Metrische Räume

Metrischer Raum: Sei X eine Menge. Eine Metrik auf X ist eine Abbildung $d \colon X \times X \to [0, \infty)$ mit

- 1. $\forall x, y \in X : d(x, y) = d(y, x)$
- 2. $\forall x, y, z \in X : d(x, z) \leq d(x, y) + d(y, z)$
- 3. $\forall x \in X : d(x, x) = 0$
- 4. $\forall x, y \in X : d(x, y) = 0 \Rightarrow x = y$

Das Paar (X, d) ist ein metrischer Raum.

Cauchy-Folge: Sei (X, d) ein metrischer Raum. Eine Folge $(a_n)_{n \in \mathbb{N}}$ in X heißt Cauchy-Folge

$$\Leftrightarrow \forall \varepsilon > 0 \colon \exists N \in \mathbb{N} \colon \forall n, m \geq N \colon d(a_n, a_m) < \varepsilon$$

offen, abgeschlossen: Sei (X, d) ein metrischer Raum.

 $U \subseteq X$ heißt offen

$$\Leftrightarrow \forall x \in U : \exists s > 0 : B(x, s) \subseteq U.$$

 $A \subseteq X$ heißt abgeschlossen

$$\Leftrightarrow X \setminus A$$
 offen.

Satz: Sei (X, d) ein metrischer Raum. $A \subseteq X$ abgeschlossen

$$\Leftrightarrow \forall (a_n)_{n \in \mathbb{N}} \text{ in } A \colon a_n \to a \text{ in } X \Rightarrow x \in A$$

vollständig: Sei (X, d) ein metrischer Raum. X heißt vollständig

 \Leftrightarrow jede Cauchy-Folge in X konvergiert.

Stetigkeit

Stetigkeit: Seien (X,d) und (Y,e) metrische Räume, $f\colon X\to Y,\ a\in X.$ Dann ist f stetig in a

$$\Leftrightarrow \forall \varepsilon > 0 \colon \exists \delta > 0 \colon \forall x \in X \colon d(a,x) < \delta \Rightarrow e(f(a),f(x)) < \varepsilon.$$

$$\Leftrightarrow \forall \varepsilon > 0 \colon \exists \delta > 0 \colon f(B_X(a,\delta)) \subseteq B_Y(f(a),\varepsilon).$$

Satz: Zwischenwertsatz Seien $a, b \in \mathbb{R}$, $a < b, f : [a, b] \to \mathbb{R}$ stetig. Dann gilt:

$$\forall A \in \mathbb{R} : f(a) \leq A \leq f(b) \text{ oder } f(b) \leq A \leq f(a) \Rightarrow \exists x \in [a,b] : f(x) = A$$

Folgenkompakt: Sei (X, d) ein metrischer Raum. X heißt folgenkompakt

 \Leftrightarrow Jede Folge in X besitzt eine konvergente Teilfolge.

Lipschitz-Stetigkeit und gleichmäßige Stetigkeit: Seien (X,d) und (Y,e) metrische Räume, $f\colon X\to Y,\ a\in X.$ Dann heißt f gleichmäßig stetig

$$\Leftrightarrow \forall \varepsilon > 0 \colon \exists \delta > 0 \colon \forall x, x' \in X \colon d(x, x') < \delta \Rightarrow e(f(x), f(x')) < \varepsilon.$$

Lipschitz-stetig

$$\Leftrightarrow \exists L > 0 \colon \forall x, x' \in X \colon e(f(x), f(x')) \le L \cdot d(x, x').$$

Differentation

Differenzierbar: Sei $D \subseteq \mathbb{R}$, $f: D \to \mathbb{R}$, $x \in D$. f heißt in x differenzierbar

$$\Leftrightarrow \exists f'(x) := \lim_{\xi \to x, \xi \in D \setminus \{x\}} \frac{f(\xi) - f(x)}{\xi - x}.$$

Satz: von Rolle Sei a < b, $f: [a, b] \to \mathbb{R}$ stetig, f(a) = f(b) = 0, f in (a, b) differenzierbar. Dann gilt:

$$\exists x \in (a,b) \colon f'(x) = 0.$$

Satz: Mittelwertsatz Sei $a < b, f : [a, b] \to \mathbb{R}$ stetig, f in (a, b) differenzierbar. Dann gilt:

$$\exists x \in (a,b) \colon f'(x) = \frac{f(b) - f(a)}{b - a}.$$

Topologie

Inneres, Abschluß, Rand: Sei (X, d) ein metrischer Raum. $Y \subseteq X$. Dann ist das Innere von Y gleich

$$\dot{Y}(=\mathrm{int}(Y)) = \{x \in Y \mid \exists \varepsilon > 0 \colon B(x,\varepsilon) \subseteq Y\}.$$

der Abschluss von Y gleich

$$\overline{Y}(=\operatorname{cl}(Y)) = \{x \in X \mid \forall r > 0 \colon B(x,r) \cap Y \neq \emptyset\}.$$

der Rand von Y gleich

$$\partial(Y) = \overline{Y} \setminus \dot{Y}.$$

Kompaktheit: X heißt kompakt

 \Leftrightarrow zu jeder offenen Überdeckung $\mathcal S$ von X gibt es $\mathcal F\subseteq\mathcal S$, $\mathcal F$ endlich, sodass $\bigcup \mathcal F=X$.

Satz: Kompaktheit und Folgenkompaktheit Sei (X, d) ein metrischer Raum. Dann sind äquivalent:

- 1. X ist kompakt.
- 2. X ist folgenkompakt (i.e. jede Folge besitzt eine konvergente Teilfolge).

Konvergenz, Potenzreihen

konvergenz: Sei K eine Menge, (M,d) ein metrischer Raum. Für $n \in \mathbb{N}$ $f_n \colon K \to M$, $f \colon K \to M$.

 $f_n \to f$ punktweise

$$\Leftrightarrow \forall x \in K : \lim_{n \to \infty} f_n(x) = f(x)$$

 $f_n \to f$ gleichmäßig

$$\Leftrightarrow \forall \varepsilon > 0 \colon \exists N \in \mathbb{N} \colon \forall n > N \colon \forall x \in K \colon d(f_n(x), f(x)) \leq \varepsilon$$

Potenzreihe: Eine Potenzreihe ist eine Reihe

$$\sum_{n=0}^{\infty} c_n (x-a)^n$$

mit a in \mathbb{K} , (c_n) in \mathbb{K} für x in \mathbb{K} .

Satz: Konvergenzradius

$$r := \left(\lim_{n \to \infty} \sup |c_n|^{\frac{1}{n}}\right)^{-1}$$

$$r := \lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right|$$

Satz: Integralvergleichskriterium Sei $f: [0, \infty) \to [0, \infty)$ monoton fallend. Dann gilt:

$$\sum_{n=1}^{\infty} f(n) \text{ konvergent} \Leftrightarrow \int_{1}^{\infty} f(x) dx \text{ konvergent.}$$

Implizite Funktionen

Satz: Banach'scher Fixpuntsatz Sei (X, d) ein vollständiger metrischer Raum mit $X \neq \emptyset$. Und $\varphi \colon X \to X$ ein Kontraktum ,d.h.

$$\exists k \in [0,1) : \forall x, y \in X : d(\varphi(x), \varphi(y) \le k \cdot d(x,y)$$

dann existiert genau ein Fixpunkt $x \in X$ sodass $\varphi(x) = x$.

Satz: 1. Auflösunssatz Sei (X, d) ein metrischer Raum, $U \subseteq \mathbb{R}^n$ offen, und $F \colon X \times U \to \mathbb{R}^n$. Wenn

- F stetig bzgl. der Metrik \tilde{d} (mit $\tilde{d}((x_1,y_1),(x_2,y_2)):=d(x_1,x_2)+|y_1-y_2|)$ ist,
- F differenzierbar nach y-Variablen (d.h. für alle $x \in X$ ist $F(x, .): U \to \mathbb{R}^n$ differenzierbar).
- Sei $a \in X$ und $b \in U$ mit F(a,b) = 0 und

- $\frac{\partial F(a,b)}{\partial y}$ invertierbar, und
- $\frac{\partial F}{\partial y}$ in (a, b) differenzierbar.

Dann existieren $V_1 \subseteq X$ offene Umgebung von a und $V_2 \subseteq U$ offene Umgebung von b und $g \colon V_1 \to V_2$ stetig sodass

- für alle $x \in V_1$: F(x, g(x)) = 0 und
- aus $(x,y) \in V_1 \times V_2$ und F(x,y) = 0 folgt g(x) = y.

Lagrange-Multiplikatoren

Sei $U \subseteq \mathbb{R}^n$ offen, $1 \le m \le n$, $f \colon U \to \mathbb{R}^m$ stetig differenzierbar, und f'(x) habe Rang m für alle $x \in U$. Sei $h \colon U \to \mathbb{R}$ stetig differenzierbar, $a \in U$ mit f(a) = 0 und h habe in a ein lokales Maximum unter Nebenbedingung f = 0, d.h. es gibt Umgebung $V \subseteq U$ von a mit $h(a) \ge h(x)$ für alle $x \in V \cap M$ wobei $M := \{x \in U \mid f(x) = 0\}$.

Dann gibt es $\lambda \in \mathbb{R}^m$, sodass

$$\operatorname{grad} h(a) = \sum_{i=1}^{m} \lambda_i \operatorname{grad} f_i(a).$$