

Logistic Regression

$$(b_1 \times x_{i1}) + (b_2 \times x_{i2}) + \dots + (b_M \times x_{iM}) + b_0$$
bias

$$z_i = (b_1 \times x_{i1}) + (b_2 \times x_{i2}) + \dots + (b_M \times x_{iM}) + b_0$$

$$z_i \bigcirc$$
bias

$$x_{i1}$$
 x_{i2} features of data x_{iM}

Will it Rain?

 x_i = features for day i

\cap	ITC	\mathbf{Or}	ne
	7 C C	U I	

$y_i =$	= 1,	yes
y_i =	= 0,	no

Cloud Cover	Humidity	Temperature	Air Pressure
0.5	80%	75	1.2
0.2	95%	83	1.3

Did it Rain
1
0

$$z_1 = (b_1 \times 0.5) + (b_2 \times 0.8) + (b_3 \times 75) + (b_4 \times 1.2) + b_0$$
 $y_1 = 1$

$$z_2 = (b_1 \times 0.2) + (b_2 \times 0.95) + (b_3 \times 83) + (b_4 \times 1.3) + b_0 \quad y_2 = 0$$

$$p(y_i = 1 | x_i)$$

$$sigma$$

$$p(y_i = 1 | x_i) = \sigma(z_i)$$

$$z_{i} = (b_{1} \times x_{i1}) + (b_{2} \times x_{i2}) + \dots + (b_{M} \times x_{iM}) + b_{0}$$

$$p(y_{i} = 1 | x_{i}) = \sigma(z_{i})$$

$$0.5$$

$$-6 \quad -4 \quad -2 \quad 0 \quad 2 \quad 4 \quad 6$$

$$z_i = (b_1 \times x_{i1}) + (b_2 \times x_{i2}) + \dots + (b_M \times x_{iM}) + b_0$$

$$z_i = (b_1 \times x_{i1}) + (b_2 \times x_{i2}) + \dots + (b_M \times x_{iM}) + b_0$$

$$z_i = (b_1 \times x_{i1}) + (b_2 \times x_{i2}) + \dots + (b_M \times x_{iM}) + b_0$$

$$z_i = (b_1 \times x_{i1}) + (b_2 \times x_{i2}) + \dots + (b_M \times x_{iM}) + b_0$$

$$z_i = (b_1 \times x_{i1}) + (b_2 \times x_{i2}) + \dots + (b_M \times x_{iM}) + b_0$$

$$z_i = (b_1 \times x_{i1}) + (b_2 \times x_{i2}) + \dots + (b_M \times x_{iM}) + b_0$$

$$z_i = (b_1 \times x_{i1}) + (b_2 \times x_{i2}) + \dots + (b_M \times x_{iM}) + b_0$$

Sigmoid Function $p(y_i = 1 | x_i) = \sigma(z_i)$

Outcome of Z

- Z_i = Large and positive indicates y_i = 1 is likely
- Z_i = Large and negative indicates y_i = 0 is likely

$$z_i = (b_1 \times 0.5) + (b_2 \times 0.8) + (b_3 \times 75) + (b_4 \times 1.2) + b_0$$

Sigmoid Function $p(y_i = 1 | x_i) = \sigma(z_i)$

features

Cloud Cover	Humidity	Temperature	Air Pressure
0.5	80%	75	1.2

$$z_i = (b_1 \times 0.5) + (b_2 \times 0.8) + (b_3 \times 75) + (b_4 \times 1.2) + b_0$$

Sigmoid Function $p(y_i = 1 | x_i) = \sigma(z_i)$

features

Cloud Cover	Humidity	Temperature	Air Pressure
0.5	80%	75	1.2

Logistic Regression

