Álgebra Linear - CC/SI

Dr. Giannini Italino

Universidade Federal do Ceará - Campus de Crateús

Maio, 2025

2 Subespaço vetoriais

Espaços vetoriais

Na aula passada vimos a definição de espaço vetorial, ou seja:

Definição: Considere o conjunto V, não vazio, no qual as duas operações a seguir são definidas.

- (i) Adição de vetores: Associa a quaisquer vetores $u, v \in V$, a soma u + v em V;
- (ii) Multiplicação por escalar: Associa a qualquer vetor $u \in V$ e escalar $r \in K$ o produto ru em V.

Então dizemos que V é um espaço vetorial (sobre o conjunto de escalares K) se os oito axiomas a seguir forem verdadeiros:

Espaços vetoriais

Na aula passada vimos a definição de espaço vetorial, ou seja:

Definição: Considere o conjunto V, não vazio, no qual as duas operações a seguir são definidas.

- (i) Adição de vetores: Associa a quaisquer vetores $u, v \in V$, a soma u + v em V;
- (ii) **Multiplicação por escalar**: Associa a qualquer vetor $u \in V$ e escalar $r \in K$ o produto ru em V.

Então dizemos que V é um espaço vetorial (sobre o conjunto de escalares K) se os oito axiomas a seguir forem verdadeiros:

3 / 10

Aximoas

- (A1) Para quaisquer vetores $u, v, w \in V$ vale (u + v) + w = u + (v + w);
- (A2) Existe um vetor em V, denotado por 0, denominado vetor nulo, ou vetor zero, tal que u+0=0+u=u, para todo vetor $u\in V$;
- (A3) Para cada vetor $u \in V$ existe um vetor em V, que denotamos -u e denominamos simétrico de u, tal que u + (-u) = (-u) + u = 0;
- (A4) Para quaisquer vetores $u, v \in V$, temos u + v = v + u;
- (M1) Para quaisquer vetores $u, v \in V$ e escalar $r \in K$, temos r(u + v) = ru + rv;
- (M2) Para quaisquer escalares $r,s\in K$ e vetor $u\in V$, temos (r+s)u=ru+su;
- (M3) Para quaisquer escalares $r, s \in K$ e vetor $u \in V$, (rs)u = r(su)
- (M4) Para qualquer vetor $u \in V$, 1u = u, onde 1 é o escalar unitário de K

Aximoas

- (A1) Para quaisquer vetores $u, v, w \in V$ vale (u + v) + w = u + (v + w);
- (A2) Existe um vetor em V, denotado por 0, denominado vetor nulo, ou vetor zero, tal que u + 0 = 0 + u = u, para todo vetor $u \in V$;
- (A3) Para cada vetor $u \in V$ existe um vetor em V, que denotamos -u e denominamos simétrico de u, tal que u + (-u) = (-u) + u = 0;
- (A4) Para quaisquer vetores $u, v \in V$, temos u + v = v + u;
- (M1) Para quaisquer vetores $u, v \in V$ e escalar $r \in K$, temos r(u + v) = ru + rv;
- (M2) Para quaisquer escalares $r, s \in K$ e vetor $u \in V$, temos (r + s)u = ru + su;
- (M3) Para quaisquer escalares $r, s \in K$ e vetor $u \in V$, (rs)u = r(su)
- (M4) Para qualquer vetor $u \in V$, 1u = u, onde 1 é o escalar unitário de K

4 / 10

Aximoas

- (A1) Para quaisquer vetores $u, v, w \in V$ vale (u + v) + w = u + (v + w);
- (A2) Existe um vetor em V, denotado por 0, denominado vetor nulo, ou vetor zero, tal que u+0=0+u=u, para todo vetor $u\in V$;
- (A3) Para cada vetor $u \in V$ existe um vetor em V, que denotamos -u e denominamos simétrico de u, tal que u + (-u) = (-u) + u = 0;
- (A4) Para quaisquer vetores $u, v \in V$, temos u + v = v + u;
- (M1) Para quaisquer vetores $u, v \in V$ e escalar $r \in K$, temos r(u + v) = ru + rv;
- (M2) Para quaisquer escalares $r,s\in K$ e vetor $u\in V$, temos (r+s)u=ru+su;
- (M3) Para quaisquer escalares $r, s \in K$ e vetor $u \in V$, (rs)u = r(su);
- (M4) Para qualquer vetor $u \in V$, 1u = u, onde 1 é o escalar unitário de K.

4 / 10

Aximoas

- (A1) Para quaisquer vetores $u, v, w \in V$ vale (u + v) + w = u + (v + w);
- (A2) Existe um vetor em V, denotado por 0, denominado vetor nulo, ou vetor zero, tal que u+0=0+u=u, para todo vetor $u\in V$;
- (A3) Para cada vetor $u \in V$ existe um vetor em V, que denotamos -u e denominamos simétrico de u, tal que u + (-u) = (-u) + u = 0;
- (A4) Para quaisquer vetores $u, v \in V$, temos u + v = v + u;
- (M1) Para quaisquer vetores $u, v \in V$ e escalar $r \in K$, temos r(u+v) = ru + rv;
- (M2) Para quaisquer escalares $r,s\in K$ e vetor $u\in V$, temos (r+s)u=ru+su;
- (M3) Para quaisquer escalares $r, s \in K$ e vetor $u \in V$, (rs)u = r(su);
- (M4) Para qualquer vetor $u \in V$, 1u = u, onde 1 é o escalar unitário de K

4 / 10

Aximoas

- (A1) Para quaisquer vetores $u, v, w \in V$ vale (u + v) + w = u + (v + w);
- (A2) Existe um vetor em V, denotado por 0, denominado vetor nulo, ou vetor zero, tal que u+0=0+u=u, para todo vetor $u\in V$;
- (A3) Para cada vetor $u \in V$ existe um vetor em V, que denotamos -u e denominamos simétrico de u, tal que u + (-u) = (-u) + u = 0;
- (A4) Para quaisquer vetores $u, v \in V$, temos u + v = v + u;
- (M1) Para quaisquer vetores $u, v \in V$ e escalar $r \in K$, temos r(u + v) = ru + rv;
- (M2) Para quaisquer escalares $r,s\in K$ e vetor $u\in V$, temos (r+s)u=ru+su;
- (M3) Para quaisquer escalares $r, s \in K$ e vetor $u \in V$, (rs)u = r(su);
- (M4) Para qualquer vetor $u \in V$, 1u = u, onde 1 é o escalar unitário de K.

4 / 10

Aximoas

- (A1) Para quaisquer vetores $u, v, w \in V$ vale (u + v) + w = u + (v + w);
- (A2) Existe um vetor em V, denotado por 0, denominado vetor nulo, ou vetor zero, tal que u+0=0+u=u, para todo vetor $u\in V$;
- (A3) Para cada vetor $u \in V$ existe um vetor em V, que denotamos -u e denominamos simétrico de u, tal que u + (-u) = (-u) + u = 0;
- (A4) Para quaisquer vetores $u, v \in V$, temos u + v = v + u;
- (M1) Para quaisquer vetores $u, v \in V$ e escalar $r \in K$, temos r(u + v) = ru + rv;
- (M2) Para quaisquer escalares $r, s \in K$ e vetor $u \in V$, temos (r + s)u = ru + su;
- (M3) Para quaisquer escalares $r, s \in K$ e vetor $u \in V$, (rs)u = r(su);
- (M4) Para qualquer vetor $u \in V$, 1u = u, onde 1 é o escalar unitário de K.

4 / 10

Aximoas

- (A1) Para quaisquer vetores $u, v, w \in V$ vale (u + v) + w = u + (v + w);
- (A2) Existe um vetor em V, denotado por 0, denominado vetor nulo, ou vetor zero, tal que u+0=0+u=u, para todo vetor $u\in V$;
- (A3) Para cada vetor $u \in V$ existe um vetor em V, que denotamos -u e denominamos simétrico de u, tal que u + (-u) = (-u) + u = 0;
- (A4) Para quaisquer vetores $u, v \in V$, temos u + v = v + u;
- (M1) Para quaisquer vetores $u, v \in V$ e escalar $r \in K$, temos r(u + v) = ru + rv;
- (M2) Para quaisquer escalares $r, s \in K$ e vetor $u \in V$, temos (r + s)u = ru + su;
- (M3) Para quaisquer escalares $r, s \in K$ e vetor $u \in V$, (rs)u = r(su);
- (M4) Para qualquer vetor $u \in V$, 1u = u, onde 1 é o escalar unitário de K

4 / 10

Aximoas

- (A1) Para quaisquer vetores $u, v, w \in V$ vale (u + v) + w = u + (v + w);
- (A2) Existe um vetor em V, denotado por 0, denominado vetor nulo, ou vetor zero, tal que u+0=0+u=u, para todo vetor $u\in V$;
- (A3) Para cada vetor $u \in V$ existe um vetor em V, que denotamos -u e denominamos simétrico de u, tal que u + (-u) = (-u) + u = 0;
- (A4) Para quaisquer vetores $u, v \in V$, temos u + v = v + u;
- (M1) Para quaisquer vetores $u, v \in V$ e escalar $r \in K$, temos r(u + v) = ru + rv;
- (M2) Para quaisquer escalares $r, s \in K$ e vetor $u \in V$, temos (r + s)u = ru + su;
- (M3) Para quaisquer escalares $r, s \in K$ e vetor $u \in V$, (rs)u = r(su);
- (M4) Para qualquer vetor $u \in V$, 1u = u, onde 1 é o escalar unitário de K.

4 / 10

Veremos agora um importante conceito referente a espaços vetoriais, denominado de subespaço vetorial.

Definição: Sejam V um espaço vetorial e seja W um subconjunto de V. Dizemos que W é um subespaço de V quando o próprio W for um espaço vetorial (sobre o mesmo corpo de escalares em que V foi definido) em relação às operações de V de soma de vetores e de multiplicação de vetores por escalar.

Note que para mostrarmos que um conjunto W é um subespaço vetorial, precisamos mostrar que W satisfaz todos os oito axiomas da definição de um espaço vetorial. No entanto, se W for um subconjunto de um espaço vetorial V, então alguns desses axiomas valem automaticamente para W, pois naturalmente já valem para o espaço vetorial V.

O teorema a seguir fornece condições para identificarmos subespaços de um espaço vetorial dado

Veremos agora um importante conceito referente a espaços vetoriais, denominado de subespaço vetorial.

Definição: Sejam V um espaço vetorial e seja W um subconjunto de V. Dizemos que W é um subespaço de V quando o próprio W for um espaço vetorial (sobre o mesmo corpo de escalares em que V foi definido) em relação às operações de V de soma de vetores e de multiplicação de vetores por escalar.

Note que para mostrarmos que um conjunto W é um subespaço vetorial, precisamos mostrar que W satisfaz todos os oito axiomas da definição de um espaço vetorial.

No entanto, se W for um subconjunto de um espaço vetorial V, então alguns desses axiomas valem automaticamente para W, pois naturalmente já valem para o espaço vetorial V.

O teorema a seguir fornece condições para identificarmos subespaços de um espaço vetorial dado.

Veremos agora um importante conceito referente a espaços vetoriais, denominado de subespaço vetorial.

Definição: Sejam V um espaço vetorial e seja W um subconjunto de V. Dizemos que W é um subespaço de V quando o próprio W for um espaço vetorial (sobre o mesmo corpo de escalares em que V foi definido) em relação às operações de V de soma de vetores e de multiplicação de vetores por escalar.

Note que para mostrarmos que um conjunto W é um subespaço vetorial, precisamos mostrar que W satisfaz todos os oito axiomas da definição de um espaço vetorial. No entanto, se W for um subconjunto de um espaço vetorial V, então alguns desses axiomas valem automaticamente para W, pois naturalmente já valem para o espaço vetorial V.

O teorema a seguir fornece condições para identificarmos subespaços de um espaço vetorial dado

Veremos agora um importante conceito referente a espaços vetoriais, denominado de subespaço vetorial.

Definição: Sejam V um espaço vetorial e seja W um subconjunto de V. Dizemos que W é um subespaço de V quando o próprio W for um espaço vetorial (sobre o mesmo corpo de escalares em que V foi definido) em relação às operações de V de soma de vetores e de multiplicação de vetores por escalar.

Note que para mostrarmos que um conjunto W é um subespaço vetorial, precisamos mostrar que W satisfaz todos os oito axiomas da definição de um espaço vetorial. No entanto, se W for um subconjunto de um espaço vetorial V, então alguns desses axiomas valem automaticamente para W, pois naturalmente já valem para o espaço vetorial V.

O teorema a seguir fornece condições para identificarmos subespaços de um espaço vetorial dado.

Teorema: Seja W um subconjunto de um espaço vetorial V. Então W é um subespaço de V se valem as duas condições a seguir:

- (a) O vetor nulo $0 \in W$;
- (b) Dados quaisquer vetores $u,v\in W$ e escalar $r\in K$, então (i) a soma $u+v\in W$ e (ii) o múltiplo $ru\in W$.

Note que a propriedade (i) de (b) estabelece que o conjunto W é fechado em relação à adição, e a propriedade (ii) de (b) diz que W é fechado em relação à multiplicação por escalar. O exemplo abaixo ilustra a ideia de subespaço vetorial.

Teorema: Seja W um subconjunto de um espaço vetorial V. Então W é um subespaço de V se valem as duas condições a seguir:

- (a) O vetor nulo $0 \in W$;
- (b) Dados quaisquer vetores $u,v\in W$ e escalar $r\in K$, então (i) a soma $u+v\in W$ e (ii) o múltiplo $ru\in W$.

Note que a propriedade (i) de (b) estabelece que o conjunto W é fechado em relação à adição, e a propriedade (ii) de (b) diz que W é fechado em relação à multiplicação por escalar. O exemplo abaixo ilustra a ideia de subespaço vetorial.

Teorema: Seja W um subconjunto de um espaço vetorial V. Então W é um subespaço de V se valem as duas condições a seguir:

- (a) O vetor nulo $0 \in W$;
- (b) Dados quaisquer vetores $u,v\in W$ e escalar $r\in K$, então (i) a soma $u+v\in W$ e (ii) o múltiplo $ru\in W$.

Note que a propriedade (i) de (b) estabelece que o conjunto W é fechado em relação à adição, e a propriedade (ii) de (b) diz que W é fechado em relação à multiplicação por escalar. O exemplo abaixo ilustra a ideia de subespaço vetorial.

6 / 10

Ex.: Considere o conjunto $V=\mathbb{R}^3$. Seja W o subconjunto de V definido por

$$W = \{(x, y, z) : x = y = z\},\$$

então W é um subespaço vetorial de V.

De fato, primeiro observe que os elementos de W são vetores do \mathbb{R}^3 cujas três componentes são iguais, por exemplo: $w_1 = (1,1,1)$ e $w_2 = (-3,-3,-3)$.

Mais geralmente, se $w \in W$, então w é da forma w = (a, a, a), em que $a \in \mathbb{R}$

Sabemos que para que W seja subespaço de \mathbb{R}^3 , então tem que ter o elemento nulo de $V=\mathbb{R}^3$ e ser fechado em relação a adição e multiplicação por escalar. De fato, note que (0,0,0) é o vetor nulo de $V=\mathbb{R}^3$ e esse elemento também está em W, uma vez que as três componentes são iguais, logo $0\in W$.

Mostremos agora que W é fechado para a soma, isto é, sejam $u=(u_1,u_1,u_1)$ e $v=(v_1,v_1,v_1)$ elementos de W. Temos que $u+v=(u_1+v_1,u_1+v_1,u_1+v_1)$ que também pertence a W, uma vez que as três componentes de u+v são iguais.

[□▶◀**□**▶◀토▶◀토▶ | 돌 | 쒸٩@

7 / 10

Ex.: Considere o conjunto $V=\mathbb{R}^3$. Seja W o subconjunto de V definido por

$$W = \{(x, y, z) : x = y = z\},\$$

então W é um subespaço vetorial de V.

De fato, primeiro observe que os elementos de W são vetores do \mathbb{R}^3 cujas três componentes são iguais, por exemplo: $w_1 = (1, 1, 1)$ e $w_2 = (-3, -3, -3)$.

Mais geralmente, se $w \in W$, então w é da forma w = (a, a, a), em que $a \in \mathbb{R}$

Sabemos que para que W seja subespaço de \mathbb{R}^3 , então tem que ter o elemento nulo de $V=\mathbb{R}^3$ e ser fechado em relação a adição e multiplicação por escalar. De fato, note que (0,0,0) é o vetor nulo de $V=\mathbb{R}^3$ e esse elemento também está em W, uma vez que as três componentes são iguais, logo $0\in W$.

Mostremos agora que W é fechado para a soma, isto é, sejam $u=(u_1,u_1,u_1)$ e $v=(v_1,v_1,v_1)$ elementos de W. Temos que $u+v=(u_1+v_1,u_1+v_1,u_1+v_1)$ que também pertence a W, uma vez que as três componentes de u+v são iguais.

| ロ ト 4 個 ト 4 差 ト 4 差 ト 9 年 9 9 9 0

7 / 10

Ex.: Considere o conjunto $V=\mathbb{R}^3$. Seja W o subconjunto de V definido por

$$W = \{(x, y, z) : x = y = z\},\$$

então W é um subespaço vetorial de V.

De fato, primeiro observe que os elementos de W são vetores do \mathbb{R}^3 cujas três componentes são iguais, por exemplo: $w_1 = (1, 1, 1)$ e $w_2 = (-3, -3, -3)$.

Mais geralmente, se $w \in W$, então w é da forma w = (a, a, a), em que $a \in \mathbb{R}$.

Sabemos que para que W seja subespaço de \mathbb{R}^3 , então tem que ter o elemento nulo de $V=\mathbb{R}^3$ e ser fechado em relação a adição e multiplicação por escalar. De fato, note que (0,0,0) é o vetor nulo de $V=\mathbb{R}^3$ e esse elemento também está em W, uma vez que as três componentes são iguais, logo $0\in W$.

Mostremos agora que W é fechado para a soma, isto é, sejam $u=(u_1,u_1,u_1)$ e $v=(v_1,v_1,v_1)$ elementos de W. Temos que $u+v=(u_1+v_1,u_1+v_1,u_1+v_1)$ que também pertence a W, uma vez que as três componentes de u+v são iguais.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● ◆○○○

7 / 10

Ex.: Considere o conjunto $V=\mathbb{R}^3$. Seja W o subconjunto de V definido por

$$W = \{(x, y, z) : x = y = z\},\$$

então W é um subespaço vetorial de V.

De fato, primeiro observe que os elementos de W são vetores do \mathbb{R}^3 cujas três componentes são iguais, por exemplo: $w_1 = (1, 1, 1)$ e $w_2 = (-3, -3, -3)$.

Mais geralmente, se $w \in W$, então w é da forma w = (a, a, a), em que $a \in \mathbb{R}$.

Sabemos que para que W seja subespaço de \mathbb{R}^3 , então tem que ter o elemento nulo de $V=\mathbb{R}^3$ e ser fechado em relação a adição e multiplicação por escalar. De fato, note que (0,0,0) é o vetor nulo de $V=\mathbb{R}^3$ e esse elemento também está em W, uma vez que as três componentes são iguais, logo $0\in W$.

Mostremos agora que W é fechado para a soma, isto é, sejam $u=(u_1,u_1,u_1)$ e $v=(v_1,v_1,v_1)$ elementos de W. Temos que $u+v=(u_1+v_1,u_1+v_1,u_1+v_1)$ que também pertence a W, uma vez que as três componentes de u+v são iguais.

Ex.: Considere o conjunto $V=\mathbb{R}^3$. Seja W o subconjunto de V definido por

$$W = \{(x, y, z) : x = y = z\},\$$

então W é um subespaço vetorial de V.

De fato, primeiro observe que os elementos de W são vetores do \mathbb{R}^3 cujas três componentes são iguais, por exemplo: $w_1 = (1, 1, 1)$ e $w_2 = (-3, -3, -3)$.

Mais geralmente, se $w \in W$, então w é da forma w = (a, a, a), em que $a \in \mathbb{R}$.

Sabemos que para que W seja subespaço de \mathbb{R}^3 , então tem que ter o elemento nulo de $V=\mathbb{R}^3$ e ser fechado em relação a adição e multiplicação por escalar. De fato, note que (0,0,0) é o vetor nulo de $V=\mathbb{R}^3$ e esse elemento também está em W, uma vez que as três componentes são iguais, logo $0\in W$.

Mostremos agora que W é fechado para a soma, isto é, sejam $u=(u_1,u_1,u_1)$ e $v=(v_1,v_1,v_1)$ elementos de W. Temos que $u+v=(u_1+v_1,u_1+v_1,u_1+v_1)$ que também pertence a W, uma vez que as três componentes de u+v são iguais.

7 / 10

Finalmente, temos que mostrar que W é fechado para a multiplicação por escalar. Isto é, seja $u=(u_1,u_1,u_1)$ elemento de W e seja r um escalar real qualquer. Temos que $ru=(ru_1,ru_1,ru_1)$ que também pertence a W, uma vez que as três componentes de ru são iguais.

Logo, como as condições (i) e (ii) do teorema sobre subespaços foram satisfeitas, então podemos afirmar que o conjunto W é subespaço de $V = \mathbb{R}^3$.

Se qualquer uma das duas condições (i) e (ii) do teorema anterior não forem satisfeitas, então podemos afirmar que o conjunto dado não será subespaço vetorial.

Por exemplo, se no exemplo anterior o conjunto W fosse $W=\{(x,x,x+1):x\in\mathbb{R}\}$, então W não é subespaço de \mathbb{R}^3 , uma vez que o vetor nulo de \mathbb{R}^3 , isto é, o vetor 0=(0,0,0) não pertence a W, pois não existe nenhum valor de $x\in\mathbb{R}$ tal que (x,x,x+1)=(0,0,0), ou seja, o vetor nulo não pode ser escrito como um vetor no formato dos vetores de W. Logo W não é subespaço de \mathbb{R}^3 .

Finalmente, temos que mostrar que W é fechado para a multiplicação por escalar. Isto é, seja $u=(u_1,u_1,u_1)$ elemento de W e seja r um escalar real qualquer. Temos que $ru=(ru_1,ru_1,ru_1)$ que também pertence a W, uma vez que as três componentes de ru são iguais.

Logo, como as condições (i) e (ii) do teorema sobre subespaços foram satisfeitas, então podemos afirmar que o conjunto W é subespaço de $V = \mathbb{R}^3$.

Se qualquer uma das duas condições (i) e (ii) do teorema anterior não forem satisfeitas, então podemos afirmar que o conjunto dado não será subespaço vetorial.

Por exemplo, se no exemplo anterior o conjunto W fosse $W=\{(x,x,x+1):x\in\mathbb{R}\}$, então W não é subespaço de \mathbb{R}^3 , uma vez que o vetor nulo de \mathbb{R}^3 , isto é, o vetor 0=(0,0,0) não pertence a W, pois não existe nenhum valor de $x\in\mathbb{R}$ tal que (x,x,x+1)=(0,0,0), ou seja, o vetor nulo não pode ser escrito como um vetor no formato dos vetores de W. Logo W não é subespaço de \mathbb{R}^3 .

Finalmente, temos que mostrar que W é fechado para a multiplicação por escalar. Isto é, seja $u=(u_1,u_1,u_1)$ elemento de W e seja r um escalar real qualquer. Temos que $ru=(ru_1,ru_1,ru_1)$ que também pertence a W, uma vez que as três componentes de ru são iguais.

Logo, como as condições (i) e (ii) do teorema sobre subespaços foram satisfeitas, então podemos afirmar que o conjunto W é subespaço de $V = \mathbb{R}^3$.

Se qualquer uma das duas condições (i) e (ii) do teorema anterior não forem satisfeitas, então podemos afirmar que o conjunto dado não será subespaço vetorial.

Por exemplo, se no exemplo anterior o conjunto W fosse $W=\{(x,x,x+1):x\in\mathbb{R}\}$, então W não é subespaço de \mathbb{R}^3 , uma vez que o vetor nulo de \mathbb{R}^3 , isto é, o vetor 0=(0,0,0) não pertence a W, pois não existe nenhum valor de $x\in\mathbb{R}$ tal que (x,x,x+1)=(0,0,0), ou seja, o vetor nulo não pode ser escrito como um vetor no formato dos vetores de W. Logo W não é subespaco de \mathbb{R}^3 .

8 / 10

Finalmente, temos que mostrar que W é fechado para a multiplicação por escalar. Isto é, seja $u=(u_1,u_1,u_1)$ elemento de W e seja r um escalar real qualquer. Temos que $ru=(ru_1,ru_1,ru_1)$ que também pertence a W, uma vez que as três componentes de ru são iguais.

Logo, como as condições (i) e (ii) do teorema sobre subespaços foram satisfeitas, então podemos afirmar que o conjunto W é subespaço de $V = \mathbb{R}^3$.

Se qualquer uma das duas condições (i) e (ii) do teorema anterior não forem satisfeitas, então podemos afirmar que o conjunto dado não será subespaço vetorial.

Por exemplo, se no exemplo anterior o conjunto W fosse $W=\{(x,x,x+1):x\in\mathbb{R}\}$, então W não é subespaço de \mathbb{R}^3 , uma vez que o vetor nulo de \mathbb{R}^3 , isto é, o vetor 0=(0,0,0) não pertence a W, pois não existe nenhum valor de $x\in\mathbb{R}$ tal que (x,x,x+1)=(0,0,0), ou seja, o vetor nulo não pode ser escrito como um vetor no formato dos vetores de W. Logo W não é subespaço de \mathbb{R}^3 .

8 / 10

Intersecção de subespaços

O teorema abaixo afirma que se tivermos subespaços vetoriais de um mesmo espaço vetorial, então a intersecção desses subespaços é um novo subespaço do espaço vetorial.

Teorema: Se W_1 e W_2 são subespaços do espaço vetorial V, então a intersecção $W_1 \cap W_2$ é subespaço de V.

É bem fácil argumentar esse teorema, pois note que se W_1 e W_2 são subespaços de V, então ambos contem o elemento nulo de V, logo $0 \in W_1 \cap W_2$. Por outro lado, note que se $u_1, u_2 \in W_1 \cap W_2$, então, por definição de intersecção, temos que $u_1, u_2 \in W_1$ e $u_1, u_2 \in W_2$, logo como W_1 e W_2 são subespaços, sabemos que $u_1 + u_2 \in W_1$ e $u_1 + u_2 \in W_2$, logo $u_1 + u_2 \in W_1 \cap W_2$. Com uma ideia similar concluímos que $W_1 \cap W_2$ é também fechado para a multiplicação por escalar.

Intersecção de subespaços

O teorema abaixo afirma que se tivermos subespaços vetoriais de um mesmo espaço vetorial, então a intersecção desses subespaços é um novo subespaço do espaço vetorial.

Teorema: Se W_1 e W_2 são subespaços do espaço vetorial V, então a intersecção $W_1 \cap W_2$ é subespaço de V.

É bem fácil argumentar esse teorema, pois note que se W_1 e W_2 são subespaços de V, então ambos contem o elemento nulo de V, logo $0 \in W_1 \cap W_2$. Por outro lado, note que se $u_1, u_2 \in W_1 \cap W_2$, então, por definição de intersecção, temos que $u_1, u_2 \in W_1$ e $u_1, u_2 \in W_2$, logo como W_1 e W_2 são subespaços, sabemos que $u_1 + u_2 \in W_1$ e $u_1 + u_2 \in W_2$, logo $u_1 + u_2 \in W_1 \cap W_2$. Com uma ideia similar concluímos que $W_1 \cap W_2$ é também fechado para a multiplicação por escalar.

9 / 10

Ex.: Seja V=M(n,n) o espaço vetorial de todas as matrizes reais de ordem n, com as definições usuais de adição e multiplicação por escalar. Seja ainda

 $W_1 = \{ \mathsf{matrizes} \ \mathsf{triangulares} \ \mathsf{superiores} \ \mathsf{de} \ \mathsf{ordem} \ \mathsf{n} \} \ \mathsf{e}$

 $W_2 = \{\text{matrizes triangulares inferiores de ordem n}\}$. Não é difícil argumentar que os conjuntos W_1 e W_2 são subespaços vetoriais de V = M(n, n) (Exercício!).

Pelo teorema anterior, sabemos que $W_1 \cap W_2$ é também um subespaço de V = M(n, n) Note que $W_1 \cap W_2$ é o subespaço formado por todas as matrizes diagonais de ordem n, ou seja, as matrizes que são, simultaneamente, triangular superior e inferior.

Ex.: Seja V=M(n,n) o espaço vetorial de todas as matrizes reais de ordem n, com as definições usuais de adição e multiplicação por escalar. Seja ainda

 $\mathit{W}_1 = \{\mathsf{matrizes}\ \mathsf{triangulares}\ \mathsf{superiores}\ \mathsf{de}\ \mathsf{ordem}\ \mathsf{n}\}\ \mathsf{e}$

 $W_2 = \{\text{matrizes triangulares inferiores de ordem n}\}$. Não é difícil argumentar que os conjuntos W_1 e W_2 são subespaços vetoriais de V = M(n,n) (Exercício!).

Pelo teorema anterior, sabemos que $W_1\cap W_2$ é também um subespaço de V=M(n,n). Note que $W_1\cap W_2$ é o subespaço formado por todas as matrizes diagonais de ordem n, ou seja, as matrizes que são, simultaneamente, triangular superior e inferior.