INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO

PROF. DANIEL S. FREITAS

UFSC - CTC - INE

3 - INDUÇÃO E RECURSÃO

- 3.1) Indução Matemática
- 3.2) Indução Forte
- 3.3) Definições Recursivas
- 3.4) Indução Estrutural
- 3.5) Algoritmos Recursivos

INDUÇÃO MATEMÁTICA

Exemplo: Provar que $n! \ge 2^{n-1}$ para $n \in \{1, 2, 3, 4, 5\}$

Prova: usar a técnica de prova por casos:

1.
$$n = 1$$
: $1! = 1 > 2^{1-1} = 1$

2.
$$n=2$$
: $2!=2 \ge 2^{2-1}=2$

3.
$$n = 3$$
: $3! = 6 \ge 2^{3-1} = 4$

4.
$$n = 4$$
: $4! = 24 \ge 2^{4-1} = 8$

5.
$$n = 5$$
: $5! = 120 > 2^{5-1} = 16$

- Assim, como $n! \ge 2^{n-1}$ para todo $n \in \{1, 2, 3, 4, 5\}$, concluímos que esta proposição é verdadeira.
- **Questão**: provar que $n! \geq 2^{n-1}$ para todo $n \geq 1$ $(n \in \mathbb{Z}^+)$

INDUÇÃO MATEMÁTICA

Exemplo: Qual é a fórmula para a soma dos primeiros *n* inteiros positivos ímpares?

Solução:

Note que:

$$1 = 1$$

$$1 + 3 = 4$$

$$1 + 3 + 5 = 9$$

$$1 + 3 + 5 + 7 = 16$$

$$1 + 3 + 5 + 7 + 9 = 25$$

- Ou seja, aparentemente a soma dos n primeiros inteiros positivos ímpares é dada por n^2 .
- Como ter certeza de que isto vale para qualquer n?
 - ou seja: como provar esta suposição?

MÉTODO DA INDUÇÃO MATEMÁTICA

- Técnica de demonstração de conjecturas.
- Ilustração: imagine que você deseja subir em uma escada sem fim.
 - Como saber se você será capaz de alcançar um degrau arbitrariamente alto?

MÉTODO DA INDUÇÃO MATEMÁTICA

- Agora suponha que sejam verdadeiras as seguintes afirmações sobre as suas habilidades de subir escadas:
 - 1. você pode alcançar o primeiro degrau
 - 2. ao chegar a um degrau qualquer, você sempre sempre pode passar ao degrau seguinte (uma implicação).
- Pela sentença 1, você tem garantia de chegar ao primeiro degrau
 - pela 2, você garante que chega ao segundo
 - novamente pela 2, você garante que chega ao segundo
 - novamente pela 2, você garante que chega ao terceiro
 - assim por diante

- Técnica de prova de teoremas que estabelece que uma propriedade P(n) é V para todo n inteiro e positivo.
- A prova por indução matemática consiste de 2 passos:
 - 1. Passo básico: P(1) é V
 - 2. Passo indutivo: para um k genérico fixo é verdadeiro o condicional:

$$P(k) \rightarrow P(k+1)$$

- Observações:
 - 1. Assumir que P(k) é V não é o mesmo que assumir o que queremos provar.
 - 2. Esta é uma técnica de raciocínio dedutivo, usada para provar alguma idéia obtida com um raciocínio indutivo.

Exemplo 1: Mostre que, se n é um inteiro positivo:

$$1 + 2 + \cdots + n = n \cdot (n+1)/2$$

Solução:

• Passo básico: P(1) é V, pois:

$$1 = 1.(1+1)/2$$

Passo indutivo: vamos assumir que P(k) vale, de modo que:

$$1 + 2 + \cdots + k = k \cdot (k+1)/2$$

Com base nisto, queremos mostrar que vale:

$$1 + 2 + \dots + k + (k+1) = (k+1) \cdot [(k+1) + 1]/2$$
 (??)

ullet Ora, adicionando-se (k+1) a ambos os lados de P(k):

$$1 + 2 + \dots + k + (k+1) = k.(k+1)/2 + (k+1)$$
$$= (k+1).(k+2)/2$$

PRINCÍPIO DA INDUÇÃO MATEMÁTICA

Exemplo 2: Use a indução matemática para provar que a soma dos primeiros inteiros positivos ímpares é n^2 .

Solução:

- Seja P(n): "A soma dos primeiros ímpares é n^2 "
 - ou: " $1+3+5+\cdots+(2n-1)=n^2$ "
- Passo básico: comprovar P(1)
 - P(1) estabelece que $1 = 1^2$, o que é V
- **Passo indutivo**: mostrar que P(k) → P(k+1) é V
 - Suponha que P(k) é V para um k fixo, ou seja:

$$1 + 3 + 5 + \dots + (2k - 1) = k^2$$

• A partir disto, queremos provar que P(k+1) é V, ou seja:

$$1+3+5+\cdots+(2k-1)+[2(k+1)-1]=(k+1)^2$$
 (??)

Exemplo 2 (cont.): (Provar que a soma dos primeiros ímpares é n^2)

Solução:

Passo indutivo: mostrar que é V a proposição:

$$1+3+5+\cdots+(2k-1)+[2(k+1)-1]=(k+1)^2$$

• Uma vez que P(k) é V, o lado esquerdo acima fica:

$$k^{2} + [2(k+1) - 1] = k^{2} + (2k+2-1)$$
$$= k^{2} + 2k + 1$$
$$= (k+1)^{2}$$

- Isto mostra que, efetivamente, P(k+1) segue de P(k).
- Assim, uma vez que P(1) e $P(k) \rightarrow P(k+1)$ são V, independente da escolha de k, concluímos que é V a proposição:

$$\forall n P(n)$$

Exemplo 3: Prove que, para qualquer inteiro positivo n, $2^n > n$

Solução:

- Passo básico: comprovar P(1)
 - P(1) estabelece que $2^1 > 1$, o que é V
- **Passo indutivo**: mostrar que P(k) → P(k+1) é V
 - Suponha que P(k) é V para um k fixo, ou seja:

$$2^k > k$$

Multiplicando os dois lados por 2, temos:

$$2.2^k > 2.k$$

 $2^{k+1} > k+k \ge k+1$
 $2^{k+1} > k+1$

•
$$P(k+1)$$
 é V

PRINCÍPIO DA INDUÇÃO MATEMÁTICA

Exemplo 4: Prove que $n^2 > 3.n$, para $n \ge 4$.

Solução:

- Passo básico: neste caso, o passo inicial é P(4):
 - $4^2 > 3.4$, é, efetivamente, V
- Passo indutivo:
 - Hipótese de indução: $k^2 > 3.k$, para $k \ge 4$
 - Queremos mostrar que $(k+1)^2 > 3.(k+1)$

• Isto mostra que P(k+1) é V sempre que P(k) é V.

Exemplo 5: Sejam $A_1, A_2, A_3, \ldots, A_n$ conjuntos quaisquer. Prove por indução que:

$$\overline{\left(\bigcup_{i=1}^{n} A_i\right)} = \bigcap_{i=1}^{n} \overline{A_i}$$

(versão estendida das leis de De Morgan)

Solução:

- Seja P(n): "vale a igualdade para quaisquer n conjuntos"
- Passo básico:

$$P(1)$$
 é $\overline{A_1} = \overline{A_1}$, o que é V

• Passo indutivo: usar P(k) para provar P(k+1) (\Rightarrow)

PRINCÍPIO DA INDUÇÃO MATEMÁTICA

Exemplo 5 (cont.): Prove que: $\overline{(\bigcup_{i=1}^n A_i)} = \bigcap_{i=1}^n \overline{A_i}$

Solução:

Passo indutivo:

$$\overline{(\bigcup_{i=1}^{k+1} A_i)} = \overline{A_1 \cup A_2 \cup \dots \cup A_k \cup A_{k+1}}$$

$$= \overline{(A_1 \cup A_2 \cup \dots \cup A_k) \cup A_{k+1}} \quad \text{(associatividade de } \cup \text{)}$$

$$= \overline{(A_1 \cup A_2 \cup \dots \cup A_k)} \cap \overline{A_{k+1}} \quad \text{(De Morgan para 2 conjs)}$$

$$= (\bigcap_{i=1}^k \overline{A_i}) \cap \overline{A_{k+1}} \quad \text{(usando } P(k)\text{)}$$

$$= (\bigcap_{i=1}^{k+1} \overline{A_i})$$

- Portanto, a implicação $P(k) \rightarrow P(k+1)$ é uma tautologia.
 - ▶ Logo, pelo princípio da indução, P(n) é V, $\forall n \geq 1$.

Exemplo 6: Mostre que todo conjunto finito não-vazio é contável, ou seja, pode ser arranjado em uma lista.

Solução:

- Seja P(n): "se A é qualquer conjunto com |A| = n ≥ 1, então A é contável."
- Passo básico:
 - Seja $A = \{x\}$ um conjunto com um elemento.
 - ullet x forma uma sequência cujo conjunto correspondente é A.
 - ightharpoonup Então P(1) é V.
- Passo indutivo: usar P(k) para provar P(k+1) (\Rightarrow)

■ Exemplo 6 (cont.): "Todo conjunto finito não-vazio é contável."

Solução:

- Passo indutivo:
 - P(k) é "se A é qualquer conjunto com k elementos, então A é contável"
 - Agora escolha qualquer conjunto $B \operatorname{com} k + 1$ elementos.
 - Escolha um elemento qualquer x em B:
 - $\cdot B \{x\}$ é um conjunto com k elementos
 - · P(k) garante que existe uma sequência x_1, x_2, \ldots, x_k que tem $B \{x\}$ por seu conjunto correspondente
 - \cdot ora, x_1, x_2, \ldots, x_k, x tem B por seu conjunto correspondente
 - · então B é contável
 - Já que B pode ser qualquer conjunto com k+1 elementos, P(k+1) é V se
 P(k) é V.
 - **Solution** Conclusão: P(n) é verdadeiro para todo $n \ge 1$.

- **Observação:** Ao utilizar a indução para provar resultados, tome cuidado para não assumir que "P(k) é V" para forçar o resultado esperado.
- Esta aplicação incorreta do princípio da indução matemática é um erro bastante comum.

Por que a indução é válida? (1/3)

- Por que o método da indução matemática é uma técnica de prova válida?
- Em consequência do "Axioma do bom ordenamento" para os inteiros positivos:
 - "Todo sub-conjunto não-vazio do conjunto dos inteiros positivos tem um elemento mínimo."

Por que a indução é válida? (2/3)

Axioma do bom ordenamento: "Todo sub-conjunto não-vazio do conjunto dos inteiros positivos tem um elemento mínimo."

Argumento:

- Suponha que sabemos que P(1) é V e que a proposição $P(k) \rightarrow P(k+1)$ é V, independente do k escolhido.
- Agora assuma que existe pelo menos um inteiro positivo para o qual P(n) é F.
- Então o conjunto S dos "inteiros positivos para os quais P(n) é F" é não-vazio.

Por que a indução é válida? (3/3)

Argumento:

- O conjunto S dos "inteiros positivos para os quais P(n) é F" é não-vazio.
- Logo, pelo bom ordenamento, S tem um elemento mínimo (m):
 - sabemos que $m \neq 1$, pois assumimos que P(1) é V
 - uma vez que m é positivo e > 1, temos que: m-1 é um inteiro positivo
 - $m \omega$ mas m-1 não pode estar em S, já que m-1 < m
 - então P(m-1) deve ser V
- Daí, uma vez que $P(k) \to P(k+1)$ também é V, devemos ter: P(m) é V (contradição!)
- Portanto, P(n) deve ser V para todo inteiro positivo n.

- Em toda prova usando indução matemática, devemos executar de forma correta e completa tanto o passo básico como o passo indutivo.
- Devemos ter cuidado porque algumas vezes é difícil localizar o erro em uma prova por indução defeituosa.

Exemplo (1/4): Encontre o erro na falsa prova abaixo de que todo conjunto de linhas no plano não-paralelas aos pares se encontra em um ponto comum.

"Prova":

- Seja P(n): "Todo conjunto de n linhas não-paralelas aos pares no plano se encontra em um ponto comum".
- ▶ Vamos "provar" que P(n) é V para todo inteiro positivo $n \ge 2$.
 - Passo básico: P(2) é V, pois quaisquer duas linhas não-paralelas no plano se encontram em um ponto comum.
 - ▶ Passo indutivo: (⇒)

■ Exemplo (2/4): "Todo conjunto de n linhas no plano não-paralelas aos pares se encontra em um ponto comum."

"Prova":

- ▶ Passo indutivo: (⇒)
 - ▶ Hipótese: P(k) é V ("k linhas não-paralelas aos pares no plano se encontram em um ponto")
 - Agora considere k+1 linhas distintas no plano:
 - · pela hipótese: as primeiras k se encotram em um ponto p_1
 - \cdot também: as últimas k se encontram em um ponto p_2
 - · agora se fosse $p_1 \neq p_2$, todas as linhas que os contêm deveriam ser uma só (2 pontos determinam uma reta)
 - · portanto: p_1 e p_2 são o mesmo ponto
 - · e o ponto $p_1 = p_2$ está em todas as k+1 linhas

■ Exemplo (3/4): "Todo conjunto de n linhas no plano não-paralelas aos pares se encontra em um ponto comum."

"Prova":

- Acabamos de mostrar que P(k+1) é V, assumindo que P(k) é V:
 - ou seja, mostramos que, se assumirmos que todo conjunto de k ($k \ge 2$) linhas distintas não-paralelas se encontram em um ponto, isto valerá também para k+1 linhas.
- Completamos o passo básico e o passo indutivo de uma prova por indução que parece correta...

■ Exemplo (4/4): Mostre que há na prova por indução para: "Todo conjunto de n linhas no plano não-paralelas aos pares se encontra em um ponto comum."

"Solução":

- Note que o passo indutivo requer que $k \geq 3$ (!!)
 - Ocorre que não podemos mostrar que P(2) implica em P(3)!
- Quando k=2, o nosso objetivo é mostrar que quaisquer 3 linhas distintas não-paralelas aos pares se encontram em um ponto.
- As duas primeiras linhas se encontram mesmo em um ponto p_1 e as duas últimas em um ponto p_2 .
- Mas, neste caso, p_1 e p_2 não precisam ser o mesmo ponto
 - pois apenas a 2a linha é comum a ambos os conjuntos...

INDUÇÃO MATEMÁTICA

Final deste item.

Dica: fazer exercícios sobre Indução Matemática...