Estimation and Detection (Fall - 2024)

- * Total points: 101
- * Due 01/05/2025

For all simulations, let the seed be 101, and the noise is WGN with variance σ^2 and zero mean, and please attach the code with your handwriting.

In the DC level in WGN problem, let $A \sim u[-A_0, A_0]$ and the noise $w[n] \sim N(0, \sigma^2)$. We would like to obtain Bayesian estimators using different risk functions.

1. (5 points)

Derive the posterior probability $p(A|\mathbf{x})$.

Now, let $A_0 = 2$ and $\sigma^2 = 0.1$.

2. (10 points)

Let the number of observations x at each realization of A be N = 10. Randomly generate one realization of A. Plot $p(A|\mathbf{x})$, and \hat{A}_{MMSE} (with bold dot in the figure) for 15 different realizations of \mathbf{x}

3. (5 points)

Now let N = 100. Repeat (2).

4. (12 points)

Following (2), now let the realizations of A be M=1000. Obtain the Bayesian MSE $B_{mse}(\hat{A}_{MMSE})$ using Monte Carlo simulations.

5. (5 points)

Following (2), and let N = 100, repeat (4).

6. (32 points)

Now, the risk function is absolute error. Repeat (2)-(5). Your answer should be as detailed as possible to obtain full credit. Especially "HOW" you obtain \hat{A} either in mathematical representation or via Matlab program.

7. (32 points)

Now, the risk function is Hit-or-risk. Repeat (2)-(5). Your answer should be as detailed as possible to obtain full credit. Especially "HOW" you obtain \hat{A} either in mathematical representation or via Matlab program.