# DEUTSCHE DEMOKRATISCHE REPUBLIK



(12) Wirtschaftspatent

Erteilt gemäß § 17 Absatz 1 Patentgesetz

# PATENTSCHRIFT

(19) DD (11) 248 593 A1

4(51) C 07 D 495/04

# AMT FÜR ERFINDUNGS- UND PATENTWESEN

In der vom Anmelder eingereichten Fassung veröffentlicht

(21) WP C 07 D / 272 506 0 (22) 11.01.85 (44) 12.08.87
 (71) Martin-Luther-Universität Halle – Wittenberg, 4020 Halle, Universitätsplatz 10, DD
 (72) Böhm, Ralf, Prof. Dr.; Pech, Reinhard, Dr. Dipl.-Chem.; Baumgartner, Angela, Dipl.-Pharm.; Lohmann, Dieter, Dr. Dipl.-Chem.; Laban, Gunter, Dr. Dipl.-Chem., DD

(54) Verfahren zur Herstellung von 4-basischsubstituierten Thieno/2,3-d/pyrimidin-6-ylcarbonsäureestern

(57) Die Erfindung betrifft ein Verfahren zur Herstellung von 4-basischsubstituierten
Thieno/2,3-d/pyrimidin-6-ylcarbonsäureestern der allgemeinen Formel I, worin R¹, R² = alkyl, R³ = H, alkyl, phenyl, R⁴
= alkyl, phenyl, subst. phenyl, aralkyl bedeuten. Diese Verbindungen stellen potentielle Pharmaka dar und sind
gleichzeitig Zwischenprodukte der pharmazeutischen Industrie. Ziel der Erfindung ist es, ausgehend von
3,4-Dihydro-4-oxothieno/2,3-d/pyrimidin-6-ylcarbonsäureestern der allgemeinen Formel II, worin R¹, R² = alkyl,
R³ = H, alkyl, phenyl bedeuten, 4-basischsubstituierte Thieno/2,3-d/pyrimidin-6-ylcarbonsäureester darzustellen. Die
Synthese der Verbindungen der allgemeinen Formel I erfolgt durch Umsetzung der Verbindungen der allgemeinen
Formel II mit Phosphoroxidchlorid, wobei die anfallenden 4-Chlorderivate der allgemeinen Formel III anschließend mit
einem primären Amin in einem polar protischen organischen Lösungsmittel zur Reaktion gebracht werden.

ISSN 0433-6461

4 Seiten

# Patentanspruch:

Verfahren zur Herstellung von Thieno/2,3-d/pyrimidin-6-yl-carbonsäureestern der allgemeinen Formel I, worin  $R^1$ ,  $R^2$  = alkyl,

R<sup>3</sup> = H, alkyl, phenyl,

R4 = alkyl, phenyl, subst. phenyl, aralkyl

bedeuten.

gekennzeichnet dadurch, daß 3,4-Dihydro-4-oxothieno/2,3-d/-pyrimidin-6-ylcarbonsäureester der allgemeinen Formel II, worin R¹, R² und R³ obige Bedeutung besitzen, mit Phosphoroxidchlorid zu 4-Chlorthieno/2,3-d/pyrimidin-6-ylcarbonsäureestern der allgemeinen Formel III, worin R¹, R² und R³ obige Bedeutung besitzen, umgesetzt und anschließend diese 4-Chlorderivate mit primären Aminen zur Reaktion gebracht werden.

#### Hierzu 1 Seite Formeln

#### Anwendungsgebiet der Erfindung

Die Erfindung betrifft ein Verfahren zur Synthese von 4-basischsubstituierten Thieno/2,3-d/pyrimidin-6-yl-carbonsäureestern der allgemeinen Formel I,

worin  $R^1$ ,  $R^2 = alkyl$ ,

R<sup>3</sup> = H, alkyl, phenyl,

R4 = alkyl, phenyl, subst. phenyl, aralkyl

#### bedeuten.

Die Verbindungen stellen potentielle Pharmaka und gleichzeitig Zwischenprodukte der pharmazeutischen Industrie dar.

#### Charakteristik der bekannten technischen Lösungen

Verbindungen der allgemeinen Formel I werden bisher weder in der Patent- noch in der Fachliteratur beschrieben. Bekannt sind bisher lediglich die 3,4-Dihydro-4-oxothieno/2,3-d/pyrimidine der allgemeinen Formel II. Eine weitere Derivatisierung derartiger Strukturen ist bisher noch nicht vorgenommen worden.

## Ziel der Erfindung

Ziel der Erfindung ist eine einfache und schnelle Herstellungsmethode für bisher nicht zugängliche 4-basischsubstituierte Thieno/2,3-d/pyrimidin-6-ylcarbonsäureester der allgemeinen Formel I mit gut zugänglichen Ausgangsprodukten, um die Palette potentieller Pharmaka bzw. interessanter Zwischenprodukte zu erweitern.

## Darlegung des Wesens der Erfindung

Aufgabe der Erfindung ist ein Verfahren zur Synthese von 4-basischsubstituierten Thieno/2,3-d/pyrimidin-6-ylcarbonsäureestern der allgemeinen Formel I,

worin  $R^1$ ,  $R^2 = alkyl$ ,

R<sup>3</sup> = H, alkyl, phenyl,

R4 = alkyl phenyl, subst. phenyl, aralkyl

### bedeuten.

Erfindungsgemäß wird die Aufgabe dadurch gelöst, daß 2-substituierte

3,4-Dihydro-4-oxothieno/2,3-d/pyrimidin-6-ylcarbonsäureester der allgemeinen Formel II,

worin  $R^1$ ,  $R^2 = alkyl$ ,

-R<sup>3</sup> = H, alkyl, phenyl,

bedeuten,

mit Phosphoroxidchlorid in Gegenwart von N,N-Dimethylanilin in der Siedehitze zu den

4-Chlorthieno/2,3-d/pyrimidin-6-yicarbonsäureestern umgesetzt werden. Diese 4-Chlorthieno/2,3-d/pyrimidin-6-yicarbonsäureester der allgemeinen Formel III,

worin  $R^1$ ,  $R^2 = alkyl$ ,

R<sup>3</sup> = H, alkyl, phenyl,

bedeuten,

werden mit einem primären Amin in einem polar protischen organischen Lösungsmittel in der Siedehitze umgesetzt. Unter diesen Bedingungen wird lediglich das Chloratom in 4-Position gegen eine Aminogruppe ausgetauscht, wobei die 4-aminosubstituierten

Thieno/2,3-d/pyrimidin-6-ylcarbonsäureester der allgemeinen Formel I, worin R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup> und R<sup>4</sup> obige Bedeutung besitzen, gebildet werden.

Die Aufarbeitung der erhaltenen Produkte erfolgt in an sich bekannter Weise.

#### Ausführungsbeispiele

Die Erfindung soll nachfolgend an zwei Ausführungsbeispielen erklärt werden:

#### Beispiel 1

4-Chlor-5-methylthieno/2,3-d/pyrimidin-6-ylcarbonsäureethylester, C<sub>10</sub>H<sub>9</sub>ClN<sub>2</sub>O<sub>2</sub>S (256,7)

0,015 mol 5-Methyl-3,4-dihydro-4-oxothieno/2,3-d/pyrimidin-6-ylcarbonsäureethylester, 9 ml Phosphoroxidchlorid und 0,75 ml N,N-Dimethylanilin werden 14 Stunden unter Rückfluß erhitzt. Nach dem Abkühlen wird das Reaktionsgemisch vorsichtig in eine Eis-Wasser-Mischung eingerührt. Der Niederschlag wird abgesaugt, in Wasser suspendiert und mit gesättigter

Natriumkarbonatlösung neutralisiert. Nach dem Absaugen kristallisiert man aus Ethanol um.

Schmelzpunkt: 115-117°C, Ausbeute: 75%

Analog wird hergestellt:

4-Chlor-2,5-dimethylthieno/2,3-d/pyrimidin-6-ylcarbonsäureethylester,

C11H11CIN2O2S, (270,7)

Schmelzpunkt: 183-185,5°C, Ausbeute: 69%

4-Chlor-5-methyl-2-phenylthieno/2,3-d/pyrimidin-6-ylcarbonsaureethylester,

C16H13CIN2O2S, (332,8)

Schmelzpunkt: 149-152°C, Ausbeute: 86%

#### Beispiel 2

4-Aminothieno/2,3-d/pyrimidin-6-ylcarbonsäureethylester,

0,005 mol 4-Chlorthieno/2,3-d/pyrimidin-6-ylcarbonsäureethylester werden mit 0,01 mol eines primären Amins in 18 ml Ethanol 4–8 Stunden unter Rückfluß erhitzt. Anschließend wird das Lösungsmittelvolumen im Vakuum auf 5 ml vermindert. Die beim Abkühlen ausfallenden Kristalle werden abgesaugt, mit Wasser gewaschen und aus dem angegebenen Lösungsmittel (Methanol = a, Ethanol = b, Essigsäureethylester = c) umkristallisiert.

Nach dieser allgemeinen Vorschrift werden die in nachfolgender Tabelle zusammengefaßten Verbindungen hergestellt:

Tabelle
4-Aminothieno/2,3-d/pyrimidin-6-ylcarbonsäureethylester
(gemäß Formel I mit R¹ = ethyl, R² = methyl)

| ₽3 .                          | R <sup>4</sup>                                    | Summenformel                                                    | Molmasse | Schmelzpunkt (umkrist. aus) | Ausbeute<br>(%) |
|-------------------------------|---------------------------------------------------|-----------------------------------------------------------------|----------|-----------------------------|-----------------|
| Н                             | C <sub>6</sub> H <sub>5</sub>                     | C <sub>16</sub> H <sub>15</sub> N <sub>3</sub> O <sub>2</sub> S | 313,4    | 165,5-167,5 (b)             | 60 .            |
| Н                             | $C_6H_4-m-CH_3$                                   | C17H17N3O2S                                                     | 327,4    | 166-169 (b)                 | 55              |
| H                             | $C_6H_4-o-OCH_3$                                  | C17H17N3O3S                                                     | 343,4    | 158-160,5 (c)               | 58              |
| Н                             | $C_6H_4-m-OCH_3$                                  | C17H17N3O3S                                                     | 343,4    | 138-140 (a)                 | 82              |
| Н                             | $C_6H_4-p-OCH_3$                                  | C17H17N3O3S                                                     | 343,4    | 154-155,5 (b)               | 85              |
| Н                             | C6H4-0-CI                                         | C16H14CIN3O2S                                                   | 347,8    | 159-162 (b)                 | 84              |
| Н                             | $C_8H_4-m-CI$                                     | C16H14CIN3O2S                                                   | 347,8    | 192-195 (b)                 | 58              |
| Н                             | $C_6H_4-p-CI$                                     | C16H14CIN3O2S                                                   | 347,8    | 166-169 (b)                 | 77              |
| H                             | C <sub>6</sub> H <sub>4</sub> ~p~F                | C15H14FN3O2S                                                    | 331,4    | 212,5-216 (b)               | 45              |
| CH <sub>3</sub>               | C <sub>6</sub> H <sub>4</sub> -p-OCH <sub>3</sub> | C18H19N3O3S                                                     | 357,4    | 157,5-159,5 (b)             | 73              |
| CH <sub>3</sub>               | C <sub>6</sub> H <sub>4</sub> -m-Cl               | C17H16CIN3O2S                                                   | 361,9    | 140-142 (b)                 | 89              |
| C <sub>6</sub> H <sub>5</sub> | C₅H₅                                              | C22H19N3O2S                                                     | 389,5    | 179,5-182 (b)               | 25              |
| C <sub>6</sub> H <sub>5</sub> | $C_6H_4-m-OCH_3$                                  | $C_{2\bar{3}}H_{21}N_{3}O_{3}S$                                 | 419,5    | 143-145 (b)                 | 82              |
| C <sub>8</sub> H <sub>5</sub> | C <sub>6</sub> H <sub>4</sub> -m-Cl               | C22H18CIN3O2S                                                   | 423,9    | 149-154 (b)                 | 41              |
| Н                             | CH₂-a-C₄H₃O                                       | C15H15N3O3S                                                     | 317,4    | 117-119,5 (b)               | 64              |
| Н                             | C <sub>8</sub> H <sub>17</sub>                    | C18H27N3O2S                                                     | 349,5    | 75-80 (a)                   | 55              |

Formelblatt

Formel I

Formel II

Formel III

$$R^{1}$$
,  $R^{2}$  = alkyl,  
 $R^{3}$  = H, alkyl, phenyl

$$R^1$$
,  $R^2$  = alkyl,  
 $R^3$  = H, alkyl, phenyl