Linear Algebra: Final Project

Instructor: Prof. Carrson C.Fung

TA: Mykola Servetnyk

Final project

- In this project, you are asked
 - Program different parts of the "eigenface" facial identification
 - Show your results quantitatively by plotting the so-called miss detection rate vs. signal-to-noise ratio (SNR).
 - Answer some additional questions

Eigenface – face detection

Training set

Testing set

Facial Identification (and Recognition) using Eigenface

- Uses the idea of low rank approximation
- Pro
 - Easy to implement
- Cons
 - Complete retraining is necessary when new faces become available
 - □ Not robust again occlusion, shadow, ...
 - Use of global information (correlation matrix of all data) fails to capture local information of images
 - □ In terms of identification, detector is not optimal

Eigenface Training Steps

- Treat each new (face) image as a point in Hilbert space H
 - □ $N \times N$ pixel image $\rightarrow N^2$ point in H
 - □ M training images, usually $M < N^2$
 - It is usually the dimension of the data which causes problem in such problems, not the number of data
 - Curse of dimensionality
 - □ Big data is a misnomer
- Training phase
 - □ Calculate average of face data and subtract from each training data
 - Let $\mathbf{f}_1, \mathbf{f}_2, ..., \mathbf{f}_M \in \mathbb{R}^{N^2}$ be the training images, and $\gamma \in \mathbb{R}^{N^2}$ denotes their mean
 - $\mathbf{g}_i = \mathbf{f}_i \mathbf{\gamma}, \forall i = 1, \dots M$
 - Calculate corresponding correlation matrix
 - $\mathbf{C} = \mathbf{G}\mathbf{G}^T \in \mathbb{R}^{N^2 \times N^2} = \mathbf{U}_C \mathbf{\Lambda}_C^{1/2} \mathbf{\Lambda}_C^{T/2} \mathbf{U}_C^T, \qquad \mathbf{U}_C, \mathbf{\Lambda}_C \in \mathbb{R}^{N^2 \times N^2}$
 - $\mathbf{G} = [\mathbf{g}_1 \ \mathbf{g}_2 \ \dots \ \mathbf{g}_M] \in \mathbb{R}^{N^2 \times M}$
 - Note that C will usually be rank deficient as $N^2 >> M$
 - \Box $\mathbf{U}_{C}(:,1:M)$ is a basis for \mathbf{g}_{i} , for all i

Data representation

Eigenface Training Steps

- Only need to use *M* eigenvectors to represent all training data
 - \Box Calculating the $N \times N$ \mathbf{U}_C matrix is computationally inefficient and not necessary
- Consider that if $\mathbf{R} = \mathbf{G}^T \mathbf{G} \in \mathbb{R}^{M \times M}$ and symmetric
 - \square $\mathbf{R} = \mathbf{U}_R \mathbf{\Lambda}_R^{1/2} \mathbf{\Lambda}_R^{T/2} \mathbf{U}_R^T \in \mathbb{C}^{N \times M}$, then $\mathbf{U}_R \in \mathbb{R}^{M \times M}$, $\mathbf{\Lambda}_R \in \mathbb{R}^{M \times M}$
 - □ In matrix vector form: $\mathbf{R}\mathbf{u}_{R,i} = \mathbf{G}^T \mathbf{G}\mathbf{u}_{R,i} = \lambda_{R,i} \mathbf{u}_{R,i}$
 - Notice that $\mathbf{GRu}_{R,i} = \mathbf{GG}^T \mathbf{Gu}_{R,i} = \mathbf{CGu}_{R,i} = \lambda_{R,i} \mathbf{Gu}_{R,i} \Leftrightarrow \mathbf{Cv}_i = \lambda_{R,i} \mathbf{v}_i$, for i = 1, 2, ..., M
 - So $\mathbf{v}_i = \mathbf{G}\mathbf{u}_{R,i} \in \mathbb{R}^{N^2 \times M}$ and it equals first M eigenvectors of \mathbf{C}
 - \square Calculation of \mathbf{v}_i only needs computing M $\mathbf{u}_{R,i}$ vectors, and multiplying them with \mathbf{G}
 - \square Note that $V(\mathbf{G}) = \operatorname{span}(\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_M)$
 - \Box "face" space = eigenspace of $\mathbf{C} = \text{span}(\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_M)$

Idea of data projection

Eigenface Testing – Facial Identification

- Note that not all $M \mathbf{v}_i$'s are needed
 - \Box Only $M' < M \mathbf{v}_i$'s are retained
- Transform training images as $\mathbf{v}_i^T \mathbf{g}_i = g_{T,i}$, for i = 1, 2, ..., M'
- Form the coefficient vector $\mathbf{g}_T = [g_{T,1}, g_{T,2}, ..., g_{T,M'}]^T$ using all images
 - \Box For centroid (mean) of images of same person k, called $\mathbf{g}_{T,k}$
- Suppose a new face point h appears (already zero-mean)
- Classifying a new face by first computing its coefficient $\mathbf{v}_i^T \mathbf{h} = \mathbf{h}_{T,i}$, for i = 1, 2, ..., M'
- Form coefficient vector $\mathbf{h}_T = [h_{T,1}, h_{T,2}, ..., h_{T,M'}]^T$
- Decide \mathbf{h}_T is person $\mathbf{g}_{T,k,opt}$ if $\mathbf{g}_{T,k,opt} = \operatorname{argmin}_{\mathbf{g}T,k} \| \mathbf{h}_T \mathbf{g}_{T,k} \|_2^2$
 - □ This is not optimal detector

Principle of min norm detector

- Compute distances to all training data points
- 2. Pick the smallest

$$\mathbf{g}_{T,k,opt} = \operatorname{argmin}_{\mathbf{g}T,k} \| \mathbf{h}_T - \mathbf{g}_{T,k} \|_2^2$$

Probability of wrong detection vs SNR

Assignment

- Complete functions of
 - Image I/O (10%)
 - Efficient computation of singular vectors(15%)
 - Min norm identification(15%)
- Obtain smooth and correct miss detection probability vs. SNR curve using all of the eigenvectors from the covariance matrix (20%)
- Implement algorithm using
 - □ 10% of the total number of eigenvectors (10%)
 - □ 1% of the total number of eigenvectors (10%)
- Answer question: how results for reduced number of eigenvectors are different from taking full set?(10%)
- Plot miss probability error vs. SNR curve for all three cases(full set, 10% and 1% of the total number of eigenvectors).(10%)

Good luck!