EXAM 3

March 5, 2021

Do All Problems – Show All Work This exam is open notes and open book.

You have 24 hours to complete all problems.

Student ID:	
Student Printed Name:	
Student Signature:	

ID: _____

1.) (20 pts) Please consider a plant described by the transfer function:

$$G(s) = \frac{1}{s(s^3 + 5s^2 + 21s + 5)}$$

A standard proportional feedback controller is designed for this plant with a gain $K_p = 100$.

- a) Is this closed-loop system stable? If not, how should K_p be chosen to make it stable?
- **b)** Using the maximum stable K_p value in (a), please determine the steady-state error of the closed-loop system for a <u>unit ramp reference</u>. Can a smaller steady-state error be achieved with this controller?

ID: _____

- **2.)** (20 pts) A first-order system has a transfer function of $G(s) = \frac{2}{S+2}$ and is supposed to be controlled through a unity-feedback control system.
 - **a.** Design a **P-controller** with proportional gain of K_p . Then,
 - 1- determine the range of stable controller gain.
 - 2- What is the order of the control system (closed-loop TF)?
 - 3- Find the steady-state error of the system to a <u>unit step input</u>.
 - **b.** Design a **I-controller** with integral gain of K_i and
 - 1- determine the range of stable controller gain.
 - 2- What is the order of the control system (closed-loop TF)?
 - 3- Find the steady-state error of the system to a <u>unit step input</u>.
 - **c.** Comparing your results in (a-2) and (b-2), what do you conclude? Please explain your answer.
 - **d.** Comparing your results in (a-3) and (b-3), what do you conclude? Please explain your answer.

ID:

- 3.) (20 pts) Please consider the feedback control system shown below where $G(s) = \frac{1}{s+2}$.
- **a**) Determine the control coefficients K and K_h to achieve a peak overshoot of 0.25 (or 25%) and a peak time of 1 second.
- b) Using the coefficients found in (a), calculate the exact rise time, and 2% settling time.

ID: _____

- **4.**) (40 pts) Please consider the mass-damper system shown below with mass m = 2kg and damper coefficient c = 8 N. s/m.
- a) Derive the differential equation for this system (time domain).
- **b**) Derive the transfer function of the system (s-domain).
- c) Using your control engineering insight, design three separate proportional unity-feedback control systems as follows such that each control system results in the same settling time of 2 seconds (using 2% criterion):
 - 1. System #1: The first controller (K_{p1}) should result in an <u>under-damped</u> response.
 - 2. System #2: The second controller (K_{p2}) should result in a <u>critically damped</u> response.
 - 3. System #3: The Third controller (K_{p3}) should result in an <u>over-damped</u> response.
- **d)** For each of the three control systems:
 - 1. find poles of the closed-loop system and show them on the s-plane?
 - 2. calculate steady-state error to a unit-step input.
 - 3. calculate steady-state error to a unit-ramp input.
 - 4. using MATLAB, plot the response to both unit-step and unit-ramp inputs.

ES3011 – Control Engineering		20210
Name:	ID:	

Extra Page