Expérimentation de la classe inversée pour l'enseignement de la programmation Python à l'université

Pierre Poulain

pierre.poulain@u-paris.fr @pierrepo

1^{er} novembre 2020

Une classe inversée (sans vidéo) pour apprendre à programmer (*presque* sans ordinateur)

Bonjour!

Maître de conférences à l'Université de Paris

Chercheur en bioinformatique

Au menu

Pourquoi?

Comment?

Et alors?

Et après?

Organisation du cours

Cours « Programmation Python 1 »

29 étudiants de master 1 (bio- & chimie-informatique) débutants en programmation

Septembre à décembre 2019 (avant Covid-19) :

- 7 séances de cours magistraux (CM) de 2 h
- 8 séances de travaux pratiques (TP) de 2 h, en salle machine

Accompagnement

Antoinette Bouziane

Marine Lanteri

Service d'Accompagnement aux Pédagogies Innovantes et à l'Enseignement Numérique de Sorbonne Paris Cité (SAPIENS) https://sapiens-uspc.com/

Pourquoi?

Point de départ

+10 ans d'enseignement en Python

Formation à la pédagogie (SAPIENS)

Envie de recentrer les sessions de cours magistraux sur les étudiants.

Diaporama → *live coding* → inversion

Difficultés de cet enseignement

- « Programmation Python » =
 - 1. Concepts universels de programmation (variable, boucle, test...)
 - 2. Le langage « Python »
 - 3. Manipulation d'un ordinateur (computer literacy)

Matériel de cours

Classe inversée de type I

l'enseignant fournit le support de cours (vidéo, poly...)

Matériel de cours mature

https://python.sdv.univ-paris-diderot.fr/disponible sous licence CC BY-SA

Comment?

Activités en amont

Lecture des chapitres de cours (poly + en ligne).

Rédaction d'une « fiche mémo » = un résumé par chapitre (A4, recto, manuscrit) à déposer sur la plateforme en ligne (Moodle) de l'Université.

Activités en cours magistraux

Principe général :
développer des compétences
en programmation Python
mais sans ordinateur

Fiches mémo (2)

Comparaison et correction par les pairs des fiches mémo (10')

- Erreurs
- Oublis
- Exemples

Fiches mémo (3)

Quiz en ligne (WooClap)

Question ouverte

1

Listez les méthodes disponibles pour les chaînes de caractères. Sans point ni parenthèse.

Quiz en ligne (WooClap)

QCM

Script à trous : principe

Mise en situation:

- Programme (script) fonctionnel
- Écrit par le prof
- Avec des trous

Les étudiants remplissent les trous :

- Compréhension et adaptation au contexte
- Pas de page blanche

Script à trous : exemple

La spirale : programmez-la !

```
\theta: 0 \rightarrow 4\pi par pas de 0.1 r: 0.5 \rightarrow ... par pas de 0.1
```

Utilisez le module math, ainsi que les fonctions math.cos() et math.sin() et la constante math.pi.

Enregistrez les coordonnées cartésiennes dans le fichiers spirale.dat en respectant le format suivant :

- un couple de coordonnées (x_{A}, y_{A}) par ligne ;
- un espace entre les deux coordonnées x_{A} et y_{A} ;
- les coordonnées affichées sur 10 caractères avec 5 chiffres après la virgule.

Affichez ensuite la spirale obtenue avec le module matplotlib.

Script à trous : exemple

	La phataconique a mangé, containe acusa du soriet Escavos de las complétes
١.	La photocopieuse a « mangé » certaines zones du script. Essayez de les compléter.
1	import
2	with open(,) as:
3	theta =
4	rayon =
5	= 0.1
6	while theta < :
7	x = (theta) *
8	y = (theta) *
9	.write("{ } { } \n".format(,))
-	
10	theta +=
11	rayon +=
12	
13	import matplotlib.pyplot as plt
14 15	<pre># Pour afficher la spirale, il faut une liste qui contient # les coordonnées x et une autre les coordonnées y</pre>
16	= []
17	= []
18	with open(,) as f in:
19	for line in f_in:
20	coords = line.split()
21	.append((coords[0]))
22	.append((coords[1]))
23	plt.figure(figsize=(8,8))
24	mini = min(x+y) * 1.2
25	maxi = max(x+y) * 1.2
26	<pre>plt.xlim(mini, maxi)</pre>
27	<pre>plt.ylim(mini, maxi)</pre>
28	plt.plot(x, y)
29	<pre>plt.savefig("spirale.png")</pre>
	© Derre Poulain
	Document sous licence Creative Commons Attribution 4.0 International (CC BY 4.0)

```
La photocopieuse a « mangé » certaines zones du script. Essayez de les compléter.
   import
   with open(
                                              as
         theta =
 3
 4
         rayon =
                   = 0.1
 5
        while theta <
6
                                  (theta) *
 7
              x =
                                  (theta) *
8
              y =
                                                    }\n".format(
                          .write("{
9
10
              theta +=
11
              rayon +=
12
```

Script tournant : principe

Inspiré des « tableaux tournants » de JC Cailliez

(mais linéaire et individuel)

- 1. Mise en situation.
- 2. Un étudiant débute la rédaction du programme.
- 3. Un second poursuit.

Innovez dans votre classe... faites tourner les tableaux ! JC Cailliez, 09/02/2020

http://blog.educpros.fr/jean-charles-cailliez/2020/02/09/innovez-dans-votre-classe-faites-tourner-les-tableaux/

Question suivante: principe

Préparation à un examen de QCM.

- 1. Une fiche : recto (question) / version (réponse).
- 2. Tri / affinage intra-groupe.
- 3. Évaluation inter-groupe.

Question suivante: illustration

Pierre Poulain CC BY

23

Question suivante

Activités en travaux pratiques

Utilisation d'ordinateurs (enfin).

Mise en application des notions découvertes à la maison et développées en cours.

Travail en binôme « *pair programming* » : la programmation comme activité sociale.

Évaluation sommative

QCM

Production de programmes pour répondre à des mises en situation authentiques :

- Projet fil rouge : Rosalind (http://rosalind.info/)
- Examen final

Et alors?

Évaluation de l'enseignement (EEE)

Comment avez-vous apprécié les activités suivantes ?			
1 : pas du tout, 5 : beaucoup			
Les fiches mémo.	1	3.8	
Les associations d'idée ou de concept.	1	3.6	
Le script tournant (vous commencez à écrire un script puis vous l'échangez avec votre voisin).		4.3	
Le script à trous (l'imprimante a "mangé" certaines parties du script).	•	4.4	
La question suivante (vous concevez des questions de QCM que vous posez ensuite aux autres).	•	4.2	
Les quiz et nuages de mots sur WooClap.		4.4	

Évaluation de l'enseignement (EEE)

Je pense qu'il faudrait donner une "fiche squelette" pour faire les fiches mémos. Il est assez difficile de faire ces fiches lorsque le chapitre devient plus grand ou plus dense en information. Rosalind est vraiment une bonne idée de mini projet pour débuter sur python.

J'ai trouvé l'échange de fiches à chaque CM, ennuyant à la fin. Le cours est bien structuré et comprehensible, j'ai trouvé du plaisir à le lire. Je retiens du positif dans ce cours, il m'a fait découvrir et aimer la programmation.

Évaluation de l'enseignement (EEE)

Sans les fiches memo à faire je n'aurai jamais lu le poly correctement. Faire plus de script a trous ca nous force a réfléchir sur les variables à manipuler

présentiel. Selon moi le gros point fort est l'interactivité des cours, possible grâce à la pédagogie inversée, il faut absolument garder cette interactivité car c'est ce qui rend ce cours passionnant. Les activités en groupe de 2/3/4 sont aussi à garde car c'est une façon de nous faire travailler de manière ludique sans qu'on ai l'impression de travailler, et surtout cela donne l'envie d'aller plus loin dans la programmation. Pour ma part la

Et alors?

Cette année

« Programmation Python 1 »

« Programmation Python 2 »

+ distanciel...

Des nouveautés, distanciel-proof

Construction et évaluation de QCM par les étudiants

Moodle : StudentQuiz

Projet « tuto »:

- Tutoriel vidéo sur une fonctionnalité non abordée en cours
- Travail en équipe
- Évaluation par les pairs

Merci!

Me contacter:

Mail : pierre.poulain@u-paris.fr

• Twitter : @pierrepo

Ce diaporama et plus encore : https://cupnet.net/python-ci-2019