Prasanth Shaji, Deepak Venkataram

Benchmarking Training of Neural Networks on Embedded Devices

Comparing Training of Neural Network Frameworks vs Systems

Programming Languages like C/C++

Training on embedded devices is an area that still requires a lot of attention

Contents

Pa	rt I: Int	roduction	5
1	Backs	round	7
	1.1	Development Process for Embedded Linux	
		1.1.1 SDKs & Compiler Toolchains	
	1.2	Training on Device	7
		1.2.1 Federated Learning	7
	1.3	Development of Neural Network Application	7
		1.3.1 Different Programming Paradigms	
	1.4	General Distribution of Work	7
2	Theor	y	8
	2.1	Artificial Neural Network (ANN)	
	2.2	ANN Performance Optimisations Techniques	
	2.3	Hardware Support for Neural Networks	
	2.4	Embedded Linux	
	2.5	Performance Evaluation	
D.	II. I		0
Pa	rt II: In	plementation	9
3	Desig	1	
	3.1	Artificial Neural Network Development Process	
		3.1.1 Cross compilers & Build System	
	3.2	Handwritten Digit Recognition (HDR)	
		3.2.1 HDR-NN Training	12
		3.2.2 Verifying Correctness	12
4	Devel	opment	13
	4.1	iMX6 Custom Board Target	
		4.1.1 ECU / iMX6 Evaluation Board Overview	
		4.1.2 Testing on Device	13
	4.2	HDR-NN Implementation	
		4.2.1 Python - Numpy	13
		4.2.2 Tensorflow Lite	
		4.2.3 C	14
		4.2.4 CPP - Eigen	14
Pa	rt III· A	nalysis	15
		·	
5		S	
	5.1	HDR-NN comparisons	
		5.1.1 Python - Numpy	
		5.1.2 Tensorflow Lite	
		5.1.3 C	
	<i>5</i> 2	5.1.4 CPP - Eigen	
	5.2	CMSIS-NN based Optimisations to Training 5.2.1 Quantisation	18
		1/1 Uniantisation	1.8

	5.2.2 Pruning the Network	18
6	Discussion	19
7	Conclusion and Future Work	20
Re	eferences	21
Ap	ppendixes	23
Вι	The Yocto Project	25 25
Sc	eania C300 Communicator	26

Part I: Introduction

An embedded system is a combination of hardware and software components put together to achieve a specific task. Often, embedded systems are built into a larger device or system and are used to collect, store, process, and analyse data, as well as to control the device's behaviour. Embedded devices are a category of tiny devices with physical, computational and memory constraints that are programmable to perform dedicated tasks. Like most of the automotive industry, Scania employs embedded systems called Electronic Control Units (ECUs) in their trucks to supervise and regulate essential subsystems like the engine, transmission, braking, and electrical systems. Each of these subsystems has one or more ECUs to gather system data and transmit it to a central communicator via the Controller Area Network (CAN) interface. The latest fleet of trucks will receive upgraded ECUs and communicators with high performance hardware enabling faster and advanced data collection. This upgrade presents an opportunity to reuse the on-board hardware that is currently available.

Machine learning (ML) on embedded devices is becoming increasingly popular due to its ability to provide real-time insight and intelligence to devices. But this technology presents a unique set of challenges due to the limited resources available on these devices. Embedded devices are designed to be power efficient, have limited memory and processing power, and require closely tailored algorithms, making it difficult to use pre-existing machine learning models. Furthermore, embedded devices are often expected to produce real-time results, which further complicates the development process. Despite these challenges, machine learning on embedded devices has potential applications in a variety of areas, such as in the fields of robotics and autonomous vehicles.

One such ML application Scania is has been developing in their LOBSTR and FAMOUS projects is the anomaly and fault detection models in a federated learning environment. Targeting to run the anomaly detection models on the existing ECUs with limited resources has many benefits and challenges. Some of them are described below -

Benefits:

• Scania currently runs a massive fleet of more than 600,000 connected heavy vehicles. The company's truck sales make up 62% of its global sales and Scania has been adding 60,000 trucks to it's fleet annually. The latest addition of connected trucks will be embedded with upgraded ECUs and communication devices. However, this upgrade will make the stock of older hardware devices to become obsolete and regarded as e-waste, which could be prevented. Scania is committed to promote a shift towards autonomous and eco-friendly

- transport systems. Exploring the possibility of repurposing existing ECUs to run ML models aligns with Scania's vision of leading the way towards a sustainable future.
- Federated Learning approaches enables running anomaly detection models on the ECUs of the Scania's distributed fleet of connected trucks. Any fault or failures can be prevented by detecting the issue early. Further, this allows for cruicial data to remain on the device and reduces dependencies on network bandwidth requirements as only the aggregated model updates is communicated over the network instead of the entire data samples.
- benefits of using NN for anomaly detection

Challenges:

- To reap the best benefits of these approaches, training of the model needs to be performed on-board. However much of the potential of running machine learning applications on these devices remain unattained due to the difficulties in creating these applications and running training on-board. Approaches such as TensorFlow Lite (TFLite), Edge Impulse, STM CubeAI implemented along the TinyML frameworks, enable running ML models targeted for small resource devices. (explore TinyML and other frameworks that enable EdgeAI. explain EdgeAI) But these approaches are limited to inference and there is no support in the existing infrastructure for training of ML models.
- Scania ECU is developed and maintained by an OEM. The information shared about the hardware design, memory layout, and operating system (OS) is limited. The device tree, Memory layout and bootflow are cruciul information required to build an embedded OS for a custom hardware. It is huge challenge to reverse engineer and obtain these information from a working board.

Problem Description

A big gap can be observed in the development of frameworks that support training of NN models on embedded devices and there is a need to investigate on the solutions.

The scope of the thesis is to repurpose the existing Scania ECU and explore the challenges of building targeted NN models and training them on repurposed ECU using different approaches and evaluating their performances.

1. Background

The development and maintainance of neural network applications on a fleet of embedded devices has several design considerations and relies heavily on technological innovations. This makes embedded linux an attractive platform to build these applications and motivates an examination of build systems that target embedded environments.

1.1 Development For Embedded Linux

Build systems are . An overview is presented in Appendix I

1.1.1 Toolchains & Cross compilers

Describe their usage. Will show up again in Development chapter

Support for embedded hardware requires a stack that includes several software components covered in this chapter. The initial target machine was an ECU filling the role of a coordinator on the truck, however due to certain components missing from are contained in the Appendix II

1.2 Training on Device

Mention traditional offboard training and onboard inference architecture vs approaches with training on board. Reference Tiny ML research

1.2.1 Federated Learning

link to federated learning, mention FAMOUS again

1.3 Development Of Neural Network Application

Contrast general purpose frameworks - TFlite etc with handwritten applications

1.3.1 Different Programming Paradigms

Approaches to doing Machine Learning in Embedded Environments. Emphasis on how these applications are developed - e.g TFLite

1.4 General Distribution of Work

2. Theory

2.1 Artificial Neural Networks

General introduction to ANNs. Explaining topics from inference, training, till federated learning systems

2.2 ANN Performance Optimisations Techniques

Contrast traditional implementations in resource rich environments and the constraints of embedded environment. Layout general strategies to acquire performance improvements with little losses to accuracy - Purning, Quantisation

2.3 Hardware Support for Neural Networks

Introduction to ARM-NN kernels, mentioned again in Development chapter

2.4 Embedded Linux

Describe the process of boot flow introducing concepts such as Boot ROM, eMMC, IVT, bootloader, kernel, file systems etc.

2.5 Performance Evaluation

Describe and motivate performance measures used in the Results chapter

Part II: Implementation

ANN training presents an important gap in the current efforts in Tiny ML. This section contains the description of benchmark ANN training applications created to test the performance of an ANN training cycle on an embedded board. The neural network structure, learning algorithm, and the dataset remain the same but the implementations are completed in traditional general purpose neural network frameworks as well as straightforward implementations in C and other languages

3. Design

The benchmark applications test the training phase of a Handwritten Digit Recognition Neural Network (HDR-NN) on the MNIST [2] dataset. MNIST is a popular dataset of handwritten digits commonly used for training image processing systems. It is a popular starting point for neural network implementations and has been used as the primary dataset in the benchmark experiments. The target embedded device is an Electronic Control Unit (ECU) board based on an iMX6 series processor

3.1 ANN Development Process

The target environment necessitates the use of cross compilers and as part of the development process multiple build environments and systems were examined. Ultimately, the primary platform that ended up being used was the Yocto Project extensible SDK (eSDK) based application development process running on a standard linux based build environment

3.1.1 Compiler Toolchains & Yocto Recipes

The *meta-freescale* Yocto BSP layer by NXP supports the target processor and in combination with Poky can provide an eSDK that was primarily used to test and develop the benchmark applications.

GCC based cross compilers and debuggers were usefull for the C, C++ programs. The general portability of the benchmark applications and the Yocto project allows for further experiments to be conducted on different target architectures as well. For further optimisations that relies on hardware specific features such as ARM's CMSIS-NN cannot be so easily ported however

3.2 HDR-NN Benchmark Programs

The handwritten digit recognition neural network is a fully connected neural network and derives from the popular neural network textbook neuralnetworksanddeeplearning.com

The input layer has 784 neurons corresponding to 28 x 28 pixel images of the MNIST dataset and the output layer has 10 neurons corresponds to 10 different possible digits. The dimensions and depth of hidden layers of the network is configurable as well as other properties of the learning algorithm

3.2.1 The Learning Algorithm

The HDR-NN benchmark applications will all share the same standard training algorithm, namely Backpropagation with Stochastic Gradient Descent. Describing this algorithm in general purpose neural network frameworks is straight forward and plenty of general implementations of the algorithm exists in the wild, making the development process easier to target multiple programming paradigms. The configurable parameters of the learning algorithm in through out the implementations are the learning rate, the total number of epochs for training, and the batch size for gradient descent iterations

3.2.2 Verifying Correctness

The model structure can be configured in the same manner across the implementations, as well as the learning algorithm configuration. This means that the shape of the model, the input parameters, the connections between the neuron can be configured in the same manner across the implementations. Furthermore, the learning rate, the number of epochs, and the batch size are also configurable in the same manner. Once the different implementations are configured in a similar manner, the training of the model is completed and the resulting weights are compared.

4. Development

The HDR-NN benchmark application were completed in different programming languages and in neural network frameworks like Tensorflow. Details about the target environment and the benchmark implementations are layed out in this chapter

4.1 Targetting an i.MX6 based custom board

Exploring the target ECU board involved several examinations of a known state of the board. The linux kernel binaries were made via the Yocto project however there was no access to source code such as the recipes or the meta-layers themselves

The i.MX SoCs have a special boot mode named Serial Download Mode (SDM) typically accessible through boot switches. When configured into this mode, the ROM code will poll for a connection on a USB OTG port

4.1.1 i.MX6 Overview

The iMX6 series is designed for high performance low power applications and target boards are configured with a single Cortex A9 core with the ARMv7 ISA. The processor supports NEON single-instruction multiple-data (SIMD) instructions, allowing for SIMD vector operations within the training program

4.1.2 Testing on Device

The benchmark tests were performed on ... using the perf tool

4.2 HDR-NN Implementation

With the primary focus on training, MNIST dataset was primarily loaded in an easily readable format appropriate to the corresponding paradigms and the correctness verification routines and execution statistics measurement runs were seperated. The benchmark executions did not produce disk I/O after the dataset was read, unlike the correctness verification runs which produced the final weights from the execution runs that were subsequently compared with the other benchmark program execution output weights

4.2.1 The Reference HDR-NN in Python

This is the baseline implementation and follows close to the implementation exhibitied on neural-networksanddeeplearning.com. The implementation uses the n-dimensional array data structure present in the popular Python programming language library Numpy

4.2.2 Tensorflow Lite based HDR-NN

Developing ANNs on tensorflow using Keras is straightforward with good support and well documented APIs. Building the same model for a Tensorflow Lite (TFLite) was more involved however still straightforward

4.2.3 C based HDR-NN

The C implementation had the least amount of external dependencies and contained the network in float arrays within structs.

4.2.4 CPP based HDR-NN

Part III: Analysis

Results from the implementation

The HDR-NN training implementations were benchmarked on the iMX6SDB evaluation board. Model accuracy, execution time and peak memory utilised during the training of the model is compared while varying the number of layers and the neurons in each layer

5. Results

5.1 HDR-NN comparisons

The execution times for HDR-NN training were recorded for different network configurations such as differing hidden layer sizes of 2, 8, 32, and 128. The run times increased exponentially with the number of parameters. This is due to the fact that the amount of calculation in a fully connected network increases with the number of neurons, leading to longer training times

Further, when the number of neurons in a single layer exceeds 32, the accuracy of the model is observed to decrease due to overfitting. To improve accuracy, adding another layer with 16 neurons is found to be beneficial without significantly increasing the time required for computation. In fact, for larger network sizes, it is observed to even reduce the computation time required

Regardless of the hidden layer sizes, the peak memory utilisation remains constant for the same application regardless of the network configuration

Figure 5.1. Comparing the accuracy of the different HDR-NN implementations

Figure 5.2. Comparing total run time for training the different HDR-NN programs

Peak Memory Utilized vs Model Size

Peak memory utilized during training of various model sizes C Eigen Numpy 101770 760.16 1,083.92 25450 6370 3190 0 1,301.1 1,000 1,250 500 750 Created with Datawrapper

Figure 5.3. Peak Memory Utilized during training with different model sizes remain similar within the same implementation

5.1.1 Python Numpy based HDR-NN

The Numpy implementation consistantly took longer duration to perform the same training cycle as compared to the C implementation

5.1.2 Tensorflow-Lite based HDR-NN

Benchmark pending ...

5.1.3 C based HDR-NN

C implementation had lower execution times and memory usage

5.1.4 CPP based HDR-NN

Benchmark pending ...

5.2 CMSIS-NN based Optimisations to Training

Further breakdown of the performance achieved from different optimisation techniques

5.2.1 Quantisation

future: Training Network with Quantized weights

5.2.2 Pruning the Network

future

6. Discussion

- Contrast development process for the ML programming paradigms
- Which optimisation approaches gave the most in improvement?

7. Conclusion and Future Work

What does it all mean? Where do we go from here?

References

- [1] Juan Carlos Andresen. Lobstr learning on-board signals for timely reaction, 2020.
- [2] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition, 1998.

Build Systems

The Yocto Project

The Yocto Project is an open source collaborative project that provides users with a set of tools to create custom Linux-based systems for embedded products. It's based on the OpenEmbedded framework and is backed by the Linux Foundation. The Yocto Project works with hardware vendors, open source communities, and hundreds of developers to provide a robust development environment for embedded products.

Yocto Project allows developers to create unique Linux-based systems for embedded devices. Yocto Project provides developers with the tools to customise their embedded Linux systems to meet the specific needs of their products. Yocto Project is used by many companies for their embedded products. It is especially useful for those developing custom embedded products, as it allows users to quickly create a customised Linux-based operating system.

Yocto Project provides many features that make it a great choice for embedded Linux development. These features include:

- Open Source Yocto Project is an open source project backed by the Linux Foundation. This
 means it is free to use and developers can access the source code to customise their systems
 as needed
- 2. **Compatibility** Yocto Project is compatible with many types of embedded hardware, including ARM, PowerPC, MIPS, and x86. This makes it easy to use for any type of embedded project
- 3. **Robust Development Environment** Yocto Project provides a robust development environment for embedded Linux development. It includes libraries, tools, and debugging support to make development easier
- 4. **High Performance** Yocto Project provides an optimised development environment for embedded systems. This helps developers to create high-performance products quickly and easily
- 5. **Flexibility** Yocto Project provides developers with the flexibility to create custom Linux-based systems for their embedded devices. This allows developers to tailor their systems to meet the specific needs of their products
- 6. **Time Savings** Yocto Project makes it easier and faster to create custom Linux-based systems. This helps to reduce development time and save money

Scania C300 Communicator

The communicator contains iMX6 series processors