Homework # 11: Support Vector Machines (Chap. 9)

Due April 24 by noon on Blackboard. Quiz #9 is on April 25.

- 1. (Chap. 9, # 1a, p. 368) This problem involves a hyperplane in two dimensions. Sketch the hyperplane $1 + 3X_1 X_2 = 0$. Indicate the set of points for which $1 + 3X_1 X_2 > 0$, as well as the set of points for which $1 + 3X_1 X_2 < 0$.
- 2. (Chap. 9, # 2, p. 368) We have seen that in p = 2 dimensions, a linear decision boundary takes the form $\beta_0 + \beta_1 X_1 + \beta_2 X_2 = 0$. We now investigate a **non-linear** decision boundary.
 - (a) Sketch the curve $(1 + X_1)^2 + (2 X_2)^2 = 4$.
 - (b) On your sketch, indicate the set of points for which $(1 + X_1)^2 + (2 X_2)^2 > 4$, as well as the set of points for which $(1 + X_1)^2 + (2 X_2)^2 \le 4$.
 - (c) Suppose that a classifier assigns an observation to the blue class if $(1+X_1)^2+(2-X_2)^2>4$, and to the red class otherwise. To what class is the observation (0,0) classified? (-1,1)? (2,2)? (3,8)?
 - (d) Argue that while the decision boundary in (c) is not linear in terms of X_1 and X_2 , it is linear in terms of X_1 , X_1^2 , X_2 , and X_2^2 .
- 3. (Chap. 9, #3, p. 368) Here we explore the maximal margin classifier on a toy data set.
 - (a) We are given n = 7 observations in p = 2 dimensions. For each observation, there is an associated class label.

Obs.	X_1	X_2	Y
1	3	4	Red
2	2	2	Red
3	4	4	Red
4	1	4	Red
5	2	1	Blue
6	4	3	Blue
7	4	1	Blue

Sketch the observations.

- (b) Sketch the optimal separating hyperplane, and provide the equation for this hyperplane such as in exercise #1.
- (c) Describe the classification rule for the maximal margin classifier. It should be something along the lines of "Classify to Red if $\beta_0 + \beta_1 X_1 + \beta_2 X_2 > 0$, and classify to Blue otherwise". Provide the values for β_0 , β_1 , and β_2 .
- (d) On your sketch, indicate the margin for the maximal margin hyperplane.
- (e) Indicate the support vectors for the maximal margin classifier.
- (f) Argue that a slight movement of the seventh observation would not affect the maximal margin hyperplane.
- (g) Sketch a hyperplane that is not the optimal separating hyper- plane, and provide the equation for this hyperplane.
- (h) Draw an additional observation on the plot so that the two classes are no longer separable by a hyperplane.

- 4. (Chap. 9, # 7, p. 371) In this problem, you will use support vector approaches in order to predict whether a given car gets high or low gas mileage based on the Auto data set (from ISLR).
 - (a) Create a binary variable that takes on a 1 for cars with gas mileage above the median, and a 0 for cars with gas mileage below the median.
 - (b) Fit a support vector classifier to the data with various values of cost, in order to predict whether a car gets high or low gas mileage. Report the cross-validation errors associated with different values of this parameter. Comment on your results.
 - (c) Now repeat (b), this time using SVMs with radial and polynomial basis kernels. Comment on your results.
 - (d) Make some plots to back up your assertions in (b) and (c). When p > 2, you can use the plot() function to create plots displaying pairs of variables at a time. For example, to plot horsepower and year, the syntax is plot(sym.result, data=Auto, horsepower~year).