- Concept definition
 - Diagnosis, lab test, action, event...
- Variable definition
 - · Diagnosis: explicitly mentioned or inferred
 - Lab test: exact numeric value or range or direction
 - Action: planned or occurred
 - Event: explicitly mentioned or inferred

- Annotation level/unit
 - Patient, document, sentence, phrase...
- Attribute definition
 - Polarity
 - Severity
 - Frequency
 - ...

Acknowledgements: Uni. of Utah DeCART summer school: https://github.com/jianlins/AnnotationNLP/blob/master/01_Introduction_to_Annotation.ipynb

- Examples:
 - i2b2 2006 Smoking challenge:
 - Past Smoker
 - Current Smoker
 - Smoker
 - Non-Smoker
 - Unknown
 - What level/unit would be appropriate to annotate?

Uzuner O, Goldstein I, Luo Y, Kohane I. Identifying patient smoking status from medical discharge records. J Am Med Inform Assoc. 2008;15(1):14–24. doi:10.1197/jamia.M2408

- Examples:
 - i2b2 2010 challenge:
 - Concepts: medical problem, treatment, test
 - Assertion: present, absent, possible in the patient; associated with someone else
 - Relation: improves, causes, worsens...

What level/unit would be appropriate to annotate?

- Examples:
 - ShARe CLEF eHealth 2013 challenge:
 - Disorder mentions mapped to SNOMED-CT

What level/unit would be appropriate to annotate?

Natural Language Processing - workflow

- Develop NLP solution
 - Representation
 - What unit was annotated?
 - What would be an appropriate way to represent the data?
 - Entities
 - What is the distribution? Is the there a lot of variation, or are there clear patterns?
 - Approach: Patterns? Machine learning? Adaptation?
 - Off-the-shelf-tools often have default baseline representations, standard parameter settings etc – can this be a problem, or something you can re-use?

i2b2 2006 smoking challenge - distributions

Table 3
Table 3 Smoking Status Training and Test Data Distribution

	Training Data	Test Data
Smoking Status	Frequency (%)	Frequency (%)
Past Smoker	36 (9)	11 (11)
Current Smoker	35 (9)	11 (11)
Smoker	9 (2)	3 (3)
Non-Smoker	66 (17)	16 (15)
Unknown	252 (63)	63 (61)
Total	398	104

Uzuner O, Goldstein I, Luo Y, Kohane I. Identifying patient smoking status from medical discharge records. *J Am Med Inform Assoc.* 2008;15(1):14–24. doi:10.1197/jamia.M2408

i2b2 2010 concept challenge - approaches

Table 2

Exact and inexact evaluation on the concept extraction task

Concept extraction					
System by	Medical	Method	External?	Exact F	Inexact F
	experts			measure	measure
deBruijn et al ²⁵	N	Semi-	N	0.852	0.924
		supervised			
Jiang et al $\frac{16}{}$	Y	Hybrid	Y	0.839	0.913
Kang et $al^{\frac{17}{}}$	N	Hybrid	Y	0.821	0.904
Gurulingappa et al $^{\underline{18}}$	N	Supervised	Y	0.818	0.905
Patrick et al ¹⁹	N	Supervised	Y	0.818	0.898
Torii and Liu ²⁰	N	Supervised	N	0.813	0.898
Jonnalagadda and	N	Semi-	N	0.809	0.901
Gonzalez ²¹		supervised			
Sasaki <i>et al</i> ²²	N	Supervised	N	0.802	0.887
Roberts et al^{23}	N	Supervised	N	0.796	0.893
Pai et al^{24}	Y	Hybrid	N	0.788	0.884

Natural Language Processing - workflow

- Evaluation
 - What type of performance is acceptable? What type of evaluation is appropriate?
 - Intrinsic? Extrinsic?
 - Is the solution specific to a particular clinical population, or generic to the entire population?

i2b2 2010 concept challenge - evaluation

Table 2

Exact and inexact evaluation on the concept extraction task

Concept extraction					
System by	Medical	Method	Extern	al? Exact F	Inexact F
	experts			measure	measure
deBruijn et al ²⁵	N	Semi-	N	0.852	0.924
		supervised			
Jiang et al $\frac{16}{}$	Y	Hybrid	Y	0.839	0.913
Kang et $al^{\frac{17}{2}}$	N	Hybrid	Y	0.821	0.904
Gurulingappa et al $^{\underline{18}}$	N	Supervised	Y	0.818	0.905
Patrick et al ¹⁹	N	Supervised	Y	0.818	0.898
Torii and $Liu^{\underline{20}}$	N	Supervised	N	0.813	0.898
Jonnalagadda and	N	Semi-	N	0.809	0.901
Gonzalez ²¹		supervised			
Sasaki <i>et al</i> ²²	N	Supervised	N	0.802	0.887
Roberts et al^{23}	N	Supervised	N	0.796	0.893
Pai et al ²⁴	Y	Hybrid	N	0.788	0.884

i2b2 2006 smoking challenge - evaluation

Table 4

Table 4 Microaverages and Macroaverages for Precision, Recall, and F-Measure, Sorted by Microaveraged F-Measure

	Macroaveraged		Mi	Microaveraged		
Group Run	Precision	Recall	F-Measure	Precision	Recall	F-Measure
Clark_3	0.81	0.73	0.76	0.90	0.90	0.90
Cohen_2	0.64	0.67	0.65	0.88	0.89	0.89
Aramaki_1	0.64	0.67	0.65	0.88	0.89	0.88
Cohen_1	0.64	0.65	0.64	0.88	0.88	0.88
Clark_2	0.76	0.69	0.72	0.87	0.88	0.88
Cohen_3	0.62	0.62	0.62	0.87	0.88	0.87
Wicentowski_1	0.58	0.61	0.59	0.85	0.87	0.86
Szarvas_2	0.59	0.60	0.59	0.85	0.87	0.85
Clark_1	0.69	0.65	0.66	0.86	0.87	0.85
Szarvas_3	0.56	0.58	0.57	0.84	0.86	0.84
Savova_1	0.62	0.60	0.60	0.84	0.86	0.84
Szarvas_1	0.56	0.58	0.57	0.83	0.86	0.84
Sheffer_1	0.59	0.59	0.58	0.83	0.86	0.84
Savova_2	0.56	0.57	0.56	0.81	0.84	0.82
Savova_3	0.55	0.55	0.55	0.80	0.83	0.81
Pedersen_1	0.55	0.56	0.54	0.82	0.82	0.81
Guillen_1	0.45	0.51	0.44	0.77	0.79	0.76
Carrero_1	0.52	0.47	0.48	0.74	0.77	0.75
Carrero_2	0.44	0.43	0.41	0.71	0.71	0.70

Uzuner O, Goldstein I, Luo Y, Kohane I. Identifying patient smoking status from medical discharge records. *J Am Med Inform Assoc.* 2008;15(1):14–24. doi:10.1197/jamia.M2408

Data	
Source	South London and Maudsley hospital - CRIS
Governance/access procedure	Affiliation, approved research project, contact: xx.yy@zz.ac.uk
Content	Clinical notes: events, attachments
Size	500 annotated documents
Sampling procedure	All patients with diagnosis code xx (total yy), random sample of 500 (one document per patient)

NLP approach/model	
Objective/task	Smoking status (current, past, non- smoker)
Text/linguistic unit	Document
Gold standard	
Manual annotations? IAA?	Manual annotations, 2 clinicians, independent IAA: 77% F-score
Guidelines/definitions	URL

Model development	
Approach	Supervised machine learning SVM, liblinear, as implemented in scikit- learn, v. 3.2 Training/test split: 10-fold cross- validation
Parameters	Kernel: c: etc.
Prerequisites (preprocessing, etc)	nltk (v. 2.0) sentence splitting: punct_tokenizer, token

Data
Source
Governance/access procedure
Content
Size
Sampling procedure

NLP approach/m	nodel	
Objective/task		
Text/linguistic unit		
Gold standard		
Gold standard Manual annotati IAA?	ons?	

Model development
Approach (rule-based, machine learning – supervised, unsupervised)
Parameters
Prerequisites (preprocessing, etc)

NLP model development

Evaluation

Evaluation				
Intrinsic				
Criterion a		NLP task, e.g. De-identification		
	Description	Quality of predictions/classification		
	Metric	Precision, recall, F-score, accuracy, AUC		
	Results	xx%		
	Error analysis	Types of false positives, false negatives		
Extrinsic	, d			
Criterion b		Economic		
	Description	Time to complete a task		
	Method	Comparative – with/without NLP approach		
	Metric	Time		
	Results	X minutes faster with approach y		
	Error analysis/comments	Advantages and disadvantages		
Criterion c		Decision support		
	Description	Alert to put patient on alternative treatment based on retrospective model using NLP to detect treatment response		
	Method	Case-control		
	Metric	Exposure measurement		
	Results	No. of patients with improved health outcome		
	Error analysis/comments	Advantages and disadvantages		

Natural Language Processing - workflow

Example case:

A clinical NLP algorithm has developed to extract smoking status from EHRs and the algorithm has been made available. You want extract similar information from your EHR database for a particular clinical use-case.

What do you need to know about the algorithm and its development? How do you decide if it works well enough on your data?

Thank you!

sumithra.velupillai@kcl.ac.uk

