Внешний курс. Блок 1: Безопасность в сети

Дисциплина: Основы информационной безопасности

Ибатулина Дарья Эдуардовна, НКАбд-01-22

Содержание

1	1 Цель работы									5					
2	Выполнение заданий блока "Основы Кибербезопасности"														
	2.1 Как работает интернет: базовые сетевые проток	олы								6					
	2.2 Персонализация сети									11					
	2.3 Браузер TOR. Анонимизация									12					
	2.4 Беспроводные сети Wi-fi				•	•				15					
3	3 Выводы								1	18					

Список иллюстраций

2.1	Вопрос 2.1.1	•	 •	•			•					•	•	•		•	•	•	6
2.2	Вопрос 2.1.2																		7
2.3	Вопрос 2.1.3																		7
2.4	Вопрос 2.1.4																		8
2.5	Вопрос 2.1.5																		8
2.6	Вопрос 2.1.6																		9
2.7	Вопрос 2.1.7																		9
2.8	Вопрос 2.1.8																		10
2.9	Вопрос 2.1.9																		10
2.10	Вопрос 2.2.1																		11
2.11	Вопрос 2.2.2																		11
2.12	Вопрос 2.2.3																		12
2.13	Вопрос 2.2.4																		12
2.14	Вопрос 2.3.1																		13
2.15	Вопрос 2.3.2																		13
2.16	Вопрос 2.3.3																		14
2.17	Вопрос 2.3.4																		14
2.18	Вопрос 2.4.1																		15
2.19	Вопрос 2.4.2																		15
2.20	Вопрос 2.4.3																		16
2.21	Вопрос 2.4.4			•															16
2.22	Вопрос 2.4.5			_			_												17

Список таблиц

1 Цель работы

Выполненить контрольные задания первого блока "Безопасность в сети" внешнего курса "Основы кибербезопасности".

2 Выполнение заданий блока "Основы Кибербезопасности"

2.1 Как работает интернет: базовые сетевые протоколы

Протокол HTTP(S) является примером протокола прикладного уровня, по которому передаются веб-страницы, поэтому ответ на вопрос 1 - HTTPS (рис. [2.1]).

Рис. 2.1: Вопрос 2.1.1

На транспортном уровне существует два примера протокола: первый - это ТСР, в честь которого названа модель. Этот протокол, в отличие от второго примера – UDP, обеспечивает надежную передачу пакетов. Ответ на вопрос - транспортный (рис. [2.2]).

Рис. 2.2: Вопрос 2.1.2

Существуют две версии адресации в протоколе IP. Популярный на сегодняшний день - это версия 4 адресации (IPv4), и этот адрес состоит из большего набора чисел, нежели порт в TCP протоколе, а именно это 4 числа от 0 до 255. В других двух вариантах встречаются числа большие 255, что неверно для IPv4 (рис. [2.3]).

Рис. 2.3: Вопрос 2.1.3

Основная задача DNS-сервера - это сопоставить название, то есть доменное имя, с корректным IP-адресом, с тем, где лежит этот сервер, этот сайт (рис. [2.4]).

Рис. 2.4: Вопрос 2.1.4

Классификация протоколов в модели ТСР/ІР:

- Прикладной уровень (Application Layer): HTTP, RTSP, FTP, DNS.
- Транспортный уровень (Transport Layer): TCP, UDP, SCTP, DCCP.
- Сетевой (Межсетевой) уровень (Network Layer): IP.
- Уровень сетевого доступа (Канальный) (Link Layer): Ethernet, IEEE 802.11, WLAN, SLIP, Token Ring, ATM и MPLS (рис. [2.5]).

Рис. 2.5: Вопрос 2.1.5

Протокол http передает не зашифрованные данные, а протокол https уже будет передавать зашифрованные данные (рис. [2.6]).

Рис. 2.6: Вопрос 2.1.6

Во-первых, https передает зашифрованные данные, а следовательно, одна из фаз - передача данных, другая должна быть рукопожатием (рис. [2.7]).

Рис. 2.7: Вопрос 2.1.7

TLS определяется и клиентом, и сервером, чтобы было возможно подключиться (рис. [2.8]).

Рис. 2.8: Вопрос 2.1.8

В ходе TLS-рукопожатия клиент и сервер вместе выполняют следующие действия:

- Указывают, какую версию TLS (TLS 1.0, 1.2, 1.3 и т. д.) они будут использовать
- Решают, какие наборы шифров (см. ниже) они будут использовать
- Проверяют подлинность сервера с помощью открытого ключа сервера и цифровой подписи центра сертификации SSL.
- Генерируют сеансовые ключи, чтобы использовать симметричное шифрование вание после завершения рукопожатия Следовательно, вариант *шифрование* выбираем, он лишний (рис. [2.9]).

Рис. 2.9: Вопрос 2.1.9

2.2 Персонализация сети

Куки, как правило, хранят в себе список параметров и их значений. Этими параметрами могут быть id пользователя, id сессии, иногда описан тип браузера и время запросов и некоторые действия пользователей (рис. [2.10]).

Рис. 2.10: Вопрос 2.2.1

Куки не делают соединение более надежным (рис. [2.11]).

Рис. 2.11: Вопрос 2.2.2

Конечно же, куки генерируются сервером (рис. [2.12]).

Рис. 2.12: Вопрос 2.2.3

Куки бывают сессионные; как правило, эти cookies используются при навигации на сайте и удаляются при закрытии окна браузера (рис. [2.13]).

Рис. 2.13: Вопрос 2.2.4

2.3 Браузер TOR. Анонимизация

В луковой модели маршрутизации у нас тоже есть узлы. Они разделяются на охранный узел, промежуточный и выходной. В браузере Tor всегда есть три роутера, их не больше и не меньше (рис. [2.14]).

Рис. 2.14: Вопрос 2.3.1

IP-адрес не должен быть известен охранному и промежуточному узлам (рис. [2.15]).

Рис. 2.15: Вопрос 2.3.2

Далее отправитель генерирует общие ключи с помощью определенного криптографического алгоритма, того же самого, который используется в TLS-протоколе. Он генерирует общие ключи последовательно с охранным узлом A, далее с промежуточным узлом B, а потом и с выходным узлом C (рис. [2.16]).

Рис. 2.16: Вопрос 2.3.3

Для получения пакетов не нужно использовать TOR. TOR — это технология, которая позволяет с некоторым успехом скрыть личность человека в интернете. Ну и напоследок, наверное, стоит отметить, что, конечно, у браузера Тог есть как и поклонники, которые пользуются им, так и люди, которые считают, что такая версия анонимизации не очень хорошая по разным причинам, например, потому, что так можно общаться не только с хорошими людьми, но и с плохими. Тут уже каждый выбирает сам для себя, насколько это хорошая идея - иметь такую анонимную сеть или нет (рис. [2.17]).

Рис. 2.17: Вопрос 2.3.4

2.4 Беспроводные сети Wi-fi

WiFi - это технология беспроводной локальной сети, она основана на стандарте IEEE 802.11 (рис. [2.18]).

Рис. 2.18: Вопрос 2.4.1

WiFi работает на самом нижнем канальном уровне (рис. [2.19]).

Рис. 2.19: Вопрос 2.4.2

Самый ранний и на сегодняшний день небезопасный метод шифрования данных WiFi называется WEP. Он устарел и уже категорически не рекомендуется к использованию. Он устарел, в частности, потому, что использовал малую длину ключа: так, например, он использовал длину ключа в 40 бит, это довольно мало

на сегодняшний день, он может быть легко взломан (рис. [2.20]).

Рис. 2.20: Вопрос 2.4.3

Лектор говорит: Поговорим все-таки о безопасности в сетях WiFi. Что я имею в виду под безопасностью? Я имею в виду передачу данных от устройства, будь это мобильный телефон или компьютер, к роутеру, к тому прибору, который подключен непосредственно к глобальной сети Интернет с помощью провода, и безопасность осуществляется на этом уровне с помощью шифрования и аутентификации (рис. [2.21]).

Рис. 2.21: Вопрос 2.4.4

Судя по названию, WPA2 Personal для личного использования, как раз для домашней сети, enterprise - для использования в коммерческих организациях

(рис. [2.22]).

Рис. 2.22: Вопрос 2.4.5

3 Выводы

В результате выполнения блока "Безопасность в сети" я узнала, как работают базовые сетевые протоколы, куки-файлы, сети Wi-Fi и для чего предназначен браузер TOR.