Relacions d'equivalència

1 Relacions d'equivalència

Definició 1.1 (Relació d'equivalència). Una relació d'equivalència en un conjunt A és una relació R en A tal que

- (1) R és reflexiva en A.
- (2) R és simètrica.
- (3) R és transitiva.

Definició 1.2 (Relació reflexiva). Una relació R en A és reflexiva si tot element de A està relacionat amb si mateix.

$$\forall a \in A, \ aRa \ o \ (a,a) \in R$$

Definició 1.3 (Relació simètrica). $\forall a, b \in A \ aRb \rightarrow bRa$. Per tant $R = \check{R}$.

Definició 1.4 (Relació transitiva). $\forall a, b, c \in A$. Si aRb i bRc llavors aRc.

Exemple 1.0.1. Les relacions en que no es produeix cap aRb i bRc són directament relacions transitives. \varnothing és una relació transitiva. $R = \{(0, 2), (3, 4)\}$ és una relació transitiva.

Exemple 1.0.2. La relació \equiv_n en \mathbb{Z} és la congruència mòdul n tal que $a \equiv_n b$ si i només si n|a-b. \equiv_n és una relació d'equivalència.

- Reflexivitat. $a \equiv_n a$ ja que a a = 0 que es divisible per tot $n \in \mathbb{Z}$.
- Simetria. $a \equiv_n b$ implica $b \equiv_n a$. a b = nk per $k \in \mathbb{Z}$. Per tant b a = n(-k). b a també és divisible per n, aleshores $b \equiv_n a$.
- Transitivitat. $a \equiv_n b$ i $b \equiv_n c$. Llavors a b = nk i b c = nk' per $k, k' \in \mathbb{Z}$. Es sumen les dues equacions i s'obté que a c = n(k + k'). Per tant $a \equiv_n c$.

2 Classes d'equivalència

Definició 2.1 (Classe d'equivalència). Suposem que \sim és una relació d'equivalència. La classe d'equivalència de cada $a \in A$ és

$$[a]_{\sim} = \{ b \in A \mid a \sim b \}$$

Si no hi ha confusió es fa servir $[a]_{\sim} = \overline{a}$.

Exemple 2.0.1. En \equiv_2 hi ha dues classes d'equivalència.

$$\overline{0} = \{2n \mid n \in \mathbb{Z}\} \quad \text{(Parells)}$$

$$\overline{1} = \{2n+1 \mid n \in \mathbb{Z}\} \quad \text{(Senars)}$$

Exemple 2.0.2. En \equiv_1 hi ha una única classe. $\overline{1} = \mathbb{Z}$.

Exemple 2.0.3. \equiv_0 és la igualtat. $\forall a \in \mathbb{Z}, \overline{a} = \{a\}.$

Definició 2.2 (Conjunt quocient). El conjunt quocient de A en la relació d'equivalència \sim és el conjunt

$$A/\sim = \{\overline{a} \mid a \in A\}$$

És el conjunt de totes les classes d'equivalència dels elements de A.

Exemple 2.0.4. $\mathbb{Z}/\equiv_n=\{\overline{0},\overline{1},\ldots,\overline{n-1}\}.$

Lema 2.1. Sigui \sim una relació d'equivalència en A.

- 1. $a \in \overline{a} \ \forall a \in A$. (Per reflexivitat).
- 2. Si $\overline{a} \cap \overline{b} \neq \emptyset$, aleshores $\overline{a} = \overline{b}$.
- 2.' Les següents condicions són equivalents per $a, b \in A$.
 - (a) $\overline{a} = \overline{b}$.
 - (b) $a \sim b$.
 - (c) $\overline{a} \cap \overline{b} \neq \emptyset$.

Demostració. (a) \rightarrow (b) Suposem que $\overline{a} = \overline{b}$. Per (1) és sap que $a \in \overline{a}$. Llavors $a \in \overline{b}$. Per definició de classe d'equivalència llavors $a \sim b$.

- (b) \rightarrow (c) Sigui $a \sim b$. Es sap que $a \in \overline{a}$ i com que $a \sim b$, llavors $a \in \overline{b}$, per tant $a \in \overline{a} \cap \overline{b}$ i per tant $\overline{a} \cap \overline{b}$ no és buit.
- (c) \rightarrow (a) Suposem que $\overline{a} \cap \overline{b} \neq \emptyset$. Llavors existeix $c \in \overline{a} \cap \overline{b}$. Per demostrar la igualtat entre conjunts considerem les dues inclusions.
 - (\subseteq) Suposem $x \in \overline{a}$. $x \sim a$ i per tant $x \sim c$, per transitivitat (com que $c \sim b$) llavors $x \sim b$. Per tant $x \in \overline{b}$.

• (\supseteq) Procedint de la mateixa manera es veu que $\overline{b} \subseteq \overline{a}$.

Observació 2.0.1. Si \sim és una relació d'equivalència en A, llavors

- 1. Els elements de A/\sim són subconjunts de A. És a dir $A/\sim\subseteq\mathcal{P}(A)$.
- 2. $\emptyset \notin A/\sim$. Les classes d'equivalència mai són buides.
- 3. Si $x, y \in A/\sim$ són diferents, llavors $X \cap Y = \emptyset$. (Són disjunts dos a dos).
- 4. Tot element de A pertany a algun element de A/\sim . (Pertany a la seva classe d'equivalència).

Definició 2.3 (Partició). Una partició de A és una col·lecció de conjunts no buits de A que són disjunts dos a dos i la seva unió és A.

Proposició 2.1. El conjunt quocient d'una relació d'equivalència en A és una partició de A.

Proposició 2.2. Sigui $\{A_i \mid i \in I\}$ una partició sobre A. Definim R sobre A tal que $\forall x, y \in A$ $xRy \leftrightarrow \exists i \in I$ tal que $x, y \in A_i$. Llavors R és una relació d'equivalència i $A/R = \{A_i \mid i \in I\}$.

Demostració. Cal veure que R és una relació d'equivalència. Clarament R és reflexiva i simètrica, cal veure que és transitiva. Siguin $a,b,c\in A$ tals que aRb i bRc. Com que aRb existeix un $i\in I$ tal que $a,b\in A_i$. Com que bRc existeix un $j\in I$ tal que $b,c\in A_j$. $b\in A_i$ i $b\in A_j$. Com que $b\in A_i\cap A_j$ i la família A_i és una partició llavors $A_i=A_j$, per tant aRc. R és transitiva i per tant R és una relació d'equivalència.

Sigui $a \in A$. Com que $\{A_i \mid i \in I\}$ existeix un index $i \in I$ tal que $a \in A_i$, per tant

$$\overline{a} = \{ b \in A \mid bRa \} = A_i$$

Per tant $A/R = {\overline{a} \mid a \in A} = {A_i \mid i \in I}$.

2.1 Bona representació del conjunt quocient

Definició 2.4 (Bona representació de A/\sim). Sigui \sim una relació d'equivalència en A. Hi ha moltes classes d'equivalència que coincideixen i es busca un subconjunt de A que tingui totes les classes d'equivalència. I és un conjunt de representants de classes sense repetició si

- 1. Per cada $a \in A$ hi ha $b \in I$ tal que $a \sim b$, és a dir, $\overline{a} = \overline{b}$.
- 2. Si $a, b \in I$ i $b \neq a$ llavors $\overline{a} \neq \overline{b}$.