Homework 3 Stat 215A, Fall 2024

Due: push a homework3.pdf file Gradescope by Friday, October 18 23:59

1 Ordinary Least Squares

Suppose that we observe our usual data matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$ and response vector $\mathbf{y} \in \mathbb{R}^n$, where n is the number of samples/observations and p is the number of features. Suppose also that \mathbf{X} has rank p < n. Under this setting, the ordinary least squares (OLS) estimator is given by

$$\hat{\boldsymbol{\beta}}_{OLS} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{X}\,\boldsymbol{\beta}\|_2^2.$$

- 1. Provide an expression for $\hat{\boldsymbol{\beta}}_{OLS}$ in terms of **X** and **y** by solving the optimization problem above. Why do we require the assumption that rank(**X**) = p < n?
- 2. Show that the OLS predictions $\hat{\mathbf{y}} = \mathbf{X} \, \hat{\boldsymbol{\beta}}_{OLS}$ can be written as $\hat{\mathbf{y}} = \mathbf{H} \, \mathbf{y}$, where $\mathbf{H}^2 = \mathbf{H}$.
- 3. Prove that the residuals $\hat{\mathbf{r}} = \mathbf{y} \hat{\mathbf{y}}$ are orthogonal to the OLS predictions $\hat{\mathbf{y}}$. Draw a picture to show what this means geometrically.

2 Miscellaneous

What was the original motivation for the development of the Ridge regression algorithm? What was the original motivation for the development of the LASSO algorithm?