Generacion de variables aleatorias discretas

Existen 2 formas de generar variables aleatorias discretas:

- metodo de la transformada inversa
- metodo de aceptacion y rechazo.

Metodo de la transformada inversa

Se basa en la inversa de la funcion de distribucion acomulada. Debemos establecer una correspondencia biunivoca entre ciertos subintervalos de [0,1) y los valores de la variable aleatoria X. La correspondencia se establece de la siguiente manera:

$$egin{aligned} x_0 &
ightarrow I_0 = [0,p_0) \ x_1 &
ightarrow I_1 = [p_0,p_0+p_1) \ x_2 &
ightarrow I_2 = [p_0+p_1,p_0+p_1+p_2) \ &
ightarrow \ dots \ x_n &
ightarrow I_n = [p_0+p_1+\cdots+p_{n-1},1) \end{aligned}$$

De modo que entonces generando alguna valor de una variable aleatoria uniforme, y segun a que intervalo pertenece es el valor de X que se genera.

```
# x: valores de la variable aleatoria
# p: probabilidades de los valores de la variable aleatoria
def discretaX(p, x):
    u = random()
    i = 0
    F = p[0]
    while u >= F:
        i += 1
        F += p[i]
    return x[i]
```

Una posible mejora para el agoritmo es ordenar las probabilidades de mayor a menor (junto con sus valores esperados) para asi reducir la cantidad de comparaciones que se deben hacer.

Generacion uniforme discreta

si X tiene distribucion uniforme discreta en {1,...,n} entonces $p_n=1/n$. Entonces el algoritmo es:

```
def uniformeDiscreta(n):
    return int(random() * n) + 1
```

Si queremos generar una uniforme con valores entre [m, k] entonces debemos simplemente generar valores entre 1 y k-m +1 y sumarles m-1.

```
def uniformeDiscreta(m, k):
    return int(random() * (k - m + 1)) + m
```

Generacion de permutaciones

Un uso de generar variables aleatorias unfiormes es para poder generar permutaciones aleatorias de un arreglo. La idea consiste en intercambiar el valor a_n con algun valor en { a_n,\cdots,a_{N-1} } y luego intercambiar a_{N-2} con algun valor de $\{a_{N-2},a_{N-1}\}$

```
def permutacion(a): #a=[a[0], a[1], ..., a[N-1]]
  N = len(a)
  for j in range(N-1):
     indice = int((N-j) * random()) + j
     a[j], a[indice] = a[indice], a[j]
  return a
```

Para hacerlo mas eficiente podemos comenzar a recorrer el arreglo desde atras para adelante. Y queda:

```
def permutacion(a): #a=[a[0],a[1],...,a[N-1]]
  N = len(a)
  for j in range(N-1,0,-1):
    indice = int((j+1) * random())
    a[j], a[indice] = a[indice], a[j]
```

Esto tambien sirve para obtener un subconjunto aleatorio de un conjunto de N elementos.

```
def subcAleatorio(r,A):
    N = len(A)
    for j in range(N-1, N-1-r, -1):
        indice = int((j+1) * random())
        A[j], A[indice] = A[indice], A[j]
    return A[N-r:]
```

Generacion de geométrica

Una variable aleatoria geometrica con parametro p tiene una probabilidad de masa dada por:

$$p_i=P(X=i)=p(1-p)^{i-1}\quad i\geq 1$$

Y su funcion de distribucion acomulada es:

$$F(j-1) = P(X \le j-1) = 1 - (1-p)^j$$

Entonces el metodo tinversa asigna valor X = j si $U \in [1-(1-p)^(j-1), 1-(1-p)^j)$. Dado que las potencias de q son decrecientes entonces X es el minimo exponente de q que sea menor que 1-U.Y tomando el logaritmo obtenemos:

```
def geometrica(p):
    return int(log(1-random())/log(1-p)) + 1
```

Generacion de Bernoulli

```
def bernoulli(p):
    return 1 if random()
```

Si queremos generar N Bernoulli(p), bastacon saber que una Geometrica(p) es la variable que mide el numero de ensayos independientes de una Bernoulli(p) hasta obtener un exito. Entonces podemos generar N Bernoulli(p) generando Geometricas(p).

```
def Nbernoulli(N,p):
    Bernoullis = [0] * N
    j = geometrica(p) - 1
    while j < N:
        Bernoullis[j] = 1
        j += geometrica(p)
    return Bernoullis</pre>
```

Generacion de Poisson

La distribucion de Poisson con parametro λ tiene una probabilidad de masa dada por:

$$p_i = P(X=i) = rac{\lambda^i}{i!} e^{-\lambda} \quad i \geq 0$$

Y las probabilidades cumplen una relacion de recurrencia:

$$p_{i+1} = rac{\lambda}{i+1} p_i$$

```
def poisson(lamda):
    i = 0
    p = exp(-lamda)
    F = p
    u = random()
    while u >= F:
        i += 1
        p *= lamda / i
        F += p
    return i
```

Como el valor mas probable a generar es λ entonces podemos partir a buscar desde ahi, para arriba o para abajo dependiendo del valor generado por U.

```
def Poisson(lamda):
    p = exp(-lamda)
    F = p
    for j in range(1, int(lamda) + 1):
        p *= lamda / j
        F += p
    u = random()
    if u >= F:
        j = int(lamda) + 1
        while u >= F:
            p *= lamda / j
            F += p
            j += 1
        return j - 1
    else:
        j = int(lamda)
        while u < F:
            F -= p
            p *= j / lamda
            j -= 1
        return j+1
```

Generacion de binomial

Si $X \sim Binomial(n,p)$ entonces la formula recursiva para las probabilidades esta dada por:

$$p_0 = (1-p)^n \quad p_{i+1} = rac{n-1}{1+1} rac{p}{1-p} p_i$$

Y un algoritmo posible es:

```
def Binomial(n,p):
    c = p/(1-p)
    prob = (1-p)**n
    F = prob
    i = 0
    u = random()
    while u >= F:
        prob *= c * (n-i)/(i+1)
        F += prob
        i += 1
    return i
```

Metodo de aceptacion y rechazo

El metodo de aceptacion y rechazo para generar una variable aleatoria X supone que podemos generar una variable aleatoria Y que cumpla lo siguiente:

- Si $P(X=x_i)$ entonces $P(Y=x_i)>0$, para todo x_i en el rango de X.
- Existe una constante c > 0, tal que

$$\frac{P(X=x_j)}{P(Y=x_i)} \le c$$

Si denotamos $p_j = P(X=x_j)yq_j = P(X=q_j)$ entonces obtenemos que:

$$\sum_{j\geq 1} p_j \leq c \cdot \sum_{j\geq 1} q_j \leq c$$

Entonces asumimos c > 1 y 1/c < 1.

```
Simular Y
u = random()
if u < p(Y) / c * q(Y):
    return Y
else:
    volver a simular Y</pre>
```

Se comporta como una variable geometrica ya que repite hasta tener un exito.

La probabilidad de generar algun valor de X es la probabilidad de aceptar el valor de Y en esa iteracion.

$$P(\text{aceptar Y}) = \sum_{j \ge 1} P(Y = y_j) \cdot P(U \le \frac{p_j}{c \, q_j}) = \sum_{j \ge 1} q_j \cdot \frac{p_j}{c \, q_j} = \frac{1}{c}.$$

Y tambien tenemos que la probabilidad de generar algun valor x_i de X es:

$$\begin{split} P(\operatorname{generar} x_j) &= \sum_{k \geq 1} P(\operatorname{generar} x_j \text{ en la iteración } k) \\ &= \sum_{k \geq 1} P(\operatorname{rechazar} Y \ (k-1) \text{ veces y aceptar } Y = x_j \text{ en la iteración } k) \\ &= \sum_{k \geq 1} (1 - \frac{1}{c})^{k-1} P(Y = x_j, \ U \leq \frac{p_j}{c \, q_j}) \\ &= \sum_{k \geq 1} (1 - \frac{1}{c})^{k-1} q_j \, \frac{p_j}{c \, q_j} \\ &= p_j. \end{split}$$

Por lo tanto vemos que el numero de iteraciones del algoritmo hasta aceptar el valor de Y es una distribucion geometrica con probabilidad de exito 1/c y fracaso 1 - 1/c

Para poder tomar esta cota c, debo encontrar el valor maximo que puede tomar la funcion $f(x)=rac{p(x)}{q(x)}$ para todo x en el rango de X. Esto, como son variables discretas, lo debo analizar viendo cuales son los posibles valores de cada una.

Metodo de composicion

La idea de la composicion es cuando una variable aleatoria tiene cierta probabilidad de ser de un tipo y otra probabilidad de ser de otro tipo. $P(X=j)=\alpha p_j+(1-\alpha)q_j$ donde α es la probabilidad de que sea de tipo p y $1-\alpha$ es la probabilidad de que sea de tipo q. Y ademas $P(X_1=x_j)=p_j$ y $P(X_2=x_j)=q_j$.

Entonces puedo generar los valores de X de la siguiente manera:

```
def composicion(alpha):
    u = random()
    if u < alpha:
        return X1()
    else:
        return X2()</pre>
```

Metodo de la urna

Es un metodo sencillo, sea una variable aleatoria X que toma un numero finito de valores, entonces debo considerar un valor $k\in\mathbb{N}$ tal que kp_j sea entero. Ahora considero un arreglo A de k posiciones y almaceno cada valor i en kp_i posiciones de A. Luego genero un valor aleatorio entre 1 y k y devuelvo el valor que esta en esa posicion de A.

```
def urnaX(A):
    I = int(random() * len(A))
    return A[I]
```