STAT 215A Fall 2020 Week 12

James Duncan, OH: M, Th 2-4pm

Thanks to Tiffany Tang and past GSIs for sharing their slides

Announcements

- Lab 4 due in less than one week on November 19 at 11:59pm
 - Everyone in the group submits the **same** lab4 report / files but each person needs to push the files to their individual private repos
 - You may save results, but make sure it's clear what code generated them
- Next Friday's plan:
 - Guest talk: Tiffany Tang will introduce the Yu Group's COVID-19 data curation efforts and discuss the data itself
 - This is going to be super helpful for the **final lab** which I will introduce after Tiffany's talk

Outline for today

- More classification algorithms
 - SVM
 - Random forest
- Evaluation of classification performance

Support vector machines

- Intuition: https://blog.statsbot.co/support-vector-machines-tutorial-c1618e635e93
- More in-depth discussion of the math:
 - https://towardsdatascience.com/understanding-support-vector-machine-part
 -1-lagrange-multipliers-5c24a52ffc5e
 - https://towardsdatascience.com/understanding-support-vector-machine-part
 -2-kernel-trick-mercers-theorem-e1e6848c6c4d
- Elements of Statistical Learning
 - Section 4.5 and Chapter 12
- We'll focus on intuition

Which is better?

An idea: maximize space between two hyperplanes that separate the classes "Maximum margin" classifier

What about when the two classes are overlapping?

Another idea: Allow for some "slack"

What if there is no good separating hyperplane?

Idea: Find a higher-dimensional representation of the data where it becomes linearly separable

$$X_1 = x_1^2$$

$$X_2 = x_2^2$$

$$X_3 = \sqrt{2}x_1x_2$$

Another example of a higher dimensional representation that is linearly separable

Data in R^3 (separable)

So how do we perform this "lifting" to higher dimensions trick in a computationally feasible way? The answer: the **kernel trick**.

 Can show that by maximizing the margins while allows for slack, SVM solves the following maximization problem:

Inner product between two of the data points
$$L_D = \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i=1}^N \sum_{k=1}^N \alpha_i \alpha_k y_i y_k x_i^T x_k$$
 subject to $\alpha_i \geq 0$ and $\sum_{i=1}^N \alpha_i y_i = 0$

Why not replace the usual inner product $x_i^{ op} x_k$ with

$$\varphi(x_i)^{\top}\varphi(x_k)$$

where φ is some map from \mathbb{R}^p to a higher-dimensional space (possible even infinite dimensional).

- ullet The trick: don't need to know what arphi actually is.
 - Good news: we don't have to compute an infinite dimensional map.
- Instead, we find the kernel function:

$$K(x_i, x_k) = \varphi(x_i)^{\top} \varphi(x_k)$$

Some common kernel functions:

- Linear kernel: $K(x_i, x_k) = x_i^{\top} x_k$
- Naive polynomial kernel: $K(x_i,x_k)=(x_i^{ op}x_k)^d$
- Polynomial kernel: $K(x_i, x_k) = (1 + x_i^{\top} x_k)^d$
- Gaussian kernel: $K(x_i,x_k) = \exp\left\{-\frac{1}{2}\|x_i-x_k\|_2^2\right\}$
- Radial basis kernel: $K(x_i, x_k) = \exp\left\{-\gamma \|x_i x_k\|_2^2\right\}$
- Sigmoid kernel: $K(x_i, x_k) = \tanh(\eta x_i^{\top} x_j + \nu)$

An example: polynomial kernels for 2-dimensional data

$$k(\mathbf{x}, \mathbf{y}) = (1 + \mathbf{x}^T \mathbf{y})^2 = (1 + x_1 y_1 + x_2 y_2)^2 =$$

$$= 1 + x_1^2 y_1^2 + x_2^2 y_2^2 + 2x_1 y_1 + 2x_2 y_2 + 2x_1 x_2 y_1 y_2$$

This is an inner product between two 6-dimensional vectors:

$$\varphi(x) = \varphi(x_1, x_2) = (1, x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2)$$

$$\varphi(y) = \varphi(y_1, y_2) = (1, y_1^2, y_2^2, \sqrt{2}y_1, \sqrt{2}y_2, \sqrt{2}y_1y_2)$$

$$\Rightarrow K(x, y) = \varphi(x)^T \varphi(y)$$

What happens if we use the naive polynomial kernel? $K(x,y) = (x^Ty)^2$

Another example: write the Gaussian kernel as an inner product.

$$K(x,z) = e^{-\frac{1}{2\sigma^2}(x-z)^2} = e^{-\frac{x^2+z^2}{2\sigma^2}} e^{\frac{xz}{\sigma^2}}$$

$$= e^{-\frac{x^2+z^2}{2\sigma^2}} \left(\sum_{n=0}^{\infty} \frac{(xz)^n}{\sigma^{2n} n!} \right)$$

$$= e^{-\frac{x^2+z^2}{2\sigma^2}} \left(\sum_{n=0}^{\infty} \sqrt{\frac{1}{\sigma^{2n} n!}} x^n \cdot \sqrt{\frac{1}{\sigma^{2n} n!}} z^n \right)$$

$$= e^{-\frac{x^2}{2\sigma^2}} e^{-\frac{z^2}{2\sigma^2}} \left[1 \cdot 1 + \sqrt{\frac{1}{\sigma^2 1!}} x \cdot \sqrt{\frac{1}{\sigma^2 1!}} z + \sqrt{\frac{1}{\sigma^4 2!}} x^2 \cdot \sqrt{\frac{1}{\sigma^4 2!}} z^2 + \dots \right]$$

$$= \phi(x)^{\top} \phi(z)$$

Another example: write the Gaussian kernel as an inner product.

$$K(x,z) = e^{-\frac{1}{2\sigma^2}(x-z)^2} = e^{-\frac{x^2+z^2}{2\sigma^2}} e^{\frac{xz}{\sigma^2}}$$

$$= e^{-\frac{x^2+z^2}{2\sigma^2}} \left(\sum_{n=0}^{\infty} \frac{(xz)^n}{\sigma^{2n} n!} \right)$$

$$= e^{-\frac{x^2+z^2}{2\sigma^2}} \left(\sum_{n=0}^{\infty} \sqrt{\frac{1}{\sigma^{2n} n!}} x^n \cdot \sqrt{\frac{1}{\sigma^{2n} n!}} z^n \right)$$

$$= e^{-\frac{x^2}{2\sigma^2}} e^{-\frac{z^2}{2\sigma^2}} \left[1 \cdot 1 + \sqrt{\frac{1}{\sigma^2 1!}} x \cdot \sqrt{\frac{1}{\sigma^2 1!}} z + \sqrt{\frac{1}{\sigma^4 2!}} x^2 \cdot \sqrt{\frac{1}{\sigma^4 2!}} z^2 + \dots \right]$$

$$= \phi(x)^{\top} \phi(z)$$

Takeaway: by replacing the usual inner product with the Gaussian kernel it's as if we're projecting the data into an infinite dimensional space and finding a separating hyperplane there.

Recap of SVMs + kernel trick

- Idea: find a separating hyperplane that maximizes margins (with some slack) between classes
- This becomes an optimization problem:

$$L_D = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{k=1}^{N} \alpha_i \alpha_k y_i y_k K(x_i, x_k)$$
subject to $\alpha_i \ge 0$ and $\sum_{i=1}^{N} \alpha_i y_i = 0$

 The maximum depends on the data only through the inner product, so we can use the kernel trick to "lift" the data into a higher-dimensional space which hopefully helps us to find a separating hyperplane

SVM in practice

- Kernel trick allows for extreme flexibility
- However, with this greater flexibility comes a greater danger of overfitting,
 especially if p is large
- Lots of other methods based upon this kernel trick:
 - Kernel PCA
 - Kernel ridge regression
 - Spectral clustering
 - o etc.

Trees and random forests

Idea: recursively partition the data space via binary splits and fit a simple model for each result region

- At each split in the tree, how to choose what variable (j) to split on and what threshold (t)?
- For now, assume we have a regression problem: at each split, we want to optimize L^2 loss

$$\min_{j,t} \left\{ \min_{\mu_L} \sum_{i:x_{ij} \le t} (y_i - \mu_L)^2 + \min_{\mu_R} \sum_{i:x_{ij} > t} (y_i - \mu_R)^2 \right\}$$

 Can find global minimum for each split via a brute force search, but not necessarily for the entire tree

Brute force search algorithm:

- For each feature j:
 - Sort X: $x_{1j} \leq \ldots \leq x_{nj} \Rightarrow O(n \log n)$
 - Scan from left to right and threshold t_j that minimizes L^2 loss => O(n)
- Out of the p possible splits, take the best t_{j}

Total complexity: $O(pn \log n + pnK)$ where K is the number of splits

• For classification, can replace L^2 loss with classification error, Gini index, etc.

Advantages:

- Can deal with continuous, categorical, binary, count features all at the same time
- Doesn't depend on scale of X
- Easily interpretable, fairly flexible, and fast

Disadvantages:

- Potentially too simple
- Not a great balance between bias-variance tradeoff
 - As depth of tree increases, overfits to the training data, resulting in high variance and no bias
 - If tree is too shallow, underfits and we have the opposite problem

Random forest

Idea: try to reduce both the bias and variance using decision trees

- To reduce the bias, grow deep trees (i.e., grow trees to purity so that in each of the leaf nodes, we have 1-3 observations left)
- To reduce the variance:
 - Grow many trees (e.g., 500 trees) using bootstrap samples of the data and average over this "forest".
 - \circ Try to force these trees to be close to i.i.d.: at each split, select $m_{\rm try}$ out of p variables randomly to search and potentially split on.

Random forest algorithm

Inputs: number of trees to grow (B), number of variables to randomly select a each split ($m_{\rm trv}$), number of leaf/terminal nodes (M)

For each tree, b = 1, ..., B:

- Bootstrap data: X*b
- Grow decision (CART) tree T^b such that:
 - \circ At each split in the tree, randomly choose $m_{\rm try}$ out of p variables to try and potentially split on
 - Grow until tree has M leaf / terminal nodes
- Make prediction: $\hat{y}(x) = \frac{1}{B} \sum_{b=1}^{B} T^b(x)$

Random Forest in Practice

- Because we are bootstrapping the data before constructing each tree, we essentially have a "test set" for each tree that we can exploit
 - We call this left out data due to bootstrapping the out-of-bag (OOB)
 data, from which we can compute the OOB error
 - \circ $\,$ OOB error can be used like CV error to tune parameters like $m_{\rm try}$
- Can obtain marginal feature importances from RF

Random Forest in Practice

Advantages:

- Doesn't depend on scale of X
- Great prediction for lots of problems
- Reduces bias and variance simultaneously unlike CART

Disadvantages:

- May not be optimal with correlated features or p >> n
- No longer easily interpretable

In R: randomForest and ranger

ranger is much faster

Evaluation metrics for classification

How to evaluate your classification methods?

- Going beyond classification error
- What if we have class imbalance?
 - For example, if we take a sample of 100 people and only 10 have the disease, then always predicting healthy gives 90% classification accuracy!
 - We can do better.

Confusion matrix

Fig. 1. Confusion matrix and common performance metrics calculated from it.

Confusion matrix

Fig. 1. Confusion matrix and common performance metrics calculated from it.

Confusion matrix

Fig. 1. Confusion matrix and common performance metrics calculated from it.

Receiver operating characteristics (ROC) curve

We can generate an ROC curve when the output of a classifier is a probability and we must choose a threshold for the final predicted class

Inst#	Class	Score	Inst#	Class	Score
1	p	.9	11	p	.4
2	p	.8	12	n	.39
3	n	.7	13	p	.38
4	p	.6	14	n	.37
5	p	.55	15	n	.36
6	p	.54	16	n	.35
7	n	.53	17	p	.34
8	n	.52	18	n	.33
9	p	.51	19	p	.30
10	n	.505	20	n	.1

Receiver operating characteristics (ROC) curve

We can generate an ROC curve when the output of a classifier is a probability and we must choose a threshold for the final predicted class

Inst#	Class	Score	Inst#	Class	Score
1	p	.9	11	p	.4
2	p	.8	12	n	.39
3	n	.7	13	p	.38
4	p	.6	14	n	.37
5	p	.55	15	n	.36
6	P	.54	16	n	.35
7	n	.53	17	p	.34
8	n	.52	18	n	.33
9	p	.51	19	p	.30
10	n	.505	20	n	.1

Area under the curve

The area under the curve (AUC) is a method for comparing algorithms and evaluating classifiers.

The AUC has an important statistical property:

The AUC of a classifier is equivalent to the probability that the classifier will rank a randomly chosen positive instance higher than a randomly chosen negative instance

Area under the curve

Care should be taken when using ROC curves to compare classifiers

- The ROC graph is often used to select the best classifiers simply by graphing them in ROC space and seeing which one dominates.
- ☐ This is misleading: it is analogous to taking the maximum of a set of accuracy figures from a single test set.
- ☐ Without a measure of **variance** we cannot compare classifiers

It is a good idea to the average of multiple ROC curves (e.g. via cross validation)

See Fawcett (2005) for examples on how to average

ROC vs Precision-Recall (PR) Curves

Fig. 5. ROC and precision-recall curves under class skew. (a) ROC curves, 1:1; (b) precision-recall curves, 1:1; (c) ROC curves, 1:10 and (d) precision-recall curves, 1:10.

ROC vs PR curves

- Generally, precision-recall curves are preferred when there is class imbalance
- ROC curves tend to paint an overly optimistic view of the model on datasets with class imbalance
- PR calculations do not involve the true negatives rate and hence do not typically present such an optimistic view

