دالة عددية شاملة مع الحل المفصل للتحضير الجيد لبكالوريا BAC 2022

(๑) / □ adane_tahar_meziaņe العلمية الشعب العلمية (عانوي جميع الشعب العلمية)

ہ الجزء الأول :

 $(O; \overrightarrow{i}, \overrightarrow{j})$ منحناها البياني في معلم متعامد و متجانس $g(x) = x^3 - 3x^2 + 4x$. \mathbb{R} لتكن الدالة g المعرفة على \mathbb{R} بد : $g(x) = x^3 - 3x^2 + 4x$ المعرفة على \mathbb{R}

- 1) أدرس تغيرات الدالة g .
- 2) برهن أن (Cg) يقبل نقطة إنعطاف يطلب تعيين إحداثيبها ثم برهن أن هذه النقطة هي مركز تناظر للمنحني (Cg).
 - . و β عددان حقیقیان α

. برهن أنه إذا كان $\beta > \alpha$ فإن $g(\beta) > g(\alpha)$ ثم إستنتج مقارنة العددين (2021) و g(2022) دون حساب قيمتها

- أعط إشارة g(x) على \mathbb{R} ثم إستنتج وضعية (C_g) بالنسبة لمحور الفواصل
 - 5) أرسم المنحنى (C_g).
 - 🛭 الجزء الثاني :

 $oxedow{O; \overrightarrow{i}, \overrightarrow{j}}$ سنجتبر الدالة f المعرفة على $\mathbb{R}-\{1\}$ يلي ي $\mathbb{R}-\{1\}$ يلي ي $\mathbb{R}-\{1\}$ منحناها البياني في معلم متعامد و متجانس $\mathbb{R}-\{1\}$

- $f(x) = ax + \frac{bx}{(x-1)^2}$: عين العددين الحقيقين a و b حيث (1
- . أحسب f(x) أحسب $\lim_{x \to +\infty} f(x)$, $\lim_{x \to +\infty} f(x)$, $\lim_{x \to +\infty} f(x)$ أحسب (2
 - . أحسب أ $\frac{f(2+h)-f(2)}{h}$ أحسب أ $\frac{f(2+h)-f(2)}{h}$
 - $f'(x) = \frac{g(x)}{(x-1)^3}$: فإن $\mathbb{R} \{1\}$ من أنه من أجل كل x من $\{4\}$
 - إستنتج إتجاه تغير الدالة f على مجالي تعريفها ثم شكل جدول تغيراتها.
- 6) بين أنّ المستقيم (Δ) ذو المعادلة y=x مستقيم مقارب مائل للمنحنى (C_f) ثم أدرس وضعية (C_f) بالنسبة إلى (Δ).
- 7) بين أنه يوجد مماس (T) للمنحنى (C_f) يوازي المستقيم (Δ) في نقطة وحيدة A يطلب تعيينها ثم أكتب معادلة لـ (T)
 - 8) أحسب إحداثيات نقطتي تقاطع المنحنى (Cf) مع حامل محور الفواصل.
 - ٠ إعط إشارة f(x) على $\{1\}$ على $\mathbb{R}-\{1\}$ ثم إستنتج وضعية $\{C_f\}$ بالنسبة لمحور الفواصل
 - (C_g) أرسم (Δ) , أرسم (T), أرسم أ (C_f) أرسم أ(T)
 - (11) ناقش بيانيا حسب قيم الوسيط الحقيقي m عدد و إشارة حلول المعادلات التالية :

 $x^3 - 2x^2 = mx(x-1)^2 \quad ; f(x) = x + m^2 - 4 \quad ; -\frac{x}{(x-1)^2} = m \quad ; f(x) = f(m) \quad ; f(x) = |m| - 1 \quad ; f(x) = m$

- 🛎 الجزء الثالث :
- : حيث h_3 , h_2 , h_1 : التالية التالية الدوال العددية التالية $^{-}$

 $D_{h_3} = \mathbb{R} - \{2\} \quad h_3(x) = f(x-1) + 2 \qquad , D_{h_2} = D_f \quad h_2(x) = |f(x)| \qquad , D_{h_1} = \mathbb{R} - \{-1; 1\} \quad h_1(x) = f(|x|) \quad h_2(x) = h_2(x) = h_2(x) \quad h_2(x) \quad h_2(x) = h_2(x) \quad h_2(x) = h_2(x) \quad h_2(x) = h_2(x) \quad h_2(x) \quad h_2(x) \quad h_2(x) = h_2(x) \quad h_2(x) \quad$

- ، بين أن h_1 دالة زوجية h_1
- ٠ أشبًا (C_f) بنطلاقا من منحنى (C_{h_3}), منحنى أنشبًا (C_{h_3}), أشبًا (C_{h_3}) أشبًا منحنى أنشبًا (C_{h_3}) أنشبًا (C_{h_3}) أنسبًا (C_{h_3}) أنس
 - 🛭 الجزء الرابع :
 - $k(x) = f(x^2)$ بـ : $\mathbb{R} \{-1; 1\}$ المعرفة على ال
 - أدرس إتجاه تغير الدالة k ثم شكل جدول تغيراتها.