

Урок 24

Электрические цепи: постоянный электрический ток

Курс подготовки к вузовским олимпиадам 11 класса В электрической цепи, схема которой представлена на рисунке, определить величины токов, протекающих во всех ветвях. Внутренним сопротивлением источников пренебречь.

Электроизмерительные приборы

Задача №1.

На рисунке представлена схема фрагмента электрической цепи, состоящего из резисторов и идеальных амперметра и вольтметра. Известно, что $\mathsf{R}=1\ \mathsf{кOm}$.

К концам M и N этого фрагмента приложили постоянное напряжение, в результате чего амперметр показал силу тока $I=40\,$ мA. Что показал вольтметр?

Задача №2.

На рисунке представлена схема фрагмента электрической цепи, состоящего из резисторов и амперметров. Известно, что $R=2\ \kappa Om$.

К концам В и Е этого фрагмента приложили постоянное напряжение $U=17\,$ В. Найдите сумму показаний амперметров. Амперметры являются идеальными.

Задача №3.

Из четырёх одинаковых амперметров собрали цепь, которую подключили к источнику с постоянным напряжением.

Определите силу тока, текущего через перемычку AB, если сумма показаний всех амперметров $I_0 = 49\,$ мA. Сопротивление источника, перемычки и соединительных проводов много меньше сопротивления амперметра.

Задача №4.

На рисунке представлена схема фрагмента электрической цепи, состоящего из трёх одинаковых резисторов и трёх одинаковых вольтметров.

К концам A и B этого фрагмента приложили постоянное напряжение, в результате чего показания первого и второго вольтметров составили $U_1=10\ B$ и $U_2=4\ B$ соответственно. Что показал третий вольтметр?

Задача №5.

К концам В и Е фрагмента электрической цепи, схема которого приведена на рисунке, приложили постоянное напряжение. Тепловая мощность, выделяемая на резисторе с наименьшим сопротивлением составила Р.

Какие мощности выделяются на двух других резисторах?

Задача №6.

Фрагмент электрической цепи, схема которого приведена на рисунке, состоит из последовательно соединённых резистора и реостата.

К концам A и B этого фрагмента приложили постоянное напряжение $U_0=10\,$ B, в результате чего в цепи возник электрический ток. Передвигая ползунок реостата, определили, что при значениях силы тока $I_1=3\,$ A и $I_2=7\,$ A мощность, выделяемая на реостате, оказывается одинаковой. Найдите эту мощность.

Задача №7.

На рисунке представлена схема фрагмента электрической цепи, состоящего из одинаковых амперметров.

К концам M и N этого фрагмента приложили постоянное напряжение, в результате чего один из амперметров показал силу тока $10\,$ мA, а другой из них $-\,14\,$ мA. Чему равна сумма величин показаний всех амперметров?

Нелинейные элементы

Задача №1.

На рисунке слева приведена схема фрагмента электрической цепи, состоящего из двух одинаковых ламп накаливания, резистора сопротивлением $R=200~{\rm Om}$ и идеального амперметра. Вольт-амперная характеристика лампы накаливания приведена на рисунке справа. Определить показания амперметра, если напряжение на концах этого фрагмента составляет $U=9~{\rm B}$.

В случае несамостоятельного газового разряда зависимость силы тока I через газоразрядную трубку от напряжения на трубке U имеет вид, показанный на рисунке. При некотором напряжении U_0 на трубке ток через трубку достигает насыщения. Сила тока насыщения равна $I_0=10$ мкА. Если трубка, последовательно соединённая с некоторым баластным резистором, подключена к источнику с ЭДС E=2 кВ, то сила тока через трубку составляет $I_0/2$. Как надо изменить сопротивление баластного резистора, чтобы достичь тока насыщения?

Задача №3.

На рисунке изображена вольт-амперная характеристика двух соединённых параллельно элементов, один из которых — резистор сопротивлением $R=100~\mathrm{Om},$ а другой — неизвестный элемент Z. Постройте его вольт-амперную характеристику.

Задача №4.

На рисунке показана вольт-амперная характеристика некоторого нелинейного элемента. До напряжения U_0 ток через элемент отсутствует, а затем линейно растёт с напряжением. При включении такого элемента последовательно с источником постоянной ЭДС и баластным резистором, имеющим сопротивление $R_1=300\,$ кОм, через него протекает ток силой $I_1=0.5\,$ мА. При уменьшении сопротивления баластного резистора до $R_2=100\,$ кОм сила тока возрастает вдвое. Определите силу тока, который протечёт через элемент, если баластный резистор закоротить?

Задача №5.

В электрической цепи, схема которой представлена на рисунке, определить величину тока и напряжение на диоде. Все элементы считать идеальными.

mapenkin.ru

ПРЕЗЕНТАЦИЮ ПОДГОТОВИЛ

Михаил Александрович ПЕНКИН

- w /penkin
- /mapenkin
- fmicky@gmail.com