1 11 ,	D 1:1
acknowledgments, xii	English, see auction, as-
agent, 25, 87, 173	cending
allocation curve, 29	first-price, 12, 64, 72–73
area under, 31	ideal, 15–16
allocation rule, 26	Japanese, 98
approximately welfare-	k-unit, 20, 25, 37, 71
maximizing, 43	knapsack, 39–40, 43–46
cycle monotonicity, 89, 93	multi-item, see combinato-
deferred, 107 , $111-112$	rial auction
greedy, 44, 106, 112	multi-unit, 114, 126
implementable, 27	online, 22
monotone, 27	optimal, 57, 64
non-monotone, 45	prior-free, 83
scoring function, 108	prior-independent, 79–82,
virtual threshold, 78	86
virtual welfare-	procurement, 21
maximizing, 62	revenue-maximizing, 57
welfare-maximizing, 19,	reverse, 21, 106
22, 42, 50, 89	sealed-bid, 12
approximation algorithm, 43,	second-price, 13, 32
44	separate single-item, 98
auction	sequential, 100
approximately optimal, 75,	simple, 75, 77–79, 84
84	simultaneous sealed-bid,
ascending, 21, 97–98, 112,	101, 201
115	single-item, 11–16, 24, 31,
clinching, 116–119, 126	88
combinatorial, see combi-	sniping, 102
natorial auction	spectrum, see spectrum
competition, 80	auction

sponsored search, see	vs. better-response dynam-
sponsored search	ics, 217
third-price, 20	bid, 26
two-step design approach,	
18	critical, 41, 63
	false-name, 92, 94
uniform-price, 114–116	bimatrix game, 7, 279
versus negotiation, 80	bounded rationality, 8
weird, 75, 83	Braess's paradox, 4, 145, 158
welfare-maximizing, 15	Brouwer's fixed-point theorem,
with budgets, 113	290, 295
with one bidder, 56, 57	and Nash's theorem, 291, 293, 296
badminton, 1–3	in higher dimensions, 291
Bayesian analysis, 56, 63, 72–	budget, 114
73	private, 119, 124
Bayesian incentive compatible	budget-balance, 21, 95–96
(BIC), 63	Bulow-Klemperer theorem, 80-
best response, 175	82, 86
best-response dynamics, 216	bundle, 88
as a graph walk, 217	,
as local search, 274	case studies, xii, 16, 65–66, 99–
convergence time, 218	109, 128-136, 159-161
ϵ -, 219, 275	CCE, see coarse correlated
fast convergence, 220–223,	equilibrium
227, 228, 228	CE, see correlated equilibrium
in atomic selfish routing,	Chernoff-Hoeffding bounds,
220-223, 228	308
in congestion games, 274	Christie's, 98
in potential games, 217	coalition
in scheduling, 227–229	blocking (core allocation),
in smooth games, 223–226	121
in symmetric congestion	deviation (strong Nash
games, 275	equilibrium), 209
lower bounds, 274, 275	coarse correlated equilibrium,
maximum-gain, 219, 224	177–178
maximum-relative-gain,	and no-regret dynamics,
228	240-241, 243, 245
maximum-weight, 227	approximate, 241
non-convergence, 227, 229	as a linear program, 260
-	= = /

interpretation, 241	swapping function, 183,
tractability, 178, 241, 260,	247
263, 293	tractability, 177, 249, 260,
coffee, 290	263, 277, 293
collusion, 23, 38, 92, 94	traffic light example, 177
combinatorial auction, 88, 93–	cost function
95, 97	in cost-minimization
applications, 88	games, 174
approximation, 96–97	in selfish routing, 148
complements, 99	cryptography, 293, 295
exposure problem, 104	CTR, see sponsored search,
package bidding, 105	click-through rate
price of anarchy, 201	
substitutes, 99	deferred acceptance algorithm,
common prior, 48, 57, 72	137–141
communication network, 159,	applicant-optimality, 140
169	convergence, 139
computational efficiency, 16	incentive properties, 141,
congestion game, 181, 271	144
as a potential game, 186,	deferred allocation rule, see al-
271	location rule, deferred
computing a correlated	demand
equilibrium, 277	aggregate, 115
intractability of pure Nash	of a bidder, 114
equilibria, 272–275	reduction, 103, 115
lower bound for best-	residual, 116
response dynamics,	density function, 57
274, 275	dependencies, xii
symmetric, 274–275	direct-revelation, see mech-
$co\mathcal{NP}, 281$	anism, direct-
core allocation, 122	revelation
correlated equilibrium, 176–	distribution function, 57
177	dominant strategy, 13
and no-swap-regret dy-	dominant-strategy incentive
namics, 248, 257	compatible, see DSIC
as a linear program, 260,	DSIC, 15, 16, 46
277	for randomized mecha-
in congestion games, 277	nisms, 86 , 126
interpretation, 176, 241	dynamics, 216

best-response, seebestfeasible set (of outcomes), 24 response dynamics Federal Communications Commission (FCC), 106 no-regret, see no-regret dyfirst welfare theorem, 111 namics \mathcal{FIXP} , 295 no-swap-regret, seenoswap-regret dynamics flow network, 152–153, 156 multicommodity, 157 vs. algorithms, 263 \mathcal{FNP} (functional \mathcal{NP}), 280 eBay, 13, 21, 58, 64 and mixed Nash equilibria, economics and computation, xi 281 environment, singleseedecision vs. search probparameter environlems, 280 ment \mathcal{FNP} -completeness, 281 envy-free, sponsored seesearch, envy-free Gale-Shapley algorithm, deferred acceptance alequilibrium Bayes-Nash, 48, 57, 63. gorithm 72 - 73game correlated. coarse compact, 263, 277 correlated congestion, see congestion coarse equilibrium game Walconstant-sum, 258 competitive, seerasian equilibrium cost-minimization, 173 computation, 263 description length, 263 correlated, see correlated location, 188, 199 equilibrium network cost-sharing, see dominant-strategy, 46 network cost-sharing flow, 152, 164 game hierarchy, 173, 208 payoff-maximization, 174, Nash, see Nash equilib-190 rium potential, see potential refinement, 208 game sponsored search, 36 smooth, see smooth game Walrasian, see Walrasian symmetric, 297 equilibrium two-player, see bimatrix experts, see online decision game making zero-sum, seezero-sum externality, 50, 90, 195, 202 game Google, 17 negative vs. positive, 202

amander and allocation mula	naimmiga 191 194
greedy, see allocation rule,	pairwise, 131–134
greedy	patient-donor pair, 128
group-strategyproof, 38	priorities, 132
weakly, 112	simultaneous vs. sequen-
GSP, see sponsored search,	tial, 130
generalized second-	knapsack problem, 40
price auction	auction, see auction, knap- sack
hints, xii, 301–308	
\mathcal{H}_k , 205	fully polynomial-time ap-
house allocation, 119–122, 125	proximation scheme
and kidney exchange, 129	(FPTAS), 45, 52
, , , , , , , , , , , , , , , , , , ,	greedy heuristic, 43
implementable, see allocation	learning, see dynamics
rule, implementable	online, see online decision
incentive guarantee, 16	•
individual rationality, 15, 26,	making
46	lecture videos, xii
information rent, 60	Lemke-Howson algorithm, 292,
intended audience, xii	295
intractability	linear programming, 259–260,
of approximate mixed	277, 292
Nash equilibria, 295	local optimum, 265
of local search, 267–271	local search, 265
of mixed Nash equilibria,	abstract, 267
8,284,292–293	and best-response dynam-
of pure Nash equilibria,	ics, 274
272–275	as a walk in a graph, 265,
of welfare maximization,	269
41, 92	generic procedure, 268
Iran, 129	improving move, 265
item, 11, 88	intractability, 267–271
, ,	polynomial, see PLS
kidney exchange, 128–136	unconditional lower
altruistic donor, 131	bounds, 271
chain, 131, 143	
for money, 129	Markov chain, 252, 257
incentives for hospitals,	matching
134	in kidney exchange, 131
incompatibility, 128	stable, see stable matching

maximum cut problem, 264	and linear programming
and congestion games, 273	duality, 258
is \mathcal{PLS} -complete, 270, 277	and no-regret dynamics,
unconditional lower	255, 259
bounds, 271	equivalent to equilibrium
with unit edge weights,	existence, 258
265	for constant-sum games,
mechanism, 25	258
anonymous, 127	history, 257
approximately optimal, 75,	interpretation, 254
84, 96	mix and match, 258
direct-revelation, 26, 46	mixed Nash equilibrium, 7, 175
ideal, 51, 89	brute-force search algo-
indirect, 21, 26, 97–98	rithm, 296
onto, 127	existence, 175, 290
optimal, 57	in bimatrix games, 279
prior-free, 83	intractability, 8, 176, 284,
prior-independent, 79–82,	292–293
86	intractability of approxi-
priority, 125	mate equilibria, 295
randomized, 86, 126	intractability with three or
serial dictatorship, 125	more players, 295
simple, 84	quasitractability of ap-
single-sample, 86	proximate equilibria,
VCG, see VCG mecha-	295-297
nism	mixed strategy, 7, 175
mechanism design, 3	MNE, see mixed Nash equilib-
algorithmic, 42–43, 45	rium
applications, 3 , 16 , 65 , 106	monopoly price, 58, 85
Bayesian, xi, 48	monotone, see allocation rule,
direct-revelation, 91	monotone
multi-parameter, 87	monotone hazard rate (MHR),
preference elicitation, 91	70, 84
single-parameter, 24	multiplicative weights (MW)
two-step design approach,	algorithm, see no-
18, 89	regret algorithm,
with budgets, 113	multiplicative weights
Minimax theorem, 254–256	Myerson's lemma, 28–31

in multi-parameter envi- ronments, 89	with concave cost functions, 214
Myerson's payment formula,	network formation, 202, 213
30	network over-provisioning, 159,
	169
Nash equilibrium, 7	no-regret algorithm, 232
approximate, 197, 219,	design principles, 234
295–297	deterministic, 233
as a predictor of behavior,	existence, 234
8, 293	follow-the-leader (FTL),
best-case, see price of sta-	233
bility	follow-the-perturbed-
existence (mixed), 290	leader (FTPL),
existence (pure), 179–182	245–246
existence (strong), 210,	learning rate, 235, 239
214	multiplicative weights,
in zero-sum games, 255,	234–239
258, 260	with unknown time hori-
ℓ -strong, 215	zon, 239, 243
mixed, see mixed Nash	no-regret dynamics, 239
equilibrium	converges to coarse corre-
non-uniqueness, 293	lated equilibria, 240-
pure, see pure Nash equi-	241, 245
librium	in payoff-maximization
strong, 209	games, 239
worst-case, see price of an-	in smooth games, 241, 243
archy	in zero-sum games, 255,
Nash's theorem, 7, 290	259
network cost-sharing game,	non-convergence to mixed
203	Nash equilibria, 259
examples, $203-205$	no-swap-regret algorithm, 248
opting out, 205	existence, 249
price of anarchy, 204, 214	reduction to a no-regret al-
price of stability, 205–208	gorithm, 249–252
strong Nash equilibria,	no-swap-regret dynamics, 248
208-212	converges to correlated
undirected networks, 213,	equilibria, 248, 257
214	$\mathcal{NP}, 42$
VHS or Betamax, 204	\mathcal{NP} search problem, $see~\mathcal{FNP}$

\mathcal{NP} -completeness, 264, 276	ple
unsuitability for equilib-	player, 253
rium computation,	\mathcal{PLS} , 269, 276
281–283	as a subset of \mathcal{FNP} , 281
\mathcal{NP} -hard, 8, 42, 107	as a subset of \mathcal{TFNP} , 283
Olympic scandal, 1–3	as a syntactic class, 286
online decision making, 230	as a walk in a graph, 269
adversary (adaptive), 231,	\mathcal{PLS} -completeness, 270
241	analogy with \mathcal{NP} - completeness, 267
adversary (oblivious), 236	justification, 283
algorithm, 231	of computing a locally
bandit model, 231, 243	maximum cut, 270
examples, 231–234	of computing a pure Nash
history, 243	equilibrium of a con-
in games, see no-regret dy-	gestion game, 272–275
namics	vs. unconditional results,
mistake bound, 244	266
regret-minimization, see	PNE, see pure Nash equilib-
no-regret algorithm	rium
with an omniscient expert,	POA, see price of anarchy
244	polynomial time, 41, 263
with large costs, 243	posted price, 56, 85
with payoffs, 231, 255	potential function, 181, 206
organization of book, xi	generalized ordinal, 227
outcome, 87, 174	minimizer, 207, 213, 215
040001110, 01, 111	potential game, 181, 185–186,
$\mathcal{P}, 42$	199
Pareto optimal, 124	as a congestion game, 186
payment rule, 26	convergence of best-
computation, 42, 51	response dynamics,
explicit formula, 30, 33, 41	217
nonnegative, 26	equilibrium existence, 182,
uniqueness, 28	217
payoff, 7	generalized ordinal, 227
performance guarantee, 16	smooth, 223
ex post, 56	PPAD, 286, 294
Pigou's example, see selfish	and mixed Nash equilibria,
routing, Pigou's exam-	292–293

and Sperner's lemma, 289	in network cost-sharing
as a subset of $TFNP$, 288	games, 205–208
as a syntactic class, 287	interpretation, 208
as a walk in a graph, 286	private, 12
evidence of intractability,	prophet inequality, 75–77, 82–
293	84
PPAD-completeness	public project, 25
of computing a mixed	pure Nash equilibrium, 174
Nash equilibrium of a	existence, 179–182, 184
bimatrix game, 284	intractability, 272–275,
of computing a trichro-	277
matic triangle, 289	tractability, 278
prerequisites, xii	pure strategy, 174
price of anarchy, 5	
four-step recipe, 187	quasilinear utility, 12, 23, 26
in location games, 188–194	quasipolynomial time, 297
in network cost-sharing	
games, 204, 214	reduction (between search
in scheduling, 171–172,	problems), 269, 280,
185, 200	297
in selfish routing, 146–155	regret, 232
in selfish routing (atomic),	-minimization algorithm,
165–168	see no-regret algo-
in smooth games, 195–198,	rithm
200	external, 232
in sponsored search, 200	external vs. swap, 258
of correlated equilibria,	internal, 248
177	lower bound, 233, 244
of mixed Nash equilibria,	swap, 248
176	vs. stronger benchmarks,
of no-regret dynamics, 241,	231
243	regular distribution, see valua-
of strong Nash equilibria,	tion distribution, reg-
208–212	ular
optimistic, see price of sta-	report, 25
- · · · · · · · · · · · · · · · · · · ·	reserve price, 58, 65–66
bility	- ' '
price of stability, 205	anonymous, 79, 83
in atomic selfish routing	bidder-specific, 79, 83, 85
networks, 215	resource augmentation, 161

revelation principle, 46–48, 64,	computing an equilibrium
89	flow (atomic), 277,
revenue, 59	278
curve, 60, 72	concave cost functions,
equals virtual welfare, 60	151, 156
equivalence, 70, 72	cost function, 148
monotonicity, 93	cost of a flow, 153
of a mechanism, 59, 61	equilibrium existence, 146,
target, 37	165, 179
revenue maximization, see	equilibrium flow, 152
auction, revenue-	equilibrium flow (atomic),
maximizing	164
Rock-Paper-Scissors, 7, 253	equilibrium uniqueness,
routing, see selfish routing	146, 165, 180
	examples, 145–147
SAA, see spectrum auction, si-	flow, 152
multaneous ascending	history, 156
satisfiability (SAT), 107	M/M/1 cost function, 162
functional version, 281	maximum travel time, 157
scheduling, 171–172, 185, 200,	multicommodity, 157, 169
227–229	nonlinear Pigou's example,
science of rule-making, see	147
mechanism design	over-provisioned network,
secretary problem, 22	160–161, 169
selfish routing, 4, 148	Pigou bound, 151, 157
	Pigou's example, 146–147
affine cost functions, 151,	Pigou's example (atomic),
156, 171	164
affine cost functions	Pigou-like network, 150
(atomic), 165	polynomial cost functions,
α -bounded jump condi-	151, 156
tion, 220	potential function, 179,
atomic, 163–168, 170, 184,	180, 221
198	price of anarchy, 146, 148–
atomic splittable, 169	152
best-response dynamics	price of anarchy (atomic),
(atomic), 220–223,	165, 170, 171
228, 277	resource augmentation
Braess's paradox, 145, 158	bound, 161–163, 170,

171 road traffic, 149, 156	bid signaling, 104 deferred allocation rule,
total travel time, 153	107
weighted atomic, 169, 184	demand reduction, 103
with a common origin and	descending implementa-
destination (atomic),	tion, 109
220, 277–278	exposure problem, 104
semantic complexity class, 284,	hierarchical packages, 105
295	in New Zealand, 101
single-item auction, see auc-	in Switzerland, 100
tion, single-item	opening bids, 109
single-parameter environment,	package bidding, 105
24	price discovery, 102
downward-closed, 84	repacking, 106
single-peaked preferences, 126	rookie mistake, 100, 101
sink vertex, 265	sanity checks, 102
smooth game, 194–198	scoring function, 108
best-response dynamics,	simultaneous ascending,
223–226	102
examples, 195, 200–201	substitutes vs. comple-
interpretation, 194	ments, 99, 104
potential, 223	Sperner's lemma, 288
price of anarchy of approx-	and Brouwer's fixed-point
imate equilibria, 198, 200	theorem, 290
price of anarchy of coarse	and Nash's theorem, 290-
correlated equilibria,	292
196	as a \mathcal{PPAD} problem, 289
price of anarchy of pure	as a walk in a graph, 289
Nash equilibria, 196	legal coloring, 288
with respect to a strategy	trichromatic triangle, 288
profile, 195	sponsored search, 16–19, 25,
social welfare, 15, 55, 87	27, 32-33, 35, 65-66
approximation, 43, 92	click-through rate, 17
with budgets, 124, 126	DSIC payment formula, 33
Sotheby's, 98	envy-free, 36
source vertex, 286	equilibrium, 36
spectrum auction, 97–109	equivalence of DSIC and
activity rule, 102, 105	GSP auctions, 35

generalized second-price	unit-demand
auction, 33, 35	utility, see quasilinear utility
locally envy-free, 37	
price of anarchy, 200	valuation, 12, 24, 87
revenue maximization, 71	downward-sloping, 126
slot, 17	marginal, 126
welfare maximization, 22	single-minded, 53
stable matching, 136–141	subadditive, 96
applicant-optimality, 140	unit-demand, 94, 112, 201
blocking pair, 137	valuation distribution, 57
deferred acceptance, 137–	correlated, 69
141	irregular, 63, 69
DSIC mechanism, 141	regular, 62, 70
existence, 139	strictly regular, 64
in practice, 143	unknown, 80
starred sections, xii	VCG mechanism, 90, 103
strategy profile, 174	allocation rule, 89
strategy set, 7, 174	and affine maximizers, 96
strings and springs, 5	ascending implementation,
submodular function, 192, 199	123
syntactic complexity class, 283	flaws, $91-92$, 97 , 105
	non-monotonicity, 92, 93
\mathcal{TFNP} (total functional \mathcal{NP}),	payment rule, 90, 93
283, 294	pivot term, 93, 95–96
lack of complete problems,	revenue, 92
283	with unit-demand valua-
reasons for membership,	tions, 94
284	Vickrey auction, see auction,
Top Trading Cycle algorithm,	second-price
119-122	Vickrey-Clarke-Groves, see
in kidney exchange, 129–	VCG mechanism
131	virtual valuation, 59
truthful mechanism, see	ironing, 69
mechanism, direct-	nondecreasing, 62
revelation	virtual welfare, 61
TTC, see Top Trading Cycle	
algorithm	Walrasian equilibrium, 110– 112
unit-demand, see valuation,	welfare, see social welfare

wireless spectrum, see spectrum auction

Yahoo, 65-66

zero-sum game, 7, 253–254
convergence of no-regret
dynamics, 255, 259
minimax pair, 258
Minimax theorem, see
Minimax theorem
mixed Nash equilibrium,
254, 263
value, 255