Commutative, Idempotent Groupoids And The Constraint Satisfaction Problem

David Failing

July 5, 2013

What Are Constraint Satisfaction Problems?

Informally, a Constraint Satisfaction Problem (CSP) consists of a finite set of variables, ranging over some finite domain of values, and a set of constraints which restrict the values of the variables. The CSP asks whether there is an assignment of values to the variables such that all constraints are satisfied.

- Graph k-colorability.
- Solvability of systems of linear equations over a finite field.

What Are Constraint Satisfaction Problems?

Informally, a Constraint Satisfaction Problem (CSP) consists of a finite set of variables, ranging over some finite domain of values, and a set of constraints which restrict the values of the variables. The CSP asks whether there is an assignment of values to the variables such that all constraints are satisfied.

- Graph *k*-colorability.
- Solvability of systems of linear equations over a finite field.

What Are Constraint Satisfaction Problems?

Informally, a Constraint Satisfaction Problem (CSP) consists of a finite set of variables, ranging over some finite domain of values, and a set of constraints which restrict the values of the variables. The CSP asks whether there is an assignment of values to the variables such that all constraints are satisfied.

- Graph k-colorability.
- Solvability of systems of linear equations over a finite field.

Definition

For any finite set A, and any set Γ of relations over A, $CSP(\Gamma)$ is the combinatorial decision problem:

INSTANCE: A triple $\mathcal{R} = (V, A, \mathcal{C})$ where:

- V a finite set of variables
- $C = \{(S_i, R_i) \mid i = 1, ..., n\}$ a set of constraints, with each S_i a tuple of variables, and each R_i an element of Γ which indicates the allowed simultaneous values for variables in S_i

Definition

For any finite set A, and any set Γ of relations over A, $\mathbf{CSP}(\Gamma)$ is the combinatorial decision problem:

INSTANCE: A triple $\mathcal{R} = (V, A, \mathcal{C})$ where:

- V a finite set of variables
- $C = \{(S_i, R_i) \mid i = 1, ..., n\}$ a set of constraints, with each S_i a tuple of variables, and each R_i an element of Γ which indicates the allowed simultaneous values for variables in S_i

Definition

For any finite set A, and any set Γ of relations over A, $\mathbf{CSP}(\Gamma)$ is the combinatorial decision problem:

INSTANCE: A triple $\mathcal{R} = (V, A, \mathcal{C})$ where:

- V a finite set of variables
- $C = \{(S_i, R_i) \mid i = 1, ..., n\}$ a set of constraints, with each S_i a tuple of variables, and each R_i an element of Γ which indicates the allowed simultaneous values for variables in S_i

Definition

For any finite set A, and any set Γ of relations over A, $CSP(\Gamma)$ is the combinatorial decision problem:

INSTANCE: A triple $\mathcal{R} = (V, A, \mathcal{C})$ where:

- V a finite set of variables
- $C = \{(S_i, R_i) \mid i = 1, ..., n\}$ a set of constraints, with each S_i a tuple of variables, and each R_i an element of Γ which indicates the allowed simultaneous values for variables in S_i

Definition

For any finite set A, and any set Γ of relations over A, $\mathbf{CSP}(\Gamma)$ is the combinatorial decision problem:

INSTANCE: A triple $\mathcal{R} = (V, A, \mathcal{C})$ where:

- V a finite set of variables
- $C = \{(S_i, R_i) \mid i = 1, ..., n\}$ a set of constraints, with each S_i a tuple of variables, and each R_i an element of Γ which indicates the allowed simultaneous values for variables in S_i

Definition

An instance of the many-sorted CSP is a quadruple $\mathcal{R} = (V, \mathcal{A}, \delta, \mathcal{C})$ in which:

- V is a finite set of variables,
- $A = \{A_i \mid i \in I\}$ is a collection of finite sets of values,
- $\delta \colon V \to I$ is called the domain function,
- $C = \{(S_i, R_i) \mid i = 1, ..., n\}$ is a set of constraints. For $1 \leq i \leq n$, $S_i = (v_1, ..., v_{m_i})$ is an m_i -tuple of variables, and each R_i is an m_i -ary relation over \mathcal{A} with signature $(\delta(v_1), ..., \delta(v_{m_i}))$ which indicates the allowed simultaneous values for variables in S_i .

Definition

An instance of the many-sorted CSP is a quadruple $\mathcal{R} = (V, \mathcal{A}, \delta, \mathcal{C})$ in which:

- V is a finite set of variables,
- $A = \{A_i \mid i \in I\}$ is a collection of finite sets of values,
- $\delta \colon V \to I$ is called the domain function,
- $C = \{(S_i, R_i) \mid i = 1, ..., n\}$ is a set of constraints. For $1 \leq i \leq n$, $S_i = (v_1, ..., v_{m_i})$ is an m_i -tuple of variables, and each R_i is an m_i -ary relation over \mathcal{A} with signature $(\delta(v_1), ..., \delta(v_{m_i}))$ which indicates the allowed simultaneous values for variables in S_i .

Definition

An instance of the many-sorted CSP is a quadruple $\mathcal{R} = (V, \mathcal{A}, \delta, \mathcal{C})$ in which:

- V is a finite set of variables,
- $A = \{A_i \mid i \in I\}$ is a collection of finite sets of values,
- $\delta \colon V \to I$ is called the domain function,
- $C = \{(S_i, R_i) \mid i = 1, ..., n\}$ is a set of constraints. For $1 \leq i \leq n$, $S_i = (v_1, ..., v_{m_i})$ is an m_i -tuple of variables, and each R_i is an m_i -ary relation over A with signature $(\delta(v_1), ..., \delta(v_{m_i}))$ which indicates the allowed simultaneous values for variables in S_i .

Definition

An instance of the many-sorted CSP is a quadruple $\mathcal{R} = (V, \mathcal{A}, \delta, \mathcal{C})$ in which:

- V is a finite set of variables,
- $A = \{A_i \mid i \in I\}$ is a collection of finite sets of values,
- $\delta \colon V \to I$ is called the domain function,
- $C = \{(S_i, R_i) \mid i = 1, ..., n\}$ is a set of constraints. For $1 \leq i \leq n$, $S_i = (v_1, ..., v_{m_i})$ is an m_i -tuple of variables, and each R_i is an m_i -ary relation over \mathcal{A} with signature $(\delta(v_1), ..., \delta(v_{m_i}))$ which indicates the allowed simultaneous values for variables in S_i .

$CSP(\Gamma)$ is in NP.

Definition

If each instance of $\mathbf{CSP}(\Gamma)$ is answerable (yes/no) in polynomial time, we say that $\mathbf{CSP}(\Gamma)$ is tractable, or that Γ is a tractable set of relations. Γ is NP-complete if there is some finite $\Delta \subseteq \Gamma$ for which $CSP(\Delta)$ is NP-complete.

- For k-colorability, if k=2 we can use Breadth First Search to produce a coloring (or show none exists) in polynomial time. For $k \geq 3$, the problem is known to be NP-complete.
- For systems of linear equations over a finite field, Gaussian elimination will find a solution, if it exists, in polynomial time

 $CSP(\Gamma)$ is in NP.

Definition

If each instance of $\mathbf{CSP}(\Gamma)$ is answerable (yes/no) in polynomial time, we say that $\mathbf{CSP}(\Gamma)$ is tractable, or that Γ is a tractable set of relations. Γ is NP-complete if there is some finite $\Delta \subseteq \Gamma$ for which $CSP(\Delta)$ is NP-complete.

- For k-colorability, if k=2 we can use Breadth First Search to produce a coloring (or show none exists) in polynomial time. For $k \geq 3$, the problem is known to be NP-complete.
- For systems of linear equations over a finite field, Gaussian elimination will find a solution, if it exists, in polynomial time

 $CSP(\Gamma)$ is in NP.

Definition

If each instance of $\mathbf{CSP}(\Gamma)$ is answerable (yes/no) in polynomial time, we say that $\mathbf{CSP}(\Gamma)$ is tractable, or that Γ is a tractable set of relations. Γ is NP-complete if there is some finite $\Delta \subseteq \Gamma$ for which $CSP(\Delta)$ is NP-complete.

- For k-colorability, if k = 2 we can use Breadth First Search to produce a coloring (or show none exists) in polynomial time.
 For k ≥ 3, the problem is known to be NP-complete.
- For systems of linear equations over a finite field, Gaussian elimination will find a solution, if it exists, in polynomial time

 $CSP(\Gamma)$ is in NP.

Definition

If each instance of $\mathbf{CSP}(\Gamma)$ is answerable (yes/no) in polynomial time, we say that $\mathbf{CSP}(\Gamma)$ is tractable, or that Γ is a tractable set of relations. Γ is NP-complete if there is some finite $\Delta \subseteq \Gamma$ for which $CSP(\Delta)$ is NP-complete.

- For k-colorability, if k = 2 we can use Breadth First Search to produce a coloring (or show none exists) in polynomial time.
 For k ≥ 3, the problem is known to be NP-complete.
- For systems of linear equations over a finite field, Gaussian elimination will find a solution, if it exists, in polynomial time.

Two Problems

Theorem (Bulatov & Jeavons '01)

Every many-sorted CSP can be transformed into a single-sorted CSP which has the same complexity.

CSP Dichotomy Conjecture (Feder & Vardi '98)

Every $CSP(\Gamma)$ is either tractable, or it is NP-complete.

Problem

Characterize all tractable sets of relations.

Two Problems

Theorem (Bulatov & Jeavons '01)

Every many-sorted CSP can be transformed into a single-sorted CSP which has the same complexity.

CSP Dichotomy Conjecture (Feder & Vardi '98)

Every $CSP(\Gamma)$ is either tractable, or it is NP-complete.

Problem

Characterize all tractable sets of relations.

Two Problems

Theorem (Bulatov & Jeavons '01)

Every many-sorted CSP can be transformed into a single-sorted CSP which has the same complexity.

CSP Dichotomy Conjecture (Feder & Vardi '98)

Every $CSP(\Gamma)$ is either tractable, or it is NP-complete.

Problem

Characterize all tractable sets of relations.

Definition

We say that an m-ary operation $f: A^m \to A$ preserves an n-ary relation R over A (or that R is invariant under f) if

$$\overline{a}_1,\ldots,\overline{a}_m\in R\Rightarrow f(\overline{a}_1,\ldots,\overline{a}_m)\in R$$

For Γ a set of relations over A and \mathcal{F} a set of operations on A:

Pol(Γ) := { $f \mid f$ preserves every $R \in \Gamma$ }, the clone of polymorphisms of Γ .

Definition

We say that an m-ary operation $f: A^m \to A$ preserves an n-ary relation R over A (or that R is invariant under f) if

$$\overline{a}_1,\ldots,\overline{a}_m\in R\Rightarrow f(\overline{a}_1,\ldots,\overline{a}_m)\in R$$

For Γ a set of relations over A and \mathcal{F} a set of operations on A:

Pol(Γ) := { $f \mid f$ preserves every $R \in \Gamma$ }, the clone of polymorphisms of Γ .

Definition

We say that an m-ary operation $f: A^m \to A$ preserves an n-ary relation R over A (or that R is invariant under f) if

$$\overline{a}_1,\ldots,\overline{a}_m\in R\Rightarrow f(\overline{a}_1,\ldots,\overline{a}_m)\in R$$

For Γ a set of relations over A and \mathcal{F} a set of operations on A:

Pol(Γ) := { $f \mid f$ preserves every $R \in \Gamma$ }, the clone of polymorphisms of Γ .

Definition

We say that an m-ary operation $f: A^m \to A$ preserves an n-ary relation R over A (or that R is invariant under f) if

$$\overline{a}_1,\ldots,\overline{a}_m\in R\Rightarrow f(\overline{a}_1,\ldots,\overline{a}_m)\in R$$

For Γ a set of relations over A and \mathcal{F} a set of operations on A:

Pol(Γ) := { $f \mid f$ preserves every $R \in \Gamma$ }, the clone of polymorphisms of Γ .

Definition

An algebra is a pair $\mathbf{A} = \langle A, \mathcal{F} \rangle$, where A is a nonempty set, and \mathcal{F} is a set of operations on A.

Observation

To every set of relations Γ over a finite set A, we can associate the algebra $\mathbf{A} = \langle A, \operatorname{Pol}(\Gamma) \rangle$. Likewise, to every finite algebra $\mathbf{A} = \langle A, \mathcal{F} \rangle$, we can associate the set of relations $\operatorname{Inv}(\mathcal{F})$.

Definition

We say an algebra $\mathbf{A} = \langle A, \mathcal{F} \rangle$ is tractable if $\operatorname{Inv}(\mathcal{F})$ is a tractable set of relations. Similarly, \mathbf{A} may be NP-complete. We can consider only idempotent algebras. $(\forall f \in \mathcal{F}, f(x, x, \dots, x) \approx x)$

Definition

An algebra is a pair $\mathbf{A} = \langle A, \mathcal{F} \rangle$, where A is a nonempty set, and \mathcal{F} is a set of operations on A.

Observation

To every set of relations Γ over a finite set A, we can associate the algebra $\mathbf{A} = \langle A, \operatorname{Pol}(\Gamma) \rangle$. Likewise, to every finite algebra $\mathbf{A} = \langle A, \mathcal{F} \rangle$, we can associate the set of relations $\operatorname{Inv}(\mathcal{F})$.

Definition

We say an algebra $\mathbf{A} = \langle A, \mathcal{F} \rangle$ is tractable if $\operatorname{Inv}(\mathcal{F})$ is a tractable set of relations. Similarly, \mathbf{A} may be NP-complete. We can consider only idempotent algebras. $(\forall f \in \mathcal{F}, f(x, x, \dots, x) \approx x)$

Definition

An algebra is a pair $\mathbf{A} = \langle A, \mathcal{F} \rangle$, where A is a nonempty set, and \mathcal{F} is a set of operations on A.

Observation

To every set of relations Γ over a finite set A, we can associate the algebra $\mathbf{A} = \langle A, \operatorname{Pol}(\Gamma) \rangle$. Likewise, to every finite algebra $\mathbf{A} = \langle A, \mathcal{F} \rangle$, we can associate the set of relations $\operatorname{Inv}(\mathcal{F})$.

Definition

We say an algebra $\mathbf{A} = \langle A, \mathcal{F} \rangle$ is tractable if $Inv(\mathcal{F})$ is a tractable set of relations. Similarly, \mathbf{A} may be NP-complete. We can consider only idempotent algebras. $(\forall f \in \mathcal{F}, f(x, x, \dots, x) \approx x)$

Classes of Algebras

Definition

A variety $\mathcal V$ is a class of algebras which is closed under homomorphic images, subalgebras, and direct products. We say that a variety is tractable if every one of its finite members is tractable.

Definition

An algebra is congruence meet-semidistributive (SD(\land)) if its congruence lattice satisfies

$$(x \wedge y \approx x \wedge z) \Rightarrow (x \wedge (y \vee z) \approx x \wedge y).$$

A class $\mathcal K$ of algebras is $SD(\wedge)$ if every algebra in $\mathcal K$ is $SD(\wedge)$.

Classes of Algebras

Definition

A variety $\mathcal V$ is a class of algebras which is closed under homomorphic images, subalgebras, and direct products. We say that a variety is tractable if every one of its finite members is tractable.

Definition

An algebra is congruence meet-semidistributive (SD(\land)) if its congruence lattice satisfies

$$(x \wedge y \approx x \wedge z) \Rightarrow (x \wedge (y \vee z) \approx x \wedge y).$$

A class \mathcal{K} of algebras is $SD(\wedge)$ if every algebra in \mathcal{K} is $SD(\wedge)$.

Definition

A ternary operation q is Maltsev if it satisfies

$$q(x, y, y) \approx q(y, y, x) \approx x.$$

Example

For $\mathbf{G}pprox \langle \mathcal{G},\cdot,^{-1},e
angle$ a group, $q(x,y,z)pprox x\cdot y^{-1}\cdot z$.

For
$$\mathbf{Q} = \langle Q, \cdot, /, \setminus \rangle$$
 a quasigroup, $q(x, y, z) = (x/(y \setminus y)) \cdot (y \setminus z)$.

Definition

A ternary operation q is Maltsev if it satisfies

$$q(x, y, y) \approx q(y, y, x) \approx x$$
.

Example

For $\mathbf{G} \approx \langle G, \cdot, ^{-1}, e \rangle$ a group, $q(x, y, z) \approx x \cdot y^{-1} \cdot z$.

Example

For $\mathbf{Q} = \langle Q, \cdot, /, \setminus \rangle$ a quasigroup, $q(x, y, z) = (x/(y \setminus y)) \cdot (y \setminus z)$.

Definition

A ternary operation q is Maltsev if it satisfies

$$q(x, y, y) \approx q(y, y, x) \approx x.$$

Example

For $\mathbf{G} \approx \langle G, \cdot, ^{-1}, e \rangle$ a group, $q(x, y, z) \approx x \cdot y^{-1} \cdot z$.

For
$$\mathbf{Q} = \langle Q, \cdot, /, \cdot \rangle$$
 a quasigroup, $q(x, y, z) = (x/(y \setminus y)) \cdot (y \setminus z)$.

Definition

A k-ary weak near-unanimity operation on A is an idempotent operation that satisfies the identities

$$f(y,x,\ldots,x)\approx f(x,y,\ldots,x)\approx \cdots \approx f(x,x,\ldots,x,y).$$

A k-ary near-unanimity operation is a weak near-unanimity operation that satisfies the identity $f(y, x, ..., x) \approx x$.

Definition

For $k \ge 2$, a k-edge operation on a set A is a (k+1)-ary operation, f, on A satisfying the k identities:

$$f(x, x, y, y, y, \dots, y, y) \approx y$$

$$f(x, y, x, y, y, \dots, y, y) \approx y$$

$$f(y, y, y, x, y, \dots, y, y) \approx y$$

$$f(y, y, y, y, x, \dots, y, y) \approx y$$

$$\vdots$$

$$f(y, y, y, y, y, y, \dots, x, y) \approx y$$

$$f(y, y, y, y, y, y, \dots, y, x) \approx y$$

Two Main Algorithms

Theorem (Barto & Kozik '09)

Any finite algebra which lies in a congruence meet-semidistributive variety is tractable.

Theorem (IMMVW '10)

If $Clo(\mathcal{F})$ contains an edge term, then $\mathbf{A} = \langle A, \mathcal{F} \rangle$ is tractable. Every Maltsev term and NU term gives rise to an edge term.

Two Main Algorithms

Theorem (Barto & Kozik '09)

Any finite algebra which lies in a congruence meet-semidistributive variety is tractable.

Theorem (IMMVW '10)

If $\mathsf{Clo}(\mathcal{F})$ contains an edge term, then $\mathbf{A} = \langle A, \mathcal{F} \rangle$ is tractable. Every Maltsev term and NU term gives rise to an edge term.

Restating The Problem

Theorem (Bulatov, Jeavons, Krokhin '05; Maroti & McKenzie '08)

Let $\mathbf{A} = \langle A, \mathcal{F} \rangle$ be a finite algebra. If $\mathsf{Clo}(\mathcal{F})$ contains no weak near-unanimity operation, then \mathbf{A} is NP-complete.

Algebraic Dichotomy Conjecture

If $Clo(\mathcal{F})$ contains a WNU, then **A** is tractable.

Restating The Problem

Theorem (Bulatov, Jeavons, Krokhin '05; Maroti & McKenzie '08)

Let $\mathbf{A} = \langle A, \mathcal{F} \rangle$ be a finite algebra. If $\mathsf{Clo}(\mathcal{F})$ contains no weak near-unanimity operation, then \mathbf{A} is NP-complete.

Algebraic Dichotomy Conjecture

If $Clo(\mathcal{F})$ contains a WNU, then **A** is tractable.

- A binary term is a WNU iff it is commutative and idempotent.
- Neither alone is sufficient for tractability.
- The variety of semilattices (associative, idempotent, commutative groupoids) is SD(∧), and tractable.
- We studied commutative, idempotent groupoids satisfying identities strictly weaker than associativity. Why?
- If the Algebraic Dichotomy Conjecture is true, any weakening of associativity (with C,I) should also suffice for tractability.

- A binary term is a WNU iff it is commutative and idempotent.
- Neither alone is sufficient for tractability.
- The variety of semilattices (associative, idempotent, commutative groupoids) is SD(∧), and tractable.
- We studied commutative, idempotent groupoids satisfying identities strictly weaker than associativity. Why?
- If the Algebraic Dichotomy Conjecture is true, any weakening of associativity (with C,I) should also suffice for tractability.

- A binary term is a WNU iff it is commutative and idempotent.
- Neither alone is sufficient for tractability.
- The variety of semilattices (associative, idempotent, commutative groupoids) is SD(∧), and tractable.
- We studied commutative, idempotent groupoids satisfying identities strictly weaker than associativity. Why?
- If the Algebraic Dichotomy Conjecture is true, any weakening of associativity (with C,I) should also suffice for tractability.

- A binary term is a WNU iff it is commutative and idempotent.
- Neither alone is sufficient for tractability.
- The variety of semilattices (associative, idempotent, commutative groupoids) is SD(∧), and tractable.
- We studied commutative, idempotent groupoids satisfying identities strictly weaker than associativity. Why?
- If the Algebraic Dichotomy Conjecture is true, any weakening of associativity (with C,I) should also suffice for tractability.

- A binary term is a WNU iff it is commutative and idempotent.
- Neither alone is sufficient for tractability.
- The variety of semilattices (associative, idempotent, commutative groupoids) is SD(∧), and tractable.
- We studied commutative, idempotent groupoids satisfying identities strictly weaker than associativity. Why?
- If the Algebraic Dichotomy Conjecture is true, any weakening of associativity (with C,I) should also suffice for tractability.

First Generalization

Definition

Let $\mathbf{A} = \langle A, \cdot \rangle$ be a groupoid. We call \mathbf{A} a Cl-groupoid if \cdot is both commutative and idempotent. Usually, we write xy for $x \cdot y$.

Definition

An identity $p \approx q$ is of Bol-Moufang type if (i) the only operation in p,q is \cdot , (ii) the same three variables appear on both sides, in the same order, (iii) one of the variables appears twice, (iv) the remaining two variables appear only once.

Example

The Moufang Law $x(y(zy)) \approx ((xy)z)y$ is an identity of Bol-Moufang type.

First Generalization

Definition

Let $\mathbf{A} = \langle A, \cdot \rangle$ be a groupoid. We call \mathbf{A} a Cl-groupoid if \cdot is both commutative and idempotent. Usually, we write xy for $x \cdot y$.

Definition

An identity $p \approx q$ is of Bol-Moufang type if (i) the only operation in p,q is \cdot , (ii) the same three variables appear on both sides, in the same order, (iii) one of the variables appears twice, (iv) the remaining two variables appear only once.

Example

The Moufang Law $x(y(zy)) \approx ((xy)z)y$ is an identity of Bol-Moufang type.

First Generalization

Definition

Let $\mathbf{A} = \langle A, \cdot \rangle$ be a groupoid. We call \mathbf{A} a Cl-groupoid if \cdot is both commutative and idempotent. Usually, we write xy for $x \cdot y$.

Definition

An identity $p \approx q$ is of Bol-Moufang type if (i) the only operation in p,q is \cdot , (ii) the same three variables appear on both sides, in the same order, (iii) one of the variables appears twice, (iv) the remaining two variables appear only once.

Example

The Moufang Law $x(y(zy)) \approx ((xy)z)y$ is an identity of Bol-Moufang type.

Identities of Bol-Moufang Type (Phillips and Vojtěchovský)

- Representable as Xij, the identity with:
 - variable order X
 - LHS bracketed by i, and RHS bracketed by j.
- $x(y(zy)) \approx ((xy)z)y$ is represented as E15.
- There are 6*(4+3+2+1)=60 nontrivial such identities.

Identities of Bol-Moufang Type (Phillips and Vojtěchovský)

$$A \mid xxyz$$
 $1 \mid o(o(oo))$
 $B \mid xyxz$
 $2 \mid o((oo)o)$
 $C \mid xyyz$
 $3 \mid (oo)(oo)$
 $D \mid xyzx$
 $4 \mid (o(oo))o$
 $E \mid xyzy$
 $5 \mid ((oo)o)o$
 $F \mid xyzz$

- Representable as Xij, the identity with:
 - variable order X
 - LHS bracketed by *i*, and RHS bracketed by *j*.
- $x(y(zy)) \approx ((xy)z)y$ is represented as E15.
- There are 6*(4+3+2+1)=60 nontrivial such identities.

Identities of Bol-Moufang Type (Phillips and Vojtěchovský)

- Representable as Xij, the identity with:
 - variable order X
 - LHS bracketed by *i*, and RHS bracketed by *j*.
- $x(y(zy)) \approx ((xy)z)y$ is represented as *E*15.
- There are 6*(4+3+2+1)=60 nontrivial such identities.

- A variety of ______ is of Bol-Moufang type if it is axiomatized by one additional identity of Bol-Moufang type.
- Two identities of BM type are equivalent if they axiomatize the same variety of ______ of B-M type.
- Phillips and Vojtěchovský showed there are 26 varieties of quasigroups, and 14 varieties of loops of B-M type.
- Q: How many varieties of CI-Groupoids of B-M type are there? What structure do they have?
 - Checking pairwise equivalence by hand would take too long!

- A variety of ______ is of Bol-Moufang type if it is axiomatized by one additional identity of Bol-Moufang type.
- Two identities of BM type are equivalent if they axiomatize the same variety of ______ of B-M type.
- Phillips and Vojtěchovský showed there are 26 varieties of quasigroups, and 14 varieties of loops of B-M type.
- Q: How many varieties of CI-Groupoids of B-M type are there? What structure do they have?
 - Checking pairwise equivalence by hand would take too long!

- A variety of ______ is of Bol-Moufang type if it is axiomatized by one additional identity of Bol-Moufang type.
- Two identities of BM type are equivalent if they axiomatize the same variety of ______ of B-M type.
- Phillips and Vojtěchovský showed there are 26 varieties of quasigroups, and 14 varieties of loops of B-M type.
- Q: How many varieties of CI-Groupoids of B-M type are there? What structure do they have?
 - Checking pairwise equivalence by hand would take too long!

- A variety of ______ is of Bol-Moufang type if it is axiomatized by one additional identity of Bol-Moufang type.
- Two identities of BM type are equivalent if they axiomatize the same variety of ______ of B-M type.
- Phillips and Vojtěchovský showed there are 26 varieties of quasigroups, and 14 varieties of loops of B-M type.
- Q: How many varieties of CI-Groupoids of B-M type are there? What structure do they have?
 - Checking pairwise equivalence by hand would take too long!

- **Prover9** is an automated theorem prover for first-order and equational logic.
- Mace4 searches for finite models and counterexamples.
- Input: a set of assumptions and one or more goals.
- Output: either proofs of the goals, or counterexample(s) where the assumptions are true but the goals are false.

- **Prover9** is an automated theorem prover for first-order and equational logic.
- Mace4 searches for finite models and counterexamples.
- Input: a set of assumptions and one or more goals.
- Output: either proofs of the goals, or counterexample(s) where the assumptions are true but the goals are false.

- **Prover9** is an automated theorem prover for first-order and equational logic.
- Mace4 searches for finite models and counterexamples.
- Input: a set of assumptions and one or more goals.
- Output: either proofs of the goals, or counterexample(s) where the assumptions are true but the goals are false.

- **Prover9** is an automated theorem prover for first-order and equational logic.
- Mace4 searches for finite models and counterexamples.
- Input: a set of assumptions and one or more goals.
- Output: either proofs of the goals, or counterexample(s) where the assumptions are true but the goals are false.


```
Mace4 Model
                                                                                                                   Close
Save as...
             Reformat ...
interpretation( 6, [number = 1,seconds = 0], [
   function(*(_,_), [
       0,0,0,4,5,4,
       0,1,3,2,5,4,
       0,3,2,1,5,4,
       4,2,1,3,0,5,
       5,5,5,0,4,0,
       4,4,4,5,0,5]),
   function(c1, [0]),
   function(c2, [1]).
   function(c3, [2])]).
```

The 8 Varieties of Cl-Groupoids of Bol-Moufang Type

The 8 Varieties of Cl-Groupoids of Bol-Moufang Type

The 8 Varieties of Cl-Groupoids of Bol-Moufang Type

\mathbb{C}	All CI-groupoids
2SL	$x(xy) \approx xy$
X	A24: $x((xy)z) \approx (x(xy))z$
SL	Semilattices
\mathbb{T}_2	C15: $x(y(yz)) \approx ((xy)y)z$
\mathbb{T}_1	A14: $x(x(yz)) \approx (x(xy))z$
\mathbb{S}_2	B12: $x(y(xz)) \approx x((yx)z)$
\mathbb{S}_1	B13: $x(y(xz)) \approx (xy)(xz)$

$\mathsf{SD}(\wedge)$ Varieties

Theorem (Kearnes & Kiss)

Let $\mathcal V$ be a variety of algebras. The following are equivalent:

- ullet ${\mathcal V}$ is congruence meet-semidistributive
- V satisfies a family of idempotent Maltsev conditions that, considered together, fail in any nontrivial variety of modules.

We can restrict our attention to modules over unital rings satisfying the implication $rx \approx 0 \Rightarrow r = 0_R$.

$\mathsf{SD}(\wedge)$ Varieties

Theorem (Kearnes & Kiss)

Let V be a variety of algebras. The following are equivalent:

- ullet $\mathcal V$ is congruence meet-semidistributive
- V satisfies a family of idempotent Maltsev conditions that, considered together, fail in any nontrivial variety of modules.

We can restrict our attention to modules over unital rings satisfying the implication $rx \approx 0 \Rightarrow r = 0_R$.

$SD(\land)$ Varieties

$\mathsf{Theorem}$

Five of the varieties of CI-groupoids of Bol-Moufang type are $SD(\land)$, and thus tractable: 2SL, X, SL, S_2 , and S_1 .

Proof. (For 2SL, X, SL)

Use the Kearnes & Kiss result. Let the family of identities be commutativity, idempotence, and the 2-semilattice law. Let $\mathcal M$ be a variety of modules. Any binary module term is of the form $x\cdot y=rx+sy$.

- $x \cdot y \approx y \cdot x \Rightarrow r = s$
- $x \cdot x \approx x \Rightarrow r + r = 1_R$
- $x \cdot (x \cdot y) \approx x \cdot y \Rightarrow r^2 x + (r^2 r)y \approx 0 \Rightarrow r^2 = r = 0_R$

Returning to idempotence, $\mathcal M$ satisfies

$$x \approx x \cdot x \approx 0_R x + 0_R x \approx 0$$
.

$SD(\land)$ Varieties

$\mathsf{Theorem}$

Five of the varieties of CI-groupoids of Bol-Moufang type are $SD(\land)$, and thus tractable: 2SL, X, SL, S_2 , and S_1 .

Proof. (For 2SL, X, SL).

Use the Kearnes & Kiss result. Let the family of identities be commutativity, idempotence, and the 2-semilattice law. Let $\mathcal M$ be a variety of modules. Any binary module term is of the form $x \cdot y = rx + sy$.

- $x \cdot y \approx y \cdot x \Rightarrow r = s$
- $x \cdot x \approx x \Rightarrow r + r = 1_R$
- $x \cdot (x \cdot y) \approx x \cdot y \Rightarrow r^2 x + (r^2 r)y \approx 0 \Rightarrow r^2 = r = 0_R$

Returning to idempotence, $\mathcal M$ satisfies

$$x \approx x \cdot x \approx 0_R x + 0_R x \approx 0$$
.

The Variety T_1

Theorem

 T_1 (and hence T_2) is not congruence meet-semidistributive.

Proof

It is enough to produce a nontrivial variety $\mathcal M$ of modules, togethe with a family of Maltsev conditions satisfied in $\mathcal T_I$ and $\mathcal M$. Let the family be commutativity, idempotence, and $x(x(yz))\approx (x(xy))z$. Let $\mathcal M$ be the variety of modules over $\mathbb Z_3$. Define $x\cdot y=2x+2y$. Then $\mathcal M$ satisfies

- $x \cdot y \approx 2x + 2y \approx 2y + 2x \approx y \cdot x$
- $x \cdot x \approx 2x + 2x \approx (2+2)x \approx x$
- $x \cdot (x \cdot (y \cdot z)) \approx 2x + 4x + 8y + 8z \approx 8x + 4x + 8y + 2z$ $\approx 4x + 8x + 8y + 2z \approx (x \cdot (x \cdot y)) \cdot z$.

The Variety T_1

Theorem

 T_1 (and hence T_2) is not congruence meet-semidistributive.

Proof.

It is enough to produce a nontrivial variety $\mathcal M$ of modules, together with a family of Maltsev conditions satisfied in $\mathcal T_I$ and $\mathcal M$. Let the family be commutativity, idempotence, and $x(x(yz))\approx (x(xy))z$. Let $\mathcal M$ be the variety of modules over $\mathbb Z_3$. Define $x\cdot y=2x+2y$. Then $\mathcal M$ satisfies

- $x \cdot y \approx 2x + 2y \approx 2y + 2x \approx y \cdot x$
- $x \cdot x \approx 2x + 2x \approx (2+2)x \approx x$
- $x \cdot (x \cdot (y \cdot z)) \approx 2x + 4x + 8y + 8z \approx 8x + 4x + 8y + 2z$ $\approx 4x + 8x + 8y + 2z \approx (x \cdot (x \cdot y)) \cdot z$.

The Variety \mathcal{T}_1

Definition

The class of CI-groupoids defined by the additional identity $x(yx) \approx y$ is known as the variety of Steiner quasigroups (squags).

$\mathsf{Theorem}$

 \mathbb{T}_1 contains the variety of squags.

Proof.

For squags, $x(x(yz)) \approx yz \approx (x(xy))z$, so A14 holds

The Variety \mathcal{T}_1

Definition

The class of CI-groupoids defined by the additional identity $x(yx) \approx y$ is known as the variety of Steiner quasigroups (squags).

$\mathsf{Theorem}$

 \mathbb{T}_1 contains the variety of squags.

Proof

For squags, $x(x(yz)) \approx yz \approx (x(xy))z$, so A14 holds

Definition

The class of CI-groupoids defined by the additional identity $x(yx) \approx y$ is known as the variety of Steiner quasigroups (squags).

$\mathsf{Theorem}$

 \mathbb{T}_1 contains the variety of squags.

Proof.

For squags, $x(x(yz)) \approx yz \approx (x(xy))z$, so A14 holds.

Płonka Sums

Definition

Let $\mathbf{S}=\langle S,\vee \rangle$ be a semilattice, considered as a category with morphisms $s\to t\Leftrightarrow s\le t$ in $\mathbf{S},\ V$ a variety of groupoids considered as a category, and $F\colon S\to V$ a functor. Then the **Płonka sum** over S of the groupoids $\{\mathbf{A}_s=F(s):s\in S\}$ is the groupoid \mathbf{A} with universe $\bigcup_{s\in S}A_s$ and multiplication given by:

$$x_1 \cdot^{\mathbf{A}} x_2 = F_{s_1 s}(x_1) \cdot^{\mathbf{A}_s} F_{s_2 s}(x_2)$$

where $x_i \in \mathbf{A}_{s_i}$, $s = s_1 \lor s_2$, and $F_{s_i s} = F(s_i \to s)$

The Płonka Sum of Groupoids

Płonka's Theorem

Let $\mathcal V$ be a variety of groupoids defined by identities $\Sigma \cup \{x \lor y \approx x\}$ for some set Σ of regular identities, and $x \lor y$ a binary term. The following classes of algebras coincide:

- **1** The class $\mathbf{Pt}(\mathcal{V})$ of Płonka sums of groupoids from \mathcal{V} .
- 2 The variety of groupoids defined by Σ and the identities:

$$x \lor x \approx x$$
 (P1)

$$(x \lor y) \lor z \approx x \lor (y \lor z) \tag{P2}$$

$$x \lor (y \lor z) \approx x \lor (z \lor y) \tag{P3}$$

$$x \lor (y * z) \approx x \lor y \lor z \tag{P4}$$

$$(x * y) \lor z \approx (x \lor z) * (y \lor z)$$
 (P5)

Pseudopartition Operations

Definition

We call a binary term $x \lor y$ satisfying (P1)–(P4) in Płonka's Theorem a pseudopartition operation.

Lemma

An algebra **A** possessing a pseudopartition operation has a semilattice replica \mathbf{A}/σ , where $a\,\sigma\,b \Leftrightarrow (a\lor b=a \text{ and }b\lor a=b)$. **A** also has well-defined maps (which may not be homomorphisms) between its σ -classes given by

$$\phi_{a,b} \colon a/\sigma \to b/\sigma; \ x \mapsto x \lor b.$$

Pseudopartition Operations

Definition

We call a binary term $x \lor y$ satisfying (P1)–(P4) in Płonka's Theorem a pseudopartition operation.

Lemma

An algebra **A** possessing a pseudopartition operation has a semilattice replica \mathbf{A}/σ , where $a\,\sigma\,b \Leftrightarrow (a \lor b = a \text{ and } b \lor a = b)$. **A** also has well-defined maps (which may not be homomorphisms) between its σ -classes given by

$$\phi_{a,b}$$
: $a/\sigma \to b/\sigma$; $x \mapsto x \lor b$.

Theorem (Main Result)

Let **A** be a finite idempotent algebra with pseudopartition operation $x \lor y$, such that every block of its semilattice replica congruence lies in the same tractable variety. Then $\mathsf{CSP}(\mathbf{A})$ is tractable.

Proof

Idea: Look in the biggest block possible!

Theorem

 T_2 has a pseudopartition operation $(x \lor y = y(xy))$, so it is tractable.

Theorem (Main Result)

Let **A** be a finite idempotent algebra with pseudopartition operation $x \lor y$, such that every block of its semilattice replica congruence lies in the same tractable variety. Then $\mathsf{CSP}(\mathbf{A})$ is tractable.

Proof.

Idea: Look in the biggest block possible!

$\mathsf{T}\mathsf{heorem}$

 T_2 has a pseudopartition operation $(x \lor y = y(xy))$, so it is tractable.

Theorem (Main Result)

Let **A** be a finite idempotent algebra with pseudopartition operation $x \lor y$, such that every block of its semilattice replica congruence lies in the same tractable variety. Then $\mathsf{CSP}(\mathbf{A})$ is tractable.

Proof.

Idea: Look in the biggest block possible!

Theorem

 \mathcal{I}_2 has a pseudopartition operation $(x \lor y = y(xy))$, so it is tractable.

 \mathbb{T}_1 is the class of Płonka sums of squags, and it is tractable.

- Let $\Sigma = \{xx \approx x, xy \approx yx, x(x(yz)) \approx (x(xy))z\}$, and $x \lor y := y(xy)$.
- Squags satisfy $x \lor y \approx x$. Since \mathbb{T}_1 contains the variety of squags (i.e. squags satisfy $x(x(yz)) \approx (x(xy))z$), it is enough to show that Σ entails (P1)–(P5).
- Ask Prover9 to do it for you. Verify by hand over several days.

 \mathbb{T}_1 is the class of Płonka sums of squags, and it is tractable.

- Let $\Sigma = \{xx \approx x, xy \approx yx, x(x(yz)) \approx (x(xy))z\}$, and $x \vee y := y(xy)$.
- Squags satisfy $x \lor y \approx x$. Since \mathbb{T}_1 contains the variety of squags (i.e. squags satisfy $x(x(yz)) \approx (x(xy))z$), it is enough to show that Σ entails (P1)–(P5).
- Ask Prover9 to do it for you. Verify by hand over several days.

 \mathbb{T}_1 is the class of Płonka sums of squags, and it is tractable.

- Let $\Sigma = \{xx \approx x, xy \approx yx, x(x(yz)) \approx (x(xy))z\}$, and $x \vee y := y(xy)$.
- Squags satisfy $x \lor y \approx x$. Since \mathbb{T}_1 contains the variety of squags (i.e. squags satisfy $x(x(yz)) \approx (x(xy))z$), it is enough to show that Σ entails (P1)–(P5).
- Ask Prover9 to do it for you. Verify by hand over several days.

 \mathbb{T}_1 is the class of Płonka sums of squags, and it is tractable.

- Let $\Sigma = \{xx \approx x, xy \approx yx, x(x(yz)) \approx (x(xy))z\}$, and $x \vee y := y(xy)$.
- Squags satisfy $x \lor y \approx x$. Since \mathbb{T}_1 contains the variety of squags (i.e. squags satisfy $x(x(yz)) \approx (x(xy))z$), it is enough to show that Σ entails (P1)–(P5).
- Ask Prover9 to do it for you. Verify by hand over several days.

 \mathbb{T}_1 is the class of Płonka sums of squags, and it is tractable.

- Let $\Sigma = \{xx \approx x, xy \approx yx, x(x(yz)) \approx (x(xy))z\}$, and $x \vee y := y(xy)$.
- Squags satisfy $x \lor y \approx x$. Since \mathbb{T}_1 contains the variety of squags (i.e. squags satisfy $x(x(yz)) \approx (x(xy))z$), it is enough to show that Σ entails (P1)–(P5).
- Ask Prover9 to do it for you. Verify by hand over several days.

CID and CIE Groupoids

Definition

A groupoid is distributive (D) if it satisfies $x(yz) \approx (xy)(xz)$. It is entropic (E) if it satisfies $(xy)(zw) \approx (xz)(yw)$.

• Ježek, Kepka, and Němec: "the deepest non-associative theory within the framework of groupoids" is the theory of distributive groupoids.

$\mathsf{Theorem}$

Every finite CID-groupoid (and hence CIE-groupoid) is a Płonka sum of quasigroups. The variety of CID groupoids is tractable.

CID and CIE Groupoids

Definition

A groupoid is distributive (D) if it satisfies $x(yz) \approx (xy)(xz)$. It is entropic (E) if it satisfies $(xy)(zw) \approx (xz)(yw)$.

• Ježek, Kepka, and Němec: "the deepest non-associative theory within the framework of groupoids" is the theory of distributive groupoids.

$\mathsf{Theorem}$

Every finite CID-groupoid (and hence CIE-groupoid) is a Płonka sum of quasigroups. The variety of CID groupoids is tractable.

CID and CIE Groupoids

Definition

A groupoid is distributive (D) if it satisfies $x(yz) \approx (xy)(xz)$. It is entropic (E) if it satisfies $(xy)(zw) \approx (xz)(yw)$.

• Ježek, Kepka, and Němec: "the deepest non-associative theory within the framework of groupoids" is the theory of distributive groupoids.

Theorem

Every finite CID-groupoid (and hence CIE-groupoid) is a Płonka sum of quasigroups. The variety of CID groupoids is tractable.

Short Identities

Definition

A short groupoid identity $p \approx q$ is one in which

- (i) the variables appearing in p and q are some subset of $\{x, y, z\}$
- (ii) there are 3 or fewer variables appearing in p and q
- (iii) no restriction is made to the ordering or grouping of the variables.

Theorem

There are four nontrivial varieties of CI-groupoids defined by an additional short identity: Sq and $SL \subseteq 2SL \subseteq S_3$, with S_3 defined by

$$x(xy) \approx y(xy)$$

Theorem

 S_3 is congruence meet-semidistributive, and thus tractable.

Short Identities

Definition

A short groupoid identity $p \approx q$ is one in which

- (i) the variables appearing in p and q are some subset of $\{x, y, z\}$
- (ii) there are 3 or fewer variables appearing in p and q
- (iii) no restriction is made to the ordering or grouping of the variables.

Theorem

There are four nontrivial varieties of CI-groupoids defined by an additional short identity: Sq and $SL \subseteq 2SL \subseteq S_3$, with S_3 defined by

$$x(xy) \approx y(xy)$$
.

Theorem

 S_3 is congruence meet-semidistributive, and thus tractable.

Short Identities

Definition

A short groupoid identity $p \approx q$ is one in which

- (i) the variables appearing in p and q are some subset of $\{x, y, z\}$
- (ii) there are 3 or fewer variables appearing in p and q
- (iii) no restriction is made to the ordering or grouping of the variables.

Theorem

There are four nontrivial varieties of CI-groupoids defined by an additional short identity: Sq and $SL \subseteq 2SL \subseteq S_3$, with S_3 defined by

$$x(xy) \approx y(xy)$$
.

Theorem

 S_3 is congruence meet-semidistributive, and thus tractable.

Generalized Bol-Moufang Type Identities

Definition

An identity $p \approx q$ is of generalized Bol-Moufang type is one in which

- (i) the same 3 variables appear in p and q,
- (ii) one of the variables appears twice in p and q,
- (iii) the remaining two variables appear once in p and q.

(The requirement that variables be ordered the same way in p and q is dropped.)

Theorem

Every variety of CI-groupoids of generalized Bol-Moufang type which is not of Bol-Moufang type is distributive, and thus tractable.

Further Research

- Other identities weaker than associativity?
- Finer structure of SD(∧) varieties?
- CSP preservation results?