EXERCISES, SESSION nº 2

Exercise 1 – Implement the following algorithms for $T \in \mathbb{F}_q[X]$, where $q = p^f$ and deg T = d:

- 1) Split $T = vW^p$, where $v, W \in \mathbb{F}_q[X]$, v squarefree.
- 2) core(T), product of the monic irreducible divisors of T. From now on, we assume that T is monic and separable.
- 3) Distinct degree factorization : $T = f_1 \dots f_d$, where f_i is a product of distinct monic irreductible polynomials of degre i.
- 4) Assuming T is an f_i as above, split it into irreducible factors of degre i.
- 5) Berlekamp algorithm.

Problem II (Multipoint evaluation)

Let R be a commutative ring and m_0, \ldots, m_{n-1} in R[X], non-constant, where $n = 2^k$. For $0 \le i \le k$, and $0 \le j < 2^{k-i}$, define

$$M_{i,j} = \prod_{0 \le \ell < 2^i} m_{j2^i + \ell}.$$

- 1) Write down a natural tree whose vertices at level i are labelled by the $M_{i,j}$.
- **2)** Compute all $M_{i,j}$ in $\widetilde{O}\left(\sum_{i < n} \deg m_i\right)$ basic operations in R. [For $A, B \in R[X]$, we can compute $A \times B \in R[X]$ in $\widetilde{O}(\deg A + \deg B)$ operations in R.]
- 3) When all m_i have degree 1, compare with the naive algorithm which would compute only $M_{k,0}$ with successive multiplications by a factor of degree 1.
- 4) Let $T \in R[X]$ with $\deg T < n = 2^k$ and u_0, \ldots, u_{n-1} in R. Let $m_i = X u_i$ and assume all $M_{i,j}$ are precomputed, show that the following algorithm correctly computes $T(u_0), \ldots, T(u_{n-1})$ in $\widetilde{O}(n)$ operations in R.

Algorithm 1. Multipoint evaluation

- 1: If n=1, return T.
- 2: Let $r_0 \leftarrow T \text{ rem } M_{k-1,0}$. Compute recursively $r_0(u_0), \ldots, r_0(u_{n/2-1})$.
- 3: Let $r_1 \leftarrow T \text{ rem } M_{k-1,1}$. Compute recursively $r_1(u_{n/2}), \ldots, r_1(u_{n-1})$.
- 4: Return the concatenation of the outputs.
- 5) Show that a polynomial of arbitrary degree n can be evaluated at n points in $\widetilde{O}(n)$ operations in R. Compare with successive applications of Horner's scheme. Compare with the FFT algorithm.

Problem III (The iterated Frobenius algorithm)

Let \mathbb{F}_q be a finite field of odd characteristic, $T \in \mathbb{F}_q[X]$ of degree n and let $\mathcal{A} = \mathbb{F}_q[X]/(T).$

- 1) In this question, we assume that T is a product of distinct irreducible polynomials of degree d. We want to recover those factors.
 - a) Use the map $a \mapsto a^{(q^d-1)/2}$ over \mathcal{A} to write down a splitting algorithm.
 - b) Show that the average depth of the "splitting tree" is $O(\log(n/d))$.
- c) Show that your algorithm splits T completely in $O(dn \log q)$ expected operations in \mathbb{F}_q .
- 2) Let $F: x \mapsto x^q$ be the Frobenius endomorphism of \mathcal{A} . We write $\overline{\alpha}$ for the class of $\alpha \in \mathbb{F}_q[X]$ in \mathcal{A} .
 - a) Show that $F(\overline{\alpha}) = \alpha(\overline{X}^q)$ in \mathcal{A} for all $\alpha \in \mathbb{F}_q[X]$.
 - b) Show the following algorithm is correct and uses $O(n^2)$ operations in \mathbb{F}_q .

Algorithm 2. Iterated Frobenius (von zur Gathen & Shoup)

Input: $T \in \mathbb{F}_q[X]$ of degree $n, D \in \mathbb{Z}_{>0}$ with $D \leqslant n, \overline{X}^q$, and $\overline{\alpha}$ in \overline{A} .

- Output: $\overline{\alpha}, \overline{\alpha}^{q}, \dots, \overline{\alpha}^{q^{D}}$. 1: Let $\overline{t_0} \leftarrow \overline{X}, \overline{t_1} \leftarrow \overline{X^q}$ and $\ell \leftarrow \lceil \log_2 D \rceil$.

 - 2: **for** $i=1,\ldots,\ell$ **do** { Compute $\overline{t_k}=\overline{X}^{q^k}$ for all $k\leqslant D$.} 3: Call the multipoint evaluation algorithm to compute the $\overline{t_{2^{i-1}+j}}=t_{2^{i-1}}(\overline{t_j}),$ for $1 \le j \le 2^{i-1}$.
 - 4: Call the multipoint evaluation algorithm to compute and return the $\alpha(\overline{t_k})$, $1 \leqslant k \leqslant D$.
- 3) Using the Iterated Frobenius algorithm with D = n 1, and a number of gcds and divisions, explain how to find the products of all irreducible factors of degree d of T, for d = 1, ..., n. Show your algorithm runs in time $O(n^2 + n \log q)$.
- 4) Using the identity $\frac{q^{d-1}}{2} = (1 + q + \cdots + q^{d-1}) \frac{q-1}{2}$, improve the computation of $\alpha^{(q^d-1)/2}$ in the splitting algorithm in 1) so that it uses an expected number of $O(n \log q)$ operations in \mathbb{F}_q .
- 5) Show that the expected number of operations in \mathbb{F}_q used by the complete factorization algorithm based on the Iterated Frobenius is $\widetilde{O}(n^2 + n \log q)$.