

Home

About

Contact

Get Started >>>

MACHINE LEARNING CASE STUDY PROJECT

Learn More

Play Video

CARDEKHO.COM

CarDekho.com is a one-stop, tech-driven platform for car seekers in India—starting from in-depth research to final purchase—backed by a powerful ecosystem that includes vehicle listings, virtual tours, insurance, and finance. Founded in 2008, it's a unicorn-scale venture with robust multichannel monetization.

Learn More

PROBLEM STATEMENT

The used car market in India is a dynamic and everchanging landscape. Prices can fluctuate wildly based on a variety of factors including the make and model of the car, its mileage, its condition and the current market conditions. As a result, it can be difficult for sellers to accurately price their cars.

DATASET LINK

APPROACH

We propose to develop a machine learning model that can predict the price of a used car based on its features. The model will be trained on a dataset of used cars that have been sold on Cardekho.com in India. The model will then be able to be used to predict the price of any used car, given its features.

OBJECTIVE

To build suitable Machine Learning Model for Used Car Price Prediction.

- 1. Understanding the problem statement
- 2.Data collection (Bringing all the data together)
- 3.Understanding the data (Description, checking null values)
- 4.Data cleaning
- 5.Exploratory data analysis (EDA)

IMPORTING ALL RELAVANT LIBRARIES

UNDERSTANDING THE DATA

→ (15411, 14) COLUMNS & ROWS

data.info()

memory usage: 1.6+ MB

#	Column	Non-Null Count	Dtype		
0	Unnamed: 0	15411 non-null	int64		
1	car_name	15411 non-null	object		
2	brand	15411 non-null	object		
3	model	15411 non-null	object		
4	vehicle_age	15411 non-null	int64		
5	km_driven	15411 non-null	int64		
6	seller_type	15411 non-null	object		
7	fuel_type	15411 non-null	object		
8	transmission_type	15411 non-null	object		
9	mileage	15411 non-null	float64		
10	engine	15411 non-null	int64		
11	max_power	15411 non-null	float64		
12	seats	15411 non-null	int64		
13	selling_price	15411 non-null	int64		
dtypes: float64(2), int		64(6), object(6)			

NO NULL VALUES

EXPLORATORY DATA ANALYSIS

Univariate analysis

When we analyze each column one by one

Feature engineering

the process of selecting, transforming, and creating new features from raw data to improve the performance of machine learning models

Q

UNIVARIATE ANALYSIS

()

CREATE A HISTOGRAM (FREQUENCY DISTRIBUTION GRAPH) FOR NUMERICAL COLUMNS

```
#Create a Histogram (Frequency distribution graph) for Numerical columns

plt.figure(figsize = [10,5])
sns.distplot(data['mileage'])
plt.show()
```


INSIGHTS

 The majority of cars in the dataset have a mileage between approximately 15 kmpl and 25 kmpl, with the distribution peaking around 20 kmpl. There are fewer cars with very low or very high mileage.

CREATE A BARPLOT FOR NUMERICAL COLUMNS

Home

```
[ ] sns.barplot(x = data['seller_type'],y = data['selling_price'])
plt.show()
```


INSIGHTS

• Cars sold by 'Dealer' generally have a higher average selling price compared to those sold by 'Individual' sellers. The average selling price for 'Trustmark Dealer' appears to be somewhere between 'Dealer' and 'Individual'

FEATURE ENGINEERING

₹

15410

15411 rows × 10 columns

13000

Dealer

Petrol

```
0
```

```
#Feature engineering

data.head()
model_data = data.copy()

model_data.drop(labels = ['car_name','brand','model','Unnamed: 0'], axis = 1, inplace = True)

model_data
```

Home

		vehicle_age	km_driven	seller_type	fuel_type	transmission_type	mileage	engine	max_power	seats	selling_price
	0	9	120000	Individual	Petrol	Manual	19.70	796	46.30	5	120000
	1	5	20000	Individual	Petrol	Manual	18.90	1197	82.00	5	550000
	2	11	60000	Individual	Petrol	Manual	17.00	1197	80.00	5	215000
	3	9	37000	Individual	Petrol	Manual	20.92	998	67.10	5	226000
	4	6	30000	Dealer	Diesel	Manual	22.77	1498	98.59	5	570000
	15406	9	10723	Dealer	Petrol	Manual	19.81	1086	68.05	5	250000
	15407	2	18000	Dealer	Petrol	Manual	17.50	1373	91.10	7	925000
	15408	6	67000	Dealer	Diesel	Manual	21.14	1498	103.52	5	425000
	15409	5	3800000	Dealer	Diesel	Manual	16.00	2179	140.00	7	1225000

18.00

Automatic

1497

117.60

1200000

Home About

Contact

About

Lets create independent and dependent variables


```
x = model data.drop('selling price',axis = 1)
X
```

```
y = model data['selling price']
```

independent variables (features) are the inputs used to predict an outcome, while the dependent variable (target) is the outcome we are trying to predict

Q

"Model building: Train-test split"

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test =
train_test_split(x,y,test_size = 0.2)

#80% of data will be used in training and 20 % will be used in Testing


```
#Import libraries for Model Building
```

from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error,r2_score

Regressor = LinearRegression().fit(x_train,y_train)

pred = Regressor.predict(x_test)

Evaluation of the model

r_square = r2_score(y_true = y_test,y_pred = pred)

→ • 0.530661637160916

pred

→ array([423825.77755564, 2935009.24577014, 838308.67127006, ..., 1992224.98994278, 2093721.91521314, -190963.57873385])

Contact

Machine Learning

Q

INSIGHTS

Relationships between variables:

The bar plot of seller_type vs selling_price suggests that cars sold by 'Dealer' and 'Trustmark Dealer'
generally have higher selling prices than those sold by 'Individual' sellers.

Model Performance:

• The **R-squared value of approximately 0.53** indicates that the linear regression model explains about 53% of the variance in the selling price. This suggests that the model captures some of the relationships between the features and the selling price, but there is still a significant portion of the variance that is not explained by the model. This could be due to various factors, such as missing important features, non-linear relationships, or noise in the data.

THAK YOU

I welcome and appreciate your

thoughts about this project.

Always open to suggestions, let's

connect!

