This chapter focuses on the current procedures pilots and air traffic control (ATC) use for instrument flight rule (IFR) arrivals in the National Airspace System (NAS). The objective is to provide pilots with an understanding of ATC arrival procedures and pilot responsibilities as they relate to the transition between the en route and approach phases of flight. This chapter emphasizes standard terminal arrival routes (STARs), descent clearances, descent planning, and ATC procedures, while the scope of coverage focuses on transitioning from the en route phase of flight, typically the origination point of a STAR to the STAR termination fix.

Optimum IFR arrival options include flying directly from the en route structure to an approach gate or initial approach fix (IAF), a visual arrival, STARs, and radar vectors. Within controlled airspace, ATC routinely uses radar vectors for separation purposes, noise abatement considerations when it is an operational advantage, or when requested by pilots. Vectors outside of controlled airspace are provided only on pilot request. The controller tells the pilot the purpose of the vector when the vector is controller-initiated and takes the aircraft off a previously assigned non-radar route. Typically, when operating on area navigation (RNAV) routes, pilots are allowed to remain on their own navigation.

Navigation in the Arrival Environment

The most significant and demanding navigational requirement is the need to safely separate aircraft. In a non-radar environment, ATC does not have an independent means to separate air traffic and must depend entirely on information relayed from flight crews to determine the actual geographic position and altitude. In this situation, precise navigation is critical to ATC's ability to provide separation.

Even in a radar environment, precise navigation and position reports, when required, are still a primary means of providing separation. In most situations, ATC does not have the capability or the responsibility for navigating an aircraft. Because they rely on precise navigation by the flight crew, flight safety in all IFR operations depends directly on the pilot's ability to achieve and maintain certain levels of navigational performance. ATC uses radar to monitor navigational performance, detect possible navigational errors, and expedite traffic flow. In a nonradar environment, ATC has no independent knowledge of the actual position of the aircraft or its relationship to other aircraft in adjacent airspace. Therefore, ATC's ability to detect a navigational error and resolve collision hazards is seriously degraded when a deviation from a clearance occurs.

The concept of navigation performance, previously discussed in this book, involves the precision that must be maintained for both the assigned route and altitude. Required levels of navigation performance vary from area to area depending on traffic density and complexity of the routes flown. The level of navigation performance must be more precise in domestic airspace than in oceanic and remote land areas since air traffic density in domestic airspace is much greater. For example, there are three million flight operations conducted within Chicago Center's airspace each year. The minimum lateral distance permitted between co-altitude aircraft in Chicago Center's airspace is eight nautical miles (NM) (3 NM when radar is used). The route ATC assigns an aircraft has protected airspace on both sides of the centerline, equal to one-half of the lateral separation minimum standard. For example, the overall level of lateral navigation performance necessary for flight safety must be better than 4 NM in Center airspace. When STARs are reviewed subsequently in this chapter, it is demonstrated how the navigational requirements become more restrictive in the arrival phase of flight where air traffic density increases and procedural design and obstacle clearance become more limiting.

The concept of navigational performance is fundamental to the code of federal regulations and is best defined in Title 14 of the Code of Federal Regulations (14 CFR) Part 121, § 121.103 and 121.121, which state that each aircraft must be navigated to the degree of accuracy required for ATC. The requirements of 14 CFR Part 91, § 91.123 related to compliance with ATC clearances and instructions also reflect this fundamental concept. Commercial operators must comply with their Operations Specifications (OpSpecs) and understand the categories of navigational operations and be able to navigate to the degree of accuracy required for the control of air traffic.

In the broad concept of air navigation, there are two major categories of navigational operations consisting of Class I navigation and Class II navigation. Class I navigation is any en route flight operation conducted in controlled or uncontrolled airspace that is entirely within operational service volumes of International Civil Aviation Organization (ICAO) standard navigational aids (NAVAIDs) (very high frequency (VHF) omnidirectional radio range (VOR), VOR/distance measuring equipment (DME), non-directional beacon (NDB), etc.).

Class II navigation is any en route operation that is not categorized as Class I navigation and includes any operation or portion of an operation that takes place outside the operational service volumes of ICAO standard NAVAIDs. For example, aircraft equipped only with VORs conducts