Dynamic Programming Optimizations - Codeforces

Several recent problems on Codeforces concerned dynamic programming optimization techniques.

The following table summarizes methods known to me.

Name	Original Recurrence	Sufficient Condition of Applicability	Original Complexity	Optimized Complexity	Links
Convex Hull Optimization1	$dp[i] = min_{j < i} \{dp[j] + b[j] \star a[i]\}$	$b[j] \ge b[j+1]$ optionally $a[i] \le a[i+1]$	$O(n^2)$	O(n)	1 p1
Convex Hull Optimization2	$dp[i][j] = min_{k < j} \{dp[i - 1][k] + b[k] * a[j]\}$	$b[k] \ge b[k+1]$ optionally $a[j] \le a[j+1]$	O(kn²)	O(kn)	1 p1 p2
Divide and Conquer Optimization	$dp[i][j] = min_{k < j} \{dp[i - 1][k] + C[k][j]\}$	$A[i][j] \leq A[i][j+1]$	O(kn²)	O(knlogn)	<u>1</u> p1
Knuth Optimization	$dp[i][j] = min_{i < k < j} \{dp[i][k] + dp[k][j]\} + C[i][j]$	$A[i, j-1] \le A[i, j] \le A[i+1, j]$	<i>O</i> (<i>n</i> ³)	$O(n^2)$	12 p1

Notes:

- A[i][j] the smallest k that gives optimal answer, for example in dp[i][j] = dp[i-1][k] + C[k][j]
- C[i][j] some given cost function
- We can generalize a bit in the following way: $dp[i] = min_{i < i} \{F[j] + b[j] * a[i]\}$, where F[j] is computed from dp[j] in constant time.
- It looks like Convex Hull Optimization2 is a special case of Divide and Conquer Optimization.
- It is claimed (in the references) that **Knuth Optimization** is applicable if C[i][j] satisfies the following 2 conditions:
- quadrangle inequality:

$$C[a][c] + C[b][d] \le C[a][d] + C[b][c], \ a \le b \le c \le d$$

monotonicity:

$$C[b][c] \le C[a][d], a \le b \le c \le d$$

• It is claimed (in the references) that the recurrence $dp[j] = min_{i < j} \{dp[i] + C[i][j]\}$ can be solved in O(nlogn) (and even O(n)) if C[i][j] satisfies **quadrangle inequality**. WJMZBMR described how to solve some case of this problem.

Open questions:

- 1. Are there any other optimization techniques?
- 2. What is the sufficient condition of applying **Divide and Conquer Optimization** in terms of function $C[\bar{I}][\bar{I}]$? Answered

References:

- "Efficient dynamic programming using quadrangle inequalities" by F. Frances Yao. find
- "Speed-Up in Dynamic Programming" by F. Frances Yao. find
- "The Least Weight Subsequence Problem" by D. S. Hirschberg, L. L. Larmore. find
- "Dynamic programming with convexity, concavity and sparsity" by Zvi Galil, Kunsoo Park. find
- "A Linear-Time Algorithm for Concave One-Dimensional Dynamic Programming" by Zvi Galil, Kunsoo Park. find

Please, share your knowledge and links on the topic.