Programma del corso

- Introduzione agli algoritmi
- Rappresentazione delle Informazioni
- Architettura del calcolatore
- ☐ Elementi di Programmazione

Rappresentazione dell'informazione

- □ Varie rappresentazioni sono possibili per la medesima informazione
 - Es. Testo scritto su carta o registrato su nastro
- □ Rappresentazioni R1 e R2 sono equivalenti se data R1 è possibile ricavare R2 e viceversa
 - Es. Trascrizione del testo data la sua registrazione e viceversa
- Scelta della rappresentazione
 - Spesso convenzionale ...
 - ... ma spesso legata a vincoli
 - Es. Rappresentazione binaria negli elaboratori

Analogico vs digitale

Il numero 6 si codificherebbe come 1011111

Informazione implicita nella rappresentazione: serve codifica/decodifica

La rappresentazione digitale dell'informazione

Rappresentazione digitale

 Ogni dato viene codificato impiegando entità distinte individualmente e organizzate in modo opportuno (es. abaco). Trova le sue origini nel conteggio con le dita della mano (da cui il nome).

Rappresentazione analogica

 Basata sull'impiego di dispositivi che realizzano una grandezza fisica che può variare in modo continuo (es. tensione elettrica).

Calcolatori analogici e digitali

Durante questo secolo sono stati sviluppati sia calcolatori analogici che digitali ma, la rappresentazione che si è affermata è di tipo digitale.

Dalla rappresentazione alla codifica dell'informazione

informazione

Convenzionale: deve essere condiviso da chi usa

Processo di decodifica: da una stringa ad

Codifica dell'informazione

- Il calcolatore memorizza ed elabora vari tipi di informazioni
 - Numeri, testi, immagini, suoni
- Occorre rappresentare tale informazione in formato facilmente manipolabile dall'elaboratore

L'aritmetica dei calcolatori

- L'aritmetica usata dai calcolatori è diversa da quella comunemente utilizzata dalle persone.
- La precisione con cui i numeri possono essere espressi è finita e predeterminata poiché questi devono essere memorizzati entro un limitato spazio di memoria.

$$\sqrt{2} = 1 \cdot 1 \cdot 4 \cdot 1 \cdot 4 \cdot 2 \cdot 1 \cdot 3 \cdot 5 \cdot 6$$

 La rappresentazione è normalmente ottenuta utilizzando il sistema binario poiché più adatto a essere maneggiato dal calcolatore.

124 **→** 01111100

Rappresentazione delle informazioni

Idea di fondo

- usare presenza/assenza di carica elettrica
- usare passaggio/non passaggio di corrente/luce

Usiamo cioè una rappresentazione binaria (a due valori) dell'informazione

L'unità minimale di rappresentazione è il **BIT** (**BI**nary digi**T** – cifra digitale): **0** o **1**

Informazioni complesse

Con 1 bit rappresentiamo solo 2 diverse informazioni:

si/no - on/off - 0/1

Mettendo insieme più bit possiamo rappresentare più informazioni:

00 / 01 / 10 / 11

Informazioni complesse si memorizzano come sequenze di bit

Informazioni complesse

- Per codificare i nomi delle 4 stagioni bastano 2 bit
- ☐ Ad esempio:
 - **0 0** per rappresentare **Inverno**
 - **0 1** per rappresentare **Primavera**
 - 1 0 per rappresentare Estate
 - 1 1 per rappresentare Autunno
- Quanti bit per codificare i nomi dei giorni della settimana?

Informazioni complesse

In generale, con N bit, ognuno dei quali può assumere 2 valori, possiamo rappresentare 2^N informazioni diverse (tutte le possibili combinazioni di 0 e 1 su N posizioni)

viceversa

Per rappresentare M informazioni dobbiamo usare N bit, in modo che $2^{N} >= M$

Esempio

Per rappresentare **57** informazioni diverse dobbiamo usare gruppi di almeno **6** bit. Infatti:

$$2^6 = 64 > 57$$

Cioè un gruppo di 6 bit può assumere 64 configurazioni diverse: 000000 / 000001 / 000010 .../ 111110 / 111111

Il Byte

- □Una sequenza di 8 bit viene chiamata Byte
 - 00000000
 - 0 0 0 0 0 0 0 1
 -

byte = $8 \text{ bit} = 2^8 = 256 \text{ informazioni diverse}$

Usato come unità di misura per indicare

- le dimensioni della memoria
- la velocità di trasmissione
- la "potenza" di un elaboratore

Usando sequenze di byte (e quindi di bit) si possono rappresentare caratteri, numeri immagini, suoni.

Altre unità di misura

- ☐ KiloByte (**KB**), MegaByte (**MB**), GigaByte (**GB**)
- Per ragioni storiche in informatica Kilo, Mega, e Giga indicano però le potenze di 2 che più si avvicinano alle corrispondenti potenze di 10 (Sistema IEC)
- ☐ Sistema SI: 1 Kilobyte = 1000 byte
- \square Sistema IEC: 1 Kilobyte (detto *Kibibyte* = 1024 byte)
- ☐ Più precisamente (sistema IEC)
 - 1 KB = 1024×1 byte = $2^{10} \sim 10^3$ byte
 - $1 \text{ MB} = 1024 \times 1 \text{ KB} = 2^{20} \sim 10^6 \text{ byte}$
 - 1 GB = $1024 \times 1 \text{ MB} = 2^{30} \sim 10^9 \text{ byte}$
- Il sistema IEC è usato come unità di misura per la capacità della memoria di un elaboratore.
- ☐ Il sistema SI è usato come unità di misura per le capacità degli hard disk

Unità di misura nel sistema binario

Il bit rappresenta la più piccola unità di misura dell'informazione memorizzabile in un calcolatore. I sistemi moderni memorizzano e manipolano miliardi di bit; per questo motivo sono stati definiti diversi multipli.

Nome	Sigla	In bit	In byte	In potenze di 2
Bit	Bit	1 bit	1/8	2 ¹ =2 stati
Byte	Byte	8	1	2 ⁸ =256 stati
KiloByte	KB	8.192	1.024	2 ¹⁰ Byte
MegaByte	MB	8.388.608	1.048.576	2 ²⁰ Byte
GigaByte	GB	8.589.934.592	1.073.741.824	2 ³⁰ Byte
TeraByte	TB	8.796.093.022.208	1.099.511.627.776	2 ⁴⁰ Byte

ATTENZIONE: 1KB non corrisponde a 1000 Byte, ma a 1024 Byte, 1MB non corrisponde a 1000000 Byte, ...

Codici per i simboli dell'alfabeto

- Per rappresentare i simboli dell'alfabeto anglosassone (0 1 2 ... A B ... a b ...) bastano 7 bit (codifica **ASCII**)
 - Nota: B e b sono simboli diversi
 - 26 maiuscole + 26 minuscole + 10 cifre + 30 segni di interpunzione+... -> circa 120 oggetti
- Per l'alfabeto esteso con simboli quali &, %, \$, ... bastano 8 bit come nella codifica accettata universalmente chiamata ASCII esteso
- Per manipolare un numero maggiore di simboli si utilizza la codifica UNICODE a 16 bit

Codifica ASCII

□ La codifica ASCII (American Standard Code for Interchange Code) utilizza codici su 7 bit

```
(2^7 = 128 \text{ caratteri diversi})
```

- Ad esempio
 - 100001 rappresenta A
 - 1000010 rappresenta B
 - 1000011 rappresenta C
- Le parole si codificano utilizzando sequenze di valori da 7 bit
 - **1**000010 1000001 1000010 1000001

B A B A

Altri codici di codifica

- ☐ ASCII ESTESO
 - Usa anche il primo bit di ogni byte
 - 256 caratteri diversi
 - non è standard (cambia con la lingua usata)
 - Ad es. a volte nello scambio di mail, ci si trova con strani caratteri (sono magari le lettere accentate non riconosciute dal programma di gestione delle mail)
- □ ISO 8859-1: contiene i caratteri latini di maggior uso (coincide con ASCII per i primi 127 valori)
- □ UNICODE (UTF-8 e UTF-16)
 - standard proposto a 8 e 16 bit (65.536 caratteri)
 - UTF-8 è usato per le e-mail
- □ EBCDIC
 - altro codice a 8 bit della IBM (quasi in disuso)

Tabella ASCII (0-127)

00000000	Null	00100000	Spc	01000000	@	01100000	
00000001	Start of heading	00100001	1	01000001	Ă	01100001	a
00000010	Start of text	00100010	22	01000010	В	01100010	ь
00000011	End of text	00100011	#	01000011	$\overline{\mathbf{c}}$	01100011	C
00000100	End of transmit	00100100	\$	01000100	\mathbf{D}	01100100	d
00000101	Enquiry	00100101	%	01000101	\mathbf{E}	01100101	е
00000110	Acknowledge	00100110	&	01000110	\mathbf{F}	01100110	f
00000111	Audible bell	00100111	,	01000111	\mathbf{G}	01100111	g
00001000	Backspace	00101000	- (01001000	\mathbf{H}	01101000	ĥ
00001001	Horizontal tab	00101001	- i	01001001	\mathbf{I}	01101001	i
00001010	Line feed	00101010	*	01001010	J	01101010	i
00001011	Vertical tab	00101011	+	01001011	\mathbf{K}	01101011	k
00001100	Form Feed	00101100	,	01001100	\mathbf{L}	01101100	1
00001101	Carriage return	00101101		01001101	\mathbf{M}	01101101	m
00001110	Shift out	00101110		01001110	N	01101110	n
00001111	Shift in	00101111	1	01001111	0	01101111	0
00010000	Data link escape	00110000	0	01010000	\mathbf{P}	01110000	р
00010001	Device control 1	00110001	1	01010001	Q	01110001	q
00010010	Device control 2	00110010	2	01010010	$\hat{\mathbf{R}}$	01110010	r
00010011	Device control 3	00110011	3	01010011	S	01110011	S
00010100	Device control 4	00110100	4	01010100	\mathbf{T}	01110100	t
00010101	Neg. acknowledge	00110101	5	01010101	\mathbf{U}	01110101	\mathbf{u}
00010110	Synchronous idle	00110110	6	01010110	\mathbf{v}	01110110	\mathbf{v}
00010111	End trans, block	00110111	7	01010111	w	01110111	w
00011000	Cancel	00111000	8	01011000	\mathbf{x}	01111000	x
00011001	End of medium	00111001	9	01011001	\mathbf{Y}	01111001	y
00011010	Substitution	00111010	:	01011010	\mathbf{z}	01111010	Z
00011011	Escape	00111011		01011011	- 1	01111011	{
00011100	File separator	00111100	é.	01011100	Ñ	01111100	ì
00011101	Group separator	00111101	=	01011101	1	01111101	}
00011110	Record Separator	00111110	>	01011110	Ā	01111110	~
00011111	Unit separator	00111111	?	01011111	_	01111111	Del

Numeri in ASCII

Le cifre 0..9 rappresentate in Ascii sono simboli o caratteri **NON** quantità numeriche

Non possiamo usarle per indicare quantità e per le operazioni aritmetiche. (Anche nella vita di tutti giorni usiamo i numeri come simboli e non come quantità: i n. telefonici)

Il sistema decimale

- □ 10 cifre di base: 0, 1, 2, ..., 9
- Notazione posizionale: la posizione di una cifra in un numero indica il suo peso in potenze di 10. I pesi sono:
 - Unità = $10^0 = 1$ (posiz. 0-esima)
 - decine $= 10^1 = 10$ (posiz. 1-esima)
 - \blacksquare centinaia = $10^2 = 100$ (posiz. 2-esima)
 - migliaia = $10^3 = 1000$ (posiz. 3-esima)

Esempio di numero rappresentato in notazione decimale

Il **numerale** 2304 in notazione decimale (o in base 10) rappresenta la quantità:

$$2304 = 2*10^3 + 3*10^2 + 0*10^1 + 4*10^0 =$$

$$2000 + 300 + 0 + 4 = 2304$$
 (numero)

Nota: numero e numerale qui coincidono, perché il sistema decimale è quello adottato come sistema di riferimento

- NOTA: lo stesso numero è rappresentato da numerali diversi in diversi sistemi
 - 156 nel sistema decimale
 - CLVI in cifre romane

Notazione posizionale (decimale)

Dato un numerale espresso come:

- \square $C_nC_{n-1}...C_1C_0$
 - dove i coefficienti c_i possono essere le cifre da 0 a 9

Il numero corrispondente è:

$$\Box$$
 $c_n*10^n + c_{n-1}*10^{n-1} + ... + c_1*10^1 + c_0*10^0$

□ In base 10 con N cifre posso rappresentare i 10^N numeri da 0 a 10^N-1

Notazione posizionale (generale)

- Data una base B
- \square considerato il numerale $c_n c_{n-1} \dots c_1 c_0$
 - dove i coefficienti c_i possono essere le cifre da 0 a B-1
- □ Il numero corrispondente è:
- $\Box c_n^*B^n + c_{n-1}^*B^{n-1} + ... + c_1^*B^1 + c_0^*B^0$
- con N cifre posso rappresentare i B^N numeri da 0 a B^N-1

Notazione posizionale (binaria)

- □ Considerando B=2
- □ Dato il numerale:

 - dove i coefficienti c_i possono essere 0 o 1
 - Il numero è: $c_n^*2^n + ... + c_2^*2^2 + c_1^*2^1 + c_0^*2^0$
- con N cifre riesco a rappresentare i 2^N numeri da 0 a 2^N-1

Il sistema binario

- □ 2 Cifre di base: 0 e 1
- Notazione posizionale: la posizione di una cifra in un numero binario indica il suo peso in potenze di 2. I pesi sono:
 - $2^0 = 1$ (posiz. 0-esima)
 - $2^1 = 2$ (posiz. 1-esima)
 - $= 2^2 = 4$ (posiz. 2-esima)
 - $2^3 = 8; \ 2^4 = 16; \ 2^5 = 32; \ 2^6 = 64; \ 2^7 = 128;$ $2^8 = 256; \ 2^9 = 512; \ 2^{10} = 1024; \ 2^{11} = 2048,$ $2^{12} = 4096; \dots$

Esempio di numero rappresentato in notazione binaria

Il **numerale** 10100101 in notazione binaria (o in base 2) rappresenta la quantità:

$$1*2^{7}+0*2^{6}+1*2^{5}+0*2^{4}+0*2^{3}+1*2^{2}+0*2^{1}+1*2^{0}$$

$$128+0+32+0+0+4+0+1=$$

$$165 (numero)$$

Il numero più grande rappresentato con N cifre

- □ Sist. Decimale = $99...99 = 10^{N} 1$
- □ Sist. Binario = $11..11 = 2^{N} 1$
- Esempio: 11111111 (8 bit binari) =
 - $2^8 1 = 255$. Per rappresentare il n. 256
 - ci vuole un bit in più: 10000000 =
 - $1*2^8 = 256.$

Quindi...

Fissate quante cifre (bit) sono usate per rappresentare i numeri, si fissa anche il numero più grande che si può rappresentare:

- \blacksquare con 16 bit: $2^{16} 1 = 65.535$
- con 32 bit: $2^{32} 1 = 4.294.967.295$
- con 64 bit: 2^{64} 1 = circa 1,84 * 10^{19}

Idea di fondo: usare le potenze di 2 che, sommate, danno il numero N da convertire:

- ■Prendere le potenze di 2 <= di N nell'ordine dalla più grande alla più piccola (cioè 2º)
- Associare il bit 1 alle potenze che vengono usate nella somma per ricostruire N
- Associare il bit 0 alle potenze non usate.

Basta moltiplicare ogni bit per il suo peso e sommare il tutto:

Esempio:

$$10100$$

$$1*2^{4} + 0*2^{3} + 1*2^{2} + 0*2^{1} + 0*2^{0} =$$

$$16 + 4 = 20$$

la conversione e' una **somma di potenze** (N.B. se il numero binario termina per 1 e' dispari altrimenti e' pari).

Regola:

- □ divido il numero per 2: il resto è la cifra c₀
- □ divido il risultato per 2: il resto è la cifra c₁
- \square divido il risultato per 2: il resto è la cifra c₂
- □ mi fermo quando il risultato è 0 (eventualmente con resto 1)

☐ Conversione di 29₁₀

$$29/2 = 14$$
 $R = 1 (c_0)$
 $14/2 = 7$ $R = 0 (c_1)$
 $7/2 = 3$ $R = 1 (c_2)$
 $3/2 = 1$ $R = 1 (c_3)$
 $1/2 = 0$ $R = 1 (c_4)$

□ 11101₂

□ Infatti...

$$11101_2 = 1*2^4 + 1*2^3 + 1*2^2 + 0*2^1 + 1*2^0 = 16 + 8 + 4 + 1 = 29_{10}$$

Esistono anche altre basi di numerazione

CODICE OTTALE

- **■**cifre: 0, 1, 2, 3, 4, 5, 6, 7
- $\blacksquare 10$ (ottale) = 8 (decimale)

□ CODICE ESADECIMALE

- ■cifre: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
- ■10 (esadecimale) = 16 (decimale); B = 11; $2B=2*16^1+B*16^0=32+11=43$

Aritmetica binaria

□ Somma tra numeri binari

	0	1
0	0	1
1	1	10

Somma tra numeri binari: alcuni esempi

Rappresentazione di numeri positivi e negativi

☐ Il bit più a sinistra rappresenta il segno del numero:

$$0 = '+'$$
 $1 = '-'$ $1101 = -5$

- E' indispensabile indicare il numero N di bit utilizzati:
 - 1 bit per il segno e N-1 bit per il modulo
- Con un byte possiamo rappresentare tutti i numeri compresi tra

In generale con N bit si rappresentano i valori da

$$-2^{N-1}-1$$
 a $+2^{N-1}-1$

Codifica dei numeri interi negativi

- Es: Due controindicazioni:
 - 2 rappresentazioni dello 0
 - non si possono applicare le regole tradizionali per le operazioni aritmetiche:

Rappresentazione di numeri positivi e negativi

Complemento a 2

□ <u>Definizione</u>: Se N sono i bit da utilizzare e x il numero da rappresentare si utilizza il valore binario pari a

$$2^{N} + x$$

Es. con 4 bit

$$+7 = 2^4 + 7 = 16 + 7 = 23 = 10111 = 0111$$

 $-7 = 2^4 - 7 = 16 - 7 = 9 = 1001$

si scarta

Codifica dei numeri interi negativi: complemento a 2

- Il bit più significativo (più a sx) è per rappresentare il segno (0 per il +, 1 per il -)
- Comune rappresentazione binaria per i numeri positivi
- Per i numeri negativi: inversione dei restanti bit $(0 \rightarrow 1 = 1 \rightarrow 0)$ e poi si somma 1

in alternativa:

- dati N bit, codifico in binario il numero risultato da 2^N + num
 - □ (es. Con 4 bit per codificare in complemento a 2 -7 calcolo 16-7 = 9 e codifico 9 in binario: 1001)

Rappresentazione in complemento a 2: esempio

- □ -5 con quattro bit
 - il bit di segno è 1
- \square Conversione: $5_{10} = 0101_2$
- \square Inversione: 0101 \rightarrow 1010
- □ Somma di 1: 1010 + 1 = 1011
- □ Verifica: $+5 \rightarrow 0101$
 - $-5 \rightarrow 1011$
 - = 0 = (1)0000

Conversione da complemento a 2 in decimale con segno

- □ se prima cifra $0 \rightarrow$ numero positivo \rightarrow conversione solita (es. $0100 \rightarrow +4$)
- \square se prima cifra 1 \rightarrow numero negativo \rightarrow
 - inversione dei bit (tranne il primo)
 - conversione da binario a decimale
 - somma di 1

Conversione da complemento a 2 in decimale con segno: esempio

- □ 1101
 - tolgo il bit di segno → 101
 - Inversione \rightarrow 010
 - Conversione in decimale \rightarrow 010₂ = 2₁₀
 - Somma \rightarrow 2 + 1 = 3
 - Segno \rightarrow -3

In generale

- ☐ Con N bit ho 2^N configurazioni possibili
- Considerando interi positivi codifico i numeri da 0 a 2^N-1
- □ Considerando interi positivi e negativi (complemento a 2) codifico i numeri:
 - positivi: da 0 a 2^{N-1}-1
 - negativi: da -2^{N-1} a -1

Rappresentazione in complemento a 2

☐ Con quattro bit:

0000	0	1000	-8
0001	+1	1001	-7
0010	+2	1010	-6
0011	+3	1011	-5
0100	+4	1100	-4
0101	+5	1101	-3
0110	+6	1110	-2
0111	+7	1111	-1

Applicazione del Complemento a 2: L'Addizione

- Il bit più a sinistra conserva il significato di segno.
- Il segno viene determinato automaticamente!
- □ Es: 15 5 (utilizzando 8 bit)
- □ Faccio la somma "normalmente"

Regola – Se i primi due bit della riga dei riporti sono diversi, il risultato **non è valido**

NB: Si ignora il bit di overflow!

Numeri a precisione finita (1)

- I numeri a precisione finita sono quelli rappresentati con un numero finito di cifre.
 - Fissate le caratteristiche del numero è determinato anche l'insieme di valori rappresentabili.
- Le operazioni con i numeri a precisione finita causano errori quando il loro risultato non appartiene all'insieme dei valori rappresentabili:
 - Underflow: si verifica quando il risultato dell'operazione è minore del più piccolo valore rappresentabile
 - Overflow: si verifica quando il risultato dell'operazione è maggiore del più grande valore rappresentabile
 - Non appartenenza all'insieme: si verifica quando il risultato dell'operazione, pur non essendo troppo grande o troppo piccolo, non appartiene all'insieme dei valori rappresentabili

Numeri a precisione finita (2)

 Esempio: si considerino i numeri a tre cifre senza virgola e senza segno:

- Non possono essere rappresentati:
 - Numeri superiori a 999
 - Numeri negativi
 - Frazioni e numeri irrazionali
- Alcuni errori possibili in operazioni fra tali numeri:
 - 600+600 = 1200 **→** Overflow
 - 300-600 = -300 **→** *Underflow*
 - 007/002 = 3.5 → Non appartenenza all'insieme

Numeri a precisione finita (3)

- L'algebra dei dei numeri a precisione finita è diversa da quella convenzionale, poiché alcune delle proprietà non vengono rispettate.
 - A differenza dei numeri interi, i numeri a precisione finita non rispettano la chiusura rispetto alle operazioni di somma, sottrazione e prodotto.
 - La proprietà associativa [a + (b c) = (a + b) c] e la proprietà distributiva [a \times (b c) = a \times b a \times c] non sono rispettate
- Esempi (numeri a precisione finita di 3 cifre senza virgola e senza segno):
 - Chiusura: 050×050=2500 (Overflow)
 - Prop. associativa: (400 + 300) 500 = 200400 + (300 - 500) = Underflow
 - Prop. distributiva: $50 \times (50 40) = 500$ $50 \times 50 - 50 \times 40 = Overflow$

I numeri reali e la loro rappresentazione

- Quando si parla di numeri "reali", nell'informatica, ci si riferisce sempre ad un piccolo sottoinsieme finito di numeri razionali.
- 2 possibili rappresentazioni:
 - in virgola fissa
 - In virgola mobile
- La prima rappresentazione potrebbe essere usata per applicazioni di tipo gestionale, dove l'ordine di grandezza dei numeri che compaiono non è mai troppo diverso
- La seconda invece consente di gestire numeri il cui ordine di grandezza è profondamente differente

Esempio:

Rappresentazione di numeri frazionari in Virgola fissa

Un numero frazionario è rappresentato come una coppia di numeri interi: la parte intera e la parte decimale.

```
12,75 <12; 75> <1100; 11> = 1*2^{3}+1*2^{2}+0*2^{1}+0*2^{0}+1*2^{-1}+1*2^{-2}
```


Numeri floating-point (1)

- Molte applicazioni richiedono il trattamento di valori razionali o reali
 - **1**/3 = 0.333333... π = 3.14159265...
 - Non rappresentabili con un numero finito di bit
 - Per numeri molto grandi spesso interessano solo le cifre più significative
- Si adotta una notazione in cui la gamma dei valori esprimibili è indipendente dal numero di cifre significative. Questo sistema è detto floating-point.
 frazione o mantissa

$$n = f \times 10^{e} \frac{\text{esponente}}{\text{esponente}}$$

La precisione è determinata dalla mantissa f, mentre la gamma dei valori è determinato dall'esponente e.

Esempio: Valori floating point corrispondenti alla mantissa f=0.241, al variare del numero delle cifre significative e dell'esponente e.

c.s.	-3	-2	-1	0	1	2	3
1	0.0002	0.002	0.02	0.2	2	20	200
2	0.00024	0.0024	0.024	0.24	2.4	24	240
3	0.000241	0.00241	0.0241	0.241	2.41	24.1	241

Numeri in virgola mobile

(Floating point)

Idea: 12,52 = 1252/100 = 1252 * 10⁻² Un numero decimale è rappresentato come un intero moltiplicato per una opportuna potenza di 10, cioè con una coppia:

<1252; -2>

mantissa esponente

E' necessario stabilire quanti bit assegnare alla mantissa e all'esponente.

Ad esempio, con 16 bit a disposizione possiamo usarne 12 per la mantissa e 4 per l'esponente

(la mantissa e l'esponente sono di solito espressi in complemento a 2, per cui un bit corrisponde al segno della mantissa e uno a quello dell'esponente)

Con lo stesso metodo possiamo rappresentare numeri molto grandi. Ad esempio, con 8 bit:

- 4 bit di mantissa: 0111 = 7
- 4 bit di esponente: 0111 = 7 $0111 \ 0111 = 7 * 2^7 = 896$

Mentre, con la notazione classica, con 8 bit rappresentiamo al massimo il n. 255

Ma allora, perchè non usare sempre la notazione floating point?

Perchè si perde in precisione

Esempio: 5 cifre (decimali): 4 per la mantissa, 1 per l'esponente. Rappresentare

Non posso rappresentare gli infiniti numeri che si trovano qua (es. 312,41)!

Numeri floating-point (4)

- Non tutti i numeri reali appartenenti alle aree rappresentabili possono essere espressi correttamente tramite un numero floating-point.
 - Esempio: Con numeri floating-point con tre cifre decimali con segno per la mantissa e due cifre decimali con segno per l'esponente non è possibile rappresentare 10/3=3.3333333...

$$0.333 \times 10^1 < 3.\overline{3} < 0.334 \times 10^1$$

A differenza dei numeri reali, la *densità* dei numeri floating-point non è infinita **>** Errori di arrotondamento

• Quando il risultato ν non si può esprimere nella rappresentazione numerica adottata, si utilizza il numero più vicino rappresentabile $(\nu_1 < \nu < \nu_2)$.

Quindi: possiamo rappresentare numeri molto grandi o con molti decimali al costo di una perdita di precisione

Perchè? Perchè i computer permettono solo rappresentazioni finite, e così dobbiamo approssimare alcuni numeri (ad esempio gli irrazionali), ma anche immagini e suoni

Codifica dei caratteri alfabetici – 1

- ☐ Oltre ai numeri, molte applicazioni informatiche elaborano caratteri (simboli)
- Gli elaboratori elettronici trattano numeri
- ☐ Si codificano i caratteri e i simboli per mezzo di numeri
- Per poter scambiare dati (testi) in modo corretto, occorre definire uno standard di codifica

Codifica dei caratteri alfabetici – 2

- Quando si scambiano dati, deve essere noto il tipo di codifica utilizzato
- □ La codifica deve prevedere le lettere dell'alfabeto, le cifre numeriche, i simboli, la punteggiatura, i caratteri speciali per certe lingue (æ, ã, ë, è,...)
- □ Lo standard di codifica più diffuso è il codice ASCII, per American Standard Code for Information Interchange

Codifica ASCII

- Definisce una tabella di corrispondenza fra ciascun carattere e un codice a 7 bit (128 caratteri)
- □ I caratteri, in genere, sono rappresentati con 1 byte (8 bit); i caratteri con il bit più significativo a 1 (quelli con codice dal 128 al 255) rappresentano un'estensione della codifica
- □ La tabella comprende sia caratteri di controllo (codici da 0 a 31) che caratteri stampabili
- I caratteri alfabetici/numerici hanno codici ordinati secondo l'ordine alfabetico/numerico

0 48	A 65	a 97
1 49	B 66	b 98
8 56	Y 89	y 121
9 57	Z 90	z 122

cifre maiuscole minuscole

Caratteri di controllo ASCII

- ☐ I caratteri di controllo (codice da 0 a 31) hanno funzioni speciali
- Si ottengono o con tasti specifici o con una sequenza Ctrl+carattere

Ctrl	Dec	Hex	Code	Nota
^@	0	0	NULL	carattere nullo
^A	1	1	SOH	partenza blocco
^G	7	7	BEL	beep
^H	8	8	BS	backspace
∿I	9	9	HT	tabulazione orizzontale
^]	10	Α	LF	line feed (cambio linea)
^K	11	В	VT	tabulazione verticale
^L	12	С	FF	form feed (alim. carta)
^M	13	D	CR	carriage return (a capo)
^Z	26	1A	EOF	fine file
^[27	1 B	ESC	escape
^_	31	1F	US	separatore di unità

Caratteri ASCII stampabili

Dec Hx Chr Dec Hx Chr Dec Hx Chr Dec Hx Chr Dec Hx Chr

32	20	SPA	CE	48	30	0	6	64	40	<u>a</u>	80	50	Р	96	60	`	112	70	p
33	21	!		49	31	1	6	5	41	Α	81	51	Q	97	61	a	113	71	q
34	22	″		50	32	2	6	6	42	В	82	52	R	98	62	b	114	72	r
35	23	#		51	33	3	6	7	43	С	83	53	S	99	63	С	115	73	S
36	24	\$ _		52	34	4	6	8	44	D	84	54	Τ	100	64	d	116	74	t
37	25	용		53	35	5	6	9	45	Ε	85	55	U	101	65	е	117	75	u
38	26	&		54	36	6	7	0	46	F	86	56	V	102	66	f	118	76	V
39	27	'		55	37	7	7	1	47	G	87	57	M	103	67	g	119	77	W
40	28	(56	38	8	7	2	48	Η	88	58	Χ	104	68	h	120	78	X
41	29)		57	39	9	7	3	49	Ι	89	59	Υ	105	69	i	121	79	У
42	2A	*		58	ЗА	:	7	4	4A	J	90	5A	Ζ	106	6A	j	122	7A	Z
43	2В	+		59	3В	;	7	5	4B	K	91	5B	[107	6B	k	123	7В	{
44	2C	,		60	3C	<	7	6	4C	L	92	5C	\	108	6C	1	124	7C	
45	2 D	-		61	3 D	=	7	7	4 D	Μ	93	5D]	109	6D	m	125	7 D	}
46	2E			62	ЗE	>	7	8	4E	Ν	94	5E	^	110	6E	n	126	7E	~
47	2F	/		63	3F	?	7	9	4 F	0	95	5F	_	111	6F	0	127	7F	DEL

Nota: il valore numerico di una cifra può essere calcolato come differenza del suo codice ASCII rispetto al codice ASCII della cifra 0 (es. 5'-0' = 53-48 = 5)

Tabella ASCII estesa

☐ I codici oltre il 127 non sono compresi nello standard originario

128	Ç	144	É	160	á	176		193	\perp	209	₹	225	ß	241	±
129	ü	145	æ	161	í	177	*****	194	Т	210	π	226	Γ	242	≥
130	é	146	Æ	162	ó	178		195	F	211	Ш	227	π	243	≤
131	â	147	ô	163	ú	179		196	_	212	F	228	Σ	244	ſ
132	ä	148	ö	164	ñ	180	+	197	+	213	F	229	σ	245	J
133	à	149	ò	165	Й	181	=	198	F	214	Г	230	μ	246	÷
134	å	150	û	166	•	182	1	199	⊩	215	#	231	τ	247	æ
135	ç	151	ù	167	۰	183	П	200	L	216	+	232	Φ	248	۰
136	ê	152	_	168	Š	184	Ŧ	201	F	217	T	233	◉	249	
137	ë	153	Ö	169	_	185	#	202	ᄟ	218	Г	234	Ω	250	
138	è	154	Ü	170	\neg	186		203	ī	219		235	δ	251	$\sqrt{}$
139	ï	156	£	171	1/2	187	ī	204	ŀ	220	-	236	00	252	_
140	î	157	¥	172	1/4	188	ī	205	=	221	ı	237	ф	253	2
141	ì	158	_	173	İ	189	Ш	206	#	222	ı	238	ε	254	
142	Ä	159	f	174	«	190	4	207	⊥	223	-	239	\cap	255	
143	Å	192	L	175	>>	191	٦	208	Ш	224	α	240	=		