Передача информации. Помехи. Помехозащитное кодирование

Александра Игоревна Кононова

ТЕИМ

30 ноября 2022 г. — актуальную версию можно найти на https://gitlab.com/illinc/otik

— совокупность устройств, объединённых линиями связи, предназначенных для передачи информации от источника информации (начального устройства канала) до её приёмника (конечного устройства канала).

- достоверность передачи информации;
- надёжность работы устройств;
- скорость передачи информации (пропускная способность, ёмкость);
- задержка сигнала во времени (латентность).

X, Y — источники сообщений: по каналу передаются сообщения из X. Из-за помех приёмником воспринимается Y.

Защита от помех — добавление избыточности соответственно помехам: $|code(x)| \to |x| + \Delta$.

Если известен источник $X \ni x$ и изначальный код избыточен, его избыточность желательно вначале удалить: $|code(X)| \to I(X) + \Delta.$

Величина добавленной избыточности Δ соответствует характеристикам канала.

Пропускная способность (ёмкость) C канала

$$C = \lim_{T o \infty} rac{\max\limits_X ig(I(X,Y)ig)}{T} \quad \left[rac{\mathsf{бит}}{\mathsf{c}}
ight] \quad \mathsf{бод} - \mathsf{по} \ \mathsf{одним} \ \mathsf{источникам} \ \mathsf{то} \ \mathsf{же},$$
 по другим — $\mathsf{бод} = \frac{\mathsf{тактов}}{\mathsf{c}}$

максимальное количество информации, передаваемое в единицу времени.

 $C = \lim_{T \to \infty} \frac{\max_{X} (I(X))}{T} = \lim_{T \to \infty} \frac{\log_2 N(T)}{T},$ Для канала без шума: где N(T) — число всех возможных сигналов (сообщений) за время T.

Первая теорема Шеннона (для канала без помех)

- 🚺 При любой производительности источника сообщений, меньшей пропускной способности канала: $\frac{I(X)}{T} < C$, существует способ кодирования, позволяющий передавать по каналу все сообщения, вырабатываемые источником.
- Не существует способа кодирования, обеспечивающего передачу сообщения без их неограниченного накопления, если $\frac{I(X)}{T} > C$.

 При любой производительности источника сообщений, меньшей пропускной способности канала:

$$\frac{I(X)}{T} < C$$

существует способ кодирования, позволяющий обеспечить передачу всей информации со сколь угодно малой вероятностью ошибки.

 Не существует способа кодирования, обеспечивающего передачу информации со сколь угодно малой вероятностью ошибки, если

$$\frac{I(X)}{T} > C$$

Матмодель канала

- источник X сообщений на входе, Y на выходе;
- условные вероятности статистические свойства шумов (помех):

$$p(y_j|x_i)=rac{p(x_i,y_j)}{p(x_i)}$$
 — вероятность того, что отправив x_i — получим y_j $p(x_i|y_j)=rac{p(x_i,y_j)}{p(y_j)}$ — после получения y_j , что было отправлено именно x_i

$$H(X)=I(X)$$
 — энтропия X (средняя информация в X) $H(Y)=I(Y)$ — энтропия Y (средняя информация в Y) $I(X,Y)=I(Y,X)$ — относительная информация X и Y $H(X,Y)=H(Y,X)$ — энтропия объединения X и Y

$$H(Y|X)$$
 — условная энтропия Y относительно X (шум) $H(X|Y)$ — условная энтропия X относительно Y (инф. потери)

Канал без шумов:
$$X=Y$$
, $p(y|x)=\left\{ egin{array}{ll} 1, & \mbox{при }y=x \\ 0, & \mbox{при }y\neq x \end{array} \right.$ $I(X,Y)=I(X)$

Информационные потери Код Хэмминга (концепция)

$$I(X,Y) = \sum_{i} \sum_{j} p(x_{i}, y_{j}) \log_{2} \frac{p(x_{i}, y_{j})}{p(x_{i}) \cdot p(y_{j})}$$

$$H(X|Y) = M[-\log_2 p(X|Y)] = -\sum_i \sum_j p(x_i, y_j) \cdot \log_2 p(x_i|y_j) =$$

$$\begin{bmatrix} p(x_i|y_j) = \frac{p(x_i,y_j)}{p(y_j)} \end{bmatrix} = -\sum_j p(y_j) \sum_i p(x_i|y_j) \cdot \log_2 p(x_i|y_j)$$

$$H(X,Y) = M[-\log_2 p(X,Y)] = -\sum_i \sum_j p(x_i,y_j) \cdot \log_2 p(x_i,y_j)$$

$$I(X,Y) \geqslant 0$$
, $I(X,Y) = 0 \Leftrightarrow X$ и Y независимы;

2
$$H(X) = 0$$
 $I(X) = 0$ \Leftrightarrow $X - \text{константа};$

3
$$I(X,Y) = I(Y,X);$$

$$(3) I(X,Y) = I(X) + I(Y) - H(X,Y) = I(X) - H(X|Y) = I(Y) - H(Y|X)$$

$$oldsymbol{i}$$
 $I(X,Y)\leqslant I(X,X)=I(X)=H(X).$ Если $I(X,Y)=I(X),$ то X — функция от Y (разные y при разных x , передача без потерь).

Шум и потери

$$= p(a,a) \cdot 0 + p(b,b) \cdot 1 + p(b,c) \cdot 1 =$$

$$= p(x=b) = \frac{1}{2}$$
 $I(Y|Y) = 1 - I(Y|Y)$

$$I(X,Y) = 1 = I(X)$$

Есть шумы, нет потерь

$$\frac{1}{3} \underbrace{a} \underbrace{1} \underbrace{1} \underbrace{a} \underbrace{1}_{\frac{1}{3}}$$

$$\frac{1}{3} \underbrace{b} \underbrace{1}_{\frac{1}{2}} \underbrace{b}_{\frac{2}{3}}$$

$$\frac{1}{3} \underbrace{c} \underbrace{1}_{\frac{1}{2}} \underbrace{b}_{\frac{1}{2}}$$

$$\frac{1}{3} \underbrace{c} \underbrace{1}_{\frac{1$$

 $= p(a,a) \cdot 0 + p(b,b) \cdot 1 + p(c,b) \cdot 1 =$

$$= p(y=b) = \frac{2}{3}$$

$$I(X,Y) = \log_2 3 - \frac{2}{3} = I(Y)$$

Информационные потери Код Хэмминга (концепция)

Код Рида-Соломона над GF(5)

От X к Y передаются символы 0 и 1 (k) символов в единицу времени).

Каждый символ, независимо от других, с вероятностью α инвертируется. Есть как шум, так и потери.

Пусть X производит $x_1=0$ и $x_2=1$ с вероятностями q и 1-q, на выходе $Y-y_1=0$ и $y_2=1$ с вероятностями $r=(1-\alpha)q+\alpha(1-q)$ и 1-r.

$$H(Y|X) = -\sum_{i} p(x_i) \sum_{j} p(y_j|x_i) \cdot \log_2 p(y_j|x_i) = q \cdot H(Y|x=0) + (1-q) \cdot H(Y|x=1)$$

$$H(Y|x=0) = -\sum_{j=1}^{2} p(y_j|x=0) \cdot \log_2 p(y_j|x=0) = -(1-\alpha)\log_2(1-\alpha) - \alpha\log_2 \alpha$$

$$H(Y|x=1) = -\sum_{j=1}^{2} p(y_j|x=1) \cdot \log_2 p(y_j|x=1) = -\alpha \log_2 \alpha - (1-\alpha) \log_2 (1-\alpha) = H(Y|x=0)$$

$$H(Y|X) = \left(q + (1-q)\right) \cdot H(Y|x=0) = H(Y|x=0) = -\alpha \cdot \log_2 \alpha - (1-\alpha) \cdot \log_2 (1-\alpha)$$

Информационные потери Код Хэмминга (концепция)

Практическое использование кода Хэмминга Полиномиальные коды Код Рида-Соломона над GF(5) Матмодель канала
Взаимные информация и энтропия
Шум и потери
Двоичный симметричный канал
Помехозащитное кодирование

$$I(Y) = -r \cdot \log_2 r - (1 - r) \cdot \log_2 (1 - r)$$

Передаваемая информация на символ
$$I(X,Y) = I(Y) - H(Y|X) = \left(-r \cdot \log_2 r - (1-r) \cdot \log_2 (1-r)\right) - \left(-\alpha \cdot \log_2 \alpha - (1-\alpha) \cdot \log_2 (1-\alpha)\right)$$

Обозначим
$$\eta(x) = -x \cdot \log_2 x$$
: $I(X,Y) = \left(\eta(r) + \eta(1-r)\right) - \left(\eta(\alpha) + \eta(1-\alpha)\right)$

Макс. передаваемая информация на символ

$$\max_{X} (I(X,Y)) = \max_{X} ((\eta(r) + \eta(1-r)) - (\eta(\alpha) + \eta(1-\alpha))) =$$

$$= \max_{r} (\eta(r) + \eta(1-r)) - (\eta(\alpha) + \eta(1-\alpha)) = 1 - (\eta(\alpha) + \eta(1-\alpha))$$

Пропускная способность:

$$C = k \cdot \max_{X} (I(X,Y)) = k \cdot (1 - (\eta(\alpha) + \eta(1-\alpha)))$$

При $\alpha=0$ или единице C=k; при $\alpha=0.5$ получим C=0.

Вероятность бессбойной передачи m битов: $p(m,0) = (1-\alpha)^m$ одиночной инверсии в блоке из m битов: $p(m,1) = m \cdot \alpha (1-\alpha)^{m-1}$ двойной инверсии: $p(m,2) = C_m^2 \cdot \alpha^2 (1-\alpha)^{m-2} = \frac{m(m-1)}{2} \alpha^2 (1-\alpha)^{m-2}$

При $m=8\cdot 16$ и $\alpha=10^{-5}$: $p(m,0)\approx 0.9987; \qquad p(m,1)\approx 0.0013; \qquad p(m,2)\approx 8.1\cdot 10^{-7}$ $p(8m,0)\approx 0.99; \qquad p(8m,1)\approx 0.01; \qquad p(8m,2)\approx 5.2\cdot 10^{-5}$

Файл разрезается на блоки по N байт (последний блок, если неполный, дополняется до N), каждый из которых дополняется избыточными (контрольными) данными до M байт.

Размер блока $(N \ \mathsf{u} \ M)$ выбирается исходя из:

- особенностей алгоритма (удобства реализации);
- свойств канала (информационных потерь);

и ни в коем случае не зависит от размера файла n.

Совместно: вначале применяются все алгоритмы сжатия, затем — защита от помех.

После декодирования необходимо восстановить исходную длину файла n!

Синдром S блока — величина, равная нулю при успешной передаче (для непротиворечивого блока) и указывающая на место ошибки при $S \neq 0$.

Код Рида-Соломона над ${\rm GF}(5)$

- Обнаруживающий одиночную ошибку (здесь и далее инверсию) в одном бите — двойное повторение каждого бита.
- ② Обнаруживающий одиночную ошибку в блоке из ν бит контроль чётности (добавление к каждому блоку $\nu+1$ -го бита так, чтобы дополнить количество единиц до заранее выбранного для кода чётного (even) или нечетного (odd) значения).
 - Двойная ошибка в блоке не будет обнаружена.
- Исправляющий одиночную ошибку в одном бите тройное повторение каждого бита.
- 📵 Исправляющий одиночную ошибку в блоке из μ бит код Хэмминга. Двойная ошибка в блоке будет принята за одиночную не в том месте.
- Исправляющий одиночную ошибку и обнаруживающий двойную в блоке из $\mu + 1$ бит — код Хэмминга с дополнительным битом чётности.

- Информация передаётся блоками.
- $oldsymbol{Q}$ В блоке (μ битов) никогда не встретится более чем одна ошибка.
- Ошибка инверсия бита.

Биты блока разделяются на • информационные (независимые)

• и проверочные (значение рассчитывается по информационным).

Общий размер блока после кодирования

$$\mu = (\nu$$
 информационных) + $(\kappa$ проверочных)

— ошибки нет;
$$- \text{ ошибка в } i\text{-й позиции.} \end{cases} \qquad \mu+1 \text{ указаний} \\ 2^{\kappa} \geqslant \mu+1$$

κ	1	2	3	4	5	6	7	8	9	10	11
$\sup(\mu) = 2^{\kappa} - 1$	1	3	7	15	31	63	127	255	511	1023	2047
$\sup(\nu) = \sup(\mu) - \kappa$	0	1	4	11	26	57	120	247	502	1013	2036

🚺 Бит чётности позволяет обнаружить одиночную ошибку в группе:

$$c=igoplus_{b_i\in G}b_i$$
 , соответственно, $igoplus_{b_i\in \{c\}\cup G}b_i=c\oplusigoplus_{b_i\in G}b_i=0$

при одиночной ошибке в $\{c\} \cup G$ получим $\bigoplus_{b: \in \{c\} \cup G} b_i = 1$.

- Несколько пересекающихся контрольных групп позволяют уточнить положение ошибки.
- Набор групп должен быть различным для каждого бита (для локализации ошибки до конкретного бита).
- Контрольный бит не должен входить более чем в одну группу (для упрощения расчёта).
- Каждый информационный бит должен входить как минимум в две группы (из 🚳 и 🐠).

Несистематический (наивный) код Хэмминга

• Набор контрольных групп — единицы натурального двоичного кода номера бита (с 1, чтобы каждый входил хотя бы в одну группу).

1	2	3	4	5	6	7	8		10	11		13	14	15
×		×		×		×		×		×		×		×
	×	×			×	×			×	×			×	×
			×	×	×	×					×	×	×	×
							×	×	×	×	×	×	×	×

KC1:
$$b_1 \oplus b_3 \oplus b_5 \oplus b_7 \oplus b_9 \oplus b_{11} \oplus b_{13} \oplus b_{15} = 0$$

KC2: $b_2 \oplus b_3 \oplus b_6 \oplus b_7 \oplus b_{10} \oplus b_{11} \oplus b_{14} \oplus b_{15} = 0$

KC3:
$$b_2 \oplus b_3 \oplus b_6 \oplus b_7 \oplus b_{10} \oplus b_{11} \oplus b_{14} \oplus b_{15} = 0$$

KC4:
$$b_8 \oplus b_9 \oplus b_{10} \oplus b_{11} \oplus b_{12} \oplus b_{13} \oplus b_{14} \oplus b_{15} = 0$$

- Биты $1, 2, 4, ... 2^s$ контрольные (входят только в одну группу): $b_1 = b_3 \oplus b_5 \oplus b_7 \oplus b_9 \oplus b_{11} \oplus b_{13} \oplus b_{15} \dots$ $b_2 = b_3 \oplus b_6 \oplus b_7 \oplus b_{10} \oplus b_{11} \oplus b_{14} \oplus b_{15} \dots$
- При наличии ошибки несошедшиеся контрольные суммы образуют натуральный двоичный код инвертированного бита ightarrow исправление.

Перестановка столбцов кода Хэмминга образует другой код Хэмминга

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
×		×		×		×		×		×		×		×
	×	×			×	×			×	×			×	×
			×	×	×	×					×	×	×	×
							×	×	×	×	×	×	×	×

Систематический код Хэмминга (простейший):

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
3	5	6	7	9	10	11	12	13	14	15	1	2	4	8
×	×		×	×		×		×		×	×			
×		×	×		×	×			×	×		×		
	×	×	×				×	×	×	×			×	
				×	×	×	×	×	×	×				×

Систематический код Хэмминга

Систематический код Хэмминга

Перестановка столбцов кода Хэмминга образует другой код Хэмминга

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
×		×		×		×		×		×		×		×
	×	×			×	×			×	×			×	×
			×	×	×	×					×	×	×	×
							×	×	×	×	×	×	×	×

Систематический код Хэмминга (Л. Бриллюэн):

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
15	7	11	13	14	3	5	9	6	10	12	1	2	4	8
×	×	×	×		×	×	×				×			
×	×	×		×	×			×	×			×		
×	×		×	×		×		×		×			×	
×		×	×	×			×		×	×				×

Коды, исправляющие одиночную ошибку и обнаруживающие двойную $\mu + 1 = 2^{\kappa}$

Длин	Длина блока Хэмминга $\mu=2^\kappa-1$ бит $ o$ один бит не используется.															
	i		$\bigoplus b$), — д	опо	лните.	льны	ій би [.]	т чёт	НОСТ	и	$\int_{0}^{-1} b_{i}$	=0	!		
0	1	2	i=1 3	4	5	6	7	8	9	10	11	12	13	14	15	
	×		X		×		×		×		X		×		×	
		×	×			×	×			×	×			×	×	
				×	×	×	×					×	×	×	×	
								×	×	×	×	×	×	×	×	
X X X X X X X X X X X X X X X X X X X																
Количество единиц в контрольных группах Общее количество единиц Вывод																
Чёт	ное в	во все	×			Чётн	oe					/	Даннь	ые вер	рны	1
Чёт	тное в	во все	ex			Нечё	тное						полни			
Нечётное в некоторых Нечётное Однократная ошибка в коде Хэмминга $b_1 \dots b_n$																
Нечётное в некоторых Чётное Двойная ошибка													1			
													99Q			

Информационные потери Код Хэмминга (концепция) Практическое использование кода Хэмминга Полиномиальные коды Код Рида-Соломона над GF(5)

Систематический код Хэмминга Коды, исправляющие одиночную ошибку и обнаруживак

Систематический код Хэмминга с контролем двойной инверсии

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
15	7	11	13	14	3	5	9	6	10	12	1	2	4	8	0
×	×	×	×		×	×	×				×				
×	×	×		×	×			×	×			×			
×	×		×	×		×		×		×			×		
×		×	×	×			×		×	×				×	
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×

Биты 1-11 — информационные, 12-16 — контрольные:

 $b_{12} = k_1 = b_1 \oplus b_2 \oplus b_3 \oplus b_4 \oplus b_6 \oplus b_7 \oplus b_8$

 $b_{13} = k_2 = b_1 \oplus b_2 \oplus b_3 \oplus b_5 \oplus b_6 \oplus b_9 \oplus b_{10}$

 $b_{14} = k_4 = b_1 \oplus b_2 \oplus b_4 \oplus b_5 \oplus b_7 \oplus b_9 \oplus b_{11}$

 $b_{15} = k_8 = b_1 \oplus b_3 \oplus b_4 \oplus b_5 \oplus b_8 \oplus b_{10} \oplus b_{11}$

 $b_{16} = k_0 = b_1 \oplus b_2 \oplus b_3 \oplus b_4 \oplus b_5 \oplus b_6 \oplus b_7 \oplus b_8 \oplus b_9 \oplus b_{10} \oplus b_{11} \oplus b_{12} \oplus b_{13} \oplus b_{14} \oplus b_{15}$

Расчёт контрольных битов — битовая маска + подсчёт единиц в числе.

Расчёт позиции по синдрому — таблица.

На практике: натуральное число байтов (байт обычно кратен октету):

- ullet блок до кодирования: u информационных битов $\sim N$ инф-х октетов [всегда $\nu \leqslant 8N$, в идеале $\nu = 8N$ — запишем $\nu \lesssim 8N$];
- вносимая избыточность: $\kappa+1$ контрольных битов (κ битов Хэмминга + бит общей чётности) $\sim K$ контрольных октетов $[\kappa + 1 \lesssim 8K]$;
- ullet блок после кодирования: $\mu+1=
 u+\kappa+1$ битов $\sim M=N+K$ октетов $[\mu + 1 \lesssim 8M]$. В блоке из M октетов исправляется одна ошибка, обнаруживается двойная: $8M \gtrsim \mu + 1 = (\nu + \kappa) + 1 \leqslant (2^{\kappa} - 1) + 1 = 2^{\kappa}$.

$$\kappa=2 \ \Rightarrow \ \nu=1$$
 — учетверение информационного октета: $N=1, \ K=3.$

 $\kappa=3$: $\nu=4$ инф-х бита и $\kappa+1=4$ контрольных $\Rightarrow N=1$ и $K=1 \Rightarrow M=2$: первый (информационный) октет делим на две инф-е тетрады, второй — на две контрольные тетрады (один блок алгоритма включает два блока Хэмминга с контролем двойной ошибки — в блоке из M=2 октетов исправляется от одной до двух ошибок, обнаруживается от двух до четырёх).

$$\kappa \geqslant 4$$
: выбираем $K \Rightarrow \kappa \leqslant 8K-1 \Rightarrow M(\kappa) \Rightarrow N=M-K$.

4□→ 4回→ 4厘→ 4厘→ 厘 約90

Информационные потери Код Хэмминга (концепция) Практическое использование кода Хэмминга Полиномиальные коды Код Рида-Соломона над GF(5)

Систематический код Хэмминга Размер блока $N \to M$ (октетов) Код Хэмминга для M=16 октетов

- ① Пусть K=1, тогда максимально возможное число битов Хэмминга $\sup(\kappa)=7$, общее число битов $\sup(\mu+1)=2^7=128$, октетов $\sup(M)=\frac{2^\kappa}{8}=2^{\kappa-3}=16$. Из них инф-х $\sup(N)=\sup(M)-K=15$.
 - \bullet $\kappa = 7$ (полный контрольный октет): $8 < M \leqslant 16 \ \Rightarrow \ 8 \leqslant N \leqslant 15$
 - @ $\kappa=6$: $M\leqslant 8\Rightarrow N\leqslant 7\;(4\leqslant N\leqslant 7)-1$ лишний бит: в контрольный октет включаем две копии бита общей чётности k_0 .
 - \bullet $\kappa = 5$: $M \leqslant 4 \Rightarrow N \leqslant 3 \; (2 \leqslant N \leqslant 3)$ две новые контрольные группы, либо две копии существующих $(k_0 \times 2, \; k_0 \cup k_1, \; k_1 \cup k_2 \; \text{и т. п.})$.
 - $oldsymbol{\bullet}$ $\kappa=4\colon M\leqslant 2\Rightarrow N=1$ но при N=1 и M=2 лучше $2\times(\kappa=3)$; $\kappa=4$ без контроля двойной чётности: N=2 и K=1 (2 блока Хэмминга по 8 бит, $2\times\kappa$ собираются в контрольный октет).

Пусть K=2, тогда $\sup(\kappa)=15$, $\sup(\mu+1)=2^{15}=32768$ (бит), $\sup(M) = 2^{12} = 4096$ (октетов), и $\sup(N) = 4094$ (октета). Аналогично, два полных контрольных октета при $2048 < M \le 4096$, то есть $2046 < N \le 4094$ (в том числе $N = 2048 = 2^{11}$) инф-х октетах. При $15 < N \leqslant 2046$ потребуется от $\kappa = 9$ до $\kappa = 14$ контрольных бит (и блок длинный, и контрольные два октета неполные).

K > 2 (и, соответственно, N > 4094) используется крайне редко.

◆□→ ◆□→ ◆□→ ◆□→ □

Код Хэмминга для M=16 октетов

Некоторые из вариантов кода Хэмминга с контролем двойной ошибки для N=15информационных октетов и одного полного контрольного (всего M=16).

Сортировка информационных битов по синдрому:

Сортировка информационных битов по количеству КС, затем по синдрому:

Яркость серого цвета вверху показывает количество контрольных сумм, в который входит информационный бит.

Минимальная единица передачи — символ (элемент некоторого поля).

Каждый символ может быть искажён при передаче независимо от других (заменой $a \to \widetilde{a}$, но без перестановок, выпадений и вставок).

Информационный полином (ν символов) степени $\nu-1$ $a(x) = a_0 + a_1x + a_2x^2 + ... + a_{\nu-1}x^{\nu-1}$.

Порождающий полином g(x) степени κ ($\kappa+1$ символов, обычно $g_{\kappa}=1$).

Кодовое слово C ($\mu = \nu + \kappa$ символов) степени $\mu - 1$ делится на g(x):

- несистематический код $C(x) = a(x) \cdot g(x)$;
- ullet систематический код (u информационных и κ проверочных символов):

$$C(x)=a(x)\cdot x^\kappa-r(x)$$
, где $r(x)=a(x)\cdot x^\kappa \mod g(x)$, $\deg(r)<\deg(g)=\kappa r(x)$ рассчитывается без деления, по табличным $x^i \mod g(x)$, $\kappa\leqslant i<\mu$

Полученное слово $C(x)+err(x)=\tilde{C}(x)=g(x)\cdot p(x)+r(x),$ r(x)=err(x) mod g(x)— синдром, $r(x)\neq 0$ — сбой (но для Рида—Соломона синдромом называется другой многочлен).

Циклические коды

— циклическая перестановка символов в кодовом слове дает другое допустимое слово того же кода: $C_1 = (c_0, c_1, \dots c_{u-1}), C_2 = (c_{u-1}, c_0, c_1, \dots c_{u-2})$

Таким образом,
$$C_2 = x \cdot C_1 - c_{\mu-1} \cdot (x^{\mu} - 1) \implies c_{\mu-1} \cdot (x^{\mu} - 1) = x \cdot C_1 - C_2$$
.

Полиномиальный код циклический $\Leftrightarrow x^{\mu} - 1$ делится на g(x).

Проверочный многочлен $h(x) = \frac{x^{\mu}-1}{g(x)}$ используется для извлечения информации из несистематического кода:

$$C(x)h(x)=a(x)g(x)h(x)=a(x)\cdot(x^{\mu}-1)=a(x)\cdot x^{\mu}-a(x)$$
 $\mu=\nu+\kappa>\deg(a)=\nu-1$ — две разнесённых копии коэф-тов $+a$ и $-a$.

$$\diamondsuit$$
 символы из \mathbb{Z}_5 , $a(x)=3x+1$, $\mu=4$, $g(x)=x^2+4x+3 \implies h(x)=\frac{x^4-1}{g(x)}=\frac{x^4+4}{g(x)}=x^2+x+3$ $C(x)=a(x)g(x)=3x^3+3x^2+3x+3$

$$C(x)h(x) = (3x^3 + 3x^2 + 3x + 3)(x^2 + x + 3) = 3x^5 + x^4 + 2x + 4 = 3x^5 + x^4 - 3x - 1$$

◆□ → ◆□ → ◆重 → ● ● ◆○○

Информационные потери Код Хэмминга (концепция) Практическое использование кода Хэмминга Полиномиальные коды Код Рида-Соломона над GF(5)

Циклические коды

Полиномиальный код Хэмминга

Над GF(2), q(x) — делитель $x^{\mu}-1$ (код циклический) степени κ (причём $\mu = 2^{\kappa} - 1$), не имеет корней в GF(2) и делителей.

В GF(2) (то есть \mathbb{Z}_2) верно (-1) = 1, то есть сложение = вычитанию.

$$\kappa=1, \mu=1$$
: мн-н x^1-1 , то есть $x+1=1\cdot (x+1)\Rightarrow g(x)=1$

$$\kappa=2,\mu=3$$
: $x^3-1=x^3+1=(x+1)(x^2+x+1)\Rightarrow g(x)=x^2+x+1,\ a(x)=a_0$ сист-й и несист-й коды совпадают: $C(x)=a_0x^2+a_0x+a_0\sim (a_0,a_0,a_0)$

a_0	k_2	k_1
×	×	
X		×

синдром:
$$\left(k_2(\widetilde{a}), k_1(\widetilde{a})\right) \oplus \left(\widetilde{k_2}, \widetilde{k_1}\right)$$

$$\kappa=3, \mu=7\colon x^7+1=(x+1)(x^3+x+1)(x^3+x^2+1)\Rightarrow \begin{bmatrix} g(x)=x^3+x+1\\g(x)=x^3+x^2+1 \end{bmatrix}$$

$$a(x)=a_3x^3+a_2x^2+a_1x+a_0, \qquad \text{пусть } g(x)=x^2+x+1, \text{ тогда сист-й код:}$$

$$C(x)=a_3x^6+a_2x^5+a_1x^4+a_0x^3+(a_1+a_2+a_3)x^2+(a_0+a_1+a_2)x+(a_0+a_2+a_3)$$

a_3	a_2	a_1	a_0	k_3	k_2	k_1
×	×	×		×		
	×	×	×		×	
×	×		×			×

Информационные потери Код Хэмминга (концепция) Практическое использование кода Хэмминга Полиномиальные коды Код Рида-Соломона над GF(5)

Полиномиальный код Хэмминга

Полиномиальный код Рида-Соломона

Корни q(x) Рида—Соломона лежат в том же поле, над каким и строится код Пусть β — элемент поля GF(q) порядка μ (обычно — примитивный элемент).

Тогда порождающий полином кода Рида—Соломона: $q(x) = (x - \beta^{l_0})(x - \beta^{l_0+1})\dots(x - \beta^{l_0+\kappa-1}),$ $\deg(q) = \kappa$.

где l_0 — некоторое целое число. Обычно $l_0 = 1$.

Длина полученного кода μ , минимальное расстояние δ , проверочных символов $\kappa = \delta - 1 = \deg(q)$, информационных символов $\nu = \mu - \kappa = \mu - \delta + 1$.

Если β — примитивный элемент GF(q), то $\mu = q - 1$. Количество проверочных κ однозначно определяет q(x).

Исправляется до $\kappa/2$ ошибок.

- Остаток $e(x) = C(x) \mod g(x)$ можно не вычислять.
- Синдром $S(x): s_i = e(\beta^{i+1}) = C(\beta^{i+1}).$
- Локатор ошибки $X_i = \beta^{\ell}$ для x^{ℓ} . Многочлен локаторов $L(x) = (1 - xX_1)(1 - xX_2)\dots(1 - xX_u)$
- Многочлен ошибок W(x) степень не превышает u-1, где u — количество ошибок ($u \leq \kappa/2$), причём $L(x) \cdot S(x) = W(x) \mod x^{\kappa}$.
- ullet Значения ошибок $Y_i = \frac{W(X_i^{-1})}{L'(X^{-1})}$ (коррекция: $C(c) = \widetilde{C}(x) + \sum Y_i \cdot x^{\ell_i}$).

Символы: $GF(5) = \mathbb{Z}_5$ — вычеты по модулю 5, $(-1) = 4 \neq 1$, поэтому формулы частично отличаются от $GF(2^s)$, где всегда (-1) = 1.

Максимальная длина кода $\mu = 4$ (количество ненулевых элементов поля), $\beta = 2$ — примитивный: $\beta^2 = 4$, $\beta^3 = 3$, $\beta^4 = 1$ (все ненулевые элементы).

Возможны многочлены:
$$g(x)=(x-2)$$
 $\qquad \qquad (\kappa=1, \text{ исправляет } \left\lfloor \frac{\kappa}{2} \right\rfloor =0 \text{ ошибок)},$ $g(x)=(x-2)(x-4)$ $\qquad \qquad (\kappa=2, \text{ исправляет } \left\lfloor \frac{\kappa}{2} \right\rfloor =1 \text{ ошибку)},$ $g(x)=(x-2)(x-4)(x-3)$ $\qquad (\kappa=3, \text{ исправляет } \left\lfloor \frac{\kappa}{2} \right\rfloor =1 \text{ ошибку)}.$

 $u \leqslant 1$: м-н локаторов одной ошибки $L(x) = 1 - xX_1 = 1 - x\gamma$ (производная $L'(x)=-\gamma$), м-н ошибок W(x)=c нулевой степени (то есть $Y_i=rac{c}{-\gamma}$).

При $\mu=4$ код циклический: $\beta^{\mu}=1\Rightarrow (\beta^{\ell})^{\mu}=1\Rightarrow$ все корни q(x) также являются корнями $x^{\mu} - 1$: $x^{\mu} - 1 = x^4 - 1 = x^4 + 4 = q(x)(x^2 + x + 3)$.

Выбираем $q(x) = (x-2)(x-4) = x^2 + 4x + 3$, $\kappa = 2$ контрольных символа, $\nu = \mu - \kappa = 2$ информационных символа.

Информационные потери Код Хэмминга (концепция) Практическое использование кода Хэмминга Полиномиальные коды Код Рида-Соломона над GF(5)

ДПФ Рида-Соломона Сообщение (2. 1)

Систематический код Рида-Соломона (3, 1)

Сообщение: $(3,1)\sim a(x)=3x+1$, — коэффициенты записываем наоборот, чтобы в систематическом коде информ-е символы располагались в начале. $q(x)=(x-2)(x-4)=x^2+4x+3$

Систематический код:

$$C(x) = a(x) \cdot x^{\kappa} - r(x)$$

Вычисление остатка: $r(x) = a(x) \cdot x^{\kappa} \mod g(x) = 3x^3 + x^2 \mod g(x) = 3 \cdot \left(x^3 \mod g(x)\right) + 1 \cdot \left(x^2 \mod g(x)\right), \qquad \text{где } x^{\kappa+i} \mod g(x) - \text{табличные}.$

Здесь:
$$x^{\kappa+0}=x^2=(x^2+4x+3)+x+2\equiv x+2$$
, $x^{\kappa+1}=x^3=x\cdot x^2\equiv x(x+2)=x^2+2x\equiv 3x+2$.

To есть
$$r(x) = 3(3x+2) + (x+2) = (4x+1) + (x+2) = 3.$$

$$C(x) = 3x^3 + x^2 - 3 = 3x^3 + x^2 + 2 = g(x) \cdot (3x + 4)$$

Код:
$$C(x) \sim \underbrace{(3,1,0,2)}_{\nu}$$
 — первые (старшие) ν символов информационные.

$$C(x)$$
 делится на $g(x) \Leftrightarrow C(2) = C(4) = 0 \Leftrightarrow$ синдром $S(x) = 0$.

4□ > 4回 > 4 = > 4 = > = 90

Ошибка:
$$(3, 1, 0, 2) \rightarrow (3, 1, 0, 0)$$

$$\widetilde{C}(x) = 3x^3 + x^2 = 2^3 \cdot x^3 + x^2$$

Приняли
$$\widetilde{C}(x) = C(x) + e(x)$$
. Ошибка $e(x)$ неизвестна

$$e(x) = -2 = 3$$

Найдём коэффициенты синдрома (степень $\kappa-1=1$):

$$s_0 = \tilde{C}(2) = 3 \cdot 2^3 + 2^2 = 4 + 4 = 3$$

 $s_1 = \tilde{C}(4) = 3 \cdot 4^3 + 4^2 = 2 + 1 = 3$

Синдром
$$S(x)=3x+3\neq 0$$
 — ошибка есть, то есть $\widetilde{C}(x)\neq C(x)$.

Найдём параметры мн-в локаторов
$$L(x) = 1 - \gamma x$$
 и ошибок $W(x) = c$: $(3x+3)(1-\gamma x) = c \mod x^2$

получаем систему уравнений:
$$\begin{cases} 3-3\gamma=0 & \text{коэффициенты при } x\\ 3=c & \text{свободные члены} \end{cases}$$
 откуда

$$\gamma = 1 = 2^0 \text{ in } c = 3.$$

Место ошибки:
$$x^0$$
 (так как $\gamma = 2^0$) коррекция $Y_1 = \frac{3}{1} = -3 = 2$:

$$C(x) = \widetilde{C}(x) + 2 \cdot x^0 = 3x^3 + x^2 + 2.$$

Информационные потери Код Хэмминга (концепция) Практическое использование кода Хэмминга Полиномиальные коды Код Рида-Соломона над GF(5) Систематический код Рида-Соломона (3, 1) Коррекция ошибок Несистематический код Рида-Соломона ДПФ Рида-Соломона Сообщение (2, 1) Тот же порождающий многочлен то же сообщение

$$g(x) = (x-2)(x-4) = x^2 + 4x + 3,$$

(3,1) $\sim a(x) = 3x + 1.$

Несистематический код: $C(x) = a(x)g(x) = 3x^3 + 3x^2 + 3x + 3 \sim (3,3,3,3)$ тоже $\mu = 4$ символа, но нельзя отделить инф-е от контрольных.

Восстановление сообщения:
$$C(x)h(x)=a(x)g(x)h(x)=a(x)(x^{\mu}-1)$$
, где $h(x)$ — проверочный многочлен $h(x)=\frac{x^{\mu}-1}{g(x)}=x^2+x+3$.

$$a(x)(x^{\mu}-1)=(ax+b)(x^4-1)=ax^5+bx^4-ax-b\sim (a,b,0,0,-a,-b)$$
 $\nu+\mu-1=\nu+(\nu+\kappa)-1$ степени; $2\nu+\kappa$ символов, из них κ нулей.

$$C(x)h(x) = (3x^3 + 3x^2 + 3x + 3)(x^2 + x + 3) = 3x^5 + x^4 + 2x + 4$$

 $\sim (3, 1, 0, 0, 2, 4) = (3, 1, 0, 0, -3, -1)$

Синдром и коррекция — аналогично систематическому коду.

ДПФ Рида-Соломона

То же сообщение $(3,1)\sim a(x)=3x+1$ (коэффициенты записываем в обратном порядке, как и ранее, но здесь это неудобно).

$$\beta^{-4}=1, \beta^{-3}=2, \beta^{-2}=4, \beta^{-1}=3, \ \beta^0=1, \beta^1=2, \beta^2=4, \beta^3=3, \beta^4=1$$
 Кодирование:
$$c_0=a(\beta^0)=a(1)=3\cdot 1+1 \qquad =4$$

$$c_1=a(\beta^1)=a(2)=3\cdot 2+1=1+1=2$$

$$c_2=a(\beta^2)=a(4)=3\cdot 4+1=2+1=3$$

$$c_3=a(\beta^3)=a(3)=3\cdot 3+1=4+1=0$$

$$(0,3,2,4) \sim C(x) = 3x^2 + 2x + 4$$

$$a_0 = \frac{C(\beta^0)}{\mu} = \frac{3 \cdot 2^0 + 2 \cdot 2^0 + 4}{4} = \frac{3 + 2 + 4}{4} = \frac{4}{4} = 1$$

$$a_1 = \frac{C(\beta^{-1})}{\mu} = \frac{3 \cdot 2^{-2} + 2 \cdot 2^{-1} + 4}{4} = \frac{2 + 1 + 4}{4} = \frac{2}{4} = 3$$

$$a_2 = \frac{C(\beta^{-2})}{\mu} = \frac{3 \cdot 2^{-4} + 2 \cdot 2^{-2} + 4}{4} = \frac{3 + 3 + 4}{4} = \frac{0}{4} = 0$$

$$a_3 = \frac{C(\beta^{-3})}{\mu} = \frac{3 \cdot 2^{-6} + 2 \cdot 2^{-3} + 4}{4} = \frac{2 + 4 + 4}{4} = \frac{0}{4} = 0$$

Сообщение (2, 1)

Сообщение:
$$(2,1) \sim a(x) = 2x+1$$
, $g(x) = (x-2)(x-4) = x^2+4x+3$ $r(x) = 2(3x+2) + (x+2) = (x+4) + (x+2) = 2x+1$. $C(x) = 2x^3 + x^2 - (2x+1) = 2x^3 + x^2 + 3x + 4 = g(x)(2x+3) \sim (2,1,3,4)$

Ошибка №1:
$$(2,1,3,4) \to (2,1,0,4)$$
 $C(x) = 2x^3 + x^2 + 4$ Синдром: $s_0 = \widetilde{C}(2) = 4$, $s_1 = \widetilde{C}(4) = 3$: $S(x) = 3x + 4 \neq 0$ Из $(3x+4)(1-\gamma x) = c \mod x^2$ находим: $\gamma = \frac{3}{4} = 2$ и $4 = c$. Место ошибки: x^1 (так как $\gamma = 2^1$) — испорчен контрольный символ, коррекция $Y_1 = \frac{4}{2} = -2 = 3$: $C(x) = \widetilde{C}(x) + 3x = 2x^3 + x^2 + 3x + 4$.

Ошибка №2:
$$(2,1,3,4) \to (4,1,3,4)$$
 $\widetilde{C}(x) = 4x^3 + x^2 + 3x + 4$ Синдром: $s_0 = \widetilde{C}(2) = 1$, $s_1 = \widetilde{C}(4) = 3$: $S(x) = 3x + 1 \neq 0$ — ошибка. Из $(3x+1)(1-\gamma x) = c \mod x^2$ находим: $\gamma = 3 = 2^3$, $c = 1$, коррекция $Y_1 = \frac{1}{2} = -2 = 3$: $C(x) = \widetilde{C}(x) + 3x^3 = 2x^3 + x^2 + 3x + 4$.

(ロ) (部) (注) (注) 注 り(C)

Информационные потери Код Хэмминга (концепция) Практическое использование кода Хэмминга Полиномиальные коды Код Рида-Соломона над GF/5) Систематический код Рида-Соломона (3, 1) Коррекция ошибок Несистематический код Рида-Соломона ДПФ Рида-Соломона Сообшение (2, 1)

$$g(x) = (x-2)(x-4) = x^2 + 4x + 3,$$

(2,1) \sim a(x) = 2x + 1.

34 / 35

$$\beta^{-4} = 1, \beta^{-3} = 2, \beta^{-2} = 4, \beta^{-1} = 3, \beta^{0} = 1, \beta^{1} = 2, \beta^{2} = 4, \beta^{3} = 3, \beta^{4} = 1$$

Несистематический код:
$$C(x)=a(x)g(x)=2x^3+4x^2+3\sim(2,4,0,3)$$

$$C(x)h(x)=(2x^3+4x^2+3)(x^2+x+3)=2x^5+x^4+3x+4$$

$$\sim(2,1,0,0,3,4)=(2,1,0,0,-2,-1)$$

ДПФ Рида—Соломона:
$$(2,4,0,3) \sim C(x) = 2x^3 + 4x^2 + 3$$
 совп. случайно $c_0 = a(1) = 2 \cdot 1 + 1$ $= 3$ $a_0 = \frac{2 \cdot 2^0 + 4 \cdot 2^0 + 3}{4} = \frac{2 + 4 + 3}{4} = \frac{4}{4} = 1$ $c_1 = a(2) = 2 \cdot 2 + 1 = 4 + 1 = 0$ $a_1 = \frac{2 \cdot 2^{-3} + 4 \cdot 2^{-2} + 3}{4} = \frac{4 + 1 + 3}{4} = \frac{3}{4} = 2$ $c_2 = a(4) = 2 \cdot 4 + 1 = 3 + 1 = 4$ $a_2 = \frac{2 \cdot 2^{-6} + 4 \cdot 2^{-4} + 3}{4} = \frac{3 + 4 + 3}{4} = \frac{0}{4} = 0$ $c_3 = a(3) = 2 \cdot 3 + 1 = 1 + 1 = 2$ $a_3 = \frac{2 \cdot 2^{-9} + 4 \cdot 2^{-6} + 3}{4} = \frac{1 + 1 + 3}{4} = \frac{0}{4} = 0$

ТЕИМ

www.miet.ru

Александра Игоревна Кононова illinc@mail.ru gitlab.com/illinc/raspisanie

