Modelli generativi di modelli neurali artificiali robusti Uno studio preliminare di fattibilità

Emanuele Ballarin†

Relatore: Prof. Luca BORTOLUSSI[‡] Co-Relatore: Prof. Fabio BENATTI[†]

[†]Dipartimento di Fisica, Univ. di Trieste [‡]Dipartimento di Matematica e Geoscienze, Univ. di Trieste [⋄]INFN, sezione di Trieste

Sessione di Laurea straordinaria – 24 aprile 2020

Voi siete qui

- Introduzione al paradigma del Deep Learning

Deep Learning ⊆ Machine Learning

Il *Machine Learning* è essenzialmente studio e implementazione di **algoritmi d'apprendimento**. In particolare: apprendimento *statistico*.

"Un programma informatico impara da un'esperienza E con riferimento ad un'attività T e una misura di prestazioni P se le sue prestazioni misurate da P nello svolgimento dell'attività T migliorano noto E."

(Mitchell, 1998)

Nota

Più che *un* algoritmo, il *Deep Learning* è un approccio paradigmatico e universale alla risoluzione di problemi d'apprendimento automatico.

I problemi di classificazione automatica (supervisionata)

Spazio degli *input*: $\mathbb{I} \sim \mathbb{R}^k$ – Ciò che si vuole classificare Spazio degli *output* (o *delle classi*): \mathbb{O} – Classi in cui **partizionare** \mathbb{I}

Training set:
$$\{\mathbb{I} \times \mathbb{O}\} \supseteq \mathcal{T} = \{(\mathbf{x}_1, \xi_1), (\mathbf{x}_2, \xi_2), \ldots, (\mathbf{x}_n, \xi_n)\}$$
 – Esempi

Un classificatore $C_{\boldsymbol{w},\boldsymbol{h}}: \mathbb{I} \to \mathbb{O}$ dipende da **pesi** (\boldsymbol{w}) e **iperparametri** (\boldsymbol{h}). Loss function: $\mathcal{L} = \mathcal{L}(C_{\boldsymbol{w},\boldsymbol{h}},\mathcal{T})$

Scopo del *training*: trovare \boldsymbol{w} ottimale per \mathcal{C} , noti $\mathcal{T}, \boldsymbol{h}, \mathcal{L}$

Questo è equivalente al problema di ottimizzazione:

$$\mathsf{Find}\; \tilde{\pmb{w}} = \operatorname*{argmin}_{\pmb{w}} \left(\mathcal{L} \left(\mathcal{C}_{\pmb{w},\pmb{h}},\mathcal{T} \right) \right)$$

| Perceptron (Rosenblatt, 1958)

Il Perceptron è un modello che opera sugli input con una **trasformazione** affine seguita da una non-linearità (A)

$$y = A(\mathbf{x} \cdot \mathbf{w} + b) = A\left(\sum_{j=1}^{k} x_j w_j + b\right)$$

e dotato di un semplice training step iterativo:

$$\mathbf{w'} \leftarrow (\mathbf{w} + \epsilon (\xi_i - y_i) \mathbf{x}_i)$$

 $\mathbf{b'} \leftarrow (\mathbf{b} + \epsilon (\xi_i - y_i))$

Nota

Il *Perceptron* non è solo un *classificatore*. È però in grado di risolvere solo una ristretta classe di problemi. (*Minsky & Papert, 1696*)

5/30

Il Perceptron (Rosenblatt, 1958) [cont.]

Going deeper

What if...?

E se un problema d'apprendimento (arbitrario) fosse sempre **scomponibile** in sottoproblemi *perceptron-separabili*?

Going deeper [cont.]

Questo introduce una classe di modelli assai più *espressivi* e *capaci*: i *fully-connected multilayer perceptron models*.

E il concetto di *layer*

$$L_r(\mathbf{x}_r) = A_r (\mathbf{W}_r \mathbf{x}_r + \mathbf{b}_r)$$

Un'intera rete neurale può essere descritta come:

$$\mathbf{y} = \mathsf{NNet}(\mathbf{x}) = L_N(L_{N-1}(\dots(L_1(\mathbf{x}))))$$

.

Going deeper [cont.]

Il problema d'ottimizzazione diventa però intrattabile con tecniche tradizionali. Si estende quindi l'approccio iterativo: gradient descent.

$$oldsymbol{ heta'} \leftarrow oldsymbol{ heta} - \epsilon oldsymbol{g}$$

(con θ vettore dei pesi del modello, ${m g}=\nabla_{m heta}{\cal L}$, $\epsilon\ll 1$)

O sue varianti più efficaci (g.d. with 1^{st} momentum correction):

$$\mathbf{v}_t \leftarrow \mathbf{ heta}_t - \mathbf{ heta}_{t-1}$$

$$oldsymbol{ heta}_{t+1} \leftarrow oldsymbol{ heta}_t - \epsilon oldsymbol{g}_t + \mu oldsymbol{v}_t$$

(con t l'indice di iterazione, $\mu \ll 1$)

Going deeper [cont.]

I risultati del Deep Learning

Il Deep Learning è un paradigma maturo, capace di risultati tutt'ora ineguagliati in problemi di regressione predittiva, classificazione, generazione di dati, controllo.

97.3% macaw

Tutto chiaro?

Forse no.

88.9% bookcase

Voi siete qui

- 2 II problema della *robustezza*

Perché studiare la robustezza?

Il fenomeno appena mostrato (*Perdikaris, 2018*) è un esempio di *assenza di robustezza* nel classificatore utilizzato.

Lo studio di questi fenomeni si presta ad analizzare:

- La validità del classificatore in scenari di difficile prevedibilità, rari, inusuali;
- La resistenza del classificatore a manipolazioni dolose degli input;

E di adottare eventuali mitigazioni.

Ma cosa provoca questo tipo di comportamenti?

La Manifold Hypothesis (Dube, 2018)

Un'ipotesi da tempo circolante all'interno della comunità dei ricercatori, ma solo recentemente associata ai fenomeni di *robustezza*.

- Un classificatore (anche non neurale) accetta qualsiasi input compatibile con la codifica scelta.
- Il contenuto del training set descrive una varietà basso-dimensionale immersa in un input space alto-dimensionale.
 Ciò resta vero anche per le decision boundaries apprese.
- Lo scopo del training è quello di apprendere le intersezioni tra data manifold e decision boundaries;

Adversarial attacks

Un adversarial attack è una procedura (o il suo risultato) atta a provocare un comportamento non previsto o non voluto in un classificatore - cioè a produrre una misclassification.

Due approcci:

- Perturbazioni da input d'interesse (esempio precedente);
- Input privi di significato noto (vedi sotto).

(Taj Mahal; \sim 65%)

Misure di robustezza perturbativa

Il caso perturbativo è sicuramente quello più simile a *input* imprevisti raccolti in uno scenario realistico o a causa di manomissioni.

ϵ -robustezza – di \mathcal{C} , in $\mathbf{x} \in \mathbb{I}$, rispetto a $||\cdot||$

$$\forall \boldsymbol{p} \text{ t.c. } ||\boldsymbol{p}|| < \epsilon, \ \mathcal{C}(\boldsymbol{x}) = \mathcal{C}(\boldsymbol{x} + \boldsymbol{p})$$

Empirical Global Robustness – di \mathcal{C} , dati $\tilde{\mathcal{T}} \subseteq \mathcal{T}$ e un attacco

$$\mathsf{EGR}(\tilde{\mathcal{T}}) = \left(1 - \frac{\#(\mathsf{attacks leading to misclassification})}{|\tilde{\mathcal{T}}|}\right)$$

Esempio di attacco: PGD- $||\cdot||_{\infty}$

È un attacco *white-box*: richiede **completa** conoscenza del modello \mathcal{C} e della sua *loss* \mathcal{L} .

Dato $\tilde{x} \in \mathbb{I}$ di corretta classificazione e fissato ϵ , **iterativamente**:

- lacksquare Ci si pone in $ilde{x}$ o in qualunque altro punto della palla chiusa $\mathcal{B}_{\epsilon}(ilde{x})$;
- ② Si effettua un *update step*: $\mathbf{x'} \leftarrow \mathbf{x} + \eta \nabla_{\mathbf{x}} \mathcal{L}\left(\mathcal{C}_{\mathbf{w},\mathbf{h}}(\mathbf{x})\right)$; $\eta \ll 1$;
- **③** Qualora $m{x'} \notin \mathcal{B}_{\epsilon}(\tilde{m{x}})$, lo si proietta sulla sfera $\mathcal{S}_{\epsilon}(\tilde{m{x}})$.

È equivalente al problema di ottimizzazione:

Find
$$\mathbf{x}' = \underset{\mathbf{x} \in \mathcal{B}_{\epsilon}(\tilde{\mathbf{x}})}{\operatorname{argmin}} \left(-\mathcal{L} \left(\mathcal{C}_{\mathbf{w}, \mathbf{h}}(\mathbf{x}) \right) \right)$$

Le metriche scelte devono essere quelle indotte da $||\cdot||_{\infty}$.

Esempio di attacco: PGD- $||\cdot||_{\infty}$ [esempio nel caso $||\cdot||_{2}$]

Difese e adversarial training

In generale sono stati proposti numerosi *attacchi* per sistemi di *Deep Learning*. Così come per gli *attacchi* sono state proposte altrettante *difese*. Si cerca (e spesso si ottiene) la **trasferibilità**.

Un principio molto popolare è quello dell'adversarial training: proseguire l'allenamento su un training set contenente i risultati di attacchi generati allo scopo.

Nota

In generale, tuttavia, non sembra mai essere messo in discussione il meccanismo con cui i *pesi* debbano essere generati: tramite *gradient* descent sul modello stesso.

Voi siete qui

- La nostra proposta

Modelli generativi dei pesi

"Nessuna metodologia di difesa contro adversarial examples è tuttavia completamente soddisfacente. Questo rimane un campo di ricerca aperto e in rapida evoluzione."

(Kurakin, Goodfellow & Bengio, 2018)

L'idea

Apprendere un modello (accompagnato da un'opportuno *protocollo di training*) con lo scopo di generare *pesi* di architetture neurali di forma prestabilita.

Generatore $\mathcal G$ e value network $\mathcal V$

Un riassunto della dinamica di training:

- **1** Campionamento: $s \sim \text{Dist}^z$ nota;
- **②** Generazione dei pesi: $\theta = \mathcal{G}(s)$ e weight-loading;
- **3** Computo di *accuratezza* \mathfrak{A} e *robustezza* \mathfrak{R} su $\tilde{T} \subseteq \mathcal{T}$;
- **3 Stima** di *accuratezza* e *robustezza* tramite $(\hat{\mathfrak{A}}, \hat{\mathfrak{R}}) = \mathcal{V}(\boldsymbol{\theta})$;
- **5** Training step per \mathcal{V} : $\mathcal{L}_{\mathcal{V}} = \text{similarità tra } (\hat{\mathfrak{A}}, \hat{\mathfrak{R}}) \text{ e } (\mathfrak{A}, \mathfrak{R})$
- **1** Training step \mathcal{G} : $\mathcal{L}(\theta) = -\alpha \hat{\mathfrak{A}}(\theta) \beta \hat{\mathfrak{R}}(\theta)$ t.c. $\alpha + \beta = 1$.

Where's the catch?

In fase d'ideazione e sviluppo sono stati incontrati alcuni ostacoli che hanno richiesto soluzioni specifiche:

- ullet Non-differenziabilità del *weight-loading* o Uso di un *value network* ${\cal V}$;
- Lentezza nella convergenza (a causa di $\mathcal V$ e non solo) o pretraining;

E alcune scelte sofferte ma necessarie:

• Volontà di preservare informazioni distribuzionali riguardo ai $pesi \rightarrow Impossibilità di usare <math>regolarizzazioni$;

Voi siete qui

- Esperimentazioni

Il dataset: MNIST

Raccolta di 10000 immagini in *bianco e nero*, quadrate, 28×28 pixel. Rappresentate come vettore binario dei 784 pixel.

Contiene raffigurazioni delle cifre arabe 0-9 in diverse grafie manoscritte, con annessa classificazione in base alle intenzioni dello scrivente.

Tipico problema di classificazione: uno standard *de facto* per *toy-problems* in *Machine Learning*. Oggi di facile risoluzione quanto all'accuratezza del modello appreso.

Classificatore (*LeNet-5*) e attacco (*PGD-* $||\cdot||_{\infty}$)

LeNet5 (LeCun, Bottou et al.) è un'architettura neurale convoluzionale e fully-connected pensata appositamente per la classificazione di cifre arabe manoscritte. Nel caso in esame è semplicemente stato ridotto per praticità il numero di pesi.

Risultati

Risultati interessanti, seppur fortemente preliminari.

Conclusioni

Alcuni dei risultati evidenziati si configurano come notevoli e interessanti. Il percorso proposto è sicuramente meritevole di ulteriori approfondimenti. L'ambito è ancora troppo poco esplorato!

Possibili sviluppi ulteriori:

- Determinazione delle condizioni rigorose di convergenza del modello;
- Studio dei campioni con migliore profilo acc/rob;
- Ottimizzazione multi-obiettivo nel latent space;
- Misure di acc/rob differenziabili e ablazione di V;
- Robustezza multi-attacco e multi-norma;
- Robustezza weight-agnostic;
- Approccio neuro-inspired/active learning alla robustezza;

Ringraziamenti

Grazie per l'attenzione.