19日本国特許庁(JP)

^⑩公開特許公報 (A)

⑩特許出願公開

60Int. Cl.2 C 07 C 69/96 B 01 J 31/02 C 07 C 68/06

識別記号 **10**日本分類 16 B 81 101 13(9) G 42

庁内整理番号 43公開 7824-4H

昭54—148726 昭和54年(1979)11月21日

7059-4G 発明の数 1 7824-4H

(全 4 頁)

・
の
シアルキル
炭酸エステルの
製造法

②特

願 昭53-57177

22出

願 昭53(1978)5月16日

@発 明 者

飛田俊 市原市辰己台東3-14

同

北村悟志

市原市辰己台東3-14

審査請求 未請求

@発 明者 新関次郎 千葉市作草部町641-6

砂出 願 日曹油化工業株式会社

東京都中央区日本橋本町4丁目

1番地

個代 理 弁理士 伊藤晴之

外1名

BEST AVAILABLE COPY

1.発明の名称

ジアルキル炭酸エステルの製造法

2. 特許請求の範囲

1. 亜鉛、アルミニウム又はチタンの各アルコ キシドのうちから選ばれた少くとも1種の化 合物の存在下アルキレンカーポネートと低級 脂肪族アルコールを反応させることを特徴と するジアルキル炭酸エステルの製造法。

3. 発明の詳細な説明

ジアルキル炭酸エステルは樹脂、塗料等の各 復番 剤又はアルキル化剤として有用を化合物で あり、通常アルコールとホスゲンの反応により 製造されるが、この方法によれば猛毒性のホス ゲンを使用するための危険性及び多量の塩化水 素の副生等の欠点を有しており工業的に離点の 多い方法であつた。

本発明者らはジアルギル炭酸エステルがアルキ レンカーポネートとアルコールのエステル交換

反応により製造できれば工業的に非常に有利で あると考え種々検討を加えた結果、触媒量の亜 鉛、アルミニウム又はチタンの金属アルコキシ ドが穏やかなる反応条件下で高反応速度でしか も脱炭酸反応をほとんどあるいは全く伴わずに 高選択率、高収率でエステル交換反応を生起せ しめるととを見出 し本発明を完成 するに 至つた ものである。

即ち本発明は亜鉛、アルミニウム又はチョンの 各アルコキシドのうちから思ばれた少なくとも 1 種の化合物の存在下アルキレンカーポネート と低級脂肪族アルコールを反応させることを特 敬とする所望のジアルキル炭酸エステルの製造 缶である。

本発明の方法に用いられるアルキレンカーポネ ートは具体的にはエチレンカーボネート、ブロ ピレンカーポネート、 1, 2 ープチレンカーポネ ト、2.3ープチレンカーポネートの如き低級 アルキレン環状カーポネートであり、特にエチ レンカーボネート、ブロピレンカーポネートが

BEST AVAILABLE COPY

近しい。又、アルキル書の世換した又は世換しノ_{FBX}(ノルマル,イソ,第2級,第3級)プチルエ ☆ い 低級脂肪族 アルコールは 概 ね 炭 素数 1 ~10° の 範囲のものが好しく具体例 としてはメタノー ル,エタノール,ノルマルプロパノール,イソ ブロバノール , ノルマルブタノール , イソブタ ノール,第2級ブタノール,第3級ブタノール の如き低級脂肪族アルコール,ペンタノール, ヘキサノール、ヘブタノール、オクタノール、 デカノール及びそれぞれの異性体の如き中級ア ルコール,ベンジルアルコール, 2 ーフエニル エチルアルコール , 3 — フェニルプロピルアル コールの如き低級アルコールのフェニル置換体 エチレングリコールモノメチルエーテル,エチ レングリコールモノエチルエーテル,エチレン グリコールモノ (ノルマル , イソ) プロビルエ ーテル , エチレングリコールモノ (ノルマル , イソ,第2般,第3般)プチルエーテル,プロ ビレンクリコール或いは 1.4 ープタジオールの *モノメチルエーテル*,モノエチルエーテル,モ ノ(ノルマル,イソ)ブロビルエーテル,モノ

ーテルの如き低級アルコールのアルコキシ世換 体、ハロゲン元素が塩素,臭素,ヨウ素である ・エチレンハロヒドリン;プロピレンハロヒドリ ン,ブチレンハロヒドリンの如き低級アルコー ルのパロダン世換体などを一例として挙げると とができるが、特に好しくは低級脂肪族アルコ / 440人 ールを挙げるととができる。

これら種々の脂肪族アルコールは所望するジア ルキルカーポネートのアルキル蓋に対応して採 用されるべきものである。

又、本発明の触媒として用いられる亜鉛、アル ミニウム、チタンのアルコキシドは世換基がす ペてアルコキシ蓋又は少くとも一つのアルコキ シ 恙 と 残 恙 が ハ ロ ゲ ン元 素 で ある 上 記 金 異 ア ル コキシド化合物であり、アルコキシ蓋としては メトキシ、エトキン(ノルマル , イソ)プロポ キシ、(ノルマル,イソ,第2級,第3級)ブ トキシの如き低級アルコキシ書が特に好しいも / ενοχ のとして挙げることができ、その他としては前

記アルキル基重換された低級アルコールに相当 するアルコキン墨を挙げることができる。 ハログン元素としてはフッ素、塩素、臭素、ヨ ク集であり塩素が好しい。

ジエトキシド、亜鉛ジ(ノルマル、イソ)プロ ポキシド、亜鉛ジ(ノルマル、イソ、第2級、 第3級)プトキシド、アルミニウム、トリメト ニウムトリ(ノルマル、イソ)プロボキシド、 ブルミニウムトリ (・ノルマル、イソ、 第2級、 第3般)プトキシド、クロロアルミニウムジエ トキシド、ジクロロアルミニウムエトキシド、 テトラメトキンチタニウム、テトラエトキンチ *タニ*ウム、テトラ(ノルマル、イソ)プロポキ シチタニウム、テトラ(ノルマル、イソ、第 2 級、第3級)プトキシチタニウム、ジクロロチ タンジメトキシド、ジクロロチタンジエトキシ ド、トリクロロチタンエトキシドなどが挙げら れるが、重換差がすべてアルコキシ基である上

記化合物が特に好しいものとして挙げられる。 /**** 本発明の亜鉛、アルミニウム、チタンのアルコ キットはあらかじめ闘数したものを使用しても /マセルスよいが、反応性のジェテル亜鉛、トリエチルナ う 好しい具体例としては亜鉛ジメトキシド、亜鉛 /**** ルミニウム、ジエチルアルミニウムクロライド、 エチルアルミニウムシクロライド、エチルトリ クロロチタニウム、 ジエチルジクロロチタニウ ムなどを反応米に於て原料アルコールと接触せ キシド、アルミニウムトリエトキシド_ダ アルミ /### しめ系中に実質的に所望の本発明のアルコキシ ドを生成せしめて使用することもでき又、同様 にして本発明のアルコキシドを原料アルコール とアルコール交換せしめて使用することもでき る。亜鉛、アルミニウム、チタンのアルコキシ ドは単独又は混合で用いることができ、使用する 当該アルコキシドは原料アルコールに対応した アルコキン番を有するアルコキンドが有利に用

本発明の実施に際してはペンゼン、トルエンの 如き不活性影媒の存在下又は不在下、常圧又加 圧下、回分式、連続式のいずれの方式でも容易

BEST AVAILABLE COPY

に実施することができる。.

反応温度は反応速度を早くするために高温の方 がよいが、あまり高温の場合原料及び生成物の 脱炭酸側反応が起るために 5 0~2 0 0 ℃が好 しい。本発明のアルキレンカーポネートとアル コールの比は特に限定されないが、反応混合物 からの分離回収の容易なこと及びグリコールエ ーテルの劇生を抑えるために通常アルコールを 過剰に用いるのが好ましく、アルキレンカーポ ネートとアルコールのモル比率は1:4乃至1 : 20が好ましい。

又触媒の便用量は等に限定されないが、所望の 反応速度を実現するために反応原料に対し 0.5 乃至20重量6用いるととが好ましい。

本発明により得られた反応混合物は、そのまゝ 又は戸過、遠心分離等により触棋を分離するか 又は化学的に不活性化(分解を含む)した後、 蒸留操作等により高純度の目的とするジアルキ ル炭酸エステルを容易に得ることができる。 回収された未反応原料及び分離された触媒は循

特開昭54-148726(3) 飛使用できるととはいうまでもない。 以下実施例により本発明を説明する。

実施例 1.

200gのガラス製反応器にエチレンカーボ オート30g、ノルマルブタノール126g、 触媒としてテトラノルマルプトキンチタニウム 5.79を仕込み120℃に5時間加熱した。反 **応混合物をガスクロマトグラフで分析した結果** シノルマルブテルカーポネート 4 0 多 が生成し これはエチレンカーポネートからの転化率68 5に相当する。 又、 脱炭酸 した 刷生物 であるそ ノエチレングリコール、モノブチルエーテルは 検出されなかつた。

実施係.2

内容積300mのステンレス製オートクレー プにエチレンカーポネート40g。 エタノール 1059及び触線としてトリエトキシアルミニ ウム449を仕込み、加圧下120℃で5時間

加熱反応させた。反応混合物を実施例1と同様 /≠m 実施例4 分析したジェチルカーボネート 3 5 g が生成し、1年前 実施例 1 の反応混合 まり 分離回収した触媒の これはエチレンカーポネートからの転化器 65 まに相当する。又、闘生物のモノエチレングリ コールモノエチルエーテルは検出されなかつた。

実施例 3.

実施例2と同じオートクレーブにメタノール 9 1 タを仕込み、ジエチル亜鉛 4.0 タを加え、 エタン発生と共に生成したジェトキシ亜鉛を触 族として使用したがこれにエチレンカーポネー /snz ト 5 0 9 を 加えて 密閉 し、 加圧 下 1 2 0 °C に 5 時間反応した。

反応混合物を実施例1と同様分析した。シメチン*** ルカーボネート379が生成し、これはエチレ ンカーボネートからの転化率72gに相当する。 又モノエチレングリコールモノメチルエーテル の副生物は検出されなかつた。

テトラノルマルプトキシテタネート 4.5 9 を用 いた他は実施例 1 と同じ原料及び量を用い同じ 条件で反応した。反応混合物を実施例1と同様 分析した結果、ジノルマルプチルカーボネート 359が生成した。 これはエチレンカーポネー トからの転化率60gに相当する。又、剛生物 のモノエチレングリコールモノブチルエーテル は検出されなかつた。

寒施例 5.

実施例 1 と同じ反応器にプロビレンカーポネ - ト30g、ノルマルブタノール1099及び テトラノルマルプトキシチタネート 7.0 まを仕 込み1200で5時間反応した。反応混合物を ガスクロマトグラフで分析した結果、ジノルマ ルプチルカーポネートが309生成した。これ はプロピレンカーポネートからの転化率58g に相当する。又、プロピレングリコールモノブ

-195-

BEST AVAILABLE COPY

チルエーテルの劇生物は検出されなかつた。

特開昭54—148726(4) 手 统 補 正 章

昭和53年7月6日

出願人 日暫油化工業株式会社代理人 伊 藤 晴 之

等許庁長官 熊 谷 善 二 服

1.事件の表示

昭和53年得許與第57177号

2発明の名称:

ジアルキル炭酸エステルの製造法

3. 補正をする者

事件との関係 特許出願人

東京都中央区日本橋本町 4 丁目 1 番地 日 曹 油 化 工 葉 株 式 会 社 代表者 福 次 2 2

4.代 理 人

東京都千代田区大手町2丁目2番1号

日本普遍株式会社 內

(6286) 伊 廣 瞎 之

(7125) 機 山 吉 美

6. 補正の対象

明細書の発明の詳細な説明の欄

6. 補正の内容

- (1) 明細書第 3 頁 3 行、「好しく」を「好ましく、」と訂正する。
- (2) 同 同 7 行、「の如き低級脂肪族アルコール」を削除する。
- (3) 同 同 9 行、「中級」を「低級」と訂正する。
- (4) 同第 4 貞 1 7 行、「エトキシ」の後に「、」 を挿入する。
- (5) 岡第5頁1行、「アルキル基」を削除する。
- (6) 何 同 8 行、「アルミニウム、トリメト」を 「アルミニウムトリメト」と訂正する。
- (7) 阿第6頁4行、「ジェテル」を「ジェチル」 と訂正する。
- (8) 同第 8 頁 1 2 行、「クリコール、 モノブチル」を「クリコールモノブチル」と訂正する。