GEOG/Math574 Introduction to Geostatistics

Exploratory Spatial Data Analysis

Daogin Tong

School of Geography &Development 408 Harvill Building Email: daoqin@email.arizona.edu

Review

- First order effect
- Second order effect
- Stationary
- Isotropic

Introduction

- Often one is analyzing a spatial data set where little is known about the process that generates that data
- Not much about how the data was collected or why
- It is important to glean as much information about the data as possible from the dataset

Exploratory Data Analysis (EDA)

- Introduced by John W. Tukey
- Represent data so as to facilitate understanding and formulate hypotheses
- "The greatest value of a picture is when it forces us to notice what we never expected to see" John W. Tukey

Graphical Techniques • Box Plot - Five-number summaries(smallest, Q1, Median, Q3, largest observation) - By John W. Tukey • Histogram - A graphical display of tabulated frequencies - shape

Basic Summary statistics

Mean, standard deviation/variation, skewness, kurtosis, minimum, 25th percentile, median, 75th percentile, maximum

Exploratory Spatial Data Analysis

- Plot of data locations coded by value of variables
- Plot of data value against first coordinate (E-W coordinate)
- Plot of data value against second coordinate (N-S coordinate)
- Plot of data value against third coordinate (vertical coordinate)
- Fit a trend surface to the data (one variable at a time) in R

Point Pattern Analysis

Point Patterns

- A spatial point process is a spatial stochastic process {Y(s), s ∈ ℜ}, where ℜ is random
- A spatial point pattern {y(s₁), y(s₂),..., y(s_n); s₁ ∈ R} is a realization of a spatial point process
- Two important terms
 - Events: observations on the observed locations
 - Points: other arbitrary locations

Applications

- Various disease
- Crimes
- Galaxies in space
- Plants
- Etc

Point Patterns

- Mapped point pattern
 - A complete map of events in the study area
 - All relevant events in the study area have been recorded
- Sampled point pattern
 - A subset of all events are recorded in a sample of different areas of the study area
 - Complete enumeration is not feasible
 - Forestry, ecology

Objectives

- To determine whether the spatial distribution of data points exhibit a systematic pattern as opposed to randomness
- To estimate the variation of the intensity at a large scale
- To detect the presence of spatial dependence among events
- To find an underlying model generating the observed patterns

Describing a point pattern

- Summary measures
- First order effect
 - Density-based measures
 - Quadrat count method
 - Kernel estimation
- Second order effect
 - Distance-based measures
 - Nearest neighbor distance
 - K/L function

Summary measures

- Mean center
- Standard distance / relative distance
- Standard deviational ellipse

Measures of spatial central tendency - mean center

• Given a set of points $\{(X_1,Y_1), (X_2,Y_2),...,(X_n,Y_n)\}$, the mean center is calculated as

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 , $\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$

Minimize the sum of squared distances that individual must travel

$$\min \sum_{i=1}^{n} \left[(X_i - \overline{X})^2 + (Y_i - \overline{Y})^2 \right]$$

Measures of spatial central tendency – weighed mean center

- Produced by weighting each X and Y coordinate by another variable (w_i)
- Centroids derived from polygons can be weighted by any characteristic of the polygon

$$\overline{X}_{w} = \frac{1}{\sum_{i=1}^{n} w_{i}} \sum_{i=1}^{n} w_{i} X_{i} \ , \ \overline{Y}_{w} = \frac{1}{\sum_{i=1}^{n} w_{i}} \sum_{i=1}^{n} w_{i} Y_{i}$$

Euclidean Median

 Minimize the sum of Euclidean distances from all other points to that central location?

$$\min \sum_{i=1}^{n} \sqrt{(x_i - x_e)^2 + (y_i - y_e)^2}$$

• Weber problem

Minimize
$$\sum f_i \sqrt{(x_i - \widetilde{X})^2 + (y_i - \widetilde{Y})^2}$$

- Minimize the total costs
- Location-allocation problem
- GIS, marketing analysis

Standard distance

- Spatial equivalent to standard deviation
- Amount of absolute dispersion
- Provides a single unit measure of the spread or dispersion of a spatial distribution

$$S_D = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x}_c)^2 + (y_i - \overline{y}_c)^2}{n}}$$

$$S_{D} = \sqrt{\left(\frac{\sum_{i=1}^{n} x_{i}^{2}}{n} - \overline{x}_{c}^{2}\right) + \left(\frac{\sum_{i=1}^{n} y_{i}^{2}}{n} - \overline{y}_{c}^{2}\right)}$$

First Order Effects

- Intensity
 - The mean number of events per unit area at one point s
 - Defined as the limit when the size of small region ds around point s approaches zero:

$$\}(s) = \lim_{ds \to 0} \left\{ \frac{E(Y(ds))}{|ds|} \right\}$$

- For a stationary point process,}(s) is constant over the study area
 - The intensity is }
 - For an arbitrary area A, E(Y(A)) = |A|

Second Order Effects

- Second order intensity
 - The relationship between numbers of events in pairs of areas in the study area ℜ
 - Defined as the limit when the sizes of small regions ds_i and ds_j around point s_i and s_j approach zero:

Chizero: $\{(s_i, s_j) = \lim_{ds_i, ds_j \to 0} \{ \frac{E(Y(ds_i)Y(ds_j))}{|ds_i| \times |ds_j|} \}$

- For a stationary point process
 - **Anisotropic** $\{(s_i, s_j) = \{(s_i s_j) = \}(h)$
 - **Isotropic** $\{(s_i, s_j) = \}(|h|)$

Visualizing Spatial Point Patterns

- Dot map
 - Shape of the study area
 - Visual impression of patterns

Examples

Exploring Spatial Point Patterns

- Summary statistics or plots
- First order effects
 - Quadrat methods
 - Kernel estimation
- Second order effects
 - Nearest neighbor distances
 - K function

Remarks

- Quadrat can be randomly placed over the study area to gain a rough estimation of the variation in intensity
- No spatial details are considered within each quadrat
- The size of quadrat: large or small
- An alternative approach: moving window?

Kernel Estimation

- An extension of moving window approach
- Originally designed to obtain a smooth estimate of probability density function

• Notation • Notation • s: an arbitrary location in R • s_1, \ldots, s_n are the locations of the n observed events • The intensity at location s is estimated by $\hat{\lambda}_s(s) = \frac{1}{\delta_s(s)} \sum_{i=1}^n \frac{1}{r^3} k \frac{(s-s_i)}{r}$ where $\delta_s(s)$ is the edge correction term; $k(\cdot)$ as kernel function; r is bandwidth of kernel

How to choose a bandwidth

- The bandwidth determines the degree of smoothness of the intensity map
- If [‡] is too large, the intensity will be very smooth and spatial details are averaged out
- If is too small, the intensity will be very spiky at the locations of events and flat at the locations with no or few events
- One rule of thumb
- · Or, try different bandwidths

Edge Correction

- Edge correction Term u_t(s)
 - The volume under the scaled kernel centered on s which lies "inside" the study area R

$$\delta_{\tau}(s) = \int_{\Re} \frac{1}{\tau^2} k \left(\frac{s - u}{\tau} \right) du$$

Adaptive Kernel Estimation

- Locally adjusting the bandwidth
 - For dense areas, use smaller bandwidth
 - For sparse areas, use larger bandwidth

$$\hat{\lambda}_{\tau}(s) = \sum_{i=1}^{n} \frac{1}{\tau^{2}(s_{i})} k \left(\frac{(s-s_{i})}{\tau(s_{i})} \right)$$

 $\tau(s_i)$ is proportional to the intensity at location s_i