Выполнил Андрей Долбнин, 501 группа

Я буду объяснять значение каждой строки справа, давая конкретику к первому столбцу. Длинные вещественные числа буду сокращать двумя точками в конце.

<u>Задание 1</u>

$$\Delta u = e^y \sin x,$$

$$u|_{x^2 + y^2 = \pi^2} = 1,$$

$$\frac{\partial u}{\partial n}|_{x^2 + y^2 = 4\pi^2} = \sin x \sin y.$$

Экспорт из "**Draw**":

gd:

1	1	(тип фигуры, в нашем случае - круг)
0	0	(х_0, центр по х)
0	0	(у_0, центр по у)
6.28	3.14	(R, радиус круга)

ns:

67	67	(код буквы в ASCII, обозначает тип фигуры – C (круг))
49	50	(код числа в ASCII, обозначает порядковый номер данного типа фигуры - 1)

Чтобы расшифровать, можно использовать команду char: char(67) = 'C'.

sf:

'C1-C2'	(формула связи	фигур)

Экспорт из "Boundary":

g:

1	1	1	1	1	1	1	1	(тип границы, 1 - дуга)
-5.80	3.84e-16	6.22	1.62	-3.14	1.92e-16	3.14	1.92e-16	(х начала (дуги))
3.84e-16	6.22	1.62	-5.80	1.92e-16	3.14	1.92e-16	-3.14	(х конца (дуги))
2.40	-6.28	-0.82	6.06	-3.84e-16	-3.14	0	3.14	(у начала (дуги))
-6.28	-0.82	6.06	2.40	-3.14	0	3.14	-3.84e-16	(у конца (дуги))
1	1	1	1	0	0	0	0	(наша область слева (1 - да))
0	0	0	0	1	1	1	1	(наша область справа (0 – нет))
0	0	0	0	0	0	0	0	(x_0)
0	0	0	0	0	0	0	0	(y_0)
6.28	6.28	6.28	6.28	3.14	3.14	3.14	3.14	(R)

Всего 8 столбцов – по одному на каждую дугу (в круге – 4 дуги).

Положение области (слева или справа) определяется по направлению движения по дуге (от начала до конца).

b:

Задание граничных условий. Сначала помечаем, что работаем со скалярами, потом род граничного условия (0 - Неймана, 1 - Дирихле), обозначаем коэффициенты $(q = 0, g = \sin(x) .* \sin(y)$ или h = 1, r = 1). Внутреннее представление этих условий — последовательность символов в кодировке ASCII, поэтому далее идёт количество символов в коэффициентах граничного условия, а потом код каждого символа в ASCII (пробелы — номер 32 - также учитываются (если они есть)).

1	1	1	1	1	1	1	1	(показывает, что работаем со скалярами; с векторами было бы, например, 2)
0	0	0	0	1	1	1	1	(условие Неймана)
1	1	1	1	1	1	1	1	(q = 0, strlength(q) = 1)
16	16	16	16	1	1	1	1	(g = sin(x) .* sin(y), strlength(g) = 16)
48	48	48	48	1	1	1	1	(q = 0, char(48) = '0')
115	115	115	115	1	1	1	1	(g = sin(x) .* sin(y), char(115) = 's', и так далее)
105	105	105	105	48	48	48	48	
110	110	110	110	48	48	48	48	
40	40	40	40	49	49	49	49	
120	120	120	120	49	49	49	49	
41	41	41	41	0	0	0	0	
32	32	32	32	0	0	0	0	
46	46	46	46	0	0	0	0	
42	42	42	42	0	0	0	0	
32	32	32	32	0	0	0	0	

115	115	115	115	0	0	0	0
105	105	105	105	0	0	0	0
110	110	110	110	0	0	0	0
40	40	40	40	0	0	0	0
121	121	121	121	0	0	0	0
41	41	41	41	0	0	0	0

Аналогично пред., всего 8 столбцов – по одному на каждую дугу.

Экспорт из "Mesh":

p:

-5.80	3.84e-16	6.22	1.62	-3.14	1.92e-16	-	1.42	(х узла триангуляции)
2.40	-6.28	-0.82	6.06	-3.84e-16	-3.14	-	-5.37	(у узла триангуляции)

Здесь и в других длинных таблицах выводятся первые и последний столбцы, разделённые чёрточкой.

Если в Mesh отметить галочкой Show Node Labels, то самый первый узел в таблице будет обозначен первым и в конструкторе pdetool – а. (В начале, кстати говоря, нумеруются начала и концы дуг, а потом уже другие точки.)

Всего столбцов 132 – по количеству узлов триангуляции.

e:

1	17	18	19	20	9	21	-	50	(номер начального узла)

17	18	19	20	9	21	22	-	5	(номер конечного узла)
0	0.10	0.20	0.30	0.40	0.50	0.60	-	0.75	(начальное значение параметризации)
0.10	0.20	0.30	0.40	0.50	0.60	0.70	-	1	(конечное значение параметризации)
1	1	1	1	1	1	1	-	8	(номер границы (дуги) — один из восьми)
1	1	1	1	1	1	1	-	0	(область слева, 1 — для внешнего круга (дуги 1 - 4), иначе 0)
0	0	0	0	0	0	0	-	1	(область справа, 1 — для внутреннего круга (дуги 5 - 8), иначе 0)

Всего столбцов 50. В общем, они обозначают узлы на границах.

Строки 3-4 задают некую свою параметризацию, пред.значение + i*h и пред.значение + (i+1)*h, где i-hезависимая нумерация по границе.

t:

42	24	30	36	81	47	45	-	59	(1-й узел треугольника)
1	2	3	4	1	7	6	-	104	(2-й узел треугольника)
81	126	105	76	95	130	92	-	132	(3-й узел треугольника)
1	1	1	1	1	1	1	-	1	(номер подобласти)

Всего 214 столбцов, по количеству треугольников триангуляции.

Их можно посмотреть, отметив галочкой Show Triangle Labels. Номер треугольника = номер столбца.

После задания параметров уравнения (нужно выбрать эллиптическое и задать c = 1.0, a = 0.0 и $f = -\exp(y)$.* $\sin(x)$), мы решаем его, а потом экспортируем решение и (1 столбец из 132 строки — по количеству узлов триангуляции).

После команд pdesurf(p, t, u); grid on; colormap summer; получаем такую красоту:

Задание 2

$$u_{tt} = \Delta u + \sin t \sin x \sin y,$$

$$u(x,0,t) = \sin 2x,$$

$$u(\pi,y,t) = \sin 3y,$$

$$\frac{\partial u}{\partial y}(x,\pi,t) = 2,$$

$$\frac{\partial u}{\partial (-x)}(0,y,t) = 0,$$

$$u(x,y,0) = 0,$$

$$u_t(x,y,0) = 0.$$

В этом задании я буду объяснять строки, отличные от первого задания.

Экспорт из "**Draw**":

gd:

3	(тип фигуры — прямоугольник (для квадрата отдельную цифру не выделили))
4	(число сторон)
0	(далее идут координаты вершин – 4 икса, а потом – 4 игрека)
3.14.	
3.14.	
0	
0	

 0

 3.14..

 3.14..

ns:

83 (char(83) = 'S')

81 (char(81) = 'Q')

49 (char(49) = '1')

sf:

'SQ1'

Экспорт из "Boundary":

g:

2	2	2	2	(тип границы - отрезок)
0	3.14	3.14	0	(х начала (отрезка))
3.14	3.14	0	0	(х конца (отрезка))

0	0	3.14	3.14	(у начала (отрезка))
0	3.14	3.14	0	(у конца (отрезка))
1	1	1	1	(область слева)
0	0	0	0	(область не справа)

Всего столбцов – 4, по количеству отрезков.

b:

1	1	1	1	
1	1	0	0	
1	1	1	1	
1	1	1	1	
1	1	48	48	
10	10	50	48	(видно, что где u = 2, для двойки стоит 50, а где u = 0, для нуля стоит 48)
48	48	48	48	
48	48	48	48	
49	49	49	49	
115	115	48	48	
105	105	0	0	

110	0	0	
40	0	0	
51	0	0	(видно, что где u = sin(2 * x), для двойки стоит 50, а где u = sin(3 * x), для тройки стоит 51)
32	0	0	
42	0	0	
32	0	0	
120	0	0	
41	0	0	
	40 51 32 42 32 120	40 0 51 0 32 0 42 0 32 0 120 0	40 0 0 51 0 0 32 0 0 42 0 0 32 0 0 120 0 0

Экспорт из "**Mesh**":

p:

0	3.14	3.14	0	0.31	0.62	0.94	-	2.48
0	0	3.14	3.14	0	0	0	-	0.42

Всего узлов – 183.

e:

5	5	6	7	8	9	10	-	42
		7	8	9	10	11	-	1

0	0.10	0.20	0.30	0.40	0.50	0.60	-	0.90
0.10	0.20	0.30	0.40	0.50	0.60	0.70	-	1
1	1	1	1	1	1	1	-	4
1	1	1	1	1	1	1	-	1
0	0	0	0	0	0	0	-	0

t:

13	59	93	75	8	42	5	-	65	
2	5	8	7	9	1	6	-	165	
47	74	152	93	152	59	74	-	183	
1	1	1	1	1	1	1	-	1	(номер подобласти)

Стоит пояснить, что такое номер подобласти. В нашем случае, имеется один квадрат. Поэтому и область у всех одна. Если бы было два разных несоприкасающихся квадрата, например, тогда было бы две подобласти со своими триангуляциями – 1 и 2.

В отличие от предыдущего задания, исходное уравнение — гиперболическое (c = 1.0, a = 0.0, f = sin(t) .* sin(x) .* sin(y)). Задаются начальные условия, после чего получаем решения в промежутке времени (я взял от 0 до 10). Экспортированное решение и содержит 11 столбцов — решение на каждый момент времени.

Делаем pdesurf(p, t, u(:, 11)); grid on; colormap bone; получаем решение в момент времени t = 10:

