POLL

Which of the following is true about a continuous random variable on R?

RESULTS

- Its pdf must integrate to 1 on R
 68%
- Its cdf must integrate to 1 on R25%
- None of the above
 7%

Submit

Results gathered from 164 respondents.

FEEDBACK

Its pdf must integrate to 1 on R.

1

0/1 point (graded)

F is the cumulative distribution function for a continuous random variable. If $F\left(b\right)-F\left(a\right)=0.20$ then

- igcup [a,b] has length 0.20
- P(X = b) P(X = a) = 20%
- $extstyle P\left(X\in(a,b]
 ight)=20\%$ 🗸

Answer

Incorrect: Video: Continuous Distributions

Explanation

Recall that
$$F(b)=P(X\leq b)$$
, $F(a)=P(X\leq a)$. Hence $P(a< X\leq b)=F(b)-F(a)=0.2$

Submit

You have used 2 of 2 attempts

1 Answers are displayed within the problem

2

2.0/2.0 points (graded)

Which of the following holds for all continuous probability distribution function f(x) having support set \mathbb{R} ?

- $oldsymbol{arphi} orall x \in \mathbb{R}, \quad f(x) \geq 0
 oldsymbol{\checkmark}$
- $lacksquare orall x \in \mathbb{R}, \quad f(x) \leq 1$
- If the limits of f(x) at positive and negative infinity exist, then $\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = 0$

Explanation

- 1. By definition, $f(x) \geq 0$.
- 2. Consider Gaussian $\mathcal{N}\left(0,1/\left(8\pi
 ight)
 ight)$. For this probability density function, $f\left(0
 ight)=2>1$
- 3. If $f>1, orall x\in \mathbb{R}$, $\int_{\mathbb{R}}f\left(z
 ight)dz=\infty$, but we require $\int_{\mathbb{R}}f\left(z
 ight)dz=1$
- 4. Suppose $\exists \epsilon, \, x_0>0$ such that $\forall x\geq x_0, \, f(x)>\epsilon$ then $\int_{\mathbb{R}} f(z)\,dz=\infty$ Thus there cannot exist such an $\epsilon, \, x_0>0$ and hence $\lim_{x\to\infty} f(x)=0$. Similarly $\lim_{x\to-\infty} f(x)=0$

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

Discussion

Show all posts

Hide Discussion

by recent activity ▼

Topic: Topic 9 / Continuous Distributions

Add a Post

General Comments

Questions and comments regarding this section.

Staff