

Universidade Federal do Rio Grande do Norte

FAR 0005 - PRINCÍPIOS DE BIOFARMÁCIA E FARMACOCINÉTICA

Solubilidade de fármacos e coeficiente de partição

Prof. Dr. Ádley Antonini Neves de Lima

Introdução

Interferência da Solubilidade do Fármaco na sua Absorção Oral

Hidrossolubilidade

Coeficiente de partição

Lipossolubilidade

Velocidade de dissolução nos fluidos aquosos corporais

Passagem pelas membranas celulares na absorção por difusão passiva

Hidro e lipossolubilidade

A solubilidade dos fármacos depende:

- características químicas da molécula do fármaco:
 - polaridade (grupos orgânicos presentes na estrutura);
 - grau de ionização (formação de sais e relação pH/pKa);
- composição do meio que o fármaco se encontra:
 - fluidos corporais (natureza aquosa);
 - membranas biológicas (natureza lipídica);

Hidro e lipossolubilidade

Polaridade de grupamentos orgânicos

POLARIDADE = distorção eletrica, provocada por átomos eletronegativos, que dá origem aos dipolos (+) e (-)

HIDROSSOLUBILIDADE

SEMELHANTE DISSOLVE SEMELHANTE solvente apolar

LIPOSSOLUBILIDADE

hidrocarboneto

Polaridade de grupamentos orgânicos

* grupos fracamente polares: possuem características polares, mas não melhoram significativamente a solubilidade em água;

grupos fortemente polares: formam hidratos relativamente estáveis com moléculas de água;

Polaridade de grupamentos orgânicos

* grupos fortemente polares: formam hidratos relativamente estáveis com moléculas de água LIGAÇÃO DE HIDROGÊNIO

R-OH

álcool

Grupo funcional orgânico		Número potencial de ligação de hidrogênio		
		por aceptação	por doação	
$R-NH_2$	amina primária	1	2	
R-NH R'	amina secundária	1	1	
R-N-R'' R'	amina terciária	1	0	
O R OH	ácido carboxílico	4	1	

Potencial de formação de ligação de hidrogênio dos grupos funcionais orgânicos mais comuns

Polaridade de grupamentos orgânicos

* grupos fortemente polares: formam hidratos relativamente estáveis com moléculas de água LIGAÇÃO DE HIDROGÊNIO

Aceptação de ligação de hidrogênio

Depende do número de pares de elétrons livres presentes no átomo eletronegativo;

Doação de ligação de hidrogênio

Depende do número de hidrogênios livres que constituem o grupo funcional.

Potencial de formação de ligação de hidrogênio dos grupos funcionais orgânicos mais comuns

Grupo funcional orgânico		Número potencial de ligação de hidrogênio		
		por aceptação	por doação	
$R-NH_2$	amina primária	1	2	
R-NH R'	amina secundária	1	1	
R-N-R'' R'	amina terciária	1	0	
O R OH	ácido carboxílico	4	1	
R-OH	álcool	2	1	

Polaridade de grupamentos orgânicos

* grupos fortemente polares: formam hidratos relativamente estáveis com moléculas de água LIGAÇÃO ÍON-DIPOLO

Lipossolubilidade

Polaridade de grupamentos orgânicos

* grupos fracamente apolares: podem produzir algum incremento na solubilidade em lipídeos;

* grupos fortemente apolares: melhoram a solubilidade em lipídeos.

cadeias hidrocarbônicas

Sistemas de anéis

Hidro e lipossolubilidade

Analisando as estruturas químicas abaixo, qual fármaco seria mais solúvel em solvente aquoso?

hidroxizina

clemastina

Sais

Fármacos ácidos -

Forças de interação com o solvente polar

ligações de hidrogênio ligações de hidrogênio + ligação íon-dipolo

Fármacos básicos

$$R-NH_2 + HCI \longrightarrow R-NH_3^+CI^-$$
base sal de cloridrato

$$CF_3$$
 H_3C
 NH_2
 CF_3
 H_3C
 NH_2

fluoxetina

cloridrato de fluoxetina

Forças de interação com o solvente polar

ligações de hidrogênio

ligações de hidrogênio + ligação íon-dipolo

Sais

$$H_3C$$
 H_3C
 CH_3

salicilato de fisostigmina (sal "orgânico")

Solubilidade aquosa = 1g/75mL

fisostigmina (base)

Solubilidade aquosa = 1g/130mL

$$\begin{bmatrix} H_3C & H_3C$$

sulfato de fisostigmina (sal "inorgânico")

Solubilidade aquosa = 1g/4mL

Sais

penicilina G (base)

Solubilidade aquosa = ?

$$O = \begin{pmatrix} H \\ O \\ O \\ N + \\ CH_3 \end{pmatrix}$$

$$O = \begin{pmatrix} CH_3 \\ CH_3 \\ CH_3 \end{pmatrix}$$

$$O = \begin{pmatrix} CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \end{pmatrix}$$

penicilina G procaína Solubilidade aquosa = 1g/250mL

penicilina G sódica Solubilidade aquosa = 1g/40mL

Definição

COEFICIENTE DE PARTIÇÃO (P) = é a razão entre a concentração do fármaco na fase orgânica e na fase aquosa, medida em um sistema de dois compartimentos, sob condições de equilíbrio

Quanto maior o valor numérico de P, maior a lipofilicidade e menor a hidrofilicidade.

Valores experimentais de P do cetoprofeno

Diferenças para valores numéricos de P podem ocorrer, dependendo do <u>solvente</u> empregado na fase oleosa, da <u>temperatura</u> e do pH do meio

ias temperaturas

Fase oleosa	Constante P experimental do cetoprofeno em várias temperat				raturas		
i asc olcosa	Dielétrica	20 °C	25 °C	30 °C	35 °C	40 °C	45 °C
cicloexano	2,02 (20 °C)	61 ± 5	82 ± 5	104 ± 8	142 ± 8	175 ± 8	297 ± 23
miristato de isopropila	3,24 (25 °C)	1670 ± 50	1760 ± 70	1860 ± 50	2130 ± 70	2350 ± 70	2700 ± 110
clorofórmio	4,81 (20 °C)	2100 ± 60	2210 ± 80	2320 ± 60	2500 ± 110	2920 ± 50	3170 ± 60
n-octanol	10,34 (20 °C)	6850 ± 50	7069 ± 20	7321 ± 27	7690 ± 70	8250 ± 50	9510 ± 70

COEFICIENTE DE PARTIÇÃO

Valor experimental real

 $\log P (= 10^{P}) \log K_{ow} (= 10^{K_{ow}})$

Logaritmo do valor experimental real

Softwares $\pmb{\mathsf{ClogP}^{\$},\ \mathsf{ACD}^{\$},\ \mathsf{K}_{\mathsf{ow}}\mathsf{Win}^{\$}}$

Logaritmo teórico calculado (estimativa/previsão)

fármaco	log P	$\mathbf{K}_{ow}\mathbf{Win}^{®}$	ACD ®	ClogP®	
ácido 5-aminosalicílico	-0,16	0,98 (1,14)	0,46 (0,62)	1,06 (1,22)	
ácido acetilsalicílico	1,25	1,13 (0,12)	1,20 (0,05)	1,02 (0,23)	
ampicilina	-0,81	-0,88 (0,07)	1,35 (2,16)	-1,20 (0,39)	
bumetanida	-0,30	2,57 (2,87)	2,78 (3,08)	3,36 (3,66)	, -
cimetidina	0,47	0,57 (0,10)	0,40 (0,07)	0,35 (0,12)	P cetoprofeno = 6850 ± 50
hidroclorotiazida	-0,07	-0,07 (0,00)	-0,07 (0,00)	-0,40 (0,33)	(valor do slide anterior)
cetoprofeno	3,83	3,00 (0,12)	2,80 (0,32)	2,76 (0,36)	Log 6850 = 3,83 (0,71)
norfloxacino	-1,26	-0,31 (0,95)	1,48 (2,74)	-0,99 (0,27)	<u> </u>
paracetamol	0,48	0,27 (0,21)	0,34 (0,14)	0,49 (0,01)	

Implicação clínica

digitoxina

folhas de Digitalis purpurea

fármacos cardiotônicos

digitoxina e digoxina

folhas de Digitalis lanata

Fármaco	R	Coeficiente de partição P [CHCl₃:MeOH:H₂O (8:8:84)]	
digitoxina	H	96,5	
digoxina	OH	81,5	

Construção do seminário

Tópicos para pesquisa

- 1 Estrutura química, indicação, mecanismo de ação. Formas farmacêuticas, posologia, via de administração.
- 2 Mecanismo de absorção. Extensão da absorção: completa ou incompleta (%)? Alimentos interferem na absorção?
- Valor da solubilidade (em g ou mg/L ou mL) em água e solventes orgânicos. O fármaco é comercializado na forma de sal? Quais? Correlacione com a via de administração.

Valor de P ou log P experimental.