Circuitos Multiplexadores e Demultiplexadores

Parte II - Demultiplexadores

Aula 19

Conteúdo

- -Circuito Demultiplexador
- -Aplicações

Demultiplexador (Demultiplex ou Demux)

Um **demultiplexador** é um circuito combinacional dedicado que possui uma entrada e duas ou mais saída de dados.

Sua finalidade é selecionar, através de variáveis de seleção, qual de suas saídas deve receber a informação presente em uma única entrada, executando a operação inversa realizada pelo mux.

Enfim:

Usado para enviar informações contidas em um único canal (fio), para vários canais (fios).

Demultiplexador analógico

Demultiplexador digital

Seleção (A)	Saída
0	S ₀
1	S_1

Seleção (AB)	Saída
00	S_0
01	S ₁
10	S ₂
11	S ₃

Entradas de Seleção (endereçamento) \Rightarrow escolhe qual canal de informação de saída será conectada à entrada.

Projeto de um demultiplexador

Seleção (A)	Saída
0	S ₀
1	S ₁

Entradas	Saída
ΑE	S1 S0
0 0 0 1 1 0 1 1	0 0 0 1 0 0 1 0

Observando a tabela temos as expressões para S0 e S1.

$$S0 = \overline{A}.E$$

 $S1 = A.E$

Demux 2

Seleção (A)	Saída	
0	S_0	
1	S ₁	

Simulação

Demux 4

Seleção (AB)	Saída
00	S_0
01	S_1
10	S ₂
11	S ₃

CI – TTL 74xx155

Inputs			Outputs					
Select		Strobe	Data	240	27/0	20/4	21/2	านา
В	Α	G2	C2	2Y0	2Y1	2Y2	2Y3	
Х	Х	Н	X	Н	Н	Н	Н	
L	L	L	L	L	H	H	Н	
L	H	L	L	Н	L	H	Н	
H	L	L	L	Н	H	L	Н	
H	H	L	L	Н	H	H	L	
X	X	X	H	н	H	H	н	

Mux 8 – TTL 74138

Associação de Demultiplexadores

Como nos multiplexadores, vários circuitos demultiplexadores podem ser associados também para ampliar o número de canais de saída (associação série) para uma única entrada ou ampliar o número de entradas (associação paralela) para se obter mais de um canal de saída ativos simultanemente.

Associação paralela de demultiplexadores

Esta associação é utilizada para a ampliação do número de canais de entrada, quando se necessita demultiplexar informações digitais de vários bits simultaneamente.

Ex: Deseja-se demultiplexar quatro informações diferentes (I_1 , I_2 , I_3 e I_4) cada uma composta de 3 bits (S_{11} , S_{12} , S_{13} ; S_{21} , S_{22} ,...).

Ex: Deseja-se demultiplexar quatro informações diferentes (I_1 , I_2 , I_3 e I_4) cada uma composta de 3 bits (S_{11} , S_{12} , S_{13} ; S_{21} , S_{22} ,...).

 $I_1(S_{11}, S_{12} e S_{13})$

 $I_2(S_{21}, S_{22}, e S_{23})$

 $I_3(S_{31}, S_{32}, e S_{33})$

 $I_4(S_{41}, S_{42}, e S_{43})$

Associação série de demultiplexadores

Utilizada para a ampliação da capacidade de canais de saída.

Redução da capacidade de um Demux

Um demux 4 foi transformado em um demux 2.

Seleção (A)	Saída
0	S_0
1	S_3

Endereçamento seqüencial num Sistema Demultiplex

O contador gera uma sequência binária, de modo a fazer a varredura de todas as saídas.

Aplicações: Acionamento de displays

Transmissão serial de dados

Exercícios

- 1. Forme um demultiplex de 8 canais, a partir de 3 blocos demultiplex de 4 canais.
- 2. Determine os gráficos de saída (S0 S1 S2 S3) para o sistema esquematizado, sabendo-se que o nível 1 corresponde a +5 V.

3. Considere as formas de onda da figura abaixo. Aplique estes sinais ao 74138 da seguinte forma: W em A0, X em A1, Y em A2 e Z em E3. As entradas E1 e E2 devem permanecer em nível baixo. Desenhe as formas de onda para as saídas S0, S3, S6 e S7.

