# Politechnika Wrocławska

# Katedra Teorii Pola, Układów elektronicznych i Optoelektronicznych

# Zespół Układów Elektronicznych

| Data: 7.04.2015r               | Dzień: Wtorek        |       |
|--------------------------------|----------------------|-------|
| Grupa: VII                     | Godzina: 12:15-15:00 |       |
| Temat ćwiczenia:               |                      |       |
| Liniowe stabilizatory napięcia |                      |       |
| Dane projektowe:               |                      |       |
| $U_0 = 11.00 \text{ V}$        | $I_0 = 0.60$         |       |
| l.p                            | Nazwisko i imię      | Oceny |
| 1                              | Arkadiusz Ziółkowski |       |
| 2                              | Jakub Koban          |       |

#### 1 Zadanie projektowe

Zaprojektować zasilacz stabilizowany o zadanych parametrach:

- 1.  $U_0 = 11.00 \text{ V}$
- 2.  $I_0 = 0.60 \text{ A}$

### 2 Obliczenia projektowe

$$U_0 = (1 + \frac{R_5}{R_6})U_{REF} \rightarrow (1 + \frac{3k\Omega}{1k\Omega})2.75V = 11V$$
 (1)

$$R_5 + R_6 \leqslant \frac{U_0}{1mA} \rightarrow 4k\Omega \leqslant 11k\Omega$$
 (2)

$$I_0 = \frac{U_{sc}}{R_4} \rightarrow \frac{0.45V}{0.68\Omega} = 0.66A$$
 (3)

## 3 Schemat projektowy



Rysunek 1: Schemat projektowanego układu

## 4 Część laboratoryjna

## 4.1 Charakterystyki napięciowe

TUTAJ BRAKUJE 2 tabeli ale nie wiem czy mogę tak bezczelnie uwalić część danych :p »DO SKONSULTOWANIA«

| U1[V] | $U2\_1[V]$ |  |
|-------|------------|--|
| 0     | 0          |  |
| 2     | 0.2862     |  |
| 5     | 4.0874     |  |
| 5.5   | 4.561      |  |
| 8     | 6.988      |  |
| 8.5   | 7.457      |  |
| 9     | 7.874      |  |
| 10.1  | 8.916      |  |
| 10.5  | 9.32       |  |
| 11    | 9.87       |  |
| 11.5  | 10.35      |  |
| 12    | 10.784     |  |
| 12.5  | 10.992     |  |
| 13    | 10.994     |  |
| 13.5  | 10.994     |  |
| 14    | 10.995     |  |
| 14.5  | 10.995     |  |
| 15    | 10.995     |  |
| 17    | 10.999     |  |
| 19    | 11         |  |
| 20    | 11.002     |  |
| 25    | 11.007     |  |
| 30    | 11.014     |  |



Rysunek 2:  $U_{wy}{=}f(I_{wy})$ przu $I_{wy}{=}0A$ 



Rysunek 3: U\_wy=f(U\_we) przu  $I_{wy}{\neq}\;0A$ 

Analizując przedstawione charakterystyki możemy zauważyć,<br/>iż układ poprawnie stabilizuje napięcie od (odpowiednio) 12.5V i 13V aż<br/> do maksymalnego napięcia jakie udało nam się uzyskać z zasilacza czyli 30V.

#### 4.2 Charakterystyki zewnętrzne



Rysunek 4:  $U_{wy}=f(I_{wy})$  przu  $U_{we}=15V$ 



Rysunek 5:  $U_{wy}{=}f(I_{wy})$ przu $U_{we}{=}30V$ 

Analizując charakterystyki zewnętrzne stabilizatora zauważamy, że przy  $U_{\rm we}{=}15 V$  układ nie przepuszcza prądu powyżej zadanych 0.70A, natomiast przy  $U_{\rm we}{=}30 V$  obserwujemy tzw. foldback ('odwijanie' charakterystyki) co jest zabezpieczeniem układu w wypadku dalszego wzrostu napięcia wejściowego.

#### 5 Wnioski

- 1. Zgodnie z założeniami teoretycznymi układ utrzymuje na swoim wyjściu stałe napięcie równe 11V , w związku z niedokładnością użytych elementów maksymalny prąd wyjściowy różni się od założeń jednak nie jest to duża rozbieżność (około 0.70 A wobec założonych 0.60 A).
- 2. Minimalne napięcie dla jakiego układ pracuje poprawnie przy  $I_{wy}{=}0$  to 12.5V a dla  $I_{wy}{\neq}~0$  to 13V.
- 3. W stabilizatorze kompensacyjnym użyto tzw. foldback'u który jest bardzo dobrym zabezpieczeniem układu w wypadku podawania na wejście zbyt dużych wartości napięć.