X1, X2, __, Xn (fandom sample) 1 Population: X - follow >B - wherem

Testing hypotheses: Verifying claims regarding unknown θ based upon the evidence provided by the data.

Hypotheses: Two mutually exclusive statements about θ .

• Null hypothesis H_0 : Value of θ corresponding to "status quo", "common belief", "no change", etc. Often,

 $H_0: \theta = \theta_0$ (a given value)

Alternative hypothesis H_1 : The claim the researcher is hoping to prove.

to: 0 = 0.5 vs.

4:0705

Three possible hypotheses in this course:

• (**Two-sided**)
$$H_0: \theta = \theta_0$$
 against $H_1: \theta \neq \theta_0$

$$H_0: \theta = \theta_0 \text{ (or } \theta \leq \theta_0) \text{ against } H_1: \theta > \theta_0$$

• (One-sided, left-tailed)

$$H_0: \theta = \theta_0 \text{ (or } \theta \ge \theta_0) \text{ against } H_1: \theta < \theta_0$$

Let us set up the hypotheses in the following examples.

Ex 1: A long-time authorized user of a computer account takes keystrokes were recorded. These data had mean of 0.3 seconds 0.2 seconds on average between keystrokes. One day, when a and standard deviation of 0.12 seconds. Do these data giver user typed in the username and password, 15 times between evidence of an unauthorized login attempt?

H; adough is unauthorized, i.e., of 0.2 Ho: attempt is not unauthorized, ie; B= 0.2

$$\frac{x \sim t_{\theta}(x)}{\theta = E[x]}$$

$$\frac{x_{1}, x_{2}, \ldots, x_{m}}{x_{m}, m = 15}$$

management would like to know if it has resulted in an increase randomly selected moments of time. Suppose that the average collected by observing the number of concurrent users at 100 800, respectively. Is there evidence that the mean number of and the standard deviation of the sample data are 5200 and in the number of concurrent users. To test this, data were concurrent users has increased?

X = # concurrent wars. P = E[X].

410: 8= 5000 41: 8>5000

data give evidence that less than 30% of the American people Ex 3: A recent poll of 1,000 American people estimated that the approval rating of the current congress is 31%. Do these approve the performance of the congress?

X = indicator of the two mandonely reliefed American approve the X = indicator of the forthward the performance of the purpose in the propose of the purpose in the training of the propose of the propose in the propose of the propos the comprise

Ho: 8= 0.30

H; B< 0.30

- We do not know the truth. (If we knew, there was no point in collecting data.)
- H_0 is rejected **only if** there is strong evidence against it, otherwise H_0 is accepted.
- Evidence is provided by the data.
- If H_0 is accepted, it doesn't mean that H_0 is true. It just means that there is not enough evidence in the data to reject it.
- If H_0 is rejected, it doesn't mean that H_1 is true. It simply means that the data strongly favors H_1 .
- Analogous to a court case.

	Tri	Truth
Test outcome	H_0 is true	H_0 is true H_1 is true
$Accept H_0$	No um	HAR II WAS
Reject H_0	vero I Api	W MW
(> (welry H)		

- decreases, the other increases. So, it may not be possible for a procedure with a given sample size n to have both • Trade-off between the two error probabilities. As one probabilities to be small.
- Hypotheses are set up in a way that ensures type I error is more serious than type II error.

 α , known as the level of significance or simply the α level of the test. From β for β error probability does not exceed a small prescribed value • Design a test procedure that guarantees that its type I

• In practice, $\alpha = 0.01, 0.05$ (most popular), or 0.10.

• No guarantee of P(type II error). We try to keep it small

possible to do a sample by choosing a large enough n.

Power of test = 1-P(type II error).

Side computation that

Typically, the error probabilities depend on the true θ . First at

athropivea specified

A suspect is brought to the court — "presumelinnocent until proven guilty."

Ho: suspect is innocent

 H_0 is rejected (i.e., the suspect is convicted) only if there is H1: suspent is goody swith

strong evidence against his/her innocence. Otherwise, H_0 is accepted (i.e., the suspect is acquitted).

Type I error: convicting an innocent suspell River Ho

to is truck.

Arguiting (it; releasing) a swilty support.

feege to

Type II error:

Q: How can we make P(type I error) = 0? What happens to P(type II error)?

> PLAME II onor] = 1. Referse everyone => P[HPR I every -0

Q: How can we make P(type II error) = 0? What happens to P(type I error)?

I LAME TANTI Carrier every one > PC type II enor 1 = 0

Mir. Trade y yw the two worm pris. It is not passible to winnize both grows pros. Fix with a procedure board on fixed n.

A general approach for get a level α test

- Estimate θ by its point estimator $\hat{\theta}$
- Compute s.e.(θ) assuming $\theta = \theta_0$. Estimate it if it's
- Compute a **test statistic** T that measures measures how consistent the data are with H_0 . Often, T has the form:

- Find the **null distribution** the distribution of T assuming H_0 is true.
- Find the form of the rejection region \mathcal{R} the set of values of T for which H_0 is rejected.
- Acceptance region A = Complement of R.
- ullet Determine $\mathcal R$ by ensuring that the level of significance of the test is α , i.e., $P(\text{reject } H_0|H_0 \text{ is true}) = \alpha$.