceageace taceaegeea 1140
tcatcggtgg gatcgtggct ttcattgtct tcctgctgct catcatgctc atcttccttg 1200
gccactactt gatccggcac aaaggaacct acctgacaca tgaggcaaaa ggctccgacg 1260
atgctccaga cgcggacacg gccatcatca atgcagaagg cgggcagtca ggaggggacg 1320
acaagaagga atatttcatc tagaggcgcc tgcccacttc ctgcgccccc caggggccct 1380
gtggggactg ctggggccgt caccaacccg gacttgtaca gagcaaccgc agggccgccc 1440
ctcccgcttg ctccccagcc cacccaccc cctgtacaga atgtctgctt tgggtgcggt 1500
ccctttccgt ggcttctctg catttgggtt attattattt ttgtaacaat cccaaatcaa 1620
atctgtctcc aggctggaga ggcaggagcc ctggggtgag aaaagcaaaa aacaaacaaa 1680
                                                                 1685
aaaca
<210> 84
<211> 398
<212> PRT
<213> Homo sapiens
<400> 84
Met Gly Ala Pro Ala Ala Ser Leu Leu Leu Leu Leu Leu Leu Phe Ala
Cys Cys Trp Ala Pro Gly Gly Ala Asn Leu Ser Gln Asp Asp Ser Gln
Pro Trp Thr Ser Asp Glu Thr Val Val Ala Gly Gly Thr Val Val Leu
                             40
                                                45
Lys Cys Gln Val Lys Asp His Glu Asp Ser Ser Leu Gln Trp Ser Asn
     50
Pro Ala Gln Gln Thr Leu Tyr Phe Gly Glu Lys Arg Ala Leu Arg Asp
Asn Arg Ile Gln Leu Val Thr Ser Thr Pro His Glu Leu Ser Ile Ser
                                    90
Ile Ser Asn Val Ala Leu Ala Asp Glu Gly Glu Tyr Thr Cys Ser Ile
```

105

Phe Thr Met Pro Val Arg Thr Ala Lys Ser Leu Val Thr Val Leu Gly 120

100

115

Ile Pro Gln Lys Pro Ile Ile Thr Gly Tyr Lys Ser Ser Leu Arg Glu 130 135 140

Lys Asp Thr Ala Thr Leu Asn Cys Gln Ser Ser Gly Ser Lys Pro Ala 145 150 155 160

Ala Arg Leu Thr Trp Arg Lys Gly Asp Gln Glu Leu His Gly Glu Pro 165 170 175

Thr Arg Ile Gln Glu Asp Pro Asn Gly Lys Thr Phe Thr Val Ser Ser 180 185 190

Ser Val Thr Phe Gln Val Thr Arg Glu Asp Asp Gly Ala Ser Ile Val 195 200 205

Cys Ser Val Asn His Glu Ser Leu Lys Gly Ala Asp Arg Ser Thr Ser 210 215 220

Gln Arg Ile Glu Val Leu Tyr Thr Pro Thr Ala Met Ile Arg Pro Asp 225 230 235 240

Pro Pro His Pro Arg Glu Gly Gln Lys Leu Leu His Cys Glu Gly 245 250 255

Arg Gly Asn Pro Val Pro Gln Gln Tyr Leu Trp Glu Lys Glu Gly Ser 260 265 270

Val Pro Pro Leu Lys Met Thr Gln Glu Ser Ala Leu Ile Phe Pro Phe 275 280 285

Leu Asn Lys Ser Asp Ser Gly Thr Tyr Gly Cys Thr Ala Thr Ser Asn 290 295 300

Met Gly Ser Tyr Lys Ala Tyr Tyr Thr Leu Asn Val Asn Asp Pro Ser 305 310 315 320

Pro Val Pro Ser Ser Ser Ser Thr Tyr His Ala Ile Ile Gly Gly Ile 325 330 335

Val Ala Phe Ile Val Phe Leu Leu Leu Ile Met Leu Ile Phe Leu Gly 340 345 350

His Tyr Leu Ile Arg His Lys Gly Thr Tyr Leu Thr His Glu Ala Lys 355 360 365

Gly Ser Asp Asp Ala Pro Asp Ala Asp Thr Ala Ile Ile Asn Ala Glu $370 \hspace{1cm} 375 \hspace{1cm} 380$

Gly Gly Gln Ser Gly Gly Asp Asp Lys Lys Glu Tyr Phe Ile 385 390 395

<210> 85

<211> 22

<212> DNA

<213> Artificial Sequence

	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> gctagg	85 aatt ccacagaagc cc	22
<210> <211> <212> <212> <213> <	22	
	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> aacctg	86 gaat gtcaccgage tg	22
<210> <211> <212> <213>	26	
	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> cctagc	87 acag tgacgaggga cttggc	26
<210><211><211><212><213>	50	
	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> aagaca	88 cagc caccctaaac tgtcagtctt ctgggagcaa gcctgcagcc	50
<210><211><211><212><213>	50	
	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> gccctg	89 gcag acgagggcga gtacacctgc tcaatcttca ctatgcctgt	50
<210>		

<400> 90

gggggttagg qaggaaggaa tccaccccca ccccccaaa cccttttctt ctcctttcct 60 ggcttcggac attggagcac taaatgaact tgaattgtgt ctgtggcgag caggatggtc 120 gctgttactt tgtgatgaga tcggggatga attgctcgct ttaaaaatgc tgctttggat 180 tctgttgctg gagacgtctc tttgttttgc cgctggaaac gttacagggg acgtttgcaa 240 agagaagatc tgttcctgca atgagataga aggggaccta cacgtagact gtgaaaaaaa 300 gggcttcaca agtctgcagc gtttcactgc cccgacttcc cagttttacc atttattct 360 gcatggcaat tccctcactc gacttttccc taatgagttc gctaactttt ataatgcggt 420 tagtttgcac atggaaaaca atggcttgca tgaaatcgtt ccgggggctt ttctggggct 480 gcagctggtg aaaaggctgc acatcaacaa caacaagatc aagtcttttc gaaagcagac 540 ttttctgggg ctggacgatc tggaatatct ccaggctgat tttaatttat tacgagatat 600 agacccgggg gccttccagg acttgaacaa gctggaggtg ctcattttaa atgacaatct 660 catcagcace ctacetgeca acgtgtteca gtatgtgece ateacecace tegacetecg 720 gggtaacagg ctgaaaacgc tgccctatga ggaggtcttg gagcaaatcc ctggtattgc 780 ggagateetg etagaggata accettggga etgeacetgt gatetgetet eeetgaaaga 840 atggctggaa aacattccca agaatgccct gatcggccga gtggtctgcg aagcccccac 900 cagactgcag ggtaaagacc tcaatgaaac caccgaacag gacttgtgtc ctttgaaaaa 960 ccgagtggat tctagtctcc cggcgccccc tgcccaagaa gagacctttg ctcctggacc 1020 cctgccaact cctttcaaga caaatgggca agaggatcat gccacaccag ggtctgctcc 1080 aaacggaggt acaaagatcc caggcaactg gcagatcaaa atcagaccca cagcagcgat 1140 agcgacggqt agctccagga acaaaccctt agctaacagt ttaccctgcc ctgggggctg 1200 cagctgcgac cacatcccag ggtcgggttt aaagatgaac tgcaacaaca ggaacgtgag 1260 cagcttggct gatttgaagc ccaagctctc taacgtgcag gagcttttcc tacgagataa 1320 caagatccac agcatccgaa aatcgcactt tgtggattac aagaacctca ttctgttgga 1380 tctgggcaac aataacatcg ctactgtaga gaacaacact ttcaagaacc ttttggacct 1440 caggtggcta tacatggata gcaattacct ggacacgctg tcccgggaga aattcgcggg 1500 gctgcaaaac ctagagtacc tgaacgtgga gtacaacgct atccagctca tcctcccggg 1560 cactttcaat gccatgccca aactgaggat cctcattctc aacaacaacc tgctgaggtc 1620 cctgcctgtg gacgtgttcg ctggggtctc gctctctaaa ctcagcctgc acaacaatta 1680 cttcatgtac ctcccggtgg caggggtgct ggaccagtta acctccatca tccagataga 1740 cctccacgga aacccctggg agtgctcctg cacaattgtg cctttcaagc agtgggcaga 1800 acgcttgggt tccgaagtgc tgatgagcga cctcaagtgt gagacgccgg tgaacttctt 1860 tagaaaggat ttcatgctcc tctccaatga cgagatctgc cctcagctgt acgctaggat 1920 ctcgcccacg ttaacttcgc acagtaaaaa cagcactggg ttggcggaga ccgggacqca 1980 ctccaactcc tacctagaca ccagcagggt gtccatctcg gtgttggtcc cgggactgct 2040 gctggtgttt gtcacctccg ccttcaccgt ggtgggcatg ctcgtgttta tcctgaggaa 2100 ccgaaagcgg tccaagagac gagatgccaa ctcctccgcg tccgagatta attccctaca 2160 gacagtctgt gactcttcct actggcacaa tgggccttac aacgcagatg gggcccacag 2220 agtgtatgac tgtggctctc actcgctctc agactaagac cccaacccca ataggggagg 2280 gcagagggaa ggcgatacat cettececae egcaggeace eeggggggetg gagggegtg 2340 tacccaaatc cccgcgccat cagcctggat gggcataagt agataaataa ctgtgagctc 2400 gcacaaccga aagggcctga ccccttactt agctccctcc ttgaaacaaa gagcagactg 2460 tggagagctg ggagagcgca gccagctcgc tctttgctga gagccccttt tgacagaaag 2520 cccagcacga ccctgctgga agaactgaca gtgccctcgc cctcggcccc ggggcctgtg 2580 gggttggatg ccgcggttct atacatatat acatatatcc acatctatat agagagatag 2640 atatctattt ttcccctgtg gattagcccc gtgatggctc cctgttggct acgcagggat 2700 gggcagttgc acgaaggcat gaatgtattg taaataagta actttgactt ctgac

<210> 91

<211> 696

<212> PRT

<213> Homo sapiens

Met 1	Leu	Leu	Trp	Ile 5	Leu	Leu	Leu	Glu	Thr 10	Ser	Leu	Cys	Phe	Ala 15	Ala
Gly	Asn	Val	Thr 20	Gly	Asp	Val	Cys	Lys 25	Glu	Lys	Ile	Cys	Ser 30	Cys	Asn
Glu	Ile	Glu 35	Gly	Asp	Leu	His	Val 40	Asp	Суѕ	Glu	Lys	Lys 45	Gly	Phe	Thr
Ser	Leu 50	Gln	Arg	Phe	Thr	Ala 55	Pro	Thr	Ser	Gln	Phe 60	Tyr	His	Leu	Phe
Leu 65	His	Gly	Asn	Ser	Leu 70	Thr	Arg	Leu	Phe	Pro 75	Asn	Glu	Phe	Ala	Asn 80
Phe	Tyr	Asn	Ala	Val 85	Ser	Leu	His	Met	Glu 90	Asn	Asn	Gly	Leu	His 95	Glu
Ile	Val	Pro	Gly 100	Ala	Phe	Leu	Gly	Leu 105	Gln	Leu	Val	Lys	Arg 110	Leu	His
Ile	Asn	Asn 115	Asn	Lys	Ile	Lys	Ser 120	Phe	Arg	Lys	Gln	Thr 125	Phe	Leu	Gly
Leu	Asp 130	Asp	Leu	Glu	Tyr	Leu 135	Gln	Ala	Asp	Phe	Asn 140	Leu	Leu	Arg	Asp
Ile 145	Asp	Pro	Gly	Ala	Phe 150	Gln	Asp	Leu	Asn	Lys 155	Leu	Glu	Val	Leu	Ile 160
Leu	Asn	Asp	Asn	Leu 165	Ile	Ser	Thr	Leu	Pro 170	Ala	Asn	Val	Phe	Gln 175	Tyr
Val	Pro	Ile	Thr 180	His	Leu	Asp	Leu	Arg 185	Gly	Asn	Arg	Leu	Lys 190	Thr	Leu
Pro	Tyr	Glu 195	Glu	Val	Leu	Glu	Gln 200	Ile	Pro	Gly	Ile	Ala 205	Glu	Ile	Leu
Leu	Glu 210	Asp	Asn	Pro	Trp	Asp 215	Cys	Thr	Cys	Asp	Leu 220	Leu	Ser	Leu	Lys
Glu 225	Trp	Leu	Glu	Asn	Ile 230	Pro	Lys	Asn	Ala	Leu 235	Ile	Gly	Arg	Val	Val 240
Cys	Glu	Ala	Pro	Thr 245	Arg	Leu	Gln	Gly	Lys 250	Asp	Leu	Asn	Glu	Thr 255	Thr
Glu	Gln	Asp	Leu 260	Cys	Pro	Leu	Lys	Asn 265	Arg	Val	Asp	Ser	Ser 270	Leu	Pro
Ala	Pro	Pro 275	Ala	Gln	Glu	Glu	Thr 280	Phe	Ala	Pro	Gly	Pro 285	Leu	Pro	Thr
Pro	Phe 290	Lys	Thr	Asn	Gly	Gln 295	Glu	Asp	His	Ala	Thr 300	Pro	Gly	Ser	Ala

Pro 305	Asn	Gly	Gly	Thr	Lys 310	Ile	Pro	Gly	Asn	Trp 315	Gln	Ile	Lys	Ile	Arg 320
Pro	Thr	Ala	Ala	Ile 325	Ala	Thr	Gly	Ser	Ser 330	Arg	Asn	Lys	Pro	Leu 335	Ala
Asn	Ser	Leu	Pro 340	Cys	Pro	Gly	Gly	Cys 345	Ser	Cys	Asp	His	Ile 350	Pro	Gly
Ser	Gly	Leu 355	Lys	Met	Asn	Cys	Asn 360	Asn	Arg	Asn	Val	Ser 365	Ser	Leu	Ala
Asp	Leu 370	Lys	Pro	Lys	Leu	Ser 375	Asn	Val	Gln	Glu	Leu 380	Phe	Leu	Arg	Asp
Asn 385	Lys	Ile	His	Ser	Ile 390	Arg	Lys	Ser	His	Phe 395	Val	Asp	Tyr	Lys	Asn 400
Leu	Ile	Leu	Leu	Asp 405	Leu	Gly	Asn	Asn	Asn 410	Ile	Ala	Thr	Val	Glu 415	Asn
Asn	Thr	Phe	Lys 420	Asn	Leu	Leu	Asp	Leu 425	Arg	Trp	Leu	Tyr	Met 430	Asp	Ser
Asn	Tyr	Leu 435	Asp	Thr	Leu	Ser	Arg 440	Glu	Lys	Phe	Ala	Gly 445	Leu	Gln	Asn
Leu	Glu 450	Tyr	Leu	Asn	Val	Glu 455	Tyr	Asn	Ala	Ile	Gln 460	Leu	Ile	Leu	Pro
Gly 465	Thr	Phe	Asn	Ala	Met 470	Pro	Lys	Leu	Arg	Ile 475	Leu	Ile	Leu	Asn	Asn 480
Asn	Leu	Leu	Arg	Ser 485	Leu	Pro	Val	Asp	Val 490	Phe	Ala	Gly	Val	Ser 495	Leu
Ser	Lys	Leu	Ser 500	Leu	His	Asn	Asn	Tyr 505	Phe	Met	Tyr	Leu	Pro 510	Val	Ala
Gly	Val	Leu 515	Asp	Gln	Leu	Thr	Ser 520	Ile	Ile	Gln	Ile	Asp 525	Leu	His	Gly
Asn	Pro 530	Trp	Glu	Cys	Ser	Cys 535	Thr	Ile	Val	Pro	Phe 540	Lys	Gln	Trp	Ala
Glu 545	Arg	Leu	Gly	Ser	Glu 550	Val	Leu	Met	Ser	Asp 555	Leu	Lys	Cys	Glu	Thr 560
Pro	Val	Asn	Phe	Phe 565	Arg	Lys	Asp	Phe	Met 570	Leu	Leu	Ser	Asn	Asp 575	Glu
Ile	Cys	Pro	Gln 580	Leu	Tyr	Ala	Arg	Ile 585	Ser	Pro	Thr	Leu	Thr 590	Ser	His
Ser	Lys	Asn 595	Ser	Thr	Gly	Leu	Ala 600	Glu	Thr	Gly	Thr	His 605	Ser	Asn	Ser

```
Tyr Leu Asp Thr Ser Arg Val Ser Ile Ser Val Leu Val Pro Gly Leu
    610
                        615
Leu Leu Val Phe Val Thr Ser Ala Phe Thr Val Val Gly Met Leu Val
                    630
                                         635
Phe Ile Leu Arg Asn Arg Lys Arg Ser Lys Arg Arg Asp Ala Asn Ser
Ser Ala Ser Glu Ile Asn Ser Leu Gln Thr Val Cys Asp Ser Ser Tyr
            660
                                 665
Trp His Asn Gly Pro Tyr Asn Ala Asp Gly Ala His Arg Val Tyr Asp
                            680
Cys Gly Ser His Ser Leu Ser Asp
<210> 92
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 92
gttggatctg ggcaacaata ac
                                                                   22
<210> 93
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 93
attgttgtgc aggctgagtt taag
                                                                   24
<210> 94
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
                                                                   45
ggtggctata catggatagc aattacctgg acacgctgtc ccggg
<210> 95
<211> 2226
<212> DNA
```

```
<400> 95
agtcgactgc gtcccctgta cccggcgcca gctgtgttcc tgaccccaga ataactcagg 60
gctgcaccgg gcctggcagc gctccgcaca catttcctgt cgcggcctaa gggaaactgt 120
tggccgctgg gcccgcgggg ggattcttgg cagttggggg gtccgtcggg agcgagggcg 180
gaggggaagg gagggggaac cgggttgggg aagccagctg tagagggcgg tgaccgcgct 240
ccagacacag ctctgcgtcc tcgagcggga cagatccaag ttgggagcag ctctgcgtgc 300
ggggcctcag agaatgaggc cggcgttcgc cctgtgcctc ctctggcagg cgctctggcc 360
cgggccgggc ggcggcgaac accccactgc cgaccgtgct ggctgctcgg cctcgggggc 420
ctgctacagc ctgcaccacg ctaccatgaa gcggcaggcg gccgaggagg cctgcatcct 480
gcgaggtggg gcgctcagca ccgtgcgtgc gggcgccgag ctgcgcgctg tgctcgcgct 540
cctgcgggca ggcccagggc ccggaggggg ctccaaagac ctgctgttct gggtcgcact 600
ggagcgcagg cgttcccact gcaccctgga gaacgagcct ttgcggggtt tctcctggct 660
gtcctccgac cccggcggtc tcgaaagcga cacgctgcag tgggtggagg agccccaacg 720
ctcctgcacc gcgcggagat gcgcggtact ccaggccacc ggtggggtcg agcccgcagg 780
ctggaaggag atgcgatgcc acctgcgcgc caacggctac ctgtgcaagt accagtttga 840
ggtcttgtgt cctgcgccgc gccccggggc cgcctctaac ttgagctatc gcgcgccctt 900
ccagctgcac agcgccgctc tggacttcag tccacctggg accgaggtga gtgcgctctg 960
ccggggacag ctcccgatct cagttacttg catcgcggac gaaatcggcg ctcgctggga 1020
caaactctcg ggcgatgtgt tgtgtccctg ccccgggagg tacctccgtg ctggcaaatg 1080
cgcagagete ectaactgee tagacgaett gggaggettt geetgegaat gtgetaeggg 1140
cttcgagctg gggaaggacg gccgctcttg tgtgaccagt ggggaaggac agccgaccct 1200
tggggggacc ggggtgccca ccaggcgccc gccggccact gcaaccagcc ccgtgccgca 1260
gagaacatgg ccaatcaggg tcgacgagaa gctgggagag acaccacttg tccctgaaca 1320
agacaattca gtaacatcta ttcctgagat tcctcgatgg ggatcacaga gcacgatgtc 1380
taccetteaa atgteeette aageegagte aaaggeeact ateaceeeat cagggagegt 1440
gatttccaag tttaattcta cgacttcctc tgccactcct caggetttcg actcctcctc 1500
tgccgtggtc ttcatatttg tgagcacagc agtagtagtg ttggtgatct tgaccatgac 1560
agtactgggg cttgtcaagc tctgctttca cgaaagcccc tcttcccagc caaggaagga 1620
gtctatgggc ccgccgggcc tggagagtga tcctgagccc gctgctttgg gctccagttc 1680
tgcacattgc acaaacaatg gggtgaaagt cggggactgt gatctgcggg acagagcaga 1740
gggtgccttg ctggcggagt cccctcttgg ctctagtgat gcatagggaa acaggggaca 1800
tgggcactcc tgtgaacagt ttttcacttt tgatgaaacg gggaaccaag aggaacttac 1860
ttgtgtaact gacaatttct gcagaaatcc cccttcctct aaattccctt tactccactg 1920
aggagetaaa teagaactge acaeteette eetgatgata gaggaagtgg aagtgeettt 1980
aggatggtga tactggggga ccgggtagtg ctggggagag atattttctt atgtttattc 2040
ggagaatttg gagaagtgat tgaacttttc aagacattgg aaacaaatag aacacaatat 2100
aatttacatt aaaaaataat ttctaccaaa atggaaagga aatgttctat gttgttcagg 2160
ctaggagtat attggttcga aatcccaggg aaaaaaataa aaataaaaaa ttaaaggatt 2220
                                                                   2226
gttgat
<210> 96
<211> 490
<212> PRT
<213> Homo sapiens
<400> 96
Met Arg Pro Ala Phe Ala Leu Cys Leu Leu Trp Gln Ala Leu Trp Pro
Gly Pro Gly Gly Gly Glu His Pro Thr Ala Asp Arg Ala Gly Cys Ser
                                 25
             20
Ala Ser Gly Ala Cys Tyr Ser Leu His His Ala Thr Met Lys Arg Gln
                                                 45
         35
```

Ala	Ala 50	Glu	Glu	Ala	Cys	Ile 55	Leu	Arg	Gly	Gly	Ala 60	Leu	Ser	Thr	Val
Arg 65	Ala	Gly	Ala	Glu	Leu 70	Arg	Ala	Val	Leu	Ala 75	Leu	Leu	Arg	Ala	Gly 80
Pro	Gly	Pro	Gly	Gly 85	Gly	Ser	Lys	Asp	Leu 90	Leu	Phe	Trp	Val	Ala 95	Leu
Glu	Arg	Arg	Arg 100	Ser	His	Cys	Thr	Leu 105	Glu	Asn	Glu	Pro	Leu 110	Arg	Gly
Phe	Ser	Trp 115	Leu	Ser	Ser	Asp	Pro 120	Gly	Gly	Leu	Glu	Ser 125	Asp	Thr	Leu
Gln	Trp 130	Val	Glu	Glu	Pro	Gln 135	Arg	Ser	Суѕ	Thr	Ala 140	Arg	Arg	Cys	Ala
Val 145	Leu	Gln	Ala	Thr	Gly 150	Gly	Val	Glu	Pro	Ala 155	Gly	Trp	Lys	Glu	Met 160
Arg	Cys	His	Leu	Arg 165	Ala	Asn	Gly	Tyr	Leu 170	Cys	Lys	Tyr	Gln	Phe 175	Glu
Val	Leu	Cys	Pro 180	Ala	Pro	Arg	Pro	Gly 185	Ala	Ala	Ser	Asn	Leu 190	Ser	Tyr
Arg	Ala	Pro 195	Phe	Gln	Leu	His	Ser 200	Ala	Ala	Leu	Asp	Phe 205	Ser	Pro	Pro
Gly	Thr 210	Glu	Val	Ser	Ala	Leu 215	Cys	Arg	Gly	Gln	Leu 220	Pro	Ile	Ser	Val
Thr 225	Cys	Ile	Ala	Asp	Glu 230	Ile	Gly	Ala	Arg	Trp 235	Asp	Lys	Leu	Ser	Gly 240
Asp	Val	Leu	Cys	Pro 245	Cys	Pro	Gly	Arg	Tyr 250	Leu	Arg	Ala	Gly	Lys 255	Cys
Ala	Glu	Leu	Pro 260	Asn	Cys	Leu	Asp	Asp 265	Leu	Gly	Gly	Phe	Ala 270	Суѕ	Glu
Суѕ	Ala	Thr 275	Gly	Phe	Glu	Leu	Gly 280	Lys	Asp	Gly	Arg	Ser 285	Cys	Val	Thr
Ser	Gly 290	Glu	Gly	Gln	Pro	Thr 295	Leu	Gly	Gly	Thr	Gly 300	Val	Pro	Thr	Arg
Arg 305	Pro	Pro	Ala	Thr	Ala 310	Thr	Ser	Pro	Val	Pro 315	Gln	Arg	Thr	Trp	Pro 320
Ile	Arg	Val	Asp	Glu 325	Lys	Leu	Gly	Glu	Thr 330	Pro	Leu	Val	Pro	Glu 335	Gln
Asp	Asn	Ser	Val 340	Thr	Ser	Ile	Pro	Glu 345	Ile	Pro	Arg	Trp	Gly 350	Ser	Gln

Ser Thr Met Ser Thr Leu Gln Met Ser Leu Gln Ala Glu Ser Lys Ala 355 Thr Ile Thr Pro Ser Gly Ser Val Ile Ser Lys Phe Asn Ser Thr Thr 380 375 Ser Ser Ala Thr Pro Gln Ala Phe Asp Ser Ser Ser Ala Val Val Phe 395 390 Ile Phe Val Ser Thr Ala Val Val Leu Val Ile Leu Thr Met Thr 410 405 Val Leu Gly Leu Val Lys Leu Cys Phe His Glu Ser Pro Ser Ser Gln 425 Pro Arg Lys Glu Ser Met Gly Pro Pro Gly Leu Glu Ser Asp Pro Glu 435 440 Pro Ala Ala Leu Gly Ser Ser Ser Ala His Cys Thr Asn Asn Gly Val 450 455 Lys Val Gly Asp Cys Asp Leu Arg Asp Arg Ala Glu Gly Ala Leu Leu 475 470 Ala Glu Ser Pro Leu Gly Ser Ser Asp Ala 485 490 <210> 97 <211> 24 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 97 24 tggaaggaga tgcgatgcca cctg <210> 98 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 98 20 tgaccagtgg ggaaggacag <210> 99 <211> 20 <212> DNA <213> Artificial Sequence <220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 99 20 acagagcaga gggtgccttg <210> 100 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 100 24 tcagggacaa gtggtgtctc tccc <210> 101 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 101 24 tcagggaagg agtgtgcagt tctg <210> 102 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 102 50 acageteceg ateteagtta ettgeatege ggacgaaate ggegeteget <210> 103 <211> 2026 <212> DNA <213> Homo sapiens <400> 103 cggacgcgtg ggattcagca gtggcctgtg gctgccagag cagctcctca ggggaaacta 60 agcgtcgagt cagacggcac cataatcgcc tttaaaagtg cctccgccct gccggccgcg 120 tatececegg etacetggge egeceegegg eggtgegege gtgagaggga gegegeggge 180 agecqaqcqc cqqtqtqaqc cagcqctqct qccagtqtqa gcggcggtqt gagcgcggttg 240 ggtgcggagg ggcgtgtgtg ccggcgcgcg cgccgtgggg tgcaaacccc gagcgtctac 300 qctqccatqa qqqqcqcaa cgcctgggcg ccactctgcc tgctgctggc tgccgccacc 360 caqctctcqc qqcaqcaqtc cccaqaqaqa cctqttttca catqtqgtqq cattcttact 420 ggagagtctg gatttattgg cagtgaaggt tttcctggag tgtaccctcc aaatagcaaa 480 tgtacttgga aaatcacagt tcccgaagga aaagtagtcg ttctcaattt ccgattcata 540

```
gacctcgaga gtgacaacct gtgccgctat gactttgtgg atgtgtacaa tggccatgcc 600
aatqqccaqc qcattqqccq cttctqtqqc actttccqqc ctgqaqccct tgtgtccagt 660
ggcaacaaga tgatggtgca gatgatttct gatgccaaca cagctggcaa tggcttcatg 720
qccatqttct ccgctgctga accaaacgaa agaggggatc agtattgtgg aggactcctt 780
qacaqacctt ccggctcttt taaaaccccc aactggccag accgggatta ccctgcagga 840
gtcacttgtg tgtggcacat tgtagcccca aagaatcagc ttatagaatt aaagtttgag 900
aagtttgatg tggagcgaga taactactgc cgatatgatt atgtggctgt gtttaatggc 960
ggggaagtca acgatgctag aagaattgga aagtattgtg gtgatagtcc acctgcgcca 1020
attgtgtctg agagaaatga acttcttatt cagtttttat cagacttaag tttaactgca 1080
gatgggttta ttggtcacta catattcagg ccaaaaaaac tgcctacaac tacagaacag 1140
cctqtcacca ccacattccc tgtaaccacg ggtttaaaac ccaccgtggc cttgtgtcaa 1200
caaaagtgta gacggacggg gactctggag ggcaattatt gttcaagtga ctttgtatta 1260
qccqqcactq ttatcacaac catcactcgc gatgggagtt tgcacgccac agtctcgatc 1320
atcaacatct acaaagaggg aaatttggcg attcagcagg cgggcaagaa catgagtgcc 1380
aggetgaetg tegtetgeaa geagtgeeet eteeteagaa gaggtetaaa ttacattatt 1440
atgggccaag taggtgaaga tgggcgaggc aaaatcatgc caaacagctt tatcatgatg 1500
ttcaagacca agaatcagaa gctcctggat gccttaaaaa ataagcaatg ttaacagtga 1560
actgtgtcca tttaagctgt attctgccat tgcctttgaa agatctatgt tctctcagta 1620
gaaaaaaaaa tacttataaa attacatatt ctgaaagagg attccgaaag atgggactgg 1680
ttgactette acatgatgga ggtatgagge etcegagata getgagggaa gttetttgee 1740
tgctgtcaga ggagcagcta tctgattgga aacctgccga cttagtgcgg tgataggaag 1800
ctaaaagtgt caagcgttga cagcttggaa gcgtttattt atacatctct gtaaaaggat 1860
attttagaat tgagttgtgt gaagatgtca aaaaaagatt ttagaagtgc aatatttata 1920
gtgttatttg tttcaccttc aagcctttgc cctgaggtgt tacaatcttg tcttgcgttt 1980
tctaaatcaa tgcttaataa aatatttta aaggaaaaaa aaaaaa
<210> 104
<211> 415
<212> PRT
<213> Homo sapiens
<400> 104
Met Arg Gly Ala Asn Ala Trp Ala Pro Leu Cys Leu Leu Leu Ala Ala
                                     10
Ala Thr Gln Leu Ser Arg Gln Gln Ser Pro Glu Arg Pro Val Phe Thr
             20
                                 25
Cys Gly Gly Ile Leu Thr Gly Glu Ser Gly Phe Ile Gly Ser Glu Gly
Phe Pro Gly Val Tyr Pro Pro Asn Ser Lys Cys Thr Trp Lys Ile Thr
Val Pro Glu Gly Lys Val Val Leu Asn Phe Arg Phe Ile Asp Leu
Glu Ser Asp Asn Leu Cys Arg Tyr Asp Phe Val Asp Val Tyr Asn Gly
                 85
His Ala Asn Gly Gln Arg Ile Gly Arg Phe Cys Gly Thr Phe Arg Pro
            100
Gly Ala Leu Val Ser Ser Gly Asn Lys Met Met Val Gln Met Ile Ser
                            120
```

Asp Ala Asn Thr Ala Gly Asn Gly Phe Met Ala Met Phe Ser Ala Ala

130 135 140

Glu 145	Pro	Asn	Glu	Arg	Gly 150	Asp	Gln	Tyr	Cys	Gly 155	Gly	Leu	Leu	Asp	Arg 160
Pro	Ser	Gly	Ser	Phe 165	Lys	Thr	Pro	Asn	Trp 170	Pro	Asp	Arg	Asp	Tyr 175	Pro
Ala	Gly	Val	Thr 180	Cys	Val	Trp	His	Ile 185	Val	Ala	Pro	Lys	Asn 190	Gln	Leu
Ile	Glu	Leu 195	Lys	Phe	Glu	Lys	Phe 200	Asp	Val	Glu	Arg	Asp 205	Asn	Tyr	Cys
Arg	Tyr 210	Asp	Tyr	Val	Ala	Val 215	Phe	Asn	Gly	Gly	Glu 220	Val	Asn	Asp	Ala
Arg 225	Arg	Ile	Gly	Lys	Tyr 230	Cys	Gly	Asp	Ser	Pro 235	Pro	Ala	Pro	Ile	Val 240
Ser	Glu	Arg	Asn	Glu 245	Leu	Leu	Ile	Gln	Phe 250	Leu	Ser	Asp	Leu	Ser 255	Leu
Thr	Ala	Asp	Gly 260	Phe	Ile	Gly	His	Tyr 265	Ile	Phe	Arg	Pro	Lys 270	Lys	Leu
Pro	Thr	Thr 275	Thr	Glu	Gln	Pro	Val 280	Thr	Thr	Thr	Phe	Pro 285	Val	Thr	Thr
Gly	Leu 290	Lys	Pro	Thr	Val	Ala 295	Leu	Cys	Gln	Gln	Lys 300	Cys	Arg	Arg	Thr
Gly 305	Thr	Leu	Glu	Gly	Asn 310	Tyr	Cys	Ser	Ser	Asp 315	Phe	Val	Leu	Ala	Gly 320
Thr	Val	Ile	Thr	Thr 325	Ile	Thr	Arg	Asp	Gly 330	Ser	Leu	His	Ala	Thr 335	Val
Ser	Ile	Ile	Asn 340	Ile	Tyr	Lys	Glu	Gly 345	Asn	Leu	Ala	Ile	Gln 350	Gln	Ala
Gly	Lys	Asn 355	Met	Ser	Ala	Arg	Leu 360	Thr	Val	Val	Cys	Lys 365	Gln	Cys	Pro
Leu	Leu 370	Arg	Arg	Gly	Leu	Asn 375	Tyr	Ile	Ile	Met	Gly 380	Gln	Val	Gly	Glu
Asp 385	Gly	Arg	Gly	Lys	Ile 390	Met	Pro	Asn	Ser	Phe 395	Ile	Met	Met	Phe	Lys 400
Thr	Lys	Asn	Gln	Lys 405	Leu	Leu	Asp	Ala	Leu 410	Lys	Asn	Lys	Gln	Cys 415	

<210> 105

<211> 22

<212> DNA

<213> Artificial Sequence

```
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 105
                                                                   22
ccgattcata gacctcgaga gt
<210> 106
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 106
                                                                   22
gtcaaggagt cctccacaat ac
<210> 107
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 107
gtgtacaatg gccatgccaa tggccagcgc attggccgct tctgt
                                                                   45
<210> 108
<211> 1838
<212> DNA
<213> Homo sapiens
<400> 108
cggacgcgtg ggcggacgcg tgggcgccc acggcgcccg cgggctgggg cggtcgcttc 60
tteettetee gtggeetaeg agggteecea geetgggtaa agatggeece atggeeceeg 120
aagggeetag teecagetgt getetgggge eteageetet teeteaacet eceaggaeet 180
atotgqctcc agccctctcc acctccccag tottctcccc cgcctcagcc ccatccgtgt 240
catacctgcc ggggactggt tgacagcttt aacaagggcc tggagagaac catccgggac 300
aactttggag gtggaaacac tgcctgggag gaagagaatt tgtccaaata caaagacagt 360
gagacccqcc tqqtaqaqqt qctqqaqqqt qtqtqcaqca aqtcaqactt cqaqtqccac 420
cqcctqctqq aqctqagtga ggagctggtg gagagctggt ggtttcacaa gcagcaggag 480
gccccqqacc tettccaqtq gctgtgctca gattccctga agctctgctg ccccgcaggc 540
acctteggge ecteetgeet teeetgteet gggggaacag agaggeeetg eggtggetae 600
qqqcaqtqtq aaqqaqaaqq qacacqaqqq qqcaqcqqqc actqtqactq ccaaqccqqc 660
tacgggggtg aggcctgtgg ccagtgtggc cttggctact ttgaggcaga acgcaacgcc 720
agccatctgg tatgttcggc ttgttttggc ccctgtgccc gatgctcagg acctgaggaa 780
tcaaactgtt tgcaatgcaa gaagggctgg gccctgcatc acctcaagtg tgtagacatt 840
gatgagtgtg gcacagaggg agccaactgt ggagctgacc aattctgcgt gaacactgag 900
ggctcctatg agtgccgaga ctgtgccaag gcctgcctag gctgcatggg ggcagggcca 960
ggtcgctgta agaagtgtag ccctggctat cagcaggtgg gctccaagtg tctcgatgtg 1020
gatgagtgtg agacagaggt gtgtccggga gagaacaagc agtgtgaaaa caccgagggc 1080
ggttatcgct gcatctgtgc cgagggctac aagcagatgg aaggcatctg tgtgaaggag 1140
```

```
cagatcccag agtcagcagg cttcttctca gagatgacag aagacgagtt ggtggtgctg 1200
cagcagatgt tctttggcat catcatctgt gcactggcca cgctggctqc taaqqqcqac 1260
ttggtgttca ccgccatctt cattggggct gtggcggcca tgactggcta ctgqttqtca 1320
gagcgcagtg accgtgtgct ggagggcttc atcaagggca gataatcgcg gccaccacct 1380
gtaggacete eteceaceca egetgeeece agagettggg etgeceteet getggacact 1440
caggacaget tggtttattt ttgagagtgg ggtaageace cetacetqee ttacagagea 1500
gcccaggtac ccaggcccgg gcagacaagg cccctggggt aaaaagtagc cctgaaqqtg 1560
gataccatga gctcttcacc tggcggggac tggcaggctt cacaatgtgt gaatttcaaa 1620
agtttttcct taatggtggc tgctagagct ttggcccctg cttaggatta ggtggtcctc 1680
acaggggtgg ggccatcaca gctccctcct gccagctgca tgctgccagt tcctgttctg 1740
tgttcaccac atccccacac cccattgcca cttatttatt catctcagga aataaagaaa 1800
ggtcttggaa agttaaaaaa aaaaaaaaa aaaaaaaa
<210> 109
<211> 420
<212> PRT
<213> Homo sapiens
<400> 109
Met Ala Pro Trp Pro Pro Lys Gly Leu Val Pro Ala Val Leu Trp Gly
Leu Ser Leu Phe Leu Asn Leu Pro Gly Pro Ile Trp Leu Gln Pro Ser
                                 25
Pro Pro Pro Gln Ser Ser Pro Pro Pro Gln Pro His Pro Cys His Thr
                             40
Cys Arg Gly Leu Val Asp Ser Phe Asn Lys Gly Leu Glu Arg Thr Ile
Arg Asp Asn Phe Gly Gly Gly Asn Thr Ala Trp Glu Glu Glu Asn Leu
Ser Lys Tyr Lys Asp Ser Glu Thr Arg Leu Val Glu Val Leu Glu Gly
                                     90
Val Cys Ser Lys Ser Asp Phe Glu Cys His Arg Leu Leu Glu Leu Ser
Glu Glu Leu Val Glu Ser Trp Trp Phe His Lys Gln Gln Glu Ala Pro
                            120
Asp Leu Phe Gln Trp Leu Cys Ser Asp Ser Leu Lys Leu Cys Cys Pro
    130
                        135
Ala Gly Thr Phe Gly Pro Ser Cys Leu Pro Cys Pro Gly Gly Thr Glu
                    150
                                        155
Arg Pro Cys Gly Gly Tyr Gly Gln Cys Glu Gly Glu Gly Thr Arg Gly
                                    170
Gly Ser Gly His Cys Asp Cys Gln Ala Gly Tyr Gly Glu Ala Cys
Gly Gln Cys Gly Leu Gly Tyr Phe Glu Ala Glu Arg Asn Ala Ser His
        195
                            200
                                                205
```

Leu Val Cys Ser Ala Cys Phe Gly Pro Cys Ala Arg Cys Ser Gly Pro 210 215 220

Glu Glu Ser Asn Cys Leu Gln Cys Lys Lys Gly Trp Ala Leu His His 225 230 235 240

Leu Lys Cys Val Asp Ile Asp Glu Cys Gly Thr Glu Gly Ala Asn Cys 245 250 255

Gly Ala Asp Gln Phe Cys Val Asn Thr Glu Gly Ser Tyr Glu Cys Arg 260 265 270

Asp Cys Ala Lys Ala Cys Leu Gly Cys Met Gly Ala Gly Pro Gly Arg 275 280 285

Cys Lys Lys Cys Ser Pro Gly Tyr Gln Gln Val Gly Ser Lys Cys Leu 290 295 300

Asp Val Asp Glu Cys Glu Thr Glu Val Cys Pro Gly Glu Asn Lys Gln 305 310 315 320

Cys Glu Asn Thr Glu Gly Gly Tyr Arg Cys Ile Cys Ala Glu Gly Tyr 325 330 335

Lys Gln Met Glu Gly Ile Cys Val Lys Glu Gln Ile Pro Glu Ser Ala 340 345 350

Gly Phe Phe Ser Glu Met Thr Glu Asp Glu Leu Val Val Leu Gln Gln 355 360 365

Met Phe Phe Gly Ile Ile Ile Cys Ala Leu Ala Thr Leu Ala Ala Lys 370 375 380

Gly Asp Leu Val Phe Thr Ala Ile Phe Ile Gly Ala Val Ala Ala Met 385 390 395 400

Thr Gly Tyr Trp Leu Ser Glu Arg Ser Asp Arg Val Leu Glu Gly Phe 405 410 415

Ile Lys Gly Arg 420

<210> 110

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 110

cctggctatc agcaggtggg ctccaagtgt ctcgatgtgg atgagtgtga

50

<210> 111

<211> 22

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 111
attctgcgtg aacactgagg gc
                                                                 22
<210> 112
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 112
atctgcttgt agccctcggc ac
                                                                 22
<210> 113
<211> 1616
<212> DNA
<213> Homo sapiens
<220>
<221> modified base
<222> (1461)..(1461)
<223> a, t, c or g
<400> 113
tgagaccete etgeageett eteaagggae ageeceacte tgeetettge teeteeaggg 60
cagcaccatg cagcccctgt ggctctgctg ggcactctgg gtgttgcccc tggccagccc 120
cggggccgcc ctgaccgggg agcagctct gggcagcctg ctgcggcagc tgcagctcaa 180
agaggtgccc accetggaca gggccgacat ggaggagetg gtcatcccca cccacgtgag 240
ggcccagtac gtggccctgc tgcagcgcag ccacggggac cgctcccgcg gaaagaggtt 300
cagccagage ttccgagagg tggccggcag gttcctggcg ttggaggcca gcacacacct 360
gctggtgttc ggcatggagc agcggctgcc gcccaacagc gagctggtgc aggccgtgct 420
gcggctcttc caggagccgg tccccaaggc cgcgctgcac aggcacgggc ggctgtcccc 480
gcgcagcgcc cgggcccggg tgaccgtcga gtggctgcgc gtccgcgacg acggctccaa 540
ccgcacctcc ctcatcgact ccaggetggt gtccgtccac gagageggct ggaaggcctt 600
cgacgtgacc gaggccgtga acttctggca gcagctgagc cggccccggc agccgctgct 660
gctacaggtg tcggtgcaga gggagcatct gggcccgctg gcgtccggcg cccacaagct 720
ggtccgcttt gcctcgcagg gggcgccagc cgggcttggg gagccccagc tggagctgca 780
caccetggae ettggggaet atggagetea gggegaetgt gaeeetgaag caccaatgae 840
cgagggcacc cgctgctgcc gccaggagat gtacattgac ctgcagggga tgaagtgqqc 900
cgagaactgg gtgctggagc ccccgggctt cctggcttat gagtgtgtgg gcacctgccg 960
gcagcccccg gaggccctgg ccttcaagtg gccgtttctg gggcctcgac agtgcatcgc 1020
ctcggagact gactcgctgc ccatgatcgt cagcatcaag gagggaggca ggaccaggcc 1080
ccaggtggtc agcctgccca acatgagggt gcagaagtgc agctgtgcct cggatggtgc 1140
gtgtgtgttt ctgaagtgtt cgagggtacc aggagagctg gcgatgactg aactgctgat 1260
ggacaaatgc tctgtgctct ctagtgagcc ctgaatttgc ttcctctgac aagttacctc 1320
acctaatttt tgcttctcag gaatgagaat ctttggccac tggagagccc ttgctcagtt 1380
ttctctattc ttattattca ctgcactata ttctaagcac ttacatgtgg agatactgta 1440
```

aaa	agtco	ctcc	acca	agec accac aaga	tc t	ggac	ctaa	g ac	cctgc	gggtt	aac	gtata	ıaat	tata	tgggct catccc aa	15 15 16
<21 <21	10> 1 11> 3 12> E 13> H	366	sapi	ens.												
	00> 1 : Gln		Leu	Trp		Cys	Trp	Ala	Leu 10		Val	Leu	Pro	Leu 15	Ala	
Ser	Pro	Gly	Ala 20	Ala	Leu	Thr	Gly	Glu 25		Leu	Leu	Gly	Ser 30		Leu	
Arg	Gln	Leu 35	Gln	Leu	Lys	Glu	Val 40	Pro	Thr	Leu	Asp	Arg 45	Ala	Asp	Met	
Glu	Glu 50	Leu	Val	Ile	Pro	Thr 55	His	Val	Arg	Ala	Gln 60		Val	Ala	Leu	
Leu 65	Gln	Arg	Ser	His	Gly 70	Asp	Arg	Ser	Arg	Gly 75		Arg	Phe	Ser	Gln 80	
Ser	Phe	Arg	Glu	Val 85	Ala	Gly	Arg	Phe	Leu 90		Leu	Glu	Ala	Ser 95	Thr	
His	Leu	Leu	Val 100	Phe	Gly	Met	Glu	Gln 105	Arg	Leu	Pro	Pro	Asn 110	Ser	Glu	
Leu	Val	Gln 115	Ala	Val	Leu	Arg	Leu 120	Phe	Gln	Glu	Pro	Val 125	Pro	Lys	Ala	
Ala	Leu 130	His	Arg	His	Gly	Arg 135	Leu	Ser	Pro	Arg	Ser 140	Ala	Arg	Ala	Arg	
Val 145	Thr	Val	Glu	Trp	Leu 150	Arg	Val	Arg	Asp	Asp 155	Gly	Ser	Asn	Arg	Thr 160	
Ser	Leu	Ile	Asp	Ser 165	Arg	Leu	Val	Ser	Val 170	His	Glu	Ser	Gly	Trp 175	Lys	
Ala	Phe	Asp	Val 180	Thr	Glu	Ala	Val	Asn 185	Phe	Trp	Gln	Gln	Leu 190	Ser	Arg	
Pro	Arg	Gln 195	Pro	Leu	Leu	Leu	Gln 200	Val	Ser	Val	Gln	Arg 205	Glu	His	Leu	
Gly	Pro 210	Leu	Ala	Ser	Gly	Ala 215	His	Lys	Leu	Val	Arg 220	Phe	Ala	Ser	Gln	
Gly 225	Ala	Pro	Ala	Gly	Leu 230	Gly	Glu	Pro	Gln	Leu 235	Glu	Leu	His		Leu 240	
Asp	Leu	Gly	Asp	Tyr 245	Gly	Ala	Gln	Gly	Asp 250	Cys	Asp	Pro	Glu	Ala 255	Pro	

Met	Thr	Glu	Gly 260	Thr	Arg	Cys	Cys	Arg 265	Gln	Glu	Met	Tyr	Ile 270	Asp	Leu		
Gln	Gly	Met 275	Lys	Trp	Ala	Glu	Asn 280	Trp	Val	Leu	Glu	Pro 285	Pro	Gly	Phe		
Leu	Ala 290	Tyr	Glu	Cys	Val	Gly 295	Thr	Cys	Arg	Gln	Pro 300	Pro	Glu	Ala	Leu		
Ala 305	Phe	Lys	Trp	Pro	Phe 310	Leu	Gly	Pro	Arg	Gln 315	Суѕ	Ile	Ala	Ser	Glu 320		
Thr	Asp	Ser	Leu	Pro 325	Met	Ile	Val	Ser	Ile 330	Lys	Glu	Gly	Gly	Arg 335	Thr		
Arg	Pro	Gln	Val 340	Val	Ser	Leu	Pro	Asn 345	Met	Arg	Val	Gln	Lys 350	Cys	Ser		
Cys	Ala	Ser 355	Asp	Gly	Ala	Leu	Val 360	Pro	Arg	Arg	Leu	Gln 365	Pro				
<211 <212)> 11 .> 21 !> DN !> Ar	IA	cial	l Sec	quenc	:e											
<220 <223	> De			on of			ial	Sequ	ience	e: Sy	nthe	etic					
	> 11		aact	tgcc	t g											21	
<211 <212	> 11 > 22 > DN > Ar	! IA	.cial	. Sec	luenc	:e											
<220 <223	> De			on of			ial	Sequ	ence	e: Sy	nthe	etic					
	> 11 gagt		agca	igege	t gc											22	
<211 <212	> 11 > 45 > DN > Ar	A	cial	. Seg	uenc	e											
<220 <223	> De			n of otid			ial	Sequ	ence	: Sy	nthe	tic					
	> 11 tgga		agac	gagt	q cc	gcta	ccqc	tac	tacc	agc	acco	c				45	

```
<211> 1857
<212> DNA
<213> Homo sapiens
<400> 118
qtctgttccc aggagtcctt cggcggctqt tqtqtcaqtq qcctqatcqc qatqqqaca 60
aaggcgcaag tcgagaggaa actgttgtgc ctcttcatat tggcgatcct gttgtgctcc 120
ctggcattgg gcagtgttac agtgcactct tctgaacctg aagtcagaat tcctgagaat 180
aatcctgtga agttgtcctg tgcctactcg ggcttttctt ctccccqtqt ggaqtqqaaq 240
tttgaccaag gagacaccac cagactcgtt tgctataata acaagatcac agcttcctat 300
gaggaccggg tgaccttctt gccaactggt atcaccttca agtccgtgac acgggaagac 360
actgggacat acacttgtat ggtctctgag gaaggcggca acagctatgg ggaggtcaag 420
gtcaagctca tcgtgcttgt gcctccatcc aagcctacag ttaacatccc ctcctctgcc 480
accattggga accgggcagt gctgacatgc tcagaacaag atggttcccc accttctgaa 540
tacacctggt tcaaagatgg gatagtgatg cctacgaatc ccaaaagcac ccgtgccttc 600
agcaactett cetatgteet gaateecaca acaggagage tggtetttga teceetqtea 660
qcctctgata ctggagaata cagctgtgag qcacggaatg qgtatgqgac acccatgact 720
tcaaatqctg tgcgcatgga agctgtggag cggaatgtgg gggtcatcgt ggcagccgtc 780
cttgtaaccc tgattctcct gggaatcttg gtttttggca tctggtttgc ctatagccga 840
ggccactttg acagaacaaa gaaagggact tcgagtaaga aggtgattta cagccagcct 900
agtgcccgaa gtgaaggaga attcaaacag acctcgtcat teetggtgtg agectggtcg 960
geteacegee tateatetge atttgeetta eteaggtget aceggaetet ggeecetgat 1020
gtctgtagtt tcacaggatg ccttatttgt cttctacacc ccacagggcc ccctacttct 1080
teggatgtgt ttttaataat gteagetatg tgeeceatee teetteatge eeteeeteee 1140
tttcctacca ctqctqaqtq qcctqqaact tqtttaaaqt qtttattccc catttctttq 1200
agggatcagg aaggaatcct gggtatgcca ttgacttccc ttctaagtag acagcaaaaa 1260
tggcgggggt cgcaggaatc tgcactcaac tgcccacctg gctggcaggg atctttgaat 1320
aggtatettg agettggtte tgggetettt cettgtgtae tgacgaccag ggccagetgt 1380
tctagagcgg gaattagagg ctagagcggc tgaaatggtt gtttggtgat gacactgggg 1440
teetteeate tetggggeee actetettet gtetteeeat gggaagtgee actgggatee 1500
ctctgccctg tcctcctgaa tacaagctga ctgacattga ctgtgtctgt ggaaaatggg 1560
agctcttgtt gtggagagca tagtaaattt tcagagaact tgaagccaaa aggatttaaa 1620
accgctgctc taaagaaaag aaaactggag gctgggcgca gtggctcacg cctgtaatcc 1680
cagaggetga ggcaggegga teacetgagg tegggagtte gggateagee tgaccaacat 1740
ggagaaaccc tactggaaat acaaagttag ccaggcatgg tggtgcatgc ctgtagtccc 1800
agctgctcag gagcctggca acaagagcaa aactccagct caaaaaaaaa aaaaaaa
                                                                  1857
<210> 119
<211> 299
<212> PRT
<213> Homo sapiens
<400> 119
Met Gly Thr Lys Ala Gln Val Glu Arg Lys Leu Cys Leu Phe Ile
Leu Ala Ile Leu Cys Ser Leu Ala Leu Gly Ser Val Thr Val His
                                 25
Ser Ser Glu Pro Glu Val Arg Ile Pro Glu Asn Asn Pro Val Lys Leu
         35
Ser Cys Ala Tyr Ser Gly Phe Ser Ser Pro Arg Val Glu Trp Lys Phe
                         55
```

<210> 118

Asp Gln Gly Asp Thr Thr Arg Leu Val Cys Tyr Asn Asn Lys Ile Thr 65 70 75 80

Ala Ser Tyr Glu Asp Arg Val Thr Phe Leu Pro Thr Gly Ile Thr Phe
85 90 95

Lys Ser Val Thr Arg Glu Asp Thr Gly Thr Tyr Thr Cys Met Val Ser 100 105 110

Glu Glu Gly Gly Asn Ser Tyr Gly Glu Val Lys Val Lys Leu Ile Val 115 120 125

Leu Val Pro Pro Ser Lys Pro Thr Val Asn Ile Pro Ser Ser Ala Thr 130 135 140

Ile Gly Asn Arg Ala Val Leu Thr Cys Ser Glu Gln Asp Gly Ser Pro145150155160

Pro Ser Glu Tyr Thr Trp Phe Lys Asp Gly Ile Val Met Pro Thr Asn 165 170 175

Pro Lys Ser Thr Arg Ala Phe Ser Asn Ser Ser Tyr Val Leu Asn Pro 180 185 190

Thr Thr Gly Glu Leu Val Phe Asp Pro Leu Ser Ala Ser Asp Thr Gly 195 200 205

Glu Tyr Ser Cys Glu Ala Arg Asn Gly Tyr Gly Thr Pro Met Thr Ser 210 215 220

Asn Ala Val Arg Met Glu Ala Val Glu Arg Asn Val Gly Val Ile Val 225 230 235 240

Ala Ala Val Leu Val Thr Leu Ile Leu Leu Gly Ile Leu Val Phe Gly 245 250 255

Ile Trp Phe Ala Tyr Ser Arg Gly His Phe Asp Arg Thr Lys Lys Gly 260 265 270

Thr Ser Ser Lys Lys Val Ile Tyr Ser Gln Pro Ser Ala Arg Ser Glu 275 280 285

Gly Glu Phe Lys Gln Thr Ser Ser Phe Leu Val 290 295

<210> 120

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<400> 120

tcgcggagct gtgttctgtt tccc

```
<210> 121
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 121
tgatcgcgat ggggacaaag gcgcaagctc gagaggaaac tgttgtgcct
                                                                    50
<210> 122
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 122
acacctggtt caaagatggg
                                                                    20
<210> 123
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 123
taggaagagt tgctgaaggc acgg
                                                                    24
<210> 124
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 124
ttgccttact caggtgctac
                                                                    20
<210> 125
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
```

```
<400> 125
actcagcagt ggtaggaaag
                                                                   20
<210> 126
<211> 1210
<212> DNA
<213> Homo sapiens
<400> 126
cagegegtgg eeggegeege tgtggggaea geatgagegg eggttggatg gegeaggttg 60
gagegtggeg aacagggget etgggeetgg egetgetget getgetegge eteggaetag 120
geetggagge egeegegage eegettteea eeeegacete tgeeeaggee geaggeeeea 180
geteaggete gtgcccacce accaagttee agtgccgcac cagtggetta tgcgtgcccc 240
tcacctggcg ctgcgacagg gacttggact gcagcgatgg cagcgatgag gaggagtgca 300
ggattgagec atgtacecag aaagggcaat geceaeegee eeetggeete eeetgeeeet 360
gcaccggcgt cagtgactgc tctgggggaa ctgacaagaa actgcgcaac tgcagccgcc 420
tggcctgcct agcaggcgag ctccgttgca cgctgagcga tgactgcatt ccactcacgt 480
ggcgctgcga cggccaccca gactgtcccg actccagcga cgagctcggc tgtggaacca 540
atgagatect eeeggaaggg gatgeeacaa eeatggggee eeetgtgace etggagagtg 600
tcacctctct caggaatgcc acaaccatgg ggccccctgt gaccctggag agtgtcccct 660
ctgtcgggaa tgccacatcc tcctctgccg gagaccagtc tggaagccca actgcctatg 720
gggttattgc agctgctgcg gtgctcagtg caagcctggt caccgccacc ctcctccttt 780
tgtcctggct ccgagcccag gagcgcctcc gcccactggg gttactggtg gccatgaagg 840
agtecetget getgteagaa eagaagaeet egetgeeetg aggaeaagea ettgeeacea 900
ccqtcactca qccctqqqcq taqccqqaca qqaqqaqaqc aqtqatqcqq atqqqtaccc 960
gggcacacca gccctcagag acctgagttc ttctggccac gtggaacctc gaacccgagc 1020
teetgeagaa gtggeeetgg agattgaggg teeetggaea eteeetatgg agateegggg 1080
agctaggatg gggaacctgc cacagccaga actgaggggc tggccccagg cagctcccag 1140
ggggtagaac ggccctgtgc ttaagacact ccctgctgcc ccgtctgagg gtggcgatta 1200
aagttgcttc
                                                                   1210
<210> 127
<211> 282
<212> PRT
<213> Homo sapiens
<400> 127
Met Ser Gly Gly Trp Met Ala Gln Val Gly Ala Trp Arg Thr Gly Ala
  1
                                                          15
Leu Gly Leu Ala Leu Leu Leu Leu Gly Leu Gly Leu Gly Leu Glu
                                 25
Ala Ala Ala Ser Pro Leu Ser Thr Pro Thr Ser Ala Gln Ala Ala Gly
                             40
Pro Ser Ser Gly Ser Cys Pro Pro Thr Lys Phe Gln Cys Arg Thr Ser
     50
                         55
Gly Leu Cys Val Pro Leu Thr Trp Arg Cys Asp Arg Asp Leu Asp Cys
Ser Asp Gly Ser Asp Glu Glu Glu Cys Arg Ile Glu Pro Cys Thr Gln
                                     90
                 85
Lys Gly Gln Cys Pro Pro Pro Gly Leu Pro Cys Pro Cys Thr Gly
```

100 105 110

Val Ser Asp Cys Ser Gly Gly Thr Asp Lys Lys Leu Arg Asn Cys Ser 115 120 125

Arg Leu Ala Cys Leu Ala Gly Glu Leu Arg Cys Thr Leu Ser Asp Asp 130 135 140

Cys Ile Pro Leu Thr Trp Arg Cys Asp Gly His Pro Asp Cys Pro Asp 145 150 155 160

Ser Ser Asp Glu Leu Gly Cys Gly Thr Asn Glu Ile Leu Pro Glu Gly 165 170 175

Asp Ala Thr Thr Met Gly Pro Pro Val Thr Leu Glu Ser Val Thr Ser 180 185 190

Leu Arg Asn Ala Thr Thr Met Gly Pro Pro Val Thr Leu Glu Ser Val 195 200 205

Pro Ser Val Gly Asn Ala Thr Ser Ser Ser Ala Gly Asp Gln Ser Gly 210 215 220

Ser Pro Thr Ala Tyr Gly Val Ile Ala Ala Ala Ala Val Leu Ser Ala 225 230 235 240

Ser Leu Val Thr Ala Thr Leu Leu Leu Leu Ser Trp Leu Arg Ala Gln 245 250 255

Glu Arg Leu Arg Pro Leu Gly Leu Leu Val Ala Met Lys Glu Ser Leu 260 265 270

Leu Leu Ser Glu Gln Lys Thr Ser Leu Pro 275 280

<210> 128

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<400> 128

aagttccagt gccgcaccag tggc

24

<210> 129

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 129

```
24
```

```
ttggttccac agccgagctc gtcg
<210> 130
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 130
                                                                   50
gaggaggagt gcaggattga gccatgtacc cagaaagggc aatgcccacc
<210> 131
<211> 1843
<212> DNA
<213> Homo sapiens
<220>
<221> modified base
<222> (1837)..(1837)
<223> a, t, c or g
<400> 131
cccacgcgtc cggtctcgct cgctcgcgca gcggcggcag cagaggtcgc gcacagatgc 60
gggttagact ggcggggga ggaggcggag gagggaagga agctgcatgc atgagaccca 120
cagactettg caagetggat geeetetgtg gatgaaagat gtateatgga atgaaceega 180
gcaatggaga tggatttcta gagcagcagc agcagcagca gcaacctcag tccccccaga 240
gactettgge egtgateetg tggttteage tggegetgtg etteggeeet geacagetea 300
cgggcgggtt cgatgacctt caagtgtgtg ctgaccccgg cattcccgag aatggcttca 360
ggacccccag cggaggggtt ttctttgaag gctctgtagc ccgatttcac tgccaagacg 420
gattcaagct gaagggcgct acaaagagac tgtgtttgaa gcattttaat ggaaccctag 480
getggatece aagtgataat tecatetgtg tgeaagaaga ttgeegtate eeteaaateg 540
aagatgctga gattcataac aagacatata gacatggaga gaagctaatc atcacttgtc 600
atgaaggatt caagatccgg taccccgacc tacacaatat ggtttcatta tgtcgcgatg 660
atggaacgtg gaataatctg cccatctgtc aaggctgcct gagacctcta gcctcttcta 720
atggctatgt aaacatctct gagctccaga cctccttccc ggtggggact gtgatctcct 780
atcgctgctt tcccggattt aaacttgatg ggtctgcgta tcttgagtgc ttacaaaacc 840
ttatctggtc gtccagccca ccccggtgcc ttgctctgga agcccaagtc tgtccactac 900
ctccaatggt gagtcacgga gatttcgtct gccacccgcg gccttgtgag cgctacaacc 960
acggaactgt ggtggagttt tactgcgatc ctggctacag cctcaccagc gactacaagt 1020
acatcacctg ccagtatgga gagtggtttc cttcttatca agtctactgc atcaaatcag 1080
agcaaacgtg gcccagcacc catgagaccc tcctgaccac gtggaagatt gtggcgttca 1140
cggcaaccag tgtgctgctg gtgctgctgc tcgtcatcct ggccaggatg ttccagacca 1200
agttcaaggc ccactttccc cccagggggc ctccccggag ttccagcagt gaccctgact 1260
ttgtggtggt agacggcgtg cccgtcatgc tcccgtccta tgacgaagct gtgagtggcg 1320
gettgagtge ettaggeece gggtacatgg eetetgtggg eeagggetge eeettaeeeg 1380
tggacgacca gagcccccca gcataccccg gctcagggga cacggacaca ggcccagggg 1440
agtcagaaac ctgtgacagc gtctcaggct cttctgagct gctccaaagt ctgtattcac 1500
 ctcccaggtg ccaagagagc acccacctg cttcggacaa ccctgacata attgccagca 1560
 cggcagagga ggtggcatcc accagcccag gcatccatca tgcccactgg gtgttgttcc 1620
 taagaaactg attgattaaa aaatttccca aagtgtcctg aagtgtctct tcaaatacat 1680
 gttgatctgt ggagttgatt cctttccttc tcttggtttt agacaaatgt aaacaaagct 1740
 ctgatcctta aaattgctat gctgatagag tggtgagggc tggaagcttg atcaagtcct 1800
                                                                   1843
 gtttcttctt gacacagact gattaaaaat taaaagnaaa aaa
```

<210>	132
<211>	490
<212>	PRT

<213> Homo sapiens

<400> 132

Met Tyr His Gly Met Asn Pro Ser Asn Gly Asp Gly Phe Leu Glu Gln 10

Gln Gln Gln Gln Gln Pro Gln Ser Pro Gln Arg Leu Leu Ala Val

Ile Leu Trp Phe Gln Leu Ala Leu Cys Phe Gly Pro Ala Gln Leu Thr

Gly Gly Phe Asp Asp Leu Gln Val Cys Ala Asp Pro Gly Ile Pro Glu

Asn Gly Phe Arg Thr Pro Ser Gly Gly Val Phe Phe Glu Gly Ser Val

Ala Arg Phe His Cys Gln Asp Gly Phe Lys Leu Lys Gly Ala Thr Lys 85

Arg Leu Cys Leu Lys His Phe Asn Gly Thr Leu Gly Trp Ile Pro Ser 105

Asp Asn Ser Ile Cys Val Gln Glu Asp Cys Arg Ile Pro Gln Ile Glu

Asp Ala Glu Ile His Asn Lys Thr Tyr Arg His Gly Glu Lys Leu Ile

Ile Thr Cys His Glu Gly Phe Lys Ile Arg Tyr Pro Asp Leu His Asn

Met Val Ser Leu Cys Arg Asp Asp Gly Thr Trp Asn Asn Leu Pro Ile 170 165

Cys Gln Gly Cys Leu Arg Pro Leu Ala Ser Ser Asn Gly Tyr Val Asn 185

Ile Ser Glu Leu Gln Thr Ser Phe Pro Val Gly Thr Val Ile Ser Tyr

Arg Cys Phe Pro Gly Phe Lys Leu Asp Gly Ser Ala Tyr Leu Glu Cys 215

Leu Gln Asn Leu Ile Trp Ser Ser Ser Pro Pro Arg Cys Leu Ala Leu 230

Glu Ala Gln Val Cys Pro Leu Pro Pro Met Val Ser His Gly Asp Phe 245

Val Cys His Pro Arg Pro Cys Glu Arg Tyr Asn His Gly Thr Val Val 265

Glu Phe Tyr Cys Asp Pro Gly Tyr Ser Leu Thr Ser Asp Tyr Lys Tyr 275 280 285

Ile Thr Cys Gln Tyr Gly Glu Trp Phe Pro Ser Tyr Gln Val Tyr Cys 290 295 300

Ile Lys Ser Glu Gln Thr Trp Pro Ser Thr His Glu Thr Leu Leu Thr 305 310 315 320

Thr Trp Lys Ile Val Ala Phe Thr Ala Thr Ser Val Leu Leu Val Leu 325 330 335

Leu Leu Val Ile Leu Ala Arg Met Phe Gln Thr Lys Phe Lys Ala His 340 . 345 350

Phe Pro Pro Arg Gly Pro Pro Arg Ser Ser Ser Ser Asp Pro Asp Phe 355 360 365

Val Val Val Asp Gly Val Pro Val Met Leu Pro Ser Tyr Asp Glu Ala 370 375 380

Val Ser Gly Gly Leu Ser Ala Leu Gly Pro Gly Tyr Met Ala Ser Val 385 390 395

Gly Gln Gly Cys Pro Leu Pro Val Asp Asp Gln Ser Pro Pro Ala Tyr 405 410 415

Pro Gly Ser Gly Asp Thr Asp Thr Gly Pro Gly Glu Ser Glu Thr Cys 420 425 430

Asp Ser Val Ser Gly Ser Ser Glu Leu Leu Gln Ser Leu Tyr Ser Pro

Pro Arg Cys Gln Glu Ser Thr His Pro Ala Ser Asp Asn Pro Asp Ile 450 455 460

Ile Ala Ser Thr Ala Glu Glu Val Ala Ser Thr Ser Pro Gly Ile His 465 470 475 480

His Ala His Trp Val Leu Phe Leu Arg Asn 485 490

<210> 133

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<400> 133

atctcctatc gctgctttcc cgg

<210> 134

<211> 23

<212> DNA

```
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 134
agccaggatc gcagtaaaac tcc
                                                                   23
<210> 135
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 135
atttaaactt gatgggtctg cgtatcttga gtgcttacaa aaccttatct
                                                                  50
<210> 136
<211> 1815
<212> DNA
<213> Homo sapiens
<400> 136
cccacgcgtc cgctccgcgc cctcccccc gcctcccqtg cgqtccqtcq qtqqcctaqa 60
gatgctgctg ccgcggttgc agttgtcgcg cacqcctctq cccqccaqcc cqctccaccq 120
ccgtagcgcc cgagtgtcgg ggggcgcacc cgagtcgqgc catqagqccq qqaaccqcqc 180
tacaggccgt gctgctggcc gtgctgctgg tggggctgcg gqccgcqacq gqtcqcctqc 240
tgagtgcctc ggatttggac ctcagaggag ggcagccagt ctgccgggga gggacacaga 300
ggccttgtta taaagtcatt tacttccatg atacttctcg aagactgaac tttgaggaag 360
ccaaagaagc ctgcaggagg gatggaggcc agctagtcag catcgagtct gaagatgaac 420
agaaactgat agaaaagttc attgaaaacc tcttgccatc tgatggtgac ttctggattg 480
ggctcaggag gcgtgaggag aaacaaagca atagcacagc ctgccaggac ctttatgctt 540
ggactgatgg cagcatatca caatttagga actggtatgt ggatgagccg tcctgcggca 600
gcgaggtctg cgtggtcatg taccatcagc catcggcacc cgctggcatc ggaggcccct 660
acatgttcca gtggaatgat gaccggtgca acatgaagaa caatttcatt tgcaaatatt 720
ctgatgagaa accagcagtt ccttctagag aagctgaagg tgaggaaaca gagctgacaa 780
cacctgtact tccagaagaa acacaggaag aagatgccaa aaaaacattt aaagaaagta 840
gagaagctgc cttgaatctg gcctacatcc taatccccag cattcccctt ctcctcctcc 900
ttgtggtcac cacagttgta tgttgggttt ggatctgtag aaaaagaaaa cgggagcagc 960
cagaccctag cacaaagaag caacaccca tctggccctc tcctcaccag ggaaacagcc 1020
cggacctaga ggtctacaat gtcataagaa aacaaagcga agctgactta gctgagaccc 1080
ggccagacct gaagaatatt tcattccgag tgtgttcggg agaagccact cccgatgaca 1140
tgtcttgtga ctatgacaac atggctgtga acccatcaga aagtgggttt gtgactctgg 1200
tgagcgtgga gagtggattt gtgaccaatg acatttatga gttctcccca gaccaaatgg 1260
ggaggagtaa ggagtctgga tgggtggaaa atgaaatata tggttattag gacatataaa 1320
aaactgaaac tgacaacaat ggaaaagaaa tgataagcaa aatcctctta ttttctataa 1380
ggaaaataca cagaaggtct atgaacaagc ttagatcagg tcctgtggat gagcatgtgg 1440
tececaegae etectgttgg acceeeagt tttggetgta teetttatee eageeagtea 1500
tccagctcga ccttatgaga aggtaccttg cccaggtctg gcacatagta gagtctcaat 1560
aaatgtcact tggttggttg tatctaactt ttaagggaca gagctttacc tggcagtgat 1620
aaagatgggc tqtggagctt ggaaaaccac ctctqttttc cttqctctat acagcagcac 1680
atattatcat acagacagaa aatccagaat cttttcaaag cccacatatg gtagcacagg 1740
ttggcctgtg catcggcaat tctcatatct gttttttca aagaataaaa tcaaataaag 1800
```

- <210> 137
- <211> 382
- <212> PRT
- <213> Homo sapiens
- <400> 137
- Met Arg Pro Gly Thr Ala Leu Gln Ala Val Leu Leu Ala Val Leu Leu 1 5 10 15
- Val Gly Leu Arg Ala Ala Thr Gly Arg Leu Leu Ser Ala Ser Asp Leu 20 25 30
- Asp Leu Arg Gly Gly Gln Pro Val Cys Arg Gly Gly Thr Gln Arg Pro 35 40 45
- Cys Tyr Lys Val Ile Tyr Phe His Asp Thr Ser Arg Arg Leu Asn Phe 50 55 60
- Glu Glu Ala Lys Glu Ala Cys Arg Arg Asp Gly Gly Gln Leu Val Ser 65 70 75 80
- Ile Glu Ser Glu Asp Glu Gln Lys Leu Ile Glu Lys Phe Ile Glu Asn 85 90 95
- Leu Leu Pro Ser Asp Gly Asp Phe Trp Ile Gly Leu Arg Arg Glu
 100 105 110
- Glu Lys Gln Ser Asn Ser Thr Ala Cys Gln Asp Leu Tyr Ala Trp Thr 115 120 125
- Asp Gly Ser Ile Ser Gln Phe Arg Asn Trp Tyr Val Asp Glu Pro Ser 130 135 140
- Cys Gly Ser Glu Val Cys Val Val Met Tyr His Gln Pro Ser Ala Pro 145 150 155 160
- Ala Gly Ile Gly Gly Pro Tyr Met Phe Gln Trp Asn Asp Asp Arg Cys 165 170 175
- Asn Met Lys Asn Asn Phe Ile Cys Lys Tyr Ser Asp Glu Lys Pro Ala 180 185 190
- Val Pro Ser Arg Glu Ala Glu Gly Glu Glu Thr Glu Leu Thr Thr Pro 195 200 205
- Val Leu Pro Glu Glu Thr Gln Glu Glu Asp Ala Lys Lys Thr Phe Lys 210 215 220
- Glu Ser Arg Glu Ala Ala Leu Asn Leu Ala Tyr Ile Leu Ile Pro Ser 225 230 235 240
- Ile Pro Leu Leu Leu Leu Val Val Thr Thr Val Val Cys Trp Val 245 250 255
- Trp Ile Cys Arg Lys Arg Lys Arg Glu Gln Pro Asp Pro Ser Thr Lys

			260					265					270			
Lys	Gln	His 275	Thr	Ile	Trp	Pro	Ser 280	Pro	His	Gln	Gly	Asn 285	Ser	Pro	Asp	
Leu	Glu 290	Val	Tyr	Asn	Val	Ile 295	Arg	Lys	Gln	Ser	Glu 300	Ala	Asp	Leu	Ala	
Glu 305	Thr	Arg	Pro	Asp	Leu 310	Lys	Asn	Ile	Ser	Phe 315	Arg	Val	Cys	Ser	Gly 320	
Glu	Ala	Thr	Pro	Asp 325	Asp	Met	Ser	Cys	Asp 330	Tyr	Asp	Asn	Met	Ala 335	Val	
Asn	Pro	Ser	Glu 340	Ser	Gly	Phe	Val	Thr 345	Leu	Val	Ser	Val	Glu 350	Ser	Gly	
Phe	Val	Thr 355	Asn	Asp	Ile	Tyr	Glu 360	Phe	Ser	Pro	Asp	Gln 365	Met	Gly	Arg	
Ser	Lys 370	Glu	Ser	Gly	Trp	Val 375	Glu	Asn	Glu	Ile	Tyr 380	Gly	Tyr			
<210> 138 <211> 50 <212> DNA <213> Artificial Sequence																
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe																
)> 13 catto		acct	ctt	jc ca	atcto	gatgo	g tga	actto	ctgg	att	gggct	ca			50
<210> 139 <211> 24 <212> DNA <213> Artificial Sequence																
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe																
)> 13 ccaaa	_	agcct	cgcaç	gg ag	133										24
<211 <212)> 14 l> 24 2> Di 3> Ar	l 1A	cial	l Sec	quenc	ce										
	<213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe															

<400> 140

```
<210> 141
<211> 1514
<212> DNA
<213> Homo sapiens
<400> 141
ggggtctccc tcagggccgg gaggcacagc ggtccctgct tgctgaaggg ctgqatqtac 60
gcatccgcag gttcccgcgg acttgggggc gcccgctgag ccccggcgcc cgcaqaaqac 120
ttgtgtttgc ctcctgcagc ctcaacccgg agggcagcga gggcctacca ccatgatcac 180
tggtgtgttc agcatgcgct tgtggacccc agtgggcgtc ctgacctcgc tggcgtactg 240
cctgcaccag cggcggttgg ccctggccga gctgcaggag gccgatggcc agtqtccqgt 300
cgaccgcagc ctgctgaagt tgaaaatggt gcaggtcgtg tttcgacacg gggctcggag 360
tecteteaag eegeteeege tggaggagea ggtagagtgg aacceeeage tattagaggt 420
cccaccccaa actcagtttg attacacagt caccaatcta gctggtggtc cgaaaccata 480
ttctccttac gactctcaat accatgagac caccctgaag gggggcatgt ttgctgggca 540
gctgaccaag gtgggcatgc agcaaatgtt tgccttggga gagagactga ggaagaacta 600
tgtggaagac attccctttc tttcaccaac cttcaaccca caggaggtct ttattcgttc 660
cactaacatt tttcggaatc tggagtccac ccgttgtttg ctggctgggc ttttccagtg 720
tcagaaagaa ggacccatca tcatccacac tgatgaagca gattcagaag tcttqtatcc 780
caactaccaa agctgctgga gcctgaggca gagaaccaga ggccggaggc agactgcctc 840
tttacagcca ggaatctcag aggatttgaa aaaggtgaag gacaggatgg gcattgacag 900
tagtgataaa gtggacttct tcatcctcct ggacaacgtg gctgccgagc aggcacacaa 960
cctcccaagc tgccccatgc tgaagagatt tgcacggatg atcgaacaga gagctqtqqa 1020
cacateettg tacatactge ccaaggaaga cagggaaagt etteagatgg cagtaggeec 1080
attectecae atectagaga geaacetget gaaagecatg gactetgeea etgeeecega 1140
caagatcaga aagetgtate tetatgegge teatgatgtg acetteatae egetettaat 1200
gaccctgggg attittgacc acaaatggcc accgtttgct gttgacctga ccatggaact 1260
ttaccagcac ctggaatcta aggagtggtt tgtgcagctc tattaccacg ggaaggagca 1320
ggtgccgaga ggttgccctg atgggctctg cccgctggac atgttcttga atgccatgtc 1380
agtttatacc ttaagcccag aaaaatacca tgcactctgc tctcaaactc aggtgatgga 1440
agttggaaat gaagagtaac tgatttataa aagcaggatg tgttgatttt aaaataaagt 1500
gcctttatac aatg
                                                                  1514
<210> 142
<211> 428
<212> PRT
<213> Homo sapiens
<400> 142
Met Ile Thr Gly Val Phe Ser Met Arg Leu Trp Thr Pro Val Gly Val
Leu Thr Ser Leu Ala Tyr Cys Leu His Gln Arg Arg Val Ala Leu Ala
                                 25
Glu Leu Gln Glu Ala Asp Gly Gln Cys Pro Val Asp Arg Ser Leu Leu
Lys Leu Lys Met Val Gln Val Val Phe Arg His Gly Ala Arg Ser Pro
Leu Lys Pro Leu Pro Leu Glu Glu Gln Val Glu Trp Asn Pro Gln Leu
                     70
                                         75
Leu Glu Val Pro Pro Gln Thr Gln Phe Asp Tyr Thr Val Thr Asn Leu
```

Ala Gly Gly Pro Lys Pro Tyr Ser Pro Tyr Asp Ser Gln Tyr His Glu 100 105 Thr Thr Leu Lys Gly Gly Met Phe Ala Gly Gln Leu Thr Lys Val Gly 120 Met Gln Gln Met Phe Ala Leu Gly Glu Arg Leu Arg Lys Asn Tyr Val Glu Asp Ile Pro Phe Leu Ser Pro Thr Phe Asn Pro Gln Glu Val Phe 150 155 Ile Arg Ser Thr Asn Ile Phe Arg Asn Leu Glu Ser Thr Arg Cys Leu 170 Leu Ala Gly Leu Phe Gln Cys Gln Lys Glu Gly Pro Ile Ile His 180 185 Thr Asp Glu Ala Asp Ser Glu Val Leu Tyr Pro Asn Tyr Gln Ser Cys 200 Trp Ser Leu Arg Gln Arg Thr Arg Gly Arg Arg Gln Thr Ala Ser Leu 220 Gln Pro Gly Ile Ser Glu Asp Leu Lys Lys Val Lys Asp Arg Met Gly 230 Ile Asp Ser Ser Asp Lys Val Asp Phe Phe Ile Leu Leu Asp Asn Val 250 245 Ala Ala Glu Gln Ala His Asn Leu Pro Ser Cys Pro Met Leu Lys Arg 260 Phe Ala Arg Met Ile Glu Gln Arg Ala Val Asp Thr Ser Leu Tyr Ile 280 Leu Pro Lys Glu Asp Arg Glu Ser Leu Gln Met Ala Val Gly Pro Phe 290 295 Leu His Ile Leu Glu Ser Asn Leu Leu Lys Ala Met Asp Ser Ala Thr 310 Ala Pro Asp Lys Ile Arg Lys Leu Tyr Leu Tyr Ala Ala His Asp Val 330 335 Thr Phe Ile Pro Leu Leu Met Thr Leu Gly Ile Phe Asp His Lys Trp Pro Pro Phe Ala Val Asp Leu Thr Met Glu Leu Tyr Gln His Leu Glu 360 Ser Lys Glu Trp Phe Val Gln Leu Tyr Tyr His Gly Lys Glu Gln Val 370 Pro Arg Gly Cys Pro Asp Gly Leu Cys Pro Leu Asp Met Phe Leu Asn

385	390	395		400							
Ala Met Ser Val Tyr 405		Pro Glu Lys 410	Tyr His Ala	Leu Cys 415							
Ser Gln Thr Gln Val 420	Met Glu Val	Gly Asn Glu 425	Glu								
<210> 143 <211> 24 <212> DNA <213> Artificial Se	quence										
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe											
<400> 143 ccaactacca aagctgctgg agcc 2											
<210> 144 <211> 24 <212> DNA <213> Artificial Se	equence										
-	<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe										
<400> 144 gcagctctat taccacgo	ıga agga			24	4						
<210> 145 <211> 24 <212> DNA <213> Artificial Se	equence										
<220> <223> Description of oligonucleots		Sequence: S	ynthetic								
<400> 145 tccttcccgt ggtaatag	gag ctgc			24	4						
<210> 146 <211> 45 <212> DNA <213> Artificial Se	equence										
<220> <223> Description of oligonucleot:		Sequence: S	ynthetic								
<400> 146 ggcagagaac cagaggco	cgg aggagactg	c ctctttacag	ccagg	4:	5						

<210> 147

```
<211> 1686
<212> DNA
<213> Homo sapiens
<400> 147
ctcctcttaa catacttgca gctaaaacta aatattgctg cttggggacc tccttctagc 60
cttaaatttc agetcateac etteacetge ettggteatg getetgetat teteettgat 120
cettqccatt tqcaccaqae etqqatteet aqeqteteca tetqqaqtqe qqetqqtqqq 180
gggcctccac cgctgtgaag ggcgggtgga ggtggaacag aaaggccagt ggggcaccqt 240
gtgtgatgac ggctgggaca ttaaggacgt ggctgtgttg tgccgggagc tgggctgtgg 300
agctgccagc ggaaccccta gtggtatttt gtatgagcca ccagcagaaa aagagcaaaa 360
ggtcctcatc caatcagtca gttgcacagg aacagaagat acattggctc agtgtgagca 420
agaagaagtt tatgattgtt cacatgatga agatgctggg gcatcgtgtg agaacccaga 480
gagetettte teeceagtee eagagggtgt eaggetgget gaeggeeetg ggeattgeaa 540
gggacgcgtg gaagtgaagc accagaacca gtggtatacc gtgtgccaga caggctggag 600
cctccgggcc gcaaaggtgg tgtgccggca gctgggatgt gggagggctg tactgactca 660
aaaacgetge aacaagcatg cetatggeeg aaaacceate tggetgagee agatgteatg 720
ctcaggacga gaagcaaccc ttcaggattg cccttctggg ccttggggga agaacacctg 780
caaccatgat gaagacacgt gggtcgaatg tgaagatccc tttgacttga gactagtagg 840
aggagacaac ctctgctctg ggcgactgga ggtgctgcac aagggcgtat ggggctctgt 900
ctgtgatgac aactggggag aaaaggagga ccaggtggta tgcaagcaac tgggctgtgg 960
gaagtccctc tctccctcct tcagagaccg gaaatgctat ggccctgggg ttggccgcat 1020
ctqqctqqat aatqttcqtt qctcaqqqqa qqaqcaqtcc ctqqaqcaqt gccaqcacag 1080
attttggggg tttcacgact gcacccacca ggaagatgtg gctgtcatct gctcagtgta 1140
ggtgggcatc atctaatctg ttgagtgcct gaatagaaga aaaacacaga agaagggagc 1200
atttactgtc tacatgactg catgggatga acactgatct tcttctgccc ttggactggg 1260
acttatactt ggtgcccctg attctcaggc cttcagagtt ggatcagaac ttacaacatc 1320
aggtctagtt ctcaggccat cagacatagt ttggaactac atcaccacct ttcctatgtc 1380
tccacattgc acacagcaga ttcccagcct ccataattgt gtgtatcaac tacttaaata 1440
catteteaca cacacaca cacacacaca cacacacaca cacacataca ccattegec 1500
tgtttctctq aagaactctq acaaaataca qattttggta ctgaaagaga ttctagagga 1560
acqqaatttt aaqqataaat tttctqaatt qqttatqqqq tttctqaaat tqqctctata 1620
atctaattag atataaaatt ctgqtaactt tatttacaat aataaagata gcactatgtg 1680
                                                                  1686
ttcaaa
<210> 148
<211> 347
<212> PRT
<213> Homo sapiens
<400> 148
Met Ala Leu Leu Phe Ser Leu Ile Leu Ala Ile Cys Thr Arg Pro Gly
Phe Leu Ala Ser Pro Ser Gly Val Arg Leu Val Gly Gly Leu His Arg
                                 25
Cys Glu Gly Arg Val Glu Val Glu Gln Lys Gly Gln Trp Gly Thr Val
Cys Asp Asp Gly Trp Asp Ile Lys Asp Val Ala Val Leu Cys Arg Glu
                         55
Leu Gly Cys Gly Ala Ala Ser Gly Thr Pro Ser Gly Ile Leu Tyr Glu
 65
                     70
```

Pro Pro Ala Glu Lys Glu Gln Lys Val Leu Ile Gln Ser Val Ser Cys

Thr Gly Thr Glu Asp Thr Leu Ala Gln Cys Glu Gln Glu Glu Val Tyr 105 Asp Cys Ser His Asp Glu Asp Ala Gly Ala Ser Cys Glu Asn Pro Glu 120 Ser Ser Phe Ser Pro Val Pro Glu Gly Val Arg Leu Ala Asp Gly Pro 130 140 Gly His Cys Lys Gly Arg Val Glu Val Lys His Gln Asn Gln Trp Tyr 150 155 Thr Val Cys Gln Thr Gly Trp Ser Leu Arg Ala Ala Lys Val Val Cys 170 Arg Gln Leu Gly Cys Gly Arg Ala Val Leu Thr Gln Lys Arg Cys Asn 185 Lys His Ala Tyr Gly Arg Lys Pro Ile Trp Leu Ser Gln Met Ser Cys 200 Ser Gly Arg Glu Ala Thr Leu Gln Asp Cys Pro Ser Gly Pro Trp Gly 210 215 220 Lys Asn Thr Cys Asn His Asp Glu Asp Thr Trp Val Glu Cys Glu Asp 230 Pro Phe Asp Leu Arg Leu Val Gly Gly Asp Asn Leu Cys Ser Gly Arg 250 Leu Glu Val Leu His Lys Gly Val Trp Gly Ser Val Cys Asp Asp Asn Trp Gly Glu Lys Glu Asp Gln Val Val Cys Lys Gln Leu Gly Cys Gly 280 Lys Ser Leu Ser Pro Ser Phe Arg Asp Arg Lys Cys Tyr Gly Pro Gly 300 290 295 Val Gly Arg Ile Trp Leu Asp Asn Val Arg Cys Ser Gly Glu Glu Gln 305 Ser Leu Glu Gln Cys Gln His Arg Phe Trp Gly Phe His Asp Cys Thr 330

<210> 149

<211> 24

<212> DNA

<213> Artificial Sequence

340

<220>

<223> Description of Artificial Sequence: Synthetic

345

His Gln Glu Asp Val Ala Val Ile Cys Ser Val

oligonucleotide probe

```
<400> 149
                                                                  24
ttcagctcat caccttcacc tgcc
<210> 150
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 150
                                                                   24
ggctcataca aaataccact aggg
<210> 151
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 151
                                                                   50
qqqcctccac cqctqtqaaq qqcqqqtqga ggtggaacag aaaggccagt
<210> 152
<211> 1427
<212> DNA
<213> Homo sapiens
<400> 152
actgcactcg gttctatcga ttgaattccc cggggatcct ctagagatcc ctcgacctcg 60
acceaeqcqt ceqeqqaeqe gtgggeggae gcgtgggeeg gctaceagga agagtetgee 120
qaaqqtgaaq gccatggact tcatcacctc cacagccatc ctgcccctgc tgttcggctg 180
cctgggcgtc ttcggcctct tccggctgct gcagtgggtg cgcgggaagg cctacctgcg 240
qaatqctqtq qtqqtqatca caqqcqccac ctcagggctg ggcaaagaat gtgcaaaagt 300
cttctatqct qcqqqtqcta aactgqtqct ctqtqqccqq aatgqtqgqg ccctagaaga 360
gctcatcaga gaacttaccg cttctcatgc caccaaggtg cagacacaca agccttactt 420
ggtgaccttc gacctcacag actctggggc catagttgca gcagcagctg agatcctgca 480
gtgctttggc tatgtcgaca tacttgtcaa caatgctggg atcagctacc gtggtaccat 540
catggacacc acagtggatg tggacaagag ggtcatggag acaaactact ttggcccagt 600
tgctctaacg aaagcactcc tgccctccat gatcaagagg aggcaaggcc acattgtcgc 660
catcagcage atccagggea agatgageat teettttega teagcatatg cageeteeaa 720
gcacgcaacc caggetttet ttgactgtet gegtgeegag atggaacagt atgaaattga 780
ggtgaccgtc atcagccccg gctacatcca caccaacctc tctgtaaatg ccatcaccgc 840
ggatggatct aggtatggag ttatggacac caccacagcc cagggccgaa gccctgtgga 900
ggtggcccag gatgttcttg ctgctgtggg gaagaagaag aaagatgtga tcctggctga 960
cttactgcct tccttggctg tttatcttcg aactctggct cctgggctct tcttcagcct 1020
catggcctcc agggccagaa aagagcggaa atccaagaac tcctagtact ctgaccagcc 1080
agggccaggg cagagaagca gcactcttag gcttgcttac tctacaaggg acagttgcat 1140
ttqttqaqac tttaatqqaq atttqtctca caagtqggaa agactgaaga aacacatctc 1200
qtqcaqatct qctqqcaqaq gacaatcaaa aacgacaaca agcttcttcc cagggtgagg 1260
ggaaacactt aaggaataaa tatggagctg gggtttaaca ctaaaaacta gaaataaaca 1320
```

tctcaaacag taaaaaaaaa aaaaaagggc ggccgcgact ctagagtcga cctgcagaag 1380 cttggccgcc atggcccaac ttgtttattg cagcttataa tggttac 1427

<210> 153

<211> 310

<212> PRT

<213> Homo sapiens

<400> 153

Met Asp Phe Ile Thr Ser Thr Ala Ile Leu Pro Leu Leu Phe Gly Cys
1 5 10 15

Leu Gly Val Phe Gly Leu Phe Arg Leu Leu Gln Trp Val Arg Gly Lys 20 25 30

Ala Tyr Leu Arg Asn Ala Val Val Ile Thr Gly Ala Thr Ser Gly 35 40 45

Leu Gly Lys Glu Cys Ala Lys Val Phe Tyr Ala Ala Gly Ala Lys Leu 50 55 60

Val Leu Cys Gly Arg Asn Gly Gly Ala Leu Glu Glu Leu Ile Arg Glu 65 70 75 80

Leu Thr Ala Ser His Ala Thr Lys Val Gln Thr His Lys Pro Tyr Leu

85 90 95

Val Thr Phe Asp Leu Thr Asp Ser Gly Ala Ile Val Ala Ala Ala Ala 100 105 110

Glu Ile Leu Gln Cys Phe Gly Tyr Val Asp Ile Leu Val Asn Asn Ala 115 120 125

Gly Ile Ser Tyr Arg Gly Thr Ile Met Asp Thr Thr Val Asp Val Asp 130 135 140

Lys Arg Val Met Glu Thr Asn Tyr Phe Gly Pro Val Ala Leu Thr Lys 145 150 155 160

Ala Leu Leu Pro Ser Met Ile Lys Arg Arg Gln Gly His Ile Val Ala 165 170 175

Ile Ser Ser Ile Gln Gly Lys Met Ser Ile Pro Phe Arg Ser Ala Tyr 180 185 190

Ala Ala Ser Lys His Ala Thr Gln Ala Phe Phe Asp Cys Leu Arg Ala 195 200 205

Glu Met Glu Gln Tyr Glu Ile Glu Val Thr Val Ile Ser Pro Gly Tyr 210 215 220

Ile His Thr Asn Leu Ser Val Asn Ala Ile Thr Ala Asp Gly Ser Arg 225 230 235 240

Tyr Gly Val Met Asp Thr Thr Thr Ala Gln Gly Arg Ser Pro Val Glu 245 250 255

```
Val Ala Gln Asp Val Leu Ala Ala Val Gly Lys Lys Lys Asp Val
                             . 265
Ile Leu Ala Asp Leu Leu Pro Ser Leu Ala Val Tyr Leu Arg Thr Leu
                            280
Ala Pro Gly Leu Phe Phe Ser Leu Met Ala Ser Arg Ala Arg Lys Glu
                        295
Arg Lys Ser Lys Asn Ser
305
<210> 154
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 154
                                                                    24
ggtgctaaac tggtgctctg tggc
<210> 155
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 155
                                                                    20
cagggcaaga tgagcattcc
<210> 156
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 156
                                                                    24
tcatactgtt ccatctcggc acgc
<210> 157
<211> 50
 <212> DNA
<213> Artificial Sequence
 <223> Description of Artificial Sequence: Synthetic
       oligonucleotide probe
```

```
<400> 157
                                                                50
aatggtgggg ccctagaaga gctcatcaga gaactcaccg cttctcatgc
<210> 158
<211> 1771
<212> DNA
<213> Homo sapiens
<400> 158
cccacqcqtc cqctqqtqtt agatcgagca accctctaaa agcagtttag agtggtaaaa 60
aaaaaaaaa acacaccaaa cgctcgcagc cacaaaaggg atgaaatttc ttctggacat 120
cctcctgctt ctcccgttac tgatcgtctg ctccctagag tccttcgtga agctttttat 180
tcctaagagg agaaaatcag tcaccggcga aatcgtgctg attacaggag ctgggcatgg 240
aattgggaga ctgactgcct atgaatttgc taaacttaaa agcaagctgg ttctctggga 300
tataaataag catggactgg aggaaacagc tgccaaatgc aagggactgg gtgccaaggt 360
tcataccttt gtggtagact gcagcaaccg agaagatatt tacagctctg caaagaaggt 420
gaaggcagaa attggagatg ttagtatttt agtaaataat gctggtgtag tctatacatc 480
agatttgttt gctacacaag atcctcagat tgaaaagact tttgaagtta atgtacttgc 540
acatttctgg actacaaagg catttcttcc tgcaatgacg aagaataacc atggccatat 600
tgtcactgtg gcttcggcag ctggacatgt ctcggtcccc ttcttactgg cttactgttc 660
aagcaagttt gctgctgttg gatttcataa aactttgaca gatgaactgg ctgccttaca 720
aataactgga gtcaaaacaa catgtctgtg tcctaatttc gtaaacactg gcttcatcaa 780
aaatccaagt acaagtttgg gacccactct ggaacctgag gaagtggtaa acaggctgat 840
gcatgggatt ctgactgagc agaagatgat ttttattcca tcttctatag cttttttaac 900
aacattggaa aggatccttc ctgagcgttt cctggcagtt ttaaaacgaa aaatcagtgt 960
taagtttgat gcagttattg gatataaaat gaaagcgcaa taagcaccta gttttctgaa 1020
aactgattta ccaggtttag gttgatgtca tctaatagtg ccagaatttt aatgtttgaa 1080
cttctgtttt ttctaattat ccccatttct tcaatatcat ttttgaggct ttggcagtct 1140
tcatttacta ccacttgttc tttagccaaa agctgattac atatgatata aacagagaaa 1200
tacctttaga ggtgacttta aggaaaatga agaaaaagaa ccaaaatgac tttattaaaa 1260
taatttccaa gattatttgt ggctcacctg aaggctttgc aaaatttgta ccataaccgt 1320
ttatttaaca tatatttta tttttgattg cacttaaatt ttgtataatt tgtgtttctt 1380
tttctgttct acataaaatc agaaacttca agctctctaa ataaaatgaa ggactatatc 1440
tagtggtatt tcacaatgaa tatcatgaac tctcaatggg taggtttcat cctacccatt 1500
gccactctgt ttcctgagag atacctcaca ttccaatgcc aaacatttct gcacagggaa 1560
gctagaggtg gatacacgtg ttgcaagtat aaaagcatca ctgggattta aggagaattg 1620
agagaatgta cccacaaatg gcagcaataa taaatggatc acacttaaaa aaaaaaaaa 1680
1771
aaaaaaaaa aaaaaaaaa aaaaaaaaaa a
<210> 159
<211> 300
<212> PRT
<213> Homo sapiens
<400> 159
Met Lys Phe Leu Leu Asp Ile Leu Leu Leu Leu Pro Leu Leu Ile Val
Cys Ser Leu Glu Ser Phe Val Lys Leu Phe Ile Pro Lys Arg Arg Lys
                                25
Ser Val Thr Gly Glu Ile Val Leu Ile Thr Gly Ala Gly His Gly Ile
Gly Arg Leu Thr Ala Tyr Glu Phe Ala Lys Leu Lys Ser Lys Leu Val
                         55
```

Leu Trp Asp Ile Asn Lys His Gly Leu Glu Glu Thr Ala Ala Lys Cys 65 70 75 80

Lys Gly Leu Gly Ala Lys Val His Thr Phe Val Val Asp Cys Ser Asn 85 90 95

Arg Glu Asp Ile Tyr Ser Ser Ala Lys Lys Val Lys Ala Glu Ile Gly
100 105 110

Asp Val Ser Ile Leu Val Asn Asn Ala Gly Val Val Tyr Thr Ser Asp 115 120 125

Leu Phe Ala Thr Gln Asp Pro Gln Ile Glu Lys Thr Phe Glu Val Asn 130 135 140

Val Leu Ala His Phe Trp Thr Thr Lys Ala Phe Leu Pro Ala Met Thr 145 150 155 160

Lys Asn Asn His Gly His Ile Val Thr Val Ala Ser Ala Ala Gly His 165 170 175

Val Ser Val Pro Phe Leu Leu Ala Tyr Cys Ser Ser Lys Phe Ala Ala 180 185 190

Val Gly Phe His Lys Thr Leu Thr Asp Glu Leu Ala Ala Leu Gln Ile 195 200 205

Thr Gly Val Lys Thr Thr Cys Leu Cys Pro Asn Phe Val Asn Thr Gly 210 215 220

Phe Ile Lys Asn Pro Ser Thr Ser Leu Gly Pro Thr Leu Glu Pro Glu 225 230 235 240

Glu Val Val Asn Arg Leu Met His Gly Ile Leu Thr Glu Gln Lys Met 245 250 255

Ile Phe Ile Pro Ser Ser Ile Ala Phe Leu Thr Thr Leu Glu Arg Ile 260 265 270

Leu Pro Glu Arg Phe Leu Ala Val Leu Lys Arg Lys Ile Ser Val Lys 275 280 285

Phe Asp Ala Val Ile Gly Tyr Lys Met Lys Ala Gln 290 295 300

<210> 160

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<400> 160

ggtgaaggca gaaattggag atg

```
<210> 161
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 161
                                                                  24
atcccatgca tcagcctgtt tacc
<210> 162
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 162
                                                                   48
gctggtgtag tctatacatc agatttgttt gctacacaag atcctcag
<210> 163
<211> 2076
<212> DNA
<213> Homo sapiens
<400> 163
cccacgcgtc cgcggacgcg tgggtcgact agttctagat cgcgagcggc cgcccgcggc 60
tcagggagga gcaccgactg cgccgcaccc tgagagatgg ttggtgccat gtggaaggtg 120
attgtttege tggteetgtt gatgeetgge eeetgtgatg ggetgttteg etecetatae 180
agaagtgttt ccatgccacc taagggagac tcaggacagc cattatttct caccccttac 240
attgaagetg ggaagateca aaaaggaaga gaattgagtt tggteggeee ttteecagga 300
ctgaacatga agagttatgc cggcttcctc accgtgaata agacttacaa cagcaacctc 360
ttcttctggt tcttcccagc tcagatacag ccagaagatg ccccagtagt tctctggcta 420
cagggtgggc cgggaggttc atccatgttt ggactctttg tggaacatgg gccttatgtt 480
qtcacaagta acatgacctt gcgtgacaga gacttcccct ggaccacaac gctctccatg 540
ctttacattg acaatccagt gggcacaggc ttcagtttta ctgatgatac ccacggatat 600
gcagtcaatg aggacgatgt agcacgggat ttatacagtg cactaattca gtttttccag 660
atatttcctg aatataaaaa taatgacttt tatgtcactg gggagtctta tgcagggaaa 720
tatgtgccag ccattgcaca cctcatccat tccctcaacc ctgtgagaga ggtgaagatc 780
aacctgaacg gaattgctat tggagatgga tattctgatc ccgaatcaat tatagggggc 840
tatgcagaat teetgtacea aattggettg ttggatgaga ageaaaaaaa gtaetteeag 900
aagcagtgcc atgaatgcat agaacacatc aggaagcaga actggtttga ggcctttgaa 960
atactggata aactactaga tggcgactta acaagtgatc cttcttactt ccagaatgtt 1020
acaggatgta gtaattacta taactttttg cggtgcacgg aacctgagga tcagctttac 1080
tatqtqaaat ttttgtcact cccagaggtg agacaagcca tccacgtggg gaatcagact 1140
tttaatgatg gaactatagt tgaaaagtac ttgcgagaag atacagtaca gtcagttaag 1200
ccatggttaa ctgaaatcat gaataattat aaggttctga tctacaatgg ccaactggac 1260
atcatcgtgg cagctgccct gacagagcgc tccttgatgg gcatggactg gaaaggatcc 1320
caggaataca agaaggcaga aaaaaaagtt tggaagatct ttaaatctga cagtgaagtg 1380
gctggttaca tccggcaagc gggtgacttc catcaggtaa ttattcgagg tggaggacat 1440
attttaccct atgaccagcc tctgagagct tttgacatga ttaatcgatt catttatgga 1500
aaaggatggg atccttatgt tggataaact accttcccaa aagagaacat cagaggtttt 1560
```

```
cattgctgaa aagaaaatcg taaaaacaga aaatgtcata ggaataaaaa aattatcttt 1620
tcatatctqc aagatttttt tcatcaataa aaattatcct tgaaacaagt gagcttttgt 1680
ttttgggggg agatgtttac tacaaaatta acatgagtac atgagtaaga attacattat 1740
ttaacttaaa ggatgaaagg tatggatgat gtgacactga gacaagatgt ataaatgaaa 1800
ttttagggtc ttgaatagga agttttaatt tcttctaaga gtaagtgaaa agtgcagttg 1860
taacaaacaa agctgtaaca tctttttctg ccaataacag aagtttggca tgccgtgaag 1920
gtgtttggaa atattattgg ataagaatag ctcaattatc ccaaataaat ggatgaagct 1980
ataatagttt tggggaaaag attctcaaat gtataaagtc ttagaacaaa agaattcttt 2040
gaaataaaaa tattatatat aaaagtaaaa aaaaaa
<210> 164
<211> 476
<212> PRT
<213> Homo sapiens
<400> 164
Met Val Gly Ala Met Trp Lys Val Ile Val Ser Leu Val Leu Leu Met
Pro Gly Pro Cys Asp Gly Leu Phe Arg Ser Leu Tyr Arg Ser Val Ser
                                 25
Met Pro Pro Lys Gly Asp Ser Gly Gln Pro Leu Phe Leu Thr Pro Tyr
Ile Glu Ala Gly Lys Ile Gln Lys Gly Arg Glu Leu Ser Leu Val Gly
Pro Phe Pro Gly Leu Asn Met Lys Ser Tyr Ala Gly Phe Leu Thr Val
 65
Asn Lys Thr Tyr Asn Ser Asn Leu Phe Phe Trp Phe Phe Pro Ala Gln
Ile Gln Pro Glu Asp Ala Pro Val Val Leu Trp Leu Gln Gly Gly Pro
                                105
            100
Gly Gly Ser Ser Met Phe Gly Leu Phe Val Glu His Gly Pro Tyr Val
                            120
Val Thr Ser Asn Met Thr Leu Arg Asp Arg Asp Phe Pro Trp Thr Thr
                        135
                                            140
Thr Leu Ser Met Leu Tyr Ile Asp Asn Pro Val Gly Thr Gly Phe Ser
                                        155
145
                    150
Phe Thr Asp Asp Thr His Gly Tyr Ala Val Asn Glu Asp Asp Val Ala
                                    170
Arg Asp Leu Tyr Ser Ala Leu Ile Gln Phe Phe Gln Ile Phe Pro Glu
            180
Tyr Lys Asn Asn Asp Phe Tyr Val Thr Gly Glu Ser Tyr Ala Gly Lys
Tyr Val Pro Ala Ile Ala His Leu Ile His Ser Leu Asn Pro Val Arg
```

215

210

Glu Val Lys Ile Asn Leu Asn Gly Ile Ala Ile Gly Asp Gly Tyr Ser 225 230 235 240

Asp Pro Glu Ser Ile Ile Gly Gly Tyr Ala Glu Phe Leu Tyr Gln Ile
245 250 255

Gly Leu Leu Asp Glu Lys Gln Lys Lys Tyr Phe Gln Lys Gln Cys His
260 265 270

Glu Cys Ile Glu His Ile Arg Lys Gln Asn Trp Phe Glu Ala Phe Glu 275 280 285

Ile Leu Asp Lys Leu Leu Asp Gly Asp Leu Thr Ser Asp Pro Ser Tyr 290 295 300

Phe Gln Asn Val Thr Gly Cys Ser Asn Tyr Tyr Asn Phe Leu Arg Cys 305 310 315 320

Thr Glu Pro Glu Asp Gln Leu Tyr Tyr Val Lys Phe Leu Ser Leu Pro 325 330 335

Glu Val Arg Gln Ala Ile His Val Gly Asn Gln Thr Phe Asn Asp Gly 340 345 350

Thr Ile Val Glu Lys Tyr Leu Arg Glu Asp Thr Val Gln Ser Val Lys 355 360 365

Pro Trp Leu Thr Glu Ile Met Asn Asn Tyr Lys Val Leu Ile Tyr Asn 370 375 380

Gly Gln Leu Asp Ile Ile Val Ala Ala Ala Leu Thr Glu Arg Ser Leu 385 390 395 400

Met Gly Met Asp Trp Lys Gly Ser Gln Glu Tyr Lys Lys Ala Glu Lys 405 410 415

Lys Val Trp Lys Ile Phe Lys Ser Asp Ser Glu Val Ala Gly Tyr Ile 420 425 430

Arg Gln Ala Gly Asp Phe His Gln Val Ile Ile Arg Gly Gly His 435 440 445

Ile Leu Pro Tyr Asp Gln Pro Leu Arg Ala Phe Asp Met Ile Asn Arg 450 455 460

Phe Ile Tyr Gly Lys Gly Trp Asp Pro Tyr Val Gly 465 470 475

<210> 165

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

```
<400> 165
ttccatqcca cctaaqqqaq actc
                                                                24
<210> 166
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 166
tggatgaggt gtgcaatggc tggc
                                                                24
<210> 167
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 167
                                                                24
agctctcaga ggctggtcat aggg
<210> 168
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 168
gtcggccctt tcccaggact gaacatgaag agttatgccg gcttcctcac
                                                                50
<210> 169
<211> 2477
<212> DNA
<213> Homo sapiens
<400> 169
cgagggettt teeggeteeg gaatggeaca tgtgggaate ceagtettgt tggetacaae 60
atttttccct ttcctaacaa qttctaacaq ctgttctaac agctagtgat caggggttct 120
tcttqctqqa qaaqaaaggg ctgagggcag agcagggcac tctcactcag ggtgaccagc 180
tccttgcctc tctgtggata acagagcatg agaaagtgaa gagatgcagc ggagtgaggt 240
gatggaagtc taaaatagga aggaattttg tgtgcaatat cagactctgg gagcagttga 300
cctggagagc ctgggggagg gcctgcctaa caagctttca aaaaacagga gcgacttcca 360
ctgggctggg ataagacgtg ccggtaggat agggaagact gggtttagtc ctaatatcaa 420
attgactggc tgggtgaact tcaacagcct tttaacctct ctgggagatg aaaacgatgg 480
tatagcataa aggctagaga ccaaaataga taacaggatt ccctgaacat tcctaagagg 600
gagaaagtat gttaaaaata gaaaaaccaa aatgcagaag gaggagactc acagagctaa 660
```

```
accaggatgg ggaccetggg teaggecage etetttgete eteceggaaa ttatttttgg 720
totgaccact otgoottqtq ttttgcagaa toatgtgagg gccaaccqqq gaaggtgqag 780
cagatgaqca cacacaggag ccgtctcctc accgccgccc ctctcagcat ggaacagagg 840
cagecetgge eeeggeeet ggaggtggae ageegetetg tggteetget eteagtggte 900
tgggtgctgc tggccccccc agcagccggc atgcctcagt tcagcacctt ccactctgag 960
aatcgtgact ggaccttcaa ccacttgacc gtccaccaag ggacgggggc cgtctatgtg 1020
ggggccatca accgggtcta taagctgaca ggcaacctga ccatccaggt ggctcataag 1080
acagggccag aagaggacaa caagtctcgt tacccgcccc tcatcgtgca gccctgcagc 1140
gaagtgctca ccctcaccaa caatgtcaac aagctgctca tcattgacta ctctgagaac 1200
cqcctqctqq cctqtqqqaq cctctaccaq qqqqtctqca aqctqctqcq qctqqatqac 1260
ctcttcatcc tggtggagcc atcccacaag aaggagcact acctgtccag tgtcaacaag 1320
acgggcacca tgtacggggt gattgtgcgc tctgagggtg aggatggcaa gctcttcatc 1380
ggcacggctg tggatgggaa gcaggattac ttcccgaccc tgtccagccg gaagctgccc 1440
cgagaccetg agtectcage catgetegae tatgagetae acagegattt tgteteetet 1500
ctcatcaaga teeetteaga caecetggee etggteteee aetttgacat ettetacate 1560
tacggetttg ctagtggggg ctttgtctac tttctcactg tccagcccga gacccctgag 1620
ggtgtggcca tcaactccgc tggagacctc ttctacacct cacgcatcgt gcggctctgc 1680
aaggatgace ccaagtteca eteatacgtg teeetgeeet teggetgeae eegggeeggg 1740
qtqqaatacc gcctcctgca ggctgcttac ctggccaagc ctggggactc actggcccag 1800
gccttcaata tcaccagcca ggacgatgta ctctttgcca tcttctccaa agggcagaag 1860
cagtateace accegecega tgactetgee etgtgtgeet tecetateeg ggecateaae 1920
ttgcagatca aggagcgcct gcagtcctgc taccagggcg agggcaacct ggagctcaac 1980
tggctgctgg ggaaggacgt ccagtgcacg aaggcgcctg tccccatcga tgataacttc 2040
tgtggactgg acatcaacca gcccctggga ggctcaactc cagtggaggg cctgaccctg 2100
tacaccacca gcagggaccg catgacctct gtggcctcct acgtttacaa cggctacagc 2160
gtggtttttg tggggactaa gagtggcaag ctgaaaaagg taagagtcta tgagttcaga 2220
tgctccaatg ccattcacct cctcagcaaa gagtccctct tggaaggtag ctattggtgg 2280
agatttaact ataggcaact ttattttctt ggggaacaaa ggtgaaatgg ggaggtaaga 2340
aggggttaat tttgtgactt agcttctagc tacttcctcc agccatcagt cattgggtat 2400
gtaaggaatg caagcgtatt tcaatatttc ccaaacttta agaaaaaact ttaagaaggt 2460
                                                                  2477
acatctgcaa aagcaaa
<210> 170
<211> 552
<212> PRT
<213> Homo sapiens
<400> 170
Met Gly Thr Leu Gly Gln Ala Ser Leu Phe Ala Pro Pro Gly Asn Tyr
Phe Trp Ser Asp His Ser Ala Leu Cys Phe Ala Glu Ser Cys Glu Gly
                                 25
Gln Pro Gly Lys Val Glu Gln Met Ser Thr His Arg Ser Arg Leu Leu
Thr Ala Ala Pro Leu Ser Met Glu Gln Arg Gln Pro Trp Pro Arg Ala
                         55
Leu Glu Val Asp Ser Arg Ser Val Val Leu Leu Ser Val Val Trp Val
                                         75
```

Leu Leu Ala Pro Pro Ala Ala Gly Met Pro Gln Phe Ser Thr Phe His

Ser Glu Asn Arg Asp Trp Thr Phe Asn His Leu Thr Val His Gln Gly

Thr Gly Ala Val Tyr Val Gly Ala Ile Asn Arg Val Tyr Lys Leu Thr 120 Gly Asn Leu Thr Ile Gln Val Ala His Lys Thr Gly Pro Glu Glu Asp 135 Asn Lys Ser Arg Tyr Pro Pro Leu Ile Val Gln Pro Cys Ser Glu Val 150 155 Leu Thr Leu Thr Asn Asn Val Asn Lys Leu Leu Ile Ile Asp Tyr Ser 165 170 Glu Asn Arg Leu Leu Ala Cys Gly Ser Leu Tyr Gln Gly Val Cys Lys Leu Leu Arg Leu Asp Asp Leu Phe Ile Leu Val Glu Pro Ser His Lys Lys Glu His Tyr Leu Ser Ser Val Asn Lys Thr Gly Thr Met Tyr Gly 215 Val Ile Val Arg Ser Glu Gly Glu Asp Gly Lys Leu Phe Ile Gly Thr 230 235 Ala Val Asp Gly Lys Gln Asp Tyr Phe Pro Thr Leu Ser Ser Arg Lys 250 Leu Pro Arg Asp Pro Glu Ser Ser Ala Met Leu Asp Tyr Glu Leu His Ser Asp Phe Val Ser Ser Leu Ile Lys Ile Pro Ser Asp Thr Leu Ala 275 280 Leu Val Ser His Phe Asp Ile Phe Tyr Ile Tyr Gly Phe Ala Ser Gly 295 Gly Phe Val Tyr Phe Leu Thr Val Gln Pro Glu Thr Pro Glu Gly Val 305 315 Ala Ile Asn Ser Ala Gly Asp Leu Phe Tyr Thr Ser Arg Ile Val Arg Leu Cys Lys Asp Asp Pro Lys Phe His Ser Tyr Val Ser Leu Pro Phe 345 Gly Cys Thr Arg Ala Gly Val Glu Tyr Arg Leu Leu Gln Ala Ala Tyr 355 Leu Ala Lys Pro Gly Asp Ser Leu Ala Gln Ala Phe Asn Ile Thr Ser Gln Asp Asp Val Leu Phe Ala Ile Phe Ser Lys Gly Gln Lys Gln Tyr 390 395

His His Pro Pro Asp Asp Ser Ala Leu Cys Ala Phe Pro Ile Arg Ala

					405					410					415		
	Ile	Asn	Leu	Gln 420	Ile	Lys	Glu	Arg	Leu 425	Gln	Ser	Cys	Tyr	Gln 430	Gly	Glu	
	Gly	Asn	Leu 435	Glu	Leu	Asn	Trp	Leu 440	Leu	Gly	Lys	Asp	Val 445	Gln	Cys	Thr	
	Lys	Ala 450	Pro	Val	Pro	Ile	Asp 455	Asp	Asn	Phe	Cys	Gly 460	Leu	Asp	Ile	Asn	
	Gln 465	Pro	Leu	Gly	Gly	Ser 470	Thr	Pro	Val	Glu	Gly 475	Leu	Thr	Leu	Tyr	Thr 480	
	Thr	Ser	Arg	Asp	Arg 485	Met	Thr	Ser	Val	Ala 490	Ser	Tyr	Val	Tyr	Asn 495	Gly	
	Tyr	Ser	Val	Val 500	Phe	Val	Gly	Thr	Lys 505	Ser	Gly	Lys	Leu	Lys 510	Lys	Val	
	Arg	Val	Tyr 515	Glu	Phe	Arg	Cys	Ser 520	Asn	Ala	Ile	His	Leu 525	Leu	Ser	Lys	
	Glu	Ser 530	Leu	Leu	Glu	Gly	Ser 535	Tyr	Trp	Trp	Arg	Phe 540	Asn	Tyr	Arg	Gln	
	Leu 545	Tyr	Phe	Leu	Gly	Glu 550	Gln	Arg									
<210> 171 <211> 20 <212> DNA <213> Artificial Sequence																	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe																	
	<400 tgga			ctcc	tgca	ıg											20
<210> 172 <211> 24 <212> DNA <213> Artificial Sequence																	
	<220 <223	> De			n of otid		ific obe	ial	Sequ	ence	: Sy	nthe	tic				
	<400 cttc			tgga	gaag	a tg	gc										24
	<210 <211 <212	> 43															

```
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 173
ggactcactg gcccaggcct tcaatatcac cagccaggac gat
                                                                  43
<210> 174
<211> 3106
<212> DNA
<213> Homo sapiens
<220>
<221> modified base
<222> (1683)..(1683)
<223> a, t, c or g
<400> 174
aggeteeege gegeggetga gtgeggaetg gagtgggaae eegggteeee gegettagag 60
aacacgcgat gaccacgtgg agcctccggc ggaggccggc ccgcacqctg ggactcctgc 120
tgctggtcgt cttgggcttc ctggtgctcc gcaggctgga ctggagcacc ctggtccctc 180
tgcggctccg ccatcgacag ctggggctgc aggccaaggg ctggaacttc atgctggagg 240
attocacctt ctggatcttc gggggctcca tccactattt ccgtgtgccc agggagtact 300
ggagggaccg cctgctgaag atgaaggcct gtggcttgaa caccctcacc acctatqttc 360
cqtqqaacct qcatqaqcca qaaaqaqqca aatttqactt ctctqqqaac ctqqacctqq 420
aggeettegt cetgatggee geagagateg ggetgtgggt gattetgegt eeaggeeeet 480
acatetgeag tgagatggae eteggggget tgeceagetg getaeteeaa gaeeetggea 540
tgaggctgag gacaacttac aagggcttca ccgaagcagt ggacctttat tttgaccacc 600
tgatgtccag ggtggtgcca ctccagtaca agcgtggggg acctatcatt gccgtgcagg 660
tggagaatga atatggttcc tataataaag accccgcata catgccctac gtcaagaagg 720
cactggagga ccgtggcatt gtggaactgc tcctgacttc agacaacaag gatgggctga 780
gcaaggggat tgtccaggga gtcttggcca ccatcaactt gcagtcaaca cacqagctqc 840
agctactgac cacctttctc ttcaacgtcc aggggactca gcccaagatg gtgatggagt 900
actggacggg gtggtttgac tcgtggggag gccctcacaa tatcttggat tcttctgagg 960
ttttgaaaac cgtgtctgcc attgtggacg ccggctcctc catcaacctc tacatgttcc 1020
acggaggcac caactttggc ttcatgaatg gagccatgca cttccatgac tacaagtcag 1080
atgtcaccag ctatgactat gatgctgtgc tgacagaagc cggcgattac acggccaagt 1140
acatgaaget tegagaette tteggeteea teteaggeat eceteteeet ececeacetg 1200
accttcttcc caagatgccg tatgagccct taacgccagt cttgtacctg tctctgtggg 1260
acqccctcaa qtacctgggg qagccaatca agtctgaaaa gcccatcaac atggagaacc 1320
tgccagtcaa tgggggaaat ggacagtcct tcgggtacat tctctatgag accagcatca 1380
cctcgtctgg catcctcagt ggccacgtgc atgatcgggg gcaggtgttt gtgaacacag 1440
tatccatagg attcttggac tacaagacaa cgaagattgc tgtccccctg atccagggtt 1500
acaccgtgct gaggatcttg gtggagaatc gtgggcgagt caactatggg gagaatattg 1560
atgaccagcg caaaggetta attggaaate tetatetgaa tgatteacce etgaaaaact 1620
tcagaatcta tagcctggat atgaagaaga gcttctttca gaggttcggc ctggacaaat 1680
ggngttccct cccagaaaca cccacattac ctgctttctt cttgggtagc ttgtccatca 1740
getecaegee ttgtgacaee tttetgaage tggagggetg ggagaagggg gttgtattea 1800
tcaatggcca gaaccttgga cgttactgga acattggacc ccagaagacg ctttacctcc 1860
caggtccctg gttgagcagc ggaatcaacc aggtcatcgt ttttgaggag acgatggcgg 1920
gccctgcatt acagttcacg gaaacccccc acctgggcag gaaccagtac attaagtgag 1980
eggtggcace ecetectget ggtgccagtg ggagactgce geetectett gacetgaage 2040
ctggtggctg ctgccccacc cctcactgca aaagcatctc cttaagtagc aacctcaggg 2100
actgggggct acagtetgce cetgtetcag etcaaaacce taageetgca gggaaaggtg 2160
```

ggatggctct gggcctggct ttgttgatga tggctttcct acagccctgc tcttgtgccg 2220

```
aggetgtegg getgteteta gggtgggage agetaateag ategeceage etttggeeet 2280
cagaaaaagt gctgaaacgt gcccttgcac cggacgtcac agccctgcga gcatctgctg 2340
gactcaggcg tgctctttgc tggttcctgg gaggcttggc cacatccctc atggccccat 2400
tttatccccg aaatcctggg tgtgtcacca gtgtagaggg tggggaaggg gtgtctcacc 2460
tgagctgact ttgttcttcc ttcacaacct tctgagcctt ctttgggatt ctggaaggaa 2520
ctcggcgtga gaaacatgtg acttcccctt tcccttccca ctcgctgctt cccacagggt 2580
gacaggctgg gctggagaaa cagaaatcct caccctgcgt cttcccaagt tagcaggtgt 2640
ctctggtgtt cagtgaggag gacatgtgag tcctggcaga agccatggcc catgtctgca 2700
catccaggga ggaggacaga aggcccagct cacatgtgag tcctggcaga agccatggcc 2760
catgtctgca catccaggga ggaggacaga aggcccagct cacatgtgag tcctggcaga 2820
agccatggcc catgtctgca catccaggga ggaggacaga aggcccagct cacatgtgag 2880
tcctggcaga agccatggcc catgtctgca catccaggga ggaggacaga aggcccagct 2940
cagtggcccc cgctccccac ccccacgcc cgaacagcag gggcagagca gccctccttc 3000
gaagtgtgtc caagtccgca tttgagcctt gttctggggc ccagcccaac acctggcttg 3060
ggctcactgt cctgagttgc agtaaagcta taaccttgaa tcacaa
<210> 175
<211> 636
<212> PRT
<213> Homo sapiens
<220>
<221> MOD RES
<222> (539)
<223> Any amino acid
<400> 175
Met Thr Thr Trp Ser Leu Arg Arg Arg Pro Ala Arg Thr Leu Gly Leu
Leu Leu Val Val Leu Gly Phe Leu Val Leu Arg Arg Leu Asp Trp
                                 25
Ser Thr Leu Val Pro Leu Arg Leu Arg His Arg Gln Leu Gly Leu Gln
                             40
         35
Ala Lys Gly Trp Asn Phe Met Leu Glu Asp Ser Thr Phe Trp Ile Phe
                         55
Gly Gly Ser Ile His Tyr Phe Arg Val Pro Arg Glu Tyr Trp Arg Asp
                     70
 65
Arg Leu Leu Lys Met Lys Ala Cys Gly Leu Asn Thr Leu Thr Thr Tyr
Val Pro Trp Asn Leu His Glu Pro Glu Arg Gly Lys Phe Asp Phe Ser
                                                     110
                                 105
Gly Asn Leu Asp Leu Glu Ala Phe Val Leu Met Ala Ala Glu Ile Gly
                             120
        115
Leu Trp Val Ile Leu Arg Pro Gly Pro Tyr Ile Cys Ser Glu Met Asp
                                             140
                         135
Leu Gly Gly Leu Pro Ser Trp Leu Leu Gln Asp Pro Gly Met Arg Leu
                                                             160
                                         155
                     150
```

Arg	Thr	Thr	Tyr	Lys 165	Gly	Phe	Thr	Glu	Ala 170	Val	Asp	Leu	Tyr	Phe 175	Asp
His	Leu	Met	Ser 180	Arg	Val	Val	Pro	Leu 185	Gln	Tyr	Lys	Arg	Gly 190	Gly	Pro
Ile	Ile	Ala 195	Val	Gln	Val	Glu	Asn 200	Glu	Tyr	Gly	Ser	Tyr 205	Asn	Lys	Asp
Pro	Ala 210	Tyr	Met	Pro	Tyr	Val 215	Lys	Lys	Ala	Leu	Glu 220	Asp	Arg	Gly	Ile
Val 225	Glu	Leu	Leu	Leu	Thr 230	Ser	Asp	Asn	Lys	Asp 235	Gly	Leu	Ser	Lys	Gly 240
Ile	Val	Gln	Gly	Val 245	Leu	Ala	Thr	Ile	Asn 250	Leu	Gln	Ser	Thr	His 255	Glu
Leu	Gln	Leu	Leu 260	Thr	Thr	Phe	Leu	Phe 265	Asn	Val	Gln	Gly	Thr 270	Gln	Pro
Lys	Met	Val 275	Met	Glu	Tyr	Trp	Thr 280	Gly	Trp	Phe	Asp	Ser 285	Trp	Gly	Gly
Pro	His 290	Asn	Ile	Leu	Asp	Ser 295	Ser	Glu	Val	Leu	Lys 300	Thr	Val	Ser	Ala
Ile 305	Val	Asp	Ala	Gly	Ser 310	Ser	Ile	Asn	Leu	Tyr 315	Met	Phe	His	Gly	Gly 320
Thr	Asn	Phe	Gly	Phe 325	Met	Asn	Gly	Ala	Met 330	His	Phe	His	Asp	Tyr 335	Lys
Ser	Asp	Val	Thr 340	Ser	Tyr	Asp	Tyr	Asp 345	Ala	Val	Leu	Thr	Glu 350	Ala	Gly
Asp	Tyr	Thr 355	Ala	Lys	Tyr	Met	Lys 360	Leu	Arg	Asp	Phe	Phe 365	Gly	Ser	Ile
Ser	Gly 370		Pro	Leu	Pro	Pro 375	Pro	Pro	Asp	Leu	Leu 380	Pro	Lys	Met	Pro
Tyr 385		Pro	Leu	Thr	Pro 390	Val	Leu	Tyr	Leu	Ser 395		Trp	Asp	Ala	Leu 400
Lys	Tyr	Leu	Gly	Glu 405		Ile	Lys	Ser	Glu 410		Pro	Ile	Asn	Met 415	Glu
Asn	Leu	Pro	Val 420		Gly	Gly	Asn	Gly 425		Ser	Phe	Gly	Tyr 430		Leu
Tyr	Glu	Thr 435		Ile	Thr	Ser	Ser 440		lle	Leu	Ser	Gly 445	His	Val	His
Asp	Arg 450		Gln	Val	Phe	Val 455		Thr	· Val	Ser	Ile 460		Phe	Leu	Asp

```
Tyr Lys Thr Thr Lys Ile Ala Val Pro Leu Ile Gln Gly Tyr Thr Val
Leu Arg Ile Leu Val Glu Asn Arg Gly Arg Val Asn Tyr Gly Glu Asn
                485
                                    490
                                                        495
Ile Asp Asp Gln Arg Lys Gly Leu Ile Gly Asn Leu Tyr Leu Asn Asp
Ser Pro Leu Lys Asn Phe Arg Ile Tyr Ser Leu Asp Met Lys Lys Ser
                            520
Phe Phe Gln Arg Phe Gly Leu Asp Lys Trp Xaa Ser Leu Pro Glu Thr
                        535
                                            540
Pro Thr Leu Pro Ala Phe Phe Leu Gly Ser Leu Ser Ile Ser Set Thr
545
                    550
                                        555
Pro Cys Asp Thr Phe Leu Lys Leu Glu Gly Trp Glu Lys Gly Val Val
                                    570
Phe Ile Asn Gly Gln Asn Leu Gly Arg Tyr Trp Asn Ile Gly Pro Gln
            580
                                585
Lys Thr Leu Tyr Leu Pro Gly Pro Trp Leu Ser Ser Gly Ile Asn Gln
                            600
Val Ile Val Phe Glu Glu Thr Met Ala Gly Pro Ala Leu Gln Phe Thr
                        615
Glu Thr Pro His Leu Gly Arg Asn Gln Tyr Ile Lys
                    630
<210> 176
<211> 2505
<212> DNA
<213> Homo sapiens
<400> 176
qqqqacqcqq aqctqaqaqq ctccqqqcta gctaqqtqta qqqqtqqacq qqtcccaqqa 60
ccctggtgag ggttctctac ttggccttcg gtgggggtca agacgcaggc acctacgcca 120
aaggggagca aagccgggct cggcccgagg cccccaggac ctccatctcc caatgttgga 180
qgaatccqac acqtqacqgt ctqtccqccq tctcagacta gaggagcqct gtaaacqcca 240
tggctcccaa gaagetgtcc tgccttcgtt ccctgctgct gccgctcagc ctgacgctac 300
tgctgcccca ggcagacact cggtcgttcg tagtggatag gggtcatgac cggtttctcc 360
tagacggggc cccgttccgc tatgtgtctg gcagcctgca ctactttcgg gtaccgcggg 420
tgctttgggc cgaccggctt ttgaagatgc gatggagcgg cctcaacgcc atacagtttt 480
atgtgccctg gaactaccac gagccacage ctggggtcta taactttaat ggcagccggg 540
accteattge etttetgaat gaggeagete tagegaacet gttggteata etgagaeeag 600
gaccttacat ctgtgcagag tgggagatgg ggggtctccc atcctggttg cttcgaaaac 660
ctgaaattca tctaagaacc tcagatccag acttccttgc cgcagtggac tcctggttca 720
aggtcttgct gcccaagata tatccatggc tttatcacaa tgggggcaac atcattagca 780
ttcaggtgga gaatgaatat ggtagctaca gagcctgtga cttcagctac atgaggcact 840
```

tggctgggct cttccgtgca ctgctaggag aaaagatctt gctcttcacc acagatgggc 900 ctgaaggact caagtgtggc tccctccggg gactctatac cactgtagat tttggcccag 960 ctgacaacat gaccaaaatc tttaccctgc ttcggaagta tgaaccccat gggccattgg 1020 taaactctga gtactacaca ggctggctgg attactgggg ccagaatcac tccacacggt 1080

```
ctgtgtcagc tgtaaccaaa ggactagaga acatgctcaa gttgggagcc agtgtgaaca 1140
tgtacatgtt ccatggaggt accaactttg gatattggaa tggtgccgat aagaagggac 1200
getteettee gattactace agetatgaet atgatgeace tatatetgaa geaggggaee 1260
ccacacctaa gctttttgct cttcgagatg tcatcagcaa gttccaggaa gttcctttgg 1320
gacctttacc tececegage eccaagatga tgettggace tgtgaetetg eacetggttg 1380
ggcatttact ggctttccta gacttgcttt gcccccgtgg gcccattcat tcaatcttgc 1440
caatgacctt tgaggctgtc aagcaggacc atggcttcat gttgtaccga acctatatga 1500
cccataccat ttttgagcca acaccattct gggtgccaaa taatggagtc catgaccgtg 1560
cctatgtgat ggtggatggg gtgttccagg gtgttgtgga gcgaaatatg agagacaaac 1620
tatttttgac ggggaaactg gggtccaaac tggatatctt ggtggagaac atggggaggc 1680
teagetttgg gtetaacage agtgaettea agggeetgtt gaageeacea attetgggge 1740
aaacaatcct tacccagtgg atgatgttcc ctctgaaaat tgataacctt gtgaagtggt 1800
ggtttcccct ccagttgcca aaatggccat atcctcaage teettetgge eccacattet 1860
actecaaaac atttecaatt ttaggeteag ttggggacae atttetatat etacetggat 1920
qqaccaaqqq ccaaqtctqq atcaatqqqt ttaacttqqq ccgqtactqq acaaaqcaqq 1980
qqccacaaca qaccetetae qtqccaaqat teetqetqtt teetaqqqqa qeeetcaaca 2040
aaattacatt getggaacta gaagatgtac etetecagee ecaagtecaa tttttggata 2100
agcetatect caatageact agtactttge acaggaeaca tateaattee ettteagetg 2160
atacactgag tgcctctgaa ccaatggagt taagtgggca ctgaaaggta ggccgggcat 2220
ggtggctcat gcctgtaatc ccagcacttt gggaggctga gacgggtgga ttacctgagg 2280
tcaggacttc aagaccagcc tggccaacat ggtgaaaccc cgtctccact aaaaatacaa 2340
aaattageeg ggegtgatgg tgggeaeete taateeeage taettgggag getgagggea 2400
qqaqaattqc ttqaatccaq qaqqcaqaqq ttqcaqtqag tqqaqgttqt accactqcac 2460
tccagcctgg ctgacagtga gacactccat ctcaaaaaaa aaaaa
                                                                  2505
<210> 177
<211> 654
<212> PRT
<213> Homo sapiens
<400> 177
Met Ala Pro Lys Lys Leu Ser Cys Leu Arg Ser Leu Leu Leu Pro Leu
                                     10
```

Ser Leu Thr Leu Leu Pro Gln Ala Asp Thr Arg Ser Phe Val Val 20 25 30

Asp Arg Gly His Asp Arg Phe Leu Leu Asp Gly Ala Pro Phe Arg Tyr 35 40 45

Val Ser Gly Ser Leu His Tyr Phe Arg Val Pro Arg Val Leu Trp Ala 50 55 60

Asp Arg Leu Leu Lys Met Arg Trp Ser Gly Leu Asn Ala Ile Gln Phe 65 70 75 80

Tyr Val Pro Trp Asn Tyr His Glu Pro Gln Pro Gly Val Tyr Asn Phe
85 90 95

Asn Gly Ser Arg Asp Leu Ile Ala Phe Leu Asn Glu Ala Ala Leu Ala 100 105 110

Asn Leu Leu Val Ile Leu Arg Pro Gly Pro Tyr Ile Cys Ala Glu Trp 115 120 125

Glu Met Gly Gly Leu Pro Ser Trp Leu Leu Arg Lys Pro Glu Ile His 130 135 140

Leu 145	Arg	Thr	Ser	Asp	Pro 150	Asp	Phe	Leu	Ala	Ala 155	Val	Asp	Ser	Trp	Phe 160
Lys	Val	Leu	Leu	Pro 165	Lys	Ile	Tyr	Pro	Trp 170	Leu	Tyr	His	Asn	Gly 175	Gly
Asn	Ile	Ile	Ser 180	Ile	Gln	Val	Glu	Asn 185	Glu	Tyr	Gly	Ser	Tyr 190	Arg	Ala
Суѕ	Asp	Phe 195	Ser	Tyr	Met	Arg	His 200	Leu	Ala	Gly	Leu	Phe 205	Arg	Ala	Leu
Leu	Gly 210	Glu	Lys	Ile	Leu	Leu 215	Phe	Thr	Thr	Asp	Gly 220	Pro	Glu	Gly	Leu
Lys 225	Cys	Gly	Ser	Leu	Arg 230	Gly	Leu	Tyr	Thr	Thr 235	Val	Asp	Phe	Gly	Pro 240
Ala	Asp	Asn	Met	Thr 245	Lys	Ile	Phe	Thr	Leu 250	Leu	Arg	Lys	Tyr	Glu 255	Pro
His	Gly	Pro	Leu 260	Val	Asn	Ser	Glu	Tyr 265	Tyr	Thr	Gly	Trp	Leu 270	Asp	Tyr
Trp	Gly	Gln 275	Asn	His	Ser	Thr	Arg 280	Ser	Val	Ser	Ala	Val 285	Thr	Lys	Gly
Leu	Glu 290	Asn	Met	Leu	Lys	Leu 295	Gly	Ala	Ser	Val	Asn 300	Met	Tyr	Met	Phe
His 305	Gly	Gly	Thr	Asn	Phe 310	Gly	Tyr	Trp	Asn	Gly 315	Ala	Asp	Lys	Lys	Gly 320
Arg	Phe	Leu	Pro	Ile 325	Thr	Thr	Ser	Tyr	Asp 330	Tyr	Asp	Ala	Pro	Ile 335	Ser
Glu	Ala	Gly	Asp 340	Pro	Thr	Pro	Lys	Leu 345	Phe	Ala	Leu	Arg	Asp 350	Val	Ile
Ser	Lys	Phe 355	Gln	Glu	Val	Pro		-		Leu		Pro 365	Pro	Ser	Pro
Lys	Met 370	Met	Leu	Gly	Pro	Val 375	Thr	Leu	His	Leu	Val 380	Gly	His	Leu	Leu
Ala 385	Phe	Leu	Asp	Leu	Leu 390	Cys	Pro	Arg	Gly	Pro 395	Ile	His	Ser	Ile	Leu 400
Pro	Met	Thr	Phe	Glu 405	Ala	Val	Lys	Gln	Asp 410	His	Gly	Phe	Met	Leu 415	Tyr
Arg	Thr	Tyr	Met 420	Thr	His	Thr	Ile	Phe 425	Glu	Pro	Thr	Pro	Phe 430	Trp	Val
Pro	Asn	Asn 435	Gly	Val	His	Asp	Arg 440	Ala	Tyr	Val	Met	Val 445	Asp	Gly	Val

Phe Gln Gly Val Val Glu Arg Asn Met Arg Asp Lys Leu Phe Leu Thr 450 460

Gly Lys Leu Gly Ser Lys Leu Asp Ile Leu Val Glu Asn Met Gly Arg 465 470 475 480

Leu Ser Phe Gly Ser Asn Ser Ser Asp Phe Lys Gly Leu Leu Lys Pro 485 490 495

Pro Ile Leu Gly Gln Thr Ile Leu Thr Gln Trp Met Met Phe Pro Leu 500 505 510

Lys Ile Asp Asn Leu Val Lys Trp Trp Phe Pro Leu Gln Leu Pro Lys 515 520 525

Trp Pro Tyr Pro Gln Ala Pro Ser Gly Pro Thr Phe Tyr Ser Lys Thr 530 535 540

Phe Pro Ile Leu Gly Ser Val Gly Asp Thr Phe Leu Tyr Leu Pro Gly 545 550 555 560

Trp Thr Lys Gly Gln Val Trp Ile Asn Gly Phe Asn Leu Gly Arg Tyr 565 570 575

Trp Thr Lys Gln Gly Pro Gln Gln Thr Leu Tyr Val Pro Arg Phe Leu 580 585 590

Leu Phe Pro Arg Gly Ala Leu Asn Lys Ile Thr Leu Leu Glu Leu Glu 595 600 605

Asp Val Pro Leu Gln Pro Gln Val Gln Phe Leu Asp Lys Pro Ile Leu 610 620

Asn Ser Thr Ser Thr Leu His Arg Thr His Ile Asn Ser Leu Ser Ala 625 630 635 640

Asp Thr Leu Ser Ala Ser Glu Pro Met Glu Leu Ser Gly His 645 650

<210> 178

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 178

tggctactcc aagaccctgg catg

<210> 179

<211> 24

<212> DNA

<213> Artificial Sequence

	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> tggaca	179 waatc ceettgetea geee	24
<210><211><211><212><213>	50	
	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> gggctt	180 cacc gaagcagtgg acctttattt tgaccacctg atgtccaggg	50
<210><211><211><212><213>	22	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> ccagct	181 Latga ctatgatgca cc	22
<210><211><211><212><213>	24	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> tggcac	182 cccag aatggtgttg gctc	24
<210><211><211><212><213>	50	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> cgagat	183 gtca tcagcaagtt ccaggaagtt cctttgggac ctttacctcc	50
<210> <211>		

```
<212> DNA
<213> Homo sapiens
<400> 184
gctttgaaca cgtctgcaag cccaaagttg agcatctgat tggttatgag gtatttgagt 60
qcacccacaa tatggcttac atgttgaaaa agcttctcat cagttacata tccattattt 120
qtqtttatqq ctttatctqc ctctacactc tcttctqqtt attcaqqata cctttqaaqq 180
aatattettt egaaaaagte agagaagaga geagttttag tgacatteea gatgteaaaa 240
acquitttigc gttccttctt cacatggtag accagtatga ccagctatat tccaagcgtt 300
ttggtgtgtt cttgtcagaa gttagtgaaa ataaacttag ggaaattagt ttgaaccatg 360
agtggacatt tgaaaaactc aggcagcaca tttcacqcaa cqcccaggac aagcaggagt 420
tgcatctqtt catgctqtcg qqqqtqcccq atqctqtctt tqacctcaca qacctqqatq 480
tgctaaagct tgaactaatt ccagaagcta aaattcctgc taagatttct caaatgacta 540
acctccaaga gctccacctc tgccactgcc ctgcaaaagt tgaacagact gcttttagct 600
ttcttcgcga tcacttgaga tgccttcacg tgaagttcac tgatgtggct gaaattcctg 660
cctgggtgta tttgctcaaa aaccttcgag agttgtactt aataggcaat ttgaactctg 720
aaaacaataa gatgatagga cttgaatctc tccgagagtt gcggcacctt aagattctcc 780
acgtgaagag caatttgacc aaagttccct ccaacattac agatgtggct ccacatctta 840
caaaqttaqt cattcataat qacqqcacta aactcttqqt actqaacaqc cttaaqaaaa 900
tgatgaatgt cgctgagctg gaactccaga actgtgagct agagagaatc ccacatgcta 960
ttttcagcct ctctaattta caggaactgg atttaaagtc caataacatt cgcacaattg 1020
aggaaatcat cagtttccag catttaaaac gactgacttg tttaaaatta tggcataaca 1080
aaattqttac tattcctccc tctattaccc atqtcaaaaa cttqqaqtca ctttatttct 1140
ctaacaacaa getegaatee ttaccagtgg cagtatttag tttacagaaa etcagatget 1200
tagatgtgag ctacaacaac atttcaatga ttccaataga aataggattg cttcagaacc 1260
tgcagcattt gcatatcact gggaacaaag tggacattct gccaaaacaa ttgtttaaat 1320
gcataaagtt gaggactttg aatctgggac agaactgcat cacctcactc ccagagaaag 1380
ttggtcaget eteccagete acteagetgg agetgaaggg gaactgettg gaeegeetge 1440
cageceaget gggecagtgt eggatgetea agaaaagegg gettgttgtg gaagateace 1500
tttttgatac cctgccactc qaagtcaaag aggcattgaa tcaagacata aatattccct 1560
ttgcaaatgg gatttaaact aagataatat atgcacagtg atgtgcagga acaactteet 1620
agattqcaaq tqctcacqta caaqttatta caaqataatq cattttaqqa qtaqatacat 1680
cttttaaaat aaaacagaga ggatgcatag aaggctgata gaagacataa ctgaatgttc 1740
aatgtttgta gggttttaag tcattcattt ccaaatcatt tttttttttc ttttggggaa 1800
agggaaggaa aaattataat cactaatctt ggttcttttt aaattgtttg taacttggat 1860
gctgccgcta ctgaatgttt acaaattgct tgcctgctaa agtaaatgat taaattgaca 1920
ttttcttact aaaaaaaaa aaaaaaa
                                                                  1947
<210> 185
<211> 501
<212> PRT
<213> Homo sapiens
<400> 185
Met Ala Tyr Met Leu Lys Lys Leu Leu Ile Ser Tyr Ile Ser Ile Ile
Cys Val Tyr Gly Phe Ile Cys Leu Tyr Thr Leu Phe Trp Leu Phe Arg
Ile Pro Leu Lys Glu Tyr Ser Phe Glu Lys Val Arg Glu Glu Ser Ser
Phe Ser Asp Ile Pro Asp Val Lys Asn Asp Phe Ala Phe Leu Leu His
     50
                         55
```

Met Val Asp Gln Tyr Asp Gln Leu Tyr Ser Lys Arg Phe Gly Val Phe

65

Leu Ser Glu Val Ser Glu Asn Lys Leu Arg Glu Ile Ser Leu Asn His 95

Glu Trp Thr Phe Glu Lys Leu Arg Gln His Ile Ser Arg Asn Ala Gln 105

Asp Lys Gln Glu Leu His Leu Phe Met Leu Ser Gly Val Pro Asp Ala 125

Val Phe Asp Leu Thr Asp Leu Asp Val Leu Lys Leu Glu Leu Ile Pro 130 135 140

Glu Ala Lys Ile Pro Ala Lys Ile Ser Gln Met Thr Asn Leu Gln Glu 145 150 155 160

Leu His Leu Cys His Cys Pro Ala Lys Val Glu Gln Thr Ala Phe Ser 165 170 175

Phe Leu Arg Asp His Leu Arg Cys Leu His Val Lys Phe Thr Asp Val 180 185 190

Ala Glu Ile Pro Ala Trp Val Tyr Leu Leu Lys Asn Leu Arg Glu Leu 195 200 205

Tyr Leu Ile Gly Asn Leu Asn Ser Glu Asn Asn Lys Met Ile Gly Leu 210 215 220

Glu Ser Leu Arg Glu Leu Arg His Leu Lys Ile Leu His Val Lys Ser 235 230 235

Asn Leu Thr Lys Val Pro Ser Asn Ile Thr Asp Val Ala Pro His Leu 245 250 255

Thr Lys Leu Val Ile His Asn Asp Gly Thr Lys Leu Leu Val Leu Asn 260 265 270

Ser Leu Lys Lys Met Met Asn Val Ala Glu Leu Glu Leu Gln Asn Cys 275 280 285

Glu Leu Glu Arg Ile Pro His Ala Ile Phe Ser Leu Ser Asn Leu Gln 290 295 300

Glu Leu Asp Leu Lys Ser Asn Asn Ile Arg Thr Ile Glu Glu Ile Ile 305 310 315 320

Ser Phe Gln His Leu Lys Arg Leu Thr Cys Leu Lys Leu Trp His Asn 325 330 335

Lys Ile Val Thr Ile Pro Pro Ser Ile Thr His Val Lys Asn Leu Glu 340 345 350

Ser Leu Tyr Phe Ser Asn Asn Lys Leu Glu Ser Leu Pro Val Ala Val 355 360 365

Phe Ser Leu Gln Lys Leu Arg Cys Leu Asp Val Ser Tyr Asn Asn Ile

370 375 380

Ser Met Ile Pro Ile Glu Ile Gly Leu Leu Gln Asn Leu Gln His Leu 390 395 His Ile Thr Gly Asn Lys Val Asp Ile Leu Pro Lys Gln Leu Phe Lys 405 410 Cys Ile Lys Leu Arg Thr Leu Asn Leu Gly Gln Asn Cys Ile Thr Ser 425 Leu Pro Glu Lys Val Gly Gln Leu Ser Gln Leu Thr Gln Leu Glu Leu 435 440 445 Lys Gly Asn Cys Leu Asp Arg Leu Pro Ala Gln Leu Gly Gln Cys Arg 455 Met Leu Lys Lys Ser Gly Leu Val Val Glu Asp His Leu Phe Asp Thr 470 475 Leu Pro Leu Glu Val Lys Glu Ala Leu Asn Gln Asp Ile Asn Ile Pro 485 490 Phe Ala Asn Gly Ile 500 <210> 186 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 186 cctccctcta ttacccatgt c 21 <210> 187 <211> 24 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 187 gaccaacttt ctctgggagt gagg 24 <210> 188 <211> 47 <212> DNA <213> Artificial Sequence

<223> Description of Artificial Sequence: Synthetic

```
<400> 188
gtcactttat ttctctaaca acaagctcga atccttacca gtggcag
                                                                  47
<210> 189
<211> 2917
<212> DNA
<213> Homo sapiens
<400> 189
eccaegegte eggeettete tetggaettt geattteeat teetttteat tgacaaactg 60
acttttttta tttcttttt tccatctctg ggccagcttg ggatcctagg ccgccctggg 120
aagacatttg tgttttacac acataaggat ctgtgtttgg ggtttcttct tcctcccctg 180
acattgqcat tqcttaqtqq ttqtqtqqqq aqqqqacca cqtqqqctca qtqcttqctt 240
gcacttatct gcctaggtac atcgaagtct tttgacctcc atacagtgat tatgcctgtc 300
ategetggtg gtateetgge ggeettgete etgetgatag ttgtegtget etgtetttae 360
ttcaaaatac acaacgcgct aaaagctgca aaggaacctg aagctgtggc tgtaaaaaat 420
cacaacccaq acaaqqtqtq qtqqqccaaq aacaqccaqq ccaaaaccat tqccacqqaq 480
tettgteetg eeetgeagtg etgtgaagga tatagaatgt gtgeeagttt tgatteeetg 540
ccaccttgct gttgcgacat aaatgagggc ctctgagtta ggaaaggctc ccttctcaaa 600
qcagagccct gaagacttca atgatgtcaa tgaggccacc tgtttgtgat gtgcaggcac 660
agaagaaagg cacagctccc catcagtttc atggaaaata actcagtgcc tgctgggaac 720
cagctgctgg agatccctac agagagcttc cactgggggc aacccttcca ggaaggagtt 780
ggggagagag aacceteact gtggggaatg etgataaace agteacaeag etgetetatt 840
ctcacacaaa tctacccctt qcqtqqctqq aactgacqtt tccctqqaqq tqtccaqaaa 900
gctgatgtaa cacagagcct ataaaagctg tcggtcctta aggctgccca gcgccttgcc 960
aaaatggagc ttgtaagaag gctcatgcca ttgaccctct taattctctc ctgtttggcg 1020
qaqctqacaa tqqcqqaqqc tqaaqqcaat qcaaqctqca caqtcaqtct agqqqqtqcc 1080
aatatqqcaq agacccacaa aqccatqatc ctqcaactca atcccaqtqa qaactqcacc 1140
tggacaatag aaagaccaga aaacaaaagc atcagaatta tcttttccta tgtccagctt 1200
gatecagatg gaagetgtga aagtgaaaac attaaagtet ttgaeggaae etecageaat 1260
gggcctctgc tagggcaagt ctgcagtaaa aacgactatg ttcctgtatt tgaatcatca 1320
tccagtacat tgacgtttca aatagttact gactcagcaa gaattcaaag aactgtcttt 1380
qtcttctact acttcttctc tcctaacatc tctattccaa actgtggcgg ttacctggat 1440
accttggaag gatccttcac cagccccaat tacccaaage egeateetga getggettat 1500
tgtgtgtggc acatacaagt ggagaaagat tacaagataa aactaaactt caaagagatt 1560
ttcctagaaa tagacaaaca gtgcaaattt gattttcttg ccatctatga tggcccctcc 1620
accaactctg geetgattgg acaagtetgt ggeegtgtga eteceaeett egaategtea 1680
tcaaactete tgactgtegt gttgtetaca gattatgeea attettaceg gggattttet 1740
qcttcctaca cctcaattta tqcaqaaaac atcaacacta catctttaac ttgctcttct 1800
qacaqqatqa qaqttattat aaqcaaatcc tacctaqaqq cttttaactc taatqqqaat 1860
aacttqcaac taaaaqaccc aacttqcaqa ccaaaattat caaatqttqt ggaattttct 1920
gtccctctta atggatgtgg tacaatcaga aaggtagaag atcagtcaat tacttacacc 1980
aatataatca ccttttctqc atcctcaact tctqaaqtqa tcacccqtca qaaacaactc 2040
cagattattg tgaagtgtga aatgggacat aattctacag tggagataat atacataaca 2100
qaaqatqatq taatacaaag tcaaaatqca ctqqqcaaat ataacaccag catqqctctt 2160
tttgaatcca attcatttga aaagactata cttgaatcac catattatgt ggatttgaac 2220
caaactettt ttgttcaagt tagtetgeac aceteagate caaatttggt ggtgtttett 2280
gatacetgta gageetetee cacetetgae tittgeatete caacetaega eetaateaag 2340
aqtqqatqta qtcqaqatqa aacttqtaaq qtqtatccct tatttqqaca ctatqqqaqa 2400
ttccagttta atgcctttaa attcttgaga agtatgagct ctgtgtatct gcagtgtaaa 2460
gttttgatat gtgatagcag tgaccaccag tctcgctgca atcaaggttg tgtctccaga 2520
agcaaacgag acatttcttc atataaatgg aaaacagatt ccatcatagg acccattcgt 2580
ctgaaaaggg atcgaagtgc aagtggcaat tcaggatttc agcatgaaac acatgcggaa 2640
gaaactccaa accagccttt caacagtgtg catctgtttt ccttcatggt tctagctctg 2700
aatgtggtga ctgtagcgac aatcacagtg aggcattttg taaatcaacg ggcagactac 2760
```

aaataccaga agctgcagaa ctattaacta acaggtccaa ccctaagtga gacatgtttc 2820 tccaggatgc caaaggaaat gctacctcgt ggctacacat attatgaata aatgaggaag 2880 ggcctgaaag tgacacacag gcctgcatgt aaaaaaa 2917

<210> 190

<211> 607

<212> PRT

<213> Homo sapiens

<400> 190

Met Glu Leu Val Arg Arg Leu Met Pro Leu Thr Leu Leu Ile Leu Ser 1 5 10 15

Cys Leu Ala Glu Leu Thr Met Ala Glu Ala Glu Gly Asn Ala Ser Cys 20 25 30

Thr Val Ser Leu Gly Gly Ala Asn Met Ala Glu Thr His Lys Ala Met 35 40 45

Ile Leu Gln Leu Asn Pro Ser Glu Asn Cys Thr Trp Thr Ile Glu Arg
50 55 60

Pro Glu Asn Lys Ser Ile Arg Ile Ile Phe Ser Tyr Val Gln Leu Asp 65 70 75 80

Pro Asp Gly Ser Cys Glu Ser Glu Asn Ile Lys Val Phe Asp Gly Thr 85 90 95

Ser Ser Asn Gly Pro Leu Leu Gly Gln Val Cys Ser Lys Asn Asp Tyr 100 105 110

Val Pro Val Phe Glu Ser Ser Ser Ser Thr Leu Thr Phe Gln Ile Val 115 120 125

Thr Asp Ser Ala Arg Ile Gln Arg Thr Val Phe Val Phe Tyr Tyr Phe 130 135 140

Phe Ser Pro Asn Ile Ser Ile Pro Asn Cys Gly Gly Tyr Leu Asp Thr 145 150 155 160

Leu Glu Gly Ser Phe Thr Ser Pro Asn Tyr Pro Lys Pro His Pro Glu 165 170 175

Leu Ala Tyr Cys Val Trp His Ile Gln Val Glu Lys Asp Tyr Lys Ile 180 185 190

Lys Leu Asn Phe Lys Glu Ile Phe Leu Glu Ile Asp Lys Gln Cys Lys 195 200 205

Phe Asp Phe Leu Ala Ile Tyr Asp Gly Pro Ser Thr Asn Ser Gly Leu 210 215 220

Ile Gly Gln Val Cys Gly Arg Val Thr Pro Thr Phe Glu Ser Ser Ser225230235240

Asn Ser Leu Thr Val Val Leu Ser Thr Asp Tyr Ala Asn Ser Tyr Arg 245 250 255 Gly Phe Ser Ala Ser Tyr Thr Ser Ile Tyr Ala Glu Asn Ile Asn Thr 260

Thr Ser Leu Thr Cys Ser Ser Asp Arg Met Arg Val Ile Ile Ser Lys 280

Ser Tyr Leu Glu Ala Phe Asn Ser Asn Gly Asn Asn Leu Gln Leu Lys 290 295 300

Asp Pro Thr Cys Arg Pro Lys Leu Ser Asn Val Val Glu Phe Ser Val 305 310 315 320

Pro Leu Asn Gly Cys Gly Thr Ile Arg Lys Val Glu Asp Gln Ser Ile 325 330 335

Thr Tyr Thr Asn Ile Ile Thr Phe Ser Ala Ser Ser Thr Ser Glu Val 340 345 350

Ile Thr Arg Gln Lys Gln Leu Gln Ile Ile Val Lys Cys Glu Met Gly 355 360 365

His Asn Ser Thr Val Glu Ile Ile Tyr Ile Thr Glu Asp Asp Val Ile 370 375 380

Gln Ser Gln Asn Ala Leu Gly Lys Tyr Asn Thr Ser Met Ala Leu Phe 385 390 395 400

Glu Ser Asn Ser Phe Glu Lys Thr Ile Leu Glu Ser Pro Tyr Tyr Val 405 410 415

Asp Leu Asn Gln Thr Leu Phe Val Gln Val Ser Leu His Thr Ser Asp 420 425 430

Pro Asn Leu Val Val Phe Leu Asp Thr Cys Arg Ala Ser Pro Thr Ser 435 440 445

Asp Phe Ala Ser Pro Thr Tyr Asp Leu Ile Lys Ser Gly Cys Ser Arg 450 455 460

Asp Glu Thr Cys Lys Val Tyr Pro Leu Phe Gly His Tyr Gly Arg Phe 465 470 475 480

Gln Phe Asn Ala Phe Lys Phe Leu Arg Ser Met Ser Ser Val Tyr Leu 485 490 495

Gln Cys Lys Val Leu Ile Cys Asp Ser Ser Asp His Gln Ser Arg Cys
500 505 510

Asn Gln Gly Cys Val Ser Arg Ser Lys Arg Asp Ile Ser Ser Tyr Lys 515 520 525

Trp Lys Thr Asp Ser Ile Ile Gly Pro Ile Arg Leu Lys Arg Asp Arg 530 540

Ser Ala Ser Gly Asn Ser Gly Phe Gln His Glu Thr His Ala Glu Glu 545 550 555 560

Thr Pro Asn Gln Pro Phe Asn Ser Val His Leu Phe Ser Phe Met Val 565 570 Leu Ala Leu Asn Val Val Thr Val Ala Thr Ile Thr Val Arg His Phe 580 585 Val Asn Gln Arg Ala Asp Tyr Lys Tyr Gln Lys Leu Gln Asn Tyr 600 605 <210> 191 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 191 21 tctctattcc aaactgtggc g <210> 192 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 192 22 tttgatgacg attcgaaggt gg <210> 193 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 193 ggaaggatee tteaceagee ceaattacee aaageegeat eetgage 47 <210> 194 <211> 2362 <212> DNA <213> Homo sapiens <400> 194 gacqqaaqaa cagcgctccc gaggccgcgg gagcctgcag agaggacagc cggcctgcgc 60 egggacatge ggeeceagga geteceeagg etegegttee egttgetget gttgetgttg 120 ctgctgctgc cgccgccgcc gtgccctgcc cacagcgcca cgcgcttcga ccccacctgg 180 gagtecetgg aegeeegeea getgeeegeg tggtttgace aggeeaagtt eggeatette 240 atccactggg gagtgttttc cgtgcccagc ttcggtagcg agtggttctg gtggtattgg 300

```
caaaaggaaa agataccgaa gtatgtggaa tttatgaaag ataattaccc tcctagtttc 360
aaatatqaaq attttggacc actatttaca gcaaaatttt ttaatgccaa ccagtgggca 420
qatatttttc aggcctctgg tgccaaatac attgtcttaa cttccaaaca tcatgaaggc 480
tttaccttgt gggggtcaga atattcgtgg aactggaatg ccatagatga ggggcccaag 540
agggacattg tcaaggaact tgaggtagcc attaggaaca gaactgacct gcgttttgga 600
ctgtactatt ccctttttga atggtttcat ccgctcttcc ttgaggatga atccagttca 660
ttccataagc ggcaatttcc agtttctaag acattgccag agctctatga gttagtgaac 720
aactatcagc ctgaggttct gtggtcggat ggtgacggag gagcaccgga tcaatactgg 780
aacagcacag gcttcttggc ctggttatat aatgaaagcc cagttcgggg cacagtagtc 840
accaatgate gttggggage tggtagcate tgtaagcatg gtggetteta tacetgeagt 900
gatcgttata acccaggaca tcttttgcca cataaatggg aaaactgcat gacaatagac 960
aaactgtcct ggggctatag gagggaagct ggaatctctg actatcttac aattgaagaa 1020
ttggtgaagc aacttgtaga gacagtttca tgtggaggaa atcttttgat gaatattggg 1080
cccacactaq atqqcaccat ttctqtagtt tttqagqagc gactqagqca agtqggqtcc 1140
tggctaaaag tcaatggaga agctatttat gaaacctata cctggcgatc ccagaatgac 1200
actytcacce cagatytyty ytacacatee aageetaaay aaaaattayt etatyeeatt 1260
tttcttaaat ggcccacatc aggacagctg ttccttggcc atcccaaagc tattctgggg 1320
qcaacaqaqq tqaaactact gggccatgga cagccactta actggatttc tttggagcaa 1380
aatqqcatta tqqtaqaact qccacaqcta accattcatc agatqccqtq taaatqqqqc 1440
tgggctctag ccctaactaa tgtgatctaa agtgcagcag agtggctgat gctgcaagtt 1500
atgtctaagg ctaggaacta tcaggtgtct ataattgtag cacatggaga aagcaatgta 1560
aactggataa gaaaattatt tggcagttca gccctttccc tttttcccac taaatttttc 1620
ttaaattacc catqtaacca ttttaactct ccaqtqcact ttgccattaa agtctcttca 1680
cattgatttg tttccatgtg tgactcagag gtgagaattt tttcacatta tagtagcaag 1740
gaattggtgg tattatggac cgaactgaaa attttatgtt gaagccatat cccccatgat 1800
tatataqtta tqcatcactt aatatgggga tattttctgg gaaatgcatt gctagtcaat 1860
ttttttttgt gccaacatca tagagtgtat ttacaaaatc ctagatggca tagcctacta 1920
cacacctaat gtgtatggta tagactgttg ctcctaggct acagacatat acagcatgtt 1980
actgaatact gtaggcaata gtaacagtgg tatttgtata tcgaaacata tggaaacata 2040
gagaaggtac agtaaaaata ctgtaaaata aatggtgcac ctgtataggg cacttaccac 2100
qaatqqaqct tacaqqactq qaaqttqctc tqqqtqaqtc agtgaqtgaa tgtgaaggcc 2160
taggacatta ttgaacactg ccagacgtta taaatactgt atgcttaggc tacactacat 2220
ttataaaaaa aagtttttct ttcttcaatt ataaattaac ataagtgtac tgtaacttta 2280
caaacqtttt aatttttaaa acctttttqq ctcttttqta ataacactta gcttaaaaca 2340
taaactcatt gtgcaaatgt aa
                                                                  2362
<210> 195
<211> 467
<212> PRT
<213> Homo sapiens
<400> 195
Met Arg Pro Gln Glu Leu Pro Arg Leu Ala Phe Pro Leu Leu Leu
Leu Leu Leu Leu Pro Pro Pro Pro Cys Pro Ala His Ser Ala Thr
                                 25
             20
Arg Phe Asp Pro Thr Trp Glu Ser Leu Asp Ala Arg Gln Leu Pro Ala
                             40
         35
```

Trp Phe Asp Gln Ala Lys Phe Gly Ile Phe Ile His Trp Gly Val Phe

Ser Val Pro Ser Phe Gly Ser Glu Trp Phe Trp Trp Tyr Trp Gln Lys

70

75

GIU	ьуs	TTE	Pro	ьуs 85	Tyr	vaı	GIU	Pne	мет 90	гÀ2	Asp	ASI	Tyr	95	Pro
Ser	Phe	Lys	Tyr 100	Glu	Asp	Phe	Gly	Pro 105	Leu	Phe	Thr	Ala	Lys 110	Phe	Phe
Asn	Ala	Asn 115	Gln	Trp	Ala	Asp	Ile 120	Phe	Gln	Ala	Ser	Gly 125	Ala	Lys	Tyr
Ile	Val 130	Leu	Thr	Ser	Lys	His 135	His	Glu	Gly	Phe	Thr 140	Leu	Trp	Gly	Ser
Glu 145	Tyr	Ser	Trp	Asn	Trp 150	Asn	Ala	Ile	Asp	Glu 155	Gly	Pro	Lys	Arg	Asp 160
Ile	Val	Lys	Glu	Leu 165	Glu	Val	Ala	Ile	Arg 170	Asn	Arg	Thr	Asp	Leu 175	Arg
Phe	Gly	Leu	Tyr 180	Tyr	Ser	Leu	Phe	Glu 185	Trp	Phe	His	Pro	Leu 190	Phe	Leu
Glu	Asp	Glu 195	Ser	Ser	Ser	Phe	His 200	Lys	Arg	Gln	Phe	Pro 205	Val	Ser	Lys
Thr	Leu 210	Pro	Glu	Leu	Tyr	Glu 215	Leu	Val	Asn	Asn	Tyr 220	Gln	Pro	Glu	Val
Leu 225	Trp	Ser	Asp	Gly	Asp 230	Gly	Gly	Ala	Pro	Asp 235	Gln	Tyr	Trp	Asn	Ser 240
Thr	Gly	Phe	Leu	Ala 245	Trp	Leu	Tyr	Asn	Glu 250	Ser	Pro	Val	Arg	Gly 255	Thr
Val	Val	Thr	Asn 260	Asp	Arg	Trp	Gly	Ala 265	Gly	Ser	Ile	Cys	Lys 270	His	Gly
Gly	Phe	Tyr 275	Thr	Cys	Ser	Asp	Arg 280	Tyr	Asn	Pro	Gly	His 285	Leu	Leu	Pro
His	Lys 290	_	Glu	Asn		Met 295		Ile		Lys			Trp	Gly	Tyr
Arg 305	Arg	Glu	Ala	Gly	Ile 310	Ser	Asp	Tyr	Leu	Thr 315	Ile	Glu	Glu	Leu	Val 320
Lys	Gln	Leu	Val	Glu 325	Thr	Val	Ser	Cys	Gly 330	Gly	Asn	Leu	Leu	Met 335	Asn
Ile	Gly	Pro	Thr 340	Leu	Asp	Gly	Thr	Ile 345	Ser	Val	Val	Phe	Glu 350	Glu	Arg
Leu	Arg	Gln 355	Val	Gly	Ser	Trp	Leu 360	Lys	Val	Asn	Gly	Glu 365	Ala	Ile	Tyr
Glu	Thr 370	Tyr	Thr	Trp	Arg	Ser 375	Gln	Asn	Asp	Thr	Val 380	Thr	Pro	Asp	Val

Trp 385	Tyr	Thr	Ser	Lys	Pro 390	Lys	Glu	Lys	Leu	Val 395	Tyr	Ala	Ile	Phe	Leu 400	
Lys	Trp	Pro	Thr	Ser 405	Gly	Gln	Leu	Phe	Leu 410	Gly	His	Pro	Lys	Ala 415	Ile	
Leu	Gly	Ala	Thr 420	Glu	Val	Lys	Leu	Leu 425	Gly	His	Gly	Gln	Pro 430	Leu	Asn	
Trp	Ile	Ser 435	Leu	Glu	Gln	Asn	Gly 440	Ile	Met	Val	Glu	Leu 445	Pro	Gln	Leu	
Thr	Ile 450	His	Gln	Met	Pro	Cys 455	Lys	Trp	Gly	Trp	Ala 460	Leu	Ala	Leu	Thr	
Asn 465	Val	Ile														
<213 <212	0> 1: L> 2: 2> Di 3> A:	3 NA	icial	l Se	quenc	ce										
<220)>															
<223			iptionucle				cial	Seq	uence	e: Sy	ynthe	etic				
)> 1 :ttg		aggc	caag	tt c	gg										23
<213 <213	0> 1 1> 2: 2> Di 3> A:	4 NA	icia	l Se	quen	ce										
<220 <220	3> D		ipti nucl				cial	Seq	uenc	e: S	ynth	etic				
	0> 1 ttca		tcaa	ggaa	ga g	cgg										24
<21:	0> 1 1> 2 2> D 3> A	4 NA	icia	l Se	quen	ce										
<22 <22	3> D		ipti nucl					Seq	uenc	e: S	ynth	etic				
	0> 1 ttgc		atca	gcca	ct c	tgc										24
<21	0> 1 1> 4 2> D	5														

```
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 199
ttccgtgccc agcttcggta gcgagtggtt ctggtggtat tggca
                                                                  45
<210> 200
<211> 2372
<212> DNA
<213> Homo sapiens
<400> 200
agcagggaaa tccggatgtc tcggttatga agtggagcag tgagtgtgag cctcaacata 60
gttccagaac tctccatccg gactagttat tgagcatctg cctctcatat caccagtggc 120
catctgaggt gtttccctgg ctctgaaggg gtaggcacga tggccaggtg cttcagcctg 180
qtgttgcttc tcacttccat ctggaccacg aggctcctgg tccaaggctc tttgcqtqca 240
gaagagettt ccatccaggt gtcatgcaga attatgggga tcacccttgt gagcaaaaag 300
gcgaaccagc agctgaattt cacagaagct aaggaggcct gtaggctgct gggactaagt 360
ttggccggca aggaccaagt tgaaacagcc ttgaaagcta gctttgaaac ttgcagctat 420
ggctgggttg gagatggatt cgtggtcatc tctaggatta gcccaaaccc caagtqtqqq 480
aaaaatgggg tgggtgtcct gatttggaag gttccagtga gccgacagtt tgcagcctat 540
tgttacaact catctgatac ttggactaac tcgtgcattc cagaaattat caccaccaaa 600
qatcccatat tcaacactca aactgcaaca caaacaacag aatttattgt cagtgacagt 660
acctactogg tggcatccc ttactctaca atacctgcc ctactactac tectectgct 720
ccagcttcca cttctattcc acggagaaaa aaattgattt gtgtcacaga agtttttatg 780
gaaactagca ccatgtctac agaaactgaa ccatttgttg aaaataaagc agcattcaag 840
aatqaaqctq ctqqqtttqq aqqtqtcccc acqqctctqc taqtqcttqc tctcctcttc 900
tttggtgctg cagctggtct tggattttgc tatgtcaaaa ggtatgtgaa ggccttccct 960
tttacaaaca agaatcagca gaaggaaatg atcgaaacca aagtagtaaa ggaggagaag 1020
gccaatgata gcaaccctaa tgaggaatca aagaaaactg ataaaaaccc agaagagtcc 1080
aaqaqtccaa qcaaaactac cqtqcqatqc ctqqaaqctq aaqtttagat qaqacagaaa 1140
tgaggagaca cacctgaggc tggtttcttt catgctcctt accctgcccc agctggggaa 1200
atcaaaaggg ccaaagaacc aaagaagaaa gtccaccctt ggttcctaac tggaatcagc 1260
tcaggactgc cattggacta tggagtgcac caaagagaat gcccttctcc ttattgtaac 1320
cctgtctgga tcctatcctc ctacctccaa agcttcccac ggcctttcta gcctggctat 1380
gtcctaataa tatcccactg ggagaaagga gttttgcaaa gtgcaaggac ctaaaacatc 1440
tcatcagtat ccagtggtaa aaaggcctcc tggctgtctg aggctaggtg ggttgaaagc 1500
caaggagtca ctgagaccaa ggctttctct actgattccg cagctcagac cctttcttca 1560
gctctgaaag agaaacacgt atcccacctg acatgtcctt ctgagcccgg taagagcaaa 1620
agaatggcag aaaagtttag ccctgaaag ccatggagat tctcataact tgagacctaa 1680
tctctgtaaa gctaaaataa agaaatagaa caaggctgag gatacgacag tacactgtca 1740
gcagggactg taaacacaga cagggtcaaa gtgttttctc tgaacacatt gagttggaat 1800
cactqtttaq aacacacac cttacttttt ctqqtctcta ccactqctqa tattttctct 1860
aggaaatata cttttacaag taacaaaaat aaaaactctt ataaatttct atttttatct 1920
gagttacaga aatgattact aaggaagatt actcagtaat ttgtttaaaa agtaataaaa 1980
ttcaacaaac atttgctgaa tagctactat atgtcaagtg ctgtgcaagg tattacactc 2040
tgtaattgaa tattatteet caaaaaattg cacatagtag aacgetatet gggaagetat 2100
ttttttcagt tttgatattt ctagcttatc tacttccaaa ctaattttta tttttgctga 2160
gactaatctt attcattttc tctaatatgg caaccattat aaccttaatt tattattaac 2220
atacctaaga agtacattgt tacctctata taccaaagca cattttaaaa gtqccattaa 2280
caaatgtatc actagccctc ctttttccaa caaqaaggga ctgagagatg cagaaatatt 2340
tgtgacaaaa aattaaagca tttagaaaac tt
```

```
<211> 322
```

- <212> PRT
- <213> Artificial sequence

<220>

<223> Synthetic protein

<400> 201

Met Ala Arg Cys Phe Ser Leu Val Leu Leu Leu Thr Ser Ile Trp Thr 1 5 10 15

Thr Arg Leu Leu Val Gln Gly Ser Leu Arg Ala Glu Glu Leu Ser Ile 20 25 30

Gln Val Ser Cys Arg Ile Met Gly Ile Thr Leu Val Ser Lys Lys Ala . 35 40 45

Asn Gln Gln Leu Asn Phe Thr Glu Ala Lys Glu Ala Cys Arg Leu Leu 50 55 60

Gly Leu Ser Leu Ala Gly Lys Asp Gln Val Glu Thr Ala Leu Lys Ala 65 70 75 80

Ser Phe Glu Thr Cys Ser Tyr Gly Trp Val Gly Asp Gly Phe Val Val 85 90 95

Ile Ser Arg Ile Ser Pro Asn Pro Lys Cys Gly Lys Asn Gly Val Gly 100 105 110

Val Leu Ile Trp Lys Val Pro Val Ser Arg Gln Phe Ala Ala Tyr Cys 115 120 125

Tyr Asn Ser Ser Asp Thr Trp Thr Asn Ser Cys Ile Pro Glu Ile Ile 130 135 140

Thr Thr Lys Asp Pro Ile Phe Asn Thr Gln Thr Ala Thr Gln Thr Thr 145 150 155 160

Glu Phe Ile Val Ser Asp Ser Thr Tyr Ser Val Ala Ser Pro Tyr Ser 165 170 175

Thr Ile Pro Ala Pro Thr Thr Thr Pro Pro Ala Pro Ala Ser Thr Ser 180 185 190

Ile Pro Arg Arg Lys Lys Leu Ile Cys Val Thr Glu Val Phe Met Glu 195 200 205

Thr Ser Thr Met Ser Thr Glu Thr Glu Pro Phe Val Glu Asn Lys Ala 210 215 220

Ala Phe Lys Asn Glu Ala Ala Gly Phe Gly Gly Val Pro Thr Ala Leu 225 230 235 240

Leu Val Leu Ala Leu Leu Phe Phe Gly Ala Ala Ala Gly Leu Gly Phe 245 250 255

Cys Tyr Val Lys Arg Tyr Val Lys Ala Phe Pro Phe Thr Asn Lys Asn

260 265 270

Gln Gln Lys Glu Met Ile Glu Thr Lys Val Val Lys Glu Glu Lys Ala 275 280 Asn Asp Ser Asn Pro Asn Glu Glu Ser Lys Lys Thr Asp Lys Asn Pro Glu Glu Ser Lys Ser Pro Ser Lys Thr Thr Val Arg Cys Leu Glu Ala Glu Val <210> 202 <211> 24 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 202 gagettteca tecaggtgte atge 24 <210> 203 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 203 22 gtcagtgaca gtacctactc gg <210> 204 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 204 tggagcagga ggagtagtag tagg 24 <210> 205 <211> 50 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic

```
<400> 205
aggaggcctg taggctgctg ggactaagtt tggccggcaa ggaccaagtt
                                                                    50
<210> 206
<211> 1620
<212> DNA
<213> Homo sapiens
<220>
<221> modified base
<222> (973)..(973)
<223> a, t, c or g
<220>
<221> modified base
<222> (977)..(977)
<223> a, t, c or g
<220>
<221> modified base
\langle 222 \rangle (996)..(\overline{9}96)
<223> a, t, c or g
<220>
<221> modified base
<222> (1003)..(1003)
<223> a, t, c or g
<400> 206
agatggcggt cttggcacct ctaattgctc tcgtgtattc ggtgccgcga ctttcacgat 60
ggctcgccca accttactac cttctgtcgg ccctgctctc tgctgccttc ctactcgtga 120
ggaaactgcc gccgctctgc cacggtctgc ccacccaacg cgaagacggt aacccgtgtg 180
actttgactg gagagaagtg gagatcctga tgtttctcag tgccattgtg atgatgaaga 240
accgcagatc catcactgtg gagcaacata taggcaacat tttcatgttt agtaaagtgg 300
ccaacacaat totttotto cgcttggata ttcgcatggg cctactttac atcacactct 360
gcatagtgtt cctgatgacg tgcaaacccc ccctatatat gggccctgag tatatcaagt 420
acttcaatga taaaaccatt gatgaggaac tagaacggga caagagggtc acttggattg 480
tggagttett tgccaattgg tetaatgaet gccaateatt tgcccetate tatgetgaee 540
tctcccttaa atacaactgt acagggctaa attttgggaa ggtggatgtt ggacgctata 600
ctgatgttag tacgcggtac aaagtgagca catcacccct caccaagcaa ctccctaccc 660
tgatcctgtt ccaaggtggc aaggaggcaa tgcggcggcc acagattgac aagaaaggac 720
gggctgtctc atggaccttc tctgaggaga atgtgatccg agaatttaac ttaaatgagc 780
tataccagcg ggccaagaaa ctatcaaagg ctggagacaa tatccctgag gagcagcctg 840
tggcttcaac ccccaccaca gtgtcagatg gggaaaacaa gaaggataaa taagatcctc 900
actttggcag tgcttcctct cctgtcaatt ccaggctctt tccataacca caagcctgag 960
gctgcagcct ttnattnatg ttttcccttt ggctgngact ggntggggca gcatgcagct 1020
tctgatttta aagaggcatc tagggaattg tcaggcaccc tacaggaagg cctgccatgc 1080
tgtggccaac tgtttcactg gagcaagaaa gagatctcat aggacggagg gggaaatggt 1140
ttccctccaa gcttgggtca gtgtgttaac tgcttatcag ctattcagac atctccatgg 1200
tttctccatg aaactctgtg gtttcatcat tccttcttag ttgacctgca cagcttggtt 1260
agacctagat ttaaccctaa ggtaagatgc tggggtatag aacgctaaga attttccccc 1320
aaggactett getteettaa geeettetgg ettegtttat ggtetteatt aaaagtataa 1380
gcctaacttt gtcgctagtc ctaaggagaa acctttaacc acaaagtttt tatcattgaa 1440
gacaatattg aacaaccccc tattttgtgg ggattgagaa ggggtgaata gaggcttgag 1500
actttccttt gtgtggtagg acttggagga gaaatcccct ggactttcac taaccctctg 1560
```

```
acatactccc cacacccagt tgatggcttt ccgtaataaa aagattggga tttccttttg 1620
```

<210> 207

<211> 296

<212> PRT

<213> Homo sapiens

<400> 207

Met Ala Val Leu Ala Pro Leu Ile Ala Leu Val Tyr Ser Val Pro Arg
1 5 10 15

Leu Ser Arg Trp Leu Ala Gln Pro Tyr Tyr Leu Leu Ser Ala Leu Leu
20 25 30

Ser Ala Ala Phe Leu Leu Val Arg Lys Leu Pro Pro Leu Cys His Gly 35 40 45

Leu Pro Thr Gln Arg Glu Asp Gly Asn Pro Cys Asp Phe Asp Trp Arg 50 55 60

Glu Val Glu Ile Leu Met Phe Leu Ser Ala Ile Val Met Met Lys Asn 65 70 75 80

Arg Arg Ser Ile Thr Val Glu Gln His Ile Gly Asn Ile Phe Met Phe 85 90 95

Ser Lys Val Ala Asn Thr Ile Leu Phe Phe Arg Leu Asp Ile Arg Met 100 105 110

Gly Leu Leu Tyr Ile Thr Leu Cys Ile Val Phe Leu Met Thr Cys Lys 115 120 125

Pro Pro Leu Tyr Met Gly Pro Glu Tyr Ile Lys Tyr Phe Asn Asp Lys 130 135 140

Thr Ile Asp Glu Glu Leu Glu Arg Asp Lys Arg Val Thr Trp Ile Val 145 150 155 160

Glu Phe Phe Ala Asn Trp Ser Asn Asp Cys Gln Ser Phe Ala Pro Ile 165 170 175

Tyr Ala Asp Leu Ser Leu Lys Tyr Asn Cys Thr Gly Leu Asn Phe Gly
180 185 190

Lys Val Asp Val Gly Arg Tyr Thr Asp Val Ser Thr Arg Tyr Lys Val 195 200 205

Ser Thr Ser Pro Leu Thr Lys Gln Leu Pro Thr Leu Ile Leu Phe Gln 210 215 220

Gly Gly Lys Glu Ala Met Arg Arg Pro Gln Ile Asp Lys Lys Gly Arg 225 230 235 240

Ala Val Ser Trp Thr Phe Ser Glu Glu Asn Val Ile Arg Glu Phe Asn 245 250 255

Leu Asn Glu Leu Tyr Gln Arg Ala Lys Lys Leu Ser Lys Ala Gly Asp

260 265 270

Asn Ile Pro Glu Glu Gln Pro Val Ala Ser Thr Pro Thr Thr Val Ser 275 280 285	
Asp Gly Glu Asn Lys Lys Asp Lys 290 295	
<210> 208 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	,
<400> 208 gcttggatat tcgcatgggc ctac	24
<210> 209 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 209 tggagacaat atccctgagg	20
<210> 210 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 210 aacagttggc cacagcatgg cagg	24
<210> 211 <211> 50 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 211 ccattgatga ggaactagaa cgggacaaga gggtcacttg gattgtggag	50
<210> 212	

```
<211> 1985
<212> DNA
<213> Homo sapiens
<400> 212
ggacageteg eggeeeega gagetetage egtegaggag etgeetgggg aegtttgeee 60
tggggcccca gcctggcccg ggtcaccctg gcatgaggag atgggcctgt tgctcctggt 120
cccattgctc ctgctgcccg gctcctacgg actgcccttc tacaacggct tctactactc 180
caacaqcqcc aacqaccaqa acctaqqcaa cqqtcatqqc aaaqacctcc ttaatqqaqt 240
gaagetggtg gtggagacac eegaggagac eetgtteace taccaaqqqq eeaqtqtat 300
cctgccctqc cgctaccgct acgagccggc cctggtctcc ccgcqgcgtg tgcqtgtcaa 360
atggtggaag ctgtcggaga acggggcccc agagaaggac gtgctggtgg ccatcgqqct 420
gaggeaccge teetttgggg actaceaagg eegegtgeac etgeggeagg acaaagagea 480
tgacgtctcg ctggagatcc aggatctgcg gctggaggac tatgggcgtt accgctgtga 540
ggtcattgac gggctggagg atgaaagcgg tctggtggag ctggagctgc ggggtgtggt 600
ctttccttac caqtccccca acgqqcqcta ccaqttcaac ttccacqaqq qccaqcaqqt 660
ctqtqcaqaq caqqctqcqq tqqtqqcctc ctttqaqcaq ctcttccqqq cctqqqaqqa 720
gggcctggac tggtgcaacg cgggctggct gcaggatgct acggtgcagt accccatcat 780
gttgccccgg cagccctgcg gtggcccagg cctggcacct ggcgtgcgaa gctacggccc 840
ccgccaccgc cgcctgcacc gctatgatgt attctgcttc gctactgccc tcaaggggcg 900
ggtgtactac ctggagcacc ctgagaagct gacgctgaca gaggcaaggg aggcctgcca 960
ggaagatgat gccacgatcg ccaaggtggg acagctcttt gccgcctgga agttccatgg 1020
cctqqaccqc tqcqacqctq qctqqctqqc aqatqqcaqc qtccqctacc ctqtqqttca 1080
cccgcatcct aactgtgggc ccccagagcc tggggtccga agctttggct tccccgaccc 1140
qcaqaqccqc ttgtacqgtq tttactqcta ccgccaqcac taggacctgg ggccctcccc 1200
tgccgcattc cctcactggc tgtgtattta ttgagtggtt cgttttccct tgtgggttgg 1260
agccatttta actgttttta tacttctcaa tttaaatttt ctttaaacat ttttttacta 1320
ttttttgtaa agcaaacaga acccaatgcc tccctttgct cctggatgcc ccactccagg 1380
aatcatgett geteeeetgg geeattigeg gittigiggg etteiggagg giteeeegee 1440
atccaqqctq qtctccctcc cttaaqqaqq ttggtgccca gagtgggcgg tggcctgtct 1500
agaatgccgc cgggagtccg ggcatggtgg gcacagttct ccctgcccct cagcctgqgg 1560
qaaqaaqaqq qcctcqqqqq cctccqqaqc tqqqctttqq qcctctcctq cccacctcta 1620
cttctctgtg aagccgctga ccccagtctg cccactgagg ggctagggct ggaagccagt 1680
tctaggcttc caggcgaaat ctgagggaag gaagaaactc ccctccccgt tccccttccc 1740
ctctcggttc caaagaatct gttttgttgt catttgtttc tcctgtttcc ctgtgtgggg 1800
aggggccctc aggtgtgtgt actttggaca ataaatggtg ctatgactgc cttccgccaa 1860
адададада дадададада ададададад ададададад ададададад дадададада 1980
                                                                1985
aaaaa
<210> 213
<211> 360
<212> PRT
<213> Homo sapiens
<400> 213
Met Gly Leu Leu Leu Val Pro Leu Leu Leu Pro Gly Ser Tyr
Gly Leu Pro Phe Tyr Asn Gly Phe Tyr Tyr Ser Asn Ser Ala Asn Asp
            20
                                25
Gln Asn Leu Gly Asn Gly His Gly Lys Asp Leu Leu Asn Gly Val Lys
Leu Val Val Glu Thr Pro Glu Glu Thr Leu Phe Thr Tyr Gln Gly Ala
```

55

65	vai	ше	Leu	PIO	70	Arg	Tyr	Arg	TYE	75	PIO	Ala	ьец	Val	80
Pro	Arg	Arg	Val	Arg 85	Val	Lys	Trp	Trp	Lys 90	Leu	Ser	Glu	Asn	Gly 95	Ala
Pro	Glu	Lys	Asp 100	Val	Leu	Val	Ala	Ile 105	Gly	Leu	Arg	His	Arg 110	Ser	Phe
Gly	Asp	Tyr 115	Gln	Gly	Arg	Val	His 120	Leu	Arg	Gln	Asp	Lys 125	Glu	His	Asp
Val	Ser 130	Leu	Glu	Ile	Gln	Asp 135	Leu	Arg	Leu	Glu	Asp 140	Tyr	Gly	Arg	Tyr
Arg 145	Cys	Glu	Val	Ile	Asp 150	Gly	Leu	Glu	Asp	Glu 155	Ser	Gly	Leu	Val	Glu 160
Leu	Glu	Leu	Arg	Gly 165	Val	Val	Phe	Pro	Tyr 170	Gln	Ser	Pro	Asn	Gly 175	Arg
Tyr	Gln	Phe	Asn 180	Phe	His	Glu	Gly	Gln 185	Gln	Val	Cys	Ala	Glu 190	Gln	Ala
Ala	Val	Val 195	Ala	Ser	Phe	Glu	Gln 200	Leu	Phe	Arg	Ala	Trp 205	Glu	Glu	Gly
Leu	Asp 210	Trp	Cys	Asn	Ala	Gly 215	Trp	Leu	Gln	Asp	Ala 220	Thr	Val	Gln	Tyr
Pro 225	Ile	Met	Leu	Pro	Arg 230	Gln	Pro	Cys	Gly	Gly 235	Pro	Gly	Leu	Ala	Pro 240
Gly	Val	Arg	Ser	Tyr 245	Gly	Pro	Arg	His	Arg 250	Arg	Leu	His	Arg	Tyr 255	Asp
Val	Phe	Cys	Phe 260	Ala	Thr	Ala	Leu	Lys 265	Gly	Arg	Val	Tyr	Tyr 270	Leu	Glu
His	Pro	Glu 275	Lys	Leu	Thr	Leu	Thr 280	Glu	Ala	Arg	Glu	Ala 285	Cys	Gln	Glu
Asp	Asp 290	Ala	Thr	Ile	Ala	Lys 295	Val	Gly	Gln	Leu	Phe 300	Ala	Ala	Trp	Lys
Phe 305	His	Gly	Leu	Asp	Arg 310	Cys	Asp	Ala	Gly	Trp 315	Leu	Ala	Asp	Gly	Ser 320
Val	Arg	Tyr	Pro	Val 325	Val	His	Pro	His	Pro 330	Asn	Cys	Gly	Pro	Pro 335	Glu
Pro	Gly	Val	Arg 340	Ser	Phe	Gly	Phe	Pro 345	Asp	Pro	Gln	Ser	Arg 350	Leu	Tyr
Gly	Val	Tyr 355	Cys	Tyr	Arg	Gln	His 360								

```
<210> 214
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 214
tgcttcgcta ctgccctc
                                                                    18
<210> 215
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 215
ttcccttgtg ggttggag
                                                                    18
<210> 216
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 216
agggctggaa gccagttc
                                                                    18
<210> 217
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 217
agccagtgag gaaatgcg
                                                                    18
<210> 218
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
```

```
<400> 218
                                                                24
tgtccaaagt acacacacct gagg
<210> 219
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 219
gatgccacga tcgccaaggt gggacagctc tttgccgcct ggaag
                                                                45
<210> 220
<211> 1503
<212> DNA
<213> Homo sapiens
<400> 220
ggagagcgga gcgaagctgg ataacagggg accgatgatg tggcgaccat cagttctgct 60
gcttctgttg ctactgaggc acggggccca ggggaagcca tccccagacg caggccctca 120
tggccagggg agggtgcacc aggcggcccc cctgagcgac gctccccatg atgacgccca 180
cgggaacttc cagtacgacc atgaggcttt cctgggacgg gaagtggcca aggaattcga 240
ccaactcacc ccagaggaaa gccaggcccg tctggggcgg atcgtggacc gcatggaccg 300
cgcqqqqqac qqcqacggct gggtgtcgct ggccgagctt cgcgcgtgga tcgcgcacac 360
gcagcagcgg cacatacggg actcggtgag cgcggcctgg gacacgtacg acacggaccg 420
cgacgggcgt gtgggttggg aggagctgcg caacgccacc tatggccact acgcgcccgg 480
tgaagaattt catgacgtgg aggatgcaga gacctacaaa aagatgctgg ctcgggacga 540
gcggcgtttc cgggtggccg accaggatgg ggactcgatg gccactcgag aggagctgac 600
agcetteetg caceeegagg agtteeetca catgegggae ategtgattg etgaaaceet 660
ggaggacctg gacagaaaca aagatggcta tgtccaggtg gaggagtaca tcgcggatct 720
gtactcagcc gagcctgggg aggaggagcc ggcgtgggtg cagacggaga ggcagcagtt 780
ccqqqacttc cqqqatctqa acaaggatgg gcacctggat gggagtgagg tgggccactg 840
ggtgctgccc cctgcccagg accagccct ggtggaagcc aaccacctgc tgcacgagag 900
cgacacggac aaggatgggc ggctgagcaa agcggaaatc ctgggtaatt ggaacatgtt 960
tgtgggcagt caggccacca actatggcga ggacctgacc cggcaccacg atgagctgtg 1020
agcaccgcgc acctgccaca gcctcagagg cccgcacaat gaccggagga ggggccgctg 1080
tggtctggcc ccctccctgt ccaggccccg caggaggcag atgcagtccc aggcatcctc 1140
ctgcccctgg gctctcaggg accccctggg tcggcttctg tccctgtcac acccccaacc 1200
ccagggaggg gctgtcatag tcccagagga taagcaatac ctatttctga ctgagtctcc 1260
cageccagae ecagggaece ttggeeccaa geteagetet aagaaeegee ecaaeeete 1320
cagetecaaa tetgageete caccacatag actgaaacte eeetggeece ageeetetee 1380
tgcctggcct ggcctgggac acctcctctc tgccaggagg caataaaagc cagcgccggg 1440
1503
aaa
<210> 221
<211> 328
<212> PRT
<213> Homo sapiens
<400> 221
Met Met Trp Arg Pro Ser Val Leu Leu Leu Leu Leu Leu Arg His
                                    10
```

- Gly Ala Gln Gly Lys Pro Ser Pro Asp Ala Gly Pro His Gly Gln Gly
 20 25 30
- Arg Val His Gln Ala Ala Pro Leu Ser Asp Ala Pro His Asp Asp Ala 35 40 45
- His Gly Asn Phe Gln Tyr Asp His Glu Ala Phe Leu Gly Arg Glu Val 50 55 60
- Ala Lys Glu Phe Asp Gln Leu Thr Pro Glu Glu Ser Gln Ala Arg Leu 65 70 75 80
- Gly Arg Ile Val Asp Arg Met Asp Arg Ala Gly Asp Gly Asp Gly Trp 85 90 95
- Val Ser Leu Ala Glu Leu Arg Ala Trp Ile Ala His Thr Gln Gln Arg 100 105 110
- His Ile Arg Asp Ser Val Ser Ala Ala Trp Asp Thr Tyr Asp Thr Asp 115 120 125
- Arg Asp Gly Arg Val Gly Trp Glu Glu Leu Arg Asn Ala Thr Tyr Gly
 130 135 140
- His Tyr Ala Pro Gly Glu Glu Phe His Asp Val Glu Asp Ala Glu Thr 145 150 155 160
- Tyr Lys Lys Met Leu Ala Arg Asp Glu Arg Arg Phe Arg Val Ala Asp 165 170 175
- Gln Asp Gly Asp Ser Met Ala Thr Arg Glu Glu Leu Thr Ala Phe Leu 180 185 190
- His Pro Glu Glu Phe Pro His Met Arg Asp Ile Val Ile Ala Glu Thr 195 200 205
- Leu Glu Asp Leu Asp Arg Asn Lys Asp Gly Tyr Val Gln Val Glu Glu 210 215 220
- Tyr Ile Ala Asp Leu Tyr Ser Ala Glu Pro Gly Glu Glu Glu Pro Ala 225 230 235 240
- Trp Val Gln Thr Glu Arg Gln Gln Phe Arg Asp Phe Arg Asp Leu Asn 245 250 255
- Lys Asp Gly His Leu Asp Gly Ser Glu Val Gly His Trp Val Leu Pro 260 265 270
- Pro Ala Gln Asp Gln Pro Leu Val Glu Ala Asn His Leu Leu His Glu 275 280 285
- Ser Asp Thr Asp Lys Asp Gly Arg Leu Ser Lys Ala Glu Ile Leu Gly 290 295 300
- Asn Trp Asn Met Phe Val Gly Ser Gln Ala Thr Asn Tyr Gly Glu Asp 305 310 315 320

Leu Thr Arg His Asp Glu Leu 325	
<210> 222 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 222 cgcaggccct catggccagg	20
<210> 223 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 223 gaaatcctgg gtaattgg	18
<210> 224 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 224 gtgcgcggtg ctcacagctc atc	23
<210> 225 <211> 44 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 225 ccccctgag cgacgctccc ccatgatgac gcccacggga actt	4.4
<210> 226 <211> 2403 <212> DNA <213> Homo sapiens	

```
<400> 226
ggggccttgc cttccgcact cgggcgcagc cgggtggatc tcgagcaggt gcggagcccc 60
gggcggcggg cgcgggtgcg agggatccct gacgcctctg tccctgtttc tttgtcgctc 120
ccagcctgtc tgtcgtcgtt ttggcgcccc cgcctccccg cggtgcgggg ttgcacaccg 180
atcctgggct tcgctcgatt tgccgccgag gcgcctccca gacctagagg ggcgctggcc 240
tggagcagcg ggtcgtctgt gtcctctctc ctctgcgccg cgcccgggga tccgaagggt 300
geggggetet gaggaggtga egegegggge etecegeace etggeettge eegeattete 360
cctctctccc aggtgtgagc agcctatcag tcaccatgtc cgcagcctgg atcccggctc 420
teggeetegg tgtgtgtetg etgetgetge eggggeeege gggeagegag ggageegete 480
ccattgctat cacatgtttt accagaggct tggacatcag gaaagagaaa gcagatgtcc 540
tctgcccagg gggctgccct cttgaggaat tctctgtgta tgggaacata gtatatgctt 600
ctgtatcgag catatgtggg gctgctgtcc acaggggagt aatcagcaac tcagggggac 660
ctgtacgagt ctatagccta cctggtcgag aaaactattc ctcagtagat gccaatggca 720
tccaqtctca aatgctttct agatggtctg cttctttcac agtaactaaa ggcaaaagta 780
gtacacagga ggccacagga caagcagtgt ccacagcaca tccaccaaca ggtaaacgac 840
taaagaaaac acccgagaag aaaactggca ataaagattg taaagcagac attgcatttc 900
tgattgatgg aagctttaat attgggcagc gccgatttaa tttacagaag aattttgttg 960
gaaaagtggc tctaatgttg ggaattggaa cagaaggacc acatgtgggc cttgttcaag 1020
ccagtgaaca tcccaaaata gaattttact tgaaaaactt tacatcagcc aaagatgttt 1080
tgtttgccat aaaggaagta ggtttcagag ggggtaattc caatacagga aaagccttga 1140
agcatactgc tcagaaattc ttcacggtag atgctggagt aagaaaaggg atccccaaag 1200
tggtggtggt atttattgat ggttggcctt ctgatgacat cgaggaagca ggcattgtgg 1260
ccagagagtt tggtgtcaat gtatttatag tttctgtggc caagcctatc cctgaagaac 1320
tggggatggt tcaggatgtc acatttgttg acaaggctgt ctgtcggaat aatggcttct 1380
tctcttacca catgcccaac tggtttggca ccacaaaata cgtaaagcct ctggtacaga 1440
agctgtgcac tcatgaacaa atgatgtgca gcaagacctg ttataactca gtgaacattg 1500
cctttctaat tgatggctcc agcagtgttg gagatagcaa tttccgcctc atgcttgaat 1560
ttgtttccaa catagccaag acttttgaaa tctcggacat tggtgccaag atagctgctg 1620
tacagtttac ttatgatcag cgcacggagt tcagtttcac tgactatagc accaaagaga 1680
atgtcctagc tgtcatcaga aacatccgct atatgagtgg tggaacagct actggtgatg 1740
ccatttcctt cactgttaga aatgtgtttg gccctataag ggagagcccc aacaagaact 1800
tectagtaat tgteacagat gggeagteet atgatgatgt ecaaggeeet geagetgetg 1860
cacatgatgc aggaatcact atcttctctg ttggtgtggc ttgggcacct ctggatgacc 1920
tgaaagatat ggcttctaaa ccgaaggagt ctcacgcttt cttcacaaga gagttcacag 1980
gattagaacc aattgtttct gatgtcatca gaggcatttg tagagatttc ttagaatccc 2040
agcaataatg gtaacatttt gacaactgaa agaaaaagta caaggggatc cagtgtgtaa 2100
attgtattct cataatactg aaatgcttta gcatactaga atcagataca aaactattaa 2160
gtatgtcaac agccatttag gcaaataagc actcctttaa agccgctgcc ttctggttac 2220
aatttacagt gtactttgtt aaaaacactg ctgaggcttc ataatcatgg ctcttagaaa 2280
ctcaggaaag aggagataat gtggattaaa accttaagag ttctaaccat gcctactaaa 2340
tgtacagata tgcaaattcc atagctcaat aaaagaatct gatacttaga ccaaaaaaaa 2400
aaa
<210> 227
<211> 550
<212> PRT
<213> Homo sapiens
<400> 227
Met Ser Ala Ala Trp Ile Pro Ala Leu Gly Leu Gly Val Cys Leu Leu
Leu Leu Pro Gly Pro Ala Gly Ser Glu Gly Ala Ala Pro Ile Ala Ile
Thr Cys Phe Thr Arg Gly Leu Asp Ile Arg Lys Glu Lys Ala Asp Val
                                                  45
```

Leu	Cys 50	Pro	Gly	Gly	Суѕ	Pro 55	Leu	Glu	Glu	Phe	Ser 60	Val	Tyr	Gly	Asn
Ile 65	Val	Tyr	Ala	Ser	Val 70	Ser	Ser	Ile	Cys	Gly 75	Ala	Ala	Val	His	Arg 80
Gly	Val	Ile	Ser	Asn 85	Ser	Gly	Gly	Pro	Val 90	Arg	Val	Tyr	Ser	Leu 95	Pro
Gly	Arg	Glu	Asn 100	Tyr	Ser	Ser	Val	Asp 105	Ala	Asn	Gly	Ile	Gln 110	Ser	Gln
Met	Leu	Ser 115	Arg	Trp	Ser	Ala	Ser 120	Phe	Thr	Val	Thr	Lys 125	Gly	Lys	Ser
Ser	Thr 130	Gln	Glu	Ala	Thr	Gly 135	Gln	Ala	Val	Ser	Thr 140	Ala	His	Pro	Pro
Thr 145	Gly	Lys	Arg	Leu	Lys 150	Lys	Thr	Pro	Glu	Lys 155	Lys	Thr	Gly	Asn	Lys 160
Asp	Cys	Lys	Ala	Asp 165	Ile	Ala	Phe	Leu	Ile 170	Asp	Gly	Ser	Phe	Asn 175	Ile
Gly	Gln	Arg	Arg 180	Phe	Asn	Leu	Gln	Lys 185	Asn	Phe	Val	Gly	Lys 190	Val	Ala
Leu	Met	Leu 195	Gly	Ile	Gly	Thr	Glu 200	Gly	Pro	His	Val	Gly 205	Leu	Val	Gln
Ala	Ser 210	Glu	His	Pro	Lys	Ile 215	Glu	Phe	Tyr	Leu	Lys 220	Asn	Phe	Thr	Ser
Ala 225	Lys	Asp	Val	Leu	Phe 230	Ala	Ile	Lys	Glu	Val 235	Gly	Phe	Arg	Gly	Gly 240
Asn	Ser	Asn	Thr	Gly 245	Lys	Ala	Leu	Lys	His 250	Thr	Ala	Gln	Lys	Phe 255	Phe
Thr	Val	Asp	Ala 260	Gly	Val	Arg	Lys	Gly 265	Ile	Pro	Lys	Val	Val 270	Val	Val
Phe	Ile	Asp 275	Gly	Trp	Pro	Ser	Asp 280	Asp	Ile	Glu	Glu	Ala 285	Gly	Ile	Val
Ala	Arg 290		Phe	Gly	Val	Asn 295	Val	Phe	Ile	Val	Ser 300		Ala	Lys	Pro
Ile 305		Glu	Glu	Leu	Gly 310		Val	Gln	Asp	Val 315	Thr	Phe	Val	Asp	Lys 320
Ala	Val	Cys	Arg	Asn 325		Gly	Phe	Phe	Ser 330		His	Met	Pro	Asn 335	Trp
Phe	Gly	Thr	Thr 340		Tyr	Val	Lys	Pro 345		. Val	Gln	Lys	Leu 350		Thr

His Glu Gln Met Met Cys Ser Lys Thr Cys Tyr Asn Ser Val Asn Ile 355 360 365

Ala Phe Leu Ile Asp Gly Ser Ser Ser Val Gly Asp Ser Asn Phe Arg 370 375 380

Leu Met Leu Glu Phe Val Ser Asn Ile Ala Lys Thr Phe Glu Ile Ser 385 390 395 400

Asp Ile Gly Ala Lys Ile Ala Ala Val Gln Phe Thr Tyr Asp Gln Arg 405 410 415

Thr Glu Phe Ser Phe Thr Asp Tyr Ser Thr Lys Glu Asn Val Leu Ala 420 425 430

Val Ile Arg Asn Ile Arg Tyr Met Ser Gly Gly Thr Ala Thr Gly Asp 435 440 445

Ala Ile Ser Phe Thr Val Arg Asn Val Phe Gly Pro Ile Arg Glu Ser 450 455 460

Pro Asn Lys Asn Phe Leu Val Ile Val Thr Asp Gly Gln Ser Tyr Asp 465 470 475 480

Asp Val Gln Gly Pro Ala Ala Ala Ala His Asp Ala Gly Ile Thr Ile 485 490 495

Phe Ser Val Gly Val Ala Trp Ala Pro Leu Asp Asp Leu Lys Asp Met 500 505 510

Ala Ser Lys Pro Lys Glu Ser His Ala Phe Phe Thr Arg Glu Phe Thr 515 520 525

Gly Leu Glu Pro Ile Val Ser Asp Val Ile Arg Gly Ile Cys Arg Asp 530 535 540

Phe Leu Glu Ser Gln Gln 545 550

<210> 228

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 228

tggtctcgca caccgatc

<210> 229

<211> 18

<212> DNA

<213> Artificial Sequence

18

<220>				
<223>	Description of Artificial oligonucleotide probe	Sequence:	Synthetic	
<400>	229			
ctgctg	gtcca caggggag			18
<210>	230			
<211>				
<212>				
	Artificial Sequence			
<220>				
	Description of Artificial	Comionac	Conthatia	
\2237	Description of Artificial oligonucleotide probe	sequence:	Synchecic	
<400>	230			
ccttga	aagca tactgctc			18
<210>	231			
<211>	18			
<212>				
<213>	Artificial Sequence			
<220>				
	Description of Artificial	Sequence:	Synthetic	
	oligonucleotide probe	•	-	
<400>	231			
gagata	gcaa tttccgcc			18
<210>	232			
<211>	18			
<212>	DNA			
<213>	Artificial Sequence			
<220>				
<223>	Description of Artificial	Sequence:	Synthetic	
	oligonucleotide probe	-	-	
<400>	232			
	aaga gggcagcc			18
<210>	233			
<211>				
<212>				
<213>	Artificial Sequence			
<220>				
	Description of Artificial	Sequence:	Synthetic	
- * ·	oligonucleotide probe	- 1	<u>,</u>	
<400>	233			
	acca atgtccgaga tttc		:	24
<210>	234			
<211>				

```
<212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
           oligonucleotide probe
 <400> 234
                                                                                                              45
 gctctgagga aggtgacgcg cggggcctcc gaacccttgg ccttg
 <210> 235
 <211> 2586
 <212> DNA
 <213> Homo sapiens
 <400> 235
 equaged contact englaced education e
 ccggcggcct cccggcggga gcgagcagat ccagtccggc ccgcagcgca actcggtcca 120
 gtcggggcgg cggctgcggg cgcagagcgg agatgcagcg gcttggggcc accctgctgt 180
 geetgetget ggeggeggeg gteeceaegg eeceegegee egeteegaeg gegaeetegg 240
 ctccaqtcaa gcccggcccg gctctcagct acccgcagga ggaggccacc ctcaatgaga 300
 tgttccgcga ggttgaggaa ctgatggagg acacgcagca caaattgcgc agcgcggtgg 360
 aaqaqatqqa qgcaqaaqaa gctgctgcta aagcatcatc agaagtgaac ctggcaaact 420
 tacctcccag ctatcacaat gagaccaaca cagacacgaa ggttggaaat aataccatcc 480
 atgtqcaccq agaaattcac aagataacca acaaccagac tggacaaatg gtcttttcag 540
. agacagttat cacatctgtg ggagacgaag aaggcagaag gagccacgag tgcatcatcg 600
 acquaggacty tyggcccagc atgtactycc agtttgccag cttccagtac acctgccagc 660
 catgccgggg ccagaggatg ctctgcaccc gggacagtga gtgctgtgga gaccagctgt 720
 gtgtctgggg tcactgcacc aaaatggcca ccaggggcag caatgggacc atctgtgaca 780
 accagaggga ctgccagccg gggctgtgct gtgccttcca gagaggcctg ctgttccctg 840
 tgtgcacacc cctgcccgtg gagggcgagc tttgccatga ccccgccagc cggcttctgg 900
 acctcatcac ctgggagcta gagcctgatg gagccttgga ccgatgccct tgtgccagtq 960
 qcctcctctq ccaqccccac agccacagcc tggtgtatgt gtgcaagccg accttcgtgg 1020
  ggagccgtga ccaagatggg gagatcctgc tgcccagaga ggtccccgat gagtatgaag 1080
  ttggcagctt catggaggag gtgcgccagg agctggagga cctggagagg agcctgactg 1140
  aagagatggc gctgggggag cctgcggctg ccgccgctgc actgctggga ggggaagaga 1200
 tttagatctg gaccaggctg tgggtagatg tgcaatagaa atagctaatt tatttcccca 1260
  ggtgtgtgct ttaggcgtgg gctgaccagg cttcttccta catcttcttc ccagtaagtt 1320
  teceetetgg ettgacagea tgaggtgttg tgeatttgtt eageteece aggetgttet 1380
 ccaggettea cagtetggtg ettgggagag teaggeaggg ttaaactgea ggageagttt 1440
  qccacccctq tccaqattat tggctgcttt gcctctacca gttggcagac agccgtttgt 1500
  tctacatggc tttgataatt gtttgagggg aggagatgga aacaatgtgg agtctccctc 1560
  tgattggttt tggggaaatg tggagaagag tgccctgctt tgcaaacatc aacctggcaa 1620
  aaatgcaaca aatgaatttt ccacgcagtt ctttccatgg gcataggtaa gctgtgcctt 1680
  caqctqttqc agatqaaatg ttctqttcac cctqcattac atqtqtttat tcatccagca 1740
  gtgttgctca gctcctacct ctgtgccagg gcagcatttt catatccaag atcaattccc 1800
  teteteagea eageetgggg aggggteat tgtteteete gteeateagg gateteagag 1860
  gctcagagac tgcaagctgc ttgcccaagt cacacagcta gtgaagacca gagcagtttc 1920
  atctggttgt gactctaagc tcagtgctct ctccactacc ccacaccagc cttggtgcca 1980
  ccaaaagtgc tccccaaaag gaaggagaat gggatttttc ttgaggcatg cacatctgga 2040
  attaaqqtca aactaattct cacatccctc taaaaqtaaa ctactgttag gaacagcagt 2100
  gttctcacag tgtggggcag ccgtccttct aatgaagaca atgatattga cactgtccct 2160
  ctttggcagt tgcattagta actttgaaag gtatatgact gagcgtagca tacaggttaa 2220
  cctgcagaaa cagtacttag gtaattgtag ggcgaggatt ataaatgaaa tttgcaaaat 2280
  cacttagcag caactgaaga caattatcaa ccacgtggag aaaatcaaac cgagcagggc 2340
  tgtgtgaaac atggttgtaa tatgcgactg cgaacactga actctacgcc actccacaaa 2400
  tgatgttttc aggtgtcatg gactgttgcc accatgtatt catccagagt tcttaaagtt 2460
```

<210> 236

<211> 350

<212> PRT

<213> Homo sapiens

<400> 236

Met Gln Arg Leu Gly Ala Thr Leu Leu Cys Leu Leu Leu Ala Ala Ala 1 5 10 15

Val Pro Thr Ala Pro Ala Pro Ala Pro Thr Ala Thr Ser Ala Pro Val 20 25 30

Lys Pro Gly Pro Ala Leu Ser Tyr Pro Gln Glu Glu Ala Thr Leu Asn 35 40 45

Glu Met Phe Arg Glu Val Glu Glu Leu Met Glu Asp Thr Gln His Lys
50 55 60

Leu Arg Ser Ala Val Glu Glu Met Glu Ala Glu Glu Ala Ala Lys 65 70 75 80

Ala Ser Ser Glu Val Asn Leu Ala Asn Leu Pro Pro Ser Tyr His Asn
85 90 95

Glu Thr Asn Thr Asp Thr Lys Val Gly Asn Asn Thr Ile His Val His

Arg Glu Ile His Lys Ile Thr Asn Asn Gln Thr Gly Gln Met Val Phe 115 120 125

Ser Glu Thr Val Ile Thr Ser Val Gly Asp Glu Glu Gly Arg Arg Ser 130 135 140

His Glu Cys Ile Ile Asp Glu Asp Cys Gly Pro Ser Met Tyr Cys Gln 145 150 155 160

Phe Ala Ser Phe Gln Tyr Thr Cys Gln Pro Cys Arg Gly Gln Arg Met 165 170 175

Leu Cys Thr Arg Asp Ser Glu Cys Cys Gly Asp Gln Leu Cys Val Trp 180 185 190

Gly His Cys Thr Lys Met Ala Thr Arg Gly Ser Asn Gly Thr Ile Cys 195 200 205

Asp Asn Gln Arg Asp Cys Gln Pro Gly Leu Cys Cys Ala Phe Gln Arg 210 215 220

Gly Leu Leu Phe Pro Val Cys Thr Pro Leu Pro Val Glu Gly Glu Leu 225 230 235 240

Cys His Asp Pro Ala Ser Arg Leu Leu Asp Leu Ile Thr Trp Glu Leu 245 250 255

```
Glu Pro Asp Gly Ala Leu Asp Arg Cys Pro Cys Ala Ser Gly Leu Leu
                                 265
            260
Cys Gln Pro His Ser His Ser Leu Val Tyr Val Cys Lys Pro Thr Phe
                            280
                                                 285
Val Gly Ser Arg Asp Gln Asp Gly Glu Ile Leu Leu Pro Arg Glu Val
                        295
Pro Asp Glu Tyr Glu Val Gly Ser Phe Met Glu Glu Val Arg Gln Glu
                                         315
                    310
Leu Glu Asp Leu Glu Arg Ser Leu Thr Glu Glu Met Ala Leu Gly Glu
                                     330
                325
Pro Ala Ala Ala Ala Ala Leu Leu Gly Gly Glu Glu Ile
                                 345
            340
<210> 237
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 237
                                                                     17
 ggagctgcac cccttgc
<210> 238
<211> 49
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
                                                                    49
 ggaggactgt gccaccatga gagactcttc aaacccaagg caaaattgg
<210> 239
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 239
                                                                    24
 gcagagcgga gatgcagcgg cttg
<210> 240
<211> 18
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 240
                                                                   18
ttggcagctt catggagg
<210> 241
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 241
cctgggcaaa aatgcaac
                                                                   18
<210> 242
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 242
ctccagctcc tggcgcacct cctc
                                                                    24
<210> 243
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
ggctctcagc taccgcgcag gagcgaggcc accctcaatg agatg .
                                                                    45
<210> 244
<211> 3679
<212> DNA
<213> Homo Sapien
<400> 244
aaggaggctg ggaggaaaga ggtaagaaag gttagagaac ctacctcaca 50
tctctctggg ctcagaagga ctctgaagat aacaataatt tcagcccatc 100
cacteteett eecteecaaa cacacatgtg catgtacaca cacacataca 150
cacacataca cetteetete etteaetgaa gaeteaeagt eacteaetet 200
 gtgagcaggt catagaaaag gacactaaag ccttaaggac aggcctggcc 250
 attacctctg cagctccttt ggcttgttga gtcaaaaaac atgggagggg 300
```

ccaggcacgg tgactcacac ctgtaatccc agcattttgg gagaccgagg 350 tgagcagatc acttgaggtc aggagttcga gaccagcctg gccaacatgg 400 agaaaccccc atctctacta aaaatacaaa aattagccag gagtggtggc 450 aggtgcctgt aatcccagct actcaggtgg ctgagccagg agaatcgctt 500 gaatccagga ggcggaggat gcagtcagct gagtgcaccg ctgcactcca 550 gcctgggtga cagaatgaga ctctgtctca aacaaacaaa cacgggagga 600 ggggtagata etgettetet geaaceteet taaetetgea teetettett 650 ccagggctgc ccctgatggg gcctggcaat gactgagcag gcccagcccc 700 agaggacaag gaagagaagg catattgagg agggcaagaa gtgacgcccg 750 gtgtagaatg actgccctgg gagggtggtt ccttgggccc tggcagggtt 800 gctgaccctt accctgcaaa acacaaagag caggactcca gactctcctt 850 gtgaatggtc ccctgccctg cagctccacc atgaggcttc tcgtggcccc 900 actcttgcta gcttgggtgg ctggtgccac tgccactgtg cccgtggtac 950 cetggcatgt teectgeece ceteagtgtg cetgeeagat eeggeeetgg 1000 tatacgcccc gctcgtccta ccgcgaggct accactgtgg actgcaatga 1050 cetattectg acggeagtee ecceggeact eccegeagge acacagaece 1100 tgctcctgca gagcaacagc attgtccgtg tggaccagag tgagctgggc 1150 tacctggcca atctcacaga gctggacctg tcccagaaca gcttttcgga 1200 tgcccgagac tgtgatttcc atgccctgcc ccagctgctg agcctgcacc 1250 tagaggagaa ccagctgacc cggctggagg accacagctt tgcagggctg 1300 gccagcctac aggaactcta tctcaaccac aaccagctct accgcatcgc 1350 ccccagggcc ttttctggcc tcagcaactt gctgcggctg cacctcaact 1400 ccaacctcct gagggccatt gacagccgct ggtttgaaat gctgcccaac 1450 ttggagatac tcatgattgg cggcaacaag gtagatgcca tcctggacat 1500 gaactteegg ceeetggeea acetgegtag eetggtgeta geaggeatga 1550 acctgcggga gatctccgac tatgccctgg aggggctgca aagcctggag 1600 agceteteet tetatgacaa eeagetggee egggtgeeea ggegggeaet 1650 ggaacaggtg cccgggctca agttcctaga cctcaacaag aacccgctcc 1700 agcgggtagg gccgggggac tttgccaaca tgctgcacct taaggagctg 1750

ggactgaaca acatggagga gctggtctcc atcgacaagt ttgccctggt 1800 gaacctcccc gagctgacca agctggacat caccaataac ccacggctgt 1850 cetteateca ecceegegee ttecaceace tgeeceagat ggagaecete 1900 atgctcaaca acaacgctct cagtgccttg caccagcaga cggtggagtc 1950 cctgcccaac ctgcaggagg taggtctcca cggcaacccc atccgctgtg 2000 actgtgtcat ccgctgggcc aatgccacgg gcacccgtgt ccgcttcatc 2050 gageegeaat ecaceetgtg tgeggageet eeggaeetee agegeeteee 2100 ggtccgtgag gtgcccttcc gggagatgac ggaccactgt ttgcccctca 2150 tetececacg aagetteece ceaageetee aggtageeag tggagagage 2200 atggtgctgc attgccgggc actggccgaa cccgaacccg agatctactg 2250 ggtcactcca gctgggcttc gactgacacc tgcccatgca ggcaggaggt 2300 accgggtgta ccccgagggg accctggagc tgcggagggt gacagcagaa 2350 gaggcagggc tatacacctg tgtggcccag aacctggtgg gggctgacac 2400 taagacggtt agtgtggttg tgggccgtgc tctcctccag ccaggcaggg 2450 acgaaggaca ggggctggag ctccgggtgc aggagaccca cccctatcac 2500 atcctgctat cttgggtcac cccacccaac acagtgtcca ccaacctcac 2550 ctggtccagt gcctcctccc tccggggcca gggggccaca gctctggccc 2600 geetgeeteg gggaaceeae agetacaaca ttaceegeet cetteaggee 2650 acggagtact gggcctgcct gcaagtggcc tttgctgatg cccacaccca 2700 gttggcttgt gtatgggcca ggaccaaaga ggccacttct tgccacagag 2750 ccttagggga tcgtcctggg ctcattgcca tcctggctct cgctgtcctt 2800 ctcctggcag ctgggctagc ggcccacctt ggcacaggcc aacccaggaa 2850 gggtgtgggt gggaggcggc ctctccctcc agcctgggct ttctggggct 2900 ggagtgcccc ttctgtccgg gttgtgtctg ctcccctcgt cctgccctgg 2950 aatccaggga ggaagctgcc cagatcctca gaaggggaga cactgttgcc 3000 accattgtct caaaattctt gaagctcagc ctgttctcag cagtagagaa 3050 atcactagga ctacttttta ccaaaagaga agcagtctgg gccagatgcc 3100 ctgccaggaa agggacatgg acccacgtgc ttgaggcctg gcagctgggc 3150

caagacagat ggggctttgt ggccctgggg gtgcttctgc agccttgaaa 3200
aagttgccct tacctcctag ggtcacctct gctgccattc tgaggaacat 3250
ctccaaggaa caggaggac tttggctaga gcctcctgcc tccccatctt 3300
ctctctgccc agaggctcct gggcctggct tggctgtccc ctacctgtgt 3350
ccccgggctg caccccttcc tcttctcttt ctctgtacag tctcagttgc 3400
ttgctcttgt gcctcctggg caagggctga aggaggccac tccatctcac 3450
ctcggggggc tgccctcaat gtgggagtga ccccagccag atctgaagga 3500
catttgggag agggatgcc aggaacgcct catctcagca gcctgggctc 3550
ggcattccga agctgacttt ctataggcaa ttttgtacct ttgtgagaa 3600
atgtgtcacc tccccaacc cgattcactc ttttccctg ttttgtaaaa 3650
aataaaaata aataataaca ataaaaaaa 3679

<210> 245

<211> 713

<212> PRT

<213> Homo Sapien

<400> 245

Met Arg Leu Leu Val Ala Pro Leu Leu Ala Trp Val Ala Gly
1 5 10 15

Ala Thr Ala Thr Val Pro Val Val Pro Trp His Val Pro Cys Pro 20 25 30

Pro Gln Cys Ala Cys Gln Ile Arg Pro Trp Tyr Thr Pro Arg Ser 35 40 45

Ser Tyr Arg Glu Ala Thr Thr Val Asp Cys Asn Asp Leu Phe Leu 50 55 60

Thr Ala Val Pro Pro Ala Leu Pro Ala Gly Thr Gln Thr Leu Leu 65 70 75

Leu Gln Ser Asn Ser Ile Val Arg Val Asp Gln Ser Glu Leu Gly
80 85 90

Tyr Leu Ala Asn Leu Thr Glu Leu Asp Leu Ser Gln Asn Ser Phe 95 100 105

Ser Asp Ala Arg Asp Cys Asp Phe His Ala Leu Pro Gln Leu Leu 110 115 120

Ser Leu His Leu Glu Glu Asn Gln Leu Thr Arg Leu Glu Asp His 125 130 135

Ser Phe Ala Gly Leu Ala Ser Leu Gln Glu Leu Tyr Leu Asn His 140 145 150

Asn	Gln	Leu	ı Tyr	Arg		e Ala	Pro	Arg	Ala 160		Ser	Gly	Leu	Ser 165
Asn	Leu	ı Leu	Arg	Leu 170		Leu	Asn	Ser	Asn 175		Leu	ı Arg	, Ala	Ile 180
Asp	Ser	Arg	Trp	Phe 185		Met	Leu	Pro	Asn 190		Glu	ılle	Leu	Met 195
Ile	Gly	Gly	Asn	Lys 200		Asp	Ala	Ile	Leu 205		Met	Asn	Phe	Arg 210
Pro	Leu	Ala	Asn	Leu 215	Arg	Ser	Leu	Val	Leu 220		Gly	Met	Asn	Leu 225
Arg	Glu	Ile	Ser	Asp 230	Tyr	Ala	Leu	Glu	Gly 235		Gln	Ser	Leu	Glu 240
Ser	Leu	Ser	Phe	Tyr 245	Asp	Asn	Gln	Leu	Ala 250	Arg	Val	Pro	Arg	Arg 255
Ala	Leu	Glu	Gln	Val 260	Pro	Gly	Leu	Lys	Phe 265	Leu	Asp	Leu	Asn	Lys 270
Asn	Pro	Leu	Gln	Arg 275	Val	Gly	Pro	Gly	Asp 280	Phe	Ala	Asn	Met	Leu 285
His	Leu	Lys	Glu	Leu 290	Gly	Leu	Asn	Asn	Met 295	Glu	Glu	Leu	Val	Ser 300
Ile	Asp	Lys	Phe	Ala 305	Leu	Val	Asn	Leu	Pro 310	Glu	Leu	Thr	Lys	Leu 315
Asp	Ile	Thr	Asn	Asn 320	Pro	Arg	Leu	Ser	Phe 325	Ile	His	Pro	Arg	Ala 330
Phe	His	His	Leu	Pro 335	Gln	Met	Glu	Thr	Leu 340	Met	Leu	Asn	Asn	Asn 345
Ala	Leu	Ser	Ala	Leu 350	His	Gln	Gln	Thr	Val 355	Glu	Ser	Leu	Pro	Asn 360
Leu	Gln	Glu	Val	Gly 365	Leu	His	Gly	Asn	Pro 370	Ile	Arg	Cys	Asp	Cys 375
Val	Ile	Arg	Trp	Ala 380	Asn	Ala	Thr	Gly	Thr 385	Arg	Val	Arg	Phe	Ile 390
Glu	Pro	Gln	Ser	Thr 395	Leu	Cys	Ala	Glu	Pro 400	Pro	Asp	Leu	Gln	Arg 405
Leu	Pro	Val	Arg	Glu 410	Val	Pro	Phe	Arg	Glu 415	Met	Thr	Asp	His	Cys 420
Leu	Pro	Leu	Ile	Ser 425	Pro	Arg	Ser	Phe	Pro 430	Pro	Ser	Leu	Gln	Val 435

.

Ala	Ser	Gly	Glu	Ser 440		Val	Leu	His	Cys 445		Ala	Leu	Ala	Glu 450
Pro	Glu	Pro	Glu	Ile 455	Tyr	Trp	Val	Thr	Pro 460	Ala	Gly	Leu	Arg	Leu 465
Thr	Pro	Ala	His	Ala 470	Gly	Arg	Arg	Tyr	Arg 475	Val	Tyr	Pro	Glu	Gly 480
Thr	Leu	Glu	Leu	Arg 485	Arg	Val	Thr	Ala	Glu 490	Glu	Ala	Gly	Leu	Tyr 495
Thr	Cys	Val	Ala	Gln 500	Asn	Leu	Val	Gly	Ala 505	Asp	Thr	Lys	Thr	Val 510
Ser	Val	Val	Val	Gly 515	Arg	Ala	Leu	Leu	Gln 520	Pro	Gly	Arg	Asp	Glu 525
Gly	Gln	Gly	Leu	Glu 530	Leu	Arg	Val	Gln	Glu 535	Thr	His	Pro	Tyr	His 540
Ile	Leu	Leu	Ser	Trp 545	Val	Thr	Pro	Pro	Asn 550	Thr	Val	Ser	Thr	Asn 555
Leu	Thr	Trp	Ser	Ser 560	Ala	Ser	Ser	Leu	Arg 565	Gly	Gln	Gly	Ala	Thr 570
Ala	Leu	Ala	Arg	Leu 575	Pro	Arg	Gly	Thr	His 580	Ser	Tyr	Asn	Ile	Thr 58,5
Arg	Leu	Leu	Gln	Ala 590	Thr	Glu	Tyr	Trp	Ala 595	Cys	Leu	Gln	Val	Ala 600
Phe	Ala	Asp	Ala	His 605	Thr	Gln	Leu	Ala	Cys 610	Val	Trp	Ala	Arg	Thr 615
Lys	Glu	Ala	Thr	Ser 620	Cys	His	Arg	Ala	Leu 625	Gly	Asp	Arg	Pro	Gly 630
Leu	Ile	Ala	Ile	Leu 635	Ala	Leu	Ala	Val	Leu 640	Leu	Leu	Ala	Ala	Gly 645
Leu	Ala	Ala	His	Leu 650	Gly	Thr	Gly	Gln	Pro 655	Arg	Lys	Gly	Val	Gly 660
Gly	Arg	Arg	Pro	Leu 665	Pro	Pro	Ala	Trp	Ala 670	Phe	Trp	Gly	Trp	Ser 675
Ala	Pro	Ser	Val	Arg 680	Val	Val	Ser	Ala	Pro 685	Leu	Val	Leu	Pro	Trp 690
Asn	Pro	Gly	Arg	Lys 695	Leu	Pro	Arg	Ser	Ser 700	Glu	Gly	Glu	Thr	Leu 705
Leu	Pro	Pro	Leu	Ser 710	Gln	Asn	Ser							

```
<210> 246
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 246
aacaaggtaa gatgccatcc tg 22
<210> 247
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 247
aaacttgtcg atggagacca gctc 24
<210> 248
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 248
aggggctgca aagcctggag agcctctcct tctatgacaa ccagc 45
<210> 249
<211> 3401
<212> DNA
<213> Homo Sapien
<400> 249
 gcaagccaag gcgctgtttg agaaggtgaa gaagttccgg acccatgtgg 50
 aggagggga cattgtgtac cgcctctaca tgcggcagac catcatcaag 100
 gtgatcaagt tcatcctcat catctgctac accgtctact acgtgcacaa 150
 catcaagttc gacgtggact gcaccgtgga cattgagagc ctgacgggct 200
 accgcaccta ccgctgtgcc cacccctgg ccacactctt caagatcctg 250
 gcgtccttct acatcagcct agtcatcttc tacggcctca tctgcatgta 300
 cacactgtgg tggatgctac ggcgctccct caagaagtac tcgtttgagt 350
 cgatccgtga ggagagcagc tacagcgaca tccccgacgt caagaacgac 400
 ttcgccttca tgctgcacct cattgaccaa tacgacccgc tctactccaa 450
```

gcgcttcgcc gtcttcctgt cggaggtgag tgagaacaag ctgcggcagc 500 tgaacctcaa caacgagtgg acgctggaca agctccggca gcggctcacc 550 aagaacgcgc aggacaagct ggagctgcac ctgttcatgc tcagtggcat 600 ccctgacact gtgtttgacc tggtggagct ggaggtcctc aagctggagc 650 tgatececga egtgaceate eegeceagea ttgeceaget eaegggeete 700 aaggagetgt ggetetaeca caeageggee aagattgaag egeetgeget 750 ggccttcctg cgcgagaacc tgcgggcgct gcacatcaag ttcaccgaca 800 tcaaggagat cccgctgtgg atctatagcc tgaagacact ggaggagctg 850 cacctgacgg gcaacctgag cgcggagaac aaccgctaca tcgtcatcga 900 cgggctgcgg gagctcaaac gcctcaaggt gctgcggctc aagagcaacc 950 taagcaagct gccacaggtg gtcacagatg tgggcgtgca cctgcagaag 1000 ctgtccatca acaatgaggg caccaagctc atcgtcctca acagcctcaa 1050 gaagatggcg aacctgactg agctggagct gatccgctgc gacctggagc 1100 gcatccccca ctccatcttc agcctccaca acctgcagga gattgacctc 1150 aaggacaaca acctcaagac catcgaggag atcatcagct tccagcacct 1200 gcaccgcctc acctgcctta agctgtggta caaccacatc gcctacatcc 1250 ccatccagat cggcaacctc accaacctgg agcgcctcta cctgaaccgc 1300 aacaagatcg agaagatccc cacccagctc ttctactgcc gcaagctgcg 1350 ctacctggac ctcagccaca acaacctgac cttcctccct gccgacatcg 1400 gcctcctgca gaacctccag aacctagcca tcacggccaa ccggatcgag 1450 acgctccctc cggagctctt ccagtgccgg aagctgcggg ccctgcacct 1500 gggcaacaac gtgctgcagt cactgccctc cagggtgggc gagctgacca 1550 acctgacgca gatcgagctg cggggcaacc ggctggagtg cctgcctgtg 1600 gagctgggcg agtgcccact gctcaagcgc agcggcttgg tggtggagga 1650 ggacctgttc aacacactgc cacccgaggt gaaggagcgg ctgtggaggg 1700 ctgacaagga gcaggcctga gcgaggccgg cccagcacag caagcagcag 1750 gaccgctgcc cagtcctcag gcccggaggg gcaggcctag cttctcccag 1800 aactcccgga cagccaggac agcctcgcgg ctgggcagga gcctggggcc 1850

gcttgtgagt caggccagag cgagaggaca gtatctgtgg ggctggcccc 1900 ttttctccct ctgagactca cgtcccccag ggcaagtgct tgtggaggag 1950 agcaagtctc aagagcgcag tatttggata atcagggtct cctccctgga 2000 ggccagetet gccccagggg etgagetgcc accagaggte etgggaceet 2050 cactttagtt cttggtattt atttttctcc atctcccacc tccttcatcc 2100 agataactta tacattccca agaaagttca gcccagatgg aaggtgttca 2150 gggaaaggtg ggctgccttt tccccttgtc cttatttagc gatgccgccg 2200 ggcatttaac acceacetgg actteageag agtggteegg ggcgaaceag 2250 ccatgggacg gtcacccagc agtgccgggc tgggctctgc ggtgcggtcc 2300 acgggagage aggectecag etggaaagge caggeetgga gettgeetet 2350 tcagtttttg tggcagtttt agttttttgt ttttttttt tttaatcaaa 2400 aaacaatttt ttttaaaaaa aagctttgaa aatggatggt ttgggtatta 2450 aaaagaaaaa aaaaacttaa aaaaaaaaag acactaacgg ccagtgagtt 2500 ggagtctcag ggcagggtgg cagtttccct tgagcaaagc agccagacgt 2550 tgaactgtgt ttcctttccc tgggcgcagg gtgcagggtg tcttccggat 2600 ctggtgtgac cttggtccag gagttctatt tgttcctggg gagggaggtt 2650 tttttgtttg ttttttgggt ttttttggtg tcttgttttc tttctcctcc 2700 atgtgtcttg gcaggcactc atttctgtgg ctgtcggcca gagggaatgt 2750 tctggagctg ccaaggaggg aggagactcg ggttggctaa tccccggatg 2800 aacggtgctc cattcgcacc tecectectc gtgcctgccc tgcctctcca 2850 cgcacagtgt taaggagcca agaggagcca cttcgcccag actttgtttc 2900 cccacctcct gcggcatggg tgtgtccagt gccaccgctg gcctccgctg 2950 cttccatcag ccctgtcgcc acctggtcct tcatgaagag cagacactta 3000 gaggetggte gggaatgggg aggtegeeec tgggagggea ggegttggtt 3050 ccaagceggt tecegteect ggegeetgga gtgeacaeag eccagtegge 3100 acctggtggc tggaagccaa cctgctttag atcactcggg tccccacctt 3150 agaagggtcc ccgccttaga tcaatcacgt ggacactaag gcacgtttta 3200 gagtetettg tettaatgat tatgteeate egtetgteeg teeatttgtg 3250 ttttctgcgt cgtgtcattg gatataatcc tcagaaataa tgcacactag 3300

a 3401 <210> 250 <211> 546 <212> PRT <213> Homo Sapien <400> 250 Met Arg Gln Thr Ile Ile Lys Val Ile Lys Phe Ile Leu Ile Ile Cys Tyr Thr Val Tyr Tyr Val His Asn Ile Lys Phe Asp Val Asp 20 Cys Thr Val Asp Ile Glu Ser Leu Thr Gly Tyr Arg Thr Tyr Arg Cys Ala His Pro Leu Ala Thr Leu Phe Lys Ile Leu Ala Ser Phe Tyr Ile Ser Leu Val Ile Phe Tyr Gly Leu Ile Cys Met Tyr Thr Leu Trp Trp Met Leu Arg Arg Ser Leu Lys Lys Tyr Ser Phe Glu Ser Ile Arg Glu Glu Ser Ser Tyr Ser Asp Ile Pro Asp Val Lys Asn Asp Phe Ala Phe Met Leu His Leu Ile Asp Gln Tyr Asp Pro 115 Leu Tyr Ser Lys Arg Phe Ala Val Phe Leu Ser Glu Val Ser Glu 125 130 135 Asn Lys Leu Arg Gln Leu Asn Leu Asn Asn Glu Trp Thr Leu Asp Lys Leu Arg Gln Arg Leu Thr Lys Asn Ala Gln Asp Lys Leu Glu Leu His Leu Phe Met Leu Ser Gly Ile Pro Asp Thr Val Phe Asp 170 175 180 Leu Val Glu Leu Glu Val Leu Lys Leu Glu Leu Ile Pro Asp Val 190

Thr Ile Pro Pro Ser Ile Ala Gln Leu Thr Gly Leu Lys Glu Leu

Trp Leu Tyr His Thr Ala Ala Lys Ile Glu Ala Pro Ala Leu Ala

205

210

200

cctctgacaa ccatgaagca aaaatccgtt acatgtgggt ctgaacttgt 3350

Phe	Leu	Arg	Glu	Asn 230	Leu	Arg	Ala	Leu	His 235	Ile	Lys	Phe	Thr	Asp 240
Ile	Lys	Glu	Ile	Pro 245	Leu	Trp	Ile	Tyr	Ser 250	Leu	Lys	Thr	Leu	Glu 255
Glu	Leu	His	Leu	Thr 260	Gly	Asn	Leu	Ser	Ala 265	Glu	Asn	Asn	Arg	Tyr 270
Ile	Val	Ile	Asp	Gly 275	Leu	Arg	Glu	Leu	Lys 280	Arg	Leu	Lys	Val	Leu 285
Arg	Leu	Lys	Ser		Leu	Ser	Lys	Leu		Gln	Val	Val	Thr	-
				290					295					300
Val	Gly	Val	His	Leu 305	Gln	Lys	Leu	Ser	Ile 310	Asn	Asn	Glu	Gly	Thr 315
Lys	Leu	Ile	Val	Leu 320	Asn	Ser	Leu	Lys	Lys 325	Met	Ala	Asn	Leu	Thr 330
Glu	Leu	Glu	Leu	Ile 335	Arg	Cys	Asp	Leu	Glu 340	Arg	Ile	Pro	His	Ser 345
Ile	Phe	Ser	Leu	His 350	Asn	Leu	Gln	Glu	Ile 355	Asp	Leu	Lys	Asp	Asn 360
Asn	Leu	Lys	Thr	Ile 365	Glu	Glu	Ile	Ile	Ser 370	Phe	Gln	His	Leu	His 375
Arg	Leu	Thr	Cys	Leu 380	Lys	Leu	Trp	Tyr	Asn 385	His	Ile	Ala	Tyr	Ile 390
Pro	Ile	Gln	Ile	Gly 395	Asn	Leu	Thr	Asn	Leu 400	Glu	Arg	Leu	Tyr	Leu 405
Asn	Arg	Asn	Lys	Ile 410	Glu	Lys	Ile	Pro	Thr 415	Gln	Leu	Phe	Tyr	Cys 420
Arg	Lys	Leu	Arg	Tyr 425	Leu	Asp	Leu	Ser	His 430	Asn	Asn	Leu	Thr	Phe 435
Leu	Pro	Ala	Asp	Ile 440	Gly	Leu	Leu	Gln	Asn 445	Leu	Gln	Asn	Leu	Ala 450
Ile	Thr	Ala	Asn	Arg 455	Ile	Glu	Thr	Leu	Pro 460	Pro	Glu	Leu	Phe	Gln 465
Cys	Arg	Lys	Leu	Arg 470	Ala	Leu	His	Leu	Gly 475	Asn	Asn	Val	Leu	Gln 480
Ser	Leu	Pro	Ser	Arg 485	Val	Gly	Glu	Leu	Thr 490	Asn	Leu	Thr	Gln	Ile 495

```
Glu Leu Arg Gly Asn Arg Leu Glu Cys Leu Pro Val Glu Leu Gly
                 500
                                      505
 Glu Cys Pro Leu Leu Lys Arg Ser Gly Leu Val Val Glu Glu Asp
                 515
                                      520
                                                          525
 Leu Phe Asn Thr Leu Pro Pro Glu Val Lys Glu Arg Leu Trp Arg
Ala Asp Lys Glu Gln Ala
                 545
<210> 251
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 251
caacaatgag ggcaccaagc 20
<210> 252
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 252
gatggctagg ttctggaggt tctg 24
<210> 253
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 253
caacctgcag gagattgacc tcaaggacaa caacctcaag accatcg 47
<210> 254
<211> 1650
<212> DNA
<213> Homo Sapien
<400> 254
geetgttget gatgetgeeg tgeggtaett gteatggage tggeaetgeg 50
gegetetece gteeegegt ggttgetget getgeegetg etgetgggee 100
 tgaacgcagg agctgtcatt gactggccca cagaggaggg caaggaagta 150
```

tgggattatg tgacggtccg caaggatgcc tacatgttct ggtggctcta 200 ttatgccacc aactcctgca agaacttctc agaactgccc ctggtcatgt 250 ggcttcaggg cggtccaggc ggttctagca ctggatttgg aaactttgag 300 gaaattgggc cccttgacag tgatctcaaa ccacggaaaa ccacctggct 350 ccaggctgcc agtctcctat ttgtggataa tcccgtgggc actgggttca 400 gttatgtgaa tggtagtggt gcctatgcca aggacctggc tatggtggct 450 tcagacatga tggttctcct gaagaccttc ttcagttgcc acaaagaatt 500 ccagacagtt ccattctaca ttttctcaga gtcctatgga ggaaaaatgg 550 cagctggcat tggtctagag ctttataagg ccattcagcg agggaccatc 600 aagtgcaact ttgcgggggt tgccttgggt gattcctgga tctcccctgt 650 tgattcggtg ctctcctggg gaccttacct gtacagcatg tctcttctcg 700 aagacaaagg totggcagag gtgtotaagg ttgcagagca agtactgaat 750 gccgtaaata aggggctcta cagagaggcc acagagctgt gggggaaagc 800 agaaatgatc attgaacaga acacagatgg ggtgaacttc tataacatct 850 taactaaaag cactcccacg tctacaatgg agtcgagtct agaattcaca 900 cagagecace tagtttgtet ttgtcagege caegtgagae acetacaaeg 950 agatgcctta agccagctca tgaatggccc catcagaaag aagctcaaaa 1000 ttattcctga ggatcaatcc tggggaggcc aggctaccaa cgtctttgtg 1050 aacatggagg aggacttcat gaagccagtc attagcattg tggacgagtt 1100 gctggaggca gggatcaacg tgacggtgta taatggacag ctggatctca 1150 tcgtagatac catgggtcag gaggcctggg tgcggaaact gaagtggcca 1200 gaactgccta aattcagtca gctgaagtgg aaggccctgt acagtgaccc 1250 taaatctttg gaaacatctg cttttgtcaa gtcctacaag aaccttgctt 1300 tctactggat tctgaaagct ggtcatatgg ttccttctga ccaaggggac 1350 atggctctga agatgatgag actggtgact cagcaagaat aggatggatg 1400 gggctggaga tgagctggtt tggccttggg gcacagagct gagctgaggc 1450 cgctgaagct gtaggaagcg ccattcttcc ctgtatctaa ctggggctgt 1500 gatcaagaag gttctgacca gcttctgcag aggataaaat cattgtctct 1550 ggaggcaatt tggaaattat ttctgcttct taaaaaaacc taagattttt 1600 taaaaaattg atttgttttg atcaaaataa aggatgataa tagatattaa 1650

<210><211><211><212><213>	→ 452 → PRT	?	apien	l.										
<400> Met 1			Ala	Leu 5	Arg	Arg	Ser	Pro	Val 10	Pro	Arg	Trp	Leu	Leu 15
Leu	Leu	Pro	Leu	Leu 20	Leu	Gly	Leu	Asn	Ala 25	Gly	Ala	Val	Ile	Asp 30
Trp	Pro	Thr	Glu	Glu 35	Gly	Lys	Glu	Val	Trp 40	Asp	Tyr	Val	Thr	Val 45
Arg	Lys	Asp	Ala	Tyr 50	Met	Phe	Trp	Trp	Leu 55	Tyr	Tyr	Ala	Thr	Asn 60
Ser	Суѕ	Lys	Asn	Phe 65	Ser	Glu	Leu	Pro	Leu 70	Val	Met	Trp	Leu	Gln 75
Gly	Gly	Pro	Gly	Gly 80	Ser	Ser	Thr	Gly	Phe 85	Gly	Asn	Phe	Glu	Glu 90
Ile	Gly	Pro	Leu	Asp 95	Ser	Asp	Leu	Lys	Pro 100	Arg	Lys	Thr	Thr	Trp 105
Leu	Gln	Ala	Ala	Ser 110	Leu	Leu	Phe	Val	Asp 115	Asn	Pro	Val	Gly	Thr 120
Gly	Phe	Ser	Tyr	Val 125	Asn	Gly	Ser	Gly	Ala 130	Tyr	Ala	Lys	Asp	Leu 135
Ala	Met	Val	Ala	Ser 140	Asp	Met	Met	Val	Leu 145	Leu	Lys	Thr	Phe	Phe 150
Ser	Cys	His	Lys	Glu 155	Phe	Gln	Thr	Val	Pro 160	Phe	Tyr	Ile	Phe	Ser 165
Glu	Ser	Tyr	Gly	Gly 170	Lys	Met	Ala	Ala	Gly 175	Ile	Gly	Leu	Glu	Leu 180
Tyr	Lys	Ala	Ile	Gln 185	Arg	Gly	Thr	Ile	Lys 190	Cys	Asn	Phe	Ala	Gly 195
Val	Ala	Leu	Gly	Asp 200	Ser	Trp	Ile	Ser	Pro 205	Val	Asp	Ser	Val	Leu 210
Ser	Trp	Gly	Pro	Tyr 215	Leu	Tyr	Ser	Met	Ser 220	Leu	Leu	Glu	Asp	Lys 225
Gly	Leu	Ala	Glu	Val 230	Ser	Lys	Val	Ala	Glu 235	Gln	Val	Leu	Asn	Ala 240

Val	Asn	Lys	Gly	Leu 245	Tyr	Arg	Glu	Ala	Thr 250	Glu	Leu	Trp	Gly	Lys 255
Ala	Glu	Met	Ile	Ile 260	Glu	Gln	Asn	Thr	Asp 265	Gly	Val	Asn	Phe	Tyr 270
Asn	Ile	Leu	Thr	Lys 275	Ser	Thr	Pro	Thr	Ser 280	Thr	Met	Glu	Ser	Ser 285
Leu	Glu	Phe	Thr	Gln 290	Ser	His	Leu	Val	Cys 295	Leu	Суѕ	Gln	Arg	His 300
Val	Arg	His	Leu	Gln 305	Arg	Asp	Ala	Leu	Ser 310	Gln	Leu	Met	Asn	Gly 315
Pro	Ile	Arg	Lys	Lys 320	Leu	Lys	Ile	Ile	Pro 325	Glu	Asp	Gln	Ser	Trp 330
Gly	Gly	Gln	Ala	Thr 335	Asn	Val	Phe	Val	Asn 340	Met	Glu	Glu	Asp	Phe 345
Met	Lys	Pro	Val	Ile 350	Ser	Ile	Val	Asp	Glu 355	Leu	Leu	Glu	Ala	Gly 360
Ile	Asn	Val	Thr	Val 365	Tyr	Asn	Gly	Gln	Leu 370	Asp	Leu	Ile	Val	Asp 375
Thr	Met	Gly	Gln	Glu 380	Ala	Trp	Val	Arg	Lys 385	Leu	Lys	Trp	Pro	Glu 390
Leu	Pro	Lys	Phe	Ser 395	Gln	Leu	Lys	Trp	Lys 400	Ala	Leu	Tyr	Ser	Asp 405
Pro	Lys	Ser	Leu	Glu 410	Thr	Ser	Ala	Phe	Val 415	Lys	Ser	Tyr	Lys	Asn 420
Leu	Ala	Phe	Tyr	Trp 425	Ile	Leu	Lys	Ala	Gly 430	His	Met	Val	Pro	Ser 435
Asp	Gln	Gly	Asp	Met 440	Ala	Leu	Lys	Met	Met 445	Arg	Leu	Val	Thr	Gln 450

Gln Glu

<210> 256

<211> 1100

<212> DNA

<213> Homo Sapien

<400> 256

ggccgcggga gaggaggcca tgggcgcgg cgggggcgctg ctgctggcg 50
tgctgctggc tcgggctgga ctcaggaagc cggagtcgca ggaggcggcg 100
ccgttatcag gaccatgcgg ccgacgggtc atcacgtcgc gcatcgtggg 150
tggagaggac gccgaactcg ggcgttggcc gtggcagggg agcctgcgcc 200

tgtgggattc ccacgtatgc ggagtgagcc tgctcagcca ccgctgggca 250 ctcacggcgg cgcactgctt tgaaacctat agtgacctta gtgatccctc 300 cgggtggatg gtccagtttg gccagctgac ttccatgcca tccttctgga 350 geetgeagge etactacace egttactteg tategaatat etatetgage 400 cctcgctacc tggggaattc accctatgac attgccttgg tgaagctgtc 450 tgcacctgtc acctacacta aacacatcca gcccatctgt ctccaggcct 500 ccacatttga gtttgagaac cggacagact gctgggtgac tggctggggg 550 tacatcaaag aggatgaggc actgccatct ccccacaccc tccaggaagt 600 tcaggtcgcc atcataaaca actctatgtg caaccacctc ttcctcaagt 650 acagtttccg caaggacatc tttggagaca tggtttgtgc tggcaacgcc 700 caaggeggga aggatgeetg etteggtgae teaggtggae eettggeetg 750 taacaagaat ggactgtggt atcagattgg agtcgtgagc tggggagtgg 800 gctgtggtcg gcccaatcgg cccggtgtct acaccaatat cagccaccac 850 tttgagtgga tccagaagct gatggcccag agtggcatgt cccagccaga 900 cccctcctgg ccactactct ttttccctct tctctgggct ctcccactcc 950 tggggccggt ctgagcctac ctgagcccat gcagcctggg gccactgcca 1000 agtcaggccc tggttctctt ctgtcttgtt tggtaataaa cacattccag 1050 ttgatgcctt gcagggcatt cttcaaaaaa aaaaaaaaa aaaaaaaaa 1100

<210> 257

<211> 314

<212> PRT

<213> Homo Sapien

<400> 257

Met Gly Ala Arg Gly Ala Leu Leu Leu Ala Leu Leu Leu Ala Arg
1 5 10 15

Ala Gly Leu Arg Lys Pro Glu Ser Gln Glu Ala Ala Pro Leu Ser

20 25 30

Gly Pro Cys Gly Arg Arg Val Ile Thr Ser Arg Ile Val Gly Gly 35 40 45

Glu Asp Ala Glu Leu Gly Arg Trp Pro Trp Gln Gly Ser Leu Arg
50 55 60

Leu Trp Asp Ser His Val Cys Gly Val Ser Leu Leu Ser His Arg

80 85 90

Ser Asp Pro Ser Gly Trp Met Val Gln Phe Gly Gln Leu Thr Ser 95 100 105

Met Pro Ser Phe Trp Ser Leu Gln Ala Tyr Tyr Thr Arg Tyr Phe 110 115 120

Val Ser Asn Ile Tyr Leu Ser Pro Arg Tyr Leu Gly Asn Ser Pro 125 130 135

Tyr Asp Ile Ala Leu Val Lys Leu Ser Ala Pro Val Thr Tyr Thr
140 145 150

Lys His Ile Gln Pro Ile Cys Leu Gln Ala Ser Thr Phe Glu Phe 155 160 165

Glu Asn Arg Thr Asp Cys Trp Val Thr Gly Trp Gly Tyr Ile Lys 170 175 180

Glu Asp Glu Ala Leu Pro Ser Pro His Thr Leu Gln Glu Val Gln 185 190 195

Val Ala Ile Ile Asn Asn Ser Met Cys Asn His Leu Phe Leu Lys 200 205 210

Tyr Ser Phe Arg Lys Asp Ile Phe Gly Asp Met Val Cys Ala Gly 215 220 225

Asn Ala Gln Gly Gly Lys Asp Ala Cys Phe Gly Asp Ser Gly Gly 230 235 240

Pro Leu Ala Cys Asn Lys Asn Gly Leu Trp Tyr Gln Ile Gly Val 245 250 255

Val Ser Trp Gly Val Gly Cys Gly Arg Pro Asn Arg Pro Gly Val 260 265 270

Tyr Thr Asn Ile Ser His His Phe Glu Trp Ile Gln Lys Leu Met 275 280 285

Ala Gln Ser Gly Met Ser Gln Pro Asp Pro Ser Trp Pro Leu Leu 290 295 300

Phe Phe Pro Leu Leu Trp Ala Leu Pro Leu Leu Gly Pro Val 305

<210> 258

<211> 2427

<212> DNA

<213> Homo Sapien

<400> 258

cccacgcgtc cgcggacgcg tgggaagggc agaatgggac tccaagcctg 50

cctcctaggg ctctttgccc tcatcctctc tggcaaatgc agttacagcc 100 cggagcccga ccagcggagg acgctgccc caggctgggt gtccctgggc 150 cgtgcggacc ctgaggaaga gctgagtctc acctttgccc tgagacagca 200 gaatgtggaa agactctcgg agctggtgca ggctgtgtcg gatcccagct 250 ctcctcaata cggaaaatac ctgaccctag agaatgtggc tgatctggtg 300 aggccatccc cactgaccct ccacacggtg caaaaatggc tcttggcagc 350 cggagcccag aagtgccatt ctgtgatcac acaggacttt ctgacttgct 400 ggctgagcat ccgacaagca gagctgctgc tccctggggc tgagtttcat 450 cactatgtgg gaggacctac ggaaacccat gttgtaaggt ccccacatcc 500 ctaccagett ccacaggeet tggeececca tgtggaettt gtggggggae 550 tgcaccgttt tcccccaaca tcatccctga ggcaacgtcc tgagccgcag 600 gtgacaggga ctgtaggcct gcatctgggg gtaaccccct ctgtgatccg 650 taagcgatac aacttgacct cacaagacgt gggctctggc accagcaata 700 acagccaagc ctgtgcccag ttcctggagc agtatttcca tgactcagac 750 ctggctcagt tcatgcgcct cttcggtggc aactttgcac atcaggcatc 800 ccagtctaga tgtgcagtac ctgatgagtg ctggtgccaa catctccacc 900 tgggtctaca gtagccctgg ccggcatgag ggacaggagc ccttcctgca 950 gtggctcatg ctgctcagta atgagtcagc cctgccacat gtgcatactg 1000 tgagctatgg agatgatgag gactccctca gcagcgccta catccagcgg 1050 gtcaacactg agctcatgaa ggctgccgct cggggtctca ccctgctctt 1100 cgcctcaggt gacagtgggg ccgggtgttg gtctgtctct ggaagacacc 1150 agttccgccc taccttccct gcctccagcc cctatgtcac cacagtggga 1200 ggcacatcct tccaggaacc tttcctcatc acaaatgaaa ttgttgacta 1250 tatcagtggt ggtggcttca gcaatgtgtt cccacggcct tcataccagg 1300 aggaagetgt aacgaagtte etgageteta geecceacet geeaceatee 1350 agttacttca atgccagtgg ccgtgcctac ccagatgtgg ctgcactttc 1400 tgatggctac tgggtggtca gcaacagagt gcccattcca tgggtgtccg 1450

gaacctcggc ctctactcca gtgtttgggg ggatcctatc cttgatcaat 1500 gagcacagga tccttagtgg ccgccccct cttggctttc tcaacccaag 1550 gctctaccag cagcatgggg caggtctctt tgatgtaacc cgtggctgcc 1600 atgagtcctg tctggatgaa gaggtagagg gccagggttt ctgctctggt 1650 cctggctggg atcctgtaac aggctgggga acaccaactt cccaqctttq 1700 ctgaagactc tactcaaccc ctgacccttt cctatcagga gagatggctt 1750 gtcccctgcc ctgaagctgg cagttcagtc ccttattctg ccctgttgga 1800 agccctgctg aaccctcaac tattgactgc tgcagacagc ttatctccct 1850 aaccctgaaa tgctgtgagc ttgacttgac tcccaaccct accatgctcc 1900 atcatactca ggtctcccta ctcctgcctt agattcctca ataagatgct 1950 gtaactagca ttttttgaat gcctctccct ccgcatctca tctttctctt 2000 ttcaatcagg cttttccaaa gggttgtata cagactctgt gcactatttc 2050 acttgatatt cattccccaa ttcactgcaa ggagacctct actgtcaccg 2100 tttactcttt cctaccctga catccagaaa caatggcctc cagtgcatac 2150 ttctcaatct ttgctttatg gcctttccat catagttgcc cactccctct 2200 cettacttag cttccaggte ttaacttete tgactactet tgtcttccte 2250 tctcatcaat ttctgcttct tcatggaatg ctgaccttca ttgctccatt 2300 tgtagatttt tgctcttctc agtttactca ttgtcccctg gaacaaatca 2350 ctgacatcta caaccattac catctcacta aataagactt tctatccaat 2400 aatgattgat acctcaaatg taaaaaa 2427

<210> 259

<211> 556

<212> PRT

<213> Homo Sapien

<400> 259

Met Gly Leu Gln Ala Cys Leu Leu Gly Leu Phe Ala Leu Ile Leu 1 5 10 15

Ser Gly Lys Cys Ser Tyr Ser Pro Glu Pro Asp Gln Arg Arg Thr
20 25 30

Leu Pro Pro Gly Trp Val Ser Leu Gly Arg Ala Asp Pro Glu Glu
35 40 45

Glu Leu Ser Leu Thr Phe Ala Leu Arg Gln Gln Asn Val Glu Arg
50 55 60

Leu Ser	Glu I	Leu	Val 65	Gln	Ala	Val	Ser	Asp 70	Pro	Ser	Ser	Pro	Gln 75
Tyr Gly	Lys '	Tyr	Leu 80	Thr	Leu	Glu	Asn	Val 85	Ala	Asp	Leu	Val	Arg 90
Pro Ser	Pro 1	Leu	Thr 95	Leu	His	Thr	Val	Gln 100	Lys	Trp	Leu	Leu	Ala 105
Ala Gly	Ala	Gln	Lys 110	Cys	His	Ser	Val	Ile 115	Thr	Gln	Asp	Phe	Leu 120
Thr Cys	Trp 1	Leu	Ser 125	Ile	Arg	Gln	Ala	Glu 130	Leu	Leu	Leu	Pro	Gly 135
Ala Glu	Phe 1	His	His 140	Tyr	Val	Gly	Gly	Pro 145	Thr	Glu	Thr	His	Val 150
Val Arg	Ser 1	Pro	His 155	Pro	Tyr	Gln	Leu	Pro 160	Gln	Ala	Leu	Ala	Pro 165
His Val	Asp 1	Phe	Val 170	Gly	Gly	Leu	His	Arg 175	Phe	Pro	Pro	Thr	Ser 180
Ser Leu	Arg	Gln	Arg 185	Pro	Glu	Pro	Gln	Val 190	Thr	Gly	Thr	Val	Gly 195
Leu His	Leu (Gly	Val 200	Thr	Pro	Ser	Val	Ile 205	Arg	Lys	Arg	Tyr	Asn 210
Leu Thr	Ser (Gln	Asp 215	Val	Gly	Ser	Gly	Thr 220	Ser	Asn	Asn	Ser	Gln 225
Ala Cys	Ala	Gln	Phe 230	Leu	Glu	Gln	Tyr	Phe 235	His	Asp	Ser	Asp	Leu 240
Ala Gln	Phe I	Met	Arg 245	Leu	Phe	Gly	Gly	Asn 250	Phe	Ala	His	Gln	Ala 255
Ser Val	Ala	Arg	Val 260	Val	Gly	Gln	Gln	Gly 265	Arg	Gly	Arg	Ala	Gly 270
Ile Glu	Ala :	Ser	Leu 275	Asp	Val	Gln	Tyr	Leu 280	Met	Ser	Ala	Gly	Ala 285
Asn Ile	Ser '	Thr	Trp 290	Val	Tyr	Ser	Ser	Pro 295	Gly	Arg	His	Glu	Gly 300
Gln Glu	Pro 1	Phe	Leu 305	Gln	Trp	Leu	Met	Leu 310	Leu	Ser	Asn	Glu	Ser 315
Ala Leu	Pro 1	His	Val 320	His	Thr	Val	Ser	Tyr 325	Gly	Asp	Asp	Glu	Asp 330
Ser Leu	Ser :	Ser	Ala 335	Tyr	Ile	Gln	Arg	Val 340	Asn	Thr	Glu	Leu	Met 345

Lys	Ala	Ala	Ala	Arg 350	Gly	Leu	Thr	Leu	Leu 355	Phe	Ala	Ser	Gly	Asp 360
Ser	Gly	Ala	Gly	Cys 365	Trp	Ser	Val	Ser	Gly 370	Arg	His	Gln	Phe	Arg 375
Pro	Thr	Phe	Pro	Ala 380	Ser	Ser	Pro	Tyr	Val 385	Thr	Thr	Val	Gly	Gly 390
Thr	Ser	Phe	Gln	Glu 395	Pro	Phe	Leu	Ile	Thr 400	Asn	Glu	Ile	Val	Asp 405
Tyr	Ile	Ser	Gly	Gly 410	Gly	Phe	Ser	Asn	Val 415	Phe	Pro	Arg	Pro	Ser 420
Tyr	Gln	Glu	Glu	Ala 425	Val	Thr	Lys	Phe	Leu 430	Ser	Ser	Ser	Pro	His 435
Leu	Pro	Pro	Ser	Ser 440	Tyr	Phe	Asn	Ala	Ser 445	Gly	Arg	Ala	Tyr	Pro 450
Asp	Val	Ala	Ala	Leu 455	Ser	Asp	Gly	Tyr	Trp 460	Val	Val	Ser	Asn	Arg 465
Val	Pro	Ile	Pro	Trp 470	Val	Ser	Gly	Thr	Ser 475	Ala	Ser	Thr	Pro	Val 480
Phe	Gly	Gly	Ile	Leu 485	Ser	Leu	Ile	Asn	Glu 490	His	Arg	Ile	Leu	Ser 495
Gly	Arg	Pro	.Pro	Leu 500	Gly	Phe	Leu	Asn	Pro 505	Arg	Leu	Tyr	Gln	Gln 510
His	Gly	Ala	Gly	Leu 515	Phe	Asp	Val	Thr	Arg 520	Gly	Cys	His	Glu	Ser 525
Cys	Leu	Asp	Glu	Glu 530	Val	Glu	Gly	Gln	Gly 535	Phe	Cys	Ser	Gly	Pro 540
Gly	Trp	Asp	Pro	Val 545	Thr	Gly	Trp	Gly	Thr 550	Pro	Thr	Ser	Gln	Leu 555
_														

Cys

<210> 260

<211> 1638

<212> DNA

<213> Homo Sapien

<400> 260

gccgcgcgct ctctcccggc gcccacacct gtctgagcgg cgcagcgagc 50 cgcggcccgg gcgggctgct cggcgcggaa cagtgctcgg catggcaggg 100 attccagggc tcctcttcct tctctttt ctgctctgtg ctgttgggca 150

agtgagccct tacagtgccc cctggaaacc cacttggcct gcataccgcc 200 tccctgtcgt cttgccccag tctaccctca atttagccaa gccagacttt 250 ggagccgaag ccaaattaga agtatcttct tcatgtggac cccagtgtca 300 taagggaact ccactgccca cttacgaaga ggccaagcaa tatctgtctt 350 atgaaacgct ctatgccaat ggcagccgca cagagacgca ggtgggcatc 400 tacatcctca gcagtagtgg agatggggcc caacaccgag actcagggtc 450 ttcaggaaag tctcgaagga agcggcagat ttatggctat gacagcaggt 500 tcagcatttt tgggaaggac ttcctgctca actacccttt ctcaacatca 550 gtgaagttat ccacgggctg caccggcacc ctggtggcag agaagcatgt 600 cctcacagct gcccactgca tacacgatgg aaaaacctat gtgaaaggaa 650 cccagaagct tcgagtgggc ttcctaaagc ccaagtttaa agatggtggt 700 cgaggggcca acgactccac ttcagccatg cccgagcaga tgaaatttca 750 gtggatccgg gtgaaacgca cccatgtgcc caagggttgg atcaagggca 800 atgccaatga catcggcatg gattatgatt atgccctcct ggaactcaaa 850 aagccccaca agagaaaatt tatgaagatt ggggtgagcc ctcctgctaa 900 gcagctgcca gggggcagaa ttcacttctc tggttatgac aatgaccgac 950 caggcaattt ggtgtatcgc ttctgtgacg tcaaagacga gacctatgac 1000 ttgctctacc agcaatgcga tgcccagcca ggggccagcg ggtctggggt 1050 ctatgtgagg atgtggaaga gacagcagca gaagtgggag cgaaaaatta 1100 ttggcatttt ttcagggcac cagtgggtgg acatgaatgg ttccccacag 1150 gatttcaacg tggctgtcag aatcactcct ctcaaatatg cccagatttg 1200 ctattggatt aaaggaaact acctggattg tagggagggg tgacacagtg 1250 ttccctcctg gcagcaatta agggtcttca tgttcttatt ttaggagagg 1300 ccaaattgtt ttttgtcatt ggcgtgcaca cgtgtgtgtg tgtgtgtgt 1350 tgtgtgtaag gtgtcttata atcttttacc tatttcttac aattgcaaga 1400 tgactggctt tactatttga aaactggttt gtgtatcata tcatatatca 1450 tttaagcagt ttgaaggcat acttttgcat agaaataaaa aaaatactga 1500 tttggggcaa tgaggaatat ttgacaatta agttaatctt cacgtttttg 1550 caaactttga tttttatttc atctgaactt gtttcaaaga tttatattaa 1600

atatttggca tacaagagat atgaaaaaaa aaaaaaaa 1638

<210> 261

<211: <211: <212: <213:	> 383 > PR'	3 I'	apie	n										
<400: Met 1		l Gly	Ile	Pro 5	Gly	Leu	Leu	Phe	Leu 10	Leu	Phe	Phe	Leu	Leu 15
Cys	Ala	Val	Gly	Gln 20	Val	Ser	Pro	Tyr	Ser 25	Ala	Pro	Trp	Lys	Pro 30
Thr	Trp	Pro	Ala	Tyr 35	Arg	Leu	Pro	Val	Val 40	Leu	Pro	Gln	Ser	Thr 45
Leu	Asn	Leu	Ala	Lys 50	Pro	Asp	Phe	Gly	Ala 55	Glu	Ala	Lys	Leu	Glu 60
Val	Ser	Ser	Ser	Cys 65	Gly	Pro	Gln	Cys	His 70	Lys	Gly	Thr	Pro	Leu 75
Pro	Thr	Tyr	Glu	Glu 80	Ala	Lys	Gln	Tyr	Leu 85	Ser	Tyr	Glu	Thr	Leu 90
Tyr	Ala	Asn	Gly	Ser	Arg	Thr	Glu	Thr	Gln	Val	Gly	Ile	Tyr	Ile
				95					100					105
Leu	Ser	Ser	Ser	Gly 110	Asp	Gly	Ala	Gln	His 115	Arg	Asp	Ser	Gly	Ser 120
Ser	Gly	Lys	Ser	Arg 125	Arg	Lys	Arg	Gln	Ile 130	Tyr	Gly	Tyr	Asp	Ser 135
Arg	Phe	Ser	Ile	Phe 140	Gly	Lys	Asp	Phe	Leu 145	Leu	Asn	Tyr	Pro	Phe 150
Ser	Thr	Ser	Val	Lys 155	Leu	Ser	Thr	Gly	Cys 160	Thr	Gly	Thr	Leu	Val 165
Ala	Glu	Lys	His	Val 170	Leu	Thr	Ala	Ala	His 175	Cys	Ile	His	Asp	Gly 180
Lys	Thr	Tyr	Val	Lys 185	Gly	Thr	Gln	Lys	Leu 190	Arg	Val	Gly	Phe	Leu 195
Lys	Pro	Lys	Phe	Lys 200	Asp	Gly	Gly	Arg	Gly 205	Ala	Asn	Asp	Ser	Thr 210
Ser	Ala	Met	Pro	Glu 215	Gln	Met	Lys	Phe	Gln 220	Trp	Ile	Arg	Val	Lys 225
Arg	Thr	His	Val	Pro 230	Lys	Gly	Trp	Ile	Lys 235	Gly	Asn	Ala	Asn	Asp 240

Ile	Gly	Met	Asp	Tyr 245	Asp	Tyr	Ala	Leu	Leu 250	Glu	Leu	Lys	Lys	Pro 255
His	Lys	Arg	Lys	Phe 260	Met	Lys	Ile	Gly	Val 265	Ser	Pro	Pro	Ala	Lys 270
Gln	Leu	Pro	Gly	Gly 275	Arg	Ile	His	Phe	Ser 280	Gly	Tyr	Asp	Asn	Asp 285
Arg	Pro	Gly	Asn	Leu 290	Val	Tyr	Arg	Phe	Cys 295	Asp	Val	Lys	Asp	Glu 300
Thr	Tyr	Asp	Leu	Leu 305	Tyr	Gln	Gln	Cys	Asp 310	Ala	Gln	Pro	Gly	Ala 315
Ser	Gly	Ser	Gly	Val 320	Tyr	Val	Arg	Met	Trp 325	Lys	Arg	Gln	Gln	Gln 330
Lys	Trp	Glu	Arg	Lys 335	Ile	Ile	Gly	Ile	Phe 340	Ser	Gly	His	Gln	Trp 345
Val	Asp	Met	Asn	Gly 350	Ser	Pro	Gln	Asp	Phe 355	Asn	Val	Ala	Val	Arg 360
Ile	Thr	Pro	Leu	Lys 365	Tyr	Ala	Gln	Ile	Cys 370	Tyr	Trp	Ile	Lys	Gly 375
Asn	Tyr	Leu	Asp	Cys 380	Arg	Glu	Gly							

<210> 262

<211> 1378

<212> DNA

<213> Homo Sapien

<400> 262

ccatggtggt ttetggageg cceceagece tgggtggggg etgteteggg 100
acetteacet ccetgetget getggegteg acagecatec teaatgegge 150
caggatacet gtteececag cetgtgggaa geeceageag etgaaceggg 200
ttgtgggggg egaggacage actgacageg agtggeetg gategtgage 250
atecagaaga atgggacea ecaetgegea ggttetetge teaecageeg 300
ctgggtgate actgetgee actgtteaa ggacaacetg aacaaaceat 350
acetgttete tgtgetget ggggeetgge agetgggaa ecetggetet 400
cggteecaga aggtggtgt tgeetggtg gageeceaee etgtgate 450
ctggaaggaa ggtgeetgtg cagacattge ectggtget etegagege 500

ccatacagtt ctcagagcgg gtcctgccca tctgcctacc tgatgcctct 550 atccacctcc ctccaaacac ccactgctgg atctcaggct gggggagcat 600 ccaagatgga gttcccttgc cccaccctca gaccctgcag aagctgaagg 650 ttcctatcat cgactcggaa gtctgcagcc atctgtactg gcggggagca 700 ggacagggac ccatcactga ggacatgctg tgtgccggct acttggaggg 750 ggagcgggat gcttgtctgg gcgactccgg gggccccctc atgtgccagg 800 tggacggcgc ctggctgctg gccggcatca tcagctgggg cgagggctgt 850 gccgagcgca acaggcccgg ggtctacatc agcctctctg cgcaccqctc 900 ctgggtggag aagatcgtgc aaggggtgca gctccgcggg cgcgctcagg 950 ggggtgggc cctcagggca ccgagccagg gctctggggc cgccgcgcgc 1000 tcctagggcg cagcgggacg cgggctcgg atctgaaagg cggccagatc 1050 cacatetgga tetggatetg eggeggeete gggeggttte eeeegeegta 1100 aataggetea tetaceteta eetetggggg eeeggaegge tgetgeggaa 1150 aggaaacccc ctccccgacc cgcccgacgg cctcaqgccc ccctccaagg 1200 catcaggeec egeceaacgg ceteatgtee eegeceecac gaetteegge 1250 cccqccccq qqccccaqcq cttttqtqta tataaatqtt aatqattttt 1300 ataggtattt gtaaccctgc ccacatatct tatttattcc tccaatttca 1350 ataaattatt tattctccaa aaaaaaaa 1378

<210> 263

<211> 317

<212> PRT

<213> Homo Sapien

<400> 263

Met Val Val Ser Gly Ala Pro Pro Ala Leu Gly Gly Gly Cys Leu 1 5 10 15

Gly Thr Phe Thr Ser Leu Leu Leu Leu Ala Ser Thr Ala Ile Leu 20 25 30

Asn Ala Ala Arg Ile Pro Val Pro Pro Ala Cys Gly Lys Pro Gln
35 40 45

Gln Leu Asn Arg Val Val Gly Gly Glu Asp Ser Thr Asp Ser Glu $50 \,\,$ 55 $\,\,$ 60

Trp Pro Trp Ile Val Ser Ile Gln Lys Asn Gly Thr His His Cys
65 70 75

Ala	Gly	Ser	Leu	Leu 80	Thr	Ser	Arg	Trp	Val 85	Ile	Thr	Ala	Ala	His 90
Cys	Phe	Lys	Asp	Asn 95	Leu	Asn	Lys	Pro	Tyr 100	Leu	Phe	Ser	Val	Leu 105
Leu	Gly	Ala	Trp	Gln 110	Leu	Gly	Asn	Pro	Gly 115	Ser	Arg	Ser	Gln	Lys 120
Val	Gly	Val	Ala	Trp 125	Val	Glu	Pro	His	Pro 130	Val	Tyr	Ser	Trp	Lys 135
Glu	Gly	Ala	Cys	Ala 140	Asp	Ile	Ala	Leu	Val 145	Arg	Leu	Glu	Arg	Ser 150
Ile	Gln	Phe	Ser	Glu 155	Arg	Val	Leu	Pro	Ile 160	Cys	Leu	Pro	Asp	Ala 165
Ser	Ile	His	Leu	Pro 170	Pro	Asn	Thr	His	Cys 175	Trp	Ile	Ser	Gly	Trp 180
Gly	Ser	Ile	Gln	Asp 185	Gly	Val	Pro	Leu	Pro 190	His	Pro	Gln	Thr	Leu 195
Gln	Lys	Leu	Lys	Val 200	Pro	Ile	Ile	Asp	Ser 205	Glu	Val	Cys	Ser	His 210
Leu	Tyr	Trp	Arg	Gly 215	Ala	Gly	Gln	Gly	Pro 220	Ile	Thr	Glu	Asp	Met 225
Leu	Cys	Ala	Gly	Tyr 230	Leu	Glu	Gly	Glu	Arg 235	Asp	Ala	Cys	Leu	Gly 240
Asp	Ser	Gly	Gly	Pro 245	Leu	Met	Cys	Gln	Val 250	Asp	Gly	Ala	Trp	Leu 255
Leu	Ala	Gly	Ile	Ile 260	Ser	Trp	Gly	Glu	Gly 265	Cys	Ala	Glu	Arg	Asn 270
Arg	Pro	Gly	Val	Tyr 275	Ile	Ser	Leu	Ser	Ala 280	His	Arg	Ser	Trp	Val 285
Glu	Lys	Ile	Val	Gln 290	Gly	Val	Gln	Leu	Arg 295	Gly	Arg	Ala	Gln	Gly 300
Gly	Gly	Ala	Leu	Arg 305	Ala	Pro	Ser	Gln	Gly 310	Ser	Gly	Ala	Ala	Ala 315

Arg Ser

<210> 264 <211> 24

<212> DNA

<213> Artificial Sequence

```
<223> Synthetic Oligonucleotide Probe
 <400> 264
 gtccgcaagg atgcctacat gttc 24
 <210> 265
 <211> 19
 <212> DNA
 <213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 265
 gcagaggtgt ctaaggttg 19
<210> 266
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 266
 agetetagae caatgecage ttee 24
<210> 267
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 267
 gccaccaact cctgcaagaa cttctcagaa ctgcccctgg tcatg 45
<210> 268
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 268
ggggaattca ccctatgaca ttgcc 25
<210> 269
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
```

```
<400> 269
 gaatgccctg caagcatcaa ctgg 24
<210> 270
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 270
 gcacctgtca cctacactaa acacatccag cccatctgtc tccaggcctc 50
<210> 271
<211> 26
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 271
 gcggaagggc agaatgggac tccaag 26
<210> 272
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 272
 cagccctgcc acatgtgc 18
<210> 273
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 273
 tactgggtgg tcagcaac 18
<210> 274
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 274
 ggcgaagagc agggtgagac cccg 24
```

```
<210> 275
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
 geceteatec tetetggeaa atgeagttae ageeeggage eegae 45
<210> 276
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 276
 gggcagggat tccagggctc c 21
<210> 277
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 277
 ggctatgaca gcaggttc 18
<210> 278
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 278
tgacaatgac cgaccagg 18
<210> 279
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 279
 gcatcgcatt gctggtagag caag 24
```

```
<210> 280
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
 ttacagtgcc ccctggaaac ccacttggcc tgcataccgc ctccc 45
<210> 281
<211> 34
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
 cgtctcgagc gctccataca gttcccttgc ccca 34
<210> 282
<211> 61
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 282
 tggaggggga gcgggatgct tgtctgggcg actccggggg ccccctcatg 50
tgccaggtgg a 61
<210> 283
<211> 119
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 283
ccctcagacc ctgcagaagc tgaaggttcc tatcatcgac tcggaagtct 50
gcagccatct gtactggcgg ggagcaggac agggacccat cactgaggac 100
atgctgtgtg ccggctact 119
<210> 284
<211> 1875
<212> DNA
<213> Homo Sapien
<400> 284
gacggctggc caccatgcac ggctcctgca gtttcctgat gcttctgctg 50
```

ccgctactgc tactgctggt ggccaccaca ggccccgttg gagccctcac 100 agatgaggag aaacgtttga tggtggagct gcacaacctc taccgggccc 150 aggtatecee gaeggeetea gaeatgetge acatgagatg ggaegaggag 200 ctggccgcct tcgccaaggc ctacgcacgg cagtgcgtgt ggggccacaa 250 caaggagege gggegeegeg gegagaatet gttegeeate acagaegagg 300 gcatggacgt gccgctggcc atggaggagt ggcaccacga gcgtgagcac 350 tacaacctca gcgccgccac ctgcagccca ggccagatgt gcggccacta 400 cacgcaggtg gtatgggcca agacagagag gatcggctgt ggttcccact 450 tctgtgagaa gctccagggt gttgaggaga ccaacatcga attactggtg 500 tgcaactatg agcctccggg gaacgtgaag gggaaacggc cctaccagga 550 ggggacteeg tgeteceaat gteeetetgg etaccaetge aagaacteee 600 tctgtgaacc catcggaagc ccggaagatg ctcaggattt gccttacctg 650 gtaactgagg ccccatcctt ccgggcgact gaagcatcag actctaggaa 700 aatgggtact cettetteee tageaacggg gatteegget ttettggtaa 750 cagaggtete aggeteeetg geaaceaagg etetgeetge tgtggaaace 800 caggececaa etteettage aacgaaagae eegeeeteea tggeaacaga 850 ggctccacct tgcgtaacaa ctgaggtccc ttccattttg gcagctcaca 900 gcctgccctc cttggatgag gagccagtta ccttccccaa atcgacccat 950 gttcctatcc caaaatcagc agacaaagtg acagacaaaa caaaagtgcc 1000 ctctaggagc ccagagaact ctctggaccc caagatgtcc ctgacagggg 1050 caagggaact cctaccccat gcccaggagg aggctgaggc tgaggctgag 1100 ttgcctcctt ccagtgaggt cttggcctca gtttttccag cccaggacaa 1150 gccaggtgag ctgcaggcca cactggacca cacggggcac acctcctcca 1200 agtccctgcc caatttcccc aatacctctg ccaccgctaa tgccacgggt 1250 gggcgtgccc tggctctgca gtcgtccttg ccaggtgcag agggccctga 1300 caagectage gttgtgtcag ggetgaacte gggeeetggt catgtgtggg 1350 gccctctcct gggactactg ctcctgcctc ctctggtgtt ggctggaatc 1400 ttctgaatgg gataccactc aaagggtgaa gaggtcagct gtcctcctgt 1450

catcttcccc accetytecc cagecectaa acaagatact tettggttaa 1500 ggccctccgg aagggaaagg etacggggca tgtgeeteat cacaceatee 1550 ateetggagg cacaaggeet ggetggetge gageteagga ggeegeetga 1600 ggaetgeaca eegggeeeac aceteteetg eeeeteeete etgagteetg 1650 ggggtgggag gatttgaggg ageteactge etacetggee tggggetgte 1700 tgeecacaca geatgtgege tetecetgag tgeetgtta getggggatg 1750 gggatteeta ggggeagatg aaggaeaage eeeactggag tggggttett 1800 tgagtgggg aggeaggae gagggaagga aagtaaetee tgaeteteea 1850 ataaaaacet gteeaacetg tgaaa 1875

<210> 285

<211> 463

<212> PRT

<213> Homo Sapien

<400> 285

Met His Gly Ser Cys Ser Phe Leu Met Leu Leu Leu Pro Leu Leu 1 5 10 15

Leu Leu Leu Val Ala Thr Thr Gly Pro Val Gly Ala Leu Thr Asp 20 25 30

Glu Glu Lys Arg Leu Met Val Glu Leu His Asn Leu Tyr Arg Ala 35 40 45

Gln Val Ser Pro Thr Ala Ser Asp Met Leu His Met Arg Trp Asp
50 55 60

Glu Glu Leu Ala Ala Phe Ala Lys Ala Tyr Ala Arg Gln Cys Val 65 70 75

Trp Gly His Asn Lys Glu Arg Gly Arg Gly Glu Asn Leu Phe 80 85 90

Ala Ile Thr Asp Glu Gly Met Asp Val Pro Leu Ala Met Glu Glu 95 100 105

Trp His His Glu Arg Glu His Tyr Asn Leu Ser Ala Ala Thr Cys 110 115 120

Ser Pro Gly Gln Met Cys Gly His Tyr Thr Gln Val Val Trp Ala 125 130 135

Lys Thr Glu Arg Ile Gly Cys Gly Ser His Phe Cys Glu Lys Leu 140 145 150

Gln Gly Val Glu Glu Thr Asn Ile Glu Leu Leu Val Cys Asn Tyr 155 160 165

Glu	Pro	Pro	Gly	Asn 170	Val	Lys	Gly	Lys	Arg 175	Pro	Tyr	Gln	Glu	Gly 180
Thr	Pro	Cys	Ser	Gln 185	Cys	Pro	Ser	Gly	Tyr 190	His	Суѕ	Lys	Asn	Ser 195
Leu	Cys	Glu	Pro	Ile 200	Gly	Ser	Pro	Glu	Asp 205	Ala	Gln	Asp	Leu	Pro 210
Tyr	Leu	Val	Thr	Glu 215	Ala	Pro	Ser	Phe	Arg 220	Ala	Thr	Glu	Ala	Ser 225
Asp	Ser	Arg	Lys	Met 230	Gly	Thr	Pro	Ser	Ser 235	Leu	Ala	Thr	Gly	Ile 240
Pro	Ala	Phe	Leu	Val 245	Thr	Glu	Val	Ser	Gly 250	Ser	Leu	Ala	Thr	Lys 255
Ala	Leu	Pro	Ala	Val 260	Glu	Thr	Gln	Ala	Pro 265	Thr	Ser	Leu	Ala	Thr 270
Lys	Asp	Pro	Pro	Ser 275	Met	Ala	Thr	Glu	Ala 280	Pro	Pro	Cys	Val	Thr 285
Thr	Glu	Val	Pro	Ser 290	Ile	Leu	Ala	Ala	His 295	Ser	Leu	Pro	Ser	Leu 300
Asp	Glu	Glu	Pro	Val 305	Thr	Phe	Pro	Lys	Ser 310	Thr	His	Val	Pro	Ile 315
Pro	Lys	Ser	Ala	Asp 320	Lys	Val	Thr	Asp	Lys 325	Thr	Lys	Val	Pro	Ser 330
Arg	Ser	Pro	Glu	Asn 335	Ser	Leu	Asp	Pro	Lys 340	Met	Ser	Leu	Thr	Gly 345
Ala	Arg	Glu	Leu	Leu 350	Pro	His	Ala	Gln	Glu 355	Glu	Ala	Glu	Ala	Glu 360
Ala	Glu	Leu	Pro	Pro 365	Ser	Ser	Glu	Val	Leu 370	Ala	Ser	Val	Phe	Pro 375
Ala	Gln	Asp	Lys	Pro 380	Gly	Glu	Leu	Gln	Ala 385	Thr	Leu	Asp	His	Thr 390
Gly	His	Thr	Ser	Ser 395	Lys	Ser	Leu	Pro	Asn 400	Phe	Pro	Asn	Thr	Ser 405
Ala	Thr	Ala	Asn	Ala 410	Thr	Gly	Gly	Arg	Ala 415	Leu	Ala	Leu	Gln	Ser 420
Ser	Leu	Pro	Gly	Ala 425	Glu	Gly	Pro	Asp	Lys 430	Pro	Ser	Val	Val	Ser 435
Gly	Leu	Asn	Ser	Gly 440	Pro	Gly	His	Val	Trp 445	Gly	Pro	Leu	Leu	Gly 450

```
<210> 286
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 286
tcctgcagtt tcctgatgc 19
<210> 287
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 287
ctcatattgc acaccagtaa ttcg 24
<210> 288
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 288
atgaggagaa acgtttgatg gtggagctgc acaacctcta ccggg 45
<210> 289
<211> 3662
<212> DNA
<213> Homo Sapien
<400> 289
 gtaactgaag tcaggctttt catttgggaa gccccctcaa cagaattcgg 50
 tcattctcca agttatggtg gacgtacttc tgttgttctc cctctgcttg 100
 ctttttcaca ttagcagacc ggacttaagt cacaacagat tatctttcat 150
 caaggcaagt tccatgagcc accttcaaag ccttcgagaa gtgaaactga 200
 acaacaatga attggagacc attccaaatc tgggaccagt ctcggcaaat 250
 attacacttc tctccttggc tggaaacagg attgttgaaa tactccctga 300
 acatetgaaa gagttteagt eeettgaaac tttggaeett ageageaaca 350
```

atatttcaga gctccaaact gcatttccag ccctacagct caaatatctg 400

Leu Leu Leu Pro Pro Leu Val Leu Ala Gly Ile Phe

tatctcaaca gcaaccgagt cacatcaatg gaacctgggt attttgacaa 450 tttggccaac acactccttg tgttaaagct gaacaggaac cgaatctcag 500 ctatcccacc caagatgttt aaactgcccc aactgcaaca tctcgaattg 550 aaccgaaaca agattaaaaa tgtagatgga ctgacattcc aaggccttgg 600 tgctctgaag tctctgaaaa tgcaaagaaa tggagtaacg aaacttatgg 650 atggagcttt ttgggggctg agcaacatgg aaattttgca gctggaccat 700 aacaacctaa cagagattac caaaggctgg ctttacggct tgctgatgct 750 gcaggaactt catctcagcc aaaatgccat caacaggatc agccctgatg 800 cctgggagtt ctgccagaag ctcagtgagc tggacctaac tttcaatcac 850 ttatcaaggt tagatgattc aagcttcctt ggcctaagct tactaaatac 900 actgcacatt gggaacaaca gagtcagcta cattgctgat tgtgccttcc 950 gggggctttc cagtttaaag actttggatc tgaagaacaa tgaaatttcc 1000 tggactattg aagacatgaa tggtgctttc tctgggcttg acaaactgag 1050 gcgactgata ctccaaggaa atcggatccg ttctattact aaaaaagcct 1100 tcactggttt ggatgcattg gagcatctag acctgagtga caacgcaatc 1150 atgtetttae aaggeaatge atttteacaa atgaagaaac tgeaacaatt 1200 gcatttaaat acatcaagcc ttttgtgcga ttgccagcta aaatggctcc 1250 cacagtgggt ggcggaaaac aactttcaga gctttgtaaa tgccagttgt 1300 gcccatcctc agctgctaaa aggaagaagc atttttgctg ttagcccaga 1350 tggctttgtg tgtgatgatt ttcccaaacc ccagatcacg gttcagccag 1400 aaacacagtc ggcaataaaa ggttccaatt tgagtttcat ctgctcagct 1450 gccagcagca gtgattcccc aatgactttt gcttggaaaa aagacaatga 1500 actactgcat gatgctgaaa tggaaaatta tgcacacctc cgggcccaag 1550 gtggcgaggt gatggagtat accaccatcc ttcggctgcg cgaggtggaa 1600 tttgccagtg aggggaaata tcagtgtgtc atctccaatc actttggttc 1650 atcctactct gtcaaagcca agcttacagt aaatatgctt ccctcattca 1700 ccaagacccc catggatctc accatccgag ctggggccat ggcacgcttg 1750 gagtgtgctg ctgtggggca cccagccccc cagatagcct ggcagaagga 1800

tgggggcaca gacttcccag ctgcacggga gagacgcatg catgtgatgc 1850 ccgaggatga cgtgttcttt atcgtggatg tgaagataga ggacattggg 1900 gtatacagct gcacagctca gaacagtgca ggaagtattt cagcaaatgc 1950 aactctgact gtcctagaaa caccatcatt tttgcggcca ctgttggacc 2000 gaactgtaac caagggagaa acagccgtcc tacagtgcat tgctggagga 2050 agccetecee etaaactgaa etggaceaaa gatgatagee eattggtggt 2100 aaccgagagg cactttttg cagcaggcaa tcagcttctg attattgtgg 2150 actcagatgt cagtgatgct gggaaataca catgtgagat gtctaacacc 2200 cttggcactg agagaggaaa cgtgcgcctc agtgtgatcc ccactccaac 2250 ctgcgactcc cctcagatga cagccccatc gttagacgat gacggatggg 2300 ccactgtggg tgtcgtgatc atagccgtgg tttgctgtgt ggtgggcacg 2350 tcactcgtgt gggtggtcat catataccac acaaggcgga ggaatgaaga 2400 ttgcagcatt accaacacag atgagaccaa cttgccagca gatattccta 2450 gttatttgtc atctcaggga acgttagctg acaggcagga tgggtacgtg 2500 tcttcagaaa gtggaagcca ccaccagttt gtcacatctt caggtgctgg 2550 atttttctta ccacaacatg acagtagtgg gacctgccat attgacaata 2600 gcagtgaagc tgatgtggaa gctgccacag atctgttcct ttgtccgttt 2650 ttgggatcca caggccctat gtatttgaag ggaaatgtgt atggctcaga 2700 tccttttgaa acatatcata caggttgcag tcctgaccca agaacagttt 2750 taatggacca ctatgagccc agttacataa agaaaaagga gtgctaccca 2800 tgttctcatc cttcagaaga atcctgcgaa cggagcttca gtaatatatc 2850 gtggccttca catgtgagga agctacttaa cactagttac tctcacaatg 2900 aaggacctgg aatgaaaaat ctgtgtctaa acaagtcctc tttagatttt 2950 agtgcaaatc cagagccagc gtcggttgcc tcgagtaatt ctttcatggg 3000 tacctttgga aaagctctca ggagacctca cctagatgcc tattcaagct 3050 ttggacagcc atcagattgt cagccaagag ccttttattt gaaagctcat 3100 tcttccccag acttggactc tgggtcagag gaagatggga aagaaaggac 3150 agattttcag gaagaaaatc acatttgtac ctttaaacag actttagaaa 3200 actacaggac tccaaatttt cagtcttatg acttggacac atagactgaa 3250

tgagaccaaa ggaaaagctt aacatactac ctcaagtgaa cttttattta 3300 aaagagagag aatcttatgt tttttaaatg gagttatgaa ttttaaaagg 3350 ataaaaatgc tttattata cagatgaacc aaaattacaa aaagttatga 3400 aaatttttat actgggaatg atgctcatat aagaatacct ttttaaacta 3450 ttttttaact ttgttttatg caaaaaagta tcttacgtaa attaatgata 3500 taaatcatga ttatttatg tattttata atgccagatt tcttttatg 3550 gaaaatgagt tactaaagca ttttaaataa tacctgcctt gtaccattt 3600 ttaaaatagaa gttacttcat tatattttgc acattatatt taataaaatg 3650 tgtcaatttg aa 3662

<210> 290

<211> 1059

<212> PRT

<213> Homo Sapien

<400> 290

Met Val Asp Val Leu Leu Leu Phe Ser Leu Cys Leu Leu Phe His 1 5 10 15

Ile Ser Arg Pro Asp Leu Ser His Asn Arg Leu Ser Phe Ile Lys
20 25 30

Ala Ser Ser Met Ser His Leu Gln Ser Leu Arg Glu Val Lys Leu 35 40 45

Asn Asn Glu Leu Glu Thr Ile Pro Asn Leu Gly Pro Val Ser
50 55 60

Ala Asn Ile Thr Leu Leu Ser Leu Ala Gly Asn Arg Ile Val Glu
65 70 75

Ile Leu Pro Glu His Leu Lys Glu Phe Gln Ser Leu Glu Thr Leu 80 85 90

Asp Leu Ser Ser Asn Asn Ile Ser Glu Leu Gln Thr Ala Phe Pro 95 100 105

Ala Leu Gln Leu Lys Tyr Leu Tyr Leu Asn Ser Asn Arg Val Thr 110 115 120

Ser Met Glu Pro Gly Tyr Phe Asp Asn Leu Ala Asn Thr Leu Leu 125 130 135

Val Leu Lys Leu Asn Arg Asn Arg Ile Ser Ala Ile Pro Pro Lys 140 145 150

Met Phe Lys Leu Pro Gln Leu Gln His Leu Glu Leu Asn Arg Asn

Phe Thr Gly Leu Asp Ala Leu Glu His Leu Asp Leu Ser Asp Asn 360

Ala Ile Met Ser Leu Gln Gly Asn Ala Phe Ser Gln Met Lys Lys 375

Leu Gln Gln Leu His Jao Phe Asn Thr Ser Ser Leu Leu Cys Asp Cys 380

Gln Leu Lys Trp Leu Pro Gln Trp Val Ala Glu Asn Asn Phe Gln 405

Ser Phe Val Asn Ala Ser Cys Ala His Pro Gln Leu Leu Lys Gly 420

Arg Ser Ile Phe Ala Val Ser Pro Asp Gly Phe Val Cys Asp Asp Asp Asp Phe Pro Lys Pro Gln Ile Thr Val Gln Pro Glu Thr Gln Ser Ala

					440					445					450
I	le	Lys	Gly	Ser	Asn 455	Leu	Ser	Phe	Ile	Cys 460	Ser	Ala	Ala	Ser	Ser 465
S	er	Asp	Ser	Pro	Met	Thr	Phe	Ala	Trp	Lys	Lys	Asp	Asn	Glu	Leu
					470					475					480
L	eu	His	Asp	Ala	Glu 485	Met	Glu	Asn	Tyr	Ala 490	His	Leu	Arg	Ala	Gln 495
G.	ly	Gly	Glu	Val	Met 500	Glu	Tyr	Thr	Thr	Ile 505	Leu	Arg	Leu	Arg	Glu 510
V	al	Glu	Phe	Ala	Ser 515	Glu	Gly	Lys	Tyr	Gln 520	Cys	Val	Ile	Ser	Asn 525
H	is	Phe	Gly	Ser	Ser 530	Tyr	Ser	Val	Lys	Ala 535	Lys	Leu	Thr	Val	Asn 540
M	et	Leu	Pro	Ser	Phe 545	Thr	Lys	Thr	Pro	Met 550	Asp	Leu	Thr	Ile	Arg 555
A.	la	Gly	Ala	Met	Ala 560	Arg	Leu	Glu	Cys	Ala 565	Ala	Val	Gly	His	Pro 570
A.	la	Pro	Gln	Ile	Ala 575	Trp	Gln	Lys	Asp	Gly 580	Gly	Thr	Asp	Phe	Pro 585
A	la	Ala	Arg	Glu	Arg 590	Arg	Met	His	Val	Met 595	Pro	Glu	Asp	Asp	Val 600
Pl	he	Phe	Ile	Val	Asp 605	Val	Lys	Ile	Glu	Asp 610	Ile	Gly	Val	Tyr	Ser 615
C	ys	Thr	Ala	Gln	Asn 620	Ser	Ala	Gly	Ser	Ile 625	Ser	Ala	Asn	Ala	Thr 630
L	eu	Thr	Val	Leu	Glu 635	Thr	Pro	Ser	Phe	Leu 640	Arg	Pro	Leu	Leu	Asp 645
A:	rg	Thr	Val	Thr	Lys 650	Gly	Glu	Thr	Ala	Val 655	Leu	Gln	Суѕ	Ile	Ala 660
G.	ly	Gly	Ser	Pro	Pro 665	Pro	Lys	Leu	Asn	Trp 670	Thr	Lys	Asp	Asp	Ser 675
P	ro	Leu	Val	Val	Thr 680	Glu	Arg	His	Phe	Phe 685	Ala	Ala	Gly	Asn	Gln 690
L	eu	Leu	Ile	Ile	Val 695	Asp	Ser	Asp	Val	Ser 700	Asp	Ala	Gly	Lys	Tyr 705
T	hr	Cys	Glu	Met	Ser 710	Asn	Thr	Leu	Gly	Thr 715	Glu	Arg	Gly	Asn	Val 720

Arg	Leu	Ser	Val	Ile 725	Pro	Thr	Pro	Thr	Cys 730	Asp	Ser	Pro	Gln	Met 735
Thr	Ala	Pro	Ser	Leu 740	Asp	Asp	Asp	Gly	Trp 745	Ala	Thr	Val	Gly	Val 750
Val	Ile	Ile	Ala	Val 755	Val	Cys	Cys	Val	Val 760	Gly	Thr	Ser	Leu	Val 765
Trp	Val	Val	Ile	Ile 770	Tyr	His	Thr	Arg	Arg 775	Arg	Asn	Glu	Asp	Cys 780
Ser	Ile	Thr	Asn	Thr	Asp	Glu	Thr	Asn	Leu	Pro	Ala	Asp	Ile	Pro
				785					790					795
Ser	Tyr	Leu	Ser	Ser 800	Gln	Gly	Thr	Leu	Ala 805	Asp	Arg	Gln	Asp	Gly 810
Tyr	Val	Ser	Ser	Glu 815	Ser	Gly	Ser	His	His 820	Gln	Phe	Val	Thr	Ser 825
Ser	Gly	Ala	Gly	Phe 830	Phe	Leu	Pro	Gln	His 835	Asp	Ser	Ser	Gly	Thr 840
Cys	His	Ile	Asp	Asn 845	Ser	Ser	Glu	Ala	Asp 850	Val	Glu	Ala	Ala	Thr 855
Asp	Leu	Phe	Leu	Cys 860	Pro	Phe	Leu	Gly	Ser 865	Thr	Gly	Pro	Met	Tyr 870
Leu	Lys	Gly	Asn	Val 875	Tyr	Gly	Ser	Asp	Pro 880	Phe	Glu	Thr	Tyr	His 885
Thr	Gly	Cys	Ser	Pro 890	Asp	Pro	Arg	Thr	Val 895	Leu	Met	Asp	His	Tyr 900
Glu	Pro	Ser	Tyr	Ile 905	Lys	Lys	Lys	Glu	Cys 910	Tyr	Pro	Cys	Ser	His 915
Pro	Ser	Glu	Glu	Ser 920	Cys	Glu	Arg	Ser	Phe 925	Ser	Asn	Ile	Ser	Trp 930
Pro	Ser	His	Val	Arg 935	Lys	Leu	Leu	Asn	Thr 940	Ser	Tyr	Ser	His	Asn 945
Glu	Gly	Pro	Gly	Met 950	Lys	Asn	Leu	Cys	Leu 955	Asn	Lys	Ser	Ser	Leu 960
Asp	Phe	Ser	Ala	Asn 965	Pro	Glu	Pro	Ala	Ser 970	Val	Ala	Ser	Ser	Asn 975
Ser	Phe	Met	Gly	Thr 980	Phe	Gly	Lys	Ala	Leu 985	Arg	Arg	Pro	His	Leu 990
Asp	Ala	Tyr	Ser	Ser 995	Phe	Gly	Gln		Ser .000	Asp	Cys	Gln		Arg .005

Ala Phe Tyr Leu Lys Ala His Ser Ser Pro Asp Leu Asp Ser Gly
1010 1015 1020

Ser Glu Glu Asp Gly Lys Glu Arg Thr Asp Phe Gln Glu Glu Asn 1025 1030 1035

His Ile Cys Thr Phe Lys Gln Thr Leu Glu Asn Tyr Arg Thr Pro $1040 \hspace{1cm} 1045 \hspace{1cm} 1050$

Asn Phe Gln Ser Tyr Asp Leu Asp Thr 1055

<210> 291

<211> 2906

<212> DNA

<213> Homo Sapien

<400> 291

ggggagagga attgaccatg taaaaggaga ctttttttt tggtggtggt 50 ggctgttggg tgccttgcaa aaatgaagga tgcaggacgc agctttctcc 100 tggaaccgaa cgcaatggat aaactgattg tgcaagagag aaggaagaac 150 gaagettttt ettgtgagee etggatetta acacaaatgt gtatatgtge 200 acacagggag cattcaagaa tgaaataaac cagagttaga cccgcggggg 250 ttggtgtgtt ctgacataaa taaataatct taaagcagct gttcccctcc 300 ccaccccaa aaaaaaggat gattggaaat gaagaaccga ggattcacaa 350 agaaaaaagt atgttcattt ttctctataa aggagaaagt gagccaagga 400 gatatttttg gaatgaaaag tttggggctt ttttagtaaa gtaaagaact 450 ggtgtggtgg tgttttcctt tctttttgaa tttcccacaa gaggaggag 500 aattaataat acatctgcaa agaaatttca gagaagaaaa gttgaccgcg 550 gcagattgag gcattgattg ggggagagaa accagcagag cacagttgga 600 tttgtgccta tgttgactaa aattgacgga taattgcagt tggatttttc 650 ttcatcaacc tcctttttt taaattttta ttccttttgg tatcaagatc 700 atgcgttttc tcttgttctt aaccacctgg atttccatct ggatgttgct 750 gtgatcagtc tgaaatacaa ctgtttgaat tccagaagga ccaacaccag 800 ataaattatg aatgttgaac aagatgacct tacatccaca gcagataatg 850 ataggtccta ggtttaacag ggccctattt gaccccctgc ttgtggtgct 900 gctggctctt caacttcttg tggtggctgg tctggtgcgg gctcagacct 950

gcccttctgt gtgctcctgc agcaaccagt tcagcaaggt gatttgtgtt 1000 eggaaaaace tgegtgaggt teeggatgge ateteeacea acacaegget 1050 gctgaacctc catgagaacc aaatccagat catcaaagtg aacagcttca 1100 agcacttgag gcacttggaa atcctacagt tgagtaggaa ccatatcaga 1150 accattgaaa ttggggcttt caatggtctg gcgaacctca acactctgga 1200 actetttgae aategtetta etaceateee gaatggaget tttgtataet 1250 tgtctaaact gaaggagctc tggttgcgaa acaaccccat tgaaagcatc 1300 ccttcttatg cttttaacag aattccttct ttgcgccgac tagacttagg 1350 ggaattgaaa agactttcat acatctcaga aggtgccttt gaaggtctgt 1400 ccaacttgag gtatttgaac cttgccatgt gcaaccttcg ggaaatccct 1450 aacctcacac cgctcataaa actagatgag ctggatcttt ctgggaatca 1500 tttatctgcc atcaggcctg gctctttcca gggtttgatg caccttcaaa 1550 aactgtggat gatacagtcc cagattcaag tgattgaacg gaatgccttt 1600 gacaaccttc agtcactagt ggagatcaac ctggcacaca ataatctaac 1650 attactgcct catgacctct tcactccctt gcatcatcta gagcggatac 1700 atttacatca caaccettgg aactgtaact gtgacatact gtggeteage 1750 tggtggataa aagacatggc cccctcgaac acagcttgtt gtgcccggtg 1800 taacactcct cccaatctaa aggggaggta cattggagag ctcgaccaga 1850 attacttcac atgctatgct ccggtgattg tggagccccc tgcagacctc 1900 aatgtcactg aaggcatggc agctgagctg aaatgtcggg cctccacatc 1950 cctgacatct gtatcttgga ttactccaaa tggaacagtc atgacacatg 2000 gggcgtacaa agtgcggata gctgtgctca gtgatggtac gttaaatttc 2050 acaaatgtaa ctgtgcaaga tacaggcatg tacacatgta tggtgagtaa 2100 ttccgttggg aatactactg cttcagccac cctgaatgtt actgcagcaa 2150 ccactactcc tttctcttac ttttcaaccg tcacagtaga gactatggaa 2200 ccgtctcagg atgaggcacg gaccacagat aacaatgtgg gtcccactcc 2250 agtggtcgac tgggagacca ccaatgtgac cacctctctc acaccacaga 2300 gcacaaggtc gacagagaaa accttcacca tcccagtgac tgatataaac 2350 agtgggatcc caggaattga tgaggtcatg aagactacca aaatcatcat 2400

tgggtgtttt gtggccatca cactcatggc tgcagtgatg ctggtcattt 2450 tctacaagat gaggaagcag caccatcggc aaaaccatca cgccccaaca 2500 aggactgttg aaattattaa tgtggatgat gagattacgg gagacacacc 2550 catggaaagc cacctgccca tgcctgctat cgagcatgag cacctaaatc 2600 actataactc atacaaatct cccttcaacc acacaacaac agttaacaca 2650 ataaattcaa tacacagttc agtgcatgaa ccgttattga tccgaatgaa 2700 ctctaaagac aatgtacaag agactcaaat ctaaaacatt tacagagtta 2750 caaaaaacaa acaatcaaaa aaaaagacag tttattaaaa atgacacaaa 2800 tgactggct aaatctactg tttcaaaaaa gtgtctttac aaaaaaacaa 2850 aaaagaaaag aaatttatt attaaaaatt ctattgtgat ctaaagcaga 2900 caaaaa 2906

<210> 292

<211> 640

<212> PRT

<213> Homo Sapien

<400> 292

Met Leu Asn Lys Met Thr Leu His Pro Gln Gln Ile Met Ile Gly
1 5 10 15

Pro Arg Phe Asn Arg Ala Leu Phe Asp Pro Leu Leu Val Val Leu 20 25 30

Leu Ala Leu Gl
n Leu Leu Val Val Ala Gly Leu Val Arg Ala Gl
n \$35\$ 40 45

Thr Cys Pro Ser Val Cys Ser Cys Ser Asn Gln Phe Ser Lys Val
50 55 60

Ile Cys Val Arg Lys Asn Leu Arg Glu Val Pro Asp Gly Ile Ser 65 70 75

Thr Asn Thr Arg Leu Leu Asn Leu His Glu Asn Gln Ile Gln Ile 80 85 90

Ile Lys Val Asn Ser Phe Lys His Leu Arg His Leu Glu Ile Leu
95 100 105

Gln Leu Ser Arg Asn His Ile Arg Thr Ile Glu Ile Gly Ala Phe \$110\$ \$120\$

Asn Gly Leu Ala Asn Leu Asn Thr Leu Glu Leu Phe Asp Asn Arg 125 130 135

Leu Thr Thr Ile Pro Asn Gly Ala Phe Val Tyr Leu Ser Lys Leu

	425	430	43	35
Thr Ala Ser Ala	Thr Leu Asn 440	Val Thr Ala Ala 445	Thr Thr Thr Pr	
Phe Ser Tyr Phe	Ser Thr Val 455	Thr Val Glu Thr 460		er 55
Gln Asp Glu Ala	Arg Thr Thr 470	Asp Asn Asn Val 475	Gly Pro Thr Pr	
Val Val Asp Trp	Glu Thr Thr 485	Asn Val Thr Thr 490	Ser Leu Thr Pr	
Gln Ser Thr Arg	Ser Thr Glu 500	Lys Thr Phe Thr 505	Ile Pro Val Th	
Asp Ile Asn Ser	Gly Ile Pro 515	Gly Ile Asp Glu 520	Val Met Lys Th	
Thr Lys Ile Ile	Ile Gly Cys 530	Phe Val Ala Ile 535	Thr Leu Met Al	
Ala Val Met Leu	Val Ile Phe 545	Tyr Lys Met Arg 550	Lys Gln His Hi 55	
Arg Gln Asn His	His Ala Pro 560	Thr Arg Thr Val 565	Glu Ile Ile As	
Val Asp Asp Glu	Ile Thr Gly 575	Asp Thr Pro Met 580	Glu Ser His Le 58	
Pro Met Pro Ala	Ile Glu His 590	Glu His Leu Asn 595	His Tyr Asn Se	
Tyr Lys Ser Pro	Phe Asn His 605	Thr Thr Thr Val 610	Asn Thr Ile As	
Ser Ile His Ser	Ser Val His 620	Glu Pro Leu Leu 625	Ile Arg Met As	
Ser Lys Asp Asn	Val Gln Glu 635	Thr Gln Ile 640		

<210> 293

<211> 4053

<212> DNA

<213> Homo Sapien

<400> 293
agccgacgct gctcaagctg caactctgtt gcagttggca gttctttcg 50
gtttccctcc tgctgtttgg gggcatgaaa gggcttcgcc gccgggagta 100
aaagaaggaa ttgaccgggc agcgcgaggg aggagcgcgc acgcgaccgc 150

gagggcgggc gtgcaccctc ggctggaagt ttgtgccggg ccccgagcgc 200 gcgccggctg ggagcttcgg gtagagacct aggccgctgg accgcgatga 250 gcgcccgag cctccgtgcg cgcgccgcgg ggttggggct gctgctgtgc 300 gcggtgctgg ggcgcgctgg ccggtccgac agcggcggtc gcggggaact 350 cgggcagccc tctggggtag ccgccgagcg cccatgcccc actacctgcc 400 gctgcctcgg ggacctgctg gactgcagtc gtaagcggct agcgcgtctt 450 cccgagccac tcccgtcctg ggtcgctcgg ctggacttaa gtcacaacag 500 attatctttc atcaaggcaa gttccatgag ccaccttcaa agccttcgag 550 aagtgaaact gaacaacaat gaattggaga ccattccaaa tctgggacca 600 gtctcggcaa atattacact tctctccttg gctggaaaca ggattgttga 650 aatactccct gaacatctga aagagtttca gtcccttgaa actttggacc 700 ttagcagcaa caatatttca gagctccaaa ctgcatttcc agccctacag 750 ctcaaatatc tgtatctcaa cagcaaccga gtcacatcaa tggaacctgg 800 gtattttgac aatttggcca acacactcct tgtgttaaag ctgaacagga 850 accgaatctc agctatccca cccaagatgt ttaaactgcc ccaactgcaa 900 catctcgaat tgaaccgaaa caagattaaa aatgtagatg gactgacatt 950 ccaaggeett ggtgetetga agtetetgaa aatgeaaaga aatggagtaa 1000 cgaaacttat ggatggagct ttttgggggc tgagcaacat ggaaattttg 1050 cagctggacc ataacaacct aacagagatt accaaaggct ggctttacgg 1100 cttgctgatg ctgcaggaac ttcatctcag ccaaaatgcc atcaacagga 1150 tcagccctga tgcctgggag ttctgccaga agctcagtga gctggaccta 1200 actttcaatc acttatcaag gttagatgat tcaagcttcc ttggcctaag 1250 cttactaaat acactgcaca ttgggaacaa cagagtcagc tacattgctg 1300 attgtgcctt ccgggggctt tccagtttaa agactttgga tctgaagaac 1350 aatgaaattt cctggactat tgaagacatg aatggtgctt tctctgggct 1400 tgacaaactg aggcgactga tactccaagg aaatcggatc cgttctatta 1450 ctaaaaaagc cttcactggt ttggatgcat tggagcatct agacctgagt 1500 gacaacgcaa tcatgtcttt acaaggcaat gcattttcac aaatgaagaa 1550 actgcaacaa ttgcatttaa atacatcaag ccttttgtgc gattgccagc 1600

taaaatggct cccacagtgg gtggcggaaa acaactttca gagctttgta 1650 aatgccagtt gtgcccatcc tcagctgcta aaaggaagaa gcatttttgc 1700 tgttagccca gatggctttg tgtgtgatga ttttcccaaa ccccagatca 1750 cggttcagcc agaaacacag tcggcaataa aaggttccaa tttgagtttc 1800 atctgctcag ctgccagcag cagtgattcc ccaatgactt ttgcttggaa 1850 aaaagacaat gaactactgc atgatgctga aatggaaaat tatgcacacc 1900 tccgggccca aggtggcgag gtgatggagt ataccaccat ccttcggctg 1950 cgcgaggtgg aatttgccag tgaggggaaa tatcagtgtg tcatctccaa 2000 tcactttggt tcatcctact ctgtcaaagc caagcttaca gtaaatatgc 2050 ttccctcatt caccaagacc cccatggatc tcaccatccg agctggggcc 2100 atggcacgct tggagtgtgc tgctgtgggg cacccagccc cccagatagc 2150 ctggcagaag gatgggggca cagacttccc agctgcacgg gagagacgca 2200 tgcatgtgat gcccgaggat gacgtgttct ttatcgtgga tgtgaagata 2250 gaggacattg gggtatacag ctgcacagct cagaacagtg caggaagtat 2300 ttcagcaaat gcaactctga ctgtcctaga aacaccatca tttttgcggc 2350 cactgttgga ccgaactgta accaagggag aaacagccgt cctacagtgc 2400 attgctggag gaagccctcc ccctaaactg aactggacca aagatgatag 2450 cccattggtg gtaaccgaga ggcacttttt tgcagcaggc aatcagcttc 2500 tgattattgt ggactcagat gtcagtgatg ctgggaaata cacatgtgag 2550 atgtetaaca ecettggeae tgagagagga aaegtgegee teagtgtgat 2600 ccccactcca acctgcgact cccctcagat gacagcccca tcgttagacg 2650 atgacggatg ggccactgtg ggtgtcgtga tcatagccgt ggtttgctgt 2700 gtggtgggca cgtcactcgt gtgggtggtc atcatatacc acacaaggcg 2750 gaggaatgaa gattgcagca ttaccaacac agatgagacc aacttgccag 2800 cagatattcc tagttatttg tcatctcagg gaacgttagc tgacaggcag 2850 gatgggtacg tgtcttcaga aagtggaagc caccaccagt ttgtcacatc 2900 ttcaggtgct ggatttttct taccacaaca tgacagtagt gggacctgcc 2950 atattgacaa tagcagtgaa gctgatgtgg aagctgccac agatctgttc 3000

```
ctttgtccgt ttttgggatc cacaggccct atgtatttga agggaaatgt 3050
gtatggctca gatccttttg aaacatatca tacaggttgc agtcctgacc 3100
caaqaacagt tttaatggac cactatgagc ccagttacat aaagaaaaag 3150
gagtgctacc catgttctca tccttcagaa gaatcctgcg aacggagctt 3200
cagtaatata tcgtggcctt cacatgtgag gaagctactt aacactagtt 3250
acteteacaa tgaaggacet ggaatgaaaa atetgtgtet aaacaagtee 3300
tetttagatt ttagtgeaaa teeagageea gegteggttg eetegagtaa 3350
ttctttcatg ggtacctttg gaaaagctct caggagacct cacctagatg 3400
cctattcaag ctttggacag ccatcagatt gtcagccaag agccttttat 3450
ttgaaagete attetteeee agaettggae tetgggteag aggaagatgg 3500
gaaagaaagg acagattttc aggaagaaaa tcacatttgt acctttaaac 3550
agactttaga aaactacagg actccaaatt ttcagtctta tgacttggac 3600
acatagactg aatgagacca aaggaaaagc ttaacatact acctcaagtg 3650
aacttttatt taaaagagag agaatcttat gttttttaaa tggagttatg 3700
aattttaaaa ggataaaaat gctttattta tacagatgaa ccaaaattac 3750
aaaaagttat gaaaattttt atactgggaa tgatgctcat ataagaatac 3800
ctttttaaac tatttttaa ctttgtttta tgcaaaaaag tatcttacgt 3850
aaattaatga tataaatcat gattatttta tgtattttta taatgccaga 3900
tttcttttta tggaaaatga gttactaaag cattttaaat aatacctqcc 3950
ttgtaccatt ttttaaatag aagttacttc attatatttt gcacattata 4000
aaa 4053
```

<210> 294

<211> 1119

<212> PRT

<213> Homo Sapien

<400> 294

Met Ser Ala Pro Ser Leu Arg Ala Arg Ala Ala Gly Leu Gly Leu
1 5 10 15

Leu Leu Cys Ala Val Leu Gly Arg Ala Gly Arg Ser Asp Ser Gly 20 25 30

Gly Arg Gly Glu Leu Gly Gln Pro Ser Gly Val Ala Ala Glu Arg

Pro	Cys	Pro	Thr	Thr 50	Cys	Arg	Суѕ	Leu	Gly 55	Asp	Leu	Leu	Asp	Cys 60
Ser	Arg	Lys	Arg	Leu 65	Ala	Arg	Leu	Pro	Glu 70	Pro	Leu	Pro	Ser	Trp 75
Val	Ala	Arg	Leu	Asp 80	Leu	Ser	His	Asn	Arg 85	Leu	Ser	Phe	Ile	Lys 90
Ala	Ser	Ser	Met	Ser 95	His	Leu	Gln	Ser	Leu 100	Arg	Glu	Val	Lys	Let 105
Asn	Asn	Asn	Glu	Leu 110	Glu	Thr	Ile	Pro	Asn 115	Leu	Gly	Pro	Val	Ser 120
Ala	Asn	Ile	Thr	Leu 125	Leu	Ser	Leu	Ala	Gly 130	Asn	Arg	Ile	Val	Glu 135
Ile	Leu	Pro	Glu	His 140	Leu	Lys	Glu	Phe	Gln 145	Ser	Leu	Glu	Thr	Le: 150
Asp	Leu	Ser	Ser	Asn 155	Asn	Ile	Ser	Glu	Leu 160	Gln	Thr	Ala	Phe	Pro 165
Ala	Leu	Gln	Leu	Lys 170	Tyr	Leu	Tyr	Leu	Asn 175	Ser	Asn	Arg	Val	Th: 180
Ser	Met	Glu	Pro	Gly 185	Tyr	Phe	Asp	Asn	Leu 190	Ala	Asn	Thr	Leu	Let 195
Val	Leu	Lys	Leu	Asn 200	Arg	Asn	Arg	Ile	Ser 205	Ala	Ile	Pro	Pro	Lys 210
Met	Phe	Lys	Leu	Pro 215	Gln	Leu	Gln	His	Leu 220	Glu	Leu	Asn	Arg	Asr 225
Lys	Ile	Lys	Asn	Val 230	Asp	Gly	Leu	Thr	Phe 235	Gln	Gly	Leu	Gly	Ala 240
Leu	Lys	Ser	Leu	Lys 245	Met	Gln	Arg	Asn	Gly 250	Val	Thr	Lys	Leu	Met 255
Asp	Gly	Ala	Phe	Trp 260	Gly	Leu	Ser	Asn	Met 265	Glu	Ile	Leu	Gln	Let 270
Asp	His	Asn	Asn	Leu 275	Thr	Glu	Ile	Thr	Lys 280	Gly	Trp	Leu	Tyr	Gl ₃ 285
				290		Leu			295					300
				305		Trp			310					315
Leu	Asp	Leu	Thr	Phe	Asn	His	Leu	Ser	Ara	Leu	Asp	Asp	Ser	Ser

Ser Gly Ala Gly Phe Phe Leu Pro Gln His Asp Ser Ser Gly Thr

				890					895					900
Cys	His	Ile	Asp	Asn 905	Ser	Ser	Glu	Ala	Asp 910	Val	Glu	Ala	Ala	Thr 915
Asp	Leu	Phe	Leu	Cys 920	Pro	Phe	Leu	Gly	Ser 925	Thr	Gly	Pro	Met	Tyr 930
Leu	Lys	Gly	Asn	Val 935	Tyr	Gly	Ser	Asp	Pro 940	Phe	Glu	Thr	Tyr	His 945
Thr	Gly	Суѕ	Ser	Pro 950	Asp	Pro	Arg	Thr	Val 955	Leu	Met	Asp	His	Tyr 960
Glu	Pro	Ser	Tyr	Ile 965	Lys	Lys	Lys	Glu	Cys 970	Tyr	Pro	Суз	Ser	His 975
Pro	Ser	Glu	Glu	Ser 980	Cys	Glu	Arg	Ser	Phe 985	Ser	Asn	Ile	Ser	Trp 990
Pro	Ser	His	Val	Arg 995	Lys	Leu	Leu		Thr 1000	Ser	Tyr	Ser		Asn .005
Glu	Gly	Pro	Gly 1	Met .010	Lys	Asn	Leu		Leu 1015	Asn	Lys	Ser		Leu 020
Asp	Phe	Ser	Ala 1	Asn .025	Pro	Glu	Pro		Ser .030	Val	Ala	Ser		Asn 035
Ser	Phe	Met	Gly 1	Thr 040	Phe	Gly	Lys		Leu .045	Arg	Arg	Pro		Leu 050
Asp	Ala	Tyr	Ser 1	Ser 055	Phe	Gly	Gln		Ser .060	Asp	Cys	Gln		Arg 065
Ala	Phe	Tyr	Leu 1	Lys 070	Ala	His	Ser		Pro .075	Asp	Leu	Asp		Gly 080
Ser	Glu	Glu	Asp 1	Gly 085	Lys	Glu	Arg		Asp 090	Phe	Gln	Glu		Asn 095
His	Ile	Cys	Thr 1	Phe 100	Lys	Gln	Thr		Glu 105	Asn	Tyr	Arg		Pro 110
Asn	Phe	Gln	Ser	Tyr 115	Asp	Leu	Asp	Thr						

<210> 295

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 295

ggaaccgaat ctcagcta 18

```
<210> 296
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 296
cctaaactga actggacca 19
<210> 297
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 297
ggctggagac actgaacct 19
<210> 298
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 298
acagetgeae ageteagaae agtg 24
<210> 299
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 299
cattcccagt ataaaaattt tc 22
<210> 300
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 300
 gggtcttggt gaatgagg 18
```

```
<210> 301
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 301
gtgcctctcg gttaccacca atgg 24
<210> 302
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 302
geggecactg ttggaccgaa ctgtaaccaa gggagaaaca geegteetac 50
<210> 303
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 303
gcctttgaca accttcagtc actagtgg 28
<210> 304
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 304
ccccatgtgt ccatgactgt tccc 24
<210> 305
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
tactgcctca tgacctcttc actcccttgc atcatcttag agcgg 45
<210> 306
```

```
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 306
actccaagga aatcggatcc gttc 24
<210> 307
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 307
ttagcagctg aggatgggca caac 24
<210> 308
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 308
actccaagga aatcggatcc gttc 24
<210> 309
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 309
gccttcactg gtttggatgc attggagcat ctagacctga gtgacaacgc 50
<210> 310
<211> 3296
<212> DNA
<213> Homo Sapien
<400> 310
 caaaacttgc gtcgcggaga gcgcccagct tgacttgaat ggaaggagcc 50
 cgagcccgcg gagcgcagct gagactgggg gagcgcgttc ggcctgtggg 100
 gcgccgctcg gcgccggggc gcagcaggga aggggaagct gtggtctgcc 150
 ctgctccacg aggcgccact ggtgtgaacc gggagagccc ctgggtggtc 200
```

ccgtccccta tccctccttt atatagaaac cttccacact gggaaggcag 250 cggcgaggca ggagggctca tggtgagcaa ggaggccggc tgatctgcag 300 gcgcacagca ttccgagttt acagattttt acagatacca aatggaaggc 350 gaggaggcag aacagcctgc ctggttccat cagccctggc gcccaggcgc 400 atctgactcg gcacccctg caggcaccat ggcccagagc cgggtgctgc 450 tgctcctgct gctgctgccg ccacagctgc acctgggacc tgtgcttgcc 500 gtgagggccc caggatttgg ccgaagtggc ggccacagcc tgagccccga 550 agagaacgaa tttgcggagg aggagccggt gctggtactg agccctgagg 600 agcccgggcc tggcccagcc gcggtcagct gcccccgaga ctgtgcctgt 650 tcccaggagg gcgtcgtgga ctgtggcggt attgacctgc gtgagttccc 700 gggggacctg cctgagcaca ccaaccacct atctctgcag aacaaccagc 750 tggaaaagat ctaccctgag gagctctccc ggctgcaccg gctggagaca 800 ctgaacctgc aaaacaaccg cctgacttcc cgagggctcc cagagaaggc 850 gtttgagcat ctgaccaacc tcaattacct gtacttggcc aataacaagc 900 tgaccttggc accccgcttc ctgccaaacg ccctgatcag tgtggacttt 950 gctgccaact atctcaccaa gatctatggg ctcacctttg gccagaagcc 1000 aaacttgagg tetgtgtace tgeacaacaa caagetggea gaegeeggge 1050 tgccggacaa catgttcaac ggctccagca acgtcgaggt cctcatcctg 1100 tecageaact teetgegeea egtgeeeaag eacetgeege etgeeetgta 1150 caagctgcac ctcaagaaca acaagctgga gaagatcccc ccgggggcct 1200 tcagcgaget gagcageetg egegagetat acetgeagaa caactacetg 1250 actgacgagg gcctggacaa cgagaccttc tggaagctct ccagcctgga 1300 gtacctggat ctgtccagca acaacctgtc tcgggtccca gctgggctgc 1350 cgcgcagcct ggtgctgctg cacttggaga agaacgccat ccggagcgtg 1400 gacgcgaatg tgctgacccc catccgcagc ctggagtacc tgctgctgca 1450 cagcaaccag ctgcgggagc agggcatcca cccactggcc ttccagggcc 1500 tcaagcggtt gcacacggtg cacctgtaca acaacgcgct ggagcgcgtg 1550 cccagtggcc tgcctcgccg cgtgcgcacc ctcatgatcc tgcacaacca 1600

gatcacaggc attggccgcg aagactttgc caccacctac ttcctggagg 1650 ageteaacet cagetacaac egeateacea geceacaggt geacegegae 1700 gccttccgca agctgcgcct gctgcgctcg ctggacctgt cgggcaaccg 1750 gctgcacacg ctgccacctg ggctgcctcg aaatgtccat gtgctgaagg 1800 tcaagcgcaa tgagctggct gccttggcac gaggggcgct ggcgggcatg 1850 gctcagctgc gtgagctgta cctcaccagc aaccgactgc gcagccgagc 1900 ectgggeece egtgeetggg tggaeetege ceatetgeag etgetggaea 1950 tegeegggaa teageteaca gagateeeeg aggggeteee egagteactt 2000 gagtacctgt acctgcagaa caacaagatt agtgcggtgc ccgccaatgc 2050 cttcgactcc acgcccaacc tcaaggggat ctttctcagg tttaacaagc 2100 tggctgtggg ctccgtggtg gacagtgcct tccggaggct gaagcacctg 2150 caggtcttgg acattgaagg caacttagag tttggtgaca tttccaagga 2200 aggaagagga aacaagatag tgacaaggtg atgcagatgt gacctaggat 2300 gatggaccgc cggactettt tetgcagcac acgeetgtgt getgtgagee 2350 ccccactctg ccgtgctcac acagacacac ccagctgcac acatgaggca 2400 teccaeatga caegggetga caeagtetea tatecceaec cetteccaeg 2450 gcgtgtccca cggccagaca catgcacaca catcacaccc tcaaacaccc 2500 ageteageea cacacaacta cectecaaac caccacagte tetgteacae 2550 ccccactacc gctgccacgc cctctgaatc atgcagggaa gggtctgccc 2600 ctgccctggc acacacaggc acccattccc tccccctgct gacatgtgta 2650 tgcgtatgca tacacaccac acacacaca atgcacaagt catgtgcgaa 2700 cageceteca aageetatge cacagacage tettgeecca gecagaatea 2750 gccatagcag ctcgccgtct gccctgtcca tctgtccgtc cgttccctgg 2800 agaagacaca agggtatcca tgctctgtgg ccaggtgcct gccaccctct 2850 ggaactcaca aaagctggct tttattcctt tcccatccta tggggacagg 2900 agectteagg actgetggee tggeetggee caccetgete etceaggtge 2950 tgggcagtca ctctgctaag agtccctccc tgccacgccc tggcaggaca 3000 caggcacttt tccaatgggc aagcccagtg gaggcaggat gggagagccc 3050

```
cctgggtgct gctggggcct tggggcagga gtgaagcaga ggtgatgggg 3100
 ctgggctgag ccagggagga aggacccagc tgcacctagg agacaccttt 3150
 gttcttcagg cctgtggggg aagttccggg tgcctttatt ttttattctt 3200
 ttctaaggaa aaaaatgata aaaatctcaa agctgatttt tcttgttata 3250
 gaaaaactaa tataaaagca ttatccctat ccctgcaaaa aaaaaa 3296
<210> 311
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 311
gcattggccg cgagactttg cc 22
<210> 312
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 312
gcggccacgg tccttggaaa tg 22
<210> 313
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 313
tggaggaget caaceteage tacaacegea teaceagece acagg 45
<210> 314
<211> 3003
<212> DNA
<213> Homo Sapien
<400> 314
 gggaggggc teegggegee gegeageaga cetgeteegg eegegegeet 50
 cgccgctgtc ctccgggagc ggcagcagta gcccgggcgg cgagggctgg 100
 gggttcctcg agactctcag aggggcgcct cccatcggcg cccaccaccc 150
 caacctgttc ctcgcgcgcc actgcgctgc gccccaggac ccgctgccca 200
```

acatggattt tctcctggcg ctggtgctgg tatcctcgct ctacctgcag 250 gcggccgccg agttcgacgg gaggtggccc aggcaaatag tgtcatcgat 300 tggcctatgt cgttatggtg ggaggattga ctgctgctgg ggctgggctc 350 gccagtcttg gggacagtgt cagcctgtgt gccaaccacg atgcaaacat 400 ggtgaatgta tegggeeaaa caagtgeaag tgteateetg gttatgetgg 450 aaaaacctgt aatcaagatc taaatgagtg tggcctgaag ccccggccct 500 gtaagcacag gtgcatgaac acttacggca gctacaagtg ctactgtctc 550 aacggatata tgctcatgcc ggatggttcc tgctcaagtg ccctgacctg 600 ctccatggca aactgtcagt atggctgtga tgttgttaaa ggacaaatac 650 ggtgccagtg cccatcccct ggcctgcacc tggctcctga tgggaggacc 700 tgtgtagatg ttgatgaatg tgctacagga agagcctcct gccctagatt 750 taggcaatgt gtcaacactt ttgggagcta catctgcaag tgtcataaag 800 gcttcgatct catgtatatt ggaggcaaat atcaatgtca tgacatagac 850 gaatgctcac ttggtcagta tcagtgcagc agctttgctc gatgttataa 900 cgtacgtggg tcctacaagt gcaaatgtaa agaaggatac cagggtgatg 950 gactgacttg tgtgtatatc ccaaaagtta tgattgaacc ttcaggtcca 1000 attcatgtac caaagggaaa tggtaccatt ttaaagggtg acacaggaaa 1050 taataattgg attoctgatg ttggaagtac ttggtggcct ccgaagacac 1100 catatattcc tectateatt accaacagge etaettetaa gecaacaaca 1150 agacctacac caaagccaac accaattcct actccaccac caccaccacc 1200 cctgccaaca gagctcagaa cacctctacc acctacaacc ccagaaaggc 1250 caaccaccgg actgacaact atagcaccag ctgccagtac acctccagga 1300 gggattacag ttgacaacag ggtacagaca gaccctcaga aacccagagg 1350 agatgtgttc agtgttctgg tacacagttg taattttgac catggacttt 1400 gtggatggat cagggagaaa gacaatgact tgcactggga accaatcagg 1450 gacccagcag gtggacaata tctgacagtg tcggcagcca aagccccagg 1500 gggaaaaget geacgettgg tgetacetet eggeegeete atgeatteag 1550 gggacctgtg cctgtcattc aggcacaagg tgacggggct gcactctggc 1600

acactccagg tgtttgtgag aaaacacggt gcccacggag cagccctgtg 1650 gggaagaaat ggtggccatg gctggaggca aacacagatc accttgcgag 1700 gggctgacat caagagcgaa tcacaaagat gattaaaggg ttggaaaaaa 1750 agatctatga tggaaaatta aaggaactgg gattattgag cctggagaag 1800 agaagactga ggggcaaacc attgatggtt ttcaagtata tgaagggttg 1850 gcacagagag ggtggcgacc agctgttctc catatgcact aagaatagaa 1900 caagaggaaa ctggcttaga ctagagtata agggagcatt tcttggcagg 1950 ggccattgtt agaatacttc ataaaaaaag aagtgtgaaa atctcagtat 2000 ctctctctct ttctaaaaaa ttagataaaa atttgtctat ttaagatggt 2050 taaagatgtt cttacccaag gaaaagtaac aaattataga atttcccaaa 2100 agatgttttg atcctactag tagtatgcag tgaaaatctt tagaactaaa 2150 taatttggac aaggettaat ttaggeattt eeetettgae eteetaatgg 2200 agagggattg aaaggggaag agcccaccaa atgctgagct cactgaaata 2250 teteteeett atggeaatee tageagtatt aaagaaaaaa ggaaaetatt 2300 tattccaaat gagagtatga tggacagata ttttagtatc tcagtaatgt 2350 cctagtgtgg cggtggtttt caatgtttct tcatggtaaa ggtataagcc 2400 ccttcaagga acacagttca gagagatttt catcgggtgc attctctctg 2500 cttcgtgtgt gacaagttat cttggctgct gagaaagagt gccctgcccc 2550 acaccggcag acctttcctt cacctcatca gtatgattca gtttctctta 2600 tcaattggac tctcccaggt tccacagaac agtaatattt tttgaacaat 2650 aggtacaata gaaggtcttc tgtcatttaa cctggtaaag gcagggctgg 2700 agggggaaaa taaatcatta agcctttgag taacggcaga atatatggct 2750 gtagatccat ttttaatggt tcatttcctt tatggtcata taactgcaca 2800 gctgaagatg aaaggggaaa ataaatgaaa attttacttt tcgatgccaa 2850 tgatacattg cactaaactg atggaagaag ttatccaaag tactgtataa 2900 catcttgttt attatttaat gttttctaaa ataaaaaatg ttagtggttt 2950 tccaaatggc ctaataaaaa caattatttg taaataaaaa cactgttagt 3000 aat 3003

```
<210> 315
<211> 509
<212> PRT
<213> Homo Sapien
<400> 315
Met Asp Phe Leu Leu Ala Leu Val Leu Val Ser Ser Leu Tyr Leu
                                      10
Gln Ala Ala Glu Phe Asp Gly Arg Trp Pro Arg Gln Ile Val
Ser Ser Ile Gly Leu Cys Arg Tyr Gly Gly Arg Ile Asp Cys Cys
Trp Gly Trp Ala Arg Gln Ser Trp Gly Gln Cys Gln Pro Val Cys
Gln Pro Arg Cys Lys His Gly Glu Cys Ile Gly Pro Asn Lys Cys
Lys Cys His Pro Gly Tyr Ala Gly Lys Thr Cys Asn Gln Asp Leu
Asn Glu Cys Gly Leu Lys Pro Arg Pro Cys Lys His Arg Cys Met
                 95
                                     100
                                                         105
Asn Thr Tyr Gly Ser Tyr Lys Cys Tyr Cys Leu Asn Gly Tyr Met
Leu Met Pro Asp Gly Ser Cys Ser Ser Ala Leu Thr Cys Ser Met
                125
                                     130
Ala Asn Cys Gln Tyr Gly Cys Asp Val Val Lys Gly Gln Ile Arg
Cys Gln Cys Pro Ser Pro Gly Leu His Leu Ala Pro Asp Gly Arg
Thr Cys Val Asp Val Asp Glu Cys Ala Thr Gly Arg Ala Ser Cys
                170
                                     175
Pro Arg Phe Arg Gln Cys Val Asn Thr Phe Gly Ser Tyr Ile Cys
Lys Cys His Lys Gly Phe Asp Leu Met Tyr Ile Gly Gly Lys Tyr
                                     205
                                                         210
Gln Cys His Asp Ile Asp Glu Cys Ser Leu Gly Gln Tyr Gln Cys
                215
                                                         225
Ser Ser Phe Ala Arg Cys Tyr Asn Val Arg Gly Ser Tyr Lys Cys
Lys Cys Lys Glu Gly Tyr Gln Gly Asp Gly Leu Thr Cys Val Tyr
```

				245					250					255
Ile	Pro	Lys	Val	Met 260	Ile	Glu	Pro	Ser	Gly 265	Pro	Ile	His	Val	Pro 270
Lys	Gly	Asn	Gly	Thr 275	Ile	Leu	Lys	Gly •	Asp 280	Thr	Gly	Asn	Asn	Asn 285
Trp	Ile	Pro	Asp	Val 290	Gly	Ser	Thr	Trp	Trp 295	Pro	Pro	Lys	Thr	Pro 300
Tyr	Ile	Pro	Pro	Ile 305	Ile	Thr	Asn	Arg	Pro 310	Thr	Ser	Lys	Pro	Thr 315
Thr	Arg	Pro	Thr	Pro 320	Lys	Pro	Thr	Pro	Ile 325	Pro	Thr	Pro	Pro	Pro 330
Pro	Pro	Pro	Leu	Pro 335	Thr	Glu	Leu	Arg	Thr 340	Pro	Leu	Pro	Pro	Thr 345
Thr	Pro	Glu	Arg	Pro 350	Thr	Thr	Gly	Leu	Thr 355	Thr	Ile	Ala	Pro	Ala 360
Ala	Ser	Thr	Pro	Pro 365	Gly	Gly	Ile	Thr	Val 370	Asp	Asn	Arg	Val	Gln 375
Thr	Asp	Pro	Gln	Lys 380	Pro	Arg	Gly	Asp	Val 385	Phe	Ser	Val	Leu	Val 390
His	Ser	Cys	Asn	Phe 395	Asp	His	Gly	Leu	Cys 400	Gly	Trp	Ile	Arg	Glu 405
Lys	Asp	Asn	Asp	Leu	His	Trp	Glu	Pro	Ile	Arg	Asp	Pro	Ala	Gly
				410					415					420
Gly	Gln	Tyr	Leu	Thr 425	Val	Ser	Ala	Ala	Lys 430	Ala	Pro	Gly	Gly	Lys 435
Ala	Ala	Arg	Leu	Val 440	Leu	Pro	Leu	Gly	Arg 445	Leu	Met	His	Ser	Gly 450
Asp	Leu	Cys	Leu	Ser 455	Phe	Arg	His	Lys	Val 460	Thr	Gly	Leu	His	Ser 465
Gly	Thr	Leu	Gln	Val 470	Phe	Val	Arg	Lys	His 475	Gly	Ala	His	Gly	Ala 480
Ala	Leu	Trp	Gly	Arg 485	Asn	Gly	Gly	His	Gly 490	Trp	Arg	Gln	Thr	Gln 495
Ile	Thr	Leu	Arg	Gly 500	Ala	Asp	Ile	Lys	Ser 505	Glu	Ser	Gln	Arg	
/210×	216													

<210> 316 <211> 24 <212> DNA

```
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 316
 gatggttcct gctcaagtgc cctg 24
<210> 317
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 317
ttgcacttgt aggacccacg tacg 24
<210> 318
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 318
ctgatgggag gacctgtgta gatgttgatg aatgtgctac aggaagagcc 50
<210> 319
<211> 2110
<212> DNA
<213> Homo Sapien
<400> 319
cttctttgaa aaggattatc acctgatcag gttctctctg catttgcccc 50
tttagattgt gaaatgtggc tcaaggtctt cacaactttc ctttcctttg 100
caacaggtgc ttgctcgggg ctgaaggtga cagtgccatc acacactgtc 150
catggcgtca gaggtcaggc cctctaccta cccgtccact atggcttcca 200
cactccagca tcagacatcc agatcatatg gctatttgag agaccccaca 250
caatgcccaa atacttactg ggctctgtga ataagtctgt ggttcctgac 300
ttggaatacc aacacaagtt caccatgatg ccacccaatg catctctgct 350
tatcaaccca ctgcagttcc ctgatgaagg caattacatc gtgaaggtca 400
acattcaggg aaatggaact ctatctgcca gtcagaagat acaagtcacg 450
gttgatgatc ctgtcacaaa gccagtggtg cagattcatc ctccctctgg 500
ggctgtggag tatgtgggga acatgaccct gacatgccat gtggaagggg 550
```

gcactcggct agcttaccaa tggctaaaaa atgggagacc tgtccacacc 600 agetecacet acteettte tecceaaaac aataceette atattgetee 650 agtaaccaag gaagacattg ggaattacag ctgcctggtg aggaaccctg 700 tcagtgaaat ggaaagtgat atcattatgc ccatcatata ttatggacct 750 tatggacttc aagtgaattc tgataaaggg ctaaaagtag gggaagtgtt 800 tactgttgac cttggagagg ccatcctatt tgattgttct gctgattctc 850 atcccccaa cacctactcc tggattagga ggactgacaa tactacatat 900 atcattaagc atgggcctcg cttagaagtt gcatctgaga aagtagccca 950 gaagacaatg gactatgtgt gctgtgctta caacaacata accggcaggc 1000 aagatgaaac tcatttcaca gttatcatca cttccgtagg actggagaag 1050 cttgcacaga aaggaaaatc attgtcacct ttagcaagta taactggaat 1100 atcactattt ttgattatat ccatgtgtct tctcttccta tggaaaaaat 1150 atcaacccta caaagttata aaacagaaac tagaaggcag gccagaaaca 1200 gaatacagga aagctcaaac attttcaggc catgaagatg ctctggatga 1250 cttcggaata tatgaatttg ttgcttttcc agatgtttct ggtgtttcca 1300 ggattccaag caggtctgtt ccagcctctg attgtgtatc ggggcaagat 1350 ttqcacaqta caqtqtatqa aqttattcag cacatccctg cccagcagca 1400 agaccatcca gagtgaactt tcatgggcta aacagtacat tcgagtgaaa 1450 ttctgaagaa acattttaag gaaaaacagt ggaaaagtat attaatctgg 1500 aatcagtgaa gaaaccagga ccaacacctc ttactcatta ttcctttaca 1550 tgcagaatag aggcatttat gcaaattgaa ctgcaggttt ttcagcatat 1600 acacaatgtc ttgtgcaaca gaaaaacatg ttggggaaat attcctcagt 1650 ggagagtcgt tctcatgctg acggggagaa cgaaagtgac aggggtttcc 1700 tcataagttt tgtatgaaat atctctacaa acctcaatta gttctactct 1750 acactttcac tatcatcaac actgagacta teetgtetea eetacaaatg 1800 tggaaacttt acattgttcg atttttcagc agactttgtt ttattaaatt 1850 tttattagtg ttaagaatgc taaatttatg tttcaatttt atttccaaat 1900 ttctatcttg ttatttgtac aacaaagtaa taaggatggt tgtcacaaaa 1950 acaaaactat gccttctctt ttttttcaat caccagtagt atttttgaga 2000 agacttgtga acacttaagg aaatgactat taaagtctta tttttatttt 2050 tttcaaggaa agatggattc aaataaatta ttctgttttt gcttttaaaa 2100 aaaaaaaaaa 2110

<210> 320

<211> 450

<212> PRT

<213> Homo Sapien

<400> 320

Met Trp Leu Lys Val Phe Thr Thr Phe Leu Ser Phe Ala Thr Gly
1 5 10 15

Ala Cys Ser Gly Leu Lys Val Thr Val Pro Ser His Thr Val His
20 25 30

Gly Val Arg Gly Gln Ala Leu Tyr Leu Pro Val His Tyr Gly Phe 35 40 45

His Thr Pro Ala Ser Asp Ile Gln Ile Ile Trp Leu Phe Glu Arg
50 55 60

Pro His Thr Met Pro Lys Tyr Leu Leu Gly Ser Val Asn Lys Ser 65 70 . 75

Val Val Pro Asp Leu Glu Tyr Gln His Lys Phe Thr Met Met Pro 80 85 90

Pro Asn Ala Ser Leu Leu Ile Asn Pro Leu Gln Phe Pro Asp Glu 95 100 105

Gly Asn Tyr Ile Val Lys Val Asn Ile Gln Gly Asn Gly Thr Leu 110 115 120

Ser Ala Ser Gln Lys Ile Gln Val Thr Val Asp Asp Pro Val Thr 125 130 135

Lys Pro Val Val Gln Ile His Pro Pro Ser Gly Ala Val Glu Tyr 140 145 150

Val Gly Asn Met Thr Leu Thr Cys His Val Glu Gly Gly Thr Arg 155 160 165

Leu Ala Tyr Gln Trp Leu Lys Asn Gly Arg Pro Val His Thr Ser 170 175 180

Ser Thr Tyr Ser Phe Ser Pro Gln Asn Asn Thr Leu His Ile Ala 185 190 195

Pro Val Thr Lys Glu Asp Ile Gly Asn Tyr Ser Cys Leu Val Arg 200 205 210

Asn Pro Val Ser Glu Met Glu Ser Asp Ile Ile Met Pro Ile Ile

				215					220					225
Tyr	Tyr	Gly	Pro	Tyr 230	Gly	Leu	Gln	Val	Asn 235	Ser	Asp	Lys	Gly	Leu 240

Lys Val Gly Glu Val Phe Thr Val Asp Leu Gly Glu Ala Ile Leu 245 250 255

Phe Asp Cys Ser Ala Asp Ser His Pro Pro Asn Thr Tyr Ser Trp 260 265 270

Ile Arg Arg Thr Asp Asn Thr Thr Tyr Ile Ile Lys His Gly Pro
275 280 280

Arg Leu Glu Val Ala Ser Glu Lys Val Ala Gln Lys Thr Met Asp 290 295 300

Tyr Val Cys Cys Ala Tyr Asn Asn Ile Thr Gly Arg Gln Asp Glu 305 310 315

Thr His Phe Thr Val Ile Ile Thr Ser Val Gly Leu Glu Lys Leu 320 325 330

Ala Gln Lys Gly Lys Ser Leu Ser Pro Leu Ala Ser Ile Thr Gly 335 340 345

Ile Ser Leu Phe Leu Ile Ile Ser Met Cys Leu Leu Phe Leu Trp 350 355 360

Lys Lys Tyr Gln Pro Tyr Lys Val Ile Lys Gln Lys Leu Glu Gly 365 370 375

Arg Pro Glu Thr Glu Tyr Arg Lys Ala Gln Thr Phe Ser Gly His 380 385 390

Glu Asp Ala Leu Asp Asp Phe Gly Ile Tyr Glu Phe Val Ala Phe 395 400 405

Pro Asp Val Ser Gly Val Ser Arg Ile Pro Ser Arg Ser Val Pro 410 415 420

Ala Ser Asp Cys Val Ser Gly Gln Asp Leu His Ser Thr Val Tyr 425 430 435

Glu Val Ile Gln His Ile Pro Ala Gln Gln Gln Asp His Pro Glu 440 445 450

<210> 321

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 321

gatectgtea caaagecagt ggtgc 25

```
<210> 322
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 322
cactgacagg gttcctcacc cagg 24
<210> 323
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 323
ctccctctgg gctgtggagt atgtggggaa catgaccctg acatg 45
<210> 324
<211> 2397
<212> DNA
<213> Homo Sapien
<400> 324
gcaageggeg aaatggegee eteegggagt ettgeagtte eeetggeagt 50
cctggtgctg ttgctttggg gtgctccctg gacgcacggg cggcggagca 100
acgttcgcgt catcacggac gagaactgga gagaactgct ggaaqgagac 150
tggatgatag aattttatgc cccgtggtgc cctgcttgtc aaaatcttca 200
accggaatgg gaaagttttg ctgaatgggg agaagatctt gaggttaata 250
ttgcgaaagt agatgtcaca gagcagccag gactgagtgg acggtttatc 300
ataactgctc ttcctactat ttatcattgt aaagatggtg aatttaggcg 350
\verb|ctatcagggt| ccaaggacta| agaaggactt| cataaacttt| ataagtgata| 400|
aagagtggaa gagtattgag cccgtttcat catggtttgg tccaggttct 450
gttctgatga gtagtatgtc agcactcttt cagctatcta tgtggatcag 500
gacgtgccat aactacttta ttgaagacct tggattgcca gtgtggggat 550
catatactgt ttttgcttta gcaactctgt tttccggact gttattagga 600
ctctgtatga tatttgtggc agattgcctt tgtccttcaa aaaggcgcag 650
accacagcca tacccatacc cttcaaaaaa attattatca gaatctgcac 700
```

aacctttgaa aaaagtggag gaggaacaag aggcggatga agaagatgtt 750 tcagaagaag aagctgaaag taaagaagga acaaacaaag actttccaca 800 gaatgccata agacaacgct ctctgggtcc atcattggcc acagataaat 850 cctagttaaa ttttatagtt atcttaatat tatgattttg ataaaaacag 900 aagattgatc attttgtttg gtttgaagtg aactgtgact tttttgaata 950 ttgcagggtt cagtctagat tgtcattaaa ttgaagagtc tacattcaga 1000 acataaaagc actaggtata caagtttgaa atatgattta agcacagtat 1050 gatggtttaa atagttetet aatttttgaa aaategtgee aageaataag 1100 atttatgtat atttgtttaa taataaccta tttcaagtct gagttttgaa 1150 aatttacatt tcccaagtat tgcattattg aggtatttaa gaagattatt 1200 ttagagaaaa atatttctca tttgatataa tttttctctg tttcactgtg 1250 tgaaaaaaag aagatatttc ccataaatgg gaagtttgcc cattgtctca 1300 agaaatgtgt atttcagtga caatttcgtg gtctttttag aggtatattc 1350 caaaatttcc ttgtattttt aggttatgca actaataaaa actaccttac 1400 attaattaat tacagttttc tacacatggt aatacaggat atgctactga 1450 tttaggaagt ttttaagttc atggtattct cttgattcca acaaagtttg 1500 attttctctt gtatttttct tacttactat gggttacatt ttttattttt 1550 caaattggat gataatttct tggaaacatt ttttatgttt tagtaaacag 1600 tatttttttg ttgtttcaaa ctgaagttta ctgagagatc catcaaattg 1650 aacaatctgt tgtaatttaa aattttggcc acttttttca gattttacat 1700 cattettget gaacttcaac ttgaaattgt tttttttttc tttttggatg 1750 tgaaggtgaa cattcctgat ttttgtctga tgtgaaaaag ccttggtatt 1800 ttacattttg aaaattcaaa gaagcttaat ataaaagttt gcattctact 1850 caggaaaaag catcttcttg tatatgtctt aaatgtattt ttgtcctcat 1900 atacagaaag ttcttaattg attttacagt ctgtaatgct tgatgtttta 1950 aaataataac atttttatat tttttaaaag acaaacttca tattatcctg 2000 tgttctttcc tgactggtaa tattgtgtgg gatttcacag gtaaaagtca 2050 gtaggatgga acattttagt gtatttttac tccttaaaga gctagaatac 2100

atagttttca ccttaaaaga agggggaaaa tcataaatac aatgaatcaa 2150 ctgaccatta cgtagtagac aatttctgta atgtcccctt ctttctaggc 2200 tctgttgctg tgtgaatcca ttagatttac agtatcgtaa tatacaagtt 2250 ttctttaaag ccctctcctt tagaatttaa aatattgtac cattaaagag 2300 tttggatgtg taacttgtga tgccttagaa aaatatccta agcacaaaat 2350 aaacctttct aaccacttca ttaaagctga aaaaaaaaa aaaaaaa 2397

<210> 325

<211> 280

<212> PRT

<213> Homo Sapien

<400> 325

Met Ala Pro Ser Gly Ser Leu Ala Val Pro Leu Ala Val Leu Val
1 5 10 15

Leu Leu Eu Trp Gly Ala Pro Trp Thr His Gly Arg Arg Ser Asn 20 25 30

Val Arg Val Ile Thr Asp Glu Asn Trp Arg Glu Leu Leu Glu Gly 35 40 45

Asp Trp Met Ile Glu Phe Tyr Ala Pro Trp Cys Pro Ala Cys Gln 50 55 60

Asn Leu Gln Pro Glu Trp Glu Ser Phe Ala Glu Trp Gly Glu Asp
65 70 75

Leu Glu Val Asn Ile Ala Lys Val Asp Val Thr Glu Gln Pro Gly 80 85 90

Leu Ser Gly Arg Phe Ile Ile Thr Ala Leu Pro Thr Ile Tyr His 95 100 105

Cys Lys Asp Gly Glu Phe Arg Arg Tyr Gln Gly Pro Arg Thr Lys 110 115 120

Lys Asp Phe Ile Asn Phe Ile Ser Asp Lys Glu Trp Lys Ser Ile 125 130 135

Glu Pro Val Ser Ser Trp Phe Gly Pro Gly Ser Val Leu Met Ser 140 145 150

Ser Met Ser Ala Leu Phe Gln Leu Ser Met Trp Ile Arg Thr Cys 155 160 165

His Asn Tyr Phe Ile Glu Asp Leu Gly Leu Pro Val Trp Gly Ser 170 175 180

Tyr Thr Val Phe Ala Leu Ala Thr Leu Phe Ser Gly Leu Leu Leu 185 190 195

```
Gly Leu Cys Met Ile Phe Val Ala Asp Cys Leu Cys Pro Ser Lys
 Arg Arg Arg Pro Gln Pro Tyr Pro Tyr Pro Ser Lys Lys Leu Leu
                 215
 Ser Glu Ser Ala Gln Pro Leu Lys Lys Val Glu Glu Glu Glu Glu
                 230
                                      235
Ala Asp Glu Glu Asp Val Ser Glu Glu Glu Ala Glu Ser Lys Glu
                 245
                                      250
Gly Thr Asn Lys Asp Phe Pro Gln Asn Ala Ile Arg Gln Arg Ser
                 260
                                                          270
Leu Gly Pro Ser Leu Ala Thr Asp Lys Ser
                                      280
                 275
<210> 326
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 326
tgaggtgggc aagcggcgaa atg 23
<210> 327
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 327
tatgtggatc aggacgtgcc 20
<210> 328
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 328
tgcagggttc agtctagatt g 21
<210> 329
<211> 25
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 329
 ttgaaggaca aaggcaatct gccac 25
<210> 330
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 330
 ggagtcttgc agttcccctg gcagtcctgg tgctgttgct ttggg 45
<210> 331
<211> 2168
<212> DNA
<213> Homo Sapien
<400> 331
gcgagtgtcc agctgcggag acccgtgata attcgttaac taattcaaca 50
aacgggaccc ttctgtgtgc cagaaaccgc aagcagttgc taacccagtg 100
ggacaggcgg attggaagag cgggaaggtc ctggcccaga gcagtgtgac 150
acttccctct gtgaccatga aactctgggt gtctgcattg ctgatggcct 200
ggtttggtgt cctgagctgt gtgcaggccg aattcttcac ctctattggg 250
cacatgactg acctgattta tgcagagaaa gagctggtgc agtctctgaa 300
agagtacatc cttgtggagg aagccaagct ttccaagatt aagagctggg 350
ccaacaaaat ggaagccttg actagcaagt cagctgctga tgctgagggc 400
tacctggctc accctgtgaa tgcctacaaa ctggtgaagc ggctaaacac 450
agactggcct gcgctggagg accttgtcct gcaggactca gctgcaggtt 500
ttatcgccaa cctctctgtg cagcggcagt tcttccccac tgatgaggac 550
gagataggag ctgccaaagc cctgatgaga cttcaggaca catacaggct 600
ggacccaggc acaatttcca gaggggaact tccaggaacc aagtaccagg 650
caatgctgag tgtggatgac tgctttggga tgggccgctc ggcctacaat 700
gaaggggact attatcatac ggtgttgtgg atggagcagg tgctaaagca 750
gcttgatgcc ggggaggagg ccaccacaac caagtcacag gtgctggact 800
acctcagcta tgctgtcttc cagttgggtg atctgcaccg tgccctggag 850
```

ctcacccgcc gcctgctctc ccttgaccca agccacgaac gagctggagg 900 gaatctgcgg tactttgagc agttattgga ggaagagaga gaaaaaacgt 950 taacaaatca gacagaagct gagctagcaa ccccagaagg catctatgag 1000 aggcctgtgg actacctgcc tgagagggat gtttacgaga gcctctgtcg 1050 tggggagggt gtcaaactga caccccgtag acagaagagg cttttctgta 1100 ggtaccacca tggcaacagg gccccacagc tgctcattgc ccccttcaaa 1150 gaggaggacg agtgggacag cccgcacatc gtcaggtact acgatgtcat 1200 gtctgatgag gaaatcgaga ggatcaagga gatcgcaaaa cctaaacttg 1250 cacgagecae egttegtgat eccaagaeag gagteeteae tgtegeeage 1300 taccgggttt ccaaaagctc ctggctagag gaagatgatg accctgttgt 1350 ggcccgagta aatcgtcgga tgcagcatat cacagggtta acagtaaaga 1400 ctgcagaatt gttacaggtt gcaaattatg gagtgggagg acagtatgaa 1450 ccgcacttcg acttctctag gcgacctttt gacagcggcc tcaaaacaga 1500 ggggaatagg ttagcgacgt ttcttaacta catgagtgat gtagaagctg 1550 gtggtgccac cgtcttccct gatctggggg ctgcaatttg gcctaagaag 1600 ggtacagctg tgttctggta caacctcttg cggagcgggg aaggtgacta 1650 ccgaacaaga catgctgcct gccctgtgct tgtgggctgc aagtgggtct 1700 ccaataagtg gttccatgaa cgaggacagg agttcttgag accttgtgga 1750 tcaacagaag ttgactgaca tccttttctg tccttcccct tcctggtcct 1800 teageceatg teaacgtgae agacacettt gtatgtteet ttgtatgtte 1850 ctatcaggct gatttttgga gaaatgaatg tttgtctgga gcagagggag 1900 accatactag ggcgactcct gtgtgactga agtcccagcc cttccattca 1950 gcctgtgcca tccctggccc caaggctagg atcaaagtgg ctgcagcaga 2000 gttagctgtc tagcgcctag caaggtgcct ttgtacctca ggtgttttag 2050 gtgtgagatg tttcagtgaa ccaaagttct gataccttgt ttacatgttt 2100 gtttttatgg catttctatc tattgtggct ttaccaaaaa ataaaatgtc 2150 cctaccagaa aaaaaaaa 2168

<210> 332

<211> 533

<213> Homo Sapien <400> 332 Met Lys Leu Trp Val Ser Ala Leu Leu Met Ala Trp Phe Gly Val Leu Ser Cys Val Gln Ala Glu Phe Phe Thr Ser Ile Gly His Met Thr Asp Leu Ile Tyr Ala Glu Lys Glu Leu Val Gln Ser Leu Lys Glu Tyr Ile Leu Val Glu Glu Ala Lys Leu Ser Lys Ile Lys Ser Trp Ala Asn Lys Met Glu Ala Leu Thr Ser Lys Ser Ala Ala Asp Ala Glu Gly Tyr Leu Ala His Pro Val Asn Ala Tyr Lys Leu Val Lys Arg Leu Asn Thr Asp Trp Pro Ala Leu Glu Asp Leu Val Leu 100 . Gln Asp Ser Ala Ala Gly Phe Ile Ala Asn Leu Ser Val Gln Arg 110 Gln Phe Pro Thr Asp Glu Asp Glu Ile Gly Ala Ala Lys Ala 135 125 Leu Met Arg Leu Gln Asp Thr Tyr Arg Leu Asp Pro Gly Thr Ile Ser Arg Gly Glu Leu Pro Gly Thr Lys Tyr Gln Ala Met Leu Ser 165 Val Asp Asp Cys Phe Gly Met Gly Arg Ser Ala Tyr Asn Glu Gly Asp Tyr Tyr His Thr Val Leu Trp Met Glu Gln Val Leu Lys Gln Leu Asp Ala Gly Glu Glu Ala Thr Thr Thr Lys Ser Gln Val Leu Asp Tyr Leu Ser Tyr Ala Val Phe Gln Leu Gly Asp Leu His Arg Ala Leu Glu Leu Thr Arg Arg Leu Leu Ser Leu Asp Pro Ser His 240 235 230 Glu Arg Ala Gly Gly Asn Leu Arg Tyr Phe Glu Gln Leu Leu Glu

250

270

Glu Glu Arg Glu Lys Thr Leu Thr Asn Gln Thr Glu Ala Glu Leu

260

Ala	Thr	Pro	Glu	Gly 275	Ile	Tyr	Glu	Arg	Pro 280	Val	Asp	Tyr	Leu	Pro 285
Glu	Arg	Asp	Val	Tyr 290	Glu	Ser	Leu	Cys	Arg 295	Gly	Glu	Gly	Val	Lys 300
Leu	Thr	Pro	Arg	Arg 305	Gln	Lys	Arg	Leu	Phe 310	Cys	Arg	Tyr	His	His 315
Gly	Asn	Arg	Ala	Pro 320	Gln	Leu	Leu	Ile	Ala 325	Pro	Phe	Lys	Glu	Glu 330
Asp	Glu	Trp	Asp	Ser 335	Pro	His	Ile	Val	Arg 340	Tyr	Tyr	Asp	Val	Met 345
Ser	Asp	Glu	Glu	Ile 350	Glu	Arg	Ile	Lys	Glu 355	Ile	Ala	Lys	Pro	Lys 360
Leu	Ala	Arg	Ala	Thr 365	Val	Arg	Asp	Pro	Lys 370	Thr	Gly	Val	Leu	Thr 375
Val	Ala	Ser	Tyr	Arg 380	Val	Ser	Lys	Ser	Ser 385	Trp	Leu	Glu	Glu	Asp 390
Asp	Asp	Pro	Val	Val 395	Ala	Arg	Val	Asn	Arg 400	Arg	Met	Gln	His	Ile 405
Thr	Gly	Leu	Thr	Val 410	Lys	Thr	Ala	Glu	Leu 415	Leu	Gln	Val	Ala	Asn 420
Tyr	Gly	Val	Gly	Gly 425	Gln	Tyr	Glu	Pro	His 430	Phe	Asp	Phe	Ser	Arg 435
Arg	Pro	Phe	Asp	Ser 440	Gly	Leu	Lys	Thr	Glu 445	Gly	Asn	Arg	Leu	Ala 450
Thr	Phe	Leu	Asn	Tyr 455	Met	Ser	Asp	Val	Glu 460	Ala	Gly	Gly	Ala	Thr 465
Val	Phe	Pro	Asp	Leu 470	Gly	Ala	Ala	Ile	Trp 475	Pro	Lys	Lys	Gly	Thr 480
Ala	Val	Phe	Trp	Tyr 485	Asn	Leu	Leu	Arg	Ser 490		Glu	Gly	Asp	Tyr 495
Arg	Thr	Arg	His	Ala 500		Cys	Pro	Val	Leu 505		Gly	Cys	Lys	Trp 510
Val	Ser	Asn	Lys	Trp 515		His	Glu	Arg	Gly 520		Glu	Phe	Leu	Arg 525
Pro	Cys	Gly	Ser	Thr 530		Val	Asp							

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 333
ccaggcacaa tttccaga 18
<210> 334
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 334
ggacccttct gtgtgccag 19
<210> 335
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 335
 ggtctcaaga actcctgtc 19
<210> 336
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 336
 acactcagca ttgcctggta cttg 24
<210> 337
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 337
 gggcacatga ctgacctgat ttatgcagag aaagagctgg tgcag 45
<210> 338
<211> 2789
<212> DNA
```

<400> 338 gcagtattga gttttacttc ctcctctttt tagtggaaga cagaccataa 50 tcccagtgtg agtgaaattg attgtttcat ttattaccgt tttggctggg 100 ggttagttcc gacaccttca cagttgaaga gcaggcagaa ggagttgtga 150 agacaggaca atcttcttgg ggatgctggt cctggaagcc agcgggcctt 200 gctctgtctt tggcctcatt gaccccaggt tctctggtta aaactgaaag 250 cctactactg gcctggtgcc catcaatcca ttgatccttg aggctgtgcc 300 cctggggcac ccacctggca gggcctacca ccatgcgact gagctccctg 350 ttggctctgc tgcggccagc gcttcccctc atcttagggc tgtctctggg 400 gtgcagcctg agcctcctgc gggtttcctg gatccagggg gagggagaag 450 atccctgtgt cgaggctgta ggggagcgag gagggccaca gaatccagat 500 tcgagagctc ggctagacca aagtgatgaa gacttcaaac cccggattgt 550 cccctactac agggacccca acaagcccta caagaaggtg ctcaggactc 600 ggtacatcca gacagagctg ggctcccgtg agcggttgct ggtggctgtc 650 ctgacctccc gagctacact gtccactttg gccgtggctg tgaaccgtac 700 ggtggcccat cacttccctc ggttactcta cttcactggg cagcgggggg 750 cccgggctcc agcagggatg caggtggtgt ctcatgggga tgagcggccc 800 gcctggctca tgtcagagac cctgcgccac cttcacacac actttggggc 850 cgactacgac tggttcttca tcatgcagga tgacacatat gtgcaggccc 900 cccgcctggc agcccttgct ggccacctca gcatcaacca agacctgtac 950 ttaggccggg cagaggagtt cattggcgca ggcgagcagg cccggtactg 1000 tcatgggggc tttggctacc tgttgtcacg gagtctcctg cttcgtctgc 1050 ggccacatct ggatggctgc cgaggagaca ttctcagtgc ccgtcctgac 1100 gagtggcttg gacgctgcct cattgactct ctgggcgtcg gctgtgtctc 1150 acagcaccag gggcagcagt atcgctcatt tgaactggcc aaaaataggg 1200 accetqaqaa ggaagggage teggetttee tgagtgeett egeegtgeae 1250 cctqtctccg aaggtaccct catgtaccgg ctccacaaac gcttcagcgc 1300 tctggagttg gagcgggctt acagtgaaat agaacaactg caggctcaga 1350 teeggaacet gacegtgetg acceeegaag gggaggeagg getgagetgg 1400 cccgttgggc tccctgctcc tttcacacca cactctcgct ttgaggtgct 1450 gggctgggac tacttcacag agcagcacac cttctcctgt gcagatgggg 1500 ctcccaagtg cccactacag ggggctagca gggcggacgt gggtgatgcg 1550 ttggagactg ccctggagca gctcaategg cgctatcagc cccgcctgcg 1600 cttccagaag cagcgactgc tcaacggcta tcggcgcttc gacccagcac 1650 ggggcatgga gtacaccctg gacctgctgt tggaatgtgt gacacagcgt 1700 gggcaccggc gggccctggc tcgcagggtc agcctgctgc ggccactgag 1750 ccgggtggaa atcctaccta tgccctatgt cactgaggcc acccgagtgc 1800 agetggtget gecacteetg gtggetgaag etgetgeage eeeggettte 1850 ctcgaggcgt ttgcagccaa tgtcctggag ccacgagaac atgcattgct 1900 caccctgttg ctggtctacg ggccacgaga aggtggccgt ggagctccag 1950 acccatttct tggggtgaag gctgcagcag cggagttaga gcgacggtac 2000 cctgggacga ggctggcctg gctcgctgtg cgagcagagg ccccttccca 2050 ggtgcgactc atggacgtgg tctcgaagaa gcaccctgtg gacactctct 2100 tottoottac caccgtgtgg acaaggeetg ggeeegaagt ceteaacege 2150 tgtcgcatga atgccatctc tggctggcag gccttctttc cagtccattt 2200 ccaggagttc aatectgccc tgtcaccaca gagatcaccc ccagggcccc 2250 cgggggctgg ccctgacccc ccctcccctc ctggtgctga cccctcccgg 2300 ggggctccta taggggggag atttgaccgg caggcttctg cggagggctg 2350 cttctacaac gctgactacc tggcggcccg agcccggctg gcaggtgaac 2400 tggcaggcca ggaagaggag gaagccctgg aggggctgga ggtgatggat 2450 gttttcctcc ggttctcagg gctccacctc tttcgggccg tagagccagg 2500 gctggtgcag aagttctccc tgcgagactg cagcccacgg ctcagtgaag 2550 aactctacca ccgctgccgc ctcagcaacc tggaggggct agggggccgt 2600 gcccagctgg ctatggctct ctttgagcag gagcaggcca atagcactta 2650 georgectgg gggeectaac eteattacet tteetttgte tgeeteagee 2700 ccaggaaggg caaggcaaga tggtggacag atagagaatt gttgctgtat 2750 tttttaaata tgaaaatgtt attaaacatg tcttctgcc 2789

<210> 339 <211> 772 <212> PRT <213> Homo Sapien <400> 339 Met Arg Leu Ser Ser Leu Leu Ala Leu Leu Arg Pro Ala Leu Pro Leu Ile Leu Gly Leu Ser Leu Gly Cys Ser Leu Ser Leu Leu Arg Val Ser Trp Ile Gln Gly Glu Gly Glu Asp Pro Cys Val Glu Ala Val Gly Glu Arg Gly Gly Pro Gln Asn Pro Asp Ser Arg Ala Arg Leu Asp Gln Ser Asp Glu Asp Phe Lys Pro Arg Ile Val Pro Tyr Tyr Arg Asp Pro Asn Lys Pro Tyr Lys Lys Val Leu Arg Thr Arg Tyr Ile Gln Thr Glu Leu Gly Ser Arg Glu Arg Leu Leu Val Ala 100 Val Leu Thr Ser Arg Ala Thr Leu Ser Thr Leu Ala Val Ala Val 120 110 115 Asn Arg Thr Val Ala His His Phe Pro Arg Leu Leu Tyr Phe Thr 130 Gly Gln Arg Gly Ala Arg Ala Pro Ala Gly Met Gln Val Val Ser 140 His Gly Asp Glu Arg Pro Ala Trp Leu Met Ser Glu Thr Leu Arg 155 His Leu His Thr His Phe Gly Ala Asp Tyr Asp Trp Phe Phe Ile 170 Met Gln Asp Asp Thr Tyr Val Gln Ala Pro Arg Leu Ala Ala Leu Ala Gly His Leu Ser Ile Asn Gln Asp Leu Tyr Leu Gly Arg Ala 200 Glu Glu Phe Ile Gly Ala Gly Glu Gln Ala Arg Tyr Cys His Gly 215 220 225 Gly Phe Gly Tyr Leu Leu Ser Arg Ser Leu Leu Arg Leu Arg

235

250

255

Pro His Leu Asp Gly Cys Arg Gly Asp Ile Leu Ser Ala Arg Pro

230

245

Asp	Glu	Trp	Leu	Gly 260	Arg	Cys	Leu	Ile	Asp 265	Ser	Leu	Gly	Val	Gly 270
Cys	Val	Ser	Gln	His 275	Gln	Gly	Gln	Gln	Tyr 280	Arg	Ser	Phe	Glu	Leu 285
Ala	Lys	Asn	Arg	Asp 290	Pro	Glu	Lys	Glu	Gly 295	Ser	Ser	Ala	Phe	Leu 300
Ser	Ala	Phe	Ala	Val 305	His	Pro	Val	Ser	Glu 310	Gly	Thr	Leu	Met	Tyr 315
Arg	Leu	His	Lys	Arg 320	Phe	Ser	Ala	Leu	Glu 325	Leu	Glu	Arg	Ala	Tyr 330
Ser	Glu	Ile	Glu	Gln 335	Leu	Gln	Ala	Gln	Ile 340	Arg	Asn	Leu	Thr	Val 345
Leu	Thr	Pro	Glu	Gly 350	Glu	Ala	Gly	Leu	Ser 355	Trp	Pro	Val	Gly	Leu 360
				365	Pro			-	370					375
Asp	Tyr	Phe	Thr	Glu 380	Gln	His	Thr	Phe	Ser 385	Cys	Ala	Asp	Gly	Ala 390
	-			395	Gln				400					405
				410	Leu				415					420
				425	Lys				430					435
	•			440	Gly			-	445		_			450
				455	Arg				460					465
Val	Ser	Leu	Leu	Arg 470	Pro	Leu	Ser	Arg	Val 475	Glu	Ile	Leu	Pro	Met 480
	-			485	Ala				490					495
				500	Ala				505					510
Ala	Ala	Asn	Val	Leu 515	Glu	Pro	Arg	Glu	His 520	Ala	Leu	Leu	Thr	Leu 525
Leu	Leu	Val	Tyr	Gly 530	Pro	Arg	Glu	Gly	Gly 535	Arg	Gly	Ala	Pro	Asp 540

Pro	Phe	Leu	Gly	Val 545	Lys	Ala	Ala	Ala	Ala 550	Glu	Leu	Glu	Arg	Arg 555
Tyr	Pro	Gly	Thr	Arg 560	Leu	Ala	Trp	Leu	Ala 565	Val	Arg	Ala	Glu	Ala 570
Pro	Ser	Gln	Val	Arg 575	Leu	Met	Asp	Val	Val 580	Ser	Lys	Lys	His	Pro 585
Val	Asp	Thr	Leu	Phe 590	Phe	Leu	Thr	Thr	Val 595	Trp	Thr	Arg	Pro	Gly 600
Pro	Glu	Val	Leu	Asn 605	Arg	Cys	Arg	Met	Asn 610	Ala	Ile	Ser	Gly	Trp 615
Gln	Ala	Phe	Phe	Pro 620	Val	His	Phe	Gln	Glu 625	Phe	Asn	Pro	Ala	Leu 630
Ser	Pro	Gln	Arg	Ser 635	Pro	Pro	Gly	Pro	Pro 640	Gly	Ala	Gly	Pro	Asp 645
Pro	Pro	Ser	Pro	Pro 650	Gly	Ala	Asp	Pro	Ser 655	Arg	Gly	Ala	Pro	Ile 660
Gly	Gly	Arg	Phe	Asp 665	Arg	Gln	Ala	Ser	Ala 670	Glu	Gly	Cys	Phe	Tyr 675
Asn	Ala	Asp	Туr	Leu 680	Ala	Ala	Arg	Ala	Arg 685	Leu	Ala	Gly	Glu	Leu 690
Ala	Gly	Gln	Glu	Glu 695	Glu	Glu	Ala	Leu	Glu 700	Gly	Leu	Glu	Val	Met 705
Asp	Val	Phe	Leu	Arg 710	Phe	Ser	Gly	Leu	His 715	Leu	Phe	Arg	Ala	Val 720
Glu	Pro	Gly	Leu	Val 725	Gln	Lys	Phe	Ser	Leu 730	Arg	Asp	Cys	Ser	Pro 735
Arg	Leu	Ser	Glu	Glu 740	Leu	Tyr	His	Arg	Cys 7 4 5	Arg	Leu	Ser	Asn	Leu 750
Glu	Gly	Leu	Gly	Gly 755	Arg	Ala	Gln	Leu	Ala 760	Met	Ala	Leu	Phe	Glu 765
Gln	Glu	Gln	Ala	Asn 770	Ser	Thr								
<210; <211;														

<211> 1572

<212> DNA

<213> Homo Sapien

<400> 340

eggagtggtg egecaaegtg agaggaaace egtgegegge tgegetttee 50

tgtccccaag ccgttctaga cgcgggaaaa atgctttctg aaagcagctc 100 ctttttgaag ggtgtgatgc ttggaagcat tttctgtgct ttgatcacta 150 tgctaggaca cattaggatt ggtcatggaa atagaatgca ccaccatgag 200 catcatcacc tacaagctcc taacaaagaa gatatcttga aaatttcaga 250 ggatgagcgc atggagctca gtaagagctt tcgagtatac tgtattatcc 300 ttgtaaaacc caaagatgtg agtctttggg ctgcagtaaa ggagacttgg 350 accaaacact gtgacaaagc agagttcttc agttctgaaa atgttaaagt 400 gtttgagtca attaatatgg acacaaatga catgtggtta atgatgagaa 450 aagcttacaa atacgccttt gataagtata gagaccaata caactggttc 500 ttccttqcac gccccactac gtttgctatc attgaaaacc taaagtattt 550 tttgttaaaa aaggatccat cacagccttt ctatctaggc cacactataa 600 aatctggaga ccttgaatat gtgggtatgg aaggaggaat tgtcttaagt 650 gtagaatcaa tgaaaagact taacagcctt ctcaatatcc cagaaaagtg 700 tcctgaacag ggagggatga tttggaagat atctgaagat aaacagctag 750 cagtttgcct gaaatatgct ggagtatttg cagaaaatgc agaagatgct 800 gatggaaaag atgtatttaa taccaaatct gttgggcttt ctattaaaga 850 ggcaatgact tatcacccca accaggtagt agaaggctgt tgttcagata 900 tggctgttac ttttaatgga ctgactccaa atcagatgca tgtgatgatg 950 tatggggtat accgccttag ggcatttggg catattttca atgatgcatt 1000 ggttttctta cctccaaatg gttctgacaa tgactgagaa gtggtagaaa 1050 agcgtgaata tgatctttgt ataggacgtg tgttgtcatt atttgtagta 1100 gtaactacat atccaataca gctgtatgtt tctttttctt ttctaatttg 1150 gtggcactgg tataaccaca cattaaagtc agtagtacat ttttaaatga 1200 gggtggtttt tttctttaaa acacatgaac attgtaaatg tgttggaaag 1250 aagtgtttta agaataataa ttttgcaaat aaactattaa taaatattat 1300 atgtgataaa ttctaaatta tgaacattag aaatctgtgg ggcacatatt 1350 tttgctgatt ggttaaaaaa ttttaacagg tctttagcgt tctaagatat 1400 gcaaatgata tctctagttg tgaatttgtg attaaagtaa aacttttagc 1450 tgtgtgttcc ctttacttct aatactgatt tatgttctaa gcctccccaa 1500 gttccaatgg atttgccttc tcaaaatgta caactaagca actaaagaaa 1550 attaaagtga aagttgaaaa at 1572

<210> 341

<211> 318

<212> PRT

<213> Homo Sapien

<400> 341

Met Leu Ser Glu Ser Ser Ser Phe Leu Lys Gly Val Met Leu Gly
1 5 10 15

Ser Ile Phe Cys Ala Leu Ile Thr Met Leu Gly His Ile Arg Ile 20 25 30

Gly His Gly Asn Arg Met His His His Glu His His Leu Gln 35 40 45

Ala Pro Asn Lys Glu Asp Ile Leu Lys Ile Ser Glu Asp Glu Arg
50 55 60

Met Glu Leu Ser Lys Ser Phe Arg Val Tyr Cys Ile Ile Leu Val 65 70 75

Lys Pro Lys Asp Val Ser Leu Trp Ala Ala Val Lys Glu Thr Trp 80 85 90

Thr Lys His Cys Asp Lys Ala Glu Phe Phe Ser Ser Glu Asn Val95 100 105

Lys Val Phe Glu Ser Ile Asn Met Asp Thr Asn Asp Met Trp Leu 110 115 120

Met Met Arg Lys Ala Tyr Lys Tyr Ala Phe Asp Lys Tyr Arg Asp 125 130 135

Gln Tyr Asn Trp Phe Phe Leu Ala Arg Pro Thr Thr Phe Ala Ile 140 145 150

Ile Glu Asn Leu Lys Tyr Phe Leu Leu Lys Lys Asp Pro Ser Gln
155 160 165

Pro Phe Tyr Leu Gly His Thr Ile Lys Ser Gly Asp Leu Glu Tyr 170 175 180

Val Gly Met Glu Gly Gly Ile Val Leu Ser Val Glu Ser Met Lys 185 190 195

Arg Leu Asn Ser Leu Leu Asn Ile Pro Glu Lys Cys Pro Glu Gln 200 205 210

Gly Gly Met Ile Trp Lys Ile Ser Glu Asp Lys Gln Leu Ala Val 215 220 225

Cys Leu Lys Tyr Ala Gly Val Phe Ala Glu Asn Ala Glu Asp Ala

230 235 240 Asp Gly Lys Asp Val Phe Asn Thr Lys Ser Val Gly Leu Ser Ile 245 Lys Glu Ala Met Thr Tyr His Pro Asn Gln Val Val Glu Gly Cys 260 265 Cys Ser Asp Met Ala Val Thr Phe Asn Gly Leu Thr Pro Asn Gln Met His Val Met Met Tyr Gly Val Tyr Arg Leu Arg Ala Phe Gly 295 290 His Ile Phe Asn Asp Ala Leu Val Phe Leu Pro Pro Asn Gly Ser 305 Asp Asn Asp <210> 342 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 342 tececaagee gttetagaeg egg 23 <210> 343 <211> 18 <212> DNA <213> Artificial Sequence <223> Synthetic Oligonucleotide Probe <400> 343 ctggttcttc cttgcacg 18 <210> 344 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 344 gcccaaatgc cctaaggcgg tatacccc 28 <210> 345 <211> 50 <212> DNA

<213> Artificial Sequence

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 345
 gggtgtgatg cttggaagca ttttctgtgc tttgatcact atgctaggac 50
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 346
gggatgcagg tggtgtctca tgggg 25
<210> 347
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 347
 ccctcatgta ccggctcc 18
<210> 348
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 348
 ggattctaat acgactcact atagggctca gaaaagcgca acagagaa 48
<210> 349
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
 ctatgaaatt aaccctcact aaagggatgt cttccatgcc aaccttc 47
<210> 350
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Synthetic Oligonucleotide Probe
<400> 350
 ggattctaat acgactcact atagggcggc gatgtccact ggggctac 48
<210> 351
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 351
 ctatgaaatt aaccctcact aaagggacga ggaagatggg cggatggt 48
<210> 352
<211> 47
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 352
 ggattctaat acgactcact atagggcacc cacgcgtccg gctgctt 47
<210> 353
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 353
 ctatgaaatt aaccctcact aaagggacgg gggacaccac ggaccaga 48
<210> 354
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 354
 ggattctaat acgactcact atagggcttg ctgcggtttt tgttcctg 48
<210> 355
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
```

```
<400> 355
ctatgaaatt aaccctcact aaagggagct gccgatccca ctggtatt 48
<210> 356
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 356
ggattctaat acgactcact atagggcgga tcctggccgg cctctg 46
<210> 357
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 357
ctatgaaatt aaccctcact aaagggagcc cgggcatggt ctcagtta 48
<210> 358
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 358
ggattctaat acgactcact atagggcggg aagatggcga ggaggag 47
<210> 359
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 359
ctatgaaatt aaccctcact aaagggacca aggccacaaa cggaaatc 48
<210> 360
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 360
 ggattctaat acgactcact atagggctgt gctttcattc tgccagta 48
```

```
<210> 361
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
ctatgaaatt aaccctcact aaagggaggg tacaattaag gggtggat 48
<210> 362
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 362
 ggattctaat acgactcact atagggcccg cctcgctcct gctcctg 47
<210> 363
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 363
ctatgaaatt aaccctcact aaagggagga ttgccgcgac cctcacag 48
<210> 364
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
 ggattctaat acgactcact atagggcccc tcctgccttc cctgtcc 47
<210> 365
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 365
ctatgaaatt aaccctcact aaagggagtg gtggccgcga ttatctgc 48
<210> 366
```

```
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 366
 ggattctaat acgactcact atagggcgca gcgatggcag cgatgagg 48
<210> 367
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 367
ctatgaaatt aaccctcact aaagggacag acggggcaga gggagtg 47
<210> 368
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 368
ggattctaat acgactcact atagggccag gaggcgtgag gagaaac 47
<210> 369
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 369
ctatgaaatt aaccctcact aaagggaaag acatgtcatc gggagtgg 48
<210> 370
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 370
ggattctaat acgactcact atagggccgg gtggaggtgg aacagaaa 48
<210> 371
<211> 48
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 371
ctatgaaatt aaccetcact aaagggacac agacagagee ceataege 48
<210> 372
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 372
 ggattctaat acgactcact atagggccag ggaaatccgg atgtctc 47
<210> 373
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 373
 ctatgaaatt aaccctcact aaagggagta aggggatgcc accgagta 48
<210> 374
<211> 47
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 374
ggattctaat acgactcact atagggccag ctacccgcag gaggagg 47
<210> 375
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 375
ctatgaaatt aaccctcact aaagggatcc caggtgatga ggtccaga 48
<210> 376
<211> 997
<212> DNA
<213> Homo Sapien
```

```
<400> 376
cccacgcqtc cgatcttacc aacaaaacac tcctgaggag aaagaaagag 50
aaaaaatqaa ttcatctaaa tcatctqaaa cacaatqcac agagagagga 150
tgettetett cecaaatgtt ettatggact gttgetggga tececateet 200
atttctcagt gcctgtttca tcaccagatg tgttgtgaca tttcgcatct 250
ttcaaacctg tgatgagaaa aagtttcagc tacctgagaa tttcacagag 300
ctctcctgct acaattatgg atcaggttca gtcaagaatt gttgtccatt 350
gaactgggaa tattttcaat ccagctgcta cttcttttct actgacacca 400
tttcctgggc gttaagttta aagaactgct cagccatggg ggctcacctg 450
qtqqttatca actcacagga qgagcaggaa ttcctttcct acaagaaacc 500
taaaatgaga gagtttttta ttggactgtc agaccaggtt gtcgagggtc 550
agtggcaatg ggtggacggc acacctttga caaagtctct gagcttctgg 600
gatgtagggg agcccaacaa catagctacc ctggaggact gtgccaccat 650
gagagactct tcaaacccaa ggcaaaattg gaatgatgta acctgtttcc 700
tcaattattt tcqqatttqt qaaatqqtaq qaataaatcc tttqaacaaa 750
ggaaaatctc tttaagaaca gaaggcacaa ctcaaatgtg taaagaagga 800
agagcaagaa catggccaca cccaccgccc cacacgagaa atttgtgcgc 850
tqaacttcaa aggacttcat aagtatttqt tactctgata caaataaaaa 900
<210> 377
<211> 219
<212> PRT
<213> Homo Sapien
<400> 377
Met Asn Ser Ser Lys Ser Ser Glu Thr Gln Cys Thr Glu Arg Gly
```

Cys Phe Ser Ser Gln Met Phe Leu Trp Thr Val Ala Gly Ile Pro

Ile Leu Phe Leu Ser Ala Cys Phe Ile Thr Arg Cys Val Val Thr

Phe Arg Ile Phe Gln Thr Cys Asp Glu Lys Lys Phe Gln Leu Pro 50 55 60												
Glu Asn Phe Thr Glu Leu Ser Cys Tyr Asn Tyr Gly Ser Gly Ser 65 70 75												
Val Lys Asn Cys Cys Pro Leu Asn Trp Glu Tyr Phe Gln Ser Ser 80 85 90												
Cys Tyr Phe Phe Ser Thr Asp Thr Ile Ser Trp Ala Leu Ser Leu 95 100 105												
Lys Asn Cys Ser Ala Met Gly Ala His Leu Val Val Ile Asn Ser 110 115 120												
Gln Glu Glu Gln Glu Phe Leu Ser Tyr Lys Lys Pro Lys Met Arg 125 130 135												
Glu Phe Phe Ile Gly Leu Ser Asp Gln Val Val Glu Gly Gln Trp 140 145 150												
Gln Trp Val Asp Gly Thr Pro Leu Thr Lys Ser Leu Ser Phe Trp 155 160 165												
Asp Val Gly Glu Pro Asn Asn Ile Ala Thr Leu Glu Asp Cys Ala 170 175 180												
Thr Met Arg Asp Ser Ser Asn Pro Arg Gln Asn Trp Asn Asp Val 185 190 195												
Thr Cys Phe Leu Asn Tyr Phe Arg Ile Cys Glu Met Val Gly Ile 200 205 210												
Asn Pro Leu Asn Lys Gly Lys Ser Leu 215												
<210> 378 <211> 21 <212> DNA <213> Artificial Sequence												
<220> <223> Synthetic Oligonucleotide Probe												
<400> 378 ttcagcttct gggatgtagg g 21												
<210> 379 <211> 24 <212> DNA <213> Artificial Sequence												
<220> <223> Synthetic Oligonucleotide Probe												
<400> 379 tattcctacc atttcacaaa tccg 24												

```
<210> 380
<211> 49
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 380
ggaggactgt gccaccatga gagactcttc aaacccaagg caaaattgg 49
<210> 381
<211> 26
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 381
gcagattttg aggacagcca cctcca 26
<210> 382
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 382
ggccttgcag acaaccgt 18
<210> 383
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 383
cagactgagg gagatccgag a 21
<210> 384
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 384
cagctgccct tccccaacca 20
<210> 385
```

```
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 385
catcaagcgc ctctacca 18
<210> 386
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 386
cacaaactcg aactgcttct g 21
<210> 387
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 387
 gggccatcac agctccct 18
<210> 388
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 388
 gggatgtggt gaacacagaa ca 22
<210> 389
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 389
tgccagctgc atgctgccag tt 22
<210> 390
<211> 20
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 390
cagaaggatg tcccgtggaa 20
<210> 391
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 391
gccgctgtcc actgcag 17
<210> 392
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 392
 gacggcatcc tcagggccac a 21
<210> 393
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 393
atgtcctcca tgcccacgcg 20
<210> 394
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 394
 gagtgcgaca tcgagagctt 20
<210> 395
<211> 18
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic oligonucleotide probe
<400> 395
ccgcagcctc agtgatga 18
<210> 396
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 396
gaagagcaca gctgcagatc c 21
<210> 397
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 397
gaggtgtcct ggctttggta gt 22
<210> 398
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 398
cctctggcgc ccccactcaa 20
<210> 399
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 399
 ccaggagagc tggcgatg 18
<210> 400
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Synthetic oligonucleotide probe
<400> 400
gcaaattcag ggctcactag aga 23
<210> 401
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 401
cacagagcat ttgtccatca gcagttcag 29
<210> 402
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 402
ggcagagact tccagtcact ga 22
<210> 403
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 403
gccaagggtg gtgttagata gg 22
<210> 404
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 404
caggeceet tgatetgtae ecca 24
<210> 405
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
```

```
<400> 405
 gggacgtgct tctacaagaa cag 23
<210> 406
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 406
 caggcttaca atgttatgat cagaca 26
<210> 407
<211> 31
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 407
tattcagagt tttccattgg cagtgccagt t 31
<210> 408
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 408
tctacatcag cctctctgcg c 21
<210> 409
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 409
 cgatcttctc cacccaggag cgg 23
<210> 410
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 410
 gccaggcctc acattcgt 18
```

```
<210> 411
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 411
ctccctgaat ggcagcctga gca 23
<210> 412
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 412
 aggtgtttat taagggccta cgct 24
<210> 413
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 413
cagagcagag ggtgccttg 19
<210> 414
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 414
 tggcggagtc ccctcttggc t 21
<210> 415
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 415
 ccctgtttcc ctatgcatca ct 22
```

```
<210> 416
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 416
tcaacccctg accctttcct a 21
<210> 417
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 417
 ggcaggggac aagccatctc tcct 24
<210> 418
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 418
 gggactgaac tgccagcttc 20
<210> 419
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 419
 gggccctaac ctcattacct tt 22
<210> 420
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 420
 tgtctgcctc agccccagga agg 23
<210> 421
<211> 21
```

<212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 421 tctgtccacc atcttgcctt g 21 <210> 422 <211> 3554 <212> DNA <213> Homo Sapien <400> 422 gggactacaa gccgcgccgc gctgccgctg gcccctcagc aaccctcgac 50 atggcgctga ggcggccacc gcgactccgg ctctgcgctc ggctgcctga 100 cttcttcctg ctgctgcttt tcaggggctg cctgataggg gctgtaaatc 150 tcaaatccag caatcgaacc ccagtggtac aggaatttga aagtgtggaa 200 ctgtcttgca tcattacgga ttcgcagaca agtgacccca ggatcgagtg 250 gaagaaaatt caagatgaac aaaccacata tgtgtttttt gacaacaaaa 300 ttcagggaga cttggcgggt cgtgcagaaa tactggggaa gacatccctg 350 aagatetgga atgtgacaeg gagagaetea geeetttate getgtgaggt 400 cgttgctcga aatgaccgca aggaaattga tgagattgtg atcgagttaa 450 ctqtqcaaqt qaaqccaqtq acccctqtct gtagaqtqcc gaaqqctqta 500 ccaqtagqca agatqqcaac actgcactqc caggaqagtg aggqccaccc 550 ccggcctcac tacagctggt atcgcaatga tgtaccactg cccacggatt 600 ccagagccaa tcccagattt cgcaattctt ctttccactt aaactctgaa 650 acaggeactt tggtgtteac tgctgtteac aaggaegaet etgggeagta 700 ctactgcatt gcttccaatg acgcaggctc agccaggtgt gaggagcagg 750 agatggaagt ctatgacctg aacattggcg gaattattgg gggggttctg 800 gttgtccttg ctgtactggc cctgatcacg ttgggcatct gctgtgcata 850 cagacgtggc tacttcatca acaataaaca ggatggagaa agttacaaga 900 acccagggaa accagatgga gttaactaca tccgcactga cgaggagggc 950 qacttcaqac acaaqtcatc qtttqtqatc tqaqacccqc qqtqtqqctq 1000 agagegeaca gagegeacgt geacatacct etgetagaaa eteetgteaa 1050

ggcagcgaga gctgatgcac tcggacagag ctagacactc attcagaagc 1100 ttttcgtttt ggccaaagtt gaccactact cttcttactc taacaagcca 1150 catgaataga agaattttcc tcaagatgga cccggtaaat ataaccacaa 1200 ggaagcgaaa ctgggtgcgt tcactgagtt gggttcctaa tctgtttctg 1250 gcctgattcc cgcatgagta ttagggtgat cttaaagagt ttgctcacgt 1300 aaacgcccgt gctgggccct gtgaagccag catgttcacc actggtcgtt 1350 cagcagccac gacagcacca tgtgagatgg cgaggtggct ggacagcacc 1400 agcagcgcat cccggcggga acccagaaaa ggcttcttac acagcagcct 1450 tacttcatcg gcccacagac accaccgcag tttcttctta aaggctctgc 1500 tgatcggtgt tgcagtgtcc attgtggaga agctttttgg atcagcattt 1550 tgtaaaaaca accaaaatca ggaaggtaaa ttggttgctg gaagagggat 1600 cttgcctgag gaaccctgct tgtccaacag ggtgtcagga tttaaggaaa 1650 accttcgtct taggctaagt ctgaaatggt actgaaatat gcttttctat 1700 gggtcttgtt tattttataa aattttacat ctaaattttt gctaaggatg 1750 tattttgatt attgaaaaga aaatttctat ttaaactgta aatatattgt 1800 catacaatgt taaataacct atttttttaa aaaagttcaa cttaaggtag 1850 aagttccaag ctactagtgt taaattggaa aatatcaata attaagagta 1900 ttttacccaa ggaatcctct catggaagtt tactgtgatg ttccttttct 1950 cacacaagtt ttagcctttt tcacaaggga actcatactg tctacacatc 2000 agaccatagt tgcttaggaa acctttaaaa attccagtta agcaatgttg 2050 aaatcagttt gcatctcttc aaaagaaacc tctcaggtta gctttgaact 2100 gcctcttcct gagatgacta ggacagtctg tacccagagg ccacccagaa 2150 gccctcagat gtacatacac agatgccagt cagctcctgg ggttgcgcca 2200 ggcgcccccg ctctagctca ctgttgcctc gctgtctgcc aggaggccct 2250 gccatccttg ggccctggca gtggctgtgt cccagtgagc tttactcacg 2300 tggcccttgc ttcatccagc acagctctca ggtgggcact gcagggacac 2350 tggtgtcttc catgtagcgt cccagctttg ggctcctgta acagacctct 2400 ttttggttat ggatggctca caaaataggg cccccaatgc tattttttt 2450 ttttaagttt gtttaattat ttgttaagat tgtctaaggc caaaggcaat 2500

```
tgcgaaatca agtctgtcaa gtacaataac atttttaaaa gaaaatggat 2550
cccactgttc ctctttgcca cagagaaagc acccagacgc cacaggctct 2600
qtcqcatttc aaaacaaacc atgatggagt qqcqqccagt ccagcctttt 2650
aaagaacgtc aggtggagca gccaggtgaa aggcctggcg gggaggaaag 2700
tgaaacgcct gaatcaaaag cagttttcta attttgactt taaatttttc 2750
atccgccgga gacactgctc ccatttgtgg ggggacatta gcaacatcac 2800
tcagaagcct gtgttcttca agagcaggtg ttctcagcct cacatgccct 2850
gccgtgctgg actcaggact gaagtgctgt aaagcaagga gctgctgaga 2900
aggageacte cactgtgtge etggagaatg geteteacta eteacettgt 2950
ctttcagctt ccagtgtctt gggtttttta tactttgaca gcttttttt 3000
aattgcatac atgagactgt gttgactttt tttagttatg tgaaacactt 3050
tgccqcagqc cqcctqqcaq aqqcaqqaaa tqctccaqca gtqqctcaqt 3100
gctccctqqt qtctqctqca tqqcatcctq qatqcttaqc atqcaaqttc 3150
cetecateat tgecacettg gtagagaggg atggeteece acceteageg 3200
ttqqqqattc acqctccaqc ctccttcttq qttqtcataq tqataqqqta 3250
qccttattqc cccctcttct tataccctaa aaccttctac actagtqcca 3300
tgggaaccag gtctgaaaaa gtagagagaa gtgaaagtag agtctgggaa 3350
gtagetgeet ataactgaga ctagaeggaa aaggaataet egtgtatttt 3400
aagatatgaa tgtgactcaa gactcgaggc cgatacgagg ctgtgattct 3450
gcctttggat ggatgttgct gtacacagat gctacagact tgtactaaca 3500
caccgtaatt tggcatttgt ttaacctcat ttataaaagc ttcaaaaaaa 3550
ccca 3554
```

<210> 423

<211> 310

<212> PRT

<213> Homo Sapien

<400> 423

Met Ala Leu Arg Arg Pro Pro Arg Leu Arg Leu Cys Ala Arg Leu
1 5 10 15

Pro Asp Phe Phe Leu Leu Leu Phe Arg Gly Cys Leu Ile Gly 20 25 30

Ala	Val	Asn	Leu	Lys 35	Ser	Ser	Asn	Arg	Thr 40	Pro	Val	Val	Gln	Glu 45
Phe	Glu	Ser	Val	Glu 50	Leu	Ser	Cys	Ile	Ile 55	Thr	Asp	Ser	Gln	Thr 60
Ser	Asp	Pro	Arg	Ile 65	Glu	Trp	Lys	Lys	Ile 70	Gln	Asp	Glu	Gln	Thr 75
Thr	Tyr	Val	Phe	Phe 80	Asp	Asn	Lys	Ile	Gln 85	Gly	Asp	Leu	Ala	Gly 90
Arg	Ala	Glu	Ile	Leu 95	Gly	Lys	Thr	Ser	Leu 100	Lys	Ile	Trp	Asn	Val 105
Thr	Arg	Arg	Asp	Ser 110	Ala	Leu	Tyr	Arg	Cys 115	Glu	Val	Val	Ala	Arg 120
Asn	Asp	Arg	Lys	Glu 125	Ile	Asp	Glu	Ile	Val 130	Ile	Glu	Leu	Thr	Val 135
Gln	Val	Lys	Pro	Val 140	Thr	Pro	Val	Cys	Arg 145	Val	Pro	Lys	Ala	Val 150
Pro	Val	Gly	Lys	Met 155	Ala	Thr	Leu	His	Cys 160	Gln	Glu	Ser	Glu	Gly 165
His	Pro	Arg	Pro	His 170	Tyr	Ser	Trp	Tyr	Arg 175	Asn	Asp	Val	Pro	Leu 180
Pro	Thr	Asp	Ser	Arg 185	Ala	Asn	Pro	Arg	Phe 190	Arg	Asn	Ser	Ser	Phe 195
His	Leu	Asn	Ser	Glu 200	Thr	Gly	Thr	Leu	Val 205	Phe	Thr	Ala	Val	His 210
Lys	Asp	Asp	Ser	Gly 215	Gln	Tyr	Tyr	Cys	Ile 220	Ala	Ser	Asn	Asp	Ala 225
Gly	Ser	Ala	Arg	Cys 230	Glu	Glu	Gln	Glu	Met 235	Glu	Val	Tyr	Asp	Leu 240
Asn	Ile	Gly	Gly	Ile 245		Gly	Gly	Val	Leu 250	Val	Val	Leu	Ala	Val 255
Leu	Ala	Leu	Ile	Thr 260		Gly	Ile	Cys	Cys 265		Tyr	Arg	Arg	Gly 270
Tyr	Phe	Ile	Asn	Asn	Lys	Gln	Asp	Gly	Glu	Ser	Tyr	Lys	Asn	Pro
				275					280					285
Gly	Lys	Pro	Asp	Gly 290		Asn	Tyr	Ile	Arg 295		: Asp	Glu	Glu	Gly 300
Asp	Phe	Arg	His	Lys 305		Ser	Phe	Val	Ile 310					