R DIE INTERNATIONALE ZUSAMMENARB PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(12) NACH DEM VERTRA

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 29. Januar 2004 (29.01.2004)

(10) Internationale Veröffentlichungsnummer WO 2004/009820 A1

(51) Internationale Patentklassifikation7: 15/24, A01H 5/10

C12N 15/82,

(21) Internationales Aktenzeichen:

PCT/EP2003/007589

(22) Internationales Anmeldedatum:

14. Juli 2003 (14.07.2003)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

102 33 327.0

22. Juli 2002 (22.07.2002) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BASF PLANT SCIENCE GMBH [DE/DE]; c/o BASF Aktiengesellschaft, 67056 Ludwigshafen (DE).

(72) Erfinder; und

- (75) E: finder/Anmelder (nur für US): KOGEL, Karl-Heinz [DE/DE]; Berggartenstr. 7, 35457 Lollar (DE). HÜCK-ELHOVEN, Ralph [DE/DE]; Glaubrechtstr. 12, 35392 Giessen (DE). TRUJILLO, Marco [DE/DE]; Heegstrauch Weg 10, 35394 Giessen (DE).
- (74) Anwalt: PREßLER, Uwe; ., 67056 Ludwigshafen (DE).

- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: METHOD FOR OBTAINING THE PATHOGENIC RESISTANCE IN PLANTS

(54) Bezeichnung: VERFAHREN ZUM ERREICHEN EINER PATHOGENRESISTENZ IN PFLANZEN

(57) Abstract: The invention relates to a method for obtaining or increasing the pathogenic resistance in plants by reducing the expression, activity or the functioning of a NADPH oxidase.

(57) Zusammenfassung: Die Erfindung betrifft Verfahren zur Erzeugung oder Erhöhung einer Pathogenresistenz in Pflanzen durch Verminderung der Expression, Aktivität oder Funktion einer NADPH Oxidase.

Verfahren zum Erreichen einer Pathogenresistenz in Pflanzen

Beschreibung

5

Die Erfindung betrifft Verfahren zur Erzeugung oder Erhöhung einer Pathogenresistenz in Pflanzen durch Verminderung der Expression, Aktivität oder Funktion einer NADPH Oxidase.

- 10 Ziel biotechnologischer Arbeiten an Pflanzen ist die Herstellung von Pflanzen mit vorteilhaften, neuen Eigenschaften zum Beispiel zur Steigerung der landwirtschaftlichen Produktivität. Oft sind die natürlichen Abwehrmechanismen der Pflanze gegen Pathogene unzureichend. Allein Pilzerkrankungen führen zu Ernteverlusten
- 15 in der Höhe von vielen Milliarden US-\$ jährlich. Die Einführung fremder Gene aus Pflanzen, Tieren oder mikrobiellen Quellen kann die Abwehr verstärken. Beispiele sind der Schutz gegen Insektenfrass durch Expression von Bacillus thuringiensis Endotoxinen (Vaeck et al. (1987) Nature 328:33-37) oder der Schutz gegen
- 20 Pilzbefall durch Expression einer Chitinase aus Bohne (Broglie et al. (1991) Science 254:1194-1197). Die meisten der beschriebenen Ansätze gewähren jedoch nur eine Resistenz gegen ein einzelnes Pathogen oder gegen ein schmales Spektrum von Pathogenen.
- 25 Es gibt nur wenige Ansätze, die Pflanzen eine Resistenz gegen ein breiteres Spektrum von Pathogenen verleihen. Die systemische erworbene Resistenz ("systemic acquired resistance"; SAR) ein Abwehrmechanismus bei verschiedenen Pflanze/Pathogen-Interaktionen kann durch Applikation von endogene Botenstoffe
- 30 wie Jasmonsäure (JA) oder Salicylsäure (SA) vermittelt werden (Ward et al. (1991) Plant Cell 3:1085-1094; Uknes et al. (1992) Plant Cell 4(6):645-656). Ähnliche Effekte können auch durch synthetische Verbindungen wie 2,6-Dichlorisonikotinsäure (INA) oder Benzo(1,2,3)thiadiazol-7-thiocarbonsäure-S-methylester
- 35 (BTH; Bion®) bewirkt werden (Friedrich et al. (1996) Plant J 10(1):61-70; Lawton et al. (1996) Plant J 10:71-82). Auch die Expression der im Rahmen eines SAR hochregulierten "pathogenesis related" (PR) Proteine vermag zum Teil eine Pathogenresistenz zu bewirken.

40

In Gerste ist der Mlo-Locus als negativer Regulator der Pathogenabwehr beschrieben. Der Verlust des Mlo-Gens bedingt eine erhöhte und rassen-unspezifische Resistenz gegen zahlreiche Arten von Mehltau (Büschges R et al. (1997) Cell 88:695-705; Jorgensen JH 45 (1977) Euphytica 26:55-62; Lyngkjaer MF et al. (1995) Plant

Pathol 44:786-790). Durch klassische Züchtung erhaltene Mlodefiziente Gerstensorten werden bereits in der Landwirtschaft verwendet. Vermutlich aufgrund der Rezessivität hat sich trotz eines intensiven Anbaus die Resistenz als dauerhaft erwiesen. Mlo-ähnliche Resistenzen in anderen Pflanzen v.a. in Getreidearten sind nicht beschrieben. Das Mlo-Gen und verschiedene Homo- loge aus anderen Getreidearten wurde identifiziert und kloniert (Büschges R et al. (1997) Cell 88:695-705; WO 98/04586; Schulze-Lefert P, Vogel J (2000) Trends Plant Sci. 5:343-348). Verschiedene Verfahren unter Verwendung dieser Gene zum Erzielen einer Pathogenresistenz sind beschrieben (WO 98/04586; WO 00/01722; 10 WO 99/47552). Nachteilig ist, dass der Mlo-vermittelte Abwehrmechanismus ein spontanes Absterben von Blattzellen umfasst (Wolter M et al. (1993) Mol Gen Genet 239:122-128). Nachteilig ist ferner, dass die Mlo-defizienten Genotypen eine Hypersuszeptibilität gegen hemibiotrophe Pathogene wie Magnaporte grisea (M. grisea) sowie Cochliobolus sativus (Bipolaris sorokiniana)

Die Freisetzung reaktiver Sauerstoffspezies (ROS; z.B. Superoxid 20 (O₂-), Hydroxylradikale und H₂O₂) wird eine wichtige protektive Funktion in der Reaktion auf pflanzliche Pathogene zugeordnet (Wojtaszek P (1997) Biochem J 322:681-692). Es sind verschiedene Wege bekannt, wie eine Zelle ROS zu produzieren vermag. In den Makrophagen von Säugetieren ist hier insbesondere die NADPH 25 Oxidase zu nennen, die Elektronen auf molekularen Sauerstoff zu übertragen vermag. Homologe Enzyme wurden auch in Pflanzen identifiziert (Lamb & Dixon (1997) Annu Rev Plant Physiol Plant Mol Biol 48:251).

zeigen (Jarosch B et al. (1999) Mol Plant Microbe Interact 12:508-514; Kumar J et al. (2001) Phytopathology 91:127-133).

30 Es wurde gezeigt, dass Mutationen in der katalytischen Untereinheit der NADPH-Oxidase in Arabidopsis thaliana eine verminderte Akkumulation reaktiver Sauerstoffintermediate (ROI) zeigen. In Bezug auf die Hypersensitive Reaktion (HR) war das Bild uneinheitlich: Bei einer Doppelmutante wurde bei Infektion mit dem 35 avirulenten Pseudomonas syringae Bakterium eine verminderte HR gefunden, während mit dem virulenten Oomyceten Peronospora parasitica eine erhöhte HR detektiert wurde. Das Wachstum - sowohl von virulenten als auch von avirulenten P.syringae Stämmen war jedoch - im Vergleich zu Wildtyp-Pflanzen - nicht verändert 40 (Torres MA et al. (2002) Proc Natl Acad Sci USA 99:517-522). Ebenso hatte die Inhibition der NADPH-Oxidase mittels des Inhibitors Diphenyleniodoniumchlorid (DPI) - bei Einsatz physiologisch relevanter Konzentrationen - keinen Effekt auf die Entwicklung pathogener Pilze (Hückelhoven R & Kogel KH (1998) Mol Plant 45 Microbe Interact 11:292-300). Ein cDNA Fragment einer Phagozyten

NADPH-Oxidase aus Gerste (pNAox, Homolog der großen Untereinheit

gp91phox einer Phagozyten NADPHoxidase) ist unter der GenBank Acc.-No.: AJ251717) beschrieben.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, neue Ver5 fahren zur Pathogenabwehr in Pflanzen bereitzustellen, die eine
effiziente Abwehr eines möglichst breiten Spektrum von Pathogenen
in möglichst vielen verschiedene Pflanzenarten, bevorzugt den
in der Landwirtschaft verwendeten Kulturpflanzen bewirken. Diese
Aufgabe wird durch das erfindungsgemäße Verfahren gelöst.

10

Ein erster Gegenstand der Erfindung umfasst ein Verfahren zur Erzeugung oder Erhöhung der Resistenz gegen mindestens ein Pathogen in Pflanzen, dadurch gekennzeichnet, dass nachfolgende Arbeitsschritte umfasst sind

15 '

- a) Verminderung der Proteinmenge, Aktivität oder Funktion einer NADPH-Oxidase in einer Pflanze oder einem Gewebe, Organ, Teil oder Zelle derselben und
- 20 b) Auswahl der Pflanzen, bei denen im Unterschied oder Vergleich zur Ausgangspflanze - die Resistenz gegen mindestens ein Pathogen besteht oder erhöht ist.

Überraschenderweise zeigt die Verminderung der Expression einer 25 NADPH-Oxidase aus Gerste (pNAox) in der epidermalen Zelle durch einen sequenzspezifischen RNA-Interferenz Ansatz unter Verwendung doppelsträngiger pNAox-dsRNA ("Gene-Silencing") einen signifikant reduzierten Befall infolge einer Bgh-Infektion (gemessen anhand der Haustorium-Ausbildung). Dieser Befund ist insbesondere des-30 halb überraschend, da der mit der NADPH-Oxidase in Verbindung gebrachten Freisetzung reaktiver Sauerstoffspezies ("oxidative burst") im allgemeinen eine protektive Funktion zugemessen wird.

Ähnlich wie Mlo vermittelt die Verminderung der NADPH-Oxidase

35 Expression eine breite Resistenz gegen verschiedene Isolate von Blumeria graminis f.sp. hordei. In transienten "Gene-Silencing"-Experimenten wird dabei die Penetrationseffizienz (Haustorien-Bildung) von Bgh signifikant um mehr als 35 % reduziert - ein Effekt, der in seiner Stärke dem mittels Mlo-dsRNA erreichten

40 entspricht (Schweizer P et al. (2000) Plant J 24:895-903). In der Wildtyp Gerstensorte Pallas führen ca. 40 % der Pilzpenetrationen zu einer Haustorien-Bildung, wohingegen die Penetrationsrate bei einer Verminderung der NADPH-Oxidase Expression mittels Einbringen einer doppelsträngigen RNA der NADPH-Oxidase (pNAox-dsRNA) nur ca. 25 % beträgt. Die Tatsache, dass auch in pathogenempfindlichen Wildtyp-Sorten wie Pallas nur eine Penetration von ca. 40 bis 50 % beobachtet werden kann, ist auf die stets

vorhandene Basalresistenz zurückzuführen. Die NADPH-Oxidase ist aufgrund der dieser Befunde als Schlüsselelement für das erfolgreiche Eindringen eines Pathogens wie Bgh in die pflanzliche Zelle zu verstehen. Darüberhinaus ist das Verfahren allen 5 Verfahren überlegen, bei denen ein pathogen-resistenter Phänotyp durch Überexpression eines resistenzvermittelnden Proteins realisiert wird. Das Ausschalten eines Gens, lässt sich ohne Expression eines (Fremd)-Proteins realisieren. Im Idealfall wird lediglich das endogene Gen deaktiviert. Dies hat nicht zu ver-10 nachlässigende Vorteile bei der Zulassung und der Akzeptanz durch den Verbraucher, der Pflanzen mit Fremdproteinen oft mit Vorbehalt begegnet. Ganz besonders vorteilhaft ist in diesem Zusammenhang die Verwendung von induzierbaren Promotoren zur Verminderung der NADPH-Oxidasemenge, Aktivität oder Funktion, was beispiels-15 weise bei Verwendung von pathogeninduzierbaren Promotoren eine Expression nur im Bedarfsfall (d.h. Pathogenbefall) ermöglicht.

Das erfindungsgemäße Verfahren kann im Prinzip auf alle Pflanzenarten angewendet werden. Bevorzugt auf solche, in denen natür-20 licherweise eine NADPH-Oxidase oder ein funktionelles Äquivalent derselben exprimiert wird.

"Pflanze" im Rahmen der Erfindung meint alle Gattungen und Arten höherer und niedrigerer Pflanzen des Pflanzenreiches. 25 Eingeschlossen unter dem Begriff sind die reifen Pflanzen, Saatgut, Sprossen und Keimlinge, sowie davon abgeleitete Teile, Vermehrungsgut, Pflanzenorgane, Gewebe, Protoplasten, Kallus und andere Kulturen, zum Beispiel Zellkulturen, sowie alle anderen Arten von Gruppierungen von Pflanzenzellen zu funktionellen oder 30 strukturellen Einheiten. Reife Pflanzen meint Pflanzen zu jedem beliebigen Entwicklungsstadium jenseits des Keimlings. Keimling meint eine junge, unreife Pflanze in einem frühen Entwicklungsstadium. "Pflanze" umfasst alle einjährigen und mehrjährige, monokotyledonen und dikotyledonen Pflanzen und schließt beispiel-35 haft jedoch nicht einschränkend solche der Gattungen Cucurbita, Rosa, Vitis, Juglans, Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linum, Geranium, Manihot, Daucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscyamus, Lycopersicon, Nicotiana, Solarium, 40 Petunia, Digitalis, Majorana, Cichorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrhinum, Heterocallis, Nemesis, Pelargonium, Panieum, Pennisetum, Ranunculus, Senecio, Salpiglossis, Cucumis, Browaalia, Glycine, Pisum, Phaseolus, Lolium, Oryza, Zea, Avena, Hordeum, Secale, Triticum, Sorghum, Picea und Populus 45 ein.

Der Begriff "Pflanze" umfasst bevorzugt monokotyle Kulturpflanzen, wie zum Beispiel Getreidearten wie Weizen, Gerste, Hirse, Roggen, Triticale, Mais, Reis, Sorghum oder Hafer sowie Zuckerrohr.

Ferner umfasst der Begriff dikotyle Kulturpflanzen, wie zum Beispiel

- Brassicacae wie Raps, Canola, Kresse, Arabidopsis, Kohlarten oder Canola, Leguminosae wie Soja, Alfalfa, Erbse, Bohnen-gewächsen oder Erdnuss
- Solanaceae wie Kartoffel, Tabak, Tomate, Aubergine oder Paprika, Asteraceae wie Sonnenblume, Tagetes, Salat oder
 Calendula,
 - Cucurbitaceae wie Melone, Kürbis oder Zucchini,

sowie Lein, Baumwolle, Hanf, Klee, Spinat, Flachs, Roter Pfeffer,

20 Möhre, Karotte, Rübe, Rettich, Zuckerrübe, Süßkartoffel, Gurke,
Chicorée, Blumenkohl, Brokkoli, Spargel, Zwiebel, Knoblauch,
Sellerie, Erdbeere, Himbeere, Brombeere, Ananas, Avocado, und
den verschiedenen Baum-, Strauch-, Nuss- und Weinarten. Baumarten umfasst bevorzugt Pflaume, Kirsche, Pfirsich, Nektarine,
25 Aprikose, Banane, Papaya, Mango, Apfel, Birne, Quitte.

Ferner umfasst sind Schmuckpflanzen, Nutz- oder Zierbäume, Blumen, Schnittblumen, Sträuchern oder Rasen wie beispielhaft aber nicht einschränkend die Familien der Rosaceae wie Rose,

30 Ericaceae wie Rhododendrons und Azaleen, Euphorbiaceae wie Weihnachtssterne und Kroton, Caryophyllaceae wie Nelken, Solanaceae wie Petunien, Gesneriaceae wie das Usambaraveilchen, Balsaminaceae wie das Springkraut, Orchidaceae wie Orchideen, Iridaceae wie Gladiolen, Iris, Freesie und Krokus, Compositae wie Ringelblume, Geraniaceae wie Geranien, Liliaceae wie der Drachenbaum, Moraceae wie Ficus, Araceae wie Philodendron und andere mehr.

Im Rahmen der Erfindung sind solche Pflanzen bevorzugt, die als Nahrungs- oder Futtermittel zum Einsatz kommen, ganz besonders 40 bevorzugt monokotyle Gattungen und Arten, wie die beschriebenen Getreidearten.

Ganz besonders bevorzugt wird das Verfahren auf monokotyle Pflanzen, am meisten bevorzugt auf Pflanzen mit landwirtschaft-45 licher Bedeutung wie Weizen, Hafer, Hirse, Gerste, Roggen, Mais, Reis, Buchweizen, Sorghum, Triticale, Dinkel, Leinsamen oder Zuckerrohr angewendet.

"Pathogenresistenz" meint das Vermindern oder Abschwächen von

5 Krankheitssymptomen einer Pflanze infolge eines Befalls durch ein
Pathogen. Die Symptome können vielfältiger Art sein, umfassen
aber bevorzugt solche die direkt oder indirekt zu einer Beeinträchtigung Qualität der Pflanze, der Quantität des Ertrages,
der Eignung zur Verwendung als Futter- oder Nahrungsmittel

10 führen oder aber auch Aussaat, Anbau, Ernte oder Prozessierung
des Erntegutes erschweren.

"Verleihen", "bestehen", "erzeugen" oder "erhöhen" einer Pathogenresistenz meint, dass die Abwehrmechanismen einer bestimmten 15 Pflanzenart oder -sorte durch Anwendung des erfindungsgemäßen Verfahrens im Vergleich zu dem Wildtyp der Pflanze ("Ausgangspflanze"), auf den das erfindungsgemäße Verfahren nicht angewendet wurde, unter ansonsten gleichen Bedingungen (wie beispielsweise Klima- oder Anbaubedingungen, Pathogenart etc.) eine 20 erhöhte Resistenz gegen ein und mehr Pathogene aufweist. Dabei äußert sich die erhöhte Resistenz bevorzugt in einer verminderten Ausprägung der Krankheitssymptome, wobei Krankheitssymptome neben den oben erwähnten Beeinträchtigungen - auch beispielsweise die Penetrationseffizienz eines Pathogens in die Pflanze oder 25 pflanzliche Zellen oder die Proliferationseffizienz in oder auf denselben umfasst. Dabei sind die Krankheitssymptome bevorzugt um mindestens 10 % oder mindestens 20 %, besonders bevorzugt um mindestens 40 % oder 60 %, ganz besonders bevorzugt um mindestens 70 % oder 80 %, am meisten bevorzugt um mindestens 90 % oder 95 % 30 vermindert.

"Auswahl" meint in Bezug auf Pflanzen, bei denen - im Unterschied oder Vergleich zur Ausgangspflanze - die Resistenz gegen mindestens ein Pathogen besteht oder erhöht ist, all die Verfahren, 35 die eine zur Erkennung einer vorliegenden oder erhöhten Pathogenresistenz geeignet sind. Dies können Symptome der Pathogeninfektion sein (z.B. Haustorium-Ausbildung bei Pilzinfektion) aber auch die oben beschriebenen Symptome umfassen, die die Qualität der Pflanze, die Quantität des Ertrages, die Eignung zur Verwendung als Futter- oder Nahrungsmittel usw. betreffen.

"Pathogen" meint im Rahmen der Erfindung beispielsweise jedoch nicht einschränkend Viren oder Viroide, Bakterien, Pilze, tierische Schädlinge, wie beispielsweise Insekten oder Nematoden. 45 Besonders bevorzugt sind Pilze wie beispielsweise der Mehltau. Es ist jedoch anzunehmen, dass die Verminderung der Expression einer NADPH-Oxidase, ihrer Aktivität oder Funktion auch eine Resistenz

gegen weitere Pathogene bewirkt. Beispielsweise jedoch nicht einschränkend seien nachfolgende Pathogene zu nennen:

1. Pilzpathogene oder pilzähnliche Pathogene:

Pilzpathogene oder pilzähnliche Pathogene (wie z.B. Chromista) stammen vorzugsweise aus der Gruppe umfassend Plasmodiophoramycota, Oomycota, Ascomycota, Chytridiomyceten, Zygomyceten, Basidiomycota und Deuteromyceten (Fungi imperfecti). Beispielhaft jedoch nicht einschränkend seien die in Tabelle 1 und 2 genannten Pathogene und die mit ihnen in Zusammenhang gebrachten Erkrankungen zu nennen.

Tabelle 1: Pflanzliche Pilzerkrankungen

15

10

5

	Erkrankung	Pathogen
	Braunrost	Puccinia recondita
	Gelbrost	P. striiformis
20	Echter Mehltau	Erysiphe graminis / Blumeria graminis
	Spelzenbräune	Septoria nodorum
	Blattdürre	Septoria tritici
	Ährenfusariosen	Fusarium spp.
25	Halmbruchkrankheit	Pseudocercosporella herpotrichoides
23	Flugbrand	Ustilago spp.
	Weizensteinbrand	Tilletia caries
	Schwarzbeinigkeit	Gaeumannomyces graminis
	Anthrocnose leaf blight	Colletotrichum graminicola (tele-
30	Anthracnose stalk rot	omorph: Glomerella graminicola Politis); Glomerella tucumanensis (anamorph: Glomerella falcatum Went)
	Aspergillus ear and kernel rot	Aspergillus flavus
35	Banded leaf and sheath spot ("Wurzeltöter")	Rhizoctonia solani Kuhn = Rhizoctonia microsclerotia J. Matz (telomorph: Thanatephorus cucumeris)
	Black bundle disease	Acremonium strictum W. Gams = Cephalosporium acremonium Auct. non Corda
40	Black kernel rot	Lasiodiplodia theobromae = Botryodiplodia theobromae
	Borde blanco	Marasmiellus sp.
45	Brown spot (black spot, stalk rot)	Physoderma maydis
	Cephalosporium kernel rot	Acremonium strictum = Cephalosporium acremonium
	Charcoal rot	Macrophomina phaseolina

1	Erkrankung	Pathogen
	Corticium ear rot	Thanatephorus cucumeris = Corticium sasakii
10	Curvularia leaf spot	Curvularia clavata, C. eragrostidis = C. maculans (teleomorph: Cochliobolus eragrostidis), Curvularia inaequalis, C. intermedia (teleomorph: Cochliobolus intermedius), Curvularia lunata (teleomorph: Cochliobolus lunatus), Curvularia pallescens (teleomorph: Cochliobolus pallescens), Curvularia senegalensis, C. tuberculata (teleomorph: Cochliobolus tuberculatus)
	Didymella leaf spot	Didymella exitalis
15	Diplodia ear rot and stalk rot	Diplodia frumenti (teleomorph: Botryosphaeria festucae)
	Diplodia ear rot, stalk rot, seed rot and seed- ling blight	Diplodia maydis = Stenocarpella maydis
20	Diplodia leaf spot or streak	Stenocarpella macrospora = Diplodialeaf macrospora

Tabelle 2: Falscher Mehltau

25	Erkrankung	Pathogen
	Brown stripe downy mildew	Sclerophthora rayssiae var. zeae
	Crazy top downy mildew	Sclerophthora macrospora = Sclerospora macrospora
30	Green ear downy mi ldew (graminicola downy mildew)	Sclerospora graminicola
	Java downy mildew	Peronosclerospora maydis = Sclerospora maydis
35	Philippine downy mildew	Peronosclerospora philippinensis = Sclerospora philippinensis
	Sorghum downy mildew	Peronosclerospora sorghi = Sclerospora sorghi
40	Spontaneum downy mildew	Peronosclerospora spontanea = Sclerospora spontanea
	Sugarcane downy mildew	Peronosclerospora sacchari = Sclerospora sacchari
	Dry ear rot (cob, kernel and stalk rot)	Nigrospora oryzae (teleomorph: Khuskia oryzae)

		9
	Erkrankung	Pathogen
10	Ear rots, minor	Alternaria alternata = A. tenuis, Aspergillus glaucus, A. niger, Aspergillus spp., Botrytis cinerea (teleomorph: Botryotinia fuckeliana), Cunninghamella sp., Curvularia pallescens, Doratomyces stemonitis = Cephalotrichum stemonitis, Fusarium culmorum, Gonatobotrys simplex, Pithomyces maydicus, Rhizopus microsporus Tiegh., R. stolonifer = R. nigricans, Scopulariopsis brumptii
15	Ergot(horse's tooth)	Claviceps gigantea (anamorph: Sphacelia sp.)
	Eyespot	Aureobasidium zeae = Kabatiella zeae
	Fusarium ear and stalk rot	Fusarium subglutinans = F. moniliforme var.subglutinans
20	Fusarium kernel, root and stalk rot, seed rot and seedling blight	Fusarium moniliforme (teleomorph: Gibberella fujikuroi)
	Fusarium stalk rot, seedling root rot	Fusarium avenaceum (teleomorph: Gibberlla avenacea)
25	Gibberella ear and stalk rot (Ähren- u. Stengelfäule)	Gibberella zeae (anamorph: Fusarium graminearum)
	Gray ear rot	Botryosphaeria zeae = Physalospora zeae (anamorph: Macrophoma zeae)
30	Gray leaf spot (Cercospora leaf spot)	Cercospora sorghi = C. sorghi var. maydis, C. zeae-maydis
	Helminthosporium root rot	Exserohilum pedicellatum = Helmin- thosporium pedicellatum (teleomorph: Setosphaeria pedicellata)
35	Hormodendrum ear rot (Cladosporium rot)	Cladosporium cladosporioides = Hormo- dendrum cladosporioides, C. herbarum (teleomorph: Mycosphaerella tassiana)
	Hyalothyridium leaf spot	Hyalothyridium maydis
	Late wilt	Cephalosporium maydis

l	Erkrankung	Pathogen
5 10	Leaf spots, minor	Alternaria alternata, Ascochyta maydis, A. tritici, A. zeicola, Bipolaris victoriae = Helminthosporium victoriae (teleomorph: Cochliobolus victoriae), C. sativus (anamorph: Bipolaris sorokiniana = H. sorokinianum = H. sativum), Epicoccum nigrum, Exserohilum prolatum = Drechslera prolata (teleomorph: Setosphaeria prolata) Graphium penicillioides, Leptosphaeria maydis, Leptothyrium zeae, Ophiosphaerella herpotricha, (anamorph: Scolecosporiella sp.),
15	·	Paraphaeosphaeria michotii, Phoma sp., Septoria zeae, S. zeicola, S. zeina
	Northern corn leaf blight (white blast, crown stalk rot, stripe)	Setosphaeria turcica (anarnorph: Exserohilum turcicum = Helmin- thosporium turcicum)
20	Northern corn leaf spot Helminthosporium ear rot (race 1)	Cochliobolus carbonum (anamorph: Bipolaris zeicola = Helminthosporium carbonum)
	Penicillium ear rot (blue eye, blue mold)	Penicillium spp., P. chrysogenum, P. expansum, P. oxalicum
25	Phaeocytostroma stalk rot and root rot	Phaeocytostroma ambiguum, = Phaeocyto- sporella zeae
	Phaeosphaeria leaf spot	Phaeosphaeria maydis = Sphaerulina maydis
30	Physalospora ear rot (Botryosphaeria ear rot)	Botryosphaeria festucae = Physalospora zeicola (anamorph: Diplodia frumenti)
	Purple leaf sheath	Hemiparasitic bacteria and fungi Phoma terrestris =
	Pyrenochaeta stalk rot and root rot	Pyrenochaeta terrestris
35	Pythium root rot	Pythium spp., P. arrhenomanes, P. graminicola
	Pythium stalk rot	Pythium aphanidermatum = P. butleri L.
	Red kernel disease (ear mold, leaf and seed rot)	Epicoccum nigrum
40	Rhizoctonia ear rot (sclerotial rot)	Rhizoctonia zeae (teleomorph: Waitea circinata)
	Rhizoctonia root rot and stalk rot	Rhizoctonia solani, Rhizoctonia zeae

1	Erkrankung	Pathogen
5	Root rots, minor	Alternaria alternata, Cercospora sorghi, Dictochaeta fertilis, Fusarium acuminatum (teleomorph: Gibberella acuminata), F. equiseti (teleomorph: G. intricans), F. oxysporum, F. pallidoroseum, F. poae, F. roseum, G. cyanogena, (anamorph: F. sulphureum), Microdochium bolleyi, Mucor sp., Periconia circinata, Phytophthora cactorum, P. drechsleri, P. nicotianae var. parasitica, Rhizopus arrhizus
	Rostratum leaf spot (Helminthosporium leaf disease, ear and stalk rot)	Setosphaeria rostrata, (anamorph: Exserohilum rostratum = He/mintho- sporium rostratum)
15	Rust, common corn	Puccinia sorghi
	Rust, southern corn	Puccinia polysora
	Rust, tropical corn	Physopella pallescens, P. zeae = Angiopsora zeae
20	Sclerotium ear rot (southern blight)	Sclerotium rolfsii Sacc. (teleomorph: Athelia rolfsii)
25	Seed rot-seedling blight	Bipolaris sorokiniana, B. zeicola = Helminthosporium carbonum, Diplodia maydis, Exserohilum pedicillatum, Exserohilum turcicum = Helmintho- sporium turcicum, Fusarium avenaceum, F. culmorum, F. moniliforme, Gibbe- rella zeae (anamorph: F. graminearum), Macrophomina phaseolina, Penicillium spp., Phomopsis sp., Pythium spp., Rhizoctonia solani, R. zeae, Sclero- tium rolfsii, Spicaria sp.
	Selenophoma leaf spot	Selenophoma sp.
	Sheath rot	Gaeumannomyces graminis
	Shuck rot	Myrothecium gramineum
35	Silage mold	Monascus purpureus, M ruber
J	Smut, common	Ustilago zeae = U. maydis
	Smut, false	Ustilaginoidea virens
	Smut, head	Sphacelotheca reiliana = Sporisorium holcisorghi
40	Southern corn leaf blight and stalk rot	Cochliobolus heterostrophus (anamorph: Bipolaris maydis = Helminthosporium maydis)
	Southern leaf spot	Stenocarpella macrospora = Diplodia macrospora

	Erkrankung	Pathogen
5	Stalk rots, minor	Cercospora sorghi, Fusarium episphae- ria, F. merismoides, F. oxysporum Schlechtend, F. poae, F. roseum, F. solani (teleomorph: Nectria haema- tococca), F. tricinctum, Mariannaea elegans, Mucor sp., Rhopographus zeae, Spicaria sp.
	Storage rots	Aspergillus spp., Penicillium spp. and other fungi
10	Tar spot	Phyllachora maydis
	Trichoderma ear rot and root rot	Trichoderma viride = T. lignorum tele- omorph: Hypocrea sp.
15	White ear rot, root and stalk rot	Stenocarpella maydis = Diplodia zeae
	Yellow leaf blight	Ascochyta ischaemi, Phyllosticta maydis (teleomorph: Mycosphaerella zeae-maydis)
	Zonate leaf spot	Gloeocercospora sorghi

20

Besonders bevorzugt sind

- Plasmodiophoromycota wie Plasmodiophora brassicae (Kohlhernie, clubroot of crucifers), Spongospora subterranea
 (powdery scab of potato tubers), Polymyxa graminis (root disease of cereals and grasses),
- Oomycota wie Bremia lactucae (Falscher Mehltau an Salat), Peronospora (Falscher Mehltau) bei snapdragon 30 (P. antirrhini), Zwiebel (P. destructor), Spinat (P. effusa), Sojabohne (P. manchurica), Tabak ("blue mold" = Blauschimmel; P. tabacina) Alfalfa und Klee (P. trifolium), Pseudoperonospora humuli (Falscher Mehltau an Hopfen), Plasmopara (Falscher Mehltau bei Trauben) (P. viticola) und Sonnenblume 35 (P. halstedii), Sclerophtohra macrospora (Falscher Mehltau bei Cerealien und Gäsern), Pythium (seed rot, seedling damping-off, and root rot and all types of plants, z.B. Wurzelbrand an Beta-Rübe durch P. debaryanum), Phytophthora infestans (Kraut- und Knollenfäule bei Kartoffel, Braunfäule bei Tomate etc.), Albugo spec. (white rust on cruciferous 40 plants.
- Ascomycota wie Microdochium nivale (Schneeschimmel an Roggen und Weizen), Fusarium graminearum, Fusarium culmorum (Ährenfäule v.a. bei Weizen), Fusarium oxysporum (Fusarium-Welke an Tomate), Blumeria graminis (Echter Mehltau an Gerste (f.sp. hordei) und Weizen (f.sp. tritici)), Erysiphe pisi (Erbsen-

5

mehltau), Nectria galligena (Obstbaumkrebs), Unicnula necator (Echter Mehltau der Weinrebe), Pseudopeziza tracheiphila (Roter Brenner der Weinrebe), Claviceps purpurea (Mutterkorn an z.B. Roggen und Gräsern), Gaeumannomyces graminis (Schwarzbeinigkeit an Weizen, Roggen u.a. Gräsern), Magnaporthe grisea (rice blast disease), Pyrenophora graminea

ECT/EP2003/007589

(Blattfleckenkrankheit (Blattdürre) an Weizen), Venturia 10 inaequalis (Apfelschorf), Sclerotinia sclerotium (Weißstengeligkeit, Rapskrebs), Pseudopeziza medicaginis (Klappenschorf an Luzerne, Weiß- und Rotklee).

(Streifenkrankheit an Gerste), Pyrenophora teres (Netzfleckenkrankheit an Gerste), Pyrenophora tritici-repentis

- Basidiomyceten wie Typhula incarnata (Typhula-Fäule an Gerste, Roggen, Weizen), Ustilago maydis (Beulenbrand an 15 Mais), Ustilago nuda (Flugbrand an Gerste), Ustilago tritici (Flugbrand an Weizen, Dinkel), Ustilago avenae (Flugbrand an Hafer), Rhizoctonia solani (Wurzeltöter an Kartoffeln), Sphacelotheca spp. (head smut of sorghum), Melampsora lini (rust of flax), Puccinia graminis (Schwarzrost an Weizen, 20 Gerste, Roggen, Hafer), Puccinia recondita (Braunrost an Weizen), Puccinia dispersa (Braunrost an Roggen), Puccinia hordei (Braunrost an Gerste), Puccinia coronata (Kronenrost an Hafer), Puccinia striiformis (Gelbrost an Weizen, Gerste, Roggen sowie zahlreichen Gräsern), Uromyces appendiculatus 25 (Bohnenrost), Sclerotium rolfsii (root and stem rots of many plants).
- Deuteromyceten (Fungi imperfecti) wie Septoria nodorum 30 (Spelzenbräune) an Weizen (Septoria tritici), Pseudocercosporella herpotrichoides (Halmbruchkrankheit an Weizen, Gerste, Roggen), Rynchosporium secalis (Blattfleckenkrankheit an Roggen und Gerste), Alternaria solani (Dürrfleckenkrankheit an Kartoffel, Tomate), Phoma betae (Wurzelbrand an Beta-Rübe), Cercospora beticola (Cercospora-Blattfleckenkrankheit 35 an Beta-Rübe), (Alternaria brassicae (Rapsschwärze an Raps, Kohl u.a. Kreuzblütlern), Verticillium dahliae (Rapswelke und -stengelfäule), Colletotrichum lindemuthianum (Brennfleckenkrankheit an Bohne), Phoma lingam - Umfallkrankheit (Schwarz-40 beinigkeit an Kohl; Wurzelhals- oder Stengelfäule an Raps), Botrytis cinerea (Grauschimmel an Weinrebe, Erdbeere, Tomate, Hopfen etc.).

Am meisten bevorzugt sind Phytophthora infestans (Kraut- und 45 Knollenfäule, Braunfäule bei Tomate etc.), Microdochium nivale (vormals Fusarium nivale; Schneeschimmel an Roggen und Weizen), Fusarium graminearum, Fusarium culmorum (Ährenfäule an Weizen), Fusarium oxysporum (Fusarium-Welke an Tomate), Blumeria graminis (Echter Mehltau an Gerste (f. sp. hordei) und Weizen (f. sp. tritici)), Magnaporthe grisea (rice blast disease), Sclerotinia sclerotium (Weißstengeligkeit, Rapskrebs), Septoria nodorum und Septoria tritici (Spelzenbräune an Weizen), Alternaria brassicae (Rapsschwärze an Raps, Kohl u.a. Kreuzblütlern), Phoma lingam (Umfallkrankheit, Schwarzbeinigkeit an Kohl; Wurzelhals- oder Stengelfäule an Raps).

10 2. Bakterielle Pathogene:

Beispielhaft jedoch nicht einschränkend seien die in Tabelle 3 genannten Pathogene und die mit ihnen in Zusammenhang gebrachten Erkrankungen zu nennen.

15

Tabelle 3: Bakterielle Erkrankungen

	Balance land	Pathogon
	Erkrankung	Pathogen
20	Bacterial leaf blight and stalk rot	Pseudomonas avenae subsp. avenae
	Bacterial leaf spot	Xanthomonas campestris pv. holcicola
	Bacterial stalk rot	Enterobacter dissolvens = Erwinia dissolvens
25	Schwarzbeinigkeit ("Bacterial stalk and top rot")	Erwinia carotovora subsp. caroto- vora, Erwinia chrysanthemi pv. zeae
	Bacterial stripe	Pseudomonas andropogonis
30	Chocolate spot	Pseudomonas syringae pv. corona- faciens
	Goss's bacterial wilt and blight (leaf freckles and wilt)	Clavibacter michiganensis subsp. nebraskensis = Corynebacterium michiganense pv.andnebraskense
	Holcus spot	Pseudomonas syringae pv. syringae
35	Purple leaf sheath	Hemiparasitic bacteria
	Seed rot-seedling blight	Bacillus subtilis
	Stewart's disease (bacterial wilt)	Pantoea stewartii = Erwinia stewartii
40	Corn stunt (achapparramiento, maize stunt, Mesa Central or Rio Grande maize stunt)	Spiroplasma kunkelii

Ganz besonders bevorzugt sind nachfolgende pathogene Bakterien:
45 Corynebacterium sepedonicum (Bakterienringfäule an Kartoffel),
Erwinia carotovora (Schwarzbeinigkeit an Kartoffel), Erwinia
amylovora (Feuerbrand an Birne, Apfel, Quitte), Streptomyces

scabies (Kartoffelschorf), Pseudomonas syringae pv. tabaci (Wildfeuer an Tabak), Pseudomonas syringae pv. phaseolicola (Fettfleckenkrankheit an Buschbohne), Pseudomonas syringae pv. tomato ("bacterial speck" an Tomate), Xanthomonas campestris pv. 5 malvacearum (Blattfleckenkrankheit an Baumwolle) und Xanthomonas campestris pv. oryzae (Bakterienfäule an Reis und anderen Gräsern).

3. Virale Pathogene:

10

"Virale Pathogene" schließt sämtliche Pflanzenviren ein wie beispielsweise Tabak- oder oder Cucumber-Mosaiv Virus, Ringspot-Virus, Nekrose-Virus, Mais Dwarf-Mosaic Virus etc.

Beispielhaft jedoch nicht einschränkend seien die in Tabelle 4 genannten Pathogene und die mit ihnen in Zusammenhang gebrachten Erkrankungen zu nennen.

Tabelle 4: Virale Erkrankungen

20

	Krankheit	Pathogen
	American wheat striate (wheat striate mosaic)	American wheat striate mosaic virus (AWSMV)
25	Barley stripe mosaic	Barley stripe mosaic virus (BSMV)
23	Barley yellow dwarf	Barley yellow dwarf virus (BYDV)
	Brome mosaic	Brome mosaic virus (BMV)
	Cereal chlorotic mottle	Cereal chlorotic mottle virus (CCMV)
30	Corn chlorotic vein banding (Braizilian maize mosaic)	Corn chlorotic vein banding virus (CCVBV)
	Corn lethal necrosis	Viruskomplex aus Maize chlorotic mottle virus (MCMV) und Maize dwarf mosaic virus (MDMV) A oder B oder Wheat streak mosaic virus(WSMV)
35	Cucumber mosaic	Cucumber mosaic virus (CMV)
	Cynodon chlorotic streak	Cynodon chlorotic streak virus (CCSV)
	Johnsongrass mosaic	Johnsongrass mosaic virus (JGMV)
40	Maize bushy stunt	Mycoplasma-like organism (MLO) associated
	Maize chlorotic dwarf	Maize chlorotic dwarf virus (MCDV)
	Maize chlorotic mottle	Maize chlorotic mottle virus (MCMV)
45	Maize dwarf mosaic	Maize dwarf mosaic virus (MDMV) strains A, D, E and F
	Maize leaf fleck	Maize leaf fleck virus (MLFV)
	Maize line	Maize line virus (MLV)

WO 2004/009820

		10
	Krankheit	Pathogen
	Maize mosaic (corn leaf stripe, enanismo rayado)	Maize mosaic virus (MMV)
5	Maize mottle and chloro- tic stunt	Maize mottle and chlorotic stunt virus
	Maize pellucid ringspot	Maize pellucid ringspot virus (MPRV)
	Maize raya gruesa	Maize raya gruesa virus (MRGV)
	maize rayado fino (fine striping disease)	Maize rayado fino virus (MRFV)
10	Maize red leaf and red stripe	Mollicute
	Maize red stripe	Maize red stripe virus (MRSV)
•	Maize ring mottle	Maize ring mottle virus (MRMV)
15	Maize rio IV	Maize rio cuarto virus (MRCV)
	Maize rough dwarf (nanismo ruvido)	Maize rough dwarf virus (MRDV) (Cereal tillering disease virus)
	Maize sterile stunt	Maize sterile stunt virus (strains of barley yellow striate virus)
20	Maize streak	Maize streak virus (MSV)
	Maize stripe (maize chlorotic stripe, maize hoja blanca)	Maize stripe virus
	Maize stunting	Maize stunting virus
25	Maize tassel abortion	Maize tassel abortion virus (MTAV)
	Maize vein enation	Maize vein enation virus (MVEV)
	Maize wallaby ear	Maize wallaby ear virus (MWEV)
	Maize white leaf	Maize white leaf virus
30	Maize white line mosaic	Maize white line mosaic virus (MWLMV)
	Millet red leaf	Millet red leaf virus (MRLV)
	Northern cereal mosaic	Northern cereal mosaic virus (NCMV)
	Oat pseudorosette (zakuklivanie)	Oat pseudorosette virus
35	Oat sterile dwarf	Oat sterile dwarf virus (OSDV)
	Rice black-streaked dwarf	Rice black-streaked dwarf virus (RBSDV)
	Rice stripe	Rice stripe virus (RSV)
40	Sorghum mosaic	Sorghum mosaic virus (SrMV) (auch: sugarcane mosaic virus (SCMV) Stämme H, I and M)
	Sugarcane Fiji disease	Sugarcane Fiji disease virus (FDV)
	Sugarcane mosaic	Sugarcane mosaic virus (SCMV) strains
45		A, B, D, E, SC, BC, Sabi and MB (formerly MDMV-B)
	Wheat spot mosaic	Wheat spot mosaic virus (WSMV)

WO 2004/009820

PCT/EP2003/007589

4. Tierische Schädlinge

4.1 Insekten Pathogene:

Beispielhaft jedoch nicht einschränkend seien Insekten wie 5 beispielsweise Käfer, Raupen, Läuse oder Milben zu nennen. Bevorzugt sind Insekten der Gattungen Coleoptera, Diptera, Hymenoptera, Lepidoptera, Mallophaga, Homoptera, Hemiptera, Orthoptera, Thysanoptera. Dermaptera, Isoptera, Anoplura, Siphonaptera, Trichoptera, etc.. Besonders bevorzugt sind 10 Coleoptera and Lepidoptera Insekten, wie beispielsweise den Maiszünsler (European Corn Borer (ECB)), Diabrotica barberi ("northern corn rootworm"), Diabrotica undecimpunctata ("southern corn rootworm"), Diabrotica virgifera ("Western corn rootworm"), Agrotis ipsilon ("black cutworm"), 15 Crymodes devastator ("glassy cutworm"), Feltia ducens ("dingy cutworm"), Agrotis gladiaria ("claybacked cutworm"), Melanotus spp., Aeolus mellillus ("wireworm"), Aeolus mancus ("wheat wireworm"), Horistonotus uhlerii ("sand wireworm"), Sphenophorus maidis ("maize billbug"), Sphenophorus zeae 20 ("timothy billbug"), Sphenophorus parvulus ("bluegrass billbug"), Sphenophorus callosus ("southern corn billbug"), Phyllogphaga spp. ("white grubs"), Anuraphis maidiradicis ("corn root aphid"), Delia platura ("seedcorn maggot"), Colaspis brunnea ("grape colaspis"), Stenolophus lecontei 25 ("seedcorn beetle") und Clivinia impressifrons ("lender seedcorn beetle").

Ferner sind zu nennen: Das Getreidehähnchen (Oulema
melanopus), die Fritfliege (Oscinella frit), Drahtwürmer
(Agrotis lineatus) und Blattläuse (wie z.B. Haferblattlaus
Rhopalosiphum padi, Große Getreideblattlaus Sitobion avenae).

4.2 Nematoden:

35

Beispielhaft jedoch nicht einschränkend seien die in Tabelle 6 genannten Pathogene und die mit ihnen in Zusammenhang gebrachten Erkrankungen zu nennen.

40 Tabelle 6: Parasitäre Nematoden

45	Schädigung	Pathogene Nematode
	Awl	Dolichodorus spp., D. heterocephalus
	Stengel- oder Stockälchen, Rübenkopfälchen ("Bulb and stem"; Europe)	Ditylenchus dipsaci
	Burrowing	Radopholus similis

Schädigung	Pathogene Nematode
Haferzystenälchen ("Cyst")	Heterodera avenae, H. zeae, Puncto- dera chalcoensis
Dagger	Xiphinema spp., X. americanum, X. mediterraneum
False root-knot	Nacobbus dorsalis
Lance, Columbia	Hoplolaimus columbus
Lance	Hoplolaimus spp., H. galeatus
Lesion	Pratylenchus spp., P. brachyurus, P. crenatus, P. hexincisus, P. neglectus, P. penetrans, P. scribneri, P. thornei, P. zeae
Needle	Longidorus spp., L. breviannulatus
Ring	Criconemella spp., C. ornata
Wurzelgallenälchen ("Root-knot")	Meloidogyne spp., M. chitwoodi, M. incognita, M. javanica
Spiral	Helicotylenchus spp.
Sting	Belonolaimus spp., B. longicaudatus
Stubby-root	Paratrichodorus spp., P. christiei, P. minor, Quinisulcius acutus, Tri-chodorus spp.
Stunt	Tylenchorhynchus dubius
	Haferzystenälchen ("Cyst") Dagger False root-knot Lance, Columbia Lance Lesion Needle Ring Wurzelgallenälchen ("Root-knot") Spiral Sting Stubby-root

25

Ganz besonders bevorzugt sind Globodera rostochiensis und G. pallida (Zystenälchen an Kartoffel, Tomate u.a. Nachtschattengewächsen), Heterodera schachtii (Rübenzystenälchen an Zuckerund Futterrübe, Raps, Kohl etc.), Heterodera avenae (Haferund Eystenälchen an Haferu.a. Getreidearten), Ditylenchus dipsaci (Stengel-oder Stockälchen, Rübenkopfälchen an Roggen, Hafer, Mais, Klee, Tabak, Rübe), Anguina tritici (Weizenälchen, Radekrankheit an Weizen (Dinkel, Roggen), Meloidogyne hapla (Wurzelgallenälchen an Möhre, Gurke, Salat, Tomate, Kartoffel, Zuckertübe, Luzerne).

Als für die einzelnen Sorten bevorzugte Pilz- oder Virus-Pathogene sind beispielsweise zu nennen:

40 1. Gerste:

45

Pilz-, bakterielle und virale Pathogene: Puccinia graminis f.sp. hordei (barley stem rust), Blumeria (Erysiphe) graminis f.sp. hordei (Barley Powdery Mildew), barley yellow dwarf virus (BYDV),

(i.

5

25

30

35

40

45

Pathogene Insekten / Nematoden: Ostrinia nubilalis (European corn borer); Agrotis ipsilon (black cutworm); Schizaphis graminum (greenbug); Blissus leucopterus leucopterus (chinch bug); Acrosternum hilare (green stink bug); Euschistus servus (brown stink bug); Deliaplatura (seedcorn maggot); Mayetiola destructor (Hessian fly); Petrobia latens (brown wheat mite).

2. Sojabohne:

Pilz-, bakterielle oder virale Pathogene: Phytophthora mega-10 sperma fsp.glycinea, Macrophomina phaseolina, Rhizoctonia solani, Sclerotinia sclerotiorum, Fusarium oxysporum, Diaporthe phaseolorum var. sojae (Phomopsis sojae), Diaporthe phaseolorum var. caulivora, Sclerotium rolfsii, Cercospora kikuchii, Cercospora sojina, Peronospora manshurica, Colleto-15 trichum dematium (Colletotrichum truncatum), Corynespora cassiicola, Septoria glycines, Phyllosticta sojicola, Alternaria alternata, Pseudomonas syringae p.v. glycinea, Xanthomonas campestris p.v. phaseoli, Microsphaera diffussa, Fusarium semitectum, Phialophora gregata, Sojabohnen Mosaik-20 virus, Glomerella glycines, Tobacco Ring spot virus, Tobacco Streak virus, Phakopsorapachyrhizi, Pythium aphanidermatum, Pythium ultimum, Pythium debaryanum, Tomato spotted wilt virus, Heterodera glycines Fusarium solani.

Pathogene Insekten / Nematoden: Pseudoplusia includens (soybean looper); Anticarsia gemmatalis (velvetbean caterpillar); Plathypena scabra (green cloverworm); Ostrinia nubilalis (European corn borer); Agrotis ipsilon (black cutworm); Spodoptera exigua (beet armyworm); Heliothis virescens (cotton budworm); Helicoverpa zea (cotton bollworm); Epilachna varivestis (Mexican bean beetle); Myzus persicae (green peach aphid); Empoasca fabae (potato leaf hopper); Acrosternum hilare (green stink bug); Melanoplus femurrubrum (redlegged grasshopper); Melanoplus differentialis (differential grasshopper); Hylemya platura (seedcom maggot); Sericothrips variabilis (soybean thrips); Thrips tabaci (onion thrips); Tetranychus turkestani (strawberry spider mite); Tetranychus urticae (twospotted spider mite);

3. Canola:

Pilz-, bakterielle oder virale Pathogene: Albugo candida, Alternaria brassicae, Leptosphaeria maculans, Rhizoctonia solani, Sclerotinia sclerotiorum, Mycosphaerella brassiccola, Pythium ultimum, Peronospora parasitica, Fusarium roseum, Alternaria alternata.

4. Alfalfa:

Pilz,, bakterielle oder virale Pathogene: Clavibater michiganese subsp. insidiosum, Pythium ultimum, Pythium irregulare, Pythium splendens, Pythium debaryanum, Pythium 5 aphanidermatum, Phytophthora megasperma, Peronospora trifoliorum, Phoma medicaginis var. medicaginis, Cercospora medicaginis, Pseudopeziza medicaginis, Leptotrochila medicaginis, Fusarium, Xanthomonas campestris p.v. alfalfae, Aphanomyces euteiches, Stemphylium herbarum, Stemphylium alfalfae.

5. Weizen:

10

15 Pilz-, bakterielle oder virale Pathogene: Pseudomonas syringae p.v. atrofaciens, Urocystis agropyri, Xanthomonas campestris p.v. translucens, Pseudomonas syringae p.v. syringae, Alternaria alternata, Cladosporium herbarum, Fusarium graminearum, Fusarium avenaceum, Fusarium culmorum, Ustilago tritici, Ascochyta tritici, Cephalosporium gramineum, Collotetrichum 20 graminicola, Erysiphe graminis f.sp. tritici, Puccinia graminis f.sp. tritici, Puccinia recondita f.sp. tritici, Puccinia striiformis, Pyrenophora tritici-repentis, Septoria nodorum, Septoria tritici, Septoria avenae, Pseudocercosporella herpotrichoides, Rhizoctonia solani, Rhizoctonia 25 cerealis, Gaeumannomyces graminis var. tritici, Pythium aphanidermatum, Pythium arrhenomanes, Pythium ultimum, Bipolaris sorokiniana, Barley Yellow Dwarf Virus, Brome Mosaic Virus, Soil Borne Wheat Mosaic Virus, Wheat Streak Mosaic Virus, Wheat Spindle Streak Virus, American Wheat 30 Striate Virus, Claviceps purpurea, Tilletia tritici, Tilletia laevis, Ustilago tritici, Tilletia indica, Rhizoctonia solani, Pythium arrhenomannes, Pythium gramicola, Pythium aphanidermatum, High Plains Virus, European wheat striate virus, Puccinia graminis f.sp. tritici (Wheat stem rust), 35 Blumeria (Erysiphe) graminis f.sp. tritici (Wheat Powdery Mildew)

Pathogene Insekten / Nematoden: Pseudaletia unipunctata (army worm); Spodoptera, frugiperda (fall armyworm); Elasmopalpus 40 lignosellus (lesser cornstalk borer); Agrotis orthogonia (western cutworm); Elasmopalpus Zignosellus (lesser cornstalk borer); Oulema melanopus (cereal leaf beetle); Hypera punctata (clover leaf weevil); Diabrotica undecimpunctata howardi (southern corn rootworm); Russian wheat aphid; Schizaphis 45 graminum (greenbug); Macrosiphum avenae (English grain aphid); Melanoplus femurrubrum (redlegged grasshopper);

Melanoplus differentialis (differential grasshopper);
Melanoplus sanguinipes (migratory grasshopper); Mayetiola
destructor (Hessian fly); Sitodiplosis mosellana (wheat
midge); Meromyza americana (wheat stem maggot); Hylemya
coarctata (wheat bulb fly); Frankliniella fusca (tobacco
thrips); Cephus cinctus (wheat stem sawfly); Aceria tulipae
(wheat curl mite);

6. Sonnenblume:

10

5

Pilz-, bakterielle oder virale Pathogene: Plasmophora halstedii, Sclerotinia sclerotiorum, Aster Yellows, Septoria helianthi, Phomopsis helianthi, Alternaria helianthi, Alternaria zinniae, Botrytis cinerea, Phoma macdonaldii, Macrophomina phaseolina, Erysiphe cichoracearum, Rhizopus oryzae, Rhizopus arrhizus, Rhizopus stolonifer, Puccinia helianthi, Verticillium dahliae, Erwinia carotovorum p.v. Carotovora, Cephalosporium acremonium, Phytophthora cryptogea, Albugo tragopogonis.

20

25

15

Pathogene Insekten / Nematoden: Suleima helianthana (sunflower bud moth); Homoeosoma electellum (sunflower moth); zygogramma exclamationis (sunflower beetle); Bothyrus gibbosus (carrot beetle); Neolasioptera murtfeldtiana (sunflower seed midge);

7. Mais:

Pilz-, bakterielle oder virale Pathogene: Fusarium monili-30 forme var. subglutinans, Erwinia stewartii, Fusarium moniliforme, Gibberella zeae (Fusarium graminearum), Stenocarpella maydi (Diplodia maydis), Pythium irregulare, Pythium debaryanum, Pythium graminicola, Pythium splendens, Pythium ultimum, Pythium aphanidermatum, Aspergillus flavus, Bipolaris maydis 0, T (Cochliobolus heterostrophus), Helminthosporium carbonum 35 I, II & III (Cochliobolus carbonum), Exserohilum turcicum I, II & III, Helminthosporium pedicellatum, Physoderma maydis, Phyllosticta maydis, Kabatiella maydis, Cercospora sorghi, Ustilago maydis, Puccinia sorghi, Puccinia polysora, Macrophomina phaseolina, Penicillium oxalicum, Nigrospora oryzae, 40 Cladosporium herbarum, Curvularia lunata, Curvularia inaequalis, Curvularia pallescens, Clavibacter michiganese subsp. nebraskense, Trichoderma viride, Maize Dwarf Mosaic Virus A & B, Wheat Streak Mosaic Virus, Maize Chlorotic Dwarf Virus, 45 Claviceps sorghi, Pseudonomas avenae, Erwinia chrysanthemi p.v. Zea, Erwinia corotovora, Cornstunt spiroplasma, Diplodia macrospora, Sclerophthora macrospora, Peronosclerospora

5

sorghi, Peronosclerospora philippinesis, Peronosclerospora maydis, Peronosclerospora sacchari, Spacelotheca reiliana, Physopella zeae, Cephalosporium maydis, Caphalosporium acremonium, Maize Chlorotic Mottle Virus, High Plains Virus, Maize Mosaic Virus, Maize Rayado Fino Virus, Maize Streak Virus (MSV, Maisstrichel-Virus), Maize Stripe Virus, Maize Rough Dwarf Virus.

Pathogene Insekten / Nematoden: Ostrinia nubilalis (European corn borer); Agrotis ipsilon (black cutworm); Helicoverpa zea 10 (corn earworm); Spodoptera frugiperda. (fall armyworm); Diatraea grandiosella (southwestern corn borer); Elasmopalpus lignosellus (lesser cornstalk borer); Diatraea saccharalis (surgarcane borer); Diabrotica virgifera (western corn 15 rootworm); Diabrotica longicornis barberi (northern corn rootworm): Diabrotica undecimpunctata howardi (southern corn rootworm); Melanotus spp. (wireworms); Cyclocephala borealis (northern masked chafer; white grub); Cyclocephala immaculata (southern masked chafer; white grub); Popillia japonica (Japanese beetle); Chaetocnema pulicaria (corn flea beetle); 20 Sphenophorus maidis (maize billbug); Rhopalosiphum maidis (corn leaf aphid); Anuraphis maidiradicis (corn root aphid); Blissus leucopterus leucopterus (chinch bug); Melanoplus femurrubrum (redlegged grasshopper); Melanoplus sanguinipes (migratory grasshopper); Hylemva platura (seedcom maggot); 25 Agromyza parvicornis (corn blot leafminer); Anaphothrips obscrurus (grass thrips); Solenopsis milesta (thief ant); Tetranychus urticae (twospotted spider mite).

30 8. Sorghum:

35

40

45

Pilz-, bakterielle oder virale Pathogene: Exserohilum turcicum, Colletotrichum graminicola (Glomerella graminicola), Cercospora sorghi, Gloeocercospora sorghi, Ascochyta sorghina, Pseudomonas syringae p.v. syringae, Xanthomonas campestris p.v. holcicola, Pseudomonas andropogonis, Puccinia purpurea, Macrophomina phaseolina, Perconia circinata, Fusarium monilifonne, Alternaria alternate, Bipolaris sorghicola, Helminthosporium sorghicola, Curvularia lunata, Phoma insidiosa, Pseudomonas avenae (Pseudomonas alboprecipitans), Ramulispora sorghi, Ramulispora sorghicola, Phyllachara sacchari, Sporisorium reilianum (Sphacelotheca reiliana), Sphacelotheca cruenta, Sporisorium sorghi, Sugarcane mosaic H, Maize Dwarf Mosaic Virus A & B, Claviceps sorghi, Rhizoctonia solani, Acremonium strictum, Sclerophthona macrospora, Peronosclerospora sorghi, Peronosclerospora philippinensis,

WO 2004/009820 PCT/EP2003/007589 23

Sclerospora graminicola, Fusarium graminearum, Fusarium oxysporum, Pythium arrhenomanes, Pythium graminicola.

Pathogene Insekten / Nematoden: Chilo partellus (sorghum 5 borer); Spodoptera frugiperda (fall armyworm); Helicoverpa zea (corn ear-worm); Elasmopalpus lignosellus (lesser cornstalk borer); Feltia subterranea (granulate cutworm); Phvllophaga crinita (white grub); Eleodes, Conoderus und Aeolus spp. (wireworm); Oulema melanopus (cereal leaf beetle); Chaetocnema pulicaria (corn flea beetle); Sphenophorus maidis 10 (maize billbug); Rhopalosiphum maidis (corn leaf aphid); Siphaflava (yellow sugarcane aphid); Blissus leucopterus leucopterus (chinch bug); Contarinia sorghicola (sorghummidge); Tetranychus cinnabarinus (carmine spider mite); Tetranychus urticae (two spotted spider mite). 15

9. Baumwolle:

Pathogene Insekten / Nematoden: Heliothis virescens (cotton budworm); Helicoverpa zea (cotton bollworm); Spodoptera 20 exigua (beet armyworm); Pectinophora gossypiella (pink bollworm); Anthonomus grandis grandis (boll weevil); Aphis gossypii (cotton aphid); Pseudatomoscelis seriatus (cotton fleahopper); Trialeurodes abutilonea (bandedwinged whitefly); Lygus lineolaris (tarnished plant bug); Melanoplus femur-25 rubrum (redlegged grasshopper); Melanoplus differentialis (differential grasshopper); Thrips tabaci (onion thrips); Franklinkiella fusca (tobacco thrips); Tetranychus cinnabarinus (carmine spider mite); Tetranychus urticae (two-30 spotted spider mite);

10. Reis:

Pathogene Insekten / Nematoden: Diatraea saccharalis (sugarcane borer); Spodoptera frugiperda (fall armyworm); Helico-35 verpa zea (corn earworm); Colaspis brunnea (grape colaspis); Lissorhoptrus oryzophilus (rice water weevil); Sitophilus oryzae (rice weevil); Nephotettix nigropictus (rice leafhopper); Blissus Ieucopterus leucopterus (chinch bug); Acrosternum hilare (green stink bug); 40

11. Raps:

Pathogene Insekten / Nematoden: Brevicoryne brassicae (cabbage aphid); Phyilotreta cruciferae (Flea beetle); 45 Mamestra conjgurata (Bertha armyworm); Plutella xylostella (Diamond-back moth); Delia ssp. (Root maggots).

WO 2004/009820 PCT/EP2003/007589

"NADPH-Oxidase" meint im Rahmen der Erfindung all solche Enzyme, die als wesentliche Eigenschaft befähigt sind mittels eines Einzelelektronentransfers molekularen Sauerstoff (O₂) zu Superoxid (O₂-) umzusetzen. Bevorzugt sind die Enzyme die durch die EC-5 Klasse E.C.1.23.45.3 beschrieben werden. Dabei kann die NADPH-Oxidasen aus einem oder mehr Polypeptiden bestehen, die gleich oder unterschiedlich sein können.

Bevorzugt ist die NADPH-Oxidase ein Flavocytochromprotein und umfasst als prosthetische Gruppen ein Cytochrom b und/oder eine FAD Einheit. Die NADPH-Oxidase kann aus einem α1β1 Heterodimer bestehen, wobei die β Untereinheit die funktionelle Untereinheit des Flavocytochroms darstellen und als Glykoprotein die Elektronentransportkomponenten umfassen kann (eine hydrophile, zytosolische, C-terminale Domäne, welche NADPH und FAD enthält, sowie 4 bis 6 N-terminale, putative Transmembrane-α-Helixes, welche zwei Histidin-komplexierte prosthetische Haem-Gruppen enthält). Die α-Untereinheit kann eine C-terminale, Prolin-reiche Sequenz umfassen, welche potentielle zytosoliche, aktivierende Faktoren der NADPH-Oxidase zu binden vermag. Durch die Bindung der zytosolische phox Proteine (z.B. p47-phox, p67-phox, p40-phox) und p21rac - ein GTP-bindendes Protein - kann Aktivierung erfolgen.

Dem Fachmann sind zahlreiche NADPH-Oxidasen aus pflanzlichen

25 Organismen bekannt (u.a. Torres MA et al. (1998) Plant J 14:
365-370). Beispielhaft jedoch nicht einschränkend seien die
Sequenzen mit nachfolgenden GenBnk Acc.-No. zu nennen: AJ251717
(Hordeum vulgare), AP003560 (Oryza sativa var. japonica),
AJ320505 (Nicotiana tabacum), AB050660 (Solanum tuberosum),

30 AF088276 (Lycopersicon esculentum), AB008111 (Arabidopsis
thaliana; Atrboh F), AF055357 (Arabidopsis thaliana; RbohD),
AJ309006 (Nicotiana tabacum; rboh), AP003271 (Oryza sativa cv.
japonica), AF055355 (Arabidopsis thaliana; RbohC), AF055353 (Arabidopsis thaliana; RbohC), A

Die zu den im Rahmen dieser Erfindung offenbarten NADPH-Oxidase Sequenzen homologen Sequenzen aus anderen Pflanzen können z.B.

- 40 durch Datenbanksuche oder Durchmustern von Gen-Banken unter Verwendung der NADPH-Oxidase Sequenzen als Suchsequenz bzw. Sonde - leicht aufgefunden werden. Beispielhaft seien dabei Sequenzen mit nachfolgenden GenBnk Acc.-No. zu nennen: CAC51517.1, AJ251717, T03973, BAB68079.1, AP003560, T02024, CAC87256.1,
- 45 AJ320505, BAB70750.1, AB050660, AF088276_1, NP_564821.1,N M_105079, T00265 AC007764_16, NP_192862.1, NM_117194, AF147783_1, AAM28891.1, AF506374, CAC84140.1, AJ309006, T51804, NP_199602.1,

PCT/EP2003/007589

NM_124165, BAB89740.1, AP003271, AAC39477.1, AF055355, NP_199919.1, NM_124485, AAC39475.1, AF055353, NP_196356.1, NM_120821, NP_194239.1, NM_118641, BAB08369.1, AB015475, AAC39478.1, AF055356, AC069143_9, NP_173357.1, NM_101781, NP_172383.1, NM_100780, AAB70398.1, AC000106, AAC39476.1, AF055354, BAB70751.1, AB050661, BAB63664.1, AP003275, AAD24966.1, AF109150.

Besonders bevorzugt umfasst die Polypeptidsequenz der NADPH
10 Oxidase mindestens ein Sequenzmotiv ausgewählt aus der Gruppe
von Sequenzmotiven bestehend aus

- i) AL(K/R)GL(K/R)
- ii) DK(N/D)XDG(R/K)(I/L/V)(T/N)E
- 15 iii) LSASAN
 - iv) IMEELDP
 - v) K(F/L)NMA(I/L)(I/V)LXPVCRN
 - vi) (E/Q)WHPFSIT
 - vii) S(A/S) PXDD(Q/Y) (L/I) S(I/V) H(V/I/L) R
- 20 viii) DGPYG(S/A)PAGDY
 - ix) L(I/V)GLGIGATP
 - x) FYWVTREQGSF
 - xi) GVFYCG
- 25 Ganz besonders bevorzugt enthält die Peptidsequenz mindestens 2 oder 3, ganz besonders bevorzugt mindestens 4 oder 5, am meisten bevorzugt alle der Sequenzmotive ausgewählt aus der Gruppe der Sequenzmotive i), ii), iii), iv), v), vi) vii), viii), ix) x) und xi). (Angaben in Klammern meinen alternativ mögliche Aminosäuren an dieser Position; z.B. mein (V/I), dass an dieser Position Valin oder Isoleucin möglich ist).

NADPH-Oxidase kann aber auch jede andere Einheit eines NADPH-Oxidase Enzymkomplexes meinen der wesentlich für Aktivität der 35 NADPH-Oxidase ist.

"Proteinmenge" meint die Menge eines NADPH-Oxidase-Polypeptides in einem Organismus, einem Gewebe, einer Zelle oder einem Zell-kompartiment. "Verminderung" der Proteinmenge meint die mengen-40 mäßige Verminderung der Menge einer NADPH-Oxidase in einem Organismus, einem Gewebe, einer Zelle oder einem Zellkompartiment – beispielsweise durch eines der unten beschriebenen Verfahren – im Vergleich zu dem Wildtyp derselben Gattung und Art auf den dieses Verfahren nicht angewendet wurde, unter ansonst gleichen 45 Rahmenbedingungen (wie beispielsweise Kulturbedingungen, Alter der Pflanzen etc.). Der Verminderung beträgt dabei mindestens

10 %, bevorzugt mindestens 10 % oder mindestens 20 %, besonders

WO 2004/009820 PCT/EP2003/007589

26

bevorzugt um mindestens 40 % oder 60 %, ganz besonders bevorzugt um mindestens 70 % oder 80 %, am meisten bevorzugt um mindestens 90 % oder 95 %.

5 "Aktivität" meint die Fähigkeit einer NADPH-Oxidase molekularen Sauerstoff (O2) zu Superoxid (O2) umzusetzen. "Verminderung" der Aktivität meint die Verminderung der Gesamt-Aktivität eines NADPH-Oxidase-Proteins in einem Organismus, einem Gewebe, einer Zelle oder einem Zellkompartiment – beispielsweise durch eines der unten beschriebenen Verfahren – im Vergleich zu dem Wildtyp derselben Gattung und Art auf den dieses Verfahren nicht angewendet wurde, unter ansonst gleichen Rahmenbedingungen (wie beispielsweise Kulturbedingungen, Alter der Pflanzen etc.). Der Verminderung beträgt dabei mindestens 10 %, bevorzugt mindestens 10 % oder mindestens 20 %, besonders bevorzugt um mindestens 40 % oder 60 %, ganz besonders bevorzugt um mindestens 70 % oder 80 %, am meisten bevorzugt um mindestens 90 % oder 95 %.

"Funktion" meint bevorzugt die Substratbindekapazität einer
20 NADPH-Oxidase in einem Organismus, einem Gewebe, einer Zelle oder
einem Zellkompartiment. Als Substrate kommen niedermolekulare
Verbindungen wie NADPH oder FAD aber auch die Proteininteraktionspartner einer NADPH-Oxidase in Frage.

25 "Verminderung" der Funktion meint beispielsweise die mengenmäßige Verminderung der Bindekapazität oder Bindestärke einer NADPH-Oxidase zu mindestens einem Substrat in einem Organismus, einem Gewebe, einer Zelle oder einem Zellkompartiment - beispielsweise durch eines der unten beschriebenen Verfahren - im Vergleich zu 30 dem Wildtyp derselben Gattung und Art auf den dieses Verfahren nicht angewendet wurde, unter ansonst gleichen Rahmenbedingungen (wie beispielsweise Kulturbedingungen, Alter der Pflanzen etc.). Unter Verminderung ist auch die Veränderung der Substratspezifität zu verstehen, wie sie beispielsweise durch den kcat/Km-Wert 35 ausgedrückt werden kann. Der Verminderung beträgt dabei mindestens 10 %, bevorzugt mindestens 10 % oder mindestens 20 %, besonders bevorzugt um mindestens 40 % oder 60 %, ganz besonders bevorzugt um mindestens 70 % oder 80 %, am meisten bevorzugt um mindestens 90 % oder 95 %. Bindepartner für NADPH-Oxidase können 40 beispielsweise durch das Hefe-2-Hybridsystem in der dem Fachmann geläufigen Weise identifiziert werden.

Verfahren zur Bestimmung der Proteinmenge, der Aktivität von NADPH Oxidasen oder der Substratbindekapazität sind dem Fachmann 45 bekannt. Beispielsweise kann die NADPH abhängige, DPI-inhibierbare O₂- oder H₂O₂ Produktion (z.B. über Nitro-Blau-Tetrazolium [NBT] oder Cytochrom c Reduktion) gemessen werden. Die Protein-

menge kann beispielsweise immunologisch unter Verwendung entsprechender Antikörper bestimmt werden. Entsprechende Verfahren sind beschrieben (Yu L et al. (1999) Blood 94(7):2497-504; Doke N (1983a) Physiol Plant Pathol 23:345-357; Levine A et al. (1994) 5 Cell 79:583-593; Tenhaken R et al. (1995) Proc Nat Acad Sci USA 92: 4158-4163; Sagi M & Fluhr R. (2001) Plant Physiol 126(3):1281-90; Hückelhoven R & Kogel KH (1998) Mol Plant Microbe Interact 11:292-300; so wie in den vorgenannten Artikeln zitierten Referenzen).

10

"Funktionelle Äquivalente" eines NADPH-Oxidase-Proteins meint bevorzugt solche Sequenzen, die von einer NADPH-Oxidase umfassend eine Polypeptidsequenz gemäß SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 oder 22 abgeleitet oder zu dieser homolog sind und die gleichen wesentlichen Eigenschaften aufweisen.

Dabei kann die Effizienz der Pathogenresistenz sowohl nach unten als auch nach oben im Vergleich zu einem Wert erhalten bei Verminderung einer der NADPH-Oxidasen umfassen eine Polypeptidse-20 quenz gemäß SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 oder 22 abweichen. Bevorzugt sind solche funktionelle Äquivalente, bei denen sich die Effizienz der Pathogenresistenz - gemessen beispielsweise an der Penetrationseffizienz eines Pathogens (Haustoriumbildung) - um nicht mehr als 50 %, bevorzugt 25 %, 25 besonders bevorzugt 10 % von einem Vergleichswert erhalten unter Verminderung einer NADPH-Oxidase umfassend eine Polypeptidsequenz gemäß SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 oder 22 unterscheidet. Besonders bevorzugt sind solche Sequenzen, bei deren Verminderung die Effizienz der Pathogenresistenz quanti-30 tativ um mehr als 50 %, bevorzugt 100 %, besonders bevorzugt 500 %, ganz besonders bevorzugt 1000 % einen Vergleichswert erhalten bei Verminderung einer der NADPH-Oxidasen umfassend eine Polypeptidsequenz gemäß SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 oder 22 übersteigt.

35

Der Vergleich wird bevorzugt unter analogen Bedingungen durch geführt. "Analoge Bedingungen" bedeutet, dass alle Rahmen-bedingungen wie beispielsweise Kultur- oder Zuchtbedingungen, Assaybedingungen (wie Puffer, Temperatur, Substrate, Pathogen-40 konzentration etc.) zwischen den zu vergleichenden Versuchen identisch gehalten werden und die Ansätze sich allein durch die Sequenz der zu vergleichenden NADPH-Oxidasen, ihrem Ursprungs-organismus und gegebenenfalls dem Pathogen unterscheiden. Bei Wahl des Pathogens ist für den Vergleich jeweils das Pathogen zu wählen, das dem jeweils anderen – unter Berücksichtigung der Artspezifität – am nächsten kommt.

"Funktionelle Äquivalente" meint insbesondere natürliche oder künstliche Mutationen der NADPH-Oxidasen umfassend eine Polypeptidsequenz gemäß SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 oder 22 sowie homologe Polypeptide aus anderen Pflanzen, welche weiterhin im wesentlichen gleiche Eigenschaften aufweisen. Bevorzugt sind homologe Polypeptide aus oben beschriebenen bevorzugten Pflanzen. Die zu den im Rahmen dieser Erfindung offenbarten NADPH-Oxidase Sequenzen homologen Sequenzen aus anderen Pflanzen (beispielsweise Arabidopsis thaliana) können z.B. durch Datenbanksuche oder Durchmustern von Gen-Banken – unter Verwendung der NADPH-Oxidase-Sequenzen als Suchsequenz vzw. Sonde –

10 Datenbanksuche oder Durchmustern von Gen-Banken - unter Verwendung der NADPH-Oxidase-Sequenzen als Suchsequenz vzw. Sonde - leicht aufgefunden werden. Entsprechende Sequenzen sind oben mit GenBank Acc-No. beispielhaft aufgeführt.

15 Mutationen umfassen Substitutionen, Additionen, Deletionen, Inversion oder Insertionen eines oder mehrerer Aminosäurereste. Somit werden beispielsweise auch solche Polypeptide durch die vorliegende Erfindung mit umfasst, welche man durch Modifikation eines Polypeptides umfassend eine Polypeptidsequenz gemäß
20 SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 oder 22 erhält.

Unter Homologie zwischen zwei Nukleinsäuresequenzen wird die Identität der Nukleinsäuresequenz über die jeweils gesamte Sequenzlänge verstanden, die durch Vergleich mit Hilfe des Programmalgorithmus GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG), Madison, USA; Altschul et al. (1997) Nucleic Acids Res. 25:3389ff) unter Einstellung folgender Parameter berechnet wird:

30 Gap Weight: 50 Length Weight: 3

Average Match: 10 Average Mismatch: 0

Beispielhaft wird unter einer Sequenz, die eine Homologie 35 von mindestens 80 % auf Nukleinsäurebasis mit der Sequenz SEQ ID NO: 1 aufweist, eine Sequenz verstanden, die bei einem Vergleich mit der Sequenz SEQ ID NO: 1 nach obigem Programmalgorithmus mit obigem Parametersatz eine Homologie von mindestens 80 % aufweist.

Unter Homologie zwischen zwei Polypeptiden wird die Identität der Aminosäuresequenz über die jeweils gesamte Sequenzlänge verstanden, die durch Vergleich mit Hilfe des Programmalgorithmus GAP (Wisconsin Package Version 10.0, University of Wisconsin,

45 Genetics Computer Group (GCG), Madison, USA) unter Einstellung folgender Parameter berechnet wird:

Gap Weight: 8

Length Weight: 2

Average Match: 2,912 Average Mismatch:-2,003

5 Beispielhaft wird unter einer Sequenz, die eine Homologie von mindestens 80 % auf Proteinbasis mit der Sequenz SEQ ID NO: 2 aufweist, eine Sequenz verstanden, die bei einem Vergleich mit der Sequenz SEQ ID NO: 2 nach obigem Programmalgorithmus mit obigem Parametersatz eine Homologie von mindestens 80 % aufweist.

10

Funktionelle Äquivalente, abgeleitet von einer NADPH-Oxidase umfassend eine Polypeptidsequenz gemäß SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 oder 22 durch Substitution, Insertion oder Deletion, haben eine Homologie von mindestens 50 %, bevorzugt

- 15 mindestens 70 %, vorzugsweise mindestens 90 %, besonders bevorzugt mindestens 95 %, ganz besonders bevorzugt mindestens 98 % zu einem Polypeptid umfassend eine Polypeptidsequenz gemäß SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 oder 22 und zeichnen sich durch die gleichen wesentlichen Eigenschaften
- 20 wie diese aus.

Funktionelle Äquivalente, abgeleitet einer eine Sequenz gemäß SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 oder 21 umfassenden NADPH-Oxidase Nukleinsäuresequenz durch Substitution, Insertion oder Deletion, haben eine Homologie von mindestens 50 %, bevorzugt 70 %, vorzugsweise mindestens 90 %, besonders bevorzugt mindestens 95 %, ganz besonders bevorzugt mindestens 98 % zu einem der erfindungsgemäßen Polypeptid gemäß SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 oder 21 und kodieren für Polypeptide mit den gleichen wesentlichen Eigenschaften wie ein Polypeptide umfassend eine Sequenz gemäß SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 oder 22.

Auch die Durchmusterung von cDNA- oder genomischen-Bibliotheken
35 anderer Organismen, bevorzugt von den weiter unten genannten
als Wirt zur Transformation geeigneten Pflanzenarten, unter Verwendung der unter SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19
oder 21 beschriebene Nukleinsäuresequenzen oder Teilen derselben
als Sonde, ist ein dem Fachmann geläufiges Verfahren, um Homologe
40 in anderen Arte zu identifizieren. Dabei haben die von den
Nukleinsäuresequenzen gemäß SEQ ID NO: 1, 3, 5, 7, 9, 11, 13,
15, 17, 19 oder 21 abgeleiteten Sonden eine Länge von mindestens
20 bp, bevorzugt mindestens 50 bp, besonders bevorzugt mindestens
100 bp, ganz besonders bevorzugt mindestens 200 bp, am meisten
45 bevorzugt mindestens 400 bp. Für die Durchmusterung der Bibliotheken kann auch ein zu den unter SEQ ID NO: 1, 3, 5, 7, 9, 11,

45

13, 15, 17, 19 oder 21 beschriebenen Sequenzen komplementärer. DNA-Strang eingesetzt werden.

Funktionelle Äquivalente umfasst DNA Sequenzen, die unter

5 Standardbedingungen mit der durch SEQ ID NO: 1, 3, 5, 7, 9, 11,
13, 15, 17, 19 oder 21 beschriebenen NADPH-Oxidase Nukleinsäuresequenzen, der zu ihr komplementären Nukleinsäuresequenz oder
teilen der vorgenannten hybridisieren und als vollständige
Sequenzen für Proteine kodieren, die die gleichen wesentlichen

10 Eigenschaften haben wie ein Polypeptide umfassend eine Sequenz
gemäß SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 oder 22.

"Standardhybridisierungsbedingungen" ist breit zu verstehen und meint stringente als auch weniger stringente Hybridisierungs-15 bedingungen. Solche Hybridisierungsbedingungen sind unter anderem bei Sambrook J, Fritsch EF, Maniatis T et al., in Molecular Cloning (A Laboratory Manual), 2. Auflage, Cold Spring Harbor Laboratory Press, 1989, Seiten 9.31-9.57) oder in Current Protocols in Molecular Biology, John Wiley &Sons, N.Y. (1989), 20 6.3.1-6.3.6. beschrieben.

Beispielhaft können die Bedingungen während des Waschschrittes ausgewählt sein aus dem Bereich von Bedingungen begrenzt von solchen mit geringer Stringenz (mit ungefähr 2X SSC bei 50°C) und 25 solchen mit hoher Stringenz (mit ungefähr 0.2% SSC bei 50°C bevorzugt bei 65°C) (20X SSC: 0,3M Natriumcitrat, 3M NaCl, pH 7.0). Darüberhinaus kann die Temperatur während des Waschschrittes von niedrig stringenten Bedingungen bei Raumtemperatur, ungefähr 22°C, bis zu stärker stringenten Bedingungen bei ungefähr 65°C angehoben 30 werden. Beide Parameter, Salzkonzentration und Temperatur, können gleichzeitig variiert werden, auch kann einer der beiden Parameter konstant gehalten und nur der andere variiert werden. Während der Hybridisierung können auch denaturierende Agenzien wie zum Beispiel Formamid oder SDS eingesetzt werden. In Gegen-35 wart von 50% Formamid wird die Hybridisierung bevorzugt bei 42°C ausgeführt. Einige beispielhafte Bedingungen für Hybridisierung und Waschschritt sind infolge gegeben:

- (1) Hybridisierungbedingungen zum Beispiel aus nachfolgenden 40 Bedingungen ausgewählt sein:
 - a) 4X SSC bei 65°C (mit optional 100 μ g/ml denaturier-ter, fragmentierte Fischsperma-DNA)
 - b) 6X SSC bei 45°C (mit optional 100 μ g/ml denaturierter, fragmentierte Fischsperma-DNA),
 - 6X SSC, 0,5 % SDS, 50 % Formamid bei 42°C (mit optional 100 μg/ml denaturierter, fragmentierte Fischsperma-DNA)

- d) 4XSSC, 50 % Formamid bei 42°C (mit optional 100 μ g/ml denaturierter, fragmentierte Fischsperma-DNA)
- e) 2X oder 4X SSC bei 50°C (schwach stringente Bedingung),
- f) 30 bis 40 % Formamid, 2X oder 4X SSC bei 42°C (schwach stringente Bedingung).
- (2) Waschschritte können zum Beispiel aus nachfolgenden Bedingungen ausgewählt sein:
- a) 0,015 M NaCl/0,0015 M Natriumcitrat/0,1 % SDS bei 50°C.
 - b) 0.1X SSC bei 65°C.
 - c) 0,1X SSC, 0,5 % SDS bei 68°C.
 - d) 0,1X SSC, 0,5 % SDS, 50 % Formamid bei 42°C.
 - e) 0,2X SSC, 0,1 % SDS bei 42°C.
- f) 2X SSC bei 65°C (schwach stringente Bedingung).

Die Verminderung der Expression eines NADPH-Oxidase-Proteins, der NADPH-Oxidase-Aktivität oder der NADPH-Oxidase-Funktion kann auf vielfältige Art und Weise realisiert werden.

20

5

- "Verminderung" oder "vermindern" ist im Zusammenhang mit einer NADPH-Oxidase, einer NADPH-Oxidase Aktivität oder NADPH-Oxidase-Funktion weit auszulegen und umfasst die teilweise oder im wesentlichen vollständige, auf unterschiedliche zellbiologische 25 Mechanismen beruhende Unterbindung oder Blockierung der Funktionalität einer NADPH-Oxidase in einer Pflanze oder einem davon abgeleiteten Teil, Gewebe, Organ, Zellen oder Samen. Eine Verminderung im Sinne der Erfindung umfasst auch eine mengenmäßige Verringerung einer NADPH-Oxidase bis hin zu einem im wesentlichen 30 vollständigen Fehlen der NADPH-Oxidase (d.h. fehlende Nachweisbarkeit von NADPH-Oxidase-Aktivität bzw. NADPH-Oxidase-Funktion oder fehlende immunologische Nachweisbarkeit des NADPH-Oxidase-Proteins). Dabei können einer oder mehrere essentielle Einheiten der NADPH-Oxidase vermindert werden. Dabei wird die Expression 35 eines bestimmter NADPH-Oxidase oder die NADPH-Oxidase-Aktivität bzw. NADPH-Oxidase-Funktion in einer Zelle oder einem Organismus bevorzugt um mehr als 50 %, besonders bevorzugt um mehr als 80 %,
- 40 Erfindungsgemäß sind verschiedene Strategien zur Verminderung der Expression eines NADPH-Oxidase-Proteins, der NADPH-Oxidase-Aktivität oder NADPH-Oxidase-Funktion umfasst. Beispielhaft jedoch nicht einschränkend seien zu nennen:

ganz besonders bevorzugt um mehr als 90% vermindert.

- a) Einbringen einer doppelsträngigen NADPH-Oxidase RNA-Nukleinsäuresequenz (NAox-dsRNA) oder einer deren Expression gewährleistenden Expressionskassette oder Expressionskassetten;
- 5 b) Einbringen einer NADPH-Oxidase antisense-Nukleinsäuresequenzen oder einer deren Expression gewährleistenden Expressionskassette. Umfasst sind solche Verfahren, bei denen die antisense-Nukleinsäuresequenz gegen ein NADPH-Oxidase-Gen (also genomische DNA-Sequenzen) oder ein NADPH-Oxidase-Gentranskript (also RNA-Sequenzen) gerichtet ist. Umfasst sind auch α-anomere Nukleinsäuresequenzen.
- c) Einbringen einer NADPH-Oxidase antisense-Nukleinsäuresequenzen kombiniert mit einem Ribozym oder einer deren
 Expression gewährleistenden Expressionskassette
- d) Einbringen von NADPH-Oxidase sense-Nukleinsäuresequenzen zur Induktion einer Kosuppression oder einer deren Expression
 gewährleistenden Expressionskassette
 - e) Einbringen DNA-oder Protein-bindende Faktoren gegen NADPH-Oxidase -Gene, -RNAs oder -Proteine oder einer deren Expression gewährleistenden Expressionskassette

25

- f) Einbringen von den NADPH-Oxidase RNA-Abbau bewirkende virale Nukleinsäuresequenzen und Expressionskonstrukten oder einer deren Expression gewährleistenden Expressionskassette
- 30 g) Einbringung von Konstrukten zur Induktion einer homologen Rekombination an endogenen NADPH-Oxidase-Genen beispielsweise zur Erzeugung von Knockout-Mutanten.
- h) Einführen von Mutationen in endogenen NADPH-Oxidase Gene
 35 zur Erzeugung eines Funktionsverlustes (z.B. Generierung
 von Stopp-Kodons, Verschiebungen im Leseraster etc.)

Dabei kann jedes einzelne dieser Verfahren eine Verminderung der NADPH-Oxidase-Expression, NADPH-Oxidase-Aktivität oder NADPH-

40 Oxidase-Funktion im Sinne der Erfindung bewirken. Auch eine kombinierte Anwendung ist denkbar. Weitere Methoden sind dem Fachmann bekannt und können die Behinderung oder Unterbindung der Prozessierung des NADPH-Oxidase-Proteins, des Transports des NADPH-Oxidase-Proteins oder dessen mRNA, Hemmung der Ribosomen45 anlagerung, Hemmung des RNA-Spleißens, Induktion eines NADPH-

Oxidase-RNA abbauenden Enzyms und/oder Hemmung der Translationselongation oder -termination umfassen.

Die einzelnen bevorzugten Verfahren seien infolge kurz 5 beschrieben:

- a) Einbringung einer doppelsträngigen NADPH-Oxidase RNA-Nukleinsäuresequenz (NAox-dsRNA)
- 10 Das Verfahren der Genregulation mittels doppelsträngiger RNA ("double-stranded RNA interference"; dsRNAi) ist vielfach in tierischen und pflanzlichen Organismen beschrieben (z.B. Matzke MA et al. (2000) Plant Mol Biol 43:401-415; Fire A. et al (1998) Nature 391:806-811; WO 99/32619; WO 99/53050; WO 00/68374;
- 15 WO 00/44914; WO 00/44895; WO 00/49035; WO 00/63364). Auf die in den angegebenen Zitaten beschriebenen Verfahren und Methoden wird ausdrücklich Bezug genommen. Eine effiziente Gensuppression kann auch bei transienter Expression oder nach transienter Transformation beispielsweise infolge einer biolistischen Trans-
- 20 formation gezeigt werden (Schweizer P et al. (2000) Plant J 2000 24:895-903). dsRNAi-Verfahren beruhen auf dem Phänomen, dass durch gleichzeitiges Einbringen von komplementären Strang- und Gegenstrang eines Gentranskriptes eine hocheffiziente Unterdrückung der Expression des entsprechenden Gens bewirkt wird.
- 25 Der bewirkte Phänotyp kommt dem einer entsprechenden knock-out Mutanten sehr ähnlich (Waterhouse PM et al. (1998) Proc Natl Acad Sci USA 95:13959-64).
- Das dsRNAi-Verfahren hat sich bei der Verminderung der NADPH30 Oxidase-Expression als besonders effizient und vorteilhaft
 erwiesen. Wie u.a. in WO 99/32619 beschrieben sind dsRNAi-Ansätze
 klassischen antisense-Ansätzen deutlich überlegen.
- Ein weiterer Gegenstand der Erfindung bezieht sich daher

 35 auf doppelsträngige RNA-Moleküle (dsRNA-Moleküle), die bei Einführung in eine Pflanze (oder eine davon abgeleitete Zelle,
 Gewebe, Organ oder Samen) die Verminderung eines NADPH-Oxidase bewirken.
- **40** Das doppelsträngiges RNA-Molekül zur Verminderung der Expression eines NADPH-Oxidase Proteins ist dadurch gekennzeichnet, dass
- a) einen "sense"-RNA-Strang umfassend mindestens eine Ribonukleotidsequenz, die im wesentlichen identisch ist zu
 zumindest einem Teil einer NADPH-Oxidase-Nukleinsäuresequenz,
 und

WO 2004/009820 PCT/EP2003/007589

34

- b) einen "antisense"-RNA-Strang, der zu dem RNA-sense-Strang unter a) im wesentlichen bevorzugt vollständig komplementären ist.
- 5 In einer weiterhin bevorzugten Ausführungsform umfasst das doppelsträngige RNA-Molekül zur Verminderung der Expression eines NADPH-Oxidase Proteins
- a) einen "sense"-RNA-Strang umfassend mindestens eine Ribonukleotidsequenz, die im wesentlichen identisch ist zu
 mindestens einem Teil des "sense"-RNA-Transkriptes einer
 Nukleinsäuresequenz kodierend für ein NADPH-Oxidase Protein,
 und
- 15 b) einen "antisense"-RNA-Strang, der zu dem RNA-sense-Strang unter a) im wesentlichen bevorzugt vollständig komplementären ist.
- In Bezug auf die doppelsträngigen RNA-Moleküle meint NADPHOxidase-Nukleinsäuresequenz bevorzugt eine Sequenz umfassend
 eine Sequenz gemäß SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17,
 19 oder 21.
- Im wesentlichen identisch" meint, dass die dsRNA Sequenz auch 25 Insertionen, Deletionen sowie einzelne Punktmutationen im Vergleich zu der NADPH-Oxidase Zielsequenz oder einer funktionell äquivalenten Zielsequenz aufweisen kann und dennoch eine effizient Verminderung der Expression bewirken. Bevorzugt beträgt die Homologie nach obiger Definition mindestens 75 %, bevorzugt min-
- 30 destens 80 %, ganz besonders bevorzugt mindestens 90 % am meisten bevorzugt 100 % zwischen dem "sense"-Strang einer inhibitorischen dsRNA und mindestens einem Teil des "sense"-RNA-Transkriptes einer Nukleinsäuresequenz kodierend für ein NADPH-Oxidase Protein oder ein funktionelles Äquivalent desselben (bzw. zwischen
- 35 dem "antisense"-Strang dem komplementären Strang einer Nukleinsäuresequenz kodierend für ein NADPH-Oxidase Protein oder ein funktionelles Äquivalent desselben).
- Die Länge des Teilabschnittes beträgt mindestens 10 Basen, 40 bevorzugt mindestens 25 Basen, besonders bevorzugt mindestens 50 Basen, ganz besonders bevorzugt mindestens 100 Basen, am meisten bevorzugt mindestens 200 Basen oder mindestens 300 Basen.
- Alternativ, kann eine "im wesentlichen identische" dsRNA auch als 45 Nukleinsäuresequenz definiert werden, die befähigt ist, mit einem Teil eines Speicherprotein Gentranskriptes zu hybridisieren (z.B.

WO 2004/009820 PCT/EP2003/007589

in 400 mM NaCl, 40 mM PIPES pH 6,4, 1 mM EDTA bei 50°C oder 70°C für 12 bis 16 h).

"Im wesentlichen komplementär" meint, dass der "antisense"5 RNA-Strang auch Insertionen, Deletionen sowie einzelne Punktmutationen im Vergleich zu dem Komplement des "sense"-RNAStranges aufweisen kann. Bevorzugt beträgt die Homologie mindestens 80 %, bevorzugt mindestens 90 %, ganz besonders bevorzugt
mindestens 95 %, am meisten bevorzugt 100% zwischen dem "anti10 sense"-RNA-Strang und dem Komplement des "sense"-RNA-Strangs.

"Teil des "sense"-RNA-Transkriptes" einer Nukleinsäuresequenz kodierend für ein NADPH-Oxidase Protein oder ein funktionelles Äquivalent desselben meint Fragmente einer RNA oder mRNA

15 transkribiert von einer für ein NADPH-Oxidase-Protein oder ein funktionelles Äquivalent desselben kodierenden Nukleinsäuresequenz, bevorzugt von einem NADPH-Oxidase-Gen. Dabei haben die Fragmente bevorzugt eine Sequenzlänge von mindestens 20 Basen, bevorzugt mindestens 50 Basen, besonders bevorzugt mindestens

20 100 Basen, ganz besonders bevorzugt mindestens 200 Basen, am meisten bevorzugt mindestens 500 Basen. Umfasst ist auch die vollständige transkribierte RNA oder mRNA.

Umfasst ist auch die Verwendung der erfindungsgemäßen dsRNA-25 Moleküle in den erfindungsgemäßen Verfahren zur Erzeugung einer Pathogenresistenz in Pflanzen.

Die dsRNA kann aus einem oder mehr Strängen polymerisierter Ribonukleotide bestehen. Es können ferner Modifikationen sowohl des

30 Zucker-Phosphat-Gerüstes als auch der Nukleoside vorliegen. Beispielsweise können die Phosphodiesterbindungen der natürlichen
RNA dahingehend modifiziert sein, dass sie zumindest ein Stickstoff oder Schwefel-Heteroatom umfassen. Basen können dahingehend modifiziert werden, dass die Aktivität beispielsweise von

35 Adenosindeaminase eingeschränkt wird. Solche und weitere Modifikationen sind weiter unten bei den Verfahren zur Stabilisierung
von antisense-RNA beschrieben.

Natürlich können, um den gleichen Zweck zu erreichen, auch 40 mehrere individuelle dsRNA Moleküle, die jeweils einen der oben definierten Ribonukleotidsequenzabschnitte umfassen, in die Zelle oder den Organismus eingebracht werden.

Die dsRNA kann enzymatisch oder ganz oder teilweise chemisch-45 synthetisch hergestellt werden.

Die doppelsträngige dsRNA Struktur kann ausgehend von zwei komplementären, separaten RNA-Strängen oder - bevorzugt - ausgehend von einem einzelnen, selbstkomplementären RNA-Strang gebildet werden.

5

Bei einem einzelnen, selbstkomplementären Strang, können "sense"und "antisense"-Sequenz durch eine verbindende Sequenz ("Linker")
verknüpft sein und beispielsweise eine Haarnadelstruktur ausbilden. Bevorzugt kann die verbindende Sequenz ein Intron sein,
10 das nach Synthese der dsRNA herausgespleißt wird.

Die Nukleinsäuresequenz kodierend für eine dsRNA kann weitere Elemente beinhalten, wie beispielsweise Transkriptionsterminationssignale oder Polyadenylierungssignale.

15

Sollen die zwei Stränge der dsRNA in einer Zelle oder Pflanze zusammengebracht werden, so kann dies auf verschiedene Art geschehen:

- 20 a) Transformation der Zelle oder Pflanze mit einem Vektor, der beide Expressionskassetten umfasst,
 - Kotransformation der Zelle oder Pflanze mit zwei Vektoren, wobei der eine die Expressionskassetten mit
- dem "sense"-Strang, der andere die Expressionskassetten mit dem "antisense"-Strang umfasst.
- c) Kreuzung von zwei Pflanzen, die mit jeweils einem Vektor
 transformiert wurden, wobei der eine die Expressionskassetten
 mit dem "sense"-Strang, der andere die Expressionskassetten
 mit dem "antisense"-Strang umfasst.

Die Bildung der RNA Duplex kann entweder außerhalb der Zelle oder innerhalb derselben initiiert werden. Wie in WO 99/53050 kann

35 die dsRNA auch eine Haarnadelstruktur umfassen, indem "sense"und "antisense"-Strang durch einen "Linker" (beispielsweise
ein Intron) verbunden werden. Die selbstkomplementären dsRNAStrukturen sind bevorzugt, da sie lediglich die Expression eines
Konstruktes erfordern und die komplementären Stränge stets in

Die Expressionskassetten kodierend für den "antisense"- oder "sense"-Strang einer dsRNA oder für den selbstkomplementären-Strang der dsRNA, werden bevorzugt in einen Vektor insertiert und mit den unten beschriebenen Verfahren stabil (beispielsweise unter Verwendung von Selektionsmarkern) in das Genom

40 einem äquimolaren Verhältnis umfassen.

WO 2004/009820

einer Pflanze insertiert, um eine dauerhafte Expression der dsRNA zu gewährleisten.

CT/EP2003/007589

Die dsRNA kann unter Verwendung einer Menge eingeführt werden, 5 die zumindest ein Kopie pro Zelle ermöglicht. Höhere Mengen (z.B. mindestens 5, 10, 100, 500 oder 1000 Kopien pro Zelle) können ggf. eine effizienter Verminderung bewirken.

Wie bereits beschrieben, ist eine 100%ige Sequenzidentität 10 zwischen dsRNA und einem NADPH-Oxidase Gentranskript oder dem Gentranskript eines funktionell äquivalenten Gens nicht zwingend erforderlich, um eine effiziente Verminderung der NADPH-Oxidase Expression zu bewirken. Demzufolge besteht der Vorteil, dass das Verfahren tolerant ist gegenüber Sequenzabweichungen, wie sie 15 infolge genetischer Mutationen, Polymorphismen oder evolutionärer Divergenzen vorliegen können. So ist es beispielsweise möglich mit der dsRNA, die ausgehend von der NADPH-Oxidase Sequenz des einen Organismus generiert wurde, die NADPH-Oxidase Expression in einem anderen Organismus zu unterdrücken. Die hohe Sequenz-20 homologie zwischen den NADPH-Oxidase Sequenzen aus Reis, Mais und Gerste lässt auf einen hohen Konservierungsgrad dieses Proteins innerhalb von Pflanzen schließen, so dass die Expression einer dsRNA abgeleitet von einer der NADPH-Oxidase Sequenzen umfassend eine Sequenz gemäß SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 25 oder 21 auch einen vorteilhaften Effekt in anderen Pflanzenarten haben dürfte.

Auch ist es aufgrund der hohen Homologie zwischen den einzelnen NADPH-Oxidase-Proteinen und ihren funktionellen Äquivalenten mög30 lich mit einer einzigen dsRNA, die ausgehend von einer bestimmten NADPH-Oxidase-Sequenz eines Organismus generiert wurde, die Expression weiterer homologer NADPH-Oxidase-Proteine und/oder deren funktioneller Äquivalente des gleichen Organismus oder aber auch die Expression von NADPH-Oxidase-Proteinen in anderen verauch die Expression von NADPH-Oxidase-Proteinen in anderen verswandten Arten zu unterdrücken. Zu diesem Zweck umfasst die dsRNA bevorzugt Sequenzbereich von NADPH-Oxidase-Gentranskripten, die konservierten Bereichen entsprechen. Besagte konservierte Bereiche können aus Sequenzvergleichen leicht abgeleitet werden.

- 40 Die dsRNA kann entweder in vivo oder in vitro synthetisiert werden. Dazu kann eine DNA-Sequenz kodierend für eine dsRNA in eine Expressionskassette unter Kontrolle mindestens eines genetischen Kontrollelementes (wie beispielsweise Promotor, Enhancer, Silencer, Splice-Donor oder -Akzeptor, Poly-adenylierungssignal) gebracht werden. Entsprechend vorteil-
- 45 adenylierungssignal) gebracht werden. Entsprechend vorteilhafte Konstruktionen sind weiter unten beschrieben. Eine Poly-

adenylierung ist nicht erforderlich, ebenso müssen keine Elemente zur Initiierung einer Translation vorhanden sein.

Eine dsRNA kann chemisch oder enzymatisch synthetisiert werden.

5 Dazu können zelluläre RNA Polymerasen oder Bakteriophagen RNA
Polymerasen (wie z.B. T3-, T7- oder SP6 RNA-Polymerase) verwendet
werden. Entsprechende Verfahren zu in vitro Expression von RNA
sind beschrieben (WO 97/32016; US 5,593,874; US 5,698,425,
US 5,712,135, US 5,789,214, US 5,804,693). Eine chemisch oder

10 enzymatisch in vitro syntetisierte dsRNA kann vor der Einführung
in eine Zelle, Gewebe oder Organismus aus dem Reaktionsgemisch
beispielsweise durch Extraktion, Präzipitation, Elektrophorese,
Chromatographie oder Kombinationen dieser Verfahren ganz oder
teilweise aufgereinigt werden. Die dsRNA kann unmittelbar in die

15 Zelle eingeführt werden oder aber auch extrazellulär (z.B. in den
interstitialen Raum) appliziert werden.

Bevorzugt wird die Pflanze jedoch stabil mit einem Expressionskonstrukt, das die Expression der dsRNA realisiert, transfor-20 miert. Entsprechende Verfahren sind weiter unten beschrieben.

b) Einbringung einer NADPH-Oxidase antisense-Nukleinsäuresequenz

Verfahren zur Suppression eines bestimmten Proteins durch Ver25 hinderung der Akkumulation seiner mRNA durch die "antisense"Technologie sind vielfach - auch in Pflanzen - beschrieben
(Sheehy et al. (1988) Proc Natl Acad Sci USA 85: 8805-8809;
US 4,801,340; Mol JN et al. (1990) FEBS Lett 268(2):427-430).
Das antisense Nukleinsäuremolekül hybridisiert bzw. bindet mit
30 der zellulären mRNA und/oder genomischen DNA kodierend für das
zu supprimierende NADPH-Oxidase-Zielprotein. Dadurch wird die
Transkription und/oder Translation des Zielproteins unterdrückt.
Die Hybridisierung kann auf konventionelle Art über die Bildung
einer stabilen Duplex oder - im Fall von genomischer DNA - durch
35 Bindung des antisense Nukleinsäuremoleküls mit der Duplex der
genomischen DNA durch spezifische Wechselwirkung in der großen
Furche der DNA-Helix entstehen.

Eine antisense Nukleinsäuresequenz geeignet zur Verminderung eines NADPH-Oxidase-Proteins kann unter Verwendung der für dieses Protein kodierenden Nukleinsäuresequenz, beispiels-weise der Nukleinsäuresequenz umfassend eine Sequenz gemäß SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 oder 21, nach den Basenpaarregeln von Watson und Crick abgeleitet werden.

45 Die antisense Nukleinsäuresequenz kann zu der gesamten transkribierten mRNA des besagten Proteins komplementär sein,

sich auf die kodierende Region beschränken oder nur aus einem

Oligonukleotid bestehen, das zu einem Teil der kodierenden oder nicht-kodierenden Sequenz der mRNA komplementär ist. So kann das Oligonukleotid beispielsweise komplementär zu der Region sein, die den Translationsstart für das besagte Protein umfasst. Anti-5 sense-Nukleinsäuresequenzen können eine Länge von zum Beispiel 5, 10, 15, 20, 25, 30, 35, 40, 45 oder 50 Nukleotide haben, können aber auch länger sein und mindestens 100, 200, 500, 1000, 2000 oder 5000 Nukleotide umfassen. Antisense-Nukleinsäuresequenzen können rekombinant exprimiert oder chemisch bzw. enzymatisch 10 unter Verwendung von dem Fachmann bekannten Verfahren synthetisiert werden. Bei der chemischen Synthese können natürlich oder modifizierte Nukleotide verwendet werden. Modifizierte Nukleotide können der antisense Nukleinsäuresequenz eine erhöhte biochemische Stabilität verleihen und zu einer erhöhten physikali-15 schen Stabilität der Duplex gebildet aus antisense-Nukleinsäuresequenz und sense-Zielsequenz führen. Verwendet werden können beispielsweise Phosphorothioatderivative und Acridin-substitierte Nukleotide wie 5-Fluorouracil, 5-Bromouracil, 5-Chlorouracil, 5-Iodouracil, Hypoxanthin, Xanthin, 4-Acetylcytosin, 5-(Carboxy-20 hydroxylmethyl)uracil, 5-Carboxymethylaminomethyl-2-thiouridin, 5-Carboxymethylaminomethyluracil, Dihydrouracil, β -D-Galactosylqueosin, Inosine, N6-Isopentenyladenin, 1-Methylguanin, 1-Methylinosin, 2,2-Dimethylguanin, 2-Methyladenin, 2-Methylguanin, 3-Methylcytosin, 5-Methylcytosin, N6-Adenin, 7-Methyl-25 guanin, 5-Methylaminomethyluracil, 5-Methoxyaminomethyl-2-thiouracil, β -D-mannosylqueosin, 5'-Methoxycarboxymethyluracil, 5-Methoxyuracil, 2-Methylthio-N6-isopentenyladenin, Uracil-5-oxyessigsäure, Pseudouracil, Queosine, 2-Thiocytosin, 5-Methyl-2-thiouracil, 2-Thiouracil, 4-Thiouracil, 5-Methyluracil, 30 Uracil-5-oxyessigsäuremethylester, Uracil-5-oxyessigsäure, 5-Methyl- 2-thiouracil, 3-(3-Amino-3-N-2-carboxypropyl)uracil und 2,6-Diaminopurin.

In einer weiteren bevorzugten Ausführungsform kann die Expression eines NADPH-Oxidase-Proteins durch Nukleotidsequenzen inhibiert werden, die komplementär zu der regulatorischen Region eines NADPH-Oxidase-Gens (z.B. einem NADPH-Oxidase Promoter und/oder Enhancer) sind und triple-helikale Strukturen mit der dortigen DNA-Doppelhelix ausbilden, so dass die Transkription des NADPH-40 Oxidase-Gens vermindert wird. Entsprechende Verfahren sind beschrieben (Helene C (1991) Anticancer Drug Res 6(6):569-84; Helene C et al. (1992) Ann NY Acad Sci 660:27-36; Maher LJ (1992) Bioassays 14(12):807-815).

45 In einer weiteren Ausführungsform kann das antisense Nukleinsäuremolekül eine α -anomere Nukleinsäure sein. Derartige α -anomere Nukleinsäuremoleküle bilden spezifische doppel-

strängige Hybride mit komplementärer RNA in denen – im Unterschied zu den konventionellen β-Nukleinsäuren – die beiden Stränge parallel zueinander verlaufen (Gautier C et al. (1987) Nucleic Acids Res 15:6625-6641). Das antisense Nukleinsäuremolekül kann ferner auch 2'-O-Methylribonukleotide (Inoue et al. (1987) Nucleic Acids Res 15:6131-6148) oder chimäre RNA-DNA Analoge beinhalten (Inoue et al. (1987) FEBS Lett 215:327-330).

c) Einbringung einer NADPH-Oxidase antisense-Nukleinsäuresequenz
 kombiniert mit einem Ribozym

Vorteilhaft kann die oben beschriebene antisense-Strategie mit einem Ribozym-Verfahren gekoppelt werden. Katalytische RNA-Moleküle oder Ribozyme können an jede beliebige Ziel-RNA angepasst

- 15 werden und spalten das Phosphodiester-Gerüst an spezifischen Positionen, wodurch die Ziel-RNA funktionell deaktiviert wird (Tanner NK (1999) FEMS Microbiol Rev 23(3):257-275). Das Ribozym wird dadurch nicht selber modifiziert, sondern ist in der Lage, weitere Ziel-RNA-Moleküle analog zu spalten, wodurch es die
- 20 Eigenschaften eines Enzyms erhält. Der Einbau von Ribozymsequenzen in "antisense"-RNAs verleiht eben diesen "antisense"-RNAs diese enzymähnliche, RNA-spaltende Eigenschaft und steigert so deren Effizienz bei der Inaktivierung der Ziel-RNA. Die Herstellung und Verwendung entsprechender Ribozym-"anti-
- 25 sense"-RNA-Moleküle ist beispielsweise beschrieben bei Haseloff et al. (1988) Nature 334:585-591.

Auf diese Art können Ribozyme (z.B. "Hammerhead"-Ribozyme; Haselhoff und Gerlach (1988) Nature 334:585-591) verwendet werden, um

- 30 die mRNA eines zu supprimierenden Enzyms z.B. NADPH-Oxidase katalytisch zu spalten und die Translation zu verhindern. Die Ribozym-Technologie kann die Effizienz einer antisense-Strategie erhöhen. Verfahren zur Expression von Ribozymen zur Verminderung bestimmter Proteine sind beschrieben in (EP 0 291 533, EP 0 321
- 35 201, EP 0 360 257). In pflanzlichen Zellen ist eine Ribozym-Expression ebenfalls beschrieben (Steinecke P et al. (1992) EMBO J 11(4):1525-1530; de Feyter R et al. (1996) Mol Gen Genet. 250(3):329-338). Geeignete Zielsequenzen und Ribozyme können zum Beispiel wie bei "Steinecke P, Ribozymes, Methods in Cell
- 40 Biology 50, Galbraith et al. eds, Academic Press, Inc. (1995), S. 449-460" beschrieben, durch Sekundärstrukturberechnungen von Ribozym- und Ziel-RNA sowie durch deren Interaktion bestimmt werden (Bayley CC et al. (1992) Plant Mol Biol. 18(2):353-361; Lloyd AM and Davis RW et al. (1994) Mol Gen Genet.
- 45 242(6):653-657). Beispielsweise können Derivate der Tetrahymena L-19 IVS RNA konstruiert werden, die komplementäre Bereiche zu der mRNA des zu supprimierenden NADPH-Oxidase Proteins aufweisen

(siehe auch US 4,987,071 und US 5,116,742). Alternativ können solche Ribozyme auch über einen Selektionsprozess aus einer Bibliothek diverser Ribozyme identifiziert werden (Bartel D und Szostak JW (1993) Science 261:1411-1418).

5

- d) Einbringung einer NADPH-Oxidase sense-Nukleinsäuresequenz zur Induktion eines Kosuppression
- Die Expression einer NADPH-Oxidase Nukleinsäuresequenz in sense10 Orientierung kann zu einer Kosuppression des entsprechenden homologen, endogenen Gens führen. Die Expression von sense-RNA mit
 Homologie zu einem endogenen Gen kann die Expression desselben
 vermindern oder ausschalten, ähnlich wie es für antisense
 Ansätze beschrieben wurde (Jorgensen et al. (1996) Plant Mol
 15 Biol 31(5):957-973; Goring et al. (1991) Proc Natl Acad Sci USA
 88:1770-1774; Smith et al. (1990) Mol Gen Genet 224:447-481;
 Napoli et al. (1990) Plant Cell 2:279-289; Van der Krol et al.
 (1990) Plant Cell 2:291-99). Dabei kann das eingeführte Konstrukt
 das zu vermindernde, homologe Gen ganz oder nur teilweise
 20 representieren. Die Möglichkeit zur Translation ist nicht
 erforderlich. Die Anwendung dieser Technologie auf Pflanzen
 ist beispielsweise beschrieben bei Napoli et al. (1990) The
- 25 Bevorzugt wird die Kosuppression unter Verwendung einer Sequenz realisiert, die im wesentlichen identisch ist zu zumindest einem Teil der Nukleinsäuresequenz kodierend für ein NADPH-Oxidase-Protein oder ein funktionelles Äquivalent desselben, beispielsweise der Nukleinsäuresequenz umfassend eine Sequenz gemäß
 30 SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 oder 21.

Plant Cell 2: 279-289 und in US 5,034,323.

- e) Einbringung DNA-oder Protein-bindende Faktoren gegen NADPH-Oxidase Gene, -RNAs oder Proteine
- 35 Eine Verminderung einer NADPH-Oxidase Genexpression ist auch mit spezifischen DNA-bindenden Faktoren z.B. mit Faktoren vom Typus der Zinkfingertranskriptionsfaktoren möglich. Diese Faktoren lagern sich an die genomische Sequenz des endogenen Zielgens, bevorzugt in den regulatorischen Bereichen, an und bewirken
- 40 eine Repression des endogenen Gens. Die Verwendung eines solchen Verfahrens ermöglicht die Verminderung der Expression eines endogenen NADPH-Oxidase Gens, ohne dass dessen Sequenz gentechnisch manipuliert werden muss. Entsprechende Verfahren zur Herstellung entsprechender Faktoren sind beschrieben (Dreier B et al. (2001)
- 45 J Biol Chem 276(31):29466-78; Dreier B et al. (2000) J Mol Biol 303(4):489-502; Beerli RR et al. (2000) Proc Natl Acad Sci USA 97 (4):1495-1500; Beerli RR et al. (2000) J Biol Chem

275(42):32617-32627; Segal DJ and Barbas CF 3rd. (2000) Curr Opin Chem Biol 4(1):34-39; Kang JS and Kim JS (2000) J Biol Chem 275(12):8742-8748; Beerli RR et al. (1998) Proc Natl Acad Sci USA 95(25):14628- 14633; Kim JS et al. (1997) Proc Natl Acad Sci USA 594(8):3616 -3620; Klug A (1999) J Mol Biol 293(2):215-218; Tsai SY et al. (1998) Adv Drug Deliv Rev 30(1-3):23-31; Mapp AK et al. (2000) Proc Natl Acad Sci USA 97(8):3930-3935; Sharrocks AD et al. (1997) Int J Biochem Cell Biol 29(12):1371-1387; Zhang L et al. (2000) J Biol Chem 275(43):33850-33860).

10

Die Selektion dieser Faktoren kann unter Verwendung eines beliebigen Stückes eines NADPH-Oxidase-Gens erfolgen. Bevorzugt liegt dieser Abschnitt im Bereich der Promotorregion. Für eine Genunterdrückung kann er aber auch im Bereich der kodierenden 15 Exons oder Introns liegen. Die entsprechenden Abschnitte sind für den Fachmann mittels Datenbankabfrage aus der Genbank oder – ausgehend von einer NADPH-Oxidase cDNA, deren Gen nicht in der Genbank vorhanden ist, durch Durchmusterung einer genomischen Bibliothek nach korrespondierenden genomischen Klonen erhältlich.

Ferner können Faktoren in eine Zelle eingebracht werden, die das NADPH-Oxidase Zielprotein selber inhibieren. Die proteinbindenden Faktoren können z.B. Aptamere (Famulok M und Mayer G (1999) Curr 25 Top Microbiol Immunol 243:123-36) oder Antikörper bzw. Antikörperfragmente oder einzelkettige Antikörper sein. Die Gewinnung dieser Faktoren ist beschrieben und dem Fachmann bekannt. Beispielsweise wurde ein cytoplasmatischer scFv Antikörper eingesetzt, um die Aktivität des Phytochrom A Proteins in gentechnisch veränderten Tabakpflanzen zu modulieren (Owen M et al. (1992) Biotechnology (N Y) 10(7):790-794; Franken E et al. (1997) Curr Opin Biotechnol 8(4):411-416; Whitelam (1996) Trend Plant Sci 1:286-272).

35 Die Genexpression kann auch durch maßgeschneiderte, niedermolekulare synthetische Verbindungen unterdrückt werden, beispielsweise vom Polyamid-Typ (Dervan PB und Bürli RW (1999) Current Opinion in Chemical Biology 3:688-693; Gottesfeld JM et al. (2000) Gene Expr 9(1-2):77-91). Diese Oligomere
40 bestehen aus den Bausteinen 3-(Dimethylamino)propylamin, N-Methyl-3-hydroxypyrrol, N-Methylimidazol und N-Methylpyrrole und können an jedes Stück doppelsträngiger DNA so angepasst werden, dass sie sequenzspezifisch in die große Furche binden und die Expression der dortigen Genesequenzen blockieren. Entsprechende Verfahren sind beschrieben (siehe unter anderem Bremer RE et al. (2001) Bioorg Med Chem. 9(8):2093-103; Ansari AZ et al. (2001) Chem Biol. 8(6):583-92; Gottesfeld JM et al. (2001) J Mol

Biol. 309(3):615-29; Wurtz NR et al. (2001) Org Lett 3(8):1201-3; Wang CC et al. (2001) Bioorg Med Chem 9(3):653-7; Urbach AR und Dervan PB (2001) Proc Natl Acad Sci USA 98(8):4343-8; Chiang SY et al. (2000) J Biol Chem. 275(32):24246-54).

5

f) Einbringung von den NADPH-Oxidase RNA-Abbau bewirkenden viralen Nukleinsäuresequenzen und Expressionskonstrukten

Die NADPH-Oxidase Expression kann effektiv auch durch Induktion

10 des spezifischen NADPH-Oxidase RNA-Abbaus durch die Pflanze
mit Hilfe eines viralen Expressionssystems (Amplikon) (Angell,
SM et al. (1999) Plant J. 20(3):357-362) realisiert werden.
Diese Systeme - auch als "VIGS" (viral induced gene silencing)
bezeichnet - bringen Nukleinsäureseugnzen mit Homologie zu den

15 zu supprimierenden Transkripten mittels viraler Vektoren in die
Pflanze ein. Die Transkription wird sodann - vermutlich mediiert
durch pflanzliche Abwehrmechanismen gegen Viren - abgeschaltet.
Entsprechende Techniken und Verfahren sind beschrieben (Ratcliff
F et al. (2001) Plant J 25(2):237-45; Fagard M und Vaucheret H

20 (2000) Plant Mol Biol 43(2-3):285-93; Anandalakshmi R et al.
(1998) Proc Natl Acad Sci USA 95(22):13079-84; Ruiz MT (1998)
Plant Cell 10(6): 937-46).

g) Einbringung von Konstrukten zur Induktion einer homologen 25 Rekombination an endogenen NADPH-Oxidase-Genen beispielsweise zur Erzeugung von Knockout-Mutanten.

Zur Herstellung eines homolog rekombinanten Organismus mit verminderter NADPH-Oxidase-Aktivität verwendet man beispiels30 weise ein Nukleinsäurekonstrukt, das zumindest einen Teil eines endogenen NADPH-Oxidase Gens enthält, das durch eine Deletion, Addition oder Substitution mindestens eines Nukleotids so verändert wird, so dass die Funktionalität vermindert oder gänzlich aufgehoben wird. Die Veränderung kann auch die regulativen Elemente (z.B. den Promotor) des Gens betreffen, so dass die kodierende Sequenz unverändert bleibt, eine Expression (Transkription und/oder Translation) jedoch unterbleibt und vermindert wird.

40 Bei der konventionellen homologen Rekombination ist die veränderte Region an ihrem 5'- und 3'-Ende von weiteren Nukleinsäuresequenzen flankiert, die eine ausreichende Länge für die Ermöglichung der Rekombination aufweisen müssen. Die Länge liegt in der Regel in einem Bereich von mehreren einhundert Basen
45 bis zu mehreren Kilobasen (Thomas KR und Capecchi MR (1987) Cell 51:503; Strepp et al. (1998) Proc Natl Acad Sci USA 95(8):4368-4373). Für die homologe Rekombination wird der Wirts-

PCT/EP2003/007589

organismus - zum Beispiel eine Pflanze - mit dem Rekombinationskonstrukt unter Verwendung der unten beschriebenen Verfahren transformiert und erfolgreich rekombinierte Klone unter Verwendung zum Beispiel einer Antibiotika- oder Herbizidresistenz 5 selektioniert.

Homologe Rekombination ist ein relativ seltenes Ereignis in höheren Eukaryoten, vor allem in Pflanzen. Zufällige Integrationen in das Wirtsgenom überwiegen. Eine Möglichkeit die 10 zufällig integrierten Sequenzen zu entfernen und so Zellklone mit einer korrekten homologen Rekombination anzureichern, besteht in der Verwendung eines sequenzspezifischen Rekombinationssystems wie in US 6,110,736 beschrieben, durch welche unspezifisch integrierte Sequenzen wieder deletiert werden können, was die 15 Selektion erfolgreich über homologe Rekombination integrierter Ereignisse erleichtert. Eine Vielzahl von sequenzspezifischen Rekombinationssystemen kann verwendet werden, beispielhaft sind das Cre/lox-System des Bacteriophagen P1, das FLP/FRT System der Hefe, die Gin Rekombinase des Mu Phagen, die Pin Rekombinase aus 20 E. coli und das R/RS System des pSR1 Plasmids genannt. Bevorzugt sind das Bacteriophagen P1 Cre/lox und das Hefe FLP/FRT System. Das FLP/FRT und cre/lox Rekombinasesystem wurde bereits in pflanzlichen Systemen angewendet (Odell et al. (1990) Mol Gen Genet 223: 369-378)

25

- h) Einführung von Mutationen in endogene NADPH-Oxidase Gene zur Erzeugung eines Funktionsverlustes (z.B. Generierung von Stopp-Kodons, Verschiebungen im Leseraster etc.)
- 30 Weitere geeignete Methoden zur Verminderung der NADPH-Oxidase-Aktivität sind die Einführung von Nonsense-Mutationen in endogene NADPH-Oxidase Gene zum Beispiel mittels Einführung von RNA/DNA-Oligonukleotiden in die Pflanze (Zhu et al. (2000) Nat Biotechnol 18(5):555-558) sowie die Generierung von Knockout-Mutanten mit
- 35 Hilfe von z.B. T-DNA-Mutagenese (Koncz et al. (1992) Plant Mol Biol 20(5):963-976), ENU-(N-Ethyl-N-nitrosoharnstoff) Mutagenese oder homolger Rekombination (Hohn B und Puchta (1999) H Proc Natl Acad Sci USA 96:8321-8323.). Punktmutationen können auch mittels DNA-RNA Hybriden erzeugt werden, die auch als
- 40 "chimeraplasty" bekannt sind (Cole-Strauss et al. (1999) Nucl Acids Res 27(5):1323-1330; Kmiec (1999) Gene therapy American Scientist 87(3):240-247).

Die Methoden der dsRNAi, der Kosuppression mittels sense-RNA 45 und der "VIGS" ("virus induced gene silencing") werden auch als "post-transcriptional gene silencing" (PTGS) bezeichnet. PTGS-Verfahren wie auch die Verminderung der NADPH-Oxidase-Funktion

oder Aktivität mit dominant-negativen NADPH-Oxidase-Varianten sind besonders vorteilhaft, weil die Anforderungen an die Homologie zwischen dem zu supprimierenden endogenem Gen und der transgen exprimierten sense- oder dsRNA-Nukleinsäuresequenz 5 (bzw. zwischen dem endogenen Gen und seiner dominant-negativen Variante) geringer sind als beispielsweise bei einem klassischen antisense-Ansatz. Entsprechende Homologie-Kriterien sind bei der Beschreibung des dsRNAI-Verfahrens genannt und allgemein für PTGS-Verfahren oder dominant-negative Ansätze übertragbar. Auf-10 grund der hohen Homologie zwischen den NADPH-Oxidase-Proteinen aus Mais, Reis und Gerste kann auf einen hohen Konservierungsgrad dieses Protein bei Pflanzen geschlossen werden. So kann man voraussichtlich unter Verwendung der NADPH-Oxidase-Nukleinsäuresequenzen aus Gerste, Mais oder Reis auch die Expression von 15 homologen NADPH-Oxidase-Proteinen in anderen Arten effektiv supprimieren, ohne dass die Isolierung und Strukturaufklärung der dort vorkommenden NADPH-Oxidase-Homologen zwingend erforderlich wäre. Dies erleichtert erheblich den Arbeitsaufwand. Analog kann man voraussichtlich auch unter Verwendung von dominant-negativen 20 Varianten eines NADPH-Oxidase-Proteins aus Reis, Mais oder Gerste die Funktion/Aktivität seines Homologs in anderen Pflanzenarten

Alle Substanzen und Verbindungen die direkt oder indirekt eine Verminderung der Proteinmenge, RNA-Menge, Genaktivität oder Proteinaktivität eines NADPH-Oxidase-Proteins bewirken, seien infolge unter der Bezeichnung "anti-NADPH-Oxidase"-Verbindungen zusammengefasst. Der Begriff "anti-NADPH-Oxidase"-Verbindung schließt explizit die in den oben beschriebenen Verfahren zum 30 Einsatz kommenden Nukleinsäuresequenzen, Peptide, Proteine oder andere Faktoren ein.

effektiv vermindern oder unterdrücken.

"Einbringung" umfasst im Rahmen der Erfindung alle Verfahren, die dazu geeignet eine "anti-NADPH-Oxidase"-Verbindung, direkt oder 35 indirekt, in eine Pflanze oder eine Zelle, Kompartiment, Gewebe, Organ oder Samen derselben einzuführen oder dort zu generieren. Direkte und indirekte Verfahren sind umfasst. Die Einbringung kann zu einer vorübergehenden (transienten) Präsenz einer "anti-NADPH-Oxidase"-Verbindung (beispielsweise einer dsRNA) führen oder aber auch zu einer dauerhaften (stabilen).

Gemäß der unterschiedlichen Natur der oben beschriebenen Ansätze kann die "anti-NADPH-Oxidase"-Verbindung ihre Funktion direkt ausüben (zum Beispiel durch Insertion in ein endogenes NADPH-Oxidase Gen). Die Funktion kann aber auch indirekt nach Transkription in eine RNA (zum Beispiel bei antisense Ansätzen) oder nach Transkription und Translation in ein Protein

(z.B. Bindungsfaktoren) ausgeübt werden. Sowohl direkte als auch indirekt wirkende "anti-NADPH-Oxidase"-Verbindungen sind erfindungsgemäß umfasst.

5 Einführen umfasst beispielsweise Verfahren wie Transfektion, Transduktion oder Transformation.

"Anti-NADPH-Oxidase" Verbindungen umfasst somit beispielsweise auch rekombinante Expressionskonstrukte, die eine Expression 10 (d.h. Transkription und ggf. Translation) beispielsweise einer NADPH-Oxidase-dsRNA oder einer NADPH-Oxidase "antisense"-RNA bevorzugt in einer Pflanze oder einem Teil, Gewebe, Organ oder Samen derselben - bedingen.

15 In besagten Expressionskonstrukten steht ein Nukleinsäuremolekül, dessen Expression (Transkription und ggf. Translation) eine "anti-NADPH-Oxidase"-Verbindung generiert, bevorzugt in funktioneller Verknüpfung mit mindestens einem genetischen Kontrollelement (beispielsweise einem Promotor), das eine Expression

20 in einem Organismus, bevorzugt in Pflanzen, gewährleistet.
Soll das Expressionskonstrukt direkt in die Pflanze eingeführt
und die "anti-NADPH-Oxidase"-Verbindung (beispielsweise die
NADPH-Oxidase dsRNA) dort in plantae erzeugt werden, so sind
pflanzenspezifische genetische Kontrollelemente (beispiels-

25 weise Promotoren) bevorzugt. Die "anti-NADPH-Oxidase"-Verbindung kann jedoch auch in anderen Organismen oder in vitro erzeugt und dann in die Pflanze eingebracht werden (wie in Beispiel 6 und 7 beschrieben). In diesem sind all prokaryotischen oder eukaryotischen genetischen Kontrollelemente (beispielsweise

30 Promotoren) bevorzugt, die die Expression in den jeweils für die Herstellung gewählten Organismus erlauben.

Unter einer funktionellen Verknüpfung versteht man zum Beispiel die sequentielle Anordnung eines Promotors mit der zu expri35 mierenden Nukleinsäuresequenz (zum Beispiel einer "anti-NAox-Verbindung) und ggf. weiterer regulativer Elemente wie zum Beispiel einem Terminator derart, dass jedes der regulativen Elemente seine Funktion bei der transgenen Expression der Nukleinsäuresequenz, je nach Anordnung der Nukleinsäuresequenzen zu sense der anti-sense RNA, erfüllen kann. Dazu ist nicht unbedingt eine direkte Verknüpfung im chemischen Sinne erforderlich. Genetische Kontrollsequenzen, wie zum Beispiel Enhancer-Sequenzen, können ihre Funktion auch von weiter entfernten Positionen oder gar von anderen DNA-Molekülen aus auf die Zielsequenz ausüben. Bevorzugt sind Anordnungen, in denen die transgen zu exprimierende Nukleinsäuresequenz hinter der als Promoter fungierenden Sequenz

positioniert wird, so dass beide Sequenzen kovalent miteinander

insertiert werden.

verbunden sind. Bevorzugt ist dabei der Abstand zwischen der Promotorsequenz und der transgen zu exprimierende Nukleinsäuresequenz geringer als 200 Basenpaare, besonders bevorzugt kleiner als 100 Basenpaare, ganz besonders bevorzugt kleiner 5 als 50 Basenpaare.

Die Herstellung einer funktionellen Verknüpfung als auch die Herstellung einer Expressionskassette kann mittels gängiger Rekombinations- und Klonierungstechniken realisiert werden, 10 wie sie beispielsweise in Maniatis T, Fritsch EF und Sambrook J (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor (NY), in Silhavy TJ, Berman ML und Enquist LW (1984) Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor (NY), in Ausubel FM et al. 15 (1987) Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Interscience und bei Gelvin et al. (1990) In: Plant Molecular Biology Manual beschrieben sind. Zwischen beide Sequenzen können aber auch weitere Sequenzen positioniert werden, die zum Beispiel die Funktion eines Linkers mit bestimmten 20 Restriktionsenzymschnittstellen oder eines Signalpeptides haben. Auch kann die Insertion von Sequenzen zur Expression von Fusionsproteinen führen. Bevorzugt kann die Expressionskassette, bestehend aus einer Verknüpfung von Promoter und zu exprimierender Nukleinsäuresequenz, integriert in einem Vektor vorliegen und

Unter einer Expressionskassette sind aber auch solche Konstruktionen zu verstehen, bei denen ein Promoter - zum Beispiel

30 durch eine homologe Rekombination - hinter ein endogenes NADPH-Oxidase-Gen platziert wird, und durch Expression einer antisense NADPH-Oxidase-RNA die erfindungsgemäße Verminderung eines NADPH-Oxidase-Proteins bewirkt wird. Analog kann auch eine "anti-NADPH-Oxidase" Verbindung (zum Beispiel eine Nukleinsäuresequenz

35 kodierend für eines NADPH-Oxidase dsRNA oder eine NADPH-Oxidase antisense RNA) derart hinter einen endogenen Promotor platziert werden, dass der gleiche Effekt auftritt. Beide Ansätze führen zu Expressionskassetten im Sinne der Erfindung.

25 durch zum Beispiel Transformation in ein pflanzliches Genom

40 Pflanzenspezifische Promotoren meint grundsätzlich jeden Promotor, der die Expression von Genen, insbesondere Fremdgenen, in Pflanzen oder Pflanzenteilen, -zellen, -geweben, -kulturen steuern kann. Dabei kann die Expression beispielsweise konstitutiv, induzierbar oder entwicklungsabhängig sein.

Bevorzugt sind:

a) Konstitutive Promotoren

5 Bevorzugt sind Vektoren, die eine konstitutive Expression in Pflanzen ermöglichen (Benfey et al. (1989) EMBO J 8:2195-2202). "Konstitutiver" Promotor meint solche Promotoren, die eine Expression in zahlreichen, bevorzugt allen, Geweben über einen größeren Zeitraum der Pflanzenentwicklung, bevorzugt zu allen 10 Zeitpunkten der Pflanzenentwicklung, gewährleisten. Vorzugsweise verwendet man insbesondere einen pflanzlichen Promotor oder einen Promotor, der einem Pflanzenvirus entstammt. Insbesondere bevorzugt ist der Promotor des 35S-Transkriptes des CaMV Blumenkohlmosaikvirus (Franck et al. (1980) Cell 21:285-294; Odell et al. 15 (1985) Nature 313:810-812; Shewmaker et al. (1985) Virology 140:281-288; Gardner et al. (1986) Plant Mol Biol 6:221- 228) oder der 19S CaMV Promotor (US 5,352,605; WO 84/02913; Benfey et al. (1989) EMBO J 8:2195-2202). Ein weiterer geeigneter konstitutiver Promotor ist der "Rubisco small subunit (SSU)"-20 Promotor (US 4,962,028), der LeguminB-Promotor (GenBank Acc.-Nr. X03677), der Promotor der Nopalinsynthase aus Agrobacterium, der TR-Doppelpromotor, der OCS (Octopin Synthase) Promotor aus Agrobacterium, der Ubiquitin Promotor (Holtorf S et al. (1995) Plant Mol Biol 29:637-649), den Ubiquitin 1 Promotor (Christensen 25 et al. (1992) Plant Mol Biol 18:675-689; Bruce et al. (1989) Proc Natl Acad Sci USA 86:9692-9696), den Smas Promotor, den Cinnamylalkoholdehydrogenase-Promotor (US 5,683,439), die Promotoren der ATPase Untereinheiten oder der Promotor eines prolinreichen Proteins aus Weizen (WO 91/13991), sowie weitere Promotoren von 30 Genen, deren konstitutive Expression in Pflanzen dem Fachmann bekannt ist. Als konstitutiver Promotor insbesondere bevorzugt ist der Promotor des Nitrilase-1 (nit1) Gens aus A. thaliana (GenBank Acc.-No.: Y07648.2, Nukleotide 2456-4340, Hillebrand

35

b) Gewebespezifische Promotoren

et al. (1996) Gene 170:197-200).

Bevorzugt sind ferner Promotoren mit Spezifitäten für die Antheren, Ovarien, Blüten, Blätter, Stengel, Wurzeln und Samen.

40

Samenspezifische Promotoren umfassen zum Beispiel den Promotor des Phaseolins (US 5,504,200; Bustos MM et al. (1989) Plant Cell 1(9):839-53), des 2S Albumins (Joseffson LG et al. (1987) J Biol Chem 262:12196-12201), des Legumins (Shirsat A et al. (1989)

45 Mol Gen Genet 215(2): 326-331), des USP (unknown seed protein; Bäumlein H et al. (1991) Mol Gen Genet 225(3):459-67), des Napin (US 5,608,152; Stalberg K et al. (1996) L Planta 199:515-519),

des Saccharosebindeproteins (WO 00/26388), des Legumin B4 (LeB4; Bäumlein H et al. (1991) Mol Gen Genet 225: 121-128; Baeumlein et al. (1992) Plant Journal 2(2):233-9; Fiedler U et al. (1995) Biotechnology (NY) 13(10):1090f), des Oleosin aus Arabidopsis

- 5 (WO 98/45461) und des Bce4 aus Brassica (WO 91/13980). Weitere geeignete samenspezifische Promotoren sind die der Gene kodierend für das "High Molecular Weight Glutenin" (HMWG), Gliadin, Verzweigungsenzym, ADP Glucose Pyrophosphatase (AGPase) oder die Stärkesynthase. Bevorzugt sind ferner Promotoren, die eine samen-
- 10 spezifische Expression in Monokotyledonen wie Mais, Gerste, Weizen, Roggen, Reis etc. erlauben. Vorteilhaft eingesetzt werden können der Promoter des 1pt2- oder 1pt1-Gen (WO 95/15389, WO 95/23230) oder die Promotoren beschrieben in WO 99/16890 (Promotoren des Hordein-Gens, des Glutelin-Gens, des Oryzin-Gens,
- 15 des Prolamin-Gens, des Gliadin-Gens, des Glutelin-Gens, des Zein-Gens, des Kasirin-Gens oder des Secalin-Gens).

Knollen-, Speicherwurzel- oder Wurzel-spezifische Promotoren
umfassen beispielsweise den Patatin Promotor Klasse I (B33) und
20 den Promotor des Cathepsin D Inhibitors aus Kartoffel.

Blattspezifische Promotoren umfassen beispielsweise den Promotor der cytosolischen FBPase aus Kartoffel (WO 97/05900), den SSU Promotor (small subunit) der Rubisco (Ribulose-1,5-bisphosphat-carboxylase) oder den ST-LSI Promotor aus Kartoffel (Stockhaus et al. (1989) EMBO J 8:2445-2451). Ganz besonders bevorzugt sind Epidermis-spezifische Promotoren, wie beispielsweise der Promotor des OXLP-Gens ("Oxalat-Oxidase like protein"; Wei et al. (1998) Plant Mol. Biol. 36:101-112).

30

Blütenspezifische Promotoren umfassen beispielsweise den Phytoen Synthase Promotor (WO 92/16635) oder den Promotor des P-rr Gens (WO 98/22593).

- 35 Antheren-spezifische Promotoren umfassen beispielsweise den 5126-Promotor (US 5,689,049, US 5,689,051), den glob-l Promotor und den γ -Zein Promotor.
 - c) Chemisch induzierbare Promotoren

40

Die Expressionskassetten können auch einen chemisch induzierbaren Promotor enthalten (Übersichtsartikel: Gatz et al. (1997) Annu Rev Plant Physiol Plant Mol Biol 48:89-108), durch den die Expression des exogenen Gens in der Pflanze zu einem bestimmten Zeitpunkt gesteuert werden kann. Beispielhaft seien zu nennen

der PRP1 Promotor (Ward et al. (1993) Plant Mol Biol 22:361-366), ein durch Salicylsäure induzierbarer Promotor (WO 95/19443), ein

durch Benzolsulfonamid-induzierbarer Promotor (EP 0 388 186), ein durch Tetrazyklin-induzierbarer Promotor (Gatz et al. (1992) Plant J 2:397-404), ein durch Abscisinsäure induzierbarer Promotor (EP 0 335 528) bzw. ein durch Ethanol- oder Cyclo-5 hexanon-induzierbarer Promotor (WO 93/21334).

d) Stress- oder Pathogen-induzierbare Promotoren

Ferner sind Promotoren bevorzugt, die durch biotischen oder

10 abiotischen Stress induziert werden wie beispielsweise der pathogen-induzierbare Promotor des PRP1-Gens (bzw. gst1 Promotor) z.B. aus Kartoffel (WO 96/28561; Ward et al. (1993) Plant Mol Biol 22:361-366), der hitzeinduzierbare hsp70- oder hsp80-Promoter aus Tomate (US 5,187,267), der kälteinduzierare alpha-Amylase

15 Promoter aus der Kartoffel (WO 96/12814) oder der licht-induzierbare PPDK Promotor. Weitere pathogen-induzierbare Promotoren umfassen den Flachs Fis1-Promotor (WO 96/34949), den Vst1-Promotor (Schubert et al. (1997) Plant Mol Biol 34:417-426) sowie den EAS4 Sesquiterpene-Cyclase-Promotor aus Tabak (US 6,100,451).

Pathogen-induzierbare Promotoren umfassen ferner die Promotoren von Genen, die infolge eines Pathogenbefalls induziert werden, wie beispielsweise Promotoren der Gene von PR-Proteinen, SAR-Proteinen, β-1,3-Glucanase, Chitinase usw. (beispielsweise Redolfi et al. (1983) Neth J Plant Pathol 89:245-254; Uknes, et al. (1992) Plant Cell 4:645-656; Van Loon (1985) Plant Mol Viral 4:111-116; Marineau et al. (1987) Plant Mol Biol 9:335-342; Matton et al. (1987) Molecular Plant-Microbe Interactions 2:325-342; Somssich et al. (1986) Proc Natl Acad Sci USA 83:2427-2430; Somssich et al. (1988) Mol Gen Genetics 2:93-98; Chen et al. (1996) Plant J 10:955-966; Zhang and Sing (1994) Proc Natl Acad Sci USA 91:2507-2511; Warner, et al. (1993) Plant J 3:191-201; Siebertz et al. (1989) Plant Cell 1:961-968(1989).

- 35 Umfasst sind auch verwundungs-induzierbare Promotoren wie
 der des pinII Gens (EP-A 0 375 091; Ryan (1990) Ann Rev Phytopath
 28:425-449; Duan et al. (1996) Nat Biotech 14:494-498), des wun1und wun2-Gens (US 5,428,148), des win1- und win2-Gens (Stanford
 et al. (1989) Mol Gen Genet 215:200-208), des Systemin-Gens
 40 (McGurl et al. (1992) Science 225:1570-1573), des WIP1-Gens
 (Rohmeier et al. (1993) Plant Mol Biol 22:783-792; Eckelkamp
 et al. (1993) FEBS Letters 323:73-76), des MPI-Gens (Corderok
 et al. (1994) Plant J 6(2):141-150) und dergleichen.
- 45 Eine Quelle für weitere pathogen-induzierbare Promotoren stellt die PR-Genfamilie dar. Eine Reihe von Elementen in diesen Promotoren haben sich als vorteilhaft erwiesen. So vermittelt die

Region -364 bis -288 im Promotor von PR-2d Salicylat-Spezifität (Buchel et al. (1996) Plant Mol Biol 30, 493-504). Die Sequenz 5'-TCATCTTCTT-3' taucht im Promotor der Gersten β -1,3-Glucanase und in mehr als 30 weiteren stress-induzierten Genen wiederholt 5 auf. Diese Region bindet in Tabak ein nukleäres Protein, dessen Abundanz durch Salicylat erhöht wird. Die PR-1-Promotoren aus Tabak und Arabidopsis (EP-A 0 332 104, WO 98/03536) eignen sich ebenfalls als pathogen-induzierbare Promotoren. Bevorzugt, da besonders spezifisch durch Pathogen-induziert, sind die "acidic 10 PR-5"-(aPR5)-Promotoren aus Gerste (Schweizer et al. (1997) Plant Physiol 114:79-88) und Weizen (Rebmann et al. (1991) Plant Mol Biol 16:329-331). aPR5-Proteine akkumulieren in ca. 4 bis 6 Stunden nach Pathogenbefall und zeigen nur eine sehr geringe Hintergrundsexpression (WO 99/66057). Ein Ansatz, um eine erhöhte 15 pathogen-induzierte Spezifität zu erreichen, bildet die Herstellung synthetischer Promotoren aus Kombinationen von bekannten pathogen-responsiven Elementen (Rushton et al. (2002) Plant Cell 14, 749-762; WO 00/01830; WO 99/66057). Weitere pathogeninduzierbare Promotoren aus verschiedenen Arten sind dem 20 Fachmann bekannt (EP-A 1 165 794; EP-A 1 062 356; EP-A 1 041 148;

e) Entwicklungsabhängige Promotoren

EP-A 1 032 684;

25 Weitere geeignete Promotoren sind beispielsweise fruchtreifungsspezifische Promotoren, wie beispielsweise der fruchtreifungsspezifische Promotor aus Tomate (WO 94/21794, EP 409 625). Entwicklungsabhängige Promotoren schließt zum Teil die gewebespezifischen Promotoren ein, da die Ausbildung einzelner Gewebe
30 naturgemäß entwicklungsabhängig erfolgt.

Besonders bevorzugt sind konstitutive, sowie Blatt und/oder Stengel-spezifische, pathogen-induzierbare und epidermisspezifische Promotoren, wobei pathogen-induzierbar und epidermis-35 spezifische Promotoren am meisten bevorzugt sind.

Es können ferner weitere Promotoren funktionell mit der zu exprimierenden Nukleinsäuresequenz verknüpft sein, die eine Expression in weiteren Pflanzengeweben oder in anderen 40 Organismen, wie zum Beispiel E.coli Bakterien ermöglichen. Als Pflanzen Promotoren kommen im Prinzip alle oben beschriebenen Promotoren in Frage.

Die in den erfindungsgemäßen Expressionskassetten oder Vektoren 45 enthaltenen Nukleinsäuresequenzen können mit weiteren genetischen Kontrollsequenzen neben einem Promoter funktionell verknüpft sein. Der Begriff der genetischen Kontrollsequenzen ist breit

Nukleinsäuresequenz.

zu verstehen und meint all solche Sequenzen, die einen Einfluss auf das Zustandekommen oder die Funktion der erfindungsgemäßen Expressionskassette haben. Genetische Kontrollsequenzen modifizieren zum Beispiel die Transkription und Translation in prokaryotischen oder eukaryotischen Organismen. Vorzugsweise umfassen die erfindungsgemäßen Expressionskassetten 5'-stromaufwärts von der jeweiligen transgen zu exprimierenden Nukleinsäuresequenz den Promoter mit Spezifität für die embryonale Epidermis und/oder die Blüte und 3'-stromabwärts eine Terminatorsequenz als zusätzliche genetische Kontrollsequenz, sowie gegebenenfalls weitere übliche regulative Elemente, und zwar

jeweils funktionell verknüpft mit der transgen zu exprimierenden

- 15 Genetische Kontrollsequenzen umfassen auch weitere Promotoren, Promotorelemente oder Minimalpromotoren, die die expressionssteuernden Eigenschaften modifizieren können. So kann durch genetische Kontrollsequenzen zum Beispiel die gewebespezifische Expression zusätzlich abhängig von bestimmten Stressfaktoren erfolgen. Entsprechende Elemente sind zum Beispiel für Wasser-
- 20 erfolgen. Entsprechende Elemente sind zum Beispiel für Wasserstress, Abscisinsäure (Lam E und Chua NH, J Biol Chem 1991; 266(26): 17131 -17135) und Hitzestress (Schoffl F et al., Molecular & General Genetics 217(2-3):246-53, 1989) beschrieben.
- 25 Prinzipiell können alle natürlichen Promotoren mit ihren Regulationssequenzen wie die oben genannten für das erfindungsgemäße Verfahren verwendet werden. Darüberhinaus können auch synthetische Promotoren vorteilhaft verwendet werden.
- 30 Genetische Kontrollsequenzen umfassen ferner auch die 5'-untranslatierte Regionen, Introns oder nichtkodierende 3'-Region von Genen wie beipielsweise das Actin-1 Intron, oder die Adhl-S Introns 1, 2 und 6 (allgemein: The Maize Handbook, Chapter 116, Freeling and Walbot, Eds., Springer, New York (1994)). Es ist
- 35 gezeigt worden, dass diese eine signifikante Funktionen bei der Regulation der Genexpression spielen können. So wurde gezeigt, dass 5'-untranslatierte Sequenzen die transiente Expression heterologer Gene verstärken können. Beispielhaft für Translationsverstärker sei die 5'-Leadersequenz aus dem Tabak-
- 40 Mosaik-Virus zu nennen (Gallie et al. (1987) Nucl Acids Res 15:8693-8711) und dergleichen. Sie können ferner die Gewebsspezifität fördern (Rouster J et al. (1998) Plant J 15:435-440).
- Die Expressionskassette kann vorteilhafterweise eine oder mehrere sogenannte "enhancer Sequenzen" funktionell verknüpft mit dem Promoter enthalten, die eine erhöhte transgene Expression der Nukleinsäuresequenz ermöglichen. Auch am 3'-Ende der transgen

15

zu exprimierenden Nukleinsäuresequenzen können zusätzliche vorteilhafte Sequenzen inseriert werden, wie weitere regulatorische Elemente oder Terminatoren. Die transgen zu exprimierenden Nukleinsäuresequenzen können in einer oder mehreren Kopien im 5 Genkonstrukt enthalten sein.

Als Kontrollsequenzen geeignete Polyadenylierungssignale sind pflanzliche Polyadenylierungssignale, vorzugsweise solche, die im wesentlichen T-DNA Polyadenylierungssignale aus Agrobacterium tumefaciens, insbesondere des Gens 3 der T-DNA (Octopin Synthase) des Ti-Plasmids pTiACHS entsprechen (Gielen et al. (1984) EMBO J 3:835 ff) oder funktionelle Äquivalente davon. Beispiele für besonders geeignete Terminatorsequenzen sind der OCS (Octopin-Synthase)-Terminator und der NOS (Nopalin-Synthase)-Terminator.

Als Kontrollsequenzen sind weiterhin solche zu verstehen, die eine homologe Rekombination bzw. Insertion in das Genom eines Wirtsorganismus ermöglichen oder die Entfernung aus dem Genom erlauben. Bei der homologen Rekombination kann zum Beispiel der natürliche Promoter eines bestimmten Gens gegen einen Promoter mit Spezifität für die embryonale Epidermis und/oder die Blüte ausgetauscht werden. Methoden wie die cre/lox-Technologie erlauben eine gewebespezifische, unter Umständen induzierbare Entfernung der Expressionskassette aus dem Genom des Wirtsorganismus (Sauer B (1998) Methods. 14(4):381-92). Hier werden bestimmte flankierende Sequenzen dem Zielgen angefügt (lox-Sequenzen), die später eine Entfernung mittels der cre-Rekombinase ermöglichen.

Eine Expressionskassetten und die von ihr abgeleiteten

30 Vektoren können weitere Funktionselemente enthalten. Der
Begriff Funktionselement ist breit zu verstehen und meint all
solche Elemente, die einen Einfluss auf Herstellung, Vermehrung
oder Funktion der erfindungsgemäßen Expressionskassetten,
Vektoren oder transgenen Organismen haben. Beispielhaft aber

35 nicht einschränkend seien zu nennen:

a) Selektionsmarker, die eine Resistenz gegen einen Metabolismusinhibitor wie 2-Desoxyglucose-6-phosphat (WO 98/45456),
Antibiotika oder Biozide, bevorzugt Herbizide, wie zum

40 Beispiel Kanamycin, G 418, Bleomycin, Hygromycin, oder
Phosphinotricin etc. verleihen. Besonders bevorzugte
Selektionsmarker sind solche die eine Resistenz gegen Herbizide verleihen. Beispielhaft seien genannt: DNA Sequenzen,
die für Phosphinothricinacetyltransferasen (PAT) kodieren und
Glutaminsynthaseinhibitoren inaktivieren (bar und pat Gen),
5-Enolpyruvylshikimat-3-phosphatsynthasegene (EPSP Synthasegene), die eine Resistenz gegen Glyphosat® (N-(phosphono-

methyl)glycin) verleihen, das für das Glyphosat® degradierende Enzyme kodierende gox Gen (Glyphosatoxidoreduktase), das deh Gen (kodierend für eine Dehalogenase, die Dalapon inaktiviert), Sulfonylurea- und Imidazolinon inaktivierende Acetolactatsynthasen sowie bxn Gene, die für Bromoxynil 5 degradierende Nitrilaseenzyme kodieren, das aasa-Gen, das eine Resistenz gegen das Antibiotikum Apectinomycin verleih, das Streptomycinphosphotransferase (SPT) Gen, das eine Resistenz gegen Streptomycin gewährt, das Neomycinphosphotransferas (NPTII) Gen, das eine Resistenz gegen 10 Kanamycin oder Geneticidin verleiht, das Hygromycinphosphotransferase (HPT) Gen, das eine Resistenz gegen Hygromycin vermittelt, das Acetolactatsynthas Gen (ALS), das eine Resistenz gegen Sulfonylharnstoff-Herbizide verleiht (z.B. mutierte ALS-Varianten mit z.B. der S4 und/oder 15 Hra Mutation).

- Reportergene, die für leicht quantifizierbare Proteine b) kodieren und über Eigenfarbe oder Enzymaktivität eine Bewertung der Transformationseffizienz oder des Expressions-20 ortes oder -zeitpunktes gewährleisten. Ganz besonders beyorzugt sind dabei Reporter-Proteine (Schenborn E, Groskreutz D. Mol Biotechnol. 1999; 13(1):29-44) wie das "green fluorescence protein" (GFP) (Sheen et al. (1995) Plant Journal 8(5):777-784; Haseloff et al.(1997) Proc Natl Acad Sci USA 25 94(6):2122-2127; Reichel et al.(1996) Proc Natl Acad Sci USA 93(12):5888-5893; Tian et al. (1997) Plant Cell Rep 16:267-271; WO 97/41228; Chui WL et al. (1996) Curr Biol 6:325-330; Leffel SM et al. (1997) Biotechniques. 23(5):912-8), die Chloramphenicoltransferase, eine Luziferase 30 (Ow et al. (1986) Science 234:856-859; Millar et al. (1992) Plant Mol Biol Rep 10:324-414), das Aequoringen (Prasher et al. (1985) Biochem Biophys Res Commun 126(3):1259-1268), die β -Galactosidase, R-Locus Gen (kodieren ein Protein, das die Produktion von Anthocyaninpigmenten (rote Färbung) in 35 pflanzlichen Gewebe reguliert und so eine direkte Analyse der Promotoraktivität ohne Zugabe zusätzlicher Hilfsstoffe oder chromogener Substrate ermöglicht; Dellaporta et al., In: Chromosome Structure and Function: Impact of New Concepts, 18th Stadler Genetics Symposium, 11:263-282, 1988), ganz be-40 sonders bevorzugt ist die ß-Glucuronidase (Jefferson et al., EMBO J. 1987, 6, 3901-3907).
- c) Replikationsursprünge, die eine Vermehrung der erfindungsgemäßen Expressionskassetten oder Vektoren in zum Beispiel E.coli gewährleisten. Beispielhaft seien genannt ORI (origin of DNA replication), der pBR322 ori oder der P15A ori

(Sambrook et al.: Molecular Cloning. A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).

5 d) Elemente, die für eine Agrobakterium vermittelte Pflanzentransformation erforderlich sind, wie zum Beispiel die rechte oder linke Begrenzung der T-DNA oder die vir-Region.

Die Einführung einer erfindungsgemäßen Expressionskassette in

10 einen Organismus oder Zellen, Geweben, Organe, Teile bzw. Samen
desselben (bevorzugt in Pflanzen bzw. pflanzliche Zellen, Gewebe,
Organe, Teile oder Samen), kann vorteilhaft unter Verwendung von
Vektoren realisiert werden, in denen die Expressionskassetten
enthalten sind. Die Expressionskassette kann in den Vektor (zum

15 Beispiel ein Plasmid) über eine geeignete Restriktionsschnittstelle eingeführt werden. Das entstandene Plasmid wird zunächst
in E.coli eingeführt. Korrekt transformierte E.coli werden
selektioniert, gezüchtet und das rekombinante Plasmid mit dem
Fachmann geläufigen Methoden gewonnen. Restriktionsanalyse

20 und Sequenzierung können dazu dienen, den Klonierungsschritt
zu überprüfen.

Vektoren können beispielhaft Plasmide, Cosmide, Phagen, Viren oder auch Agrobacterien sein. In einer vorteilhaften Ausführungs25 form wird die Einführung der Expressionskassette mittels Plasmidvektoren realisiert. Bevorzugt sind solche Vektoren, die eine stabile Integration der Expressionskassette in das Wirtsgenom ermöglichen.

- 30 Die Herstellung eines transformierten Organismus (bzw. einer transformierten Zelle oder Gewebes) erfordert, dass die entsprechende DNA, RNA oder Protein in die entsprechende Wirtszelle eingebracht wird.
- 35 Für diesen Vorgang, der als Transformation (oder Transduktion bzw. Transfektion) bezeichnet wird, steht eine Vielzahl von Methoden zur Verfügung (Keown et al. (1990) Methods in Enzymology 185:527-537). So kann die DNA oder RNA beispielhaft direkt durch Mikroinjektion oder durch Bombardierung mit DNA-beschichteten
- 40 Mikropartikeln eingeführt werden. Auch kann die Zelle chemisch, zum Beispiel mit Polyethylenglycol, permeabilisiert werden, so dass die DNA durch Diffusion in die Zelle gelangen kann. Die DNA kann auch durch Protoplastenfusion mit anderen DNA-enthaltenden Einheiten wie Minicells, Zellen, Lysosomen oder Liposomen er-
- 45 folgen. Elektroporation ist eine weitere geeignete Methode zur Einführung von DNA, bei der die Zellen reversibel durch einen elektrischen Impuls permeabilisert werden. Entsprechende Ver-

fahren sind beschrieben (beispielsweise bei Bilang et al. (1991)
Gene 100:247-250; Scheid et al. (1991) Mol Gen Genet 228:104-112;
Guerche et al. (1987) Plant Science 52:111-116; Neuhause et al.
(1987) Theor Appl Genet 75:30-36; Klein et al. (1987) Nature

5 327:70-73; Howell et al. (1980) Science 208:1265; Horsch
et al. (1985) Science 227:1229-1231; DeBlock et al. (1989)
Plant Physiology 91:694-701; Methods for Plant Molecular Biology
(Weissbach and Weissbach, eds.) Academic Press Inc. (1988); and
Methods in Plant Molecular Biology (Schuler and Zielinski, eds.)

10 Academic Press Inc. (1989)).

Bei Pflanzen werden dabei die beschriebenen Methoden zur Transformation und Regeneration von Pflanzen aus Pflanzengeweben oder Pflanzenzellen zur transienten oder stabilen Transformation

15 genutzt. Geeignete Methoden sind vor allem die Protoplastentransformation durch Polyethylenglykol-induzierte DNA-Aufnahme, das biolistische Verfahren mit der Genkanone, die sogenannte "particle bombardment" Methode, die Elektroporation, die Inkubation trockener Embryonen in DNA-haltiger Lösung und die Mikroinjektion.

Neben diesen "direkten" Transformationstechniken kann eine Transformation auch durch bakterielle Infektion mittels Agrobacterium tumefaciens oder Agrobacterium rhizogenes durchgeführt werden.

- 25 Die Agrobacterium-vermittelte Transformation ist am besten für dicotyledone Pflanzenzellen geeignet. Die Verfahren sind beispielsweise beschrieben bei Horsch RB et al. (1985) Science 225: 1229f).
- 30 Werden Agrobacterien verwendet, so ist die Expressionskassette in spezielle Plasmide zu integrieren, entweder in einen Zwischenvektor (englisch: shuttle or intermediate vector) oder einen binären Vektor. Wird ein Ti oder Ri Plasmid zur Transformation verwendet werden soll, ist zumindest die rechte Begrenzung,
 35 meistens jedoch die rechte und die linke Begrenzung der Ti oder Ri Plasmid T-DNA als flankierende Region mit der einzuführenden

Bevorzugt werden binäre Vektoren verwendet. Binäre Vektoren

40 können sowohl in E.coli als auch in Agrobacterium replizieren.

Sie enthalten in der Regel ein Selektionsmarkergen zur Selektion

transformierter pflanzlicher Organismen (s.o.) und einen Linker

oder Polylinker flankiert von der rechten und linken T-DNA

Begrenzungssequenz. Sie können direkt in Agrobacterium

45 transformiert werden (Holsters et al. (1978) Mol Gen Genet

163:181-187). Außerhalb der T-DNA Region können Elemente wie ein Selektionsmarkergen zur Selektion transformierter Agro-

Expressionskassette verbunden.

bakteria oder E.coli (z.B. nptIII) umfasst sein. Das in diesem Fall als Wirtsorganismus fungierende Agrobacterium sollte bereits ein Plasmid mit der vir-Region enthalten. Diese ist für die Übertragung der T-DNA auf die pflanzliche Zelle erforderlich. Ein 5 so transformiertes Agrobacterium kann zur Transformation pflanzlicher Zellen verwendet werden. Die Verwendung von T-DNA zur Transformation pflanzlicher Zellen ist intensiv untersucht und beschrieben (EP 120 516; Hoekema, In: The Binary Plant Vector System, Offsetdrukkerij Kanters B.V., Alblasserdam, Chapter V; 10 An et al. (1985) EMBO J 4:277-287). Verschiedene binäre Vektoren sind bekannt und teilweise kommerziell erhältlich wie zum Beispiel pBI101.2 oder pBIN19 (Clontech Laboratories, Inc. USA).

Weitere zur Expression in Pflanzen geeignet Promotoren sind 15 beschrieben (Rogers et al. (1987) Meth in Enzymol 153:253-277; Schardl et al. (1987) Gene 61:1-11; Berger et al. (1989) Proc Natl Acad Sci USA 86:8402-8406).

Direkte Transformationstechniken eignen sich für jeden Organismus 20 und Zelltyp eignen.

Im Falle von Injektion oder Elektroporation von DNA bzw.
RNA in pflanzliche Zellen sind keine besonderen Anforderungen an das verwendete Plasmid gestellt. Einfache Plasmide wie die
25 der pUC-Reihe können verwendet werden. Sollen vollständige Pflanzen aus den transformierten Zellen regeneriert werden, so ist er erforderlich, das sich auf dem Plasmid ein zusätzliches selektionierbares Markergen befindet.

- 30 Stabil transformierte Zellen d.h. solche, die die eingeführte DNA integriert in die DNA der Wirtszelle enthalten, können von untransformierten selektioniert werden, wenn ein selektionierbarer Marker Bestandteil der eingeführten DNA ist. Als Marker kann beispielhaft jedes Gen fungieren, dass eine Resistenz 35 gegen ein Biozid (zum Beispiel ein Antibiotikum, Herbizid oder ein Metabolismusinhibitor wie 2-Desoxyglucose-6-phosphat WO 98/45456) verleiht(s.o.). Transformierte Zellen, die ein solches Markergen exprimieren, sind in der Lage, in der Gegenwart von Konzentrationen eines entsprechenden Antibiotikums oder 40 Herbizides zu überleben, die einen untransformierten Wildtyp abtöten. Beispiel sind oben genannt und umfassen bevorzugt das bar Gen, dass Resistenz gegen das Herbizid Phosphinotricin verleiht (Rathore KS et al. (1993) Plant Mol Biol 21(5):871-884), das nptII Gen, dass Resistenz gegen Kanamycin verleiht, das hpt Gen, 45 das Resistenz gegen Hygromycin verleiht, oder das EPSP-Gen, das
- 45 das Resistenz gegen Hygromycin verleiht, oder das EPSP-Gen, das Resistenz gegen das Herbizid Glyphosat verleiht. Der Selektionsmarker erlaubt die Selektion von transformierten Zellen von

WO 2004/009820

PCT/EP2003/007589

untransformierten (McCormick et al. (1986) Plant Cell Reports 5:81-84). Die erhaltenen Pflanzen können in üblicher Weise gezüchtet und gekreuzt werden. Zwei oder mehr Generationen sollten kultiviert werden, um sicherzustellen, dass die genomische Integration stabil und vererblich ist.

Die oben genannten Verfahren sind beispielsweise beschrieben in Jenes B et al.(1993) Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von SD Kung und R Wu, Academic Press, S. 128-143 sowie in Potrykus (1991) Annu Rev Plant Physiol Plant Molec Biol 42:205-225). Vorzugsweise wird das zu exprimierende Konstrukt in einen Vektor kloniert, der geeignet ist, Agrobacterium tumefaciens zu transformieren, beispielsweise pBin19 (Bevan et al. (1984) Nucl Acids 15 Res 12:8711f).

Sobald eine transformierte Pflanzenzelle hergestellt wurde, kann eine vollständige Pflanze unter Verwendung von dem Fachmann bekannten Verfahren erhalten werden. Hierbei geht man beispielhaft von Kalluskulturen aus. Aus diesen noch undifferenzierten Zellmassen kann die Bildung von Spross und Wurzel in bekannter Weise induziert werden. Die erhaltenen Sprösslinge können ausgepflanzt und gezüchtet werden.

25 Dem Fachmann sind such Verfahren bekannt, um aus Pflanzenzellen, Pflanzenteile und ganze Pflanzen zu regenerieren. Beispielsweise werden hierzu Verfahren beschrieben von Fennell et al. (1992) Plant Cell Rep. 11: 567-570; Stoeger et al (1995) Plant Cell Rep. 14:273-278; Jahne et al. (1994) Theor Appl Genet 89:525-533 verwendet.

Das erfindungsgemäße Verfahren kann vorteilhaft mit weiteren Verfahren die eine Pathogenresistenz (beispielsweise gegen Insekten, Pilze, Bakterien, Nematoden etc.), Stressresistenz oder eine andere Verbesserung der pflanzlichen Eigenschaften bewirken kombiniert werden. Beispiele sind u.a. genannt bei Dunwell JM, Transgenic approaches to crop improvement, J Exp Bot. 2000;51 Spec No; Seite 487-96.

40 "Transgen" meint bezüglich zum Beispiel einer Nukleinsäuresequenz, einer Expressionskassette oder einem Vektor enthaltend
besagte Nukleinsäuresequenz oder einem Organismus transformiert
mit besagter Nukleinsäuresequenz, Expressionskassette oder
Vektor alle solche durch gentechnische Methoden zustandegekommene
45 Konstruktionen, in denen sich entweder

5

- a) die NADPH-Oxidase Nukleinsäuresequenz, oder
- b) eine mit der NADPH-Oxidase Nukleinsäuresequenz funktionell verknüpfte genetische Kontrollsequenz, zum Beispiel ein Promotor, oder
- c) (a) und (b)

sich nicht in ihrer natürlichen, genetischen Umgebung befinden 10 oder durch gentechnische Methoden modifiziert wurden, wobei die Modifikation beispielhaft eine Substitutionen, Additionen, Deletionen, Inversion oder Insertionen eines oder mehrerer Nukleotidreste sein kann. Natürliche genetische Umgebung meint den natürlichen chromosomalen Locus in dem Herkunftsorganismus 15 oder das Vorliegen in einer genomischen Bibliothek. Im Fall einer genomischen Bibliothek ist die natürliche, genetische Umgebung der Nukleinsäuresequenz bevorzugt zumindest noch teilweise erhalten. Die Umgebung flankiert die Nukleinsäuresequenz zumindest an einer Seite und hat eine Sequenzlänge von mindestens 20 50 bp, bevorzugt mindestens 500 bp, besonders bevorzugt mindestens 1000 bp, ganz besonders bevorzugt mindestens 5000 bp. Eine natürlich vorkommende Expressionskassette - beispielsweise die natürlich vorkommende Kombination des NADPH-Oxidase-Promotors mit dem entsprechenden NADPH-Oxidase-Gen - wird zu einer trans-25 genen Expressionskassette, wenn diese durch nicht-natürliche, synthetische ("künstliche") Verfahren wie beispielsweise einer Mutagenisierung geändert wird. Entsprechende Verfahren sind beschrieben (US 5,565,350; WO 00/15815; siehe auch oben).

30 Ein anderer Gegenstand der Erfindung betrifft transgene Organismen, transformiert mit wenigstens einer erfindungsgemäßen Nukleinsäuresequenzen, Expressionskassette oder einem erfindungsgemäßen Vektor, sowie Zellen, Zellkulturen, Gewebe, Teile - wie zum Beispiel bei pflanzlichen Organismen Blätter, Wurzeln usw.-35 oder Vermehrungsgut abgeleitet von solchen Organismen. Organismus ist breit zu verstehen und meint prokaryotische und eukaryotische Organismen, bevorzugt Bakterien, Hefen, Pilze, tierische und pflanzliche Organismen.

40 Bevorzugt sind

a) Pilze, wie Aspergillus, Eremothecium, Trichoderma, Ashbya, Neurospora, Fusarium, Beauveria oder weitere in Indian Chem Eng. Section B. Vol 37, No 1,2 (1995) auf Seite 15, Tabelle 6 beschriebene Pilze. Besonders bevorzugt ist der filamentöse Hemiascomycet Ashbya gossypii oder Eremothecium ashbyii.

- b) Hefen wie Candida, Saccharomyces, Hansenula oder Pichia, besonders bevorzugt sind Saccharomyces cerevisiae oder Pichia pastoris (ATCC Accession No. 201178),
- 5 c) Pflanzen gemäß der obengenannten Definition für "Pflanzen"
 - d) Vertebraten und Invertebraten. Besonders bevorzugte Vertebraten sind nicht-humane Säuger wie in Hund, Katze, Schaf, Ziege, Huhn, Maus, Ratte, Rind oder Pferd. Bevorzugte tierische Zellen umfassen CHO, COS, HEK293 Zellen. Bevorzugte Invertebraten umfassen Insektenzellen wie Drosophila S2 und Spodoptera Sf9 oder Sf21 Zellen,
- e) prokaryontische Organismen wie gram-positive oder gramnegative Bakterien wie Acetobacter, Gluconobacter, Corynebacterium, Brevibacterium, Bacillus, Clostridium, Cyanobacter, Escherichia (vor allem Escherichia coli), Serratia,
 Staphylococcus, Aerobacter, Alcaligenes, Penicillium oder
 Klebsiella genannt.

20

10

- Als transgene Organismen bevorzugte Wirts- oder Ausgangsorganismen sind vor allem Pflanzen gemäß der oben genannten Definition. Eingeschlossen sind im Rahmen der Erfindung alle Gattungen und Arten höherer und niedrigerer Pflanzen des
- 25 Pflanzenreiches. Eingeschlossen sind ferner die reifen Pflanzen, Saatgut, Sprossen und Keimlinge, sowie davon abgeleitete Teile, Vermehrungsgut und Kulturen, zum Beispiel Zellkulturen. Reife Pflanzen meint Pflanzen zu jedem beliebigen Entwicklungsstadium jenseits des Keimlings. Keimling meint eine junge, unreife
- 30 Pflanze in einem frühen Entwicklungsstadium. Insbesondere als Wirtsorganismen bevorzugte Pflanzen sind Pflanzen, auf die der erfindungsgemäße Verfahren zum Erzielen einer Pathogenresistenz gemäß oben genannten Kriterien angewendet werden kann. Ganz besonders bevorzugt sind monokotyle Pflanzen wie Weizen,
- 35 Hafer, Hirse, Gerste, Roggen, Mais, Reis, Buchweizen, Sorghum, Triticale, Dinkel, Leinsamen, Zuckerrohr, als diktoyledone Kulturpflanzen wie Raps, Canola, Kresse, Arabidopsis, Kohlarten, Soja, Alfalfa, Erbse, Bohnengewächsen, Erdnuss, Kartoffel, Tabak, Tomate, Aubergine, Paprika, Sonnenblume, Tagetes, Salat, 40 Calendula, Melone, Kürbis oder Zucchini.
 - Die Herstellung der transgenen Organismen kann mit den oben beschriebenen Verfahren zur Transformation oder Transfektion von Organismen realisiert werden.

Ein weiterer Gegenstand der Erfindung betrifft die Verwendung der erfindungsgemäßen, transgenen Organismen und der von ihnen abgeleitete Zellen, Zellkulturen, Teile – wie zum Beispiel bei transgenen pflanzlichen Organismen Wurzeln, Blätter etc.-, und trans-5 genes Vermehrungsgut wie Saaten oder Früchte, zur Herstellung von Nahrungs- oder Futtermitteln, Pharmazeutika oder Feinchemikalien.

Bevorzugt ist ferner ein Verfahren zur rekombinanten Herstellung von Pharmazeutika oder Feinchemikalien in Wirtsorganismen wobei 10 ein Wirtsorganismus mit einer der oben beschriebenen Expressionskassetten transformiert wird und diese Expressionskassette ein oder mehrere Strukturgene enthält, die für die gewünschte Feinchemikalie kodieren oder die Biosynthese der gewünschten Feinchemikalie katalysieren, der transformierte Wirtsorganismus ge-15 züchtet wird und die gewünschte Feinchemikalie aus dem Züchtungsmedium isoliert wird. Dieses Verfahren ist für Feinchemikalien wie Enzyme, Vitamine, Aminosäuren, Zucker, Fettsäuren, natürliche und synthetische Geschmacks-, Aroma- und Farbstoffe breit anwendbar. Besonders bevorzugt ist die Produktion von Tocopherolen und 20 Tocotrienolen sowie Carotinoiden. Die Züchtung der transformierten Wirtsorganismen sowie die Isolierung aus den Wirtsorganismen bzw. aus dem Züchtungsmedium erfolgt mit dem Fachmann bekannten Verfahren. Die Produktion von Pharmazeutika, wie zum Beispiel Antikörpern oder Vakkzinen ist beschrieben bei Hood EE, Jilka JM 25 (1999) Curr Opin Biotechnol 10(4):382-6; Ma JK, Vine ND (1999) Curr Top Microbiol Immunol 236:275-92.

Sequenzen

- 30 1. SEQ ID NO: 1 Nukleinsäuresequenz kodierend für eine NADPH-Oxidase aus Gerste (Hordeum vulgare).
 - 2. SEQ ID NO: 2 Aminosäuresequenz kodierend für eine NADPH-Oxidase aus Gerste (Hordeum vulgare).

35

- 3. SEQ ID NO: 3 Nukleinsäuresequenz kodierend für eine NADPH-Oxidase aus Reis (Oryza sativa var. japonica)
- 40 4. SEQ ID NO: 4 Aminosäuresequenz kodierend für eine NADPH-Oxidase aus Reis (Oryza sativa var. japonica)
- 5. SEQ ID NO: 5 Nukleinsäuresequenz kodierend für eine NADPH-Oxidase aus Nicotiana tabacum

- Aminosäuresequenz kodierend für eine SEO ID NO: 6 6. NADPH-Oxidase aus Nicotiana tabacum Nukleinsäuresequenz kodierend für eine 7. SEO ID NO: 7 NADPH-Oxidase aus Kartoffel 5 (Solanum tuberosum) Aminosäuresequenz kodierend für eine SEO ID NO: 8 8. NADPH-Oxidase aus Kartoffel (Solanum tuberosum) 10 Nukleinsäuresequenz kodierend für eine SEO ID NO: 9 9. NADPH-Oxidase aus Tomate (Lycopersicon esculentum) 15 10. SEQ ID NO: 10 Aminosäuresequenz kodierend für eine NADPH-Oxidase aus NADPH-Oxidase aus Tomate (Lycopersicon esculentum) 20 11. SEQ ID NO: 11 Nukleinsäuresequenz kodierend für eine NADPH-Oxidase aus Arabidopsis thaliana (RbohF) 12. SEQ ID NO: 12 Aminosäuresequenz kodierend für eine NADPH-Oxidase aus NADPH-Oxidase Arabidopsis thaliana (RbohF) 25 13. SEQ ID NO: 13 Nukleinsäuresequenz kodierend für eine NADPH-Oxidase aus Arabidopsis thaliana (RbohD) 30 14. SEQ ID NO: 14 Aminosäuresequenz kodierend für eine NADPH-Oxidase aus NADPH-Oxidase Arabidopsis thaliana (RbohD) 15. SEQ ID NO: 15 Nukleinsäuresequenz kodierend für eine NADPH-Oxidase aus Nicotiana tabacum (rboh) 35 16. SEQ ID NO: 16 Aminosäuresequenz kodierend für eine NADPH-Oxidase aus Nicotiana tabacum (rboh) 40 17. SEQ ID NO: 17 Nukleinsäuresequenz kodierend für eine NADPH-Oxidase aus Reis (Oryza sativa var. japonica) 18. SEQ ID NO: 18 Aminosäuresequenz kodierend für eine
- NADPH-Oxidase aus Reis 45 (Oryza sativa var. japonica)

- 19. SEQ ID NO: 19 Nukleinsäuresequenz kodierend für eine NADPH-Oxidase aus Arabidopsis thaliana (RbohC)
- 20. SEQ ID NO: 20 Aminosäuresequenz kodierend für eine

 NADPH-Oxidase aus NADPH-Oxidase Arabidopsis
 thaliana (RbohC)
 - 21. SEQ ID NO: 21 Nukleinsäuresequenz kodierend für eine NADPH-Oxidase aus Arabidopsis thaliana (RbohA)

10

- 22. SEQ ID NO: 22 Aminosäuresequenz kodierend für eine
 NADPH-Oxidase aus NADPH-Oxidase Arabidopsis
 thaliana (RbohA)
- 15 23. SEQ ID NO: 23 Oligonukleotidprimer 5' NAOX 5'-GARCAAGGCTCTTTTGATTG-3'
 - 24. SEQ ID NO: 24 Oligonukleotidprimer 3' Naox 5'-GAAATGCTCCTTATGGAATTC-3'

20

Abbildungen

Fig. 1: "RNA Interference" mit pNAox-dsRNA vermindert die Penetrationseffizienz des Echten Gerstenmehltau

BghA6 in Gerste.

Die relative Penetrationseffizienz (RPE) wurde in fünf individuellen Experimenten bei Inokulation mit *Bgh* aus Gerste cv Pallas bestimmt. Die RPE errechnet sich als Differenz aus der

30 Penetrationseffizienz bei pNAox-dsRNA transformierten Zellen und der Penetrationseffizienz bei Kontroll-dsRNA transformierten Zellen (hier: durchschnittliche Penetrationseffizienz 38,74 %). Die prozentuale RPE (%-RPE) errechnet sich aus der RPE minus 1 und multipliziert mit 100.

35

RPE = [PE bei pNAox-dsRNA transformierten Zellen]

[PE bei Kontroll-dsRNA transformierten Zellen]

%-RPE = 100 * (RPE-1)

40

Die Säulen "1" bis "5" stellen die %-RPE (d.h. die Abweichung der Penetrationseffizienz vom Durchschnitt der Penetrationseffizienz der Kontrolle) bei Evaluierung von mindesten 100 Interaktionsstellen für jeweils ein unabhängiges Experiment dar. Die Säule *m" stellt die durchschnittliche %-RPE der Experimente dar. Der Fehlerbalken gibt den Standardfehler an.

"Control-dsRNA" stellt die parallelen Experimente mit einer Kontroll-dsRNA. "pNAox"-dsRNA stellt die Expermente mit der dsRNA der NADPH-Oxidaseaus Gerste dar.

5 Die %-RPE war in Zellen, die mit pNAox-dsRNA beschossen wurden, deutlich (Signifikanz p=0,0054) vermindert im Vergleich zu Zellen, die mit einer Kontroll-dsRNA (TR: humaner Thyroid-rezeptor-dsRNA) bombardiert wurden.

10 Beispiele

Allgemeine Methoden:

Die chemische Synthese von Oligonukleotiden kann beispielsweise,
in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet,
2. Auflage, Wiley Press New York, Seite 896-897) erfolgen. Die
im Rahmen der vorliegenden Erfindung durchgeführten Klonierungsschritte wie z.B. Restriktionsspaltungen, Agarosegelelektrophorese, Reinigung von DNA-Fragmenten, Transfer von Nukleinsäuren
20 auf Nitrozellulose und Nylonmembranen, Verknüpfen von DNA-Fragmenten, Transformation von E. coli Zellen, Anzucht von Bakterien,
Vermehrung von Phagen und Sequenzanalyse rekombinanter DNA
werden wie bei Sambrook et al. (1989) Cold Spring Harbor
Laboratory Press; ISBN 0-87969-309-6 beschrieben durchgeführt.
25 Die Sequenzierung rekombinanter DNA-Moleküle erfolgt mit einem
Laserfluoreszenz-DNA-Sequenzierer der Firma MWG-Licor nach der
Methode von Sanger (Sanger et al. (1977) Proc Natl Acad Sci
USA 74:5463-5467).

30 Beispiel 1: Pflanzen, Pathogene und Inokulation

Die Sorte Pallas wurde von Lisa Munk, Department of Plant Pathology, Royal Veterinary and Agriculturai University, Kopenhagen, Dänemark zur Verfügung gestellt. Ihre Herstellung ist beschrieben 35 (Kølster P et al. (1986)Crop Sci 26: 903-907).

Das 12 bis 36 h im Dunkeln auf feuchtem Filterpapier vorgekeimte Saatgut wurde, wenn nicht anders beschrieben, zu je 5 Körnern an den Rand eines Vierkanttopfes (8x8 cm) in Fruhstorfer Erde vom 40 Typ P ausgelegt, mit Erde bedeckt und regelmäßig mit Leitungswasser gegossen. Alle Pflanzen wurden in Klimaschränken oder kammern bei 16 bis 18°C, 50 bis 60 % relativer Luftfeuchte und einem 16-stündigen Licht / 8stündigen Dunkelheitszyklus mit 3000

bzw. 5000 lux (50 bzw. 60 μ mols- 1 m- 2 Photonenflussdichte) 5 bis 45 8 Tage lang kultiviert und im Keimlingsstadium in den Versuchen

verwendet. Bei Experimenten, in denen Applikationen an Primärblättern durchgeführt wurden, waren diese vollständig entwickelt.

Vor Durchführung der transienten Transfektionsexperimente 5 wurden die Pflanzen in Klimaschränken oder -kammern bei tagsüber 24°C, nachts 20°C, 50 bis 60 % relativer Luftfeuchte und einem 16stündigen Licht / 8stündigen Dunkelheitszyklus mit 30000 lux kultiviert.

10 Für die Inokulation von Gerstenpflanzen wurde Echte Gerstenmehltau Blumeria graminis (DC) Speer f.sp. hordei Em. Marchal der Rasse A6 (Wiberg A (1974) Hereditas 77: 89-148) (BghA6) verwendet. Dieser wurde vom Institut für Biometrie, JLU Gießen bereitgestellt. Die Nachzucht des Inokulums erfolgte in Klima-

15 kammern zu den gleichen Bedingungen, wie sie oben für die Pflanzen beschrieben sind, durch Übertragung der Konidien von befallenem Pflanzenmaterial auf regelmäßig angezogene, 7 Tage alte Gerstenpflanzen cv. Golden Promise bei einer Dichte von 100 Konidia/mm².

20

Die Inokulation mit BghA6 erfolgte unter Verwendung von 7 Tagen alten Keimlingen durch Abschütteln der Konidien bereits befallener Pflanzen in einem Inokulationsturm mit ca. 100 Konidien/mm² (soweit nicht anders angegeben).

25

Beispiel 2: Klonierung der pNAox cDNA Sequenz aus Gerste

Die zur Isolation der HvpNAox cDNA, ihrer Klonierung, Sequenzierung und Herstellung von Sonden benötigten cDNA

- 30 Fragmente wurden mittel RT-PCR unter Verwendung des "One Step RT-PCR Kit" (Life Technologies, Karlsruhe, Deutschland oder Qiagen, Hilden, Deutschland) erhalten. Dazu wurde Gesamt-RNA aus Gerste-Sämlingen als Matrize verwendet. Die RNA wurde aus Pallas 3, 5 und 7 Tage nach Keimung isoliert. Darüberhinaus wurde RNA
- 35 aus Pallas und den rückgekreuzten Linien mit mlo5, Mlg oder Mla12 1, 2 und 5 Tage nach Inokulation mit BghA6 am 7 Tag nach Keimung isoliert. Für die RT-PCR wurden Primer verwendet, die von konservierten Regionen der gp91phox Homologen aus Reis und Arabidopsis thaliana abgeleitet sind (GenBank Acc.-No.: X93301 bzw.
- **40** AB008111):
 - 5' NAOX: 5'-GARCAAGGCTCTTTTGATTG-3' (SEQ ID NO: 23) und
 - 3' Naox: 5' GAAATGCTCCTTATGGAATTC 3'(SEQ ID NO: 24)

Für die Reaktion (25 μ L-Ansatz) wurden je 1000 ng Gesamt-RNA, 0,4 mM dNTPs, je 0,6 mM OPN-1 und OPN-2 Primer, 10 μ l RNase-Inhibitor und 1 μ l Enzymmix in 1x RT-Puffer (one step RT-PCR Kit, Qiagen, Hilden) eingesetzt.

5

Folgendes Temperaturprogramm wird verwendet (PTC-100TM Modell 96V; MJ Research, Inc., Watertown, Massachussetts):

- 1 Zyklus mit 30 min bei 50°C

 10 1 Zyklus mit 150 sec bei 94°C

 30 Zyklen mit 94°C für 45 sec, 55°C für 1 min und 72°C für 2 min

 1 Zyklus mit 72°C für 7 min
- 15 Die PCR Produkt wurde mittels 2% w/v Agarosegelelektrophorese aufgetrennt. Es wurde ein RT-PCR Produkt von 378 bp erhalten (SEQ ID NO: 1), das ein teil des offenen Leseraster der NADPH-Oxidase aus Gerste kodiert. Die entsprechende cDNA wurde aus einem Agarosegel isoliert und in den pGEM-T-Vektor (Promega,
- 20 Mannheim, Deutschland) mittels T-Überhang-Ligation kloniert. Die cDNAs wurden ausgehend von der Plasmid-DNA unter Verwendung des "Thermo Sequenase Fluorescent Labeled Primer Cycle Sequencing Kit" (Amersham, Freiburg, Deutschland) sequenziert. Das Konstrukt wurde mit pGEM-T-pNAox bezeichnet.

25

Beispiel 3: In vitro Synthese der pNAox dsRNA

Das Plasmid pGEM-T-pNAox, das für die in vitro RNA-Transkription eingesetzt wurde, beinhaltet den T7 und SP6 Promotor an den

- 30 jeweiligen Enden der insertierten Nukleinsäuresequenz, was die Synthese von sense- bzw. antisense RNA ermöglicht. Das Plasmide kann mit geeigneten Restriktionsenzymen (ApaI für SP6- und PstI für T7-Polymerase) linearisiert werden, um eine korrekte Transkription der insertierten Nukleinsäuresequenz zu gewähr-
- 35 leisten und ein Durchlesen in vektorielle Sequenzen zu verhindern. Dazu wurden 10 μ g pGEM-T-pNAox Plasmid-DNA jeweils mit ApaI für SP6- und PstI für T7-Polymerase geschnitten. Die geschnittenen Plasmide werden in 200 μ l Wasser mit gleichem Volumen Phenol/Chloroform/Isoamylalkohol extrahiert, in ein
- 40 neues Eppendorfreaktionsgefäß (RNAse frei) transferiert und 5 min bei 20000 g zentrifugiert. 180 μl der Plasmid-Lösung wurden mit 420 μl Ethanol versetzt, auf Eis gestellt und anschließend durch Zentrifugation für 30 min bei 20000 g und - 4°C präzipitiert. Das Präzipitat wurde in 10 μl TE Puffer aufgenommen.
- **45** Die jeweiligen Präparationen wurden direkt in eine in vitro Transkription mit T7-RNA-Polymerase bzw. SP6-RNA-Polymerase

WO 2004/009820 PCT/EP2003/007589

eingesetzt. RNA Polymerasen wurden von Roche Molecular Biology, Mannheim, Deutschland bezogen.

Jeder Transkriptionsansatz beinhaltete in einem Volumen of 40 μ l:

5

- 2 μl linearisierte Plasmid DNA (1 μg)
- 2 μ l NTP's (25 mM) (1,25 mM von jedem NTP)
- 4 μl 10xReaktionspuffer (Roche Molecular Biology),
- 1 μl RNAsin RNAsin (27 Units; Roche Molecular Biology),
- 10 2 μl RNA Polymerase (40 Units)
 - 29 μl DEPC-Wasser

Nach einer Inkubation von 2 h bei 37°C wurde jeweils ein Teil der Reaktionsansätze aus der Transkription des "sense"- bzw. "anti15 sense"-Stranges gemischt, für 5 min bei 95°C denaturiert und anschließend durch Abkühlung über 30 min auf eine Endtemperatur von 37°C miteinander hybridisiert ("annealing"). Alternativ kann nach der Denaturierung das Gemisch aus sense- und antisenseSTrang auch für 30 min bei -20°C gekühlt werden. Das Protein20 präzipitat, das sich während Denaturierung und Hybridisierung bildet wurde durch kurze Zentrifugation bei 20800 g abgetrennt

und der Überstand direkt zur Beschichtung von Wolframpartikeln verwendet (s. unten). Zur Analyse wurden jeweils 1 µl jeden RNA-Stranges und der dsRNA auf einem nicht-denaturierenden Agarosegel aufgetrennt. Eine erfolgreiche Hybridisierung zeigte sich, durch eine Bandenverschiebung zu höherem Molekulargewicht im Vergleich zu den Einzelsträngen.

4 μl der dsRNA wurden Ethanol-präzipitiert (durch Zugabe von 6 μl 30 Wasser, 1 μl 3M Natriumacetat-Lösung und 25 μl Ethanol, sowie Zenrifugation für mindestens 5 min bei 20000 g und 4°C) und in 500 μl Wasser resuspendiert. Das Absorbtionsspektrum zwischen 230 und 300 nm wurde gemessen, bzw. die Absorption bei 280 und 260 nm bestimmt, um die Reinheit und die Konzentration der dsRNA zu bestimmen. In der Regel wurden 80 bis 100 μg dsRNA mit einem OD260/OD260 -Verhältnis von 1,80 bis 1,95 erhalten. Ein Verdau mit DNase I kann optional durchgeführt werden, beeinflusst jedoch nachfolgende Ergebnisse nicht wesentlich.

- 40 Als Kontroll-dsRNA fungierte die dsRNA des humanen Thyroi-drezeptors (Ausgangsvektor pT7betaSal (Norman C et al. (1988) Cell 55(6):989-1003) zur Verfügung gestellt von Dr. Baniahmad, Institut für Genetik, Gießen, Deutschland; die Sequenz des Insert ist beschrieben unter der GenBank Acc.-No.: NM_000461). Für die 45 Herstellung der sense-RNA wurde das Plasmid mit PvuII, für die
- antsense-RNA mit HindIII verdaut und die RNA dann mit T7- bzw.

 SP6 RNA-Polymerase transkribiert. Die einzelnen Verfahrens-

schritte zur Herstellung der Kontroll-dsRNA werden analog den oben für die pNAox-dsRNA beschriebenen durchgeführt.

Beispiel 4: Transiente Transformation, RNAi und Evaluation der Pilzpathogenentwicklung

Gerste cv Pallas Blattsegmente wurden mit einer pNAox-dsRNA zusammen mit einem GFP-Expressionsvektor transformiert.

Anschließend wurden die Blätter mit Bgh inokuliert und das

10 Ergebnis nach 48 h mittels Licht- und Fluoreszenzmikroskopie analysiert. Die Penetration in GFP-exprimierenden Zellen wurde mittels Detektion von Haustorien in lebenden Zellen und durch Bewertung der Pilzentwicklung in eben diesen Zellen beurteilt. In allen fünf Experimenten führte die Bombardierung von Gerste cv

15 Pallas mit pNAox-dsRNA zu einer verminderten Anzahl von erfolgreich durch Bgh penetrierten Zellen im Vergleich zu Zellen die mit einer fremden Kontroll-dsRNA (humaner Thyroidhormonrezeptor dsRNA, TR) bombardiert wurden. Der resistenzinduzierende Effekt der pNAox-dsRNA bedingte eine durchschnittliche Verminderung der Penetrationseffizienz durch Bgh um 35 % (Fig. 4).

Es wurde ein Verfahren zur transienten Transformation eingesetzt das bereits für die biolistische Einführung von dsRNA in epidermale Zellen von Gerstenblättern beschrieben wurde (Schweizer P et al. (1999) Mol Plant Microbe Interact 12:647-54; Schweizer P et al. (2000) Plant J 2000 24: 895-903). Wolframpartikel mit einem Durchmesser von 1,1 µm (Partikeldichte 25 mg/ml) wurden mit dsRNA (Herstellung siehe oben) zusammen mit Plasmid-DNA des Vektors pGFP (GFP unter Kontrolle des CaMV 35S Promotors)

30 als Transformationsmarker beschichtet. Dazu wurden pro Schuss die nachfolgender Mengen an dsRNA bzw. Reporterplasmid zur Beschichtung verwendet: 1 µg pGFP und 2 µg dsRNA. Dopplesträngige RNA wurde mittels Verschmelzens von "sense" und "antisense"-RNA in vitro synthetisiert (s.o.).

35

Für Microcarrier-Präparation wurden 55 mg Wolframpartikel (M 17, Durchmesser 1,1 μm; Bio-Rad, München) zweimal mit 1 ml auto-klaviertem Destilliertem Wasser und einmal mit 1 mL absolutem Ethanol gewaschen, getrocknet und in 1 ml 50 %igem Glycerin aufgenommen (ca. 50 mg/ml Stammlösung). Die Lösung wurde mit 50 %igem Glycerin auf 25 mg/ml verdünnt, vor Gebrauch gut gemischt und im Ultraschallbad suspendiert. Zur Microcarrier-Beschichtung wurden pro Schuss 1 μg Plasmid, 2 μg dsRNA (1 μL), 12,5 μl Wolframpartikel-Suspension (25 mg/ml), 12,5 μl 1 M Ca(NO3)2-Lösung (pH 10) tropfenweise unter ständigem Mischen zusammengegeben, 10 min bei RT stehengelassen, kurz zentrifugiert und 20 μl vom

Überstand abgenommen. Der Rest mit den Wolframpartikel wird resuspendiert (Ultraschallbad) und ins Experiment eingesetzt.

Es wurden ca. 4 cm lange Segmente von Gerstenprimärblättern 5 verwendet. Die Gewebe wurden auf 0,5 % Phytagar (GibcoBRL™ Life Technologies™, Karlsruhe) mit 20 μg/ml Benzimidazol in Petrischalen (6,5 cm Durchmesser) gelegt und direkt vor dem Partikelbeschuss an den Rändern mit einer Schablone mit einer rechteckigen Aussparung von 2,2 cm x 2,3 cm abgedeckt. Die Schalen 10 wurden nacheinander auf den Boden der Vakuumkammer (Schweizer p et al. (1999) Mol Plant Microbe Interact 12:647-54) gestellt, über dem ein Nylonnetz (Maschenweite 0,2 mm, Millipore, Eschborn) als Diffusor auf einer Lochplatte eingeschoben war (5 cm über dem Boden, 11 cm unterhalb des Macrocarriers, s.u.), um Partikel-15 klumpen zu zerstreuen und den Partikelstrom abzubremsen. Der oben an der Kammer angebrachte Macrocarrier (Plastik-Sterilfilterhalter, 13 mm, Gelman Sciences, Swinney, UK) wurde je Schuss mit 5,8 µL DNA-beschichteten Wolframpartikeln (Microcarrier, s.u.) beladen. Mit einer Membranvakuumpumpe (Vacuubrand, Wertheim) 20 wurde der Druck um 0,9 bar in der Kammer reduziert und die Wolframpartikel mit 9 bar Heliumgasdruck auf die Oberfläche des Pflanzengewebes geschossen. Sofort danach wurde die Kammer belüftet. Zur Markierung transformierter Zellen wurden die Blätter mit dem Plasmid (pGFP; Vektor auf pUC18-Basis, CaMV 35S-25 Promoter/Terminator-Kassette mit insertiertem GFP-Gen; Schweizer P et al. (1999) Mol Plant Microbe Interact 12:647-54; zur Verfügung gestellt von Dr. P. Schweizer Schweizer P, Institut für Pflanzengenetik IPK, Gatersleben, Deutschland) beschossen. Vor dem Schießen eines anderen Plasmids wurde der Macrocarrier 30 jeweils gründlich mit Wasser gereinigt. Nach vierstündiger Inkubation nach dem Beschuss bei leicht geöffneten Petrischalen, RT und Tageslicht wurden die Blätter mit 100 Konidien/mm² des Echten Gerstenmehltaupilzes (Rasse A6) inokuliert und für weitere 40 bis 48 h unter gleichen Bedingungen inkubiert.

35

Blattsegmente wurden mit den beschichteten Partikeln unter Verwendung einer "particle inflow gun" bombardiert. Pro Schuss wurden 312 µg Wolframpartikel appliziert. 4 h nach der Bombardierung wurde Inokulation mit Blumeria graminis f.sp. hordei 40 Mehltau (Rasse A6) inokuliert und nach weiteren 40 h bezüglich der Infektionsanzeichen ausgewertet. Das Ergebnis (z.B. die Penetrationseffizienz, definiert als prozentualer Anteil angegriffener Zellen, die ein reifes Haustorium und eine Sekundärhyphae ("secondary elongating hyphae") wurde mittels 45 Fluoreszens- und Lichtmikroskopie analysiert. Eine Inokulation mit 100 Conidia/mm² ergibt eine Angriffsfrequenz von ca. 50 % der transformierten Zellen. Für jedes einzelne Experiment wurde eine

minimale Anzahl von 100 Interaktionsstellen ausgewertet. Transformierte (GFP exprimierende) Zellen wurden unter Anregung mit blauem Licht identifiziert. Drei verschiedene Katagorien von transformierten Zellen konnten unterschieden werden:

5

- 1. Penetrierte Zellen, die ein leicht erkennbares Haustorium beinhalten. Eine Zelle mit mehr als einem Haustorium wurde als eine Zelle gewertet.
- 10 2. Zellen, die durch ein Pilz-Appressorium zwar angegriffen wurden, aber kein Haustorium beinhalten. Eine Zelle die mehrfach von Bgh angegriffen wurden, aber kein Haustorium enthält, wurde als eine Zelle gewertet.
- 15 3. Zellen die nicht durch Bgh angegriffen sind.

Stomatazellen und Stomatanebenzellen wurden von der Bewertung ausgeschlossen. Oberflächenstrukturen von Bgh wurden mittels Lichtmikroskopie oder Fluoreszenzfärbung des Pilzes mit 0,1 %

- 20 Calcofluor (w/v in Wasser) für 30 sec analysiert. Die Entwicklung des Pilzes kann leicht durch Fluoreszenzmikroskopie nach Anfärbung mit Calcofluor evaluiert werden. In pNAox-dsRNA transformierten Zellen entwickelt der Pilz zwar ein primäres und ein appressoriales Keimschlauch ("Germ-Tube") aber kein
- 25 Haustorium. Haustoriumausbildung ist eine Vorbedingung für die Bildung einer Sekundärhyphae.

Die relative Penetrationseffizien (RPE) errechnet sich als Differenz aus der Penetrationseffizien bei transformierten 30 Zellen (Transformation mit pNAox- oder Kontroll-dsRNA) und der Penetrationseffizienz bei untransformierten Zellen (hier: durchschnittliche Penetrationseffizienz 38,74 %). Die prozentuale RPE (%-RPE) errechnet sich aus der RPE minus 1 und multipliziert mit 100.

35

RPE = <u>[PE bei pNAox-dsRNA transformierten Zellen]</u>
[PE bei Kontroll-dsRNA transformierten Zellen]

%-RPE = 100 * (RPE-1)

40

Der %-RPE-Wert (Abweichung von der durchschnittlichen Penetrationseffizienz der Kontrolle) dient der Bestimmung des Suszeptibilität von Zellen, die mit pNAox-dsRNA transfiziert sind (Fig. 4).

Bei der Kontroll-dsRNA wurde bei fünf unabhängigen Versuchen kein Unterschied zwischen der Transfektion mit der Kontroll dsRNA und Wasser bezüglich der Penetrationseffizienz von Bgh beobachtet.

- 5 Um einen Einfluss auf der dsRNA auf die Transformationsrate oder Überlebensrate der angegriffenen Zellen auszuschließen, wurde die Anzahl der GFP-exprimierenden Zellen zwischen Kontroll- und pNAox-dsRNA Experimenten verglichen. Die pNAox-dsRNA hatten keinen Einfluss auf die Gesamtanzahl- oder die Anzahl der ange- 10 griffenen GFP-exprimierenden Zellen.
 - Beispiel 5: Inhibition der NADPH-Oxidase mit Diphenyleniodonium-
- 15 Untermauert werden die Ergebnisse durch weitere Experimente mit dem NADPH-Oxidase Inhibitor Diphenyleniodoniumchlorid (DPI; Tabelle 1). Im allgemeinen wurden die Experimente durchgeführt wie von Hückelhoven und Kogel, 1998.
- 20 Tab. 1: Wirkung von DPI auf die Pathogenabwehr in Pallasa

		Interaktionen	(% ± Standardfehler)
25	Art der Interaktion	Kontrolle ^b	200 μM DPIC
	Penetration	68.25 ± 9.9	16.25 ± 0.5
	Nicht-Penetration	24.25 ± 6.3	67.5 ± 9.5
	HR (Hypersensitive	7.5 ± 3.7	16.25 ± 9.3
	Reaktion)		

- 30
- a DPI-Behandlung erfolgte 12 h nach Pathogen-Inokkulation, die Auswertung 36 h nach Inokkulation.
- b Kontrolle mit 10 mM Kaliumphoshatpuffer, pH 7,8, mit DMSO Gehalt wie bei DPI Behandlung.
 - c DPI gelöst in 10 mM Kaliumphoshatpuffer, pH 7,8, ausgehend von einer 10 mg/ml DPI Stammlösung in DMSO.
- 40

20

25

30

40

Patentansprüche

- Verfahren zum Erzielen oder Erhöhen der Resistenz gegen mindestens ein Pathogen in Pflanzen, dadurch gekennzeichnet, dass nachfolgende Arbeitsschritte umfasst sind
 - a) Verminderung der Proteinmenge, Aktivität oder Funktion einer NADPH-Oxidase in einer Pflanze oder einem Gewebe, Organ, Teil oder Zelle derselben und
 - b) Auswahl der Pflanzen, bei denen im Unterschied oder Vergleich zur Ausgangspflanze - die Resistenz gegen mindestens ein Pathogen besteht oder erhöht ist.
- 15 2. Verfahren nach Anspruch 1, wobei die NADPH-Oxidase kodiert wird durch
 - a) Polypeptidsequenzen umfassend eine Sequenz gemäß SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 oder 22, oder
 - b) Polypeptidsequenzen eines funktionellen Äquivalentes eines Polypeptides, welches eine Sequenz gemäß SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 oder 22 umfasst.
 - 3. Verfahren nach Anspruch 2, wobei das funktionelle Äquivalent eine Homologie von mindestens 50 % zu einem der Polypeptide gemäss SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 oder 22 hat.
- Verfahren nach einem der Ansprüche 1 bis 3, wobei die Verminderung der Proteinmenge, Aktivität oder Funktion einer NADPH-Oxidase gewährleistet wird durch Anwendung eines Verfahrens ausgewählt aus der Gruppe bestehend aus
 - a) Einbringen einer doppelsträngigen NADPH-Oxidase Ribonukleinsäuresequenz oder einer deren Expression gewährleistenden Expressionskassette oder Expressionskassetten,
 - b) Einbringen einer NADPH-Oxidase antisense-Nukleinsäuresequenz oder einer deren Expression gewährleistenden Expressionskassette,
- 45 Sequ. + Zeichn.

WO 2004/009820

15

20

30

35

40

- c) Einbringen einer NADPH-Oxidase antisense-Nukleinsäuresequenz kombiniert mit einem Ribozym oder einer deren Expression gewährleistenden Expressionskassette,
- 5 d) Einbringen von NADPH-Oxidase sense-Nukleinsäuresequenzen zur Induktion einer Kosuppression oder einer deren Expression gewährleistenden Expressionskassette,
- e) Einbringen DNA-oder Protein-bindende Faktoren gegen

 NADPH-Oxidase-Gene, -RNAs oder -Proteine oder einer

 deren Expression gewährleistenden Expressionskassette,
 - f) Einbringen von den NADPH-Oxidase RNA-Abbau bewirkende virale Nukleinsäuresequenzen und Expressionskonstrukten oder einer deren Expression gewährleistenden Expressionskassette,
 - g) Einbringen von Konstrukten zur Induktion einer homologen Rekombination an endogenen NADPH-Oxidase-Genen und
 - h) Einführung von Mutationen in ein endogenes NADPH-Oxidase Gen.
- 5. Verfahren nach einem der Ansprüche 1 bis 4, umfassend
 25
 - (i) die stabile Transformation einer pflanzlichen Zelle mit einer rekombinanten Expressionskassette enthaltend in funktioneller Verknüpfung mit einem in Pflanzen aktiven Promotor eine Nukleinsäuresequenz kodierend für
 - a) eine doppelsträngigen NADPH-Oxidase RNA-Ribonukleinsäuresequenz oder
 - b) eine NADPH-Oxidase antisense-Nukleinsäuresequenz oder
 - c) eine NADPH-Oxidase antisense-Nukleinsäuresequenz kombiniert mit einem Ribozym oder
 - d) eine NADPH-Oxidase sense-Nukleinsäuresequenzen zur Induktion einer Kosuppression oder
 - e) DNA-oder Protein-bindende Faktoren gegen NADPH-Oxidase-Gene, -RNAs oder -Proteine
 - f) den NADPH-Oxidase RNA-Abbau bewirkende virale Nukleinsäuresequenzen

- (ii) Regeneration der Pflanze aus der pflanzlichen Zelle, und
- (iii) Expression besagter Nukleinsäuresequenz in einer Menge und für eine Zeit hinreichend, um eine Pathogenresistenz in besagter Pflanze zu erzeugen oder zu erhöhen.
- 6. Verfahren nach einem der Ansprüche 1 bis 5, wobei das Pathogen ausgewählt aus der Gruppe bestehend aus Bakterien, Pilzen, Insekten, Viren und Nematoden.

5

7. Verfahren nach einem der Ansprüche 1 bis 6, wobei das Pathogen ausgewählt ist aus der Gruppe der Pilze bestehend aus Plasmodiophoramycota, Oomycota, Ascomycota, Chytridiomyceten, Zygomyceten, Basidiomycota und Deuteromyceten.

15

- 8. Verfahren nach einem der Ansprüche 1 bis 7, wobei die Pflanze aus den monokotyledonen und dikotyledonen Pflanzen ausgewählt ist.
- 20 9. Verfahren nach einem der Ansprüche 1 bis 8, wobei die Pflanze ausgewählt ist aus der Gruppe der monokotyledonen Pflanzen bestehend aus Weizen, Hafer, Hirse, Gerste, Roggen, Mais, Reis, Buchweizen, Sorghum, Triticale, Dinkel, Leinsamen oder Zuckerrohr.

25

- 10. Doppelsträngiges RNA-Molekül zur Verminderung der Expression einer NADPH-Oxidase umfassend
- a) einen "sense"-RNA-Strang umfassend mindestens eine Ribonukleotidsequenz, die im wesentlichen identisch ist zu
 mindestens einem Teil des "sense"-RNA-Transkriptes einer
 Nukleinsäuresequenz kodierend für eine NADPH-Oxidase, und
- b) einen "antisense"-RNA-Strang, der zu dem RNA-sense-Strang unter a) im wesentlichen komplementären ist.
 - 11. Doppelsträngiges RNA-Molekül nach Anspruch 10, wobei die beiden RNA-Stränge der doppelsträngigen RNA kovalent miteinander verbunden sind.

- 12. Doppelsträngiges RNA-Molekül nach einem der Ansprüche 10 oder 11, wobei einer der beiden RNA-Stränge kodiert wird durch zumindest einen Teil einer Nukleinsäuresequenz kodierend für eine NADPH-Oxidase Sequenz gemäß SEQ ID NO: 1, 3, 5, 7, 9,
- 45 11, 13, 15, 17, 19 oder 21 oder ein funktionelles Äquivalent derselben.

- 13. Transgene Expressionskassette enthaltend in funktioneller Verknüpfung mit einem in pflanzlichen Organismen funktionellen Promotor eine Nukleinsäuresequenz kodierend für ein doppelsträngiges RNA-Molekül gemäß einem der Ansprüche 10 bis 12.
- 14. Transgene Expressionskassette enthaltend zumindest einen Teil einer Nukleinsäuresequenz kodierend für eine NADPH-Oxidase gemäß SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 oder 21 oder ein funktionelles Äquivalent derselben, wobei besagte Nukleinsäuresequenz in antisense-Orientierung mit einem in pflanzlichen Organismen funktionellen Promotor funktionell verknüpft ist.
- 15 15. Transgene Expressionskassette nach Anspruch 13 oder 14, wobei der in Pflanzen funktionelle Promotor ein pathogen-induzierbarer Promotor ist.
- 16. Transgener Vektor enthaltend eine Expressionskassette gemäß einem der Ansprüche 13 bis 15.
 - 17. Transgener Organismus enthaltend ein doppelsträngiges RNA-Molekül gemäß einem der Ansprüche 10 bis 12, eine Expressionskassette gemäß einem der Ansprüche 13 bis 15 oder einen Vektor gemäß Anspruch 16.
 - 18. Transgener Organismus nach Anspruch 17 ausgewählt aus der Gruppe bestehend aus Bakterien, Hefen, Tieren und Pflanzen.
- 30 19. Transgener Organismus nach Anspruch 17 oder 18, ausgewählt aus der Gruppe der Pflanzen bestehend aus Weizen, Hafer, Hirse, Gerste, Roggen, Mais, Reis, Buchweizen, Sorghum, Triticale, Dinkel, Leinsamen, Zuckerrohr, Raps, Canola, Kresse, Arabidopsis, Kohlarten, Soja, Alfalfa, Erbse, Bohnengewächsen, Erdnuss, Kartoffel, Tabak, Tomate, Aubergine, Paprika, Sonnenblume, Tagetes, Salat, Calendula, Melone, Kürbis und Zucchini.
- 20. Gewebe, Organ, Teil, Zelle, Zellkultur oder Vermehrungsgut 40 abgeleitet von einem transgenen Organismus gemäß einem der Ansprüche 18 oder 19.

Fig. 1

SEQUENZPROTOKOLL <110> BASF Plant Science GmbH <120> Verfahren zum Erreichen einer Pathogenresistenz in Pflanzen <130> AE20020416 <140> <141> <160> 24 <170> PatentIn Ver. 2.1 <210> 1 <211> 337 <212> DNA <213> Hordeum vulgare <220> <221> CDS <222> (2)..(337) <223> coding for NADPH-oxidase (fragment) g ttt aaa gga atc atg aat gag att gct gaa cta gat caa agg aat atc 49 Phe Lys Gly Ile Met Asn Glu Ile Ala Glu Leu Asp Gln Arg Asn Ile att gag atg cac aac tat ctc aca agt gtt tat gag gaa ggg gat gct 97 Ile Glu Met His Asn Tyr Leu Thr Ser Val Tyr Glu Glu Gly Asp Ala 20 25 cgg tca gca ctc atc aca atg ctg caa gct ctc aac cat gcc aag aat 145 Arg Ser Ala Leu Ile Thr Met Leu Gln Ala Leu Asn His Ala Lys Asn 40 ggt gtc gat gta gtg tct ggm act cga gtc cgg aca cat ttt gca aga 193 Gly Val Asp Val Val Ser Xaa Thr Arg Val Arg Thr His Phe Ala Arg 55 cca aat ttt aag agg gtg ctg tct aag gta gcc gcc aaa cat cct tat 241 Pro Asn Phe Lys Arg Val Leu Ser Lys Val Ala Ala Lys His Pro Tyr gcc aag ata gga gtg ttc tat tgc gga gct cca gtt ctg gcg cag gaa 289 Ala Lys Ile Gly Val Phe Tyr Cys Gly Ala Pro Val Leu Ala Gln Glu cta agc aac ctt tgc cat gag ttc aat ggc aaa tgc acg aca aaa ttc 337 Leu Ser Asn Leu Cys His Glu Phe Asn Gly Lys Cys Thr Thr Lys Phe 100 105 <210> 2 <211> 112. <212> PRT <213> Hordeum vulgare Phe Lys Gly Ile Met Asn Glu Ile Ala Glu Leu Asp Gln Arg Asn Ile 10 Ile Glu Met His Asn Tyr Leu Thr Ser Val Tyr Glu Glu Gly Asp Ala 25

Arg Ser Ala Leu Ile Thr Met Leu Gln Ala Leu Asn His Ala Lys Asn 35 40 45

Gly Val Asp Val Val Ser Xaa Thr Arg Val Arg Thr His Phe Ala Arg 50

Pro Asn Phe Lys Arg Val Leu Ser Lys Val Ala Ala Lys His Pro Tyr 65

Ala Lys Ile Gly Val Phe Tyr Cys Gly Ala Pro Val Leu Ala Gln Glu 95

Leu Ser Asn Leu Cys His Glu Phe Asn Gly Lys Cys Thr Thr Lys Phe 105

<210> 3 <211> 2832 <212> DNA <213> Oryza sativa <220> <221> CDS <222> (1)..(2829) <223> coding for NADPH-oxidase <400> 3 atg agg ggc ggc gcc tcc tcg gga ccc cag cga tgg ggc tcg gcg ggg 48 Met Arg Gly Gly Ala Ser Ser Gly Pro Gln Arg Trp Gly Ser Ala Gly acg aca ccg cgg tcg ctg agc acg ggc tcg tcg ccg cgc ggg tcc gac 96 Thr Thr Pro Arg Ser Leu Ser Thr Gly Ser Ser Pro Arg Gly Ser Asp 25 gac egg age tee gac gac ggg gag gag etg gte gag gte aeg ete gae 144 Asp Arg Ser Ser Asp Asp Gly Glu Leu Val Glu Val Thr Leu Asp 40 ctg cag gac gac gac acc att gtg ctt cgg agc gtc gag ccc gcg gcg 192 Leu Gln Asp Asp Asp Thr Ile Val Leu Arg Ser Val Glu Pro Ala Ala 50 55 240 Ala Ala Ala Gly Val Gly Ala Gly Ala Gly Ala Ala Ser Ala Arg 70 80 65 288 Gly Glu Leu Thr Gly Gly Pro Ser Ser Ser Ser Arg Ser Arg Ser ccg tcg atc cgg agg agc tcg tcg cac cgg ctg ctg cag ttc tcg cag 336 Pro Ser Ile Arg Arg Ser Ser Ser His Arg Leu Leu Gln Phe Ser Gln 100 105 gag ctc aag gcg gag gcc atg gcc cgg gcg cgg cag ttc tcg cag gac 384 Glu Leu Lys Ala Glu Ala Met Ala Arg Ala Arg Gln Phe Ser Gln Asp 120 ctg acc aag cgg ttc ggc cgc agc cac agc cgc agc gaa gcg cag gcg 432 Leu Thr Lys Arg Phe Gly Arg Ser His Ser Arg Ser Glu Ala Gln Ala 135 ccg tcg ggc ctc gag tcc gcg ctc gcc gcc gcc gcg cgg cgg cag 480 Pro Ser Gly Leu Glu Ser Ala Leu Ala Ala Arg Ala Ala Arg Gln 155 cgc gcg cag ctc gac cgc aca cgc tcc ggc gcc cac aag gcg ctc cgc 528 Arg Ala Gln Leu Asp Arg Thr Arg Ser Gly Ala His Lys Ala Leu Arg

170

)				3						
			ttc Phe 180													576
Val	Gln	Ala 195	aac Asn	Phe	Ąsp	Arg	Leu 200	Ala	Arg	Asp	Gly	Tyr 205	Leu	Ser	Arg	624
			gcc Ala													672
			ttc Phe													720
			aag Lys													768
			gac Asp 260													816
			ggc Gly													864
			tct Ser													912
Glu 305	Tyr	Ala	gct Ala	Leu	Ile 310	Met	Glu	Glu	Leu	Asp 315	Pro	Glu	Gly	Leu	Gly 320	960
Tyr	Ile	Glu	cta Leu	Trp 325	Gln	Leu	Glu	Thr	Leu 330	Leu	Leu	Gln	Lys	Asp 335	Thr	1008
Tyr	Met	Asn	tat Tyr 340	Ser	Gln	Ala	Leu	Ser 345	Tyr	Thr	Ser	Gln	Ala 350	Leu	Ser	1056
Gln	Asn	Leu 355	gca Ala	Gly	Leu	Arg	Lys 360	Lys	Ser	Ser	Ile	Arg 365	Lys	Ile	Ser	1104
Thr	Ser 370	Leu	agc Ser	Tyr	Tyr	Phe 375	Glu	Asp	Asn	Trp	180 380	Arg	Leu	Trp	Val	1152
Leu 385	Ala	Leu	tgg Trp	Ile	Gly 390	Ile	Met	Ala	Gly	Leu 395	Phe	Thr	Trp	Lys	Phe 400	1200
atg Met	cag Gln	tat Tyr	cgt Arg	aac Asn 405	cga Arg	tat Tyr	gtc Val	ttt Phe	gat Asp 410	gtg Val	atg Met	Gly	tac Tyr	tgt Cys 415	gtc Val	1248
Thr	Thr	Ala	aaa Lys 420	Gly	Ala	Ala	Glu	Thr 425	Leu	Lys	Leu	Asn	Met 430	Ala	Ile	1296
			cca Pro													1344

										4					
	-	_		gca Ala											1392
		_	_	gca Ala		_	_					_			1440
		-	_	gat Asp 485								_			1488
	_			ggc	_						_				1536
	_	_		gga Gly							-	_	_		1584
				gct Ala											1632
_	_			cca Pro						_				-	1680
				cat His 565								-			1728
_				tgt Cys						_		_	_	_	1776
		_		ctt Leu				_	_	_					1824
				ttc Phe				_			_		_	_	1872
				cca Pro											1920
				tac Tyr 645											1968
				ttt Phe											2016
				ctc Leu											2064
	_		-	aga Arg	_					_			-		2112
				ctt Leu											2160

W	O 2004	4/0098	320)		5		CT/E	P2003/	007589
	aag Lys										2208

										_						
														gat Asp 735		2208
														gcg Ala		2256
														aaa Lys		2304
														ggt Gly		2352
														tca Ser		2400
														gtg Val 815		2448
														gaa Glu		2496
														cta Leu		2544
														atg Met		2592
														ggg		2640
														ctt Leu 895		2688
aaa Lys	att Ile	tcc Ser	tcc Ser 900	aag Lys	cat His	cca Pro	tat Tyr	gcc Ala 905	aaa Lys	ata Ile	ggt Gly	gta Val	ttc Phe 910	tac Tyr	tgt Cys	2736
														gaa Glu		2784
aac Asn	ggg 930	aaa Lys	tgc Cys	aca Thr	acg Thr	aag Lys 935	ttc Phe	gaa Glu	ttc Phe	cat His	aag Lys 940	gag Glu	cat His	ttc Phe	tga	2832
	0> 4 1> 9	43														

<212> PRT

<213> Oryza sativa

<400> 4

Met Arg Gly Gly Ala Ser Ser Gly Pro Gln Arg Trp Gly Ser Ala Gly 10

Thr Thr Pro Arg Ser Leu Ser Thr Gly Ser Ser Pro Arg Gly Ser Asp 25 30

ECT/EP2003/007589 Asp Arg Ser Ser Asp Asp Gly Glu Glu Leu Val Glu Val Thr Leu Asp

40 Leu Gln Asp Asp Asp Thr Ile Val Leu Arg Ser Val Glu Pro Ala Ala 55 Ala Ala Ala Gly Val Gly Ala Gly Ala Gly Ala Ala Ser Ala Arg Gly Glu Leu Thr Gly Gly Pro Ser Ser Ser Ser Arg Ser Arg Ser 90 Pro Ser Ile Arg Arg Ser Ser Ser His Arg Leu Leu Gln Phe Ser Gln Glu Leu Lys Ala Glu Ala Met Ala Arg Ala Arg Gln Phe Ser Gln Asp 120 Leu Thr Lys Arg Phe Gly Arg Ser His Ser Arg Ser Glu Ala Gln Ala 135 Pro Ser Gly Leu Glu Ser Ala Leu Ala Ala Arg Ala Ala Arg Gln 150 Arg Ala Gln Leu Asp Arg Thr Arg Ser Gly Ala His Lys Ala Leu Arg 170 Gly Leu Arg Phe Ile Ser Ser Asn Lys Ala Asn Asn Ala Trp Met Glu 185 Val Gln Ala Asn Phe Asp Arg Leu Ala Arg Asp Gly Tyr Leu Ser Arg 200 Ser Asp Phe Ala Glu Cys Ile Gly Met Thr Glu Ser Lys Glu Phe Ala 215 220 Leu Glu Leu Phe Asp Thr Leu Ser Arg Arg Gln Met Lys Val Asp 230 235 Thr Ile Asn Lys Asp Glu Leu Arg Glu Ile Trp Gln Gln Ile Thr Asp 245 250 Asn Ser Phe Asp Ser Arg Leu Gln Ile Phe Phe Glu Met Val Asp Lys 265 Asn Ala Asp Gly Arg Ile Thr Glu Ala Glu Val Lys Glu Ile Ile Met 280 Leu Ser Ala Ser Ala Asn Lys Leu Ser Arg Leu Lys Glu Gln Ala Glu 295 Glu Tyr Ala Ala Leu Ile Met Glu Glu Leu Asp Pro Glu Gly Leu Gly 310 315 Tyr Ile Glu Leu Trp Gln Leu Glu Thr Leu Leu Gln Lys Asp Thr 325 330 Tyr Met Asn Tyr Ser Gln Ala Leu Ser Tyr Thr Ser Gln Ala Leu Ser 345 350 340 Gln Asn Leu Ala Gly Leu Arg Lys Lys Ser Ser Ile Arg Lys Ile Ser 360 Thr Ser Leu Ser Tyr Tyr Phe Glu Asp Asn Trp Lys Arg Leu Trp Val 380 375 Leu Ala Leu Trp Ile Gly Ile Met Ala Gly Leu Phe Thr Trp Lys Phe Met Gln Tyr Arg Asn Arg Tyr Val Phe Asp Val Met Gly Tyr Cys Val 415 410

)				7					
Thr	Thr	Ala	Lys 420	Gly	Ala	Ala	Glu	Thr 425	Leu	Lys	Leu	Asn	Met 430	Ala	Ile
		435	Pro				440					445			
Arg	Ala 450	Ala	Arg	Ala	Leu	Pro 455	Phe	Asp	Asp	Asn	Ile 460	Asn	Phe	His	Lys
465			Ala		470					475					480
			Cys	485					490					495	
_			Leu 500					505					510		
		515	Lys				520					525			
_	530		Ile			535					540				
545			Leu		550					555					560
	_		Ser	565					570					575	
		_	Glu 580					585					590		
		595	Tyr				600					605			
	610		Phe			615					620				
625			Tyr		630					635					640
			Arg	645					650					655	
			Pro 660					665					670		
		675					680					685			
	690		Lys			695					700				
705			Gly		710					715					720
			Leu	725					730					735	
	_		740					745					750		
		755					760					765	,		
	770		Glu			775					780				
Asn 785		Pro	His	Val	Asp 790		Gly	Thr	Leu	Met 795		Ile	Thr	Ser	Arg 800

	Pro	Lys	Lys	Ile	Leu 805	Lys	Thr	Thr	Asn	Ala 810	Tyr	Phe	Tyr	Trp	Val 815	Thr	
	Arg	Glu	Gln	Gly 820	Ser	Phe	Asp	Trp	Phe 825	Lys	Gly	Val	Met	Asn 830	Glu	Ile	
	Ala	Asp	Leu 835	Asp	Gln	Arg	Asn	Ile 840	Ile	Glu	Met	His	Asn 845	Tyr	Leu	Thr	
	Ser	Val 850	Tyr	Glu	Glu	Gly	Asp 855	Ala	Arg	Ser	Ala	Leu 860	Ile	Thr	Met	Leu	
•	Gln 865	Ala	Leu	Asn	His	Ala 870	Lys	Asn	Gly	Val	Asp 875	Ile	Val	Ser	Gly	Thr 880	
	Lys	Val	Arg	Thr	His 885	Phe	Ala	Arg	Pro	Asn 890	Trp	Arg	Lys	Val	Leu 895	Ser	
	Lys	Ile	Ser	Ser 900	Lys	His	Pro	Tyr	Ala 905	Lys	Ile	Gly	Val	Phe 910	Tyr	Cys	
	Gly	Ala	Pro 915	Val	Leu	Ala	Gln	Glu 920	Leu	Ser	Lys	Leu	Cys 925	His	Glu	Phe	
	Asn	Gly 930	Lys	Cys	Thr	Thr	Lys 935	Phe	Glu	Phe	His	Lys 940	Glu	His	Phe		
	<212<213<220<221<222	L> 28 2> D1 3> Ni 0> L> C1 2> (1	NA Lcoti DS L)	(2886	5)		vi đ	250									
			oding	a. to:	C NAL)PH-0	oxta	ase									
		agg						gaa Glu									48
			_	_	_			ggt Gly									96
								tcc Ser 40									144
								att Ile									192
								cct Pro									240
	Thr 65 tcc	Val gga	Ile gtt	Asn tca	Ile att	Asp 70 gaa	Ala		Asp	Leu tca	Pro 75 gca	Ala	Gly gtg	Val tcg	Gly gaa	Ile 80 tct	288

				(9						
			ttg Leu													384
		_	aag Lys					_				-				432
_		_	gcg Ala				_						-	_		480
			aac Asn			_	_	_			_	_	_		_	528
		_	gcg Ala 180	_		_			_		_	_		_		576
	-		ctc Leu				_									624
_	_	_	aac Asn				_		_		_					672
			ttc Phe													720
-		_	tta Leu		_	_	_	_	_	_	-	_		_	_	768
			agc Ser 260													816
			ttc Phe									_			_	864
			gat Asp													912
			gca Ala													960
			gca Ala				_	_	-		_		_	_		1008
			gag Glu 340			_	_	_						_	_	1056
			aac Asn		_		-		_		_	_		_	_	1104
			ctt Leu													1152

WO 2004/009820		PCT/EP2003/007589
	10	

							:	10			
					tca Ser						1200
					ttg Leu						1248
					aag Lys						1296
					gct Ala						1344
					tgc Cys 455						1392
	_	_	_		gta Val		_	_			1440
					att Ile						1488
					ttc Phe						1536
_			-		tcg Ser						1584
					gga Gly 535						1632
					gct Ala						1680
					ccc Pro						1728
					cac His						1776
					ttc Phe						1824
					cta Leu 615						1872
					ttc Phe						1920
					cct Pro						1968

					V					11						
											tat Tyr					2016
											ttt Phe					2064
											cgg Arg 700					2112
											gct Ala					2160
											gaa Glu					2208
											gga Gly					2256
											ggt Gly					2304
	_	_									ctc Leu 780					2352
aaa Lys 785											ttc Phe					2400
											ctc Leu					2448
											aat Asn					2496
											ttc Phe					2544
aac Asn	gaa Glu 850	gtg Val	gct Ala	gaa Glu	ctt Leu	gat Asp 855	caa Gln	agg Arg	Gly	gtc Val	atc Ile 860	gag Glu	atg Met	cat His	aac Asn	2592
											cgt Arg					2640
											Gly					2688
											cca Pro					2736
											gca Ala					2784

WO 2004/009820		PCT/EP2003/007589
	12	

0 0 1

										12						
ttc Phe	tac Tyr 930	tgt Cys	ggt Gly	gca Ala	ccc Pro	gta Val 935	tta Leu	gca Ala	aaa Lys	gaa Glu	ctc Leu 940	agc Ser	aaa Lys	ctc Leu	tgc Cys	2832
aaa Lys 945	gag Glu	tat Tyr	aat Asn	caa Gln	aag Lys 950	ggt Gly	gca Ala	aca Thr	aag Lys	ttc Phe 955	gag Glu	ttt Phe	cac His	aaa Lys	gaa Glu 960	2880
cat His		tag									•					2889
	> 96 2> PF	er .	.ana	taba	acum											
<400)> 6															
Met 1	Arg	Gly	Leu	Pro 5	Gly	His	Glu	Arg	Arg 10	Trp	Thr	Ser	Asp	Thr 15	Val	
Ser	Ser	Asp	Lys 20	Asp	Phe	Ser	Gly	Glu 25	Leu	Ser	Pro	Gly	Ala 30	Asp	Ser	
Gly	Tyr	Asn 35	Ser	Gly	Phe	Ala	Ser 40	Glu	Glu	Phe	Val	Glu 45	Val	Thr	Leu	
Asp	Leu 50	Gln	Asp	Asp	Asp	Thr 55	Ile	Ile	Leu	Arg	Ser 60	Val	Glu	Pro	Ala	
Thr 65	Val	Ile	Asn	Ile	Asp 70	Ala	Pro	Asp	Leu	Pro 75	Ala	Gly	Val	Gly	Ile 80	
Ser	Gly	Val	Ser	Ile 85	Glu	Thr	Pro	Thr	Ser 90	Ala	Ser	Val	Ser	Glu 95	Ser	
Arg	Ser	Pro	Thr 100	Ile	Arg	Arg	Ser	Ser 105	Ser	Ser	Lys	Leu	Arg 110	Gln	Phe	
Ser	Gln	Glu 115	Leu	Lys	Ala	Glu	Ala 120	Val	Ala	Lys	Ala	Arg 125	Gln	Phe	Ser	
Gln	Glu 130	Leu	Lys	Ala	Glu	Leu 135	Arg	Arg	Phe	Ser	Trp 140	Ser	His	Gly	His	
Ala 145	Ser	Arg	Ala	Phe	Ser 150	Pro	Ser	Ser	Phe	Phe 155	Gln	Asn	Ala	Val	Val 160	
Gly	Thr	Gly	Asn	Gly 165	Val	Asp	Ser	Ala	Leu 170	Ala	Ala	Arg	Ala	Leu 175	Arg	
Arg	Gln	Arg	Ala 180	Gln	Leu	Asp	Arg	Thr 185	Arg	Ser	Ser	Ala	His 190	Arg	Ala	
Leu	Arg	Arg 195	Leu	Lys	Phe	Ile	Ser 200	Asn	Asn	Lys	Thr	Asn 205	Gly	Trp	Asn	
Glu	Val 210	Glu	Asn	Asn	Phe	Ser 215	Lys	Leu	Ala	Lys	Asp 220	Gly	Tyr	Leu	Tyr	
Arg 225	Ser	Asp	Phe	Ala	Gln 230	Cys	Ile	Gly	Met	Lys 235	Asp	Ser	Lys	Glu	Phe 240	
Ala	Leu	Glu	Leu	Phe 245	Asp	Ala	Leu	Ser	Arg 250	Arg	Arg	Arg	Leu	Lys 255	Val	
Asp	Lys	Ile	Ser 260	Lys	Glu	Glu	Leu	Tyr 265	Glu	Tyr	Trp	Ser	Gln 270	Ile	Thr	
Asp	Gln	Ser 275	Phe	Asp	Ser	Arg	Leu 280	Gln	Ile	Ser	Phe	Asp 285	Met	Val	Asp	

Lys	Asn 290	Glu	Asp	Gly	Arg	Ile 295	Ala	Glu	Glu	Glu	Val 300	Lys	Glu	Ile	Ile
Met 305	Leu	Ser	Ala	Ser	Ala 310	Asn	Lys	Leu	Ser	Arg 315	Leu	Lys	Glu	Gln	Ala 320
Glu	Glu	Туr	Ala	Ala 325	Leu	Ile	Met	Glu	Glu 330	Leu	Asp	Pro	Glu	Arg 335	Leu
Gly	Tyr	Ile	Glu 340	Leu	Trp	Gln	Leu	Glu 345	Thr	Leu	Leu	Leu	Gln 350	Lys	Asp
Thr	Tyr	Leu 355	Asn	Tyr	Ser	Gln	Ala 360	Leu	Ser	Tyr	Thr	Ser 365	Gln	Ala	Leu
Ser	Gln 370	Asn	Leu	His	Gly	Leu 375	Arg	Lys	Lys	Ser	Pro 380	Ile	Lys	Arg	Met
Ser 385	Thr	Lys	Leu	Val	Tyr 390	Ser	Leu	Gln	Glu	Asn 395	Trp	Lys	Arg	Ile	Trp 400
Val	Leu	Thr	Leu	Trp 405	Ile	Leu	Ile	Met	Ile 410	Gly	Leu	Phe	Leu	Trp 415	Lys
Phe	Tyr	Gln	Tyr 420	Lys	Asn	Lys	Ser	Ala 425	Phe	Arg	Val	Met	Gly 430	Tyr	Cys
Leu	Val	Thr 435	Ala	Lys	Gly	Ala	Ala 440	Glu	Thr	Leu	Lys	Phe 445	Asn	Met	Ala
Leu	Ile 450	Leu	Leu	Pro	Val	Cys 455	Arg	Asn	Thr	Ile	Thr 460	Trp	Leu	Arg	Ser
Thr 465	Lys	Leu	Ser	His	Phe 470	Val	Pro	Phe	Asp	Asp 475	Asn	Ile	Asn	Phe	His 480
Lys	Thr	Val	Ala	Ala 485	Ala	Ile	Val	Thr	Gly 490	Ile	Ile	Leu	His	Ala 495	Gly
Asn	His	Leu	Val 500	Cys	Asp	Phe	Pro	Arg 505	Leu	Ile	His	Ala	Asp 510	Asp	Gln
Asp	Tyr	Gln 515	Ser	Phe	Leu	Ser	Asn 520	Asp	Phe	Gly	Gln	Ser 525	Lys	Pro	Gly
Tyr	Ile 530	Asp	Leu	Val	Lys	Gly 535	Val	Glu	Gly	Val	Thr 540	Gly	Ile	Ile	Met
Val 545	Ile	Leu	Met	Ala	Ile 550	Ala	Phe	Thr	Leu	Ala 555	Thr	Arg	Trp	Phe	Arg 560
Arg	Ser	Leu	Ile	Lys 565	Leu	Pro	Lys	Pro	Phe 570	Asp	Arg	Leu	Thr	Gly 575	Phe
Asn	Ala	Phe	Trp 580	Tyr	Ser	His	His	Leu 585	Leu	Val	Ile	Val	Tyr 590	Ile	Leu
Leu	Ile	Ile 595	His	Gly	Thr	Phe	Leu 600	Phe	Leu	Val	His	Lys 605	Trp	Tyr	Ser
Lys	Thr 610	Thr	Trp	Met	Tyr	Leu 615	Ala	Val	Pro	Val	Leu 620	Leu	Tyr	Ala	Gly
625	Arg				630					635					640
	Lys			645					650			•		655	
Lys	Pro	Pro	Gln 660	Phe	Arg	Tyr	Lys	Ser 665	Gly	Gln	Tyr	Met	Phe 670	Val	Gln

WO 2004/009820 PCT/EP2003/007589

Cys Pro Ala Val Ser Pro Phe Glu Trp His Pro Phe Ser Ile Thr Ser 680 Ala Pro Gly Asp Asp Tyr Leu Ser Ile His Ile Arg Gln Leu Gly Asp 700 695 Trp Thr Gln Glu Leu Lys Arg Val Phe Ser Glu Ala Cys Glu Arg Pro 710 715 Glu Ala Gly Lys Ser Gly Leu Leu Arg Ala Asp Glu Asn Thr Lys Lys 730 Ser Leu Pro Lys Leu Leu Ile Asp Gly Pro Tyr Gly Ala Pro Ala Gln 745 740 Asp Tyr Arg Lys Tyr Asp Val Leu Leu Leu Val Gly Leu Gly Ile Gly 760 Ala Thr Pro Phe Ile Ser Ile Leu Lys Asp Leu Leu Val Asn Ile Val 775 Lys Met Glu Glu Gln Ala Asp Leu Ala Ser Asp Phe Ser Gly Asn Ser 790 795 785 Asp Met Ser Val Ala Thr Ser Glu Gln Pro Ala Leu Asn Lys Ile Ser 810 805 Leu Lys Arg Arg Lys Ser Thr Leu Arg Thr Thr Asn Ala Tyr Phe Tyr 825 Trp Val Thr Arg Glu Gln Gly Ser Phe Asp Trp Phe Lys Gly Val Met 840 Asn Glu Val Ala Glu Leu Asp Gln Arg Gly Val Ile Glu Met His Asn 855 860 Tyr Leu Thr Ser Val Tyr Glu Glu Gly Asp Ala Arg Ser Ala Leu Ile 870 Thr Met Val Gln Ala Leu Asn His Ala Lys Asn Gly Val Asp Ile Val 890 885 Ser Gly Thr Arg Val Arg Thr His Phe Ala Arg Pro Asn Trp Lys Lys 910 Val Phe Ser Lys Thr Leu Thr Lys His Ala Asn Ala Arg Ile Gly Val 920 Phe Tyr Cys Gly Ala Pro Val Leu Ala Lys Glu Leu Ser Lys Leu Cys 935 Lys Glu Tyr Asn Gln Lys Gly Ala Thr Lys Phe Glu Phe His Lys Glu 960 955 945 His Phe

<210> 7

<211> 3733

<212> DNA

<213> Solanum tuberosum

<220>

<221> CDS

<222> (92)..(2980)

<223> coding for NADPH-oxidase

<400> 7

ggcacgagaa taaccaaaac ttttggtcag gcttctgcag aaaactctgt tttcaacata 60

tatt	tatt	ta t	tgtg	gcttt	g at	ttgg	gaca	a a a	itg a Met A	agg g	ggt t Bly I	ta c Leu I	cct c Pro 6	gly H	at Iis	112
gaa Glu	cgc Arg	cgg Arg 10	tgg Trp	acg Thr	tcg Ser	gat Asp	acg Thr 15	gta Val	tct Ser	tcc Ser	ggc Gly	aag Lys 20	gat Asp	tta Leu	agt Ser	160
ggt Gly	gag Glu 25	tca Ser	tcg Ser	ccg Pro	gga Gly	act Thr 30	gat Asp	tcc Ser	ggg	aat Asn	att Ile 35	tcc Ser	ggt Gly	ttt Phe	gct Ala	208
				gtt Val												256
				agc Ser 60												304
tct Ser	gat Asp	cct Pro	gct Ala 75	acc Thr	gga Gly	gtc Val	ggt Gly	att Ile 80	ggt Gly	gga Gly	gta Val	tcg Ser	att Ile 85	gaa Glu	act Thr	352
				act Thr												400
cgg Arg	agt Ser 105	aca Thr	tcg Ser	aat Asn	aaa Lys	tta Leu 110	cgt Arg	cag Gln	ttt Phe	tca Ser	cag Gln 115	gag Glu	ttg Leu	aaa Lys	gct Ala	448
gag Glu 120	gct Ala	gtc Val	gcg Ala	aaa Lys	gcg Ala 125	aag Lys	cat His	ttc Phe	tcg Ser	caa Gln 130	gag Glu	ctt Leu	aaa Lys	gcg Ala	gag Glu 135	496
cta Leu	agg Arg	aga Arg	ttc Phe	tca Ser 140	tgg Trp	agc Ser	cat His	gga Gly	cat His 145	gcg Ala	tct Ser	cgc Arg	act Thr	ttt Phe 150	tcg Ser	544
				ttc Phe												592
gat Asp	tcg Ser	gct Ala 170	tta Leu	gca Ala	gct Ala	cga Arg	gca Ala 175	tta Leu	cga Arg	cgg Arg	cag Gln	cgc Arg 180	gct Ala	cag Gln	ctc Leu	640
gat Asp	cgg Arg 185	act Thr	cgt Arg	tcc Ser	agc Ser	gct Ala 190	cac His	aag Lys	gct Ala	ctt Leu	cgt Arg 195	gga Gly	ctc Leu	aaa Lys	ttc Phe	688
atc Ile 200	agc Ser	aat Asn	aac Asn	aaa Lys	act Thr 205	aac Asn	gga Gly	tgg Trp	aat Asn	gaa Glu 210	gtt Val	gaa Glu	aac Asn	aat Asn	ttt Phe 215	736
gct Ala	aag Lys	ctc Leu	gct Ala	aaa Lys 220	gac Asp	ggt Gly	tac Tyr	ctt Leu	tat Tyr 225	cgc Arg	tcc Ser	gat Asp	ttc Phe	gca Ala 230	caa Gln	784
tgc Cys	atc Ile	ggt Gly	atg Met 235	aag Lys	gat Asp	tca Ser	aag Lys	gaa Glu 240	ttt Phe	gca Ala	ttg Leu	gaa Glu	ttg Leu 245	ttt Phe	gat Asp	832
gct Ala	ttg Leu	agt Ser 250	aga Arg	aga Arg	aga Arg	aga Arg	ttg Leu 255	Lys	gtt Val	gat Asp	aag Lys	att Ile 260	agc Ser	aaa Lys	gag Glu	880

Val Asn Asp Phe Gly Pro Ser Gln Pro Gln Tyr Ile Asp Leu Val Lys

530

535

525

•••		., 0 0 2 0				•			:	17						
gga Gly	gtg Val	gag Glu	ggt Gly	gtg Val 540	aca Thr	gga Gly	ata Ile	ata Ile	atg Met 545	gta Val	atc Ile	ctc Leu	atg Met	gcc Ala 550	att Ile	1744
	ttc Phe															1792
ccc Pro	aaa Lys	cct Pro 570	ttt Phe	gat Asp	aga Arg	ctc Leu	act Thr 575	ggt Gly	ttc Phe	aat Asn	gcg Ala	ttc Phe 580	tgg Trp	tac Tyr	tcg Ser	1840
	cac His 585															1888
	ctc Leu															1936
	gca Ala															1984
ttc Phe	cga Arg	tca Ser	ggc Gly 635	tta Leu	tat Tyr	aca Thr	gtc Val	cgg Arg 640	ctt Leu	cta Leu	aaa Lys	gta Val	gca Ala 645	ata Ile	tat Tyr	2032
cct Pro	gga Gly	aat Asn 650	gtc Val	ctt Leu	act Thr	ctg Leu	caa Gln 655	atg Met	tct Ser	aag Lys	cct Pro	ccg Pro 660	caa Gln	ttt Phe	cga Arg	2080
	aag Lys 665															2128
ttc Phe 680	gag Glu	tgg Trp	cat His	cca Pro	ttt Phe 685	tcc Ser	att Ile	act Thr	tca Ser	gct Ala 690	cct Pro	ggg Gly	gat Asp	gac Asp	tac Tyr 695	2176
	agc Ser															2224
cgg Arg	gtg Val	ttt Phe	tcc Ser 715	gag Glu	gct Ala	tgc Cys	gag Glu	cag Gln 720	cca Pro	gag Glu	gct Ala	gga Gly	aag Lys 725	agt Ser	ggc Gly	2272
ctg Leu	ctc Leu	aga Arg 730	gct Ala	gac Asp	gaa Glu	aac Asn	acc Thr 735	aaa Lys	aca Thr	agt Ser	ttg Leu	cca Pro 740	aag Lys	cta Leu	ttg Leu	2320
ata Ile	gat Asp 745	gga Gly	cct Pro	tat Tyr	gga Gly	gct Ala 750	cca Pro	gca Ala	caa Gln	gat Asp	tac Tyr 755	cga Arg	aag Lys	tat Tyr	gat Asp	2368
	tta Leu															2416
Ile	ctg Leu	Lys	Asp	Leu 780	Leu	Lys	Asn	Ile	Val 785	Thr	Met	Glu	Glu	Gln 790	Ala	2464
gat Asp	tta Leu	gtc Val	tcg Ser 795	gat Asp	ttt Phe	tca Ser	Gly ggg	aac Asn 800	tca Ser	gac Asp	atg Met	agc Ser	gct Ala 805	gca Ala	aca Thr	2512

2 6 .

	gaa Glu															2560
	cta Leu 825															2608
gga Gly 840	tca Ser	ttt Phe	gat Asp	tgg Trp	ttc Phe 845	aaa Lys	ggt Gly	gtt Val	atg Met	aac Asn 850	gaa Glu	gtg Val	gct Ala	gaa Glu	ctt Leu 855	2656
gat Asp	caa Gln	agg Arg	ggg Gly	gtc Val 860	atc Ile	gag Glu	atg Met	cat His	aac Asn 865	tac Tyr	tta Leu	acg Thr	agt Ser	gtt Val 870	tat Tyr	2704
gag Glu	gaa Glu	ggg ggg	gat Asp 875	gca Ala	cgt Arg	tca Ser	gct Ala	ctc Leu 880	att Ile	acc Thr	atg Met	gtc Val	cag Gln 885	gcg Ala	ctt Leu	2752
	cat His															2800
	cat His 905															2848
	aag Lys															2896
	tta Leu															2944
	aca Thr											taga	aagg	ccc		2990
tgg	agta	caa	ttaa	tctt	gc at	tcaa	cggta	a ca	cacat	tcgg	taaa	acca	gta '	tttad	ccacat	3050
cta	tctt	tgg '	tacc	tgati	tt ga	atgai	ttcta	a ct	gaaga	acat	aaca	attag	gta a	aggaa	ataagt	3110
cag	agac	aaa	ttgt	acat	aa ta	agga	ggaag	g ca	catt	taca	gaga	aaaa	tac a	ataco	caatat	3170
															agaact	
cca	aaag	gga (gact	ctgc	tt to	ggtc	tgate	g gc	ttaga	aata	tgg	gagg	gaa a	aaaa	agacga	3290
caa	ttga	atg (gtca	cgata	ac a	catg	aagaa	a tga	agaa	tatt	ggg	aaac	agc	taata	aagaag	3350
ttg	acct	tct	tgat	aaag	aa a	cact	atgaa	a aa	tggc	aagc	atg	aaag	gac	agaca	aatcat	3410
ggc	ttgg	atg (ggga	aaac	aa a	atac	aatt	t tg	aaag	aaga	aga	taat	att	agta	ggagta	3470
gtg	gggg	act	gata	gctt	tg t	tggt	ggaa	c tt	ataa	tggg	gct	aagg	gaa	tcct	tccaaa	3530
aaa	tgtc	tat	gtag	taac	ta c	tttt	tctt	t tg	cttt	gtga	gta	tttt	ttg	gggt	atttta	3590
ata	tact	act	tatt	agat	aa g	agga	taga	a aa	tacg	tgta	tat	gcaa	ttc	ttat	tagtaa	3650
agt	ttat	ctg	tagt	agtt	ct t	taat	ctgg	a ga	aagg	tact	atc	aaag	gaa	atat	ctcatc	3710
gaa	aaaa	aaa	aaaa	aaaa	aa a	aa										3733
<21	0> 8															

<211> 963

<212> PRT

<213> Solanum tuberosum

WO 2004/009820

				`					•						
<400 Met		Gly	Leu	Pro 5	Gly	His	Glu	Arg	Arg 10	Trp	Thr	Ser	Asp	Thr 15	Val
Ser	Ser	Gly	Lys 20	Asp	Leu	Ser	Gly	Glu 25	Ser	Ser	Pro	Gly	Thr 30	qaA	Ser
Gly	Asn	Ile 35	Ser	Gly	Phe	Ala	Ser 40	Glu	Glu	Phe	Val	Glu 45	Val	Ile	Leu
Asp	Leu 50	Gln	Asp	Asp	qaA	Thr 55	Ile	Ile	Leu	Arg	Ser 60	Val	Glu	Pro	Ala
Thr 65	Val	Ile	Asn	Ile	Asp 70	Ala	Ser	Asp	Pro	Ala 75	Thr	Gly	Val	Gly	Ile 80
Gly	Gly	Val	Ser	Ile 85	Glu	Thr	Pro	Ala	Ser 90	Leu	Thr	Ser	Thr	Ser 95	Gly
			Pro 100					105					110		
Phe	Ser	Gln 115	Glu	Leu	Lys	Ala	Glu 120	Ala	Val	Ala	Lys	Ala 125	Lys	His	Phe
	130		Leu			135					140				
145			Arg		150					155					160
	_		Gly	165	•				170					175	
			Arg 180					185					190		
		195	Gly				200					205			
	210		Glu			215					220				
225			Asp		230					235					240
			Glu	245					250					255	
	_	_	Ile 260					265					270		
		275					280					285			
	290		Glu			295					300				
305			Ser		310					315					320
			Tyr	325					330					335	
			Ile 340					345					350		
Asp	Thr	Tyr 355		Asn	Tyr	Ser	Gln 360	Ala	Leu	Ser	Tyr	Thr 365		Gln	Ala

WO 2004/009820

Gln Asp Tyr Arg Lys Tyr Asp Val Leu Leu Leu Val Gly Leu Gly Ile 760 . Gly Ala Thr Pro Phe Ile Ser Ile Leu Lys Asp Leu Leu Lys Asn Ile 780 775 770 Val Thr Met Glu Glu Gln Ala Asp Leu Val Ser Asp Phe Ser Gly Asn 795 790 Ser Asp Met Ser Ala Ala Thr Ser Glu Gln Pro Ala Leu Asn Lys Ile 810 805 Ser Pro Lys Lys Arg Lys Ser Thr Leu Lys Thr Thr Asn Ala Tyr Phe 825 820 Tyr Trp Val Thr Arg Glu Gln Gly Ser Phe Asp Trp Phe Lys Gly Val 840 Met Asn Glu Val Ala Glu Leu Asp Gln Arg Gly Val Ile Glu Met His 855 Asn Tyr Leu Thr Ser Val Tyr Glu Glu Gly Asp Ala Arg Ser Ala Leu 870 Ile Thr Met Val Gln Ala Leu Asn His Ala Lys Asn Gly Val Asp Ile 890 885 Val Ser Gly Thr Ser Val Arg Thr His Phe Ala Arg Pro Asn Trp Arg 900 905 Lys Val Phe Ser Lys Thr Leu Thr Lys His Ala Asn Ala Arg Ile Gly 920 Val Phe Tyr Cys Gly Ala Pro Ile Leu Ala Lys Glu Leu Ser Lys Leu 935 Cys Lys Glu Phe Asn Gln Lys Gly Thr Thr Lys Phe Glu Phe His Lys 950 955 Glu His Phe

<211> 3316 <212> DNA <213> Lycopersicon esculentum <220> <221> CDS <222> (146)..(3112)

<210> 9

<223> coding for NADPH-oxidase

tca tcg ccg gga act gat tcc ggg aat att tcc ggt ttt gct tcg gag 268 Ser Ser Pro Gly Thr Asp Ser Gly Asn Ile Ser Gly Phe Ala Ser Glu

WO 2004/009820		PCT/EP2003/007589
	22	•

									•							
	ttt Phe															316
tta Leu	cgg Arg	agc Ser 60	gtt Val	gaa Glu	ccg Pro	gct Ala	act Thr 65	gta Val	atc Ile	aac Asn	att Ile	gat Asp 70	ggt Gly	tct Ser	gat Asp	364
	gct Ala 75															412
	gtg Val															460
	tct Ser															508
	gcg Ala															556
	ttc Phe															604
	ttt Phe 155															652
gct Ala 170	tta Leu	gcg Ala	gct Ala	cga Arg	gca Ala 175	tta Leu	cgt Arg	cgg Arg	cag Gln	cgt Arg 180	gct Ala	cag Gln	ctc Leu	gac Asp	cgg Arg 185	700
	cgt Arg															748
	aac Asn															796
ctc Leu	gct Ala	aaa Lys 220	gac Asp	ggt Gly	tac Tyr	ctt Leu	tat Tyr 225	cgt Arg	tcc Ser	gat Asp	ttc Phe	gca Ala 230	caa Gln	tgc Cys	atc Ile	844
	cag Gln 235															892
	tta Leu															940
gaa Glu	ttt Phe	gcg Ala	ttg Leu	gaa Glu 270	ttg Leu	ttt Phe	gat Asp	gct Ala	tta Leu 275	agt Ser	aga Arg	aga Arg	aga Arg	aga Arg 280	ttg Leu	988
				Ile											caa Gln	1036
atc Ile	acc Thr	gat Asp 300	cag Gln	agt Ser	ttc Phe	gat Asp	tct Ser 305	cgg Arg	ctt Leu	cag Gln	atc Ile	ttc Phe 310	Phe	gac Asp	atg Met	1084

									:	23						
							cga Arg									1132
							gca Ala									1180
							ctg Leu									1228
							tgg Trp									1276
							agt Ser 385									1324
_	_	-					Gly									1372
							tat Tyr									1420
att Ile	tgg Trp	gtt Val	ctg Leu	gtc Val 430	ttg Leu	tgg Trp	att Ile	ttg Leu	ata Ile 435	atg Met	att Ile	gga Gly	ctt Leu	ttt Phe 440	ctt Leu	1468
							cag Gln									1516
	_				_		ggt Gly 465									1564
							gta Val									1612
							ttt Phe									1660
							gcc Ala									1708
							gat Asp									1756
							ttg Leu 545									1804
							aaa Lys									1852
							att Ile									1900

				,					•	44					
	agg Arg					_									1948
	ttc Phe		_				_							_	1996
	gta Val	_										-			 2044
	tcc Ser 635														2092
_	ggg ggg	_													2140
	ctt Leu														2188
_	tct Ser	_		_			_		_	_		_		_	2236
_	cag Gln	_		_											2284
	tca Ser 715	_			_	_			_				_		2332
	gac Asp														2380
_	cca Pro		_		_							_			2428
	aca Thr		_												2476
_	caa Gln	_			_		_	_		_		_			 2524
	gga Gly 795	_					_		_		_	_			2572
	gtc Val														2620
	tcg Ser		-	_	-										2668
	tct Ser														2716

				25				
ttt tat tgg Phe Tyr Trp 860								2764
gtt atg aat Val Met Asn 875			-			_	-	2812
cat aac tac His Asn Tyr 890	_					_	_	2860
ctc att acc Leu Ile Thr		Gln Ala		_	-	Gly V	~	2908
att gta tca Ile Val Ser				His Phe				2956
agg aaa gta Arg Lys Val 940								3004
gga gtt ttc Gly Val Phe 955	-			_	_		-	3052
ctc tgc aaa Leu Cys Lys 970					Lys Phe			3100
aaa gaa cat Lys Glu His	_	aagggcc	tggagtat	ga ttaat	cttgc at	caacgg	ta	3152
cacacatcta	tcttcggt	ac cttat	ttgat ta	ttctactg	aagagata	aac at	tagtaagg	3212
aataagtcag	agataaat	tg taćat	aatag gg	aagaagac	tatttca	aga ga	aaatacat	3272
accaataaga	tgtgaaaa	aa aaaaa	aaaaa aa	aaactcgt	gccg			3316
<210> 10 <211> 989 <212> PRT <213> Lycope	ersicon	esculent	um					
<400> 10								
Met Arg Gly 1	Leu Pro 5	Gly His	Glu Arg	Arg Trp 10	Thr Ser		hr Val 15	
Ser Ser Gly	Lys Asp 20	Leu Ser	Gly Glu 25		Pro Gly	Thr A	sp Ser	
Gly Asn Ile 35	Ser Gly	Phe Ala	Ser Glu 40	Glu Phe	Val Glu 45	Val I	le Leu	
Asp Leu Gln 50	Asp Asp	Asp Thr 55	Ile Ile	Leu Arg	Ser Val 60	Glu P	ro Ala	
Thr Val Ile 65	Asn Ile	Asp Gly 70	Ser Asp	Pro Ala 75	Ser Gly	Val G	ly Ile 80	
Gly Gly Ala	Ser Ile 85	Glu Thr	Pro Ala	Ser Val 90	Thr Ser		er Glu 95	
Thr Arg Ser	Pro Met	Met Arg	Arg Ser	Thr Ser	Asn Lys		rg Gln	
	100		105			110		

WO 2004/009820 PCT/EP2003/007589

Ser	Gln 130	Glu	Leu	Lys	Ala	Glu 135	Leu	Arg	Arg	Phe	Ser 140	Trp	Ser	His	Gly
His 145	Ala	Ser	Arg	Ala	Phe 150	Ser	Pro	Ala	Ser	Phe 155	Phe	Gln	Asn	Ala	Val 160
Val	Gly	Thr	Gly	Asn 165	Gly	Val	Asp	Ser	Ala 170	Leu	Ala	Ala	Arg	Ala 175	Leu
Arg	Arg	Gln	Arg 180	Ala	Gln	Leu	Asp	Arg 185	Thr	Arg	Ser	Ser	Ala 190	His	Lys
Ala	Leu	Arg 195	Gly	Leu	Lys	Phe	Ile 200	Ser	Asn	Asn	Lys	Thr 205	Asn	Gly	Trp
Asn	Glu 210	Val	Glu	Asn	Asn	Phe 215	Ala	Lys	Leu	Ala	Lys 220	Asp	Gly	Tyr	Leu
Tyr 225	Arg	Ser	Asp	Phe	Ala 230	Gln	Cys	Ile	Gly	Gln 235	Tyr	Ser	Arg	Arg	Arg 240
Ser	Leu	Gln	Phe	Asn 245	Tyr	Arg	Leu	Ile	Thr 250	Leu	Ile	Leu	Ile	Asn 255	Tyr
Leu	Val	Lys	Gly 260	Met	Lys	Asp	Ser	Lys 265	Glu	Phe	Ala	Leu	Glu 270	Leu	Phe
Asp	Ala	Leu 275	Ser	Arg	Arg	Arg	Arg 280	Leu	Lys	Val	Asp	Lys 285	Ile	Ser	Gln
Glu	Glu 290	Leu	Tyr	Glu	Tyr	Trp 295	Ser	Gln	Ile	Thr	Asp 300	Gln	Ser	Phe	Asp
Ser 305	Arg	Leu	Gln	Ile	Phe 310	Phe	Asp	Met	Val	Asp 315	Lys	Asn	Glu	Asp	Gly 320
Arg	Ile	Gly	Glu	Glu 325	Glu	Val	Lys	Glu	Ile 330	Ile	Met	Leu	Ser	Ala 335	Ser
Ala	Asn	Lys	Leu 340	Ser	Arg	Leu	Lys	Glu 345	Gln	Ala	Glu	Glu	Tyr 350	Ala	Ala
Leu	Ile	Met 355	Glu	Glu	Leu	Asp	Pro 360	Glu	Arg	Leu	Gly	Tyr 365	Ile	Glu	Leu
Trp	Gln 370	Leu	Glu	Thr	Leu	Leu 375	Leu	Gln	Lys	Asp	Thr 380	Tyr	Leu	Asn	Tyr
Ser 385	Gln	Ala	Leu	Ser	Tyr 390	Thr	Ser	Gln	Ala	Leu 395	Ser	Gln	Asn	Leu	Gln 400
Gly	Leu	Arg	Lys	Arg 405	Ser	Pro	Ile	Arg	Arg 410	Met	Ser	Thr	Lys	Leu 415	Val
Tyr	Ser	Leu	Gln 420	Glu	Asn	Trp	Lys	Arg 425	Ile	Trp	Val	Leu	Val 430	Leu	Trp
Ile	Leu	Ile 435	Met	Ile	Gly	Leu	Phe 440	Leu	Trp	Lys	Phe	Tyr 445	Gln	Tyr	Lys
Gln	Lys 450	Ser	Ala	Phe	Gln	Val 455	Met	Gly	Tyr	Cys	Leu 460	Leu	Thr	Ala	Lys
Gly 465	Ala	Ala	Glu	Thr	Leu 470	Lys	Phe	Asn	Met	Ala 475	Leu	Ile	Leu	Leu	Pro 480
Val	Cys	Arg	Asn	Thr 485	Ile	Thr	Phe	Leu	Arg 490	Ser	Thr	Lys	Leu	Ser 495	Cys
Phe	Val	Pro	Phe 500	Asp	Asp	Asn	Ile	Asn 505	Phe	His	Lys	Thr	Val 510	Ala	Ala

									•	4 /					
Ala	Ile	Val 515	Thr	Gly	Ile	Ile	Leu 520	His	Ala	Gly	Asn	His 525	Leu	Val	Cys
Asp	Phe 530	Pro	Lys	Leu	Ile	His 535	Ala	Asn	Ser	Thr	Asn 540	Tyr	Gln	Lys	Tyr
Leu 545	Val	Asn	Asp	Phe	Gly 550	Pro	Ser	Gln	Pro	Gln 555	Tyr	Ile	Asp	Leu	Val 560
Lys	Gly	Val	Glu	Gly 565	Val	Thr	Gly	Ile	Val 570	Met	Val	Ile	Leu	Met 575	Ala
Ile	Ala	Phe	Thr 580	Leu	Ala	Thr	Arg	Trp 585	Phe	Arg	Arg	Ser	Leu 590	Ile	Lys
Leu	Pro	Lys 595	Pro	Phe	Asp	Arg	Leu 600	Thr	Gly	Phe	Asn	Ala 605	Phe	Trp	Tyr
Ser	His 610	His	Leu	Leu	Ile	Ile 615	Val	Tyr	Ile	Val	Leu 620	Ile	Ile	His	Gly
Thr 625	Phe	Leu	Tyr	Leu	Val 630	His	Asn	Trp	Tyr	Ser 635	Lys	Thr	Thr	Trp	Met 640
Tyr	Ile	Ala	Val	Pro 645	Val	Leu	Leu	Tyr	Ala 650	Gly	Glu	Arg	Thr	Leu 655	Arg
Phe	Phe	Arg	Ser 660	Gly	Leu	Tyr	Ser	Val 665	Arg	Leu	Leu	Lys	Val 670	Ala	Ile
Tyr	Pro	Gly 675	Asn	Val	Leu	Thr	Leu 680	Gln	Met	Ser	Lys	Pro 685	Pro	Gln	Phe
Arg	Tyr 690	Lys	Ser	Gly	Gln	Tyr 695	Met	Phe	Val	Gln	Cys 700	Pro	Ala	Val	Ser
Pro 705	Phe	Glu	Trp	His	Pro 710	Phe	Ser	Ile	Thr	Ser 715	Ala	Pro	Gly	Asp	Asp 720
Tyr	Leu	Ser	Ile	His 725	Ile	Arg	Gln	Leu	Gly 730	Asp	Trp	Thr	Gln	Glu 735	Leu
Lys	Arg	Val	Phe 740	Ser	Glu	Ala	Cys	Glu 745	Gln	Pro	Glu	Ala	Gly 750	Lys	Ser
Gly	Leu	Leu 755	Arg	Ala	Asp	Glu	Asn 760		Lys	Thr	Ser	Leu 765	Pro	Lys	Leu
Leu	Ile 770	Asp	Gly	Pro	Tyr	Gly 775	Ala	Pro	Ala	Gln	Asp 780	Tyr	Arg	Lys	Tyr
Asp 785	Val	Leu	Leu	Leu	Val 790	Gly	Leu	Gly	Ile	Gly 795	Ala	Thr	Pro	Phe	Ile 800
Ser	Ile	Leu	Lys	Asp 805	Leu	Leu	Lys	Asn	Ile 810	Val	Ala	Met	Glu	Glu 815	Gln
Ala	Asp	Leu	Val 820	Ser	Asp	Phe	Ser	Gly 825	Asn	Ser	Asp	Met	Ser 830	Ala	Ala
Thr	Ser	Glu 835		Pro	Ala	Leu	Asn 840	Lys	Ile	Ser	Pro	Lys 845	Lys	Arg	Lys
Ser	Thr 850	Leu	Lys	Thr	Thr	Asn 855		Tyr	Phe	Tyr	Trp 860	Val	Thr	Arg	Glu
Gln 865	Gly	Ser	Phe	Asp	Trp 870	Phe	Lys	Gly	Val	Met 875		Glu	Val	Ala	Glu 880
Leu	Asp	Gln	Arg	Gly 885		Ile	Glu	Met	His 890	Asn	Tyr	Leu	Thr	Ser 895	Val

PCT/EP2003/007589

28 Tyr Glu Glu Gly Asp Ala Arg Ser Ala Leu Ile Thr Met Val Gln Ala 900 905 Leu Asn His Ala Lys Asn Gly Val Asp Ile Val Ser Gly Thr Ser Val 920 Arg Thr His Phe Ala Arg Pro Asn Trp Arg Lys Val Phe Ser Lys Thr 935 Leu Thr Lys His Ala Asn Ala Arg Ile Gly Val Phe Tyr Cys Gly Ala 950 955 Pro Ile Leu Ala Lys Glu Leu Ser Gln Leu Cys Lys Glu Phe Asn Gln 970 965 Lys Gly Thr Thr Lys Phe Glu Phe His Lys Glu His Phe 985

<210> 11
<211> 3080
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (15)..(2846)
<223> coding for NADPH-oxidase
<400> 11
ccgactttgg atct atg aaa ccg ttc tca aag aac gat cgg cga cgg tgg

95

Met Lys Pro Phe Ser Lys Asn Asp Arg Arg Arg Trp

1 5 10

tca ttt gat tca gtt tcc gcc gga aaa acc gcc gtc gga agt gca tca 98
Ser Phe Asp Ser Val Ser Ala Gly Lys Thr Ala Val Gly Ser Ala Ser

15 20 25

act tca ccg gga act gaa tac tcc att aac ggt gat caa gag ttc gtt 146
Thr Ser Pro Gly Thr Glu Tyr Ser Ile Asn Gly Asp Gln Glu Phe Val

30 35 40

gaa gtc aca atc gat ctt caa gac gat gac aca atc gtt ctt cgt agc 194

Glu Val Thr Ile Asp Leu Gln Asp Asp Asp Thr Ile Val Leu Arg Ser

45

50

55

60

gtc gag cca gca acc gcc att aat gtc atc gga gat atc tcc gac gac

Val Glu Pro Ala Thr Ala Ile Asn Val Ile Gly Asp Ile Ser Asp Asp

aac acc gga ata atg act ccg gtt tcg att tcg aga tct ccg acg atg 290 Asn Thr Gly Ile Met Thr Pro Val Ser Ile Ser Arg Ser Pro Thr Met

aaa cga act tca tct aat cgg ttc cga caa ttc tca caa gag ctt aaa 338 Lys Arg Thr Ser Ser Asn Arg Phe Arg Gln Phe Ser Gln Glu Leu Lys

gcc gaa gct gtg gcg aaa gcg aaa cag tta tct cag gag ttg aaa cga 386 Ala Glu Ala Val Ala Lys Ala Lys Gln Leu Ser Gln Glu Leu Lys Arg 110 115 120

100

ttc tca tgg tct cgt tct ttc tca ggt aac tta acc act act agt acc

Phe Ser Trp Ser Arg Ser Phe Ser Gly Asn Leu Thr Thr Thr Ser Thr

125 130 135 140

gcc gct aat caa agc ggc ggt gct ggt ggt ggt ttg gtg aac tcg gct 482 Ala Ala Asn Gln Ser Gly Gly Ala Gly Gly Gly Leu Val Asn Ser Ala 145 150 155

gta ttc tct gaa gtt tgt gag cca ccg gtt ggc ggt aaa agc gga ctt 21 Val Phe Ser Glu Val Cys Glu Pro Pro Val Gly Gly Lys Ser Gly Leu 705 710 715	162
ctc aga gcc gac gaa aca aca aag aaa agt ttg cca aag cta ttg ata 22 Leu Arg Ala Asp Glu Thr Thr Lys Lys Ser Leu Pro Lys Leu Leu Ile 720 725 730	210
gat gga ccg tac ggt gca cca gca caa gat tat agg aaa tat gat gtt 22 Asp Gly Pro Tyr Gly Ala Pro Ala Gln Asp Tyr Arg Lys Tyr Asp Val 735 740 745	258
ctc tta tta gtt ggt ctt ggc att ggt gca act cca ttt atc agt atc 23 Leu Leu Leu Val Gly Leu Gly Ile Gly Ala Thr Pro Phe Ile Ser Ile 750 760	306
ttg aaa gat ttg ctt aac aac att gtt aaa atg gaa gag cat gcg gat 23 Leu Lys Asp Leu Leu Asn Asn Ile Val Lys Met Glu Glu His Ala Asp 765 770 780	354
tcg atc tcg gat ttc agt aga tca tca gaa tac agc aca gga agc aac 24 Ser Ile Ser Asp Phe Ser Arg Ser Ser Glu Tyr Ser Thr Gly Ser Asn 785 790 795	402
ggt gac acg cca aga cga aag aga ata cta aaa acc aca aat gct tat 24 Gly Asp Thr Pro Arg Arg Lys Arg Ile Leu Lys Thr Thr Asn Ala Tyr 800 805 810	450
ttc tac tgg gtc aca aga gaa caa ggc tct ttt gat tgg ttc aaa ggt 24 Phe Tyr Trp Val Thr Arg Glu Gln Gly Ser Phe Asp Trp Phe Lys Gly 815 820 825	498
gtc atg aac gaa gtt gca gaa ctt gac caa cgg ggt gtg ata gag atg 25 Val Met Asn Glu Val Ala Glu Leu Asp Gln Arg Gly Val Ile Glu Met 830 835 840 * '	546
cat aac tat tta aca agt gtg tat gaa gaa ggt gat gct cgt tct gct 25 His Asn Tyr Leu Thr Ser Val Tyr Glu Glu Gly Asp Ala Arg Ser Ala 845 850 855 860	594
ctc att aca atg gtt caa gct ctt aat cat gcc aaa aat ggt gtc gac 26 Leu Ile Thr Met Val Gln Ala Leu Asn His Ala Lys Asn Gly Val Asp 865 870 875	642
att gtc tct ggc act agg gtc aga aca cac ttt gca aga cct aat tgg 26 Ile Val Ser Gly Thr Arg Val Arg Thr His Phe Ala Arg Pro Asn Trp 880 885 890	690
aag aag gtt ctc aca aag cta agt tcc aag cat tgc aat gca aga aca 27 Lys Lys Val Leu Thr Lys Leu Ser Ser Lys His Cys Asn Ala Arg Thr 895 900 905	738
gga gtg ttt tat tgc gga gta ccg gtt tta ggg aag gag ctt agc aaa 27 Gly Val Phe Tyr Cys Gly Val Pro Val Leu Gly Lys Glu Leu Ser Lys 910 915 920	786
cta tgc aac aca ttc aat caa aaa ggt tca acc aag ttt gaa ttt cac 28 Leu Cys Asn Thr Phe Asn Gln Lys Gly Ser Thr Lys Phe Glú Phe His 925 930 935 940	834
aag gag cat ttc taaaagacaa gaaggaagaa gccaaaagcc ctctagattc 28 Lys Glu His Phe	886
tttaatatct caaatttagc cacttatagt ataaaggcaa tctcttcact atttaattca 29	946
aagtgattaa acgttaacac actgtcaaaa gtgagtgtgt taacgtttag ctccacacgt 30	006
tctaggttta tatacaccga ggcatacgtg taaatatacg agacagaaga aattcaaggg 30	066

3080

<210> 12

ggtttgatag aagc

<211> 944

<212> PRT

<213> Arabidopsis thaliana

<400> 12

Met Lys Pro Phe Ser Lys Asn Asp Arg Arg Trp Ser Phe Asp Ser

Val Ser Ala Gly Lys Thr Ala Val Gly Ser Ala Ser Thr Ser Pro Gly 25

Thr Glu Tyr Ser Ile Asn Gly Asp Gln Glu Phe Val Glu Val Thr Ile

Asp Leu Gln Asp Asp Asp Thr Ile Val Leu Arg Ser Val Glu Pro Ala 55

Thr Ala Ile Asn Val Ile Gly Asp Ile Ser Asp Asp Asn Thr Gly Ile

Met Thr Pro Val Ser Ile Ser Arg Ser Pro Thr Met Lys Arg Thr Ser 90 85

Ser Asn Arg Phe Arg Gln Phe Ser Gln Glu Leu Lys Ala Glu Ala Val 105

Ala Lys Ala Lys Gln Leu Ser Gln Glu Leu Lys Arg Phe Ser Trp Ser 120

Arg Ser Phe Ser Gly Asn Leu Thr Thr Thr Ser Thr Ala Ala Asn Gln 135 140

Ser Gly Gly Ala Gly Gly Leu Val Asn Ser Ala Leu Glu Ala Arg 150 155

Ala Leu Arg Lys Gln Arg Ala Gln Leu Asp Arg Thr Arg Ser Ser Ala 170 165

Gln Arg Ala Leu Arg Gly Leu Arg Phe Ile Ser Asn Lys Gln Lys Asn 185

Val Asp Gly Trp Asn Asp Val Gln Ser Asn Phe Glu Lys Phe Glu Lys 200

Asn Gly Tyr Ile Tyr Arg Ser Asp Phe Ala Gln Cys Ile Gly Met Lys 215 210

Asp Ser Lys Glu Phe Ala Leu Glu Leu Phe Asp Ala Leu Ser Arg Arg 235 230

Arg Arg Leu Lys Val Glu Lys Ile Asn His Asp Glu Leu Tyr Glu Tyr 250

Trp Ser Gln Ile Asn Asp Glu Ser Phe Asp Ser Arg Leu Gln Ile Phe 265 260

Phe Asp Ile Val Asp Lys Asn Glu Asp Gly Arg Ile Thr Glu Glu Glu 280

Val Lys Glu Ile Ile Met Leu Ser Ala Ser Ala Asn Lys Leu Ser Arg 295

Leu Lys Glu Gln Ala Glu Glu Tyr Ala Ala Leu Ile Met Glu Glu Leu 315

Asp Pro Glu Arg Leu Gly Tyr Ile Glu Leu Trp Gln Leu Glu Thr Leu 330 325

WO 2004/009820 PCT/EP2003/007589

Leu	Leu	Gln	Lys 340	Asp	Thr	Tyr	Leu	Asn 345	Tyr	Ser	Gln	Ala	Leu 350	Ser	Tyr
Thr	Ser	Gln 355	Ala	Leu	Ser	Gln	Asn 360	Leu	Gln	Gly	Leu	Arg 365	Gly	Lys	Ser
Arg	Ile 370	His	Arg	Met	Ser	Ser 375	Asp	Phe	Val	Tyr	Ile 380	Met	Gln	Glu	Asn
Trp 385	Lys	Arg	Ile	Trp	Val 390	Leu	Ser	Leu	Trp	Ile 395	Met	Ile	Met	Ile	Gly 400
Leu	Phe	Leu	Trp	Lys 405	Phe	Phe	Gln	Tyr	Lys 410	Gln	Lys	Asp	Ala	Phe 415	His
Val	Met	Gly	Tyr 420	Cys	Leu	Leu	Thr	Ala 425	Lys	Gly	Ala	Ala	Glu 430	Thr	Leu
Lys	Phe	Asn 435	Met	Ala	Leu	Ile	Leu 440	Phe	Pro	Val	Cys	Arg 445	Asn	Thr	Ile
Thr	Trp 450	Leu	Arg	Ser	Thr	Arg 455	Leu	Ser	Tyr	Phe	Val 460	Pro	Phe	Asp	Asp
Asn 465	Ile	Asn	Phe	His	Lys 470	Thr	Ile	Ala	Gly	Ala 475	Ile	Val	Val	Ala	Val 480
Ile	Leu	His	Ile	Gly 485	Asp	His	Leu	Ala	Cys 490	Asp	Phe	Pro	Arg	Ile 495	Val
Arg	Ala	Thr	Glu 500	Tyr	Asp	Tyr	Asn	Arg 505	Tyr	Leu	Phe	His	Tyr 510	Phe	Gln
Thr	Lys	Gln 515	Pro	Thr	Tyr	Phe	Asp 520	Leu	Val	Lys	Gly	Pro 525	Glu	Gly	Ile
Thr	Gly 530	Ile	Leu	Met	Val	Ile 535	Leu	Met	Ile	Ile	Ser 540	Phe	Thr	Leu	Ala
Thr 545	Arg	Trp	Phe	Arg	Arg 550	Asn	Leu	Val	Lys	Leu 555	Pro	Lys	Pro	Phe	Asp 560
Arg	Leu	Thr	Gly	Phe 565	Asn	Ala	Phe	Trp	Tyr 570	Ser	His	His	Leu	Phe 575	Val
Ile	Val	Tyr	Ile 580	Leu	Leu	Ile	Leu	His 585	Gly	Ile	Phe	Leu	Tyr 590	Phe	Ala
Lys	Pro	Trp 595	Tyr	Val	Arg	Thr	Thr 600	Trp	Met	Tyr	Leu	Ala 605	Val	Pro	Val
Leu	Leu 610	Tyr	Gly	Gly	Glu	Arg 615	Thr	Leu	Arg	Tyr	Phe 620	Arg	Ser	Gly	Ser
Tyr 625	Ser	Val	Arg	Leu	Leu 630	Lys	Val	Ala	Ile	Tyr 635	Pro	Gly	Asn	Val	Leu 640
Thr	Leu	Gln	Met	Ser 645	Lys	Pro	Thr	Gln	Phe 650	Arg	Tyr	Lys	Ser	Gly 655	Gln
Tyr	Met	Phe	Val 660	Gln	Cys	Pro	Ala	Val 665	Ser	Pro	Phe	Glu	Trp 670	His	Pro
	Ser	675					680					685			
	Gln 690					695					700				
Val 705	Cys	Glu	Pro	Pro	Val 710	Gly	Gly	Lys	Ser	Gly 715	Leu	Leu	Arg	Ala	Asp 720

34 Glu Thr Thr Lys Lys Ser Leu Pro Lys Leu Leu Ile Asp Gly Pro Tyr 730 Gly Ala Pro Ala Gln Asp Tyr Arg Lys Tyr Asp Val Leu Leu Val 745 Gly Leu Gly Ile Gly Ala Thr Pro Phe Ile Ser Ile Leu Lys Asp Leu 760 Leu Asn Asn Ile Val Lys Met Glu Glu His Ala Asp Ser Ile Ser Asp 775 Phe Ser Arg Ser Ser Glu Tyr Ser Thr Gly Ser Asn Gly Asp Thr Pro 790 Arg Arg Lys Arg Ile Leu Lys Thr Thr Asn Ala Tyr Phe Tyr Trp Val 810 Thr Arg Glu Gln Gly Ser Phe Asp Trp Phe Lys Gly Val Met Asn Glu 825 Val Ala Glu Leu Asp Gln Arg Gly Val Ile Glu Met His Asn Tyr Leu 840 Thr Ser Val Tyr Glu Glu Gly Asp Ala Arg Ser Ala Leu Ile Thr Met Val Gln Ala Leu Asn His Ala Lys Asn Gly Val Asp Ile Val Ser Gly 870 875 Thr Arg Val Arg Thr His Phe Ala Arg Pro Asn Trp Lys Lys Val Leu 885 890 Thr Lys Leu Ser Ser Lys His Cys Asn Ala Arg Thr Gly Val Phe Tyr 905 Cys Gly Val Pro Val Leu Gly Lys Glu Leu Ser Lys Leu Cys Asn Thr 920 Phe Asn Gln Lys Gly Ser Thr Lys Phe Glu Phe His Lys Glu His Phe 930 935 <210> 13 · <211> 3035 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (132)..(2894) <223> coding for NADPH-oxidase <400> 13 tcaaacacct tttgagagcg gttatttttt ctctatcaac taatacagta accttacggg 60 tgtttatttg tatagatctc tgtggttttc ttggccaact ctagtgagat ctttttcgtt 120 tctcgaattc g atg aaa atg aga cga ggc aat tca agt aac gac cat gaa Met Lys Met Arg Arg Gly Asn Ser Ser Asn Asp His Glu ctt ggg att cta cga gga gct aac tcg gac acc aac tcg gac acg gag 218 Leu Gly Ile Leu Arg Gly Ala Asn Ser Asp Thr Asn Ser Asp Thr Glu 20 age ate get age gae egt ggt gee tit age ggt eeg ett gge egg eet 266 Ser Ile Ala Ser Asp Arg Gly Ala Phe Ser Gly Pro Leu Gly Arg Pro 30 35

WO 2004/009820 PCT/EP2003/007589 35

								33						
	cgt Arg					_		-	-					314
	agc Ser													362
	atc Ile													410
	caa Gln 95	_	_	 			_		_	_			-	458
	ctt Leu													506
	tct Ser						_				-		_	554
	ctc Leu													602
	gac Asp													650
	att Ile 175			Thr			_	_	_	_		_		698
	aaa Lys										_	_		746
	gaa Glu													794
	ttt Phe													842
	aag Lys													890
	gat Asp 255													938
	gly ggg													986
	tct Ser													1034
	gca Ala													1082

									,	36					
											ccg Pro 330				1130
											tta Leu				1178
	_					_				_	 tgg Trp	_			1226
						_				_	tgg Trp		_		1274
					_						aaa Lys			-	1322
	_				_						tgt Cys 410				1370
											gct Ala				1418
-											aac Asn				1466
			_	-							ttc Phe		-		1514
	_	_			_	_		_	_		gcg Ala		_		1562
											gag Glu 490				1610
	-									_	agc Ser				1658
				_							 atg Met				1706
_	-		_				_				cga Arg	_		_	1754
											ttc Phe				1802
											ctt Leu 570				1850
											cag Gln				1898

Gln His Ala Lys Asn Gly Val Asp Val Val Ser Gly Thr Arg Val Lys

855

WO 2004/009820 PCT/EP2003/007589 38

										30						
												_	_	atc Ile	_	2762
						_			_			-		atg Met		2810
														cga Arg		2858
					gac Asp 915							taga	atta	att		2904
atat	tacgi	ttg t	agaa	aaaat	ta a	aacaa	agaaa	a caa	actai	taca	aata	aaata	att	tatti	taaat	2964
tct	tttca	att t	tate	gtaaa	aa ti	catct	tgagt	t tai	tctt	tttt	tgti	caaaa	aaa	aaaa	aaaaaa	3024
aaaa	aaaa	aaa a	à													3035
<213	0> 14 l> 92 2> PI 3> A	21 RT	dopsi	is tl	nalia	ana										
<400)> 14	1														
Met 1	Lys	Met	Arg	Arg 5	Gly	Asn	Ser	Ser	Asn 10	Asp	His	Glu	Leu	Gly 15	Ile	
Leu	Arg	Gly	Ala 20	Asn	Ser	Asp	Thr	Asn 25	Ser	Asp	Thr	Glu	Ser 30	Ile	Ala	
Ser	Asp	Arg 35	Gly	Ala	Phe	Ser	Gly 40	Pro	Leu	Gly	Arg	Pro 45	Lys	Arg	Ala	
Ser	Lys 50	Lys	Asn	Ala	Arg	Phe 55	Ala	Asp	Asp	Leu	Pro 60	Lys	Arg	Ser	Asn	
Ser 65	Val	Ala	Gly	Gly	Arg 70	Gly	Asp	Asp	Asp	Glu 75	Tyr	Val	Glu	Ile	Thr 80	
Leu	Asp	Ile	Arg	Asp 85	Asp	Ser	Val	Ala	Val 90	His	Ser	Val	Gln	Gln 95	Ala	
Ala	Gly	Gly	Gly 100	Gly	His	Leu	Glu	Asp 105	Pro	Glu	Leu	Ala	Leu 110	Leu	Thr	
Lys	Lys	Thr 115	Leu	Glu	Ser	Ser	Leu 120	Asn	Asn	Thr	Thr	Ser 125	Leu	Ser	Phe	
Phe	Arg 130	Ser	Thr	Ser	Ser	Arg 135	Ile	Lys	Asn	Ala	Ser 140	Arg	Glu	Leu	Arg	
Arg 145	Val	Phe	Ser	Arg	Arg 150	Pro	Ser	Pro	Ala	Val 155	Arg	Arg	Phe	Asp	Arg 160	
Thr	Ser	Ser	Ala	Ala 165	Ile	His	Ala	Leu	Lys 170	Gly	Leu	Lys	Phe	Ile 175	Ala	
Thr	Lys	Thr	Ala 180	Ala	Trp	Pro	Ala	Val 185	Asp	Gln	Arg	Phe	Asp 190	Lys	Leu	
Ser	Ala	Asp 195	Ser	Asn	Gly	Leu	Leu 200	Leu	Ser	Ala	Lys	Phe 205	Trp	Glu	Cys	
Leu	Gly 210	Met	Asn	Lys	Glu	Ser 215	Lys	Asp	Phe	Ala	Asp 220	Gln	Leu	Phe	Arg	

WO 2004/009820 · 39

Ala 225	Leu	Ala	Arg	Arg	Asn 230	Asn	Val	Ser	Gly	Asp 235	Ala	Ile	Thr	Lys	Glu 240
Gln	Leu	Arg	Ile	Phe 245	Trp	Glu	Gln	Ile	Ser 250	Asp	Glu	Ser	Phe	Asp 255	Ala
Lys	Leu	Gln	Val 260	Phe	Phe	Asp	Met	Val 265	Asp	Lys	Asp	Glu	Asp 270	Gly	Arg
Val	Thr	Glu 275	Glu	Glu	Val	Ala	Glu 280	Ile	Ile	Ser	Leu	Ser 285	Ala	Ser	Ala
Asn	Lys 290	Leu	Ser	Asn	Ile	Gln 295	Lys	Gln	Ala	Lys	Glu 300	Tyr	Ala	Ala	Leu
Ile 305	Met	Glu	Glu	Leu	Asp 310	Pro	Asp	Asn	Ala	Gly 315	Phe	Ile	Met	Ile	Glu 320
Asn	Leu	Glu	Met	Leu 325	Leu	Leu	Gln	Ala	Pro 330	Asn	Gln	Ser	Val	Arg 335	Met
Gly	Asp	Ser	Arg 340	Ile	Leu	Ser	Gln	Met 345	Leu	Ser	Gln	Lys	Leu 350	Arg	Pro
Ala	Lys	Glu 355	Ser	Asn	Pro	Leu	Leu 360	Arg	Trp	Ser	Glu	Lys 365	Ile	Lys	Tyr
Phe	Ile 370	Leu	Asp	Asn	Trp	Gln 375	Arg	Leu	Trp	Ile	Met 380	Met	Leu	Trp	Leu
Gly 385	Ile	Cys	Gly	Gly	Leu 390	Phe	Thr	Tyr	Lys	Phe 395	Ile	Gln	Tyr	Lys	Asn 400
Lys	Ala	Ala	Tyr	Gly 405	Val	Met	Gly	Tyr	Cys 410	Val	Суѕ	Val	Ala	Lys 415	Gly
Gly	Ala	Glu	Thr 420	Leu	Lys	Phe	Asn	Met 425	Ala	Leu	Ile	Leu	Leu 430	Pro	Val
Cys	Arg	Asn 435	Thr	Ile	Thr	Trp	Leu 440	Arg	Asn	Lys	Thr	Lys 445	Leu	Gly	Thr
Val	Val 450	Pro	Phe	Asp	Asp	Ser 455	Leu	Asn	Phe	His	Lys 460	Val	Ile	Ala	Ser
Gly 465	Ile	Val	Val	Gly	Val 470	Leu	Leu	His	Ala	Gly 475	Ala	His	Leu	Thr	Cys 480
Asp	Phe	Pro	Arg	Leu 485	Ile	Ala	Ala	Asp	Glu 490	Asp	Thr	Tyr	Glu	Pro 495	Met
Glu	Lys	Tyr	Phe 500	Gly	Asp	Gln	Pro	Thr 505	Ser	Tyr	Trp	Trp	Phe 510	Val	Lys
Gly	Val	Glu 515	Gly	Trp	Thr	Gly	Ile 520	Val	Met	Val	Val	Leu 525	Met	Ala	Ile
Ala	Phe 530	Thr	Leu	Ala	Thr	Pro 535	Trp	Phe	Arg	Arg	Asn 540	Lys	Leu	Asn	Leu
Pro 545	Asn	Phe	Leu	Lys	Lys 550	Leu	Thr	Gly	Phe	Asn 555	Ala	Phe	Trp	Tyr	Thr 560
His	His	Leu	Phe	Ile 565	Ile	Val	Tyr	Ala	Leu 570	Leu	Ile	Val	His	Gly 575	Ile
Lys	Leu	Tyr	Leu 580	Thr	Lys	Ile	Trp	Tyr 585	Gln	Lys	Thr	Thr	Trp 590	Met	Tyr
Leu	Ala	Val 595	Pro	Ile	Leu	Leu	Туr 600	Ala	Ser	Glu	Arg	Leu 605	Leu	Arg	Ala

***	2004	,,0020	20							40					200070
Phe	Arg 610	Ser	Ser	Ile	Lys	Pro 615	Val	Lys	Met	Ile	Lys 620	Val	Ala	Val	Tyr
Pro 625	Gly	Asn	Val	Leu	Ser 630	Leu	His	Met	Thr	Lys 635	Pro	Gln	Gly	Phe	Lys 640
Tyr	Lys	Ser	Gly	Gln 645	Phe	Met	Leu	Val	Asn 650	Суѕ	Arg	Ala	Val	Ser 655	Pro
Phe	Glu	Trp	His 660	Pro	Phe	Ser	Ile	Thr 665	Ser	Ala	Pro	Gly	Asp 670	Asp	Tyr
Leu	Ser	Val 675	His	Ile	Arg	Thr	Leu 680	Gly	Asp	Trp	Thr	Arg 685	Lys	Leu	Arg
Thr	Val 690	Phe	Ser	Glu	Val	Cys 695	Lys	Pro	Pro	Thr	Ala 700	Gly	Lys	Ser	Gly
Leu 705	Leu	Arg	Ala	Asp	Gly 710	Gly	Asp	Gly	Asn	Leu 715	Pro	Phe	Pro	Lys	Val 720
Leu	Ile	Asp	Gly	Pro 725	Tyr	Gly	Ala	Pro	Ala 730	Gln	Asp	Tyr	Lys	Lys 735	Tyr
Asp	Val	Val	Leu 740	Leu	Val	Gly	Leu	Gly 745	Ile	Gly	Ala	Thr	Pro 750	Met	Ile
Ser	Ile	Leu 755	Lys	Asp	Ile	Ile	Asn 760	Asn	Met	Lys	Gly	Pro 765	Asp	Arg	Asp
Ser	Asp 770	Ile	Glu	Asn	Asn	Asn 775	Ser	Asn	Asn	Asn	Ser 780	Lys	Gly	Phe	Lys
Thr 785	Arg	Lys	Ala	Tyr	Phe 790	Tyr	Trp	Val	Thr	Arg 795	Glu	Gln	Gly	Ser	Phe 800
Glu	Trp	Phe	Lys	Gly 805	Ile	Met	Asp	Glu	Ile 810	Ser	Glu	Leu	Asp	Glu 815	Glu
Gly	Ile	Ile	Glu 820	Leu	His	Asn	Tyr	Cys 825	Thr	Ser	Val	Tyr	Glu 830	Glu	Gly
Asp	Ala	Arg 835	Val	Ala	Leu	Ile	Ala 840	Met	Leu	Gln	Ser	Leu 845	Gln	His	Ala
Lys	Asn 850	Gly	Val	Asp	Val	Val 855	Ser	Gly	Thr	Arg	Val 860	Lys	Ser	His	Phe
Ala 865	Lys	Pro	Asn	Trp	Arg 870	Gln	Val	Tyr	Lys	Lys 875	Ile	Ala	Val	Gln	His 880
Pro	Gly	Lys	Arg	Ile 885	Gly	Val	Phe	Tyr	Cys 890	Gly	Met	Pro	Gly	Met 895	Ile
Lys	Glu	Leu	Lys 900	Asn	Leu	Ala	Leu	Asp 905	Phe	Ser	Arg	Lys	Thr 910	Thr	Thr
Lys	Phe	Asp 915	Phe	His	Lys	Glu	Asn 920	Phe							

<210> 15

<211> 3338

<212> DNA

<213> Nicotiana tabacum

<220>

<221> CDS

<222> (313)..(3129)

<223> coding for NADPH-oxidase

<400> 15	
ggcacgagaa aatccccaat cttttatttg tttattaaaa ttagtac	gcc aagaaagaaa 60
gaaagaaaga cagaaagact cggtcttctt tcttctcttg gtctgaa	act ccaaaataga 120
ataccaatta ttaatctttt gtcatctttt tccttctcgc gttcata	atat actggaatat 180
acatettttt tteaacetat ettetteat ttteaagaat tegggtt	cca taaatagtag 240
gttcactact tttatttcaa cctccttaaa gtttattcat tcatatt	ttt tctcaaagaa 300
aaaactatag aa atg caa aat tcg gaa aat cat cat ccg c Met Gln Asn Ser Glu Asn His His Pro E 1	_
cac cat tcg gac aca gag ata att gga aat gat aga gcg His His Ser Asp Thr Glu Ile Ile Gly Asn Asp Arg Ala 15 20 25	
ggt ccg tta agc gga ccg tta aac aaa cga ggc ggc aaa Gly Pro Leu Ser Gly Pro Leu Asn Lys Arg Gly Gly Lys 30 35 40	
aga ttt aac att cct gaa tct acc gac atc gga acc agt Arg Phe Asn Ile Pro Glu Ser Thr Asp Ile Gly Thr Ser 50 55	
ggc ggc aag tcc aat gat gat gcg tac gtt gaa atc act Gly Gly Lys Ser Asn Asp Asp Ala Tyr Val Glu Ile Thr 65 70	
cgc gaa gat tcc gtc gct gtc cac agt gtc aaa act gcc Arg Glu Asp Ser Val Ala Val His Ser Val Lys Thr Ala 80 85 90	Gly Gly Asp
gac gtg gaa gat ccc gag ctg gct tta ttg gct aaa ggc Asp Val Glu Asp Pro Glu Leu Ala Leu Leu Ala Lys Gly 95 100 105	
aag tcc act tta gga tct tca ctt gtt cga aat gct tcg Lys Ser Thr Leu Gly Ser Ser Leu Val Arg Asn Ala Ser 110 115 120	
cgg caa gtg tca caa gag ctc agg cgt ttg gct tcc tta Arg Gln Val Ser Gln Glu Leu Arg Arg Leu Ala Ser Leu 130 135	
cca att cct act gga agg ttc gac agg aat aaa tca gct Pro Ile Pro Thr Gly Arg Phe Asp Arg Asn Lys Ser Ala 145 150	- -
gct ctt aaa ggt ctc aag ttt att agt aag acc gac ggc Ala Leu Lys Gly Leu Lys Phe Ile Ser Lys Thr Asp Gly 160 165 170	Gly Ala Gly
tgg gcc gcc gtc gag aag cgg ttc gat gag att act gct Trp Ala Ala Val Glu Lys Arg Phe Asp Glu Ile Thr Ala 175 180 185	
ggt ttg ctt cct cgt gcc aaa ttt gga gaa tgt ata ggt Gly Leu Leu Pro Arg Ala Lys Phe Gly Glu Cys Ile Gly 190 195 200	-
gag tct aag gaa ttt gct gtt gag cta tat gat gcg cta Glu Ser Lys Glu Phe Ala Val Glu Leu Tyr Asp Ala Leu 210 215	-
aga aac att aca act gat tcc att aac aaa gca cag ctc Arg Asn Ile Thr Thr Asp Ser Ile Asn Lys Ala Gln Leu 225 230	

575 cca atc ata ctc tat gct agt gaa agg ttg att agg gca ttc agg tca 2127 Pro Ile Ile Leu Tyr Ala Ser Glu Arg Leu Ile Arg Ala Phe Arg Ser 600 595 agc att aaa gct gtt aag att ttg aag gtg gca gta tat cca gga aat 2175 Ser Ile Lys Ala Val Lys Ile Leu Lys Val Ala Val Tyr Pro Gly Asn 610 615 gtg ttg gca ctt cac atg tca aaa cca cag ggc tac aaa tac aaa agt 2223 Val Leu Ala Leu His Met Ser Lys Pro Gln Gly Tyr Lys Tyr Lys Ser 630 ggg caa tac atg ttt gtc aac tgt gct gca gtt tct cca ttt gag tgg 2271 Gly Gln Tyr Met Phe Val Asn Cys Ala Ala Val Ser Pro Phe Glu Trp 640 645 cat cca ttt tca att act tcg gcc cca gga gat gac tat ctc agt gtc 2319 His Pro Phe Ser Ile Thr Ser Ala Pro Gly Asp Asp Tyr Leu Ser Val 660 655 cat att cqa act ctt ggt gat tgg acc agg caa ctt aaa act gtt ttc 2367 His Ile Arg Thr Leu Gly Asp Trp Thr Arg Gln Leu Lys Thr Val Phe 675 670 tcc gag gtt tgc cag. cca cct aat gga aaa agt gga ctc ctc aga 2415 Ser Glu Val Cys Gln Pro Pro Pro Asn Gly Lys Ser Gly Leu Leu Arg 690 gct gac tac ttg caa gga gag aat aat cct aat ttc cca agg gtg tta 2463 Ala Asp Tyr Leu Gln Gly Glu Asn Asn Pro Asn Phe Pro Arg Val Leu 705 710

ata gat gga cca tat gga gca cca gca caa gac tac aag aaa tat gag

Ile Asp Gly Pro Tyr Gly Ala Pro Ala Gln Asp Tyr Lys Lys Tyr Glu

gtg gtt ttg ttg gta ggt ctt gga att gga gct aca cca atg atc agt

Val Val Leu Leu Val Gly Leu Gly Ile Gly Ala Thr Pro Met Ile Ser

att gtt aaa gac att gtc aac aac atg aag gca atg gac gaa gaa

Ile Val Lys Asp Ile Val Asn Asn Met Lys Ala Met Asp Glu Glu Glu

aat tcc ttg gaa gat gga cac aat aat aat atg gca cca aat tct agc

Asn Ser Leu Glu Asp Gly His Asn Asn Met Ala Pro Asn Ser Ser

775

755

770

725

720

2511

2559

2607

2655

· WO 2004/003020		44	77 E1 2003/00/	367
	Lys Asn Lys (ggt tca gca agt gga Gly Ser Ala Ser Gly 795	2703
	Asn Thr Arg A		tat tgg gtt act aga Tyr Trp Val Thr Arg 810	2751
		Phe Lys Gly Ile I	atg aat gaa gct gct Met Asn Glu Ala Ala 825	2799
			aat tat tgt act agt Asn Tyr Cys Thr Ser 845	2847
			att act atg ctt cag Ile Thr Met Leu Gln 860	2895
	Ala Lys Asn (-	gtc tct ggc acc aga Val Ser Gly Thr Arg 875	2943
	Phe Ala Lys I		aat gtc tac aaa cgc Asn Val Tyr Lys Arg 890	2991
-		Ala Lys Val Gly	gtc ttc tat tgt ggg Val Phe Tyr Cys Gly 905	3039
			gcc ttg gat ttt tca Ala Leu Asp Phe Ser 925	3087
_	-	gat ttc cat aaa (Asp Phe His Lys (935		3129
tgagcaaaga atag	accatt aagcaga	agca ttaaaatttc	atcaaaacag ctaaggacac	3189
	_		acagataatg ttgcacttca	
			aaataataag attatttta	
<pre>tttgtagtaa aaaa <210> 16 <211> 939 <212> PRT <213> Nicotiana</pre>		aaa		3338
<400> 16 Met Gln Asn Ser 1	Glu Asn His I 5	His Pro His His (Gln His His His Ser 15	
Asp Thr Glu Ile		Asp Arg Ala Ser ' 25	Tyr Ser Gly Pro Leu 30	
Ser Gly Pro Leu 35	Asn Lys Arg (Gly Gly Lys Lys 40	Ser Ala Arg Phe Asn 45	
Ile Pro Glu Ser 50	Thr Asp Ile (Gly Thr Ser Val	Gly Thr Gly Gly Lys 60	
Ser Asn Asp Asp 65	Ala Tyr Val (Glu Ile Thr Leu 75	Asp Val Arg Glu Asp 80	

WO 2004/009820 PCT/EP2003/007589

				,						#3					
Ser	Val	Ala	Val	His 85	Ser	Val	Lys	Thr	Ala 90	Gly	Gly	Asp	Asp	Val 95	Glu
Asp	Pro	Glu	Leu 100	Ala	Leu	Leu	Ala	Lys 105	Gly	Leu	Glu	Lys	Lys 110	Ser	Thr
Leu	Gly	Ser 115	Ser	Leu	Val	Arg	Asn 120	Ala	Ser	Ser	Arg	Ile 125	Arg	Gln	Val
Ser	Gln 130	Glu	Leu	Arg	Arg	Leu 135	Ala	Ser	Leu	Asn	Lys 140	Arg	Pro	Ile	Pro
Thr 145	Gly	Arg	Phe	Asp	Arg 150	Asn	Lys	Ser	Ala	Ala 155	Ala	His	Ala	Leu	Lys 160
Gly	Leu	Lys	Phe	Ile 165	Ser	Lys	Thr	Asp	Gly 170	Gly	Ala	Gly	Trp	Ala 175	Ala
Val	Glu	Lys	Arg 180	Phe	Asp	Glu	Ile	Thr 185	Ala	Ser	Thr	Thr	Gly 190	Leu	Leu
Pro	Arg	Ala 195	Lys	Phe	Gly	Glu	Cys 200	Ile	Gly	Met	Asn	Lys 205	Glu	Ser	Lys
Glu	Phe 210	Ala	Val	Glu	Leu	Tyr 215	Asp	Ala	Leu	Ala	Arg 220	Arg	Arg	Asn	Ile
Thr 225	Thr	Asp	Ser	Ile	Asn 230	Lys	Ala	Gln	Leu	Lys 235	Glu	Phe	Trp	Asp	Gln 240
Val	Ala	Asp	Gln	Ser 245	Phe	Asp	Ser	Arg	Leu 250	Gln	Thr	Phe	Phe	Asp 255	Met
Val	Asp	Lys	Asp 260	Ala	Asp	Gly	Arg	Ile 265	Thr	Glu	Glu	Glu	Val 270	Arg	Glu
Ile	Ile	Gly 275	Leu	Ser	Ala	Ser	Ala 280	Asn	Arg	Leu	Ser	Thr 285	Ile	Gln	Lys
Gln	Ala 290	Asp	Glu	Tyr	Ala	Ala 295	Met	Ile	Met	Glu	Glu 300	Leu	Asp	Pro	Asn
Asn 305	Leu	Gly ·	Tyr	Ile	Met 310	Ile	Glu	Asn	Leu	Glu 315	Met	Leu	Leu	Leu	Gln 320
Ala	Pro	Asn	Gln	Ser 325		Gln	Arg	Gly	Gly 330		Ser	Arg	Asn	Leu 335	Ser
Gln	Met	Leu	Ser 340	Gln	Lys	Leu	Lys	His 345	Thr	Gln	Glu	Arg	Asn 350	Pro	Ile
Val	Arg	Trp 355	Tyr	Lys	Ser	Phe	Met 360	Tyr	Phe	Leu	Leu	Asp 365	Asn	Trp	Gln
Arg	Val 370	Trp	Val	Leu	Leu	Leu 375	Trp	Ile	Gly	Ile	Met 380	Ala	Gly	Leu	Phe
Thr 385	Trp	Lys	Tyr	Ile	Gln 390	Tyr	Lys	Glu	Lys	Ala 395	Ala	Tyr	Lys	Val	Met 400
Gly	Pro	Сув	Val	Cys 405	Phe	Ala	Lys	Gly	Ala 410	Ala	Glu	Thr	Leu	Lys 415	Leu
Asn	Met	Ala	Ile 420	Ile	Leu	Phe	Pro	Val 425	Cys	Arg	Asn	Thr	Ile 430	Thr	Trp
		435	-	Thr			440					445			
Leu	Asn 450	Phe	His	Lys	Val	Ile 455	Ala	Val	Ala	Ile	Ala 460	Leu	Gly	Val	Gly

835

\mathbf{w}	O 200	4/0098	320										T	CT/E	P2003/0
										46					
Ile 465	His	Gly	Leu	Ser	His 470	Leu	Thr	Cys	Asp	Phe 475	Pro	Arg	Leu	Leu	Asn 480
Ala	Ser	Glu	Glu	Glu 485	Tyr	Glu	Pro	Met	Lys 490	Tyr	Tyr	Phe	Gly	Asp 495	Gln
Pro	Glu	Ser	Tyr 500	Trp	Trp	Phe	Ile	Lys 505	Gly	Val	Glu	Gly	Val 510	Thr	Gly
Ile	Ile	Met 515	Val	Val	Leu	Met	Ala 520	Ile	Ala	Phe	Thr	Leu 525	Ala	Thr	Pro
Trp	Phe 530	Arg	Arg	Asn	Arg	Val 535	Ser	Leu	Pro	Lys	Pro 540	Phe	His	Lys	Leu
Thr 545	Gly	Xaa	Asn	Ala	Phe 550	Trp	Tyr	Ser	His	His 555	Leu	Phe	Val	Ile	Val 560
Tyr	Thr	Leu	Phe	Ile 565	Val	His	Gly	Glu	Lys 570	Leu	Tyr	Ile	Thr	Lys 575	Asp
Trp	Tyr	Lys	Arg 580	Thr	Asp	Met	Asp	Val 585	Leu	Leu	Thr	Ile	Pro 590	Ile	Ile
Leu	Tyr	Ala 595	Ser	Glu	Arg	Leu	Ile 600	Arg	Ala	Phe	Arg	Ser 605	Ser	Ile	Lys
Ala	Val 610	Lys	Ile	Leu	Lys	Val 615	Ala	Val	Tyr	Pro	Gly 620	Asn	Val	Leu	Ala
Leu 625	His	Met	Ser	Lys	Pro 630	Gln	Gly	Tyr	Lys	Tyr 635	Lys	Ser	Gly	Gln	Tyr 640
Met	Phe	Val	Asn	Cys 645	Ala	Ala	Val	Ser	Pro 650	Phe	Glu	Trp	His	Pro 655	Phe
Ser	Ile	Thr	Ser 660	Ala	Pro	Gly	Asp	Asp 665	Tyr	Leu	Ser	Val	His 670	Ile	Arg
Thr	Leu	Gly 675	Asp	Trp	Thr	Arg	Gln 680	Leu	Lys	Thr	Val	Phe 685	Ser	Glu	Val
	Gln 690					695					700			_	
Leu 705	Gln	Gly	Glu	Asn	Asn 710	Pro	Asn	Phe	Pro	Arg 715	Val	Leu	Ile	Asp	Gly 720
Pro	Tyr	Gly		Pro 725	Ala	Gln	Asp	Tyr	Lys 730	Lys	Tyr	Glu	Val	Val 735	Leu
Leu	Val	Gly	Leu 740	Gly	Ile	Gly	Ala	Thr 745	Pro	Met	Ile	Ser	Ile 750	Val	Lys
	Ile	755					760		_			765			
Glu	Asp 770	Gly	His	Asn	Asn	Asn 775	Met	Ala	Pro	Asn	Ser 780	Ser	Pro	Asn	Ile
Ala 785	Lys	Asn	Lys	Gly	Asn 790	Lys	Ser	Gly	Ser	Ala 795	Ser	Gly	Gly	Asn	Asn 800
	Asn			805					810					815	_
	Phe		820					825					830		_
His	Lys	Gly 835	Val	Ile	Glu		His 840	Asn	Tyr	Cys	Thr	Ser	Val	Tyr	Glu

840

WO 2004/009820

Glu Gly Asp Ala Arg Ser Ala Leu Ile Thr Met Leu Gln Ser Leu His 855 His Ala Lys Asn Gly Val Asp Ile Val Ser Gly Thr Arg Val Lys Ser 870 865. 875 His Phe Ala Lys Pro Asn Trp Arg Asn Val Tyr Lys Arg Ile Ala Leu 885 Asn His Pro Glu Ala Lys Val Gly Val Phe Tyr Cys Gly Ala Pro Ala 900 905 Leu Thr Lys Glu Leu Arg Gln His Ala Leu Asp Phe Ser His Lys Thr 915 920 925 Ser Thr Lys Phe Asp Phe His Lys Glu Asn Phe 935 <210> 17 <211> 2532 <212> DNA <213> Oryza sativa <220> <221> CDS <222> (1)..(2529) <223> coding for NADPH-oxidase atg gcg tcg ccg tac gac cac cag tcg ccg cat gcg cag cac ccg tcg 48 Met Ala Ser Pro Tyr Asp His Gln Ser Pro His Ala Gln His Pro Ser 96 Gly Leu Pro Arg Pro Pro Gly Ala Gly Ala Gly Ala Ala Gly Gly 20 25 ttc gcg cgg ggg ctg atg aag cag ccg tcg cgg ctg gcg tcc ggg gtg 144 Phe Ala Arg Gly Leu Met Lys Gln Pro Ser Arg Leu Ala Ser Gly Val agg cag ttc gcg tcg agg gtg tcg atg aag gtg ccg gag ggg gtg ggg 192 Arg Gln Phe Ala Ser Arg Val Ser Met Lys Val Pro Glu Gly Val Gly 55 ggg atg cgg ccc ggt ggc ggg atg atg acg cgg atg cag tcc agc gcg 240 Gly Met Arg Pro Gly Gly Gly Arg Met Thr Arg Met Gln Ser Ser Ala 65 cag gtg ggg ctc cgg ggg ctc cgc ttc ctc gac aag acg tcc ggc ggg 288 Gln Val Gly Leu Arg Gly Leu Arg Phe Leu Asp Lys Thr Ser Gly Gly aag gag ggg tgg aag tcc gtc gag cgc cgc ttc gac gag atg aac cgc 336 Lys Glu Gly Trp Lys Ser Val Glu Arg Arg Phe Asp Glu Met Asn Arg aac ggc cgc ctc ccc aag gag agc ttc ggc aag tgc atc ggc atg ggg 384 Asn Gly Arg Leu Pro Lys Glu Ser Phe Gly Lys Cys Ile Gly Met Gly 120 gac tcc aag gag ttc gcc ggc gag ctg ttc gtg gcg ctg gcg cgg cgg 432 Asp Ser Lys Glu Phe Ala Gly Glu Leu Phe Val Ala Leu Ala Arg Arg agg aac ctg gag ccg gag gac ggc atc acc aag gag cag ctc aag gag 480 Arg Asn Leu Glu Pro Glu Asp Gly Ile Thr Lys Glu Gln Leu Lys Glu 150 155

		,				48				
tgg Trp										528
ttt Phe										576
gtc Val										624
ctg Leu 210										672
gac Asp					_		 _	_	 _	720
ctg Leu										768
acg Thr										816
ccg Pro										864
tgg Trp 290					-		_	-	_	912
ctc Leu										960
gtg Val										1008
aag Lys										1056
acc Thr										1104
aac Asn 370										1152
gcc Ala										1200
aac Asn										1248
tac Tyr										1296

										50						
	Gly ggg				-								-			2160
	ttc Phe							_					_	_	_	2208
	aat Asn					_						_			-	2256
_	Gly	_	-			_	_					_				2304
	gcc Ala 770															2352
	ttt Phe												_			2400
_	cac His				-			_			_					2448
	acg Thr															2496
	act Thr						_	-			taa					2532
<21:	0> 18 1> 84 2> PI 3> O	13 RT	sati	iva												
<40	0> 18	3														
1	Ala			5					10					15		
GТĀ	Leu	Pro	Arg 20	Pro	Pro	GIY	Ala	G1y 25	Ala	GTA	Ala	Ala	Ala 30	GTĀ	GIA	
Phe	Ala	Arg 35	Gly	Leu	Met	Lys	Gln 40	Pro	Ser	Arg	Leu	Ala 45	Ser	Gly	Val	
Arg	Gln 50	Phe	Ala	Ser	Arg	Val 55	Ser	Met	Lys	Val	Pro 60	Glu	Gly	Val	Gly	
Gly 65	Met	Arg	Pro	Gly	Gly 70	Gly	Arg	Met	Thr	Arg 75	Met	Gln	Ser	Ser	Ala 80	
Gln	Val	Gly	Leu	Arg 85	Gly	Leu	Arg	Phe	Leu 90	Asp	Lys	Thr	Ser	Gly 95	Gly	
Lys	Glu	Gly	Trp 100	Lys	Ser	Val	Glu	Arg 105	Arg	Phe	Asp	Glu	Met 110	Asn	Arg	
Asn	Gly	Arg 115	Leu	Pro	Lys	Glu	Ser 120	Phe	Gly	Lys	Cys	Ile 125	Gly	Met	Gly	
Asp	Ser	Lys	Glu	Phe	Ala	Gly	Glu	Leu	Phe	Val	Ala	Leu	Ala	Arg	Arg	

WO 2004/009820 PCT/EP2003/007589

										ЭT					
Arg 145	Asn	Leu	Glu	Pro	Glu 150	Asp	Gly	Ile	Thr	Lys 155	Glu	Gln	Leu	Lys	Glu 160
Phe	Trp	Glu	Glu	Met 165	Thr	Asp	Gln	Asn	Phe 170	Asp	Ser	Arg	Leu	Arg 175	Ile
Phe	Phe	Asp	Met 180	Cys	Asp	Lys	Asn	Gly 185	Asp	Gly	Met	Leu	Thr 190	Glu	Asp
Glu	Val	Lys 195	Glu	Val	Ile	Ile	Leu 200	Ser	Ala	Ser	Ala	Asn 205	Lys	Leu	Ala
Lys	Leu 210	Lys	Gly	His	Ala	Ala 215	Thr	Tyr	Ala	Ser	Leu 220	Ile	Met	Glu	Glu
Leu 225	Asp	Pro	Asp	Asp	Arg 230	Gly	Tyr	Ile	Glu	Ile 235	Trp	Gln	Leu	Glu	Thr 240
Leu	Leu	Arg	Gly	Met 245	Val	Ser	Ala	Gln	Ala 250	Ala	Pro	Glu	Lys	Met 255	Lys
Arg	Thr	Thr	Ser 260	Ser	Leu	Ala	Arg	Thr 265	Met	Ile	Pro	Ser	Arg 270	Tyr	Arg
Ser	Pro	Leu 275	Lys	Arg	His	Val	Ser 280	Arg	Thr	Val	Asp	Phe 285	Val	His	Glu
Asn	Trp 290	Lys	Arg	Ile	Trp	Leu 295	Val	Ala	Leu	Trp	Leu 300	Ala	Val	Asn	Val
Gly 305	Leu	Phe	Ala	Tyr	Lys 310	Phe	Glu	Gln	Tyr	Glu 315	Arg	Arg	Ala	Ala	Phe 320
Gln	Val	Met	Gly	His 325	Cys	Val	Cys	Val	Ala 330	Lys	Gly	Ala	Ala	Glu 335	Val
Leu	Lys	Leu	Asn 340	Met	Ala	Leu	Ile	Leu 345	Leu	Pro	Val	Cys	Arg 350	Asn	Thr
Leu	Thr	Thr 355	Leu	Arg	Ser	Thr	Ala 360	Leu	Ser	His	Val	Ile 365	Pro	Phe	Asp
Asp	Asn 370	Ile	Asn	Phe	His	Lys 375	Val	Ile	Ala	Ala	Thr 380	Ile	Ala	Ala	Ala
Thr 385	Ala	Val	His	Thr	Leu 390		His	Val	Thr	Cys 395		Phe	Pro	Arg	Leu 400
Ile	Asn	Cys	Pro	Ser 405	Asp	Lys	Phe	Met	Ala 410	Thr	Leu	Gly	Pro	Asn 415	Phe
Gly	Tyr	Arg	Gln 420	Pro	Thr	Tyr	Ala	Asp 425	Leu	Leu	Glu	Ser	Ala 430	Pro	Gly
Val	Thr	Gly 435	Ile	Leu	Met	Ile	Ile 440	Ile	Met	Ser	Phe	Ser 445	Phe	Thr	Leu
Ala	Thr 450	His	Ser	Phe	Arg	Arg 455	Ser	Val	Val	Lys	Leu 460	Pro	Ser	Pro	Leu
His 465	His	Leu	Ala	Gly	Phe 470	Asn	Ala	Phe	Trp	Tyr 475	Ala	His	His	Leu	Leu 480
Val	Leu	Ala	Tyr	Val 485	Leu	Leu	Val	Val	His 490	Ser	Tyr	Phe	Ile	Phe 495	Leu
Thr	Arg	Glu	Trp 500	Tyr	Lys	Lys	Thr	Thr 505	Trp	Met	Tyr	Leu	Ile 510	Val	Pro
Val	Leu	Phe 515	Tyr	Ala	Cys	Glu	Arg 520	Thr	Ile	Arg	Lys	Val 525	Arg	Glu	Asn

										3 4					
Asn	Tyr 530	Arg	Val	Ser	Ile	Val 535	Lys	Ala	Ala	Ile	Tyr 540	Pro	Gly	Asn	Val
Leu 545	Ser	Leu	His	Met	Lys 550	Lys	Pro	Pro	Gly	Phe 555	Lys	Tyr	Lys	Ser	Gly 560
Met	Tyr	Leu	Phe	Val 565	Lys	Cys	Pro	Asp	Val 570	Ser	Pro	Phe	Glu	Trp 575	His
Pro	Phe	Ser	Ile 580	Thr	Ser	Ala	Pro	Gly 585	Asp	Asp	Tyr	Leu	Ser 590	Val	His
Ile	Arg	Thr 595	Leu	Gly	Asp	Trp	Thr 600	Thr	Glu	Leu	Arg	Asn 605	Leu	Phe	Gly
Lys	Ala 610	Cys	Glu	Ala	Gln	Val 615	Thr	Ser	Lys	Lys	Ala 620	Thr	Leu	Ser	Arg
Leu 625	Glu	Thr	Thr	Val	Val 630	Ala	Asp	Ala	Gln	Thr 635	Glu	Asp	Thr	Arg	Phe 640
Pro	Lys	Val	Leu	Ile 645	Asp	Gly	Pro	Tyr	Gly 650	Ala	Pro	Ala	Gln	Asn 655	Tyr
Lys	Lys	Tyr	Asp 660	Ile	Leu	Leu	Leu	Ile 665	Gly	Leu	Gly	Ile	Gly 670	Ala	Thr
Pro	Phe	Ile 675	Ser	Ile	Leu	Lys	Asp 680	Leu	Leu	Asn	Asn	Ile 685	Lys	Ser	Asn
Glu	Glu 690	Val	Glu	Ser	Ile	His 695	Gly	Ser	Glu	Ile	Gly 700	Ser	Phe	Lys	Asn
Asn 705	Gly	Pro	Gly	Arg	Ala 710	Tyr	Phe	Tyr	Trp	Val 715	Thr	Arg	Glu	Gln	Gly 720
Ser	Phe	Glu	Trp	Phe 725	Lys	Gly	Val	Met	Asn 730	Asp	Val	Ala	Glu	Ser 735	Asp
His	Asn	Asn	Ile 740	Ile	Glu	Met	His	Asn 745	Tyr	Leu	Thr	Ser	Val 750	Tyr	Glu
Glu	Gly	Asp 755	Ala	Arg	Ser	Ala	Leu 760	Ile	Ala	Met	Val	Gln 765	Ser	Leu	Gln
His	Ala 770	Lys	Asn	Gly	Val	Asp 775	Ile	Val	Ser	Gly	Ser 780	Arg	Ile	Arg	Thr
His 785	Phe	Ala	Arg	Pro	Asn 790	Trp	Arg	Lys	Val	Phe 795	Ser	Asp	Leu	Ala	Asn 800
Ala	His	Lys	Asn	Ser 805	Arg	Ile	Gly	Val	Phe 810	Tyr	Cys	Gly	Ser	Pro 815	Thr
Leu	Thr	Lys	Gln 820	Leu	Lys	Asp	Leu	Ser 825	Lys	Glu	Phe	Ser	Gln 830	Thr	Thr
Thr	Thr	Arg 835	Phe	His	Phe	His	Lys 840	Glu	Asn	Phe					

<210> 19

<211> 2604

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(2601)

<223> coding for NADPH-oxidase

-10	. 10														
atg		aga			ttt Phe										48
	_	-			gga Gly		_								96
					aac Asn		_								144
	_				tac Tyr		_								192
	_		_		agc Ser 70			_				_			240
					act Thr										288
	_	_			cgt Arg	_			_				_	_	336
					ggt Gly										384
_					act Thr			-		_		_	_		432
					aaa Lys 150										480
					cag Gln						 				528
					gaa Glu										576
		_		-	gca Ala									-	624
					caa Gln										672
	Ser				cgg Arg 230										720
					ctt Leu										768
					ttg Leu										816

)				54					
						ctg Leu									864
	_			_		ccg Pro 295	_	_	_					-	912
		_		-		tgg Trp			_		_				960
		_	_			ctc Leu									1008
_	_					gtg Val				-					1056
						aag Lys									1104
_	_	_				aca Thr 375			-		_				1152
						gac Asp									1200
						gta Val									1248
	_		_			cta Leu		_							1296
	_	_				gat Asp				_	_		_		1344
_		_	-	_		ata Ile 455									1392
_		-				gcc Ala	_								1440
						tta Leu									1488
					_	ttt Phe	_		_						1536
				_		ctc Leu		_	_						1584
						cca Pro 535									1632

Tile Arg Ala Phe Arg Ser Ser IIe Lys Ala Val Thr IIe Arg Lys Val 5550 555 570 575																	
Ala Val Tyr Pro Gly Asn Val Leu Ala Ile His Leu Ser Arg Pro Gln 565 aac ttc aaa tac aag agt ggt caa tac atg ttt gtt aac tgt gct gct Asn Phe Lys Tyr Lys Ser Gly Gln Tyr Met Phe Val Asn Cys Ala Ala 590 gtt tct cca ttt gaa tgg cat cca ttt tca atc aca tct gca cca caa Val Ser Pro Phe Gln Trp His Pro Phe Ser Ile Thr Ser Ala Pro Gln 605 gat gat tac cta agt gtt cac att aga gtt ctt ggg gat tgg aca cga Asp Asp Tyr Leu Ser Val His Ile Arg Val Leu Gly Asp Trp Thr Arg 610 gct ctc aaa gga gtc ttc tct gag gtg tgt aag cca cca cca cg gca gga la Leu Lys Gly Val Phe Ser Glu Val Cys Lys Pro Pro Pro Pro Ala Gly 625 gat tagt ggt ctg ctt aga gcc gac atg ttg cat ggt gca act act agt ggt agt agt ggt agt agt ggt agt ag	Ile					Ser					Val					Val	1680
Asn Phe Lys Tyr Lys Ser Gly Gln Tyr Met Phe Val Asn Cys Ala Ala 580 gtt tct cas ttt gaa tgg cat cas ttt tas atc aca tct gas cas cas cas Val Ser Pro Phe Glu Trp His Pro Phe Ser Ile Thr Ser Ala Pro Gln 605 595 gat gat tac cta agt gtt cac att aga gtt ctt ggg gat tgg aca cga Asp Asp Tyr Leu Ser Val His Ile Arg Val Leu Gly Asp Trp Thr Arg 610 615 get ctc aaa ggg gtc ttc tct gag gtg tgt aag ca ca cca cca cgg gag gat legt agt gt agt ggt agt a					${ t Gly}$					Ile					Pro		1728
Val Ser Pro Phe Ser Ile Thr Ser Ala Pro Gln 600 605 Asp Tyr Leu Get Cota att agg gtt ctt cat att agg gtt ctt ctd gag gtt ttt ctt gag gtt gtt ag cat ctt gag gtt gtt ag cat cat cat cat ag cat ag cat cat ag cat cat ag cat cat gag gat				Tyr	_	_			Tyr	_		_		Cys	_	_	1776
Asp Asp Tyr Leu Ser Val His Ile Arg Val Leu Gly Asp Trp Thr Arg 610 615 615 620 620 620 620 620 620 620 620 620 620	_		Pro					Pro					Ser				1824
Ala Leu Lys Gly Val Phe Ser Glu Val Cys Lys Pro Pro Pro Ala Gly 635 gtt agt ggt ctg ctt aga gcc gac atg ttg cat ggt gca aat aat ccc Val Ser Gly Leu Leu Arg Ala Asp Met Leu His Gly Ala Asn Asn Pro 655 gac ttc ccg aaa gtc ttg att gat ggt cca tat ggt gca cca gca caa Asp Phe Pro Lys Val Leu Ile Asp Gly Pro Tyr Gly Ala Asn Asn Pro 666 gac tac aag aag tac gag gtg gtt cta cta gtt ggt ctc ggg att gga Asp Tyr Lys Lys Tyr Glu Val Val Leu Leu Val Gly Leu Gly Ile Gly 685 gcc aca cca atg atc agt agt gtc val Leu Leu Val Gly Leu Gly Ile Gly 680 gcc aca cca atg atc agt atc gtc aaa gac att gtt aat aac atc aag Ala Lys Glu Gln Ala Gln Leu Asn Arg Met Glu Asn Asn Ile Lys 695 gcc aag gaa caa gcc caa cta acc gat gga gat gga acc gat gga aca agc gaa Ala Lys Glu Gln Ala Gln Leu Asn Arg Met Glu Asn Gly Thr Ser Glu 720 cca caa cga agt aag aaa gag agt ttc agg acc cgt aga gct tac ttc Pro Gln Arg Ser Lys Lys Glu Ser Phe Arg Thr Arg Arg Ala Tyr Phe 735 tat tgg gtt acc gcg gaa caa ggc tct ttc gat tgg ttc aag aac atc atc ttc Pro Tyr Try Val Thr Arg Glu Gln Gly Ser Phe Asp Try Phe Lys Asn Ile 740 atg aac gaa gtc gcg gaa caa ggc tct ttc gat tgg ttc aag aac atc 2206 atg aac gaa gtc gcg gaa caa ggc tct ttc gat tgg ttc aag aac atc 2206 Tyr Try Val Thr Arg Glu Gln Gly Ser Phe Asp Try Phe Lys Asn Ile 740 atg aac gaa gtc gcg gaa caa ggc tct ttc gat tgg ttc aag aac atc 2206 Tyr Try Val Thr Arg Glu Gln Gly Ser Phe Asp Try Phe Lys Asn Ile 750 atg aac gaa gtc gcg gaa caa ggc tct ttc gat tgg ttc aag aac atc 2206 Tyr Try Val Thr Ser Val Tyr Glu Glu Gly Asp Ala Asn Arg Val Ile Glu Met His 750 atg aac gaa gtc gcg gaa cga gat gcc aac cgc gtc atc gac cgt gcc atc 2304 Met Asn Glu Val Ala Glu Arg Asp Ala Asn Arg Val Ile Glu Met His 760 Tyr Try Vyr Thr Ser Val Tyr Glu Glu Gly Asp Ala Asn Arg Val Ile Glu Met His 775 ata cat atg ctt caa tca cta aac cat gaa agg acc gcc cgt cgt cc gaa ctt 2304 Ash Cyr Thr Ser Val Tyr Glu Glu Gly Asp Ala Asn Gly Val Asp Ile 770 ata cat atg ctt caa acc acc acc acc acc acc ac	-	Asp					His					Gly	_			_	1872
Val Ser Gly Leu Leu Asp Met Leu His Gly Ala Asp Pro 655 gac ttc cg att gat ggt ggt cca tat ggt gca ca cgc ca aca ggc ca dca gga gat ggt ggt ctc ggg att gga ggc dca ggg att gga att gga gga att gga gga att gga gga gga gga gga	Ala					Phe					Lys					Gly	1920
Asp Phe Pro Lys Lys Val Leu Ile Asp 665 Gly Fro Tyr Gly Ala Pro Ala Gln 670 gac tac aag aag tac gag gtg tt cta cta cta gtt ggt ctc ggg att gga Asp Tyr Lys Lys Tyr Gly Val Val Leu Leu Val Gly Leu Gly Ile Gly 685 2064 gcc aca cca atg atc atc agt atc gtc aaa gac atc gtg atc ggg atc ggg atc ggc atc agg atc atc agg atc ggg atc ggg atc agg atc agg atc agg atc agg atc agg acc acc	_	_		_	Leu	_	_	_	_	Leu			_		Asn		1968
Asp Tyr Lys Lys Tyr Glu Val Val Leu Leu Val Gly Leu Gly Ile Gly gcc aca cca atg atc agt atc gtc aaa gac att gtt aat aac atc aag Ala Thr Pro Met Ile Ser Ile Val Lys Asp Ile Val Asn Asn Ile Lys 690 gcc aag gaa caa gcc caa cta aac cga atg gag aat gga aca agc gaa Ala Lys Glu Gln Ala Gln Leu Asn Arg Met Glu Asn Gly Thr Ser Glu 705 cca caa cga agt aag aaa gag agt ttc agg acc cgt aga gct tac ttc Pro Gln Arg Ser Lys Lys Glu Ser Phe Arg Thr Arg Arg Ala Tyr Phe 725 tat tgg gtt acg cgt gag caa ggc tct ttc gat tgg ttc aag aac ata Tyr Trp Val Thr Arg Glu Gln Gln Gly Ser Phe Asp Trp Phe Lys Asn Ile 740 atg aac gaa gtc gcg gaa cga ggt gac gcg gtc atc gaa atg gaa acc cgt tac ttc Asn Tyr Cys Thr Ser Val Tyr Glu Glu Glu Gly Asp Ala Arg Ser Ala Leu 775 ata cat atg ctt caa tca cac aac cat gca agg acc cgt tcc gcg cgc att Asn Tyr Cys Thr Ser Val Tyr Glu Glu Glu Gly Asp Ala Arg Ser Ala Leu 770 ata cat atg ctt caa tca cac aac cat gca aac agg acc cat tle His Met Leu Gln Ser Leu Asn His Phe Ala Lys Pro Asn Trp Arg 2110 2216 22	_		_	Lys	_	_		_	Gly				-	Pro	_		2016
Ala Thr Pro Met Ile Ser Ile Val Lys Asp Ile Val Asn Asn Ile Lys 695			Lys					Val					Leu				2064
Ala Lys Glu Gln Ala Gln Leu Asn Arg Met Glu Asn Gly Thr Ser Glu 720 cca caa cga agt aag aaa gag agt ttc agg acc cgt aga gct tac ttc 2208 Pro Gln Arg Ser Lys Lys Glu Ser Phe Arg Thr Arg Arg Ala Tyr Phe 735 tat tgg gtt acg cgt gag caa ggc tct ttc gat tgg ttc aag acc ata 2256 Tyr Trp Val Thr Arg Glu Gln Gly Ser Phe Asp Trp Phe Lys Asn Ile 750 atg aac gaa gtc gcg gaa cga ggt gcc aac cgc gtc atc gaa atg cat 2304 Met Asn Glu Val Ala Glu Arg Asp Ala Asn Arg Val Ile Glu Met His 755 aac tat tgt aca agt gtc tat gaa gaa ggt gc gcc gt cgt cga ctt 2352 Asn Tyr Cys Thr Ser Val Tyr Glu Glu Gly Gly Asp Ala Arg Ser Ala Leu 770 ata cat atg ctt caa tca cta aac cat gca aag ac ggc gt gac att 2400 Ile His Met Leu Gln Ser Leu Asn His Ala Lys Asn Gly Val Asp Ile 785 gtc tct gga aca aga gtt atg tcc cat ttc gct aaa cct aat tgg aga 2448 Val Ser Gly Thr Arg Val Met Ser His Phe Ala Lys Pro Asn Trp Arg		Thr					Ile					Val					2112
Pro Gln Arg Ser Lys Lys Glu Ser Phe Arg Thr Arg Arg Ala Tyr Phe 725	Ala					${\tt Gln}$					Glu					Glu	2160
Tyr Trp Val Thr Arg Glu Gln Gly Ser Phe Asp Trp Phe Lys Asn Ile 740 atg aac gaa gtc gcg gaa cga gat gcc aac cgc gtc atc gaa atg cat Met Asn Glu Val Ala Glu Arg Asp Ala Asn Arg Val Ile Glu Met His 755 aac tat tgt aca agt gtc tat gaa gaa ggt gac gct cgt tcc gca ctt Asn Tyr Cys Thr Ser Val Tyr Glu Glu Gly Asp Ala Arg Ser Ala Leu 770 ata cat atg ctt caa tca cta aac cat gca aag aac ggc gtc gac att Ile His Met Leu Gln Ser Leu Asn His Ala Lys Asn Gly Val Asp Ile 785 gtc tct gga aca aga gtt atg tcc cat ttc gct aaa cct aat tgg aga Val Ser Gly Thr Arg Val Met Ser His Phe Ala Lys Pro Asn Trp Arg					Lys					Arg					Tyr		2208
Met Asn Glu Val Ala Glu Arg Asp Ala Asn Arg Val Ile Glu Met His 755			-	Thr					Ser					Lys			2256
Asn Tyr Cys Thr Ser Val Tyr Glu Glu Glu Gly Asp Ala Arg Ser Ala Leu 770			Glu					Asp					Ile				2304
Ile His Met Leu GlnSer Leu Asn His Ala Lys Asn Gly Val Asp Ile785790795800gtc tct gga aca aga gtt atg tcc cat ttc gct aaa cct aat tgg aga2448Val Ser Gly Thr Arg Val Met Ser His Phe Ala Lys Pro Asn Trp Arg		Tyr					Tyr					Ala					2352
Val Ser Gly Thr Arg Val Met Ser His Phe Ala Lys Pro Asn Trp Arg	Ile					Ser					Lys					Ile	2400
	_				Arg		_			Phe	_				Trp	_	2448

WO 2004/009820		PCT/EP2003/007589

										56						
		tac Tyr														2496
		tac Tyr 835	_		-		_	_		_						2544
_		gat Asp						_								2592
	aat Asn	ttc Phe	taa													2604
<211 <212	0> 20 L> 86 2> PI 3> Ai	57	dopsi	is tl	nalia	ana										
)> 20 Ser) Arg	Val	Ser 5	Phe	Glu	Val	Ser	Gly 10	Gly	Tyr	His	Ser	Asp 15	Ala	
Glu	Ala	Gly	Asn 20	Ser	Gly	Pro	Met	Ser 25	Gly	Gly	Gln	Leu	Pro 30	Pro	Ile	
Tyr	Lys	Lys 35	Pro	Gly	Asn	Ser	Arg 40	Phe	Thr	Ala	Glu	Asn 45	Ser	Gln	Arg	
Thr	Arg 50	Thr	Ala	Pro	Tyr	Val 55	Asp	Leu	Thr	Val	Asp 60	Val	Gln	Asp	Asp	
Thr 65	Val	Ser	Val	His	Ser 70	Leu	Lys	Met	Glu	Gly 75	Gly	Ser	Ser	Val	Glu 80	
Glu	Ser	Pro	Glu	Leu 85	Thr	Leu	Leu	Lys	Arg 90	Asn	Arg	Leu	Glu	Lys 95	Lys	
Thr	Thr	Val	Val 100	Lys	Arg	Leu	Ala	Ser 105	Val	Ser	His	Glu	Leu 110	Lys	Arg	
Leu	Thr	Ser 115	Val	Ser	Gly	Gly	Ile 120	Gly	Gly	Arg	Lys	Pro 125	Pro	Arg	Pro	
Ala	Lys 130	Leu	Asp	Arg	Thr	Lys 135	Ser	Ala	Ala	Ser	Gln 140	Ala	Leu	Lys	Gly	
Leu 145	Lys	Phe	Ile	Ser	Lys 150	Thr	Asp	Gly	Gly	Ala 155	Gly	Trp	Ser	Ala	Val 160	
Glu	Lys	Arg	Phe	Asn 165	Gln	Ile	Thr	Ala	Thr 170	Thr	Gly	Gly	Leu	Leu 175	Leu	
Arg	Thr	Lys	Phe 180	Gly	Glu	Cys	Ile	Gly 185	Met	Thr	Ser	Lys	Asp 190	Phe	Ala	
Leu	Glu	Leu 195	Phe	Asp	Ala	Leu	Ala 200	Arg	Arg	Arg	Asn	Ile 205	Thr	Gly	Glu	
Val	Ile 210	Asp	Gly	Asp	Gln	Leu 215	Lys	Glu	Phe	Trp	Glu 220	Gln	Ile	Asn	Asp	
Gln 225	Ser	Phe	Asp	Ser	Arg 230	Leu	Lys	Thr	Phe	Phe 235	Asp	Met	Val	Asp	Lys 240	
Asp	Ala	Asp	Gly	Arg 245	Leu	Thr	Glu	Asp	Glu 250	Val	Arg	Glu	Leu	Glu 255	Ser	

WO 2004/009820 PCT/EP2003/007589 **57**

Leu	Glu	Thr	Leu 260	Leu	Leu	Gln	Ala	Ala 265	Thr	Gln	Ser	Val	Ile 270	Thr	Ser
Thr	Gly	Glu 275	Arg	Lys	Asn	Leu	Ser 280	His	Met	Met	Ser	Gln 285	Arg	Leu	Lys
Pro	Thr 290	Phe	Asn	Arg	Asn	Pro 295	Leu	Lys	Arg	Trp	Tyr 300	Arg	Gly	Leu	Arg
Phe 305	Phe	Leu	Leu	Asp	Asn 310	Trp	Gln	Arg	Cys	Trp 315	Val	Ile	Val	Leu	Trp 320
Phe	Ile	Val	Met	Ala 325	Ile	Leu	Phe	Thr	Tyr 330	Lys	Tyr	Ile	Gln	Tyr 335	Arg
Arg	Ser	Pro	Val 340	Tyr	Pro	Val	Met	Gly 345	Asp	Cys	Val	Суѕ	Met 350	Ala	Lys
Gly	Ala	Ala 355	Glu	Thr	Val	Lys	Leu 360	Asn	Met	Ala	Leu	Ile 365	Leu	Leu	Pro
Val	Cys 370	Arg	Asn	Thr	Ile	Thr 375	Trp	Leu	Arg	Asn	Lys 380	Thr	Arg	Leu	Gly
Arg 385	Val	Val	Pro	Phe	Asp 390	Asp	Asn	Leu	Asn	Phe 395	His	Lys	Val	Ile	Ala 400
Val	Gly	Ile	Ile	Val 405	Gly	Val	Thr	Met	His 410	Ala	Gly	Ala	His	Leu 415	Ala
Cys	Asp	Phe	Pro 420	Arg	Leu	Leu	His	Ala 425	Thr	Pro	Glu	Ala	Tyr 430	Arg	Pro
Leu	Arg	Gln 435	Phe	Phe	Gly	Asp	Glu 440	Gln	Pro	Lys	Ser	Tyr 445	Trp	His	Phe
Val	Asn 450	Ser	Val	Glu	Gly	Ile 455	Thr	Gly	Leu	Val	Met 460	Val	Leu	Leu	Met
Ala 465	Ile	Ala	Phe	Thr	Leu 470	Ala	Thr	Pro	Trp	Phe 475	Arg	Arg	Gly	Lys	Leu 480
Asn	Tyr	Leu	Pro	Gly 485	Pro	Leu	Lys	Lys	Leu 490	Ala	Ser	Phe	Asn	Ala 495	Phe
Trp	Tyr	Thr	His 500	His	Leu	Phe	Val	Ile 505	Val	Tyr	Ile	Leu	Leu 510	Val	Ala
His	Gly	Tyr 515	Tyr	Leu	Tyr	Leu	Thr 520	Arg	Asp	Trp	His	Asn 525	Lys	Thr	Thr
Trp	Met 530	Tyr	Leu	Val	Val	Pro 535	Val	Val	Leu	Tyr	Ala 540	Cys	Glu	Arg	Leu
Ile 545	Arg	Ala	Phe	Arg	Ser 550	Ser	Ile	Lys	Ala	Val 555	Thr	Ile	Arg	Lys	Val 560
Ala	Val	Tyr	Pro	Gly 565	Asn	Val	Leu	Ala	Ile 570	His	Leu	Ser	Arg	Pro 575	Gln
Asn	Phe	Lys	Tyr 580	Lys	Ser	Gly	Gln	Tyr 585	Met	Phe	Val	Asn	Cys 590	Ala	Ala
Val	Ser	Pro 595	Phe	Glu	Trp	His	Pro 600	Phe	Ser	Ile	Thr	Ser 605	Ala	Pro	Gln
Asp	Asp 610	Tyr	Leu	Ser	Val	His 615	Ile	Arg	Val	Leu	Gly 620	Asp	Trp	Thr	Arg
Ala 625	Leu	Lys	Gly	Val	Phe 630	Ser	Glu	Val	Cys	Lys 635	Pro	Pro	Pro	Ala	Gly 640

Val Ser Gly Leu Leu Arg Ala Asp Met Leu His Gly Ala Asn Asn Pro 645 650 Asp Phe Pro Lys Val Leu Ile Asp Gly Pro Tyr Gly Ala Pro Ala Gln 660 665 Asp Tyr Lys Lys Tyr Glu Val Val Leu Leu Val Gly Leu Gly Ile Gly 680 Ala Thr Pro Met Ile Ser Ile Val Lys Asp Ile Val Asn Asn Ile Lys 695 700 Ala Lys Glu Gln Ala Gln Leu Asn Arg Met Glu Asn Gly Thr Ser Glu 710 Pro Gln Arg Ser Lys Lys Glu Ser Phe Arg Thr Arg Arg Ala Tyr Phe 725 730 Tyr Trp Val Thr Arg Glu Gln Gly Ser Phe Asp Trp Phe Lys Asn Ile 745 750 740 Met Asn Glu Val Ala Glu Arg Asp Ala Asn Arg Val Ile Glu Met His Asn Tyr Cys Thr Ser Val Tyr Glu Glu Gly Asp Ala Arg Ser Ala Leu 775 Ile His Met Leu Gln Ser Leu Asn His Ala Lys Asn Gly Val Asp Ile 790 795 Val Ser Gly Thr Arg Val Met Ser His Phe Ala Lys Pro Asn Trp Arg Asn Val Tyr Lys Arg Ile Ala Met Asp His Pro Asn Thr Lys Val Gly 825 Val Phe Tyr Cys Gly Ala Pro Ala Leu Thr Lys Glu Leu Arg His Leu 835 840 Ala Leu Asp Phe Thr His Lys Thr Ser Thr Arg Phe Ser Phe His Lys 855 860 Glu Asn Phe 865 <210> 21 <211> 2709 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (1)..(2706) <223> coding for NADPH-oxidase <400> 21 atg atg aat cga agt gaa atg caa aag tta ggt ttc gaa cac gtg aga 48 Met Met Asn Arg Ser Glu Met Gln Lys Leu Gly Phe Glu His Val Arg tac tac aca gag tcg ccg tac aac aga gga gag tcc tcg gcg aac gtg 96 Tyr Tyr Thr Glu Ser Pro Tyr Asn Arg Gly Glu Ser Ser Ala Asn Val 25 gcg acg aca agc aac tat tac ggt gaa gat gaa cca tac gtg gag atc 144 Ala Thr Thr Ser Asn Tyr Tyr Gly Glu Asp Glu Pro Tyr Val Glu Ile 35 40

			,		33			
		gac Asp						192
		gcc Ala 70						240
		GJA āāā						288
		gga Gly						336
		cca Prò						384
		gag Glu						432
		act Thr 150						480
		aat Asn						528
		aaa Lys						576
		gaa Glu						624
		tgg Trp						672
		ttc Phe 230						720
		gta Val						768
		att Ile						816
		gat Asp						864
		cta Leu						912
		cta Leu 310						960

***	O 200-	*/00/0	20							60					1 2005/0	7507
							_				aga Arg					1008
					_	_	_				atg Met					1056
					-						atg Met					1104
_						_					tgt Cys 380					1152
											att Ile					1200
											acc Thr					1248
	_			_	-	_					aag Lys	-		-		1296
											tct Ser					1344
_			_			_		-			cag Gln 460					1392
	_					-		_	_		ttg Leu	_		_		1440
		Glu	${ t Gly}$	Val	Thr	${ t Gly}$	Ile	${\tt Gly}$	Met	Val	gta Val	Leu	Met		Ile	1488
											aat Asn					1536
			-								gcc Ala					1584
				_		_		_			gtc Val 540	_				1632
											aaa Lys	_			_	1680
	_	_	_	-	-						gaa Glu		_			1728
				_							cta Leu	_	_	-		1776

***	2004	,,,,,,,	20						61					2000,00	,,,,,
				_	ttg Leu	_		_		_		_			1824
					caa Gln										1872
		_			cca Pro 630					_					1920
		_	-		atc Ile				_			_			1968
					gag Glu										2016
_			_	_	gac Asp	_	_		_				_		2064
					gat Asp										2112
					gtt Val 710										2160
_	_		_		gtg Val		_								2208
_	_				cga Arg	_	_	_							2256
		_			tca Ser	_		 	_		_		-	_	2304
					gtc Val										2352
					gaa Glu 790										2400
					tgc Cys										2448
					atg Met										2496
					gga Gly										2544
					ttc Phe										2592

WO 2004/009820 ECT/EP2003/007589

									,	62						
														gag Glu		2640
														ttc Phe 895		2688
	cat His					taa										2709
<211 <212)> 22 l> 90 l> PF l> Ar)2 RT	lopsi	is th	nalia	ana										
<400)> 22	2			•											
Met 1	Met	Asn		5					10					Val 15		
-	_		20					25					30	Asn		
		35					40					45		Glu		
Thr	Leu 50	Asp	Ile	His	Asp	Asp 55	Ser	Val	Ser	Val	Tyr 60	Gly	Leu	Lys	Ser	
Pro 65	Asn	His	Arg	Gly	Ala 70	Gly	Ser	Asn	Tyr	Glu 75	Asp	Gln	Ser	Leu	Leu 80	
Arg	Gln	Gly	Arg	Ser 85	Gly	Arg	Ser	Asn	Ser 90	Val	Leu	Lys	Arg	Leu 95	Ala	
Ser	Ser	Val	Ser 100	Thr	Gly	Ile	Thr	Arg 105	Val	Ala	Ser	Ser	Val 110	Ser	Ser	
Ser	Ser	Ala 115	Arg	Lys	Pro	Pro	Arg 120	Pro	Gln	Leu	Ala	Lys 125	Leu	Arg	Arg	
Ser	Lys 130	Ser	Arg	Ala	Glu	Leu 135	Ala	Leu	Lys	Gly	Leu 140	Lys	Phe	Ile	Thr	
Lys 145	Thr	Asp	Gly	Val	Thr 150	Gly	Trp	Pro	Glu	Val 155	Glu	Lys	Arg	Phe	Туr 160	
Val	Met	Thr	Met	Thr 165	Asn	Asn	Gly	Leu	Leu 170	His	Arg	Ser	Arg	Phe 175	Gly	
Glu	Cys	Ile	Gly 180	Met	Lys	Ser	Thr	Glu 185	Phe	Ala	Leu	Ala	Leu 190	Phe	Asp	
Ala	Leu	Ala 195	Arg	Arg	Glu	Asn	Val 200	Ser	Gly	Asp	Ser	Ile 205	Asn	Met	Asn	
Glu	Leu 210	Lys	Glu	Phe	Trp	Lys 215	Gln	Ile	Thr	Asp	Gln 220	Asp	Phe	Asp	Ser	
Arg 225	Leu	Arg	Thr	Phe	Phe 230	Ala	Met	Val	Asp	Lys 235	Asp	Ser	Asp	Gly	Arg 240	
Leu	Asn	Glu	Ala	Glu 245	Val	Arg	Glu	Ile	Ile 250	Thr	Leu	Ser	Ala	Ser 255	Ala	
Asn	Glu	Leu	Asp 260	Asn	Ile	Arg	Arg	Gln 265	Ala	Asp	Glu	Tyr	Ala 270	Ala	Leu	

WO 2004/009820

ro Pro Asp Clu His

CT/EP2003/007589

20

Arg Ser Leu Phe Ser Glu Val Cys Lys Pro Arg Pro Pro Asp Glu His 660 665 670

Arg Leu Asn Arg Ala Asp Ser Lys His Trp Asp Tyr Ile Pro Asp Phe 675 680 685

Pro Arg Ile Leu Ile Asp Gly Pro Tyr Gly Ala Pro Ala Gln Asp Tyr 690 695 700

Lys Lys Phe Glu Val Val Leu Leu Val Gly Leu Gly Ile Gly Ala Thr 705 710 715 720

Pro Met Ile Ser Ile Val Ser Asp Ile Ile Asn Asn Leu Lys Gly Val 725 730 735

Glu Glu Gly Ser Asn Arg Arg Gln Ser Pro Ile His Asn Met Val Thr
740 745 750

Pro Pro Val Ser Pro Ser Arg Lys Ser Glu Thr Phe Arg Thr Lys Arg 755 760 765

Ala Tyr Phe Tyr Trp Val Thr Arg Glu Gln Gly Ser Phe Asp Trp Phe 770 775 780

Lys Asn Val Met Asp Glu Val Thr Glu Thr Asp Arg Lys Asn Val Ile 785 790 795 800

Glu Leu His Asn Tyr Cys Thr Ser Val Tyr Glu Glu Gly Asp Ala Arg 805 810 815

Ser Ala Leu Ile Thr Met Leu Gln Ser Leu Asn His Ala Lys His Gly 820 825 830

Val Asp Val Val Ser Gly Thr Arg Val Met Ser His Phe Ala Arg Pro 835 840 845

Asn Trp Arg Ser Val Phe Lys Arg Ile Ala Val Asn His Pro Lys Thr 850 855 860

Arg Val Gly Val Phe Tyr Cys Gly Ala Ala Gly Leu Val Lys Glu Leu 865 870 875 880

Arg His Leu Ser Leu Asp Phe Ser His Lys Thr Ser Thr Lys Phe Ile 885 890 895

Phe His Lys Glu Asn Phe 900

<210> 23

<211> 20

<212> DNA

<213> Künstliche Sequenz

~22N~

<223> Beschreibung der künstlichen Sequenz: oligonucleotide primer

<400> 23

garcaaggct cttttgattg

<210> 24

<211> 21

<212> DNA

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz: oligonucleotide primer <400> 24 gaaatgctcc ttatggaatt c

INTERNATIONAL SEARCH REPORT

PCT/E 1008/07589

A. CLASSI IPC 7	FICATION OF SUBJECT MATTER C12N15/82 C12N15/24 A01H5/10		
According to International Patent Classification (IPC) or to both national classification and IPC			
B. FIELDS SEARCHED			
Minimum documentation searched (classification system followed by classification symbols) IPC 7 C12N			
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched			
	ata base consulted during the international search (name of data base ta, BIOSIS, MEDLINE	se and, where practical, search terms used)	
C. DOCUMENTS CONSIDERED TO BE RELEVANT			
Category ° Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim it			
A	TORRES MIGUEL ANGEL ET AL: "Arab gp91phox homologues AtrohD and A are required for accumulation of oxygen intermediates in the plant response" PROCEEDINGS OF THE NATIONAL ACADE SCIENCES OF THE UNITED STATES, vol. 99, no. 1, 8 January 2002 (2002-01-08), page 517-522, XP002261415 January 8, 2002 ISSN: 0027-8424 cited in the application the whole document	AtrbohF reactive c defense EMY OF	
X Further documents are listed in the continuation of box C. Patent family members are listed in annex.			
 Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date calmed "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an invention cannot be considered to involve an inventive step when the document is combined invention cannot be considered to involve an invention cannot be considered to involve an invention cannot be considered to involve an invention cannot			
Date of the actual completion of the international search Date of mailing of the international search			
13 November 2003 28/11/2003		28/11/2003	
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016		Authorized officer Bilang, J	

INTERNATIONAL SEARCH REPORT

Internation application No.
PCT/El 3/07589

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)	
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:		
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:	
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:	
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).	
Вох П	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)	
This International Searching Authority found multiple inventions in this international application, as follows:		
See supplemental sheet		
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.	
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.	
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:	
	·	
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:	
Remark	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.	

Internation Application No
PCT/E 3/07589

		10176
	ation) DOCUMENTS CONSIDEREDE RELEVANT	Relevant to claim No.
Category °	Citation of document, with indication,where appropriate, of the relevant passages	Halevan to Cidin No.
Α	HUECKELHOVEN RALPH ET AL: "Tissue-specific superoxide generation at interaction sites in resistant and susceptibile near-isogenic barley lines attacked by the powdery mildew fungus (Erysiphe graminis f. sp. hordei)" MOLECULAR PLANT-MICROBE INTERACTIONS, vol. 11, no. 4, April 1998 (1998-04), pages 292-300, XP009020951 ISSN: 0894-0282 cited in the application the whole document	
A	SAGI MOSHE ET AL: "Superoxide production by plant homologues of the gp91phox NADPH oxidase. Modulation of activity by calcium and by tobacco mosaic virus infection" PLANT PHYSIOLOGY (ROCKVILLE), vol. 126, no. 3, July 2001 (2001-07), pages 1281-1290, XP002261416 ISSN: 0032-0889 the whole document	
A	BOLWELL G PAUL ET AL: "The apoplastic oxidative burst in response to biotic stress in plants: A three-component system" JOURNAL OF EXPERIMENTAL BOTANY, vol. 53, no. 372, May 2002 (2002-05), pages 1367-1376, XP002261417 ISSN: 0022-0957 the whole document	
P,X	HUECKELHOVEN R ET AL: "Functional studies on the role of reactive oxygen intermediates in the resistance of barley against powdery mildew." PLANT PROTECTION SCIENCE, vol. 38, no. Special Issue 2, 2002, pages 458-460, XP001155865 ISSN: 1212-2580 page 459, right-hand column, paragraph 1 /	1-20

International Application No
PCT/EP / 07589

0.40	ALLEN DOCUMENTO CONCIDENCE	
Category °	citation) DOCUMENTS CONSIDERED E RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	 Delevent to obline the
Category	Citation of document, with indication, where appropriate, of the relevant passages	 Relevant to claim No.
P,A	BORDEN STEPHANIE ET AL: "Hydrogen peroxide plays a critical role in the defence response of tomato to Cladosporium fulvum." PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY, vol. 61, no. 4, October 2002 (2002-10), pages 227-236, XP002261418 ISSN: 0885-5765 page 231, left-hand column, paragraph 2 -page 232, left-hand column, paragraph 1; figure 4 page 234, left-hand column, paragraph 3	
T	MAHALINGAM RAMAMURTHY ET AL: "Stress response, cell death and signalling: The many faces of reactive oxygen species." PHYSIOLOGIA PLANTARUM, vol. 119, no. 1, September 2003 (2003-09), pages 56-68, XP002261419 ISSN: 0031-9317 (ISSN print) the whole document	

internation	es Aktenzeichen
PCT/E	3/07589

4 1/1 4 001	THE PUNCTURE AND THE PUNCTURE OF THE PURCH.			
IPK 7	FIZIERUNG DES ANMELDUNGSGEGENSTANDES C12N15/82 C12N15/24 A01H5/10			
Nach der Inf	ternationalen Patentklassifikation (IPK) oder nach der nationalen Klas	sifikation und der IPK		
	RCHIERTE GEBIETE	Salineadii elio doi li i		
	Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)			
Recherchier	de aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, so	welt diese unter die recherchlerten Gebiete f	'allen	
	er internationalen Recherche konsultierte elektronische Datenbank (Na ta, BIOSIS, MEDLINE	ame der Datenbank und evtl. verwendete S	uchbegriffe)	
C. ALS WE	SENTLICH ANGESEHENE UNTERLAGEN			
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe	e der in Betracht kommenden Teile	Betr. Anspruch Nr.	
A	TORRES MIGUEL ANGEL ET AL: "Arab gp91phox homologues AtrbohD and A are required for accumulation of oxygen intermediates in the plant response" PROCEEDINGS OF THE NATIONAL ACADE SCIENCES OF THE UNITED STATES, Bd. 99, Nr. 1, 8. Januar 2002 (2002-01-08), Seit 517-522, XP002261415 January 8, 2002 ISSN: 0027-8424 in der Anmeldung erwähnt das ganze Dokument	trbohF reactive defense MY OF		
	tere Veröffentlichungen sind der Fortsetzung von Feld C zu lehmen	Siehe Anhang Patentfamilie		
 Besondere Kategorien von angegebenen Veröffentlichungen : "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist "L" Veröffentlichung, die geelgnet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht dem beanspruchten Prioritätsdatum veröffentlichung, die vor dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundellegenden Prioritätsdatum veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung von der aus einem anderen bezieht veröffentlichung eine Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundelliegenden Prioritätsdatum veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung von besonderer Bedeutung; die beanspruchte Erfindung von besonderer Bedeutung; die beanspruchte Erfindung von der auf einer veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung von der Tätigkeit beruhend betrachtet werden veröffentlichung eine Maßnahmen bezieht veröffentlichung eine des Veröffentlichung eine Jerindung von der Veröffentlichung eine Veröffentlichung eine Jerindung von der Veröffentlichung eine Veröffentlichung eine Jerindung von des veröffentlichung eine Veröffentlichung v				
Datum des	Abschlusses der internationalen Recherche	Absendedatum des internationalen Rec	herchenberichts	
	3. November 2003	28/11/2003		
Name und I	Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340–2040, Tx. 31 651 epo nl, Fax: (+31-70) 340–3016	Bevollmächtigter Bedlensteter Bilang, J		

Feld I Bemerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 2 auf Blatt
Gemäß Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:
1. Ansprüche Nr. weil sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich
Ansprüche Nr. well sie sich auf Telle der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich
3. Ansprüche Nr. well es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.
Feld II Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 3 auf Blatt 1)
Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:
siehe Zusatzblatt
Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle recherchierbaren Ansprüche.
2. Da für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr gerechtfertigt hätte, hat die Behörde nicht zur Zahlung einer solchen Gebühr aufgefordert.
3. Da der Anmeider nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser Internationale Recherchenbericht nur auf die Ansprüche, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr.
Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recherchenberlicht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen erfaßt:
Bemerkungen hinsichtlich eines Widerspruchs Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt. X Die Zahlung zusätzlicher Recherchengebühren erfolgte ohne Widerspruch.

Internationales Aktenzeichen
PCT/E

		PUIZE	6/0/589
	ung) ALS WESENTLICH ANGESENSME UNTERLAGEN		To a second N
Kategorie°	Bezeichnung der Veröffentlichung, soweil erforderlich unter Angabe der in Betracht komm	nenden Telle	Betr. Anspruch Nr.
A	HUECKELHOVEN RALPH ET AL: "Tissue-specific superoxide generation at interaction sites in resistant and susceptibile near-isogenic barley lines attacked by the powdery mildew fungus (Erysiphe graminis f. sp. hordei)" MOLECULAR PLANT-MICROBE INTERACTIONS, Bd. 11, Nr. 4, April 1998 (1998-04), Seiten 292-300, XP009020951 ISSN: 0894-0282 in der Anmeldung erwähnt das ganze Dokument		
A	SAGI MOSHE ET AL: "Superoxide production by plant homologues of the gp91phox NADPH oxidase. Modulation of activity by calcium and by tobacco mosaic virus infection" PLANT PHYSIOLOGY (ROCKVILLE), Bd. 126, Nr. 3, Juli 2001 (2001-07), Seiten 1281-1290, XP002261416 ISSN: 0032-0889 das ganze Dokument		
A	BOLWELL G PAUL ET AL: "The apoplastic oxidative burst in response to biotic stress in plants: A three-component system" JOURNAL OF EXPERIMENTAL BOTANY, Bd. 53, Nr. 372, Mai 2002 (2002-05), Seiten 1367-1376, XP002261417 ISSN: 0022-0957 das ganze Dokument		
Ρ,Χ	HUECKELHOVEN R ET AL: "Functional studies on the role of reactive oxygen intermediates in the resistance of barley against powdery mildew." PLANT PROTECTION SCIENCE, Bd. 38, Nr. Special Issue 2, 2002, Seiten 458-460, XP001155865 ISSN: 1212-2580 Seite 459, rechte Spalte, Absatz 1		1–20
P,A	BORDEN STEPHANIE ET AL: "Hydrogen peroxide plays a critical role in the defence response of tomato to Cladosporium fulvum." PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY, Bd. 61, Nr. 4, Oktober 2002 (2002-10), Seiten 227-236, XP002261418 ISSN: 0885-5765 Seite 231, linke Spalte, Absatz 2 -Seite 232, linke Spalte, Absatz 1; Abbildung 4 Seite 234, linke Spalte, Absatz 3		

International Aktenzelchen
PCT/E 2008/07589

		PCT/E	/0/589		
C.(Fortsetz	C.(Fortsetzung) ALS WESENTLICH ANGESER. UNTERLAGEN				
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommen	iden Teile	Betr. Anspruch Nr.		
Т	MAHALINGAM RAMAMURTHY ET AL: "Stress response, cell death and signalling: The many faces of reactive oxygen species." PHYSIOLOGIA PLANTARUM, Bd. 119, Nr. 1, September 2003 (2003-09), Seiten 56-68, XP002261419 ISSN: 0031-9317 (ISSN print) das ganze Dokument				

GEÄNDERTE FASSUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

A CERTIF RELIGIOR IN SUBJECT FOR A SERVIC CRIM COLUMN FOR A COLUMN COLUM

(43) Internationales Veröffentlichungsdatum 29. Januar 2004 (29.01.2004)

PCT

(10) Internationale Veröffentlichungsnummer WO 2004/009820 A1

(51) Internationale Patentklassifikation⁷: C12N 15/82, 15/24, A01H 5/10

(21) Internationales Aktenzeichen: PCT/EP2003/007589

(22) Internationales Anmeldedatum:

14. Juli 2003 (14.07.2003)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

102 33 327.0

22. Juli 2002 (22.07.2002) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BASF PLANT SCIENCE GMBH [DE/DE]; c/o BASF Aktiengesellschaft, 67056 Ludwigshafen (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): KOGEL, Karl-Heinz [DE/DE]; Berggartenstr. 7, 35457 Lollar (DE). HÜCK-ELHOVEN, Ralph [DE/DE]; Glaubrechtstr. 12, 35392 Giessen (DE). TRUJILLO, Marco [DE/DE]; Heegstrauch Weg 10, 35394 Giessen (DE).
- (74) Anwalt: PRESSLER, Uwe; ., 67056 Ludwigshafen (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR,

CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der f\u00fcr \u00e4nnderungen der Anspr\u00fcche geltenden Frist; Ver\u00f6ffentlichung wird wiederholt, falls \u00e4nderungen eintreffen
- (88) Veröffentlichungsdatum des geänderten internationalen Recherchenberichts: 11. März 2004
- (15) Informationen zur Berichtigung: siehe PCT Gazette Nr. 11/2004 vom 11. März 2004, Section II

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: METHOD FOR OBTAINING THE PATHOGENIC RESISTANCE IN PLANTS

(54) Bezeichnung: VERFAHREN ZUM ERREICHEN EINER PATHOGENRESISTENZ IN PFLANZEN

(57) Abstract: The invention relates to a method for obtaining or increasing the pathogenic resistance in plants by reducing the expression, activity or the functioning of a NADPH oxidase.

(57) Zusammenfassung: Die Erfindung betrifft Verfahren zur Erzeugung oder Erhöhung einer Pathogenresistenz in Pflanzen durch Verminderung der Expression, Aktivität oder Funktion einer NADPH Oxidase.

In tional Application No PCT/FP 03/07589

A. CLASSIF IPC 7	FICATION OF SUBJECT MAT C12N15/82 C12N15/24 A01H5/10				
According to	According to International Patent Classification (IPC) or to both national classification and IPC				
	SEARCHED				
Minimum do IPC 7	cumentation searched (classification system followed by classification C12N	symbols)			
	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched				
Electronic da	ata base consulted during the international search (name of data base	and, where practical, search terms used)			
WPI Da	ta, BIOSIS, MEDLINE				
C DOCUME	ENTS CONSIDERED TO BE RELEVANT				
Category °	Citation of document, with indication, where appropriate, of the relev	ant passages Relevant to claim No.			
A	TORRES MIGUEL ANGEL ET AL: "Arab gp91phox homologues AtrbohD and A are required for accumulation of oxygen intermediates in the plant response" PROCEEDINGS OF THE NATIONAL ACADES SCIENCES OF THE UNITED STATES, vol. 99, no. 1, 8 January 2002 (2002-01-08), page 517-522, XP002261415 January 8, 2002 ISSN: 0027-8424 cited in the application the whole document	trbohF reactive defense MY OF			
		Patent family members are listed in annex.			
X Furt	her documents are listed in the continuation of box C.	Tatelly members are used in amos.			
*Special categories of cited documents: "A" document delining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the cited to understand the principle or theory u					
Date of the	actual completion of the international search	Date of mailing of the international search report			
1	18 December 2003 [29, 12. 03				
Name and r	mailing address of the ISA	Authorized officer			
	European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Bilang, J				

PCT 45P 03/07589

	nation) DOCUMENTS CONSIDE TO BE RELEVANT	Potovont to olg!— 11:
Category °	Citation of document, with indication, where appropriate, of the relevant passages	 Relevant to claim No.
A	HUECKELHOVEN RALPH ET AL: "Tissue-specific superoxide generation at interaction sites in resistant and susceptibile near-isogenic barley lines attacked by the powdery mildew fungus (Erysiphe graminis f. sp. hordei)" MOLECULAR PLANT-MICROBE INTERACTIONS, vol. 11, no. 4, April 1998 (1998-04), pages 292-300, XP009020951 ISSN: 0894-0282 cited in the application the whole document	
A	SAGI MOSHE ET AL: "Superoxide production by plant homologues of the gp91phox NADPH oxidase. Modulation of activity by calcium and by tobacco mosaic virus infection" PLANT PHYSIOLOGY (ROCKVILLE), vol. 126, no. 3, July 2001 (2001-07), pages 1281-1290, XP002261416 ISSN: 0032-0889 the whole document	
A	BOLWELL G PAUL ET AL: "The apoplastic oxidative burst in response to biotic stress in plants: A three-component system" JOURNAL OF EXPERIMENTAL BOTANY, vol. 53, no. 372, May 2002 (2002-05), pages 1367-1376, XP002261417 ISSN: 0022-0957 the whole document	·
P,X ·	HUECKELHOVEN R ET AL: "Functional studies on the role of reactive oxygen intermediates in the resistance of barley against powdery mildew." PLANT PROTECTION SCIENCE, vol. 38, no. Special Issue 2, 2002, pages 458-460, XP001155865 ISSN: 1212-2580 page 459, right-hand column, paragraph 1	 1-20

C.(Continua	ation) DOCUMENTS CONSIDER TO BE RELEVANT	PU	3/0/569
Category °			Relevant to claim No.
P,A	BORDEN STEPHANIE ET AL: "Hydrogen peroxide plays a critical role in the defence response of tomato to Cladosporium fulvum." PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY,		
-	vol. 61, no. 4, October 2002 (2002-10), pages 227-236, XP002261418 ISSN: 0885-5765 page 231, left-hand column, paragraph 2 -page 232, left-hand column, paragraph 1; figure 4 page 234, left-hand column, paragraph 3		
Γ	MAHALINGAM RAMAMURTHY ET AL: "Stress response, cell death and signalling: The many faces of reactive oxygen species." PHYSIOLOGIA PLANTARUM, vol. 119, no. 1, September 2003 (2003-09), pages 56-58, XPO02261419 ISSN: 0031-9317 (ISSN print)		
	the whole document	•	
	· · · · · · · · · · · · · · · · · · ·		
		•	

In nales Aktenzeichen
PC | 3/07589

			PU	93/0/369
A. KLASSIF IPK 7	C12N15/82 C12N15/24 A01H5/10)		
Nach der Inte	ernationalen Patentklassifikation (IPK) oder nach der nationalen Klass	sifikation und der IPK		
B. RECHER	ICHIERTE GEBIETE			
	er Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbol	e)		
IPK 7	C12N			
	te aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, sow			
Während de	r internationalen Recherche konsultierte elektronische Datenbank (Na	ame der Datenbank und ex	vti. verwendet	e Suchbegriffe)
WPI Dat	ta, BIOSIS, MEDLINE		•	
0.416.WE	PENTLICH ANGEGEVENE HINTERI AGEN			·
	SENTLICH ANGESEHENE UNTERLAGEN	der in Retrocht kommande	an Teile	Betr. Anspruch Nr.
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe	der in Betracht kommende	an relie.	Bett. Aispidcitor.
Α	TORRES MIGUEL ANGEL ET AL: "Arab	oidopsis		
	gp91phox homologues AtrbohD and A	trbohF		·
	are required for accumulation of	reactive		
	oxygen intermediates in the plant response"	. ue i elise		
	PROCEEDINGS OF THE NATIONAL ACADE	MY OF		
	SCIENCES OF THE UNITED STATES,			1
	Bd. 99, Nr. 1,			
	8. Januar 2002 (2002-01-08), Seit	en		
	517-522, XP002261415 January 8, 2002			•
	ISSN: 0027-8424			
	in der Anmeldung erwähnt			
	das ganze Dokument			·
		,		
• •	-	/		·
	ere Veröffentlichungen sind der Fortsetzung von Feld C zu ehmen	Siehe Anhang Pa	tentfamilie	
	· · · · · · · · · · · · · · · · · · ·	oder dem Prioritätsdat	tum veröffentl	em internationalen Anmeldedatum cht worden ist und mit der
aber ni	ntlichung, die den allgemeinen Stand der Technik definiert, icht als besonders bedeutsam anzusehen ist	Anmeldung nicht kollic Erfindung zugrundelie	liert, sondem genden Prinz	nur zum Verständnis des der ps oder der ihr zugrundeliegenden
"E" ålteres i Anmel	Dokument, das jedoch erst am oder nach dem internationalen dedatum veröffentlicht worden ist	Theorie ängegeben is: "X" Veröffentlichung von be	esonderer Be	deutung; die beanspruchte Erfindung
echain	ntlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-	kann allein aufgrund d erfinderischer Tätickei	lieser Veröffer	ntlichung nicht als neu oder auf
andere		"Y" Veröffentlichung von be	esonderer Be	deutung; die beanspruchte Erfindung igkeit beruhend betrachtet
ausget		werden, wenn die Ver	öffentlichung	mit einer oder mehreren anderen
oine R	enutzung, eine Ausstellung oder andere Maßnahmen bezieht	diese Verbindung für e	einen Fachma	
dem beanspruchten Prioritätsdatum veröffentlicht worden ist				
Oatum des /	Abschlusses der internationalen Recherche			nechal characteris
1	8. Dezember 2003	2 9. 12	05	
Name und P	Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2	Bevollmächtigter Bedi	ensteter	
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,	n:1	,	
	Fax: (+31-70) 340-3016	Bilang,	J	

Int onales Aktenzeichen
PCT-SP 03/07589

		PU	03/0/569
	ung) ALS WESENTLICH AN HENE UNTERLAGEN		
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komm	enden Teile	Betr. Anspruch Nr.
	HUECKELHOVEN RALPH ET AL: "Tissue-specific superoxide generation at interaction sites in resistant and susceptibile near-isogenic barley lines attacked by the powdery mildew fungus (Erysiphe graminis f. sp. hordei)" MOLECULAR PLANT-MICROBE INTERACTIONS, Bd. 11, Nr. 4, April 1998 (1998-04), Seiten 292-300, XP009020951 ISSN: 0894-0282 in der Anmeldung erwähnt das ganze Dokument		
A	SAGI MOSHE ET AL: "Superoxide production by plant homologues of the gp91phox NADPH oxidase. Modulation of activity by calcium and by tobacco mosaic virus infection" PLANT PHYSIOLOGY (ROCKVILLE), Bd. 126, Nr. 3, Juli 2001 (2001-07), Seiten 1281-1290, XP002261416 ISSN: 0032-0889 das ganze Dokument		
A	BOLWELL G PAUL ET AL: "The apoplastic oxidative burst in response to biotic stress in plants: A three-component system" JOURNAL OF EXPERIMENTAL BOTANY, Bd. 53, Nr. 372, Mai 2002 (2002-05), Seiten 1367-1376, XP002261417 ISSN: 0022-0957 das ganze Dokument		
P,X	HUECKELHOVEN R ET AL: "Functional studies on the role of reactive oxygen intermediates in the resistance of barley against powdery mildew." PLANT PROTECTION SCIENCE, Bd. 38, Nr. Special Issue 2, 2002, Seiten 458-460, XP001155865 ISSN: 1212-2580 Seite 459, rechte Spalte, Absatz 1		1-20
P,A	BORDEN STEPHANIE ET AL: "Hydrogen peroxide plays a critical role in the defence response of tomato to Cladosporium fulvum." PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY, Bd. 61, Nr. 4, Oktober 2002 (2002-10), Seiten 227-236, XP002261418 ISSN: 0885-5765 Seite 231, linke Spalte, Absatz 2 -Seite 232, linke Spalte, Absatz 1; Abbildung 4 Seite 234, linke Spalte, Absatz 3		
]	-/		
	,		

Int lales Aktenzeichen
PL P 03/07589

C.(Fortsetz	etzung) ALS WESENTLICH AN ENE UNTERLAGEN		
Kategorie®	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.	
Т	MAHALINGAM RAMAMURTHY ET AL: "Stress response, cell death and signalling: The many faces of reactive oxygen species." PHYSIOLOGIA PLANTARUM, Bd. 119, Nr. 1, September 2003 (2003-09), Seiten 56-58, XP002261419 ISSN: 0031-9317 (ISSN print) das ganze Dokument		
	····	·	
i i			
	······································		

Verfahren zum Erreichen einer Pathogenresistenz in Pflanzen

Beschreibung

5

Die Erfindung betrifft Verfahren zur Erzeugung oder Erhöhung einer Pathogenresistenz in Pflanzen durch Verminderung der Expression, Aktivität oder Funktion einer NADPH Oxidase.

- 10 Ziel biotechnologischer Arbeiten an Pflanzen ist die Herstellung von Pflanzen mit vorteilhaften, neuen Eigenschaften zum Beispiel zur Steigerung der landwirtschaftlichen Produktivität. Oft sind die natürlichen Abwehrmechanismen der Pflanze gegen Pathogene unzureichend. Allein Pilzerkrankungen führen zu Ernteverlusten
- 15 in der Höhe von vielen Milliarden US-\$ jährlich. Die Einführung fremder Gene aus Pflanzen, Tieren oder mikrobiellen Quellen kann die Abwehr verstärken. Beispiele sind der Schutz gegen Insektenfrass durch Expression von Bacillus thuringiensis Endotoxinen (Vaeck et al. (1987) Nature 328:33-37) oder der Schutz gegen
- 20 Pilzbefall durch Expression einer Chitinase aus Bohne (Broglie et al. (1991) Science 254:1194-1197). Die meisten der beschriebenen Ansätze gewähren jedoch nur eine Resistenz gegen ein einzelnes Pathogen oder gegen ein schmales Spektrum von Pathogenen.
- 25 Es gibt nur wenige Ansätze, die Pflanzen eine Resistenz gegen ein breiteres Spektrum von Pathogenen verleihen. Die systemische erworbene Resistenz ("systemic acquired resistance"; SAR) - ein Abwehrmechanismus bei verschiedenen Pflanze/Pathogen-Interaktionen - kann durch Applikation von endogene Botenstoffe
- 30 wie Jasmonsäure (JA) oder Salicylsäure (SA) vermittelt werden (Ward et al. (1991) Plant Cell 3:1085-1094; Uknes et al. (1992) Plant Cell 4(6):645-656). Ähnliche Effekte können auch durch synthetische Verbindungen wie 2,6-Dichlorisonikotinsäure (INA) oder Benzo(1,2,3)thiadiazol-7-thiocarbonsäure-S-methylester
- 35 (BTH; Bion®) bewirkt werden (Friedrich et al. (1996) Plant J 10(1):61-70; Lawton et al. (1996) Plant J 10:71-82). Auch die Expression der im Rahmen eines SAR hochregulierten "pathogenesis related" (PR) Proteine vermag zum Teil eine Pathogenresistenz zu bewirken.

40

In Gerste ist der Mlo-Locus als negativer Regulator der Pathogenabwehr beschrieben. Der Verlust des Mlo-Gens bedingt eine erhöhte und rassen-unspezifische Resistenz gegen zahlreiche Arten von Mehltau (Büschges R et al. (1997) Cell 88:695-705; Jorgensen JH 45 (1977) Euphytica 26:55-62; Lyngkjaer MF et al. (1995) Plant

Pathol 44:786-790). Durch klassische Züchtung erhaltene Mlodefiziente Gerstensorten werden bereits in der Landwirtschaft

verwendet. Vermutlich aufgrund der Rezessivität hat sich trotz eines intensiven Anbaus die Resistenz als dauerhaft erwiesen. Mlo-ähnliche Resistenzen in anderen Pflanzen v.a. in Getreidearten sind nicht beschrieben. Das Mlo-Gen und verschiedene Homo-5 loge aus anderen Getreidearten wurde identifiziert und kloniert (Büschges R et al. (1997) Cell 88:695-705; WO 98/04586; Schulze-Lefert P, Vogel J (2000) Trends Plant Sci. 5:343-348). Verschiedene Verfahren unter Verwendung dieser Gene zum Erzielen einer Pathogenresistenz sind beschrieben (WO 98/04586; WO 00/01722; 10 WO 99/47552). Nachteilig ist, dass der Mlo-vermittelte Abwehrmechanismus ein spontanes Absterben von Blattzellen umfasst (Wolter M et al. (1993) Mol Gen Genet 239:122-128). Nachteilig ist ferner, dass die Mlo-defizienten Genotypen eine Hypersuszeptibilität gegen hemibiotrophe Pathogene wie Magnaporte grisea 15 (M. grisea) sowie Cochliobolus sativus (Bipolaris sorokiniana) zeigen (Jarosch B et al. (1999) Mol Plant Microbe Interact

Die Freisetzung reaktiver Sauerstoffspezies (ROS; z.B. Superoxid 20 (O₂-), Hydroxylradikale und H₂O₂) wird eine wichtige protektive Funktion in der Reaktion auf pflanzliche Pathogene zugeordnet (Wojtaszek P (1997) Biochem J 322:681-692). Es sind verschiedene Wege bekannt, wie eine Zelle ROS zu produzieren vermag. In den Makrophagen von Säugetieren ist hier insbesondere die NADPH 25 Oxidase zu nennen, die Elektronen auf molekularen Sauerstoff zu übertragen vermag. Homologe Enzyme wurden auch in Pflanzen identifiziert (Lamb & Dixon (1997) Annu Rev Plant Physiol Plant Mol Biol 48:251).

12:508-514; Kumar J et al. (2001) Phytopathology 91:127-133).

30 Es wurde gezeigt, dass Mutationen in der katalytischen Untereinheit der NADPH-Oxidase in Arabidopsis thaliana eine verminderte Akkumulation reaktiver Sauerstoffintermediate (ROI) zeigen. In Bezug auf die Hypersensitive Reaktion (HR) war das Bild uneinheitlich: Bei einer Doppelmutante wurde bei Infektion mit dem 35 avirulenten Pseudomonas syringae Bakterium eine verminderte HR gefunden, während mit dem virulenten Oomyceten Peronospora parasitica eine erhöhte HR detektiert wurde. Das Wachstum – sowohl von virulenten als auch von avirulenten P.syringae Stämmen – war jedoch – im Vergleich zu Wildtyp-Pflanzen – nicht verändert 40 (Torres MA et al. (2002) Proc Natl Acad Sci USA 99:517-522). Ebenso hatte die Inhibition der NADPH-Oxidase mittels des Inhibitors Diphenyleniodoniumchlorid (DPI) – bei Einsatz physiologisch relevanter Konzentrationen – keinen Effekt auf die Entwicklung pathogener Pilze (Hückelhoven R & Kogel KH (1998) Mol Plant

45 Microbe Interact 11:292-300). Ein cDNA Fragment einer Phagozyten NADPH-Oxidase aus Gerste (pNAox, Homolog der großen Untereinheit

gp91phox einer Phagozyten NADPHoxidase) ist unter der GenBank Acc.-No.: AJ251717) beschrieben.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, neue Ver5 fahren zur Pathogenabwehr in Pflanzen bereitzustellen, die eine
effiziente Abwehr eines möglichst breiten Spektrum von Pathogenen
in möglichst vielen verschiedene Pflanzenarten, bevorzugt den
in der Landwirtschaft verwendeten Kulturpflanzen bewirken. Diese
Aufgabe wird durch das erfindungsgemäße Verfahren gelöst.

10

Ein erster Gegenstand der Erfindung umfasst ein Verfahren zur Erzeugung oder Erhöhung der Resistenz gegen mindestens ein Pathogen in Pflanzen, dadurch gekennzeichnet, dass nachfolgende Arbeitsschritte umfasst sind

15

- a) Verminderung der Proteinmenge, Aktivität oder Funktion einer NADPH-Oxidase in einer Pflanze oder einem Gewebe, Organ, Teil oder Zelle derselben und
- 20 b) Auswahl der Pflanzen, bei denen im Unterschied oder Vergleich zur Ausgangspflanze - die Resistenz gegen mindestens ein Pathogen besteht oder erhöht ist.

Überraschenderweise zeigt die Verminderung der Expression einer 25 NADPH-Oxidase aus Gerste (pNAox) in der epidermalen Zelle durch einen sequenzspezifischen RNA-Interferenz Ansatz unter Verwendung doppelsträngiger pNAox-dsRNA ("Gene-Silencing") einen signifikant reduzierten Befall infolge einer Bgh-Infektion (gemessen anhand der Haustorium-Ausbildung). Dieser Befund ist insbesondere des-30 halb überraschend, da der mit der NADPH-Oxidase in Verbindung

D halb überraschend, da der mit der NADPH-Oxidase in Verbindung gebrachten Freisetzung reaktiver Sauerstoffspezies ("oxidative burst") im allgemeinen eine protektive Funktion zugemessen wird.

Ähnlich wie Mlo vermittelt die Verminderung der NADPH-Oxidase

35 Expression eine breite Resistenz gegen verschiedene Isolate von Blumeria graminis f.sp. hordei. In transienten "Gene-Silencing"-Experimenten wird dabei die Penetrationseffizienz (Haustorien-Bildung) von Bgh signifikant um mehr als 35 % reduziert - ein Effekt, der in seiner Stärke dem mittels Mlo-dsRNA erreichten

- 40 entspricht (Schweizer P et al. (2000) Plant J 24:895-903). In der Wildtyp Gerstensorte Pallas führen ca. 40 % der Pilzpenetrationen zu einer Haustorien-Bildung, wohingegen die Penetrationsrate bei einer Verminderung der NADPH-Oxidase Expression mittels Einbringen einer doppelsträngigen RNA der NADPH-Oxidase (pNAox-
- 45 dsRNA) nur ca. 25 % beträgt. Die Tatsache, dass auch in pathogenempfindlichen Wildtyp-Sorten wie Pallas nur eine Penetration von ca. 40 bis 50 % beobachtet werden kann, ist auf die stets

45 ein.

vorhandene Basalresistenz zurückzuführen. Die NADPH-Oxidase ist aufgrund der dieser Befunde als Schlüsselelement für das erfolgreiche Eindringen eines Pathogens wie Bgh in die pflanzliche Zelle zu verstehen. Darüberhinaus ist das Verfahren allen 5 Verfahren überlegen, bei denen ein pathogen-resistenter Phänotyp durch Überexpression eines resistenzvermittelnden Proteins realisiert wird. Das Ausschalten eines Gens, lässt sich ohne Expression eines (Fremd)-Proteins realisieren. Im Idealfall wird lediglich das endogene Gen deaktiviert. Dies hat nicht zu ver-10 nachlässigende Vorteile bei der Zulassung und der Akzeptanz durch den Verbraucher, der Pflanzen mit Fremdproteinen oft mit Vorbehalt begegnet. Ganz besonders vorteilhaft ist in diesem Zusammenhang die Verwendung von induzierbaren Promotoren zur Verminderung der NADPH-Oxidasemenge, Aktivität oder Funktion, was beispiels-15 weise bei Verwendung von pathogeninduzierbaren Promotoren eine Expression nur im Bedarfsfall (d.h. Pathogenbefall) ermöglicht.

Das erfindungsgemäße Verfahren kann im Prinzip auf alle Pflanzenarten angewendet werden. Bevorzugt auf solche, in denen natür-20 licherweise eine NADPH-Oxidase oder ein funktionelles Äquivalent derselben exprimiert wird.

"Pflanze" im Rahmen der Erfindung meint alle Gattungen und Arten höherer und niedrigerer Pflanzen des Pflanzenreiches. 25 Eingeschlossen unter dem Begriff sind die reifen Pflanzen, Saatgut, Sprossen und Keimlinge, sowie davon abgeleitete Teile, Vermehrungsgut, Pflanzenorgane, Gewebe, Protoplasten, Kallus und andere Kulturen, zum Beispiel Zellkulturen, sowie alle anderen Arten von Gruppierungen von Pflanzenzellen zu funktionellen oder 30 strukturellen Einheiten. Reife Pflanzen meint Pflanzen zu jedem beliebigen Entwicklungsstadium jenseits des Keimlings. Keimling meint eine junge, unreife Pflanze in einem frühen Entwicklungsstadium. "Pflanze" umfasst alle einjährigen und mehrjährige, monokotyledonen und dikotyledonen Pflanzen und schließt beispiel-35 haft jedoch nicht einschränkend solche der Gattungen Cucurbita, Rosa, Vitis, Juglans, Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linum, Geranium, Manihot, Daucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscyamus, Lycopersicon, Nicotiana, Solarium, 40 Petunia, Digitalis, Majorana, Cichorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrhinum, Heterocallis, Nemesis, Pelargonium, Panieum, Pennisetum, Ranunculus, Senecio, Salpiglossis, Cucumis, Browaalia, Glycine, Pisum, Phaseolus, Lolium, Oryza, Zea, Avena, Hordeum, Secale, Triticum, Sorghum, Picea und Populus Der Begriff "Pflanze" umfasst bevorzugt monokotyle Kulturpflanzen, wie zum Beispiel Getreidearten wie Weizen, Gerste, Hirse, Roggen, Triticale, Mais, Reis, Sorghum oder Hafer sowie Zuckerrohr.

5

Ferner umfasst der Begriff dikotyle Kulturpflanzen, wie zum Beispiel

- Brassicacae wie Raps, Canola, Kresse, Arabidopsis, Kohlarten 10 oder Canola, Leguminosae wie Soja, Alfalfa, Erbse, Bohnengewächsen oder Erdnuss
- Solanaceae wie Kartoffel, Tabak, Tomate, Aubergine oder Paprika, Asteraceae wie Sonnenblume, Tagetes, Salat oder
 Calendula,
 - Cucurbitaceae wie Melone, Kürbis oder Zucchini,

sowie Lein, Baumwolle, Hanf, Klee, Spinat, Flachs, Roter Pfeffer,

20 Möhre, Karotte, Rübe, Rettich, Zuckerrübe, Süßkartoffel, Gurke,
Chicorée, Blumenkohl, Brokkoli, Spargel, Zwiebel, Knoblauch,
Sellerie, Erdbeere, Himbeere, Brombeere, Ananas, Avocado, und
den verschiedenen Baum-, Strauch-, Nuss- und Weinarten. Baumarten umfasst bevorzugt Pflaume, Kirsche, Pfirsich, Nektarine,

25 Aprikose, Banane, Papaya, Mango, Apfel, Birne, Quitte.

Ferner umfasst sind Schmuckpflanzen, Nutz- oder Zierbäume, Blumen, Schnittblumen, Sträuchern oder Rasen wie beispielhaft aber nicht einschränkend die Familien der Rosaceae wie Rose,

- 30 Ericaceae wie Rhododendrons und Azaleen, Euphorbiaceae wie Weihnachtssterne und Kroton, Caryophyllaceae wie Nelken, Solanaceae wie Petunien, Gesneriaceae wie das Usambaraveilchen, Balsaminaceae wie das Springkraut, Orchidaceae wie Orchideen, Iridaceae wie Gladiolen, Iris, Freesie und Krokus, Compositae wie Ringel-
- 35 blume, Geraniaceae wie Geranien, Liliaceae wie der Drachenbaum, Moraceae wie Ficus, Araceae wie Philodendron und andere mehr.

Im Rahmen der Erfindung sind solche Pflanzen bevorzugt, die als Nahrungs- oder Futtermittel zum Einsatz kommen, ganz besonders 40 bevorzugt monokotyle Gattungen und Arten, wie die beschriebenen Getreidearten.

Ganz besonders bevorzugt wird das Verfahren auf monokotyle Pflanzen, am meisten bevorzugt auf Pflanzen mit landwirtschaft-45 licher Bedeutung wie Weizen, Hafer, Hirse, Gerste, Roggen, Mais, Reis, Buchweizen, Sorghum, Triticale, Dinkel, Leinsamen oder Zuckerrohr angewendet.

"Pathogenresistenz" meint das Vermindern oder Abschwächen von

5 Krankheitssymptomen einer Pflanze infolge eines Befalls durch ein
Pathogen. Die Symptome können vielfältiger Art sein, umfassen
aber bevorzugt solche die direkt oder indirekt zu einer Beeinträchtigung Qualität der Pflanze, der Quantität des Ertrages,
der Eignung zur Verwendung als Futter- oder Nahrungsmittel

10 führen oder aber auch Aussaat, Anbau, Ernte oder Prozessierung
des Erntegutes erschweren.

"Verleihen", "bestehen", "erzeugen" oder "erhöhen" einer Pathogenresistenz meint, dass die Abwehrmechanismen einer bestimmten 15 Pflanzenart oder -sorte durch Anwendung des erfindungsgemäßen Verfahrens im Vergleich zu dem Wildtyp der Pflanze ("Ausgangspflanze"), auf den das erfindungsgemäße Verfahren nicht angewendet wurde, unter ansonsten gleichen Bedingungen (wie beispielsweise Klima- oder Anbaubedingungen, Pathogenart etc.) eine 20 erhöhte Resistenz gegen ein und mehr Pathogene aufweist. Dabei äußert sich die erhöhte Resistenz bevorzugt in einer verminderten Ausprägung der Krankheitssymptome, wobei Krankheitssymptome neben den oben erwähnten Beeinträchtigungen - auch beispielsweise die Penetrationseffizienz eines Pathogens in die Pflanze oder 25 pflanzliche Zellen oder die Proliferationseffizienz in oder auf denselben umfasst. Dabei sind die Krankheitssymptome bevorzugt um mindestens 10 % oder mindestens 20 %, besonders bevorzugt um mindestens 40 % oder 60 %, ganz besonders bevorzugt um mindestens 70 % oder 80 %, am meisten bevorzugt um mindestens 90 % oder 95 % 30 vermindert.

"Auswahl" meint in Bezug auf Pflanzen, bei denen - im Unterschied oder Vergleich zur Ausgangspflanze - die Resistenz gegen mindestens ein Pathogen besteht oder erhöht ist, all die Verfahren, 35 die eine zur Erkennung einer vorliegenden oder erhöhten Pathogenresistenz geeignet sind. Dies können Symptome der Pathogeninfektion sein (z.B. Haustorium-Ausbildung bei Pilzinfektion) aber auch die oben beschriebenen Symptome umfassen, die die Qualität der Pflanze, die Quantität des Ertrages, die Eignung zur Verwendung als Futter- oder Nahrungsmittel usw. betreffen.

"Pathogen" meint im Rahmen der Erfindung beispielsweise jedoch nicht einschränkend Viren oder Viroide, Bakterien, Pilze, tierische Schädlinge, wie beispielsweise Insekten oder Nematoden. 45 Besonders bevorzugt sind Pilze wie beispielsweise der Mehltau. Es ist jedoch anzunehmen, dass die Verminderung der Expression einer NADPH-Oxidase, ihrer Aktivität oder Funktion auch eine Resistenz gegen weitere Pathogene bewirkt. Beispielsweise jedoch nicht einschränkend seien nachfolgende Pathogene zu nennen:

1. Pilzpathogene oder pilzähnliche Pathogene:

Pilzpathogene oder pilzähnliche Pathogene (wie z.B. Chromista) stammen vorzugsweise aus der Gruppe umfassend Plasmodiophoramycota, Oomycota, Ascomycota, Chytridiomyceten, Zygomyceten, Basidiomycota und Deuteromyceten (Fungi imperfecti). Beispielhaft jedoch nicht einschränkend seien die in Tabelle 1 und 2 genannten Pathogene und die mit ihnen in Zusammenhang gebrachten Erkrankungen zu nennen.

Tabelle 1: Pflanzliche Pilzerkrankungen

15

10

5

	Erkrankung	Pathogen
	Braunrost	Puccinia recondita
	Gelbrost	P. striiformis
20	Echter Mehltau	Erysiphe graminis / Blumeria graminis
	Spelzenbräune	Septoria nodorum
	Blattdürre	Septoria tritici
	Ährenfusariosen	Fusarium spp.
25	Halmbruchkrankheit	Pseudocercosporella herpotrichoides
2. 3	Flugbrand	Ustilago spp.
	Weizensteinbrand	Tilletia caries
	Schwarzbeinigkeit	Gaeumannomyces graminis
30	Anthrocnose leaf blight Anthracnose stalk rot	Colletotrichum graminicola (tele- omorph: Glomerella graminicola Politis); Glomerella tucumanensis
		(anamorph: Glomerella falcatum Went)
	Aspergillus ear and kernel rot	Aspergillus flavus
35	Banded leaf and sheath spot ("Wurzeltöter")	Rhizoctonia solani Kuhn = Rhizoctonia microsclerotia J. Matz (telomorph: Thanatephorus cucumeris)
	Black bundle disease	Acremonium strictum W. Gams = Cephalosporium acremonium Auct. non Corda
40	Black kernel rot	Lasiodiplodia theobromae = Botryodiplodia theobromae
	Borde blanco	Marasmiellus sp.
	Brown spot (black spot, stalk rot)	Physoderma maydis
45	Cephalosporium kernel rot	Acremonium strictum = Cephalosporium acremonium
	Charcoal rot	Macrophomina phaseolina

Tabelle 2: Falscher Mehltau

25	Erkrankung	Pathogen
	Brown stripe downy mildew	Sclerophthora rayssiae var. zeae
	Crazy top downy mildew	Sclerophthora macrospora = Sclerospora macrospora
30	Green ear downy mi ldew (graminicola downy mildew)	Sclerospora graminicola
	Java downy mildew	Peronosclerospora maydis = Sclerospora maydis
35	Philippine downy mildew	Peronosclerospora philippinensis = Sclerospora philippinensis
	Sorghum downy mildew	Peronosclerospora sorghi = Sclerospora sorghi
40	Spontaneum downy mildew	Peronosclerospora spontanea = Sclerospora spontanea
	Sugarcane downy mildew	Peronosclerospora sacchari = Sclerospora sacchari
	Dry ear rot (cob, kernel and stalk rot)	Nigrospora oryzae (teleomorph: Khuskia oryzae)

	Palemaniana	
	Erkrankung	Pathogen
10	Ear rots, minor	Alternaria alternata = A. tenuis, Aspergillus glaucus, A. niger, Aspergillus spp., Botrytis cinerea (teleomorph: Botryotinia fuckeliana), Cunninghamella sp., Curvularia pallescens, Doratomyces stemonitis = Cephalotrichum stemonitis, Fusarium culmorum, Gonatobotrys simplex, Pithomyces maydicus, Rhizopus microsporus Tiegh., R. stolonifer = R. nigricans, Scopulariopsis brumptii
15	Ergot(horse's tooth)	Claviceps gigantea (anamorph: Sphacelia sp.)
	Eyespot	Aureobasidium zeae = Kabatiella zeae
	Fusarium ear and stalk rot	Fusarium subglutinans = F. moniliforme var.subglutinans
20	Fusarium kernel, root and stalk rot, seed rot and seedling blight	Fusarium moniliforme (teleomorph: Gibberella fujikuroi)
	Fusarium stalk rot, seedling root rot	Fusarium avenaceum (teleomorph: Gibberlla avenacea)
25	Gibberella ear and stalk rot (Ähren- u. Stengelfäule)	Gibberella zeae (anamorph: Fusarium graminearum)
	Gray ear rot	Botryosphaeria zeae = Physalospora zeae (anamorph: Macrophoma zeae)
30	Gray leaf spot (Cercospora leaf spot)	Cercospora sorghi = C. sorghi var. maydis, C. zeae-maydis
	Helminthosporium root rot	Exserohilum pedicellatum = Helmin- thosporium pedicellatum (teleomorph: Setosphaeria pedicellata)
35	Hormodendrum ear rot (Cladosporium rot)	Cladosporium cladosporioides = Hormo- dendrum cladosporioides, C. herbarum (teleomorph: Mycosphaerella tassiana)
ļ	Hyalothyridium leaf spot	Hyalothyridium maydis
	Late wilt	Cephalosporium maydis

	Erkrankung	Pathogen
10	Leaf spots, minor	Alternaria alternata, Ascochyta maydis, A. tritici, A. zeicola, Bipolaris victoriae = Helminthosporium victoriae (teleomorph: Cochliobolus victoriae), C. sativus (anamorph: Bipolaris sorokiniana = H. sorokinianum = H. sativum), Epicoccum nigrum, Exserohilum prolatum = Drechslera prolata (teleomorph: Setosphaeria prolata) Graphium penicillioides, Leptosphaeria maydis, Leptothyrium zeae, Ophiosphaerella herpotricha, (anamorph: Scolecosporiella sp.), Paraphaeosphaeria michotii, Phoma sp., Septoria zeae, S. zeicola,
	Nouthann gorn loof	S. zeina Setosphaeria turcica (anarnorph:
	Northern corn leaf blight (white blast, crown stalk rot, stripe)	Exserohilum turcicum = Helmin- thosporium turcicum)
20	Northern corn leaf spot Helminthosporium ear rot (race 1)	Cochliobolus carbonum (anamorph: Bipolaris zeicola = Helminthosporium carbonum)
	Penicillium ear rot (blue eye, blue mold)	Penicillium spp., P. chrysogenum, P. expansum, P. oxalicum
25	Phaeocytostroma stalk rot and root rot	Phaeocytostroma ambiguum, = Phaeocyto- sporella zeae
	Phaeosphaeria leaf spot	Phaeosphaeria maydis = Sphaerulina maydis
30	Physalospora ear rot (Botryosphaeria ear rot)	Botryosphaeria festucae = Physalospora zeicola (anamorph: Diplodia frumenti)
	Purple leaf sheath	Hemiparasitic bacteria and fungi
	Pyrenochaeta stalk rot and root rot	Phoma terrestris = Pyrenochaeta terrestris
35	Pythium root rot	Pythium spp., P. arrhenomanes, P. graminicola
	Pythium stalk rot	Pythium aphanidermatum = P. butleri L.
	Red kernel disease (ear mold, leaf and seed rot)	Epicoccum nigrum
40	Rhizoctonia ear rot (sclerotial rot)	Rhizoctonia zeae (teleomorph: Waitea circinata)
•	Rhizoctonia root rot and stalk rot	Rhizoctonia solani, Rhizoctonia zeae

	Erkrankung	Pathogen
5 10	Root rots, minor	Alternaria alternata, Cercospora sorghi, Dictochaeta fertilis, Fusarium acuminatum (teleomorph: Gibberella acuminata), F. equiseti (teleomorph: G. intricans), F. oxysporum, F. pallidoroseum, F. poae, F. roseum, G. cyanogena, (anamorph: F. sulphureum), Microdochium bolleyi, Mucor sp., Periconia circinata, Phytophthora cactorum, P. drechsleri, P. nicotianae var. parasitica, Rhizopus arrhizus
	Rostratum leaf spot (Helminthosporium leaf disease, ear and stalk rot)	Setosphaeria rostrata, (anamorph: Exserohilum rostratum = He/mintho- sporium rostratum)
15	Rust, common corn	Puccinia sorghi
	Rust, southern corn	Puccinia polysora
	Rust, tropical corn	Physopella pallescens, P. zeae = Angiopsora zeae
20	Sclerotium ear rot (sou- thern blight)	Sclerotium rolfsii Sacc. (teleomorph: Athelia rolfsii)
25	Seed rot-seedling blight	Bipolaris sorokiniana, B. zeicola = Helminthosporium carbonum, Diplodia maydis, Exserohilum pedicillatum, Exserohilum turcicum = Helmintho- sporium turcicum, Fusarium avenaceum, F. culmorum, F. moniliforme, Gibbe- rella zeae (anamorph: F. graminearum), Macrophomina phaseolina, Penicillium spp., Phomopsis sp., Pythium spp., Rhizoctonia solani, R. zeae, Sclero- tium rolfsii, Spicaria sp.
	Selenophoma leaf spot	Selenophoma sp.
	Sheath rot	Gaeumannomyces graminis
	Shuck rot	Myrothecium gramineum
35	Silage mold	Monascus purpureus, M ruber
	Smut, common	Ustilago zeae = U. maydis
	Smut, false	Ustilaginoidea virens
	Smut, head	Sphacelotheca reiliana = Sporisorium holcisorghi
40	Southern corn leaf blight and stalk rot	Cochliobolus heterostrophus (anamorph: Bipolaris maydis = Helminthosporium maydis)
	Southern leaf spot	Stenocarpella macrospora = Diplodia macrospora

		12
	Erkrankung	Pathogen
5	Stalk rots, minor	Cercospora sorghi, Fusarium episphae- ria, F. merismoides, F. oxysporum Schlechtend, F. poae, F. roseum, F. solani (teleomorph: Nectria haema- tococca), F. tricinctum, Mariannaea elegans, Mucor sp., Rhopographus zeae, Spicaria sp.
	Storage rots	Aspergillus spp., Penicillium spp. and other fungi
10	Tar spot	Phyllachora maydis
	Trichoderma ear rot and root rot	Trichoderma viride = T. lignorum tele- omorph: Hypocrea sp.
	White ear rot, root and stalk rot	Stenocarpella maydis = Diplodia zeae
15	Yellow leaf blight	Ascochyta ischaemi, Phyllosticta maydis (teleomorph: Mycosphaerella zeae-maydis)
	Zonate leaf spot	Gloeocercospora sorghi

20

25

Besonders bevorzugt sind

- Plasmodiophoromycota wie Plasmodiophora brassicae (Kohlhernie, clubroot of crucifers), Spongospora subterranea (powdery scab of potato tubers), Polymyxa graminis (root disease of cereals and grasses),
- Oomycota wie Bremia lactucae (Falscher Mehltau an Salat), Peronospora (Falscher Mehltau) bei snapdragon (P. antirrhini), Zwiebel (P. destructor), Spinat (P. effusa), 30 Sojabohne (P. manchurica), Tabak ("blue mold" = Blauschimmel; P. tabacina) Alfalfa und Klee (P. trifolium), Pseudoperonospora humuli (Falscher Mehltau an Hopfen), Plasmopara (Falscher Mehltau bei Trauben) (P. viticola) und Sonnenblume (P. halstedii), Sclerophtohra macrospora (Falscher Mehltau 35 bei Cerealien und Gäsern), Pythium (seed rot, seedling damping-off, and root rot and all types of plants, z.B. Wurzelbrand an Beta-Rübe durch P. debaryanum), Phytophthora infestans (Kraut- und Knollenfäule bei Kartoffel, Braunfäule bei Tomate etc.), Albugo spec. (white rust on cruciferous 40 plants.
- Ascomycota wie Microdochium nivale (Schneeschimmel an Roggen und Weizen), Fusarium graminearum, Fusarium culmorum (Ährenfäule v.a. bei Weizen), Fusarium oxysporum (Fusarium-Welke an Tomate), Blumeria graminis (Echter Mehltau an Gerste (f.sp. hordei) und Weizen (f.sp. tritici)), Erysiphe pisi (Erbsen-

5

·~ 10

mehltau), Nectria galligena (Obstbaumkrebs), Unicnula necator (Echter Mehltau der Weinrebe), Pseudopeziza tracheiphila (Roter Brenner der Weinrebe), Claviceps purpurea (Mutterkorn an z.B. Roggen und Gräsern), Gaeumannomyces graminis (Schwarzbeinigkeit an Weizen, Roggen u.a. Gräsern), Magnaporthe grisea (rice blast disease), Pyrenophora graminea (Streifenkrankheit an Gerste), Pyrenophora teres (Netzfleckenkrankheit an Gerste), Pyrenophora tritici-repentis (Blattfleckenkrankheit (Blattdürre) an Weizen), Venturia inaequalis (Apfelschorf), Sclerotinia sclerotium (Weißstengeligkeit, Rapskrebs), Pseudopeziza medicaginis (Klappenschorf an Luzerne, Weiß- und Rotklee).

- Basidiomyceten wie Typhula incarnata (Typhula-Fäule an Gerste, Roggen, Weizen), Ustilago maydis (Beulenbrand an 15 Mais), Ustilago nuda (Flugbrand an Gerste), Ustilago tritici (Flugbrand an Weizen, Dinkel), Ustilago avenae (Flugbrand an Hafer), Rhizoctonia solani (Wurzeltöter an Kartoffeln), Sphacelotheca spp. (head smut of sorghum), Melampsora lini (rust of flax), Puccinia graminis (Schwarzrost an Weizen, 20 Gerste, Roggen, Hafer), Puccinia recondita (Braunrost an Weizen), Puccinia dispersa (Braunrost an Roggen), Puccinia hordei (Braunrost an Gerste), Puccinia coronata (Kronenrost an Hafer), Puccinia striiformis (Gelbrost an Weizen, Gerste, 25 Roggen sowie zahlreichen Gräsern), Uromyces appendiculatus (Bohnenrost), Sclerotium rolfsii (root and stem rots of many plants).
- Deuteromyceten (Fungi imperfecti) wie Septoria nodorum 30 (Spelzenbräune) an Weizen (Septoria tritici), Pseudocercosporella herpotrichoides (Halmbruchkrankheit an Weizen, Gerste, Roggen), Rynchosporium secalis (Blattfleckenkrankheit an Roggen und Gerste), Alternaria solani (Dürrfleckenkrankheit an Kartoffel, Tomate), Phoma betae (Wurzelbrand an Beta-35 Rübe), Cercospora beticola (Cercospora-Blattfleckenkrankheit an Beta-Rübe), (Alternaria brassicae (Rapsschwärze an Raps, Kohl u.a. Kreuzblütlern), Verticillium dahliae (Rapswelke und -stengelfäule), Colletotrichum lindemuthianum (Brennfleckenkrankheit an Bohne), Phoma lingam - Umfallkrankheit (Schwarz-40 beinigkeit an Kohl; Wurzelhals- oder Stengelfäule an Raps), Botrytis cinerea (Grauschimmel an Weinrebe, Erdbeere, Tomate, Hopfen etc.).

Am meisten bevorzugt sind Phytophthora infestans (Kraut- und 45 Knollenfäule, Braunfäule bei Tomate etc.), Microdochium nivale (vormals Fusarium nivale; Schneeschimmel an Roggen und Weizen), Fusarium graminearum, Fusarium culmorum (Ährenfäule an Weizen),

Fusarium oxysporum (Fusarium-Welke an Tomate), Blumeria graminis (Echter Mehltau an Gerste (f. sp. hordei) und Weizen (f. sp. tritici)), Magnaporthe grisea (rice blast disease), Sclerotinia sclerotium (Weißstengeligkeit, Rapskrebs), Septoria nodorum und Septoria tritici (Spelzenbräune an Weizen), Alternaria brassicae (Rapsschwärze an Raps, Kohl u.a. Kreuzblütlern), Phoma lingam (Umfallkrankheit, Schwarzbeinigkeit an Kohl; Wurzelhals- oder Stengelfäule an Raps).

10 2. Bakterielle Pathogene:

Beispielhaft jedoch nicht einschränkend seien die in Tabelle 3 genannten Pathogene und die mit ihnen in Zusammenhang gebrachten Erkrankungen zu nennen.

15

Tabelle 3: Bakterielle Erkrankungen

	Erkrankung	Pathogen
20	Bacterial leaf blight and stalk rot	Pseudomonas avenae subsp. avenae
	Bacterial leaf spot	Xanthomonas campestris pv. holcicola
	Bacterial stalk rot	Enterobacter dissolvens = Erwinia dissolvens
25	Schwarzbeinigkeit ("Bacterial stalk and top rot")	Erwinia carotovora subsp. caroto- vora, Erwinia chrysanthemi pv. zeae
	Bacterial stripe	Pseudomonas andropogonis
	Chocolate spot	Pseudomonas syringae pv. corona- faciens
30	Goss's bacterial wilt and blight (leaf freckles and wilt)	Clavibacter michiganensis subsp. nebraskensis = Corynebacterium michiganense pv.andnebraskense
	Holcus spot	Pseudomonas syringae pv. syringae
35	Purple leaf sheath	Hemiparasitic bacteria
	Seed rot-seedling blight	Bacillus subtilis
	Stewart's disease (bacterial wilt)	Pantoea stewartii = Erwinia stewartii
40	Corn stunt (achapparramiento, maize stunt, Mesa Central or Rio Grande maize stunt)	Spiroplasma kunkelii

Ganz besonders bevorzugt sind nachfolgende pathogene Bakterien:

45 Corynebacterium sepedonicum (Bakterienringfäule an Kartoffel),
Erwinia carotovora (Schwarzbeinigkeit an Kartoffel), Erwinia
amylovora (Feuerbrand an Birne, Apfel, Quitte), Streptomyces

scabies (Kartoffelschorf), Pseudomonas syringae pv. tabaci
(Wildfeuer an Tabak), Pseudomonas syringae pv. phaseolicola
(Fettfleckenkrankheit an Buschbohne), Pseudomonas syringae pv.
tomato ("bacterial speck" an Tomate), Xanthomonas campestris pv.

5 malvacearum (Blattfleckenkrankheit an Baumwolle) und Xanthomonas
campestris pv. oryzae (Bakterienfäule an Reis und anderen
Gräsern).

3. Virale Pathogene:

10

"Virale Pathogene" schließt sämtliche Pflanzenviren ein wie beispielsweise Tabak- oder oder Cucumber-Mosaiv Virus, Ringspot-Virus, Nekrose-Virus, Mais Dwarf-Mosaic Virus etc.

Beispielhaft jedoch nicht einschränkend seien die in Tabelle 4 genannten Pathogene und die mit ihnen in Zusammenhang gebrachten Erkrankungen zu nennen.

Tabelle 4: Virale Erkrankungen

20

	Krankheit	Pathogen
	American wheat striate (wheat striate mosaic)	American wheat striate mosaic virus (AWSMV)
25	Barley stripe mosaic	Barley stripe mosaic virus (BSMV)
23	Barley yellow dwarf	Barley yellow dwarf virus (BYDV)
	Brome mosaic	Brome mosaic virus (BMV)
	Cereal chlorotic mottle	Cereal chlorotic mottle virus (CCMV)
30	Corn chlorotic vein banding (Braizilian maize mosaic)	Corn chlorotic vein banding virus (CCVBV)
25	Corn lethal necrosis	Viruskomplex aus Maize chlorotic mottle virus (MCMV) und Maize dwarf mosaic virus (MDMV) A oder B oder Wheat streak mosaic virus(WSMV)
35	Cucumber mosaic	Cucumber mosaic virus (CMV)
	Cynodon chlorotic streak	Cynodon chlorotic streak virus (CCSV)
	Johnsongrass mosaic	Johnsongrass mosaic virus (JGMV)
40	Maize bushy stunt	Mycoplasma-like organism (MLO) associated
	Maize chlorotic dwarf	Maize chlorotic dwarf virus (MCDV)
	Maize chlorotic mottle	Maize chlorotic mottle virus (MCMV)
	Maize dwarf mosaic	Maize dwarf mosaic virus (MDMV) strains A, D, E and F
45	Maize leaf fleck	Maize leaf fleck virus (MLFV)
	Maize line	Maize line virus (MLV)

_		10
	Krankheit	Pathogen
	Maize mosaic (corn leaf stripe, enanismo rayado)	Maize mosaic virus (MMV)
5	Maize mottle and chloro- tic stunt	Maize mottle and chlorotic stunt virus
	Maize pellucid ringspot	Maize pellucid ringspot virus (MPRV)
	Maize raya gruesa	Maize raya gruesa virus (MRGV)
	maize rayado fino (fine striping disease)	Maize rayado fino virus (MRFV)
10	Maize red leaf and red stripe	Mollicute
	Maize red stripe	Maize red stripe virus (MRSV)
	Maize ring mottle	Maize ring mottle virus (MRMV)
15	Maize rio IV	Maize rio cuarto virus (MRCV)
	Maize rough dwarf (nanismo ruvido)	Maize rough dwarf virus (MRDV) (Cereal tillering disease virus)
	Maize sterile stunt	Maize sterile stunt virus (strains of barley yellow striate virus)
20	Maize streak	Maize streak virus (MSV)
	Maize stripe (maize chlorotic stripe, maize hoja blanca)	Maize stripe virus
	Maize stunting	Maize stunting virus
25	Maize tassel abortion	Maize tassel abortion virus (MTAV)
	Maize vein enation	Maize vein enation virus (MVEV)
	Maize wallaby ear	Maize wallaby ear virus (MWEV)
	Maize white leaf	Maize white leaf virus
30	Maize white line mosaic	Maize white line mosaic virus (MWLMV)
30	Millet red leaf	Millet red leaf virus (MRLV)
	Northern cereal mosaic	Northern cereal mosaic virus (NCMV)
	Oat pseudorosette (zakuklivanie)	Oat pseudorosette virus
35	Oat sterile dwarf	Oat sterile dwarf virus (OSDV)
	Rice black-streaked dwarf	Rice black-streaked dwarf virus (RBSDV)
	Rice stripe	Rice stripe virus (RSV)
40	Sorghum mosaic	Sorghum mosaic virus (SrMV) (auch: sugarcane mosaic virus (SCMV) Stämme H, I and M)
	Sugarcane Fiji disease	Sugarcane Fiji disease virus (FDV)
4=	Sugarcane mosaic	Sugarcane mosaic virus (SCMV) strains A, B, D, E, SC, BC, Sabi and MB (formerly MDMV-B)
45	,	Wheat spot mosaic virus (WSMV)
	Wheat spot mosaic	Milear spor mosare virus (MSIIV)

4. Tierische Schädlinge

4.1 Insekten Pathogene:

Beispielhaft jedoch nicht einschränkend seien Insekten wie 5 beispielsweise Käfer, Raupen, Läuse oder Milben zu nennen. Bevorzugt sind Insekten der Gattungen Coleoptera, Diptera, Hymenoptera, Lepidoptera, Mallophaga, Homoptera, Hemiptera, Orthoptera, Thysanoptera. Dermaptera, Isoptera, Anoplura, Siphonaptera, Trichoptera, etc.. Besonders bevorzugt sind 10 Coleoptera and Lepidoptera Insekten, wie beispielsweise den Maiszünsler (European Corn Borer (ECB)), Diabrotica barberi ("northern corn rootworm"), Diabrotica undecimpunctata ("southern corn rootworm"), Diabrotica virgifera ("Western corn rootworm"), Agrotis ipsilon ("black cutworm"), 15 Crymodes devastator ("glassy cutworm"), Feltia ducens ("dingy cutworm"), Agrotis gladiaria ("claybacked cutworm"), Melanotus spp., Aeolus mellillus ("wireworm"), Aeolus mancus ("wheat wireworm"), Horistonotus uhlerii ("sand wireworm"), Sphenophorus maidis ("maize billbug"), Sphenophorus zeae 20 ("timothy billbug"), Sphenophorus parvulus ("bluegrass billbug"), Sphenophorus callosus ("southern corn billbug"), Phyllogphaga spp. ("white grubs"), Anuraphis maidiradicis ("corn root aphid"), Delia platura ("seedcorn maggot"), Colaspis brunnea ("grape colaspis"), Stenolophus lecontei 25 ("seedcorn beetle") und Clivinia impressifrons ("lender seedcorn beetle").

Ferner sind zu nennen: Das Getreidehähnchen (Oulema

30 melanopus), die Fritfliege (Oscinella frit), Drahtwürmer
(Agrotis lineatus) und Blattläuse (wie z.B. Haferblattlaus
Rhopalosiphum padi, Große Getreideblattlaus Sitobion avenae).

4.2 Nematoden:

35

40

Beispielhaft jedoch nicht einschränkend seien die in Tabelle 6 genannten Pathogene und die mit ihnen in Zusammenhang gebrachten Erkrankungen zu nennen.

Tabelle 6: Parasitäre Nematoden

45	Schädigung	Pathogene Nematode
	Awl	Dolichodorus spp., D. heterocephalus
	Stengel- oder Stockälchen, Rübenkopfälchen ("Bulb and stem"; Europe)	Ditylenchus dipsaci
	Burrowing	Radopholus similis

	•	
	Schädigung	Pathogene Nematode
5	Haferzystenälchen ("Cyst")	Heterodera avenae, H. zeae, Puncto- dera chalcoensis
	Dagger	Xiphinema spp., X. americanum, X. mediterraneum
	False root-knot	Nacobbus dorsalis
	Lance, Columbia	Hoplolaimus columbus
	Lance	Hoplolaimus spp., H. galeatus
10	Lesion	Pratylenchus spp., P. brachyurus, P. crenatus, P. hexincisus, P. neglectus, P. penetrans, P. scribneri, P. thornei, P. zeae
15	Needle	Longidorus spp., L. breviannulatus
	Ring	Criconemella spp., C. ornata
	Wurzelgallenälchen ("Root-knot")	Meloidogyne spp., M. chitwoodi, M. incognita, M. javanica
20	Spiral	Helicotylenchus spp.
	Sting	Belonolaimus spp., B. longicaudatus
	Stubby-root	Paratrichodorus spp., P. christiei, P. minor, Quinisulcius acutus, Tri- chodorus spp.
	Stunt	Tylenchorhynchus dubius

25

Ganz besonders bevorzugt sind Globodera rostochiensis und G. pallida (Zystenälchen an Kartoffel, Tomate u.a. Nachtschattengewächsen), Heterodera schachtii (Rübenzystenälchen an Zuckerund Futterrübe, Raps, Kohl etc.), Heterodera avenae (Haferzystenälchen an Hafer u.a. Getreidearten), Ditylenchus dipsaci (Stengel- oder Stockälchen, Rübenkopfälchen an Roggen, Hafer, Mais, Klee, Tabak, Rübe), Anguina tritici (Weizenälchen, Radekrankheit an Weizen (Dinkel, Roggen), Meloidogyne hapla (Wurzelgallenälchen an Möhre, Gurke, Salat, Tomate, Kartoffel, Zuckertübe, Luzerne).

Als für die einzelnen Sorten bevorzugte Pilz- oder Virus-Pathogene sind beispielsweise zu nennen:

40 1. Gerste:

45

Pilz-, bakterielle und virale Pathogene: Puccinia graminis f.sp. hordei (barley stem rust), Blumeria (Erysiphe) graminis f.sp. hordei (Barley Powdery Mildew), barley yellow dwarf virus (BYDV),

5

Pathogene Insekten / Nematoden: Ostrinia nubilalis (European corn borer); Agrotis ipsilon (black cutworm); Schizaphis graminum (greenbug); Blissus leucopterus leucopterus (chinch bug); Acrosternum hilare (green stink bug); Euschistus servus (brown stink bug); Deliaplatura (seedcorn maggot); Mayetiola destructor (Hessian fly); Petrobia latens (brown wheat mite).

2. Sojabohne:

Pilz-, bakterielle oder virale Pathogene: Phytophthora megasperma fsp.glycinea, Macrophomina phaseolina, Rhizoctonia solani, Sclerotinia sclerotiorum, Fusarium oxysporum, Diaporthe phaseolorum var. sojae (Phomopsis sojae), Diaporthe phaseolorum var. caulivora, Sclerotium rolfsii, Cercospora

kikuchii, Cercospora sojina, Peronospora manshurica, Colletotrichum dematium (Colletotrichum truncatum), Corynespora cassiicola, Septoria glycines, Phyllosticta sojicola, Alternaria alternata, Pseudomonas syringae p.v. glycinea, Xanthomonas campestris p.v. phaseoli, Microsphaera diffussa,

Fusarium semitectum, Phialophora gregata, Sojabohnen Mosaikvirus, Glomerella glycines, Tobacco Ring spot virus, Tobacco
Streak virus, Phakopsorapachyrhizi, Pythium aphanidermatum,
Pythium ultimum, Pythium debaryanum, Tomato spotted wilt
virus, Heterodera glycines Fusarium solani.

25

Pathogene Insekten / Nematoden: Pseudoplusia includens (soybean looper); Anticarsia gemmatalis (velvetbean caterpillar); Plathypena scabra (green cloverworm); Ostrinia nubilalis (European corn borer); Agrotis ipsilon (black cutworm);

Spodoptera exigua (beet armyworm); Heliothis virescens (cotton budworm); Helicoverpa zea (cotton bollworm); Epilachna varivestis (Mexican bean beetle); Myzus persicae (green peach aphid); Empoasca fabae (potato leaf hopper); Acrosternum hilare (green stink bug); Melanoplus femurrubrum

(redlegged grasshopper); Melanoplus differentialis (differential grasshopper); Hylemya platura (seedcom maggot); Sericothrips variabilis (soybean thrips); Thrips tabaci (onion thrips); Tetranychus turkestani (strawberry spider mite); Tetranychus urticae (twospotted spider mite);

40

3. Canola:

Pilz-, bakterielle oder virale Pathogene: Albugo candida,
Alternaria brassicae, Leptosphaeria maculans, Rhizoctonia
solani, Sclerotinia sclerotiorum, Mycosphaerella brassiccola,
Pythium ultimum, Peronospora parasitica, Fusarium roseum,
Alternaria alternata.

4. Alfalfa:

Pilz, bakterielle oder virale Pathogene: Clavibater michiganese subsp. insidiosum, Pythium ultimum, Pythium irregulare, Pythium splendens, Pythium debaryanum, Pythium aphanidermatum, Phytophthora megasperma, Peronospora trifoliorum, Phoma medicaginis var. medicaginis, Cercospora medicaginis, Pseudopeziza medicaginis, Leptotrochila medicaginis, Fusarium, Xanthomonas campestris p.v. alfalfae, Aphanomyces euteiches, Stemphylium herbarum, Stemphylium alfalfae.

5. Weizen:

Pilz-, bakterielle oder virale Pathogene: Pseudomonas syringae 15 p.v. atrofaciens, Urocystis agropyri, Xanthomonas campestris p.v. translucens, Pseudomonas syringae p.v. syringae, Alternaria alternata, Cladosporium herbarum, Fusarium graminearum, Fusarium avenaceum, Fusarium culmorum, Ustilago tritici, Ascochyta tritici, Cephalosporium gramineum, Collotetrichum 20 graminicola, Erysiphe graminis f.sp. tritici, Puccinia graminis f.sp. tritici, Puccinia recondita f.sp. tritici, Puccinia striiformis, Pyrenophora tritici-repentis, Septoria nodorum, Septoria tritici, Septoria avenae, Pseudocercosporella herpotrichoides, Rhizoctonia solani, Rhizoctonia 25 cerealis, Gaeumannomyces graminis var. tritici, Pythium aphanidermatum, Pythium arrhenomanes, Pythium ultimum, Bipolaris sorokiniana, Barley Yellow Dwarf Virus, Brome Mosaic Virus, Soil Borne Wheat Mosaic Virus, Wheat Streak Mosaic Virus, Wheat Spindle Streak Virus, American Wheat 30 Striate Virus, Claviceps purpurea, Tilletia tritici, Tilletia laevis, Ustilago tritici, Tilletia indica, Rhizoctonia solani, Pythium arrhenomannes, Pythium gramicola, Pythium aphanidermatum, High Plains Virus, European wheat striate virus, Puccinia graminis f.sp. tritici (Wheat stem rust), 35 Blumeria (Erysiphe) graminis f.sp. tritici (Wheat Powdery Mildew)

Pathogene Insekten / Nematoden: Pseudaletia unipunctata (army worm); Spodoptera, frugiperda (fall armyworm); Elasmopalpus lignosellus (lesser cornstalk borer); Agrotis orthogonia (western cutworm); Elasmopalpus Zignosellus (lesser cornstalk borer); Oulema melanopus (cereal leaf beetle); Hypera punctata (clover leaf weevil); Diabrotica undecimpunctata howardi (southern corn rootworm); Russian wheat aphid; Schizaphis graminum (greenbug); Macrosiphum avenae (English grain aphid); Melanoplus femurrubrum (redlegged grasshopper);

Melanoplus differentialis (differential grasshopper);
Melanoplus sanguinipes (migratory grasshopper); Mayetiola
destructor (Hessian fly); Sitodiplosis mosellana (wheat
midge); Meromyza americana (wheat stem maggot); Hylemya
coarctata (wheat bulb fly); Frankliniella fusca (tobacco
thrips); Cephus cinctus (wheat stem sawfly); Aceria tulipae
(wheat curl mite);

6. Sonnenblume:

10

5

Pilz-, bakterielle oder virale Pathogene: Plasmophora halstedii, Sclerotinia sclerotiorum, Aster Yellows, Septoria helianthi, Phomopsis helianthi, Alternaria helianthi, Alternaria zinniae, Botrytis cinerea, Phoma macdonaldii, Macrophomina phaseolina, Erysiphe cichoracearum, Rhizopus oryzae, Rhizopus arrhizus, Rhizopus stolonifer, Puccinia helianthi, Verticillium dahliae, Erwinia carotovorum p.v. Carotovora, Cephalosporium acremonium, Phytophthora cryptogea, Albugo tragopogonis.

20

25

15

Pathogene Insekten / Nematoden: Suleima helianthana (sunflower bud moth); Homoeosoma electellum (sunflower moth); zygogramma exclamationis (sunflower beetle); Bothyrus gibbosus (carrot beetle); Neolasioptera murtfeldtiana (sunflower seed midge);

7. Mais:

Pilz-, bakterielle oder virale Pathogene: Fusarium moniliforme var. subglutinans, Erwinia stewartii, Fusarium monili-30 forme, Gibberella zeae (Fusarium graminearum), Stenocarpella maydi (Diplodia maydis), Pythium irregulare, Pythium debaryanum, Pythium graminicola, Pythium splendens, Pythium ultimum, Pythium aphanidermatum, Aspergillus flavus, Bipolaris maydis 0, T (Cochliobolus heterostrophus), Helminthosporium carbonum 35 I, II & III (Cochliobolus carbonum), Exserohilum turcicum I, II & III, Helminthosporium pedicellatum, Physoderma maydis, Phyllosticta maydis, Kabatiella maydis, Cercospora sorghi, Ustilago maydis, Puccinia sorghi, Puccinia polysora, Macro-40 phomina phaseolina, Penicillium oxalicum, Nigrospora oryzae, Cladosporium herbarum, Curvularia lunata, Curvularia inaequalis, Curvularia pallescens, Clavibacter michiganese subsp. nebraskense, Trichoderma viride, Maize Dwarf Mosaic Virus A & B, Wheat Streak Mosaic Virus, Maize Chlorotic Dwarf Virus, 45 Claviceps sorghi, Pseudonomas avenae, Erwinia chrysanthemi p.v. Zea, Erwinia corotovora, Cornstunt spiroplasma, Diplodia macrospora, Sclerophthora macrospora, Peronosclerospora

5

sorghi, Peronosclerospora philippinesis, Peronosclerospora maydis, Peronosclerospora sacchari, Spacelotheca reiliana, Physopella zeae, Cephalosporium maydis, Caphalosporium acremonium, Maize Chlorotic Mottle Virus, High Plains Virus, Maize Mosaic Virus, Maize Rayado Fino Virus, Maize Streak Virus (MSV, Maisstrichel-Virus), Maize Stripe Virus, Maize Rough Dwarf Virus.

Pathogene Insekten / Nematoden: Ostrinia nubilalis (European corn borer); Agrotis ipsilon (black cutworm); Helicoverpa zea 10 (corn earworm); Spodoptera frugiperda. (fall armyworm); Diatraea grandiosella (southwestern corn borer); Elasmopalpus lignosellus (lesser cornstalk borer); Diatraea saccharalis (surgarcane borer); Diabrotica virgifera (western corn rootworm); Diabrotica longicornis barberi (northern corn 15 rootworm); Diabrotica undecimpunctata howardi (southern corn rootworm); Melanotus spp. (wireworms); Cyclocephala borealis (northern masked chafer; white grub); Cyclocephala immaculata (southern masked chafer; white grub); Popillia japonica (Japanese beetle); Chaetocnema pulicaria (corn flea beetle); 20 Sphenophorus maidis (maize billbug); Rhopalosiphum maidis (corn leaf aphid); Anuraphis maidiradicis (corn root aphid); Blissus leucopterus leucopterus (chinch bug); Melanoplus femurrubrum (redlegged grasshopper); Melanoplus sanguinipes (migratory grasshopper); Hylemva platura (seedcom maggot); 25 Agromyza parvicornis (corn blot leafminer); Anaphothrips obscrurus (grass thrips); Solenopsis milesta (thief ant); Tetranychus urticae (twospotted spider mite).

30 8. Sorghum:

35

40

45

Pilz-, bakterielle oder virale Pathogene: Exserohilum turcicum, Colletotrichum graminicola (Glomerella graminicola), Cercospora sorghi, Gloeocercospora sorghi, Ascochyta sorghina, Pseudomonas syringae p.v. syringae, Xanthomonas campestris p.v. holcicola, Pseudomonas andropogonis, Puccinia purpurea, Macrophomina phaseolina, Perconia circinata, Fusarium monilifonne, Alternaria alternate, Bipolaris sorghicola, Helminthosporium sorghicola, Curvularia lunata, Phoma insidiosa, Pseudomonas avenae (Pseudomonas alboprecipitans), Ramulispora sorghi, Ramulispora sorghicola, Phyllachara sacchari, Sporisorium reilianum (Sphacelotheca reiliana), Sphacelotheca cruenta, Sporisorium sorghi, Sugarcane mosaic H, Maize Dwarf Mosaic Virus A & B, Claviceps sorghi, Rhizoctonia solani, Acremonium strictum, Sclerophthona macrospora, Peronosclerospora sorghi, Peronosclerospora philippinensis,

Sclerospora graminicola, Fusarium graminearum, Fusarium oxysporum, Pythium arrhenomanes, Pythium graminicola.

Pathogene Insekten / Nematoden: Chilo partellus (sorghum
borer); Spodoptera frugiperda (fall armyworm); Helicoverpa
zea (corn ear-worm); Elasmopalpus lignosellus (lesser cornstalk borer); Feltia subterranea (granulate cutworm); Phvllophaga crinita (white grub); Eleodes, Conoderus und Aeolus
spp. (wireworm); Oulema melanopus (cereal leaf beetle);
Chaetocnema pulicaria (corn flea beetle); Sphenophorus maidis
(maize billbug); Rhopalosiphum maidis (corn leaf aphid);
Siphaflava (yellow sugarcane aphid); Blissus leucopterus
leucopterus (chinch bug); Contarinia sorghicola (sorghummidge); Tetranychus cinnabarinus (carmine spider mite);
Tetranychus urticae (two spotted spider mite).

9. Baumwolle:

Pathogene Insekten / Nematoden: Heliothis virescens (cotton budworm); Helicoverpa zea (cotton bollworm); Spodoptera exigua (beet armyworm); Pectinophora gossypiella (pink bollworm); Anthonomus grandis grandis (boll weevil); Aphis gossypii (cotton aphid); Pseudatomoscelis seriatus (cotton fleahopper); Trialeurodes abutilonea (bandedwinged whitefly);

Lygus lineolaris (tarnished plant bug); Melanoplus femurrubrum (redlegged grasshopper); Melanoplus differentialis (differential grasshopper); Thrips tabaci (onion thrips);

Franklinkiella fusca (tobacco thrips); Tetranychus cinnabarinus (carmine spider mite); Tetranychus urticae (twospotted spider mite);

10. Reis:

Pathogene Insekten / Nematoden: Diatraea saccharalis (sugarcane borer); Spodoptera frugiperda (fall armyworm); Helicoverpa zea (corn earworm); Colaspis brunnea (grape colaspis);
Lissorhoptrus oryzophilus (rice water weevil); Sitophilus
oryzae (rice weevil); Nephotettix nigropictus (rice leafhopper); Blissus Ieucopterus leucopterus (chinch bug); Acrosternum hilare (green stink bug);

11. Raps:

Pathogene Insekten / Nematoden: Brevicoryne brassicae

(cabbage aphid); Phyilotreta cruciferae (Flea beetle);

Mamestra conjgurata (Bertha armyworm); Plutella xylostella
(Diamond-back moth); Delia ssp. (Root maggots).

"NADPH-Oxidase" meint im Rahmen der Erfindung all solche Enzyme, die als wesentliche Eigenschaft befähigt sind mittels eines Einzelelektronentransfers molekularen Sauerstoff (O₂) zu Superoxid (O₂-) umzusetzen. Bevorzugt sind die Enzyme die durch die EC-5 Klasse E.C.1.23.45.3 beschrieben werden. Dabei kann die NADPH-Oxidasen aus einem oder mehr Polypeptiden bestehen, die gleich oder unterschiedlich sein können.

Bevorzugt ist die NADPH-Oxidase ein Flavocytochromprotein und umfasst als prosthetische Gruppen ein Cytochrom b und/oder eine FAD Einheit. Die NADPH-Oxidase kann aus einem α1β1 Heterodimer bestehen, wobei die β Untereinheit die funktionelle Untereinheit des Flavocytochroms darstellen und als Glykoprotein die Elektronentransportkomponenten umfassen kann (eine hydrophile, zytosolische, C-terminale Domäne, welche NADPH und FAD enthält, sowie 4 bis 6 N-terminale, putative Transmembrane-α-Helixes, welche zwei Histidin-komplexierte prosthetische Haem-Gruppen enthält). Die α-Untereinheit kann eine C-terminale, Prolin-reiche Sequenz umfassen, welche potentielle zytosoliche, aktivierende Faktoren der NADPH-Oxidase zu binden vermag. Durch die Bindung der zytosolische phox Proteine (z.B. p47-phox, p67-phox, p40-phox) und p21rac – ein GTP-bindendes Protein – kann Aktivierung erfolgen.

Dem Fachmann sind zahlreiche NADPH-Oxidasen aus pflanzlichen
25 Organismen bekannt (u.a. Torres MA et al. (1998) Plant J 14:
365-370). Beispielhaft jedoch nicht einschränkend seien die
Sequenzen mit nachfolgenden GenBnk Acc.-No. zu nennen: AJ251717
(Hordeum vulgare), AP003560 (Oryza sativa var. japonica),
AJ320505 (Nicotiana tabacum), AB050660 (Solanum tuberosum),
30 AF088276 (Lycopersicon esculentum), AB008111 (Arabidopsis
thaliana; Atrboh F), AF055357 (Arabidopsis thaliana; RbohD),
AJ309006 (Nicotiana tabacum; rboh), AP003271 (Oryza sativa cv.
japonica), AF055355 (Arabidopsis thaliana; RbohC), AF055353 (Arabidopsis thaliana; RbohC), AF0

Die zu den im Rahmen dieser Erfindung offenbarten NADPH-Oxidase Sequenzen homologen Sequenzen aus anderen Pflanzen können z.B.

- 40 durch Datenbanksuche oder Durchmustern von Gen-Banken unter Verwendung der NADPH-Oxidase Sequenzen als Suchsequenz bzw. Sonde - leicht aufgefunden werden. Beispielhaft seien dabei Sequenzen mit nachfolgenden GenBnk Acc.-No. zu nennen: CAC51517.1, AJ251717, T03973, BAB68079.1, AP003560, T02024, CAC87256.1,
- **45** AJ320505, BAB70750.1, AB050660, AF088276_1, NP_564821.1, N M_105079, T00265 AC007764_16, NP_192862.1, NM_117194, AF147783_1, AAM28891.1, AF506374, CAC84140.1, AJ309006, T51804, NP_199602.1,

NM_124165, BAB89740.1, AP003271, AAC39477.1, AF055355,
NP_199919.1, NM_124485, AAC39475.1, AF055353, NP_196356.1,
NM_120821, NP_194239.1, NM_118641, BAB08369.1, AB015475,
AAC39478.1, AF055356, AC069143_9, NP_173357.1, NM_101781,
NP_172383.1, NM_100780, AAB70398.1, AC000106, AAC39476.1,
AF055354, BAB70751.1, AB050661, BAB63664.1, AP003275, AAD24966.1,

Besonders bevorzugt umfasst die Polypeptidsequenz der NADPH
10 Oxidase mindestens ein Sequenzmotiv ausgewählt aus der Gruppe
von Sequenzmotiven bestehend aus

- i) AL(K/R)GL(K/R)
- ii) DK(N/D)XDG(R/K)(I/L/V)(T/N)E
- 15 iii) LSASAN

AF109150.

- iv) IMEELDP
- v) K(F/L)NMA(I/L)(I/V)LXPVCRN
- vi) (E/Q)WHPFSIT
- vii) S(A/S) PXDD(Q/Y) (L/I) S(I/V) H(V/I/L) R
- 20 viii) DGPYG(S/A)PAGDY
 - ix) L(I/V)GLGIGATP
 - x) FYWVTREQGSF
 - xi) GVFYCG
- 25 Ganz besonders bevorzugt enthält die Peptidsequenz mindestens 2 oder 3, ganz besonders bevorzugt mindestens 4 oder 5, am meisten bevorzugt alle der Sequenzmotive ausgewählt aus der Gruppe der Sequenzmotive i), ii), iii), iv), v), vi) vii), viii), ix) x) und xi). (Angaben in Klammern meinen alternativ mögliche Amino-
- 30 säuren an dieser Position; z.B. mein (V/I), dass an dieser Position Valin oder Isoleucin möglich ist).

NADPH-Oxidase kann aber auch jede andere Einheit eines NADPH-Oxidase Enzymkomplexes meinen der wesentlich für Aktivität der 35 NADPH-Oxidase ist.

"Proteinmenge" meint die Menge eines NADPH-Oxidase-Polypeptides in einem Organismus, einem Gewebe, einer Zelle oder einem Zellkompartiment. "Verminderung" der Proteinmenge meint die mengen-

- 40 mäßige Verminderung der Menge einer NADPH-Oxidase in einem Organismus, einem Gewebe, einer Zelle oder einem Zellkompartiment beispielsweise durch eines der unten beschriebenen Verfahren im Vergleich zu dem Wildtyp derselben Gattung und Art auf den dieses Verfahren nicht angewendet wurde, unter ansonst gleichen
- 45 Rahmenbedingungen (wie beispielsweise Kulturbedingungen, Alter der Pflanzen etc.). Der Verminderung beträgt dabei mindestens 10 %, bevorzugt mindestens 10 % oder mindestens 20 %, besonders

bevorzugt um mindestens 40 % oder 60 %, ganz besonders bevorzugt um mindestens 70 % oder 80 %, am meisten bevorzugt um mindestens 90 % oder 95 %.

5 "Aktivität" meint die Fähigkeit einer NADPH-Oxidase molekularen Sauerstoff (O2) zu Superoxid (O2) umzusetzen. "Verminderung" der Aktivität meint die Verminderung der Gesamt-Aktivität eines NADPH-Oxidase-Proteins in einem Organismus, einem Gewebe, einer Zelle oder einem Zellkompartiment – beispielsweise durch eines der unten beschriebenen Verfahren – im Vergleich zu dem Wildtyp derselben Gattung und Art auf den dieses Verfahren nicht angewendet wurde, unter ansonst gleichen Rahmenbedingungen (wie beispielsweise Kulturbedingungen, Alter der Pflanzen etc.). Der Verminderung beträgt dabei mindestens 10 %, bevorzugt mindestens 10 % oder mindestens 20 %, besonders bevorzugt um mindestens 40 % oder 60 %, ganz besonders bevorzugt um mindestens 70 % oder 80 %, am meisten bevorzugt um mindestens 90 % oder 95 %.

"Funktion" meint bevorzugt die Substratbindekapazität einer
20 NADPH-Oxidase in einem Organismus, einem Gewebe, einer Zelle oder
einem Zellkompartiment. Als Substrate kommen niedermolekulare
Verbindungen wie NADPH oder FAD aber auch die Proteininteraktionspartner einer NADPH-Oxidase in Frage.

25 "Verminderung" der Funktion meint beispielsweise die mengenmäßige Verminderung der Bindekapazität oder Bindestärke einer NADPH-Oxidase zu mindestens einem Substrat in einem Organismus, einem Gewebe, einer Zelle oder einem Zellkompartiment - beispielsweise durch eines der unten beschriebenen Verfahren - im Vergleich zu 30 dem Wildtyp derselben Gattung und Art auf den dieses Verfahren nicht angewendet wurde, unter ansonst gleichen Rahmenbedingungen (wie beispielsweise Kulturbedingungen, Alter der Pflanzen etc.). Unter Verminderung ist auch die Veränderung der Substratspezifität zu verstehen, wie sie beispielsweise durch den kcat/Km-Wert 35 ausgedrückt werden kann. Der Verminderung beträgt dabei mindestens 10 %, bevorzugt mindestens 10 % oder mindestens 20 %, besonders bevorzugt um mindestens 40 % oder 60 %, ganz besonders bevorzugt um mindestens 70 % oder 80 %, am meisten bevorzugt um mindestens 90 % oder 95 %. Bindepartner für NADPH-Oxidase können 40 beispielsweise durch das Hefe-2-Hybridsystem in der dem Fachmann geläufigen Weise identifiziert werden.

Verfahren zur Bestimmung der Proteinmenge, der Aktivität von NADPH Oxidasen oder der Substratbindekapazität sind dem Fachmann 45 bekannt. Beispielsweise kann die NADPH abhängige, DPI-inhibierbare O₂- oder H₂O₂ Produktion (z.B. über Nitro-Blau-Tetrazolium [NBT] oder Cytochrom c Reduktion) gemessen werden. Die Protein-

menge kann beispielsweise immunologisch unter Verwendung entsprechender Antikörper bestimmt werden. Entsprechende Verfahren sind beschrieben (Yu L et al. (1999) Blood 94(7):2497-504; Doke N (1983a) Physiol Plant Pathol 23:345-357; Levine A et al. (1994)

5 Cell 79:583-593; Tenhaken R et al. (1995) Proc Nat Acad Sci USA 92: 4158-4163; Sagi M & Fluhr R. (2001) Plant Physiol 126(3):1281-90; Hückelhoven R & Kogel KH (1998) Mol Plant Microbe Interact 11:292-300; so wie in den vorgenannten Artikeln zitierten Referenzen).

10

"Funktionelle Äquivalente" eines NADPH-Oxidase-Proteins meint bevorzugt solche Sequenzen, die von einer NADPH-Oxidase umfassend eine Polypeptidsequenz gemäß SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 oder 22 abgeleitet oder zu dieser homolog sind und 15 die gleichen wesentlichen Eigenschaften aufweisen.

Dabei kann die Effizienz der Pathogenresistenz sowohl nach unten als auch nach oben im Vergleich zu einem Wert erhalten bei Verminderung einer der NADPH-Oxidasen umfassen eine Polypeptidse-

- 20 quenz gemäß SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 oder 22 abweichen. Bevorzugt sind solche funktionelle Äquivalente, bei denen sich die Effizienz der Pathogenresistenz – gemessen beispielsweise an der Penetrationseffizienz eines Pathogens (Haustoriumbildung) – um nicht mehr als 50 %, bevorzugt 25 %,
- 25 besonders bevorzugt 10 % von einem Vergleichswert erhalten unter Verminderung einer NADPH-Oxidase umfassend eine Polypeptidsequenz gemäß SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 oder 22 unterscheidet. Besonders bevorzugt sind solche Sequenzen, bei deren Verminderung die Effizienz der Pathogenresistenz quanti-
- 30 tativ um mehr als 50 %, bevorzugt 100 %, besonders bevorzugt 500 %, ganz besonders bevorzugt 1000 % einen Vergleichswert erhalten bei Verminderung einer der NADPH-Oxidasen umfassend eine Polypeptidsequenz gemäß SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 oder 22 übersteigt.

35

Der Vergleich wird bevorzugt unter analogen Bedingungen durch geführt. "Analoge Bedingungen" bedeutet, dass alle Rahmenbedingungen wie beispielsweise Kultur- oder Zuchtbedingungen, Assaybedingungen (wie Puffer, Temperatur, Substrate, Pathogen-

- 40 konzentration etc.) zwischen den zu vergleichenden Versuchen identisch gehalten werden und die Ansätze sich allein durch die Sequenz der zu vergleichenden NADPH-Oxidasen, ihrem Ursprungs-organismus und gegebenenfalls dem Pathogen unterscheiden. Bei Wahl des Pathogens ist für den Vergleich jeweils das Pathogen
- 45 zu wählen, das dem jeweils anderen unter Berücksichtigung der Artspezifität am nächsten kommt.

"Funktionelle Äquivalente" meint insbesondere natürliche oder künstliche Mutationen der NADPH-Oxidasen umfassend eine Polypeptidsequenz gemäß SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 oder 22 sowie homologe Polypeptide aus anderen Pflanzen, welche weiterhin im wesentlichen gleiche Eigenschaften aufweisen. Bevorzugt sind homologe Polypeptide aus oben beschriebenen bevorzugten Pflanzen. Die zu den im Rahmen dieser Erfindung offenbarten NADPH-Oxidase Sequenzen homologen Sequenzen aus anderen Pflanzen (beispielsweise Arabidopsis thaliana) können z.B. durch Datenbanksuche oder Durchmustern von Gen-Banken – unter Verwendung der NADPH-Oxidase-Sequenzen als Suchsequenz vzw. Sonde – leicht aufgefunden werden. Entsprechende Sequenzen sind oben mit GenBank Acc-No. beispielhaft aufgeführt.

15 Mutationen umfassen Substitutionen, Additionen, Deletionen, Inversion oder Insertionen eines oder mehrerer Aminosäurereste. Somit werden beispielsweise auch solche Polypeptide durch die vorliegende Erfindung mit umfasst, welche man durch Modifikation eines Polypeptides umfassend eine Polypeptidsequenz gemäß
20 SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 oder 22 erhält.

Unter Homologie zwischen zwei Nukleinsäuresequenzen wird die Identität der Nukleinsäuresequenz über die jeweils gesamte Sequenzlänge verstanden, die durch Vergleich mit Hilfe des Programmalgorithmus GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG), Madison, USA; Altschul et al. (1997) Nucleic Acids Res. 25:3389ff) unter Einstellung folgender Parameter berechnet wird:

30 Gap Weight: 50 Length Weight: 3

Average Match: 10 Average Mismatch: 0

Beispielhaft wird unter einer Sequenz, die eine Homologie 35 von mindestens 80 % auf Nukleinsäurebasis mit der Sequenz SEQ ID NO: 1 aufweist, eine Sequenz verstanden, die bei einem Vergleich mit der Sequenz SEQ ID NO: 1 nach obigem Programmalgorithmus mit obigem Parametersatz eine Homologie von mindestens 80 % aufweist.

Unter Homologie zwischen zwei Polypeptiden wird die Identität der Aminosäuresequenz über die jeweils gesamte Sequenzlänge verstanden, die durch Vergleich mit Hilfe des Programmalgorithmus GAP (Wisconsin Package Version 10.0, University of Wisconsin, 45 Genetics Computer Group (GCG), Madison, USA) unter Einstellung

folgender Parameter berechnet wird:

Gap Weight: 8

Length Weight: 2

Average Match: 2,912

Average Mismatch: -2,003

5 Beispielhaft wird unter einer Sequenz, die eine Homologie von mindestens 80 % auf Proteinbasis mit der Sequenz SEQ ID NO: 2 aufweist, eine Sequenz verstanden, die bei einem Vergleich mit der Sequenz SEQ ID NO: 2 nach obigem Programmalgorithmus mit obigem Parametersatz eine Homologie von mindestens 80 % aufweist.

10

Funktionelle Äquivalente, abgeleitet von einer NADPH-Oxidase umfassend eine Polypeptidsequenz gemäß SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 oder 22 durch Substitution, Insertion oder Deletion, haben eine Homologie von mindestens 50 %, bevorzugt

15 mindestens 70 %, vorzugsweise mindestens 90 %, besonders bevorzugt mindestens 95 %, ganz besonders bevorzugt mindestens 98 % zu einem Polypeptid umfassend eine Polypeptidsequenz gemäß SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 oder 22 und zeichnen sich durch die gleichen wesentlichen Eigenschaften

20 wie diese aus.

Funktionelle Äquivalente, abgeleitet einer eine Sequenz gemäß SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 oder 21 umfassenden NADPH-Oxidase Nukleinsäuresequenz durch Substitution, Insertion

- 25 oder Deletion, haben eine Homologie von mindestens 50 %, bevorzugt 70 %, vorzugsweise mindestens 90 %, besonders bevorzugt mindestens 95 %, ganz besonders bevorzugt mindestens 98 % zu einem der erfindungsgemäßen Polypeptid gemäß SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 oder 21 und kodieren für Polypeptide mit den
- 30 gleichen wesentlichen Eigenschaften wie ein Polypeptide umfassend eine Sequenz gemäß SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 oder 22.

Auch die Durchmusterung von cDNA- oder genomischen-Bibliotheken 35 anderer Organismen, bevorzugt von den weiter unten genannten als Wirt zur Transformation geeigneten Pflanzenarten, unter Verwendung der unter SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 oder 21 beschriebene Nukleinsäuresequenzen oder Teilen derselben als Sonde, ist ein dem Fachmann geläufiges Verfahren, um Homologe

- 40 in anderen Arte zu identifizieren. Dabei haben die von den Nukleinsäuresequenzen gemäß SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 oder 21 abgeleiteten Sonden eine Länge von mindestens 20 bp, bevorzugt mindestens 50 bp, besonders bevorzugt mindestens 100 bp, ganz besonders bevorzugt mindestens 200 bp, am meisten
- 45 bevorzugt mindestens 400 bp. Für die Durchmusterung der Bibliotheken kann auch ein zu den unter SEQ ID NO: 1, 3, 5, 7, 9, 11,

13, 15, 17, 19 oder 21 beschriebenen Sequenzen komplementärer DNA-Strang eingesetzt werden.

Funktionelle Äquivalente umfasst DNA Sequenzen, die unter

5 Standardbedingungen mit der durch SEQ ID NO: 1, 3, 5, 7, 9, 11,
13, 15, 17, 19 oder 21 beschriebenen NADPH-Oxidase Nukleinsäuresequenzen, der zu ihr komplementären Nukleinsäuresequenz oder
teilen der vorgenannten hybridisieren und als vollständige
Sequenzen für Proteine kodieren, die die gleichen wesentlichen
10 Eigenschaften haben wie ein Polypeptide umfassend eine Sequenz
gemäß SEO ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 oder 22.

"Standardhybridisierungsbedingungen" ist breit zu verstehen und meint stringente als auch weniger stringente Hybridisierungs-15 bedingungen. Solche Hybridisierungsbedingungen sind unter anderem bei Sambrook J, Fritsch EF, Maniatis T et al., in Molecular Cloning (A Laboratory Manual), 2. Auflage, Cold Spring Harbor Laboratory Press, 1989, Seiten 9.31-9.57) oder in Current Protocols in Molecular Biology, John Wiley &Sons, N.Y. (1989), 20 6.3.1-6.3.6. beschrieben.

Beispielhaft können die Bedingungen während des Waschschrittes ausgewählt sein aus dem Bereich von Bedingungen begrenzt von solchen mit geringer Stringenz (mit ungefähr 2X SSC bei 50°C) und 25 solchen mit hoher Stringenz (mit ungefähr 0.2X SSC bei 50°C bevorzugt bei 65°C) (20X SSC: 0,3M Natriumcitrat, 3M NaCl, pH 7.0). Darüberhinaus kann die Temperatur während des Waschschrittes von niedrig stringenten Bedingungen bei Raumtemperatur, ungefähr 22°C, bis zu stärker stringenten Bedingungen bei ungefähr 65°C angehoben 30 werden. Beide Parameter, Salzkonzentration und Temperatur, können gleichzeitig variiert werden, auch kann einer der beiden Parameter konstant gehalten und nur der andere variiert werden. Während der Hybridisierung können auch denaturierende Agenzien wie zum Beispiel Formamid oder SDS eingesetzt werden. In Gegen-35 wart von 50% Formamid wird die Hybridisierung bevorzugt bei 42°C ausgeführt. Einige beispielhafte Bedingungen für Hybridisierung und Waschschritt sind infolge gegeben:

- (1) Hybridisierungbedingungen zum Beispiel aus nachfolgenden 40 Bedingungen ausgewählt sein:
 - a) 4X SSC bei 65°C (mit optional 100 μg/ml denaturierter, fragmentierte Fischsperma-DNA)
 - b) 6X SSC bei 45°C (mit optional 100 μg/ml denaturierter, fragmentierte Fischsperma-DNA),
 - 6X SSC, 0,5 % SDS, 50 % Formamid bei 42°C (mit optional 100 μg/ml denaturierter, fragmentierte Fischsperma-DNA)

- d) 4XSSC, 50 % Formamid bei 42°C (mit optional 100 μg/ml denaturierter, fragmentierte Fischsperma-DNA)
- e) 2X oder 4X SSC bei 50°C (schwach stringente Bedingung),
- f) 30 bis 40 % Formamid, 2X oder 4X SSC bei 42°C (schwach stringente Bedingung).
- (2) Waschschritte können zum Beispiel aus nachfolgenden Bedingungen ausgewählt sein:
- a) 0,015 M NaCl/0,0015 M Natriumcitrat/0,1 % SDS bei 50°C.
 - b) 0,1X SSC bei 65°C.
 - c) 0,1X SSC, 0,5 % SDS bei 68°C.
 - d) 0,1X SSC, 0,5 % SDS, 50 % Formamid bei 42°C.
 - e) 0,2X SSC, 0,1 % SDS bei 42°C.
- f) 2X SSC bei 65°C (schwach stringente Bedingung).

Die Verminderung der Expression eines NADPH-Oxidase-Proteins, der NADPH-Oxidase-Aktivität oder der NADPH-Oxidase-Funktion kann auf vielfältige Art und Weise realisiert werden.

20

5

- "Verminderung" oder "vermindern" ist im Zusammenhang mit einer NADPH-Oxidase, einer NADPH-Oxidase Aktivität oder NADPH-Oxidase-Funktion weit auszulegen und umfasst die teilweise oder im wesentlichen vollständige, auf unterschiedliche zellbiologische
- 25 Mechanismen beruhende Unterbindung oder Blockierung der Funktionalität einer NADPH-Oxidase in einer Pflanze oder einem davon abgeleiteten Teil, Gewebe, Organ, Zellen oder Samen. Eine Verminderung im Sinne der Erfindung umfasst auch eine mengenmäßige Verringerung einer NADPH-Oxidase bis hin zu einem im wesentlichen
- 30 vollständigen Fehlen der NADPH-Oxidase (d.h. fehlende Nachweisbarkeit von NADPH-Oxidase-Aktivität bzw. NADPH-Oxidase-Funktion oder fehlende immunologische Nachweisbarkeit des NADPH-Oxidase-Proteins). Dabei können einer oder mehrere essentielle Einheiten der NADPH-Oxidase vermindert werden. Dabei wird die Expression
- 35 eines bestimmter NADPH-Oxidase oder die NADPH-Oxidase-Aktivität bzw. NADPH-Oxidase-Funktion in einer Zelle oder einem Organismus bevorzugt um mehr als 50 %, besonders bevorzugt um mehr als 80 %, ganz besonders bevorzugt um mehr als 90% vermindert.
- 40 Erfindungsgemäß sind verschiedene Strategien zur Verminderung der Expression eines NADPH-Oxidase-Proteins, der NADPH-Oxidase-Aktivität oder NADPH-Oxidase-Funktion umfasst. Beispielhaft jedoch nicht einschränkend seien zu nennen:

- a) Einbringen einer doppelsträngigen NADPH-Oxidase RNA-Nukleinsäuresequenz (NAox-dsRNA) oder einer deren Expression gewährleistenden Expressionskassette oder Expressionskassetten;
- 5 b) Einbringen einer NADPH-Oxidase antisense-Nukleinsäuresequenzen oder einer deren Expression gewährleistenden Expressionskassette. Umfasst sind solche Verfahren, bei denen die antisense-Nukleinsäuresequenz gegen ein NADPH-Oxidase-Gen (also genomische DNA-Sequenzen) oder ein NADPH-Oxidase-Gentranskript (also RNA-Sequenzen) gerichtet ist. Umfasst sind auch α-anomere Nukleinsäuresequenzen.
- c) Einbringen einer NADPH-Oxidase antisense-Nukleinsäuresequenzen kombiniert mit einem Ribozym oder einer deren Expression gewährleistenden Expressionskassette
- d) Einbringen von NADPH-Oxidase sense-Nukleinsäuresequenzen zur Induktion einer Kosuppression oder einer deren Expression
 20 gewährleistenden Expressionskassette
 - e) Einbringen DNA-oder Protein-bindende Faktoren gegen NADPH-Oxidase -Gene, -RNAs oder -Proteine oder einer deren Expression gewährleistenden Expressionskassette
 - f) Einbringen von den NADPH-Oxidase RNA-Abbau bewirkende virale Nukleinsäuresequenzen und Expressionskonstrukten oder einer deren Expression gewährleistenden Expressionskassette
- **30** g) Einbringung von Konstrukten zur Induktion einer homologen Rekombination an endogenen NADPH-Oxidase-Genen beispielsweise zur Erzeugung von Knockout-Mutanten.
- h) Einführen von Mutationen in endogenen NADPH-Oxidase Gene
 35 zur Erzeugung eines Funktionsverlustes (z.B. Generierung von Stopp-Kodons, Verschiebungen im Leseraster etc.)

Dabei kann jedes einzelne dieser Verfahren eine Verminderung der NADPH-Oxidase-Expression, NADPH-Oxidase-Aktivität oder NADPH-

- 40 Oxidase-Funktion im Sinne der Erfindung bewirken. Auch eine kombinierte Anwendung ist denkbar. Weitere Methoden sind dem Fachmann bekannt und können die Behinderung oder Unterbindung der Prozessierung des NADPH-Oxidase-Proteins, des Transports des NADPH-Oxidase-Proteins oder dessen mRNA, Hemmung der Ribosomen-
- 45 anlagerung, Hemmung des RNA-Spleißens, Induktion eines NADPH-

Oxidase-RNA abbauenden Enzyms und/oder Hemmung der Translationselongation oder -termination umfassen.

Die einzelnen bevorzugten Verfahren seien infolge kurz 5 beschrieben:

- a) Einbringung einer doppelsträngigen NADPH-Oxidase RNA-Nukleinsäuresequenz (NAox-dsRNA)
- 10 Das Verfahren der Genregulation mittels doppelsträngiger RNA ("double-stranded RNA interference"; dsRNAi) ist vielfach in tierischen und pflanzlichen Organismen beschrieben (z.B. Matzke MA et al. (2000) Plant Mol Biol 43:401-415; Fire A. et al (1998) Nature 391:806-811; WO 99/32619; WO 99/53050; WO 00/68374;
- 15 WO 00/44914; WO 00/44895; WO 00/49035; WO 00/63364). Auf die in den angegebenen Zitaten beschriebenen Verfahren und Methoden wird ausdrücklich Bezug genommen. Eine effiziente Gensuppression kann auch bei transienter Expression oder nach transienter Transformation beispielsweise infolge einer biolistischen Trans-
- 20 formation gezeigt werden (Schweizer P et al. (2000) Plant J 2000 24:895-903). dsRNAi-Verfahren beruhen auf dem Phänomen, dass durch gleichzeitiges Einbringen von komplementären Strang- und Gegenstrang eines Gentranskriptes eine hocheffiziente Unterdrückung der Expression des entsprechenden Gens bewirkt wird.
- 25 Der bewirkte Phänotyp kommt dem einer entsprechenden knock-out Mutanten sehr ähnlich (Waterhouse PM et al. (1998) Proc Natl Acad Sci USA 95:13959-64).
- Das dsRNAi-Verfahren hat sich bei der Verminderung der NADPH30 Oxidase-Expression als besonders effizient und vorteilhaft
 erwiesen. Wie u.a. in WO 99/32619 beschrieben sind dsRNAi-Ansätze
 klassischen antisense-Ansätzen deutlich überlegen.
- Ein weiterer Gegenstand der Erfindung bezieht sich daher

 35 auf doppelsträngige RNA-Moleküle (dsRNA-Moleküle), die bei Einführung in eine Pflanze (oder eine davon abgeleitete Zelle,
 Gewebe, Organ oder Samen) die Verminderung eines NADPH-Oxidase bewirken.
- 40 Das doppelsträngiges RNA-Molekül zur Verminderung der Expression eines NADPH-Oxidase Proteins ist dadurch gekennzeichnet, dass
- a) einen "sense"-RNA-Strang umfassend mindestens eine Ribonukleotidsequenz, die im wesentlichen identisch ist zu
 zumindest einem Teil einer NADPH-Oxidase-Nukleinsäuresequenz,
 und

- b) einen "antisense"-RNA-Strang, der zu dem RNA-sense-Strang unter a) im wesentlichen - bevorzugt vollständig - komplementären ist.
- 5 In einer weiterhin bevorzugten Ausführungsform umfasst das doppelsträngige RNA-Molekül zur Verminderung der Expression eines NADPH-Oxidase Proteins
- einen "sense"-RNA-Strang umfassend mindestens eine Ribonukleotidsequenz, die im wesentlichen identisch ist zu
 mindestens einem Teil des "sense"-RNA-Transkriptes einer
 Nukleinsäuresequenz kodierend für ein NADPH-Oxidase Protein,
 und
- 15 b) einen "antisense"-RNA-Strang, der zu dem RNA-sense-Strang unter a) im wesentlichen bevorzugt vollständig komplementären ist.
- In Bezug auf die doppelsträngigen RNA-Moleküle meint NADPHOxidase-Nukleinsäuresequenz bevorzugt eine Sequenz umfassend
 eine Sequenz gemäß SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17,
 19 oder 21.
- Im wesentlichen identisch" meint, dass die dsRNA Sequenz auch 25 Insertionen, Deletionen sowie einzelne Punktmutationen im Vergleich zu der NADPH-Oxidase Zielsequenz oder einer funktionell äquivalenten Zielsequenz aufweisen kann und dennoch eine effizient Verminderung der Expression bewirken. Bevorzugt beträgt die Homologie nach obiger Definition mindestens 75 %, bevorzugt min-
- 30 destens 80 %, ganz besonders bevorzugt mindestens 90 % am meisten bevorzugt 100 % zwischen dem "sense"-Strang einer inhibitorischen dsRNA und mindestens einem Teil des "sense"-RNA-Transkriptes einer Nukleinsäuresequenz kodierend für ein NADPH-Oxidase Protein oder ein funktionelles Äquivalent desselben (bzw. zwischen
- 35 dem "antisense"-Strang dem komplementären Strang einer Nukleinsäuresequenz kodierend für ein NADPH-Oxidase Protein oder ein funktionelles Äquivalent desselben).
- Die Länge des Teilabschnittes beträgt mindestens 10 Basen, 40 bevorzugt mindestens 25 Basen, besonders bevorzugt mindestens 50 Basen, ganz besonders bevorzugt mindestens 100 Basen, am meisten bevorzugt mindestens 200 Basen oder mindestens 300 Basen.
- Alternativ, kann eine "im wesentlichen identische" dsRNA auch als 45 Nukleinsäuresequenz definiert werden, die befähigt ist, mit einem Teil eines Speicherprotein Gentranskriptes zu hybridisieren (z.B.

in 400 mM NaCl, 40 mM PIPES pH 6,4, 1 mM EDTA bei 50°C oder 70°C für 12 bis 16 h).

"Im wesentlichen komplementär" meint, dass der "antisense"
5 RNA-Strang auch Insertionen, Deletionen sowie einzelne Punktmutationen im Vergleich zu dem Komplement des "sense"-RNAStranges aufweisen kann. Bevorzugt beträgt die Homologie mindestens 80 %, bevorzugt mindestens 90 %, ganz besonders bevorzugt
mindestens 95 %, am meisten bevorzugt 100% zwischen dem "anti10 sense"-RNA-Strang und dem Komplement des "sense"-RNA-Strangs.

"Teil des "sense"-RNA-Transkriptes" einer Nukleinsäuresequenz kodierend für ein NADPH-Oxidase Protein oder ein funktionelles Äquivalent desselben meint Fragmente einer RNA oder mRNA

15 transkribiert von einer für ein NADPH-Oxidase-Protein oder ein funktionelles Äquivalent desselben kodierenden Nukleinsäuresequenz, bevorzugt von einem NADPH-Oxidase-Gen. Dabei haben die Fragmente bevorzugt eine Sequenzlänge von mindestens 20 Basen, bevorzugt mindestens 50 Basen, besonders bevorzugt mindestens

20 100 Basen, ganz besonders bevorzugt mindestens 200 Basen, am meisten bevorzugt mindestens 500 Basen. Umfasst ist auch die vollständige transkribierte RNA oder mRNA.

Umfasst ist auch die Verwendung der erfindungsgemäßen dsRNA-25 Moleküle in den erfindungsgemäßen Verfahren zur Erzeugung einer Pathogenresistenz in Pflanzen.

Die dsRNA kann aus einem oder mehr Strängen polymerisierter Ribonukleotide bestehen. Es können ferner Modifikationen sowohl des
30 Zucker-Phosphat-Gerüstes als auch der Nukleoside vorliegen. Beispielsweise können die Phosphodiesterbindungen der natürlichen
RNA dahingehend modifiziert sein, dass sie zumindest ein Stickstoff oder Schwefel-Heteroatom umfassen. Basen können dahingehend modifiziert werden, dass die Aktivität beispielsweise von
35 Adenosindeaminase eingeschränkt wird. Solche und weitere Modi-

5 Adenosindeaminase eingeschränkt wird. Solche und weitere Modifikationen sind weiter unten bei den Verfahren zur Stabilisierung von antisense-RNA beschrieben.

Natürlich können, um den gleichen Zweck zu erreichen, auch 40 mehrere individuelle dsRNA Moleküle, die jeweils einen der oben definierten Ribonukleotidsequenzabschnitte umfassen, in die Zelle oder den Organismus eingebracht werden.

Die dsRNA kann enzymatisch oder ganz oder teilweise chemisch-45 synthetisch hergestellt werden. Die doppelsträngige dsRNA Struktur kann ausgehend von zwei komplementären, separaten RNA-Strängen oder – bevorzugt – ausgehend von einem einzelnen, selbstkomplementären RNA-Strang gebildet werden.

5

Bei einem einzelnen, selbstkomplementären Strang, können "sense"und "antisense"-Sequenz durch eine verbindende Sequenz ("Linker")
verknüpft sein und beispielsweise eine Haarnadelstruktur ausbilden. Bevorzugt kann die verbindende Sequenz ein Intron sein,
10 das nach Synthese der dsRNA herausgespleißt wird.

Die Nukleinsäuresequenz kodierend für eine dsRNA kann weitere Elemente beinhalten, wie beispielsweise Transkriptionsterminationssignale oder Polyadenylierungssignale.

15

25

Sollen die zwei Stränge der dsRNA in einer Zelle oder Pflanze zusammengebracht werden, so kann dies auf verschiedene Art geschehen:

- 20 a) Transformation der Zelle oder Pflanze mit einem Vektor, der beide Expressionskassetten umfasst,
 - b) Kotransformation der Zelle oder Pflanze mit zwei Vektoren, wobei der eine die Expressionskassetten mit dem "sense"-Strang, der andere die Expressionskassetten mit dem "antisense"-Strang umfasst.
- c) Kreuzung von zwei Pflanzen, die mit jeweils einem Vektor transformiert wurden, wobei der eine die Expressionskassetten mit dem "sense"-Strang, der andere die Expressionskassetten mit dem "antisense"-Strang umfasst.

Die Bildung der RNA Duplex kann entweder außerhalb der Zelle oder innerhalb derselben initiiert werden. Wie in WO 99/53050 kann

35 die dsRNA auch eine Haarnadelstruktur umfassen, indem "sense"und "antisense"-Strang durch einen "Linker" (beispielsweise
ein Intron) verbunden werden. Die selbstkomplementären dsRNAStrukturen sind bevorzugt, da sie lediglich die Expression eines
Konstruktes erfordern und die komplementären Stränge stets in

40 einem äquimolaren Verhältnis umfassen.

Die Expressionskassetten kodierend für den "antisense"- oder "sense"-Strang einer dsRNA oder für den selbstkomplementären-Strang der dsRNA, werden bevorzugt in einen Vektor insertiert und mit den unten beschriebenen Verfahren stabil (beispielsweise unter Verwendung von Selektionsmarkern) in das Genom

einer Pflanze insertiert, um eine dauerhafte Expression der dsRNA zu gewährleisten.

Die dsRNA kann unter Verwendung einer Menge eingeführt werden,

5 die zumindest ein Kopie pro Zelle ermöglicht. Höhere Mengen (z.B. mindestens 5, 10, 100, 500 oder 1000 Kopien pro Zelle) können ggf. eine effizienter Verminderung bewirken.

Wie bereits beschrieben, ist eine 100%ige Sequenzidentität 10 zwischen dsRNA und einem NADPH-Oxidase Gentranskript oder dem Gentranskript eines funktionell äquivalenten Gens nicht zwingend erforderlich, um eine effiziente Verminderung der NADPH-Oxidase Expression zu bewirken. Demzufolge besteht der Vorteil, dass das Verfahren tolerant ist gegenüber Sequenzabweichungen, wie sie 15 infolge genetischer Mutationen, Polymorphismen oder evolutionärer Divergenzen vorliegen können. So ist es beispielsweise möglich mit der dsRNA, die ausgehend von der NADPH-Oxidase Sequenz des einen Organismus generiert wurde, die NADPH-Oxidase Expression in einem anderen Organismus zu unterdrücken. Die hohe Sequenz-20 homologie zwischen den NADPH-Oxidase Sequenzen aus Reis, Mais und Gerste lässt auf einen hohen Konservierungsgrad dieses Proteins innerhalb von Pflanzen schließen, so dass die Expression einer dsRNA abgeleitet von einer der NADPH-Oxidase Sequenzen umfassend eine Sequenz gemäß SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 25 oder 21 auch einen vorteilhaften Effekt in anderen Pflanzenarten haben dürfte.

Auch ist es aufgrund der hohen Homologie zwischen den einzelnen NADPH-Oxidase-Proteinen und ihren funktionellen Äquivalenten mög30 lich mit einer einzigen dsRNA, die ausgehend von einer bestimmten NADPH-Oxidase-Sequenz eines Organismus generiert wurde, die Expression weiterer homologer NADPH-Oxidase-Proteine und/oder deren funktioneller Äquivalente des gleichen Organismus oder aber auch die Expression von NADPH-Oxidase-Proteinen in anderen verauch die Expression von NADPH-Oxidase-Proteinen in anderen verswandten Arten zu unterdrücken. Zu diesem Zweck umfasst die dsRNA bevorzugt Sequenzbereich von NADPH-Oxidase-Gentranskripten, die konservierten Bereichen entsprechen. Besagte konservierte Bereiche können aus Sequenzvergleichen leicht abgeleitet werden.

- 40 Die dsRNA kann entweder in vivo oder in vitro synthetisiert werden. Dazu kann eine DNA-Sequenz kodierend für eine dsRNA in eine Expressionskassette unter Kontrolle mindestens eines genetischen Kontrollelementes (wie beispielsweise Promotor, Enhancer, Silencer, Splice-Donor oder -Akzeptor, Poly-adenylierungssignal) gebracht werden. Entsprechend vorteil-
- 45 adenylierungssignal) gebracht werden. Entsprechend vorteilhafte Konstruktionen sind weiter unten beschrieben. Eine Poly-

adenylierung ist nicht erforderlich, ebenso müssen keine Elemente zur Initiierung einer Translation vorhanden sein.

Eine dsRNA kann chemisch oder enzymatisch synthetisiert werden.

5 Dazu können zelluläre RNA Polymerasen oder Bakteriophagen RNA
Polymerasen (wie z.B. T3-, T7- oder SP6 RNA-Polymerase) verwendet
werden. Entsprechende Verfahren zu in vitro Expression von RNA
sind beschrieben (WO 97/32016; US 5,593,874; US 5,698,425,
US 5,712,135, US 5,789,214, US 5,804,693). Eine chemisch oder

10 enzymatisch in vitro syntetisierte dsRNA kann vor der Einführung
in eine Zelle, Gewebe oder Organismus aus dem Reaktionsgemisch
beispielsweise durch Extraktion, Präzipitation, Elektrophorese,
Chromatographie oder Kombinationen dieser Verfahren ganz oder
teilweise aufgereinigt werden. Die dsRNA kann unmittelbar in die

15 Zelle eingeführt werden oder aber auch extrazellulär (z.B. in den
interstitialen Raum) appliziert werden.

Bevorzugt wird die Pflanze jedoch stabil mit einem Expressionskonstrukt, das die Expression der dsRNA realisiert, transfor-20 miert. Entsprechende Verfahren sind weiter unten beschrieben.

b) Einbringung einer NADPH-Oxidase antisense-Nukleinsäuresequenz

Verfahren zur Suppression eines bestimmten Proteins durch Verhinderung der Akkumulation seiner mRNA durch die "antisense"Technologie sind vielfach - auch in Pflanzen - beschrieben
(Sheehy et al. (1988) Proc Natl Acad Sci USA 85: 8805-8809;
US 4,801,340; Mol JN et al. (1990) FEBS Lett 268(2):427-430).

Das antisense Nukleinsäuremolekül hybridisiert bzw. bindet mit
der zellulären mRNA und/oder genomischen DNA kodierend für das
zu supprimierende NADPH-Oxidase-Zielprotein. Dadurch wird die
Transkription und/oder Translation des Zielproteins unterdrückt.
Die Hybridisierung kann auf konventionelle Art über die Bildung
einer stabilen Duplex oder - im Fall von genomischer DNA - durch
Bindung des antisense Nukleinsäuremoleküls mit der Duplex der
genomischen DNA durch spezifische Wechselwirkung in der großen
Furche der DNA-Helix entstehen.

Eine antisense Nukleinsäuresequenz geeignet zur Verminderung 40 eines NADPH-Oxidase-Proteins kann unter Verwendung der für dieses Protein kodierenden Nukleinsäuresequenz, beispielsweise der Nukleinsäuresequenz umfassend eine Sequenz gemäß SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 oder 21, nach den Basenpaarregeln von Watson und Crick abgeleitet werden.

45 Die antisense Nukleinsäuresequenz kann zu der gesamten transkribierten mRNA des besagten Proteins komplementär sein, sich auf die kodierende Region beschränken oder nur aus einem

Oligonukleotid bestehen, das zu einem Teil der kodierenden oder nicht-kodierenden Sequenz der mRNA komplementär ist. So kann das Oligonukleotid beispielsweise komplementär zu der Region sein, die den Translationsstart für das besagte Protein umfasst. Anti-5 sense-Nukleinsäuresequenzen können eine Länge von zum Beispiel 5, 10, 15, 20, 25, 30, 35, 40, 45 oder 50 Nukleotide haben, können aber auch länger sein und mindestens 100, 200, 500, 1000, 2000 oder 5000 Nukleotide umfassen. Antisense-Nukleinsäuresequenzen können rekombinant exprimiert oder chemisch bzw. enzymatisch 10 unter Verwendung von dem Fachmann bekannten Verfahren synthetisiert werden. Bei der chemischen Synthese können natürlich oder modifizierte Nukleotide verwendet werden. Modifizierte Nukleotide können der antisense Nukleinsäuresequenz eine erhöhte biochemische Stabilität verleihen und zu einer erhöhten physikali-15 schen Stabilität der Duplex gebildet aus antisense-Nukleinsäuresequenz und sense-Zielsequenz führen. Verwendet werden können beispielsweise Phosphorothioatderivative und Acridin-substitierte Nukleotide wie 5-Fluorouracil, 5-Bromouracil, 5-Chlorouracil, 5-Iodouracil, Hypoxanthin, Xanthin, 4-Acetylcytosin, 5-(Carboxy-20 hydroxylmethyl)uracil, 5-Carboxymethylaminomethyl-2-thiouridin, 5-Carboxymethylaminomethyluracil, Dihydrouracil, β -D-Galactosylqueosin, Inosine, N6-Isopentenyladenin, 1-Methylguanin, 1-Methylinosin, 2,2-Dimethylguanin, 2-Methyladenin, 2-Methylguanin, 3-Methylcytosin, 5-Methylcytosin, N6-Adenin, 7-Methyl-25 guanin, 5-Methylaminomethyluracil, 5-Methoxyaminomethyl-2-thiouracil, β -D-mannosylqueosin, 5'-Methoxycarboxymethyluracil, 5-Methoxyuracil, 2-Methylthio-N6-isopentenyladenin, Uracil-5-oxyessigsäure, Pseudouracil, Queosine, 2-Thiocytosin, 5-Methyl-2-thiouracil, 2-Thiouracil, 4-Thiouracil, 5-Methyluracil, 30 Uracil-5-oxyessigsäuremethylester, Uracil-5-oxyessigsäure,

5-Methyl- 2-thiouracil, 3-(3-Amino-3-N-2-carboxypropyl)uracil und 2,6-Diaminopurin.

In einer weiteren bevorzugten Ausführungsform kann die Expression

35 eines NADPH-Oxidase-Proteins durch Nukleotidsequenzen inhibiert werden, die komplementär zu der regulatorischen Region eines NADPH-Oxidase-Gens (z.B. einem NADPH-Oxidase Promoter und/oder Enhancer) sind und triple-helikale Strukturen mit der dortigen DNA-Doppelhelix ausbilden, so dass die Transkription des NADPH-40 Oxidase-Gens vermindert wird. Entsprechende Verfahren sind beschrieben (Helene C (1991) Anticancer Drug Res 6(6):569-84; Helene C et al. (1992) Ann NY Acad Sci 660:27-36; Maher LJ (1992) Bioassays 14(12):807-815).

45 In einer weiteren Ausführungsform kann das antisense Nukleinsäuremolekül eine α -anomere Nukleinsäure sein. Derartige α -anomere Nukleinsäuremoleküle bilden spezifische doppel-

strängige Hybride mit komplementärer RNA in denen – im Unterschied zu den konventionellen β-Nukleinsäuren – die beiden Stränge parallel zueinander verlaufen (Gautier C et al. (1987) Nucleic Acids Res 15:6625-6641). Das antisense Nukleinsäuremolekül kann ferner auch 2'-O-Methylribonukleotide (Inoue et al. (1987) Nucleic Acids Res 15:6131-6148) oder chimäre RNA-DNA Analoge beinhalten (Inoue et al. (1987) FEBS Lett 215:327-330).

c) Einbringung einer NADPH-Oxidase antisense-Nukleinsäuresequenz
 kombiniert mit einem Ribozym

Vorteilhaft kann die oben beschriebene antisense-Strategie mit einem Ribozym-Verfahren gekoppelt werden. Katalytische RNA-Mole-küle oder Ribozyme können an jede beliebige Ziel-RNA angepasst werden und spalten das Phosphodiester-Gerüst an spezifischen Positionen, wodurch die Ziel-RNA funktionell deaktiviert wird (Tanner NK (1999) FEMS Microbiol Rev 23(3):257-275). Das Ribozym wird dadurch nicht selber modifiziert, sondern ist in der Lage, weitere Ziel-RNA-Moleküle analog zu spalten, wodurch es die Eigenschaften eines Enzyms erhält. Der Einbau von Ribozymsequenzen in "antisense"-RNAs verleiht eben diesen "antisense"-RNAs diese enzymähnliche, RNA-spaltende Eigenschaft und steigert so deren Effizienz bei der Inaktivierung der Ziel-RNA. Die Herstellung und Verwendung entsprechender Ribozym-"antisense"-RNA-Moleküle ist beispielsweise beschrieben bei Haseloff et al. (1988) Nature 334:585-591.

hoff und Gerlach (1988) Nature 334:585-591) verwendet werden, um 30 die mRNA eines zu supprimierenden Enzyms - z.B. NADPH-Oxidase katalytisch zu spalten und die Translation zu verhindern. Die Ribozym-Technologie kann die Effizienz einer antisense-Strategie erhöhen. Verfahren zur Expression von Ribozymen zur Verminderung bestimmter Proteine sind beschrieben in (EP 0 291 533, EP 0 321 35 201, EP 0 360 257). In pflanzlichen Zellen ist eine Ribozym-Expression ebenfalls beschrieben (Steinecke P et al. (1992) EMBO J 11(4):1525-1530; de Feyter R et al. (1996) Mol Gen Genet. 250(3):329-338). Geeignete Zielsequenzen und Ribozyme können zum Beispiel wie bei "Steinecke P, Ribozymes, Methods in Cell 40 Biology 50, Galbraith et al. eds, Academic Press, Inc. (1995), S. 449-460" beschrieben, durch Sekundärstrukturberechnungen von Ribozym- und Ziel-RNA sowie durch deren Interaktion bestimmt werden (Bayley CC et al. (1992) Plant Mol Biol. 18(2):353-361; Lloyd AM and Davis RW et al. (1994) Mol Gen Genet. 45 242(6):653-657). Beispielsweise können Derivate der Tetrahymena L-19 IVS RNA konstruiert werden, die komplementäre Bereiche zu

der mRNA des zu supprimierenden NADPH-Oxidase Proteins aufweisen

Auf diese Art können Ribozyme (z.B. "Hammerhead"-Ribozyme; Hasel-

(siehe auch US 4,987,071 und US 5,116,742). Alternativ können solche Ribozyme auch über einen Selektionsprozess aus einer Bibliothek diverser Ribozyme identifiziert werden (Bartel D und Szostak JW (1993) Science 261:1411-1418).

5

- d) Einbringung einer NADPH-Oxidase sense-Nukleinsäuresequenz zur Induktion eines Kosuppression
- Die Expression einer NADPH-Oxidase Nukleinsäuresequenz in sense
 10 Orientierung kann zu einer Kosuppression des entsprechenden homologen, endogenen Gens führen. Die Expression von sense-RNA mit
 Homologie zu einem endogenen Gen kann die Expression desselben
 vermindern oder ausschalten, ähnlich wie es für antisense
 Ansätze beschrieben wurde (Jorgensen et al. (1996) Plant Mol
- 15 Biol 31(5):957-973; Goring et al. (1991) Proc Natl Acad Sci USA 88:1770-1774; Smith et al. (1990) Mol Gen Genet 224:447-481; Napoli et al. (1990) Plant Cell 2:279-289; Van der Krol et al. (1990) Plant Cell 2:291-99). Dabei kann das eingeführte Konstrukt das zu vermindernde, homologe Gen ganz oder nur teilweise
- 20 representieren. Die Möglichkeit zur Translation ist nicht erforderlich. Die Anwendung dieser Technologie auf Pflanzen ist beispielsweise beschrieben bei Napoli et al. (1990) The Plant Cell 2: 279-289 und in US 5,034,323.
- 25 Bevorzugt wird die Kosuppression unter Verwendung einer Sequenz realisiert, die im wesentlichen identisch ist zu zumindest einem Teil der Nukleinsäuresequenz kodierend für ein NADPH-Oxidase-Protein oder ein funktionelles Äquivalent desselben, beispielsweise der Nukleinsäuresequenz umfassend eine Sequenz gemäß
 30 SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 oder 21.
 - e) Einbringung DNA-oder Protein-bindende Faktoren gegen NADPH-Oxidase Gene, -RNAs oder Proteine
- 35 Eine Verminderung einer NADPH-Oxidase Genexpression ist auch mit spezifischen DNA-bindenden Faktoren z.B. mit Faktoren vom Typus der Zinkfingertranskriptionsfaktoren möglich. Diese Faktoren lagern sich an die genomische Sequenz des endogenen Zielgens, bevorzugt in den regulatorischen Bereichen, an und bewirken
- 40 eine Repression des endogenen Gens. Die Verwendung eines solchen Verfahrens ermöglicht die Verminderung der Expression eines endogenen NADPH-Oxidase Gens, ohne dass dessen Sequenz gentechnisch manipuliert werden muss. Entsprechende Verfahren zur Herstellung entsprechender Faktoren sind beschrieben (Dreier B et al. (2001)
- 45 J Biol Chem 276(31):29466-78; Dreier B et al. (2000) J Mol Biol 303(4):489-502; Beerli RR et al. (2000) Proc Natl Acad Sci USA 97 (4):1495-1500; Beerli RR et al. (2000) J Biol Chem

275(42):32617-32627; Segal DJ and Barbas CF 3rd. (2000) Curr Opin Chem Biol 4(1):34-39; Kang JS and Kim JS (2000) J Biol Chem 275(12):8742-8748; Beerli RR et al. (1998) Proc Natl Acad Sci USA 95(25):14628- 14633; Kim JS et al. (1997) Proc Natl Acad Sci USA 94(8):3616 -3620; Klug A (1999) J Mol Biol 293(2):215-218; Tsai SY et al. (1998) Adv Drug Deliv Rev 30(1-3):23-31; Mapp AK et al. (2000) Proc Natl Acad Sci USA 97(8):3930-3935; Sharrocks AD et al. (1997) Int J Biochem Cell Biol 29(12):1371-1387; Zhang L et al. (2000) J Biol Chem 275(43):33850-33860).

10

Die Selektion dieser Faktoren kann unter Verwendung eines beliebigen Stückes eines NADPH-Oxidase-Gens erfolgen. Bevorzugt liegt dieser Abschnitt im Bereich der Promotorregion. Für eine Genunterdrückung kann er aber auch im Bereich der kodierenden 15 Exons oder Introns liegen. Die entsprechenden Abschnitte sind für den Fachmann mittels Datenbankabfrage aus der Genbank oder – ausgehend von einer NADPH-Oxidase cDNA, deren Gen nicht in der Genbank vorhanden ist, durch Durchmusterung einer genomischen Bibliothek nach korrespondierenden genomischen Klonen erhältlich.

20 Die dazu erforderlichen Verfahren sind dem Fachmann geläufig.

Ferner können Faktoren in eine Zelle eingebracht werden, die das NADPH-Oxidase Zielprotein selber inhibieren. Die proteinbindenden Faktoren können z.B. Aptamere (Famulok M und Mayer G (1999) Curr 25 Top Microbiol Immunol 243:123-36) oder Antikörper bzw. Antikörperfragmente oder einzelkettige Antikörper sein. Die Gewinnung dieser Faktoren ist beschrieben und dem Fachmann bekannt. Beispielsweise wurde ein cytoplasmatischer scFv Antikörper eingesetzt, um die Aktivität des Phytochrom A Proteins in gentechnisch veränderten Tabakpflanzen zu modulieren (Owen M et al. (1992) Biotechnology (N Y) 10(7):790-794; Franken E et al. (1997) Curr Opin Biotechnol 8(4):411-416; Whitelam (1996) Trend Plant Sci 1:286-272).

- 35 Die Genexpression kann auch durch maßgeschneiderte, niedermolekulare synthetische Verbindungen unterdrückt werden, beispielsweise vom Polyamid-Typ (Dervan PB und Bürli RW (1999)
 Current Opinion in Chemical Biology 3:688-693; Gottesfeld
 JM et al. (2000) Gene Expr 9(1-2):77-91). Diese Oligomere
- 40 bestehen aus den Bausteinen 3-(Dimethylamino)propylamin, N-Methyl-3-hydroxypyrrol, N-Methylimidazol und N-Methylpyrrole und können an jedes Stück doppelsträngiger DNA so angepasst werden, dass sie sequenzspezifisch in die große Furche binden und die Expression der dortigen Genesequenzen blockieren. Ent-
- 45 sprechende Verfahren sind beschrieben (siehe unter anderem Bremer RE et al. (2001) Bioorg Med Chem. 9(8):2093-103; Ansari AZ et al. (2001) Chem Biol. 8(6):583-92; Gottesfeld JM et al. (2001) J Mol

Biol. 309(3):615-29; Wurtz NR et al. (2001) Org Lett 3(8):1201-3; Wang CC et al. (2001) Bioorg Med Chem 9(3):653-7; Urbach AR und Dervan PB (2001) Proc Natl Acad Sci USA 98(8):4343-8; Chiang SY et al. (2000) J Biol Chem. 275(32):24246-54).

5

f) Einbringung von den NADPH-Oxidase RNA-Abbau bewirkenden viralen Nukleinsäuresequenzen und Expressionskonstrukten

Die NADPH-Oxidase Expression kann effektiv auch durch Induktion des spezifischen NADPH-Oxidase RNA-Abbaus durch die Pflanze mit Hilfe eines viralen Expressionssystems (Amplikon) (Angell, SM et al. (1999) Plant J. 20(3):357-362) realisiert werden. Diese Systeme – auch als "VIGS" (viral induced gene silencing) bezeichnet – bringen Nukleinsäureseugnzen mit Homologie zu den zu supprimierenden Transkripten mittels viraler Vektoren in die Pflanze ein. Die Transkription wird sodann – vermutlich mediiert durch pflanzliche Abwehrmechanismen gegen Viren – abgeschaltet. Entsprechende Techniken und Verfahren sind beschrieben (Ratcliff F et al. (2001) Plant J 25(2):237-45; Fagard M und Vaucheret H (2000) Plant Mol Biol 43(2-3):285-93; Anandalakshmi R et al. (1998) Proc Natl Acad Sci USA 95(22):13079-84; Ruiz MT (1998) Plant Cell 10(6): 937-46).

 g) Einbringung von Konstrukten zur Induktion einer homologen
 Rekombination an endogenen NADPH-Oxidase-Genen beispielsweise zur Erzeugung von Knockout-Mutanten.

Zur Herstellung eines homolog rekombinanten Organismus mit verminderter NADPH-Oxidase-Aktivität verwendet man beispiels30 weise ein Nukleinsäurekonstrukt, das zumindest einen Teil eines endogenen NADPH-Oxidase Gens enthält, das durch eine Deletion, Addition oder Substitution mindestens eines Nukleotids so verändert wird, so dass die Funktionalität vermindert oder gänzlich aufgehoben wird. Die Veränderung kann auch die regulativen Elemente (z.B. den Promotor) des Gens betreffen, so dass die kodierende Sequenz unverändert bleibt, eine Expression (Transkription und/oder Translation) jedoch unterbleibt und vermindert wird.

- 40 Bei der konventionellen homologen Rekombination ist die veränderte Region an ihrem 5'- und 3'-Ende von weiteren Nukleinsäuresequenzen flankiert, die eine ausreichende Länge für die Ermöglichung der Rekombination aufweisen müssen. Die Länge liegt in der Regel in einem Bereich von mehreren einhundert Basen
- 45 bis zu mehreren Kilobasen (Thomas KR und Capecchi MR (1987) Cell 51:503; Strepp et al. (1998) Proc Natl Acad Sci USA 95(8):4368-4373). Für die homologe Rekombination wird der Wirts-

organismus - zum Beispiel eine Pflanze - mit dem Rekombinationskonstrukt unter Verwendung der unten beschriebenen Verfahren transformiert und erfolgreich rekombinierte Klone unter Verwendung zum Beispiel einer Antibiotika- oder Herbizidresistenz 5 selektioniert.

Homologe Rekombination ist ein relativ seltenes Ereignis in höheren Eukaryoten, vor allem in Pflanzen. Zufällige Integrationen in das Wirtsgenom überwiegen. Eine Möglichkeit die 10 zufällig integrierten Sequenzen zu entfernen und so Zellklone mit einer korrekten homologen Rekombination anzureichern, besteht in der Verwendung eines sequenzspezifischen Rekombinationssystems wie in US 6,110,736 beschrieben, durch welche unspezifisch integrierte Sequenzen wieder deletiert werden können, was die 15 Selektion erfolgreich über homologe Rekombination integrierter Ereignisse erleichtert. Eine Vielzahl von sequenzspezifischen Rekombinationssystemen kann verwendet werden, beispielhaft sind das Cre/lox-System des Bacteriophagen P1, das FLP/FRT System der Hefe, die Gin Rekombinase des Mu Phagen, die Pin Rekombinase aus 20 E. coli und das R/RS System des pSR1 Plasmids genannt. Bevorzugt sind das Bacteriophagen P1 Cre/lox und das Hefe FLP/FRT System. Das FLP/FRT und cre/lox Rekombinasesystem wurde bereits in pflanzlichen Systemen angewendet (Odell et al. (1990) Mol Gen Genet 223: 369-378)

25

- h) Einführung von Mutationen in endogene NADPH-Oxidase Gene zur Erzeugung eines Funktionsverlustes (z.B. Generierung von Stopp-Kodons, Verschiebungen im Leseraster etc.)
- 30 Weitere geeignete Methoden zur Verminderung der NADPH-Oxidase-Aktivität sind die Einführung von Nonsense-Mutationen in endogene NADPH-Oxidase Gene zum Beispiel mittels Einführung von RNA/DNA-Oligonukleotiden in die Pflanze (Zhu et al. (2000) Nat Biotechnol 18(5):555-558) sowie die Generierung von Knockout-Mutanten mit
- 35 Hilfe von z.B. T-DNA-Mutagenese (Koncz et al. (1992) Plant Mol Biol 20(5):963-976), ENU-(N-Ethyl-N-nitrosoharnstoff) Mutagenese oder homolger Rekombination (Hohn B und Puchta (1999) H Proc Natl Acad Sci USA 96:8321-8323.). Punktmutationen können auch mittels DNA-RNA Hybriden erzeugt werden, die auch als
- 40 "chimeraplasty" bekannt sind (Cole-Strauss et al. (1999) Nucl Acids Res 27(5):1323-1330; Kmiec (1999) Gene therapy American Scientist 87(3):240-247).

Die Methoden der dsRNAi, der Kosuppression mittels sense-RNA

45 und der "VIGS" ("virus induced gene silencing") werden auch als
"post-transcriptional gene silencing" (PTGS) bezeichnet. PTGSVerfahren wie auch die Verminderung der NADPH-Oxidase-Funktion

oder Aktivität mit dominant-negativen NADPH-Oxidase-Varianten sind besonders vorteilhaft, weil die Anforderungen an die Homologie zwischen dem zu supprimierenden endogenem Gen und der transgen exprimierten sense- oder dsRNA-Nukleinsäuresequenz

- 5 (bzw. zwischen dem endogenen Gen und seiner dominant-negativen Variante) geringer sind als beispielsweise bei einem klassischen antisense-Ansatz. Entsprechende Homologie-Kriterien sind bei der Beschreibung des dsRNAI-Verfahrens genannt und allgemein für PTGS-Verfahren oder dominant-negative Ansätze übertragbar. Auf-
- 10 grund der hohen Homologie zwischen den NADPH-Oxidase-Proteinen aus Mais, Reis und Gerste kann auf einen hohen Konservierungsgrad dieses Protein bei Pflanzen geschlossen werden. So kann man voraussichtlich unter Verwendung der NADPH-Oxidase-Nukleinsäuresequenzen aus Gerste, Mais oder Reis auch die Expression von
- 15 homologen NADPH-Oxidase-Proteinen in anderen Arten effektiv supprimieren, ohne dass die Isolierung und Strukturaufklärung der dort vorkommenden NADPH-Oxidase-Homologen zwingend erforderlich wäre. Dies erleichtert erheblich den Arbeitsaufwand. Analog kann man voraussichtlich auch unter Verwendung von dominant-negativen
- 20 Varianten eines NADPH-Oxidase-Proteins aus Reis, Mais oder Gerste die Funktion/Aktivität seines Homologs in anderen Pflanzenarten effektiv vermindern oder unterdrücken.

Alle Substanzen und Verbindungen die direkt oder indirekt eine 25 Verminderung der Proteinmenge, RNA-Menge, Genaktivität oder Proteinaktivität eines NADPH-Oxidase-Proteins bewirken, seien infolge unter der Bezeichnung "anti-NADPH-Oxidase"-Verbindungen zusammengefasst. Der Begriff "anti-NADPH-Oxidase"-Verbindung schließt explizit die in den oben beschriebenen Verfahren zum 30 Einsatz kommenden Nukleinsäuresequenzen, Peptide, Proteine oder andere Faktoren ein.

"Einbringung" umfasst im Rahmen der Erfindung alle Verfahren, die dazu geeignet eine "anti-NADPH-Oxidase"-Verbindung, direkt oder indirekt, in eine Pflanze oder eine Zelle, Kompartiment, Gewebe, Organ oder Samen derselben einzuführen oder dort zu generieren. Direkte und indirekte Verfahren sind umfasst. Die Einbringung kann zu einer vorübergehenden (transienten) Präsenz einer "anti-NADPH-Oxidase"-Verbindung (beispielsweise einer dsRNA) führen oder aber auch zu einer dauerhaften (stabilen).

Gemäß der unterschiedlichen Natur der oben beschriebenen Ansätze kann die "anti-NADPH-Oxidase"-Verbindung ihre Funktion direkt ausüben (zum Beispiel durch Insertion in ein endogenes

45 NADPH-Oxidase Gen). Die Funktion kann aber auch indirekt nach Transkription in eine RNA (zum Beispiel bei antisense Ansätzen) oder nach Transkription und Translation in ein Protein

(z.B. Bindungsfaktoren) ausgeübt werden. Sowohl direkte als auch indirekt wirkende "anti-NADPH-Oxidase"-Verbindungen sind erfindungsgemäß umfasst.

5 Einführen umfasst beispielsweise Verfahren wie Transfektion, Transduktion oder Transformation.

"Anti-NADPH-Oxidase" Verbindungen umfasst somit beispielsweise auch rekombinante Expressionskonstrukte, die eine Expression 10 (d.h. Transkription und ggf. Translation) beispielsweise einer NADPH-Oxidase-dsRNA oder einer NADPH-Oxidase "antisense"-RNA bevorzugt in einer Pflanze oder einem Teil, Gewebe, Organ oder Samen derselben - bedingen.

15 In besagten Expressionskonstrukten steht ein Nukleinsäuremolekül, dessen Expression (Transkription und ggf. Translation) eine "anti-NADPH-Oxidase"-Verbindung generiert, bevorzugt in funktioneller Verknüpfung mit mindestens einem genetischen Kontrollelement (beispielsweise einem Promotor), das eine Expression 20 in einem Organismus, bevorzugt in Pflanzen, gewährleistet. Soll das Expressionskonstrukt direkt in die Pflanze eingeführt und die "anti-NADPH-Oxidase"-Verbindung (beispielsweise die NADPH-Oxidase dsRNA) dort in plantae erzeugt werden, so sind pflanzenspezifische genetische Kontrollelemente (beispiels-25 weise Promotoren) bevorzugt. Die "anti-NADPH-Oxidase"-Verbindung kann jedoch auch in anderen Organismen oder in vitro erzeugt und dann in die Pflanze eingebracht werden (wie in Beispiel 6 und 7 beschrieben). In diesem sind all prokaryotischen oder eukaryotischen genetischen Kontrollelemente (beispielsweise 30 Promotoren) bevorzugt, die die Expression in den jeweils für

die Herstellung gewählten Organismus erlauben.

Unter einer funktionellen Verknüpfung versteht man zum Beispiel die sequentielle Anordnung eines Promotors mit der zu expri35 mierenden Nukleinsäuresequenz (zum Beispiel einer "anti-NAox-Verbindung) und ggf. weiterer regulativer Elemente wie zum Beispiel einem Terminator derart, dass jedes der regulativen Elemente seine Funktion bei der transgenen Expression der Nukleinsäuresequenz, je nach Anordnung der Nukleinsäuresequenzen zu sense oder anti-sense RNA, erfüllen kann. Dazu ist nicht unbedingt eine direkte Verknüpfung im chemischen Sinne erforderlich. Genetische Kontrollsequenzen, wie zum Beispiel Enhancer-Sequenzen, können ihre Funktion auch von weiter entfernten Positionen oder gar von anderen DNA-Molekülen aus auf die Zielsequenz ausüben. Bevorzugt sind Anordnungen, in denen die transgen zu exprimierende Nukleinsäuresequenz hinter der als Promoter fungierenden Sequenz positioniert wird, so dass beide Sequenzen kovalent miteinander

verbunden sind. Bevorzugt ist dabei der Abstand zwischen der Promotorsequenz und der transgen zu exprimierende Nukleinsäuresequenz geringer als 200 Basenpaare, besonders bevorzugt kleiner als 100 Basenpaare, ganz besonders bevorzugt kleiner 5 als 50 Basenpaare.

Die Herstellung einer funktionellen Verknüpfung als auch die Herstellung einer Expressionskassette kann mittels gängiger Rekombinations- und Klonierungstechniken realisiert werden,

- 10 wie sie beispielsweise in Maniatis T, Fritsch EF und Sambrook J (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor (NY), in Silhavy TJ, Berman ML und Enquist LW (1984) Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor (NY), in Ausubel FM et al.
- 15 (1987) Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Interscience und bei Gelvin et al. (1990) In: Plant Molecular Biology Manual beschrieben sind. Zwischen beide Sequenzen können aber auch weitere Sequenzen positioniert werden, die zum Beispiel die Funktion eines Linkers mit bestimmten
- 20 Restriktionsenzymschnittstellen oder eines Signalpeptides haben.
 Auch kann die Insertion von Sequenzen zur Expression von Fusionsproteinen führen. Bevorzugt kann die Expressionskassette, bestehend aus einer Verknüpfung von Promoter und zu exprimierender
 Nukleinsäuresequenz, integriert in einem Vektor vorliegen und
- 25 durch zum Beispiel Transformation in ein pflanzliches Genom insertiert werden.

Unter einer Expressionskassette sind aber auch solche Konstruktionen zu verstehen, bei denen ein Promoter - zum Beispiel

- 30 durch eine homologe Rekombination hinter ein endogenes NADPH-Oxidase-Gen platziert wird, und durch Expression einer antisense NADPH-Oxidase-RNA die erfindungsgemäße Verminderung eines NADPH-Oxidase-Proteins bewirkt wird. Analog kann auch eine "anti-NADPH-Oxidase" Verbindung (zum Beispiel eine Nukleinsäuresequenz
- 35 kodierend für eines NADPH-Oxidase dsRNA oder eine NADPH-Oxidase antisense RNA) derart hinter einen endogenen Promotor platziert werden, dass der gleiche Effekt auftritt. Beide Ansätze führen zu Expressionskassetten im Sinne der Erfindung.
- 40 Pflanzenspezifische Promotoren meint grundsätzlich jeden Promotor, der die Expression von Genen, insbesondere Fremdgenen, in Pflanzen oder Pflanzenteilen, -zellen, -geweben, -kulturen steuern kann. Dabei kann die Expression beispielsweise konstitutiv, induzierbar oder entwicklungsabhängig sein.

Bevorzugt sind:

a) Konstitutive Promotoren -

5 Bevorzugt sind Vektoren, die eine konstitutive Expression in Pflanzen ermöglichen (Benfey et al.(1989) EMBO J 8:2195-2202). "Konstitutiver" Promotor meint solche Promotoren, die eine Expression in zahlreichen, bevorzugt allen, Geweben über einen größeren Zeitraum der Pflanzenentwicklung, bevorzugt zu allen 10 Zeitpunkten der Pflanzenentwicklung, gewährleisten. Vorzugsweise verwendet man insbesondere einen pflanzlichen Promotor oder einen Promotor, der einem Pflanzenvirus entstammt. Insbesondere bevorzugt ist der Promotor des 35S-Transkriptes des CaMV Blumenkohlmosaikvirus (Franck et al. (1980) Cell 21:285-294; Odell et al. 15 (1985) Nature 313:810-812; Shewmaker et al. (1985) Virology 140:281-288; Gardner et al. (1986) Plant Mol Biol 6:221- 228) oder der 19S CaMV Promotor (US 5,352,605; WO 84/02913; Benfey et al. (1989) EMBO J 8:2195-2202). Ein weiterer geeigneter konstitutiver Promotor ist der "Rubisco small subunit (SSU)"-20 Promotor (US 4,962,028), der LeguminB-Promotor (GenBank Acc.-Nr. X03677), der Promotor der Nopalinsynthase aus Agrobacterium, der TR-Doppelpromotor, der OCS (Octopin Synthase) Promotor aus Agrobacterium, der Ubiquitin Promotor (Holtorf S et al. (1995) Plant Mol Biol 29:637-649), den Ubiquitin 1 Promotor (Christensen

25 et al. (1992) Plant Mol Biol 18:675-689; Bruce et al. (1989) Proc Natl Acad Sci USA 86:9692-9696), den Smas Promotor, den Cinnamylalkoholdehydrogenase-Promotor (US 5,683,439), die Promotoren der ATPase Untereinheiten oder der Promotor eines prolinreichen Proteins aus Weizen (WO 91/13991), sowie weitere Promotoren von

30 Genen, deren konstitutive Expression in Pflanzen dem Fachmann bekannt ist. Als konstitutiver Promotor insbesondere bevorzugt ist der Promotor des Nitrilase-1 (nit1) Gens aus A. thaliana (GenBank Acc.-No.: Y07648.2, Nukleotide 2456-4340, Hillebrand et al. (1996) Gene 170:197-200).

35

b) Gewebespezifische Promotoren

Bevorzugt sind ferner Promotoren mit Spezifitäten für die Antheren, Ovarien, Blüten, Blätter, Stengel, Wurzeln und Samen.

40

Samenspezifische Promotoren umfassen zum Beispiel den Promotor des Phaseolins (US 5,504,200; Bustos MM et al. (1989) Plant Cell 1(9):839-53), des 2S Albumins (Joseffson LG et al. (1987) J Biol Chem 262:12196-12201), des Legumins (Shirsat A et al. (1989)

45 Mol Gen Genet 215(2): 326-331), des USP (unknown seed protein; Bäumlein H et al. (1991) Mol Gen Genet 225(3):459-67), des Napin (US 5,608,152; Stalberg K et al. (1996) L Planta 199:515-519),

40

des Saccharosebindeproteins (WO 00/26388), des Legumin B4 (LeB4; Bäumlein H et al. (1991) Mol Gen Genet 225: 121-128; Baeumlein et al. (1992) Plant Journal 2(2):233-9; Fiedler U et al. (1995) Biotechnology (NY) 13(10):1090f), des Oleosin aus Arabidopsis

- 5 (WO 98/45461) und des Bce4 aus Brassica (WO 91/13980). Weitere geeignete samenspezifische Promotoren sind die der Gene kodierend für das "High Molecular Weight Glutenin" (HMWG), Gliadin, Verzweigungsenzym, ADP Glucose Pyrophosphatase (AGPase) oder die Stärkesynthase. Bevorzugt sind ferner Promotoren, die eine samen-
- 10 spezifische Expression in Monokotyledonen wie Mais, Gerste, Weizen, Roggen, Reis etc. erlauben. Vorteilhaft eingesetzt werden können der Promoter des lpt2- oder lpt1-Gen (WO 95/15389, WO 95/23230) oder die Promotoren beschrieben in WO 99/16890 (Promotoren des Hordein-Gens, des Glutelin-Gens, des Oryzin-Gens,
- 15 des Prolamin-Gens, des Gliadin-Gens, des Glutelin-Gens, des Zein-Gens, des Kasirin-Gens oder des Secalin-Gens).

Knollen-, Speicherwurzel- oder Wurzel-spezifische Promotoren
umfassen beispielsweise den Patatin Promotor Klasse I (B33) und
20 den Promotor des Cathepsin D Inhibitors aus Kartoffel.

Blattspezifische Promotoren umfassen beispielsweise den Promotor der cytosolischen FBPase aus Kartoffel (WO 97/05900), den SSU Promotor (small subunit) der Rubisco (Ribulose-1,5-bisphosphat-

- 25 carboxylase) oder den ST-LSI Promotor aus Kartoffel (Stockhaus et al. (1989) EMBO J 8:2445-2451). Ganz besonders bevorzugt sind Epidermis-spezifische Promotoren, wie beispielsweise der Promotor des OXLP-Gens ("Oxalat-Oxidase like protein"; Wei et al. (1998) Plant Mol. Biol. 36:101-112).
 - Blütenspezifische Promotoren umfassen beispielsweise den Phytoen Synthase Promotor (WO 92/16635) oder den Promotor des P-rr Gens (WO 98/22593).
- 35 Antheren-spezifische Promotoren umfassen beispielsweise den 5126-Promotor (US 5,689,049, US 5,689,051), den glob-l Promotor und den γ -Zein Promotor.
 - c) Chemisch induzierbare Promotoren
 - Die Expressionskassetten können auch einen chemisch induzierbaren Promotor enthalten (Übersichtsartikel: Gatz et al. (1997) Annu Rev Plant Physiol Plant Mol Biol 48:89-108), durch den die Expression des exogenen Gens in der Pflanze zu einem bestimmten
- 45 Zeitpunkt gesteuert werden kann. Beispielhaft seien zu nennen der PRP1 Promotor (Ward et al. (1993) Plant Mol Biol 22:361-366), ein durch Salicylsäure induzierbarer Promotor (WO 95/19443), ein

durch Benzolsulfonamid-induzierbarer Promotor (EP 0 388 186), ein durch Tetrazyklin-induzierbarer Promotor (Gatz et al. (1992) Plant J 2:397-404), ein durch Abscisinsäure induzierbarer Promotor (EP 0 335 528) bzw. ein durch Ethanol- oder Cyclobexanon-induzierbarer Promotor (WO 93/21334).

d) Stress- oder Pathogen-induzierbare Promotoren

Ferner sind Promotoren bevorzugt, die durch biotischen oder

10 abiotischen Stress induziert werden wie beispielsweise der pathogen-induzierbare Promotor des PRP1-Gens (bzw. gst1 Promotor) z.B. aus Kartoffel (WO 96/28561; Ward et al. (1993) Plant Mol Biol 22:361-366), der hitzeinduzierbare hsp70- oder hsp80-Promoter aus Tomate (US 5,187,267), der kälteinduzierare alpha-Amylase

15 Promoter aus der Kartoffel (WO 96/12814) oder der licht-induzierbare PPDK Promotor. Weitere pathogen-induzierbare Promotoren umfassen den Flachs Fis1-Promotor (WO 96/34949), den Vst1-Promotor (Schubert et al. (1997) Plant Mol Biol 34:417-426) sowie den EAS4 Sesquiterpene-Cyclase-Promotor aus Tabak (US 6,100,451).

Pathogen-induzierbare Promotoren umfassen ferner die Promotoren von Genen, die infolge eines Pathogenbefalls induziert werden, wie beispielsweise Promotoren der Gene von PR-Proteinen, SAR-Proteinen, β-1,3-Glucanase, Chitinase usw. (beispielsweise Redolfi et al. (1983) Neth J Plant Pathol 89:245-254; Uknes, et al. (1992) Plant Cell 4:645-656; Van Loon (1985) Plant Mol Viral 4:111-116; Marineau et al. (1987) Plant Mol Biol 9:335-342; Matton et al. (1987) Molecular Plant-Microbe Interactions 2:325-342; Somssich et al. (1986) Proc Natl Acad Sci USA 83:2427-2430; Somssich et al. (1988) Mol Gen Genetics 2:93-98; Chen et al. (1996) Plant J 10:955-966; Zhang and Sing (1994) Proc Natl Acad Sci USA 91:2507-2511; Warner, et al. (1993) Plant J 3:191-201; Siebertz et al. (1989) Plant Cell 1:961-968(1989).

- 35 Umfasst sind auch verwundungs-induzierbare Promotoren wie
 der des pinII Gens (EP-A 0 375 091; Ryan (1990) Ann Rev Phytopath
 28:425-449; Duan et al. (1996) Nat Biotech 14:494-498), des wun1 und wun2-Gens (US 5,428,148), des win1- und win2-Gens (Stanford
 et al. (1989) Mol Gen Genet 215:200-208), des Systemin-Gens
 40 (McGurl et al. (1992) Science 225:1570-1573), des WIP1-Gens
 (Rohmeier et al. (1993) Plant Mol Biol 22:783-792; Eckelkamp
 et al. (1993) FEBS Letters 323:73-76), des MPI-Gens (Corderok
 et al. (1994) Plant J 6(2):141-150) und dergleichen.
- 45 Eine Quelle für weitere pathogen-induzierbare Promotoren stellt die PR-Genfamilie dar. Eine Reihe von Elementen in diesen Promotoren haben sich als vorteilhaft erwiesen. So vermittelt die

Region -364 bis -288 im Promotor von PR-2d Salicylat-Spezifität (Buchel et al. (1996) Plant Mol Biol 30, 493-504). Die Sequenz 5'-TCATCTTCTT-3' taucht im Promotor der Gersten β-1,3-Glucanase und in mehr als 30 weiteren stress-induzierten Genen wiederholt auf. Diese Region bindet in Tabak ein nukleäres Protein, dessen Abundanz durch Salicylat erhöht wird. Die PR-1-Promotoren aus Tabak und Arabidopsis (EP-A 0 332 104, WO 98/03536) eignen sich ebenfalls als pathogen-induzierbare Promotoren. Bevorzugt, da besonders spezifisch durch Pathogen-induziert, sind die "acidic PR-5"-(aPR5)-Promotoren aus Gerste (Schweizer et al. (1997) Plant Physiol 114:79-88) und Weizen (Rebmann et al. (1991) Plant

- PR-5"-(aPR5)-Promotoren aus Gerste (Schweizer et al. (1997)

 Plant Physiol 114:79-88) und Weizen (Rebmann et al. (1991) Plant

 Mol Biol 16:329-331). aPR5-Proteine akkumulieren in ca. 4 bis

 6 Stunden nach Pathogenbefall und zeigen nur eine sehr geringe

 Hintergrundsexpression (WO 99/66057). Ein Ansatz, um eine erhöhte
- 15 pathogen-induzierte Spezifität zu erreichen, bildet die Herstellung synthetischer Promotoren aus Kombinationen von bekannten pathogen-responsiven Elementen (Rushton et al. (2002) Plant Cell 14, 749-762; WO 00/01830; WO 99/66057). Weitere pathogen-induzierbare Promotoren aus verschiedenen Arten sind dem
- 20 Fachmann bekannt (EP-A 1 165 794; EP-A 1 062 356; EP-A 1 041 148; EP-A 1 032 684;
 - e) Entwicklungsabhängige Promotoren

Promotoren in Frage.

25 Weitere geeignete Promotoren sind beispielsweise fruchtreifungsspezifische Promotoren, wie beispielsweise der fruchtreifungsspezifische Promotor aus Tomate (WO 94/21794, EP 409 625). Entwicklungsabhängige Promotoren schließt zum Teil die gewebespezifischen Promotoren ein, da die Ausbildung einzelner Gewebe
30 naturgemäß entwicklungsabhängig erfolgt.

Besonders bevorzugt sind konstitutive, sowie Blatt und/oder Stengel-spezifische, pathogen-induzierbare und epidermisspezifische Promotoren, wobei pathogen-induzierbar und epidermis-35 spezifische Promotoren am meisten bevorzugt sind.

Es können ferner weitere Promotoren funktionell mit der zu exprimierenden Nukleinsäuresequenz verknüpft sein, die eine Expression in weiteren Pflanzengeweben oder in anderen 40 Organismen, wie zum Beispiel *E.coli* Bakterien ermöglichen. Als Pflanzen Promotoren kommen im Prinzip alle oben beschriebenen

Die in den erfindungsgemäßen Expressionskassetten oder Vektoren 45 enthaltenen Nukleinsäuresequenzen können mit weiteren genetischen Kontrollsequenzen neben einem Promoter funktionell verknüpft sein. Der Begriff der genetischen Kontrollsequenzen ist breit

zu verstehen und meint all solche Sequenzen, die einen Einfluss auf das Zustandekommen oder die Funktion der erfindungsgemäßen Expressionskassette haben. Genetische Kontrollsequenzen modifizieren zum Beispiel die Transkription und Translation in prokaryotischen oder eukaryotischen Organismen. Vorzugsweise umfassen die erfindungsgemäßen Expressionskassetten 5'-stromaufwärts von der jeweiligen transgen zu exprimierenden Nukleinsäuresequenz den Promoter mit Spezifität für die embryonale Epidermis und/oder die Blüte und 3'-stromabwärts eine Terminatorsequenz als zusätzliche genetische Kontrollsequenz, sowie gegebenenfalls weitere übliche regulative Elemente, und zwar jeweils funktionell verknüpft mit der transgen zu exprimierenden Nukleinsäuresequenz.

- 15 Genetische Kontrollsequenzen umfassen auch weitere Promotoren, Promotorelemente oder Minimalpromotoren, die die expressionssteuernden Eigenschaften modifizieren können. So kann durch genetische Kontrollsequenzen zum Beispiel die gewebespezifische Expression zusätzlich abhängig von bestimmten Stressfaktoren
 20 erfolgen. Entsprechende Elemente sind zum Beispiel für Wasserstress, Abscisinsäure (Lam E und Chua NH, J Biol Chem 1991; 266(26): 17131 -17135) und Hitzestress (Schoffl F et al., Molecular & General Genetics 217(2-3):246-53, 1989) beschrieben.
- 25 Prinzipiell können alle natürlichen Promotoren mit ihren Regulationssequenzen wie die oben genannten für das erfindungsgemäße Verfahren verwendet werden. Darüberhinaus können auch synthetische Promotoren vorteilhaft verwendet werden.
- 30 Genetische Kontrollsequenzen umfassen ferner auch die 5'-untranslatierte Regionen, Introns oder nichtkodierende 3'-Region von Genen wie beipielsweise das Actin-1 Intron, oder die Adh1-S Introns 1, 2 und 6 (allgemein: The Maize Handbook, Chapter 116, Freeling and Walbot, Eds., Springer, New York (1994)). Es ist gezeigt worden, dass diese eine signifikante Funktionen bei der Regulation der Genexpression spielen können. So wurde gezeigt, dass 5'-untranslatierte Sequenzen die transiente Expression heterologer Gene verstärken können. Beispielhaft für Translationsverstärker sei die 5'-Leadersequenz aus dem Tabak-
- **40** Mosaik-Virus zu nennen (Gallie et al. (1987) Nucl Acids Res 15:8693-8711) und dergleichen. Sie können ferner die Gewebsspezifität fördern (Rouster J et al. (1998) Plant J 15:435-440).

Die Expressionskassette kann vorteilhafterweise eine oder mehrere 45 sogenannte "enhancer Sequenzen" funktionell verknüpft mit dem Promoter enthalten, die eine erhöhte transgene Expression der Nukleinsäuresequenz ermöglichen. Auch am 3'-Ende der transgen zu exprimierenden Nukleinsäuresequenzen können zusätzliche vorteilhafte Sequenzen inseriert werden, wie weitere regulatorische Elemente oder Terminatoren. Die transgen zu exprimierenden Nukleinsäuresequenzen können in einer oder mehreren Kopien im 5 Genkonstrukt enthalten sein.

Als Kontrollsequenzen geeignete Polyadenylierungssignale sind pflanzliche Polyadenylierungssignale, vorzugsweise solche, die im wesentlichen T-DNA Polyadenylierungssignale aus Agrobacterium tumefaciens, insbesondere des Gens 3 der T-DNA (Octopin Synthase) des Ti-Plasmids pTiACHS entsprechen (Gielen et al. (1984) EMBO J 3:835 ff) oder funktionelle Äquivalente davon. Beispiele für besonders geeignete Terminatorsequenzen sind der OCS (Octopin-Synthase)-Terminator und der NOS (Nopalin-Synthase)-Terminator.

Als Kontrollsequenzen sind weiterhin solche zu verstehen, die eine homologe Rekombination bzw. Insertion in das Genom eines Wirtsorganismus ermöglichen oder die Entfernung aus dem Genom erlauben. Bei der homologen Rekombination kann zum Beispiel der natürliche Promoter eines bestimmten Gens gegen einen Promoter mit Spezifität für die embryonale Epidermis und/oder die Blüte ausgetauscht werden. Methoden wie die cre/lox-Technologie erlauben eine gewebespezifische, unter Umständen induzierbare Entfernung der Expressionskassette aus dem Genom des Wirtsorganismus (Sauer B (1998) Methods. 14(4):381-92). Hier werden bestimmte flankierende Sequenzen dem Zielgen angefügt (lox-Sequenzen), die später eine Entfernung mittels der cre-Rekombinase ermöglichen.

Eine Expressionskassetten und die von ihr abgeleiteten

30 Vektoren können weitere Funktionselemente enthalten. Der
Begriff Funktionselement ist breit zu verstehen und meint all
solche Elemente, die einen Einfluss auf Herstellung, Vermehrung
oder Funktion der erfindungsgemäßen Expressionskassetten,
Vektoren oder transgenen Organismen haben. Beispielhaft aber

35 nicht einschränkend seien zu nennen:

a) Selektionsmarker, die eine Resistenz gegen einen Metabolismusinhibitor wie 2-Desoxyglucose-6-phosphat (WO 98/45456),
Antibiotika oder Biozide, bevorzugt Herbizide, wie zum

40 Beispiel Kanamycin, G 418, Bleomycin, Hygromycin, oder
Phosphinotricin etc. verleihen. Besonders bevorzugte
Selektionsmarker sind solche die eine Resistenz gegen Herbizide verleihen. Beispielhaft seien genannt: DNA Sequenzen,
die für Phosphinothricinacetyltransferasen (PAT) kodieren und
Glutaminsynthaseinhibitoren inaktivieren (bar und pat Gen),
5-Enolpyruvylshikimat-3-phosphatsynthasegene (EPSP Synthasegene), die eine Resistenz gegen Glyphosat® (N-(phosphono-

b)

methyl)glycin) verleihen, das für das Glyphosat® degradierende Enzyme kodierende gox Gen (Glyphosatoxidoreduktase), das deh Gen (kodierend für eine Dehalogenase, die Dalapon inaktiviert), Sulfonylurea- und Imidazolinon inaktivierende Acetolactatsynthasen sowie bxn Gene, die für Bromoxynil 5 degradierende Nitrilaseenzyme kodieren, das aasa-Gen, das eine Resistenz gegen das Antibiotikum Apectinomycin verleih, das Streptomycinphosphotransferase (SPT) Gen, das eine Resistenz gegen Streptomycin gewährt, das Neomycinphosphotransferas (NPTII) Gen, das eine Resistenz gegen 10 Kanamycin oder Geneticidin verleiht, das Hygromycinphosphotransferase (HPT) Gen, das eine Resistenz gegen Hygromycin vermittelt, das Acetolactatsynthas Gen (ALS), das eine Resistenz gegen Sulfonylharnstoff-Herbizide verleiht (z.B. mutierte ALS-Varianten mit z.B. der S4 und/oder 15 Hra Mutation).

Reportergene, die für leicht quantifizierbare Proteine

- kodieren und über Eigenfarbe oder Enzymaktivität eine Bewertung der Transformationseffizienz oder des Expressions-20 ortes oder -zeitpunktes gewährleisten. Ganz besonders bevorzugt sind dabei Reporter-Proteine (Schenborn E, Groskreutz D. Mol Biotechnol. 1999; 13(1):29-44) wie das "green fluorescence protein" (GFP) (Sheen et al. (1995) Plant Journal 8(5):777-784; Haseloff et al.(1997) Proc Natl Acad Sci USA 25 94(6):2122-2127; Reichel et al.(1996) Proc Natl Acad Sci USA 93(12):5888-5893; Tian et al. (1997) Plant Cell Rep 16:267-271; WO 97/41228; Chui WL et al. (1996) Curr Biol 6:325-330; Leffel SM et al. (1997) Biotechniques. 23(5):912-8), die Chloramphenicoltransferase, eine Luziferase 30 (Ow et al. (1986) Science 234:856-859; Millar et al. (1992) Plant Mol Biol Rep 10:324-414), das Aequoringen (Prasher et al. (1985) Biochem Biophys Res Commun 126(3):1259-1268), die β -Galactosidase, R-Locus Gen (kodieren ein Protein, das die Produktion von Anthocyaninpigmenten (rote Färbung) in 35 pflanzlichen Gewebe reguliert und so eine direkte Analyse der Promotoraktivität ohne Zugabe zusätzlicher Hilfsstoffe oder chromogener Substrate ermöglicht; Dellaporta et al., In: Chromosome Structure and Function: Impact of New Concepts, 18th Stadler Genetics Symposium, 11:263-282, 1988), ganz be-40 sonders bevorzugt ist die ß-Glucuronidase (Jefferson et al., EMBO J. 1987, 6, 3901-3907).
- c) Replikationsursprünge, die eine Vermehrung der erfindungsgemäßen Expressionskassetten oder Vektoren in zum Beispiel E.coli gewährleisten. Beispielhaft seien genannt ORI (origin of DNA replication), der pBR322 ori oder der P15A ori

(Sambrook et al.: Molecular Cloning. A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).

5 d) Elemente, die für eine Agrobakterium vermittelte Pflanzentransformation erforderlich sind, wie zum Beispiel die rechte oder linke Begrenzung der T-DNA oder die vir-Region.

Die Einführung einer erfindungsgemäßen Expressionskassette in einen Organismus oder Zellen, Geweben, Organe, Teile bzw. Samen desselben (bevorzugt in Pflanzen bzw. pflanzliche Zellen, Gewebe, Organe, Teile oder Samen), kann vorteilhaft unter Verwendung von Vektoren realisiert werden, in denen die Expressionskassetten enthalten sind. Die Expressionskassette kann in den Vektor (zum Beispiel ein Plasmid) über eine geeignete Restriktionsschnittstelle eingeführt werden. Das entstandene Plasmid wird zunächst in E.coli eingeführt. Korrekt transformierte E.coli werden selektioniert, gezüchtet und das rekombinante Plasmid mit dem Fachmann geläufigen Methoden gewonnen. Restriktionsanalyse und Sequenzierung können dazu dienen, den Klonierungsschritt zu überprüfen.

Vektoren können beispielhaft Plasmide, Cosmide, Phagen, Viren oder auch Agrobacterien sein. In einer vorteilhaften Ausführungs25 form wird die Einführung der Expressionskassette mittels Plasmidvektoren realisiert. Bevorzugt sind solche Vektoren, die eine stabile Integration der Expressionskassette in das Wirtsgenom ermöglichen.

- 30 Die Herstellung eines transformierten Organismus (bzw. einer transformierten Zelle oder Gewebes) erfordert, dass die entsprechende DNA, RNA oder Protein in die entsprechende Wirtszelle eingebracht wird.
- 35 Für diesen Vorgang, der als Transformation (oder Transduktion bzw. Transfektion) bezeichnet wird, steht eine Vielzahl von Methoden zur Verfügung (Keown et al. (1990) Methods in Enzymology 185:527-537). So kann die DNA oder RNA beispielhaft direkt durch Mikroinjektion oder durch Bombardierung mit DNA-beschichteten
- 40 Mikropartikeln eingeführt werden. Auch kann die Zelle chemisch, zum Beispiel mit Polyethylenglycol, permeabilisiert werden, so dass die DNA durch Diffusion in die Zelle gelangen kann. Die DNA kann auch durch Protoplastenfusion mit anderen DNA-enthaltenden Einheiten wie Minicells, Zellen, Lysosomen oder Liposomen er-
- **45** folgen. Elektroporation ist eine weitere geeignete Methode zur Einführung von DNA, bei der die Zellen reversibel durch einen elektrischen Impuls permeabilisert werden. Entsprechende Ver-

fahren sind beschrieben (beispielsweise bei Bilang et al. (1991)
Gene 100:247-250; Scheid et al. (1991) Mol Gen Genet 228:104-112;
Guerche et al. (1987) Plant Science 52:111-116; Neuhause et al.
(1987) Theor Appl Genet 75:30-36; Klein et al. (1987) Nature

5 327:70-73; Howell et al. (1980) Science 208:1265; Horsch
et al. (1985) Science 227:1229-1231; DeBlock et al. (1989)
Plant Physiology 91:694-701; Methods for Plant Molecular Biology
(Weissbach and Weissbach, eds.) Academic Press Inc. (1988); and
Methods in Plant Molecular Biology (Schuler and Zielinski, eds.)

10 Academic Press Inc. (1989)).

Bei Pflanzen werden dabei die beschriebenen Methoden zur Transformation und Regeneration von Pflanzen aus Pflanzengeweben oder Pflanzenzellen zur transienten oder stabilen Transformation

15 genutzt. Geeignete Methoden sind vor allem die Protoplastentransformation durch Polyethylenglykol-induzierte DNA-Aufnahme, das biolistische Verfahren mit der Genkanone, die sogenannte "particle bombardment" Methode, die Elektroporation, die Inkubation trockener Embryonen in DNA-haltiger Lösung und die Mikroinjektion.

Neben diesen "direkten" Transformationstechniken kann eine Transformation auch durch bakterielle Infektion mittels Agrobacterium tumefaciens oder Agrobacterium rhizogenes durchgeführt werden.

- 25 Die Agrobacterium-vermittelte Transformation ist am besten für dicotyledone Pflanzenzellen geeignet. Die Verfahren sind beispielsweise beschrieben bei Horsch RB et al. (1985) Science 225: 1229f).
- 30 Werden Agrobacterien verwendet, so ist die Expressionskassette in spezielle Plasmide zu integrieren, entweder in einen Zwischenvektor (englisch: shuttle or intermediate vector) oder einen binären Vektor. Wird ein Ti oder Ri Plasmid zur Transformation verwendet werden soll, ist zumindest die rechte Begrenzung,
 35 meistens jedoch die rechte und die linke Begrenzung der Ti oder Ri Plasmid T-DNA als flankierende Region mit der einzuführenden Expressionskassette verbunden.

Bevorzugt werden binäre Vektoren verwendet. Binäre Vektoren

40 können sowohl in E.coli als auch in Agrobacterium replizieren.

Sie enthalten in der Regel ein Selektionsmarkergen zur Selektion
transformierter pflanzlicher Organismen (s.o.) und einen Linker
oder Polylinker flankiert von der rechten und linken T-DNA
Begrenzungssequenz. Sie können direkt in Agrobacterium

45 transformiert werden (Holsters et al. (1978) Mol Gen Genet 163:181-187). Außerhalb der T-DNA Region können Elemente wie ein Selektionsmarkergen zur Selektion transformierter Agro-

bakteria oder E.coli (z.B. nptIII) umfasst sein. Das in diesem Fall als Wirtsorganismus fungierende Agrobacterium sollte bereits ein Plasmid mit der vir-Region enthalten. Diese ist für die Übertragung der T-DNA auf die pflanzliche Zelle erforderlich. Ein 5 so transformiertes Agrobacterium kann zur Transformation pflanzlicher Zellen verwendet werden. Die Verwendung von T-DNA zur Transformation pflanzlicher Zellen ist intensiv untersucht und beschrieben (EP 120 516; Hoekema, In: The Binary Plant Vector System, Offsetdrukkerij Kanters B.V., Alblasserdam, Chapter V; 10 An et al. (1985) EMBO J 4:277-287). Verschiedene binäre Vektoren sind bekannt und teilweise kommerziell erhältlich wie zum Beispiel pBI101.2 oder pBIN19 (Clontech Laboratories, Inc. USA).

Weitere zur Expression in Pflanzen geeignet Promotoren sind 15 beschrieben (Rogers et al. (1987) Meth in Enzymol 153:253-277; Schardl et al. (1987) Gene 61:1-11; Berger et al. (1989) Proc Natl Acad Sci USA 86:8402-8406).

Direkte Transformationstechniken eignen sich für jeden Organismus 20 und Zelltyp eignen.

Im Falle von Injektion oder Elektroporation von DNA bzw.
RNA in pflanzliche Zellen sind keine besonderen Anforderungen
an das verwendete Plasmid gestellt. Einfache Plasmide wie die
25 der pUC-Reihe können verwendet werden. Sollen vollständige
Pflanzen aus den transformierten Zellen regeneriert werden, so
ist er erforderlich, das sich auf dem Plasmid ein zusätzliches
selektionierbares Markergen befindet.

- 30 Stabil transformierte Zellen d.h. solche, die die eingeführte DNA integriert in die DNA der Wirtszelle enthalten, können von untransformierten selektioniert werden, wenn ein selektionierbarer Marker Bestandteil der eingeführten DNA ist. Als Marker kann beispielhaft jedes Gen fungieren, dass eine Resistenz
- 35 gegen ein Biozid (zum Beispiel ein Antibiotikum, Herbizid oder ein Metabolismusinhibitor wie 2-Desoxyglucose-6-phosphat WO 98/45456) verleiht(s.o.). Transformierte Zellen, die ein solches Markergen exprimieren, sind in der Lage, in der Gegenwart von Konzentrationen eines entsprechenden Antibiotikums oder
- 40 Herbizides zu überleben, die einen untransformierten Wildtyp abtöten. Beispiel sind oben genannt und umfassen bevorzugt das bar Gen, dass Resistenz gegen das Herbizid Phosphinotricin verleiht (Rathore KS et al. (1993) Plant Mol Biol 21(5):871-884), das nptII Gen, dass Resistenz gegen Kanamycin verleiht, das hpt Gen,
- 45 das Resistenz gegen Hygromycin verleiht, oder das EPSP-Gen, das Resistenz gegen das Herbizid Glyphosat verleiht. Der Selektionsmarker erlaubt die Selektion von transformierten Zellen von

untransformierten (McCormick et al. (1986) Plant Cell Reports 5:81-84). Die erhaltenen Pflanzen können in üblicher Weise gezüchtet und gekreuzt werden. Zwei oder mehr Generationen sollten kultiviert werden, um sicherzustellen, dass die genomische Integration stabil und vererblich ist.

Die oben genannten Verfahren sind beispielsweise beschrieben in Jenes B et al.(1993) Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von SD Kung und R Wu, Academic Press, S. 128-143 sowie in Potrykus (1991) Annu Rev Plant Physiol Plant Molec Biol 42:205-225). Vorzugsweise wird das zu exprimierende Konstrukt in einen Vektor kloniert, der geeignet ist, Agrobacterium tumefaciens zu transformieren, beispielsweise pBin19 (Bevan et al. (1984) Nucl Acids 15 Res 12:8711f).

Sobald eine transformierte Pflanzenzelle hergestellt wurde, kann eine vollständige Pflanze unter Verwendung von dem Fachmann bekannten Verfahren erhalten werden. Hierbei geht man beispielhaft von Kalluskulturen aus. Aus diesen noch undifferenzierten Zellmassen kann die Bildung von Spross und Wurzel in bekannter Weise induziert werden. Die erhaltenen Sprösslinge können ausgepflanzt und gezüchtet werden.

25 Dem Fachmann sind such Verfahren bekannt, um aus Pflanzenzellen, Pflanzenteile und ganze Pflanzen zu regenerieren. Beispielsweise werden hierzu Verfahren beschrieben von Fennell et al. (1992) Plant Cell Rep. 11: 567-570; Stoeger et al (1995) Plant Cell Rep. 14:273-278; Jahne et al. (1994) Theor Appl Genet 89:525-533
30 verwendet.

Das erfindungsgemäße Verfahren kann vorteilhaft mit weiteren Verfahren die eine Pathogenresistenz (beispielsweise gegen Insekten, Pilze, Bakterien, Nematoden etc.), Stressresistenz oder eine andere Verbesserung der pflanzlichen Eigenschaften bewirken kombiniert werden. Beispiele sind u.a. genannt bei Dunwell JM, Transgenic approaches to crop improvement, J Exp Bot. 2000;51 Spec No; Seite 487-96.

*Transgen" meint bezüglich zum Beispiel einer Nukleinsäuresequenz, einer Expressionskassette oder einem Vektor enthaltend besagte Nukleinsäuresequenz oder einem Organismus transformiert mit besagter Nukleinsäuresequenz, Expressionskassette oder Vektor alle solche durch gentechnische Methoden zustandegekommene 45 Konstruktionen, in denen sich entweder

- a) die NADPH-Oxidase Nukleinsäuresequenz, oder
- b) eine mit der NADPH-Oxidase Nukleinsäuresequenz funktionell verknüpfte genetische Kontrollsequenz, zum Beispiel ein Promotor, oder
- c) (a) und (b)

sich nicht in ihrer natürlichen, genetischen Umgebung befinden 10 oder durch gentechnische Methoden modifiziert wurden, wobei die Modifikation beispielhaft eine Substitutionen, Additionen, Deletionen, Inversion oder Insertionen eines oder mehrerer Nukleotidreste sein kann. Natürliche genetische Umgebung meint den natürlichen chromosomalen Locus in dem Herkunftsorganismus 15 oder das Vorliegen in einer genomischen Bibliothek. Im Fall einer genomischen Bibliothek ist die natürliche, genetische Umgebung der Nukleinsäuresequenz bevorzugt zumindest noch teilweise erhalten. Die Umgebung flankiert die Nukleinsäuresequenz zumindest an einer Seite und hat eine Sequenzlänge von mindestens 20 50 bp, bevorzugt mindestens 500 bp, besonders bevorzugt mindestens 1000 bp, ganz besonders bevorzugt mindestens 5000 bp. Eine natürlich vorkommende Expressionskassette - beispielsweise die natürlich vorkommende Kombination des NADPH-Oxidase-Promotors mit dem entsprechenden NADPH-Oxidase-Gen - wird zu einer trans-25 genen Expressionskassette, wenn diese durch nicht-natürliche, synthetische ("künstliche") Verfahren wie beispielsweise einer Mutagenisierung geändert wird. Entsprechende Verfahren sind beschrieben (US 5,565,350; WO 00/15815; siehe auch oben).

30 Ein anderer Gegenstand der Erfindung betrifft transgene Organismen, transformiert mit wenigstens einer erfindungsgemäßen Nukleinsäuresequenzen, Expressionskassette oder einem erfindungsgemäßen Vektor, sowie Zellen, Zellkulturen, Gewebe, Teile - wie zum Beispiel bei pflanzlichen Organismen Blätter, Wurzeln usw.-35 oder Vermehrungsgut abgeleitet von solchen Organismen. Organismus ist breit zu verstehen und meint prokaryotische und eukaryotische Organismen, bevorzugt Bakterien, Hefen, Pilze, tierische und pflanzliche Organismen.

40 Bevorzugt sind

45

a) Pilze, wie Aspergillus, Eremothecium, Trichoderma, Ashbya, Neurospora, Fusarium, Beauveria oder weitere in Indian Chem Eng. Section B. Vol 37, No 1,2 (1995) auf Seite 15, Tabelle 6 beschriebene Pilze. Besonders bevorzugt ist der filamentöse Hemiascomycet Ashbya gossypii oder Eremothecium ashbyii.

- b) Hefen wie Candida, Saccharomyces, Hansenula oder Pichia, besonders bevorzugt sind Saccharomyces cerevisiae oder Pichia pastoris (ATCC Accession No. 201178),
- 5 c) Pflanzen gemäß der obengenannten Definition für "Pflanzen"
- d) Vertebraten und Invertebraten. Besonders bevorzugte Vertebraten sind nicht-humane Säuger wie in Hund, Katze, Schaf, Ziege, Huhn, Maus, Ratte, Rind oder Pferd. Bevorzugte tierische Zellen umfassen CHO, COS, HEK293 Zellen. Bevorzugte Invertebraten umfassen Insektenzellen wie Drosophila S2 und Spodoptera Sf9 oder Sf21 Zellen,
- e) prokaryontische Organismen wie gram-positive oder gramnegative Bakterien wie Acetobacter, Gluconobacter, Corynebacterium, Brevibacterium, Bacillus, Clostridium, Cyanobacter, Escherichia (vor allem Escherichia coli), Serratia,
 Staphylococcus, Aerobacter, Alcaligenes, Penicillium oder
 Klebsiella genannt.

- Als transgene Organismen bevorzugte Wirts- oder Ausgangsorganismen sind vor allem Pflanzen gemäß der oben genannten Definition. Eingeschlossen sind im Rahmen der Erfindung alle Gattungen und Arten höherer und niedrigerer Pflanzen des
- 25 Pflanzenreiches. Eingeschlossen sind ferner die reifen Pflanzen, Saatgut, Sprossen und Keimlinge, sowie davon abgeleitete Teile, Vermehrungsgut und Kulturen, zum Beispiel Zellkulturen. Reife Pflanzen meint Pflanzen zu jedem beliebigen Entwicklungsstadium jenseits des Keimlings. Keimling meint eine junge, unreife
- 30 Pflanze in einem frühen Entwicklungsstadium. Insbesondere als Wirtsorganismen bevorzugte Pflanzen sind Pflanzen, auf die der erfindungsgemäße Verfahren zum Erzielen einer Pathogenresistenz gemäß oben genannten Kriterien angewendet werden kann. Ganz besonders bevorzugt sind monokotyle Pflanzen wie Weizen,
- 35 Hafer, Hirse, Gerste, Roggen, Mais, Reis, Buchweizen, Sorghum, Triticale, Dinkel, Leinsamen, Zuckerrohr, als diktoyledone Kulturpflanzen wie Raps, Canola, Kresse, Arabidopsis, Kohlarten, Soja, Alfalfa, Erbse, Bohnengewächsen, Erdnuss, Kartoffel, Tabak, Tomate, Aubergine, Paprika, Sonnenblume, Tagetes, Salat, 40 Calendula, Melone, Kürbis oder Zucchini.
 - Die Herstellung der transgenen Organismen kann mit den oben beschriebenen Verfahren zur Transformation oder Transfektion von Organismen realisiert werden.

Ein weiterer Gegenstand der Erfindung betrifft die Verwendung der erfindungsgemäßen, transgenen Organismen und der von ihnen abgeleitete Zellen, Zellkulturen, Teile - wie zum Beispiel bei transgenen pflanzlichen Organismen Wurzeln, Blätter etc.-, und transgenes Vermehrungsgut wie Saaten oder Früchte, zur Herstellung von Nahrungs- oder Futtermitteln, Pharmazeutika oder Feinchemikalien.

Bevorzugt ist ferner ein Verfahren zur rekombinanten Herstellung von Pharmazeutika oder Feinchemikalien in Wirtsorganismen wobei 10 ein Wirtsorganismus mit einer der oben beschriebenen Expressionskassetten transformiert wird und diese Expressionskassette ein oder mehrere Strukturgene enthält, die für die gewünschte Feinchemikalie kodieren oder die Biosynthese der gewünschten Feinchemikalie katalysieren, der transformierte Wirtsorganismus ge-15 züchtet wird und die gewünschte Feinchemikalie aus dem Züchtungsmedium isoliert wird. Dieses Verfahren ist für Feinchemikalien wie Enzyme, Vitamine, Aminosäuren, Zucker, Fettsäuren, natürliche und synthetische Geschmacks-, Aroma- und Farbstoffe breit anwendbar. Besonders bevorzugt ist die Produktion von Tocopherolen und 20 Tocotrienolen sowie Carotinoiden. Die Züchtung der transformierten Wirtsorganismen sowie die Isolierung aus den Wirtsorganismen bzw. aus dem Züchtungsmedium erfolgt mit dem Fachmann bekannten Verfahren. Die Produktion von Pharmazeutika, wie zum Beispiel Antikörpern oder Vakkzinen ist beschrieben bei Hood EE, Jilka JM 25 (1999) Curr Opin Biotechnol 10(4):382-6; Ma JK, Vine ND (1999) Curr Top Microbiol Immunol 236:275-92.

Sequenzen

- 30 1. SEQ ID NO: 1 Nukleinsäuresequenz kodierend für eine NADPH-Oxidase aus Gerste (Hordeum vulgare).
 - 2. SEQ ID NO: 2 Aminosäuresequenz kodierend für eine NADPH-Oxidase aus Gerste (Hordeum vulgare).

- 3. SEQ ID NO: 3 Nukleinsäuresequenz kodierend für eine NADPH-Oxidase aus Reis (Oryza sativa var. japonica)
- 40 4. SEQ ID NO: 4 Aminosäuresequenz kodierend für eine NADPH-Oxidase aus Reis (Oryza sativa var. japonica)
- 5. SEQ ID NO: 5 Nukleinsäuresequenz kodierend für eine NADPH-Oxidase aus Nicotiana tabacum

Aminosäuresequenz kodierend für eine SEQ ID NO: 6 6. NADPH-Oxidase aus Nicotiana tabacum Nukleinsäuresequenz kodierend für eine SEQ ID NO: 7 7. NADPH-Oxidase aus Kartoffel 5 (Solanum tuberosum) Aminosäuresequenz kodierend für eine 8. SEO ID NO: 8 NADPH-Oxidase aus Kartoffel (Solanum tuberosum) 10 Nukleinsäuresequenz kodierend für eine SEQ ID NO: 9 9. NADPH-Oxidase aus Tomate (Lycopersicon esculentum) 15 10. SEQ ID NO: 10 Aminosäuresequenz kodierend für eine NADPH-Oxidase aus NADPH-Oxidase aus Tomate (Lycopersicon esculentum) 20 11. SEQ ID NO: 11 Nukleinsäuresequenz kodierend für eine NADPH-Oxidase aus Arabidopsis thaliana (RbohF) 12. SEQ ID NO: 12 Aminosäuresequenz kodierend für eine NADPH-Oxidase aus NADPH-Oxidase Arabidopsis thaliana (RbohF) 25 13. SEQ ID NO: 13 Nukleinsäuresequenz kodierend für eine NADPH-Oxidase aus Arabidopsis thaliana (RbohD) 30 14. SEQ ID NO: 14 Aminosäuresequenz kodierend für eine NADPH-Oxidase aus NADPH-Oxidase Arabidopsis thaliana (RbohD) 15. SEQ ID NO: 15 Nukleinsäuresequenz kodierend für eine NADPH-Oxidase aus Nicotiana tabacum (rboh) 35 16. SEQ ID NO: 16 Aminosäuresequenz kodierend für eine NADPH-Oxidase aus Nicotiana tabacum 40 17. SEQ ID NO: 17 Nukleinsäuresequenz kodierend für eine NADPH-Oxidase aus Reis (Oryza sativa var. japonica) 18. SEQ ID NO: 18 Aminosäuresequenz kodierend für eine NADPH-Oxidase aus Reis 45 (Oryza sativa var. japonica)

- 19. SEQ ID NO: 19 Nukleinsäuresequenz kodierend für eine NADPH-Oxidase aus Arabidopsis thaliana (RbohC)
- 20. SEQ ID NO: 20 Aminosäuresequenz kodierend für eine NADPH-Oxidase aus NADPH-Oxidase Arabidopsis thaliana (RbohC)
 - 21. SEQ ID NO: 21 Nukleinsäuresequenz kodierend für eine NADPH-Oxidase aus Arabidopsis thaliana (RbohA)

10
22. SEQ ID NO: 22 Aminosäuresequenz kodierend für eine
NADPH-Oxidase aus NADPH-Oxidase Arabidopsis
thaliana (RbohA)

- 15 23. SEQ ID NO: 23 Oligonukleotidprimer 5' NAOX 5'-GARCAAGGCTCTTTTGATTG-3'
 - 24. SEQ ID NO: 24 Oligonukleotidprimer 3' Naox 5'-GAAATGCTCCTTATGGAATTC-3'

20

Abbildungen

Fig. 1: "RNA Interference" mit pNAox-dsRNA vermindert die Penetrationseffizienz des Echten Gerstenmehltau

BghA6 in Gerste.

Die relative Penetrationseffizienz (RPE) wurde in fünf

individuellen Experimenten bei Inokulation mit Bgh aus Gerste cv Pallas bestimmt. Die RPE errechnet sich als Differenz aus der 30 Penetrationseffizienz bei pNAox-dsRNA transformierten Zellen und der Penetrationseffizienz bei Kontroll-dsRNA transformierten Zellen (hier: durchschnittliche Penetrationseffizienz 38,74 %). Die prozentuale RPE (%-RPE) errechnet sich aus der RPE minus 1 und multipliziert mit 100.

35

RPE = [PE bei pNAox-dsRNA transformierten Zellen]
[PE bei Kontroll-dsRNA transformierten Zellen]

%-RPE = 100 * (RPE-1)

Fehlerbalken gibt den Standardfehler an.

40

Die Säulen "1" bis "5" stellen die %-RPE (d.h. die Abweichung der Penetrationseffizienz vom Durchschnitt der Penetrationseffizienz der Kontrolle) bei Evaluierung von mindesten 100 Interaktionsstellen für jeweils ein unabhängiges Experiment dar. Die Säule 45 "m" stellt die durchschnittliche %-RPE der Experimente dar. Der

"Control-dsRNA" stellt die parallelen Experimente mit einer Kontroll-dsRNA. "pNAox"-dsRNA stellt die Experimente mit der dsRNA der NADPH-Oxidaseaus Gerste dar.

5 Die %-RPE war in Zellen, die mit pNAox-dsRNA beschossen wurden, deutlich (Signifikanz p=0,0054) vermindert im Vergleich zu Zellen, die mit einer Kontroll-dsRNA (TR: humaner Thyroid-rezeptor-dsRNA) bombardiert wurden.

10 Beispiele

Allgemeine Methoden:

Die chemische Synthese von Oligonukleotiden kann beispielsweise,
in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet,
2. Auflage, Wiley Press New York, Seite 896-897) erfolgen. Die
im Rahmen der vorliegenden Erfindung durchgeführten Klonierungsschritte wie z.B. Restriktionsspaltungen, Agarosegelelektrophorese, Reinigung von DNA-Fragmenten, Transfer von Nukleinsäuren
auf Nitrozellulose und Nylonmembranen, Verknüpfen von DNA-Fragmenten, Transformation von E. coli Zellen, Anzucht von Bakterien,

menten, Transformation von E. coli Zellen, Anzucht von Bakterier Vermehrung von Phagen und Sequenzanalyse rekombinanter DNA werden wie bei Sambrook et al. (1989) Cold Spring Harbor Laboratory Press; ISBN 0-87969-309-6 beschrieben durchgeführt.

25 Die Sequenzierung rekombinanter DNA-Moleküle erfolgt mit einem Laserfluoreszenz-DNA-Sequenzierer der Firma MWG-Licor nach der Methode von Sanger (Sanger et al. (1977) Proc Natl Acad Sci USA 74:5463-5467).

30 Beispiel 1: Pflanzen, Pathogene und Inokulation

Die Sorte Pallas wurde von Lisa Munk, Department of Plant Pathology, Royal Veterinary and Agriculturai University, Kopenhagen, Dänemark zur Verfügung gestellt. Ihre Herstellung ist beschrieben 35 (Kølster P et al. (1986)Crop Sci 26: 903-907).

Das 12 bis 36 h im Dunkeln auf feuchtem Filterpapier vorgekeimte Saatgut wurde, wenn nicht anders beschrieben, zu je 5 Körnern an den Rand eines Vierkanttopfes (8x8 cm) in Fruhstorfer Erde vom

40 Typ P ausgelegt, mit Erde bedeckt und regelmäßig mit Leitungswasser gegossen. Alle Pflanzen wurden in Klimaschränken oder - kammern bei 16 bis 18°C, 50 bis 60 % relativer Luftfeuchte und einem 16-stündigen Licht / 8stündigen Dunkelheitszyklus mit 3000 bzw. 5000 lux (50 bzw. 60 μmols-1m-2 Photonenflussdichte) 5 bis
45 8 Tage lang kultiviert und im Keimlingsstadium in den Versuchen

verwendet. Bei Experimenten, in denen Applikationen an Primärblättern durchgeführt wurden, waren diese vollständig entwickelt

Vor Durchführung der transienten Transfektionsexperimente 5 wurden die Pflanzen in Klimaschränken oder -kammern bei tagsüber 24°C, nachts 20°C, 50 bis 60 % relativer Luftfeuchte und einem 16stündigen Licht / 8stündigen Dunkelheitszyklus mit 30000 lux kultiviert.

- 10 Für die Inokulation von Gerstenpflanzen wurde Echte Gerstenmehltau Blumeria graminis (DC) Speer f.sp. hordei Em. Marchal der Rasse A6 (Wiberg A (1974) Hereditas 77: 89-148) (BghA6) verwendet. Dieser wurde vom Institut für Biometrie, JLU Gießen bereitgestellt. Die Nachzucht des Inokulums erfolgte in Klima-
- 15 kammern zu den gleichen Bedingungen, wie sie oben für die Pflanzen beschrieben sind, durch Übertragung der Konidien von befallenem Pflanzenmaterial auf regelmäßig angezogene, 7 Tage alte Gerstenpflanzen cv. Golden Promise bei einer Dichte von 100 Konidia/mm².

20

Die Inokulation mit BghA6 erfolgte unter Verwendung von 7 Tagen alten Keimlingen durch Abschütteln der Konidien bereits befallener Pflanzen in einem Inokulationsturm mit ca. 100 Konidien/mm² (soweit nicht anders angegeben).

25

Beispiel 2: Klonierung der pNAox cDNA Sequenz aus Gerste

Die zur Isolation der HvpNAox cDNA, ihrer Klonierung, Sequenzierung und Herstellung von Sonden benötigten cDNA

- 30 Fragmente wurden mittel RT-PCR unter Verwendung des "One Step RT-PCR Kit" (Life Technologies, Karlsruhe, Deutschland oder Qiagen, Hilden, Deutschland) erhalten. Dazu wurde Gesamt-RNA aus Gerste-Sämlingen als Matrize verwendet. Die RNA wurde aus Pallas 3, 5 und 7 Tage nach Keimung isoliert. Darüberhinaus wurde RNA
- 35 aus Pallas und den rückgekreuzten Linien mit mlo5, Mlg oder Mla12 1, 2 und 5 Tage nach Inokulation mit BghA6 am 7 Tag nach Keimung isoliert. Für die RT-PCR wurden Primer verwendet, die von konservierten Regionen der gp91phox Homologen aus Reis und Arabidopsis thaliana abgeleitet sind (GenBank Acc.-No.: X93301 bzw.
- **40** AB008111):
 - 5' NAOX: 5'-GARCAAGGCTCTTTTGATTG-3' (SEQ ID NO: 23) und
 - 3' Naox: 5' GAAATGCTCCTTATGGAATTC 3'(SEQ ID NO: 24)

Für die Reaktion (25 μ L-Ansatz) wurden je 1000 ng Gesamt-RNA, 0,4 mM dNTPs, je 0,6 mM OPN-1 und OPN-2 Primer, 10 μ l RNase-Inhibitor und 1 μ l Enzymmix in 1x RT-Puffer (one step RT-PCR Kit, Qiagen, Hilden) eingesetzt.

5

WO 2004/009820

Folgendes Temperaturprogramm wird verwendet (PTC-100TM Modell 96V; MJ Research, Inc., Watertown, Massachussetts):

1	Zyklus mit 30 min bei 50°C
10 1	Zyklus mit 150 sec bei 94°C
30	Zyklen mit 94°C für 45 sec, 55°C für 1 min
	und 72°C für 2 min
1	Zyklus mit 72°C für 7 min

- 15 Die PCR Produkt wurde mittels 2% w/v Agarosegelelektrophorese aufgetrennt. Es wurde ein RT-PCR Produkt von 378 bp erhalten (SEQ ID NO: 1), das ein teil des offenen Leseraster der NADPH-Oxidase aus Gerste kodiert. Die entsprechende cDNA wurde aus einem Agarosegel isoliert und in den pGEM-T-Vektor (Promega,
- 20 Mannheim, Deutschland) mittels T-Überhang-Ligation kloniert. Die cDNAs wurden ausgehend von der Plasmid-DNA unter Verwendung des "Thermo Sequenase Fluorescent Labeled Primer Cycle Sequencing Kit" (Amersham, Freiburg, Deutschland) sequenziert. Das Konstrukt wurde mit pGEM-T-pNAox bezeichnet.

25

Beispiel 3: In vitro Synthese der pNAox dsRNA

Das Plasmid pGEM-T-pNAox, das für die in vitro RNA-Transkription eingesetzt wurde, beinhaltet den T7 und SP6 Promotor an den 30 jeweiligen Enden der insertierten Nukleinsäuresequenz, was die Synthese von sense- bzw. antisense RNA ermöglicht. Das Plasmide kann mit geeigneten Restriktionsenzymen (ApaI für SP6- und PstI für T7-Polymerase) linearisiert werden, um eine korrekte Transkription der insertierten Nukleinsäuresequenz zu gewähr-35 leisten und ein Durchlesen in vektorielle Sequenzen zu verhindern. Dazu wurden 10 µg pGEM-T-pNAox Plasmid-DNA jeweils mit ApaI für SP6- und PstI für T7-Polymerase geschnitten. Die geschnittenen Plasmide werden in 200 µl Wasser mit gleichem Volumen Phenol/Chloroform/Isoamylalkohol extrahiert, in ein 40 neues Eppendorfreaktionsgefäß (RNAse frei) transferiert und 5 min bei 20000 g zentrifugiert. 180 μl der Plasmid-Lösung wurden mit 420 µl Ethanol versetzt, auf Eis gestellt und anschließend durch Zentrifugation für 30 min bei 20000 g und - 4°C präzipitiert. Das Präzipitat wurde in 10 μl TE Puffer aufgenommen.

45 Die jeweiligen Präparationen wurden direkt in eine in vitro Transkription mit T7-RNA-Polymerase bzw. SP6-RNA-Polymerase

eingesetzt. RNA Polymerasen wurden von Roche Molecular Biology, Mannheim, Deutschland bezogen.

Jeder Transkriptionsansatz beinhaltete in einem Volumen of 40 μ l:

- $2 \mu l$ linearisierte Plasmid DNA (1 μg)
- 2 μl NTP's (25 mM) (1,25 mM von jedem NTP)
- 4 μl 10xReaktionspuffer (Roche Molecular Biology),
- 1 μl RNAsin RNAsin (27 Units; Roche Molecular Biology),
- 10 2 μl RNA Polymerase (40 Units)
 - 29 μ l DEPC-Wasser

Nach einer Inkubation von 2 h bei 37°C wurde jeweils ein Teil der Reaktionsansätze aus der Transkription des "sense"- bzw. "anti-

- 15 sense"-Stranges gemischt, für 5 min bei 95°C denaturiert und anschließend durch Abkühlung über 30 min auf eine Endtemperatur von 37°C miteinander hybridisiert ("annealing"). Alternativ kann nach der Denaturierung das Gemisch aus sense- und antisense-STrang auch für 30 min bei -20°C gekühlt werden. Das Protein-
- 20 präzipitat, das sich während Denaturierung und Hybridisierung bildet wurde durch kurze Zentrifugation bei 20800 g abgetrennt und der Überstand direkt zur Beschichtung von Wolframpartikeln verwendet (s. unten). Zur Analyse wurden jeweils 1 μl jeden RNA-Stranges und der dsRNA auf einem nicht-denaturierenden Agarosegel
- 25 aufgetrennt. Eine erfolgreiche Hybridisierung zeigte sich, durch eine Bandenverschiebung zu höherem Molekulargewicht im Vergleich zu den Einzelsträngen.
- 4 μl der dsRNA wurden Ethanol-präzipitiert (durch Zugabe von 6 μl 30 Wasser, 1 μl 3M Natriumacetat-Lösung und 25 μl Ethanol, sowie Zenrifugation für mindestens 5 min bei 20000 g und 4°C) und in 500 μl Wasser resuspendiert. Das Absorbtionsspektrum zwischen 230 und 300 nm wurde gemessen, bzw. die Absorption bei 280 und 260 nm bestimmt, um die Reinheit und die Konzentration der dsRNA
- 35 zu bestimmen. In der Regel wurden 80 bis 100 μg dsRNA mit einem OD₂₆₀/OD₂₆₀-Verhältnis von 1,80 bis 1,95 erhalten. Ein Verdau mit DNase I kann optional durchgeführt werden, beeinflusst jedoch nachfolgende Ergebnisse nicht wesentlich.
- 40 Als Kontroll-dsRNA fungierte die dsRNA des humanen Thyroidrezeptors (Ausgangsvektor pT7betaSal (Norman C et al. (1988) Cell 55(6):989-1003) zur Verfügung gestellt von Dr. Baniahmad, Institut für Genetik, Gießen, Deutschland; die Sequenz des Insert ist beschrieben unter der GenBank Acc.-No.: NM_000461). Für die
- 45 Herstellung der sense-RNA wurde das Plasmid mit PvuII, für die antsense-RNA mit HindIII verdaut und die RNA dann mit T7- bzw. SP6 RNA-Polymerase transkribiert. Die einzelnen Verfahrens-

schritte zur Herstellung der Kontroll-dsRNA werden analog den oben für die pNAox-dsRNA beschriebenen durchgeführt.

Beispiel 4: Transiente Transformation, RNAi und Evaluation der Pilzpathogenentwicklung

Gerste cv Pallas Blattsegmente wurden mit einer pNAox-dsRNA zusammen mit einem GFP-Expressionsvektor transformiert.

Anschließend wurden die Blätter mit Bgh inokuliert und das

10 Ergebnis nach 48 h mittels Licht- und Fluoreszenzmikroskopie analysiert. Die Penetration in GFP-exprimierenden Zellen wurde mittels Detektion von Haustorien in lebenden Zellen und durch Bewertung der Pilzentwicklung in eben diesen Zellen beurteilt. In allen fünf Experimenten führte die Bombardierung von Gerste cv

15 Pallas mit pNAox-dsRNA zu einer verminderten Anzahl von erfolgreich durch Bgh penetrierten Zellen im Vergleich zu Zellen die mit einer fremden Kontroll-dsRNA (humaner Thyroidhormonrezeptor dsRNA, TR) bombardiert wurden. Der resistenzinduzierende Effekt der pNAox-dsRNA bedingte eine durchschnittliche Verminderung der Penetrationseffizienz durch Bgh um 35 % (Fig. 4).

Es wurde ein Verfahren zur transienten Transformation eingesetzt das bereits für die biolistische Einführung von dsRNA in epidermale Zellen von Gerstenblättern beschrieben wurde (Schweizer P et al. (1999) Mol Plant Microbe Interact 12:647-54; Schweizer P et al. (2000) Plant J 2000 24: 895-903). Wolframpartikel mit einem Durchmesser von 1,1 µm (Partikeldichte 25 mg/ml) wurden mit dsRNA (Herstellung siehe oben) zusammen mit Plasmid-DNA des Vektors pGFP (GFP unter Kontrolle des CaMV 35S Promotors)

30 als Transformationsmarker beschichtet. Dazu wurden pro Schuss die nachfolgender Mengen an dsRNA bzw. Reporterplasmid zur Beschichtung verwendet: 1 µg pGFP und 2 µg dsRNA. Dopplesträngige RNA wurde mittels Verschmelzens von "sense" und "antisense"-RNA in vitro synthetisiert (s.o.).

35

Für Microcarrier-Präparation wurden 55 mg Wolframpartikel (M 17, Durchmesser 1,1 μm; Bio-Rad, München) zweimal mit 1 ml auto-klaviertem Destilliertem Wasser und einmal mit 1 mL absolutem Ethanol gewaschen, getrocknet und in 1 ml 50 %igem Glycerin aufgenommen (ca. 50 mg/ml Stammlösung). Die Lösung wurde mit 50 %igem Glycerin auf 25 mg/ml verdünnt, vor Gebrauch gut gemischt und im Ultraschallbad suspendiert. Zur Microcarrier-Beschichtung wurden pro Schuss 1 μg Plasmid, 2 μg dsRNA (1 μL), 12,5 μl Wolframpartikel-Suspension (25 mg/ml), 12,5 μl 1 M Ca(NO3)2-Lösung

45 (pH 10) tropfenweise unter ständigem Mischen zusammengegeben, 10 min bei RT stehengelassen, kurz zentrifugiert und 20 μ l vom

Überstand abgenommen. Der Rest mit den Wolframpartikel wird resuspendiert (Ultraschallbad) und ins Experiment eingesetzt.

Es wurden ca. 4 cm lange Segmente von Gerstenprimärblättern 5 verwendet. Die Gewebe wurden auf 0,5 % Phytagar (GibcoBRL™ Life Technologies™, Karlsruhe) mit 20 μg/ml Benzimidazol in Petrischalen (6,5 cm Durchmesser) gelegt und direkt vor dem Partikelbeschuss an den Rändern mit einer Schablone mit einer rechteckigen Aussparung von 2,2 cm x 2,3 cm abgedeckt. Die Schalen 10 wurden nacheinander auf den Boden der Vakuumkammer (Schweizer P et al. (1999) Mol Plant Microbe Interact 12:647-54) gestellt, über dem ein Nylonnetz (Maschenweite 0,2 mm, Millipore, Eschborn) als Diffusor auf einer Lochplatte eingeschoben war (5 cm über dem Boden, 11 cm unterhalb des Macrocarriers, s.u.), um Partikel-15 klumpen zu zerstreuen und den Partikelstrom abzubremsen. Der oben an der Kammer angebrachte Macrocarrier (Plastik-Sterilfilterhalter, 13 mm, Gelman Sciences, Swinney, UK) wurde je Schuss mit 5,8 µL DNA-beschichteten Wolframpartikeln (Microcarrier, s.u.) beladen. Mit einer Membranvakuumpumpe (Vacuubrand, Wertheim) 20 wurde der Druck um 0,9 bar in der Kammer reduziert und die Wolframpartikel mit 9 bar Heliumgasdruck auf die Oberfläche des Pflanzengewebes geschossen. Sofort danach wurde die Kammer belüftet. Zur Markierung transformierter Zellen wurden die

25 Promoter/Terminator-Kassette mit insertiertem GFP-Gen; Schweizer P et al. (1999) Mol Plant Microbe Interact 12:647-54; zur Verfügung gestellt von Dr. P. Schweizer Schweizer P, Institut für Pflanzengenetik IPK, Gatersleben, Deutschland) beschossen. Vor dem Schießen eines anderen Plasmids wurde der Macrocarrier

Blätter mit dem Plasmid (pGFP; Vektor auf pUC18-Basis, CaMV 35S-

- 30 jeweils gründlich mit Wasser gereinigt. Nach vierstündiger Inkubation nach dem Beschuss bei leicht geöffneten Petrischalen, RT und Tageslicht wurden die Blätter mit 100 Konidien/mm² des Echten Gerstenmehltaupilzes (Rasse A6) inokuliert und für weitere 40 bis 48 h unter gleichen Bedingungen inkubiert.
 - Blattsegmente wurden mit den beschichteten Partikeln unter Verwendung einer "particle inflow gun" bombardiert. Pro Schuss wurden 312 µg Wolframpartikel appliziert. 4 h nach der Bombardierung wurde Inokulation mit Blumeria graminis f.sp. hordei
- 40 Mehltau (Rasse A6) inokuliert und nach weiteren 40 h bezüglich der Infektionsanzeichen ausgewertet. Das Ergebnis (z.B. die Penetrationseffizienz, definiert als prozentualer Anteil angegriffener Zellen, die ein reifes Haustorium und eine Sekundärhyphae ("secondary elongating hyphae") wurde mittels
- 45 Fluoreszens- und Lichtmikroskopie analysiert. Eine Inokulation mit 100 Conidia/mm² ergibt eine Angriffsfrequenz von ca. 50 % der transformierten Zellen. Für jedes einzelne Experiment wurde eine

minimale Anzahl von 100 Interaktionsstellen ausgewertet. Transformierte (GFP exprimierende) Zellen wurden unter Anregung mit blauem Licht identifiziert. Drei verschiedene Katagorien von transformierten Zellen konnten unterschieden werden:

5

- 1. Penetrierte Zellen, die ein leicht erkennbares Haustorium beinhalten. Eine Zelle mit mehr als einem Haustorium wurde als eine Zelle gewertet.
- 2. Zellen, die durch ein Pilz-Appressorium zwar angegriffen wurden, aber kein Haustorium beinhalten. Eine Zelle die mehrfach von Bgh angegriffen wurden, aber kein Haustorium enthält, wurde als eine Zelle gewertet.
- 15 3. Zellen die nicht durch Bgh angegriffen sind.

Stomatazellen und Stomatanebenzellen wurden von der Bewertung ausgeschlossen. Oberflächenstrukturen von Bgh wurden mittels Lichtmikroskopie oder Fluoreszenzfärbung des Pilzes mit 0,1 %

- 20 Calcofluor (w/v in Wasser) für 30 sec analysiert. Die Entwicklung des Pilzes kann leicht durch Fluoreszenzmikroskopie nach Anfärbung mit Calcofluor evaluiert werden. In pNAox-dsRNA transformierten Zellen entwickelt der Pilz zwar ein primäres und ein appressoriales Keimschlauch ("Germ-Tube") aber kein
- 25 Haustorium. Haustoriumausbildung ist eine Vorbedingung für die Bildung einer Sekundärhyphae.

Die relative Penetrationseffizien (RPE) errechnet sich als Differenz aus der Penetrationseffizien bei transformierten 30 Zellen (Transformation mit pNAox- oder Kontroll-dsRNA) und der Penetrationseffizienz bei untransformierten Zellen (hier: durchschnittliche Penetrationseffizienz 38,74 %). Die prozentuale RPE

(%-RPE) errechnet sich aus der RPE minus 1 und multipliziert mit 100.

35

RPE = [PE bei pNAox-dsRNA transformierten Zellen]
[PE bei Kontroll-dsRNA transformierten Zellen]

%-RPE = 100 * (RPE-1)

40

Der %-RPE-Wert (Abweichung von der durchschnittlichen Penetrationseffizienz der Kontrolle) dient der Bestimmung des Suszeptibilität von Zellen, die mit pNAox-dsRNA transfiziert sind (Fig. 4).

Bei der Kontroll-dsRNA wurde bei fünf unabhängigen Versuchen kein Unterschied zwischen der Transfektion mit der Kontroll dsRNA und Wasser bezüglich der Penetrationseffizienz von Bgh beobachtet.

- 5 Um einen Einfluss auf der dsRNA auf die Transformationsrate oder Überlebensrate der angegriffenen Zellen auszuschließen, wurde die Anzahl der GFP-exprimierenden Zellen zwischen Kontroll- und pNAox-dsRNA Experimenten verglichen. Die pNAox-dsRNA hatten keinen Einfluss auf die Gesamtanzahl- oder die Anzahl der ange- 10 griffenen GFP-exprimierenden Zellen.
 - Beispiel 5: Inhibition der NADPH-Oxidase mit Diphenyleniodoniumchlorid
- 15 Untermauert werden die Ergebnisse durch weitere Experimente mit dem NADPH-Oxidase Inhibitor Diphenyleniodoniumchlorid (DPI; Tabelle 1). Im allgemeinen wurden die Experimente durchgeführt wie von Hückelhoven und Kogel, 1998.
- 20 Tab. 1: Wirkung von DPI auf die Pathogenabwehr in Pallasa

		Interaktionen	(% ± Standardfehler)
	Art der Interaktion	Kontrolle ^b	200 µM DPIC
25	Penetration	68.25 ± 9.9	16.25 ± 0.5
	Nicht-Penetration	24.25 ± 6.3	67.5 ± 9.5
	HR (Hypersensitive	7.5 ± 3.7	16.25 ± 9.3
	Reaktion)		

- a DPI-Behandlung erfolgte 12 h nach Pathogen-Inokkulation, die Auswertung 36 h nach Inokkulation.
- b Kontrolle mit 10 mM Kaliumphoshatpuffer, pH 7,8, mit DMSO Gehalt wie bei DPI Behandlung.
 - c DPI gelöst in 10 mM Kaliumphoshatpuffer, pH 7,8, ausgehend von einer 10 mg/ml DPI Stammlösung in DMSO.

Patentansprüche

- Verfahren zum Erzielen oder Erhöhen der Resistenz gegen mindestens ein Pathogen in Pflanzen, dadurch gekennzeichnet, dass nachfolgende Arbeitsschritte umfasst sind
 - a) Verminderung der Proteinmenge, Aktivität oder Funktion einer NADPH-Oxidase in einer Pflanze oder einem Gewebe, Organ, Teil oder Zelle derselben und

10

20

25

- b) Auswahl der Pflanzen, bei denen im Unterschied oder Vergleich zur Ausgangspflanze - die Resistenz gegen mindestens ein Pathogen besteht oder erhöht ist.
- 15 2. Verfahren nach Anspruch 1, wobei die NADPH-Oxidase kodiert wird durch
 - a) Polypeptidsequenzen umfassend eine Sequenz gemäß SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 oder 22, oder
 - b) Polypeptidsequenzen eines funktionellen Äquivalentes eines Polypeptides, welches eine Sequenz gemäß SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 oder 22 umfasst.
- 3. Verfahren nach Anspruch 2, wobei das funktionelle Äquivalent eine Homologie von mindestens 50 % zu einem der Polypeptide gemäss SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 oder 22 hat.
- Verfahren nach einem der Ansprüche 1 bis 3, wobei die Verminderung der Proteinmenge, Aktivität oder Funktion einer NADPH-Oxidase gewährleistet wird durch Anwendung eines Verfahrens ausgewählt aus der Gruppe bestehend aus
 - a) Einbringen einer doppelsträngigen NADPH-Oxidase Ribonukleinsäuresequenz oder einer deren Expression gewährleistenden Expressionskassette oder Expressionskassetten,
 - b) Einbringen einer NADPH-Oxidase antisense-Nukleinsäuresequenz oder einer deren Expression gewährleistenden Expressionskassette,

45

20

30

35

40

- c) Einbringen einer NADPH-Oxidase antisense-Nukleinsäuresequenz kombiniert mit einem Ribozym oder einer deren Expression gewährleistenden Expressionskassette,
- 5 d) Einbringen von NADPH-Oxidase sense-Nukleinsäuresequenzen zur Induktion einer Kosuppression oder einer deren Expression gewährleistenden Expressionskassette,
- e) Einbringen DNA-oder Protein-bindende Faktoren gegen

 NADPH-Oxidase-Gene, -RNAs oder -Proteine oder einer

 deren Expression gewährleistenden Expressionskassette,
 - f) Einbringen von den NADPH-Oxidase RNA-Abbau bewirkende virale Nukleinsäuresequenzen und Expressionskonstrukten oder einer deren Expression gewährleistenden Expressionskassette,
 - g) Einbringen von Konstrukten zur Induktion einer homologen Rekombination an endogenen NADPH-Oxidase-Genen und
 - h) Einführung von Mutationen in ein endogenes NADPH-Oxidase Gen.
- 5. Verfahren nach einem der Ansprüche 1 bis 4, umfassend
 25
 - (i) die stabile Transformation einer pflanzlichen Zelle mit einer rekombinanten Expressionskassette enthaltend in funktioneller Verknüpfung mit einem in Pflanzen aktiven Promotor eine Nukleinsäuresequenz kodierend für
 - a) eine doppelsträngigen NADPH-Oxidase RNA-Ribonukleinsäuresequenz oder
 - b) eine NADPH-Oxidase antisense-Nukleinsäuresequenz oder
 - c) eine NADPH-Oxidase antisense-Nukleinsäuresequenz kombiniert mit einem Ribozym oder
 - d) eine NADPH-Oxidase sense-Nukleinsäuresequenzen zur Induktion einer Kosuppression oder
 - e) DNA-oder Protein-bindende Faktoren gegen NADPH-Oxidase-Gene, -RNAs oder -Proteine
 - f) den NADPH-Oxidase RNA-Abbau bewirkende virale Nukleinsäuresequenzen

- (ii) Regeneration der Pflanze aus der pflanzlichen Zelle, und
- (iii) Expression besagter Nukleinsäuresequenz in einer Menge und für eine Zeit hinreichend, um eine Pathogenresistenz in besagter Pflanze zu erzeugen oder zu erhöhen.
- 6. Verfahren nach einem der Ansprüche 1 bis 5, wobei das Pathogen ausgewählt aus der Gruppe bestehend aus Bakterien, Pilzen, Insekten, Viren und Nematoden.

5

7. Verfahren nach einem der Ansprüche 1 bis 6, wobei das Pathogen ausgewählt ist aus der Gruppe der Pilze bestehend aus Plasmodiophoramycota, Oomycota, Ascomycota, Chytridiomyceten, Zygomyceten, Basidiomycota und Deuteromyceten.

15

8. Verfahren nach einem der Ansprüche 1 bis 7, wobei die Pflanze aus den monokotyledonen und dikotyledonen Pflanzen ausgewählt ist.

20 9. Verfahren nach einem der Ansprüche 1 bis 8, wobei die Pflanze ausgewählt ist aus der Gruppe der monokotyledonen Pflanzen bestehend aus Weizen, Hafer, Hirse, Gerste, Roggen, Mais, Reis, Buchweizen, Sorghum, Triticale, Dinkel, Leinsamen oder Zuckerrohr.

25

- 10. Doppelsträngiges RNA-Molekül zur Verminderung der Expression einer NADPH-Oxidase umfassend
- a) einen "sense"-RNA-Strang umfassend mindestens eine Ribonukleotidsequenz, die im wesentlichen identisch ist zu
 mindestens einem Teil des "sense"-RNA-Transkriptes einer
 Nukleinsäuresequenz kodierend für eine NADPH-Oxidase, und
- b) einen "antisense"-RNA-Strang, der zu dem RNA-sense-Strang unter a) im wesentlichen komplementären ist.
 - 11. Doppelsträngiges RNA-Molekül nach Anspruch 10, wobei die beiden RNA-Stränge der doppelsträngigen RNA kovalent miteinander verbunden sind.

- 12. Doppelsträngiges RNA-Molekül nach einem der Ansprüche 10 oder 11, wobei einer der beiden RNA-Stränge kodiert wird durch zumindest einen Teil einer Nukleinsäuresequenz kodierend für eine NADPH-Oxidase Sequenz gemäß SEQ ID NO: 1, 3, 5, 7, 9,
- 45 11, 13, 15, 17, 19 oder 21 oder ein funktionelles Äquivalent derselben.

- 13. Transgene Expressionskassette enthaltend in funktioneller Verknüpfung mit einem in pflanzlichen Organismen funktionellen Promotor eine Nukleinsäuresequenz kodierend für ein doppelsträngiges RNA-Molekül gemäß einem der Ansprüche 10 bis 12.
- 14. Transgene Expressionskassette enthaltend zumindest einen Teil einer Nukleinsäuresequenz kodierend für eine NADPH-Oxidase gemäß SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 oder 21 oder ein funktionelles Äquivalent derselben, wobei besagte Nukleinsäuresequenz in antisense-Orientierung mit einem in pflanzlichen Organismen funktionellen Promotor funktionell verknüpft ist.
- 15 15. Transgene Expressionskassette nach Anspruch 13 oder 14, wobei der in Pflanzen funktionelle Promotor ein pathogen-induzierbarer Promotor ist.
- 16. Transgener Vektor enthaltend eine Expressionskassette gemäß einem der Ansprüche 13 bis 15.
- 17. Transgener Organismus enthaltend ein doppelsträngiges RNA-Molekül gemäß einem der Ansprüche 10 bis 12, eine Expressionskassette gemäß einem der Ansprüche 13 bis 15 oder einen Vektor gemäß Anspruch 16.
 - 18. Transgener Organismus nach Anspruch 17 ausgewählt aus der Gruppe bestehend aus Bakterien, Hefen, Tieren und Pflanzen.
- 30 19. Transgener Organismus nach Anspruch 17 oder 18, ausgewählt aus der Gruppe der Pflanzen bestehend aus Weizen, Hafer, Hirse, Gerste, Roggen, Mais, Reis, Buchweizen, Sorghum, Triticale, Dinkel, Leinsamen, Zuckerrohr, Raps, Canola, Kresse, Arabidopsis, Kohlarten, Soja, Alfalfa, Erbse, Bohnengewächsen, Erdnuss, Kartoffel, Tabak, Tomate, Aubergine, Paprika, Sonnenblume, Tagetes, Salat, Calendula, Melone, Kürbis und Zucchini.
- 20. Gewebe, Organ, Teil, Zelle, Zellkultur oder Vermehrungsgut
 40 abgeleitet von einem transgenen Organismus gemäß einem der Ansprüche 18 oder 19.

Translation

PCT

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

(PCT Article 36 and Rule 70)

Applicant's or agent's file reference 0000053765	FOR FURTHER ACT	CION See Notific	eation of Transmittal of International Examination Report (Form PCT/IPEA/416)	
International application No. PCT/EP2003/007589	International filing date 14 July 2003 (1		Priority date (day/month/year) 22 July 2002 (22.07.2002)	
International Patent Classification (IPC) or national classification and IPC C12N 15/82, 15/24, A01H 5/10				
Applicant BASF PLANT SCIENCE GMBH				
 This international preliminary examination report has been prepared by this International Preliminary Examining Authority and is transmitted to the applicant according to Article 36. This REPORT consists of a total of4 sheets, including this cover sheet. 				
This report is also accompanied by ANNEXES, i.e., sheets of the description, claims and/or drawings which have been amended and are the basis for this report and/or sheets containing rectifications made before this Authority (see Rule 70.16 and Section 607 of the Administrative Instructions under the PCT).			on, claims and/or drawings which have been	
These annexes consist of a to	otal ofsl	neets.		
3. This report contains indications related Basis of the report		ns:		
II Priority				
III Non-establishment	of opinion with regard to	novelty, inventive s	tep and industrial applicability	
IV Lack of unity of in			tive atom or industrial applicability	
V Reasoned statemer citations and expla	nt under Article 35(2) with mations supporting such s	tatement	nventive step or industrial applicability;	
VI Certain documents	cited			
 	the international application			
VIII Certain observatio	ns on the international ap	plication		
Date of submission of the demand		Date of completion	of this report	
23 January 2004 (23.0)1.2004)	15	October 2004 (15.10.2004)	
Name and mailing address of the IPEA/E	P	Authorized officer		
Facsimile No.		Telephone No.		

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

I. Basis of the report				
1. With regard to the elements of the international application:*				
\boxtimes	the international application as originally filed			
\boxtimes	the descr			
	pages _	1-71 , as original , as origin		
	pages _	, filed with t	ne demand	
	pages _	, filed with the letter of		
\boxtimes	the clain	ms:		
	pages _	1-20, as orig	inally filed	
	pages _	, as amended (together with any statement under	the demand	
	pages _	, filed with t	ine demand	
	pages _	, filed with the letter of		
\boxtimes	the draw	•		
	pages	El Juich	ginally filed	
	pages	, filed with		
	pages _	, filed with the letter of		
□ t	the seque	ence listing part of the description:		
	pages	, as ori	ginally filed	
1	pages	, filed with	the demand	
	pages	, filed with the letter of		
3. With preli	the language of the second of	It to any nucleotide and/or amino acid sequence disclosed in the international application, the examination was carried out on the basis of the sequence listing: ined in the international application in written form. It together with the international application in computer readable form. It is subsequently to this Authority in written form. It is subsequently to this Authority in computer readable form. It is statement that the subsequently furnished written sequence listing does not go beyond the disclarational application as filed has been furnished. It is information recorded in computer readable form is identical to the written sequence furnished.	which is: le 55.2 and/ international	
in t	This rebeyond	the description, pages the claims, Nos the drawings, sheets/fig report has been established as if (some of) the amendments had not been made, since they have been conditted disclosure as filed, as indicated in the Supplemental Box (Rule 70.2(c)).** at sheets which have been furnished to the receiving Office in response to an invitation under Article 14 and ort as "originally filed" and are not annexed to this report since they do not contain amendments the effect of the containing such amendments must be referred to under item 1 and annexed to this report.	re referred to	

V.	Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability;
	citations and explanations supporting such statement

Statement			
Novelty (N)	Claims	1-20	YES
	Claims		NO
Inventive step (IS)	Claims	1-20	YES
	Claims		NO
Industrial applicability (IA)	Claims	1-20	YES
,	Claims		NO

2. Citations and explanations

The present application relates to a method for 1. increasing pathogenic resistance in plants by reducing the protein content, activity or function of an NADPH oxidase.

> The increased resistance of barley plants to natural barley mildew is shown as an example.

- A method that would correspond to the claimed method 2. is not disclosed in the cited prior art. basis of the cited literature, a person skilled in the art would expect increased resistance to be achievable by increasing the NADPH oxidase. subject matter of claims 1-10 can therefore be considered to be novel and to involve an inventive step.
- A person skilled in the art would also not have been 3. motivated to produce the double-strand RNA molecules claimed in claims 11-20 by reducing the expression of an NADPH oxidase.
- On the other hand, it is not clear whether the 4. claimed invention can be performed throughout its entire scope. Only one example in which a specific combination of host plant and pathogen exhibits increased resistance is shown in the application. Ιt

cannot be inferred from that example that a reduction in the NADPH oxidase results in increased pathogenic resistance in every case. Since the present application contradicts the general teaching, one embodiment does not appear sufficient to refute this teaching.

VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM EBIET DES PATENTWESEN

PCT

INTERNATIONALER VORLÄUFIGER PRÜFUNGSBERICHT

(Artikel 36 und Regel 70 PCT)

Aktenzeichen des Anmelders oder Anwalts 0000053765			Anmelders oder Anwalts	WEITERES VORG		g über die Übersendung des internationalen fungsberichts (Formblatt PCT/IPEA/416)
Internationales Aktenzeichen PCT/EP 03/07589				Internationales Anmelde 14.07.2003	edatum (Tag/Monat/Jahr)	Prioritätsdatum <i>(TagMonatJahr)</i> 22.07.2002
1	nationa 2N15/8		lentklassifikation (IPK) oder	nationale Klassifikation u	nd IPK	
	•••					
	elder SF PL	ANT	SCIENCE GMBH et a	al.		
1.	Dies beau	er int ıftrag	ernationale vorläufige Pr ten Behörde erstellt und	üfungsbericht wurde vo wird dem Anmelder ge	on der mit der internatio mäß Artikel 36 übermit	onalen vorläufigen Prüfung telt.
2.	Dies	er BE	RICHT umfaßt insgesar	nt 4 Blätter einschließl	ich dieses Deckblatts.	
		und	oder Zeichnungen, die g örde vorgenommenen B	reändert wurden und di	esem Bericht zugrunde	ätter mit Beschreibungen, Ansprüchen liegen, und/oder Blätter mit vor dieser itt 607 der Verwaltungsrichtlinien zum
	Dies	e Anl	agen umfassen insgesa	mt Blätter.		
3.	Dies	er Be	richt enthält Angaben zu	ı folgenden Punkten:		en de la companya de
	1	\boxtimes	Grundlage des Besche	eids		
	H		Priorität			
	III 🔲 Keine Erstellung eines Gutachtens über Neuheit, erfinderische Tätigkeit und gewerbliche Anwendbarke		keit und gewerbliche Anwendbarkeit			
	IV		Mangelnde Einheitlich			
<u> </u>	V	☒	Begründete Feststellu gewerblichen Anwend	ng nach Regel 66.2 a)ii barkeit; Unterlagen und) hinsichtlich der Neuhe I Erklärungen zur Stütz	eit, der erfinderischen Tätigkeit und der ung dieser Feststellung
	VI		Bestimmte angeführte			
	VII		Bestimmte Mängel der	rinternationalen Anmel	dung	
	VIII		Bestimmte Bemerkung	gen zur internationalen	Anmeldung	
Datu	ım der	Finrei	chung des Antrags		Datum der Fertigstellung	n dieses Berichts
Date	Datum der Einreichung des Antrags Datum der Fertigstellung dieses Berichts					
23.0	23.01.2004				15.10.2004	•
	e und ıftragte		nschrift der mit der internati örde	onalen Prüfung	Bevollmächtigter Bedier	nsteter
-	16.		ropäisches Patentamt 30298 München	•	Bilang, J	
	<i>9))</i>	Te	I. +49 89 2399 - 0 Tx: 5236 x: +49 89 2399 - 4465	56 epmu d		
-		ı⁻d	A. 170 UU ZUUU - 44UU		Tel. +49 89 2399-8707	Office autop

INTERNATIONALER VORLÄUFIGER PRÜFUNGSBERICHT

Internationales Aktenzeichen

PCT/EP 03/07589

1. Hinsichtlich der **Bestandteile** der internationalen Anmeldung (Ersatzblätter, die dem Anmeldeamt auf eine Aufforderung nach Artikel 14 hin vorgelegt wurden, gelten im Rahmen dieses Berichts als "ursprünglich eingereicht" und sind ihm nicht beigefügt, weil sie keine Änderungen enthalten (Regeln 70.16 und 70.17)):

	Bes	schreibung, Seiten				
	1-71		in der ursprünglich eingereichten Fassung			
	Ans	sprüche, Nr.				
	1-20	0	in der ursprünglich eingereichten Fassung			
	Zeid	chnungen, Blätter				
	1/1		in der ursprünglich eingereichten Fassung			
	die	Hinsichtlich der Sprache : Alle vorstehend genannten Bestandteile standen der Behörde in der Sprache, in der die internationale Anmeldung eingereicht worden ist, zur Verfügung oder wurden in dieser eingereicht, sofern unter diesem Punkt nichts anderes angegeben ist.				
	Die eing	Bestandteile stander gereicht; dabei hande	n der Behörde in der Sprache: zur Verfügung bzw. wurden in dieser Sprache lt es sich um:			
		die Sprache der Übe (nach Regel 23.1(b)	ersetzung, die für die Zwecke der internationalen Recherche eingereicht worden ist).			
		die Veröffentlichung	ssprache der internationalen Anmeldung (nach Regel 48.3(b)).			
		die Sprache der Übe worden ist (nach Re	ersetzung, die für die Zwecke der internationalen vorläufigen Prüfung eingereicht gel 55.2 und/oder 55.3).			
١.	Hins inte	sichtlich der in der int rnationale vorläufige	ernationalen Anmeldung offenbarten Nucleotid- und/oder Aminosäuresequenz ist die Prüfung auf der Grundlage des Sequenzprotokolls durchgeführt worden, das:			
		in der internationaler	n Anmeldung in schriftlicher Form enthalten ist.			
٠,	\boxtimes	zusammen mit der in	nternationalen Anmeldung in computerlesbarer Form eingereicht worden ist.			
		bei der Behörde nac	hträglich in schriftlicher Form eingereicht worden ist.			
		bei der Behörde nac	hträglich in computerlesbarer Form eingereicht worden ist.			
		Die Erklärung, daß o Offenbarungsgehalt	das nachträglich eingereichte schriftliche Sequenzprotokoll nicht über den der internationalen Anmeldung im Anmeldezeitpunkt hinausgeht, wurde vorgelegt.			
		Die Erklärung, daß d Sequenzprotokoll er	die in computerlesbarer Form erfassten Informationen dem schriftlichen ntsprechen, wurde vorgelegt.			
	Auf	grund der Änderunge	n sind folgende Unterlagen fortgefallen:			
		Beschreibung,	Seiten:			
		Ansprüche,	Nr.:			
		Zeichnungen,	Blatt:			

INTERNATIONALER VORLÄUFIGER PRÜFUNGSBERICHT

Internationales Aktenzeichen

PCT/EP 03/07589

5. Dieser Bericht ist ohne Berücksichtigung (von einigen) der Änderungen erstellt worden, da diese aus den angegebenen Gründen nach Auffassung der Behörde über den Offenbarungsgehalt in der ursprünglich eingereichten Fassung hinausgehen (Regel 70.2(c)).

(Auf Ersatzblätter, die solche Änderungen enthalten, ist unter Punkt 1 hinzuweisen; sie sind diesem Bericht beizufügen.)

- 6. Etwaige zusätzliche Bemerkungen:
- V. Begründete Feststellung nach Artikel 35(2) hinsichtlich der Neuheit, der erfinderischen Tätigkeit und der gewerblichen Anwendbarkeit; Unterlagen und Erklärungen zur Stützung dieser Feststellung
- 1. Feststellung

Neuheit (N)

Ja: Ansprüche 1-20

Nein: Ansprüche

Erfinderische Tätigkeit (IS)

Ja: Ansprüche 1-20

Nein: Ansprüche

Gewerbliche Anwendbarkeit (IA)

Ja: Ansprüche: 1-20

Nein: Ansprüche:

2. Unterlagen und Erklärungen:

siehe Beiblatt

- Die vorliegende Anmeldung betrifft ein Verfahren zur Erhöhung der 1. Pathogenresistenz bei Pflanzen durch Verminderung der Proteinmenge, Aktivität oder Funktion einer NADPH-Oxidase. Als Beispiel wird die erhöhte Resistenz von Gerstenpflanzen auf den echten Gerstenmehltau gezeigt.
- 2. Im zitierten Stand der Technik wird kein Verfahren, welches dem beanspruchten Verfahren entsprechen würde, offenbart. Aufgrund der zitierten Literatur würde der Fachmann erwarten, dass eine erhöhte Resistenz durch Erhöhung der NADPH-Oxidase erzielt werden könnte. Der Gegenstand der Ansprüche 1-10 kann daher als neu und auf einer erfinderischen Tätigkeit beruhend angesehen werden.
- 3. Der Fachmann hätte auch keine Motivation, die in den Ansprüchen 11-20 beanspruchten Doppelsträngigen RNA-Moleküle zur Verminderung der Expression einer NADPH-Oxidase herzustellen.
- Andererseits ist es nicht klar, ob die beanspruchte Erfindung in ihrer ganzen Breite 4. hergestellt werden kann. In der Anmeldung wird lediglich ein Beispiel gezeigt, in der eine bestimmte Kombination von Wirtspflanze und Pathogen eine erhöhte Resistenz zeigt. Daraus kann nicht abgeleitet werden, dass eine Verringerung der NADPH-Oxidase in jedem Fall zu einer erhöhten Pathogenresistenz führt. Da die vorliegende Anmeldung der allgemeinen Lehrmeinung widerspricht, scheint ein Ausführungsbeispiel nicht ausreichend, um diese Lehrmeinung zu widerlegen: