Week Twelve

Siva Sundar, EE23B151

December 26, 2024

25th December

• Co-design diagrams are similar to a *UWD*, each *boxes* represent feasibility relations (*design constraints* in the below figure), each *wire* represents a **preorder of resources** (*x* ≤ *y* represents *availability of x given y*): the wire on the left represent a **team's output** (which should be greater than or equal to the usage, hence, represented by '≤'), the wire on the right represents the **team's input** requirements to generate output.

Figure 1: Example for a co-design diagram (Eq 4.1)

A feasibility relation matches resource production with requirements. $\forall (p,r) \in P \times R$, where P and R are the preorders of resources to be **produced** and **required** respectively, the box says **true** or **false** for that pair.

Hence, feasibility relations define a function $\Phi: P \times R \longrightarrow \mathbf{Bool}$ as:

- (a) $(\Phi(p,r) \& p' \leq p) \Longrightarrow \Phi(p',r)$, ie, if p amount of produce can be made given r, you can also produce less $p' \leq p$ with the same resources r.
- (b) $(\Phi(p,r) \& r \leq r') \Longrightarrow \Phi(p',r)$, ie, if p amount of produce can be made given r, with $r' \geq r$ resources, you can produce p.
- Let $\mathcal{X} = (X, \leq_X)$ and $\mathcal{Y} = (Y, \leq_Y)$ be preoders. A **feasibility relation** for \mathcal{X} given \mathcal{Y} is a monotone map:

$$\Phi: \mathcal{X}^{op} \times \mathcal{Y} \longrightarrow \mathbf{Bool}$$

We denote this by $\Phi: \mathcal{X} \longrightarrow \mathcal{Y}$. Given $x \in X$ and $y \in Y$, if $\Phi(x, y)$, we say x can be obtained given y.

This map is said to be monotone because by definition:

$$x' \leqslant_X x \& y \leqslant_Y y' \Longrightarrow \Phi(x,y) \leqslant_{\mathbf{Bool}} \Phi(x',y').$$

26^{th} December

• \mathcal{V} -profunctor: Let $\mathcal{V} = (V, \leq, I, \otimes)$ be a quantale (a closed symmetric monoid with all joins existing), and let \mathcal{X} and \mathcal{Y} be \mathcal{V} -categories. A \mathcal{V} -profunctor $\Phi : \mathcal{X} \longrightarrow \mathcal{Y}$ is a \mathcal{V} -functor:

$$\Phi: \mathcal{X}^{op} \times \mathcal{Y} \longrightarrow \mathcal{V}$$

Author: Siva Sundar Roll No: EE23B151

• **Bool**-profunctors and **Cost**-profunctors can be interpreted as bridges. See ex 4.11, 4.13. Also see **feasibility matrix** (ex 4.12).

Profunctor can be optained via matrix multiplication. (See remark 4.16)

- The category **Feas** has objects as *preorders* and morphisms as *feasibility relations* (**Bool**-profunctor) and their composition is given by using \wedge in place of \otimes in the composite equation given in the below point.
- Composition of \mathcal{V} -profunctors: Let \mathcal{V} be a quantale and \mathcal{X} , \mathcal{Y} and \mathcal{Z} be \mathcal{V} -categories, and let $\Phi: \mathcal{X} \longrightarrow \mathcal{Y}$ and $\Psi: \mathcal{Y} \longrightarrow \mathcal{Z}$ be \mathcal{V} -profunctors. Their composite $\Psi \circ \Phi: \mathcal{X} \longrightarrow \mathcal{Z}$ is given by:

$$(\Psi \circ \Phi)(p,r) = \bigvee_{q \in Q} (\Phi(p,q) \otimes \Psi(q,r))$$

Composition of profunctors is associative. (Page 129)

• For any skeletal quantale \mathcal{V} , the category $\mathbf{Prof}_{\mathcal{V}}$ has objects as \mathcal{V} -categories \mathcal{X} , whose morphisms are \mathcal{V} -profunctors $\mathcal{X} \to \mathcal{Y}$, and with composite defined in the above point.

Hence, $Feas:=Prof_{Bool}$.

The identity morphism is given by the unit-profunctor $U_{\mathcal{X}}: \mathcal{X} \longrightarrow \mathcal{X}$,

$$U_{\mathcal{X}}(x,y) := \mathcal{X}(x,y)$$

$$\forall \Phi : \mathcal{P} \longrightarrow \mathcal{Q} \qquad \Phi \circ U_{\mathcal{P}} = \Phi = U_{\mathcal{Q}} \circ \Phi$$

Proof for the above identity is in page 128.

- A monoidal category is a *categorified* monoidal preorder.
- Let $F: \mathcal{P} \longrightarrow \mathcal{Q}$ be a \mathcal{V} -functor. The **companion** of $F(\widehat{F}: \mathcal{P} \longrightarrow \mathcal{Q})$ and the **conjoint** of $F(\widecheck{F}: \mathcal{Q} \longrightarrow \mathcal{P})$ are defined as:

$$\hat{F}(p,q) := Q(F(p),q) \& \check{F}(q,p) := Q(q,F(p))$$

The **companion** profunctor represents a bridge from \mathcal{P} to \mathcal{Q} . Reversing the arrows result in the **conjoint** profunctor representing bridge from \mathcal{Q} to \mathcal{P} .

• \mathcal{V} -enriched adjunction is a pair of \mathcal{V} -functors $F: \mathcal{P} \to \mathcal{Q}$ and $G: \mathcal{Q} \to \mathcal{P}$ such that:

$$\mathcal{P}(p, G(q)) \cong \mathcal{Q}(F(p), q)$$

In this figure, $\forall p \in \mathcal{P} \& q \in \mathcal{Q}$, the above condition holds true except for the pair (1, c), hence F and G do not form an *enriched* adjunction pair.

Figure 2: Example

• If \mathcal{P} and \mathcal{Q} are enriched in skeletal quantale \mathcal{V} The companion of the adjoint F is equal to the conjoint of the adjoint G. (see ex 4.41)

This can be used to prove that: $\hat{id} = \check{id}$.

• A \mathcal{V} -profunctor $\Phi: \mathcal{X} \longrightarrow \mathcal{Y}$ can be thought of as a \mathcal{V} -category with \mathcal{X} on the left and \mathcal{Y} on the right. This construction is called **Collage of the Profunctor**. (denoted as $\mathbf{Col}(\Phi)$, see definition in page 131)