

Найрідкісніші комахи

У будинку Пака Бланґкона бігають N комах, пронумерованих від 0 до N-1. Кожна комаха має **тип**, який є цілим числом від 0 до 10^9 включно. Кілька комах можуть мати один і той же тип.

Припустимо, комахи згруповані за типами. Ми визначаємо потужність **найпоширенішого** типу комах, як кількість комах у групі з найбільшою кількістю комах. Подібним чином, потужність **найрідкіснішого** типу комах – це кількість комах у групі з найменшою кількістю комах.

Наприклад, припустимо, що є 11 комах, типи яких [5,7,9,11,11,5,0,11,9,100,9]. У цьому випадку потужність **найпоширенішого** типу комах становить 3. Групи з найбільшою кількістю комах — це тип 9 і тип 11, кожна з яких складається з 3 комах. Потужність **найрідкіснішого** типу комах становить 1. Групи з найменшою кількістю комах — це тип 7, тип 0, і тип 100, кожна з яких складається з 1 комахи.

Пак Бланґкон не знає типу жодної комахи. У нього є пристрій з однією кнопкою, який може надати деяку інформацію про типи комах. Спочатку пристрій порожній. Щоб використовувати пристрій, можна виконати три види операцій:

- 1. Засунути комаху у пристрій.
- 2. Забрати комаху з пристрою.
- 3. Натиснути кнопку на пристрої.

Кожен тип операції можна виконати щонайбільше $40\,000$ разів.

Кожного разу, коли натискається кнопка, пристрій повідомляє потужність **найпоширенішого** типу комах, враховуючи лише комах усередині пристрою.

Ваше завдання - за допомогою пристрою визначити кількість **найрідкісніших** видів комах серед усіх N комах у домі Пака Бланґкона. Крім того, у деяких підзадачах ваш результат залежить від максимальної кількості виконаних операцій певного типу (докладніше див. у розділі Підзадачі).

Деталі реалізації

Ви повинні реалізувати таку функцію:

int min_cardinality(int N)

N: кількість комах.

- Ця процедура має повернути потужність **найрідкіснішого** типу комах серед усіх N комах у домі Пака Бланґкона.
- Ця процедура викликається рівно один раз.

Наведена вище функція може викликати такі функції:

```
void move_inside(int i)
```

- i: номер комахи, яку потрібно засунути всередину пристрою. Значення i має бути від 0 до N-1 включно.
- Якщо ця комаха вже в пристрої, виклик не впливає на набір комах у пристрої. Однак він все ще зараховується як окремий виклик.
- Цю процедуру можна викликати щонайбільше $40\,\,000$ разів.

```
void move_outside(int i)
```

- i: індекс комахи, яку потрібно забрати з пристрою. Значення i має бути від 0 до N-1 включно.
- Якщо ця комаха не в пристрої, виклик не впливає на набір комах у пристрої. Однак він все ще зараховується як окремий виклик.
- ullet Цю процедуру можна викликати щонайбільше 40~000 разів.

```
int press_button()
```

- Ця процедура повертає потужність **найпоширенішого** типу комах, враховуючи лише комах усередині пристрою.
- Цю процедуру можна викликати щонайбільше $40\,000$ разів.
- ullet Градер **не адаптивний**. Тобто, типи всіх N комах зафіксовані перед викликом min_cardinality.

Приклад

Розглянемо сценарій, у якому 6 комах типів [5,8,9,5,9,9] відповідно. Функція $min_cardinality$ викликається таким чином:

```
min_cardinality(6)
```

Функція може викликати move_inside, move_outside, i press_button наступним чином.

Виклик	Повернене значення	Комахи у пристрої	Тип комах в пристрої
		{}	
<pre>move_inside(0)</pre>		{0}	[5]
<pre>press_button()</pre>	1	{0}	[5]
move_inside(1)		{0,1}	[5, 8]
<pre>press_button()</pre>	1	{0,1}	[5, 8]
move_inside(3)		$\{0, 1, 3\}$	[5, 8, 5]
<pre>press_button()</pre>	2	$\{0, 1, 3\}$	[5, 8, 5]
move_inside(2)		$\{0,1,2,3\}$	[5, 8, 9, 5]
move_inside(4)		$\{0,1,2,3,4\}$	[5, 8, 9, 5, 9]
move_inside(5)		$\{0,1,2,3,4,5\}$	[5, 8, 9, 5, 9, 9]
<pre>press_button()</pre>	3	$\{0,1,2,3,4,5\}$	[5, 8, 9, 5, 9, 9]
move_inside(5)		$\{0,1,2,3,4,5\}$	[5, 8, 9, 5, 9, 9]
<pre>press_button()</pre>	3	$\{0,1,2,3,4,5\}$	[5, 8, 9, 5, 9, 9]
move_outside(5)		$\{0,1,2,3,4\}$	[5, 8, 9, 5, 9]
<pre>press_button()</pre>	2	$\{0,1,2,3,4\}$	[5, 8, 9, 5, 9]

На даний момент ε достатньо інформації, щоб зробити висновок, що потужність найрідкіснішого типу комах становить 1. Таким чином, функція min_cardinality поверта ε значення 1.

У цьому прикладі, move_inside викликається 7 pasiв, move_outside викликається 1 pas, a press_button викликається 6 pasiв.

Обмеження

• $2 \le N \le 2000$

Підзадачі

- 1. (10 балів) $N \leq 200$
- 2. (15 балів) $N \leq 1000$
- 3. (75 балів) Без додаткових обмежень.

Якщо в будь-якому з тестових випадків виклики функцій move_inside, move_outside, aбо press_button не відповідають обмеженням, описаним у Деталях реалізації, або значення, що

повертається $min_cardinality$ є неправильним, оцінка вашого рішення для цієї підзадачі буде 0.

Нехай q буде **максимальним** з наступних трьох значень: кількість викликів move_inside, кількість викликів move_outside, і кількість викликів press_button.

У підзадачі 3 ви можете отримати частковий бал. Нехай m буде максимальним значенням $\frac{q}{N}$ серед усіх тестів у цій підзадачі. Ваш бал за цю підзадачу розраховується відповідно до наступної таблиці:

Умова	Бали		
20 < m	0 (повідомлено як"Output isn't correct" в CMS)		
$6 < m \leq 20$	$\frac{225}{m-2}$		
$3 < m \le 6$	$81-rac{2}{3}m^2$		
$m \leq 3$	75		

Приклад градера

Нехай T - це масив з N цілих чисел, де T[i] - тип i-ї комахи.

Градер зчитує вхідні дані в такому форматі:

- 1-й рядок: N
- ullet 2-й рядок: T[0] T[1] \dots T[N-1]

Якщо градер виявляє порушення протоколу, результатом градера є Protocol Violation: <MSG>, де <MSG> - одне з наступного:

- ullet invalid parameter: під час виклику move_inside або move_outside, значення i не знаходиться від 0 до N-1 включно.
- too many calls: кількість викликів **будь-якого** з move_inside, move_outside, aбо press_button перевищує 40 000.

Інакше градер виводить у наступному форматі:

- 1-й рядок: повернуте значення min_cardinality
- 2-й рядок: q