PATENT ABSTRACTS OF JAPAN

(11)Publication number: 11-306648

(43) Date of publication of application: 05.11.1999

(51)Int.Cl. G11B 19/04 G11B 7/24 G11B 19/02

(21)Application number : 10-113414 (71)Applicant : TOSHIBA CORP

(22)Date of filing: 23.04.1998 (72)Inventor: YAMADA HISASHI

ANDO HIDEO

(54) INFORMATION RECORD MEDIUM WITH COPY PROTECTING FUNCTION, UNAUTHORIZED COPY DETECTING DEVICE, AND UNAUTHORIZED COPY DETECTING METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To impart a copy protecting function on an information record medium by providing trap areas which generate confusion in a copy device which is ready to copy whole information including prescribed information.

SOLUTION: A first trap area T1 is formed by a track forming an endless locus. When a device is ready to reproduce this first trap area T1, data on the same track become to be repeatedly reproduced. That is, since it is made possible to obstruct the normal operation of the device which is ready to reproduce the first trap area T1, the area promotes the runaway of the device. Moreover, a second trap area T2 is formed by a concentric circle shaped track. When a device is ready to reproduce the second trap area T2, data on the same track become to be repeatedly reproduced and similarly it is possible to obstruct the normal operation of the device which is ready to reproduce the second trap area T2.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-306648

(43)公開日 平成11年(1999)11月5日

(51) Int.Cl. ⁶		識別記号	FΙ	
G11B	19/04	501	G11B 19/04	501H
	7/24	5 2 2	7/24	5 2 2 B
	19/02	5 0 1	19/02	501Q

		審査請求	未請求 請求項の数20 OL (全 34 頁)
(21)出願番号	特顧平10-113414	(71)出願人	000003078 株式会社東芝
(22)出廣日	平成10年(1998) 4月23日		神奈川県川崎市幸区堀川町72番地
		(72)発明者	山田 尚志 神奈川県川崎市幸区柳町70番地 株式会社 東芝柳町工場内
		(72)発明者	安東 秀夫 神奈川県川崎市幸区柳町70番地 株式会社 東芝柳町工場内
		(74)代理人	弁理士 鈴江 武彦 (外6名)

(54)【発明の名称】 コピープロテクト機能付き情報記録媒体、不正コピー検出装置、及び不正コピー検出方法

(57)【要約】

【課題】ディスクコピーを困難にすることが可能なコピ ープロテクト機能付き情報記録媒体を提供すること。

【解決手段】所定の情報の記録を担うコピープロテクト 機能付き情報記録媒体が、所定の情報の記録を担う情報 記録エリア(800、801、802)と、この情報記 録媒体に記録されている前記所定の情報を含む全情報を コピーしようとするコピー装置に混乱を生じさせるトラ ップエリア(T1、T2)とを備えている。

【特許請求の範囲】

.,

【請求項1】所定の情報の記録を担う情報記録媒体にお いて、

前記所定の情報の記録を担う情報記録エリアと、

この情報記録媒体に記録されている前記所定の情報を含 む全情報をコピーしようとするコピー装置に混乱を生じ させるトラップエリアと、

を備えたことを特徴とするコピープロテクト機能付き情 報記録媒体。

【請求項2】所定の情報の記録を担う記録媒体におい て、

前記所定の情報の再生時に再生されるエリアであって、 前記所定の情報の記録を担う情報記録エリアと、

前記所定の情報の再生時には再生されないエリアであっ て、この情報記録媒体に記録されている前記所定の情報 を含む全情報をコピーしようとする装置に混乱を生じさ せるトラップエリアと、

を備えたことを特徴とするコピープロテクト機能付き情 報記録媒体。

【請求項3】所定の情報の記録を担う情報記録媒体にお 20 いて

との情報記録媒体の再生に必要な情報の記録を担うリー ドインエリアと、

前記リードインエリア外に設けられたエリアでり、且つ 前記所定の情報の再生時に再生されるエリアであって、 前記所定の情報の記録を担う情報記録エリアと、

前記リードインエリア内に設けられたエリアであり、且 つ前記所定の情報の再生時には再生されないエリアであ って、この情報記録媒体に記録されている前記所定の情 報を含む全情報をコピーしようとする装置に混乱を生じ させるトラップエリアと、

を備えたことを特徴とするコピープロテクト機能付き情 報記録媒体。

【請求項4】所定の情報の記録を担う情報記録媒体にお いて

前記所定の情報の記録を担う情報記録エリアと、

前記情報記録エリア内に設けられたエリアであり、且つ 前記所定の情報の再生時には再生されないエリアであっ て、この情報記録媒体に記録されている前記所定の情報 を含む全情報をコピーしようとする装置に混乱を生じさ 40 せるトラップエリアと、

を備えたことを特徴とするコピープロテクト機能付き情 報記録媒体。

【請求項5】前記情報記録エリアは、螺旋状のトラック

前記トラップエリアは、螺旋が崩れた状態のトラックを 有する、

ことを特徴とする請求項1、請求項2、請求項3、又は 請求項4に記載のコピープロテクト機能付き情報記録媒 体。

【請求項6】前記情報記録エリアは、所定長にわたって 連続する螺旋状のトラックを有し、

前記トラップエリアは、無限軌道を形成するトラックを 有する、

ことを特徴とする請求項1、請求項2、請求項3、又は 請求項4 に記載のコピープロテクト機能付き情報記録媒

【請求項7】前記情報記録エリアは、所定長にわたって 連続する螺旋状のトラックを有し、

10 前記トラップエリアは、同心円状のトラックを有する、 ことを特徴とする請求項1、請求項2、請求項3、請求 項4、又は請求項6に記載のコピープロテクト機能付き 情報記錄媒体。

【請求項8】前記情報記録エリアは、所定長にわたって 連続する螺旋状のトラックを有し、

前記トラップエリアは、所定長にわたって連続しないト ラックを有する、

ことを特徴とする請求項1、請求項2、請求項3、請求 項4、請求項6、又は請求項7に記載のコピープロテク ト機能付き情報記録媒体。

【請求項9】前記情報記録エリア及び前記トラップエリ アのうちの前記情報記録エリアだけが、この情報記録媒 体上の位置を示すアドレス情報が記録されたアドレスエ リアを有する、

ことを特徴とする請求項1、請求項2、請求項3、請求 項4、請求項5、請求項6、請求項7、又は請求項8に 記載のコピープロテクト機能付き情報記録媒体。

【請求項10】前記情報記録エリアは、この情報記録媒 体上の位置を示す真のアドレス情報が記録された第1の アドレスエリアを有し、

前記トラップエリアは、この情報記録媒体上の位置と関 係の無い偽のアドレス情報が記録された第2のアドレス エリアを有する、

ことを特徴とする請求項1、請求項2、請求項3、請求 項4、請求項5、請求項6、請求項7、又は請求項8に 記載のコピープロテクト機能付き情報記録媒体。

【請求項11】前記情報記録エリアは、この情報記録媒 体上の位置を示す真のアドレス情報が記録された第1の アドレスエリアを有し、

前記トラップエリアは、この情報記録媒体上に実在する エリアの位置を示す真のアドレス情報と重複する重複ア ドレス情報が記録された第2のアドレスエリアを有す る、

ことを特徴とする請求項1、請求項2、請求項3、請求 項4、請求項5、請求項6、請求項7、又は請求項8に 記載のコピープロテクト機能付き情報記録媒体。

【請求項12】との情報記録媒体上における前記トラッ プエリアの位置を示す真のアドレス情報が記録されたア ドレス管理エリアを有する、

50 ととを特徴とする請求項1、請求項2、請求項3、請求

3

項4、請求項5、請求項6、請求項7、請求項8、請求 項9、請求項10、又は請求項11に記載のコピープロ テクト機能付き情報記録媒体。

【請求項13】情報記録媒体に記録されている情報を再 生する再生手段と

前記再生手段により再生された再生情報に基づき、前記 情報記録媒体に記録されている情報が不正にコピーされ た不正コピー情報に該当するか否かを検出する不正コピ 一検出手段と、

を備えたことを特徴とする不正コピー検出装置。

【請求項14】前記不正コピー検出手段が、

前記再生情報に含まれるアドレス情報に基づき、前記情 報記録媒体に記録されている情報が不正にコピーされた 不正コピー情報に該当するか否かを検出する検出手段を 有する、

ことを特徴とする請求項13に記載の不正コピー検出装

【請求項15】前記不正コピー検出手段が、

前記再生情報に含まれるアドレス情報の乱れを検出する 検出手段と、

前記検出手段により前記アドレス情報に乱れが検出され たとき、前記情報記録媒体に記録されている情報が不正 にコピーされた不正コピー情報に該当すると判定する判 定手段とを有する、

ことを特徴とする請求項13に記載の不正コピー検出装

【請求項16】前記不正コピー検出手段が、

前記再生情報に含まれるアドレス情報の重複を検出する 検出手段と、

たとき、前記情報記録媒体に記録されている情報が不正 にコピーされた不正コピー情報に該当すると判定する判 定手段とを有する、

ことを特徴とする請求項13に記載の不正コピー検出装

【請求項17】情報記録媒体に記録されている情報を再 生する第1のステップと、

前記第1のステップにより再生された再生情報に基づ き、前記情報記録媒体に記録されている情報が不正にコ 第2のステップと、

を備えたことを特徴とする不正コピー検出方法。

【請求項18】前記第2のステップが、

前記再生情報に含まれるアドレス情報に基づき、前記情 報記録媒体に記録されている情報が不正にコピーされた 不正コピー情報に該当するか否かを検出する第3のステ ップを有する、

ことを特徴とする請求項17に記載の不正コピー検出方

【請求項19】前記第2のステップが、

前記再生情報に含まれるアドレス情報の乱れを検出する 第3のステップと、

前記第3のステップにより前記アドレス情報に乱れが検 出されたとき、前記情報記録媒体に記録されている情報 が不正にコピーされた不正コピー情報に該当すると判定 する第4のステップとを有する、

ことを特徴とする請求項17に記載の不正コピー検出方 法。

【請求項20】前記第2のステップが、

10 前記再生情報に含まれるアドレス情報の重複を検出する 第3のステップと、

前記第3のステップにより前記アドレス情報の重複が検 出されたとき、前記情報記録媒体に記録されている情報 が不正にコピーされた不正コピー情報に該当すると判定 する第4のステップとを有する、

ことを特徴とする請求項17に記載の不正コピー検出方

【発明の詳細な説明】

[0001]

20 【発明の属する技術分野】との発明は、光ディスクなど の情報記録媒体に関するものであり、情報記録媒体に記 録された全情報をコピーするディスクコピーをプロテク トする機能を備えたコピープロテクト機能付き情報記録 媒体に関する。

[0002]

【従来の技術】近年、種々のタイプの光ディスク、例え ば、髙密度記録を特徴とするDVD-RAM及びDVD -ROM等に関する提案が盛んになされている。このよ うな光ディスクには、情報がデジタル記録される。その 前記検出手段により前記アドレス情報の重複が検出され 30 ため、不正コピー防止に関する技術は欠かせないものと なっている。

【0003】不正コピー防止策として良く知られたもの には、光ディスクに記録される情報を暗号化する方法が ある。つまり、光ディスクには、特定の暗号鍵により暗 号化された暗号化情報が記録される。暗号化情報が記録 された光ディスクからは、当然、暗号化情報が再生され る。このとき、この暗号化情報を復号化するための解読 鍵が無ければ、光ディスクから再生された暗号化情報を 復号化することはできない。つまり、解読鍵を持たない ピーされた不正コピー情報に該当するか否かを検出する 40 不正ユーザは、光ディスクに記録された暗号化情報を復 号化して利用することはできない。

[0004]

【発明が解決しようとする課題】ところが、上記したよ うな不正コピー防止策は、あくまでも、光ディスクに記 録された情報が復号化されて利用されるのを防止するた めのものであり、光ディスクに記録された情報のコピー を防止するためのものではない。例えば、光ディスクに 記録された全情報をそっくりそのままコピーするRFコ ピー (ディスクコピー) により、光ディスクに記録され

50 た全情報はコピーされてしまう。

【0005】との発明の目的は、上記問題に鑑みなされ たものであって、下記のコピープロテクト機能付き情報 記録媒体、不正コピー検出装置、及び不正コピー検出方 法を提供することにある。

【0006】(1) ディスクコピーを困難にすることが 可能なコピープロデクト機能付き情報記録媒体。

【0007】(2)不正にディスクコピーされた不正コ ピー情報の検出に貢献することが可能なコピープロテク ト機能付き情報記録媒体。

【0008】(3) 不正にディスクコピーされた不正コ 10 ピー情報を検出することが可能な不正コピー検出装置。 【0009】(4)不正にディスクコピーされた不正コ ビー情報を検出することが可能な不正コピー検出方法。 [0010]

【課題を解決するための手段】上記課題を解決し目的を 達成するために、この発明のコピープロテクト機能付き 情報記録媒体、不正コピー検出装置、及び不正コピー検 出方法は、以下のように構成されている。

【0011】との発明のコピープロテクト機能付き情報 記録媒体は、所定の情報の記録を担う情報記録エリア と、この情報記録媒体に記録されている前記所定の情報 を含む全情報をコピーしようとするコピー装置に混乱を 生じさせるトラップエリアとを備えている。

【0012】との発明の不正コピー検出装置は、情報記 録媒体に記録されている情報を再生する再生手段と、前 記再生手段により再生された再生情報に基づき、前記情 報記録媒体に記録されている情報が不正にコピーされた 不正コピー情報に該当するか否かを検出する不正コピー 検出手段とを備えている。

【0013】との発明の不正コピー検出方法は、情報記 録媒体に記録されている情報を再生する第1のステップ と、前記第1のステップにより再生された再生情報に基 づき、前記情報記録媒体に記録されている情報が不正に コピーされた不正コピー情報に該当するか否かを検出す る第2のステップとを備えている。

[0014]

【発明の実施の形態】以下、この発明の実施の形態につ いて図面を参照して説明する。

【0015】との発明のコピープロテクト機能付き情報 記録媒体としての光ディスクは、トラップエリアを備え 40 ている。また、この光ディスクは、リードインエリア、 データエリア、及びリードアウトエリアを備えている。 トラップエリアは、リードインエリア内の通常の再生時 には再生されない位置、リードインエリアとデータエリ アの間の通常の再生時には再生されない位置、又はデー タエリア内の通常の再生時には再生されない位置に配置 される。この通常の再生時には再生されない位置は、デ ィスクコピーが実行されたときには再生される。また、 トラップエリアを除く、リードインエリア、データエリ ア、及びリードアウトエリアを総称して、ディスクデー 50 とになる。つまり、この第2のトラップエリアT2は、

タエリア(請求項記載の情報記録エリアに相当)とす る。なお、リードインエリア、データエリア、リードア ウトエリア、及びトラップエリアに関しては、後に詳し く説明する。

【0016】ディスクデータエリアは、所定長にわたっ て連続する螺旋状のトラックにより形成される。また、 この所定長にわたって連続する螺旋状のトラックには、 連続する複数のセクタエリアが含まれる。一つのセクタ エリアには、ヘッダエリア及びレコーディングエリアが 含まれる。ヘッダエリアには、アドレスエリアが含まれ る。とのアドレスエリアには、このアドレスエリアが属 するセクタエリアの光ディスク上における絶対位置を示 す物理アドレス情報が記録される。具体的に言うと、連 続するセクタエリアのアドレスエリアには、連続番号が 記録される。レコーディングエリアには、2048バイ ト単位のユーザーデータが記録される。

【0017】トラップエリアは、ディスクコピーを困難 にするため、及び不正にディスクコピーされた不正コピ ー情報の検出に貢献するために設けられたエリアであ 20 る。このトラップエリアは、特定のトラック又は特定の セクタエリアにより形成される。また、この特定のトラ ックには、複数のセクタエリアが含まれる。一つのセク タエリアには、ヘッダエリア及びレコーディングエリア が形成される。トラップエリアには、大別して、トラッ ク形状の特徴(螺旋が崩れた状態)を利用したものと、 アドレス情報の特徴(正規のアドレス情報を持たないも の)を利用したものとがある。前者には、第1のトラッ プエリア、第2のトラップエリア、及び第3のトラップ エリアの計3種類がある。後者には、第4のトラップエ リア、第5のトラップエリア、及び第6のトラップエリ アの計3種類がある。

【0018】 ことで、図1~図3を参照して、第1~第 6のトラップエリアについて説明する。

【0019】第1のトラップエリアT1は、図1に示す ように、無限軌道を形成するトラックにより形成され る。無限軌道を形成するトラックとは、螺旋状のトラッ クの一部が他のトラックに接触して螺旋が閉じた状態の トラックのことである。この第1のトラップエリアT1 を再生しようとすると、同一トラック上のデータが繰り 返し再生されることになる。つまり、この第1のトラッ プエリアT1は、この第1のトラップエリアT1を再生 しようとした装置の正常な再生動作を阻止することがで きる。換言すれば、この第1のトラップエリアT1は、 この第1のトラップエリアT1を再生しようとした装置 の暴走を助長する。

【0020】第2のトラップエリアT2は、図1及び図 2に示すように、同心円上のトラックにより形成され る。との第2のトラップエリアT2を再生しようとする と、同一のトラック上のデータが繰り返し再生されると

この第2のトラップエリアT2を再生しようとした装置の正常な再生動作を阻止することができる。換言すれば、この第2のトラップエリアT2は、この第2のトラップエリアT2を再生しようとした装置の暴走を助長する。

【0021】第3のトラップエリアT3は、所定長にわたって連続しないトラックにより形成される。所定長にわたって連続しないトラックとは、図2に示すように、所定長に満たない長さで行き止まりになっているトラックのことである。この第3のトラップエリアT3を再生 10 しようとすると、再生が途中で途切れてしまう。或いは、再生が途切れないようにトラックジャンプが働き、正常な連続データが再生されない。つまり、この第3のトラップエリアT3を再生しようとした装置の正常な再生動作を阻止することができる。換言すれば、この第3のトラップエリアT3は、この第3のトラップエリアT3は、この第3のトラップエリアT3は、この第3のトラップエリアT3は、この第3のトラップエリアT3は、この第3のトラップエリアT3は、この第3のトラップエリアT3は、この第3のトラップエリアT3は、この第3のトラップエリアT3を再生しようとした装置の暴走を助長する。

【0022】第4のトラップエリアT4は、図3に示すように、物理アドレス情報を持たないセクタエリアによ 20 り形成される。物理アドレス情報を持たないセクタエリアとは、アドレスエリアに物理アドレス情報が記録されていないセクタエリアのことである。この第4のトラップエリアを再生しようとすると、物理アドレスが欠落しているため、光ディスク上の第4のトラップエリアT4の位置が確認できない。そのため、正常な連続データは再生できない。つまり、この第4のトラップエリアT4は、この第4のトラップエリアT4を再生しようとした装置の正常な再生動作を阻止することができる。換言すれば、この第4のトラップエリアT4は、この第4のトラップエリアT4は、この第4のトラップエリアT4は、この第4のトラップエリアT4は、この第4のトラップエリアT4を再生しようとした装置の暴走を助長する。

【0023】第5のトラップエリアT5は、他のアドレス情報と重複する偽のアドレス情報を持つセクタエリアにより形成される。他のアドレス情報と重複する偽のアドレス情報を持つセクタエリアとは、アドレスエリアに他のセクタエリアのアドレス情報が記録されたセクタエリアのことである。この第5のトラップエリアを再生しようとすると、偽のアドレス情報の影響により、正常な連続データは再生できない。つまり、この第5のトラップエリアT5を再生しようとした装置の正常な再生動作を阻止することができる。換言すれば、この第5のトラップエリアT5は、この第5のトラップエリアT5は、この第5のトラップエリアT5を再生しようとした装置の暴走を助長する。

【0024】第6のトラップエリアT6は、光ディスク キンプが働いた場合)、不正コピー情報には不連続な上の位置と関係の無い偽のアドレス情報(実在しないア トレス)を持つセクタエリアにより形成される。本来、 連続するセクタエリアのアドレスエリアには、連続番号 第5、又は第6のトラップエリアが働いた場合、不正 が記録される。ところが、光ディスク上の位置と関係の 50 ピー情報にはアドレス情報の乱れが含まれることにな

無い偽のアドレス情報を持つセクタエリアには、前後のセクタエリアのアドレス情報と関連しないアドレス情報が記録される。このような光ディスク上の位置と関係の無い偽のアドレス情報を持つセクタエリアの存在により、連続するセクタエリアのアドレス情報が連続しない情報となる。この第6のトラップエリアを再生しようとすると、偽のアドレス情報の影響により、正常な連続データは再生できない。つまり、この第6のトラップエリアT6は、この第6のトラップエリアT6は、この第6のトラップエリアT6は、この第6のトラップエリアT6を再生しようとした装置の暴走を助長する。

【0025】上記した第1~第6のトラップエリアの働きにより、ディスクコピーを実行しようとした装置の再生動作が阻止される。つまり、上記した第1~第6のトラップエリアにより、ディスクコピーが防止される。また、上記した第1~第6のトラップエリアは、リードインエリア内の通常の再生時には再生されない位置、リードインエリアとデータエリアの間の通常の再生時には再生されない位置、又はデータエリア内の通常の再生時には再生されない位置、又はデータエリア内の通常の再生時には再生されない位置に配置される。このため、通常の再生時の再生動作を阻害することはない。

【0026】また、上記第1~第6のトラップエリア は、単独でもコピープロテクト機能を発揮することがで きるが、組み合わせてもよい。例えば、図1に示すよう に、光ディスク上の所定位置に第1及び第2のトラップ エリアを配置したり、図2に示すように、光ディスク上 の所定位置に第2及び第3のトラップエリアを配置した りして、ディスクコピーを防止するようにしてもよい。 【0027】さらに、上記第1~第6のトラップエリア は、不正にディスクコピーされた不正コピー情報の検出 に貢献することもできる。例えば、上記第1~第6のト ラップエリアが形成されたディスクが、ディスクコピー されてしまったとする。しかし、上記第1~第6のトラ ップエリアの働きにより、ディスクコピーにより得られ た不正コピー情報には、所定の特徴が見られる。この所 定の特徴を検出することにより、不正コピー情報を見分 けることができる。例えば、第1又は第2のトラップエ リアが働いた場合(同一トラック上のデータが繰り返し 再生された場合)、不正コピー情報には第1又は第2の トラップエリアに記録された情報が複数含まれることに なる。つまり、不正コピー情報には第1又は第2のトラ ップエリアのアドレス情報が複数含まれることになる。 第3のトラップエリアが働いた場合 (無理なトラックジ ャンプが働いた場合)、不正コピー情報には不連続なデ ータが含まれることになる。この場合、無理なトラック ジャンプにより、アドレス情報の乱れが生じる。第4、 第5、又は第6のトラップエリアが働いた場合、不正コ

る。なお、不正コピーの検出については後に詳しく説明

【0028】次に、DVD-ROMディスクの規格を説 明するとともに、上記したコピープロテクト機能付き情 報記録媒体をDVD-ROMディスクに適用した場合に ついて説明する。DVD-ROMには、ピットによりデ ータが記録される。そして、このピット並びにより仮想 的なトラックが形成される。

【0029】図9は、DVD-ROMディスクのデータ 構造を概略的に示す図である。DVD-ROMディスク 10 には、内周側803から外周側804へ向けて順に、リ ードインエリア800、データエリア801、及びリー ドアウトエリア802が配置されている。DVD-RO Mディスクには、情報が2048バイト毎のまとまりと して記録されており、この記録最小単位がセクタと呼ば れるる(セクタについての詳細な説明は後述する)。各 セクタには、トラップエリアの説明時に示したアドレス 情報に相当する物理セクタ番号が設定される。この物理 セクタ番号は、後述するようにDVD-ROMディスク の記録面上に記録されている。物理セクタ番号開始位置 20 805はディスク最内周のリードインエリア800の先 頭セクタと一致し、外周に行くに従って昇順の連続した 物理セクタ番号が設定される。また、データエリア80 1の先頭セクタの物理セクタ番号には、030000h (hは16進数表示を意味する)が設定されるようにあ らかじめ決められている。

【0030】続いて、図10を参照して、DVD-RO Mディスクのリードインエリア800のデータ構造につ いて説明する。リードインエリア800には、基準信号 を表すリファレンスコード813及びコントロールデー タ814が配置され、とれらの間には全て"00"が記 録されたブランクデータ810、811、812が存在 している。

【0031】リファレンスコード813には、特定のラ ンダムテストパターンが記録されており、その情報を用 いて自動イコライザーのパラメーター調整など情報再生 装置の調整が可能になっている。またコントロールデー タ814には後述する情報記録媒体特有のフォーマット 情報である物理フォーマットインフォメーション81 5、1枚1枚の情報記録媒体個々の製造番号などの製造 40 に関する情報が記録されているディスクマニュファクチ ュアリングインフォメーション816、及びデータエリ ア801内に記録されている情報内容(コンテンツ)に 関する情報を示すコンテンツプロバイダーインフォメー ション817が記録されている。

【0032】また、リファレンスコード813が記録さ れている先頭セクタの物理セクタ番号は02F000 h、コントロールデータ814が記録されている先頭セ クタの物理セクタ番号はO2F2O0hになっている。

は、ブランクデータ810、811、812に設けられ る。これらブランクデータ810、811、812は、 通常の再生時には再生されないように設定されている。 勿論、ディスクコピー実行時には、これらブランクデー タ810、811、812は再生されコピーされる。ま た、コンテンツプロバイダーインフォメーション817 には、トラップエリアの位置を示すアドレス情報が記録 される。

【0034】続いて、図11を参照して、物理フォーマ ットインフォメーションの概略構成について説明する。 【0035】物理フォーマットインフォメーション81 5には、適用されるDVD規格のタイプ(DVD-RO M·DVD-RAM·DVD-R等) およびパートバー ジョンを示すブックタイプ及びパートバージョン823 と、ディスクサイズおよび最小読出レートを示すディス クサイズ及び最小リードアウトレート824と、1層R OMディスク、1層RAMディスク、2層ROMディス ク等のディスク構造を示すディスクストラクチャー82 5と、記録密度を示すレコーディング密度826と、デ ータが記録されている位置を示すデータエリアアロケー ション827と、情報記録媒体の内周側に情報記録媒体 個々の製造番号などが書き換え不可能な形で記録された BCA (Burst Cutting Area) ディスクリプター828 と、将来の利用を予測した予約場所を指定したリザーブ 領域829、830が記録されている。

【0036】続いて、図12を参照して、DVD-RO Mディスクに記録される全情報の記録単位(ECC(Er ror Correction Code) 単位) について説明する。

【0037】パーソナルコンピュータ用の情報記録媒体 (ハードディスクHDDや光磁気ディスクMOなど)の ファイルシステムで多く使われるFAT (File Alloca tionTable)では256バイトを最小単位として情報記 録媒体へ情報が記録される。

【0038】それに対し、CD-ROM、DVD-RO M、DVD-RAMなどの情報記録媒体ではファイルシ ステムとしてUDF (Universal Disk Format ; 詳細 は後述)を用いており、ここでは2048バイトを最小 単位として情報記録媒体へ情報が記録される。この最小 単位をセクタと呼ぶ。つまりUDFを用いた情報記録媒 体に対しては、図12に示すようにセクタ501毎に2 048バイトずつの情報が記録される。

【0039】CD-ROM及びDVD-ROMでは、カ ートリッジを使わず裸ディスクで取り扱うため、ユーザ サイドで情報記録媒体表面に傷が付いたり表面にゴミが 付着し易い。情報記録媒体表面に付いたゴミや傷の影響 で特定のセクタ(たとえば図12のセクタ501c)が 再生不可能(もしくは記録不能)な場合が発生する。

【0040】DVDでは、そのような状況を考慮したエ ラー訂正方式(積符号を利用したECC)が採用されて 【0033】上記説明した第1~第6のトラップエリア 50 いる。具体的には16個ずつのセクタ(図12ではセク

タ501aからセクタ501pまでの16個のセクタ)で1個のECC(Error Correction Code)ブロック502を構成し、その中で強力なエラー訂正機能を持たせている。その結果、たとえばセクタ501cが再生不可能といったような、ECCブロック502内のエラーが生じても、エラー訂正され、ECCブロック502のすべての情報を正しく再生することが可能となる。

【0041】続いて、図13を参照して、DVD-ROMに記録される1個のセクタのデータ構造について説明する

【0042】ユーザーが利用する情報(コンテンツ情報)は、メインデータ(D0~D2047)505~509内に記録される。更に、メインデータ(D0~D2047)505~509の前後には後述するようなID851、IED511、CPR_MAI852、EDC513が付加記録されている。

【0043】 ID851とは、各セクタ毎の独自情報 (Identification)を示した情報で、具体的には図14 に示すようにセクタインフォメーション861と物理セクタ番号を示したセクタナンバー862が記録されている。このセクターナンバー862が、トラップエリアの説明時に示したアドレス情報に相当するものである。

【0044】セクタインフォーメーション861には、 セクタフォーマットタイプ863、トラッキング方法8 64、反射率865、リザーブ866、エリアタイプ8 67、データタイプ868、及びレイヤーナンバー86 9が記録されている。セクタフォーマットタイプ863 には、CLV (Constant Linear Velocity: 線速一 定)、又はゾーンCAV(Constant Angular Velocit y: 特定のゾーン内では回転数一定) が示されている。 トラッキング方法864には、ピットとグループのどち らを利用してトラッキングするかが示されている。反射 率865には、記録面の反射率が示されている。リザー ブ866は、予備のエリアである。エリアタイプ867 には、データエリア、リードインエリア、リードアウト エリア、ミドルエリアのいずれのエリアに該当するかが 示されている。データタイプ868には、リードオンリ ーデータ、又はリライタブルデータのどちらのタイプか が示されている。レイヤーナンバーには、何層目のディ スクかが示されている。

【0045】 I E D (Data ID Error Detection Code) 511は、ID851に対するエラー検出コードで、情報再生時に再生されたID851に対してこのIED信号511を演算処理し、再生されたID851の再生信号エラー検出が出来る。

【0046】EDC(Error Detection Code)513 は、図13に示す1D851からメインデータ(D20 47)509までの2060パイト信号に対するエラー 検出コードでサイズは4パイトである。

【0047】続いて、図8を参照して、コピープロテク 50 ップエリアとする。つまり、図8に示すセクタc23、

トの流れについて簡単に説明する。図8は、第1のトラップエリアを含むトラックの拡大図である。

【0048】この図8に示すトラックを有するディスク がディスクコピーされる場合について説明する。ディス クコピーを実行するディスクコピー装置の集光スポット は、ディスクコピーの対象となるコピー元ディスクの全 トラックをトレースする。これにより、コピー元ディス クの全情報が再生され、結果的に、コピー元ディスクの 全情報がコピーされる。ディスクコピー装置の集光スポ 10 ットが、例えば、セクタa21、セクタb22、セクタ c23、セクタd24を順にトレースする。このとき、 セクタa21、セクタb22、セクタc23、セクタd 24から再生される情報は、コピー先の情報記録媒体に 記録される。同時に、セクタa21、セクタb22、セ クタc23、セクタd24に含まれるセクタナンバー8 62も、コピー先の情報記録媒体に記録される。 さら に、集光スポットは、トラックに沿って移動し、トラッ クを1周して、セクタe31、セクタf32をトレース する。このとき、このとき、セクタe31、セクタf3 2から再生される情報は、コピー先の情報記録媒体に記 録される。同時に、セクタe31、セクタf32に含ま れるセクタナンバー862も、コピー先の情報記録媒体 に記録される。この後、集光スポットは、再び、セクタ c 2 3、セクタd 2 4 をトレースする。このとき、再 度、セクタ c 2 3、セクタ d 2 4 から再生される情報 が、コピー先の情報記録媒体に記録される。同時に、セ クタc23、セクタd24に含まれるセクタナンバー8 62も、コピー先の情報記録媒体に記録される。

【0049】 このように、第1のトラップエリアが設け 50 たれたディスクをディスクコピーして得られた不正コピー情報には、同一のセクタナンバーの情報が複数回にわたって記録されてしまうことになる。このような不正コピー情報の特徴を検出することにより、不正コピー情報を見きわめることができる。

【0050】一般的に、光ディスクを再生する装置は、情報を再生する過程において、アドレス情報(セクタナンバー862)をモニターしている。このとき、同一のアドレス情報を複数回検出した場合には、トラックはずれと判断し、集光スポットを外周側のトラックへ移動させる。仮に、ディスクコピー装置が、このような動作を行ったとしても、図1に示すように、第1のトラップエリアの外周側に第2のトラップエリアを配置しておけば、再度、集光スポットは同一トラック上をトレースすることになる。

【0051】また、上記説明したトラックはずれの判断を逆用し、アドレス情報を乱して、ディスクコピー装置を暴走させて、ディスクコピーを防止するという方法もある。例えば、図8に示すセクタc23、セクタd24、…、セクタe31、セクタf32を全て第4のトラップエリアとする。つまり、図8に示すセクタc23

13

セクタd24、…、セクタe31、セクタf32までの物理セクタ番号を"0"に設定する(セクタc23、セクタd24、…、セクタe31、セクタf32のセクターナンバー862を全てブランクにする)。その結果、ディスクコピー装置が、セクタc23、セクタd24、…、セクタe31、セクタf32までのトラックを何度トレースしても異常検知することはできない。

【0052】次に、DVD-RAMディスクの規格を説明するとともに、上記したコピープロテクト機能付き情報記録媒体をDVD-RAMディスクに適用した場合に 10ついて説明する。

【0053】まず、図15を参照して、DVD-RAMディスクにおけるゾーンの概念について説明する。

【0054】DVD-RAMディスクとしてのディスク 10のデータ記録エリア28は、リング状(年輪状)に 複数の記録エリア (複数の記録ゾーン) に分割すること ができる。各記録ゾーン毎にディスク回転速度は異なる が、各ゾーン内では線速度または角速度を一定にすると とができる。との場合、各ゾーン毎に予備の記録エリア すなわちスペアエリア (フリースペース) を設けること 20 ができる。このゾーン毎のフリースペースを集めて、そ のディスク10のリザーブエリアとすることができる。 【0055】毎秒回転数(Hz)がN00のユーザエリ アUAOOの外側同心状に、毎秒回転数(Hz)がNO 0のスペアエリアSA00(ユーザエリアUA00で生 じた欠陥部分の交替処理用)が設けられている。同様 に、毎秒回転数(Hz)がNO1のユーザエリアUAO 1の外側に毎秒回転数(Hz)がN01のスペアエリア SA01が同心状に設けられ、毎秒回転数(Hz)がN 23のユーザエリアUA23の外側に毎秒回転数(H z)がN23のスペアエリアSA23が同心状に設けら

【0056】との同心状エリア構成において、各回転ゾーン00(UA00+SA00)~23(UA23+SA23)間での記録密度を平均化してディスク全体で大きな記録容量を確保するために、各定回転ゾーン毎の回転数をN00>N01>…>N23としている。

【0057】なお、ことでは同心状のゾーン数を24個(ゾーン00~ゾーン23)としてあるが、このゾーン数24以外でもこの発明を実施できる。

【0058】図15の構成の光ディスク10において、ユーザエリアUA00に書込を行うときは、その管理(ユーザエリアUA00のどこからどこまでに該当データが書き込まれるか等)および欠陥発生時の交替処理は同じ回転数ゾーン内で行なう。同様に、ユーザエリアUA01での書込管理・欠陥管理は同じ回転数ゾーン内で行ない、ユーザエリアUA23での書込管理・欠陥管理は同じ回転数ゾーン内で行ない、ユーザエリアUA23での書込管理・欠陥管理は同じ回転数ゾーン内で行なう。

【0059】とのようにすれば、書込管理処理中あるい 2層ROM/RAMディスク等)と、記録密度と、デーは交替処理中にディスク10の回転速度を切り換える必 50 タエリアアロケーションと、パーストカッティングエリ

要がなくなるから、書込処理および交替処理を高速化できる。

【0060】図16は、ディスク10のレイアウトを説明する図である。

【0061】すなわち、ディスク内周側のリードインエリア27は、光反射面が凹凸形状をしたエンボスゾーン、表面が平坦(鏡面)なミラーゾーンおよび書替可能ゾーンで構成される。エンボスゾーンは基準信号ゾーンおよび制御データゾーンを含み、ミラーゾーンは接続ゾーンを含む。

【0062】書替可能ゾーンは、ディスクテストゾーンと、ドライブテストゾーンと、ディスクID(識別子)ゾーンと、欠陥管理エリアDMA1およびDMA2を含んでいる。

【0063】ディスク外周側のリードアウトエリア26は、欠陥管理エリアDMA3およびDMA4と、ディスクID(識別子)ゾーンと、ドライブテストゾーンと、ディスクテストゾーンを含む書替可能ゾーンで構成される。

20 【0064】リードインエリア27とリードアウトエリア26との間のデータエリア28は、24個の年輪状のゾーン00〜ゾーン23に分割されている。上記説明した第1〜第6のトラップエリアを、このデータエリア28内に設けるようにしてもよい。但し、このデータエリア28内に設けられたトラップエリアの物理セクタ番号(アドレス情報)を管理して、このデータエリア28内に設けられたトラップエリアが通常の再生時には再生されないように設定される。勿論、ディスクコピー実行時には、このデータエリア28内に設けられたトラップエリアは再生されコピーされることになる。

【0065】各ゾーンは一定の回転速度を持っているが、異なるゾーン間では回転速度が異なる。また、各ゾーンを構成するセクタ数も、ゾーン毎に異なる。具体的には、ディスク内周側のゾーン(ゾーン00等)は回転速度が早く構成セクタ数は少ない。一方、ディスク外周側のゾーン(ゾーン23等)は回転速度が遅く構成セクタ数が多い。このようなレイアウトによって、各ゾーン内ではCAVのような高速アクセス性を実現し、ゾーン全体でみればCLVのような高密度記録性を実現している。

【0066】図17は、図16のレイアウトにおけるリードイン部分およびリードアウト部分の詳細を説明する図である。

【0067】エンボスデータゾーンの制御データゾーンには、適用されるDVD規格のタイプ(DVD-ROM・DVD-RAM・DVD-R等)およびパートバージョンと、ディスクサイズおよび最小読出レートと、ディスク構造(1層ROMディスク・1層RAMディスク・2層ROM/RAMディスク等)と、記録密度と、データエリアアロケーションと、バーストカッティングエリ

アの記述子と、記録時の露光量指定のための線速度条件と、読出パワーと、ピークパワーと、バイアスパワーと、媒体の製造に関する情報が記録されている。

【0068】別の言い方をすると、この制御データゾーンには、記録開始・記録終了位置を示す物理セクタ番号などの情報記録媒体全体に関する情報と、記録パワー、記録パルス幅、消去パワー、再生パワー、記録・消去時の線速などの情報と、記録・再生・消去特性に関する情報と、個々のディスクの製造番号など情報記録媒体の製造に関する情報等が事前に記録されている。

【0069】また、エンボスデータゾーンには、ブランクゾーン652、654、656が設けられている。上記説明した第1~第6のトラップエリアは、これらブランクゾーン652、654、656に設けられる。これらブランクゾーン652、654、656は、通常の再生時には再生されないように設定されている。勿論、ディスクコピー実行時には、これらブランクゾーン652、654、656は再生されコピーされる。また、制御データゾーンには、トラップエリアの位置を示すアドレス情報(物理セクタ番号)が記録される。

【0070】リードインおよびリードアウトの書替可能データゾーンには、各々の媒体でとの固有ディスク名記録領域と、試し記録領域(記録消去条件の確認用)と、データエリア内の欠陥領域に関する管理情報記録領域が設けられている。これらの領域を利用することで、個々のディスクに対して最適な記録が可能となる。

【0071】図18は、図16のレイアウトにおけるデータエリア部分の詳細を説明する図である。

【0072】24個のゾーン毎に同数のグループが割り当てられ、各グループはデータ記録に使用するユーザエ 30リアと交替処理に使用するスペアエリアをペアで含んでいる。各グループのユーザエリアおよびスペアエリアは同じ回転速度のゾーンに収まっており、グループ番号の小さい方が高速回転ゾーンに属し、グループ番号の大きい方が低速回転ゾーンに属する。低速回転ゾーンのグループは高速回転ゾーンのグループよりもセクタ数が多いが、低速回転ゾーンはディスクの回転半径が大きいので、ディスク10上での物理的な記録密度はゾーン全体(グループ全て)に渡りほぼ均一になる。

【0073】各グループにおいて、ユーザエリアはセクタ番号の小さい方(つまりディスク上で内周側)に配置され、スペアエリアはセクタ番号の大きい方(ディスク上で外周側)に配置される。とのセクタ番号の割り当て方は、図15のディスク10上におけるユーザエリアUAとスペアエリアSAとの配置方法に対応する。

【0074】次に、情報記録媒体(DVD-RAMディ が生じ スク10等)上に記録される情報の記録信号構造とその すべて 記録信号構造の作成方法について説明する。なお、媒体 【00年に記録される情報の内容そのものは「情報」と呼び、 ーンと 同一内容の情報に対しスクランブルしたり変調したりし 50 ある。

たあとの構造や表現、つまり信号形態が変換された後の "1"~"0"の状態のつながりは「信号」と表現し て、両者を適宜区別することにする。

【0075】図19は、図16のデータエリア部分に含まれるセクタの構造を説明する図である。図19の1セクタは図18のセクタ番号の1つに対応し、2048バイトのサイズを持つ。各セクタはディスク10にエンボスで刻まれたヘッダを先頭に、同期コードと変調後の信号(ビデオデータその他)を交互に含んでいる。このヘッダに、トラップエリアの説明時に示したアドレス情報としての物理セクタ番号が記録されている。

【0076】次に、DVD-RAMディスク10におけるECCブロック処理方法について説明する。

【0077】図20は、図16のデータエリア部分に含まれる情報の記録単位(ECC単位)を説明する図である。

【0078】パーソナルコンピュータ用の情報記録媒体 (ハードディスクHDDや光磁気ディスクMOなど)の ファイルシステムで多く使われるFAT (ファイルアロ 20 ケーションテーブル)では、256パイトまたは512 バイトを最小単位として情報記録媒体へ情報が記録される。

【0079】それに対し、CD-ROMやDVD-ROM、DVD-RAMなどの情報記録媒体では、ファイルシステムとしてUDF(ユニバーサルディスクフォーマット;詳細は後述)を用いており、ここでは2048バイトを最小単位として情報記録媒体へ情報が記録される。この最小単位をセクタと呼ぶ。つまりUDFを用いた情報記録媒体(光ディスク10)に対しては、図20に示すようにセクタ501毎に2048バイトずつの情報を記録して行く。

【〇〇80】CD-ROMやDVD-ROMではカートリッジを使わず裸ディスクで取り扱うため、ユーザサイドで情報記録媒体表面に傷が付いたり表面にゴミが付着し易い。情報記録媒体表面に付いたゴミや傷の影響で特定のセクタ(たとえば図20のセクタ501c)が再生不可能(もしくは記録不能)な場合が発生する。

【0081】DVDでは、そのような状況を考慮したエラー訂正方式(積符号を利用したECC)が採用されている。具体的には16個ずつのセクタ(図20ではセクタ501aからセクタ501pまでの16個のセクタ)で1個のECC(エラーコレクションコード)ブロック502を構成し、その中で強力なエラー訂正機能を持たせている。その結果、たとえばセクタ501cが再生不可能といったような、ECCブロック502内のエラーが生じても、エラー訂正され、ECCブロック502のすべての情報を正しく再生することが可能となる。

【0082】図21は、図16のデータエリア内でのゾーンとグループ(図18参照)との関係を説明する図である

【0083】図16の各ゾーン00~23は、図15に 示すようにディスク10上に物理的に配置されるもの で、実際に使用されるデータエリア (ユーザエリア+ス ペアエリア)の他に、ゾーン間のデータ使用エリアを区 分けするガードエリアを持っている。これに対して、図 18のグループは実際に使用されるデータエリア (ユー ザエリア+スペアエリア) に対して割り当てられる。

【0084】すなわち、図21においてガードエリア7 11で区切られたグループ00はディスク10の物理セ クタ番号031000hから始まるユーザエリアUA0 0 およびスペアエリアSA 0 0 を含み、ガードエリア 7 11とガードエリア712で区切られたグループ01は ユーザエリアUA01およびスペアエリアSA01を含 む。以下同様に、ディスク10の最外周側のガードエリ ア713で区切られたグループ23はディスク10の最 終物理セクタ番号で終わるユーザエリアUA23および スペアエリアSA23を含んでいる。

【0085】図21の構成を持つ図15の光ディスク (DVD-RAMディスク) 10が図示しないディスク ドライブにかけられているときは、ガードエリア通過中 20 にディスク10の回転速度を切り替える処理を行なうこ とができる。たとえば、図示しない光へッドがグループ 00からグループ01にシークする際に、ガードエリア 711を通過中にディスク10の回転速度がN00から NO1に切り替えられる。

【0086】図22は、図16のデータエリア内での論 理セクタの設定方法を説明する図である。物理的には図 21に示すようなガードエリアがディスク10上に設け られているが、論理的には(つまり書込制御を行なうソ フトウエアからみれば)、各グループ00~23が密に 30 並んでいる。このグループ00~23の並びは、グルー プ番号の小さい方(物理セクタ番号の小さい方)がディ スク10の内周側(リードイン側)に配置され、グルー プ番号の大きい方(物理セクタ番号の大きい方)がディ スク10の外周側(リードアウト側) に配置される。

【0087】との配置において、同一グループ内のスペ アエリアの論理セクタ番号は事前には設定されておら ず、ユーザエリアの欠陥発生時に、交替処理前のユーザ エリアの欠陥位置での論理セクタ番号が、交替処理後の 対応するスペアエリア位置に移される。ただし、物理セ 40 クタ番号については、ユーザエリアもスペアエリアも始 めから設定されている。

【0088】次に、ユーザエリアで生じた欠陥を処理す る方法を幾つか説明する。その前に、欠陥処理に必要な 欠陥管理エリア (図16または図17のDMA1~DM A4)およびその関連事項について説明しておく。

【0089】[欠陥管理エリア]欠陥管理エリア(DM A1~DMA4)はデータエリアの構成および欠陥管理 の情報を含むもので、たとえば32セクタで構成され

ディスク(DVD-RAMディスク)10のリードイン エリア27内に配置され、他の2つの欠陥管理エリア (DMA3、DMA4)は光ディスク10のリードアウ トエリア26内に配置される。各欠陥管理エリア(DM A1~DMA4)の後には、適宜予備のセクタ(スペア セクタ)が付加されている。

【0090】各欠陥管理エリア(DMA1~DMA4) は、2つのECCブロックからなる。各欠陥管理エリア (DMA1~DMA4)の最初のECCブロックには、 ディスク10の定義情報構造(DDS; Disc Definitio n Structure) および一次欠陥リスト (PDL; Primary Defect List)が含まれる。各欠陥管理エリア(DMA 1~DMA4)の2番目のECCブロックには、二次欠 陥リスト (SDL; Secondary Defect List) が含まれ る。4つの欠陥管理エリア(DMA1~DMA4)の4 つの一次欠陥リスト(PDL)は同一内容となってお り、それらの4つの二次欠陥リスト(SDL)も同一内 容となっている。

【0091】4つの欠陥管理エリア (DMA1~DMA 4)の4つの定義情報構造(DDS)は基本的には同一 内容であるが、4つの欠陥管理エリアそれぞれのPDL およびSDLに対するポインタについては、それぞれ個 別の内容となっている。

【0092】CCでDDS/PDLブロックは、DDS およびPDLを含むECCブロックを意味する。また、 SDLブロックは、SDLを含むECCブロックを意味

【0093】光ディスク(DVD-RAMディスク)1 0を初期化したあとの各欠陥管理エリア(DMA1~D MA 4) の内容は、以下のようになっている:

(1) 各DDS/PDLブロックの最初のセクタはDD

(2) 各DDS/PDLブロックの2番目のセクタはP DLを含む:

(3)各SDLブロックの最初のセクタはSDLを含 t.

【0094】一次欠陥リストPDLおよび二次欠陥リス トSDLのブロック長は、それぞれのエントリ数によっ て決定される。各欠陥管理エリア(DMA1~DMA 4)の未使用セクタはデータ0FFhで書き潰される。 また、全ての予備セクタはOOhで書き潰される。

【0095】[ディスク定義情報]定義情報構造DDS は、1セクタ分の長さのテーブルからなる。このDDS はディスク10の初期化方法と、PDLおよびSDLそ れぞれの開始アドレスを規定する内容を持つ。DDS は、ディスク10の初期化終了時に、各欠陥管理エリア (DMA)の最初のセクタに記録される。

【0096】[パーティショニング] ディスク10の初 期化中に、データエリアは24の連続したグループ00 る。2つの欠陥管理エリア(DMA1、DMA2)は光 50 ~23に区分される。最初のゾーン00および最後のゾ ーン23を除き、区分された各ゾーンの頭には複数のバッファブロックが配置される。各グループは、バッファフロックを除き1つのゾーンを完全にカバーするようになっている。

19

【0097】各グループは、データセクタ(ユーザエリア)のフルブロックと、それに続くスペアセクタ(スペアエリア)のフルブロックを備えている。

【0098】 [スペアセクタ] 各データエリア内の欠陥 セクタは、所定の欠陥管理方法(後述する検証、スリッピング交替、スキッピング交替、リニア交替)により、正常セクタに置換(交替)される。この交替のためのスペアセクタのブロックは、図18の各グループのスペアエリアに含まれる。

【0099】光ディスク10は使用前に初期化できるようになっているが、この初期化は検証の有無に拘わらず 実行可能となっている。

【 0 1 0 0 】 欠陥セクタは、スリッピング交替処理(Sipping Replacement Algorithm)、スキッピング交替処理(Skipping Replacement Algorithm)あるいはリニア交替処理(Linear Replacement Algorithm)により処理 20 される。これらの処理(Algorithm)により前記PDLおよびSDLにリストされるエントリ数の合計は、所定数、たとえば4 0 9 2 以下とされる。

【0101】 [初期化] ディスク10の初期化において、そのディスクの最初の使用よりも前に、4つの欠陥管理エリア(DMA1~DMA4)が前もって記録される。データエリアは24グループ(図18のグループ00~23)にパーティションされる。各グループは、データセクタ(ユーザエリア)用に多数のブロックと、それに続く多数のスペアブロック(スペアエリア)を含む。これらのスペアブロックは欠陥セクタの交替用に用いることができる。

【0102】初期化時は各グループの検証(サーティファイ)を行なうこともできる。これにより、初期化段階で発見された欠陥セクタは特定され、使用時にはスキップされるようになる。

【0103】全ての定義情報構造DDSのパラメータは、4つのDDSセクタに記録される。一次欠陥リストPDLおよび二次欠陥リストSDLは、4つの欠陥管理エリア(DMA1~DMA4)に記録される。最初の初 40 期化では、SDL内のアップデートカウンタは00hにセットされ、全ての予約ブロックは00hで書き潰される。

【0104】 [検証/サーティフィケーション] ディスク10を検証する場合は、各グループ内のデータセクタ (ユーザエリア) およびスペアセクタ (スペアエリア) を検証することになる。この検証は、各グループ内セクタの読み書きチェックにより行なうことができる。

【0105】検証中に発見された欠陥セクタは、たとえばスリッピング交替により処理される。この欠陥セクタ 50

は、読み書きに使用してはならない。

【0106】検証の実行中にディスク10のゾーン内スペアセクタを使い切ってしまったときは、そのディスク10は不良と判定し、以後そのディスク10は使用しないものとする。

【0107】なお、ディスク10をコンピュータのデータ記憶用に用いるときは上記初期化+検証が行われるが、ビデオ録画用に用いられるときは、上記初期化+検証を行うことなく、いきなりビデオ録画することもあり得る。

【0108】次に、図23~図32を参照して、DVD に採用されているUDF規格について説明を行う。

【0109】初めに、DVDで採用されているUDFフォーマットについて説明する。

【0110】<<<UDFの概要説明>>>

<>UDFとは何か>>UDFとはユニバーサルディスクフォーマットの略で、主にディスク状情報記録媒体における「ファイル管理方法に関する規約」を示す。

【0111】CD-ROM、CD-R、CD-RW、D VD-ビデオ、DVD-ROM、DVD-R、DVD-RAM等は、国際標準規格である「ISO9660」で 規格化されたUDFフォーマットを採用している。

【0112】ファイル管理方法としては、基本的にルートディレクトリを親に持ち、ツリー状にファイルを管理する階層ファイルシステムを前提としている。

【0113】 ことでは主にDVD-RAM規格に準拠したUDFフォーマットについての説明を行うが、この説明内容の多くの部分はDVD-ROM規格内容とも一致している。

30 【0114】<<UDFの概要>>

<情報記録媒体へのファイル情報記録内容>情報記録媒体に情報を記録する場合、情報のまとまりを「ファイルデータ」と呼び、ファイルデータ単位で記録が行なわれる。個々のファイルデータは、他のファイルデータと識別するため、ファイルデータ毎に独自のファイル名が付加されている。

【0115】共通な情報内容を持つ複数のファイルデータ毎にグループ化すると、ファイル管理とファイル検索が容易になる。との複数ファイルデータ毎のグループを「ディレクトリ」または「フォルダ」と呼ぶ。各ディレクトリ(またはフォルダ)毎に独自のディレクトリ名(またはフォルダ名)が付加される。

【0116】さらに、複数のディレクトリ(フォルダ)を集めて、その上の階層のグループとして上位ディレクトリ(上位フォルダ)でまとめることができる。ここではファイルデータとディレクトリ(フォルダ)を総称してファイルと呼ぶことにする。

【0117】情報を記録する場合には

- (イ)ファイルデータの情報内容そのもの;
- (ロ)ファイルデータに対応したファイル名;および

(ハ) ファイルデータの保存場所(どのディレクトリの 下に記録するか)に関する情報を全て情報記録媒体(例 えばディスク10)上に記録する。

【0118】また、各ディレクトリ(フォルダ)に対す

(二) ディレクトリ名(フォルダ名);および

(ホ) 各ディレクトリ (フォルダ) が属している位置 (つまりその親となる上位ディレクトリ/上位フォルダ の位置)に関する情報も、すべて情報記録媒体(10) 上に記録する。

【0119】図23は、階層ファイルシステム構造と情 報記録媒体(DVD-RAMディスク10)に記録され た情報内容との間の基本的な関係を説明する図である。 図23は、その上側に階層ファイルシステム構造の簡単 な例を示し、その下側にUDFに従ったファイルシステ ム記録内容の一例を示している。

【0120】 <階層ファイルシステム構造の簡単な例> 小型コンピュータ用の汎用オペレーティングシステム (OS) coounix, MacOS, MS-DOS, Windowsなど、ほとんどのOSのファイル管理シ 20 ステムは、図23あるいは図29に例示するようなツリ ー状の階層構造を持つ。

【0121】図23において、1個のディスクドライブ (たとえば1台のハードディスクドライブHDDが複数 のパーティションに区切られている場合には、各パーテ ィション単位を1個のディスクドライブとして考える) にはその全体の親となる1個のルートディレクトリ40 1が存在し、その下にサブディレクトリ402が属して いる。このサブディレクトリ402の中にファイルデー タ403が存在している。

【0122】実際にはこの例に限られず、ルートディレ クトリ401の直接下にファイルデータ403が存在し たり、複数のサブディレクトリ402が直列につながっ た複雑な階層構造を持つ場合もある。

【0123】<情報記録媒体上のファイルシステム記録 内容>ファイルシステム情報は論理ブロック単位(また は論理セクタ単位)で記録され、各論理ブロック内に記 録される内容としては、主に、次のようなものがある: *ファイルID記述子FID(ファイル情報を示す記述 文)…ファイルの種類やファイル名(ルートディレクト 40 れている。なお、図示しないが、同一論理ブロック内 リ名、サブディレクトリ名、ファイルデータ名など)を 記述しているもの。ファイルID記述子FIDの中に は、それに続くファイルデータのデータ内容や、ディレ クトリの中身に関する情報が記録されている位置も記述 されている。

【0124】*ファイルエントリFE(ファイル内容の 記録場所を示す記述文)…ファイルデータの内容やディ レクトリ (サブディレクトリなど) の中身に関する情報 が記録されている情報記録媒体上の位置(論理ブロック 番号) などを記述しているもの。

【0125】図23の中央部分は、図23の上側に示す ようなファイルシステム構造の情報を情報記録媒体10 に記録したときの、記録内容を例示している。以下、と の例示内容を具体的に説明する。

【0126】*論理ブロック番号「1」の論理ブロック には、ルートディレクトリ401の中味が示されてい

【0127】図23の例では、ルートディレクトリ40 1の中にはサブディレクトリ402のみが入っている。 このため、ルートディレクトリ401の中味としては、 サブディレクトリ402に関する情報がファイルID記 述子(FID)404で記載されている。なお、図示し ないが、同一論理ブロック内に、ルートディレクトリ4 01自身の情報もファイル I D記述子の文で並記されて

【0128】 このルートディレクトリ401のファイル ID記述子404中に、サブディレクトリ402の中味 が何処に記録されているかを示すファイルエントリ(F E) 405の記録位置が、ロングアロケーション記述子 (LAD(2))で記載されている。

【0129】*論理ブロック番号「2」の論理ブロック には、サブディレクトリ402の中味が記録されている 位置を示すファイルエントリ405が記録されている。

【0130】図23の例では、サブディレクトリ402 の中にはファイルデータ403のみが入っている。この ため、サブディレクトリ402の中味は、実質的にはフ ァイルデータ403に関する情報が記述されているファ イルID記述子406の記録位置を示すことになる。

【0131】ファイルエントリ405では、その中のシ 30 ョートアロケーション記述子で3番目の論理ブロックに サブディレクトリ402の中味が記録されていることが 記述(AD(3))されている。

【0132】*論理ブロック番号「3」の論理ブロック には、サブディレクトリ402の中味が記録されてい

【0133】図23の例では、サブディレクトリ402 の中にはファイルデータ403のみが入っているので、 サブディレクトリ402の中味としてファイルデータ4 03に関する情報がファイル I D記述子406で記載さ に、サブディレクトリ402自身の情報もファイルID 記述子の文で並記されている。

【0134】ファイルデータ403に関するファイル1 D記述子406の中に、このファイルデータ403の中 味が何処に記録されているかを示すファイルエントリ4 07の記録位置が、ロングアロケーション記述子(LA D(4))で記載されている。

【0135】*論理ブロック番号「4」の論理ブロック には、ファイルデータ403の内容(408、409) 50 が記録されている位置を示すファイルエントリ407が 記録されている。

【0136】ファイルエントリ407内のショートアロケーション記述子により、ファイルデータ403の内容(408、409)が、5番目と6番目の論理ブロックに記録されていることが記述(AD(5)、AD(6))されている。

【0137】*論理ブロック番号「5」の論理ブロック には、ファイルデータ403の内容408が記録されて いろ

【0138】*論理ブロック番号「6」の論理ブロックには、ファイルデータ403の内容409が記録されている。

【0139】<図23の情報に沿ったファイルデータへのアクセス方法>上述したように、ファイル【D記述子FIDとファイルエントリFEには、それに続く情報が記述してある論理ブロック番号が記述してある。

【0140】ルートディレクトリから階層を下りながらサブディレクトリを経由してファイルデータへ到達するのと同様に、ファイルID記述子FIDとファイルエントリに記述してある論理ブロック番号に従って、情報記 20 録媒体10上の論理ブロック内の情報を順次再生しながら、目的のファイルデータの内容にアクセスする。

【0141】つまり図23に示したファイルデータ403にアクセスするには、まず始めに1番目の論理ブロック情報を読み、その中のLAD(2)に従って2番目の論理ブロック情報を読む。ファイルデータ403はサブディレクトリ402の中に存在しているので、その中からサブディレクトリ402のファイルID記述子FIDを探し、AD(3)に従って3番目の論理ブロック情報を読む。その中にLAD(4)が記述してあるので、4番目の論理ブロック情報を読み、ファイルデータ403に関するファイルID記述子FIDを探し、その中に記述してあるAD(5)に従って5番目の論理ブロック情報を読み、AD(6)に従って5番目の論理ブロック情報を読み、AD(6)に従って6番目の論理ブロックに到達する。【0142】たお、AD(論理ブロック番号) LAD

【0142】なお、AD(論理ブロック番号)、LAD(論理ブロック番号)といった記述の内容については、後述する。

[0143]<<<UDFの各記述文(記述子/ディス クリプタ)の具体的内容説明>>>

<<論理ブロック番号の記述文>>

<アロケーション記述子>前記<情報記録媒体上のファイルシステム情報記録内容>で述べたように、ファイルID記述子FIDやファイルエントリなどの一部に含まれ、その後に続く情報が記録されている位置(論理ブロック番号)を示した記述文をアロケーション記述子と呼を

【0144】アロケーション記述子には、示すロングアロケーション記述子とショートアロケーション記述子がある。

【0145】 < ロングアロケーション記述子>図24 は、情報記録媒体上の連続セクタ集合体(エクステント)の記録位置を表示するロングアロケーション記述子の記述内容を説明する図である。

【0146】ロングアロケーション記述子LAD (論理ブロック番号)は、エクステントの長さ410と、エクステントの位置411と、インプリメンテーション使用412とで構成されている。

【0147】エクステントの長さ410は論理ブロック数を4バイトで表示したものであり、エクステントの位置411は該当する論理ブロック番号を4バイトで表示したものであり、インプリメンテーション使用412は演算処理に利用する情報を8バイトで表示したものである

【0148】 ことでは、記述を簡素化するために、「LAD (論理ブロック番号)」といった略号をロングアロケーション記述子の記述に用いている。

【0149】<ショートアロケーション記述子>図25 は、情報記録媒体10上の連続セクタ集合体(エクステント)の記録位置を表示するショートアロケーション記述子の記述内容を説明する図である。

【0150】ショートアロケーション記述子AD (論理 ブロック番号) は、エクステントの長さ410と、エク ステントの位置411とで構成されている。

【0151】エクステントの長さ410は論理ブロック数を4パイトで表示したものであり、エクステントの位置411は該当する論理ブロック番号を4パイトで表示したものである。

【0152】ことでは、記述を簡素化するために、「A 30 D(論理ブロック番号)」といった略号をショートアロ ケーション記述子の記述に用いている。

【0153】<アロケートされないスペースエントリ>図26は、情報記録媒体上の未記録連続セクタ集合体 (未記録エクステント)を検索するものでアロケートされないスペースエントリ (Unallocated Space Entry:略してUSE)として使用される記述文の内容を説明する図である。

【0154】アロケートされないスペースエントリとは、情報記録媒体10の記録領域内での「記録済み論理ブロック」か「未記録論理ブロック」かを表すスペーステーブル(図30~図32参照)に用いられる記述文である。

【0155】このアロケートされないスペースエントリ USEは、記述子タグ413と、ICBタグ414と、アロケーション記述子列の全長415と、アロケーション記述子416とで、構成されている。

【0156】*記述子タグ413は記述内容の識別子を表すもので、との例では"263"となっている。

【0157】*ICBタグ414は、ファイルタイプを 50 示す。 【0158】ICBタグ内のファイルタイプ=1はアロケートされないスペースエントリUSEを意味し、ファイルタイプ=4はディレクトリを表し、ファイルタイプ=5はファイルデータを表している。

【0159】*アロケーション記述子列の全長415は、アロケーション記述子列の総バイト数を4バイトで表している。

【0160】*アロケーション記述子416は、各エクステント(セクタ集合体)の媒体10上の記録位置(論理ブロック番号)を列記したものである。たとえば、(AD(*), AD(*), ……, AD(*))のように列記される。

【0161】 <ファイルエントリ>図27は、図23のように階層構造を持ったファイル構造内で、指定されたファイルの記録位置を表示するファイルエントリの記述内容の一部を抜粋して説明する図である。

【0162】ファイルエントリは、記述子タグ417と、ICBタグ418と、パーミッション(許可)419と、アロケーション記述子420とで、構成されている。

【0163】*記述子タグ417は、記述内容の識別子を表すもので、との場合は"261"となっている。

【0164】*ICBタグ418は、ファイルタイプを 示すもので、その内容は、図26のアロケートされない スペースエントリのICBタグ414と同様である。

【0165】*パーミッション(Permissions)419は、ユーザ別の記録・再生・削除の許可情報を示す。主 にファイルのセキュリティー確保を目的として使われる。

【0166】*アロケーション記述子420は、該当ファイルの中味が記録してある位置を、エクステント毎にショートアロケーション記述子を並べて、記述したものである。たとえば、FE(AD(*),AD(*),……,AD(*))のように列記される。この発明では、このアロケーション記述子420に、前記したトラップエリアのアドレス情報(物理セクタ番号)は記述しない。これにより、通常再生時にトラップエリアは再生されなくなる。勿論、ディスクコピー実行時にはトラップエリアは再生されコピーされることに変わりはない。【0167】<ファイル1D記述子FID>図28は、

【0167】<ファイルID記述子FID>図28は、図23のように階層構造を持ったファイル構造内で、ファイル(ルートディレクトリ、サブディレクトリ、ファイルデータ等)の情報を記述するファイルID記述子の一部を抜粋して説明する図である。

【0168】ファイルID記述子FIDは、記述子タグ421と、ファイルキャラクタ422と、情報制御ブロックICB423と、ファイル識別子424と、バディング437とで構成されている。

【 0 1 6 9 】 * 記述子タグ4 2 1 は、記述内容の識別子 を表したもので、この場合は"2 5 7"となっている。 【0170】*ファイル特性422は、ファイルの種別を示し、親ディレクトリ、ディレクトリ、ファイルデータ、ファイル削除フラグのどれかを意味する。

26

【0171】*情報制御ブロック1CB423は、このファイルに対応したFE位置(ファイルエントリ位置)をロングアロケーション記述子で記述したものである。【0172】*ファイル識別子424は、ディレクトリ名またはファイル名を記述したものである。

【0173】*バディング437は、ファイル識別子4 10 24全体の長さを調整するために付加されたダミー領域 で、通常は全て"0"(または000h)が記録されて いる。

【 0 1 7 4 】 なお、 1 つのボリュームスペース内でコンピュータデータ(D A 1、 D A 3)と A V データ(D A 2)とが混在できるようになっている。この場合、ファイルとしてはコンピュータファイルと A V ファイルの 2 種が混在する可能性がある。

【0175】AVファイルをコンピュータファイルから 区別するためのAVファイル識別子の設定方法として は、次の2つが考えられる:1)AVファイルのファイル名の末尾に所定の拡張子(、VOB等)を付ける:2)AVファイルのパディング437に独自のフラグ (図示せず)を挿入する(このフラグが"1"ならAVファイルを示し、"0"ならコンピュータファイルを示す等)。

【0176】なお、バディング437の領域内に暗号化されたユーザバスワードを記録することもできる。

【0177】図29は、図23に例示されたファイル構造をより一般化したファイルシステム構造を示す。図2 30 9において、括弧内はディレクトリの中身に関する情報、またはファイルデータのデータ内容が記録されている情報記録媒体10上の論理ブロック番号を例示している。

【0178】<<<UDFに従って記録したファイル構造記述例>>>前述した<<UDFの概要>>で示した内容(ファイルシステムの構造)について、具体的な例を用いて以下に説明する。

【0179】情報記録媒体(DVD-RAMディスク等)10上の未記録位置の管理方法としては、以下の方40 法がある:

[スペースビットマップ法] との方法は、スペースビットマップ記述子470 (図31) を用いるもので、情報記録媒体内記録領域の全論理ブロックに対してビットマップ的に「記録済み」または「未記録」のフラグを立てる方法である。との発明では、トラップエリアに相当する論理ブロックに対しては、全て「記録済み」のフラグを立てる。とれにより、通常再生時にトラップエリアが再生されないようにする。

【0180】[スペーステーブル法] この方法は、図2 50 6の記述方式を用いてショートアロケーション記述子の 列記により記録済み論理ブロック番号を記載する方法で ある。

【0181】ここでは、説明をまとめて行なうために、 図30~図32に両方式(スペースビットマップ法およ びスペーステーブル方法)を併記しているが、実際には 両方が一緒に使われる(情報記録媒体上に記録される) ことはほとんど無く、どちらか一方のみが使用される。 【0182】また、スペーステーブル内での記述内容 (ショートアロケーション記述子の記述・並べ方) は取 りあえず図29のファイルシステム構造に合わせている 10 が、これに限らず自由にショートアロケーション記述子 を記述することができる。

【0183】図30~図32は、図29のファイルシス テム構造の情報をUDFフォーマットに従って情報記録 媒体10上に記録した例を示す。図30はその前半を示 し、図31はその中盤を示し、図32はその後半を示し ている。

【0184】図30~図32に示すように、ファイル構 造486とファイルデータ487に関する情報が記録さ れている論理セクタは、特に「論理ブロック」とも呼ば 20 れ、論理セクタ番号(LSN)に連動して論理ブロック 番号 (LBN) が設定されている。 (論理ブロックの長 さは論理セクタと同様2048バイトになっている。) 図30~図32に記述されている主な記述子の内容とし ては、次のようなものがある:

*エクステントエリア記述子開始445は、ボリューム 認識シーケンス(Volume Recognition Sequence:略し てVRS)の開始位置を示す。

【0185】*ボリューム構造記述子446は、ディス クの内容(ボリュームの内容)の説明を記述している。 【0186】*ブート記述子447は、コンピュータシ ステムのブート開始位置など、ブート時の処理内容に関 する記述をした部分である。

【0187】*エクステントエリア記述子終了448 は、ボリューム認識シーケンス(VRS)の終了位置を 示す。

【0188】*パーティション記述子450は、パーテ ィションのサイズなどのパーティション情報を記述して

あたり1パーティションを原則としている。

【0190】*論理ボリューム記述子454は、論理ボ リュームの内容を記述している。

【0191】*アンカーボリューム記述子ポインタ45 8は、情報記録媒体10の記録領域内で記録済みの情報 の記録最終位置を表示している。

【0192】*予約459~465は、特定の記述子 (ディスクリプタ)を記録する論理セクタ番号を確保す るための調整領域であり、始めは全て"00h"が書き 込まれている。

【0193】*リザーブボリューム記述子シーケンス4 67は、メインボリューム記述子シーケンス449に記 録された情報のバックアップ領域である。

【0194】<<<再生時のファイルデータへのアクセ ス方法>>>図30~図32に示したファイルシステム 情報を用い、たとえば図29のファイルデータH432 のデータ内容を再生する場合を想定して、情報記録媒体 10上のファイルデータアクセス処理方法について説明 する.

【0195】(1)情報記録再生装置起動時または情報 記録媒体装着時のブート領域として、ボリューム認識シ ーケンス444領域内のブート記述子447の情報を再 生しに行く。ブート記述子447の記述内容に沿ってブ ート時の処理が始まる。

【0196】その際、特に指定されたブート時の処理が ない場合には、

(2) 始めにメインボリューム記述子シーケンス449 領域内の論理ボリューム記述子454の情報を再生す

【0197】(3)論理ボリューム記述子454の中に 論理ボリューム内容使用455が記述されている。そと に、ファイルセット記述子472が記録してある位置を 示す論理ブロック番号が、ロングアロケーション記述子 (図24)の形式で記述してある。(図30~図32の 例ではLAD(100)であるから100番目の論理ブ ロックに記録してある。)

(4)100番目の論理ブロック(論理セクタ番号では 400番目になる) にアクセスし、ファイルセット記述 子472を再生する。その中のルートディレクトリIC 30 B473に、ルートディレクトリA425に関するファ イルエントリが記録されている場所(論理ブロック番 号)が、ロングアロケーション記述子(図24)の形式 で記述してある(図30~図32の例ではLAD(10 2) であるから102番目の論理ブロックに記録してあ る)。

【0198】この場合、ルートディレクトリICB47 3のLAD (102) に従って、

(5) 102番目の論理ブロックにアクセスし、ルート ディレクトリA425に関するファイルエントリ475 【0189】なお、DVD-RAMでは、1ボリューム 40 を再生し、ルートディレクトリA425の中身に関する 情報が記録されている位置(論理ブロック番号)を読み 込む(AD(103);103番目の論理ブロックに記 绿)。

> 【0199】(6)103番目の論理ブロックにアクセ スし、ルートディレクトリA425の中身に関する情報 を再生する。

【0200】ファイルデータH432はディレクトリD 428系列の下に存在するので、ディレクトリD428 に関するファイル I D記述子F I Dを探し、ディレクト 50 リD428に関するファイルエントリが記録してある論 理ブロック番号(図30~図32には図示していないが LAD(110);110番目の論理ブロックに記録) を読み取る。

29

【0201】(7)110番目の論理ブロックにアクセ スし、ディレクトリD428に関するファイルエントリ 480を再生し、ディレクトリD428の中身に関する 情報が記録されている位置(論理ブロック番号)を読み 込む (AD (111); 111番目の論理ブロックに記

【0202】(8) 111番目の論理ブロックにアクセ 10 スし、ディレクトリD428の中身に関する情報を再生

【0203】ファイルデータH432はサブディレクト リF430の直接下に存在するので、サブディレクトリ F430に関するファイルID記述子FIDを探し、サ ブディレクトリF430に関するファイルエントリが記 録してある論理ブロック番号(LAD(112);11 2番目の論理ブロックに記録)を読み取る。

【0204】(9)112番目の論理ブロックにアクセ スし、サブディレクトリF430に関するファイルエン 20 トリ482を再生し、サブディレクトリF430の中身 に関する情報が記録されている位置(論理ブロック番 号) を読み込む (AD(113):113番目の論理プ ロックに記録)。

【0205】(10)113番目の論理ブロックにアク セスし、サブディレクトリF430の中身に関する情報 を再生し、ファイルデータH432に関するファイル [D記述子FIDを探す。そしてそこからファイルデータ H432に関するファイルエントリが記録してある論理 ブロック番号(LAD(114);114番目の論理ブ 30 ロックに記録)を読み取る。

【0206】(11)114番目の論理ブロックにアク セスし、ファイルデータH432に関するファイルエン トリ484を再生しファイルデータH432のデータ内 容489が記録されている位置を読み取る。

【0207】(12)ファイルデータH432に関する ファイルエントリ484内に記述されている論理ブロッ ク番号順に情報記録媒体から情報を再生してファイルデ ータH432のデータ内容489を読み取る。

【0208】<<<特定のファイルデータ内容変更方法 40 >>>次に、図30~図32に示したファイルシステム 情報を用いて例えばファイルデータH432のデータ内 容を変更する場合の、アクセスも含めた処理方法につい て説明する。

【0209】(1)ファイルデータH432の変更前後 でのデータ内容の容量差を求め、その値を2048バイ トで割り、変更後のデータを記録するのに論理ブロック を何個追加使用するかまたは何個不要になるかを事前に 計算しておく。

記録媒体装着時のブート領域として、ボリューム認識シ ーケンス444領域内のブート記述子447の情報を再 生しに行く。ブート記述子447の記述内容に沿ってブ ート時の処理が始まる。

【0211】このとき、特に指定されたブート時の処理 がない場合には、

(3)始めにメインボリューム記述子シーケンス449 領域内のパーティション記述子450を再生し、その中 に記述してあるパーティション内容使用451の情報を 読み取る。とのパーティション内容使用451(パーテ ィションヘッダ記述子とも呼ぶ)の中にスペーステーブ ルまたはスペースビットマップの記録位置が示してあ る。

【0212】*スペーステーブル位置はアロケートされ ないスペーステーブル452の欄にショートアロケーシ ョン記述子の形式で記述されている(図30~図32の 例ではAD(80))。また、

*スペースビットマップ位置はアロケートされないスペ ースビットマップ453の欄にショートアロケーション 記述子の形式で記述されている(図30~図32の例で はAD(0))。

【0213】(4)上記(3)で読み取ったスペースビ ットマップが記述してある論理ブロック番号(0)へア クセスする。スペースビットマップ記述子からスペース ビットマップ情報を読み取り、未記録の論理ブロックを 探し、上記(1)の計算結果分の論理ブロックの使用を 登録する(スペースビットマップ記述子情報の書き替え 処理)。

【0214】または、

(4*)上記(3)で読み取ったスペーステーブルが記 述してある論理ブロック番号(80)へアクセスする。 スペーステーブルのアロケートされないスペースエント リUSE(AD(*))からファイルデータIのUSE (AD(*)、AD(*))までを読み取り、未記録の 論理ブロックを探し、上記(1)の計算結果分の論理ブ ロックの使用を登録する(スペーステーブル情報の書き 替え処理)。

【0215】実際の処理では、上記(4)か上記(4 *)のいずれか一方の処理が行なわれる。

【0216】(5)次にメインボリューム記述子シーケ ンス449の領域内の論理ボリューム記述子454の情 報を再生する。

【0217】(6)論理ボリューム記述子454の中 に、論理ボリューム内容使用455が記述されている。 そとに、ファイルセット記述子472が記録してある位 置を示す論理ブロック番号が、ロングアロケーション記 述子(図24)の形式で記述してある(図30~図32 の例ではLAD(100)から100番目の論理ブロッ クに記録してある)。

「【0210】(2)情報記録再生装置起動時または情報 50 【0218】(7)100番目の論理ブロック(論理セ

10

クタ番号では400番目になる)にアクセスし、ファイ ルセット記述子472を再生する。その中のルートディ レクトリICB473に、ルートディレクトリA425 に関するファイルエントリが記録されている場所(論理 ブロック番号)が、ロングアロケーション記述子(図2 4)の形式で記述してある(図30~図32の例ではL AD(102)から102番目の論理ブロックに記録し てある)。

31

【0219】そして、ルートディレクトリICB473 のLAD(102)に従って、

(8) 102番目の論理ブロックにアクセスし、ルート ディレクトリA425に関するファイルエントリ475 を再生し、ルートディレクトリA425の中身に関する 情報が記録されている位置(論理ブロック番号)を読み 込む (AD(103))。

【0220】(9)103番目の論理ブロックにアクセ スし、ルートディレクトリA425の中身に関する情報 を再生する。

【0221】ファイルデータH432はディレクトリD 428系列の下に存在するので、ディレクトリD428 20 論理ボリューム内容使用455が記述されており、そと に関するファイル I D記述子F I Dを探し、ディレクト リD428に関するファイルエントリが記録してある論 理ブロック番号(LAD(110))を読み取る。

【0222】(10)110番目の論理ブロックにアク セスし、ディレクトリD428に関するファイルエント リ480を再生し、ディレクトリD428の中身に関す る情報が記録されている位置(論理ブロック番号)を読 み込む(AD(111))。

【0223】(11)111番目の論理プロックにアク セスし、ディレクトリD428の中身に関する情報を再 30 生する。

【0224】ファイルデータH432はサブディレクト リF430の直接下に存在するので、サブディレクトリ F430に関するファイルID記述子FIDを探し、サ ブディレクトリF430に関するファイルエントリが記 録してある論理ブロック番号(LAD(112))を読 み取る。

【0225】(12)112番目の論理ブロックにアク セスし、サブディレクトリF430に関するファイルエ 身に関する情報が記録されている位置(論理ブロック番 号)を読み込む(AD(113))。

【0226】(13)113番目の論理ブロックにアク セスし、サブディレクトリF430の中身に関する情報 を再生し、ファイルデータH432に関するファイル [D記述子FIDを探す。そしてそとからファイルデータ H432に関するファイルエントリが記録してある論理 ブロック番号(LAD(114))を読み取る。

【0227】(14)114番目の論理ブロックにアク セスし、ファイルデータH432に関するファイルエン 50

トリ484を再生しファイルデータH432のデータ内 容489が記録されている位置を読み取る。

【0228】(15)上記(4)か上記(4*)で追加 登録した論理ブロック番号も加味して変更後のファイル データH432のデータ内容489を記録する。

【0229】<<<特定のファイルデータ/ディレクト リ消去処理方法>>>一例として、ファイルデータH4 32またはサブディレクトリF430を消去する方法に ついて説明する。

【0230】(1)情報記録再生装置起動時または情報 記録媒体装着時のブート領域としてボリューム認識シー ケンス444領域内のブート記述子447の情報を再生 しに行く。ブート記述子447の記述内容に沿ってブー ト時の処理が始まる。

【0231】特に指定されたブート時の処理がない場合 には、

(2) 始めにメインボリューム記述子シーケンス449 領域内の論理ボリューム記述子54の情報を再生する。 【0232】(3)論理ボリューム記述子454の中に にファイルセット記述子472が記録してある位置を示 す論理ブロック番号がロングアロケーション記述子(図 24)形式で記述してある(図30~図32の例ではL AD(100)から100番目の論理ブロックに記録し てある)。

【0233】(4)100番目の論理ブロック(論理セ クタ番号では400番目になる) にアクセスし、ファイ ルセット記述子472を再生する。その中のルートディ レクトリICB473に、ルートディレクトリA425 **に関するファイルエントリが記録されている場所(論理** ブロック番号)が、ロングアロケーション記述子(図2 4)形式で記述してある(図30~図32の例ではLA D(102)から102番目の論理ブロックに記録して ある)。

【0234】そこで、ルートディレクトリICB473 のLAD(102)に従って、

(5)102番目の論理ブロックにアクセスし、ルート ディレクトリA425に関するファイルエントリ475 を再生し、ルートディレクトリA 425の中身に関する ントリ482を再生し、サブディレクトリF430の中 40 情報が記録されている位置(論理ブロック番号)を読み 込む (AD (103))。

> 【0235】(6)103番目の論理ブロックにアクセ スし、ルートディレクトリA425の中身に関する情報 を再生する。

> 【0236】ファイルデータH432はディレクトリD 428系列の下に存在するので、ディレクトリD428 に関するファイルID記述子FIDを探し、ディレクト リD428に関するファイルエントリが記録してある論 理ブロック番号(LAD(110))を読み取る。

【0237】(7)110番目の論理ブロックにアクセ

スし、ディレクトリD428に関するファイルエントリ 480を再生し、ディレクトリD428の中身に関する 情報が記録されている位置(論理ブロック番号)を読み 込む (AD(111))。

33

【0238】(8) 111番目の論理ブロックにアクセ スし、ディレクトリD428の中身に関する情報を再生 する。

【0239】ファイルデータH432はサブディレクト リF430の直接下に存在するので、サブディレクトリ F430に関するファイルID記述子FIDを探す。

【0240】いま、サブディレクトリF430を消去す る場合を想定してみる。との場合、サブディレクトリド 430に関するファイルID記述子FID内のファイル 特性422(図28)に「ファイル削除フラグ」を立て

【0241】それから、サブディレクトリF430に関 するファイルエントリが記録してある論理ブロック番号 (LAD(112))を読み取る。

【0242】(9)112番目の論理プロックにアクセ スし、サブディレクトリF430に関するファイルエン 20 トリ482を再生し、サブディレクトリF430の中身 に関する情報が記録されている位置(論理ブロック番 号) を読み込む(AD(113))。

【0243】(10)113番目の論理ブロックにアク セスし、サブディレクトリF430の中身に関する情報 を再生し、ファイルデータH432に関するファイル I D記述子FIDを探す。

【0244】次に、ファイルデータH432を消去する 場合を想定してみる。この場合、ファイルデータH43 422(図28)に「ファイル削除フラグ」を立てる。

【0245】さらにそこからファイルデータH432に 関するファイルエントリが記録してある論理ブロック番 号(LAD(114))を読み取る。

【0246】(11)114番目の論理ブロックにアク セスし、ファイルデータH432に関するファイルエン トリ484を再生しファイルデータH432のデータ内 容489が記録されている位置を読み取る。

【0247】ファイルデータH432を消去する場合に は、以下の方法でファイルデータH432のデータ内容 40 489が記録されていた論理ブロックを解放する(その 論理ブロックを未記録状態に登録する)。

【0248】(12)次にメインボリューム記述子シー ケンス449領域内のパーティション記述子450を再 生し、その中に記述してあるパーティション内容使用4 51の情報を読み取る。このパーティション内容使用 (パーティションヘッダ記述子) 451の中にスペース テーブルまたはスペースピットマップの記録位置が示し

【0249】*スペーステーブル位置は、アロケートさ 50 る。

れないスペーステーブル452の欄にショートアロケー ション記述子の形式で記述されている(図30~図32 の例ではAD(80))。また、

*スペースビットマップ位置は、アロケートされないス ベースピットマップ453の欄にショートアロケーショ ン記述子の形式で記述されている(図30~図32例で はAD(0))。

【0250】(13)上記(12)で読み取ったスペー スピットマップが記述してある論理ブロック番号(0) 10 ヘアクセスし、上記(11)の結果得られた「解放する 論理ブロック番号」をスペースビットマップ記述子に書 き替える。

【0251】または、

(13*)上記(12)で読み取ったスペーステーブル が記述してある論理ブロック番号(80)ヘアクセス し、上記(11)の結果得られた「解放する論理ブロッ ク番号」をスペーステーブルに書き替える。

【0252】実際の処理では、上記(13)か上記(1 3*)のいずれか一方の処理が行なわれる。

【0253】ファイルデータH432を消去する場合に は、

(12)上記(10)~上記(11)と同じ手順を踏ん でファイルデータ [433のデータ内容490が記録さ れている位置を読み取る。

【0254】(13)次にメインボリューム記述子シー ケンス449領域内のパーティション記述子450を再 生し、その中に記述してあるパーティション内容使用4 51の情報を読み取る。このパーティション内容使用 (バーティションヘッダ記述子) 451の中にスペース 2に関するファイルID記述子FID内のファイル特性 30 テーブルまたはスペースピットマップの記録位置が示し てある。

> 【0255】*スペーステーブル位置はアロケートされ ないスペーステーブル452の欄にショートアロケーシ ョン記述子の形式で記述されている。(図30~図32 の例ではAD(80))。また、

> *スペースビットマップ位置は、アロケートされないス ペースピットマップ453の欄にショートアロケーショ ン記述子の形式で記述されている(図30~図32例で はAD(0))。

【0256】(14)上記(13)で読み取ったスペー スピットマップが記述してある論理ブロック番号(0) ヘアクセスし、上記(11)と上記(12)の結果得ら れた「解放する論理ブロック番号」をスペースビットマ ップ記述子に書き替える。

【0257】または、

(14*)上記(13)で読み取ったスペーステーブル が記述してある論理ブロック番号(80) ヘアクセス し、上記(11)と上記(12)の結果得られた「解放 する論理ブロック番号」をスペーステーブルに書き替え

【0258】実際の処理では、上記(14)か上記(1 4*)のいずれか一方の処理が行なわれる。

【0259】<<<ファイルデータ/ディレクトリの追 加処理>>>一例として、サブディレクトリF430の 下に新たにファイルデータまたはディレクトリを追加す る時のアクセス・追加処理方法について説明する。

【0260】(1)ファイルデータを追加する場合には 追加するファイルデータ内容の容量を調べ、その値を2 048バイトで割り、ファイルデータを追加するために 必要な論理ブロック数を計算しておく。

【0261】(2)情報記録再生装置起動時または情報 記録媒体装着時のブート領域としてボリューム認識シー ケンス444領域内のブート記述子447の情報を再生 しに行く。ブート記述子447の記述内容に沿ってブー ト時の処理が始まる。

【0262】特に指定されたブート時の処理がない場合

(3)始めにメインボリューム記述子シーケンス449 領域内のパーティション記述子450を再生し、その中 に記述してあるパーティション内容使用451の情報を 20 読み取る。このパーティション内容使用(パーティショ ンヘッダ記述子) 451の中にスペーステーブルまたは スペースビットマップの記録位置が示してある。

【0263】*スペーステーブル位置はアロケートされ ないスペーステーブル452の欄にショートアロケーシ ョン記述子の形式で記述されている(図30~図32の 例ではAD(80))。また、

*スペースピットマップ位置はアロケートされないスペ ースビットマップ453の欄にショートアロケーション AD (0)).

【0264】(4)上記(3)で読み取ったスペースビ ットマップが記述してある論理ブロック番号(0)へア クセスする。スペースビットマップ記述子からスペース ビットマップ情報を読み取り、未記録の論理ブロックを 探し、上記(1)の計算結果分の論理ブロックの使用を 登録する(スペースビットマップ記述子情報の書き替え 処理)。

【0265】または、

(4*)上記(3)で読み取ったスペーステーブルが記 40 み込む(AD(111))。 述してある論理ブロック番号(80)へアクセスする。 スペーステーブルのUSE(AD(*)) 471 に記録 されている未記録の論理ブロックを探し、上記(1)の 計算結果分の論理ブロックの使用を登録する(スペース テーブル情報の書き替え処理)。この発明では、上記し たトラップエリアのアドレス情報(物理セクタ番号) が、USE471から外される。これは、通常再生時 に、トラップエリアが再生されないようにするためであ

【0266】実際の処理では、上記(4)か上記(4

*)のいずれか一方の処理が行なわれる。

【0267】(5)次にメインボリューム記述子シーケ ンス449領域内の論理ボリューム記述子454の情報 を再生する。

【0268】(6)論理ボリューム記述子454の中に 論理ボリューム内容使用455が記述されており、そこ にファイルセット記述子472が記録してある位置を示 す論理ブロック番号が、ロングアロケーション記述子

(図24)形式で記述してある(図30~図32の例で 10 は、LAD(100)から、100番目の論理ブロック に記録してある)。

【0269】(7)100番目の論理ブロック(論理セ クタ番号では400番目になる) にアクセスし、ファイ ルセット記述子472を再生する。その中のルートディ レクトリICB473に、ルートディレクトリA425 に関するファイルエントリが記録されている場所(論理 ブロック番号)が、ロングアロケーション記述子(図2 4) 形式で記述してある(図30~図32の例では、L AD(102)から、102番目の論理ブロックにルー トディレクトリA425に関するファイルエントリが記 録してある)。

【0270】 このルートディレクトリ I C B 4 7 3 の L AD(102)に従って、

(8) 102番目の論理ブロックにアクセスし、ルート ディレクトリA425に関するファイルエントリ475 を再生し、ルートディレクトリA425の中身に関する 情報が記録されている位置(論理ブロック番号)を読み 込む(AD(103))。

【0271】(9)103番目の論理ブロックにアクセ 記述子の形式で記述されている(図30~図32例では 30 スし、ルートディレクトリA425の中身に関する情報 を再生する。

> 【0272】ディレクトリD428に関するファイルI D記述子FIDを探し、ディレクトリD428に関する ファイルエントリが記録してある論理ブロック番号(L AD(110))を読み取る。

> 【0273】(10)110番目の論理ブロックにアク セスし、ディレクトリD428に関するファイルエント リ480を再生し、ディレクトリD428の中身に関す る情報が記録されている位置(論理ブロック番号)を読

> 【0274】(11)111番目の論理ブロックにアク セスし、ディレクトリD428の中身に関する情報を再 生する。

> 【0275】サブディレクトリF430に関するファイ ルID記述子FIDを探し、サブディレクトリF430 に関するファイルエントリが記録してある論理ブロック 番号(LAD(112))を読み取る。

【0276】(12)112番目の論理ブロックにアク セスし、サブディレクトリF430に関するファイルエ 50 ントリ482を再生し、サブディレクトリF430の中 身に関する情報が記録されている位置(論理ブロック番 号)を読み込む(AD(113))。

【0277】(13)113番目の論理ブロックにアク セスし、サブディレクトリF430の中身に関する情報 内に新たに追加するファイルデータまたはディレクトリ のファイルID記述子FIDを登録する。

【0278】(14)上記(4)または上記(4*)で 登録した論理ブロック番号位置にアクセスし、新たに追 加するファイルデータまたはディレクトリに関するファ イルエントリを記する。

【0279】(15)上記(14)のファイルエントリ 内のショートアロケーション記述子に示した論理ブロッ ク番号位置にアクセスし、追加するディレクトリに関す る親ディレクトリのファイルID記述子FIDまたは追 加するファイルデータのデータ内容を記録する。

【0280】なお、図30~図32において、LSNは 論理セクタ番号(LSN) 491を示す略号であり、L BNは論理ブロック番号(LBN)492を示す略号で あり、LLSNは最後の論理セクタ番号(ラストLS N) 493を示す略号である。

【0281】<<UDFの特徴>>

<UDFの特徴の説明>以下にハードディスクHDD、 フロッピーディスクFDD、光磁気ディスクMOなどで 使われているファイルアロケーションテーブルFATと の比較により、ユニバーサルデータフォーマットUDF の特徴を説明する。

【0282】(1) FATはファイルの情報記録媒体へ の割り当て管理表(ファイルアロケーションテーブル) が情報記録媒体上で局所的に集中記録されるのに対し、 UDFではファイル管理情報をディスク上の任意の位置 30 に分散記録できる。

【0283】FATではファイル管理領域で集中管理さ れているため頻繁にファイル構造の変更が必要な用途

(主に頻繁な書き替え用途) に適している。(集中箇所 に記録されているので管理情報を書き替え易いため。) なお、FATではファイル管理情報の記録場所はあらか じめ決まっているので記録媒体の高い信頼性(欠陥領域 が少ないこと)が前提となる。

【0284】UDFではファイル管理情報が分散配置さ れているので、ファイル構造の大幅な変更が少なく、階 40 層の下の部分(主にルートディレクトリより下の部分) で後から新たなファイル構造を付け足して行く用途(主 に追記用途)に適している。(追記時には以前のファイ ル管理情報に対する変更箇所が少ないため。)また分散 されたファイル管理情報の記録位置を任意に指定できる ので、先天的な欠陥箇所を避けて記録することができ

【0285】さらにファイル管理情報を任意の位置に記 録できるので、全ファイル管理情報を一箇所に集めて記 録することでFATの利点も出せるので、より汎用性の 50 ス・トラックエラー検出回路217で和・差の演算を行

高いファイルシステムと考えることができる。

【0286】(2) UDFでは(最小論理ブロックサイ ズ、最小論理セクタサイズなどの)最小単位が大きく、 記録すべき情報量の多い映像情報や音楽情報の記録に向

【0287】すなわち、FATの論理セクタサイズが5 12バイトに対して、UDFの論理セクタ(ブロック) サイズは2048バイトと大きくなっている。

【0288】なお、UDFでは、ファイル管理情報やフ ァイルデータに関するディスク上での記録位置は、論理 セクタ (ブロック) 番号としてアロケーション記述子に 記述される。

【0289】図33は、DVD-ROM/RAMドライ ブの情報記録再生部41 (物理系ブロック)の構成の一 例を説明するブロック図である。

【0290】<<<情報記録再生部の機能説明>>> <<情報記録再生部の基本機能>>情報記録再生部41 では、情報記録媒体(光ディスク)10上の所定位置 に、レーザビームの集光スポットを用いて、新規情報の 20 記録あるいは書き替え(情報の消去も含む)を行う。

【0291】情報記録媒体10上の所定位置から、レー ザビームの集光スポットを用いて、既に記録されている 情報の再生を行う。

【0292】<<情報記録再生部の基本機能達成手段> >上記基本機能を達成するために、情報記録再生部で は、情報記録媒体10上のトラックに沿って集光スポッ トをトレース(追従)させる。情報記録媒体10に照射 する集光スポットの光量(強さ)を変化させて情報の記 録/再生/消去の切り替えを行う。外部から与えられる 記録信号dを高密度かつ低エラー率で記録するために最 適な信号に変換する。

【0293】<<<機構部分の構造と検出部分の動作> >>

<<光へッド202基本構造と信号検出回路>> <光へッド202による信号検出>光へッド202は、 基本的には、光源である半導体レーザ素子と光検出器と 対物レンズから構成されている。

【0294】半導体レーザ素子から発光されたレーザ光 は、対物レンズにより情報記録媒体(光ディスク)10 上に集光される。情報記録媒体10の光反射膜または光 反射性記録膜で反射されたレーザ光は光検出器により光 電変換される。

【0295】光検出器で得られた検出電流は、アンプ2 13により電流-電圧変換されて検出信号となる。この 検出信号は、フォーカス・トラックエラー検出回路21 7あるいは2値化回路212で処理される。

【0296】一般的に、光検出器は、複数の光検出領域 に分割され、各光検出領域に照射される光量変化を個々 に検出している。との個々の検出信号に対してフォーカ

20

い、フォーカスずれおよびトラックずれの検出を行う。 との検出によりフォーカスずれおよびトラックずれを実 質的に取り除いた後、情報記録媒体10の光反射膜また は光反射性記録膜からの反射光量変化を検出して、情報 記録媒体10上の信号を再生する。

【0297】<フォーカスずれ検出方法>フォーカスずれ量を光学的に検出する方法としては、たとえば次のようなものがある:

[非点収差法]情報記録媒体10の光反射膜または光反射性記録膜で反射されたレーザ光の検出光路に非点収差 10を発生させる光学素子(図示せず)を配置し、光検出器上に照射されるレーザ光の形状変化を検出する方法である。光検出領域は対角線状に4分割されている。各検出領域から得られる検出信号に対し、フォーカス・トラックエラー検出回路217内で対角和間の差を取ってフォーカスエラー検出信号を得る。

【0298】 [ナイフエッジ法] 情報記録媒体10で反射されたレーザ光に対して非対称に一部を遮光するナイフエッジを配置する方法である。光検出領域は2分割され、各検出領域から得られる検出信号間の差を取ってフォーカスエラー検出信号を得る。

【0299】通常、上記非点収差法あるいはナイフエッジ法のいずれかがが採用される。

[0300] <トラックずれ検出方法>情報記録媒体 (光ディスク) 10はスパイラル状または同心円状のトラックを有し、トラック上に情報が記録される。このトラックに沿って集光スポットをトレースさせて情報の再生または記録/消去を行う。安定して集光スポットをトラックに沿ってトレースさせるため、トラックと集光スポットの相対的位置ずれを光学的に検出する必要がある。

【0301】トラックずれ検出方法としては一般に、次の方法が用いられている:

[位相差検出 (Differential Phase Detection) 法]情報記録媒体 (光ディスク) 10の光反射膜または光反射性記録膜で反射されたレーザ光の光検出器上での強度分布変化を検出する。光検出領域は対角線上に4分割されている。各検出領域から得られる検出信号に対し、フォーカス・トラックエラー検出回路217内で対角和間の差を取ってトラックエラー検出信号を得る。

【0302】 [ブッシュブル (Push-Pull) 法] 情報記録媒体10で反射されたレーザ光の光検出器上での強度分布変化を検出する。光検出領域は2分割され、各検出領域から得られる検出信号間の差を取ってトラックエラー検出信号を得る。

【0303】 [ツインスポット (Twin-Spot) 法] 半導体レーザ素子と情報記録媒体10間の送光系に回折素子などを配置して光を複数に波面分割し、情報記録媒体10上に照射する±1次回折光の反射光量変化を検出する。再生信号検出用の光検出領域とは別に+1次回折光50

の反射光量と-1次回折光の反射光量を個々に検出する 光検出領域を配置し、それぞれの検出信号の差を取って トラックエラー検出信号を得る。

【0304】<対物レンズアクチュエータ構造>半導体レーザ素子から発光されたレーザ光を情報記録媒体10上に集光させる対物レンズ(図示せず)は、対物レンズアクチュエータ駆動回路218の出力電流に応じて2軸方向に移動可能な構造になっている。この対物レンズの移動方向には、次の2つがある。すなわち、フォーカスずれ補正用に情報記録媒体10に対する垂直方向に移動し、トラックずれ補正用に情報記録媒体10の半径方向に移動する。

【0305】対物レンズの移動機構(図示せず)は対物レンズアクチュエータと呼ばれる。対物レンズアクチュエータ構造には、たとえば次のようなものがよく用いられる:

[軸摺動方式] 中心軸(シャフト)に沿って対物レンズと一体のブレードが移動する方式で、ブレードが中心軸に沿った方向に移動してフォーカスずれ補正を行い、中心軸を基準としたブレードの回転運動によりトラックずれ補正を行う方法である。

【0306】 [4本ワイヤ方式] 対物レンズ一体のブレードが固定系に対し4本のワイヤで連結されており、ワイヤの弾性変形を利用してブレードを2軸方向に移動させる方法である。

【0307】上記いずれの方式も永久磁石とコイルを持ち、ブレードに連結したコイルに電流を流すことによりブレードを移動させる構造になっている。

【0308】<<情報記録媒体10の回転制御系>>ス 30 ピンドルモータ204の駆動力によって回転する回転テ ーブル221上に情報記録媒体(光ディスク)10を装 着する

【0309】情報記録媒体10の回転数は、情報記録媒体10から得られる再生信号によって検出する。すなわち、アンプ213出力の検出信号(アナログ信号)は2値化回路212でデジタル信号に変換され、この信号からPLL回路211により一定周期信号(基準クロック信号)を発生させる。情報記録媒体回転速度検出回路214では、この信号を用いて情報記録媒体10の回転数40を検出し、その値を出力する。

【0310】情報記録媒体10上で再生あるいは記録/ 消去する半径位置に対応した情報記録媒体回転数の対応 テーブルは、半導体メモリ219に予め記録されてい る。再生位置または記録/消去位置が決まると、制御部 220は半導体メモリ219情報を参照して情報記録媒体10の目標回転数を設定し、その値をスピンドルモー タ駆動回路215に通知する。

【0311】スピンドルモータ駆動回路215では、この目標回転数と情報記録媒体回転速度検出回路214の出力信号(現状での回転数)との差を求め、その結果に

応じた駆動電流をスピンドルモータ204に与えて、ス ピンドルモータ204の回転数が一定になるように制御 する。情報記録媒体回転速度検出回路214の出力信号 は、情報記録媒体10の回転数に対応した周波数を有す るパルス信号であり、スピンドルモータ駆動回路215 では、このパルス信号の周波数およびパルス位相の両方 に対して、制御(周波数制御および位相制御)を行な

【0312】<<光ヘッド移動機構>>この機構は、情 報記録媒体10の半径方向に光ヘッド202を移動させ 10 るため光ヘッド移動機構(送りモータ)203を持って

【0313】光ヘッド202を移動させるガイド機構と しては、棒状のガイドシャフトを利用する場合が多い。 とのガイド機構では、とのガイドシャフトと光へッド2 02の一部に取り付けられたブッシュ間の摩擦を利用し て、光ヘッド202を移動させる。それ以外に回転運動 を使用して摩擦力を軽減させたベアリングを用いる方法 もある。

【0314】光ヘッド202を移動させる駆動力伝達方 20 法は、図示していないが、固定系にピニオン(回転ギ ヤ)の付いた回転モータを配置し、ビニオンとかみ合う 直線状のギヤであるラックを光ヘッド202の側面に配 置して、回転モータの回転運動を光ヘッド202の直線 運動に変換している。それ以外の駆動力伝達方法として は、固定系に永久磁石を配置し、光ヘッド202に配置 したコイルに電流を流して直線的方向に移動させるリニ アモータ方式を使う場合もある。

【0315】回転モータ、リニアモータいずれの方式で も、基本的には送りモータに電流を流して光ヘッド20×30 は、一般的に

[記録時の光量] > [消去時の光量] > [再生時の光量] … (1)

の関係が成り立ち、光磁気方式を用いた情報記録媒体に※ ※対しては、一般的に

[記録時の光量] [消去時の光量] > [再生時の光量] …(2)

の関係がある。光磁気方式の場合では、記録/消去時に は情報記録媒体10に加える外部磁場(図示せず)の極 性を変えて記録と消去の処理を制御している。

【0320】情報再生時では、情報記録媒体10上に一 定の光量を連続的に照射している。

【0321】新たな情報を記録する場合には、この再生 導体レーザ素子が大きな光量でバルス発光した時に情報 記録媒体10の光反射性記録膜が局所的に光学的変化ま たは形状変化を起とし、記録マークが形成される。すで に記録されている領域の上に重ね書きする場合も同様に 半導体レーザ素子をバルス発光させる。

【0322】すでに記録されている情報を消去する場合 には、再生時よりも大きな一定光量を連続照射する。連 続的に情報を消去する場合にはセクタ単位など特定周期 毎に照射光量を再生時に戻し、消去処理と平行して間欠 的に情報再生を行う。これにより、間欠的に消去するト 50 【0325】(1)制御部220からスピンドルモータ

* 2 移動用の駆動力を発生させている。この駆動用電流は 送りモータ駆動回路216から供給される。

【0316】<<<各制御回路の機能>>>

<<集光スポットトレース制御>>フォーカスずれ補正 あるいはトラックずれ補正を行うため、フォーカス・ト ラックエラー検出回路217の出力信号(検出信号)に 応じて光ヘッド202内の対物レンズアクチュエータ (図示せず) に駆動電流を供給する回路が、対物レンズ アクチュエータ駆動回路218である。この駆動回路2 18は、髙い周波数領域まて対物レンズ移動を高速応答 させるため、対物レンズアクチュエータの周波数特性に 合わせた特性改善用の位相補償回路を、内部に有してい る。

【0317】対物レンズアクチュエータ駆動回路218 では、制御部220の命令に応じて、

(イ) フォーカス/トラックずれ補正動作(フォーカス /トラックループ)のオン/オフ処理と:

(ロ)情報記録媒体10の垂直方向(フォーカス方向) へ対物レンズを低速で移動させる処理(フォーカス/ト ラックループオフ時に実行)と;

(ハ) キックパルスを用いて、対物レンズを情報記録媒 体10の半径方向(トラックを横切る方向)にわずかに 動かして、集光スポットを隣のトラックへ移動させる処 理とが行なわれる。

【0318】<<レーザ光量制御>>

<再生と記録/消去の切り替え処理>再生と記録/消去 の切り替えは情報記録媒体10上に照射する集光スポッ トの光量を変化させて行う。

【0319】相変化方式を用いた情報記録媒体に対して

ラックのトラック番号やアドレスを再生することで、消 去トラックの誤りがないことを確認しながら消去処理を 行っている。

【0323】<レーザ発光制御>図示していないが、光 ヘッド202内には、半導体レーザ素子の発光量を検出 するための光検出器が内蔵されている。レーザ駆動回路 時の光量の上にパルス状の断続的光量を上乗せする。半 40 205では、その光検出器出力(半導体レーザ素子発光 量の検出信号)と記録・再生・消去制御波形発生回路2 06から与えられる発光基準信号との差を取り、その結 果に基づき、半導体レーザへの駆動電流をフィードバッ ク制御している。

> 【0324】<<<機構部分の制御系に関する諸動作> >>

> <<起動制御>>情報記録媒体(光ディスク)10が回 転テーブル221上に装着され、起動制御が開始される と、以下の手順に従った処理が行われる。

駆動回路215に目標回転数が伝えられ、スピンドルモータ駆動回路215からスピンドルモータ204に駆動電流が供給されて、スピンドルモータ204が回転を開始する。

【0326】(2)同時に制御部220から送りモータ駆動回路216に対してコマンド(実行命令)が出され、送りモータ駆動回路216から光ヘッド駆動機構(送りモータ)203に駆動電流が供給されて、光ヘッド202が情報記録媒体10の最内周位置に移動する。その結果、情報記録媒体10の情報が記録されている領 10域を越えてさらに内周部に光ヘッド202が来ていることを確認する。

【0327】(3)スピンドルモータ204が目標回転数に到達すると、そのステータス(状況報告)が制御部220に出される。

【0328】(4)制御部220から記録・再生・消去制御波形発生回路206に送られた再生光量信号に合わせて半導体レーザ駆動回路205から光ヘッド202内の半導体レーザ素子に電流が供給されて、レーザ発光が開始する。

【0329】なお、情報記録媒体(光ディスク)10の 種類によって再生時の最適照射光量が異なる。起動時に は、そのうちの最も照射光量の低い値に対応した値に、 半導体レーザ素子に供給される電流値を設定する。

【0330】(5)制御部220からのコマンドに従って、光ヘッド202内の対物レンズ(図示せず)を情報記録媒体10から最も遠ざけた位置にずらし、ゆっくりと対物レンズを情報記録媒体10に近付けるよう対物レンズアクチュエータ駆動回路218が対物レンズを制御する。

【0331】(6) 同時にフォーカス・トラックエラー 検出回路217でフォーカスずれ量をモニターし、焦点 が合う位置近傍に対物レンズがきたときにステータスを 出して、「対物レンズが合焦点位置近傍にきた」ことを 制御部220に通知する。

【0332】(7)制御部220では、その通知をもらうと、対物レンズアクチュエータ駆動回路218に対して、フォーカスループをオンにするようコマンドを出す

【0333】(8)制御部220は、フォーカスループ 40をオンにしたまま送りモータ駆動回路216にコマンドを出して、光ヘッド202をゆっくり情報記録媒体10の外周部方向へ移動させる。

【0334】(9) 同時に光ヘッド202からの再生信号をモニターし、光ヘッド202が情報記録媒体10上の記録領域に到達したら、光ヘッド202の移動を止め、対物レンズアクチュエータ駆動回路218に対してトラックループをオンさせるコマンドを出す。

【0335】(10)続いて情報記録媒体10の内周部 機構(送りモータ)203への駆動電流にフィードルに記録されている「再生時の最適光量」および「記録/ 50 ク制御をかけながら、光ヘッド202を移動させる。

消去時の最適光量」が再生され、その情報が制御部22 0を経由して半導体メモリ219に記録される。

【0336】(11)さらに制御部220では、その「再生時の最適光量」に合わせた信号を記録・再生・消去制御波形発生回路206に送り、再生時の半導体レーザ素子の発光量を再設定する。

【0337】(12)そして、情報記録媒体10に記録されている「記録/消去時の最適光量」に合わせて記録 /消去時の半導体レーザ素子の発光量が設定される。

【0338】<<アクセス制御>>情報記録媒体10に記録されたアクセス先情報が再生情報記録媒体10上のどの場所に記録されまたどのような内容を持っているかについての情報は、情報記録媒体10の種類により異なる。たとえばDVDディスクでは、この情報は、情報記録媒体10内のディレクトリ管理領域またはナビゲーションパックなどに記録されている。

【0339】とこで、ディレクトリ管理領域は、通常は情報記録媒体10の内周領域または外周領域にまとまって記録されている。また、ナビゲーションパックは、M20 PEG2のPS(プログラムストリーム)のデータ構造に準拠したVOBS(ビデオオブジェクトセット)中のVOBU(ビデオオブジェクトユニット)というデータ単位の中に含まれ、次の映像がどこに記録してあるかの情報を記録している。

【0340】特定の情報を再生あるいは記録/消去したい場合には、まず上記の領域内の情報を再生し、そこで得られた情報からアクセス先を決定する。

【0341】<粗アクセス制御>制御部220ではアクセス先の半径位置を計算で求め、現状の光ヘッド202 30 位置との間の距離を割り出す。

【0342】光ヘッド202移動距離に対して最も短時間で到達できる速度曲線情報が事前に半導体メモリ21 9内に記録されている。制御部220は、その情報を読み取り、その速度曲線に従って以下の方法で光ヘッド202の移動制御を行う。

【0343】すなわち、制御部220から対物レンズアクチュエータ駆動回路218に対してコマンドを出してトラックループをオフした後、送りモータ駆動回路216を制御して光ヘッド202の移動を開始させる。

【0344】集光スポットが情報記録媒体10上のトラックを横切ると、フォーカス・トラックエラー検出回路217内でトラックエラー検出信号が発生する。このトラックエラー検出信号を用いて情報記録媒体10に対する集光スポットの相対速度を検出することができる。

【0345】送りモータ駆動回路216では、とのフォーカス・トラックエラー検出回路217から得られる集光スポットの相対速度と制御部220から逐一送られる目標速度情報との差を演算し、その結果で光ヘッド駆動機構(送りモータ)203への駆動電流にフィードバック制御をかけながら、光ヘッド202を移動させる。

【0346】前記<<光ヘッド移動機構>>の項で述べ たように、ガイドシャフトとブッシュあるいはベアリン グ間には常に摩擦力が働いている。光ヘッド202が高 速に移動している時は動摩擦が働くが、移動開始時と停 止直前には光ヘッド202の移動速度が遅いため静止摩 擦が働く。この静止摩擦が働く時には(特に停止直前に は)、相対的に摩擦力が増加している。この摩擦力増加 に対処するため、光ヘッド駆動機構(送りモータ)20 3に供給される電流が大きくなるように、制御部220 からのコマンドによって制御系の増幅率 (ゲイン)を増 10 加させる。

【0347】 <密アクセス制御>光ヘッド202が目標 位置に到達すると、制御部220から対物レンズアクチ ュエータ駆動回路218にコマンドを出して、トラック ループをオンさせる。

【0348】集光スポットは、情報記録媒体10上のト ラックに沿ってトレースしながら、その部分のアドレス またはトラック番号を再生する。

【0349】そとでのアドレスまたはトラック番号から 現在の集光スポット位置を割り出し、到達目標位置から 20 の誤差トラック数を制御部220内で計算し、集光スポ ットの移動に必要なトラック数を対物レンズアクチュエ ータ駆動回路218に通知する。

【0350】対物レンズアクチュエータ駆動回路218 内で1組のキックパルスを発生させると、対物レンズは 情報記録媒体10の半径方向にわずかに動いて、集光ス ポットが隣のトラックへ移動する。

【0351】対物レンズアクチュエータ駆動回路218 内では、一時的にトラックループをオフさせ、制御部2 20からの情報に合わせた回数のキックバルスを発生さ 30 <<再生時の信号の流れ>> せた後、再びトラックループをオンさせる。

【0352】密アクセス終了後、制御部220は集光ス ボットがトレースしている位置の情報(アドレスまたは トラック番号)を再生し、目標トラックにアクセスして いることを確認する。

【0353】<<連続記録/再生/消去制御>>フォー カス・トラックエラー検出回路217から出力されるト ラックエラー検出信号は、送りモータ駆動回路216に 入力されている。上述した「起動制御時」と「アクセス ックエラー検出信号を使用しないように制御部220に より制御されている。

【0354】アクセスにより集光スポットが目標トラッ クに到達したことを確認した後、制御部220からのコ マンドにより、モータ駆動回路216を経由してトラッ クエラー検出信号の一部が光ヘッド駆動機構(送りモー タ)203への駆動電流として供給される。連続に再生 または記録/消去処理を行っている期間中、この制御は

【0355】情報記録媒体10の中心位置は回転テープ 50 1で得られた基準クロックに合わせて変換テーブルを参

ル221の中心位置とわずかにずれた偏心を持って装着 されている。トラックエラー検出信号の一部を駆動電流 として供給すると、偏心に合わせて光ヘッド202全体 が微動する。

【0356】また長時間連続して再生または記録/消去 処理を行うと、集光スポット位置が徐々に外周方向また は内周方向に移動する。トラックエラー検出信号の一部 を光ヘッド移動機構(送りモータ)203への駆動電流 として供給した場合には、それに合わせて光ヘッド20 2が徐々に外周方向または内周方向に移動する。

【0357】このようにして対物レンズアクチュエータ のトラックずれ補正の負担を軽減することにより、トラ ックループを安定化させることができる。

【0358】<<終了制御>>一連の処理が完了し、動 作を終了させる場合には以下の手順に従って処理が行わ れる。

【0359】(1)制御部220から対物レンズアクチ ュエータ駆動回路218に対して、トラックループをオ フさせるコマンドが出される。

【0360】(2)制御部220から対物レンズアクチ ュエータ駆動回路218に対して、フォーカスループを オフさせるコマンドが出される。

【0361】(3)制御部220から記録・再生・消去 制御波形発生回路206に対して、半導体レーザ素子の 発光を停止させるコマンドが出される。

【0362】(4)スピンドルモータ駆動回路215に 対して、基準回転数として0が通知される。

【0363】<<<情報記録媒体への記録信号/再生信 号の流れ>>>

< 2 値化・P L L 回路 > 前記 < 光ヘッド 2 0 2 による信 号検出>の項で述べたように、情報記録媒体(光ディス ク) 10の光反射膜または光反射性記録膜からの反射光 量変化を検出して、情報記録媒体10上の信号を再生す る。アンプ213で得られた信号は、アナログ波形を有 している。2値化回路212は、コンパレーターを用い て、そのアナログ信号を"1"および"0"からなる2 値のデジタル信号に変換する。

【0364】こうして2値化回路212で得られた再生 制御時」には、送りモータ駆動回路216内では、トラ 40 信号から、PLL回路211において、情報再生時の基 準信号が取り出される。すなわち、PLL回路211は 周波数可変の発振器を内蔵しており、この発振器から出 力されるパルス信号(基準クロック)と2値化回路21 2出力信号との間で周波数および位相の比較が行われ る。この比較結果を発振器出力にフィードバックしする ことで、情報再生時の基準信号を取り出している。

【0365】<信号の復調>復調回路210は、変調さ れた信号と復調後の信号との間の関係を示す変換テーブ ルを内蔵している。復調回路210は、PLL回路21 照しながら、入力信号(変調された信号)を元の信号 (復調された信号) に戻す。復調された信号は、半導体 メモリ219に記録される。

【0366】<エラー訂正処理>エラー訂正回路209 の内部では、半導体メモリ219に保存された信号に対 し、内符号PIと外符号POを用いてエラー箇所を検出 し、エラー箇所のポインタフラグを立てる。その後、半 導体メモリ219から信号を読み出しながらエラーポイ ンタフラグに合わせて逐次エラー箇所の信号を訂正した 後、再度半導体メモリ219に訂正後情報を記録する。 【0367】情報記録媒体10から再生した情報を再生 信号cとして外部に出力する場合には、半導体メモリ2 19に記録されたエラー訂正後情報から内符号PIおよ び外符号POをはずして、バスライン224を経由して データ 1/0インターフェイス222へ転送する。

【0368】そして、データ1/0インターフェイス2 22が、エラー訂正回路209から送られてきた信号を 再生信号 c として出力する。

【0369】<<情報記録媒体10に記録される信号形 式>>情報記録媒体10上に記録される信号に対して は、以下のことを満足することが要求される:

(イ)情報記録媒体10上の欠陥に起因する記録情報エ ラーの訂正を可能とすること:

(ロ) 再生信号の直流成分を"0" にして再生処理回路 の簡素化を図ること;

(ハ)情報記録媒体10に対してできるだけ高密度に情 報を記録すること。

【0370】以上の要求を満足するため、情報記録再生 部(物理系ブロック)101では、「エラー訂正機能の 付加」と「記録情報に対する信号変換(信号の変復 調)」とを行っている。

【0371】<<記録時の信号の流れ>>

<エラー訂正コードECC付加処理>とのエラー訂正コ ードECC付加処理について、説明する。

【0372】情報記録媒体10に記録したい情報はが、 生信号の形で、図33のデータ [/Oインターフェイス 222に入力される。この記録信号 dは、そのまま半導 体メモリ219に記録される。その後、ECCエンコー ダ208内において、以下のようなECCの付加処理が 実行される。

【0373】以下、積符号を用いたECC付加方法の具 体例について説明を行なう。

【0374】記録信号dは、半導体メモリ219内で、 172バイト毎に1行ずつ順次並べられ、192行で1 組のECCブロックとされる(172バイト行×192 バイト列でおよそ32kバイトの情報量になる)。

【0375】この「172バイト行×192バイト列」 で構成される1組のECCブロック内の生信号(記録信 号d)に対し、172パイトの1行毎に10パイトの内 符号PIを計算して半導体メモリ219内に追加記録す 50 内では、変調回路207から送られてきた記録信号に応

る。さらにバイト単位の1列毎に16バイトの外符号P 〇を計算して半導体メモリ219内に追加記録する。

【0376】そして、10バイトの内符号PIを含めた 12行分(12×(172+10)バイト)と外符号P Oの1行分(1×(172+10)バイト)の合計23 66バイト (= (12+1) × (172+10)) を単 位として、エラー訂正コードECC付加処理のなされた 情報が、情報記録媒体10の1セクタ内に記録される。 【0377】ECCエンコーダ208は、内符号PIと

10 外符号POの付加が完了すると、その情報を一旦半導体 メモリ219へ転送する。

【0378】情報記録媒体10に情報が記録される場合 には、半導体メモリ219から、1セクタ分の2366 バイトずつの信号が、変調回路207へ転送される。

【0379】<信号変調>再生信号の直流成分(DS V: Digital Sum ValueまたはDigital Sum Variation) を"0"に近付け、情報記録媒体10に対して高密度に 情報を記録するため、信号形式の変換である信号変調を 変調回路207内で行う。

【0380】図33の変調回路207および復調回路2 20 10は、それぞれ、元の信号と変調後の信号との間の関 係を示す変換テーブルを内蔵している。

【0381】変調回路207は、ECCエンコーダ20 8から転送されてきた信号を所定の変調方式に従って複 数ビット毎に区切り、上記変換テーブルを参照しなが ら、別の信号(コード)に変換する。

【0382】たとえば、変調方式として8/16変調 (RLL(2、10)コード)を用いた場合には、変換 テーブルが2種類存在し、変調後の直流成分(DSV) 30 が0に近付くように逐一参照用変換テーブルを切り替え ている。

【0383】<記録波形発生>情報記録媒体(光ディス ク) 10 に記録マークを記録する場合、一般的には、記 録方式として、次のものが採用される:

[マーク長記録方式] 記録マークの前端位置と後端末位 置に"1"がくるもの。

【0384】[マーク間記録方式]記録マークの中心位 置が"1"の位置と一致するもの。

【0385】なお、マーク長記録を採用する場合、比較 的長い記録マークを形成する必要がある。との場合、一 定期間以上記録用の大きな光量を情報記録媒体10に照 射し続けると、情報記録媒体10の光反射性記録膜の蓄 熱効果によりマークの後部のみ幅が広がり、「雨だれ」 形状の記録マークが形成されてしまう。この弊害を除去 するため、長さの長い記録マークを形成する場合には、 記録用レーザ駆動信号を複数の記録パルスに分割した り、記録用レーザの記録波形を階段状に変化させる等の 対策が採られる。

【0386】記録・再生・消去制御波形発生回路206

じて、上述のような記録波形を作成し、この記録波形を 持つ駆動信号を、半導体レーザ駆動回路205に送って いる。

【0387】次に、図33の構成におけるブロック間の 信号の流れをまとめておく。

【0388】1)記録すべき生信号の情報記録再生装置 への入力

図33は、情報記録再生装置内の情報記録媒体(光ディ スク) 10 に対する情報の記録処理と再生処理に関連す る部分をまとめた情報記録再生部(物理系ブロック)内 10 の構成を例示している。PC(パーソナルコンピュー **タ) やEWS (エンジニアリングワークステーション)** などのホストコンピュータから送られて来た記録信号d はデーター/〇インターフェイス222を経由して情報 記録再生部(物理系ブロック)101内に入力される。 【0389】2)記録信号dの2048バイト毎の分割

データ I / O インターフェイス 2 2 2 では記録信号 d を 時系列的に2048バイト毎に分割し、データIDなど れた信号は図33のECCエンコーダ208に送られ る。

【0390】3) ECCブロックの作成

処理

図33のECCエンコーダ208では、記録信号に対し てスクランブルを掛けた後の信号を16組集めて「17 2バイト×192列 | のブロックを作った後、内符号P I (内部パリティコード) と外符号PO (外部パリティ コード)の付加を行う。

【0391】4) インターリーブ処理

図33のECCエンコーダ208ではその後、外符号P 〇のインターリーブ処理を行う。

【0392】5)信号変調処理

図33の変調回路207では、外外符号POのインター リーブ処理した後の信号を変調後、図19に示すように 同期コードを付加する。

【0393】6)記錄波形作成処理

その結果得られた信号に対応して記録・再生・消去制御 波形発生回路206で記録波形が作成され、この記録波 形がレーザ駆動回路205に送られる。

【0394】情報記録媒体(DVD-RAMディスク) 10では「マーク長記録」の方式が採用されているた め、記録パルスの立ち上がりタイミングと記録パルスの 立ち下がりタイミングが変調後信号の"1"のタイミン グと一致する。

【0395】7)情報記録媒体(光ディスク)10への 記録処理

光ヘッド202から照射され、情報記録媒体(光ディス ク) 10の記録膜上で集光するレーザ光の光量が断続的 に変化して情報記録媒体(光ディスク)201の記録膜 上に記録マークが形成される。

【0396】次に、図6~図7を参照して、不正コピー 検出方法について説明する。図6は、不正コピー検出装 置の概略構成を示すブロック図である。図7は、不正コ ピー検出方法の手順を示すフローチャートである。

50

【0397】DVD-ROMディスクの場合、図10に 示すように、トラップエリアのアドレス情報(物理セク タ番号)は、暗号化されて、リードインエリア800内 のコンテンツプロバイダーインフォメーション817に 記録されている。一方、DVD-RAMディスクの場 合、図17に示すように、トラップエリアのアドレス情 報(物理セクタ番号)は、暗号化されて、リードインエ リアのエンボスデータゾーンの制御データゾーンに記録 されている。

【0398】図6に示すように、不正コピー検出装置 は、情報記録再生部41、暗号解読部(復号部)42、 システム制御部43、インターフェース部44、及び暗 号鍵記憶部45を備えている。因みに、情報記録再生部 41に関しては、図33で説明済みである。

【0399】まず、システム制御部43の指示に基づ を付加した後、スクランブル処理を行う。その結果得ら 20 き、情報記録再生部41により情報記録媒体10(DV D-ROMディスク又はDVD-RAMディスク) から 暗号化されたアドレス情報が読み取られる(ST1)。 この発明の不正コピー検出装置では、暗号鍵記憶部45 にあらかじめ解読用の暗号鍵が記録されている。そし て、この暗号鍵記憶部45から暗号解読部(復号部)4 2に対して、解読用の暗号鍵が転送される(ST2)。 次に、暗号化されたアドレス情報が、暗号解読部(復号 部) 42で暗号解読される。つまり、情報記録媒体10 上のトラップエリアのアドレス情報(物理セクタ番号) が読み取られる(解読される)ことになる(ST3)。 【0400】解読されたアドレス情報に基づき、光学へ ッド202 (図33) が情報記録媒体10上のトラップ エリア近傍にアクセスされ、トラップエリア近傍の情報 が再生される(ST4)。情報記録媒体10から検出さ れたトラップエリアの情報(例えば図8に示すセクタc 23のセクタナンバー862)が再生され、この再生情 報に基づき、この情報記録媒体10が不正コピーされた 物か否かが判定される(ST5)。つまり、上記説明し たように不正コピー情報には、所定の特徴が見られるた 40 め、この特徴を検出することにより、不正コピー情報を 見分けることができる。不正コピー情報に見られる所定 の特徴の検出、及び所定の特徴の検出結果に基づく不正 コピー情報の見きわめの判定は、不正コピー検出部46 により行われるものとする。

> 【0401】例えば、第1又は第2のトラップエリアが 働いた場合(同一トラック上のデータが繰り返し再生さ れた場合)、不正コピー情報には第1又は第2のトラッ プエリアに記録された情報が複数含まれることになる。 つまり、不正コピー情報には第1又は第2のトラップエ 50 リアのアドレス情報が複数含まれることになる。第3の

40

トラップエリアが働いた場合(無理なトラックジャンプが働いた場合)、不正コピー情報には不連続なデータが含まれることになる。この場合、無理なトラックジャンプにより、アドレス情報の乱れが生じる。第4、第5、又は第6のトラップエリアが働いた場合、不正コピー情報にはアドレス情報の乱れが含まれることになる。これら、特徴を検出することにより、不正コピー情報を見きわめることができる。

【0402】以上説明したように、この発明によると、 情報記録媒体上にトラップエリアを形成するという非常 10 に示す図である。 に容易な方法で、容易にディスクコピーができないよう にすることができる。また、通常再生時には再生されな い位置にトラップエリアを設けることにより、通常再生 時にはトラップエリアの影響を受けることなく、再生処 理を行うことができる。さらに、情報記録媒体上には、 トラップエリアの位置を示す暗号化されたアドレス情報 が記録されており、このアドレス情報を利用することに より、不正コピーされた情報を検出することができる。 【0403】情報記録媒体を再生するときには、トラッ プエリアの影響以外でも、媒体上のゴミ又は傷等によ り、集光ビームがトラックはずれを起こすことがある。 とのような事態がディスクコピーの際に発生すると、コ ピー先の情報記録媒体上には複数箇所に同一の物理セク タ番号が記録される。この発明では、トラップエリアの 位置を示すアドレス情報が記録されているため、トラッ プエリアの影響で複数箇所に同一の物理セクタ番号が記 録されたのか、又はトラップエリアの影響以外で複数箇 所に同一の物理セクタ番号が記録されたのかを識別する ととができる。

[0404]

【発明の効果】この発明によれば下記のコピープロテクト機能付き情報記録媒体、不正コピー検出装置、及び不正コピー検出方法を提供できる。

【0405】(1)ディスクコピーを困難にすることが可能なコピープロテクト機能付き情報記録媒体。

【0406】(2)不正にディスクコピーされた不正コピー情報の検出に貢献することが可能なコピープロテクト機能付き情報記録媒体。

【0407】(3)不正にディスクコピーされた不正コピー情報を検出することが可能な不正コピー検出装置。 【0408】(4)不正にディスクコピーされた不正コピー情報を検出することが可能な不正コピー検出方法。 【図面の簡単な説明】

【図1】第1及び第2のトラップエリアの概略を説明するための図である。

【図2】第2及び第3のトラップエリアの概略を説明するための図である。

【図3】第4のトラップエリアの概略を説明するための図である。

【図4】第5のトラップエリアの概略を説明するための 50 るための図である。

図である。

【図5】第6のトラップエリアの概略を説明するための 図である。

【図6】不正コピー検出装置の概略構成を示すブロック 図である。

【図7】不正コピー検出方法の手順を示すフローチャートである。

【図8】第1のトラップエリアの拡大図である。

【図9】DVD-ROMディスクのデータ構造を概略的 に示す図である。

【図10】DVD-ROMディスクのリードインエリアのデータ構造を概略的に示す図である。

【図11】DVD-ROMディスクのリードインエリアの中の物理フォーマットインフォメーションの内容を説明するための図である。

【図12】DVD-ROMディスクに記録されるECC ブロックの概要を示す図である。

【図13】DVD-ROMに記録されるセクタのデータ 構造を示す図である。

20 【図 14】 DVD-ROMに記録されるセクタに含まれるIDのデータ構造を示す図である。

【図15】DVD-RAMディスクにおけるゾーンの概念を説明するための図である。

【図16】DVD-RAMディスクのデータ構造を概略的に示す図である。

【図17】DVD-RAMディスクのリードインエリア 及びリードアウトエリアのデータ構造を概略的に示す図 である。

【図18】DVD-RAMディスクのデータエリアの詳 30 細を説明するための図である。

【図19】DVD-RAMに記録されるセクタのデータ 構造を示す図である。

【図20】DVD-RAMディスクに記録されるECC ブロックの概要を示す図である。

【図21】DVD-RAMディスクのデータエリア内でのゾーンとグループとの関係を説明するための図であ

【図22】DVD-RAMディスクのデータエリア内での論理セクタの設定方法を説明するための図である。

【図23】階層ファイルシステム構造と情報記憶媒体 (DVD-RAMディスク) に記録された情報内容との 間の基本的な関係を説明するための図である。

【図24】情報記憶媒体(DVD-RAMディスク)上の連続セクタ集合体(エクステント)の記録位置を表示するロングアロケーション記述子の記述内容を説明するための図である。

【図25】情報記憶媒体(DVD-RAMディスク)上の連続セクタ集合体(エクステント)の記録位置を表示するショートアロケーション記述子の記述内容を説明するための図である。

【図26】情報記憶媒体(DVD-RAMディスク)上 の未記録連続セクタ集合体(未記録エクステント)を検 索するものでスペースエントリとして使用される記述文 の内容を説明するための図である。

【図27】階層構造を持ったファイル構造内で、指定さ れたファイルの記録位置を表示するファイルエントリの 記述内容の一部を抜粋して説明するための図である。

【図28】階層構造を持ったファイル構造内で、ファイ ル (ルートディレクトリ、サブディレクトリ、ファイル データ等)の情報を記述するファイルID記述子の一部 10 202…光ヘッド; を抜粋して説明するための図である。

【図29】階層構造を持ったファイルシステムの構造の 一例を説明するための図である。

【図30】ユニバーサルディスクフォーマット(UD F)に従って情報記憶媒体(DVD-RAMディスク) 上にファイルシステムを構築した場合の一例を説明する ための第1の部分図である。

【図31】ユニバーサルディスクフォーマット(UD F) に従って情報記憶媒体(DVD-RAMディスク) 上にファイルシステムを構築した場合の一例を説明する 20 212…2値化回路; ための第2の部分図である。

【図32】ユニバーサルディスクフォーマット(UD F)に従って情報記憶媒体(DVD-RAMディスク) 上にファイルシステムを構築した場合の一例を説明する ための第3の部分図である。

【図33】DVD-ROM/RAMドライブの情報記録 再生部の概略構成の一例を示すブロック図である。 【符号の説明】

T1…第1のトラップエリア

T2…第2のトラップエリア

*T3…第3のトラップエリア

T4…第4のトラップエリア

T5…第5のトラップエリア

T6…第6のトラップエリア

41…情報記録再生部 .

42…暗号解読部 (復号部)

43…システム制御部

44…インターフェース部

45…暗号鍵記憶部

203…光ヘッド移動機構(送りモータ);

204…スピンドルモータ:

205…半導体レーザ駆動回路;

206…記録・再生・消去の制御波形発生回路:

207…変調回路;

208…ECCエンコーダ:

209…エラー訂正回路;

210…復調回路;

2 1 1 ··· P L L 回路;

213…アンプ;

214…媒体(光ディスク)回転速度検出回路:

215…スピンドルモータ駆動回路;

216…送りモータ駆動回路:

217…フォーカス・トラッキングエラー検出回路;

218…対物レンズアクチュエータ駆動回路;

219…半導体メモリ;

220…制御部;

221…ターンテーブル(回転テーブル):

*30 222…データ 1/0インターフェイス;

【図1】

【図2】

【図3】

	アドレスエリア (正規アドレス)	アドレスエリア (正規アドレス)	アドレスエリア (アドレス未設定)	アドレスエリア (正規アドレス)	
••••	セクタエリア	セクタエリア	//////////////////////////////////////	セクタエリア	

第3のトラップエリアT3

【図4】

	アドレスエリア (正規アドレス)	アドレスエリア (正規アドレス)	アドレスエリア 偽アドレス(重複)	アドレスエリア (正規アドレス)	
••••	セクタエリア	セクタエリア	/// topic	セクタエリア	

第4のトラップエリアT4

【図5】

第5のトラップエリアT5

【図6】

【図9】

(一中周祖 803)		(外局側 804→)	
物理セクタ書号 開始位置 806 ↓	他位セクタ番号 030000h ↓	物理セクタ番号 終了位置 808	
リードインエリア 800	データエリア 801	リードアウトエリア 802	

【図19】

	•		1セクタ	,			
前の セク タ	ヘッダ (エンポス)	同期 コー ド	変調 後の 信号		周期 コー ド	変調 後の 信号	次セクタ のヘッダ

【図8】

【図10】

先頭の物理 セクタ番号 (Hax) 807	各データの内容 808	データ内の情報構造 809
_	ブランクデータ 810	All 60h
02F000	リファレンスコード 813	特定のランダムテストパターン
0 2 F 0 2 0	ブランクデータ 811	All Oth
		物理フォーマットインファメーション 815
0 2 F 2 O O	コントロールデータ 814	ディスクマニュファクチュアリングインフォメーション 818
	į	コンテンツプロパイダーインフォーメション 817
02FE00	ブランクデータ 812	AII OOh
030000	データエリア 801	

【図11】

【図13】

詳細な情報内容 821	使用バイト数 822
ブックタイプ及びパートパージョン 823	1 パイト
ディスクサイズ及び最小リードアウトレート 824	1 1/1
ディスクストラクチャー 825	1 1/1/1
レコーディング密度 826	1 //11
データエリアアロケーション 827	12 111 1
BCAディスクリプター 828	1 111
リザーブ 829	15 141
リザーブ 830	2018 111

ID 851	ID 851 IED 511 CPR_MAI 852 メインデータ180bytes (D 0~D 1 5 9						
	メインデー	9 1 7 2 17 4 1 (D160~D331)	506			
	メインデータ	9 1 7 2 17 1 1	D332~D503)	507			
			•				
	メインデー	9 172141	D1708~D187	9) 508			
	メインデータ	9 1 6 8 77 1 1	D1880~D204	7) 509	EDC 513		

【図14】

【図12】

セクタ 501s 2048バイト	セクタ 501a 2048バイト	セクタ 501b 2048バイト	セクタ 501c 2048バイト		セクタ 501p 2048バイト	セクタ 501q

セクタインフォメーション 861	セクタフォーマットタイプ 861
	トラッキング方法 864
	反射率 865
	リザーブ 866
	エリアタイプ 867
	データタイプ 868
	レイヤーナンバー 859

【図20】

【図22】

★ 論理セクタ	寄号小	論理・	セクタ番号大
グループ 0 0 内での 論理 セクタの並び	グループ 0 1 内での論理 セクタの並び		グループ23 内での論理 セクタの並び
(←内周側)			(外周個→)

【図15】

- *各ゾーンはリードイン側にユーザエリアUA00〜UA23をもち、 リードアウト側にスペアエリアSA00〜SA23を持つ。 *Hzは各ゾーンにおける毎秒の回転速度;
- 1 砂あたりの回転数 r p s で表すこともある。

【図17】

ソーン	各ゾーンの内容
	ブランクゾーン 652
ェン	基準信号ゾーン
ボス	ブランクゾーン 654
データ	ブックタイプ&パートバージョン;ディスクサイズ &最小該出レート;ディスク構造;記録密度; データエリアアロケーション;BCA(パーストカ
1 9	*タソ ッティングエリア)配巡子;速度(越光量指定のた タソ めの特殊度条件)・第単オワー・ピークオワー・
-	ーン パイアスパワー;予約;媒体の製造に関する情報; 予約
	ブランクソーン 656
ミラーソーン	接続ゾーン
#	ガードトラックゾーン
可可	ディスクテストゾーン
旋デ	ドライブテストゾーン
ا چ	ガードトラックゾーン
シー	ディスク識別子(ID)ソーン
シ	DMA1&DMA2
	データエリアのゾーン00~ゾーン23
# #	DMA3&DMA4
可	ディスク識別子(ID)ゾーン
使デ	ガードトラックゾーン
ا ا	ドライブテストゾーン
タソーン	ディスクテストゾーン
12	ガードトラックゾーン

【図16】

		名称	回転速度(Hz)	物理セクタ番号	
11	エンポス 基準信号ゾーン ゾーン 制御データゾーン ミラー ゾーン 快続ゾーン		37.57	27ABO~2FFFF	
リードイン			37.37		
	春替 可能 ゾーン	ディスクテストゾーン ドライブテストゾーン ディスク 1 Dゾーン DMA 1 & DMA 2	39.78	30000~30FFF	
		ソーン00	39.78	31000~37D5F	
		ソーン01	37.57	37D60~4021F	
		ソーン02	35.59	40220~48E3F	
		ソーン03	33.81	48E40~521BF	
		ソーン04	32.20	521C0~5BC9F	
	ソーン05		30.74	SBCA0~65EDF	
	ソーン06		29.40	65EE0~7087F	
	ソーン07		28.18	70880~7B97F	
i	ゾーン08		27.05	78980~871DF	
デ	ゾーン09		26.01	871E0~9319F	
1	ソーン10		25.05	931A0~9F8BF	
4	ソーン11		24.15	9F8C0~AC73F	
I	ゾーン12		23.32	AC740~B9D1F	
IJ	ソーン13		22.54	B9D20~C7A5F	
7		ソーン14	21.82	C7A60~D5EFF	
		ゾーン15	21.13	D5F00~E4AFF	
		ゾーン16	20.49	E4B00~F3E5F	
		ゾーン17	19.89	F3E60~10391F	
	ソーン18		19.32	103920~113B3F	
1	ソーン19		18.79	113B40~1244B	
!	ゾーン20		18.28	1244C0~13559F	
	ゾーン21		17.80	1355A0~146DDF	
	ソーン22 .		17.34	146DEO~158D7F	
		ゾーン23	16.91	158D80~16847F	
リア・ウ	書替 可能 ゾーン	DMA3&DMA4 ディスク1 Dゾーン ドライプテストゾーン ディスクデストゾーン	16.91	168480 ~ 17966F	

【図21】

【図18】

y	ガード		グルーン	ガード	各グループ	
ーン	エリアのセク	グル	ユーザ エリア	スペア エリア	エリアのセク	内の先頭セ クタの論理
番号	夕番号	番号	セクタ番号 (セクタ数)	セクタ番号	夕番号	セクタ番号
00		00	31000~ 377DF (26592)	377E0 ~ 37D2F	37D30 ~ 37D5F	0
01	37D60 37D8F	01	37D90~ 3FB2F (32160)	3F830 401EF	401F0 4021F	26592
02	40220 4024F	02	40250~ 486EF (33952)	486F0 48E0F	48E10 48E3F	58752
03	48E40 48E6F	03	48E70~ 51A0F (35774)	51A10 5218F	52190 521BF	92704
04	521C0 521EF	04	521F0~ 5B48F (37536)	5B490 5BC6F	5BC70 5BC9F	128448
1		1				
20	1244C0 12450F	20	124510~ 13476F (66114)	134770 13554F	135550 13559F	943552
21	1355A0 1355EF	21	1355F0~ 145F4F (67936)	145F50 146D8F	146D90 146DDF	1009696
22	146DE0 146E2F	22	146E30~ 157E8F (69728)	157E90 158D2F	158D30 158D7F	1077632
23	158D80 158DCF	23	158DD0~ 16A57F (71600)	16A580 16B47F		1147360

【図23】

- * 論理プロック(セクタ)サイズは2048バイト。 * 運統した論理プロック(建築セクタ)の塊を「エクステント」 (または集合体)と呼ぶ。 * 継体に記録されたテータファイルへのアクセスは、矢印のアク セス順路に示すように、返次情報を読み取りながら、その情報 に示されたアドレス(AD(*)、LAD(*))へのアクセスを繰り返す ことで行われる。

【図24】

LAD (論理ブロック番号) …情報記憶媒体上のエクステント(集合体) の記録位置表示

エクステントの	インブリメンテーション
長さ410	使用 4 1 2 (演算処理に
(陰壁プロック数)	利用する情報)
(4パイトで表示)	[8パイトで表示]

【図25】

AD (論理プロック番号) …情報記憶媒体上のエクステント (集合体) の記録位置表示

-	エクステントの 長さ410 (論理プロック数) (4パイトで表示)	エクステントの 位置411 (論理プロック数) (4パイトで表示)
---	--	--

【図26】

USE (AD(*), AD(*), …, AD(*)) …未記録エクステント (未記録の連続集合体) を検索する 記述文で、スペーステーブルとして使用

記述子タグ (四 2 6 3) 記述内容の 試別子 4 1 3 [16パイト]	ICBタグ ファイルの タイプ表示 (Type=1) 414 [20パイト]	アロケーション配送長 列の全長 (パイト数) 4 1 5 (4 パイト)	アヨ各ン上体プロンエト位上ロンエト位上ロンエトが開始が
•			与) を並べ て列記 (AD(*), AD(*), …,AD(*))

- *ICBタグ内のファイルタイプ=1は、アロケートされない スペースエントリを意味し、 *ICBタグ内のファイルタイプ=4は、ディレクトリを表し、 *ICBタグ内のファイルタイプ=5は、ファイルデータを表す。

【図27】

FE (AD(*), AD(*), …, AD(*)) …階層領達を持ったファイル構造内でのFIDで指定された ファイルの記録媒体上での記録位置を表示。

420	記述子タグ (=281) 記述内容の 設別子417 [16パイト]	ICBタグ ファイルの タイプ表示 (Type=4/5) 4 1 8 [20パイト]	パーミッション ユーザ別の記録 ・再ず生・朝鮮の ・許可情報 (19 に (32パイト)	アョフ媒(論ク並(A D D (** *)
-----	---	---	--	------------------------

- *1CBタグ内のファイルタイプ=1は、アロケートされない スペースエントリを意味し、 *1CBタグ内のファイルタイプ=4は、ディレクトリを表し、 *1CBタグ内のファイルタイプ=5は、ファイルデータを表す。

【図28】

FID(LAD(論理ブロック番号)) …ファイル(ルートディレクトリ、サブディレクトリ、 ニッィルアータ等)の情報を記述

記述子タグ (= 2577) 記述内容の 識別子 421 [16パイト]	種別表示	ブロック 対応FE の 記録位置	: 微冽子 :	(000b) 437	
			424	ł	

*ファイル特性 (ファイル種別) は、観ディレクトリ、 ディレクトリ、ファイルデータ、またはファイル削鈴

** A V ファイル離別子 (4・2 4) 設定例 1) ファイル離別子 (4・3 4) 設定例 1) ファイル離別子として近軸の近張子 (YOB等) を付ける。 9) バチュング (4・3 7) に独自のフラグを挿入する.

[図30]

LSN	LBN	構造441	記述子442	内容 4 4 3
0 15			予約459 (全て00bバイト)	
16		ポリュ	エクステントエリア 記述子開始445	VRS 開始位置
17		ルムー 辺織シー	ボリューム構造 記述子446	ディスク 内容数明
18	{	ケンス	ブート 記述チ4.4.7	プート 開始位置
19			エクステントエリア 記述子終了448	VRS 終了位置
~ 31			予約460 (全て00hバイト)	
32 ~			省略	}
34		メポー配シケム イリム・オーン・ケーン・イリム・オーク・イリム・オーク・イリム・イー・イー・イー・イー・イー・イー・イー・イー・イー・イー・イー・イー・イー・	バボージョン ドボージョン ドイチ・ション ドイチ・ション ドイチ・デース は 1 ドイチ・デース は 2 ドイチ・デース は 2 ドイチ・アース は 2 ドイチ・アース は 2 ドイチ・アース は 2 ドイチ・アース は 2 ドイチ・アーム は 2 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	スペース ステージ 位置 スピースマウ配 スリースマウ配 ペートでは インマウ できる マッチ できる マッチ イン・マット できる マッチ は できる アッチ
~ 47			省略	
~ 63			省略	
~-255		:	予約461 (全て00hバイト)	
2.56		第1アンカ ーポイント 456	アンカーポリューム 配述子ポインタ458	
~271			予約462 (全て00bパイト)	
				1 .

【図29】

ルートディレクトリA → 観ティレクトリB → ファイルデータC 425 (103) 426 (105) 427 (107), (108), (109) 426 (105) 427 (107), (108), (109) 428 (111) → 銀ティレクトリE 428 (111) → ファイルテータトリG 431 (無し) → ファイルテータト 432 (115), (116), (117) → ファイルデーター 1 43 (119), (120)

【図31】

272 321	0 49		スペース ビットマップ 記述子470	スペース ビットマップ 記録・未記録 のマッピング
322 371	50 99		USE(AD(*), AD(*), , AD(*)) 4 7 l	スペーステーブ ル未配録状態の エクステント 一覧
372	100		ファイルセット記述子 472;ルートディレ クトリICB473; LAD(102)474	ルートディレ クトリFEの 記録位置
373	101		省略	
374	102		ルートディレクトリ AFE (AD(103)) 475	FIDsの 記録位置
375	103		AOFID (LAD(104), LAD(110)) 476	B. Dの FE位置
376	104	ファイル 検送	数ティレクトリのEFE (AD(105)) 477	FIDsの 記録位置
377	105	486	BOFID (LAD(106))	Cの FE位置
378	106		FE (AD(107)AD(108) AD(109)) 4 7 9	ファイル テータ位置
382	110		ディレクトリDのFE (AD(111)) 480	FIDsの 記録位置
383	111		DØ) F I D (LAD(112), LAD(%L)) 48 I	E、Fの FE位置
384	112	}	サプティレクトリFの FE (AD(113)) 482	FIDsの 記録位置
385	113	1	FID (LAD(7cL),LAD (114),LAD(118)) 483	H、Iの FE位置
386	114		F E (AD(115)AD(116)	ファイル テータ位置
390	118	į	AD(117) 4 8 4 1 Ø F E (AD(119), AD(120)) 4 8 5	ファイル・アータ位置
379~~	107~		ファイルデータCの	
387~	115~	ファイルテータ	ファイルデータHO	7情報489
391~	119~	487	ファイルデータ 10	7情報490

【図32】

,		. 	
LLSN-271	•	予約463	
LLSN-257		(全て00hバイト)	
LLSN-256	第2アンカ ーポイント 457	アンカーポリューム 配述子ポインタ 4 5 8	
LLSN-255		予約464	
LLSN-224		(全て001パイト)	
LLSN-223 LLSN-208	リポープ ポリム 記シケ4 4 7	バーティション記述子450 バーティション内容使用451 アロケートさープル452 スペーステープル452 アロケートとフトンマップ453 育理ポリユーム記述子454 静理ポリユーム内容使用455	メポー配シンパア イリム述ースッッ フュー子ケのクブ
LLSN-207 LLSN		予約465 (全て00hバイト)	

注1>LSN= 論理セクタ番号491 LBN= 論理プロック番号482 LLSN=最後の論理セクタ番号493 注2>スペースピットマップとスペーステーブルが一緒に記録される ことは希であり、通常はスペースピットマップとスペーステー ブルのいずれか一方が媒体に記録される。

【図33】

