Lecture 12-13: Basic Neural Nets Deep Feedforward Networks CS 109B, STAT 121B, AC 209B, CSE 109B

Mark Glickman and Pavlos Protopapas

Beyond Linear Models

- Linear models
 - Can be fit efficiently (via convex optimization)
 - Limited model capacity
- Alternative:

$$f(x) = w^T \phi(x)$$

where ϕ is a *non-linear transform*

Traditional ML

- Manually engineer ϕ
 - Domain specific, enormous human effort
- Generic transform
 - Maps to a higher-dimensional space
 - Kernel methods: e.g. RBF kernels
 - Over fitting: does not generalize well to test set
 - Cannot encode enough prior information

Deep Learning

• Directly learn ϕ

$$f(x;\theta) = w^T \phi(x;\theta)$$

where θ are parameters of the transform

- ϕ defines hidden layers
- Non-convex optimization
- Can encode prior beliefs, generalizes well

SVM vs Neural Networks

Hand-written digit recognition: MNIST data

See illustration in notebook

Example: Learning XOR

- Optimal linear model (sq. loss)
 - Predicts 0.5 on all points

Example: Learning XOR

$$h_1 = \sigma(w_1^T x + c_1)$$

$$h_2 = \sigma(w_2^T x + c_2)$$

$$y = \sigma(w^T h + b)$$

where,

$$\sigma(z) = \max\{0, z\}$$

Design Choices

- Cost function
- Output units
- Hidden units
- Architecture
- Optimizer

Cost Function

 Cross-entropy between training data and model distribution (i.e. negative log-likelihood)

$$J(\boldsymbol{\theta}) = -\mathbb{E}_{\mathbf{x}, \mathbf{y} \sim \hat{p}_{\text{data}}} \log p_{\text{model}}(\boldsymbol{y} \mid \boldsymbol{x})$$

- Do not need to design separate cost functions
- Gradient of cost function must be large enough

Cost Function

Example: sigmoid output + squared loss

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$L_{sq}(y,z) = (y - \sigma(z))^2$$

Cost Function

Example: sigmoid output + cross-entropy loss

$$L_{ce}(y,z) = -(y\log(z) + (1-y)\log(1-z))$$

Design Choices

- Cost function
- Output units
- Hidden units
- Architecture
- Optimizer

Output Units

Output Type	Output Distribution	Output Layer	Cost Function
Binary	Bernoulli	Sigmoid	Binary cross- entropy
Discrete	Multinoulli	Softmax	Discrete cross- entropy
Continuous	Gaussian	Linear	Gaussian cross- entropy (MSE)
Continuous	Mixture of Gaussian	Mixture Density	Cross-entropy
Continuous	Arbitrary	See part III: GAN, VAE, FVBN	Various

Softmax Output

- Discrete / Multinoulli output distribution
- For output scores $z_1, ..., z_n$

$$\operatorname{softmax}(z)_i = \frac{\exp(z_i)}{\sum_{j} \exp(z_j)}$$

Log-likelihood undoes exp

$$\log \operatorname{softmax}(z)_{i} = z_{i} - \log \sum_{j} \exp(z_{j})$$

$$\approx z_{i} - \max_{j} z_{j}$$

(Score to target label – Maximum score)

Mixture Density Output

Design Choices

- Cost function
- Output units
- Hidden units
- Architecture
- Optimizer

Hidden Units

$$\mathbf{h} = g(\mathbf{W}^T x + \mathbf{b})$$

with activation function g

- Ensure gradients remain large through hidden unit
- Preferred: piece-wise linear activation
- Avoid sigmoid/tanh activation
 - Do not provide useful gradient info when they saturate

ReLU

Rectified Linear Units

$$g(z) = \max\{0, z\}$$

- Gradient is 1 whenever unit is active
 - More useful for learning compared to sigmoid
 - No useful gradient information when z<0

Generalized ReLU

• Generalization: For $\alpha_i > 0$,

$$g(z;\alpha)_i = \max\{0, z_i\} + \alpha_i \min\{0, z_i\}$$

• E.g. Absolute value ReLU: $\alpha_i = -1 \implies g(z) = |z|$

Maxout

- Directly learn the activation function
 - Max of k linear functions

$$g(z) = \max_{i \in \{1, \dots, k\}} \alpha_i z_i + \beta_i$$

Design Choices

- Cost function
- Output units
- Hidden units
- Architecture
- Optimizer

Universal Approximation Theorem

- One hidden layer is enough to represent an approximation of any function to an arbitrary degree of accuracy
- So why deeper?
 - Shallow net may need
 (exponentially) more width
 - Shallow net may overfit more

Exponential Gain with Depth

• Each hidden layer folds the space of activations of the previous layer. E.g. abs activation g(z) = |z|

1. Fold along the vertical axis

horizontal axis

Montúfar (2014)

Exponential Gain with Depth

 With N hidden layers, there are O(4^N) piecewise linear regions

Better Generalization with Depth

Large, Shallow Nets Overfit More

Design Choices

- Cost function
- Output units
- Hidden units
- Architecture
- Optimizer

Gradient-based Optimizer

(e.g. stochastic gradient descent)

"Chain rule" for computing gradients:

$$\mathbf{y} = g(\mathbf{x})$$
 $z = f(\mathbf{y})$

$$\frac{\partial z}{\partial x_i} = \sum_{j} \frac{\partial z}{\partial y_j} \frac{\partial y_j}{\partial x_i}$$

For deeper networks

Naïve computation takes exponential time

$$\frac{\partial z}{\partial x_i} = \sum_{j_1} \dots \sum_{j_m} \frac{\partial z}{\partial y_{j_1}} \dots \frac{\partial y_{j_m}}{\partial x_i}$$

Backpropagation

- Avoids repeated sub-expressions
- Uses dynamic programming (table filling)
- Trades-off memory for speed

Backprop: Arithmetic

Jacobian-gradient products

$$\mathbf{z} = g(\mathbf{x})$$

$$\mathbf{y} = f(\mathbf{z})$$

$$\begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \vdots \\ \frac{\partial y}{\partial x_m} \end{bmatrix} = \begin{bmatrix} \frac{\partial z_1}{\partial x_1} & \dots & \frac{\partial z_m}{\partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial z_1}{\partial x_n} & \dots & \frac{\partial z_m}{\partial x_n} \end{bmatrix} \times \begin{bmatrix} \frac{\partial y}{\partial z_1} \\ \vdots \\ \frac{\partial y}{\partial z_m} \end{bmatrix}$$
grad w.r.t. \mathbf{x}
Jacobian of 'g' grad w.r.t. \mathbf{z}

$$\nabla_{\mathbf{x}} y = \left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}}\right)^T \nabla_{\mathbf{z}} y \qquad \text{Apply recursively!}$$

Backprop: Overview

Forward prop: compute activations

Back-prop: compute derivatives

Linear activation functions
No bias
Squared loss

Forward prop: Propagate activations to output layer

Backward prop: Propagate derivative to hidden layer

Backward prop: Compute derivatives w.r.t. weights a_1 , a_2 , b_1 and b_2

Backward prop: Compute derivatives w.r.t. weights a_1 , a_2 , b_1 and b_2

Computation Graphs

Multiplication

(a)

(b)

Logistic regression

Linear regression and weight decay

Repeated Sub-expressions

Back-prop avoids computing this twice

(Goodfellow 2017)

Backprop on Computation Graph

- 1: Initialize $\mathbf{g} \in \mathbb{R}^n$ where g_i denotes $\frac{\partial u^n}{\partial u^i}$
- 2: for j = n 1 to 1 do:

3:
$$g_j = \sum_{i:j \in Pa(u^i)} g_i \frac{\partial u^i}{\partial u^j}$$

4: return **g**

Parents of u^i

Symbol-to-symbol Differentiation

- Derivatives as computation graphs
 - Same language for both forward and backpropagation
- During execution, replace symbolic inputs with numeric value
- Used by Theano and TensorFlow
- Symbol-to-number differentiation: e.g. Torch and Caffe

Symbol-to-symbol Differentiation

(Goodfellow et al. 2017)

Training Feed-forward Nets

