

Roadmap

- Clustering: Data Analytics Perspective
 - Concepts and Applications
- Data Similarity
- Clustering Approaches
 - K-mean clustering
 - Hierarchical clustering
- Take-home messages

Clustering: Data Analytics Perspective

What is a Cluster? Cluster Analysis? Clustering?

- Cluster: a collection of data objects
 - Similar to one another within the same cluster
 - Dissimilar to the objects in other clusters
- Cluster analysis
 - Grouping a set of data objects into clusters
- Clustering is an unsupervised learning approach, with no predefined classes
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

ow inter-cluster similarity!

Example: Face clusters

High intra-cluster similarity!

Key concept: Similarity or distance

Similarity of faces! ...
Similarity of stocks! ...
Similarity of behavior! ...Etc.

General Applications of Clustering

- Spatial Data Analysis
 - create thematic maps in GIS by clustering feature spaces
 - detect spatial clusters and explain them in spatial data mining
- Image Processing (cf. face detection via clustering of skin color pixels)
- Economic Science (especially market research; grouping of customers)
- WWW
 - Document classification
 - Cluster Weblog data to discover groups of similar access patterns

What is Good Clustering?

- A good clustering method will produce high quality clusters with
 - high intra-class similarity
 - low inter-class similarity
- The quality of a clustering result depends on both the similarity measure used by the method and its implementation.
- The quality of a clustering method is also measured by its ability to discover some or all of the <u>hidden</u> patterns.

Requirements of Clustering

- Scalability (e.g. large scale clustering of webpages)
- Ability to deal with different types of attributes
- Discovery of clusters with arbitrary shape (see this <u>Demo</u>)
- Minimal requirements for domain knowledge to determine input parameters
- Able to deal with noise and outliers (see previous demo)
- Insensitive to order of input records
- High dimensionality
- Incorporation of user-specified constraints
- Interpretability and usability

Data Similarity

Data Structures

Data matrix

 object-by-variable structure (n objects & p variables/ attributes)

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

Dissimilarity matrix

- object-by-object structure
- *n* objects here!

$$\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

Measure the Quality of Clustering

- Dissimilarity/Similarity metric: Similarity is expressed in terms of a distance function d(i, j)
- There is a separate "quality" function that measures the "goodness" of a cluster.
- The definitions of distance functions are usually very different for interval-scaled, boolean (binary), categorical, and ordinal variables.
- Weights should be associated with different variables based on applications and data semantics.
- It is hard to define "similar enough" or "good enough"
 - the answer is typically highly subjective.

Similarity and Dissimilarity Between Objects

- <u>Distances</u> are normally used to measure the <u>similarity</u> or <u>dissimilarity</u> between two data objects
- Some popular ones include: Minkowski distance:

$$d(\vec{i}, \vec{j}) = \sqrt{(|x_{i1} - x_{j1}|^q + |x_{i2} - x_{j2}|^q + ... + |x_{ip} - x_{jp}|^q)}$$

 L_{q} norm

where $\overrightarrow{i} = (x_{i1}, x_{i2}, ..., x_{ip})$ and $\overrightarrow{j} = (x_{j1}, x_{j2}, ..., x_{jp})$ are two p-dimensional data objects, and q is a positive integer

• If q=1, d is Manhattan (or city block) distance

$$d(\vec{i}, \vec{j}) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

L₁ norm

Similarity and Dissimilarity Between Objects (cont.)

• If q=2, d is Euclidean distance:

$$d(\vec{i}, \vec{j}) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \dots + |x_{ip} - x_{jp}|^2)}$$

L₂ norm

- Properties
 - $d(i,j) \geq 0$
 - d(i,i) = 0
 - d(i,j) = d(j,i)
 - $d(i,j) \leq d(i,k) + d(k,j)$

Remember this in geometry?

$$x^2 + y^2 = z^2$$
 or $z = \sqrt{x^2 + y^2}$

 Also, one can use weighted distance, parametric Pearson product moment correlation, or other disimilarity measures.

Dissimilarity between Binary Variables

Example

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

Convert

to

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	1	1	0	1	0	0	0
Mary	0	1	0	1	0	1	0
Jim	1	1	1	0	0	0	0

$$d(Jack, Mary) = |1 - 0| + |1 - 1| + |0 - 0| + |1 - 1| + |0 - 0| + |0 - 1| + |0 - 0| = 2$$

$$d(Jack, Jim) = |1 - 1| + |1 - 1| + |0 - 1| + |1 - 0| + |0 - 0| + |0 - 0| + |0 - 0| = 2$$

$$d(Mary, Jim) = |0 - 1| + |1 - 1| + |0 - 1| + |1 - 0| + |0 - 0| + |1 - 0| + |0 - 0| = 4$$

Typically, the distance value is normalized to [0, 1] by dividing it by the total number of attributes, i.e. 7 in this example.

Distance Measure for Nominal/Categorical Variables

- A generalization of the binary variable in that it can take more than 2 states, e.g., red, yellow, blue, green
- Method 1: Simple matching
 - *m*: # of matches, *p*: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

- Method 2: use a large number of binary variables
 - creating a new binary variable for each of the M nominal states
 - 1-hot encoding

Food Name	Categorical #	Calories
Apple	1	95
Chicken	2	231
Broccoli	3	50

Label Encoding

 Apple
 Chicken
 Broccoli
 Calories

 1
 0
 0
 95

 0
 1
 0
 231

 0
 0
 1
 50

One Hot Encoding

Clustering Approaches

Major Clustering Approaches

- <u>Partitioning algorithms</u>: Construct various partitions and then evaluate them by some criteria
- <u>Hierarchical algorithms</u>: Create a hierarchical decomposition of the set of data (or objects) using some criteria

These two are most well-known in general applications

- <u>Density-based</u>: based on connectivity and density functions (see this <u>Demo</u>)
- Grid-based: based on a multiple-level granularity structure
- Model-based: A model is hypothesized for each of the clusters and the idea is to find the best fit of that model to each other

Partitioning Algorithms: Basic Concept

- Partitioning approach:
 - Construct a partition of a database D of n objects into a set of k clusters
- Given a particular k, find a partition of k clusters that optimizes the chosen partitioning criterion (e.g. high intra-class similarity)
- Two methods
 - Globally optimal method: exhaustively enumerate all partitions (nearly impossible for large *n*)
 - Heuristic methods: *k-means* and *k-medoids* algorithms
 - <u>k-means</u> (MacQueen'67): Each cluster is represented by the center of the cluster
 - <u>k-medoids</u> or PAM (Partition around medoids) (Kaufman & Rousseeuw'87): Each cluster is represented by one of the objects in the cluster

K-Means Clustering Method

- Given *k*, the *k*-means algorithm can be implemented by these four steps:
 - 1. Initialization: Partition objects into k nonempty subsets
 - 2. Mean-op: Compute seed points as the centroids of the clusters of the current partition. The centroid is the center (mean point) of the cluster.
 - 3. Nearest_Centroid-op: Assign each object to the cluster with the nearest seed point.
 - 4. Go back to the step 2, stop when no more new assignment.

K-Means Clustering Method (see demo <u>here</u>)

Example

Unsupervised Learning: Clustering

Comments on the K-Means Method

Strength

- Relatively efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations. Normally, k, t << n.
- Often terminates at a *local optimum*. The *global optimum* may be found using techniques such as: *deterministic annealing* and *genetic algorithms*

Weakness

- Applicable only when mean is defined, then what about categorical data? What is the mean of red, orange and blue?
- Need to specify *k*, the *number* of clusters, in advance
- Unable to handle noisy data and outliers
- Not suitable to discover clusters with non-convex shapes; the basic cluster shape is spherical (convex shape)

K-means Clustering: ML Perspective

k-Means Clustering

- Find k reference vectors (prototypes/codebook vectors/codewords) which best represent data x^t ∀t
- Reference vectors, m_j , j = 1,...,k
- Use nearest (most similar) reference:

$$\|\mathbf{x}^t - \mathbf{m}_i\| = \min_{j} \|\mathbf{x}^t - \mathbf{m}_j\|$$

Reconstruction error

$$E(\{\mathbf{m}_{i}\}_{i=1}^{k} | \mathcal{X}) = \sum_{t} \sum_{i} b_{i}^{t} \| \mathbf{x}^{t} - \mathbf{m}_{i} \|$$

$$b_{i}^{t} = \begin{cases} 1 & \text{if } \| \mathbf{x}^{t} - \mathbf{m}_{i} \| = \min_{j} \| \mathbf{x}^{t} - \mathbf{m}_{j} \| \\ 0 & \text{otherwise} \end{cases}$$

k-Means as an Optimization Problem

Obviously, the goal is to minimize the error E or loss L

$$Loss = \sum_{i=1}^{k} \sum_{x_i \in C_i} (x_j - m_i)^2 \quad where C_i denotes ith cluster$$

Taking partial derivative of the loss function w.r.t. each cluster prototype m_i and setting it to 0, we have

$$\frac{\partial Loss}{\partial m_i} = \sum_{i=1}^k \sum_{x_i \in C_i} \frac{\partial}{\partial m_i} (x_j - m_i)^2 = \sum_{x_i \in C_i} -2(x_j - m_i)$$

Setting $\frac{\partial Loss}{\partial m_i} = \sum_{x_j \in Ci} -2(x_j - m_i) = 0$, we have

$$m_i = \frac{1}{|C_i|} \sum_{x_i \in C_i} x_j$$
 i.e. the mean operation!

k-means Clustering

Choosing k

- Defined by the application, e.g., image quantization or customer segmentation
- Plot data (after dimensionality reduction (to be taught later)) and check for clusters
- Incremental algorithm: Add one at a time until "elbow" (i.e. a sudden increase/decrease of a measure)
- Manually check for meaning

After Clustering

- Clustering methods find similarities between instances and group instances
- Allows knowledge extraction through
 - o number of clusters,
 - prior probabilities,
 - o cluster parameters, i.e., center, range of features.

Example: Customer segmentation

Hierarchical Clustering: Algorithmic Perspective

Hierarchical Clustering Methods

- The clustering process involves a series of partitioning of the data
 - It may run from a single cluster containing all records to n clusters each containing a single record.
- Two popular approaches
 - Agglomerative (ANGES) & divisive (DIANA) methods
- The results may be represented by a dendrogram
 - Diagram illustrating the fusions or divisions made at each successive stage of the analysis.

Hierarchical Clustering

 Use distance matrix as clustering criteria. This method does not require the number of clusters k as an input, but needs a termination condition

AGNES (Agglomerative Nesting)

- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical analysis packages, e.g. S-Plus
- Use the Single-Linkage method and the dissimilarity matrix.
- Merge nodes that have the least dissimilarity
- Go on in a non-descending fashion
- Eventually all nodes belong to the same cluster

Agglomerative Nesting/Clustering: Single Linkage Method

Basic operations:

START:

- Each cluster of $\{C_1, \dots, C_j, \dots, C_n\}$ contains a single individual.
- Step 1.
- lacktriangle Find nearest pair of distinct clusters $C_i \& C_i$
- lacktriangle Merge $C_i \& C_j$.
- ◆ Decrement the number of cluster by one.

Step 2.

◆ If the number of clusters equals to one then stop, else return to 1.

Single linkage clustering

- ◆ Also known as nearest neighbor (1NN) technique.
- ◆ The distance between groups is defined as the closest pair of records from each group.

Agglomerative Nesting/Clustering: Complete Linkage and others

- Complete linkage clustering
 - Also known as furthest neighbor technique.
 - Distance between groups is now defined as that of the most distant pair of individuals (opposite to single linkage method).
- Group-average clustering
 - Distance between two clusters is defined as the average of the distances between all pairs of individuals between the two clusters.
- Centroid clustering
 - Groups once formed are represented by the mean values computed for each attribute (i.e. a mean vector).
 - Inter-group distance is now defined in terms of distance between two such mean vectors.

Single Linkage Method: An Example

- Assume the distance matrix D₁.
- The smallest entry in the matrix is that for individuals 1 and 2, consequently these are joined to form a two-member cluster. Distances between this cluster and the other three individuals are recomputed as

•
$$d(12)3 = \min[d13, d23] = d23 = 5.0$$

•
$$d(12)4 = \min[d14, d24] = d24 = 9.0$$

•
$$d(12)5 = \min[d15, d25] = d25 = 8.0$$

• A new matrix D_2 may now be constructed whose entries are inter-individual distances and cluster-individual values.

	1	2	3	4	5
1	0.0				
2	2.0	0.0			
$D_1 = 3$	6.0	5.0	0.0		
4	10.0	9.0	4.0	0.0	
5	9.0	8.0	5.0	3.0	0.0

$$D_2 = \begin{bmatrix} (12) & 3 & 4 & 5 \\ 0.0 & & & \\ 5.0 & 0.0 & & \\ 9.0 & 4.0 & 0.0 & \\ 5 & 8.0 & 5.0 & 3.0 & 0.0 \end{bmatrix}$$

Single Linkage Method: An Example (cont.)

- The smallest entry in D_2 is that for individuals 4 and 5, so these now form a second two-member cluster, and a new set of distances found
 - d(12)3 = 5.0 as before
 - $d(12)(45) = \min[d14,d15,d24,d25] = 8.0$
 - $d(45)3 = \min[d34, d35] = d34 = 4.0$
- These may be arranged in a matrix D₃.
- The smallest entry in now d(45)3 and so individual 3 is added to the cluster containing individuals 4 and 5. Finally the groups containing individuals 1, 2 and 3, 4, 5 are combined into a single cluster. The partitions produced at each stage are on the right.

Stage	Groups
P_1	[1],[2],[3],[4],[5]
P_2	[1,2],[3],[4],[5]
P_3	[1,2],[3],[4,5]
P_4	[1,2],[3,4,5]
P_{5}	[1,2,3,4,5]

A *Dendrogram* Shows How the Clusters are Merged Hierarchically

Major weakness of Agglomerative clustering methods

- Do not scale well: time complexity of at least $O(n^2)$, where n is the number of total objects (need to compute the similarity or dissimilarity of each pair of objects)
- Can never undo what was done previously
- Hierarchical methods are biased towards finding 'spherical' clusters even when the data contain clusters of other shapes.
- Partitions are achieved by 'cutting' a dendrogram or selecting one of the solutions in the nested sequence of clusters that comprise the hierarchy.
- Deciding of appropriate number of clusters for the data is difficult.
 - An informal method is to examine the differences between fusion levels in the dendrogram. Large changes are taken to indicate a particular number of clusters

Take-home Messages

- With the class label "disappeared", the learning problem becomes an unsupervised one.
- A notation of data similarity (or distance) is needed!
- For practitioners, they always struggle with how to compute data similarity! E.g. similarity between hacking activities, similarity between dance movement, etc.
- Clustering is NOT exclusive from classification/regression. It may help classification/regression!

Acknowledgement

- Slides/Materials of
 - Han and Kamber's powerpoint slides for their popular textbook "Data Mining: Concepts and Techniques"
 - E. Alpaydin, Introduction to Machine Learning. 2nd Ed. MIT Press, 2010.
- Photos from Internet