Topic: Measuring Uncertainty with Probability

Introduction, Language and Notation

School of Mathematics and Applied Statistics

How do we measure uncertainty?

Probability is a measure of uncertainty or likelihood.

The probability of an event **certain** to happen is set to 1.

In everyday life, it is often expressed as a percentage:

- There is a 50-50 chance of getting a tail when a fair coin is tossed.
- The weather forecast states: Today there is an 80% chance of rain.
- There is a 20% chance that the train to Sydney from Wollongong is likely to arrive late.

What is probability?

Probability is used to quantify unpredictability and describe it precisely.

The probability of an event is a number between 0 and 1 indicating how likely it is that the event will occur when an 'experiment' is carried out.

Probability is used to quantify **unpredictability** and describe it precisely.

The probability of an event is a number between 0 and 1 indicating how likely it is that the event will occur when an 'experiment' is carried out.

A probability model describes the uncertainty in an experiment by assigning probabilities to the possible outcomes.

- Weather forecast models
- Artificial intelligence uses statistics to make independent learning decisions where a decision is an outcome that has highest probability.

Probability Scale

- Random phenomenon: cannot be predicted with certainty in advance
- **Experiment**: the observation of any phenomenon that is uncertain
- Outcome is a single observed result of random phenomenon
 - is a result of an experiment which cannot be reduced to simpler results
 Example: getting a Head or Tail on the toss of a coin
- The **sample space** *S* is the set of all possible outcomes or sample points
 - *S* may be finite, countably infinite, or uncountably infinite.
 - A discrete sample space contains a finite or countable number of distinct sample points
 - Example: $S = \{1, 2, 3, 4, 5, 6\}$ is set of all outcomes for a throw of a die
 - P(S) = 1, as the sample space includes all possibilities.

Language and Notation: Events

- The subsets of S are called **events**.
 - E is a subset of the sample space $S:E\subseteq S$
 - Events are collection of outcomes, including both S and \varnothing (the null or empty set).
 - An event in a discrete sample space S is a collection of sample points, any subset of S
 - e.g. in the die experiment the event 'getting an even number' is the collection of outcomes {2, 4, 6}
- Null event { } or Ø
 - The empty set (no outcomes) is an event which can never occur. e.g. even and odd: Ø
 - $P(\emptyset) = 0$, as \emptyset contains no possibilities. P(7) = 0

- Intersection of events: $P(A \cap B)$
 - The event that A and B both occur. e.g. 1 die rolled: P(even **and** greater than 4)
- A:= 52.4,6)
- B: = { 5 (6)
 - €, = S67

- Union of events: $P(A \overset{\checkmark}{\cup} B)$
 - e.g. 1 die rolled: P(even or greater than 4)

- Disjoint events
 - have no outcomes in common
 - If $A \cap B = \emptyset$, the events A and B are said to be **disjoint** or mutually exclusive; i.e. they cannot occur simultaneously. 12,4,6} {1,3.5}
 - 1 die rolled: P(even and odd)=0

Probability Axioms

- The **probability** of each individual outcome is a number between 0 ("can't happen") and 1 ("certain to happen"). (1000 happen) i.e. For any event $E: 0 \leq P(E) \leq 1$
- **Total probability** of all outcomes =1 i.e. P(S)=1 where S represents the sample space
- The probability P(E) of an event E is obtained by adding probabilities of disjoint outcomes in E. i.e. $P(E_1 \text{ or } E_2 \text{ happens}) = P(E_1 \cup E_2) = P(E_1) + P(E_2)$

From these basic rules of probability (the axioms) other properties of probabilities can be derived.

In this lecture segment we have considered:

- Probability as a measure of uncertainty which is used to quantify unpredictability.
- Language and notation
- Basic probability laws or axioms

Reference: Wackerley D.D., Mendenhall W. & Scheaffer R.L. [WMS] (2008) "Mathematical Statistics with Applications", 7th ed. Duxbury, Belmont . (Library: 519.5/40).