Summary of Contents

	Pr	eface	iii
	1	Introduction	1
I	Woı	rds	
	2	Regular Expressions and Automata	17
	3	Words & Transducers	45
	4	N-grams	83
	5	Part-of-Speech Tagging	
	6	Hidden Markov and Maximum Entropy Models1'	
II	Spe	eech	
	7	Phonetics	15
	8	Speech Synthesis	
	9	Automatic Speech Recognition	
	10	Speech Recognition: Advanced Topics	
		Computational Phonology 30	
Ш		vntax	
	0	Formal Grammars of English3	89
		Parsing with Context-Free Grammars 43	
		Statistical Parsing40	
		Features and Unification	
	16	Language and Complexity53	37
IV	Se	mantics and Pragmatics	
		Representing Meaning	53
		Computational Semantics	
		Lexical Semantics	
		Computational Lexical Semantics65	
		Computational Discourse69	
\mathbf{V}		plications	
·		Information Extraction	41
		Question Answering and Summarization78	
		Dialogue and Conversational Agents	
		Machine Translation	
Rił		raphy 92	
Inc	_	OS OS	

Contents

Pr	eface			xxiii				
1	Intro	duction		1				
	1.1	Knowle	edge in Speech and Language Processing	2				
	1.2		uity					
	1.3		and Algorithms					
	1.4		ge, Thought, and Understanding					
	1.5		ite of the Art					
	1.6		Brief History					
		1.6.1	Foundational Insights: 1940s and 1950s					
		1.6.2	The Two Camps: 1957–1970					
		1.6.3	Four Paradigms: 1970–1983					
		1.6.4	Empiricism and Finite State Models Redux: 1983–1993					
		1.6.5	The Field Comes Together: 1994–1999					
		1.6.6	The Rise of Machine Learning: 2000–2007					
		1.6.7	On Multiple Discoveries					
		1.6.8	A Final Brief Note on Psychology	14				
	1.7	Summa	rry					
	Bibli		al and Historical Notes					
I	Wol	rds						
2	Regu	ılar Expr	ressions and Automata	17				
	2.1		r Expressions					
		2.1.1	Basic Regular Expression Patterns					
		2.1.2	Disjunction, Grouping, and Precedence					
		2.1.3	A Simple Example					
		2.1.4	A More Complex Example					
		2.1.5	Advanced Operators					
		2.1.6	Regular Expression Substitution, Memory, and ELIZA					
	2.2	Finite-S	State Automata					
		2.2.1	Using an FSA to Recognize Sheeptalk					
		2.2.2	Formal Languages					
		2.2.3	Another Example					
		2.2.4	Non-Deterministic FSAs					
		2.2.5	Using an NFSA to Accept Strings					
		2.2.6	Recognition as Search					
		2.2.7	Relating Deterministic and Non-Deterministic Automata					
	2.3	Regular	r Languages and FSAs					
	2.4		ıry					
	Bibli		al and Historical Notes					
			Bibliographical and Historical Notes					

3	Word	s & Transducers	45
_	3.1	Survey of (Mostly) English Morphology	47
		3.1.1 Inflectional Morphology	48
		3.1.2 Derivational Morphology	50
		3.1.3 Cliticization	51
		3.1.4 Non-concatenative Morphology	52
		3.1.5 Agreement	52
	3.2	Finite-State Morphological Parsing	53
	3.3	Building a Finite-State Lexicon	54
	3.4	Finite-State Transducers	57
	5	3.4.1 Sequential Transducers and Determinism	59
	3.5	FSTs for Morphological Parsing	60
	3.6	Transducers and Orthographic Rules	63
	3.7	Combining FST Lexicon and Rules	65
	3.8	Lexicon-Free FSTs: The Porter Stemmer	68
	3.9	Word and Sentence Tokenization	69
	3.9		70
	2 10	2.5	72
	3.10	Detecting and Correcting Spelling Errors	
	3.11	Minimum Edit Distance	74
	3.12	Human Morphological Processing	77
	3.13	Summary	79
		ographical and Historical Notes	80
	Exerc	ises	81
4	N-gra	ams	83
	4.1	Counting Words in Corpora	84
	4.2	Simple (Unsmoothed) N-grams	86
	4.3	Training and Test Sets	91
		4.3.1 N-gram Sensitivity to the Training Corpus	92
		4.3.2 Unknown Words: Open versus closed vocabulary tasks	94
	4.4	Evaluating <i>N</i> -grams: Perplexity	95
	4.5	Smoothing	97
		4.5.1 Laplace Smoothing	98
		4.5.2 Good-Turing Discounting	101
		4.5.3 Some advanced issues in Good-Turing estimation	102
	4.6	Interpolation	103
	4.7	Backoff	105
	4.7	4.7.1 Advanced: Details of computing Katz backoff α and P^*	106
	4.8	Practical Issues: Toolkits and Data Formats	107
	4.9	Advanced Issues in Language Modeling	107
	4.7	4.9.1 Advanced Smoothing Methods: Kneser-Ney Smoothing	109
		4.9.2 Class-based N-grams	111
		4.9.3 Language Model Adaptation and Using the Web	111
	4.10	4.9.4 Using Longer Distance Information: A Brief Summary	112
	4.10	Advanced: Information Theory Background	113
		4.10.1 Cross-Entropy for Comparing Models	116

	4.11	Advanced: The Entropy of English and Entropy Rate Constancy .	 117
	Biblio	ographical and Historical Notes	119
	4.12	Summary	120
	Exerc	ises	 121
5		of-Speech Tagging	123
	5.1	(Mostly) English Word Classes	 124
	5.2	Tagsets for English	130
	5.3	Part-of-Speech Tagging	133
	5.4	Rule-Based Part-of-Speech Tagging	137
	5.5	HMM Part-of-Speech Tagging	139
		5.5.1 Computing the most-likely tag sequence: An example	142
		5.5.2 Formalizing Hidden Markov Model taggers	144
		5.5.3 The Viterbi Algorithm for HMM Tagging	145
		5.5.4 Extending the HMM algorithm to trigrams	149
	5.6	Transformation-Based Tagging	151
		5.6.1 How TBL Rules Are Applied	 152
		5.6.2 How TBL Rules Are Learned	152
	5.7	Evaluation and Error Analysis	153
		5.7.1 Error Analysis	 156
	5.8	Advanced Issues in Part-of-Speech Tagging	157
		5.8.1 Practical Issues: Tag Indeterminacy and Tokenization	157
		5.8.2 Unknown Words	 158
		5.8.3 Part-of-Speech Tagging for Other Languages	160
		5.8.4 Combining Taggers	163
	5.9	Advanced: The Noisy Channel Model for Spelling	163
		5.9.1 Contextual Spelling Error Correction	 167
	5.10	Summary	 168
		ographical and Historical Notes	169
	Exerc	ises	 171
	TT: 1 1	MI IN . D. MII	150
6		en Markov and Maximum Entropy Models Markov Chains	173
	6.1	The Hidden Markov Model	174 177
	6.3	Computing Likelihood: The Forward Algorithm	179
	6.4	Decoding: The Viterbi Algorithm	184
	6.5	Training HMMs: The Forward-Backward Algorithm	187
	6.6	Maximum Entropy Models: Background	193
		6.6.1 Linear Regression	194
		6.6.2 Logistic regression	197
		6.6.3 Logistic regression: Classification	199
		6.6.4 Advanced: Learning in logistic regression	200
	6.7	Maximum Entropy Modeling	201
		6.7.1 Why do we call it Maximum Entropy?	205
	6.8	Maximum Entropy Markov Models	 207
		6.8.1 Decoding and Learning in MFMMs	210

	6.9	Summa	ary	212
	Biblio		al and Historical Notes	212
II	Sne	eech		
	Брс			
7	Phon	etics		215
	7.1	Speech	Sounds and Phonetic Transcription	216
	7.2	Articul	atory Phonetics	218
		7.2.1	The Vocal Organs	218
		7.2.2	Consonants: Place of Articulation	220
		7.2.3	Consonants: Manner of Articulation	221
		7.2.4	Vowels	222
	7.3	Phonol	ogical Categories and Pronunciation Variation	225
		7.3.1	Phonetic Features	227
		7.3.2	Predicting Phonetic Variation	228
		7.3.3	Factors Influencing Phonetic Variation	229
	7.4	Acoust	ic Phonetics and Signals	230
		7.4.1	Waves	231
		7.4.2	Speech Sound Waves	231
		7.4.3	Frequency and Amplitude; Pitch and Loudness	233
		7.4.4	Interpreting Phones from a Waveform	236
		7.4.5	Spectra and the Frequency Domain	236
		7.4.6	The Source-Filter Model	241
	7.5		ic Resources	241
	7.6		ced: Articulatory and Gestural Phonology	244
	7.7		ary	245
			al and Historical Notes	246
	Exerc			247
	LACIC	1505		217
8	Speed	h Synth	nesis	249
	8.1	Text No	ormalization	250
		8.1.1	Sentence Tokenization	251
		8.1.2	Non-Standard Words	253
		8.1.3	Homograph Disambiguation	256
	8.2	Phonet	ic Analysis	257
		8.2.1	Dictionary Lookup	258
		8.2.2	Names	259
		8.2.3	Grapheme-to-Phoneme	259
	8.3		ic Analysis	263
		8.3.1	Prosodic Structure	263
		8.3.2	Prosodic prominence	264
		8.3.3	Tune	267
		8.3.4	More sophisticated models: ToBI	267
		8.3.5	Computing duration from prosodic labels	270
		8.3.6	Computing F0 from prosodic labels	271
		837	Final result of text analysis: Internal Representation	271

10.8

	Biblio	graphical and Historical Notes	363		
	Exerc	ises	364		
11	11 Computational Phonology				
11	11.1	••	365 365		
	11.1	••	369		
	11.2	11.2.1 Harmony	369		
		11.2.2 Templatic Morphology	370		
	11.3	Computational Optimality Theory	371		
	11.5	11.3.1 Finite-State Transducer Models of Optimality Theory	373		
		11.3.2 Stochastic Models of Optimality Theory	375		
	11.4	Syllabification	376		
	11.5	Learning Phonology & Morphology	380		
	11.0	11.5.1 Learning Phonological Rules	380		
		11.5.2 Learning Morphology	381		
		11.5.3 Learning in Optimality Theory	385		
	11.6	Summary	386		
		graphical and Historical Notes	386		
		ises	388		
III	[Sv	ntax			
	L DJ				
12	Form	al Grammars of English	389		
	12.1		390		
	12.2	Context-Free Grammars	391		
		12.2.1 Formal definition of context-free grammar	395		
	12.3	Some Grammar Rules for English	396		
		12.3.1 Sentence-Level Constructions	396		
		12.3.2 Clauses and Sentences	398		
		12.3.3 The Noun Phrase	398		
		12.3.4 Agreement	403		
		12.3.5 The Verb Phrase and Subcategorization	404		
		12.3.6 Auxiliaries	406		
		12.3.7 Coordination	407		
	12.4	Treebanks	408		
		12.4.1 Example: The Penn Treebank Project	408		
		12.4.2 Using a Treebank as a Grammar	410		
		12.4.3 Searching Treebanks	412		
		12.4.4 Heads and Head Finding	413		
	12.5	Grammar Equivalence and Normal Form	416		
	12.6	Finite-State and Context-Free Grammars	417		
	12.7	Dependency Grammars	418		
		12.7.1 The Relationship Between Dependencies and Heads	419		
	10.0	12.7.2 Categorial Grammar	420		
	12.8	Spoken Language Syntax	421		
		I / X I I I I I I I I I I I I I I I I I	1111		

		1 & & &	423
	12.9	\mathcal{E}	423
		•	425
		0 1	426
	Exerci	ises	428
13	Parsii	8	431
	13.1	E	432
		13.1.1 Top-Down Parsing	433
		1 &	434
			435
	13.2	Ambiguity	436
	13.3	Search in the Face of Ambiguity	438
	13.4	Dynamic Programming Parsing Methods	439
		\mathcal{U}	440
		13.4.2 The Earley Algorithm	447
		13.4.3 Chart Parsing	452
	13.5		454
		13.5.1 Finite-State Rule-Based Chunking	455
			456
		13.5.3 Evaluating Chunking Systems	459
	13.6	Summary	460
	Biblio	graphical and Historical Notes	461
	Exerci	ises	462
14	Static	tical Parsing	465
17	14.1	8	466
	14.1		467
			469
	14.2		470
	14.3		473
	14.4	8	474
	14.4	14.4.1 Independence assumptions miss structural dependencies be-	+ / +
			474
			475
	14.5		477
	14.6		479
	14.0		481
			483
	14.7		485
	14.7		486
	14.6	· · · · · · · · · · · · · · · · · · ·	488
			489
		6	489 491
		· · · · · · · · · · · · · · · · · · ·	491
		0 1	492

15	Featu	res and	Unification	495
10	15.1		Structures	496
	15.2		tion of Feature Structures	499
	Structures in the Grammar	503		
	15.3	15.3.1	Agreement	504
		15.3.2	Head Features	507
		15.3.3	Subcategorization	508
		15.3.4	Long-Distance Dependencies	513
	15.4		nenting Unification	513
	13.4	15.4.1	Unification Data Structures	514
		15.4.2	The Unification Algorithm	515
	15.5		with Unification Constraints	519
	13.3	15.5.1	Integrating Unification into an Earley Parser	520
			Unification-Based Parsing	526
	15.6			528
	13.0		and Inheritance	531
			Advanced: Extensions to Typing	532
	157			
	15.7		rry	532
			al and Historical Notes	533
	Exerc	ises		534
16	Lang	uage and	l Complexity	537
	16.1	The Ch	omsky Hierarchy	538
	16.2		Tell if a Language Isn't Regular	540
			The Pumping Lemma	541
			Are English and Other Natural Languages Regular Languages	?543
	16.3		ral Language Context-Free?	546
	16.4		exity and Human Processing	548
	16.5	_	ry	550
			al and Historical Notes	551
IV	Sei	mantic	s and Pragmatics	
- '		mantic	s und I ruginutes	
17	Repr	_	Meaning	553
	17.1		tational Desiderata for Representations	
			Verifiability	
		17.1.2	Unambiguous Representations	556
		17.1.3	Canonical Form	557
		17.1.4	Inference and Variables	559
		17.1.5	Expressiveness	559
	17.2	Model-	Theoretic Semantics	560
	17.3		rder Logic	563
		17.3.1	Basic Elements of First Order Logic	563
		17.3.2	Variables and Quantifiers	566
			Lambda Notation	568

		17.3.4 The Semantics of First-Order Logic	569
		17.3.5 Inference	570
	17.4	Representing Events and States	572
		17.4.1 Representing Time	575
		17.4.2 Aspect	578
	17.5	Related Representational Approaches	581
		17.5.1 Description Logics	582
	17.6	Alternative Approaches to Meaning	587
		17.6.1 Meaning as Action	588
	17.7	Summary	588
	Biblio	graphical and Historical Notes	589
	Exerc	ises	590
18	Comp	outational Semantics	593
	18.1	Syntax-Driven Semantic Analysis	593
	18.2	Semantic Augmentations to Context-Free Grammar Rules	595
	18.3	Quantifier Scope Ambiguity and Underspecification	602
		18.3.1 Store and Retrieve Approaches	602
	18.4	Unification-Based Approaches to Semantic Analysis	604
	18.5	Semantic Attachments for a Fragment of English	610
		18.5.1 Sentences	610
		18.5.2 Noun Phrases	612
		18.5.3 Verb Phrases	615
		18.5.4 Prepositional Phrases	617
	18.6	Integrating Semantics into the Earley Parser	619
	18.7	Idioms and Compositionality	621
	18.8	Summary	622
		ographical and Historical Notes	623
	Exerc	ises	624
19		al Semantics	627
	19.1	Word Senses	628
	19.2	Relations between Senses	631
		19.2.1 Synonymy and Antonymy	631
		19.2.2 Hyponymy	632
		19.2.3 Semantic Fields	633
	19.3	WordNet: A Database of Lexical Relations	633
	19.4	Event Participants: Semantic Roles and Selectional Restrictions	635
		19.4.1 Thematic Roles	636
		19.4.2 Diathesis Alternations	637
		19.4.3 Problems with Thematic Roles	639
		19.4.4 The Proposition Bank	640
		19.4.5 FrameNet	641
		19.4.6 Selectional Restrictions	643
	19.5	Primitive Decomposition	645
	19.6	Advanced concepts: Metaphor	647

Contents xvii

	19.7	Summa	ry	648
	Biblio		al and Historical Notes	649
	Exerc			650
20	_		al Lexical Semantics	653
	20.1		ense Disambiguation: Overview	654
	20.2		ised Word Sense Disambiguation	655
			Extracting Feature Vectors for Supervised Learning	656
			Naive Bayes and Decision List Classifiers	657
	20.3		valuation, Baselines, and Ceilings	660
	20.4	WSD: I	Dictionary and Thesaurus Methods	662
		20.4.1	The Lesk Algorithm	662
		20.4.2		664
	20.5	Minima	ally Supervised WSD: Bootstrapping	666
	20.6		imilarity: Thesaurus Methods	668
	20.7		imilarity: Distributional Methods	674
			Defining a Word's Co-occurrence Vectors	675
			Measures of Association with Context	676
		20.7.3	Defining similarity between two vectors	679
		20.7.4	Evaluating Distributional Word Similarity	683
	20.8	Hypony	my and other word relations	684
	20.9	Semant	ic Role Labeling	687
			ed: Unsupervised Sense Disambiguation	690
			al and Historical Notes	691
	Exerc	ises		695
21	Comr	vitation	al Discourse	697
41	21.1		rse Segmentation	700
	21.1		Unsupervised Discourse Segmentation	700
		21.1.1	Supervised Discourse Segmentation	700
			Evaluating Discourse Segmentation	704
	21.2		sherence	705
	21.2	21.2.1	Rhetorical Structure Theory	706
		21.2.1		708
	21.3		ace Resolution	711
	21.3		ace Phenomena	714
	21.4		Five Types of Referring Expressions	714
			Information Status	716
	21.5		s for Pronominal Anaphora Resolution	717
	21.6		lgorithms for pronominal anaphora resolution	720
	21.0	21.6.1	Pronominal Anaphora Baseline: The Hobbs Algorithm	
		21.6.2	A Centering Algorithm for Anaphora Resolution	720 722
		21.6.3	A Log-Linear model for Pronominal Anaphora Resolution	724
		21.6.3	Features	725
	21.7		ence Resolution	726
	21.7		ing Coreference Resolution	728

			Conte	nts	xix
	21.9	Advanc	eed: Inference-Based Coherence Resolution		728
	21.10	Psycho	linguistic Studies of Reference and Coherence		734
	21.11	Summa	ıry		735
	Biblio	ographica	al and Historical Notes		736
	Exerc	ises			738
\mathbf{V}	Ap	plicatio	ons		
22	TC.		7-4		741
22			Extraction		741
	22.1		Entity Recognition		743
		22.1.1	Ambiguity in Named Entity Recognition		745
		22.1.2	NER as Sequence Labeling		745
		22.1.3	Evaluating Named Entity Recognition		749
		22.1.4	Practical NER Architectures		750
	22.2		n Detection and Classification		751
		22.2.1	Supervised Learning Approaches to Relation Analysis .		752
		22.2.2	Lightly Supervised Approaches to Relation Analysis		755
		22.2.3	Evaluating Relation Analysis Systems		758
	22.3	-	ral and Event Processing		759
		22.3.1	Temporal Expression Recognition		760
		22.3.2	Temporal Normalization		762
		22.3.3	Event Detection and Analysis		765
		22.3.4	TimeBank		766
	22.4	Templa	te-Filling		768
		22.4.1	Statistical Approaches to Template-Filling		769
		22.4.2	Finite-State Template-Filling Systems		770
	22.5	Advanc	ced: Biomedical Information Extraction *		773
		22.5.1	Biological Named Entity Recognition		774
		22.5.2	Gene Normalization		775
		22.5.3	Biological Roles and Relations		776
	22.6	Summa	ry		778
	Biblio	graphica	al and Historical Notes		778
	Exerc	ises			779
22	0		. 10		503
23	-		wering and Summarization		783
	23.1		ation Retrieval		785
		23.1.1	The Vector Space Model		786
		23.1.2	Term Weighting		789
		23.1.3	Term Selection and Creation		790
		23.1.4	Evaluating Information Retrieval Systems		790
		23.1.5	Homonymy, Polysemy, and Synonymy		794
		23.1.6	Improving User Queries		795
	23.2		Question Answering		796
		23.2.1	Question Processing		798
		23.2.2	Passage Retrieval		801
		23.2.3	Answer Processing		802

		23.2.4 Evaluation of Factoid Answers	805
	23.3	Summarization	805
	23.3	23.3.1 Summarizing Single Documents	808
	23.4	Multi-Document Summarization	814
	23.4	23.4.1 Content Selection in Multi-Document Summarization	815
		23.4.2 Information Ordering in Multi-Document Summarization	816
	23.5	Between Question Answering and Summarization: Query-Focused	010
	23.3	Summarization	819
	23.6	Summarization Evaluation	823
	23.7		825
		Summary	
		graphical and Historical Notes	826
	Exerc	ises	828
24	Dialo	gue and Conversational Agents	829
	24.1	Properties of Human Conversations	831
		24.1.1 Turns and Turn-Taking	832
		24.1.2 Language as Action: Speech Acts	833
		24.1.3 Language as Joint Action: Grounding	834
		24.1.4 Conversational Structure	836
		24.1.5 Conversational Implicature	837
	24.2	Basic Dialogue Systems	839
		24.2.1 ASR component	839
		24.2.2 NLU component	841
		24.2.3 Generation and TTS components	844
		24.2.4 Dialogue Manager	845
		24.2.5 Dialogue Manager Error Handling: Confirmation/Rejection	849
	24.3	VoiceXML	851
	24.4	Dialogue System Design and Evaluation	854
		24.4.1 Designing Dialogue Systems	854
		24.4.2 Dialogue System Evaluation	855
	24.5	Information-state & Dialogue Acts	857
		24.5.1 Dialogue Acts	859
		24.5.2 Interpreting Dialogue Acts	860
		24.5.3 Detecting Correction Acts	862
		24.5.4 Generating Dialogue Acts: Confirmation and Rejection	863
	24.6	Markov Decision Process Architecture	865
	24.7	Advanced: Plan-based Dialogue Agents	869
		24.7.1 Plan-Inferential Interpretation and Production	869
		24.7.2 The Intentional Structure of Dialogue	872
	24.8	Summary	874
		graphical and Historical Notes	875
	Exerc	- ·	876
25	Maal	ina Tuonalatian	970
25		ine Translation Why is Machine Translation So Hard?	879
	25.1	Why is Machine Translation So Hard?	882 882
		7.1 L L LVDOIO9V	00/

	Contents	XX
	25.1.2 Other Structural Divergences	885
	25.1.3 Lexical Divergences	885
25.2	Classical MT & the Vauquois Triangle	887
	25.2.1 Direct Translation	887
	25.2.2 Transfer	890
	25.2.3 Combining direct and tranfer approaches in classic MT	892
	25.2.4 The Interlingua Idea: Using Meaning	893
25.3	Statistical MT	895
25.4	P(F E): the Phrase-Based Translation Model	897
25.5	Alignment in MT	900
	25.5.1 IBM Model 1	901
	25.5.2 HMM Alignment	903
25.6	Training Alignment Models	905
	25.6.1 EM for Training Alignment Models	906
25.7	Symmetrizing Alignments for Phrase-based MT	908
25.8	Decoding for Phrase-Based Statistical MT	910
25.9	MT Evaluation	914
	25.9.1 Using Human Raters	915
	25.9.2 Automatic Evaluation: Bleu	915
25.10	Advanced: Syntactic Models for MT	918
25.11	Advanced: IBM Model 3 for fertility-based alignment	920
	25.11.1 Training for Model 3	923
25.12	Advanced: Log-linear Models for MT	924
Biblio	graphical and Historical Notes	925
	ises	927
Bibliogi	raphy	929
_121381	··· r J	
Index		981
HIUCA		701

Foreword

TO BE ADDED

Peter Norvig & Stuart Russell, Editors Prentice Hall Series in Artificial Intelligence

Preface

This is an exciting time to be working in speech and language processing. Historically distinct fields (natural language processing, speech recognition, computational linguistics, computational psycholinguistics) have begun to merge. The explosion of Web-based language techniques, and the commercial availability of telephone-based dialogue systems, and speech synthesis and speech recognition have provided an important impetus for the development of real systems. The availability of very large on-line corpora has enabled statistical models of language at every level, from phonetics to discourse. We have tried to draw on this emerging state of the art in the design of this pedagogical and reference work:

1. Coverage

In attempting to describe a unified vision of speech and language processing, we cover areas that traditionally are taught in different courses in different departments: speech recognition in electrical engineering; parsing, semantic interpretation, and machine translation in natural language processing courses in computer science departments; and computational morphology, phonology and pragmatics in computational linguistics courses in linguistics departments. The book introduces the fundamental algorithms of each of these fields, whether originally proposed for spoken or written language, whether logical or statistical in origin, and attempts to tie together the descriptions of algorithms from different domains. We have also included coverage of applications like spelling-checking and information retrieval and extraction as well as areas like cognitive modeling. A potential problem with this broad-coverage approach is that it required us to include introductory material for each field; thus linguists may want to skip our description of articulatory phonetics, computer scientists may want to skip such sections as regular expressions, and electrical engineers skip the sections on signal processing. Of course, even in a book this long, we didn't have room for everything. Thus this book should not be considered a substitute for important relevant courses in linguistics, automata and formal language theory, artificial intelligence, machine learning, statistics, or information theory.

2. Emphasis on practical applications

It is important to show how language-related algorithms and techniques (from HMMs to unification, from the lambda calculus to log-linear models) can be applied to important real-world problems: spell checking, text document search, machine translation, speech recognition, information extraction from the web, and spoken-language dialogue. We have attempted to do this by integrating the description of language processing applications into each chapter. The advantage of this approach is that as the relevant linguistic knowledge is introduced, the student has the background to understand and model a particular domain.

3. Emphasis on scientific evaluation

The recent prevalence of statistical algorithms in language processing and the growth of organized evaluations of speech and language processing systems has led to a new emphasis on evaluation. Most chapters therefore include an evaluation section describing modern empirical methods for evaluating systems

- and performing error analysis, including such concepts as training and test sets, cross-validation, and information-theoretic evaluation metrics like perplexity.
- 4. Description of widely available language processing resources Modern speech and language processing is heavily based on common resources: raw speech and text corpora, annotated corpora and treebanks, standard tagsets for labeling pronunciation, part-of-speech, parses, word-sense, and dialoguelevel phenomena. We have tried to introduce many of these important resources throughout the book (e.g., the Brown, Switchboard, Fisher, CALLHOME, ATIS, TREC, MUC, and BNC corpora) and provide complete listings of many useful tagsets and coding schemes (such as the Penn Treebank, CLAWS C5 and C7, and the ARPAbet) but some inevitably got left out. Furthermore, rather than include references to URLs for many resources directly in the textbook, we have placed them on the book's Web site, where they can more readily updated.

The book is primarily intended for use in a graduate or advanced undergraduate course or sequence. Because of its comprehensive coverage and the large number of algorithms, the book is also useful as a reference for students and professionals in any of the areas of speech and language processing.

Overview of the Book

The book is divided into five parts in addition to an introduction and end matter. Part I, "Words", introduces concepts related to the processing of words and simple word sequences: word segmentation, word morphology, word edit distance, parts-ofspeech, and the algorithms used to process them: regular expressions, finite automata, finite transducers, N-grams, Hidden Markov Models, and log-linear models. Part II, "Speech", introduces linguistic phonetics, and then covers speech synthesis, speech recognition, and linguistic topics in computational phonology. Part III, "Syntax", introduces phrase structure grammars for English and gives essential algorithms for processing structured syntactic relationships among words: the CKY and Earley algorithms for parsing, statistical parsing, unification and typed feature structures, and analytical tools like the Chomsky hierarchy and the pumping lemma. Part IV, "Semantics and Pragmatics", introduces first order predicate calculus and other ways of representing meaning, the lambda calculus, lexical semantics, lexical semantic resources such as WordNet, PropBank, and FrameNet,, and computational models of lexical semantics for word similarity, word sense disambiguation, and discourse topics like coreference and coherence. Part V, "Applications", covers information extraction, machine translation and dialog and conversational agents.

Using this Book

The book provides enough material to be used for a full-year sequence in speech and language processing. It is also designed so that it can be used for a number of different useful one-term courses:

NLP	NLP		Speech + NLP		Comp. Ling.		
1 quarter		1 semester		1 semester		1 quarter	
1. Intro	1.	Intro	1.	Intro	1.	Intro	
2. Regex, FSA	2.	Regex, FSA	2.	Regex, FSA	2.	Regex, FSA	
4. N-grams	4.	N-grams	4.	N-grams	3.	Morph., FST	
POS tagging	5.	POS tagging	5.	POS tagging	4.	N-grams	
12. CFGs	6.	HMMS	6.	HMMs	5.	POS tagging	
13. Parsing	12.	CFGs	8.	TTS	13.	Parsing	
14. Stat. Parsing	13.	Parsing	9.	ASR	14.	Stat. Parsing	
19. Lex. Semantics	14.	Stat. Parsing	12.	CFGs	15.	Complexity	
20. Comp. Lex. Sem.	17.	Semantics	13.	Parsing	16.	Unification	
23. QA & Summar.	18.	Comp. Semantics	14.	Stat. Parsing	20.	Comp. Lex. Sem.	
25. MT	19.	Lex. Semantics	17.	Semantics	21.	Discourse	
	20.	Comp. Lex. Sem.	19.	Lex. Sem.			
	21.	Discourse	20.	Comp. Lex. Sm.			
	22.	IE	22.	IE			
	23.	QA & Summar.	24.	Dialog			
	25.	MT	25.	MT.			

Selected chapters from the book could also be used to augment courses in Artificial Intelligence, Cognitive Science, Information Retrieval, or Electrical Engineering-oriented courses in Speech Processing.

Resources associated with the book such as online versions of figures and pointers to web content can be found at the book home-page:

http://www.cs.colorado.edu/~martin/slp.html.

Acknowledgments

Andy Kehler wrote the Discourse chapter for the first edition; we took Andy's chapter as a starting point for this second edition chapter. Similarly, Nigel Ward wrote most of the MT chapter for the first edition, and we used this as the starting point for the MT chapter of this second edition. Kevin Bretonnel Cohen wrote section 22.5 on biomedical information extraction. Keith Vander Linden wrote the Generation chapter in the first edition.

Dan would like to thank his parents for encouraging him to do the right thing, do it in a timely fashion, and make time for going to the gym. He would also like to thank Nelson Morgan, for introducing him to speech recognition and teaching him to ask "but does it work?"; Jerry Feldman, for sharing his commitment to finding the right answers and teaching him to ask "but is it really important?"; Chuck Fillmore, his first advisor, for sharing his love for language and teaching him to always go look at the data, Robert Wilensky, his dissertation advisor, for teaching him the importance of collaboration and group spirit in research, Chris Manning for being a superb collaborator at Stanford, and of course all his former colleagues at Boulder.

Jim would like to thank his parents for encouraging him and allowing him to follow what must have seemed like an odd path at the time. He would also like to thank his dissertation advisor, Robert Wilensky, for giving him his start in NLP at Berkeley; Peter Norvig, for providing many positive examples along the way; Rick Alterman, for encouragement and inspiration at a critical time; and Chuck Fillmore, George Lakoff, Paul Kay, and Susanna Cumming for teaching him what little he knows about linguistics; Martha Palmer, Tammy Sumner and Wayne Ward for being wonderful collaborators at Boulder. Finally, Jim would like to thank his wife Linda for all her support and patience through the years, and his daughter Katie who has waited her entire life for the completion of this edition.

Boulder and Stanford have been very rewarding places to work on speech and language processing. We'd like to thank our departments, our colleagues, and our students at both places for their collaborations, which have greatly influenced our research and teaching.

We are grateful to the many people who helped enormously on the first edition of the book. This second edition has also benefited from our many readers and from their course-testing. Special thanks for extraordinarily helpful comments and ideas on wide swaths of the book to Regina Barzilay, Philip Resnik, Emily Bender, and Adam Przepiórkowski. Our editor Tracy Dunkelberger, our series editors Peter Norvig and Stuart Russell, and our production editor Scott DiSanno made many helpful suggestions on design and content. We are also indebted to many friends and colleagues who read individual sections of the book or answered our many questions for their comments and advice, including the students in our classes at the University of Colorado, Boulder, Stanford University, and the LSA Summer Institutes at the University of Illinois at Urbana-Champaign (1999), MIT (2005), and Stanford (2007), as well as:

Rieks op den Akker, Kayra Akman, Angelos Alexopoulos, Robin Aly, S. M. Niaz Arifin, Nimar S. Arora, Tsz-Chiu Au, G. W. Blackwood, Bai Xiaojing, Ellie Baker, Jason Baldridge, Clay Beckner, Jonathan Boiser, Marion Bond, Marco Aldo Piccolino Boniforti, Onn Brandman, Chris Brew, Tore Bruland, Denis Bueno, Sean M. Burke, Bill Byrne, Kai-Uwe Carstensen, Alejandro Cdebaca, Pichuan Chang, Grace Chung, Andrew Clausen, Kevin B. Cohen, Frederik Coppens, Stephen Cox, Heriberto Cuayáhuitl, Martin Davidsson, Paul Davis, Jon Dehdari, Franz Deuzer, Mike Dillinger, Bonnie Dorr, Jason Eisner, John Eng, Ersin Er, Hakan Erdogan, Gülsen Eryiğit, Barbara Di Eugenio, Eric Fosler-Lussier, Olac Fuentes, Dale Gerdemann, Dan Gildea, Filip Ginter, Cynthia Girand, Anthony Gitter, John A. Goldsmith, Michelle Gregory, Rocio Guillen, Jeffrey S. Haemer, Adam Hahn, Patrick Hall, Harald Hammarström, Mike Hammond, Eric Hansen, Marti Hearst, Paul Hirschbühler, Julia Hirschberg, Julia Hockenmaier, Jeremy Hoffman, Greg Hullender, Gaja Jarosz, Eric W. Johnson, Chris Jones, Edwin de Jong, Bernadette Joret, Fred Karlsson, Graham Katz, Stefan Kaufmann, Andy Kehler, Manuel Kirschner, Sheldon Klein, Kevin Knight, Jean-Pierre Koenig, Kimmo Koskenniemi, Alexander Kostyrkin, Valerie Krugler, Mikko Kurimo, Mike LeBeau, Chia-Ying Lee, Jaeyong Lee, Scott Leishman, Szymon Letowski, Liuyang Li, Marc Light, Greger Lind'en, Pierre Lison, Diane Litman, Chao-Lin Liu, Feng Liu, Roussanka Louka, Artyom Lukanin, Jean Ma, Maxim Makatchev, Inderjeet Mani, Steve Marmon, Marie-Catherine de Marneffe, Hendrik Maryns, Jon May, Dan Melamed, Johanna Moore, Nelson Morgan, Emad Nawfal, Mark-Jan Nederhof, Hwee Tou Ng, John Niekrasz, Rodney Nielsen, Yuri Niyazov, Kris Nuttycombe, Mike O'Connell, Robert Oberbreckling, Scott Olsson, Woodley Packard, Gabor Palagyi, Gerald Penn, Rani Pinchuk, Sameer Pradhan, Kathryn Pruitt, Drago Radev, William J. Rapaport, Dan Ramage, Ron Regan, Ehud Reiter, Steve Renals, Chang-han Rhee, Dan Rose, Mike Rosner, Deb Roy, Teodor Rus, William Gregory Sakas, Murat Saraclar, Stefan Schaden, Anna Schapiro, Zhang Sen, Matt Shannon, Stuart C. Shapiro, Ilya Sherman, Lokesh Shrestha, Nathan Silberman, Otakar Smrz, Rion Snow, Niyue Tan, Frank Yung-Fong Tang, Ahmet Cüneyd Tantuğ, Paul Taylor, Lorne Temes,

Rich Thomason, Almer S. Tigelaar, Richard Trahan, Antoine Trux, Clement Wang, Nigel Ward, Rachel Weston, Janyce Wiebe, Lauren Wilcox, Ben Wing, Dean Earl Wright III, Dekai Wu, Lei Wu, Eric Yeh, Alan C. Yeung, Margalit Zabludowski, Menno van Zaanen, Sam Shaojun Zhao, and Xingtao Zhao.

Daniel Jurafsky Stanford, California James H. Martin Boulder, Colorado

