WORKED EXAMPLES 2(B)

- 4) to $B = \{0, 1, 2, 3\}$ where $(a, b) \in R$ if and only if (i) a = b, (ii) a + b = 4,
- (iii) a > b, (iv) alb (viz., a divides b), (v) gcd(a, b) = 1 and (vi) lcm(a, b) = 2.
 - (i) Since $a \in A$ and $b \in B$ and $a \in B$ when a = b, $R = \{(0, 0), (1, 1), (2, 2), (3, 3)\}.$
 - (ii) Since a R b if and only if a + b = 4, $R = \{(1, 3), (2, 2), (3, 1), (4, 0)\}$.

(iv) Since a R b, if and only if alb, $R = \{(1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 2), (3, 0), (3, 3), (4, 0)\}.$

Note: $\frac{0}{0}$ is indeterminate and so 0 does not divide 0.

(v) Since a R b, if and only if gcd(a, b) = 1, $R = \{(0, 1), (1, 0), (1, 1), (1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2), (4, 1), (4, 3)\}$.

(vi) Since a R b, if and only if lcm(a, b) = 2, $R = \{(1, 2), (2, 1), (2, 2)\}$.

Example 2.2 The relation R on the set $A = \{1, 2, 3, 4, 5\}$ is defined by the rule $(a, b) \in R$, if 3 divides a - b.

(i) List the elements of R and R^{-1} ,

(ii) Find the domain and range of R.

(iii) Find the domain and range of R^{-1}

(iv) List the elements of the complement of R.

The Cartesian product $A \times A$ consists of $\{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), ..., (2, 5), (3, 1), (3, 2) ..., (3, 5), (4, 1), (4, 2), ..., (4, 5), (5, 1), (5, 2), ..., (5, 5)\}$

(i) Since $(a, b) \in R$, if 3 divides (a - b), $R = \{(1, 1), (1, 4), (2, 2), (2, 5), (3, 3), (4, 1), (4, 4), (5, 2), (5, 5)\}$ R^{-1} (the inverse of R) = $\{(1, 1), (4, 1), (2, 2), (5, 2), (3, 3), (1, 4), (4, 4), (2, 5), (5, 5)\}$ We note that $R^{-1} = R$

(ii) Domain of $R = \text{Range of } R = \{1, 2, 3, 4, 5\}$

(iii) Domain of R^{-1} = Range of R^{-1} = {1, 2, 3, 4, 5}

(iv) R' (the complement of R) = the elements of $A \times A$, that are not in $R = \{(1, 2), (1, 3), (1, 5), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (3, 4), (3, 5), (4, 2), (4, 3), (4, 5), (5, 1), (5, 3), (5, 4)\}$

Example 2.3 If $R = \{(1, 2), (2, 4), (3, 3)\}$ and $S = \{(1, 3), (2, 4), (4, 2)\}$, find (i) $R \cup S$, (ii) $R \cap S$, (iii) R - S, (iv) S - R, (v) $R \oplus S$. Also verify that dom $(R \cup S) = \text{dom}(R) \cup \text{dom}(S)$ and range $(R \cap S) \subseteq \text{range}(R) \cap \text{range}(S)$.

(i) $R \cup S = \{(1, 2), (1, 3), (2, 4), (3, 3), (4, 2)\}$

(ii) $R \cap S = \{(2, 4)\}$

(iii) $R - S = \{(1, 2), (3, 3)\}$

(iv) $S - R = \{(1, 3), (4, 2)\}$

(v) $R \oplus S = (R \cup S) - (R \cap S)$

$$= \{(1, 2), (1, 3), (3, 3), (4, 2)\}$$

 $dom(R) = \{1, 2, 3\}; dom(S) = \{1, 2, 4\}$

Now dom $(R) \cup \text{dom } (S) = \{1, 2, 3, 4\}$

= domain $(R \cup S)$

Range $(R) = \{2, 3, 4\}$; Range $(S) = \{2, 3, 4\}$

Range $(R \cap S) = \{4\}$

```
Set Theory
```

Relations respectivelyon the set of integrs. That is R=109,61 | 9=6 (mod3) Set Theory and S= (0,6) | 0= 79 4 (mod4)

Find (i) $R \cup S$, (ii) $R \cap S$, (iii) R - S, (iv) S - R, (v) $R \oplus S$.

 $R = \{(a, b), \text{ where } (a - b) \text{ is a multiple of } 3$

a-b=...,-9,-6,-3,0,3,6,9,...i.e.

NEW TO

 $a - b = {..., -9, 3, 15, 27, 39, ...}, {..., -6, 6, 18, 30, ...}, {..., -3, 9, ...}$ i.e. 21, 33, ...}, {..., 0, 12, 24, 36, ...}

 $a - b = 3 \pmod{12}$ or 6 (mod 12) or 9 (mod 12) or 0 (mod 12) i.e.

 $S = \{(a, b)\}\$, where (a - b) is a multiple of 4

a-b=..., -12, -8, -4, 0, 4, 8, 12, ...i.e.

 $a-b = \{..., -8, 4, 16, 28, ...\}, \{..., -16, -4, 8, 20, ...\}, \{..., -24, ...\}$ i.e. $-12, 0, 12, 24, \dots$

 $a - b = 4 \pmod{12}$ or 8 (mod 12) or 0 (mod 12) i.e.

 $R \cup S = \{(a, b)|a - b = 0 \pmod{12}, 3 \pmod{12}, 4 \pmod{12}, 6 \pmod{12}$ 12), 8 (mod 12) or 9 (mod 12)}

 $R \cap S = \{(a, b)|a - b = 0 \pmod{12}, \text{ from } (1) \text{ and } (2)$

 $R - S = \{(a, b)|a - b = 3 \pmod{12}, 6 \pmod{12} \text{ or } 9 \pmod{12}\}$

 $S - R = \{(a, b) | a - b = 4 \pmod{12} \text{ or } 8 \pmod{12}\}$

 $R \oplus S = \{(a, b)|a - b = 3 \pmod{12}, 4 \pmod{12}, 6 \pmod{12}, 8 \pmod{12}$ 12) or 9 (mod 12)}.

Example 2.5 If the relations $R_1, R_2, ..., R_6$ are defined on the set of real numbers as given below,

 $R_1 = \{(a, b)|a > b\}, R_2 = \{(a, b)|a \ge b\},\$

 $R_3 = \{(a, b)|a < b\}, R_4 = \{(a, b)|a \le b\},\$

 $R_5 = \{(a, b)|a = b\}, R_6 = \{(a, b)|a \neq b\},\$

find the following composite relations:

 $R_1 \bullet R_2$, $R_2 \bullet R_2$, $R_1 \bullet R_4$, $R_3 \bullet R_5$, $R_5 \bullet R_3$, $R_6 \bullet R_3$, $R_6 \bullet R_4$ and $R_6 \bullet R_6$

(i) $R_1 \circ R_2 = R_1$. For example, let $(5, 3) \in R_1$ and let $(3, 1), (3, 2), (3, 3) \in R_2$ Then $R_1 \cdot R_2$ consists of (5, 1), (5, 2), (5, 3) which belong to R_1

(ii) $R_2 \bullet R_2 = R_2$. For example, let (5, 5), (5, 3), (5, 2) $\in R_2$ Then $R_2 \cdot R_2 = \{(5, 5), (5, 3), (5, 2)\} = R_2$

(iii) $R_1 \cdot R_4 = R^2$ (the entire 2 dimensional vector space). For example, let R_1 = $\{(5, 4), (5, 3)\}$ and $R_4 = \{(4, 4), (4, 6), (3,3), (3, 5)\}$ Then $R_1 \bullet R_4 = \{(5, 4), (5, 6), (5, 3), (5, 5)\}$

Thus $R_1 \cdot R_4 = \{(a, b) | a > b, a = b \text{ and } a < b\}$

(iv) $R_3 \cdot R_5 = R_3$. For example, let $R_3 = \{(3, 4), (2, 4), (2, 5)\}$ and $R_5 = \{(3, 3), (2, 4), (2, 5)\}$ (4, 4), (5, 5)

Then $R_3 \cdot R_5 = \{(3, 4), (2, 4), (2, 5)\} = R_3$

(v) $R_5 \cdot R_3 = R_3$. For example, let $R_5 = \{(3, 3), (4, 4), (5, 5)\}$ and $R_3 = \{(3, 4), (3, 4), (5, 5)\}$

Then $R_5 \bullet R_3 = \{(3, 4), (4, 6), (5, 7)\} = R_3$

(vi) $R_6 \bullet R_3 = R^2$. For example, let $R_6 = \{(1, 2), (4, 3), (5, 2)\}$ and $R_3 = (1, 2)$ $\{(2, 5), (2, 3)\}$ Then $R_6 = R_3 = \{(1, 5), (1, 3), (4, 4), (5, 4)\}$

(vii) $R_6 \circ R_4 = R^2$. For example, let $R_6 = \{(1, 2), (4, 3), (5, 2)\}$ and $R_4 = \{(2, 3), (4, 3), (5, 2)\}$ (2, 5), (3, 3)

Then $R_6 \circ R_4 = \{(1, 3), (1, 5), (4, 3), (5, 3), (5, 5)\} \rightarrow R^2$

- (viii) $R_6 \circ R_6 = R^2$. For example, let $R_6 = \{(1, 2), (2, 1), (2, 3), (3, 2), (3, 4)\}$ Then $R_6 \circ R_6 = \{(1, 1), (1, 3), (2, 2), (2, 4), (3, 1), (3, 3)\} \rightarrow R^2$
- Example 2.6 Determine whether the relation R on the set of all integers is reflexive, symmetric, antisymmetric and/or transitive, where a R b if and only if (i) $a \neq b$, (ii) $ab \geq 0$, (iii) $ab \geq 1$, (iv) a is a multiple of b, (v) $a \equiv b$ $(\text{mod } 7), (\text{vi}) | a - b| = 1, (\text{vii}) | a = b^2, (\text{viii}) | a \ge b^2.$
 - (i) ' $a \neq a$ ' is not true. Hence R is not reflexive $a \neq b \Rightarrow b \neq a$. $\therefore R$ is symmetric $a \neq b$ and $b \neq c$ does not necessarily imply that $a \neq c$. $\therefore R$ is not transitive Hence R is symmetric only.
 - (ii) $a^2 \ge 0$. $\therefore R$ is reflexive. $ab \ge 0 \Rightarrow ba \ge 0$. $\therefore R$ is symmetric. Consider (2, 0) and (0, -3), that belong to R. But $(2, -3) \notin R$, as 2(-3) <0. : R is not transitive.
 - :. R is reflexive, symmetric and not transitive.
 - (iii) ' $a^2 \ge 1$ ' need not be true, since a may be zero. $\therefore R$ is not reflexive. $ab \ge 1 \Rightarrow ba \ge 1$: R is symmetric.

 $ab \ge 1$ and $bc \ge 1 \Rightarrow$ all of a, b, c > 0 or < 0

If all of a, b, c > 0, least a = least b = least c = 1

 $ac \ge 1$

If all of a, b, c < 0, greatest a = greatest b = greatest c = -1

- $ac \ge 1$. Hence R is transitive.
- R is symmetric and transitive.
- (iv) a is a multiple of a. \therefore R is reflexive. If a is a multiple of b, b is not a multiple of a in general. But if a is a multiple of b and b is a multiple of a, then a = b.
 - R is antisymmetric.

When a is a multiple of b and b is a multiple of c, then a is a multiple of c.

R is transitive.

Thus R is reflexive, antisymmetric and transitive.

(v) (a-a) is a multiple of 7 : R is reflexive. When (a-b) is a multiple of 7, (b-a) is also a multiple of 7. $\therefore R$ is symmetric.

When (a-b) and (b-c) are multiples of 7, (a-b)+(b-c)=(a-c) is also a multiple of 7.

R is transitive.

Hence R is reflexive, symmetric and transitive.

(vi) $|a-a| \neq 1$. \therefore R is not reflexive $|a-b|=1 \Rightarrow |b-a|=1$. $\therefore R$ is symmetric.

 $|a-b|=1 \Rightarrow a-b=1 \text{ or } -1$

16-01=1 36-621 01-1

(1)

 $a \ge b^2$ and $b \ge a^2$ imply that a = b.. R is antisymmetric When $a \ge b^2$ and $b \ge c^2$, $a \ge c^2$: R is transitive Hence R is antisymmetric and transitive. **Example 2.7** Which of the following relations on $\{0, 1, 2, 3\}$ are equivalence relations? Find the properties of an equivalence relation that the others lack. (a) $R_1 = \{(0, 0), (1, 1), (2, 2), (3, 3)\}$ (b) $R_2 = \{(0, 0), (0, 2), (2, 0), (2, 2), (2, 3), (3, 2), (3, 3)\}$ (c) $R_3 = \{(0, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 3)\}$ (d) $R_4 = \{(0, 0), (1, 1), (1, 3), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$ (e) $R_5 = \{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 2), (3, 3)\}$ (a) R_1 is reflexive, symmetric and transitive. .. R₁ is an equivalence relation. (b) R_2 is reflexive R_2 is symmetric, but not transitive, since (3, 2) and (2, 0) $\in R_2$, but (3, 0) R_2 is not an equivalence relation. (c) R_3 is reflexive, symmetric and transitive. R_3 is an equivalence relation. (d) R_4 is reflexive and symmetric, but not transitive, since (1, 3) and $(3, 2) \in$ R_4 , but $(1, 2) \notin R_4$. $\therefore R_4$ is not an equivalence relation. (e) R_5 is reflexive, but not symmetric since $(1, 2) \in R$, but $(2, 1) \notin R$. Also R_5 is not transitive, since (2, 0) and (0, 1) $\in R$, but (2, 1) $\notin R$. :. R₅ is not an equivalence relation. Show that the following relations are equivalence relations: Example 2.8 (i) R_1 is the relation on the set of integers such that aR_1b if and only if a=bor a = -b. (ii) R_2 is the relation on the set of integers such that aR_2b if and only if $a \equiv b$ (mod m), where m is a positive integer > 1.1

(iii) Bisthe relation on the set of seal numbers such that a Robin and of only if ca-b) is an integer Scanned with CamScanne

(1) + (2) gives $a - c = \pm 2$ or 0

Hence *R* is symmetric only.

(vii) ' $a = a^2$ ' is not true for all integers.

 $a = b^2$ and $b = a^2$, for a = b = 0 or 1

 $a = b^2$ and $b = c^2$ does not simply $a = c^2$

i.e. |a - c| = 2 or 0

 $|a-c|\neq 1$

 \therefore R is not reflexive.

 \therefore R is antisymmetric.

 \therefore R is not transitive

 \therefore R is not reflexive.

Hence R is antisymmetric only. (viii) ' $a \ge a^2$ ' is not true for all integers.

i.e.