Convergence Guarantees 1

Assumption 1. The functions ℓ , and q are continuously differentiable and both have L-Lipschitz continuous gradients. Additionally, ℓ is lower-bounded; or equivalently, we can assume that $\ell(x) \to \infty$ when $|x| \to \infty$.

Assumption 2. The Mangasarian-Fromovitz constraint qualification (MFCQ) is satisfied for all $x \in \mathbb{R}^n$, i.e. $\forall x \in \mathbb{R}^n$, $\exists w \in \mathbb{R}^d$ s.t. $\nabla g_i(x)w > 0$ for all $i \in I(x)$, where $I(x) = \{i \in \mathbb{Z} \mid g_i(x) \leq 0\}$.

Note. MFCQ is automatically satisfied for all $x \in \mathbb{R}^n$ with $\psi^i(x^i) \neq 0$ for all i = 1, 2, ..., n.

Assumption 3. The step sizes $(\gamma_k)_{k>0}$ is given by $\gamma_k = \gamma_0/(k+1)$, where γ_0 is a positive constant.

Additionally, we state the following assumptions for the property of the mini-batch of data samples drawn from the dataset, ensuring an unbiased stochastic gradient with bounded variance.

Suppose that $\pi(\cdot)$ is the data distribution and ξ represents samples of data drawn in a mini-batch. We also denote $\pi(\xi)$ as the probability density function of ξ defined on the probability space Z. We have

$$\ell(x) = \int_{\mathbf{7}} \ell(x;\xi) \pi(\xi) d\xi.$$

We are now ready to state the following assumptions.

(a) The stochastic gradient is unbiased, i.e.

$$\mathbb{E}_{\xi \sim \pi} [\nabla \ell(x; \xi)] = \nabla \ell(x), \forall x \in \mathbb{R}^n.$$

(b) The gradient and the stochastic gradient are bounded, i.e.

$$\mathbb{E}_{\xi \sim \pi} \left[\| \nabla \ell(x; \xi) \| \right] \le M_{\ell}^2, \forall x \in \mathbb{R}^n.$$

(c) The stochastic gradient has a bounded variance, i.e.

$$\mathbb{E}_{\xi \sim \pi} \left[\left\| \nabla \ell(x; \xi) - \nabla \ell(x) \right\|^2 \right] \le \sigma^2, \forall x \in \mathbb{R}^n.$$

Theorem 1. Let $\gamma_k = 1/(k+1)$. Under Assumption 1, 3, 4, and $0 < \varepsilon \le \inf_{1 \le i \le d} \inf_{1 \le j \le K^i} \left| c^i_j - c^i_{j+1} \right|^4 / 16$, where $\{c^i_j\}$ are the quantization levels, $\ell(\hat{w}_k)$ converges and $\lim_{k \to \infty} d(\hat{w}_k, \mathcal{Z}_{\varepsilon}) = 0$ almost surely. Here, $\hat{w}_k = w_{t+N_0}$ with probability $1/(H_k(t+N_0+1))$, where $H_k = \sum_{t=0}^{k-1} 1/(t+N_0+1)$ and $N_0 > 0$ is a sufficiently large integer.

Lemma 1. Under Assumption 1, 2, 4, it holds that $\limsup_{k\to\infty} d(w_k, C_{\varepsilon}) = 0$ almost surely. **Lemma 2.** Denote $[c_-, c_+]$ the set $C_{\varepsilon}^i \cap [(c_j^i + c_{j-1}^i)/2, (c_j^i + c_{j+1}^i)/2)$, where C_{ε}^i is the projection of C_{ε} on the *i*-th coordinate. Let $0 < \varepsilon \le \inf_{1 \le i \le d} \inf_{1 \le j \le K^i} \left| c_j^i - c_{j+1}^i \right|^2 / 4$ and $(c_j^i + c_{j-1}^i)/2 - c_- < \varepsilon_1 < \varepsilon_1 < \varepsilon_2 < \varepsilon_1 < \varepsilon_2 < \varepsilon_2 < \varepsilon_2 < \varepsilon_1 < \varepsilon_2 <$ $0, 0 < \varepsilon_2 < (c_j^i + c_{j+1}^i)/2 - c_+$. The following statements on the small perturbations $\varepsilon_1, \varepsilon_2$ are true:

(a)
$$\left| -\alpha \psi_{\varepsilon}^{i}(c_{-} + \varepsilon_{1}) / (\psi_{\varepsilon}^{'i}(c_{-} + \varepsilon_{1})) \right| = O(\varepsilon_{1});$$

(b)
$$\left| -\alpha \psi_{\varepsilon}^{i}(c_{+} + \varepsilon_{2}) / (\psi_{\varepsilon}^{'i}(c_{+} + \varepsilon_{2})) \right| = O(\varepsilon_{2});$$

We will prove the case of c_{-} and it is easy to see (by symmetry) that the statement holds for the case of c_{+} .

Notice that
$$\psi_{\varepsilon}^{i}(c_{-}) = \varepsilon + (c_{-} - c_{j}^{i})(c_{-} - c_{j-1}^{i}) = 0.$$

$$\psi_{\varepsilon}^{i}(c_{-} + \varepsilon_{1}) = \varepsilon + (c_{-} + \varepsilon_{1} - c_{j}^{i})(c_{-} + \varepsilon_{1} - c_{j-1}^{i}) = \varepsilon_{1}(2c_{-} - c_{j-1}^{i} - c_{j}^{i}) + \varepsilon_{1}^{2} < 0.$$

Also,
$$\psi_{\varepsilon}^{'i}(c_{-}+\varepsilon_{1})=2(c_{-}+\varepsilon_{1})-c_{j-1}^{i}-c_{j}^{i}>0.$$

Thus,
$$\frac{-\alpha \psi_{\varepsilon}^{i}(c_{-}+\varepsilon_{1})}{\psi_{\varepsilon}^{i}(c_{-}+\varepsilon_{1})} = \frac{-\alpha(\varepsilon_{1}(2c_{-}-c_{j-1}^{i}-c_{j}^{i})+\varepsilon_{1}^{2})}{2(c_{-}+\varepsilon_{1})-c_{j-1}^{i}-c_{j}^{i}}$$

$$= \frac{-\alpha(1+\varepsilon_{1}/(2c_{-}-c_{j-1}^{i}-c_{j}^{i}))}{1/\varepsilon_{1}+2/(2c_{-}-c_{j-1}^{i}-c_{j}^{i})}$$

$$\leq \frac{-\alpha\varepsilon_{1}/(2c_{-}-c_{j-1}^{i}-c_{j}^{i})}{2/(2c_{-}-c_{j-1}^{i}-c_{j}^{i})}$$

$$\leq -\alpha\varepsilon_{1}/2.$$

Lemma 3. (Descent Lemma for ASkewSGD) There exists $\varepsilon_1 > 0, K \ge 0$, such that $\forall k \ge K, 1 - \gamma_k L/2 > 1/2$ and

$$\mathbb{E}\left[\ell(w_{k+1})|w_k\right] \leq \ell(w_k) - \frac{\gamma_k}{2} \sum_{i \not \in I_{k,\varepsilon_1}} \left\| \left[\nabla \ell(w_k)\right]^i \right\|^2 + \frac{\gamma_k^2 \sigma^2 L}{2} + \gamma_k \sum_{i \in I_{k,\varepsilon_1}} MO(\varepsilon_1) + \gamma_k^2 \sum_{i \in I_{k,\varepsilon_1}} \frac{L}{2} O(\varepsilon_1^2),$$

where $i \notin I_{k,\varepsilon}$ if $w_k^i \in (c_-^i + \varepsilon_1, c_+^i - \varepsilon_1)$ or $v_k^i = -[\widehat{\nabla}\ell(w_k)]^i$.

Proof. By Lemma 1, there exists $\varepsilon_1 > 0$ and K_1 such that $d(w_k, C_{\varepsilon}) < \varepsilon_1$ for all $k \geq K_1$.

By Assumption 3, γ_k can reach an arbitrarily small positive value so that $1 - \gamma_k L/2 > 1/2$. Denote the smallest possible k as K_2 .

Set $K = \min\{K_1, K_2\}$.

Consider the update rule for the model parameter $w_{k+1} = w_k + \gamma_k v_k$.

By the smoothness of ℓ , we obtain

$$\ell(w_{k+1}) \le \ell(w_k) + \gamma_k v_k^{\top} \nabla \ell(w_k) + \frac{\gamma_k^2 L}{2} ||v_k||^2.$$

Taking the conditional expectation $\mathbb{E}[\cdot|w_k]$, we obtain

$$\mathbb{E}\left[\ell(w_{k+1})|w_{k}\right] \leq \ell(w_{k}) + \gamma_{k}\mathbb{E}\left[v_{k}^{\top}\nabla\ell(w_{k})|w_{k}\right] + \frac{\gamma_{k}^{2}L}{2}\mathbb{E}\left[\left\|v_{k}\right\|^{2}|w_{k}\right] \\
\leq \ell(w_{k}) - \sum_{i \notin I_{k,\varepsilon_{1}}} \gamma_{k}\mathbb{E}\left[v_{k}^{i}[\nabla\ell(w_{k})]^{i}|w_{k}\right] + \sum_{i \in I_{k,\varepsilon_{1}}} \gamma_{k}\mathbb{E}\left[v_{k}^{i}[\nabla\ell(w_{k})]^{i}|w_{k}\right] \\
+ \sum_{i \notin I_{k,\varepsilon_{1}}} \frac{\gamma_{k}^{2}L}{2}\mathbb{E}\left[\left\|v_{k}^{i}\right\|^{2}|w_{k}\right] + \sum_{i \in I_{k,\varepsilon_{1}}} \frac{\gamma_{k}^{2}L}{2}\mathbb{E}\left[\left\|v_{k}^{i}\right\|^{2}|w_{k}\right] \\
\leq \ell(w_{k}) - \sum_{i \notin I_{k,\varepsilon_{1}}} \gamma_{k}\mathbb{E}\left[\left[\widehat{\nabla}\ell(w_{k})\right]^{i}[\nabla\ell(w_{k})]^{i}|w_{k}\right] + \sum_{i \in I_{k,\varepsilon_{1}}} \gamma_{k}\mathbb{E}\left[v_{k}^{i}[\nabla\ell(w_{k})]^{i}|w_{k}\right] \\
+ \sum_{i \notin I_{k,\varepsilon_{1}}} \frac{\gamma_{k}^{2}L}{2}\mathbb{E}\left[\left\|[\widehat{\nabla}\ell(w_{k})]^{i}\right\|^{2}|w_{k}\right] + \sum_{i \in I_{k,\varepsilon_{1}}} \gamma_{k}\mathbb{E}\left[v_{k}^{i}[\nabla\ell(w_{k})]^{i}|w_{k}\right] \\
\leq \ell(w_{k}) - \sum_{i \notin I_{k,\varepsilon_{1}}} \gamma_{k}\left\|[\nabla\ell(w_{k})]^{i}\right\|^{2} + \sum_{i \in I_{k,\varepsilon_{1}}} \gamma_{k}\mathbb{E}\left[v_{k}^{i}[\nabla\ell(w_{k})]^{i}|w_{k}\right] \\
+ \sum_{i \notin I_{k,\varepsilon_{1}}} \frac{\gamma_{k}^{2}L}{2}\mathbb{E}\left[\left\|[\widehat{\nabla}\ell(w_{k})]^{i}\right\|^{2}|w_{k}\right] + \sum_{i \in I_{k,\varepsilon_{1}}} \frac{\gamma_{k}^{2}L}{2}\mathbb{E}\left[\left\|v_{k}^{i}\right\|^{2}|w_{k}\right].$$

Note that

$$\mathbb{E}\left[\left\|\left[\widehat{\nabla}\ell(w_k)\right]^i\right\|^2 \middle| w_k\right] = \mathbb{E}\left[\left\|\left[\widehat{\nabla}\ell(w_k)\right]^i - \left[\nabla\ell(w_k)\right]^i + \left[\nabla\ell(w_k)\right]^i\right\|^2 \middle| w_k\right] \\
= \mathbb{E}\left[\left\|\left[\widehat{\nabla}\ell(w_k)\right]^i - \left[\nabla\ell(w_k)\right]^i\right\|^2 \middle| w_k\right] \\
+ 2\left[\nabla\ell(w_k)\right]^i \mathbb{E}\left[\left[\widehat{\nabla}\ell(w_k)\right]^i - \left[\nabla\ell(w_k)\right]^i\middle| w_k\right] \\
+ \left\|\left[\nabla\ell(w_k)\right]^i\right\|^2 \\
\leq \sigma^2 + \left\|\left[\nabla\ell(w_k)\right]^i\right\|^2.$$

We notice that $i \notin I_{k,\varepsilon_1}$ implies that v_k^i takes $-\alpha \psi_{\varepsilon}^i(w_k^i)/(\psi_{\varepsilon}^{'i}(w_k^i))$, and following this hereby, we simply use the notation v_k^i to denote the pushing force. Thus,

$$\mathbb{E}\left[\ell(w_{k+1})|w_{k}\right] \leq \ell(w_{k}) - \left(\gamma_{k} - \frac{\gamma_{k}^{2}L}{2}\right) \sum_{i \notin I_{k,\varepsilon_{1}}} \left\|\left[\nabla \ell(w_{k})\right]^{i}\right\|^{2} + \sum_{i \in I_{k,\varepsilon_{1}}} \gamma_{k} \mathbb{E}\left[v_{k}^{i} |\nabla \ell(w_{k})|^{i} \middle| w_{k}\right] + \sum_{i \in I_{k,\varepsilon_{1}}} \frac{\gamma_{k}^{2}L}{2} \mathbb{E}\left[\left\|v_{k}^{i}\right\|^{2} \middle| w_{k}\right] + \frac{\gamma_{k}^{2}\sigma^{2}L}{2}$$

$$\leq \ell(w_{k}) - \frac{\gamma_{k}}{2} \sum_{i \notin I_{k,\varepsilon_{1}}} \left\|\left[\nabla \ell(w_{k})\right]^{i}\right\|^{2} + \sum_{i \in I_{k,\varepsilon_{1}}} \gamma_{k} \mathbb{E}\left[\left|v_{k}^{i}\right| \left|\left[\nabla \ell(w_{k})\right]^{i}\right| \middle| w_{k}\right] + \sum_{i \in I_{k,\varepsilon_{1}}} \frac{\gamma_{k}^{2}L}{2} \mathbb{E}\left[\left\|v_{k}^{i}\right\|^{2} \middle| w_{k}\right] + \frac{\gamma_{k}^{2}\sigma^{2}L}{2}$$

$$\leq \ell(w_{k}) - \frac{\gamma_{k}}{2} \sum_{i \notin I_{k,\varepsilon_{1}}} \left\|\left[\nabla \ell(w_{k})\right]^{i}\right\|^{2} + \sum_{i \in I_{k,\varepsilon_{1}}} \gamma_{k} M_{\ell} O(\varepsilon_{1}) + \sum_{i \in I_{k,\varepsilon_{1}}} \frac{\gamma_{k}^{2}L}{2} O(\varepsilon_{1}^{2}) + \frac{\gamma_{k}^{2}\sigma^{2}L}{2}.$$

Lemma 4. (Telescoping Sum Argument) Let T > 0. There exists $\varepsilon_1 > 0$, $K \ge 0$, such that $\forall k \ge K$,

$$\sum_{k=0}^{T-1} \frac{\gamma_0}{2(k+K-1)} \left(\sum_{i \notin I_{k+K,\varepsilon}} \mathbb{E}\left[\left\| \left[\nabla \ell(w_{k+K}) \right]^i \right\|^2 \right] + \sum_{i \in I_{k+K,\varepsilon}} \mathbb{E}\left[\left\| v_{k+K} \right\|^2 \right] \right)$$

$$\leq \mathbb{E}[\ell(w_K) - \ell(w_{K+T})] - \sum_{k=0}^{T-1} \frac{\gamma_0^2 \sigma^2 L}{2(k+K+1)^2} + \sum_{k=0}^{T-1} \frac{\gamma_0}{k+K+1} O(\varepsilon_1).$$

Proof. Continuing from Lemma 3, we now have

$$\mathbb{E}\left[\ell(w_{k+1})|w_k\right] \leq \ell(w_k) - \frac{\gamma_k}{2} \sum_{i \notin I_{k+1}} \left\| \left[\nabla \ell(w_k)\right]^i \right\|^2 + \gamma_k O(\varepsilon_1) + \frac{\gamma_k^2 \sigma^2 L}{2}.$$

Taking the full expectation of the last inequality, we have

$$\mathbb{E}\left[\ell(w_{k+1})\right] \leq \mathbb{E}\left[\ell(w_k)\right] - \frac{\gamma_k}{2} \mathbb{E}\left[\sum_{i \notin I_{k,\varepsilon_1}} \left\| \left[\nabla \ell(w_k)\right]^i \right\|^2 \right] + \gamma_k O(\varepsilon_1) + \frac{\gamma_k^2 \sigma^2 L}{2},$$

$$\begin{split} \frac{\gamma_k}{2} \mathbb{E} \left[\sum_{i \notin I_{k,\varepsilon_1}} \left\| \left[\nabla \ell(w_k) \right]^i \right\|^2 \right] \leq & \mathbb{E} \left[\ell(w_k) \right] - \mathbb{E} \left[\ell(w_{k+1}) \right] + \gamma_k O(\varepsilon_1) + \frac{\gamma_k^2 \sigma^2 L}{2} \\ \frac{\gamma_k}{2} \mathbb{E} \left[\sum_{i \notin I_{k,\varepsilon_1}} \left\| \left[\nabla \ell(w_k) \right]^i \right\|^2 \right] + \frac{\gamma_k}{2} \mathbb{E} \left[\sum_{i \in I_{k,\varepsilon_1}} \left\| v_k^i \right\|^2 \right] \leq & \mathbb{E} \left[\ell(w_k) \right] - \mathbb{E} \left[\ell(w_{k+1}) \right] + \gamma_k O(\varepsilon_1) + \frac{\gamma_k^2 \sigma^2 L}{2}. \end{split}$$

Summing over T epochs and rearranging the terms, we now have

$$\sum_{k=0}^{T-1} \frac{\gamma_{k+K}}{2} \left(\sum_{i \notin I_{k+K,\varepsilon}} \mathbb{E} \left[\left\| \left[\nabla \ell(w_{k+K}) \right]^{i} \right\|^{2} \right] + \sum_{i \in I_{k+K,\varepsilon}} \mathbb{E} \left[\left\| v_{k+K} \right\|^{2} \right] \right)$$

$$\leq \mathbb{E} \left[\ell(w_{K}) - \ell(w_{K+T}) \right] - \sum_{k=0}^{T-1} \frac{\gamma_{k+K}^{2} \sigma^{2} L}{2} + \sum_{k=0}^{T-1} \gamma_{k} O(\varepsilon_{1}).$$

Substituting $\gamma_{k+K} = \gamma_0/(k+K-1)$ concludes the proof.

Lemma 5. (Heavy Tail Substitution) There exists $\varepsilon_1 > 0, K \geq 0$, such that when $T \to \infty$, $\sum_{i \notin \bar{I}_{\varepsilon}} \mathbb{E}\left[\left\|\left[\nabla \ell(\hat{w}_T)\right]^i\right\|^2\right] + \sum_{i \in \bar{I}_{\varepsilon}} \mathbb{E}\left[\left\|\hat{v}_T\right\|^2\right] \to O(\varepsilon_1)$, where $\hat{w}_T = w_{t+K}, \hat{v}_T = v_{t+K}$ with probability $1/(H_T(t+K+1))$, \bar{I}_{ε} is dependent on \hat{w}_T, \hat{v}_T , and $H_T = \sum_{i=0}^{T-1} 1/(i+K+1)$.

Proof.

$$\mathbb{E}\left[\left\| \left[\nabla \ell(\hat{w}_T)\right]^i \right\|^2 \right] = \sum_{t=0}^{T-1} \mathbb{P}(\hat{w}_T = w_{t+K}) \mathbb{E}\left[\left\| \left[\nabla \ell(w_{t+K})\right]^i \right\|^2 \right] = \sum_{t=0}^{T-1} \frac{\mathbb{E}\left[\left\| \left[\nabla \ell(w_{t+K})\right]^i \right\|^2 \right]}{H_T(t+K+1)}$$

Similarly,

$$\mathbb{E}\left[\left\|\hat{v}_{T}^{i}\right\|^{2}\right] = \sum_{t=0}^{T-1} \mathbb{P}(\hat{v}_{T} = v_{t+K}) \mathbb{E}\left[\left\|v_{T}^{i}\right\|^{2}\right] = \sum_{t=0}^{T-1} \frac{\mathbb{E}\left[\left\|v_{T}^{i}\right\|^{2}\right]}{H_{T}(t+K+1)}$$

Therefore,

$$\begin{split} & \sum_{i \notin \bar{I}_{\varepsilon}} \mathbb{E}\left[\left\| \left[\nabla \ell(\hat{w}_{T}) \right]^{i} \right\|^{2} \right] + \sum_{i \in \bar{I}_{\varepsilon}} \mathbb{E}\left[\left\| \hat{v}_{T} \right\|^{2} \right] \\ \leq & \frac{2}{\gamma_{0} H_{T}} \left(\mathbb{E}[\ell(w_{K}) - \ell(w_{K+T})] - \sum_{k=0}^{T-1} \frac{\gamma_{0}^{2} \sigma^{2} L}{2(k+K+1)^{2}} + \sum_{k=0}^{T-1} \frac{\gamma_{0}}{k+K+1} O(\varepsilon_{1}) \right). \end{split}$$

The above inequality implies that for some constant C > 0,

$$\sum_{i \notin \bar{I}_{\varepsilon}} \mathbb{E}\left[\left\|\left[\nabla \ell(\hat{w}_T)\right]^i\right\|^2\right] + \sum_{i \in \bar{I}_{\varepsilon}} \mathbb{E}\left[\left\|\hat{v}_T\right\|^2\right] \le \frac{C}{\log T} + O(\varepsilon_1).$$

Thus, when $T \to \infty$,

$$\sum_{i \neq \bar{I}} \mathbb{E}\left[\left\|\left[\nabla \ell(\hat{w}_T)\right]^i\right\|^2\right] + \sum_{i \in \bar{I}} \mathbb{E}\left[\left\|\hat{v}_T\right\|^2\right] \to O(\varepsilon_1)$$

and this concludes the theorem.

Note that the update step also goes to $O(\varepsilon_1)$ and this implies the convergence of the cost function

 $\ell(\hat{w}_k).$