The Log-Approximate-Rank Conjecture is False

Arkadev Chattopadhyay¹ Nikhil Mande ² Suhail Sherif ¹

¹Tata Institute of Fundamental Research, Mumbai

²Georgetown University

June 24, 2019

Communication Complexity

How much do parties need to communicate in order to complete a task?

Communication Complexity

- How much do parties need to communicate in order to complete a task?
- ▶ Pops up everywhere. Streaming algorithms, extension polytopes, data structures and more.

Communication Complexity

- How much do parties need to communicate in order to complete a task?
- Pops up everywhere. Streaming algorithms, extension polytopes, data structures and more.
- ► In this talk, we focus on two parties (Alice and Bob) computing a Boolean function.

A Communication Protocol

A Communication Protocol

(x,y) is accepted \Leftrightarrow (x,y) reaches a 1-leaf.

A Communication Protocol

(x,y) is accepted \Leftrightarrow (x,y) reaches a 1-leaf.

 $\begin{array}{c} \text{Inputs that reach } \ell \\ = \\ \{x: x \text{ answers red}\} \\ \times \\ \{y: y \text{ answers blue}\}. \end{array}$

Building the truth table for the function computed by the protocol.

Inputs that reach leaf ℓ contribute a rank 1 matrix.

Inputs that reach leaves ℓ_1 or ℓ_2 form a rank ≤ 2 matrix.

Inputs that reach any 1 leaf form a rank $\leq 2^c$ matrix.

Conjecture (Lovász Saks '88)

 \exists constant α s.t. $D(F) \leq \log^{\alpha} \operatorname{rank}(F)$

Conjecture (Lovász Saks '88)

 \exists constant α s.t. $D(F) \leq \log^{\alpha} \operatorname{rank}(F)$

► Connects comm comp measure with algebraic measure.

Conjecture (Lovász Saks '88)

 \exists constant α s.t. $D(F) \leq \log^{\alpha} \operatorname{rank}(F)$

Connects comm comp measure with algebraic measure. Known analogous connections have been useful.

Conjecture (Lovász Saks '88)

 \exists constant α s.t. $D(F) \leq \log^{\alpha} \operatorname{rank}(F)$

- Connects comm comp measure with algebraic measure. Known analogous connections have been useful.
- Has connections to graph colouring, low degree polynomials.

Conjecture (Lovász Saks '88)

$$\exists$$
 constant α s.t. $D(F) \leq \log^{\alpha} \operatorname{rank}(F)$

- Connects comm comp measure with algebraic measure. Known analogous connections have been useful.
- Has connections to graph colouring, low degree polynomials.

For: [Lovett '13] showed that
$$D(F) \lesssim O\left(\sqrt{\operatorname{rank}(F)}\right)$$
.

Conjecture (Lovász Saks '88)

$$\exists$$
 constant α s.t. $D(F) \leq \log^{\alpha} \operatorname{rank}(F)$

- Connects comm comp measure with algebraic measure. Known analogous connections have been useful.
- Has connections to graph colouring, low degree polynomials.

For: [Lovett '13] showed that
$$D(F) \lesssim O\left(\sqrt{\operatorname{rank}(F)}\right)$$
.

Against: [Göös Pitassi Watson '15] showed that $\alpha \geq 2$.

Conjecture (Lovász Saks '88)

$$\exists$$
 constant α s.t. $D(F) \leq \log^{\alpha} \operatorname{rank}(F)$

- Connects comm comp measure with algebraic measure. Known analogous connections have been useful.
- Has connections to graph colouring, low degree polynomials.

For: [Lovett '13] showed that
$$D(F) \lesssim O\left(\sqrt{\operatorname{rank}(F)}\right)$$
.

Against: [Göös Pitassi Watson '15] showed that $\alpha \geq 2$.

Fun fact: LRC is True if you restrict the rank decomposition to be nonnegative.

A Randomized Communication Protocol

A Randomized Communication Protocol

 $\Pr[(x,y) \text{ is accepted}] =$ $\Pr[(x,y) \text{ reaches a 1-leaf}].$

A Randomized Communication Protocol

$$\Pr[(x,y) \text{ is accepted}] =$$
 $\Pr[(x,y) \text{ reaches a 1-leaf}].$

$$\begin{array}{l} \Pr[(x,y) \text{ reaches } \ell] \\ = \\ \Pr_{r_A}[x \text{ answers red}] \end{array}$$

 $\Pr_{r_B}[y \text{ answers blue}].$

Small Approximate Rank

 $\Pr[(x,y) \text{ reaches } \ell]$ is a rank 1 matrix.

Small Approximate Rank

 $\Pr[(x,y) \text{ reaches } \ell]$ is a rank 1 matrix.

 $\Pr[(x,y) \text{ is accepted}] \text{ is a rank } \leq 2^c \text{ matrix.}$

1	1	0	0
0	1	0	0
0	0	1	0
0	0	0	1

.8 .9 .1 .2 0 .9 .1 .1 0 .1 .8 0 .1 0 0 1

 $M_{\mbox{\footnotesize{Pr}}}$ of accepting

1	1	0	0
0	1	0	0
0	0	1	0
0	0	0	1

.8	.9	.1	.2
0	.9	.1	.1
0	.1	.8	0
.1	0	0	1

 $M_{\mbox{\footnotesize{Pr}}}$ of accepting

 $\mathsf{Rank} \leq 2^c$

1	1	0	0
0	1	0	0
0	0	1	0
0	0	0	1

 ${\sf Approx.}\ {\sf Rank} \leq 2^c$

 $M_{\mbox{\footnotesize{Pr}}}$ of accepting

 $\mathsf{Rank} \leq 2^c$

Approx. Rank $\leq 2^c$

 M_{Pr} of accepting

 $\mathsf{Rank} \leq 2^c$

$$\log \operatorname{rank}_{1/3}(F) \le c$$
.

Conjecture (ForgeGod '05, Lee Shraibman '07)

 $\exists \ \textit{constant} \ \beta \ \textit{s.t.} \ R(F) \leq \log^{\beta} \operatorname{rank}_{1/3}(F)$

Conjecture (ForgeGod '05, Lee Shraibman '07)

$$\exists \ \textit{constant} \ \beta \ \textit{s.t.} \ R(F) \leq \log^{\beta} \operatorname{rank}_{1/3}(F)$$

For a randomized protocol, the number of bits exchanged in the worst case, R(f), is conjectured to be polynomially related to the following absurd formula:

$$\min\{\operatorname{rank}(M_f'): M_f' \in \mathbb{R}^{2^n \times 2^n}, \ (M_f - M_f')_\infty \leq 1/3\}.$$

Figure: Screenshot from "Communication complexity - Wikipedia" (Dec '05)

Conjecture (ForgeGod '05, Lee Shraibman '07)

 \exists constant β s.t. $R(F) \leq \log^{\beta} \operatorname{rank}_{1/3}(F)$

Implies the LRC! [Gavinsky Lovett '13]

Conjecture (ForgeGod '05, Lee Shraibman '07)

 \exists constant β s.t. $R(F) \leq \log^{\beta} \operatorname{rank}_{1/3}(F)$

Implies the LRC! [Gavinsky Lovett '13]

Set Disjointness shows that $\beta \geq 2$. [Kalyanasundaram Schnitger '92, Razborov '92]

Conjecture (ForgeGod '05, Lee Shraibman '07)

 \exists constant β s.t. $R(F) \leq \log^{\beta} \operatorname{rank}_{1/3}(F)$

Implies the LRC! [Gavinsky Lovett '13]

Set Disjointness shows that $\beta \geq 2$. [Kalyanasundaram Schnitger '92, Razborov '92]

[Göös Jayram Pitassi Watson '17] showed that $\beta \geq 4$.

Theorem (Chattopadhyay Mande S '19)

There is a function $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ such that $\operatorname{rank}_{1/3}(F) \leq O(n^2)$, but $R(F) \geq \Omega(\sqrt{n})$.

Theorem (Chattopadhyay Mande S '19)

There is a function $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ such that $\log \operatorname{rank}_{1/3}(F) \leq O(\log n)$, but $R(F) \geq \Omega(\sqrt{n})$.

Theorem (Chattopadhyay Mande S '19)

There is a function $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ such that $\log \operatorname{rank}_{1/3}^+(F) \leq O(\log n)$, but $R(F) \geq \Omega(\sqrt{n})$.

$$\mathsf{SINK}:\{0,1\}^{\binom{m}{2}}\to\{0,1\}$$

$$\mathsf{SINK}:\{0,1\}^{\binom{m}{2}} \rightarrow \{0,1\}$$

$$\mathsf{SINK}:\{0,1\}^{\binom{m}{2}} \rightarrow \{0,1\}$$

$$\mathsf{SINK}:\{0,1\}^{\binom{m}{2}}\to\{0,1\}$$

$$\mathsf{SINK}:\{0,1\}^{\binom{m}{2}}\to\{0,1\}$$

 $\mathsf{SINK}(z) = 1$ iff there is a sink in the graph G_z .

$$F:=\mathsf{SINK}\circ\mathsf{XOR}:\{0,1\}^{\binom{m}{2}}\times\{0,1\}^{\binom{m}{2}}\to\{0,1\}$$

 $\mathsf{SINK}(z) = 1$ iff there is a sink in the graph G_z .

$$F := \mathsf{SINK} \circ \mathsf{XOR} : \{0,1\}^{\binom{m}{2}} \times \{0,1\}^{\binom{m}{2}} \to \{0,1\}$$

 $\mathsf{SINK}(z) = 1$ iff there is a sink in the graph G_z .

Alice Bob
$$z=x\oplus y \qquad \qquad y\in\{0,1\}^{\binom{m}{2}} \qquad \qquad z=x\oplus y$$

Whether or not v_1 is a sink is decided by the red variables, z_{v_1} .

Whether or not v_1 is a sink is decided by the red variables, z_{v_1} .

 v_1 is a sink iff $x_{v_1} = y_{v_1}$.

Whether or not v_1 is a sink is decided by the red variables, z_{v_1} .

 v_1 is a sink iff $x_{v_1} = y_{v_1}$.

 $M_{v_1 \text{ is a sink}}$ has small approximate rank.

Whether or not v_1 is a sink is decided by the red variables, z_{v_1} .

 v_1 is a sink iff $x_{v_1} = y_{v_1}$.

 $M_{v_1 \text{ is a sink}}$ has small approximate rank.

 $M_F = \sum M_{v_i \text{ is a sink}}$ has small approximate rank.

ightharpoonup A rectangle "biased" against v_1 being a sink must be small. (Follows from [Gavinsky '16].)

- A rectangle "biased" against v₁ being a sink must be small. (Follows from [Gavinsky '16].)
- Each additional vertex one "biases" against shrinks it further. (Near independence of sinks, Shearer's lemma)

- A rectangle "biased" against v₁ being a sink must be small. (Follows from [Gavinsky '16].)
- Each additional vertex one "biases" against shrinks it further. (Near independence of sinks, Shearer's lemma)
- A rectangle "biased" against sinks must be tiny.

- A rectangle "biased" against v₁ being a sink must be small. (Follows from [Gavinsky '16].)
- Each additional vertex one "biases" against shrinks it further. (Near independence of sinks, Shearer's lemma)
- A rectangle "biased" against sinks must be tiny.

Any randomized protocol for F must be costly.

So what now?

- Quantum vs Log Approximate Rank?
- Can the Log Approximate Nonnegative Rank Conjecture be similarly refuted?
- What other functions refute the LARC?

Thank You

session!

Questions are welcome if time permits.
Find out more at the poster

- Vince Grolmusz.
 On the power of circuits with gates of low L₁ norms.

 Theor. Comput. Sci., 188(1-2):117–128, 1997.
- Gillat Kol, Shay Moran, Amir Shpilka, and Amir Yehudayoff. Approximate nonnegative rank is equivalent to the smooth rectangle bound.

 In Automata, Languages, and Programming 41st

In Automata, Languages, and Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, pages 701–712, 2014.

- László Lovász and Michael E. Saks.
 Lattices, möbius functions and communication complexity.
 In 29th Annual Symposium on Foundations of Computer Science, White Plains, New York, USA, 24-26 October 1988, pages 81–90, 1988.
- Troy Lee and Adi Shraibman.

 Lower bounds in communication complexity.

Foundations and Trends in Theoretical Computer Science, 3(4):263–398, 2009.

Hing Yin Tsang, Chung Hoi Wong, Ning Xie, and Shengyu Zhang.

Fourier sparsity, spectral norm, and the log-rank conjecture.

In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 658–667, 2013.