Professor: Denis Vogel Tutor: Marina Savarino

1 Aufgabe 1

Es bezeichne $\mathrm{Abb}(\mathbb{R},\mathbb{C})$ den \mathbb{C} -Vektorraum aller $\mathrm{Abbildungen}$ von \mathbb{R} nach \mathbb{C} . Sei

 $V := \{ f \in Abb(\mathbb{R}, \mathbb{C}) | \text{ es gibt } a, b, c \in \mathbb{C} \text{ sodass } f(x) = a + bx + cx^2 \text{ für alle } x \in \mathbb{R} \}$

(a) **Z.Z.:** V ist ein endlich-dimensionaler Untervektorraum von $Abb(\mathbb{R}, \mathbb{C})$

Beweis. \Box

(b) **Z.Z.:** $h: V \times V \longrightarrow \mathbb{C}$ gegeben durch

$$h(f,g) = \int_0^1 f(x)\overline{g(x)} \, dx := \int_0^1 \operatorname{Re}(f(x)\overline{g(x)}) \, dx + i \int_0^1 \operatorname{Im}(f(x)\overline{g(x)}) \, dx \in \mathbb{C}$$

ist ein Skalarprodukt auf V.(V,h) ist ein unitärer Raum.

Beweis. \Box

2 Aufgabe 2

3 Aufgabe 3

Sei (V, h) ein unitärer Raum. Für $f \in \text{End}(V)$ bezeichne wie in der Vorlesung $f^* \in \text{End}(V)$ die zu f adjungierte Abbildung.

(a) **Z.Z.:** Für alle $f, g \in \text{End}(V)$ gilt: $(f \circ g)^* = g^* \circ f^*$.

Beweis. Es gilt für $x, y \in V$:

$$h((f\circ g)^*(x),y)=h(x,f(g(y)))=h(f^*(x),g(y))=h(g^*(f^*(x)),y)=h((g^*\circ f^*)(x),y)$$

(b) **Z.Z.:** Für alle $f \in \text{End}(V), \lambda \in \mathbb{C}$ gilt: $(\lambda f)^* = \overline{\lambda} f^*$.

Beweis. Es gilt für $x, y \in V$:

$$h((\lambda f)^*(x),y) = h(x,(\lambda f(y))) \stackrel{\text{h semilinear}}{=} \overline{\lambda} h(x,f(y)) = \overline{\lambda} = h(f^*(x),y)$$

(c) **Z.Z.:** Für alle $f \in \text{End}(V)$ gilt: $f \circ f^*$ und $f^* \circ f$ sind selbstadjungiert.

Beweis. Es gilt für $x, y \in V$:

$$h((f \circ f^*)^*(x), y) = h((f(f^*(x)))^*, y) = h(x, f(f^*(y))) = h(f^*(x), f^*(y))$$
$$= h(f(f^*(x)), y) = h((f \circ f^*)(x), y)$$

und

$$h((f^* \circ f)^*(x), y) = h((f^*(f(x)))^*, y) = h(x, f^*(f(y))) = h(f(x), f(y))$$
$$= h(f^*(f(x)), y) = h((f^* \circ f)(x), y)$$