〈글로벌 기후변화와 에너지 문제〉 강의자료

10. 신재생에너지

제10주차 강의 (비대면)

담당교수 강승진

강의 순서

가. 신. 재생에너지 정의

나. 신에너지

다. 재생에너지

라. 신. 재생에너지 보급 실적

지난 학습내용 요약

- 기후변화의 주요 원인
 - 대기중의 온실가스 농도 증가로 지구기온이 계속하여 상승
 - 특히 산업혁명 이후 화석연료의 대량 사용으로 온실가스 배출 증가
 - 화석연료 연소, 즉 에너지 사용으로 CO2 등 온실가스 대량 배출
 - 그러나 에너지 사용은 현대 경제활동에 필수적인 요소임
 - 과거의 경험: 경제성장과 에너지소비는 1:1의 관계를 보임
 - 앞으로의 과제: 탄소중립 (Net-zero Emission)
- 가장 중요한 사항은 **온실가스 배출 감축**임
 - 주요 온실가스: 화석연료 연소에서 배출되는 CO₂ 임
 - 에너지부문 온실가스 감축 방안
 - 에너지 소비량 감축: 어떻게 에너지소비를 줄일 것인가?
 - 저탄소 에너지 사용: 재생에너지 사용 확대

지난 학습내용 요약

- 에너지연소 부문 온실가스 배출량 계산방법
 - 에너지연소에 의한 온실가스 배출은 계산식에 의해 추정됨
 - 대부분이 CO₂ 이므로 CO₂ 배출량을 중심으로 계산
 - CO_2 배출량(톤) = Σ_i 에너지사용량(톤) $_i$ × 발열량(TJ/톤) $_i$ × 탄소 배출계수 (톤/TJ) $_i$
 - 에너지사용량(물량단위): 석탄, 석유제품, 천연가스 등 화석에너지 사용량
 - 발열량: 에너지원 종류별로 다름. (온실가스는 순발열량을 적용함)
 - 온실가스 배출계수: IPCC 기본값, 또는 국가 고유 배출계수
 - 열량단위 에너지 사용량: 우리가 사용하는 에너지의 양
 - 에너지 열량(TJ); = 에너지사용량(톤); × 발열량(TJ/톤);
 - CO₂ 배출 감축 방안
 - 1) 에너지 사용량 감축: 에너지 효율 향상
 - 2) 탄소 배출계수가 낮은 에너지 사용 → 저탄소 에너지 사용

지난 학습내용 요약

- 저탄소 에너지 이해
 - 화석연료 탄소배출계수 (TC/TJ)
 - 석탄: 26, 석유: 20, 천연가스: 15.3 정도임 (1: 0.77: 0.59)
 - 재생에너지: 탄소배출이 없음 → Carbon Free Energy
 - 재생에너지: 수력발전, 풍력발전, 태양광발전, 조력발전 등 자연에너지 이용
 - 바이오 에너지(바이오매스, 바이오 연료, 바이오가스): Carbon Neutral Energy
 - * 연소시에 CO_2 를 배출하나, 이는 광합성시 흡수된 CO_2 임 \rightarrow CO_2 배출이 없는 것으로 함
 - 신에너지: 수소에너지, 연료전지, 석탄가스화 발전
 - 수소에너지: 화석연료로 수소 생산 시 CO₂ 발생
 - 재생에너지 전력으로 생산한 Green 수소는 CO₂ 발생 없음
 - 연료전지(천연가스 이용) 및 석탄가스화 발전(IGCC)은 CO₂ 발생시킴
 - 원자력발전: 직접적인 CO₂ 배출이 없음
 - 후쿠시마 사고 이후, 사고 및 방사능 누출 위험 등으로 확대하지 않기로 함

가. 신.재생에너지 정의

- 신.재생에너지(New & Renewable Energy)
 - 국내 기준: 신에너지 및 재생에너지 개발. 이용. 보급 촉진법
 - 신에너지: 기존의 화석연료를 변환시켜 이용하거나 수소.산소 등의 화학 반응을 통하여 전기 또는 열을 이용하는 에너지
 - 수소에너지, 연료전지, 석탄 액화 및 가스화 발전
 - 재생에너지: 햇빛, 물, 지열, 강수, 생물유가체 등을 포함하는 재생 가능한
 에너지를 변환시켜 이용하는 에너지
 - 태양에너지(태양광발전, 태양열 이용), 풍력, 수력, 해양에너지, 지열에너지, 바이오 에너지(바이오매스, 바이오 연료, 바이오가스), 폐기물에너지, 기타
 - 과거에는 전통에너지인 신탄(나무), 농가부산물이 주종을 이룸(바이오매스)
 * 인류가불을 사용한 이래 산업혁명 이전까지 나무를 주 에너지원으로 사용함
 - 최근에는 태양광발전, 풍력발전, 수력발전, 지열에너지 등이 중요함

가. 신.재생에너지 정의

- 재생에너지(Renewable Energy)
 - 국제 기준: IEA(국제에너지기구), "Energy Statistics Manual"
 - 통계기준에는 Renewables and Waste 항목으로 로 분류
 - Renewable Energy: energy that is derived from natural processes that are replenished constantly.
 - * 재생에너지: 계속해서 보충되는 자연 과정으로부터 생산되는 에너지
 - solar, wind, geothermal, hydropower and ocean resources, solid biomass, biogas, liquid biofuels
 - Waste: 도시폐기물, 산업폐기물
 - renewable sources: 생분해가 가능한 재생에너지
 - non-renewable sources: 폐유, 폐플라스틱 등
 - ※ 한국: 2019년에 신재생에너지법을 개정하여 비재생 폐기물은 신재생에너지에서 제외함

나. 신에너지 New Energy

- 수소에너지(Hydrogen)
 - 수소(H₂)는 지구상 가장 가벼운 무색, 무미, 무취의 기체
 - 산소와 결합한 물(H₂O)처럼 다른 원소와 결합된 상태로 지구상에 대량 존재
 - 수소가 각광받는 이유는 사용시 오염물질 배출이 없는 청정에너지이기 때문임
 - 현재 기술로는 다른 에너지를 투입하여 수소를 생산함
 - 부생수소: 석유화학공정, 제철공정에서 부생가스에서 수소를 분리.생산
 - 추출수소: 천연가스(CH₄)를 개질(수증기 개질)하여 수소 생산
 - CH₄ + 2H₂O → CO₂ + 4H₂ (* 수소 생산시 CO₂ 동시에 발생됨)
 - ※ 화석연료 사용하여 수소 생산: CO₂ 발생시킴 → 그레이 수소(Grey Hydrogen)
 - ※ 이때 발생되는 CO₂를 CCUS로 처리 → 블루 수소(Blue Hydrogen)
 - 수전해 방식 수식: 물을 전기분해 하여 생산되는 수소
 - ※ 풍력 발전, 태양광 발전 등 재생에너지 전력으로 물을 전기분해하여 생산된 수소는 이산화탄소 발생이 없음 → 그린 수소(Green Hydrogen)

나. 신에너지 New Energy

- 연료전지(Fuel Cell)
 - 수소(H₂)를 연료로 전기를 생산하는 장치
 - 연료가 가진 화학에너지를 전기화학반응을 통해 직접 전기에너지로 바꾸는 에너지 변환 장치, 배터리와는 달리 연료가 공급되는 한 계속해서 전기를 생산함
 - 연료전지는 오염물질과 소음이 없음 → 미래의 에너지 장치로 각광받음
 - 연료전지 자동차(FCEV): 수소를 연료로 생산된 전기로 구동함
 - 발전용 연료전지: 천연가스 개질 수소 생산 → 화학반응으로 전기 생산
- 석탄 가스화/액화
 - 석탄 가스화: 석탄을 고온.고압에서 가열하여 석탄가스를 생산하는 기술
 - IGCC(Integrated Gasification Combined Cycle) 발전 → 고효율 청정 발전
 - 합성가스: 석탄가스를 정제하여 도시가스로 사용
 - 석탄 액화: 고급 액체 연료인 휘발유, 경유 등 연료를 생산하는 기술

다. 재생에너지 Renewable Energy

- 태양광 발전(PV: Photovoltaic)
 - 태양의 빛에너지를 모아서 전기를 생산하는 장치: 태양전지(Solar Cell)
 - 지구상에 도달하는 태양에너지는 무한대에 가까움
 - 그러나 에너지 밀도가 낮으므로 높은 에너지를 내려면 이를 모아야 함
 - * 식물의 광합성: 태양에너지를 장시간에 걸쳐 모아서 저장함
- 태양열 에너지: 태양에서 나오는 따뜻한 열을 이용하는 시스템
 - 태양열 난방: 태양열 저장, 태양열 온수기 등 이용 → Passive House
 - 태양열 발전: 오목거울로 태양열을 모아서 증기 생산 → 증기터빈 발전
- 풍력 발전(Wind Turbine)
 - 바람의 힘 이용, 풍차의 날개를 돌리면 발전기를 통해 전력 생산
 - 육상풍력: 주로 산지나 해안가에 바람이 많이 부는 곳에 설치
 - 해상풍력: 바다에 풍력발전기 설치 → 대규모 발전 단지 가능

다. 재생에너지 Renewable Energy

- 수력 발전(Hydropower)
 - 물의 낙차를 이용하여 터빈을 돌리고 전기를 생산함
 - 대수력발전(10MW 이상): 댐을 설치하여 물을 저장하여 발전함
 - 소수력발전(10MW 이하): 소규모 댐, 또는 물의 흐름을 이용하여 발전
- 지열 에너지: 땅속과 지표의 온도차를 이용하여 냉.난방 또는 발전
 - 지열발전(Geothermal): 땅속의 고온 지역에 물 주입, 증기 생산 → 발전
 - 지열 히트펌프(Heat pump): 땅속 100m 이상에 파이프를 삽입하고, 여기 에 유체를 넣어 펌프로 열교환기를 작동시킴 → 냉.난방에 이용
- 해양에너지: 바다에서 발생하는 에너지를 이용하는 것
 - 조력발전(Tidal power): 밀물.썰물의 흐름을 이용한 발전 → 시화조력발전
 - 파력발전: 파도의 움직임을 이용하여 터빈을 돌려서 발전
 - 해수 온도차 발전: 표면층 온수(25도)와 심층 냉수(5도) 온도차 이용 발전 11

다. 재생에너지 Renewable Energy

- 바이오 에너지(Bio energy): 살아있는 생물체로부터 발생하는 에너지 이용
 - 바이오매스(Biomass): 나무, 숯, 농업 부산물 등 고체 연료
 - 바이오 연료(Biofuels): 액체 연료, 자용차용 연료로 사용
 - 바이오 디젤(Biodiesel): 식물성 기름을 정제하여 생산, 경유에 혼합 사용(3%)
 - 바이오 에탄올(Bioethanol): 옥수수, 사탕수수로 에칠알콜 생산→ 휘발유 대체
 - 바이오 가스(Biogases): 쓰레기 매립지에서 발생하는 메탄을 포집.이용
 - * 매립지가스(LFG: Landfill Gas): 포집하여 발전용 연료로 사용
- 폐기물 에너지: 버려지는 가연성 쓰레기를 활용하여 에너지원으로 이용
 - 자동차 폐윤활유 → 액체연료, 자동차 폐타이어 → 소각열 또는 가스화
 - SRF(solid Residue Fuel): 폐플라스틱을 고형으로 가공하여 연료로 사용
 - 폐기물 소각열 이용: 산업폐기물 소각, 도시폐기물 소각
 - ※ 2019년에 신재생에너지법을 개정하여 비재생 폐기물은 신재생에너지에서 제외함

- 한국의 신.재생에너지 보급 실적
 - 한국의 2019년 신. 재생에너지 생산량은 16,246천toe
 - 이 중 재생에너지 생산량은 15,359천toe, 신에너지 생산량은 707천toe임
 - 1차에너지 대비 공급 비중은 약 5.36%로 지속 증가하고 있음
 - 재생에너지 비중 5.23%, 신에너지 비중 0.23%
 - 한국의 신.재생에너지 비중은 주요 선진국에 비해 매우 낮은 수준에 있음
 - 독일: 재생 전력 비중 34.8%, 1차에너지 비중 12.7%
 - 영국: 재생 전력 비중 28.1%, 1차에너지 비중 8.2%
 - ※ 한국(신기준): 신.재생 전력 비중 5.6%, 1차에너지 비중 3.4%
 - 2019년 대부분 폐기물(43.4%)과 바이오 에너지(25.6%)가 차지함
 - 폐기물: 철강 및 석유화학 부생가스, 산업폐기물, 도시쓰레기 등
 - 바이오 에너지: 나무 연료, 바이오매스 혼소 발전, 우드팰릿 발전
 - 한국은 신재생에너지법을 개정하여(2019년 10월부터) 비재생 폐기물을 제외함
 - 제외되는 비재생 폐기물은 철강 부생가스, 석유화학 부생연료, 폐윤활유, 폐타이어 등
 - 신기준에 따른 2019년 재생에너지 생산량은 10,316천toe로 총에너지의 3.4% 비중
 - 바이오 에너지(40.3%), 태양광 에너지(27%)가 대부분을 차지함

• 신.재생에너지 원별 생산 실적

(단위: toe)

구 분				2019 (비재생폐기물 4/4분기 제외)		2019 (비재생폐기물 전체 제외)	
				생산량	비중(%)	생산량	비중(%)
1 ス	하에 너	지 (천 t	oe)	303,092	100.00	303,092	100.00
	신·재 생 에 너 지			16,245,938	5.36	10,316,277	3.40
	재 생 에 너 지			15,539,093	5.13	9,609,432	3.17
	신	에 너	: 지	706,845	0.23	706,845	0.23
재 생 에 너 지	EH	양	열	26,912	0.2	26,912	0.3
	태	양	광	2,787,935	17.2	2,787,935	27.0
	풍		력	570,816	<i>3.5</i>	570,816	5.5
	수		력	594,539	3.7	594,539	5.8
	하		양	101,030	0.6	101,030	1.0
	지		열	224,722	1.4	224,722	2.2
	수		열	21,236	0.1	21,236	0.2
	바	0	오	4,162,427	25.6	4,162,427	40.3
	폐	기	물	7,049,477	43.4	1,119,816	10.9
신 에 너 지	연	료 전	선 지	487,184	3.0	487,184	4.7
	ı	G C	С	219,661	1.4	219,661	2.1

• 자료: 한국에너지공단, "2019년 신.재생에너지 보급통계 ", 2020.

• 신.재생에너지 원별 구성

• 자료: 한국에너지공단, "2019년 신.재생에너지 보급통계 ", 2020.

- 한국의 신.재생에너지 발전량
 - 2019년 신.재생에너지 발전량은 51,122 GWh로 계속 증가
 - 총발전량 대비 신. 재생 비중은 8.69%임
 - 재생에너지 비중 8.13%, 신에너지 비중 0.56%
 - 신재생에너지법 개정으로(2019년 10월부터) 비재생 폐기물 발전이 제외됨
 - 제외되는 비재생 폐기물은 철강 부생가스, 석유화학 부생연료 발전임
 - 신기준에 따른 재생에너지 발전량은 33,029GWh로 총발전량의 5,62% 비중
 - 바이오 에너지(40.3%), 태양광 에너지(27%)가 대부분을 차지함
 - 신.재생발전 2019년 누적 설비용량: 19,651 MW (폐기물 제외)
 - 2019년 총 발전설비용량 131,168 MW의 14.98% 차지
 - 재생에너지: 18,836 MW (14.36% 점유)
 - 신에너지: 815 MW (0.62% 점유)

• 신.재생에너지 원별 발전량

(단위: MWh)

	구 분	2019 (비재생폐기물 4/4분기 제외)		2019 (비재생폐기물 전체 제외)	
		발전량	비중(%)	발전량	비중(%)
총	발 전 량	587,981,456	100.00	587,981,456	100.00
	신 · 재 생 에 너 지	51,122,085	8.69	33,028,791	5.62
	재 생 에 너 지	47,805,649	8.13	29,712,355	5.05
	신 에 너 지	3,316,436	0.56	3,316,436	0.56
재 생 에 너 지	태 양 광	12,996,018	25.4	12,996,018	39.3
	풍 력	2,679,158	<i>5.2</i>	2,679,158	8.1
	수 력	2,791,076	<i>5.5</i>	2,791,076	8.5
	해 양	474,321	0.9	474,321	1.4
	바 이 오	10,415,632	20.4	10,415,632	31.5
	폐 기 물	18,449,443	36.1	356,149	1.1
신 에 너 지	연 료 전 지	2,285,164	4.5	2,285,164	6.9
	I G C C	1,031,272	2.0	1,031,272	3.1

주) 국내 총발전량은 사업자+상용자가+신재생자가용 합계임

자료: 한국에너지공단, "2019년 신.재생에너지 보급통계 ", 2020.

• 신.재생에너지 발전량 추이

자료: 한국에너지공단, "2019년 신.재생에너지 보급통계 ", 2020.

'세계 최종에너지소비에서 재생에너지 비중

FIGURE 1. Estimated Renewable Share of Total Final Energy Consumption, 2018

Note: Data should not be compared with previous years because of revisions due to improved or adjusted data or methodology. Totals may not add up due to rounding.

Source: Based on IEA data. See endnote 41 for this chapter.

• 자료: REN21: "Renewables 2020 Global Status Report ", 2020.

세계 발전량에서 재생에너지 발전 비중

FIGURE 10. Estimated Renewable Energy Share of Global Electricity Production, End-2019

Note: Data should not be compared with previous versions of this figure due to revisions in data and methodology.

Source: See endnote 211 for this chapte

• 자료: REN21: "Renewables 2020 Global Status Report", 2020.

- 정부의 에너지전환 로드맵 (2017년 10월)
 - 대선공약 구체화: 신고리 원전 5, 6호기 건설 지속 여부 공론화 과정에서
 - 원전의 단계적 감축
 - 신고리 5,6호기 공사 재개, 건설중인 원전 공사 지속
 - 기 계획된 신규원전(6기) 건설계획 백지화
 - 노후원전 수명연장 금지, 월성 1호기 조기 폐쇄
 - 석탄발전 신설 금지, 노후 석탄발전소 천연가스 발전으로 전환
 - 재생에너지 확대
 - 현재 7%인 발전량 비중을 2030년까지 20%로 확대
 - 원전 축소로 감소되는 발전량을 태양광, 풍력 등 청정에너지를 확대하여 공급
 - 구체적인 재생에너지 확대 추진방안은 '재생에너지 3020 이행계획 '에 반영
 - 자료: 산업통상자원부 보도자료(2017.10.24) "신고리 5.6호기 건설재개 방침과 에너지전환 로드맵 확정"

- 에너지전환 로드맵: 재생에너지 3020
 - 보급목표: 2030년까지 재생에너지발전량 비중을 20%로 확대
 - 2030년 재생에너지 발전설비용량(누적)을 63.8GW 까지 보급 계획
 - 신규설비 용량의 95% 이상을 태양광.풍력 등 청정에너지로 공급
 - 국민참여 확대, 지자체 주도의 계획입지 제도 도입, 대규모 프로젝트 추진 등

■ 자료: 산업통상자원부 보도자료(2017.12.20) "재생에너지 3020 이행계획(안) 발표"

• 제9차 전력수급기본계획 원별 발전설비 구성

■ 자료: 산업통상자원부 보도자료(2020.12.) "제9차 전력수급기본계획 확정.공고"

- 신.재생에너지 보급정책
 - 신재생에너지 공급 의무화(RPS: Renewable Portfolio Standard) 제도
 - 2012년 시행: 500MW 이상의 발전사업자는 재생에너지 발전 의무 부과
 - 신재생 발전비중: 2.0%(2012년) → 9.0%(2021년) 매년 점진적으로 높아짐
 - * 최근 관련법 개정으로 재생에너지 비중 상한을 10% -> 25%로 상향 조정
 - 재생에너지 발전사업자는 추가로 REC를 지급받음 → 일반 발전사에 판매
 - REC(Renewable Energy Certificate: 재생에너지 공급인증서)는 시장에서 거래
 - 과거정책: 신재생에너지 발전차액 지원제도(FIT: Feed-in Tariff)
 - 신재생에너지 전력을 한전에서 고정가격에 매입
 - 전력시장가격과의 차이(발전차액) 보전: 발전차액지원제도
 - 2002년부터 2011년까지 시행, 2012년 이후 신규 신.재생 설비는 RPS 대상
 - * 독일 등 유럽국가는 FIT 시행: 막대한 재정 부담 -> 전기요금에 재생에너지세 부과
 - * 한국은 FIT에서 재정부담이 크게 증가되는 것을 우려하여 RPS로 제도 변경

- <참고> REC (재생에너지 공급인정서)
 - 재생에너지 발전사업자가 생산한 재생에너지 전력을 한국전력에 판매하면, 한국에너지공단이 이를 인증하고 재생에너지 공급인증서(REC: 통상 1 MWh 당 1 REC)를 재생에너지 사업자에게 발급함
 - 500 MW 이상의 발전설비를 보유한 발전사업자는 재생에너지 의무할당 비율(RPS)을 준수해야 하며, 직접 재생에너지 발전을 하거나 재생에너지 발전사로부터 REC구매하여 RPS 비율을 준수해야 함
 - 재생에너지 발전사업자는 생산한 전력을 한전에 SMP(도매시장가격)에 판매하고, REC는 RPS 대상 발전사에 판매하여 (SMP+REC), 즉 일반전력 보다 많은 수익을 얻을 수 있음
 - SMP 및 REC 가격은 시장에서 결정되므로 시장상황에 따라 가격이 변동함
 - 특히 최근 재생에너지 기술개발에 의한 생산단가 하락과 재생에너지 공급 과잉에 따라 REC 가격이 크게 하락함 (5년전 160,000원/REC에서 최근 35,000원/REC로 하락)

- 기타 정책
 - 신.재생 연료혼합 의무화(RFS: Renewable Fuel Standard)
 - 자동차용 경유에 바이오디젤 2.0% → 2.5% → 3.0%(2018년 이후) 혼합
 - 신.재생에너지 난방비율 의무화(RHO: Renewable Heat Obligation)
 - 과거에 검토했으나, 최근에 다시 도입하기로 계획함
 - 신.재생 전력 상계제도(Net Metering): 한전에 역송한 재생 전력을 차감하여 요금 계산
 - 에너지 프로슈머(Energy Prosumer) 제도: 최근 도입. 쓰고 남은 신재생 전력을 이웃에 판매 가능(최고 1,000 kW 까지 허용)
 - 자가용 태양광 설치비 지원
 - 농어촌 태양광 지원 사업
 - 태양광 대여 사업 등

- 신재생에너지 육성 지원제도
 - 기술표준화: 국제표준 선점과 국제표준 대응, 해외진출 지원
 - 신재생에너지 표준화 및 인증 지원
 - KS 인증: 신재생에너지 설비, 중대형 풍력 터빈
 - 금융지원제도: 시설자금. 생산자금, 운전자금 지원 → 세액공제 및 관세 감면
- RE100 운동: 민간단체와 민간기업의 자발적인 운동
 - 기업의 사용전력을 2050년까지 100% 재생에너지 전력을 사용 선언
 - 미국, 유럽의 유명 대형 IT업체를 중심으로 200개 이상의 기업이 참여
 - 한국의 반도체 기업, 배터리 기업 등에 RE100을 이용한 부품 납품 요구
 - 최근 국내 일부 기업이 RE100 참여 선언 → 담당 국제기구(CDP)에 등록
 - 최근 관련법개정 및 정부의 제도 마련으로 국내기업 RE100 참여 가능
 - RE100 참여기업은 재생에너지 발전사업자로부터 직접 전기 구매 가능

<RE100 캠페인에 대하여>

- RE100은 2050년까지 기업이 사용하는 전력 사용량의 100%를 풍력, 태양광 등 재생에너지로 전환하여 탄소배출량을 줄이려는 목적으로 출범한 자발적인 환경캠페인이다. 이 캠페인은 영국 민간 환경단체인 '더 클라이밋 그룹'과 '탄소공개 프로젝트'(CDP)가 2014년부터 시작하였으며, 현재 구글, 애플, BMW, 월마트 등 264개 전세계 기업들이 참여하고 있다. RE100은 기업들의 자발적 참여이나, 기후변화 대응 강화, 글로벌 기업들의 공급망 관리 강화 등 이해관계자들의 요구를 감안하면 RE100에 가입한 이상 반드시 추진해야 할 목표로 인식되고 있다. 최근국내 기업들도 RE100 참여를 선언하거나 참여의사를 보이고 있다.
- 한국 정부는 지난해 9월 그린뉴딜 성과 창출을 위한 방안의 하나로 RE100 이행을 지원하기 위한 방안을 마련하겠다고 했다. 정부는 RE100 이행 방안으로 ①한전이 구입한 재생에너지 전력에 프리미엄 부과(녹색 프리미엄제), ②전기소비자가 재생에너지 공급인증서(REC) 직접 구매(인증서 구매), ③한전을 중개로 재생에너지 발전사와 기업이 전력거래계약(PPA) 체결(제3자 PPA), ④자가용 재생에너지 발전소를 직접 짓거나 다른 발전사업에 지분 투자하는 방식 등을 제시했다. 그리고 최근에 전기사업법이 개정되어 재생에너지 발전사와 기업이 재생에너지 전력을 직접거래(직접 PPA) 할 수 있게 되었다. 그리고 정부는 국내 기업에게 '재생에너지 구매'라는 온실가스 감축수단을 추가로 마련하여 RE100 이행과 온실가스 감축을 동시에 가능한 방안을 추진하겠다고 했다.

- 신재생 전력의 과제
 - 신재생 전력의 장점
 - 청정에너지로 온실가스 배출이 없음, 국산 에너지로 에너지 안보에 기여
 - 전력 수급의 특징
 - 현재 기술로는 경제적인 대규모 전력 저장 불가능
 - 따라서 수시로 변동하는 전력수요에 맞춰서 발전량을 조정해야 함
 - 신재생 발전의 특징: 간헐성 문제 → 전력계통 안정성에 문제 야기
 - 태양광 발전: 낮에 햇볕이 있을 때만 발전 가능
 - 풍력발전: 바람이 불 때만 발전 가능 → 그 외의 시간에는 다른 전원 공급
 - 과제: 어떻게 간헐성 문제를 극복해야 하는가?
 - 전력저장장치(ESS: Energy Storage System): 현재 기술수준, 매우 비싸다
 - 전력시장을 통한 해결방안 모색: 실시간 시장, 보조서비스 시장 등 검토 중
 - 초과 발전 차단(Curtailment)? 잉여 전력으로 수소 생산?

수고하셨습니다.