Missing Salary Prediction from Job Postings

Using Machine Learning to Close Information Gaps in the Labor Market

Presentation by - Anushka Dhekne

- 1 Why This Problem Matters?
- 2 The Real-World Impact & Lightcast Alignment
- **3** Solution Overview
- 4 Data Collection & Preparation
- 5 Feature Engineering & Selection
- 6 Model Training, Evaluation & Fairness
- 7 Deployment, Monitoring & Feedback
- 8 Timeline, Challenges, and Final Thoughts
- 9 **Q&A**

Why this problem matters?

- 60% of job listings lack salary data
- Job posts without salary receive 40% fewer applicants
- Salary opacity widens wage gap
- Incomplete workforce & labor insights
- Lack of salary data undermines Lightcast's mission to guide workforce decisions with clarity

Labor Intelligence

airness

What Solving This Unlocks?

Benchmarking without bias

Why this aligns with Lightcast's Mission?

- Supports Lightcast's mission: "Unlock new possibilities in the labor market"
- Reveals hidden salary data to drive transparency
- Enables skill-based wage modeling and market clarity
- Informs smarter decisions across business, education, and government

Solution Overview

- Supervised ML model trained on salary-labeled job postings
- Inputs: title, skills, company, location, industry
- Output: predicted salary value or range for missing listings
- Prioritizes explainability and fairness
- Scalable across sectors, geographies, and millions of records

Machine Learning Workflow

Data Collection & Access

- Structured fields via Snowflake
- Access through secure, scheduled SQL pipelines
- Joinable with external data
- 'glassdoor_jobs.csv' with 950+ entries
- ~25% rows had missing salaries ('-1')

Job Title	Salary Estimate		Rating	Company Name	Location	Headquarters	Size	Founded	Type of ownership		Sector	Revenue	Competitors
Data Scientist	\$53K-\$91K (Glassdoor est.)		3.8	Tecolote Research\n3.8	Albuquerque, NM	Goleta, CA	501 to 1000 employees	1973	Company - Private		Aerospace & Defense	\$50 to \$100 million (USD)	-1
Healthcare Data Scientist	\$63K-\$112K (Glassdoor est.)	What You Will Do:\n\nI. General Summary\n\nThe	3.4	University of Maryland Medical System\n3.4	Linthicum, MD	Baltimore, MD	10000+ employees	1984	Other Organization	Health Care Services & Hospitals	Health Care	\$2 to \$5 billion (USD)	-1
Data Scientist	\$80K-\$90K (Glassdoor est.)	KnowBe4, Inc. is a high growth information sec	4.8	KnowBe4\n4.8	Clearwater, FL	Clearwater, FL	501 to 1000 employees	2010	Company - Private		Business Services	\$100 to \$500 million (USD)	-1
Data Engineer	-1	Data Engineer\n£50,000 £70,000 See Advert\n		4.5 Anso McCade\n4.		London, United Kingdom	51 to 200 employees	2000	Company - Private	Staffing & Outsourcing	Business Services	\$1 to \$5 million (USD)	-1
Business Intelligence Analyst	-1 A	Business Intelligen analyst\nAccounting\n50		3.1 Amic Mutual\n3.		Lincoln, RI	1001 to 5000 employees	1907	Company - Private	Insurance Carriers	Insurance	\$1 to \$2 billion (USD)	-1

Kaggle Dataset Link

Snowflake Schema Diagram

Data Preparation

- Standardized column names for consistency
- Cleaned & parsed 'salary_estimate' to min/max/avg numeric fields
- Split dataset into two parts: for rows with available salary data and for rows with missing or undisclosed salary ('-1')
- Extracted job seniority, job location city and state
- Applied IQR-based outlier removal

Feature Engineering

- Extracted seniority level from job titles and mapped to ordinal values
- Parsed 'job_city' and 'job_state' from location, including fallback logic
- Derived 'posting_age' from job descriptions and filled missing values
- Applied TF-IDF on job descriptions (top 50 features)
- Created binary flag for missing salaries for modeling tasks

Two-Stage Modeling

- Built Logistic Regression, Random Forest, and KNN models
- Trained on job title, company, seniority, location
- Identified patterns in missing salary data

- Random Forest Regressor on known salaries
- Combined structured job features with TF-IDF job description keywords
- Predicted missing salaries & combined into 'final_salary' field

Advanced Modeling

- Trained a LightGBM Regressor to predict salaries from clean data
- Applied monotonic constraint so salaries always rise with seniority level
- Feature mix: job title, industry, job state, company, seniority, and posting age
- Cleaned + de-duplicated 100+ features using one-hot encoding
- Result: A powerful, seniority-aware salary model that mimics real-world logic
- Seamless plug-in to existing modular pipeline

Explainability & Fairness

- Treated 'job_state' as a geographic fairness lens
- Grouped predictions by state using the Fairlearn library
- Compared average predicted salaries across regions
- Preserved row indices for full-context fairness checks
- Fairness audit shows CA, TX, NC receive highest predicted salaries
- Framework ready to extend to industry, company size, gender or race

Model Output

sector	industry	type_of_ownership	founded	size	arters	n headqua	location	company_name	rating	cription	job_desc	salary_estimate	job_title	
Manufacturing	Food & Beverage Manufacturing	Company - Private	1911	10000+ employees	ean, VA	n Mc Le	Oregor	Mars\n3.9	3.9		CATEGORY:\n\nIn	-1	Data Scientist	0
Information Technology	Enterprise Software & Network Solutions	Company - Private	2015	201 to 500 employees	ado II	, Chic	Chicago IL	Amount\n4.1	4.1		Take your care heights working	-1	Data Scientist	1
Finance	Investment Banking & Asset Management	Company - Private	2017	51 to 200 employees	San sco, CA e		Chandler Az	Brightside\n5.0	5.0	Company ightside is mployee	Overview:\n\nBri	-1	Data Science Analyst	2
Business Services	Staffing & Outsourcing	Company - Private	2000	51 to 200 employees	ondon, United ingdom	,	Kingdom IL	Anson McCade\n4.5	4.5		Data Engineer\n£ £70,000 See A	-1	Data Engineer	3
Insurance	Insurance Carriers	Company - Private	1907	1001 to 5000 employees	coln, RI		Lincoln R	Amica Mutual\n3.1	3.1		Business In Analyst\nAccounti	-1	Business Intelligence Analyst	4
was_missing	final_salary	salary_estimate	ity_level	y senior:	job_cit	ob_state	ustry j	ind			company_name	job_title		
True	114910.0	-1	0	n	Orego	Oregon	cturing	everage Manufac	Food & E		Mars\n3.9	Data Scientist		0
True	107440.0	-1	0	0	Chicag	IL	utions	re & Network So	ise Softwa	Enterpri	Amount\n4.1	Data Scientist		1
True	105245.0	-1	0	er	Chandle	AZ	ement	g & Asset Manag	ent Bankin	Investme	Brightside\n5.0	Science Analyst	Data	2
True	86040.0	-1	0	m	Kingdor	IL	urcing	Staffing & Outso			nson McCade\n4.5	Data Engineer		3
True	72105.0	-1	0	n	Lincol	RI	arriers	Insurance C			Amica Mutual\n3.1	elligence Analyst	Business Inte	4

BEFORE

AFTER

Interactive Google Sheet

Model Evaluation

- 97.8% accuracy in detecting missing salaries
- Balanced precision-recall across classifiers
- Random Forest Regressor \rightarrow MAE: \$4,387 | R²: 0.965
- LightGBM (Monotonic) \rightarrow MAE: \$22,139 | R²: 0.296
- Confusion matrices show RF outperforms others in true positive detection

Model Classification Accuracy Logistic Regression: \$ 0.895 RandomForest Classifier: \$ 0.979

KNN: \$ 0.853

Random Forest Regressor Metrics:

MAE: \$ 4386.895 RMSE: \$ 6704.453 R² Score: \$ 0.965

LightGBM Monotonic Metrics:

MAE: \$ 22139.417 RMSE: \$ 30052.099

 $R^2: 0.296$

12

Impact of Predicting Missing Salaries Across Roles & States

Dashboard

Tableau Dashboard Link

Source Code

Deployment, Monitoring & Feedback

- Deploy via REST API (FastAPI) or Snowflake batch pipelines
- Monitor prediction drift & model error (MAE, R² trends)
- Audit fairness using job_state, industry, company size
- Create feedback loop with hiring teams for real-world corrections
- Retrain model every 3–6 months with updated & flagged data

Project Timeline

Trade-Offs & Challenges

- Accuracy vs Explainability → Prioritized tree models with interpretable outputs
- Generalization → Trained on diverse sectors; room for vertical-specific tuning
- Fairness Audits → Used 'job_state' as a proxy; expandable to other dimensions
- Salary Drift → Requires periodic retraining & monitoring
- Modular Design → Enables fast adaptation to data or business changes

Final Takeaways & Strategic Impact

- Built for fairness, accuracy, and interpretability
- Predicts salary gaps with confidence and logic
- Modular pipeline with scalable architecture
- Auditable across sectors, states, and companies
- Deeply aligned with Lightcast's mission

"More than a model - a blueprint for ethical, data-driven labor market insights."

THANK YOU

Q&A

