СИСТЕМНАЯ ИНЖЕНЕРИЯ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ

http://siit.ugatu.su

УДК 519.95

Модель обучения искусственного интеллекта

¹О. В.ФЕНИНА, ²А. О.ФЕНИН, ³М. В.БРИК

¹ olga_fenina2003@mail.ru, ²andrey.fenin@bk.ru , ³at211345@gmail.com

¹ Евразийский Национальный Университет им. Л. Гумилева (ЕНУ)
² Карагандинский Государственный Технический Университет (КарГТУ)
³ Карагандинский Высший Политехнический Колледж (КарВПК)

Поступила в редакцию 10 июля 2020 г.

Аннотация. В настоящее время еще существуют нерешенные проблемы искусственного интеллекта. Авторы рассмотрят только одну из них и покажут применение теории сетей Петри для моделирования искусственного интеллекта с применением элементов теории игр.

Ключевые слова: искусственный интеллект; параллельный процесс; сеть Петри; модель; игра; тест; принцип обучаемости; основные операции; основные понятия; события; условия.

ВВЕДЕНИЕ

Область науки, получившая, может быть не слишком удачное название «искусственный интеллект», обычно представляется сферой исследований, основной целью которых является создание устройств, имитирующих человека во всей полноте его деятельности.

«Разумные» системы создаются для работы в средах, где присутствие человека невозможно или опасно для жизни.

Этим устройствам придется действовать в условиях большого разнообразия возможных ситуаций.

Поэтому системы, снабженные искусственным интеллектом, должны располагать механизмами адаптации, позволяющим им строить программы целесообразной деятельности по решению поставленных задач на основании конкретной ситуации, складывающейся на данный момент в окружающей их среде. Такая постановка проблемы выдвигает перед исследователями особые задачи, не возникавшие ранее в теории

управления и теории проектирования технических систем.

В настоящее время еще существуют нерешенные проблемы искусственного интеллекта [1].

Авторы рассмотрят только одну из них и покажут применение теории сетей Петри для моделирования искусственного интеллекта с применением элементов теории игр.

ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ

Методы искусственного интеллекта все чаще используются для анализа исходных текстов и понимания их смысла, управления требованиями, выработки спецификаций, проектирования, генерации кода, верификации, тестирования, оценки качества, выявления возможности повторного использования, решения задач в параллельных системах.

Ключевым фактором, определяющим сегодня развитие ИИ-технологий, считается темп роста вычислительной мощности компьютеров, так как принципы работы чело-

веческой психики по-прежнему остаются неясными (на доступном для моделирования уровне детализации).

Уверенно действовать автономным устройствам в сложном мире помогут достаточно простые, но ресурсоемкие алгоритмы адаптивного поведения.

При этом ставится цель разрабатывать системы, не внешне похожие на человека, а действующие, как человек.

Такие инициативы будут появляться, скорее всего, на стыках разных математических дисциплин — теории вероятности, нейронных сетей, нечеткой логики[4].

Для создания искусственного интеллекта нужно решить следующие задачи:

Оборудование: какие устройства нужны; если реализовать на компьютере (в данном случае будет использован неантропоморфный вариант), то какими характеристиками должны обладать основные элементы (процессор, внутренняя память: ПЗУ, ОЗУ, жесткий диск); нужны какие-либо дополнительные устройства, каким образом осуществляется ввод-вывод данных, определиться с типом потребляемой энергии, длительностью жизненного цикла, его автономностью.

Программноеобеспечение: нужна ли искусственному интеллекту операционнаясистема (если да, то какая?); как будет осуществляться интерфейс между человеком — операционной системой — искусственным интеллектом; как осуществлять вывод сообщения о неисправности; способ загрузки; место хранения, способ программирования искусственного интеллекта, среда программирования, язык программирования; база знаний, система управления базой знаний, объем базы знаний, организация запроса, способ расширения базы знаний.

База знаний: содержание (контент) базы знаний, уровень интеллектуальности базы знаний; нужна ли реализация базы знаний; предметная область базы знаний; задачи, которые нужно решать искусственному интеллекту; нужно ли предварительное моделирование ситуаций; какие ситуации долж-

ны быть описаны и сохранены в базе знаний; количество вариантов решения; принятие решений; автономность принятия решений; поиск решения в незнакомой ситуации, неописанной ранее в базе знаний; уровень сложности решаемых задач; нужно ли предусматривать рекомендованный вариант решения (по типу СППР) или решение принимается без подсказок.

На наш взгляд, проблемы, возникающие при реализации искусственного интеллекта, следующие:

Мышление: категории мыслительного процесса (философия искусственного интеллекта): тип мышления (техническое или гуманитарное, творческое или научное, критическое, интуитивное или логическое), категории оценки объектов/процессов, тип личности (интеллектуалы и исполнители).

Обучаемость: какими знаниями, умениями, навыками должен обладать искусственный интеллект, чему отдать предпочтение: обучению, самообучению или их комбинации; принципы обучения.

Этика: нужны ли ограничители; какова степень свободы; нужно ли учитывать законы робототехники (по Азимову).

Возможны ли пути решения ранее описанных проблем?

На наш взгляд, прежде всего, нужно четко сформулировать определение искусственного интеллекта.

Далее необходимо определиться с целями (для чего нужен искусственный интеллект) и задачами (которые можно поручить решать искусственному интеллекту).

Таким образом, многие различия в способах действия мозга и компьютера можно объяснить тем, что компьютер — это устройство, состоящее преимущественно из последовательно работающих схем, а мозг функционирует, в высшей степени, параллельным образом, запущены различного рода процессы передачи данных.

Поэтому, прежде всего, сформулируем определение:

Искусственным интеллектом называется устройство, созданное человеком, имеющее базу знаний, которое

сможетприменять ее в любой ситуации и по своему усмотрению.

Для создания модели был выбран метод моделирования, называемый сеть Петри.

В данной работе будет рассмотрена модель реализации проблемы обучаемости с использованием игры, предложенной одним из авторов. [5].

ПРИНЦИП ОБУЧАЕМОСТИ

Займемся пока аналогией и обучением. Сначала два общих положения о том, почему проблема представления знания заслуживает особого внимания.

Знания обычно имеют вид совокупности фактов, описывающих либо конкретные физические объекты, либо менее осязаемые абстракции.

С другой стороны, знание может быть заключено в форме программ, если оно глубоко ассоциировано с выполнением некоторого процесса.

Это весьма важное понятие процедурного описания позже займет у нас центральное место.

На рис. 1 представлена игра «Треугольники Брика», предложенная М. Бриком в [5].

Рис.1. Игра «Треугольники Брика»

Суть ее состоит в том, что на игровом поле необходимо найти как можно больше треугольников.

Для этого искусственному интеллекту необходимо знать следующие понятия:

Точка как геометрический объект;

Прямая;

Отрезок;

Треугольник;

Признак делимости на 3.

Эта игра помогает не только освоить вышеупомянутые понятия, но и дополнительно сформировать понятия аналогии и сравнения у обучаемого, в данном случае искусственного интеллекта.

Достоинством этой игры является также то, что от объяснения рассмотренных ранее понятий на плоскости можно легко перейти к объяснению этих понятий в пространстве.

Итак, для рассмотрения процесса обучаемости, прежде всего, сформулируем следующие правила:

Точка — минимальная величина, находящаяся на плоскости;

Прямая – это линия, проходящая две точки;

Отрезок – это линия, ограниченная двумя точками;

Треугольник — три точки, соединенные между собой и не лежащие на одной прямой;

Признак делимости на три – если сумма цифр числа делится на три, то и число делится на 3.

Таким образом, для процесса обучения необходимо соблюдение следующих правил:

- алгоритм поиска базируется на рассмотренной трактовке необходимых понятий;
- он иллюстрирует необходимость в хорошем механизме сопоставления описаний.

Рассмотрим, как это будет выглядеть на практике.

МОДЕЛЬ ПРОЦЕССА ОБУЧЕНИЯ

Обычно процесс обучения каким-либо понятиям состоит из трех основных компонентов:

- 1. изучение нового материала;
- 2. проверка усвоения;
- 3. переход к следующему этапу.

На наш взгляд, ступени обучения искусственного интеллекта не слишком отличаются от подобных, принятых в школе. Поэтому мы решили не отступать от канонов обучения и использовать их при создании модели.

На рис. 2–6 представлены модели обучения искусственного интеллекта названным понятиям, представленные в виде сети Петри, в которых предусмотрен возврат к стадии объяснения в случае неверного восприятия понятия.

Для данных моделей введены следующие условные обозначения:

для позиций:

 p_0 — запуск процесса обучения искусственного интеллекта;

 p_1 – объяснение понятия «точка»;

 p_2 – проверка понимания;

 p_3 – объяснение понятия «прямая»;

 p_4 – проверка понимания;

 p_5 – объяснение понятия «отрезок»;

 p_6 – проверка понимания;

 p_7 – объяснение понятия «треугольник»;

 p_8 – проверка понимания;

 p_9 — объяснение понятия «принцип делимости на три»;

 p_{10} - проверка понимания;

для переходов:

 t_0 — начало обучения;

 t_1 – процесс восприятия;

 t_2 – возврат к стадии объяснения;

 t_3 – переход к следующему понятию;

 t_{4} – процесс восприятия;

 t_5 – возврат к стадии объяснения;

 t_6 – переход к следующему понятию;

 t_7 – процесс восприятия;

 t_8 – возврат к стадии объяснения;

 t_9 – переход к следующему понятию;

 t_{10} – процесс восприятия;

 t_{11} – возврат к стадии объяснения;

 t_{12} – переход к следующему понятию;

 t_{13} – процесс восприятия;

 t_{14} – возврат к стадии объяснения;

 t_{15} – переход к тестированию.

Рис. 2. Обучение понятию «точка»

Рис. 3. Обучение понятию «прямая»

Рис. 4. Обучение понятию «отрезок»

Рис. 5. Обучение понятию «треугольник»

Рис. 6. Обучение понятию «принцип делимости на 3»

Рис. 7. Обобщенная модель обучения

На рис. 7 представлена обощенная модель обучения искусственного интеллекта названным понятиям в виде сети Петри.

Для проверки понимания искусственным интеллектом ранее рассмотренных понятий, ему предлагается тест, разработанный О.Фениной, который состоит из двух частей:

Содержится набор отрезков, из которых необходимо собрать треугольники.

Во второй части задача усложняется, так как необходимо применить признак делимости на 3 и собрать точно заданное число треугольников, так как число необходимых для этого отрезков точно определено, и каждый отрезок можно использовать только один раз.

На данном этапе очень важен процесс формирования понятия принципа «почти то», так как он способствует выработке навыка критериального оценивания, которое может пригодиться в будущем для принятия решений в более сложных условиях.

«Почти то»— это пример, который не является представителем класса, которому обучают, из-за некоторых несоответствий.

Для данных моделей введены следующие условные обозначения:

для позиций:

 p_0- запуск процесса обучения искусственного интеллекта;

 p_{11} – чтение задания;

 $p_{12}-\;$ определение количества отрезков в задании;

 p_{13} — начало процесса сборки треугольников:

 p_{14}, p_{15}, p_{16} – сборка треугольников из заданных отрезков;

 $p_{17}, p_{18}-$ базовые понятия «точка» и «отрезок»;

 p_{19}, p_{20}, p_{21} — иллюстрация понятия «почти то», так как число заданных отрезков не кратно трем;

 p_{22}, p_{23} — базовые понятия «точка» и «отрезок»;

для переходов:

 $t_{17}-\;\;$ припоминание понятия «треугольник»;

 $t_{18}-\,$ припоминание признака делимости на три;

 t_{19} – процесс прохождения теста;

 $t_{20}, t_{21}, t_{22}-$ процесс создания треугольников из заданных отрезков;

 $t_{23}, t_{24} -$ процесс подсказки базовых понятий «точка» и «отрезок»;

 $t_{25}, t_{26}-$ процесс определения неполного треугольника;

 t_{27}, t_{28} – процесс подсказки базовых понятий «точка» и «отрезок».

Рис. 8. Наглядное представление понятия «почти то»

Из рисунка видно, что в понятии «треугольник» все точки должны быть соединены между собой.

Часть рисунка, которая символизирует понятие «почти то», демонстрирует, что это понятие сформировано не было.

Рис. 9 и 10 отображают процесс прохождения теста.

Рис. 9. Модель прохождения І части теста

Рис. 10. Модель прохождения II части теста После успешного завершения теста искусственный интеллект может переходить к игре.

ОПИСАНИЕ ИГРЫ

При кажущейся простоте игры (см. puc.1), алгоритм ее прохождения не так уж прост.

Для того чтобы понять ее суть, необходимо знать, как уже упоминалось, некоторое множество понятий: точка как геометрический объект, прямая, отрезок, треугольник, принцип делимости на три.

Также необходимо уметь ориентироваться в пространстве игрового поля, выбирать направление, составлять треугольники не только из заданных точек и отрезков, но и большие треугольники из меньших по размеру.

Поэтому были введены следующие понятия:

- *Точка входа* место вхождения в игру, может находиться в любом месте игрового поля;
- *Направление* выбор прямой для прохождения игры;
- *Граница игрового поля* последняя точка на прямой, после нее другие точки отсутствуют;
- *Стратегия* выбор точки входа и направления;
- *Оптимальная точка входа* место вхождения в игру, которое позволяет найти наибольшее количество треугольников за минимальное время;
- *Оптимальное направление* такое направление движения, которое позволяет найти наибольшее количество треугольников за минимальное время;
- Оптимальная стратегия выбор такой точки входа и такого направления, которые позволяют найти наибольшее количество треугольников за минимальное время.

В данной игре алгоритм прохождения будет следующим:

Войти в игровое поле.

Выбрать точку входа (оптимальную точку входа).

Выбрать направление (оптимальное направление) движения.

В заданном направлении найти 3 точки.

Определить, составляют ли они треугольник. В случае положительного ответа

увеличить счетчик на 1. В случае отрицательного ответа продолжить поиск.

Определить, является ли эта точка граничной. В случае положительного ответа изменить направление. В случае отрицательного ответа продолжить поиск.

Определить, является ли эта точка последней из всех выбранных направлений. В случае положительного ответа выйти из игры. В случае отрицательного ответа продолжить поиск.

Множество точек, находящихся на осях игрового поля, позволяет также составлять большие треугольники из меньших.

Так как нет ограничений на место расположения точки входа в игру, то перед искусственным интеллектом стоит сложная задача выбора.

Это будет необходимо показать при создании модели.

МОДЕЛЬ ИГРЫ

Перейдем теперь к рассмотрению модели игры.

Для этого введем условные обозначения: *для позиций:*

 p_0- запуск процесса обучения искусственного интеллект и вход в игровое поле;

 p_1 – счетчик;

 p_{24} – выбор точки входа;

 p_{25} — выбор направления;

 $p_{26}\ -\$ процесс сборки треугольников по трем точкам;

 p_{27} — граничная точка;

 $p_{28}-$ «последняя» точка;

 p_{29} — выход из игры;

для переходов:

непримитивные переходы:

 t_{29} – процесс выбора точки входа;

 t_{30} – процесс выбора направления;

 t_{31} – процесс определения трех точек;

 $t_{32}-$ процесс проверки граничности точки:

примитивные переходы:

 t_{33} – увеличение счетчика на 1;

 t_{34} , t_{35} , t_{37} , t_{39} — процесс продолжения поиска точки по заданному критерию;

 t_{36} , t_{38} - процесс определения условия завершения игры;

 t_{40} - завершение игры.

Таким образом, в данной модели наглядно продемонстрировано, что процессы выбора из некоторого набора предложенных альтернатив довольно сложен, и его лучше моделировать непримитивными переходами.

На рис. 11 представлена модель прохождения игры искусственным интеллектом представленная в виде сети Петри.

Рис. 11. Модель прохождения игры

ЗАКЛЮЧЕНИЕ

Таким образом, мы показали, что искусственный интеллект может обучаться некоторым геометрическим понятиям и принципу делимости на три.

По мере усложнения задачи усложняется и молель.

Целью данной работы является разработка и реализация обучения искусственного интеллекта, проверка полученных знаний, закрепление их с помощью игры, разработка алгоритма модели искусственного интеллекта в виде сетей Петри.

Поставленные в начале работы задачи решены полностью и получены выводы, что разработанные модели в виде сетей Петри позволяют осуществить реализацию цепочки правила — модель сети Петри — программная реализация

Из вышеизложенного следует, что авторами была разработана еще одна модель сетей Петри.

Это позволяет найти широкое применение полобным моделям.

Новизна исследования заключается в том, что сети Петри были использованы для моделирования искусственного интеллекта с применением элементов теории игр.

Авторы выражают благодарность д-ру техн. наук, проф. Г.В. Гореловой, а также канд. техн. наук, главному конструктору по направлению, зав. лабораторией НИИ МВС ЮФУ В.В. Коробкину за высказанные замечания и пожелания по улучшению статьи.

СПИСОК ЛИТЕРАТУРЫ

- 1. **Фенина О.В.** Системы поддержки принятия коллективных решений. ВЕСТНИК Карагандинского Университета, Серия Математика, №1 (45)/2007. с. 36 42.
- 2. **Фенина О.В.** Вероятностные сети Петри для исследования систем. ВЕСТНИК Карагандинского Университета, Серия Математика, №1 (45)/2007. с. 43 50.
- 3. **Фенина О.В.** Анализ Вероятностных сетей Петри. Монография. М.: «Перо», 2012. с. 203 236.
- 4. **FeninaO., PolikarpovV..** Support systems of collective decision making for chemical processes modeling.EDUCATION and SCIENCE without borders. -2013. -Volume 4, No (1/2013). -C.138-141.
- 5. **БрикМ.** Работа на X Международный конкурс на лучшую научную работу «Гранит науки», 2017.

ОБАВТОРАХ

Фенина ОльгаВладимировна, докторант каф. «Информатика и информационная безопасность» Евразийского науонального университета им. Л.Гумилева, Дипл. Магистр естественных наук по информатике (КарГУ, 2013). Готовит дис. о моделировании процессов обучения искусственного интеллекта.

Фенин Андрей Олегович, студент (Карагандинск. гос. техн. ун-т). Готовит диплом. работу о моделировании процессов обучения искусственного интеллекта.

Брик Михаил Владимирович, студент (Карагандинск. высш. политехн. Колледж). Готовит диплом. работу о мо-

делировании процессов обучения искусственного интеллекта.

METADATA

Title: Artificial intelligence training model

Authors: O. V. Fenina¹, A. O. Fenin², M. V. Brik³

Affiliation:

- Nur-Sultan Eurasian Nationality University (ENU), Kazakhstan.
- ² QaraghandyKaraganda State Technic University (KSTU), Kazakhstan.
- ³ QaraghandyKaraganda High Polytechnic College (KHPC), Kazakhstan.

Email: ¹olga_fenina2003@mail.ru.

Language: Russian.

Source:SIIT (scientific journal of Ufa State Aviation Technical University), no.1(3), pp. 73-81, 2020. ISBN 2686-7044 (Online), ISSN 2658-5014 (Print).

Abstract: Authors are describing the machine learning modeling problems which is demand in these days. To understand of processes involving artificial intelligent (AI) in systems is an important condition for their effective using in practice. The machine learning modeling process using Petri nets can find out such features in this sense. For example, it was found that the presence of problem of AI limits the mobility of thinking processes in the model compared with the case of absence of decision making problem. This paper presents the nature of decision-making in thinking processes, their features and functions were investigated. A significant advantage of the approach is the results of the behavior of the AI modeling, in the absence of boundary conditions.

Key words:Petri nets, Artificial Intelligence, .modeling, game elements.

Aboutauthors:

- **Fenina, OlgaVladimirovna**, Postgrad. (PhD) Student, Dept. of Informatic and Information Security. Master of Natural Science inn Computer Science (KSU, 2013).
- **Fenin, Andrey Olegovich**, student (Karaganda. State Technical. University). He is preparing a diploma. work on modeling the learning processes of artificial intelligence.
- **Brik, Mikhail Vladimirovich**, student (Karaganda Higher Polytechnic. College). He is preparing a diploma. work on modeling the learning processes of artificial intelligence.