WE CLAIM:

2

3

1

2

5

1	1.	A serial communica	tions system	comprising:

- a scrambler for converting received data into scrambled data; and an ECC encoder for converting said scrambled data into ECC-encoded data.
- 2. The system as recited in Claim 1, further comprising:
 a serializer for converting said ECC-encoded data into serialized data;
 wherein the ECC-encoded data includes frame alignment information; and
 the system further comprises a receiver for receiving said serialized data and
 converting the serialized data into data frames based upon the frame alignment information.
- 3. The system as recited in Claim 2, wherein the receiver comprises:
 a frame-recoverer for converting said serialized data into data frames;
 an ECC decoder for converting said data frames into ECC-decoded data and
 error indications; and

a scrambler for converting said ECC-decoded data into de-scrambled data.

- 1 4. The system as recited in Claim 5, wherein said frame-recoverer uses said error 2 indications in converting said serialized data into data frames.
- The system as recited in Claim 1, wherein said ECC encoder applies an error correction code in converting said scrambled data into said ECC-encoded data.

1	6.	A serial communications method, comprising the steps of:
2		converting received data into scrambled data; and
3		converting said scrambled data into ECC-encoded data.
1	7.	The method as recited in Claim 6, further comprising the steps of:
2		generating a serial stream of the ECC-encoded data; and
3		transmitting said serial stream.
1	8.	The method of Claim 7, wherein:
		the ECC-encoded data includes frame alignment information; and
3		the method further comprises receiving said serialized data and converting said
4	serialized data	a into data frames based upon said frame alignment information.
	9.	The method of Claim 7, further comprising:
2		receiving said serialized data;
3		converting said serialized data into data frames;
4		converting said data frames into ECC-decoded data and error indications; and
5		converting said ECC-decoded data into de-scrambled data.
1	10.	The method of Claim 9, wherein the step of converting the serialized data
2	comprises co	nverting the serialized data into data frames based upon said error indications.

2

3

1 11. A serial communications system comprising:

an ECC decoder for converting data frames into ECC-decoded data; and
 a de-scrambler for converting said ECC-decoded data into de-scrambled data.

- 1 12. The system of Claim 11, further comprising a frame-recoverer for converting 2 serialized data into said data frames.
 - 13. The system as recited in Claim 12, wherein:

said ECC decoder generates error indications; and

said frame-recoverer uses said error indications in converting said serialized data into said data frames.

- 14. The system as recited in Claim 13, wherein said frame-recoverer generates a frame clock that is shifted in phase based upon said error indications, said frame-recoverer
- 1 15. The system as recited in Claim 14, wherein said frame-recoverer shifts in

converting said serialized data into said data frames using said frame clock..

- 2 phase said frame clock by a predetermined number of periods of a bit clock based upon said
- 3 error indications.

4	4 /	(T)1) ', 1'		•
- 8	16	I ha cristom as regited in	a Claima I & itthoroim caid	trongo rocottoror conservaca.
- 1	10.	THE System as reched by	CJaim 13. Wherein Said	frame-recoverer comprises:

- a plurality of registers, each register being controlled to receive said serialized
- data and form two or more frames of parallel data therefrom;
- 4 a selection control circuit for receiving said error indications and generating at
- 5 least one control signal; and
- 6 selection circuitry coupled to receive as inputs the output of said registers and
- 7 said control signal from said selection control circuit, and output a set of parallel data
- 8 appearing at the input of said selection circuitry, said number of bits in said set of parallel
 - data corresponding to the number of bits in a frame of data.
 - 17. The system as recited in claim 16, wherein

the selection circuitry comprises a plurality of individual multiplexer circuits, the number of multiplexer circuits corresponding to the number of bits n in a frame of data, each multiplexer circuit being an n+1:1 multiplexer circuit.

- 18. The system as recited in Claim 13, wherein said error indications are
- 2 associated with errors in said data frames, said ECC-decoder correcting some of said errors.
- 1 19. A serial communications system comprising:
- 2 an ECC decoder for converting data frames into ECC-decoded data and error indications; and
- a frame recoverer for converting serialized data into said data frames using
- 4 said error indications.

9

1

- 1 20. The system as recited in Claim 19, wherein said frame-recoverer generates a
- 2 frame clock that is shifted in phase based upon said error indications and converts said
- 3 serialized data into said data frames using said frame clock.
- 1 21. The system as recited in Claim 20, wherein said frame-recoverer shifts in
- 2 phase said frame clock by a predetermined number of periods of a bit clock based upon said
- 3 error indications.
 - 22. The system as recited in Claim 19, wherein said frame-recoverer comprises:

 a plurality of registers, each register being controlled to receive said serialized data and form two or more frames of parallel data therefrom;

a selection control circuit for receiving said error indications and generating at least one control signal; and

selection circuitry coupled to receive as inputs the output of said registers and said control signal from said selection control circuit, and output a set of parallel data appearing at the input of said selection circuitry, the number of bits in said parallel set of data corresponding to the number of bits in a frame of data.

- 23. The system as recited in claim 22, wherein
- 2 the selection circuitry comprises a plurality of individual multiplexer circuits,
- 3 the number of multiplexer circuits corresponding to the number of bits n in a frame of data,
- 4 each multiplexer circuit being an n+1:1 multiplexer circuit.

1	24.	The system as recited in Claim 19, wherein said error indications are
2	associated with	h errors in said data frames, said ECC-decoder correcting some of said errors.
1	25.	The system as recited in claim 19, further comprising:
2		a de-scrambler for converting said ECC-decoded data into de-scrambled data.
1	26.	A serial communications method comprising:
2		converting serialized data into data frames as a function of error indications;
3 4 1	and	converting said data frames into ECC-decoded data and said error indications.
1 2	27.	The method as recited in Claim 26, further comprising: de-scrambling said ECC-decoded data into de-scrambled data.
	28.	The method as recited in Claim 26, wherein the step of converting said
2	serialized data	a comprises:
3		generating a frame clock that is shifted in phase based upon said error
4	indications; a	nd
5		converting said serialized data into said data frames using said frame clock.
1	29.	The method as recited in claim 26, wherein the step of converting said
2	serialized dat	a comprises:
3		temporarily maintaining bits of said serialized data sufficient to form two or
4	more frames	of parallel bits;

	5		selecting a frame of data from said maintained bits based upon said error
	6	indications, sa	id frame of data being a frame of data in the data frames; and
	7		repeating said steps of temporarily maintaining and selecting for generating
	8	each data fram	ne from said serialized data.
	1	30.	The method as recited in claim 26, further comprising:
	2		initially scrambling received data into scrambled data;
	3		converting said scrambled data into ECC-encoded data; and
Barba.	4		converting said ECC-encoded data into said serialized data.
	1	31.	A serial communications method comprising:
	2		converting data frames into ECC-decoded data and error indications; and
擦	3		de-scrambling said ECC-decoded data into de-scrambled data.
	1	32.	The method as recited in Claim 31, further comprising:
ind ind	2		initially converting serialized data into said data frames as a function of said
	3	error indication	ons.
	1	33.	The method as recited in claim 31, further comprising:
	2		initially scrambling received data into scrambled data; and
	3.		performing an ECC encoding operation on said scrambled data to generate
	4	said data fran	nes.