

Fibre Optic Pressure Sensor

Overview

Tip of the pressure sensor

Optical Fibre Sensors Research Centre have developed a small diameter temperature compensated pressure sensor using fibre optic technology. The sensor is made from class (silica) and is $250\mu m$ in diameter.

Technology

- When the fibre optic sensor is exposed to a given pressure, the silica glass diaphragm deflects and causes to a modulation of the light within the device.
- To avoid the errors in pressure measurements resulting from temperature variations, the all silica fibre optic pressure sensor has an integrated temperature measurement element.
- The temperature measurement element is used as a temperature reference sensing device and hence is used to eliminate the temperature cross-sensitivity of the all-silica fibre optic pressure sensing element.
- Performance:
 - o Accuracy: 0.26%FS; Pressure sensitivity: +/- 2mmHg;
 - o Temperature range: tested range: 0°C to 450°C, however a range of -20°C to 800°C is feasible.

Commercial Opportunity

Fibre optic pressure sensors can be constructed entirely from fused-silica, i.e. entirely made of glass. They offers many advantages such as biocompatibility, miniature size, simple and low-cost fabrication process, mechanically robust, immune to electromagnet interference, do not conduct electricity, and are capable of operating in high temperature environments. Patent filed in the US since February 2010.

Contact

John Gleeson Technical Transfer Office University of Limerick Limerick Ireland +353-(0)61-234683 e: john.gleeson@ul.ie