GR4J 模型采用两个非线性水库进行产汇流计算^[1],其中第 1 个水库称之为产流水库,第 2 个水库称为汇流水库。图 1 给出了 GR4J 的主要计算流程。根据该图,模型的基本原理概述如下。

(1)产流阶段

产流计算首先根据流域降水、蒸发能力(分别以P、E 表示),确定有效降水 P_n 和剩余 蒸发能力 E_n 。若P>E,则 $P_n=P-E$, $E_n=0$;反之, $P_n=0$, $E_n=E-P$ 。然后,通过 P_n 和 E_n 计算补充产流水库的降水量 P_s 和产流水库蒸散发量 E_s :

① 若 $P_n > 0$, P_n 中的一部分直接进入汇流水库,另一部分将补充产流水库:

$$P_{s} = \frac{x_{1}(1 - (\frac{S}{x_{1}})^{2}) \tanh(\frac{P_{n}}{x_{1}})}{1 + \frac{S}{x_{1}} \tanh(\frac{P_{n}}{x_{1}})}$$
(1)

式中: P_s 为补充产流水库的降水量; S 为产流水库蓄水量, x_1 为产流水库蓄水容量。

② 若 $P_n=0$,则E>0, E_s 由下式计算:

$$E_{s} = \frac{S(2 - \frac{S}{x_{1}}) \tanh(\frac{E_{n}}{x_{1}})}{1 + (1 - \frac{S}{x_{1}}) \tanh(\frac{E_{n}}{x_{1}})}$$
(2)

在计算 E_s 和 P_s 的基础上,产流水库蓄水量S更新为:

$$S = S - E_c + P_c \tag{3}$$

从而产流水库的产流量 Perc 由下式计算得到:

$$Perc = S(1 - (1 + (\frac{4S}{9x_1})^4)^{-1/4}) \tag{4}$$

由上式可知, Perc 必小于 S。扣除 Perc 后的产流水库蓄水量为:

$$S = S - Perc (5)$$

则总的产流量 P_r 为:

$$P_r = Perc + P_n - P_s \tag{6}$$

(2)汇流阶段

GR4J 采用时段单位线进行汇流演算。鉴于不同径流成分的汇流时间存在差异,因此模型将 P_r 分为两部分,90%采用单位线 UH1 演算,10%用于单位线 UH2 演算。前者需要经过汇流水库的再次调节,后者直接汇集到流域出口断面。为计算时段单位线,引入一个时间参

数 x_4 。单位线 UH1 演算时间是 x_4 天(x_4 —般大于 0.5),而 单位线 UH2 演算时间为 2 x_4 天,两条单位线均由 S 曲线(SH1、SH2)推算,计算方法如式所示:

$$\begin{cases} t \le 0, SH1(t) = 0 \\ 0 < t < x_4, SH1(t) = (\frac{t}{x_4})^{5/2} \\ t \ge x_4, SH1(t) = 1 \\ UH1(j) = SH1(j) - SH1(j-1) \end{cases}$$
(7)

$$\begin{cases} 0 < t < x_4, SH2(t) = \frac{1}{2} \left(\frac{t}{x_4}\right)^{5/2} \\ x_4 < t < 2x_4, SH2(t) = 1 - \frac{1}{2} \left(2 - \frac{t}{x_4}\right)^{5/2} \\ t \ge 2x_4, SH2(t) = 1 \\ UH2(j) = SH2(j) - SH2(j-1) \end{cases}$$
(8)

式中:j为整数,表示第j天。由两条单位线(UH1、UH2)演算得到的水量分别为:

$$Q_9 = UH1 \times 0.9 \times P_r \tag{9}$$

$$Q_1 = UH2 \times 0.1 \times P_r \tag{10}$$

式中: O_0 指进入汇流水库的水量; O_1 指直接汇集到流域出口断面的水量。

值得指出的是 GR4J 考虑到了流域不闭合所导致的地下水的交换问题,引入了时段水量交换量 F,计算方法如式所示:

$$F = x_2 (\frac{R}{x_3})^{7/2} \tag{11}$$

式中: R 为汇流水库水量; x_3 为汇流水库容量; x_2 为地下水交换系数。当 x_2 为正时,表示地下水补给径流, x_2 为负时,表示径流补给地下水,为 0 时,表示没有水量交换。

对于汇流水库, 汇入单位线 UH1 对应的水量以及地下水库交换量后, 相应的蓄水量为:

$$R = \max(0, Q_0 + F + R) \tag{12}$$

则汇流水库的出流量 Q_r 为:

$$Q_r = R(1 - (1 + (\frac{R}{x_3})^4)^{-1/4})$$
(13)

式中, Q_r 必定要小于R。出流后,汇流水库蓄水量更新为:

$$R = R - Q_{x} \tag{14}$$

单位线 UH2 推算的水量与地下水交换量汇合后,汇集到流域出口断面,出流量 Q_d 为:

$$Q_d = \max(0, Q_1 + F) \tag{15}$$

从而流域出口断面总流量Q为:

$$Q = Q_d + Q_r \tag{16}$$

据以上介绍,GR4J 模型包括 x_1 、 x_2 、 x_3 和 x_4 共 4 个参数,根据有关分析,均是模型的 敏感性参数^[2]。据 Perrin 多年实测资料验证,GR4J 参数 80%的概率置信区间如表 1 所示。

图 1GR4J 模型原理与流程图

表 1GR4J 模型参数的 80%置信区间

参数	含义	中间值	范围区间(达到80%置信区间)
x_1	产流水库容量,mm	350	100~1200
x_2	地下水交换系数,mm	0	-5~3
x_3	汇流水库容量,mm	90	20~300
<i>X</i> ₄	单位线汇流时间,d	1.7	1.1~2.9

- [1] Perrin C, Michel C, Andréassian V. Improvement of a parsimonious model for streamflow simulation[J]. Journal of Hydrology, 2003, 279(1-4): 275-289.
- [2] Payan J L, Perrin C, Andréassian V, et al. How can man-made water reservoirs be accounted for in a lumped rainfall-runoff model?[J]. Water Resources Research, 2008, 440(3): 380-384.