Theoretical Problems

Question 1

1A

$$x \sim N(2,3) E(X) = 2 var(x) = 3; y \sim N(0,1) E(y) = 0 var(y) = 1$$

 $E(z) = E(2x - y) = E(2x) - E(y) = 2E(x) - E(y) = 2 * 2 - 0 = 4$

1B

Since x, y is independent,

$$corr(x, y) = 0$$

$$corr(x,y) = \frac{cov(x,y)}{\sqrt{var(x)var(y)}} = \frac{0}{\sqrt{3*1}} = 0$$

1C

$$var(z) = var(2x - y) = var(2x) + var(y) - 2 * 2cov(x, y)$$

= $4var(x) + var(y) - 4cov(x, y)$
= $4 * 3 + 1 - 4 * 0 = 13$

1D

$$cov(x, z) = cov(x, 2x - y) = 2cov(x, x) - cov(x, y) = 2var(x) - cov(x, y) = 2 * 3 - 0 = 6$$
$$corr(x, z) = \frac{cov(x, z)}{\sqrt{var(x)var(z)}} = \frac{6}{\sqrt{3 * 13}} = 0.961$$

1E

$$x_i \sim N(2,3)$$
 $y_i \sim N(0,1)$

Since
$$z_i = 2x_i - y_i$$
 and $Z = \beta_0 + \beta_1 X + u$

X, Y are independent, $Z = \beta_0 + \beta_1 X + u$ will not affected by Y.

We use this model to estimate the linear relationship between x and z.

As x increase by 1 unit and holding y constant, z will expect to increase by 2 unit.

We expect $\beta_1 = 2$.

Question 2

2A

Bias refers to the tendency of a measurement process to over or under estimate the value of a population parameter.

$$E\left(\frac{y_{j} - y_{k}}{x_{j} - x_{k}}\right) = E\left(\frac{\beta_{0} + \beta_{1}x_{j} + u_{j} - (\beta_{0} + \beta_{1}x_{k} + u_{k})}{x_{j} - x_{k}}\right) = E\left(\beta_{1} + \frac{u_{j} - u_{k}}{x_{j} - x_{k}}\right)$$

$$= E(\beta_{1}) + E\left(\frac{u_{j} - u_{k}}{x_{j} - x_{k}}\right) = \beta_{1}$$

Thus, $bias = E(\widehat{\beta_1}) - \beta_1 = 0$ (note: $u_j - u_k = u_i - u_i = 0$) $\widehat{\beta_1}$ is unbiased.

2B

$$\widehat{\beta_1} = \frac{y_j - y_k}{x_j - x_k} = \frac{y_j}{x_j - x_k} - \frac{y_k}{x_j - x_k}$$

 $\widehat{\beta_1}$ is a linear estimator, it can be expressed as a linear function of x and y.

2C

By Gauss Markov Theorem, the least squares estimator is appealing because

- 1. Under the assumptions of linear regression model, it is the best linear unbiased estimator
- 2. Under the assumptions of linear regression model, of all linear and unbiased estimates of β , $\hat{\beta}$ has the minimum variance and it is unique

2D

True. OLS is used to find the best fit line. If we only know observations j and k, the most fitted line is the line that cross two points. The slope of this line is $\hat{\beta}_1 = \frac{y_j - y_k}{x_j - x_k}$ which is as same as your friend's estimation.

Question 3

3A

 β_1 is the SLOPE of the regression line. β_1 represents the difference in the predicted value of Y for each one-unit difference in X1.

In this case, if tutorial hours(X) differed by one-unit the GPA (Y) will differ by -0.02 units on average.

3B

No. There may have other variables in "u" that influences the GPA score. For example, the innate ability is not observed in u term. Noticed that the higher the innate ability, the lower the hours spend and more likely have a higher GPA. So, cov (innate ability, hours) < 0 and $E(u|x) \neq 0$. The omitted variable bias which causes assumption 2 : E(u|x) = 0 not hold. Regarding whether the school decides to cancel the tutoring program, it cannot only depend on the tutoring hour.

Computer based problems

Problem 1 weight loss

- A. The weight loss data is a time series data since the series of data points listed in time order.
- BMI=(WeightPounds/2.2)/1.73²
 The mean food consumption is 2.913. It tells that the average of plates of food consumption of TA is 2.9 per day.
- . tabstat WeightPounds WaistInches PlatesFoodCons BMI, $s(mean\ v\ sd\ n)$

stats	Weight~s	WaistI~s	Plates~s	BMI
mean variance sd N	63.48545	34.93957 1.806475 1.344052 46	.9299383	1.464348

C.

Graph 1: Weight(in pounds) vs time in days

This graph shows that the TA's weight in pounds decreases over time (i.e. There is a negative relationship). The relationship appears linear. The points line in a tight band indicating that the relationship is quite strong. The variability appears reasonably constant.

Graph 2: Waist(in inches) vs time in days

The TA's waist in inches decreases as date increases. There appears to be a moderate negative linear relationship. There is quite a lot of variability.

In general, there is a significant weight loss for TA. Two graphs cover the same time periods, from 07 AUG 2019 to 17 SEPT 2019.

D.

- i. WeightPounds = 7221.293 0.3240695 * TimeUnitDay
- . reg WeightPounds TimeUnitDay

Source	SS	df	MS	Number of obs	=	81
Model Residual	5012.67309 66.1627609	1 79	5012.67309 .837503302	R-squared	=	5985.26 0.0000 0.9870
Total	5078.83585	80	63.4854481	- Adj R-squared . Root MSE	=	0.9868 .91515
WeightPounds	Coef.	Std. Err.	t	P> t [95% C	onf.	Interval]
TimeUnitDay _cons	3240695 7221.293	.0041889 91.20207	-77.36 79.18	0.00033240 0.000 7039.7		3157318 7402.826

ii. In general, the higher the R-squared, the better the model fits the data. In this case, R^2 is 0.98. It indicates that the model explains 98% of the variability of the response data around its mean. Also, when we look at the scatter plots (Weight (in pounds) vs. time in days), it shows the strong linear relationship between two variables. So, the simple linear regression fits the data well.

iii. β_1 represents the difference in the predicted value of Y for each one-unit difference in X1. In this case, the weight is expected to decrease by 0.3240695 pounds on average when each day passes.

iv.

WeightPounds = 7221.293 - 0.3240695 * TimeUnitDay

7221.293 - 0.3240695 * TimeUnitDay = 145

TimeUnitDay =21835.7266

on 13 oct 2019, he will be expected to achieve his goal.

$$v. \ \frac{1}{3500} = \frac{0.324}{deficit}$$

daily deficit = 1134.24

The average daily calorie deficit from the mean rate of daily weight loss is 1134.24.

E.

It violates the 3^{rd} assumption: random sample-iid data. In time series data, the observations are not independent. In this question, x and y are related to the particular person (the TA).

Problem 2 Exports and Employment

A.

Graph 1: sample mean, standard deviation, the median, the 25th and 75th percentiles for Exports and total employment

tabstat exports total_employment, s(mean sd median p25 p75)

stats	exports	total_~t
mean sd	1.42e+07 5.44e+07	172.4819 243.153
p50	1385333	94
p25	233964	39
p75	7752355	215

Graph 2: sample mean, standard deviation, the median, the 25th and 75th percentiles for ln(exports) and ln (total employment)

. tabstat lnexports lntotal_employment, s(mean sd median p25 p75)

stats	lnexpo~s	lntota~t
mean sd p50 p25 p75	14.03814 2.553711 14.14145 12.36292 15.86351	4.481492 1.214396 4.543295 3.663562 5.370638
p25	12.36292	3.663562

The scatter plot appears to be a positive linearly relationship between In(exports) and ln(employment). There is quite a lot of variability and hence this relationship appears moderate to week.

The graph support what the entrepreneurs thought. As total_employment increases, the exports' value increases.

C.

$$\begin{split} &\ln(\text{exports}) = \beta_0 + \beta_1 \ln(total_employment) + u_i \\ &\ln(\text{exports}) = 9.567017 + 0.9976858 \ln(total_employment) \end{split}$$

The estimate of slope is $\widehat{\beta_1} = 0.9977$. As In (total_employment) changes by 1 unit, the ln(exports) will differ by 0.9977 units. A 1% change in total_employment is associated with a 0.998% change in export on average.

. reg lnexpor	ts lr	ntotal_emplo	yment						
Source		SS	df		MS	Number of ol	bs	=	2,299
						F(1, 2297)		= 6	567.23
Model	337	3.32341	1	3373.	32341	Prob > F		= 6	0.0000
Residual	116	12.9476	2,297	5.055	70205	R-squared		= 6	9.2251
						Adj R-square	ed	= 6	9.2248
Total	14	1986.271	2,298	6.521	44083	Root MSE		= 2	2.2485
lnexpo	orts	Coef.	Std.	Err.	t	P> t	[95%	Conf	. Interval]
lntotal_employ	/m~t	.9976858	.038	6238	25.83	0.000	.921	9446	1.073427
_0	ons	9.567017	.179	3324	53.35	0.000	9.21	5346	9.918687

D.

median of total_employment is 94 median of lntotal_employment is 4.543295 median of exports is 1385333

The predicted exports for a plant with the median employment:

lnest_exports = 9.567 + 0.9976 * 4.543295 = 14.0998

est exports = $\exp(14.0998) = 1328818$

est_exports = 1328818 < median of exports = 1385333

The predict exports is smaller than the median of exports. The prediction is not accurate since u contains other unobservable variables. The prediction is biased.

E.

. reg $lnexports\ lntotal_employment\ lnmaterials\ lncapital$

Source	SS	df	MS	Number of obs	=	2,299
				F(3, 2295)	=	604.95
Model	6617.71837	3	2205.90612	Prob > F	=	0.0000
Residual	8368.55265	2,295	3.64642817	R-squared	=	0.4416
-				Adj R-squared	=	0.4409
Total	14986.271	2,298	6.52144083	Root MSE	=	1.9096

lnexports	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
<pre>lntotal_employm~t</pre>	0281651	.0516769	-0.55	0.586	1295034	.0731731
	.8166265	.0333824	24.46	0.000	.7511637	.8820893
	.0634026	.0330915	1.92	0.055	0014897	.1282949
	.5112672	.3612492	1.42	0.157	1971418	1.219676

 $\ln EX_i = \beta_0 + \beta_1 \ln \left(total_{employment} \right) + \beta_2 \ln (Matrials) + \beta_3 \ln (Captial) + Ui$

In general, the results change much with respect to the previous model's results.

The omitted variable bias caused misspecification analysis. The capital and materials are omitted from first model, so the estimators of β_1 is biased. In second model, $\widehat{\beta_2}$ and $\widehat{\beta_3}$ both positive and measured as 0.816 and 0.634 separately. Thus, we noticed that the materials and capital are positively correlated to total_employment.

In first model β_1 has an upward bias.

In second model, holding materials and capital constant, a 1% change in total_employment is associated with a -0.28 % change in export on average.

F. reg Intotal_employment Inmaterials Incapital

Source	SS	df	MS		=	2,299
Model	2023.54234	2	1011.77117	F(2, 2296) Prob > F	=	1701.29 0.0000
Residual	1365.44832			R-squared	=	0.5971
				Adj R-squared	=	0.5967
Total	3388.99066	2,298	1.4747566	Root MSE	=	.77117

lntotal_em~t	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lnmaterials	.2074299	.0127675	16.25	0.000	.182393	.2324669
lncapital	.2783011	.0120358	23.12	0.000	.2546988	.3019033
_cons	-3.039001	.1313826	-23.13	0.000	-3.296642	-2.78136

. reg lnexports est_error

Source	SS	df	MS	Number of obs	=	2,299
				F(1, 2297)	=	0.17
Model	1.08317372	1	1.08317372	Prob > F	=	0.6837
Residual	14985.1878	2,297	6.52380838	R-squared	=	0.0001
				Adj R-squared	=	-0.0004
Total	14986.271	2,298	6.52144083	Root MSE	=	2.5542

lnexports	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
est_error	0281651	.0691215	-0.41	0.684	1637121	.1073819
_cons	14.03814	.0532698	263.53	0.000	13.93368	14.1426

 $\widehat{\beta_1} = -0.028$ in model $\ln EX_i = \beta_0 + \beta_1 \widehat{\epsilon_i} + \widehat{u_i}$ is the same in model $\ln EX_i = \beta_0 + \beta_1 \ln(total_{employment}) + \beta_2 \ln(Matrials) + \beta_3 \ln(Captial) + Ui$

This example is a partialling out Approach Example. In model $\ln L_i = \alpha_0 + \alpha_1 ln M_i + \alpha_2 ln K_i + \epsilon_i$, ϵ_i can be interpreted as the variation in $\ln L_i$ that cannot be explained by $\ln M_i$ and $\ln K_i$. In other words, ϵ_i is the part of $\ln L_i$ that is uncorrelated with $\ln M_i$ and $\ln K_i$. When we use this unique variation ϵ_i to do linear regression, the influences that ϵ_i have on y are the same as x1 on y when we are holding other factors constant. From $\ln EX_i = \beta_0 + \beta_1 \ \hat{\epsilon_i} + \widehat{u_i}$, as ϵ_i increase by 1 unit, we expect $\ln(\text{export})$ decrease by -0.028 unit on average.

Problem 3 Monte Carlo Simulation

A.

The average of $\widehat{\beta_0} = 5.018$, $\widehat{\beta_1} = -2.00721$, $\widehat{\beta_2} = -2.984$.

The average of $\hat{\beta}$ is close to the true β

The average and std. Dev of $\hat{\beta}$:

Variable	Obs	Mean	Std. Dev.	Min	Max
b0	 1,000	5.018323	.3576911	3.834016	6.486395
b1	1,000	-2.00721	.3125933	-2.999369	-1.010637
b2	1,000	-2.984774	.1537827	-3.468918	-2.520949

Histogram Graph:

В

Variable	0bs	Mean	Std. Dev.	Min	Max
b0	1,000	8.000995	.6729103	5.68796	10.17895
b1	1,000	-3.192236	.7180337	-5.499341	4678245

True model :
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + U$$
 $\widehat{\beta_0} = 5.018, \widehat{\beta_1} = -2.00721$
Observed model (omit x2): $Y = \beta_0 + \beta_1 X_1 + V$ $\widehat{\beta_0} = 8.0$ $\widehat{\beta_1} = -3.19$

The average of $\widehat{\beta_0}$ and $\widehat{\beta_1}$ are not close to the values I would expect because of omitted variable bias. The observed model excludes a relevant variable x2.

PROOF:

Since
$$x2 = 0.4 x_1 + V$$

 $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + U$
 $Y = \beta_0 + \beta_1 X_1 + \beta_2 (0.4 x_1 + V) + U$
 $Y = \beta_0 + (\beta_1 + 0.4 \beta_2) x_1 + (\beta_2 V + U)$
Let $\beta_0 = \delta_0$; $(\beta_1 + 0.4 \beta_2) = \delta_1$; $(\beta_2 V + U) = \xi$
 $E(\widehat{\delta_1}) = \delta_1 = \beta_1 + 0.4 \beta_2 < \beta_1$ since $\widehat{\beta_2} = -2.984$
 β_1 is biased
bias $(\widehat{\delta_1}) = 0.4 \beta_2 = 0.4 * -2.984 = -1.19$

bias
$$(\widehat{\delta_1}) = 0.4\beta_2 = 0.4 * -2.984 = -1.19$$

note:
$$\widehat{\beta_{1omit}}_{x2} - \widehat{\beta_{1}}_{true\ model} = -3.19 - (-2.0) = -1.19$$