1 Multiple Integrals

1.1 Double Integrals over Rectangles

Recall that $\int_a^b f(x)dx$ gives the area under the curve from x=a to x=b.

Also,
$$\int_a^b f(x) dx = \lim_{x \to \infty} \sum_{k=1}^n f(x_k^i) \Delta x_k$$
 (Riemann sums)

Now we have volume.

Volume Problem: Given a function of 2 variables that is continuous and non-negative on a region R in the xy-plane, find the volume of the solid enclosed between the surface z=f(x,y) and the xy-plane.

Plan:

- 1. Partition R in rectangles.
- 2. Choose a point (x_k^*, y_k^*) in each rectangle.
- 3. Map onto z.
- 4. Form parallelpiped.

We can then approximate the volume using rectangular parallelpipeds.

Volume \approx area of rectangle \times height \rightarrow Volume $\approx \Delta A_k f(x_k^*, y_k^*)$.

Volume $\approx \Delta A_k f(x_k^*, y_k^*)$.

Volume $=\lim_{n\to\infty}\sum_{k=1}^n f(x_k^*,y_k^*)\Delta A_k$ (this is the formal definition for the volume problem using Riemann sums)

If f has both positive and negative values, then the volume is the difference in volumes between R and the surface above and below the xy-plane.

Definition

If $f(x,y) \ge 0$, then the volume of the solid that lies above the rectangle R and below the surface z = f(x,y) is:

$$V = \lim_{n \to \infty} \sum_{k=1}^{n} f(x_k^*, y_k^*) \Delta A_k = \lim_{m, n \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_k^*, y_k^*) \Delta A_k$$
$$= \iint_{R} f(x, y) dA$$

Example

Estimate the volume of the solid that lies above the square $R = [0,2] \times [0,2]$ and below $z = 16 - x^2 - 2y^2$. Divide R into 4 equal squares and choose the sample point to be the upper right corner of each square.

So
$$V = \iint_R (16 - x^2 - 2y^2) dA$$
.

This is $\lim_{n\to\infty}\sum_{k=1}^n f(x_k^*,y_k^*)\Delta A_k$. We will use approximately 4 parallelpipeds.

We get $V \approx 1 \cdot f(1,1) + 1 \cdot f(2,1) + 1 \cdot f(1,2) + 1 \cdot f(2,2)$.

This is equal to $V \approx 34 \text{ u}^3$. This is an estimate.

Example

If $R=\{(x,y)|-1\leq x\leq 1, -2\leq y\leq 2\}$, evaluate $\iint_R \sqrt{1-x^2}dA$.

The graph will look like half of a cylinder.

The volume of a cylinder is $\pi r^2 h$.

$$V=rac{1}{2}\pi r^2h=rac{1}{2}\pi(1)^2(4)$$
, so $\iint_R dA=2\pi.$

Midpoint Rule - This tells us to evaluate $\iint_R f(x,y) dA$ using Riemann sums and midpoints.

Evaluating Double Integrals \rightarrow uses iterated integration.

$$\int_{c}^{d} \int_{a}^{b} f(x, y) dx dy = \int_{c}^{d} \left[\int_{a}^{b} f(x, y) dx \right] dy$$

This integral can be dxdy or dydx.

Example

Integrate $\int_0^3 \int_1^2 x^2 y dy dx$.

First integrate $\int_1^2 x^2 y dy$.

This is $x^2 \cdot \frac{1}{2}y^2$ from y = 1 to y = 2.

And then we have $\int_0^3 \left(\frac{1}{2}x^2 \cdot 2^2 - \frac{1}{2}x^2 \cdot 1^2\right) dx$.

This is $\int_0^3 \frac{3}{2} x^2 dx = \frac{1}{2} x^3$ from x=0 to x=3, and the answer is $\frac{27}{2}$.

Example

Evaluate $\int_1^2 \int_0^3 x^2 y dx dy$.

First evaluate $\int_0^3 x^2 y dx$ to get $y \cdot \frac{1}{3} x^3$ from x = 0 to x = 3.

Then we have $\int_1^2 9y dy$ and this is $\frac{9}{2}y^2$ from y=1 to y=2, so the result of the integral is $\frac{27}{2}$.

 $\frac{27}{2}$ in both cases is the area underneath $f(x,y)=x^2y$ and above $R:[0,3]\times[1,2].$ Note that dx and dy are not always interchangable.

Theorem 1.1: Fubini's Theorem

Let R be a rectangular region defined by $a \le x \le b$, $c \le y \le d$. If f(x,y) is continuous on this rectangle, then:

$$\iint_{R} f(x,y)dA = \int_{c}^{d} \int_{a}^{b} f(x,y)dxdy = \int_{a}^{b} \int_{c}^{d} f(x,y)dydx$$

Example

Evaluate $\iint_R (x-3y^2)dA$ with $R=[0,2]\times [1,2].$

The integral is $\int_0^2 \int_1^2 (x-3y^2)dydx$.

We start with the inner integral and get $xy-y^3$ from y=1 to y=2.

Then we evaluate $\int_0^2 (2x-8)-(1x-1)dx$ to get $\int_0^2 (x-7)dx$.

The result of this integral is -12.

A few properties:

- 1. $\iint_{B} cf(x,y)dA = c \iint_{B} f(x,y)dA$
- 2. $\iint_R [f(x,y) \pm g(x,y)] dA = \iint_R f(x,y) dA \pm \iint_R g(x,y) dA$
- 3. $\iint_R f(x,y)dA = \iint_{R_1} f(x,y)dA + \iint_{R_2} f(x,y)dA$
- 4. $\iint_R g(x)h(y)dA = \int_a^b g(x) \int_c^d h(y)dy$ where $R = [a,b] \times [c,d]$.

Example

Evaluate $\iint_R \sin x \cos y dA$ where $R = \left[0, \frac{\pi}{2}\right] \times [0, \pi]$.

We can use the fourth property above to get $\int_0^{\pi/2} \sin x dx \cdot \int_0^{\pi} \cos y dy$.

We get $\cos x$ from 0 to $\pi/2$ and subtract $\sin y$ from 0 to π from this.

The answer is 0.

Example

Find the volume of the solid that is bounded above by $f(x,y) = y\sin(xy)$ and below by $R = [1,2] \times [0,\pi]$.

$$V = \int_0^{\pi} \int_1^2 y \sin(xy) dx dy = \int_1^2 \int_0^{\pi} y \sin(y) dy dx.$$

The first option is better.

So we start with $y \cdot -\frac{1}{y}\cos(xy)$ from x=1 to x=2

Then, $\int_0^{\pi} (-\cos 2y + \cos y) dy = 0$.

Average Value: $f_{avg} = \frac{1}{A(R)} \iint_R f(x,y) dA$

Example

Find the average value of $f(x,y) = x^2y$ over R with vertices (-1,0), (-1,5), (1,5), and (1,0).

The area of the rectangle is $A_R = 10$.

Set up the integral to get $f_{avg}=\frac{1}{10}\int_{-1}^{1}\int_{0}^{5}x^{2}ydydx/$

1.2 Double Integrals over General Regions

There are 2 Types of regions:

The biggest question is finding the limits of integration.

So if we have y in terms of x, then we use $\iint_D f(x,y) dA = \iint_{g_1(x)}^{g_2(x)} f(x,y) dy dx$.

If we have x in terms of y, then $\iint_D f(x,y) dA = \iint_{h_1(y)}^{h_2(y)} f(x,y) dx dy$

Example

Evaluate $\iint_D (x+2y)dA$ where D is the region bounded by $y=2x^2$ and $y=1+x^2$.

We have both equations being y= something, so we are integrating with respect to y first in this case. Though the reason for this is mostly because we are integrating vertically.

So the integration is $\int_{-1}^1 \int_{2x^2}^{1+x^2} (x+2y) dy dx.$

We then get $xy + y^2$ with limits of integration $y = 2x^2$ to $y = 1 + x^2$.

So this results in $\int_{-1}^{1} [x(1+x^2)+(1+x^2)^2] - [x(2x^2)+(2x^2)^2] dx = \int_{-1}^{1} (-3x^4-x^3+2x^2+x+1) dx = \frac{32}{15}$.

Example

Set up only! Evaluate $\iint_R xy dA$ where R is the region bounded by y=-x+1, y=x+1, and y=3.

Draw to see the region. We can see from the graph that integrating by x first is probably the better idea, because y would require 2 double integrals.

So setting up the integral gives $\int_1^3 \int_{1-y}^{y-1} xy dx dy$. (Setting the equations in terms of x=)

Example

Find the volume of the solid that lies under z=xy and above D where D is the region bounded by y=x-1 and $y^2=2x+6$.

By drawing this, we see we will go by dx first.

Setting up the integral is $\int_{-2}^4 \int_{\frac{1}{2}y^2-3}^{y+1} xy dx dy$.

Starting the integration, we get $\frac{1}{2}x^2y$ with the limits of the first integral.

This gives $\frac{1}{2} \int_{-2}^{4} (y+1)^2 \cdot y - \left(\frac{1}{2}y^2 - 3\right)^2 \cdot y dy$.

Simplifying some more gives $\frac{1}{2}\int_{-2}^{4}-\frac{1}{4}y^5+4y^3+2y^2-8ydy$ and this gives 36 as an answer.

Example

$$\int_0^1 \int_x^1 \sin(y^2) dy dx$$

If we draw the region, we have y=1 and y=x.

We go from x=0 to x=y and for the y limits, we go from 0 to 1.

Therefore the integral is $\int_0^1 \int_0^y \sin(y^2) dx dy$.

Solving this integral gives $-\frac{1}{2}\cos(1) + \frac{1}{2}$.

Example

Use a double integral to find the area of the region enclosed between $y=x^3$ and y=2x in the first quadrant.

Set up the integral $A=\int_0^{\sqrt{2}}\int_{x^3}^2 x$ to get the area.

Exercise Evaluate by reversing the order of integration: $\int_0^2 \int_{y/2}^1 e^{x^2} dx dy$.

1.3 Double Integrals in Polar Coordinates

Recall that polar coordinates are in form (r, θ) and rectangular coordinates are in (x, y).

In polar, for the unit circle, we can write $0 \le r \le 1$ or $0 \le \theta \le 2\pi$.

We have 3 equations for converting:

- $r^2 = x^2 + y^2$
- $x = r \cos \theta$
- $y = r \sin \theta$

To find the volume, the process is similar to the Riemann sum process for double integrals.

$$V = \lim_{n \to \infty} \sum_{k=1}^{n} f(r_k^*, \theta_k^*) \Delta A_k = \iint f(r, \theta) dA$$

In the above, ΔA_k represents the area of the polar rectangle.

Now we need to find the area of a polar rectangle.

First we know that the area of a sector is $\frac{1}{2}r^2\theta$ and that ΔA_k is the large sector minus the little sector.

Therefore we have $\frac{1}{2}\left(r_k^* + \frac{1}{2}\Delta r_k\right)^2\Delta\theta_k - \frac{1}{2}\left(r_k^* - \frac{1}{2}\Delta r_k\right)^2\Delta\theta_k$.

And this simplifies to $r_k^* \Delta r_k \Delta \theta_k$, so $\Delta A_k = r_k^* \Delta r_k \Delta \theta_k$.

So,
$$V = \iint_R f(r,\theta) dA = \lim_{n \to \infty} \sum_{k=1}^n f(r_k^*, \theta_k^*) r_k^* \Delta r_k \Delta \theta_k$$
.

So we have

$$V = \iint_{R} f(r, \theta) r dr d\theta$$

Example

Find $\iint_R \sin \theta dA$ where R is the region outside the circle r=2 and inside $r=2+2\cos \theta$ in the 1st quadrant.

We see that the circle will be hit first, then the other polar curve.

So the integral is $\int_0^{\pi/2} \int_2^{2+2\cos\theta} \sin\theta \cdot r dr d\theta$.

Note the outer integral goes to $\frac{\pi}{2}$ because that is the first quadrant.

So the inner integral becomes $\sin\theta \cdot \frac{1}{2}r^2$ from the bounds r=2 to $r=2+2\cos\theta$.

We then integrate $\frac{1}{2} \int_0^{\pi/2} \sin \theta [(2+2\cos\theta)^2-2^2] d\theta$.

Solving this gives 8/3.

Example

Find the volume of the solid bounded by z=0 and $z=1-x^2-y^2$.

The graph of $z = 1 - x^2 - y^2$ will be a paraboloid.

So R is a circle with radius 1 when we draw this paraboloid.

We could integrate as $V=\int_{-1}^1\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}(1-x^2-y^2)dydx$, or we could convert to polar.

In polar, we know R is a circle and then we can convert to polar to get $\int_0^{2\pi} \int_0^1 (1-r^2) \cdot r dr d\theta$, which is equal to $V = \frac{\pi}{2}$.

Area is the same as before, recall this was $A=\iint_R 1\cdot dA$, and now it is $\iint_R r dr d\theta$.

Example

Use a double integral to find the area enclosed by one loop of the four-leaf rose of $r=\cos 2\theta$.

If you know how to draw this, then we can find the area $A=\int_{-\pi/4}^{\pi/4}\int_0^{\cos 2\theta}rdrd\theta$, and this integral is simple to solve, the answer is $\pi/8$.

Example

Find the volume of the solid that lies under $z = x^2 + y^2$, above the xy-plane, and inside $x^2 + y^2 = 2x$.

The graph $x^2 + y^2 = 2x$ can be rearranged to complete the square. We have then $(x-1)^2 + y^2 = 1$.

So if we were to convert $x^2 + y^2$ to polar, we get r^2 .

We have $r^2 = 2r\cos\theta$ and $r = 2\cos\theta$.

The integral then we get $\int_{-\pi/2}^{\pi/2} \int_{0}^{2\cos\theta} (r^2) \cdot r dr d\theta$.

The integral is $V = \frac{3\pi}{2}$

1.4 Surface Area

The formula for surface area is

$$A(S) = \lim_{n \to 0} \sum_{k=1}^{n} \sqrt{(z_x)^2 + (z_y)^2 + 1} \Delta A$$

which becomes

$$A(S) = \iint_{B} \sqrt{(z_{x})^{2} + (z_{y})^{2} + 1} dA$$

Example

Find the surface area of the part of the surface $z=x^2+2y$ that lies above the triangular region with vertices (0,0),(1,0), and (1,1).

$$z = x^2 + 2y$$
, $z_x = 2x$ and $z_y = 2$.

So
$$A(S) = \int_0^1 \int_0^x \sqrt{(2x)^2 + (2)^2 + 1} dy dx$$
.

This integral gievs $\frac{1}{12}(27-5\sqrt{5})$.

Example

Find the surface area of the portion of $z=x^2+y^2$ below the plane z=9.

Paraboloid!

The integral is $A(S) = \iint_R \sqrt{(2x)^2 + (2y)^2 + 1} dA$.

We might be able to see that simplifying this gives $4x^2 + 4y^2 + 1$ inside the square root, and we have an $x^2 + y^2 = 9$ in the paraboloid.

We should use polar.

So we now have $\int_0^{2\pi} \int_0^3 \sqrt{4r^2+1} \cdot r dr d\theta$.

This gives you $\frac{\pi}{6}(37^{3/2}-1)$.

Example

Find the surface area of $z=\sqrt{4-x^2}$ above $R:[0,1]\times[0,4].$

Setting up the integral gives $\iint_R \sqrt{\left(-\frac{x}{\sqrt{4-x^2}}\right)^2+0^2+1}.$

It doesn't really matter the way we integrate, so we get $\int_0^1 \int_0^4 \sqrt{\frac{x^2}{4-x^2} + \frac{4-x^2}{4-x^2}} dy dx$.

This simplifies to $\int_0^1 \frac{8}{\sqrt{4-x^2}} dx$.

We notice that this becomes $8\sin^{-1}\left(\frac{x}{2}\right)$ with bounds 0 to 1, and this gives $\frac{4\pi}{3}$.

- 1.5 Triple Integrals
- 1.6 Triple Integrals in Cylindrical Coordinates
- 1.7 Triple Integrals in Spherical Coordinates
- 1.8 Change of Variables in Multiple Integrals