Test Your Understanding: sets

show that the proposed identity is false is to find _____.

Test yourself by filling in the blanks. 1. The notation $x \in A$ is read ____. 2. The notation $A \subseteq B$ is read ____ and means that ____. 3. A set A equals a set B if, and only if, A and B have _____. 4. An element x is in $A \cup B$ if, and only if, _____. 5. An element x is in $A \cap B$ if, and only if, ____. 6. An element x is in A - B if, and only if, _____. An element x is in A^c if, and only if, _____. 8. The empty set is a set with _____. The power set of a set A is _____. Sets A and B are disjoint if, and only if, _____. 11. A collection of nonempty sets A_1, A_2, \ldots, A_n is a partition of a set A if, and only if, _____. 12. Given sets A and B, the Cartesian product of A and B, $A \times B$, is _____. 13. Given sets A_1, A_2, \ldots, A_n , the Cartesian product $A_1 \times A_2 \times \cdots \times A_n$ is _____. 14. To use an element argument for proving that a set X is a subset of a set Y, you suppose that ____ and show that ____. 15. To use the basic method for proving that two sets X and Y are equal, you prove that _____ and that $_{--}$. 16. To prove a proposed set identity involving set variables A, B, and C, you suppose that _____ and show that ____. 17. If \emptyset is a set with no elements and A is any set, the relation of \emptyset and A is that _____. 18. To use the element method for proving that a set X equals the empty set, you prove that X has ____. To do this, you suppose that ____ and you show that this supposition leads to To show that a set X is not a subset of a set Y, _____. 20. Given a proposed set identity involving set variables A, B, and C, the most common way to

Answers

- 1. x is an element of the set A
- 2. the set A is a subset of the set B; for all x, if $x \in A$ then $x \in B$ (in other words, every element of A is also an element of B)
- exactly the same elements
- 4. x is in A or x is in B
- 5. x is in A and x is in B
- 6. x is in A and x is not in B
- 7. x is not in A
- 8. no elements
- the set of all subsets of A
- 10. $A \cap B = \emptyset$ (in other words, A and B have no elements in common)
- 11. $A = A_1 \cup A_2 \cup \cdots \cup A_n$ and $A_i \cap A_j = \emptyset$ for all $i, j = 1, 2, \ldots, n$ (in other words, A is the union of all the sets A_1, A_2, \ldots, A_n and no two of these sets have any elements in common)
- 12. the set of all ordered pairs (a, b), where a is in A and b is in B
- 13. the set of all ordered *n*-tuples (a_1, a_2, \ldots, a_n) , where a_i is in A_i for all $i = 1, 2, \ldots, n$
- 14. x is any [particular but arbitrarily chosen] element of X x is an element of Y
- 15. $X \subseteq Y$; $Y \subseteq X$
- 16. A, B, and C are any [particular but arbitrarily chosen] sets; the left-hand and right-hand sides of the equation are equal for those sets
- 17. $\emptyset \subseteq A$
- 18. no elements; there is at least one element in X; a contradiction
- 19. show that there is an element of X that is not an element of Y
- 20. concrete sets A, B, and C for which the left-hand and right-hand sides of the equation are not equal