Chia-Yu Li and Nogc Thang Vu

Motivation

Method

Experimenta

Result

Analysi

Conclusion

Improving noisy student training for low resource languages in E2E ASR using CycleGAN-inter-domain losses

Chia-Yu Li and Nogc Thang Vu

Institute of Natural Language Processing (IMS)
University of Stuttgart, Germany

SIGUL 2024 @ LREC-COLING 2024

Chia-Yu Li and Nogc Thang Vu

Motivation

Method

Experiment

Decelo

Analysi

Conclusion

Figure: An architecture of End-to-End ASR (speech-to-text).

Chia-Yu Li and Nogc Thang Vu

Motivation

Method

Experime

Result

Analysi

Conclusion

- The biggest challenge in E2E ASR today is quickly and cost-effectively transferring speech processing systems to new languages with minimal manual effort.
- Semi-supervised learning can be applied to reduce the amount of labeled data.
 - small portion of labeled data
 - large portion of unlabeled data
- Noisy student training (NST)¹ is an simple and effective iterative self-training method that leverages unlabeled data to enhance accuracy.

Chia-Yu Li and Nogc Thang Vu

Motivation

Method

Experime

Result

Analysi

Conclusio

- The biggest challenge in E2E ASR today is quickly and cost-effectively transferring speech processing systems to new languages with minimal manual effort.
- Semi-supervised learning can be applied to reduce the amount of labeled data.
 - small portion of labeled data
 - large portion of unlabeled data
- Noisy student training (NST)¹ is an simple and effective iterative self-training method that leverages unlabeled data to enhance accuracy.

Chia-Yu Li and Nogc Thang Vu

Motivation

Method

Experim

Recult

Analysis

Conclusio

- The biggest challenge in E2E ASR today is quickly and cost-effectively transferring speech processing systems to new languages with minimal manual effort.
- Semi-supervised learning can be applied to reduce the amount of labeled data.
 - small portion of labeled data
 - large portion of unlabeled data
- Noisy student training (NST)¹ is an simple and effective iterative self-training method that leverages unlabeled data to enhance accuracy.

¹Daniel S. Park et al., "Improved Noisy Student Training for Automatic Speech Recognition," in Proc. of Interspeech, 2020 → ★★★★★★★★★★★★★★★★★★★★★★

Motivation

Method

Experimental Setup

Resul

Analysis

Conclusion

Motivation

Let S denotes the labeled data and U denotes the unlabelled data.

Definition

Noisy student training (NST)

- 1 Train M_0 on S using SpecAugment. Set $M = M_0$.
- 2 Fuse M with LM and measure performance.
- **3** Generate labeled dataset M(U) with fused model.
- 4 Filter generated data M(U) to obtain f(M(U)).
- **5** Balance filtered data f(M(U)) to obtain $b\dot{f}(M(U))$.
- **6** Mix dataset $b\dot{f}(M(U))$ and S. Use mixed dataset to train new model M_0 with SpecAugment.
- 7 Set M = M' and go to 2.
- For low-resource languages, the NST is not effective due to M_0 performs poorly.
- How to improve inexpensively the teacher model in NST remains a key challenge especially for low-resource languages.

Motivation

Method

Setup

Resul

Analysis

Conclusio

Motivation

Let S denotes the labeled data and U denotes the unlabelled data.

Definition

Noisy student training (NST)

- 1 Train M_0 on S using SpecAugment. Set $M = M_0$.
- 2 Fuse M with LM and measure performance.
- **3** Generate labeled dataset M(U) with fused model.
- 4 Filter generated data M(U) to obtain f(M(U)).
- **5** Balance filtered data f(M(U)) to obtain $b\dot{f}(M(U))$.
- **6** Mix dataset $b\dot{f}(M(U))$ and S. Use mixed dataset to train new model M_0 with SpecAugment.
- 7 Set M = M' and go to 2.
- For low-resource languages, the NST is not effective due to M₀ performs poorly.
- How to improve inexpensively the teacher model in NST remains a key challenge especially for low-resource languages.

Motivation

Method

Setup

Resul

Analysis

Conclusio

Motivation

Let S denotes the labeled data and U denotes the unlabelled data.

Definition

Noisy student training (NST)

- 1 Train M_0 on S using SpecAugment. Set $M = M_0$.
- 2 Fuse M with LM and measure performance.
- **3** Generate labeled dataset M(U) with fused model.
- 4 Filter generated data M(U) to obtain f(M(U)).
- **5** Balance filtered data f(M(U)) to obtain $b\dot{f}(M(U))$.
- **6** Mix dataset $b\dot{f}(M(U))$ and S. Use mixed dataset to train new model M_0 with SpecAugment.
- **7** Set M = M' and go to 2.
- For low-resource languages, the NST is not effective due to M₀ performs poorly.
- How to improve inexpensively the teacher model in NST remains a key challenge especially for low-resource languages.

Chia-Yu Li and Nogc Thang Vu

Motivation

Method

Experimenta Setup

Result

Analys

Conclusion

Contribution

- We observe that training a model by CycleGAN and inter-domain losses (CID)² with lots of external text significantly boosts performance.
- We enhance CID using automatic hyperparameter tuning and integrate it into the NST training pipeline for low-resource scenarios to boost the teacher model.
- The evaluation of our method on six languages on the Voxforge and Common Voice demonstrate a 10% WERR compared to the baseline model.

²Li, C.-Y. and Vu, N. T., "Improving Semi-supervised End-to-end Automatic Speech Recognition using CycleGAN and Inter-domain Losses," in Proc. of SLT", 2023.

Chia-Yu Li and Nogc Thang Vu

Motivation

Method

Experimental Setup

Resul

Analysi

Conclusion

Contribution

- We observe that training a model by CycleGAN and inter-domain losses (CID)² with lots of external text significantly boosts performance.
- We enhance CID using automatic hyperparameter tuning and integrate it into the NST training pipeline for low-resource scenarios to boost the teacher model.
- The evaluation of our method on six languages on the Voxforge and Common Voice demonstrate a 10% WERR compared to the baseline model.

²Li, C.-Y. and Vu, N. T., "Improving Semi-supervised End-to-end Automatic Speech Recognition using CycleGAN and Inter-domain Losses," in Proc. of SLT", 2023.

Chia-Yu Li and Nogc Thang Vu

Motivation

Method

Experimenta Setup

Setub

Analysis

Conclusion

Contribution

- We observe that training a model by CycleGAN and inter-domain losses (CID)² with lots of external text significantly boosts performance.
- We enhance CID using automatic hyperparameter tuning and integrate it into the NST training pipeline for low-resource scenarios to boost the teacher model.
- The evaluation of our method on six languages on the Voxforge and Common Voice demonstrate a 10% WERR compared to the baseline model.

²Li, C.-Y. and Vu, N. T., "Improving Semi-supervised End-to-end Automatic Speech Recognition using CycleGAN and Inter-domain Losses," in Proc. of SLT", 2023.

Chia-Yu Li and Nogc Thang Vu

Motivation

Method

Experim

Result

Analysi

Conclusion

Illustration of CID

Semi-supervised E2E³

$$egin{aligned} L_{semi} &= lpha L_{pair} + (1-lpha) L_{unpair} \ L_{pair} &= -\sum_{(x,y) \in S} \log \prod_{t=1}^{|y|} \Pr(y_t|y_{t-1}, \mathbf{e}(x)) \ L_{unpair} &= eta * L_{dom} + (1-eta) * L_{text} \end{aligned}$$

Lunpair —
$$\beta * Ldom + (1 - \beta) * Ltext$$

• Our previous work (CID) adapted L_{unpair} to as follows,

$$L_{unpair} = \beta L_{cyc,dom} + L_{idt} + (1 - \beta) * L_{text}$$
 (1)

³Shigeki Karita et al., "Semi-Supervised End-to-End Speech Recognition," In Proc. of Interspeech, 2018.

losses Chia-Yu Li and Nogc Thang Vu

Motivation

Method

Experimen

Danula

Analysis

Conclusion

Illustration of CID

(a) The cycle-consistent inter-domain loss.

(b) The identity mapping loss

$$L_{cvc,dom} = \mathcal{D}(input_B, cycle_B) = \mathcal{D}(e(x), \hat{e}(g(d(e(x)))))$$
(2)

$$L_{idt} = \|\hat{e}(b) - b\|_1 \tag{3}$$

Chia-Yu Li and Nogc Thang Vu

Motivation

Method

Experir Setup

Danula

Analysi

Conclusion

CID solely with external text

Model	paired data (hours)	unpaired text (#lines)	without LM WER(%)	with LM WER(%)
Initial model	5 ⁴	0	63.6	63.1
CID model	5 ⁴	$10K^5$	38.6	36.3
CID model	5 ⁴	$100 \mathrm{K}^5$	31.2	29.4
CID model	5 ⁴	300K ⁵	<mark>30.8</mark>	29.1

Table: WERs on the Voxforg German test set.

⁴ Voxforge German data from http://www.voxforge.org/

⁵D. Goldhahn et al., "Building Large Monolingual Dictionaries at the Leipzig Corpora Collection: From 100 to 200 Languages." in Proc. of LREC, 2012.

Analysis

Conclusion

Enhanced CID

• Two hyperparameters in CID: supervised ratio α and speech-to-text ratio β

$$L_{semi} = lpha L_{pair} + (1 - lpha) L_{unpair}$$
 $L_{unpair} = L_{idt} + eta L_{cyc,dom} + (1 - eta) L_{text}$

- We propose automatic hyperparameter tuning as follows:
 - We set α to 0.9 for the first three epochs and gradually decays after three epochs.
 - We integrate β into the training process by using minimal, maximal, average, or median operations on the unsupervised losses with β from 0.0 to 1.0.

Motivation

Method

Experimen Setup

Docul+

Analysis

Conclusion

Enhanced CID

• Two hyperparameters in CID: supervised ratio α and speech-to-text ratio β

$$L_{semi} = lpha L_{pair} + (1 - lpha) L_{unpair}$$
 $L_{unpair} = L_{idt} + eta L_{cyc,dom} + (1 - eta) L_{text}$

- We propose automatic hyperparameter tuning as follows:
 - We set α to 0.9 for the first three epochs and gradually decays after three epochs.
 - We integrate β into the training process by using minimal, maximal, average, or median operations on the unsupervised losses with β from 0.0 to 1.0.

Chia-Yu Li and Nogc Thang Vu

Motivation

Method

Experin

Recult

Analys

Conclusion

Enhanced CID

Model	α	adapted L _{unpair}	CER(%)
Baseline ⁶	0.5		46.9
MIN-UNPAIR-LOSS	0.5	$\min_{\beta \in [0,1.0]} \mathcal{L}_{unpair}$	<mark>30.6</mark>
MAX-UNPAIR-LOSS	0.5	$\max_{eta \in [0,1.0]} \mathcal{L}_{unpair}$	39.5
AVG-UNPAIR-LOSS	0.5	$\overline{\mathcal{L}_{unpair}}$	50.6
MED-UNPAIR-LOSS	0.5	$Median(\mathcal{L}_{\mathit{unpair}})$	50.4
DECAY-MIN-UNPAIR-LOSS	decay	$\min_{eta \in [0,1.0]} \mathcal{L}_{unpair}$	<mark>29.6</mark>
DECAY-MAX-UNPAIR-LOSS	decay	$\max_{eta \in [0,1.0]} \mathcal{L}_{unpair}$	44.1
DECAY-AVG-UNPAIR-LOSS	decay	$\overline{\mathcal{L}_{unpair}}$	46.6
DECAY-MED-UNPAIR-LOSS	decay	$Median(\mathcal{L}_{\mathit{unpair}})$	30.3

Table: The models' CERs on the Common Voice Finnish test set.

⁶C.-Y. Li and T. Vu," Improving Semi-supervised End-to-end Automatic Speech Recognition using CycleGAN and Inter-domain Losses," in Proc. of SLT, 2022.

Chia-Yu Li and Nogc Thang Vu

Motivation

Method

.......

эссир

Resul

Analysis

Conclusion

Enhanced CID

Figure: The Baseline (CID) accuracy on train/valid set.

Chia-Yu Li and Nogc Thang Vu

Motivation

Method

Experimental

Setup

Resui

Analysis

Conclusion

Enhanced CID

Figure: The MIN-UNPAIR-LOSS accuracy on train/valid set.

Motivation

Method

Experim Setup

Result

Analysis

Conclusion

Proposed Method: NST with enhanced CID (cNST)

Definition

- **1** Train M_0 on S using SpecAugment. Set $M = M_0$.
- **2** Train M_1 on S and $U = \{Y'\}$ by enhanced CID and using SpecAugment. Set $M = M_1$.
- 3 Fuse M with LM and measure performance.
- **4** Generate labeled dataset M(U) with fused model.
- **5** Filter generated data M(U) to obtain f(M(U)).
- **6** Balance filtered data f(M(U)) to obtain $b \times f(M(U))$.
- 7 Mix dataset M(U) and S. Use mixed dataset to train new model M_0 with SpecAugment.
- 8 Set M = M' and go to 3.

Motivation

Experimental

Method

11100110

Setup

A I

Conclusion

Experimental Setup

Dataset

- Common Voice: it is a massively multilingual collection of transcribed speech recorded by user on Mozilla website.
 We choose European languages which has limited data.
- Voxforge: it consists of user submitted audio clips using their own microphone and eight European languages.
- External text: Leipzig corpus consists of annual collections of documents from various sources such as wikis, news, and the website.
- The system is implemented under Espnet and is trained by following the default recipe.

Motivation

Method

Experiment

Result

Analysis

Conclusion

WERs against model generation (Finnish language)

Motivation

Method

Experiment Setup

Result

Analysis

Conclusion

WERs against model generation (Greek language)

Chia-Yu Li and Nogc Thang Vu

Motivation

Method

Experime

Result

Analysi

Conclusion

cNST effectiveness across corpus

Model	Voxforge (WER%)		Common Voice (WER%)			
	German	Italien	Dutch	Hungarian	Finnish	Greek
Initial Model	63.1	71.2	63.1	84.8	77.4	63.2
NST	49.7	47.1	58.2	72.0	55.1	34.0
cNST	27.3	42.0	56.3	58.6	48.4	29.4
WERR	45.1	10.8	3.26	18.6	12.7	13.5

Table: The best student models' WERs comparison.

Motivation

Method

Experimenta

Result

Analysis

Conclusion

Recognition output

Models	WER(%)	INS	DEL	SUB
Initial Model	63.1	1.8	20.6	40.7
NST	49.7	1.0	21.0	27.9
CID	9.4	3.3	4.0	22.0
cNST	27.3	3.2	3.6	20.5

Table: The WER, insertion, deletion, and substitution at word level on the Voxforge German test set.

Motivatio

Method

Experimenta Setup

Analysi

Conclusion

- We observe that training the model by CID with lots of external text significantly boosts performance.
- We enhance CID by incorporating automatic hyperparameter tuning.
- We propose to improve the NST training pipeline for low-resource languages by leveraging enhanced CID.
- The experimental results show that our propose method accelerates the iterative self-training process and demonstrate the effectiveness across six European languages from two datasets, surpassing the baseline by 10% WERR.

Motivatio

Method

Experimental

.

Analysi

Conclusion

- We observe that training the model by CID with lots of external text significantly boosts performance.
- We enhance CID by incorporating automatic hyperparameter tuning.
- We propose to improve the NST training pipeline for low-resource languages by leveraging enhanced CID.
- The experimental results show that our propose method accelerates the iterative self-training process and demonstrate the effectiveness across six European languages from two datasets, surpassing the baseline by 10% WERR.

Motivatio

Method

Setup

Recult

Analysis

Conclusion

- We observe that training the model by CID with lots of external text significantly boosts performance.
- We enhance CID by incorporating automatic hyperparameter tuning.
- We propose to improve the NST training pipeline for low-resource languages by leveraging enhanced CID.
- The experimental results show that our propose method accelerates the iterative self-training process and demonstrate the effectiveness across six European languages from two datasets, surpassing the baseline by 10% WERR.

Motivatio

ivietnoa

Setup

Decel

Analysis

Conclusion

- We observe that training the model by CID with lots of external text significantly boosts performance.
- We enhance CID by incorporating automatic hyperparameter tuning.
- We propose to improve the NST training pipeline for low-resource languages by leveraging enhanced CID.
- The experimental results show that our propose method accelerates the iterative self-training process and demonstrate the effectiveness across six European languages from two datasets, surpassing the baseline by 10% WERR.

Chia-Yu Li and Nogc Thang Vu

Motivatio

Method

Experimental

Result

Analysis

Conclusion

Thanks for your attention!