I. Rappels

I.1. Ensembles finis

<u>définition</u>: Deux ensembles A et B sont équipotents s'il existe une bijection de A sur B

A est un ensemble fini s'il existe $n \in \mathbb{N}^*$ tel que A soit équipotent à $\{1, ..., n\}$, n est alors unique et appelé Cardinal de A, noté Card(A) ou #A ou |A|.

Par convention $Card(\emptyset) = 0$.

Remarque: L'équipotence est une relation d'équivalence.

Exemples: 1. E ensemble de cardinal n, alors $\mathcal{P}(E)$ est de cardinal 2^n

2. E et F deux ensembles finis alors $E \times F$ est fini et $Card(E \times F) = Card(E)Card(F)$

donc le produit cartésien d'un nombre fini d'ensembles finis est fini et de cardinal le produit des cardinaux de ces ensembles finis.

3. E et F deux ensembles finis alors $E^F = \{f : E \longrightarrow F\}$ et $Card(E^F) = Card(F)^{Card(E)}$

 ${\it th\'eor\`eme}$: Tout sous-ensemble F d'un ensemble fini E est un ensemble fini,

et si $F \subset E$ avec Card(F) = Card(E) alors E = F.

théorème: E et F deux ensembles finis de même cardinal, soit $f:E\longrightarrow F$

alors f bijective $\iff f$ injective

 $\iff f$ surjective

I.2. Opérations sur les cardinaux

théorème : E ensemble fini,

- 1. $A \subset E$, \bar{A} son complémentaire noté aussi $E \setminus A$ ou C_E^A , alors $Card(\bar{A}) = Card(E) Card(A)$
- 2. $A \subset E$ $B \subset E$ alors $Card(A \cup B) = Card(A) + Card(B) Card(A \cap B)$

et $Card(A \cup B) = Card(A) + Card(B)$ si $A \cap B = \emptyset$

3. Si $A \subset B$, alors $Card(B \setminus A) = Card(B) - Card(A)$

II.3. Listes, arrangements et combinaisons

Soit E un ensemble de cardinal n:

<u>définition</u>: On appelle p-liste (ou p-uplet) de E, tout p-uplet (x_1, \dots, x_p) où $x_i \in E$

On appelle p-arrangement de E (ou arrangement de p éléments de E), toute p-liste (x_1, \dots, x_p) où $x_i \in E$ et si $i \neq j$ $x_i \neq x_j$

(L'ordre est important)

PC Lycee Pasteur 2023 2024

<u>théorème</u>: Le nombre de p-arrangements d'un ensemble de cardinal n est le nombre d'injections de E dans E et vaut

$$\begin{cases} A_n^p = n(n-1)...(n-p+1) = \frac{n!}{(n-p)!} \text{ si } p \le n \\ 0 \text{ si } p > n \end{cases}$$

<u>définition</u>: Une permutation de E de cardinal n est n-arrangement de E.

théorème: Le nombre de permutations de E est n!

<u>définition</u>: Une *p*-combinaison de *E* est une partie de *E* à *p* éléments $\{x_1,..,x_p\}$ où $x_i \in E$ (sans ordre).

 $\underline{\mathbf{th\'eor\`eme}}$: Le nombre de p-combinaisons d'un ensemble de cardinal n est

$$\binom{n}{p} = \begin{cases} \frac{n(n-1)..(n-p+1)}{p!} & \text{si } p \le n \\ 0 & \text{si } p > n \end{cases}$$

$$\begin{array}{ll} \underline{\textbf{th\'eor\`eme:}} \text{ si } p \leq n & \binom{n}{p} = \binom{n}{n-p} \\ \\ \text{si } n \geq 1 \quad 1 \leq p < n & \binom{n}{p} = \binom{n-1}{p} + \binom{n-1}{p-1} & \text{ (triangle de Pascal)} \end{array}$$

PASCAL Blaise 1623 Clermont-Ferrand - 1662 Paris : Philosophe de renom, auteur des "Pensées", mathématicien et physicien. Sa mère meurt alors qu'il n'a que 3 ans, il est élevé par son père Étienne Pascal, comptable et mathématicien reconnu. À 12 ans, Blaise démontre des théorèmes classiques de géométrie euclidienne, à 16 ans, il écrit, en latin, un "Essay pour les coniques". À 19 ans, Pascal met au point une machine à calculer (limitée aux additions et soustractions) que l'on peut admirer à Clermont-Ferrand, et qu'il présenta à la reine Christine de Suède par ces mots : "Cet ouvrage, Madame, est une machine pour faire les règles d'arithmétique sans plume et sans jetons". Sa principale contribution en physique porte sur l'hydrostatique et l'étude de la pression atmosphérique. À la mort de son père, il se retire quelques temps du monde scientifique et entre au couvent de Port-Royal, tout en poursuivant son oeuvre scientifique et philosophico-religieuse.

Propriété: si
$$1 \le p \le n$$
 $p\binom{n}{p} = n\binom{n-1}{p-1}$

Formule du binôme : $(a,b) \in E^2$ avec ab = ba

alors
$$\forall n \in \mathbb{N}^* \quad (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

II. Ensembles dénombrables

définition: Un ensemble est dénombrable s'il est équipotent à N(ou s'il est en bijection avec N)

donc il existe
$$\varphi: E \longrightarrow \mathbb{N}$$
 bijective $n \longmapsto x_n$

d'où $E = \{x_n, n \in \mathbb{N}\}$

définition : Un ensemble est au plus dénombrable s'il est fini ou dénombrable.

théorème : Un sous-ensemble A de $\mathbb N$ est au plus dénombrable.

Corollaire : Tout sous-ensemble d'un ensemble dénombrable est au plus dénombrable.

Corollaire : E est au plus dénombrable s'il existe une injection entre E et \mathbb{N} .

théorème : Z est dénombrable

théorème: \mathbb{N}^2 est dénombrable

théorème : Si E et F sont deux ensembles dénombrables, alors $E \times F$ est dénombrable

<u>Corollaire</u>: Si E_1, \dots, E_p sont p ensembles dénombrables, alors $E_1 \times E_2 \times \dots \times E_p$ est dénombrable

théorème : Une union au plus dénombrable d'ensembles dénombrables est dénombrable.

III. Notions sur les familles sommables

<u>définition</u>: I au plus dénombrable, $\forall i \in I$ $x_i \in \mathbb{R}_+$, la famille $(x_i)_{i \in I}$ est sommable si $S = \{\sum_{i \in J} x_i; J \subset I, J \text{ fini } \}$ est majoré.

Dans ce cas $\sum_{i \in I} x_i = \sup \mathcal{S}$.

Si la famille $(x_i)_{i\in I}$ n'est pas sommable, on convient de noter $\sum_{i\in I} x_i = +\infty$.

Remarque : le programme autorise cette notation, à manier avec précaution.

On peut aussi écrire $\sum_{i \in I} x_i \in \mathbb{R}_+ \cup \{+\infty\}.$

<u>définition</u>: I au plus dénombrable, $\forall i \in I$ $x_i \in \mathbb{C}$, la famille $(x_i)_{i \in I}$ est sommable si la famille $(|x_i|)_{i \in I}$ l'est.

Remarque : Pour $I=\mathbb{N}$, la sommabilité d'une famille correspond à la convergence absolue de la série associée.

Remarque: si $\forall i \in I \quad x_i \geq 0, (x_i)_{i \in I}$ est non sommable alors $\sum_{i \in I} x_i = +\infty$

mais si si
 $\forall~i\in I~~x_i\in\mathbb{C},\,(x_i)_{i\in I}$ est non sommable , on ne sait rien de $\sum_{i\in I}x_i$

Propriétés admises :

- **1. Croissance :** I au plus dénombrable, $\forall i \in I \quad (x_i, y_i) \in \mathbb{R}^2_+ \quad \text{avec } \forall i \in I \quad x_i \leq y_i$ et la famille $(y_i)_{i \in I}$ est sommable, alors $(x_i)_{i \in I}$ est sommable et $\sum_{i \in I} x_i \leq \sum_{i \in I} y_i$
- **2. Linéarité :** I au plus dénombrable, $\forall i \in I \quad (x_i, y_i) \in \mathbb{C}^2$ avec les familles $(x_i)_{i \in I}$ et $(y_i)_{i \in I}$ sommables, alors $\forall \lambda \in \mathbb{C}$ la famille $(\lambda x_i + y_i)_{i \in I}$ est sommable et $\sum_{i \in I} (\lambda x_i + y_i) = \lambda \sum_{i \in I} x_i + \sum_{i \in I} y_i$
- 3. Sommation par paquets : I au plus dénombrable, J au plus dénombrable tel que $(I_n)_{n\in J}$ soit une partition de I,

 $\forall i \in I \quad x_i \in \mathbb{C}$, avec la famille $(x_i)_{i \in I}$ est sommable, alors $\forall n \in J$ la famille $(x_i)_{i \in I_n}$ est sommable

$$\sum \left(\sum_{i \in I_n} x_i\right) \text{ converge et } \sum_{n \in J} \left(\sum_{i \in I_n} x_i\right) = \sum_{i \in I} x_i$$

<u>4. Théorème de Fubini</u>: Soit I et J au plus dénombrables et $(u_{p,q})_{(p,q)\in I\times J}$ une famille sommable de complexes, alors

$$\forall \ p \in I \quad \sum_{q \in J} u_{p,q} \text{ converge et si on note } U_p = \sum_{q \in J} u_{p,q} \text{ alors } \sum U_p \text{ converge}$$

$$\forall \ q \in J \quad \sum_{p \in I} u_{p,q} \text{ converge ct si on note } V_q = \sum_{p \in I} u_{p,q} \text{ alors } \sum V_q \text{ converge}$$

et
$$\sum_{(p,q)\in I\times J} u_{p,q} = \sum_{p\in I} \left(\sum_{q\in J} u_{p,q}\right) = \sum_{q\in J} \left(\sum_{p\in I} u_{p,q}\right)$$

FUBINI Ghirin Guido 1879 Venise - 1943 New-York: Fils d'un professeur de mathématiques à Venise, Guido Fubini étudie les mathématiques à l'École normale supérieure de Pise où Dini et Bianchi ont dirigé sa thèse "Clifford's parallelism in Elliptic Spaces". Il enseigne à l'université de Pise, puis à Catane et Turin. En 1939, Fubini fuit l'Italie fasciste de Mussolini et s'établit aux Etats-Unis où il est professeur à Princeton, puis à l'université de New-York. Ses travaux portent essentiellement sur la théorie de la mesure et le calcul intégral au sens de Lebesgue.

5. Produit de deux sommes : Si $\forall n \in \mathbb{N} \quad (u_n, v_n) \in \mathbb{C}^2$, et les séries de termes généraux u_n et v_n convergent absolument, alors la famille $(u_p v_q)_{(p,q) \in \mathbb{N}^2}$ est sommable et

$$\sum_{(p,q)\in\mathbb{N}^2} u_p v_q = \left(\sum_{n\in\mathbb{N}} u_n\right) \left(\sum_{n\in\mathbb{N}} v_n\right)$$