Théorie des langages

Julien BERNARD

Université de Franche-Comté – UFR Sciences et Technique

Licence Informatique – 3è année

Première partie

Introduction – Alphabets, mots, langages

Plan de ce cours

1 Introduction

- À propos de votre enseignant
- À propos du cours Théorie des Langages

2 Alphabets, mots, langages

- Contexte
- Alphabets et mots
- Langage
- Méthodologie

Plan

1 Introduction

- À propos de votre enseignant
- À propos du cours Théorie des Langages

2 Alphabets, mots, langages

- Contexte
- Alphabets et mots
- Langage
- Méthodologie

Votre enseignant Qui suis-je?

Qui suis-je?

Julien BERNARD, Maître de Conférence (enseignant-chercheur) julien.bernard@univ-fcomte.fr, Bureau 426C

Enseignement

- Responsable du semestre 1 (Starter) de la licence Informatique
- Cours : Bases de la programmation (L1), Publication scientifique (L1), Algorithmique (L2), Sécurité (L3), Théorie des Langages (L3), Analyse syntaxique (L3)

Recherche

Optimisation dans les réseaux de capteurs

Plan

1 Introduction

- À propos de votre enseignant
- À propos du cours Théorie des Langages

2 Alphabets, mots, langages

- Contexte
- Alphabets et mots
- Langage
- Méthodologie

UE Théorie des Langages Organisation

Équipe pédagogique

- Julien Bernard: CM, TD (julien.bernard@univ-fcomte.fr)
- Karla Breschi, Serge Moulin, Lydia Yataghene : TP

Volume

- Cours: 12 x 1h30
- TD: 12 x 1h30
- TP: 12 x 1h30

Évaluation

- deux devoirs surveillés
- un projet en TP

UE Théorie des Langages

Comment ça marche?

Mode d'emploi

- Prenez des notes! Posez des questions! N'attendez pas du tout-cuit!
- 2 Comprendre plutôt qu'apprendre
- 3 Le but de cette UE n'est pas d'avoir une note!

Niveau d'importance des transparents

	trivial	pour votre culture
*	intéressant	pour votre compréhension
**	important	pour votre savoir
***	vital	pour votre survie

Note : les contrôles portent sur tous les transparents!

UE Théorie des Langages

Contenu pédagogique

Objectif

Comprendre la théorie et les outils de la théorie des langages

- Alphabets, mots, langages
- Grammaires
- Langages réguliers
- Automates d'états finis
- Expressions régulières
- Langages algébriques
- Automates à piles
- Machines de Turing

UE Théorie des Langages **Bibliographie**

P. Wolper

Introduction à la calculabilité.

2006. Dunod

P. Séébold.

Théorie des automates.

2009, Vuibert

J.M. Autebert

Théorie des langages et des automates.

1994. Masson

J. Hopcroft, J. Ullman

Introduction to Automata Theory, Languages and Compilation 1979, Addison-Wesley

Plan

- Introduction
 - À propos de votre enseignant
 - À propos du cours Théorie des Langages
- 2 Alphabets, mots, langages
 - Contexte
 - Alphabets et mots
 - Langage
 - Méthodologie

Bref historique

Historique

- Notion de langage formel, Noam Chomsky, début des années 1950
 - Origine dans la linguistique
 - Étude des langues naturelles
 - Traitement automatique (exemple : traduction)
- → Hiérarchie de Chomsky, 1956
 - Classification des langages selon leur pouvoir d'expression
- → Outil important en informatique!

Étude des langages formels

Niveaux d'études des langages

Deux points de vue :

- Du **locuteur**. Le problème est de savoir engendrer les phrases (mots) du langage → Notion de **grammaire**
- De l'auditeur. Le problème est de savoir reconnaître les phrases (mots) du langage → Notion de reconnaisseur (automate)

Etude des langages formels Buts

Buts de l'étude des langages

- Évaluer et classer les langages
 - Caractériser les langages
 - Trouver des grammaires
 - Trouver des reconnaisseurs
- Développer des algorithmes
 - Compilation des langages informatiques
 - Reconnaissance de la parole

Plan

- - À propos de votre enseignant
 - À propos du cours Théorie des Langages
- 2 Alphabets, mots, langages
 - Contexte
 - Alphabets et mots
 - Langage
 - Méthodologie

Définition (Alphabet)

Un alphabet est un ensemble fini de symboles appelés lettres.

Remarque

Un alphabet est aussi appelé vocabulaire.

Exemples (Alphabet)

- $A = \{0, 1\}$
- $\Sigma = \{a, b, c\}$
- ullet $\Theta = \{if, then, else, a, b\}$
- \blacksquare $F = \{ \rightarrow, \leftarrow, \uparrow, \downarrow \}$

Définition (Mot)

Un **mot** sur l'alphabet Σ est une suite *finie* et *ordonnée*, éventuellement vide, de lettres de Σ . Le **mot vide** est toujours noté ε .

Exemples (Mot)

aba et abbaccb sont deux mots sur l'alphabet $\Sigma = \{a, b, c\}$.

Notation

Soit w un mot constitué de k lettres sur l'alphabet Σ , on notera :

$$w = w_1 \cdots w_k$$

Longueur d'un mot

Définition (Longueur d'un mot)

La **longueur d'un mot** w est le nombre de lettres constituant le mot w. Elle est notée |w|. Le mot vide a une longueur de 0.

Exemples (Longueur d'un mot)

$$|aba| = 3$$
, $|abbaccb| = 7$, $|\varepsilon| = 0$

Remarque

De nombreuses propriétés sur les mots se montreront par récurrence sur la longueur des mots.

Nombre d'occurrences d'une lettre dans un mot

Définition (Nombre d'occurrence)

Le nombre d'occurrences d'une lettre a dans un mot w est le nombre de fois où la lettre a apparaît dans le mot w. Elle est notée $|w|_a$.

Exemples (Nombre d'occurrences)

$$|aba|_a = 2$$
, $|abbaccb|_b = 3$, $|baab|_c = 0$

Ensemble des mots

Définition (Ensemble des mots)

L'ensemble des mots non-vide sur un alphabet Σ est noté Σ^+ .

$$\Sigma^+ = \{ w = w_1 \dots w_n, n > 0 \}$$

L'ensemble des mots sur un alphabet Σ est noté Σ^* .

$$\Sigma^* = \{\varepsilon\} \cup \Sigma^+ = \{w = w_1 \dots w_n, n \ge 0\}$$

Définition (Produit de mots)

Soient Σ un alphabet et $x,y\in \Sigma^*$ deux mots sur l'alphabet Σ de longueur respective n et m. On définit le **produit** w de x et y noté $x\cdot y$ par :

$$w = x \cdot y = x_1 \dots x_n \cdot y_1 \dots y_m = x_1 \dots x_n y_1 \dots y_m$$

Remarque

Le produit est aussi appelé concaténation.

Exemple (Produit de mots)

 $aba \cdot ab = abaab$

Monoïde $(\Sigma^*, \cdot, \varepsilon)$

Proposition (Monoïde $(\Sigma^*, \cdot, \varepsilon)$)

 Σ^* munie de l'opération produit d'élément neutre ε est un monoïde.

Démonstration.

- Le produit est une loi interne : $x \cdot y \in \Sigma^*$
- Le produit est associatif : $x \cdot (y \cdot z) = (x \cdot y) \cdot z$
- ε est l'élément neutre du produit : $x \cdot \varepsilon = \varepsilon \cdot x = x$

Remarque

Le produit n'est pas commutatif : $x \cdot y \neq y \cdot x$

Définition (Puissance d'un mot)

Soient Σ un alphabet, et $w \in \Sigma^*$. La **puissance** d'un mot, noté w^n est définie par :

$$w^{n} = \begin{cases} \varepsilon & \text{si } n = 0\\ w \cdot w^{n-1} & \text{si } n > 0 \end{cases}$$

Exemple (Puissance d'un mot)

Soit $\Sigma = \{a, b\}$ et w = abb, alors :

- $\mathbf{w}^0 = \varepsilon$
- $w^1 = w = abb$
- $\mathbf{w}^2 = \mathbf{w} \cdot \mathbf{w} = \mathbf{abbabb}$
- $\mathbf{w}^3 = \mathbf{w} \cdot \mathbf{w}^2 = abbabbabb$

Égalité de mots

Définition (Égalité de mots)

Deux mots sont **égaux** si et seulement s'ils sont de même longueur et s'ils ont des lettres identiques à des positionnements identiques.

Soit
$$\Sigma$$
 un alphabet et $x=x_1\cdots x_n, y=y_1\cdots y_m\in \Sigma^*$, alors :

$$x = y \iff n = m \text{ et } \forall i \in [1, n], x_i = y_i$$

Plan

- - À propos de votre enseignant
 - À propos du cours Théorie des Langages
- 2 Alphabets, mots, langages
 - Contexte
 - Alphabets et mots
 - Langage
 - Méthodologie

Définition (Langage)

Un langage L sur un alphabet Σ est un sous-ensemble de Σ^* . C'est un ensemble de mots sur l'alphabet Σ .

Exemples (Langage)

Soit $\Sigma = \{a, b\}$ un alphabet :

- $L = \emptyset$ est un langage appelé langage vide
- $L = \{\varepsilon\}$ est un langage appelé langage unité
- \blacksquare L = {a, ab, abb} est un langage
- $L = \{a^n, n \ge 0\}$ est un langage

Égalité de langage

Définition (Égalité de langage)

Deux langages L_1 et L_2 sont **égaux**, noté $L_1 = L_2$ si et seulement si $L_1 \subseteq L_2$ et $L_2 \subseteq L_1$.

Remarque

Cette définition donne une manière de prouver l'égalité de deux langages.

Complémentaire d'un langage

Définition (Complémentaire d'un langage)

Soit L un langage sur l'alphabet Σ , le **complémentaire** de L, noté \overline{L} est le langage défini par :

$$\overline{L} = \{ w \in \Sigma^*, w \not\in L \}$$

Exemple (Complémentaire d'un langage)

Soit $L = \{w \in \Sigma^*, |w| \equiv 0 \mod 2\}$, alors, $\overline{L} = \{w \in \Sigma^*, |w| \equiv 1 \mod 2\}$

Union de langages

Définition (Union de deux langages)

Soient L_1 et L_2 deux langages sur l'alphabet Σ , l'**union** de L_1 et L_2 , notée $L_1 \cup L_2$ (ou parfois $L_1 + L_2$) est définie par :

$$L_1 \cup L_2 = \{ w \in \Sigma^*, w \in L_1 \text{ ou } w \in L_2 \}$$

Propriétés

L'union est :

- Associative : $L_1 \cup (L_2 \cup L_3) = (L_1 \cup L_2) \cup L_3$
- Commutative : $L_1 \cup L_2 = L_2 \cup L_1$
- Idempotente : $L \cup L = L$
- Élément neutre \varnothing : $L \cup \varnothing = \varnothing \cup L = L$

Intersection de langages

Définition (Intersection de deux langages)

Soient L_1 et L_2 deux langages sur l'alphabet Σ , l'**intersection** de L_1 et L_2 , notée $L_1 \cap L_2$ est définie par :

$$L_1 \cap L_2 = \{ w \in \Sigma^*, w \in L_1 \text{ et } w \in L_2 \}$$

Propriétés

L'intersection est :

- Associative : $L_1 \cap (L_2 \cap L_3) = (L_1 \cap L_2) \cap L_3$
- Commutative : $L_1 \cap L_2 = L_2 \cap L_1$
- Idempotente : $L \cap L = L$
- Élément neutre $\Sigma^*: L \cap \Sigma^* = \Sigma^* \cap L = L$

Définition (Différences de deux langages)

Soient L_1 et L_2 deux langages sur l'alphabet Σ , la **différence** de L_1 et L_2 , notée $L_1 \setminus L_2$ est définie par :

$$L_1 \setminus L_2 = \{ w \in \Sigma^*, w \in L_1 \text{ et } w \notin L_2 \}$$

Proposition (Différence de deux langages)

$$L_1 \setminus L_2 = L_1 \cap \overline{L_2}$$

Opérations ensemblistes sur les langages

Exemples (Opérations ensemblistes sur les langages)

Soit $\Sigma = \{a, b\}$ un alphabet.

Soit $L_1 = \{a, ab\}$ et $L_2 = \{ab, ba\}$ deux langages sur Σ .

- $L_1 \cup L_2 = L_2 \cup L_1 = \{a, ab, ba\}$
- $L_1 \cap L_2 = L_2 \cap L_1 = \{ab\}$
- $L_1 \setminus L_2 = \{a\}$
- $L_2 \setminus L_1 = \{ba\}$

Définition (Produit de deux langages)

Soient Σ un alphabet et $L_1, L_2 \subseteq \Sigma^*$ deux langages sur l'alphabet Σ . On définit le **produit** L de L_1 et L_2 noté L_1, L_2 par :

$$L = L_1.L_2 = \{u_1 \cdot u_2, u_1 \in L_1, u_2 \in L_2\}$$

Remarque

- Le produit est aussi appelé concaténation.
- Attention à ne pas confondre avec le produit cartésien (noté ×).

Produit de langages

Exemple (Produit de deux langages)

Soit $\Sigma = \{a, b\}$ un alphabet.

Soit $L_1 = \{\varepsilon, a, ab\}$ et $L_2 = \{b, ba\}$ deux langages sur Σ .

- \blacksquare $L_1.L_2 = \{b, ba, ab, aba, abb, abba\}$
- $L_2.L_1 = \{b, ba, bab, ba, baa, baab\} = \{b, ba, bab, baa, baab\}$
- $\rightarrow L_1.L_2 \neq L_2.L_1$

Propriétés du produit de langage

Proposition (Distributivité du produit par rapport à l'union)

Le produit de langage est distributif par rapport à l'union. Soient Σ un alphabet et $L_1, L_2, L_3 \subseteq \Sigma^*$, alors :

$$L_1.(L_2 \cup L_3) = (L_1.L_2) \cup (L_1.L_3) \text{ et } (L_1 \cup L_2).L_3 = (L_1.L_3) \cup (L_2.L_3)$$

Remarque importante

Le produit de langage n'est pas distributif par rapport à l'intersection. Plus précisément, on a :

$$L_1.(L_2 \cap L_3) \subseteq (L_1.L_2) \cap (L_1.L_3)$$
 et $(L_1 \cap L_2).L_3 \subseteq L_1.L_3 \cap L_2.L_3$

Propriétés du produit de langage

Distributivité du produit par rapport à l'union.

- **1** Soit $w \in L_1.(L_2 \cup L_3)$, montrons que $w \in (L_1.L_2) \cup (L_1.L_3)$. $\exists w_1 \in L_1, w' \in L_2 \cup L_3, w = w_1 \cdot w'$. Donc $w' \in L_2$ ou $w' \in L_3$. Si $w' \in L_2$, alors $w = w_1 \cdot w' \in L_1 L_2$. Si $w' \in L_3$, alors $w = w_1 \cdot w' \in L_1 L_3$. Donc, $w \in (L_1, L_2) \cup (L_1, L_3)$. Donc $L_1.(L_2 \cup L_3) \subset (L_1.L_2) \cup (L_1.L_3)$.
- **2** Soit $w \in (L_1, L_2) \cup (L_1, L_3)$, montrons que $w \in L_1, (L_2 \cup L_3)$. $w \in L_1.L_2$ ou $w \in L_1.L_3$. Si $w \in L_1.L_i, i \in \{2,3\}$ alors $\exists w_1 \in L_1, w_i \in L_i, w = w_1 \cdot w_i$. Donc $w \in L_1.(L_2 \cup L_3)$. Donc, $(L_1.L_2) \cup (L_1.L_3) \subset L_1.(L_2 \cup L_3)$

Donc
$$(L_1.L_2) \cup (L_1.L_3) = L_1.(L_2 \cup L_3)$$

Puissance d'un langage

Définition (Puissance d'un langage)

Soient Σ un alphabet, et $L \subseteq \Sigma^*$. La **puissance** d'un langage, noté L^n est définie par :

$$L^{n} = \begin{cases} \{\varepsilon\} & \text{si } n = 0\\ L.L^{n-1} & \text{si } n > 0 \end{cases}$$

Itéré d'un langage

Définition (Itéré d'un langage)

L'itéré strict d'un langage L, noté L^+ , est défini par :

$$L^+ = \bigcup_{i>0} L^i$$

L'itéré d'un langage L, appelé aussi l'étoile de Kleene, noté L^* , est défini par :

$$L^* = \bigcup_{i>0} L^i = \{\varepsilon\} \cup L^+$$

Proposition

$$L^+ = L.L^* = L^*.L$$

Plan

- - A propos de votre enseignant
 - À propos du cours Théorie des Langages
- 2 Alphabets, mots, langages
 - Contexte
 - Alphabets et mots
 - Langage
 - Méthodologie

Appartenance d'un élément à un ensemble

Appartenance d'un élément à un ensemble

Soit X un ensemble défini par une propriété P_X :

$$X = \{x, P_X(x)\}$$

Pour prouver qu'un élément y appartient à l'ensemble X, il suffit de montrer qu'il satisfait la propriété P_X .

Inclusion d'un ensemble dans un autre

Soit X et Y deux ensembles. Pour prouver que l'ensemble X est inclus dans l'ensemble Y, on cherche à montrer :

$$\forall x \in X, x \in Y$$

- On considère un élément $x \in X$, c'est-à-dire qu'il satisfait P_X .
- lacktriangle On montre que l'élément x est dans Y, c'est-à-dire qu'il satisfait P_Y .
- On conclue.

Égalité de deux ensembles

Égalité de deux ensembles

Soit X et Y deux ensembles. Pour prouver que les ensembles X et Y sont égaux, on chercher à montrer :

$$X \subseteq Y$$
 et $Y \subseteq X$

Deuxième partie

Plan de ce cours

- Définitions
- Réécriture, dérivation et langage engendré
- Arbre de dérivation
- Hiérarchie de Chomsky

Plan

- Définitions
- Réécriture, dérivation et langage engendré
- Arbre de dérivation
- Hiérarchie de Chomsky

Principe d'une grammaire

Ensemble de règles pour générer les mots du langage

- On part d'un symbole spécial appelé l'axiome ou la source
- On applique des règles de réécriture
 - Remplacement d'une séquence de symboles par une autre séquence
- On génère des mots

Exemple introductif

- On considère la phrase suivante :
 - la vieille dame regarde la petite fille
- → Peut-on construire une grammaire qui génère cette phrase?
 - Alphabet : { la, vieille, petite, dame, fille, regarde }
 - Structure de la phrase :
 - Un groupe sujet (article, adjectif,nom)
 - Un verbe
 - Un groupe complément d'objet (article, adjectif, nom)

Exemple introductif

Règles de production

- 1 $\langle Phrase \rangle \rightarrow \langle Sujet \rangle \langle Verbe \rangle \langle Complément \rangle$
- $\langle Sujet \rangle \rightarrow \langle Groupe Nominal \rangle$
- $\langle Complément \rangle \rightarrow \langle Groupe Nominal \rangle$
- 4 $\langle Groupe Nominal \rangle \rightarrow \langle Article \rangle \langle Nom \rangle$
- **5** $\langle \text{Groupe Nominal} \rangle \rightarrow \langle \text{Article} \rangle \langle \text{Adjectif} \rangle \langle \text{Nom} \rangle$
- 6 $\langle Article \rangle \rightarrow 1a$
- $\langle Nom \rangle \rightarrow dame \mid fille$
- 8 $\langle Adjectif \rangle \rightarrow vieille \mid petite$
- 9 $\langle Verbe \rangle \rightarrow regarde$

Grammaire

Définition (Grammaire)

Une **grammaire** G est un quadruplet (N, T, S, R) où :

- N est l'ensemble des symboles non-terminaux
- T est l'ensemble des symboles terminaux
- $V = N \cup T$ est le **vocabulaire** de la grammaire $(N \cap T = \emptyset)$
- $S \in N$ est l'axiome
- R est un ensemble de **règles de production** de la forme :

$$\alpha \to \beta, \alpha \in V^+, \beta \in V^*$$

Remarques

- Généralement, les symboles non-terminaux sont écrits en majuscules
- Généralement, les symboles terminaux sont écrits en minuscules
- lacksquare $\alpha o eta$ signifie que α peut être remplacé par eta

Notation

Plusieurs règles qui ont le même membre gauche peuvent être factorisées.

- $\cdot \alpha \to \beta$
- $\cdot \ \alpha \to \gamma$

est équivalent à :

 $\cdot \alpha \rightarrow \beta \mid \gamma$

Exemples de grammaire

Exemple (Grammaire)

$$G = (\{E, T, F\}, \{+, \times, (,), a, b\}, E, R) \text{ avec } R:$$

- · $E \rightarrow E + T \mid T$
- · $T \rightarrow T \times F \mid F$
- $\cdot F \rightarrow (E) \mid a \mid b$

Exemples de grammaire

Exemple (Grammaire)

$$G = (\{S\}, \{a, b\}, S, R) \text{ avec } R:$$

 $\cdot S \rightarrow aSa \mid SbS \mid \varepsilon$

Exemples de grammaire

Exemple (Grammaire)

$$G = (\{S, B, C\}, \{a, b, c\}, S, R) \text{ avec } R:$$

- · $S \rightarrow aSBC \mid \varepsilon$
- · $CB \rightarrow BC$
- \cdot aB ightarrow ab
- $bB \rightarrow bb$
- $\cdot bC \rightarrow bc$
- \cdot $cC \rightarrow cc$

Plan

- Définitions
- Réécriture, dérivation et langage engendré
- Arbre de dérivation
- Hiérarchie de Chomsky

Réécriture

Définition (Réécriture)

Soit G = (N, T, S, R) une grammaire, $u \in V^+, v \in V^*$. La **réécriture** de u en v par G, notée $u \to v$, est définie par :

- $\mathbf{u} = \alpha \cdot \mathbf{u}' \cdot \beta, \mathbf{v} = \alpha \cdot \mathbf{v}' \cdot \beta \text{ avec } \alpha, \beta \in V^*$
- $u' \rightarrow v' \in R$

Réécriture

Exemple (Réécriture)

Soit
$$G = (\{E, T, F\}, \{+, \times, (,), a, b\}, E, R)$$
 avec R :

·
$$E \rightarrow E + T \mid T$$

·
$$T \rightarrow T \times F \mid F$$

$$\cdot F \rightarrow (E) \mid a \mid b$$

On peut effectuer des réécritures jusqu'au mot $a + b \times a$:

$$E \rightarrow E + T \rightarrow T + T \rightarrow F + T \rightarrow F + T \times F$$
$$\rightarrow a + T \times F \rightarrow a + F \times F \rightarrow a + F \times a \rightarrow a + b \times a$$

Dérivation

Définition (Dérivation)

Soit G = (N, T, S, R) une grammaire, $u \in V^+, v \in V^*$. La **dérivation** de u en v par G, notée $u \to^* v$, est définie par :

- $\blacksquare \exists k > 0 \text{ et } \exists w_0, \dots, w_k \in V^*, \text{ avec } w_0 = u \text{ et } w_k = v$
- $w_i \rightarrow w_{i+1}$ pour tout $0 \le i < k$

Exemple (Dérivation)

Avec la grammaire précédente, on a :

$$E \rightarrow^* F + T \times F \rightarrow^* a + b \times a$$

Mot engendré par une grammaire

Définition (Mot engendré par une grammaire)

Soit G = (N, T, S, R) une grammaire, $u \in T^*$ (symboles terminaux) est un **mot engendré par la grammaire** G s'il peut être dérivé depuis l'axiome S, c'est-à-dire $S \to^* u$.

Exemple (Mot engendré par une grammaire)

 $a + b \times a$ est un mot engendré par la grammaire G précédente.

Langage engendré par une grammaire

Définition (Langage engendré par une grammaire)

Soit G = (N, T, S, R) une grammaire,

Le langage engendré par la grammaire G, noté $\mathcal{L}(G)$, est l'ensemble des mots engendrés par G.

$$\mathcal{L}(G) = \{u \in T^*, S \to^* u\}$$

Langage engendré par une grammaire

Exemple (Langage engendré par une grammaire)

Soit $G = (\{S\}, \{a, b\}, S, R)$ avec R:

·
$$S \rightarrow aXbX \mid bXaX \mid \varepsilon$$

Le langage $\mathcal{L}(G)$ engendré par G est le langage L des mots qui contiennent autant de a que de b.

$$\mathcal{L}(G) = \{ u \in T^*, |u|_a = |u|_b \}$$

Dérivation la plus à gauche

Définition (Dérivation la plus à gauche)

Soit G = (N, T, S, R) une grammaire, et $w \in \mathcal{L}(G)$, la dérivation $S \to^* w$ est la **dérivation la plus à gauche** si, à chaque étape de la dérivation, c'est le symbole non-terminal le plus à gauche qui est dérivé.

Plan

- Définitions
- Réécriture, dérivation et langage engendré
- Arbre de dérivation
- Hiérarchie de Chomsky

Définition (Arbre de dérivation)

Soit G = (N, T, S, R) une grammaire et $w \in \mathcal{L}(G)$. L'arbre de dérivation du mot w est un arbre où :

- la racine est S
- les feuilles sont étiquetées par des éléments terminaux de T
- les nœuds sont étiquetés par des éléments non-terminaux de *N*
- si un nœud est étiqueté Y et ses fils sont étiquetés Z_1, \ldots, Z_k dans cet ordre, alors il existe une règle $Y \to Z_1 \ldots Z_k$ dans R
- la lecture des feuilles de gauche à droite donne le mot w

Arbre de dérivation

Exemple (Arbre de dérivation)

Soit $G = (\{E, N\}, \{+, \times, 0, 1\}, E, R)$ avec R:

- $E \rightarrow E + E \mid E \times E \mid N$
- $N \rightarrow 0 \mid 1 \mid 0N \mid 1N$

Le mot $10 \times 10 + 10$ a pour arbre de dérivation :

Arbre de dérivation

Exemple (Arbre de dérivation)

Le mot $10 \times 10 + 10$ a également pour arbre de dérivation :

Grammaire ambiguë

Définition (Grammaire ambiguë)

Une grammaire G est **ambiguë** s'il existe un mot de $\mathcal{L}(G)$ qui a au moins deux arbres de dérivation, c'est-à-dire deux dérivations la plus à gauche.

Exemple (Grammaire ambiguë)

La grammaire $G = (\{E, N\}, \{+, \times, 0, 1\}, E, R)$ avec R:

- $\blacksquare E \to E + E \mid E \times E \mid N$
- lacksquare $N
 ightarrow 0 \mid 1 \mid 0N \mid 1N$

est ambiguë.

Plan

- Définitions
- Réécriture, dérivation et langage engendré
- Arbre de dérivation
- Hiérarchie de Chomsky

Grammaire générale (type 0)

Définition (Grammaire générale (type 0))

Une **grammaire de type 0** ou **grammaire générale** est une grammaire sans restriction sur la forme des règles.

Définition (Langage général)

Un langage général est un langage engendré par une grammaire générale.

Définition (Grammaire contextuelle (type 1))

Une **grammaire de type 1** ou **grammaire contextuelle** est une grammaire où les règles sont de la forme :

$$\alpha A\beta \to \alpha w\beta$$

avec $\alpha, \beta \in V^*$, $w \in V^+$ et $A \in N$. Le symbole A est remplacé par w si on a le contexte α à gauche et β à droite.

Définition (Langage contextuel (type 1))

Un **langage contextuel** est un langage engendré par une grammaire contextuelle.

Exemple (Grammaire contextuelle (type 1))

La grammaire $G = (\{S, B, C, H\}, \{a, b, c\}, S, R)$ avec R:

- $S \rightarrow aSBC$
- $S \rightarrow aBC$
- · $CB \rightarrow HB$
- \cdot HB \rightarrow HC
- $\cdot HC \rightarrow BC$
- · $aB \rightarrow ab$
- $bB \rightarrow bb$
- $\cdot bC \rightarrow bc$
- \cdot cC \rightarrow cc

engendre le langage $L = \{a^n b^n c^n, n \ge 1\}$

Définition (Grammaire croissante)

Une **grammaire croissante** est une grammaire où les règles sont de la forme :

$$\alpha \to \beta$$

avec $\alpha, \beta \in V^*$ et $|\alpha| \le |\beta|$

Proposition

Les langages engendrés par les grammaires croissantes sont les langages contextuels.

Exemple (Grammaire croissante)

La grammaire $G = (\{S, B\}, \{a, b, c\}, S, R)$ avec R:

- $\cdot S \rightarrow abc \mid aSBc$
- $\cdot cB \rightarrow Bc$
- $bB \rightarrow bb$

engendre le langage $L = \{a^n b^n c^n, n \ge 1\}$

Grammaire algébrique (type 2)

Définition (Grammaire algébrique (type 2))

Une grammaire de type 2 ou grammaire algébrique ou grammaire hors contexte est une grammaire où les règles sont de la forme :

$$A \rightarrow \alpha$$

avec $A \in N$ et $\alpha \in V^*$, la partie gauche est réduite à un non-terminal.

Définition (Langage algébrique (type 2))

Un **langage algébrique** est un langage engendré par une grammaire algébrique.

Grammaire algébrique (type 2)

Exemple (Grammaire algébrique (type 2))

La grammaire
$$G = (\{S\}, \{a, b\}, S, R)$$
 avec R :

·
$$S \rightarrow \varepsilon \mid aSb$$

engendre le langage $L = \{a^n b^n, n \ge 0\}$

Grammaire régulière (type 3)

Définition (Grammaire régulière (type 3))

Une **grammaire de type 3** ou **grammaire régulière** est une grammaire où les règles sont de la forme :

$$A \rightarrow a$$
 ou $A \rightarrow aB$

avec $A, B \in N$ et $a \in T$.

Définition (Langage régulier (type 3))

Un langage régulier est un langage engendré par une grammaire régulière.

Grammaire régulière (type 3)

Exemple (Grammaire régulière (type 3))

La grammaire $G = (\{S, A, B\}, \{a, b\}, S, R)$ avec R:

- $S \rightarrow aA$
- · $A \rightarrow bA \mid bB$
- $\cdot \ B \rightarrow a$

engendre le langage $L = \{ab^n a, n \ge 1\}$

Hiérarchie de Chomsky

Туре	Grammaire	Reconnaisseur
0	Générale	Machine de Turing
1	Contextuelle	
2	Algébrique	Automate à pile
3	Régulière	Automate

Troisième partie

Plan de ce cours

- Automates finis déterministes
- Représentations d'un automate
- Automates équivalents et complets
- Automates finis non-déterministes

Plan

- Automates finis déterministes
- Représentations d'un automate
- Automates équivalents et complets
- Automates finis non-déterministes

Automate fini déterministe

Définition (Automate fini déterministe)

Un automate fini déterministe $\mathcal A$ sur un alphabet Σ est un quadruplet (Q,q_0,δ,Q_F) où :

- *Q* est un ensemble fini d'états
- lacksquare $q_0 \in Q$ est un état initial
- $\delta: Q \times \Sigma \rightarrow Q$ est la fonction de transition
- $Q_F \subseteq Q$ est un ensemble d'états finaux

Remarque

La fonction de transition δ peut être partielle, c'est-à-dire non-définie sur tout l'ensemble $Q \times \Sigma$.

Automate fini déterministe

Exemple (Automate fini déterministe)

$$\mathcal{A} = (\{q_0, q_1, q_2, q_3\}, q_0, \delta, \{q_3\})$$
 avec

$$\delta(q_0, b) = q_1, \delta(q_1, a) = q_2, \delta(q_2, a) = q_2, \delta(q_2, b) = q_3$$

Fonction de transition

Fonction de transition étendue δ

On étend la fonction $\delta: Q \times \Sigma^* \to Q$ aux mots sur l'alphabet Σ de la manière suivante :

- $\delta(q,\varepsilon)=q$

Notation alternative

La fonction $\delta(q,a)$ est parfois notée q . a. Les deux propriétés précédentes s'écrivent alors :

- $\mathbf{q} \cdot \varepsilon = \mathbf{q}$
- $q \cdot (a \cdot \alpha) = (q \cdot a) \cdot \alpha$

Fonction de transition

Exemple (Fonction de transition)

Soit $\mathcal{A} = (\{q_0, q_1, q_2, q_3\}, q_0, \delta, \{q_3\})$ avec

$$\delta(q_0, b) = q_1, \delta(q_1, a) = q_2, \delta(q_2, a) = q_2, \delta(q_2, b) = q_3$$

Alors, par exemple, on a:

- $\delta(q_0,ba)=q_2$
- \bullet $\delta(q_0, baaaaab) = q_3$
- $\delta(q_2, aab) = q_3$
- $\delta(q_0,bb)$ n'est pas défini parce que $\delta(q_1,b)$ n'est pas défini

Dérivation en une étape

Définition (Configuration)

Une **configuration** est une paire (q, w), où $q \in Q$, $w \in \Sigma^*$

Définition (Dérivation en une étape)

Soit \mathcal{A} un automate et (q, w) et (q', w') deux configurations. La configuration (q', w') est **dérivable en une étape** de la configuration (q, w) par \mathcal{A} , noté $(q, w) \mapsto (q', w')$ si :

- $\mathbf{w} = a \cdot w'$ avec $a \in \Sigma$
- \blacksquare \mathcal{A} est dans l'état q
- $q' = \delta(q, a)$

Remarque

On dit qu'on «lit» la lettre a.

Dérivation en une étape

Exemple (Dérivation en une étape)

Soit $\mathcal{A} = (\{q_0, q_1, q_2, q_3\}, q_0, \delta, \{q_3\})$ avec

$$\delta(q_0, b) = q_1, \delta(q_1, a) = q_2, \delta(q_2, a) = q_2, \delta(q_2, b) = q_3$$

Alors, on a les dérivations suivantes :

$$\big(q_0, baaab\big) \mapsto \big(q_1, aaab\big) \mapsto \big(q_2, aab\big) \mapsto \big(q_2, ab\big) \mapsto \big(q_2, b\big) \mapsto \big(q_3, \varepsilon\big)$$

Définition (Dérivation)

Soit \mathcal{A} un automate et (q, w) et (q', w') deux configurations. La configuration (q', w') est **dérivable** de la configuration (q, w) par \mathcal{A} , noté $(q, w) \mapsto^* (q', w')$ si :

- $\exists k \geq 0$ et k configurations $(q_i, w_i), 1 \leq i \leq k$ avec $(q_0, w_0) = (q, w)$ et $(q_k, w_k) = (q', w')$
- $(q_i, w_i) \mapsto (q_{i+1}, w_{i+1}), 1 \le i < k$

Dérivation

Exemple (Dérivation)

Soit $A = (\{q_0, q_1, q_2, q_3\}, q_0, \delta, \{q_3\})$ avec

$$\delta(q_0, b) = q_1, \delta(q_1, a) = q_2, \delta(q_2, a) = q_2, \delta(q_2, b) = q_3$$

Alors, on a les dérivations suivantes :

$$(q_0, baaab) \mapsto^* (q_2, aab) \mapsto^* (q_3, \varepsilon)$$

Définition (Mot accepté)

Un mot w est accepté par un automate si :

$$(q_0, w) \mapsto^* (q, \varepsilon), q \in Q_F$$

Définition (Mot accepté)

Un mot w est accepté par un automate si :

$$\delta(q_0, w) = q, q \in Q_F$$

Remarque

On dit aussi que w est **reconnu** par un automate.

Mot accepté par un automate

Exemple (Mot accepté par un automate)

Soit
$$\mathcal{A} = (\{q_0, q_1, q_2, q_3\}, q_0, \delta, \{q_3\})$$
 avec

$$\delta(q_0, b) = q_1, \delta(q_1, a) = q_2, \delta(q_2, a) = q_2, \delta(q_2, b) = q_3$$

Alors, les mots suivants sont acceptés par l'automate :

- bab
- baaaaab

Les mots suivants ne sont pas acceptés par l'automate :

- baaa
- bb

Langage accepté par un automate

Définition (Langage accepté)

Le langage accepté par l'automate \mathcal{A} , noté $\mathcal{L}(\mathcal{A})$, est défini par :

$$\mathcal{L}(\mathcal{A}) = \{ w \in \Sigma^*, (q_0, w) \mapsto^* (q, \varepsilon), q \in Q_F \}$$

Définition (Langage reconnaissable)

Un langage reconnaissable L est un langage tel qu'il existe un automate \mathcal{A} qui accepte le langage L:

$$L = \mathcal{L}(\mathcal{A})$$

Langage accepté par un automate

Exemple (Langage accepté par un automate)

Soit $A = (\{q_0, q_1, q_2, q_3\}, q_0, \delta, \{q_3\})$ avec

$$\delta(q_0, b) = q_1, \delta(q_1, a) = q_2, \delta(q_2, a) = q_2, \delta(q_2, b) = q_3$$

Alors, le langage accepté par l'automate est :

$$\mathcal{L}(\mathcal{A}) = \{baa^nb, n \ge 0\} = \{ba^nb, n \ge 1\}$$

Plan

- Automates finis déterministes
- Représentations d'un automate
- Automates équivalents et complets
- Automates finis non-déterministes

Représentations d'un automate

- Table de transition d'état
- Diagramme d'états-transitions

Représentation par une table

Table de transition

Une table de transition d'état est une table à deux dimensions avec :

- l'ensemble des états verticalement
- l'ensemble des lettres de l'alphabet horizontalement

Chaque case contient l'état suivant correspondant à l'état actuel et la lettre de l'alphabet.

Table de transition

Exemple (Table de transition)

Soit $\mathcal{A} = (\{q_0, q_1, q_2, q_3\}, q_0, \delta, \{q_3\})$ avec

$$\delta(q_0, b) = q_1, \delta(q_1, a) = q_2, \delta(q_2, a) = q_2, \delta(q_2, b) = q_3$$

Alors, la table de transition de l'automate est :

	а	Ь
q_0		q_1
q_1	q_2	
q ₂	q_2	q 3
q 3		

Représentation par un diagramme

Notations

État initial

État final (deux notations)

■ Transition entre l'état p et q : $\delta(p, a) = q$

Représentation par un diagramme

Exemple (Diagramme)

Soit $A = (\{q_0, q_1, q_2, q_3\}, q_0, \delta, \{q_3\})$ avec

$$\delta(q_0, b) = q_1, \delta(q_1, a) = q_2, \delta(q_2, a) = q_2, \delta(q_2, b) = q_3$$

Alors le diagramme d'états-transitions de l'automate est :

Plan

- Automates finis déterministes
- Représentations d'un automate
- Automates équivalents et complets
- Automates finis non-déterministes

Automates équivalents

Définition (Automates équivalents)

Deux automates \mathcal{A}_1 et \mathcal{A}_2 sont **équivalents** s'ils reconnaissent le même langage :

$$\mathcal{L}(\mathcal{A}_1) = \mathcal{L}(\mathcal{A}_2)$$

Automates équivalents

Exemple (Automates équivalents)

Les deux automates suivants reconnaissent tous les deux le langage Σ^* , ils sont donc équivalents :

Etat accessible, co-accessible, utile

Définition (État accessible)

Un état q est accessible s'il existe un chemin entre q_0 et q.

Définition (État co-accessible)

Un état q est **co-accessible** s'il existe un chemin entre q et $q_f \in Q_F$.

Définition (État utile)

Un état est **utile** s'il est à la fois accessible et co-accessible.

Définition (Automate complet)

Un automate est **complet** si pour tout état $q \in Q$, il existe une transition pour chaque lettre de l'alphabet Σ .

$$\forall q \in Q, \forall a \in \Sigma, \delta(q, a)$$
 est défini

Exemple (Automate complet)

Exemple (Automate non-complet)

Définition (État puits)

Un **état puits** est un état $q \in Q$ pour lequel toutes les transitions sont de la forme $\delta(q,a) = q, a \in \Sigma$.

Définition (État poubelle)

Un état poubelle est un état puits non-final.

Exemple (État poubelle)

Proposition (Automate complet)

Pour tout automate fini, il existe un automate fini complet équivalent.

Démonstration.

Si l'automate n'est pas complet, on le complète en ajoutant un état poubelle.

Exemple (Automate complet)

Propriété

On peut toujours dériver un mot w sur un automate complet :

$$(q_0, w) \mapsto (q_1, w_1) \mapsto (q_2, w_2) \mapsto \ldots \mapsto (q_n, \varepsilon)$$

On a deux possibilités :

- Soit $q_n \in Q_F$, et le mot w est accepté par l'automate
- Soit $q_n \notin Q_F$, et le mot w n'est pas accepté par l'automate

Plan

4 Automates d'états finis

- Automates finis déterministes
- Représentations d'un automate
- Automates équivalents et complets
- Automates finis non-déterministes

Automate fini non-déterministe

Définition (Automate fini non-déterministe)

Un automate fini non-déterministe A sur un alphabet Σ est un quadruplet (Q, Q_I, Δ, Q_F) où :

- Q est un ensemble fini d'états
- $Q_i \subseteq Q$ est un ensemble d'état initiaux
- $\Delta \subseteq (Q \times \Sigma \cup \{\varepsilon\} \times Q)$ est une relation de transition
- $ullet Q_F \subseteq Q$ est un ensemble d'états finaux

Automate fini non-déterministe

Différences entre automate fini déterministe et non-déterministe

- Il peut y avoir plusieurs états initiaux
- On n'a plus une fonction de transition mais une relation de transition
- Il peut y avoir des ε -transitions

Automate fini non-déterministe

Exemple (Automate fini non-déterministe)

Théorème <u>(Déterminisation)</u>

Pour tout automate non-déterministe A_N , il existe un automate fini déterministe A_D équivalent.

$$\mathcal{L}(\mathcal{A}_N) = \mathcal{L}(\mathcal{A}_D)$$

Preuve constructive

Pour montrer ce théorème, on établit une preuve constructive, c'est-à-dire on donne un algorithme qui permet de produire un automate déterministe équivalent : l'algorithme de déterminisation d'un automate.

Déterminisation

Soit $A_N = (Q, Q_I, \Delta, Q_F)$, on définit l'automate $A_D = \{R, r_0, \delta, R_F\}$ de la manière suivante :

- $\blacksquare R \subseteq 2^Q$ R est l'ensemble des sous-ensembles de Q
- $r_0 = \{q, q \in Q_I\},\$ r_0 est l'ensemble des états initiaux de Q
- $\delta(r_1, a) = r_2 \iff r_2 = \{q_2 \in Q, \exists q_1 \in r_1, (q_1, a, q_2) \in \Delta\},\$ r₂ est l'ensemble des états d'arrivée d'une transition par a depuis tous les états de r₁
- \blacksquare $R_F = \{r \in R, \exists q \in Q_F, q \in r\},$ R_F est l'ensemble des sous-ensembles de Q qui contiennent au moins un état final de Q_F

Proposition

Soit A_D l'automate obtenu après application de l'algorithme précédent sur l'automate A_N , alors :

- A_D est déterministe
- $\mathcal{L}(\mathcal{A}_D) = \mathcal{L}(\mathcal{A}_N)$

Remarque

Si l'automate A_N contient n états, l'automate A_D obtenu par l'algorithme de déterminisation peut contenir jusqu'à 2^n états.

Déterminisation en pratique

Déterminisation en pratique

En pratique, on construit la table de transition de \mathcal{A}_D au fur et à mesure :

- 1 On part de l'état initial de A_D .
- 2 Pour chaque nouvel ensemble d'états qui apparaît dans la table, on ajoute une ligne dans la table.
- 3 On recommence jusqu'à ce tous les ensembles aient été traités.

	а	Ь	
$\{q_{i_1},\ldots,q_{i_k}\}$	{}	{}	

	a	Ь
$\{q_0\}$	$\{q_2, q_3\}$	$\{q_1, q_2\}$
$\{q_2, q_3\}$		
$\{q_1,q_2\}$		

	a	Ь
$\{q_0\}$	$\{q_2, q_3\}$	$\{q_1, q_2\}$
$\{q_2, q_3\}$	$\{q_2, q_3, q_4\}$	$\{q_1, q_2\}$
$\{q_1, q_2\}$		
$\{q_2, q_3, q_4\}$		

ſ		a	b
ſ	$\{q_0\}$	$\{q_2, q_3\}$	$\{q_1, q_2\}$
	$\{q_2, q_3\}$	$\{q_2, q_3, q_4\}$	$\{q_1, q_2\}$
	$\{q_1, q_2\}$	$\{q_2, q_3\}$	$\{q_1, q_2, q_4\}$
	$\{q_2, q_3, q_4\}$		
L	$\{q_1, q_2, q_4\}$		

	а	Ь
$\{q_0\}$	$\{q_2, q_3\}$	$\{q_1, q_2\}$
$\{q_2, q_3\}$	$\{q_2, q_3, q_4\}$	$\{q_1, q_2\}$
$\{q_1,q_2\}$	$\{q_2, q_3\}$	$\{q_1, q_2, q_4\}$
$\{q_2, q_3, q_4\}$	$\{q_2, q_3, q_4\}$	$\{q_1, q_2, q_4\}$
$\{q_1, q_2, q_4\}$		

	а	Ь
$\{q_0\}$	$\{q_2, q_3\}$	$\{q_1, q_2\}$
$\{q_2, q_3\}$	$\{q_2, q_3, q_4\}$	$\{q_1, q_2\}$
$\{q_1, q_2\}$	$\{q_2, q_3\}$	$\{q_1, q_2, q_4\}$
$\{q_2, q_3, q_4\}$	$\{q_2, q_3, q_4\}$	$\{q_1, q_2, q_4\}$
$\{q_1, q_2, q_4\}$	$\{q_1,q_2,q_4\}$	$\{q_2, q_3, q_4\}$

			а	Ь
	<i>r</i> ₀	$\{q_0\}$	$\{q_2, q_3\}$	$\{q_1, q_2\}$
	r_1	$\{q_2, q_3\}$	$\{q_2, q_3, q_4\}$	$\{q_1, q_2\}$
	<i>r</i> ₂	$\{q_1,q_2\}$	$\{q_2, q_3\}$	$\{q_1, q_2, q_4\}$
	<i>r</i> ₃	$\{q_2,q_3,q_4\}$	$\{q_2, q_3, q_4\}$	$\{q_1, q_2, q_4\}$
Į	<i>r</i> ₄	$\{q_1,q_2,q_4\}$	$\{q_2,q_3,q_4\}$	$\{q_1, q_2, q_4\}$

Quatrième partie

Automates et langages réguliers

Plan de ce cours

- 5 Transformation d'automates
 - Automate émondé et problèmes de décision
 - Élimination des transitions instantanées
 - Automate standard

- 6 Automates et langages réguliers
 - Équivalence automates—langages réguliers
 - Propriétés sur les langages réguliers

Plan

- 5 Transformation d'automates
 - Automate émondé et problèmes de décision
 - Élimination des transitions instantanées
 - Automate standard

- - Équivalence automates—langages réguliers
 - Propriétés sur les langages réguliers

État accessible et co-accessible

Définition (État accessible)

Soit $\mathcal{A} = (Q, q_0, \Delta, Q_F)$ un automate fini, un état $q \in Q$ est un **état accessible** s'il existe un chemin depuis l'état initial q_0 jusqu'à l'état q. C'est-à-dire s'il existe un mot w tel que $(q_0, w) \mapsto^* (q, \varepsilon)$.

Définition (État co-accessible)

Soit $\mathcal{A} = (Q, q_0, \Delta, Q_F)$ un automate fini, un état $q \in Q$ est un **état co-accessible** (ou état productif) s'il existe un chemin depuis l'état q jusqu'à un état final $q_f \in Q_F$. C'est-à-dire s'il existe un mot w tel que $(q, w) \mapsto^* (q_f, \varepsilon).$

État utile

Définition (État utile)

Un état utile est un état accessible et co-accessible.

Définition (Automate émondé)

Un automate émondé est un automate dont tous les états sont utiles.

Remarque

On peut toujours supprimer les états inutiles d'un automate sans changer le langage reconnu.

Décision du vide

Proposition (Décision du vide)

Soit $A = (Q, q_0, \Delta, Q_F)$ un automate fini, le langage accepté par l'automate A est non-vide si au moins un état final $q_f \in Q_F$ est accessible.

Remarques

- Décider si le langage accepté par un automate est non-vide revient à trouver un chemin de l'état initial à un état final dans le graphe de l'automate, grâce à un parcours du graphe.
- Le problème du vide d'un langage accepté par un automate est donc décidable en temps linéaire.

Décision de la finitude

Proposition (Décision de la finitude)

Soit $A = (Q, q_0, \Delta, Q_F)$ un automate fini, le langage accepté par l'automate A est infini s'il existe un état q ayant les deux propriétés suivantes:

- 1 q est utile
- 2 q est situé sur un cycle non-trivial

Remarques

- Décider si le langage accepté par un automate est non-vide revient à trouver un cycle dans le graphe de l'automate.
- Le problème de la finitude (ou de l'infinitude) d'un langage accepté par un automate est donc décidable en temps linéaire.

Plan

- 5 Transformation d'automates
 - Automate émondé et problèmes de décision
 - Élimination des transitions instantanées
 - Automate standard

- 6 Automates et langages réguliers
 - Équivalence automates—langages réguliers
 - Propriétés sur les langages réguliers

ε -transition

Définition (ε -transition)

Une ε -transition ou transition instantanée permet de passer d'un état à un autre d'un automate sans lire de symbole d'entrée.

Exemple (ε -transition)

Remarque

Un automate contenant une ε -transition est non-déterministe.

Définition (ε -clôture)

Soit $\mathcal{A} = (Q, Q_I, \Delta, Q_F)$ un automate et $q \in Q$, alors, l' ε -clôture de q, noté E(q), est l'ensemble des états accessibles depuis q en passant uniquement par des ε -transitions. E(q) est définie par : $p \in E(q) \iff \exists q_1, q_2, \dots, q_n \in Q \text{ avec} :$

- $q_0 = q, q_n = p$
 - $\forall 1 < i < n, (q_i, \varepsilon, q_{i+1}) \in \Delta$

Algorithme d'élimination des ε -transitions

Soit $\mathcal{A} = (Q, Q_I, \Delta, Q_F)$ un automate, on définit l'automate $\mathcal{A}' = (Q, Q_I, \Delta', Q_F')$ par :

- $(q, a, p) \in \Delta' \iff (q, a, p) \in \Delta \vee \exists r \in E(q), (r, a, p) \in \Delta$ Pour tout état r dans l' ε -clôture de q, pour toute transition (r, a, p), alors on ajoute une transition (q, a, p), puis on supprime les ε -transitions partant de q.
- $\blacksquare q \in Q_F' \iff q \in Q_F \vee \exists p \in E(q), p \in Q_F$ On ajoute à Q_F les états qui permettent d'aller à un état de Q_F via des ε -transitions.

Proposition

Soit \mathcal{A}' l'automate obtenu après application de l'algorithme précédent sur l'automate A, alors :

- \blacksquare \mathcal{A}' ne contient pas d' ε -transition
- $\mathcal{L}(\mathcal{A}') = \mathcal{L}(\mathcal{A})$

Remarque

L'automate A et l'automate A' ont le même nombre d'états puisque l'algorithme ne fait qu'ajouter et enlever des transitions.

Exemple (Élimination des ε -transitions)

Exemple (Élimination des ε -transitions)

Exemple (Élimination des ε -transitions)

Remarque

Pour déterminiser un automate non-déterministe avec des ε -transitions, on procédera en deux étapes :

- **1** élimination des ε -transitions
- déterminisation

Plan

5 Transformation d'automates

- Automate émondé et problèmes de décision
- Élimination des transitions instantanées
- Automate standard

6 Automates et langages réguliers

- Équivalence automates—langages réguliers
- Propriétés sur les langages réguliers

Définition (Automate standard)

Un automate standard est un automate fini non-déterministe tel que :

- il n'a qu'un seul état initial q_i
- cet état initial n'est la destination d'aucune transition de l'automate

Remarque

L'état initial q_i peut également être final.

Représentation d'un automate standard

Automate standard

Proposition (Automate standard)

Tout automate fini est équivalent à un automate standard.

Démonstration.

Soit \mathcal{A} un automate. Pour obtenir un automate standard, on ajoute à \mathcal{A} un nouvel état initial q_i qu'on relie via des ε -transitions aux états initiaux de \mathcal{A} . L'automate ainsi obtenu est équivalent à \mathcal{A} et est standard.

Plan

- - Automate émondé et problèmes de décision
 - Élimination des transitions instantanées
 - Automate standard

- 6 Automates et langages réguliers
 - Équivalence automates—langages réguliers
 - Propriétés sur les langages réguliers

Langages reconnaissables et langages réguliers

Rappels

- Un langage régulier est engendré par une grammaire régulière
- Un langage reconnaissable est accepté par un automate d'états fini

Théorème

Les langages réguliers sont les langages reconnaissables. Autrement dit :

- pour toute grammaire régulière, il existe un automate d'états fini qui reconnaît le langage engendré par la grammaire
- pour tout automate d'états fini, il existe une grammaire régulière qui engendre le langage accepté par l'automate

Transformation d'un automate en grammaire

Transformation d'un automate fini en grammaire régulière

Soit $A = (Q, q_0, \Delta, Q_F)$ un automate fini, on définit la grammaire G = (N, T, S, R) avec :

- N = Q
 L'ensemble des non-terminaux est l'ensemble des états
- $lacktriangleright T = \Sigma$ L'ensemble des terminaux est l'alphabet de l'automate
- $X = q_0$ L'axiome est l'état initial q_0
- $R = \{X \to aY, (X, a, Y) \in \Delta\} \cup \{X \to \varepsilon, X \in Q_F\}$ Pour chaque transition, on crée une règle de production, ainsi que pour chaque état final

Alors,
$$\mathcal{L}(G) = \mathcal{L}(A)$$

Transformation d'un automate en grammaire

Exemple (Transformation d'un automate fini en grammaire régulière)

$$G = (\{S, U\}, \{a, b\}, S, R) \text{ avec } R:$$
 $\cdot S \rightarrow aS \mid bU \mid \varepsilon$
 $\cdot U \rightarrow aS \mid \varepsilon$

4□▶ 4圖▶ 4 圖▶ 4 圖▶ 9 Q Q

Transformation d'un automate en grammaire

$\hat{}$

Remarque

L'automate considéré n'a qu'un seul état initial. Or, un automate non-déterministe peut avoir plusieurs états initiaux. Est-ce un problème?

Transformation d'une grammaire en automate

Transformation d'une grammaire régulière en automate fini

Soit G = (N, T, S, R) une grammaire régulière, on définit l'automate $A = (Q, q_0, \Delta, Q_F)$ avec :

- Q = N
 L'ensemble des états est l'ensemble des symboles non-terminaux
- $q_0 = S$ L'état initial est l'axiome de la grammaire
- $\Delta = \{(X, a, Y), X \rightarrow aY \in R\}$ Pour chaque règle de production de la forme $X \rightarrow aY$, on crée une transition étiquetée par a
- $Q_F = \{X, X \to \varepsilon \in R\}$ Pour chaque règle de production de la forme $X \to \varepsilon$, on crée un état final

Alors, $\mathcal{L}(\mathcal{A}) = \mathcal{L}(G)$

Transformation d'une grammaire en automate

Exemple (Transformation d'une grammaire régulière en automate fini)

$$G = (\{S, U, V\}, \{a, b\}, S, R) \text{ avec } R$$
:

- $\cdot S \rightarrow bS \mid aU \mid bV$
- $\cdot U \rightarrow aS \mid bU$
- $\cdot V \rightarrow \varepsilon$

Transformation d'une grammaire en automate

Remarque

Une grammaire régulière peut avoir des règles de la forme $A \rightarrow a$. Dans ce cas, pour appliquer l'algorithme précédent, on transforme cette règle en deux règles :

- $\cdot A \rightarrow aA'$
- $\cdot A' \rightarrow \varepsilon$

Plan

- - Automate émondé et problèmes de décision
 - Élimination des transitions instantanées
 - Automate standard

- 6 Automates et langages réguliers
 - Équivalence automates—langages réguliers
 - Propriétés sur les langages réguliers

Remarques préliminaires

Remarques préliminaires

- On a maintenant une équivalence entre langage régulier et automate fini. On peut donc montrer des propriétés sur les langages réguliers en utilisant les automates finis. Plus précisément, on peut contruire un automate qui reconnaît le langage considéré pour montrer que ce langage est régulier.
- De plus, on sait qu'un automate standard non-déterministe avec ε -transitions peut être transformé en un automate déterministe complet équivalent. On peut donc utiliser n'importe quel type d'automate pour montrer une propriété puisque tous les automates reconnaissent les mêmes langages.

Proposition (Complémentaire d'un langage régulier)

Soit L un langage régulier. Alors, le complémentaire \overline{L} de L est régulier.

Démonstration.

Soit L un langage régulier. Soit $\mathcal{A}=(Q,q_0,\delta,Q_F)$ un automate déterministe complet reconnaissant L. On définit $\mathcal{A}'=(Q,q_0,\delta,\overline{Q_F})$. Alors l'automate \mathcal{A}' reconnaît \overline{L} .

Remarques

- Il est très important que l'automate soit déterministe et complet!
- \blacksquare \mathcal{A}' est également déterministe et complet

Exemple (Complémentaire)

Soit L le langage des mots qui ne contiennent pas deux b consécutifs. Un automate déterministe qui reconnaît L est :

Exemple (Complémentaire)

Soit L le langage des mots qui ne contiennent pas deux b consécutifs. Un automate déterministe complet qui reconnaît L est :

Exemple (Complémentaire)

Soit *L* le langage des mots qui ne contiennent pas deux *b* consécutifs. Un automate déterministe complet qui reconnaît \overline{L} est :

Exemple (Complémentaire)

Soit L le langage des mots qui ne contiennent pas deux b consécutifs. Un automate déterministe complet qui reconnaît L est :

Le langage L est le langage des mots qui contiennent deux b consécutifs.

Définition (Clôture)

On dit qu'un ensemble E est **clos** ou **fermé** ou **stable** pour une opération \circ si, étant donné deux élément quelconque e_1 et e_2 appartenant à E, alors $e_1 \circ e_2$ appartient aussi à E.

On parle alors de propriété de clôture ou de fermeture.

Exemples (Clôture)

- \blacksquare \mathbb{R} est clos pour l'opération +
- N n'est pas clos pour l'opération —

Proposition (Union de deux langages réguliers)

Soit L_1 et L_2 deux langages réguliers. Alors l'union $L_1 \cup L_2$ est un langage régulier. Autrement dit, les langages réguliers sont clos par union.

Démonstration.

Soit L_1 et L_2 deux langages réguliers. Soit $\mathcal{A}_1 = (Q, q_0, \Delta_Q, Q_F)$ un automate standard reconnaissant L_1 et $\mathcal{A}_2 = (R, r_0, \Delta_R, R_F)$ un automate standard reconnaissant L_2 . On définit $\mathcal{A} = (S, s_0, \Delta_S, S_F)$ avec :

- $S = Q \cup R \cup \{s_0\}$
- $\Delta_S = \Delta_Q \cup \Delta_R \cup \{(s_0, \varepsilon, q_0), (s_0, \varepsilon, r_0)\}$
- $S_F = Q_F \cup R_F$

Alors l'automate \mathcal{A} est standard et reconnaît $L_1 \cup L_2$.

Remarque

 ${\cal A}$ n'est pas déterministe.

Démonstration visuelle

Exemple (Union)

Exemple (Union)

Exemple (Union)

Proposition (Intersection de deux langages réguliers)

Soit L_1 et L_2 deux langages réguliers. Alors l'intersection $L_1 \cap L_2$ est un langage régulier. Autrement dit, les langages réguliers sont clos par intersection.

Remarque

On peut le voir comme une conséquence directe des résultats précédents car $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$

Démonstration.

Soit L_1 et L_2 deux langages réguliers. Soit $\mathcal{A}_1=(Q,q_0,\Delta_Q,Q_F)$ un automate reconnaissant L_1 et $\mathcal{A}_2=(R,r_0,\Delta_R,R_F)$ un automate reconnaissant L_2 . On définit $\mathcal{A}=(S,s_0,\Delta_S,S_F)$ avec :

- $S = Q \times R$
- $= s_0 = (q_0, r_0)$
- $S_F = Q_F \times R_F$

Alors l'automate A reconnaît $L_1 \cap L_2$.

Remarque

L'automate \mathcal{A} est appelé **produit** ou **produit synchronisé** des automates \mathcal{A}_1 et \mathcal{A}_2 . Si \mathcal{A}_1 et \mathcal{A}_2 sont déterministes, alors \mathcal{A} l'est également.

Exemple (Intersection)

Exemple (Intersection)

Proposition (Produit de deux langages réguliers)

Soit L_1 et L_2 deux langages réguliers. Alors le produit $L_1.L_2$ est un langage régulier. Autrement dit, les langages réguliers sont clos par produit.

Démonstration.

Soit L_1 et L_2 deux langages réguliers. Soit $\mathcal{A}_1=(Q,q_0,\Delta_Q,Q_F)$ un automate standard reconnaissant L_1 et $\mathcal{A}_2=(R,r_0,\Delta_R,R_F)$ un automate standard reconnaissant L_2 . On définit $\mathcal{A}=(S,s_0,\Delta_S,S_F)$ avec :

- $S = Q \cup R$
- $s_0 = q_0$
- $\Delta_{\mathcal{S}} = \Delta_{\mathcal{Q}} \cup \Delta_{\mathcal{R}} \cup \{ (q, \varepsilon, r_0), q \in \mathcal{Q}_{\mathcal{F}} \}$
- $S_F = R_F$

Alors l'automate A est standard et reconnaît $L_1.L_2$.

Démonstration visuelle

Exemple (Produit)

Exemple (Produit)

Exemple (Produit)

Itération

Proposition (Itération d'un langage régulier)

Soit L un langage régulier. Alors l'itéré L* du langage L est un langage régulier.

Itération

Démonstration.

Soit L un langage régulier. Soit $A = (Q, q_0, \Delta_Q, Q_F)$ un automate standard reconnaissant L. On définit $A' = (R, r_0, \Delta_R, R_F)$ avec :

- $R = Q \cup \{r_0\}$
- $\blacksquare R_F = Q_F \cup \{r_0\}$

Alors l'automate A' est standard reconnaît L^* .

Démonstration visuelle

Itération

Exemple (Itération)

Itération

Exemple (Itération)

Bilan

Soit L, L_1 , L_2 des langages réguliers alors :

- *L* est régulier
- $L_1 \cup L_2$ est régulier
- $L_1 \cap L_2$ est régulier
- \blacksquare $L_1.L_2$ est régulier
- L* est régulier

Cinquième partie

Expressions régulières

Plan de ce cours

- 7 Expressions régulières
 - Définitions
 - Théorème de Kleene
 - Lemme de l'étoile

Plan

- 7 Expressions régulières
 - Définitions
 - Théorème de Kleene
 - Lemme de l'étoile

Expression régulière

Définition (Expression régulière)

Une expression régulière ou expression rationnelle sur un alphabet Σ est définie par les règles suivantes :

- $\blacksquare \varnothing$ et ε sont des expressions régulières
- $\forall a \in \Sigma$, a est une expression régulière
- Si e₁ et e₂ sont des expressions régulières, alors :
 - \bullet $e_1 + e_2$ est une expression régulière appelée somme de e_1 et e_2
 - \bullet e_1e_2 est une expression régulière appelée produit de e_1 et e_2
- Si e est une expression régulière, alors :
 - e* est une expression régulière appelée itérée de e
 - (e) est une expression régulière

Remarque

 \emptyset et ε sont parfois notées 0 et 1.

Définition (Langage représenté par une expression régulière)

Soit e une expression régulière, on définit le langage représenté par e, noté $\mathcal{L}(e)$, par :

- $\mathcal{L}(\varnothing) = \varnothing \text{ et } \mathcal{L}(\varepsilon) = \{\varepsilon\}$
- $\blacksquare \forall a \in \Sigma, \mathcal{L}(a) = \{a\}$
- Si e₁ et e₂ sont des expressions régulières, alors :
 - $\mathcal{L}(e_1 + e_2) = \mathcal{L}(e_1) \cup \mathcal{L}(e_2)$
 - $\mathcal{L}(e_1e_2) = \mathcal{L}(e_1).\mathcal{L}(e_2)$
- Si e est une expression régulière, alors :
 - $\mathcal{L}(e^*) = \mathcal{L}(e)^*$
 - $\mathcal{L}((e)) = \mathcal{L}(e)$

Langages rationnels

Définition (Langage rationnel)

Un **langage rationnel** est un langage *L* tel qu'il existe une expression régulière e qui représente le langage L.

$$L = \mathcal{L}(e)$$

Expression régulière

Exemple (Expression régulière)

- L'expression a(a+b)b représente le langage $L = \{aab, abb\}$
- L'expression baa^*b représente le langage $L = \{baa^nb, n \ge 0\}$
- L'expression a^*b^* représente le langage $L = \{a^nb^m, n \ge 0, m \ge 0\}$

Définition (Égalité d'expressions régulières)

Deux expressions régulières e_1 et e_2 sont égales, noté $e_1 = e_2$, si elles représentent le même langage :

$$\mathcal{L}(e_1) = \mathcal{L}(e_2)$$

Propriétés des expressions régulières

Propriétés des opérations sur les expressions régulières

Soit e_1 , e_2 , e_3 des expressions régulières sur un alphabet Σ .

Propriétés de la somme :

$$\bullet$$
 $e_1 + (e_2 + e_3) = (e_1 + e_2) + e_3 = e_1 + e_2 + e_3$

$$e_1 + e_2 = e_2 + e_1$$

$$\mathbf{e} + \emptyset = \emptyset + e = e$$

$$e + e = e$$

■ Propriétés du produit :

$$\bullet$$
 $(e_1e_2)e_3 = e_1(e_2e_3) = e_1e_2e_3$

$$e\varepsilon = \varepsilon e = e$$

$$e\emptyset = \emptyset e = \emptyset$$

Distributivité du produit par rapport à la somme :

$$e_1(e_2+e_3)=e_1e_2+e_1e_3$$

$$(e_1 + e_2)e_3 = e_1e_3 + e_2e_3$$

Identités remarquables

Soit e, e_1 , e_2 des expressions régulières sur un alphabet Σ .

•
$$e^* = (e^*)^* = e^*e^* = e^*(e + \varepsilon) = (e + \varepsilon)e^* = \varepsilon + ee^* = \varepsilon + e^*e$$

$$\bullet (e_1 + e_2)^* = (e_1^* e_2)^* e_1^* = e_1^* (e_2 e_1^*)^* = (e_1^* e_2^*)^*$$

- $e_1(e_2e_1)^* = (e_1e_2)^*e_1$
- \bullet $(e_1^*e_2)^* = \varepsilon + (e_1 + e_2)^*e_2$
- \bullet $(e_1e_2^*)^* = \varepsilon + e_1(e_1 + e_2)^*$

Plan

- 7 Expressions régulières
 - Définitions
 - Théorème de Kleene
 - Lemme de l'étoile

Théorème de Kleene

Rappels

- Un langage rationnel est représenté par une expression régulière
- Un langage reconnaissable est accepté par un automate d'états fini

Théorème (Théorème de Kleene)

Les langages rationnels sont les langages reconnaissables. Autrement dit :

- pour toute expression régulière, il existe un automate d'états fini qui reconnaît le langage représenté par l'expression
- pour tout automate d'états fini, il existe une expression régulière qui représente le langage accepté par l'automate

Théorème de Kleene

Preuve du théorème de Kleene

Pour prouver le théorème de Kleene, on utilise des algorithmes constructifs. Il en existe plusieurs pour chaque sens du théorème.

- Automate à partir d'une expression régulière
 - Algorithme de Thompson
- Expression régulière à partir d'un automate
 - Système d'équations régulières
 - Méthode de Brzozowski et McCluskey

Algorithme de Thompson

L'idée de l'algorithme de Thompson est de construire des automates pour chaque cas dans la définition des expressions régulières.

Algorithme de Thompson – Cas de base

 $\blacksquare \varnothing$

 \blacksquare ε

a ∈ Σ

Algorithme de Thompson – Somme $e_1 + e_2$

Algorithme de Thompson – Somme $e_1 + e_2$

Algorithme de Thompson – Produit e₁ e₂

Algorithme de Thompson – Produit e_1e_2

Algorithme de Thompson – Itéré e*

Soit \mathcal{A} l' automate construit à partir de e.

Algorithme de Thompson – Itéré e*

Soit A l' automate construit à partir de e.

Exemple (Algorithme de Thompson)

Soit
$$e = (a + b)^*ab$$

Automates pour a et b

Soit
$$e = (a + b)^*ab$$

Automate pour a + b

Soit
$$e = (a + b)^*ab$$

Automate pour $(a + b)^*$

Soit
$$e = (a + b)^*ab$$

Automate pour $(a + b)^*a$

Soit
$$e = (a + b)^*ab$$

Automate pour $(a + b)^*ab$

Système d'équations

Pour trouver une expression régulière à partir d'un automate :

- 1 On écrit un système d'équations correspondant à l'automate
- 2 On résout le système pour trouver l'expression régulière

Définition (Langage accepté à partir d'un état par un automate)

Le **langage accepté à partir d'un état** q par un automate A, noté L(q)ou L_a , est l'ensemble des mots acceptés à partir de l'état q.

$$L(q) = L_q = \{ w \in \Sigma^*, (q, w) \mapsto^* (q', \varepsilon), q' \in Q_F \}$$

Remarque

$$\mathcal{L}(\mathcal{A}) = \mathcal{L}(q_0)$$

Équation définissant un langage accepté à partir d'un état

Le langage accepté à partir d'un état q par un automate $\mathcal A$ est défini par une équation de la forme :

$$L(q) = igcup_{(q,a,q') \in \Delta} \mathsf{a} L(q') \cup egin{cases} arnothing & \mathsf{si} \ q
otin Q_f \ \{arepsilon\} & \mathsf{si} \ q \in Q_f \end{cases}$$

Exemple (Équation définissant un langage accepté à partir d'un état)

$$\begin{cases}
L_0 = bL_0 \cup aL_1 \\
L_1 = bL_0 \cup aL_1 \cup \{\varepsilon\}
\end{cases}$$

Équation d'une expression régulière à partir d'un état

Soit X_q l'expression régulière qui représente L_q , alors :

$$X_q = \sum_{(q,a,q') \in \Delta} aX_{q'} + egin{cases} \varnothing & ext{si } q
otin Q_f \ arepsilon & ext{si } q \in Q_f \end{cases}$$

Exemple (Équation d'une expression régulière à partir d'un état)

$$\begin{cases} X_0 = bX_0 + aX_1 \\ X_1 = bX_0 + aX_1 + \varepsilon \end{cases}$$

Lemme (Lemme d'Arden)

Soit A et B deux langages tels que $\varepsilon \notin A$, alors l'équation :

$$X = AX + B$$

admet A*B comme unique solution.

Lemme d'Arden

Lemme d'Arden.

- I $X = A^*B$ est solution. En effet : $AX + B = A(A^*B) + B = (AA^* + \varepsilon)B = A^*B = X$
- 2 $X = A^*B$ est la plus petite solution. Soit X une autre solution, alors : $X = AX + B = A(AX + B) + B = A^2X + AB + B$ et en continuant : $\forall n > 0, X = A^{n+1}X + A^nB + \ldots + AB + B$ donc, X contient tous les A^nB , donc A^*B , c'est-à-dire $A^*B \subset X$.
- Si $\varepsilon \notin A$, la solution est unique. Soit X une solution, on sait déjà que $A^*B \subset X$. On sait aussi : $\forall n > 0, X = A^{n+1}X + A^nB + \ldots + AB + B$ Soit w un mot de longueur n de X, alors $w \notin A^{n+1}X$ puisque les mots de $A^{n+1}X$ sont de longueur au moins n+1 car $\varepsilon \notin A$. Donc $w \in A^nB + \ldots + AB + B \subset A^*B$. Donc $X \subset A^*B$. Donc $X = A^*B$.

Système d'équations

Système d'équations

On considère les langages réguliers A_i^j , B_i tels qu'aucun A_i^j ne contiennent ε , alors le système d'équations :

$$\begin{cases} X_1 = A_1^1 X_1 + A_2^1 X_2 + \ldots + A_n^1 X_n + B_1 \\ \ldots \\ X_n = A_1^n X_1 + A_2^n X_2 + \ldots + A_n^n X_n + B_n \end{cases}$$

admet une solution unique.

Résolution d'un système d'équations

Pour résoudre le système, on utilise le lemme d'Arden pour résoudre une des équations, puis on remplace dans les autres équations, et on itère comme pour la résolution par la méthode de Gauss.

Système d'équations

Exemple (Résolution d'un système d'équations)

$$\begin{cases} X_0 = bX_0 + aX_1 \\ X_1 = bX_0 + aX_1 + \varepsilon \end{cases}$$

On résout la seconde équation :

$$X_1 = aX_1 + (bX_0 + \varepsilon) = a^*(bX_0 + \varepsilon)$$

Puis on remplace X_1 dans la première équation :

$$X_0 = bX_0 + a(a^*(bX_0 + \varepsilon))$$

= $bX_0 + aa^*bX_0 + aa^*$
= $(b + aa^*b)X_0 + aa^*$
= $(b + aa^*b)^*aa^*$

Système d'équations

Exemple (Résolution d'un système d'équations)

$$X_0 = (b + aa^*b)^*aa^*$$

= $((\varepsilon + aa^*)b)^*aa^*$
= $(a^*b)^*aa^*$
= $(a^*b)^*a^*a$
= $(a + b)^*a$

Méthode de Brzozowski et McCluskey (1/2)

La **méthode de Brzozowski et McCluskey** est une méthode d'élimination d'états à partir d'un automate \mathcal{A} qui est d'abord transformé en automate généralisé :

- \blacksquare il possède un seul état initial α et un seul état final ω
- les transitions sont étiquetés par des expressions rationnelles
- lacktriangle aucune transition n'entre dans lpha et aucune transition ne sort de ω

Pour transformer A en automate généralisé, on ajoute les deux état α et ω et on ajoute des ε -transitions depuis α vers les états initiaux de \mathcal{A} et depuis les états finaux de A vers ω .

Puis on va réduire l'automate généralisé jusqu'à n'avoir que les états α et ω et une expression régulière entre les deux.

On itère les réductions suivantes :

■ Réduction des transitions : s'il existe deux transitions (q, x, r) et (q, y, r), on les remplace par une transition (q, x + y, r)

■ Réduction des états : pour supprimer un état r, on considère tous les couples (q, s) tels qu'il existe des transitions (q, x, r), (r, y, r), (r, z, s) et on remplace ces transitions par (r, xy^*z, s)

Exemple (Méthode de Brzozowski et McCluskey)

On transforme l'automate en automate généralisé

On supprime l'état 0

Exemple (Méthode de Brzozowski et McCluskey)

On supprime les transitions a et bb^*a

$$b^*a(a + bb^*a)^* = b^*a((\varepsilon + bb^*)a)^*$$

= $b^*a(b^*a)^*$
= $(b^*a)^*b^*a$
= $(a + b)^*a$

Plan

- 7 Expressions régulières
 - Définitions
 - Théorème de Kleene
 - Lemme de l'étoile

ldée

- Un langage fini est régulier
- Pour un langage infini, la taille des mots est non-bornée
- Un automate comporte un nombre fini d'états
- \rightarrow Si l'automate comporte n états, alors lorsqu'un mot w de longueur |w| > n est reconnu, on passe nécessairement deux fois par le même état...et on peut itérer!

Lemme de l'étoile

Lemme (Lemme de l'étoile)

Soit L un langage régulier infini. Alors, il existe un entier N, tel que tout mot w de longueur $|w| \ge N$ possède une factorisation w = xyz telle que :

- $y \neq \varepsilon$
- |*xy*| ≤ *N*
- $xy^nz \in L, \forall n \geq 0$

Remarques

- Le lemme de l'étoile s'appelle également lemme de gonflement ou lemme de pompage
- Il existe plusieurs variantes de ce lemme

Lemme de l'étoile

Lemme de l'étoile.

Soit L un langage régulier infini et $A = (Q, q_0, \Delta, Q_F)$ un automate fini reconnaissant L. On pose N = |Q|.

- **1** Soit $w \in L$ tel quel $|w| \geq N$. On peut écrire $w = w_1 \dots w_n w'$
- 2 Alors $(q_0, w_1 \dots w_n w') \mapsto (q_1, w_2 \dots w_n w') \mapsto^* (q_N, w') \mapsto^* (q_f, \varepsilon)$
- 3 Or, comme N = |Q|, il existe $0 \le i \ne j \le N$ tel que $q_i = q_i = q$
- 4 On note $x = w_1 ... w_i$, $y = w_{i+1} ... w_i$ et $z = w_{i+1} ... w_N w'$
- 5 Alors, $(q_0, xyz) \mapsto^* (q, yz) \mapsto^* (q, z) \mapsto^* (q_f, \varepsilon)$
- 6 Et donc, $\forall n > 0, (v^{n+1}, q) \mapsto^* (v^n, q)$, c'est-à-dire, $xv^nz \in L$
- 7 Enfin, |xy| = i < N.

Lemme de l'étoile

Utilisation du lemme de l'étoile

- Attention, ce n'est qu'une simple implication! Il existe des langages non-réguliers qui ont également cette propriété.
- → On n'utilise jamais le lemme de l'étoile pour montrer qu'un langage est régulier. Question : comment fait-on alors?
 - En revanche, si un langage n'a pas cette propriété, on est certain qu'il n'est pas régulier, par contraposée.
- → C'est l'utilisation principale du lemme de l'étoile : montrer qu'un langage n'est pas régulier.

Langage *a*ⁿ*b*ⁿ

Proposition (Langage $a^n b^n$)

Le langage $L = \{a^n b^n, n \ge 0\}$ n'est pas régulier.

Langage aⁿbⁿ

Démonstration.

- 1 Supposons que $L = \{a^n b^n, n \ge 0\}$ soit régulier.
- 2 On applique le lemme de l'étoile pour obtenir la constante N.
- 3 On considère le mot $w = a^N b^N$. On a bien |w| = 2N > N.
- 4 On peut donc décomposer w = xyz avec |y| > 0
- **5** Comme |xy| < N, x et y ne sont composés que de a.
- 6 Soit k = |y| > 0, alors $xy^nz = a^{N+(n-1)k}b^N$ pour tout entier n > 0.
- 7 $xy^nz \in L$ donc N + (n-1)k = N et donc k = 0. Contradiction.
- 8 Donc L n'est pas régulier.

Sixième partie

Minimisation d'un automate d'états fini

Plan de ce cours

8 Minimisation d'un automate

- Automate minimal
- Test de minimalité
- Automate des résiduels
- Algorithme de Moore

Plan

8 Minimisation d'un automate

- Automate minimal
- Test de minimalité
- Automate des résiduels
- Algorithme de Moore

Exemple introductif

Exemple (Automate minimal)

- L'automate est déterministe
- Le langage reconnu est $L = \{ab, ac\}$
- II existe d'autres automates qui accepte L
- Comment trouver l'automate déterministe complet qui a le plus petit nombre d'états?
- → Existe-t-il un unique automate minimal?

Exemple introductif

Exemple (Automate minimal)

- Idée : le langage reconnu depuis q_1 est le même que le langage reconnu depuis q_2
- ightarrow On peut fusionner les états!

Morphisme d'automate

Définition (Morphisme d'automate)

Soit $A_Q = (Q, q_0, \delta, Q_F)$ et $A_R = (R, r_0, \delta, R_F)$ deux automates déterministes complets. Un morphisme d'automate est une application $\varphi: Q \to R$ telle que :

- $\varphi(q_0) = r_0$
- $\forall q \in Q, a \in \Sigma, \varphi(\delta(q, a)) = \delta(\varphi(q), a)$
- $\varphi^{-1}(R_F) = Q_F$, c'est-à-dire, $q \in Q_F \iff \varphi(q) \in R_F$

Remarque

Les morphismes d'automates sont définis uniquement pour les automates déterministes complets.

Morphisme d'automate

Proposition (Équivalence par morphisme)

Soient A_1 et A_2 deux automates et φ un morphisme d'automate de A_1 vers A_2 . Alors, A_1 et A_2 accepte le même langage :

$$\mathcal{L}(\mathcal{A}_1) = \mathcal{L}(\mathcal{A}_2)$$

Morphisme d'automate

Définition (Automates isomorphes)

Deux automates \mathcal{A}_1 et \mathcal{A}_2 sont **isomorphes** s'il existe un morphisme d'automate bijectif de \mathcal{A}_1 vers \mathcal{A}_2 . Deux automates isomorphes diffèrent uniquement par le nom des états.

Définition (Automate plus petit)

Un automate A_2 est **plus petit** que A_1 s'il existe un morphisme surjectif A_1 vers A_2 . A_2 contient alors moins d'états que A_1 .

Remarque

Un morphisme induit une relation d'ordre partiel sur les automates.

Automate minimal

Théorème (Automate minimal)

Il existe un unique automate déterministe complet minimal.

Remarques

- La minimalité porte sur le nombre d'états d'un automate complet!
- L'unicité est à isomorphisme près.

Algorithmes de minimisation

Algorithmes de minimisation

Deux cas se présentent :

- 1 On dispose d'une expression régulière e
 - On veut construire l'automate minimal qui reconnaît le langage $\mathcal{L}(e)$ représenté par l'expression régulière
 - → Automate des résiduels
- 2 On dispose d'un automate déterministe A
 - On veut construire l'automate minimal qui reconnaît le langage $\mathcal{L}(A)$ accepté par l'automate
 - → Algorithme de Moore

Plan

- 8 Minimisation d'un automate
 - Automate minimal
 - Test de minimalité
 - Automate des résiduels
 - Algorithme de Moore

États séparables

Définition (États séparables)

Deux états q_1 et q_2 sont **séparables** s'il existe un mot w tel que, étant donné $q_1'=\delta(q_1,w)$ et $q_2'=\delta(q_2,w)$, alors $q_1'\in Q_F$ et $q_2'\not\in Q_F$, c'est-à-dire le chemin depuis q_1 aboutit à un état final tandis que le chemin depuis q_2 aboutit à un état non-final.

Définition (États inséparables)

Deux états qui ne sont séparés par aucun mot sont dits **inséparables** ou **indistinguables**.

Remarque

Deux états inséparables reconnaissent le même langage.

États séparables

Exemple (États séparables)

Dans l'automate ci-contre :

- \blacksquare ε sépare q_1 et q_2
- aab ne sépare pas q₁ et q₂
- \blacksquare a sépare q_0 et q_2

Automate minimal

Proposition (Automate minimal)

Un automate déterministe complet est minimal si et seulement si ses états sont deux à deux séparables

Remarques

- Un automate minimal ne contient pas deux états inséparables
- Ce résultat donne un moyen de montrer qu'un automate est minimal : il suffit d'exhiber pour chaque paire d'états un mot qui les sépare

Automate minimal

Exemple (Automate minimal)

Cet automate est minimal

Plan

- 8 Minimisation d'un automate
 - Automate minimal
 - Test de minimalité
 - Automate des résiduels
 - Algorithme de Moore

Résiduel

Définition (Résiduel)

Soit un alphabet Σ , un langage L sur l'alphabet Σ et un mot $w \in \Sigma^*$. Le **résiduel** de L par rapport à w est le langage :

$$w^{-1}L = \{u \in \Sigma^*, w \cdot u \in L\}$$

C'est l'ensemble des mots de L qui commencent par w auxquels on a retiré ce préfixe w

Remarque

Le résiduel est aussi parfois noté L/w

Résiduel

Exemple (Résiduel)

Soit $L = \{ab, ba, aab\}$:

$$a^{-1}L = \{b, ab\}$$

$$b^{-1}L = \{a\}$$

$$c^{-1}L = \emptyset$$

$$\blacksquare$$
 $(ab)^{-1}L = \varepsilon$

Soit
$$L = aa(bb + c)^*$$
:

$$a^{-1}L = a(bb + c)^*$$

$$b^{-1}L = \emptyset$$

$$c^{-1}L = \emptyset$$

$$aab)^{-1}L = b(bb+c)^*$$

Propriétés des résiduels

Propriétés des résiduels

Soit E, F des expressions régulières sur un alphabet Σ , $u, v \in \Sigma^*$, $a \in \Sigma$:

- $= \varepsilon^{-1}F = F$
- $(uv)^{-1}E = v^{-1}(u^{-1}E)$
- $u^{-1}(E+F) = u^{-1}E + u^{-1}F$
- $a^{-1}(EF) = \begin{cases} (a^{-1}E)F & \text{si } \varepsilon \notin \mathcal{L}(E) \\ (a^{-1}E)F + a^{-1}F & \text{si } \varepsilon \in \mathcal{L}(E) \end{cases}$
- $a^{-1}E^* = (a^{-1}E)E^*$

Proposition (Automate et résiduel)

Soit $\mathcal{A}=(Q,q_0,\delta,Q_F)$ un automate déterministe, et $L=\mathcal{L}(\mathcal{A})$, alors pour tout $w\in\Sigma^*$ et $q\in Q$:

$$(q_0, w) \mapsto^* (q, \varepsilon) \implies w^{-1}L = L_q$$

Démonstration.

$$x \in w^{-1}L \iff wx \in L$$

$$\iff \exists q_f \in Q_F, (q_0, wx) \mapsto^* (q_f, \varepsilon)$$

$$\iff \exists q_f \in Q_F, (q_0, wx) \mapsto^* (q, x) \mapsto^* (q_f, \varepsilon)$$

$$\iff \exists q_f \in Q_F, (q, x) \mapsto^* (q_f, \varepsilon) \iff x \in L_q$$

Proposition (Automate et résiduel)

L'ensemble des résiduels d'un langage reconnaissable est égal à ses langages L_a , c'est-à-dire si $A = (Q, q_0, \delta, Q_F)$ est un automate déterministe complet alors :

$$\{w^{-1}\mathcal{L}(\mathcal{A}), w \in \Sigma^*\} = \{L_q, q \in Q\}$$

Conséquences

- Le nombre de résiduels de $\mathcal{L}(\mathcal{A})$ est fini
- Le nombre de résiduels de $\mathcal{L}(A)$ est toujours inférieur à |Q| car il peut exister deux état q_1 et q_2 tels que $L_{q_1} = L_{q_2}$.

Automate des résiduels

Soit L un langage avec un nombre fini de résiduels, alors l'automate des **résiduels** de L est l'automate déterministe $A_L = \{Q, q_0, \delta, Q_F\}$:

- $Q = \{ w^{-1}L, w \in \Sigma^* \}$
- $q_0 = L$
- $\delta(w^{-1}L, a) = (wa)^{-1}L$
- $Q_F = \{w^{-1}L, w \in L\}$

Proposition (Automate des résiduels)

L'automate A_L des résiduels de L reconnaît le langage L.

Conséquence importante

L'automate des résiduels est minimal pour le langage L

Théorème (Théorème de Myhill-Nerode)

Un langage est reconnaissable si et seulement s'il a un nombre fini de résiduels

Construction de l'automate des résiduels

Construction de l'automate des résiduels

Soit un langage L avec n résiduels :

- On numérote les états de 0 à n-1
- Le résiduel *L_i* correspond à l'état *i*
- L'état initial 0 correspond à $L_0 = \varepsilon^{-1}L = L$
- Il existe une transition (i, a, j) si et seulement si $L_i = a^{-1}L_i$
- i est un état final si et seulement si $\varepsilon \in L_i$

$$L = 1*0(0+1)$$

	0	1
L		

$$L = 1*0(0+1)$$

- $0^{-1}L = (0+1) = L_1$
- $1^{-1}L = L$

	0	1
L	L_1	L
L_1		

$$L = 1*0(0+1)$$

- $0^{-1}L = (0+1) = L_1$
- $1^{-1}L = L$
- $0^{-1}L_1 = \varepsilon = L_2$
- $1^{-1}L_1 = \varepsilon = L_2$

	0	1
L	L_1	L
L_1	L_2	L_2
L ₂		

$$L = 1*0(0+1)$$

- $0^{-1}L = (0+1) = L_1$
- $1^{-1}L = L$
- $0^{-1}L_1 = \varepsilon = L_2$
- $1^{-1}L_1 = \varepsilon = L_2$
- $0^{-1}L_2 = \emptyset = L_3$
- $1^{-1}L_2 = \emptyset = L_3$

	0	1
L	L_1	L
L_1	L_2	L_2
L ₂	L_3	L_3
L ₃		

$$L=1*0(0+1)$$

$$0^{-1}L = (0+1) = L_1$$

$$1^{-1}L = L$$

$$0^{-1}L_1 = \varepsilon = L_2$$

$$1^{-1}L_1 = \varepsilon = L_2$$

$$0^{-1}L_2 = \emptyset = L_3$$

■
$$1^{-1}L_2 = \emptyset = L_3$$

$$0^{-1}L_3 = \emptyset = L_3$$

■
$$1^{-1}L_3 = \emptyset = L_3$$

	0	1
L	L_1	L
L_1	L_2	L ₂
L ₂	L_3	L ₃
L ₃	L_3	L ₃

$$L = 1*0(0+1)$$

$$0^{-1}L = (0+1) = L_1$$

$$1^{-1}L = L$$

$$0^{-1}L_1 = \varepsilon = L_2$$

$$1^{-1}L_1 = \varepsilon = L_2$$

$$0^{-1}L_2 = \emptyset = L_3$$

$$1^{-1}L_2 = \emptyset = L_3$$

$$0^{-1}L_3 = \emptyset = L_3$$

$$0^{-1}L_3 = \varnothing = L_3$$

■
$$1^{-1}L_3 = \emptyset = L_3$$

	0	1
L	L_1	L
L_1	L_2	L_2
L ₂	L_3	L ₃
L ₃	L_3	L ₃

$$L = (a+b)^*ab$$

	а	b
L		

$$L = (a + b)^*ab$$

$$a^{-1}L = (a+b)^*ab + b = L_1$$

$$b^{-1}L = (a+b)^*ab = L$$

	а	Ь
L	L_1	L
L_1		

$$L = (a + b)^*ab$$

$$a^{-1}L = (a+b)^*ab + b = L_1$$

$$b^{-1}L = (a+b)^*ab = L$$

$$\bullet$$
 $a^{-1}L_1 = (a+b)^*ab+b+\varnothing = L_1$

$$b^{-1}L_1 = (a+b)^*ab + \varepsilon = L_2$$

	а	b
L	L_1	L
L_1	L_1	L ₂
L_2		

$$L = (a+b)^*ab$$

$$a^{-1}L = (a+b)^*ab + b = L_1$$

$$b^{-1}L = (a+b)^*ab = L$$

$$\bullet$$
 $a^{-1}L_1 = (a+b)^*ab+b+\varnothing = L_1$

■
$$b^{-1}L_1 = (a+b)^*ab + \varepsilon = L_2$$

$$\bullet$$
 $a^{-1}L_2 = (a+b)^*ab+b+\varnothing = L_1$

■
$$b^{-1}L_2 = (a+b)^*ab + \emptyset = L$$

	а	b
L	L_1	L
L_1	L_1	L ₂
L_2	L_1	L

$$L = (a + b)^*ab$$

$$a^{-1}L = (a+b)^*ab + b = L_1$$

$$b^{-1}L = (a+b)^*ab = L$$

$$a^{-1}L_1 = (a+b)^*ab+b+\varnothing = L_1$$

■
$$b^{-1}L_1 = (a+b)^*ab + \varepsilon = L_2$$

$$a^{-1}L_2 = (a+b)^*ab+b+\varnothing = L_1$$

■
$$b^{-1}L_2 = (a+b)^*ab + \emptyset = L$$

	а	b
L	L_1	L
L_1	L_1	L ₂
L ₂	L_1	L

Plan

8 Minimisation d'un automate

- Automate minimal
- Test de minimalité
- Automate des résiduels
- Algorithme de Moore

Congruence de Nérode

Définition (Congruence de Nérode)

Soit $\mathcal A$ un automate fini déterministe. Deux états q_1 et q_2 sont **équivalents par la congruence de Nérode**, noté $q_1\cong q_2$, si les langages acceptés à partir de q_1 et q_2 sont identiques :

$$q_1 \cong q_2 \iff L(q_1) = L(q_2)$$

Autrement dit, soit $w \in \Sigma^*$, soient $q_1' = \delta(q_1, w)$ et $q_2' = \delta(q_2, w)$ alors :

$$q_1\cong q_2\iff orall w\in \Sigma^*, egin{cases} q_1'\in Q_F ext{ et } q_2'\in Q_F, ext{ ou }\ q_1'
ot\in Q_F ext{ et } q_2'
ot\in Q_F \end{cases}$$

Remarque

 $q_1 \cong q_2$ signifie que q_1 et q_2 sont inséparables.

Propriétés de la congruence de Nérode

Propriétés de la congruence de Nérode

La congruence de Nérode est :

- une relation d'équivalence :
 - \blacksquare réflexive : $q \cong q$
 - **symétrique** : $q_1 \cong q_2 \iff q_2 \cong q_1$
 - transitive : $q_1 \cong q_2$ et $q_2 \cong q_3 \implies q_1 \cong q_3$
- une congruence sur les automates :
 - lacktriangle elle est compatible avec $\delta: q_1 \cong q_2 \implies \forall a \in \Sigma, \delta(q_1, a) = \delta(q_2, a)$
 - \blacksquare elle sature $Q_F: q_1 \cong q_2 \implies (q_1 \in Q_F \iff q_2 \in Q_F)$

Classe d'équivalence

Définition (Classe d'équivalence)

Soit q un état d'un automate A, note [q] la classe d'équivalence de l'état q, c'est-à-dire l'ensemble des états qui sont équivalents à q par la congruence de Nérode.

$$[q] = \{q' \in Q, q' \cong q\}$$

Remarque

Ces classes d'équivalence forment une partition de l'ensemble des états Q

Automate quotient

Définition (Automate quotient)

Soit $\mathcal{A} = (Q, q_0, \delta, Q_F)$ un automate déterministe, l'automate quotient pour la relation \cong est l'automate $\mathcal{A}' = (Q', q'_0, \delta', Q'_F)$ avec :

- $Q' = \{[q], q \in Q\}$
- $q_0' = [q_0]$
- $\delta'([q],a) = [\delta(q,a)]$
- $Q_F' = \{[q], q \in Q_F\}$

Proposition (Automate minimal)

Soit \mathcal{A}' l'automate quotient d'un automate \mathcal{A} pour la relation \cong , alors :

- $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$
- \blacksquare \mathcal{A}' est minimal

Congruence de Nérode

Définition (Congruence de Nérode pour les mots de longueur < n)

Soit A un automate fini déterministe. Deux états q_1 et q_2 sont équivalents par la congruence de Nérode pour les mots de longueur au plus n, noté $q_1 \cong_n q_2$, si les langages pour les mots de longueur au plus n acceptés à partir de q_1 et q_2 sont identiques :

$$q_1 \cong_n q_2 \iff \forall u \in \Sigma^*, |u| \leq n, (u \in L(q_1) \iff u \in L(q_2))$$

Propriétés

La relation \cong_n est également une relation d'équivalence et une congruence sur les automates.

Congruence de Nérode

Propriété importante de \cong_n

$$q_1 \cong_{n+1} q_2 \iff q_1 \cong_n q_2 \text{ et } \forall a \in \Sigma, \delta(q_1, a) = \delta(q_2, a)$$

Proposition (Congruence de Nérode)

Il existe n tel que \cong_n est identique à \cong_{n+1} et alors \cong_n est la congruence de Nérode ≅.

Conséquence

Cette propriété nous permet de concevoir un algorithme pour minimiser pas à pas un automate : l'algorithme de Moore

Algorithme de Moore

- 1 On contruit un tableau avec les états dans chaque colonne
- 2 On construit \cong_0 : $q_1 \cong_0 q_2 \iff (q_1 \in Q_F \iff q_2 \in Q_F)$
 - On numérote I la classe des états non-finaux
 - On numérote II la classe des états finaux
- 3 On construit \cong_{n+1} à partir de \cong_n :
 - 1 On contruit une ligne pour chaque lettre $a \in \Sigma$
 - 2 On associe à chaque lette a et à chaque état q le numéro de la classe correspondant à l'état $\delta(q, a)$ dans \cong_n
 - 3 On numérote les colonnes en fonction de \cong_n et du résultat obtenu à l'étape précédente pour obtenir les classes de \cong_{n+1}
 - 4 Si \cong_{n+1} est identique à \cong_n , on s'arrête

0	1	2	3	4	5

	0	1	2	3	4	5
\cong_0	1	ı	ı	Ш	П	ı
	'				l	

	0	1	2	3	4	5
\cong_0	I	ı	ı	Ш	Ш	ı
а	ı	ı	ı	Ш	Ш	ı
\cong_0 a b	1	Ш	Ш	ı	ı	ı

	0	1	2	3	4	5
≅ ₀ <i>a</i>	ı	I	I	Ш	Ш	ı
а	1	1	ı	Ш	Ш	ı
Ь	1	Ш	Ш	I	ı	ı
\cong_1		Ш	Ш	Ш	Ш	1
_				l		
				l		l

	0	1	2	3	4	5
\cong_0 a	ı	ı	ı	Ш	Ш	ı
а	ı	ı	ı	Ш	Ш	- 1
Ь	1	Ш	Ш	I	ı	ı
\cong_1 a	ı	П	Ш	Ш	Ш	ı
а	П	Ш	Ш	Ш	Ш	ı
Ь	Ш	Ш	Ш	I	ı	- 1

	0	1	2	3	4	5
\cong_0 a	I	ı	I	Ш	Ш	ı
a	1	1	1	Ш	Ш	- 1
b	ı	Ш	Ш	ı	ı	ı
\cong_1 a	1	Ш	Ш	Ш	Ш	ı
а	Ш	Ш	Ш	Ш	Ш	-1
b	Ш	Ш	Ш	ı	ı	I
\cong_2	I	П	Ш	Ш	Ш	IV
	•	,				

	0	1	2	3	4	5
\cong_0 a	ı	ı	ı	Ш	П	ı
а	ı	1	ı	Ш	Ш	ı
ь	ı	Ш	Ш	ı	ı	-1
\cong_1 a		П	Ш	Ш	Ш	ı
a	Ш	Ш	Ш	Ш	Ш	- 1
ь	П	Ш	Ш	ı	ı	ı
\cong_2 a	ı	Ш	Ш	Ш	Ш	IV
a	Ш	Ш	Ш	Ш	Ш	IV
b	П	Ш	Ш	IV	IV	IV

	0	1	2	3	4	5
\cong_0 a	ı	ı	ı	Ш	П	ı
	1	ı	I	Ш	Ш	- 1
b	1	Ш	Ш	ı	I	- 1
\cong_1 a		Ш	Ш	Ш	Ш	I
а	Ш	Ш	Ш	Ш	Ш	- 1
b	П	Ш	Ш	- 1	I	ı
\cong_2	ı	Ш	Ш	Ш	Ш	IV
	П	Ш	Ш	Ш	Ш	IV
b	П	Ш	Ш	IV	IV	IV
\cong_3	I	Ш	П	Ш	Ш	IV

	0	1	2	3	4	5
\cong_0	I	ı	ı	П	Ш	I
а	1	1	ı	Ш	Ш	
\cong_0 a b	ı	Ш	Ш	ı	- 1	
\cong_1 a b	I	Ш	П	Ш	Ш	Π
а	Ш	Ш	Ш	Ш	Ш	
b	Ш	Ш	Ш	I	- 1	
\cong_2	ı	Ш	Ш	Ш	Ш	IV
а	Ш	Ш	Ш	Ш	Ш	IV
\cong_2 a b	Ш	Ш	Ш	IV	IV	IV
\cong_3	ı	Ш	=	Ш	Ξ	IV

	Α		С		Е	F
\cong_0	I	Ш	Ш	Ш	Ш	ı
			ļ			J

	Α	В	С	D	Е	F
≅ ₀ a b	ı	Ш	Ш	Ш	Ш	ı
a	ı	Ш	Ш	Ш	Ш	1
ь	Ш	Ш	ı	ı	Ш	П

	Α	В	С	D	Е	F
\cong_0	ı	Ш	Ш	Ш	Ш	ı
a	ı	Ш	Ш	Ш	Ш	ı
Ь	Ш	Ш		ı	П	Ш
\cong_1	ı	П	Ш	Ш	Ш	ı
		'	'	'		

	Α	В	С	D	Е	F
\cong_0	ı	Ш	Ш	Ш	Ш	ı
a	ı	Ш	Ш	Ш	Ш	ı
Ь	Ш	Ш	I	I	Ш	П
\cong_1	Ι	П	Ш	Ш	Ш	I
a	ı	Ш	Ш	Ш	Ш	ı
Ь	Ш	Ш	I	I	Ш	П

	Α	В	С	D	Е	F
\cong_0 a	ı	Ш	Ш	Ш	Ш	ı
а	ı	Ш	Ш	Ш	Ш	ı
Ь	Ш	Ш	1	ı	Ш	Ш
\cong_1	Ι	П	Ш	Ш	Ш	I
a	1	Ш	Ш	Ш	Ш	ı
Ь	Ш	Ш	1	1	Ш	Ш
\cong_2	ı	Ш	Ш	Ш	Ш	ı

	Α	В	С	D	Е	F
\cong_0	I	Ш	Ш	Ш	Ш	I
а	ı	Ш	Ш	Ш	Ш	ı
Ь	Ш	П	ı	ı	Ш	Ш
\cong_1	I	Ш	Ш	Ш	Ш	ı
а	1	Ш	Ш	Ш	Ш	1
Ь	Ш	Ш	ı	ı	Ш	Ш
\cong_2	ı	Ш	Ш	Ш	Ш	ı

Septième partie

Grammaires algébriques

Plan de ce cours

- 9 Propriétés d'une grammaire algébrique
 - Motivation et rappels
 - Propriétés
- 10 Transformations d'une grammaire algébrique
 - Grammaires réduites
 - Grammaires propres
 - Grammaires non-récursives à gauche
 - Formes normales.
 - Utilisation des formes normales

Plan

- 9 Propriétés d'une grammaire algébrique
 - Motivation et rappels
 - Propriétés
- - Grammaires réduites
 - Grammaires propres
 - Grammaires non-récursives à gauche
 - Formes normales
 - Utilisation des formes normales

Motivation

Motivation

- Le pouvoir d'expression des langages réguliers est limité!
 - On ne sait pas définir un langage régulier pour décrire les expressions bien parenthésées ou pour reconnaître aⁿbⁿ
 - → On a besoin de langages plus expressifs mais avec moins de propriétés
- Les langages de programmation sont algébriques!

Définition (Grammaire algébrique (type 2))

Une grammaire de type 2 ou grammaire algébrique ou grammaire hors contexte est une grammaire où les règles sont de la forme :

$$A \rightarrow \alpha$$

avec $A \in N$ et $\alpha \in V^*$, la partie gauche est réduite à un non-terminal.

Définition (Langage algébrique (type 2))

Un **langage algébrique** est un langage engendré par une grammaire algébrique.

Rappel: Grammaire algébrique (type 2)

Exemple (Grammaire algébrique (type 2))

La grammaire
$$G = (\{S\}, \{a, b\}, S, R)$$
 avec R :

·
$$S \rightarrow \varepsilon \mid aSb$$

engendre le langage $L = \{a^n b^n, n \ge 0\}$

Plan

- 9 Propriétés d'une grammaire algébrique
 - Motivation et rappels
 - Propriétés
- - Grammaires réduites
 - Grammaires propres
 - Grammaires non-récursives à gauche
 - Formes normales
 - Utilisation des formes normales

Langage régulier

Proposition (Langage régulier)

Tout langage régulier est algébrique

Remarques

- La réciproque est fausse! Il existe des langages algébriques qui ne sont pas réguliers!
 - Exemple : $L = \{a^n b^n, n \ge 0\}$
- Un langage algébrique non-régulier :
 - n'est pas reconnu par un automate fini
 - n'est pas représenté par une expression régulière
 - n'est pas engendré par une grammaire régulière

Propriétés des langages algébriques Union

Proposition (Union de langages algébriques)

Soient L_1 et L_2 deux langages algébriques, alors l'union $L_1 \cup L_2$ est un langage algébrique.

Démonstration.

Soit $G_1 = (N_1, T_1, S_1, R_1)$ et $G_2 = (N_2, T_2, S_2, R_2)$ des grammaires engendrant L_1 et L_2 , alors la grammaire

$$G = (N_1 \cup N_2 \cup \{S\}, T_1 \cup T_2, S, R_1 \cup R_2 \cup \{S \rightarrow S_1 \mid S_2\})$$

engendre $L_1 \cup L_2$

Propriétés des langages algébriques Produit

Proposition (Produit de langages algébriques)

Soient L_1 et L_2 deux langages algébriques, alors le produit $L_1.L_2$ est un langage algébrique.

Démonstration.

Soit $G_1 = (N_1, T_1, S_1, R_1)$ et $G_2 = (N_2, T_2, S_2, R_2)$ des grammaires engendrant L_1 et L_2 , alors la grammaire

$$G = (N_1 \cup N_2 \cup \{S\}, T_1 \cup T_2, S, R_1 \cup R_2 \cup \{S \rightarrow S_1S_2\})$$

engendre $L_1.L_2$

Proposition (Itération d'un langage algébrique)

Soient L un langage algébriques, alors l'itération L* est un langage algébrique.

Démonstration.

Soit G = (N, T, S, R) une grammaire engendrant L, alors la grammaire

$$G' = (N \cup \{S'\}, T, S', R \cup \{S' \rightarrow SS' \mid \varepsilon\})$$

engendre L*

Propriétés des langages algébriques

Proposition (Intersection de langages algébriques)

Soient L_1 et L_2 deux langages algébriques, alors l'intersection $L_1 \cap L_2$ n'est pas forcément un langage algébrique.

Contre-exemple

Soient $L_1 = \{a^n b^n c^m, n > 0, m > 0\}$ et $L_2 = \{a^n b^m c^m, n > 0, m > 0\}$. Ces deux langages sont algébriques. Leur intersection

$$L = L_1 \cap L_2 = \{a^n b^n c^n, n > 0\}$$

n'est pas un langage algébrique (voir plus loin).

◆ロト ◆部 ト ◆恵 ト ◆恵 ト ・恵 ・ 夕久 ②

Proposition (Complémentaire d'un langage algébrique)

Soient L un langage algébriques, alors le complémentaire \overline{L} **n'est pas forcément** un langage algébrique.

Démonstration.

Si \overline{L} était algébrique, alors l'intersection de deux langages algébriques serait algébrique car $L_1 \cap L_2 = \overline{\overline{L_1}} \cup \overline{\overline{L_2}}$

Propriétés des langages algébriques

Décidabilité de l'appartenance et du test du vide

Il existe des algorithmes qui permettent de savoir si :

- un mot w appartient à un langage algébrique L
- un langage algébrique *L* est vide

Indécidabilité

Soient L_1 , L_2 , L des langages algébriques sur un alphabet Σ , R un langage régulier. Il n'existe pas d'algorithmes qui permettent de savoir si :

- $L_1 \cap L_2 = \emptyset$
- $L = \Sigma^*$
- $L_1 = L_2$
- $L_1 \subset L_2$
- I = R

- $\blacksquare R \subset L$
- *L* est algébrique
- $L_1 \cap L_2$ est algébrique
- *L* est régulier

Plan

- - Motivation et rappels
 - Propriétés
- 10 Transformations d'une grammaire algébrique
 - Grammaires réduites
 - Grammaires propres
 - Grammaires non-récursives à gauche
 - Formes normales
 - Utilisation des formes normales

Définition (Symbole non-terminal utile)

Soit G = (N, T, S, R). Un symbole non-terminal $X \in N$ est :

- **productif** si $\mathcal{L}_G(X) \neq \emptyset$
- **accessible** s'il existe α et β tels que $S \to^* \alpha X \beta$
- **utile** s'il est productif et qu'il existe α et β tels que $S \to^* \alpha X \beta$, et α et β ne contiennent que des symboles non-terminaux productifs

Grammaire réduite

Définition (Grammaire réduite)

Une grammaire est **réduite** si tous ses symboles non-terminaux sont utiles.

Remarques

- On ne change pas le langage engendré en supprimant les non-terminaux inutiles.
- Si l'axiome est inutile, la grammaire engendre le langage vide.

Calcul des symboles non-terminaux productifs

Calcul des symboles non-terminaux productifs

- 1 Calculer l'ensemble V_0 des symboles non-terminaux X pour lesquels il existe une règle $X \to \alpha, \alpha \in A^*$
- 2 Calculer l'ensemble V_{i+1} formé de V_i et des symboles non-terminaux X pour lesquels il existe une règle $X \to \alpha, \alpha \in (A \cup V_i)^*$
- Arrêter lorsque $V_{i+1} = V_i$. Cet ensemble est l'ensemble des symboles non-terminaux productifs.

Calcul des symboles non-terminaux accessibles

- **1** Poser $W_0 = \{S\}$
- 2 Calculer l'ensemble W_{i+1} formé de W_i et des symboles non-terminaux X pour lesquels il existe une règle $Y \to \alpha X\beta$, $Y \in W_i$
- 3 Arrêter lorsque $W_{i+1} = W_i$. Cet ensemble est l'ensemble des symboles non-terminaux accessibles.

Algorithme de réduction d'une grammaire

Algorithme de réduction d'une grammaire

- 1 Déterminer l'ensemble des symboles non-terminaux productifs
- 2 Supprimer l'ensemble des symboles non-terminaux non-productifs, ainsi que les règles dans lesquels ils apparaissent
- 3 Si l'axiome S est improductif, la grammaire réduite a pour seul symbole non-terminal S et un ensemble de règles vide
- 4 Si l'axiome S est productif, déterminer tous les symboles non-terminaux accessibles à partir de S. Ceci permet d'obtenir l'ensemble des symboles non-terminaux utiles.
- 5 Supprimer l'ensemble des symboles non-terminaux inutiles, ainsi que les règles dans lesquels ils apparaissent
- → La grammaire ainsi obtenue est réduite

Réduction d'une grammaire

Exemple (Réduction d'une grammaire)

- **1** Soit $G = (\{S, X, Y\}, \{a, b\}, S, R)$ avec R:
 - $\cdot S \rightarrow a \mid X$
 - $\cdot X \rightarrow XY$
 - $\cdot Y \rightarrow h$
- 2 Symboles non-terminaux productifs : $V_0 = \{S, Y\} = V_1$
- 3 On supprime X qui est improductif :
 - $\cdot S \rightarrow a$
 - $\cdot Y \rightarrow h$
- 4 Symboles non-terminaux accessibles : $W_0 = \{S\} = W_1$
- 5 On supprime Y qui est non-accessible :
 - $\cdot S \rightarrow a$
- \rightarrow La grammaire est réduite

Réduction d'une grammaire

Exemple (Réduction d'une grammaire)

- 1 Soit $G = (\{S, W, X, Y, Z\}, \{a, b, c\}, S, R)$ avec R:
 - $\cdot S \rightarrow XYZW$
 - $\cdot X \rightarrow cX$
 - $\cdot Y \rightarrow ab$
 - $\cdot Z \rightarrow cYa \mid WSW$
 - · W → =
- 2 Symboles non-terminaux productifs :
 - 1 $V_0 = \{W, Y\}$
 - 2 $V_1 = V_0 \cup \{Z\} = V_2$
- 3 *S* est improductif
- \rightarrow La grammaire réduite est $G = (\{S\}, \{a, b, c\}, S, \emptyset)$

Plan

- Motivation et rappels
- Propriétés

10 Transformations d'une grammaire algébrique

- Grammaires réduites
- Grammaires propres
- Formes normales
- Utilisation des formes normales

Définition (Grammaire propre)

Une grammaire propre ne contient :

■ pas de règle unitaire (ou renommage), c'est-à-dire la grammaire ne contient pas de règle de la forme :

$$A \rightarrow B$$

pas de production vide, c'est-à-dire la grammaire ne contient pas de règle de la forme :

$$A \rightarrow \varepsilon$$

avec $A, B \in N$ des non-terminaux

Proposition (Langage engendré par une grammaire propre)

Tout langage algébrique ne contenant pas le mot vide ε peut être engendré par une grammaire propre.

Remarque importante

Si le langage L contient le mot vide ε :

- 1 On contruit une grammaire propre G = (N, T, S, R) qui engendre le langage $L \setminus \{\varepsilon\}$
- 2 La grammaire $G' = (N \cup \{S'\}, T, S', R \cup \{S' \rightarrow S \mid \varepsilon\})$ engendre le langage L.
 - \rightarrow l'axiome S' n'apparaît jamais en partie droite d'une règle
 - \rightarrow le seul non-terminal qui peut dériver ε est S'

Définition (Symbole non-terminal annulable)

Un symbole non-terminal X est **annulable** si $X \to^* \varepsilon$

Remarque

X est annulable si :

- il existe une règle $X \to \varepsilon$
- il existe une règle $X \to Y_1 Y_2 \dots Y_n$, avec Y_1, Y_2, \dots, Y_n des symboles non-terminaux annulables

Cette propriété nous donne un algorithme pour trouver l'ensemble N_{ε} des symboles non-terminaux annulables

Calcul de l'ensemble des symboles non-terminaux annulables

- Calculer l'ensemble N_0 des symboles non-terminaux X tels qu'il existe une règle $X \to \varepsilon$
- **2** Calculer l'ensemble N_{i+1} formé de l'ensemble N_i et des symboles non-terminaux X tels qu'il existe une règle $X \to \alpha$ avec $\alpha \in N_i^*$
- 3 Arrêter lorsque $N_{i+1} = N_i$. Cet ensemble est l'ensemble N_{ε} des symboles non-terminaux annulables.

Algorithme d'élimination des productions vides

Algorithme d'élimination des productions vides

- lacktriangle Calculer l'ensemble $N_{arepsilon}$ des symboles non-terminaux annulables
- **2** Remplacer chaque règle $X \to \alpha$ par toutes les règles obtenues en remplaçant, de toutes les façons possibles, les occurrences de symboles non-terminaux annulables par le mot vide.
 - S'il y a n occurrences de symboles non-terminaux annulables dans α , 2^n règles sont créées.
- 3 Supprimer les productions vides.
- → La grammaire obtenue est équivalente à la grammaire de départ au mot vide près, et est sans production vide.

Algorithme d'élimination des productions vides

Exemple (Algorithme d'élimination des productions vides)

- **1** Soit $G = (\{S\}, \{a, b\}, S, R)$ avec R: \cdot S \rightarrow aSbS | ε
- 2 $N_{\varepsilon} = \{S\}$
- \odot On remplace S par le mot vide de toutes les façons possibles dans aSbS: 4 mots aSbS, abS, aSb, ab.
- 4 Grammaire propre obtenue :
 - $\cdot \ S \rightarrow aSbS \mid abS \mid aSb \mid ab$

Algorithme d'élimination des productions vides

Exemple (Algorithme d'élimination des productions vides)

- **1** Soit $G = (\{S\}, \{a, b\}, S, R)$ avec R: \cdot S \rightarrow aSb | SS | ε
- 2 $N_{\varepsilon} = \{S\}$
- \odot On remplace S par le mot vide de toutes les façons possibles :
 - dans aSb : 2 mots aSb. ab
 - \blacksquare dans SS: 2 mots SS. S
- 4 Grammaire propre obtenue :
 - $\cdot S \rightarrow aSb \mid ab \mid SS$

Algorithme d'élimination des règles unitaires

Algorithme d'élimination des règles unitaires

- 1 Calculer la relation \geq définie par : $X > Y \iff X \rightarrow^* Y$
- 2 Calculer la relation \sim définie par : $X \sim Y \iff X > Y$ et Y > X
- 3 Pour chaque classe d'équivalence :
 - 1 Choisir un symbole représentant
 - 2 Remplacer tous les autres symboles équivalents par ce représentant
 - 3 Éliminer toutes les règles unitaires entre symboles équivalents
- 4 En commençant par les symboles minimaux dans la relation \geq , remplacer les règles unitaires $X \to Y$ par toutes les règles $X \to \alpha$ pour tous les α tels que $Y \to \alpha$
- → La grammaire obtenue est équivalente à la grammaire de départ et est sans règle unitaire.

Algorithme d'élimination des règles unitaires

Exemple (Algorithme d'élimination des règles unitaires)

- **1** Soit $G = (\{E, T, F\}, \{+, \times, (,), a, b\}, E, R)$ avec R:
 - $\cdot E \rightarrow E + T \mid T$
 - · $T \rightarrow T \times F \mid F$
 - $\cdot F \rightarrow (E) \mid a \mid b$
- 2 If y a deux règles unitaires : $E \rightarrow T$ et $T \rightarrow F$
 - \rightarrow L'ordre obtenu est $E \ge T \ge F$ (et pas de symboles équivalents)
- 3 On commence par les symboles minimaux dans la relation \geq :
 - On substitue à $T \rightarrow F$ les règles $T \rightarrow (E) \mid a \mid b$
 - On substitue à $E \rightarrow T$ les règles $E \rightarrow T \times F \mid (E) \mid a \mid b$
- 4 On obtient:
 - $\cdot E \rightarrow E + T \mid T \times F \mid (E) \mid a \mid b$
 - $\cdot T \rightarrow T \times F \mid (E) \mid a \mid b$
 - $\cdot F \rightarrow (E) \mid a \mid b$

Plan

- - Motivation et rappels
 - Propriétés
- 10 Transformations d'une grammaire algébrique
 - Grammaires réduites
 - Grammaires propres
 - Grammaires non-récursives à gauche
 - Formes normales
 - Utilisation des formes normales

Grammaire récursive à gauche

Définition (Grammaire récursive à gauche)

Une grammaire algébrique est récursive à gauche si elle contient un symbole $A \in N$ tel qu'il existe une dérivation $A \to^* A\alpha, \alpha \in V^*$

Remarque

Ce type de grammaire ne permet pas de construire des analyseurs syntaxiques descendants. C'est ce qui motive l'élimination des récursivité à gauche.

Algorithme d'élimination des récursivité à gauche immédiate

Soit une grammaire avec des dérivations à gauche immédiates pour le symbole non-terminal A:

$$\cdot A \rightarrow A\alpha_1 \mid \ldots \mid A\alpha_n \mid \beta_1 \mid \ldots \mid \beta_m$$

Alors, on transforme la règle précédente en ajoutant le non-terminal A':

- $\cdot A \rightarrow \beta_1 A' \mid \ldots \mid \beta_m A'$
- $A' \rightarrow \alpha_1 A' \mid \ldots \mid \alpha_n A' \mid \varepsilon$

Exemple (Algorithme d'élimination des récursivité à gauche immédiate)

Soit
$$G = (\{E, T, F\}, \{+, \times, (,), a, b\}, E, R)$$
 avec R :

- $\cdot E \rightarrow E + T \mid T$
- $T \to T \times F \mid F$
- $\cdot F \rightarrow (E) \mid a \mid b$

On a deux récursivité à gauche immédiates à éliminer. La grammaire devient $G' = (\{E, E', T, T', F\}, \{+, \times, (,), a, b\}, E, R')$ avec R':

- $\cdot F \rightarrow TF'$
- $E' \rightarrow +TE' \mid \varepsilon$
- $\cdot T \rightarrow FT'$
- $T' \rightarrow \times FT' \mid \varepsilon$
- $\cdot F \rightarrow (E) \mid a \mid b$

Algorithme d'élimination des récursivité à gauche

- 1 Numéroter les non-terminaux : $N = \{A_1, \dots, A_n\}$
- 2 Pour tous les non-terminaux A_i
 - 1 Pour toutes les règles $A_i \rightarrow A_i \alpha_i$ avec j < i
 - 1 Pour chaque règle $A_i \to \beta_i$, ajouter la règle $A_i \to \beta_i \alpha_i$
 - 2 Enlever la règle $A_i \rightarrow A_i \alpha_i$
 - $\mathbf{2}$ Éliminer les récursions à gauche immédiates pour A_i

Exemple (Algorithme d'élimination des récursivité à gauche)

Soit
$$G = (\{A_1, A_2\}, \{a, b, c, d\}, A_1, R)$$
 avec R :

- $\cdot A_1 \rightarrow A_2 a \mid b$
- $\cdot A_2 \rightarrow A_2c \mid A_1d$

On déroule l'algorithme :

- 1 Pour A_1 , rien à faire.
- 2 Pour A_2 , la règle $A_2 \rightarrow A_1 d$ est concerné, on la remplace par :

$$\cdot A_2 \rightarrow A_2$$
ad | bd

On élimine la récursivité à gauche immédiate pour A_2 :

- $\cdot A_2 \rightarrow bdA_2'$
- $\cdot A_2' \rightarrow cA_2' \mid adA_2' \mid \varepsilon$

L3 Informatique

Plan

- - Motivation et rappels
 - Propriétés
- 10 Transformations d'une grammaire algébrique
 - Grammaires réduites
 - Grammaires propres
 - Grammaires non-récursives à gauche
 - Formes normales.
 - Utilisation des formes normales

Définition (Forme normale de Chomsky)

Une grammaire algébrique G = (N, T, S, R) est sous **forme normale de** Chomsky (ou forme normale quadratique) si toutes les règles de production sont sous la forme :

$$A \rightarrow a$$

$$A \rightarrow BC$$

avec $A, B, C \in N$ et $a \in A$

Remarque

L'arbre de dérivation d'une grammaire sous forme normale de Chomsky est un arbre binaire

Proposition (Forme normale de Chomsky)

Pour tout langage algébrique propre, il existe une grammaire sous forme normale de Chomsky qui l'engendre.

Corollaire (Décidabilité de l'appartenance d'un mot)

Il existe un algorithme qui permet de savoir si un mot appartient à un langage algébrique

Algorithme de mise en forme normale de Chomsky

Soit G = (N, T, S, R) une grammaire propre.

- **1** Ajouter $\{Z_a|a\in A\}$ à l'ensemble des symboles non-terminaux
- 2 Ajouter $Z_a \rightarrow a$ à l'ensemble des règles pour tout $a \in A$
- 3 Conserver toutes les règles de la forme $X \to \alpha$ avec $|\alpha| = 1$
- **4** Transformer toutes les règles de la forme $X \to \alpha$ avec $|\alpha| > 2$:
 - 1 Remplacer chaque symbole terminal a par Z_a
 - 2 Si $|\alpha| \geq 3$, c'est-à-dire $\alpha = Y_1 \dots Y_p$, ajouter p-2 nouveaux symboles T_1, \ldots, T_{p-2} et remplacer la règle $X \to Y_1 \ldots Y_p$ par :

$$X \to Y_1 T_1, \, T_1 \to Y_2 T_2, \dots, \, T_{p-3} \to Y_{p-2} T_{p-2}, \, T_{p-2} \to Y_{p-1} Y_p$$

Exemple (Forme normale de Chomsky)

- **1** Soit $G = (\{S\}, \{a, b\}, S, R)$ avec R:
 - $\cdot S \rightarrow aSbS \mid abS \mid aSb \mid ab$
- 2 On ajoute Z_a et Z_b et on transforme les règles :
 - $\cdot S \rightarrow Z_aSZ_hS \mid Z_aZ_hS \mid Z_aSZ_h \mid Z_aZ_h$
 - $\cdot Z_2 \rightarrow a. Z_b \rightarrow b$
- 3 On ajoute des nouveaux symboles T_i et on transforme les règles :
 - $\cdot S \rightarrow Z_a T_1, T_1 \rightarrow ST_2, T_2 \rightarrow Z_b S$
 - $\cdot S \rightarrow Z_2T_3, T_3 \rightarrow Z_bS$
 - $\cdot S \rightarrow Z_2 T_A \cdot T_A \rightarrow SZ_b$
 - $\cdot S \rightarrow Z_2Z_h$
 - $\cdot Z_a \rightarrow a, Z_b \rightarrow b$
- 4 La grammaire obtenue est sous forme normale de Chomsky

L3 Informatique

Forme normale de Greibach

Définition (Forme normale de Greibach)

Une grammaire algébrique G = (N, T, S, R) est sous **forme normale de Greibach** si toutes les règles de production sont sous la forme :

$$A \rightarrow a\alpha$$

avec
$$A \in N$$
, $a \in T$, $\alpha \in N^*$

Forme normale de Greibach

Proposition (Forme normale de Greibach)

Pour tout langage algébrique propre, il existe une grammaire sous forme normale de Greibach qui l'engendre.

Plan

- - Motivation et rappels
 - Propriétés
- 10 Transformations d'une grammaire algébrique
 - Grammaires réduites
 - Grammaires propres
 - Grammaires non-récursives à gauche
 - Formes normales
 - Utilisation des formes normales

Intersection avec un langage régulier

Proposition (Intersection avec un langage régulier)

Soit L_A un langage algébrique et L_R un langage régulier, alors $L_A \cap L_R$ est un langage algébrique

**

Intersection avec un langage régulier

Intersection avec un langage régulier.

Soient G=(N,T,S,R) une grammaire sous forme normale de Chomsky engendrant L_A et $\mathcal{A}=(Q,q_0,\delta,Q_F)$ un automate reconnaissant L_R . On définit la grammaire G'=(N',T,S',R') par :

- $N' = \{(q, U, q'), q \in Q, U \in N, q' \in Q\} \cup \{S'\}$
- *R*′ :
 - $(p, A, q) \rightarrow (p, B, r)(r, C, q)$ pour $r \in Q$ et $A \rightarrow BC$ de ROn génère des non-terminaux en simulant le fonctionnement de G
 - (p,A,q) o (p,a,q) pour A o aOn génère des non-terminaux en simulant le fonctionnement de G
 - $(p, a, q) \rightarrow a$ si $\delta(p, a) = q$ On simule l'automate, la suite d'états est un chemin dans l'automate
 - $S' \rightarrow (q_0, S, q_f)$ pour tout $q_f \in Q_F$ On commence bien dans l'état initial et on finit dans un état final

L3 Informatique

Huitième partie

Automates à pile

Plan de ce cours

- 11 Lemme d'itération
 - Lemme d'itération
- 12 Automates à pile simples
 - Définition
 - Lien avec les grammaires algébriques
- 13 Automates à piles
 - Définition
 - Configuration, transition et calcul
 - Critères d'acceptation
 - Automates à pile déterministes

Plan

- 11 Lemme d'itération
 - Lemme d'itération
- 12 Automates à pile simples
 - Définition
 - Lien avec les grammaires algébriques
- 13 Automates à piles
 - Définition
 - Configuration, transition et calcul
 - Critères d'acceptation
 - Automates à pile déterministes

Lemme d'itération

Théorème (Lemme d'itération pour les langages algébriques)

Soit L un langage algébrique. Alors il existe un entier N tel que tout mot w de longueur $|w| \geq N$ possède une factorisation w = xuyvz telle que :

- |uv| > 0
- $|uyv| \leq N$
- $\blacksquare xu^nyv^nz \in L, \forall n \geq 0$

Remarque

Intuitivement, il existe un non-terminal A tel que :

$$S \rightarrow^* xAz, A \rightarrow^* uAv, A \rightarrow^* y$$

Langage aⁿbⁿcⁿ

Proposition (Langage $a^n b^n c^n$)

Le langage $L = \{a^n b^n c^n, n \ge 0\}$ n'est pas algébrique.

Langage anbncn.

- 1 Supposons que $L = \{a^n b^n c^n, n > 0\}$ soit algébrique.
- 2 On applique le lemme d'itération pour obtenir la constante N.
- 3 On considère le mot $w = a^N b^N c^N$. On a bien |w| = 3N > N.
- 4 Comme |uyv| < N, u et v ne contiennent pas de a ou pas de c.
- 5 Au moment d'itérer, on n'aura plus autant de a que de b que de c puisqu'une des lettres ne sera pas itérée.
- 6 Donc L n'est pas algébrique.

Plan

- 11 Lemme d'itération
 - Lemme d'itération
- 12 Automates à pile simples
 - Définition
 - Lien avec les grammaires algébriques
- 13 Automates à piles
 - Définition
 - Configuration, transition et calcu
 - Critères d'acceptation
 - Automates à pile déterministes

Automate à pile simple

Définition (Automate à pile simple)

Un automate à pile simple A est un quadruplet $(\Sigma, \Gamma, Z_0, \Delta)$ avec :

- ∑ est l'alphabet d'entrée
- Γ est l'alphabet de la pile
- $Z_0 \in \Gamma$ est le symbole de fond de pile
- Δ est une partie finie de $\Sigma \times \Gamma \times \Gamma^*$

Automate à pile simple

Fonctionnement d'un automate à <u>pile simple</u>

On représente le fonctionnement d'un automate à pile simple à l'aide d'une pile. $(a, Z, Z') \in \Delta$ avec $Z' = Z_1 \dots Z_p$ signifie que, si le symbole courant du mot d'entrée est a. alors on doit :

- Dépiler Z
 - Si $Z = \varepsilon$, la transition a lieu pour tous les symboles en haut de la pile, la pile reste inchangée
- **2** Empiler Z_1, \ldots, Z_p
 - Si $Z' = \varepsilon$, aucun symbole n'est empilé
- 3 Lire le symbole a

Le mot est reconnu si, à la fin de la lecture du mot, la pile est vide

Automate à pile simple

Exemple (Automate à pile simple)

Soit $\mathcal{A} = (\Sigma, \Gamma, Z, \Delta)$ avec :

- $\Sigma = \{a, b, c\}$
- $\Gamma = \{A, B, Z\}$

On analyse le mot abaacaaba:

Plan

- 11 Lemme d'itération
 - Lemme d'itération
- 12 Automates à pile simples
 - Définition
 - Lien avec les grammaires algébriques
- 13 Automates à piles
 - Définition
 - Configuration, transition et calcu
 - Critères d'acceptation
 - Automates à pile déterministes

Grammaire algébrique et automate à pile simple

Proposition (Grammaire algébrique et automate à pile simple)

Toute grammaire sous forme normale de Greibach peut être transformée en un automate à pile simple

Algorithme de transformation

Soit G = (N, T, S, R) une grammaire algébrique sous forme normale de Greibach. On définit l'automate à pile simple $\mathcal{A} = (\Sigma, \Gamma, Z_0, \Delta)$ avec :

- $\Sigma = T$
- $\Gamma = N$
- $Z_0 = S$
- lacktriangle Δ : à chaque règle $A \to a\alpha$ de R, on associe la transition (a, A, α^R) où α^R est le mot miroir de α

L3 Informatique

Grammaire algébrique et automate à pile simple

Exemple (Grammaire algébrique et automate à pile simple)

Soit
$$G = (\{S, A, B, C\}, \{a, b\}, S, R)$$
 avec R :

- $\cdot \ S o aACSB \mid aSB \mid bB$
- $\cdot A \rightarrow aACS \mid aS \mid b$
- $B \rightarrow aAC \mid a$
- $\cdot C \rightarrow a$

G est bien en forme normale de Greibach. L'automate à pile simple correspondant est $A = (\{a, b\}, \{S, A, B, C\}, S, \Delta)$ avec

$$\Delta = \{(a, S, BSCA), (a, S, BS), (b, S, B), (a, A, SCA), (a, A, S), (b, A, \varepsilon), (a, B, CA), (a, B, \varepsilon), (a, C, \varepsilon)\}$$

Plan

- 11 Lemme d'itération
 - Lemme d'itération
- 12 Automates à pile simples
 - Définition
 - Lien avec les grammaires algébriques
- 13 Automates à piles
 - Définition
 - Configuration, transition et calcu
 - Critères d'acceptation
 - Automates à pile déterministes

Automate à pile

Définition (Automate à pile)

Un automate à pile A est un septuplet $(\Sigma, \Gamma, Z_0, Q, q_0, Q_F, \Delta)$ avec :

- Σ est l'alphabet d'entrée
- Γ est l'alphabet de la pile
- \blacksquare $Z_0 \in \Gamma$ est le symbole de fond de pile
- Q est un ensemble fini d'états
- $q_0 \in Q$ est un état initial
- $ullet Q_F \subseteq Q$ est un ensemble d'états finaux
- Δ est une partie finie de $(\Sigma \cup \{\varepsilon\}) \times Q \times \Gamma \times Q \times \Gamma^*$

Automate à pile

Fonctionnement d'un automate à pile

 $(a, q, Z, q', Z') \in \Delta$ avec $Z' = Z_1 \dots Z_p$ signifie que, si l'automate est dans l'état q et que le symbole courant du mot d'entrée est a, alors on doit :

- 1 Dépiler Z
 - Si $Z = \varepsilon$, la transition a lieu pour tous les symboles en haut de la pile, la pile reste inchangée
- **2** Empiler Z_1, \ldots, Z_p
 - Si $Z' = \varepsilon$, aucun symbole n'est empilé
- 3 Lire le symbole a
- 4 Transiter dans l'état q'

Représentation de $(q, a, Z, q', Z') \in \Delta$

Remarques

- Un automate à pile est une combinaison d'un automate et d'une pile. Par rapport à un automate fini, la fonction de transition prend en compte l'état de la pile et agit sur la pile.
- Un automate fini est un automate à pile avec un alphabet de pile vide $(\Gamma = \varnothing)$ et dont toutes les transitions laissent la pile inchangée
- Un automate à pile simple est un automate à pile avec un seul état.

Exemple (Automate à pile)

Exemple (Automate à pile)

L'automate à pile suivant reconnaît le langage des palindromes :

Plan

- - Lemme d'itération
- - Définition
 - Lien avec les grammaires algébriques
- 13 Automates à piles
 - Définition
 - Configuration, transition et calcul
 - Critères d'acceptation
 - Automates à pile déterministes

Configuration

Définition (Configuration)

Une **configuration** est un triplet (q, w, h) avec :

- $q \in Q$ est l'état courant de l'automate
- $w \in \Sigma^*$ est le mot restant à lire
- $h \in \Gamma^*$ est le mot sur la pile lu depuis le sommet

Remarque

La configuration initiale de l'automate à pile pour un mot w est (q_0, w, Z_0)

Définition (Transition)

Il existe une **transition** entre la configuration (q, aw, zh) et la configuration (q', w, z'h), notée :

$$(q, aw, zh) \vdash (q', w, z'h)$$

s'il existe $(a, q, z, q', z') \in \Delta$

Définition (Calcul)

Un calcul valide de l'automate à pile sur un mot w est une suite de configurations c_0, \ldots, c_n si:

- $c_0 = (q_0, w, Z_0)$ est la configuration initiale
- $c_0 \vdash c_1 \vdash \ldots \vdash c_n, \text{ noté } c_0 \vdash^* c_n$

Exemple (Transition et calcul)

Exemple (Transition et calcul)

$$(0, aabb, Z_0) \vdash (1, abb, Z_0)$$

Exemple (Transition et calcul)

$$(0, aabb, Z_0) \vdash (1, abb, Z_0) \vdash (1, bb, TZ_0)$$

Exemple (Transition et calcul)

$$(0, aabb, Z_0) \vdash (1, abb, Z_0) \vdash (1, bb, TZ_0)$$

 $\vdash (2, b, TZ_0)$

Exemple (Transition et calcul)

$$(0, aabb, Z_0) \vdash (1, abb, Z_0) \vdash (1, bb, TZ_0)$$

 $\vdash (2, b, TZ_0) \vdash (2, \varepsilon, Z_0)$

Exemple (Transition et calcul)

Soit l'automate à pile suivant qui reconnaît le langage des palindromes :

 $(0, baaab, Z_0)$

Exemple (Transition et calcul)

Soit l'automate à pile suivant qui reconnaît le langage des palindromes :

$$(0, baaab, Z_0) \vdash (0, aaab, BZ_0)$$

Exemple (Transition et calcul)

Soit l'automate à pile suivant qui reconnaît le langage des palindromes :

$$(0, baaab, Z_0) \vdash (0, aaab, BZ_0) \vdash (0, aab, ABZ_0)$$

Exemple (Transition et calcul)

Soit l'automate à pile suivant qui reconnaît le langage des palindromes :

$$(0, baaab, Z_0) \vdash (0, aaab, BZ_0) \vdash (0, aab, ABZ_0)$$

 $\vdash (1, ab, ABZ_0)$

Exemple (Transition et calcul)

Soit l'automate à pile suivant qui reconnaît le langage des palindromes :

$$(0, baaab, Z_0) \vdash (0, aaab, BZ_0) \vdash (0, aab, ABZ_0)$$

 $\vdash (1, ab, ABZ_0) \vdash (1, b, BZ_0)$

→ロト→団ト→ミト→ミト ミ からぐ

Exemple (Transition et calcul)

Soit l'automate à pile suivant qui reconnaît le langage des palindromes :

$$(0, baaab, Z_0) \vdash (0, aaab, BZ_0) \vdash (0, aab, ABZ_0)$$

 $\vdash (1, ab, ABZ_0) \vdash (1, b, BZ_0) \vdash (1, \varepsilon, Z_0)$

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

Plan

- - Lemme d'itération
- - Définition
 - Lien avec les grammaires algébriques
- 13 Automates à piles
 - Définition
 - Configuration, transition et calcul
 - Critères d'acceptation
 - Automates à pile déterministes

Mot accepté par un automate par un automate à pile

Définition (Mot accepté par un automate par un automate à pile)

Un mot w est accepté par un automate à pile si :

$$(q_0, w, Z_0) \vdash^* c_F$$

où c_F est une configuration acceptante. Plusieurs cas se présentent :

- acceptation par pile vide
- acceptation par état final
- acceptation par pile vide et état final

Acceptation par pile vide

Définition (Acceptation par pile vide)

Un mot w est accepté par pile vide par un automate à pile $(\Sigma, \Gamma, Z_0, Q, q_0, Q_F, \Delta)$ s'il existe un état $q \in Q$ tel que :

$$(q_0, w, Z_0) \vdash^* (q, \varepsilon, \varepsilon)$$

Définition (Langage accepté par pile vide)

Le langage accepté par pile vide par un automate à pile $\mathcal A$ est défini par:

$$\mathcal{L}^{V}(\mathcal{A}) = \{ w \in \Sigma^{*}, (q_0, w, Z_0) \vdash^{*} (q, \varepsilon, \varepsilon) \}$$

Acceptation par pile vide

Exemple (Acceptation par pile vide)

Acceptation par état final

Définition (Acceptation par état final)

Un mot w est accepté par état final par un automate à pile $(\Sigma, \Gamma, Z_0, Q, q_0, Q_F, \Delta)$ s'il existe un état $q_f \in Q_F$ et un mot $z \in \Gamma^*$ tels que:

$$(q_0, w, Z_0) \vdash^* (q_f, \varepsilon, z)$$

Définition (Langage accepté par état final)

Le langage accepté par état final par un automate à pile ${\mathcal A}$ est défini par:

$$\mathcal{L}^{F}(\mathcal{A}) = \{ w \in \Sigma^{*}, (q_0, w, Z_0) \vdash^{*} (q_f, \varepsilon, z) \}$$

Acceptation par état final

Exemple (Acceptation par état final)

Critères d'acceptation

Proposition (Équivalence des critères d'acceptation)

Les critères d'acceptation par pile vide et par état final sont équivalents, c'est-à-dire que les langages acceptés par pile vide \mathcal{L}^V sont exactement les langages acceptés par état final \mathcal{L}^F .

<u>Équivalence</u> des critères d'acceptation.

- $\mathcal{L}^V \subset \mathcal{L}^F$: chaque transition dans laquelle Z_0 est dépilé est remplacée par une transition vers un nouvel état final
- ullet $\mathcal{L}^F\subset\mathcal{L}^V$: après avoir atteint l'état final, on vide entièrement la pile

Plan

- 11 Lemme d'itération
 - Lemme d'itération
- 12 Automates à pile simples
 - Définition
 - Lien avec les grammaires algébriques
- 13 Automates à piles
 - Définition
 - Configuration, transition et calcu
 - Critères d'acceptation
 - Automates à pile déterministes

Automate à pile déterministe

Définition (Automate à pile déterministe)

Un automate à pile $(\Sigma, \Gamma, Z_0, Q, q_0, Q_F, \delta)$ est **déterministe** si, quelle que soit la configuration, une seule transition au plus est applicable. Dit autrement:

- δ est une fonction partielle $(\Sigma \cup \{\varepsilon\}) \times Q \times \Gamma \to Q \times \Gamma^*$
- lorsque $\delta(\varepsilon, q, z)$ est définie, alors $\delta(a, q, z)$ n'est définie pour aucune lettre $a \in \Sigma$

Remarque

Pour les automates à pile déterministes, les modes d'acceptation par pile vide et par état final ne sont plus équivalents!

Langage algébrique déterministe

Définition (Langage algébrique déterministe)

Un langage algébrique déterministe est un langage algébrique L pour lequel il existe un automate à pile déterministe A acceptant par état final tel que :

$$\mathcal{L}^{F}(\mathcal{A}) = L$$

Remarque importante

Il existe des langages algébriques non-déterministes! Par exemple, le langage des palindromes est non-déterministe (on ne sait pas deviner où est le milieu du mot).

Langage algébrique et automate à pile

Proposition (Langage algébrique et automate à pile)

Les langages algébrique sont les langages acceptés par un automate à pile

Remarques

- Les automates à pile (non-déterministes) sont nécessaires pour reconnaître les langages algébriques
- Est-il possible de passer d'une grammaire algébrique à un automate à pile et vice-versa?
 - → Oui! On a déjà fait un sens!

Neuvième partie

Plan de ce cours

- Motivation
- Définition
- Configuration, transition et calcul
- Acceptation
- Exemple
- Machine de Turing non-déterministe

Plan

- Motivation
- Configuration, transition et calcul
- Acceptation
- Exemple
- Machine de Turing non-déterministe

Comment reconnaître $a^n b^n c^n$?

Le langage $a^nb^nc^n$

- Le langage aⁿbⁿcⁿ n'est pas régulier
 - Il ne peut pas être reconnu par un automate d'états finis
- Le langage $a^nb^nc^n$ n'est pas algébrique
 - Il ne peut pas être reconnu par un automate à pile
- Pourtant, il semble «facile» de reconnaître $a^n b^n c^n$
 - → Machines de Turing!

Machine d'Alan Turing

Machine d'Alan Turing

La machine d'Alan Turing modélise la façon dont un être humain effectue des calculs :

- On peut mémoriser une quantité limitée d'information
 - Nombre fini d'états
- On peut manipuler une quantité infinie d'information sur du papier
 - Bande infinie avec une tête de lecture/écriture

Plan

- Motivation
- Définition
- Configuration, transition et calcul
- Acceptation
- Exemple
- Machine de Turing non-déterministe

Machine de Turing

Définition (Machine de Turing)

Une **machine de Turing** \mathcal{M} est un septuplet $(Q, \Gamma, \Box, \Sigma, q_0, Q_F, \delta)$ avec :

- Q est un ensemble fini d'états
- Γ est l'alphabet de la bande
- $\square \in \Gamma$ est le symbole blanc (aussi noté B)
- $\Sigma \subset \Gamma \setminus \{\Box\}$ est l'alphabet d'entrée
- $q_0 \in Q$ est un état initial
- $\blacksquare Q_F \subseteq Q$ est un ensemble d'états finaux
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{\triangleleft, \triangleright\}$ est la fonction de transition

Remarque

On peut aussi définir des états d'acceptations et des états de rejets

Machine de Turing

Fonctionnement d'une machine de Turing

 $\delta(q, a) = (q', b, \mathcal{D})$ signifie que, si la machine est dans l'état q et que le symbole sous la tête de lecture/écriture est a, alors on doit :

- Écrire la lettre b
- Transiter dans l'état q'
- Bouger la tête de lecture/écriture dans la direction \mathcal{D} (\triangleleft ou \triangleright)

État initial

Au départ :

- Le mot à reconnaître est écrit sur la bande
- La tête de lecture/écriture est placée sur la première lettre
- La bande est complétée par le symbole blanc □

Machine de Turing

Représentation de la fonction de transition

Cas particuliers:

■ La machine n'écrit rien

La machine lit un a ou b

14 Machines de Turing

- Motivation
- Définition
- Configuration, transition et calcul
- Acceptation
- Exemple
- Machine de Turing non-déterministe

Configuration

Définition (Configuration)

Une **configuration** est un triplet (u, q, v) avec :

- $u \in \Gamma^*$ est la partie de la bande à gauche de la tête (exclue)
- $\mathbf{q} \in Q$ est l'état courant de la machine
- $\mathbf{v} \in \Gamma^*$ est la partie de la bande à droite de la tête (inclue)

Remarque

La configuration initiale de la machine pour un mot w est (ε, q_0, w)

Transition

Définition (Transition)

Il existe une **transition** entre la configuration (ua, q, bv) et la configuration (u', q', v'), notée :

$$(ua,q,bv)\vdash (u',q',v')$$

avec $a, b \in \Gamma$, $q, q' \in Q$, $u, v, u', v' \in \Gamma^*$ si :

- $\delta(b,q)=(c,q',\triangleright)$ et alors :
 - $\mathbf{u}' = \mathbf{u} \mathbf{a} \mathbf{c}$
 - $\mathbf{v}' = \mathbf{v}$
- $\delta(b,q)=(c,q',\triangleleft)$ et alors :
 - \blacksquare u' = u
 - $\mathbf{v}' = acv$

Calcul

Définition (Calcul)

Un calcul valide de la machine de Turing sur un mot w est une suite de configurations c_0, \ldots, c_n si:

- $\mathbf{c}_0 = (\varepsilon, q_0, w)$ est la configuration initiale
- $c_0 \vdash c_1 \vdash \ldots \vdash c_n$, noté $c_0 \vdash^* c_n$

Arrêt d'une machine de Turing

Définition (Arrêt d'une machine de Turing)

Une machine de Turing s'arrête sur une configuration (u, q, av) s'il n'existe pas de transition possible, c'est-à-dire s'il n'existe pas de transition $\delta(q, a)$.

Remarque

De manière équivalente, on peut définir un état de rejet q_R et pour toutes les transitions qui n'existent pas, on définit une transition vers q_R .

Arrêt d'une machine de Turing

Exemple (Arrêt d'une machine de Turing)

Soit $\mathcal M$ une machine de Turing avec les règles de transition suivantes :

- **1** $\delta(q_1, a) = (q_2, a, \triangleright)$
- **2** $\delta(q_2, b) = (q_1, b, \triangleleft)$

Alors:

- \mathcal{M} s'arrête en partant de la configuration (ε, q_1, aa)
- \blacksquare M ne s'arrête pas en partant de la configuration (ε, q_1, ab)

14 Machines de Turing

- Motivation
- Définition
- Configuration, transition et calcul
- Acceptation
- Exemple
- Machine de Turing non-déterministe

Mot accepté, langage accepté

Définition (Mot accepté)

Un mot w est accepté par une machine de Turing si :

$$(\varepsilon, q_0, w) \vdash^* (u, q_f, v), q_f \in Q_F$$

Définition (Langage accepté par une machine de Turing)

Le langage accepté par la machine de Turing ${\mathcal M}$ est défini par :

$$\mathcal{L}(\mathcal{M}) = \{ w \in \Sigma^*, (\varepsilon, q_0, w) \vdash^* (u, q_f, v), q_f \in Q_F \}$$

Langage récursivement énumérable

Définition (Langage récursivement énumérable)

Un langage récursivement énumérable ou langage semi-décidable est un langage accepté par une machine de Turing.

Définition (Langage récursivement énumérable)

Un langage récursivement énumérable ou langage semi-décidable est un langage qui peut être énuméré par une machine de Turing (c'est-à-dire que la machine écrit tous les mots du langage sur le ruban les uns à la suite des autres), éventuellement au bout d'un temps infini.

Remarque

Ces deux définitions sont équivalentes.

Lecture d'un mot

Lecture d'un mot

Quand on lit un mot w avec une machine de Turing, trois cas peuvent se présenter :

- 1 L'exécution se termine et le mot est accepté
 - La machine est dans un état final
- 2 L'exécution se termine et le mot est rejeté
 - La machine s'arrête et n'est pas dans un état final
- 3 L'exécution ne se termine pas
 - La machine ne s'arrête pas et ne passe jamais dans un état final

Langage récursif

Définition (Langage récursif)

Un langage récursif ou langage décidable est un langage L tel qu'il existe une machine de Turing \mathcal{M} pour laquelle :

- \blacksquare si $w \in L$, \mathcal{M} accepte w
- si $w \notin L$, \mathcal{M} rejette w
- $\rightarrow \mathcal{M}$ n'a pas d'exécution infinie

On dit alors que la machine de Turing **décide** L.

Remarque

Un langage décidé par une machine de Turing peut être reconnu par une procédure effective (algorithme).

Langage récursif et langage récursivement énumérable

Langage récursif et langage récursivement énumérable

- Un langage récursif est récursivement énumérable
- Un langage récursivement énumérable n'est pas forcément récursif
- Un langage est récursif si et seulement s'il est récursivement énumérable et que son complémentaire l'est aussi

Plan

14 Machines de Turing

- Motivation
- Configuration, transition et calcul
- Acceptation
- Exemple
- Machine de Turing non-déterministe

Exemple (Présentation)

On considère le langage suivant :

$$L = \{w \# w, w \in \{0,1\}^*\}$$

Ce langage est-il:

- régulier ? Non.
- algébrique? Non.
- → Nécessité d'une machine de Turing

Exemple (Stratégie)

- Faire des zig-zag entre les places correspondantes des deux côtés du symbole # et déterminer si elles sont identiques
- Placer les marques sur la bande pour garder une trace à propos des places correspondantes identiques
- → Chaque passe identifie un symbole identique de chaque côté du #. Si tous les symboles sont marqués, le mot est dans L. Si on découvre une incohérence, le mot est rejeté.

Exemple (Définition de la machine)

On considère la machine $\mathcal{M} = (Q, \Gamma, \Box, \Sigma, q_1, Q_F, \delta)$ avec :

- $Q = \{q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_9\}$
- $\Sigma = \{0, 1, \#\}$
- $\Gamma = \Sigma \cup \{\Box, x\}$
- $Q_F = \{q_9\}$
- δ donné par le diagramme suivant.

Exemple (Programme)

$\{w\#w, w \in \{0,1\}^*\}$

Exemple (Programme)

Plan

14 Machines de Turing

- Motivation
- Définition
- Configuration, transition et calcul
- Acceptation
- Exemple
- Machine de Turing non-déterministe

Machine de Turing non-déterministe

Machine de Turing non-déterministe

Dans une machine de Turing non-déterministe, la fonction de transition δ est remplacée par une relation de transition Δ :

$$\Delta \subset Q \times (\Gamma \cup \{\varepsilon\}) \times Q \times \Gamma \times \{\triangleleft, \triangleright\}$$

On peut avoir des ε -transitions.

Question

Est-ce que les machines de Turing non-déterministes reconnaissent les mêmes langages que les machines de Turing déterministes?

Machine de Turing non-déterministe

Proposition (Machine de Turing non-déterministe)

Pour toute machine de Turing non-déterministe \mathcal{M}_N , il existe une machine de Turing déterministe \mathcal{M}_D telle que :

$$\mathcal{L}(\mathcal{M}_N) = \mathcal{L}(\mathcal{M}_D)$$

Idée de la preuve

On construit une machine \mathcal{M}_D qui va parcourir les branches de l'arbre des configuration de \mathcal{M}_N . Quand on tombe sur une configuration d'acceptation, on accepte.

C'est tout pour le moment...

Des questions?

