Basic orthogonal and periodic functions

Exercise 3

Least-squares Approximation of Functions Using Orthogonal Polynomials

Author Cesare De Cal Professor
Annie Cuyt
Assistant Professor
Ferre Knaepkens

November 25, 2019

1 Introduction

This exercise asks to compute the Chebyshev approximation

$$t(x) = \sum_{j=0}^{n} a_j T_j(x)$$

for the functions $f(x) = \cos(2x)$ and $f(x) = \cos(4x)$ over the interval $[-\pi, \pi]$ for n = 6 and then plot the original functions with the approximations and draw conclusions on the results.

2 Tools

To solve this problem, I've used MATLAB as requested by the instructions. To make the computation more efficient, I wrote my own function which calculates the Chebyshev polynomial instead of using chebyshevT which was slower.

3 Computation

Given n = 6 and N = n + 1, I first calculate the roots of the Chebyshev polynomial by using the formula:

$$x_j = \cos\left(\frac{2j-1}{2n}\pi\right), j = 1,\dots,N$$

The resulting zeros are:

$$\begin{bmatrix} 9.749279121818236e - 01\\ 7.818314824680298e - 01\\ 4.338837391175582e - 01\\ 6.123233995736766e - 17\\ -4.338837391175581e - 01\\ -7.818314824680295e - 01\\ -9.749279121818237e - 01 \end{bmatrix}$$

Let's first analyze the function $\cos(2x)$. We've seen in class we can calculate the coefficients with the formula given by:

$$c_j = \frac{2}{N} \sum_{k=0}^{n} f(x_j) T_j(x_k)$$

To better exploit the properties of Chebyshev polynomials, I rescale the interval from $[-\pi, \pi]$ to [-1, 1]. This is done in the function calculation $f(x_j)$ by multiplying the argument by π . I find the following coefficients:

$$\begin{bmatrix} 4.407675118300712e - 01 \\ 3.489272363107635e - 16 \\ 5.739892333362830e - 01 \\ -2.537652627714643e - 16 \\ 6.516380108719009e - 01 \\ -1.554312234475219e - 15 \\ -7.019674665493458e - 01 \end{bmatrix}$$

To plot these coefficients in the graph, I need to calculate their associated y values:

$$\begin{bmatrix} 9.876173836808355e - 01 \\ 1.986723718905843e - 01 \\ -9.149466098687946e - 01 \\ 9.99999999999993e - 01 \\ -9.149466098687926e - 01 \\ 1.986723718905768e - 01 \\ 9.876173836808371e - 01 \\ \end{bmatrix}$$

Calculating the coefficients for the $\cos(4x)$ function now only requires minor changes in the

code. The following are the coefficients of the polynomial:

```
\begin{bmatrix} 6.879841220704104e - 01 \\ 2.537652627714643e - 16 \\ -1.535576743556636e - 01 \\ -1.459150260935920e - 15 \\ 1.012919200612446e + 00 \\ -1.094362695701940e - 15 \\ 5.104689360033142e - 01 \\ \end{bmatrix}
```

The associated y values for the given roots are the following:

```
\begin{bmatrix} 9.507761930971577e - 01 \\ -9.210585772947382e - 01 \\ 6.742545978208001e - 01 \\ 1.00000000000000000e + 00 \\ 6.742545978207990e - 01 \\ -9.210585772947411e - 01 \\ 9.507761930971639e - 01 \end{bmatrix}
```

The plots for both functions have been added to the next section.

4 Plots

Function $\cos(2x)$:

Function cos(4x):

5 Observations

I first calculated the zeros of the polynomial so I could use them as nodes in polynomial interpolation because the resulting interpolation polynomial minimizes the effect of Runge's phenomenon.

The Chebyshev approximation for the function cos(2x) is pretty accurate, whereas the approximation for cos(4x) not so much.