Math 110, Summer 2013 Instructor: James McIvor Homework 5 Due Wednesday, July 31st

(1) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the map

$$T\left(\begin{array}{c} x\\y\\z\end{array}\right) = \left(\begin{array}{ccc} 1 & 0 & 1\\0 & 1 & 0\\1 & 0 & 1\end{array}\right) \left(\begin{array}{c} x\\y\\z\end{array}\right)$$

Find a basis (v_1, v_2, v_3) for \mathbb{R}^3 with respect to which the matrix for T is upper triangular.

- (2) In class we proved that any operator on a nonzero finite-dimensional vector space over \mathbb{C} has at least one eigenvalue. Show that the finite-dimensionality is a necessary hypothesis by verifying that the operator $T \in \mathcal{L}(P(\mathbb{C}))$ given by Tp(x) = xp(x) has no eigenvalues.
- (3) Let $T \in \mathcal{L}(V)$. Suppose that *every* nonzero vector in V is an eigenvector for T. Prove that T is a scalar multiple of the identity operator, i.e., T = cI for some $c \in \mathbb{F}$.
- (4) Let v_1, \ldots, v_n be eigenvectors corresponding to distinct eigenvalues $\lambda_1, \ldots, \lambda_n$ of $T \in \mathcal{L}(V)$. Let W be a T-invariant subspace. Prove that if $v_1 + \cdots + v_n \in W$, then each $v_i \in W$.

Hints:

- (a) Show W is also invariant under each $T \lambda_i I$, for each i.
- (b) Show that the operators $T \lambda_i I$ and $T \lambda_i I$ commute, i.e., you can switch their order.
- (c) Finally, let $w = v_1 + \cdots + v_n$. If you want to show, for instance, that $v_1 \in W$, look at $(T \lambda_2 I)(T \lambda_3 I) \cdots (T \lambda_n I)w$. It's in W by the invariance you proved in (a). But now actually calculate what vector it is a multiple of v_1 !
- (5) Let $T: V \to V$ be an operator with the property that for every orthonormal list (v_1, \ldots, v_n) in V, the list (Tv_1, \ldots, Tv_n) is orthonormal.
 - (a) Prove that ||Tv|| = ||v|| for all $v \in V$.
 - (b) Prove that if λ is an eigenvalue of T, then $|\lambda| = 1$.
 - (c) Perhaps using (a) for insight, give an example of such a map when $V = \mathbb{R}^2$ (do not use the identity map as your example).
- (6) (a) Prove that if $\langle u, v \rangle = 0$ for all $u \in V$, then v must be the zero vector.
 - (b) Prove that if $v, w \in V$ are such that $\langle u, v \rangle = \langle u, w \rangle$ for all $u \in V$, then v = w.
 - (c) Prove the formula

$$\langle u, v \rangle = \frac{\|u + v\|^2 - \|u - v\|^2}{4},$$

when V is a real vector space.

(7) (Axler 6.10) Let

$$\langle p, q \rangle = \int_0^1 p(x)q(x) \, dx$$

be our inner product on $P_2(\mathbb{R})$. Apply Gram-Schmidt to the basis $(1, x, x^2)$ to obtain an orthonormal basis for $P_2(\mathbb{R})$.