Two-Level Iterative Queuing Modeling of Software Contention

Daniel A. Menascé
Dept. of Computer Science
George Mason University
www.cs.gmu.edu/faculty/menasce.html

In Proc. 2002 IEEE MASCOTS Conference, Forth Worth, TX, October 2002.

1

© 2002 D. Menascé. All Rights Reserved.

1

Basic Idea

- Iteration between solving the SQN and the HQN.
- Number B of processes blocked due to software contention computed through the SQN.
- Population at HQN is reduced by B.
- Service demands at SQN are adjusted to account for physical contention.

© 2002 D. Menascé. All Rights Reserved.

SQN-HQN: Initialization

No adjustment at initialization $D_{j,i}^{sh}$ Adjust demands $R_i'(N^h)$ Hardware QN $N_i'(N^h)$ N_i'

13

and so on ...

Convergence is checked on absolute relative error on the number of blocked processes in the SQN.

21

© 2002 D. Menascé. All Rights Reserved.

Adjustment of SQN Demands

• Single class case: residence time at device i.

$$D_{j}^{s} \leftarrow \sum_{i} \frac{D_{j,i}^{sh}}{D_{i}^{h}} \times R_{i}(N^{h})$$

• Multiple class case: residence time at device i. for class r.

$$D_{j;r}^{s} \leftarrow \sum_{i} \frac{D_{j;i,r}^{sh}}{D_{i;r}^{h}} \times R_{i;r}^{'}(\vec{N}^{h})$$

22

© 2002 D. Menascé. All Rights Reserved.

Comparison with other approaches

			Absolute % Error			
N	SQN-HQN	GB	SQN_HQN	ASM	ASPA	
1	1.544	1.54	0.27	0.00		
2	2.088	2.11	1.06	4.60		
3	2.317	2.37	2.22	5.89	4.2	
4	2.428	2.49	2.49	5.99	2.8	
5	2.487	2.56	2.86	5.87	2.0	
6	2.521	2.60	3.05	5.78	1.5	
7	2.541	2.62	3.00	5.75	1.5	
8	2.555	2.63	2.86	5.77	1.1	

GB: global balance equations

ASM: Aggregate Server Method [Agrawal and Buzen 1983]

ASPA: Avg. Subsystem Population Approximation [Jacobson & Lazowska 1983]

SQN is consistently pessimistic.

ASPA is much more complex to implement.

24

© 2002 D. Menascé. All Rights Reserved.

Results of Iterations for Open SQN Case

					Adjusted SQN Demands		
Iteration	Nh	Resp. Time	Ns	В	NCS	CS1	CS2
0	-				0.3280	0.1176	0.2020
1	1.295	0.821	1.641	0.346	0.3662	0.1302	0.2235
2	1.440	0.946	1.893	0.453	0.3858	0.1365	0.2342
3	1.513	1.014	2.028	0.515	0.3958	0.1397	0.2396
4	1.550	1.050	2.100	0.549	0.4010	0.1414	0.2424
5	1.570	1.069	2.137	0.568	0.4037	0.1423	0.2438
6	1.580	1.079	2.157	0.577	0.4051	0.1427	0.2446
7	1.585	1.084	2.167	0.582	0.4059	0.1430	0.2450
8	1.588	1.086	2.173	0.585	0.4062	0.1431	0.2452
9	1.589	1.088	2.175	0.587	0.4064	0.1432	0.2453
10	1.590	1.088	2.177	0.587			

28

© 2002 D. Menascé. All Rights Reserved.

Related Work

- [Agrawal&Buzen, 1983]: approximate iterative technique. Aggregate servers represent serialized processing. Single class presentation.
- [Thomasian, 1983]: two-level model (QN+MC). Does not generalize to multiple classes.
- [Jacobson&Lazowska, 1983]: transform network to one with population constraints and solve through approximation.
- [Llado&Harrison, 2000] Modeling of Enterprise JavaBean Server.
- [Reeser&Hariharan, 2000] Web server software contention. Single class.
- [Ramesh&Perros,2000] Multi-layer client-server QNs.
- [Kahkipuro,2000] Performance modeling framework for CORBAbased systems. QNs with simultaneous resource possession.
- [Rolia&Sevcik, 1995] [Woodside, 1986] Method of Layers. LQNs.
- [Petriu et al, 2000] [Woodside et al., 1995] Stochastic rendez-vous.
- [Franks&Woodside, 1998] Parallel operations in multi-layer model.

29

© 2002 D. Menascé. All Rights Reserved.

Concluding Remarks

- Simple approach.
- Open, closed, and multiclass QNs can be used at the SQN.
- SQNs can include non-software resources that are not mapped to hardware resources.
- · HQNs are closed and can be multiclass.
- Any technique can be used to solve the SQN and HQN. This includes any known approximation to multiple-server devices, priorities, simultaneous resource possession, etc.

30