# Artificial Intelligence

**FALL 2023** 

Lecture No:8 (A) Genetic Algorithm



# **Genetic Algorithm**



8-QUEENS PROBLEM

# **Biology Concepts**

- Population
- Fitness
- Selection
- Crossover
- Mutation

# **Population**

### Biology

Collection of individuals.



### Algorithm

▶ Collection of states.





### **Fitness**

### Biology

More healthy, less prone to diseases.



### Algorithm

Closest to the final solution.



### **Selection**

### Biology

 Selecting species that are the most biologically fit.



### Algorithm

 Selecting states that are closest to the solution (Fittest).



### **Crossover**

# Biology

▶ Mating or Reproducing

### Algorithm

▶ Interchanging values between selected states.

### **Mutation**

### Biology

Change or variation.



### Algorithm

▶ Alteration.

**Before Mutation** 

A5 1 1 1 0 0 0

After Mutation

A5 1 1 0 1 1 0

### **8-Queens Problem**

Arrange 8 queens on a standard chess board in such a way that no queen attacks each other.



# **Solving the 8-Queen Problem using the Genetic Algorithm**

- Step 1: Representing individuals.
- Step 2: Generating an initial Population.
- Step 3: Applying a Fitness Function.
- Step 4: Selecting parents for mating in accordance to their fitness.
- Step 5: Crossover of parents to produce new generation.
- Step 6: Mutation of new generation to bring diversity.
- Step 7: Repeat until solution is reached.

# **Step 1: Representing Individuals**

- Formulate an appropriate method to represent individuals of a population.
- Array.
- ▶ Index: Column.
- Value: Row.

|   | 3 | 2 | 7 | 5 | 2 | 4 | 1   | 1    |
|---|---|---|---|---|---|---|-----|------|
| - | • | - | • | _ | - | - | 3.5 | - 23 |



# **Step 2: Generate Initial Population**

Generate random arrangements of 8 queens on a standard chess board.



#### Individual



3 2 7 5 2 4 1 1

Fitness = No. of non attacking pairs

▶ Queen 1: 6

#### Individual



3 2 7 5 2 4 1 1

- Queen 1: 6
- ▶ Queen 2: 5

#### Individual



3 2 7 5 2 4 1 1

- ▶ Queen 1: 6
- ▶ Queen 2: 5
- Queen 3: 4

#### Individual



3 2 7 5 2 4 1 1

- ▶ Queen 1: 6
- ▶ Queen 2: 5
- ▶ Queen 3: 4
- ▶ Queen 4: 3

#### Individual



3 2 7 5 2 4 1 1

- ▶ Queen 1: 6
- ▶ Queen 2: 5
- ▶ Queen 3: 4
- ▶ Queen 4: 3
- ▶ Queen 5: 3

#### Individual



3 2 7 5 2 4 1 1

- ▶ Queen 1: 6
- ▶ Queen 2: 5
- ▶ Queen 3: 4
- ▶ Queen 4: 3
- ▶ Queen 5: 3
- ▶ Queen 6: 2

#### Individual



3 2 7 5 2 4 1 1

- ▶ Queen 1: 6
- ▶ Queen 2: 5
- ▶ Queen 3: 4
- ▶ Queen 4: 3
- Queen 5: 3
- ▶ Queen 6: 2
- ▶ Queen 7: 0

#### Individual



3 2 7 5 2 4 1 1

- ▶ Queen 1: 6
- ▶ Queen 2: 5
- ▶ Queen 3: 4
- ▶ Queen 4: 3
- ▶ Queen 5: 3
- ▶ Queen 6: 2
- ▶ Queen 7: 0
- ▶ Queen 8: 0

#### Individual



3 2 7 5 2 4 1 1

- ▶ Queen 1: 6
- ▶ Queen 2: 5
- ▶ Queen 3: 4
- ▶ Queen 4: 3
- ▶ Queen 5: 3
- ▶ Queen 6: 2
- ▶ Queen 7: 0
- ▶ Queen 8: 0
- ▶ Total: 23

# **Step 3: Apply Fitness Function (Cont.)**

### > Individuals



# **Step 3: Apply Fitness Function (Cont.)**



# **Step 3: Apply Fitness Function (Cont.)**



### **Step 4: Selection**

- There are various methods of selection.
- Roulette Wheel, Tournament, Rank, etc.
- Stochastic Universal Sampling (SUS).
- Population is divided on a wheel according to their respective percentages of fitness and two fixed points are placed.
- Wheel is spun and those individuals are selected at which the fixed points are pointing when the wheel stops.

# **Step 4: Selection (Cont.)**



# **Step 4: Selection (Cont.)**



B and D are selected as parents.

# **Step 5: Crossover**



# **Step 5: Crossover (Cont.)**



# **Step 6: Mutation**



# **Step 6: Mutation (Cont.)**



### Step 7: Repeat

- All steps are repeated until best solution is reached.
- ▶ Best solution = Highest fitness score (28 in this case).

# **Class Task:**

| A | 2 | 3 | 4 | 7 | 5 | 1 | 3 | 6 |
|---|---|---|---|---|---|---|---|---|
| В | 3 | 1 | 5 | 5 | 2 | 8 | 6 | 7 |
|   |   |   |   |   |   |   |   |   |
| C | 2 | 2 | 3 | 4 | 5 | 6 | 8 | 4 |
| _ |   |   |   |   |   |   |   |   |
| D | 3 | 3 | 1 | 2 | 1 | 4 | 5 | 3 |
| E | 1 | 6 | 7 | 3 | 6 | 4 | 3 | 7 |
|   |   |   |   |   |   |   |   |   |
| F | 2 | 2 | 1 | 4 | 5 | 7 | 8 | 3 |

### **Summary**

- Method of representation is formulated.
- Random initial population is generated.
- Fitness Function is applied.
- Selection of parents.
- Crossover of parents to produce next generation.
- Mutation to bring diversity.
- All steps are repeated until solution is reached.