KLASTERING PEMETAAN DAERAH RAWAN KECELAKAAN MENGGUNAKAN METODE K-MEANS BERBASIS SISTEM INFORMASI GEOGRAFIS (STUDI KASUS DI KABUPATEN JEMBER)

SKRIPSI

Oleh
Andrea Santana Adzani
NIM E41180362

PROGRAM STUDI TEKNIK INFORMATIKA

JURUSAN TEKNOLOGI INFORMASI

POLITEKNIK NEGERI JEMBER

2022

KLASTERING PEMETAAN DAERAH RAWAN KECELAKAAN MENGGUNAKAN METODE K-MEANS BERBASIS SISTEM INFORMASI GEOGRAFIS (STUDI KASUS DI KABUPATEN JEMBER)

SKRIPSI

Sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains Terapan Komputer
(S. Tr. Kom) di Program Studi Teknik Informatika

Jurusan Teknologi Informasi

Oleh
Andrea Santana Adzani
NIM E41180362

PROGRAM STUDI TEKNIK INFORMATIKA
JURUSAN TEKNOLOGI INFORMASI
POLITEKNIK NEGERI JEMBER

2022

KEMENTERIAN PENDIDIKAN, KEBUDAYAAN, RISET, DAN TEKNOLOGI POLITEKNIK NEGERI JEMBER JURUSAN TEKNOLOGI INFORMASI

HALAMAN PENGESAHAN

Klastering Pemetaan Daerah Rawan Kecelakaan Menggunakan Metode K-Means Berbasis Sistem Informasi Geografis (Studi Kasus Di Kabupaten Jember)

Andrea Santana Adzani (NIM E41180362)

Telah diuji pada tanggal 29 Maret 2022

Dan Dinyatakan Memenuhi Syarat Ketua Penguji

Bety Etikasari, S.Pd., M.Pd.

NIP. 19920528 201803 2 001

Sekretaris Penguji,

Anggota Penguji,

Denny Trias Utomo, S.Si., M.T.

NIP. 19711009 200312 1 001

I Putu Dody Lesmana, S.T., M.T

NIP. 19790921 200501 1 001

Dosen Pembimbing,

Denny Trice Utoma, S.Si., M.T.

NIP. 19211009 200312 1 001

Mengesahkan

nusan Teknologi Informasi

fit Riskiawan, S.Kom., M.Cs.

NIP. 19830203 200604 1 003

SURAT PERNYATAAN

Saya yang bertanda tangan di bawah ini:

Nama : Andrea Santana Adzani

NIM : E41180362

Menyatakan dengan sebenar – benarnya bahwa segala pernyataan dalam Laporan Skripsi saya yang berjudul "Klastering Pemetaan Daerah Rawan Kecelakaan Menggunakan Metode K-Means Berbasis Sistem Informasi Geografis (Studi Kasus Di Kabupaten Jember)" merupakan gagasan dan hasil karya saya sendiri dengan arahan dosen pembimbing, dan belum pernah diajukan dalam bentuk apapun pada perguruan tinggi manapun.

Semua data dan informasi yang digunakan telah dinyatakan secara jelas dan dapat diperiksa kebenarannya. Sumber informasi yang berasal atau dikutip dari karya yang diterbitkan dari penulis lain telah disebutkan dalam naskah dan dicantumkan dalam daftar pustaka di bagian akhir Laporan Skripsi ini.

Jember, 15 Mei 2022

Andrea Santana Adzani

PERNYATAAN PERSETUJUAN PUBLIKASI KARYA ILMIAH UNTUK KEPENTINGAN AKADEMIS

Yang bertanda tangan dibawah ini, saya:

Nama

: Andrea Santana Adzani

NIM

: E41180362

Program Studi

: Teknik Informatika

Jurusan

: Teknologi Informasi

Demi pengenmbangan Ilmu Pengetahuan, saya menyetujui untuk memberikan kepada UPT. Perpustakaan Politeknik Negeri Jember, Hak Bebas Royalti Non - Eksklusif (Non - Exclusive Royalty Free Right) atas Karya Ilmiah berupa Laporan Skripsi saya yang berjudul :

KLASTERING PEMETAAN DAERAH RAWAN KECELAKAAN MENGGUNAKAN METODE K-MEANS BERBASIS SISTEM INFORMASI GEOGRAFIS (STUDI KASUS DI KABUPATEN JEMBER)

Dengan Hak Bebas Royalti Non - Eksklusif ini UPT. Perpustakaan Politeknik Negeri Jember berhak menyimpan, mengalih media atau format, mengelola dalam bentuk Pangkalan Data (Database), mendistribusikan karya dan menampilkan atau mempublikasikannya di internet atau media lain untuk kepentingan akademis tanpa perlu meminta izin dari saya selama tetap mencantumkan nama saya sebagai penulis atau pencipta.

Saya bersedia untuk menanggung secara pribadi tanpa melibatkan pihak Politeknik Negeri Jember, segala bentuk tuntutan hukum yang timbul atas Pelanggaran Hak Cipta dalam Karya Ilmiah ini.

Demikian pernyataan ini saya buat dengan sebenarnya.

Dibuat di

: Jember

Pada tanggal : 15 Mei 2022

ang menyatakan,

Nama : Andrea Bantana Adzani

NIM : E41180362

мото

"Sesungguhnya Allah tidak akan mengubah nasib suatu kaum sehingga mereka mengubah keadaan yang ada pada diri mereka sendiri."

(QS. Ar - Ra'd: 11)

PERSEMBAHAN

Alhamdulillah, dengan segala puji syukur yang senantiasa penulis panjatkan kepada Allah SWT Yang Maha Agung atas segala rahmat dan karunia yang diberikan sehingga penulis dapat menyelesaikan studi, penelitian, dan penyusunan laporan skripsi dengan judul "Klastering Pemetaan Daerah Rawan Kecelakaan Menggunakan Metode *K – Means* Berbasis Sistem Informasi Geografis (Studi Kasus di Kabupaten Jember)". Penulis dapat menyelesaikan masa perkuliahan dan penyusunan laporan skripsi ini dengan usaha dan doa, serta tak lupa dengan bantuan dan bimbingan maupun dorongan dari berbagai pihak. Oleh karenanya, karya tulis ilmiah ini penulis persembahkan kepada:

- Allah SWT yang telah memberikan petunjuk, rahmat, rezeki, hidayah, kesehatan, kekuatan, dan kemudahan penulis dalam melaksanakan tugas, kewajiban, dan tanggung jawab sebagaimana mestinya. Sesungguhnya Allah Maha Pengasih lagi Maha Pemberi.
- 2. Kedua orang tua yang penulis cintai dan sayangi, Bapak Nurul Wahyudi dan Ibu Yeny Marlinda. Terima kasih atas semua usaha dan doanya, serta kasih sayang dan cinta yang tak kenal lelah yang telah diberikan kepada penulis, dan juga atas segala bentuk pengorbanan yang selama ini telah dilakukannya.
- 3. Bapak Saiful Anwar, S.TP., MP. selaku Direktur Politeknik Negeri Jember.
- 4. Bapak Hendra Yufit Riskiawan, S.Kom., M.Cs. selaku Ketua Jurusan Teknologi Informasi, dan Ibu Trismayanti Dwi P, S.Kom., M.Cs. selaku Ketua Program Studi Teknik Informatika, Politeknik Negeri Jember.
- 5. Bapak Denny Trias Utomo, S.Si., M.T. selaku dosen pembimbing yang telah memberikan bimbingan, masukan serta saran, dan juga motivasi kepada penulis.
- 6. Ibu Bety Etikasari, S.Pd., M.Pd. dan Bapak I Putu Dody Lesmana, ST., M.T. selaku dosen penguji yang telah memberikan bantuan, saran, masukan, serta motivasi yang bersifat membangun.
- 7. Para staf pengajar Program Studi Teknik Informatika Politeknik Negeri Jember yang telah memberikan banyak ilmu dan pengalaman yang bermanfaat.
- 8. Seluruh teman teman Program Studi Teknik Informatika Politeknik Negeri Jember angkatan 2018.
- 9. Teman teman saya (Aklil Anugerah Maulana, Dimas Fajrul Falah, Ana Farida, Shandy Maulana Yudantiar, Octavian Yudha Mahendra, Ryan Hartadi, Moch. Ludfi Rahman), terima kasih atas bentuk dukungan, bantuan, dan motivasinya.

- 10. Seluruh pihak yang telah turut membantu dan berkontribusi dalam segala aspek terutama yang berkaitan dengna kelancaran penulisan laporan skripsi ini.
- 11. Almamater tercinta Politeknik Negeri Jember.

Laporan skripsi ini masih jauh dari kata sempurna, sehingga perlu adanya masukan maupun kritikan yang mendukung untuk penelitian skripsi ini. Semoga karya tulis ilmiah ini dapat bermanfaat bagi pembaca. Mohon maaf apabila terdapat kesalahan dan kekurangan, semoga Allah SWT senantiasa memberikan keberkahan bagi kita semua.

Klastering Pemetaan Daerah Rawan Kecelakaan Menggunakan Metode K – Means berbasis Sistem Informasi Geografis (Studi Kasus di Kabupaten Jember)

Clustering Mapping of Accident Prone Areas Using the K – Means Method

Based on Geographic Information Systems

(Case Study in Jember Regency)

Pembimbing (1 orang)

Denny Trias Utomo, S.Si., M.T.

Andrea Santana Adzani
Study Program Informatics Engineering
Majoring of Information Technology
Program Studi Teknik Informatika
Jurusan Teknologi Informasi

ABSTRACT

One of the factors that cause accidents is the lack of public understanding of information about safety and driving safety which is considered very important. To find out which areas are prone to accidents, the people really needs a media/system that is able to provide information about driving supervision and safety, and is able to clustering using K — Means methods an accident-prone areas, so that people can be more careful when driving, crossing or there in the area. By using 4 parameters, namely the number of deaths, serious injuries, minor injuries, and the number of events in each region, which is then processed to produce output in the form of clustering results which are represented in the form of a geographic information system. The system has also been tested using the User Acceptance Testing (UAT) and Blackbox Testing methods, and the accuracy of the system has also been tested by comparing the initial data with the results after being applied to the system, and the result is 83.87%.

Keywords: Clustering System, Accident, Geographic Information System, K – Means

RINGKASAN

Klastering Pemetaan Daerah Rawan Kecelakaan Menggunakan Metode *K – Means* berbasis Sistem Informasi Geografis (Studi Kasus di Kabupaten Jember), Andrea Santana Adzani, NIM E41180362, Tahun 2022, 84 hlm., Teknologi Informasi, Teknik Informatika, Politeknik Negeri Jember, Denny Trias Utomo, S.Si., M.T. (Pembimbing I).

Salah satu faktor penyebab terjadinya kecelakaan adalah kurangnya pemahaman masyarakat akan informasi tentang keselamatan dan keselamatan berkendara yang dianggap sangat penting. Untuk mengetahui daerah mana saja yang rawan kecelakaan, masyarakat sangat membutuhkan suatu media/sistem yang mampu memberikan informasi tentang pengawasan dan keselamatan berkendara, serta mampu melakukan pengelompokan menggunakan metode K – Means pada daerah rawan kecelakaan, sehingga masyarakat dapat lebih berhati-hati saat berkendara, menyebrang atau ada di area tersebut.

Dengan menggunakan 4 parameter yaitu jumlah kematian, luka berat, luka ringan, dan jumlah kejadian di setiap wilayah, yang kemudian diolah untuk menghasilkan output berupa hasil clustering yang direpresentasikan dalam bentuk sistem informasi geografis. . Sistem juga telah diuji menggunakan metode User Acceptance Testing (UAT) dan Blackbox Testing, dan juga telah diuji keakuratan sistem dengan membandingkan data awal dengan hasil setelah diterapkan pada sistem, dan hasilnya adalah 83,87% .

PRAKATA

Puji syukur penulis panjatkan kehadirat Allah SWT karena berkat rahmat dan hidayah-Nya, penulisan laporan skripsi yang berjudul "Klastering Pemetaan Daerah Rawan Kecelakaan Menggunakan Metode K – Means Berbasis Sistem Informasi Geografis (Studi Kasus di Kabupaten Jember)" dapat diselesaikan dengan baik.

Laporan skripsi ini disusun sebagai salah satu syarat untuk mendapatkan gelar Sarjana Terapan Komputer (S.Tr.Kom) di Program Studi Teknik Informatika Jurusan Teknologi Informasi Politeknik Negeri Jember.

Penyusunan laporan skripsi ini tidak lepas dari bantuan berbagai pihak, oleh karena itu penulis ingin menyampaikan ucapan terima kasih kepada :

- 1. Bapak Saiful Anwar, S.Tp, M.P selaku Direktur Politeknik Negeri Jember,
- 2. Bapak Hendra Yufit Riskiawan, S.Kom., M.Cs selaku Ketua Jurusan Teknologi Informasi,
- 3. Ibu Trismayanti Dwi P, S.Kom., M.Cs selaku Ketua Program Studi Teknik Informatika,
- 4. Bapak Denny Trias Utomo, S.Si., M.T. selaku Dosen Pembimbing,
- 5. Rekan rekan dan semua pihak yang telah membantu dalam pelaksanaan penelitian dan penulisan laporan ini.

Laporan skripsi ini masih jauh dari kata sempurna, sehingga penulis mengharapkan kritik dan saran yang bersifat membangun guna perbaikan di masa mendatang. Semoga tulisan ini bermanfaat.

Jember, 15 Maret 2022

Penulis

DAFTAR ISI

Halaman
HALAMAN JUDULii
HALAMAN PENGESAHANiii
SURAT PERNYATAANiv
PERNYATAANv
MOTOvi
PERSEMBAHANvii
ABSTRAKix
RINGKASANx
PRAKATAxi
DAFTAR ISIxii
DAFTAR GAMBARxvi
DAFTAR TABELxviii
DAFTAR LAMPIRANxix
BAB 1. PENDAHULUAN 1
1.1 Latar Belakang1
1.2 Rumusan Masalah
1.3 Batasan Masalah3
1.4 Tujuan3
1.5 Manfaat4
1.5 Walitat
BAB 2. TINJAUAN PUSTAKA5
2.1 Penelitian Terdahulu5
2.1.1 Analisis Kecelakaan Berlalu Lintas di Kota Jakarta Dengan
Menggunakan Metode $K-Means$, tahun 20195
2.1.2 K – Means Clustering Untuk Data Kecelakaan Lalu Lintas Jalan
Raya Di Kecamatan Pelaihari, tahun 20185
2.1.3 Penerapan Algoritma K – Means Untuk Pengelompokan Daerah
Rawan Bencana Di Indonesia, tahun 2018 5

2.1	1.4	Sistem Informasi Geografis Pemetaan Titik Daerah Rawan
		Kecelakaan Di Sumatera Barat Berbasis Web, tahun 2018 6
2.1	1.5	Analisis dan Perancangan Sistem Informasi Daerah Rawan
		Kecelakaan dengan Menggunakan Geographic Information System
		(GIS), tahun 20206
2.1	1.6	Perancangan Sistem Informasi Geografis Pemetaan Daerah Rawan
		Kecelakaan Di Kabupaten Jember, tahun 20216
2.1	1.7	Klastering Wilayah Kota/Kabupaten Berdasarkan Data Persebaran
		Covid-19 di Provinsi Jawa Timur dengan Metode <i>K – Means</i> , tahun 2020
2.2	Lar	ndasan Teori7
	2.1	Gambaran Umum Lokasi Penelitian
2.2	2.2	Lalu Lintas
2.2	2.3	Kecelakaan Lalu Lintas 8
2.3	Sist	tem Informasi Geografis (GIS)8
2.3	3.1	Sistem 8
2.3	3.2	Informasi8
2.3	3.3	Sistem Informas Geografis
2.3	3.4	Ciri – Ciri Sistem Informasi Geografis
2.3	3.5	Subsistem SIG
2.3	3.6	Model Data Sistem Informasi Geografis
2.4	<i>K</i> –	Means Clustering11
2.5	Per	ancangan Sistem13
2.5	5.1	Usecase Diagram
2.5	5.2	Entity Relationship Diagram (ERD)13
2.5	5.3	
2.6		er Acceptance Testing (UAT)14
2.8		terfall
		to of the Art

BAB	3. ME	TO	DE PENELITIAN	19
	3.1	Wa	aktu dan Tempat Pelaksanaan	19
	3.2	Ala	at dan Bahan	19
	3.	.2.1	Alat Penelitian	19
	3.	.2.2	Bahan Penelitian	20
	3.3	Me	etode Penelitian	21
	3.	.3.1	Studi Literatur	21
	3.	.3.2	Pengumpulan Data	22
	3.	.3.3	Pengolahan Data	23
	3.	.3.4	Perancangan dan Pembuatan Sistem	23
	3.	.3.5	Analisis dan Pembahasan	24
RAR	л на	CII	DAN PEMBAHASAN	25
DAD	4.1		ıdi Literatur	
	4.2	Per	ngumpulan Data	25
	4.3	Per	ngolahan Data	29
	4.4	Per	rancangan dan Pembuatan Sistem	39
	4.	.4.1	Requirement	39
	4.	.4.2	Design	40
	4.	.4.3	Implementation	59
	4.	.4.4	Verification	77
	4.	.4.5	Maintenance	82
	4.5	An	alisis dan Pembahasa	83
RAR	5 KF	SIM	PULAN DAN SARAN	Q 1
DIND .	5.1		simpulansimpulan	
	5.2	Saı	ran	84
			ΓΑΚΑ	
LAM	PIRA	N		88

DAFTAR GAMBAR

H	alaman
Gambar 2. 1 Peta Administrasi Kabupaten Jember Provinsi Jawa Timur	7
Gambar 2. 2 Subsistem SIG	10
Gambar 2. 3 Data Spasial	11
Gambar 3. 1 Metode penelitian	21
Gambar 3. 2 Waterfall flow	23
Gambar 3. 3 Flowchart K - Means	24
Gambar 4. 1 Flowchart Program User	41
Gambar 4. 2 Flowchart Program Admin	43
Gambar 4. 3 Usecase Diagram	44
Gambar 4. 4 Entity Relationship Diagram (ERD)	45
Gambar 4. 5 Wireframe halaman beranda	46
Gambar 4. 6 Wireframe halaman basis pengetahuan	47
Gambar 4. 7 Wireframe halaman klastering	48
Gambar 4. 8 Wireframe halaman hasil klastering	49
Gambar 4. 9 Wireframe halaman author	50
Gambar 4. 10 Wireframe halaman bantuan	51
Gambar 4. 11 Wireframe halaman dashboard admin	52
Gambar 4. 12 Wireframe halaman management user	53
Gambar 4. 13 Wireframe halaman tambah user	53
Gambar 4. 14 Wireframe halaman detail user	54
Gambar 4. 15 Wireframe halaman management data	54
Gambar 4. 16 Wireframe halaman tambah data	55
Gambar 4. 17 Wireframe halaman edit data	55
Gambar 4. 18 Wireframe halaman data faq	56
Gambar 4. 19 Wireframe halaman tambah faq	56
Gambar 4. 20 Wireframe halaman edit faq	57
Gambar 4. 21 Wireframe halaman profil admin	57
Gambar 4. 22 Wireframe halaman edit profil	58
Gambar 4. 23 Wireframe halaman edit password	58
Gambar 4. 24 Implementasi <i>Database</i>	59
Gambar 4. 25 Tabel dataset	59
Gambar 4.26 Tabel kecamatan	60

Gambar 4.27 Tabel <i>user</i>	60
Gambar 4.28 Tabel faq	61
Gambar 4.29 Halaman beranda	63
Gambar 4.30 Halaman basis pengetahuan	64
Gambar 4.31 Halaman klastering	65
Gambar 4.32 Halaman hasil klastering	66
Gambar 4.33 Halaman <i>author</i>	67
Gambar 4.34 Halaman bantuan	68
Gambar 4.35 Halaman <i>login</i>	69
Gambar 4.36 Halaman lupa password	69
Gambar 4.37 Halaman <i>reset</i> password	70
Gambar 4.38 Halaman <i>dashboard</i>	71
Gambar 4.39 Halaman management user	71
Gambar 4.40 Halaman tambah admin	72
Gambar 4.41 Halaman detail admin	72
Gambar 4.42 Halaman management data	73
Gambar 4.43 Halaman tambah <i>data</i>	73
Gambar 4.44 Halaman edit <i>data</i>	74
Gambar 4.45 Halaman faq	74
Gambar 4.46 Halaman tambah <i>faq</i>	75
Gambar 4.47 Halaman edit faq	75
Gambar 4.48 Halaman <i>profile</i>	76
Gambar 4.50 Halaman edit password	77

DAFTAR TABEL

	Halaman
Tabel 2. 1 Simbol – simbol ERD	13
Tabel 2. 2 Simbol - simbol Flowchart	13
Tabel 2. 3 Lanjutan simbol Flowchart	14
Tabel 2. 4 State of the art	15
Tabel 2. 5 Lanjutan State of the art	16
Tabel 2. 6 Lanjutan State of the art	17
Tabel 2. 7 Lanjutan State of the art	18
Tabel 3. 1 Waktu pelaksanaan	19
Tabel 3. 2 Data Kecelakaan Kab. Jember tahun 2018 – 2019	22
Tabel 4. 1 Data Kecelakaan di Kabupaten Jember Tahun 2018	25
Tabel 4. 2 Lanjutan Data Kecelakaan di Kabupaten Jember Tahun 2018	26
Tabel 4. 3 Data Kecelakaan di Kabupaten Jember Tahun 2019	26
Tabel 4. 4 Lanjutan Data Kecelakaan di Kabupaten Jember Tahun 2019	27
Tabel 4. 5 Dataset kecelakaan	28
Tabel 4. 6 Tabel hasil perhitungan jarak Euclidean 1	31
Tabel 4. 7 Pengelompokan hasil Iterasi 1	32
Tabel 4. 8 Titik centroid baru	33
Tabel 4. 9 Tabel hasil perhitungan jarak Euclidean 2	33
Tabel 4. 10 Lanjutan hasil perhitungan jarak Euclidean 2	34
Tabel 4. 11 Pengelompokan hasil iterasi 2	34
Tabel 4. 12 Lanjutan hasil iterasi 2	35
Tabel 4. 13 Tabel hasil perhitungan jarak Euclidean 5	35
Tabel 4. 14 Lanjutan hasil perhitungan jarak Euclidean 5	36
Tabel 4. 15 Pengelompokan hasil iterasi 5	36
Tabel 4. 16 Tabel hasil perhitungan jarak Euclidean klaster 2	37
Tabel 4. 17 Tabel hasil perhitungan jarak Euclidean klaster 3	38
Tabel 4. 18 Hasil klastering sistem	78
Tabel 4. 19 Hasil pengujian UAT	79
Tabel 4. 20 Lanjutan Hasil pengujian UAT	80
Tabel 4. 21 Hasil pengujian Blackbox Testing oleh unit laka	81
Tabel 4. 22 Hasil pengujian Blackbox Testing oleh ahli IT	82

DAFTAR LAMPIRAN

	Halaman
Lampiran 1 Surat izin survey penelitian	88
Lampiran 2 Dokumentasi pengajuan surat izin survey kepada Ka Satlantas.	89
Lampiran 3 Dokumentasi wawancara bersama pihak Satlantas	89
Lampiran 4 Permohonan izin melanjutkan penelitian dan permintaan data	90
Lampiran 5 Data kecelakaan tahun 2018 – 2019	91
Lampiran 6 Perhitungan Manual K – Means	92
Lampiran 7 Dokumentasi pengujian sistem bersama pihak unit laka	102
Lampiran 8 Dokumentasi pengujian sistem bersama ahli IT	102
Lampiran 9 Hasil pengujian oleh unit laka dan ahli IT	103
Lampiran 10 Broadcast penyebaran pengujian UAT	103
Lampiran 11 Hasil wawancara dengan pihak unit laka	104
Lampiran 12 Hasil pengujian UAT	105

BAB 1. PENDAHULUAN

1.1 Latar Belakang

Menurut Badan Pusat Statistik (BPS) Republik Indonesia tahun 2021 secara resmi merilis hasil Sensus Penduduk (SP) yang dilakukan pada tahun 2020 lalu mencatat jumlah penduduk di Indonesia mencapai 270,20 juta jiwa dengan laju pertumbuhan penduduk sebesar 1,25% per tahun. Sedangkan menurut Badan Pusat Statistik (BPS) Kabupaten Jember tahun 2021 secara resmi merilis hasil Sensus Penduduk (SP) yang dilakukan pada tahun 2020 lalu mencatat jumlah penduduk di Jember mencapai 2.536.729 jiwa. Seiring dengan pertumbuhan penduduk di Indonesia khususnya di Kabupaten Jember yang selalu bertambah tiap tahunnya, dapat berdampak pada peningkatan mobilitas, sehingga menyebabkan terjadinya pertambahan kepadatan lalu lintas, dimana pertumbuhan sarana dan prasarana transportasi lebih lambat dibandingkan dengan pertumbuhan lalu lintas sehingga mengakibatkan bertambahnya angka kecelakaan lalu lintas (Puspita *et al.*, 2020).

Berdasarkan Undang – Undang Republik Indonesia No. 22 tahun 2009 tentang Lalu Lintas dan Angkutan Jalan, dinyatakan bahwa kecelakaan lalu lintas merupakan peristiwa yang terjadi di jalan raya baik yang tidak diduga maupun tidak disengaja yang dapat mengakibatkan korban juga kerugian harta benda. Kecelakaan lalu lintas di jalan raya juga merupakan penyumbang angka kematian yang relatif tinggi di Indonesia. Jumlah kecelakaan yang terjadi di Indonesia tiap tahunnya mengalami perubahan yang tidak konsisten. Terhitung sejak tahun 2016, jumlah kecelakaan yang terjadi di Indonesia berjumlah 106.644, kemudian mengalami penurunan di tahun 2017 yang berjumlah 104.327, dan meningkat kembali pada tahun 2018 yang berjumlah 109.215 (BPS, 2021).

Menurut Dendy (2014) ada beberapa faktor penyebab terjadinya kecelakaan lalu lintas yang mana dapat dikelompokkan menjadi 4 kelompok, diantaranya faktor manusia seperti menggunakan kendaraan berkecepatan tinggi, ugal-ugalan, dan tidak mematuhi aturan lalu lintas. Adapun faktor selanjutnya yakni kendaraan, seperti kelengkapan kendaraan yang mencakup diantaranya spion, lampu kendaraan, dll. Faktor ketiga yakni jalan, seperti kurangnya pencahayaan dan bentuk permukaan jalan. Dan faktor yang keempat adalah faktor lingkungan, seperti tidak adanya rambu lalu lintas, cuaca yang kurang baik, bencana alam, serta pola jalan. Kecelakaan lalu

lintas tidak hanya mengakibatkan kerugian materialmelainkan juga dapat merugikan non-meterial. Kerugian material dapat berupa kerusakan harta benda seperti kendaraan, sedangkan kerugian non-material dapat berupa luka ringan, luka berat, cacat, bahkan meninggal dunia. Hal tersebut menunjukkan betapa pentingnya memperhatikan aturan serta tata tertib lalu lintas dalam berkendara. Sedangkan menurut C.E. Putri (2014), untuk meningkatkan tingkat kesadaran masyarakat akan keselamatan dalam berkendara dapat dilakukan dengan memberi informasi kepada masyarakat mengenai daerah yang rawan akan terjadinya kecelakaan, dimana daerah rawan kecelakaan merupaka daerah yang memiliki angka kecelakaan tertinggi, resiko kecelakaan tertinggi dan potensi kecelakaan tertinggi pada suatu ruas jalan.

Dalam upaya penyampaian informasi daerah rawan kecelakaan dapat dilakukan dengan cara tradisional ataupun modern. Penyampaian secara tradisional dapat berupa sosialisasi kepada masyarakat, menyebarkan poster/pamflet kepada khalayak umum, dll. Sedangkan penyampaian secara modern dapat melalui digital seperti sebuah Sistem Informasi yang dapat diakses oleh masyarakat. Pada penelitian ini, penulis merancang sebuah sistem, yakni sistem yang dapat mengklaster daerah berdasarkan rawan tidaknya suatu daerah, yaitu daerah rawan kecelakaan tinggi, daerah rawan kecelakaan sedang, daerah rawan kecelakaan rendah, dan daerah tidak rawan kecelakaan berdasarkan data yang diperoleh dari penelitian terdahulu, yang didapat dari Satlantas Jember pada tahun 2018 – 2019. Namun, pada penelitian terdahulu hanya sebatas menggunakan perhitungan menggunakan metode Z - Score, yang mana belum ada unsur AI nya. Oleh karena itu, peneliti tertarik untuk melanjutkan penelitian terdahulu dengan menambahkan AI kedalam sistem yang baru pada penelitian menggunakan metode *K – Means Clustering*. Untuk mengetahui/memperoleh informasi daerah rawan kecelakaan mulai dari yang tertinggi hingga daerah aman dari kecelakaan, penulis menggunakan metode K – Means untuk clustering atau mengklaster (mengelompokkan) data yang ada sejak tahun 2018 - 2019 berdasarkan jumlah/tingkat terjadinya kecelakaan pada daerah tertentu di Kabupaten Jember. *K–Means* merupakan salah satu metode data *clustering non hirarki* yang berusaha mempartisi data yang ada ke dalam bentuk satu atau lebih klaster/kelompok yang bertujuan untuk meminimalisasikan variasi di dalam suatu klaster dan memaksimalisasikan variasi antara klaster. Setelah data berhasil di kelompokkan menggunakan metode K-Means, data tersebut akan direpresentasikan/visualisasikan kedalam SIG (Sistem Informasi Geografis) agar mempermudah masyarakat dalam mendapatkan informasi. Dengan dibuatnya sistem ini, diharapkan dapat membantu pemerintah dalam mengupayakan

keselamatan para pengendara di Kabupaten Jember dengan memberikan informasi daerah rawan kecelakaan kepada masyarakat serta memberikan referensi kepada pihak terkait guna meningkatkan sarana dan prasarana sehingga dapat meminimalisir angka kecelakaan yang terjadi.

1.2 Rumusan Masalah

Berdasarkan latar belakang yang telah dijelaskan, dapat dirumuskan masalah sebagai berikut:

- 1. Bagaimana menganalisa dan melakukan klastering terhadap daerah rawan kecelakaan menggunakan metode K-Means?
- 2. Bagaimana membangun sistem klastering untuk pemetaan daerah rawan kecelakaan di Kabupaten Jember?

1.3 Batasan Masalah

Adapun batasan masalah dalam penelitian ini adalah sebagai berikut :

- Dalam merancang serta mengolah data kecelakaan, peneliti hanya menggunakan data pada tahun 2018 – 2019 yang didapat dari penelitian terdahulu yang diperoleh dari Satlantas Jember, sehingga sistem akhir yang dihasilkan dapat dibandingkan dengan penelitian terdahulu dan mengetahui metode mana yang lebih efektif.
- 2. Batasan data yang digunakan, yakni 31 data kecamatan yang terdapat pada dataset yang digunakan.
- 3. Batasan jumlah *input* nilai K(n) / jumlah klaster yakni sebanyak 2 untuk batas minimum dan 4 untuk batas maksimum, dimana terbagi dalam tingkat paling rawan, tingkat rawan, tingkat sedang, dan tingkat tidak rawan.

1.4 Tujuan

Adapun tujuan dari penelitian ini adalah sebagai berikut :

- 1. Untuk menganalisa dan melakukan klastering terhadap daerah rawan kecelakaan menggunakan metode K-Means.
- Untuk membangun sistem klastering pemetaan daerah rawan kecelakaan di Kabupaten Jember.

1.5 Manfaat

Manfaat dengan adanya perancangan sistem *clustering* menggunakan metode *K* – *Means* ini adalah sebagai berikut:

- Meningkatkan upaya pemerintah Kabupaten Jember dalam menghimbau serta menyampaikan informasi terkait daerah rawan kecelakaan yang ada di Kabupaten Jember secara efektif dan efisien kepada masyarakat.
- 2. Menghasilkan sebuah Sistem *Clustering* daerah rawan kecelakaan di Kabupaten jember yang dapat menjadi solusi untuk mengantisipasi serta mengurangi tingkat kejadian kecelakaan di Kabupaten Jember.
- 3. Dapat dijadikan referensi kepada pihak terkait guna mengetahui daerah mana saja yang memerlukan perbaikan sarana dan prasarana lalu lintas di Kabupaten Jember.
- 4. Dapat digunakan sebagai referensi dalam melakukan penelitian selanjutnya menggunakan metode K Means untuk klasterisasi dengan object penelitian "Daerah Rawan Kecelakaan".

BAB 2. TINJAUAN PUSTAKA

2.1 Penelitian Terdahulu

2.1.1 Analisis Kecelakaan Berlalu Lintas di Kota Jakarta Dengan Menggunakan Metode K – Means, tahun 2019.

Pada penelitian ini bertujuan untuk mengetahui tingkat terjadinya kecelakaan lalu lintas pada wilayah kota Jakarta serta mengetahui kinerja dari metode yang digunakan, yakni *K – Means* dalam mengelompokkan/mengklaster tingkat terjadinya kecelakaan dalam berlalu lintas. Hasil yang didapat dari pengelompokan data kecelakaan lalu lintas didapatkan tingkat nilai akurasi pada *cluster* 0, *cluster* 1 dan *cluster* 2 mendapatkan nilai akurasi yang sama, yaitu sebesar 33.33% dimana pada *cluster* 0, *cluster* 1, dan *cluster* 2 terdapat 2 data (Purwaningsih, 2019).

2.1.2 *K – Means Clustering* Untuk Data Kecelakaan Lalu Lintas Jalan Raya Di Kecamatan Pelaihari, tahun 2018.

Pada penelitian ini membahas tentang bagaimana melakukan tahapan awal pencegahan kecelakaan lalu lintas yang dilakukan dengan menganalisis data kecelakaan menggunakan metode *K – Means Clustering*. Dimana hasil yang diperoleh yakni, dengan membagi data yang ada ke dalam 2 *dataset*. Hasil penerapan metode tersebut terhadap kedua *dataset* yang kemudian dilakukan pengujian *silhoutte coefficient* untuk mencari hasil *cluster* dengan kualitas terbaik. Pengujian tersebut dilakukan secara berurutan sehingga menghasilkan jarak paling optimal (Aprianti and Permadi, 2018).

2.1.3 Penerapan Algoritma K – Means Untuk Pengelompokan Daerah Rawan Bencana Di Indonesia, tahun 2018.

Pada penelitian ini membahas tentang bagaimana menangani bencana diseluruh provinsi, dengan menggunakan data yang ada, lalu dikelompokkan kedalam kategori yang sangat rawan, sedang, dan rendah dalam mengalami bencana dengan menggunakan algoritma K-Means dalam upaya pengelompokan daerah rawan. Dan hasil yang didapat yakni beberapa provinsi yang telah dikelompokkan berdasarkan kategori rawan, sedang, dan rendah (Amril Mutoi Siregar, 2018).

2.1.4 Sistem Informasi Geografis Pemetaan Titik Daerah Rawan Kecelakaan Di Sumatera Barat Berbasis Web, tahun 2018.

Pada penelitian ini bertujuan untuk merancang suatu Sistem Informasi Geografis (SIG) dalam upaya melakukan pemetaan dalam menyajikan informasi yang mencakup tentang lokasi daerah rawan kecelakaan di Sumatera Barat menggunakan data yang tereferensi secara spasial atau koordinat geografis yang didapat dari Direktorat Lalu Lintas Polda Sumbar menggunakan metode yang berorientasi *object* dengan menggunakan alat perancangan *Unified Modeling Language (UML)* dengan berbagai tahapan yang berbasis website (Nelfira *et al.*, 2018).

2.1.5 Analisis dan Perancangan Sistem Informasi Daerah Rawan Kecelakaan dengan Menggunakan *Geographic Information System (GIS)*, tahun 2020.

Pada penelitian ini membahas tentang bagaimana menganalisis serta merancang suatu sistem informasi geografis tentang daerah rawan kecelakaan di daerah Lombok Tengah dengan menggunakan data pada tahun 2017 dengan menggunakan metode Z – Score untuk menentukan indeks kecelakaan dari suatu daerah yang memiliki tingkat kejadian tertinggi, dan metode Cusum untuk menentukan titik daerah kecelakaan yang nantinya akan menghasilkan blueprint sistem informasi peta daerah rawan kecelakaan yang akan di visualisasikan kedalam Sistem Informasi Geografis (GIS) (Imtihan and Fahmi, 2020).

2.1.6 Perancangan Sistem Informasi Geografis Pemetaan Daerah Rawan Kecelakaan Di Kabupaten Jember, tahun 2021.

Pada penelitian ini membahas tentang bagaimana memetakan daerah rawan kecelakaan yang terjadi di Kabupaten Jember dengan data rentang 2 tahun, yakni 2018 – 2019 menggunakan metode Z – Score. Hasil yang diperoleh berupa grafik tingkat kecelakaan tiap daerah yang divisualisasikan menggunakan SIG.

2.1.7 Klastering Wilayah Kota/Kabupaten Berdasarkan Data Persebaran Covid-19 di Provinsi Jawa Timur dengan Metode *K – Means*, tahun 2020.

Pada penelitian ini membahas tentang bagaimana mengklaster suatu wilayah kota/kabupaten di Provinsi Jawa Timur menggunakan metode *K – Means*. Hasil yang diperoleh yakni didapatkan bahwa jumlah klaster optimum yang dapat dilakukan yakni 5 klaster. Hal tersebut dibuktikan secara signifikan yang dilakukan uji rata – rata vektor dengan statistik *Wilks Lambda* dan dihasilkan perbedaan yang signifikan dengan tingkat kepercayaan 95% (Yustanti *et al.*, 2020).

2.2 Landasan Teori

2.2.1 Gambaran Umum Lokasi Penelitian

Gambar 2. 1 Peta Administrasi Kabupaten Jember Provinsi Jawa Timur

Pada Gambar 2.1 menunjukkan, Kabupaten Jember memiliki luas wilayah 3.293,34 Km², dengan panjang pantai kurang lebih 170 km, dan luas perairan yang termasuk ZEE (Zona Ekonomi Ekslusif) sekitar 8.338,5 Km². Bagian selatan Kabupaten Jember, dataran rendah dengan titik terluarnya Pulau Barong, terdapat sekitar 82 pulau – pulau kecil, dengan 16 pulau diantaranya sudah memiliki nama. Pada bagian barat laut, berbatasan dengan Kabupaten Probolinggo, merupakan bagian dari Pegunungan Iyang, dengan puncaknya Gunung Argopuro (3.088 m), serta bagian timur yang merupakan bagian dari rangkaian Dataran Tinggi Ijen.

Kabupaten Jember memiliki 31 kecamatan terdiri atas 28 kecamatan dengan 226 desa dan 3 kecamatan dengan 22 kelurahan, 1.000 dusun/lingkungan, 4.313 RW dan 15.205 RT. Kecamatan Tempurejo merupakan kecamatan terluas dengan luas 524,46 Km² atau 15,9% dari total luas wilayah Kabupaten Jember. Sedangkan Kecamatan Kaliwates merupakan kecamatan terkecil dengan luas 24,94 Km² atau 0,76% dari total luas wilayah Kabupaten Jember (BAPPEDA, 2013).

2.2.2 Lalu Lintas

Dalam Undang – Undang No 22 Tahun 2009, lalu lintas merupakan gerak kendaraan dan orang di Ruang Lalu Lintas Jalan, dimana Ruang Lalu Lintas Jalan adalah prasarana yang diperuntukkan bagi gerak pindah kendaraan, orang, dan/atau barang ang berupa jalan serta fasilitas pendukung.

2.2.3 Kecelakaan Lalu Lintas

Kecelakaan lalu lintas merupakan suatu peristiwa yang terjadi di jalan secara tidak terduga dan disengaja yang melibatkan kendaraan dengan atau tanpa pengguna jalan lain yang mengakibatkan kerugian harta benda hingga korban manusia (UU No 22 Tahun 2009). Adapun beberapa faktor penyebab terjadinya kecelakaan lalu lintas sebagai berikut:

- a. Faktor Manusia
- b. Faktor Kendaraan
- c. Faktor Jalan
- d. Faktor Lingkungan

Sedangkan berdasarkan Pusdiklat Perhubungan Darat (1998), daerah rawan kecelakaan terbagi menjadi 3, yakni lokasi rawan kecelakaan (*hazardous sites*), rute rawan kecelakaan (*hazardous routes*), dan wilayah rawan kecelakaan (*hazardou area*).

2.3 Sistem Informasi Geografis (GIS)

2.3.1 Sistem

Sistem merupakan gabungan dari komponen – komponen yang saling berhubungan dan berinteraksi untuk mencapai suatu tujuan tertentu (Susianto and Guntoro, 2017). Sedangkan definisi sistem menurut Indrajit didalam (Susianto and Guntoro, 2017) yaitu sistem itu sendiri mengandung arti dari kumpulan – kumpulan komponen tertentu yang memiliki keterkaitan antara satu dengan lainnya.

Berdasarkan pengertian sistem menurut para ahli tersebut, dapat disimpulkan bahwa sistem merupakan komponen dari berbagai unsur dimana mereka saling berinteraksi satu dengan lainnya demi mencapai suatu tujuan yang sama.

2.3.2 Informasi

Menurut Jogianto didalam (Susianto and Guntoro, 2017) informasi dapat diartikan sebagai data yang diolah menjadi suatu bentuk yang lebih baik untuk penerimanya. Sedangkan pengertian informasi menurut Susianto dan Guntoro (2017) merupakan suatu data yang telah diolah untuk digunakan kembali dalam proses pengambilan keputusan.

Berdasarkan pengertian informasi menurut para ahli diatas, dapat disimpulkan bahwasanya informasi adalah suatu kumpulan data yang telah diolah dan saling berelasi satu sama lain sehingga membentuk sesuatu yang memiliki arti atau makna.

2.3.3 Sistem Informas Geografis

Menurut Susianto dan Guntoro (2017) SIG merupakan suatu sistem yang digunakan sebagai sarana dalam mengumpulkan, merepresentasikan, menguraikan, menganalisa, memeriksa, dan mengintegrasikan suatu data maupun informasi yang berkaitan dengan permukaan bumi. Istilah Sistem Informasi Geografis adalah gabungan dari 3 usur pokok, yakni sistem, informasi, dan geografi, yang mana unsur – unsur tersebut sangat berpengaruh dalam mempelajari SIG. Melihat dasar-dasarnya, dapat dikatakan bahwa SIG merupakan bagian dari sistem informasi. SIG merupakan sistem yang menekankan pada unsur informasi geografis. Istilah "geografi" adalah bagian dari ruang. Kedua istilah ini sering digunakan secara bergantian atau bergantian sampai istilah ketiga, geospasial, muncul. Ketiga istilah ini memiliki arti yang sama dalam konteks SIG. Penggunaan kata "geografi" mengacu pada hal-hal dengan Bumi, yaitu permukaan dua dimensi atau tiga dimensi. Yang dimaksud dengan "informasi geografis" meliputi pengertian informasi tentang suatu tempat di permukaan bumi, pengetahuan tentang kedudukan suatu benda di permukaan bumi, dan informasi – informasi (atribut) kedudukannya di permukaan bumi sudah diketahui.

2.3.4 Ciri – Ciri Sistem Informasi Geografis

Pada dasarnya, SIG memiliki ciri – ciri yang tidak lain adalah sebagai berikut (Susianto and Guntoro, 2017) :

- a. Masukan data yang mampu memuat dan memproses data spasial dari berbagai sumber merupakan subsistem dari SIG. Sub sistem ini juga mampu memproses perubahan data spasial yang memiliki perbedaan jenis, seperti dari peta kontur menjadi titik ketinggian.
- b. Subsistem SIG mampu menyimpan dan memanggil data yang memungkinkan data spasial untuk ditampilkan, diubah, dan dihapus.
- c. Subsistem lain yang dimiliki oleh SIG yakni mampu memanipulasi dan menganalisis peran data, pengelompokan dan pemisahan, perkiraan parameter dan hambatan, serta fungsi permodelan dari data yang dimuat.
- d. Pelaporan yang dimiliki subsistem SIG berbentuk peta, grafis, dan tabel.

2.3.5 Subsistem SIG

Gambar 2. 2 Subsistem SIG

Subsistem yang dimiliki oleh Sistem Informasi Geografis yang ditunjukkan pada Gambar 2.2, antara lain (Susianto dan Guntoro, 2017):

- a. Data *Input*: berfungsi untuk mengumpulkan lalu mempersiapkan suatu data spasial beserta atributnya dari berbagai sumber. Subsistem ini juga bertanggung jawab dalam mengkonversi atau merepresentasikan format data yang asli ke dalam format SIG.
- b. Data *Output*: berfungsi untuk menampilkan atau menghasilkan luaran hasil dari suatu proses, baik dalam bentuk *softcopy* maupun *hardcopy* seperti: tabel, grafik, peta dan lain lain.
- c. Data *Management*: berfungsi untuk memanajemen data, baik data spasial maupun atribut ke dalam penyimpanan seperti basis data dengan sedemikian rupa agar dipanggil dan diubah dengan mudah.
- d. Data Manipulasi dan Analisis : berfungsi untuk menentukan informasi mana saja yang dapat dihasilkan oleh SIG. Subsistem ini memiliki fungsi lain, yakni mampu memanipulasi dan melakukan permodelan data untuk menghasilkan luaran yang diharapkan.

2.3.6 Model Data Sistem Informasi Geografis

- a. Data *Spasial*: merupakan data yang memuat gambaran permukaan bumi. Model data ini dibagi menjadi dua, model data raster dan model data vektor, seperti yang ditunjukkan pada Gambar 2.3.
- Model data raster merupakan data yang sederhana, dimana setiap data/informasi disimpan di *grid*, yang berupa bidang. *Grid* tersebut biasa disebut dengan *pixel*.
 Data yang tersebut merupakan hasil dari *scanning* seperti citra satelit digital.
- 2) Model data vektor berupa simbol simbol atau lebih dikenal dengan istilah *feature*, seperti *feature* garis (*line*), *feature* daerah (*area*), dan *feature* titik (*point*).

Gambar 2. 3 Data Spasial

b. Data Atribut / Data *Non Spasial* : merupakan data yang menyimpan suatu atribut dari gambaran yang ada di permukaan bumi.

2.4 K – Means Clustering

Metode *K – Means Clustering* merupakan salah satu metode dalam model data mining yang mampu mengklasterisasi suatu data. Menurut Larose dalam (Rahmat B.C.T.I. *et al.*, 2017) mengatakan bahwa *clustering* berfokus pada proses pengelompokan data berdasarkan kemiripan *attribute/value* dari data tersebut, dimana *cluster* itu sendiri merupakan kumpulan data yang memiliki kemiripan atau tidak dengan data yang lain. Sedangkan menurut Yustanti, W (2020) juga menjelaskan bahwasanya, clustering merupakan proses dalam membagi sebuah object data, meliputi bentuk, entitas, dan berbagai nilai yang dimiliki data itu sendiri kedalam beberapa kelompok, grup, bagian maupun kategori.

Klastering merupakan proses dalam membagi data yang semulanya tidak berlabel menjadi sekumpulan data yang membentuk kelompok berdasarkan kemiripan yang dimiliki oleh data tersebut dengan data lainnya. Misalkan K adalah jumlah klaster, C merupakan label klaster, dan P merupakan dataset. Proses klasterisasi harus memenuhi kriteria berdasarkan Persamaan (1), (2), dan (3) (Rahmat B.C.T.I. *et al.*, 2017).

$$C_i \neq \Phi, \forall i \in \{1, 2, \dots, K\} \tag{1}$$

$$C_{i} \cap C_{j} = \Phi, \forall i \neq j and i, j \in \{1, 2, \dots, K\}$$

$$(2)$$

$$\bigcup_{i=1}^{K} Ci = P \tag{3}$$

Algoritma K-Means adalah algoritma pengelompokan data berdasarkan titik pusat cluster (centroid) paling dekat dengan data. Centroid awal didapatkan dengan cara acak (centroid random), yang kemudian akan diperbaharui melalui proses iterasi. Tujuan K-Means adalah pengelompokan data yang memaksimalkan kesamaan data yang dikelompokkan dan meminimalkan kesamaan data antara cluster. Persamaan fungsi jarak digunakan dalam cluster. Maksimalkan kesamaan data berdasarkan jarak terpendek antara data ke titik pusat. Langkah pertama adalah proses pengelompokan data menggunakan algoritma K-Means merupakan titik awal untuk membentuk centroid Cj pembentukan titik awal centroid dihasilkan secara acak. Jumlah centroid Cj dinaikkan berdasarkan jumlah cluster yang telah ditentukan sebelumnya. Setelah K centroid terbentuk, baru kemudian menghitung jarak tiap data Xi dengan centroid ke-j sampai k dinotasikan dengan d(Xi, Cj). Terdapat beberapa ukuran jarak yang digunakan sebagai parameter untuk kemiripan suatu instance data, salah satunya adalah jarak euclidean. Perhitungan jarak Euclidean seperti pada Persamaan 4 (Rahmat C.T.I. et al., 2017).

$$d(Xi,Cj) = \sqrt{\sum_{i=1}^{N} (Xi - Cj)^2}$$
 (4)

Keterangan:

D(Xi, Cj): Jarak Encludian Distance

Xi : Nilai objek i pada ke-kYi : Nilai objek j pada ke-k

n : Banyaknya variabel yang diamati

Semakin kecil, kesamaan antara keduanya juga semakin dekat. Terdapat syarat dalam menggunakan jarak *euclid*, dimana semua fitur dalam dataset tidak boleh saling berkorelasi. Jika didapati fitur yang berkorelasi, maka menggunakan konsep jarak *Mahalanobis*. Kemudian kelanjutan dari jarak tersebut dapat dicari dengan yang paling dekat sehingga data akan mengelompok dengan sendirinya berdasarkan *centroid* terdekat. Selanjutnya adalah memperbaharui titik *centriod* dengan menghitung rata – rata dari keseluruhan jarak data terhadap *centroid*, yang selanjutnya akan kembali lagi ke proses awal. Hal tersebut dinamakan Iterasi, dan akan terus diulangi sampai didapatkan *centroid* yang konstan atau tidak ada perubahan *centroid* lagi (Rahmat C.T.I. *et al.*, 2017).

2.5 Perancangan Sistem

2.5.1 Usecase Diagram

Usecase diagram merupakan diagram yang digunakan untuk menggambarkan fungsionalitas pada suatu sistem yang terdiri dari aktor, *usecase*, dan penghubung (Arifin and Siahaan, 2020).

2.5.2 Entity Relationship Diagram (ERD)

Entity Relationship Diagram (ERD) merupakan sebuah diagram terstruktur yang berguna saat hendak merancang desain database. ERD berfungsi menggambarkan rancangan database dengan jelas, yang terdiri dari entitas dan atribut, serta relasi dan link sebaagai penghubung diantara kedua entitas (Latukolan, Arwan and Ananta, 2019). Berikut ini merupakan simbol yang digunakan dalam membuat ERD:

Tabel 2. 1 Simbol – simbol ERD

Simbol	Nama	Fungsi
	Entitas	Menyatakan entitas
	Atribut	Menyatakan atribut
	Relasi	Menyatakan relasi
•		Penghubung antara atribut
	Link	dengan entitas, serta
	LIIIK	menghubungkan entitas
		dengan relasi entitas lainnya

2.5.3 Flowchart

Flowchart mencakup beberapa simbol – simbol yang digunakan untuk menjelaskan alur suatu sistem. Adapun simbol – simbol flowchart yaitu :

Tabel 2. 2 Simbol - simbol Flowchart

Simbol	Nama	Fungsi	
	Terminator	Permulaan/akhir program	
	Garis alir (Flow line)	Arah aliran program	

Tabel 2. 3 Lanjutan simbol Flowchart

Simbol	Nama	Fungsi
		Proses
	Preparation	inisialisasi/pemberian
		nilai awal
		Proses
	Process	perhitungan/pengolahan
		data
	Input/Output Data	Input/output data,
	mput/Output Data	parameter, informasi
		Permulaan sub
	Duadatinad muaass	program/proses
	Predefined process	menjalankan sub
	(Sub program)	program
		Perbandingan penyataan,
		penyeleksian data yang
	Decision	memberikan pilihan
		untuk langkah
		selanjutnya
		Penghubung bagian –
	On page connector	bagian flowchart yang
		berada pada satu halaman
		Penghubung bagian –
	Off page compactor	bagian flowchart yang
	Off page connector	berada pada halaman
		berbeda

2.6 User Acceptance Testing (UAT)

User Acceptance Testing (UAT) merupakan sebuah proses atau tahap dimana hal ini dilakukan bertujuan untuk mengetahui, apakah sistem yang telah dirancang telah memenuhi harapan pengguna, sehingga dapat mempermudah peneliti untuk mengetahui, bagian mana yang masih dirasa kurang (Hady, Haryono and Rahayu, 2020).

2.7 Blackbox Testing

Blackbox testing merupakan salah satu metode pengujian yang berbeda dengan whitebox testing, dimana blackbox testing sendiri lebih sering dikatakan sebagai pengujian fungsionalitas sistem, tanpa harus mengetahui bentuk atau struktur program didalamnya. Blackbox testing menguji setiap fitur/menu yang disajikan oleh sistem, apakah setiap fitur/menu tersebut telah memberikan hasil yang sesuai dengan target awal atau hasil yang telah diharapkan diawal (Hady, Haryono and Rahayu, 2020).

2.8 Waterfall

Menurut Sasmito, G.W (2017) *waterfall* merupakan salah satu model pengembangan sebuah sistem yang sistematik. Adapun beberapa tahapan waterfal, diantaranya analisis kebutuhan (*Requirement*), desain (*Design*), implementasi/penerapan (*Implementation*), pengujian (*Verification*), dan pemeliharaan (*Maintenance*).

2.9 State of the Art

Berikut ini merupakan penelitian terdahulu yang menjadi sumber rujukan peneliti dalam menyusun Proposal Skripsi sebagaimana yang ditampilkan pada Tabel 2.2.

Tabel 2. 4 State of the art

No	Judul	Penulis	Tahun	Hasil
1	Analisis	Esty	2019	Pada penelitian ini bertujuan
	Kecelakaan	Purwaningsih		untuk mengetahui tingkat
	Berlalu Lintas			terjadinya kecelakaan lalu lintas
	di Kota Jakarta			pada wilayah kota Jakarta serta
	Dengan			mengetahui kinerja dari metode
	Menggunakan			yang digunakan, yakni K – Means
	Metode K –			dalam mengelompokkan tingkat
	Means			terjadinya kecelakaan dalam
				berlalu lintas. Hasil yang didapat
				dari pengelompokan data
				kecelakaan lalu lintas
				mendapatkan nilai akurasi yang
				sama, yaitu sebesar 33.33%.

Tabel 2. 5 Lanjutan State of the art

No	Judul	Penulis	Tahun	Hasil
2	K – Means	Winda	2018	Pada penelitian ini membahas
	Clustering	Aprianti dan		tentang bagaimana melakukan
	Untuk Data	Jaka		tahapan awal pencegahan
	Kecelakaan	Permaidi		kecelakaan lalu lintas yang
	Lalu Lintas			dilakukan dengan menganalisis
	Jalan Raya Di			data kecelakaan menggunakan
	Kecamatan			metode K – $Means$ $Clustering$.
	Pelaihari			Dimana hasil yang diperoleh
				yakni, dengan membagi data yang
				ada ke dalam 2 dataset. Hasil
				penerapan metode tersebut
				terhadap kedua dataset yang
				kemudian dilakukan pengujian
				silhoutte coefficient untuk mencari
				hasil <i>cluster</i> dengan kualitas
				terbaik. Pengujian tersebut
				dilakukan secara berurutan
				sehingga menghasilkan jarak
				paling optimal.
3	Penerapan	Amril Mutoi	2018	Pada penelitian ini membahas
	Algoritma K –	Siregar		tentang bagaimana menangani
	Means Untuk			bencana diseluruh provinsi,
	Pengelompokan			dengan menggunakan data yang
	Daerah Rawan			ada, lalu dikelompokkan kedalam
	Bencana Di			kategori yang sangat rawan,
	Indonesia			sedang, dan rendah dalam
				mengalami bencana dengan
				menggunakan algoritma K –
				Means dalam upaya
				pengelompokan daerah rawan.

Tabel 2. 6 Lanjutan State of the art

Judul	Penulis	Tahun	Hasil
Sistem	Nelfira, Heru	2018	Pada penelitian ini bertujuan
Informasi	Saputra, dan		untuk merancang suatu Sistem
Geografis	Silis Jelita		Informasi Geografis (SIG) dalam
Pemetaan Titik			upaya melakukan pemetaan dalam
Daerah Rawan			menyajikan informasi yang
Kecelakaan Di			mencakup tentang lokasi daerah
Sumatera Barat			rawan kecelakaan di Sumatera
Berbasis Web			Barat menggunakan data yang
			tereferensi secara spasial atau
			koordinat geografis yang didapat
			dari Direktorat Lalu Lintas Polda
			Sumbar menggunakan metode
			yang berorientasi object dengan
			menggunakan alat perancangan
			Unified Modeling Language
			(UML) dengan berbagai tahapan
			yang berbasis website
Analisis dan	Khairul	2020	Pada penelitian ini membahas
Perancangan	Imtihan dan		tentang bagaimana menganalisis
Sistem	Hairul Fahmi		serta merancang suatu sistem
Informasi			informasi geografis tentang daerah
Daerah Rawan			rawan kecelakaan di daerah
Kecelakaan			Lombok Tengah dengan
dengan			menggunakan data pada tahun
Menggunakan			2017 dengan menggunakan
Geographic			metode Z – Score untuk
Information			menentukan indeks kecelakaan
System (GIS)			dari suatu daerah yang memiliki
			tingkat kejadian tertinggi, serta
			blueprint sistem informasi peta
			daerah rawan kecelakaan.
	Sistem Informasi Geografis Pemetaan Titik Daerah Rawan Kecelakaan Di Sumatera Barat Berbasis Web Analisis dan Perancangan Sistem Informasi Daerah Rawan Kecelakaan dengan Menggunakan Geographic Information	Sistem Nelfira, Heru Informasi Saputra, dan Geografis Silis Jelita Pemetaan Titik Daerah Rawan Kecelakaan Di Sumatera Barat Berbasis Web Analisis dan Khairul Perancangan Imtihan dan Sistem Hairul Fahmi Informasi Daerah Rawan Kecelakaan dengan Menggunakan Geographic Information	Sistem Nelfira, Heru 2018 Informasi Saputra, dan Geografis Silis Jelita Pemetaan Titik Daerah Rawan Kecelakaan Di Sumatera Barat Berbasis Web Analisis dan Khairul 2020 Perancangan Imtihan dan Sistem Hairul Fahmi Informasi Daerah Rawan Kecelakaan dengan Menggunakan Geographic Information

Tabel 2. 7 Lanjutan State of the art

No	Judul	Penulis	Tahun	Hasil
6	Klastering	Wiyli	2020	Pada penelitian ini membahas
	Wilayah	Yustanti,		tentang bagaimana mengklaster
	Kota/Kabupaten	Naim		suatu wilayah kota/kabupaten di
	Berdasarkan	Rahmawati,		Provinsi Jawa Timur
	Data Persebaran	dan Yuni		menggunakan metode $K-Means$.
	Covid-19 di	Yamasari		Hasil yang diperoleh yakni
	Provinsi Jawa			didapatkan bahwa jumlah klaster
	Timur dengan			optimum yang dapat dilakukan
	Metode <i>K</i> –			yakni 5 klaster. Hal tersebut
	Means			dibuktikan secara signifikan yang
				dilakukan uji rata – rata vektor
				dengan statistik Wilks Lambda dan
				dihasilkan perbedaan yang
				signifikan dengan tingkat
				kepercayaan 95%
7	Perancangan	Sasqia Dwi	2021	Pada penelitian ini membahas
	Sistem	Arta Novia		tentang bagaimana memetakan
	Informasi			daerah rawan kecelakaan yang
	Geografis			terjadi di Kabupaten Jember
	Pemetaan			dengan data rentang 2 tahun, yakni
	Daerah Rawan			2018 – 2019 menggunakan
	Kecelakaan Di			metode Z – $Score$. Hasil yang
	Kabupaten			diperoleh berupa grafik tingkat
	Jember			kecelakaan tiap daerah yang
				divisualisasikan menggunakan
				SIG.

Berdasarkan *State of the Art* tersebut, peneliti ingin mengembangkan penelitian terdahulu semakin baik dengan melengkapi serta menerapkan kekurangan satu sama lain dari beberapa referensi yang ada.

BAB 3. METODE PENELITIAN

3.1 Waktu dan Tempat Pelaksanaan

Penelitian ini dilakukan di Lab RSI, Jurusan Teknologi Informasi, Politeknik Negeri Jember, Kabupaten Jember yang dilaksanakan selama 12 bulan (dapat dilihat pada Tabel 3.1).

Tabel 3. 1 Waktu pelaksanaan

3.2 Alat dan Bahan

Beberapa alat dan bahan yang dibutuhkan dalam penelitian ini adalah sebagai berikut:

3.2.1 Alat Penelitian

Pada penelitian ini digunakan alat penelitian berupa perangkat keras dan lunak sebagai berikut :

- a. Perangkat keras
- 1) Laptop Lenovo Thinkpad T410 Core i5
- 2) Smartphone Vivo Y91
- 3) Wifi
- b. Perangkat lunak
- 1) OS Windows 10
- 2) Visual Studio Code

- 3) Xampp V3.2.3
- 4) MySQL
- 5) PHP V8.0.3
- 6) Server Apache
- 7) Google Maps API
- 8) Geojson
- 9) Microsoft Word
- 10) Microsoft Excel

3.2.2 Bahan Penelitian

- Data sekunder yang didapatkan dari penelitian terdahulu yang diperoleh langsung dari Kantor Satlantas Jember yang berlokasi di Jl. Letjen Panjaitan No.40, Kec. Sumbersari, Kab. Jember.
- b. Data pendukung dari BPS Pusat dan BPS Kab. Jember.

3.3 Metode Penelitian

Gambar 3. 1 Metode penelitian

3.3.1 Studi Literatur

Studi literatur dilakukan untuk memperoleh referensi atau teori yang relefan dan sesuai dengan permasalahan atau topik penelitian. Adapun referensi yang peneliti pelajari seperti :

- a. Jurnal atau paper tentang klastering menggunakan metode K Means.
- Data sekunder yang didapat dari penelitian terdahulu yang diperoleh dari Satlantas Jember.
- c. Penelitian terdahulu dengan judul "Perancangan Sistem Informasi Geografis Pemetaan Daerah Rawan Kecelakaan di Kabupaten Jember" dengan menggunakan metode Z-Score.

3.3.2 Pengumpulan Data

Peneliti melakukan pencarian dan pengumpulan data untuk bahan penunjang pada penelitian. Data yang diperoleh bersumber dari berbagai pihak, yakni BPS Pusat, BPS Kabupaten Jember, data penelitian terdahulu yang diperoleh dari Satlantas Kabupaten Jember.

Tabel 3. 2 Data Kecelakaan Kab. Jember tahun 2018 – 2019

No	Kecamatan		Kejadian akaan	Jumlah Kecelakaan (2018-2019)	
		2018	2019	(2016-2019)	
1	Ajung	51	31	82	
2	Ambulu	75	50	125	
3	Arjasa	24	24	48	
4	Balung	52	39	91	
5	Bangsalsari	58	50	108	
6	Gumuk Mas	24	30	54	
7	Jelbuk	16	21	37	
8	Jenggawah	41	41	82	
9	Jombang	24	17	41	
10	Kalisat	36	40	76	
11	Kaliwates	123	115	238	
12	Kencong	26	37	63	
13	Ledok Ombo	20	13	33	
14	Mayang	23	18	41	
15	Mumbulsari	27	24	51	
16	Pakusari	23	21	44	
17	Panti	31	24	55	
18	Patrang	91	75	166	
19	Puger	47	47	94	
20	Rambipuji	64	46	110	
21	Semboro	20	12	32	
22	Silo	61	49	110	
23	Sukorambi	10	21	31	
24	Sukowono	24	34	58	
25	Sumber Baru	33	29	62	
26	Sumber Jambe	59	44	103	
27	Sumber Sari	91	79	170	
28	Tanggul	22	19	41	
29	Tempurejo	17	15	32	
30	Umbul Sari	25	31	56	
31	Wuluhan	38	26	64	
	JUMLAH	1276	1122	2398	

Sumber: Satlantas Polres Jember

3.3.3 Pengolahan Data

Data sekunder yang diperoleh, diolah terlebih dahulu untuk mendapatkan variabel dan atribut yang diinginkan sebagai sumber data yang sesuai.

3.3.4 Perancangan dan Pembuatan Sistem

Pada tahap ini, perancangan dan pembuatan sistem dimodelkan dalam bentuk *Waterfall*, karena dengan menggunakan model tersebut, proses pekerjaan akan lebih mudah dalam memanajemen tugas yang harus diselesaikan terlebih dahulu. Alur metode *Waterfall* terdapat 5 tahapan, seperti yang ditunjukkan pada Gambar 3.2.

Gambar 3. 2 Waterfall flow

a. Requirement

Pada tahap ini, penulis mengumpulkan data yang dibutuhkan dalam penelitian serta menganalisis kebutuhan sistem yang akan dibangun. Mulai dari penentuan alur sistem, kemudian fitur – fitur yang dibutuhkan, serta struktur *database*.

b. Design

Setelah proses analisis kebutuhan (*Requirement*), dilanjutkan pada tahap *design*, yang mana bertujuan untuk membuat alur sistem terlihat dengan jelas atau mudah dipahami. *Design* yang dilakukan yakni mulai dari *design database* hingga *design* sistem.

c. Implementation

Setelah tahapan design selesai, serta telah didapatkan gambaran/alur sistem yang jelas, penulis melakukan implementasi terhadap database, kemudian dilanjutkan dengan proses *slicing* sistem yang dimulai dari implementasi *frontend* hingga *backend*.

d. Verification

Setelah proses implementasi selesai, maka dilanjutkan pada tahap ini, yakni testing/verification yang pada proses nyatanya, penulis melakukan 2 tahap testing. Yang pertama menggunakan metode Blackbox Testing kepada ahli IT dan pihak Unit

Laka di Satlantas Jember, serta *UAT* (*User Accepted Testing*) kepada beberapa responden.

e. Maintenance

Pada tahap terakhir dari metode ini, yakni *maintenance*, setelah menerima *feedback* dari *user* serta telah me-*review* kembali, penulis melakukan proses perbaikan serta implementasi dari beberapa yang dinilai memungkinkan dan bersifat membangun.

Kemudian adapun tahapan implementasi dari metode K – Means Clustering pada sistem yang akan dibangun nantinya seperti yang ditunjukkan pada Gambar 3.3, sebagai berikut :

Gambar 3. 3 Flowchart K - Means

3.3.5 Analisis dan Pembahasan

Pada proses tahap ini, akan memberikan sebuah kesimpulan akhir dari pembahasan yang telah dilakukan pada tahap — tahap sebelumnya, yang akan menghasilkan hasil akhir klaster daerah yang paling rawan hingga tidak rawan di Kabupaten Jember.

BAB 4. HASIL DAN PEMBAHASAN

4.1 Studi Literatur

Pada tahap studi literatur dalam penelitian ini, yakni mencari referensi terkait yang dibutuhkan pada penelitian — penelitian sebelumnya yang mampu menunjang serta menjadi referensi untuk pembahasan dalam penelitian ini, mencari data sekunder yang didapatkan dari penelitian terdahulu dan data pendukung untuk dijadikan sebagai dataset yang akan digunakan dalam Sistem Klastering Pemetaan Daerah Rawan Kecelakaan, serta pengumpulan teori yang berikaitan dengan topik penelitian, seperti Sistem Klastering, Metode K-Means Clustering, Sistem Informasi Geografis (SIG), Implementasi Pemetaan SIG menggunakan K-Means yang diperoleh dari jurnal, buku, artikel, dan website.

4.2 Pengumpulan Data

Data sekunder yang digunakan sebagai acuan dalam penelitian ini adalah data kecelakaan di Kabupaten Jember pada tahun 2018 – 2019 yang didapatkan dari penelitian terdahulu yang diperoleh langsung dari Kantor Satlantas Jember yang berlokasi di Jl. Letjen Panjaitan No.40, Kec. Sumbersari, Kab. Jember. Data yang didapatkan yakni data yang dikelompokkan berdasarkan bulan pada tahun berbeda. Setelah data tersebut diolah berdasarkan tahun, maka diperoleh data pada tahun 2018 yang dapat dilihat pada Tabel 4.1 sebagai berikut :

Tabel 4. 1 Data Kecelakaan di Kabupaten Jember Tahun 2018

Kecamatan	Meninggal Dunia	Luka Berat	Luka Ringan	Jumlah Kecelakaan
Ajung	16	1	48	51
Ambulu	25	0	97	75
Arjasa	10	0	21	24
Balung	20	0	59	52
Bangsalsari	24	0	73	58
Gumukmas	8	0	28	24
Jelbuk	7	0	17	16
Jenggawah	14	0	47	41
Jombang	4	1	26	24
Kalisat	9	1	48	36

Tabel 4. 2 Lanjutan Data Kecelakaan di Kabupaten Jember Tahun 2018

Kecamatan	Meninggal Dunia	Luka Berat	Luka Ringan	Jumlah Kecelakaan
Kaliwates	31	1	141	123
Kencong	11	1	23	26
Ledokombo	4	0	31	20
Mayang	5	0	25	23
Mumbulsari	5	0	41	27
Pakusari	14	0	18	23
Panti	7	0	45	31
Patrang	18	1	104	91
Puger	12	1	60	47
Tanggul	27	2	70	64
Semboro	5	1	30	20
Silo	22	5	67	61
Umbulsari	6	0	9	10
Sukowono	6	1	25	24
Sumberbaru	11	1	57	33
Rambipuji	23	0	65	59
Sumbersari	14	1	104	91
Sumberjambe	8	1	26	22
Tempurejo	4	0	26	17
Sukorambi	8	0	31	25
Wuluhan	8	1	41	38
Total	386	20	1503	1276

Sumber : Satlantas Polres Jember

Kemudian terdapat penurunan angka kejadian kecelakaan dan sisi korban di tahun selanjutnya, yang mana data tersebut dapat dilihat pada Tabel 4.2 sebagai berikut :

Tabel 4. 3 Data Kecelakaan di Kabupaten Jember Tahun 2019

Kecamatan	Meninggal Dunia	Luka Berat	Luka Ringan	Jumlah Kecelakaan
Ajung	5	2	39	31
Ambulu	9	0	65	50

Tabel 4. 4 Lanjutan Data Kecelakaan di Kabupaten Jember Tahun 2019

Kecamatan	Meninggal Dunia	Luka Berat	Luka Ringan	Jumlah Kecelakaan
Arjasa	9	0	29	24
Balung	10	0	47	39
Bangsalsari	16	0	72	50
Gumukmas	13	0	30	30
Jelbuk	4	0	25	21
Jenggawah	11	1	34	41
Jombang	3	0	28	17
Kalisat	9	0	48	40
Kaliwates	20	7	125	115
Kencong	12	0	43	37
Ledokombo	3	0	30	13
Mayang	9	0	19	18
Mumbulsari	8	0	30	24
Pakusari	5	1	25	21
Panti	3	1	24	24
Patrang	13	0	100	75
Puger	14	1	60	47
Tanggul	9	4	52	46
Semboro	6	0	6	12
Silo	10	2	61	49
Umbulsari	4	1	24	21
Sukowono	10	0	37	34
Sumberbaru	10	0	34	29
Rambipuji	16	0	49	44
Sumbersari	10	2	96	79
Sumberjambe	3	0	22	19
Tempurejo	7	1	18	15
Sukorambi	9	1	32	31
Wuluhan	3	0	31	26
Total	273	24	1335	1122

Sumber: Satlantas Polres Jember

Selanjutnya, setelah diperoleh data berdasarkan tahun di setiap kecamatan yang ada di Kabupaten Jember, maka selanjutnya data tersebut akan dinormalisasi kembali agar dapat dijadikan sebagai dataset pada sistem. Dataset yang akan digunakan di didalam sistem dapat dilihat pada Tabel 4.3 sebagai berikut :

Tabel 4. 5 Dataset kecelakaan

id_dataset	id_kecamatan	Meninggal Dunia	Luka Berat	Luka Ringan	Jumlah
1	1	21	3	87	82
2	2	34	0	162	125
3	3	19	0	50	48
4	4	30	0	106	91
5	5	40	0	145	108
6	6	21	0	58	54
7	7	11	0	42	37
8	8	25	1	81	82
9	9	7	1	54	41
10	10	18	1	96	76
11	11	51	8	266	238
12	12	23	1	66	63
13	13	7	0	61	33
14	14	14	0	44	41
15	15	13	0	71	51
16	16	19	1	43	44
17	17	10	1	69	55
18	18	31	1	204	166
19	19	26	2	120	94
20	20	36	6	122	110
21	21	11	1	36	32
22	22	32	7	128	110
23	23	10	1	33	31
24	24	16	1	62	58
25	25	21	1	91	62
26	26	39	0	114	103
27	27	24	3	200	170
28	28	11	1	48	41
29	29	11	1	44	32
30	30	17	1	63	56
31	31	11	1	72	64

Sumber: Satlantas Polres Jember

4.3 Pengolahan Data

Pengolahan data yang dilakukan oleh penulis pada penelitian ini, yakni merupakan proses implementasi dari metode/algoritma yang digunakan, yakni K – Means Clustering terhadap dataset yang telah dinormalisasikan. Pada proses pengolahan data ini akan melalui beberapa tahap sesuai langkah – langkah proses klasterisasi dari metode/algoritma K – Means Clustering itu sendiri. Kali ini, penulis akan mencontohkan penerapan implementasi dengan studi kasus, yakni dimana jumlah klaster adalah sebanyak 4 (Daerah sangat rawan kecelakaan, daerah rawan, daerah sedang, dan daerah aman kecelakaan).

a. Hitung jumlah banyaknya data

Pada langkah pertama, yakni menghitung jumlah banyaknya data. Hal ini bertujuan untuk memberi batasan sesuai dengan syarat dari metode ini pada saat hendak menentukan jumlah klaster. Pada dataset yang akan digunakan, data berjumlah 31 data.

b. Tentukan jumlah (K) klaster

Setelah diketahu jumlah / total data yang ada pada dataset, maka selanjutnya menentukan jumlah K klaster. Jumlah K klaster tidak boleh melebihi banyaknya data yang ada. Walaupun demikian, sebagaimana yang telah dijelaskan pada batasan masalah yang ada pada penelitian ini, batas klaster hanya sebanyak 2 klaster untuk jumlah minimum, dan 4 klaster untuk jumlah maksimum. Pada studi kasus ini, penulis akan membagi data kedalam 4 klaster.

c. Tentukan titik C centroid secara acak

Pada proses ini, titik pusat centroid akan dipilih secara acak tanpa terpaku oleh aturan, karena memang pada dasarnya hal ini dapat dilakukan secara acak, dimana titik ini yang akan menjadi acuan / pusat dari masing — masing kelompok/klaster. Pada Tabel 4.3, titik centroid yang dipilih oleh penulis yakni data dengan id_dataset 5, 14, 22, dan 28, dengan atribut pada setiap data adalah sebagai berikut :

- 1) Centroid $1 = \{40, 0, 145, 148\}$
- 2) Centroid $2 = \{14, 0, 44, 41\}$
- 3) Centroid $3 = \{32, 7, 128, 110\}$
- 4) Centroid $4 = \{11, 1, 48, 41\}$

d. Hitung jarak antar data dengan centroid

Setelah titik centroid ditentukan secara acak, maka langkah selanjutnya adalah menghitung jarak antar data dengan pusat centroid tadi. Untuk menghitung jarak antar data, penulis menggunakan persamaan Euclidean, sebagaimana yang telah dijelaskan pada Persamaan 4.

$$d(K_1, C_1) = \sqrt{(K_1a - C_1a)^2 + (K_1b - C_1b)^2 + (K_1c - C_1c)^2 + (K_1d - C_1d)^2}$$

Keterangan:

 $d(K_1, C_1)$: Jarak Euclidean / jarak antara data dengan centroid

 K_1 : Kecamatan ke -n

= 57, 49782605

 C_1 : Centroid ke -n

a, b, c, d: atribut ke -n

$$\begin{split} d(K_1,C_1) &= \sqrt{(21-40)^2 + (3-0)^2 + (87-145)^2 + (82-108)^2} \\ &= 66,40783086 \\ d(K_1,C_2) &= \sqrt{(21-14)^2 + (3-0)^2 + (87-44)^2 + (82-41)^2} \\ &= 59,89991653 \\ d(K_1,C_3) &= \sqrt{(21-32)^2 + (3-7)^2 + (87-128)^2 + (82-110)^2} \\ &= 51,00980298 \\ d(K_1,C_4) &= \sqrt{(21-11)^2 + (3-1)^2 + (87-48)^2 + (82-48)^2} \end{split}$$

Pada studi kasus ini, penulis hanya mencontohkan perhitungan dengan 1 sampel, yakni data kecamatan Ajung dengan percobaan centroid 1 hingga centroid 4. Proses tersebut diulangi dengan cara yang sama hingga keseluruhan data dihitung jaraknya dengan setiap klaster. Setelah mendapatkan jarak antara data dengan masing – masing centroid, selanjutnya yakni mencari nilai minimum dari setiap klaster pada data yang ada. Hal ini bertujuan untuk menentukan data tersebut akan termasuk klaster berapa, yang mana nilai minimum disini mengacu pada metode itu sendiri, yakni jarak terdekat antara data, seperti yang ditunjukkan pada Tabel 4.4 dibawah ini.

Tabel 4. 6 Tabel hasil perhitungan jarak Euclidean 1

No	C1	C2	СЗ	C4	Min	Hasil Klaster
1	66,40783086	59,89991653	51,00980298	57,49782605	51,00980298	C3
2	24,77902339	146,2190138	37,86819246	143,4642813	24,77902339	C1
3	114,3066052	10,48808848	100,7273548	10,86278049	10,48808848	C2
4	43,70354677	81,24038405	29,96664813	78,90500618	29,96664813	C3
5	0	123,9596709	20,14944168	121,4084017	0	C1
6	104,1441309	20,34698995	90,58697478	19,23538406	19,23538406	C4
7	128,4172886	5,385164807	114,9565135	7,280109889	5,385164807	C2
8	70,69653457	56,32051136	55,47972603	54,46099522	54,46099522	C4
9	117,7285012	12,24744871	104,3934864	7,211102551	7,211102551	C4
10	62,5299928	62,8171951	49,11211663	59,81638571	49,11211663	C3
11	178,1179385	299,2089571	189,1824516	296,6175989	178,1179385	C1
12	92,49864864	32,40370349	78,54934755	30,85449724	30,85449724	C4
13	117,3456433	20,04993766	105,3185644	15,8113883	15,8113883	C4
14	123,9596709	0	110,408333	5,099019514	0	C2
15	97,23168208	28,80972058	84,4985207	25,17935662	25,17935662	C4
16	122,2374738	6	108,5633456	9,899494937	6	C2
17	97,39609848	28,94822965	83,82123836	25,25866188	25,25866188	C4
18	83,22860085	203,7523006	94,59915433	200,9004729	83,22860085	C1
19	31,95309062	93,45052167	19,5192213	90,65870063	19,5192213	C3
20	24,18677324	106,606754	7,280109889	104,3407878	7,280109889	C3
21	136,011029	12,4498996	122,5765067	15	12,4498996	C2
22	20,14944168	110,408333	0	107,8795625	0	C3
23	139,1905169	15,42724862	125,6423495	18,05547009	15,42724862	C2
24	99,82985525	24,85960579	85,74380444	22,58317958	22,58317958	C4
25	73,44385611	51,96152423	61,88699379	48,88762625	48,88762625	C4
26	31,41655614	96,79359483	18,52025918	94,7892399	18,52025918	C3
27	84,46300966	202,6968179	94,14881837	199,7948948	84,46300966	C1
28	121,4084017	5,099019514	107,8795625	0	0	C4
29	129,6880873	9,539392014	116,691902	9,848857802	9,539392014	C4
30	99,78977904	24,41311123	86,03487665	22,04540769	22,04540769	C4
31	90,03888049	36,37306696	75,69015788	33,24154028	33,24154028	C4

Setelah mendapatkan nilai minimum dari masing – masing data pada centroid tersebut, maka data dengan nilai minimum akan dikelompokkan sesuai lokasi nilai minimum pada centroid yang ada, seperti yang ditunjukkan pada Tabel 4.5 berikut.

Tabel 4. 7 Pengelompokan hasil Iterasi 1

C1	C2	C3	C4
Ambulu	Arjasa	Ajung	Gumukmas
Bangsalsari	Jelbuk	Balung	Jenggawah
Kaliwates	Mayang	Kalisat	Jombang
Patrang	Pakusari	Puger	Kencong
Sumbersari	Semboro	Tanggul	Ledokombo
	Umbulsari	Silo	Mumbulsari
		Rambipuji	Panti
			Sukowono
			Sumberbaru
			Sumberjambe
			Tempurejo
			Sukorambi
			Wuluhan

e. Hitung titik centroid baru

Untuk mengecek apakah hasil klaster pada iterasi 1 sudah benar / tidak ada data yang berubah / berpindah dari centroidnya, maka perlu dilakukan proses iterasi ke – 2. Walaupun cara yang dilakukan sama, namun untuk menentukan titik centroid baru, tidak bisa lagi dengan cara random. Hal ini bertujuan agar perhitungan selanjutnya membuktikan bahwa hasil iterasi ke – 2 tetap mengacu dari hasil proses iterasi 1. Untuk menentukan titik centroid baru, dapat dilakukan dengan cara mendapatkan nilai rata – rata setiap data dengan klaster centroid masing – masing sebanyak jumlah atribut yang ada, kemudian dibagi banyaknya data yang ada pada klaster tersebut.

$$C_1 a = \frac{34 + 40 + 51 + 31 + 24}{5} = 36$$

$$C_1 b = \frac{0 + 0 + 8 + 1 + 3}{5} = 2,4$$

$$C_1 c = \frac{162 + 145 + 266 + 204 + 200}{5} = 195,4$$

$$C_1 d = \frac{125 + 108 + 238 + 166 + 170}{5} = 161,4$$

Untuk centroid 2 hingga centroid 4 beserta atributnya, hal tersebut dapat diulangi dengan cara yang sama, hingga diperoleh hasil akhir seperti yang ditunjukkan pada tabel berikut ini.

Tabel 4. 8 Titik centroid baru

C1	C2	C3	C4
36	14	28,85714286	14,84615385
2,4	0,5	2,714285714	0,769230769
195,4	41,33333333	47,85714286	64,61538462
161,4	38,83333333	95,14285714	53,23076923

f. Hitung kembali jarak antar data dengan centroid baru

Pada tahap iterasi ke – 2 ini, langkah yang dilakukan sama pada saat langkah ke – 4, yakni menghitung jarak antar data dengan centroid. Namun, centroid yang digunakan sebagai acuan, kini menggunakan titik centroid baru hasil dari perhitungan rata – rata pada saat iterasi 1. Setelah mendapatkan jarak antar data dengan centroid yang baru, maka akan diperoleh hasil seperti yang ditujukkan pada Tabel 4.7 dibawah ini.

Tabel 4. 9 Tabel hasil perhitungan jarak Euclidean 2

No	C1	C2	C3	C4	Min	Hasil Klaster
1	135,2045857	63,27760706	42,0323005	37,03492674	37,03492674	C4
2	49,50030303	149,6174752	118,1264456	122,4828451	49,50030303	C2
3	185,1903885	13,57898703	48,28634826	16,08777698	13,57898703	C2
4	113,9749095	84,61317208	58,36461746	58,04680829	58,04680829	C3
5	73,5763549	127,3069344	98,65886391	100,4721988	73,5763549	C1
6	175,055077	23,6020244	43,18233766	9,100360875	9,100360875	C4
7	199,0921395	3,613247231	61,16488255	28,1118855	3,613247231	C2
8	139,6949534	59,64943885	35,90264614	34,63059495	34,63059495	C4
9	187,9709552	14,64202475	58,73548453	17,99704118	14,64202475	C2
10	132,2856001	66,22730219	52,96225071	38,90285276	38,90285276	C4
11	105,3958253	302,6015899	261,7493348	275,7803774	105,3958253	C1
12	163,0885649	35,68924519	37,4108464	12,80208933	12,80208933	C4
13	188,1400542	21,68076464	67,22775787	22,01156232	21,68076464	C2

Tabel 4. 10 Lanjutan hasil perhitungan jarak Euclidean 2

No	C1	C2	C3	C4	Min	Hasil
NO	CI	C2	C3	C4	IVIIII	Klaster
14	194,6994607	3,472111109	56,34206751	23,99778096	3,472111109	C2
15	167,9234349	32,0840909	52,3736575	7,052633903	7,052633903	C4
16	193,1307329	7,397447007	52,338186	23,86921961	7,397447007	C2
17	167,2599175	32,29637063	49,16299421	6,774473494	6,774473494	C4
18	11,04898185	207,1739741	171,490108	180,0165837	11,04898185	C1
19	101,6271617	96,84036119	72,21198951	69,68148158	69,68148158	C4
20	89,67987511	109,9365979	76,02443216	83,60972311	76,02443216	C3
21	206,8324926	9,18634252	66,70403714	35,83897254	9,18634252	C2
22	84,98164508	113,7631555	81,68143695	87,02546726	81,68143695	C3
23	209,8949261	12,12664651	68,50964479	38,95225419	12,12664651	C2
24	169,9678793	28,26167409	41,80738144	5,565106845	5,565106845	C4
25	144,9368138	55,25144543	54,99480495	28,47754228	28,47754228	C4
26	100,2560721	100,1152114	67,43038738	74,16074816	67,43038738	C3
27	15,47514136	206,1214583	169,6311124	179,0330041	15,47514136	C1
28	191,9632256	7,641262258	57,0375816	20,98830331	7,641262258	C2
29	200,7318609	7,940752833	65,75495636	29,84268418	7,940752833	C2
30	170,2993834	27,80987035	43,64630569	3,869161951	3,869161951	C3
31	159,1894469	39,78763069	43,29632119	13,6145154	13,6145154	C3

Selanjutnya tetap dengan langkah yang sama, yakni mencari nilai minimum dari dari setiap klaster pada data yang ada. Setelah diperoleh nilai minimum, maka kelompokkan data tersebut sesuai klasternya, agar bisa melihat apakah terdapat perubahan data pada setiap klaster. Apabila terdapat perubahan, maka proses iterasi tersebut akan diulangi kembali hingga hasil akhir dengan iterasi sebelumnya tidak ada perubahan.

Tabel 4. 11 Pengelompokan hasil iterasi 2

C1	C2	C3	C4
Bangsalsari	Ambulu	Balung	Ajung
Kaliwates	Arjasa	Tanggul	Gumukmas
Patrang	Jelbuk	Silo	Jenggawah
Sumbersari	Jombang	Rambipuji	Kalisat
	Ledokombo	Sukorambi	Kencong
	Mayang	Wuluhan	Mumbulsari
	Pakusari		Panti

Tabel 4. 12 Lanjutan hasil iterasi 2

C1	C2	C3	C4
	Semboro		Puger
	Umbulsari		Sukowono
	Sumberjambe		Sumberbaru
	Tempurejo		

g. Hasil akhir

Dapat dilihat dari iterasi ke – 2, Tabel 4.8 menunjukkan adanya perubahan keanggotaan klaster dari iterasi 1, yang mana hal tersebut mengharuskan melanjutkan iterasi sampai data benar – benar konsisten/tetap pada klasternya. Pada penelitian kali ini, dengan data yang ada beserta studi kasus yang diterapkan, yakni jumlah klaster adalah sebanyak 4 memerlukan 5 kali proses iterasi. Adapun hasil akhir yang didapatkan pada iterasi ke – 5 adalah sebagai berikut.

Tabel 4. 13 Tabel hasil perhitungan jarak *Euclidean* 5

						Hasil
No	C1	C2	C3	C4	Min	Klaster
1	175,348225	52,69303138	49,27411872	11,73669459	11,73669459	C4
2	90,44150964	138,5319057	38,95339968	97,14979842	38,95339968	C3
3	225,5474821	7,590930261	98,38232378	39,86748884	7,590930261	C2
4	154,5261574	73,90549521	27,02795227	32,45638099	27,02795227	C3
5	114,535293	116,3759234	18,19564873	75,42380261	18,19564873	C3
6	215,4460489	14,4229755	88,19910222	29,89007639	14,4229755	C2
7	239,3922861	12,07568724	112,6451898	53,69745494	12,07568724	C2
8	179,8008157	49,64160441	53,5851411	11,76506127	11,76506127	C4
9	228,2228443	7,006346329	102,1088855	43,45591636	7,006346329	C2
10	172,6991604	54,9668587	46,66226899	14,66571967	14,66571967	C4
11	65,26612189	291,775751	191,8189516	250,0654914	65,26612189	C1
12	203,4313971	25,95423322	76,27354103	18,54049622	18,54049622	C4
13	228,5614432	15,28906654	102,6753354	45,79028281	15,28906654	C2
14	235,014184	8,35197914	108,0988776	49,22143842	8,35197914	C2
15	208,359465	20,52369904	81,94037155	24,36014505	20,52369904	C2
16	233,4587758	10,6468566	106,2904185	47,86526228	10,6468566	C2
17	207,5002008	20,82039598	81,57693251	23,28984042	20,82039598	C2
18	32,30067079	196,0757223	96,8552465	154,5911274	32,30067079	C1
19	142,2767257	85,73110417	16,39063944	44,45315887	16,39063944	C3

Tabel 4. 14 Lanjutan hasil perhitungan jarak Euclidean 5

No	C1	C2	C3	C4	Min	Hasil Klaster
20	129,953838	99,39662413	8,623650442	57,89717898	8,623650442	C3
21	247,1477291	19,77428184	120,2869019	61,39828988	19,77428184	C2
22	125,3940456	102,9667692	6,650149607	61,34397553	6,650149607	C3
23	250,1686098	22,90608847	123,3945886	64,4547645	22,90608847	C2
24	210,211798	17,8443891	83,57851008	24,57132475	17,8443891	C2
25	185,6169892	43,95477474	58,90376101	13,02881422	13,02881422	C4
26	140,6627172	89,76834384	15,46688365	48,73140671	15,46688365	C3
27	33,60059523	195,0494524	96,82795599	153,6459675	33,60059523	C1
28	232,2563239	5,140255074	105,6081514	46,64493542	5,140255074	C2
29	241,1403464	14,18293184	114,2744637	55,63347314	14,18293184	C2
30	210,634755	17,11204904	83,7543785	24,81431039	17,11204904	C2
31	199,2904079	28,74408152	73,6735768	15,41914395	15,41914395	C4

Tabel 4. 15 Pengelompokan hasil iterasi 5

C1	C2	C3	C4
Kaliwates	Arjasa	Ambulu	Ajung
Patrang	Gumukmas	Balung	Jenggawah
Sumbersari	Jelbuk	Bangsalsari	Kalisat
	Jombang	Puger	Kencong
	Ledokombo	Tanggul	Sumberbaru
	Mayang	Silo	Wuluhan
	Mumbulsari	Rambipuji	
	Pakusari		
	Panti		
	Semboro		
	Umbulsari		
	Sukowono		
	Sumberjambe		
	Tempurejo		
	Sukorambi		

Selanjutnya, merupakan hasil akhir dari contoh sampel perhitungan dengan jumlah klaster sebanyak 2 dan 3.

Tabel 4. 16 Tabel hasil perhitungan jarak *Euclidean* klaster 2

No	C1	C2	Min	Hasil Klaster
1	153,0998449	23,05771967	23,05771967	C2
2	67,83113223	108,4662053	67,83113223	C1
3	203,2106358	28,54027549	28,54027549	C2
4	132,1062546	43,71319734	43,71319734	C2
5	91,97044362	86,39332488	86,39332488	C2
6	193,0946983	18,70311697	18,70311697	C2
7	217,062347	42,23995729	42,23995729	C2
8	157,5930281	21,02800406	21,02800406	C2
9	205,8957564	32,28161831	32,28161831	C2
10	150,2949184	25,36750457	25,36750457	C2
11	87,43890724	261,6438616	87,43890724	C 1
12	181,1078753	9,118109327	9,118109327	C2
13	206,1433057	34,9734173	34,9734173	C2
14	212,6853603	37,77946619	37,77946619	C2
15	185,9463968	13,90014359	13,90014359	C2
16	211,1410962	36,57502577	36,57502577	C2
17	185,1757611	13,26479297	13,26479297	C2
18	10,60954759	166,0905351	10,60954759	C1
19	119,7771368	55,68688182	55,68688182	C2
20	107,6966225	69,25523854	69,25523854	C2
21	224,8145069	49,90649693	49,90649693	C2
22	103,0415572	72,78145312	72,78145312	C2
23	227,8553543	53,00691002	53,00691002	C2
24	187,9137103	13,63380572	13,63380572	C2
25	163,0998544	16,82456073	16,82456073	C2
26	118,3598855	59,79030572	59,79030572	C2
27	14,40702953	165,2041137	14,40702953	C1
28	209,9263264	35,21193915	35,21193915	C2
29	218,7545714	44,06719523	44,06719523	C2
30	188,2938196	13,43678999	13,43678999	C2
31	177,0354837	8,606151499	8,606151499	C2

Tabel 4. 17 Tabel hasil perhitungan jarak *Euclidean* klaster 3

No	C1	C2	C3	Min	Hasil Klaster
1	175,348225	62,5854416	32,15079488	32,15079488	C3
2	90,44150964	25,85415827	117,8714283	25,85415827	C2
3	225,5474821	111,829949	19,5108588	19,5108588	C3
4	154,5261574	40,51465784	53,15236223	40,51465784	C3
5	114,535293	9,562295749	95,79495608	9,562295749	C2
6	215,4460489	101,6510575	10,4246636	10,4246636	C3
7	239,3922861	126,025543	32,77840159	32,77840159	C3
8	179,8008157	66,96967597	29,55233117	29,55233117	C3
9	228,2228443	115,3470307	23,12661406	23,12661406	C3
10	172,6991604	59,74476965	34,50855369	34,50855369	C3
11	65,26612189	178,5803391	271,0470567	65,26612189	C1
12	203,4313971	89,73258884	8,386911099	8,386911099	C3
13	228,5614432	115,6976123	26,88258937	26,88258937	C3
14	235,014184	121,5131166	28,37558125	28,37558125	C3
15	208,359465	95,13115946	8,376969089	8,376969089	C3
16	233,4587758	119,7369513	27,52889896	27,52889896	C3
17	207,5002008	94,78099757	7,670741671	7,670741671	C3
18	32,30067079	83,66861718	175,4454054	32,30067079	C1
19	142,2767257	28,86065661	65,08269313	28,86065661	C3
20	129,953838	17,7746308	78,67924511	17,7746308	C2
21	247,1477291	133,6691344	40,4671506	40,4671506	C3
22	125,3940456	12,78426768	82,2273694	12,78426768	C2
23	250,1686098	136,7824459	43,56420868	43,56420868	C3
24	210,211798	96,98163486	5,323558751	5,323558751	C3
25	185,6169892	71,90227743	24,67468901	24,67468901	C3
26	140,6627172	27,66654116	69,14422327	27,66654116	C3
27	33,60059523	83,9251899	174,4954831	33,60059523	C1
28	232,2563239	118,9619162	25,75539318	25,75539318	C3
29	241,1403464	127,590899	34,69279864	34,69279864	C3
30	210,634755	97,15419445	4,282555053	4,282555053	C3
31	199,2904079	86,91051432	10,4206659	10,4206659	C3

4.4 Perancangan dan Pembuatan Sistem

Perancangan dan Pembuatan Sistem merupakan kegiatan untuk proses implementasi dari hasil analisis awal, pengolahan data, hingga penerapan ke dalam sistem. Metode pengembangan sistem yang digunakan dalam penelitian ini adalah metode *Waterfall*. Metode pengembangan sistem *Waterfall* meliputi beberapa tahapan yaitu *requirement*, *design*, *implementation*, *verification*, dan *maintenance*. Berikut tahapan perancangan dan pembuatan sistem menggunakan metode *Waterfall*.

4.4.1 Requirement

Pada tahap ini bertujuan untuk proses pengumpulan data, sehingga dalam proses penerapannya dapat mempermudah penulis. Tahap requirement atau analisis kebutuhan ini juga dilakukan guna mengetahui alur dari sistem yang akan dirancang, mengetahui fitur – fitur apa saja yang dibutuhkan, dan siapa saja penggunanya. Proses pengumpulan data dan informasi yang dilakukan oleh penulis diperoleh melalui beberapa tahap, diantaranya:

a. Studi Literatur

Pada tahap studi literatur dalam penelitian ini, yakni penulis mencari referensi terkait yang dibutuhkan pada penelitian — penelitian sebelumnya yang mampu menunjang serta menjadi referensi untuk pembahasan dalam penelitian ini, dan juga mencari data sekunder yang didapatkan dari penelitian terdahulu dan data dari Satlantas Polres Jember, serta data pendukung sebagai referensi untuk dijadikan sebagai dataset yang akan digunakan dalam Sistem Klastering Pemetaan Daerah Rawan Kecelakaan, juga pengumpulan teori yang berikaitan dengan topik penelitian, seperti Sistem Klastering, Metode K-Means Clustering, Sistem Informasi Geografis (SIG), Implementasi Pemetaan SIG menggunakan K-Means yang diperoleh dari jurnal, buku, artikel, dan website.

Data yang digunakan sebagai dataset dalam penelitian ini yakni data 2018 – 2019 dengan tujuan agar mempermudah dalam hal mengetahui perbedaan dari penelitian terdahulu sehingga penulis dapat dengan mudah menghasilkan sebuah kesimpulan berdasarkan penelitian ini, apakah penelitian penelitian ini mampu memenuhi target tujuan, yakni meningkatkan penelitian terdahulu dengan menambahkan Artificial Intelligence pada sistem.

b. Wawancara

Pada tahap wawancara dalam penelitian ini, penulis melakukan wawancara kepada 2 pihak, yakni kepada peneliti terdahulu serta pihak unit laka di Satlantas Polres Jember. Wawancara dilakukan guna memperoleh informasi atau data tambahan yang dapat menunjang dalam penelitian penulis.

4.4.2 *Design*

Tahap design merupakan tahap dimana penulis berusaha memberikan informasi yang telah diperoleh agar lebih mudah dipahami serta memiliki alur yang jelas. Pada penelitian ini, penulis menggambarkan atau memberikan visualisasi menggunakan Flowchart Program, Use Case Diagram, Entity Relationship Diagram (ERD), serta wireframe sistem.

a. Flowchart Program

Pada sistem untuk melakukan klaster terhadap daerah rawan kecelakaan di Kabupaten Jember ini memiliki 2 alur sistem, yakni alur dari sisi *user* dan alur dari sisi *admin*. Secara keseluruhan, proses yang dilakukan oleh *user*, sistem, dan *database* digambarkan dalam *flowchart program* yang memiliki bentuk yang terstruktur dan saling berhubungan. Berikut ini merupakan *flowchart program* dari sisi *user* yang ditunjukkan pada Gambar 4.1.

Gambar 4. 1 Flowchart Program User

Selanjutnya merupakan *flowchart program* dari sisi *admin*, yang mana proses yang dilakukan oleh *admin*, sistem, dan *database* berguna untuk melakukan beberapa aksi terhadap konten dari sistem. Alur *flowchart program* tersebut dapat dilihat pada Gambar 4.2.

Gambar 4. 2 Flowchart Program Admin

b. Use Case Diagram

Gambar 4. 3 Usecase Diagram

Berdasarkan gambar yang ditunjukkan pada Gambar 4.3, dapat dilihat bahwa *user* dapat mengakses fitur beranda, basis pengetahuan, klastering, *faq*, bantuan, dan *author*. Sedangkan *admin* dapat mengakses halaman *panel admin*, dengan fitur *authentication* (*login* & lupa password), *management user*, *management dataset*, *management master data* (*faq*), dan *profile*.

c. Entity Relationship Diagram (ERD)

Setelah proses requirement atau analisis kebutuhan selesai dan diperoleh beberapa informasi dan data, maka untuk mempermudah dalam hal implementasi database, maka perlu dibuatnya Entity Relationship Diagram (ERD), sehingga penulis dapat mengetahui atribut dan entitas yang dibutuhkan dengan jelas. Berikut ini merupakan Entity Relationship Diagram (ERD) untuk database sistem ini, seperti yang ditunjukkan pada Gambar 4.4.

Gambar 4. 4 Entity Relationship Diagram (ERD)

d. Wireframe

Wireframe pada gambar yang ditunjukkan gambar dibawah ini berguna sebagai acuan atau referensi penulis dalam proses implementasi sistem yang akan dibuat. Setelah mendapatkan gambaran sistem/flow sistem dengan jelas, maka penulis dapat melakukan slicing wireframe yang telah dibuat kedalam bentuk frontend pada sistem.

1) Wireframe website user

Berikut ini merupakan *wireframe* dari halaman *user*. Hal ini bertujuan mempermudah kembali proses *slicing* pada sistem, khususnya halaman *user*.

Gambar 4. 5 Wireframe halaman beranda

Gambar 4. 6 Wireframe halaman basis pengetahuan

Gambar 4. 7 Wireframe halaman klastering

Gambar 4. 8 Wireframe halaman hasil klastering

Gambar 4. 9 $\it Wireframe$ halaman $\it author$

Gambar 4. 10 Wireframe halaman bantuan

2) Wireframe website admin

Selanjutnya, yakni *wireframe* untuk halaman administrator, yang berguna dalam membuat rancangan dari sistem halaman panel admin sehingga mempermudah penulis dalam proses *slicing* pada saat implementasi *frontend*.

Gambar 4. 11 Wireframe halaman dashboard admin

Gambar 4. 12 Wireframe halaman management user

Gambar 4. 13 Wireframe halaman tambah user

Gambar 4. 14 Wireframe halaman detail user

Gambar 4. 15 Wireframe halaman management data

Gambar 4. 16 Wireframe halaman tambah data

Gambar 4. 17 Wireframe halaman edit data

Gambar 4. 18 Wireframe halaman data faq

Gambar 4. 19 Wireframe halaman tambah faq

Gambar 4. 20 Wireframe halaman edit faq

Gambar 4. 21 Wireframe halaman profil admin

Gambar 4. 22 Wireframe halaman edit profil

Gambar 4. 23 Wireframe halaman edit password

4.4.3 *Implementation*

a. Implementasi Database

Hasil visualisasi dari *design* sebelumnya, yakni *Entity Relationship Diagram* (*ERD*) berhasil di implementasikan kedalam *Database Management System* (*DBMS*) yaitu *MySQL*. Berikut ini merupakan hasil impelementasi *database* yang ditunjukkan pada Gambar 4.24.

Gambar 4. 24 Implementasi Database

1) Tabel dataset

Gambar 4. 25 Tabel dataset

Pada Gambar 4.25, menunjukkan tabel dataset yang bertujuan untuk menampung data kecelakaan yang berguna sebagai dataset yang akan digunakan pada sistem, yang mana pada tabel ini juga berelasi dengan tabel lain, yakni tabel kecamatan. Tabel dataset terdiri dari beberapa *field*, diantaranya:

- a) Id_dataset (int) (PK)
- b) Id_kecamatan (int) (FK)
- c) Meninggal (int)
- d) Luka_berat (int)

- e) Luka_ringan (int)
- f) Jumlah_kecelakaan (int)
- g) Created_at (timestamp)
- h) Updated_at (timestamp)

2) Tabel kecamatan

Gambar 4.26 Tabel kecamatan

Pada Gambar 4.26, menunjukkan tabel kecamatan yang bertujuan untuk menampung data kecamatan yang berelasi dengan tabel lain, yakni tabel dataset. Tabel kecamatan terdiri dari beberapa *field*, diantaranya:

- a) Id_kecamatan (int) (PK)
- e) Longitute (text)
- b) Nama_kecamatan (varchar)
- f) Created_at (timestamp)

c) Geojson (longtext)

g) Updated_at (timestamp)

d) Latitude (text)

3) Tabel user

Gambar 4.27 Tabel user

Pada Gambar 4.27, menunjukkan tabel *user user* yang bertujuan untuk menampung data kecelakaan yang berguna sebagai dataset yang akan digunakan pada sistem, yang mana pada tabel ini juga berelasi dengan tabel lain, yakni tabel kecamatan. Tabel dataset terdiri dari *field*, diantaranya:

a) Id_user (int) (PK)

f) Foto (varchar)

b) Nama (varchar)

g) Status (int)

c) No_telepon (varchar)

h) Created_at (timestamp)

d) Email (varchar)

i) Updated_at (timestamp)

e) Password (varchart)

4) Tabel faq

Gambar 4.28 Tabel faq

Pada Gambar 4.28, menunjukkan tabel *faq* yang bertujuan untuk menampung data kecelakaan yang berguna sebagai dataset yang akan digunakan pada sistem, yang mana pada tabel ini juga berelasi dengan tabel lain, yakni tabel kecamatan. Tabel dataset terdiri dari *field*, diantaranya:

- a) Id_faq (int) (PK)
- b) Pertanyaan (varchar)
- c) Jawaban (varchar)
- d) Created_at (timestamp)
- e) Updated_at (timestamp)

b. Implementasi Sistem

Wireframe yang telah dihasilkan pada saat proses design, berhasil diimplementasikan kedalam sistem, mulai dari proses slicing frontend, hingga dilanjutkan penerapan algoritma K – Means Clustering kedalam sistem melalui backend menggunakan CodeIgniter sebagai framework PHP yang digunakan oleh penulis, dan Bootstrap sebagai framework dari CSS. Berikut ini merupakan hasil impelementasi sistem yang ditunjukkan pada penjelasan dibawah ini ini.

- 1) Implementasi halaman *user*
- a) Halaman beranda

Pada halaman ini yang ditunjukkan pada Gambar 4.29, terdapat beberapa section konten dari website, diantaranya section welcome page yang berisi ajakan kepada masyarakat untuk berkendara dengan aman serta penjelasan singkat tentang sistem, section information berisi deskripsi tentang sistem lebih detail serta sekumpulan informasi tentang keselamatan berkendara yang berupa narasi dan video, dan section frequently asked question berisi daftar pertanyaan serta jawaban yang sering ditanyakan dalam suatu konteks dan tentang topik tertentu.

Bagaimana suatu daerah dapat dikatakan aman?

detern sharoft/fokus: terpetral parang aliau pedikit akan. lettedinya kecelakaan lala livkas. Lantas, bagannasa kita bina mengerahui daftar daerah yang aman dan rawan

Etts, Terrorig., Kim terah hardr SC Petabaka - Jereter. malic dari yang seturi hingga rawan tarpadi kecahakaan lata mesic dari yang setuat hangsi reven hajab becaktuan Ketao di Abbajates Jerishin Illahan akan melakulan silahanng ake pengelangsakan diselah, musa tian yang amari hingga rewar akin kecalakuan terdasahun dala yang (alah diniah, kemadian selah,onya akan dispreseriacian datan berjuk pela/maps. Website na Juga meraberikan habarapa informusi berkati keselamutan dalam berkandara, sahirappa arata dapat menghindari

Apa saja yang harus dipersiapkan saat kita hendak berkendara?

Herdak berkendara, baik mengendatai sepeda motor neroes terteratus, taar mengentaan sepera mater diaupun mitik. Hel terumust merinang lengan terpeti, laman dipasi terebibat halai leagi pengendera manjun orang lahi disekhlarnya, Berdud kii merupakan tipa-dipa yang bina anka lengakan saul herubah berkentanu.

Persiapan sebelum berkendara

dan salsak pengaman.

Selalu Fokus saat berkendara

Title berrien Wil tobs beforcary alsoper upo equin.

Mematuhi aturan lalu lintas

Frequently Asked Questions

reprint wearnests on mount shallon. Managing of alternation happy

Gambar 4.29 Halaman beranda

b) Halaman basis pengetahuan

Pada halaman ini yang ditunjukkan pada Gambar 4.30, terdapat informasi mengenai metode/algoritma yang dipakai oleh penulis untuk diterapkan kedalam sistem, yakni K – Means Clustering. Informasi yang diberikan, mulai dari pengertian metode, persamaan metode, hingga langkah-langkah metode itu sendiri.

Gambar 4.30 Halaman basis pengetahuan

c) Halaman klastering

Pada halaman ini yang ditunjukkan pada Gambar 4.31, terdapat *section form submit* jumlah klaster, yang bertujuan untuk pembagian klaster/kelompok terhadap data yang ada. *User* dapat memasukkan jumlah klaster sesuai keinginan user, dimana 2 klaster merupakan jumlah minimum, dan 4 klaster merupakan batas jumlah

maksimum. Dibagian bawah juga terdapat informasi mengenai dataset yang dipakai oleh penulis.

Dataset Kecelakaan Tahun 2018 - 2019 0 0 10 . ø • 0 0 63 . n 0 . m 0 Recemeters Parceson 0 n 17 0 Kocamoten Park • 18 Kicanutas Patrang 0 0 83 • 20 Kecamatan Tanggut œ 0 8 Ø œ 0 8 0 • . • 0 œ 0 O

Gambar 4.31 Halaman klastering

POLITEKNIK JTI

0 SC Pelaina - Joseph 2021 | Design By Templata No.

d) Halaman hasil klasterisasi

Setelah melakukan klasterisasi data, maka sistem akan menampilkan proses tersebut seperti yang ditunjukkan pada gambar 4.32. Terdapat beberapa informasi pada halaman ini, diantaranya parameter yang dimasukkan *user*, seperti jumlah klaster dan proses iterasi. Kemudian tabel hasil dari pengelompokan tersebut, yang berisi daftar daerah sesuai dengan klasternya. Dan yang terakhir yakni *maps* yang berfungsi untuk merepresentasikan/mempetakan hasil dari klasterisasi tadi, sehingga *user* dapat lebih mudah memperkirakan daerah tersebut, dengan disertai detail informasi yang ada pada masing – masing kecamatan di Kabupaten Jember.

Gambar 4.32 Halaman hasil klastering

e) Halaman author

Pada halaman selanjutnya, seperti yang ditunjukkan pada Gambar 4.33, merupakan halaman yang berisi informasi terkait biodata diri dari penulis, deskripsi penulis, dan beberapa akun sosial media penulis.

Gambar 4.33 Halaman author

f) Halaman bantuan

Pada halaman bantuan, seperti yang ditunjukkan pada Gambar 4.34 berisi informasi seputar bagaimana cara mengoperasikan *website* ini, khususnya pada fitur utama yaitu klastering. Informasi yang disampaikan berupa langkah – langkah yang mudah dipahami.

Bantuan

Derhot re reespalan langkah langkah bagai mara casa ustah mengelahai saerah rawan kecalahaan pada welialisi mengelahai saerah rawan langkah pada welialisi.

2. Substantin SC PFTALDAL LISTER Annualian MB turded racin day been reveal mengament "Classifing"

2. Stelah behasil merapi kalanan Nakemasi, maka masahkar jambé permian yengeberpakan damah yang ada di Kalapaten Jembe, Masakan kembal shaber.

It shows above consecution and compare properties the end years also deficitions deviction account possible recovering control for each control of the end of the e

S SC Personals - James et 2002 | Design By Template No.

Gambar 4.34 Halaman bantuan

2) Implementasi halaman admin

a) Halaman login

Pada halaman yang ditunjukkan pada Gambar 4.35 bertujuan untuk memastikan apakah yang akan memasuki halaman panel admin merupakan seseorang yang benar – benar memiliki akses kedalam sistem ataukah tidak. Halaman *login* juga hanya diperuntukkan kepada admin, *user* untuk mengakses sistem tidak perlu *login*.

Gambar 4.35 Halaman login

b) Halaman lupa password

Pada halaman yang ditunjukkan pada Gambar 4.36 bertujuan apabila admin lupa terhadap password dari akunnya. Admin cukup memasukkan email yang sudah terdaftar pada sistem, kemudian sistem akan mengirimkan pesan yang berisi link akses ke halaman *reset* password melalui email.

Gambar 4.36 Halaman lupa password

c) Halaman reset password

Setelah email berhasil dikonfirmasi secara otomatis oleh sistem, maka admin akan menerima pesan email yang berisi informasi lebih lanjut untuk melakukan perubahan password. Setelah admin menekan tombol yang berisi link *session*, maka admin akan diarahkan ke halaman *reset* password, seperti yang ditunjukkan pada gambar 4.37.

Gambar 4.37 Halaman reset password

d) Halaman dashboard

Pada halaman yang ditunjukkan pada Gambar 4.38, berisi beberapa informasi yang berupa visualisasi dalam bentuk teks dan grafik. Informasi tersebut seperti jumlah kecelakaan, jumlah korban meninggal, jumlah korban yang mengalami luka berat dan ringan.

Gambar 4.38 Halaman dashboard

e) Halaman management user

Pada halaman yang ditunjukkan pada Gambar 4.39 berguna agar mempermudah admin untuk mengelola admin lain, seperti menambahkan admin baru ataupun menangguhkan akun admin lain.

Gambar 4.39 Halaman management user

f) Halaman tambah admin

Pada halaman yang ditunjukkan pada Gambar 4.40, merupakan bagian dari satu kesatuan fitur *management user*, yang mana memberikan akses kepada admin untuk menambahkan akun baru.

Gambar 4.40 Halaman tambah admin

g) Halaman detail admin

Pada halaman yang ditunjukkan pada Gambar 4.41, dapat memberikan informasi detail pada masing – masing akun yang ada. Halaman ini juga memberikan akses kepada admin untuk menangguhkan sebuah akun.

Gambar 4.41 Halaman detail admin

h) Halaman management data

Pada halaman yang ditunjukkan pada Gambar 4.42 merupakan halaman utama dari panel admin, dimana disini terdapat akses untuk memanipulasi dataset yang ada pada *database* sistem. Terdapat batasan pada saat hendak menambahkan data, dimana

Table of the Control of the Control

batasan tersebut disesuaikan dengan kondisi nyata, yakni tidak melebihi total 31 data sesuai jumlah kecamatan yang ada di Kabupaten Jember.

Gambar 4.42 Halaman management data

i) Halaman tambah data

Pada halaman yang ditunjukkan pada Gambar 4.43 berfungsi untuk melakukan penambahan data awal terkait data kecelakaan di setiap kecamatan.

Gambar 4.43 Halaman tambah data

j) Halaman edit data

Pada halaman yang ditunjukkan pada Gambar 4.44 berfungsi untuk melakukan perubahan data kecelakaan di masing – masing kecamatan. Perubahan dapat dilakukan apabila terdapat data yang salah ataupun pembaharuan data dari data yang baru.

Gambar 4.44 Halaman edit data

k) Halaman faq

Pada halaman yang ditunjukkan pada Gambar 4.45 merupakan fitur tambahan untuk membuat konten website halaman *user* untuk bagian *faq* menjadi dinamis. Halaman ini berfungsi untuk melakukan penambahan atau perubahan data *faq*.

Gambar 4.45 Halaman faq

1) Halaman tambah faq

Pada halaman yang ditunjukkan pada Gambar 4.46 merupakan halaman untuk admin apabila ingin menambahkan sebuah *faq* baru kedalam konten website.

Gambar 4.46 Halaman tambah faq

m) Halaman edit faq

Pada halaman yang ditunjukkan pada Gambar 4.47 bertujuan apabila admin ingin mengubah data *faq* dengan yang terbaru.

Gambar 4.47 Halaman edit faq

n) Halaman profile

Pada halaman yang ditunjukkan pada Gambar 4.48, terdapat informasi detail terkait akun yang sedang digunakan untuk *login*. Didalamnya juga terdapat beberapa aksi yang bisa dilakukan, seperti mengubah biodata diri yang ada pada akun tersebut, atau bahkan memperbaharui password akun tersebut.

Gambar 4.48 Halaman profile

o) Halaman edit profile

Pada halaman yang ditunjukkan pada Gambar 4.49, hanya beberapa data saja yang tidak dapat diubah, seperti status akun serta password. Karena status akun tidak dapat diubah melalui halaman ini, hanya dapat diubah melalui fitur *management user*. Kemudian untuk password sendiri telah disediakan halaman khusus edit password.

Gambar 4.49 Halaman edit profile

p) Halaman edit password

Pada halaman yang ditunjukkan pada Gambar 4.50 berguna apabila admin ingin melakukan perubahan password dari akun yang dimilikinya. Namun sebelum bisa

mengubahnya, admin harus memasukkan password lama sebagai bukti identifikasi akun tersebut.

Gambar 4.50 Halaman edit password

4.4.4 Verification

Setelah tahap implementasi selesai, perlu dilakukannya tahap keempat dari metode *Waterfall*, yakni *verification/testing* guna mengetahui apakah ada *error/bug* serta mengetahui apakah sistem yang dirancang dan diimplementasikan dapat memenuhi harapan atau menjawab permasalahan yang telah dijabarkan. Adapun 3 pengujian yang akan dilakukan oleh penulis, diantaranya pengujian akurasi sistem, *User Acceptance Testing* (UAT), dan *Blackbox Testing*. Masing – masing pengujian tersebut telah dijabarkan pada penjelasan dibawah ini.

a. Uji Akurasi Jarak Antar Data

Untuk mengetahui tingkat akurasi metode terhadap data yang digunakan, maka perlu dilakukan pengujian akurasi terhadap hasil akhir perhitungan dengan sistem. Hal ini juga bertujuan untuk mengetahui, apakah metode K – Means Clustering cocok untuk diimplementasikan menggunakan dataset yang diberikan pada penelitian ini atau tidak. Karena hasil metode ini dipengaruhi beberapa faktor, seperti jumlah data dengan atribut pada masing – masing data itu sendiri. Semakin banyak data yang dipakai dengan atribut yang juga banyak, maka perbandingan yang dilakukan terhadap data yang lain dengan mencari jarak terdekat antar data akan memakan proses yang lama dan hasil yang diperoleh tidak terlalu spesifik.

Pada penelitian ini, penulis menargetkan bahwa sistem dirasa cukup layak apabila hasil pengujian membuktikan berada diatas ambang 60%, sehingga mengingat kekurangan metode ini seperti yang telah dijelaskan diatas, persentase sebesar >60% masih dirasa cukup layak. Adapun sampel yang akan dijadikan acuan perbandingan,

yakni hasil dari perhitungan manual pada proses iterasi terakhir. Hasil perhitungan tersebut telah dikelompokkan sesuai tingkat kerawanan kecelakaan seperti yang ditunjukkan pada Tabel 4.15, sedangkan tabel dibawah ini menunjukkan hasil perhitungan yang diperoleh dari sistem yang telah diterapkan menggunakan metode yang sama, K – Means Clustering.

Tabel 4. 18 Hasil klastering sistem

C1	C2	C3	C4
Kaliwates	Arjasa	Ambulu	Ajung
Patrang	Gumukmas	Balung	Jenggawah
Sumbersari	Jelbuk	Bangsalsari	Kalisat
	Jombang	Puger	Kencong
	Ledokombo	Tanggul	Sumberbaru
	Mayang	Silo	Wuluhan
	Mumbulsari	Rambipuji	
	Pakusari		
	Panti		
	Semboro		
	Umbulsari		
	Sukowono		
	Sumberjambe		
	Tempurejo		
	Sukorambi		

Pada tabel 4.18 menunjukkan perbedaan 5 data / terdapat 5 *error*, sehingga untuk memperoleh hasil tingkat akurasi sistem, akan dilakukan perhitungan sebagai berikut.

Tingkat Akurasi =
$$\frac{\text{Jumlah data yang sesuai}}{\text{Jumlah data keseluruhan}} \times 100\%$$

Tingkat Akurasi = $\frac{26}{31} \times 100\%$
= 83,87%

Jadi, setelah dilakukan perhitungan dengan cara membagi jumlah data yang sesuai dengan banyaknya data secara keseluruhan, kemudian dikalikan 100%, maka diperoleh hasil sebesar 83,87%. Hal ini menunjukkan bahwa sistem sudah baik dalam melakukan klasterisasi, walaupun tingkat persentase pada metode ini tidak terlalu berpengaruh secara besar.

b. *User Acceptance Testing* (UAT)

Pengujian ini dilakukan dengan tujuan, untuk mengetahui apakan sistem yang dirancang dan diimplementasikan sudah sesuai harapan dan mampu beroprasi scara optimal atau belum. Pada pengujian tahap ini, penulis melakukan pengujian kepada 61 responden. Adapun media yang digunakan yakni menggunakan *Google Form*, dengan parameter yang digunakan sebagai tolak ukur dalam pengujian ini ada 5, diantaranya Sangat Setuju (5), Setuju (4), Netral (3), Tidak Setuju (2), dan Sangat Tidak Setuju (1). Untuk hasil detail dari responden pengisian pengujian ini dapat dilihat pada Lampiran 11, berikut ini merupakan kesimpulan akan hasil yang telah didapatkan.

Tabel 4. 19 Hasil pengujian UAT

No	Pertanyaan	Kesimpulan
1	Jumlah Responden	61 Responden
2	Jenis Kelamin	50,8% Laki – Laki dan 49,2%
		Perempuan
3	Usia	77% 17 – 25 tahun, 4,9% 26 – 35
		tahun, dan 18% >36 tahun.
4	Pekerjaan	70,5% Mahasiswa, 11,5% PNS,
		8,2% Wiraswasta, dan 9,6% memilih
		lainnya.
5	Apakah tampilan antarmuka sistem	52,5% Sangat Setuju, 32,8% Setuju,
	yang disajikan menarik untuk	13,1% Netral, dan 1,6% Tidak Setuju
	dilihat?	
6	Apakah tampilan sistem sudah	50,8% Sangat Setuju, 34,4% Setuju,
	sesuai kebutuhan?	dan 14,8% Netral
7	Apakah sistem mudah diakses?	62,3% Sangat Setuju, 27,9% Setuju,
		dan 9,8% Netral
8	Apakah sistem sudah berjalan	50,8% Sangat Setuju, 37,7% Setuju,
	dengan baik?	dan 11,5% Netral
9	Apakah menu yang disajikan sudah	45,9% Sangat Setuju, 44,3% Setuju,
	sesuai dengan konten?	dan 9,8% Netral

Tabel 4. 20 Lanjutan Hasil pengujian UAT

No	Pertanyaan	Kesimpulan
10	Apakah anda merasa mudah untuk	47,5% Sangat Setuju, 41% Setuju,
	melihat daerah rawan atau tidaknya	9,8% Netral, dan 1,6% Sangat Tidak
	kecelakaan di Kabupaten Jember?	Setuju
11	Apakah alur sistem mudah	36,1% Sangat Setuju, 49,2% Setuju,
	dipahami?	11,5% Netral, 1,6% Tidak Setuju,
		dan 1,6% Sangat Tidak Setuju
12	Apakah sistem sudah memberikan	41% Sangat Setuju, 41% Setuju,
	intruksi dengan baik dan jelas?	13,1% Netral, dan 4,9% Tidak Setuju
13	Apakah sistem ini mudah diakses	62,3% Sangat Setuju, 26,2% Setuju,
	melalui smartphone?	9,8% Netral, dan 1,6% Tidak Setuju
14	Apakah selama mengoperasikan	16,4% Netral, 44,3% Tidak Setuju,
	sistem terdapat bug/error yang	39,3% Sangat Tidak Setuju
	merugikan?	
15	Apakah sistem dapat dinilai sebagai	45,9%% Sangat Setuju, 42,6%
	penunjang informasi tambahan	Setuju, 9,8% Netral, dan 1,6% Tidak
	terkait lalu lintas berkendara?	Setuju
16	Apakah adanya sistem ini memang	61,7% Sangat Setuju, 26,7% Setuju,
	dirasa perlu sebagai informasi	10% Netral, dan 1,7% Tidak Setuju
	kepada masyarakat agar lebih	
	berhati - hati saat berkendara?	

Berdasarkan data yang ditunjukkan pada Tabel 4.12 menunjukkan bahwa, secara keseluruhan sistem telah memenuhi harapan dan dapat beroprasi secara optimal. Responden juga menilai bahwa sistem ini memang dibutuhkan dan dinilai dapat menjadi sumber informasi tambahan terkait kecelakaan yang ada di Kabupaten Jember.

c. Blackbox Testing

Pada tahap pengujian yang terakhir dilakukan oleh penulis, yakni *Blackbox Testing*, dilakukan kepada 2 responden, yakni pihak unit laka dan ahli IT yang bertujuan apakah sistem sudah sesuai dengan kebutuhan atau terdapat sesuatu yang dirasa perlu untuk ditambahkan, yakni dengan cara menjalankan sistem secara langsung.

1) Pihak Unit Laka

Tabel 4. 21 Hasil pengujian Blackbox Testing oleh unit laka

No	Fitur	Hasil yang diharapkan	Hasil
1	Beranda	Menampilkan sekumpulan informasi	Sesuai
		seputar sistem serta tata tertib	
		berkendara.	
2	Basis	Menampilkan informasi seputar	Sesuai
	pengetahuan	metode/algoritma yang diterapkan	
		kedalam sistem.	
3	Klastering	Menampilkan informasi dataset yang	Sesuai
		digunakan, serta terdapat validasi	
		yang ada pada kolom input	
4	Hasil klastering	Menampilkan parameter yang	Sesuai
		digunakan, serta menampilkan	
		pengelompokan daerah yang	
		direpresentasikan kedalam SIG	
5	Author	Menampilkan informasi biodata diri	Sesuai
		peneliti dalam sistem klastering	
6	Bantuan	Menampilkan informasi berupa	Sesuai
		langkah – langkah cara melakukan	
		pemetaan	
7	Faq	Menampilkan sekumpulan pertanyaan	Sesuai
		dan jawaban yang memiliki tingkat	
		potensi yang tinggi untuk ditanyakan	

Pada Tabel 4.21 dapat kita lihat, berdasarkan hasil pengujian yang dilakukan kepada pihak unit laka, pada tanggal 14 Maret 2022 menunjukkan bahwasanya sistem telah sesuai dengan hasil yang telah diharapkan.

2) Ahli ITTabel 4. 22 Hasil pengujian Blackbox Testing oleh ahli IT

No	Fitur	Hasil yang diharapkan	Hasil
1	Beranda	Menampilkan sekumpulan informasi	Sesuai
		seputar sistem serta tata tertib	
		berkendara.	
2	Basis	Menampilkan informasi seputar	Sesuai
	pengetahuan	metode/algoritma yang diterapkan	
		kedalam sistem.	
3	Klastering	Menampilkan informasi dataset yang	Sesuai
		digunakan, serta terdapat validasi	
		yang ada pada kolom input	
4	Hasil klastering	Menampilkan parameter yang	Sesuai
		digunakan, serta menampilkan	
		pengelompokan daerah yang	
		direpresentasikan kedalam SIG	
5	Author	Menampilkan informasi biodata diri	Sesuai
		peneliti dalam sistem klastering	
6	Bantuan	Menampilkan informasi berupa	Sesuai
		langkah – langkah cara melakukan	
		pemetaan	
7	Faq	Menampilkan sekumpulan pertanyaan	Sesuai
		dan jawaban yang memiliki tingkat	
		potensi yang tinggi untuk ditanyakan	

Pada Tabel 4.22 dapat kita lihat, berdasarkan hasil pengujian yang dilakukan kepada ahli IT, pada tanggal 14 Maret 2022 menunjukkan bahwasanya sistem telah sesuai dengan hasil yang telah diharapkan.

4.4.5 Maintenance

Pada tahap ini, merupakan tahap terakhir dari metode pengembangan yang digunakan oleh penulis, yakni *Waterfall*. Pemeliharaan (*maintenance*) telah direncanakan oleh penulis yang akan dilakukan selama 3 bulan kedepan, terkait apabila terdapat *bug/error* pada sistem ini.

4.5 Analisis dan Pembahasa

Berdasarkan hasil penelitian yang telah dilakukan, serta pembahasan yang telah dibahas diatas sebelumnya, dan juga hasil dari pengujian yang telah dilakukan, menunjukkan bahwa penelitian ini dapat dikatakan berhasil, serta dapat memenuhi target tujuan penelitian dan manfaat penelitian sebagaimana yang telah dijabarkan diatas. Dengan menggunakan data yang sama dengan yang digunakan oleh peneliti terdahulu, menunjukkan bahwa metode K-Means Clustering dinilai lebih cocok untuk diterapkan kedalam studi kasus ini dengan menggunakan data tersebut. Dengan menggunakannya metode ini, semisal terdapat pembaharuan data, peneliti maupun pihak yang mengoperasikan tidak perlu melakukan pengolahan data lagi/perhitungan manual, karena dapat langsung diterapkan kedalam sistem, sehingga tidak mempengaruhi jalannya sistem.

Hasil pengujian yang dilakukan, dengan menggunakan 3 tahap pengujian, yakni Uji akurasi jarak antar data pada setiap klaster diperoleh tingkat akurasi sebesar 83,87% dimana hal tersebut dapat dikatakan layak, kemudian *User Acceptance Testing* (UAT) dengan total 61 responden, diperoleh hasil dengan kesimpulan yang telah memenuhi harapan serta dapat beroprasi secara optimal, dan pada pengujian *Blackbox Testing* yang telah dilakukan kepada 2 responden, yakni pihak unit laka Satlantas dan ahli IT diperoleh hasil yang sesuai dengan apa yang telah diharapkan.

BAB 5. KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan pembahasan yang telah dibahas pada bab sebelumnya, maka dapat diperoleh kesimpulan akhir pada penelitian yang berjudul "Klastering Pemetaan Daerah Rawan Kecelakaan Menggunakan Metode K-Means Berbasis Sistem Informasi Geografis (Studi Kasus Di Kabupaten Jember)" adalah sebagai berikut:

- a. Peneliti berhasil melakukan analisa data kecelakaan sehingga dapat diimplementasikan oleh peneliti telah berhasil ditanamkan *Artificial Intelligence* dengan menggunakan metode *K Means Clustering*, yang membuat sistem mampu melakukan klastering terhadap daerah rawan kecelakaan. Sistem tersebut dapat memberikan *output* berupa parameter yang di *input* oleh *user*, kemudian kelompok daerah yang berhasil di klasterisasi, serta hasil tersebut direpresentasikan kedalam Sistem Informasi Geografis (SIG).
- b. Tingkat akurasi perhitungan jarak antar data pada setiap klaster dalam sistem tersebut sebesar 83,87%. Kemudian berdasarkan hasil pengujian UAT dan blackbox yang telah dilakukan kepada 61 responden dan kepada pihak unit laka Satlantas Jember serta ahli IT, diperoleh hasil yang telah sesuai dengan target atau hasil yang diharapkan diawal sehingga sistem dapat dikatakan dapat dioperasikan dengan baik.

5.2 Saran

Adapun saran yang bersifat membangun serta dapat dijadikan masukan yang bermanfaat untuk kedepannya adalah sebagai berikut :

- a. Pada penelitian ini, sistem yang dirancang masih mampu melakukan pemetaan sebatas kecamatan. Harapan kedepannya dapat melakukan pemetaan berdasarkan jalan, sehingga lebih detail.
- b. Dapat dilanjutkan pada penelitian selanjutnya, dengan menambahkan data terbaru dengan atribut data yang lainnya.
- c. Pada sistem ini, masih terbatas pada *website*. Sehingga harapan untuk peneliti selanjutnya, dapat dikembangkan juga dalam bentuk *android*.
- d. Hasil yang diperoleh, untuk saat ini total dari seluruh data yang ada pada tahun 2018 – 2019. Besar harapan kedepannya dapat dilakukan pemilihan tahun, sehingga *user* dapat mengetahui daerah mana saja yang memiliki tingkat kejadian tertinggi pada tahun – tahun tertentu.

DAFTAR PUSTAKA

- Undang Undang Republik Indonesia No. 22 tahun 2009 tentang Lalu Lintas dan Angkutan Jalan.
- Rahmasari, J. 2018. *Aplikasi Klasterisasi Daerah Rawan Kecelakaan Lalu Lintas Menggunakan Algoritma K Means*. Skripsi. Fakultas Sains dan Matematika Universitas Dipenogoro.
- Novia, S.D.A. 2021. Perancangan Sistem Informasi Geografis Pemetaan Daerah Rawan Kecelakaan di Kabupaten Jember. Skripsi. Jurusan Teknologi Informasi Politeknik Negeri Jember.
- Purwaningsih, E. 2019. *ANALISIS KECELAKAAN BERLALU LINTAS DI KOTA JAKARTA DENGAN MENGGUNAKAN METODE K MEANS*. Jurnal Ilmu Pengetahuan dan Teknologi. Vol 5 (1): 1 6.
- BPS Republik Indonesia. 2021. Jumlah Kecelakaan, Korban Mati, Luka Berat, Luka Ringan, dan Kerugian Materi yang Diderita tahun 1992 2018. Retrived from https://www.bps.go.id/linkTableDinamis/view/id/1134. [27 Juni 2021].
- BPS Kabupaten Jember. 2021. BPS Rilis Hasil SP 2020, Ini Jumlah Penduduk Jember. Retrived from https://www.jemberkab.go.id/bps-rilis-hasil-sp-2020-ini-jumlah-penduduk-jember/. [27 Juni 2021]
- Aprianti, W., Permadi, J. 2018. *K MEANS CLUSTERING UNTUK DATA KECELAKAAN LALU LINTAS JALAN RAYA DI KECAMATAN PELAIHARI*.

 Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK). Vol 5 (5): 613 620.
- Fajar, I. 2020. *Analisis Aplikasi Mobile JKN Menggunakan Metode Usability Testing*. Skripsi. Jurusan Teknologi Informasi Politeknik Negeri Jember.
- Puspita, K.D., Kriswardhana, W., Hayati, N.N. 2020. *ANALISIS KARAKTERISTIK*DAN BIAYA KECELAKAAN LALU LINTAS DI KABUPATEN JEMBER.

 Paduraksa. Vol 9 (2): 229 238.
- BAPPEDA Provinsi Jawa Timur. 2013. Potensi Kabupaten Jember 2013. Retrieved from http://bappeda.jatimprov.go.id/bappeda/wp-content/uploads/potensi-kab-kota-2013/kab-jember-2013.pdf. [21 Juli 2021]
- Dendy, Wicaksono dan Fathurochman, R. Akbar. 2014. *Analisis Kecelakaan Lalu Lintas (Studi Kasus: Jalan Raya Ungaran-Bawen)*. Jurusan Teknik Sipil Universitas Dipenogoro.

- Susianto, D., Guntoro, R.A. 2017. RANCANG BANGUN SISTEM INFORMASI GEOGRAFIS DAERAH TITIK RAWAN KECELAKAAN DI PROVINSI LAMPUNG. Jurnal Cendikia. Vol 14 (1): 19 25.
- Nelfira, Saputra, H., Jelita, S. 2018. *Sistem Informasi Geografis Pemetaan Titik Daerah Rawan Kecelakaan di Sumatera Barat Berbasis Web*. Indonesian Journal of

 Computer Science. Vol 7 (1): 1 18.
- Xu, R., Damelin, S., Nadler, B., Wunsch, D.C.II. 2009. Clustering of High Dimensional Gen Expression Data With Feature Filtering Methods and Diffusion Maps. Artificial Intelligence in Medicine, Science Direct. Vol 48: 91 98.
- GuruPendidikan.CO.ID., A. (2021). Sistem Informasi Geografis (SIG) Pengertian, Subsistem, Komponen, Cara Kerja, Sejarah, Manfaat, Contoh. Gurupendidikan.Co.Id. Retrieved from https://www.gurupendidikan.co.id/sistem-informasi-geografis/.
- Imtihan, K., Fahmi, H. 2020. *ANALISIS DAN PERANCANGAN SISTEM INFORMASI DAERAH RAWAN KECELAKAAN DENGAN MENGGUNAKAN GEOGRAPHIC INFORMATION SYSTEM (GIS)*. MISI (Jurnal Manajemen Informatika & Sistem Informasi). Vol 3 (1): 16 23.
- Rahmat, B.C.T.I., Gafar, A.A., Fajriani, N., Ramdani, U., Uyun, F.R., Purnamasari, Y., Ransi, N. 2017. *IMPLEMENTASI K MEANS CLUSTERING PADA RAPIDMINER UNTUK ANALISIS DAERAH RAWAN KECELAKAAN*. Seminar Nasional Riset Kuantitatif Terapan 2017.
- Yustanti, W., Rahmawati, N., Yamasari, Y. 2020. *Klastering Wilayah Kota/Kabupaten Berdasaran Data Persebaran Covid-19 di Propinsi Jawa Timur dengan Metode K-Means*. JIEET (Journal Information Engineering and Educational Technology). Vol 4 (1): 1 9.
- Putri, C.E. 2014. ANALISIS KARAKTERISTIK KECELAKAAN DAN FAKTOR PENYEBAB KECELAKAAN PADA LOKASI BLACKSPOT DI KOTA KAYU AGUNG. Jurnal Teknik Sipil dan Lingkungan. Vol 2 (1): 154 161.
- Pusdiklat Perhubungan Darat tahun 1998 tentang Sistem Transportasi Kota.
- Latukolan, M. L. A., Arwan, A. and Ananta, M. T. 2019. *Pengembangan Sistem Pemetaan Otomatis Entity Relationship Diagram Ke Dalam Database*. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer. Vol 3 (4). pp. 4058–4065. Retrieved from http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/5117. [13 Maret 2022]

- Arifin, M. N. and Siahaan, D. 2020. *Structural and Semantic Similarity Measurement of UML Use Case Diagram*. Lontar Komputer: Jurnal Ilmiah Teknologi Informasi. Vol 11 (2). pp. 88. doi: 10.24843/lkjiti.2020.v11.i02.p03.
- Sasmito, G. W. 2017. *Penerapan Metode Waterfall Pada Desain Sistem Informasi Geografis Industri Kabupaten Tegal*. Jurnal Informatika:Jurnal Pengembangan IT (JPIT). Vol 2 (1). pp. 6–12.
- Hady, E. L., Haryono, K. and Rahayu, N. W. 2020. *User Acceptance Testing (UAT)*pada Purwarupa Sistem Tabungan Santri (Studi Kasus: Pondok Pesantren AlMawaddah). Jurnal Ilmiah Multimedia dan Komunikasi. Vol 5. pp. 1–10.

LAMPIRAN

Lampiran 1 Surat izin survey penelitian

Kode Dokumen : FR-AUK-024 Revisi : 0

KEMENTERIAN PENDIDIKAN, KEBUDAYAAN, RISET, DAN TEKNOLOGI POLITEKNIK NEGERI JEMBER

Jalan Mastrip Kotak Pos 164 Jember 68101 Telp (0331) 333532-34; Faksimile 333531 Email : politeknik@polije.ac.id; Laman : www.polije.ac.id

Nomor : 2702 / PL17 / PP / 2022

24 Februari 2022

Perihal : Permohonan Ijin Survei

Kepada Yth. Kasatlantas Jember Jl. Letjen Panjaitan No. 40, Sumbersari, Jember Di

Tempat

Dalam rangka penyelenggaraan pendidikan Politeknik Negeri Jember yang berorientasi pada pendidikan profesional, mahasiswa wajib melaksanakan Tugas Akhir / Skripsi sebagai salah satu syarat kelulusan.

Schubungan dengan hal tersebut mohon Bapak / Ibu berkenan mengijinkan mahasiswa kami dari Program Studi D4 Teknik Informatika melakukan survei guna mendapatkan data dan informasi yang kompeten sesuai dengan bidang kajiannya di Instansi / perusahaan yang Bapak / Ibu pimpin.

Adapun mahasiswa yang dimaksud adalah:

Nama Mahasiswa	NIM	Judul Skripsi
Andrea Santana Adzani	E41180362	Klastering Pemetaan Daerah Rawan Kecelakaan Menggunakan Metode K- Means Berbasis Sistem Informasi Geografis (Studi Kasus di Kabupaten Jember)

Konfirmasi kesediaan Bapak/Ibu untuk menerima ijin survey mahasiswa kami dapat disampaikan pada Sdra. Ery Setiyawan Jullev Atmaji S.Kom, M.Cs dengan no Hp. 0856 4880 7492 selaku Koordinator Bidang Tugas Akhir/Skripsi Program Studi D4 Teknik Informatika Politeknik Negeri Jember.

Demikian atas kebijakan dan kerjasama yang baik dari Bapak/Ibu dalam turut serta menunjang peningkatan keterampilan anak didik kami, diucapkan terima kasih.

Bidang Akademik

eno, S Kom, M.Kom 197907032003121001

Smart, Innovative, Professional

Lampiran 2 Dokumentasi pengajuan surat izin survey kepada Ka Satlantas

Lampiran 5 Data kecelakaan tahun 2018 – 2019

Lampiran 6 Perhitungan Manual *K – Means*

a. Iterasi 1

1) Titik centroid awal

ID	Meninggal Dunia	Luka Berat	Luka Ringan	Jumlah	Centroid
5	40	0	145	108	C1
14	14	0	44	41	C2
22	32	7	128	110	C3
28	11	1	48	41	C4

,	2 2					
ID	C1	C2	C3	C4	Min	Hasil
1	66,40783086	59,89991653	51,00980298	57,49782605	51,00980298	C3
2	24,77902339	146,2190138	37,86819246	143,4642813	24,77902339	C1
3	114,3066052	10,48808848	100,7273548	10,86278049	10,48808848	C2
4	43,70354677	81,24038405	29,96664813	78,90500618	29,96664813	C3
5	0	123,9596709	20,14944168	121,4084017	0	C1
6	104,1441309	20,34698995	90,58697478	19,23538406	19,23538406	C4
7	128,4172886	5,385164807	114,9565135	7,280109889	5,385164807	C2
8	70,69653457	56,32051136	55,47972603	54,46099522	54,46099522	C4
9	117,7285012	12,24744871	104,3934864	7,211102551	7,211102551	C4
10	62,5299928	62,8171951	49,11211663	59,81638571	49,11211663	C3
11	178,1179385	299,2089571	189,1824516	296,6175989	178,1179385	C1
12	92,49864864	32,40370349	78,54934755	30,85449724	30,85449724	C4
13	117,3456433	20,04993766	105,3185644	15,8113883	15,8113883	C4
14	123,9596709	0	110,408333	5,099019514	0	C2
15	97,23168208	28,80972058	84,4985207	25,17935662	25,17935662	C4
16	122,2374738	6	108,5633456	9,899494937	6	C2
17	97,39609848	28,94822965	83,82123836	25,25866188	25,25866188	C4
18	83,22860085	203,7523006	94,59915433	200,9004729	83,22860085	C1
19	31,95309062	93,45052167	19,5192213	90,65870063	19,5192213	C3
20	24,18677324	106,606754	7,280109889	104,3407878	7,280109889	C3
21	136,011029	12,4498996	122,5765067	15	12,4498996	C2
22	20,14944168	110,408333	0	107,8795625	0	C3
23	139,1905169	15,42724862	125,6423495	18,05547009	15,42724862	C2
24	99,82985525	24,85960579	85,74380444	22,58317958	22,58317958	C4
25	73,44385611	51,96152423	61,88699379	48,88762625	48,88762625	C4
26	31,41655614	96,79359483	18,52025918	94,7892399	18,52025918	СЗ

27	84,46300966	202,6968179	94,14881837	199,7948948	84,46300966	C1
28	121,4084017	5,099019514	107,8795625	0	0	C4
29	129,6880873	9,539392014	116,691902	9,848857802	9,539392014	C4
30	99,78977904	24,41311123	86,03487665	22,04540769	22,04540769	C4
31	90,03888049	36,37306696	75,69015788	33,24154028	33,24154028	C4

3) Menghitung centroid baru

C1	C2	C3	C4
36	14	28,85714286	14,84615385
2,4	0,5	2,714285714	0,769230769
195,4	41,33333333	47,85714286	64,61538462
161,4	38,83333333	95,14285714	53,23076923

b. Iterasi 2

1) Titik centroid baru

1	21	3			
		3	87	82	C3
2	34	0	162	125	C1
3	19	0	50	48	C2
4	30	0	106	91	C3
5	40	0	145	108	C1
6	21	0	58	54	C4
7	11	0	42	37	C2
8	25	1	81	82	C4
9	7	1	54	41	C4
10	18	1	96	76	C3
11	51	8	266	238	C1
12	23	1	66	63	C4
13	7	0	61	33	C4
14	14	0	44	41	C2
15	13	0	71	51	C4
16	19	1	43	44	C2
17	10	1	69	55	C4
18	31	1	204	166	C1
19	26	2	120	94	C3
20	36	6	122	110	C3
21	11	1	36	32	C2

22	32	7	128	110	C3
23	10	1	33	31	C2
24	16	1	62	58	C4
25	21	1	91	62	C4
26	39	0	114	103	C3
27	24	3	200	170	C1
28	11	1	48	41	C4
29	11	1	44	32	C4
30	17	1	63	56	C4
31	11	1	72	64	C4

ID	C1	C2	C3	C4	Min	Hasil
1	135,2045857	63,27760706	42,0323005	37,03492674	37,03492674	C4
2	49,50030303	149,6174752	118,1264456	122,4828451	49,50030303	C2
3	185,1903885	13,57898703	48,28634826	16,08777698	13,57898703	C2
4	113,9749095	84,61317208	58,36461746	58,04680829	58,04680829	C3
5	73,5763549	127,3069344	98,65886391	100,4721988	73,5763549	C1
6	175,055077	23,6020244	43,18233766	9,100360875	9,100360875	C4
7	199,0921395	3,613247231	61,16488255	28,1118855	3,613247231	C2
8	139,6949534	59,64943885	35,90264614	34,63059495	34,63059495	C4
9	187,9709552	14,64202475	58,73548453	17,99704118	14,64202475	C2
10	132,2856001	66,22730219	52,96225071	38,90285276	38,90285276	C4
11	105,3958253	302,6015899	261,7493348	275,7803774	105,3958253	C1
12	163,0885649	35,68924519	37,4108464	12,80208933	12,80208933	C4
13	188,1400542	21,68076464	67,22775787	22,01156232	21,68076464	C2
14	194,6994607	3,472111109	56,34206751	23,99778096	3,472111109	C2
15	167,9234349	32,0840909	52,3736575	7,052633903	7,052633903	C4
16	193,1307329	7,397447007	52,338186	23,86921961	7,397447007	C2
17	167,2599175	32,29637063	49,16299421	6,774473494	6,774473494	C4
18	11,04898185	207,1739741	171,490108	180,0165837	11,04898185	C1
19	101,6271617	96,84036119	72,21198951	69,68148158	69,68148158	C4
20	89,67987511	109,9365979	76,02443216	83,60972311	76,02443216	C3
21	206,8324926	9,18634252	66,70403714	35,83897254	9,18634252	C2
22	84,98164508	113,7631555	81,68143695	87,02546726	81,68143695	C3
23	209,8949261	12,12664651	68,50964479	38,95225419	12,12664651	C2
24	169,9678793	28,26167409	41,80738144	5,565106845	5,565106845	C4

25	144,9368138	55,25144543	54,99480495	28,47754228	28,47754228	C4
26	100,2560721	100,1152114	67,43038738	74,16074816	67,43038738	C3
27	15,47514136	206,1214583	169,6311124	179,0330041	15,47514136	C1
28	191,9632256	7,641262258	57,0375816	20,98830331	7,641262258	C2
29	200,7318609	7,940752833	65,75495636	29,84268418	7,940752833	C2
30	170,2993834	27,80987035	43,64630569	3,869161951	3,869161951	C3
31	159,1894469	39,78763069	43,29632119	13,6145154	13,6145154	C3

3) Menghitung centroid baru

C1	C2	C3	C4
36,5	14	27,5	19,4
3	0,545454545	2,5	1,1
203,75	56,09090909	100,8333333	80,1
170,5	45,90909091	89	67,7

c. Iterasi 3

1) Titik centroid baru

ID	Meninggal Dunia	Luka Berat	Luka Ringan	Jumlah	Hasil Klaster
1	21	3	87	82	C4
2	34	0	162	125	C2
3	19	0	50	48	C2
4	30	0	106	91	C3
5	40	0	145	108	C1
6	21	0	58	54	C4
7	11	0	42	37	C2
8	25	1	81	82	C4
9	7	1	54	41	C2
10	18	1	96	76	C4
11	51	8	266	238	C1
12	23	1	66	63	C4
13	7	0	61	33	C2
14	14	0	44	41	C2
15	13	0	71	51	C4
16	19	1	43	44	C2
17	10	1	69	55	C4
18	31	1	204	166	C1
19	26	2	120	94	C4

20	36	6	122	110	C3
21	11	1	36	32	C2
22	32	7	128	110	C3
23	10	1	33	31	C2
24	16	1	62	58	C4
25	21	1	91	62	C4
26	39	0	114	103	C3
27	24	3	200	170	C1
28	11	1	48	41	C2
29	11	1	44	32	C2
30	17	1	63	56	C3
31	11	1	72	64	C3

No	C1	C2	C3	C4	Min	Hasil
1	147,3195931	48,0931431	16,81847529	16,07078094	16,07078094	C4
2	61,87537879	133,6877143	71,31522356	101,0211364	61,87537879	C1
3	197,3843016	8,171205238	65,90544574	35,99263814	8,171205238	C2
4	126,2004853	69,14047265	6,572248051	36,43171695	6,572248051	C3
5	85,90146972	111,5186305	49,74127506	79,13071464	49,74127506	C3
6	187,2553404	10,88140426	55,75118335	26,07431687	10,88140426	C2
7	211,2925993	16,94765885	80,27366387	49,65752712	16,94765885	C2
8	151,7763569	45,21308594	21,23349032	15,38408268	15,38408268	C4
9	200,1738307	8,813494537	70,14172161	39,34297904	8,813494537	C2
10	144,5218409	50,14384268	16,87782898	17,990831	16,87782898	C3
11	93,09437416	287,0284203	223,7488051	254,1792084	93,09437416	C1
12	175,2642648	21,7139556	43,72483403	15,29280877	15,29280877	C4
13	200,4072416	15,493267	71,75788768	41,51951348	15,493267	C2
14	206,8950519	13,06088729	75,64739108	45,23792657	13,06088729	C2
15	180,1778635	15,79543819	50,5027502	20,09651711	15,79543819	C2
16	205,31211	14,15002263	73,78478464	44,0257879	14,15002263	C2
17	179,4549038	16,29404394	49,7781188	19,30984205	16,29404394	C2
18	7,386643351	191,2802453	128,7899884	158,5833219	7,386643351	C1
19	113,9191051	80,89019187	19,87111248	48,25007772	19,87111248	C3
20	101,747543	94,68582237	31,20140666	62,00379021	31,20140666	C3
21	219,0355279	24,62344512	87,90256601	57,35738836	24,62344512	C2
22	97,13167609	98,20500568	34,9217379	65,40084097	34,9217379	C3

23	222,0857098	27,77908721	90,96076688	60,44559537	27,77908721	C2
24	182,1361098	13,61301031	51,02477612	20,81513872	13,61301031	C2
25	157,2547694	39,07388636	29,49905837	12,40443469	12,40443469	C4
26	112,3679781	85,07721335	22,53577403	52,73205856	22,53577403	C3
27	13,05995789	190,3008275	128,0918724	157,6897904	13,05995789	C1
28	204,1630782	9,938239031	73,27933618	42,58955271	9,938239031	C2
29	212,970802	18,67778103	82,17985019	51,46134472	18,67778103	C2
30	182,4967465	12,60034107	51,31141307	20,85833167	12,60034107	C2
31	171,3317323	24,28140805	41,60361897	12,24214034	12,24214034	C4

3) Menghitung centroid baru

C1	C2	C3	C4
35	14,25	31,57142857	20,2
3	0,625	2,285714286	1,4
208	61,375	118,7142857	79,4
174,75	51,25	98,85714286	70,6

d. Iterasi 4

1) Titik centroid baru

ID	Meninggal Dunia	Luka Berat	Luka Ringan	Jumlah	Hasil Klaster
1	21	3	87	82	C4
2	34	0	162	125	C1
3	19	0	50	48	C2
4	30	0	106	91	C3
5	40	0	145	108	C3
6	21	0	58	54	C2
7	11	0	42	37	C2
8	25	1	81	82	C4
9	7	1	54	41	C2
10	18	1	96	76	C3
11	51	8	266	238	C1
12	23	1	66	63	C4
13	7	0	61	33	C2
14	14	0	44	41	C2
15	13	0	71	51	C2
16	19	1	43	44	C2
17	10	1	69	55	C2

18	31	1	204	166	C1
19	26	2	120	94	C3
20	36	6	122	110	C3
21	11	1	36	32	C2
22	32	7	128	110	C3
23	10	1	33	31	C2
24	16	1	62	58	C2
25	21	1	91	62	C4
26	39	0	114	103	C3
27	24	3	200	170	C1
28	11	1	48	41	C2
29	11	1	44	32	C2
30	17	1	63	56	C2
31	11	1	72	64	C4

ID	C1	C2	C3	C4	Hasil
1	153,0998449	40,66209845	37,44628806	13,81738036	C4
2	67,83113223	126,3127319	50,67765277	99,87251874	C3
3	203,2106358	12,76347327	86,4370716	37,12842577	C2
4	132,1062546	61,80539014	15,20136943	34,95311145	C3
5	91,97044362	104,293606	29,16840617	78,07765365	C3
6	193,0946983	8,056441522	76,25855589	27,13153147	C2
7	217,062347	24,27769038	100,6965537	51,13042147	C2
8	157,5930281	38,03164801	41,84934106	12,47878199	C4
9	205,8957564	14,56558444	90,22635933	41,17912092	C2
10	150,2949184	42,72769886	34,98891953	17,5988636	C4
11	87,43890724	279,5566244	203,6269598	252,6549426	C1
12	181,1078753	15,36737616	64,34013569	15,66269453	C4
13	206,1433057	19,65085876	90,97846796	43,91491774	C2
14	212,6853603	20,18430702	96,14391848	46,58025333	C2
15	185,9463968	9,729144361	70,12190551	22,55038802	C2
16	211,1410962	20,32009473	94,34857212	45,1012195	C2
17	185,1757611	9,508220128	69,72760411	21,3475994	C2
18	10,60954759	183,8209897	108,553194	157,2994596	C1
19	119,7771368	73,5146669	7,507819053	47,22202876	C3
20	107,6966225	87,34361024	12,97564437	60,31517222	C3

21	224,8145069	32,01806131	108,334516	58,80748252	C2
22	103,0415572	90,80834901	15,25765114	63,91337888	C3
23	227,8553543	35,11988397	111,4383695	61,84917138	C2
24	187,9137103	7,011151831	71,62359091	21,89337799	C2
25	163,0998544	32,23206866	47,32799146	14,46789549	C4
26	118,3598855	77,8486111	9,989790707	51,01293953	C3
27	14,40702953	182,8090705	108,2890124	156,3384789	C1
28	209,9263264	17,16555417	93,66320472	44,12391642	C2
29	218,7545714	26,13725789	102,3569186	53,17819102	C2
30	188,2938196	5,736396953	71,79690744	22,19279162	C2
31	177,0354837	16,91615352	61,82298628	13,53218386	C4

3) Menghitung centroid Akhir

C1	C2	C3	C4
35,33333333	13,13333333	33,85714286	19,83333333
4	0,6	2,142857143	1,333333333
223,3333333	51,86666667	128,1428571	82,16666667
191,3333333	43,6	105,8571429	71,5

e. Iterasi 5

1) Titik centroid akhir

ID	Meninggal Dunia	Luka Berat	Luka Ringan	Jumlah	Hasil Klaster
1	21	3	87	82	C4
2	34	0	162	125	C3
3	19	0	50	48	C2
4	30	0	106	91	C3
5	40	0	145	108	C3
6	21	0	58	54	C2
7	11	0	42	37	C2
8	25	1	81	82	C4
9	7	1	54	41	C2
10	18	1	96	76	C4
11	51	8	266	238	C1
12	23	1	66	63	C4
13	7	0	61	33	C2
14	14	0	44	41	C2
15	13	0	71	51	C2

16	19	1	43	44	C2
17	10	1	69	55	C2
18	31	1	204	166	C1
19	26	2	120	94	C3
20	36	6	122	110	C3
21	11	1	36	32	C2
22	32	7	128	110	C3
23	10	1	33	31	C2
24	16	1	62	58	C2
25	21	1	91	62	C4
26	39	0	114	103	C3
27	24	3	200	170	C1
28	11	1	48	41	C2
29	11	1	44	32	C2
30	17	1	63	56	C2
31	11	1	72	64	C4

ID	C1	C2	C3	C4	Min	Hasil Klaster
1	175,348225	52,69303138	49,27411872	11,73669459	11,73669459	C4
2	90,44150964	138,5319057	38,95339968	97,14979842	38,95339968	C3
3	225,5474821	7,590930261	98,38232378	39,86748884	7,590930261	C2
4	154,5261574	73,90549521	27,02795227	32,45638099	27,02795227	C3
5	114,535293	116,3759234	18,19564873	75,42380261	18,19564873	C3
6	215,4460489	14,4229755	88,19910222	29,89007639	14,4229755	C2
7	239,3922861	12,07568724	112,6451898	53,69745494	12,07568724	C2
8	179,8008157	49,64160441	53,5851411	11,76506127	11,76506127	C4
9	228,2228443	7,006346329	102,1088855	43,45591636	7,006346329	C2
10	172,6991604	54,9668587	46,66226899	14,66571967	14,66571967	C4
11	65,26612189	291,775751	191,8189516	250,0654914	65,26612189	C1
12	203,4313971	25,95423322	76,27354103	18,54049622	18,54049622	C4
13	228,5614432	15,28906654	102,6753354	45,79028281	15,28906654	C2
14	235,014184	8,35197914	108,0988776	49,22143842	8,35197914	C2
15	208,359465	20,52369904	81,94037155	24,36014505	20,52369904	C2
16	233,4587758	10,6468566	106,2904185	47,86526228	10,6468566	C2
17	207,5002008	20,82039598	81,57693251	23,28984042	20,82039598	C2
18	32,30067079	196,0757223	96,8552465	154,5911274	32,30067079	C1

19	142,2767257	85,73110417	16,39063944	44,45315887	16,39063944	C3
20	129,953838	99,39662413	8,623650442	57,89717898	8,623650442	C3
21	247,1477291	19,77428184	120,2869019	61,39828988	19,77428184	C2
22	125,3940456	102,9667692	6,650149607	61,34397553	6,650149607	C3
23	250,1686098	22,90608847	123,3945886	64,4547645	22,90608847	C2
24	210,211798	17,8443891	83,57851008	24,57132475	17,8443891	C2
25	185,6169892	43,95477474	58,90376101	13,02881422	13,02881422	C4
26	140,6627172	89,76834384	15,46688365	48,73140671	15,46688365	C3
27	33,60059523	195,0494524	96,82795599	153,6459675	33,60059523	C1
28	232,2563239	5,140255074	105,6081514	46,64493542	5,140255074	C2
29	241,1403464	14,18293184	114,2744637	55,63347314	14,18293184	C2
30	210,634755	17,11204904	83,7543785	24,81431039	17,11204904	C2
31	199,2904079	28,74408152	73,6735768	15,41914395	15,41914395	C4

3) Hasil akhir

C1	C2	C3	C4
Kaliwates	Arjasa	Ambulu	Ajung
Patrang	Gumukmas	Balung	Jenggawah
Sumbersari	Jelbuk	Bangsalsari	Kalisat
	Jombang	Puger	Kencong
	Ledokombo	Tanggul	Sumberbaru
	Mayang	Silo	Wuluhan
	Mumbulsari	Rambipuji	
	Pakusari		
	Panti		
	Semboro		
	Umbulsari		
	Sukowono		
	Sumberjambe		
	Tempurejo		
	Sukorambi		

Lampiran 8 Dokumentasi pengujian sistem bersama ahli IT

Direction Sepado pengoji, selection tempor Vermalis (disensis in semis tertubri lishulu temporatrushus suura ager diput temporat perpensar pengolish (disensis internative lishulu temporatrushus suura ager diput temporat perpensar pengolish (disensis internative lishulu lishulu diput temporatrushus suura ager diput temporatrushus lishulu lishulu diput diput temporatrushus lishulu lishulu diput temporatrushus suura pengolishulu suura pengolishulu suura penduru suura pengolishulu suura pendurus suura s

Lampiran 9 Hasil pengujian oleh unit laka dan ahli IT

Lampiran 10 Broadcast penyebaran pengujian UAT

Assalamualaikum Warahmatullahi Wabarakatuh,

Perkenalkan saya Andrea Santana Adzani Mahasiswa angkatan 2018 Program Studi D4 - Teknik Informatika Jurusan Teknologi Informasi Politeknik Negeri Jember.

Saat ini saya sedang melakukan penelitian Tugas Akhir/Skripsi dengan judul "KLASTERING PEMETAAN DAERAH RAWAN KECELAKAAN MENGGUNAKAN METODE K-MEANS BERBASIS SISTEM INFORMASI GEOGRAFIS (STUDI KASUS DI KABUPATEN JEMBER)"

Mohon partisipasinya untuk mengisi kuesioner. Sebelum mengisi kuesioner, mohon dapat membuka dan mengoperasikan website SC - Petalaka Jember terlebih dahulu.

Link website:

https://scpetalaka-jember.devliffe.com/

Link kuesioner:

https://forms.gle/2fHDSXFYd31ERbZW9

Data yang diperoleh bersifat rahasia dan hanya digunakan untuk keperluan penelitian. Atas kesediaan Anda mengisi kuesioner ini saya ucapkan terima kasih banyak 🖧

Wassalamualaikum Warahmatullahi Wabarakatuh.

Lampiran 11 Hasil wawancara dengan pihak unit laka

Nama	: Putrawan Anasta
Umur	: 32 Tahun
Status	: Unit laka Satlantas Jember
Alamat	: Jember

Pertanyaan : Tanya: Apakah sudah ada sistem pemetaan untuk daerah rawan kecelakaan di kabupaten jember kepada masyarakat?

> Jawab: Untuk sistem pemetaan sendiri sebenarnya sudah ada, namun khusus pihak internal Satlantas. Untuk masyarakat sendiri masih belum ada.

> **Tanya**: Apakah di sistem tersebut sudah dapat mengelompokkan daerah rawan secara otomatis?

Jawab: Sepertinya belum mas, karena kita masih perlu input manual.

Tanya: Untuk menentukan kategori tingkat rawan sendiri dari pihak Satlantas digolongkan berapa kategori?

Jawab: Untuk kategori tingkat rawan, kami menentukan 4 diantaranya Sangat rawan, rawan, sedang, dan tidak rawan.

Tanya: Untuk parameter penentu daerah rawan tidaknya ditentukan berdasarkan apa?

Jawab: Parameter yang kami gunakan untuk menentukan daerah tersebut rawan atau tidak sesuai pada data ini mas (memperlihatkan data kecelakaan). Jadi seperti yang ada disini, faktor utama yakni jumlah kejadian, kemudian diikuti jumlah korban meninggal, luka berat, dan luka ringan.

Tanya: Ohh baik pak, untuk datanya apakah saya boleh minta untuk keperluan penelitian saya?

Jawab: Boleh mas, data yang diperlukan dari tahun berapa?

Tanya: Sebenarnya butuh data tahun 2018 – 2019, namun apakah boleh minta hingga data saat ini?

Jawab: Boleh mas.

Lampiran 12 Hasil pengujian UAT

a. Jenis kelamin dan usia responden

b. Pekerjaan responden

c. Persentase jawaban

