m3pm16l27.tex

Lecture 27. 14.3.2013

Note. This result can be sharpened: $N(T) = \frac{T}{2\pi} \log \frac{T}{2\pi} - \frac{T}{2\pi} + O(\log T)$. In particular, there are infinitely many non-trivial zeros.

N. Levinson (1974) proved that at least a third of the non-trivial zeros are on the critical line, improved to at least 2/5 by J. B. Conrey (1989).

Lemma. For $t \ge 1$, $-1 \le \sigma \le 2$,

$$\frac{\zeta'(s)}{\zeta(s)} = \sum_{\rho: |t-\gamma| \le 1} \frac{1}{s-\rho} + O(\log t).$$

Proof. Use the partial fraction expansion for $\zeta'(z)/\zeta(z)$ with z=s and z=2+it and subtract. As $\zeta'(2+it)/\zeta(2+it)$ is bounded in t (from the Dirichlet series for Λ), this gives

$$\frac{\zeta'(s)}{\zeta(s)} = O(\log t) + \sum_{\rho} \left(\frac{1}{s - \rho} - \frac{1}{2 + it - \rho} \right) = O(\log t) + \Sigma \text{ say.}$$

$$\Sigma := \sum_{\rho} \left(\frac{1}{s-\rho} - \frac{1}{2+it-\rho} \right) = \sum_{\rho: |t-\gamma| \le 1} + \sum_{|t-\gamma| > 1} = \Sigma_1 + \Sigma_2,$$

say. Now

$$\frac{1}{s-\rho} - \frac{1}{2+it-\rho} = \frac{2-\sigma}{(s-\rho)(2+it-\rho)}.$$

As $|2 - \sigma| \le 3$, $\sigma - \rho$ and $2 + it - \rho$ both have imaginary part $t - \gamma$, and for complex numbers $|z_1 - z_2| \ge |x_1 - x_2|, |y_1 - y_2|,$

$$\left| \frac{1}{s-\rho} - \frac{1}{2+it-\rho} \right| << |\gamma - t|^{-2},$$
 (*)

$$\Sigma_1 = \sum_{\rho: |t-\gamma| < 1} \frac{1}{s - \rho} - \sum_{|t-\gamma| < 1} \frac{1}{2 + it - \rho} = \sum_{\rho: |t-\gamma| < 1} \frac{1}{s - \rho} + O(\log t),$$

as by Corollary 2 there are $O(\log t)$ terms, and as $0 < \beta < 1$ (so $1 < 2 - \beta < 2$), $0 \le |t - \gamma| \le 1$, $1 \le (2 - \beta)^2 + (t - \gamma)^2$, so $1/|2 + it - \rho| = 1/\sqrt{(2 - \beta)^2 + (t - \gamma)^2} \le 1$. By (*) and Corollary 2 (ii), $\Sigma_2 = O(\log t)$. Combining, the Lemma follows. //

We shall use the next result in the proof of the Riemann-von Mangoldt formula in III.10. It says that the bound we need for ζ'/ζ holds 'all the way horizontally, close enough vertically'.

Proposition. For $T \geq 2$, there exists U, $|T - U| \leq 1$, with

$$\zeta'(s)/\zeta(s) = O(\log^2 T)$$
 $\forall s = \sigma + iU, -1 \le \sigma \le 2.$

Proof. By Cor. 2(ii), there are $O(\log T)$ zeros $\rho = \beta + i\gamma$ with $|\gamma - T| \le 1$. We can choose $U \in [T - 1, T + 1]$ to avoid all the γ s by $>> (\log T)^{-1}$ (or this would contradict the boundedness of [T - 1, T + 1]). By the Lemma,

$$\zeta'(s)/\zeta(s) = \sum_{\rho: |\gamma - U| \le 1} 1/(s - \rho) + O(\log T) \qquad (s = \sigma + iU).$$

There are $O(\log T)$ terms, each of magnitude $O(\log T)$, giving $O(\log^2 T)$. //

10. Perron's formula and the Riemann-von Mangoldt formula.

Theorem (Perron's formula. For $c \in (1,2]$, T > 2, $x \neq 1$ positive and real, H the Heaviside function,

$$\frac{1}{2\pi i} \int_{c-iT}^{c+iT} \frac{x^s}{s} ds = H(x) + O\left(\frac{x^c}{T|\log x|}\right).$$

Proof. (i) Take x < 1, C the rectangular contour $C_1 \cup \ldots \cup C_4$, where $C_1 = [c - iT, c + iT]$, $C_2 = [c + iT, U + iT]$, $C_3 = [U + iT, U - iT]$, $C_4 = [U - iT, c - iT]$, with U large and real. Write $I_j := \int_{C_j} (x^s/s) ds$. By Cauchy's theorem, $I_1 + \ldots + I_4 = 0$, as the integrand has only the singularity at s = 0, and this is outside the contour. Also $I_3 \to 0$ as $U \to \infty$, as x < 1. On C_2 , $x^s/s = x^{iT}.x^{\sigma}/s$, and $|s| \ge T$, so

$$|I_2| \le \int_c^U x^{\sigma} d\sigma / T \le \int_c^{\infty} \dots = O\left(\frac{x^c}{T \log x}\right),$$

and similarly for I_4 . Letting $U \to \infty$ gives the result.

(ii) If x > 1, take C the rectangle with vertices $-U \pm iT$, $c \pm iT$. The pole of $x^s/s = e^{s \log x}/s$ at 0 (of residue 1) is now inside C; use Cauchy's residue theorem. //