WHAT IS CLAIMED:

What he was

- 1. A product comprising a plurality of substantially aligned carbon nanotubes attached to a substrate at a density greater than 10⁴ nanotubes per square millimeter of substrate.
- 2. A product as claimed in claim 1, wherein the carbon nanotubes extend outwardly from and substantially perpendicular to the substrate.
- 3. A product as claimed in claim 1, wherein the carbon nanotubes extend outwardly from and at a non-perpendicular angle with respect to the substrate.
- 4. A product as claimed in claim 1, wherein the carbon nanotubes extend substantially parallel to the substrate.
- 5. A product as claimed in claim 1, wherein the nanotubes have a diameter between 4 to 500 nanometers.
- 6. A product as claimed in claim 1, wherein the nanotubes have a diameter of at least 50 nanometers.
- 7. A product as claimed in claim 1, wherein the substrate has a strain point or melting point temperature up to 3000°C.
- 8. A product as claimed in claim 1, wherein the substrate has a strain point or melting point temperature of at least about 300°C.
- 9. A product as claimed in claim 1, wherein the substrate comprises glass, silica, quartz, silicon, iron, cobalt, nickel, an alloy of iron, cobalt, or nickel, platinum, a ceramic, or a combination thereof.
- 10. A product as claimed in claim 9, wherein the substrate is a glass plate.
- 11. A product as claimed in claim 9, wherein the substrate is a silicon wafer.
- 12. A product as claimed in claim 1, wherein substantially all carbon nanotubes have a cap distal from the substrate comprising a metal or a metal alloy.

15

10

20

25

July July

- A product as claimed in claim 12, wherein the cap is iron, cobalt, nickel, or an 13. alloy of iron, cobalt, or nickel.
- A product as claimed in claim 13, wherein the cap is nickel. 14.
- A product as claimed in claim 1, further comprising a filling within the carbon 15. nanotubes.
- A product as claimed in claim 1, wherein substantially all carbon nanotubes have 16. an open end.
- A product as claimed in claim 16, further comprising a filling within the carbon 17. nanotubes.
- A product as claimed in claim 17, wherein the filling is hydrogen, lithium ions, 18. bismuth, lead tellaride, or bismuth tritelluride.
- 19. A product as claimed in claim 17, wherein the filling is a pharmacological agent.
- 20. A product as claimed in claim 17, wherein the filling is enclosed within the carbon nanotubes.
- A product comprising a plurality of substantially aligned carbon nanotubes attached to a substrate at a density no greater than 10² nanotubes per square millimeter of substrate
- A product as claimed in claim 21, wherein the carbon nanotubes extend outwardly 22. from and substantially perpendicular to the substrate.
- 20 A product as claimed in claim 21, wherein the carbon nanotubes extend outwardly 23. from and at a/non-perpendicular angle with respect to the substrate.
 - 24. A product as claimed in claim 21, wherein the carbon nanotubes extend substantially parallel to the substrate.
 - A product as claimed in claim 21, wherein the nanotubes have a diameter between 4 to ₹00 nanometers.

10

25

- 26. A product as claimed in claim 21, wherein the nanotubes have a diameter of at least about 50 nanometers.
- 27. A product as claimed in claim 21, wherein the substrate has a strain point or melting point temperature up to 3000°C.
- 5 28. A product as claimed in claim 21, wherein the substrate has a strain point or melting point temperature of at least about 300°C.
 - 29. A product as claimed in claim 21, wherein the substrate comprises glass, silica, quartz, silicon, iron, cobalt, nickel, an alloy of iron, cobalt, or nickel, platinum, a ceramic, or a combination thereof.
- 10 30. A product as claimed in claim 29, wherein the substrate is a glass plate.
 - 31. A product as claimed in claim 29, wherein the substrate is a silicon wafer.
 - 32. A product as claimed in claim 21, further comprising a filling within the carbon nanotubes.
 - 33. A product as claimed in claim 21, wherein substantially all carbon nanotubes have an open end.
 - 34. A product as claimed in claim 33, further comprising a filling within the carbon nanotubes.
 - 35. A product as claimed in claim 34, wherein the filling is hydrogen, lithium ions, bismuth, lead telluride, bismuth tritelluride, or a pharmacological agent.
- 20 36. A product as claimed in claim 34, wherein the filling is enclosed within the carbon nanotubes.
 - 37. A product comprising a substrate having a strain point or a melting point temperature between about 300°C and 700°C and one or more carbon nanotubes.
- 38. A product comprising a substrate having an outer surface and a plurality of substantially aligned carbon nanotubes originating and extending outwardly from the outer surface.

- 39. A product comprising a substrate having an outer surface and one or more free-standing carbon nanotubes originating and extending from the outer surface.
- 40. A method of forming a product with one or more carbon nanotubes on a substrate comprising:
- providing a substrate in a reduced pressure environment containing a carbon source gas and a catalyst gas and

exposing the substrate to a plasma under conditions effective to cause formation and growth of one or more carbon nanotubes on the substrate.

- 41. A method according to claim 40, wherein the reduced pressure environment has a pressure between about 0.1 to about 100 Torr.
 - 42. A method according to claim 41, wherein the reduced pressure environment has a pressure between about 1 to about 20 Torr.
 - 43. A method according to claim 40, wherein the product has a strain point or melting point temperature between 300°C and 3000°C.
- 15 44. A method according to claim 40, wherein the substrate comprises glass, silica, quartz, mesoporous silicon, silicon, iron, cobalt, nickel, an alloy of iron, cobalt, or nickel, platinum, a ceramic, or a combination thereof.
 - 45. A method according to claim 44, wherein the substrate is a glass plate.
 - 46. A method according to claim 44, wherein the substrate is a silicon wafer.
- 47. A method according to claim 40, wherein the carbon source gas is a saturated or unsaturated linear, branched, or cyclic carbon and hydrogen compound having up to six carbon atoms.
 - 48. A method according to claim 47, wherein the carbon source gas is acetylene, ethylene, or benzene.
- 25 49. A method according to claim 40, wherein the catalyst gas is ammonia or nitrogen.

- 50. A method according to claim 40, wherein the volume ratio of carbon source gas to catalyst gas ranges from about 1:2 to about 1:10.
- 51. A method according to claim 40, wherein the substrate is exposed to the plasma at a temperature below 700°C.
- 5 52. A method according to claim 40, wherein the substrate is exposed to the plasma at a temperature above about 300 °C.
 - 53. A method according to claim 40, wherein the substrate is exposed to the plasma at a temperature between 300°C and 3000°C.
 - 54. A method according to claim 40, further comprising:
- disposing a catalyst film onto the substrate by radio frequency magnetron sputtering prior to said providing the substrate in a reduced pressure environment containing a carbon source gas and a catalyst gas.
 - 55. A method according to claim 40, wherein the substrate has a catalyst film disposed thereon.
- 15 56. A method according to claim 55, wherein the film has a thickness of at least about 15 nanometers.
 - 57. A method according to claim 55, wherein the film is nickel, iron, cobalt, or an alloy of nickel, iron, or copalt.
 - 58. A method according to claim 57, wherein the film is nickel.
- 20 59. A method according to claim 55, further comprising:

 varying the carbon hanotube diameter in direct proportion to the film thickness.
 - 60. A method according to claim 40, further comprising:

disposing a catalyst nano-dot onto the substrate by electron beam evaporation, thermal evaporation, or magnetron sputtering prior to said providing the substrate in a reduced pressure environment containing a carbon source gas and a catalyst gas.

intensity.

- 61. A method according to claim 60, wherein each nano-dot forms one carbon nanotube.
- 62. A method according to daim 40, wherein the substrate has at least one catalyst nano-dot disposed thereon.
- 5 63. A method according to claim 62, wherein each nano-dot forms one carbon nanotube.
 - 64. A method according to claim 62, wherein the at least one nano-dot is nickel, iron, cobalt, or an alloy of nickel, iron, or cobalt.
 - 65. A method according to claim 64, wherein the at least one nano-dot comprises nickel.
 - 66. A method according to claim 40, further comprising:

 varying the carbon hanotube diameter in inverse proportion to the plasma
 - 67. A method according to claim 40, further comprising:
- varying the carbon nanotube length in direct proportion to the plasma intensity.
 - 68. A method according to claim 40, wherein the one or more carbon nanotubes have a cap, and further comprising:

removing the cap from the one or more carbon nanotubes to form open-end on the one or more carbon nanotubes.

- 20 69. A method according to claim 68, wherein the cap is removed by HNO₃ solution etching.
 - 70. A method according to claim 68, wherein the cap is removed by argon ion sputtering.
 - 71. A method according to chim 68, further comprising:

adding a filling into the one or more carbon nanotubes after said removing the cap.

72. A method according to claim 71, further comprising:

enclosing the open-ends of the one or more carbon nanotubes after said adding a filling to store the filling within the one or more carbon nanotubes.

- 73. A method according to claim 72, wherein the open-ends of the one or more carbon nanotubes are enclosed by electrochemical deposition or magnetron sputtering of a metal onto the one or more carbon nanotubes.
- 74. A method according to claim 40, wherein the one or more carbon nanotubes have a closed end and further comprising:

exposing the one or more carbon nanotubes to oxygen under conditions effective to remove the closed end.

75. A method according to claim 74, further comprising:
adding a filling into the one or more carbon nanotubes.

15 76. A method according to claim 74, further comprising:

enclosing the one or more carbon nanotubes after said adding a filling to store the filling within the one or more carbon nanotubes.

- 77. A method according to claim 76, wherein the one or more carbon nanotubes are enclosed by electrochemical deposition or magnetron sputtering of a metal onto the one or more carbon nanotubes.
- 78. A field emission display comprising:

a baseplate having an electron emitting array positioned thereon and a 2.!! (a phosphor coated plate spaced apart from the baseplate so that electrons emitted from the array impinge on the phosphor coating, wherein the baseplate comprises a substrate and either (1) a plurality of substantially aligned carbon nanotubes of a density greater than 10⁴ nanotubes per square millimeter of substrate; (2) a plurality of

ABCE

20

25

10

u'.

15

substantially aligned carbon nanotubes of a density no greater than 10^2 nanotubes per square millimeter of a substrate; (3) one or more carbon nanotubes, wherein the substrate has a strain point or melting point temperature between about 300°C and 700°C; (4) a plurality of substantially aligned carbon nanotubes originating and extending outwardly from an outer surface of the substrate; or (5) one or more free-standing carbon nanotubes originating and extending outwardly from an outer surface of the substrate.

79. An electron emitter comprising: an electron generating source and

a product having at least one carbon nanotube operably connected to the electron generating source to emit electrons from the at least one carbon nanotube, wherein the product comprises a substrate and either (1) a plurality of substantially aligned carbon nanotubes of a density greater than 10⁴ nanotubes per square millimeter of substrate; (2) a plurality of substantially aligned carbon nanotubes of a density no greater than 10² nanotubes per square millimeter of substrate; (3) one or more carbon nanotubes, wherein the product has a strain point or melting point temperature between about 300°C and 700°C; (4) a plurality of substantially aligned carbon nanotubes originating and extending outwardly from an outer surface of the substrate; or (5) one or more free-standing carbon nanotubes originating and extending outwardly from an outer surface of the substrate.

20

25

80. A scanning €lectron mi¢roscope comprising:

a vacuum chamber capable of receiving a specimen; an electron source for producing electrons;

a probe for emitting and directing the electrons toward and scanning the specimen operably disposed within the vacuum chamber;

a detector operably positioned within the vacuum chamber for collecting radiation issuing from the specimen as a result of scanning by the probe to produce an output signal; and

a display screen operably donnected to the detector to display an image of the area of the specimen scanned by the probe, wherein the probe comprises a substrate and either (1) a plurality of substantially aligned carbon nanotubes of a density greater than 10⁴ nanotubes per square millimeter of substrate; (2) a plurality of substantially aligned carbon nanotubes of a density no greater than 10² nanotubes per square millimeter of a

substrate; (3) one or more carbon nanotubes, wherein the substrate has a strain point or melting point temperature between about 300°C and 700°C; (4) a plurality of substantially aligned carbon nanotubes originating and extending outwardly from an outer surface of the substrate; or (5) one or more free-standing carbon nanotubes originating and extending outwardly from an outer surface of the substrate.

81. A battery comprising:

an anode:

5

15

20

25

30

a cathode;

an insulator disposed between the anode and the cathode; and

an electrolyte,

wherein at least one of the anode and the cathode comprise a product having a substrate and either (1) a plurality of substantially aligned carbon nanotubes of a density greater than 10⁴ nanotubes per square millimeter of substrate; (2) a plurality of substantially aligned carbon nanotubes of a density no greater than 10² nanotubes per square millimeter of a substrate; (3) one or more carbon nanotubes, wherein the substrate has a strain point or melting point temperature between about 300°C and 700°C; (4) a plurality of substantially aligned carbon nanotubes originating and extending outwardly from an outer surface of the substrate; or (5) one or more free-standing carbon nanotubes originating and extending outwardly from an outer surface of the substrate.

82. A fuel cell comprising:

a housing;

a gas diffusion anode positioned within the housing to form an anode side;

a gas diffusion cathode positioned within the housing to form a cathode side;

an electrolyte impregnated matrix of ion exchange membrane positioned between and in electrical contact with the anode and the cathode;

an external circuit electrically and operably connecting the anode to the cathode; and

an enclosed hydrogen storage unit operably connected to the anode side comprising a product having a substrate and either (1) a plurality of substantially aligned carbon nanotubes of a density greater than 10⁴ nanotubes per square millimeter of substrate; (2) a plurality of substantially aligned carbon nanotubes of a density no greater

10

15

20

than 10² nanotubes per square millimeter of a substrate; (3) one or more carbon nanotubes, wherein the substrate has a strain point or melting point temperature between about 300°C and 700°C; (4) a plurality of substantially aligned carbon nanotubes originating and extending outwardly from an outer surface of the substrate; or (5) one or more free-standing carbon nanotubes originating and extending outwardly from an outer surface of the substrate, wherein substantially all carbon nanotubes have at least one diffusion path; and

hydrogen gas disposed within the farbon nanotubes.

83. A composite comprising:

a product comprising a substrate and either (1) a plurality of substantially aligned carbon nanotubes of a density greater than 10⁴ nanotubes per square millimeter of substrate; (2) a plurality of substantially aligned carbon nanotubes of a density no greater than 10² nanotubes per square millimeter of a substrate; (3) one or more carbon nanotubes, wherein the substrate has a strain point or melting point temperature between about 300°C and 700°C; (4) a plurality of substantially aligned carbon nanotubes originating and extending outwardly from an outer surface of the substrate; or (5) one or more free-standing carbon nanotubes originating and extending outwardly from an outer surface of the substrate and

a dissimilar material in admixture with the product, wherein the dissimilar material is selected from the group consisting of metal, ceramic, glass, polymer, graphite, and mixtures thereof.

84. A high temperature superconductor comprising:

a product having a substantially non-electrically conductive substrate and either

(1) a plurality of substantially aligned carbon nanotubes of a density greater than 10⁴

nanotubes per square millimeter of substrate; (2) a plurality of substantially aligned

carbon nanotubes of a density no greater than 10² nanotubes per square millimeter of a

substrate; (3) one or more carbon nanotubes, wherein the substrate has a strain point or

melting point temperature between about 300°C and 700°C; (4) a plurality of

substantially aligned carbon nanotubes originating and extending outwardly from an outer

surface of the substrate; or (5) one or more free-standing carbon nanotubes originating

and extending outwardly from an outer surface of the substrate,

10

15

20

25

30

a high-temperature copper oxide superconductor material in admixture with the product, and

at least two spaced apart terminals electrically connected to the admixture of the product and the high-temperature copper oxide superconductor material and engagable with an electric circuit.

85. An electromagnetic interference (EMI) shield comprising:

a product comprising a substrate and either (1) a plurality of substantially aligned carbon nanotubes of a density greater than 10⁴ nanotubes per square millimeter of substrate; (2) a plurality of substantially aligned carbon nanotubes of a density no greater than 10² nanotubes per square millimeter of a substrate; (3) one or more carbon nanotubes, wherein the substrate has a strain point or melting point temperature between about 300°C and 700°C, (4) a plurality of substantially aligned carbon nanotubes originating and extending outwardly from an outer surface of the substrate; or (5) one or more free-standing carbon nanotubes originating and extending outwardly from an outer surface of the substrate and

a dissimilar material in admixture with the product, wherein the dissimilar material is a polymer, graphite, or a combination thereof, wherein said electromagnetic interference shield is operationally positioned with respect to either an electromagnetic source or an electronic component.

86. A microelectrode comprising:

a product comprising a substantially non-electrically conductive substrate and either (1) a plurality of substantially aligned carbon nanotubes of a density greater than 10^4 nanotubes per square millimeter of substrate; (2) a plurality of substantially aligned carbon nanotubes of a density no greater than 10^2 nanotubes per square millimeter of a substrate; (3) one or more carbon nanotubes, wherein the substrate has a strain point or melting point temperature between about 300° C and 700° C; (4) a plurality of substantially aligned carbon nanotubes originating and extending outwardly from an outer surface of the substrate; or (5) one or more free-standing carbon nanotubes originating and extending outwardly from an outer surface of the substrate and

RANGE IN