FDC104: Programming for Data Analysis and Scientific Computing

Lecture 10 & 11: Model Evaluation

Lecture overview

Topics

- Model evaluation and refinement techniques
- Overfitting, underfitting and model selection

Activities

 Hand-on lab: Model Evaluation & Refinement Lecture 10 & 11: Evaluating & Tuning Model

Section 1: Out-of-samples model evaluation

Model Evaluation

- In-sample evaluation tells us how well our model will fit the data used to train it
- Problem?
 - It does not tell us how well the trained model can be used to predict new data
- Solution?
 - In-sample data or train data: train model
 - Out-of-sample evaluation or test set: approximate how the model performs in real world

Training/Testing Sets

- Split dataset into:
 - Training set (70%):
 - Testing set (30%):
- Build and train the model with the training set
- Use testing set to assess the performance of the model

Function train_test_split()

Split data into random train and test subsets

from sklearn.model_selection import train_test_split

```
x_train, x_test, y_train, y_test = train_test_split(x_data, y_data, test_size=0.3, random_state=0)
```

- x_data: features or independent variables
- y_data: dataset target: df['price']
- x_train, y_train: parts of available data as training set
- x_test, y_test: parts of available data as testing set
- . test_size: percentage of the data for testing (here 30%)
- random_state: number generator used for random sampling

Generalization Performance

- Generalization error is measure of how well our model does at prediction unseen data
- The error we obtain using our testing set is an approximation of this error

Cross Validation

Most common out-of-sample evaluation metrics

More effective use of data (each observation is used for both training)

and testing)

Function cross_val_score()

from sklearn.model_selection import cross_val_score

scores= cross_val_score(lr, x_data, y_data, cv=3)

np.mean(scores)

Lecture 10 & 11: Evaluating & Tuning Model

Section 2: Underfitting & Overfitting

$$y = b_0 + b_1 x$$

$$\hat{y} = b_0 + b_1 x + b_2 x^2 + b_3 x^3 + b_4 x^4 + b_5 x^5 + b_6 x^6 + b_7 x^7 + b_8 x^8$$

$$\hat{y} = b_0 + b_1 x + b_2 x^2 + b_3 x^3 + b_4 x^4 + b_5 x^5 + b_6 x^6 + b_7 x^7 + b_8 x^8 + \dots$$

$$+ b_9 x^9 + b_{10} x^{10} + b_{11} x^{11} + b_{12} x^{12} + b_{13} x^{13} + b_{14} x^{14} + b_{15} x^{15} + b_{16} x^{16}$$

Model Selection

Polynomial Regression with order = 1

Polynomial Regression with order = 2

Polynomial Regression with order = 4

Plot R-squared with number of order in Polynomial Regression

How to prevent underfit/orverfit

Reasons for Underfitting

- Data used for training is not cleaned and contains noise (garbage values) in it
- The model has a high bias
- The size of the training dataset used is not enough
- The model is too simple

Ways to Tackle Underfitting

- Increase the number of features in the dataset
- Increase model complexity
- Reduce noise in the data
- Increase the duration of training the data

Reasons for Overfitting

- Data used for training is not cleaned and contains noise (garbage values) in it
- The model has a high variance
- The size of the training dataset used is not enough
- The model is too complex

Ways to Tackle Overfitting

- Using K-fold cross-validation
- Using Regularization techniques such as Lasso and Ridge
- Training model with sufficient data
- Adopting ensembling techniques

Prevent Overfitting: Ridge Regression

- Ridge regression is a regression that is employed in a Multiple regression model when Multicollinearity occurs.
- Multicollinearity is when there is a strong relationship among the independent variables.
- Ridge regression is very common with polynomial regression.
- Ridge regression is good method to avoid over-fitting a regression model

$$y = 1 + 2x - 3x^2 - 4x^3 + x^4$$

We can use a 10th polynomial regres:

Outlier data points

Outlier data points

• In this case, if we use 10th polynomia estimated function is incorrect.

ta, the

$$\hat{y} = 1 + 2x - 3x^2 - 2x^3 - 12x^4 - 40x^5 + 80x^6 + 71x^7 - 141x^8 - 38x^9 + 75x^{10}$$

Alpha
0
0.001
0.01
1
10

x	x2	x ³	x4	x ⁵	x ⁶	x ⁷	x ⁸	x9	x ¹⁰
2	-3	-2	-12	-40	80	71	-141	-38	75
2	-3	-7	5	4	-6	4	-4	4	6
1	-2	-5	-0.04	0.15	-1	1	-0.5	0.3	1
0.5	-1	-1	-0.614	0.70	-0.38	-0. 56	-0.21	-0.5	-0.1
0	-0.5	-0.3	-0.37	-0.30	-0.30	-0.22	-0.22	-0.22	-0.17

Ridge Regression in Scikit-learn

from sklearn.linear_model import Ridge

RidgeModel=Ridge(alpha=0.1)

RidgeModel.fit(X,y)

Yhat=RidgeModel.predict(X)

Activity – Hand-on Lab (~30 mins)

Lecture 10 & 11: Evaluating & Tuning Model

Wrap-up

Summary

In summary, in this lecture you learned:

- What are overfit and underfit and how to handle them
- Model evaluation

Thank You!

