$11a_{242} (K11a_{242})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{23} + u^{22} + \dots - 2u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 23 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{23} + u^{22} + \dots - 2u - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{12} + u^{10} - 3u^{8} + 2u^{6} - u^{2} + 1 \\ u^{4} - 2u^{12} + 5u^{10} - 6u^{8} + 6u^{6} - 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{6} + u^{4} - 2u^{2} + 1 \\ -u^{6} - u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{15} + 2u^{13} - 6u^{11} + 8u^{9} - 10u^{7} + 8u^{5} - 4u^{3} + 2u \\ -u^{15} + u^{13} - 4u^{11} + 3u^{9} - 4u^{7} + 2u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{21} - 2u^{19} + 7u^{17} - 10u^{15} + 14u^{13} - 12u^{11} + 5u^{9} + 2u^{7} - 5u^{5} + 2u^{3} - u \\ u^{22} + u^{21} + \dots - u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{21} - 2u^{19} + 7u^{17} - 10u^{15} + 14u^{13} - 12u^{11} + 5u^{9} + 2u^{7} - 5u^{5} + 2u^{3} - u \\ u^{22} + u^{21} + \dots - u - 1 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$= 4u^{22} - 12u^{20} - 4u^{19} + 40u^{18} + 8u^{17} - 80u^{16} - 28u^{15} + 132u^{14} + 40u^{13} - 176u^{12} - 56u^{11} + 172u^{10} + 48u^9 - 144u^8 - 24u^7 + 80u^6 - 4u^5 - 44u^4 + 8u^3 + 16u^2 - 18$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_7	$u^{23} + u^{22} + \dots - 2u - 1$
c_2, c_5, c_6 c_8	$u^{23} + 5u^{22} + \dots + 8u + 1$
$c_3, c_4, c_9 \\ c_{10}, c_{11}$	$u^{23} + u^{22} + \dots - 4u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_7	$y^{23} - 5y^{22} + \dots + 8y - 1$
c_2, c_5, c_6 c_8	$y^{23} + 27y^{22} + \dots + 4y - 1$
$c_3, c_4, c_9 \\ c_{10}, c_{11}$	$y^{23} - 29y^{22} + \dots + 8y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.870875 + 0.464972I	-1.83130 + 4.25551I	-14.9090 - 7.7889I
u = -0.870875 - 0.464972I	-1.83130 - 4.25551I	-14.9090 + 7.7889I
u = -0.971379	-13.4466	-20.2820
u = 0.958938 + 0.461987I	-10.82570 - 5.40102I	-16.2163 + 5.6771I
u = 0.958938 - 0.461987I	-10.82570 + 5.40102I	-16.2163 - 5.6771I
u = 0.717237 + 0.485490I	1.10748 - 1.87873I	-6.66063 + 5.68345I
u = 0.717237 - 0.485490I	1.10748 + 1.87873I	-6.66063 - 5.68345I
u = 0.861396	-4.23946	-21.1260
u = 0.362544 + 0.678780I	-8.93621 + 1.22135I	-11.90750 - 0.10584I
u = 0.362544 - 0.678780I	-8.93621 - 1.22135I	-11.90750 + 0.10584I
u = -0.861249 + 0.901922I	-1.94992 - 2.55399I	-11.84797 + 0.31976I
u = -0.861249 - 0.901922I	-1.94992 + 2.55399I	-11.84797 - 0.31976I
u = 0.890856 + 0.885729I	6.62290 + 0.44894I	-10.13262 - 1.46638I
u = 0.890856 - 0.885729I	6.62290 - 0.44894I	-10.13262 + 1.46638I
u = -0.921402 + 0.875942I	9.09276 + 3.24062I	-6.19152 - 2.55557I
u = -0.921402 - 0.875942I	9.09276 - 3.24062I	-6.19152 + 2.55557I
u = 0.947828 + 0.861357I	6.44204 - 6.91342I	-10.56964 + 6.26257I
u = 0.947828 - 0.861357I	6.44204 + 6.91342I	-10.56964 - 6.26257I
u = -0.973841 + 0.851585I	-2.30857 + 9.03328I	-12.45199 - 5.05219I
u = -0.973841 - 0.851585I	-2.30857 - 9.03328I	-12.45199 + 5.05219I
u = -0.457331 + 0.511324I	-0.602334 - 0.458552I	-11.06917 + 1.12837I
u = -0.457331 - 0.511324I	-0.602334 + 0.458552I	-11.06917 - 1.12837I
u = -0.475427	-0.610128	-16.6790

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_7	$u^{23} + u^{22} + \dots - 2u - 1$
c_2, c_5, c_6 c_8	$u^{23} + 5u^{22} + \dots + 8u + 1$
c_3, c_4, c_9 c_{10}, c_{11}	$u^{23} + u^{22} + \dots - 4u - 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_7	$y^{23} - 5y^{22} + \dots + 8y - 1$
c_2, c_5, c_6 c_8	$y^{23} + 27y^{22} + \dots + 4y - 1$
$c_3, c_4, c_9 \\ c_{10}, c_{11}$	$y^{23} - 29y^{22} + \dots + 8y - 1$