APEC Math Review Proofs

Natalia Ordaz Reynoso

Summer 2019

Proofs

Theorem: a mathematical statement that is true and can be (and has been) verified as true

A proof of a theorem is a written verification that shows that the theorem is definitely and unequivocally true.

- Understandable
- Convincing
- Unambiguous

Definition: exact, unambiguous explanation of the meaning of a mathematical word or phrase

Theorems

Theorem: Let f be differentiable on an open interval I and let $c \in I$. If f(c) is the maximum or minimum vlue of f on I, then f'(c) = 0

Theorem: Every absolutely convergent series converges.

Theorem: Suppose each consumer's preferences are locally non-satiated. Then any allocation (x^*, y^*) that with prices p^* forms a competitive equilibrium is Pareto optimal

Note: all of these are in the conditional form or can be written in it.

3 / 25

Definitions

- An integer n is even if n = 2a for some integer $a \in \mathbb{Z}$
- An integer n is odd if n=2a+1 for some integer $a\in\mathbb{Z}$
- A number $n \in \mathbb{N}$ is prime if it has exactly two positive divisors: 1 and n. If n has more than two positive divisors, it is called a composite (Thus n is composite if and only if n = ab for 1 < a, b < n.)
- A feasible allocation $(x_1,...,x_I,y_1,...,y_J)$ is Pareto Optimal if there is no other feasible allocation $(x_1',...,x_I',y_1',...,y_J')$ such that $u_i(x_i') \leq u_i(x_i)$ for all i=1,...,I and $u_i(x_i') > u_i(x_i)$ for some i.

Other types of statements

- Theorems: statements that have been proven to be true
- Proposition, lemma: A statement that is true but not as significant as a theorem
- Corollary: a result that is an immediate consequence of a theorem

Direct Proof

- Let P, Q be statements
- Proposition: $P \Rightarrow Q$
- Direct proofs require us to construct a chain of implications $R_1, R_2, ... R_n$ such that: $P \Rightarrow R_1, R_1 \Rightarrow R_2, ... R_n \Rightarrow Q$
- Transitivity holds for conditional statements.
- Draw the truth table
- Remember: we only care about those cases when P is true

6 / 25

Radical

Direct Proof

- We are interested in the logical implications of P
- and statements that imply Q
- The idea is to work forward from P and backwards from Q, and connect the chain of implications
- Sometimes we may have to either strengthen P (add assumptions) or weaken Q
- Example on the board:

Theorem 1: The square of an odd integer is also odd

8 / 25

Direct Proof

- We are interested in the logical implications of P
- and statements that imply Q
- The idea is to work forward from P and backwards from Q, and connect the chain of implications
- Sometimes we may have to either strengthen P (add assumptions) or weaken Q
- Example on the board:

Theorem 1: The square of an odd integer is also odd Use the definition of odd

Other examples of direct proof

- Proposition: Let x, y be positive real numbers. If $x \le y$, then $\sqrt{x} \le \sqrt{y}$
- Proposition: Let x, y be positive real numbers, then $2\sqrt{xy} \le x + y$
- Proposition: If $n \in \mathbb{N}$, then $1 + (-1)^n (2n 1)$
- ullet Proposition: Every multiple of 4 equals $1+(-1)^n(2n-1)$ for some $n\in\mathbb{N}$
- Proposition: If two integers have opposite parity, their sum is odd

WLOG

Indirect Proof

Some propositions are difficult to prove directly. We will study two ways of indirect proofs: Proof by contrapositive and proof by contradiction.

- Proof by contrapositive: instead of proving $P\Rightarrow Q$, we prove its logical equivalent: $\neg Q\Rightarrow \neg P$
- Proof by contradiction: instead of proving $P \Rightarrow Q$, we show that $(P \land \neg Q)$ implies a contradiction.

Prove by Contrapositive

- Draw the truth table that verifies that a statement is logically equivalent to its contrapositive
- The outline of proofs by contrapositive is:
 - **1** Suppose $\neg Q$
 - 2 ...
 - **3** Therefore $\neg P$
- Compare to the outline of a direct proof.
- An example: Proposition: if n is an integer, and n^2 is even, then n is also even
- Proofs by contrapositive are convenient when the universal quantifier is present, because the contrapositive will include the existence quantifier.

Proof by Contrapositive: Examples

- Suppose $x \in \mathbb{Z}$. If 7x + 9 is even, then x is odd (prove both ways)
- Suppose $x \in \mathbb{Z}$. If $x^2 6x + 5$ is even, then x is odd (try both)
- •
- Let $a \geq 0, \in \mathbb{R}$. If $\forall \epsilon > 0$ it is true that $0 \leq a < \epsilon$ then a = 0
- If m, n are natural numbers such that $m+n \ge 20$ then either $m \ge 10$ or $n \ge 10$

Mathematical Writing

Hammack's style guidelines for mathematical writing

- Never begin a sentence with a mathematical symbol (capitalization)
- End each sentence with a period
- Separate mathematical symbols and expressions with words (to avoid confusion)
- Avoid misuse of symbols (!!)
- 4 Avoid unnecessary symbols
- Use the first person plural (in math)
- Use the active voice
- Explain each new symbol
- Watch out for "it" (!!)
- Since, because, as for, so
- Thus, hence, therefore, consequently

Suggested Exercises

Either odd or even exercises for Chapters 4 and 5 of Hammack

Proof by Contradiction

- We can use this to prove all kinds of statements, not just conditional ones.
- Idea: assume not, and get to nonsense
- Sometimes called reduction to absurdity
- A contradiction is a statement that cannot be true
- We will use the fact that if C is a contradiction, then $P \land \neg Q \Rightarrow C$, and $P \Rightarrow Q$ are logically equivalent

Proof by Contradiction

- You begin by saying "suppose P but not Q"
- You make sound logical steps
- if you arrive to a contradiction, then your initial assumption* must be wrong.
- Small detail: we do not necessarily know what the contradiction will be
- Example: The number $\sqrt{2}$ is irrational
- Example: Euclid's Theorem: There are infinitely many prime numbers
- Let a > 0, a real number. Then 1/a > 0

Combining techniques

- Every non-zero rational number can be expressed as the product of two irrational numbers.
- (By contradiction and then by contrapositive) Suppose $a \in \mathbb{Z}$. if $a^2 2a + 7$ is even then a is odd

Suggested Exercises

Either even or odd exercises from Chapter 6 of Hammack

More on Proofs: Biconditional statements

- If and only if
- Prove a conditional statement and its converse
- Example: an integer n is odd if and only if n^2 is odd
- That's it!

Equivalent statements

Theorem Suppose A is an nxn matrix. The following statements are equivalent

- The matrix A is invertible
- **2** The equation $A\mathbf{x} = \mathbf{b}$ has a unique solution for every $\mathbf{b} \in \mathbb{R}^n$
- The matrix A does not have 0 as an eigenvector

The theorem says that these are all either true or all false. How do we prove these?

Existence, Uniqueness

- We have been proving conditional statements, which are universally quantified statements
- How would you prove an existensially quantified statement?

Existence, Uniqueness

- We have been proving conditional statements, which are universally quantified statements
- How would you prove an existensially quantified statement?
- all we need is an example, as we saw last time
- Example: There exists an even prime number
- Example: There is an integer that can be expressed as the sum of two perfect cubes in two different ways
- ullet Uniqueness statements assert that there is exactly one example x for which P(x) is true.
- It exists and it is unique

Uniqueness Example

To show uniqueness, an example is not enough, you must show that there are no others

• Given a, b, c be real numbers. There is only one real number x that satisfies a + bx = c

Uniqueness Example

To show uniqueness, an example is not enough, you must show that there are no others

- Given a, b, c be real numbers. There is only one real number x that satisfies a + bx = c
- We need something else here. What is it?
- Show existence for the example above

Constructive vs non constructive proofs

Existence proofs are either constructive or non-constructive

- Constructive proofs display an explicit example
- Non-constructive proofs prove an example exists without providing it
- There exist irrational numbers x and y for which x^y is rational

Suggested Exercises

Hammack Section 7 (either even or odd)