CSCI 341 Workshop 3

Nonregular Languages September 26, 2025

Problem 1 (Same Number). Show that the following language is not regular.

 $L = \{w \in \{0,1\} \mid w \text{ contains the same number of 0s as it does 1s}\}$

Problem 2 (Linear Combination). Show that the following languages are not regular.

(1)
$$L_1 = \{a^n b^n c^n \mid n \in \mathbb{N}\}$$

(2)
$$L_2 = \{a^n b^{2n-1} \mid n \in \mathbb{N}\}$$

(3)
$$L_3 = \{a^{3n+1}b^{2n-1} \mid n \in \mathbb{N}\}$$

Problem 3 (Less Than). Show that the language

$$L_4 = \{a^n b^m \mid n, m \in \mathbb{N} \text{ and } n < m\}$$

is not regular.

Problem 4 (Balanced Parentheses). A string of parentheses, i.e.,) and (, is called ii¿balancedi/i¿ if every left-parenthese (is eventually followed by a unique iiċmatchingi/i¿ right-parenthese). For example, the following strings of parentheses are not balanced:

but the following strings of parentheses are:

$$\varepsilon$$
, (), (())(), ((())())()

Let $A = \{(,)\}$. Prove that the language

$$L = \{ w \in A^* \mid w \text{ is balanced} \}$$

is nonregular.

Problem 5 (Palindromes). Now let $A = \{0,1\}$ and recall that for any word $w = a_1 a_2 \cdots a_n$, we define $w^{\text{op}} = a_n a_{n-1} \cdots a_2 a_1$. Consider the language below:

$$L_{pal} = \{ w \in A^* \mid w =^{\mathrm{op}} \}$$

The words in \mathcal{L}_{pal} are precisely the palindromes. Show that \mathcal{L}_{pal} is not regular.