MTH301: Analysis I

Abhimanyu Sethia 190023 sethia@iitk.ac.in

Assignment 8

Question 11 and 16

Q11 Prove that the set $\{x \in \mathbb{R}^n : ||x||_1 = 1\}$ is compact in \mathbb{R}^n under the Euclidean norm. **Solution:**

According to Heine-Borel theorem, a set is compact iff it is closed and bounded.

Hence, to prove that the set, say $X = \{x \in \mathbb{R}^n : ||x||_1 = 1\}$ is compact, it suffices to show that X is (a) closed and (b) bounded.

(a) To prove- X is closed.

Let
$$(x_i)_{i=1}^{\infty} \in X$$
 s.t. $(x_j) \to x \in \mathbb{R}^n$.
 $x_j = (x_j^{(1)}, x_j^{(2)}, \cdots, x_j^{(n)}) \in X$
 $\implies |x_j^{(1)}| + |x_j^{(2)}| + \cdots + |x_j^{(n)}| = 1$

Convergence in \mathbb{R}^n implies coordinate wise convergence. And $n \to \infty$

Hence, we have $|x^{(1)}| + |x^{(2)}| + \cdots + |x^{(n)}| = 1$

$$\implies x \in X \implies X \text{ is closed.}$$

(b) To prove- X is bounded.

Let $x := (x_1, x_2, \dots, x_n) \in X$.

Then, $||x||_1 = 1 \implies \sum_{i=1}^{n} |x_i| = 1$ But since $|x_j| \le \sum_{i=1}^{n} |x_i| \ \forall j \in \{1, 2, \dots, n\}$, we have $|x_j| \le 1 \ \forall j \in \{1, 2, \dots, n\}$

$$\implies |x_j|^2 \le 1 \ \forall j \in \{1, 2, \cdots, n\}$$

$$\implies \sum_{i=1}^n |x_i|^2 \le n$$

$$\implies \sum_{i=1}^{n} |x_i|^2 \le n$$

$$\implies \|x\|_2 \le \sqrt{n} < \infty$$

Hence, X is bounded w.r.t to the Euclidean bound (as \sqrt{n} is the upper bound and 0 is the lower bound). Hence, proved.

Q16 Given $f:[a,b]\to\mathbb{R}$. Define $G:[a,b]\to\mathbb{R}^2$ by G(x)=(x,f(x)). Prove that the following are equivalent-

- (i) f is continuous.
- (ii) G is continuous.
- (iii) The graph of f is a compact subset of \mathbb{R}^2 .

Solution:

To prove the equivalence of (i), (ii) and (iii), it suffices to proving the following-

- (I) $(i) \iff (ii)$
- (II) $(ii) \implies (iii)$
- (III) $(iii) \implies (i)$

Proof of (I)

f is continuous

$$\implies$$
 for any $(x_n) \to x$ in $[a,b]$, $f(x_n) \to f(x)$ in \mathbb{R}

- \implies for any $(x_n) \to x$ in [a, b], $(x_n, f(x_n)) \to (x, f(x))$ in \mathbb{R} \implies G is continuous.
- G is continuous
- \implies as $|x x_n| \to 0$, $|f(x_n) f(x)| \le ||(x_n, f(x_n)) (x, f(x))||_2 \to 0$
- $\implies f(x_n) \to f(x)$
- $\implies f$ is continuous.

Hence, f is continuous \iff G is continuous.

Proof of (II)

From the lecture on Compact Metric Spaces, we know that if $f:(M,d)\to (N,\rho)$ is a continuous map and K is compact in M, then f(K) is compact in N.

Since G is continuous, G([a,b]) is compact in \mathbb{R}^2 .

But $G([a,b]) = \{(x, f(x)) : x \in [a,b]\}$ that is the graph of f. Hence, the graph of f is a compact subset of \mathbb{R}^2 .

Proof of (III)

 $\overline{\text{Given that }G}$ is compact, we need to show that f is continuous.

We prove by contradiction. So, let us assume that f is not continuous.

Hence, $\exists x \in [a, b]$ and a sequence $(x_n) \in [a, b]$ such that $(x_n) \to x$ but $f(x_n) \not\to f(x)$. Consider the sequence $((x_n, f(x_n)))$.

This sequence lies in G([a, b]) and G is compact, so it will have a convergent subsequence, which converges to (x, y) where $y \in \mathbb{R}$ and $y \neq f(x)$ (as $f(x_n) \not\to f(x)$)

 $\implies (x,y) \notin G \implies G$ is not sequentially compact \implies G is not compact.

But this is a contradiction, as it is given that G is compact. Hence, our assumption is wrong. That is f must be continuous. Hence, proved.