Introduction to Mathematical Programming IE406

Lecture 16

Dr. Ted Ralphs

Reading for This Lecture

• Bertsimas 7.1-7.3

Network Flow Problems

- Networks are used to model systems in which a commodity or commodities must be transported from one or more supply points to one or more demand points along defined pathways.
- These models occur naturally in many contexts.
 - Transportation
 - Logistics
 - Telecommunications
- Network flow problems are defined on graphs that define the structure of the pathways in the network.

Undirected Graphs

- An undirected graph G = (N, E) consists of
 - A finite set of *nodes* N representing the supply and demand points.
 - A set E of unordered pairs of nodes called *edges* representing the pathways joining pairs of nodes.
- We say that the edge $\{i, j\}$ is *incident to* nodes i and j and i and j are its *endpoints*.
- The degree of a node is the number of edges incident to it.
- The degree of a graph is the maximum of the degrees of its nodes.

Basic Definitions (Undirected)

- A walk is a finite sequence of nodes i_1, \ldots, i_t such that $\{i_k, i_{k+1}\} \in E \ \forall k = 1, 2, \ldots, t-1$.
- A walk is called a *path* if it has no repeated nodes.
- A *cycle* is a path with $i_1 = i_t, t > 2$.
- An undirected graph is said to be *connected* if for every pair of nodes i and j, there is a path from i to j.
- For undirected graphs, our convention will be to denote |N|=n and |E|=m.

Directed Graphs

• A directed graph G = (N, A) consists of a set of N nodes and a set A of ordered pairs of nodes called *arcs*.

- For any arc (i, j), we say that j is the *head* and i is the *tail*.
- The arc (i, j) is said to be *outgoing* from node i and *incoming* to node j and incident to both i and j.
- We define I(i) and O(i) as

$$I(i) = \{j \in N | (j, i) \in A\}$$

and

$$O(i) = \{ j \in N | (i, j) \in A \}$$

Basic Definitions (Directed)

- Corresponding to every directed graph is the underlying undirected graph obtained by ignoring the direction of the arcs.
- A walk in a directed graph is a sequence of nodes i_1, \ldots, i_t plus a corresponding sequence of arcs such that a_1, \ldots, a_{t-1} such that for every k, either
 - $-a_k=(i_k,i_{k+1})$, in which case a_k is a *forward arc*, or
 - $-a_k=(i_{k+1},i_k)$, in which case a_k is a backward arc.
- Again, a walk is a *path* if its nodes are distinct and a cycle is a path in which $i_1 = i_t$.
- A walk, path, or cycle is *directed* if it contains only forward arcs.
- A directed graph is *connected* if the underlying undirected graph is connected.

Trees

An undirected graph is a tree if it is connected and acyclic (has no cycles).

- In a tree, nodes of degree one are called *leaves*.
- Properties of trees
 - Every tree with more than one node has at least one leaf.
 - An undirected graph is a tree if and only if it is connected and has |N|-1 edges.
 - For any two distinct nodes i and j in a tree, there exists a unique path from i to j.
 - If we add an edge to a tree, the resulting graph contains exactly one cycle.

Subgraphs and Spanning Trees

- Given a connected, undirected graph G = (N, E), a graph G' = (N', E') is a *subgraph* of G if $N' \subseteq N$ and $E' \subseteq E$.
- A subgraph $T = (N, E_1)$ that is also a tree is called a *spanning tree* of G.
- Any subset of edges of an undirected, connected graph that does not form any cycles can be extended to form a spanning tree.

Network Flow Problems

- A network is a directed graph together with the following additional information:
 - A supply b_i associated with each node i (negative supply is interpreted as demand).
 - A nonnegative *capacity* u_{ij} associated with each arc (i,j).
 - A cost c_{ij} for transporting a unit of the commodity from i to j.
- We visualize a network by envisioning the flow of some commodity through the network.
- A node i such that $b_i > 0$ is called a source.
- A node i such that $b_i < 0$ is called a sink.
- A node i such that $b_i = 0$ is called a *transshipment node*.
- We denote the flow of the commodity from i to j by the variable f_{ij} .

Formulating the Network Flow Problem

• A *feasible flow* satisfies the following conditions on the flow variables:

$$\sum_{j \in O(i)} f_{ij} - \sum_{j \in I(i)} f_{ji} = b_i \quad \forall i \in N$$
$$0 \le f_{ij} \le u_{ij} \, \forall (i,j) \in A$$

- The first set of constraints are called the *flow balance constraints* and can be read as "flow out flow in = supply".
- Any setting of the variables satisfying the flow balance constraints is called a *flow*.
- The second set of constraints are called the *capacity constraints*.
- In order for a feasible flow to exist, we must have $\sum_{i \in N} b_i = 0$.

Types of Network Flow Problems

 The minimum cost network flow problem is to find a feasible flow minimizing the objective function

$$\sum_{(i,j)\in A} c_{ij} f_{ij}$$

Special cases

- Shortest path problem: Determine the length of a shortest path between a specified pair of nodes.
- Maximum flow problem: Determine the the maximum amount of flow that can be sent through the network from a given source to a given sink without exceeding arc capacities.
- <u>Transportation problem</u>: Minimize the cost of shipping a good from a specified set of suppliers to a specified set of customers.
- Assignment problem: A special case of the transportation problem used to model the minimum cost of assigning workers to jobs.

Variants of the Network Flow Problem

 Every network flow problem can be reduced to one with exactly one source and one sink.

- Every network flow problem can be reduced to one without any sources or sinks.
 - This is called a *circulation*.
 - A <u>simple circulation</u> is one in which the only nonzero flows are on the arcs of a cycle.
- We can also easily model problems in which the nodes have capacities (how?).
- We may also want to have lower bounds on the arcs.

The Node-arc Incidence Matrix

• The *node-arc incidence matrix* A is defined as follows:

$$a_{ik} = \begin{cases} 1, & \text{if } i \text{ is the tail of the } kth \text{ arc,} \\ -1, & \text{if } i \text{ is the head of the } kth \text{ arc, and} \\ 0, & \text{otherwise} \end{cases}$$

- With this matrix, we can now rewrite the flow balance constraints more compactly as Af = b.
- Note that the rows of A sum to zero and are hence linearly dependent.
- Under the assumption that
 - $-\sum_{i\in N}b_i=0$, and
 - -G is connected,

if we delete the last row to obtain \tilde{A} , then \tilde{A} has full rank.