F

2

HDL-TM-90-20

December 1990

Host Materials for 4dN and 5dN Transition-Metal lons

by Clyde A. Morrison

U.S. Army Laboratory Command Harry Diamond Laboratories Adelphi, MD 20783-1197

Approved for public release; distribution unlimited.

91 2 12 103

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Pubic reports: burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and insintanting the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington to Washington to Reports, 1215 Jefferson Davis Highway, Suite 1204, Afrington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503 3. REPORT TYPE AND DATES COVERED 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE December 1990 Final 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Host Materials for $4d^N$ and $5d^N$ Transition-Metal Ions PE: 611102.H440011 6. AUTHOR(S) Clyde A. Morrison 6. PERFORMING ORGANIZATION 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) REPORT NUMBER Harry Diamond Laboratories HDL-TM-90-20 2800 Powder Mill Road Adelphi, MD 20783-1197 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY REPORT NUMBER U.S. Army Laboratory Command 2800 Powder Mill Road Adelphi, MD 20783-1145

11. SUPPLEMENTARY NOTES

AMS code: 611102.H440011

HDL PR: AE1051

12a DISTRIBUTION/AVAILABILITY STATEMENT

12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

This report discusses ten compounds which are potential host materials for quadruply ionized elements with $4d^N$ and $5d^N$ electronic configurations. These compounds are ZrSiO_4 , HfGeO_4 , $\operatorname{Li}_2\operatorname{ZrTeO}_6$, $\operatorname{Li}_2\operatorname{HfTeO}_6$, $\operatorname{Li}_6\operatorname{BeZrF}_{12}$, ZrGeO_4 , ZrGeO_6 , ThSiO_4 , and ThGeO_4 (in two forms: zircon and scheelite). The crystal-field components, A_{nm} , are calculated for the Zr , Hf , and Th sites in each of the compounds. The site symmetry is S_4 or D_{2d} , except for $\operatorname{Li}_2\operatorname{XTeO}_6(X=\operatorname{Zr},\operatorname{Hf})$ which has C_3 symmetry. Approximate parameters, $F^{(k)}$, $B_{nm}(B,C,Dq)$, are given for the entire quadruply ionized $5d^N$ configuration. Energy levels of $\operatorname{W}^{4+}(5d^2)$ and $\operatorname{Re}^{4+}(5d^3)$ are given for some compounds.

14. SUBJECT TERMS	15. NUMBER OF PAGES 49		
Transition metal ions. $5d^{N}$	electronic configuration, 4d ^N	electronic configuration,	16. PRICE CODE
tunable laser material			16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	17. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
Unclassified	Unclassified	Unclassified	UL

Contents

		Page				
1.	Introduction	5				
2.	Crystallographic Data and Crystal-Field Components	6				
3.	Hamiltonians for d ^N Electronic Configuration in a Crystal					
	3.1 Free-Ion Hamiltonian					
	3.2 Crystal-Field	8				
1.	Cubic Approximation for Each Host	11				
	4.1 ZrSiO ₄	11				
	4.2 HfGeO ₄	12				
	4.3 $\text{Li}_2X\text{TeO}_6(X = \text{Zr}, \text{Hf})$	12				
	4.4 Li ₆ BeZrF ₁₂					
	4.5 ZrGeO ₂	14				
	4.6 Zr ₃ GeO ₈	14				
	4.7 ThSiO ₄	15				
	4.8 ThGeO ₄	15				
· .	Conclusion	16				
Ref	ferences	24				
	pendix A					
Jis	tribution	45				
	Tables					
l.	Approximate free-ion parameters (cm ⁻¹) and values of ρ_n (Å ⁿ) for the quadrionized ions with the $5d^N$ configuration	ruply 17				
2a.	Energy levels of W ⁴⁺ in the Zr site of ZrSiO ₄ , cubic approximation	18				
2b.						
2c.						
2d.		21				
3a.	Energy levels of W ⁴⁺ in the Zr site in Li ₂ ZrTeO ₆ , cubic approximation	22				
3b.						
		SHECKED				
		•				

1. Introduction

The spectra of the $4d^N$ and $5d^N$ electronic configurations are very limited, both in the solid state and the free ion. This is unfortunate since these ions have a number of levels in the infrared and visible spectral regions; because of the various ionization possibilities of each ion, they offer a rich area for possible tunable laser sources.

We wish to investigate the spectra of the $4d^N$ and $5d^N$ quadruply ionized ions in transparent oxide host crystals. This report provides the information we have found concerning these ions and presents a number of host materials which we consider candidates for immediate study.

The situation concerning the $4d^N$ and $5d^N$ transition-metal ions before 1962 is summarized by Ballhausen (1962). More recently, several of the $4d^N$ and $5d^N$ ions have been reported in fluoride or chloride host materials (Morrison, 1989). In this latter reference, six host materials are given for which experimental data have been reported on $4d^N$ and $5d^N$ ions. Unfortunately, in all these hosts, the electric dipole transitions are forbidden by the symmetry of the site occupied by the $4d^N$ or $5d^N$ ion. Consequently, the weak magnetic dipole transitions must be sorted out from relatively strong vibronic transitions. Although this procedure can be done, it directs time and effort away from understanding the crystal-field splitting and developing a model for these splittings. Thus, time would be better spent selecting a host material that does have electric dipole transitions allowed for the site occupied by the $4d^N$ or $5d^N$ ions.

We have selected several host materials in which Hf^{4+} , Zr^{4+} , or Th^{4+} is a constituent that can be replaced substitutionally by a quadruply ionized $4d^N$ or $5d^N$ ion; also, the site occupied by these ions allows electric dipole transitions. In addition, we have selected hosts with the site symmetry high enough for us to analyze $(C_3, C_4, \text{ and higher})$ with our present programs. A number of these materials have either Si^{4+} or Ge^{4+} as constituents, and crystal-field components have been calculated for these sites. These sites can be occupied by quadruply ionized $3d^N$ ions, and experimental data have been reported on V^{4+} in several zircon-type crystals considered here (Di Gregario et al, 1982).

Unfortunately, for the hosts we have chosen, the available data are only x-ray data and some crystal growth data, with no experimental data on $4d^N$ and $5d^N$ optical spectra. The $4d^N$ and $5d^N$ transition elements have not been tried as potential lasers possibly because so little experimental data have been taken and their spectra have not been identified. That is, for these ions, we have no method of simply analyzing the experimental data, such as the Tanabe-Sugano diagrams,

which have been so successful for the analysis of the $3d^N$ series spectra. We now have available Tanabe-Sugano-like diagrams for the $4d^N$ and $5d^N$ electronic configurations, which include the large spin-orbit coupling necessary in the analysis of the spectra of these ions. We intend to publish these diagrams in the near future, including the diagrams of quadruply ionized $5d^N$ ions for tetrahedral symmetry (Dq/B < 0), which can be used with the cubic approximation given in this report to predict the spectra of these ions in the host materials considered here.

2. Crystallographic Data and Crystal-Field Components

The tables in the appendix contain the crystallographic and x-ray data on each host. The arrangement of the tables is the same as in Morrison (1989); a detailed discussion of the arrangement is given on page 24 of that reference. These data are used to compute the crystal-field components for a particular site and reflect the symmetry of the site. In the discussion here we use only the monopole crystal-field components; the other contributions to the crystal field are included in anticipation of future possible refinements in the analysis. The crystal-field parameters are given by

$$B_{nm} = \rho_n A_{nm} , \qquad (1)$$

where the ρ_n are "effective" values of $\langle r^n \rangle$ for a particular ion in the solid. The A_{nm} are given in the tables by Morrison (1989). Since we have no experimental data on these ions in the hosts considered here, we defer the derivation of approximate values of ρ_n until later. The tables on each host are followed by the references to the data given on that host, so that in a certain sense each host material is a complete and separable item.

3. Hamiltonians for d^N Electronic Configuration in a Crystal

3.1 Free-Ion Hamiltonian

The free-ion Hamiltonian for a configuration of d^N electrons is taken as

$$H_{FI} = F^{(2)}g_2 + F^{(4)}g_4 + \zeta \sum_{i=1}^{N} \vec{l}_i \cdot \vec{s}_i , \qquad (2)$$

with

$$g_k = \sum_{i>j} \sum_{q=-k}^k C_{kq}^*(i) C_{kq}(j) , \qquad (3)$$

$$C_{kq} = \sqrt{4\pi/(2k+1)} Y_{kq} . {4}$$

The $F^{(k)}$ and ζ have been calculated by using Hartree-Fock wavefunctions (Morrison, 1989), and the matrix elements of g_k are given by Neilson and Koster (1963). Frequently the Racah parameters B and C are used in place of the Slater parameters, $F^{(k)}$; the relations (Morrison, 1989, p 29)

$$F^{(2)} = 7(7B + C) ,$$

$$F^{(4)} = (63/5) C ,$$
(5)

can be used to convert from one set of parameters to the other.

In general, the Slater parameters are considerably reduced when the ion enters a solid. Furthermore, these same parameters obtained by fitting the free-ion spectra are less than the corresponding values computed with Hartree-Fock wavefunctions. For example, for Cr³⁺ we obtained the following values (Morrison, 1989, pp 21, 14, and 119):

Parameter	Hartree- Fock calculation	Free-ion experiment	Al ₂ O ₃ experiment
$F^{(2)}$	88,514	74,201	53,690
$F^{(4)}$	55,558	45,822	39,312
B	1,177	994.7	650
C	4,409	3,637	3,120

We see that B decreases from the Hartree-Fock value to the value obtained for Cr^{3+} in Al_2O_3 . Further, Dq for Cr^{3+} is 1596 cm⁻¹, so that Dq/B = 2.56. On the other hand, we can compute the Dq using $< r^4 >$ from Hartree-Fock values and the crystal-field component, A_{40} . Using equation (1), we obtain Dq = 439.9 cm⁻¹ and Dq/B = 0.374, which is considerably less than the value of Dq/B = 2.56 observed in experiment. Dq/B is one of the fundamental quantities extracted from experimental data using a standard Tanabe-Sugano plot. We find that the Hartree-Fock method greatly underestimates the values of Dq/B, compared to experimental data. This is not surprising, since the value of B decreases significantly when an ion enters the solid, whereas the radial wavefunction of the transition-metal ion expands, causing an increase

of $\langle r^4 \rangle$. These two effects cause the ratio Dq/B to increase dramatically.

3.2 Crystal-Field

The crystal-field Hamiltonian appropriate for S_4 and D_{2d} symmetry for the electronic configuration d^N can be written as

$$H_{CEF} = B_{20} \sum_{i=1}^{N} C_{20}(i) + B_{40} \sum_{i=1}^{N} C_{40}(i) + B_{44} \sum_{i=1}^{N} \left[C_{44}(i) + C_{4-4}(i) \right], \quad (6)$$

with the crystal-field parameters B_{nm} real (Morrison, 1989). Actually the crystal-field Hamiltonian given in equation (6) is valid for the electronic configuration d^N for site symmetries as low as C_4 with B_{nm} real. If the site occupied by the ion has cubic symmetry, then $B_{20} = 0$, $B_{44} = (5/14)^{1/2} B_{40}$, and equation (6) becomes

$$H_{CEF}^{C} = B_{40}^{C} \sum_{i=1}^{N} \left\{ C_{40}(i) + \sqrt{\frac{5}{14}} \left[C_{44}(i) + C_{4-4}(i) \right] \right\}. \tag{7}$$

In equation (7) if $B_{40} > 0$, then we have octahedral symmetry, and if $B_{40} < 0$, we have tetrahedral symmetry. In both cases, the crystal-field parameter B_{40} is related to Dq by

$$B_{40}^{C} = 21 Dq . (8)$$

Here, the experimentally determined Dq is often taken positive, and the sign of B_{40} in equation (8) is determined by additional knowledge of the symmetry of the particular site. In the cases considered here, the sign of B_{40} will be taken to be the same as the monopole crystal-field component, A_{40} .

Frequently, it is convenient to assume that the symmetry of the site occupied by the transition-metal ion is approximately cubic and use the rotational invariant (Leavitt, 1982) given by

$$S_4(B) = \sqrt{B_{40}^2 + 2B_{44}^2} \tag{9}$$

to obtain a value of the crystal-field parameters, B_{40}^{C} , as

$$B_{40}^{C} = \sqrt{\frac{7}{12}} S_4(B) \quad . \tag{10}$$

Here we have used the result

$$S_{40}^C(B) = \sqrt{\frac{12}{7}} B_{40}^C , \qquad (11)$$

$$B_{44}^{C} = \sqrt{\frac{5}{14}} B_{40}^{C} . {12}$$

The sign of B_{40}^{C} in equation (10) must be determined from additional information on the particular site occupied by the transition-metal ion. If detailed x-ray data are available on a particular host material, the crystal-field components, A_{nm} , can be computed and equation (1) used to obtain

$$B_{40}^{C} = \sqrt{\frac{7}{12}} \, \rho_4 \, S_4(A) \tag{13}$$

from equation (11). The sign of B_{40}^C given in equation (11) is then the same as A_{40} . The cubic approximation is good only as long as B_{20} (or A_{20}) ~ 0 and B_{44} (or A_{44}) ~ $(5/14)^{1/2}B_{40}(A_{40})$.

If the site occupied by the transition-metal ion has C_3 symmetry or higher, the crystal-field Hamiltonian is

$$H_{CEF} = B_{20} \sum_{i=1}^{N} C_{40}(i) + B_{40} \sum_{i=1}^{N} C_{40}(i) + B_{43} \sum_{i=1}^{N} \left[C_{43}(i) - C_{4-3}(i) \right], \quad (14)$$

where, as before, all B_{nm} are real.

The cubic approximation in this symmetry is given by

$$B_{20} = 0 ,$$

$$B_{40}^{C} = \sqrt{\frac{10}{7}} B_{40} ,$$
(15)

and

$$H_{CEF}^{C} = B_{40}^{C} \sum_{i=1}^{N} \left\{ C_{40}(i) + \sqrt{\frac{10}{7}} \left[C_{43}(i) - C_{4-3}(i) \right] \right\} . \tag{16}$$

Also in this symmetry the relation

$$B_{40}^{C} = 14 Dq \tag{17}$$

relates the experimental Dq to the crystal-field parameter B_{40} . The rotational invariant corresponding to equation (9) is given by

$$S_4(B) = \sqrt{B_{40}^2 + 2B_{43}^2} \ . \tag{18}$$

The approximate cubic field parameters corresponding to equation (10) are given by

$$B_{40}^C = \sqrt{\frac{7}{27}} S_4(B) , \qquad (19)$$

$$B_{43}^{C} = \sqrt{\frac{10}{7}} B_{40}^{C} , \qquad (20)$$

where we have used the result

$$S_4^C(B) = \sqrt{\frac{27}{7}} B_{40}^C$$
 (21)

In this cubic symmetry if $B_{40} < 0$, we have octahedral symmetry, and if $B_{40} > 0$, we have tetrahedral symmetry. The results given in equations (10), (12), (19), and (20) are sufficient for the ascent from C_4 and C_3 symmetry to cubic symmetry. Along with the relation

$$S_4(B) = \rho_4 S_4(A) \ , \tag{22}$$

we can determine the approp the approximate cubic representation for a site in a solid provided we inve detailed x-ray data on that solid. For particular solids where the site occupied by a transition-metal ion has low symmetry, such as C_2 , the rotational invariant $S_2(A)$ can be used as well as $S_4(A)$ to approximate the site from a representation of higher symmetry. In section 4 the cubic approximation is considered for the

sites assumed to be occupied by quadruply ionized $5d^N$ transition-metal ions in each of the hosts considered.

The method we have chosen of obtaining approximate values of the $F^{(k)}$ and ρ_k values is to use the data obtained on the quadruply ionized ions of the $5d^N$ series (Re⁴⁺, Os⁴⁺, Ir⁴⁺ and Pt⁴⁺) (see table 28.3, p 133 of Morrison, 1989). These data were taken on the above four ions in Cs₂GeF₆ (Ge in O_h symmetry). From the x-ray data we obtain a point charge value $A_{40} = 21,689$ cm⁻¹/(Å⁴), and from the experimentally determined B_{40} , we obtain an average value of $\rho_4 = 3.108 < r^4 >_{H-F}$. Using the $F^{(k)}$ (Morrison, 1989, table 2, p 12), we obtain an average value $F^{(k)} = 0.649 F^{(k)}_{H-F}$. Using these values we obtain the results given in table 1 for the estimated parameters for the quadruply ionized ions of the $5d^N$ series. The values of ρ_2 used in constructing this table were obtained from $\rho_2 = 1.753 < r^2 >_{H-F}$, as in Morrison and Turner (1988).

4. Cubic Approximation for Each Host

For each of the hosts given in the tables in appendix A, the appropriate cubic approximation is given below, using the monopole A_{nm} given in the appendix for that host.

4.1 ZrSiO₄

For the Zr site in ZrSiO₄ the monopole crystal-field components, A_{nm} (cm⁻¹/Åⁿ), are $A_{20} = -12,756$; $A_{40} = 910.3$; $A_{44} = 8,630$; and S_4 (A) = 12,239.

From equations (10) to (12), we have

$$B_{40}^{C} = 9347 \ \rho_4 \ ,$$

 $B_{44}^{C} = 9347 \ \rho_4 \sqrt{\frac{5}{14}} \ .$

Since $A_{40} > 0$, we have chosen $B_{40}^{C} > 0$, and although the site symmetry is tetragonal (D_{2d}) , the cubic approximation is octahedral. Actually for either octahedral or tetrahedral symmetry the relation $|A_{44}| \sim (5/14)^{1/2} |A_{40}|$ should prevail, which is obviously far from being a good approximation.

Using the values of ρ_n from table 1, we calculated the crystal-field parameters B_{nm} for W⁴⁺ (5 d^2) in the cubic approximation and for the Zr

site in ZrSiO₄. The results are given in table 2a (cubic) and table 2b (Zr site). The parameters used in the calculation are given in each table. As can be seen, the energy levels are quite distinct and, in particular, the composition of the ground state is quite different—in the cubic approximation the ground state has 4 percent 3P , which is completely missing in the D_{2d} symmetry. Furthermore, the ground state becomes almost pure 3F (97 percent) in the D_{2d} symmetry. In both cases the spin-forbidden rule is invalid because of the admixture of the 1D state into the Hund ground state by the strong spin-orbit interaction. Tables 2c and 2d present the cubic approximation and D_{2d} calculation, respectively, for Re⁴⁺ (5d³) in the Zr site in ZrSiO₄. The results show that the cubic approximation is not good and in the analysis of experimental data, one should proceed directly from the D_{2d} analysis since the cubic approximation could be misleading.

4.2 HfGeO₄

For the Hf site in HfGeO₄ the monopole crystal-field components, A_{nm} (cm⁻¹/Åⁿ), are

$$A_{20} = 6465$$
, $A_{40} = -706.6$, $|A_{44}| = 4663$, and $S_4(A) = 6632$.

Then, as above,

$$B_{40}^{C} = -5056 \,\rho_4$$
 ,
 $B_{44}^{C} = -5056 \,\rho_4 \,\sqrt{\frac{5}{14}}$.

With $A_{40} < 0$, we have tetrahedral symmetry. However, as in ZrSiO₄, the cubic representation is a poor one.

4.3 $\text{Li}_2X\text{TeO}_6(X = \text{Zr}, \text{Hf})$

For the Zr site in Li₂ZrTeO₆, the monopole crystal-field components $(cm^{-1}/\mathring{\Lambda}^n)$ are

$$A_{20} = 457$$
, $A_{40} = -14,546$, $|A_{43}| = 18,247$, and $S_4(A) = 29,622$.

From equations (17) and (18) we have

$$B_{40}^{C} = -15,083 \,\rho_4 \,$$
,
 $B_{43}^{C} = -15,083 \,\rho_4 \,\sqrt{\frac{10}{7}} \,$.

Since $B_{40}^{C} < 0$ in this cubic representation, the site is approximately octahedral. In this case $|A_{43}| \sim (10/7)^{1/2} |A_{40}|$, and the approximation is a good one. Also, because $A_{20} \sim 0$, the approximation is even better. However, since the oddfold fields A_{10} , A_{30} , A_{33} , A_{50} , and A_{53} are not negligible, the electric dipole transitions should be observable. We omit the details of the Hf site in Li₂HfTeO₆, since the results are very similar. However, since the spectra can be interpreted in terms of cubic symmetry and electric dipole transitions can be observed, this would probably be an excellent host.

To show the additional splitting in going from the cubic approximation to the correct symmetry in this host, we have used the above relation for the calculation of the energy levels of W^{4+} in the Zr site in this host. The results are given in tables 3a (cubic) and 3b (C_3). By comparing the results, we see that the reduction from cubic to C_3 for this host introduces what might be referred to as fine structure on the cubic field splittings. Thus, the assertion that the spectra can be interpreted in terms of the cubic approximation appears valid.

4.4 Li₆BeZrF₁₂

Li₆BeZrF₁₂ is the only fluoride host, and judging from the results of $3d^N$ in fluoride hosts, the point-charge (monopole) model should be a good approximation. For the Zr site in Li₆BeZrF₁₂, the monopole crystal-field components, A_{nm} (cm⁻¹/Åⁿ), are

$$A_{20} = 1411$$
, $A_{40} = -3101$, $A_{44} = 5393$, and $S_4(A) = 9098$.

From equations (10) to (12) we have

$$B_{44}^{C} = -6949 \, \rho_4 \, ,$$

 $B_{44}^{C} = -6949 \, \rho_4 \, \sqrt{\frac{5}{14}} \, .$

(Taking the value of B_{44} as positive or negative has no effect on the energy levels, just on the phase factors in the wave functions. However,

letting $R_{44} \rightarrow -B_{44}$ corresponds to a rotation of $\pm 45^{\circ}$, and this rotation must be used in the evaluation of A_{32} and A_{52} in any crystal-field model.) Since the relation $|(A_{44})| \sim (5/14)^{1/2} |A_{40}|$, the cubic approximation can be used to advantage in the analysis of the experimental data. However, A_{20} is not negligible in this case, and its effects will probably be observable in the refinement of the experimental data. Li₆BeZrF₁₂ is certainly a host material that should be further investigated.

4.5 ZrGeO₂

The crystal-field components for the Zr site in ZrGeO₄ are

$$A_{20} = 5{,}175$$
; $A_{40} = -6{,}023$, $|A_{44}| = 7{,}484$; and $S_4(A) = 12{,}178$.

From equations (10) to (12), we have

$$B_{40}^{C} = -9301 \,\rho_4$$
,
 $B_{44}^{C} = -9301 \,\rho_4 \,\sqrt{\frac{5}{14}}$.

However, since $(5/14)^{1/2}|A_{40}| = 3599$, we see that the cubic representation is not good (A_{44}) is approximately twice this value). Nevertheless, a rough first interpretation of the experimental data in terms of the tetrahedral cubic group might be tried.

4.6 Zr₃GeO₈

 Zr_3GeO_8 has two sites for the Zr ions, but when the crystal is doped with quadruply ionized $5d^N$ ions, these ions may go preferentially into one of the two sites. The crystal-field components for the Zr_1 site are

$$A_{20} = 10,659$$
; $A_{40} = -7,875$; $A_{44} = 6,875$; and $S_4(A) = 12,512$.

For the cubic approximation we have

$$B_{40}^{C} = -9556 \,\rho_4$$
 ,
 $B_{44}^{C} = -9556 \,\rho_4 \,\sqrt{\frac{5}{14}}$.

Again we have tetrahedral cubic symmetry but with the approximation rather poor: $A_{44} = -6875$, and $(5/14)^{1/2} |A_{40}| = 4706$. However, the

approximation is probably close enough to allow a first analysis of the experimental data.

For the Zr₂ site,

$$A_{20} = -7,440$$
; $A_{40} = -9,538$; $|A_{44}| = 8,910$; and $S_4(A) = 15,803$.

These results give

$$B_{40}^{C} = -12,070 \ \rho_4 \ ,$$

$$B_{44}^{C} = -12,070 \ \rho_4 \ \sqrt{\frac{5}{14}} \ .$$

As in the Zr_1 site, the tetrahedral cubic approximation is not very good but can be used in a preliminary analysis of the experimental data.

4.7 ThSiO₄

The crystal-field components for the Th site are

$$A_{20} = -6300$$
, $A_{40} = 18.45$, $A_{44} = 4906$, and $S_4(A) = 6938$.

The cubic approximation is

$$B_{40}^C = 5299 \,\rho_4 \,$$
,
 $B_{44}^C = 5299 \,\rho_4 \,\sqrt{\frac{5}{14}} \,$.

However the cubic approximation is poor in this case and probably should not even be considered. For comparison with experimental data, on a particular ion, it would be better to use the parameters given in table 1 with the A_{nm} given above to calculate the energy levels.

4.8 ThGeO₄

For ThGeO₄, the same procedure as for ThSiO₄ applies for the zircon form, but for the scheelite form

$$A_{20} = 3593$$
, $A_{40} = -3236$, $|A_{44}| = 5405$, and $S_4(A) = 8301$.

Then we have

$$B_{40}^{C} = -6340 \,\rho_4$$
 ,
 $B_{44}^{C} = -6340 \,\rho_4 \,\sqrt{\frac{5}{14}}$.

Since we have $|A_{40}| < |A_{44}|$, the symmetry is far from cubic, but again in a crude analysis of the experimental data, the tetrahedral cubic symmetry may work.

5. Conclusion

X-ray data have been given on nine possible host materials for the quadruply ionized ions with the $4d^N$ and $5d^N$ electronic configurations. Very little information on the crystal growth and physical properties of host materials is given; however, some information can be found in the references to the x-ray data. For ZrSiO₄, several references are given to the crystal growth. The x-ray data were used to obtain the crystalfield components, and the reported data on several quadruply ionized ions with the $5d^N$ electronic configuration were used to approximate the crystal-field parameters for any quadruply ionized ion in that series. Cubic approximates were made for each host material and shown to be quite poor for some of the hosts. For W^{4+} (5d²) in the Zr site in ZrSiO₄, explicit energy levels were calculated for the site in D_{2d} symmetry and for the cubic approximation. For comparison, a similar calculation was performed for Re^{4+} (5 d^3). A second calculation made for W^{4+} in the Zrsite in Li₂ZrTeO₆ with C₃ symmetry showed the effect of a small trigonal distortion at the site.

Approximate values necessary to calculate the energy levels of all the quadruply ionized ions with the $5d^N$ electronic configuration are given (table 1) even though the ionization state of some of the ions may be difficult if not impossible to achieve. No similar detailed calculations were done on the $4d^N$ because the data necessary for an approximate calculation were unavailable.

Table 1. Approximate free-ion parameters (cm $^{-1}$) and values of ρ_n (Å n) for the quadruply ionized ions with the 5 d^N configuration

		F(2)	F(4)		
Ion	nd ^N	В	С	ρ ₂	ρ ₄
Та	5d ¹	<u> </u>		1.732	5.757
W	5d ²	41,947 537.8	28,071 2,228	1.539	4.244
Re	5d ³	43,787 560.9	29,340 2,329	1.470	4.030
Os	5d ⁴	45,558 583.3	30,556 2,425	1.278	2.865
Ir	5d ⁵	47,364 606.0	31,804 2,524	1.206	2.530
Pt	5d6	48,754 624.0	32,725 2,597	1.127	2.183
Au	5d ⁷	50,264 643.2	33,744 2,678	1.052	1.874
Hg	5 <i>d</i> 8	51,795 662.8	34,778 2,760	0.9697	1.554
TI	5d ⁹	— —		0.8991	1.243

Table 2a. Energy levels of W4+ in the Zr site of ZrSiO4, cubic approximationa

Level	I.R.b	Energy (cm ⁻¹)		F	ree ion state ((%)	
1	Г3	0	88 ³ F	+	4 3 _P	+	3 ¹ D
2	Γ ₅	471	$84^{\circ}3_F$	+	8 3p	+	$6^{-1}D$
3	Γ4	5,202	$86^{\circ}3_F$	+	$13^{-3}P$		•
4	Γ1	6,243	$70^{-3}F$	+	$21^{-3}P$	+	$4^{-1}G$
5	Γ5	10,972	41 ¹ D	+	$40^{-1}G$	+	$18^{-3}F$
6	Г3	11,829	$45^{-1}G$	+	$43^{-1}D$	+	7 ³ P
7	Γ_2	20,101	99 3 _F				_
8	Γ_1	21,013	33 ¹ G	+	30 ¹ S	+	$21^{3}F$
9	Γ5	21,302	86 ³ F	+	$6^{-1}G$	+	$4^{3}P$
10	Γ4	22,239	91 3 _F	+	4 3p	+	$3 {}^{1}G$
11	Г3	22,591	88 3 _F	+	8 ³ P	+	$2^{-1}G$
12	Γ4	27,406	80 ³ P	+	$14^{3}F$	+	$4 \frac{1}{3}G$
13	Γ_1	27,409	$61^{3}P$	+	$27^{-1}G$	+	$7^{3}F$
14	Γ5	27,930	$41^{3}P$	+	$33^{-1}G$	+	$15^{-1}D$
15	Г3	30,612	76 ³ P	+	$17^{-3}F$	+	$5^{-1}G$
16	Γ5	32,666	46 ³ P	+	$30^{-1}D$	+	15 ${}^{1}G$
17	Γ4	33,399	91 ¹ G	+	7 ³ F	+	$1^{3}P$
18	Γ5	42,252	93 ³ F	+	$3 ^{1}G$	+	$2 \frac{1}{2}D$
19	Γ3	50,460	51 ¹ D	+	$44 ^{1}G$	+	$2^{3}P$
20	Γ_1	61,007	61 ¹ S	+	35 ¹ G	+	$2^{3}P$

 $a_{The\ parameters\ are\ F(2)}=41,947;\ F(4)=28,071;\ \zeta=3,102;\ B_{40}=39,669\ cm^{-1};\ and\ B_{44}=(5/14)^{1/2}\ B_{40}.$

 $b_{Irreducible}$ representations of the cubic T_d group (Koster et al, 1963).

Table 2b. Energy levels of W4+ in the Zr site in ZrSiO4a

	· .	Energy					
Level	I.R.b	(cm ⁻¹)		Fre	ee ion state ((%)	
1	Г3	0	97 3 _F	+	$2^{-1}D$		
2	Γ5	929	$92\ 3_{F}$	+	5 1 _D	+	1 ¹ G
3	Γ_1	2,917	$80^{-3}F$	+	$12^{-1}D$	+	$5^{-1}G$
4	Γ4	3,047	$75^{-3}F$	+	$14^{-1}D$	+	9 3 _P
5	Γ2	7,295	98 3 _F				
6	Γ5	7,679	97 3 _F	+	$1^{3}P$		
7	Г3	8,358	93 3 _F	+	$4^{3}P$	+	$2^{-1}G$
8	Γ_1	10,726	$45^{3}P$	+	$40^{-3}F$	+	6 ¹ S
9	Γ4	10,831	43 3 _F	+	$41^{-1}D$	+	13 ³ P
10	Γ5	11,222	$71^{-3}F$	+	$18^{-3}P$	+	$6 ^{1}D$
11	Γ_1	12,106	41 ¹ D	+	$28^{-1}G$	+	19 3 _F
12	Γ2	14,536	$72^{-3}P$	+	$27^{3}F$		į
13	Γ5	14,634	37 3 _P	+	$29^{-1}D$	+	$17^{-3}F$
14	Γ_1	14,772	$55^{3}F$	+	$22^{-1}G$	+	$20^{-3}P$
15	Г3	14,975	50 ³ P	+	$27^{3}F$	+	12 ¹ D
16	Γ5	16,247	$44^{-1}G$	+	$29^{-3}F$	+	$13^{-3}P$
17	Γ4	17,044	60 ¹ G	+	$15^{3}F$	+	$15^{-3}P$
18	Γ5	21,962	66 ¹ G	+	$18^{-3}F$	+	10 ¹ D
19	Γ1	21,992	75 ¹ G	+	$14^{-3}F$	+	$6^{3}P$
20	Г3	22,005	37 1 _D	+	$34 ^{1}G$	+	$24^{-3}F$
21	Γ4	23,169	34 ¹ D	+	$34 ^{1}G$	+	19 3 _P
22	Γ4	32,071	75 ³ F	+	$23 ^{3}P$		
23	Γ_1	32,443	46 ¹ S	+	$23^{3}F$	+	16 ¹ D
24	Γ5	32,507	$80^{-3}F$	+	13 ³ P	+	$6 {}^{1}G$
25	Гз	34,991	47 ³ F	+	$31^{-3}P$	+	17 ¹ <i>G</i>
26	Γ5	35,837	73 ³ P	+	$22^{-3}F$	+	$3 ^{1}G$
27	Γ1	35,894	63 ³ P	+	$14^{-3}F$	+	$11^{-1}G$
28	Γ2	37,107	51 ³ F	+	$27 ^{1}G$	+	$21^{-3}P$
29	Γ4	39,165	79 ³ F	+	$18^{-3}P$	+	$1^{-1}G$
30	Γ5	39,590	$66^{-3}F$	+	$30^{-3}P$	+	$3^{-1}G$
31	Гι	40,269	$52^{3}F$	+	$44^{\circ}3P$	+	1 ¹ D
32	Γ2	42,169	72 ¹ G	+	$22^{3}F$	+	5 3 _P
33	Γ3	44,998	44 1 _D	+	$37^{-1}G$	+	9 3 _F
34	Γ5	45,830	52 ¹ G	+	$35 ^{1}D$	+	$6^{3}P$
35	Γ_1	74,204	42 ¹ G	+	35 ¹ S	+	20 ¹ D

^aParameters are $F^{(2)} = 41,947$; $F^{(4)} = 28,071$; $\zeta = 3,102$; $B_{20} \approx -19,631$; $B_{40} = 3,863$; and $B_{44} = 36,626$ cm⁻¹. ^bIrreducible representation of the tetragonal group, D_{2d} . Koster et al (1963).

Table 2c. Energy levels of Re4+ in the Zr site in ZrSiO4, cubic approximationa

Level	I.R.b	Energy (cm ⁻¹)	<u></u>	Fr	ee ion state	(%)	
1	Г8	0	89 ⁴ F	+	3 ² D1	+	3 ² D2
2	Г8	9,397	25° $^{\circ}$ $^{\circ}$	+	$20^{-4}F$	+	16 ² H
3	Г8	11,656	$48^{-2}G$	+	$\frac{20}{29} \frac{1}{2}$	+	$7^{2}P$
4	Γ ₆	12,804	$33^{-2}G$	+	24 211	+	$^{'}_{23}$ $^{'}_{P}$
5	Γ ₇	17,032	$63^{-4}F$	+	$\frac{24}{13} \frac{11}{2}$	+	8 2/1
6	Г8	18,582	72 ⁴ F	+	$7^{2}G$	+	7 211
7	Г8	20,027	73 ⁴ F	+	$9^{2}H$	+	7 4 _P
8	Γ7	20,362	$44 ^4F$	+	$14^{-2}D1$	+	$13^{-2}G$
9	Г6	21,322	78 ⁴ F	+	$9^{4}P$	+	$\frac{15}{6}$ ^{2}P
10	Г8	22,457	27 ⁴ F	+	$21 \ ^2G$	+	$20^{-2}H$
11	Г6	24,504	38 ⁴ P	+	$\frac{28}{28}$	+	$24^{-4}F$
12	Г8	26,505	45 ⁴ P	+	$\frac{22}{211}$	+	$15^{-4}F$
13	Г7	27,518	39 ⁴ F	+	23 211	+	$16^{-4}P$
14	Г8	28,717	42 ⁴ P	+	$39^{-4}F$	+	9 ² H
15	Г6	29,327	$38^{-2}G$	+	35 ² 11	+	$12^{-4}P$
16	Г8	30,583	30 ² 11	+	19 ⁴ F	+	$16^{-2}G$
17	Г7	31,197	$55^{2}G$	+	16 ⁴ P	+	$10^{-2}H$
18	Γ6	32,498	$52^{-2}G$	+	$21^{-4}P$	+	15 ² //
19	Г8	32,681	37 ² 11	+	$24^{-2}G$	+	$18^{-4}F$
20	Г8	35,005	28 ² 11	+	$27^{-2}D2$	+	$12^{-4}F$
21	Γ_6	36,207	29 ² 11	+	$28^{-2}P$	+	$23^{2}F$
22	Г8	36,764	48 ² 11	+	$18^{-2}F$	+	$12^{-2}G$
23	Γ7	37,755	$31^{-2}F$	+	$20^{-2}D2$	+	$19^{-2}H$
24	Г8	39,768	$35^{2}F$	+	$28^{-2}D2$	+	17 ⁴ P
25	Γ7	41,848	$95^{2}F$	+	$1^{-2}G$	+	$1^{-2}D2$
26	Г8	42,605	39 ⁴ F	+	$25^{-4}P$	+	$12^{-2}D2$
27	Г7	42,770	36 ⁴ F	+	$34^{-4}P$	+	16 ² F
28	Г8	44,686	39 ⁴ F	+	$21^{-4}P$	+	$21^{-2}F$
29	Γ_6	45,627	57 ⁴ F	+	17 ² H	+	$14^{-4}P$
30	Г8	50,073	$28^{-2}D1$	+	$23^{-2}G$	+	$20^{-2}D2$

^aThe parameters are $F^{(2)} = 43,787$; $F^{(4)} = 29,340$; $\zeta = 3,741$, $B_{40} = 37,668$ cm⁻¹; and $B_{44} = (5/14)^{1/2}$ B_{40} .

blrreducible representations of the double cubic group, T_d (Koster et al, 1963).

Table 2d. Energy levels of Re4+ in the Zr site of ZrSiO4a

	I.R.b	gy levels of Revi	111 the 21 31			7.	
Level	1.K.°	Energy (cm ⁻¹)	 	Fi	ee ion state (9	6)	
1	Г7	0	79 ⁴ F	+	$5^{2}D1$	+	$5^{2}D2$
2	Γ ₆	2,152	68 ⁴ F	+	$8^{-2}G$	+	$8^{-2}D2$
3	Г7	5,444	87 ⁴ F	+	8 ⁴ P	+	$1^{2}D2$
4	Г6	6,299	$\frac{1}{1}$ $\frac{4}{F}$	+	8 ⁴ P	+	$8^{-2}G$
5	Γ_6	8,399	67 ⁴ F	+	12 ⁴ P	+	$9^{2}G$
6	Γ7	9,023	74 ⁴ F	+	$10^{-2}G$	+	5 ⁴ P
7	Г6	10,683	$31^{-2}G$	+	29 ⁴ F	+	22 ² H
8	Γ7	12,346	25 ⁴ P	+	$24^{-4}F$	+	17 ² P
9	Γ7	13,289	$51^{-2}G$	+	33 ² H	+	5 ⁴ F
10	Γ_6	13,703	37 ² H	+	$36^{-2}G$	+	$12^{-4}F$
11	Γ7	14,337	45 ² 11	+	$43^{-2}G$	+	$4^{2}D2$
12	Γ_6	14,764	$30^{-2}G$	+	17 ² //	+	16 ⁴ P
13	Γ_6	18,666	26 ⁴ F	+	23 ⁴ P	+	$21^{-2}G$
14	Γ7	19,053	23 ⁴ F	+	21 ² H	+	$21^{-2}G$
15	Γ ₆	19,848	$27^{-2}G$	+	24 ² 11	+	19 ⁴ F
16	Γ7	20,191	$20^{-2}H$	+	$20^{-2}G$	+	19 ⁴ P
17	Γ_6	21,395	$28^{-2}G$	+	27 ² H	+	12 ² P
18	Γ7	22,972	$38^{-2}G$	+	37 ² H	+	9 4 _F
19	Γ ₆	23,777	$30^{-2}G$	+	$^{24}_{2P}$	+	17 ² H
20	Γ7	25,043	19 ² H	+	18 ² F	+	13 ⁴ F
21	Γ_6	26,288	26 ² H	+	19 ⁴ F	+	$18^{2}F$
22	Γ_6	26,423	57 ² H	+	13 ^{2}F	÷	9 4F
23	Γ7	26,682	27 ² D2	+	27 ² 11	+	14 ⁴ F
24	Γ7	27,662	32 ⁴ F	+	28 2//	+	$15^{-2}F$
25	Γ_6	28,715	34 ⁴ F	+	27 ⁴ P	+	$^{14}_{14} ^{2}_{F}$
26	Γ7	29,226	38 ⁴ F	+	$17^{2}F$	+	16 ⁴ P
27	Γ7	31,069	48 ⁴ F	+	$20^{-2}F$	+	12 ⁴ P
28	Γ ₆	31,233	67 ⁴ F	+	10 ² H	+	8 ⁴ P
29	Γγ	33,170	$36^{-2}F$	+	$28^{-2}D1$	+	13 ⁴ F
30	Γ_6	33,565	32 ⁴ P	+	$27^{-4}F$	+	12 211
31	Γ7	34,774	75 ⁴ F	+	7 ⁴ P	+	6 ² H
32	Γ_6	35,266	$31^{-4}F$	+	$18^{-2}G$	+	$12^{-2}D1$
33	Γ_6	36,297	45 ⁴ F	+	$13^{-2}D1$	+	13 ⁴ P
34	Γ ₆	37,827	31 ⁴ P	+	$25^{4}F$	+	16 ² H
35	Γ_6	38,248	46 ⁴ F	+	15 ² 11	+	$12^{-2}D1$
36	Γ7	38,303	39 ⁴ F	+	$20^{-4}P$	+	$12^{-2}H$
37	Γ7	38,978	51 ⁴ P	+	$36^{-4}F$	+	$3^{2}H$
38	Г6	39,715	30 ² //	+	18 ⁴ F	+	17 ⁴ P
39	Γ ₇	39,804	20 ⁴ P	+	16 ² //	+	15 ² D1
40	Γ7	40,583	66 ⁴ P	+	$12^{-4}F$	+	8 2 _H
41	Γ ₆	41,378	27 ⁴ P	+	20 211	+	20 ⁴ F
42	Γ7	42,564	$25^{-2}G$	+	19 211	+	16 2 _F
43	Γ ₆	45,152	53 ² //	+	$18^{-2}G$	+	$\frac{10}{10} ^{2}D2$
44	Γ7	45,917	$33^{2}D2$	+	$\frac{10}{29} ^{2}G$	+	16 2 _H
45	Γ_6	46,436	28 ² P	+	$\frac{26}{26} ^{2}F$	+	20 ⁴ P
46	Γ ₇	47,651	37 ² //	+	$\frac{20}{34} ^{2}F$	+	$\frac{23}{13} {}^{2}G$
47	Γ ₆	48,165	$40^{-2}F$	+	30 ² 11	+	$^{13}_{14} ^{2}_{G}$
48	Γ7	48,526	$44^{-2}F$	+	32 ² 11	+	$\frac{1}{8}$ $\frac{3}{2}$
49	Γ ₇	49,045	$42^{-2}F$, +	27 ² //	+	$^{0}_{19} ^{2}_{G}$
50	$\Gamma_{6}^{'}$	49,370	$34^{-2}F$	+	31 ² //	+	$\frac{15}{18} {}^{2}G$
aThe nese		= E(2) = A2.797. E(4)		<u>·</u>			10 0

^aThe parameters are F(2) = 43,787; F(4) = 29,340; $\zeta = 3,741$; $B_{20} = -18,751$; $B_{40} = 3,669$; and $B_{44} = 34,779$ cm⁻¹.

blirreducible representation of the double D_{2d} group (Koster et al. 1963).

Table 3a. Energy levels of W4+ in the Zr site in Li2ZrTeO6, cubic approximationa

Level	I.R.b	Energy (cm ⁻¹)		Fre	ee ion state ((%)	
1	Гз	0	83 ³ F	+	11 ³ P	+	3 ¹ G
2	Γ5	184	81 ³ F	+	$13^{-3}P$	+	4 ¹ D
3	Г4	4,362	$82^{-3}F$	+	$17^{-3}P$		
4	Γ1	5,052	73 ³ F	+	$20^{-3}P$	+	3 ¹ S
5	Γ4	10,778	50 ¹ G	+	$42^{-1}D$	+	$6^{3}F$
6	Гз	11,007	51 ¹ G	+	$42^{-1}D$	+	$3^{3}F$
7	Г1	22,265	47 ¹ S	+	$44^{-1}G$	+	8 ³ F
8	Г2	45,682	99 3 _F				
9	Γ5	46,344	96 3 _F	+	$2^{3}P$	+	$1^{-1}G$
10	Γ4	47,582	93 3 _F	+	$3^{3}P$	+	$2^{-1}G$
11	Г3	47,618	90 3 _F	+	8 3 _P		i
12	$\Gamma_{\mathbf{l}}$	52,080	79 3 _P	+	$18^{-3}F$	+	$2^{-1}G$
13	Γ4	52,909	76 ³ P	+	$17^{-3}F$	+	5 ¹ G
14	Γ5	53,365	49 3 _P	+	$21^{-1}G$	+	$18^{-1}D$
15	Гз	55,652	76 ³ P	+	$22^{3}F$	+	$1^{-1}G$
16	Γ5	57,965	35 ³ P	+	34 ¹ D	+	$24^{-1}G$
17	Γ4	58,884	91 ¹ G	+_	5 3 _F	+	$2^{3}P$

^aThe parameters are $F^{(2)} = 41.947$; $F^{(4)} = 28.071$; $\zeta = 3.102$; $B_{40} = -64.012$; and $B_{43} = (10/7)^{1/2} B_{40} \text{ cm}^{-1}$. bIrreducible representations of the cubic O group (Koster et al, 1963).

Table 3b. Energy levels of W⁴⁺ in the Zr site in LiZrTeO₆^a

		Energy					
Level	I.R. ^b	(cm ⁻¹)		Fre	ee ion state ((%)	
1	Γ_1	0	$82^{\circ}3_F$	+	$13^{-3}P$	+	$3^{1}D$
2	Г2,3	47	83 3 _F	+	$11^{-3}P$	+	$2^{1}D$
3	Γ2,3	788	$80^{-3}F$	+	$12^{-3}P$	+	$4 ^{1}D$
4	Γ2,3	4,529	$82^{-3}F$	+	16 ³ P		!
5	Γ_1	5,065	$82^{3}F$	+	17 ³ P		
6	Γ_1	5,404	$73^{3}F$	+	$20^{-3}P$	+	3 ¹ S
7	Γ2,3	10,360	50 ¹ G	+	$41^{-1}D$	+	$6^{3}F$
8	Г2,3	11,615	51 ¹ G	+	$42^{-1}D$	+	$3^{3}F$
9	Γ_1	11,732	51 ¹ G	+	$42^{-1}D$	+	5 3 _F
10	Γ_1	22,672	46 ¹ S	+	$44^{-1}G$	+	$8^{-3}F$
11	Γ_1	45,897	99 3 _F				
12	Γ2,3	46,473	96 ³ F	+	$1^{-3}P$	+	1 ¹ G
13	Γ_1	46,680	94 ³ F	+	4 3p	+	$1^{-1}G$
14	Γ_1	47,535	91 ³ F	+	$5^{3}P$	+	$2^{-1}G$
15	$\Gamma_{2,3}$	47,776	90 ³ F	+	7 ³ P	+	$1^{-1}G$
16	Γ2,3	48,126	93 ³ F	+	$4^{3}P$	+	$2^{-1}G$
17	Γ_1	52,319	78 ³ P	+	$18^{-3}F$	+	$2^{-1}G$
18	Γ2,3	53,032	$77^{3}P$	+	$17^{3}F$	+	$4^{-1}G$
19	Γ_1	53,452	45 3 <i>p</i>	+	$23 ^{1}G$	+	19 ¹ D
20	Γ_1	53,485	$72^{-3}P$	+	19 ³ F	+	$8^{-1}G$
21	Г2,3	53,769	49 3 _P	+	$22^{-1}G$	+	17 ¹ D
22	$\Gamma_{2,3}$	55,982	76 ³ P	+	$22^{3}F$	+	$1^{-1}G$
23	Γ_1	58,009	38 ³ P	+	$32^{-1}D$	+	$21 ^{1}G$
24	Г2,3	58,239	33 ³ P	+	$30^{-1}G$	+	$29^{-1}D$
25	r_1	58,821	88 ¹ G	+	$6^{3}F$	+	$4^{3}P$
26	Γ2,3	59,530	85 ¹ G	+	5 ¹ D	+	$4^{3}F$

aThe parameters are $F^{(2)} = 41,947$; $F^{(4)} = 28,071$; $\zeta = 3,102$; $B_{20} = 703.2$; $B_{40} = -61,733$; and $B_{43} = 77,440$ cm⁻¹.

bIrreducible representations of the C_3 group (Koster et al., 1963) ($\Gamma_{2,3} = \Gamma_2 + \Gamma_3$).

References

- Ballhausen, C. J. (1962), Introduction to ligand field theory, McGraw-Hill, New York, pp 273-292.
- Di Gregario, S., M. Greenblatt, J. H. Pifer, and M. D. Sturge (1982), An ESR and optical study of V⁴⁺ in zircon-type crystals, J. Chem. Phys. **76**, 2931.
- Koster, G. F., J. O. Dimmock, R. G. Wheeler, and H. Statz (1963), *Properties of the Thirty-Two Point Groups*, MIT Press, Cambridge, MA.
- Morrison, C. A. (September 1989), Host materials for transitionmetal ions, Harry Diamond Laboratories, HDL-DS-89-1. (Reported data on $4d^N$ and $5d^N$ ions are given in sections 13, 21, 28, 31, 33, and 35.)
- Morrison, C. A. (1988), Angular momentum theory applied to interactions in solids, Lecture Notes in Chemistry 47, Springer-Verlag, New York.
- Morrison, C. A., and G. A. Turner (October 1988), Analysis of the optical spectra of triply ionized transition-metal ions in yttrium aluminum garnet (YAG), Harry Diamond Laboratories, HDL-TR-2150.
- Nielson, C. W. and G. F. Koster (1963), Spectroscopic Coefficients for p^n , d^n , and f^n Configurations, MIT Press, Cambridge, MA.

Appendix	A.—Detaile	ed X-Ray	Data on	10 Host	Materials

$\mathbf{Appendix}\;\mathbf{A}$

Contents

Page	
ZrSiO ₄ 28	A-1.
HfGeO ₄	A-2.
Li ₂ XTeO ₆	A-3.
Li ₆ BeZrF ₁₂ 35	A-4.
ZrGeO ₄ 36	A-5.
Zr ₃ GeO ₈	A-6,
ThSiO ₄	Α-7.
Th GeO_4 42	A-8.

The following tables give the crystallographic and x-ray data on each of the 10 host materials discussed in the main body of text. The crystal-field components, A_{nm} , are calculated for the monopole (point charge), self-induced, and dipole contributions. Following each table is a list of references for that particular compound. These references include such topics as crystal growth, index of refraction, and electron spin resonance investigations. However, these reference lists are not, in any sense, extensive, and if further investigations are contemplated on any compound, additional literature searches should be undertaken.

A-1. ZrSiO₄

A-1.1 Crystallographic data on ZrSiO₄

Tetragonal D_{4h}^{19} (41/amd), 141 (second setting)

Ion	Site	Symmetry	х	у	z	q	α (Å ³)
Zr	4 <i>a</i>	D_{2d}	0	3/4	1/8	4	0.48 ^a
Si	46	D_{2d}	0	1/4	3/8	4	0.03 <i>a</i>
0	16h	C_{S}	0	у	z	-2	1.349 ^b

^aFraga et al (1976).

A-1.2 X-ray data

a (Å)	c (Å)	у	z	Ref.
6.6164	6.0150	0.067	0.198	а
6.607	5.982	0.0661	0.1953	b

^aWyckoff (1968).

A-1.3 Crystal-field components, A_{nm} (cm⁻¹/Åⁿ), for Zr (D_{2d}) site (x-ray data of Wyckoff)

Anm	Monopole	Self-induced	Dipole	Total
A20	-12,765	349.4	33,644	21,229
A32	-1,332	449.2	958.9	[.] 76.55
A40	910.3	-1,130	524.3	304.5
A44	8,630	-2,943	-7,031	-1,344
A52	6,142	-2,379	-1,796	1,967

A-1.4 Crystal-field components, A_{nm} (cm⁻¹/Åⁿ), for Zr (D_{2d}) site (Robinson et al data)

Anm	Monopole	Self-induced	Dipole	Total
A20	-13,840	388.8	34,843	21,392
A32	-522.2	332.7	754.3	564.8
A40	826.4	-1,175	369.0	20.10
A44	9,024	-3,114	-7,316	-1,406
A52	6,357	-2,514	-1.703	2,142

bSchmidt et al (1979).

^bRobinson et al (1971).

A-1.5 ZrSiO₄ (zircon) references

- Caruba, R., A. Baumer, and P. Hartman (1988), Crystal growth of synthetic zircon round natural seeds, J. Cryst. Growth 88, 297.
- Di Gregario, S., M. Greenblatt, and J. H. Pifer (1980), ESR of Nb⁴⁺ in zircon, Stat. Sol. (b)101, K149.
- Di Gregario, S., M. Greenblatt, J. H. Pifer, and M. D. Sturge (1982), An ESR and optical study of V⁴⁺ in zircon-type crystals, J. Chem. Phys. **76**, 2931.
- Fraga, S., J. Karwowski, and K. M. S. Saxena (1976), Handbook of Atomic Data, 5, 319.
- Harris, E. A., J. H. Mellor, and S. Parke (1984), Electron paramagnetic resonance of tetravalent praseodymium in zircon, Phys. Stat. Sol. (b)122, 757.
- Hong Xiaoyu, Bai Gui-ru, and Zhao Min-guang (1985), The study of the optical and the EPR spectra of V⁴⁺ in zircon-type crystals, J. Phys. Chem Solids **46**, 719.
- Koster, G. F., J. O. Dimmock, R. G. Wheeler, and H. Statz (1963), Properties of the Thirty-Two Point Groups, MIT Press, Cambridge, MA.
- Kusabu, K., T. Yagi, M. Kikuchi, and Y. Syono (1986), Structural considerations on the mechanism of the shock-induced zirconscheelite transition in ZrSiO₄, J. Phys. Chem. Solids 47, 675.
- Lyons, K. B., M. D. Sturge, and M. Greenblatt (1984), Low-frequency Raman spectrum of ZrSiO₄:V⁴⁺: An impurity-induced dynamical distortion, Phys. Rev. **B30**, 2127.
- Newman, D. J., and B. Ng (1989), Crystal-field superposition model analysis for tetravalent actinides, J. Phys: Condens. Mater. 1, 1613.
- Poirot, I. S., W. K. Kot, N. M. Edelstein, M. M. Abraham, C. B. Finch, and L. A. Biatner (1989), Optical study and analysis of Pu⁴⁺ in single crystals of ZrSiO₄, Phys. Rev. **B39**, 6388.
- Poirot, I. S., W. K. Kot, G. Shallimoff, N. M. Edelstein, M. M. Abraham, C. B. Finch, and L. A. Boatner (1988), Optical and E. P. R. investigations of Np⁴⁺ in single crystals of ZrSiO₄, Phys. Rev. **B37**, 3255.
- Robinson, K., G. V. Gibbs, and P. H. Ribbe (1971), The structure of zircon: A comparison with garnet, Amer. Mineral. 56, 782.

- Schmidt, P. C., A. Weiss, and T. P. Das (1979), Effects of crystal-fields and self-consistency on dipole and quadruple polarization of closed shell ions, Phys. Rev. **B19**, 5525.
- Silich, L. M., E. M. Kurpan, N. M. Bobkora, A. A. Stepanchuk, and S. A. Gailevich (1988), Quantitative x-ray phase analysis of ceramic in the Al₂O₃-TiO₂ system with AlO₂ and ZrSiO₄ added, Neorg. Mater. **24**, 1196.
- Wyckoff, R. W. G. (1968), Crystal Structures, 4, 157.

A-2 HfGeO₄

A-2.1 Crystallographic data on HfGeO₄

Tetragonai C_{4h}^{5} (141/a), 88 (first setting), Z=4

ſ	Ion	Site	Symmetry	х	у	Z	q	$\alpha (Å^3)^b$
Γ	Нf	4 <i>b</i>	S4	0	0	1/2	4	0.57 ^a
[Ge	4 <i>a</i>	S4	0	0	0	4	0.12 ^a
ı	О	16 <i>f</i>	c_1	х	у	z	-2	1.349 ^b

^aFraga et al (1976).

A-2.2 X-ray data on HfGeO₄

Γ	a (Å)	c (Å)	х	у	Z
Γ	4.849 ^a	10.50	0.25	0.11	0.07
1	4.862 ^b	10.497	0.2678	0.1739	0.0831

aWyckoff (1968).

A-2.3 Lattice sum, A_{nm} (cm⁻¹/Åⁿ), for Hf site (S₄) (Wyckoff, 1968)

Anm	Monopole	Self-induced	Dipole	Total
A20	6,465	-662.8	-13,794	-7,992
ReA32	3,527	-434.0	4,855	7,948
ImA32	512.3	-45.50	674.9	1,141
A40	-706.6	389.5	3,039	2,721
ReA44	-2,525	755.7	139.9	-1,629
ImA44	-3,920	961.5	2,154	-804.2
ReA52	3,026	-966.8	-9 (\.,.1	1,155
ImA52	-3,758	1,289	2,735	267.2
1A441	4,663			1,817

^bSchmidt et al (1979).

^bEnnaciri et al (1986).

A-2.4 HfGeO₄ references

- Ennaciri, A., A. Kahn, and D. Michel (1986), Crystal structures of HfGeO₄ and ThGeO₄ germanates, J. Less-Common Metals, 124, 105.
- Fraga, S., J. Karwowski, and K. M. S. Saxena (1976), Handbook of Atomic Data, 5, 319.
- Schmidt, P. C., A. Weiss, and T. P. Das (1979), Effects of crystal-fields and self-consistency on dipole and quadrupole polarization of closed shell ions, Phys. Rev. **B19**, 5525.
- Wyckoff, R. W. G. (1968), Crystal Structures, 3, Interscience, New York, 21.

A-3. Li_2XTeO_6 (X = Zr, Hf)

A-3.1 Crystallographic data on Li_2XTeO_6 (X = Zr, Hf)

Trigonal C_3^4 (R3), 146 (hexagonal setting), Z = 3

Ion	Site	Symmetry	х	у	z	q	1.349 ^a
Lil	3 <i>a</i>	C3	0	0	z	1	0.0321 ^a
Li2	3 <i>a</i>	C3	0	0	z	1	0.0321 ^a
X	3 <i>a</i>	C3	0	0	z	4	α_{x}^{b}
Te	3 <i>a</i>	C3	0	0	z	6	0.20^{b}
O1	96	C_1	х	у	z	-2	1.349 <i>a</i>
O2	96	C_1	x	у	z	–2	1.349 <i>a</i>

aSchmidt et al (1979).

A-3.2 X-ray data^a

X	a (Å)	c (Å)	zLi1	zLi2	z _X	^z Te	xO1	у01	<i>2O</i> 1
Zr	5.172	13.847	0.29	0.76	0.993	0.500	0.049	0.355	0.077
Hſ	5.164	13.782	!		-				

X	xO2	у02	zO2	$\alpha_{x} (\mathring{A}^{3})$
Zr	0.652	0.962	0.576	0.48
Hf	_	<u> </u>		0.57

aChoisnes et al (1988).

A-3.3 Lattice sum, A_{nm} (cm⁻¹/ \mathring{A}^n), for Zr site (C_3)

A_{nm}	Monopole	Self-induced	Dipole	Total
A10	-16,240		-5,318	-21,557
A20	457.0	26.77	5,159	5,643
A30	2,319	-971.7	5,941	7,289
RcA33	1,582	-239.1	-5,242	-3,899
ImA33	-2,633	881.9	-4,924	-6,675
A40	-14,546	5,506	467.2	-8,573
RcA43	3,925	-1,773	9,713	11,865
ImA43	17,820	-6,293	-4,997	6,530
A50	1,239	-610.4	-828.5	-200.1
RcA53	451.4	-38.55	-1,981	-1,568
ImA53	-1,805	1,241	-958.1	-1,522
IA431	18,247			13,543

bFraga et al (1976).

A-3.4 Lattice sum, A_{nm} (cm⁻¹/Åⁿ), for Hf site (C₃). [The positions of the ions within the unit cell are those of Li₂ZrTeO₆.]

Anm	Monopole	Self-induced	Dipole	Total
$\overline{A_{10}}$	68,052	_	9,798	77,850
A ₂₀	251.1	55.40	7,418	7,724
A30	2,387	-998.3	-28,186	-26,797
ReA33	1,607	-243.4	1,478	2,842
ImA33	-2,677	903.0	21,103	19,330
A40	-14,696	5,605	3,543	-5,548
ReA43	3,972	-1,811	11,185	13,345
ImA43	18,073	-6,432	-9,130	2,511
A ₅₀	1,249	-617.3	4,789	5,421
ReA53	453.8	-38.22	-1,007	-591.8
ImA53	-1,834	1,270	4,337	3,773
lA431	18,504	_	_	13,579

A-3.5 Li₂ZrTeO₆ references

Choisnet, J., A. Rulmont, and P. Tarte (1988), Les tellurates mixtes Li₂ZrTeO₆ et Li₂HfTeO₆: un nouveau phénomène d'ordre dans la famille corindou, J. Solid State Chem. 75, 124.

Fraga, S., J. Karwowski, and K. M. S. Saxena (1976), Handbook of Atomic Data, 5, 319.

Schmidt, P. C., A. Weiss, and T. P. Das (1979), Effects of crystal-fields and self-consistency on dipole and quadrupole polarization of closed shell ions, Phys. Rev. **B19**, 5525.

A-4. Li₆BeZrF₁₂

A-4.1 Crystallographic data on Li₆BeZrF₁₂

Tetragonal D_{4h}^{19} (141/amd), 141 (second setting), Z = 4

Ion	Site	Symmetry	х ^а	у	z	q	$\alpha (Å^3)^b$
Be	4 <i>a</i>	D_{2d}	0	3/4	1/8	2	0.0125
Zr	4 <i>b</i>	D_{2d}	0	1/4	3/8	4	0.480
Lil	8 <i>e</i>	C_{2v}	0	1/4	0.1034	1	0.0321
Li ₂	16 <i>f</i>	C_2	0.2303	0	0	1	0.0321
F ₁	16h	C_{S}	0	0.5340	0.4207	-1	0.731
F2	16 <i>h</i>	C_{S}	0	0.0260	0.2903	-1	0.731
F3	16h	$C_{\rm S}$	0	-0.0568	0.0745	-1	0.731

 a_{X-ray} data: a = 6.570, c = 18.62, Wyckoff (1968).

A-4.2 Crystal-field components, A_{nm} (cm⁻¹/ \mathring{A}^n), for Zr (D_{2d}) site

A_{nm}	Monopole	Self-induced	Dipole	Total
A20	1,411	97.22	-6,180	-4,672
A32	-3,101	763.4	-4,360	-6,697
A40	-4,960	1,762	-2,039	-5,237
A44	5,393	-1,943	3,955	7,405
A52	3,606	-1,754	2,452	4,304

A-4.3 Li₆BeZrF₁₂ references

Fraga, S., J. Karwowski, and K. M. S. Saxena (1976), Handbook of Atomic Data, 5, 319.

Schmidt, P. C., A. Weiss, and T. P. Das (1979), Effects of crystal-fields and self-consistency on dipole and quadrupole polarization of closed shell ions, Phys. Rev. **B19**, 5525.

Wyckoff, R. W. G. (1968), Crystal Structures, Vol. 4, Interscience, New York, 57.

^bSchmidt et al (1979) except for Zr which is from Fraga et al (1976).

A-5. ZrGeO₄

A-5.1 Crystallographic data on ZrGeO₄

Tetragonal C_{4h}^6 (141/a), 88 (first setting), Z = 4

Ion	Site	Symmetry	x ^a	у	z	q	$a \mapsto 3b$
Ge	4a	S4	0	0	0	4	(1)
Zr	4 <i>b</i>	S4	0	0	1/2	4	(·
0	16 <i>f</i>	c_1	х	у	z	-2	1.

aX-ray data: a = 4.8660, c = 10.55 (Å), x = 0.2664, y = 0.1726, z = 0.0822 (Ennaciri et al, 1984).

A-5.2 Crystal-field components, A_{nm} (cm⁻¹/ \mathring{A}^n), for Zr (S₄) site

Anm	Monopole	Self-induced	Dipole	Total
A20	5,175	-202	-13,444	-8,470
RcA32	-2,584	543	3,702	1,661
ImA32	5,083	-1,228	2,074	5,928
A40	-6,023	1,773	7,119	2,870
ReA44	-5,668	1,928	-154	-3,894
ImA44	-4,887	1,457	50	-3,380
RcA52	1,982	-754	394	1,622
ImA52	-5,705	2,280	717	-2,708
14441	7,484			5,516

A-5.3 Crystal-field components, A_{nm} (cm⁻¹/Åⁿ), for Ge (S₄) site in ZrGeO₄

A _{nm}	Monopole	Self-induced	Dipole	Total
A20	-16,423	2,648	-17,512	-31,288
RcA32	17,821	-5,603	8,684	20,902
ImA32	36,558	-12,128	21,800	46,235
A40	-16,132	7,646	-3,565	-12,051
RcA44	-10,322	5,533	-6,628	-11,417
ImA44	12,115	-6,078	9,726	15,764
RcA52	-2,489	1,770	-3,199	-3,918
ImA52	-5,540	3,989	-6,510	-8,062
1A441	15,916			19,464

^bFraga et al (1976).

A-5.4 ZrGeO₄ references

- Ennaciri, A., A. Kahn, and D. Michel (1986), Crystal structures of HfGeO₄ and ThGeO₄ germanates, J. Less-Common Metals, 124, 105.
- Fraga, S., J. Karwowski, and K. M. S. Saxena (1976), Handbook of Atomic Data, 5, 319.
- Schmidt, P. C., A. Weiss, and T. P. Das (1979), Effects of crystal-fields and self-consistency on dipole and quadrupole polarization of closed shell ions, Phys. Rev. **B19**, 5525.

A-6. Zr₃GeO₈

A-6.1 Crystallographic data on Zr₃GeO₈

Tetragonal $D_{2d}^{11}(1\overline{4}2m)$, 121 (first setting), Z=2

Ion	Site	Symmetry	хa	у	z	q	$u (Å^3)^b$
Ge	2a	D_{2d}	0	0	0	4	0.12^{b}
Zrl	2 <i>b</i>	D_{2d}	0	0	1/2	4	0.48^{b}
Zr ₂	4 <i>d</i>	<i>S</i> 4	0	1/2	1/4	4	0.48^{b}
o_1	8 <i>i</i>	$C_{\mathcal{S}}$	0.2004	0.2004	0.3410	-2	1.349 ^c
O_2	8 <i>i</i>	$C_{\mathcal{S}}$	0.2170	0.2170	0.0904	-2	1.349 ^c

 a_{X-ray} data: a = 5.005, c = 10.550 (Å), Ennaciri et al (1984).

A-6.2 Crystal-field components, A_{nm} (cm⁻¹/ \mathring{A}^n), for Ge (D_{2d}) site

A_{nm}	Monopole	Self-induced	Dipole	Total
A ₂₀	-9,412	1,462	-13,999	-21,949
A32	37,705	-11,897	26,755	52,564
A40	-17,256	7,914	-7,401	-16,742
A44	13,709	-6,580	10,516	-17,644
A52	-3,458	2,382	-5,316	-6,393

A-6.3 Crystal-field components, A_{nm} (cm⁻¹/Åⁿ), for Zr₁ (D_{2d}) site

Anm	Monopole	Self-induced	Dipole	Total
A20	10,659	-900	-7,933	1,827
A32	300.1	38.3	-98.4	240.6
A40	-7,875	2,384	6,546	1,055
A44	6,875	-2,024	-91.5	4,760
A52	-5,795	2,320	-289.0	-3,764

bFraga et al (1976).

^CSchmidt et al (1979).

A-6.4 Crystal-field components, A_{nm} (cm⁻¹/Åⁿ), for Zr₂ (S₄) site of Zr₃GeO₈

Anm	Monopole	Self-induced	Dipole	Total
A20	-7,440	974	-6,987	-13,453
ReA32	-6,953	1,611	129	-5,219
ImA32	-12,700	3,350	-5,948	-15,298
A40	-9,538	2,874	3,317	-3,347
ReA44	-6,213	2,229	-170	-4,154
ImA44	6,389	-2,090	2,204	6,500
ReA52	1,489	-645	1,029	1,873
ImA52	3,755	-1,660	1,473	3,568
IA44I	8,910		_	7,714

A-6.5 Zr₃GeO₈ references

Ennaciri, A., A. Kahn, and D. Michel (1986), Crystal structures of HfGeO₄ and ThGeO₄ germanates, J. Less-Common Metals, 124, 105.

Fraga, S., J. Karwowski, and K. M. S. Saxena (1976), Handbook of Atomic Data, 5, 319.

Schmidt, P. C., A. Weiss, and T. P. Das (1979), Effects of crystal-fields and self-consistency on dipole and quadrupole polarization of closed shell ions, Phys. Rev. **B19**, 5525.

A-7. ThSiO₄

A-7.1 Crystallographic data on ThSiO₄

Tetragonal D_{4h}^{19} (I41/amd), 141 (first setting), Z = 4

Ion	Site	Symmetry	x^a	у	Z	q	$\alpha (Å^3)$
Th	4 <i>a</i>	D_{2d}	0	3/4	1/8	4	1.52 ^b
Si	4 <i>b</i>	D_{2d}	0	3/4	5/8	4	0.030^{b}
0	16h	$C_{\mathcal{S}}$	0	0.0732	0.2104	-2	1.349 ^c

 $^{^{}a}X$ -ray data: a = 7.1328 Å, c = 6.3188 Å, Taylor et al (1978).

A-7.2 Crystal-field components, A_{nm} (cm⁻¹/Åⁿ), for Th site (D_{2d})

A _{nm}	Monopole	Self-induced	Dipole	Total
A20	-6,300	-141.4	26,500	20,058
A32	-1,653	193.5	1,666	206.2
A40	18.45	-493.3	1,350	875.4
A44	4,906	-1,316	-4,142	-552.9
A ₅₂	3,753	-1,108	-1,116	1,529

A-7.3 Crystal-field components, A_{nm} (cm⁻¹/Åⁿ), for Si site (D_{2d})

Anm	Мопорове	Self-induced	Dipole	Total
A20	7,634	-3,788	28,562	32,408
A32	-64,599	24,940	-45,571	-85,230
A40	-35,517	21,569	-31,618	-46,566
A44	13,907	-9,471	10,306	14,741
A52	-7,113	6,834	14,295	-14,573

^bFraga et al (1976).

CSchmidt et al (1979).

A-7.4 ThSiO₄ references

- Fraga, S., J. Karwowski, and K. M. S. Saxena (1976), Handbook of Atomic Data, 5, 319.
- Schmidt, P. C., A. Weiss, and T. P. Das (1979), Effects of crystal-fields and self-consistency on dipole and quadrupole polarization of closed shell ions, Phys. Rev. **B19**, 5525.
- Taylor, M., and R. C. Ewing (1978), The crystal structures of the ThSiO₄ polymorphs: Huttonite and Thorite, Acta. Crystal. **B34**, 1074.

A-8. ThGeO₄

A-8.1 Crystallographic data on ThGeO₄

Tetragonal D_{4h}^{19} (141/amd), 141 (first setting), Z = 4

Ion	Site	Symmetry	х	у _	z	q	$\alpha (Å^3)$
Th	4a	D _{2d}	0	0	0	4	1.52^{b}
Ge	46	D_{2d}	0	0	1/2	4	0.12^{b}
0	16 <i>h</i>	$C_{\mathcal{S}}$	0	0.1803 <i>a</i>	0.3214	-2	1.349 ^c

 $^{^{}a}X$ -ray data: $a = 7.230 \text{ Å}, c = 6.539 \text{ Å}, Ennaciri et al (1986).}$

A-8.2 Tetragonal C_{4h}^6 (I4₁/a), 88 (first setting), Z = 4

Ion	Site	Symmetry	х	у	z	q	$\alpha (Å^3)$
Th	46	S4	0	0	1/2	4	1.52^{b}
Ge	46	S4	0	0	0	4	0.12^{b}
0	16f	Cı	0.2548 ^a	0.1493	0.0787	-2	1.348 ^c

 a_{X-ray} data: a = 5.145 Å, c = 10.531 Å, Ennaciri et al (1986).

A-8.3 Crystal-field components, A_{nm} (cm⁻¹/ \mathring{A}^n), for Th site (D_{2d})

A_{nm}	Monopole	Self-induced	Dipole	Total
A20	-8,188	49.52	21,620	13,482
A32	151.6	-68.33	171.6	254.8
A40	549.2	-547.2	448.5	450.6
A44	5,368	_1,397	-3,701	270.1
_A52	-3,634	1,074	829.8	-1,730

^bFrag 2 et al (1976).

^CSchmidt et al (1979).

^bFraga et al (1976).

^CSchmidt et al (1979).

A-8.4 Crystal-field components, A_{nm} (cm⁻¹/Åⁿ), for Ge site (D_{2d})

Anm	Monopole	Self-induced	Dipole	Total
A20	15,677	-3,858	19,380	31,119
A32	48,087	-15,117	27,015	59,985
A40	-26,107	12,492	-17,436	-31,051
A44	8,289	-4,775	5,642	9,156
A52	7,228	-5.656	8,759	10,331

A-8.5 Crystal-field components, A_{nm} (cm⁻¹/Åⁿ), for Th site (S₄)

A_{nm}	Monopole	Self-induced	Dipole	Total
A20	3,593	-382.9	-4,985	-1,775
ReA32	1,850	-150.2	3,916	5,616
ImA32	-98.96	33.57	124.6	59.21
A40	-3,236	977.3	3,822	1,563
RcA44	-3,857	977.1	1,069	-1,811
ImA44	-3,787	888.8	810.3	-2,088
ReA52	1,923	-599.4	138.0	1,461
ImA52	-3,970	1,326	1,369	-1,275
14441	5,405	_	<u> </u>	2,764

A-8.6 Crystal-field components, A_{nm} (cm⁻¹/Åⁿ), for Ge site (S₄)

Anm	Monopole	Self-induced	Dipole	Total
A20	-21,877	3,538	-13,762	-32,101
RcA32	22,842	~7,897	15,609	30,554
ImA32	40,279	-13,830	23,195	49,644
A40	16,030	8,434	-7,823	-15,419
ReA44	-9,474	5,340	-3,575	-7,709
ImA44	16,075	-8,588	13,046	20,533
ReA52	-3,667	2,846	-4,027	-4,849
ImA52	-6,414	5,096	-5,729	-7,048
lA441	18,659		<u> </u>	21,932

A-8.7 ThGeO₄ references

- Ennaciri, A., A. Kahn, and D. Michel (1986), Crystal structures of HfGeO₄ and ThGeO₄ germanates, J. Less-Common Metals, 124, 105.
- Fraga, S., J. Karwowski, and K. M. S. Saxena (1976), Handbook of Atomic Data, 5, 319.
- Schmidt, P. C., A. Weiss, and T. P. Das (1979), Effects of crystal-fields and self-consistency on dipole and quadrupole polarization of closed shell ions, Phys. Rev. **B19**, 5525.

Distribution

Administrator
Defense Technical Information Center
Attn DTIC-DDA (2 copies)
Cameron Station, Bulding 5
Alexandria, VA 22304-6145

Director
Night Vision & Electro-Optics Laboratory
Attn Technical Library
Attn R. Buser
Attn A. Pinto (2 copies)
Attn J. Hebersat
Attn R. Rhode
Attn W. Tressel
Ft Belvoir, VA 22060

Director Defense Advanced Research Projects Agency Attn J. Friebele 1400 Wilson Blvd Arlington, VA 22290

Director
Defense Nuclear Agency
Attn Tech Library
Washington, DC 20305

Under Secretary of Defense Res & Engineering
Attn Tech Library, 3C128
Washington, DC 20301

Office of the Deputy Chief of Staff for Research, Development, & Acquisition Department of the Army Attn DAMA-ARZ-B, I. R./ Hershner Washington, DC 20310

Commander

US Army Armament Munitions & Chemical Command (AMCCOM) R&D Center Attn DRDAR-TSS, STINFO Div Dover, NJ 07801

Commander Atmospheric Sciences Laboratory Attn Technical Library White Sands Missile Range, NM 88002 Director
US Army Ballistic Research Laboratory
Attn SLCBR-DD-T (STINFO)
Aberdeen Proving Ground, MD 21005

Director
US Army Electronics Warfare Laboratory
Attn J. Charlton
Attn DELET-DD
Ft Monmouth, NJ 07703

Commanding Officer
USA Foreign Science & Technology Center
Attn DRXST-BS, Basic Science Div
Federal Office Building
Charlottesville, VA 22901

Commander
US Army Materials & Mechanics Research
Center
Attn DRXMR-TL, Tech Library
Watertown, MA 02172

US Army Materiel Systems Analysis Activity Attn DRXSY-MP, Library Aberdeen Proving Ground, MD 21005

Commander
US Army Missile & Munitions Center &
School
Attn ATSK-CTD-F
Attn DRDMI-TB, Redstone Sci Info
Center
Redstone Arsenal, AL 35809

Commander
US Army Research Office Durham
Attn R. J. Lontz
Attn M. Stosio
Attn M. Ciftan
Attn R. Guenther
Attn C. Bogosian
Research Triangle Park, NC 27709

Commander USA Rsch & Std Gp (Europe) Attn Chief, Physics & Math Branch FPO, New York 09510

Commander
US Army Test & Evaluation Command
Attn D. H. Sliney
Attn Tech Library

Aberdeen Proving Ground, MD 21005

Commander
US Army Troop Support Command
Attn DRXRES-RTL, Tech Library
Natick, MA 01762

Office of Naval Research Attn J. Murday Arlington, VA 22217

Director
Naval Research Laboratory
Attn Code 5554, R. E. Allen
Attn Code 2620, Tech Library Br
Attn G. Quarles
Attn G. Kintz
Attn A. Rosenbaum
Attn G. Risenblatt
Attn Code 5554, F. Bartoli
Attn Code 6540, S. R. Bowman
Attn Code 5554, L. Esterowitz
Washington, DC 20375

Commander
Naval Weapons Center
Attn Code 3854, R. Schwartz
Attn Code 3854, M. Hills
Attn Code 3854, M. Nadler
Attn Code 3854, R. L. Atkins
Attn DOCE 343, Technical Information
Department
China Lake, CA 93555

Air Force Office of Scientific Research Attn Major H. V. Winsor, USAF Bolling AFB Washington, DC 20332

Department of Commerce National Bureau of Standards Attn Library Washington, DC 20234

NASA Langley Research Center Attn N. P. Barnes (2 copies) Attn G. Armagan NASA Langley Research Center (cont'd)
Attn P. Cross
Attn D. Getteny
Attn J. Barnes
Attn E. Filer
Attn C. Bair
Attn N. Bounchrishani
Hampton, VA 23665

Director Advisory Group on Electron Devices Attn Sectry, Working Group D 201 Varick Street New York, NY 10013

Aerospace Corporation Attn M. Birnbaum Attn N. C. Chang PO Box 92957 Los Angeles, CA 90009

Allied Signal Inc Advanced Application Dept Attn A. Budgor 31717 La Tiemda Drive Westlake Village, CA 91362

Allied Signal Inc Attn Y. Band Attn R. Morris POB 1021R Morristown, NJ 07960

Ames Laboratory Dow Iowa State University Attn K. A. Gschneidner, Jr (2 copies) Ames, IA 50011

Argonne National Laboratory Attn W. T. Carnall 9700 South Cass Avenue Argonne, IL 60439

Booz, Allen and Hamilton Attn W. Drozdoski 4330 East West Highway Bethesda, MD 20814

Brimrose Corp of America Attn R. G. Rosemeier 7527 Belair Road Baltimore, MD 21236

Draper Lab Attn F. Hakimi, MS 53555 Tech Sq Cambridge, MA 02139

Engineering Societies Library Attn Acquisitions Dept 345 East 47th Street New York, NY 10017

Fibertech Inc Attn H. R. Verdun (3 copies) 510-A Herdon Pkwy Herdon, VA 22070

General Dynamics Attn R. J. Blair 5452 Oberlin Drive San Diego, CA 92121

Hughes Aircraft Company Attn D. Sumida 3011 Malibu Canyon Rd Malibu, CA 90265

IBM Research Division Almaden Research Center Attn R. M. Macfarlane, Mail Stop K32 802(d) 650 Harry Road San Jose, CA 95120

Director
Lawrence Radiation Laboratory
Attn M. J. Weber
Attn H. A. Koehler
Attn W. Krupke
Livermore, CA 94550

LTV Attn M. Kock (WT-50) PO Box 650003 Dallas, TX 75265

Martin Marietta Attn F. Crowne Attn J. Little, 1450 Martin Marietta (cont'd) Attn T. Worchesky 1450 South Rolling Road Baltimore, MD 21227

McDonnell Douglass Electronic Systems Company Dept Y440, Bldg. 101, Lev. 2 Rm/Pt B54 Attn D. M. Andrauskas, MS-2066267 PO Box 516 St Louis, MO 63166

MIT Lincoln Lab Attn B. Aull PO Box 73 Lexington, MA 02173

Department of Mechanical, Industrial, & Aerospace Engineering Attn S. Temkin PO Box 909 Piscataway, NJ 08854

National Oceanic & Atmospheric Adm Environmental Research Labs Attn Library, R-51, Tech Rpts Boulder, CA 80302

Oak Ridge National Laboratory Attn R. G. Haire Oak Ridge, TN 37839

W. J. Schafer Assoc Attn J. W. Collins 321 Billerica Road Chelmsford, MA 01824

Science Applications, International Corp Attn T. Allik 1710 Goodridge Drive McLean, VA 22102

Shwartz Electro-Optic, Inc. Attn G. A. Rines 45 Winthrop Street Concord, MA 01742

Teledyne Brown Engineering Cummings Research Park Attn M. L. Price, MS-44 Huntsville, AL 35807

Union Carbide Corp Attn M. R. Kokta 50 South 32nd Street Washougal, WA 98671

Arizona State University Dept of Chemistry Attn L Eyring Tempe, AZ 85281

University of Southern California Attn Dr. M. Birnbaum Denney Research Bldg., University Park Los Angeles, CA 90089

Carnegie Mellon University Schenley Park Attn Physics & EE, J. O. Artman Pittsburgh, PA 15213

Colorado State University Physics Department Attn S. Kern Ft Collins, CO 80523

University of Connecticut Department of Physics Attn R. H. Bartram Attn R. Sinkovits Storrs, CT 06269

University of South Florida Physics Dept Attn R. Chang Attn Sengupta Tampa, FL 33620

Howard University Physics Department Attn Prof. V. Kushamaha 25 Bryant St., N.W. Washington, DC 20059 Johns Hopkins University Dept of Physics Attn B. R. Judd Baltimore, MD 21218

Kalamazoo College Dept of Physics Attn K. Rajnak Kalamazoo, MI 49007

Massachusetts Institute of Technology Crystal Physics Laboratory Attn H. P. Jenssen Attn A. Linz Cambridge, MA 02139

Massachusetts Institute of Technology Attn V. Bagnato 77 Mass Ave, Room 26-251 Cambridge, MA 02139

University of Michigan Dept of Physics Attn S. C. Rand Ann Arbor, MI 48109

University of Minnesota, Duluth Department of Chemistry Attn L. C. Thompson Duluth, MN 55812

Oklahoma State University Dept of Physics Attn R. C. Powell Stillwater, OK 74078

Pennsylvania State University Materials Research Laboratory Attn W. B. White University Park, PA 16802

Princeton University Department of Chemistry Attn D. S. McClure Attn C. Weaver Princeton, NJ 08544

San Jose State University Department of Physics Attn J. B. Gruber San Jose, CA 95192

Seaton Hall University Chemistry Department Attn H. Brittain South Orange, NJ 07099

University of Virginia
Dept of Chemistry
Attn F. S. Richardson (2 copies)
Charlottesville, VA 22901

University of Wisconsin Chemistry Department Attn J. Wright Attn B. Tissue Madison, WI 53706

US Army Laboratory Command Attn Technical Director, AMSLC-TD

Installation Support Activity Attn Legal Office, SICIS-CC

USAISC
Attn Administrative Services Branch,
AMSLC-IM-TS
Attn Technical Publishing Branch,
AMSLC-IM-VP (2 copies)

Harry Diamond Laboratories
Attn Division Directors
Attn Library, SLCHD-TL (3 copies)
Attn Library, SLCHD-TL (Woodbridge)
Attn Chief, SLCHD-NW-CS
Attn Chief, SLCHD-NW-E
Attn Chief, SLCHD-NW-EH
Attn Chief, SLCHD-NW-EP
Attn Chief, SLCHD-NW-ES
Attn Chief, SLCHD-NW-P
Attn Chief, SLCHD-NW-P
Attn Chief, SLCHD-NW-R

Attn Chief, SLCHD-NW-RP

Harry Diamond Laboratories (cont'd) Attn Chief, SLCHD-NW-RS Attn Chief, SLCHD-NW-TN Attn Chief, SLCHD-NW-TS Attn Chief, SLCHD-PO Attn Chief, SLCHD-ST-C Attn Chief, SLCHD-ST-RP Attn Chief, SLCHD-ST-RS Attn Chief, SLCHD-TT Attn B. Willis, SLCHD-TA-ET Attn B. Zabludowski, SLCHD-TA-ET Attn C. S. Kenyon, SLHD-NW-EP Attn J. R. Miletta, SLCHD-NW-EP Attn F. B. McLean, SLCHD-ST-MW Attn L. Libelo, SLCHD-ST-MW Attn A. A. Bencivenga, SLCHD-ST-SP Attn J. Sattler, SLCHD-CS Attn J. Nemarich, SLCHD-ST-CB Attn B. Weber, SLCHD-ST-CB Attn T. Bahder, SLCHD-ST-AP Attn J. Bradshaw, SLCHD-ST-AP Attn J. Bruno, SLCHD-ST-AP Attn E. Harris, SLCHD-ST-AP Attn R. Leavitt, SLCHD-ST-AP Attn J. Pham, SLCHD-ST-AP Attn G. Simonis, SLCHD-ST-AP Attn M. Stead, SLCHD-ST-AP Attn J. Stellato, SLCHD-ST-AP Attn S. Stevens, SLCHD-ST-AP Attn R. Tober, SLCHD-ST-AP Attn M. Tobin, SLCHD-ST-AP Attn G. Turner, SLCHD-ST-AP (10 copies) Attn D. Wortman, SLCHD-ST-AP Attn C. Garvin, SLCHD-ST-SS Attn J. Goff, SLCHD-RT-RB

Attn C. Morrison, SLCHD-ST-AP

(10 copies)