Herbst 14 Themennummer 1 Aufgabe 1 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Es sei $G \subset \mathbb{C}$ ein nichtleeres Gebiet und $f, g : G \to \mathbb{C}$ seien holomorph mit f' = gf. Zeigen Sie: Hat f eine Nullstelle in G, so ist f(z) = 0 für alle $z \in G$.

Lösungsvorschlag:

Sei $z_0 \in G$ eine Nullstelle von f. Weil f dort holomorph ist, können wir f um z_0 in eine lokal konvergente Potenzreihe entwickeln mit $f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z-z_0)^n$ für alle $z \in B_{\varepsilon}(z_0)$ und ein $\varepsilon > 0$. Wir werden nun induktiv $f^{(n)}(z_0) = 0$ für alle $n \in \mathbb{N}_0$ zeigen. Für n = 0 ist dies erfüllt, weil f bei z_0 eine Nullstelle haben soll. Für n = 1 ist $f'(z_0) = f(z_0)g(z_0) = 0$. Nun gelte $f^{(n)}(z_0) = 0$ für alle $n \in \{0, \dots, N\}$ dann gilt $f^{(N+1)}(z_0) = (fg)^{(N)}(z_0) = \sum_{k=0}^{N} {N \choose k} f^{(k)}(z_0)g^{(N-k)}(z_0) = 0$ nach der Leibnizformel und der Induktionsannahme. Also folgt $f^{(N+1)}(z_0) = 0$ und $f^{(n)}(z_0) = 0$ für alle $n \in \{0, \dots, N+1\}$. Damit ist die Behauptung bewiesen. Die Potenzreihendarstellung zeigt nun f(z) = 0 für alle $z \in B_{\varepsilon}(z_0)$. Diese Menge besitzt den Häufungspunkt z_0 und weil G ein Gebiet ist, folgt $f \equiv 0$ auf G aus dem Identitätssatz holomorpher Funktionen.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$