Дискретная оптимизация весна 2013

Александр Дайняк

http://www.dainiak.com

Минимальное остовное дерево (Minimal Spanning Tree)

- Дан граф с весами на рёбрах
- Требуется выбрать дерево, покрывающее все вершины и имеющее как можно меньший вес
- В отличие от ЗК, решается очень просто: жадным алгоритмом!

- Ещё одна простая метаэвристика: «жадность»
- Жадные алгоритмы хотят всего и Сразу
- Из-за этого «сразу» решение может быть неоптимальным, однако иногда...

- Можно выделить целый класс задач, на которых жадный алгоритм работает оптимально
- Рассмотрим следующую задачу оптимизации:
 - S конечное множество, каждому $s \in S$ приписан вес $w(s) \ge 0$
 - F семейство подмножеств S («допустимые» подмножества)
 - Для каждого $A \subseteq S$ полагаем $w(A) = \sum_{s \in A} w(s)$
 - Требуется найти $A \in F$, такое, что $w(A) \to \max$

- TSP и MST частные случаи указанной задачи:
 - В задаче коммивояжёра
 - $S \coloneqq E(G)$
 - $w(s) \coloneqq (bigconst вес ребра s в исходном графе)$
 - $F \coloneqq \{E' \subseteq E(G) \mid E'$ образует ГЦ в $G\}$
 - Трюк с изменением весов работает только потому, что количество рёбер во всех ГЦ одинаковое!
 - В задаче об остовном дереве:
 - $F = \{E' \subseteq E(G) \mid E'$ образует остовное дерево в $G\}$

- Пусть $\forall A, B \ (A \in F, B \subset A \Rightarrow B \in F)$, то есть подмножество любого допустимого множества тоже допустимо (это свойство F называется наследственностью)
- Жадный алгоритм решения задачи оптимизации с наследственным F:

```
    A := Ø
    if ∃s: A ∪ {s} ∈ F then
        A := A ∪ {argmax w(s)} goto 2
    else
        stop.
```

- Какие требования наложить на структуру (S,F), чтобы жадный алгоритм давал оптимальное решение задачи оптимизации?
- Ответ: пара (S, F) должна быть матроидом

Матроиды

- Матроиды введены в 1935 году Хасслером Уитни, как объекты, удовлетворяющие абстрактным свойствам систем линейно независимых векторов
- Пара (S, F) матроид, если
 - 1. $\forall A, B \ (A \in F, B \subset A \Rightarrow B \in F)$ (наследственность)
 - 2. $\forall C \subseteq S$ все максимальные по включению допустимые подмножества C равномощны.
 - «Максимальное по включению допустимое подмножество в C » означает $A \subseteq C$, такое, что $A \in F$, но $\forall s \in C \setminus A \ A \cup \{s\} \notin F$.

Матроиды

- 1. $\forall A, B \ (A \in F, B \subset A \Rightarrow B \in F)$ Любое подмножество системы линейно независимых векторов само линейно независимо.
- 2. $\forall C \subseteq S$ все максимальные по включению допустимые подмножества C равномощны. Максимальные линейно независимые подмножества фиксированного множества C векторов равномощны: их мощность равна размерности C.

Матроиды и жадный алгоритм

Теорема Радо—Эдмондса о матроидах.

Пусть (S, F) — наследственная система (т.е. выполнен п.1 определения матроида). Тогда следующие утверждения эквивалентны:

- 1. Пара (S, F) матроид.
- 2. При любом выборе неотрицательных весов на S жадный алгоритм даёт оптимальное решение оптимизационной задачи.
- 3. Для любых двух $I_1, I_2 \in F$, таких, что $|I_1| > |I_2|$, найдётся $s \in I_1 \setminus I_2$, для которого $I_2 \cup \{s\} \in F$.

$1 \Rightarrow 2$:

Пусть (S, F) — матроид. Пусть

 $A \in F$, $A = \{a_1, ..., a_m\}$ — множество максимального веса, $B \in F$, $B = \{b_1, ..., b_n\}$ — множество, построенное ж.а.

Можно считать, что A и B максимальные по включению, а значит m=n.

Будем считать, что $w(a_1) \ge w(a_2) \ge \cdots \ge w(a_m)$ и $w(b_1) \ge w(b_2) \ge \cdots \ge w(b_m)$.

Покажем, что $\forall i \ w(b_i) \geq w(a_i)$, и тем самым $w(B) \geq w(A)$.

Покажем, что $\forall i \ w(b_i) \geq w(a_i)$, и тем самым $w(B) \geq w(A)$. Индукция по $i=1,\ldots,m$.

- Неравенство $w(b_1) \ge w(a_1)$ выполнено тривиально.
- Покажем, что $w(b_k) \geq w(a_k)$ в предположении $\forall i \in \{1, ..., k-1\}$ $w(b_i) \geq w(a_i)$. Рассмотрим множество $U = \{s \in S \mid w(s) \geq w(a_k)\}$. Для множеств $A' = \{a_1, ..., a_k\}$ и $B' = \{b_1, ..., b_{k-1}\}$ имеем: $A', B' \in F$, $A', B' \subseteq U$, |A'| > |B'|, следовательно, B' не максимальное по включению допустимое подмножество U и $\exists s \in U \setminus B'$, для которого $B' \cup \{s\} \in F$. Но тогда $w(b_k) \geq w(s) \geq w(a_k)$, что и требовалось.

 $2 \Rightarrow 3$ (доказываем $\neg 3 \Rightarrow \neg 2$):

Допустим, $\exists I_1, I_2 \in F$, такие, что $|I_1| > |I_2|$ и $\forall s \in I_1 \setminus I_2$ $I_2 \cup \{s\} \notin F$.

Рассмотрим набор весов:

$$w(s) = 0$$
 при $s \notin I_1 \cup I_2$
 $w(s) = |I_2| + 2$ при $s \in I_2$
 $w(s) = |I_2| + 1$ при $s \in I_1 \setminus I_2$

Жадный алгоритм при таком наборе весов выберет все элементы множества I_2 , и не сможет добавить к ним ни одного элемента из I_1 , получив итоговый вес $|I_2| \cdot (|I_2| + 2)$, в то время как $w(I_1) = (|I_2| + 1)^2$.

$3 \Rightarrow 1$:

Пусть $C\subseteq S$ — произвольное множество, и $I_1,I_2\subseteq C$, и $I_1,I_2\in F$. Тогда если $|I_1|>|I_2|$, то $\exists s\in I_1\setminus I_2$ такой, что $I_2\cup \{s\}\in F$. Но $I_2\cup \{s\}\subseteq C$, то есть I_2 — не максимальное допустимое подмножество C.

Теорема Радо—Эдмондса доказана $(1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 1)$.

Жадность vs. локальность

- На матроиде корректно будет работать и локальный алгоритм (упражнение!):
 - 1. $A := \forall$ максимальное допустимое множество
 - 2. $N(A) := \{A' \in F \mid A' = (A \setminus \{s\}) \cup \{s'\}, s' \notin A\}$
 - 3. if $\exists A' \in N(A)$: w(A') > w(A) then $A \coloneqq A'$ goto 2

Жадный алгоритм в задаче MST

- Дан граф с весами на рёбрах.
- Требуется выбрать дерево, покрывающее все вершины и имеющее как можно меньший вес
- Формальная постановка:
 - S = E(G)
 - w(s) = (bigconst вес ребра s в исходном графе)
 - $F = \{E' \subseteq E(G) \mid E' \text{ образует остовное дерево в } G\}$
 - Трюк с изменением весов работает потому, что количество рёбер во всех остовных деревьях одинаковое!

Жадный алгоритм в задаче MST

- $F = \{E' \subseteq E(G) \mid E'$ образует остовное дерево в $G\}$ Нет наследственности!
- Но это можно исправить: $F = \{E' \subseteq E(G) \mid E' \text{ образует ациклический подграф в } G\}$

Жадный алгоритм для MST

- $F = \{E' \subseteq E(G) \mid E'$ образует ациклический подграф в $G\}$
- Необходимо проверить п.2 определения матроида: « $\forall C \subseteq E(G)$ все максимальные по включению ациклические подмножества C равномощны».

Жадный алгоритм для MST

- Дан граф с весами на рёбрах
- Требуется выбрать дерево, покрывающее все вершины и имеющее как можно меньший вес
- Матроидная постановка:
 - *S* множество всех рёбер графа
 - F содержит все ациклические подмножества рёбер

Единственность решения оптимизационной задачи

• Решаем задачу:

- S конечное множество, для $A \subseteq S$ полагаем $w(A) = \sum_{s \in A} w(s)$
- F семейство «допустимых» подмножеств S
- Требуется найти $A_{\text{опт}} \in F$, такое, что $w(A_{\text{опт}}) \to max$

• Вопросы:

- Когда решение такой задачи единственное?
- Что будет, если w(s) выбирать случайным образом, например, из множества $\{1,2,\ldots,M\}$?

Лемма об изолировании

Лемма об изолировании. При случайном равномерном независимом выборе весов элементов S из M-элементного множества вероятность единственности решения оптимизационной задачи не меньше $1-\frac{|S|}{M}$.

Происхождение названия леммы: набор весов называется изолирующим для семейства F, если решение оптимизационной задачи на данном наборе весов единственное.

Доказательство леммы об изолировании

Для $s \in S$ рассмотрим величину

$$\alpha(s) = \max_{A \in F: s \notin A} w(A) - \max_{B \in F: s \in B} w(B \setminus \{s\})$$

Допустим, есть два различных множества $A', B' \in F$, на которых достигается максимум веса.

Тогда рассмотрим произвольный
$$s \in B' \setminus A'$$
. Для такого s выполнено $\alpha(s) = \max_{A \in F: s \notin A} w(A) - \max_{B \in F: s \in B} w(B \setminus \{s\}) = w(A') - w(B' \setminus \{s\}) = w(s)$

Следовательно, если $\forall s \in S \ w(s) \neq \alpha(s)$, то решение оптимизационной задачи единственное.

Доказательство леммы об изолировании

Если $\forall s \in S \ w(s) \neq \alpha(s)$, то решение оптимизационной задачи единственное.

$$\alpha(s) = \max_{A \in F: s \notin A} w(A) - \max_{B \in F: s \in B} w(B \setminus \{s\})$$

Заметим, что $\alpha(s)$ не зависит от w(s), поэтому

$$\Pr\{w(s) = \alpha(s)\} \le \frac{1}{M}$$

Теперь можно оценить вероятность единственности решения:

$$\Pr\{\forall s \in S \mid w(s) \neq \alpha(s)\} = 1 - \Pr\{\exists s \in S \colon w(s) = \alpha(s)\} \ge 1 - \sum_{s \in S} \Pr\{w(s) = \alpha(s)\} \ge 1 - \frac{|S|}{M}$$

Резюме

- Локальный поиск и жадность простые подходы, эффективные в некоторых случаях (например, в оптимизационных задачах на матроидах), но, конечно, далеко не во всех
- В оптимизационных задачах при случайном выборе весов решение с большой вероятностью единственное