Computational Constraints on Linguistic Descriptions

Anoop Sarkar

Computing Science, SFU anoop@cs.sfu.ca

9/26/07

Life-cycle of a Linguist

9/26/07

Life-cycle of a Linguist (revised)

Phonological Alternations

- Newton
- Newtonian
- Paris
- Parisian
- practical
- impractical
- feasible
- infeasible

Finnish Harmony

<u>Gloss</u>	Nominative	<u>Partitive</u>
• sky	taivas	taivas+ta
 telephone 	puhelin	puhelin+ta
• plain	lakeus	lakeut+ta
reason	• syy	• syy+tä
short	lyhyt	lyhyt+tä
 friendly 	 vstävällinen 	 vstävällinen+

i,*e* are neutral wrt harmony

talossansakaanko 'not in his house either?' kynässänsäkäänkö 'not in his pen either?'

Rewrite Rules (Chomsky & Halle, 1968) a → ä / [ä,ö,y] C* ([i,e] C*)* ____ o → ö / [ä,ö,y] C* ([i,e] C*)* ____

9/26/07

Articulatory Features

Finnish Partitive

- taivas+ta
- puhelin+ta
- lakeut+ta
- syy+tä
- lyhyt+tä
- ystävällinen+tä

	high	low	back	round
a	_	+	+	_
0	1	ı	+	+
и	+	-	+	+
ä	1	+	1	_
ö	1	1	-	+
y	+	_	_	+
i	+	1	_	_
e	_	_	_	_

Rewrite Rule

$$[V,+back] \rightarrow [V,-back] / [V,-back] C^* ([i,e] C^*)^*$$

Rewrite Rules

- Rewrite rules specify a relation between base-forms and observed forms, e.g. google+ing → googling
- Assume base-forms come from (C*(u|i))+ C* (C*V)* C*

- left right context
- Context dependent rewrite rules: $\alpha \rightarrow \beta / \lambda _{p}$
 - $(\lambda \alpha \rho \rightarrow \lambda \beta \rho)$; that is α becomes β in context $\lambda _{--} \rho$)
- How to apply rewrite rules:
 - Consider rewrite rule: a → b / ab __ ba
 - Apply rule on string ababababa
 - Three different outcomes are possible:
 - abbbabbaba (left to right, iterative)
 - ababbbabbba (right to left, iterative)

9/26/07

Rewrite Rules

- Context dependent rewrite rules: $\alpha \rightarrow \beta / \lambda _ \rho$
- Can express **context sensitive** rules or **regular** relations
- Computational constraints on rewrite rules:
 - Consider rewrite rule: $c \rightarrow acb / a _ b$
 - Apply left to right iteratively on base-form c

Computational Constraints on Rewrite Rules

- Rewrite rules express a context-sensitive grammar: $\lambda \alpha \rho \rightarrow \lambda \beta \rho$, cf. $\alpha \rightarrow \beta / \lambda \rho$
- CSGs are very powerful: they can generate languages like { 1^p : p is prime }
- Kaplan and Kay:
 - Impose a simple constraint on how rewrite rules are applied: output cannot be re-written

e.g.
$$c \rightarrow a\underline{c}b / a \underline{}b$$

- Constraint ensures rewrite rules are equivalent to regular relations
- Naturally expresses the local nature of morpho-_{9/26/07} phonemic properties 11

Computational Constraints on Rewrite Rules

Finite state transducer

- •each edge maps input:output
- defines a regular relation

9/26/07

Constraint-based approach

- Instead of explicit rules assume all variants are generated and surface constraints filter out illegal variants
 - Finnish: generate alternatives with both -ta and -tä
 - -ta is filtered out after [-back] vowels
 - -tä is filtered out after [+back] vowels
- Optimality Theory (Prince & Smolensky)
 - GEN produces all possible forms
 - rank-ordered violable constraints used to assign violations
- form with least number of violations is produced

Constraint-based approach

• Karttunen:

- No computational difference between traditional ordered rules and OT
- Traditional ordered rules can be "compiled into" a regular relation with composed transducers
- OT is "compiled into" a regular relation with leniently composed transducers
- This notion of lenient composition captures the linguistic intuition: surface form has least violations
- OT constraints must obey computational constraints _{9/26/0} (cf. Jason Eisner)

Structural Constraints in Syntax

9/26/07

wh- questions in English

 $\mbox{did Alice read \ which book} \\ \mbox{which book}_{i} \mbox{did Alice read \ } t_{i} \\$

 $\mbox{has Leona said that Alice would read which book} \\ \mbox{which book}_{i} \mbox{ has Leona said that Alice would read } t_{i} \\$

Mark asked to whom you had lent War & Peace did Mark ask to whom you had lent what book *what book; did Mark ask to whom you had lent t;

The Subjacency Condition

The Subjacency Condition

Tree-Adjoining Grammars

- Construct a tree set out of tree fragments
- Each fragment contains only the structure needed to express the locality of various CSG predicates
- Each tree fragment is called an elementary tree
- In general we need to expand even those nonterminals that are not leaf nodes: leads to the notion of adjunction

9/26/07

TAG Analysis

(Kroch, Frank)

CP C' DPi C' C TP which book C TP DP Leona Tj DP that has VΡ Alice said DPi would

9/26/07 20

read

t

TAG Analysis

*what book, did Mark ask to whom you had lent ti

TAG Analysis

*what book, did Mark ask to whom you had lent ti

9/26/07

- Kroch: such a tree is not well formed in English even in a single clause
- e.g. *I wonder what book to whom Mark gave
- Linguistic rules are used to only construct well formed elementary trees
- Computational model enforces local constraints

What about languages that allow multiple wh- fronting? e.g. Romanian

Summary

- Linguistic descriptions have computational properties: being sensitive to these properties provides insight
- Computational complexity explains the existence of locality in applicability of linguistic rules
- It is interesting from a computational viewpoint exactly how complex are the generalizations produced by linguists
- The computational treatment allows the "compilation" of linguistic rules into automata: a constructive proof of their efficacy