

CS 103 Unit 8b Slides

Algorithms

Mark Redekopp

ALGORITHMS

How Do You Find a Word in a Dictionary

- Describe an "efficient" method
- Assumptions / Guidelines
 - Let target_word = word to lookup
 - N pages in the dictionary
 - Each page has the start and last word on that page listed at the top of the page
 - Assume the user understands how to perform alphabetical ("lexicographic") comparison (e.g. "abc" is smaller than "acb" or "abcd")

Algorithms

- Algorithms are at the heart of computer systems, both in HW and SW
 - They are fundamental to Computer Science and Computer Engineering
- Informal definition
 - An algorithm is a precise way to accomplish a task or solve a problem
- Software programs are collections of algorithms to perform desired tasks
- Hardware components also implement algorithms from simple to complex

Humans and Computers

- Humans understand algorithms differently than computers
- Humans easily tolerate ambiguity and abstract concepts using context to help.
 - "Add a pinch of salt." How much is a pinch?
 - "Michael Jordan could soar like an eagle."
 - "It's a bear market"
- Computers only execute well-defined instructions (no ambiguity) and operate on digital information which is definite and discrete (everything is exact and not "close to")

Formal Definition

- For a computer, "algorithm" is defined as...
 - ...an ordered set of unambiguous, executable steps that defines a terminating process
- Explanation:
 - Ordered Steps: the steps of an algorithm have a particular order, not just any order
 - Unambiguous: each step is completely clear as to what is to be done
 - Executable: Each step can actually be performed
 - Terminating Process: Algorithm will stop, eventually.
 (sometimes this requirement is relaxed)

Algorithm Representation

- An algorithm is not a program or programming language
- Just as a story may be represented as a book, movie, or spoken by a story-teller, an algorithm may be represented in many ways
 - Flow chart
 - Pseudocode (English-like syntax using primitives that most programming languages would have)
 - A specific program implementation in a given programming language

Algorithm Example 1

- List/print all factors of a natural number, n
 - How would you check if a number is a factor of n?
 - What is the range of possible factors?

```
i \leftarrow 1
```

while(i <= n) do

if (remainder of n/i is zero) then

List i as a factor of n

An improvement

```
i ← 1
while(i <= sqrt(n) ) do
if (remainder of n/i is zero) then
  List i and n/i as a factor of n
i ← i+1</pre>
```


Algorithm Time Complexity

- We often judge algorithms by how long they take to run for a given input size
- Algorithms often have different run-times based on the input size [e.g. # of elements in a list to search or sort]
 - Different input patterns can lead to best and worst case times
 - Average-case times can be helpful, but we usually use worst case times for comparison purposes

Big-O Notation

- Given an input to an algorithm of size n, we can derive an expression in terms of n for its worst case run time (i.e. the number of steps it must perform to complete)
- From the expression we look for the dominant term and say that is the big-O (worst-case or upper-bound) run-time
 - If an algorithm with input size of n runs in $n^2 + 10n + 1000$ steps, we say that it runs in $O(n^2)$ because if n is large n^2 will dominate the other terms

```
    i ← 1
    while(i <= n) do</li>
    if (remainder of n/i is zero) then
    List i as a factor of n
    i ← i+1
    1*n
    2*n
    1*n
    1*n
    1*n
    1*n
```

Big-O Notation

- Given an input to an algorithm of size n, we can derive an expression in terms of n for its worst case run time (i.e. the number of steps it must perform to complete)
- From the expression we look for the dominant term and say that is the big-O (worst-case or upper-bound) run-time
 - If an algorithm with input size of n runs in $n^2 + 10n + 1000$ steps, we say that it runs in $O(n^2)$ because if n is large n^2 will dominate the other terms
- Main sources of run-time: Loops
 - Even worse: Loops within loops (i.e. execute all of loop 2 w/in a single iteration of loop 1, and repeat for all iterations of loop 1, etc.)

Algorithm Example 1

- List/print all factors of a natural number, n
 - What is a factor?
 - What is the range of possible factors?

```
i \leftarrow 1
```

```
while(i <= n) do</pre>
 if (remainder of n/i is zero) then
  List i as a factor of n
```

An improvement

```
i \leftarrow 1
while(i <= sqrt(n) ) do</pre>
 if (remainder of n/i is zero) then
   List i and n/i as a factor of n
 i \leftarrow i+1
```

O(n)

$$O(\sqrt{n})$$

Algorithm Example 2a

- Searching an ordered list (array) for a specific value, k, and return its index or -1 if it is not in the list
- Sequential Search
 - Start at first item, check if it is equal to k, repeat for second, third, fourth item, etc.

```
myList 2 3 4 6 9 10 13 15 19 index 0 1 2 3 4 5 6 7 8
```

```
i ← 0
while ( i < length(myList) ) do
if (myList[i] equal to k) then return i
else i ← i+1
return -1</pre>
```

Algorithm Example 2b

- Sequential search does not take advantage of the ordered nature of the list
 - Would work the same (equally well) on an ordered or unordered list
- Binary Search
 - Take advantage of ordered list by comparing k
 with middle element and based on the result,
 rule out all numbers greater or smaller, repeat
 with middle element of remaining list, etc.

Algorithm Example 2b

- Binary Search
 - Compare k with middle element of list and if not equal,
 rule out ½ of the list and repeat on the other half
 - Implementation:
 - Define range of searchable elements = [start, end)
 - (i.e. start is inclusive, end is exclusive)

```
start ← 0; end ← length(List);
while (start index not equal to end index) do
  i ← (start + end) /2;
  if ( k == List[i] ) then return i;
  else if ( k > List[i] ) then start ← i+1;
  else end ← i;
  return -1;
```


Sorting

- If we have an unordered list, sequential search becomes our only choice
- If we will perform a lot of searches it may be beneficial to sort the list, then use binary search
- Many sorting algorithms of differing complexity (i.e. faster or slower)
- Bubble Sort (simple though not terribly efficient)
 - On each pass through thru the list, pick up the maximum element and place it at the end of the list. Then repeat using a list of size n-1 (i.e. w/o the newly placed maximum value)

Bubble Sort Algorithm

```
void bsort(int* mylist, int n)
{
  int i ;
  for(i=n-1; i > 0; i--) {
    for(j=0; j < i; j++) {
       if(mylist[j] > mylist[j+1]) {
         swap(j, j+1)
    } }
}
```

Pass 2 Pass 1 3 | 8 | 6 | 5 | 7 | 6 | 5 | 1 | 8 7 | 8 | 6 | 5 | 6 | 5 | 8 no swap swap 7 | 8 | 6 | 5 | 7 5 8 swap no swap 6 8 5 swap swap 7 6 5 8 3 6 5 1 swap swap 3 7 6 5 1 swap

Complexity of Search Algorithms

- Sequential Search: List of length n
 - Worst case: Search through entire list
 - Time complexity = an + k
 - a is some constant for number of operations we perform in the loop as we iterate
 - k is some constant representing startup/finish work (outside the loop)
 - Sequential Search = O(n)
- Binary Search: List of length n
 - Worst case: Continually divide list in two until we reach sublist of size 1
 - Time = $a*log_2n + k = O(log_2n)$
- As n gets large, binary search is far more efficient than sequential search

Multiplying by 2 k-times yields: 2*2*2...*2 = 2^k

Dividing by 2 k-times yields: n / 2^k = 1 k = log₂n

Complexity of Sort Algorithms

- Bubble Sort
 - 2 Nested Loops
 - Execute outer loop n-1 times
 - For each outer loop iteration, inner loop runs i times.
 - Time complexity is proportional to:

$$n-1 + n-2 + n-3 + ... + 1 = (n^2 + n)/2 = O(n^2)$$

 Other sort algorithms can run in O(n*log₂n)

Importance of Time Complexity

- It makes the difference between effective and impossible
- Many important problems currently can only be solved with exponential run-time algorithms (e.g. O(2ⁿ) time)...we call these NP = Non-deterministic polynomial time algorithms) [No known polynomial-time algorithm exists]
- Usually algorithms are only practical if they run in $P = polynomial time (e.g. O(n) or O(n^2) etc.)$
- One of the most pressing open problems in CS: "Is NP = P?"
 - Do P algorithms exist for the problems that we currently only have an NP solution for?

N	O(1)	O(log ₂ n)	O(n)	O(n*log ₂ n)	O(n²)	O(2 ⁿ)
2	1	1	2	2	4	4
20	1	4.3	20	86.4	400	1,048,576
200	1	7.6	200	1,528.8	40,000	1.60694E+60
2000	1	11.0	2000	21,931.6	4,000,000	#NUM!