234 (

MAY/JUNE 2009

CARIBBEAN EXAMINATIONS COUNCIL ADVANCED PROFICIENCY EXAMINATION

PURE MATHEMATICS

UNIT 1 - PAPER 02

ALGEBRA, GEOMETRY AND CALCULUS

2 ½ hours

20 MAY 2009 (p.m.)

This examination paper consists of THREE sections: Module 1, Module 2 and Module 3.

Each section consists of 2 questions.

The maximum mark for each Module is 50.

The maximum mark for this examination is 150.

This examination consists of 7 printed pages.

INSTRUCTIONS TO CANDIDATES

- 1. **DO NOT** open this examination paper until instructed to do so.
- 2. Answer ALL questions from the THREE sections.
- 3. Write your solutions, with full working, in the answer booklet provided.
- 4. Unless otherwise stated in the question, any numerical answer that is not exact MUST be written correct to three significant figures.

Examination Materials Permitted

Graph paper (provided)

Mathematical formulae and tables (provided) – Revised 2009

Mathematical instruments

Silent, non-programmable, electronic calculator

SECTION A (Module 1)

Answer BOTH questions.

- 1. (a) Without the use of tables or a calculator, simplify $\sqrt{28} + \sqrt{343}$ in the form $k\sqrt{7}$, where k is an integer. [5 marks]
 - (b) Let x and y be positive real numbers such that $x \neq y$.
 - (i) Simplify $\frac{x^4 y^4}{x y}$.

[6 marks]

(ii) Hence, or otherwise, show that

$$(y+1)^4 - y^4 = (y+1)^3 + (y+1)^2 y + (y+1) y^2 + y^3$$
. [4 marks]

- (iii) Deduce that $(y+1)^4 y^4 < 4(y+1)^3$. [2 marks]
- (c) Solve the equation $\log_4 x = 1 + \log_2 2x$, x > 0. [8 marks]

Total 25 marks

2. (a) The roots of the quadratic equation

$$2x^2 + 4x + 5 = 0$$
 are α and β .

Without solving the equation, find a quadratic equation with roots $\frac{2}{\alpha}$ and $\frac{2}{\beta}$.

[6 marks]

(b) The coach of an athletic club trains six athletes, u, v, w, x, y and z, in his training camp. He makes an assignment, f, of athletes u, v, x, y and z to physical activities 1, 2, 3 and 4 according to the diagram below in which $A = \{u, v, w, x, y, z\}$ and $B = \{1, 2, 3, 4\}$.

(i) Express f as a set of ordered pairs.

[4 marks]

(ii) a) State TWO reasons why f is NOT a function.

- [2 marks]
- b) Hence, with MINIMUM changes to f, construct a function $g: A \rightarrow B$ as a set of ordered pairs. [4 marks]
- c) Determine how many different functions are possible for g in (ii) b) above. [2 marks]
- (c) The function f on \mathbf{R} is defined by

$$f(x) = \begin{cases} x-3 & \text{if } x \leq 3 \\ \frac{x}{4} & \text{if } x > 3. \end{cases}$$

Find the value of

(i) f[f(20)] [3 marks]

(ii) f[f(8)] [2 marks]

(iii) f[f(3)]. [2 marks]

SECTION B (Module 2)

Answer BOTH questions.

- 3. Answers to this question obtained by accurate drawing will not be accepted.
 - (a) The circle C has equation $(x-3)^2 + (y-4)^2 = 25$.
 - (i) State the radius and the coordinates of the centre of C. [2 marks]
 - (ii) Find the equation of the tangent at the point (6, 8) on C. [4 marks]
 - (iii) Calculate the coordinates of the points of intersection of C with the straight line y = 2x + 3. [7 marks]
 - (b) The points P and Q have position vectors relative to the origin O given respectively by $\mathbf{p} = -\mathbf{i} + 6\mathbf{j}$ and $\mathbf{q} = 3\mathbf{i} + 8\mathbf{j}$.
 - (i) a) Calculate, in degrees, the size of the acute angle θ between \mathbf{p} and \mathbf{q} . [5 marks]
 - b) Hence, calculate the area of triangle *POQ*.
 - (ii) Find, in terms of i and j, the position vector of
 - a) M, where M is the midpoint of PQ [2 marks]
 - b) R, where R is such that PQRO, labelled clockwise, forms a parallelogram. [3 marks]

Total 25 marks

[2 marks]

4. (a) The diagram below, which is not drawn to scale, shows a quadrilateral ABCD in which AB = 4 cm, BC = 9 cm, AD = x cm and $\angle BAD = \angle BCD = \theta$ and $\angle CDA$ is a right-angle.

(i) Show that $x = 4 \cos \theta + 9 \sin \theta$.

[4 marks]

- (ii) By expressing x in the form $r \cos (\theta \alpha)$, where r is positive and $0 \le \alpha < \frac{1}{2} \pi$, find the MAXIMUM possible value of x. [6 marks]
- (b) Given that A and B are acute angles such that $\sin A = \frac{3}{5}$ and $\cos B = \frac{5}{13}$, find, without using tables or calculators, the EXACT values of
 - (i) $\sin(A+B)$

[3 marks]

(ii) $\cos(A-B)$

[3 marks]

(iii) $\cos 2A$.

[2 marks]

(c) Prove that

$$\tan\left(\frac{x}{2} + \frac{\pi}{4}\right) = \sec x + \tan x.$$
 [7 marks]

SECTION C (Module 3)

Answer BOTH questions.

- 5. (a) Find $\lim_{x \to 2} \frac{x^3 8}{x^2 6x + 8}$. [5 marks]
 - (b) The function f on \mathbf{R} is defined by

$$f(x) = \begin{cases} 3-x & \text{if } x \ge 1\\ 1+x & \text{if } x < 1. \end{cases}$$

- (i) Sketch the graph of f(x) for the domain $-1 \le x \le 2$. [2 marks]
- (ii) Find

a)
$$\lim_{x \to 1^{+}} f(x)$$
 [2 marks]

b)
$$\lim_{x \to 1^{-}} f(x).$$
 [2 marks]

- (iii) Deduce that f(x) is continuous at x = 1. [3 marks]
- (c) Differentiate from first principles, with respect to x, the function $y = \frac{1}{x^2}$. [6 marks]
- (d) The function f(x) is such that $f'(x) = 3x^2 + 6x + k$ where k is a constant.

Given that
$$f(0) = -6$$
 and $f(1) = -3$, find the function $f(x)$. [5 marks]

6. (a) Given that $y = \sin 2x + \cos 2x$, show that

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 4y = 0.$$
 [6 marks]

- (b) Given that $\int_0^a (x+1) dx = 3 \int_0^a (x-1) dx$, a > 0, find the value of the constant a. [6 marks]
- (c) The diagram below (not drawn to scale) represents a piece of thin cardboard 16 cm by 10 cm. Shaded squares, each of side x cm, are removed from each corner. The remainder is folded to form a tray.

(i) Show that the volume, $V \text{ cm}^3$, of the tray is given by

$$V = 4(x^3 - 13x^2 + 40x).$$
 [5 marks]

(ii) Hence, find a possible value of x such that V is a maximum. [8 marks]