

planetmath.org

Math for the people, by the people.

solid set

Canonical name SolidSet

Date of creation 2013-03-22 17:03:19 Last modified on 2013-03-22 17:03:19

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 6

Author CWoo (3771)
Entry type Definition
Classification msc 06F20
Classification msc 46A40

Synonym absolutely convex

Defines vector lattice homomorphism

Defines solid closure

Let V be a vector lattice and $|\cdot|$ be the absolute value defined on V. A subset $A \subseteq V$ is said to be *solid*, or *absolutely convex*, if, $|v| \leq |u|$ implies that $v \in A$, whenever $u \in A$ in the first place.

From this definition, one deduces immediately that 0 belongs to every non-empty solid set. Also, if a is in a solid set, so is a^+ , since $|a^+| = a^+ \le a^+ + a^- = |a|$. Similarly $a^- \in S$, and $|a| \in S$, as ||a|| = |a|. Furthermore, we have

Proposition 1. If S is a solid subspace of V, then S is a vector sublattice.

Proof. Suppose $a, b \in S$. We want to show that $a \wedge b \in S$, from which we see that $a \vee b = a + b - (a \wedge b) \in S$ also since S is a vector subspace. Since both $a \wedge b, a \vee b \in S$, we have that S is a sublattice.

To show that $a \wedge b \in S$, we need to find $c \in S$ with $|a \wedge b| \leq |c|$. Let c = |a| + |b|. Since $a, b \in S$, $|a|, |b| \in S$, and so $c \in S$ as well. We also have that |c| = c. So to show $a \wedge b \in S$, it is enough to show that $|a \wedge b| \leq c$. To this end, note first that $a \leq |a|$ and $b \leq |b|$, so $a \wedge b \leq |a| \wedge |b| \leq |a| \vee |b|$. Also, since $-a \leq |a|$ and $-b \leq |b|$, $-(a \wedge b) = (-a) \vee (-b) \leq |a| \vee |b|$. As a result, $|a \wedge b| = -(a \wedge b) \vee (a \wedge b) \leq |a| \vee |b|$. But $|a| \vee |b| \leq |a| \vee |b| + |a| \wedge |b| = |a| + |b| = c$, we have that $|a \wedge b| \leq |a| \vee |b| \leq c$.

Examples Let V be a vector lattice.

- 0 and V itself are solid subspaces.
- If V is finite dimensional, the only solid subspaces are the improper ones.
- An example of a proper solid subspace of a vector lattice is found, when we take V to be the countably infinite direct product of \mathbb{R} , and S to be the countably infinite direct sum of \mathbb{R} .
- An example of a solid set that is not a subspace is the unit disk in \mathbb{R}^2 , where the ordering is defined componentwise.
- Given any set A, the smallest solid set containing A is called the *solid closure* of A. For example, if $A = \{a\}$, then its solid closure is $\{v \in V \mid |v| \leq |a|\}$. In \mathbb{R}^2 , the solid closure of any point p is the disk centered at O whose radius is |p|.
- The solid closure of V^+ , the positive cone, is V.

Proposition 2. If V is a vector lattice and S is a solid subspace of V, then V/S is a vector lattice.

Proof. Since S is a subspace V/S has the structure of a vector space, whose vector space operations are inherited from the operations on V. Since S is solid, it is a sublattice, so that V/S has the structure of a lattice, whose lattice operations are inherited from those on V. It remains to show that the partial ordering is "compatible" with the vector operators. We break this down into two steps:

- for any $u + S, v + S, w + S \in V/S$, if $(u + S) \leq (v + S)$, then $(u + S) + (w + S) \leq (v + S) + (w + S)$. This is a disguised form of the following: if $u v \leq a \in S$, then $(u + w) (v + w) \leq b \in S$ for some b. This is obvious: just pick b = a.
- if $0 + S \le u + S \in V/S$, then for any $0 < \lambda \in k$ (k an ordered field), $0 + S \le \lambda(u + S)$. This is the same as saying: if $c \le u$ for some $b \in S$, then $d \le \lambda u$ for some $d \in S$. This is also obvious: pick $d = \lambda c$.

The proof is now complete.