

Introduction

Introduction

The world added a historic 510 GW of renewable capacity in 2023, equivalent to the entire power capacity of Germany, France & Spain combined

Introduction Characteristics of VRE technologies! Uncertainty and Variability

A perfect forecast eliminates uncertainty, but variability remains

Introduction Integration costs: the additional system cost when integrating VRE

Introduction

Methodologies used to compute integration costs (literature review)

Objective

Compute the integration costs in a simple and straightforward way!

Utilize an energy system model

Why PyPSA-Eur?

Industrial sector model

Heat demands

Workflows and scripts to extract all demands, generation, potentials, costs, ...

Existing grid and power plants

Detailed gas grid model

Hourly time series

Reference scenario computes the total annualised system costs and optimised capacities of renewable technologies

Example: Solar Scenario

Generation Constraints

Modified Capacity Factor

Example: Solar Scenario

Straight forward computation of integration costs

Scenarios

Scenarios

5 Scenarios: Solar, Onshore Wind, Offshore Wind, VRE, Nuclear

Considered Nodes: BE, FR, NL, GB, DE

Optimisation: Greenfield and brownfield

Configuration:

- Carbon budget: 2030 (-55%), 2040 (-85%), 2050 (net zero)
- Current demand projections + expected efficiency improvements
- Transmission lines espansion, 50% in each planning horizon
- ► Increased EV shares upto 85% by 2050
- CCS is allowed

Results

Results Integration costs in all scenarios

Results Integration costs with penetration level in power system

Results Distribution of integration costs

Conclusions

Conclusion and Future Work

Conclusion:

- ► Integration costs computations can be made in a simple way using existing modeling tools.
- Individually, these costs can be very high for some VRE technologies like solar.
- Policy measures have a big impact on VRE integration; when combined, integration costs remain marginal even above 80% penetration.

Future Work:

- Extending the study on regional level.
- Comparison of results with other studies.
- Sensitivity analysis.

Thank You!