

(12) NACH DEM VERTRA BER DIE INTERNATIONALE ZUSAMMENAR AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

| CONTROL OF THE CONT

(43) Internationales Veröffentlichungsdatum 24. Juli 2003 (24.07.2003)

PCT

(10) Internationale Veröffentlichungsnummer WO 03/059335 A1

(51) Internationale Patentklassifikation⁷: A61K 31/10, 31/4465, 31/4409, 31/496, 31/40, 31/5375, A61P 25/28, C07C 317/22, C07D 295/20, 213/74, 241/08, 211/46, 211/22, 493/10, 211/52

(21) Internationales Aktenzeichen:

PCT/EP03/00052

(22) Internationales Anmeldedatum:

7. Januar 2003 (07.01.2003)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

51368 Leverkusen (DE).

102 01 392.6

16. Januar 2002 (16.01.2002) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BAYER AKTIENGESELLSCHAFT [DE/DE];

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): HENDRIX, Martin [DE/DE]; Im Geroden 5, 51519 Odenthal (DE). BAU-MANN, Karlheinz [DE/DE]; Urbachstr. 52, 45239 Essen (DE). GROSSER, Rolf [DE/DE]; Gellertstr. 9, 51373 Leverkusen (DE). KÖNIG, Gerhard [DE/DE]; Tannenstr. 8, 40476 Düsseldorf (DE). DÜSTERHUS, Vera [DE/DE]; Damaschkestr. 13, 51469 Bergisch Gladbach (DE). KRÜGER, Joachim [DE/DE]; Golzheimer Platz 4, 40474 Düsseldorf (DE).
- (74) Gemeinsamer Vertreter: BAYER AKTIENGE-SELLSCHAFT; 51368 Leverkusen (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE,

GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Erklärung gemäß Regel 4.17:

hinsichtlich der Berechtigung des Anmelders, ein Patent zu beantragen und zu erhalten (Regel 4.17 Ziffer ii) für die folgenden Bestimmungsstaaten AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ. DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW, ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

Veröffentlicht:

- mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: PHENYL SULFOXIDES AND PHENYL SULFONES

(54) Bezeichnung: PHENYLSULFOXIDE UND -SULFONE

- (57) Abstract: The invention relates to the phenyl sulfoxides and phenyl sulfones of formula (I) and to methods for producing the same as well as to their use in the production of drugs for the treatment and/or prophylaxis of diseases, especially Alzheimer's disease. The inventive compounds inhibit γ secretase.
- (57) Zusammenfassung: Die Erfindung betrifft Phenylsulfoxide und -sulfone der Formel (I) und Verfahren zu ihrer Herstellung sowie ihre Verwendung zur Herstellung von Arzneimitteln zur Behandlung und/oder Prophylaxe von Krankheiten, insbesondere der Alzheimerschen Krankheit. Die erfindungsgemässen Verbindungen inhibieren γ-Sekretase. (Formel I).

10

15

20

25

30

CT/EP03/00052

Phenylsulfoxide und -sulfone

Die Erfindung betrifft Phenylsulfoxid- und -sulfon-Derivate und Verfahren zu ihrer Herstellung sowie ihre Verwendung zur Herstellung von Arzneimitteln zur Behandlung und/oder Prophylaxe von Krankheiten, insbesondere der Alzheimer'schen Krankheit.

Die Alzheimer'sche Krankheit (AD) ist eine progressive neurodegenerative Erkrankung, die durch Gedächtnisverlust, Persönlichkeitsstörungen, Sprach- und Orientierungsschwierigkeiten, Entscheidungsschwäche und Antriebslosigkeit gekennzeichnet ist. Bis zu 50 % der über 85-Jährigen sind von Neurodegeneration betroffen, wobei die Alzheimer'sche Krankheit die Demenz mit der höchsten Prävalenz ist.

Das histopathologisch auffälligste Charakteristikum der Alzheimer'schen Krankheit sind die "senilen" Amyloid-Plaques, die im Gehirn gefunden werden und dort vor allem in Bereichen, die mit Gedächtnis und Denken verbunden sind. Der Hauptproteinbestandteil der Plaques ist das β -Amyloid-Peptid ($A\beta$, $\beta A4$) mit einer Länge von 40-42 Aminosäuren und einem Molekulargewicht von ca. 4 kilo-Dalton (kDa). $A\beta$ findet sich auch im Plasma und in der Cerebrospinalflüssigkeit (CSF) von gesunden Individuen; seine Funktion ist aber unbekannt. Bei Alzheimer-Patienten führt eine gesteigerte Produktion und/oder ein reduzierter Abbau von $A\beta$, vor allem der 42 Aminosäuren langen Form, zu erhöhten Spiegeln des Polypeptids in Plasma und CSF, gefolgt von einer Oligomerisierung des Peptids und Akkumulation im Gehirn, die schließlich zur Entstehung der Plaques führt. Entweder Oligomere von $A\beta$ oder die Plaques führen schließlich zur Neurodegeneration.

 $A\beta$ entsteht durch proteolytische Prozessierung des Amyloid-Vorläuferproteins (Amyloid Precursor Protein, APP) in aufeinanderfolgenden Schritten durch verschiedene Enzyme, die Sekretasen genannt werden. Der letzte Schritt der Generierung von $A\beta$ erfolgt dabei durch die sogenannte γ -Sekretase, die durch Spaltung der Peptid-

bindung den Carboxyl-Terminus von A β freisetzt. Weder das Gen, das die γ -Sekretase kodiert, noch das Protein selbst wurden bisher identifiziert. Aufgrund der vorliegenden Daten kann man jedoch von der Existenz dieses Enzyms ausgehen (siehe auch M.S. Wolfe, *J. Med. Chem.* 2001, 44, 2039-2060).

5

Es besteht also ein Bedarf an Substanzen, welche die Entstehung von $A\beta$ durch proteolytische Prozessierung von APP verhindern.

10

15

In CAPLUS 1986, 185969 (JP-A-60252430) und CAPLUS 1988, 21523 (JP-A-62175456) werden substituierte Phenyl-benzylsulfone als Zwischenstufen für die Herstellung von beispielsweise Insektiziden beschrieben.

Phenylsulfon-Derivate als γ -Sekretase-Inhibitoren werden in WO 02/081433 und WO 02/081435 beschrieben. Strukturell andersartige γ -Sekretase-Inhibitoren sind beispielsweise aus Rishton et al., *J. Med. Chem.* **2000**, *43*, 2297-2299 sowie aus WO 01/77086, WO 01/77144, WO 01/53255 und WO 00/50391 bekannt.

Die vorliegende Erfindung betrifft Verbindungen der Formel

$$R^3$$
 R^4 R^{10} R^5 R^5 R^1 $S(O)_m$ R^5

20

in welcher

 R^1 und R^2

25

unabhängig voneinander Phenyl, das gegebenenfalls durch Reste ausgewählt aus der Gruppe Halogen, Cyano, Trifluormethyl, Trifluormethoxy, C₁-C₆-Alkyl, C₃-C₈-Cycloalkyl, C₁-C₆-Alkoxy und C₁-C₆-Alkylthio substituiert ist,

unabhängig voneinander Wasserstoff, C1-C6-Alkyl oder C3-C8-R³ und R⁴ Cycloalkyl, die gegebenenfalls mit Hydroxy substituiert sind,

m 1 oder 2,

5

Wasserstoff. R⁵

oder einen Rest der Formel CO-NR⁶R⁷, worin

10

unabhängig voneinander Wasserstoff, C1-C6-Alkyl, C3-C8-R⁶ und R⁷ Cycloalkyl, Benzyl, Phenethyl, Phenyl oder 5- bis 6-gliedriges Heteroaryl bedeuten, wobei C1-C6-Alkyl, C3-C8-Cycloalkyl, Phenyl oder 5bis 6-gliedriges Heteroaryl gegebenenfalls durch Reste unabhängig voneinander ausgewählt aus der Gruppe Hydroxy, Halogen, C1-C6-Alkylamino, Aminosulfonyl, Aminocarbonyl, Cyano, Formamido, Acetamido, C1-C6-Alkyl, C1-C6-Alkoxy, C3-C8-Cycloalkyl, Hydroxycarbonyl, C1-C6-Alkoxycarbonyl und 5- bis 6-gliedriges Heteroaryl

15

substituiert sind, und

20

Benzyl und Phenethyl gegebenenfalls durch Reste unabhängig voneinander ausgewählt aus der Gruppe Hydroxy, Halogen, Aminocarbonyl, C1-C6-Alkylamino, Aminosulfonyl, Cyano, Formamido, Acetamido, C1-C6-Alkyl, C1-C6-Alkoxy, C3-C8-Cycloalkyl und 5- bis 6-gliedriges Heteroaryl substituiert sind,

25

oder worin

die Gruppe NR⁶R⁷

einen über das Stickstoffatom gebundenen, 4- bis 10-gliedrigen Heterocyclyl-Rest bedeutet, der gegebenenfalls durch Reste unab-30 hängig voneinander ausgewählt aus der Gruppe C1-C6-Alkyl, C1-C6Alkoxy, 1,3-Dioxapropan-1,3-diyl, 1,4-Dioxabutan-1,4-diyl, Oxo, C₃-C₈-Cycloalkyl, Hydroxy, Halogen, Cyano, C₁-C₆-Alkylcarbonyl, C₃-C₈-Cycloalkylcarbonyl, Phenylcarbonyl, Formamido, Aminosulfonyl, C₁-C₆-Alkoxycarbonyl, Aminocarbonyl, Phenyl und 5- bis 6-gliedriges Heteroaryl substituiert ist,

wobei Phenyl gegebenenfalls durch Reste unabhängig voneinander ausgewählt aus der Gruppe Halogen, Cyano, Trifluormethyl, Trifluormethoxy, C₁-C₆-Alkyl, C₁-C₆-Alkoxy und C₁-C₆-Alkylsulfonamino substituiert ist, und

C₁-C₆-Alkyl gegebenenfalls durch Reste unabhängig voneinander ausgewählt aus der Gruppe Hydroxy, C₁-C₆-Alkoxy, Phenyl und 5- bis 6-gliedriges Heteroaryl substituiert ist, und

C₁-C₆-Alkylcarbonyl gegebenenfalls durch Reste unabhängig voneinander ausgewählt aus der Gruppe Hydroxy und C₁-C₆-Alkoxy substituiert ist,

und wobei 4- bis 10-gliedriges Heterocyclyl gegebenenfalls benzosubstituiert ist,

oder

einen Rest der Formel CO-OR8, worin

R⁸ C₁-C₆-Alkyl oder C₃-C₈-Cycloalkyl bedeutet, die gegebenenfalls durch Reste unabhängig voneinander ausgewählt aus der Gruppe Hydroxy, Halogen, Aminosulfonyl, Aminocarbonyl, Cyano, Formamido, Acetamido, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₃-C₈-Cycloalkyl, C₁-C₆-Alkyl-carbonyl, Phenyl und 5- bis 6-gliedriges Heteroaryl substituiert sind,

5

10

15

20

25

30

oder

einen Rest der Formel CO-R9, worin

5

R⁹ C₁-C₆-Alkyl, C₃-C₈-Cycloalkyl, C₆-C₁₀-Aryl oder 5- bis 10-gliedriges Heteroaryl bedeutet, die gegebenenfalls durch Reste ausgewählt aus der Gruppe Hydroxy, Hydroxycarbonyl, Halogen, Aminosulfonyl, Carboxamido, Cyano, Formamido, Acetamido, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₃-C₈-Cycloalkyl, C₁-C₆-Alkylcarbonyl, Phenyl und 5- bis 6-gliedriges Heteroaryl substituiert sind,

10

R¹⁰ Wasserstoff oder C₁-C₆-Alkyl bedeuten,

15

und deren Salze, Solvate und Solvate der Salze.

Die erfindungsgemäßen Verbindungen können auch in Form ihrer Salze, Solvate oder

Solvate der Salze vorliegen.

20

Die erfindungsgemäßen Verbindungen können in Abhängigkeit von ihrer Struktur in stereoisomeren Formen (Enantiomere, Diastereomere) existieren. Die Erfindung betrifft deshalb die Enantiomeren oder Diastereomeren und ihre jeweiligen Mischungen. Aus solchen Mischungen von Enantiomeren und/oder Diastereomeren lassen sich die stereoisomer einheitlichen Bestandteile in bekannter Weise isolieren.

25

Die Erfindung betrifft in Abhängigkeit von der Struktur der Verbindungen auch Tautomere der Verbindungen.

Als <u>Sal</u>:

Als <u>Salze</u> sind im Rahmen der Erfindung physiologisch unbedenkliche Salze der erfindungsgemäßen Verbindungen bevorzugt.

CT/EP03/00052

WO 03/059335

5

10

15

20

Physiologisch unbedenkliche Salze der Verbindungen (I) umfassen Säureadditionssalze von Mineralsäuren, Carbonsäuren und Sulfonsäuren, z.B. Salze der Chlorwasserstoffsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure, Methansulfonsäure, Ehansulfonsäure, Toluolsulfonsäure, Benzolsulfonsäure, Naphthalindisulfonsäure, Essigsäure, Propionsäure, Milchsäure, Weinsäure, Äpfelsäure, Zitronensäure, Fumarsäure, Maleinsäure und Benzoesäure.

Physiologisch unbedenkliche Salze der Verbindungen (I) umfassen auch Salze üblicher Basen, wie beispielhaft und vorzugsweise Alkalimetallsalze (z.B. Natrium- und Kaliumsalze), Erdalkalisalze (z.B. Calcium- und Magnesiumsalze) und Ammoniumsalze, abgeleitet von Ammoniak oder organischen Aminen mit 1 bis 16 C-Atomen, wie beispielhaft und vorzugsweise Ethylamin, Diethylamin, Triethylamin, Ethyldiisopropylamin, Monoethanolamin, Diethanolamin, Triethanolamin, Dicyclo-hexylamin, Dimethylaminoethanol, Prokain, Dibenzylamin, N-Methylmorpholin, Dihydroabiethylamin, Arginin, Lysin, Ethylendiamin und Methylpiperidin.

Als <u>Solvate</u> werden im Rahmen der Erfindung solche Formen der Verbindungen bezeichnet, welche in festem oder flüssigem Zustand durch Koordination mit Lösungsmittelmolekülen einen Komplex bilden. Hydrate sind eine spezielle Form der Solvate, bei denen die Koordination mit Wasser erfolgt.

Im Rahmen der vorliegenden Erfindung haben die Reste, soweit nicht anders spezifiziert, die folgende Bedeutung:

25 <u>C₁-C₆-Alkylamino</u> steht für einen geradkettigen oder verzweigten Mono- oder Dialkylaminorest mit 1 bis 6, bevorzugt 1 bis 4 und besonders bevorzugt mit 1 bis 3 Kohlenstoffatomen. Nicht-limitierende Beispiele umfassen Methylamino, Ethylamino, n-Propylamino, Isopropylamino, tert.Butylamino, n-Pentylamino, n-Hexylamino, Dimethylamino, Diethylamino, Di-n-propylamino, Diisopropylamino, Di-t-butylamino, Di-n-pentylamino, Di-n-hexylamino, Ethylmethylamino, Isopropylamino, n-Butylethylamino, n-Hexyl-i-pentylamino.

10

15

20

25

30

<u>C₁-C₆-Alkylcarbonyl</u> steht für einen geradkettigen oder verzweigten Alkylcarbonylrest mit 1 bis 6, vorzugsweise 1 bis 4 Kohlenstoffatomen. Nicht-limitierende Beispiele umfassen Formyl, Acetyl, Propanoyl, Butanoyl, Isobutanoyl, Pentanoyl, Isopentanoyl und Hexanoyl. Besonders bevorzugt sind Acetyl und Propanoyl.

-7-

C₁-C₆- und C₁-C₄-Alkyl stehen für einen geradkettigen oder verzweigten Alkylrest mit 1 bis 6 bzw. 1 bis 4, bevorzugt 1 bis 4 und besonders bevorzugt mit 1 bis 3 Kohlenstoffatomen. Nicht-limitierende Beispiele umfassen Methyl, Ethyl, n-Propyl, Isopropyl, tert.Butyl, n-Pentyl und n-Hexyl.

<u>C₁-C₆-Alkylsulfonamino</u> stehen für einen geradkettigen oder verzweigten Alkylsulfonylaminorest mit 1 bis 6, bevorzugt ist ein geradkettiger oder verzweigter Alkansulfonylaminorest mit mit 1 bis 4, besonders bevorzugt mit 1 bis 3 Kohlenstoffatomen. Nicht-limitierende Beispiele umfassen Methansulfonylamino, Ethansulfonylamino, n-Propansulfonylamino, Isopropansulfonylamino, tert.Butansulfonylamino, n-Pentansulfonamino, n-Hexansulfonamino.

<u>C₁-C₆-Alkoxycarbonyl</u> steht für einen geradkettigen oder verzweigten Alkoxycarbonylrest mit 1 bis 6, bevorzugt 1 bis 4, besonders bevorzugt mit 1 bis 3 Kohlenstoffatomen.
Nicht-limitierende Beispiele umfassen Methoxycarbonyl, Ethoxycarbonyl, n-Propoxycarbonyl, Isopropoxycarbonyl und tert.Butoxycarbonyl.

<u>C₁-C₆-Alkoxy</u> steht für einen geradkettigen oder verzweigten Alkoxyrest mit 1 bis 6, bevorzugt 1 bis 4 und besonders bevorzugt mit 1 bis 3 Kohlenstoffatomen. Nichtlimitierende Beispiele umfassen Methoxy, Ethoxy, n-Propoxy, Isopropoxy, tert.Butoxy, n-Pentoxy und n-Hexoxy.

C₁-C₆-Alkylthio steht für einen geradkettigen oder verzweigten Alkylthiorest mit 1 bis 6, bevorzugt 1 bis 4 und besonders bevorzugt mit 1 bis 3 Kohlenstoffatomen. Nicht-

10

15

20

25

limitierende Beispiele umfassen Methylthio, Ethylthio, n-Propylthio, Isopropylthio, tert.Butylthio, n-Pentylthio und n-Hexylthio.

<u>C₆-C₁₀-Aryl</u> steht für einen aromatischen Rest mit 6 bis 10 Kohlenstoffatomen. Bevorzugte Arylreste sind Phenyl und Naphthyl.

<u>C₃-C₈-Cycloalkylcarbonyl</u> steht für Cyclopropylcarbonyl, Cyclopentylcarbonyl, Cyclopentylcarbonyl, Cyclopentylcarbonyl, Cyclopentylcarbonyl oder Cyclooctylcarbonyl. Bevorzugt seien genannt: Cyclopropylcarbonyl, Cyclopentylcarbonyl und Cyclohexylcarbonyl.

<u>C₃-C₈-Cycloalkyl</u> steht für Cyclopropyl, Cyclopentyl, Cyclobutyl, Cyclohexyl, Cyclopentyl oder Cyclooctyl. Bevorzugt seien genannt: Cyclopropyl, Cyclopentyl und Cyclohexyl.

5- bis 6-gliedriges Heteroaryl steht für einen aromatischen Rest mit 5 bis 6 Ringatomen und bis zu 4 Heteroatomen aus der Reihe S, O und/oder N. Der Heteroarylrest kann über ein Kohlenstoff- oder Heteroatom gebunden sein. Nicht-limitierende Beispiele umfassen Thienyl, Furyl, Pyrrolyl, Thiazolyl, Oxazolyl, Imidazolyl, Tetrazolyl, Pyridyl, Pyrimidinyl, und Pyridazinyl.

5- bis 10-gliedriges Heteroaryl steht für einen aromatischen, mono- oder bicyclischen Rest mit 5 bis 10 Ringatomen und bis zu 5 Heteroatomen aus der Reihe S, O und/oder N. Bevorzugt sind 5- bis 6-gliedrige Heteroaryle mit bis zu 4 Heteroatomen. Der Heteroarylrest kann über ein Kohlenstoff- oder Heteroatom gebunden sein. Nicht-limitierende Beispiele umfassen Thienyl, Furyl, Pyrrolyl, Thiazolyl, Oxazolyl, Imidazolyl, Tetrazolyl, Pyridyl, Pyrimidinyl, Pyridazinyl, Indolyl, Indazolyl, Benzofuranyl, Benzothiophenyl, Chinolinyl, Isochinolinyl.

Der <u>über ein Stickstoffatom gebundene, 4- bis 10-gliedrige Heterocyclyl-Rest</u> steht für einen mono- oder polycyclischen, vorzugsweise mono- oder bicyclischen, nicht-

aromatischen heterocyclischen Rest mit 4 bis 10, bevorzugt 5 bis 8 Ringatomen, mit mindesten einem Stickstoffatom, über das der Heterocyclyl-Rest gebunden ist, sowie mit bis zu 2, vorzugsweise bis zu 1 weiteren Heteroatomen und/oder Heterogruppen aus der Reihe N, O, S, SO, und SO₂. Die Heterocyclyl-Reste können gesättigt oder teilweise ungesättigt sein. Bevorzugt sind 5- bis 8-gliedrige, monocyclische gesättigte Heterocyclylreste mit bis zu zwei Heteroatomen aus der Reihe O, N und S, wie beispielhaft und vorzugsweise Tetrahydrofuran-2-yl, Pyrrolidin-2-yl, Pyrrolidin-3-yl, Pyrrolinyl, Piperidinyl, Morpholinyl, Perhydroazepinyl.

Wenn Reste in den erfindungsgemäßen Verbindungen <u>substituiert</u> sind, können die Reste, soweit nicht anders spezifiziert, ein- oder mehrfach gleich oder verschieden substituiert sein. Eine Substitution mit bis zu drei gleichen oder verschiedenen Substituenten ist bevorzugt. Ganz besonders bevorzugt ist die Substitution mit einem Substituenten.

15

20

10

5

Bevorzugt sind Verbindungen der Formel (I), in welcher

R¹ und R² unabhängig voneinander Phenyl, das gegebenenfalls durch Reste ausgewählt aus der Gruppe Halogen, Cyano, Trifluormethyl substituiert ist,

R³ und R⁴ unabhängig voneinander Wasserstoff, C₁-C₄-Alkyl oder C₃-C₆-Cyclo-alkyl, die gegebenenfalls mit Hydroxy substituiert sind,

25 m 1 oder 2,

R⁵ Wasserstoff,

oder

30

einen Rest der Formel CO-NR⁶R⁷, worin

R⁶ Wasserstoff, C₁-C₄-Alkyl,

R⁷ Wasserstoff, C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, Benzyl, Phenethyl oder Phenyl bedeuten, wobei C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl und Phenyl gegebenenfalls durch Reste unabhängig voneinander ausgewählt aus der Gruppe Hydroxy, Halogen, Aminocarbonyl, Hydroxycarbonyl, Cyano, C₁-C₄-Alkylamino, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₃-C₆-Cycloalkyl, C₁-C₄-Alkoxycarbonyl und 5- bis 6-gliedriges Heteroaryl substituiert sind, und

Benzyl und Phenethyl gegebenenfalls durch Reste unabhängig voneinander ausgewählt aus der Gruppe Hydroxy, Halogen, Aminocarbonyl, Cyano, C₁-C₄-Alkylamino, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₃-C₆-Cycloalkyl und 5- bis 6-gliedriges Heteroaryl substituiert sind,

oder worin

die Gruppe NR⁶R⁷

20

25

30

5

10

15

einen über das Stickstoffatom gebundenen, 5- bis 6-gliedrigen Heterocyclyl-Rest bedeutet, der gegebenenfalls durch Reste unabhängig voneinander ausgewählt aus der Gruppe C₁-C₄-Alkyl, C₁-C₄-Alkoxy, 1,3-Dioxapropan-1,3-diyl, 1,4-Dioxabutan-1,4-diyl, Oxo, C₃-C₆-Cycloalkyl, Hydroxy, Halogen, C₁-C₄-Alkylcarbonyl, C₃-C₆-Cycloalkylcarbonyl, Phenylcarbonyl, C₁-C₄-Alkoxycarbonyl, Phenyl und 5-bis 6-gliedriges Heteroaryl substituiert ist,

wobei Phenyl gegebenenfalls durch Reste unabhängig voneinander ausgewählt aus der Gruppe Halogen, Cyano, Trifluormethyl, Trifluor-

methoxy, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy und C_1 - C_4 -Alkylsulfonamino substituiert ist, und

C₁-C₄-Alkyl gegebenenfalls durch Reste unabhängig voneinander ausgewählt aus der Gruppe Hydroxy und Phenyl substituiert ist, und

C₁-C₄-Alkylcarbonyl gegebenenfalls durch Reste unabhängig voneinander ausgewählt aus der Gruppe Hydroxy und C₁-C₄-Alkoxy substituiert ist,

10

5

oder

einen Rest der Formel CO-R9, worin

15 R⁹ C₁-C₄-Alkyl, C₃-C₈-Cycloalkyl, Phenyl oder 5- bis 6-gliedriges Heteroaryl bedeutet, die gegebenenfalls durch Reste ausgewählt aus der Gruppe Hydroxy, Hydroxycarbonyl, Halogen, Cyano, Acetamido, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₃-C₆-Cycloalkyl, C₁-C₄-Alkylcarbonyl, Phenyl und 5- bis 6-gliedriges Heteroaryl substituiert sind,

20

- R¹⁰ Wasserstoff oder C₁-C₄-Alkyl bedeuten,
- und deren Salze, Solvate und Solvate der Salze.
- 25 Besonders bevorzugt sind Verbindungen der Formel (I), in welcher
 - R¹ Phenyl, das gegebenenfalls durch Reste ausgewählt aus der Gruppe Fluor, Chlor, Brom, Cyano, Trifluormethyl substituiert ist,
- 30 R² Phenyl, das gegebenenfalls durch Fluor substituiert ist,

15

20

25

30

- R³ Wasserstoff oder C₁-C₄-Alkyl,
- R⁴ Wasserstoff oder C₁-C₄-Alkyl, das gegebenenfalls mit Hydroxy substituiert ist,

R⁵ Wasserstoff,

oder

10 einen Rest der Formel CO-NR⁶R⁷, worin

R⁶ Wasserstoff, C₁-C₄-Alkyl,

R⁷ C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, Benzyl, Phenethyl oder Phenyl bedeuten, wobei C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, und Phenyl gegebenenfalls durch Reste unabhängig voneinander ausgewählt aus der Gruppe Hydroxy, Fluor, Chlor, Aminocarbonyl, Hydroxycarbonyl, Cyano, Dimethylamino, Methoxy, Ethoxy, C₁-C₄-Alkoxycarbonyl oder Thienyl substituiert sind, und

Benzyl und Phenethyl gegebenenfalls durch Reste unabhängig voneinander ausgewählt aus der Gruppe Hydroxy, Fluor, Chlor, Aminocarbonyl, Cyano, Dimethylamino, Methoxy, Ethoxy oder Thienyl substituiert sind,

oder worin

die Gruppe NR⁶R⁷

einen über das Stickstoffatom gebundenen, 5- bis 6-gliedrigen Heterocyclyl-Rest bedeutet, der gegebenenfalls durch Reste unabhängig voneinander ausgewählt aus der Gruppe C₁-C₄-Alkyl, 1,3-Dioxapropan-1,3-diyl, 1,4-Dioxabutan-1,4-diyl, Oxo, Hydroxy, C₁-C₄-Alkylcarbonyl, C₃-C₆-Cycloalkylcarbonyl, Phenylcarbonyl, C₁-C₄-Alkoxycarbonyl, Phenyl und 6-gliedriges Heteroaryl substituiert ist,

5

wobei Phenyl gegebenenfalls durch Reste unabhängig voneinander ausgewählt aus der Gruppe Fluor, Chlor, Cyano, Trifluormethyl, Trifluormethoxy, C₁-C₄-Alkyl, C₁-C₄-Alkoxy und C₁-C₄-Alkylsulfonamino substituiert ist, und

10

C₁-C₄-Alkyl gegebenenfalls durch Reste unabhängig voneinander ausgewählt aus der Gruppe Hydroxy und Phenyl substituiert ist, und

15

C₁-C₄-Alkylcarbonyl gegebenenfalls durch Reste unabhängig voneinander ausgewählt aus der Gruppe Hydroxy und Methoxy substituiert ist,

oder

20

einen Rest der Formel CO-R9, worin

R⁹ Phenyl,

25

R¹⁰ Wasserstoff oder C₁-C₃-Alkyl bedeuten,

und deren Salze, Solvate und Solvate der Salze.

Ganz besonders bevorzugt sind Verbindungen der folgenden Formeln

und deren Salze, Solvate und Solvate der Salze.

Weiterhin betrifft die vorliegende Erfindung Verbindungen der Formel

$$R^3$$
 R^2
 R^5
 R^5
 R^1
 $S(O)_m$
 R^5

in welcher

R¹ und R² unabhängig voneinander für Phenyl, das gegebenenfalls durch Reste ausgewählt aus der Gruppe Halogen, Cyano, Trifluormethyl, Trifluormethoxy, C₁-C-Alkyl, C₃-C₈-Cycloalkyl, C₁-C₆-Alkoxy und C₁-C₆-Alkylthio substituiert ist, stehen,

R³ und R⁴ unabhängig voneinander für Wasserstoff, C₁-C₆-Alkyl oder C₃-C₈-Cyclo-alkyl stehen,

m für 1 oder 2 steht,

und

10

15

20

25

R⁵ für Wasserstoff steht,

für einen Rest der Formel CO-NR⁶R⁷ steht,

worin R⁶ und R⁷ unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl, C₃-C₈-Cycloalkyl, Phenyl oder 5- bis 6-gliedriges Heteroaryl bedeuten, oder

worin die Gruppe NR⁶R⁷ einen über ein Stickstoffatom gebundenen, 4- bis 10-gliedrigen Heterocyclyl-Rest bedeutet,

wobei Alkyl, Cycloalkyl, Phenyl, Heteroaryl und Heterocyclyl gegebenenfalls durch Reste ausgewählt aus der Gruppe Hydroxy, Halogen, Aminosulfonyl, Carboxamido, Cyano, Formamido, Acetamido, C₁-C₆-Alkyl, C₁-C₆-Alkoxy,

C₃-C₈-Cycloalkyl, C₁-C₆-Alkanoyl, Phenyl und 5- bis 6-gliedriges Heteroaryl substituiert sind,

und wobei Heterocyclyl gegebenenfalls benzo-substituiert ist,

5

für einen Rest der Formel CO-OR⁸ steht,

worin R⁸ C₁-C₆-Alkyl oder C₃-C₈-Cycloalkyl bedeutet,

10

wobei Alkyl und Cycloalkyl gegebenenfalls durch Reste ausgewählt aus der Gruppe Hydroxy, Halogen, Aminosulfonyl, Carboxamido, Cyano, Formamido, Acetamido, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₃-C₈-Cycloalkyl, C₁-C₆-Alkanoyl, Phenyl und 5- bis 6-gliedriges Heteroaryl substituiert sind,

15

oder

für einen Rest der Formel CO-R9 steht,

20

worin R⁹ C₁-C₆-Alkyl, C₃-C₈-Cycloalkyl, C₆-C₁₀-Aryl oder 5- bis 10-gliedriges Heteroaryl bedeutet,

25

wobei Alkyl, Cycloalkyl, Aryl und Heteroaryl gegebenenfalls durch Reste ausgewählt aus der Gruppe Hydroxy, Halogen, Aminosulfonyl, Carboxamido, Cyano, Formamido, Acetamido, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₃-C₈-Cycloalkyl, C₁-C₆-Alkanoyl, Phenyl und 5- bis 6-gliedriges Heteroaryl substituiert sind,

sowie deren Salze, Solvate und Solvate der Salze.

30

Bevorzugt sind Verbindungen der Formel (I),

in welcher

 R^1 und R^2 unabhängig voneinander für Phenyl, das gegebenenfalls ein- bis dreifach durch Reste ausgewählt aus der Gruppe Halogen, Cyano, Trifluormethyl, Trifluormethoxy und C_1 - C_6 -Alkyl substituiert ist, stehen,

und R³, R⁴, m und R⁵ die oben oder unten angegebene Bedeutung haben.

Besonders bevorzugt sind Verbindungen der Formel (I),

in welcher

R¹ für 2-Fluoro-phenyl, das gegebenenfalls zusätzlich ein- bis zweifach durch Reste ausgewählt aus der Gruppe Fluor, Chlor, Cyano, Trifluormethyl, Methyl und Ethyl substituiert ist, steht,

und R², R³, R⁴, m und R⁵ die oben oder unten angegebene Bedeutung haben.

Ganz besonders bevorzugt sind Verbindungen der Formel (I),

20

5

10

15

in welcher

- R¹ für 2,4-Difluoro-phenyl steht,
- 25 und R², R³, R⁴, m und R⁵ die oben oder unten angegebene Bedeutung haben.

Ebenso besonders bevorzugt sind Verbindungen der Formel (I),

in welcher

- R² für 4-Chloro-phenyl, das gegebenenfalls zusätzlich ein- bis zweifach durch Reste ausgewählt aus der Gruppe Fluor, Chlor, Cyano, Trifluormethyl, Methyl und Ethyl substituiert ist, steht,
- 5 und R¹, R³, R⁴, m und R⁵ die oben oder unten angegebene Bedeutung haben.

Ganz besonders bevorzugt sind Verbindungen der Formel (I),

in welcher

10

R² für 4-Chloro-phenyl steht,

und R¹, R³, R⁴, m und R⁵ die oben oder unten angegebene Bedeutung haben.

15 Ebenfalls bevorzugt sind Verbindungen der Formel (I),

in welcher

R³ für Wasserstoff oder Methyl steht,

20

und R¹, R², R⁴, m und R⁵ die oben oder unten angegebene Bedeutung haben.

Besonders bevorzugt sind Verbindungen der Formel (I),

- 25 in welcher
 - R³ für Wasserstoff steht,

und R¹, R², R⁴, m und R⁵ die oben oder unten angegebene Bedeutung haben.

30

Ebenfalls bevorzugt sind Verbindungen der Formel (I),

in welcher

R⁴ für Wasserstoff oder C₁-C₄-Alkyl steht,

5

und R¹, R², R³, m und R⁵ die oben oder unten angegebene Bedeutung haben.

Besonders bevorzugt sind Verbindungen der Formel (I),

10 in welcher

R⁴ für Methyl oder Ethyl steht,

und R¹, R², R⁴, m und R⁵ die oben oder unten angegebene Bedeutung haben.

15

Ebenfalls bevorzugt sind Verbindungen der Formel (I),

in welcher

20

m für 1 steht,

und R¹, R², R³, R⁴ und R⁵ die oben oder unten angegebene Bedeutung haben.

Ebenfalls bevorzugt sind Verbindungen der Formel (I),

25

in welcher

R⁵

für Wasserstoff oder einen Rest der Formel CO-NR⁶R⁷ steht, worin R⁶ und R⁷ unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl, C₃-C₈-

30 Cycloalkyl oder Benzyl bedeuten,

oder

worin die Gruppe NR⁶R⁷ einen über ein Stickstoffatom gebundenen, 5bis 8-gliedrigen Heterocyclyl-Rest bedeutet,

und R¹, R², R⁴ und m die oben oder unten angegebene Bedeutung haben.

5

10

Besonders bevorzugt sind Verbindungen der Formel (I),

in welcher

R⁵ für einen Rest der Formel CO-NR⁶R⁷ steht,

worin R⁶ und R⁷ unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl, C₃-C₈-Cycloalkyl oder Benzyl bedeuten,

15

oder

worin die Gruppe NR⁶R⁷ Pyrrolidin-1-yl, Piperidin-1-yl, Morpholin-1-yl, Thiomorpholin-1-yl, Piperazin-1-yl, 4-Methyl-piperazin-1-yl oder 4-Ethyl-piperazin-1-yl bedeutet,

20

und R¹, R², R⁴ und m die oben oder unten angegebene Bedeutung haben.

Ganz besonders bevorzugt sind Kombinationen von zwei oder mehreren der oben genannten Vorzugsbereiche.

25

Ebenfalls ganz besonders bevorzugt sind Verbindungen der Formel (I),

in welcher

- R¹ für 2-Fluoro-phenyl, das gegebenenfalls zusätzlich ein- bis zweifach durch Reste ausgewählt aus der Gruppe Fluor, Chlor, Cyano, Trifluormethyl, Methyl und Ethyl substituiert ist, steht,
- für 4-Chloro-phenyl, das gegebenenfalls zusätzlich ein- bis zweifach durch Reste ausgewählt aus der Gruppe Fluor, Chlor, Cyano, Trifluormethyl, Methyl und Ethyl substituiert ist, steht,
 - R³ für Wasserstoff steht,

- R⁴ für Wasserstoff oder C₁-C₄-Alkyl steht,
- m für 1 oder 2 steht,

15 und

- R⁵ für einen Rest der Formel CO-NR⁶R⁷ steht,
- worin R⁶ und R⁷ unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl, C₃-C₈
 Cycloalkyl oder Benzyl bedeuten,

oder

worin die Gruppe NR⁶R⁷ Pyrrolidin-1-yl, Piperidin-1-yl, Morpholin-1-yl,

Thiomorpholin-1-yl, Piperazin-1-yl, 4-Methyl-piperazin-1-yl oder 4-Ethylpiperazin-1-yl bedeutet.

Ebenfalls bevorzugt sind Verbindungen der Formel (I), in welcher

30 R¹⁰ Wasserstoff oder C₁-C₃-Alkyl bedeutet,

10

15

20

und R¹-R⁴ und m die oben angegebenen Bedeutungen aufweisen.

Die Erfindung betrifft weiterhin Verfahren zur Herstellung der erfindungsgemäßen Verbindungen, dadurch gekennzeichnet, dass man

[A] Verbindungen der Formel

$$R^3$$
 R^4
 R^{10}
 R^2
 R^1
 S
(II),

in welcher R¹ bis R⁴ und R¹⁰ die oben angegebenen Bedeutungen haben,

zunächst mit entsprechenden Äquivalenten eines geeigneten Oxidationsmittels wie beispielsweise Peroxiden oder Persäuren, vorzugsweise meta-Chlorperbenzoesäure (mCPBA), in Verbindungen der Formel

$$R^{3}$$
 R^{4}
 R^{10}
 R^{2}
 R^{1}
 $S(O)_{m}$
 R^{1}
 $S(O)_{m}$
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{10}
 R^{10}

in welcher R¹ bis R⁴, R¹⁰ und m die oben angegebenen Bedeutungen haben,

überführt und diese dann in einem Acylierungsschritt, gegebenenfalls in Gegenwart einer Base, mit einer Verbindung der Formel

$$R^{5a}$$
–X (III),

25 in welcher

R^{5a} die oben angegebenen Bedeutungen von R⁵ mit der Ausnahme von Wasserstoff hat,

5 und

X für eine geeignete Abgangsgruppe wie beispielsweise Halogen steht, umsetzt,

oder

10

15

[B] Verbindungen der Formel (II) zunächst mit einer Verbindung der Formel (III), gegebenenfalls in Gegenwart einer Base, in Verbindungen der Formel

$$R^{3}$$
 R^{2}
 S
 R^{10}
 R^{5a}
 R^{5a}
 R^{5a}
 R^{5a}

in welcher

20 R¹ bis R⁴, R^{5a} und R¹⁰ die oben angegebenen Bedeutungen haben,

überführt und diese dann mit entsprechenden Äquivalenten eines geeigneten Oxidationsmittels, vorzugsweise meta-Chlorperbenzoesäure, umsetzt,

- 25 oder
 - [C] Verbindungen der Formel

$$R^3$$
 R^4 R^{10} OH R^2 $S(O)_r$ (V) ,

in welcher

5 R¹ bis R⁴ und R¹⁰ die oben angegebenen Bedeutungen haben und

r für Null, 1 oder 2 steht,

zunächst, gegebenenfalls in Gegenwart einer Base, mit einer Verbindung der Formel

$$Y^1$$
 Y^2 (VI),

in welcher

15

10

20

Y¹ und Y² gleich oder verschieden sind und für eine geeignete Abgangsgruppe, wie beispielsweise Halogen, -OCCl₃ oder eine Gruppe der Formel

stehen,

zu Verbindungen der Formel

$$R^{3}$$
 R^{2}
 R^{1}
 $S(O)_{r}$
 O
 Y^{2}
 $(VII)_{r}$

5 in welcher

10

15

20

R¹ bis R⁴, R¹⁰, r und Y² die oben angegebenen Bedeutungen haben,

umsetzt, diese dann, gegebenenfalls in Gegenwart einer Base und/oder eines geeigneten Katalysators, mit einer Verbindung der Formeln

in welchen

R⁶, R⁷ und R⁸ die oben angegebenen Bedeutungen haben,

in Verbindungen der Formeln

$$R^3$$
 R^4
 R^{10}
 R^5
 R^7
 R^2
 R^1
 $S(O)_r$
 R^7
 R^7
 R^1
 $S(O)_r$
 R^7
 R^1
 $S(O)_r$
 R^7
 R^1
 $S(O)_r$
 R^1
 $S(O)_r$
 R^1
 $S(O)_r$
 $S(O)_r$

PCT/EP03/00052

in welchen

R¹ bis R⁴, R⁶ bis R⁸, R¹⁰ und r die oben angegebenen Bedeutungen haben,

5

überführt und diese dann, sofern r für Null steht, mit entsprechenden Äquivalenten eines geeigneten Oxidationsmittels, vorzugsweise meta-Chlorperbenzoesäure, umsetzt,

10

und die resultierenden Verbindungen (I) und (Ia) gegebenenfalls mit den entsprechenden Lösungsmitteln und/oder Basen oder Säuren in ihre Solvate, Salze und/oder Solvate der Salze überführt.

Die Verbindungen (II) können hergestellt werden, indem man Verbindungen der Formel

in welcher R² und R³ die oben angegebenen Bedeutungen aufweisen,

20

zunächst mit einer Verbindung der Formel

in welcher R⁴ und R¹⁰ die oben angegebenen Bedeutungen aufweisen und

25

Z für C₁-C₄-Alkyl steht,

in Gegenwart einer Lewis-Säure, vorzugsweise Titantetrachlorid, in einem inerten Lösungsmittel zu Verbindungen der Formel

$$R^3$$
 R^4
 R^{10}
 R^2
 OH
 O
 Z
 (XIV)

5

in welcher R² bis R⁴, R¹⁰ und Z die oben angegebenen Bedeutungen aufweisen,

umsetzt, diese dann in inerten Lösungsmitteln in Gegenwart von Triphenylphosphin und eines Di-(C₁-C₄-alkyl)-azodicarboxylats unter Mitsunobu-Bedingungen mit einem Thiol der Formel

$$R^1$$
-SH (XV),

in welcher R¹ die oben angegebene Bedeutung hat,

15

10

in Verbindungen der Formel

$$R^3$$
 R^2
 R^1
 R^1
 R^2
 R^3
 R^4
 R^{10}
 R^1
 R^2
 R^3
 R^4
 R^{10}
 R^3
 R

20

in welcher R^1 bis R^4 , R^{10} und Z die oben angegebenen Bedeutungen aufweisen,

überführt und diese anschließend mit einem geeigneten Reduktionsmittel wie beispielsweise komplexen Metallhydriden, vorzugsweise Lithiumaluminiumhydrid, in einem inerten Lösungsmittel umsetzt.

Verbindungen der Formel (II), in der R¹⁰ für Wasserstoff steht, können weiterhin hergestellt werden, indem man Verbindungen der Formel

- 30 -

$$\mathbb{R}^3$$
 \mathbb{R}^4 \mathbb{C} \mathbb{C} \mathbb{C} \mathbb{C}

5

in welcher R² bis R⁴ die oben angegebenen Bedeutungen haben,

mit einem Thiol der Formel (XV) in Verbindungen der Formel

$$R^3$$
 R^2
 R^1
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^3
 R^4
 R^3
 R^3
 R^4
 R^3
 R^3
 R^4
 R^3
 R^3
 R^3
 R^4
 R^3
 R^3

10

in welcher R^I bis R⁴ die oben angegebenen Bedeutungen haben,

15

überführt und diese dann mit einem geeigneten Reduktionsmittel wie beispielsweise komplexen Metallhydriden, vorzugsweise Natriumborhydrid, umsetzt. Die Verfahrensschritte (XVII) \rightarrow (XVIII) \rightarrow (II) können dabei unter Isolierung des Zwischenproduktes (XVIII) oder in einem "Eintopf"-Verfahren durchgeführt werden [vgl. z.B. Y.-H. Chang, H.W. Pinnick, *J. Org. Chem.* 43, 373-374 (1978)].

20

Verbindungen der Formel (II), in der R⁴ und R¹⁰ für Wasserstoff stehen, können weiterhin hergestellt werden, indem man Verbindungen der Formel

$$\mathbb{R}^2$$
 H
 $\mathbb{S}(O)_m$ (XIX),

in welcher R¹, R² und m die oben angegebenen Bedeutungen aufweisen,

zunächst mit einer geeigneten Base, vorzugsweise n-Butyllithium, in einem inerten Lösungsmittel deprotoniert, anschließend mit einer Verbindung der Formel

- 31 -

in welcher

10

5

Y³ für eine geeignete Abgangsgruppe wie beispielsweise Halogen, Mesylat, Tosylat oder Triflat steht,

zu Verbindungen der Formel

15

$$R^2$$
 CH_2 $(XXI)_{\underline{A}}$

in welcher R¹, R² und m die oben angegebenen Bedeutungen aufweisen,

umsetzt, die Verbindungen (XXI) gegebenenfalls in einem zusätzlichen Schritt nochmals mit einer geeigneten Base, vorzugsweise Natriumhydrid, in einem inerten Lösungsmittel deprotoniert und mit einer Verbindung der Formel

$$R^3-Y^4$$
 (XXII),

25

in welcher

R³ die oben angegebene Bedeutung aufweist, jedoch nicht für Wasserstoff steht, und

15

20

25

- Y⁴ für eine geeignete Abgangsgruppe wie beispielsweise Halogen, Mesylat, Tosylat oder Triflat steht,
- 5 zu Verbindungen der Formel

$$R^3$$
 CH_2
 R^1
 $S(O)_m$
 $(XXIII),$

in welcher R¹, R², R³ und m die oben angegebenen Bedeutungen aufweisen,

umsetzt und dann die Verbindungen (XXI) bzw. (XXIII) mittels eines geeigneten Oxidationsmittels, wie Kaliumpermanganat oder Osmiumtetroxid, bevorzugt Osmiumtetroxid, gefolgt in einem zweiten Schritt von einer Reduktion mit einem komplexen Hydrid, bevorzugt Natriumborhydrid, in einem inerten Lösungsmittel in Verbindungen der Formel

$$R^3$$
 OH R^2 OH R^1 S(O)_m (XXIV),

in welcher R1, R2, R3 und m die oben angegebenen Bedeutungen aufweisen,

überführt.

In Analogie zu dem zuvor beschriebenen Verfahren (XXI) + (XXII) → (XXIII) können die Verbindungen (Ia) auch hergestellt werden, indem man Verbindungen der Formel

15

20

$$R^4$$
 R^{10}
OH
 R^1
 $S(O)_m$
 (XXV)

in welcher R¹, R², R⁴, R¹⁰ und m die oben angegebenen Bedeutungen haben,

5 zunächst nach literaturüblichen Methoden in Verbindungen der Formel

in welcher R1, R2, R4, R10 und m die oben angegebenen Bedeutungen haben und

PG für eine geeignete Hydroxy-Schutzgruppe, wie beispielsweise Trimethylsilyl oder tert.-Butyldimethylsilyl, steht,

überführt, anschließend mit einer geeigneten Base, vorzugsweise Natriumhydrid, in einem inerten Lösungsmittel deprotoniert und mit einer Verbindung der Formel (XXII) zu Verbindungen der Formel

in welcher R1 bis R4, R10, m und PG die oben angegebenen Bedeutungen haben,

10

15

20

25

30

umsetzt und abschließend die Hydroxy-Schutzgruppe nach literaturüblichen Methoden abspaltet.

Die Verbindungen (III), (VI), (VIII), (IX), (XIII), (XV), (XVII), (XIX), (XX) und (XXII) sind kommerziell erhältlich, literaturbekannt oder nach literaturüblichen Methoden herstellbar. Die Verbindungen (V) entsprechen denjenigen der Formel (II) bzw. (Ia) und die Verbindungen (XXV) denjenigen der Formel (Ia); sie können jeweils wie dort beschrieben hergestellt werden.

Verschiedene Methoden zur Acylierung einer Hydroxygruppe für die Einführung der Reste R^{5a} [Verfahrensschritte (Ia) \rightarrow (I) bzw. (II) \rightarrow (IV)] sind dem Fachmann bekannt oder in der einschlägigen Literatur beschrieben (z.B. Houben-Weyl). Als nützlich hat sich beispielsweise die Umsetzung mit einem Säurechlorid in einem inerten Lösungsmittel in Gegenwart einer Base wie z.B. Pyridin erwiesen. Für die Einführung von Carbamoylresten ist beispielsweise die Umsetzung mit para-Nitrophenylchlorformiat und nachfolgende Reaktion des resultierenden Zwischenproduktes mit einem Amin geeignet. Andere Acylierungsmittel wie z.B. Carbonyldiimidazol sind hierfür ebenfalls geeignet. Zur Synthese der erfindungsgemäßen Verbindungen kann die Acylierung in beiderlei Reihenfolge mit der Oxidation der Sulfid-Gruppierung verknüpft werden, d.h. erst Acylierung und dann Oxidation, oder erst Oxidation und dann Acylierung.

Als Lösemittel für die Oxidation in den Verfahrensschritten [A] (II) \rightarrow (Ia), [B] (IV) \rightarrow (I) bzw. [C] (X) / (XI) \rightarrow (I) eignen sich inerte organische Lösemittel, die sich unter den Reaktionsbedingungen nicht verändern. Hierzu gehören Halogenkohlenwasserstoffe wie Dichlormethan, Trichlormethan, Tetrachlormethan, Trichlorethan, Trichlorethan, Trichlorethan, Trichlorethan, Tetrachlorethan, 1,2-Dichlorethan oder Trichlorethylen, Ether wie Diethylether, Dioxan, Tetrahydrofuran, Glykoldimethylether oder Diethylenglykoldimethylether, Alkohole wie Methanol, Ethanol, n-Propanol, iso-Propanol, n-Butanol oder tert.-Butanol, Kohlenwasserstoffe wie Benzol, Xylol, Toluol, Hexan, Cyclohexan oder Erdölfraktionen, Ester wie Ethylacetat, Ketone wie Aceton, Amide wie Dimethyl-

10

15

20

25

formamid oder Nitrile wie Acetonitril. Ebenso ist es möglich, Gemische der genannten Lösemittel einzusetzen. Besonders bevorzugt ist Dichlormethan.

Die Oxidation erfolgt im Allgemeinen in einem Temperaturbereich von -30°C bis +50°C, bevorzugt in einem Temperaturbereich von 0°C bis +25°C.

Als Lösemittel für die Acylierung in den Verfahrensschritten [A] (Ia) + (III) \rightarrow (I) bzw. [B] (II) + (III) \rightarrow (IV) eignen sich gleichfalls inerte organische Lösemittel. Hierzu gehören Halogenkohlenwasserstoffe wie Dichlormethan, Trichlormethan, Tetrachlormethan, Trichlorethan, Tetrachlorethan, 1,2-Dichlorethan oder Trichlorethylen, Ether wie Diethylether, Dioxan, Tetrahydrofuran, Glykoldimethylether oder Diethylenglykoldimethylether, Kohlenwasserstoffe wie Benzol, Xylol, Toluol, Hexan, Cyclohexan oder Erdölfraktionen, Nitroalkane wie Nitromethan, Ester wie Ethylacetat, Ketone wie Aceton, Heteroaromaten wie Pyridin, Amide wie Dimethylformamid, Dialkylsulfoxide wie Dimethylsulfoxid, oder Nitrile wie Acetonitril. Ebenso ist es möglich, Gemische der genannten Lösemittel einzusetzen. Bevorzugt sind Tetrahydrofuran, Acetonitril, Dimethylformamid oder deren Mischungen.

Als Base für den Acylierungsschritt eignen sich die üblichen anorganischen oder organischen Basen. Hierzu gehören bevorzugt Alkali- oder Erdalkalicarbonate wie Natrium-, Kalium- oder Calciumcarbonat, Alkalihydride wie Natriumhydrid, Amide wie Lithium-bis(trimethylsilyl)amid oder Lithiumdiisopropylamid, organische Amine wie Pyridin, 4-N,N-Dimethylaminopyridin, 4-Pyrrolidinopyridin, Triethylamin, Ethyldiisopropylamin, N-Methylmorpholin, N-Methylpiperidin, 1,5-Diazabicyclo-[4.3.0]non-5-en (DBN) oder 1,8-Diazabicyclo[5.4.0]undec-7-en (DBU), oder metallorganische Verbindungen wie Butyllithium oder Phenyllithium. Besonders bevorzugt ist Pyridin, gegebenenfalls in Gegenwart katalytischer Mengen (ca. 10 Mol-%) von 4-N,N-Dimethylaminopyridin oder 4-Pyrrolidinopyridin.

10

15

20

25

30

Die Base wird hierbei in einer Menge von 1 bis 10, bevorzugt 1 bis 3, Mol pro Mol der Verbindung (Ia) bzw. (II) eingesetzt, gegebenenfalls unter Zusatz katalytischer Mengen (ca. 10 Mol-%) von 4-N,N-Dimethylaminopyridin oder 4-Pyrrolidinopyridin.

5 Die Acylierung erfolgt im Allgemeinen in einem Temperaturbereich von -30°C bis +100°C, bevorzugt in einem Temperaturbereich von 0°C bis +60°C.

Die Umsetzungen können bei normalem, erhöhtem oder bei erniedrigtem Druck durchgeführt werden (z.B. von 0,5 bis 5 bar). Im Allgemeinen arbeitet man bei Normaldruck.

Als Lösungsmittel für die Verfahrensschritte [C] (V) + (VI) \rightarrow (VII) und [C] (VII) + (VIII) / (IX) \rightarrow (X) / (XI) eignen sich alle inerten Lösemittel. Hierzu gehören Halogenkohlenwasserstoffe wie Dichlormethan, Trichlormethan, Tetrachlormethan, Trichlorethan, Tetrachlorethan, 1,2-Dichlorethan oder Trichlorethylen, Ether wie Diethylether, Dioxan, Tetrahydrofuran, Glykoldimethylether oder Diethylenglykoldimethylether, Kohlenwasserstoffe wie Benzol, Xylol, Toluol, Hexan, Cyclohexan oder Erdölfraktionen, Nitroalkane wie Nitromethan, Ester wie Ethylacetat, Ketone wie Aceton, Heteroaromaten wie Pyridin, Amide wie Dimethylformamid, Dialkylsulfoxide wie Dimethylsulfoxid, oder Nitrile wie Acetonitril. Ebenso ist es möglich, Gemische der genannten Lösemittel einzusetzen. Bevorzugt sind Dichlormethan, Tetrahydrofuran, Acetonitril, Dimethylformamid oder deren Mischungen.

Als Base für diese Verfahrensschritte eignen sich die üblichen anorganischen oder organischen Basen. Hierzu gehören bevorzugt Alkali- oder Erdalkalicarbonate wie Natrium-, Kalium- oder Calciumcarbonat, Alkalihydride wie Natriumhydrid, Amide wie Lithium-bis(trimethylsilyl)-amid oder Lithiumdiisopropylamid, organische Amine wie Pyridin, 4-N,N-Dimethylaminopyridin, 4-Pyrrolidinopyridin, Triethylamin, Ethyldiisopropylamin, N-Methylmorpholin, N-Methylpiperidin, 1,5-Diazabicyclo[4.3.0]non-5-en (DBN) oder 1,8-Diazabicyclo[5.4.0]undec-7-en (DBU), oder

5

15

metallorganische Verbindungen wie Butyllithium oder Phenyllithium. Besonders bevorzugt sind Triethylamin und Ethyldiisopropylamin.

- 37 -

Die Base wird hierbei in einer Menge von 1 bis 10, bevorzugt 1 bis 3, Mol pro Mol der Verbindung (V) bzw. (VII) eingesetzt.

Die Umsetzungen erfolgen im Allgemeinen in einem Temperaturbereich von -30°C bis +100°C, bevorzugt in einem Temperaturbereich von 0°C bis +60°C.

Die Umsetzungen können bei normalem, erhöhtem oder bei erniedrigtem Druck durchgeführt werden (z.B. von 0,5 bis 5 bar). Im Allgemeinen arbeitet man bei Normaldruck.

Bei Verbindungen der Formel (VII), worin Y^2 für Imidazolid steht, wird der Verfahrensschritt (VII) + (VIII) / (IX) \rightarrow (X) / (XI) bevorzugt in Gegenwart äquivalenter Mengen von Trifluormethansulfonsäuremethylester oder Methyliodid als Katalysator durchgeführt.

Die Synthese der erfindungsgemäßen Verbindungen kann durch die folgenden 20 Formelschemata 1-4 veranschaulicht werden:

$$R^3$$
 R^4
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^4
 R^5
 R^4
 R^4
 R^5
 R^4
 R^5
 R^4
 R^4
 R^5
 R^4
 R^4
 R^4
 R^5
 R^4
 R^4
 R^4
 R^4
 R^5
 R^4
 R^4
 R^4
 R^4
 R^4
 R^5
 R^4
 R^4

5

-41 -

[Abkürzungen: n-Bu = n-Butyl, DIAD = Diisopropylazodicarboxylat, Et = Ethyl, mCPBA = meta-Chlorperbenzoesäure, Me = Methyl, Ph = Phenyl, Pr = Isopropyl.

Die erfindungsgemäßen Verbindungen zeigen ein nicht vorhersehbares, wertvolles pharmakologisches und pharmakokinetisches Wirkspektrum.

Sie eignen sich daher zur Verwendung als Arzneimittel zur Behandlung und/oder 10 Prophylaxe von Krankheiten bei Menschen und Tieren.

5

10

15

20

25

30

Die erfindungsgemäßen Verbindungen inhibieren γ-Sekretase.

Die erfindungsgemäßen Verbindungen können aufgrund ihrer pharmakologischen Eigenschaften allein oder in Kombination mit anderen Wirkstoffen zur Behandlung und/oder Prävention von neurodegenerativen Krankheiten, insbesondere der Alzheimerschen Krankheit eingesetzt werden.

Die erfindungsgemäßen Verbindungen können aufgrund ihrer pharmakologischen Eigenschaften allein oder in Kombination mit anderen Arzneimitteln zur Behandlung und/oder Prophylaxe von Krankheiten die in Zusammenhang mit der vermehrten Bildung, Freisetzung, Akkumulation oder Ablagerung von amyloiden Peptiden, wie z.B. Aß, stehen, insbesondere zur Behandlung oder Prophylaxe der Alzheimerschen Krankheit und / oder damit einhergehender kognitiver Störungen, die beispielsweise bei Situationen/Krankheiten/Syndromen auftreten wie "Mild cognitive impairment", altersassoziierte Lern- und Gedächtnisstörungen, altersassoziierte Gedächtnisverluste, Vaskuläre Demenz, Schädel-Hirn-Trauma, Schlaganfall, Demenz, die nach Schlaganfällen auftritt ("post stroke dementia"), post-traumatisches Schädel-Hirn-Trauma, allgemeine Konzentrationsstörungen, Konzentrationsstörungen in Kindern mit Lern- und Gedächtnisproblemen, Attention Deficit Hyperactivity Disorder, Alzheimersche Krankheit, Demenz mit Lewy-Körperchen, Demenz mit Degeneration der Frontallappen einschließlich des Pick's Syndroms, Parkinsonsche Krankheit, Progressive nuclear palsy, Demenz mit corticobasaler Degeneration, Amyotrophe Lateralsklerose (ALS), Huntingtonsche Krankheit, Multiple Sklerose, Thalamische Degeneration, Creutzfeld-Jacob-Demenz, HTV-Demenz oder Schizophrenie mit Demenz.

Weiterhin können die erfindungsgemäßen Verbindungen in Kombination mit anderen Arzneimitteln eingesetzt werden, die die Bildung, Freisetzung, Akkumulation oder Ablagerung von amyloiden Peptiden im Gehirn verhindern. Denkbar ist in diesem Zusammenhang die Kombination mit anderen Arzneimitteln, die Hemmer der

beta- oder gamma-Secretase sind, Arzneimittel die durch ihre Anwesenheit die Ablagerung von amyloiden Plaques erschweren, verzögern oder verhindern. Eine weitere Verwendung der erfindungsgemäßen Verbindungen ist möglich in Kombination mit einer Therapie, die eine erhöhte Immunantwort auf amyloide Peptide bewirkt.

Außerdem können die erfindungsgemäßen Verbindungen in Kombination mit anderen Arzneimitteln eingesetzt werden, welche die Lern- und Gedächtnisleistung steigern.

10

5

Weiterer Gegenstand der vorliegenden Erfindung sind Arzneimittel, die mindestens eine erfindungsgemäße Verbindung, vorzugsweise zusammen mit einem oder mehreren pharmakologisch unbedenklichen Hilfs- oder Trägerstoffen enthalten, sowie deren Verwendung zu den zuvor genannten Zwecken.

15

Der Wirkstoff kann systemisch und/oder lokal wirken. Zu diesem Zweck kann er auf geeignete Weise appliziert werden, wie z.B. oral, parenteral, pulmonal, nasal, sublingual, lingual, buccal, rectal, transdermal, conjunctival, otisch oder als Implantat.

20

Für diese Applikationswege kann der Wirkstoff in geeigneten Applikationsformen verabreicht werden.

25

Für die orale Applikation eignen sich bekannte, den Wirkstoff schnell und/oder modifiziert abgebende Applikationsformen, wie z.B. Tabletten (nicht überzogene sowie überzogene Tabletten, z.B. mit magensaftresistenten Überzüge versehene Tabletten oder Filmtabletten), Kapseln, Dragees, Granulate, Pellets, Pulver, Emulsionen, Suspensionen, Lösungen und Aerosole.

30 Die parenterale Applikation kann unter Umgehung eines Resorptionsschrittes geschehen (intravenös, intraarteriell, intrakardial, intraspinal oder intralumbal) oder

unter Einschaltung einer Resorption (intramuskulär, subcutan, intracutan, percutan, oder intraperitoneal). Für die parenterale Applikation eignen sich als Applikationsformen u.a. Injektions- und Infusionszubereitungen in Form von Lösungen, Suspensionen, Emulsionen, Lyophilisaten und sterilen Pulvern.

5

10

15

20

25

30

Für die sonstigen Applikationswege eignen sich z.B. Inhalationsarzneiformen (u.a. Pulverinhalatoren, Nebulizer), Nasentropfen / -lösungen, Sprays; lingual, sublingual oder buccal zu applizierende Tabletten oder Kapseln, Suppositorien, Ohren- und Augen-präparationen, Vaginalkapseln, wässrige Suspensionen (Lotionen, Schüttelmixturen), lipophile Suspensionen, Salben, Cremes, Milch, Pasten, Streupuder oder Implantate.

Die Wirkstoffe können in an sich bekannter Weise in die angeführten Applikationsformen überführt werden. Dies geschieht unter Verwendung inerter nichttoxischer, pharmazeutisch geeigneter Hilfsstoffe. Hierzu zählen u.a. Trägerstoffe (z.B. mikrokristalline Cellulose), Lösungsmittel (z.B. flüssige Polyethylenglycole), Emulgatoren (z.B. Natriumdodecylsulfat), Dispergiermittel (z.B. Polyvinylpyrrolidon), synthetische und natürliche Biopolymere (z.B. Albumin), Stabilisatoren (z.B.Antioxidantien wie Ascorbinsäure), Farbstoffe (z.B. anorganische Pigmente wie Eisenoxide) oder Geschmacks- und/oder Geruchskorrigentien.

Im Allgemeinen hat es sich als vorteilhaft erwiesen, bei parenteraler Applikation Mengen von etwa 0,001 bis 10 mg/kg, vorzugsweise etwa 0,005 bis 3 mg/kg Körpergewicht zur Erzielung wirksamer Ergebnisse zu verabreichen. Bei oraler Applikation beträgt die Menge etwa 0,001 bis 100 mg/kg, vorzugsweise etwa 0,005 bis 30 mg/kg Körpergewicht.

Trotzdem kann es gegebenenfalls erforderlich sein, von den genannten Mengen abzuweichen, und zwar in Abhängigkeit von Körpergewicht, Applikationsweg, individuellem Verhalten gegenüber dem Wirkstoff, Art der Zubereitung und Zeitpunkt bzw. Intervall, zu welchem die Applikation erfolgt. So kann es in einigen Fällen

ausreichend sein, mit weniger als der vorgenannten Mindestmenge auszukommen, während in anderen Fällen die genannte obere Grenze überschritten werden muss. Im Falle der Applikation größerer Mengen kann es empfehlenswert sein, diese in mehreren Einzelgaben über den Tag zu verteilen.

5

Die Prozentangaben in den folgenden Tests und Beispielen sind, sofern nicht anders angegeben, Gewichtsprozente; Teile sind Gewichtsteile. Lösungsmittelverhältnisse, Verdünnungsverhältnisse und Konzentrationsangaben von flüssig/flüssig-Lösungen beziehen sich jeweils auf das Volumen.

10

Abkürzungen:

CI chemische Ionisation (bei MS)

DCI direkte chemische Ionisation (bei MS)

DMF N,N-Dimethylformamid

DMSO Dimethylsulfoxid

d.Th. der Theorie (bei Ausbeute)

El Elektronenstoß-Ionisation (bei MS)

ESI Elektrospray-Ionisation (bei MS)

HPLC Hochdruck-, Hochleistungsflüssigchromatographie

LC-MS Flüssigchromatographie-gekoppelte Massenspektroskopie

MS Massenspektroskopie

NMR Kernresonanzspektroskopie

RT Raumtemperatur

R_t Retentionszeit (bei HPLC)

THF Tetrahydrofuran

Analytik-Methoden:

Methode 1:

5

20

30

Instrument: HP 1100 mit DAD-Detektion; Säule: Kromasil RP-18, 60 mm x 2 mm, 3.5 μ m; Eluent A = 5 ml HClO₄/l H₂O, Eluent B = Acetonitril; Gradient: 0 min 2 % B, 0.5 min 2 % B, 4.5 min 90 % B, 9 min 90 % B; Fluss: 0.75 ml/min; Temp.: 30°C; UV-Detektion: 210 nm.

Methode 2:

Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: Waters Alliance 2790; Säule: Grom-Sil 120 ODS-4 HE 50 mm x 2 mm, 3.0 μm; Eluent B: Acetonitril + 0.05 % Ameisensäure, Eluent A: Wasser + 0.05% Ameisensäure; Gradient: 0.0 min 5 % B → 2.0 min 40 % B → 4.5 min 90 % B → 5.5 min 90 % B; Ofen: 45°C; Fluss: 0.0 min 0.75 ml/min → 4.5 min 0.75 ml/min → 5.5 min 1.25 ml/min; UV-Detektion: 210 nm.

Methode 3:

Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: Waters Alliance 2790; Säule: Uptisphere C 18, 50 mm x 2.0 mm, 3.0 μ m; Eluent B: Acetonitril + 0.05 % Ameisensäure, Eluent A: Wasser + 0.05 % Ameisensäure; Gradient: 0.0 min 5 % B \rightarrow 2.0 min 40 % B \rightarrow 4.5 min 90 % B \rightarrow 5.5 min 90 % B; Ofen: 45°C; Fluss: 0.0 min 0.75 ml/min \rightarrow 4.5 min 0.75 ml/min \rightarrow 5.5 min 1.25 ml/min; UV-Detektion: 210 nm.

25 Methode 4:

Instrument: Micromass Quattro LCZ, mit HPLC Agilent Serie 1100; Säule: Uptisphere HDO, 50 mm x 2.0 mm, 3 μ m; Eluent A: 1 L Wasser + 1 mL 50 %-ige Ameisensäure, Eluent B: 1 L Acetonitril + 1 mL 50 %-ige Ameisensäure; Gradient: 0.0 min 100 % A \rightarrow 0.2 min 100 % A \rightarrow 2.9 min 30 % A \rightarrow 3.1 min 10 % A \rightarrow 4.5 min 10 % A; Ofen: 55°C; Fluss: 0.8 ml/min; UV-Detektion: 208-400 nm.

Methode 5:

Instrument: Micromass Quattro LCZ, mit HPLC Agilent Serie 1100; Säule: Grom-SIL120 ODS-4 HE, 50 mm x 2.0 mm, 3 μ m; Eluent A: 1 L Wasser + 1 mL 50 %-ige Ameisensäure, Eluent B: 1 L Acetonitril + 1 mL 50 %-ige Ameisensäure; Gradient: 0.0 min 100 % A \rightarrow 0.2 min 100 % A \rightarrow 2.9 min 30 % A \rightarrow 3.1 min 10 % A \rightarrow 4.5 min 10 % A; Ofen: 55°C; Fluss: 0.8 ml/min; UV-Detektion: 208-400 nm.

Methode 6:

5

10

20

25

30

Instrument: Micromass Platform LCZ, mit HPLC Agilent Serie 1100; Säule: Grom-SIL120 ODS-4 HE, 50 mm x 2.0 mm, 3 μ m; Eluent A: 1 L Wasser + 1 mL 50 %-ige Ameisensäure, Eluent B: 1 L Acetonitril + 1 mL 50 %-ige Ameisensäure; Gradient: 0.0 min 100 % A \rightarrow 0.2 min 100 % A \rightarrow 2.9 min 30 % A \rightarrow 3.1 min 10 % A \rightarrow 4.5 min 10 % A; Ofen: 55°C; Fluss: 0.8 ml/min; UV-Detektion: 208-400 nm.

15 Methode 7:

Instrument: Micromass Quattro LCZ, HP1100; Säule: Symmetry C18, 50 mm x 2.1 mm, 3.5 μ m; Eluent A: Wasser + 0.05 % Ameisensäure, Eluent B: Acetonitril + 0.05 % Ameisensäure; Gradient: 0.0 min 90 % A \rightarrow 4.0 min 10 % A \rightarrow 6.0 min 10 % A; Ofen: 40°C; Fluss: 0.5 ml/min; UV-Detektion: 208-400 nm.

Methode 8:

Instrument: Micromass Platform LCZ, HP1100; Säule: Symmetry C18, 50 mm x 2.1 mm, 3.5 μ m; Eluent A: Wasser + 0.05 % Ameisensäure, Eluent B: Acetonitril + 0.05 % Ameisensäure; Gradient: 0.0 min 90 % A \rightarrow 4.0 min 10 % A \rightarrow 6.0 min 10 % A; Ofen: 40°C; Fluss: 0.5 ml/min; UV-Detektion: 208-400 nm.

Methode 9:

Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: Waters Alliance 2790; Säule: Symmetry C 18, 50 mm x 2.1 mm, 3.5 μm; Eluent B: Acetonitril + 0.05 % Ameisensäure, Eluent A: Wasser + 0.05 % Ameisensäure; Gradient: 0.0 min 5 %

 $B \rightarrow 4.5 \text{ min } 90 \% B \rightarrow 5.5 \text{ min } 90 \% B$; Ofen: 50°C; Fluss: 1.0 ml/min; UV-Detektion: 210 nm.

Ausgangsverbindungen:

Beispiel 1A

5

10

15

20

3-[(4-Chlorphenyl)sulfanyl]-3-(2,5-difluorphenyl)-2-methyl-1-propanol

F CH₃ OH

500 mg (3,45 mmol) 2,5-Difluorbenzaldehyd und 204 mg (3,45 mmol) Propionaldehyd werden in 3 ml Ethanol gelöst und mit 0,165 ml 10 %-iger Natronlauge versetzt und 24 h bei RT gerührt. Danach werden 712 mg (4,83 mmol) 4-Chlorthiophenol langsam bei RT zugegeben. Nach weiteren 20 h wird die Reaktionslösung mit 130 mg (3,45 mmol) Natriumborhydrid versetzt, wobei die Menge in zwei gleich große Portionen geteilt und im Abstand von 0,5 h zugegeben wird. Es wird 3,5 h nachgerührt. Zur Aufarbeitung wird die Lösung mit 10 ml Eiswasser versetzt und dreimal mit Diethylether extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, eingeengt und der Rückstand im Hochvakuum getrocknet. Das Rohprodukt wird mit wenig Cyclohexan aufgenommen und an Kieselgel chromatographiert (Laufmittel Cyclohexan/2 bis 5 % Essigsäureethylester). Die produkthaltigen Fraktionen werden zusammengegeben, eingeengt und im Hochvakuum getrocknet. Man erhält 542 mg (45 % d.Th.) eines farblosen, öligen Produktes, das aus einem Gemisch der beiden Diastereomere (jeweils ca. 50 % Anteil) besteht.

MS (CI): $m/z = 346 [M+NH_4]^+$

¹H-NMR (200 MHz, DMSO-d₆): δ = 7.4-7.0 (7H), 4.8-4.5 (2H), 3.65-3.1 (2H), 2.2-2.0 (1H), 1.1 (d, 3H, Diastereomer A), 0.8 (d, 3H, Diastereomer B).

Beispiel 1A-1

Aus dem Gemisch der Diastereomere des Beispiels 1A wird durch weitere Auftrennung mittels präparativer HPLC (Kromasil 100 C18, Laufmittel 30 Vol.-% Wasser/70 Vol.-% Acetonitril) als zuerst eluierende Komponente das reine Diastereomer A (in racemischer Form) gewonnen.

MS (CI): m/z = 346 [M+NH₄]⁺

¹H-NMR (300 MHz, DMSO-d₆): δ = 7.35-7.2 (m, 5H), 7.2-7.0 (m, 2H), 4.75 (t, 1H), 4.6 (d, 1H), 3.6 (t, 2H), 2.2-2.1 (m, 1H), 0.8 (d, 3H).

10 Beispiel 1A-2

5

Aus dem Gemisch der Diastereomere des Beispiels 1A wird durch weitere Auftrennung mittels präparativer HPLC (Kromasil 100 C18, Laufmittel 30 Vol.-% Wasser/70 Vol.-% Acetonitril) als später eluierende Komponente das reine Diastereomer B (in racemischer Form) gewonnen.

15 MS (CI): m/z = 346 [M+NH₄]⁺

¹H-NMR (300 MHz, DMSO-d₆): δ = 7.35-7.25 (m, 5H), 7.2-7.05 (m, 2H), 4.7-4.6 (m, 2H), 3.45-3.35 (m, 1H), 3.25-3.15 (m, 2H), 2.2-2.05 (m, 1H), 1.1 (d, 3H).

In analoger Weise werden erhalten:

Beispiel 2A

2-[[(4-Chlorphenyl)sulfanyl](2,5-difluorphenyl)methyl]-1-butanol

20

Man erhält 1,15 g (68 % d.Th.) eines farblosen, öligen Produktes, das aus einem Gemisch der beiden Diastereomere (ca. 60 % Diastereomer A, 40 % Diastereomer B) besteht.

MS (CI): m/z = 360 [M+NH₄]⁺

¹H-NMR (400 MHz, DMSO-d₆): δ = 7.4-7.0 (7H), 4.75-4.6 (2H), 3.8-3.2 (2H), 2.0-1.1 (3H), 0.9 (t, 3H, Diastereomer A), 0.8 (t, 3H, Diastereomer B).

Beispiel 3A

5

10

15

3-[(4-Chlorphenyl)sulfanyl]-3-(2,5-dichlorphenyl)-2-methyl-1-propanol

CI CH₃ OH

Ausgehend von 846 mg (4,74 mmol) 2,5-Dichlorbenzaldehyd werden 869 mg (50 % d.Th.) des Produktes als Gemisch der Diastereomere (ca. 54 % Diastereomer A, 46 % Diastereomer B) als farbloses Öl erhalten.

MS (CI): $m/z = 378 [M+NH_4]^+$

¹H-NMR (200 MHz, DMSO-d₆): δ = 7.6-7.15 (7H), 4.95-4.5 (2H), 3.7-3.2 (2H), 2.2-2.05 (1H), 1.0 (d, 3H, Diastereomer A), 0.8 (d, 3H, Diastereomer B).

Beispiel 4A

3-[(4-Chlorphenyl)sulfanyl]-3-(2-fluor-5-methylphenyl)-2-methyl-1-propanol

5

Das Produkt wird als Gemisch der Diastereomere (ca. 55 % Diastereomer A, 45 % Diastereomer B) als farbloses Öl erhalten.

MS (CI): $m/z = 342 [M+NH_4]^+$

 1 H-NMR (200 MHz, DMSO-d₆): δ = 7.3- 6.9 (7H), 4.7-4.5 (2H), 3.6-3.1 (2H), 2.2 (s, 3H), 2.15-2.05 (1H), 1.1 (d, 3H, Diastereomer A), 0.8 (d, 3H, Diastereomer B).

Beispiel 5A

3-[(4-Chlorphenyl)sulfanyl]-3-(2,5-difluorphenyl)-2-methylpropyl-N,N-diethylcarbamat

15

10

20

Eine Lösung von 304 mg (0,74 mmol) 3-[(4-Chlorphenyl)sulfanyl]-3-(2,5-difluorphenyl)-2-methyl-1-propanol (Beispiel 1A) in einem Gemisch von 3,6 ml Tetrahydrofuran und 0,55 ml Acetonitril wird erst mit 62 mg (0,78 mmol) Pyridin und anschließend bei 0°C langsam mit 182 mg (0,85 mmol) 4-Nitrophenylchlorformiat versetzt. Es wird zunächst bei RT über Nacht und anschließend 4 h bei 55°C gerührt. Bei RT wird eine Lösung von 328 mg (4,44 mmol) Diethylamin in 5 ml THF zuge-

tropft und 3 h bei RT und anschließend 3 h bei 50°C nachgerührt. Zur Aufarbeitung wird das Lösungsmittel im Vakuum entfernt und der Rückstand in Dichlormethan aufgenommen. und mit Wasser gewaschen. Die organische Phase wird über Natriumsulfat getrocknet und eingeengt. Das Rohprodukt wird zuerst an Kieselgel chromatographiert (Laufmittel: Cyclohexan/1 bis 5 % Essigsäureethylester) und anschließend per HPLC nachgereinigt. Man erhält 122 mg (38 % d.Th.) eines farblosen, öligen Produktes, das aus einem Gemisch der beiden Diastereomere (ca. 55 % Diastereomer A, 45 % Diastereomer B) besteht.

MS (ESI): $m/z = 428 [M+H]^+$

¹H-NMR (300 MHz, DMSO-d₆): δ = 7.4-7.0 (7H), 4.6-4.5 (1H), 4.2-3.7 (2H), 3.25-3.1 (4H), 2.4 (1H), 1.1 (d, 3H, Diastereomer A), 1.1-0.95 (6H), 0.85 (d, 3H, Diastereomer B).

In analoger Weise wird erhalten:

15

5

Beispiel 6A

3-[(4-Chlorphenyl)sulfanyl]-3-(2,5-difluorphenyl)-2-methylpropyl-1-pyrrolidin-carboxylat

20

Man erhält 540 mg eines farblosen, öligen Produktes (87 % d.Th.), das aus einem Gemisch der beiden Diastereomere (ca. 60 % Diastereomer A, 40 % Diastereomer B) besteht.

25 MS (ESI): $m/z = 426 [M+H]^+$

¹H-NMR (300 MHz, DMSO-d₆): δ = 7.4-7.0 (7H), 4.6-4.5 (1H), 4.2-3.7 (2H), 3.25-3.1 (4H), 2.55-2.35 (1H), 1.8 (4H), 1.15 (d, 3H, Diastereomer A), 0.9 (d, 3H, Diastereomer B).

5 Beispiel 7A

3-[(4-Chlorphenyl)sulfanyl]-3-(2,5-difluorphenyl)-2-methylpropylbenzoat

Eine Lösung von 86 mg (0,26 mmol) 3-[(4-Chlorphenyl)sulfanyl]-3-(2,5-difluorphenyl)-2-methyl-1-propanol (Beispiel 1A) in 0,5 ml Pyridin wird bei RT mit 55 mg (0,39 mmol) Benzoylchlorid versetzt und 2 Stunden gerührt. Die Lösung wird im Vakuum eingeengt und der Rückstand in Dichlormethan aufgenommen und mit 2 %-iger Natriumhydrogencarbonat-Lösung gewaschen. Die organische Phase wird über Natriumsulfat getrocknet, eingeengt und per präparativer HPLC gereinigt. Es werden 78 mg (69 % d.Th.) des Produktes als Gemisch der Diastereomere (ca. 50 % Diastereomer A, 50 % Diastereomer B) erhalten.

MS (CI): $m/z = 450 [M+NH_4]^+$

¹H-NMR (300 MHz, DMSO-d₆): $\delta = 8.0$ -7.0 (12H), 4.75-4.65 (1H), 4.55-4.0 (2H),

2.7-2.5 (1H), 1.3 (d, 3H, Diastereomer A), 1.0 (d, 3H, Diastereomer B).

Beispiel 8A

20

4-{[1-(2,5-Difluorphenyl)-3-hydroxy-2-methylpropyl]sulfonyl}benzonitril

Die Verbindung wird analog zur Vorschrift des Beispiels 1A und des Beispiels 1 hergestellt [das als Ausgangsmaterial dienende p-Cyanothiophenol wird nach J. Org. Chem. 54, 4458-4462 (1998) hergestellt]. Das nach Oxidation erhaltene Endprodukt wird ohne weitere Reinigung in der nachfolgenden Umsetzung eingesetzt. HPLC (Methode 1): $R_t = 4.23$ und 4.30 min. (Diastereomerengemisch) MS (ESI pos.): m/z = 352 [M+H]⁺.

10 Beispiel 9A

5

N-Ethyl-1-piperazincarboxamid-Trifluoracetat

Man versetzt 800 mg (0,80 mmol) p-Nitrophenylcarbonat-Wang-Polystyrol-Harz (Fa. Novabiochem) mit einer Lösung von 0,3 ml (4,00 mmol) Piperazin in 15 ml N,N-Dimethylformamid und schüttelt die Mischung 16 h bei Raumtemperatur. Das Harz wird abfiltriert und mehrmals mit N,N-Dimethylformamid, Methanol und Dichlormethan gewaschen. Anschließend wird eine Lösung von 0,32 ml (4,00 mmol) Ethylisocyanat in 5 ml THF zugegeben und mit 10 mg (0,08 mmol) N,N-Dimethylaminopyridin versetzt. Man schüttelt 16 h bei Raumtemperatur, filtriert anschließend das Harz ab und wäscht mehrmals mit N,N-Dimethylformamid, Methanol und Dichlor-

methan. Zur Abspaltung des Produkts vom Trägerharz behandelt man mit 20 ml Trifluoressigsäure/Dichlormethan (1:1 v/v) für 1 h bei Raumtemperatur, filtriert vom Polymer ab und engt das Filtrat im Vakuum ein. Das Produkt ist rein genug für weitere Umsetzungen.

5 MS (ESI pos.): $m/z = 158 [M+H]^{+}$.

Beispiel 10A

3-(2,5-Difluorphenyl)-2-methyl-3-{[4-(trifluormethyl)phenyl]sulfonyl}-1-propanol

10 Stufe a):

3-(2,5-Difluorphenyl)-2-methyl-2-propenal

- 75 g (528 mmol) 2,5-Difluorbenzaldehyd und 30,6 g (528 mmol) Propional werden in 450 ml Ethanol gelöst, unter Eiskühlung mit 25 ml (62,5 mmol) 2,5 M Natronlauge versetzt und über Nacht bei Raumtemperatur gerührt. Anschließend wird auf Eiswasser/Salzsäure gegossen, in Ethylacetat aufgenommen, mit Wasser gewaschen und eingeengt. Anschließende Chromatographie (Kieselgel, Laufmittel: Petrolether)
- liefert 55,2 g (55 % d.Th.) der Titelverbindung. MS (EI): m/z = 182 [M]⁺

 H-NMR (300 MHz, CDCl₃): δ = 9.6 (s, 1H), 7.35 (s, 1H), 7.3-7.2 (m, 1H), 7.15-7.05 (m, 2H), 2.05 (s, 3H).

25 Stufe b):

3-(2,5-Difluorphenyl)-2-methyl-3-{[4-(trifluormethyl)phenyl]sulfonyl}-1-propanol

5

10

15

20

Zu einer Lösung von 657 mg (3,61 mmol) 3-(2,5-Difluorphenyl)-2-methyl-2-propenal in 5 ml Ethanol bei 0°C werden 0,22 ml (0,44 mmol) 2 M Natronlauge und 900 mg (5,05 mmol) 4-Trifluormethylthiophenol gegeben und über Nacht bei Raumtemperatur gerührt. Anschließend wird im Eisbad gekühlt, langsam portionsweise mit 150 mg (3,97 mmol) Natriumborhydrid versetzt und 9 h bei Raumtemperatur gerührt. Es wird mit 15 ml Dichlormethan verdünnt, auf 0°C gekühlt, mit 3,56 g (70% Reinheit; 14,4 mmol) 3-Chlorperbenzoesäure in zwei Portionen mit einer Stunde Abstand versetzt und über Nacht bei Raumtemperatur gerührt. Nach Zugabe von gesättigter Natriumthiosulfat-Lösung wird mit Dichlormethan extrahiert. Die organische Phase wird mit gesättigter Natriumhydrogencarbonat-Lösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Reinigung mittels präparativer HPLC (RP18-Säule, Eluent Acetonitril/Wasser) liefert 907 mg (64 % d.Th.) der Titelverbindung als Diastereomerengemisch.

LC/MS (Methode 2): $R_t = 3.82 \text{ min, m/z} = 417 [M+Na]^+$.

Beispiel 10A-1

(2*R*,3*S*)- 3-(2,5-Difluorphenyl)-2-methyl-3-{[4-(trifluormethyl)phenyl]sulfonyl}-1-propanol

CT/EP03/00052

Aus dem Gemisch der Diastereomere des Beispiels 10A wird durch weitere Auftrennung mittels präparativer HPLC (Kromasil 60 Si, Laufmittel 90 Vol.-% iso-Hexan/10 Vol.-% Isopropanol) als später eluierende Komponente das reine Diastereomer B in racemischer Form gewonnen. Aus dem Racemat des Diastereomers B wird anschließend durch weitere Auftrennung mittels präparativer HPLC an chiraler Phase (Daicel Chiralpak AD, Laufmittel Ethanol) als später eluierende Komponente die Titelverbindung als reines Enantiomer gewonnen.

- 10 MS (ESI): $m/z = 417 [M+Na]^+$ ¹H-NMR (200 MHz, DMSO-d₆): $\delta = 7.85$ (d, 2H), 7.75 (d, 2H), 7.4-7.3 (m, 1H), 7.25-7.1 (m, 1H), 7.05-6.9 (m, 1H), 4.8-4.65 (m, 2H), 3.35-3.25 (m, 1H), 3.1-3.0 (m, 1H), 2.75-2.65 (m, 1H), 1.4 (d, 3H).
- Die folgenden Ausgangsverbindungen werden gemäß der jeweils aufgeführten Literaturstelle hergestellt:

Beispiel 11A

1-(3-Chlorphenyl)-2-piperazinon-Hydrochlorid

20

5

Die Titelverbindung wird nach Tetrahedron Lett. 39, 7459-7562 (1998) erhalten.

Beispiel 12A

5

1-(3-Trifluormethoxyphenyl)-2-piperazinon-Hydrochlorid

Die Titelverbindung wird auf analoge Weise zu Beispiel 11A erhalten.

Beispiel 13A

5-Fluor-2-methylbenzaldehyd

15

10

Die Titelverbindung wird nach J. Am. Chem. Soc. 90, 6712-6717 (1968) erhalten.

Beispiel 14A

N-[2-(1-Piperazinyl)phenyl]methansulfonamid

20

Die Titelverbindung wird nach Bioorg. Med. Chem. Lett. 8, 1851-1856 (1998) erhalten.

5

Beispiel 15A

4-Ethylpiperidin

10

Die Titelverbindung wird nach J. Heterocycl. Chem. 13, 955-960 (1976) erhalten.

Beispiel 16A

4,4-Dimethylpiperidin

15

Die Titelverbindung wird nach J. Med. Chem. 8, 766-776 (1965) erhalten.

20 <u>Beispiel 17A</u>

N-Methyl-2-butanamin

Die Titelverbindung wird nach J. Am. Chem. Soc. 77, 3061-3067 (1955) erhalten.

Ausführungsbeispiele:

Beispiel 1

5

10

15

20

25

3-[(4-Chlorphenyl)sulfonyl]-3-(2,5-difluorphenyl)-2-methyl-1-propanol

F CH₃ OH

3,75 g (10,94 mmol) 3-[(4-Chlorphenyl)sulfanyl]-3-(2,5-difluorphenyl)-2-methyl-1-propanol (Beispiel 1A) werden in 60 ml Methylenchlorid gelöst und bei RT langsam mit 5,40 g (70 % Reinheit; 21,9 mmol) meta-Chlorperbenzoesäure versetzt. Nach zwei Stunden wird die Reaktionslösung mit 200 ml 2,5 %-iger Natriumhydrogencarbonat-Lösung versetzt, die Phasen getrennt und die wässrige Phase dreimal mit Methylenchlorid nachextrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, eingeengt und an Kieselgel chromatographiert (Laufmittel: Cyclohexan/2 bis 20 % Essigsäureethylester). Es werden 3,7 g (90 % rein per HPLC, 84 % d.Th.) des Produktes als Gemisch der Diastereomere (ca. 45 % Diastereomer A, 55 % Diastereomer B) als farbloses Öl erhalten. Durch nochmalige Chromatographie kann 100 % reines Produkt erhalten werden.

MS (CI): $m/z = 378 [M+NH_4]^+$

¹H-NMR (200 MHz, DMSO-d₆): δ = 7.6 (s, 2H), 7.5 (s, 2H), 7.4-7.0 (3H), 4.95-4.6 (2H), 3.65-3.0 (2H), 2.7-2.5 (1H), 1.4 (d, 3H, Diastereomer A), 0.95 (d, 3H, Diastereomer B).

Beispiel 1-1

rac-(2R,3R)-3-[(4-Chlorphenyl)sulfonyl]-3-(2,5-difluorphenyl)-2-methyl-1-propanol

Die Titelverbindung wird in analoger Weise aus Beispiel 1A-1 erhalten.

MS (CI): m/z = 378 [M+NH₄]⁺

¹H-NMR (200 MHz, DMSO-d₆): δ = 7.6 (s, 4H), 7.45-7.35 (m, 1H), 7.3-7.05 (m, 2H), 4.95 (d, 1H), 4.85 (t, 1H), 3.6-3.45 (m, 1H), 3.4-3.3 (m, 1H), 2.8-2.65 (m, 1H), 0.95 (d, 3H).

Beispiel 1-2

10 rac-(2R,3S)- 3-[(4-Chlorphenyl)sulfonyl]-3-(2,5-difluorphenyl)-2-methyl-1-propanol

Die Titelverbindung wird in analoger Weise aus Beispiel 1A-2 erhalten.

15 MS (CI): $m/z = 378 \text{ [M+NH_4]}^+$ $^1\text{H-NMR}$ (200 MHz, DMSO-d₆): $\delta = 7.55$ (s, 4H), 7.4-7.3 (m, 1H), 7.25-7.1 (m, 1H), 7.1-6.95 (m, 1H), 4.75-4.65 (m, 2H), 3.35-3.25 (m, 1H), 3.1-2.95 (m, 1H), 2.75-2.6 (m, 1H), 1.4 (d, 3H).

20 <u>Beispiel 1-3</u>

Aus dem Racemat des Beispiels 1-1 kann durch weitere Auftrennung mittels präparativer HPLC an chiraler Phase (Daicel Chiralcel OD, Laufmittel 75 Vol.-% iso-

Hexan/25 Vol.-% Isopropanol) als schneller eluierende Komponente das reine Enantiomer 1 gewonnen werden.

Beispiel 1-4

Aus dem Racemat des Beispiels 1-1 kann durch weitere Auftrennung mittels präparativer HPLC an chiraler Phase (Daicel Chiralcel OD, Laufmittel 75 Vol.-% iso-Hexan/25 Vol.-% Isopropanol) als später eluierende Komponente das reine, dem Beispiel 1-3 komplementäre Enantiomer 2 gewonnen werden.

10 **Beispiel 1-5**

(2S,3R)- 3-[(4-Chlorphenyl)sulfonyl]-3-(2,5-difluorphenyl)-2-methyl-1-propanol

Aus dem Racemat des Beispiels 1-2 kann durch weitere Auftrennung mittels präparativer HPLC an chiraler Phase (Daicel Chiralpak AD, Laufmittel Ethanol) als schneller eluierende Komponente das reine Enantiomer 3 gewonnen werden.

Beispiel 1-6

20 (2R,3S)- 3-[(4-Chlorphenyl)sulfonyl]-3-(2,5-difluorphenyl)-2-methyl-1-propanol

Aus dem Racemat des Beispiels 1-2 kann durch weitere Auftrennung mittels präparativer HPLC an chiraler Phase (Daicel Chiralpak AD, Laufmittel Ethanol) als später eluierende Komponente das reine, dem Beispiel 1-5 komplementäre Enantiomer 4 gewonnen werden, dessen Absolutkonfiguration durch Einkristall-Röntgenstrukturanalyse bestimmt wurde.

In analoger Weise werden erhalten:

Beispiel 2

5

15

20

2-[[(4-Chlorphenyl)sulfonyl](2,5-difluorphenyl)methyl]-1-butanol

Durch Oxidation von 1,14 g 2-[[(4-Chlorphenyl)sulfanyl](2,5-difluorphenyl)methyl]-1-butanol (Beispiel 2A) werden 915 mg (77 % d.Th.) des Produktes als Gemisch der Diastereomere (ca. 60 % Diastereomer A, 40 % Diastereomer B) als farbloses Öl erhalten.

MS (CI): $m/z = 392 [M+NH_4]^+$

¹H-NMR (300 MHz, DMSO-d₆): δ = 7.6-7.5 (4H), 7.4-6.95 (3H), 5.0-4.5 (2H), 3.85-3.0 (2H), 2.6-2.4 (1H), 2.0-1.0 (2H), 0.95 (t, 3H, Diastereomer A), 0.85 (t, 3H, Diastereomer B).

Beispiel 3

3-[(4-Chlorphenyl)sulfonyl]-3-(2,5-dichlorphenyl)-2-methyl-1-propanol

5

Durch Oxidation von 855 mg (80 % rein, 1,89 mmol) 3-[(4-Chlorphenyl)sulfanyl]-3-(2,5-dichlorphenyl)-2-methyl-1-propanol (Beispiel 3A) werden 550 mg (74 % d.Th.) des Produktes als Gemisch der Diastereomere (ca. 60 % Diastereomer A, 40 % Diastereomer B) als farbloses Öl erhalten.

10 MS (CI): $m/z = 410 [M+NH_4]^+$

¹H-NMR (200 MHz, DMSO-d₆): $\delta = 7.7-7.25$ (7H), 5.15-4.65 (2H), 3.7-2.95 (2H), 2.85-2.5 (1H), 1.4 (d, 3H, Diastereomer A), 0.9 (d, 3H, Diastereomer B).

Beispiel 4

3-[(4-Chlorphenyl)sulfonyl]-3-(2-fluor-5-methylphenyl)-2-methyl-1-propanol

Durch Oxidation von 740 mg (80 % rein, 1,89 mmol) 3-[(4-Chlorphenyl)sulfanyl]-3(2-fluor-5-methylphenyl)-2-methyl-1-propanol (Beispiel 4A) werden 550 mg (70 % d.Th.) des Produktes als Gemisch der Diastereomere (ca. 57 % Diastereomer A, 43 % Diastereomer B) als farbloses Öl erhalten.

MS (CI): $m/z = 374 [M+NH_4]^+$

¹H-NMR (300 MHz, DMSO-d₆): δ = 7.6-6.7 (7H), 4.9-4.6 (2H), 3.55-3.0 (2H), 2.75-2.55 (1H), 2.35-2.25 (3H), 1.4 (d, 3H, Diastereomer A), 0.95 (d, 3H, Diastereomer B).

5 Beispiel 5

3-[(4-Chlorphenyl)sulfinyl]-3-(2,5-difluorphenyl)-2-methylpropyl-N,N-diethylcarbamat

10

15

20

100 mg (0,23 mmol) 3-[(4-Chlorphenyl)sulfanyl]-3-(2,5-difluorphenyl)-2-methyl-propyl-N,N-diethylcarbamat (Beispiel 5A) werden in 1,5 ml Methylenchlorid gelöst und bei 0°C langsam mit 58 mg (70 % rein; 0,23 mmol) meta-Chlorperbenzoesäure versetzt. Nach 30 Minuten wird die Reaktionslösung mit 5 ml 2,5 %-iger Natriumhydrogencarbonat-Lösung versetzt, die Phasen getrennt und die wässrige Phase dreimal mit Methylenchlorid nachextrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, eingeengt und mittels präparativer HPLC gereinigt. Alle Fraktionen mit korrekter Molmasse laut LC/MS, die eines der Produkt-Isomeren enthalten, werden vereinigt. Es werden 82 mg (79 % d.Th.) des Produktes als Gemisch der vier Diastereomere als farbloses Öl erhalten.

MS (CI): $m/z = 461 [M+NH_4]^+$

¹H-NMR (300 MHz, DMSO-d₆): δ = 7.65-6.8 (7H), 4.6-4.5 (1H), 5.0-3.5 (3H), 3.4-3.0 (4H), 2.9-2.6 (1H), 1.6-0.8 (9H).

CT/EP03/00052

Beispiel 6

3-[(4-Chlorphenyl)sulfonyl]-3-(2,5-difluorphenyl)-2-methylpropyl-N,N-diethylcarbamat

5

10

15

Analog zur Durchführung der Oxidation in Beispiel 1 werden ausgehend von 800 mg (1,87 mmol) 3-[(4-Chlorphenyl)sulfanyl]-3-(2,5-difluorphenyl)-2-methylpropyl-N,N-diethylcarbamat (Beispiel 5A) insgesamt 676 mg (77 % d.Th.) des Produktes als Gemisch der Diastereomere (ca. 54 % Diastereomer A, 46 % Diastereomer B) als farbloses Öl erhalten.

MS (ESI): $m/z = 460 [M+H]^{+}$

 1 H-NMR (300 MHz, DMSO-d₆): δ = 7.7-7.5 (4H), 7.5-6.9 (3H), 4.9-4.65 (1H), 4.2-3.55 (2H), 3.3-2.8 (5H), 1.45 (d, 3H, Diastereomer A), 1.15-0.9 (6H Diastereomer A und B + 3H Diastereomer B).

Beispiel 7

 $3\hbox{-}[(4\hbox{-}Chlorphenyl)\hbox{-}sulfonyl]\hbox{-}3\hbox{-}(2,5\hbox{-}difluorphenyl)\hbox{-}2\hbox{-}methylpropylbenzoat$

20

Analog zur Durchführung der Oxidation in Beispiel 1 werden ausgehend von 65 mg (0,15 mmol) 3-[(4-Chlorphenyl)sulfanyl]-3-(2,5-difluorphenyl)-2-methylpropyl-ben-

zoat (Beispiel 7A) insgesamt 59 mg (84 % d.Th.) des Produktes als Gemisch der Diastereomere (ca. 46 % Diastereomer A, 54 % Diastereomer B) als farbloses Öl erhalten.

MS (CI): m/z = 450 [M+NH₄]⁺

¹H-NMR (300 MHz, DMSO-d₆): δ = 8.0-6.9 (12H), 5.1-4.9 (1H), 4.5-3.9 (2H), 3.2-3.05 (1H), 1.55 (d, 3H, Diastereomer A), 1.1 (d, 3H, Diastereomer B).

Beispiel 8

10

3-[(4-Chlorphenyl)sulfonyl]-3-(2,5-difluorphenyl)-2-methylpropyl-4-morpholin-carboxylat

Analog der Vorschrift in Beispiel 5A werden ausgehend von 70 mg (0,19 mmol) 3- [(4-Chlorphenyl)sulfonyl]-3-(2,5-difluorphenyl)-2-methyl-1-propanol (Beispiel 1) insgesamt nach Reinigung über präparative HPLC 26 mg (28 % d.Th.) des Produktes als Gemisch der Diastereomere (ca. 40 % Diastereomer A, 60 % Diastereomer B) als farbloses Öl erhalten.

MS (ESI): $m/z = 474 [M+H]^+$

¹H-NMR (300 MHz, CD₃OD): δ = 7.65-7.3 (4H), 7.2-6.8 (3H), 4.9-4.7 (1H), 4.35-3.8 (2H), 3.7-3.55 (4H), 3.45-3.3 (4H), 3.15-3.0 (1H), 1.5 (d, 3H, Diastereomer A), 1.1 (d, 3H, Diastereomer B).

Beispiel 9

3-[(4-Chlorphenyl)sulfonyl]-3-(2,5-difluorphenyl)-2-methylpropyl-4-methyl-1-piperazincarboxylat-Formiatsalz

5

10

15

Analog der Vorschrift in Beispiel 5A werden ausgehend von 70 mg (0,19 mmol) 3- [(4-Chlorphenyl)sulfonyl]-3-(2,5-difluorphenyl)-2-methyl-1-propanol (Beispiel 1) insgesamt nach Reinigung über präparative HPLC 20 mg (19 % d.Th.) des Produktes als Gemisch der Diastereomere (ca. 50 % Diastereomer A, 50 % Diastereomer B) als Ameisensäure-Salz (aus der HPLC) erhalten.

MS (ESI): $m/z = 487 [M+H]^{+}$

 1 H-NMR (300 MHz, CD₃OD): δ = 8.2 (1H, Formiat), 7.65-7.3 (4H), 7.2-6.8 (3H), 4.9-4.7 (1H), 4.35-3.8 (2H), 3.6-3.5 (4H), 3.15-3.0 (1H), 2.9-2.7 (4H), 2.6 (3H), 1.5 (d, 3H, Diastereomer A), 1.1 (d, 3H, Diastereomer B).

Beispiel 10

 $\label{lem:carboxylat} 3-[(4-Chlorphenyl) - 3-(2,5-difluorphenyl) - 2-methylpropyl-1-pyrrolidin-carboxylat$

20

Analog der Vorschrift zur Oxidation in Beispiel 1 werden ausgehend von 85 mg (0,2 mmol) 3-[(4-Chlorphenyl)sulfanyl]-3-(2,5-difluorphenyl)-2-methylpropyl-1-pyrrolidincarboxylat (Beispiel 6A) insgesamt nach Reinigung über präparative HPLC 72 mg (79 % d.Th.) des Produktes als Gemisch der Diastereomere (ca. 43 % Diastereomer A, 47 % Diastereomer B) als farbloses Öl erhalten.

MS (ESI): $m/z = 458 [M+H]^+$

¹H-NMR (300 MHz, DMSO-d₆): δ = 7.7-6.9 (7H), 4.9-4.7 (1H), 4.15-3.6 (2H), 3.3-3.1 (4H), 3.05-2.9 (1H), 1.9-1.7 (4H), 1.45 (d, 3H, Diastereomer A), 1.0 (d, 3H, Diastereomer B).

10

15

5

Beispiel 10-1

Aus dem Gemisch der Diastereomere des Beispiels 10 wird durch weitere Auftrennung mittels präparativer HPLC (Kromasil 100 C18, Laufmittel 50 Vol.-% Acetonitril/50 Vol.-% Wasser) als zuerst eluierende Komponente das reine Diastereomer A (in racemischer Form) gewonnen.

¹H-NMR (300 MHz, DMSO-d₆): δ = 7.6 (m, 4H), 7.35 (m, 1H), 7.15 (m, 1H), 7.0 (m, 1H), 4.7 (d, J=9Hz, 1H), 3.95 (dd, 1H), 3.65 (dd, 1H), 3.3-3.1 (4H), 3.0 (m, 1H), 1.9-1.7 (4H), 1.45 (d, 3H).

20 **Beispiel 10-2**

Aus dem Gemisch der Diastereomere des Beispiels 10 wird durch weitere Auftrennung mittels präparativer HPLC (Kromasil 100 C18, Laufmittel 50 Vol.-% Acetonitril/50 Vol.-% Wasser) als später eluierende Komponente das reine Diastereomer B (in racemischer Form) gewonnen.

¹H-NMR (400 MHz, DMSO-d₆): δ = 7.65 (m, 4H), 7.4 (m, 1H), 7.25 (m, 1H), 7.15 (m, 1H), 4.85 (d, J=7Hz, 1H), 4.1-3.95 (2H), 3.2-3.1 (4H), 2.95 (m, 1H), 1.85-1.7 (4H), 1.0 (d, 3H).

Beispiel 10-3

Aus dem Diastereomer A des Beispiels 10-1 kann durch weitere Auftrennung mittels präparativer HPLC an chiraler Phase (Daicel Chiralpak AS, Laufmittel 87 % iso-

Hexan/13 % Ethanol) das schneller eluierende Enantiomer 1 gewonnen werden.

Beispiel 10-4

5

Aus dem Diastereomer A des Beispiels 10-1 kann durch weitere Auftrennung mittels präparativer HPLC an chiraler Phase (Daicel Chiralpak AS, Laufmittel 87 % iso-Hexan/13 % Ethanol) das dem Beispiel 10-3 komplementäre, später eluierende Enantiomer 2 gewonnen werden.

Beispiel 10-5

Aus dem Diastereomer B des Beispiels 10-2 kann durch weitere Auftrennung mittels präparativer HPLC an chiraler Phase (Daicel Chiralpak AS, Laufmittel 87 % iso-Hexan/13 % Ethanol) das schneller eluierende Enantiomer 3 gewonnen werden.

Beispiel 10-6

Aus dem Diastereomer B des Beispiels 10-2 kann durch weitere Auftrennung mittels präparativer HPLC an chiraler Phase (Daicel Chiralpak AS, Laufmittel 87 % iso-Hexan/13 % Ethanol) das dem Beispiel 10-5 komplementäre, später eluierende Enantiomer 4 gewonnen werden.

20 Beispiel 11

(2R,3S)-3-[(4-Chlorphenyl)sulfonyl]-3-(2,5-difluorphenyl)-2-methylpropyl 4-(4-pyridinyl)-1-piperazincarboxylat

Stufe a):

25 1-[({[(2R,3S)-3-[(4-Chlorphenyl)sulfonyl]-3-(2,5-difluorphenyl)-2-methylpropyl]-oxy}carbonyl)oxy]-2,5-pyrrolidindion

Zu einer Lösung von 1,00 g (2,77 mmol) (2R,3S)-3-[(4-Chlorphenyl)sulfonyl]-3-(2,5-difluorphenyl)-2-methyl-1-propanol (Beispiel 1-6) in 7,5 ml Acetonitril werden 1,45 ml (8,32 mmol) Diisopropylethylamin und 1,06 g (4,16 mmol) N,N'-Disuccidinylcarbonat gegeben. Die Mischung wird 3 h bei Raumtemperatur gerührt, anschließend mit Ethylacetat verdünnt und zweimal mit gesättigter Natriumhydrogencarbonat-Lösung gewaschen. Die vereinigten wässrigen Phasen werden mit Ethylacetat extrahiert und die so erhaltenen organischen Phasen vereinigt, über Natriumsulfat getrocknet und im Vakuum vom Lösungsmittel befreit. Das erhaltene Produkt ist rein genug für weitere Umsetzungen. Es werden 1,45 g (75 % d.Th.) eines cremefarbenen Feststoffs erhalten.

LC/MS (Methode 2): $R_t = 3.67 \text{ min, m/z} = 502 \text{ [M+H]}^+$.

15 <u>Stufe b):</u>

5

10

(2R,3S)-3-[(4-Chlorphenyl)sulfonyl]-3-(2,5-difluorphenyl)-2-methylpropyl 4-(4-pyridinyl)-1-piperazincarboxylat

Eine Lösung von 50 mg (0,10 mmol) 1-[({[(2R,3S)-3-[(4-Chlorphenyl)sulfonyl]-3-(2,5-difluorphenyl)-2-methylpropyl]oxy}carbonyl)oxy]-2,5-pyrrolidindion und 0,78 ml (0,45 mmol) Diisopropylethylamin in 1 ml Dichlormethan wird mit einer Lösung von 20 mg (0,12 mmol) 1-(4-Pyridyl)-piperazin in 1 ml Dichlormethan versetzt. Die Mischung wird 2 h bei Raumtemperatur gerührt und anschließend im Vakuum eingeengt. Das Rohgemisch wird durch präparative HPLC getrennt. Man erhält 25 mg (46 % d.Th.) eines farblosen Öls.

¹H-NMR (200 MHz, CDCl₃): δ = 8.51-8.22 (m, 3H), 7.55-7.22 (m, 4H), 7.02-6.88 (m, 1H), 6.83-6.62 (m, 3H), 4.53 (d, 1H), 4.13 (dd, 1H), 3.85 (dd, 1H), 3.72-3.41 (br, 8H), 3.15-2.92 (m, 1H), 1.51 (d, 1H).

LC/MS (Methode 3): $R_t = 2.85 \text{ min, m/z} = 550 \text{ [M+H]}^+$.

15 Beispiel 12

5

(2R,3S)-3-[(4-Chlorphenyl)sulfonyl]-3-(2,5-difluorphenyl)-2-methylpropyl-3-oxo-1-piperazincarboxylat

Die Verbindung wird analog zu obenstehendem Beispiel 11 erhalten.

 1 H-NMR (400 MHz, CDCl₃): δ = 7.50 (d, 2H), 7.42-7.24 (m, 3H), 6.98-6.87 (m, 1H), 6.78-6.63 (m, 1H), 6.21-6.07 (br, 1H), 4.53 (d, 1H), 4.28-3.92 (m, 3H), 3.82 (dd, 1H), 3.70-3.53 (br, 2H), 3.45-3.81 (br, 2H), 3.07-2.92 (m, 1H), 1.58 (d, 1H). LC/MS (Methode 3): R_{t} = 3.37 min, m/z = 487 [M+H]⁺.

Beispiel 13

5

10 (2R,3S)-3-[(4-Chlorphenyl)sulfonyl]-3-(2,5-difluorphenyl)-2-methylpropyl-tert.-butylcarbamat

Die Verbindung wird analog zu obenstehendem Beispiel 11 erhalten. 1 H-NMR (300 MHz, CDCl₃): δ = 7.48 (d, 2H), 7.48-7.24 (m, 3H), 6.95-6.85 (m, 1H), 6.72-6.63 (m, 1H), 4.60-4.50 (m, 2H), 3.98-3.88 (m, 1H), 3.74 (dd, 1H), 2.98-2.83 (m, 1H), 1.52 (d, 1H), 1.28 (s, 9H). LC/MS (Methode 3): R_{t} = 4.27 min, m/z = 460 [M+H]⁺.

Beispiel 14

(2R,3S)-3-[(4-Chlorphenyl)sulfonyl]-3-(2,5-difluorphenyl)-2-methylpropyl 4-propionyl-1-piperazincarboxylat

5

10

15

20

Die Verbindung wird analog zu obenstehendem Beispiel 11 erhalten.

¹H-NMR (400 MHz, CDCl₃): δ = 7.49 (d, 2H), 7.42-7.27 (m, 3H), 6.98-6.88 (m, 1H), 6.77-6.67 (m, 1H), 4.53 (d, 1H), 4.10 (dd, 1H), 3.82 (dd, 1H), 3.68-3.52 (br, 4H), 3.51-3.23 (br, 4H), 3.07-2.92 (m, 1H), 2.47 (q, 2H), 1.58 (d, 1H), 1.17 (t, 3H). LC/MS (Methode 3): R_t = 3.73 min, m/z = 5.29 [M+H]⁺.

Es wird hierbei das Trifluoracetat von 1-Propionylpiperazin eingesetzt, welches wie folgt gewonnen wird:

Man versetzt 1,00 g (1,00 mmol) p-Nitrophenylcarbonat-Wang-Polystyrol-Harz (Fa. Novabiochem) mit einer Lösung von 0,39 ml (5,00 mmol) Piperazin in 20 ml N,N-Dimethylformamid und schüttelt die Mischung 16 h bei Raumtemperatur. Das Harz wird abfiltriert und mehrmals mit N,N-Dimethylformamid, Methanol und Dichlormethan gewaschen. Anschließend wird eine Lösung von 0,65 g (7,00 mmol) Propionsäurechlorid in 5 ml THF zugegeben und mit 1,2 ml (7,00 mmol) Diisopropylethylamin versetzt. Man schüttelt 16 h bei Raumtemperatur, filtriert anschließend das Harz ab und wäscht mehrmals mit N,N-Dimethylformamid, Methanol und Dichlormethan. Zur Abspaltung des Produkts vom Trägerharz behandelt man mit 20 ml

Trifluoressigsäure/Dichlormethan (1:1 v/v) für 1 h bei Raumtemperatur, filtriert vom Polymer ab und engt das Filtrat im Vakuum ein. Das Produkt ist rein genug für die folgende Umsetzung.

5 Beispiel 15

10

15

20

25

(2R)-3-[(4-Chlorphenyl)sulfonyl]-3-(2,5-difluorphenyl)-2-methyl-1-butanol

Zu einer Lösung von 1,2 g (3,33 mmol) (2*R*,3*S*)-3-[(4-Chlorphenyl)sulfonyl]-3-(2,5-difluorphenyl)-2-methyl-1-propanol (Beispiel 1-6) in 10 ml DMF werden 0,45 g (6,65 mmol) Imidazol gegeben und nach 5 min Rühren bei Raumtemperatur 1,00 g (6,65 mmol) tert.-Butyldimethylsilylchlorid zugefügt. Man lässt 2 h bei Raumtemperatur rühren, verdünnt anschließend mit 50 ml Ethylacetat und wäscht dreimal mit gesättigter Natriumhydrogencarbonat-Lösung. Die organische Phase wird über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt. Zu einer Lösung des so erhaltenen Zwischenprodukts in 15 ml THF werden portionsweise 0,66 g (16,6 mmol) Natriumhydrid (60%-ig in Mineralöl) eingetragen. Man lässt 30 min bei Raumtemperatur rühren, gibt dann 1,05 ml (16,6 mmol) Methyliodid zu und lässt weitere 16 h bei Raumtemperatur rühren. Der Ansatz wird anschließend im Vakuum vom Lösungsmittel befreit. Der Rückstand wird in 10 ml einer 1 M Lösung von Tetrabutylammoniumfluorid in THF aufgenommen. Man lässt 2 h bei Raumtemperatur rühren, dampft im Vakuum ein und reinigt das Rohprodukt durch präparative HPLC. Man erhält 985 mg (79 % d.Th.) der Titelverbindung.

LC/MS (Methode 3): $R_t = 3.62 \text{ min, m/z} = 375 \text{ [M+H]}^{+}$.

Beispiel 16

(2R)-3-[(4-Chlorphenyl)sulfonyl]-3-(2,5-difluorphenyl)-2-methylbutyl 3-oxo-1-piperazincarboxylat

5

Die Verbindung wird analog zu Beispiel 11 und 12 aus (2R)-3-[(4-Chlorphenyl)-sulfonyl]-3-(2,5-difluorphenyl)-2-methyl-1-butanol (Beispiel 15) erhalten.

10

¹H-NMR (400 MHz, CDCl₃): δ = 7.38-7.23 (m, 4H), 7.09-6.95 (m, 2H), 6.89-6.70 (m, 1H), 5.97-5.88 (br, 1H), 5.03-4.89 (br, 1H), 4.37 (dd, 1H), 4.21 (s, 2H), 3.80-3.72 (m, 2H), 3.54-3.49 (m, 1H), 3.48-3.42 (m, 2H), 3.81 (s, 3H), 0.89 (d, 3H). LC/MS (Methode 4): R_t = 4.12 min, m/z = 501 [M+H]⁺.

15 Beispiel 17

(2R,3S)-3-(2,5-Difluorphenyl)-2-methyl-3-{[4-(trifluormethyl)phenyl]sulfonyl}-propyl 3-oxo-1-piperazincarboxylat

5

10

15

25

46,0 mg (0,12 mmol) (2*R*,3*S*)-3-(2,5-Difluorphenyl)-2-methyl-3-{[4-(trifluormethyl)-phenyl]sulfonyl}-1-propanol (Beispiel 10A-1) werden in 2,0 ml Acetonitril gelöst, mit 0,06 ml (0,35 mmol) N,N-Diisopropylethylamin und 44,8 mg (0,17 mmol) N,N'-Succinimidylcarbonat versetzt und 2,5 Tage bei Raumtemperatur gerührt. Es wird mit Ethylacetat verdünnt, mit gesättigter Natriumhydrogencarbonat-Lösung und gesättigter Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet, filtriert und eingeengt. Man erhält 64,1 mg des Zwischenproduktes 1-{[(3-(2,5-Difluorphenyl)-2-methyl-3-{[4-(trifluormethyl)phenyl]sulfonyl}propoxy)carbonyl]-oxy}-2,5-pyrrolidindion, welches ohne weitere Reinigung weiter umgesetzt wird. 60,0 mg (0,11 mmol) dieses Zwischenproduktes werden in 1,5 ml Acetonitril gelöst, mit 16,8 mg (0,17 mmol) 2-Piperazinon und 0,04 ml (0,20 mmol) N,N-Diisopropylethylamin versetzt und über Nacht bei Raumtemperatur gerührt. Die Lösung wird im Vakuum eingeengt, der Rückstand in DMSO aufgenommen und mittels präparativer HPLC (RP18-Säule, Eluent Acetonitril/Wasser) gereinigt. Man erhält 15,7 mg (25,5 % d.Th.) der Titelverbindung.

¹H-NMR (200 MHz, DMSO-d₆): $\delta = 8.05$ (br. s, 1H), 7.90 (d, 2H), 7.80 (d, 2H), 7.45-7.30 (m, 1H), 7.25-7.10 (m, 1H), 7.10-6.90 (m, 1H), 4.90 (d, 1H), 3.95 (dd, 1H), 3.85-3.65 (m, 3H), 3.55-3.40 (m, 2H), 3.20-2.95 (m, 3H), 1.45 (d, 3H).

HPLC (Methode 1): $R_t = 4.40 \text{ min.}$

20 MS (ESI pos.): $m/z = 521 [M+H]^{+}$.

Beispiel 18

3-[(4-Chlorphenyl)sulfonyl]-3-(2,5-difluorphenyl)propyl 4-hydroxy-1-piperidincarboxylat

Stufe a):

2-{1-[(4-Chlorphenyl)sulfonyl]-3-butenyl}-1,4-difluorbenzol

4 g (13,2 mmol) 2-{[(4-Chlorphenyl)sulfonyl]methyl}-1,4-difluorbenzol [analog zu J.Am.Chem.Soc. 66, 1132-1136 (1944) hergestellt aus Natrium-4-chlorphenylsulfinat und 2,5-Difluorbenzylchlorid] werden in 100 ml trockenem Tetrahydrofuran gelöst, auf -78°C gekühlt und mit 8,67 ml n-Butyllithium (1,6 M Lösung in Hexan; 13,9 mmol) versetzt. Es wird auf Raumtemperatur erwärmt, 15 min gerührt, erneut auf -78°C gekühlt, mit 1,2 ml (13,9 mmol) Allylbromid versetzt und wieder auf Raumtemperatur erwärmt. Nach 12 h bei Raumtemperatur wird mit Wasser und Dichlormethan versetzt, die organische Phase abgetrennt, mit gesättigter Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Chromatographische Reinigung des Rückstands (Kieselgel, Laufmittel: Cyclohexan/Ethylacetat 50:1 → 10:1) liefert 4,58 g (99,6 % d.Th.) der Titelverbindung.

Stufe b):

3-[(4-Chlorphenyl)sulfonyl]-3-(2,5-difluorphenyl)-1-propanol

LC/MS (Methode 3): $R_t = 4.14 \text{ min, m/z} = 343 \text{ [M+H]}^+$.

20

5

10

15

2,15 g (6,28 mmol) 2-{1-[(4-Chlorphenyl)sulfonyl]-3-butenyl}-1,4-difluorbenzol werden in 25 ml Tetrahydrofuran gelöst, mit 4,03 g (18,8 mmol) Natriumperiodat und 0,6 ml Osmiumtetroxid (2,5%-ige Lösung in 2-Methyl-2-propanol; 0,06 mmol)

CT/EP03/00052 WO 03/059335

- 81 -

versetzt und 5 h bei Raumtemperatur gerührt. Nach Zugabe von 25 ml Wasser wird mit Dichlormethan extrahiert, die organische Phase mit gesättigter Natriumhydrogencarbonat-Lösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Der Rückstand wird in 30 ml Tetrahydrofuran/Wasser (2:1) gelöst, mit 237 mg (6,28 mmol) Natriumborhydrid versetzt und über Nacht bei Raumtemperatur gerührt. Es wird mit Wasser und Dichlormethan verdünnt, die organische Phase mit gesättigter Natriumhydrogencarbonat-Lösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Chromatographische Reinigung des Rückstands (Kieselgel, Laufmittel: Cyclohexan/Ethylacetat 25:1 \rightarrow 10:1) liefert 1,22 g (56 % d.Th.) der Titelverbindung.

HPLC (Methode 1): $R_t = 4.35 \text{ min.}$

MS (ESI pos.): $m/z = 347 [M+H]^{+}$.

Stufe c):

5

10

15 3-[(4-Chlorphenyl)sulfonyl]-3-(2,5-difluorphenyl)propyl 4-hydroxy-1-piperidincarboxylat

20 100 mg (0,29 mmol) 3-[(4-Chlorphenyl)sulfonyl]-3-(2,5-difluorphenyl)-1-propanol, 70 µl (0,87 mmol) Pyridin und 0,5 ml Acetonitril in 2 ml Tetrahydrofuran werden auf 0°C gekühlt, mit 116 mg (0,58 mmol) 4-Nitrophenylchlorformiat versetzt und anschließend 6 h bei 55°C gerührt. Nach Abkühlen auf Raumtemperatur werden 175 mg (1,73 mmol) 4-Hydroxypiperidin in 1 ml Tetrahydrofuran zugegeben und 25 über Nacht gerührt. Das Reaktionsgemisch wird eingeengt, in Dichlormethan aufgenommen, mit gesättigter Natriumhydrogencarbonat-Lösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Reinigung des Rückstands mittels präparativer HPLC (RP18-Säule, Eluent Acetonitril/Wasser) liefert 72,8 mg (51 % d.Th.) der Titelverbindung.

¹H-NMR (300 MHz, DMSO-d₆): δ = 7.7-7.6 (m, 4H), 7.4-7.1 (m, 3H), 4.85 (t, 1H), 4.1-4.0 (m, 1H), 3.9-3.8 (m, 1H), 3.6-3.2 (m, 5H), 2.85 (br. s, 2H), 2.55-2.45 (m, 1H), 1.65-1.55 (m, 2H), 1.25-1.1 (m, 2H).

LC/MS (Methode 4): $R_t = 3.59 \text{ min, m/z} = 474 \text{ [M+H]}^+$.

Beispiel 19

3-[(4-Chlorphenyl)sulfonyl]-3-(2,5-difluorphenyl)butyl 1-pyrrolidincarboxylat

Stufe a):

2-{1-[(4-Chlorphenyl)sulfonyl]-1-methyl-3-butenyl}-1,4-difluorbenzol

15

20

5

10

6,1 g (17,8 mmol) 2-{1-[(4-Chlorphenyl)sulfonyl]-3-butenyl}-1,4-difluorbenzol (Beispiel 18 / Stufe a) werden in 122 ml Tetrahydrofuran gelöst, auf 0°C gekühlt, mit 1,07 g Natriumhydrid (60%-ig in Mineralöl; 26,7 mmol) und 1,33 ml (21,4 mmol) Methyliodid versetzt und über Nacht bei Raumtemperatur gerührt. Nach Zugabe von Methanol und Wasser wird mit Ethylacetat extrahiert, die organische Phase über Magnesiumsulfat getrocknet und eingeengt. Man erhält 5,84 g (88 % d.Th.) der Titelverbindung.

1

LC/MS (Methode 4): $R_t = 4.50 \text{ min, m/z} = 487 \text{ [M+Na]}^+$.

25 <u>Stufe b):</u>

3-[(4-Chlorphenyl)sulfonyl]-3-(2,5-difluorphenyl)-1-butanol

2,02 g (5,66 mmol) 2-{1-[(4-Chlorphenyl)sulfonyl]-1-methyl-3-butenyl}-1,4-difluorbenzol werden in 21 ml Tetrahydrofuran gelöst, mit 3,63 g (17,0 mmol) Natriumperiodat und 0,55 ml Osmiumtetroxid (2,5%-ige Lösung in 2-Methyl-2-propanol; 0,06 mmol) versetzt und über Nacht bei Raumtemperatur gerührt. Nach Zugabe von Wasser wird mit Dichlormethan extrahiert, die organische Phase mit gesättigter Natriumhydrogencarbonat-Lösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Der Rückstand wird in 21 ml Tetrahydrofuran/Wasser (2:1) gelöst, mit 213 mg (5,66 mmol) Natriumborhydrid versetzt und über Nacht bei Raumtemperatur gerührt. Es wird mit Wasser und Dichlormethan verdünnt, die organische Phase mit gesättigter Natriumhydrogencarbonat-Lösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Chromatographische Reinigung des Rückstands (Kieselgel, Laufmittel: Cyclohexan/Ethylacetat 25:1 → 10:1) liefert 1,22 g (56 % d.Th.) der Titelverbindung.

LC/MS (Methode 3): $R_t = 3.38 \text{ min, m/z} = 361 \text{ [M+H]}^+$

Stufe c):

3-[(4-Chlorphenyl)sulfonyl]-3-(2,5-difluorphenyl)butyl 1-pyrrolidincarboxylat

20

15

5

10

50 mg (0,14 mmol) 3-[(4-Chlorphenyl)sulfonyl]-3-(2,5-difluorphenyl)-1-butanol werden in 5 ml trockenem Tetrahydrofuran gelöst, mit 11 mg Natriumhydrid (60%-ig in Mineralöl; 0,28 mmol) und nach 30 min mit 37 mg (0,28 mmol) 1-Pyrrolidin-carbonylchlorid versetzt und über Nacht bei Raumtemperatur gerührt. Nach Zugabe von Methanol und Wasser wird mit Ethylacetat extrahiert, die organische Phase über Magnesiumsulfat getrocknet und eingeengt. Reinigung mittels präparativer HPLC (RP18-Säule, Eluent Acetonitril/Wasser) liefert 28 mg (44 % d.Th.) der Titelverbindung.

HPLC (Methode 1): $R_t = 4.87$ min.

MS (DCI): $m/z = 475 [M+NH_4]^+$.

Beispiel 20

3-[(4-Chlorphenyl)sulfonyl]-3-(2,5-difluorphenyl)-2,2-dimethylpropyl 1-pyrrolidin-carboxylat

Stufe a):

3-(2,5-Difluorphenyl)-3-hydroxy-2,2-dimethylpropionsäuremethylester

20

25

5

10

15

Eine Lösung von 2,00 g (14,07 mmol) 2,5-Difluorbenzaldehyd in 100 ml absolutem Dichlormethan wird auf -78°C gekühlt und mit 1,54 ml (14,07 mmol) Titan(IV)-chlorid versetzt. Es werden 2,57 ml (12,67 mmol) 1-Methoxy-2-methyl-1-trimethyl-siloxypropen in 50 ml absolutem Dichlormethan hinzugetropft. Nach einer Stunde bei -78°C wird mit 100 ml Wasser gequencht und die Mischung langsam auf Raumtemperatur erwärmt. Die Phasen werden getrennt und die wässrige Phase mit Dichlormethan extrahiert. Die vereinigten organischen Phasen werden über Magnesiumsulfat getrocknet und eingeengt. Chromatographische Reinigung des

CT/EP03/00052

Rückstands (Kieselgel, Laufmittel: Cyclohexan/Ethylacetat 20:1, 10:1) liefert 2,83 g (82 % d.Th.) der Titelverbindung.

HPLC (Methode 1): $R_t = 4.37$ min.

MS (DCI): $m/z = 245 [M+NH_4]^{+}$.

5

Stufe b):

 $3-[(4-Chlorphenyl)sulfanyl]-3-(2,5-difluorphenyl)-2,2-dimethylpropions \"{a}ure-methylester$

10

15

20

25

0,70 g (2,87 mmol) 3-(2,5-Difluorphenyl)-3-hydroxy-2,2-dimethylpropionsäure-methylester und 7,52 g (28,7 mmol) Triphenylphosphin werden in 40 ml absolutem Tetrahydrofuran gelöst und auf 0°C gekühlt. Es werden 5,54 ml (28,7 mmol) Diisopropylazodicarboxylat und nach 10 Minuten 0,83 g (5,73 mmol) 4-Chlorthiophenol zugegeben. Die Mischung wird auf Raumtemperatur erwärmt und bei dieser Temperatur über Nacht gerührt. Nach Zugabe von Wasser wird die wässrige Phase mit Dichlormethan extrahiert und die vereinigten organischen Phasen über Magnesiumsulfat getrocknet und eingeengt. Man erhält 0,80 g (75 % d.Th.) der Titelverbindung.

HPLC (Methode 1): $R_t = 5.7 \text{ min.}$

MS (DCI): $m/z = 388 [M+NH_4]^{+}$.

Stufe c):

3-[(4-Chlorphenyl)sulfanyl]-3-(2,5-difluorphenyl)-2,2-dimethyl-1-propanol

Unter einer Argonatmospäre werden 0,86 ml (0,86 mmol) einer 1 M Lösung von Lithiumaluminiumhydrid in Tetrahydrofuran mit 5 ml absolutem Diethylether verdünnt und zum Rückfluss erhitzt. Es wird eine Lösung von 0,40 g (1,08 mmol) 3-[(4-Chlorphenyl)sulfanyl]-3-(2,5-difluorphenyl)-2,2-dimethylpropionsäuremethylester in 5 ml absolutem Diethylether langsam zugetropft. Die Mischung wird über Nacht zum Rückfluss erhitzt und nach Abkühlen auf Raumtemperatur mit Wasser gequencht. Nach Zugabe von 0,1 M Salzsäure wird mit Ethylacetat extrahiert, über Magnesiumsulfat getrocknet und eingeengt. Reinigung des Rückstands mittels präparativer HPLC (RP18-Säule, Eluent Acetonitril/Wasser) liefert 0,23 g (94 % d.Th.) der Titelverbindung.

HPLC (Methode 1): $R_t = 5.25$ min.

MS (DCI): $m/z = 360 [M+NH_4]^+$.

Stufe d):

3-[(4-Chlorphenyl)sulfonyl]-3-(2,5-difluorphenyl)-2,2-dimethyl-1-propanol

20

5

10

15

0,20 g (0,59 mmol) 3-[(4-Chlorphenyl)sulfanyl]-3-(2,5-difluorphenyl)-2,2-dimethyl-1-propanol werden in 10 ml Dichlormethan gelöst und auf 0°C gekühlt. Es werden 0,32 g (1,29 mmol) meta-Chlorperbenzoesäure zugegeben und über Nacht bei Raum-

temperatur gerührt. Nach Zugabe von gesättigter Natriumthiosulfat-Lösung wird mit Dichlormethan extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumhydrogencarbonat-Lösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Chromatographische Reinigung des Rückstands mittels präparativer HPLC (RP18-Säule, Eluent Acetonitril/Wasser) liefert 0,16 g (98 % d.Th.) der Titelverbindung.

LC/MS (Methode 2): $R_t = 3.87 \text{ min, m/z} = 397 [M+Na]^+$.

Stufe e):

5

3-[(4-Chlorphenyl)sulfonyl]-3-(2,5-difluorphenyl)-2,2-dimethylpropyl 1-pyrrolidincarboxylat

15 70 mg (0,19 mmol) 3-[(4-Chlorphenyl)sulfonyl]-3-(2,5-difluorphenyl)-2,2-dimethyl-1-propanol werden in 3,0 ml absolutem THF gelöst und auf 0°C gekühlt. Es werden 11,2 mg Natriumhydrid (60%-ig in Mineralöl; 0,28 mmol) und 45 μl (0,37 mmol) Pyrrolidincarbonylchlorid zugegeben. Es wird 5 h bei Raumtemperatur gerührt und nach Zugabe von Methanol und Wasser mit Ethylacetat extrahiert. Die organischen Phasen werden über Magnesiumsulfat getrocknet und eingeengt. Chromatographische Reinigung des Rückstands mittels präparativer HPLC (RP18-Säule, Eluent Acetonitril/Wasser) liefert 63,4 mg (98 % d.Th.) der Titelverbindung.

HPLC (Methode 1): $R_t = 5.12 \text{ min.}$

MS (DCI): $m/z = 489 [M+NH_4]^{+}$

¹H-NMR (200 MHz, DMSO-d₆): δ = 7.68-7.50 (m, 5H), 7.32-7.02 (m, 2H), 4.93 (s, 1H), 4.19 (d, 1H, ³J=16.0 Hz), 3.83 (d, 1H, ³J=16.0 Hz), 3.30-3.20 (m, 4H), 1.92-1.73 (m, 4H), 1.46 (s, 3H), 1.03 (s, 3H).

Beispiel 21

(2R,3S)-3-[(4-Chlorphenyl)sulfonyl]-3-(2,5-difluorphenyl)-2-methylpropyl 4-cyanophenylcarbamat

5

10

Eine Lösung von 60 mg (0,17 mmol) (2R,3S)-3-[(4-Chlorphenyl)sulfonyl]-3-(2,5-difluorphenyl)-2-methyl-1-propanol (Beispiel 1-6) in 2 ml THF wird mit 2 mg (0,02 mmol) N,N-Dimethylaminopyridin und 29 mg (0,20 mmol) p-Cyanophenyl-isocyanat versetzt. Die Mischung wird 4 h bei Raumtemperatur gerührt und anschließend im Vakuum zur Trockene eingeengt. Nach Aufnehmen des Rückstands in Acetonitril wird das Rohprodukt mittels präparativer HPLC gereinigt. Man erhält 77 mg (91 % d.Th.) eines farblosen Feststoffs.

15

 1 H-NMR (200 MHz, DMSO-d₆): δ = 7.72 (d, 1H), 7.62-7.49 (m, 3H), 7.47-7.31 (m, 1H), 7.27-7.10 (m, 1H), 7.08-6.91 (m, 1H), 4.78 (d, 1H), 4.00 (dd, 1H), 3.80 (dd, 1H), 3.13-2.95 (m, 1H), 1.49 (d, 1H).

LC/MS (Methode 7): $R_t = 4.89 \text{ min, m/z} = 504 \text{ [M+H]}^+$.

20

Die in der folgenden Tabelle aufgeführten Verbindungen werden in Analogie zu den zuvor beschriebenen Beispielen erhalten; die zur Herstellung der Endverbindungen benötigten synthetischen Bausteine sind entweder kommerziell erhältlich, in der Literatur beschrieben oder können in Analogie zu literaturbekannten Verfahren hergestellt werden.

Beispiel Nr.	Synthese- Methode	Struktur	Isomer	LC/MS- bzw. HPLC- Methode	Rt LC/MS bzw. HPLC [min]	LC/MS bzw. MS (ESI pos.) [M+H] [†]
22	analog Beispiel 1	F CH ₃ CH ₃	Diastereomer 1, racemisch	1	4,72	389
23	analog Beispiel 1	F CH3 OH	Diastereomer 1, racemisch	1	4,56	405
24	analog Beispiel 1	F CH ₃ OH	Diastereomer 2, racemisch	-	4,61	405

				LC/MS-	R, LC/MS	LC/MS
Beispiel Nr.	Synthese- Methode	Struktur	Isomer	bzw. HPLC- Methode	bzw. HPLC [min]	bzw. MS (ESI pos.) [M+H] ⁺
	analog Beispiel 1	HO HO HO HO	Diastereo- merengemisch, racemisch	1	4,54	379
	analog Beispiel 1	CI CH3	Diastereo- merengemisch, racemisch	1	4,89	389
	analog Beispiel 1	F CH ₃ OH	Diastereo- merengemisch, racemisch	က	3,38	345

Synthese-Struktur Methode	<u> </u> <u> </u> <u> </u> <u> </u>	¥;	Lsomer	LC/MS- bzw. HPLC- Methode	Rt LC/MS bzw. HPLC [min]	LC/MS bzw. MS (ESI pos.) [M+H] [†]
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	F 9 -0		Diastereomer 2, racemisch	-	4,43	545
analog O=S=O CI		H	Diastereomer 2, racemisch	4	4,30	543
analog F CH ₃		N \	Diastereo- merengemisch, racemisch	m	4,12 und 4,22	472

LC/MS bzw. MS (ESI pos.) [M+H] ⁺	496 [M+Na] [†]	575 [M+Na] [†]	519
Rt LC/MS bzw. HPLC [min]	4,63	4,43	4,28
LC/MS- bzw. HPLC- Methode	4	7	ĸ
Isomer	Diastereomer 2, racemisch	Diastereomer 1, racemisch	Diastereomer 2, racemisch
Struktur	F CH ₃ O H CH ₃ CH ₃ O = S=0 CH ₃	F CH ₃ O H CN	F CH ₃ O H CN
Synthese- Methode	analog Beispiel 16	analog Beispiel 16	analog Beispiel 16
Beispiel Nr.	31	32	33

		
LC/MS bzw. MS (ESI pos.) [M+H] ⁺	577	621
Rt LC/MS bzw. HPLC [min]	4,75	5,45
LC/MS- bzw. HPLC- Methode	∞	1
Isomer	Diastereomer 2, racemisch	Diastereomer 2, racemisch
Struktur	H ₃ C CH ₃ O S=O CI	F CH ₃ O N N O S S O O S S O O O S S O O O O O
Synthese- Methode	analog Beispiel 16	analog Beispiel 16
Beispiel Nr.	36	37

fS MS os.)		_
LC/MS bzw. MS (ESI pos.) [M+H] ⁺	519	597
Rt LC/MS bzw. HPLC [min]	4,20	4,84
LC/MS- bzw. HPLC- Methode	æ	4
Isomer	Diastereomer 2, racemisch	Diastereomer 2, racemisch
Struktur	F CH ₃ O H CN	CI CH3 O=S=O
Synthese- Methode	analog Beispiel 16	analog Beispiel 16
Beispiel Nr.	38	39

					2 5 C × C	
Beispiel Nr.	Synthese- Methode	Struktur	Isomer	LC/MS- bzw. HPLC- Methode	k, LC/MS bzw. HPLC [min]	bzw. MS (ESI pos.) [M+H] ⁺
04	analog Beispiel 16	F CH ₃ CH ₃ CN	Diastereomer 2, racemisch		5,19	575 [M+Na] ⁺
14	analog Beispiel 5A	F CH3 ON OH	Diastereomer 1, racemisch		4,67	. 516
54	analog Beispiel 5A	F CH ₃ O N OH	Diastereomer 1, Enantiomer A		4,68	516

Beispiel Nr.	Synthese- Methode	Struktur	Isomer	LC/MS- bzw. HPLC- Methode	Rt LC/MS bzw. HPLC [min]	LC/MS bzw. MS (ESI pos.) [M+H] [†]
43	analog Beispiel 5A	F CH ₃ OH CH ₃ CH ₃ OH CH	Diastereomer 1, Enantiomer A	1	4,39	488
44	analog Beispiel 5A	F CH ₃ CH ₃ OH CH	Diastereomer 1, racemisch	1	4,42	488
45	analog Beispiel 5A	F EH3 N OH CI X HCOOH	Diastereomer 1, racemisch	-1	4,24	517

LC/MS bzw. MS (ESI pos.) [M+H] ⁺	200	515	530
R, LC/MS bzw. HPLC [min]	5,45	4,48	4,90
LC/MS- bzw. HPLC- Methode			
Isomer	Diastereomer 1, racemisch	Diastercomer 1, Enantiomer A	Diastereomer 1, Enantiomer A
Struktur	CI CI CH3	F CH ₃ O N CH ₃	CITY OF STATE OF STAT
Synthese- Methode	analog Beispiel 5A	analog Beispiel 5.A	analog Beispiel 5A
Beispiel Nr.	46	47	88

PCT/EP03/00052

Beispiel Nr.	Synthese- Methode	Struktur	Isomer	LC/MS- bzw. HPLC- Methode	R, LC/MS bzw. HPLC fminl	LC/MS bzw. MS (ESI pos.)
49	analog Beispiel 5A	F CH ₃	Diastereomer 1,	1	4,42	515
50	analog Beispiel 5A	CH3	Diastereomer 1, Enantiomer A		5,14	460
51	analog Beispiel 5A	CICH3 ON ON ON ON ON ON ON ON ON	Diastereomer 1, Enantiomer A	1	4,79	564

Beispiel Nr.	Synthese- Methode	Struktur	Isomer	LC/MS- bzw. HPLC- Methode	R, LC/MS bzw. HPLC [min]	LC/MS bzw. MS (ESI pos.) [M+H] ⁺
25	analog Beispiel 5A	CH3	Diastereomer 1, racemisch		5,32	486
ß	analog Beispiel 5A	F CH3	Diastereomer 1,	1	5,28	486
54	analog Beispiel 5A	F CH ₃	Diastereomer 1, Enantiomer A	-	4,84	460

					R, LC/MS	LC/MS
Beispiel Nr.	Synthese- Methode	Struktur	Isomer	bzw. HPLC- Methode	bzw. HPLC [min]	(ESI pos.)
\$6	analog Beispiel 5A	F CH ₃	Diastereomer 1, racemisch	1	5,45	200
95	analog Beispiel 5A	F CH3 O N O S CH3 O CH3	Diastereomer 1, racemisch	1	5,11	472
57	analog Beispiel 5A		Diastereomer 1, racemisch		5,24	486

Beispiel Nr.	Synthese- Methode	Struktur	Isomer	LC/MS- bzw. HPLC- Methode	Rt LC/MS bzw. HPLC [min]	LC/MS bzw. MS (ESI pos.) [M+H] [†]
61	analog Beispiel 5A	CI CH3 O N CI	Diastereomer 1, Enantiomer A		4,76	544
62	analog Beispiel 5A	CI CH3 O N N CI CH3 O CI CH3 O O O O O O O O O O O O O O O O O O O	Diastereomer 1, Enantiomer A	-	4,96	.567
89	analog Beispiel 5A	CI CH ₃ CH ₃ CH ₃	Diastereomer 1, racemisch	1	5,06	472

Synthese- Methode	Struktur	Isomer		R, LC/MS bzw. HPLC	LC/MS bzw. MS (ESI pos.)
analog Beispiel 5A	CI CH3 O CH3	Diastereomer 1, Enantiomer A	1	[min] 4,91	[M+H] 446
analog Beispiel 5A	F CH ₃ N CH ₃ Cl × HCOOH	Diastereo- merengemisch, racemisch	1	4,36	501
analog Beispiel 5A	F CH ₃ CH ₃ × HCOOH	Diastereo- merengemisch, racemisch	1	4,32	505

Beispiel Nr.	Synthese- Methode	Struktur	Isomer	LC/MS- bzw. HPLC- Methode	R, LC/MS bzw. HPLC [min]	LC/MS bzw. MS (ESI pos.) [M+H] [†]
29	analog Beispiel 5A	F CH ₃ N O N O O O O O O O O O O O O O O O O	Diastereo- merengemisch, racemisch	1	5,08	472
89	analog Beispiel 5A	F CH ₃	Diastereomer 1, racemisch	1	4,31	501
69	analog Beispiel 5A	F CH3	Diastereomer 1, racemisch		5,17	474

LC/MS bzw. MS (ESI pos.) [M+H] ⁺	865	473	200
R _t LC/MS bzw. HPLC [min]	5,04	4,31	5,48
LC/MS- bzw. HPLC- Methode	1	1	1
Isomer	Diastereomer 1, Enantiomer A	Diastereomer 1, racemisch	Diastereomer 1, Enantiomer A
Struktur	F GH3 OH CI	F CH3 NH S CI X HCOOH	CI CH3
Synthese- Methode	analog Beispiel 5A	analog Beispiel 5A	analog Beispiel 5A
Beispiel Nr.	70	1.1	72

Beispiel Nr.	Synthese- Methode	Struktur	Isomer	LC/MS- bzw. HPLC- Methode	LC/MS- R _t LC/MS bzw. bzw. HPLC- HPLC Methode [min]	LC/MS bzw. MS (ESI pos.) [M+H] [†]
73	analog Beispiel 5A	F ON	Diastereo- merengemisch, racemisch	1	4,97	476
74	analog Beispiel 5A	F CH ₃ O N C	Diastereomer 2, racemisch	1	5,06	472
75	analog Beispiel 5A	F CH ₃ N CO, CH ₃	Diastereomer 1, Enantiomer A	1	4,53	462

				LC/MS-	R, LC/MS	LC/MS
Beispiel Nr.	Synthese- Methode	Struktur	Isomer	bzw. HPLC- Methode	bzw. HPLC [min]	bzw. MS (ESI pos.) [M+H] ⁺
92	analog Beispiel 10-1	F CH ₃	Diastereomer 1, racemisch	1	5,35	486
77	analog Beispiel 10-2		Diastereomer 2, racemisch	1	5,33	486
78	analog Beispiel 5A	CI CH3 N CH3 CH3 CH3 CH3 CH3	Diastereomer 2, racemisch	1	5,54	591

Beispiel Nr.	Synthese- Methode	Struktur	Isomer	LC/MS- bzw. HPLC- Methode	R, LC/MS bzw. HPLC [min]	LC/MS bzw. MS (ESI pos.) [M+H] [†]
79	analog Beispiel 5A	CH3	Diastereomer 1, racemisch		5,35	474
08	analog Beispiel 5A	F CH ₃	Diastereomer 2, Enantiomer B		5,14	460
18	analog Beispiel 5A	CI CH3 ON	Diastereomer 2, Enantiomer B	-	4,31	487

IS AIS OS.)			
LC/MS bzw. MS (ESI pos.) [M+H] ⁺	502	578	515
Rt LC/MS bzw. HPLC [min]	4,98	4,3	4,48
LC/MS- bzw. HPLC- Methode		ю	-
Lsomer	Diastereo- merengemisch, racemisch	Diastereo- merengemisch, racemisch	Diastereomer 2, racemisch
Struktur	F CH ₃ O N O	CI CH3 OH	CI CH ₃ O N CH ₃ CH ₃
Synthese- Methode	analog Beispiel 5A	analog Beispiel 5A	analog Beispiel 5A
Beispiel Nr.	83	8	28

Synthese-Struktur Methode	Struktı		Isomer	LC/MS- bzw. HPLC- Methode	R, LC/MS bzw. HPLC [min]	LC/MS bzw. MS (ESI pos.) [M+H] [†]
analog F ON F ON CI	T. S. SO		Diastereomer 2, racemisch	-	4,68	458
analog Cl CH ₃ Cl CH	Q		Diastereo- merengemisch, racemisch	1	5,04 und 5,09	906
analog F CH ₃ Beispiel 5A S O O N × HCOOH	Q	LA CH	Diastereo- merengemisch, racemisch	H	4,47	515

LC/MS bzw. MS (ESI pos.)	454	. 486	460
Rt LC/MS bzw. HPLC [min]	4,72	5,30	5,14
LC/MS- bzw. HPLC- Methode	4	1	1
Isomer	Diastereomer 1, Enantiomer A	Diastereo- merengemisch, racemisch	Diastereomer 2, racernisch
Struktur		CH ₃ CH ₃ CH ₃	F CH ₃ CH ₃ CH ₃ CCH
Synthese- Methode	analog Beispiel 5A	analog Beispiel 5A	analog Beispiel 5A
Beispiel Nr.	88	68	06

 _т		<u> </u>	
LC/MS bzw. MS (ESI pos.) [M+H]	462	449	440
R, LC/MS bzw. HPLC [min]	4,25	3,83	4,98 und 5,04
LC/MS- bzw. HPLC- Methode	1	9	
Isomer	Diastereomer 1, Enantiomer A	Diastereo- merengemisch, racemisch	Diastereo- merengemisch, racemisch
Struktur	CI CI CH CH CH COH	OHO OHO NO	CI CH3 O N O O N O O O O O O O O O O O O O O
Synthese- Methode	analog Beispiel 5A	analog Beispiel 5A	analog Beispiel 5.A
Beispiel Nr.	16	26	83

				LC/MS-	R, LC/MS	LC/MS
Beispiel Nr.	Synthese- Methode	Struktur	Isomer		bzw. HPLC [min]	bzw. MS (ESI pos.) [M+H] ⁺
94	analog Beispiel 5A	F CH3	Diastereomer 1, racemisch		4,26	487
8	analog Beispiel 5A	F CH3	Diastereomer 1, Enantiomer A		4,30	487
96	analog Beispiel 5A	CH3 ONNO ONNO ONNO ONNO ONNO ONNO ONNO ON	Diastereomer 1, racemisch	.	4,68	474

Beispiel Nr.	Synthese- Methode	Struktur	Isomer	LC/MS- bzw. HPLC- Methode	LC/MS- R _t LC/MS bzw. bzw. HPLC- HPLC Methode [min]	LC/MS bzw. MS (ESI pos.)
97	analog Beispiel 5A	HON ON O	Diastereomer 1, Enantiomer A	1	4,73	474
98	analog Beispiel 11		Diastereomer 1, racemisch	m	2,85	550

				0.000	7 C 10 C	TOTALO
Beispiel Nr.	Synthese- Methode	Struktur	Isomer	LC/MS- bzw. HPLC- Methode	LC/MS- K, LC/MS bzw. bzw. HPLC- HPLC Methode [min]	bzw. MS (ESI pos.) [M+H] ⁺
	analog Beispiel 11	F CH ₃ O N N N N N N N N N N N N N N N N N N	Diastereomer 1, racemisch	9	4,21	549
	analog Beispiel 11	F CH ₃ CH ₃ NH S=0 O N NH	Diastereomer 1, racemisch	-	4,31	531

R _t LC/MS LC/MS bzw. MS HPLC (ESI pos.) [M+H]	4,37 530	4,28 460
LC/MS- R _t I bzw. b HPLC- H Methode [1	ارم	en .
Isomer	Diastereomer 1, Enantiomer A	Diastereo- merengemisch, racemisch
Struktur	P C C L 3	PO P
Synthese- Methode	analog Beispiel 11	analog Beispiel 11
Beispiel Nr.	101	102

= -		
LC/MS bzw. MS (ESI pos.) [M+H] [†]	578	642
Rt LC/MS bzw. HPLC [min]	4,24	3,79
LC/MS- bzw. HPLC- Methode	m	6
Isomer	Diastereomer 1, Enantiomer A	Diastereomer 1, Enantiomer A
Struktur	HO NO SECON	2 H N O S = 0 O S = 0 O O S = 0 O O O O O O O O O O O O O O O O O O
Synthese- Methode	analog Beispiel 11	analog Beispiel 11
Beispiel Nr.	103	104

Т		
LC/MS bzw. MS (ESI pos.) [M+H] [†]	267	551
R, LC/MS bzw. HPLC [min]	4,26	3,97
LC/MS- bzw. HPLC- Methode	vo	6
Isomer	Diastereomer 1, racemisch	Diastereomer 1, racemisch
Struktur		N N O O O O O O O O O O O O O O O O O O
Synthese- Methode	analog Beispiel 11	analog Beispiel 11
Beispiel Nr.	105	106

Beispiel Nr.	Synthese- Methode	Struktur	Isomer	LC/MS- bzw. HPLC- Methode	LC/MS- R _t LC/MS bzw. bzw. HPLC- HPLC Methode [min]	LC/MS bzw. MS (ESI pos.) [M+H] [†]
107	analog Beispiel 11	F CH3 ON OH OH CH	Diastereomer 1, Enantiomer A	2	3,55	504
108	analog Beispiel 11	F O=S=0 O N CH ₃	Diastereomer 1, Enantiomer A	m	4,07	545

LC/MS bzw. MS (ESI pos.) [M+H] ⁺	560 [M+Na] ⁺	579	
	<u>, Ş</u>	4.	
Rt LC/MS bzw. HPLC [min]	5,16	3,97	
LC/MS- bzw. HPLC- Methode	∞	6	
Isomer	Diastereomer 1, Enantiorner A	Diastereomer 1, Enantiomer A	
Struktur	F CH ₃ N C C C C C C C C C C C C C C C C C C	F C N N N N N N N N N N N N N N N N N N	
Synthese- Methode	analog Beispiel 11	analog Beispiel 11	
Beispiel Nr.	109	110	

Synthese- Methode	Struktur	Isomer	LC/MS- bzw. HPLC- Methode	R, LC/MS bzw. HPLC [min]	LC/MS bzw. MS (ESI pos.) [M+H] [†]
analog Beispiel 11	F CH ₃ O NH O=S=0 O CI	Diastereomer 1, racemisch	∞	4,10	487
analog Beispiel 11	F CH ₃ O N N N N N N N N N N N N N N N N N N	Diastereomer 1, Enantiomer A	∞	5,80	563

LC/MS bzw. MS (ESI pos.) [M+H] [†]	550	551	
R, LC/MS bzw. HPLC [min]	3,39	4,01	
LC/MS- bzw. HPLC- Methode	∞	9	
Isomer	Diastereomer 1, Enantiomer A	Diastereomer 1, Enantiomer A	
Struktur			
Synthese- Methode	analog Beispiel 11	analog Beispiel 11	
Beispiel Nr.	113	114	

LC/MS bzw. MS (ESI pos.) [M+H] ⁺	617	583	
Rt LC/MS bzw. HPLC [min]	4,44	4,36	
LC/MS- bzw. HPLC- Methode	۰	0	
Isomer	Diastereomer 1, racemisch	Diastereomer 1, Enantiomer A	
Struktur	P C C C C C C C C C C C C C C C C C C C	P O S = O	
Synthese- Methode	analog Beispiel 11	analog Beispiel 11	
Beispiel Nr.	115	116	

Beispiel Nr.	Synthese- Methode	Struktur	Isomer	LC/MS- bzw. HPLC- Methode	Rt LC/MS bzw. HPLC [min]	LC/MS bzw. MS (ESI pos.) [M+H] [†]
11.7	analog Beispiel 11	F CH ₃ O=S=0 CI	Diastereomer 1, Enantiomer A	4	3,63	501
118	analog Beispiel 11		Diastereo- merengemisch, Enantiomer A	ю	4,43	544

LC/MS bzw. MS (ESI pos.) [M+H] [†]	522 [M+Na] ⁺	550	
R, LC/MS 1 bzw. b HPLC (F	5,04	3,91	
	6		
LC/MS- bzw. HPLC- Methode	∞	∞	
Isomer	Diastereomer 1, Enantiomer A	Diastereomer 1, racemisch	
Struktur	P O S O O O O O O O O O O O O O O O O O	N N O O S S O O O O O O O O O O O O O O	
Synthese- Methode	analog Beispiel 11	analog Beispiel 11	
Beispiel Nr.	119	120	

LC/MS bzw. MS (ESI pos.) M+H	521	614 [M+Na] ⁺	
LC/MS- R _t LC/MS bzw. bzw. HPLC- HPLC Methode [min]	4,4	4,65	
LC/MS- bzw. HPLC- Methode	1	4	
Isomer	Diastereomer 1, racemisch	Diastereomer 2, racemisch	
Struktur	F F F F F F F F F F F F F F F F F F F	CI CI CH3 O=S=0 CI C	
Synthese- Methode	analog Beispiel 11	analog Beispiel 16	
Beispiel Nr.	121	122	

LC/MS bzw. MS (ESI pos.) [M+H] [†]	532	518	
LC/MS- R, LC/MS bzw. bzw. HPLC- HPLC Methode [min]	4,44	4,40	
LC/MS- bzw. HPLC- Methode	۸.	8	
Isomer	Diastereomer 1, Enantiomer A	Diastereomer 1, Enantiomer A	
Struktur	F CH3 O H3C CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3	F CH ₃ O H O CH ₃	
Synthese- Methode	analog Beispiel 11	analog Beispiel 11	
Beispiel Nr.	123	124	

LC/MS bzw. MS (ESI pos.) [M+H] [†]	574	524	
Rt LC/MS bzw. HPLC [min]	4,42	5,10	
LC/MS- bzw. HPLC- Methode	м	∞	
Isomer	Diastereomer 1, racemisch Diastereo- merengemisch, racemisch		
Struktur	CI CH3	F CH ₃ N CH ₃	
Synthese- Methode	analog Beispiel 11	analog Beispiel 11	
Beispiel Nr.	125	126	

LC/MS bzw. MS (ESI pos.) [M+H] ⁺	549	567	
Rt LC/MS bzw. HPLC [min]	4,52	4,59	
LC/MS- bzw. HPLC- Methode	m	т	
Isomer	Diastereomer 1, Enantiomer A	Diastereomer 1, Enantiomer A	
Struktur			
Synthese- Methode	analog Beispiel 11	analog Beispiel 11	
Beispiel Nr.	127 B		

LC/MS bzw. MS (ESI pos.) [M+H] ⁺	444	471	208
Rt LC/MS bzw. HPLC [min]	3,88	4,11	3,86
LC/MS- bzw. HPLC- Methode	3	1	6
Isomer	Diastereomer 1, racemisch	Diastereomer 1, racemisch	Diastereomer 1, Enantiomer A
Struktur	F CH ₃ O N C C C C C C C C C C C C C C C C C C	F CH ₃ O CH ₃	F CH ₃ H O S=S=0 O CI
Synthese- Methode	analog Beispiel 11	analog Beispiel 11	analog Beispiel 11
Beispiel Nr.	129	130	131

LC/MS bzw. MS (ESI pos.) [M+H] ⁺	632	597
R, LC/MS bzw. HPLC [min]	4,43	4,15
LC/MS- bzw. HPLC- Methode	ო	m
Isomer	Diastereomer 1, Enantiomer A	Diastercomer 1, racemisch
Struktur	F F F CH ₃ O=S=0 O CI	P C C C C C C C C C C C C C C C C C C C
Synthese- Methode	analog Beispiel 11	analog Beispiel 11
Beispiel Nr.	132	133

70 🗇		
LC/MS bzw. MS (ESI pos.) [M+H] [†]	647	494
R, LC/MS bzw. HPLC [min]	4,11	. 2,00
LC/MS- bzw. HPLC- Methode	٠,	∞
Isomer	Diastereomer 1, Enantiomer A	Diastereo- merengemisch, racemisch
Struktur	HO SEC OF FEE OF SEC OF FEE OF SEC OF FEE OF SEC OF	F CH3 O=S=0 CI
Synthese- Methode	analog Beispiel 11	analog Beispiel 11
Beispiel Nr.	134	135

bzw. MS (ESI pos.) [M+H] ⁺	508 [M+Na] ⁺	490
	5,15	4,55
LC/MS- R _t LC/MS bzw. bzw. HPLC- HPLC Methode [min]	∞	٣
Isomer	Diastereo- merengemisch, racemisch	Diastereo- merengemisch, racemisch
Struktur	P C C C C C C C C C C C C C C C C C C C	
Synthese- Methode	analog Beispiel 11	analog Beispiel 11
Beispiel Nr.	136	137

Beispiel Nr.	Synthese- Methode	Struktur	Isomer	LC/MS- bzw. HPLC- Methode	LC/MS- R _t LC/MS bzw. bzw. HPLC- HPLC Methode [min]	LC/MS bzw. MS (ESI pos.) [M+H] ⁺
138	analog Beispiel 11	F CH3 O H CI	Diastereomer 1, Enantiomer A	6	4,05	542
139	analog Beispiel 11	F CH ₃ O=S=0 CI	Diastereomer 1, Enantiomer A	∞	5,21	528

LC/MS bzw. MS (ESI pos.) [M+H] [†]	524	524
LC/MS- R, LC/MS bzw. bzw. HPLC- HPLC Methode [min]	3,90	3,81
LC/MS- bzw. HPLC- Methode	m	6
Isomer	Diastereomer 1, racemisch	Diastercomer 1, Enantiomer A
Struktur	HO HO OH CHI	F CH ₃ O N C C C C C C C C C C C C C C C C C C
Synthese- Methode	analog Beispiel 11	analog Beispiel 11
Beispiel Nr.	140	141

LC/MS bzw. MS (ESI pos.) [M+H] [†]	461	545
LC/MS- R _t LC/MS bzw. bzw. HPLC- HPLC Methode [min]	3,98	4,31
LC/MS- bzw. HPLC- Methode	8	8
Isomer	Diastereomer 1, racemisch	Diastereomer 1, racemisch
Struktur	F CH ₃ O H O NH ₂ O S = O O O O O O O O O O O O O O O O O	F CH3 O CH3
Synthese- Methode	analog Beispiel 11	analog Beispiel 14
Beispiel Nr.	142	143

os.)	_	8
LC/MS bzw. MS (ESI pos.) [M+H]	557	545
R, LC/MS bzw. HPLC [min]	4,09	3,70
LC/MS- bzw. HPLC- Methode	m	9
Isomer	Diastereomer 1, Enantiomer A	Diastereomer 1, Enantiomer A
_	Dias	Dias
Struktur	F CH3	CC CH3
Synthese- Methode	analog Beispiel 14	analog Beispiel 14
Beispiel Nr.	144	145

Beispiel Nr.	Synthese- Methode	Struktur	Isomer	LC/MS- bzw. HPLC- Methode	R, LC/MS bzw. HPLC [min]	LC/MS bzw. MS (ESI pos.) [M+H] [†]
146	analog Beispiel 14	F CH ₃ O=S=0 CI	Diastereomer 1, Enantiomer A	9	3,94	557
147	analog Beispiel 14	F CH ₃	Diastereomer 1, racemisch	m	3,88	543

LC/MS bzw. MS (ESI pos.) [M+H] [†]	557	541
R, LC/MS bzw. HPLC [min]	3,98	3,80
LC/MS- bzw. HPLC- Methode	9	rs
Isomer	Diastereomer 1, Enantiomer A	Diastereomer 1, Enantiomer A
Struktur	PO CH3 O=S=0 CI	F CH ₃ O N O S=0 CH ₃
Synthese- Methode	analog Beispiel 14	analog Beispiel 14
Beispiel Nr.	148	149

Beispiel Nr.	Synthese- Methode	Struktur	Isomer	LC/MS- bzw. HPLC- Methode	Rt LC/MS bzw. HPLC [min]	LC/MS bzw. MS (ESI pos.) [M+H] [†]
150	analog Beispiel 14	F CH ₃ O N N O S = 0	Diastereomer 1, racemisch	3	3,82	541
151	analog Beispiel 14	F CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	Diastereomer 1, racemisch	∞	4,85	557

Beispiel Nr.	Synthese- Methode	Struktur	Isomer	LC/MS- bzw. HPLC- Methode	Rt LC/MS bzw. HPLC [min]	LC/MS bzw. MS (ESI pos.) [M+H] [†]
152	analog Beispiel 14	F CH ₃	Diastereomer 1, Enantiomer A	۰	3,90	543
153	analog Beispiel 14	F CH ₃ O S S S O O O O O O O O O O O O O O O	Diastereomer 1, racemisch	m	4,00	577

Beispiel Nr.	Synthese- Methode	Struktur	Isomer	LC/MS- bzw. HPLC- Methode	R, LC/MS bzw. HPLC [min]	LC/MS bzw. MS (ESI pos.) [M+H] [†]
154	analog Beispiel 21	F CH3 CH3	Diastercomer 1, Enantiomer A	٧٦	4,54	552
155	analog Beispiel 21	F CH ₃ H CN	Diastereomer 1, racemisch	1	4,92	489
156	analog Beispiel 21	F F CN	Diastereomer 1, Enantiomer A		5,09	539

LC/MS bzw. MS (ESI pos.) [M+H] ⁺	510	510
LC/MS- R _t LC/MS bzw. HPLC- HPLC Methode [min]	3,77	5,00
LC/MS- bzw. HPLC- Methode	6	∞
Isomer	Diastereomer 1, Enantiomer A	Diastereo- merengemisch, racemisch
Struktur	PHO NH CH3	F CH ₃ O H CH ₃ CH ₃
Synthese- Methode	analog Beispiel 21	analog Beispiel 21
Beispiel Nr.	157	158

LC/MS bzw. MS (ESI pos.) [M+H] ⁺	524	514
Rt LC/MS bzw. HPLC [min]	3,92	4,07
LC/MS- bzw. HPLC- Methode	6	6
Isomer	Diastereomer 1, Enantiomer A	Diastereomer 1, Enantiomer A
Struktur	F CH ₃ H CH ₃ CH ₃	F CH ₃ H CH ₃ CH
Synthese- Methode	analog Beispiel 21	analog Beispiel 21
Beispiel Nr.	159	160

LC/MS bzw. MS (ESI pos.) [M+H] [†]	523	496
LC/MS- R _t LC/MS bzw. bzw. HPLC- HPLC Methode [min]	4,24	3,93 und 3,96
LC/MS- bzw. HPLC- Methode	7	9
Lsomer	Diastereomer 1, Enantiomer A	Diastereo- merengemisch, racemisch
Struktur	FO=S=0 O CH ₃ CH ₃ CH ₃	CN CH3 O S O O O O O O O O O O O O O O O O O
Synthese- Methode	analog Beispiel 21	analog Beispiel 21
Beispiel Nr.	161	162

LC/MS bzw. MS (ESI pos.) [M+H] [†]	503 [M-H] ⁺	552
Rt LC/MS bzw. HPLC [min]	5,29	4,75
LC/MS- bzw. HPLC- Methode	ο v ₂	
Isomer	Diastereo- merengemisch, racemisch	Diastereomer 1, Enantiomer A
Struktur	F CH ₃ O H CN	CI CH3
Synthese- Methode	analog Beispiel 21	analog Beispiel 21
Beispiel Nr.	163	164

1	Т		ä
LC/MS bzw. MS (ESI pos.) [M+H]	498	564	DCI (NH ₃): 563
Rt LC/MS bzw. HPLC [min]	5,06	4,91	5,32
LC/MS- bzw. HPLC- Methode	∞	1	
Isomer	Diastereo- merengemisch, racemisch	racemisch	racemisch
Struktur	PN O O S O O O O O O O O O O O O O O O O	CH3 OH OH	H ₃ C CH ₃ O CH ₃ O SSOO
Synthese- Methode	analog Beispiel 21	analog Beispiel 19	analog Beispiel 19
Beispiel Nr.	165	166	167

Beispiel Nr.	Synthese- Methode	Struktur	Isomer	LC/MS- bzw. HPLC- Methode	Rt LC/MS bzw. HPLC [min]	LC/MS bzw. MS (ESI pos.) [M+H] ⁺
	analog Beispiel 19	F CH ₃ O H CN	Enantiomer A	1	4,99	DCI (NH3): 522 [M+NH4] [†]
	analog Beispiel 19	CH3 ON CH3	racemisch	1	4,4	488
	analog Beispiel 19	CI CH3 O N N CI	racemisch	1	5,5	583

¹H-NMR-Daten zu:

Beispiel 121 (200 MHz, DMSO-d₆): $\delta = 8.05$ (br. s, 1H), 7.90 (d, 2H), 7.80 (d, 2H), 7.45-7.30 (m, 1H), 7.25-7.10 (m, 1H), 7.10-6.90 (m, 1H), 4.90 (d, 1H), 3.95 (dd, 1H), 3.85-3.65 (m, 3H), 3.55-3.40 (m, 2H), 3.20-2.95 (m, 3H), 1.45 (d, 3H).

Beispiel 130 (300 MHz, DMSO-d₆): $\delta = 8.00$ (br. s, 1H), 7.65 (dd, 2H), 7.40-7.25 (m, 3H), 7.20-7.10 (m, 1H), 7.05-6.95 (m, 1H), 4.75 (d, 1H), 3.95 (dd, 1H), 3.85-3.65 (m, 3H), 3.40 (br. s, 2H), 3.15 (br. s, 2H), 3.05-2.95 (m, 1H), 1.45 (d, 3H).

Beispiel 166 (200 MHz, DMSO-d₆): $\delta = 7.65$ (d, 2H), 7.50-7.40 (m, 4H), 7.40-7.10 (m, 6H), 5.05 (s, 1H), 4.05 (br. t, 2H), 3.90-3.70 (m, 1H), 3.45-3.20 (m, 1H), 3.20-2.90 (m, 3H), 2.30-2.10 (m, 1H), 1.80 (s, 3H), 1.80-1.60 (m, 2H), 1.60-1.40 (m, 2H).

CT/EP03/00052

Die in vitro-Wirkung der erfindungsgemäßen Verbindungen kann in folgenden Assays gezeigt werden:

Bestimmung der Inhibition der Freisetzung von A-beta in Zellkultur

a) Zellkultur

5

10

15

20

25

Um die Inhibition der Aß-Freisetzung messen zu können, wurden humane Zelllinien (H4, HEK293) erzeugt, die stabil die 695 Aminosäuren-lange, neuronale Spleißvariante von humanem APP überexprimieren. Um die Menge an generiertem Aβ weiter zu erhöhen, wurde zusätzlich die familiäre Alzheimerdoppelmutation "Swedish" eingeführt, bei der die Lysin- und Methioninreste an den Positionen 595 bzw. 596 des Moleküls APP695 durch die Aminosäuren Asparagin und Leucin ersetzt sind. Die Zellen wurden in "Dulbecco's Modified Eagles Medium" (DMEM, mit 4500 mg/l Glucose; 110 mg/l Natriumpyruvat); 5 Vol.-% foetales Kälberserum (FKS); 1 % nicht-essentielle Aminosäuren) kultiviert, dem der Selektionsmarker Geniticin G418 zugesetzt war [alle Zellkulturmethoden wurden nach Standardmethoden durchgeführt; Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989), Molecular cloning: A laboratory manual. Cold Spring Harbour Laboratory Press]. Um die Wirkung von Substanzen auf die Inhibition der Prozessierung von APP zu testen, wurden ca. 20000 Zellen in eine 96-Multititterplatte verdünnt. Am nächsten Tag wurde das Kulturmedium entfernt und durch biotin- und serumfreies Medium ersetzt, in das die Substanzen so verdünnt wurden, dass eine Konzentration von 10 μM bei einem Dimethylsulfoxid (DMSO)-Gehalt von 0,5 % erreicht wurde. Als Kontrolle diente 0,5 % DMSO. Von Substanzen, die eine Inhibition der Aβ-Generierung zeigten, wurden darüber hinaus auch Dosis-Wirkungsbeziehungen durch Verwendung unterschiedlicher Konzentrationen untersucht. Nach 16 h wurde der Überstand abgenommen und analysiert.

WO 03/059335 CT/EP03/00052

b) Detektion von Aβ mit dem IGEN-Analyzer

5

10

15

Für die Detektion der Gesamtmenge an Aß wurden die folgenden Komponenten verwendet: 50 µl Zellkulturüberstand wurden mit 25 µl biotinyliertem Antikörper 4G8 (erkennt den Aminosäure 17-25 von Aβ), 25 μl Rutheniumkomplex-markiertem Antikörper 6E10 (erkennt den N-Terminus von Aβ) und 50 μl magnetischen Streptavidin-gekoppelten Kügelchen versetzt. Für die Detektion von Aβ40 wurden die folgenden Komponenten verwendet: 50 µl Zellkulturüberstand wurden mit 25 µl biotinyliertem Antikörper G2-10 (erkennt den C-Terminus von Aβ 40), 25 μl Rutheniumkomplex-markiertem Antikörper W02 (erkennt den N-Terminus von Aβ) und 50 µl magnetischen Streptavidin-gekoppelten Kügelchen versetzt. Parallel wurde eine Verdünnungsreihe mit synthetischem Aβ 40 angesetzt. Die Proben wurden bei Raumtemperatur geschüttelt und anschließend mit Hilfe des IGEN-Analyzers gemessen. Typischerweise wurde in mindestens zwei unabhängigen Experimenten jede Probe dreimal gemessen. Die verwendeten Antikörper und Lösungen wurden nach den Vorschriften des Herstellers des Analyzers, der Firma IGEN, Inc. (Gaitersburg, Maryland, USA), vorbereitet. Die Messung wurde ebenfalls nach Angaben des Herstellers durchgeführt.

Die Ausführungsbeispiele 10-4, 11 – 14, 42, 43, 45 – 56, 95, 100, 102 – 104 und 143 – 146 zeigen in diesem Test IC₅₀-Werte zwischen 10 und 100 nM.

Ausführungsbeispiele für pharmazeutische Zusammensetzungen

Die erfindungsgemäßen Verbindungen können folgendermaßen in pharmazeutische Zubereitungen überführt werden:

5

10

Tablette:

Zusammensetzung:

100 mg der Verbindung von Beispiel 1, 50 mg Lactose (Monohydrat), 50 mg Maisstärke (nativ), 10 mg Polyvinylpyrrolidon (PVP 25) und 2 mg Magnesiumstearat.

Tablettengewicht 212 mg. Durchmesser 8 mm, Wölbungsradius 12 mm.

Herstellung:

Die Mischung aus Wirkstoff, Lactose und Stärke wird mit einer 5 %-igen Lösung (m/m) des PVPs in Wasser granuliert. Das Granulat wird nach dem Trocknen mit dem Magnesiumstearat für 5 min. gemischt. Diese Mischung wird mit einer üblichen Tablettenpresse verpresst (Format der Tablette siehe oben). Als Richtwert für die Verpressung wird eine Presskraft von 15 kN verwendet.

20

25

Oral applizierbare Suspension:

Zusammensetzung:

1000 mg der Verbindung von Beispiel 1, 1000 mg Ethanol (96 %), 400 mg Rhodigel (Xanthan gum der Fa. FMC, Pennsylvania, USA) und 99 g Wasser.

Einer Einzeldosis von 100 mg der erfindungsgemäßen Verbindung entsprechen 10 ml orale Suspension.

Herstellung:

Das Rhodigel wird in Ethanol suspendiert, der Wirkstoff wird der Suspension zugefügt. Unter Rühren erfolgt die Zugabe des Wassers. Bis zum Abschluss der Quellung des Rhodigels wird ca. 6 h gerührt.

5

10

15

20

25

Patentansprüche

1. Verbindungen der Formel

$$R^{3}$$
 R^{4} R^{10} R^{5} R^{1} $S(O)_{m}$ R^{5} R^{1} $S(O)_{m}$

in welcher

R¹ und R² unabhängig voneinander Phenyl, das gegebenenfalls durch Reste ausgewählt aus der Gruppe Halogen, Cyano, Trifluormethyl, Trifluormethoxy, C₁-C₆-Alkyl, C₃-C₈-Cycloalkyl, C₁-C₆-Alkoxy und C₁-C₆-Alkylthio substituiert ist,

R³ und R⁴ unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl oder C₃-C₈-Cycloalkyl, die gegebenenfalls mit Hydroxy substituiert sind,

m 1 oder 2,

R⁵ Wasserstoff,

oder einen Rest der Formel CO-NR⁶R⁷, worin

R⁶ und R⁷ unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl, C₃-C₈-Cycloalkyl, Benzyl, Phenethyl, Phenyl oder 5- bis 6-gliedriges Heteroaryl bedeuten, wobei C₁-C₆-Alkyl, C₃-C₈-Cycloalkyl, Phenyl oder 5- bis 6-gliedriges Heteroaryl gegebenenfalls durch Reste unabhängig voneinander ausgewählt aus der Gruppe Hydroxy, Halogen, C₁-C₆-Alkylamino, Aminosulfonyl,

Aminocarbonyl, Cyano, Formamido, Acetamido, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₃-C₈-Cycloalkyl, Hydroxycarbonyl, C₁-C₆-Alkoxycarbonyl und 5- bis 6-gliedriges Heteroaryl substituiert sind, und Benzyl und Phenethyl gegebenenfalls durch Reste unabhängig voneinander ausgewählt aus der Gruppe Hydroxy, Halogen, Aminocarbonyl, C₁-C₆-Alkylamino, Aminosulfonyl, Cyano, Formamido, Acetamido, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₃-C₈-Cycloalkyl und 5- bis 6-gliedriges Heteroaryl substituiert sind,

oder worin

die Gruppe NR⁶R⁷

15

5

10

einen über das Stickstoffatom gebundenen, 4- bis 10gliedrigen Heterocyclyl-Rest bedeutet, der gegebenenfalls durch Reste unabhängig voneinander ausgewählt aus der Gruppe C₁-C₆-Alkyl, C₁-C₆-Alkoxy, 1,3Dioxapropan-1,3-diyl, 1,4-Dioxabutan-1,4-diyl, Oxo,
C₃-C₈-Cycloalkyl, Hydroxy, Halogen, Cyano, C₁-C₆Alkylcarbonyl, C₃-C₈-Cycloalkylcarbonyl, Phenylcarbonyl, Formamido, Aminosulfonyl, C₁-C₆-Alkoxycarbonyl, Aminocarbonyl, Phenyl und 5- bis 6-gliedriges Heteroaryl substituiert ist,

25

20

wobei

Phenyl gegebenenfalls durch Reste unabhängig voneinander ausgewählt aus der Gruppe Halogen, Cyano, Trifluormethyl, Trifluormethoxy, C₁-C₆-Alkyl, C₁-C₆-Alkylsulfonamino substituiert ist, und

C₁-C₆-Alkyl gegebenenfalls durch Reste unabhängig voneinander ausgewählt aus der Gruppe Hydroxy, C₁-C₆-Alkoxy, Phenyl und 5- bis 6-gliedriges Heteroaryl substituiert ist, und

 C_1 - C_6 -Alkylcarbonyl gegebenenfalls durch Reste unabhängig voneinander ausgewählt aus der Gruppe Hydroxy und C_1 - C_6 -Alkoxy substituiert ist,

und wobei 4- bis 10-gliedriges Heterocyclyl gegebenenfalls benzo-substituiert ist,

oder

einen Rest der Formel CO-OR⁸, worin

R⁸ C₁-C₆-Alkyl oder C₃-C₈-Cycloalkyl bedeutet, die gegebenenfalls durch Reste unabhängig voneinander ausgewählt aus der Gruppe Hydroxy, Halogen, Aminosulfonyl, Aminocarbonyl, Cyano, Formamido, Acetamido, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₃-C₈-Cycloalkyl, C₁-C₆-Alkylcarbonyl, Phenyl und 5- bis 6-gliedriges Heteroaryl substituiert sind,

25 oder

einen Rest der Formel CO-R9, worin

R⁹ C₁-C₆-Alkyl, C₃-C₈-Cycloalkyl, C₆-C₁₀-Aryl oder 5- bis 10gliedriges Heteroaryl bedeutet, die gegebenenfalls durch Reste ausgewählt aus der Gruppe Hydroxy, Hydroxycarbonyl, Halo-

10

5

15

20

gen, Aminosulfonyl, Carboxamido, Cyano, Formamido, Acetamido, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy, C_3 - C_8 -Cycloalkyl, C_1 - C_6 -Alkylcarbonyl, Phenyl und 5- bis 6-gliedriges Heteroaryl substituiert sind,

5

R¹⁰ Wasserstoff oder C₁-C₆-Alkyl bedeuten,

und deren Salze, Solvate und Solvate der Salze.

10 2. Verbindungen der Formel (I), in welcher

R¹ und R² unabhängig voneinander Phenyl, das gegebenenfalls durch Reste ausgewählt aus der Gruppe Halogen, Cyano, Trifluormethyl substituiert ist,

15

R³ und R⁴ unabhängig voneinander Wasserstoff, C₁-C₄-Alkyl oder C₃-C₆-Cycloalkyl, die gegebenenfalls mit Hydroxy substituiert sind,

m 1 oder 2,

20

R⁵ Wasserstoff,

oder

25

einen Rest der Formel CO-NR⁶R⁷, worin

R⁶ Wasserstoff, C₁-C₄-Alkyl,

30

R⁷ Wasserstoff, C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, Benzyl, Phenethyl oder Phenyl bedeuten, wobei C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl und Phenyl gegebenenfalls durch Reste unabhängig von-

einander ausgewählt aus der Gruppe Hydroxy, Halogen, Aminocarbonyl, Hydroxycarbonyl, Cyano, C₁-C₄-Alkylamino, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₃-C₆-Cycloalkyl, C₁-C₄-Alkoxy-carbonyl und 5- bis 6-gliedriges Heteroaryl substituiert sind, und

Benzyl und Phenethyl gegebenenfalls durch Reste unabhängig voneinander ausgewählt aus der Gruppe Hydroxy, Halogen, Aminocarbonyl, Cyano, C₁-C₄-Alkylamino, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₃-C₆-Cycloalkyl und 5- bis 6-gliedriges Heteroaryl substituiert sind,

oder worin

die Gruppe NR⁶R⁷

einen über das Stickstoffatom gebundenen, 5- bis 6-gliedrigen Heterocyclyl-Rest bedeutet, der gegebenenfalls durch Reste unabhängig voneinander ausgewählt aus der Gruppe C₁-C₄-Alkyl, C₁-C₄-Alkoxy, 1,3-Dioxapropan-1,3-diyl, 1,4-Dioxabutan-1,4-diyl, Oxo, C₃-C₆-Cycloalkyl, Hydroxy, Halogen, C₁-C₄-Alkylcarbonyl, C₃-C₆-Cycloalkylcarbonyl, Phenylcarbonyl, C₁-C₄-Alkoxycarbonyl, Phenyl und 5- bis 6-gliedriges Heteroaryl substituiert ist,

wobei Phenyl gegebenenfalls durch Reste unabhängig voneinander ausgewählt aus der Gruppe Halogen, Cyano, Trifluormethyl, Trifluormethoxy, C₁-C₄-Alkyl, C₁-C₄-Alkoxy und C₁-C₄-Alkylsulfonamino substituiert ist, und

5

10

15

20

C₁-C₄-Alkyl gegebenenfalls durch Reste unabhängig voneinander ausgewählt aus der Gruppe Hydroxy und Phenyl substituiert ist, und

5

C₁-C₄-Alkylcarbonyl gegebenenfalls durch Reste unabhängig voneinander ausgewählt aus der Gruppe Hydroxy und C₁-C₄-Alkoxy substituiert ist,

oder

10

einen Rest der Formel CO-R⁹, worin

15

R⁹ C₁-C₄-Alkyl, C₃-C₈-Cycloalkyl, Phenyl oder 5- bis 6-gliedriges Heteroaryl bedeutet, die gegebenenfalls durch Reste ausgewählt aus der Gruppe Hydroxy, Hydroxycarbonyl, Halogen, Cyano, Acetamido, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₃-C₆-Cycloalkyl, C₁-C₄-Alkyl-carbonyl, Phenyl und 5- bis 6-gliedriges Heteroaryl substituiert sind,

20

R¹⁰ Wasserstoff oder C₁-C₄-Alkyl bedeuten,

und deren Salze, Solvate und Solvate der Salze.

Verbindungen der Formel (I), in welcher

- 25 3.
- R¹ Phenyl, das gegebenenfalls durch Reste ausgewählt aus der Gruppe
- Fluor, Chlor, Brom, Cyano, Trifluormethyl substituiert ist,
- 30
- R² Phenyl, das gegebenenfalls durch Fluor substituiert ist,

\mathbb{R}^3	Wasserstoff oder	C1-C4-Alkyl,
----------------	------------------	--------------

R⁴ Wasserstoff oder C₁-C₄-Alkyl, das gegebenenfalls mit Hydroxy substituiert ist,

R⁵ Wasserstoff,

oder

einen Rest der Formel CO-NR⁶R⁷, worin

R⁶ Wasserstoff, C₁-C₄-Alkyl,

R⁷ C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, Benzyl, Phenethyl oder Phenyl bedeuten, wobei C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, und Phenyl gegebenenfalls durch Reste unabhängig voneinander ausgewählt aus der Gruppe Hydroxy, Fluor, Chlor, Aminocarbonyl, Hydroxycarbonyl, Cyano, Dimethylamino, Methoxy, Ethoxy, C₁-C₄-Alkoxycarbonyl oder Thienyl substituiert sind, und

Benzyl und Phenethyl gegebenenfalls durch Reste unabhängig voneinander ausgewählt aus der Gruppe Hydroxy, Fluor, Chlor, Aminocarbonyl, Cyano, Dimethylamino, Methoxy, Ethoxy oder Thienyl substituiert sind,

oder worin

die Gruppe NR⁶R⁷

5

10

15

20

25

T/EP03/00052

einen über das Stickstoffatom gebundenen, 5- bis 6gliedrigen Heterocyclyl-Rest bedeutet, der gegebenenfalls durch Reste unabhängig voneinander ausgewählt aus der Gruppe C₁-C₄-Alkyl, 1,3-Dioxapropan1,3-diyl, 1,4-Dioxabutan-1,4-diyl, Oxo, Hydroxy, C₁C₄-Alkylcarbonyl, C₃-C₆-Cycloalkylcarbonyl, Phenylcarbonyl, C₁-C₄-Alkoxycarbonyl, Phenyl und 6gliedriges Heteroaryl substituiert ist,

10

5

wobei Phenyl gegebenenfalls durch Reste unabhängig voneinander ausgewählt aus der Gruppe Fluor, Chlor, Cyano, Trifluormethyl, Trifluormethoxy, C₁-C₄-Alkyl, C₁-C₄-Alkoxy und C₁-C₄-Alkylsulfonamino substituiert ist, und

15

C₁-C₄-Alkyl gegebenenfalls durch Reste unabhängig voneinander ausgewählt aus der Gruppe Hydroxy und Phenyl substituiert ist, und

20

C₁-C₄-Alkylcarbonyl gegebenenfalls durch Reste unabhängig voneinander ausgewählt aus der Gruppe Hydroxy und Methoxy substituiert ist,

oder

25

einen Rest der Formel CO-R⁹, worin

R⁹ Phenyl,

30

 R^{10}

Wasserstoff oder C1-C3-Alkyl bedeuten,

und deren Salze, Solvate und Solvate der Salze.

4. Verbindungen nach Anspruch 1, der folgenden Formeln

und deren Salze, Solvate und Solvate der Salze.

5. Verbindungen nach Anspruch 1, der Formel

5

10

15

20

25

$$R^3$$
 R^4
 C
 R^5
 R^1
 $S(O)_m$
 (I)

in welcher

R¹ und R² unabhängig voneinander für Phenyl, das gegebenenfalls durch Reste ausgewählt aus der Gruppe Halogen, Cyano, Trifluormethyl, Trifluormethoxy, C₁-C₆-Alkyl, C₃-C₈-Cycloalkyl, C₁-C₆-Alkoxy und C₁-C₆-Alkylthio substituiert ist, stehen,

R³ und R⁴ unabhängig voneinander für Wasserstoff, C₁-C₆-Alkyl oder C₃-C₈-Cycloalkyl stehen,

m für 1 oder 2 steht,

und

R⁵ für Wasserstoff steht,

für einen Rest der Formel CO-NR⁶R⁷ steht,

worin R^6 und R^7 unabhängig voneinander Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_8 -Cycloalkyl, Phenyl oder 5- bis 6-gliedriges Heteroaryl bedeuten, oder

worin die Gruppe NR⁶R⁷ einen über ein Stickstoffatom gebundenen, 4- bis 10-gliedrigen Heterocyclyl-Rest bedeutet,

wobei Alkyl, Cycloalkyl, Phenyl, Heteroaryl und Heterocyclyl gegebenenfalls durch Reste ausgewählt aus der Gruppe Hydroxy,

Halogen, Aminosulfonyl, Carboxamido, Cyano, Formamido, Acetamido, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₃-C₈-Cycloalkyl, C₁-C₆-Alkanoyl, Phenyl und 5- bis 6-gliedriges Heteroaryl substituiert sind, und wobei Heterocyclyl gegebenenfalls benzo-substituiert ist,

5

für einen Rest der Formel CO-OR⁸ steht,

worin R⁸ C₁-C₆-Alkyl oder C₃-C₈-Cycloalkyl bedeutet,

10

wobei Alkyl und Cycloalkyl gegebenenfalls durch Reste ausgewählt aus der Gruppe Hydroxy, Halogen, Aminosulfonyl, Carboxamido, Cyano, Formamido, Acetamido, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₃-C₈-Cycloalkyl, C₁-C₆-Alkanoyl, Phenyl und 5- bis 6-gliedriges Heteroaryl substituiert sind,

15

oder

für einen Rest der Formel CO-R⁹ steht,

20

worin R^9 C_1 - C_6 -Alkyl, C_3 - C_8 -Cycloalkyl, C_6 - C_{10} -Aryl oder 5- bis 10-gliedriges Heteroaryl bedeutet,

25

wobei Alkyl, Cycloalkyl, Aryl und Heteroaryl gegebenenfalls durch Reste ausgewählt aus der Gruppe Hydroxy, Halogen, Aminosulfonyl, Carboxamido, Cyano, Formamido, Acetamido, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₃-C₈-Cycloalkyl, C₁-C₆-Alkanoyl, Phenyl und 5- bis 6-gliedriges Heteroaryl substituiert sind,

und deren Salze, Solvate und Solvate der Salze.

5

10

15

30

6.	Verbindungen	nach	Anspruch	1, wobei
----	--------------	------	----------	----------

- R¹ für 2-Fluoro-phenyl, das gegebenenfalls zusätzlich ein- bis zweifach durch Reste ausgewählt aus der Gruppe Fluor, Chlor, Cyano, Trifluormethyl, Methyl und Ethyl substituiert ist, steht,
- R² für 4-Chloro-phenyl, das gegebenenfalls zusätzlich ein- bis zweifach durch Reste ausgewählt aus der Gruppe Fluor, Chlor, Cyano, Trifluormethyl, Methyl und Ethyl substituiert ist, steht,
- R³ für Wasserstoff steht,
- R⁴ für Wasserstoff oder C₁-C₄-Alkyl steht,
- m für 1 oder 2 steht,

und

20 R⁵ für einen Rest der Formel CO-NR⁶R⁷ steht,

worin R⁶ und R⁷ unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl, C₃-C₈-Cycloalkyl oder Benzyl bedeuten,

25 oder

worin die Gruppe NR⁶R⁷

Parrolidin-1-vl. Pineridin-1-vl. Morpho

Pyrrolidin-1-yl, Piperidin-1-yl, Morpholin-1-yl, Thiomorpholin-1-yl, Piperazin-1-yl, 4-Methyl-piperazin-1-yl oder 4-Ethyl-piperazin-1-yl bedeutet,

5

10

15

und deren Salze, Solvate und Solvate der Salze.

- 7. Verfahren zur Herstellung von Verbindungen nach Anspruch 1, der Formel(I) dadurch gekennzeichnet, dass man
 - [A] Verbindungen der Formel

$$R^3$$
 R^4
 R^{10}
 R^3
 R^2
 R^1
 R^1
 R^2
 R^3
 R^4
 R^{10}
 R^1
 R^2
 R^3
 R^4
 R^{10}
 R^4
 R^{10}
 R^4
 R^{10}
 R^4
 R

in welcher R¹ bis R⁴ und R¹⁰ die in Anspruch 1 angegebenen Bedeutungen haben,

zunächst mit entsprechenden Äquivalenten eines geeigneten Oxidationsmittels wie beispielsweise Peroxiden oder Persäuren, vorzugsweise meta-Chlorperbenzoesäure (mCPBA), in Verbindungen der Formel

$$R^{3}$$
 R^{2}
 R^{1}
 $S(O)_{m}$
(Ia),

in welcher R^1 bis R^4 , R^{10} und m die in Anspruch 1 angegebenen Bedeutungen haben,

überführt und diese dann in einem Acylierungsschritt, gegebenenfalls in Gegenwart einer Base, mit einer Verbindung der Formel

$$R^{5a}-X$$
 (III),

in welcher

5

R^{5a} die oben angegebenen Bedeutungen von R⁵ mit der Ausnahme von Wasserstoff hat,

und

10

X für eine geeignete Abgangsgruppe wie beispielsweise Halogen steht,

umsetzt,

15 oder

0.002

[B] Verbindungen der Formel (II) zunächst mit einer Verbindung der Formel (III), gegebenenfalls in Gegenwart einer Base, in Verbindungen der Formel

20

in welcher

25

R¹ bis R⁴, R^{5a} und R¹⁰ die oben und in Anspruch 1 angegebenen Bedeutungen haben,

überführt und diese dann mit entsprechenden Äquivalenten eines geeigneten Oxidationsmittels, vorzugsweise meta-Chlorperbenzoesäure, umsetzt,

5 oder

[C] Verbindungen der Formel

$$R^{3}$$
 OH R^{2} $S(O)_{r}$ $(V)_{r}$

10

in welcher

R¹ bis R⁴ und R¹⁰ die in Anspruch 1 angegebenen Bedeutungen haben und

15

r für Null, 1 oder 2 steht,

zunächst, gegebenenfalls in Gegenwart einer Base, mit einer Verbindung der Formel

20

in welcher

Y¹ und Y² gleich oder verschieden sind und für eine geeignete Abgangsgruppe, wie beispielsweise Halogen, -OCCl₃ oder eine Gruppe der Formel

$$N-0$$
 oder O_2N-0

stehen,

zu Verbindungen der Formel

$$R^{3}$$
 R^{2}
 R^{1}
 $S(O)_{r}$
 O
 V^{2}
 $(VII)_{r}$

in welcher

R¹ bis R⁴, R¹⁰, r und Y² die oben und in Anspruch 1 angegebenen Bedeutungen haben,

umsetzt, diese dann, gegebenenfalls in Gegenwart einer Base und/oder eines geeigneten Katalysators, mit einer Verbindung der Formeln

$$R^7$$
 bzw. $HO-R^8$ (VIII) (IX)

5

10

15

in welchen

R⁶, R⁷ und R⁸ die oben angegebenen Bedeutungen haben,

in Verbindungen der Formeln

$$R^{3}$$
 R^{4}
 R^{10}
 R^{6}
 R^{7}
 R^{2}
 R^{1}
 R^{10}
 R^{7}
 R^{2}
 R^{1}
 R^{10}
 R^{2}
 R^{10}
 R^{2}
 R^{2}
 R^{10}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{10}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{10}
 R^{3}
 R^{4}
 R^{10}
 R^{2}
 R^{3}
 R^{4}
 R^{10}
 R^{3}
 R^{4}
 R^{10}
 R^{3}
 R^{4}
 R^{10}
 R^{2}
 R^{3}
 R^{4}
 R^{10}
 $R^{$

in welchen

10

5

R¹ bis R⁴, R⁶ bis R⁸, R¹⁰ und r die oben und in Anspruch 1 angegebenen Bedeutungen haben,

15

überführt und diese dann, sofern r für Null steht, mit entsprechenden Äquivalenten eines geeigneten Oxidationsmittels, vorzugsweise meta-Chlorperbenzoesäure, umsetzt,

20

25

und die resultierenden Verbindungen (I) und (Ia) gegebenenfalls mit den entsprechenden Lösungsmitteln und/oder Basen oder Säuren in ihre Solvate, Salze und/oder Solvate der Salze überführt.

- 8. Verbindungen nach Anspruch 1 zur Behandlung und/oder Prophylaxe von Krankheiten.
- 9. Arzneimittel enthaltend mindestens eine Verbindung nach Anspruch 1 in Kombination mit mindestens einem pharmazeutisch verträglichen, pharmazeutisch unbedenklichen Träger oder Exzipienten.

- 10. Verwendung von Verbindungen nach Anspruch 1 zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe der Alzheimerschen Krankheit.
- 11. Arzneimittel nach Anspruch 9 zur Behandlung und/oder Prophylaxe der Alzheimerschen Krankheit
- 12. Verfahren zur Bekämpfung der Alzheimerschen Krankheit in Menschen und
 10 Tieren durch Verabreichung einer wirksamen Menge mindestens einer
 Verbindung nach Anspruch 1.

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 A61K31/10 A61K31/4465 A61K31/40 A61K31/4409 A61K31/496 A61P25/28 C07C317/22 CO7D295/20 C07D213/74 A61K31/5375 C07D211/52 C07D211/46 C07D211/22 CO7D493/10 C07D241/08

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 C07C C07D A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

CHEM ABS Data, EPO-Internal

C. DOCUM	INTS CONSIDERED TO BE RELEVANT	·
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	WO 02 081433 A (MERCK SHARP & DOHME LIMITED, UK) 17 October 2002 (2002-10-17) cited in the application claims; example 15	1–12
X	WO 98 03164 A (MONSANTO CO., USA; FRESKOS, JOHN N.; ABBAS, ZAHEER S.; DECRESCENZO, GAR) 29 January 1998 (1998-01-29) siehe Formel 6 und 7 page 110 siehe formel 50 page 116 page 150, line 25 - line 27; example 21	
X	US 3 016 403 A (DODSON, RAYMOND M.) 9 January 1962 (1962-01-09) claims 1,2; examples 1,4 -/	1

Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search	Date of malling of the International search report
6 March 2003	18/03/2003
Name and malling address of the ISA	Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Schmid, J-C

A. CLASSIF IPC 7	FICATION OF SUBJECT MATTER CO7D239/42 CO7D333/20	·	
	10 to 10 control (IDC) as to both potional electification	ion and IDC	
According to B. FIELDS	International Patent Classification (IPC) or to both national classificat	ION AND IPO	· · · · · ·
	SEARCHED cumentation searched (classification system followed by classification	n symbols)	
***************************************		•	·
Documentat	ion searched other than minimum documentation to the extent that su	ch documents are included in the fields se	arched
Documenta	ion searched only again maintain account.		
=	ata base consulted during the International search (name of data base	and where practical search terms used	
Electronic da	Ala Dase consulted dumg (तर । मारशास्त्राध्यास्य उठवाद्या (मारागठ क क्यांस उठव	e and, where practices, couldn't come accept	'
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the rele	vant passages	Relevant to claim No.
Α	WO 00 50391 A (CHATURVEDULA PRASA	D V	1-12
	;SQUIBB BRISTOL MYERS CO (US); SM W) 31 August 2000 (2000-08-31)	TIH DAVID	
	cited in the application		
	the whole document		
·			
	·	<u>.</u>	
	•		
1			
]			
	•		
		Total family mambars are listed	in onney
Furt	ther documents are listed in the continuation of box C.	X Patent family members are listed	in annex.
° Special ca	ategories of cited documents:	"T" later document published after the into	emational filing date
"A" docum	ent defining the general state of the art which is not	or priority date and not in conflict with cited to understand the principle or th	eory underlying the
"E" earlier	dered to be of particular relevance document but published on or after the International	invention "X" document of particular relevance; the	claimed invention
filling o	date	cannot be considered novel or canno involve an inventive step when the do	ocument is taken alone
. which citatio	ent which mey throw doubts on priority claim(s) or is cited to establish the publication date of another on or other special reason (as specified)	"Y" document of particular relevance; the cannot be considered to involve an ir	claimed invention eventive step when the
"O" docum	nent referring to an oral disclosure, use, exhibition or means	document is combined with one or m ments, such combination being obvious	ore other such docu-
"P" docum	ent published prior to the international filing date but	in the art. *&* document member of the same patent	
	han the priority date claimed actual completion of the International search	Date of mailing of the International se	
Date of me	actual component of the fractional costs.	Date of the same o	
6	6 March 2003		•
Name and	mailing address of the ISA	Authorized officer	
l ·	European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk		
1	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Schmid, J-C	•

INTERNATIONAL SEARCH REPORT Information on patent family members

		_
in ation	ication No	
PCT/EP (3/00052	

			•		· 1		
	atent document d in search report		Publication date		Patent family member(s)		Publication date
WO	02081433	A	17-10-2002	MO	02081433	Al	17-10-2002
WO	9803164	A	29-01-1998	AU	714687	B2	06-01-2000
				AU	3890497	' .A	10-02-1998
				BR	9710758		17-08-1999
				CN	1230884		06-10-1999
				CZ	9900167		16-06-1999
				EP	0939628		08-09-1999
				JР	2001505869		08-05-2001
				NO	990262		17-03-1999
				NZ	333824		25-08-2000
				PL	331369		05-07-1999
			•	MO	9803164		29-01-1998
				US 	6013649) A 	11-01-2000
US	3016403	Α	09-01-1962	NONE	<u>.</u>		
MU	0050391	Α	31-08-2000	AU	3241000) A	14-09-2000
NO	0000002	•	00 00 000	BR .	0008965		26-02-2002
				CN	1348442		08-05-2002
				CZ	20013000) A3	13-02-2002
				EΡ	1159263		05-12-2001
				HU	0201020) A2	29-07-2002
				JP	2002537376		05-11-2002
				NO	20014135		27-09-2001
				PL	349783		09-09-2002
				WO	0050393	l Al	31-08-2000

"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 A61K31/10 A61K31/4465 A61K31/4409 A61K31/496 A61K31/40 A61K31/5375 A61P25/28 C07C317/22 C07D295/20 C07D213/74 C07D241/08 C07D211/46 C07D211/22 C07D493/10 C07D211/52

Nach der Internationalen Patentikassilikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchlerter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) $IPK \ 7 \quad C07C \quad C07D \quad A61K$

Recherchlerte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchlerten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

CHEM ABS Data, EPO-Internal

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
P,X	WO 02 081433 A (MERCK SHARP & DOHME LIMITED, UK) 17. Oktober 2002 (2002-10-17) in der Anmeldung erwähnt Ansprüche; Beispiel 15	1–12
X	WO 98 03164 A (MONSANTO CO., USA; FRESKOS, JOHN N.; ABBAS, ZAHEER S.; DECRESCENZO, GAR) 29. Januar 1998 (1998-01-29) siehe Formel 6 und 7 Seite 110 siehe formel 50 Seite 116 Seite 150, Zeile 25 - Zeile 27; Beispiel 21	1
X	US 3 016 403 A (DODSON, RAYMOND M.) 9. Januar 1962 (1962-01-09) Ansprüche 1,2; Beispiele 1,4	1

"A" Veröffentlichung, die den aligemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zwelfelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist	oder dem Prioritätsdatum Verbiertlicht worden ist ind fülltigen Anmeldung nicht kollidiert, sondem nur zum Verständnis des der Erfindung zugrundellegenden Prinzips oder der ihr zugrundellegenden Theorie angegeben ist "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung richt als neu oder auf erfinderischer Tätigkeit benuhend betrachtet werden "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist
Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts
6. März 2003	18/03/2003
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk	Bevollmächtigter Bedlensteter
Tel. (+31–70) 340–2040, Tx. 31 651 epo ni, Fax: (+31–70) 340–3016	Schmid, J-C

* Besondere Kategorien von angegebenen Veröffentlichungen :

In ation	ttenzeichen
PCT/EP	03/00052

A KLASSIF IPK 7	TZIERUNG DES ANMELDUNGSGEGENSTANDES C07D239/42 C07D333/20		
Nach der Int	ernationalen Patentklasstifikation (IPK) oder nach der nationalen Klass	ifikation und der IPK	
	RCHIERTE GEBIETE		
Recherchien	ter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole	a)	
	te aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, sow	·	
Während de	r Internationalen Recherche konsultierle elektronische Datenbank (Na	me der Datenbank und evtl. verwendete S	sucndeg(1116)
C ALC ME	SENTLICH ANGESEHENE UNTERLAGEN	· · · · · · · · · · · · · · · · · · ·	<u> </u>
	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe	der in Betracht kommenden Teile	Betr. Anspruch Nr.
Kategorie*	везексплилд der veromentikanung, soweit errordenkan unter Angabe	GET HE DERIGHT KOMMINDINGER 1 686	Seat respisation
A .	WO 00 50391 A (CHATURVEDULA PRASAI; SQUIBB BRISTOL MYERS CO (US); SM: W) 31. August 2000 (2000-08-31) in der Anmeldung erwähnt das ganze Dokument	D V ITH DAVID	1-12
	itere Veröffentlichungen sind der Fortsetzung von Feld C zu nehmen	X Siehe Anhang Patentfamilie	
"A" Veröffe aber i "E" älteres Anme "L" Veröffe schele ander soll o ausg "O" Veröff eine i "P" Veröffe dem	entlichung, die den aligemeinen Stand der Technik definiert, nicht als besonders bedeutsam anzusehen ist 3 Dokument, das jedoch erst am oder nach dem internationalen seldedatum veröffentlicht worden ist antlichung, die geeignet ist, einen Prioritätsanspruch zweifelhalt er- inen zu lassen, oder durch die das Veröffentlichungsdatum einer ren im Recherchenbericht genannten Veröffentlichung belegt werden der die aus einem anderen besonderen Grund angegeben ist (wie eführt) entlichung, die sich auf eine mündliche Offenbarung, Benutzung, eine Ausstellung oder andere Maßnahmen bezieht	*T* Spätere Veröffentlichung, die nach den oder dem Prioritätsclatum veröffentlich Anmeldung nicht kollidiert, sondern nu Erlindung zugrundellegenden Prinzips Theorie angegeben ist *X* Veröffentlichung von besonderer Bede kann allein aufgrund dieser Veröffentlichung von besonderer Bede kann nicht als auf erfinderischer Tätigkeit beruhend betr *Y* Veröffentlichung von besonderer Bede kann nicht als auf erfinderischer Tätig werden, wenn die Veröffentlichung mi Veröffentlichungen dieser Kategorie ir diese Verbindung für einen Fachman: *&* Veröffentlichung, die Mitglied derselbe Absendedaturn des internationalen Re	it worden ist und mit der ir zum Verständnis des der ir zum Verständnis des der der ihr zugrundeliegenden utung; die beanspruchte Erfindung chung nicht als neu oder auf achtet werden utung; die beanspruchte Erfindung kelt beruhend betrachtet t einer oder mehreren anderen i Verbindung gebracht wird und in naheliegend ist
	5. März 2003		
Name und	Postanschrift der Internationalen Recherchenbehörde Europäisches Patentaamt, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo ni, Fax: (+31–70) 340–3016	Bevollmächtigter Bediensteter Schmid, J-C	

INTERNATIONALER REGERCHENBERICHT Angaben zu Veröffentlästigen, die aus ben Patentfamilie gehören

	$\overline{}$	
Immational		nzeichen
PCT/EP	03/	00052

ım K angefüh	echerchenbericht rtes Patentdokume	ent	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Veröffentlichung
WO	02081433	Α	17-10-2002	WO	02081433	A1	17-10-2002
WO.	9803164	Α	29-01-1998	AU	714687	B2	06-01-2000
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			AU	3890497	Α	10-02-1998
		•		BR	9710758	A	17-08-1999
			•	CN	1230884	Α	06-10-1999
				CZ	9900167	A3	16-06-1999
				EP	0939628	A1	08-09-1999
				JP	F00100000	Ţ	08-05-2001
				NO	990262	A	17-03-1999
				NZ	333824	A	25-08-2000
	•			PL	331369		05-07-1999
				MO	9803164		29-01-1998
				US	6013649	A 	11-01-2000
US	3016403	Α	09-01-1962	KEI	NE		
140	0050391		31-08-2000	AU	3241000	Α	14-09-2000
WO	0030331	•		BR	0008965	Α	26-02-2002
				CN	1348442		08-05-2002
				CZ	20013000		13-02-2002
				EP	1159263		05-12-2001
				HU	0201020		29-07-2002
				JP	2002537376		05-11-2002
				NO	20014135		27-09-2001
				PL	349781		09-09-2002
				WO	0050391	A1	31-08-2000