Normalization

Motivation

- a data pre-processing procedure that brings the numerical data to a common scale
 without distorting its shape, comparing features with every datapoint having the same
 scale, so each feature is equally important.
- iid: independent and identically distributed is the wholly assumption.
- Internal Covariate Shift (ICS)
 - A phenomenon that parameter initialization and changes in the distribution of the inputs of each layer affect the learning rate of the network.
 - the learning speed will decrease, because the upper layers need to adapt to new input data distribution updates
 - the changes of lower layers inputs will become too large or too small, leading to stop learning too early.
- Solution
 - Whitening白化
 - transform data to have a covariance matrix that is the identity matrix: 1 in the diagonal, 0 for the other cells.
 - To remove <u>correlation or dependencies</u> between features in a dataset. To fix the input distribution of each layer in network.
 - After whitening, we gain the input distribution with the same mean and variance. Application: PCA and ZCA
 - PCA: $\mu = 0, \sigma = 1$
 - ZCA: $\mu=0,\sigma same$
 - Steps:
 - Zero-center
 - Decorrelate
 - Rescale
 - Downside: too costy and the data expression ability is limited
 - Normalization
 - Simplified in calculation and keep the data expression ability, comparied with whitening
 - Procedure
 - ullet input: $x=(x_1,x_2,...,x_d)$
 - output: y = f(x)
 - Transformation Structure: $h = f(g * rac{x \mu}{\sigma} + b)$
 - ullet re-shift paramater: b

$$ullet y = g * x' + b \ ilde dis(b,g^2)$$

• Batch Normalization纵向规范化

• function:
$$\mu_i = rac{1}{M} * \sum x_i \; ; \; \; \sigma_i = \sqrt[2]{rac{1}{M} * \sum (x_i - \mu_i)^2 + \epsilon}$$

- *M*: the size of mini-batch
- Intuition:use mini-batch data to calculate this single neuron mean and variance
- Downside:
 - if each original <u>mini-batch distribution</u> are different with each other, the different transformation will apply to different mini-batch data, the complexity of training is added.
 - do not fit for RNN and dynamic neural network structure (with time-series data)
 - largely depend on big <u>size</u> of mini-batch, if the size is small, the effect is not so good.
- Application: this method is fitted for mini-batch with <u>big size and the approximate same</u> <u>distribution</u>. Applied more in Computer Vision area.
- Layer Normalization横向规范化
 - Intuition: wholly consider the inputs in one layer, calculate the average and variance of this layer

• Function:
$$\mu = \sum_i x_i; \;\; \sigma = \sqrt[2]{\sum_i (x_i - \mu)^2 + \epsilon}$$

- *i*: list all the neurons in this layer
- Also applied to small size of mini-batch, dynamic NN, and RNN, saving the memory without saving the mean and variance of mini-batch.
- Have a more limited model expression ability than BN, if <u>the inputs are different</u> <u>features(eg. color and size)</u>. Because LN ensures all the input stay in the same range.
- Applied more in NLP area: Transformer, BERT因为Transformer堆叠了很多层很容易梯度消失
 - Different sentences have different lengths.
 - Small correlation between different sample batch
 - Decrease the loss of differential infromation among sample batches.
- BN对不同样本同一特征的缩放for batches; LN对单个样本所有不同的特征的缩放for hidden state

NLP:

• $N: batch \ size$

ullet C: sequence length

• H,W:dimension

Other Methods in Feature Engineering

Min-Max Normalization

• Function: $\frac{value-min}{max-min}$

• Downside: do not handle outliers

 change the original data into range [0,1] proportionally, depend more on maximum/minimum value

Z-Score Normarlization

• Function: $\frac{value - \mu}{\sigma}$

• Evaluation: avoid the outlier issue, but does not produce normalized data with the *exact* same scale.

Linear Ratio Switch

• Function: $\frac{value}{max}$

• change the original data into range [0,1] proportionally, depend more on maximum value

References

- ICS and Normalization. https://blog.csdn.net/sinat-33741547/article/details/87158830
- PCA-whitening VS ZCA-whitening: a numpy 2d visual. https://towardsdatascience.com/p https://towardsdatascience.com/p ca-whitening-vs-zca-whitening-a-numpy-2d-visual-518b32033edf

以上内容整理于 幕布文档