Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Departement Informatik

Theoretische Informatik

Prof. Dr. J. Hromkovič Prof. Dr. M. Bläser

2. Klausur Gruppe A

Zürich, 3. Februar 2005

Aufgabe 1

Gegeben sei eine deterministische Mehrband-Turingmaschine M, die $O(n^2)$ platzbeschränkt ist. Konstruieren Sie eine deterministische Mehrband-Turingmaschine N mit L(N) = L(M), die $O(c^{n^2})$ zeitbeschränkt ist für eine Konstante c. Zeigen Sie die Korrektheit Ihrer Konstruktion, d.h. weisen Sie nach, dass tatsächlich L(N) = L(M) gilt und dass N die geforderte Zeitschranke einhält.

Aufgabe 2

Das Problem SETCOVER ist wie folgt definiert:

SETCOVER = $\{((X, \mathcal{F}), k) \mid X \text{ ist eine endliche Menge und } \mathcal{F} \subseteq \mathcal{P}(X), \text{ und}$ es existiert ein $C \subseteq \mathcal{F} \text{ mit } X = \bigcup_{S \in C} S \text{ und } |C| \leq k\},$

wobei $\mathcal{P}(X)$ die Potenzmenge von X bezeichnet.

Konstruieren Sie einen Polynomialzeit-Verifizierer für SETCOVER. Beweisen Sie dessen Korrektheit, und analysieren Sie dessen Laufzeit.

10 Punkte

Aufgabe 3

MAX-CLIQUE ist folgendes Optimierungsproblem:

Gegeben die Kodierung eines Graphs G=(V,E), finde eine möglichst große Teilmenge $T\subseteq V$, so dass alle Paare von Knoten $u,v\in T$ mit einer Kante in G verbunden sind, d.h. $\{u,v\}\in E$.

- a) Wie sieht die Sprache L der zulässigen Eingaben, die Menge $\mathcal{M}(x)$ der zulässigen Lösungen zu einer zulässigen Eingabe $x \in L$ und die Kostenfunktion (bzw. Preisfunktion) cost aus. Weisen Sie nach, dass L, \mathcal{M} und cost die Eigenschaften eines Optimierungsproblems in NPO erfüllen.
- b) Zeigen Sie: MAX-CLIQUE ist NP-schwer.
- c) Das Problem HITTING-SET ist wie folgt definiert:

HITTING-SET =
$$\{((X, \mathcal{F}), k) \mid X \text{ ist eine endliche Menge und } \mathcal{F} \subseteq \mathcal{P}(X), \text{ und}$$

es existiert ein $C \subseteq X$ mit
 $C \cap S \neq \emptyset$ für alle $S \in \mathcal{F}$ und $|C| \leq k.\},$

wobei $\mathcal{P}(X)$ die Potenzmenge von X bezeichnet.

Zeigen Sie: SETCOVER (Definition siehe Aufgabe 2) ist polynomiell reduzierbar auf HITTING-SET.

5+5+5 Punkte

Aufgabe 4

- a) Wie sieht die Sprache der zulässigen Eingaben des Traveling Salesman Problems mit Dreiecksungleichung (Δ -TSP) aus.
- b) In der Vorlesung haben Sie den Approximationsalgorithmus SB für das Δ -TSP kennengelernt. Beschreiben Sie dessen Arbeitsweise.
- c) Beweisen Sie, dass SB die Approximationsgüte 2 besitzt.

1 + 3 + 6 Punkte