The main reference is the *Introduction of Commutative Algebra* by Atiyah&Macdonald (for short, I will call it A&M from now on.). This article can be seem as the answers of some problems on the prime spectrum of A&M. Throughout this article the word "ring" shall mean a commutative ring with an identity element.

Proposition 1. Ex 1.15:

Let A be a ring and let X be the set of all prime ideals of A. For each subset E of A, let V(E) denote the set of all prime ideals of A which contain E, then the sets V(E) satisfy the axioms for closed sets in a topological space.

Proof. We shall prove this proposition in four parts:

- (0) if \mathfrak{a} is the ideal generated by E, then $V(E) = V(\mathfrak{a}) = V(r(\mathfrak{a}))$.
- (1) V(0) = X and $V(1) = \emptyset$.
- (2) if $(E_i)_{i\in I}$ is any family of subsets of A, then

$$V\left(\bigcup_{i\in I} E_i\right) = \bigcap_{i\in I} V(E_i).$$

(3) $V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{a}\mathfrak{b}) = V(\mathfrak{a}) \cup V(\mathfrak{b})$ for any ideals \mathfrak{a} , \mathfrak{b} of A.

Firstly, let \mathfrak{p} is a prime ideal which contains E, then $\mathfrak{a} \subseteq \mathfrak{p}$ since $\forall a \in A$ we have $xa \in \mathfrak{p}$, so $V(E) \subseteq V(\mathfrak{a})$. Conversely, $V(\mathfrak{a}) \subseteq V(E)$ because $E \subseteq \mathfrak{a}$. Using that the radical of an ideal \mathfrak{a} is the intersection of the prime ideals which contain \mathfrak{a} , $V(\mathfrak{a}) = V(r(\mathfrak{a}))$. Thus $V(E) = V(\mathfrak{a}) = V(r(\mathfrak{a}))$.

Secondly, every ideal containing 0 implies V(0) = X, and $V(1) = V(A) = \emptyset$ is trivial by (0).

Next, an ideal contains $\cup_i E_i$ if and only if it contains each E_i . Finally, using $r(\mathfrak{a} \cap \mathfrak{b}) = r(\mathfrak{a}\mathfrak{b})$,

$$V(\mathfrak{a}\cap\mathfrak{b})=V(r(\mathfrak{a}\cap\mathfrak{b}))=V(r(\mathfrak{a}\mathfrak{b}))=V(\mathfrak{a}\mathfrak{b}),$$

We now should prove $V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{a}) \cup V(\mathfrak{b})$.

 $V(\mathfrak{a} \cap \mathfrak{b}) \subseteq V(\mathfrak{a}) \cup V(\mathfrak{b})$: $\forall \mathfrak{p} \in V(\mathfrak{a}) \cup V(\mathfrak{b})$, \mathfrak{p} contains \mathfrak{a} or \mathfrak{b} , thus $\mathfrak{a} \cap \mathfrak{b} \subseteq \mathfrak{p}$ which is equivalent that $\mathfrak{p} \in V(\mathfrak{a} \cap \mathfrak{b})$.

 $V(\mathfrak{a} \cap \mathfrak{b}) \supseteq V(\mathfrak{a}) \cup V(\mathfrak{b})$: $\forall \mathfrak{p} \in V(\mathfrak{a} \cap \mathfrak{b})$, thus $\mathfrak{a} \cap \mathfrak{b} \subseteq \mathfrak{p}$. If $\mathfrak{a} \not\subseteq \mathfrak{p}$ and $\mathfrak{b} \not\subseteq \mathfrak{p}$, there exist $x \in \mathfrak{a}, y \in \mathfrak{b}$ and $x, y \notin \mathfrak{p}$, and therefore $xy \in \mathfrak{ab} \subseteq \mathfrak{a} \cap \mathfrak{b}$, but $xy \notin \mathfrak{p}$ (since \mathfrak{p} is prime), which means $\mathfrak{a} \cap \mathfrak{b} \not\subseteq \mathfrak{p}$. Hence if $\mathfrak{a} \cap \mathfrak{b} \subseteq \mathfrak{p}$, \mathfrak{p} contains \mathfrak{a} or \mathfrak{b} .

The resulting topology is called the *Zariski* topology.

Definition 1. The topological space X is called the prime spectrum of A, and is written $\operatorname{Spec}(A)$.

Proposition 2. Ex 1.17:

For each $f \in A$, let X_f denote the complement of V(f) in $X = \operatorname{Spec}(A)$, i.e. $X_f = \operatorname{Spec}(A) - V(f)$. The sets X_f are open and form a basis of open sets for the Zariski topology.

Proof. X_f is open because V(f) is closed. If P is a open set, it has the form $\operatorname{Spec}(A) - V(E)$ for a E, then

$$P = \operatorname{Spec}(A) - V(E) = \operatorname{Spec}(A) - \bigcap_{f \in E} V(f) = \bigcap_{f \in E} \left(\operatorname{Spec}(A) - V\left(\{f\}\right) \right) = \bigcap_{f \in E} X_f.$$

Proposition 3. Ex 1.17:

- $(0) X_f \cap X_g = X_{fg};$
- (1) $X_f = \emptyset \Leftrightarrow f$ is nilpotent;
- (2) $X_f = X \Leftrightarrow f \text{ is a unit;}$
- (3) $X_f = X_q \Leftrightarrow r(f) = r(g);$
- (4) X is compact;
- (5) X_f is compact;
- (6) An open subset of X is compact if and only if it is a finite union of sets X_f .

Proof. The sets X_f are often called basic open sets of $X = \operatorname{Spec}(A)$.

- (0) $X_f \cap X_g = \text{Spec}(A) (V(f) \cup V(g)) = \text{Spec}(A) V(fg) = X_{fg}$;
- (1) $X_f = \varnothing \Leftrightarrow V(f) = V(r(fA)) = X \Leftrightarrow r(f) = 0;$
- (2) $X_f = X \Leftrightarrow V(f) = \emptyset \Leftrightarrow f$ is not in any maximal ideal $\Leftrightarrow f$ is a unit;
- (3) $X_f = X_g \Leftrightarrow V(f) = V(g) \Leftrightarrow r(f) = r(g);$
- (4) It is enough to consider a covering of X by basic open sets X_{f_i} because $X = \bigcup_{\alpha} U_{\alpha}$ and $U_{\alpha} = \bigcup_{\beta} X_{f_{\alpha\beta}}$. Thus

$$\varnothing = V(X) = V\left(\bigcup_{i} f_{i}\right) = \bigcap_{i} V\left(f_{i}\right),$$

This means that $\{f_i\}$ generates A, so exist $\{g_i\}$ s.t.

$$\sum_{i} f_i g_i = 1$$

with cofinitely many of the *i* non-zero. Thus, *X* is the union of the X_{f_i} for which $g_i \neq 0$, so *X* is the union of finitely many U_{α} .

(5) Suppose $X_f \subseteq \bigcup_i X_{f_i}$, then $\bigcap_i V(f_i) \subseteq V(f)$. Let \mathfrak{a} is the ideal generated by the f_i , then $f \in \mathfrak{a}$, so there is an equation

$$f^n = \sum_i f_i g_i$$

with cofinitely many of the *i* non-zero. Let f_1, \ldots, f_n with $g_i \neq 0$, then

$$\bigcap_{i=1}^{n} V(f_i) \subseteq V(f^n) = V(f),$$

so $X_f \subseteq \bigcup_{i=1}^n X_{f_i}$. Now we can say X_f is compact.

(6) The union of finitely many X_f is open and compact. Conversely, suppose U is compact and open, then U is the union of some X_f as an open cover, it must have a finite subcover because of compactness.

Definition 2. A topological space X is said to be irreducible if $X \neq \emptyset$ and if every pair of non-empty open sets in X intersect, or equivalently if every non-empty open set is dense in X.

Proposition 4. Ex 1.19:

Spec(A) is irreducible if and only if the nilradical of A is a prime ideal.

Proof. If not prime, there exist f and g s.t. $fg \in \mathfrak{p}$ but $f \notin \mathfrak{p}$ and $g \notin \mathfrak{p}$, and

$$X_f \neq \varnothing, X_g \neq \varnothing \Rightarrow X_f \cap X_g = X_{fg} = \varnothing,$$

which means X is not irreducible.

Conversely, if not irreducible, there exist $X_f \subseteq U$, $X_g \subseteq V$ and $U \cap V = \emptyset$, thus $X_f \cap X_g = X_{fg} = \emptyset$ but neithor f or g is nilpotent.