Generacja (n,k)-kombinacji - algorytmy

Sprawozdanie z laboratorium 1 – Piotr Sarna LK1

Cel ćwiczenia

Podczas zajęć zapoznaliśmy się z dwoma algorytmami, mającymi na celu wygenerowanie kombinacji od 1 do zadanego "n". Były to: algorytm generacji kombinacji w porządku leksykograficznym oraz algorytm Semby.

Wstęp teoretyczny

Kombinacja to "k"-elementowy podzbiór skończonego "n"-elementowego zbioru, gdzie $0 \le k \le n$.

Liczbę kombinacji możemy wyliczyć za pomocą współczynnika dwumianowego Newtona:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Źródło: https://pl.wikipedia.org/wiki/Symbol Newtona

Porządek leksykograficzny oznacza, że cyfry w kombinacji będą uporządkowane od najmniejszej do największej.

Opis algorytmów

Algorytm generujący kombinacje w porządku leksykograficznym

Algorytm ten dla podanych wartości "n" i "k" (gdzie "n" jest wielkością zbioru od 1 do "n", a "k" jest ilością elementów w generowanej kombinacji) tworzy kombinacje, w których każda kolejna cyfra jest większa od poprzedniej.

Zapis algorytmu w pseudokodzie:

```
1. Dla i=1 do k wykonaj 1.1. \quad K[i]=i; L[i]=n-k+i;
2. Powtarzaj 2.1. \quad i=k;
2.2. Jeżeli K[i] < L[i] to 2.2.1. \quad K[i]=K[i]+1; inaczej 2.2.2. \quad \text{Powtarzaj } i=i-1 \text{ dopóki } K[i] < L[i]; 2.2.3. \quad K[i]=K[i]+1; 2.2.4. \quad \text{Dla } j=i+1 \text{ do } k \text{ wykonaj } K[j]=K[j-1]+1; 2.3. \quad \text{Wyprowadź } K[1] \dots K[k]; dopóki K[1]=L[1];
```

Źródło: materiały Z.Kokosiński

Prezentacja działania mojej implementacji w C++

```
Konsola debugowania programu Microsoft Visual Studio

Generacja (n,k)-kombinacji - algorytmy

1. Algorytm generacji kombinacji w rosnacym porzadku leksykograficznym

2. Algorytm Semby

Wybierz algorytm:

Podaj wielkosc zbioru:

Podaj wielkosc podzbioru:

Wynik zostal zapisany do pliku wynik.txt

Czas dzialania algorytmu wynosi 702 mikrosekund

D:\Piotr\Studia\2_semestr\MetodyProgramowania\L1\x64\Debug\L1.exe (proc Aby automatycznie zamknąć konsolę po zatrzymaniu debugowania, włącz opc znie zamknij konsolę po zatrzymaniu debugowania.

Naciśnij dowolny klawisz, aby zamknąć to okno...
```

wynik.txt	-	~	I1 cnn
	_	^	
1			1 2 3 4
2			1 2 3 5
3			1236
4			1 2 4 5
5			1246
6			1 2 5 6
7			1 3 4 5
8			1 3 4 6
9			1 3 5 6
10			1 4 5 6
11			2 3 4 5
12			2 3 4 6
13			2 3 5 6
14			2 4 5 6
15			3 4 5 6

n	k	Czas pracy		
		algorytmu		
2	1	298 µs		
4	2	418 µs		
6	4	702 µs		
8	6	1132 µs		
10	8	2274 µs		

2. Algorytm Semby

Algorytm ten służy do generowania wszystkich możliwych ciągów liczb rosnących z liczb zawartych w zbiorze od 1 do "n".

W wyniku jego działania powstaje $2^n - 1$ ciągów, co już dla stosunkowo niewielkich zbiorów zawierających np. 10 elementów tworzy 1023 podzbiory. Algorytm posiada złożoność czasową wykładniczą.

Zapis algorytmu w pseudokodzie:

```
1. k = 0; K[k] = 0;

2. Powtarzaj

2.1. Jeżeli K[k] < n, to extend inaczej reduce;

2.2. Wyprowadź K[1] \dots K[k];

dopóki K[1] = n;

extend K[k+1] = K[k] + 1; k = k+1;

reduce k = k-1; K[k] = K[k] + 1;
```

Źródło: materiały Z.Kokosiński

Prezentacja działania mojej implementacji w C++

```
Konsola debugowania programu Microsoft Visual Studio

Generacja (n,k)-kombinacji - algorytmy

1. Algorytm generacji kombinacji w rosnacym porzadku leksykograficznym

2. Algorytm Semby

Wybierz algorytm:

2

Podaj wielkosc zbioru:

6

Wynik zostal zapisany do pliku wynik.txt

Czas dzialania algorytmu wynosi 1507 mikrosekund

D:\Piotr\Studia\2_semestr\MetodyProgramowania\L1\x64\Debug\L1.exe (procean Aby automatycznie zamknąć konsolę po zatrzymaniu debugowania, włącz opcznie zamknij konsolę po zatrzymaniu debugowania.

Waciśnij dowolny klawisz, aby zamknąć to okno...
```

,	н	_	_	_	_	<u> </u>
1 2 3 4 5 6 7 8 9	Ē	-				
2	1 1 1 1 1	2				
3	;	2	3			
4	÷	2	3	4		
5	;	2	3	4	5 5	_
6	1	2	3	4	5	6
7	1	2	3	4	6	
8	1	2	3 3 4 4	5		
9	1	2	3	5	6	
10	1	2	3	6		
11 12	1	2	4			
12	1	2	4	5		
13	1	2	4	5 6	6	
14	1	2	4 5 5 6	6		
15	1	2	5			
16	1	2	5	6		
17	1	2	6			
18	1	3				
19	1	3	4			
20	1	3	4	5 5 6		
21	1	3	4	5	6	
22	1	3	4	6		
23	1	3	5			
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	1	222222222333333344	4 5 5 6	6		
25	1	3	6			
26	1	4				
27	1	4	5 5 6			
28	1	4 5 5 6	5	6		
29	1	4	6			
30	1	5				
31	1	5	6			
32	1	6				
33	2					
34	2	3				
35	2	3	4			
36	2	3	4	5		
37	2	3	4	5 5 6	6	
33 34 35 36 37 38 39 40	11111111111111111111122222222222233	333334444556	4	6		
39	2	3	5			
40	2	3	5 6	6		
41	2	3	6			
42	2	4				
43	2	4	5			
44	2	4	5	6		
45	2	4	5 5 6			
46	2	5				
44 45 46 47 48	2	5	6			
48	2	6				
49	3					
49 50	3	4				
51	3	4	5			
52	3	4	5	6		
53	3	4	6			
54	3	5				
55	3	5	6			
56	3	6				
57	4					
58	4	5				
59	4		6			
60	4	5 6				
61	5					
62	5	6				
63	6					

n	Czas pracy algorytmu
2	474 µs
4	517 µs
6	1507 µs
8	8521 µs
10	39743 µs

Wnioski

Przedstawione algorytmy służą do wygenerowania kombinacji od 1 do "n", lecz mają różne właściwości i zastosowania.

Pierwszy algorytm pozwolił nam utworzyć wszystkie "k" elementowe kombinacje zadanego zbioru w rosnącej kolejności, natomiast drugi utworzył **wszystkie** rosnące kombinacje zadanego zbioru.

Algorytm Semby posiada wykładniczą złożoność obliczeniową

Bibliografia

https://cplusplus.com/doc/tutorial/files/

https://www.geeksforgeeks.org/measure-execution-time-function-cpp/