PRODUCT DEMAND PREDICTION WITH MACHINE LEARNINGS

Team Members:

- O 1.B.NITHYASBI
- O 2.M. VEERALAKSHMI
- O 3.P.PRATHISHA

Department of electronics and communication engineering – III year Students of NPR college of engineering and technology - Natham Dindigul

Import necessary libraries import pandas as pd import numpy as np

from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error import matplotlib.pyplot as plt

Load a sample dataset (you should replace this with your dataset)

data = pd.DataFrame({

'Feature1': [1, 2, 3, 4, 5],

```
'Feature2': [2, 3, 4, 5, 6],
'Feature3': [3, 4, 5, 6, 7],
'Demand': [10, 15, 20, 25, 30]
})
```

Assuming you have features and target variable
X = data[['Feature1', 'Feature2', 'Feature3']] # Features
y = data['Demand'] # Target variable

Split the data into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Create a Linear Regression model model = LinearRegression()

Fit the model to the training data

```
model.fit(X_train, y_train)
# Make predictions on the test set
y_pred = model.predict(X_test)
# Calculate the Mean Squared Error to evaluate the
model
mse = mean_squared_error(y_test, y_pred)
print(f"Mean Squared Error: {mse}")
# Visualize the predictions
plt.scatter(y_test, y_pred)
plt.xlabel("Actual Demand")
plt.ylabel("Predicted Demand")
plt.title("Demand Prediction")
```

plt.show()

OUTPUT :

PRODUCT DEMAND PREDICTION OUTPUT

048709793414476E-29