Dynamic Programming

Dot Product

$$A_1 \times A_2 \times A_3 \times A_4 \times A_5$$
4x10 10x3 3x12 12x20 20x7

4x10x3 + 4x3x12 + 4x12x20 + 4x20x7 = 1784 Multiplication Operations

Very Large Computational Times!!

Goal: Find the optimal way to multiply these matrices to perform the fewest multiplications.

Naïve Approach: Try them all, and pick the most optimal one.

Running time: $\Omega(4^n/n^{3/2})$ - 4^n dominates! Exponential

There is a better way! Dynamic Programming!

Step 1: Check if the problem has Optimal Substructure

If we have an optimal solution for A_{i...j}

Assume the solution has the following parentheses:

$$(A_{i...k})(A_{k+1...j})$$

If there is a better way to multiply $(A_{i...k})$, then we would have a more optimal solution. This would be a contradiction, as we already stated that we have the optimal solution for $A_{i...j}$. Therefore this problem has optimal substructure.

A matrix series $A_{i...j}$ can be broken up into a more efficient solution:

$$(A_{i...k})(A_{k+1...j})$$

We want to find out at which 'k' returns the fewest number of multiplications

We need to define our recursive formula: M[i,j] is the cost of multiplying matrices from A_i to A_i

Now we want to try out a bunch of values for 'k' in order to see what the best one is:

$$M[i,j] = M[i,k] + M[k+1,j] + p_{i-1}p_kp_j$$

100 200 2x3x4

Since we don't know what k is, we try this range of k:

The minimum returned value is our solution!

$$i \le k < j$$

Our Final Recursive Formula:

$$M[i,j] = \begin{cases} 0 & \text{if } i=j \\ \min_{i \le k < j} \{M[i,j] = M[i,k] + M[k+1,j] + p_{i-1}p_kp_j\} \end{cases}$$

$M[i,j] = \begin{cases} 0 & \text{if } i=j \\ \min_{i \le k < j} \{M[i,j] = M[i,k] + M[k+1,j] + p_{i-1}p_kp_j\} \end{cases}$

Matrix Chain Multiplication

We want to start with i = j, then i<j starting with a spread of 1, working our way up

i\j	1	2	3	4	5
1					
2	x				
3	х	х			
4	x	x	X		
5	х	х	х	x	

Matrix Chain Multiplication

We want to start with i = j, then i<j starting with a spread of 1, working our way up

i\j	1	2	3	4	5
1	0				
2	х	0			
3	х	х	0		
4	х	x	х	0	
5	х	х	х	х	0

Step 1: Fill the table for i = j

We want to start with i = j, then i<j starting with a spread of 1, working our way up

i\j	1	2	3	4	5
1	0				
2	x	0			
3	х	х	0		
4	х	x	х	0	
5	х	х	х	х	0

Step 2: Fill the table for:

$$i=1, j=2$$

$$i=2, j=3$$

$$i=3, j=4$$

$$i=4, j=5$$

 $M[i,j] = \begin{cases} 0 & \text{if } i=j \\ \min_{i \le k < j} \{M[i,j] = M[i,k] + M[k+1,j] + p_{i-1}p_kp_j\} \end{cases}$

We want to start with i = j, then i<j starting with a spread of 1, working our way up

 $A_1 \times A_2 \times A_3 \times A_4 \times A_5$ $4x10 \ 10x3 \ 3x12 \ 12x20 \ 20x7$ $p_0 \ p_1 \ p_1 \ p_2 \ p_2 \ p_3 \ p_3 \ p_4 \ p_4 \ p_5$

$$M[1,2] = \min_{1 \le k < 2} \{M[1,1] + M[1+1,2] + p_0 p_1 p_2\}$$

$$M[1,2] = \min_{1 \le k < 2} \{0 + 0 + 4x10x3\}$$

We want to start with i = j, then i<j starting with a spread of 1, working our way up

$$M[i,j] = \begin{cases} 0 & \text{if } i=j \\ \min_{i \le k < j} \{M[i,j] = M[i,k] + M[k+1,j] + p_{i-1}p_kp_j\} \end{cases}$$

$$A_1 A_2 A_3 A_4 A_5$$

$$A_1 A_2 A_5$$

$$A_1 A$$

$$M[1,2] = \min_{1 \le k < 2} \{M[1,1] + M[1+1,2] + p_0 p_1 p_2\}$$

$$M[1,2] = \min_{1 \le k < 2} \{0 + 0 + 4x10x3\}$$

$$M[1,2] = 120$$

$$M[2,3] = \min_{2 \le k < 3} \{M[2,2] + M[2+1,3] + p_1p_2p_3\}$$

 $M[2,3] = \min_{2 \le k < 3} \{0 + 0 + 10x3x12\}$
 $M[2,3] = 360$

$$M[i,j] =$$

We want to start with i = j, then i<j starting with a spread of 1, working our way up

i\j	1	2	3	4	5
1	0	120			
2	x	0	360		
3	х	х	0	720	
4	x	x	x	0	1680
5	x	х	x	х	0

```
M[i,j] = \begin{cases} 0 & \text{if } i=j \\ \min_{i < k < j} \{M[i,j] = M[i,k] + M[k+1,j] + p_{i-1}p_kp_j\} \end{cases}
                                       A_1 \otimes A_2 \otimes A_3 \otimes A_4 \otimes A_5
                                       4x10 10x3 3x12 12x20 20x7
                                        p_0 p_1 p_1 p_2 p_2 p_3 p_3 p_4 p_4 p_5
                       M[1,2] = \min_{1 < k < 2} \{M[1,1] + M[1+1,2] + p_0p_1p_2\}
                       M[1,2] = \min_{1 \le k \le 2} \{0 + 0 + 4x10x3\}
                       M[1,2] = 120
                        M[2,3] = \min_{2 < k < 3} \{M[2,2] + M[2+1,3] + p_1p_2p_3\}
                         M[2,3] = \min_{2 < k < 3} \{0 + 0 + 10x3x12\}
                         M[2,3] = 360
                         M[3,4] = \min_{3 \le k \le 4} \{M[3,3] + M[3+1,4] + p_2p_3p_4\}
                         M[3,4] = \min_{3 < k < 4} \{0 + 0 + 3x12x20\}
                         M[2,3] = 720
                         M[4,5] = \min_{4 < k < 5} \{M[4,4] + M[4+1,5] + p_3p_4p_5\}
                         M[4,5] = \min_{4 < k < 5} \{0 + 0 + 12x20x7\}
                         M[1,2] = 1680
```

We want to start with i = j, then i<j starting with a spread of 1, working our way up

i\j	1	2	3	4	5
1	0	120	264		
2	х	0	360		
3	х	х	0	720	
4	х	x	X	0	1680
5	х	х	х	х	0

$$M[i,j] = \begin{cases} 0 & \text{if } i=j \\ \min_{i \le k < j} \{M[i,j] = M[i,k] + M[k+1,j] + p_{i-1}p_kp_j\} \\ A_1 \bowtie A_2 \bowtie A_3 \bowtie A_4 \bowtie A_5 \end{cases}$$

4x10 10x3 3x12 12x20 20x7 p₀ p₁ p₁ p₂ p₂ p₃ p₃ p₄ p₄ p₅

$$M[1,3] = min_{1 \le k < 3}$$

 $k=1$
 $= M[1,1] + M[1+1,3] + p_0p_1p_3$
 $= 0 + 360 + 4x10x12$
 $= 840$
 $k=2$
 $= M[1,2] + M[2+1,3] + p_0p_2p_3$
 $= 120 + 0 + 4x3x12$
 $= 264$

$$M[i,j] = \begin{cases} 0 & \text{if } i=j \\ \min_{i \le k < j} \{M[i,j] = M[i,k] + M[k+1,j] + p_{i-1}p_kp_j\} \end{cases}$$

We want to start with i = j, then i<j starting with a spread of 1, working our way up

i\ j	1	2	3	4	5
1	0	120	264		
2	x	0	360	1320	
3	х	х	0	720	
4	x	x	x	0	1680
5	х	х	х	х	0

$$A_1 A_2 A_3 A_4 A_5$$
 $4x10 10x3 3x12 12x20 20x7$
 $p_0 p_1 p_1 p_2 p_2 p_3 p_3 p_4 p_4 p_5$

$$M[2,4] = \min_{2 \le k < 4}$$

$$k=2$$

$$= M[2,2] + M[2+1,4] + p_1p_2p_4$$

$$= 0 + 720 + 10x3x20$$

$$= 1320$$

$$k=3$$

$$= M[2,3] + M[3+1,4] + p_1p_3p_4$$

$$= 360 + 0 + 10x12x20$$

$$= 2760$$

We want to start with i = j, then i<j starting with a spread of 1, working our way up

i\j	1	2	3	4	5
1	0	120	264		
2	х	0	360	1320	
3	х	х	0	720	1140
4	х	x	x	0	1680
5	х	х	х	х	0

$$M[i,j] = \begin{cases} 0 & \text{if } i=j \\ \min_{i \le k < j} \{M[i,j] = M[i,k] + M[k+1,j] + p_{i-1}p_kp_j\} \end{cases}$$

$$A_1 A_2 A_3 A_4 A_5$$
 $4x10 10x3 3x12 12x20 20x7$
 $p_0 p_1 p_1 p_2 p_2 p_3 p_3 p_4 p_4 p_5$

$$M[3,5] = \min_{3 \le k < 5}$$

$$k=3$$

$$= M[3,3] + M[3+1,5] + p_2p_3p_5$$

$$= 0 + 1680 + 3x12x7$$

$$= 1932$$

$$k=4$$

$$= M[3,4] + M[4+1,5] + p_2p_4p_5$$

$$= 720 + 0 + 3x20x7$$

= 1140 <--

$$M[i,j] = \begin{cases} 0 & \text{if } i=j \\ \min_{i \le k < j} \{M[i,j] = M[i,k] + M[k+1,j] + p_{i-1}p_kp_j\} \end{cases}$$

We want to start with i = j, then i<j starting with a spread of 1, working our way up

i\j	1	2	3	4	5
1	0	120	264	1080	
2	x	0	360	1320	
3	х	х	0	720	1140
4	x	X	x	0	1680
5	x	х	х	х	0

$$A_1 A_2 A_3 A_4 A_5$$
 $4 \times 10 \quad 10 \times 3 \quad 3 \times 12 \quad 12 \times 20 \quad 20 \times 7$
 $p_0 \quad p_1 \quad p_1 \quad p_2 \quad p_2 \quad p_3 \quad p_3 \quad p_4 \quad p_4 \quad p_5$

$$M[1,4] = \min_{1 \le k < 4}$$

$$k=1$$

$$= M[1,1] + M[1+1,4] + p_0p_1p_4$$

$$= 0 + 1320 + 4x10x20$$

$$= 2120$$

$$k=2$$

$$= M[1,2] + M[2+1,4] + p_0p_2p_4$$

$$= 120 + 720 + 4x3x20$$

$$= 1080$$

$$k=3$$

$$= M[1,3] + M[3+1,4] + p_0p_3p_4$$

$$= 264 + 0 + 4x12x20$$

$$= 1224$$

$$M[i,j] = \begin{cases} 0 & \text{if } i=j \\ \min_{i \le k < j} \{M[i,j] = M[i,k] + M[k+1,j] + p_{i-1}p_kp_j\} \end{cases}$$

$$A_1 > A_2 > A_3 > A_4 > A_5$$
 $4 \times 10 \quad 10 \times 3 \quad 3 \times 12 \quad 12 \times 20 \quad 20 \times 7$

p₀ p₁ p₁ p₂ p₂ p₃ p₃ p₄ p₄ p₅

We want to start with i = j, then i<j starting with a spread of 1, working our way up

i\ j	1	2	3	4	5
1	0	120	264	1080	
2	x	0	360	1320	1350
3	х	х	0	720	1140
4	x	x	х	0	1680
5	x	х	х	х	0

$$M[2,5] = min_{2 \le k < 5}$$

 $k=2$
 $= M[2,2] + M[2+1,5] + p_1p_2p_5$
 $= 0 + 1140 + 10x3x7$
 $= 1350$
 $k=3$
 $= M[2,3] + M[3+1,5] + p_1p_3p_5$
 $= 360 + 1680 + 10x12x7$
 $= 2880$
 $k=4$
 $= M[2,4] + M[4+1,5] + p_1p_4p_5$
 $= 1320 + 0 + 10x20x7$
 $= 2720$

We want to start with i = j, then i<j starting with a spread of 1, working our way up

i\j	1	2	3	4	5
1	0	120	264	1080	1344
2	X	0	360	1320	1350
3	х	х	0	720	1140
4	x	x	x	0	1680
5	х	х	x	х	0

$$M[i,j] = \begin{cases} 0 & \text{if } i=j \\ \min_{i \le k < j} \{M[i,j] = M[i,k] + M[k+1,j] + p_{i-1}p_kp_j\} \end{cases}$$

 $A_1 A_2 A_3 A_4 A_5$ 4x10 10x3 3x12 12x20 20x7 $p_0 p_1 p_1 p_2 p_2 p_3 p_3 p_4 p_4 p_5$

$$M[1,5] = \min_{1 \le k < 5} k=4$$

$$= M[1,1] + M[1+1,5] + p_0p_1p_5 = 1080 + 0 + 4x20x7$$

$$= 0 + 1350 + 4x10x7 = 1630$$

$$k=2$$

$$= M[1,2] + M[2+1,5] + p_0p_2p_5$$

$$= 120 + 1140 + 4x3x7$$

$$= 1344$$

$$k=3$$

 $= M[1,3] + M[3+1,5] + p_0p_3p_5$

= 264 + 1680 + 4x12x7

= 2280

$$M[i,j] = \begin{cases} 0 & \text{if } i=j \\ \min_{i \le k < j} \{M[i,j] = M[i,k] + M[k+1,j] + p_{i-1}p_kp_j\} \end{cases}$$

$$A_1 A_2 A_3 A_4 A_5$$

$$4 \times 10 \quad 10 \times 3 \quad 3 \times 12 \quad 12 \times 20 \quad 20 \times 7$$

$$A_1 A_2 A_3 A_4 A_5$$

$$A_1 A_2 A_3 A_4 A_5$$

$$A_1 A_2 A_5 A_4 A_5$$

$$A_1 A_2 A_5 A_5$$

$$A_1 A_2 A_5 A_6$$

$$A_1 A_2 A_6$$

$$A_1 A_1 A_6$$

$$A_1 A_2 A_6$$

$$A_1 A_2 A_6$$

$$A_1 A_1 A_6$$

$$A_1 A_1 A_6$$

$$A_1 A_1 A_6$$

$$A_1 A_2 A_6$$

$$A_1 A_1 A_1 A_1 A_6$$

$$A_1 A_1 A_1 A_1 A_1$$

$$A_1 A_1 A_1 A_1 A_1$$

$$A_1 A_1 A_1 A_1 A_1$$

$$A_1 A_1 A_1$$

$$A_1 A_1 A_1 A_1$$

$$A_1 A_2 A_1$$

$$A_1 A_1 A_1$$

$$A_1 A_1 A_1$$

$$A_1 A_2 A_1$$

$$A_1 A_1 A_2$$

$$A_1 A_2 A_1$$

$$A_1 A_2 A_1$$

$$A_1 A_1 A_2$$

$$A_1 A_2 A_1$$

$$A_1 A_1 A_2$$

$$A_1 A_2 A_1$$

$$A_1 A_1 A_2$$

$$A_1 A_2 A_1$$

$$A_1 A_2 A_1$$

$$A_1 A_1 A_2$$

$$A_1 A_2 A_2$$

$$A_1 A_2 A_1$$

$$A_1 A_2 A_2$$

$$A_1 A_2 A_1$$

$$A_1 A_1 A_2$$

$$A_1 A_2 A_1$$

$$A_1 A_2 A_1$$

$$A_1 A_1 A_2$$

$$A_1 A_2 A_1$$

$$A_1 A_1 A_2$$

$$A_1 A_2 A_1$$

$$A_1 A_1 A_2$$

$$A_1 A_2 A_1$$

$$A_1 A_2 A_2$$

$$A$$

We now know that we can multiply A_1 to A_5 in as few as 1344 multiplication operations!

But where do we put our brackets?

We must focus on the selected k values

$$M[i,j] = \begin{cases} 0 & \text{if } i=j \\ \min_{i \le k < j} \{M[i,j] = M[i,k] + M[k+1,j] + p_{i-1}p_kp_j\} \end{cases}$$

$$A_1 A_2 A_3 A_4 A_5$$
 $4x10 10x3 3x12 12x20 20x7$
 $p_0 p_1 p_1 p_2 p_2 p_3 p_3 p_4 p_4 p_5$

$$k=2$$

M[1,5] = M[1,2] + M[3,5] + $p_0p_2p_5$

$$M[i,j] = \begin{cases} 0 & \text{if } i=j \\ \min_{i \le k < j} \{M[i,j] = M[i,k] + M[k+1,j] + p_{i-1}p_kp_j\} \end{cases}$$

$$(A_1 \otimes A_2)(A_3 \otimes A_4 \otimes A_5)$$

 $4x10 \quad 10x3 \quad 3x12 \quad 12x20 \quad 20x7$
 $p_0 \quad p_1 \quad p_1 \quad p_2 \quad p_2 \quad p_3 \quad p_3 \quad p_4 \quad p_4 \quad p_5$
 $k=2$
 $M[1,5] = M[1,2] + M[3,5] + p_0p_2p_5$

$$M[i,j] = \begin{cases} 0 & \text{if } i=j \\ \min_{i \le k < j} \{M[i,j] = M[i,k] + M[k+1,j] + p_{i-1}p_kp_j\} \end{cases}$$

$$(A_1 \underset{p_0}{\otimes} A_2) ((A_3 \underset{p_1}{\otimes} A_4) A_5)$$

$$4x10 \quad 10x3 \quad 3x12 \quad 12x20 \quad 20x7$$

$$p_0 \quad p_1 \quad p_1 \quad p_2 \quad p_2 \quad p_3 \quad p_3 \quad p_4 \quad p_4 \quad p_5$$

$$k=2$$

$$M[1,5] = M[1,2] + M[3,5] + p_0 p_2 p_5$$

$$M[i,j] = \begin{cases} 0 & \text{if } i=j \\ \min_{i \le k < j} \{M[i,j] = M[i,k] + M[k+1,j] + p_{i-1}p_kp_j\} \end{cases}$$

Check our work!

$$(A_1 > A_2)((A_3 > A_4) A_5)$$
 $4 \times 10 10 \times 3 3 \times 12 12 \times 20 20 \times 7$
 $(120)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times 3)_{4 \times 3} (3 \times 20 20 \times 7)$
 $(4 \times$

Example: Given a chain of four matrices A_1 , A_2 , A_3 and A_4 , with $p_0 = 5$, $p_1 = 4$, $p_2 = 6$, $p_3 = 2$ and $p_4 = 7$. Find m[1, 4].