Конспект по теории информации IV семестр, 2021 год Современное программирование, факультет математики и компьютерных наук, СПбГУ (лекции Дмитрия Соколова)

Тамарин Вячеслав

April 1, 2021

Contents

Исходный код на https://github.com/tamarinvs19/theory_university

Index

информация по Хартли, 4

INDEX 3

Kонтакты: sokolov.dmt@gmail.com,

Видимо будет письменный экзамен.

Есть прошлогодний конспект, там есть существенные ошибки, плюс курс немного отличается.

Chapter 1

Введение

1.1 Информация по Хартли

Пусть у нас есть конечное множество объектов A. Выдернем какой-то элемент.

Мы хотим придумать описание этого элемента, которое будет отличать его от всех остальных.

Самый простой вариант — число битов требуемое для записи объекта.

Свойства, которые мы хотим получить от меры $\chi(A)$:

- 1. χ дает нам оценку на длину описаний
- 2. $\chi(A \cap B) \leq \chi(A) + \chi(B)$
- 3. Если наше множество $A := B \times C$, то можно описать для B и для C, поэтому можно ограничить:

$$\chi(A) \leq \chi(B) + \chi(C)$$
.

Определение 1: Информация по Хартли

$$\chi(A) \coloneqq \log |A|$$

Замечание. Очевидно, второе свойство выполнено для такого определения. В третьем даже равенство.

Описание — например, битовая строка. Если логарифм нецелый, округляем вверх.

Пусть $A \subset X \times Y$. Обозначим проекции A_X и A_Y . Здесь

- 1. $\chi(A) \ge 0$
- 2. $\chi(A_X) \leq \chi(A)$
- 3. $\chi(A) \leq \chi(A_X) + \chi(A_Y)$

Рассмотрим такой пример: здесь, зная первую координату, можно сразу понять вторую. Попробуем усилить третье свойство:

3'.
$$\chi(A) \leq \chi(A_X) + \chi_{Y|X}(A)$$
, где $\chi_{Y|X}(A)$ — описание Y при условии X.

Как будем определять $\chi_{Y|X}(A)$? Можно взять $\max_{x \in X} \log(A(x))$.

Теперь для диагонального множество $\chi_{Y|X}$ просто обнуляется и неравенство переходит в равенство. Но если взять такие множества. Во-первых, на первой картинке передав x столбца придется передавать

и у тоже. Во-вторых, мы не сможем отличить эти множества.

Упражнение. Пусть $A \subset X \times Y \times Z$. Доказать

$$2\chi(A) \leq \chi(A_{XY}) + \chi(A_{XZ}) + \chi(A_{YZ}).$$

1.1.1 Применение информации

Обозначим $[n] := \{1, \ldots, n\}$. Первый игрок выбирает одно число, а второй должен угадывать. Если два варианта игры:

- Адаптивная ответ сразу
- Сначала пишем все запросы, а потом получаем все ответы.

Очевидно, что нам потребуется не менее логарифма запросов: нарисуем дерево, где вершины – запросы, по двум ребрам можно перейти в зависимости от ответа. Листья должны содержать [n], поэтому глубина дерева не менее логарифма.

Теперь подумаем с точки зрения теории информации. Пусть $B := Q_1 \times \ldots \times Q_h, h$ — число запросов, Q_i — ответ на запрос по некоторому протоколу. Хотим минимизировать h.

Рассмотрим ([n], B) — все возможные пары —. Нас интересует множество $A \subseteq ([n], B)$ — соответствует некоторым корректным запросам, здесь записаны ответы нашего протокола.

$$A = \{(m, b) \mid b = (q_1, \dots, q_h), m$$
 — согласовано с ответом $\}$.

- 1. $\chi_{[n]|B}(A) = 0$. Ответы на запросы должны однозначно определять число m. Это свойство говорит о корректности протокола, то есть нам ничего не нужно, чтобы, зная ответы, получить m.
- 2. $\log n \leq \chi(A)$, так как хотя бы столько мы запихнули. С другой стороны, $\chi(A) \leq \chi_B(A) + \chi_{[n]|B}(A) = 0$, а $\chi_B(A) \leq \chi(B) \leq \sum_{i=1}^h \chi(Q_i) = h$. Итого

$$\log n \leq h$$
.

Другая формулировка

Пусть теперь за ответ «да» мы платим 1, а за «нет» 2. И мы хотим минимизировать не число запросов, а стоимость в худшем случае.

$$Q_i \stackrel{?}{\in} T_i$$
.

Пусть A_i — множество возможных x (ответов) перед шагом i. В начале это все [n], в конце – одно число.

$$A_i = \{a \in [n] \mid a$$
 согласовано с $Q_1, \dots Q_{i-1}\}.$

Стратегия минимальной цены бита информации: берем такое T_i , что

$$2(\chi(A_i) - \chi(\underbrace{T_i}_{A_{i+1}})) = \chi(A_i) - \chi(\underbrace{A \setminus T_i}_{A_{i+1}}).$$

Докажем, что эта стратегия оптимальна. То есть для любой другой стратегии найдется число, с которым мы заплатим больше.

Если заплатили 1, то перешли в $A_i \to T_i$. Если заплатили 2, то $A_i \to A_i \setminus T_i$. Заметим, что каждый раз мы заплатили за каждый бит одинаково.

Докажем оптимальность. Пусть второй игрок меняет число, чтобы мы заплатили как можно больше, причем он знает нашу стратегию.

Если в нашем неравенстве знак >, он будет направлять на по «нет», а при ≤ «да», за счет чего каждый бит он будет отдавать по цене большей, чем, если бы мы действовали в точности по стратегии.

Следовательно, любая другая стратегия будет требовать большего вклада.

Можем решить уравнение на T_i , должно получиться:

$$\Phi(|T_i|) = |A_i|$$
, Φ — золотое сечение.

Упражнение (Задача про взвашивания монеток). Есть n монеток и рычажные весы. Хотим найти фальшивую (она одна).

1. Пусть n = 30 и весы показывают, что больше, что меньше. Теперь запрос приносит $\log 3$ информации, так как три ответа.

$$\log 30 \le \sum_{i=1}^{h} \chi(a_i) \le h \log 3.$$

- 2. n=15, но мы не знаем относительный вес фальшивой монеты. В прошлом неравенстве можно заменить 30 на 29. Если в какой-то момент у нас было неравенство, можем в конце узнать не только номер, но и относительный вес, поэтому у нас 29 исходов.
- 3. Вопрос: можно ли при n = 14? Heт.