Interpolare spline

Radu T. Trîmbiţaş

12 aprilie 2021

Implementați următoarele tipuri de spline cubice: spline complete, spline care reproduc derivatele de ordinul al doilea, spline naturale și spline deBoor.

Pentru algoritmi a se vedea notele de curs sau slide-urile.

Probleme

- 1. Pentru fiecare tip de spline scrieți o funcție care calculează coeficienții spline-ului, dacă se dau nodurile și valorile funcției.
- 2. Evaluați spline-ul pe o mulțime de puncte, dacă se dau nodurile, punctele și coeficienții.
- 3. Desenați o curbă spline cubică parametrică ce trece printr-o mulțime de puncte date.

Probleme suplimentare

- 1. Scrieţi o funcţie MATLAB pentru calculul coeficienţilor unui spline periodic de clasă $C^2[a,b]$. Aceasta înseamnă că datele trebuie să verifice $f_n = f_1$ şi că interpolantul rezultat trebuie să fie periodic, de perioadă $x_n x_1$. Condiţiile de periodicitate de la capete se pot impune mai uşor considerând două puncte suplimentare $x_0 = x_1 \Delta x_{n-1}$ şi $x_{n+1} = x_n + \Delta x_1$, în care funcţia să ia valorile $f_0 = f_{n-1}$ şi respectiv $f_{n+1} = f_2$.
- 2. Scrieți o funcție MATLAB pentru calculul coeficienților unui spline Hermite de clasă $C^1[a,b]$. Interpolantul va trebui să verifice condițiile $s_3(f;x_i) = f(x_i)$ și $s_3'(f;x_i) = f'(x_i)$, $i = 1, \ldots, n$.