Efectele depășirilor în filtrarea digitală în filtrarea digitală

Laborator 10, PSS

Objectiv

Studiul efectelor produse de depășirile de format în cadrul implementărilor în virgulă fixă ale unui filtru digital.

Noțiuni teoretice

Exerciții

1. Se consideră sistemul

$$H(z) = \frac{1 - \frac{1}{2}z^{-1}}{\left(1 - \frac{1}{4}z^{-1}\right)\left(1 + \frac{1}{4}z^{-1}\right)}$$

- a. Să se deseneze realizarea în una din formele serie
- b. Considerăm o implementare în formatul virgulă fixă, cu b biți pentru partea fracționară. Fiecare produs se cuantizează prin rotunjire la acest format. Determinați dispersia zgomotului de rotunjire datorat multiplicărilor la ieșirea implementării de la punctul a.
- 2. Utilizați utilitarul fdatool pentru a proiecta un filtru trece-jos IIR de ordin 4, de tip Butterworth, cu frecvența de tăiere de 1.5kHz la o frecvență de eșantionare de 44.1kHz. Convertiți filtrul la forma directă II și exportați-l în Simulink (bifați Build model using basic elements).

- 3. În modelul Simulink, realizați două copii ale filtrului (Copy/Paste). La ambele filtre se va pune ca intrare un semnal audio (de ex. *Kalimba.mp3* sau *mtlb*). La al doilea filtru, semnalul de intrare se va converti la formatul virgulă fixă 1S2Î9F. Calculați și afișați diferența dintre cele două ieșiri. Exportați semnalul diferență în Workspace-ul Matlab și calculați media și varianța sa.
- 4. Realizați o nouă copie a celui de-al doilea filtru, la care debifați la blocurile *Sum* opțiunea *Saturate on integer overflow*. Care este efectul acesteia? Calculați și afișați diferența față de ieșirea primului filtru. Care dintre filtrele 2 și 3 produce erori mai mici?
- 5. Utilizați funcția normescal pentru a calcula diferite norme de scalare pentru filtrul dat. Scalați semnalul de intrare cu una dintre acestea, și rescalați ieșirea. Care este efectul?

Întrebări finale

1. TBD