Semi-Supervised Binary tensor decomposition

Jiaxin Hu

Email: jhu267@wisc.edu

Date: 2019.4.10

$1 \quad \text{Semi-supervised Binary tensor decomposition through} \\ \\ \text{Matrix-Times-Tensor}(\text{MMT})$

Model Consider a binary tensor $Y \in \mathbb{R}^{d_1 \times d_2 \times d_3}$ and a covariate matrix $X \in \mathbb{R}^{d_1 \times p}$ on the first mode of the tensor. Apply a tensor logistic model and add the effect of A through Matrix-Times-Tensor(MMT):

$$logit(\mathbb{E}Y) = B \times_1 X$$

where B is in a tucker decomposition form with rank (r_1, r_2, r_3) :

$$B = C \times_1 N_1 \times_2 N_2 \times N_3$$

where $C \in \mathbb{R}^{r_1 \times r_2 \times r_3}$, $N_1 \in \mathbb{R}^{p \times r_1}$, $N_2 \in \mathbb{R}^{d_2 \times r_2}$, $N_3 \in \mathbb{R}^{d_3 \times r_3}$.

Algorithm in 3 or more dimensional binary tensor (Algorithm 1)

2 Semi-supervised Binary tensor decomposition through Simultaneous equations (SE)

Model Consider a binary tensor $Y \in \mathbb{R}^{d_1 \times d_2 \times d_3}$ and a covariate matrix $X \in \mathbb{R}^{d_1 \times p}$ on the first mode of the tensor. Apply a tensor logistic model and construct simultaneous equations(SE) with covariates:

$$logit(\mathbb{E}Y) = C \times M_1 \times M_2 \times M_3$$

$$logit(\mathbb{E}X) = M_1A$$

where $C \in \mathbb{R}^{r_1 \times r_2 \times r_3}, M_1 \in \mathbb{R}^{d_1 \times r_1}, M_2 \in \mathbb{R}^{d_2 \times r_2}, M_3 \in \mathbb{R}^{d_3 \times r_3}, A \in \mathbb{R}^{r_1 \times p}$.

Algorithm in 3 or more dimensional binary tensor (Algorithm 2)

Algorithm 1 Semi-supervised binary tensor decomposition through MMT

Input:

Binary tensor $\mathcal{Y} \in \{0,1\}^{d_1 \times \cdots \times d_k}$, covariate matrix $\mathcal{X} \in \mathbb{R}^{d_1 \times p}$;

Rank $R = (r_1, \ldots, r_k)$, link function f, significant increment criterion ϵ ;

Output:

Rank-R core tensor C, along with factor matrices $(\mathbf{N_1}, \dots, \mathbf{N_k})$;

- 1: Initialize core tensor $C^{(0)} \in \mathbb{R}^{r_1 \times \cdots \times r_k}$ and factor matrices $\mathbf{N_1}^{(0)} \in \mathbb{R}^{p \times r_1}, \mathbf{N_i}^{(0)} \in \mathbb{R}^{d_i \times r_i}, i = 2, \ldots, k$ through tucker decomposition with rank R; Set iteration index t = 0; Calculate the initial log-likelihood value $l^{(0)}$.
- 2: while The increment of log-likelihood $l^{(t)} l^{(t-1)} \ge \epsilon$ or t = 0 do
- 3: Update iteration index $t \leftarrow t + 1$.
- 4: Obtain $C^{(t+1)}$ by solving one GLM of $r_1 \times \cdots \times r_k$ coefficients with link function f.
- 5: Obtain $\mathbf{N_1}^{(t+1)}$ by solving p separate GLMS with link function f; Orthogonalize $(\mathbf{N_1}^{(t+1)}, \dots, \mathbf{N_k}^{(t)})$ through tucker decomposition or SVD.
- 6: **for** i = 2 to K **do**
- 7: Obtain $\mathbf{N_i}^{(t+1)}$ by solving d_i separate GLMS with link function f;Orthogonalize $(\mathbf{N_1}^{(t+1)}, \dots, \mathbf{N_i}^{(t+1)}, \mathbf{N_{i+1}}^{(t)}, \dots, \mathbf{N_k}^{(t)})$ through tucker decomposition or SVD.
- 8: end for
- 9: Calculate log-likelihood $l^{(t+1)}$.

10: end while

Algorithm 2 Semi-supervised binary tensor decomposition through SE

Input:

Binary tensor $\mathcal{Y} \in \{0,1\}^{d_1 \times \cdots \times d_k}$, covariate matrix $\mathcal{X} \in \mathbb{R}^{d_1 \times p}$;

Rank $R = (r_1, \ldots, r_k)$, link function f, significant increment criterion ϵ ;

Output:

Rank-R core tensor C, along with factor matrices $(\mathbf{M_1}, \dots, \mathbf{M_k})$

A coefficient matrix **A** connects M_1 and \mathcal{X} ;

- 1: Initialize core tensor $C^{(0)} \in \mathbb{R}^{r_1 \times \cdots \times r_k}$ and factor matrices $\mathbf{M_i}^{(0)} \in \mathbb{R}^{d_i \times r_i}$, $i = 1, \dots, k$ through tucker decomposition with rank R; Initialize $\mathbf{A}^{(0)}$ by solving GLM of \mathcal{X} and M_1 ; Set iteration index t = 0; Calculate the initial log-likelihood value $l^{(0)}$.
- 2: while The increment of log-likelihood $l^{(t)} l^{(t-1)} \ge \epsilon$ or t = 0 do
- 3: Update iteration index $t \leftarrow t + 1$.
- 4: Obtain $C^{(t+1)}$ by solving one GLM of $r_1 \times \cdots \times r_k$ coefficients with link function f.
- 5: Obtain $\mathbf{M_1}^{(t+1)}$ by solving d_1 separate GLMs with link function f.In GLMS, the responses are concatenated by $(\mathcal{Y}, \mathcal{X})$; The predictors are concatenated by $(\mathcal{C}^{(t+1)}, \mathbf{M}_2^{(t)}, \dots, \mathbf{M}_k^{(t)}, \mathbf{A}^{(t)})$.
- 6: **for** i = 2 to K **do**
- 7: Obtain $\mathbf{M_i}^{(t+1)}$ by solving d_i separate GLMS with link function f; Orthogonalize $(\mathbf{M_1}^{(t+1)}, \mathbf{M_i}^{(t+1)}, \mathbf{M_{i+1}}^{(t)}, \dots, \mathbf{M_k}^{(t)})$ through tucker decomposition or SVD.
- 8: end for
- 9: Obtain $\mathbf{A}^{(t+1)}$ by solving the GLM with response \mathcal{X} and predictors $\mathbf{M_1}^{(t+1)}$.
- 10: Calculate log-likelihood $l^{(t+1)}$.

11: end while