| Name:           |                                                                            |
|-----------------|----------------------------------------------------------------------------|
| MATH 101        |                                                                            |
| Winter 2021     | "Sometimes I get so bored I just want to scream, and then sometimes I      |
| HW 4: Due 01/07 | actually do scream. I just sort of feel out what the situation calls for." |
|                 | –Kelly Kapoor, The Office                                                  |

**Problem 1.** (10pt) Determine if the relations f(x) and g(x) shown below are functions. Explain why or why not.



**Problem 2.** (10pt) Determine if the relations f(x) and g(x) shown below are functions. Explain why or why not.

| x | f(x) | x | g(x) |
|---|------|---|------|
| 1 | 5    | 1 | 6    |
| 2 | 5    | 2 | 8    |
| 3 | 6    | 3 | 10   |
| 4 | 6    | 4 | 12   |
| 5 | 10   | 1 | 13   |

**Problem 3.** (10pt) Determine if the relation below is a function or not. If it is a function, explain why. If it is not a function, explain why.



**Problem 4.** (10pt) Determine if the relations f(x) and g(x) shown below are functions. Explain why or why not.

$$f(x) = 6.73 - 13.54x$$

$$g(x) = \frac{6x - 5}{3x^2 + 1}$$

**Problem 5.** (10pt) Suppose f(x) is the function given below.



- (a) What is the domain of f(x)?
- (b) What is the codomain of f(x)?
- (c) What is the range of f(x)?

**Problem 6.** (10pt) Determine whether the point (2,-1) is on the graph of  $f(x)=2x^2-5x+3$ . Determine also whether the point (1,0) is on the graph of f(x). For each, explain why or why not.

**Problem 7.** (10pt) Suppose f(x) and g(x) are the functions given below.

| x    | -3 | -2 | -1 | 0 | 1  | 2  | 3  |
|------|----|----|----|---|----|----|----|
| f(x) | 3  | -2 | 1  | 6 | 4  | -7 | 0  |
| g(x) | 2  | 1  | 0  | 3 | -5 | -5 | -4 |
| h(x) | 0  | 1  | 0  | 3 | 0  | -1 | 6  |

Compute the following:

(a) 
$$(f+g)(1) =$$

(b) 
$$(f-g)(-2) =$$

(c) 
$$(-2h)(3) =$$

(d) 
$$\left(\frac{h}{g}\right)(0) =$$

(e) 
$$f(0) h(-2) =$$

(f) 
$$f(2-h(0)) =$$

(g) 
$$(f \circ g)(0) =$$

(h) 
$$(g \circ h)(2) =$$

(i) 
$$(f \circ g \circ h)(1) =$$

(j) 
$$(h \circ g)(-2) =$$

**Problem 8.** (10pt) Suppose f(x) and g(x) are the functions given below.

$$f(x) = 4 - 3x$$

$$g(x) = x^2 - x + 4$$

Compute the following:

(a) 
$$f(2) =$$

(b) 
$$g(1) =$$

(c) 
$$3f(1) - g(2) =$$

(d) 
$$f(x) - g(x) =$$

(e) 
$$f(x) g(x) =$$

(f) 
$$\left(\frac{f}{g}\right)(x) =$$

(g) 
$$(f \circ g)(0) =$$

(h) 
$$(g \circ f)(1) =$$

(i) 
$$(f \circ g)(x) =$$

(j) 
$$(g \circ f)(x) =$$

**Problem 9.** (10pt) Given the graph of f(x) below, determine whether f(x) has an inverse function. Explain why or why not.



**Problem 10.** (10pt) Given the graph of f(x), sketch the function  $f^{-1}(x)$ . Determine also  $f^{-1}(1)$  and  $f^{-1}(2)$ .

