S.N	EXPERIMENT	# TOTAL PARAMETER	# TRAINABLE PARAMETERS	BEST TRAINING ACCURACY	BEST VALIDATION ACCURACY	OBSERVATION
Basic	Conv 3D					
1	Size check Image size of 160 and 30 frames	1,736,389	1,735,525	-	-	ResourceExha ustedError: OOM when allocating tensor with shape [40,16,30,160, 160]
2	Size check Image size of 160 and 16 frames	1,736,389	1,735,525			Size fits in memory. So number of epochs can be increased to check the performance
3	Reduced Image size Image size of 100, 16 frames, batch size of 30 & 20 epochs	687,813	686,949	89	78	The model is performing decently. So, the model can be experimented with different hyperparamet ers
4	Increasing batch size: Image size of 100, 16 frames, batch size of 60 & 20 epochs	687,813	686,949	86	70	Model is slightly overfitting. So, augmentation and dropouts can be tried.
5	Using Augmentation Image size of 100, 16 frames of batch size 30 & 20 epochs	687,813	686,949	88	76	Augmentation has done a marginal improvement in accuracy but the training time has increased considerably.

7	Increasing Dropout – Image size of 100, 16 frames of batch size 30 & 20 epochs Increasing	687,813 687,813	686,949 686,949	93	77	Overfitting has been reduced upon using dropouts alone.
,	batch size: Image size of 100, batch size of 80 & 20 epochs	067,813	080,949	33	73	starts overfitting as batch size increases
8	Increased dropout with augmentation Image size of 100, 16 frames of batch size 30 & 20 epochs	687,813	686,949	86	82	Combining both dropout and augmentation has reduced overfitting considerably. Getting good results with lesser parameters. But, training time increases as augmentation is used
9	Increased number of epochs — Image size of 100, 16 frames of batch size 30 & 30 epochs	687,813	686,949	89	84	Getting good results with lesser parameters. Slight increase in performance and convergence noticed on increasing epochs.
10	Increased image size – no augmentation- Image size of 160, 16 frames of batch size 30 & 30 epochs	1,736,389	1,735,525	88	87	Getting good results. Parameters increased as image size increases but training time is less as augmentation is not used

11	Increased number of frames - Image size of 160, 20 frames of batch size 30 & 30 epochs Increased	1,736,389 1,736,389	1,735,525 1,735,525	92	88	Increasing number of frames and found Good Results
	image size & augmentation Image size of 160, 16 frames of batch size 20 & 30 epochs		-,, -co,-co			accuracy, increase in image size & augmentation are combined which resulted in very good results
13	Increased kernel size – 2,2,2 kernels are replaced with 3,3,3 filters Image size of 100, 16 frames of batch size 30 & 30 epochs	892,101	891,237	88	82	Experimented with increased kernel size & got Good results
14	Increased kernel size - Image size of 160, 16 frames of batch size 30 & 30 epochs	1,940,677	1,939,813	90	83	Though the model gives good results in a few epochs, its generalisability is not satisfactory
15	Decreasing learning rate - Image size of 100, 16 frames of batch size 30 & 30 epochs	892,101	891,237	88	73	Decreased learning rate could not make a general model in 30 epochs
16	Increased kernel size with augmentation - Image size of 100, 16 frames of batch size 30 & 30 epochs	892,101	891,237	88	83	Good results but training time was more. With and without augmentation, kernel size of 3,3,3 performs almost the same

47	Darley and Line	COC CO4	606 627	0.0	02	Nimalia	
17	Reduced kernel size Image size of 100, 16 frames of batch size 30 & 30 epochs	686,901	686,037	96	82	Number of parameters reduces but Model is slightly overfitting. So trying dropout	
18	Reduced kernel size and increased dropout - Image size of 100, 16 frames of batch size 30 & 30 epochs	686,901	686,037	86	80	Dropout reduces overfitting & Decent performance	
19	Increased image size- Image size of 120, 16 frames of batch size 30 & 30 epochs	899,893	899,029	83	80	Image size in increased to check for increase in accuracy. Decent performance but no improvement in accuracy	
20	Increased image size- Image size of 160, 16 frames of batch size 30 & 30 epochs	1,735,477	1,734,613	87	81	Decent performance. Inference is as image size increases the 2,2,2 kernel model doesn't increase accuracy	
21	Increased neurons in dense layer - Image size of 100, 16 frames of batch size 30 & 30 epochs	1,285,557	1,284,437	88	78	Number of parameters increases and Model slightly overfits	
CNN-RNN MODEL							
22	CNN-RNN Model without transfer learning - Image size of 160, 20 frames of batch size 20 & 30 epochs	5,026,293	5,025,813	92	76	Model overfits	

23	Transfer learning – Mobilenet with GRU – non trainable parameters	3,692,869	461,957	97	46	Poor performance
24	Transfer learning – Mobilenet with GRU – trainable parameters	<mark>3,692,869</mark>	3,668,933	<mark>98</mark>	<mark>92</mark>	Excellent results

• Note: Highlighted Models have good performance

CONV3D MODEL WITH LEAST PARAMETERS: (preferable model for deployment)

Total Parameters: 687,813Training Accuracy: 89Validation Accuracy: 84

o Decision: This model is preferred where low footprint is required

CONV3D BEST PERFORMANCE MODEL:

o Total Parameters: 1,736,389

Training Accuracy: 94Validation Accuracy: 88

o Decision: This model is preferred where low footprint is not mandatory

CNN-RNN TRANSFER LEARNING MODEL:

o Total Parameters: 3,692,869

Training Accuracy: 98Validation Accuracy: 92

 Decision: This model is preferred where high accuracy is the priority without any constraints

As we have to deploy the model in a television according to the problem statement, the conv3D model which gives good results with least parameters can be chosen for deployment.