CS685: Data Mining Classification

Arnab Bhattacharya arnabb@cse.iitk.ac.in

Computer Science and Engineering, Indian Institute of Technology, Kanpur http://web.cse.iitk.ac.in/~cs685/

 $1^{\rm st} \mbox{ semester, } 2012\mbox{-}13$ Tue, Wed, Fri 0900-1000 at CS101

Outline

Naïve Bayes classifiers

2 Bayesian networks

3 Support vector machines (SVM)

Outline

Naïve Bayes classifiers

2 Bayesian networks

Support vector machines (SVM)

Bayes' theorem

$$P(C|O) = \frac{P(O|C)P(C)}{P(O)}$$

- P(C|O) is the probability of class C given object O posterior probability
- P(O|C) is the probability that O is from class C likelihood probability
- P(C) is the probability of class C prior probability
- P(O) is the probability of object O evidence probability

$$posterior = \frac{\textit{likelihood} \times \textit{prior}}{\textit{evidence}}$$

Naïve Bayes classifier

- Naïve Bayes classifier or simple Bayes classifier
- To classify a new object O_q , compute posterior probabilities $P(C_i|O_q)$ for all classes C_i , $i=1,\ldots,k$

$$P(C_i|O_q) = \frac{P(O_q|C_i)P(C_i)}{P(O_q)}$$

- Bayes decision rule: The class with the highest posterior probability is chosen
- ullet $P(O_q)$ is constant for all classes and, therefore, can be removed

Naïve Bayes classifier

- Naïve Bayes classifier or simple Bayes classifier
- To classify a new object O_q , compute posterior probabilities $P(C_i|O_q)$ for all classes C_i , $i=1,\ldots,k$

$$P(C_i|O_q) = \frac{P(O_q|C_i)P(C_i)}{P(O_q)}$$

- Bayes decision rule: The class with the highest posterior probability is chosen
- ullet $P(O_q)$ is constant for all classes and, therefore, can be removed
- Since it maximizes posterior probability, it is called maximum a posteriori (MAP) method

Naïve Bayes classifier

- Naïve Bayes classifier or simple Bayes classifier
- To classify a new object O_q , compute posterior probabilities $P(C_i|O_q)$ for all classes C_i , $i=1,\ldots,k$

$$P(C_i|O_q) = \frac{P(O_q|C_i)P(C_i)}{P(O_q)}$$

- Bayes decision rule: The class with the highest posterior probability is chosen
- ullet $P(O_q)$ is constant for all classes and, therefore, can be removed
- Since it maximizes posterior probability, it is called maximum a posteriori (MAP) method
- If priors are unknown or same, this essentially maximizes the likelihood $P(O_q|C_i)$
- This is called maximum likelihood (ML) method

ullet In general, O_q has m features O_{q_1},\ldots,O_{q_m}

$$P(O_{q}|C_{i}) = P(O_{q_{1}}, O_{q_{2}}, ..., O_{q_{m}}|C_{i})$$

$$= P(O_{q_{1}}|C_{i}) \times P(O_{q_{2}}, ..., O_{q_{m}}|O_{q_{1}}, C_{i})$$

$$= P(O_{q_{1}}|C_{i}) \times P(O_{q_{2}}|O_{q_{1}}, C_{i}) \times P(O_{q_{3}}, ..., O_{q_{m}}|O_{q_{1}}, O_{q_{2}}, C_{i})$$

ullet In general, O_q has m features O_{q_1},\ldots,O_{q_m}

$$P(O_{q}|C_{i}) = P(O_{q_{1}}, O_{q_{2}}, ..., O_{q_{m}}|C_{i})$$

$$= P(O_{q_{1}}|C_{i}) \times P(O_{q_{2}}, ..., O_{q_{m}}|O_{q_{1}}, C_{i})$$

$$= P(O_{q_{1}}|C_{i}) \times P(O_{q_{2}}|O_{q_{1}}, C_{i}) \times P(O_{q_{3}}, ..., O_{q_{m}}|O_{q_{1}}, O_{q_{2}}, C_{i})$$

 Simple or naïve assumption is now applied: All class conditional probabilities are independent

ullet In general, O_q has m features O_{q_1},\ldots,O_{q_m}

$$P(O_{q}|C_{i}) = P(O_{q_{1}}, O_{q_{2}}, ..., O_{q_{m}}|C_{i})$$

$$= P(O_{q_{1}}|C_{i}) \times P(O_{q_{2}}, ..., O_{q_{m}}|O_{q_{1}}, C_{i})$$

$$= P(O_{q_{1}}|C_{i}) \times P(O_{q_{2}}|O_{q_{1}}, C_{i}) \times P(O_{q_{3}}, ..., O_{q_{m}}|O_{q_{1}}, O_{q_{2}}, C_{i})$$

 Simple or naïve assumption is now applied: All class conditional probabilities are independent

$$\begin{split} P(O_{q_j}, O_{q_k} | C_i) &= P(O_{q_j} | C_i) \times P(O_{q_k} | O_{q_j}, C_i) \\ &= P(O_{q_j} | C_i) \times P(O_{q_k} | C_i) \quad [\because O_{q_j}, O_{q_k} \text{ are independent}] \end{split}$$

ullet In general, O_q has m features O_{q_1},\ldots,O_{q_m}

$$P(O_{q}|C_{i}) = P(O_{q_{1}}, O_{q_{2}}, ..., O_{q_{m}}|C_{i})$$

$$= P(O_{q_{1}}|C_{i}) \times P(O_{q_{2}}, ..., O_{q_{m}}|O_{q_{1}}, C_{i})$$

$$= P(O_{q_{1}}|C_{i}) \times P(O_{q_{2}}|O_{q_{1}}, C_{i}) \times P(O_{q_{3}}, ..., O_{q_{m}}|O_{q_{1}}, O_{q_{2}}, C_{i})$$

 Simple or naïve assumption is now applied: All class conditional probabilities are independent

$$\begin{split} P(O_{q_j}, O_{q_k} | C_i) &= P(O_{q_j} | C_i) \times P(O_{q_k} | O_{q_j}, C_i) \\ &= P(O_{q_j} | C_i) \times P(O_{q_k} | C_i) \quad [\because O_{q_j}, O_{q_k} \text{ are independent}] \end{split}$$

$$P(O_q|C_i) = P(O_{q_1}, O_{q_2}, \dots, O_{q_m}|C_i)$$

$$= \prod_{j=1}^m P(O_{q_j}|C_i)$$

• How to estimate $P(O_{q_i}|C_i)$

- How to estimate $P(O_{q_i}|C_i)$
- ullet Examine all training objects pertaining to class C_i

- How to estimate $P(O_{q_i}|C_i)$
- Examine all training objects pertaining to class C_i
- ullet If O_{q_j} is categorical, then empirical probabilities are the estimates

$$P(O_{q_j} = v | C_i) = \frac{|\{O_k \in C_i : O_{k_j} = v\}|}{|\{O_k \in C_i\}|}$$

A particular discrete distribution can also be assumed

- How to estimate $P(O_{q_i}|C_i)$
- Examine all training objects pertaining to class C_i
- ullet If O_{q_j} is categorical, then empirical probabilities are the estimates

$$P(O_{q_j} = v | C_i) = \frac{|\{O_k \in C_i : O_{k_j} = v\}|}{|\{O_k \in C_i\}|}$$

- A particular discrete distribution can also be assumed
- ullet If O_{q_i} is numerical, then a certain continuous distribution is assumed
- ullet Generally, Gaussian or normal distribution ${\it N}(\mu,\sigma)$
- ullet μ and σ are estimated from training objects in C_i

$$P(O_{q_j} = v | C_i) = N(v; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(v-\mu)^2}{2\sigma^2}}$$

- How to estimate $P(O_{q_i}|C_i)$
- Examine all training objects pertaining to class C_i
- ullet If O_{q_j} is categorical, then empirical probabilities are the estimates

$$P(O_{q_j} = v | C_i) = \frac{|\{O_k \in C_i : O_{k_j} = v\}|}{|\{O_k \in C_i\}|}$$

- A particular discrete distribution can also be assumed
- ullet If O_{q_i} is numerical, then a certain continuous distribution is assumed
- Generally, Gaussian or normal distribution $N(\mu, \sigma)$
- μ and σ are estimated from training objects in C_i

$$P(O_{q_j} = v | C_i) = N(v; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(v-\mu)^2}{2\sigma^2}}$$

• $P(C_i)$ is just the empirical estimate $|C_i|/|D|$

Example: training

Class	Rank	Motivated	Exam marks
	2	Y	78.3
Successful	99	Y	70.3
(S)	5	N	88.5
	87	Y	75.1
Unsuccessful (U)	1	N	76.3
	90	N	66.2
	9	Y	68.1
	62	N	75.4

Example: training

Class	Rank	Motivated	Exam marks
	2	Y	78.3
Successful	99	Y	70.3
(S)	5	N	88.5
	87	Y	75.1
	1	N	76.3
Unsuccessful (U)	90	N	66.2
	9	Y	68.1
	62	N	75.4

Likelihoods

Class	Rank	Motivated	Exam marks
С	$\mu = 48.25$	P(Y) = 0.75 P(N) = 0.25	$\mu = 78.05$
	$\sigma = 51.92$	P(N) = 0.25	$\sigma = 7.70$
U	$\mu = 40.50$	P(Y) = 0.25	$\mu = 71.50$
	$\sigma = 42.68$	P(N) = 0.75	$\sigma = 5.10$

Example: testing

•
$$O_q = (70, Y, 67.3)$$

Example: testing

• $O_q = (70, Y, 67.3)$

$$P(O_q|S) = P(70|S) \times P(Y|S) \times P(67.3|S) \times P(S)$$

$$= N(70; 48.25, 51.92) \times 0.75 \times N(67.3; 78.05, 7.70) \times 0.5$$

$$= 0.00704 \times 0.75 \times 0.0195 \times 0.5$$

$$= 5.16 \times 10^{-5}$$

$$P(O_q|U) = P(70|U) \times P(Y|U) \times P(67.3|U) \times P(U)$$

$$= N(70; 40.50, 42.68) \times 0.25 \times N(67.3; 71.50, 5.10) \times 0.5$$

$$= 0.00736 \times 0.25 \times 0.0597 \times 0.5$$

$$= 5.49 \times 10^{-5}$$

• Therefore, O_q is from class U

- If an estimated probability $P(O_{q_j}|C_i)$ becomes zero, the whole likelihood becomes zero
- ullet Laplacian correction or Laplacian estimation: Add a small ϵ

- If an estimated probability $P(O_{q_j}|C_i)$ becomes zero, the whole likelihood becomes zero
- ullet Laplacian correction or Laplacian estimation: Add a small ϵ
- Advantages

- If an estimated probability $P(O_{q_j}|C_i)$ becomes zero, the whole likelihood becomes zero
- ullet Laplacian correction or Laplacian estimation: Add a small ϵ
- Advantages
 - Incremental

- If an estimated probability $P(O_{q_j}|C_i)$ becomes zero, the whole likelihood becomes zero
- ullet Laplacian correction or Laplacian estimation: Add a small ϵ
- Advantages
 - Incremental
 - Robust to noise as probability of noise is low

- If an estimated probability $P(O_{q_j}|C_i)$ becomes zero, the whole likelihood becomes zero
- ullet Laplacian correction or Laplacian estimation: Add a small ϵ
- Advantages
 - Incremental
 - Robust to noise as probability of noise is low
 - Robust to irrelevant attributes as their probability tends to be uniform across classes
- Disadvantages

- If an estimated probability $P(O_{q_j}|C_i)$ becomes zero, the whole likelihood becomes zero
- ullet Laplacian correction or Laplacian estimation: Add a small ϵ
- Advantages
 - Incremental
 - Robust to noise as probability of noise is low
 - Robust to irrelevant attributes as their probability tends to be uniform across classes
- Disadvantages
 - Treats attributes as independent and ignores any correlation information

Outline

Naïve Bayes classifiers

2 Bayesian networks

Support vector machines (SVM)

Bayesian networks

- Bayesian networks or Bayesian belief networks or Bayes nets or belief nets
- Takes into account the correlations of attributes by modeling them as conditional probabilities
- Forms a directed acyclic graph (DAG)
- Edges model the dependencies
- Parent is the cause and children are the effects

Bayesian networks

- Bayesian networks or Bayesian belief networks or Bayes nets or belief nets
- Takes into account the correlations of attributes by modeling them as conditional probabilities
- Forms a directed acyclic graph (DAG)
- Edges model the dependencies
- Parent is the cause and children are the effects
- A node is conditionally independent of all its non-descendants given its parents
- For every node, there is a conditional probability table (CPT) that describes its values given its parents' values
- CPT for node X is of the form P(X|parents(X))

- CPTs: rows are values; columns are parents (i.e., conditionals)
- Last rows can be inferred, and therefore, omitted

- CPTs: rows are values; columns are parents (i.e., conditionals)
- Last rows can be inferred, and therefore, omitted

Exercise (E)	Ф
regular (r)	0.70
irregular (i)	0.30

- CPTs: rows are values; columns are parents (i.e., conditionals)
- Last rows can be inferred, and therefore, omitted

Exercise (E)	Ф
regular (r)	0.70
irregular (i)	0.30

Diet (D)	Ф
healthy (h)	0.25
unhealthy (u)	0.75

- CPTs: rows are values; columns are parents (i.e., conditionals)
- Last rows can be inferred, and therefore, omitted

Exercise (E)	Ф	Diet (D)	Ф
regular (r)	0.70	healthy (h)	0.25
irregular (i)	0.30	unhealthy (u)	0.75

Heart disease (H)	E=r, D=h	E=r, $D=u$	E=i, D=h	$\mid E = i, \; D = u \mid$
yes (y)	0.25	0.40	0.55	0.80
no (n)	0.75	0.60	0.45	0.20

- CPTs: rows are values; columns are parents (i.e., conditionals)
- Last rows can be inferred, and therefore, omitted

Exercise (E)	Ф	Diet (D)	Ф
regular (r)	0.70	healthy (h)	0.25
irregular (i)	0.30	unhealthy (u)	0.75

Heart disease (H)	E=r, D=h	E=r, D=u	E=i, D=h	E=i, D=u
yes (y)	0.25	0.40	0.55	0.80
no (n)	0.75	0.60	0.45	0.20

Blood pressure (B)	Н=у	H=n
normal (I)	0.15	0.80
high (g)	0.85	0.20

- CPTs: rows are values; columns are parents (i.e., conditionals)
- Last rows can be inferred, and therefore, omitted

Exercise (E)	Ф	Diet (D)	Φ	
regular (r)	0.70	healthy (h)	0.25	
irregular (i)	0.30	unhealthy (u)	0.75	
/· · · \				-

	Heart disease (H)	E=r, D	E=r, $D=u$			E=i, D=l	า E=i	$\mid E=i, D=u \mid$	
	yes (y)	0.25 0.75		0.40			0.55	(08.0
	no (n)			0.60			0.45		0.20
ĺ	Blood pressure (B)	H=y	H=n			Chest pain (C)		Н=у	H=n
Ì	normal (I)	0.15	0.80			normal (m)		0.70	0.45
	high (g)	0.85	0.20			pain (p)		0.30	0.55

Classification using Bayesian networks

- Given no prior information, is a person suffering from heart disease?
- Essentially, a yes/no classification problem with some information
- Note that no other information (e.g., chest pain, etc.) are known
- Compute P(H = y); if it is greater than P(H = n), then predict "heart disease"

Classification using Bayesian networks

- Given no prior information, is a person suffering from heart disease?
- Essentially, a yes/no classification problem with some information
- Note that no other information (e.g., chest pain, etc.) are known
- Compute P(H = y); if it is greater than P(H = n), then predict "heart disease"

$$P(H = y) = \sum_{\alpha,\beta} [P(H = y | E = \alpha, D = \beta).P(E = \alpha, D = \beta)]$$

$$= \sum_{\alpha,\beta} [P(H = y | E = \alpha, D = \beta).P(E = \alpha).P(D = \beta)]$$

$$= 0.25 \times 0.70 \times 0.25 + 0.40 \times 0.70 \times 0.75$$

$$+ 0.55 \times 0.30 \times 0.25 + 0.80 \times 0.30 \times 0.75$$

$$= 0.475$$

- Given a person has high blood pressure, is she suffering from heart disease?
- Essentially, a yes/no classification problem with some information
- Note that not all information (e.g., chest pain, etc.) are known
- Compute P(H = y|B = g); if it is greater than P(H = n|B = g), then predict "heart disease"

- Given a person has high blood pressure, is she suffering from heart disease?
- Essentially, a yes/no classification problem with some information
- Note that not all information (e.g., chest pain, etc.) are known
- Compute P(H = y|B = g); if it is greater than P(H = n|B = g), then predict "heart disease"

$$P(H = y | B = g) = \frac{P(B = g | H = y).P(H = y)}{P(B = g)}$$

$$= \frac{P(B = g | H = y).P(H = y)}{\sum_{\alpha} [P(B = g | H = \alpha).P(H = \alpha)]}$$

$$= \frac{0.85 \times 0.475}{0.85 \times 0.475 + 0.20 \times 0.525}$$

$$= 0.794$$

- Given a person has high blood pressure, unhealthy diet and irregular exercise, is she suffering from heart disease?
- Essentially, a yes/no classification problem with some information
- Note that not all information (e.g., chest pain, etc.) are known
- Compute P(H = y | B = g, D = u, E = i); if it is greater than P(H = n | B = g, D = u, E = i), then predict "heart disease"

- Given a person has high blood pressure, unhealthy diet and irregular exercise, is she suffering from heart disease?
- Essentially, a yes/no classification problem with some information
- Note that not all information (e.g., chest pain, etc.) are known
- Compute P(H = y | B = g, D = u, E = i); if it is greater than P(H = n | B = g, D = u, E = i), then predict "heart disease"

$$P(H = y|B = g, D = u, E = i)$$

$$= \frac{P(B = g|H = y, D = u, E = i).P(H = y|D = u, E = i)}{P(B = g|D = u, E = i)}$$

$$= \frac{P(B = g|H = y).P(H = y|D = u, E = i)}{\sum_{\alpha} [P(B = g|H = \alpha).P(H = \alpha|D = u, E = i)]}$$

$$= \frac{0.85 \times 0.80}{0.85 \times 0.80 + 0.20 \times 0.20}$$

$$= 0.944$$

Two important steps

- Two important steps
- First, learning the network topology
 - Which edges are present?

- Two important steps
- First, learning the network topology
 - Which edges are present?
 - Domain knowledge from human experts

- Two important steps
- First, learning the network topology
 - Which edges are present?
 - Domain knowledge from human experts
- Second, learning the CPTs

- Two important steps
- First, learning the network topology
 - Which edges are present?
 - Domain knowledge from human experts
- Second, learning the CPTs
 - Same method as naïve Bayes
 - Empirical probabilities
 - If not categorical, use Gaussian

Models reality better

- Models reality better
- Dependence or correlation does not indicate which is cause and which is effect
 - Class is boring and not paying attention

- Models reality better
- Dependence or correlation does not indicate which is cause and which is effect
 - Class is boring and not paying attention
- Topology of network is very important

- Models reality better
- Dependence or correlation does not indicate which is cause and which is effect
 - Class is boring and not paying attention
- Topology of network is very important
- For large CPTs, require lots of training data

- Models reality better
- Dependence or correlation does not indicate which is cause and which is effect
 - Class is boring and not paying attention
- Topology of network is very important
- For large CPTs, require lots of training data
- Naïve Bayes is a special case

- Models reality better
- Dependence or correlation does not indicate which is cause and which is effect
 - Class is boring and not paying attention
- Topology of network is very important
- For large CPTs, require lots of training data
- Naïve Bayes is a special case
 - Class is parent and attributes are children

Outline

Naïve Bayes classifiers

2 Bayesian networks

3 Support vector machines (SVM)

Support vector machines

- Support vector machine or SVM is a maximal margin classifier
- Binary classifier, i.e., two classes only
- It finds a hyperplane (called decision boundary) that separates the two classes
- Of multiple such hyperplanes, it finds the one whose distance or margin from the two classes is maximal
- Assumption is that classes are linearly separable

Support vectors

- Objects that are closest to the decision boundary on either side are called support vectors
- Optimal decision boundary and margin depend only on support vectors
- Support vectors are the most important objects
 - Optimal decision boundary will not change unless support vectors are changed
 - Other objects do not influence the decision boundary

Decision boundary

- Each object is represented as $\vec{x_i}$ with its corresponding class y_i
- For convenience, y_i is considered +1 or -1
- Decision boundary hyperplane is represented by w.x + b = 0
 - \vec{w} essentially acts as weights on dimensions of \vec{x}
- Support vectors have $w.x + b = \pm 1$
 - w can always be scaled to achieve this
- For every object, $y_i(w.x_i + b) \ge 1$
 - Objects in class $y_i = +1$ have $w.x + b \ge +1$
 - Objects in class $y_i = -1$ have $w.x + b \le -1$

Margin

- Direction of \vec{w} is perpendicular to decision boundary
- Margin is defined as the distance between the two hyperplanes w.x + b = +1 and w.x + b = -1
- ullet Consider two points u and v on the two hyperplanes
- Margin d is distance between u and v

$$\vec{w}.(\vec{u} - \vec{v}) = 2$$

$$\therefore d = ||\vec{u} - \vec{v}|| = 2/||\vec{w}||$$

$$\xrightarrow{\text{w.x+b=0}}$$

SVM problem specification

- SVM tries to maximize the margin d
- Constraints are on the objects
- Maximizing d is equivalent to minimizing ||w|| or $||w||^2/2$

$$\min \frac{||w||^2}{2}$$
s.t. $\forall i, \ y_i(w.x_i + b) \ge 1$

- Convex (quadratic) optimization problem
- Lagrange multipliers λ_i for each object
- Karush-Kuhn-Tucker (KKT) conditions

SVM solution

- ullet Essentially finds all λ_i and b
- ullet Margin can then be expressed in terms of λ_i

$$\vec{w} = \sum_{\forall i} \lambda_i y_i \vec{x_i}$$

SVM solution

- Essentially finds all λ_i and b
- Margin can then be expressed in terms of λ_i

$$\vec{w} = \sum_{\forall i} \lambda_i y_i \vec{x_i}$$

• A test object x_q is classified by computing

$$sign(w.x_q + b) = sign\left(\sum_{\forall i} \lambda_i y_i \vec{x_i}.\vec{x_q} + b\right)$$

SVM solution

- Essentially finds all λ_i and b
- Margin can then be expressed in terms of λ_i

$$\vec{w} = \sum_{\forall i} \lambda_i y_i \vec{x_i}$$

• A test object x_q is classified by computing

$$sign(w.x_q + b) = sign\left(\sum_{\forall i} \lambda_i y_i \vec{x_i}.\vec{x_q} + b\right)$$

- Only for objects that are support vectors, $\lambda_i > 0$
- For all other objects, $\lambda_i = 0$
- Thus, complexity of testing is only the number of support vectors
- Complexity of training is enormous though

Dual problem specification

- Minimization problem can be converted to maximization by primal-dual transformation
- Dual formulation becomes

$$\begin{aligned} &\max \ \sum_{\forall i} \lambda_i - \frac{1}{2} \sum_{\forall i} \sum_{\forall j} \lambda_i \lambda_j y_i y_j \vec{x_i}. \vec{x_j} \\ &\text{s.t.} \ \forall i, \ \lambda_i \geq 0, \ \sum_{\forall i} \lambda_i y_i = 0 \end{aligned}$$

Dual problem has only dot products of vectors

Handling noise

- SVM builds a classifier that is correct for all training objects
- If noise is present, decision boundary changes
- To handle noise, slack variables ξ_i are modeled
- For positive class, $w.x_i + b \ge +(1 \xi_i)$
- For negative class, $w.x_i + b \le -(1 \xi_i)$
- Together, for every object, $y_i(w.x_i + b) \ge 1 \xi_i$

SVM problem with slack

- Margin still remains d = 2/||w||
- It is called soft margin
- However, $||w||^2/2||$ cannot be simply minimized any more

SVM problem with slack

- Margin still remains d = 2/||w||
- It is called soft margin
- However, $||w||^2/2||$ cannot be simply minimized any more
- SVM may find a decision boundary with too many objects modeled as noise
- In other words, too much slack can be added

SVM problem with slack

- Margin still remains d = 2/||w||
- It is called soft margin
- However, $||w||^2/2||$ cannot be simply minimized any more
- SVM may find a decision boundary with too many objects modeled as noise
- In other words, too much slack can be added
- Hence, slack needs to be factored in the minimization as well

$$\min \frac{||w||^2}{2} + C. \sum_{\forall i} f(\xi_i)$$
s.t. $\forall i, \ y_i(w.x_i + b) \ge 1 - \xi_i$

- $f(\xi_i)$ is a monotonic function and can be simply ξ_i itself
- Solution yields Lagrange multipliers λ_i and slack variables ξ_i for each object

Non-linearly separable data

- Data may not be linearly separable
- Find a transformation ϕ from x space to $\phi(x)$ space
- Data becomes linearly separable in $\phi(x)$ space

Example

- Suppose the decision boundary is a circle
- Centre is 0.5, 0.5 and radius is 1
- ullet Class is +1 if outside the circle, -1 otherwise
- Equation of decision boundary becomes

$$\sqrt{(x_1 - 0.5)^2 + (x_2 - 0.5)^2} = 1$$

or, $x_1^2 - x_1 + x_2^2 - x_2 - 0.5 = 0$

• In $(x_1^2 - x_1, x_2^2 - x_2)$ space, data becomes linearly separable

Transformation

• How to find such a transformation ϕ ?

Transformation

- How to find such a transformation ϕ ?
- Not obvious or easy at all
- Even if such a transformation exists, the transformed objects may reside in a very high-dimensional or infinite dimensional space
- How to use an SVM then?

Transformation

- How to find such a transformation ϕ ?
- Not obvious or easy at all
- Even if such a transformation exists, the transformed objects may reside in a very high-dimensional or infinite dimensional space
- How to use an SVM then?
- Use the famous kernel trick
- A kernel is a function that computes the similarity between two vectors

Kernel trick

- Note that testing an object does not require value of w
- All it requires is an ability to compute dot product with the support vectors
- Same is true for training when dual of optimization problem is used
- Hence, testing can be simply written as

$$sign(w.\phi(x_q) + b) = sign\left(\sum_{\forall i} \lambda_i y_i \phi(\vec{x}_i).\phi(\vec{x}_q) + b\right)$$

• Use a kernel *K* that computes the dot product directly without transformation

$$K(x_i, x_j) = \phi(x_i).\phi(x_j)$$

Example of a kernel

- Vectors \vec{u} and \vec{v} are of dimensionality n
- Transformations $\phi(\vec{\cdot})$ are circles

$$\phi(\vec{u}) = \langle u_1 u_1, u_1 u_2, \dots, u_n u_n, \sqrt{2} u_1, \dots, \sqrt{2} u_n, 1 \rangle$$

$$\phi(\vec{v}) = \langle v_1 v_1, v_1 v_2, \dots, v_n v_n, \sqrt{2} v_1, \dots, \sqrt{2} v_n, 1 \rangle$$

Example of a kernel

- Vectors \vec{u} and \vec{v} are of dimensionality n
- Transformations $\phi(\vec{\cdot})$ are circles

$$\phi(\vec{u}) = \langle u_1 u_1, u_1 u_2, \dots, u_n u_n, \sqrt{2} u_1, \dots, \sqrt{2} u_n, 1 \rangle$$

$$\phi(\vec{v}) = \langle v_1 v_1, v_1 v_2, \dots, v_n v_n, \sqrt{2} v_1, \dots, \sqrt{2} v_n, 1 \rangle$$

Dot product
$$\phi(\vec{u}).\phi(\vec{v}) = \sum_{i=1}^{n} \sum_{j=1}^{n} u_i u_j v_i v_j + \sum_{i=1}^{n} \sqrt{2} u_i \sqrt{2} v_i + 1$$

= $(\vec{u}.\vec{v}+1)^2$

Example of a kernel

- Vectors \vec{u} and \vec{v} are of dimensionality n
- Transformations $\phi(\vec{\cdot})$ are circles

$$\phi(\vec{u}) = \langle u_1 u_1, u_1 u_2, \dots, u_n u_n, \sqrt{2} u_1, \dots, \sqrt{2} u_n, 1 \rangle$$

$$\phi(\vec{v}) = \langle v_1 v_1, v_1 v_2, \dots, v_n v_n, \sqrt{2} v_1, \dots, \sqrt{2} v_n, 1 \rangle$$

Dot product
$$\phi(\vec{u}).\phi(\vec{v}) = \sum_{i=1}^{n} \sum_{j=1}^{n} u_i u_j v_i v_j + \sum_{i=1}^{n} \sqrt{2} u_i \sqrt{2} v_i + 1$$

= $(\vec{u}.\vec{v}+1)^2$

$$\therefore K(\vec{u}, \vec{v}) = (\vec{u}.\vec{v} + 1)^2$$

- Dimensionality of $\phi(\cdot)$ is $n^2 + n + 1$
- Computation of kernel $K(\cdot,\cdot)$ requires only O(n) computations

Example of kernels used

- Three kernels are most frequently used
- Polynomial kernel

$$K(u,v)=(u.v+1)^h$$

Gaussian radial basis kernel

$$K(u,v)=e^{-\frac{||u-v||^2}{2\sigma^2}}$$

Sigmoid kernel

$$K(u, v) = tanh(\kappa u.v - \delta)$$

Extension to multiple classes

Extension to multiple classes

- One-against-one
 - Every class is compared against every other
 - For m classes, $m(m-1)/2 = O(m^2)$ classifiers
 - Majority voting to determine final class

Extension to multiple classes

- One-against-one
 - Every class is compared against every other
 - For m classes, $m(m-1)/2 = O(m^2)$ classifiers
 - Majority voting to determine final class
- One-against-others
 - For every class, belonging to class versus not in class
 - For m classes, m classifiers
 - Final class is one with highest value of w.x + b
 - Farthest away from margin

Some other better kernel may exist

- Some other better kernel may exist
- For large training set, training time may be too impractical

- Some other better kernel may exist
- For large training set, training time may be too impractical
- Not incremental

- Some other better kernel may exist
- For large training set, training time may be too impractical
- Not incremental
- Suffers from class imbalance problem