Masud, M. M. ¹, Gao, J.², Khan, L. ¹, Han, J.², Thuraisingham, B¹ ¹University of Texas at Dallas ²University of Illinois at Urbana Champaign

PEER TO PEER BOTNET DETECTION FOR CYBERSECURITY: A DATA MINING APPROACH

May 14, 2008 Masud, Gao, Khan, Han, Thuraisingham

'

Background

Botnet

- Botnet
 - Network of compromised machines
 - Under the control of a botmaster
- Taxonomy:
 - C&C : Centralized, Distributed etc.
 - Protocol: IRC, HTTP, P2P etc.
 - Rallying mechanism: Hard-coded IP, Dynamic DNS etc.

Botnet

IRC vs P2P Botnets

IRC

- P2P
- Centralized
- Distributed
- IRC-based
- P2P-based
- Large
- Small
- Easy to detectHard to detect
- CPF IRC Server
 No CPF
- Easy to destroy
 Difficult to destroy

May 14, 2008 Masud, Gao, Khan, Han, Thuraisingham

Botnet detection Weak Points of P2P Botnets – Rallying Mechanism

- Hard coded IP
 - Trojan.Peacomm (Grizzard et al., 2007)
 - Nugache (Lemos, 2006)
 - Initial Peer list Hard Coded
 - Tries to contact initial peers after infection
 - Can be detected by analysis
- Random IP
 - Sinit (L.T.I. group, 2004)
 - No initial Peer list
 - Probes Random IP
 - Generates a lot of ICMP error

Botnet detection

Possible Detection Techniques

- System monitoring
 - Looking for symptoms (e.g. change in "hosts" file)
 - Anti-virus
 - Unusual system calls
- Our approach Network traffic monitoring
 - Open ports
 - Connection rate
 - Arp requests
 - ICMP errors

May 14, 2008 Masud, Gao, Khan, Han, Thuraisingham

5

What To Monitor?

Botnet detection

- Monitor Payload / Header?
- Problems with payload monitoring
 - Privacy
 - Unavailability
 - Encryption/Obfuscation
- Information extracted from Header (features)
 - New connection rate
 - Packet size
 - Upload/Download bandwidth
 - Arp request & ICMP echo reply rate

Mapping to Stream Data Mining

- Stream data: Stream data refers to any continuous flow of data.
 - For example: network traffic / sensor data.
- Properties of stream data: Stream data has two important properties:
 - infinite length
 - concept drift
- Stream data classification: Because of the two abovementioned properties,
 - stream data classification cannot be done with conventional classification algorithms

May 14, 2008 Masud, Gao, Khan, Han, Thuraisingham

7

Stream Data Classification

Problems with Stream Data Classification

- It is not possible to store infinite amount of historical data for training
- Due to concept drift, characteristics of data changes with time.
 - It is a major problem to choose appropriate training data.
- We propose a multi-chunk multi-level ensemble approach to solve these problems,
 - which significantly reduces error over the singlechunk single-level ensemble approaches (e.g. [1]).

The Single-Chunk Single-Level Ensemble (SCE) Approach

- Divide the data stream into equal sized chunks
 - Train a classifier from each data chunk
 - Keep the best K such classifier-ensemble
- Suppose we already have an ensemble of K concepts
 - \circ $C = \{c_1, c_2, ..., c_K\}$
- Whenever a new data chunk D_i appears,
 - Classify the instances of D_i with C using voting
 - Train a classifier c'using D_i
 - \circ C ← best K classifiers among C U {c'}

May 14, 2008 Masud, Gao, Khan, Han, Thuraisingham

9

MCE approach

Our Approach: Multi-Chunk Multi-Level Ensemble (MCE)

 Train v classifiers from r consecutive data chunks, and create an ensemble, and Keep the best K such ensembles

- Two-level ensemble hierarchy:
 - Top level (A): ensemble of K middle level ensembles Ai
 - Middle level (A_i) : ensemble of v bottom level classifiers $A_{i(i)}$

Middle-level Ensemble Construction

May 14, 2008 Masud, Gao, Khan, Han, Thuraisingham

П

MCE approach

Top Level Ensemble Updating

- Let D_n be the most recent labeled data chunk
- Let A be the top-level ensemble
- Construct a middle-level ensemble A`
 - using r consecutive data chunks: $D = \{D_{nr+1}, ..., D_n\}$
- Obtain error of A` on D by testing each classifier
 A`_(j) on its corresponding test data d_i
- Obtain error of each middle level ensemble $A_1, ..., A_k$ on the latest chunk D_n
- A ← K lowest error middle level ensembles in classifiers in A U {A`}

Two-Level Voting (MCE) vs MCE approach Single-Level Voting (MCE2)

Single- Level Voting (MCE2)

May 14, 2008 Masud, Gao, Khan, Han, Thuraisingham

13

MCE approach

Error Reduction Analysis

THEOREM 1. Let σ_C^2 be the error variance of SCE. If there is no concept drift, then the error variance of MCE is at most 1/rv times of that of SCE. i.e..

$$\sigma_A^2 \leq \frac{1}{rv} \sigma_C^2$$
 Proof:
$$\sigma_{A_i}^2 = \frac{1}{v} \sigma_{B_i}^2 \qquad \sigma_{B_i}^2 = \frac{1}{r^2} \sum_{i=1}^{r+i-1} \sigma_{C_j}^2$$

$$\sigma_A^2 = \frac{1}{K^2 v} \sum_{i=1}^K \frac{1}{r^2} \sum_{j=i}^{r+i-1} \sigma_{C_j}^2$$

$$= \frac{1}{K^2 r^2 v} \sum_{i=1}^K \sum_{j=i}^{r+i-1} \sigma_{C_j}^2$$

$$\leq \frac{1}{rv} (\frac{1}{K^2} \sum_{i=1}^K \sigma_{C_i}^2), K >= r$$

Error Reduction Analysis (continued)

THEOREM 2. Let $\hat{\sigma}_A^2$ be the error variance of MCE in the presence of concept drift, σ_C^2 be the error variance of SCE, and P_d be the drifting probability defined above. Then $\hat{\sigma}_A^2$ is bounded by:

$$\hat{\sigma}_A^2 \le \frac{(1+P_d)^{r-1}}{rv} \sigma_C^2$$

$$\begin{split} \textit{Proof:} \qquad & \hat{\sigma}_A^2 = \frac{1}{K^2} \sum_{i=1}^K \frac{1}{r^2} \sum_{j=i}^{r+i-1} \hat{\sigma}_{C_j}^2 \\ & = \frac{1}{K^2 r^2 v} \sum_{i=1}^K \sum_{j=i}^{r+i-1} (1 + P_d)^{(i+r-1)-j} \sigma_{C_j}^2 \\ & \leq \frac{1}{K^2 r^2 v} \sum_{i=1}^K (1 + P_d)^{r-1} \sum_{j=i}^{r+i-1} \sigma_{C_j}^2 \\ & = \frac{(1 + P_d)^{r-1}}{K^2 r^2 v} \sum_{i=1}^K \sum_{j=i}^{r+i-1} \sigma_{C_j}^2 \\ & \leq \frac{(1 + P_d)^{r-1}}{K^2 r v} \sum_{i=1}^K \sigma_{C_i}^2, r > 0 \\ & = \frac{(1 + P_d)^{r-1}}{r v} \sigma_C^2 \end{split}$$

May 14, 2008 Masud, Gao, Khan, Han, Thuraisingham

15

Experiments

- Synthetic data generation
 - Each data point is a d-dimensional vector $[x_1,...,x_d]$ where $x \in [0,1]$
 - Concept drift is achieved by a moving hyperplane
 - Equation of the hyperplane:

$$\sum_{i=1}^{d} a_i x_i = a_0 \quad , \quad a_0 = \frac{1}{2} \sum_{i=1}^{d} a_i$$

- Weights are changed at a certain rate
- Generated 250K data points and created 4 datasets
 - Having 250, 500, 750, and 1000 data points per chunk, respectively

MCE approach

Experiments (continued)

- Botnet data collection
 - Four virtual machines in an isolated environment.
 - Running on top of a Windows XP host operating system.
 - Each bot machine is running Nugache (a P2P bot)
 - Collected normal data from uninfected machines

- Collected 40-hour trace and created 4 datasets
 - · Having 30,60,90, and 120-minute data chunks, respectively

May 14, 2008 Masud, Gao, Khan, Han, Thuraisingham

17

MCE approach **Evaluation** - MCE2 - -∆- - Wang 18 16 Error (%) 150 20 Running time 120 14 15 12 10 500 500 750 1000 1000 **Chunk Size** Chunk Size Results on synthetic data - BestK Error (%) Error (%) 3 2 0 Chunk size (minutes) Chunk size (minutes) Κ Results on botnet data May 14, 2008 Masud, Gao, Khan, Han, Thuraisingham 18

MCE approach

Evaluation (continued)

Table 1: Error of different approaches on synthetic data using decision tree

Chunk size	M_2	W_2	B_2	M_4	W_4	B_4	M_6	W_6	B_6	M_8	W_8	B_8	All	Last	
250	19.3	26.8	26.9	17.3	26.5	22.1	16.6	26.3	20.4	16.2	26.1	19.5	29.2	26.8	
500	11.4	14.8	14.7	10.6	13.2	12.4	10.3	12.7	11.6	10.2	12.4	11.3	11.3	14.7	
750	11.1	13.9	13.9	10.6	12.1	11.9	10.3	11.5	11.4	10.3	11.3	11.2	15.8	13.8	
1000	11.4	14.3	14.3	10.7	12.8	12.2	10.5	12.2	11.7	10.3	11.9	11.4	12.6	14.1	

Table 2: Error of different approaches on synthetic data using Bayes Net

Chunk size	M_2	W_2	B_2	M_4	W_4	B_4	M_6	W_6	B_6	M_8	W_8	B_8	All	Last
250	20.3	29.3	25.4	18.7	29.0	22.8	18.2	28.9	21.9	17.9	28.8	21.7	32.1	27.1
500	12.7	14.2	14.2	12.4	13.3	13.3	12.3	13.2	13.1	12.1	13.1	12.9	12.9	14.6
750	13.1	14.4	14.4	12.9	13.6	13.5	12.9	13.3	13.3	12.9	13.2	13.3	16.7	15.1
1000	13.0	14.2	14.2	12.7	13.3	13.5	12.6	13.2	13.4	12.5	13.4	13.1	13.6	14.4

Table 3: Error of different approaches on synthetic data using Ripper

Chunk size	M_2	W_2	B_2	M_4	W_4	B_4	M_6	W_6	B_6	M_8	W_8	B_8	All	Last
250	19.2	26.5	26.0	17.6	26.2	22.4	17.1	26.0	21.3	16.8	25.9	20.9	30.4	26.3
500	11.5	14.2	13.9	10.8	13.0	12.3	10.6	12.6	11.8	10.5	12.5	11.5	11.6	14.1
750	11.0	13.4	13.3	10.6	12.1	12.0	10.5	11.7	11.6	10.5	11.5	11.5	15.7	13.3
1000	11.1	13.8	13.7	10.6	12.5	12.3	10.3	12.1	11.9	10.2	11.9	11.8	12.6	13.6

May 14, 2008 Masud, Gao, Khan, Han, Thuraisingham

19

MCE approach

Conclusion

- We have introduced a multi-chunk multi-level
 - ensemble technique for mining concept-drifting data streams
- We have proven theoretically and empirically
 - that our technique reduced error significantly compared to previous techniques .
- We applied our technique to
 - detect botnet traffic and obtained satisfactory result.
- In future, we would like to apply
 - semi-supervised clustering to label stream data
- References
 - [1] Wang, H., Fan, W., Yu, P., Han, J.: Mining concept-drifting data streams using ensemble classifiers. In *Proc.* KDD, 2003.