Ex4.9 Suitable Stereographic Projection Gives Birational Map.

X:: projective variety in \mathbb{P}^n_k とし, $r=\dim X\leq n-2$ とする.また H:: hyperplane in \mathbb{P}^n とし,適宜 \mathbb{P}^{n-1} と同一視する.適切に点 $P\not\in X$ をとれば,P から H への stereographic projection :: $\pi:X\to\mathbb{P}^{n-1}$ が X と $\pi(X)$ の間の birational map になることを示す.

 $I=\mathcal{I}_p(X)$ とする。 $\bar{x}_i=x_i \mod I, \bar{y}_i=\frac{\bar{x}_i}{\bar{x}_0}$ とすると, $K:=K(X)=k(\bar{y}_0,\ldots,\bar{y}_n)$. Thm4.8 より拡大 K/k は finitely and separably generated. Thm4.7 より, $\{\bar{y}_i\}_{i=1}^n$ は separating transcendence base を部分集合として含む.そこで番号を付け替えて, $\{\bar{y}_i\}_{i=1}^n$ に含まれる separating transcendence base を $\{\bar{y}_i\}_{i=1}^r$ としよう. base の濃度が $r(=\dim X)$ であることは Thm3.2 による.そして以下の拡大は finite generated extension である.

$$k(\{\bar{y}_i\}_{i=1}^n)/k(\{\bar{y}_i\}_{i=1}^r)$$

Thm4.6 から、この拡大は以下のような元 $\bar{\eta}$ で生成することが出来る.

$$\bar{\eta} = \eta \mod I$$
 where $d \ge 0$, $\eta_{r+1}, \dots, \eta_n \in k[\{x_i\}_{i=1}^r]^d$, $\eta = \frac{1}{x_0^d} \sum_{i=r+1}^n \eta_i x_i$.

 $\pi(X)\subseteq H$ の function field を L とする. π から誘導される準同型 $(\mathrm{TODO})\pi^*$ を次で定める.

$$\begin{array}{cccc} \pi^*: & L & \to & K \\ & f & \mapsto & f \circ \pi \end{array}$$

 π は $Q \in X$ を直線 :: tP+Q と H の交点へ写す写像であった。 $(P \not\in H$ なので $P=1 \cdot P+0 \cdot Q$ は予め除いている。) したがって $R \in \pi(X)$ をとると $(\pi^*f)(tP+R)$ は $t \in k$ について定数. この値は f(R) であるから π^* は単射である. 逆に $g \in K$ から得られる関数 g(tP+Q) が t について定数ならば, f(R) $(R \in \pi(X))$ を $g(\pi^{-1}(R))$ \dagger^1 と置くことで $g=\pi^*f$ となる $f \in L$ が取れる. 以上から, K の任意 の元 g について次の条件 C(g) が成立すれば π^* は同型写像と成る:任意の $Q \in X$ に対し g(tP+Q) は $t \in k$ について定数である.

さて、既に分かっている通り $K=k(\bar{y}_1,\ldots,\bar{y}_r,\bar{\eta})$ であった。なので $\mathcal{C}(\bar{y}_1),\ldots,\mathcal{C}(\bar{y}_r),\mathcal{C}(\bar{\eta})$ の全てが成立すれば良い。

引き続き $Q \in X$ とする. $P = (p_0 : \cdots : p_n), Q = (q_0 : \cdots : q_n)$ とすると

$$tP + Q = (tp_0 + q_0, \dots, tp_n + q_n).$$

なので $p_0=\cdots=p_r=0$ すなわち $P\in\mathcal{Z}_p(x_0,\ldots,x_r)$ であれば $\mathcal{C}(\bar{y}_1),\ldots,\mathcal{C}(\bar{y}_r)$ は成立する. 以下, P はこのようにとる.

 $tP+Q\in X$ であるような t について $\bar{\eta}(tP+Q)$ は次のように成る. (分母を払って考えれば $Q\in X\cap \mathcal{Z}_p(x_0)^c$ に限る必要はない.)

$$q_0^d \cdot \eta(tP + Q) = \sum_{i=r+1}^n \eta_i(q_0, \dots, q_r)(tp_i + q_i) = \left(\sum_{i=r+1}^n \eta_i(q_0, \dots, q_r)p_i\right)t + \left(\sum_{i=r+1}^n \eta_i(q_0, \dots, q_r)q_i\right)$$

この t の係数が任意の $Q \in X$ について 0 であるような P が目標の点である.

X から $\mathcal{Z}_p(x_{r+1},\ldots,x_n)$ へ射影した像を Z とする. また $B\subseteq \mathbb{A}^r\times \mathbb{A}^{n-r}$ を次のように置く.

$$B = \mathcal{Z}_a(\eta)^c \cap \operatorname{pr}_1^{-1}(Z).$$

 $^{^{\}dagger 1}$ これは $\{g(tP+R) \mid t \in k, tP+R \in X\}$ に等しい.単元集合なので関数 f を定めることが出来る.

これは次のようにも書ける.

$$B = \left\{ (Q, P) \in \mathbb{A}^r \times \mathbb{A}^{n-r} \middle| \sum_{i=r+1}^n \eta_i(q_1, \dots, q_r) p_i \neq 0 \right\}$$

したがって $\operatorname{pr}_2(B)$ に含まれない点が我々が求める点 P である.