1 Physique du point Matériel

1.1 Noms de variables

Grandeur	Qu'est-cequec'estquoi	Unités
M	Masse	[kg]
x(t)	Position en fonction du temps	[m]
$v(t) = \dot{x}(t)$	Vitesse	$\left[\frac{m}{s}\right]$
$a(t) = \ddot{x}(t)$	Acceleration	$\left[\frac{m}{s^2}\right]$
F_{cause}	Force associée à une cause	$[N] = \left[\frac{kg*m}{s^2}\right]$
p(t) = mv(t)	Quantité de mouvement	$\left[\frac{kg*m}{s}\right]$
k	Constante d'élasticité du ressort	$\left[\frac{kg}{s^2}\right]$
E_{cin}	Energie cinétique du point	$[J] = \left[\frac{kg * m^2}{s^2}\right]$

1.2 Formules

$$\sum F_{ext} = ma, W_F = \int_a^b F dx$$

1.2.1 Expression de forces

Nom	Raccourci usuel	Expression
Force pesante	F_p	mg, g accélération terrestre
Force de rappel du ressort	F_k	$-k\Delta x$, k elasticité du ressort
Force normale	N	déterminer par Newton
Force de Tension	T	déterminer par Newton
Force centrifuge (fictive)	_	$-m\vec{\omega} \times (\vec{\omega} \times \vec{R})$
Force de coriolis (fictive)	_	$-2m\omega imes \vec{v'}$
Force liée à $\dot{\vec{\omega}}$	_	$\dot{ec{\omega}} imesec{R}$
Force de gravitation	F_{12}	$-G\frac{m_1 \cdot m_2}{d^2} \vec{u_{12}}$

1.2.2 Expression d'Énergies

Nom	Raccourci usuel	Expression
Énergie potentielle de gravité	E_g	mgh
Énergie potentielle du ressort	E_k	$\frac{1}{2}kx^2$
Énergie cinétique	E_{cin}	$\frac{1}{2}mv^2$

La variation de l'énergie cinétique est égale à la somme des travaux de toutes les forces.

1.2.3 Solutions d'equations

Mouvement	Equadiff	Solutions	
Oscillateur harmonique	$ddotx + \omega^2 x = 0$	$Acos(\omega_0 t) + Bsin(\omega_0 t) = Csin(\omega_0 t + D)$	
Oscillateur amorti	$\ddot{x} + 2\gamma \dot{x} + \omega_0^2 x = 0$	-	
Oscillateur amorti forcé	$\ddot{x} + 2\gamma \dot{x} + \omega_0^2 x = \alpha_0 \sin(\omega t)$	-	
Avec :			
/ 1. 0	1 1		

Avec:
$$\omega_0 = \sqrt{\frac{k}{m}}, T = \frac{2\pi}{\omega_0}, \nu = \frac{1}{T}, \gamma = \frac{b}{2m}, A = x_0, B = \frac{v_0}{\omega_0}, C^2 = x_0^2 + (\frac{v_0}{\omega_0})^2, tg(D) = \omega_0 \frac{x_0}{v_0}, \alpha_0 = \frac{f}{m}$$

1.3 Systemes de coordonnées

Loi de poisson:

 $\dot{\hat{\bf e}}_i = \omega \times \hat{\bf e}_i$, ou ω est la vitesse angulaire du référentiel.

1.3.1 Coordonnées Sphériques

$$\omega = \dot{\theta}\hat{e}_z + \dot{\phi}\hat{e}_\theta$$

$$\sum F_{ext} = ma$$

1.4 Systemes de coordonnées

1.4.1 Coordonnées Sphériques

 $x = \rho \sin \phi \cos \theta$ $y = \rho \sin \phi \sin \theta$ $z = \rho \cos \phi$

Vecteur rayon et dérivées :

$$\begin{split} \vec{r} &= \rho \hat{e}_{\rho} \\ \dot{\vec{r}} &= \dot{\rho} \hat{e}_{\theta} + \rho \dot{\phi} \sin \theta \hat{e}_{\phi} = \vec{v} \\ \ddot{\vec{r}} &= \left(\ddot{\rho} - \rho \dot{\theta}^2 - \rho \dot{\phi}^2 \sin^2 \theta \right) \hat{\mathbf{e}}_{\rho} \\ &+ \left(\rho \ddot{\theta} + 2 \dot{\rho} \dot{\theta} - \rho \dot{\phi}^2 \sin \theta \cos \theta \right) \hat{\mathbf{e}}_{\theta} \\ &+ \left(\rho \ddot{\phi} \sin \theta + 2 \dot{\rho} \dot{\phi} \sin \theta + 2 \rho \dot{\theta} \dot{\phi} \cos \theta \right) \hat{\mathbf{e}}_{\phi} = \vec{a} \end{split}$$

1.4.2 Coordonnées Cylindriques

Vecteur rayon et dérivées :

$$\begin{split} \vec{r} &= r\hat{e}_r + z\hat{e}_z \\ \dot{\vec{r}} &= \dot{r}\hat{e}_r + r\dot{\theta}\hat{e}_\theta + \dot{z}\hat{e}_z = \vec{v} \\ \ddot{\vec{r}} &= \left(\ddot{r} - r\dot{\theta}^2\right)\hat{e}_r + \left(r\ddot{\theta} + 2\dot{r}\dot{\theta}\right)\hat{e}_\theta + \ddot{z}\hat{e}_z \end{split}$$

2 Physique du corps Solide

2.1 Noms de variables

Grandeur	Qu'est-cequec'estquoi	Unités
I	Repartition de la masse pondérée par la distance au carré	$[kg*m^2]$
ω	Vitesse angulaire, vecteur parralèle à l'axe de rotation.	$\left[\frac{rad}{s}\right]$
L	Moment cinétique	$\left[\frac{kg*m^2}{s}\right]$
α	Acceleration Angulaire	$\left[\frac{rad}{s^2}\right]$

2.2 Formules

$$M_F = \vec{F} \times \vec{R}, \; \sum_{} \vec{M_{ext}} = I \vec{\alpha} \;, \; \frac{d\vec{L}}{dt} = \sum_{} \vec{M_{ext}}, \; \vec{v} = \vec{\omega} \times \vec{r}, \; \vec{a_t} = \vec{\alpha} \times \vec{r}, \; I = \sum_{} M^2 dm, \; E_{cin} = \frac{1}{2} I \omega^2$$

3 Systeme de points materiels

Equation du mouvement relatif :

$$\vec{F}_{2\leftarrow 1} = \ddot{\vec{\mur}}$$
 où $\mu = \frac{m_1 m_2}{m_1 + m_2}$ la masse réduite.