W

Di this document is unlimited.

GENERAL DYNAMICS

Convair Division

A2136-1 (REV 5-65)

,

Reproduced by the CLEARINGHOUSE for Federal Scientific & Technical Information Springfield Va 22151 65

Best Available Copy

CONVAIR - San Diego Applied Manufacturing Research Department 190-2

No:	P. R.	#936,	W. Carrier
Date		July 1	1961
Ref:	P. R.	#936	

FINAL REPORT

MACHINABILITY INDEX

OF

AIRFRAME MATERIALS

Distribution of this document is unlimited.

Frepared by

Mfg. Development Engineer Sr.

Tool Development Technician

Revised 8-16-61

Distribution List: 2.0

Approved by (

Dr. E. L. Armi, Chief

Applied Mfg. Research

FOREWORD

The purpose of this report is to present under one cover the latest available machining data on naterials used in airfrance manufacture.

The information presented herein is a compilation of data on cutting speeds, feeds, tool materials and tool geometry for typical machining operations on most types or classes of work materials.

Section I includes a machinability index showing the ease or difficulty, expressed in percent, to be expected in machining various materials when compared with B-1112 steel having a machinability rating of 160%.

Section II relates suggested cutting speeds, feed rates, tool material, tool geometry and pertinent remarks for machining various work materials.

The information contained herein is not intensed to represent minimum or maximum limits for the contained in its, however, felt to be adequate for initial set-ups providing good sound basic machining practices are employed.

TABLE OF CONTENTS

Subject	Page
FOREWORD	
INTRODUCTION TO SECTION I - MACHINABILITY INDEX	. 1
Aluminum Alloys	2
Copper Alloys	2
Magnesium Alloys	2
Martensitic Low Alloy Steels	2
High Strength Steels	3
Austenatic Stainless Steels	3
Martensitic Stainless Steels	3
Precipitation Hardening Stainless Steels	3
High Temperature Alloys	4
INTRODUCTION TO SECTION II - MACHINING CRITERIA	5
Aluminum Alloys	6
Copper Alloys	9
Magnesium Alloys	12
Martensitic Low Alloy Steels	15
High Strength Steels	15
Austenitic Stainless Steels	24
Martensitic Stainless Steels	24,
Precipitation Hardening Stainless Steels	27
High Temperature Alloys	30
APPENDIX A TOOL MATERIAL	·39
APPENDIX B TOOL NOMENCLATURE	46
APPENDIX C CUTTING FLUIDS	57
DIDI IOCD ADUV	5.3

INTRODUCTION TO SECTION I

MACHINABILITY INDEX

The machinability index given for each alloy, with the exception of titanium alloys, is based upon B-1112 cold drawn steel = 100%. The machinability of an alloy will vary with the variations in hardness and microstructure. However, the index numbers give the general relative machinability of the alloy and can be used in determining proper cutting speeds.

Section I contains information designed to assist Engineering design personnel in selecting, where possible, the material with the highest machinability rating which will result in the least manufacturing difficulty.

The index includes materials most generally used in current aircraft production and were chosen from the Convair Materials Manual. Also included are materials with less extensive current applications, but of greater importance to the design of future air vehicles.

Index ratings are given for the various "Brinell" hardness of materials to show its relationship to machinability, using H.S.S. tools.

Machine power requirements are also shown to further emphasize the machining characteristics of individual materials.

Values given for the index ratings were compiled from available data. Sources for this data are listed in the Bibliography.

⁽¹⁾ Based on B-1113 C.D. = 100%.

Table 1

MACHINABILITY INDEX

	ALUMINUM AL	LOYS	
Туре	Brinell Hardness Number	Index Rating	Avg.Unit Power H.P./Cu.In./Min.
2014-T4	105	140	
2024-T	120	150	
3003	40	180	
5052	· 67	190	0.12 -0.20
5061-T	65	190	
5063-T	65	190	
7075-T	150	120	
7178-T		,	
	COPPER AL	LOYS	
Naval Brass	180	70	0.51
Brass (Half-Hard)	125	140	0.30
Phosphor Bronze (Hal	f-Hard) 172	63	0.33
Aluminum Bronze	166	42	0.60
Manganese Bronze	185		0.36
•	MAGNESIUM A	LLOYS	
AZ31B	•		
AZ61A	32		.09
AZ80A	· to	200	to
MIA	68	200	.10
ZK60A			,20
	MARTENSITIC LOW A	LLOY STEELS	
4130	187	65	• 0.69
4130	400	40	1.10
4140	187	65	0.69
4140	400	40	1,10
	297	45	1.20
4340		45 10	1.20 1.80
4340 4340	297		
4340 4340 Hy-Tuff	297 550	10	1,80
4340 4340 Hy-Tuff Hy-Tuff H-11	297 550 310	10 40	1:80 1.20

^{*5%} Chrome, Hot Work Die Steel

Table 2

MACHINABILITY INDEX (Continued)

AUSTENITIC STAINLESS STEEL

	(non-hardenable by he	eat-treat)	Avg.Unit Power
W	Brinell Hardness Number	Indon Dollar	H.P., Cu.In./Min.
Type	Del diese Manner	Index Rating	11.1.7002711
302	180	50	0.72
303	174	67	0.66
304	163	40	
315	200	35	
321/347	180	4 6	0.76
	MARTENSITIC STAIN	LESS STEEL	
	(hardenable by he	at-treat)	
410	166	55	·0.75
410	370		1.10
431	180	45	
431	370		
PRI	ECIPITATION HARDENING	STAINLESS STEE	<u>EL</u>
17-4PH	363	65	
17-4PH	481	25	•
17-7PH	229	20	1.00
17-7PH	375	16	1.10
AM-350	250	40	0.86
AM-350	484	15	1.20
AM-355	250	40	0.86
AM-355	480	15	1.20
	*HIGH STRENGTH	STEELS	
Super Tricent	180	40	
Super Tricent	575	5-10	
Potomac M	200	45	
Potomac M	570	5-10	•
Thermold J	180	40	
Thermold J	575	10	

^{*}Machinability is similar to H-11, Refer to Tables 10 & 12 for Machining Criteria.

Table 3

MACHINABILITY INDEX (Continued)

## ## ## ## ## ## ## ## ## ## ## ## ##		HIGH TEMPERATU	RE ALLOYS	······································
A-286 321 27 0.82 N-155 15 19-9DL 228 40 Discaloy 350 30 Timken 16-25-6 31 1,10 Refractzloy -26 311 20 1,30 Incoloy 901 20 NICKEL BASED ALLOYS K-Monel 240 35 0.80 KR-Monel 240 45 0.61 Inconel X 363 15 0.90 Nimonic 90 293 10 1.10 Udimet 500 302 9 Inconel 700 302 8 1.40 713 363 6 1.06 R-235 320 8 1.40 713 363 6 1.06 R-235 320 8 1.26 Rene 41 380 6 Hastelloy X 220 20 Hastelloy 56 250 17 COBALT BASED ALLOYS S816 290 9 1.25 G.E. 1570 9 1.30 H.S25 (L 605) 230 12 1,11 OTIT INIUM (PURE AND ALLOYED) Commercial Pure 160-200 38 0.76 2.5 AL-16V 200-375 4 AL-3MO-IV 285-389 24 0.93 6AL - 4V 285-340 26 0.87 8 MN 273-321 13 1.15 A-110AT 285-321 29 0.81 B-120 VCA 270-375	_		T., Jaco 90 - 45	Avg. Unit Power
N-155	Туре	Hardness Number	Index Rating	H.P./Cu.in./Min.
N-155	A-286	321	27	0.82
19-9DL				••••
Discaloy 350 30 Timken 16-25-6 31 1,10 Refractaloy -26 311 20 1,30 Incolog 901 NICKEL BASED ALLOYS NICKEL BASED ALLOYS K-Monel 240 35 0,80 KR-Monel 240 45 0,61 Inconel X 363 15 0,90 Nimonic 90 293 10 1,10 Udimet 500 302 9 1,10 Inconel 700 302 8 1,40 713 363 6 1,06 R-235 320 8 1,26 Rene 41 380 6 1,26 Rene 41 380 6 4 Hastelloy 56 250 17 17 COBALT BASED ALLOYS S816 290 9 1,25 G.E. 1570 9 1,30 H.S25 (L 605) 230 12 1,11 Omnercial Pure 160-200 38 0.76		228		
Timken 16-25-6 Refractaloy -26 Remonal 240 Refractaloy -26 Remonal 240 Refractaloy -26 Remonal 240 Remonal 240 Remonal 15 Refractaloy -26 Remonal 700 Refractaloy -26 Remonal				
NICKEL BASED ALLOYS NICKEL BASED ALLOYS	•			1.10
NICKEL BASED ALLOYS		311		
K-Monel 240 35 0.80 KR-Monel 240 45 0.61 Inconel X 363 15 0.90 Nimonic 90 293 10 1.10 Udimet 500 302 9 Inconel 700 302 8 1.40 713 363 6 1.06 R-235 320 8 1.26 Rene 41 380 6 Hastelloy X 220 20 Hastelloy 56 250 17 COBALT BASED ALLOYS S816 290 9 1.25 G.E. 1570 9 1.30 H.S25 (L 605) 230 12 1.11 Onumercial Pure 160-200 38 0.76 2.5 AL-16V 200-375 4 AL-3MO-IV 285-389 24 0.93 6AL - 4V 285-340 26 0.87 8 MN 273-321 13 1.15 A-110AT 285-321 29 0.81 B-120 VCA 270-375	•	V22		
KR-Monel 240 45 0.61 Inconel X 363 15 0.90 Nimonic 90 293 10 1.10 Udimet 500 302 9 Inconel 700 302 8 1.40 713 363 6 1.06 R-235 320 8 1.26 Rene 41 380 6 Hastelloy X 220 20 Hastelloy 56 250 17 COBALT BASED ALLOYS S816 290 9 1.25 G.E. 1570 9 1.30 H.S25 (L 605) 230 12 1.11		NICKEL BASED	ALLOYS	
KR-Monel 240 45 0.61 Inconel X 363 15 0.90 Nimonic 90 293 10 1.10 Udimet 500 302 9 Inconel 700 302 8 1.40 713 363 6 1.06 R-235 320 8 1.26 Rene 41 380 6 Hastelloy X 220 20 Hastelloy 56 250 17 COBALT BASED ALLOYS S816 290 9 1.25 G.E. 1570 9 1.30 H.S25 (L 605) 230 12 1.11	K-Monel	240	35	0.80
Inconel X 363 15 0,90 Nimonic 90 293 10 1.10 Udimet 500 302 9 Inconel 700 302 8 1.40 713 363 6 1.06 R-235 320 8 1.26 Rene 41 380 6 Hastelloy X 220 20 Hastelloy 56 250 17 COBALT BASED ALLOYS S816 290 9 1.25 G.E. 1570 9 1.30 H.S25 (L 605) 230 12 1.11		=		
Nimonic 90 293 10 1.10 Udimet 500 302 9 Inconel 700 302 8 1.40 713 363 6 1.06 R-235 320 8 1.26 Rene 41 380 6 Hastelloy X 220 20 Hastelloy 56 250 17 COBALT BASED ALLOYS S816 290 9 1.25 G.E. 1570 9 1.30 H.S25 (L 605) 230 12 1.11 TIT NIUM (PURE AND ALLOYED) Commercial Pure 160-200 38 0.76 2.5 AL-16V 200-375 4 AL-3MO-IV 285-389 24 0.93 6AL - 4V 285-340 26 0.87 8 MN 273-321 13 1.15 A-110AT 285-321 29 0.81 B-120 VCA				
Udimet 500 302 9 Inconel 700 302 8 1.40 713 363 6 1.06 R-235 320 8 1.26 Rene 41 380 6 Hastelloy X 220 20 Hastelloy 56 250 17 COBALT BASED ALLOYS S816 290 9 1.25 G.E. 1570 9 1.30 H.S25 (L 605) 230 12 1.11 Commercial Pure 160-200 38 0.76 2.5 AL-16V 200-375 4 AL-3MO-IV 285-389 24 0.93 6AL - 4V 285-340 26 0.87 8 MN 273-321 13 1.15 A-110AT 285-321 29 0.81 B-120 VCA				
Inconel 700 302 8 1.40 713 363 6 1.06 R-235 320 8 1.26 Rene 41 380 6 Hastelloy X 220 20 Hastelloy 56 250 17 COBALT BASED ALLOYS S816 290 9 1.25 G.E. 1570 9 1.30 H.S25 (L 605) 230 12 1.11 Commercial Pure 160-200 38 0.76 2.5 AL-16V 200-375 4 AL-3MO-IV 285-339 24 0.93 6AL - 4V 285-340 26 0.87 8 MN 273-321 13 1.15 A-110AT 285-321 29 0.81 B-120 VCA				
713				1.40
R-235 320 8 1.26 Rene 41 380 6 Hastelloy X 220 20 Hastelloy 56 250 17 COBALT BASED ALLOYS S816 290 9 1.25 G.E. 1570 9 1.30 H.S25 (L 605) 230 12 1.11 Commercial Pure 160-200 38 0.76 2.5 AL-16V 200-375 4 AL-3MO-IV 285-389 24 0.93 6AL - 4V 285-340 26 0.87 8 MN 273-321 13 1.15 A-110AT 285-321 29 0.81 B-120 VCA 270-375				
Rene 41 380 6 Hastelloy X 220 20 Hastelloy 56 250 17 COBALT BASED ALLOYS S816 290 9 1.25 G.E. 1570 9 1.30 H.S25 (L 605) 230 12 1.11 Commercial Pure 160-200 38 0.76 2.5 AL-16V 200-375 4 AL-3MO-IV 285-389 24 0.93 6AL - 4V 285-340 26 0.87 8 MN 273-321 13 1.15 A-110AT 285-321 29 0.81 B-120 VCA 270-375				
Hastelloy X				
COBALT BASED ALLOYS S816 290 9 1.25				,
S816 290 9 1.25 G.E. 1570 9 1.30 H.S25 (L 605) 230 12 1.11 Commercial Pure 160-200 38 0.76 2.5 AL-16V 200-375 4 AL-3MO-IV 285-389 24 0.93 6AL - 4V 285-340 26 0.87 8 MN 273-321 13 1.15 A-110AT 285-321 29 0.81 B-120 VCA 270-375	<u> </u>			
G.E. 1570 H.S25 (L 605) 230 12 1.11 Commercial Pure 160-200 2.5 AL-16V 200-375 4 AL-3MO-IV 285-389 24 0.93 6AL - 4V 285-340 26 0.87 8 MN 273-321 13 1.15 A-110AT 285-321 29 0.81 B-120 VCA 230 12 1.30 1.30 1.30 1.30 1.11	,	COBALT BASED	ALLOYS	
H.S25 (L 605) 230 12 1.11 TIT NIUM (PURE AND ALLOYED) Commercial Pure 160-200 38 0.76 2.5 AL-16V 200-375 4 AL-3MO-IV 285-389 24 0.93 6AL - 4V 285-340 26 0.87 8 MN 273-321 13 1.15 A-110AT 285-321 29 0.81 B-120 VCA 270-375	S816	290	9	1,25
TIT NIUM (PURE AND ALLOYED) Commercial Pure 160-200 38 0.76 2.5 AL-16V 200-375 4 AL-3MO-1V 285-389 24 0.93 6AL-4V 285-340 26 0.87 8 MN 273-321 13 1.15 A-110AT 285-321 29 0.81 B-120 VCA 270-375	G.E. 1570		9	1.30
Commercial Pure 160-200 38 0.76 2.5 AL-16V 200-375 4 AL-3MO-IV 285-389 24 0.93 6AL - 4V 285-340 26 0.87 8 MN 273-321 13 1.15 A-110AT 285-321 29 0.81 B-120 VCA 270-375	H.S25 (L 605)	230	12	1,11
Commercial Pure 160-200 38 0.76 2.5 AL-16V 200-375		OTIT 'NIUM (PURE AN	D ALLOYED)	
2.5 AL-16V 200-375 4 AL-3MO-IV 285-389 24 0.93 6AL-4V 285-340 26 0.87 8 MN 273-321 13 1.15 A-110AT 285-321 29 0.81 B-120 VCA 270-375	Commencial Pure	160-200	20	0.76
4 AL-3MO-IV 285-389 24 0.93 6AL - 4V 285-340 26 0.87 8 MN 273-321 13 1.15 A-110AT 285-321 29 0.81 B-120 VCA 270-375			UU	V, I U
6AL-4V 285-340 26 0.87 8 MN 273-321 13 1.15 A-110AT 285-321 29 0.81 B-120 VCA 270-375			9.4	Λ 00
8 MN 273-321 13 1.15 A-110AT 285-321 29 0.81 B-120 VCA 270-375				
A-110AT 285-321 29 0.81 B-120 VCA 270-375				
B-120 VCA 270-375		•		
			23	V. 01
TIO_XEQ 311_000				
	TIN- TEA	911-900		

 $^{{\}mathfrak O}_{\operatorname{Cutting Speeds}}$ can be increased approximately 50%

① Based on B-1113 = 100

INTRODUCTION TO SECTION II

MACHINING CRITERIA

The data contained in Section II was obtained by reviewing and analyzing all articles listed in the Bibliography, as well as from past AMR projects.

It is intended to provide general machining criteria for persons concerned, and to establish a compilation of useful information on some of the lesser known or unfamiliar materials.

Description of abbreviated tool geometry is detailed in Appendix B of this report.

While no specific recommendations as to tool geometry, tool material, cutting speeds or feeds are made, the data contained in this Section is considered to be accurate and reliable for reasonable tool life and prevention of excessive tooling expenses.

Convair San Diego

Aluminum Alloys

2014-T4

2024

3003

5052

6061-T

6063-T

7075-T6

7178-T6

TABLE 4
MACHINING CRITERIA FOR
ALUMINUM ALLOYS

Operation	Tool Material	Tool Geometry	Depth of Cut (In	Cutting (5) Speed (.) (sfm)	Feed	Remarks
Turning	Carbide C-2	SR: 6° BR: 0° SRF: 5 SCEA: 15°	to .50	to 8,000	.005 to .020 in. per rev.	
Face Milling	H.S.S. M-2	AR: 25° RR: 10° CR: .06 R.RF:10°	.38	to 2,000	.003 to .015 in. per tooth	
Face Milling	Carbide C-2	AR: 0° to 10° RR: 0° to 10° CR: .06 R.RF:8°	.38 ④	to 10,000	.008 to .020 in. per tooth	
End Milling	H.S.S. M-2	Helix: 30° RR: 8° CR: .06 R.RF:8°	to 1.Ø	to 1,000	.004 to 6	
End Milling	Carbide C-2	Helix: 30° RR: 5° CR: .06 R.RF:8°	to 1.	to 10,000	.004 to 6 .008 in. per tooth	
Side Milling	H.S.S. M-2	AR: 25° RR: 18° CR: .06 R.RF:10°	to 1.	to 2,000	.005 to .015 in. per tooth	ų.
Side Milling	Carbide C-2	AR: 10° RR: 10° CR: .06 R.RF:8°	to 1.	to 10,000 .	.005 to015 in. per tooth	•

Convair-San Diego

TABLE 5 MACHED O : RITERIA FOR ALUMINUM ALLOYS (continued)

Operation	Tool Material	Tool Geometry	Depth of Cut(In.)	Cutting (5) Speed (sfm)	Feed F	emarks
Drilling	H.S.S.	PA: 118° LRF: 15°	(3)	to 1,000	1/8-1/4 dia 1/4-1/2 dia 1/2 - 1. dia	004-,007
Tapping	н.s.s.	2 or 3 flutes spiral point 15° hook		to 130		
Reaming	H.S.S.	R.H. spira!	(2/3 rds of drilling speeds	2 to 3 times drilling feeds	

- 6 For end mills under 1°2" reduce feed to .001 .003 I.P.T.
- (5) Within H. P. limitation of machines
- Three-fourths of cutter diameter = cutting width
- 3 Based on two diameter drill depths
- 2 Depth of cut not to exceed diameter
- (1) Based on insert tooling

Copper Alloys

Naval Brass
Brass (Half Hand)
Phosphor Bronze (Half Hand)
Aluminum Bronze
Manganese Bronze

TABLE 6
MACHINING CRITERIA FOR
COPPER ALLOYS

Operation	Tool Material	Tool Geometry	Depth of Cut(In.)	Cutting Speed (sfm)	Feed	Remarks
Turning 0	Carbide C-2	SR: 6° BR: 0° SRF: 5° SCEA: 15°	.250	to 1,000	.006 to .010 in. per rev.	
Face Milling	H.S.S. M-2	AR: 25° RR: 10° CR: .06 R.RF:10°	.250	to 500	.008 to .020 in. per tooth	
Face Milling	Carbide C-2	AR: 0° to 10° RR: 0° to 10° CR: .06 R.RF:8°	.250	to 1,000	.007 to .012 in. per tooth	
End Milling	H.S.S. M-2	Helix: 30° RR: 8° CR: .06 R.RF:8'	9	to 325	.003 to 5	
End Milling	Carbide C-2	Helix: 30° RR: 5°. CR: .06 R.RF:8°	Ø	to 450	.003 to .007 in.	
Side Milling	H.S.S. M-2	AR: 25° RR: 18° CR: .06 R.RF:10°	. 250	to 375	.005 to .012 in. per tooth	
3ide Milling	Carbide C-2	AR: 10° RR: 10° CR. 06 R.RF:8°	. 250	to 550	.005 to .012 in. pertooth	

TABLE 7 MACHINING CRITERIA FOR COPPER ALLOYS (continued)

- 6 End mills under 1/2" .0005 -.003 i.p.t.
- Three-fourths of cutter diameter = cutting width
- 3 Based on two-diameter drill depths
- 2 Depth of cut not to exceed cutter diameter
- D Based on insert tooling

TUEL 51-1 ST 11 : 11

_. · _

Mugresium Alloys

A231B

A261A

A280A

M1A

2K60A

TABLE 8
MACHINING CRITERIA FOR
MAGNESIUM ALLOYS

Operation	Material	Geometry	Depth of Cut(In.)	Cutting ① Speed (sfm)	Feed	Remarks
Turning	Carbide C-2	SR: 10° to 12° BR: 0° SRF: 7° to 10° SCEA: 15°	to .50	to 5,000	.010 to in. per rev.	Keen edged tools should always be used
Turning	H.S.S. M-2	SR: 15° to 22° BR: 0° SRF: 10° SCEA: 15°	• to .50	to 2,000	.008 to .045 in. per rev.	**
Face Milling	Carbide C-2	AR: 15° RR: 10° I.A: 5° R.RF:10°	ьо 20 .50	to 9,000	.005 to .025 in. per tooth	Use coarse (3) tooth cutter
Face Milling	H.S.S. M-2	AR: 20° RR: 18° LA: 5° R.RF:10°	to .50	to 3,000	.005 to .025 in. per tooth	" ③
End Milling	H.S.S. M-2	Helix: 30° RR: 8° CR: .06 R.RF:10°	to .50	to 2,000	.003 to .015 in. per tooth	ر.
Side Milling	Carbide C-2	AR: 15° RR: 10° CR: .06 R.RF:10°	to .50	to 5,000	.005 to .025	Use coarse (3) tooth cutter

TABLE 9
MACHINING CRITERIA FOR
MAGNESIUM ALLOYS(continued)

Operation	Material	Geometry	Depth of Cut(In.)	Cutting Speed (sfm)	Teed	Remarks
Side Milling	H.S.S. M-2	AR: 20° RR: 18° CR: .06 R.RF:10°	to ,50	to 2,000	.005 to .025 in. per tooth	Use coarse tooth cutter
Drilling	н.ѕ.ѕ.	PA: 118° LRF:15° Helix: 40° to 50°		1,000	to 1/4"004- to 1/2"012 - to 1"015-	030
Tapping	H.S.S.	2 or 3 flute high hook (15° to 18°) aluminum spiral point	~~~	30-50		
Reaming	н.ѕ.ѕ.	Straight or Right Hand Spiral	1/32 on diameter	to 400	Same as drilling feeds	Use 4 flutes up to 1" diameter and 6 flutes over 1"

No. of teeth may be one-third to one-half number normally used
Three-fourths of cutter diameter = cutting width
Within H.P. limitations of machine

Martensitic Low Alloy Steels

4130

4140

4340

Hy Tuff

H-1.1

High Strength Steels

Super Tricent

Potomac M.

Thermold J

TABLE 10 MACHINING CRITERIA FOR MARTENSITIC LOW ALLOY STEELS (90,000 to 160,000 PSI)

Operation	Tool Material	Too Geome		Depth of Cut(In	Cutting Speed .) (sfm)	Feed	Remarks
Turning (1)	Carbide	SR:	7°.			.005 to	
-	C-6	BR:	-7°			.010 in.	
		SRF:	7°	.200	350 - 450	per rev.	
		SCEA:	15°				
Face ①	Carbide	AR:	-7°			.005 to	
Milling ·	C-6	RR:	-7°	•		.010 in.	
		CA: 45°		.250	450 - 600	per tooth	
•		R.RF:	7°			-	
Face	H.S.S.	AR:	10°	. 		.004 to	
Milling	M-2	RR:	10°			.012 in.	
		CR:	. 06	.300	60 - 110	per tooth	
		R.RF:	6°		•		
End	Carbide	Heiix:	15°			.003 to 4	right hand
Milling	C-6	RR:	5°			.007 in.	helix
		CR:	. 06	250	300 - 400	per tooth	
		. R.R F:	7°			_	
End	H.S.S.	Helix:	30°			.003	
Milling	M-2	RR:	5°			to .008 in.	
414 6 6 10 . C.	474 M	CR:	.06	.300	60 - 110	per tooth	
		R.RF	6°			• '	•
			····				
Side (1)	Carbide	AR:	-7°			.005 to	
Milling	C-6	RR:	-7°			.010 in.	
		CR:	. 06	. 250	300 - 450	per tooth	
		R.RF	7°				

TABLE 11 MACHINING CRITERIA FOR MARTENSITIC LOW ALLOY STEELS (continued) (90,000 to 160,000 PSI)

Operation	Tool Material	To Geom		Depth of Cut (I	Cutting Speed n.) (sfm)	Fe ed	Remarke
Side Milling	H.S.S. M-2	AR: RR: CR: R.RF:	10° 10° .06 6°	.300	60 - 110	.005 to .015 in. per tooth	
Drilling	H.S.S. M-2	PA: 135 LRF: 7° split point		2	30 - 50	1/8-1/4 001 003 1/4-1/2 005 095 1/2-1 010 020	
Tapping	H.S.S.	2 flute s point	piral		10 - 30		de l'agraphic de
Reaming	H.S.S.	Straight right ha			2/3rds speed of drilling	2 to 3 time feed of drilling	98

⁴ End Mills under 1/2" - .0002 - .003 i.p.t.

³ Three-fourths of cutter diameter = cutting width

² Based on two diameter drill depths

¹ Based on insert tooling

photodoxidas francis and service parties of a production of a service of

TABLE 12 MACHINING CRITERIA FOR MARTENSITIC LOW ALLOY STEELS (180,000 to 220, J00 psi)

Operation	Tool Material	Tool Geometry	Depth of Cut(In.)	Cutting Speed (sfm)	Feed	Remarks
Turning 1	Carbide C-6	S.R.: -7° B.R: -7° S.RF: 7° S.C.E.A:15°	. 120	200 - 325	.004 to .008 in. per rev.	
Face (1) Milling	Carbide C-6	A.R: -7° R.R: -7° L.A: 5° R.RF: 7°	.1203	250 - 375	.004 to .007 in. per tooth	
Face Milling	H. S. S. M-2 or M-3	A.R: 10° R.R: 10° C.R: .06 R.RF: 5°	. 100	25 - 40	.003 to .006 in. per tooth	
End Milling	Carbide C-6	Helix: 15° R.R: 5° C.R: .06 R.RF: 6°	,120	175 - 250	.003 to 4 .005 in.	Use shortest possible flute length for max, rigidity
End Milling	H.S.S. T-15	Helix: 30° R.R: 5° C.R: .06 R.RF: 5°	, 120	30 - 50	.004 to 4 .007 in. per tooth	Use shortest possible flute length for max. rigidity
Side 1 Milling	Carbide C-6	A.R: -7° R.R: -7° C.R: .06 R.RF: 7°	. 150	225 - 325	. 004 to . 008 in. per teeth	Climb mill

TABLE 13
MACHINING CRITERIA FOR
MARTENSITIC LOW ALLOY STEELS (continued)
(180,000 to 220,000 psi)

Operation	fool Material	Tool Geometry	Depth of Cut (In.)	Cutting Speed (sfm)	Feed	Remarks
Side Milling	H.S.S. M-2 M-3	A.R: 10° R.R: 10° C.R: 06 R.RF: 5°	.100	25 - 40	.004 to .007 in. per tooth	Climb mill
Drilling	H.S.S. M-33	P.A: 135° L.RF: 7° split point	2	15 - 35	1/8-1/4- 1/4-1/2- 1/2-1 -	. 002 008
Tapping	H.S.S.	3 flute spiral point		10 - 20		Nitride finish on tap
Reaming		Straight or right hand spiral		2/3rds speed of drilling	2 to 3 times feed of drilling	

- 4 End mills under 5/8" .0002 003 i.p.t.
- 3 Three-fourths of cutter diameter = cutting width
- 2 Based on two diameter drill depths
- 1 Based on insert tooling

TABLE 14 MACHINING CRITERIA FOR MARTENSITIC LOW ALLOY STEELS (240,000 to 280,000 psi)

Operation	Tool Material	Tool Geometry	Depth of Cut(In.)	Cutting Speed (sfm)	Feed	Remarks
Tu.ning ①	Carbide C-3	S.R7° B.R: -7° S.RF: 7° SCEA: 15°	. 100	100 - 150	.005 to .009 in. per rev.	
Face (1) Milling	Carbide C-2	A.R: -7° R.R: -7° L.A: 5° R.RF: 7°	. 080	120 - 158	.004 to 0.007 in. per tooth	
Face Milling	H.S.S.	←	— not re	COMMEND	ED	→
End Milling	Carbide C-2	Helix: 25° R.R:0°-3° C.R: .06 R.RF: 6°	. 080	100 - 150	. 902 to 4 . 096 in. per tooth	L.H. spiral R.H. cut
End Milling	H.S.S.		— NOT RE	COMMEND	ED	 >
Side 1 Willing	Carbide C-5	A.R: -7° R.R: -7° C.R: .06 R.RF: 7°	. 980	120 - 160	.003 to .006 in. per tooth	Climb mill
Side Milling	H.S.S.	—	— NOT RE	COMMEND	ED	
Drilling	H. S. S. M-33	P.A: 135° L.RF: 7° split point	2	8 - 15	1/3-1/4 - 1/4-1/2 - 1/2-1 -	. 903 005
Tapping	H.S.S.	2 flute spiral point 8 to 15° hook		8 - 12		Nuries finish on tap
Reaming	Carbide					

Desired on two diameter drill depole Desired on unsert tooling

³ Three-fourths of cutter diameter 20

Convair - San Diego

Austenitic Stainless Steels

321/347

TABLE 15
MACHINING CRITERIA FOR
AUSTENETIC STAINLESS STEELS

Operation	Tool Material	Too Geom		Depth of Cut(ia.)	Cutting Speed (sfm)	Feed	Remarks
Turning 1	Carbide C-2	S.R: B.R: S.RF: SCEA:	6°	. 200	150 - 250	.005 to .015 in. per rev.	
Turning .	Cast Alloy	S.R: B.R: S.RF: SCEA:		. 200	125 - 170	.007 to .020 in. per rev.	_
Face (1) Milling	Carbide C-2	A.R: R.R: L.A: R.RF.	0° 0° 30° 6°	,150(3)	180 - 230	. 005 to . 010 in. per tooth	
Face 1	Cast Alloy	A.R: R.R: L.A: R.RF:	0° 30° 6'	. 200	140 - 170	007 to .015 in. per tooth	
Face Milling	H.S.S. M-3	A.R: R.R: C.R: R.RF:	10° 10° .06	. 200	60 - 90	. 005 to . 015 in. per tooth	
End Milling	Carbide C-2	Helix: R.R: C.R: R.RF:	.06	. 100	150 - 200	.003 to 4 .007 in. per tooth	Use shortest pos sible flute length for max. rigidity
End Milling	Cast Alloy	Helix: R.R: C.R: R.RF:	5° .06	.150	140 170	.005 to 4 .010 .a. per tooth	Use shortest pos sible flute length for max. rigidity

TABLE 16
MACHINING CRITERIA FOR
AUSTENETIC STAINLESS STEELS (continued)

Operation	Tool Material	Tool Geometry	Depth of Cut(In.)	Cutting Speed (sfm)	Feed	Remar	ks
End Milling	H.S.S. M-3	Helix: 30° R.R: 8° C.A: 6° R.RF: 8°	. 200	60 - 90	.003 to 4 .007 in. per tooth	sible flu	rtest pos- te length rigidity
Side Milling	Carbide C-2	A.R: 10° R.R: 5° C.R: .06 R.RF: 6°	. 250	175 - 200	.005 to .010 in. per tooth	Climb m	111
Side Milling	H.S.S. M-3	A.R: 10° R.R: 10° C.R: .06 R.RF: 8°	. 250	60 - 90	.004 to .008 in.	Climb m	ill
Drilling	H.S.S. M-33	P.A: 135° L.RF: 8° split point	2	25 - 40	1/8-1/40 1/4-1/20 1/2-10	004007	Use stulingth drills formax.
Tapping	H.S.S. M-10	3 flutes Int. Thd. spiral point 15° hook		12 - 15			د.
Reaming	H.S.S.	Straight or right hand spiral		2/3rds of drilling speeds	2 to 3 times drilling speeds		

⁴ End mills under 1/2" - .0005 to .002 i.p.t.

³ Three-fourths of cutter diameter

² Based on two diameter drill depths

¹ Based on insert tooling

Convair - San Diego

Martensitic Stainless Steels

410

431

TABLE 17 MACHINING CRITERIA FOR MARTENSITIC STAINLESS STEELS

(Annealed Condition 160 - 180 BHN and Heat-Treated Condition 369 - 400 BHN

Operation	Tool 4 Material	Tool Geometry	Depth of Cut(In.)	Cutting Speed (sfm)	5) Feed	Remarks
Turning 1	Carbide	S.R: -7° B.R: -7° S.RF: 7° SCEA: 15°	.100	<u>125 - 175</u> 225 - 350	.005 to .015 in. per rev.	
Turning	Cast Alloy	S.R: 12° to 18° B.R: 0° S.RF: 7° SCEA: 15°	.200	<u>90 - 120</u> 130 - 180	.005 to .020 in. per rev.	
Face 1 Milling	Carbide	A.R: 0° R.R: 0° L.A: 30° R.RF: 7°	.1503	140 - 180 190 - 250	.005 to .010 in. per tooth	
Face 1 Milling	Cast Alloy	A.R: 0° R.R: 0° L.A: 30° R.RF: 7°	.2003	<u>100 - 140</u> 120 - 160	.005 to .015 in. per tooth	
Face Milling	H.S.S. M-3	A.R: 10° R.R: 10° C.R: .06 R.RF: 8°	.200	<u>40 - 70</u> 60 - 90	.005 to .015 in. per tooth	•
End Milling	Carbide	Helix: 25° R.R: 5° C.R: .06 R.RF; 7°	.100	80 - 120 160 - 220	.003 to 6 .007 in. per tooth	Flute length should be as short as pos- sible for max. rigidity.
End Milling	Cast Alloy	Helix: 25° R.R: 5° C.R: .06 R.RF: 8°	.150	<u>.70 - 100</u> 130 - 170	.005 to .010 in. per tooth	Flute length should be as short as pos- sible for max. rigidity.

TABLE 18

MACHINING CRITERIA FOR

MARTENSITIC STAINLESS STEELS (continued)

(Annealed Condition 160 - 180 BHN and Heat-Treated Condition 360 - 400 BHN)

Operation	Tool 4	Tool Geometry	Depth of Cut(In.)	Cutting Speed (sfm)	Feed	Remark	(8
End Milling	H.S.S. M-3	Helix: 30° R.R: 5° C.R: .06 R.RF: 8°	.200	<u>30 - 50</u> 60 - 90	.003 to 6 .007 in, per tooth		gth should ort as pos- max.
Side Milling	Carbide	A.R: 10° R.R: 5° C.R: .06 R.RF: 6°	. 250	<u>140 - 180</u> 180 - 260	.005 to .010 in. per tooth	Climb m	ill
Side Milling	H.S.S. M-3	A.R: 10° R.R: 10° C.R: .06 R.RF: 8°	. 250	<u>40 - 60</u> 60 - 90	.004 to .008 in. per tooth	Climb m	ill
Drilling	H.S.S. M-33	P.A: 135° L.RF: 8° split point	2	25 - 4 0	1/8-1/40 1/4-1/20 1/2-10	004 Ú07	Use stub length drills whenever possible
Tapping	H.S.S.	3 flute spiral point Int. Thd. 15° hook		10 - 20			
Reaming	H.S.S.	Straight or right hand spiral		2/3rds of drilling speeds	2 to 3 time drilling feeds	es.	

- (6) End Mills under 1/2" .0005 to .002 i.p.t.
- Upper column denotes speed range for hardened condition, lower column for annealed condition.
- C-2 grade of carbide for heat treat condition C-6 grade of carbide for annealed condition
- Three-fourths of cutter diameter = cutting width
- 2 Based on two diameter drill depths
- (1) Based on insert tooling

Precipitation Hardening Stainless Steels

17-4PH

17-7PH

AM-350

AM-355

Convair Sin Dage

TABLE 19
MACHINING CRITERIA FOR
Precipitation Hardening Stainless Steels

Operation	Tool Material	Too Geom		Depth of Cut(In	Cutting Speed .) (sfm)	Feed	Remarks
Turning ①	Carbide C-2	S.R: B.R: S.RF: SCEA:	6' 0 5 15	.100	130-180	.005 to .010 in.	į
Turning	Cast Alloy	S. R: B. R: S. RF: SCCA:	15° 0° 5	.100	60-90	.005 to .015 in. per rev.	-
Face (1) Milling	Carbide C-2	A.R: R.R: L.A: R.RF:	0° 0 30° 7°	.100	3) ₉₀₋₁₂₅	.005 to .010 in. per tooth	
Face 1 Milling	Cast Alloy	A.R: R.R: L.A: R.RF:	0 0 30 8	. 100	3) ₆₀₋₉₀	.005 to .015 in. per tooth	
Face Milling	н.s.s. Т-15	A.R: R.R: L.A: R.RF:	10° 10 30° 8	.060	3 40-60	.006 to .010 in. per tooth	
End Milling	Carbide C-2	Helix: R. R: C. R: R. RF:	25° 5 . 06 7'	. 100	70-100	.002 to .0045 in. per tooth	Flute length should be as short as possible for maximum rigidity.
End Milling	Cast Alloy	Helix: R.R: C.R: R.RF:	25°, 5°, .06 8"	. 100	50-70	.003 to .008 in.	
End Milling	H.S.S. T-15	Helix: R.R: C.R: R.R [©] :	30° 8' .06 12	,100	35 - 50	.003 to .007 in. per tooth	" "

TABLE 20
MACHINING CRITERIA FOR
Precipitation Hardening Stainless Steels (continued)

Operation	Tool Material	Tool Geometr	y.	Depth of Cut(in.	Cutting Speed) (sfm)	Feed	Remark	K8
Side Milling	Carbide C-2	A. R: R. R: C. R: R. RF:	5° 15° .06	.100	90-125	.005 to .010 in. per tooth	Climb 1	Mill
Side Milling	H.S.S. M-3	A. R: R. R: C. R: R. RF:	10° 10° .06	.150	35-55	.004 to .008 in. per tooth	Climb 1	Mill
Drilling	H.S.S. M-33	P.A: L.C: split point	135° 8°	②	10 -2 0	1/8-1/4 1/4-1/2 1/2-100	004-007	Use stub length drills when- ever possib
Tapping	H.S.S.	3 Flute Spiral Poid 15° Hook	l		5-8			
Reaming	H.S.S.	Straight or right band spiral			2/3rds of drilling speeds	2 to 3 times drilling feeds	S	

⁴ End mills under 1/2" - .0005 to .002 i.p.t.

³ Three-fourths of gutter diameter

 $oldsymbol{\widetilde{Q}}_{T}$. Bused on two diameter drill depths

¹ Based on insert tooling

High Temperature Alloys

A-286 N-155 19-9DL Discoloy Timken 16-25-6 Refractoloy-26 Incoloy 901

KR Monel Inconel X Nimonil 90 Udimet 509 Inconel 700 713 R-235 Rene 41 Hastelloy X Hastelloy 56

K-Monei

Nickel Based Alloys

\$ 516 G.U. 1570 H.S 25 (L-605)

Cobalt Based Alloys

Commercial Pari, 2.5 AL 16V 4AL-3MO-1V 9AL-4V MN A-110 AT B-120 VCA RS 140

Titanium Alloys

TABLE 21
MACHINING CRITERIA FOR

A-286 (Solution-Treated and Aged - 321 BHN)

Operation	Tool Material	Tool Geome		Depth of Cut(in	Cutting Speed .) (sfm)	Feed	Remar	ks
Turning	Carbide C-7	S.R: B.R: S.RF: SCEA:	-1° -7° 7° 15°	.100	180-260	.005 to .010 in. per rev	Avoid cutter dwell	
Face 1 Milling	Cast Alloy	A.R: R.R: L.A: R.RF:	0° 0° 5° 7°	.080	3) ₄₀₋₈₀	.008 to .015 in. per tooth	Climb mill	
End Milling	H.S.S. T-15	Helix: R.R: C.R: R.RF:	30° 7° .06 12°	.060	70-110	.009 to 4 .015 in. per tooth	Climb mill	ally live up the depute of the
Side Milling	H.S.S M-2 M-3	A.R: R.R: C.R: R.RF;	10° 10° .06 6°	.060	45-60	.006 to .012 in. per tooth	Climb mill	
Drilling	H,S.S. M-33	P. A: L. RF: Split Poin	118° 10° t	2	25-35	1/8-1/400 1/4-1/200 1/2-100	06009	Use stub- length drills whenever possible
Tapping	H.S.S. M-10	2 Flute Spiral Point			8-12		Nitride	finish
Reaming	H.S.S.	Straight or Right Hand Spir	al		1/2 of drilling speeds	2 to 3 times drilling spe		

Best machining condition for A-286 is solution treated and aged to 280 BHN

End mills under 3/4" - .002 - .005 i.p.t.

Three-fourths of cutter diameter - cutting width

² Based on two diameter drill depths

¹⁾ Based on insert tooling

TABLE 22
MACHINING CRITERIA FOR
Inconel 700

(Solution - Treated and Aged to 330 BHN)

Operation	Tool Material	Tool Geomet	ry	of	Cutting Speed ()(sfm)	Feed	Remark	ss .
Turning ①	Carbide C-2	S.R: B.R: S.RF: SCEA:	5° 0° 5° 15°	.100	60-90	.006 to .011 in. per rev.	Hone cu	_
Face Milling	H.S.S. T-15	A.R: R.R: L.A: R.RF:	10° 10° 45° 10°	.080	20-30	.003 to .009 in. per tooth	Climb mill	
End Milling	H.S.S. T-15	Helix: R.R: C.R: R. RF:	30° 7° .03 12°	. 060	25-35	.002 to 4 .005 in. per tooth	Climb mill	
Side Milling	H.S.S. T-15	A.R: R.R: C.R: R.RF:	10° 10° .03 10°	.080	20-30	.004 to .009 in. per tooth	Climb mill	
Drilling	H.S.S. M-33	P. A: L. RF: Split Point	118° 7°	2	10-20	1/8-1/400 1/4-1/200 1/2-100)1005	Use stub length drills whenever
Tapping	H.S.S.	2 flute plug spiral poin	ıt		5-10		•	•
Reaming	H.S.S.	Right hand spiral	- 		1/2 of drilling speeds	2 to 3 times drilling fee		

⁴ End mills under 1/2" - .001 to .003 i.p.t.

³ Three-fourths of cutter diameter cutting width

²⁾ Based on two diameter dried depths

Based on insert tooling 3:

TABLE 25 MACHINING CRITERIA FOR R - 235

(Solution-Treated and Aged to 320 BHN)

Op eration	Material	Geometry	Depth of Cut(In.)	Cutting Speed (sfm)	Feed	Remarks
Turning (1)	Carbide C-7	S.R: -7 B.R: -7' S.Rf: 7' SCEA: 15	.100	60-80 in	.006 to .009 per rev.	Hone cutting edge
Face (1) Milling	Carbide C-1	A.R: 0 R.R: 0 C.A: 5 R.Rf: 11	3.060	30-55 in	.007 to .008 per tooth	Climb mill
End Milling	H.S.S. T-15	Helix: 20° R.R: 7° C.R: .06 R.Rf: 6	. 060	15-35 in	to .005	Climb mill
Side Milling	H.S.S. M-2 M-3	A.R: 10° R.R: 10° C.R: .06 R.Rf: 6°	. 060	15-25 in	.005 to .006 per tooth	Climb mill
Drilling	H.S.S. M-03	P.A: 118 L.Rf: 10° Split Point	2	10-15 1/	8-1/4002- 4-1/2005- 2-1007-	008 length
Tapping	H.S.S.	2 flutes spiral point 8° hook	- (/))	5-10		
Reaming	н.ѕ.ѕ.	Straight or right hand sprial	12 - 1	1/2 of drilling speeds	2 to 3 times drilling feeds	

Three-fourths of cutter diameter - cutting width

Based on two-diameter drill depths

Based in insert tooling 33

TARLE 24 MACHINING CRITERIA FOR RENE 41 (Solution Treated and Aged to 380 BHN)

Operation	Tool Material	Tool Geometry	Depth of Cut(in.)	Speed	Feed	Remarks
Turning ①	Carbide C-2	S.R: 5° B.R: 0° S.Rf: 5° SCEA: 15°	.125		.005 to .015 in per rev.	Hone cutting edge
Face Milling	H.S.S. T-15	A.R: 29-1/2° R.R: 0° L.A: 35° R.Rf: 7°	.100 ②	15-25 i	.005 to .012 in per tooth	Climb mill
End Milling	H.S.S. T-15	Helix: 30° R.R: 7° C.A: 06 R.Rf: 15°	.060	20 - 30	. 008 to . 010 in per tooth	
Side Milling		- NO DATA AV	AILABLE	>	>	
inilling	H.S.S. M-33	P.A: 118' L.Rf: 9' Split Point		4-8 1	/8-1/2 302	,
Tapping		— NO DAȚA AV	AILABLE —	-	>	
Reaming		— NO DATA AV			•	,

^{3 .0003 - .0005} for each 1/16" of drill diameter

Three-fourths of cutter diameter = cutting width

¹ Based on insert tooling

TABLE 25 MACHINING CRITERIA FOR HASTELLOY X

(Solution Heat-Treated - 250 BNH)

Operation	Tool Material	Tool Geometry	Depth of Cut(In.)	Cutting Speed (sfm)	Feed	Remarks
Turning ①	Carbide C-2	SR: 5° BR: 0° SRF: 5° SCEA: 15°	. 100	60-80	.009 to .017 in. per rev.	Non cutting edge
Face Milling	Carbide C-1 or C-2	AR: 29 1/2° RR: 0° LA: 35° R.Rf: 7"	.100 ③	60-80	.006 to .012 in. per tooth	Climb mill
End Milling		€ NO	DATA AV	AILABLE		>
Side Milling		< NO	DATA AV	AILABLE		>
Drilling	H.S.S. M-33	PA: 135° - 140 LRf: 10° Split Point	° ②	14-21	1/16-1/4	to .002
Tapping	H.S.S.	2 flute plug spiral point		5-10		ی
Reaming	H.S.S.	Straight or right hand spiral	Max. .010	1/2 of drilling speeds	up to	.006 to .010 in. per rev.

Three-fourths of cutter diameter - cutting width

Based on two-diameter drill depths

Based on insert tooling

TABLE 26 MACHINING CRITERIA FOR H.S. - 25 (L-605) (Solution-Treated 239 BHN)

Operation	Material	Geometry	Depth of Cut(In.)	Cutting Speed (sfm)	Feed	Kemarks
Turning ①	Carbide C-7	S.R: 7° B.R: 7° S.Rf: 7 SCEA 15	.100	100-400	.007 to .010 in per rev.	Hone cutting edge
Face (1). Milling	Carbide C-1	A.R: 0° R.R: 0° L.A: 5° R.Rf: 7	.080	50-80	.005 to .006 in per tooth	Climb mill
End Milling	H.S.S. T-15	Helix: 30' R.R: 7' C.R: .006 R.Rf: 6	.060	25-40	.005 to .00f in per tooth	
Side Milling	H.S.S. M-2	A.R: 10 R.R: 7 C.R: .006 R.Rf: 6°	.060	25-35	.005 to .006 in per tooth	Climb mill
Prilling	H.S.S. M-33	P.A: 118° L.Rf: 10° Split Point	②	20-35		Use stub length drills when- ever possible.
Tapping	H.S.S.	2 flutes spiral point 8' hook		5-10		
Reaming	11.s.s.	Straight or right hand spiral		2/3rds drilling speeds	ŗ	2 to 3 times drilling speeds

End Mills under 5 8'' - .002 to .003 i.p.t.

Three-fourths of cutter diameter - cutting width

⁹⁹⁰⁶ Based or two-diameter digital pens-

Bared on Insert Tooling

TABLE 27
MACHINING CRITERIA FOR
Titanium Alloys

Operation	Material	Geometry	Depth of Cut(In.)	Cutting Speed (sfm)	Feed	Remarks
Turning ①	Carbide C-2	S.R: -7° B.R:-7° S.Rf: 7° SCEA: 15°	.200	125-225	.005 to .012 in per rev.	
Turning	Cast Alloy	S.R: 12° - 18° B.R: 0° S.Rf: 7° SCEA: 15°	.200	80-110	.005 to .015 in per rev.	Preferred when interrupted cuts are involved
Face (1) Milling	Carbide C-2	A.R: 0° R.R: 0° L.A: 30° R.Rf: 7°	.200 ③	95~125	.004 to .006 in per tooth	
Face Milling	Cast Alloy	A.R: 0° R.R: 0° L.A: 30° R.Rf: 7°	.200 ③	60-90	.005 to .008 in per tooth	
Face Milling	H.S.S. M-3	A.R: 10° R.R: 10° L.A: 30° R.Rf: 8°	.300 ③	40-50	.004 to .010 in per tooth	· ·
End Milling	Cast Alloy	Helix: 0° R.R: 0° C.R: .03 R.Rf: 7°	.125	70-100	.007 4 to .007 in per tooth	
End Milling	H.S.S. M-3	Helix: 30° R.R: 5° C.A: .03 R.Rf: 8°	.125	30-40	.003 to .005 in per tooth	To reduce frictional forces, polished flutes are recommended
Side 1 Milling	Carbide C-2	A.R: 0° R.R: 0° C.R: 03 R.Rf: 7° Pa	.200 ge 37	95-125	.004 to .006 in per tooth	

TABLE 28

MACHINING CRITERIA FOR

Titanium Alloys (continued)

Operation	Tool Material	Tool Geometry	Depth of Cut(In.)	Cutting Speed (sfm)	Feed	Remar	ks .
Side Milling	H.S.S. M-3	A.R.: 10° R.R.: 10° C.R.: .03 R.RF: 8°	.300	40-50	.004 to .010 in. per tooth		
Drilling	H.S.S. M-33	P.A.: 135° L.RF: 9° Split Point	2	20-35	1/8-1/40 1/4-1/20 1/2-10	01007	Drills should be of Type "C" con- struction (heavy web)
Tapping	н.ѕ.ѕ.	Int. Thd. spiral point angle: 8° 3 flutes		10-12			lia. relief be of the centric
Reaming	H.S.S.	Straight or right hand spiral		1/2 of drilling speeds	In general, feeds are same as drilling	is used .015 w neutral	. Spiral l, grind ide l land at of reamer.

⁴ End Mills under 5/8" - .005 to .002 i.pt.

³ Three-fourths of cutter diameter cutting width

² Based on two diameter drill depths

¹ Based on insert tooling

APPENDIX A

Convair-San Diego

TOOL MATERIALS

- 1. High Speed Steel
- 2. Cast Alloy
- 3. Carbide

High Speed Steel

High Speed Steels are basically divided into two types by the major alloying elements, Molybdenum (designated by the letter "M" as the first character in the symbol such as M-1, etc.) and Tungsten (designated by the letter "T" as the first character in the symbol such as T-1, etc.)

Under these two types come the various analyses according to the presence and percentages of the minor alloying elements. Variations are made for the desired results of hot hardness, abrasion resistance and toughness.

Tungsten and Cobalt increase hot hardness and abrasion resistance of H.S.S. but reduce their toughness. Reducing the Vanadium and Cobalt content reduces hot hardness and abrasion resistance but increases toughness.

Note: See Figure 1 for temperature and hardness relationship of various tool materials.

IDENTIFICATION OF HIGH SPEED STEELS

Туре		1	Principal Allo	ying Eleme	nts %	
of High Speed Steel	Symbol	Molybdenum	Chromium	Vanadium	Tungsten	Cobalt
Moly	M-1	8	4	1	1-1/2	
Tungsten	M-2	5	4	2	6	
Туре	M-7	8-3/4	4	2	1-3/4	
Moly	M-3	6	4	2.4	6	
Tungsten	(Type 1)					
Vanadium	M-3	6	4	3	6	
	(Type 2)					
Туре	M-4	4-1/2	4	4	5-1/2	
Moly Tungsten 1-1/4%	6					
Columbium Type	M-8	5	4	1-1/2	5	
Moly Vanadium Type	M-10	8	4	2		
	M-6	5	4	1-1/2	4	12
Moly	M-15	3-1/2	4	5	6-1/2	5
Tungsten	M-30	8	4	1-1/4	2	5
Cobalt	M-33	9-3/4	4	, 1	1-3/4	8-1/4
Туре	M-34	8	4	2	2	8
	M-35	5	4	2	6	5
	M-36	5	4 .	2	6	8
Moly Cobalt Type						
(Borum Added)	M-40	8	4	1-1/2		8
1	T-1		4	1	19	
•	T-2		4	2	18	
t	T-3		4	3	18	
	T-7	_	4	2	14	
Tungsten Type	T-9	•	4	4	18	
	T-4		4 .	1	18	5
	T- 5		4	2	18	8
	T- 6		4-1/2	1-1/2	20	12
	T- 8		4	2	14	5
	T-1 5		4	5	12	5

Cast Alloys

Cast alloy materials are, as the name implies, a cast tool material and usually contain from 35% to 50% Cobalt with lesser amounts of Nickel, Chromium, Tungsten and Vanadium. Good edge strength is retained up to 1200 F with a higher red hardness than high speed steels.

CAST ALLOYS
Principal Alloying Elements %

				Tantalum or	
Туре	Cobalt	Chromium	Tungsten	Columbium	Others
Tantung G	47	30	15	5	3
Haynes				•	
Stellite 98M-2	38	3 0	18	•••	7.5
		Carb	ide	•	

Carbide tool materials are made in two grades, namely

- 1. Non-ferrous Containing only Tungsten Carbides. (Generally applied to operations where abrasion is the prime factor).
- 2. Steel Containing Tungster, Titanium, Tantalum, and Columbium Carbides. (Generally applied to operations where heat is the prime factor).

All commercial carbides contain Cobalt as a binder which holds the Carbide Matrix together. Variations within the carbide material are attributed to: method of manufacture (hydrogen or vacuum sintered), method of pressing, sintering temperature, method of mixing, hardness and percentage of alloying elements used.

Note: See Figure 2 for classifications.

Figure 1 Hardness of Various Tool Materials at Elevated Temperatures.

Relates Their Ability to Cut at Higher Speeds.

Figure 2 IDENTIFICATION OF CARBIDE CUTTING TOO1. MATERIALS

Application	Industry Code	Adamas	Carboloy	Carmet	Firth Sterling	Kenna Metal	New- Comer	Talide	Valenite	Vascoloy Ramet	Wesson	William
Roughing	C-1	æ	44 A	Ç.A-3	H	K6	NC-4	C-83	VC-1	VR54	CS	E8 E13
General Purpose	C-2	⋖	883	CA-1	HA	Жб	NC-3	C-91	VC-2	2A5 VR54	5	E6
Finishing	C-3	AA	905	CA-7	нЕ	K8	NC-2	C-93	VC-3	2A7	V5	ES
Precision Finishing	* 0	AAA	988	CA-8	HF	KII	NC-2	C-95	VC-1	2A7	GF	EE
isoughing	C-5	73.	78B 370	CA610	TXH T-04	K21 K25	NS-3 NS-4	S-8.8	VC-5	EE VR77	WS	945
Jarpose .	÷)	a	370 78B	CAiO	TXH TA	K3H K21	N5-3	S-90	9-0.1	VR755	WW	710
Finishing	C-7	υ	78	CA608	T-16 TXL	К3Н К4Н	NS-2	S-92	VC-7	E VR73	HAM	909
Precision Finishing	C-8	99	350 330	CA605	T-31	К7Н	NS-17	S-94	VC-8	ЕН	WH	. 209
ROUGHING	An extre	An extreme case of roughin factors.		g cut, wh	which involves interrupted cuts,	cs inter	rupted o	•	chilled surfaces or		similar complicating	plica
GENERAL	Initial m metal is	Initial machining operation metal is the prime conside	peration i	involving ration.	involving the original surface of a bar, ration.	al surfa	ace of a	bar, cas	casting or forging:	rging: Re	Removal of excess	ехсе
FINISHING PRECISION FINISHING	The final An exact	The final machining operati An exact final machining op	The final machining operation to bring the part to blueprint requirements for size and finish. An exact final machining operation to produce surfaces to close tolerances, together with a f	n to brin ration to	g the part produce	to blue	print res	quircme e tolera	nts for standard	ion to bring the part to blueprint requirements for size and finish. eration to produce surfaces to close tolerances, together with a fine finish.	sh. a fine fu	ish.

The above chart is not a grade comparison chart, nor is it an endorsement of any manufacturer's product or an approved list of services. NOTE:

Service and the service of the servi

CAST-IRON,

Comment Sale Da

APPENDIX B

TOOL NOMENCLATURE

mair-San Diego

TOOL NOMENCLATURE

Before beginning any detailed discussion of tools, tool selection, and tool performance, it is well to have certain basic questions of nomenclature settled.

For carbide tools the part of the tool which is held in the machine and which supports the cutting edge is known as shank or body.

The cutting tool material is generally referred to as "tip" when brazed to the shank or body, and as "insert", when clamped to the shank or body.

Because of the many terms used to describe various aspects of cutting tools, a reference section is included which shows standard terms used through the industry.

Wherever possible the same nomenclature applies to the corrosponding point on all cutting tools, thereby eliminating possible areas of misunderstanding.

FIGURE 1 TOOL NOMENCLATURE FOR TURNING TOOLS

RAKE (POSTI IVE SHOWN) RAKE (NEGAI IVE SHOWN) RELIEF

BACK RAKE (NEGA1 IVE SHOWN)
SIDE RELIEF
END RELIEF
SIDE CUT1 ING EDGE ANGLE
END CLEARANCE EDGE ANGLE
NOSE RADIUS

S.R. S.Rf. SCEA ECEA SC

END CLEARANCE SIDE CLEARANCE

B.R.: Back Rake S.Rf.: Side Relief E.Rf.: End Relief

FCEA: Front Cutting Edge Angle SCA: Side Clearance Angle

FIGURE 2 NOMENCLATURE FOR PLUNGE TOOLS

A.R.: AXIAL RAKE
R.R.: RADIAL RAKE
R.Ri: RADIAL RELIEF
R.C.: RADIAL CLEARANCE
C.A.: CORNER ANGLE

or or C.R. : CORNER RADIUS

L.A. : LEAD ANGLE FREE PAGE CUTTING EDGE ANGLE

FIGURE 3 NOMENCLATURE FOR EACE MILLS

Helix Angle Radial Rake Radial Relief Rudial Clearance End Relief

Corner Radius.

C.R. :

FIGURE 4 TOOL NOMENCLATURE FOR END MILLS

A.R.: AXIAL RAKE R.R.: RADIAL RAKE R.Rf.: RADIAL RELIEF R.C.: RADIAL CLEARANCE SCA : SIDE CLEARANCE ANGLE

T.S.Rf: 1001H SIDE RELIEF T.S.C.: TOOTH SIDE CLEARANCE CORNER ANGLE

or C.R. DRNER RADIUS

FIGURE 5 NOMENCL VIURE FOR STAGGERED -YOU'LL SIDE MILLS

FIGURE 6 NOMENCLATURE FOR DRILLS

FIGURE 8 SIDE MILL CLIMB VS CONVENTIONAL

APPENDIX C

CUTTING FLUIDS

Because of the many variations in machining conditions, no attempt will be made to specify any particular coolant for specific application.

However, an attempt will be made to generalize the application of coolants in respect to work material, tool material, type of operation, cutting speed, etc.

There are two basic types of cutting fluids; water soluble oils or emulsions(including chemical coolants) and straight oils.

The primary purpose of the straight oils is to provide lubrication which reduces friction and heat during the cutting operation, while the soluble oils or emulsions are designed primarily as z coolant.

In general, the following rules for application of cutting fluids to machining operations will apply.

- 1 Single point turning (Carbide) Chemical o. dry.
- 2 Single point turning (H.S.S.) Chemical oil
- 3 Milling (Carbide) low alloy martensitic materials dry
- 4 Milling (Carbide) stainless steel, titanium and high feather ature alloys oil or chemical mist.
- 5 Milling most materials (H.S.S.) Chemical
- 6 Milling (Carbide) aluminum alloys water soluble.
- 7 Drilling hard, tough materials oil
- 3 Drilling aluminum, annealed low alloy steels water soluble or chemical.

BIBLIOGRAPHY

- 1. Albrecht, A.B., "Machining High-Temperature Alloys." Monarch Machine Tool Co., Sidney, Ohio.
- 2. Ackerman, A.W., "Cutting Fluids Chemical and Petroleum," Presented at Semi-Annual Meeting of ASTE, Los Angeles, Calif., 1958, Paper No. 141.
- 3. Ashburn, Anderson, "How to Work Superalloys," American Machinist, October 1955, pps. 137, 144.
- 4. Bastian, E.L.K., "Casting Fluids," paper presented at ASTE Annual Meeting, 1958.
- 5. Boulzer, F.W. and Olofson, C.T., "Formability and Machinability of Space Age Metals," in Creative Manufacturing Seminar, ASTME (1961).
- 6. Brezina, Edwin; Johnson, Robert; Kennedy, Ralph G.; Marrote, Nelson, "Drilling Very High-Strength and Thermal-Resistant Materials," in Creative Manufacturing Seminar, ASTME (1960).
- 7. Carr, W.L., Memorandum, "Shop Instructions for Machining Titanium,"
 Applied Manufacturing Research Department, Convair, San Diego, Calif.
- 8. Carr, W.L., "Thermal Machining," 1960 Aerospace Manufacturing Forum.
- 9. Dickinson, Thomas A., "Machining Titanium is Not so Difficult," Mill & Factory, March 1960.
- "Drilling High-Strength Steels Heat-Treated to 330 to 560 Brinell Hardness,"
 Report No. 31, 1959 from Defense Metals Information Center, Batille
 Memorial Institute, Columbus, Ohio.
- 11. "Economical Speeds and Feeds for Production Turning," The Tool Engineer, February 1955, reference sheets pps. 119 124.
- 12. "Kaiser Aluminum. Rod, Bar and Wire," Kaiser Aluminum and Chemical Sales, Inc., 919 North Michigan, Chicago, Illinois, 1954, First Edition.
- "Machining of Armco Stainless Steels," American Rolling Mill Company, Middletown, Ohio
- 14. "Machining Corrosion-Resistant Materials," Tool Engineer, January, 1950.

BIBLIOGRAPHY

- 15. "Machining Characteristics of High Strength Thermal Resistant Materials," Report on Contract No. AF33(600)-35967, Curtiss-Wright Corporation, Woodridge, New Jersey.
- 16. "Machining of Titanium, High-Temperature Alloys, Stainless Steels and High Strength Steels," National Twist Drill & Tool Co., Rochester, Michigan, April, 1956.
- 17. "Machining Titanium .11," Report on Contract No. AF33(600)-31656, Metals Processing Division, Department of Mechanical Engineering, Massachusetts Institute of Technology, February 1957.
- 18. "Manual on the Machining and Grinding of Titanium and Titanium Alloys,"
 Report No. 80, August 1957, from Titanium Metallurgical Laboratory,
 Batelle Memorial Institute, Columbus, Ohio.
- 19. "Machinery's Handbook," The Industrial Press, 148 Lafayette Street, New York, 15th Edition, pps. 1535 to 1537.
- 20. Maranchick Jr., John, Gould, J.V., Arzt, P.R., "The Machining of Ultra Strength Alloys, "Society of Automotive Engineers, Inc., 485 Lexington Ave., New York, N.Y., April 1959.
- 21. Merchant, Eugene M. and Ernst, Hans, "Principles of Metal Cutting and Machinability," Tool Engineers Handbook, McGraw-Hill Book Co., Inc., 1949 Edition, pps. 302-356.
- 22. "Metal Selector," Steel, October 1958.
- 23. "Modern Approach to Machining Problems, " College of Engineering, University of Michigan, 1959.
- 24. "Milling, Drilling and Tapping the Difficult to Machine Materials," Metal Cutting Tool Institute, 405 Lexington Avenue, New York, N.Y.
- 25. "Milling of High-Strength Steels in the Hardness Range of 330 to 560 Brinell," Report No. 30, 1959, from Defense Metals Information Center, Batelle Memorial Institute, Columbus, Ohio.
- 26. "Operating Manual for the Carboloy Machinability Computer," Metallurgical Products Department, General Electric Company, Detroit, Michigan, Manual No. MC-101B, 1957.

BIBLIOGRAPHY

- 27. Sluhan, Clyde A., "Some Observations Regarding Chemical or Synthetic Water Soluble Cutting and Grinding Fluids," Master Chemical Corporation.
- 28. "Stainless Steel Fabrication," Allegheny-Ludlum Steel Corporation, Pittsburgh, Pennsylvania, 1958.
- 29. Stalker, K.W., "Selecting Cutting Tools and Machining Methods for High-Strength and High-Temperature Alloys," Metalworking, October, 1959.
- 30. Stevens, George J., "Practical Application of Theory to Machining of Stainless Steels," in Creative Manufacturing Seminars, ASTME, (1959-60).
- 31. "Speeds and Feeds for Better Turning," Monarch Machine Tool Company, Sidney, Ohio.
- 32. "Sub-Zero Machining," Final Report AMC Project 7-681, W.L. Carr, G.T. Heine, Convair, San Diego, A Division of General Dynamics Corporation.
- 33. "Tips on Machining Stainless," The Iron Age, July, 1957.
- 34. "Titanium Machining Techniques," Bulletin No. 7, Titanium Metals Corporation of America, N.Y.
- 35. "The Materials in use and Machining Stainless Steel," Carpenter Steel Company, Reading, Pennsylvania.

36. Zura, John A., "Turning and Milling High Tensile Materials," Carbide Engineering, June 1957.