Security Aware Visual Analysis of Software Systems

David Kavaler, Sugeerth Murugesan, Chetna Vig

- Analyzing large software systems is expensive
 - 60%-90% maintenance

- Analyzing large software systems is expensive
 - 60%-90% maintenance
- What makes it hard to understand?
 - Complexity
 - Size
 - Dynamic Evolution

- Analyzing large software systems is expensive
 - o 60%-90% maintenance
- What makes it hard to understand?
 - Complexity
 - Size
 - Dynamic Evolution
- Bugs make it even harder

- Analyzing large software systems is expensive
 - 60%-90% maintenance
- What makes it hard to understand?
 - Complexity
 - Size
 - Dynamic Evolution
- Bugs make it even harder

Visual analysis to the rescue:

 We aim to provide a visual analysis tool that can be used to identify fault-prone code using established metrics that can change value over time.

Data Gathering

Data Gathering

Selected Metrics

- Count metrics
 - Total count LOC
 - Count of executable LOC
 - Comment LOC
 - Churn (added and deleted LOC)
- Object-oriented feature metrics
 - Total number of functions
 - Total number of local public methods
 - Total number of local private methods

- Complexity
 - Ratio of comment lines to code lines
 - Sum of cyclomatic complexity
- Misc.
 - Authors and committers

Data Mining To Visualize Bug Probability

Motivation: To give probability of bugs in a project to the security analysts for ready reference.

Data Mining To Visualize Bug Probability

Objective: To predict bugs in a project by using Machine Learning tools

Data Mining To Visualize Bug Probability (contd.)

How?

Data Mining To Visualize Bug Probability (contd.)

By using various metrics related to a project such as:

- add_count
- delete_count
- countline code
- countline_comment
- · ratio comment to code
- sum_cyclomatic etc.

Tools used

We used "Weka" as a data mining tool.

What is Weka?

Tools used (contd.)

Weka is a collection of machine learning algorithms for data mining tasks developed by The University of Waikato.

Tools used (contd.)

Methodology:

- Analysing all the metrics one by one
- Filtering out the most relevant metrics out of those
- Feature selection

Building a model for bug identification

We combined the data of two files "git_log_wmetrics" and "bug_data" to actually see them in a single file to train a classifier in weka.

Building a model for bug identification (contd.)

We ran different classifiers and found J-48 as the appropriate one so far for our model.

Results: Sum of Add and Delete Count

Deviation of Add Count from Mean

Deviation of All features together

Visualization Design

Visualization goal:

- Allow security analysts to visualize large software systems to facilitate detection of where:
 - bugs are introduced (or)
 - bugs can be predicted

Visualization Design

Visualization goal:

- Allow security analysts to visualize large software systems to facilitate detection of where:
 - bugs are introduced (or)
 - bugs can be predicted
- Large software comprehension for software maintenance

Visualization Design

Visualization goal:

- Allow security analysts to visualize large software systems to facilitate detection of where:
 - bugs are introduced (or)
 - bugs can be predicted
- Large software comprehension for software maintenance
- Quality control tool to test and analyze software engineering hypothesis

Method

Line Visualizations

Software metric filtering

Data Processing

Input to visualization system

Performance Analysis

Performance Analysis

Conclusion and Future Work

We present varying visualization and machine learning techniques that visualize the entire software source base along with bug and CVE data

Future Work:

- Visualizing bugs and metrics in the form of cities
- Adding a navigation box to the overview widget
- Incorporate prediction results into visualization tool
- Performance with overview widgets enabled

Demo Link: https://www.youtube.com/watch?v=eUnrEkfbQjw&feature=youtu.be