Перязева Юлия Валерьевна

Доцент кафедры ВТ

Теория автоматов

Конечные автоматы с выходом

Основные понятия и

определения

# Содержание

- 1. Основные понятия и определения
- 2. Способы задания
- 3. Автоматное отображение. Информативное дерево

# Детерминированный конечный автомат-преобразователь

Будем считать, что конечный автомат с выходом (КАВ) (автомат-преобразователь) имеет один вход, на который может подаваться за один такт один символ из алфавита входа  $A_{BX} = \{a_0, a_1, \ldots, a_n\}$ 

и один выход, который может принимать в каждый такт одно значение из алфавита выхода  $B_{\mathit{BbIX}} = \{b_0, b_1, \dots, b_{\mathit{s}}\}.$ 

КАВ может находиться в одном состоянии из конечного множества состояний  $Q=\{q_0,q_1,\ldots,q_{r-1}\}.$ 

Определение. Конечным автоматом  $\mathit{Мили}$  с выходом (автоматом-преобразователем) называется система  $< A_{\mathit{BX}}, B_{\mathit{BMX}}, Q, \rho, \lambda >$ , где

- функция выхода:  $\rho: A_{BX} \times Q \to B_{BbIX}$  функция выхода, которая указывает что нужно подать на выход, если на вход получен некоторый символ  $a_j \in A_{BX}$  и в этот момент КАВ находился в состоянии  $q_i \in Q$ ;
- $\lambda: A_{BX} \times Q \to Q$  функцию перехода , которая указывает в какое состояние должен перейти КАВ в следующий момент, если на вход получен некоторый символ  $a_j \in A_{BX}$  и в этот момент КАВ находился в состоянии  $q_i \in Q$ ;

Определение. Конечным автоматом Mypa с выходом (автоматом-преобразователем) называется система  $< A_{BX}, B_{BblX}, Q, \delta, \lambda>$ , где

- $\lambda:A_{BX}\times Q\to Q$  функцию перехода , которая указывает в какое состояние должен перейти КАВ в следующий момент, если на вход получен некоторый символ  $a_j\in A_{BX}$  и в этот момент КАВ находился в состоянии  $q_i\in Q$ ;

Если не указано, в каком состоянии находился КАВ в начальный момент времени t=0, то будем говорить, что совокупность  $< A_{BX}, B_{BMX}, Q, \rho, \lambda >$  задает неинициальный КАВ.

В инициальных же КА <  $A_{BX},$   $B_{BЫX},$  Q,  $\rho,$   $\lambda,$   $q_0>$  начальное состояние фиксировано  $q_0$ , т. е. они начинают функционировать из одного и того же состояния.

# Содержательное понимание КАВ (Мили)

Содержательно КАВ <  $A_{BX}, B_{BMX}, Q, \rho, \lambda, q_0 >$  можно понимать в виде абстрактного устройства (преобразователя):



Фунционирование KAB  $< A_{BX}, B_{BMX}, Q, \rho, \lambda, q_1 > :$ 



$$t=1$$
  $b_{i_1}=
ho(ai_1,q_1)$ 

Фунционирование KAB  $< A_{BX}, B_{BbIX}, Q, \rho, \lambda, q_1 > :$ 



$$t = 1 \ b_{i_1} = 
ho(ai_1, q_1) \ q_{i_2} = \lambda(ai_1, q_1)$$

Фунционирование KAB <  $A_{BX}, B_{BMX}, Q, \rho, \lambda, q_1 > :$ 



$$t = 1$$
 $b_{i_1} = 
ho(ai_1, q_1)$ 
 $q_{i_2} = \lambda(ai_1, q_1)$ 
 $t = 2$ 

Фунционирование KAB <  $A_{BX}, B_{BMX}, Q, \rho, \lambda, q_1 > :$ 



$$t=1$$
 $b_{i_1}=
ho(ai_1,q_1)$ 
 $q_{i_2}=\lambda(ai_1,q_1)$ 
 $t=2$ 
 $b_{i_2}=
ho(ai_2,q_{i_2})$ 
 $q_{i_3}=\lambda(ai_2,q_{i_2})$ 
...

# Функционирование КАВ (Мура)

Фунционирование KAB <  $A_{BX}, B_{BMX}, Q, \delta, \lambda, q_1 > :$ 



$$t=1$$
  $oldsymbol{q_{i_2}}=\lambdaig(\mathit{ai}_1,\mathit{q}_1ig)$ 

# Функционирование КАВ (Мура)

Фунционирование KAB <  $A_{BX}, B_{BMX}, Q, \delta, \lambda, q_1 > :$ 



$$t=1 \ q_{i_2} = \lambda(ai_1,q_1) \ b_{i_1} = \delta(q_{i_2})$$

# Функционирование КАВ (Мура)

Фунционирование KAB  $< A_{BX}, B_{BMX}, Q, \delta, \lambda, \frac{q_1}{2} > :$ 



$$t=1 \ oldsymbol{q_{i_2}} = \lambda(ai_1,q_1) \ b_{i_1} = \delta(q_{i_2}) \ t = 2 \ oldsymbol{q_{i_3}} = \lambda(ai_2,q_{i_2}) \ b_{i_2} = \delta(q_{i_3}) \ \ldots$$

Способы задания

## Содержание

- 1. Основные понятия и определения
- 2. Способы задания
- 3. Автоматное отображение. Информативное дерево

## Конечный автомат. Способы задания

КАВ может быть задан одним из трех способов:

- 1. автоматная таблица, обладает такими качествами как компактность и простота оформления;
- 2. **диаграмма**, обладает такими качествами, как наглядность и информативность;
- 3. канонические уравнения.

#### Таблица

Будем говорить, что КАВ (Мили) задан в виде *автоматной таблицы* (таблицами), если приведена таблица, в которой по горизонтали указаны все внутренние состояния из Q, а по вертикали все символы из  $A_{BX}$  (или наоборот). На пересечении строки  $a_j$  и столбца  $q_i$  указывается значения  $\rho(a_j,q_i)$  и  $\lambda(a_j,q_i)$ .

Например, пусть КА задан автоматной таблицей вида:

|   | $q_0$        | $q_1$   | $q_2$        |
|---|--------------|---------|--------------|
| а | $B/q_1$      | $r/q_1$ | $a/q_2$      |
| 6 | $\Gamma/q_0$ | $A/q_2$ | $\Gamma/q_0$ |
| В | $A/q_2$      | $a/q_2$ | $B/q_2$      |

$$A_{BX} = \{a, 6, 8\},$$
  
 $B_{BbIX} = \{a, 8, r, A\},$   
 $Q = \{q_0, q_1, q_2\}.$ 

## Диаграмма

Каждому состоянию КАВ на плоскости ставится в соответствие точка (окружность). Если при подаче на вход символа  $a_k$  КАВ переходит из состояния  $q_i$  в состояние  $q_j$  и на выходе формируется сигнал  $a_s$ , то соответствующие точки (окружности) соединяются дугой со стрелкой, рядом с которой помещается указание о входном и выходном сигнале



# Способы задания

$$A_{BX} = \{a, 6, B\},$$
  
 $B_{BbIX} = \{a, B, \Gamma, A\},$   
 $Q = \{q_0, q_1, q_2\}.$ 

|   | <b>q</b> 0        | $q_1$   | $q_2$        |  |  |
|---|-------------------|---------|--------------|--|--|
| а | $B/q_1$           | $r/q_1$ | $a/q_2$      |  |  |
| 6 | $\Gamma/q_0$      | $A/q_2$ | $\Gamma/q_0$ |  |  |
| В | $\mathcal{A}/q_2$ | $a/q_2$ | $B/q_2$      |  |  |



В задачах на построение КАВ необходимо построить диаграмму или автоматную таблицу КАВ, выполняющего определенные, четко сформулированные операции с последовательностями символов из  $A_{RX}$ .

```
При рассмотрении примеров работы задаваемого КАВ, будем считать, что сигналы подаются и считываются по очереди справа налево. Например, запись 0312 \to 2110 обозначает, что в момент t=0 на вход подается символ 2, КАВ преобразует его в 0; в момент t=1 на входе 1, на выходе 1; в момент t=2 на входе 3, на выходе 1; в момент t=3 на входе 0, на выходе 2.
```

 $A_{BX} = \{0,1,2\},\ B_{BIJX} = \{0,1,2,3,4\}.$  Построить КАВ, который выдает первый символ входной последовательности без изменения, и далее для каждого поступившего числа – его сумму с предыдущим.

Пример работы:  $1220100212 \longrightarrow 3421102332$ .

Выделим первоначальное состояние в некоторое особое, в которое больше КАВ в процессе работы не возвращается. Помимо этого, введем еще три состояния: в  $q_1$  автомат переходит, получив 0, в  $q_2$  – получив 1, в  $q_3$  получив 2.

Находясь в  $q_0$  и получив некоторый сигнал  $a\in A_{BX}$ , автомат переходит в  $q_{a+1}$ , на выход подается a; находясь в  $q_{a+1}$  и получив  $b\in A_{BX}$ , автомат переходит в  $q_{b+1}$ , на выход подается  $a+b\in B_{BbIX}$ .

Автоматная таблица имеет вид:

|   | $q_0$   | $q_1$   | $q_2$   | <b>q</b> <sub>3</sub> |
|---|---------|---------|---------|-----------------------|
| 0 | $0/q_1$ | $0/q_1$ | $1/q_1$ | $2/q_1$               |
| 1 | $1/q_2$ | $1/q_2$ | $2/q_2$ | $3/q_2$               |
| 2 | $2/q_3$ | $2/q_3$ | $3/q_3$ | $4/q_3$               |



#### Канонические уравнения. Автомат Мили

Детерменированный конечный автомат-преобразователь  $< A_{BX}, B_{BbIX}, Q, \rho, \lambda >$  функционирует в дискретные моменты времени  $t=0,1,2,\ldots$ 

Если рассматривать автомат с n входами  $x_1, \ldots, x_n$ , на которые могут подаваться символы конечного алфавита  $A_{BX}$ , m выходов  $y_1, \ldots, y_m$  каждый из которых может принимать значения из конечного алфавита  $B_{BbX}$ .

Если обозначить через  $x_i(t), y_i(t), q(t)$  значения входа  $x_i$ , выхода  $y_i$  и состояния q в момент времени t, то работа автомата описывается уравнениями:

$$q(t+1) = \lambda(x_1(t), \dots, x_n(t), q(t)), y_j(t) = \rho_j(x_1(t), \dots, x_n(t), q(t))(j = 1, \dots, m),$$

которые называются каноническими.

#### Канонические уравнения. Пример

Последовательный двоичный сумматор, который может складывать два двоичных числа произвольной разрядности.

Входы  $x_1$  и  $x_2$ , один выход y.  $A_{BX}=B_{B b l X}=\{0,1\}$ , и два состояния, соответствующие наличию и отсутствию переноса.

Функционирование начинает с q(0)=0, инициальный автомат. Канонические уравнения последовательного сумматора могут быть записаны в виде:

$$\left. \begin{array}{l} q(t+1) = x_1(t)x_2(t) \lor q(t)(x_1(t) \oplus x_2(t)), \\ y(t) = x_1(t) \oplus x_2(t) \oplus q(t), \\ q(0) = 0 \end{array} \right\}$$

# Последовательный двоичный сумматор. Пример

$$A_{BX} = \{(00), (01), (10), (11)\}, \ B_{BbIX} = \{0, 1\}, \ Q = \{0, 1\}$$
  
 $x(t) = (x_1(t), x_2(t))$ 

#### Канонические уравнения:

$$\left. \begin{array}{l} q(t+1) = x_1(t)x_2(t) \lor q(t)(x_1(t) \oplus x_2(t)), \\ y(t) = x_1(t) \oplus x_2(t) \oplus q(t), \\ q(0) = 0. \end{array} \right\}$$

#### Диаграмма:



#### Таблица переходов

| таолица переходов.   |      |      |      |      |  |  |
|----------------------|------|------|------|------|--|--|
| $Q \setminus A_{BX}$ | (00) | (01) | (10) | (11) |  |  |
| 0                    | 0    | 0    | 0    | 1    |  |  |
| 1                    | 0    | 1    | 1    | 1    |  |  |

#### Таблица выходов:

| The second secon |      |      |      |      |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|--|
| $B_{B \mapsto X} \setminus A_{B \times}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (00) | (01) | (10) | (11) |  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0    | 1    | 1    | 0    |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1    | 0    | 0    | 1    |  |

#### Канонические уравнения. Автомат Мили

В качестве основной модели рассматриваем автоматы с 1 входом x и 1 выходом y.

Конечный автомат <  $A_{BX},$   $B_{BMX},$  Q,  $\rho,$   $\lambda,$   $q_0>$  строится по следующим правилам, каноническим уравнениям автомата:

$$\left. \begin{array}{l} q(t+1) = \lambda(x(t), q(t)), \\ y(t) = \rho(x(t), q(t)), \\ q(0) = q_0. \end{array} \right\}$$

#### Канонические уравнения. Автоматы Мура

В автомате Мура значение выхода однозначно определяется состоянием в тот же момент и не зависит от входного сигнала. Канонические уравнения автомата Мура имеют вид:

$$\left. egin{aligned} q(t+1) &= \lambda(x(t),q(t)), \ y(t) &= \delta(q(t)). \end{aligned} 
ight.$$

# Автоматы Мура. Пример

Построить автомат, на вход которого могут поступать монеты 1, 2 и 5 рублей. Автомат выдает сигнал 4, если сумма опущенных монет четная, и 4, если нечетная.

$$A_{BX} = \{1, 2, 5\}, \; B_{BbIX} = \{\, \mathit{Y}, \mathit{H}\,\}, \; Q = \{0, 1\}$$

#### Таблица:

| Ввых | $Q \setminus A_{BX}$ | 1 | 2 | 5 |
|------|----------------------|---|---|---|
| Н    | 1                    | 0 | 1 | 0 |
| Ч    | 0                    | 1 | 0 | 1 |
|      |                      |   |   |   |

#### Диаграмма:



#### Канонические уравнения:

$$\left. \begin{array}{l} q(t+1) = (q(t) + x(t)) \ mod \ 2, \\ y(t) = \delta(q(t)), \\ q(0) = 0 \end{array} \right\}$$

Автоматное отображение.

Информативное дерево

## Содержание

- 1. Основные понятия и определения
- 2. Способы задания
- 3. Автоматное отображение. Информативное дерево

## Автоматное отображение

В результате работы конечного автомата

 $\mathfrak{A}=< A_{\mathit{BX}}, B_{\mathit{BbIX}}, Q, \rho, \lambda, q_0>$  слово  $a\in A^\star$  преобразуется в слово  $b\in B^\star$ , где  $A^\star$  множество всех слов алфавита  $A_{\mathit{BX}},\ B^\star$  множество всех слов алфавита  $B_{\mathit{BbIX}}.$ 

T.e. конечный автомат A определяет некоторую (словарную) функцию

$$f_{\mathfrak{A}}: A^{\star} \rightarrow B^{\star}$$

которую будем называть автоматным отображением.

#### Автоматное отображение

Автоматная функция удовлетворяет следующим условиям:

- сохраняет длину преобразуемого слова;
- осуществляет преобразование совпадающих начальных отрезков входных слов в совпадающие начальные отрезки соответствующих выходных слов.

#### Автоматное отображение

Функция

$$f:A^{\star}\rightarrow B^{\star}$$

называется автоматной, если найдется такой конечный автомат  $\mathfrak{A}=<A_{\mathit{BX}},B_{\mathit{BbIX}},Q,
ho,\lambda,q_0>$ , что  $f_{\mathfrak{A}}=f$  .

С множеством  $A^*$  можно связать некоторое бесконечное дерево T. Пусть  $A = \{a_1, a_2, \ldots, a_n\}$ . Возьмем любую точку и назовем ее корнем дерева. Из корня выпустим n ребер, столько, сколько элементов во входном алфавите, концы назовем вершинами первого яруса. Из каждой вершины первого яруса выпустим n ребер, которые назовем вершинами второго яруса и т.д.





Ветви дерева T соответствуют последовательностям  $x(1)x(2)\dots x(t)\dots$ , причем это соответствие взаимнооднозначное. Будем считать, что ребра, соответствующие буквам алфавита  $A_{BX}=\{a_1,a_2,\dots,a_n\}$ , идут слева направо (т.е. крайнее левое ребро соответствует букве  $a_1$ , следующее — букве  $a_2$ , крайнее правое — букве  $a_n$ ).

На рисунке дерево, построенное для для трехэлементного алфавита, например,  $A_{BX} = \{a, b, c\}$ . Тогда ветвь дерева отмеченная жирной линией будет соответствовать последовательности  $abcb\ldots$ , а ветвь, отмеченная пунктирной линией,  $-bcb\ldots$ 



Пусть конечный автомат  $< A_{BX}, B_{BbIX}, Q, \rho, \lambda, q_0 >$  определяет функцию  $f: A^* \to B^*$ . Построим дерево T, соответствующее множеству  $A^*$  и пометим его ребра соответствующими буквами алфавита B.

Рассмотрим последовательность  $w=x(1)x(2)\dots x(t)\dots$  которая преобразуется в последовательность  $f(w)=y(1)y(2)\dots y(t)\dots$ , тогда ребра соответствующей последовательности w ветви дерева пометим символами  $y(1),y(2),\dots,y(t),\dots$  Так нужно поступить с каждой ветвью, каждое ребро получит ровно одну отметку.

Дерево T, ребра которого помечены вышеописанным способом, назовем **информативным деревом**, соответствующим функции f и обозначим  $T_f$ .

# Информативное дерево. Пример 1

$$A_{\mathit{BX}} = \{0,1\}$$
,  $B_{\mathit{BЫX}} = \{0,1\}$ ,рассмотрим функцию  $f:A^\star \to B^\star$ :

$$y(t) = \left\{egin{array}{l} x(t) ext{ при } t = 1, \ (x(t) + x(t-1)) mod 2 ext{ при } t \geq 2; \end{array}
ight.$$

Информативное дерево функции имеет вид:



Наоборот, если дано дерево T для  $A^*$ , то пометив его ребра буквами из произвольным образом, мы получим информативное дерево некоторой функции f, которая будет однозначно отображать входные слова в выходные. Но для того, чтобы эта функция определяля конечный автомат (конечная память), требуется выполнение еще одного условия.



Для любой вершины v дерева обозначим  $T_f(v)$  поддерево с корнем в этой вершине. Две вершины эквивалентны  $v \sim v^{'}$ , если у деревьев  $T_f(v)$  и  $T_f(v^{'})$  соответствующие друг другу ребра имеют одинаковые пометки. Если множество вершин информативного дерева  $T_f$  разбивается на конечное число классов эквивалентности, то тогда f — автоматная функция. Каждому классу эквивалентности в автомате соответствует внутреннее состояние.

## Информативное дерево. Пример 1

В дереве каждому ребру поставлен в соответствие один символ, задано взаимнооднозначное соответствие и все вершины в дереве делятся на два вида::



Информативное дерево  $T_f$  имеет конечное число классов эквивалентности, два класса, следовательно функция является автоматной и может быть реализована конечным автоматом с двумя состояниями, состояние соответствует классу вершин.

$$A_{BX}=\{0,1\},\ B_{BbIX}=\{0,1\},\$$
функция  $f:\ A^{\star} o B^{\star}$ : 
$$y(t)=\left\{egin{array}{l} x(t)\ \text{при}\ t=1,\\ (x(t)+x(t-1))\ \text{mod}\ 2\ \text{при}\ t\geq 2; \end{array}
ight.$$

Диаграмма автомата:



$$A_{BX} = \{0, 1\}, B_{BbIX} = \{0, 1\}.$$

Рассмотрим функцию  $f:A^\star \to B^\star$ , такую, что последовательность

$$x(1)x(2)\ldots x(t)\ldots$$

преобразуется в последовательность

$$0x(1)x(2)\ldots x(t-1)\ldots$$

Такая функция f называется функцией единичной задержки.

Содержательно, она задерживает элемент входной последовательности на один такт работы и затем записывает его в выходную последовательность. На первом такте работы она выдает 0.

Покажем, что функция f задает автоматное отображение.

Построим несколько ярусов информативного дерева заданной функции:



Все вершины разбиваются на 2 класса эквивалентности: первый класс вершины  $0,1,3,5,\ldots$ , второй класс  $-2,4,6,\ldots$ 

#### Диаграмма:



#### Таблица переходов:

| $Q \setminus A_{BX}$ | 0 | 1 |
|----------------------|---|---|
| 0                    | 0 | 1 |
| 1                    | 0 | 1 |

Таблица выходов:

| $Q \setminus A_{BX}$ | 0 | 1 |
|----------------------|---|---|
| 0                    | 0 | 0 |
| 1                    | 1 | 1 |

#### Канонические уравнения:

$$\left\{egin{array}{l} q(t+1)=x(t),\ y(t)=\left\{egin{array}{l} 0\ ext{при } t=1,\ x(t)\ ext{при } t\geq 2;\ q(0)=0. \end{array}
ight.$$

### Автоматная функция. Пример 3

Функция задана таблицей, на информативном дереве видно, что взаимнооднозначное отображение и 3 класса эквивалентности: вершина 0 – первый класс, 1 и 2 – второй, 3,4,5,6 – третий класс.

| a <sub>0</sub> a <sub>1</sub> a <sub>2</sub> | $b_0 \ b_1 \ b_2$ |
|----------------------------------------------|-------------------|
| 000                                          | 001               |
| 001                                          | 000               |
| 010                                          | 001               |
| 011                                          | 000               |
| 100                                          | 001               |
| 101                                          | 000               |
| 110                                          | 001               |
| 111                                          | 000               |



Диаграмма автомата:



### Автоматная функция. Пример 3

#### Можно строить диаграмму автомата по дереву:







