⑲ 日本国特許庁(JP)

⑪特許出願公開

⑫公開特許公報(A) 平1-95602

В

(1) Int Cl. 4		識別記号	庁内整理番号		④公開	平成1年(1	989) 4月13日
H 01 P H 01 L	5/08 23/02 23/04	0.04	L-8626-5J B-6835-5F F-6835-5F				
H 01 P H 03 F	23/12 29/80 3/08 3/60	3 0 1	7738-5F G-8122-5F 8626-5J 6658-5J	審査請求	未請求	発明の数 1	(全4百)

❸発明の名称

チップ化モジュール

创特 願 昭62-255876

22出 願 昭62(1987)10月8日

⑫発 明者

勵 夫 東京都港区芝5丁目33番1号 日本電気株式会社内

砂出 頤 人 日本電気株式会社 東京都港区芝5丁目33番1号

砂代 理 人 弁理士 内 原

1. 発明の名称

チップ化モジュール

2. 特許請求の範囲

チップ部品を用いたマイクロ波モジュールにお いて、誘電体基板上に入出力ストリップ線路を蒸 着し、この入出力ストリップ線路と結合するスロ ット線路及び前配チップ部品を前記誘電体港板裏 面の接地導体面上に構成して、前記入出力ストリ ップ級路と前記チップ部品との接続をストリップ ・スロット変換を介してなし、さらにチップ実装 部をハーメチックシールしたことを特徴とするチ ァブ化モジュール。

3. 発明の詳細な説明

〔窟菜上の利用分野〕

本発明はチップ化モジュールに関し、特にモノ リシックマイクロ波集積回路(以下MMICと記す) チップを用いたチップ化モジュールに関する。 〔従来の技術〕

最近、増幅器中周波数変換器等のマイクロ波デ バイスを数m角の GaAs 中Siチップ上に同一プロ セスで構成するMMICの開発が進み、回路の大幅 な小型化が図られている。

従来、このような回路の実装方法としては、チ ップ、入出力ストリップ線路やパイプス用薄膜抵 抗をアルミナセラミック蒸板上に滋潜したMIC 基根。パイパスチップコンデンサ等をパッケージ 内に平面的に実装した上、チップ保護のために本 パッケージを気密封止する構造が採られる。

第3図(a),(b),(c),(b)は従来のチップ化モジュー ルの一例を示す増幅器の平面透視図、側面図、回 路図,チップキャリア実装図である。第3図にお いて、1はGaAsFETチップ、2,3は直旋カッ ト用のチップコンデンサ、4.5はゲート及びドレ インの電像パイパスコンデンサ、6,7は薄膜抵抗 である。8,9はセラミック基根で、入出力ストリ ップライン,降腰抵抗が蒸着される。10,11は

ゲート, ドレインへの電源電圧供給コネクタビン、12',13'は高周波入出力ビンコネクタ、14' はポッケージケース、15はカポーである。16は入出力ピンコネクタ12',13'を気密對止するためのガラス対止であり、ペッケージケース14, カポー15はレーザミールにより気密封止される。17は取付用ねじ穴である。熱伝導度が良いチップキャリア18上にGaAsFETチップ1が実装され両者の線彫版率は等価である。

[発明が解決しようとする問題点]

上述した従来のチェブ化モジュールでは、機能素子のチェブ化による大幅な集積化が行われているが、入出力接続用のMIC基板や直流カット用のチェブコンデンサ等の周辺回路があるため、チェブ化モジュールとしての小形化には限界があり、パッケージでの共振,入出力ガラス対止ピンコネクタ部での高周波特性の劣化, アイソレーションの不充分等の問題点がある。

[問題点を解決するための手段]

本発明のチップ化モジュールは、チップ部品を

気的な等価回路は第3図(c)に示したものと同じであり、チップ部品の入出力は跨電体基板19上のスロット線路20と世界的に結合している。またGaAsFETチップ1のゲート、ドレインへは経派型圧供給用コネクタピン10、11からな流が供給される。跨電体基板19上に蒸溜された入、出力ストリップ線路12、13はストリップ・スロット線路変換により裏面のスロット線路20に接続される。セラミック又は金具材料からなるハーメチックシール用のシールドケース14は防電体基板19に接着され、カベー15により対止される。

次に第2図に示す本発明の一使用例は2個のアイソレータ21と、2個のチャブ化モジュール増幅器22と、パワーモニタ23とを備え、チャブ化モジュール増幅器22は電源回路24から気限を供給され、アイソレータ21。チャブ化モジュール増幅器22。パワーモニタ23間の信号般路は金りポン25によって接続される。第2図(c)に示すように、ハーメチャクシールされたチャブ化モジュール増福器22は個体底面下部に夹袋され、

用いたマイクロ波モジュールにおいて、

勝道体基 板上に入出力ストリップ線路を蒸増し、この入出 カストリップ線路と結合するスロット線路及び前 配チップ部品を前記誘電体基板裏面の接地球体面 上に構成して、前記入出力ストリップ線路と前記 チップ部品との接続をストリップ・スロット変換 を介してなし、さらにチップ実装部を ハーメチックシールしたことを特徴とする。

(突施例)

次に、本発明について第 I 図。第 2 図を参照して説明する。

第1図(a),(b),(c)は本発明のチャブ化モジュールの一実施例を示す平面透視図、側面図、上面図、第2図(a),(b).(c)は本発明の一使用例を示すチップ化モジュール増幅器のブロック図、平面実装図、部分断面を含む倒面図である。

第1図において、GaAs FET チップ 1、電源パイパスコンデンサ 4,5,薄膜抵抗 6,7のハーメチックシールを必要とするチップ部品は誘電体基板 19の接地導体面側に実装される。本実施例の電

ハーメチックシールが不要なアイソレータ21, パワーモニタ23は個体底面上部に実装される。 チップ化モジュール増幅器22と他のモジュール の接続はスロット線路・ストリップ線路変換で接 続される。

とのような構造の使用例ではモジュールの疑妨 接続が容易であり、第3図で説明した従来例にか けるハーメテックシール用のピンコネクタ接続部 による特性の劣化が生じない。また、本使用例で はチップ部品等最少限必要な回路部品のみをハー メチックシールするので、全体として小形化が可 能である。

〔発明の効果〕

以上説明したように本発明は、入出力ストリップ無路を誘電体蓋板上に形成し、アETチップ等のチップ部品を接地導体側に実装して、入出力ストリップ線路とをストリップ線路・スロット線路変換で接続することにより、入出力接続線路側とケップ部品実装倒とは本質的に直流的。気密的にアイソレートされており、従来では必要な直流カ

ット用チップコンデンサおよび入出力接続ピン並 びにハーメチックシール用ガラス封止が不要であ る。また、チップ部品等のみをハーメチックシー ルする構造となっているため、シールドケースの 大きさはチップ部品相当の寸法であればよく、大 爆な小形化が図れるので、ケースの共振周波数を 使用周波数に比べて充分に高くすることができ、 小形化、軽量化が可能である。さらに、他のチッ プ化モジュール, 誘電体潜板との凝続接続が容易 であり、かつチップ搭数部は入出力部にスロット **線路を使用しているため電界はスロット部に集中** し、帰改電磁界はほとんど帯であるので、入出力 アイソレーションは良好である。また、周波数符 性は従来例におけるような高周波での劣化がない ので、ミリ波帝においても使用できるなど多くの 効果がある。

4. 図面の簡単な説明 、

第1図(a),(b),(c) は本発明のチップ化モジュールの一実施例を示す平面透視図、 傾面図、上面図、

第2図(a).(b),(c) は本発明の一使用例を示すチップ 化モジュール増幅器のブロック図、平面実接図、 部分断面を含む偶面図、第3図(a).(b),(c),(d) は従 来のチップ化モジュールの一例を示す平面透視図、 側面図、回路図、チップキャリア実装図である。

1 …… GaAs FETチップ、4,5 …… 電源パイパスコンデンサ、6,7 …… 薄膜抵抗、10,11 …… 電源電圧供給用コネクタピン、12,13 ……入。出力ストリップ融略、14 ……シールドケース、15 ……カバー、19 ……誘電体基板、20 ……スロット融略、21 ……アイソレータ、22 ……チップ化モジュール増幅器、23 ……パワーモニタ、24 ……電源回路、25 ……金リポン。

代理人 弁理士 内 原 音

