Блок расширения памяти 512К и параллельного интерфейса для ПК «Поиск-1».

Назначение блока.

Блок расширения памяти предназначен для расширения оперативной памяти ПК «Поиск-1» до 608К, в случае ПК с 128К штатной памяти, и до 640К, в случае ПК с 512К штатной памяти.

Дополнительно блок также содержит простой параллельный интерфейс, отчасти совместимый со стандартным портом LPT. К порту, через адаптер, можно подключать принтер, ковокс и др. устройства. Порт не поддерживается средствами BIOS, его нет в таблице устройств и его штатное функционирование должно обеспечиваться подгружаемым драйвером.

Данный блок представляет собой практически полную реплику выпускавшемуся в 90-х годах кооперативом безымянному блоку расширения памяти. Была по плате восстановлена схема и сохранено расположение микросхем на плате. Разработка таблиц прошивок КР556РТ4 была проведена заново. А версия 1.2 платы содержит универсальную прошивку селектора памяти, позволяющую устанавливать блок в машины как со 128К штатной памяти, так и 512К штатной памяти. Версия определяется единственной перемычкой (отсутствующей в оригинале) с правой стороны платы. Замкните перемычку для установки в систему со 128К штатной памяти. Оригинальная плата и версии 1.0 и 1.1 требовали разных прошивок для разных систем.

Принцип работы расширителя памяти.

Расширитель памяти состоит из 2-х линеек по 8 микросхем К(Р)565РУ7 или их импортных аналогов. Каждая линейка содержит 256К памяти. При необходимости, можно устанавливать только одну линейку: какую именно — зависит от прошивки микросхемы-селектора D7 (КР556РТ4). Сигнал ВАNКО выбирает дальнюю от системного разъёма линейку (D24 — D31), сигнал ВАNК1, соответственно ближнюю (D16 - D23). Каждая линейка подключена к адресам А[17:0] шины адреса (т.е. диапазон адресов каждой линейки 00000h — 3FFFFh) и логически делится на 8 блоков по 32К, которые могут быть включены в память ПК.

Расширитель памяти использует автоматическую регенерацию микросхем K(P)565PУ7 (или импортных аналогов), которая происходит при подаче сигнала /RAS во время активного /CAS. При этом используется встроенный в микросхемы счётчик адресов регенерации. Такая организация регенерации исключает использование в блоке микросхем K(P)565РУ5, несмотря на повыводную совместимость микросхем.

Циклы регенерации чередуются с циклами доступа к памяти. Если процессор инициирует запрос к памяти во время цикла регенерации, сигнал системной шины /WAIT будет установлен в активное состояние до конца цикла регенерации.

Подключение сигналов к селектору адресов приведено в таблице 1. В версии платы 1.2 на вход A5 микросхемы D7 приходит сигнал от перемычки выбора типа системы. Для систем со 128К штатной памяти перемычка д.б. замкнута (A5 = «0»), для систем со 512К штатной памяти перемычка остаётся открытой (A5 = «1»). В оригинальной плате, версиях 1.0 и 1.1 вход A5 всегда подключен к уровню лог. «0».

KP556PT4	Шина адреса
Α0	A15
A1	A16
A2	A17
А3	A18
A4	A19
A5	128/512
A6, A7	«O»

Таблица 1. Подключение сигналов на выводы D7 КР556РТ4

ПК 128К	Расшир	Код	ПК 512К	Расшир	Код
00000h	Штатная	9h	00000h	Штатная	9h
17FFFh	Штатная	9h		Штатная	9h
18000h	1-й банк	5h		Штатная	9h
3FFFFh	1-й банк 5 блоков	5h		Штатная	9h
40000h	0-й банк	3h	77FFFh	Штатная	9h
7FFFFh	0-й банк 8 блоков	3h	78000h	1-й банк	5h
80000h	1-й банк	5h	7FFFFh	1-й банк 1 блок	5h
97FFFh	1-й банк 3 блока	5h	80000h		5h
		9h	9FFFFh	1-й банк 4 блока	5h
		9h			9h
B8000h	Штатная CGA	9h	B8000h	Штатная CGA	9h
BFFFFh	Штатная CGA	9h	BFFFFh	Штатная CGA	9h
		9h			9h

Таблица 2. Распределение областей памяти и коды для КР556РТ4

Штатная память ПК 128К делится на 2 области 00000h – 17FFFh (98304 байт) ОЗУ общего применения и B8000h – BFFFFh (32768 байт) встроенного видеоадаптера СGA. Будем, из расширителя, подставлять первым банк 1. Тогда 5 последних блоков банка 1 займут адреса 18000h – 3FFFFh сразу за

концом штатного ОЗУ общего применения. Все 8 блоков банка 0 займут адреса с 40000h по 7FFFFh. И наконец, оставшиеся 3 первых блока банка 1 займут адреса 80000h – 97FFFh. Всего 608К (622592 байта, если точно :).

Штатная память ПК 512К делится на 2 области 00000h – 77FFFh (491520 байт) ОЗУ общего применения и В8000h – ВFFFFh (32768 байт) встроенного видеоадаптера СGA. Один последний 32К блок банка 1 расширителя займёт область 78000h – 7FFFFh, сразу за концом штатного ОЗУ общего применения. Затем следуют 4 блока с начала банка 1, занимая адреса 80000h - 9FFFFh. Это даёт в сумме все 640К конвенционной памяти (655360 байт, если точно :).

Сигнал RAMSEL (D7.Q3) активный «0», сигналы BANK0 (D7.Q2) и BANK1 (D7.Q1) активны «1». Бит D7.Q0 никуда не подключен, пусть будет всегда «1», чтобы меньше битов прошивать. Тогда код для активации банка 1 0101b (0x5), для активации банка 0 0011b (0x3), пассивное состояние 1001b (0x9).

В таблице 2 приведены области памяти и соответствующие им коды, для размещения в микросхеме-селекторе блока расширения. Адреса А6 и А7 микросхемы D7 всегда «0», а А5 переключает таблицы для ПК 128К/512К. Причём первой должна располагаться таблица для ПК 128К.

В таблице 3 приведены таблицы кодов для записи в селектор. Диапазон адресов 40h – FFh можно оставить незапрограммированным, к этим адресам обращение исключено.

Адрес	Код	Адрес	Код	Адрес	Код	Адрес	Код
00h	9	10h	5	20h	9	30h	5
01h	9	11h	5	21h	9	31h	5
02h	9	12h	5	22h	9	32h	5
03h	5	13h	9	23h	9	33h	5
04h	5	14h	9	24h	9	34h	9
05h	5	15h	9	25h	9	35h	9
06h	5	16h	9	26h	9	36h	9
07h	5	17h	9	27h	9	37h	9
08h	3	18h	9	28h	9	38h	9
09h	3	19h	9	29h	9	39h	9
0Ah	3	1Ah	9	2Ah	9	3Ah	9
0Bh	3	1Bh	9	2Bh	9	3Bh	9
0Ch	3	1Ch	9	2Ch	9	3Ch	9
0Dh	3	1Dh	9	2Dh	9	3Dh	9
0Eh	3	1Eh	9	2Eh	9	3Eh	9
0Fh	3	1Fh	9	2Fh	5	3Fh	9

Таблица 3. Размещение кодов в памяти селектора

Принцип работы блока параллельного интерфейса.

Блок параллельного интерфейса состоит из:

- 8-битного регистра-защёлки D9 K(P)555ИP23, для выдачи данных (регистр данных LPT);
- 4-битного регистра-защёлки D34 K(P)555TM8, для выдачи сигналов управления (регистр управления LPT);
- 4-битного буфера с Z-состоянием D10 K155ЛП8, для чтения состояния (регистр состояния LPT).

Адреса регистров и буфера полностью определяются микросхемой D2 KP556PT4 и могут соответствовать адресам стандартного LPT1 или LPT2. Подключение адресов шины процессора к адресным входам D2 см. таблицу 1. Назначение разрядов шины для регистров управления и статуса полностью соответствует разрядом соответствующих портов стандартного LPT. Исключение из стандарта составляет только отсутствие инверсии, которая есть на некоторых линиях стандартного LPT. Данный блок (версии 1.1 и 1.2) передаёт и принимает все сигналы без инверсии, что должна учитывать программа-драйвер для обеспечения совместимости.

Ещё одна особенность реализации интерфейса состоит в том, что регистр управления и регистр статуса используют одну линию адресной выборки от D2 KP556PT4, разделяясь только сигналами /RD и /WR. Это позволяет доступ к обоим регистрам по одному адресу, причём неважно адрес регистра статуса или регистра управления.

556PT4	Шина адреса	LPT1	LPT2	
A0	A0	*	*	Выбор
A1	A1	*	*	регистра
A2	A8	1	0	278h
A3	A3	1	1	378h
A4	A4	1	1	
A5	A5	1	1	
A6	A6	1	1	
A7	A9	1	1	
/PB1	A2	0	0	-
/PB2	A7	0	0	

Таблица 3. Назначение сигналов на выводы микросхемы D2

Для построения таблицы прошивки D2, реализующей интерфейсы LPT1 и LPT2, можно использовать данные таблицы D2. Также можно построить прошивку таким образом, чтобы параллельный интерфейс реализовывал одновременно LPT1 и LPT2, при необходимости.

			Бит			
	reserved	SEL_DAT	CTL_STAT	reserved	Прим	Код
Адрес	Q3	Q2	Q1	Q0		
00	1	1	1	1	Пустая	F
01	1	1	1	1	часть	F
02	1	1	1	1		F
03	1	1	1	1		F
04	1	1	1	1		F
	1	1	1	1		F
EF	1	1	1	1		F
F0	1	1	1	1		F
F1	1	1	1	1		F
F2	1	1	1	1		F
F3	1	1	1	1		F
F4	1	1	1	1		F
F5	1	1	1	1		F
F6	1	1	1	1		F
F7	1	1	1	1		F
F8	1	0	1	1	LPT2	В
F9	1	1	0	1	статус	D
FA	1	1	0	1	управл	D
FB	1	1	1	1		F
FC	1	0	1	1	LPT1	В
FD	1	1	0	1	статус	D
FE	1	1	0	1	управл	D
FF	1	1	1	1		F

Таблица 4. Размещение кодов в адресном пространстве микросхемы D2

Различия версий платы

Версия 1.0 не выпускалась.

Версия 1.1 содержит ошибку разводки в параллельном интерфейсе. На вывод D1.1 должен приходить сигнал SEL_DAT, вывод D2.10, а не WR_DAT. Исправляется разрезом дорожек и МГТФ. Ошибка не влияет на расширитель памяти, если не нужен параллельный интерфейс, можно не исправлять. Также плата требует своей прошивки КР556РТ4 селектора для каждой версии штатной памяти ПК «Поиск-1». Можно проводами доработать до версии 1.2 (Отключить А5 селектора от общего, добавить перемычку выбора конфигурации и провод к резисторной матрице подтяжки к +5B), тогда подойдёт таблица прошивки от вер. 1.2.

Версия 1.2 исправляет ошибки предыдущей платы. Также появилась перемычка выбора штатной памяти ПК, которой не было в оригинальной плате. Для версии 1.2 своя прошивка KP556PT4 селектора памяти.