Page 2 of 12

Appl. No. 10/048,040 Amendment and/or Response Reply to Office Action of May 16, 2005

Amendments to the Claims:

A listing of the entire set of pending claims (including amendments to the claims, if any) is submitted herewith per 37 CFR 1.121. This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims

(Previously Presented) A method of preparing a polymer which comprises structural units of formula I,

$$\frac{1}{1} Ar + \frac{1}{7}$$

$$S(0) + R_1$$
(1)

in which formula:

is an aromatic cyclic system with 4 to 20 carbon atoms, which may be substituted with a substituent chosen from the group consisting of a non-branched C₁-C₂₀-alkyl, a C₃-C₂₀-alkoxy, a C₁-C₂₀-alkylsulfate, a branched C₃-C₂₀-alkyl, a phenyl group and a benzyl group and which may comprise up to 4 heteroatoms chosen from the group consisting of oxygen, sulfur and nitrogen in the aromatic cyclic system,

t is equal to 0, 1 or 2,

R₁ is chosen from the group consisting of a non-branched C₁-C₂₀-alkyl group, a branched C₃-C₂₀ alkyl group, a cyclic C₄-C₂₀-alkyl group, a C₁-C₄-alkyl-substituted cyclic C₄-C₂₀-alkyl group, a phenyl group and a benzyl group, which groups may comprise heteroatoms,

 R_2 and R^n_2 are each chosen for the group consisting of a hydrogen atom, a C_1 - C_{20} -alkyl group, and a C_4 - C_{20} -aryl group, which groups may comprise substituents, characterized in that the method starts with a compound having the formula II

Page 3 of 12

$$R_1$$
'S $Ar \longrightarrow SR_1$
 R_2
 R_3
(III)

in which formula

R'₁ is chosen from the group consisting of a non-branched C₁-C₂₀-alkyl group, a branched C₃-C₂₀-alkyl group, a cyclic alkyl group, a C₁-C₄-alkyl-substituted cyclic alkyl group, a phenyl group, and a benzyl group, which groups may comprise heteroatoms,

 R_1 , R_2 and Ar are equal to R_1 , R_2 and Ar in formula I, and

R'₂ is chosen from the group consisting of a hydrogen atom, a C₁-C₂₀-alkyl group, an a C₄-C₂₀-aryl group, which groups may comprise substituents.

and that the polymer with structural units of the formula I is prepared through polymerization with the aid of a base into a polymer which comprises units having the formula III

$$\frac{1}{1} = \frac{R_2 R_2''}{SR_1}$$
(III)

in which formula

 R_1 , R_2 and R_1 are equal to R_1 , R_2 and R_2 and R_3 and R_4 and R_4 and R_5 and R_6 and R_7 and for the preparation of the polymer with units having the formula I, in which formula t is equal to 1 or 2, through oxidation of at least a number of the units of the polymer having the formula III.

2. (Previously Presented) A method as claimed in claim 1, characterized in that the method starts with a compound having the formula II in which —Ar- is the unit having the formula IV

Page 4 of 12

$$R_3$$
 R_3
 R_3
 R_3
 R_3

in which formula

X is chosen from the group consisting of O, S, NR₆,

R₂ and R'₃ are chosen from the group consisting of a hydrogen atom, a chlorine atom, a bromine atom, a fluorine atom, and an iodine atom, a C₁-C₄-alkyl group, a carbonitryl group, a trihalomethyl group, a hydroxy group, a nitro group, an amino group, a carboxyl group, a sulfoxyl group, a sulfonate group, a carbonate group, a substituted and non-substituted phenyl group, an alkylaryl group, an alkalkyl group, an alkoxy group, and a thioalkoxy group, and is chosen from the group consisting of a hydrogen atom, a C₁-C₂₀-alkyl group, an aryl group, a C₁-C₂₀-alkylaryl group and an arylalkyl group.

3. (Previously Presented) A method as claimed in claim 1, characterized in that the method starts with a compound having the formula II in which –Ar- is the unit having

the formula V

$$\begin{array}{c|c}
Rs & Rs' \\
\hline
Rs'' & Rs'' \\
Rs'' & Rs'' \\
\end{array}$$
(V)

in which formula

 R_5 , R'_5 , R''_5 and R'''_5 are chosen from the group consisting of a hydrogen atom, a chlorine atom, a bromine atom, a fluorine atom, an iodine atom, a C_1 - C_{22} -alkyl group, a carbonitryl group, a trihalomethyl group, a hydroxy group, a nitro group, an amino group, a carboxyl group, a sulfoxyl group, a sulfoxyl group, a carbonitrate group, an optionally substituted phenyl group, a C_1 - C_{22} -alkylaryl group, a C_1 - C_{22} -alkoxy group, and a C_1 - C_{22} -thioalkoxy group.

Page 5 of 12

4. (Withdrawn) A method of preparing compounds having the formula II in which formula

$$R_1$$
'S $Ar \rightarrow SR_1$ (11)

is an aromatic cyclic system with 4 to 20 carbon atoms, which may be substituted with a substituent chosen from the group comprising a non-branched C₁-C₂₀-alkyl, C₃-C₂₀-alkoxy, C₁-C₂₀-alkylsulfate, a branched C₃-C₂₀-alkyl, phenyl or benzyl group and which may comprise up to 4 heteroatoms chosen from the group comprising oxygen, sulfur, and nitrogen in the aromatic cyclic system,

R₁ and R'₁ are chosen from the group comprising a non-branched C₁-C₂₀-alkyl group, a branched C₃-C₂₀ alkyl group, a cyclic alkyl group, a C₁-C₄-alkyl-substituted cyclic alkyl group, a C₄-C₁₄-aryl group, and a benzyl group, which groups may comprise heteroatoms,

R₂ and R₂' are chosen from the group comprising a hydrogen atom and C₁-C₂₀-alkyl and a C₄-C₂₀-aryl group, which groups may comprise substituents, characterized in the H-Ar-H reacts with R₁SH and R₂(C=O)-H and with R'₁SH and R'₂-(C=O)-H so as to form the compound having the formula II.

5 (Withdrawn) Compounds having the formula II

$$\ell_1$$
'S Ar $S\ell_1$ (II)

in which formula:

Page 6 of 12

A٢

is an aromatic cyclic system with 4 to 20 carbon atoms, which may be substituted with a substituent chosen from the group comprising a nonbranched C₁-C₂₀-alkyl, C₃-C₂₀-alkoxy, C₁-C₂₀-alkylsulfate, a branched C₃-C₂₀-alkyl, phenyl or benzyl group and which may comprise up to 4 heteroatoms chosen from the group comprising oxygen, sulfur, and nitrogen in the aromatic cyclic system,

R₁ and R'₁

are chosen from the group comprising a non-branched C₁-C₂₀-alkyl group, a branched C₃-C₂₀ alkyl group, a cyclic alkyl group, a C₁-C₄alkyl-substituted cyclic alkyl group, a C₄-C₁₄-aryl group, and a benzyl group, which groups may comprise heteroatoms,

 R_2

is chosen from the group comprising a C₁-C₂₀-alkyl and C₄-C₂₀-aryl group, which groups may comprise substituents, and

R'2

is chosen from the group comprising a hydrogen atom, a C₁-C₂₀-alkyl and a C₄-C₂₀-aryl group, which groups may contain substituents.

- 6. (Cancelled)
- 7. (Cancelled)
- 8. (Currently Amended) A composition of polymers with structural units having the formula IX:

$$\frac{R_2 R_2^{"}}{2}$$
(IX)

Αг

is an aromatic cyclic system with 4 to 20 carbon atoms, which may be substituted with a substituent chosen from the group consisting of a non-branched C₁-C₂₀-alkyl, group, a C₃-C₂₀-alkoxy group, a C₁-C₂₀alkylsulfate group, a branched C₃-C₂₀-alkyl group, a phenyl group and a benzyl group and which may comprise up to 4 heteroatoms chosen

Page 7 of 12

from the group consisting of oxygen, sulfur and nitrogen in the aromatic cyclic system,

 R_2 and R_2 ' are chosen from the group comprising consisting of a hydrogen atom and C_1 - C_{20} -alkyl and a C_4 - C_{20} -aryl group, which groups may comprise substituents, and

Is chosen from a group consisting of S(O)pR₁, OR₂, in which p is equal to 0, 1 or 2, and R₁ and R₂ are chosen from the group comprising a non-branched C₁-C₂₀-alkyl group, a branched C₃-C₂₀ alkyl group, a cyclic C₄-C₂₀-alkyl group, a C₁-C₄-alkyl-substituted cyclic C₄-C₂₀-alkyl group, a phenyl group, and a benzyl group, which groups may contain heteroatoms,

wherein a first fraction of the composition comprises polymers with structural units having the formula IX with Z equal to S(O)pR₁ and a chain length of 50 to 1000 units, and a second fraction of the composition comprises polymers with a chain length of more than 1000 units.

9. (Withdrawn) A method of preparing a polymer with structural units having the formula VI,

In which formula:

Ar is an aromatic cyclic system with 4 to 20 carbon atoms, which may be substituted with a substituent chosen from the group consisting of a non-branched C₁-C₂₀-alkyl, group, a C₃-C₂₀-alkoxy group, a C₁-C₂₀-alkylsulfate group, a branched C₃-C₂₀-alkyl group, a phenyl group and a benzyl group and which may comprise up to 4 heteroatoms chosen

Page 8 of 12

from the group consisting of oxygen, sulfur and nitrogen in the aromatic cyclic system,

R₂ and R*₂ are chosen from the group comprising a hydrogen atom and C₁-C₂₀-alkyl and C₄-C₂₀-aryl group, which group may comprise substituents, wherein a polymer comprising structural units having the formula III is directly converted into the polymer comprising structural units of the formula IV by heating under catalysis of acid,

$$\frac{R_{2}R_{2}^{R_{2}}}{SR_{1}}$$
(III)

in which formula III

R₁ is chosen form the group comprising a non-branched C₁-C₂₀-alkyl group, a branched C₃-C₂₀ alkyl group, a cyclic C₄-C₂₀-alkyl group, a C₁-C₄-alkyl-substituted cyclic C₄-C₂₀-alkyl group, a phenyl group and a benzyl group, which groups may comprise heteroatoms, and Ar, R₂ and Rⁿ₂ are equal to Ar, R₂ and Rⁿ₂ in formula IV.

10. (Withdrawn) A method of manufacturing a layer of a polymer with structural units having the formula VI,

$$\frac{1}{1} + \frac{1}{1}$$

$$\frac{1}{1} + \frac{1}{1}$$

$$\frac{1}{1} + \frac{1}{1}$$

$$\frac{1}{1} + \frac{1}{1} + \frac$$

in which formula:

Ar is an aromatic cyclic system with 4 to 20 carbon atoms, which may be substituted with a substituent chosen from the group consisting of a non-branched C₁-C₂₀-alkyl, group, a C₃-C₂₀-alkoxy group, a C₁-C₂₀-

Page 9 of 12

Appl. No. 10/048,040 Amendment and/or Response Reply to Office Action of May 16, 2005

alkylsulfate group, a branched C_3 - C_{20} -alkyl group, a phenyl group and a benzyl group and which may comprise up to 4 heteroatoms chosen from the group consisting of oxygen, sulfur and nitrogen in the aromatic cyclic system, and

R₂ and Rⁿ₂ are chosen from the group comprising a hydrogen atom and C₁-C₂₀-alkyl and C₄-C₂₀-aryl group, which group may comprise substituents, which method comprises the application of a solution of the polymer comprising structural units having the formula I as a layer on a substrate,

$$\frac{1}{1} = \frac{R_2}{1} \frac{R_2''}{1}$$

$$\frac{1}{1} = \frac{1}{1} \frac{1}{1}$$

in which formula 1:

t is equal to 0, 1 or 2,

R₁ is chosen from the group comprising a non-branched C₁-C₂₀-alkyl group, a branched C₃-C₂₀ alkyl group, a cyclic C₄-C₂₀-alkyl group, a C₁-C₄-alkyl-substituted cyclic C₄-C₂₀-alkyl group, a phenyl group, and a benzyl group, which groups may comprise heteroatoms, and

 R_2 , R_2 , and Ar are equal to R_2 , R_2 and Ar respectively, in formula IV, and the conversion through beating of the polymer comprising structural units of the formula VI into the polymer comprising structural units of the formula VI, characterized in that the solution to be provided as a layer comprises a polymer with structural units having the formula I, with a chain length of at least 50 and at most 1000 units.

11. (Withdrawn) A method as claimed in claim 10, characterized in that the solution to be provided as a layer also comprises a polymer with structural units having the formula I, with a chain length of at least 50 and at most 1000 units.

Page 10 of 12

Appl. No. 10/048,040 Amendment and/or Response Reply to Office Action of May 18, 2005

- 12. (Withdrawn) A method as claimed in claim 10, characterized in that the method starts with a solution of a polymer which structural units having the formula I, in which p is equal to 0, and the polymer with structural units having the formula I, in which p is equal to 0, is oxidized with a peroxide prior to the application of the solution as a layer, such that the polymer with structural units having the formula I is created in which p is equal to 1 in at least a proportion of the units.
- 13. (Withdrawn) A method as claimed in claim 10, characterized in that the solution applied as the layer on the substrate contains the polymer with structural units having the formula I, in which p is equal to 0, and the conversion through heating is catalyzed by acid.
- 14. (Withdrawn) An electronic device comprising a layer of a polymer with mainly the structural units having the formula VI:

$$\frac{1}{R_2} = \frac{R_1^{\prime\prime}}{R_2}$$
 (VI)

in which formula:

Ar

is an aromatic cyclic system with 4 to 20 carbon atoms, which may be substituted with a substituent chosen from the group consisting of a non-branched C₁-C₂₀-alkyl, group, a C₃-C₂₀-alkoxy group, a C₁-C₂₀-alkylsulfate group, a branched C₃-C₂₀-alkyl group, a phenyl group and a benzyl group and which may comprise up to 4 heteroatoms chosen from the group consisting of oxygen, sulfur and nitrogen in the aromatic cyclic system,

R₂ and R"₂

are chosen from the group comprising a hydrogen atom and C_1 - C_{20} -alkyl and C_4 - C_{20} -aryl group, which group may comprise substituents,

Page 11 of 12

Appl. No. 10/048,040 Amendment and/or Response Reply to Office Action of May 18, 2005

characterized in that the polymer is prepared from at least a polymer with structural units having the formula I, with a chain length of at least 50 and at most 1000 units,

$$\frac{R_2 R_2''}{(1)}$$

is equal to 0, 1 or 2

is chosen form the group comprising a non-branched C₁-C₂₀-alkyl group, a branched C₃-C₂₀-alkyl group, a cyclic C₄-C₂₀-alkyl group, a C₁-C₄-alkyl-substituted cyclic C₄-C₂₀-alkyl group, a phenyl group and a benzyl group, which groups may comprise heteroatoms, and

 R_2 , R_2 and A_1 are identical to R_2 , R_2 and A_1 respectively, in formula VI.