MATH 4720 / MSSC 5720

Instructor: Mehdi Maadooliat

Clarification on Binomial Distribution

Department of Mathematical and Statistical Sciences

- Consider the following probability experiment. I give you a surprise four-question multiple-choice quiz.
- You have not studied the material, and therefore you decide to answer the four questions by randomly guessing.
- Here are some questions for you?

- 1. How many of the four questions are you likely to have answered correctly?
- 2. How likely are you to have more than half of the answers correct?
- 3. What is the probability that you selected the correct answers to all four questions?
- 4. What is the probability that you selected wrong answers for all four questions?
- 5. If an entire class answers the quiz by guessing, what do you think the class "average" number of correct answers will be?

• To find the answers to these questions, let's start with a tree

diagram

- Each of the four questions is answered with the correct answer
 (C) or with a wrong answer (W).
- x is the "number of correct answers" on one person's quiz when the quiz was taken by randomly guessing.

Notice that:

- The event x = 4, "four correct answers," is shown on the top branch.
- The event x = 0, "zero correct answers," is shown on the bottom branch.
- The event x = 1 occurs on four different branches.
- The event x = 2 occurs on six branches.
- The event x = 3 occurs on four branches.
- Each individual question has only one correct answer.
- The probability of selecting the correct answer to each question is $\frac{1}{3}$.
- The probability that a wrong answer is selected is $\frac{2}{3}$.
- The probability of each value of x can be found by calculating the probabilities of all the branches and then combining the probabilities for branches that have the same x values.

• P(x = 0) is the probability that the correct answers are given for zero questions.

-
$$P(x = 0) = \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} = \left(\frac{2}{3}\right)^4 = \frac{16}{81} = \mathbf{0}.\mathbf{198}$$

- Note: Answering each individual question is a separate and independent event, thereby we can use:
- $P(A \text{ and } B) = P(A) \cdot P(B)$
- P(x = 4) is the probability that correct answers are given for all four questions.

-
$$P(x = 4) = \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} = \left(\frac{1}{3}\right)^4 = \frac{1}{81} = \mathbf{0}.\mathbf{012}$$

• P(x=1) is the probability that the correct answer is given for exactly one question and wrong answers are given for the other three (there are four branches: CWWW, WCWW, WWCW, WWWC—and each has the same probability):

-
$$P(x = 1) = 4 \times \frac{1}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} = 4 \times \frac{1}{3} \times \left(\frac{2}{3}\right)^3 = \mathbf{0}.395$$

• P(x=2) is the probability that correct answers are given for exactly two questions and wrong answers are given for the other two (there are six branches):

-
$$P(x = 2) = 6 \times \frac{1}{3} \times \frac{1}{3} \times \frac{2}{3} \times \frac{2}{3} = 6 \times \left(\frac{1}{3}\right)^2 \times \left(\frac{2}{3}\right)^2 = \mathbf{0}.296$$

• P(x=3) is the probability that correct answers are given for exactly three questions and wrong answers are given for the other one(there are four branches):

-
$$P(x = 3) = 4 \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{2}{3} = 4 \times \left(\frac{1}{3}\right)^3 \times \frac{2}{3} = 0.099$$

THE BINOMIAL

PROBABILITY DISTRIBUTION

•
$$P(x = 0) = \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} = \left(\frac{2}{3}\right)^4 = \frac{16}{81} = \mathbf{0}.\mathbf{198}$$

•
$$P(x = 1) = 4 \times \frac{1}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} = 4 \times \frac{1}{3} \times \left(\frac{2}{3}\right)^3 = \mathbf{0}.395$$

•
$$P(x = 2) = 6 \times \frac{1}{3} \times \frac{1}{3} \times \frac{2}{3} \times \frac{2}{3} = 6 \times \left(\frac{1}{3}\right)^2 \times \left(\frac{2}{3}\right)^2 = \mathbf{0}.296$$

•
$$P(x = 3) = 4 \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{2}{3} = 4 \times \left(\frac{1}{3}\right)^3 \times \frac{2}{3} = \mathbf{0}.099$$

•
$$P(x = 4) = \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} = \left(\frac{1}{3}\right)^4 = \frac{1}{81} = \mathbf{0}.\mathbf{012}$$

In general:

•
$$P(x = k) = \frac{4!}{k!(4-k)!} \times \left(\frac{1}{3}\right)^k \times \left(\frac{2}{3}\right)^{4-k}$$
, for $k = 0,1,2,3,4$

• Probability distribution:

х	P (x)
0 1 2 3 4	0.198 0.395 0.296 0.099 0.012
	1.000

Probability Distribution for the Four-Question Quiz

- Now we can answer those five questions.
- 1. How many of the four questions are you likely to have answered correctly?
- The most likely occurrence would be to get one answer correct; it has a probability of 0.395.

x	P (x)
0 1 2 3 4	0.198 0.395 0.296 0.099 0.012
	1.000

Probability Distribution for the Four-Question Quiz

- 2. How likely are you to have more than half of the answers correct?
- Having more than half correct is represented by x=3 or 4; their total probability is 0.099+0.012=0.111. (You will pass this quiz with 11% chance by random guess.)
- 3. What is the probability that you selected the correct answers to all four questions?
- ightharpoonup P(all four correct) = P(x=4) = 0.012. (All correct occurs only 1% of the time.)
- 4. What is the probability that you selected wrong answers for all four questions?
- \triangleright P(all four wrong) = P(x = 0) = 0.198. (That's almost 20% of the time.)
- 5. If an entire class answers the quiz by guessing, what do you think the class "average" number of correct answers will be?
- \rightarrow The class average is expected to be $\frac{1}{3}$ of 4, or 1.33 correct answers.

9

- Many experiments are composed of repeated trials whose outcomes can be classified into one of two categories: success or failure.
 - Examples of such experiments are coin tosses, right/wrong quiz answers, and other, more practical experiments such as determining whether a product did or did not do its prescribed job and whether a candidate gets elected or not.
- There are experiments in which the trials have many outcomes that, under the right conditions, may fit this general description of being classified in one of two categories.
 - For example, when we roll a single die, we usually consider six possible outcomes.
 - However, if we are interested only in knowing whether a "one" shows or not, there are really only two outcomes: the "one" shows or "something else" shows.
- The experiments just described are called binomial probability experiments.

- Binomial probability experiment: An experiment that is made up of repeated trials that possess the following properties:
 - 1. There are n repeated identical independent trials.
 - 2. Each trial has two possible outcomes (success or failure).
 - **3.** $P(\text{success}) = \pi, P(\text{failure}) = 1 \pi, \text{ and } \pi + (1 \pi) = 1.$
 - 4. The **binomial random variable** X is the count of the number of successful trials that occur; X may take on any integer value from zero to n.
- Binomial probability function For a binomial experiment, let π represent the probability of a "success" and $1-\pi$ represent the probability of a "failure" on a single trial. Then P(X=k), the probability that there will be exactly k successes in n trials, is
- $P(X = k) = {n \choose k} \pi^k (1 \pi)^{n-k}$, for $k = 0, 1, 2, \dots, n$

•
$$P(X = k) = \frac{n!}{k!(n-k)!} \pi^k (1-\pi)^{n-k}$$
, for $k = 0, 1, 2, \dots, n$

- When you look at the probability function, you notice that it is the product of three basic factors:
 - 1. The number of ways that exactly k successes can occur in n trials,

$$\frac{n!}{k! (n-k)!}$$

- 2. The probability of exactly k successes, π^k
- 3. The probability of failure on the remaining (n-k) trials, $(1-\pi)^{n-k}$