# 8.3. Arbori binari ordonaţi

### 8.3.1. Definiții

- Structura **arbore binar** poate fi utilizată pentru a reprezenta în mod convenabil o mulțime de elemente, în care elementele se regăsesc după o **cheie unică**.
  - Se **presupune** că avem o mulțime de n noduri definite ca articole, fiecare având câte o cheie care este număr întreg.
  - Dacă cele n articole se **organizează** într-o structură **listă liniară**, căutarea unei chei necesită în medie n/2 comparații.
  - După cum se va vedea în continuare, **organizarea** celor n articole într-o **structură arbore binar convenabilă**, reduce numărul de căutări la maximum log<sub>2</sub>n.
  - Acest lucru devine posibil utilizând structura arbore binar ordonat.
- Prin **arbore binar ordonat** se înțelege un **arbore binar** care are proprietatea că, parcurgând nodurile sale în **inordine**, secvența cheilor este **monoton crescătoare**.
- Un **arbore binar ordonat** se bucură și de următoarea **proprietate**:
  - Dacă n este un nod oarecare al arborelui, având cheia c, atunci:
    - Toate nodurile din subarborele stâng a lui n au cheile mai mici sau egale cu c
    - Toate nodurile din **subarborele drept** al lui n **au chei mai mari sau egale** cu c.
- De aici rezultă un **procedeu de căutare** foarte simplu:
  - Începând cu rădăcina, se trece la fiul **stâng** sau la fiul **drept**, după cum cheia căutată este mai **mică** sau mai **mare** decât cea a nodului curent.
- Numărul **comparațiilor de chei** efectuate în cadrul acestui procedeu este cel mult egal cu **înălțimea arborelui**.
- Din acest motiv acești arbori sunt cunoscuți și sub denumirea de **arbori binari de** căutare ("Binary Search Trees").
- În general înălțimea unui arbore **nu** este determinată de **numărul** nodurilor sale.
  - Spre exemplu cu cele 9 noduri precizate în fig.8.3.1.a se poate construi atât arborele ordonat (a) de înălțime 4 cât și arborele ordonat (b) de înălțime 6.



Fig.8.3.1.a. Arbori binari ordonați de diferite înălțimi

- Este simplu de observat că un arbore are înălțimea **minimă** dacă **fiecare** nivel al său conține **numărul maxim de noduri**, cu excepția posibilă a ultimului nivel.
- Deoarece numărul maxim de noduri al nivelului i este 2<sup>i-1</sup>, rezultă că **înălțimea minimă** a unui arbore binar cu n noduri este:

$$h_{\min} = \lceil \log_2(n+1) \rceil$$

- Prin aceasta se justifică și afirmația că o căutare într-un **arbore binar ordonat** necesită aproximativ **log2n comparații de chei** 
  - Se precizează însă, că această afirmație este valabilă în **ipoteza** că nodurile sunt organizate într-o **structură arbore binar ordonat de înălțime minimă.**
- Dacă această condiție **nu** este satisfăcută, **eficiența** procesului de căutare poate fi mult redusă, în cazul cel mai defavorabil arborele degenerând într-o structură de **listă liniară.**
- Aceasta se întâmplă când subarborele drept (stâng) al tuturor nodurilor este **vid**, caz în care înălțimea arborelui devine egală cu n, iar căutarea **nu** este mai eficientă decât căutarea într-o **listă liniară** (O(n/2)).
- O altă proprietate importantă a ABO este aceea ca traversând un ABO in inordine se obține secvența ordonată crescător a cheilor nodurilor arborelui.
- Traversarea în inordine a unui arbore binar se determină simplu proiectând nodurile structurii arbore pe axa absciselor. Secvenţa rezulată este ordonarea în inordine a nodurilor structurii.

- Într-o manieră similară celei în care au fost definite tipurile de date abstracte pe parcursul acestui curs, și în cazul arborilor binari ordonați se poate defini un astfel de **tip**.
- Acesta presupune desigur:
  - (1) Definirea modelului matematic asociat.
  - (2) Precizarea **setului de operatori**.
- Ca și pentru celelalte structuri studiate și în acest caz este greu de definit un set de operatori general valabil.
- Din mulțimea seturilor posibile se propune setul prezentat în [8.3.2.a].

## TDA Arbore Binar Ordonat (ABO)

Modelul matematic: este un arbore binar, fiecare nod având asociată o cheie specifică. Pentru fiecare nod al arborelui este valabilă următoarea proprietate: cheia nodului respectiv este mai mare decât cheia oricărui nod al subarborelui său stâng și mai mică decat cheia oricărui nod al subarborelui său drept.

#### Notatii:

TipCheie - tipul cheii asociate structurii nodului TipElement - tipul asociat structurii unui nod RefTipNod - referința la un nod al structurii TipABO - tipul arbore binar ordonat b: TipABO; x,k: TipCheie; e: TipElement; p: RefTipNod;

[8.3.2.a]

#### Operatori:

- 1. Creaza (b: TipABO); procedură care crează arborele binar vid b;
- 2. Cauta(x: TipCheie, b: TipABO): RefTipNod; operator functie care caută în arborele b un nod având cheia identică cu x returnând referința la nodul în cauză respectiv indicatorul vid dacă un astfel de nod nu există;
- 3. Actualizeaza (e: TipElement, b: TipABO); caută nodul din arborele b care are aceeași cheie cu nodul e și îi modifică conținutul memorând pe e în acest nod. Dacă un astfel de nod nu există, operatorul nu realizează nici o acțiune;
- 4. Insereaza (e: TipElement, b: TipABO); inserează elementul e în arborele b astfel încât acesta să rămână un ABO;
- 5. SuprimaMin(b: TipABO, e: TipElement); extrage nodul cu cheia minimă din arborele cu rădacina b și îl

returnează în e. În urma suprimării arborele b rămâne un ABO;

6. Suprima (x: TipCheie, b: TipABO); - suprimă nodul cu cheia x din arborele b, astfel încât arborele să rămână ordonat. Dacă nu există un astfel de nod, procedura nu realizeză nimic.

\_\_\_\_\_

## 8.3.3. Tehnici de căutare în arbori binari ordonați

### • Specificarea problemei:

- Fie b o referință care indică rădăcina unui **arbore binar ordonat**, ale cărui noduri au structura definită în [8.3.3.a].
- Fie x un număr întreg dat.
- Se cere să se găsească în arborele binar ordonat b acel nod care are cheia egală cu x.
- Funcția Cauta (x, b) precizată în secvența [8.3.3.b] rezolvă această problemă
  - Căutarea se realizează în conformitate cu procedeul descris în paragraful anterior.
  - Funcția **Cauta** returnează valoarea **NIL** dacă **nu** găsește nici un nod cu cheia x, altminteri valoarea ei este egală cu pointerul care indică acest nod.

```
{Structura de date Arbore Binar Ordonat}
TYPE RefTipNod=^TipNod;
    TipNod=RECORD
             cheie: TipCheie;
                                                 [8.3.3.a]
              stang,drept: RefTipNod;
{Căutare în ABO (Varianta iterativă)}
FUNCTION Cauta (x:TipCheie; VAR b:TipABO):RefTipNod;
 VAR gasit:boolean;
 BEGIN
   gasit:=false;
   WHILE (b<>NIL) AND NOT gasit DO
                                   [8.3.3.b]
     BEGIN
       IF b^.cheie=x THEN gasit:=true ELSE
       IF x<b^.cheie THEN b:=b^.stang ELSE</pre>
         b:=b^.drept
     END;
   Cauta:=b
 END; {Cauta}
```

- Acelaşi proces de căutare poate fi implementat și în variantă recursivă ținând cont de faptul ca arborele binar este definit ca și o structură de date recursivă.
- Varianta recursivă a căutării apare în secvența [8.3.3.c].
  - Se face însă precizarea că această implementare este mai puţin performantă deoarece principial căutarea în arborii binari ordonaţi este o operaţie pur secvenţială care nu necesită memorarea drumului parcurs.

-----

## 8.3.4. Inserția nodurilor în ABO. Crearea arborilor binari ordonați

- În cadrul acestui paragraf se tratează:
  - (1) **Inserția nodurilor** într-un arbore binar ordonat.
  - (2) Problema **construcției unui arbore binar ordonat**, pornind de la o mulțime dată de noduri.
- Procesul de creare al unui ABO constă în inserția câte unui nod într-un arbore binar ordonat care inițial este vid.
  - Problema care se pune este aceea de a executa inserţia de o asemenea manieră încât arborele să rămână **ordonat** și după adăugarea noului nod.
  - Acesta se realizează traversând arborele începând cu rădăcina şi selectând fiul stâng sau fiul drept, după cum cheia de inserat este mai mică sau mai mare decât cheia nodului parcurs.
  - Aceasta proces se **repetă** până când se ajunge la un pointer NIL.
  - În continuare inserția se realizează modificând acest pointer astfel încât să indice noul nod.
- Se precizează că inserția noului nod **trebuie** realizată chiar dacă arborele conține deja un nod cu cheia egală cu cea nouă.

- În acest caz, dacă se ajunge la un nod cu cheia egală cu cea de inserat, se procedează ca și cum aceasta din urmă ar fi **mai mare**, deci se trece la fiul **drept** al nodului curent.
- În felul acesta la parcurgerea în **inordine** a arborelui binar ordonat se obține o **sortare stabilă** a cheilor arborelui. (Vol.1 &3.1).
- În fig.8.3.4.a se prezintă inserția unei noi chei cu numărul 8 în structura existentă de arbore ordonat.
  - La parcurgerea în inordine a acestui arbore, se observă că cele două chei egale sunt parcurse în ordinea în care au fost inserate.



Fig.8.3.4.a. Inserția unui nod nou cu o cheie existentă

- În continuare se prezintă o **procedură recursivă** pentru **inserția unui nod într-un arbore binar ordonat**, astfel încât acesta să rămână ordonat.
- Se precizează că inițial, arborele poate fi vid.

END

- Structura arbore la care se vor face referiri este cea precizată în secvența [8.3.3.a].
- Procedura **Insereaza** realizează inserția unui nod cu cheia x într-un arbore binar ordonat [8.3.4.a].
  - Se precizează că x este un număr întreg reprezentând cheia nodului de inserat și b un pointer care indică rădăcina arborelui

\_\_\_\_\_

```
{Inserţia unui nod într-un arbore binar ordonat}

PROCEDURE Insereaza(x:TipCheie; VAR b:TipABO);
BEGIN
    IF b<> NIL THEN
        If x<b^.cheie THEN
            Insereaza(x,b^.stang)
        ELSE
            Insereaza(x,b^.drept) [8.3.4.a]
        ELSE {b este NIL}
        BEGIN
        new(b); {completarea înlănţuirii}
        b^.cheie:=x; b^.stang:=NIL; b^.drept:=NIL</pre>
```

END; {Insereaza}

• Se observă că pentru funcționarea corectă a acestei proceduri este esențial ca b să fie parametru variabil, deoarece numai astfel noua valoare pe care o primește b prin instrucțiunea new (b), se asignează și parametrului actual corespunzător.

- În secvența [8.3.4.b] se prezintă un fragment de **program principal** care utilizează procedura de mai sus în vederea **creării unui arbore binar ordonat.** 
  - Se presupune că:
    - (1) Toate cheile sunt diferite de zero.
    - (2) Cheile se citesc de la dispozitivul de intrare.
    - (3) Secvența de chei se încheie cu o cheie fictivă egală cu zero pe post de terminator.

\_\_\_\_\_

```
{Construcția unui arbore binar ordonat}
```

```
VAR radacina:RefTipNod;
    c:TipCheie;
BEGIN
    radacina:=NIL;
    Read(c);
    WHILE c<>0 DO
    BEGIN
        Insereaza(c, radacina);
        Read(c)
    END;
```

### 8.3.4.1. Inserţia nodurilor în ABO. Varianta iterativă

- În continuare se descrie o variantă nerecursivă a procedurii Inserează.
  - În cadrul acestei variante se disting două părți și anume:
    - (1) **Parcurgerea** arborelui pentru găsirea locului unde trebuie inserat noul nod.
    - (2) **Inserția** propriu-zisă.
- Prima parte se implementează cu ajutorul a **doi pointeri** q1 și q2, urmând un algoritm similar celui utilizat la liste (tehnica celor doi pointeri Vol.1 &6.4.2).
  - Cei doi pointeri indică mereu două noduri "consecutive" ale arborelui:
    - q2^ este **nodul curent** (inițial rădăcina).

- q1^ este fiul său stâng sau fiul drept, după cum x, cheia care se caută, este mai mică respectiv mai mare decât cheia nodului curent indicat de q2.
- Pointerii avansează în tandem, din nod în nod de-a lungul arborelui, până când pointerul q1 devine NIL
- În acest moment se realizează inserția propriu-zisă a noului nod drept fiu al lui q2.
- Se precizează că este nevoie și de o variabilă întreagă d, pentru a preciza dacă nodul nou trebuie inserat ca fiu stâng sau ca fiu drept al lui q2^.
  - Această variabilă se asignează în timpul parcurgerii arborelui și se testează în cadrul inserției propriu-zise [Wi76].
- Spre deosebire de varianta recursivă în care traseul parcurs este **memorat implicit** de către mecanismul de implementare al recursivității cu ajutorul unei stive, în acest caz **nu** este nevoie de stivă întrucât **nu** trebuie să se revină în arbore decât cu un singur nivel (pentru a realiza înlănțuirea), motiv pentru care sunt suficienți **doi pointeri consecutivi** (fig.8.3.4.b (b)).



Fig.8.3.4.b. Arbori binari ordonați. Tehnica celor doi pointeri

• Procedura care realizează inserția într-un **arbore binar ordonat** în manieră nerecursivă apare în secvența [8.3.4.c].

```
{Inserţia în ABO (Varianta nerecursivă)}

PROCEDURE InsereazaNerecursiv(x:TipCheie; b:TipABO);
   VAR q1,q2:RefTipNod;
    d:integer;
   BEGIN
    q2:=b; {iniţializare pointeri}
```

```
q1:=q2^{\cdot}.drept;
  d:=1;
  WHILE q1<>NIL DO {parcurgere arbore în tandem}
    BEGIN
      q2:=q1;
      IF x<q1^.cheie THEN</pre>
          BEGIN
            q1:=q1^.stang;
            d:=-1.
          END
        ELSE
          BEGIN
            q1:=q1^.drept;
                                                    [8.3.4.c]
            d := 1
          END
    END; {terminare parcurgere}
  new(q1); {insertie}
  q1^.cheie:=x;
  q1^.stang:=NIL;
  q1^.drept:=NIL
  IF d<0 THEN {IF (x<q2^cheie) THEN ...}
      q2^.stanq:=q1
    ELSE
      q2^.drept:=q1
END; {InsereazaNerecursiv}
```

• Este uşor de văzut că această procedură funcționează corect **numai** dacă arborele are **cel puțin un nod.** 

- Din acest motiv în implementarea structurii arborelui se utilizează **tehnica nodului fictiv**.
  - Astfel inițial arborele va conține un **nod fictiv** a cărui înlănțuire pe dreapta indică primul **nod efectiv** al arborelui.
- În această accepțiune **arborele binar vid** arată ca și în figura 8.3.4.b.(a).
  - Drept consecință cei doi pointeri vor putea fi poziționați în mod corespunzător chiar și pentru arborele vid: q2 indică nodul fictiv iar q1 este NIL.
- De asemenea se face precizarea că se poate renunța la variabila d.
  - Faptul că noul nod trebuie inserat ca fiu stâng sau ca fiu drept al lui q2 se stabilește comparând cheia lui q2 cu cheia de inserat x.
  - Acest procedeu este sugerat ca și comentariu în secvența [8.3.4.c.]

## 8.3.4.2. Considerente generale referitoare la crearea ABO

• Cu privire la crearea arborilor binari ordonați se poate menționa faptul că **înălțimea** arborilor obținuți prin procedurile prezentate, depinde de **ordinea** în care se furnizează inițial cheile.

- Dacă spre exemplu, secvența cheilor inițiale este 5, 3, 8, 2, 4, 7, 9, 1, 6 atunci se obține arborele din figura 8.3.1.a stânga, având o înălțime minimă (4).
- Dacă aceleași chei se furnizează în ordinea 7,2,8,1,6,9,3,5,4 atunci rezultă arborele mai puțin avantajos din aceeași figura dreapta cu înălțimea 6.



**Fig.8.3.1.a.** Arbori binari ordonați de diferite înălțimi (reluare)

• În cazul cel mai **defavorabil**, arborele poate degenera în **listă liniară**, lucru care se întâmplă în cazul în care cheile sunt furnizate în vederea inserției în **secvență ordonată crescător** respectiv **descrescător** (fig.8.3.4.c.(a),(b)).



Fig.8.4.3.c. Arbori binari ordonați degenerați în liste liniare.

- Este evident faptul că în astfel de situații performanța căutării scade catastrofal fiind practic egală cu cea a căutării într-o listă **liniară ordonată**.
- Din fericire, probabilitatea ca să apară astfel de situații este destul de redusă, fenomen ce va fi analizat mai târziu în cadrul acestui capitol.

#### 8.3.5. Suprimarea nodurilor în arbori binari ordonați

- Se consideră o structură **arbore binar ordonat** și o cheie precizată x.
- Se cere să se **suprime** din structura arbore binar ordonat nodul având cheia x.
  - Pentru aceasta, în prealabil se **caută** dacă există un nod cu o astfel de cheie.
  - Dacă **nu**, suprimarea s-a încheiat și se emite eventual un mesaj de eroare.
  - În caz contrar se execută suprimarea propriu-zisă, de o asemenea manieră încât arborele să rămână **ordonat** și după terminarea ei.
- Se disting două cazuri, după cum nodul care trebuie suprimat are:
  - (1) Cel mult un fiu
  - (2) **Doi fii.**
- (1) **Primul caz** în care nodul de suprimat are **cel mult un fiu**, se rezolvă conform figurii 8.3.5 (a,b,c) în care se prezintă cele trei variante posibile.



Fig.8.3.5.a. Suprimarea unui nod într-un ABO. Cazul 1.

- Regula generală care se aplică în acest caz este următoarea:
  - Fie p câmpul referintă aparținând **tatălui** nodului x, referință care indică nodul x.
  - Valoarea lui p se modifică astfel încât acesta să indice unicul fiu al lui x (dacă un astfel de fiu există fig. 8.3.5.a (a),(b)) sau dacă un astfel de fiu nu există, p devine NIL (fig.8.3.5.a (c)).
- Fragmentul de cod care apare în continuare ilustrează acest procedeu [8.3.5.a].

{Suprimarea unui nod într-un ABO. Cazul 1: nodul de suprimat are un singur sau niciun fiu}

- Ca **exemplu**, se prezintă în continuare implementarea operatorului SuprimaMin care suprimă și în același timp returnează **cel mai mic element** al unui arbore binar ordonat (secvența [8.3.5.b]).
  - Cel mai mic element al unui arbore binar ordonat, este cel mai din stânga nod al arborelui, nod la care se ajunge înaintând mereu spre stânga pornind de la rădacină.
  - Primul nod care **nu** are înlănțuire spre stânga (**nu** are fiu stâng) este nodul căutat.
  - Suprimarea lui este imediată în baza procedeului precizat mai sus.

```
{Operatorul SuprimaMin în ABO}

PROCEDURE SuprimaMin(VAR b:TipABO; VAR min:TipElement);
   VAR temp:RefTipNod;
   BEGIN
    IF b<>NIL THEN
        SuprimaMin(b^.stang, min)
        ELSE
        BEGIN
        [8.3.5.b]
        min:=b^.info; temp:=b;
        b:=b^.drept; {suprimare}
        DISPOSE(temp)
        END; {SuprimaMin}
```

- Într-o manieră similară se poate implementa operatorul SuprimaMax
  - Acesta realizează suprimarea celui mai mare nod al arborelui, care este evident nodul situat cel mai la **dreapta** în arbore.
- (2) **Cel de-al doilea caz**, în care nodul de suprimat are **doi fii** se rezolvă astfel:
  - (1) Se caută **predecesorul** nodului de suprimat x în **ordonarea în inordine a** arborelui.
    - Fie acesta y. Se demonstrează că nodul y există și că el nu are fiu drept.
  - (2) Se **modifică** nodul x, asignând toate câmpurile sale, cu excepția cîmpurilor stâng și drept cu câmpurile corespunzătoare ale lui y.
    - În acest moment în structura arbore, nodul y se găsește în dublu exemplar: în locul său inițial și în locul fostului nod x.

- (3) Se **suprimă** nodul y inițial, conform fragmentului [8.3.5.a] deoarece nodul nu are fiu drept.
- Cu privire la nodul y, se poate demonstra că el se detectează după următoarea **metodă**:
  - Se construiește o secvență de noduri care începe cu fiul **stâng** al lui x, după care se alege drept succesor al fiecărui nod, fiul său **drept.**
  - Primul nod al secvenței care **nu** are fiu drept este y (fig.8.3.5.b).
    - Este de fapt **cel mai mare nod** al subarborelui stâng al subarborelui binar care are rădăcina x.



Fig. 8.3.5.b. Suprimarea unui nod într-un ABO. Cazul 2.

- Procedura care realizează **suprimarea** unui nod într-o structură **arbore binar ordonat** apare în secvența [8.3.5.c].
  - Procedura locală SuprimaPred, caută predecesorul în inordine al nodului x, realizând suprimarea acestuia conform metodei descrise (are cel mult un fiu).
  - După cum se observă, procedura SuprimaPred se utilizează numai în situația în care nodul x are doi fii.

PROCEDURE Suprima(x:TipCheie; VAR b:TipABO);
VAR q:RefTipNod;

```
PROCEDURE SuprimaPred(VAR r:RefTipNod);
  BEGIN
    IF r^.drept<>NIL THEN
        SuprimaPred(r^.drept)
      ELSE
        BEGIN
          q^.cheie:=r^.cheie; {mută conținutul lui r în q}
          q^.numar:=r^.numar;
          q:=r;
          r:=r^.stang {suprimă nodul r}
  END; {SuprimaPreded}
BEGIN {Suprimare}
  IF b=NIL THEN
      WRITELN(' nodul nu se gaseste') [8.3.5.c]
      IF x<p^.cheie THEN
          Suprima (x,p^.stang)
        ELSE
          IF x>p^.cheie THEN
              Suprima (x,p^.drept)
            ELSE
              BEGIN
                q:=p;
                IF q^.drept=NIL THEN {Cazul 1}
                    p:=q^.stang
                  ELSE
                    IF q^.stang=NIL THEN {Cazul 1}
                        p:=q^.drept
                        SuprimaPred(q^.stang); {Cazul 2}
                {DISPOSE(q)}
              END
END; {Suprimare}
```

- Procedura SuprimaPred:
  - (1) Găsește pointerul r care indică nodul având cea mai mare cheie, dintre cheile **subarborelui stâng**, al arborelui care are drept rădăcină nodul cu cheia x (nodul de suprimat).
  - (2) Înlocuiește câmpurile nodului cu cheia x, indicat de pointerul q, cu câmpurile nodului indicat de r (cu excepția înlănțuirilor).
  - Suprimă nodul indicat de r, acesta din urmă având un singur fiu (sau niciunul).
- Pentru a ilustra comportarea acestei proceduri în fig.8.3.5.c se prezintă:
  - O structură de arbore binar ordonat (a)
  - Din care se suprimă în mod succesiv nodurile având cheile 7, 8, 4, şi 6 (fig.8.3.5.c (b-e)).



Fig. 8.3.5.c. Suprimarea nodurilor într-o structură arbore binar ordonat

- Există și o altă soluție de a rezolva suprimarea în cazul în care nodul x are doi fii și anume:
  - 1. Se caută **succesorul** nodului x în ordonarea în inordine a cheilor arborelui. Se demonstrează că el există și ca **nu** are fiu stâng.
  - 2. Pentru suprimare se procedează analog ca și în cazul anterior, cu deosebirea că totul se realizează **simetric** (în oglindă).
- În acest caz de fapt se caută nodul cu **cea mai mică cheie** a **subarborelui drept** al subarborelui care-l are pe x drept rădăcină
- Pentru o mai bună înțelegere a celor prezentate se reamintește o **proprietate** a arborilor binari ordonați:
  - Proiecția pe abscisă a nodurilor unui arbore binar, conduce la ordonarea lor în inordine.
  - În cazul **arborilor binari ordonați** se obține de fapt secvența ordonată a cheilor arborelui.

### 8.3.6. Analiza căutării în arbori binari ordonați

- În general, în activitatea de programare se manifestă o anumită suspiciune față de căutarea și inserția nodurilor într-o structură **arbore binar ordonat**.
- Această suspiciune este motivată de faptul că programatorul în general **nu** are controlul cresterii arborelui și ca atare **nu** poate anticipa cu suficientă precizie forma acestuia.

- După cum s-a precizat, efortul de căutare al unei chei variază între  $O(log_2 n)$  pentru arborele binar perfect echilibrat (de înălțime minimă) și O(n/2) pentru arborele binar degenerat într-o listă liniară.
- Cele două situații reprezintă extremele situațiilor reale iar probabilitatea ca ele să apară în este în general redusă [Wi76].
- Cazul general care va fi analizat în continuare, se referă la:
  - Dacă se dau n **chei**, ele pot fi permutate în n! **moduri** și în consecință cu cele n chei se pot construi n! arbori binari ordonați, deoarece pentru fiecare permutare rezultă un arbore.
  - Ne propunem să determinăm lungimea medie an a drumului de căutare, corespunzător tuturor celor n chei și tuturor celor n! arbori care pot fi generați pornind de la cele n! permutări ale celor n chei originale.
  - Se consideră că cele n chei sunt distincte având valorile 1, 2, ..., n, și se presupune că sosesc în ordine aleatoare cu o distribuție normală a probabilității de apariție.
  - În acest context lungimea medie a drumului de căutare într-un arbore binar cu n noduri, an se definește ca fiind o sumă de n termeni, fiecare termen fiind produsul dintre nivelul unui nod al arborelui (care este chiar lungimea drumului la nodul în cauză) și probabilitatea sa de acces.
  - Dacă se presupune că toate nodurile sunt în mod egal căutate (au probabilitatea de acces 1/n), atunci formal lungimea medie a drumului de căutare an apare în [8.3.6.a] unde  $p_i$  este lungimea drumului de la rădăcină la nodul i (adâncimea nodului i).

$$a_n = \frac{1}{n} \sum_{i=1}^n p_i$$
 [8.3.6.a]

Calculând valoarea lungimii medii a drumului de căutare an se ajunge la formula recursivă [8.3.6.g].

$$a_n = \frac{1}{n^2}((n^2 - 1)a_{n-1} + 2n - 1)$$
 [8.3.6.g]

• Pe de altă parte, an poate fi exprimat într-o formă nerecursivă utilizând termenii funcției **armonice** H [8.3.6.h] după cum se prezintă în relația [8.3.6.i]

$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
 [8.3.6.h]
$$a_n = 2 \frac{n+1}{n} H_n - 3$$
 [8.3.6.i]

$$a_n = 2\frac{n+1}{n}H_n - 3$$
 [8.3.6.i]

\_\_\_\_\_

- Se poate verifica faptul că relația [8.3.6.i] verifică relația recursivă [8.3.6.g].
- Dar valoarea aproximativă a lui H<sub>n</sub> poate fi determinată în baza **formulei lui Euler** [8.3.6.j].

\_\_\_\_\_\_ 1

$$H_n = \gamma + \ln(n) + \frac{1}{12n^2} + \dots$$
 [8.3.6.j]

\_\_\_\_\_

unde  $\gamma \approx 0.577$  este constanta lui Euler.

• Dacă se înlocuiește această valoare în formula [8.3.6.i] rezultă următoarea valoare pentru **lungimea medie** a **drumului de căutare** într-un **arbore binar ordonat oarecare** cu n chei [8.3.6.k].

\_\_\_\_\_

$$a_n \approx 2[\ln(n) + \gamma] = 2\ln(n) - c$$
 [8.3.6.k]

• Întrucât lungimea medie a drumului de căutare într-un **arbore binar perfect echilibrat** este [8.3.6.1]:

-----

$$a'_n = \log_2(n) - 1$$
 [8.3.6.1]

• Neglijând termenii constanți care pentru valori mari ale lui n devin neglijabili și trecând la **limită**, obținem relația finală [8.3.6.m].

-----

$$\lim_{n \to \infty} \frac{a_n}{a_n'} = \frac{2\ln(n)}{\log_2(n)} = \frac{2\ln(n)}{\frac{\ln(n)}{\ln 2}} = 2\ln 2 \approx 1.386$$
 [8.3.6.m]

- Concluzia este că înlocuind arborele binar perfect echilibrat cu un arbore binar aleatoriu, efortul de căutare crește în medie cu 39 %.
  - Desigur, creșterea acestui efort poate fi mult mai mare, dacă arborele aleatoriu este nefavorabil, spre exemplu degenerat într-o listă, dar această situație are o probabilitate foarte mică de a se realiza.
- Cele 39 % impun practic **limita efortului adițional de calcul** care poate fi cheltuit în mod profitabil pentru reorganizarea structurii după inserarea cheilor.
  - În acest sens un rol esențial îl joacă **raportul** dintre numărul de accese la noduri (căutări) și numărul de inserții realizate în arbore.
  - Cu cât acest raport este mai mare cu atât reorganizarea structurii este mai justificată.

• În general valoarea 39 % este suficient de redusă pentru ca în majoritatea aplicațiilor să se recurgă la tehnici directe de inserare și să **nu** se facă uz de reorganizare decât în situatii deosebite.

## 8.3.7. Arbori binari parţial ordonaţi

- O structură arbore binar aparte o reprezintă structura **arbore binar parțial ordonat**.
  - Caracteristica esențială a unui arbore binar parțial ordonat este aceea că cheia oricărui nod este mai mare (mică) decât cheile fiilor săi.
  - Consecința imediată: la parcurgerea în inordine, secvența cheilor nu mai este ordonată.
- Un exemplu de astfel de arbore apare în figura 8.3.7.a.



Fig.8.3.7.a. Arbore binar partial ordonat

- Deoarece un arbore binar parțial ordonat este de fapt un arbore binar, se poate realiza o reprezentare eficientă a sa cu ajutorul unui tablou liniar aplicând tehnica specificată la paragraful 8.2.4.1.
  - Această reprezentare este cunoscută și sub numele de **ansamblu** (heap) și a fost definită în partea I (sortare prin metoda ansamblelor Vol.1 &3.2.5.)
- Spre exemplu **arborele binar parțial ordonat** din figura 8.3.7.a apare reprezentat ca un **ansamblu** în figura 8.3.7.b.

|   |   | 3  |   |   |    |    |    |    |    |
|---|---|----|---|---|----|----|----|----|----|
| 4 | 6 | 11 | 9 | 7 | 16 | 15 | 14 | 19 | 10 |

Fig.8.3.7.b. Reprezentarea unui arbore binar parțial ordonat ca un ansamblu

• Structura ansamblu permite implementarea eficientă şi foarte elegantă atât a unor metode de sortare (sortarea prin metoda ansamblelor - Vol.1 &3.2.5) cât şi a unor structuri de date derivate din liste (cozi bazate pe prioritate - Vol.1 &6.5.5.3).

### 8.3.8. Aplicații ale arborilor binari ordonați

#### 8.3.8.1. Problema concordantei

- În cadrul acestui paragraf se propune reluarea **problemei concordanței** prezentată în Vol.1 și rezolvarea ei cu ajutorul structurilor de date arbore.
  - Se reaminteşte că problema concordanței constă de fapt în determinarea frecvențelor de acces ale cuvintelor unui text dat.
- **Problema** se formulează astfel:
  - Se consideră un **text** format dintr-o succesiune de **cuvinte**.
  - Se parcurge textul și se delimitează cuvintele.
  - Pentru fiecare cuvânt se verifică dacă este sau nu la prima apariție.
    - Dacă este la prima apariție, cuvântul se înregistrează și contorul asociat se inițializează pe valoarea 1.
    - Dacă cuvântul a mai fost căutat, se incrementează contorul asociat, acesta contorizând numărul de apariții.
  - În final se dispune de **lista** (ordonată) a tuturor cuvintelor și de numărul de apariții ale fiecăruia.
- În acest scop, nodurile reprezentând cuvintele sunt organizate într-o **structură arbore binar ordonat**, pornind de la un arbore vid.
- Procesul se desfășoară după cum urmează.
  - Se citeşte un nou cuvânt și se caută în arbore:
    - Dacă **nu** se găsește atunci cuvântul se inserează.
    - Dacă cuvântul se găsește, atunci se incrementează contorul de apariții al cuvântului respectiv.
  - Procesul continuă până la epuizarea tuturor cuvintelor textului analizat
- Se presupune că un nod al structurii **arbore binar ordonat** are structura precizată în secvența [8.3.8.1.a].

{Problema concordanței. Implementare bazată pe arbori binari ordonați}

TYPE RefTipNod=^cuvant cuvant=RECORD

```
stang, drept: RefTipNod
END;
```

- Fie radacina o variabilă pointer care indică rădăcina arborelui binar ordonat.
- Programul care rezolvă problema concordanței apare în secvența [8.3.8.1.b].

```
PROGRAM Concordanta;
TYPE RefTipNod=^cuvant;
      cuvant=RECORD
                cheie:integer;
                contor:integer;
                stang, drept: RefTipNod
              END:
VAR radacina: RefTipNod; cuv:integer;
PROCEDURE Imprarbore(r:RefTipNod);
  BEGIN
    IF r<>NIL THEN
      BEGIN
        Imprarbore (r^.stang);
        WRITELN (r^.cheie, r^.contor);
        Imprarbore (r^.drept)
      END
  END; {Imprarbore}
PROCEDURE Cauta(x:integer; VAR p:RefTipNod);
  BEGIN
    IF p=NIL THEN {cuvântul nu se găseşte, deci inserţie}
        BEGIN
          new(p);
                                                      [8.3.8.1.b]
          p^.cheie:=x; p^.contor:=1;
          p^.stang:=NIL; p^.drept:=NIL
        END
      ELSE
        IF x<p^.cheie THEN</pre>
            Cauta(x,p^.stang)
          ELSE
             IF x>p^.cheie THEN
                 Cauta (x, p^{\cdot}.drept)
               ELSE {cuvântul s-a găsit, incrementare contor}
                 p^.contor:=p^.contor+1
  END; {Cauta}
BEGIN {PROGRAM principal}
  radacina:=NIL; {*}
  Read(cuv);
  WHILE cuv<>0 DO
    BEGIN
      Cauta (cuv, radacina);
      Read (cuv)
    END;
  Imprarbore (radacina)
END.
```

- Pentru simplificare se presupune ca textul analizat constă dintr-o succesiune de numere întregi care modelează cuvintele textului, iar cifra 0 este utilizată ca terminator.
- **Programul principal** realizează următoarele:
  - Inițializează structura cu arborele vid (radacina).
  - Citește pe rând cuvintele textului în variabila cuv prin tastarea numerelor care le reprezintă (bucla WHILE).
  - Pentru fiecare cuvânt (număr) tastat apelează procedura Cauta (cuv, radacina).
  - Programul se finalizează cu tastarea numărului 0 considerat drept terminator.
- Procedura Cauta realizează următoarele:
  - (1) Caută cheia cuv în arborele indicat de pointerul radacina.
  - (2) Dacă **nu** o găsește, inserează cheia în arbore.
  - (3) Dacă găsește cheia incrementează contorul corespunzător.
- După cum se observă, această procedură este o **combinație** a căutării și creării arborilor binari ordonați.
  - Metoda de **parcurgere** a arborelui este cea prezentată la căutarea în arbori binari ordonați varianta recursivă (&8.3.3)
- Dacă **nu** se găsește nici un nod cu cheia cuv atunci are loc inserția similară celei utilizate în cadrul procedurii Insereazal definită la inserția în arbori binari ordonați varianta 1 ( &8.3.4)
- Procedura recursivă Imprarbore parcurge nodurile arborelui în **inordine** afișându-le unele sub altele, fără a reflecta însă și structura arborelui, element care diferențiază această procedură de cea prezentată în secvența [8.2.7.1.a.].

## 8.4. Arbori binari echilibraţi. Arbori AVL

### 8.4.1. Definirea arborilor echilibraţi AVL

- Din **analiza** căutării în **arbori binari ordonați** prezentată în &8.3.6. rezultă în mod evident că o procedură de inserare care restaurează structura de arbore astfel încât ea să fie **tot timpul** *perfect echilibrată* **nu** este viabilă, deoarece activitatea de restructurare este foarte **complexă**.
  - Cu toate acestea sunt posibile anumite **ameliorări**, dacă termenul "**echilibrat**" este definit într-o manieră **mai puțin strictă**.
  - Astfel de criterii de echilibrare "imperfectă" pot conduce la **tehnici** mai simple de **reorganizare** a **structurii arbore binar ordonat**, al căror cost deteriorează într-o măsură redusă performanța medie de căutare.
- Una dintre aceste definiții ale echilibrării **arborilor binari ordonați** este cea propusă de **Adelson, Velskii** și **Landis** în 1962 și care are următorul enunț:
  - Un **arbore binar ordonat** este **echilibrat** dacă și numai dacă pentru oricare nod al arborelui, înălțimile celor doi subarbori diferă cu cel mult 1.
  - Arborii care satisfac acest criteriu se numesc "arbori AVL" după numele inventatorilor.
- În cele ce urmează, sintagma "arbori echilibrați AVL" este sinonimă cu "arbori AVL"
  - Se atrage atenția asupra faptului că arborii **perfect echilibrați** sunt de asemenea **arbori AVL**.
- Această definiție are câteva avantaje:
  - (1) Este foarte simplă.
  - (2) Conduce la o **procedură de reechilibrare** viabilă.
  - (3) Asigură o **lungime medie a drumului de căutare** practic identică cu cea a unui **arbore perfect echilibrat.**
- În acest context se vor studia următorii operatori definți în cadrul **structurii arbore echilibrat AVL**:
  - 1º **Inserția** unui nod cu o cheie dată.
  - 2º Suprimarea unui nod cu o cheie dată.
- Toți acești operatori necesită un **efort de calcul** de ordinul  $O(log\ n)$ , unde n este numărul nodurilor structurii, chiar în cel mai **defavorabil caz**.
- Optimul este atins de arborii echilibrați având un număr de noduri  $n=2^k-1$ .

## 8.4.2. Inserţia nodurilor în arbori echilibraţi AVL

- Se dă un **arbore AVL** având rădăcina R, subarborele S de înălțime  $h_S$  pe post de subarbore stâng și subarborele D de înălțime  $h_D$  pe post de subarbore drept.
  - Se cere **să se insereze** un nod nou în acest arbore.
- Se presupune că nodul nou se **inserează** în **subarborele stâng S**, determinând creșterea cu 1 a înălțimii acestuia.
  - Se disting trei cazuri:
    - 1. h<sub>S</sub>=h<sub>D</sub> : în urma inserției S și D devin de înălțimi inegale, fără însă a viola criteriul echilibrului.
    - 2. h<sub>S</sub><h<sub>D</sub> : în urma inserției S și D devin de înălțimi egale, echilibrul fiind îmbunătățit.
    - 3. h<sub>S</sub>>h<sub>D</sub>: criteriul echilibrului este violat și arborele trebuie **reechilibrat**.
- Lucrurile se întâmplă similar, dacă nodul nou se **inserează** în **subarborele drept D**, determinând creșterea cu 1 a înălțimii acestuia, cu deosebirea ca totul se reflectă în oglindă, adică se schimba S cu D respectiv D cu S.
- Astfel, în arborele echilibrat din figura 8.5.3.a:
  - Nodurile 9 sau 11 pot fi inserate **fără** reechilibrare.
  - Inserția unuia din nodurile 1, 3, 5 sau 7 necesită însă **reechilibrarea** arborelui.



Fig.8.5.3.a. Arbore echilibrat AVL

- O analiză atentă a situațiilor posibile care rezultă în urma inserției evidențiază faptul că există numai **două configurații** care necesită tratamente speciale.
  - Celelelate configurații pot fi reduse la aceste două situații din considerente de simetrie.

- **Prima situație** se referă la inserția nodurilor 1 sau 3 în arborele reprezentat cu linie continuă în figura 8.5.3.a
- Cea de-a doua situație se referă la inserția nodurilor 5 sau 7 în arborele din figura 8.5.3.a
  - Cele două situații sunt prezentate în figurile 8.5.3.b și 8.5.3.c, fiecare în câte trei ipostaze (a), (b) și (c) care evoluează de la simplu la complicat.
  - Cele două situații sunt denumite cazul "1 Stânga" respectiv cazul "2 Stânga".
  - Ambele cazuri presupun creșterea **subarborelui stâng** S, ca atare reprezintă un **caz stânga**.
    - Cazul 1 Stînga presupune creșterea subarborelui stâng al subarborelui stâng al arborelui în cauză.
    - Cazul 2 Stânga presupune creșterea subarborelui drept al subarborelui stâng al arborelui în cauză.
  - Elementele adăugate prin inserție apar cu linie punctată.
  - Prin transformări simple, structurile de arbori se reechilibrează.
    - În **cazul 1 Stânga** este vorba despre **o rotație simplă** de două noduri A respectiv B
    - În cazul **2 Stânga** este vorba despre **o rotație dublă** în care sunt implicate trei noduri: A, B și C.
      - Se subliniază faptul că arborii AVL fiind arbori ordonați, singurele mișcări permise ale nodurilor sunt cele pe verticală.
      - Pozițiile relative ale proiecțiilor pe orizontală ale nodurilor aparținând unui arbore AVL, trebuie să rămână nemodificate.





Fig.8.5.3.c. Echilibrarea arborilor AVL. Cazul 2 Stânga

• Sinteza acestor cazuri precum și modul sintetic în care se realizează procesul de echilibrare pentru cazurile pe stânga sunt prezentate în figurile 8.5.3.d și 8.5.3.e.



Fig.8.5.3.d. Echilibrarea arborilor AVL. Cazul 1 Stânga. Schema generală



Fig.8.5.3.e. Echilibrarea arborilor AVL. Cazul 2 Stânga. Schema generală

- În oglindă cu cazurile pe stânga, pentru **dreapta** se pot distinge următoarele cazuri:
  - Cazul 1 Dreapta care presupune creșterea subarborelui drept al subarborelui drept al arborelui original
  - Cazul 2 Dreapta care presupune creșterea subarborelui stâng al subarborelui drept al arborelui original.
- Şi în acest caz, reechilibrarea se rezolvă prin **una** sau **două rotații** ale nodurilor A şi B, respectiv ale nodurilor A, B şi C.
  - Aceleaşi scheme sintetice de data aceasta pentru cazurile pe **dreapta** apar în figurile 8.5.3.f respectiv 8.5.3.g.
    - Este vorba despre cazurile 1 respectiv 2 Dreapta.



Fig.8.5.3.f. Echilibrarea arborilor AVL. Cazul 1 Dreapta. Schema generală



Fig.8.5.3.g. Echilibrarea arborilor AVL. Cazul 2 Dreapta. Schema generală

- **Principial, procesul de echilibrare** împreună cu modalitatea efectivă de **restructurare** apar pentru fiecare din cele două cazuri în figurile mai sus precizate.
- Un **algoritm pentru inserție și reechilibrare** depinde în **mod critic** de maniera în care este memorată informația referitoare la **situația echilibrului** arborelui.
- O soluție este aceea prin care se atribuie fiecărui nod un factor explicit de echilibru.
  - **Factorul de echilibru** se referă la subarborele a cărui rădăcină o constituie nodul în cauză.

- Factorul de echilibru al unui nod, va fi interpretat ca și diferența dintre înălțimea subarborelui său drept și înălțimea subarborelui său stâng.
- În acest caz structura unui nod devine [8.5.3.a]:

{Structura unui nod al unui arbore AVL}

- Pornind de la **structura nod** definită în secvența [8.5.3.a], **inserția** unui nod se desfăsoară în trei etape:
  - 1. Se **parcurge** arborele binar, pentru a verifica dacă nu cumva cheia există deja.
  - 2. Se **înserează** noul nod și se inițializează factorul său de echilibru pe valoarea zero.
  - 3. Se **revine** pe drumul de căutare și se verifică factorul de echilibru pentru fiecare nod întâlnit, procedându-se la **echilibrare** acolo unde este cazul.
- Această metodă realizează unele verificări redundante deoarece:
  - Odată echilibrul stabilit, **nu** mai este necesară verificarea factorului de echilibru pentru strămoșii nodului
- Cu toate acestea, se va face totuși uz de ea, deoarece:
  - (1) Este usor de înțeles.
  - (2) Se poate implementa printr-o **extindere** a procedurilor recursive de căutare și inserție a nodurilor în arbori binari ordonați, descrise în & 8.3.4.
- Aceste proceduri care includ **operația de căutare a unui nod**, datorită formulării lor **recursive**, asigură în manieră implicită "**revenirea de-a lungul drumului de căutare**".
  - Informația care trebuie transmisă la revenirea din fiecare pas este cea referitoare la modificarea înălțimii subarborelui în care s-a făcut inserția.
  - Din acest motiv, în lista de parametri ai procedurii de inserție se introduce parametrul variabil de tip boolean h, a cărui valoare "adevărat" semnifică **creșterea** înăltimii subarborelui din care se revine.
- Se presupune că procedura de inserție revine din **subarborele stâng** la un nod p^ (vezi fig.8.5.3.h), cu indicația că **înălțimea** sa a crescut.

- Se pot distinge trei situații referitoare la înălțimea subarborelui **înaintea** respectiv **după** realizarea inserției:
  - h<sub>S</sub><h<sub>D</sub>, deci p^.ech=+1; După inserție factorul de echilibru devine p^.ech=0, ca atare inechilibrul anterior referitor la nodul p a fost rezolvat.
  - 2. h<sub>S</sub>=h<sub>D</sub>, deci p^.ech=0; După inserție factorul de echilibru devine p^.ech=-1, în consecință greutatea este acum înclinată spre stânga, dar arborele rămâne echilibrat în sensul AVL.
  - 3. h<sub>S</sub>>h<sub>D</sub>, deci p^.ech=-1; ca atare este necesară reechilibrarea arborelui.



Fig.8.5.3.h. Inserția în arbori AVL. Cazul Stânga. Schema generală

- În cazul 3<sup>0</sup>, **inspectarea** factorului de echilibru al rădăcinii **subarborelui stâng** (p1^.ech) conduce la stabilirea cazului **1 Stânga** sau cazul **2 Stânga**.
  - (1) Dacă acest nod are la rândul său înălțimea subarborelui său stâng mai mare ca cea a celui drept, adică factorul de echilibru egal cu (-1), suntem în cazul **1 Stânga.**
  - (2) Dacă factorul de echilibru al acestui nod este egal cu (+1) suntem în cazul **2 Stânga** (fig. 8.5.3.h).
  - (3) În această situație **nu** poate apare un subarbore stâng a cărui rădăcină are un factor de echilibru nul [Wi76].
- Operația de reechilibrare constă dintr-o secvență de reatribuiri de pointeri.
  - De fapt pointerii sunt schimbați ciclic, rezultând fie o **rotație simplă** fie o **rotație dublă** a două respectiv trei noduri implicate.

- În plus, pe lângă rotirea pointerilor, **factorii de echilibru** respectivi sunt reajustați.
- Procedura care realizează acest lucru apare în secvența[8.5.3.b]. Principiul de lucru este cel ilustrat în figura 8.5.3.h.

```
{Insertia unui nod într-un arbore echilibrat AVL}
PROCEDURE InsertEchilibrat(x:TipCheie; VAR p:TipRef;
                            VAR h:BOOLEAN);
  VAR p1,p2:TipRef; {h=fals}
BEGIN
    IF p=NIL THEN
        BEGIN {cuvântul nu e arbore; se inserează}
          new(p); h:=TRUE;
          p^.cheie:=x; p^.contor:=1;
           p^.stang:=NIL; p^.drept:=NIL; p^.ech:=0
        END
      ELSE
        IF x<p^.cheie THEN</pre>
             BEGIN
               InsertEchilibrat(x,p^.stang,h);
               IF h THEN {ramura stângă a crescut în
                           înălţime}
                 CASE p^.ech OF
                   +1: BEGIN
                         p^.ech:=0; h:=FALSE
                       END;
                                                     [8.5.3.b]
                    0: p^.ech:=-1;
                   -1: BEGIN {reechilibrare}
                          p1:=p^.stang;
                          IF p1^.ech=-1 THEN
                              BEGIN {cazul 1 stânga}
                                 p^.stang:=p1^.drept;
                                p1^.drept:=p;
                                p^.ech:=0; p:=p1
                              END
                            ELSE
                              BEGIN {cazul 2 stânga}
                                p2:=p1^.drept;
                                p1^.drept:=p2^.stang;
                                p2^.stang:=p1;
                                p^.stang:=p2^.drept;
                                p2^.drept:=p;
                                IF p2^-.ech=-1 THEN
                                    p^.ech:=+1
                                  ELSE
                                    p^.ech:=0;
                                IF p2^{\text{-ech}}=+1 THEN
                                    p1^{\cdot}.ech:=-1
                                  ELSE
                                    p1^{\cdot}.ech:=0;
                                p := p2
                              END;
```

p^.ech:=0; h:=FALSE

```
END {CASE}
          END
                                                   [8.5.3.b]
        ELSE
          IF x>p^.cheie THEN
              BEGIN
                InsertEchilibrat(x,p^.drept,h);
                 IF h THEN {ramura dreapta a crescut
                              în înălţime}
                   CASE p^.ech OF
                     -1: BEGIN
                           p^.ech:=0; h:=FALSE
                         END;
                      0: p^.ech:=+1;
                     +1: BEGIN {reechilibrare}
                           p1:=p^.drept;
                           IF p1^.ech=+1 THEN
                               BEGIN {cazul 1 dreapta}
                                  p^.drept:=p1^.stang;
                                  p1^.stang:=p;
                                 p^.ech:=0; p:=p1
                               END
                             ELSE
                               BEGIN {cazul 2 dreapta}
                                 p2:=p1^.stang;
                                 p1^.stang:=p2^.drept;
                                 p2^.drept:=p1;
                                 p^.drept:=p2^.stang;
                                 p2^.stang:=p;
                                 IF p2^.ech=+1 THEN
                                      p^{\cdot}.ech:=-1
                                   ELSE
                                      p^.ech:=0;
                                 IF p2^.ech=-1 THEN
                                      p1^{\cdot}.ech:=+1
                                   ELSE
                                      p1^.ech:=0;
                                 p:=p2
                                                 [8.5.3.b]
                               END;
                           p^.ech:=0; h:=FALSE
                         END
                   END {CASE}
              END
            ELSE
              BEGIN {cuvântul există, incrementare contor}
                p^.contor:=p^.contor+1;
              END
END; {InsertEchilibrat}
```

END

- Procedura InsertEchilibrat funcționează după cum urmează:
  - 1. Inițial se parcurge arborele indicat de referința p pe stânga respectiv pe dreapta după valoarea cheii x care se caută. Parcurgerea se realizează prin apeluri recursive ale procedurii InsertEchilibrat;
  - 2. Dacă se ajunge la o referință p=nil are loc inserția, cu modificarea lui h=TRUE specificând astfel că înălțimea subarborelui a crescut;

- 3. După o astfel de inserție se revine din apelul recursiv și se verifică echilibrul nodului curent realizându-se eventual echilibrarea pe stânga (dacă se revine din stânga) sau pe dreapta (dacă se revine din dreapta).
- 4. Dacă se găsește o cheie egala cu x se incrementează contorul nodului în cauză.
- 5. Cu privire la variabila h se fac următoarele precizări:
  - Inserția îl poziționează pe h←TRUE;
  - Revenirile prin noduri cu factorul de echilibru 0 nu îl modifică pe h;
  - Reechilibrarea îl poziționează pe h←FALSE;
- Pentru exemplificare se consideră succesiunea de inserții într-un arbore AVL precizată în figura 8.5.3.i.



Fig.8.3.5.i. Inserții succesive într-un arbore echilibrat AVL.

- Se consideră arborele echilibrat AVL (a).
- Inserția cheii 10 conduce la un arbore dezechilibrat (cazul 1 Dreapta), a cărui echilibrare perfectă se realizează printr-o rotație simplă dreapta, fig. 8.5.3.i (b).
- Inserţiile nodurilor 5 şi 4 conduc la dezechilibrarea subarborelui cu rădăcina 7. Echilibrarea sa se realizează printr-o rotație simplă (cazul 1 Stânga) (d).
- Inserția în continuare a cheii 6 produce din nou dezechilibrarea arborelui, a cărui echilibrare se realizează printr-o rotație dublă stânga rezultînd arborele (e) (cazul 2 Stânga).

- În sfârșit, inserția nodului 9 conduce la cazul 2 Dreapta, care necesită în vederea echilibrării arborelui cu rădăcina 8 o rotație dublă care conduce la arborele echilibrat AVL (f).
- În legătură cu **performanța inserției într-un arbore echilibrat AVL** se ridică două probleme:
  - 1. Dacă toate cele n! permutări de n chei apar cu **probabilitate egală**, care este **înălțimea probabilă** a **arborelui echilibrat** care se construiește?
  - 2. Care este **probabilitatea** ca o inserție să necesite **reechilibrarea** arborelui?
- Analiza matematică a acestui complicat algoritm este încă o problemă nerezolvată.
- Teste empirice ale înălțimii arborilor generați de **algoritmul de inserție echilibrată** [8.5.3.b.] conduc la valoarea h=log(n)+c, unde c este o constantă mică (c≈0.25).
  - Aceasta înseamnă că în practică, arborii echilibrați AVL, se comportă la fel de bine ca și arborii perfect echilibrați, fiind însă mai ușor de realizat.
- Testele empirice sugerează de asemenea că în medie, **reechilibrarea** este necesară aproximativ la fiecare **două inserții.** 
  - Atât rotațiile simple cât și cele duble sunt echiprobabile.
- Complexitatea operației de reechilibrare sugerează faptul că arborii echilibrați trebuie utilizați de regulă când operațiile de căutare a informației sunt mult mai frecvente decât cele de inserare.

# 8.4.3. Suprimarea nodurilor în arbori echilibraţi AVL

- Şi în cazul arborilor echilibrați AVL, suprimarea este o operație mai **complicată** decât inserția.
- În principiu însă, operația de **reechilibrare** rămâne aceeași, reducîndu-se la una sau două **rotații** la stânga sau la dreapta.
- **Tehnica** care stă la baza suprimării nodurilor în arbori echilibrați AVL este similară celei utilizate în cazul **arborilor binari ordonați** prezentată în &8.3.5.
  - Cazul evident este cel în care, nodul care se suprimă este un **nod terminal** sau are **un singur descendent**.
  - Dacă nodul de suprimat are însă doi descendenți, el va fi înlocuit cu **predecesorul** adică cu cel mai din dreapta nod al subarborelul său stâng.
- Ca și în cazul inserției, se utilizează variabila booleeană h a cărei poziționare pe "valoare adevărată" semnifică **reducerea înălțimii subarborelui**.
  - Reechilibrarea se execută **numai** când h este adevărat.

- Variabila h se poziționează pe adevărat după suprimarea unui nod al structurii, sau dacă reechilibrarea însăși reduce înălțimea subarborelui.
- Tehnica suprimării nodurilor din arbori echilibrați AVL este materializată de procedura

SuprimEchilibrat secventa [8.5.4.a]

```
{Suprimarea unui nod într-un arbore echilibrat AVL}
PROCEDURE SuprimEchilibrat(x:TipCheie; VAR p:TipRef;
                            VAR h:BOOLEAN);
 VAR q:TipRef; {h=fals}
  PROCEDURE Echilibru1 (VAR p:TipRef: VAR h:BOOLEAN);
    VAR p1, p2: TipRef;
        e1, e2: (-1, 0, +1);
    BEGIN {h=adevărat, ramura stânga a devenit mai mică}
      CASE p^.ech OF
        -1: p^{\cdot}.ech:=0;
         0: BEGIN
              p^.ech:=+1; h:=FALSE
            END;
        +1: BEGIN {reechilibrare}
                                                    [8.5.4.a]
              p1:=p^.drept; e1:=p1^.ech;
              IF e1>=0 THEN
                   BEGIN {cazul 1 dreapta}
                     p^.drept:=p1^.stang; p1^.stang:=p;
                     IF e1=0 THEN
                         BEGIN
                           p^.ech:=+1; p1^.ech:=-1;
                           h:=FALSE
                         END
                       ELSE
                         BEGIN
                           p^.ech:=0; p1^.ech:=0
                         END;
                     p:=p1
                   END
                ELSE
                   BEGIN {cazul 2 dreapta}
                     p2:=p1^.stang; e2:=p2^.ech;
                     p1^.stang:=p2^.drept; p2^.drept:=p1;
                     p^.drept:=p2^.sting;
                     p2^.stang:=p;
                     IF e2=+1 THEN
                         p^{\cdot}.ech:=-1
                       ELSE
                         p^.ech:=0;
                     IF e2 = -1 THEN
                         p1^.ech:=+1
                       ELSE
                         p1^.ech:=0;
                     p:=p2; p2^.ech:=0
                   END
            END
                                                    [8.5.4.a]
      END
           {CASE}
    END; {Echilibru1}
```

```
PROCEDURE Echilibru2 (VAR p:TipRef; VAR h:BOOLEAN);
  VAR p1,p2:TipRef;
      e1, e2: (-1, 0, +1);
  BEGIN {h=adevarat, ramura dreapta a devenit mai mică}
    CASE p^.ech OF
      +1: p^.ech:=0;
       0: BEGIN
            p^.ech:=-1; h:=FALSE
          END;
      -1: BEGIN {reechilibrare}
            p1:=p^.stang; e1:=p1^.ech;
             IF e1 <= 0 THEN
                 BEGIN {cazul 1 stânga}
                   p^.stang:=p1^.drept; p1^.drept:=p;
                   IF e1=0 THEN
                       BEGIN
                          p^.ech:=-1; p1^.ech:=+1;
                         h:=FALSE
                       END
                     ELSE
                       BEGIN
                         p^.ech:=0; p1^.ech:=0
                       END;
                   p:=p1
                 END
               ELSE
                 BEGIN {cazul 2 stânga}
                   p2:=p1^.drept; e2:=p2^.ech;
                   p1^.drept:=p2^.stang; p2^.stang:=p1;
                   p^.stang:=p2^.drept;
                   p2^.drept:=p;
                   IF e2=-1 THEN
                       p^{\cdot}.ech:=+1
                     ELSE
                       p^.ech:=0;
                   IF e2 = +1 THEN
                       p1^{-ech} = -1
                     ELSE
                       p1^.ech:=0;
                   p:=p2; p2^{-1}.ech:=0
                 END
          END
    END {CASE}
  END; {Echilibru2}
PROCEDURE Suprima (VAR r:TipRef; VAR h:BOOLEAN);
  BEGIN {h=false}
    IF r^.drept<>NIL THEN
        BEGIN
          Suprima (r^.drept,h);
          IF h THEN Echilibru2 (r,h)
        END
      ELSE
        BEGIN
                                              [8.5.4.a]
          q^.cheie:=r^.cheie;
          q^.contor:=r^.contor;
          r:=r^.stang; h:=TRUE
```

```
END
  END; {Suprima}
BEGIN {SuprimaEchilibrat}
  IF p=NIL THEN
      BEGIN
        WRITE('cheia nu e IN arbore'); h:=FALSE
      END
    ELSE
      IF x<p^.cheie THEN
          BEGIN
            SuprimaEchilibrat(x,p^.stang,h);
            IF h THEN Echilibru1(p,h)
          END
        ELSE
          IF x>p^.cheie THEN
              BEGIN
                SuprimaEchilibrat(x,p^.drept,h);
                IF h THEN Echilibru2 (p, h)
              END
            ELSE
              BEGIN {suprima p^}
                q:=p;
                IF q^.drept=NIL THEN [8.5.4.a]
                    BEGIN
                      p:=q^.stang; h:=TRUE
                    END
                  ELSE
                    IF q^.stang=NIL THEN
                        BEGIN
                          p:=q^.drept; h:=TRUE
                        END
                      ELSE
                        BEGIN
                          Suprima (q^.stanq,h);
                          IF h THEN Echilibru1(p,h)
                {DISPOSE(q)}
              END
END; {SuprimaEchilibrat}
```

- În cadrul procedurii **SuprimEchilibrat** se definesc trei proceduri:
  - (1) **Echilibru1** care se aplică când **subarborele stâng** s-a redus din înălțime;
  - (2) **Echilibru2** care se aplică când **subarborele drept** s-a redus din înălțime;
  - (3) Suprima are rolul procedurii Supred la arbori binari ordonați:
    - (1) Găsește și înlocuiește nodul de suprimat cu predecesorul său.
    - (2) Suprimă predecesorul.

- (3) În plus procedura **Suprima** realizează eventualele reechilibrari la revenirea recursivă pe drumul parcurs în arbore.
- Mersul procedurii **SuprimEchilibrat** este normal:
  - (1) Se parcurge recursiv arborele AVL pentru căutarea cheii de suprimat, (apeluri ale procedurii **SuprimEchilibrat** pe stânga sau pe dreapta după cum cheia care se caută e mai mică respectiv mai mare decât cea a nodului curent);
  - (2) Când se găsește cheia ea se suprimă exact ca și la arborii binari ordonați:
    - Cazul 1 fiu: se rezolvă prin suprimare directă;
    - Cazul 2 fii: se apelează procedura **Suprima** descrisă mai sus.
  - (3) Este important de reamintit faptul că după fiecare revenire dintr-un apel recursiv se verifică valoarea lui h și dacă este necesar se apelează procedura corespunzătoare de echilibrare.
- Modul de lucru al procedurii, este prezentat în figura 8.5.4.a.



Fig.8.5.4.a. Suprimări succesive în arbori echilibrați AVL

- Dându-se arborele binar echilibrat (a), se suprimă în mod succesiv nodurile având cheile 7, 11, 9, 8, 5, 4 și 10, rezultând arborii (b)...(j).
  - Suprimarea cheii 7 este simplă însă conduce la subarborele dezechilibrat cu rădăcina 6. Reechilibrarea acestuia presupune o rotație simplă (cazul 1 stânga).
  - Suprimarea nodului 11 nu ridică probleme.
  - Reechilibrarea devine din nou necesară după suprimarea nodului 9; de data aceasta, subarborele având rădăcina 10, este reechilibrat printr-o rotație simplă dreapta (cazul 1 dreapta).
  - Suprimarea cheii 8 este imediată
  - Deși nodul 5 are un singur descendent, suprimarea sa presupune o reechilibrare mai complicată bazată pe o dublă rotație (cazul 2 dreapta).
  - Ultimul caz, cel al suprimării nodului cu cheia 10 presupune înainte de reechilibrare, înlocuirea acestuia cu cel mai din dreapta element al arborelui său stâng (nodul cu cheia 6).
- În cazul arborilor binari echilibrați, suprimarea unui nod se realizează în **cel mai defavorabil caz** cu performața O(log n).
- Diferența esențială dintre **inserție** și **suprimare** în cazul **arborilor echilibrați AVL** este următoarea:
  - În urma unei **inserții**, reechilibrarea se realizează prin una sau două rotații (a două sau trei noduri).
  - **Suprimarea** poate necesita în cel mai defavorabil caz, o rotație simplă sau dublă, a fiecărui nod situat pe drumul de căutare.
- În realitate, testele experimentale indică faptul suprinzător că:
  - (1) În cazul **inserției** reechilibrarea devine necesară aproximativ la fiecare **a 2-a** inserție.
  - (2) În cazul **suprimării** reechilibrarea devine necesară aproximativ la fiecare a **5-a** suprimare.
  - (3) Există însă unele situații speciale la suprimare, în care reechilibrarea este necesară în fiecare din nodurile situate pe drumul de căutare.