

# Service Manual LG-T515

Date: July, 2011 / Issue 1.0

# **Table Of Contents**

| 1. INTRODUCTION                                 | 3   |
|-------------------------------------------------|-----|
| 1.1 Purpose                                     | 3   |
| 1.2 Regulatory Information                      | 3   |
| 1.3 Abbreviations                               | 5   |
| 2. PERFORMANCE                                  | 7   |
| 2.1 H/W Features                                |     |
| 2.2 Technical Specification                     |     |
| 3. TECHNICAL BRIEF                              | 14  |
| 3.1 Digital Main Processor                      | 14  |
| 3.2 Power Management                            | 19  |
| 3.3 FEM with integrated Power Amplifier Module  |     |
| (RF7171, U101)                                  | 32  |
| 3.4 Crystal(26 MHz, X201)                       | 34  |
| 3.5 RF Subsystem of PMB8815 (U201)              | 35  |
| 3.6 MEMORY(H9DA2GH1GHMMMR, U301)                | 40  |
| 3.7 BT module                                   | 43  |
| 3.8 SIM Card Interface                          | 45  |
| 3.9 LCD Interface                               | 46  |
| 3.10 MiniABB (Battery Charger & MUIC) Interface | 49  |
| 3.11 Keypad Interface                           | 50  |
| 3.12 Audio Interface                            | 52  |
| 3.13 Camera Interface(2M Fixed Focus Camera)    | 58  |
| 3.14 Touch Interface                            | 61  |
| 4. TROUBLE SHOOTING                             | 63  |
| 4.1 RF Component                                | 63  |
| 4.2 RX Trouble                                  | 64  |
| 4.3 TX Trouble                                  | 70  |
| 4.4 Power On Trouble                            | 76  |
| 4.5 Charging Trouble                            | 79  |
| 4.6 Vibrator Trouble                            | 81  |
| 4.7 LCD Trouble                                 |     |
| 4.8 Camera Trouble                              | 89  |
| 4.9 Speaker / Receiver Trouble                  | 94  |
| 4.10 Earphone Trouble                           | 98  |
| 4.11 Microphone Trouble                         | 102 |
| 4.12 SIM Card Interface Trouble                 | 105 |
| 4.13 Micro SD (uSD) Trouble                     | 110 |
| 4.14 Bluetooth Trouble                          | 112 |

| 4.15 Wift Trouble                             | 115 |
|-----------------------------------------------|-----|
| 4.16 FM Radio Trouble                         | 118 |
| 4.17 Touch trouble                            | 121 |
| 5. DOWNLOAD                                   | 124 |
| 6. REPAIR GUIDE                               | 137 |
| 6.1 Disassemble Main Board                    | 137 |
| 6.2 Disassembly Camera Module                 | 138 |
| 6.3 Ready to Rework Camera                    | 139 |
| 6.4 Assembly Camera (Rework)                  | 140 |
| 6.5 Soldering Camera Module and Function Test | 141 |
| 7. BLOCK DIAGRAM                              | 142 |
| 8. CIRCUIT DIAGRAM                            | 143 |
| 9. BGA PIN MAP                                | 152 |
| 10. PCB LAYOUT                                |     |
| 11. ENGINEERING MODE                          |     |
| 12. STAND ALONE TEST                          | 161 |
| 12.1 Introduction                             | 161 |
| 12.2 Setting Method                           | 161 |
| 12.3 Tx Test                                  | 164 |
| 12.4 Rx Test                                  | 165 |
| 13.AUTO CALIBRATION                           | 166 |
| 13.1 Overview                                 | 166 |
| 13.2 Tachyon Directory                        | 166 |
| 13.3 Test Equipment Setup                     | 167 |
| 13.4 Procedure                                | 167 |
| 13.5 AGC                                      | 174 |
| 13.6 APC                                      | 174 |
| 13.7 ADC                                      | 174 |
| 13.8 Target Power                             | 174 |
| 14. EXPLODED VIEW & REPLACEMENT PART LIST     | 175 |
| 14.1 EXPLODED VIEW                            | 175 |
| 14.2 Replacement Parts                        | 176 |
| 14.3 Accessory                                | 194 |

# 1. INTRODUCTION

## 1.1 Purpose

This manual provides the information necessary to repair, calibration, description and download the features of this model.

### 1.2 Regulatory Information

### A. Security

Toll fraud, the unauthorized use of telecommunications system by an unauthorized part (for example, persons other than your company's employees, agents, subcontractors, or person working on your company's behalf) can result in substantial additional charges for your telecommunications services. System users are responsible for the security of own system. There are may be risks of toll fraud associated with your telecommunications system. System users are responsible for programming and configuring the equipment to prevent unauthorized use. The manufacturer does not warrant that this product is immune from the above case but will prevent unauthorized use of common-carrier telecommunication service of facilities accessed through or connected to it.

The manufacturer will not be responsible for any charges that result from such unauthorized use.

### **B.** Incidence of Harm

If a telephone company determines that the equipment provided to customer is faulty and possibly causing harm or interruption in service to the telephone network, it should disconnect telephone service until repair can be done. A telephone company may temporarily disconnect service as long as repair is not done.

### C. Changes in Service

A local telephone company may make changes in its communications facilities or procedure. If these changes could reasonably be expected to affect the use of the this phone or compatibility with the network, the telephone company is required to give advanced written notice to the user, allowing the user to take appropriate steps to maintain telephone service.

### **D. Maintenance Limitations**

Maintenance limitations on this model must be performed only by the manufacturer or its authorized agent. The user may not make any changes and/or repairs expect as specifically noted in this manual. Therefore, note that unauthorized alternations or repair may affect the regulatory status of the system and may void any remaining warranty.

### E. Notice of Radiated Emissions

This model complies with rules regarding radiation and radio frequency emission as defined by local regulatory agencies. In accordance with these agencies, you may be required to provide information such as the following to the end user.

### F. Pictures

The pictures in this manual are for illustrative purposes only; your actual hardware may look slightly different.

### **G. Interference and Attenuation**

Phone may interfere with sensitive laboratory equipment, medical equipment, etc.Interference from unsuppressed engines or electric motors may cause problems.

### **H. Electrostatic Sensitive Devices**

### **ATTENTION**

# Boards, which contain Electrostatic Sensitive Device (ESD), are indicated / by the sign. Following information is ESD handling:



- Service personnel should ground themselves by using a wrist strap when exchange system boards.
- When repairs are made to a system board, they should spread the floor with anti-static mat which is also grounded.
- Use a suitable, grounded soldering iron.
- Keep sensitive parts in these protective packages until these are used.
- When returning system boards or parts like EEPROM to the factory, use the protective package as described.

# **1.3 Abbreviations**

For the purposes of this manual, following abbreviations apply:

| APC    | Automatic Power Control                           |  |  |  |
|--------|---------------------------------------------------|--|--|--|
| ВВ     | Baseband                                          |  |  |  |
| BER    | Bit Error Ratio                                   |  |  |  |
| CC-CV  | Constant Current – Constant Voltage               |  |  |  |
| DAC    | Digital to Analog Converter                       |  |  |  |
| DCS    | Digital Communication System                      |  |  |  |
| dBm    | dB relative to 1 milli watt                       |  |  |  |
| DSP    | Digital Signal Processing                         |  |  |  |
| EEPROM | Electrical Erasable Programmable Read-Only Memory |  |  |  |
| ESD    | Electrostatic Discharge                           |  |  |  |
| FPCB   | Flexible Printed Circuit Board                    |  |  |  |
| GMSK   | Gaussian Minimum Shift Keying                     |  |  |  |
| GPIB   | General Purpose Interface Bus                     |  |  |  |
| GSM    | Global System for Mobile Communications           |  |  |  |
| IPUI   | International Portable User Identity              |  |  |  |
| IF     | Intermediate Frequency                            |  |  |  |
| LCD    | Liquid Crystal Display                            |  |  |  |
| LDO    | Low Drop Output                                   |  |  |  |
| LED    | Light Emitting Diode                              |  |  |  |
| OPLL   | Offset Phase Locked Loop                          |  |  |  |

| PAM    | Power Amplifier Module                                     |  |  |  |
|--------|------------------------------------------------------------|--|--|--|
| PCB    | Printed Circuit Board                                      |  |  |  |
| PGA    | Programmable Gain Amplifier                                |  |  |  |
| PLL    | Phase Locked Loop                                          |  |  |  |
| PSTN   | Public Switched Telephone Network                          |  |  |  |
| RF     | Radio Frequency                                            |  |  |  |
| RLR    | Receiving Loudness Rating                                  |  |  |  |
| RMS    | Root Mean Square                                           |  |  |  |
| RTC    | Real Time Clock                                            |  |  |  |
| SAW    | Surface Acoustic Wave                                      |  |  |  |
| SIM    | Subscriber Identity Module                                 |  |  |  |
| SLR    | Sending Loudness Rating                                    |  |  |  |
| SRAM   | Static Random Access Memory                                |  |  |  |
| PSRAM  | Pseudo SRAM                                                |  |  |  |
| STMR   | Side Tone Masking Rating                                   |  |  |  |
| ТА     | Travel Adapter                                             |  |  |  |
| TDD    | Time Division Duplex                                       |  |  |  |
| TDMA   | Time Division Multiple Access                              |  |  |  |
| UART   | Universal Asynchronous Receiver/Transmitter                |  |  |  |
| vco    | Voltage Controlled Oscillator                              |  |  |  |
| VCTCXO | Voltage Control Temperature Compensated Crystal Oscillator |  |  |  |
| WAP    | Wireless Application Protocol                              |  |  |  |
|        |                                                            |  |  |  |

# 2. PERFORMANCE

# 2.1 H/W Features

| Item               | Feature                                                                  | Comment |
|--------------------|--------------------------------------------------------------------------|---------|
| Standard Battery   | Lithium-lon, 3.7V 1100mAh                                                |         |
| Stand by TIME      | Up to 696 hrs : Paging Period 5, RSSI 85dBm                              |         |
| Talk time          | Up to 14hrs : GSM Tx Level 7                                             |         |
| Charging time      | Approx 3hours                                                            |         |
| RX Sensitivity     | GSM, EGSM: -108dBm, DCS: -108dBm                                         |         |
| TX output power    | GSM850 : 32.3dBm, EGSM: 32.8dBm(Level 5),<br>DCS , PCS: 29.8dBm(Level 0) |         |
| GPRS compatibility | Class 12                                                                 |         |
| SIM card type      | 3V / 1.8V                                                                |         |
| Display            | MAIN: 2.8" TFT 240 × 320 pixel 262K Color                                |         |
| Status Indicator   | Send Key, End Key, Cancel Key,<br>Volume Up/Down Key, PWR(Lock) Key      |         |
| ANT                | Internal                                                                 |         |
| EAR Phone Jack     | Yes (3.5Φ)                                                               |         |
| PC Synchronization | Yes                                                                      |         |
| Speech coding      | EFR/FR/HR                                                                |         |
| Data and Fax       | Yes                                                                      |         |
| Vibrator           | Yes                                                                      |         |
| Loud Speaker       | Yes                                                                      |         |
| Voice Recoding     | Yes                                                                      |         |
| Microphone         | Yes                                                                      |         |

| Item                 | Feature                                                  | Comment |
|----------------------|----------------------------------------------------------|---------|
| Speaker/Receiver     | 18x12Ф Speaker/ 1107 Receiver                            |         |
| Travel Adapter       | Yes                                                      |         |
| MIDI                 | SW MIDI (Mono SPK)                                       |         |
| Camera               | 2.0M FF                                                  |         |
| Bluetooth / FM Radio | Bluetooth version 2.1 / Wired FM radio (Earphone needed) |         |

# 2.2 Technical Specification

| Item | Description     | Specification                                                                                                                                                                      |                       |        |       |       |        |
|------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------|-------|-------|--------|
| 1    | Frequency Band  | GSM850 EGSM  TX: 824 ~ 849 MHz TX: 880 ~ 915MHz  RX: 869 ~ 894 MHz RX: 925 ~ 960 MHz  DCS  TX: 1710 ~ 1785 MHz  RX: 1805 ~ 1880 MHz  PCS  TX: 1850 ~ 1910 MHz  RX: 1930 ~ 1990 MHz |                       |        |       |       |        |
| 2    | Phase Error     |                                                                                                                                                                                    | degrees<br>20 degrees |        |       |       |        |
| 3    | Frequency Error | < 0.1 pp                                                                                                                                                                           | om                    |        |       |       |        |
|      |                 | GSM850                                                                                                                                                                             | D/EGSM                |        |       |       |        |
|      |                 | Level                                                                                                                                                                              | Power                 | Toler. | Level | Power | Toler. |
|      |                 | 5                                                                                                                                                                                  | 33dBm                 | ±2dB   | 13    | 17dBm | ± 3dB  |
|      |                 | 6                                                                                                                                                                                  | 31dBm                 | ±3dB   | 14    | 15dBm | ± 3dB  |
|      |                 | 7                                                                                                                                                                                  | 29dBm                 | ±3dB   | 15    | 13dBm | ± 3dB  |
|      |                 | 8                                                                                                                                                                                  | 27dBm                 | ±3dB   | 16    | 11dBm | ± 5dB  |
|      |                 | 9                                                                                                                                                                                  | 25dBm                 | ±3dB   | 17    | 9dBm  | ± 5dB  |
|      |                 | 10                                                                                                                                                                                 | 23dBm                 | ±3dB   | 18    | 7dBm  | ± 5dB  |
|      |                 | 11                                                                                                                                                                                 | 21dBm                 | ±3dB   | 19    | 5dBm  | ± 5dB  |
| 4    | Power Level     | 12                                                                                                                                                                                 | 19dBm                 | ±3dB   |       |       |        |
| ·    |                 | DCS/PCS                                                                                                                                                                            | 5                     |        |       |       |        |
|      |                 | Level                                                                                                                                                                              | Power                 | Toler. | Level | Power | Toler. |
|      |                 | 0                                                                                                                                                                                  | 30dBm                 | ±2dB   | 8     | 14dBm | ± 3dB  |
|      |                 | 1                                                                                                                                                                                  | 28dBm                 | ±3dB   | 9     | 12dBm | ± 4dB  |
|      |                 | 2                                                                                                                                                                                  | 26dBm                 | ±3dB   | 10    | 10dBm | ± 4dB  |
|      |                 | 3                                                                                                                                                                                  | 24dBm                 | ±3dB   | 11    | 8dBm  | ± 4dB  |
|      |                 | 4                                                                                                                                                                                  | 22dBm                 | ±3dB   | 12    | 6dBm  | ± 4dB  |
|      |                 | 5                                                                                                                                                                                  | 20dBm                 | ±3dB   | 13    | 4dBm  | ± 4dB  |
|      |                 | 6                                                                                                                                                                                  | 18dBm                 | ±3dB   | 14    | 2dBm  | ± 5dB  |
|      |                 | 7                                                                                                                                                                                  | 16dBm                 | ±3dB   | 15    | 0dBm  | ± 5dB  |

| ltem | Description                             | Specification              |          |     |     |
|------|-----------------------------------------|----------------------------|----------|-----|-----|
|      |                                         | GSM850/ EGSM               |          |     |     |
|      |                                         | Offset from Carrier (kHz). | Max. dBc |     |     |
|      |                                         | 100                        | +0.5     |     |     |
|      |                                         | 200                        | -30      |     |     |
|      |                                         | 250                        | -33      |     |     |
|      |                                         | 400                        | -60      |     |     |
|      |                                         | 600~ <1,200                | -60      |     |     |
|      |                                         | 1,200~ <1,800              | -60      |     |     |
|      |                                         | 1,800~ <3,000              | -63      |     |     |
|      |                                         | 3,000~ <6,000              | -65      |     |     |
| 5    | Output RF Spectrum                      | 6,000                      | -71      |     |     |
| 5    | (due to modulation)                     | DCS/PCS                    | -        |     |     |
|      | Offset from Carrier (kHz).              | Max. dBc                   |          |     |     |
|      |                                         | 100                        | +0.5     |     |     |
|      |                                         | 200                        | -30      |     |     |
|      |                                         | 250                        | -33      |     |     |
|      |                                         |                            |          | 400 | -60 |
|      |                                         | 600~ <1,200                | -60      |     |     |
|      |                                         | 1,200~ <1,800              | -60      |     |     |
|      |                                         | 1,800~ <3,000              | -65      |     |     |
|      |                                         | 3,000~ <6,000              | -65      |     |     |
|      |                                         | 6,000                      | -73      |     |     |
|      |                                         | GSM850/ EGSM               |          |     |     |
|      |                                         | Offset from Carrier (kHz). | Max. dBm |     |     |
| 6    | Output RF Spectrum<br>(due to switching | 400                        | -19      |     |     |
|      | transient)                              | 600                        | -21      |     |     |
|      |                                         | 1,200                      | -21      |     |     |
|      |                                         | 1,800                      | -24      |     |     |

| Item | Description                             | Specification                                                                               |          |          |  |  |
|------|-----------------------------------------|---------------------------------------------------------------------------------------------|----------|----------|--|--|
|      |                                         | DCS/PCS                                                                                     |          |          |  |  |
|      |                                         | Offset from Carrier (kHz)                                                                   |          | Max. dBm |  |  |
| 6    | Output RF Spectrum<br>(due to switching | 400                                                                                         |          | -22      |  |  |
|      | transient)                              | 600                                                                                         |          | -24      |  |  |
|      |                                         | 1,200                                                                                       |          | -24      |  |  |
|      |                                         | 1,800                                                                                       |          | -27      |  |  |
| 7    | Spurious Emissions                      | Conduction, Emission Status                                                                 | 5        |          |  |  |
| 8    | Bit Error Ratio                         | GSM850, EGSM  BER (Class II) < 2.439% @-102 dBm  DCS,PCS  BER (Class II) < 2.439% @-100 dBm |          |          |  |  |
| 9    | RX Level Report Accuracy                | ±3 dB                                                                                       |          |          |  |  |
| 10   | SLR                                     | 12±3 dB                                                                                     |          |          |  |  |
|      |                                         | Frequency (Hz)                                                                              | Max.(dB) | Min.(dB) |  |  |
|      |                                         | 100                                                                                         | -12      | -        |  |  |
|      |                                         | 200                                                                                         | 0        | -        |  |  |
|      |                                         | 300                                                                                         | 0        | -12      |  |  |
| 11   | Sending Response                        | 1,000                                                                                       | 0        | -6       |  |  |
|      |                                         | 2,000                                                                                       | 4        | -6       |  |  |
|      |                                         | 3,000                                                                                       | 4        | -6       |  |  |
|      |                                         | 3,400                                                                                       | 4        | -9       |  |  |
|      |                                         | 4,000                                                                                       | 0        | -        |  |  |
| 12   | RLR                                     | 4±3 dB                                                                                      |          |          |  |  |

| ltem | Description                            | Specification                                                                                  |          |          |  |  |
|------|----------------------------------------|------------------------------------------------------------------------------------------------|----------|----------|--|--|
|      |                                        | Frequency (Hz)                                                                                 | Max.(dB) | Min.(dB) |  |  |
|      |                                        | 100                                                                                            | -12      | -        |  |  |
|      |                                        | 200                                                                                            | 0        | -        |  |  |
|      |                                        | 300                                                                                            | 2        | -7       |  |  |
|      |                                        | 500                                                                                            | *        | -5       |  |  |
| 13   | Receiving Response                     | 1,000                                                                                          | 0        | -5       |  |  |
|      |                                        | 3,000                                                                                          | 2        | -5       |  |  |
|      |                                        | 3,400                                                                                          | 2        | -10      |  |  |
|      |                                        | 4,000                                                                                          | 2        |          |  |  |
|      |                                        | * Mean that Adopt a straight<br>and 1,000 Hz to be Max. lev                                    |          | 300 Hz   |  |  |
| 14   | STMR                                   | > 17 dB                                                                                        |          |          |  |  |
| 15   | Stability Margin                       | > 6 dB                                                                                         |          |          |  |  |
|      |                                        | dB to ARL (dB)                                                                                 | Level Ra | tio (dB) |  |  |
|      |                                        | -35                                                                                            |          | 17.5     |  |  |
|      |                                        | -30                                                                                            |          | 22.5     |  |  |
|      |                                        | -20                                                                                            | 3        | 30.7     |  |  |
| 16   | Distortion                             | -10 3                                                                                          |          | 33.3     |  |  |
|      |                                        | 0                                                                                              | 3        | 33.7     |  |  |
|      |                                        | 7                                                                                              | 3        | 31.7     |  |  |
|      |                                        | 10                                                                                             |          | 25.5     |  |  |
| 17   | Side Tone Distortion                   | Three stage distortion < 10%                                                                   |          |          |  |  |
| 18   | System frequency<br>(13 MHz) tolerance | ≤ 2.5 ppm                                                                                      |          |          |  |  |
| 19   | 32.768KHz tolerance                    | ≤ 30 ppm                                                                                       |          |          |  |  |
| 20   | Ringer Volume                          | At least 55 dBspl under below conditions: 1. Ringer set as ringer. 2. Test distance set as 1 m |          |          |  |  |

| Item | Description                    | Specification                                                                                     |                     |             |  |
|------|--------------------------------|---------------------------------------------------------------------------------------------------|---------------------|-------------|--|
| 21   | Charge Current                 | Fast Charge : Typ. 400 mA  Slow Charge : Typ. 95mA  Total Charging Time : < 3.5 hours             |                     |             |  |
|      |                                | Bar Number                                                                                        | Power               |             |  |
|      |                                | 7                                                                                                 | Over -92            | 2           |  |
|      |                                | 7 -> 5                                                                                            | -93 ± 2             |             |  |
| 22   | Antenna Display                | 5 -> 4                                                                                            | -98 ± 2             |             |  |
|      | Antenna Display                | 4 -> 2                                                                                            | -101 ± 1            | 2           |  |
|      |                                | 2 -> 1                                                                                            | -104 ± 1            | 2           |  |
|      |                                | 1 -> 0                                                                                            | -106 ± 2            |             |  |
|      |                                | 0 -> OFF                                                                                          | Under -             | 106         |  |
|      |                                | Battery Bar Status                                                                                |                     | Percent (%) |  |
|      |                                | Full (16 level)                                                                                   |                     | ≥ 94%       |  |
| 23   | Battery Indicator              | Decrease gradually  Battery icon color: Green → Red                                               |                     | 94~10%      |  |
|      |                                |                                                                                                   |                     | ≤10%        |  |
|      |                                | Empty( 0 level )                                                                                  |                     | ≤ 2%        |  |
| 24   | Low Voltage Warning            | 10%, 5% 2times (star                                                                              | ndby) – Speaker     |             |  |
| 24   | ( Blinking Bar)                | ≤ 10% at every 1min                                                                               | . (call) - Receiver |             |  |
| 25   | Forced shut down<br>Voltage    | 0% ( about 3.35V)                                                                                 |                     |             |  |
| 26   | Sustain RTC<br>without battery | Over 2 hours                                                                                      |                     |             |  |
| 27   | Battery Type                   | Lithium-lon Battery Standard Voltage = 3.7 V Battery full charge voltage = 4.2 V Capacity: 950mAh |                     |             |  |
| 28   | Travel Charger                 | Switching-mode charger Input: 100 ~ 240V, 50/60 Hz Output: 4.8V, 400mA                            |                     |             |  |

# 3. TECHNICAL BRIEF

# 3.1 Digital Main Processor



Figure. 3.1.1 X-Gold tm 215 Hardware Block Diagram

### 3.1.1 General

- Technology:
- SoC, Monolithic, 65 nm CMOS
- Package:
- eWLB, 8x9 x0.8 mm
- 0.5 mm pitch
- 240 balls / 6-layer PCB

### 3.1.2 RF Transceiver

- Dual-band direct conversion receiver
- Tri/Quad-band possible with external circuitry
- Fully integrated digital controlled X0
- · Additional buffer for 2 external system clocks
- Fully digital RF-Synthesizer incl.  $\Sigma\Delta$ -Transmitter

### 3.1.3 Baseband

- DSP:
- 156 MHz TeakLite™
- MCU:
- ARM1176® @ 208 MHz
- MCU RAM:
- 3.00Mbit
- Memory I/F:
- 1 Gbit NOR flash/OneNAND flash/SDR SDRAM
- 4 Gbit NAND flash/DDR SDRAM
- · Modem:
- GPRS class 12, (RX/TX CS1-CS4)
- EGPRS class 12, (RX MCS1-MCS9, TX MCS1-MCS4)
- Cipher Units:
- A51/2/3
- GEA-1/2/3
- Security:
- OMTP TRO
- Secure Boot
- RSA(ROM)/SHA-1(HW accel.)
- OCDS disabling
- Certificate Management
- Speech Codec:
- FR / HR / EFR / NB-AMR
- · Audio Codec (running on ARM1176):
- SP-MIDI
- SB-ADPCM
- MP3
- WB-AMR
- AAC/AAC+/eAAC+
- · Others:
- DARP (SAIC)
- TTY
- · Customization:
- E-Fuses

### 3.1.4 External Memory

- External Bus Unit
- 16-bit address bus
- 16-bit address/data muxed bus
- 1.8V support
- Flash / RAM
- NOR Type
- NAND Type (1 bit ECC supported)
- Parallel Flash / Cellular RAM(Page & Burst Mode)
  - 16-bit AD-multiplexed
  - 16-bit AAD-multiplexed
- iNAND Type e.g. oneNAND
- SDRAM
  - DDR SDRAM: up to 4 Gbit - SDR SDRAM: up to 1 Gbit
- Memory card
- SD/MMC card interface with 1 or 4 data lines

### 3.1.5 Connectivity

- 3xUSIF (configurable either as SPI or UART), I2C, I2S; Interfaces @ 1.8V
- Direct (U)SIM 1.8/3V
- USB2.0 up to 480 Mbit/s (High Speed) w/ external USB Phy over ULPI interface
- Stereo Headset (Amplifier integrated)
- 3 external analog measurement PIN's
- Bluetooth

### 3.1.6 Mixed Signal

- Improved audio performance
- $\bullet$  Loudspeaker Audio Class D Amplifier, 700 mW@8  $\Omega$  mon for hands-free and ringing
- Stereo Headset 2x30 mW@16  $\Omega$  w/o coupling C
- Mono Earpiece 100 mW@16  $\Omega$
- Digital microphone supported
- Differential microphone inputs

### **3.1.7 FM Radio**

- Integrated FM radio
- FM Stereo RDS Receiver
- Sensitivity 2 µV EMF
- Support for US & EU bands
- Stereo recording

### 3.1.8 Power Management

- Direct-to-Battery Connection
- LDOs (incl. capless)
- DC/DC step-down converter
- DC/DC step-up for white LED supply
- Battery Type
- Li-Polymer
- Charging control
- Battery temperature
- Watchdog protection
- Start-up on flat battery
- External Charger
- Switch mode
- USB battery charging
- USB charging spec 1.0 compliant
- Backlight
- Up to 4 serial white LEDs (integrated LDO)

### 3.1.9 Main LCD Display

- Type
- 240\*320, QVGA, 262k color (parallel)
- Interface
- Parallel 8/9bit MIPI-DBI Type B
- Serial MIPI-DBI Type C
- Interf. voltage at 1.8V or 2.8V
- gRacr Display Controller (Hardware)
- 30 fps Display update without DMA (up to 60 fps) (full or partial)
- Video post processing Scaling, Rotation (90° steps), Mirroring
- Overlay with alpha blending
- Color conversion YUV -> RGB
- 2D vector graphics (Lines, filled rectangles, Bit block transfer (e.g. sprites, scrolling, antialiased bitmap fonts)

### 3.1.10 Camera

- 2 Mpx YUV parallel interface
- HW JPEG encoder (39 Mpx/sec)
- 39 MHz Pixel Rate
- 15 fps@ 2 Mpx full resolution

### 3.1.11 Video Capabilities

- Video Decoding MPEG-4/H.263
- QCIF@30 fps
- QVGA@15fps
- Video Encoding MPEG-4/H.263
- QCIF@15 fps

### 3.1.12 Audio Capabilities

- Polyphonic ring tones
- 64 voices MIDI, SP-MIDI
- FM synthesizer
- AMR-WB
- True ring tones (MP3)
- MP3, eAAC+
- G.722 SB-ADPCM encoding/decoding

### 3.2 Power Management

A mobile platform requires power supplies for different functions. These power supplies are generated in the integrated power management Unit (PMU). The PMU is designed to deliver the power for a typical standard phone.



Figure. 3-2-1 Block Figure of the PMU Modules X-Gold tm 215

### DC/DC Step Down Converter for 1.8V (SD1)

The DC/DC converter generates a 1.8V supply rail. This voltage rail is used to supply main parts of the system, like the digital core of the chip (via LDO LCORE), some parts of the mixed signal macro, parts of the RF macro and the external memory if a 1.8V memory is used. The efficiency of the DC/DC converter is optimized for an average load current of 100mA. That is the load current estimated for the GSM talk mode.

### Linear voltage Regulators (low dropout) LDOs

The LDOs are used to generate the supply for the different supply domains not directly supplied out of the DC/DC converter.

The VSIM output current is high enough to drive USB SIM cards.

### LCORE

The LCORE LDO provides the VCORE supply used for most of the digital parts of the chip

### - LPMU

The LPMU provides VPMU sued for the PMU supply, e.g. for the startup state machine and analog parts like ADC, sense amplifier etc.

### **LUSB**

The LUSB LDO generates the supply for the USB transceiver (output driver and input). If no USB interface is required, LUSB can be used as general purpose LDO.

### - LAUX

The LAUX generates VAUX. It is a general purpose LDO and can be used for different functions depending on the phone application, e.g. for the display or Camera.

### - LMMC

The LMMC generates VMMC. It is a general purpose LDO and can be used e.g. for memory cards

### - LSIM

The LSIM LDO generates the VSIM supply for the SIM card and interface. It is designed to supply Standard SIM cards.

### Other LDOs

The RF module has implemented several LDO's for different RF Power domain.

The mixed signal module has some LDO's for the audio driver and microphone supply.

| Supply Domain<br>LDO Name | Voltage           | Max.<br>Current | Output<br>Cap | Input<br>Domain | Comment                                                                                                                                                                                              |
|---------------------------|-------------------|-----------------|---------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VBAT                      | 0 6.0 V           |                 |               |                 | Operating range is 3.05 V 5.5 V, system emergency switch off voltage is about 2.8 V                                                                                                                  |
| VDD1V8                    | 1.8 V             | 450 mA          | 22 μF         | VBAT            | This voltage is generated by the DC/DC converter with 3.3 $\mu$ H inductor, The voltage is used for: Memory supply, and via LDO's for digital core supply, mixed signal supply and RF supply.        |
| LCORE                     | 1.2 V             | 300 mA          | 2x100 nF      | VDD1V8          | 11.                                                                                                                                                                                                  |
| LANA                      | 1.3 V             | 10 mA           | No            | VDD1V8          | No ball                                                                                                                                                                                              |
| LRTC                      | 2.3 V             | 2 mA            | >=100 nF      | VBAT            | This supply is only used for the HPBG, the 32.768 kHz oscillator and the real-time clock counter required during the sleep- and low-power mode.                                                      |
| LPMU                      | 1.2 V             | 15 mA           | 100 nF        | VBAT            | Supply for the digital part of the PMU including digital control of DC/DC converter. This voltage is also used for the N-DEMOS driver of DC/DC converter and the class-D amplifier and the core PLL. |
| LUSB                      | 3.1 V             | 40 mA           | 100 nF        | VBAT            | Used for the USB driver supply or as general purpose LDO with programmable output voltages (2.5 V, 2.85 V, 3.1 V)                                                                                    |
| LAUX                      | 1.5 V<br>2.85 V   | 150 mA          | 470 nF        | VBAT            | General purpose LDO for e.g. Display,<br>Bluetooth, Camera etc. Programmable output<br>voltages are (1.5 V, 1.8 V, 2.5 V, 2.85 V)                                                                    |
| LSIM                      | 1.8 V /<br>2.85 V | 30 mA           | >=100 nF      | VBAT            | LDO dedicated to the SIM-Card supply. It is chip internal connected to the SIM interface driver.                                                                                                     |
| LMMC                      | 1.5 V<br>2.85 V   | 150 mA          | >=470 nF      | VBAT            | General purpose LDO, targeted for MMC/SD card supply.                                                                                                                                                |
| VDDNEG                    | -1.3 V            | 100 mA          | 100 nF        | VDD1V8          | Negative voltage for the bipolar headset audio driver. Generated by a charge pump.                                                                                                                   |

Table. 3-2-1 Power supply Domains (without RF)

### 3.2.1 Power on and startup

### Analog startup Circuit

Because the POR circuit and the LPBG are directly connected to the battery, it is not possible to switch them off. If the battery voltage exceed the power on reset threshold (2.5V), the power on reset is released, the LPMU regulator and the LRTC voltage regulator are switched on. The LPMU regulator starts in its ultra-low power mode.

The LPMU regulator generates a control signal (lpmu\_OK) that enables the 50KHZ PMU oscillator. The output clock of the oscillator is checked with a fully coded counter. A counter overflow releases the reset (vpmu\_rst\_n) signal for the small PMU state-machine.

### Small first digital State-Machine

The small PMU state-machine is always connected to VPMU After starting from reset the small startup state machine enters the SYSTEM OFF state and only continuous the startup procedure if a switch on event like first connect, on-key, wake up or charge detect occurs.

### PMU-main State-Machine

The main PMU state-machine is always connected to VPMU also. The power up sequence driven by the PMU state-machine can be seen in Figure 18. After enabling the reference (HPGB) and waiting for the settling time, the battery voltage is measured and compared with the power on threshold. If the battery voltage is high enough, the SD1 DC/DC converter and the LCORE LDO are started. A timer ensures that the supply voltage will be stable before the DCXO is enabled. The DCXO settling time is ensured using a fixed timer. After an overflow of this timer, the reset is released for the rest of the system. The PMU state machine remains in this System-ON state until the system is switched into the OFF state. For example the system sleep mode is completely configured by software( for example switching off the LDO's, switching of the DCXO etc.) and controlled by the VCXO\_enable signal. The reason for the startup is stored in the ResetSourceRead register.

### Battery Measurement

The ADC and the oscillator for the ADC needs the VDD\_ADC supply voltage from the LADC LDO. LADC uses either the charger voltage VDD\_CHARGE or VDDRTC as input voltage. The input voltage is selected automatically by a bulk switch circuit. LADC, the ADC and the oscillator are enabled on request for every battery measurement if the charger unit is not running. This is handled by an ADC control block in one of the state-machines. If the charger unit is running the ADC is controlled by the charger state-machine



Figure.3.2.1 First Part of the State Machine, Running in Different Power Domains than the Second Part



Figure 3.2.2 Second (Main) Part of the Startup State Machine in the VPMU Domain

### 3.2.2 Switching on due to first connect

If the battery voltage is connected the first time, that means the system enters the first time the SYSOFF state, this is stored in a first connect flag. If the first connect flag is set, the system will start immediately and not wait for any other system on event in the SYSOFF state.

### 3.2.3 Switching on due to on-Key event

The on key is connected to the ONKEY pad. The ESD protection and the input structure of this pad are connected to VRTC. If the ONKEY pad is forced to VRTC by an external key or similar circuit, the system starts. The ONKEY is sampled with the PMU clock. It has to be sampled four times high before a valid on event is generated. The status of the ON key can be read in the PMU registers, so it can be used as a functional key during phone operation also

### 3.2.4 Switching on due to RTC alarm

The real time clock can generate a wakeup signal called RTC alarm. This signal is sampled from the state-machine and after successfully detecting a high, the system is switched on.

### 3.2.5 Switching on due to charging

When a battery with a voltage below the SSONLEV level is inserted, the state machine will not start the system. As long as the battery voltage stays lover than SYSONLEV the system will stay off. The only possibility to start up the system is due to an external charger.

If an external charger is connected and detected and the battery is charged above the SYSONPRE voltage level the system will start up.

The PMU main state machine waits in the Check battery state until the battery voltage condition is fulfilled. The charger state machine provides the necessary pre-charge indication signal. This pre-charge signal is denounced in a small counter to have a stable signal. This is important, especially in half/full-wave charging where the charger detection is switching between charger detected/not detected according the AC supply frequency, reasons

For details on pre-charging see the charger chapter. The charger is controlled by an independent state machine. The pre-charge signal is used to trigger the pre-charge signal is used to trigger the pre-charge functionality. The charger state machine fully control the pre-charge, the PMU-state machine now changes to state HPBG on state and the system starts. This state change is indicated to the charger state-machine to enable the charger watchdog for safety

### 3.2.6 Power Supply Start-up sequence

In order to avoid an excessive drop on the battery voltage caused by in-rush current during system power-on, possibly leading to system instability and "hick-ups" a staggered turn-on approach for the regulators is implemented. The regulators are turned on in a well defined sequence, thus spreading the in-rush current transients over time.

The IO's of X-GOLD TM 215 are isolated in OFF mode (core supply is off). The isolation signal is controlled by the PMU state machine. This ensures that the PADs are in a well defined state during core supply settling. This allows to power up the LCORE core regulator and wait for the core to reach reset state before powering up the I/O supply regulators.



Figure 3.2.3 Start Up Sequence (triggered by First Connect Event)

### 3.2.7 External Reset Handling

The chip reset can be controlled by an external RESET N ball. If this ball is pulled low, the chip will be reset. All PMU registers are reset during the external reset including LSIM control bits. The PMU statemachines are also not reset from the external reset. An SW or watchdog reset will not reset the PMU registers. A SW and Watchdog reset is seen on the reset in pad to allow the reset of external devices. Basically there are three reset sources, first the reset signal controlled by the PMU (reset\_pmu\_n\_o), second the reset signal controlled by the SCU (resetout\_o) and third the external reset (RESET\_N). The SCU reset is triggered by SW (for example due to a SW reset or watchdog reset). The PMU reset is controlled by the PMU state machine. The output of the reset handling block is the reset\_postscu\_n\_o signal. This signal controls for example the µC subsystem and releases reset for the controller. During normal start up, the PMU releases the reset\_pmu\_n\_o signal after entering the SYSTEM ON state. At this time the resetout\_o signal is high, the RESET\_N pad is not pulled low and therefore the reset\_postscu\_n\_o signal follows the reset\_pmu\_n\_o signal. That means the µC reset will be released and the µC starts operation. If the SW triggers an external reset via the SCU, signal resetout\_o will be forced to low for a certain time and RESET\_N will be forced to low by the open drain driver. At the same time the feedback to the SCU will be masked to not reset the baseband. The RESET N pad is in the VDDRTC domain but the internal pull up is connected to the VDD VDIG1 (1.8V) domain. That allows the pad to be used as reset for external devices running in the VDD1V8 domain. The RESET\_N pad can also be used to monitor the chip internal reset condition during startup.

The open drain driver is a weak driver, that means it can be forced to high during debug from external pushing some current into the pad. In testmode signal reset\_pmu\_n\_o is high, that means the chip reset is fully controlled from external



Figure 3.2.4 PMU, CGU and External Reset

### 3.2.8 Sysclock Switching

The PMU controls the rf\_sysclk\_en signal of the DCXO in the RF macro. During startup the PMU enables the DCXO. After the system is running the DCXO is controlled by the SCU of the baseband by using the vcxo\_enable signal. This is handled by a dedicated logic in the PMU, see **Figure 21**. As long as rf\_sysclk\_en\_pmu, the output of the PMU state-machine is high, vcxo\_enable controls the rf\_sysclk\_en signal to the RF. If rf\_sysclk\_en\_pmu is low, the DXCO is switched off, independent from vcxo\_enable.



Figure 3.4.2 How sysclock Enable is Routed in the PMU

### 3.2.9 Undervoltage Shutdown

In active mode the PMU periodically measures the battery voltage using the ADC from the charger unit. If the battery is measured to be below the programmable shut-down level (called SYSOFF), the system changes to OFF mode. This is done via the SHUTDOWN state of the PMU state machine. (see chapter switch OFF)

### 3.2.10 Software Reset

A software reset does not affect any PMU register. The PMU register are reset with the reset\_pmufsm\_n\_o signal. That means all PMU register are reset in OFF state. For details about the SW reset see chapter **External Reset Handling**.

### **3.2.11 PMU Clock**

During the first startup (for example plugging in a battery) a PMU internal oscillator is used for generation of the PMU clock (pmu\_clock). The frequency is slightly above 32 kHz (typ. 50 kHz) to be out of the audio band also for worst case devices. After first startup the software shall enable the 32 kHz crystal oscillator. It is not possible to use the 32 kHz oscillator during first startup, because the settling time of the oscillator can be quite long. After the 32 kHz oscillator is running and settled the software shall switch the PMU clock to the 32 kHz clock and disable the internal PMU oscillator for power saving reasons. The 32 kHz oscillator shall never be disabled after the PMU clock has been switched. The ADC in the charger unit has it's own oscillator generating a frequency of about 10 MHz. This oscillator is running during charging and during battery measurements triggered by the PMU. It is off otherwise.

### 3.2.12 System Sleep Mode

The sleep mode is controlled by using the VCXO\_enable signal. This signal is used to switch the LDO's and the DC/DC converter SD1 in a programmable way into its low power mode (PFM). In addition DC/DC converter SD1 can be configured to change the output voltage to a lower value for additional power saving. VCXO\_enable is also used to deactivate the HPBG and setting LDO LPMU in the ultra-low-power mode. In addition the DCXO is switched off by the VCXO\_enable signal. The VCXO\_enable signal is also used to switch some LDO's (software configured) to sleep and/or off mode or to change the output voltages of said LDO's. The state of the main PMU state machine is not changed due to VCXO\_enable.

### 3.2.13 DC/DC Pre-Load Register Handling

The DC/DC converter works in different modes. If the mode is switched from PFM to PWM the pulse-width of the DC/DC converter depends on the current battery voltage (and on the output voltage). The PMU state-machine knows the battery voltage because of the battery supervision function. Depending on this value it selects a startup pulse-width for the DC/DC converter out of a register table. (4-values)

### 3.2.14 Power Down Sequence

Setting bit OFF in the GeneralControl register switches the system into OFF mode. After the turn off event, the state-machine switches to the SHUTDOWN state. The reset\_pmu\_n\_o signal changes to low, the I/O pads are isolated using the padisolation\_n signal, the LCORE LDO and the SD1 DC/DC converter are switched off, the LPMU LDO is switched to ultra-low power mode, the DCXO is turned off and the bandgap buffer is disabled. Before switching OFF the software shall have enabled the 32 kHz oscillator and has switched the PMU clock to the 32 kHz clock to archive the target OFF current .

### 3.3 FEM with integrated Power Amplifier Module (RF7171, U101)

### 3.3.1 Internal Block Diagram



Figure. 3-3-1 RF7171 FUNCTIONAL BLOCK DIAGRAM

### 3.3.2 General Description

The RF7171 is a quad-band (GSM850/EGSM900/DCS1800/PCS1900) GSM/GPRS, Class 12 compliant transmit module with two interchangeable receive ports. This transmit module builds upon RFMD's power amplifier with PowerStar® integrated power control technology, pHEMT switch technology, and integrated transmit filtering for best-in-class harmonic performance.

The device is designed for use as the final portion of the transmitter section in a GSM850/EGSM900/DCS1800/PCS1900 handset and eliminates the need for a PA-to-antenna switch module matching network.

The RF7171 features RFMD's latest integrated power-flattening circuit which significantly reduces current and power variation into load mismatch. Additionally, a VBATT tracking feature is incorporated to maintain switching performance as supply voltage decreases.

The RF7171 also integrates an ESD filter to provide ESD protection at the antenna port.

The RF7171 is designed to provide maximum efficiency at rated Pout.

| TX ENABLE | GpCtrl1 | GpCtrl0 | TX Module Mode           |
|-----------|---------|---------|--------------------------|
| 0         | 0       | 0       | Low Power Mode (Standby) |
| 0         | 1       | 0       | RX0                      |
| 0         | 1       | 1       | RX1                      |
| 1         | 1       | 0       | GSM850/900 TX Mode       |
| 1         | 1       | 1       | DCS1800/PCS1900 TX Mode  |

Figure 3.3.2 Band SW Logic Table



Figure 3.3.3 FEM CIRCUIT DIAGRAM

### 3.4 Crystal(26 MHz, X201)



Figure. 3.4.1 Crystal Oscillator External Connection

The X-GOLDTM215 RF-Subsystem contains a fully integrated 26 MHz digitally controlled crystal oscillator, designed for 8 pF crystals. The only external part of the oscillator is the crystal itself. Overall pulling range of the DCXO is approximately  $\pm$ 55 ppm, controllable by a 13-bit tuning word.

This frequency serves as comparison frequency within the RF-PLL and as clock frequency for the digital circuitry.

The 26 MHz reference clock can also be applied to external components like Bluetooth or GPS, via the two buffered output signals FSYS1 and FSYS2



Figure. 3.4.2 Digital PREDISTORTION with LUXO

The DCXO tuning characteristic should be a first order linear function of the programming word AFC. The variable capacitance array is a first order linear function of the digital word DIG, which leads to a nonlinear curve ppm vs. DIG (and also a nonlinear ppm vs. AFC for DIG=AFC). In order to linearize the ppm vs. AFC curve the implementation of a predistortion is necessary.

To get the wanted linear ppm vs. AFC tuning curve some digital predistortion of the AFC word is required. This predistortion is performed by the linearization unit for crystal oscillator (LUXO). The LUXO calculates the corresponding DIG value according to the given AFC value.

### PMU/BB Part RX12/RX12X 850/900MHz RXTXEN $\overline{\mathbb{A}}$ DCOC ADC $\triangleleft$ $\otimes$ $\triangleleft$ LPF DigRF RX34/RX34X 1800/1900MHz $\overline{4}$ DCOC ADC $\triangleleft$ $\otimes$ $\triangleleft$ RXTXDA LPF\ :2/ PABIAS/ PABIAS RESET\_N Gauss Filter CTRLEN Ramp DAC 3-Wire Bus Control/ equencing VRAMP CTRLDA CTRLCLK ADC VDET Sigma-Delta MASH FSYS12\_EN SYSCLK\_EN Multi Modulus Divider TX1 850/900MHz $\triangleright$ $\triangleleft$ SYSCLK\_BBPLL :2 $\triangleright$ TX2 1800/1900MHz $\triangleleft$ TDC FSYS1 L(z) Integrated 3.8GHz DCO FSYS2 $\triangleleft$ PAEN SER RF Subsystem PARS 26 MHz XO $\approx$ FE1 LDO FE2 XOX VBAT 3.05V-5.5V VRF1 VDDRF2 VDDMMC VDD TDC

# 3.5 RF Subsystem of PMB8815 (U201)

Figure. 3-5-1 Block DIAGRAM of RF Subsystem

### 3.5.1 GENERAL DESCRIPTION

The PMB8815 RF subsystem is designed for dual-band GSM voice and data applications (GPRS class 12). The system can be configured to support one low band, GSM850 or EGSM900, and one high band, DCS1800 or PCS1900. A block diagram of the RF subsystem is given in Figure 3-4-1.

### 3.5.2 FUNCTIONAL DESCRIPTION

### **3.5.2.1 Receiver**

The X-GOLD™215 dual-band receiver is based on a Direct Conversion Receiver (DCR) architecture. Input impedance of the LNAs is optimized to achieve a matching without (external) high quality inductors. By use of frequency dividers (by 2/4) the LO frequency is derived from the RF frequency synthesizer.

The receive path is fully differential to suppress the on-chip interferences and reduce DC-offsets. The analog chain of the receiver contains two LNAs (low/high band), a quadrature mixer followed by an analog baseband filter and 14-bit continuous-time delta-sigma analog-to-digital converter. The filtered and digitized signal is fed into the digital signal processing chain, which provides decimation, DC offset removal and programmable gain control.



Figure. 3.5.2 RECEIVER CHAIN BLOCK DIAGRAM

#### 3.5.2.2 Transmitter

The GMSK transmitter supports power class 4 for GSM850 or GSM900 as well as power class 1 for DCS1800 or PCS1900. The digital transmitter architecture is based on a fractional-N sigma-delta synthesizer for constant envelope GMSK modulation. This configuration allows a very low power design without any external components.

Up- and down-ramping is performed via the ramping DAC connected to VRAMP.



Figure. 3.5.3 TRANSMITTER CHAIN BLOCK DIAGRAM

#### RF synthesizer

The RF subsystem contains a fractional-N sigma-delta synthesizer for the frequency synthesis. Respective to the chosen band of operation the phase locked loop (PLL) operates at twice or forth of the target signal frequency. In receive operation mode the divided output signal of the digital controlled oscillator output (DCO) serves as local oscillator signal for the balanced mixer. For transmit operation the fractional-N sigmadelta synthesizer is used as modulation loop to process the phase/frequency signal. The 26 MHz reference signal of the phase detector incorporated in the PLL is provided by the reference oscillator.

#### 3.5.2.3 Front-end/PA Control Interface

Two outputs (FE1, FE2) for direct control of antenna switch modules enable to select RX- and TX-mode as well as low- and high-band operation.

An extra band select signal PABS for the power amplifier is used, to support discrete PA and switching modules. Time accurate power dissipation of the PA is achieved by the control signal PAEN.

A minor set of power amplifiers require a bias voltage to enhance power efficiency. Support of this power amplifiers is achieved by the implemented bias DAC.



Figure. 3.5.4 PA AND FEM CONTROL BLOCK DIAGRAM

## 3.5.2.4 Power Supply

To increase power efficiency most parts of the RF subsystem are supplied by the DCDC converter situated in the PMU subsystem. Conversion of the 1.8 V output voltage of the DCDC to the 1.3 V/1,4 V circuit supply voltages is achieved by several Low-DropOut regulators (LDO).

One embedded direct-to-battery LDO provides the 2.5 V supply voltage for the remaining circuits.



Figure. 3.5.5 POWER SUPPLY BLOCK DIAGRAM

## REGISTER/ PROGRAM Χ FRASE CONTROLLER 2048 Mbit + 64 Mbit DECODER HV GENERATION NAND Flash **MEMORY ARRAY** WE# CE# COMMAND WP# INTERFACE LOGIC RE# PAGE BUFFER COMMAND REGISTER Y DECODER REGISTER BUFFERS IO

## 3.6 MEMORY(H9DA2GH1GHMMMR, U301)

Figure. 3.6.1 MEMORY BLOCK DIAGRAM

Hynix NAND Flash is a 128Mx16bit with spare 4Mx16 bit capacity.

The device is offered in 1.8 Vcc Power Supply, and with x16 I/O interface.

Its NAND cell provides the most cost-effective solution for the solid state mass storage market.

The memory is divided into blocks that can be erased independently so it is possible to preserve valid data while old data is erased.

The device contains 2048 blocks, composed by 64 pages.

Memory array is split into 2 planes, each of them consisting of 1024 blocks.

Like all other 2KB - page NAND Flash devices, a program operation allows to write the 2112-byte page in typical 250us and an erase operation can be performed in typical 3.5ms on a 128K-byte block.

In addition to this, thanks to multi-plane architecture, it is possible to program 2 pages at a time (one per each plane) or to erase 2 blocks at a time (again, one per each plane). As a consequence, multi-plane architecture allows program time to be reduced by 40% and erase time to be reduction by 50%. In case of multi-plane operation, there is small degradation at 1.8V application in terms of program/erase time..

#### [ NAND Flash ]

- MULTIPLANE ARCHITECTURE
- SUPPLY VOLTAGE
  - -Vcc = 1.7 1.95 V
- MEMORY CELL ARRAY
  - (1K + 32) Words x 64 pages x 2048 blocks
- PAGE SIZE
  - (1K+32 spare) Words
- BLOCK SIZE
  - (64K + 2K spare) Words
- PAGE READ / PROGRAM
- Random access: 25us (max.)
- Sequential access: 45ns (min.)
- Page program time: 250us (typ.)
- Multi-page program time (2 pages): 250us (Typ.)
- BLOCK ERASE / MULTIPLE BLOCK ERASE
- Block erase time: 3.5 ms (Typ)
- Multi-block erase time (2 blocks): 3.5ms (Typ.)
- SEQURITY
- OTP area
- Sreial number (unique ID)
- Hardware program/erase disabled during
- power transition
- ADDITIONAL FEATURE
  - Multiplane Architecture:

Array is split into two independent planes.

Parallel operations on both planes are available, having program and erase time.

- Single and multiplane copy back program with auto matic EDC (error detection code)
- Single and multiplane page re-program
- Single and multiplane cache program
- Cache read
- Multiplane block erase
- RELIABILITY
  - 100,000 Program / Erase cycles (with 1bit /528Byte ECC)
  - 10 Year Data retention
- ONFI 1.0 COMFLIANT COMMAND SET ELECTRICAL SIGNATURE
  - Munufacture ID: ADh
  - Device ID

## [DDR SDRAM]

- Double Data Rate architecture
  - two data transfer per clock cycle
- x16 bus width
- Supply Voltage
  - VDD / VDDQ = 1.7 1.95 V
- Memory Cell Array
  - 16Mb x 4Bank x 16 I/O
- Bidirectional data strobe (DQS)
- Input data mask signal (DQM)
- Input Clock
  - Differential Clock Inputs (CK, /CK)
- MRS, EMRS
- JEDEC Standard guaranteed
- CAS Latency
  - Programmable CAS latency 2 or 3 supported
- Burst Length
  - Programmable burst length 2 / 4 / 8 with both sequential and interleave mode

## 3.7 BT module



Figure 3\_7\_1. BT BLOCK DIAGRAM

This module has an integrated radio transceiver that has been optimized for use in 2.4GHz Bluetooth Wireless systems. It has been designed to provide low-power, robust communications for applications Operating in the globally available 2.4GHz unlicensed ISM band. It is fully compliant with the Bluetooth Radio Specification and enhanced data rate specification and meets or exceed the requirement to provide the highest communication link quality of service.

#### 3.7.1 Transmitter path

This module features a fully integrated zero IF transmitter. The baseband transmitted data Is digitally modulated in the modem block and up-converted the 2.4GHz ISM band in the Transmitter path. The transmitter path consists of signal filtering, I/Q up-conversion, high -output power amplifier(PA), and RF filtering. It also incorporates modulation schemes P/4-DQPSK for 2 Mbps and 8-DPSK for 3 Mbps to support enhanced data rate.

#### · Digital modulator

The digital modulator performs the data modulation and filtering required for the GFSK,  $\pi$ /4DQPSK, and 8-DPSK signal. The fully digital modulator minimizes any frequency drift or anomalies in the modulation characteristics of the transmitted signal and is much more Stable than direct VCO modulation schemes.

#### · Power Amplifier

The integrated PA for the BCM2070 is configurable for Class 2 operation, transmitting up to +4 dBm as well as Class 1 operation and transmit power up to +12 dBm at the chip, gFSK, >2.5V supply. Due to the linear nature of the PA, combined with some integrated filtering, no External filters are requires for meeting Bluetooth and regulatory harmonic and spurious requirements. For integrated mobile handset applications, where Bluetooth is integrated next to the celluar radio, minimal external filtering can be applied to achieve near thermal noise levels for spurious and radiated noise emissions.

Using a highly linearized, temperature compensated design the PA can transmit +12 dBm for Basic rate and +10 dBm for enhanced data rates(2 to 3 Mbps). A flexible supply voltage range Allows the PA to operate from 1.2V to 3.0V. The minimum supply voltage at VDDTF is 1.8V to achieve +10dBm of transmit power.

## 3.7.2 Receiver path

The receiver path uses a low IF scheme to down-convert the received signal for demodulation in the digital demodulator and bit synchronizer. The receiver path provides a high degree of Linearity, an extended dynamic range, and high order on-chip channel filtering to ensure reliable operation in the noisy 2.4GHz ISM bnad. The front-end topology, with built-in out -of-bnad attenuation, enables the device to be used in most applications with no off-chip Filtering.

For integrated handset operation where the Bluetooth function is integrated close to the celluar transmitter, minimal external filtering is required to eliminate the desensitization of the receiver by the cellular transmit signal.

## 3.8 SIM Card Interface



Figure 3-8-1. SIM CARD Interface

The Main Base Band Processor(XMM215) provides SIM Interface Module.

The XMM215 checks status Periodically During established call mode whether SIM card is inserted or not, but it doesn't check during deep sleep mode. In order to communicate with SIM card, 3 signals SIM\_DATA, SIM\_CLK, SIM\_RST\_N.

And This model supports 1.8/3V SIM Card.

| Signal    | Description                                      |  |
|-----------|--------------------------------------------------|--|
| SIM_RST_N | This signal makes SIM card to HW default status. |  |
| SIM_CLK   | This signal is transferred to SIM card.          |  |
| SIM_DATA  | This signal is interface datum.                  |  |

### 3.9 LCD Interface



Figure 3-9-1. LCD Interface (B to B Connector on Main PCB)

The LM283DN2A module is a Color Active Matrix Liquid Crystal Display with an Light Emission Diode(LED) Back Light system. The matrix employs a-Si Thin Film Transistor as the active element.

It is a transmissive type display operating in the normally Black mode. This TFT-LCD has a 2.83 inch diagonally measured active display area with 240 \* RGB \* 320 resolution. Each pixel is divided into R,G,B dots which are arranged in vertical stripes. Gray scale or the brightness of the dots Color is determined with a 6 bit gray scale signal for each dot, thus, presenting a palette of More than 262,144 colors.



Figure 3-9-2. RT9396 CIRCUIT DIAGRAM

The RT9396 is a power management IC (PMIC) for backlighting and phone camera applications.

The PMIC contains a 6-Channel charge pump white LED driver and four low dropout linear regulators.

The charge pump drives up to 6 white LEDs with regulated constant current for uniform intensity.

Each channel (LED1 to LED6) supports up to 25mA of current. These 6-Channels can be also programmed as 4 plus 2-Channels or 5 plus 1-Channels with different current setting for auxiliary LED application.

The RT9396 maintains highest efficiency by utilizing a x1/ x1.5/ x2 fractional charge pump and low dropout current regulators. An internal 6-bit DAC is used for backlight brightness control. Users can easily configure up to 64-steps of LED current via the I2C interface control. The RT9396 also comprises low noise, low dropout regulators, which provide up to 200mA of current for each of the four channels. The four LDOs deliver 3%

Users can easily configure LDO output voltage via the I2C interface control. The LDOs also provide current limiting and over-temperature functions. The RT9396 is available in a WQFN-24L 3x3 package.

output accuracy and low dropout voltage of 200mV @ 200mA.

#### **LED Backlight Current**

RT9396 communicates with a host (master) Using the standard I2C 2-wire interface.

The two bus lines of SCL and SDA must be pulled high when the bus is not in use. Internal pull-up resistors are installed. After the START condition, the I2C master sends a chip address. This address is eight bits long, consisting of seven address bits and a following data direction bit (R/W).

The RT9396 address is 10101000 (A8h) and is a receive-only (slave) device. The second word selects the register to which the data will be written. The third word contains data to write to the selected register. Figure 2 shows the writing information for the four LDOs as well as for each LED current. In the second word, the sub-address of the four LDOs is "001" and the sub-address of the LED Driver for different dimming modes are respectively "010", "011" and "100". For the LDO output voltage setting, bits B1 to B4 represent each LDO channel respectively where a "1" indicates selected and a "0" means not selected.

The B0 bit controls on/off (1/0) mode for the selected LDO channel(s). Then, in the third word, bite C0 to C3 control a 16-step setting of LDO1 to LDO4. The voltage values are listed in Table 1. For LED dimming, there are three operating modes (Backlight I, Backlight II and Backlight III) to select from by writing respectively "010", "011" and "100" into the First three bits of the second word, It should be noticed that no matter which mode is selected, LED1 to LED3 must be turned on, else LED4 to LED6 can not be Turned on.

When Backlight I is selected, all six LEDs have the same behavior. Their 64-step dimming currents are set by bits C0 to C5, which are listed in Table 2. The bits C6 and C7 determine the fade in/out time of each step as shown in Figure 2. For Backlight II and Backlight III, two sets of LEDs, called Main and Sub, can work separately.

#### **Backlight Quiescent Current**

The quiescent current required to operate all four backlights is reduced by 1.5mA when backlight current is set to 4.0mA or less. This feature results in higher efficiency under light-load conditions. Further reduction in quiescent current will result from using fewer than four LEDs.

#### VRAT VDD\_IO\_1V8 VUSB\_CHG\_IN C401 VUSB CHG IN MUIC\_IO\_M DN 1800 U1 U2 UART RX ID < MUIC ACC ID U401 RES A1 MIC >> VUSB LDO 4V9 VDD IO 1V8 3002 3003 3004 SCL SDA B B 3 C411 C412 R409 MUIC\_INT\_N <←

## 3.10 MiniABB (Battery Charger & MUIC) Interface

Figure 3-10-1 Mini ABB BLOCK

The LP8727 is designed to provide automatic multiplexing switches between Micro/Min USB connector and USB, UART, and Audio paths in cellular phone applications, and it also contains a single-input Li-ion battery charger and over-voltage protected LDO. Programming is handled via ans I2C compatible Serial Interface allowing control of charger, multiplexing switches, and reading status information of the device.

The multiplexing switches on USB and UART support High-Speed USB and Audio inputs can be driven to negative voltage rail. The LP8727 is compatible with USB charging specification rev 1.1 form USB IF.

The Li-ion charger requires few external components and integrates the Power FET. Charging is thermally regulated to obtain the most efficient charging rate for a given ambient temperature. It has Over-Voltage Protection (OVP) circuit at the charger input protects the PMU from input voltage up to +28V, eliminating the need for and external protection circuitry.

An Over-voltage protected LDO which can supply up to 50mA is designed for powering up low voltage USB transceiver or waking up a PMU(Power Management Unit) when an external power source (either USB VBUS or wall adapter) is connected to the USB connector.

# 3.11 Keypad Interface



Figure 3-11-1 MAIN KEY STRUCTURE

The Keypad Interface is a peripheral controller, which can be used for scanning external keypad matrices with up to 8 rows and 8 columns (that is 64 standard keys). By adding an additional row of keys connected to ground the number of keys can be extended by up to 8 keys. This results in a maximum number of 72 keys to by identified by the Keypad Interface Controller.

The Keypad Scan Module reduces the number of interrupts and polling through the processor and therefore reduces the power consumption. The module is able to debounce and scan the external keypad matrix automatically without any software intervention. After debouncing it generates an interrupt. The interface controller contains information about the key (or key combination) that was pressed and how long it was pressed.



KEYPAD\_1\_OVW

Figure 3-11-3 Block Diagram and System Integration of the KPD

## 3.12 Audio Interface

#### 3.12.1 Functional Overview

The audio front-end of X-GOLD™215 offers the digital and analog circuit blocks for both receive and transmit audio operation, from a mobile phone perspective (called audio-in and audio-out subsequently). It features a high-quality, stereo digital-to-analog path with amplifier stages for connecting acoustic transducers to X-GOLD™215. In audio-in path the supply voltage generation for electret microphones, a low-noise amplifier and analog to digital conversion are integrated in X-GOLD™215. A more detailed functional description will be given in the following sections.

The audio front-end itself can be considered to be organized in three sub-blocks:

- Interface to processor cores (TEAKLite® and indirectly ARM)
- Digital filters
- · Analog part

The following figure shows an architecture overview of the Audio section.



Figure 3.12.1 Audio Section Overview



Figure 3.12.2 Overview of Clocking and Interfaces of Audio Front End

## The audio front-end of X-GOLD™215 has the following major operation modes:

- Power-down: All analog parts are in power down and all clocks of the digital part are switched off.
- Audio mode: Digital decimation/interpolation filters are connected to the interface buffers and the analog part is enabled.

#### These major modes can be modified by certain control register settings.

- Due to the new gain settings in the TX path, the maximum input voltage is limited to 0.8 Vpp.
- In both voiceband paths, the value range for voice samples is confined to 97.5%, i.e. to [-31948, 31947] or [8334H, 7CCBH] in X-GOLD™215.
- On the TX path, 83% "1"s on the VTPDM line correspond to a 16-bit value of 7CCBH and 17% "1"s correspond to a 16-bit value of 8334H at the digital filter output. Thus the usable range is 66%. This range can be scaled to 100% by Firmware.
- The high-pass functions of the voiceband filters have to be implemented in firmware on TEAKLite®.

## 3.12.2 Digital Part

The digital part of the X-GOLD™215 audio front-end comprises an interface to the TEAKLite® bus, interfaces to the interrupt units of TEAKLite®, digital interpolation filters for oversampling digital-to-analog conversion, digital decimation filters for analog-to-digital conversion and an interface to the analog part of the audio front-end. For the digital microphone all the filtering is done in a dedicated hardware. The output sample stream is then fed in a duplicated ring buffer structure like the data from the analog microphone path (after A/D conversion and subsequent digital filtering).

#### Interpolation Filter

The interpolation path of the X-GOLD™215 audio front-end increases the sampling rate of the audio samples to the rate of the digital-to-analog converter. Because the input sampling rates can vary between 8 kHz and 47.619 kHz the filter characteristic and oversampling ratio can be adjusted to the respective sampling rate. The requirements for the interpolation filters depend on the sampling rate, because a sufficient out-of-band discrimination in the audio frequency band (20 Hz,...,20 kHz) has to be ensured.

#### Decimation Filter

The digital decimation filter on X-GOLD™215 has two operating modes: 8 kHz output sampling rate and 16 kHz output sampling rate (or 16 kHz output sample rate and 16kHz bandwidth in case of doubled ASMD clock).

## 3.12.3 Analog Part

The analog part of the X-GOLD™215 audio front-end in audio-out direction consists of a stereo digital to analog converter (multi-bit oversampling converter) which transforms the output of the digital interpolation filter into analog signals. It is followed by the gain control/amplifier section. The DAC outputs can be switched to several output buffers. In audio-in section there is an input multiplexer which selects either one of two differential microphone inputs to be connected to the low-noise amplifier and analog pre-filter. The signals from the analog pre-filter are input to a second-order sigma-delta analog-to-digital converter. In addition there is a connection for FM-radio playing.

#### Audio-out Part

The analog audio-out part consists of two multi-bit digital-to-analogue converters (DAC) and an output stage. The signal sources are switched to the output drivers in the output stage. The output drivers consist of: a) one mono, differential class-D Loudspeaker driver, b) one mono, differential Earpiece driver and c) one stereo, single-ended (with uni- or bipolar signals), Headset driver.

#### Digital-to-analog converters

The multi-bit oversampling DACs of the X-GOLD™215 audio front-end convert the 16-bit data words coming from the digital interpolation filters to analogue signals.

#### Output Amplifier

The different output buffers in X-GOLD<sup>TM</sup>215 are driven by the outputs of the selection block. The differential earpiece driver can be used to drive a 16  $\Omega$  earpiece and works in differential. The two single ended headset drivers can be used to drive a 16  $\Omega$  headset. They can work unipolar mode, where an AC coupling of the headset might be needed, or can work also in bipolor mode. The differential loudspeaker driver can be used to drive a 8  $\Omega$  loudspeaker. As it is a class-D amplifier the needed suppression of the higher harmonics of the switching signals has to be achieved by the external circuitry. The buffers are designed to be short circuit protected.



Figure 3.12.3 Switching for R/L DACs onto Buffers



Figure 3.12.4 Different Application Scenarios

In order to achieve the single-speaker concept by parallel connection of Earpiece and Headset amplifier the Earpiece amplifier have to sustain the up to 5 V voltage of the class-D amplifier.

#### Audio-in Path

The audio-in path of X-GOLD™215 provides two differential microphone input sources, MIC1and MIC2.

- The inputs for microphone MIC1 are MICP1 and MICN1.
- The inputs for microphone MIC2 are MICP2 and MICN2.

The audio-in path consists of an input selector, a low noise amplifier and following pre-filter with gain control, a second order  $\Sigma\Delta$ -converter and a digital decimation filter. It supports both standard GSM (bandwidth 3.5 kHz) and wideband (bandwidth 7 kHz) speech bands.

The differential input signal from the microphone first passes a low noise amplifier and following pre-filter and an anti-aliasing pre-filtering stage achieving and overall variable gain ranging from 0 dB to +39 dB . The signal is then modulated by a second order  $\Sigma\Delta$ -converter which is clocked with the same clock rate as the digital to analog converters. The  $\Sigma\Delta$ -converter delivers a 1-bit pulse density modulated data stream at a rate of 2 MHz to the digital decimation filter which reduces the rate to 8 kHz or 16 kHz, depending on the current mode.

To improve SNR the sample frequency can be doubled in dedicated modes and the modulated data stream is 4MHz instead of 2 MHz.

#### Microphone Supply

X-GOLD™215 has a single ended power-supply concept for electret microphones:

For both modes a minimal load capacitance of t.b.d. nF is necessary to guarantee stable operation of the buffer.

The maximal load capacitance must not exceed t.b.d. nF.

2 microphone supplies VMIC and VUMIC are available. The supply VUMIC has a ultra-low-power mode, where the current consumption is minimum, whilst at the same time the noise performance is reduced.

For this purpose the VUMIC is directly supplied out of the VMIC regulator, the Mic-Buffer can be switched off and only the quiescent current of the VMIC regulator is present.

This mode can be used to supply a headset and allow accessory detection with highly reduced current consumption For normal operation the supply can be switched to normal operation mode with improved noise performance. In case of an digital microphone VMIC can be used for supplying this microphone.



Figure 3.12.5 Typical Microphone Supply Generation (alternative)

## 3.13 Camera Interface(2M Fixed Focus Camera)

#### 3.13.1 XMM215 Camera Interface

The Camera Interface (CIF) represents a complete video and still picture input interface (see Figure 26). The CIF contains image processing, scaling, and compression functions. The integrated image processing unit supports image sensors with integrated YC<sub>b</sub>C, processing.

Scaling is used for downsizing the sensor data for either displaying them on the LCD, or for generating data streams for MPEG-4 compression. In general,  ${\rm YC_bC_r}$  4:2:2 JPEG compressed images should use the full sensor resolution, but they can also be downscaled to a lower resolution for smaller JPEG files. Scaling also can be used for digital zoom effects, because the scalers are capable of up-scaling as well.

CIF

All data is transmitted via the memory interface to an AHB bus system using a bus master interface. Programming is done by register read/write transactions using an AHB slave interface.



Figure 3.13.1 Block Diagram of Camera Interface

#### **Functional Overview of CIF**

The following list gives an overview over the CIF's functionality:

- 78 MHz system clock
- 78 MHz sensor clock
- 78 MHz JPEG encoder clock
- 32-bit AHB slave programming interface
- ITU-R BT 601 compliant video interface supporting YC<sub>b</sub>C<sub>r</sub>
- ITU-R BT 656 compliant video interface supporting YC<sub>b</sub>C<sub>r</sub> data
- 8-bit camera interface
- 12-bit resolution per color component internally
- YC<sub>b</sub>C<sub>r</sub> 4:2:2 processing
- Hardware JPEG encoder incl. JFIF1.02 stream generator and programmable quantization and Huffman tables
- Windowing and frame synchronization
- Continuous resize support
- Frame skip support for video (e.g. MPEG-4) encoding
- Macro block line, frame end, capture error, data loss interrupts and sync. (h\_start, v\_start) interrupts
- Programmable polarity for synchronization signals
- Luminance/chrominance and chrominance blue/red swapping for YUV input signals
- Maximum input resolution of 3 Mpixels (2048x1536 pixels)
- Main scaler with pixel-accurate up- and down-scaling to any resolution between 3 MP (2048x1536) and 32x16
- pixel in processing mode
- Buffer in system memory organized as ring-buffer
- Buffer overflow protection for raw data and JPEG files
- Asynchronous reset input, software reset for the entire IP and separate software resets for all sub-modules
- Interconnect test support
- Semi planar storage format
- Color processing (contrast, saturation, brightness, hue)
- Power management by software controlled clock disabling of currently not needed sub-modules



Figure 3-14 Camera circuit

## 3.14 Touch Interface

The touch controller is an analog interface circuit for a human interface touch screen device.

All of touch functions are composed of a register-based architecture and are controlled through the internal register sets by serial interface.



Figure 3-14 Touch Driver Block Diagram

The SX8650 is designed for 4-wire resistive touch screen applications. The touch screen or touch panel is the resistive sensor and can be activated by either a finger or stylus. The touch screen coordinates and touch pressure are converted into I2C format by the SX8650 for transfer to the host.

The SX8650's channel pins (X+, X-, Y+, Y-) directly connect to standard touch screen X and Y resistive layers. The SX8650 separately biases each of these layers and converts the resistive values into (X,Y) coordinates. The channel pins are protected to VDD and GROUND.





Figure 3-15-2 Touch Driver Block

# 4. TROUBLE SHOOTING

# **4.1 RF Component**



| U301  | Memory(2G NAND/1G SDRAM)<br>H9DA2GH1GHMMMR-46M |  |
|-------|------------------------------------------------|--|
| U201  | Main Chip (A-GOLD RADIO NAND)<br>PMB8815       |  |
| U101  | GPRS QUAD TX DUAL RX MODULE<br>RF7171          |  |
| X201  | Crystal, 26MHz Clock<br>TSX- 3225              |  |
| SW101 | RF Switch<br>MS-156C                           |  |

## 4.2 RX Trouble

**CHECKING FLOW** 



## (1) Checking Crystal Circuit

## **TEST POINT**



## **CHECKING FLOW**



## **CIRCUIT**



## WAVEFORM



# (2) Checking Mobile SW &TX Module

**TEST POINT** 



#### **CIRCUIT**



## WAVEFORM

#### **EGSM Rx**



#### **CHECKING FLOW**



## **EGSM Rx**

|    | MODE       | GpCtrl1 | GpCtrl0 | Tx Enable |
|----|------------|---------|---------|-----------|
|    | STANDBY    | LOW     | LOW     | LOW       |
|    | RX0        | HIGH    | LOW     | LOW       |
| Ξ. | RX1        | HIGH    | HIGH    | LOW       |
|    | 850/900 TX | HIGH    | LOW     | HIGH      |
|    | DCS/PCS TX | HIGH    | HIGH    | HIGH      |

## 4.3 TX Trouble

#### **CHECKING FLOW**



# (1) Checking Crystal Circuit

**TEST POINT** 



## CHECKING FLOW



#### **CIRCUIT**



#### WAVEFORM



# (2) Checking Mobile SW &TX Module





## WAVEFORM

### **EGSM Rx**





#### **EGSM Tx**

| MODE       | GpCtrl1 | GpCtrl0 | Tx Enable |
|------------|---------|---------|-----------|
| STANDBY    | LOW     | LOW     | LOW       |
| RX0        | HIGH    | LOW     | LOW       |
| RX1        | HIGH    | HIGH    | LOW       |
| 850/900 TX | HIGH    | LOW     | HIGH      |
| DCS/PCS TX | HIGH    | HIGH    | HIGH      |

# **4.4 Power On Trouble**

















# **4.5 Charging Trouble**

#### **TEST POINT**







# **4.6 Vibrator Trouble**



# MAIC IC (U201)





SETTING: Enter the engineering mode, and set vibrator on at vibration of BB test menu



# **4.7 LCD Trouble**











Waveform



**Graph 4.7.1. LCD Backlight Control Signal Waveform** 



**Graph 4.7.2. LCD Data Waveform** 



# **4.8 Camera Trouble**











Waveform



Graph 4.8.1. I2C Data Waveform



Graph 4.8.2. MCLK Waveform



Graph 4.8.3.CAM\_VSYNC vs. CAM HSYNC Waveform



Graph 4.8.4.CAM\_HSYNC vs. CAM PCLK Waveform



# 4.9 Speaker / Receiver Trouble





















# 4.10 Earphone Trouble







Headset MIC Resoldering points







In case of absence of HOOK must be removed

#### **CHECKING FLOW** Can you hear the sound from NO The earphone? Resolder J501 **START** YES (3.5π EAR-MIC con) Resolder J501 Set the audio part of the test equipment to PRBS or Continuous wave mode NO NO Can you hear Can you hear Resolder Change the the sound from the sound from FB501,FB502, earphone the earphone? the earphone? FB508,FB509, and try again C539,C540 YES YES Set the audio part of the test Equipment to echo mode Resolder FB504,R508,R509, NO NO an you hear your Change the Can you hear youx C520,C518,C521, voice from earphone voice from C522,C517,C519 and try again Or change the the earphone? the earphone? M501(amp), U201(BB IC) YES Earphone will work properly

# **4.11 Microphone Trouble**







SETTING: After initialize Agilent 8960, Test EGSM900, DCS mode (or GSM850, PCS mode)



# **4.12 SIM Card Interface Trouble**

**TEST POINT** 





- 105 -













# 4.13 Micro SD (uSD) Trouble

**TEST POINT** 







# **4.14 Bluetooth Trouble**







# 4.15 Wifi Trouble



# **TEST POINT**



# TCXO LDO



## WiFi TCXO





# **4.16 FM Radio Trouble**



# CIRCUIT







# 4.17 Touch Trouble







## CIRCUIT









# 5. DOWNLOAD



















































# 6. REPAIR GUIDE

# 6.1 Disassemble Main Board



Main Board (with camera Module)





Disassemble Electric wire and some part that vulnerable to heat.



Main Board (disassembled parts that vulnerable to heat)

- 1. Disassemble the main board from the Phone.
- 2. Disassemble parts that vulnerable to heat around the camera module. ex)Electric wire, Dome Key and so on.

# **6.2 Disassembly Camera Module**



Before disassembling the Camera module



Disassemble the camera module Using Hot-Gun (heat rear of the main Board)



Main board (disassembled the Camera module)

- 1. Temperature of a Hot-Gun : About 330°C~340°C
- 2. Heat rear if the main Board
  - (1) Distance between Hot-Gun and PCB: About 3cm
  - (2) heating time: About 13 sec



BJAY0007201

# **6.3 Ready to Rework Camera**



Spread Flux to pad on the board



Ready to rework Camera



Rework Camera (Bottom Pad Soldering)

- 1. Spread flux to space that removed camera module on the main board.
- 2. Ready to rework Camera module.
- 3. Rework Camera Bottom Pad Soldering.

# **6.4 Assembly Camera (Rework)**





Match Board Pin Map and Camera Pin Map





There are two base line like "L" on the edge of the camera area

- 1. Check the site to assemble Camera.
  - (1) Match Pad #1 and Camera #1 on the board.
- 2. Assemble the camera module matching base line on the board.

# **6.5 Soldering Camera Module and Function Test**



Soldering the camera module using Hot-Gun (heat rear of the main Board)



Assemble another parts that is disassembled before





**Function Test** 

- 1. heat rear if the main Board
  - (1) Distance between Hot-Gun and PCB: About 3cm
  - (2) Heating time: About 13 sec
- 2. Remove the protection tape on the Camera Lens
- 3. Assemble another parts that disassembled before
- 4. Function Test

# 7. BLOCK DIAGRAM



# 8. CIRCUIT DIAGRAM

# RF





# 8-3-1-2\_Push\_168T\_Ver1.0

Micro\_SD



# MCP2-1\_2G\_1G DDRx16\_hynix



# SIM\_CONNECTOR 1(Default)





# SIM\_CONNECTOR 2







4-2-3-1 Micro-USB 5pin normal



4-5-1-1 Battery Connector



**MOTOR** 





KEYPAD INTERFACE



TOUCH CONNECTOR





PWR/HOLD

# **AUDIO SUBSYSTEM**

# 3.5pi HEADSET







# **SPEAKER**



# MAIN RECEIVER







# LCD CONNECTOR





# 6ch\_CHARGING PUMP \_4LDO



# Camera Module (2M reflow)







# BT

# 7-1-1-3\_BCM2070(QCT & IFX Only)\_0.4Pitch



# WIFI







# ${\tt F\_SK\_VOL}$



# 9. BGA PIN MAP

### **BGA IC pin check (U201)**

• Ball Diagram (Top View), PMB8815(A-GOLDRADIO+)



: not in use

10

# **BGA IC pin check (U201)**

■ Ball Diagram (Top View), H9DA2GH1GHMMMR-46M

|   | _   | _         |           | ·    |             |      | •        |      |      |          |            |
|---|-----|-----------|-----------|------|-------------|------|----------|------|------|----------|------------|
|   |     |           |           |      |             |      |          |      |      |          |            |
| Α | NC  | NC        | RE#       | CLE  | VCCn        | CE#  | WEn#     | VDD  | vss  | NC       | Α          |
| В | vss | <b>A4</b> | WP#       | ALE  | VSSn        | R/B# | DQ15     | DQ14 | VDDQ | vssQ     | В          |
| С | VDD | <b>A5</b> | A7        | A9   | DQ9         | DQ11 | DQ13     | DQ12 | vssq | VDDQ     | С          |
| D | A6  | A8        | CKE       | NC   | UDQS        | NC   | UDQ<br>M | DQ10 | VDDQ | vssQ     | D          |
| Е | A12 | A11       | NC        | NC   | NC          | DQ8  | NC       | NC   | vssq | VDDQ     | Е          |
| F | NC  | RAS#      | NC        | NC   | NC          | NC   | NC       | CLK  | VDDQ | vssQ     | F          |
| G | VDD | CAS#      | NC        | NC   | NC          | NC   | NC       | CLK# | vss  | VDD      | G          |
| Н | vss | CS#       | BAO       | NC   | NC          | NC   | LDQS     | LDQM | vssq | VDD<br>Q | н          |
| J | WE# | BA1       | A10       | AO   | DQ7         | NC   | DQ6      | DQ4  | VDDQ | vssQ     | J          |
| K | A1  | A2        | <b>A3</b> | DQO  | DQ1         | DQ2  | DQ3      | DQ5  | VDDQ | vssQ     | К          |
| L | VDD | vss       | A13       | NC   | 103         | 105  | 1014     | 107  | vssq | VDDQ     | L          |
| М | 100 | 101       | 102       | 1010 | vcc         | 106  | 1013     | 1015 | VDDQ | vssQ     | М          |
| N | NC  | 108       | 109       | 1011 | <b>IO12</b> | VSSn | 104      | VDD  | vss  | NC       | N          |
|   |     |           |           |      |             |      |          |      |      |          |            |
| , | 1   | 2         | 3         | 4    | 5           | 6    | 7        | 8    | 9    | 10       | _ <b>_</b> |

1 2 3 4 5 6 7 8 9

NC : not in use

# **10. PCB LAYOUT**



LG-T515\_MAIN\_EAX64145401\_1.0\_TOP



LG-T515\_MAIN\_EAX64145401\_1.0\_BOT



LG-T515\_FPCB\_F\_PWR \_1.0\_TOP



LG-T515\_FPCB\_F\_PWR \_1.0\_BOT



LG-T515\_FPCB\_F\_VOL\_1.0\_TOP



LG-T515\_FPCB\_F\_VOL\_1.0\_BOT

## 11.ENGINEERING MODE

Engineering mode is designed to allow a service man/engineer to view and test the basic functions provided by a handset. The key sequence for switching the engineering mode on is "1809#\*515# "Select. Pressing END will switch back to non-engineering mode operation. Use Up and Down key to select a menu and press 'select' key to progress the test. Pressing 'back key will switch back to the original test menu.

| [1] | BB | TEST |
|-----|----|------|
|-----|----|------|

#### [1-1] Battery Info

[1-1-1] BattInfo

#### [1-2] Bluetooth Test

[1-2-1] Enter Test Mode

[1-2-2] OnOff Test

[1-2-3] Headset Test

[1-2-4] BT Test1

[1-2-5] BT Test2

[1-2-6] Xhtml Compose Print

[1-2-7] Xhtml Print Test

#### [2] Model Version

[2-1] Version

[3] Eng Mode

[3-1] Cell environ.

#### [3-2] PS Layer Info

[3-2-1] Mobility [3-2-2] RadioRes

[3-2-1] Gprs

[3-3] Layer1 Info

[3-4] Reset Information

[3-5] Memory Configuration

[3-6] MemGenConf

[3-7] MemAllUse

[3-8] MemDetUse

[3-9] MemDump

[3-10] Change Frequency Band

[4] Call Timer

[5] Factory Reset

[6] MF TEST

[6-1] All Auto Test

[6-2] Backlight

[6-2-1] BacklightOn [6-2-2] BacklightOff

[6-3] Audio

[6-3-1] Audio Test

[6-4] Vibrator

[6-4-1] VibratorOn [6-4-2] VibratorOff

[6-5] LCD

[6-5-1] Auto LCD

[6-6] Key pad

[6-7] Mic Speaker

[6-8] Camera

[6-8-1] Camera Main Preview

[6-8-2] FlashOn

[6-8-3] FlashOff

[6-8-4] CameraFlashBunning

[6-9] FM Radio

[6-9-1] FM Radio Test

[7] Network selection

[7-1] Automatic

[7-2] GSM850

[7-3] EGSM

[7-4] DCS

[7-5] PCS

## 12. STAND ALONE TEST

### 12.1 Introduction

This manual explains how to examine the status of RX and TX of the model.

#### A. Tx Test

TX test - this is to see if the transmitter of the phones is activating normally.

#### **B. Rx Test**

RX test - this is to see if the receiver of the phones is activating normally.

## 12.2 Setting Method

- 1. Set COM Port
- 2. Check PC Bau Rate
- 3. Confirm EEPROM & Delta file prefix name



4. Click "Update Info" for communicating Phone and Test-Program





- 5. For the purpose of the Standalone Test, Change the Phone to "ptest mode" and then Click the "Reset" bar.
- 6. Select "Non signaling" in the Quick Bar menu. Then Standalone Test setup is finished.



### 12.3 Tx Test

- 1. "Non signaling mode" bar and then confirm "OK" text in the command line.
- 2. Put the number of TX Channel in the ARFCN
- 3. Select "Tx" in the RF mode menu and "PCL" in the PA Level menu.
- 4. Finally, Click "Write All" bar and try the efficiency test of Phone.



#### 12.4 Rx Test

- 1. Put the number of RX Channel in the ARFCN.
- 2. Select "Rx" in the RF mode menu.
- 3. Finally, Click "Write All" bar and try the efficiency test of Phone.
- 4. The Phone must be changed "normal mode" after finishing Test.
- 5. Change the Phone to "normal mode" and then Click the "Reset" bar.



## **13.AUTO CALIBRATION**

#### 13.1 Overview

Auto-cal (Auto Calibration) is the PC side Calibration tool that perform Tx, Rx and Battery Calibration with Agilent 8960(GSM call setting instrument) and Tektronix PS2521G(Programmable Power supply).

Auto-cal generates calibration data by communicating with phone and measuring equipment then write it into calibration data block of flash memory in GSM phone.

# 13.2 Tachyon Directory



## 13.3 Test Equipment Setup



#### 13.4 Procedure

- 1.Turn on the Phone.
- 2. "/LGE/Tachyon/Tachyon.exe"



#### 3. Tachyon Login



#### 4. Tachyon Main



#### 5. Tachyon Loss Setting



### 6. Tachyon Setting

### (1) Tachyon Main UI



- 1) User Model Selection
- 2) Calibration + Auto Test
- 3) Stop
- 4) Auto Test Only
- 5) Loss Setting
- 6) System Option Setting
- 7) Running Option Setting
- 8) Voltage Current Setting
- 9) Show Result Window
- 10) Click after setting

#### (2) Click "System Option Setting" Menu



#### (3) Report Data



#### 7. Click "User Model Selection" Menu





#### 8. Tachyon RF Calibration Start



#### 9. Tachyon RF Calibration finishes.



### 13.5 AGC

This procedure is for Rx calibration.

In this procedure, We can get RSSI correction value. Set band EGSM and press Start button the result window will show correction values per every power level and gain code and the same measure is performed per every frequency.

### 13.6 APC

This procedure is for Tx calibration.

In this procedure you can get proper scale factor value and measured power level.

#### 13.7 ADC

This procedure is for battery calibration.

You can get main Battery Config Table and temperature Config Table will be reset.

### 13.8 Target Power

| BAND     | Description | Low        | Middle     | High       |
|----------|-------------|------------|------------|------------|
|          | Channel     | 128        | 191        | 251        |
| GSM 850  | Frequency   | 824.2 MHz  | 836.8 MHz  | 848.8 MHz  |
|          | Max power   | 32.8 dBm   | 32.8 dBm   | 32.8 dBm   |
|          | Channel     | 975        | 37         | 124        |
| EGSM 900 | Frequency   | 880.2 MHz  | 897.4 MHz  | 914.8 MHz  |
|          | Max power   | 32.8 dBm   | 32.8 dBm   | 32.8 dBm   |
|          | Channel     | 512        | 699        | 885        |
| DCS1800  | Frequency   | 1710.2 MHz | 1747.6 MHz | 1784.8 MHz |
|          | Max power   | 29.8 dBm   | 29.8 dBm   | 29.8 dBm   |
|          | Channel     | 512        | 661        | 810        |
| PCS 1900 | Frequency   | 1850.2 MHz | 1880 MHz   | 1909.8 MHz |
|          | Max power   | 29.8 dBm   | 29.8 dBm   | 29.8 dBm   |

# **14.1 EXPLODED VIEW**



| Location | Description                 |
|----------|-----------------------------|
| GMEY00   | Screw,Machine               |
| ACQ01    | Cover Assembly,Rear         |
| EAA01    | PIFA Antenna,Multiple       |
| EAA00    | PIFA Antenna,Bluetooth      |
| MBG00    | Button                      |
| MBG01    | Button                      |
| MBL00    | Сар                         |
| MBL02    | Сар                         |
| EBR00    | PCB Assembly,Main           |
| EBP00    | Camera Module               |
| ABA00    | Bracket Assembly            |
| EAB00    | Speaker,Dual Mode           |
| EAX00    | PCB,Sidekey                 |
| ADB00    | Dome Assembly,Metal         |
| ABM00    | Can Assembly,Shield         |
| EAX01    | PCB,Sidekey                 |
| SURY00   | Receiver                    |
| SUMY00   | Microphone,Condenser        |
| SJMY00   | Motor,DC                    |
| AEX01    | Keypad Assembly,Main        |
| ACQ00    | Cover Assembly,Front        |
| MJN00    | Tape,Window                 |
| EBD609   | Touch Window Assembly       |
| AEX00    | Keypad Assembly,Sub         |
| EAJ617   | LCD,Module-TFT              |
| ACQ02    | Cover Assembly,Battery      |
| SBPL00   | Mobile Phone Battery Li-Ion |

# 14.2 Replacement Parts < Mechanic component>

**Note:** This Chapter is used for reference, Part order is ordered by SBOM standard on GCSC

| Level | Location No. | Description                | PartNumber  | Spec                                                                   | Remark |
|-------|--------------|----------------------------|-------------|------------------------------------------------------------------------|--------|
| 1     | AGQ000000    | Phone Assembly             | AGQ86490701 | LGT515.AINDUK ZY:Color Unfixed -                                       |        |
| 2     | ACQ100400    | Cover Assembly,<br>EMS     | ACQ85558501 | LGT515.AINDUK ZY:Color Unfixed -                                       |        |
| 3     | GMEY00       | Screw, Machine             | GMEY0014301 | GMEY0014301 BH + 1.4mM 3.5mM MSWR NI PLT N -<br>KUMGANG SCREW CO., LTD |        |
| 3     | ACQ01        | Cover Assembly,<br>Rear    | ACQ85531001 | LGT510.AINDZY UK:URBAN BLACK -                                         |        |
| 4     | EAA01        | PIFA Antenna,<br>Multiple  | EAA62604601 | KI-M08644 QUAD -2DB 5 Metal Stamping Type -<br>KOMATECH CO., LTD       |        |
| 4     | EAA00        | PIFA Antenna,<br>Bluetooth | EAA62604702 | ACA-00153 SINGLE -2DB 5 Metal Stamping Type - MOBITECH CORPORATION     |        |
| 4     | MEZ000900    | Label,<br>After Service    | MLAB0001102 | COMPLEX C2000 CGRSV WA:White C2000 USASV DIA 4.0 PRINTING,             |        |
| 4     | MKC009400    | Window, Camera             | MKC64019401 | COMPLEX LGT510.AINDZY TR:Transparent -                                 |        |
| 4     | MJN061101    | Tape, Protect              | MJN67852101 | COMPLEX LGT510.AINDZY GE:GREEN BLUE -                                  |        |
| 4     | MJN061100    | Tape, Protect              | MJN67852001 | COMPLEX LGT510.AINDZY GE:GREEN BLUE -                                  |        |
| 4     | MJN089300    | Tape, Window               | MJN67808701 | COMPLEX LGT510.AINDZY TR:Transparent -                                 |        |
| 4     | MDJ000000    | Filter                     | MDJ63144201 | COMPLEX LGT510.AINDZY BK:Black -                                       |        |
| 4     | MCQ049800    | Damper, Motor              | MCQ66606301 | COMPLEX LGT510.AINDZY BK:Black -                                       |        |
| 4     | MCQ074200    | Damper, Speaker            | MCQ66606201 | COMPLEX LGT510.AINDZY BK:Black -                                       |        |
| 4     | MCQ000000    | Damper                     | MCQ66606101 | COMPLEX LGT510.AINDZY BK:Black -                                       |        |
| 4     | MCQ009400    | Damper, Camera             | MCQ66606001 | COMPLEX LGT510.AINDZY BK:Black -                                       |        |
| 4     | MCK063300    | Cover, Rear                | MCK66727501 | MOLD PC LGT510.AINDZY UK:URBAN BLACK -                                 |        |
| 4     | MCQ00001     | Damper                     | MCQ66697301 | COMPLEX LGT510.AINDUK BK:Black -                                       |        |
| 4     | MBG00        | Button                     | MBG64263201 | MOLD PC LGT510.AINDZY UK:URBAN BLACK -                                 |        |
| 4     | MBG01        | Button                     | MBG64263301 | MOLD PC LGT510.AINDZY UK:URBAN BLACK -                                 |        |

| Level | Location No. | Description                          | PartNumber  | Spec                                                             | Remark |
|-------|--------------|--------------------------------------|-------------|------------------------------------------------------------------|--------|
| 4     | MBL00        | Сар                                  | MBL64937901 | COMPLEX LGT510.AINDZY UK:URBAN BLACK -                           |        |
| 4     | MBL049500    | Cap,<br>Mobile Switch                | MBL64938001 | COMPLEX LGT510.AINDZY UK:URBAN BLACK -                           |        |
| 4     | MBL02        | Сар                                  | MBL64938101 | COMPLEX LGT510.AINDZY UK:URBAN BLACK -                           |        |
| 3     | EBR00        | PCB Assembly,<br>Main                | EBR73541601 | LGT515.AINDUK 1.0 Main                                           |        |
| 4     | EBR071800    | PCB Assembly,<br>Main, SMT           | EBR73541701 | LGT515.AINDUK 1.0 Main                                           |        |
| 5     | EBR071700    | PCB Assembly,<br>Main, SMT Top       | EBR73528601 | LGT515.AINDUK 1.0 Main                                           |        |
| 6     | EAX010000    | PCB, Main                            | EAX64145401 | LGT510.AINDZY 1.0 FR-4 SBL 6 1.0 Main                            |        |
| 5     | EBR071600    | PCB Assembly,<br>Main,<br>SMT Bottom | EBR73528501 | LGT515.AINDUK 1.0 Main                                           |        |
| 6     | EBP00        | Camera Module                        | EBP61321701 | C2FD-H367A C2FD-H367A 2M hynix 1/5 LG<br>INNOTEK CO., LTD        |        |
| 5     | MEZ002100    | Label                                | MLAZ0038301 | COMPLEX LG-VX6000 ZZ:Without Color PID Label 4 Array PRINTING,   |        |
| 4     | EBR071500    | PCB Assembly,<br>Main, Insert        | EBR73707701 | LGT510.AINDUK 1.0 Main                                           |        |
| 5     | ABA00        | Bracket Assembly                     | ABA74048601 | LGT510.AINDZY BK:Black -                                         |        |
| 6     | MJN000001    | Таре                                 | MJN67831401 | COMPLEX LGT510.AINDZY TR:Transparent -                           |        |
| 6     | MAZ000000    | Bracket                              | MAZ63144801 | MOLD PC LGT510.AINDZY BK:Black -                                 |        |
| 6     | MJN000000    | Таре                                 | MJN67829601 | COMPLEX LGT510.AINDZY TR:Transparent -                           |        |
| 6     | MJN000004    | Таре                                 | MJN67831601 | COMPLEX LGT510.AINDZY TR:Transparent -                           |        |
| 6     | MJN000003    | Таре                                 | MJN67851701 | COMPLEX LGT510.AINDZY TR:Transparent -                           |        |
| 6     | MJN000002    | Таре                                 | MJN67831501 | COMPLEX LGT510.AINDZY TR:Transparent -                           |        |
| 5     | EAB00        | Speaker,<br>Dual Mode                | EAB62308201 | Nd-Fe-B 700mW 8OHM 91DB 720HZ 1812*3.0T wire 15mm DCCA coil WIRE |        |
| 5     | EAX00        | PCB, Sidekey                         | EAX64224101 | LGT510.AINDZY 1.0 POLYI Double 2 0.4 Sidekey                     |        |
| 5     | MDS000000    | Gasket                               | MDS63738901 | COMPLEX LGT510.AINDUK GD:Gold -                                  |        |
| 5     | MCQ043300    | Damper, LCD                          | MCQ66668801 | COMPLEX LGT510.AINDZY BK:Black -                                 |        |
|       |              |                                      |             | •                                                                | •      |

| Level | Location No. | Description                          | PartNumber  | Spec                                                                     | Remark |
|-------|--------------|--------------------------------------|-------------|--------------------------------------------------------------------------|--------|
| 5     | ADB00        | Dome Assembly,<br>Metal              | ADB73678501 | LGT510.AINDZY SV:Silver -                                                |        |
| 5     | ABM00        | Can Assembly,<br>Shield              | ABM73616801 | LGT510.AINDUK SV:Silver -                                                |        |
| 6     | MBK070300    | Can, Shield                          | MBK62972701 | PRESS SUS 0.3 LGT510.AINDZY SV:Silver -                                  |        |
| 6     | MKU101700    | Absorber,<br>Electromagnetic<br>Wave | MKU30343201 | COMPLEX LGT510.AINDUK ZY:Color Unfixed -                                 |        |
| 5     | EAX01        | PCB, Sidekey                         | EAX64224201 | LGT510.AINDZY 1.0 POLYI Double 2 0.4 Sidekey                             |        |
| 5     | RAA050100    | Resin, PC                            | BRAH0001301 | UF-1060                                                                  |        |
| 5     | SURY00       | Receiver                             | SURY0010120 | KR120703W1P ASSY, dB, ohm, 1207*2.5T, 10mm, WIRE, KIRYN TELECOM CO., LTD |        |
| 5     | SUMY00       | Microphone,<br>Condenser             | SUMY0003816 | OBM-410L44-RC1882 -44DB 2.2KOHM OMNI 1TO10V 4x1.0t FPCB BSE CO., LTD.    |        |
| 5     | SJMY00       | Motor, DC                            | SJMY0007104 | 3V 80mA 0A 12KRPM 0RPM 0SEC 0GF.CM 0OHM                                  |        |
| 3     | ACQ003400    | Cover Assembly,<br>Bar               | ACQ85512405 | LGT515.AINDUK UK:URBAN BLACK -                                           |        |
| 4     | AEX01        | Keypad Assembly,<br>Main             | AEX73737401 | LGT510.AINDZY UK:URBAN BLACK -                                           |        |
| 4     | MEZ000000    | Label                                | MLAZ0038303 | COMPLEX LG-LC3200 WA:White PRINTING, PPRI<br>PRINTING                    |        |
| 4     | MJN061104    | Tape, Protect                        | MJN67907001 | COMPLEX LGT510.AINDUK TR:Transparent -                                   |        |
| 4     | MJN061101    | Tape, Protect                        | MJN67906901 | COMPLEX LGT510.AINDUK GE:GREEN BLUE -                                    |        |
| 4     | MJN061100    | Tape, Protect                        | MJN67867201 | COMPLEX LGT510.AINDZY GE:GREEN BLUE -                                    |        |
| 4     | ACQ00        | Cover Assembly,<br>Front             | ACQ85530801 | LGT510.AINDZY UK:URBAN BLACK -                                           |        |
| 5     | MCK032700    | Cover, Front                         | MCK66726801 | MOLD PC LGT510.AINDZY UK:URBAN BLACK -                                   |        |
| 5     | MCQ000000    | Damper                               | MCQ66605801 | COMPLEX LGT510.AINDZY BK:Black -                                         |        |
| 5     | MCQ043300    | Damper, LCD                          | MCQ66605901 | COMPLEX LGT510.AINDZY BK:Black -                                         |        |
| 5     | MJN00        | Tape, Window                         | MJN67807901 | COMPLEX LGT510.AINDZY BK:Black -                                         |        |
| 5     | MET099500    | INSERT, NUT                          | MICE0016907 | MECH_COMMON ZY, ZZ, PRESS, STS, , , ,                                    |        |
| 5     | MDQ000000    | Frame                                | MDQ62956601 | PRESS SUS 0.4 LGT510.AINDZY SV:Silver -                                  |        |

| Level | Location No. | Description                | PartNumber  | Spec                                                                                                                | Remark |
|-------|--------------|----------------------------|-------------|---------------------------------------------------------------------------------------------------------------------|--------|
| 5     | MCQ00001     | Damper                     | MCQ66627001 | COMPLEX LGT510.AINDZY BK:Black -                                                                                    |        |
| 5     | MJN000000    | Таре                       | MJN67834201 | COMPLEX LGT510.AINDZY TR:Transparent -                                                                              |        |
| 4     | EBD609       | Touch Window<br>Assembly   | EBD60946801 | RESISTIVE TOUCH F-F-P None 2.8inch Contact Type -                                                                   |        |
| 4     | AEX00        | Keypad Assembly,<br>Sub    | AEX73737601 | LGT510.AINDZY UK:URBAN BLACK -                                                                                      |        |
| 4     | EAJ617       | LCD,<br>Module-TFT         | EAJ61771701 | LM283DN2A QVGA 2.8INCH 240X320 400CD COLOR<br>70% 4/3 500:1 60Hz Inverter N - TOVIS                                 |        |
| 4     | MJN061103    | Tape, Protect              | MJN67988601 | COMPLEX LGT510.ATURUK TR:Transparent -                                                                              |        |
| 2     | MEZ002100    | Label, Approval            | MLAA0062316 | COMPLEX GU280 OREBK ZZ:Without Color COMPLEX, (empty), , , ,                                                        |        |
| 1     | AAD000000    | Addition Assembly          | AAD85873101 | LGT515.AINDUK UK:URBAN BLACK -                                                                                      |        |
| 2     | ACQ02        | Cover Assembly,<br>Battery | ACQ85636301 | LGT510.AINDUK UK:URBAN BLACK -                                                                                      |        |
| 3     | MCK004100    | Cover, Battery             | MCK66727601 | MOLD PC LGT510.AINDZY UK:URBAN BLACK -                                                                              |        |
| 1     | AGF000000    | Package Assembly           | AGF76280603 | LGT515.AINDUK ZZ:Without Color LG-T515 IND(TR1-1H/IND_UB/MRP_LB/Seal/6WD/500EA)                                     |        |
| 2     | MAY084000    | Box, Unit                  | MAY65139126 | BOX Paper 160 59 120 5 COLOR LGT515.AINDUK ZZ:Without Color LG-T515 IND(TR1-1HW/English)                            |        |
| 2     | MAF086500    | Bag, Vinyl                 | MBAD0005204 | COMPLEX LG-LX260 SPRAG ZZ:Without Color -                                                                           |        |
| 2     | MAY047100    | Box, Master                | MBEE0059801 | COMPLEX KS360.AACNRD ZZ:Without Color TR1-1(=S1T.GSP1, 2.T3) Master Box                                             |        |
| 2     | MEZ047200    | Label,<br>Master Box       | MLAJ0004402 | PRINTING CG300 CGR DG ZZ:Without Color LABEL MASTER BOX(for CGR TDR 2VER. mbox_label) GSM standard_master box label |        |
| 2     | MEZ084000    | Label, Unit                | MLAP0001138 | PRINTING LG-RD6100 RLC ZZ:Without Color GSM standard_Seal label                                                     |        |
| 2     | MEZ084100    | Label, Unit Box            | MLAQ0015213 | PRINTING KG270 INDBK ZZ:Without Color GSM MRP LABEL-Made by LGE(100*48) IND MRP_unit box label                      |        |
| 2     | MEZ000000    | Label                      | MLAZ0050901 | COMPLEX KU990.AGBRBK ZZ:Without Color Battery Warning Label (Lithium ion Battery Label)                             |        |
| 2     | AGJ000000    | Pallet Assembly            | AGJ73418301 | LGA230.AINDZY ZZ:Without Color TR1-1 6side pallet (6Ply-WD pallet+Sleeve_500ea) Assy.                               |        |

| Level | Location No. | Description | PartNumber    | Spec                                                                                          | Remark |
|-------|--------------|-------------|---------------|-----------------------------------------------------------------------------------------------|--------|
| 3     | MGA000000    | Pallet      | I MGA62599501 | COMPLEX LGA230.AINDZY ZZ:Without Color TR1-1<br>6Ply-WD pallet (6side wooden pallet new type) |        |
| 3     | MPBZ00       | Damper      | MPBZ0219601   | COMPLEX KM500 ROMBB ZZ:Without Color -                                                        |        |

# 14.2 Replacement Parts < Main component>

**Note:** This Chapter is used for reference, Part order is ordered by SBOM standard on GCSC

| Level | Location No.                        | Description                   | PartNumber  | Spec                                                                                                                  | Remark |
|-------|-------------------------------------|-------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------|--------|
| 6     | L504,<br>L505                       | Inductor, Multilayer,<br>Chip | ELCH0003842 | LQG15HSR10J02D 100NH 5% - 150mA 1.25OHM<br>600MHZ 8 SHIELD NONE 1.0X0.5X0.5MM R/TP<br>MURATA MANUFACTURING CO., LTD.  |        |
| 6     | CN405                               | Connector, Terminal<br>Block  | ENZY0020701 | KQ13L-4R 4P 2.7 ANGLE SMD R/TP - HIROSE<br>KOREA CO., LTD                                                             |        |
| 6     | R411,<br>R414,<br>R415,<br>R416     | Resistor, Chip                | ERHZ0000505 | MCR01MZP5J681 680OHM 5% 1/16W 1005 R/TP -<br>ROHM.                                                                    |        |
| 6     | ZD402,<br>ZD403,<br>ZD404,<br>ZD405 | Varistor                      | SEVY0003901 | EVL5M02200 5.5V 0% 480F 1.0*0.5*0.6 NONE SMD<br>R/TP AMOTECH CO., LTD.                                                |        |
| 6     | D401,<br>D402,<br>D403              | Diode, TVS                    | EDTY0009401 | VMNZ6.8CST2R 5.78V 0 10V 0A 100mW VMN2 R/TP 2P 1 ROHM.                                                                |        |
| 6     | VA502                               | Varistor                      | SEVY0005201 | EVLC5S02050 5.5V 0% 50F 1.0*0.5*0.6 - SMD R/TP<br>AMOTECH CO., LTD.                                                   |        |
| 6     | VA508,<br>VA509                     | Diode, TVS                    | EDTY0012501 | UCLAMP3311T.TCT SLP1006P2T, 3.3 V, 40 W, R/TP, 4.3 V, 6.5 V, 5 A, R/TP, 2P, 1 SEMTECH CORPORATION                     |        |
| 6     | FB507                               | Filter, Bead                  | SFBH0008102 | BLM15HD182SN1D 1800 ohm 1.0X0.5X0.5 25% 2.2 ohm 0.2A SMD R/TP 2P 0 MURATA MANUFACTURING CO., LTD.                     |        |
| 6     | C531,<br>C532                       | Capacitor, Ceramic,<br>Chip   | ECCH0000122 | MCH155A470JK 47pF 5% 50V NP0 -55TO+125C 1005<br>R/TP - ROHM Semiconductor KOREA<br>CORPORATION                        |        |
| 6     | L108                                | Inductor, Multilayer,<br>Chip | ELCH0001033 | HK1005 1N5S-T 1.5NH 0.3NH - 300mA 0.1OHM 6GHZ<br>8 SHIELD NONE 1.0X0.5X0.5MM R/TP TAIYO<br>YUDEN CO., LTD             |        |
| 6     | L114                                | Inductor, Multilayer,<br>Chip | ELCH0003819 | LQG15HS12NJ02D 12NH 5% - 300mA 0.28OHM<br>3GHZ 8 SHIELD NONE 1.0X0.5X0.5MM R/TP<br>MURATA MANUFACTURING CO., LTD.     |        |
| 6     | L103,<br>L104                       | Inductor, Multilayer,<br>Chip | ELCH0003832 | LQG15HS2N2S02D 2.2NH 0.3NH - 300mA<br>0.12OHM 6GHZ 8 SHIELD NONE 1.0X0.5X0.5MM<br>R/TP MURATA MANUFACTURING CO., LTD. |        |

| Level | Location No.                             | Description                   | PartNumber  | Spec                                                                                                                     | Remark |
|-------|------------------------------------------|-------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------|--------|
| 6     | L202                                     | Inductor, Multilayer,<br>Chip | ELCH0003839 | LQG15HS22NJ02D 22NH 5% - 300mA 0.42OHM<br>1.9GHZ 8 SHIELD NONE 1.0X0.5X0.5MM R/TP<br>MURATA MANUFACTURING CO., LTD.      |        |
| 6     | L504,<br>L505                            | Inductor, Multilayer,<br>Chip | ELCH0003842 | LQG15HSR10J02D 100NH 5% - 150mA 1.25OHM<br>600MHZ 8 SHIELD NONE 1.0X0.5X0.5MM R/TP<br>MURATA MANUFACTURING CO., LTD.     |        |
| 6     | L401,<br>L402                            | Inductor, Multilayer,<br>Chip | ELCH0012503 | LQW15AN56NJ00D 56NH 5% - 200mA 1.17OHM<br>2.8GHZ 25 NON SHIELD NONE 1.0X0.5X0.5MM R/TP<br>MURATA MANUFACTURING CO., LTD. |        |
| 6     | L201                                     | Inductor, Wire<br>Wound, chip | ELCP0009410 | LQM2HPN3R3MG0 LQM2HPN3R3MG0, 3.3 uH, N, 2x2.5x1.0, R/TP, chip power MURATA MANUFACTURING CO., LTD.                       |        |
| 6     | L801                                     | Inductor, Wire<br>Wound, Chip | ELCP0012801 | MIPS2520D1R5-LG 1.5UH 30% - 1.2A 1.2 1.2 0.10HM SHIELD 2.5X2X1MM NONE R/TP FDK CORPORATION.                              |        |
| 6     | CN601                                    | Connector, BtoB               | ENBY0036001 | GB042-40S-H10-E3000 40P 0.4MM STRAIGHT<br>SOCKET SMD R/TP 1M ENGINEERING PLASTIC<br>UL94V-0 AU OVER NI LS Mtron Ltd.     |        |
| 6     | CN401                                    | Connector, I/O                | ENRY0010501 | GU075-5P-SD-E1500 5P 0.65MM ANGLE<br>RECEPTACLE DIP R/TP - LS Mtron Ltd.                                                 |        |
| 6     | J301,<br>J302                            | Card Socket                   | ENSY0022102 | GCA26A-6S-H16-M-E1000 SIM 6P ANGLE SMD R/TP - LS Mtron Ltd.                                                              |        |
| 6     | S301                                     | Socket, Card                  | ENSY0023601 | SCHA4B0402 Micro-SD 8P ANGLE SMD R/TP - ALPS ELECTRIC KOREA CO., LTD.                                                    |        |
| 6     | SW101                                    | Connector, RF                 | ENWY0008701 | MS-156C NONE STRAIGHT SOCKET SMD T/REEL<br>AU 500HM 400mDB HIROSE KOREA CO., LTD                                         |        |
| 6     | Q501                                     | FET                           | EQFP0000101 | 2SJ347 P-CHANNEL MOSFET -20V -7 -0.05A 40OHM<br>100mW SSM R/TP 3P TOSHIBA                                                |        |
| 6     | R207,<br>R216                            | Resistor, Chip                | ERHY0000254 | MCR01MZP5J472 4.7KOHM 5% 1/16W 1005 R/TP -<br>ROHM.                                                                      |        |
| 6     | R302,<br>R303,<br>R304,<br>R305,<br>R306 | Resistor, Chip                | ERHY0000275 | MCR01MZP5J563 56KOHM 5% 1/16W 1005 R/TP -<br>ROHM.                                                                       |        |
| 6     | R102,<br>R103,<br>R104,<br>R520,<br>R521 | Resistor, Chip                | ERHY0003301 | MCR01MZP5J101 100OHM 5% 1/16W 1005 R/TP -<br>ROHM.                                                                       |        |
| 6     | R409                                     | Resistor, Chip                | ERHZ0000203 | MCR01MZP5F1002 10KOHM 1% 1/16W 1005 R/TP - ROHM.                                                                         |        |

| Level | Location No.                                                                                   | Description    | PartNumber  | Spec                                                 | Remark |
|-------|------------------------------------------------------------------------------------------------|----------------|-------------|------------------------------------------------------|--------|
| 6     | R204,<br>R407,<br>R514                                                                         | Resistor, Chip | ERHZ0000204 | MCR01MZP5F1003 100KOHM 1% 1/16W 1005 R/TP -<br>ROHM. |        |
| 6     | R405,<br>R607,<br>R608                                                                         | Resistor, Chip | ERHZ0000206 | MCR01MZP5F10R0 10OHM 1% 1/16W 1005 R/TP -<br>ROHM.   |        |
| 6     | R402                                                                                           | Resistor, Chip | ERHZ0000295 | MCR01MZP5F5102 51KOHM 1% 1/16W 1005 R/TP - ROHM.     |        |
| 6     | R403,<br>R404,<br>R504                                                                         | Resistor, Chip | ERHZ0000402 | MCR01MZP5J100 10OHM 5% 1/16W 1005 R/TP -<br>ROHM.    |        |
| 6     | R213,<br>R308,<br>R311,<br>R312,<br>R313                                                       | Resistor, Chip | ERHZ0000405 | MCR01MZP5J103 10KOHM 5% 1/16W 1005 R/TP -<br>ROHM.   |        |
| 6     | R209,<br>R214,<br>R215,<br>R301,<br>R309,<br>R310,<br>R418,<br>R503,<br>R601,<br>R605,<br>R606 | Resistor, Chip | ERHZ0000406 | MCR01MZP5J104 100KOHM 5% 1/16W 1005 R/TP -<br>ROHM.  |        |
| 6     | R501,<br>R510                                                                                  | Resistor, Chip | ERHZ0000407 | MCR01MZP5J105 1MOHM 5% 1/16W 1005 R/TP -<br>ROHM.    |        |
| 6     | R217,<br>R218,<br>R408,<br>R509,<br>R518,<br>R522                                              | Resistor, Chip | ERHZ0000443 | MCR01MZP5J222 2.2KOHM 5% 1/16W 1005 R/TP -<br>ROHM.  |        |
| 6     | R513                                                                                           | Resistor, Chip | ERHZ0000445 | MCR01MZP5J224 220KOHM 5% 1/16W 1005 R/TP -<br>ROHM.  |        |
| 6     | R211                                                                                           | Resistor, Chip | ERHZ0000449 | MCR01MZP5J243 24KOHM 5% 1/16W 1005 R/TP -<br>ROHM.   |        |
| 6     | R203                                                                                           | Resistor, Chip | ERHZ0000475 | MCR01MZP5J392 3.9KOHM 5% 1/16W 1005 R/TP - ROHM.     |        |
| 6     | R512                                                                                           | Resistor, Chip | ERHZ0000483 | MCR01MZP5J470 47OHM 5% 1/16W 1005 R/TP -<br>ROHM.    |        |

| Level | Location No.  | Description                              | PartNumber  | Spec                                                                                                                                                       | Remark |
|-------|---------------|------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 6     | R202          | Resistor, Chip                           | ERHZ0000484 | MCR01MZP5J471 470OHM 5% 1/16W 1005 R/TP -<br>ROHM.                                                                                                         |        |
| 6     | R307,<br>R314 | Resistor, Chip                           | ERHZ0000485 | MCR01MZP5J472 4.7KOHM 5% 1/16W 1005 R/TP - ROHM.                                                                                                           |        |
| 6     | R205          | Resistor, Chip                           | ERHZ0000499 | MCR01MZP5J562 5.6KOHM 5% 1/16W 1005 R/TP -<br>ROHM.                                                                                                        |        |
| 6     | R410          | Resistor, Chip                           | ERHZ0000506 | MCR01MZP5J682 6.8KOHM 5% 1/16W 1005 R/TP -<br>ROHM.                                                                                                        |        |
| 6     | R508          | Resistor, Chip                           | ERHZ0000529 | MCR01MZP5J152 1.5KOHM 5% 1/16W 1005 R/TP -<br>ROHM.                                                                                                        |        |
| 6     | R212          | Resistor, Chip                           | ERHZ0000531 | MCR01MZP5J271 270OHM 5% 1/16W 1005 R/TP -<br>ROHM.                                                                                                         |        |
| 6     | R208          | Resistor, Chip                           | ERHZ0002401 | RC1005J123CS 12KOHM 5% 1/16W 1005 R/TP -<br>SAMSUNG ELECTRO-MECHANICS CO., LTD.                                                                            |        |
| 6     | R210          | Resistor, Chip                           | ERHZ0003801 | MCR01MZP5J5R1 5.1OHM 5% 1/16W 1005 R/TP -<br>ROHM.                                                                                                         |        |
| 6     | U501          | IC, Comparator                           | EUSY0250501 | NCS2200SQ2T2G NCS2200SQ2T2G, SC70, 5 PIN, R/TP, Comparator, pin compatible to EUSY0077701 SC70 R/TP 5P - ON SEMICONDUCTOR                                  |        |
| 6     | U302          | IC, Analog Switch                        | EUSY0260001 | FSA2257L10X 1.65~5.5 50SEC 20SEC 0W<br>MICROPAK R/TP 10P 2 FAIRCHILD<br>SEMICONDUCTOR                                                                      |        |
| 6     | U601          | IC, Sub PMIC                             | EUSY0344403 | RT9396GQW QFN, 24, R/TP, 4CH+2LDO, IC, Sub<br>PMICIC, Sub PMIC RICHTEK TECHNOLOGY CORP.                                                                    |        |
| 6     | U803          | IC, LDO Voltage<br>Regulator             | EUSY0407101 | BU28TD4WNVX SSON004, 4, R/TP, 2.8V 150mA<br>Single LDO, IC, LDO Voltage RegulatorIC, LDO Voltage<br>Regulator ROHM.                                        |        |
| 6     | U701          | IC, Bluetooth                            | EUSY0418701 | BCM2070B2KUBXG 2.3VTO5.5V 158.4mW 42P -<br>WLBGA R/TP 42P BROADCOM ASIA DISTRIBUTION<br>PTE LTD                                                            |        |
| 6     | M501          | IC, Audio Sub<br>System                  | EUSY0420001 | TPA2055D3 1.6~5.5V 0W WLCSP R/TP 20P - TEXAS INSTRUMENTS INCO.                                                                                             |        |
| 6     | U201          | IC, Digital Baseband<br>Processor, GSM   | EUSY0429401 | PMB8815 , 281, EDGE Rx, ARM11 208MHz, NAND booting, 2.0Mp, FMR, IC, Digital Baseband Processor BGA R/TP 281P INFINEON TECHNOLOGIES (ASIA PACIFIC) PTE LTD. |        |
| 6     | U402          | IC, Resistive Touch<br>Screen Controller | EUSY0430501 | SX8650 WLCSP , 12 , R/TP , Touch Screen Controller , ; , IC, A/D Converter SEMTECH CORPORATION                                                             |        |

| Level | Location No. | Description                  | PartNumber  | Spec                                                                                                                                                                                | Remark |
|-------|--------------|------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 6     | U802         | IC Assembly                  | EUSY0434401 | BCM43362SKUBG BCM43362SKUBG BROADCOM<br>ASIA DISTRIBUTION PTE LTD                                                                                                                   |        |
| 6     | X801         | Oscillator, TCXO             | EXST0001901 | TG-5010LH-87N 26MHZ 2.5PPM 2.8V<br>32.0x25.0x10.0MM - SMD R/TP EPSON TOYOCOM<br>CORP                                                                                                |        |
| 6     | X202         | Crystal                      | EXXY0024301 | CM315(12.5PF) 32.768KHZ 20PPM 12.5PF 32*15<br>SMD R/TP CITIZEN DISPLAYS CO., LTD.                                                                                                   |        |
| 6     | X201         | Crystal                      | EXXY0025701 | TSX- 3225 TSX- 3225, 26 MHz, 10 PPM, 8 pF, 40 ohm, SMD, 32X25X0.6, X-Tal (Infinion chip), Pb-Free EPSON TOYOCOM CORP                                                                |        |
| 6     | J501         | Jack, Phone                  | EAG62831701 | KJA-PH-3-0176 4P 4P ANGLE R/TP 3.5M BLACK 5P 6.5x12.6x4.0t, Short Detect, All DIP type KSD CO., LTD                                                                                 |        |
| 6     | CN402        | Connector, Terminal<br>Block | EAG62832501 | KQ03LV2-3R 3P 3.00MM ANGLE SMD T/REEL -<br>HIROSE KOREA CO., LTD                                                                                                                    |        |
| 6     | FL101        | Filter, Saw, Dual            | EAM62071301 | B9836 GSM QUAD 1.8*1.4*0.4 SMD R/TP 10P<br>EPCOS PTE LTD.                                                                                                                           |        |
| 6     | U401         | IC, Mini ABB                 | EAN61833301 | LP8727 1.6V to 5.5V 0SEC 0SEC 0W 8 Mini ABB Basic MUIC, Charger IC WL-CSP R/TP 25P NATIONAL SEMICONDUCTOR ASIA PACIFIC PTE. LTD.                                                    |        |
| 6     | U301         | IC, MCP, NAND                | EAN61927501 | H9DA2GH1GHMMMR-46M NAND/2G SDRAM/1G<br>1.7VTO1.95V 8.0x9.0x0.9 TR 130P NAND+DDR<br>SDRAM FBGA 2Gb NAND(LB/128Mx16)+1Gb<br>DRAM(DDR/200MHz/16Mx4x16) HYNIX<br>SEMICONDUCTOR INC.     |        |
| 6     | U101         | Module,<br>Tx Module         | EAT61353301 | RF7171 33DBM, 33DBM, 30DBM, 30DBM 0DB 36%, 36%, 32%, 32% 0A 80UA 0DB 0DBM 0DBM 24P 6.63x5.24x1.015MM GPRS QUAD TX DUAL RX MODULE, SP4T, 6.63*5.24*1.015, 24pin RF MICRO DEVICES INC |        |
| 6     | C524         | Capacitor, Ceramic,<br>Chip  | ECCH0000129 | MCH155A121JK 120pF 5% 50V NP0 -55TO+125C<br>1005 R/TP - ROHM Semiconductor KOREA<br>CORPORATION                                                                                     |        |
| 6     | C231         | Capacitor, Ceramic,<br>Chip  | ECCH0000137 | C1005X7R1H331KT000F 0.33nF 10% 50V X7R -<br>55TO+125C 1005 R/TP - TDK KOREA<br>COOPERATION                                                                                          |        |

| Level | Location No.                                                | Description                 | PartNumber  | Spec                                                                                             | Remark |
|-------|-------------------------------------------------------------|-----------------------------|-------------|--------------------------------------------------------------------------------------------------|--------|
| 6     | C108,<br>C109,<br>C110,<br>C232,<br>C233,<br>C501,<br>C711, | Capacitor, Ceramic,<br>Chip | ECCH0000143 | MCH155CN102KK 1nF 10% 50V X7R -55TO+125C<br>1005 R/TP - ROHM Semiconductor KOREA<br>CORPORATION  |        |
| 6     | C101,<br>C702,<br>C706,<br>C707                             | Capacitor, Ceramic,<br>Chip | ECCH0000155 | MCH153CN103KK 10nF 10% 16V X7R -55TO+125C<br>1005 R/TP - ROHM Semiconductor KOREA<br>CORPORATION |        |
| 6     | C518,<br>C520                                               | Capacitor, Ceramic,<br>Chip | ECCH0000179 | GRM155R71C223K 22nF 10% 16V X7R -55TO+85C 1005 R/TP - MURATA MANUFACTURING CO., LTD.             |        |
| 6     | C118,<br>C120                                               | Capacitor, Ceramic,<br>Chip | ECCH0000180 | GRM1555C1H3R3C 3.3pF 0.25PF 50V NP0 -<br>55TO+125C 1005 R/TP - MURATA<br>MANUFACTURING CO., LTD. |        |
| 6     | C220                                                        | Capacitor, Ceramic,<br>Chip | ECCH0000182 | GRM155R61A104K 0.1uF 10% 10V X5R -55TO+85C 1005 R/TP - MURATA MANUFACTURING CO., LTD.            |        |
| 6     | ZD402,<br>ZD403,<br>ZD404,<br>ZD405                         | Varistor                    | SEVY0003901 | EVL5M02200 5.5V 0% 480F 1.0*0.5*0.6 NONE SMD<br>R/TP AMOTECH CO., LTD.                           |        |
| 6     | VA301                                                       | Varistor                    | SEVY0004001 | EVLC18S02003 18V 0% 3F 1.0*0.5*0.6 NONE SMD<br>R/TP AMOTECH CO., LTD.                            |        |
| 6     | VA506,<br>VA507                                             | Varistor                    | SEVY0005202 | EVLC5S02100 5.5V 0% 100F 1.0*0.5*0.6 UL SMD<br>R/TP AMOTECH CO., LTD.                            |        |
| 6     | FB501                                                       | Filter, Bead                | SFBH0007102 | BLM15AG100SN1D 10 ohm 1.0X0.5X0.5 5 ohm 0.05 ohm 1A SMD R/TP 2P 0 MURATA MANUFACTURING CO., LTD. |        |
| 6     | FB201                                                       | Filter, Bead                | SFBH0007103 | BLM15BB750SN1D 75 ohm 1.0X0.5X0.5 25% 0.4 ohm 0.3A SMD R/TP 2P 0 MURATA MANUFACTURING CO., LTD.  |        |
| 6     | FB701,<br>FB802                                             | Filter, Bead                | SFBH0008101 | BLM15AG601SN1D 600 ohm 1.0X0.5X0.5 25% 0.6 ohm 0.3A SMD R/TP 2P 0 MURATA MANUFACTURING CO., LTD. |        |
| 6     | FL401                                                       | Filter, EMI/Power           | SFEY0007101 | ICVFP10181E301FR ESD/EMI 0HZ 300pF 0H SMD<br>R/TP INNOCHIPS TECHNOLOGY                           |        |
| 6     | FL601,<br>FL602,<br>FL603                                   | Filter, EMI/Power           | SFEY0010501 | ICVE10184E150R101FR ESD/EMI 0HZ 15pF 0H SMD<br>R/TP INNOCHIPS TECHNOLOGY                         |        |

| Level | Location No.                                                        | Description                 | PartNumber  | Spec                                                                                                                      | Remark |
|-------|---------------------------------------------------------------------|-----------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------|--------|
| 6     | FL604,<br>FL605                                                     | Filter, EMI/Power           | SFEY0011601 | ICVE10184E150R500FR ESD/EMI 0HZ 15pF 0H SMD<br>R/TP INNOCHIPS TECHNOLOGY                                                  |        |
| 6     | C505,<br>C514,<br>C515,<br>C516,<br>C517                            | Capacitor, Ceramic,<br>Chip | ECCH0000198 | CL05A225MQ5NSNC 2.2uF 20% 6.3V X5R -<br>55TO+85C 1005 R/TP . SAMSUNG ELECTRO-<br>MECHANICS CO., LTD.                      |        |
| 6     | C212,<br>C213                                                       | Capacitor, Ceramic,<br>Chip | ECCH0002002 | C1005X7R1A473KT000F 47000pF 10% 10V Y5P -<br>30TO+85C 1005 R/TP - TDK CORPORATION                                         |        |
| 6     | C202                                                                | Capacitor, Ceramic,<br>Chip | ECCH0005603 | GRM188R61A225K 2.2uF 10% 10V X5R -55TO+85C 1608 R/TP - MURATA MANUFACTURING CO., LTD.                                     |        |
| 6     | C222,<br>C503                                                       | Capacitor, Ceramic,<br>Chip | ECCH0007803 | CL10A106MP8NNNC 10uF 20% 10V X5R -55TO+85C 1608 R/TP 0.8MM SAMSUNG ELECTRO-MECHANICS CO., LTD.                            |        |
| 6     | C603,<br>C605,<br>C611,<br>C701,<br>C705,<br>C812,<br>C813,<br>C827 | Capacitor, Ceramic,<br>Chip | ECCH0007804 | CL05A225MP5NSNC 2.2uF 20% 10V X5R -55TO+85C 1005 R/TP 0.5MM SAMSUNG ELECTRO-MECHANICS CO., LTD.                           |        |
| 6     | C612,<br>C614                                                       | Capacitor, Ceramic,<br>Chip | ECCH0010501 | GRM1555C1H7R5D 7.5pF C0G TYPE(No X7R)<br>MURATA MANUFACTURING CO., LTD.                                                   |        |
| 6     | C103                                                                | Capacitor, TA,<br>Conformal | ECTH0001704 | F981A226MSA 22uF 20% 10V 2.2A -55TO+85C 4OHM 2.2X1.25X1.2MM NONE SMD R/TP - NICHICON CORPORATION, EAST JAPAN SALES OFFICE |        |
| 6     | C407                                                                | Capacitor, TA,<br>Conformal | ECTH0002703 | TCTAL1A107M8R 0.0001F 20% 10V 50UA - 55TO+125C 0OHM 3.2x1.6x1.1 NONE SMD R/TP ROHM CO., LTD.                              |        |
| 6     | C526                                                                | Capacitor, TA,<br>Conformal | ECTH0004807 | TCM1A106M8R 10F 20% 10V 500mA -55TO+85C 15OHM SMD R/TP ROHM.                                                              |        |
| 6     | C117                                                                | Capacitor, Ceramic,<br>Chip | ECZH0000802 | C1005C0G1H010CT 1pF 0.25PF 50V NP0 -<br>55TO+125C 1005 R/TP - TDK KOREA<br>COOPERATION                                    |        |
| 6     | L117                                                                | Capacitor, Ceramic,<br>Chip | ECZH0000822 | C1005C0G1H1R5CT000F 1.5pF 0.25PF 50V NP0 -<br>55TO+125C 1005 R/TP - TDK KOREA<br>COOPERATION                              |        |
| 6     | C113                                                                | Capacitor, Ceramic,<br>Chip | ECZH0000841 | C1005C0G1H560JT000F 56pF 5% 50V NP0 -<br>55TO+125C 1005 R/TP - TDK KOREA<br>COOPERATION                                   |        |

| Level | Location No.                                                                                                                                                                                               | Description                 | PartNumber  | Spec                                                                                             | Remark |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------|--------------------------------------------------------------------------------------------------|--------|
| 6     | C219                                                                                                                                                                                                       | Capacitor, Ceramic,<br>Chip | ECZH0001210 | C1005Y5V1A474ZT000F 470nF -20TO+80% 10V Y5V -30TO+85C 1005 R/TP - TDK KOREA COOPERATION          |        |
| 6     | C204,<br>C205,<br>C230,<br>C238                                                                                                                                                                            | Capacitor, Ceramic,<br>Chip | ECZH0001217 | GRM155R60J474K 470nF 10% 6.3V X5R -25TO+70C 1005 BK-DUP - MURATA MANUFACTURING CO., LTD.         |        |
| 6     | C201,<br>C203,<br>C206,<br>C216,<br>C217,<br>C224,<br>C302,<br>C303,<br>C304,<br>C307,<br>C308,<br>C309,<br>C311,<br>C312,<br>C313,<br>C315,<br>C318,<br>C402,<br>C405,<br>C413,<br>C414,<br>C528,<br>C530 | Capacitor, Ceramic,<br>Chip | ECZH0003103 | GRM36X7R104K10PT 100nF 10% 10V X7R -<br>55TO+125C 1005 R/TP - MURATA<br>MANUFACTURING CO., LTD.  |        |
| 6     | C221                                                                                                                                                                                                       | Capacitor, Ceramic,<br>Chip | ECZH0025502 | GRM219R60J226M 0.000022F 20% 6.3V X5R - 55TO+85C 2012 R/TP 0.85MM MURATA MANUFACTURING CO., LTD. |        |
| 6     | D401,<br>D402,<br>D403                                                                                                                                                                                     | Diode, TVS                  | EDTY0009401 | VMNZ6.8CST2R 5.78V 0 10V 0A 100mW VMN2 R/TP 2P 1 ROHM.                                           |        |
| 6     | D201,<br>VA501                                                                                                                                                                                             | Diode, TVS                  | EDTY0010501 | RCLAMP1521P.TCT 15V 16.7 28V 4A 0W SLP1006P2<br>R/TP 2P 1 SEMTECH CORPORATION                    |        |
| 6     | ZD501,<br>ZD502                                                                                                                                                                                            | Diode, TVS                  | EDTY0012102 | PESD5V0V1BL SOD882, 5 V, 45 W, R/TP, 5V, 7.8V, 12.5V, 4.8A, 2P, 1 STC CORP.                      |        |
| 6     | C522,<br>C523                                                                                                                                                                                              | Capacitor, Ceramic,<br>Chip | ECCH0000138 | MCH155CN391KK 390pF 10% 50V X7R -55TO+125C 1005 R/TP - ROHM.                                     |        |
| 6     | C506,<br>C507                                                                                                                                                                                              | Capacitor, Ceramic,<br>Chip | ECZH0001108 | C1005X7R1E682KT000F 6.8nF 10% 25V X7R -<br>55TO+125C 1005 R/TP - TDK KOREA<br>COOPERATION        |        |

| Level | Location No.                                                                                                                                                           | Description                     | PartNumber  | Spec                                                                                             | Remark |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------|--------------------------------------------------------------------------------------------------|--------|
| 6     | R201,<br>R805,<br>R806                                                                                                                                                 | PCB ASSY,<br>MAIN,<br>PAD SHORT | SAFP0000401 | LG-LU3000 LGTBK, MAIN, A,                                                                        |        |
| 6     | C531,<br>C532                                                                                                                                                          | Capacitor, Ceramic,<br>Chip     | ECCH0000122 | MCH155A470JK 47pF 5% 50V NP0 -55TO+125C 1005<br>R/TP - ROHM Semiconductor KOREA<br>CORPORATION   |        |
| 6     | L109,<br>L111,<br>L112,<br>L113,<br>L116                                                                                                                               | Inductor, Multilayer,<br>Chip   | ELCH0001408 | LL1005-FHL6N8J 6.8NH 5% - 300mA 0.23OHM<br>5.6GHZ 9 SHIELD NONE 1.0X0.5X0.5MM R/TP<br>TOKO, INC. |        |
| 6     | C408,<br>C703,<br>C704,<br>C801,<br>C803,<br>C824                                                                                                                      | Capacitor, Ceramic,<br>Chip     | ECCH0000110 | MCH155A100D 10pF 0.5PF 50V NP0 -55TO+125C<br>1005 R/TP - ROHM Semiconductor KOREA<br>CORPORATION |        |
| 6     | C208,<br>C214,<br>C215,<br>C218,<br>C310,<br>C401,<br>C404,<br>C411,<br>C412,<br>C508,<br>C509,<br>C604,<br>C608,<br>C609,<br>C610,<br>C807,<br>C828,<br>C829,<br>C830 | Capacitor, Ceramic,<br>Chip     | ECCH0004904 | GRM155R60J105K 1uF 10% 6.3V X5R -55TO+85C<br>1005 R/TP - MURATA MANUFACTURING CO., LTD.          |        |
| 6     | R519,<br>R603                                                                                                                                                          | Wire Pad, Open                  | SAFO0000501 | AX3100 ATL SV_SHIPBACK, MAIN, A, 0OHM_1005_DNI                                                   |        |
| 6     | C111,<br>C510,<br>C511,<br>C519,<br>C527,<br>C529,<br>C533,<br>C534                                                                                                    | Capacitor, Ceramic,<br>Chip     | ECCH0000120 | MCH155A390J 39pF 5% 50V NP0 -55TO+125C 1005<br>R/TP - ROHM Semiconductor KOREA<br>CORPORATION    |        |
| 6     | C409,<br>C502,<br>C821                                                                                                                                                 | Capacitor, Ceramic,<br>Chip     | ECCH0000117 | CL05C270JB5NNNC 27pF 5% 50V NP0 -55TO+125C 1005 R/TP 0.5 SAMSUNG ELECTRO-MECHANICS CO., LTD.     |        |

| Level | Location No.                                      | Description                   | PartNumber  | Spec                                                                                                        | Remark |
|-------|---------------------------------------------------|-------------------------------|-------------|-------------------------------------------------------------------------------------------------------------|--------|
| 6     | C107,<br>C822                                     | Capacitor, Ceramic,<br>Chip   | ECZH0001002 | C1005CH1H0R5BT000F 0.5pF 0.1PF 50V NP0 -<br>55TO+125C 1005 R/TP - TDK KOREA<br>COOPERATION                  |        |
| 6     | R802                                              | Resistor, Chip                | ERHZ0003001 | MCR01MZP5F3002 30KOHM 1% 1/16W 1005 R/TP - ROHM.                                                            |        |
| 6     | L118                                              | Inductor, Multilayer,<br>Chip | ELCH0004711 | 1005GC2T22NJLF 22NH 5% - 200mA 0.8OHM 1.5GHZ<br>8 SHIELD NONE 1.0X0.5X0.5MM R/TP PILKOR<br>ELECTRONICS LTD. |        |
| 6     | C114,<br>C314,<br>C317,<br>C325,<br>C406          | Capacitor, Ceramic,<br>Chip   | ECCH0000115 | MCH155A220JK 22pF 5% 50V NP0 -55TO+125C 1005<br>R/TP - ROHM Semiconductor KOREA<br>CORPORATION              |        |
| 6     | C536,<br>C537                                     | Capacitor, Ceramic,<br>Chip   | ECCH0000163 | C1005X5R473KDT 47nF 10% 10V X5R -55TO+85C 1005 R/TP - NEOTECH CO., LTD                                      |        |
| 6     | BAT201                                            | Capacitor Assembly            | SMZY0023501 | PAS311HR-VG1 3.8 Backup Capacitor 0.03F, Module Assembly, KOREA TAIYO YUDEN.CO., LTD.                       |        |
| 6     | FB801                                             | Filter, Bead                  | EAM62131201 | CIM05J121NC 120 ohm 1.0X0.5X0.5 25% 0.3 ohm 0.5A SMD R/TP 2P 0 SAMSUNG ELECTRO-MECHANICS CO., LTD.          |        |
| 6     | C207,<br>C210,<br>C239,<br>C809,<br>C820,<br>C826 | Capacitor, Ceramic,<br>Chip   | ECZH0001216 | C1005X5R1A224KT000E 220nF 10% 10V X5R -<br>55TO+85C 1005 R/TP - TDK KOREA COOPERATION                       |        |
| 6     | C105,<br>C123,<br>C525,<br>C708,<br>C815,<br>C825 | Capacitor, Ceramic,<br>Chip   | ECZH0000813 | C1005C0G1H101JT 100pF 5% 50V NP0 -55TO+125C<br>1005 R/TP - TDK KOREA COOPERATION                            |        |
| 6     | C229,<br>C305,<br>C601,<br>C602,<br>C606,<br>C607 | Capacitor, Ceramic,<br>Chip   | ECZH0001215 | C1005X5R1A105KT000F 1uF 10% 10V X5R -<br>55TO+85C 1005 R/TP - TDK KOREA COOPERATION                         |        |
| 6     | C209,<br>C240,<br>C241,<br>C810                   | Capacitor, Ceramic,<br>Chip   | ECCH0000113 | MCH155A180J 18pF 5% 50V NP0 -55TO+125C 1005<br>R/TP - ROHM Semiconductor KOREA<br>CORPORATION               |        |

| Level | Location No.                                                                 | Description                   | PartNumber  | Spec                                                                                                          | Remark |
|-------|------------------------------------------------------------------------------|-------------------------------|-------------|---------------------------------------------------------------------------------------------------------------|--------|
| 6     | FB505,<br>FB506,<br>L502,<br>L503                                            | Filter, Bead                  | SFBH0007101 | BLM15AG121SN1D 120 ohm 1.0X0.5X0.5 25% 0.25 ohm 0.5A SMD R/TP 2P 0 MURATA MANUFACTURING CO., LTD.             |        |
| 6     | Q202                                                                         | TR, Bipolar                   | EBK61592601 | 2SC5662 NPN 3V 20V 11V 50mA 500NA 0 150mW<br>VMT3 R/TP 3P ROHM Semiconductor KOREA<br>CORPORATION             |        |
| 6     | FB507                                                                        | Filter, Bead                  | SFBH0008102 | BLM15HD182SN1D 1800 ohm 1.0X0.5X0.5 25% 2.2 ohm 0.2A SMD R/TP 2P 0 MURATA MANUFACTURING CO., LTD.             |        |
| 6     | C104                                                                         | Capacitor, Ceramic,<br>Chip   | ECZH0000846 | C1005C0G1H8R2CT000F 8.2pF 0.25PF 50V NP0 -<br>55TO+125C 1005 R/TP - TDK KOREA<br>COOPERATION                  |        |
| 6     | C102,<br>C119,<br>C121,<br>C320,<br>C321,<br>C322,<br>C323,<br>C324,<br>C403 | Capacitor, Ceramic,<br>Chip   | ECZH0000830 | C1005C0G1H330JT000F 33pF 5% 50V NP0 -<br>55TO+125C 1005 R/TP - TDK KOREA<br>COOPERATION                       |        |
| 6     | L805                                                                         | Inductor, Multilayer,<br>Chip | ELCH0001403 | LL1005-FHL1N0S 1NH 0.3NH - 400mA 0.1OHM<br>20GHZ 7 SHIELD NONE 1.0X0.5X0.5MM R/TP<br>TOKO, INC.               |        |
| 6     | Q201                                                                         | TR, Bipolar                   | EBK61572201 | LSCR523EBFS8 NPN 5V 50V 50V 100mA 100NA<br>120~560 150mW EMT3 R/TP 3P ROHM<br>Semiconductor KOREA CORPORATION |        |
| 6     | R401,<br>R419,<br>R420                                                       | Resistor, Chip                | ERHZ0000486 | MCR01MZP5J473 47KOHM 5% 1/16W 1005 R/TP -<br>ROHM.                                                            |        |
| 6     | VA508,<br>VA509                                                              | Diode, TVS                    | EDTY0012501 | UCLAMP3311T.TCT SLP1006P2T, 3.3 V, 40 W, R/TP, 4.3 V, 6.5 V, 5 A, R/TP, 2P, 1 SEMTECH CORPORATION             |        |
| 6     | R704,<br>R804                                                                | Resistor, Chip                | ERHY0000128 | MCR01MZP5F1502 15KOHM 1% 1/16W 1005 R/TP - ROHM.                                                              |        |
| 6     | VA502                                                                        | Varistor                      | SEVY0005201 | EVLC5S02050 5.5V 0% 50F 1.0*0.5*0.6 - SMD R/TP AMOTECH CO., LTD.                                              |        |
| 6     | R507,<br>R523,<br>R604,<br>R801                                              | Wire Pad, Short               | SAFP0000501 | LG-VS760 VRZ                                                                                                  |        |

| Level | Location No.                                       | Description                   | PartNumber  | Spec                                                                                                                  | Remark |
|-------|----------------------------------------------------|-------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------|--------|
| 6     | R105,<br>R417,<br>R511,<br>R517,<br>R708           | Resistor, Chip                | ERHZ0000404 | MCR01MZP5J102 1KOHM 5% 1/16W 1005 R/TP -<br>ROHM.                                                                     |        |
| 6     | C211,<br>C223                                      | Capacitor, Ceramic,<br>Chip   | ECCH0000151 | CL05B472KB5NNNC 4.7nF 10% 25V X7R - 55TO+125C 1005 R/TP - SAMSUNG ELECTRO-MECHANICS CO., LTD.                         |        |
| 6     | C504,<br>C535,<br>C616,<br>C617,<br>C618,<br>C804, | Capacitor, Ceramic,<br>Chip   | ECCH0002001 | C1005JB0J104KT000F 0.1uF 10% 6.3V Y5P -<br>30TO+85C 1005 R/TP - TDK CORPORATION                                       |        |
| 6     | FL801                                              | Filter, Ceramic               | SFCY0000901 | LFB212G45SG8A166 BPF 2.45KHZ 100Hz SMD R/TP<br>4P MURATA MANUFACTURING CO., LTD.                                      |        |
| 6     | VA401,<br>VA402,<br>VA601                          | Varistor                      | SEVY0001001 | EVLC14S02050 14V 0% 50F 1.0*0.5*0.6 NONE SMD R/TP AMOTECH CO., LTD.                                                   |        |
| 6     | L105,<br>L106,<br>L803                             | Inductor, Multilayer,<br>Chip | ELCH0003826 | LQG15HS3N3S02D 3.3NH 0.3NH - 300mA<br>0.17OHM 6GHZ 8 SHIELD NONE 1.0X0.5X0.5MM<br>R/TP MURATA MANUFACTURING CO., LTD. |        |
| 6     | U801                                               | Module, FEM(Front End Module) | EAT61493101 | XM2400LU-DL1201 10DBM 12.5DB 10% 1UA 7mA<br>1.6DB 23DBM 3.5DBM 12P 1.6x1.6x0.4MM -<br>MURATA MANUFACTURING CO., LTD.  |        |
| 6     | C301,<br>C306                                      | Capacitor, Ceramic,<br>Chip   | ECZH0001421 | C1608X5R0J225KT000N 2.2uF 10% 6.3V X5R - 55TO+85C 1608 R/TP - TDK KOREA COOPERATION                                   |        |
| 6     | C115,<br>C818                                      | Capacitor, Ceramic,<br>Chip   | ECCH0000701 | C1005C0G1H1R2CT000F 1.2pF 0.25PF 50V NP0 -<br>55TO+125C 1005 R/TP - TDK CORPORATION                                   |        |
| 6     | L802                                               | Inductor, Multilayer,<br>Chip | ELCH0001057 | 1005GC2T3N9SLF 3.9NH 0.3NH - 300mA 0.22OHM<br>4GHZ 8 SHIELD NONE 1.0X0.5X0.5MM R/TP<br>PILKOR ELECTRONICS LTD.        |        |
| 6     | C521                                               | Capacitor, Ceramic,<br>Chip   | ECCH0005604 | GRM188R60J106M 10000000 pF, 6.3V, M, X5R, TC, 1608, R/TP, 0.8 mm MURATA MANUFACTURING CO., LTD.                       |        |
| 6     | C816                                               | Capacitor, Ceramic,<br>Chip   | ECCH0000112 | MCH155C150J 15pF 5% 50V NP0 -55TO+125C 1005<br>R/TP - ROHM Semiconductor KOREA<br>CORPORATION                         |        |
| 6     | C802,<br>C806,<br>C814                             | Capacitor, Ceramic,<br>Chip   | ECCH0017601 | CL05A475MQ5NRNC 4.7uF 20% 6.3V X5R - 55TO+85C 1005 R/TP 0.5MM SAMSUNG ELECTRO-MECHANICS CO., LTD.                     |        |

| Level | Location No. | Description                   | PartNumber  | Spec                                                                                                                  | Remark |
|-------|--------------|-------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------|--------|
| 6     | U502         | IC,<br>Analog Switch          | EUSY0186504 | FSA2259UMX QFN , 8 , R/TP , Dual SPDT , ; , IC,<br>Analog Switch FAIRCHILD SEMICONDUCTOR                              |        |
| 6     | L804         | Inductor, Multilayer,<br>Chip | ELCH0004733 | 1005GC2T4N3SLF 4.3NH 0.3NH - 300mA 0.23OHM<br>3.5GHZ 8 SHIELD NONE 1.0X0.5X0.5MM R/TP<br>PILKOR ELECTRONICS LTD.      |        |
| 6     | L110         | Inductor, Multilayer,<br>Chip | ELCH0003816 | LQG15HS3N6S02D 3.6NH 0.3NH - 300mA 0.18OHM<br>6GHZ 8 SHIELD NONE 1.0X0.5X0.5MM R/TP<br>MURATA MANUFACTURING CO., LTD. |        |

## 14.3 Accessory

**Note:** This Chapter is used for reference, Part order is ordered by SBOM standard on GCSC

| Level | Location No. | Description                    | PartNumber  | Spec                                                                                                     | Remark |
|-------|--------------|--------------------------------|-------------|----------------------------------------------------------------------------------------------------------|--------|
| 2     | EBX000000    | Accessory,<br>Data Cable       | SGDY0018001 | LG0029 LG0029 Micro USB, 0.8M ningbo broad telecommunication co., ltd                                    |        |
| 2     | EAB010200    | Earphone,<br>Stereo            | SGEY0003744 | EMB-LGE004MSKB 3mW 16OHM 115DB<br>85HZTO126HZ 1M BLACK 3.5 L TYPE STEREO<br>4POLE PLUG - CRESYN CO., LTD |        |
| 2     | AFN053800    | Manual Assembly,<br>Operation  | AFN75492047 | LGT515.AINDUK ZZ:Without Color LGT515 manual assy for IND                                                |        |
| 3     | MBM087200    | Card, Warranty                 | MBM63456201 | PRINTING LGP990.AINDDW ZZ:Without Color -                                                                |        |
| 3     | SAC000000    | PCSYNC CD                      | SAC35316401 | DATA CD CD -                                                                                             |        |
| 3     | MFL053800    | Manual, Operation              | MFL67202050 | COMPLEX LGT515.AINDUK ZZ:Without Color LGT515 manual for IND                                             |        |
| 2     | EAY060000    | Adapters                       | SSAD0031502 | STA-U12IS 150Vac~350Vac 5.1V 700mA 5060 CE<br>NONE NONE - SALCOMP OY                                     |        |
| 2     | SBPL00       | Mobile Phone<br>Battery Li-lon | SBPL0095402 | LGIP-530A LGIP-530A, 3.7 V, 1100 mAh, 1 CELL,<br>PRISMATIC , 553450, INNERPACK, WW TOCAD<br>DONGHWA      |        |