

"Deep Learning Lecture"

Lecture 7: Generative Model (1)

Wei Wang

Center for Research on Intelligent Perception and Computing (CRIPAC)

National Laboratory of Pattern Recognition (NLPR)

Institute of Automation, Chinese Academy of Science (CASIA)

Outline

- 1/ Course Review
- 2/ Linear Factor Model
- 3 Autoencoder
- **⁴**∕ DBN and RBM

Review: Regularization Strategies

- Parameter Norm Penalties
- Dataset Augmentation
- Noise Robustness
- Early Stopping
- Parameter Tying and Parameter Sharing
- Multitask Learning
- Bagging and Other Ensemble Methods
- Dropout
- Adversarial Training

Review: Optimization

- Things we have looked at last week
 - Stochastic Gradient Descent
 - Momentum Method and the Nesterov Variant
 - Adaptive Learning Methods (AdaGrad, RMSProp, Adam)
 - Batch Normalization
 - Initialization Heuristics

Outline

- 1/ Course Review
- 2/ Linear Factor Model
- 3 Autoencoder
- **⁴**∕ DBN and RBM

Linear Factor Model

- We want to build a probabilistic model of the input $\, ilde{P}({f x}) \,$
- Like before, we are interested in latent factors h that explain x
- We then care about the marginal:

$$\tilde{P}(\mathbf{x}) = \mathbb{E}_{\mathbf{h}} \tilde{P}(\mathbf{x}|\mathbf{h})$$

h is a representation of the data

Linear Factor Model

- The latent factor h is an encoding of the data
- Simplest decoding model: Get x after a linear transformation of h with some noise
- Formally: Suppose we sample the latent factors from a distribution $\mathbf{h} \sim P(\mathbf{h})$
- Then: $x = Wh + b + \epsilon$

Linear Factor Model

P(h) is a factorial distribution

- How do learn in such a model?
- Let's look at a simple example

Probabilistic PCA

Suppose underlying latent factor has a Gaussian distribution

$$\mathbf{h} \sim \mathcal{N}(\mathbf{h}; 0, I)$$

- For the noise model: Assume $\epsilon \sim \mathcal{N}(0, \sigma^2 I)$
- Then:

$$P(\mathbf{x}|\mathbf{h}) = \mathcal{N}(\mathbf{x}|W\mathbf{h} + \mathbf{b}, \sigma^2 I)$$

We care about the marginal P(x) (predictive distribution):

$$P(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\mathbf{b}, WW^T + \sigma^2 I)$$

Probabilistic PCA

$$P(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\mathbf{b}, WW^T + \sigma^2 I)$$

- How do we learn the parameters? (EM, ML Estimation)
- Let's look at the ML Estimation:
 - Let $C = WW^T + \sigma^2 I$
 - We want to maximize $\ell(\theta; X) = \sum_{i} \log P(\mathbf{x}_i | \theta)$

Probabilistic PCA: ML Estimation

$$\ell(\theta; X) = \sum_{i} \log P(\mathbf{x}_{i} | \theta)$$

$$= -\frac{N}{2} \log |C| - \frac{1}{2} \sum_{i} (\mathbf{x}_{i} - \mathbf{b}) C^{-1} (\mathbf{x}_{i} - \mathbf{b})^{T}$$

$$= -\frac{N}{2} \log |C| - \frac{1}{2} Tr[(C^{-1} \sum_{i} |\mathbf{x}_{i} - \mathbf{b}) (\mathbf{x}_{i} - \mathbf{b})^{T}]$$

$$= \frac{N}{2} \log |C| - \frac{1}{2} Tr[(C^{-1}S)]$$

- Now fit the parameters θ = W, b, σ to maximize log-likelihood
- Can also use EM

Factor Analysis

Fix the latent factor prior to be the unit Gaussian as before:

$$\mathbf{h} \sim \mathcal{N}(\mathbf{h}; 0, I)$$

Noise is sampled from a Gaussian with a diagonal covariance:

$$\Psi = diag([\sigma_1^2, \sigma_2^2, \dots, \sigma_d^2])$$

• Still consider linear relationship between inputs and observed variables: Marginal $P(\mathbf{x}) \sim \mathcal{N}(\mathbf{x}; b, WW^T + \Psi)$

- Sparse coding (Olshausen & Field, 1996). Originally developed to explain early visual processing in the brain (edge detection).
- For each input $\mathbf{x}^{(t)}$ find a latent representation $\mathbf{h}^{(t)}$ such that:
 - it is sparse: the vector $\mathbf{h}^{(t)}$ has many zeros
 - we can reconstruct the original input $\mathbf{x}^{(t)}$

- For each $\mathbf{x}^{(t)}$ find a latent representation $\mathbf{h}^{(t)}$ such that:
 - it is sparse: the vector $\mathbf{h}^{(t)}$ has many zeros
 - we can reconstruct the original input $\mathbf{x}^{(t)}$
- In other words:

- For each $\mathbf{x}^{(t)}$ find a latent representation $\mathbf{h}^{(t)}$ such that:
 - it is sparse: the vector $\mathbf{h}^{(t)}$ has many zeros
 - we can good reconstruct the original input $\mathbf{x}^{(t)}$
- In other words:

$$\min_{\mathbf{D}} \frac{1}{T} \sum_{t=1}^{T} \min_{\mathbf{h}^{(t)}} \frac{1}{2} ||\mathbf{x}^{(t)} - \mathbf{D} \mathbf{h}^{(t)}||_{2}^{2} + \lambda ||\mathbf{h}^{(t)}||_{1}$$

- we also constrain the columns of D to be of norm 1
- otherwise, D could grow big while h becomes small to satisfy the L1 constraint

Interpreting Sparse Coding

Interpreting Sparse Coding

$$\min_{\mathbf{D}} \frac{1}{T} \sum_{t=1}^{T} \min_{\mathbf{h}^{(t)}} \frac{1}{2} ||\mathbf{x}^{(t)} - \mathbf{D} \mathbf{h}^{(t)}||_{2}^{2} + \lambda ||\mathbf{h}^{(t)}||_{1}$$

- Sparse, over-complete representation h.
- Encoding h = f(x) is implicit and nonlinear function of x.
- Reconstruction (or decoding) x' = Dh is linear and explicit.

We can also write:

- D is often referred to as Dictionary
- In certain applications, we know what dictionary matrix to use
- In many cases, we have to learn it

[0, 0, ... **0.8**, ..., **0.3**, ..., **0.5**, ...] = coefficients (feature representation)

Inference

- Given dictionary D , how do we compute $\mathbf{h}(\mathbf{x}^{(t)})$
 - We need to optimize:

$$l(\mathbf{x}^{(t)}) = \frac{1}{2}||\mathbf{x}^{(t)} - \mathbf{D} \mathbf{h}^{(t)}||_{2}^{2} + \lambda||\mathbf{h}^{(t)}||_{1}$$

This is Lasso.

We could use a gradient descent method:

$$\nabla_{\mathbf{h}^{(t)}} l(\mathbf{x}^{(t)}) = \mathbf{D}^{\top} (\mathbf{D} \mathbf{h}^{(t)} - \mathbf{x}^{(t)}) + \lambda \operatorname{sign}(\mathbf{h}^{(t)})$$

Image Classification

Evaluated on Caltech101 object category dataset

Algorithm	Accuracy
Baseline (Fei-Fei et al., 2004)	16%
PCA	37%
Sparse Coding	47%

Lee et al., NIPS 2006

Outline

- 1/ Course Review
- 2/ Linear Factor Model
- 3 Autoencoder
- **4** DBN and RBM

Autoencoder

 Feed-forward neural network trained to reproduce its input at the output layer

Autoencoder

- Details of what goes insider the encoder and decoder matter!
- Need constraints to avoid learning an identity.

Autoencoder

Another Autoencoder Model

- Need additional constraints to avoid learning an identity.
- Relates to Restricted Boltzmann Machines
- Encoder and Decoder filters can be different.

Loss Function

Loss function for binary inputs

$$l(f(\mathbf{x})) = -\sum_{k} (x_k \log(\widehat{x}_k) + (1 - x_k) \log(1 - \widehat{x}_k))$$

- Cross-entropy error function (reconstruction loss) $f(\mathbf{x}) \equiv \widehat{\mathbf{x}}$
- Loss function for real-valued inputs

$$l(f(\mathbf{x})) = \frac{1}{2} \sum_{k} (\widehat{x}_k - x_k)^2$$

- sum of squared differences (reconstruction loss)
- we use a linear activation function at the output

Loss Function

• For both cases, the gradient $\nabla_{\widehat{\mathbf{a}}(\mathbf{x}^{(t)})} l(f(\mathbf{x}^{(t)}))$ has a very simple form:

$$\nabla_{\widehat{\mathbf{a}}(\mathbf{x}^{(t)})} l(f(\mathbf{x}^{(t)})) = \widehat{\mathbf{x}}^{(t)} - \mathbf{x}^{(t)} \qquad f(\mathbf{x}) \equiv \widehat{\mathbf{x}}$$

- Parameter gradients are obtained by backpropagating the gradient $\nabla_{\widehat{\mathbf{a}}(\mathbf{x}^{(t)})} l(f(\mathbf{x}^{(t)}))$ like in a regular network
 - important: when using tied weights ($\mathbf{W}^* = \mathbf{W}^{\top}$), $\nabla_{\mathbf{W}} l(f(\mathbf{x}^{(t)}))$ is the sum of two gradients
 - \succ this is because \mathbf{W} is present in the encoder and in the decoder

Example: MNIST

MNIST dataset:

Learned Features

• MNIST dataset:

RBM

Autoenncoder

Optimality of the Linear Autoencoder

- If the hidden and output layers are linear, it will learn hidden units that are a linear function of the data and minimize the squared error.
- The K hidden units will span the same space as the first k principal components. The weight vectors may not be orthogonal.

 With nonlinear hidden units, we have a nonlinear generalization of PCA.

Undercomplete Representation

- Hidden layer is undercomplete if smaller than the input layer (bottleneck layer, e.g. dimensionality reduction):
 - hidden layer "compresses" the input
 - will compress well only for the training distribution
- Hidden units will be
 - good features for the training distribution
 - will not be robust to other types of input

Overcomplete Representation

- Hidden layer is overcomplete if greater than the input layer
 - no compression in hidden layer
 - each hidden unit could copy a different input component
- No guarantee that the hidden units will extract meaningful structure

- In order to force the hidden layer to discover more robust features and prevent it from simply learning the identity function, train the autoencoder to reconstruct the input from a corrupted version of it
 - Encode the input (preserve the information about the input)
 - Undo the effect of a corruption process stochastically applied to the input of the auto-encoder
- To convert the autoencoder to a denoising autoencoder, all we need to do is to add a stochastic corruption step operating on the input
 - Randomly sets some of the inputs (as many as half of them) to zero. Hence
 the denoising auto-encoder is trying to predict the corrupted (i.e. missing)
 values from the uncorrupted (i.e., non-missing) values, for randomly
 selected subsets of missing patterns.
 - The input can be corrupted in other ways

- The learner must capture the structure of the input distribution in order to optimally undo the effect of the corruption process, with the reconstruction essentially being a nearby but higher density point than the corrupted input
- The denoising autoencoder is learning a reconstruction function that corresponds to a vector field pointing towards high-density regions (the manifold where examples concentrate)
- Denosing autoencoder basically learns in $r(\tilde{\mathbf{x}}) \tilde{\mathbf{x}}$ a vector pointing in the direction $\frac{\partial \log P(\tilde{\mathbf{x}})}{\partial \, \tilde{\mathbf{x}}}$

- Idea: representation should be robust to introduction of noise:
 - random assignment of subset of inputs to 0, with probability
 - Similar to dropouts on the input layer
 - Gaussian additive noise
- Reconstruction $\widehat{\mathbf{X}}$ computed from the corrupted input $\widetilde{\mathbf{X}}$
- Loss function compares $\widehat{\mathbf{X}}$ reconstruction with the noiseless input \mathbf{X}

Learned Filters

Non-corrupted

25% corrupted input

Learned Filters

Non-corrupted

50% corrupted input

Squared Error Loss

- Training on natural image patches, with squared loss
 - PCA may not the best solution

Data Filters

Squared Error Loss

- Training on natural image patches, with squared loss
 - Not equivalent to weight decay

Data Filters

Contractive Autoencoder

- Alternative approach to avoid uninteresting solutions
 - add an explicit term in the loss that penalizes that solution
- We wish to extract features that only reflect variations observed in the training set
 - we'd like to be invariant to the other variations

Contractive Autoencoder

Consider the following loss function:

For the binary observations:

$$l(f(\mathbf{x}^{(t)})) = -\sum_{k} \left(x_k^{(t)} \log(\widehat{x}_k^{(t)}) + (1 - x_k^{(t)}) \log(1 - \widehat{x}_k^{(t)}) \right)$$

$$||\nabla_{\mathbf{x}^{(t)}}\mathbf{h}(\mathbf{x}^{(t)})||_F^2 = \sum_j \sum_k \left(\frac{\partial h(\mathbf{x}^{(t)})_j}{\partial x_k^{(t)}}\right)^2$$
 Autoencoder attempts to preserve all information

preserve all information

Encoder throws away all information

Contractive Autoencoder

Pros and Cons

- Advantage of denoising autoencoder: simpler to implement
 - requires adding one or two lines of code to regular autoencoder
 - no need to compute Jacobian of hidden layer
- Advantage of contractive autoencoder: gradient is deterministic
 - can use second order optimizers (conjugate gradient, LBFGS, etc.)
 - might be more stable than denoising autoencoder, which uses a sampled gradient

Stacked Autoencoder

Stacked Autoencoder

Deep Autoencoder

Deep Autoencoder

 We used 25x25 – 2000 – 1000 – 500 – 30 autoencoder to extract 30-D real-valued codes for Olivetti face patches.

- Top: Random samples from the test dataset.
- Middle: Reconstructions by the 30-dimensional deep autoencoder.
- Bottom: Reconstructions by the 30-dimensional PCA

Deep Autoencoder

- Very difficult to optimize deep autoencoders using backpropagation
- Pre-training + fine-tuning
 - First train a stack of RBMs
 - Then "unroll" them
 - Then fine-tune with backpropagation

Information Retrieval

- The Reuters Corpus Volume II contains 804,414 newswire stories (randomly split into 402,207 training and 402,207 test).
- "Bag-of-words" representation: each article is represented as a vector containing the counts of the most frequently used 2000 words in the training set.

Information Retrieval

Reuters Dataset

- Reuters dataset: 804,414 newswire stories.
- Deep generative model significantly outperforms LSA and LDA topic models

Semantic Hashing

- Learn to map documents into semantic 20-D binary codes.
- Retrieve similar documents stored at the nearby addresses with no search at all.

Searching Image Database using Binary Codes

Map images into binary codes for fast retrieval

- Small Codes, Torralba, Fergus, Weiss, CVPR 2008
- Spectral Hashing, Y. Weiss, A. Torralba, R. Fergus, NIPS 2008
- Kulis and Darrell, NIPS 2009, Gong and Lazebnik, CVPR 20111
- Norouzi and Fleet, ICML 2011,

Learning Similarity Measures

- Learn a nonlinear transformation of the input space.
- Optimize to make KNN perform well in the low-dimensional feature space

Learning Similarity Measures

Outline

- 1/ Course Review
- 2/ Linear Factor Model
- 3 Autoencoder
- DBN and RBM

More General Models

- Suppose P(h) can not be assumed to have a nice Gaussian form
- The decoding of the input from the latent states can be a complicated non-linear function
- Estimation and inference can get complicated!

Earlier we had:

Quick Review

- Generative models can be modeled as directed graphical models
- The nodes represent random variables and arcs indicate dependency
- Some of the random variables are observed, others are hidden

Just like a feedfoward network, but with arrows reversed.

• Let $x = h^0$. Consider binary activations, then:

$$P(\mathbf{h}_i^k = 1 | \mathbf{h}^{k+1}) = sigm(b_i^k + \sum_j W_{i,j}^{k+1} \mathbf{h}_j^{k+1})$$

The joint probability factorizes as:

$$P(\mathbf{x}, \mathbf{h}^1, \dots, \mathbf{h}^l) = P(\mathbf{h}^l) \Big(\prod_{k=1}^{l-1} P(\mathbf{h}^k | \mathbf{h}^{k+1}) \Big) P(\mathbf{x} | \mathbf{h}^1)$$

• Marginalization yields P(x), intractable in practice except for very small models

$$P(\mathbf{x}, \mathbf{h}^1, \dots, \mathbf{h}^l) = P(\mathbf{h}^l) \Big(\prod_{k=1}^{l-1} P(\mathbf{h}^k | \mathbf{h}^{k+1}) \Big) P(\mathbf{x} | \mathbf{h}^1)$$

The top level prior is chosen as factorizable:

$$P(\mathbf{h}^l) = \prod_i P(\mathbf{h}_i^l)$$

- A single (Bernoulli) parameter is needed for each h_i in case of binary units
- Deep Belief Networks are like Sigmoid Belief Networks except for the top two layers

- General case models are called Helmholtz Machines
- Two key references:
 - G. E. Hinton, P. Dayan, B. J. Frey, R. M. Neal: The Wake-Sleep Algorithm for Unsupervised Neural Networks, In Science, 1995
 - R. M. Neal: Connectionist Learning of Belief Networks, In Artificial Intelligence, 1992

Deep Belief Networks

The top two layers now have undirected edges

Deep Belief Networks

The joint probability changes as:

$$P(\mathbf{x}, \mathbf{h}^1, \dots, \mathbf{h}^l) = P(\mathbf{h}^l, \mathbf{h}^{l-1}) \Big(\prod_{k=1}^{l-2} P(\mathbf{h}^k | \mathbf{h}^{k+1}) \Big) P(\mathbf{x} | \mathbf{h}^1)$$

Deep Belief Networks

- The top two layers are a Restricted Boltzmann Machine
- A RBM has the joint distribution:

$$P(\mathbf{h}^{l+1}, \mathbf{h}^l) \propto \exp(\mathbf{b}' \mathbf{h}^{l-1} + \mathbf{c}' \mathbf{h}^l + \mathbf{h}^l W \mathbf{h}^{l-1})$$

 We will return to RBMs and training procedures in a while, but rst we look at the mathematical machinery that will make our task easier

Greedy Layer-wise Training of DBNs

- Reference: G. E. Hinton, S. Osindero and Y-W Teh: A Fast Learning Algorithm for Deep Belief Networks, In Neural Computation, 2006.
- First Step: Construct a RBM with input x and a hidden layer h, train the RBM
- Stack another layer on top of the RBM to form a new RBM. Fix W¹, sample from P(h¹|x), train W² as RBM
- Continue till k layers
- Implicitly defines P(x) and P(h) (variational bound justifies layerwise training)
- Can then be discriminatively fine-tuned using backpropagation

Energy Based Models

- Energy-Based Models assign a scalar energy with every configuration of variables under consideration
- Learning: Change the energy function so that its final shape has some desirable properties
- We can define a probability distribution through an energy:

$$P(\mathbf{x}) = \frac{\exp^{-(\mathsf{Energy}(\mathbf{x}))}}{Z}$$

Energies are in the log-probability domain:

$$\mathsf{Energy}(\mathbf{x}) = \log \frac{1}{(ZP(\mathbf{x}))}$$

Energy Based Models

$$P(\mathbf{x}) = \frac{\exp^{-(\mathsf{Energy}(\mathbf{x}))}}{Z}$$

Z is a normalizing factor called the Partition Function

$$Z = \sum_{\mathbf{x}} \exp(-\mathsf{Energy}(\mathbf{x}))$$

How do we specify the energy function?

Product of Experts Formulation

In this formulation, the energy function is:

$$\mathsf{Energy}(\mathbf{x}) = \sum_{i} f_i(\mathbf{x})$$

Therefore:

$$P(\mathbf{x}) = \frac{\exp^{-(\sum_{i} f_i(\mathbf{x}))}}{Z}$$

We have the product of experts:

$$P(\mathbf{x}) \propto \prod_{i} P_i(\mathbf{x}) \propto \prod_{i} \exp^{(-f_i(\mathbf{x}))}$$

Product of Experts Formulation

$$P(\mathbf{x}) \propto \prod_{i} P_i(\mathbf{x}) \propto \prod_{i} \exp^{(-f_i(\mathbf{x}))}$$

- Every expert f_i can be seen as enforcing a constraint on x
- If f_i is large => P_i(x) is small i.e. the expert thinks x is implausible (constraint violated)
- If f_i is small => P_i(x) is large i.e. the expert thinks x is plausible (constraint satisfied)
- Contrast this with mixture models

Latent Variables

- x is observed, let's say h are hidden factors that explain x
- The probability then becomes:

$$P(\mathbf{x}, \mathbf{h}) = \frac{\exp^{-(\mathsf{Energy}(\mathbf{x}, \mathbf{h}))}}{Z}$$

We only care about the marginal:

$$P(\mathbf{x}) = \sum_{\mathbf{h}} \frac{\exp^{-(\mathsf{Energy}(\mathbf{x}, \mathbf{h}))}}{Z}$$

Latent Variables

$$P(\mathbf{x}) = \sum_{\mathbf{h}} \frac{\exp^{-(\mathsf{Energy}(\mathbf{x}, \mathbf{h}))}}{Z}$$

 We introduce another term in analogy from statistical physics: free energy:

$$P(\mathbf{x}) = \frac{\exp^{-(\mathsf{FreeEnergy}(\mathbf{x}))}}{Z}$$

 Free Energy is just a marginalization of energies in the logdomain:

FreeEnergy(
$$\mathbf{x}$$
) = $-\log \sum_{\mathbf{h}} \exp^{-(\text{Energy}(\mathbf{x}, \mathbf{h}))}$

Latent Variables

$$P(\mathbf{x}) = \frac{\exp^{-(\mathsf{FreeEnergy}(\mathbf{x}))}}{Z}$$

Likewise, the partition function:

$$Z = \sum_{\mathbf{x}} \exp^{-\mathsf{FreeEnergy}(\mathbf{x})}$$

• We have an expression for P(x) (and hence for the data log-likelihood). Let us see how the gradient looks like

$$P(\mathbf{x}) = \frac{\exp^{-(\mathsf{FreeEnergy}(\mathbf{x}))}}{Z}$$

The gradient is simply working from the above:

$$\begin{split} \frac{\partial \log P(\mathbf{x})}{\partial \theta} &= -\frac{\partial \mathsf{FreeEnergy}(\mathbf{x})}{\partial \theta} \\ &+ \frac{1}{Z} \sum_{\tilde{\mathbf{x}}} \exp^{-(\mathsf{FreeEnergy}(\tilde{\mathbf{x}}))} \frac{\partial \mathsf{FreeEnergy}(\tilde{\mathbf{x}})}{\partial \theta} \end{split}$$

• Note that $P(\tilde{\mathbf{x}}) = \exp^{-(\mathsf{FreeEnergy}(\tilde{\mathbf{x}}))}$

 The expected log-likelihood gradient over the training set has the following form:

$$\mathbb{E}_{\tilde{P}}\left[\frac{\partial \log P(\mathbf{x})}{\partial \theta}\right] = \mathbb{E}_{\tilde{P}}\left[\frac{\partial \mathsf{FreeEnergy}(\mathbf{x})}{\partial \theta}\right] + \mathbb{E}_{P}\left[\frac{\partial \mathsf{FreeEnergy}(\mathbf{x})}{\partial \theta}\right]$$

$$\mathbb{E}_{\tilde{P}}\left[\frac{\partial \log P(\mathbf{x})}{\partial \theta}\right] = \mathbb{E}_{\tilde{P}}\left[\frac{\partial \mathsf{FreeEnergy}(\mathbf{x})}{\partial \theta}\right] + \mathbb{E}_{P}\left[\frac{\partial \mathsf{FreeEnergy}(\mathbf{x})}{\partial \theta}\right]$$

- ullet \dot{P} is the empirical training distribution
- Easy to compute!

$$\mathbb{E}_{\tilde{P}}\left[\frac{\partial \log P(\mathbf{x})}{\partial \theta}\right] = \mathbb{E}_{\tilde{P}}\left[\frac{\partial \mathsf{FreeEnergy}(\mathbf{x})}{\partial \theta}\right] + \mathbb{E}_{P}\left[\frac{\partial \mathsf{FreeEnergy}(\mathbf{x})}{\partial \theta}\right]$$

- P is the model distribution (exponentially many configurations!)
- Usually very hard to compute!
- Resort to Markov Chain Monte Carlo to get a stochastic estimator of the gradient

A Special Case

Suppose the energy has the following form:

Energy(
$$\mathbf{x}, \mathbf{h}$$
) = $-\beta(\mathbf{x}) + \sum_{i} \gamma_i(\mathbf{x}, \mathbf{h}_i)$

- The free energy, and numerator of log likelihood can be computed tractably!
- What is P(x)?
- What is the FreeEnergy(x)?

A Special Case

The likelihood term:

$$P(\mathbf{x}) = \frac{\exp^{\beta(\mathbf{x})}}{Z} \prod_{i} \sum_{\mathbf{h}_{i}} \exp^{-\gamma_{i}(\mathbf{x}, \mathbf{h}_{i})}$$

The Free Energy term:

FreeEnergy(
$$\mathbf{x}$$
) = $-\log P(\mathbf{x}) - \log Z$
= $-\beta - \sum_{i} \log \sum_{\mathbf{h}_{i}} \exp^{-\gamma_{i}(\mathbf{x}, \mathbf{h}_{i})}$

Restricted Boltzmann Machines

Recall the form of energy:

$$\mathsf{Energy}(\mathbf{x}, \mathbf{h}) = -\mathbf{b}^T \mathbf{x} - \mathbf{c}^T \mathbf{h} - \mathbf{h}^T W \mathbf{x}$$

- Takes the earlier nice form with $(\mathbf{x}) = \mathbf{b}^T \mathbf{x}$ and $\gamma_i(\mathbf{x}, \mathbf{h_i}) = \mathbf{h}_i(\mathbf{c}_i + W_i \mathbf{x})$
- Originally proposed by Smolensky (1987) who called them Harmoniums as a special case of Boltzmann Machines

Restricted Boltzmann Machines

As seen before, the Free Energy can be computed efficiently:

$$\mathsf{FreeEnergy}(\mathbf{x}) = -\mathbf{b}^T\mathbf{x} - \sum_i \log \sum_{\mathbf{h}_i} \exp^{\mathbf{h}_i(\mathbf{c}_i + W_i\mathbf{x})}$$

• The conditional probability:

$$P(\mathbf{h}|\mathbf{x}) = \frac{\exp(\mathbf{b}^T \mathbf{x} + \mathbf{c}^T \mathbf{h} + \mathbf{h}^T W \mathbf{x})}{\sum_{\tilde{\mathbf{h}}} \exp(\mathbf{b}^T \mathbf{x} + \mathbf{c}^T \tilde{\mathbf{h}} + \tilde{\mathbf{h}}^T W \mathbf{x})} = \prod_{i} P(\mathbf{h}_i | \mathbf{x})$$

Restricted Boltzmann Machines

x and h play symmetric roles:

$$P(\mathbf{x}|\mathbf{h}) = \prod_{i} P(\mathbf{x}_{i}|\mathbf{h})$$

• The common transfer (for the binary case):

$$P(\mathbf{h}_i = 1 | \mathbf{x}) = \sigma(\mathbf{c_i} + W_i \mathbf{x})$$
$$P(\mathbf{x}_j = 1 | \mathbf{h}) = \sigma(\mathbf{b_j} + W_{:,j}^T \mathbf{h})$$

Approximate Learning and Gibbs Sampling

$$\mathbb{E}_{\tilde{P}}\left[\frac{\partial \log P(\mathbf{x})}{\partial \theta}\right] = \mathbb{E}_{\tilde{P}}\left[\frac{\partial \mathsf{FreeEnergy}(\mathbf{x})}{\partial \theta}\right] + \mathbb{E}_{P}\left[\frac{\partial \mathsf{FreeEnergy}(\mathbf{x})}{\partial \theta}\right]$$

- We saw the expression for Free Energy for a RBM. But the second term was intractable. How do learn in this case?
- Replace the average over all possible input configurations by samples
- Run Markov Chain Monte Carlo (Gibbs Sampling):
- First sample $x_1 \sim P(x)$, then $h_1 \sim P(h|x_1)$, then $X_2 \sim P(x|h_1)$, then $h_2 \sim P(h|x_2)$ till x_{k+1}

Approximate Learning, Alternating Gibbs Sampling

- We have already seen: $P(\mathbf{x}|\mathbf{h}) = \prod_{i} P(\mathbf{x}_{i}|\mathbf{h})$ $P(\mathbf{h}|\mathbf{x}) = \prod_{i} P(\mathbf{h}_{i}|\mathbf{x})$
- With: $P(\mathbf{h}_i = 1|\mathbf{x}) = \sigma(\mathbf{c_i} + W_i\mathbf{x})$ and $P(\mathbf{x}_j = 1|\mathbf{h}) = \sigma(\mathbf{b_j} + W_{:,j}^T\mathbf{h})$

Training RBM: Contrastive Divergence Algorithm

- Start with a training example on the visible units
- Update all the hidden units in parallel
- Update all the visible units in parallel to obtain a reconstruction
- Update all the hidden units again
- Update model parameters
- Aside: Easy to extend RBM (and contrastive divergence) to the continuous case

Example: MNIST

Original images:

3	8	حا	٩	6	4	5	3	8	4	5	J	3	8	4	8
1	5	Ø	5	9	7	4	1	0	3	0	وا	2	g	9	4
1	3	6	18	0	7	1	6	8	q	0	3	8	3	>	7
				ત્ર											
7	2	7	3	1	4	O	5	Ó	6	8	7	6	8	9	9
4	0	6	1	9	2	L	3	9	4	7	5	6	6)	7
2	8	6	9	7	0	9)	9	2	ઝ	3	6	4	9	5
8	6	૪	7	ક	8	6	9	1	7	6	0	9	6	7	0

Learned features:

(Larochelle et al., JMLR 2009)

Acknowledgement

Some of the materials in these slides are drawn inspiration from:

- Shubhendu Trivedi and Risi Kondor, University of Chicago,
 Deep Learning Course
- Hung-yi Lee, National Taiwan University, Machine Learning and having it Deep and Structured course
- Xiaogang Wang, The Chinese University of Hong Kong, Deep Learning Course
- Fei-Fei Li, Standord University, CS231n Convolutional Neural Networks for Visual Recognition course

Next time

Model Computation and Inference

Thank You!

