Module 6

# Q. Compare all Mobile Generations i.e. 1G, 2G, 3G, 4G, and 5G in a table

=>

| Feature            | 1G                                | 2G                                        | 3G                                     | 4G                                          | 5 <b>G</b>                                 |
|--------------------|-----------------------------------|-------------------------------------------|----------------------------------------|---------------------------------------------|--------------------------------------------|
| Time<br>Period     | 1980s                             | 1990s                                     | 2000s                                  | 2010s                                       | 2020s onward                               |
| Technolog<br>y     | Analog                            | Digital (GSM,<br>CDMA)                    | WCDMA,<br>UMTS, HSPA                   | LTE, LTE-Advanced                           | NR (New Radio),<br>mmWave, Massive<br>MIMO |
| Data<br>Speed      | ~2.4 Kbps                         | Up to 64<br>Kbps                          | 384 Kbps to<br>few Mbps                | 100 Mbps to 1<br>Gbps+                      | 1–10 Gbps                                  |
| Bandwidth          | 30 KHz                            | 200 KHz                                   | 1.25 MHz to 20<br>MHz                  | 20 MHz to 100 MHz                           | Up to 1 GHz                                |
| Services           | Voice only                        | Voice + SMS                               | Voice + SMS +<br>Data                  | HD Video, VoIP,<br>Mobile Web               | UHD Streaming, VR, IoT, Al integration     |
| Latency            | High (300+<br>ms)                 | ~300 ms                                   | ~100–150 ms                            | ~30–50 ms                                   | 1–10 ms                                    |
| Security           | Poor                              | Basic<br>encryption<br>(GSM)              | Improved<br>(128-bit<br>encryption)    | Strong (AES, IPsec)                         | Advanced (5G-AKA, unified authentication)  |
| Switching<br>Type  | Circuit<br>Switching              | Circuit + Packet Switching                | Packet<br>Switching<br>(mostly)        | Fully Packet<br>Switched (All IP)           | Fully Packet Switched with slicing         |
| Main<br>Limitation | Poor voice<br>quality, no<br>data | Low data<br>speed,<br>limited<br>services | Limited<br>bandwidth for<br>heavy data | Network<br>congestion, not<br>IoT-optimized | High cost,<br>infrastructure<br>dependency |
| Examples           | AMPS                              | GSM, CDMA                                 | UMTS, HSPA                             | LTE, WIMAX                                  | 5G NR (SA/NSA<br>modes)                    |

=>

A **Self Organizing Network (SON)** is a concept in modern mobile communication (mainly LTE and 5G) where the network can manage and optimize itself **without human involvement**.

It means if you install a new base station (eNodeB), it will **automatically configure itself**, connect with the rest of the network, and start operating without needing manual setup or tuning.

SON works just like "Plug and Play" in computers—when you plug in a new device (like a keyboard or printer), it starts working automatically.



## Why SON is Needed

Traditionally, setting up a mobile network involves multiple steps:

- 1. Network planning
- 2. Hardware installation
- 3. Basic configuration
- 4. Parameter optimization
- 5. Ongoing monitoring and tuning

SON tries to **automate step 4 and 5**, and partially automate step 3. This saves time, reduces errors, and makes the network more efficient

#### **Architecture of SON**

The SON architecture includes three major functional blocks:

#### 1. Self-Configuration

- New elements like base stations (eNodeBs) configure themselves automatically when powered
  on.
- This includes setting frequencies, power levels, and connecting to the core network.

# 2. Self-Optimization

- The network monitors itself and adjusts parameters such as:
  - Handover settings
  - Transmission power
  - Load balancing between cells
  - Interference control
- It ensures better performance and resource use.

#### 3. Self-Healing

- SON can detect failures in the network like a cell outage or performance drop.
- It automatically takes actions to fix or compensate for these issues, like rerouting traffic to nearby cells.

#### Goals of SON

#### 1. Provide Optimal Coverage

Ensure users can connect to the network from anywhere with stable and good-quality service.

## 2. Provide Optimal Capacity

Support as many users as possible while maintaining good performance, even during peak usage.

#### **Advantages of SON**

#### 1. Better Network Performance

Improves speed, reliability, and coverage by automatically adjusting to traffic and user behavior.

# 2. Lower Operating Costs

Reduces manual work like site visits and parameter tuning.

# 3. Faster and Easier Deployment

Helps in quick installation of new sites, small cells, and upgrades.

# **Disadvantages of SON**

# 1. Complexity and Compatibility Issues

Different vendors and technologies may not work smoothly together, making SON harder to implement.

# 2. Security and Privacy Concerns

SON collects a lot of user and network data, which needs to be protected properly.

## 3. Less Human Control

Too much automation may reduce transparency and make it harder to monitor or debug the system.

# Q. Compare LTE and LTE advanced

| Feature                   | LTE (Long Term<br>Evolution) | LTE-Advanced                                   |  |
|---------------------------|------------------------------|------------------------------------------------|--|
| Release                   | 3GPP Release 8               | 3GPP Release 10 and beyond                     |  |
| Maximum Downlink Speed    | Up to 100 Mbps               | Up to 1 Gbps                                   |  |
| Maximum Uplink Speed      | Up to 50 Mbps                | Up to 500 Mbps                                 |  |
| Carrier Aggregation       | Not supported                | Supported (up to 5 carriers, 100 MHz total)    |  |
| MIMO Support              | Up to 4x4 MIMO               | Up to 8x8 MIMO                                 |  |
| Peak Spectrum Efficiency  | Lower (16 bps/Hz)            | Higher (30 bps/Hz)                             |  |
| Latency                   | Around 10 ms                 | Reduced latency (less than 5 ms)               |  |
| Cell Edge Performance     | Moderate                     | Improved through coordinated multipoint (CoMP) |  |
| Relay Nodes Support       | Not available                | Supported (for improved coverage)              |  |
| Backward<br>Compatibility | Compatible with 3G and 2G    | Fully backward compatible with LTE             |  |
| Target Use                | Basic mobile broadband       | Advanced broadband + high-speed multimedia use |  |

=>

#### 1. Introduction to SAE:

- SAE (System Architecture Evolution) is a flat, all-IP-based core network architecture designed to simplify LTE networks.
- It removes older 3G components like RNC (Radio Network Controller) and SGSN (Serving GPRS Support Node), and uses only eNB (Evolved Node B) and the Evolved Packet Core (EPC).



## 2. Goals of SAE:

- Provide high-speed data with low latency.
- Enable seamless handover and interworking with other networks (like WCDMA, WiMAX, WLAN).
- Improve **network scalability** and simplify deployment.

#### 3. Components of SAE/LTE Architecture:

## A. Evolved Node B (eNB):

- Directly connects to the mobile device (UE).
- Handles radio transmission, reception, and radio resource management.
- Communicates with EPC via the S1 interface.

## B. Evolved Packet Core (EPC):

The EPC consists of the following major elements:

## i. MME (Mobility Management Entity):

- Controls signaling and mobility management functions.
- Key responsibilities:
  - UE authentication (via HSS).
  - Paging and tracking of idle UEs.
  - Bearer management (activation/deactivation).
  - o **Security**: NAS ciphering/integrity protection.
  - Manages handover and roaming procedures.
  - o Controls mobility between LTE and legacy networks via the S3 interface.

# ii. SGW (Serving Gateway):

- Acts as a data router for user plane traffic.
- Key responsibilities:
  - Forwarding user data packets between eNB and PGW.
  - Mobility anchor during handovers between eNBs.
  - Stores **UE context** and triggers paging when downlink data arrives.
  - Supports lawful interception of user traffic.

## iii. PGW (Packet Data Network Gateway):

- Connects the EPC to external networks (e.g., the Internet).
- Key responsibilities:
  - o Provides IP address to UEs.
  - o Performs QoS enforcement, deep packet inspection, and charging.
  - o Filters packets, applies policies, and screens data.
  - Supports access to multiple PDNs for a UE.



IP multimedia System is an architectural frame work for delevering multimedia voice, video, text messaging over IP network Benefits & VOLTE - 10 It we compare with Haditional Voice VOLTE provides more expirient use It Rapid call establishment time is provided by VOLTE Headest buttery life is increased by 40% as compared to VOIP. 20 It climinates the need to have date on one network and voice on other. - It ensures that video services are fully interpretable across the Operator community 25 just as Voile Service are.

Madres (2014 From Eacher)