In [1]:

```
#importing the required packages
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
```

In [2]:

```
#importing and viewing dataset
HouseDF = pd.read_csv('USA_Housing.csv')
HouseDF.head()
```

Out[2]:

ce	Price	Area Population	Avg. Area Number of Bedrooms	Avg. Area Number of Rooms	Avg. Area House Age	Avg. Area Income	
208 Mich 06 674\nL	1.059034e+06	23086.800503	4.09	7.009188	5.682861	79545.458574	0
188 Jo 06 Su Ka	1.505891e+06	40173.072174	3.09	6.730821	6.002900	79248.642455	1
9 06 Stravenue	1.058988e+06	36882.159400	5.13	8.512727	5.865890	61287.067179	2
06 USS Barr	1.260617e+06	34310.242831	3.26	5.586729	7.188236	63345.240046	3
05 USNS Ra	6.309435e+05	26354.109472	4.23	7.839388	5.040555	59982.197226	4
							4

In [3]:

HouseDF.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Avg. Area Income	5000 non-null	float64
1	Avg. Area House Age	5000 non-null	float64
2	Avg. Area Number of Rooms	5000 non-null	float64
3	Avg. Area Number of Bedrooms	5000 non-null	float64
4	Area Population	5000 non-null	float64
5	Price	5000 non-null	float64
6	Address	5000 non-null	object

dtypes: float64(6), object(1)
memory usage: 273.6+ KB

In [4]:

HouseDF.describe()

Out[4]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771e+05
50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669e+06
75%	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210e+06
max	107701.748378	9.519088	10.759588	6.500000	69621.713378	2.469066e+06

In [5]:

HouseDF.columns

Out[5]:

Exploratory Data Analysis

In [6]:

HouseDF.corr()

Out[6]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
Avg. Area Income	1.000000	-0.002007	-0.011032	0.019788	-0.016234	0.639734
Avg. Area House Age	-0.002007	1.000000	-0.009428	0.006149	-0.018743	0.452543
Avg. Area Number of Rooms	-0.011032	-0.009428	1.000000	0.462695	0.002040	0.335664
Avg. Area Number of Bedrooms	0.019788	0.006149	0.462695	1.000000	-0.022168	0.171071
Area Population	-0.016234	-0.018743	0.002040	-0.022168	1.000000	0.408556
Price	0.639734	0.452543	0.335664	0.171071	0.408556	1.000000

In [7]:

sns.heatmap(HouseDF.corr(), annot=True, Linewidth = 2)

C:\Users\Ilakiya\anaconda3\lib\site-packages\seaborn\matrix.py:308: Matplotl ibDeprecationWarning: Case-insensitive properties were deprecated in 3.3 and support will be removed two minor releases later

mesh = ax.pcolormesh(self.plot_data, cmap=self.cmap, **kws)

Out[7]:

<AxesSubplot:>

In [8]:

sns.pairplot(HouseDF)

Out[8]:

<seaborn.axisgrid.PairGrid at 0x1e223d1d400>

In [11]:

In [12]:

```
from sklearn.model_selection import train_test_split

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.4, random_state=43)
```

```
In [13]:
print(X_train.shape)
print(X_test.shape)
print(Y_train.shape)
print(Y_test.shape)
(3000, 5)
(2000, 5)
(3000,)
(2000,)
In [14]:
from sklearn.linear_model import LinearRegression
lm = LinearRegression()
lm.fit(X_train,Y_train)
Out[14]:
LinearRegression()
In [15]:
print(lm.intercept_)
-2627588.9438994704
In [16]:
coeff_df = pd.DataFrame(lm.coef_,X.columns,columns=['Coefficient'])
In [17]:
coeff_df
Out[17]:
                               Coefficient
                                21.393705
            Avg. Area Income
         Avg. Area House Age
                            166749.064003
   Avg. Area Number of Rooms
                            120829.501497
Avg. Area Number of Bedrooms
                              1199.374695
```

Area Population

15.112633

In [18]:

```
#Holding all other features fixed, a 1 unit increase in Avg. Area Income is associated with #Holding all other features fixed, a 1 unit increase in Avg. Area House Age is associated w #Holding all other features fixed, a 1 unit increase in Avg. Area Number of Rooms is associ #Holding all other features fixed, a 1 unit increase in Avg. Area Number of Bedrooms is ass #Holding all other features fixed, a 1 unit increase in Area Population is associated with
```

In [22]:

```
predictions = lm.predict(X_test)
print(predictions)
```

[715948.57982857 1573733.18738268 1149395.67252801 ... 754762.14560837 865576.01768423 1476967.5348202]

In [25]:

```
plt.scatter(Y_test,predictions)
```

Out[25]:

<matplotlib.collections.PathCollection at 0x1e2272ac400>

In [28]:

```
#calculation of r2square
from sklearn.metrics import r2_score
r2_score(Y_test,predictions)
```

Out[28]:

0.9192378242759394

from the scatter plot, we see data is in a line form, which means our model has done good predictions.

In [30]:

```
sns.distplot((Y_test-predictions),bins=50);
```

C:\Users\Ilakiya\anaconda3\lib\site-packages\seaborn\distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-lev el function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

from the above histogram plot, we see data is in bell shape (Normally Distributed), which means our model has done good predictions.

In [32]:

```
from sklearn import metrics

print('MAE:', metrics.mean_absolute_error(Y_test, predictions))
print('MSE:', metrics.mean_squared_error(Y_test, predictions))
print('RMSE:', np.sqrt(metrics.mean_squared_error(Y_test, predictions)))
```

MAE: 81396.74372224537 MSE: 10262306887.381538 RMSE: 101303.04480804878

We have created a Linear Regression Model which we help the real state agent for estimating the house price.

In []: