

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
27. April 2006 (27.04.2006)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2006/042812 A1

(51) Internationale Patentklassifikation:
H01R 4/30 (2006.01) *H01R 11/26* (2006.01)

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): FRENKEN, Egbert [DE/DE]; Erpener Weg 9, 52525 Heinsberg (DE).

(21) Internationales Aktenzeichen: PCT/EP2005/055176

(74) Anwälte: MÜLLER, Enno usw.; Rieder & Partner, Corneliusstrasse 45, 42329 Wuppertal (DE).

(22) Internationales Anmeldedatum:
12. Oktober 2005 (12.10.2005)

(81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(25) Einreichungssprache: Deutsch
(26) Veröffentlichungssprache: Deutsch
(30) Angaben zur Priorität:
10 2004 050 485.7
15. Oktober 2004 (15.10.2004) DE
10 2005 007 203.8
17. Februar 2005 (17.02.2005) DE

(84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,

[Fortsetzung auf der nächsten Seite]

(54) Title: CABLE LUG COMPRISING A NUT OR FUNCTIONAL PART, METHOD FOR THE PRODUCTION OF SUCH A CABLE LUG, AND NUT

(54) Bezeichnung: KABELSCHUH MIT MUTTER BWZ. FUNKTIONSTEIL, VERFAHREN ZUR HERSTELLUNG EINES SOLCHEN KABELSCHUHS UND MUTTER

(57) Abstract: The invention relates to a cable lug (1) comprising a receiving tube section (4) for the cable (19), a flat piece-connecting section (5) that is molded on and is provided with a bore (6), and a nut (2) which is captively mounted on the flat piece-connecting section (5) and is preferably rotatably mounted. Said nut (2) does not penetrate the flat piece-connecting section (5) while being mounted by means of a shaped mounting material section (16) of the flat piece-connecting section (5), which extends into an undercut (9) that is embodied on the nut. In order to be able to rotatably mount the nut or the functional part, the mounting material section (16) is accommodated in the undercut (9) with an axial clearance. Furthermore, the mounting material section (16) is rooted in an area of the flat piece-connecting section which is lowered in a step-type manner. Said lowered area is rotationally symmetrical and is provided with a conical section which opens outward and vertically and encompasses at least one conical area. The invention also relates to a method for compression-connecting a functional part such as a nut to a cable lug as well as a nut that is suitable for this purpose.

[Fortsetzung auf der nächsten Seite]

WO 2006/042812 A1

ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Veröffentlicht:

— mit internationalem Recherchenbericht

(57) Zusammenfassung: Die Erfindung betrifft einen Kabelschuh (1) mit einem Aufnahme-Rohrabschnitt (4) für das Kabel (19), einem angeformten, einer Bohrung (6) aufweisenden Flachteil-Verbindungsabschnitt (5) und einer an dem Flachteil-Verbindungsabschnitt (5) unverlierbar gehaltenen, vorzugsweise drehbar gehaltenen, Mutter (2), wobei die Mutter (2) den Flachteil-Verbindungsabschnitt (5) nicht durchsetzt und durch einen in einen an dieser ausgebildeten Hinterschnitt (9) hineinragenden umgeformten Halterungs-Materialabschnitt (16) des Flachteil-Verbindungsabschnittes (5) gehalten ist. Um eine drehbare Halterung der Mutter oder des Funktionsteils zu erreichen, ist vorgeschlagen, dass der Halterungs-Materialabschnitt (16) mit axialem Freistand in dem Hinterschnitt (9) aufgenommen ist. Von Bedeutung ist auch, dass der Halterungs-Materialabschnitt (16) in einem stufenartig abgesenkten Bereich des Flachteil-Verbindungsabschnittes wurzelt, wobei diese Absenkung rotationssymmetrisch ist sowie einen sich nach außen und oben öffnenden, mindestens eine Konusfläche aufweisenden Konusabschnitt aufweist. Darüber hinaus betrifft die Erfindung auch ein Verfahren zur Pressverbindung eines Funktionsteils wie einer Mutter mit einem Kabelschuh und eine in diesem Zusammenhang geeignete Mutter.

Kabelschuh mit Mutter bzw. Funktionsteil, Verfahren zur Herstellung eines solchen Kabelschuhs und Mutter

Die Erfindung betrifft zunächst einen Kabelschuh mit einem Aufnahm-

- 5 Rohrabschnitt für das Kabel, einem angeformten, eine Bohrung aufweisenden Flachteil-Verbindungsabschnitt und einer an dem Flachteil-Verbindungsabschnitt unverlierbar gehaltenen, vorzugsweise drehbar gehaltenen, Mutter, wobei die Mutter den Flachteil-Verbindungsabschnitt nicht durchsetzt und durch einen in einen an dieser ausgebildeten Hinterschnitt hineinragenden um-
10 geformten Halterungs-Materialabschnitt des Flachteil-Verbindungsabschnittes gehalten ist.

Weiter betrifft die Erfindung einen Kabelschuh mit einem Aufnahme-Rohrab-
schnitt für das Kabel, einem angeformten, eine Bohrung aufweisenden Flach-

- 15 teil-Verbindungsabschnitt und einem an dem Flachteil-Verbindungsabschnitt unverlierbar gehaltenen, vorzugsweise drehbar gehaltenen, Funktionsteil, wo-
bei das Funktionsteil durch einen in einen an diesem ausgebildeten Hinter-
schnitt hineinragenden Halterungs-Materialabschnitt gehalten ist, der in einem zu dem unbeeinflussten umgebenden Bereich des Flachteil-Verbindungsab-
20 schnittes stufenartig abgesenkten Bereich wurzelt, wobei der Hinterschnitt mit einer axialen Erstreckung ausgebildet ist, die gleich oder kleiner der axialen Erstreckung (Dicke) des unbeeinflussten Flachteil-Verbindungsabschnittes ist.

Derartige Kabelschuhe sind bereits in verschiedenen Ausgestaltungen bekannt

- 25 geworden. Beispielsweise ist auf die DE 10310164 A1 zu verweisen.

Zum Stand der Technik ist weiter auf die EP 667 936 B2 zu verweisen. Darüber hinaus auch auf die US 5256019.

Im Weiteren betrifft die Erfindung ein Verfahren zur Ausbildung einer unverlierbaren, aber eine Axial- und gegebenenfalls eine Drehbewegung ermöglichen Verbindung eines Kabelschuhs mit einem Funktionsteil wie einer Mutter, wobei der Kabelschuh einen Aufnahme-Rohrabschnitt für das Kabel und

5 einen Flachteil-Verbindungsabschnitt aufweist und das Funktionsteil in den unverformten Flachteil-Verbindungsabschnitt unter Eindringen in oder Durchsetzen einer darin ausgebildeten Bohrung eingepresst wird.

Insofern ist auch auf den bereits vorstehend genannten Stand der Technik zu

10 verweisen. Bei dem aus der US 5256019 bekannten Verfahren wird im Zuge des Einpressens eine stufenartige Fläche ausgebildet, die zwei senkrecht zueinander, jeweils horizontal bzw. vertikal verlaufende Flächen aufweist. Hierdurch wird zwar das Ausbilden des gewünschten Halterungs-Materialabschnittes erreicht. Jedoch geht die gesamte Verformung in den vertikal unterhalb der zugeordneten Stufenfläche der Schraube bzw. des Funktionsteils liegenden Bereich

15 des Flachteil-Verbindungsabschnittes des Kabelschuhs.

Schließlich betrifft die Erfindung auch eine Mutter, vorzugsweise zur Pressverbindung mit einem Flachteil-Verbindungsabschnitt eines Kabelschuhs, wobei

20 die Mutter einseitig, bezogen auf ihre Ein- oder Ausschraubrichtung, einen radial öffnenden, in Axialrichtung der Mutter gegebenen Hinterschnitt mit einer oberen und unteren Begrenzungsfläche aufweist.

Insoweit ist zum Stand der Technik auf die US 3253631, die DE 558873 und die

25 DE 9412215 U1 zu verweisen.

Bei den eingangs genannten bekannten Kabelschuhen ist der Halterungs-Materialabschnitt jeweils ausfüllend in dem Hinterschnitt der Mutter oder des Funktionsteils aufgenommen oder der Hinterschnitt ist in axialer Richtung sehr

30 groß ausgebildet und in einer Richtung durch das beginnende Gewinde gebildet (US 5256019). Insbesondere im Hinblick auf eine drehbare Halterung der

Mutter oder des Funktionsteils wird hier nach einer neuartigen Gestaltung gesucht.

Ausgehend von dem bekannten Verfahren stellt sich der Erfindung auch die

- 5 Aufgabe, ein vorteilhaftes Verfahren zur Pressverbindung eines Funktionsteils wie einer Mutter mit einem Kabelschuh anzugeben.

Nicht zuletzt ist es Aufgabe der Erfindung, eine Mutter anzugeben, die vorteilhaft in einem Gegenstand einer Kombination aus Kabelschuh und Funktionsteil

- 10 wie Mutter oder bei Durchführung eines Verfahrens zur Ausbildung einer Verbindung zwischen einem Funktionsteil wie einer Mutter und dem Kabelschuh Verwendung finden kann.

Hinsichtlich eines Kabelschuhs mit darin gehalterter Mutter ist ausgehend vom

- 15 vorbeschriebenen Stand der Technik die Aufgabe dadurch gelöst, dass darauf abgestellt ist, dass der Halterungs-Materialabschnitt mit axialem Freistand in dem Hinterschnitt aufgenommen ist. Gegebenenfalls kann auch ein radiales Spiel vorgesehen sein. Zum Einen ist dies günstig in Bezug auf eine thermische Beanspruchung der Verbindung. Dadurch, dass der Halterungs-

- 20 Materialabschnitt Ausweichraum in dem Hinterschnitt findet, können so gewisse Volumenänderungen, etwa zurückzuführen auf unterschiedliche Materialausdehnungen bei Erwärmung, vorteilhaft aufgenommen werden. Die konstruktive Lösung ist aber auch für sich sogleich geeignet, eine drehbare Halterung der Mutter zu verwirklichen. Andererseits kann der erfinderische Gedanke grundsätzlich auch bei etwa formschlüssig gehinderter Drehbarkeit verwirklicht sein. Etwa durch sich vertikal im Sitzbereich der Mutter erstreckende Drehhinderungsvorsprünge, die durch Anheben überwindbar sind.

Soweit auf ein Funktionsteil allgemein abgestellt ist, ist die Aufgabe bei einem

- 30 Kabelschuh gelöst, bei welchem insbesondere vorgesehen ist, dass die stufenartige Absenkung rotationssymmetrisch ist sowie einen sich nach außen und o-

ben öffnenden, mindestens eine Konusfläche aufweisenden Konusabschnitt aufweist. Die Verbindung der rotationssymmetrischen Ausbildung mit dem sich nach außen und oben öffnenden Konusabschnitt wirkt einer gegebenenfalls nicht gewünschten Verklemmung des Funktionsteils in dem Kabelschuh wirk-
5 sam vor. Eine nicht gewünschte Verklemmung bedeutet nicht zugleich auch, dass nicht gleichwohl noch eine Drehhinderung vorliegen kann.

Hinsichtlich des Verfahrens stellt die Erfindung darauf ab, dass im Zuge der Einpressung in den Flachteil-Verbindungsabschnitt eine rotationssymmetrisch
10 umlaufende, stufenartige Fläche ausgebildet wird, wobei jedenfalls eine der Stufenflächen als Konusfläche in einem spitzen Winkel zu einer Horizontalen oder einer Vertikalen verlaufend ausgeformt wird. Dadurch, dass die Stufenflächen in der genannten Ausgestaltung verlaufen, ist auch die senkrechte bzw. erfindungsgemäß schräg nach außen sich öffnende Stufenfläche von der Ver-
15 formung wesentlich erfasst. Entsprechend ergibt sich auch nach Abschluss des Einpressvorgangs eine gewisse elastische Rückverformung, die dazu neigt, das Funktionsteil anzuheben. Aufgrund der genannten Verläufe der Stufenfläche ergibt sich eine weitgehende Freilage des Funktionsteils von den Stufenflächen, was einer gegebenenfalls gewünschten Drehbarkeit des Funktionsteils vorteil-
20 haft zugute kommt.

Hinsichtlich der Mutter ist die Aufgabe bei einem Gegenstand gelöst, bei dem wesentlich darauf abgestellt ist, dass der Hinterschnitt rotationssymmetrisch ausgebildet ist und die obere Begrenzungsfläche Teil einer an der Mutter aus-
25 gebildeten rotationssymmetrischen Stufenfläche ist. Die obere Begrenzungsfläche des Hinterschnitts geht unmittelbar in die genannte Stufenfläche, die sich letztlich immer nach oben und außen öffnet, über.

Die Merkmale der weiteren Ansprüche sind nachstehend im Wesentlichen als
30 Unteransprüche erläutert, sie können aber auch jeweils in ihrer Eigenständigkeit von Bedeutung sein.

So ist es vorteilhaft, wenn die mit einem spitzen Winkel zur Senkrechten verlaufende Stufenfläche nochmals in eine Horizontalfläche übergeht. Diese Horizontalfläche ist entsprechend radial außerhalb der genannten Stufenfläche angeordnet.

5

Bevorzugt ist auch, dass der an der Mutter bzw. dem Funktionsteil ausgebildete Hinterschnitt in einem Bereich ausgebildet ist, der - jedenfalls bezogen auf die Mutter - kein zugeordnetes (Innen-) Gewinde aufweist.

10

Der Halterungs-Materialabschnitt wurzelt bevorzugt in einem zu einem umgebenen Bereich des Flachteil-Verbindungsabschnitts stufenartig abgesenkten Abschnitt des Flachteil-Verbindungsabschnitts.

15

Insbesondere ist auch bevorzugt, dass die genannten Stufenflächen in sich, unabhängig von ihrer Schrägausrichtung relativ zu einer Horizontalen oder Vertikalen, ebenflächig ausgebildet sind.

20

Hinsichtlich des Hinterschnitts ist auch bevorzugt, dass die untere Begrenzungsfläche des Hinterschnitts sich in vertikaler Projektion über mehr als die Hälfte, in radialer Richtung, der zugeordneten Stufenfläche, die unterseitig des zugeordneten eigentlichen Mutterteils bzw. Kopfes des Funktionsteils ausgebildet ist, erstreckt. Dieser Hinterschnitt ist auch bevorzugt unabhängig vom Gewinde bzw. nicht in (radialer) Überdeckung zu einem Gewinde der Mutter ausgebildet. Die Innenfläche des Hinterschnittbereichs ist im Fall der Mutter zylindrisch ausgebildet. Die diesbezügliche Zylinderfläche geht in den Gewindeggrund des in der Mutter ausgebildeten Innengewindes bevorzugt über. In axialer Richtung erstreckt sich der Hinterschnitt bevorzugt über ein Viertel oder mehr der Dicke des Flachteil-Verbindungsabschnittes.

30

Verfahrenstechnisch bzw. montagetechnisch wird so vorgegangen, dass die Bohrung in dem Flachteil-Verbindungsabschnitt des Kabelschuhs ausreichend groß ist, dass der nach unten vorstehende genannte, den Hinterschnitt aufweisende Hals der Mutter zwanglos in die Bohrung eingesteckt werden kann. So 5 dann wird von oben auf die Mutter Presskraft aufgebracht, welche die Einsenkung der genannten Stufenfläche in das Material des Flachabschnitts des Kabelschuhs erbringt, unter gleichzeitiger Vorwölbung des Halterungs-
Materialabschnittes, ausgeformt aus dem Material des Flachteils des Kabelschuhs. Nach Entlastung der Mutter von der genannten Presskraft ist eine un-
10 verlierbare Sicherung der Mutter an dem Kabelschuh gegeben, bei gleichzeiti-
ger freier Drehbarkeit der Mutter.

Der - zu einer Konusfläche führende - Winkel des ansteigenden Abschnittes der Stufenfläche ist bevorzugt ein spitzer Winkel, weiter bevorzugt im Bereich von
15 1 bis 60 Grad. Darüber hinaus bevorzugt im Bereich von 45 Grad. In die Offen-
barung eingeschlossen sind aber auch alle diesbezüglichen Zwischenwerte wie
2, 3 etc. Grad oder 46, 47 etc. Grad.

Soweit die an einer Horizontalen orientierte Stufenfläche auch in einem Winkel
20 zur Horizontalen verläuft, ist dieser Winkel bevorzugt auch ein spitzer Winkel.
Weiter bevorzugt in den Winkelbereichen wie sie vorstehend bezüglich des an-
steigenden Abschnittes der Stufenfläche angegeben sind. Und zwar kann der
Winkel in diesem Fall sowohl positiv wie auch negativ zählend ausgebildet
sein. Hierbei ist darüber hinaus bevorzugt, dass der Winkel der an der Horizon-
25 talen orientierten Stufenfläche (betragsmäßig) immer kleiner gewählt ist als der-
jenige der an der Vertikalen orientierten Stufenfläche.

Die Mutter mit den genannten Ausformungen kann zunächst als Drehteil her-
gestellt sein. Sie kann aber auch beispielsweise als Fliesspressteil hergestellt
30 sein, wobei der genannte Halsabschnitt unten zunächst als zylindrische Röhre

angeformt ist und in einem zweiten Schritt dann so angestaucht wird, dass sich der erforderliche und beschriebene Hinterschnitt ergibt.

- Bei dem Kabelschuh handelt es sich bevorzugt um einen solchen, der aus einem
- 5 Vollmaterial gebildet ist, wobei dann der Flachabschnitt durch Umformen angepresst ist.

Die genannte Verbindung zwischen der Mutter, die in der Regel aus einem Stahlwerkstoff besteht, oder einem sonstigen Funktionsteil, und dem Flachabschnitt des Kabelschuhs ist auch dadurch unterstützt, dass der Kabelschuh üblicherweise aus einem vergleichsweise weichen Material besteht. Nämlich aus Kupfer oder Aluminium.

- Aufgrund der beschriebenen Ausgestaltung des Funktionsteils ergibt sich beim
- 15 Einpressen eine charakteristische Verpresskurve. Zunächst nämlich mit einem über den Weg vergleichsweise flachen Anstieg der Kraft und sodann eine Abwinklung in einen zweiten Abschnitt der Verpresskurve, in dem die Kraft über den Weg aufgetragen stärker ansteigt. Diese Charakteristik ermöglicht eine vorteilhafte Steuerung der Verpressung in Bezug auf die aufgewandte Presskraft.
- 20 Man kann eine typische, sich ausreichend im steilen Bereich der Kurve befindliche Presskraft vorgeben und ist bei Erreichen dieser Presskraft jeweils sicher, dass eine funktionsgemäße Halterung des Funktionsteils an dem Kabelschuh erreicht ist.
- 25 Bevorzugt ist auch, dass die Bohrung in dem Kabelschuh mit einer Bohrungsstufe ausgebildet ist. Die Bohrungsstufe ist bereits vor der Verformung bevorzugt gegeben. Dies ist vorteilhaft im Hinblick auf eine Verbindung mit einem Bolzen, auf den der Kabelschuh bei einer Anwendung beispielsweise aufzusetzen ist. Dieser Bolzen, der kopfseitig ein Gewinde aufweist, weist unterhalb des
- 30 Gewindes einen radialen Vorsprung auf. Auf dieser Fläche sitzt der Kabelschuh außerhalb der Bohrung auf. Um diesen Vorsprung hinsichtlich der Fläche mög-

lichst vorteilhaft ausnutzen zu können, empfiehlt es sich, die Bohrung im unteren, dem Bolzen zugewandten Bereich enger auszubilden, also mit der genannten Bohrungsstufe zu versehen.

- 5 Hinsichtlich des Funktionsteils, insbesondere der Mutter, ist auch bevorzugt, dass die Horizontalfläche eine kreisförmige Außenkontur aufweist. Für eine übliche Mutter mit Mehrkantkontur, also beispielsweise Sechskantkontur, kann dies beispielsweise erreicht werden durch die Anformung eines unterseitigen Flansches an den Kopf des Funktionsteils, also hier an den Mehrkant der Mutter. Dieser Flansch weist oberseitig eine Aufsetzfläche auf, die vorteilhaft durch ein entsprechendes Druckwerkzeug genutzt werden kann. Dadurch, dass die Außenkontur rund ist, kann keine Behinderung einer gewünschten Drehbarkeit der Mutter etwa durch sechskantförmige Vertiefung aufgrund des Eindrucks in der Oberfläche des Flachteil-Verbindungsabschnitts des Kabelschuhs auftreten.
- 10
- 15

Neben der bereits erwähnten Mutter kann als Funktionsteil auch eine Schraube in Frage kommen. Weiter kann es sich auch bspw. um eine Hülse oder auch einen Dorn handeln.

- 20 Nachstehend ist die Erfindung des Weiteren anhand der beigefügten Zeichnung, welche lediglich Ausführungsbeispiele darstellt, näher erläutert. Es zeigt:

Fig. 1 einen Kabelschuh mit dem Flachteil zugeordneter Mutter, vor Verpressung;

25 Fig. 2 den Gegenstand gemäß Fig. 1, geschnitten im Bereich des Flachteils;

Fig. 2a eine Herausvergrößerung gemäß des Ausschnitts II a aus Fig. 2;

Fig. 3 den Gegenstand gemäß Fig. 1 in auf den Kabelschuh aufgesetzter Stellung;

5 Fig. 4 eine Fig. 2 entsprechende Querschnittsdarstellung des Gegenstandes gemäß Fig. 3;

Fig. 5 den Gegenstand gemäß Fig. 1 bzw. Fig. 3 in verpresster Stellung;

10 Fig. 6 eine Fig. 2 bzw. Fig. 4 entsprechende Schnittdarstellung des Gegensandes gemäß Fig. 5;

Fig. 6a eine Herausvergrößerung gemäß des Ausschnitts VI a aus Figur 6;

15 Fig. 7 eine Darstellung bei auf einem Gewinde-Verbindungsbolzen aufgeschraubter Mutter;

Fig. 8 eine Darstellung eines Funktionsteils in Form einer Schraube;

20 Fig. 9 den Gegenstand gemäß Fig. 8 bei auf dem Flachteil des Kabelschuhs aufsitzender Schraube, vor Verpressung;

Fig. 10 eine alternative Ausführungsform einer mit einem Kabelschuh verbundenen Mutter, in perspektivischer Ansicht;

25 Fig. 11 einen Querschnitt im Bereich des Flachteil-Verbindungsabschnittes durch den Gegenstand gemäß Fig. 10;

Fig. 11a eine Herausvergrößerung gemäß dem Abschnitt XI a aus Fig. 11;

30 Fig. 12 einen Querschnitt durch Figur 11 im eingepressten Zustand der Mutter;

Fig. 13 eine perspektivische Ansicht einer weiteren Ausführungsform des Funktionsteils in Form einer Mutter, aufgesetzt auf den Kabelschuh;

5 Fig. 14 einen Querschnitt durch den Gegenstand gemäß Fig. 13, vor der Verpressung;

Fig. 15 eine Herausvergrößerung des Bereichs XV in Fig. 14;

10 Fig. 16 eine Darstellung gemäß Fig. 13, nach Verpressung;

Fig. 17 einen Querschnitt durch den Gegenstand der Fig. 16 und

Fig. 18 eine Herausvergrößerung des Bereichs XVIII in Fig. 17.

15 Dargestellt und beschrieben ist, zunächst mit Bezug zu den Figuren 1 bis 7, ein Kabelschuh 1 mit einem hier als Mutter 2 ausgebildeten Funktionsteil 3.

20 Zur lösungssicheren, das heißt gegen Lösung gesicherten, aber drehbaren Verbindung zwischen der Mutter 2 und dem Kabelschuh 1 wird die Mutter 2 mit dem Kabelschuh 1 verpresst, wie sich dies insbesondere aus den Figuren 5 bis 6 ergibt.

Der Kabelschuh 1 weist im Einzelnen einen Aufnahme-Rohrabschnitt 4 und
25 einen Flachteil-Verbindungsabschnitt 5 auf. In den Rohrabschnitt 4 wird das Kabel 19 eingeführt, und darin dann beispielsweise pressgehaltert, dessen elektrisch zuverlässige Verbindung mittels des Kabelschuhs 1 erreicht werden soll.

30 Der beim Ausführungsbeispiel aus einem Vollmaterial gebildete Kabelschuh 1 weist weiter in dem bereits genannten pressverformten Flachteil-Verbindungs-

abschnitt 5 eine Bohrung 6 auf. In diese Bohrung 6 wird beim Ausführungsbeispiel die Mutter 2 eingesetzt und sodann durch Herunterpressen in der noch zu beschreibenden Weise verlierungssicher aber drehbar mit dem Kabelschuh 1, das heißt im Einzelnen dem Flachteil-Verbindungsabschnitt 5, verbunden.

5

Wie sich in weiterer Einzelheit aus den Darstellungen der Figuren 2, 4 und 6 ergibt, weist die Mutter 2 ein Innengewinde 7 auf, beim Ausführungsbeispiel mit einem oberen Kunststoffeinsatz 8, um ein Lösen der Mutter 2 zu hindern. Es handelt sich insoweit um eine selbst sichernde Mutter.

10

Unterseitig ist an die Mutter 2 ein Hinterschnitt 9 angeformt. Beim Ausführungsbeispiel ist dieser Hinterschnitt 9 durch eine Dreh-Bearbeitung erreicht.

Der Hinterschnitt 9 setzt unterhalb des unteren Endes des Innengewindes 7 an.

15 Innenseitig weist der Hinterschnitt 9 eine Zylinderfläche 10 auf, die mit dem Gewindeggrund des Innengewindes 7 axial fluchtet.

Im Einzelnen ist der Hinterschnitt 9 durch eine untere Begrenzungsfläche 11 und eine obere Begrenzungsfläche 12 gebildet. Die obere Begrenzungsfläche 12

20 ist zugleich Teil einer unterseitig an der Mutter 2 ausgebildeten Stufenfläche.

Die Stufenfläche der Mutter 2, die im Einzelnen in der Lupendarstellung vergrößert dargestellt ist, ist gleichsam das Negativ der im Verpresszustand positiv ausbildenden Stufenfläche in dem Flachteil-Verbindungsabschnitt 5.

25

In weiterer Einzelheit besteht die Stufenfläche aus einer Vertikalfäche 13 und der bereits angesprochenen Begrenzungsfläche 12. Beide Flächen, die Begrenzungsfläche 12 wie auch die Vertikalfäche 13 erstrecken sich bei den hier beschriebenen Ausführungsbeispielen relativ zu einer Horizontalen H bzw. einer

30 Vertikalen V in einem spitzen Winkel α bzw. β . Der spitze Winkel α bzw. β ist

bevorzugt im Bereich von 1 bis 60° ausgebildet. Weiter bevorzugt bezüglich α zwischen 10° und 30° und bezüglich β zwischen 20° und 50°. Beim Ausführungsbeispiel beträgt der Winkel α 15° und β 30°.

- 5 Die Vertikalfäche 13 geht radial außen in eine Horizontalfläche 14 über, die allerdings aufgrund der Sechskantausformung der Mutter 2 beim Ausführungsbeispiel über den Umfang mit unterschiedlicher radialer Erstreckung sich ausbildet.
- 10 Diese unterschiedliche radiale Ausdehnung der Horizontalfläche 14 ergibt sich auch aus der Darstellung gemäß Figur 3, in welcher die Mutter 2 aufgesetzt auf den Flachteil-Verbindungsabschnitt 5 vor dem Verpressen dargestellt ist. Hier erstreckt sich teilweise die Bohrung 6 noch radial über eine zugeordnete vertikale Flachfläche 15 der Mutter 2.

15

In Figur 4 ist ein Querschnitt durch Figur 3 dargestellt, ebenfalls entsprechend in dem Zustand vor Verpressung.

Dagegen ist in den Figuren 5 und 6 der Zustand nach Verpressung dargestellt.

20

Wesentlich ist, dass aus dem Flachteil-Verbindungsabschnitt 5 ein Halterungs-Materialabschnitt 16 ausgeformt ist, der sich in den Hinterschnitt 9 der Mutter 2 hinein erstreckt. Der Halterungs-Materialabschnitt 16 ist Teil der bereits erwähnten, sich im Flachteil 5 positiv ausbildenden Stufenfläche, die jedoch in gleicher Weise die bereits beschriebene Schrägausrichtung zu einer Horizontalen H bzw. Vertikalen V aufweist. Hierbei erstreckt sich der Halterungs-Materialabschnitt 16 deutlich nach radial innen über die im unteren Bereich, gesehen über die Dicke des Halterungs-Materialabschnittes 16 verbleibende Bohrung 6 mit ursprünglichem Durchmesser.

30

- Die in dem Halterungs-Materialabschnitt 16 nach Verpressen geschaffene stufenartige Absenkung mit den Stufenflächen 17 und 18 ist rotationssymmetrisch über den Umfang der Bohrung 6 gebildet. Das heißt die Fläche ist gedanklich durch Rotieren einer Schablone erzeugt. Es gibt keine Hinterschnitte in der Fläche bezogen auf die Rotationsrichtung der angesprochenen gedanklichen Schablone (natürlich ist dies ein Formungsbeispiel, wie es gegebenenfalls bei Gussformen verwendet wird; dies ist hier nur angesprochen, um die Natur der rotationssymmetrischen Fläche zu verdeutlichen).
- 10 Der Halterungs-Materialabschnitt 16 ist in den Hinterschnitt 9 wie ersichtlich sowohl mit axialem wie auch mit radialem Spiel gefangen. Dieses Spiel ist allerdings vergleichsweise gering, wie sich erkennen lässt, großenordnungsmäßig im Bereich der Gewindetiefe des Innengewindes 7 der Mutter 2, also im Millimeter- bzw. Zehntelmillimeterbereich.
- 15 Auch der Halterungs-Materialabschnitt 16 selbst ist rotationssymmetrisch ausgebildet. Der Hinterschnitt 9 befindet sich im Verpresszustand vollständig in seitlicher Überdeckung zu dem Halterungs-Materialabschnitt 16.
- 20 In Figur 7 ist der Verbindzungszustand des Kabelschuhs 1, mit darin befindlichem, eingepresstem Kabel 19 zu einem (elektrischen) Anschlussteil 20 dargestellt. Das Anschlussteil 20 weist einen Schraubschaft 21 auf, mit welchem die Mutter 2, die mit dem Kabelschuh 1 unverlierbar aber drehbar pressverbunden ist, aufgeschraubt ist. Es ergibt sich so eine gewünschte Druck-Anlageverbindung zwischen der Unterseite des Flachteil-Verbindungsabschnittes 5 und der Oberseite des Anschlussteiles 20.

25 Die Ausführungsform der Figuren 8 und 9 zeigt ein Funktionsteil 3 in Form eines Schaftes 22. Gegebenenfalls kann es sich auch um eine Schraube handeln, bei welcher unterseitig des Hinterschnitts 9 noch ein Gewinde ausgebildet sein kann.

Im Wesentlichen ergeben sich gleiche Verhältnisse wie bei der zu den Figuren 1 bis 7 beschriebenen Mutter 2. Nur dass der Schaft 22 des Funktionsteils 3 nun die Bohrung 6 durchsetzt. Zum Verpressen arbeitet man hier geeigneterweise
5 mit einem Gegenhalter, der eine entsprechende Aufnahme oder Bohrung 6 für den Schaft 22 besitzt.

Mit Bezug zu den Figuren 10 und 11 ist zu erkennen, insbesondere etwa im Vergleich zu Figur 3, dass die Mutter 2 eine obere Ausformung 23 aufweist mit
10 einer kreisringförmig umlaufenden ebenflächigen Pressfläche 24. Über diese Pressfläche 24 kann mittels eines geeigneten Druckwerkzeuges die notwendige Verpresskraft auf die Mutter 2 aufgebracht werden, um im Zuge des Verpressens die Herausbildung des Halterungs-Materialabschnittes 16 aus dem Flachteil-Verbindungsabschnitt 5 des Kabelschuhs 1 zu erreichen. Es erfolgt lediglich
15 ein Eindrücken der Mutter von oben in den Flachteil-Verbindungsabschnitt 5, wie auch vorstehend schon beschrieben. Die Pressfläche 24 ist wesentlich kleiner als die projizierte Gesamtoberfläche der Mutter 2. Sie entspricht jedenfalls weniger als der Hälfte dieser projizierten Gesamtoberfläche.

20 Innerhalb des Aufbaus 23 ist das bereits angesprochene Kunststoffteil 8 aufgenommen, das entsprechend einer selbst sichernden Mutter, wie auch aus der Querschnittsdarstellung gemäß Figur 11 ersichtlich, innenwändig, die eine zylindrische Form hat, mit der inneren Gewindelinie der Schraube 2 fluchtet.
25 Wesentlich ist weiter bei der Ausführungsform der Figur 11, wie sich auch aus der Detaildarstellung der Figur 11a ergibt, dass hier der Winkel α mit $0^\circ C$ gewählt ist, dagegen der Winkel β mit $45^\circ C$.

Wesentlich ist darüber hinaus, dass, wie sich aus Figur 12 ergibt, die Horizontalfäche 14 im Verpresszustand nicht auf dem Flachteil-Verbindungsabschnitt
30

5 aufliegt. Sie schwebt vielmehr gleichsam über dem Flachteil-Verbindungsabschnitt bei ordnungsgemäßer Verpressung. Mit anderen Worten ist die Presskraft so gewählt, dass bei der gegebenen Konfiguration der Stufenfläche eine Einpressung erfolgt, nur soweit, dass die Fläche 14 nicht zum Aufliegen auf den
5 Flachteil-Verbindungsabschnitt 5 kommt. Dies bevorzugt auch ohne Berücksichtigung der elastischen Rückstellung, die sich nach Entlastung der Mutter von der Presskraft ergibt. Derart also, dass die Fläche 14 zu keinem Zeitpunkt der Verpressung in Berührung mit der Oberfläche des Flachteil-Verbindungsabschnittes 5 kommt.

10

Bei der Ausführungsform der Figuren 13 bis 18 ist zunächst wesentlich, dass die Bohrung (6) in Axialrichtung gestuft ausgebildet ist. Ausgehend von einem größeren Durchmesser oben, zugeordnet dem Funktionsteil bzw. konkret der Mutter 3 geht die Bohrung unten über eine Bohrungsstufe 25 in einen kleineren
15 Durchmesser über. Die Bohrungsstufe 25 ist mittensymmetrisch bezüglich einer Längsachse der Bohrung ausgebildet.

Die Bohrungsstufe 25 dient dazu, die Fläche auf der Unterseite des Flachteil-Verbindungsabschnittes, in der Umgebung der Bohrung 6, zu vergrößern. Dies,
20 weil bei einem Anwendungsfall der Flachteil-Verbindungsabschnitt zusammen mit der Mutter 3 auf einen abgestuften, oberseitig ein Gewinde aufweisenden Bolzen aufgesetzt und aufgeschraubt wird. Der Flachteil-Verbindungsabschnitt muss entsprechend auf einer relativ schmalen, kreisförmig umlaufenden Fläche des Bolzens aufsitzen. Durch die beschriebene Bohrungsstufe 25 kann diese
25 Aufsitz- und damit Kontaktfläche vorteilhaft vergrößert werden.

Herstellungstechnisch lässt sich beispielsweise so verfahren, dass der obere Abschnitt der Bohrung 6 eingepresst wird und sodann in einen zweiten Arbeitsschritt der untere Bereich der Bohrung, unter Belassung der Bohrungsstufe 25,
30 ausgeschnitten oder ausgestanzt wird. Entsprechend kann man bei dem Kabel-

schuh im unteren Bereich der Bohrung eine Schnittkante feststellen, im oberen Bereich dagegen eine plastische Verformung.

Ein Radialmaß r , vergleiche Figur 15, der Bohrungsstufe 25 entspricht bevorzugt der radialen Tiefe T , vergleiche etwa Figur 11a, des Hinterschnitts 9. Die genannte radiale Tiefe T des Hinterschnitts 9 kann hierbei im Weiteren auch der vertikalen Höhe der Vertikalfläche bzw. der Stufenfläche 13, 17 entsprechen.

Weiter ist bei der hier beschriebenen Ausführungsform von Bedeutung, dass im
Falle der dargestellten Mutter 3 unterseitig an die Mutter ein umlaufender
Druckflansch 26 angeformt ist. Dieser Druckflansch 26 erstreckt sich von der
unteren Horizontalfläche 14 über eine Höhe, die etwa einem Drittel der vertika-
len Höhe des Kopfes des Funktionsteils bzw. hier der Mutter 3 entspricht, wo-
bei diese Höhe gemessen ist von der Horizontalfläche 14 bis zu der Pressfläche
24.

Soweit ein Horizontalflansch 26 wie hier beschrieben bei dem Funktionsteil
bzw. der Mutter vorgesehen ist, kommt es auf die Pressfläche 24 vorrangig
nicht mehr an. Sie kann auch ganz wegfallen oder so ausgebildet sein, wie sie
beispielsweise in den Figuren 1 bis 7 dargestellt ist.

Der Druckflansch 26 dient dazu, ein Druckwerkzeug aufsetzen zu können.
Über diesen Druckflansch können dann relativ hohe Druckkräfte zum Press-
verbinden des Funktionsteils bzw. der Mutter 3 mit dem Kabelschuh 1 aufge-
bracht werden.

Da sich hierdurch eine wesentlich größere untere Horizontalfläche 14 ergibt als
es der Mehrkantkontur der Mutter 3 entspricht, ist dies auch vorteilhaft im
Hinblick auf das beschriebene Pressverfahren, das nämlich kraftabhängig ge-
steuert werden kann bis zu einem starken Anstieg der Verpresskraft, der das

Aufsetzen der Horizontalfläche 14 auf dem Flachteil-Verbindungsabschnitt 5 des Kabelschuhs 1 signalisiert.

- Die radiale Ausdehnung des Druckflansches 26 gegenüber einer Flachseite des
5 Mehrkantes der Mutter 3 entspricht in der kleinsten radialen Erstreckung einem
Zwanzigstel bis einem Fünftel des Durchmessermaßes der Schraube 3, gemes-
sen im Bereich des Mehrkantes und mittig bezüglich einer Abflachung.
- Die Oberfläche, auf welche das Druckwerkzeug aufsitzen kann, des Druckflan-
10 sches 26 kann leicht geneigt nach unten verlaufen, kann aber auch horizontal
verlaufen.
- Die vertikale Höhe der Bohrung 6 im Bereich des kleineren Durchmessers, also,
von oben gesehen, unterhalb der Bohrungsstufe 25, ist so gewählt, dass auch im
15 Verpresszustand der untere Abschluss des Hinterschnitts 9 des Funktionsteils
nicht auf der Stufe aufliegt. Beim Ausführungsbeispiel endet wie ersichtlich die
Schraube einschließlich des Hinterschnitts 9 auch im Verpresszustand oberhalb
der Bohrungsstufe 25.
- 20 Die zuletzt beschriebene Ausführungsform hinsichtlich des Funktionsteils bzw.
konkret der Mutter 3 kann auch mit einer Bohrung kombiniert sein, wie sie wei-
ter vorne beschrieben ist. Andererseits können die Funktionsteile wie sie weiter
vorne beschrieben sind auch mit einer Bohrung kombiniert sein, wie sie zu dem
zuletzt beschriebenen Ausführungsbeispiel erläutert ist.
- 25 Alle offenbarten Merkmale sind (für sich) erfindungswesentlich. In die Offen-
barung der Anmeldung wird hiermit auch der Offenbarungsinhalt der zugehö-
rigen/beigefügten Prioritätsunterlagen (Abschrift der Voranmeldung) vollin-
haltlich mit einbezogen, auch zu dem Zweck, Merkmale dieser Unterlagen in
30 Ansprüche vorliegender Anmeldung mit aufzunehmen.

ANSPRÜCHE

1. Kabelschuh (1) mit einem Aufnahme-Rohrabschnitt (4) für das Kabel (19),
einem angeformten, eine Bohrung (6) aufweisenden Flachteil-Verbindungs-
abschnitt (5) und einer an dem Flachteil-Verbindungsabschnitt (5) unver-
lierbar gehaltenen, vorzugsweise drehbar gehaltenen, Mutter (2), wobei die
Mutter (2) den Flachteil-Verbindungsabschnitt (5) nicht durchsetzt und
durch einen in einen an dieser ausgebildeten Hinterschnitt (9) hineinragen-
den umgeformten Halterungs-Materialabschnitt (16) des Flachteil-
Verbindungsabschnittes (5) gehalten ist, dadurch gekennzeichnet, dass der
Halterungs-Materialabschnitt (16) mit axialem Freistand in dem Hinter-
schnitt (9) aufgenommen ist.
2. Kabelschuh (1) mit einem Aufnahme-Rohrabschnitt (4) für das Kabel (19),
einem angeformten, eine Bohrung (6) aufweisenden Flachteil-Verbindungs-
abschnitt (5) und einem an dem Flachteil-Verbindungsabschnitt (5) unver-
lierbar gehaltenen, vorzugsweise drehbar gehaltenen, Funktionsteil (3),
wobei das Funktionsteil (3) durch einen in einen an diesem ausgebildeten
Hinterschnitt (9) hineinragenden Halterungs-Materialabschnitt (16) gehal-
tet ist, der in einem zu dem unbeeinflussten umgebenden Bereich des
Flachteil-Verbindungsabschnittes (5) stufenartig abgesenkten Bereich wur-
zelt, wobei der Hinterschnitt (9) mit einer axialen Erstreckung ausgebildet
ist, die gleich oder kleiner der axialen Erstreckung (Dicke) des unbeeinflus-
sten Flachteil-Verbindungsabschnittes (5) ist, dadurch gekennzeichnet, dass
die stufenartige Absenkung rotationssymmetrisch ist sowie einen sich nach
außen und oben öffnenden, mindestens eine Konusfläche aufweisenden
Konusabschnitt aufweist.
3. Kabelschuh nach Anspruch 1 oder 2 oder insbesondere danach, dadurch
gekennzeichnet, dass der Halterungs-Materialabschnitt (16) mit radialem

Spiel in dem Hinterschnitt (9) aufgenommen ist.

4. Kabelschuh nach einem oder mehreren der vorangehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass der Halterungs-
5 Materialabschnitt (16) eine der Mutter (2) oder dem Funktionsteil (3) zugewandte Oberfläche aufweist, die unmittelbar in eine Konusfläche des Flach- teil-Verbindungsabschnittes (5) übergeht.
- 10 5. Kabelschuh nach einem oder mehreren der vorangehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass der Halterungs- Materialabschnitt (16) rotationssymmetrisch ausgebildet ist.
- 15 6. Kabelschuh nach einem oder mehreren der vorangehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass die Konusfläche des Konusabschnitts rotationssymmetrisch ausgebildet ist.
- 20 7. Kabelschuh nach einem oder mehreren der vorangehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass jedenfalls eine der Konusflächen des Konusabschnitts in einem spitzen Winkel zu einer Horizontalen (H) bzw. einer Vertikalen (V) verläuft.
- 25 8. Kabelschuh nach einem oder mehreren der vorangehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass der Hinterschnitt (9) außerhalb eines Gewindes (7) der Mutter (2) oder des Funktionsteils (3) ausgebildet ist.
- 30 9. Kabelschuh nach einem oder mehreren der vorangehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass die Innenfläche des den Hinterschnitt (9) bildenden Abschnitts im Fall der Mutter (2) zylindrisch ausgebildet ist.

10. Kabelschuh nach einem oder mehreren der vorangehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass die Zylinderfläche (10) der Innenfläche des den Hinterschnitt (9) bildenden Abschnitts in den Gewindeggrund der Mutter (2) übergeht.

5

11. Kabelschuh nach einem oder mehreren der vorangehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass sowohl die obere wie auch die untere Begrenzungsfläche (12, 11) des Hinterschnitts (9) sich im Verpresszustand in seitlicher Projektion in Überdeckung zu dem Flachteil-
10 Verbindungsabschnitt (5) befindet.

10

12. Kabelschuh nach einem oder mehreren der vorangehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass die untere Begrenzungsfläche (11) des Hinterschnitts (9) sich in vertikaler Projektion über
15 mehr als die Hälfte der zugeordneten Stufenfläche erstreckt.

15

13. Kabelschuh nach einem oder mehreren der vorangehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass die obere Begrenzungsfläche (12) des Hinterschnitts (9) Teil einer Stufenfläche (17) ist.

20

14. Kabelschuh nach einem oder mehreren der vorangehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass die Bohrung (6) mit einer vor der Verpressung gegebenen Bohrungsstufe (25) ausgebildet ist.

25

15. Kabelschuh nach einem oder mehreren der vorangehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass die Bohrungsstufe (25) im unteren, dem Funktionsteil abgewandten Bereich der Bohrung (6) ausgebildet ist.

30

16. Kabelschuh nach einem oder mehreren der vorangehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass die Bohrungsstufe (25)

zum Bohrungsinnen hin vorspringt.

17. Kabelschuh nach einem oder mehreren der vorangehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass ein Radialmaß (r) der Bohrungsstufe (25) der radialen Tiefe (T) des Hinterschnitts (9) entspricht.
5
18. Kabelschuh nach einem oder mehreren der vorangehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass die Bohrungsstufe (25) tiefenmäßig außerhalb des unteren Bereichs der Mutter im Verpresszustand
10 ausgebildet ist.
19. Verfahren zur Ausbildung einer unverlierbaren, aber eine Axial- und gegebenenfalls eine Drehbewegung ermöglichen Verbindung eines Kabelschuhs (1) mit einem Funktionsteil (3) wie einer Mutter (2), wobei der Kabelschuh (1) einen Aufnahme-Rohrabschnitt (4) für das Kabel (19) und einen Flachteil-Verbindungsabschnitt (5) aufweist und das Funktionsteil (3) in den unverformten Flachteil-Verbindungsabschnitt (5) unter Eindringen in oder Durchsetzen einer darin ausgebildeten Bohrung (6) eingepresst wird, dadurch gekennzeichnet, dass im Zuge der Einpressung in dem
15 Flachteil-Verbindungsabschnitt (5) eine rotationssymmetrisch umlaufende, stufenartige Fläche (17, 18) ausgebildet wird, wobei jedenfalls eine der Stufenflächen als Konusfläche in einem spitzen Winkel zu einer Horizontalen (H) oder einer Vertikalen (V) verlaufend ausgeformt wird.
20
20. Mutter, vorzugsweise zur Pressverbindung mit einem Flachteil-Verbindungsabschnitt eines Kabelschuhs, wobei die Mutter einseitig, bezogen auf ihre Ein- oder Ausschraubrichtung, einen radial öffnenden, in Axialrichtung der Mutter gegebenen Hinterschnitt mit einer oberen und unteren Begrenzungsfläche aufweist, dadurch gekennzeichnet, dass der Hinterschnitt rotationssymmetrisch ausgebildet ist und die obere Begrenzungsfläche Teil einer an der Mutter ausgebildeten rotationssymmetrischen Stufen-
30

fläche ist.

21. Mutter nach Anspruch 15, dadurch gekennzeichnet, dass der Hinterschnitt nicht in seitlicher Überdeckung zu einem Gewinde der Mutter ist.

5

22. Mutter nach einem oder mehreren der Ansprüche 15, 16 oder insbesondere danach, dadurch gekennzeichnet, dass die Mutter oberseitig eine gegenüber einer in Axialrichtung der Mutter projizierten Gesamtfläche kleinere Pressfläche aufweist.

10

23. Mutter nach einem oder mehreren der Ansprüche 15 bis 17 oder insbesondere danach, dadurch gekennzeichnet, dass die Pressfläche ebenflächig ist.

15

24. Mutter nach einem oder mehreren der Ansprüche 15 bis 18 oder insbesondere danach, dadurch gekennzeichnet, dass eine Stufenkante der Stufenflächen in einem Abstand, der einem Radialmaß des Hinterschnitts entspricht, radial außerhalb des Hinterschnitts liegt.

20

25. Mutter nach einem oder mehreren der Ansprüche 15 bis 19 oder insbesondere danach, dadurch gekennzeichnet, dass die Mutter oberseitig, teilweise überfasst von der Pressfläche, einen Kunststoffeinsatz aufweist.

25

26. Mutter nach einem oder mehreren der Ansprüche 15 bis 19 oder insbesondere danach, dadurch gekennzeichnet, dass die Horizontalfläche (14) eine kreisförmige Außenkontur aufweist.

30

27. Mutter nach einem oder mehreren der Ansprüche 15 bis 19 oder insbesondere danach, dadurch gekennzeichnet, dass die Horizontalfläche (14) in ihrem radial äußeren Bereich Teil eines gegenüber dem Kopf des Funktions- teils radial abgesetzten Druckflansches (26) ist.

28. Mutter nach einem oder mehreren der Ansprüche 15 bis 19 oder insbesondere danach, dadurch gekennzeichnet, dass der Hinterschnitt (9) innerhalb einer vertikalen Projektion des Kopfes, gegebenenfalls reduziert um den Flansch (26), liegt.

1/11

Fig. 1***Fig. 2***

2/11

Fig. 2a***Fig. 3***

3/11

Fig. 4***Fig. 5***

4/11

Fig. 6***Fig. 6a***

5/11

6/11

Fig. 8***Fig. 9***

7/11

Fig. 10***Fig. 11***

8/11

Fig·11a***Fig·12***

9 / 11

Fig: 13***Fig: 14***

10/11

Fig. 15***Fig. 16***

11/11

Fig. 17***Fig. 18***

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2005/055176

A. CLASSIFICATION OF SUBJECT MATTER
H01R4/30 H01R11/26

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
H01R F16B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EP0-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DE 94 12 215 U1 (LAMSON + SESSIONS GMBH) 22 September 1994 (1994-09-22) cited in the application figure 1 -----	1, 3
X	FR 2 758 661 A (PRONER COMATEL) 24 July 1998 (1998-07-24)	19, 20
A	abstract; figures 2, 4 -----	1, 2
A	US 5 256 019 A (PHILLIPS, II ET AL) 26 October 1993 (1993-10-26) cited in the application abstract; figure 4 -----	1, 2, 19, 20

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the international search

26 January 2006

Date of mailing of the international search report

06/02/2006

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Corrales, D

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2005/055176

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
DE 9412215	U1 22-09-1994	CA 2154909 A1 EP 0694988 A2	29-01-1996 31-01-1996
FR 2758661	A 24-07-1998	NONE	
US 5256019	A 26-10-1993	NONE	

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP2005/055176

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
H01R4/30 H01R11/26

Nach der Internationalen Patentklassifikation (IPC) oder nach der nationalen Klassifikation und der IPC

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
H01R F16B

Recherchierte, aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	DE 94 12 215 U1 (LAMSON + SESSIONS GMBH) 22. September 1994 (1994-09-22) in der Anmeldung erwähnt Abbildung 1 -----	1, 3
X	FR 2 758 661 A (PRONER COMATEL) 24. Juli 1998 (1998-07-24)	19, 20
A	Zusammenfassung; Abbildungen 2, 4 -----	1, 2
A	US 5 256 019 A (PHILLIPS, II ET AL) 26. Oktober 1993 (1993-10-26) in der Anmeldung erwähnt Zusammenfassung; Abbildung 4 -----	1, 2, 19, 20

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :

A Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

E älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldeatum veröffentlicht worden ist

L Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

O Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

P Veröffentlichung, die vor dem internationalen Anmeldeatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

T Spätere Veröffentlichung, die nach dem internationalen Anmeldeatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

X Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden

Y Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

& Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

26. Januar 2006

06/02/2006

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Corrales, D

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP2005/055176

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
DE 9412215	U1	22-09-1994	CA EP	2154909 A1 0694988 A2		29-01-1996 31-01-1996
FR 2758661	A	24-07-1998		KEINE		
US 5256019	A	26-10-1993		KEINE		