Special applications: Face recognition & Neural style transfer

Quiz, 10 questions

persor	erification requires comparing a new picture against one n's face, whereas face recognition requires comparing a new e against K person's faces.					
	True					
False						
1 poin	t					
2.						
_	o we learn a function $d(img1,img2)$ for face verification? all that apply.)					
	Given how few images we have per person, we need to apply transfer learning.					
/	We need to solve a one-shot learning problem.					
~	This allows us to learn to recognize a new person given just a single image of that person.					
	This allows us to learn to predict a person's identity using a softmax output unit, where the number of classes equals the number of persons in the database plus 1 (for the final "not in database" class).					

Special applications: Face recognition & Neural style transfer

Quiz, 10 questions

3.

In order to train the parameters of a face recognition system, it would be reasonable to use a training set comprising 100,000 pictures of 100,000 different persons.

True

False

1 point

4.

Which of the following is a correct definition of the triplet loss? Consider that $\alpha>0$. (We encourage you to figure out the answer from first principles, rather than just refer to the lecture.)

- $\max(||f(A) f(N)||^2 ||f(A) f(P)||^2 \alpha, 0)$
- $max(||f(A)-f(P)||^2-||f(A)-f(N)||^2-lpha,0)$
- $\bullet \quad max(||f(A) f(P)||^2 ||f(A) f(N)||^2 + \alpha, 0)$
- $\max(||f(A)-f(N)||^2-||f(A)-f(P)||^2+lpha,0)$

1 point

Consider the following Siamese network architecture: Special applications: Face recognition & Neural style transfer

Quiz, 10 questions

The upper and lower neural networks have different input images, but have exactly the same parameters.

U III	е

\bigcirc 1	False
--------------	-------

1 point

6.

You train a ConvNet on a dataset with 100 different classes. You wonder if you can find a hidden unit which responds strongly to pictures of cats. (I.e., a neuron so that, of all the input/training images that strongly activate that neuron, the majority are cat pictures.) You are more likely to find this unit in layer 4 of the network than in layer 1.

True
False

1 point

7.

Neural style transfer is trained as a supervised learning task in which the goal is to input two images (x), and train a network to output a new, synthesized image (y).

Special appl	True lications: Face recognition & Neural style transfer
Quiz, 10 questions	lications: Face recognition & Neural style transfer
	$\begin{array}{c} \textbf{1} \\ \textbf{point} \\ \\ \textbf{8}. \\ \\ \textbf{In the deeper layers of a ConvNet, each channel corresponds to a} \\ \textbf{different feature detector. The style matrix } G^{[l]} \\ \textbf{measures the} \\ \textbf{degree to which the activations of different feature detectors in} \\ \textbf{layer } l \\ \textbf{vary (or correlate) together with each other.} \\ \hline & \textbf{True} \\ \hline & \textbf{False} \\ \\ \hline \end{array}$
	1 point
	9. In neural style transfer, what is updated in each iteration of the optimization algorithm?
	The neural network parameters
	The regularization parameters
	lacksquare The pixel values of the generated image G
	igcup The pixel values of the content image C

point

10. You are working with 3D data. You are building a network layer On the style to the style t

Special app	You ar likati	e working with 3D data. You are building a network layer APS: VIAGE TESOSDITION & MEWIDINSTYLE tran	sfer		
Quiz, 10 questions	channels), and applies convolutions with 32 filters of dimension 3x3x3 (no padding, stride 1). What is the resulting output volume?				
		Undefined: This convolution step is impossible and cannot be performed because the dimensions specified don't match up.			
		30x30x30x32			
		30x30x30x16			
	<u></u>	I, Ashish Jagadish , understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account.			
		Learn more about Coursera's Honor Code			
		Submit Quiz			

