Patent Docket: K35A0648

In the Claims

Please amend the claims as follows:

WE CLAIM:

1	1.	(currently amended) A network switch for resolving requests from a plurality of host
2		initiators by scheduling access to a plurality of disk storage devices, the network switch
3		comprising:
4		(a) a switched fabric comprising a plurality of switching elements, each switching
5		element comprising:
6		a plurality of bi-directional switched fabric ports; and
. 7		a control input connected to receive switch control data for selectively
8		configuring the switching element in order to interconnect the bi-directional
9		switched fabric ports;
10		(b) a memory for storing a routing and scheduling program; and
11		(c) a microprocessor, responsive to the requests, for executing the steps of the routing
12		and scheduling program to generate the switch control data to transmit scheduled
13		requests through the bi-directional switched fabric ports,
14		wherein:
15		at least one of the plurality of switching elements comprises a disk storage interface
16		for connecting to a selected one of the disk storage devices;
17		the microprocessor for scheduling access to the plurality of disk storage devices
18		through the disk storage interface;
19		the disk storage interface for receiving scheduling data from the selected one of the
20		disk storage devices;
21		the memory for receiving the scheduling data via the bi-directional switched fabric
22		ports of a selected number of the switching elements; and

3

the scheduling data is processed according to a priority such that the selected switching elements transfer the scheduling data through the bi-directional switched fabric ports before transferring data associated with the scheduled requests.

- 1 2. (previously presented) The network switch as recited in claim 1, wherein the at least one switching element further comprises a disk storage device connected to the disk storage interface.
 - 3. (previously presented) The network switch as recited in claim 1, wherein:
- 2 (a) each disk storage device comprises a disk and a head; and
- 3 (b) the scheduling data comprises a radial location of the head relative to the disk within
 4 each disk storage device.
- 4. (previously presented) The network switch as recited in claim 3, wherein the scheduling
 data further comprises a circumferential location of the head relative to the disk within
 each disk drive.
- 1 5. (previously presented) The network switch as recited in claim 1, wherein the switching elements further comprise a plurality of virtual lanes, wherein:
- (a) at least one of the virtual lanes is reserved for transferring data associated with the
 scheduled requests;
 - (b) at least one of the virtual lanes is reserved for transferring the scheduling data; and
- 6 (c) the virtual lane for transferring the scheduling data comprises a higher priority than
 7 the virtual lane for transferring the data associated with the scheduled requests.

1

5

23

24

25

26

1 6. (previously presented) The network switch as recited in claim 1, wherein the scheduling 2 data is communicated to the memory through the bi-directional switched fabric ports 3 according to an isochronous protocol. 7. 1 (previously presented) A method of resolving requests from a plurality of host initiators 2 by scheduling access to a plurality of disk storage devices connected to a network switch, 3 the network switch comprising a switched fabric comprising a plurality of switching 4 elements, the method comprising the steps of: 5 (a) transmitting through the switching elements scheduling data from the plurality of disk storage devices to a memory; (b) evaluating the scheduling data in order to schedule the requests from the host initiators; and 9 (c) transmitting data associated with the scheduled requests through the switching 10 elements to the plurality of disk storage devices, 11 wherein the scheduling data is processed according to a priority such that the 12 switching elements transfer the scheduling data before transferring data associated 13 with the scheduled requests. 1 8. (previously presented) The method as recited in claim 7, wherein: 2 (a) each disk storage device comprises a disk and a head; and 3 (b) the scheduling data comprises a radial location of the head relative to the disk within 4 each disk storage device. 1 9. (previously presented) The method as recited in claim 8, wherein the scheduling data

further comprises a circumferential location of the head relative to the disk within each

disk drive.

2

3

	1	10.	(previously presented) The method as recited in claim 7, wherein the switching elements
	2		further comprise a plurality of virtual lanes, wherein:
	3		(a) at least one of the virtual lanes is reserved for transferring data associated with the
	4		scheduled requests;
	5		(b) at least one of the virtual lanes is reserved for transferring the scheduling data; and
\	6		(c) the virtual lane for transferring the scheduling data comprises a higher priority than
)	7		the virtual lane for transferring the data associated with the scheduled requests.
	1	11.	(previously presented) The method as recited in claim 7, wherein the scheduling data is
	2		communicated to the memory through the switching elements according to an
	3		isochronous protocol.