

09/775938
STN Search Summary

=> d his

FILE 'CPLUS' ENTERED AT 14:04:24 ON 12 FEB 2003

L1 625 S BRYOSTATIN? OR BRYOPYRAN?
L2 9 S L1 AND POLYKETIDE?
L3 6 S L1 AND BIOSYNTHES?
L4 7 S L2 NOT L3
L5 4 S L3 NOT L2
L6 137 S POLYKETIDE AND MARIN?
L7 140 S POLYKETIDE AND (MARINE? OR AQUA?)
L8 26 S (POLYKETIDE (2W) SYNTH?) AND (MARINE? OR AQUA?)
L9 23 S L8 NOT L2
L10 23 S L9 NOT L5
L11 1 S POLYKETIDE AND CANDIDATUS
L12 2 S POLYKETIDE AND ENDOBUGULA
L13 3 S POLYKETIDE AND BUGULA

L2 ANSWER 1 OF 9 CAPLUS COPYRIGHT 2003 ACS

AN 2003:20492 CAPLUS

TI A Concise, Selective Synthesis of the Polyketide Spacer Domain
of a Potent Bryostatin Analogue

AU Wender, Paul A.; Mayweg, Alexander V. W.; VanDeusen, Christopher L.

SO Organic Letters (2003), 5(3), 277-279

L2 ANSWER 2 OF 9 CAPLUS COPYRIGHT 2003 ACS

AN 2002:366741 CAPLUS

TI Structural and stereochemical diversity from (.-.)-2,2-dimethyl-8-
oxabicyclo[3.2.1]oct-6-en-3-one - application to the synthesis of
polyketide segments of natural products

AU Vakalopoulos, Alexandros; Smits, Rene; Hoffmann, H. Martin R.

SO European Journal of Organic Chemistry (2002), (9), 1538-1545

L2 ANSWER 3 OF 9 CAPLUS COPYRIGHT 2003 ACS

AN 2001:761122 CAPLUS

TI Evidence for the biosynthesis of bryostatins by the bacterial
symbiont Candidatus Endobugula sertula of the bryozoan Bugula neritina

AU Davidson, S. K.; Allen, S. W.; Lim, G. E.; Anderson, C. M.; Haygood, M. G.

SO Applied and Environmental Microbiology (2001), 67(10), 4531-4537

L2 ANSWER 4 OF 9 CAPLUS COPYRIGHT 2003 ACS

AN 2001:139776 CAPLUS

TI Asymmetric Synthesis of the Northern Half C1-C16 of the
Bryostatins

AU Vakalopoulos, A.; Lampe, T. F. J.; Hoffmann, H. M. R.

SO Organic Letters (2001), 3(6), 929-932

L2 ANSWER 5 OF 9 CAPLUS COPYRIGHT 2003 ACS
AN 2001:115276 CAPLUS
TI Marine organism nucleic acids encoding enzymes for the biosynthesis of bryostatins, bryopyrans and polyketides
IN Haygood, Margo; Davidson, Seana K.; Allen, Scott W.; Hildebrand, Mark
PA Regents of the University of California, USA
SO PCT Int. Appl., 233 pp.

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2001011024	A2	20010215	WO 2000-US21326	20000804
EP 1212408	A2	20020612	EP 2000-953836	20000804
US 2002081665	A1	20020627	US 2001-775938	20010131
PRAI US 1999-147283P	P	19990804		
WO 2000-US21326	W	20000804		

L2 ANSWER 6 OF 9 CAPLUS COPYRIGHT 2003 ACS
AN 2000:690122 CAPLUS
TI High stereochemical diversity and applications for the synthesis of marine natural products: a library of carbohydrate mimics and polyketide segments
AU Misske, Andrea M.; Hoffmann, H. Martin R.
SO Chemistry--A European Journal (2000), 6(18), 3313-3320

L2 ANSWER 7 OF 9 CAPLUS COPYRIGHT 2003 ACS
AN 2000:61710 CAPLUS
TI Synthesis highlights: a review of the literature for 1998
AU Quayle, Peter
SO Annual Reports on the Progress of Chemistry, Section B: Organic Chemistry (1999), 95, 235-263

L2 ANSWER 8 OF 9 CAPLUS COPYRIGHT 2003 ACS
AN 1996:711189 CAPLUS
TI In vitro biosynthetic studies of the bryostatins, anti-cancer agents from the marine bryozoan Bugula neritina
AU Kerr, Russell G.; Lawry, Joseph; Gush, Kim A.
SO Tetrahedron Letters (1996), 37(46), 8305-8308

L2 ANSWER 9 OF 9 CAPLUS COPYRIGHT 2003 ACS
AN 1989:213181 CAPLUS
TI Asymmetric synthesis and its applications: towards the synthesis of bryostatin 1
AU Masamune, Satoru
SO Pure and Applied Chemistry (1988), 60(11), 1587-96

L5 ANSWER 1 OF 4 CAPLUS COPYRIGHT 2003 ACS
AN 2002:589776 CAPLUS
TI Drugs from the seas - current status and microbiological implications
AU Proksch, P.; Edrada, R. A.; Ebel, R.
SO Applied Microbiology and Biotechnology (2002), 59(2-3), 125-134

L5 ANSWER 2 OF 4 CAPLUS COPYRIGHT 2003 ACS
AN 2002:132136 CAPLUS
TI Evolutionary biosynthesis of anticancer drugs
AU Pettit, George R.
SO ACS Symposium Series (2001), 796(Anticancer Agents), 16-42

L10 ANSWER 1 OF 23 CAPLUS COPYRIGHT 2003 ACS
 AN 2002:859132 CAPLUS
 TI A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles
 AU Piel, Jorn
 SO Proceedings of the National Academy of Sciences of the United States of America (2002), 99(22), 14002-14007

L10 ANSWER 2 OF 23 CAPLUS COPYRIGHT 2003 ACS
 AN 2002:758540 CAPLUS
 TI The barbamide biosynthetic gene cluster: a novel marine cyanobacterial system of mixed polyketide synthase (PKS)-non-ribosomal peptide synthetase (NRPS) origin involving an unusual trichloroleucyl starter unit
 AU Chang, Zunxue; Flatt, Patricia; Gerwick, William H.; Nguyen, Viet-Anh; Willis, Christine L.; Sherman, David H.
 SO Gene (2002), 296(1-2), 235-247

L10 ANSWER 3 OF 23 CAPLUS COPYRIGHT 2003 ACS
 AN 2002:725385 CAPLUS
 TI A Gene Cluster from a Marine Streptomyces Encoding the Biosynthesis of the Aromatic Spiroketal Polyketide Griseorhodin A
 AU Li, Aiying; Piel, Jorn
 SO Chemistry & Biology (2002), 9(9), 1017-1026

L10 ANSWER 4 OF 23 CAPLUS COPYRIGHT 2003 ACS
 AN 2002:667674 CAPLUS
 TI Polyunsaturated fatty acid synthesis: what will they think of next?
 AU Wallis, James G.; Watts, Jennifer L.; Browse, John
 SO Trends in Biochemical Sciences (2002), 27(9), 467-473

L10 ANSWER 5 OF 23 CAPLUS COPYRIGHT 2003 ACS
 AN 2002:484361 CAPLUS
 TI Structure and regulation of the omega-3 polyunsaturated fatty acid synthase genes from the deep-sea bacterium Photobacterium profundum strain SS9
 AU Allen, Eric E.; Bartlett, Douglas H.
 SO Microbiology (Reading, United Kingdom) (2002), 148(6), 1903-1913

L10 ANSWER 6 OF 23 CAPLUS COPYRIGHT 2003 ACS
 AN 2002:471565 CAPLUS
 TI Biosynthesis of polyunsaturated fatty acids by polyketide synthases
 AU Kaulmann, Ursula; Hertweck, Christian
 SO Angewandte Chemie, International Edition (2002), 41(11), 1866-1869

L10 ANSWER 7 OF 23 CAPLUS COPYRIGHT 2003 ACS
 AN 2002:356992 CAPLUS
 TI Genomic sequence and evolution of marine cyanophage P60: A new insight on lytic and lysogenic phages
 AU Chen, Feng; Lu, Jingrang
 SO Applied and Environmental Microbiology (2002), 68(5), 2589-2594

L10 ANSWER 9 OF 23 CAPLUS COPYRIGHT 2003 ACS
AN 2002:198784 CAPLUS
TI Plumbing the depths of PUFA biosynthesis: a novel polyketide synthase-like pathway from marine organisms
AU Napier, Johnathan A.
SO Trends in Plant Science (2002), 7(2), 51-54

L10 ANSWER 10 OF 23 CAPLUS COPYRIGHT 2003 ACS
AN 2001:925484 CAPLUS
TI Synthesis of C13-C22 fragment of the marine sponge polyketide callystatin A
AU Dias, Luiz C.; Meira, Paulo R. R.
SO Tetrahedron Letters (2002), 43(2), 185-187

L10 ANSWER 12 OF 23 CAPLUS COPYRIGHT 2003 ACS
AN 2001:634532 CAPLUS
TI Nucleotide sequence and predicted functions of the entire *Sinorhizobium meliloti* pSymA megaplasmid
AU Barnett, Melanie J.; Fisher, Robert F.; Jones, Ted; Komp, Caridad; Abola, A. Pia; Barloy-Hubler, Frederique; Bowser, Leah; Capela, Delphine; Galibert, Francis; Gouzy, Jerome; Gurjal, Mani; Hong, Andrea; Huizar, Lucas; Hyman, Richard W.; Kahn, Daniel; Kahn, Michael L.; Kalman, Sue; Keating, David H.; Palm, Curtis; Peck, Melicent C.; Surzycki, Raymond; Wells, Derek H.; Yeh, Kuo-Chen; Davis, Ronald W.; Federspiel, Nancy A.; Long, Sharon R.
SO Proceedings of the National Academy of Sciences of the United States of America (2001), 98(17), 9883-9888

L10 ANSWER 13 OF 23 CAPLUS COPYRIGHT 2003 ACS
AN 2001:528511 CAPLUS
TI Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes
AU Metz, James G.; Roessler, Paul; Facciotti, Daniel; Levering, Charlene; Dittrich, Franziska; Lassner, Michael; Valentine, Ray; Lardizabal, Kathryn; Domergue, Frederic; Yamada, Akiko; Yazawa, Kazunaga; Knauf, Vic; Browse, John
SO Science (Washington, DC, United States) (2001), 293(5528), 290-293

L10 ANSWER 14 OF 23 CAPLUS COPYRIGHT 2003 ACS
AN 2001:51336 CAPLUS
TI Cloning, sequencing and analysis of the enterocin biosynthesis gene cluster from the marine isolate "Streptomyces maritimus": evidence for the derailment of an aromatic polyketide synthase
AU Piel, Jorn; Hertweck, Christian; Shipley, Paul R.; Hunt, Deanna M.; Newman, Mark S.; Moore, Bradley S.
SO Chemistry & Biology (2000), 7(12), 943-955

L10 ANSWER 15 OF 23 CAPLUS COPYRIGHT 2003 ACS
AN 2000:895549 CAPLUS
TI A plant-like biosynthesis of benzoyl-CoA in the marine bacterium 'Streptomyces maritimus'
AU Hertweck, C.; Moore, B. S.
SO Tetrahedron (2000), 56(46), 9115-9120

L10 ANSWER 16 OF 23 CAPLUS COPYRIGHT 2003 ACS
 AN 2000:493686 CAPLUS
 TI Schizochytrium polyketide synthase genes and
 transgenic plants for polyunsaturated long chain fatty acid production
 IN Facciotti, Daniel; Metz, James George; Lassner, Michael
 PA Calgene, LLC, USA
 SO PCT Int. Appl., 303 pp.

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2000042195	A2	20000720	WO 2000-US956	20000114
	WO 2000042195	A3	20000928		
	EP 1147197	A2	20011024	EP 2000-904357	20000114
	BR 2000008760	A	20021008	BR 2000-8760	20000114
	JP 2002534123	T2	20021015	JP 2000-593752	20000114
PRAI	US 1999-231899	A	19990114		
	WO 2000-US956	W	20000114		

L10 ANSWER 20 OF 23 CAPLUS COPYRIGHT 2003 ACS
 AN 1998:806788 CAPLUS
 TI Polyketide synthesis genes of marine
 microbes and production of polyunsaturated fatty acids and PUFA-containing
 plant oils with transgenic plants
 IN Facciotti, Daniel; Metz, James George; Lassner, Michael
 PA Calgene, LLC, USA
 SO PCT Int. Appl., 153 pp.

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 9855625	A1	19981210	WO 1998-US11639	19980604
	EP 1003869	A1	20000531	EP 1998-925264	19980604
	BR 9809946	A	20000801	BR 1998-9946	19980604
	US 6140486	A	20001031	US 1998-90793	19980604
	JP 2002510205	T2	20020402	JP 1999-502926	19980604
PRAI	US 1997-48650P	P	19970604		
	WO 1998-US11639	W	19980604		

L13 ANSWER 3 OF 3 CAPLUS COPYRIGHT 2003 ACS
 AN 1996:711189 CAPLUS
 TI In vitro biosynthetic studies of the bryostatins, anti-cancer agents from
 the marine bryozoan Bugula neritina
 AU Kerr, Russell G.; Lawry, Joseph; Gush, Kim A.
 CS Dep. Chem. Biochem., Florida Atlantic Univ., Boca Raton, FL, 33431, USA
 SO Tetrahedron Letters (1996), 37(46), 8305-8308

Nucleotide

PubMed	Nucleotide	Protein	Genome	Structure	PMC	Taxonomy	OMIM	Books
Search	<input type="text" value="Nucleotide"/>	<input checked="" type="checkbox"/> for					<input type="button" value="Go"/>	<input type="button" value="Clear"/>
			Limits	Preview/Index	History	Clipboard	Details	
Display	default	<input type="button" value="Show"/>	<input checked="" type="checkbox"/> Send to	File	<input type="button" value="Get Subsequence"/>			

□ 1: U65015. *Vibrio furnissii* ...[gi:1732198]

Links

LOCUS VFU65015 5122 bp DNA linear BCT 24-DEC-1996
 DEFINITION Vibrio furnissii PTS permease for mannose subunits IIIMan C terminal domain (manX), IIPMan (manY), IIBMan (manZ), and IIIMan N-terminal domain (manW), GlcNAc-6-P deacetylase (manD) and putative aldolase (manF) genes, complete cds.
 ACCESSION U65015
 VERSION U65015.1 GI:1732198
 KEYWORDS
 SOURCE
ORGANISM Vibrio furnissii
 Bacteria; Proteobacteria; Gammaproteobacteria; Vibrionales; Vibrionaceae; Vibrio.
 REFERENCE 1 (bases 1 to 5122)
 AUTHORS Bouma, C.L. and Roseman, S.
 TITLE Sugar transport by the marine chitinolytic bacterium Vibrio furnissii. Molecular cloning and analysis of the mannose/glucose permease
 JOURNAL J. Biol. Chem. 271 (52), 33468-33475 (1996)
 MEDLINE 97125988
 PUBMED 8969210
 REFERENCE 2 (bases 1 to 5122)
 AUTHORS Bouma, C.L. and Roseman, S.
 TITLE Direct Submission
 JOURNAL Submitted (24-JUL-1996) Biology, Johns Hopkins Univ, 3400 Charles Street, Baltimore, MD 21218, USA
 FEATURES Location/Qualifiers
 source 1..5122
 /organism="Vibrio furnissii"
 /strain="SR1514"
 /db_xref="taxon:29494"
gene 349..822
 /gene="manX"
 349..822
 /gene="manX"
 /note="ManX; IIAMan"
 /codon_start=1
 /transl_table=11
 /product="PTS permease for mannose subunit IIIMan C terminal domain"
 /protein_id="AAC44679.1"
 /db_xref="GI:1732199"
 /translation="MPNIVLISRIDERLVHGQVGQWVGFADANIVVVANDEVAADTIQ
 QNLMEMVLADGIAIRFWTVQKTIDTIHKASDRQRILLVCKTPHDFRRLVEGGVPIAAI
gene NVGNMHYIDGKTQISKTVSVDaedVADFQQLKALGVRCTIQGVPTESATDLFTLL"
 838..1614
 /gene="manY"
CDS 838..1614
 /gene="manY"
 /note="ManY; Pel; IIDMan"
 /codon_start=1
 /transl_table=11
 /product="PTS permease for mannose subunit IIPMan"

/protein_id="AAC44680_1"
/db_xref="GI:1732200"
/translation="MEIGLFQALMLGLLAFLAGLDLFNGLTHFHRPVVLGPLVGLILG
DLHTGILVGGTLEIWMGLAPLAGAQPPNVIIGTIVGTTFAITTNVEPNVAVGVAVPF
AVAVQMGITLLFSAMSAVMSKCDEYAKNADTRGIERVNYFALAVLGSFYFLCAFALPIY
LGADHAGAMVAALPKALIDGLGVAGGIMPAIGFAVLMKIMMKNAIYIPYFILGFVAAW
LQLPILAIRCAATAMAIIDFMRKSEPTPVNASAEDLEDGI"
gene
1604..2485
/gene="manZ"
CDS
1604..2485
/gene="manZ"
/note="ManZ"
/codon_start=1
/transl_table=11
/product="PTS permease for mannose subunit IIBMan"
/protein_id="AAC44681_1"
/db_xref="GI:1732201"
/translation="MESNVINQAVPQSQTTVQPASGVSADEYENKAIGAELTKADINK
MAWRSLLLQASFNYERMQASGWLYGLLPALKKIHTNQADLSKALQGHMGFFNTHPFLV
TFVMGIVLAMERSKQNINSIQSTKIAVGAPMGGIGDAMFWLTLLPICGGIGADLALQG
SIMGAFFFFVLFNAVHFGLRFGLAHYAYRMGVAAIPMIKANTKKVGHAAASMVGMTVIG
ALVATYVRLATTAEITAGDAVVKLQADVIDKJLMPAFLPLVYTLLMYALVKRGWSPLKL
IIITMVLGVAGRGMGVL"
gene
2543..2983
/gene="manW"
CDS
2543..2983
/gene="manW"
/note="ManW; IIAMan"
/codon_start=1
/transl_table=11
/product="PTS permease for mannose subunit IIIMan N
terminal domain"
/protein_id="AAC44682_1"
/db_xref="GI:1732202"
/translation="MLAVILSGHGFASGMAQAVHQVIGEQDQFRFIDFPEQMTPQL
EAAMRQAMEEIDSSEGEGIVFLTDLLGGTPFRTASLLSQARQDIEVITGTNMQMTAEMLL
ERDALSLLEFRNLAECGHRGITCLAVEMAAKAPLSTMVADDGI"
gene
2973..4172
/gene="manD"
CDS
2973..4172
/gene="manD"
/note="ManD"
/codon_start=1
/transl_table=11
/product="GlcNAc 6-P deacetylase"
/protein_id="AAC44683_1"
/db_xref="GI:1732203"
/translation="MESKSHAHCFRAQRVLHGKQWQQDAVVTVDENGTTISAIESTDGQ
RHADAIPGPVDLMPGLIDSHVHGSQGCDVMDATHDSLNTMSRYFATLGVTA
FVATTVTAPVAKIRAALAQVAKSKHDGVGDGAEILGAYLEGPYFTEK
NKGAHPTQWFRELAVEEL EDWISYSDNQLLKVALAPEKTGALDAIRY
LDAHGIHVMLGHSADAYEQVKAALAAGAK GIVHCYNGM
RGLHHRDPGVGAGLLPHCFVEMIADGHHVHPAAIDVAHRC
CGSRMTL ITDAMRATGMPDGQYTLGEYQVDMKQGVVMTSSGGLAG
STLTLLRGVKNIHRWLNVPI EQAWLMASYTPAESLGIQHQLGSLEV
GKYASMVAVSSDFSIEKTWVKGRLVFDATSP RQEALCI"
gene
4163..5026
/gene="manF"
CDS
4163..5026
/gene="manF"
/note="ManF"
/codon_start=1
/transl_table=11
/product="putative aldolase"
/protein_id="AAC44684_1"
/db_xref="GI:1732204"

/translation="MYLISSREMLKRAQQGGYAVPAFNIHNLETVQVVVETASEMGSP
 VILAGTPGTYEYAGTDYLISICKAAHKHAIPLVLHLDHHEALPDIRSKVEHGIRSV
 IDGSHYAFEQNIEVVKSVAFCNRFDASVEAELGRLGGQEDDLIVDSADSLMTDPASA
 AEFVRRTGIDSLAVAIGTAHGLYKAEPHLDFDRLEKIQSVDIPLVLHGASGVPPDMV
 RRAIALGVCKVNVATELKIAFSNAVKTHFSEHPDANDPRKYITPGKAAMKRVVMDKIR
 LCGSEGQLSSR"

BASE COUNT 1131 a 1260 c 1483 g 1248 t
 ORIGIN

1 aagcttttgtt gattcaacta ctgtcgagcg atgactacac gcgtcaatac gatgtggatc
 61 tgctgcgtga aattcgccgt gataatcagg cgctgcgtca tgtggcgtc accgaagcgc
 121 ccctcgatga agaagacgtt tttgagttgg ggcgtttagaa cttggcgac cgctggctct
 181 gcttcccata catctgttt tgccaaatgt tggcgttga aaaatcgctt caactggggc
 241 tggggccaga caatccgtgc cggaceggcg aagtgaatcg cgttgtcaa ggcgtcacca
 301 tttatcccta ttaccacaa cctgatgtga atcagaagg accggatcat gccaaatatt
 361 gtactcagcc gaattgtatga acgtttgtt catggccaag tggcggtca atgggtggga
 421 tttgccgacg ccaacattgtt ggtggtgcc aatgatgagg tggccgcaga caccattca
 481 cagaacacctga tggagatgg tctggcgatg ggaatcgcca ttcgttttg gacgggtgaa
 541 aagaccatcg acaccatcca taaagcgtcg gaccgtcagc gcatctgtt ggtgtgtaa
 601 actccgcacg acttcgccc cttggtgaa ggtgggttc cgatccccgc gatcaacgtg
 661 ggcaacatcg attacatcga tggcaaaaca caaatttcta aaacggtttgc ggtggatgccc
 721 gaagacgtgg cggattttca acaactcaaa gcactcggcg tccgctgcac cattcaggcc
 781 gtcccgacag aaagtgcac agaccttcc actctactt gattaaggat attcactatg
 841 gaaataggac tcttcaggc gttgatgtt ggctactgg cttcttggc cggcttgc
 901 ctcttcatacg gcctgactca ctttcacccg cccgtgttgc taggaccgtt ggtggccctg
 961 attctcggtt attacacac cgggattttt gtcggcgaa cgttagaact gatctggatg
 1021 gggcttgcgc cactggctgg cggcagccg cccaaatgtca tcattgcac catcggtggc
 1081 accactttcg ctatcacgac caacgtgaa ccaaacgtt cagttgggt tggcggttccc
 1141 tttgcgttcg cggttcagat gggcatcacc ttactgttct cgcggatgtc agcggatgtat
 1201 tcgaagtgcg atgaatacgc caagaatgcc gatactcg gcatgttgc agtgaactat
 1261 ttcgcgtctgg cgggtttggg gagttttac ttcttgcgtt ctttttgcc catctatctg
 1321 ggggctgacc atgcagggtc gatgggtcg ggcgtcccg aagcatgtat tgatggccta
 1381 ggggttgcgg ggggcattat gccggcgatt ggggttgcgg tgctgtgaa aatcatgtat
 1441 aagaatgcct atattccgtt cttcatctta ggggttgcgg cgcggcttg gctcaattt
 1501 cccattttgg caattcggtt cgcggccact gcatggcca ttatcgattt tatgcgcaag
 1561 tcagaaccaa cgcctgttaa cgcggatcc gaggatctt aagatgaaat ctaatgtaat
 1621 caaccaacgc gtgcgcaga gtcagaccac cgttcagcc ggcgtcaggcg tttctggca
 1681 cgaatatgag aacaaggcgaa ttggggccga gtcacccaaa gccgacatca aaaaaatggc
 1741 ttggcggttc ctgcgttgc aagcgtcctt caactacgaa cgtatgcag cctcagggtt
 1801 gcttacgga ttgcgttccgg cactgaaaaa gattcatacc aatcaaggcg atctatccaa
 1861 agcattgcgg ggcacatgg ggttcttta tactcaccctt ttttggtca ctttcgttat
 1921 gggattttgtt ctggcgatgg aacgctctaa acagaacatc aacagtattt agacccacaa
 1981 aattgcgttc ggtgcgcgg tggggccat tggggatgcc atgttctggc tgacactgtt
 2041 acccatctgc ggcgttatcg gtgcggaccc tgcgtcggaa gttccatca tggggcggt
 2101 gttcttctt gtgttattta acgcgtgtca ttttggctt cgcggatgtt tggcgacta
 2161 cgcctatcgc atgggggtt ccgcatttcc aatgatcaaa gctaacacca aaaaagttgg
 2221 tcattgcgcg tcgtatggtgg ggtatgaccgt catgggtca ctggcgacg catacggtt
 2281 ctttgcgacc accgctgaaa ttacagccgg ggtatgggtg gtcggacttgc aagccgatgt
 2341 gattgataag ttgtatgcctt ctttcttgc cttgggttac accttggta tttatgcctt
 2401 ggtgaaacgt ggctggagtc cgtttaagct catcatcatc accatggttt tgggtgtggc
 2461 cggcgattt atggcggtt tgcgtatcg aatcgacac agcaacgggg ctgagggtgtc
 2521 agccccaaatc aaggagaccc tcatgttagc ggtatgtacta tcaggatcat ggcgtttgc
 2581 ttccggcatg ggcggcagg gtcgtatcggt gattggtagt caagatcgtt ttcgattcat
 2641 tgattttctt gagcagatga ccacggccaca gttggaggca gcaatgcgc aagctatgg
 2701 agagatcgac agtggcgaa gcatgttctt tctgaccgtt ttttggccg ggcggctt
 2761 tcgcaccgca tcgtatcg gccaaggacg ccaagatatt gaaatgtatca cggaaaccaa
 2821 catgcagatg acggcgaaa ttgtatgcgtca aaggatgcg ctgtcgatgc ttggatgg
 2881 taatctcgca ttggaaatgcg gccatcggtt catcacctgtt tggccgtt aatggcgcc
 2941 gaaagccccg cttagcaca ttgtatgcgtca cgtatgttcc taaatcgac gcaactgtt
 3001 ttgcgtctca ggcgtatcg catggcaacg aatggcggaa agacgtgtg gtgacggcg
 3061 atgaaaatgg aacgatcgac gccatcgatc cgtatgcgtt tcaggatcat gccgatgcga
 3121 ttcccttgcg ccctgtggat ttgtatggcgg ggtatgttca tagccatgtt cacggcgtc
 3181 aagggtgcga ttgtatggat gcaacgcgtt acagcctca caccatgttca cgcattttcg
 3241 ccactttagg agtggaccgcg ttgtatggat gcaacgcgtt acagcctca caccatgttca
 3301 gggcgccact ggcacaaggcg gccaaaatgtt gcaacgcgtt acagcctca caccatgttca
 3361 ttggcgatcg tttggaaatggg cccttatttca cggaaaaaaa caaaggcgca caccatgttca

3421 aatggtttcg tgagttggcc gtagaagagc tggaaagattt gatctttac agcgacaacc
3481 aactgctcaa agtggccta gcgcggaaa aaactggcg cgtggacgcc attcgttatc
3541 tcgatgcgca tggcattcac gtcatgttgg gccacagcg cggcgactac gagcaagtga
3601 aggccggcggtt ggcggcgccc gcaaaaggga ttgtgcattt ctacaacggg atgcgcggc
3661 tgcattatcg cgatccggc gtgggtggcg cggggctgtt acatccgcac tgggttgg
3721 aaatgattgc cgatggtcac catgtgcattt ctggcgcat tggatgttgc catcgctgt
3781 gtggctcgcg catgacattt atcaccgtt ccattgcgcg gactggcatg ccagatgggc
3841 aatacacacctt gggcgaatac caagttgaca tgaagcaagg ggtggtcattt acctcctcg
3901 gaggattggc tggcagcaca ttaacatttc ttctgtggcgta caagaacatt caccgttggc
3961 tcaatgtgcc gattgagcaa gcgtggctga tggcgtcgta cacggccgcgaaatcggttag
4021 gcattcaaca tcagctgggg agcttggaaag tggggaaata cgcttctatg gtcgtgtca
4081 gtctgttattt ctcaatttgc aaaaacgtggg tggaaaggcg tctggtcttt gatgcgcga
4141 cctcaccctcg tcaggaggct ctatgtatct aattttttctt cgtgaaatgt taaagcgcc
4201 tcaacaggcg ggttacgcgg tggccgcattt caatatccat aacctcgaga cggtgcaagt
4261 ggtcgtcgaa accgcgtctt aatggggc gcccgttgc ctcgcgggaa cgccgggcac
4321 ttacgaatat gcagggaccg attacctcat cagtattttt aaggaagcg cgcacaagca
4381 tgccattccg ttgggtgtgc atttggatca ccacgaagca ctgccagaca ttgcgcagcaa
4441 agtggAACAC ggcattcggtt cgggtatgtt cgtatgttca cattacgcgtt ttgaacaaaa
4501 tattggatgtt gtggaaatcggtt tgggtggcggtt ttgttaccgc tttgtatgcca gcgtggaaagc
4561 tgagtgggg cggttggcg ggcaggaaatgatttgc gtcgacagcg ccgatttatttgc
4621 gatgacggat cccgcatttcg cggctgaattt tggatgttca actggcattt attcattggc
4681 ggtggccatc ggtacggcgatgggtttaaagccaa cctcaccctcg attttgaccg
4741 cttggaaaaaa atccagtcgg tgggtggacat tccactgtt ctgcattggcg catcgccgt
4801 gccggacgac atggtgagac gtgcgttgc gcttggcg tggatgttca acgtggcgac
4861 tgaactcaaa atcgcgtttt ctaacgcgtt caaaacgcatttccgcgaaatctgtatgc
4921 caacgaccca agggaaataca tcacaccagg gaaagcgcc atgaagcgag tggatgttgc
4981 taaaatccgt ctgtcgccgtt gttgtcgatggatgttgc tttgttgc
5041 cttccccctta acgctctaag tatgatgttgc cactggatgttgc tttgttgc
5101 accgacgtcg cgtcgacgg tc

//

Revised: July 5, 2002.

[Disclaimer](#) | Write to the Help Desk
[NCBI](#) | [NLM](#) | [NIH](#)

Feb 4 2003 11:22:44

Protein

PubMed Nucleotide Protein Genome Structure PMC Taxonomy OMIM Books

Search: Protein for

Limits Preview/Index History Clipboard

Display default Show: 20 Send to File

□1: P96166. N-ACETYLGLUCOSAMI...[gi:3122428]

BLink, Domains, Links

LOCUS NAGA_VIBFU 399 aa linear BCT 15-JUL-1998
DEFINITION N-ACETYLGLUCOSAMINE-6-PHOSPHATE DEACETYLASE (GLCNAC 6-P
DEACETYLASE).
ACCESSION P96166
VERSION P96166 GI:3122428
DBSOURCE swissprot: locus NAGA_VIBFU, accession P96166;
class: standard.
created: Jul 15, 1998.
sequence updated: Jul 15, 1998.
annotation updated: Jul 15, 1998.
xrefs: gi: [1732198](#), gi: [1732203](#)
KEYWORDS Hydrolase; Carbohydrate metabolism.
SOURCE Vibrio furnissii
ORGANISM Vibrio furnissii
Bacteria; Proteobacteria; Gammaproteobacteria; Vibrionales;
Vibrionaceae; Vibrio.
REFERENCE 1 (residues 1 to 399)
AUTHORS Bouma,C.L. and Roseman,S.
TITLE Sugar transport by the marine chitinolytic bacterium Vibrio
furnissii. Molecular cloning and analysis of the mannose/glucose
permease
JOURNAL J. Biol. Chem. 271 (52), 33468-33475 (1996)
MEDLINE 97125988
PUBMED 8969210
REMARK SEQUENCE FROM N.A.
STRAIN=SR1514
COMMENT -----
This SWISS-PROT entry is copyright. It is produced through a
collaboration between the Swiss Institute of Bioinformatics and
the EMBL outstation - the European Bioinformatics Institute.
The original entry is available from <http://www.expasy.ch/sprot>
and <http://www.ebi.ac.uk/sprot>

[CATALYTIC ACTIVITY] N-ACETYL-D-GLUCOSAMINE 6-PHOSPHATE + H(2)O =
D-GLUCOSAMINE 6-PHOSPHATE + ACETATE.
[PATHWAY] N-ACETYL GLUCOSAMINE UTILIZATION PATHWAY.
[SIMILARITY] BELONGS TO THE NAGA FAMILY.
FEATURES Location/Qualifiers
source 1..399
/organism="Vibrio furnissii"
/db_xref="taxon:29494"
gene 1..399
/gene="MAND"
Protein 1..399
/gene="MAND"
/product="N-ACETYLGLUCOSAMINE-6-PHOSPHATE DEACETYLASE"
/EC_number="3.5.1.25"
ORIGIN

1 meskshahcf raqrvlhgkq wqqdavvtd engtisaises ydgqrhadai plgpvdmpg
61 lidshvhgsq gcdvmdathd slntmsryfa tlgvtavfvat tvtapvakir aalaqvaksk
121 hdgvdgaeil gaylegpyft eknkgahptq wfrelaveel edwisydsdq llkvalapek
181 tgaldairyil dahgihvmig hsdadyeqvk aalaagakgi vhcyngmrgl hhrdpgvvga

241 gllphfcve miadghvhvhp aaidvahrcc gsrmtlitda mratgmpdgq yt1geyqvdm
301 kqgvvmtssg glagstl11 rgvknihrwl npvieqawlm asytpaeslg iqhqlgslev
361 gkyasmvavs sdfsiektwv kgrlvfdaat sprqealci

//

Revised: August 5, 2002.

[Disclaimer](#) | Write to the Help Desk
[NCBI](#) | [NLM](#) | [NIH](#)

Feb 4 2003 11:22:44

[LinkDB]

ENTRY EC 3.5.1.25
 NAME N-acetylglucosamine-6-phosphate deacetylase
 acetylglucosamine phosphate deacetylase
 acetylaminodeoxyglucosephosphate acetylhydrolase
 2-acetamido-2-deoxy-D-glucose-6-phosphate amidohydrolase
 CLASS Hydrolases
 Acting on carbon-nitrogen bonds, other than peptide bonds
 In linear amides
 SYSNAME N-acetyl-D-glucosamine-6-phosphate amidohydrolase
 REACTION N-acetyl-D-glucosamine 6-phosphate + H₂O =
 D-glucosamine 6-phosphate + acetate
 H₂O
 SUBSTRATE N-acetyl-D-glucosamine 6-phosphate
 PRODUCT acetate
D-glucosamine 6-phosphate
 REFERENCE 1 [UI:68041342]
 White, R.J. and Pasternak, C.A. The purification and properties of
 N-acetylglucosamine 6-phosphate deacetylase from Escherichia coli.
 Biochem. J. 105 (1967) 121-125.
 2 [UI:97141207]
 Yamano, N., Matsushita, Y., Kamada, Y., Fujishima, S., Arita, M.
 Purification and characterization of N-acetylglucosamine
 6-phosphate deacetylase with activity against N-acetylglucosamine
 from Vibrio cholerae non-O1. Biosci. Biotechnol. Biochem. 60 (1996)
 1320-1323.
 PATHWAY MAP00530 Aminosugars metabolism
 GENES DME: CG17065
 CEL: F59B2.3
 ECO: b0677(nagA) b3135(agaA)
 ECJ: JW0663(nagA) JW3104(agaA)
 ECE: Z0824(nagA) Z4489
 ECS: ECS0707 ECs4015
 ECC: c0752(nagA)
 STY: STY0721(nagA)
 STM: STM0683(nagA)
 YPE: YPO0838 YPO2626(nagA)
 YPK: y1201(nagA) y3223
 SFL: SF0616(nagA)
 HIN: HI0140(nagA)
 PMU: PM0874(nagA)
 XFA: XF1465
 XCC: XCC3410(nagA)
 XAC: XAC0715(nagA)
 VCH: VC0994 VC1783
 PAE: PA3758
 SON: SO3505(nagA)
 MLO: m114766
 SME: SMC02878(nagA)
 ATU: Atu2608(nagA)
 ATC: AGR_C 4726
 BME: BMEII0385
 BMS: BRA0911(nagA)
 CCR: CC0443 CC0534
 BSU: BG12630(nagA)
 BHA: BH0421(nagA)
 OIH: OB2907(nagA)
 SAU: SA0656(nagA)
 SAV: SAV0701(nagA)
 SAM: MW0663(nagA)
 LMO: lmo0956 lmo2108
 LIN: lin0955 lin2213
 LLA: L173068(nagA)

SPY: SPy1694(nagA)
SPM: spyM18 1705(nagA)
SPG: SpyM3 1475(nagA)
SPN: SP2056
SPR: spr1867(nagA)
SAG: SAG0266(nagA)
SAN: gbs0256
SMU: SMU.435
CAC: CAC0188(nagA)
CPE: CPE2176(nagA)
TTE: TTE0232(nagA)
MPU: MYPU 3690(nagA)
MPE: MYPE1750(nagA)
MTU: Rv3332(nagA)
MTC: MT3435
CGL: NCgl2556(Cgl2645)
SCO: SCO4284(SCD95A.17c)
BLO: BL1344(nagA)
FNU: FN1133
BBU: BB0151(nagA)
TEL: t112093
ANA: a110988
DRA: DRA0066
TMA: TM0814
SSO: SSO2673(nagA)
STO: ST2546
STRUCTURES
DBLINKS PDB: 1O12
IUBMB Enzyme Nomenclature: 3.5.1.25
ExPASy - ENZYME nomenclature database: 3.5.1.25
WIT (What Is There) Metabolic Reconstruction: 3.5.1.25
BRENDA, the Enzyme Database: 3.5.1.25
CAS: 9027-50-3

///

[[KEGG](#) | [DBGET](#) | [GenomeNet](#)]