

PCT

WELTOORGANISATION FÜR GEISTIGES EIGENTUM
Internationales Büro

13

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation ⁶ : C08J 3/24, A61L 15/60, A61F 13/15, C08K 3/00, C08F 220/04	A1	(11) Internationale Veröffentlichungsnummer: WO 99/55767 (43) Internationales Veröffentlichungsdatum: 4. November 1999 (04.11.99)
(21) Internationales Aktenzeichen: PCT/EP99/02702	(81) Bestimmungsstaaten: JP, MX, PL, US, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(22) Internationales Anmeldedatum: 22. April 1999 (22.04.99)	Veröffentlicht <i>Mit internationalem Recherchenbericht.</i>	
(30) Prioritätsdaten: 198 18 852.8 28. April 1998 (28.04.98) DE		
(71) Anmelder (<i>für alle Bestimmungsstaaten ausser US</i>): BASF AKTIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE).		
(72) Erfinder; und (75) Erfinder/Anmelder (<i>nur für US</i>): FRENZ, Volker [DE/DE]; Siebenmorgenweg 8, D-55246 Mainz-Kostheim (DE). FUNK, Rüdiger [DE/DE]; Heinrich-Heine-Strasse 15, D-65527 Niedernhausen (DE). HERFERT, Norbert [DE/DE]; Obergasse 59, D-63674 Altenstadt (DE). EN- GELHARDT, Fritz [DE/US]; 131 Harbour Watch Drive, Chesapeake, VA 23320 (US). RIEGEL, Ulrich [DE/DE]; Steinäckerstrasse 6, D-60386 Frankfurt am Main (DE). STÜVEN, Uwe [DE/DE]; Im Hopfengarten 35, D-65812 Bad Soden (DE).		
(74) Gemeinsamer Vertreter: BASF AKTIENGESELLSCHAFT; D-67056 Ludwigshafen (DE).		

(54) Title: MECHANICALLY STABLE HYDROGELS

(54) Bezeichnung: MECHANISCH STABILE HYDROGELE

(57) Abstract

The invention relates to ionically cross-linked hydrogels, characterized by the addition of compounds of the formula (I) $M_n[H_{2n+2}Al_nO_{3n+1}]$, in which M is potassium or sodium and n is a whole number between 1 and 10. The compounds are intended for cross-linking and their pH is adjusted to between 3.0 and 9.5.

(57) Zusammenfassung

Gegenstand der Erfindung sind ionisch vernetzte Hydrogеле, gekennzeichnet durch die Zugabe von Verbindungen der Formel (I): $M_n[H_{2n+2}Al_nO_{3n+1}]$, worin M Kalium oder Natrium und n eine ganze Zahl zwischen 1 und 10 bedeuten, zur Vernetzung, wobei der pH auf einen Wert zwischen 3,0 und 9,5 eingestellt wird.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Oesterreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische Republik Mazedonien	TM	Turkmenistan
BF	Burkina Faso	GR	Grüchenland	ML	Mali	TR	Türkei
BG	Bulgarien	HU	Ungarn	MN	Mongolei	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MR	Mauretanien	UA	Ukraine
BR	Brasilien	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Island	MX	Mexiko	US	Vereinigte Staaten von Amerika
CA	Kanada	IT	Italien	NE	Niger	UZ	Usbekistan
CF	Zentralafrikanische Republik	JP	Japan	NL	Niederlande	VN	Vietnam
CG	Kongo	KE	Kenia	NO	Norwegen	YU	Jugoslawien
CH	Schweiz	KG	Kirgisistan	NZ	Neuseeland	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik Korea	PL	Polen		
CM	Kamerun	KR	Republik Korea	PT	Portugal		
CN	China	KZ	Kasachstan	RO	Rumänien		
CU	Kuba	LC	St. Lucia	RU	Russische Föderation		
CZ	Tschechische Republik	LI	Liechtenstein	SD	Sudan		
DE	Deutschland	LK	Sri Lanka	SE	Schweden		
DK	Dänemark	LR	Liberia	SG	Singapur		
EE	Estland						

Mechanisch stabile Hydrogele**Beschreibung**

5

Die vorliegende Erfindung betrifft ionisch vernetzte Hydrogele, erhältlich durch Zugabe von Aluminaten der Formel (I)

10

worin

M Kalium oder Natrium und
n eine ganze Zahl von 1 bis 10 bedeuten,

15

zu einem unvernetzten oder kovalent vernetzten Hydrogel, wobei der pH-Wert nach Zugabe von I einen Wert zwischen 3,0 und 9,5 beträgt, ein Verfahren zu ihrer Herstellung und ihre Verwendung zur Absorption wäßriger Flüssigkeiten.

20

Es handelt sich dabei um wasserunlösliche, vernetzte, Carboxylgruppen enthaltende Polymere, welche in der Lage sind unter Quellung und Ausbildung von Hydrogelen wäßrige Flüssigkeiten und Körperflüssigkeiten, wie z.B. Urin oder Blut aufzunehmen und die absorbierten Flüssigkeitsmengen unter einem bestimmten Druck zurückzuhalten.

Die Herstellung und Verwendung derartiger zur Hydrogelbildung befähigter Polymere ist in zahlreichen Patentschriften beschrieben, 30 wie der EP-A-316 792, EP-A-400 283, EP-A-343 427, EP-A-205 674 und DE-A-4 418 818.

Um Polymere herzustellen, welche Hydrogele mit besonders hoher Flüssigkeitsaufnahmekapazität, hoher Gelstärke sowie hohes 35 Aufnahmevermögen unter Druck sind, hat es sich als notwendig erwiesen, die Polymerisatpartikel einer nachträglichen Oberflächenbehandlung zu unterwerfen.

Bevorzugt werden Substanzen eingesetzt, welche zwei oder mehrere 40 Gruppen enthalten, die mit den Carboxylgruppen der hydrophilen Polymere kovalente Bindungen ausbilden können (EP-A-0 349 240).

Als Vernetzungsmittel können Polyglycidylether, Haloepoxiverbindungen, Polyole, Polyamine oder Polyisocyanate verwendet 45 werden. Des weiteren werden in der DE-A-3 314 019, EP-A-0 317 106 und DE-A-3 737 196 polyfunktionelle Azidinverbindungen,

Alkyl-di-(tri)halogenide und öllösliche Polyepoxidverbindungen genannt.

Gemäß der DE-B-4 020 780 wird eine verbesserte Absorption unter Druck durch oberflächenvernetzende Behandlung eines Polymeren mit 0,1 bis 5 Gew.-% Alkylencarbonat erreicht.

Ferner ist die Oberflächenvernetzung von sogenannten superabsorbierenden Polymeren mit mehrwertigen Metallkationen bekannt. So beschreiben die EP-A-386 897, US-A-5 684 106 und US-A-4 798 861 den Einsatz von Aluminiumsalzen zur Oberflächenvernetzung.

Die Verwendung von mehrwertigen Metalloxyden zur Oberflächenvernetzung wird in der JP-A-01 029 257 beschrieben und US-A-5 399 591 lehrt den Einsatz von mehrwertigen Metallkationen in Kombination mit organischen Carbonaten.

EP-A-372 981, JP-A-03 179 008, US-A-5 314 420 und US-A-4 690 971 beschreiben die Verwendung mehrwertiger Metallionen allgemein zur Oberflächenvernetzung.

Aufgabe der vorliegenden Erfindung war es, neue Hydrogele herzustellen, welche sich insbesondere durch eine verbesserte mechanische Stabilität der gequollenen Gelteilchen auszeichnen.

Ferner sollen die Hydrogele verbesserte Eigenschaften hinsichtlich Gelstärke und Wasserrückhaltevermögen aufweisen.

Gegenstand der Erfindung sind somit ionisch vernetzte Hydrogele, erhältlich durch die Zugabe von Aluminaten der Formel (I)

30

worin

35 M Kalium oder Natrium und
n eine ganze Zahl von 1 bis 10 bedeuten,

zu einem unvernetzten oder kovalent vernetzten Hydrogel, wobei der pH-Wert durch die Zugabe von I auf einen Wert zwischen 3,0 40 und 9,5 eingestellt wird.

Erfindungsgemäß erfolgt die ionische Vernetzung mittels Aluminat-
ionen homogen in der Gelform der polymeren Hydrogele vor der
Trocknung zu Pulvern oder Granulaten.

45

Die Herstellung dieser Hydrogelstrukturen erfolgt durch Zugabe von Aluminaten I, vorzugsweise $[Al(OH)_4]^-$, zu Carboxylgruppen und/oder Alkali- oder Ammoniumcarboxylatgruppen enthaltenden polymeren wässrigen Gelen, sogenannten Hydrogelen, welche unvernetzt 5 oder durch kovalente Bindungen vorvernetzt sein können.
 $Al(OH)_3$ löst sich als amphoteres Hydroxyd sowohl in Säure

10 unter Bildungen von Aluminiumsalzen (a), als auch in Basen

unter Aluminatbildung (b)

Das Alumination $[Al(OH)_4]^-$ ist als solches nicht beständig und kondensiert leicht unter Wasseraustritt zu höher molekularen Oxo- 20 verbindungen. Statt durch Kondensation kann das Alumination $[Al(OH)_4]^-$ wie die Isolierung von Natriumsalzen der Zusammensetzung $3 Na_2O \cdot Al_2O_3 \cdot 6H_2O$ zeigt, auch durch Aufnahme von 2 OH-Ionen stabilisiert werden

Als erste Stufe bei der Kondensation des Aluminations unter Wasseraustritt entsteht das Di-Alumination

welches z.B. in Form des Kaliumsalzes

35 isoliert werden kann.

Weitere Kondensation führt zu Polyaluminations der allgemeinen Formel

n = 3 Trialuminations

n = 4 Tetraaluminations

welche in Form ihrer Salze

5 bekannt sind.

Bevorzugt werden kovalent vernetzte Hydrogele eingesetzt, die durch Polymerisation von 90-99,99 mol-% eines Carboxylgruppen- und/oder Alkali- oder Ammoniumcarboxylatgruppen enthaltenden ein-
10 fach ungesättigten Monomeren und 0,01-10 mol-% eines Vernetzers erhalten werden.

Geeignete Vernetzer sind insbesondere Methylenbisacryl- bzw.
-methacrylamid, Ester ungesättigter Mono- oder Polycarbonsäuren
15 von Polyolen, wie Diacrylat oder Triacrylat, z.B. Butandiol- oder Ethylenglycoldiacrylat bzw. -methacrylat sowie Trimethylolpropan-triacrylat und Allylverbindungen wie Allyl(meth)acrylat, Triallylcyanurat, Maleinsäurediallylester, Polyallylester, Tetraallyloxyethan, Triallylamin, Tetraallylethylendiamin, Allylester
20 der Phosphorsäure sowie Vinylphosphonsäurederivate, wie sie beispielsweise in der EP-A-0 343 427 beschrieben sind. Besonders bevorzugt werden jedoch Hydrogele, die unter Verwendung von Polyallylethern als Vernetzer und durch saure Homopolymerisation von Acrylsäure hergestellt werden. Geeignete Vernetzer sind Penta-
25 erythritoltri- und -tetraallylether, Polyethylenglycoldiallyl-ether, Monoethylenglycoldiallylether, Glyceroldi- und -triallylether, Polyallylether auf Basis Sorbitol, sowie alkoxylierte Varianten davon.
30 Einfach ungesättigte Monomere sind beispielsweise Vinylsigsäure und bevorzugt Acrylsäure und Methacrylsäure sowie deren Alkali-metall- oder Ammoniumsalze, z.B. Natrium-, Kalium- und Ammonium-acrylate. Bevorzugt sind ionisch vernetzte Hydrogelstrukturen,
35 die zu 50 bis 99,99 Gew.-% aus Struktureinheiten aufgebaut sind, die sich von der Acrylsäure ableiten.

Solche Hydrogele sind allgemein bekannt und werden nach gängigen Verfahren hergestellt.

40 Die erfindungsgemäßen ionisch vernetzten Hydrogelstrukturen werden vorzugsweise erhalten, indem wässrige Acrylsäurelösungen unter Zusatz mehrfach olefinisch ungesättigter Verbindungen, z.B. den obengenannten Vernetzern, radikalisch polymerisiert werden. Der Polymerisationsprozeß liefert wasserhaltige Hydrogele, welche
45 dann durch Zugabe von Aluminaten gemäß obiger Beschreibung in Verbindung mit Basen wie Natrium- oder Kaliumhydroxid auf pH-Werte zwischen 3,0 und 9,5, bevorzugt zwischen 4,0 und 7,5 einge-

stellt werden. Die Zugabe der Basen kann dabei sowohl vor der Zugabe des Aluminats wie auch gemeinsam mit dem Aluminat erfolgen. Im ersten Fall erfolgt die Vernetzung von neutralisierten oder teilneutralisierten Gelen. Ebenso ist es möglich teil-
5 neutralisierte wäßrige Acrylsäurelösungen vorzugsweise in Gegenwart eines Vernetzers zu polymerisieren und anschließend mit Aluminaten, gegebenenfalls unter weiterem Basenzusatz zu vernetzen.

Die verwendete Menge an Aluminaten beträgt 0,05 bis 80 mol-%,
10 bevorzugt 0,05 bis 30 mol-% Aluminium, bezogen auf die Summe von Carboxylgruppen und Alkali- oder Ammoniumcarboxylatgruppen, vorzugsweise bezogen auf die zu neutralisierenden Säureeinheiten im Hydrogel.

15 Als besonders geeignet zur Herstellung der neuartigen polymeren Hydrogele erwiesen sich Mischungen aus Natron- oder Kalilauge mit mono-, di-, tri- oder tetra-Aluminaten, oder auch von höheren Polyaluminaten der allgemeinen Formel (I)

wobei M, Na oder K und n eine Zahl von 5 bis 10 ist, sowie deren Mischungen.

25 Die Polymerisation kann durch Radikalbildner, wie z.B. organische oder anorganische Peroxide sowie Azoverbindungen ausgelöst werden. Beispiele sind Benzoylperoxid, tert.-Butylhydroperoxid, Cumolhydroperoxid, $(NH_4)_2S_2O_8$, $K_2S_2O_8$, $H_2S_2O_8$, H_2O_2 oder Azodiisobutyronitril. Auch Redoxsysteme eignen sich in hervorragender Weise als Polymerisationsinitiatoren. Die Polymerisation kann schließlich auch durch energiereiche Strahlung ausgelöst werden.
30

Werden Verbindungen der allgemeinen Formel I erst einem unvernetzten Prä(Co)polymeren zugegeben, so geschieht dies in der Regel vor der Trocknung durch homogenes Vermischen, beispielsweise durch Verkneten eines wäßrigen Polymergels in einem Kneter.
35 Bevorzugt ist jedoch der Einsatz von kovalent vorvernetzten Hydrogelstrukturen, welche dann mit Verbindungen der Formel I vorzugsweise in Gemischen mit Basen, wie Natrium- oder Kaliumhydroxid zur Neutralisation auf die erwünschten pH-Werte eingestellt werden.
40

Nach Herstellung des ionisch vernetzten Hydrogels, welche in geeigneten Apparaten wie Knetern, Extrudern oder nach Vorzerkleinerung in üblichen Mischaggregaten, wie z.B. Pflugschar- oder Schnecken-Mischern vorgenommen werden kann, werden die Gelpartikel einem Trocknungsprozeß zur Entfernung des Wassers unter-

worfen, anschließend gemahlen und durch Sieben ein erwünschtes Kornverteilungsspektrum eingestellt.

Die auf diesem Wege hergestellten Polymerpartikel sind in der Lage, das Vielfache ihres Eigengewichtes an wässrigen Flüssigkeiten aufzunehmen. Dabei bilden sich Hydrogelpartikel, welche sich durch besondere physikalische Eigenschaften auszeichnen.

Werden Hydrogelpartikel, welche auf ähnlichem Wege durch Polymerisation ungesättigter wasserlöslicher Säuren unter Zusatz mehrfach olefinisch ungesättigter Verbindungen hergestellt wurden, wiederholter mechanischer Belastung, wie z.B. Einwirkung starker Scherkräfte ausgesetzt, erfolgt irreversibler Abbau der Hydrogelnetzwerkstruktur durch Zerstörung kovalenter Bindungen unter mechanischer Belastung. Dies hat zur Folge, daß die mechanische Stabilität der Gelpartikel, d.h. die sogenannte Gelstärke drastisch abnimmt.

Die erfindungsgemäßen Hydrogelstrukturen, welche neben kovalenten Vernetzungselementen nach einem ionischen Mechanismus vernetzt sind, zeigen diesen Nachteil nicht, da die ionischen Vernetzungselemente zur Rekombination befähigt sind.

Die erfindungsgemäßen Hydrogele eignen sich in hervorragender Weise als Absorbentien für wässrige Flüssigkeiten, zur Formulierung kosmetischer Zubereitung, als Verfestiger und/oder Binder von reaktiven Gruppen enthaltenden faserigen Flächengebilden sowie als Bohrspülungen und Zementschlämme bei der Erdölgewinnung.

Für die Verwendung als sogenannte "Super Absorbing Polymers" (SAP) zum Einsatz von Hygieneartikeln, beispielsweise Windeln, Tampons oder Damenbinden, eignen sich insbesondere erfindungsgemäße Hydrogele auf Basis von Acrylsäure. Diese enthalten vorzugsweise 50 bis 99,99, insbesondere bis 98 Gew.-% Struktur единиц, die von der Acrylsäure abgeleitet sind. Besonders bevorzugt sind Hydrogele, die Copolymerivate aus Acrylsäure und zwei- oder mehrfach ungesättigten Verbindungen darstellen, welche in wässriger Lösung hergestellt wurden.

Auch erfindungsgemäße Hydrogele auf Basis von Carboxymethyl-Polysacchariden eignen sich zum Einsatz als SAP in hervorragender Weise.

Da die Verbindungen der allgemeinen Formel I in wässrig alkalischen Systemen löslich sind, können erfindungsgemäße wasserquellbare Hydrogele mit gegenüber Verbindungen des Standes der Technik homogenerem Netzwerk erzielt werden. Dadurch weisen die

Hydrogele neben hoher Absorptionskapazität auch hohe Gelstärke auf.

Durch Nachvernetzung mit Verbindungen der allgemeinen Formel I von bereits kovalent vorvernetzten Polymeren, die für den Einsatz als SAP vorgesehen sind, kann deren Leistungsfähigkeit hinsichtlich Absorption unter Druck, sowie insbesondere die mechanische Stabilität der Gelstrukturen nach mechanischer Belastung auf Grund der Rekombinationsfähigkeit der ionischen Vernetzungselemente wesentlich verbessert werden.

Das verbesserte mechanische Eigenschaftsprofil der erfindungsgemäßen Hydrogelstrukturen gegenüber herkömmlichen kovalent vernetzten Produkten lässt sich durch Messung des Gel-Recovery-Index zeigen.

Messung des Gel-Recovery-Index:

Die Messung des Gel-Recovery-Index erfolgt mit Hilfe eines Creep Meter, Modell RE-3305 der Firma Yamaden Co., Ltd. Bei diesem Gerät handelt es sich um ein Penetrometer, womit Untersuchungen von Struktur- und Konsistenzveränderungen über die Zeit oder durch wechselnde Belastungseinflüsse durchgeführt werden können. Kernstück des Gerätes stellt ein in vertikaler Richtung verschiebbarer Meßschlitten mit Kraftaufnehmer und einem Stempel als Prüfkörper dar. Der Kraftaufnehmer misst die Druck- oder Zugkräfte, die bei der Schlittenverschiebung von der Probe auf den Prüfkörper einwirken. Zur Durchführung verschiedener Messungen kann entweder die maximale Eindringtiefe des Prüfkörpers (bei Messung der Kraft) oder die maximale Kraftaufnahme (bei Messung der Eindringtiefe) vorgegeben werden. Zur Durchführung der Messung des Gel-Recovery-Index werden 0,2 g SAP mit einer ausgesiebten Kornfraktion von 400 - 500 µm in 7 g 0,9 Gew.-%iger Kochsalzlösung gegeben und das Gel 3 h lang bei Raumtemperatur gehalten, um eine homogene Quellung zu erreichen. 0,2 g dieses Gels werden auf den Probenteller gleichmäßig und ohne mechanische Belastung mit einem Spatel verteilt. Der Stempel wird nun soweit heruntergefahren, daß er gerade die Oberfläche der gequollenen SAP-Teilchen berührt. Von dieser Ausgangsstellung wird der Stempel nun in 20 Zyklen mit einer Geschwindigkeit von 0,5 mm/s in das Gel hinein- und wieder herausgefahren. Die Kraftaufnahme nimmt hierbei von Zyklus zu Zyklus ab, da durch diese mechanische Belastung ein Teil der Gelstruktur zerstört wird und somit der Elastizitätsmodul des Gels abnimmt. Die Eindringtiefe des Stempels wird dabei so gewählt, daß die Kraftaufnahme bei dem 20. Zyklus (50 " 3 %) der Kraftaufnahme beim 1. Zyklus beträgt, und muß daher für jedes Produkt durch Vorversuche individuell er-

mittelt werden. Nach den ersten 20 Zyklen wird das Gel 20 Minuten lang bei Raumtemperatur auf dem Probenteller belassen. In dieser Zeit hat das Gel Gelegenheit, sich zu erholen und die durch die mechanische Belastung entstandenen Netzwerkdefekte wieder zu reparieren. Nach Ablauf dieser Zeit wird das Testprogramm wiederholt (2. Zyklenserie), wobei die Eindringtiefe des Stempels unverändert bleibt. Tabellen 1 und 2 zeigen zur Verdeutlichung der Testmethode Daten der Kraftaufnahme für Gels, die keinen Reparatureffekt bzw. einen vollständigen Reparatureffekt aufweisen. Der Gel-Recovery-Index berechnet sich wie folgt:

$$\text{Gel-Recovery-Index} = 1 - [2 \cdot (A - C) / A]$$

A = Kraftaufnahme beim 1. Zyklus der 1. Zyklenserie

C = Kraftaufnahme beim 1. Zyklus der 2. Zyklenserie

Die Kraftaufnahme wird in den folgenden Tabellen in relativen Einheiten angegeben.

20 Tabelle 1:

Messung des Gel-Recovery-Index für eine Probe mit Reparatureffekt (erfindungsgemäßes Beispiel)

	Zyklus	Kraftaufnahme	
		1. Zyklenserie	2. Zyklenserie
25	1	100	100
	2	94,5	94,5
	3	90	90
	4	86	86
30	5	82	82
	6	78,5	78,5
	7	76	76
	8	73	73
35	9	70,6	70,6
	10	68	68
	11	65,2	65,2
	12	63	63
	13	60,6	60,6
40	14	58,5	58,5
	15	56,5	56,5
	16	54,8	54,8
	17	53,3	53,3
	18	52	52

Zyklus	Kraftaufnahme 1. Zyklenreihe	Kraftaufnahme 2. Zyklenreihe
19	50,7	50,7
20	50	50

5

$$\text{Gel-Recovery-Index} = 1 - [2 \cdot (100 - 100) / 100] = 1$$

Tabelle 2:
Messung des Gel-Recovery-Index für eine Probe ohne Reparatur-
10 effekt (Stand der Technik)

Zyklus	Kraftaufnahme 1. Zyklenreihe	Kraftaufnahme 2. Zyklenreihe
1	100	49
2	94,5	48,03
3	90	47,09
4	86	46,18
5	82	45,3
6	78,5	44,45
7	76	43,63
8	73	42,84
9	70,6	42,08
10	68	41,35
11	65,2	40,65
12	63	39,98
13	60,6	39,34
14	58,5	38,73
15	56,5	38,15
16	54,8	37,6
17	53,3	37,08
18	52	36,59
19	50,7	36,13
20	50	35,7

$$\text{Gel-Recovery-Index} = 1 - [2 \cdot (100 - 49) / 100] = -0,02$$

Gele mit vollständigem Reparatureffekt zeigen einen Gel-Recovery-
40 Index von 1,0, Gele ohne Reparatureffekt zeigen einen Gel-Re-
covery-Index von < 0.

Beispiel 1

45 In einem durch geschäumtes Kunststoffmaterial gut isolierten
Polyethylengefäß mit einem Fassungsvermögen von 10 l werden
3677,4 g entsalztes Wasser vorgelegt, und langsam 1300 g Acryl-

10

säure zudosiert. Nun erfolgt Zugabe von 10 g Pentaerythritol-triallylether als kovalenter Vernetzer. Bei einer Temperatur von 4°C werden die Initiatoren, ein Redoxsystem, bestehend aus 2,2 g 2,2'-Azobisamidinopropan-dihydrochlorid, gelöst in 20 g entsalztem Wasser, 4 g Kaliumperoxodisulfat, gelöst in 150 g entsalztem Wasser sowie 0,4 g Ascorbinsäure, gelöst in 20 g entsalztem Wasser nacheinander zugegeben und verrührt. Die Reaktionslösung wird daraufhin ohne Röhren stehengelassen, wobei durch einsetzende Polymerisation, in dessen Verlauf die Temperatur bis auf ca. 89°C ansteigt, ein festes Gel entsteht. Dieses wird anschließend mechanisch zerkleinert und gleichzeitig mit einer wäßrigen Lösung 30 %iger NaOH, welche 10 Gew.-% Na-aluminat (Riedel-de Haen) enthält, auf einen pH-Wert von 5,8 eingestellt und bei 120°C getrocknet und gemahlen. Das vorliegend beschriebene Produkt hat einen GR-Index von 0,5.

Vergleichsbeispiel

Es wird analog zu Beispiel 1 verfahren, nur wird zur Einstellung des sauren Gels auf einen pH-Wert von 5,8 ausschließlich eine 30%ige wäßrige Lösung von NaOH eingesetzt.

Beispiel 2

Es wird analog Beispiel 1 verfahren, nur wird jetzt zur Einstellung des sauren Geles auf einen pH-Wert von 6,1 30 %ige wäßrige KOH eingesetzt, welche 15 Gew.-% Na-aluminat gelöst enthält. Das hier resultierende Produkt besitzt einen GR-Index von 0,7, ist hervorragend für den Einsatz in Babywindeln geeignet und zeichnet sich durch gute Flüssigkeitsretention aus.

Beispiel 3

Unter adiabatischen Bedingungen werden in einem 1,5 l zylindrischen Weithalsreaktionskolben 1287 g auf 15°C abgekühltes entsalztem Wasser vorgelegt und 225 g Acrylsäure sowie 128 g Tetraallyloxyethan darin gelöst. Es wird Stickstoff in die Monomerlösung eingeleitet (ca. 2 l/Min. für ca. 20 Min.), um den Sauerstoffgehalt zu erniedrigen. Bei einem Gehalt von 1,5 ppm O₂ werden 7,7 g einer 10 %igen wäßrigen Lösung von 2,2'-Azo-bis(2-amidinopropan)-dihydrochlorid zugegeben, nach weiterem N₂-Einleiten und einem O₂-Gehalt von 1,3 ppm werden 2,6 g einer 1 %igen H₂O₂-Lösung zugegeben und schließlich bei einem O₂-Gehalt von 1,0 ppm werden 6,4 g einer 0,1 %igen Ascorbinsäurelösung zugegeben. Durch einsetzende Polymerisation, in deren Verlauf die Temperatur bis auf ca. 65°C ansteigt, entsteht ein festes Gel, das anschließend mechanisch zerkleinert wird. 400 g des zerkleinerten

11

Man erhält ein Produkt, im wesentlichen gekennzeichnet durch folgende physikalische Daten, alle gemessen in NaCl 0,9 %:
Extrahierbare Anteile (16 h-Wert) 7,7 %, Absorption unter Druck (20 g/cm²) = 23,8 g/g, GR-Index = 0,3.

5

Tabelle 3

	Extrahierbare Anteile 16 h-Wert (%)	Absorption unter Druck (20 g/cm ²) (g/g)	Gel-Recovery Index
Vergleichs- beispiel	10,2	9,4	0
Beispiel 1	7,5	25,2	0,5
Beispiel 2	7,1	32,9	0,7
Beispiel 3	7,7	23,8	0,3

Alle Werte sind gemessen in NaCl 0,9 %ig

20

25

30

35

40

45

Patentansprüche

1. Ionisch vernetzte Hydrogele, erhältlich durch Zugabe von
5 Aluminaten der Formel (I)

worin

10 M Kalium oder Natrium und

n eine ganze Zahl von 1 bis 10 bedeuten,

15 zu einem unvernetzten oder kovalent vernetzten Hydrogel, wo-
bei der pH-Wert nach Zugabe von I einen Wert zwischen 3,0 und
9,5 beträgt.

2. Ionisch vernetzte Hydrogele nach Anspruch 1, dadurch gekenn-
zeichnet, daß das eingesetzte Hydrogel Carboxylgruppen und/
oder Alkali- oder Ammoniumcarboxylatgruppen trägt.

3. Ionisch vernetzte Hydrogele nach Anspruch 1 oder 2, dadurch
gekennzeichnet, daß sie zu 50 bis 99,99 Gew.-% aus Struktur-
einheiten aufgebaut sind, die von der Acrylsäure abgeleitet
sind.

4. Ionisch vernetzte Hydrogele nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, daß das eingesetzte Hydrogel durch
30 eine radikalische Copolymerisation hergestellt wurden.

5. Ionisch vernetzte Hydrogele nach einem oder mehreren der An-
sprüche 1 bis 4, dadurch gekennzeichnet, daß sie durch Zugabe
von Verbindungen der Formel (I) hergestellt werden, worin n
35 eine ganze Zahl von 2 bis 4 bedeutet.

6. Ionisch vernetzte Hydrogele nach einem oder mehreren der An-
sprüche 1 bis 5, dadurch gekennzeichnet, daß der pH-Wert bei
der Zugabe von Verbindungen der Formel (I) auf 4,0 bis 7,5
40 eingestellt wird.

7. Ionisch vernetzte Hydrogele nach einem oder mehreren der An-
sprüche 1 bis 6, dadurch gekennzeichnet, daß die Menge an
Aluminaten 0,05 bis 80 mol-% Al bezogen auf zu neutralisie-
rende Säureeinheiten im Hydrogel beträgt.
45

13

8. Ionisch vernetzte Hydrogele nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß ein kovalent vernetztes Hydrogel eingesetzt wird.
- 5 9. Ionisch vernetzte Hydrogele nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das eingesetzte Hydrogel durch Copolymerisation von Acrylsäure mit zwei- oder mehrfach ungesättigten Verbindungen in wäßriger Lösung hergestellt wurden.
- 10 10. Verfahren zur Herstellung von ionisch vernetzten Hydrogelen gemäß den Ansprüchen 1 bis 9, indem man ein unvernetztes oder kovalent vernetztes Hydrogel mit Aluminaten I derart umsetzt, daß sich ein pH-Wert von 3,0 bis 9,5 einstellt.

15

20

25

30

35

40

45

INTERNATIONAL SEARCH REPORT

Intern	Application No
	PCT/EP 99/02702

A. CLASSIFICATION OF SUBJECT MATTER					
IPC 6	C08J3/24	A61L15/60	A61F13/15	C08K3/00	C08F220/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 6 C08J A61L A61F C08K C08F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 95 11932 A (ALLIED COLLOIDS LTD ; JOHNSON IAN MICHAEL (GB); COULDWELL PAULINE L) 4 May 1995 (1995-05-04) page 8, line 1; claims 1,2 ---	1-10
X	US 5 684 106 A (JOHNSON IAN MICHAEL ET AL) 4 November 1997 (1997-11-04) column 4, line 60-65; claim 1 ---	1-10
X	US 4 690 971 A (FLESHER PETER ET AL). 1 September 1987 (1987-09-01) cited in the application column 3, line 25-35; claims 1,3 -----	1-10

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

29 July 1999

Date of mailing of the international search report

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Devriese, K

INTERNATIONAL SEARCH REPORT

International application No.

PCT/EP99/02702

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
" "
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/EP 99/02702

ADDITIONAL MATTER**PCT/ISA/210**

The International Searching Authority found that this international application contains multiple inventions, as follows:

1. Claims Nos. 1-10**1.1. Claims Nos. 1-10**

Method for producing hydrogels and hydrogels that can be obtained by adding Na[H4A104]

1.2. Claims Nos. 1-10

Method for producing hydrogels and hydrogels that can be obtained by adding K[H4A104]

1.3. Claims Nos. 1-10

Method for producing hydrogels and hydrogels that can be obtained by adding aluminaates of formula I with n=2-10

INTERNATIONAL SEARCH REPORT

Information on patent family members

Intern	nal Application No
	PCT/EP 99/02702

Patent document cited in search report	Publication date	Patent-family member(s)		Publication date
WO 9511932	A 04-05-1995	AT 175216	T	15-01-1999
		AU 695732	B	20-08-1998
		AU 7997994	A	22-05-1995
		BR 9406467	A	23-01-1996
		CA 2152362	A	04-05-1995
		DE 69415651	D	11-02-1999
		DE 69415651	T	20-05-1999
		EP 0675909	A	11-10-1995
		ES 2125493	T	01-03-1999
		FI 953086	A	21-06-1995
		JP 8509522	T	08-10-1996
		NO 952566	A	26-06-1995
		SI 675909	T	30-04-1999
		US 5684106	A	04-11-1997
		ZA 9408464	A	27-10-1995
-----	-----	-----	-----	-----
US 5684106	A 04-11-1997	AT 175216	T	15-01-1999
		AU 695732	B	20-08-1998
		AU 7997994	A	22-05-1995
		BR 9406467	A	23-01-1996
		CA 2152362	A	04-05-1995
		DE 69415651	D	11-02-1999
		DE 69415651	T	20-05-1999
		EP 0675909	A	11-10-1995
		ES 2125493	T	01-03-1999
		FI 953086	A	21-06-1995
		WO 9511932	A	04-05-1995
		JP 8509522	T	08-10-1996
		NO 952566	A	26-06-1995
		SI 675909	T	30-04-1999
		ZA 9408464	A	27-10-1995
-----	-----	-----	-----	-----
US 4690971	A 01-09-1987	AU 582832	B	13-04-1989
		AU 5425686	A	11-09-1986
		CA 1286047	A	09-07-1991
		EP 0195550	A	24-09-1986
		JP 61222600	A	03-10-1986
		US 4880858	A	14-11-1989
-----	-----	-----	-----	-----

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 99/02702

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES				
IPK 6	C08J3/24	A61L15/60	A61F13/15	C08K3/00
				C08F220/04

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 6 C08J A61L A61F C08K C08F

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	WO 95 11932 A (ALLIED COLLOIDS LTD ; JOHNSON IAN MICHAEL (GB); COULDWELL PAULINE L) 4. Mai 1995 (1995-05-04) Seite 8, Zeile 1; Ansprüche 1,2 ---	1-10
X	US 5 684 106 A (JOHNSON IAN MICHAEL ET AL) 4. November 1997 (1997-11-04) Spalte 4, Zeile 60-65; Anspruch 1 ---	1-10
X	US 4 690 971 A (FLESHER PETER ET AL) 1. September 1987 (1987-09-01) in der Anmeldung erwähnt Spalte 3, Zeile 25-35; Ansprüche 1,3 -----	1-10

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :

- "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- "E" Älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahelegend ist

"Z" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

29. Juli 1999

Name und Postanschrift der Internationalen Recherchenbehörde
-Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Devriese, K

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP 99/02702

Feld I Bemerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 2 auf Blatt 1)

Gemäß Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:

1. Ansprüche Nr.
weil sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich

2. Ansprüche Nr.
weil sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich

3. Ansprüche Nr.
weil es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.

Feld II Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 3 auf Blatt 1)

Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:

1. Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle recherchierbaren Ansprüche.

2. Da für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr gerechtfertigt hätte, hat die Behörde nicht zur Zahlung einer solchen Gebühr aufgefordert.

3. Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht nur auf die Ansprüche, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr.

4. Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recherchenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen erfaßt:

Bemerkungen hinsichtlich eines Widerspruchs

Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt.
 Die Zahlung zusätzlicher Recherchengebühren erfolgte ohne Widerspruch.

WEITERE ANGABEN

PCT/ISA/ 210

Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere (Gruppen von) Erfindungen enthält, nämlich:

1. Ansprüche: 1-10

1.1. Ansprüche: 1-10
Verfahren zu Herstellung von Hydrogelen und Hydrogele, erhältlich durch zugabe von Na[H4A1O4]

1.2. Ansprüche: 1-10
Verfahren zu Herstellung von Hydrogelen und Hydrogele, erhältlich durch zugabe von K[H4A1O4]

1.3. Ansprüche: 1-10
Verfahren zu Herstellung von Hydrogelen und Hydrogele, erhältlich durch zugabe von Aluminaten der Formel I mit n=2-10

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 99/02702

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO 9511932 A	04-05-1995	AT 175216 T AU 695732 B AU 7997994 A BR 9406467 A CA 2152362 A DE 69415651 D DE 69415651 T EP 0675909 A ES 2125493 T FI 953086 A JP 8509522 T NO 952566 A SI 675909 T US 5684106 A ZA 9408464 A	15-01-1999 20-08-1998 22-05-1995 23-01-1996 04-05-1995 11-02-1999 20-05-1999 11-10-1995 01-03-1999 21-06-1995 08-10-1996 26-06-1995 30-04-1999 04-11-1997 27-10-1995
US 5684106 A	04-11-1997	AT 175216 T AU 695732 B AU 7997994 A BR 9406467 A CA 2152362 A DE 69415651 D DE 69415651 T EP 0675909 A ES 2125493 T FI 953086 A WO 9511932 A JP 8509522 T NO 952566 A SI 675909 T ZA 9408464 A	15-01-1999 20-08-1998 22-05-1995 23-01-1996 04-05-1995 11-02-1999 20-05-1999 11-10-1995 01-03-1999 21-06-1995 04-05-1995 08-10-1996 26-06-1995 30-04-1999 27-10-1995
US 4690971 A	01-09-1987	AU 582832 B AU 5425686 A CA 1286047 A EP 0195550 A JP 61222600 A US 4880858 A	13-04-1989 11-09-1986 09-07-1991 24-09-1986 03-10-1986 14-11-1989