Perbedaan CNN jika dibandingkan dengan ANN adalah memiliki maksimal satu convolution layer.
Benar
Salah
Harusnya minimal 1 convolutional layer
Pernyataan yang benar mengenai convolution layer pada CNN adalah:
Inputnya berupa data dalam bentuk grid/matriks
Output dari lapisan ini adalah kernel.
Kernel merupakan parameter dalam bentuk array multidimensi yang disebut juga sebagai feature map.
Semua pernyataan di atas benar.
Outputnya harusnya feature map Nama lain kernel tuh parameter, filter

Penggunaan CNN untuk klasifikasi gambar lebih tepat dibandingkan ANN karena pada CNN:
input data semakin kecil
dapat menangkap fitur spasial dari gambar
jumlah bobot yang dilatih semakin banyak
terjadi flattening vektor input n-dimensi menjadi 1 dimensi.
Input data tuh ANN sm CNN sama aja, bedanya kalo ANN pake flattening Ketika input data ukurannya disesuaikan sm kernel itu receptive field D itu kalo ANN (FFNN) terjadi di awal, kalo CNN terjadi pas mau masuk fully connected laye
Hal yang membedakan ANN dengan CNN adalah:
oconvolution layer
O local connectivity
shared parameter
semua pernyataan di atas benar

Convolution layer wajib min 1 di CNN CNN harus pny local connectivity dgn parameter/kernel CNN harus dilengkapi shared parameter

Pernyataan di bawah ini yang benar, adalah:
CNN tidak scalable untuk memproses gambar
ANN memberikan hasil generalisasi dan kecepatan yang jauh lebih baik dibandingkan CNN
Metode CNN sudah mengandung langkah ekstraksi fitur.
ANN dapat menangkap fitur spasial dari data gambar
CNN scalable untuk gambar CNN menghasilkan generalisasi dan kecepatan yg lebih baik dr ANN CNN justru yg tangkap fitur spasial dari data gambar
Hal penting pada CNN yang terinspirasi dari biological visual cortex pada otak manusia adalah:
oparameter sharing
oconvolution layer
o local connectivity
kernel

Ukuran feature map yang akan dihasilkan dari input data berikut dengan ukuran kernel 2*2 dan pergeseran satu sel adalah:

Input matrix

248	243	201	44	54
250	243	214	59	52
252	244	228	102	43
250	242	236	144	41
252	251	246	207	90

2x2

3x3

4x4

5x5

W = 5

F = 2

P = 0

S = 1

$$V = \left\lfloor rac{W-F}{S}
ight
floor + 1 = \left\lfloor rac{5-2}{1}
ight
floor + 1 = 4$$

Untuk CNN berikut, jika tanpa parameter sharing, berapa jumlah bobot yang diperlukan?

- 1*(5*5*1+1) + 1*(5*5*1+1) + (64+1)*20
- **64***(5*5*1+1) + 16*(5*5*1+1) + (16+1)*20
- 256*(5*5*1+1) + 64*(5*5*1+1) + (64+1)*20
- 0 1024*(5*5*1+1) + 256*(5*5*1+1) + (64+1)*20

 $[\,16\ ^*\ 16\ ^*\ (5\ ^*\ 5\ +\ 1)\,]\ +\ [\,8\ ^*\ 8\ ^*\ (5\ ^*\ 5\ +\ 1)\,]\ +\ [\,8\ ^*\ 8\ +\ 1\,]\ ^*\ 20\ \to\ harusnya\ C$

Untuk CNN berikut, jika menggunakan parameter sharing, berapa jumlah bobot yang diperlukan?

Kalo parameter sharing tu si kernelnya kek gadianggep aja gitu, jadi lgsg input output 20 * (8 * 8 + 1) = 1300

ConvNet berikut ingin digunakan untuk memproses matriks gambar RGB, dengan parameter sharing. Jika pada convolution layer pertama, ingin dihasilkan 3 feature map, maka membutuhkan parameter sebanyak:

- (3*3+1)*3
- (3*3*3+1)*1
- (3*3*3+1)*3

140
O 135
O 28
O 10
3*3*3+1)*5
Pada complex layer terminology, convolution, detector, dan pooling masing-masing menjadi satu layer tersendiri.
Benar
Salah
Pada detector stage/layer digunakan fungsi aktivasi.
Benar
Salah

Jika dalam sebuah convolution layer terdapat 5 filter yang berukuran

3x3x3, berapa banyak parameter/bobot-nya?

Pada input matriks berikut (berwarna merah), jika digunakan moving stride = 1 dan 1 buah filter dengan ukuran 3*3*1 maka volume outputnya adalah

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	123	94	83	2	0	0
0	0	34	44	187	92	0	0
0	0	34	76	232	124	0	0
0	0	67	83	194	202	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

O 4*4*1

5*5*1

6*6*1

$$V = \left\lfloor rac{W-F+2P}{S}
ight
floor + 1 = \left\lfloor rac{8-3+0}{1}
ight
floor + 1 = 6$$

Fungsi aktivasi pada pooling stage berguna untuk menerapkan prinsip nonlinearity pada CNN.	
Benar	
Salah	
Harusnya di detector	
Detector stage digunakan untuk mencegah overfitting.	
Benar	
Salah	

Harusnya detector stage buat terapin non linearity

Latihan 1

Diberikan data input (X) berukuran 4*4*2 pada suatu layer konvolusi yang memiliki 3 kernel berukuran 2*2*2. Stride yang digunakan 2, dan tanpa menggunakan padding.

- 1. Tentukanlah nilai V sebagai dimensi panjang dan lebar dari feature map yang dihasilkan
- 2. Tentukanlah ukuran feature map yang dihasilkan (panjang*lebar*kedalaman)
- 3. Tentukanlah banyaknya bobot yang digunakan pada layer konvolusi ini.

Latihan 1: Solusi

Diberikan data input (X) berukuran 4*4*2 pada suatu layer konvolusi yang memiliki 3 kernel berukuran 2*2*2. Stride yang digunakan 2, dan tanpa menggunakan padding.

1. Tentukanlah nilai V sebagai dimensi panjang dan lebar dari feature map yang dihasilkan

W=4;d=2;

K=3; F=2;

 $P=0;S=2 \rightarrow V=1+[(4-2+0)/2]=2$

2. Tentukanlah ukuran feature map yang dihasilkan (panjang*lebar*kedalaman)

 $V^*V^*K \to 2^*2^*3$

3. Tentukanlah banyaknya bobot yang digunakan pada layer konvolusi ini.

3*(2*2*2+1)=27

1

Latihan 2: Lakukanlah Forward Propagation

Diberikan data input (X) berukuran 3*3*1 pada suatu layer konvolusi yang memiliki 2 kernel berukuran 2*2*1. Stride yang digunakan 1, dan tanpa menggunakan padding. Gunakanlah Relu sebagai fungsi aktivasi.

16 24 32 0 -1 0	
10 24 32 0 1	
47 18 26 1 0	
68 12 9	
5 4 0	
3 2	

Latihan 2: Solusi

Feature map: 2*2*2

X (3*3*1) 16 24 32	Kernel 2*2*1*2 0 -1	Bobot bias		Receptive field 16 24		23 0
47 18 26	1 0			47 18		50 0
68 12 9	5 4 3 2	0	- /	24 32 18 26 47 18 68 12	5/	353 354 535 248
N=3;d=1;				18 26		
<=2; F=2;				12 9		
P=0;S=1 →						