Given: $n = integer \ge 0$ and $2^n = 3q + 1$, for some non-negative integer q:

If $n=0=even \rightarrow 2^0=1$ --> remainder upon division 1 by 3 is 1 - OK;

If $n=1=odd ext{---} 2^1=2$ ---> remainder upon division 2 by 3 is 2 - not OK;

If $n=2=even \rightarrow 2^2=4$ --> remainder upon division 4 by 3 is 1 - OK;

If $n=3=odd o 2^3=8$ --> remainder upon division 8 by 3 is 2 - not OK;

So we can see the pattern of reminders 1-2-1-2-.... --> given condition that the remainder is 1 when 2^n is divided by 3 holds true when n = even. So n must be non-negative even number: 0, 2, 4, ...

I. n is greater than zero --> not necessarily true, as n can be zero;

II. $3^n = (-3)^n$ --- as n is even then this statement is always true;

III. $\sqrt{2}^n = integer$... as n is non-negative even number then this statement is always true.

Answer: E (II and III only).ù

2

It should be 38n+3+2.

The units digit of 3 in positive integer power has cyclicity of 4 for the unis digit:

3¹ --> the units digit is **3**;

3^2 --> the units digit is 9;

3³ --> the units digit is **7**;

3⁴ --> the units digit is 1;

3⁵ --> the units digit is 3 AGAIN;

. . .

So, the units digit repeats the following pattern {3-9-7-1}-{3-9-7-1}-.... 3^{8n+3} will have the same units digit as 3^3 , which is 7 (remainder when 8n+3 divided by cyclicity 4 is 3). Thus the last digit of $3^{8n+3}+2$ will be 7+2=9. Any positive integer with the unis digit of 9 divided by 5 gives the remainder of 4.

Answer: E.

3

Notice that $43^{86} = (40+3)^{86}$. Now, if we expand this expression, all terms but the last one will have 40 as multiple and thus will be divisible by 5. The last term will be 3^{86} . So we should find the remainder when 3^{86} is divided by 5.

Next, $3^{86} = 9^{43}$. 9 in odd power has units digit of 9 hence yields the remainder of 4 upon division by 5 (9 in even power has units digit of 1 hence yields the remainder of 1 upon division by 5).

Answer: E.

4

Since we cannot have more than one correct answers in PS questions, then pick some numbers for x, y, and z and find the reminder when 1000x + 100y + 10z is divided by 9.

Say x=1, y=2, and z=3, then 1000x + 100y + 10z = 1,230 --> 1,230 divide by 9 yields the remainder of 6 (1,224 is divisible by 9 since the sum of its digit is a multiple of 9, thus 1,230, which is 6 more than a multiple of 9, yields the remainder of 6 when divided by 9).

Answer; C.