Clustering of College Dataset

Group 20 Andre Koczka, Igor Lukic, Paul Oberauer, Hans-Peter Wipfler

Data Investigation - Findings

- First column has no name
 - we interpreted it as an enumeration of the data points
- 'Year' column
 - college information repeats for different years
 - show the cost development over the years
 - colleges report every year
- Missing values
 - for some college id's the whole datapoint is missing
 - missing values in column 'Value'
 - missing values in column 'Type_2'
 - missing values in column 'Expense_1'
 - private colleges do not differentiate between in-state and out-of-state students
- Invalid values
 - 'Year' is 9999.0
 - 'Value' is 9999999.0
- Data points with ID above 3547 are redundant

Preprocessing Python

- Data observation: unique values and values counts for each feature
- Replaced wrong inputs like 999999 with nan
- Replacement of missing years (depending on neighbors)
 - except one case is between 2017 and 2018 -> check how often College is listed in other years
- Replacement of state abbreviations (eg. Ar -> Arkansas)
- Conversion of Length from string (2-years) to float (2)
- Replace missing values for Expense_1
 - Fees Tuition(Expense_2)
 - Room Board(Expense_2)
- Value estimation with linear regression,
 - take values/years of same College and estimate missing Value
- Removal of empty rows
- Save filtered dataset in new .csv

Preprocessing Orange

- Encoding of categorical variables
 - Expense_2: ordinal encoding
 - Tuition is more expensive than Board
 - Type_1: ordinal encoding
 - Private is more expensive than Public
 - Type_2: ordinal encoding
 - Out-of-State is more expensive than In-State
 - State: no encoding
 - nominal label
 - Length: normalize to interval [0,1]
 - Value: normalize to interval [0,1]
- Features for clustering
 - State, Expense_2, Length, Type_1, Type_2, Value

Data Processing Pipeline

- Selected college data from 'Year' 2017
- Remove unnecessary columns
 - IDs, Expense_1, Year
- Second path is used to have non-normalized values in plot
- Clustering done by using k-Means in the more dimensional space
 - o Alternatives: DBScan, Hierarchical clustering
 - Alternatives: Dimensionality reduction (PCA, t-SNE)

Clustering

Problem description:

Cluster the colleges based on how much they charge students who live on campus by using the columns that show the average costs for public and private nonprofit institutions

Outcome:

- Analyze how many clusters are found
- Analyze what are the reasons for the clusters
- Analyze how the clusters are distributed
- Analyze effect of pre-processing