Liang-Barsky Line-Clipping Sutherland-Hodgeman Polygon Clipping

Md. Biplob Hosen

Assistant Professor, IIT-JU.

Email: biplob.hosen@juniv.edu

• The following parametric equations represent a line from (x_1,y_1) to (x_2,y_2) along with its infinite extension:

$$x = x_1 + \Delta x.u$$
$$y = y_1 + \Delta y.u$$

Where,

$$\Delta x = x_2 - x_1$$
$$\Delta y = y_2 - y_1$$

- The line itself corresponds to 0<=u<=1.
- U increasing from ∞ to ∞ .
- First move from the outside to the inside of the clipping window's two boundary llines (bottom and left).

• Then move from the inside to the outside of the other two boundary lines(top and right).

3

- u₁=maximum(0,u₁,u_b) and u₂=minimum(1,u_t,u_r)
- u_I, u_b, u_t, u_r correspond to the intersection point of the extended line with the window's left, bottom, top, right boundary, respectively.

4

For point (x,y) inside the clipping window, we have:

$$x_{\min} \le x_1 + u\Delta x \le x_{\max}$$

 $y_{\min} \le y_1 + u\Delta y \le y_{\max}$

Rewrite the four inequalities as:

$$up_k \le q_k$$
, $k = 1, 2, 3, 4$

Where

$$p_1=-\Delta x,$$
 $q_1=x_1-x_{\min}$ Left $p_2=\Delta x,$ $q_2=x_{\max}-x_1$ Right $p_3=-\Delta y,$ $q_3=y_1-y_{\min}$ Buttom $p_4=\Delta y$ $q_4=y_{\max}-y_1$ Top

Observation

- If $p_k = 0$, the line is parallel to the corresponding boundary and
 - $q_k < 0$, the line is completely outside the boundary and can be eliminated; $q_k \ge 0$, the line is inside the boundary and needs further consideration;
- If $p_k < 0$, the extended line proceeds from the outside to the inside of the corresponding boundary line.
- If $p_k > 0$, the extended line proceeds from the inside to the outside of the corresponding boundary line.
- When $p_k \neq 0$, the value of u that corresponds to the intersection point is q_k / p_k

- If $p_k=0$ and $q_k<0$ for any k, eliminate the line and stop. Otherwise proceed to the next step.
- For all k such that $p_k < 0$, calculate $r_k = q_k/p_k$. Let u_1 be the maximum of the set containing 0 and the calculated r values.
- For all k such that $p_k>0$, calculate $r_k=q_k/p_k$. Let u_2 be the minimum of the set containing 1 and the calculated r values.
- If u₁, u₂ eliminate the line since it is completely outside the clipping window. Otherwise, use u₁ and u₂ to calculate the end points of the clipped line.

Line Clipping – Liang-Barsky

- If u1 > u2, the line lies completely outside of the clipping area.
- Otherwise the segment from u1 to u2 lies inside the clipping window.

Summary

Calculate:

-
$$p_1 = -\Delta X$$
 $q_1 = X_1 - X_{min}$
- $p_2 = \Delta X$ $q_2 = X_{max} - X_1$
- $p_3 = -\Delta Y$ $q_3 = Y_1 - Y_{min}$
- $p_4 = \Delta Y$ $q_4 = Y_{max} - Y_1$

- If $p_k = 0$: line is parallel to the window.
 - If $q_k < 0$, line is completely outside.
 - Otherwise, need clipping.
- If $p_k < 0$:

$$- u_1 = Max (0, q_k / p_k).$$

• If $p_k > 0$:

-
$$u_2 = Min (1, q_k/p_k).$$

- If $u_1 > u_2$: line is completely outside
- Otherwise: Clip accordingly-

$$-X = X_1 + u^* \Delta X$$

$$- Y = Y_1 + u^* \Delta Y$$

Example

- $\Delta X = 11 (-1) = 12$; $\Delta Y = 1 7 = -6$
 - $p_1 = -12$
- $q_1 = -2$
- $p_2 = 12$
- $q_2 = 10$
- $p_3 = 6 q_3 = 5$

- $p_4 = -6$
- $q_4 = 1$
- Here, none of $p_k = 0$: line is not parallel to the window.
- $p_k < 0$ for k = 1 & 4:
 - $u_1 = Max (0, q_k/p_k) = Max (0, (-2/-12), (1/-6)) = 1/6$
- $p_k > 0$ for k = 2 & 3:
 - $u_2 = Min (1, q_k/p_k) = Min (1, (10/12), (5/6)) = 5/6$
- Here, u₁ < u₂: need clipping.
 - $X = X_1 + u^* \Delta X$
 - $Y = Y_1 + u^*\Delta Y$

Continue...

•
$$A'(X, Y) = (1, 6)$$

$$- X = X_1 + u_1^* \Delta X$$

$$- Y = Y_1 + u_1^* \Delta Y$$

•
$$B'(X, Y) = (9, 2)$$

$$- X = X_1 + u_2 * \Delta X$$

$$- Y = Y_1 + u_2^* \Delta Y$$

 Find the Part of a Polygon Inside the Clip Window?

Before Clipping

 Find the Part of a Polygon Inside the Clip Window?

After Clipping

- Convex Polygonal Clipping Windows:
 - A polygonal is called convex if the line joining any two interior points of the polygon lies completely inside the polygon.
 - A non-convex polygon is said to be concave.

- A Polygon with vertices $P_1 ext{} P_N$ (and edges $P_i P_{i-1}$ and $P_1 P_N$) is said to be positively oriented if a tour of the vertices in the given order produces acounterclockwise circuit.
- The <u>left hand of a person standing along any directed</u> edge P_iP_{i-1} or P_1P_N would be pointing inside the polygon.

- $A(x_1,y_1)$ and $B(x_2,y_2)$ be the end points of a directed line segment.
- A point p(x,y) will be to the left of the line segment if the expression $C=(x_2-x_1)(y-y_1)-(y_2-y_1)(x-x_1)$ is positive.
- The point is to the right of the line segment if this quantity is negative.
- If a point p is to the right of any one edge of a positively oriented, convex polygon, it is outside the polygon.
- If it is to the left of every edge of the polygon, it is inside the polygon.

- Let P₁P_N be the vertex list of the polygon to be clipped. Let edge E, determined by endpoints A and B, be any edge of the positively oriented, convex clipping polygon.
- Clip each edge of the polygon in turn against the edge E of the clipping polygon, forming a new polygon whose vertices are determined as follows:

- Consider the edge $P_{i-1}P_i$
- If both P_{i-1} and P_i are to the left of the edge, vertex P_i is placed on the vertex output list of the clipped polygon
- If both P_{i-1} and P_i are to the right of the edge, nothing is placed on the vertex output list of the clipped polygon
- If both P_{i-1} to the left and P_i is to the right of the edge E, the intersection point I of the line segment $\overline{P_{i-1}P_i}$ with the extended edge E is calculated and placed on the vertex output list.
- If both P_{i-1} to the right and P_i is to the left of the edge E, the intersection point *I* of the line segment P_{i-1}P_i with the extended edge E is calculated. Both *I* and P_i are placed on the vertex output list.

Left Clip				
Edge	Case	Output		
AB	in-in	В		
ВС	in-in	С		
CD	in-in	D		
DE	in-out	D'		
EA	out-in	E'A		

Right Clip				
Edge	Case	Output		
AB	in-in	В		
ВС	in-out	B'		
CD	out-in	C'D		
DD'	in-in	D'		
D'E'	in-in	E'		
E'A	in-in	Α		

Top Clip				
Edge	Case	Output		
AB	out-in	A'B		
BB'	in-in	B'		
B'C'	in-in	Ĉ		
C'D	in-in	D		
DD'	in-in	D'		
D'E'	in-in	E'		
E'A	in-out	E"		

Bottom Clip				
Edge	Case	Output		
A'B	in-in	В		
BB'	in-in	B'		
B'C'	in-in	C,		
C'D	in-out	C"		
DD'	out-in	D"D'		
D'E'	in-in	E'		
E'E"	in-in	E"		
E"A'	in-in	A'		

