Opérations sur les Ensembles

Ensemble:

Un ensemble peut être définit de deux façons, soit en explicitant tous ses éléments, on dit qu'il est définit **en extension**, par exemple l'ensemble $A=\{1,2,3,4\}$ est définit en extension ; soit on le définit par une phrase littéraire ou logique qui permet de faire comprendre quels sont les éléments de cet ensemble, et on dit que l'ensemble est définit **en compréhension**, par exemple, l'ensemble B définit par $B=\{x\in Z: -100\le x<100\}$ est définit en compréhension, l'ensemble 2N définit par $2N=\{n\in N: n\ est\ un\ entier\ pair\}$ est un ensemble définit en compréhension. D'une façon générale un ensemble E définit en compréhension s'écrit $E=\{x\in U: P(x)\}$ où il faut indiquer où sont pris les éléments de l'ensemble, ici c'est l'ensemble U, et quelle est la caractéristique de ces éléments, ici c'est l'information P(x)

Ensemble, éléments d'un ensemble et appartenance :

Soit A un ensemble, disons par exemple $A = \{1,2,3,4\}$; les nombres 1,2,3,4 sont les éléments de l'ensemble A; on dit que les 1 appartient à A, et on écrit $1 \in A$,

On a aussi $2 \in A$; $3 \in A$; $4 \in A$.

Le nombre 5 n'appartient pas à l'ensemble A, on écrit dans ce cas $5 \notin A$

Cardinal d'un ensemble fini E: c'est le nombre des éléments de E et on le note card(E)

Dans l'exemple précédant : card(A) = 4

Ensemble vide:

Un ensemble est vide lorsqu'il ne contient aucun élément, on le note \emptyset .

On a $card(\emptyset) = 0$.

Inclusion et égalité

On dit qu'un ensemble F est inclus dans un ensemble E si tout élément de F appartient à l'ensemble E; on écrit $F \subset E$ et on lit F est inclus dans F. On dit aussi que F est une partie de F.

Exemple :
$$E = \{1,2,3,4,5\}, F = \{1,2,3\}, G = \{4,5,6\}$$

Ici F est inclus dans , mais G n'est pas inclus dans E car $G \in G$ mais $G \notin E$; de meme G n'est pas inclus dans G car G

Symboliquement on a : $F \subset E$; $G \not\subset E$; $E \not\subset F$

Exemple d'inclusion : $\mathbb{N} \subset \mathbb{Z}$; $\mathbb{Z} \subset \mathbb{Q}$; $\mathbb{Q} \subset \mathbb{R}$; $\mathbb{R} \subset \mathbb{C}$

Remarque:

L'ensemble vide \emptyset **est inclus dans tous les ensembles**, en effet, pour tout élément x, l'information $x \in \emptyset$ est fausse, et comme le faux implique le vrai et le faux alors l'implication $x \in \emptyset \Longrightarrow x \in A$ est vraie quel que soit l'ensemble A, donc $\emptyset \subset A$.

def

D'une manière générale, on a : $F \subset E \iff \forall x : x \in F \implies x \in E$

def

Et pour la non-inclusion : $F \not\subset E \iff \exists x : x \in F \ et \ x \notin E$

Remarque : Si les ensembles sont définit en compréhension, disons

$$E = \{x \in G : p(x)\}\ et\ F = \{x \in G : q(x)\}\$$

Alors dire que $F \subset E$ revient à dire que $g(x) \Longrightarrow p(x)$

Exercice:

Montrer que l'implication suivante est vraie :

$$(A \subset B \ et \ B \subset C) \Longrightarrow (A \subset C)$$

Egalité de deux ensembles :

On dit que deux ensembles A et B sont égaux si et seulement si A et B ont les mêmes éléments, autrement dit

$$A = B \stackrel{def}{\Longleftrightarrow} [\forall x : x \in A \Longleftrightarrow x \in B] \iff (A \subset B \ et \ B \subset A)$$

def

Remarque : si $A = \{x \in E : p(x)\}\ et\ B = \{x \in E : q(x)\}\ alors\ A = B \iff [p(x) \iff q(x)]$ _

Ensemble des parties d'un ensemble :

Exemple:

Soit $E = \{1,2,3\}$, on a par exemple $\{1\} \subset E$; $\{2,3\} \subset E$; $\emptyset \subset E$...

On peut construire l'ensemble de toutes les parties de E, qu'on note $\mathcal{P}(E)$, et qui est définit en extension par : $\mathcal{P}(E) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$

Les éléments de l'ensemble $\mathcal{P}(E)$ sont des ensembles, ce sont les sous-ensembles de E.

On a :
$$\emptyset \in \mathcal{P}(E)$$
, $\{1\} \in \mathcal{P}(E)$, ..., $\{1,2,3\} \in \mathcal{P}(E)$

Exercice:

1. Décrire l'ensemble des parties des ensembles suivants et déterminer le cardinal de chacun d'eux :

$$\emptyset$$
, $A = \{a\}$, $B = \{a, b\}$, $C = \{a, b, c, d\}$

2. En déduire que si card(E) = n alors $card(\mathcal{P}(E)) = 2^n$

Produit cartésien $E \times F$ de deux ensembles E et F:

$$E \times F = \{(a; b): a \in E \text{ et } b \in F\}$$

Exemple : si $E = \{1, x\}, F = \{2, x, y\}$ alors

$$E \times F = \{(1; 2), (1; x), (1; y), (x; 2), (x; x), (x; y)\}$$

 $Ici card(E) = 2 et card(F) = 3 et card(E \times F) = 6$

D'une manière générale si card(E) = n et card(F) = p alors $card(E \times F) = n \times p$.

Exemple:

On note R^2 le produit cartésien $R \times R$.

Réunion de deux ensembles :

Soient A, B, et C trois ensembles définis par $A = \{1, 2, 3, 4\}$; $B = \{3, 4, 5, 6\}$; $C = \{a, 2, 5, c\}$

On peut considérer un ensemble contenant uniquement tous les éléments de A et tous les éléments de B, c'est l'ensemble $\{1,2,3,4,5,6\}$, on le note $A \cup B$, et on lit « A union B ». Symboliquement on écrit $A \cup B = \{1,2,3,4,5,6\}$

On a de la même façon : $A \cup C = \{1,2,3,4,5,a,c\}$ et $A \cup B \cup C = \{1,2,3,4,5,6,a,c\}$

Exemple:

Si on pose
$$N^- = \{-n : n \in N\}$$
 alors $Z = N^- \cup N$

D'une façon générale on a, on définit la réunion de deux ensembles A et B par :

$$A \cup B = \{x : x \in A \text{ ou } x \in B\}$$

Si
$$A = \{x \in E : p(x)\}\ et\ B = \{x \in F : q(x)\}\ alors\ A \cup B = \{x \in E \cup F : p(x) \lor q(x)\}\$$

Autrement dit : $x \in A \cup B \Leftrightarrow x \in A \ ou \ x \in B$

Si on a plusieurs ensembles $A_1, A_2, ..., A_n$:

$$\begin{array}{c} A_1 \cup A_2 \cup \ldots \cup A_n = \{x \colon x \in A_1 \ ou \ x \in A_2 \ ou \ \ldots \ x \in A_n \\ & \stackrel{def}{\Longleftrightarrow} x \in A_1 \cup A_2 \cup \ldots \cup A_n \stackrel{\Longleftrightarrow}{\Longleftrightarrow} x \in A_1 \ ou \ x \in A_2 \ ou \ \ldots \ x \in A_n \end{array}$$

Exercice:

Montrer que pour tout ensemble A et B on a : $A \subset A \cup B$

Intersection de deux ou plusieurs ensembles

Soient A, B, et C trois ensembles définis par $A = \{1,2,3,4\}$; $B = \{3,4,5,6\}$; $C = \{a,2,5,c\}$ On peut mettre les éléments communs aux ensembles A et B dans un même ensemble, c'est-à-dire mettre les éléments qui sont dans A et dans B en même temps dans un même ensemble, ces éléments sont 3 et 4 et l'ensemble qui va les contenir s'appellera l'**intersection** des ensembles A et B, et il sera noté $A \cap B$ et on le lit « A inter B ». Dans notre exemple on a :

$$A \cap B = \{3,4\}$$

On a aussi:

$$A \cap C = \{2\}; \ B \cap C = \{5\}; \ A \cap B \cap C = \emptyset$$

Exemple : $A = \{x \in Z : x \le 2\}$, $B = \{x \in Z : x \ge -2\}$, $A \cap B = \{-2, -1, 0, 1, 2\}$ D'une façon générale on a :

$$A \cap B = \{x : x \in A \ et \ x \in B\}$$

Si
$$A = \{x \in E : p(x)\}\ et\ B = \{x \in F : q(x)\}\ alors\ A \cap B = \{x \in E \cap F : p(x) \land q(x)\}\$$

def

Autrement dit:

$$x \in A \cap B \iff x \in A \text{ et } x \in B$$

Si $A = \{x \in E : p(x)\}$ et $B = \{x \in F : q(x)\}$ alors $A \cap B = \{x \in E \cap F : p(x) \land q(x)\}$ Et si on a plusieurs ensembles $A_1, A_2, ..., A_n$:

$$A_1 \cap A_2 \cap ... \cap A_n = \{x : x \in A_1 \text{ et } x \in A_2 \text{ et } ... \text{ et } x \in A_n \}$$

$$x \in A_1 \cap A_2 \cap \dots \cap A_n \stackrel{def}{\Longleftrightarrow} x \in A_1 \ et \ x \in A_2 \ et \dots et \ x \in A_n$$

Exercice:

Montrer que pour tout ensemble A et B on a : $A \cap B \subset A$

Remarque : Si les ensembles sont définit en compréhension, par exemple

$$A = \{x \in E : p(x)\}; B = \{x \in F : q(x)\}\ A \cap B = \{x \in E \cap F : p(x) \text{ et } q(x)\}$$

Théorème:

Pour tout ensemble X, Y, Z on a:

- 1. $X \cap X = X$; $X \cup X = X$
- 2. $X \cap Y = Y \cap X$: $X \cup Y = Y \cup X$
- 3. $X \cap (Y \cap Z) = (X \cap Y) \cap Z$; $X \cup (Y \cup Z) = (X \cup Y) \cup Z$)
- 4. $X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$; $X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$

Complémentaire d'une partie d'un ensemble par rapport à cet ensemble :

Soit
$$E = \{1,2,3,4,5\}, H = \{2,3,6,7\} \text{ et } A = \{2,3\}$$

A est bien inclus dans E

Les éléments qui sont dans E et qui ne sont pas dans A s'appelle complémentaire de A dans E, et on le note \bar{A}^E , et on a $\bar{A}^E = \{1,4,5\}$.

On peut considérer de la même façon le complémentaire de A dans H vue que A est une partie de H, et on a $\bar{A}^H = \{6,7\}$.

Remarquons que $A \cup \bar{A}^E = E$ et que $A \cup \bar{A}^H = H$ et que $A \cap \bar{A}^E = \emptyset = A \cap \bar{A}^H$

d'une manière générale, on si A est une partie d'un ensemble , on appelle complémentaire de A dans E l'ensemble de tous les éléments de E qui n'appartiennent pas à A , on note cet ensemble \bar{A}^E .

Symboliquement on a : $\bar{A}^E = \{x \in E : x \notin A\}$

Autrement dit : $x \in \bar{A}^E \iff x \notin A$

Si A est un ensemble définit par une information p(x) sur ses éléments, $A = \{x \in E : p(x)\}$, alors $\overline{A}^E = \{x \in E : \overline{p(x)}\}$ ou $\overline{p(x)}$ est la négation de p(x).

Lois de Morgan:

Soit E un ensemble et A et B deux parties de E, on a :

1.
$$\overline{A \cup B^E} = \overline{A^E} \cap \overline{B^E}$$

2.
$$\overline{A \cap B^E} = \overline{A^E} \cap \overline{B^E}$$

Preuve : on va utiliser une table de vérité pour prouver le 1.

$x \in A$	$x \in B$	$x \in \bar{A}^E$	$x \in \bar{B}^E$	$x \in A \cup B$	$x \in \overline{A \cup B^E}$	$x\in \bar{A}^E\cap \bar{B}^E$
1	1	0	0	1	0	0
1	0	0	1	1	0	0
0	1	1	0	1	0	0
0	0	1	1	0	1	1

On voit que voit dans les deux dernières colonnes, les lignes de mêmes niveaux prennent les mêmes valeurs. Ce qui se traduit par $x \in \overline{A \cup B^E} \iff x \in \overline{A^E} \cap \overline{B^E}$, ce qui veut dire que

$$\overline{A \cup B^E} = \overline{A^E} \cap \overline{B^E}.$$

Faire la même chose pour 2.

Exercice:

Vérifier les deux lois de Morgan dans le cas ou $A = \{1,2,3,4\}, \ B = \{3,4,5,6\}, \ et \ E = \{1,2,3,4,5,6,7,8\}$ Solution :

1.
$$\bar{A}^E = \{5,6,7,8\}, \ \bar{B}^E = \{1,2,7,8\}, \ \bar{A}^E \cap \bar{B}^E = \{7,8\}, \ A \cup B = \{1,2,3,4,5,6\}$$

 $\bar{A} \cup \bar{B}^E = \{7,8\}$

On voit bien que $\overline{A \cup B^E} = \overline{A^E} \cap \overline{B}^E$

2.
$$A \cap B = \{3,4\}, \ \overline{A \cap B^E} = \{1,2,5,6,7,8\}, \ \overline{A^E} \cup \overline{B^E} = \{1,2,5,6,7,8\}$$

Et on voit bien ici aussi que $\overline{A \cap B^E} = \overline{A^E} \cup \overline{B^E}$.

Théorème :

Montrer que pour tout ensembles A, B, C on a :

- 1. $A = A \cap A = A \cup A$
- 2. $A \cap B = B \cap A$ et $A \cup B = B \cup A$
- 3. $A \cap (B \cap C) = (A \cap B) \cap C$ et $A \cup (B \cup C) = (A \cup B) \cup C$
- 4. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ et $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Démonstration

1. Si $x \in A$ est vraie alors la conjonction $(x \in A \text{ et } x \in A)$ et la disjonction $(x \in A \text{ ou } x \in A)$ sont aussi vraies

Les autres propriétés sont laissées en exeercice.

Différence et difference symétrique de deux ensembles :

Exemple:

$$A = \{1,2,3,4\}, \qquad B = \{3,4,5,6\}$$

On peut construire l'ensemble des éléments qui sont dans A et qui ne sont pas dans B, on note cet ensemble A-B, et dans notre exemple $A-B=\{1,2\}$, de même $B-A=\{5,6\}$

On peut aussi construire l'ensemble qui va contenir les éléments qui sont dans B et qui ne sont pas dans A ainsi que les éléments qui sont dans A et qui ne sont pas dans B, autrement dit on construit l'ensemble qui va contenir A-B et B-A, on va le noter $A \Delta B$, lire A delta B, et dans notre exemple $A \Delta B = \{1,2,5,6\}$.

D'une manière générale on a :

$$E-F=\{x\colon x\in E\ et\ x\not\in F\}\quad \text{et}\quad E\mathrel{\triangle} F=(E-F)\cup(F-E)$$
 Si $E=\{x\colon p(x)\}$ et $F=\{x\colon q(x)\}$ alors $E-F=\{x\colon p(x)\mathrel{\wedge} \overline{q(x)}\}$.

Exercice:

Montrer en utilisant les définitions et les lois de Morgan, puis en utilisant une table de vérité que :

1.
$$A \triangle B = (A \cup B) - (A \cap B)$$

2.
$$A - (B \cup C) = (A - B) \cap (A - C)$$

Théorème:

Pour tous sous-ensembles X, Y d'un ensemble E on a :

1.
$$X - X = \emptyset$$
, $X - \emptyset = X$

$$2. \quad \overline{\bar{X}^E}^E = X$$

3.
$$X \cap \bar{X}^E = \emptyset$$

4.
$$X - Y = X \cap \overline{Y}$$

5.
$$X \subset Y \iff \bar{Y}^E \subset \bar{X}^E$$

6.
$$(X \cap Y = \emptyset) \iff (X \subset \overline{Y}^E) \iff (Y \subset \overline{X}^E)$$

7.
$$(X \cup Y = E) \Leftrightarrow (\bar{Y}^E \subset X) \Leftrightarrow (\bar{X}^E \subset Y)$$

Preuve:

1.
$$x \in X - X \Leftrightarrow (x \in X \text{ et } x \notin X) \Leftrightarrow X - X = \emptyset$$

2.
$$\left(x \in \overline{X}^E\right) \iff (x \notin \overline{X}^E) \iff x \in X$$

3.
$$x \in (X \cap \bar{X}^E) \iff (x \in X \text{ et } x \notin X) \iff (X \cap \bar{X}^E = \emptyset)$$

4.
$$x \in X - Y \Leftrightarrow (x \in X \text{ et } x \notin Y) \Leftrightarrow (x \in X \text{ et } x \in \overline{Y}) \Leftrightarrow x \in X \cap \overline{Y}$$
.

5.
$$(X \subset Y) \Leftrightarrow (\forall x : x \in X \Rightarrow x \in Y) \Leftrightarrow (\forall x : x \notin Y \Rightarrow x \notin X) \Leftrightarrow (\bar{Y}^E \subset \bar{X}^E)$$
.

hypothèse

6.
$$(x \in X) \xrightarrow{X \cap Y = \emptyset} (x \in X \text{ et } X \cap Y = \emptyset) \Rightarrow (x \notin Y) \Rightarrow (x \in \overline{Y}^E)$$

$$(X \subset \bar{Y}^E) \stackrel{4.}{\Longleftrightarrow} (\overline{\bar{Y}^E}^E \subset \bar{X}^E) \stackrel{2.}{\Longleftrightarrow} (Y \subset \bar{X}^E)$$

Montrons que
$$(X \subset \overline{Y}^E) \implies (X \cap Y = \emptyset)$$

$$(x \in X \text{ et } X \subset \bar{Y}^E) \iff (x \in X \text{ et } x \in \bar{Y}^E) \iff (x \in X \text{ et } x \notin Y) \implies (X \cap Y = \emptyset)$$

$$(x \in Y \text{ et } X \subset \bar{Y}^E) \stackrel{4.}{\Longleftrightarrow} (x \in Y \text{ et } Y \subset \bar{X}^E) \Longrightarrow (x \in \bar{X}^E) \Longrightarrow (x \notin X) \Longrightarrow (X \cap Y = \emptyset)$$

7. On a:
$$(\overline{Y}^E \subset X) \stackrel{4.}{\Longleftrightarrow} (\overline{X}^E \subset \overline{Y}^{\overline{E}^E}) \stackrel{2.}{\Longleftrightarrow} (\overline{X}^E \subset Y)$$

Montrons que
$$X \cup Y = E$$
 sachant que $\overline{Y}^E \subset X$ ou $\overline{X}^E \subset Y$

$$(X \subset E \text{ et } Y \subset E) \Longrightarrow X \cup Y \subset E$$

soit $x \in E$, on faisant raisonnement par disjonction des cas on a :

si $x \in X$ alors $x \in X \cup Y$

si $x \notin X$ alors $x \in \bar{X}^E$ or $\bar{X}^E \subset Y$ donc $x \in Y$ donc $x \in X \cup Y$

si $x \in Y$ alors $x \in X \cup Y$

si $x \notin Y$ alors $x \in \overline{Y}^E$ or $\overline{Y}^E \subset X$ donc $x \in X$ donc $x \in X \cup Y$

 $\mathsf{donc}\, E \subset X \cup Y$

Montrons que $\overline{Y}^E \subset X$ sachant que $X \cup Y = E$

Soit $x \in \overline{Y}^E$, $x \in \overline{Y}^E \iff x \notin Y$ et si on suppose par l'absurde que $x \notin X$ alors $x \notin X \cup Y$ or $X \cup Y = E$ donc $x \notin E$ ce qui est faux, donc nécessairement $x \in X$.