

Why we need an incubator

- The behaviour of microbes is temperature dependent
- Temperature dependent:
 - Enzyme reactions
 - DNA interactions
 - Cell state

Industry standard

- Heat isolated enclosed cabinet, often with see-through window
- Heat source
- Temperature controller
- Temperature indicator
- User interface to set temperature

Design constrains:

• 9 cm petri dishes

BHA3 Incubator

BHA3 Incubator

BHA4 incubator

BHA4-6 incubator

Sensing the temperature

• 10K thermistor

Sensing the temperature

Schematic

Push buttons

Pull down resistors

• 10 K Ohm

Selecting a heat source

- Lamp
 - Heat as a by product
- Microwave
 - Needs liquid to heat
- Infrared
 - 100W infrared
- Power resistor

Fan speed controller

- MOSFET
 - Semiconductor
 - N-channel
 - 60V
 - 30A

Controlling the fan

All of the electronics together

Schematic

Power Supply

$$P = A \times I$$

 $Power = Current \times Potential$
 $Watt = Ampere \times Volt$

- 1 x 250 mA Arduino
- 1 x 400 mA Fan
- 1 x 30 mA display
- 1 x 430 mA heating pad
- Total: 1130 mA
- So a 1.5 Amp power supply should be enough

Arduino tutorial codes

- MOSFET code:
 - http://bildr.org/2012/03/rfp30n06le-arduino/
- Button code:
 - http://arduino.cc/en/tutorial/button
- Thermistor code:
 - http://computers.tutsplus.com/tutorials/how-to-readtemperatures-with-arduino--mac-53714

- Measure temperature
 - Turn heating pad on when temperature is lower than target
 - Turn heating pad off when temperature is higher than target
- Check whether a button is pushed
 - If left button is pushed increase target temperature
 - If right button is pushed decrease target temperature
- Display current temperature
 - In case left or right button is pushed, display target temperature for 5 seconds

PID control

Time

