Digitalna vezja UL, FRI

Kombinacijska vezja - Primeri

Zapisi in pretvorbe logičnih funkcij

- Podani sta logični funkciji f_A in f_B
- Zapišite jih v DNO in v Veitchev diagram
- Funkcije: $X \uparrow Y = X.Y = \overline{X} \vee \overline{Y}$ $X \downarrow Y = X \lor Y = \overline{X}.\overline{Y}$ $X \oplus V = \overline{X}.V \vee X.\overline{V}$ $X \oplus V = \overline{X}.\overline{V} \vee X.V$

$$f_{A}(X, Y, Z) = (X \uparrow Y) \uparrow (\overline{X} \lor \overline{Z}) =$$

$$= \overline{\overline{X.Y.}}(\overline{X.Z}) = X.Y \lor X.Z$$

$$f_{B}(A, B, C, D) = (A \oplus B) \uparrow ((C \lor \overline{D}) \downarrow \overline{A}) =$$

$$\Gamma_{B}(A,B,C,D) = (A \oplus B) + ((C \vee D) \vee A) = \\
= (A \oplus B) \cdot ((\overline{C \vee \overline{D}}) \vee \overline{A}) = \\
= (\overline{A \oplus B}) \vee ((\overline{C \vee \overline{D}}) \vee \overline{A}) = \\
= (\overline{A \cdot B} \vee A \cdot B) \vee (C \vee \overline{D} \vee \overline{A}) = PKNO \\
= \overline{A \cdot B} \vee A \cdot B \vee C \vee \overline{D} \vee \overline{A} \qquad f_{B}(A,B,C,D) = \overline{A} \vee B \vee C \vee \overline{D}$$

 $= \overline{A}.\overline{B} \vee A.B \vee C \vee \overline{D} \vee \overline{A}$

		X		
y	1	1		
,		1		
		_	Z	

1		1	1	1	1
В	1	1	1	1	
			1	1	1
		1	1	1	1

Inkrementer

Vhodi: $B=(b_2,b_1,b_0)$, Izhodi $C=(c_2,c_1,c_0)$

Funkcija: 3-bitno število B se poveča za 2 (C=B+2)

Naloga: Zapis in realizacija izhodov C z XOR vrati

Rešitev: Minimalna oblika, Linearna funkcija

 $C_1 = b_1$

b ₂	b_1	b_0	c ₂	C_1	c_0
0	0	0	0	1	0
0	0	1	0	1	1
0	1	0	1	0	0
0	1	1	1	0	1
1	0	0	1	1	0
1	0	1	1	1	1
1	1	0	0	0	0
1	1	1	0	0	1
				1	C_0

$$c_2 = \overline{b_2} \cdot b_1 \vee b_2 \cdot \overline{b_1} =$$

= $b_2 \oplus b_1$

Senzorski sistem

- V letalu je sistem za pregled pritiska (P), temperature (T) in krožne hitrosti motorjev – RPM z uporabo senzorjev, ki imajo izhode določene kot:
 - ▶ RPM = 0, če je hitrost < 4800 rpm
 - P = 0, če je pritisk < 220 psi
 - T = 0, če je temperatura $< 200^{\circ}$ F
- Logično vezje, ki skrbi za kontrolo opozorilne luči v pilotski kabini ima pri zgornjih pogojih na izhodu W=I. Prižge se opozorilna luč.
- Zapišite pogoje pri katerih se pilotu prižge opozorilna luč W.
- Spremenite vezje v zapis z
 - NAND vrati
 - NOR vrati.

Rešitev

▶ Logična funkcija: $W = T.(P \lor \overline{RPM}) = T.P \lor T.\overline{RPM}$

__T___

- Zapis s pogoji:
- \rightarrow W=I, če jeT=I and P=I orT=I and RPM =0)

Р	1	1	
ı	1		

$$W = T.(P \vee \overline{RPM}) = \overline{\overline{T} \vee (P \vee \overline{RPM})} = \overline{T} \vee (P \vee \overline{RPM}) = \overline{T} \vee (P \vee \overline{RPM})$$

Senzorski sistem-nadgradnja

- Osnovni opozorilni sistem v letalu ima tudi senzor višine (V)
- V=1, če je višina < 3000m</p>
- opozorilna lučka se prižge, če je WI=I (senzorji so v tem primeru podani z V=I and P=0 and RPM=0.

$$W1 = V.\overline{P}.\overline{RPM}$$

7-segmentni prikazovalnik

Prikaz BCD števil

- Vezje za prikaz BCD števil
- Krmilni vhodi v logisimu
- Pravilnostna tabela
- Realizacija: 7-bitni dekodirnik

	b3 b2 b1 b0	a b c d e f g
0	0000	1111110
I	0001	0110000
2	0010	1101101
3	0011	1111001
4	0100	0110011
5	0101	1011011
6	0110	1011111
7	0111	1110000
8	1000	111111
9	1001	1111011

- ▶ Realizacija izhodnih funkcij dekodirnika a, b, c, d, e, f, g:
- ▶ Logična vrata (AND, OR, NOT, NAND, XOR), MUXi

$$a = (b_3 \lor b_2 \lor b_1 \lor \overline{b_0}) \cdot (b_3 \lor \overline{b_2} \lor b_1 \lor b_0)$$

 $a = b_3 \lor b_1 \lor b_2 \cdot b_0 \lor \overline{b_2} \cdot \overline{b_0} =$
 $= b_3 \lor b_1 \lor b_2 \oplus b_0$

$$b = (b_3 \lor \overline{b_2} \lor b_1 \lor \overline{b_0}) \cdot (b_3 \lor \overline{b_2} \lor \overline{b_1} \lor b_0)$$

 $b = b_3 \lor \overline{b_2} \lor b_1 \cdot b_0 \lor \overline{b_1} \cdot \overline{b_0}$

С	k)3			
b ₂	X	Х	1	1	
	X	X	1	1	
	1	X	1	1	$ b_0 $
	1	X		1	
		b)1	•	_

а	b ₃				
h	Х	Х	1		
b ₂	X	X		1	h
	1	X	1		b ₀
	1	X	1	1	
		ŀ	o ₁	-	

$$d=(b_3\vee b_2\vee b_1\vee \overline{b_0}).(b_3\vee \overline{b_2}\vee b_1\vee b_0).$$
 $(b_3\vee \overline{b_2}\vee \overline{b_1}\vee \overline{b_0})$

е b_3 X b_2 Χ X b_0 X Χ b_1

$$d = \overline{b}_2 \cdot \overline{b}_0 \vee b_1 \vee \overline{b}_0$$

$$d = \overline{b_2}.\overline{b_0} \vee b_1 \vee \overline{b_0} \qquad d = (b_3 \vee \overline{b_1} \vee \overline{b_0}).(b_3 \vee b_2 \vee \overline{b_0}).(b_3 \vee b_2 \vee \overline{b_1})$$

 b_1

$$d = (b_3 \vee b_2 \vee b_1).(b_3 \vee \overline{b_2} \vee \overline{b_1} \vee \overline{b_0})$$