GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIO

NOMBRE DE LA ASIGNATURA	Visión por computadora	
CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
	270712	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Introducir al alumno en la problemática de la visión y estudiar las técnicas más usuales de análisis automático de imágenes por computador. El alumno conocerá y manejará los conceptos y metodologías tradicionales de la Visión por Computadora y sus aplicaciones para la solución de problemas reales. El alumno investigará y entenderá las técnicas del procesamiento digital de imágenes y las aplicará a algún problema específico de visión artificial.

TEMAS Y SUBTEMAS

1. Introducción

- 1.1. Componentes de un sistema de visión
- 1.2. Procesamiento digital de señales para visión por computadora
- 1.3. Reconocimiento de patrones para visión por computadora
- 1.4. Evaluación del desempeño de los algoritmos para visión
- 1.5. Aplicaciones.

Calibración de un sistema de imágenes digitales.

- 2.1. Introducción
- 2.2. Terminología de calibración
- 2.3. Parámetros geométricos
- 2.4. Sistema de formación de imágenes
- 2.5. Modelos de cámaras
- 2.6. Calibración y técnicas de orientación
- 2.7. Aplicaciones fotométricas

3. Técnicas de imágenes 3D.

- 3.1. Características de los sensores 3D
- 3.2. Triangulación
- 3.3. Sensores de tiempo de vuelo (TOF)
- 3.4. Interferometría óptica

4. Operadores de vecindad.

- 4.1. Filtros lineales
- 4.2. Filtros recursivos
- 4.3. Filtros no-lineales
- 4.4. Promediado local
- 4.5. Interpolación

5. Movimiento.

- 5.1. Flujo y correspondencia
- 5.2. Flujo óptico basado en estimación de movimiento
- 5.3. Correlación y matching
- 5.4. Modelado de campos de flujo

6. Tópicos avanzados

- 6.1. Operadores morfológicos
- 6.2. Modelado probabilístico
- 6.3. Procesamiento de imágenes difuso
- 6.4. Procesamiento de imágenes usando redes neuronales

ACTIVIDADES DE APRENDIZAJE

Exposición por parte del maestro. Trabajos de investigación y/o prácticos. Lectura de artículos de interés en el área. Proyectos en los que se aplique lo visto en clase (a corto y mediano plazo). Exposición por parte del alumno de los proyectos realizados.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Instrumentos formales y prácticos de evaluación: exámenes parciales y examen final; Proyecto final, proyectos cortos usando en un lenguaje de programación orientado a objetos y/o software orientado a tratamiento numérico que involucren los conocimientos adquiridos de los temas impartidos.

BIBLIOGRAFÍA

Libros Básicos:

- Emerging Topics in Computer Vision, Gerard Medioni and Sing Bing Kang, IMSC Press Multimedia Series, 2004
- 2. Computer Vision: A Modern Approach, David A. Forsyth, Jean Ponce, 2002 Prentice Hall
- 3. Computer Vision: Three-Dimensional Data from Images, Reinhard Klette, Karsten Schluns and Andreas Koschan, Springer, 1998, 1 edition
- 4. Computer Vision; Linda G. Shapiro, George C. Stockman; Prentice Hall, 2001.

Libros de Consulta:

- Algorithm Collections for Digital Signal Processing Applications Using Matlab, E.S. Gopi, Springer, 2007
- Computer Vision and Applications A Guide for Students and Practitioners, Bernd Jähne, Horst Haußecker, Academic Press, 2000.
- 3. OpenCV: Image Processing and Computer Vision Reference Manual, Intel , 2000.

PERFIL PROFESIONAL DEL DOCENTE

Estudios formales de Doctorado en sistemas informáticos, sistemas computacionales o especialidad de matemáticas.

