CIS 678 - Machine Learning

- Linear to Polynomial Regression
- Model Regularization

Plan

- LR to Polynomial Regression
- Regularization
 - Theory
 - o Practical Notebook presentation

- Does this data points seem familiar matching a known function?

- Does this data points seem familiar matching a known function?
 - A Sinusoidal function

$$y(t) = A\sin(\omega t + arphi) = A\sin(2\pi f t + arphi)$$

- Does this data points seem familiar matching a known function?
 - A Sinusoidal function

$$y(t) = A\sin(\omega t + arphi) = A\sin(2\pi f t + arphi)$$

Clearly this is not a linear function; right?

- Does this data points seem familiar matching a known function?
- Can we approximate this function using LR?

$$\hat{y} = \beta_0 + \beta_1 x$$

LR will not work; right?

- Can you recall any nonlinear function you learned at your high school/colleges?

- Can you recall any nonlinear function you learned at your high school/colleges?
- Quadratic (x²)

$$f(x) = x^2$$
, $f(x) = 2x^2$, $f(x) = 5x^2$.

What is the impact of changing the coefficient of x^2 as we have done in these examples? One way to find out is to sketch the graphs of the functions.

- Can you recall any nonlinear function you learned at your high school/colleges?
- Cubic (x³)

- Can you recall any nonlinear function you learned at your high school/colleges?
- Quadratic (x²)
- Cubic (x³)

_

$$\hat{y} = \beta_0 + \beta_1 x
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3 + \dots$$

- Polynomial function
 - M is the order/degree of polynomial ..

$$\hat{y} = \beta_0 + \beta_1 x
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3 + \dots$$

- Polynomial function
 - M is the order/degree of polynomial ..
 - Where to stop? What is the best M?

$$\hat{y} = \beta_0 + \beta_1 x
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3 + \dots$$

- Polynomial function
 - M is the order/degree of polynomial ..
 - Where to stop? What is the best M?

Good news is our gradient descent (iterative learning) remains the same!

$$\hat{y} = \beta_0 + \beta_1 x
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3 + \dots$$

- Polynomial function
 - M is the order ..
 - Where to stop? What is the best M?
- Good news is our gradient descent (iterative learning) remains the same!
- You only need to change your objective function (from LR to Polynomial LR)

$$\hat{y} = \beta_0 + \beta_1 x
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3 + \dots$$

 $\hat{y} = \beta_0 + \beta_1 x$

Model

 $\Theta^* = \operatorname{argmin}_{\Theta} E\{(x_i, y_i)\}_{i=1,\dots,N}$

Our model got a little bigger: 2 params to M param

I know one of your tricks; get you soon!!

Our model yesterday

Our model got a little bigger: 2 params to M param

I know one of your tricks; get you soon!!

Our model today

So, essentially we are fitting a function; right?

Model

$$\hat{y} = \beta_0 + \beta_1 x$$
$$\Theta = \{\beta_0, \beta_1\}$$

Fitting Error

$$\epsilon = |\hat{y} - y|$$

Optimization function

$$E_{\Theta} = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

$$\Theta^* = \operatorname{argmin}_{\Theta} E\{(x_i, y_i)\}_{i=1,\dots,N}$$

 $E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$

Model

$$\hat{y} = \beta_0 + \beta_1 x$$

$$\Theta = \{\beta_0, \beta_1\}$$

$$\epsilon = |\hat{y} - y|$$

Same model, two different notations

Optimization function

$$E_{\Theta} = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

$$\Theta^* = \operatorname{argmin}_{\Theta} E\{(x_i, y_i)\}_{i=1,\dots,N}$$

Model

$$\hat{y} = \beta_0 + \beta_1 x$$

$$\Theta = \{\beta_0, \beta_1\}$$

$$\epsilon = |\hat{y} - y|$$

Essentially, the same formulation

 $E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$

Generally ML vs Math conventions

Optimization function

$$E_{\Theta} = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

$$\Theta^* = \operatorname{argmin}_{\Theta} E\{(x_i, y_i)\}_{i=1,\dots,N}$$

Model

x: scalar

 \boldsymbol{x} , \mathbf{x} : vector

X: Matrix

$$\hat{y} = \beta_0 + \beta_1 x$$

$$\Theta = \{\beta_0, \beta_1\}$$

 $\epsilon = |\hat{y} - y|$

Optimization function

$$E_{\Theta} = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

 $\Theta^* = \operatorname{argmin}_{\Theta} E\{(x_i, y_i)\}_{i=1, \dots, N}$

 $E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$

Essentially, the same formulation

Generally ML vs Math conventions

$$W^* = \operatorname{argmin}_W E\{(x_i, t_i)\}_{i=1, \cdots, N}$$

Table 1.1 Table of the coefficients w* for polynomials of various order. Observe how the typical magnitude of the coefficients increases dramatically as the order of the polynomial increases.

	M=0	M = 1	M = 6	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^\star				125201.43

Table 1.1 Table of the coefficients w[⋆] for polynomials of various order. Observe how the typical magnitude of the coefficients increases dramatically as the order of the polynomial increases.

	M=0	M = 1	M = 6	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^\star			, ,	231639.30
w_5^{\star}			`,	640042.26
w_6^\star				-1061800.52
w_7^{\star}				1042400.18,
w_8^\star	_		wes	-557682.99
w_9^\star		ار مار الا مار	alus	125201.43
	٠- ١	alute	cing	
	· Ppz	olute V increa	5''	
	\ are	increa		`.,'
	1 91			

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Regularizer

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Regularizer

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{1}{2} ||\mathbf{w}||^2$$

Table of the coefficients w* for polynomials of various order. Observe how the typical magnitude of the coefficients increases dramatically as the order of the polynomial increases.

	M=0	M = 1	M = 6	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
$\bar{w_3^{\star}}$			17.37	48568.31
w_4^\star			, ,	231639.30
w_5^{\star}			`,	640042.26
w_6^\star				-1061800.52
w_7^\star				1042400.18,
w_8^\star				-557682.99
w_9^\star		es		125201.43
J		values	cing	
	: Vpz	values sincrea	ر. روز	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	values e increa		`,,
	\ \ \			•
	```			

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2$$

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2 + \frac{1}{2} ||\mathbf{w}||^2$$
decreasing

e 1.1 Table of the coefficients w* for polynomials of various order. Observe how the typical magnitude of the coefficients increases dramatically as the order of the polynomial increases.

	M=0	M = 1	M = 6	M = 9
$w_0^{\star}$	0.19	0.82	0.31	0.35
$w_1^{\star}$		-1.27	7.99	232.37
$w_2^{\star}$			-25.43	-5321.83
$w_3^{\star}$			17.37	48568.31
$w_4^{\star}$			1	231639.30
$w_5^{\star}$			`,	640042.26
$w_6^{\star}$				-1061800.52
$w_7^{\star}$				1042400.18,
$w_8^{\star}$				-557682.99
$w_9^{\star}$		es		125201.43
0		values	cing	
	: Vpz	values Sincrea	ر. الحلا	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	values e increa		`,,
	\ <b>\</b> \	_,_,_,		
	```			


1 Table of the coefficients w* for polynomials of various order. Observe how the typical magnitude of the coefficients increases dramatically as the order of the polynomial increases.

	M = 0	M = 1	M = 6	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^\star			, ,	231639.30
w_5^{\star}			`,	640042.26
w_6^\star				-1061800.52
w_7^{\star}				1042400.18,
w_8^\star				-557682.99
w_9^\star		values Sincres		125201.43
J	· · ·	<i>ralue</i>	cing	
	: Vpz	. cre?	ر. روز	- 1 / / ·
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	values e incres		`,;
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
	```	'		

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$



$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{1}{2} ||\mathbf{w}||^2$$

decreasing

Die 1.1 Table of the coefficients w* for polynomials of various order. Observe how the typical magnitude of the coefficients increases dramatically as the order of the polynomial increases.

	M = 0	M = 1	M = 6	M = 9
$w_0^{\star}$	0.19	0.82	0.31	0.35
$w_1^{\star}$		-1.27	7.99	232.37
$w_2^{\star}$			-25.43	-5321.83
$w_3^{\star}$			17.37	48568.31
$w_4^{\star}$				-231639.30
$w_5^{\star}$				640042.26
$w_6^\star$				-1061800.52
$w_7^{\star}$				1042400.18
$w_8^\star$				-557682.99
$w_9^{\star}$				125201.43

How to control this?

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2$$

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2 + \sum_{n=1}^{N} \|\mathbf{w}\|^2$$

$$\mathbf{w}$$

.1 Table of the coefficients w* for polynomials of various order. Observe how the typical magnitude of the coefficients increases dramatically as the order of the polynomial increases.

	M=0	M = 1	M = 6	M = 9
$w_0^{\star}$	0.19	0.82	0.31	0.35
$w_1^\star$		-1.27	7.99	232.37
$w_2^{\star}$			-25.43	-5321.83
$w_3^{\star}$			17.37	48568.31
$w_4^{\star}$				-231639.30
$w_5^{\star}$				640042.26
$w_6^{\star}$				-1061800.52
$w_7^{\star}$				1042400.18
$w_8^\star$				-557682.99
$w_0^{\star}$				125201.43

Who to control this?

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2$$

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2 + \sum_{n=1}^{N} \|\mathbf{w}\|^2$$
Who

1 Table of the coefficients w* for polynomials of various order. Observe how the typical magnitude of the coefficients increases dramatically as the order of the polynomial increases.

	M = 0	M = 1	M = 6	M = 9
$w_0^{\star}$	0.19	0.82	0.31	0.35
$w_1^{\star}$		-1.27	7.99	232.37
$w_2^{\star}$			-25.43	-5321.83
$w_3^{\star}$			17.37	48568.31
$w_4^{\star}$				-231639.30
$w_5^{\star}$				640042.26
$w_6^{\star}$				-1061800.52
$w_7^{\star}$				1042400.18
$w_8^{\star}$				-557682.99
$w_9^{\star}$				125201.43

#### Who to control this?

Lamda is called the Hyper Parameter of this model

## Polynomial Regression with Regularization



$$\hat{y} = \beta_0 
\hat{y} = \beta_0 + \beta_1 x 
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3 
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3 + \dots$$

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

## Polynomial Regression with Regularization



Learned function is **nonlinear** 

$$\hat{y} = \beta_0 
\hat{y} = \beta_0 + \beta_1 x 
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3 
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3 + \dots$$

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

Model (still) linear

### Classification

- General Idea (two steps process)
  - LR (Bias Only)
  - LR (general)

## **Notebook presentation**

- Without regularizer
- With regularizer

Predictive modeling: Regression (diabetes)

Predictive modeling: Classification