APPM 5600 - HOMEWORK # 12

- 1. (20 point)
 - (a) (6 points) Write a code to approximate $\int_{-5}^{5} \frac{1}{1+s^2} ds$ using a composite Trapezoidal rule. To do this, partition the interval [-5,5] into equally spaced points t_0,t_1,\ldots,t_n . Write another code to approximate $\int_{-5}^{5} \frac{1}{1+s^2} ds$ using a composite Simpson's rule. To do this, partition the interval [-5,5] into equally spaced points t_0,t_1,\ldots,t_n where n=2k is even. The even indexed points should be the endpoints of your subintervals. You may combine the two into one code that selects the desired method if you wish. Turn in a listing of your code(s).
 - (b) (7 points) Use the error estimates derived in class to choose n so that

$$\left| \int_{-5}^{5} \frac{1}{1+s^2} ds - T_n \right| < 10^{-4} \text{ and } \left| \int_{-5}^{5} \frac{1}{1+s^2} ds - S_n \right| < 10^{-4},$$

where T_n is the result of the composite Trapezoidal rule and where S_n is the result of the composite Simpson's rule. Be sure to explain your reasoning for choosing n in both cases (these n values will be different in the two cases).

c) (7 points) Run your code with the predicted values of n and compare your computed values S_n and T_n with that of the Matlab (or Scipy) function quad on the same problem. Run tt quad twice, once with the default tolerance of 10^{-6} and another time with the set tolerance of 10^{-4} . Report the number of function evaluations required in both cases and compare these to the number of function values your codes (both S_n and T_n) required to meet the tolerance

Turn in your codes and the results of this test.

2. (20 points) Apply the composite midpoint rule, composite Trapezoidal rule, and composite Simpson's rule to approximate the integral

$$-4\int_0^1 x \ln(x) dx = 1.$$

Use n = 2, 4, 8, 16, ..., 512. Plot the absolute value of the error versus the stepsize h on a single log-log plot. Discuss the relationship of your results with the error formulas for these quadratures.

- 3. (30 points) Derive a quadrature based on the cubic Hermite interpolating polynomial with data f(a), f(b), f'(a), and f'(b). Derive an upper bound on the error.
- 4. (30 points) Assume the error in an integration formula has the asymptotic expansion

$$I - I_n = \frac{C_1}{n\sqrt{n}} + \frac{C_2}{n^2} + \frac{C_3}{n^2\sqrt{n}} + \frac{C_4}{n^3} + \cdots$$

Generalize the Richardson extrapolation process to obtain an estimate of I with an error of order $\frac{1}{n^2\sqrt{n}}$. Assume that three values I_n , $I_{n/2}$ and $I_{n/4}$ have been computed.

1