Aula - Computação Gráfica

semu https://commons.wikimedia.org/wiki/File:POV-Ray_przyklad.jpg

Ray Tracing

Slides para uso pessoal e exclusivo durante o período de aula. Distribuição ou qualquer uso fora do escopo da disciplina é expressamente proibido.

1

Renderização de Polígonos

OpenGL (Rasterização)

- Renderiza um polígono por vez
 - Usa modelos simples de iluminação sem embasamento físico
- Sem iluminação global
 - Não considera reflexão entre objetos
- Determinação de superfície visível através do z-buffer
 - Rápido, mas com problemas de z-Fighting
- Não é foto realístico

Ray Tracing

- Modela a física da interação da luz com os objetos
- Ainda é aproximado, mas bem realístico
- · Ainda mais custoso, mas se tornando cada vez mais factível

2

Origem do Ray Tracing

Caminho da luz

- Generalização do dispositivo de Albrecht Duerer
 - Duerer's door
- Permitia pintar o plano de projeção
 - Seguindo o caminho em direção ao ponto de vista

© 1978 ACM, Author: INGRID CARLBOM Planar Geometric Projections and Viewing Transformations, 1978 Copying is by permission of the Association for

O que é um Ray Tracing?

- · Mapeamento do raio de luz
 - Na direção contrária (da câmera para as fontes de luz)
 - Raio é disparado em direção aos pixels
 - Segue até tocar os objetos da cena
 - Considera reflexões por um número finito de vezes
 - O raio finaliza nas fontes de luz
- · Evita o mapeamento direto (fonte de luz para a câmera)
 - Para não ter que considerar um número infinito de raios
 - Grande maioria seria perdido (não encontraria a imagem)
- Cada pixel representa ou
 - Uma interseção com um objeto
 - Nenhum interseção

4

Visão Geral de um Ray Tracing

- · Gerar um raio primário
 - Disparar o raio da câmera em direção ao pixel de interesse
- · Calcular a interseção do raio com objetos da cena
 - Achar o primeiro objeto que o raio toca
- Calcular a contribuição da luz (i.e., contribuição para a cor)
 - Usar um modelo de iluminação direto
 - Disparar raios secundários com reflexão especular
 - Seguir o raio para calcular a contribuição
 - Raios secundários de contribuição difusa aumentam complexidade
 - Somar todas as contribuições para o cálculo da cor do pixel
 - · Contribuições diretas e indiretas (recursivas)

5

Ray Tracing vs Rasterização

Rasterização

for each objecto na cena:
 for each triangulo no objeto:
 Passar vertices e cores para o OpenGL,
 para renderizar os triângulos usando z-buffer
 para determiner quem deve estar na frente

Ray Tracing

for each amostra (e.g., pixel) da imagem:
 Disparar um raio partindo da camera e determinar o
 objeto mais próximo que ele atinge
 Usar o cálculo da iluminação para determiner a
 contribuição de cor para a amostra

6

Geração do Raio Primário

Origem do Raio

- Vamos trabalhar no sistema de coordenadas do canônico
 - Perspectivo (i.e., antes da conversão para paralelo)
- Raio começa da câmera (do observador)
 - Ponto P
- Disparar o raio na direção **d** determinada por um ponto **A**
 - A está no plano da imagem e representa uma cor (e.g., de um pixel)
- Pontos ao longo do raio tem a forma P + td

7

Geração do Raio Primário

Direção do Raio

- Comece com um ponto na imagem 2D (e.g., um pixel)
- Faça a conversão para 3D
- Use o plano traseiro (far plane) para a conversão
 - Basta mapear as dimensões da imagem para ficar entre -1 e 1
 - Utilizar valores reais para representar as coordenadas dos pixels

8

Geração do Raio Primário

Direção do Raio

- Tendo o pixel 3D em coordenadas canônicas
 - É necessário retornar para o sistema de coordenadas do mundo
 - A iluminação deve ser calculada no sistema do mundo
- A transformação de normalização levou fez a normalização
 - Utilizar a sua inversa (transformação de visualização) para levar para o mundo
- Construa o vetor de direção
 - $-d'=rac{A'-P'}{\|A'-P'\|'}$ sendo A' e P' as respectivamente versões de A e P no mundo

Interseção do Raio com Objetos

Objeto Implícito

- Se um objeto é definido implicitamente por uma função f
 - $f(\mathbf{Q}) = 0$ IFF \mathbf{Q} é um ponto na superfície do objeto
- · Com isso, fica fácil calcular a interseção
 - Muitos objetos podem ser definidos implicitamente
 - Funções implícitas provêm infinitas soluções
- Exemplos
 - Círculo de raio R: $f(x,y) = x^2 + y^2 R^2$
 - Plano infinito: f(x,y,z) = Ax + By + Cz + D
 - Esfera de raio R: $f(x,y,z) = x^2 + y^2 + z^2 R^2$

10

Interseção do Raio com Objetos

Objeto Implícito

- Em que pontos (se houver) o raio intercepta o objeto?
- Pontos no raio tem a forma P' + td'
 - Sendo t um valor não negativo, pois está na frente da câmera
- Um ponto **Q** na superfície do objeto obedece $f(\mathbf{Q}) = 0$
- · Portanto, queremos saber os valores de t que fazem

11

Interseção do Raio com Objetos

Exemplo de interseção de um círculo 2D e um raio

- Considere
 - o ponto da câmera **P'** = (-3, 1)
 - o vetor direção **d'** = (.8, -.6)
 - E um círculo de raio 1: $f(x,y) = x^2 + y^2 R^2$
- Um ponto do raio **Q** = **P'** + t **d'** = (-3,1) + t(.8,-.6) = (-3 + .8t,1 .6t)
- Jogando na equação do círculo
 - $f(Q) = f(-3 + .8t, 1 .6t) = (-3 + .8t)^2 + (1 .6t)^2 1$
 - = 9 4.8t + .64t² + 1 1.2t + .36t² 1
 - $= t^2 6t + 9 = 0$

Interseção do Raio com Objetos

Exemplo de interseção de um círculo 2D e um raio

- $t = \frac{-b \pm \sqrt{b^2 4ac}}{2a} = \frac{6 \pm \sqrt{36 36}}{2}$, t = 3, 3 (intercepta na tangente)
- Pode usar o discriminante $b^2 4ac$ para saber se intercepta
 - < 0, não intercepta
 - = 0, é tangente
 - > 0, intercepta em dois pontos
- Utilizar o menor t não negativo, pois é o ponto mais próximo

13

Interseção do Raio com Objetos

Generalizando o exemplo

- Pode ser uma superfície arbitraria $f(\mathbf{Q}) = 0$ sendo $\mathbf{Q} = \mathbf{P'} + t \mathbf{d'}$
 - Jogar f(P' + t d') = 0 e resolver as equações para encontrar t
 - · Pode resolver analiticamente ou algebricamente

14

Interseção do Raio com Objetos

Tratando condições múltiplas

- Para objetos cilíndricos a equação
 - $f(x,y,z) = x^2 + z^2 1 = 0$
 - Define um cilindro de comprimento infinito ao longo do eixo y
- Geralmente, queremos objetos finitos
 - Por exemplo, um cilindro truncado em limites específicos
- Como $x^2 + z^2 1 = 0$, com $-1 \le y \le 1$
- E se quisermos fechar os furos do cilindro
 - Pode-se definir as tampas com
 - Topo: $x^2 + z^2 1 \le 0$, com y = 1
 - Fundo: $x^2 + z^2 1 \le 0$, com y = -1

Interseção do Raio com Objetos	
Tratando condições múltiplas	
IntersecaoRaioCilindro (P,d): t1,t2 = IntersecaoCilindroInf(P,d) // Verifica a intersecao com cilindro infinito computa P + t1*d, P + t2*d	
se y > 1 ou y < -1 para t1 ou t2: elimina // Esta entre os limites em y?	
t3 = IntersecaoTampaPlano(plane $y = 1$) // Verifica a intersecao com o topo computa P + t3*d se $x^2 + z^2 > 1$: elimina t3 // Esta dentro do círculo da tampa?	
t4 = IntersecaoTampaPlano(plane y = -1) // Check intersection with bottom cap computa $P + t4^*d$ se $x^2 + z^2 > 1$: elimina $t4$ // Esta dentro do círculo da tampa?	
Pega o menor t dos que sobraram de t1 a t4 Se não sobrou nenhum, o raio nao intercepta o cilindro	
16	
10	
Interseção no Sistema de Coordenadas do Mundo	
Para calcular iluminação corretamente	
 É necessário fazer os cálculos no mundo 	-
 Portanto 	
 É necessário ter uma descrição analítica do objeto no mundo 	
• Contudo	
O objeto no mundo já foi transformado	
 Uma esfera simples pode ter virado uma elipse complexa Com isso 	
O cálculo fica complexo	
 Melhor fazer o cálculo no sistema de coordenadas (SC) do objeto Pode utilizar as transformações para levar para o SC do objeto 	
17	
17	
Sistema de Coordenadas (SC) do Objeto	
Converta os pontos e vetores do mundo para o objeto	
$-P''=M^{-1}P'$	
$-d''=M^{-1}d'$	
 Prossiga com o cálculo da interseção usando f' ao invés de f 	
- Mundo: $f'(P' + t d') = 0$ - Objecto: $f''(P'' + t d'') = 0$ • d'' provavelmente não é unitário	
• t tem valores correspondentes no dois espaços	
• Normalizar d afetaria a correspondência de t • Não normalizar d	
M¹P′	
$M^{1}P' + tM^{1}d'$	
a	
SC do mundo SC do objeto 18	

Sistema de Coordenadas (SC) do Objeto

- O cálculo de M⁻¹ é factível
 - M é uma composição de translações, rotações e escalas
 - Todas as transformações de **M** possuem inversas
- Por isso, não foi feita a conversão de perspectiva para paralela
 - Para possibilitar o cálculo da inversa de M
- Ao finalizar o calculo da interseção, obtém-se t para ambos SCs
 - P' + t d' (ponto de interseção no SC do mundo)
 - P" + t d" (ponto de interseção no SC do objeto)

19

19

Vetor Normal do Objeto

- · Para o cálculo da luz
- É necessário um vetor normal do ponto sendo considerado
- Superfícies implícitas não têm vértices para se calcular a normal
 - Mas, pode-se usar o gradiente para achar a normal
 - O gradiente aponta na perpendicular de um ponto na superfície
- O que é graficamente o gradiente de uma superfície?
 - Exemplo para f(x,y) de um círculo
 - Um função 2D precisa ser visualizada um 3D
 - -f(x,y) < 0 significa que o ponto está dentro da superfície (ex. círculo)

2

20

Vetor Normal do Objeto

- A normal **n** é dada pelo gradiente da função da superfície
- O gradiente aponta para a direção de maior crescimento
 - Pode ser medido ao longo da superfície
- O cálculo do gradiente é feito com as derivadas parciais
 n = ∇f(.)
- Exemplo 3D
 - $\ \nabla f(x,y,z) = (\frac{\partial f}{\partial x}(x,y,z), \frac{\partial f}{\partial y}(x,y,z), \frac{\partial f}{\partial z}(x,y,z))$

Vetor Normal do Objeto

$$- \nabla f(x, y, z) = \left(\frac{\partial f}{\partial x}(x, y, z), \frac{\partial f}{\partial y}(x, y, z), \frac{\partial f}{\partial z}(x, y, z)\right)$$

• Derivadas parciais

$$-\frac{\partial f}{\partial x}(x,y,z)=2x$$

$$-\frac{\partial f}{\partial y}(x,y,z)=2y$$

$$-\frac{\partial f}{\partial z}(x,y,z)=2z$$

Gradiente

-
$$\mathbf{n} = \nabla f(x, y, z) = (2x, 2y, 2z)$$

- Lembrar de normalizar n
- · Derivada pode falhar em alguns pontos degenerados da superfície
 - Usar o gradiente da vizinhança como alternativa

22

Normal no SC do Objeto para o Mundo

- Dado a facilidade de se lidar com o objeto não transformado
- O cálculo da normal é feito no SC do objeto
- · Para o cálculo da luz
- É necessário ter a normal no SC do mundo
- Para levar o objeto para o mundo
 - Basta aplicar a matriz de transformação M aos vértices
 - Isso não é verdade para a normal $n_{mun}
 eq M n_{obj}$
- Exemplo para M escalando de 0.5 em x e 2 em y

23

Normal no SC do Objeto para o Mundo

Como Levar para o Mundo?

- Assumir um vetor ${m v}$ na superfície do objeto
 - A normal deve ser perpendicular a v:
 - $n_{obj} \cdot v_{obj} = 0$ e $n_{mun} \cdot v_{mun} = 0$
- Qual é a transformação **7** que faz $Tn_{obj} = n_{mun}$?
- Podemos escrever $m{n}_{mun} \cdot m{T} m{v}_{obj} = 0$
- Dado que um vetor não é afetado pela translação
 - T pode ser escrita somente com a parte linear T₃ (parte 3x3 de T)
- Queremos um vetor $oldsymbol{n}_{mun}$ tal que
 - $n_{mun} \cdot T_3 v_{obj} = 0$

24

Normal no SC do Objeto para o Mundo	
Como Levar para o Mundo?	
• Queremos um vetor n_{mun} tal que	-
$- n_{mun} \cdot T_3 v_{obj} = 0$	
Isso pode ser escrito como	
$-T_3^t n_{mun} \cdot v_{obj} = 0$	
 Basta usar as propriedades a · b = a^t b 	
$\cdot A = A^{tt}$	
$\bullet (AB)^t = (B^tA^t)$	
• $n_{mun} \cdot T_3 v_{obj} = 0$	
- Escrito como $n_{mun}^t T_3 v_{obj} = 0 \rightarrow n_{mun}^t T_3^{tt} v_{obj} = 0 \rightarrow (T_3^t n_{mun})^t v_{obj} = 0 \rightarrow (T_3^t n_{mun}) \cdot v_{obj} = 0$	
(* 3**mun) * 00)	
25	
Normal no SC do Objeto para o Mundo	
Normal no se do objeto para o Mando	
0	
Como Levar para o Mundo? • Então, $n_{mun} \cdot T_3 v_{obj} = 0$ pode escrito como	
$- (T_3^t n_{mun}) \cdot V_{obj} = 0$	
• Já sabemos que $n_{obj} \cdot v_{obj} = 0$	
• Portanto	
$- n_{obj} = (T_3^t n_{mun})$	
Passando a matriz para o outro lado	
$-n_{mun} = (T_3^t)^{-1} n_{obj}$	-
26	
26	
Navanal na CC da Obiata nava a Munda	
Normal no SC do Objeto para o Mundo	
Aplicação das Inversas e Transpostas	
• Temos que $n_{mun} = (T_3^t)^{-1} n_{obj}$	
Inversas e transpostas podem ser trocadas Para facilitar a otimina a preserva	
- Para facilitar e otimizar o processo	
 T₃ é uma composição de rotações R e escalas S - ((RS)⁻)⁺ = (S⁻R⁻)⁺ = ((R⁻)⁺(S⁻)⁺) 	
• Outras simplificações	
$-(R^{-1})^{t}=R$	
$-(S^{-1})^t = S^{-1}$	

Resumo de Um Ray Tracer não Recursivo

P = origem da câmera

for each amostra (e.g. pixel) da imagem:

Computar o vetor direcional d

for each objeto:

Verificar a interseção com o raio P+td

Selecionar o menor t não negativo dentre os objetos

Computar com t o ponto de interseção p no SC do objeto

Computar a normal no ponto p Transforma-la para o SC do mundo

Usar a normal no mundo para fazer o cálculo da iluminação

28

Sombras

- Cada fonte de luz contribui para a cor de um ponto de um objeto
 - Se o raio chegar até o objeto
 - Pode estar oclusa por outro objeto ou por si próprio

$$C = Amb + \sum_{i} aten * intensidade * (D_i + S_i)$$

Contribuição de uma fonte de luz para um ponto

- Atirar um raio do objeto para a fonte de luz
- Verificar se atinge algum objeto antes da fonte
- Se atingir, a contribuição da fonte é ignorada

Henrik
https://commons.wikimedia.org/wiki/File:Ray_trace_diagram.svg
CC RY-SA 4.0

29

Ray Tracing Recursivo

- Simula o efeito global da luz
- Após tocar o objeto
 - Dispara o raio em outras direções além das fontes de luz
 - Cada direção representa um efeito
 - Refração, reflexão, transparência, etc.

Silles Tran. https://commons.wikimedia.org/wiki/File:Glasses 100_edit.png

Semu https://commons.wikimedia.org/wiki/File:PO Ray_przyklad.jpg

Ray Tracing Recursivo

- Recursividade começa no ponto de interseção com o objeto
- Idealmente, disparar-se-ia raios em todas as direções
 - Porém, é muito caro
- Ao invés, dispara-se raios nas direções mais promissoras
 - Fontes
 - Reflexão especular
 - Dentro do objetoTransparência

Wojciech Mula https://commons.wikimedia.org/wiki/File:Recursive_raytracing.sv Public Domain

L1

31

Ray Tracing Recursivo

- Rodar a recursividade por um número finito de iterações
- Contribuição com os raios recursivos

$$C = Amb + \sum aten * intensidade * (D_i + S_i) + \underbrace{C_r + C_t}_{t}$$

• \mathcal{C}_r raio refletido

Contribuição Recursiva

• C_t raio transmitido

Wojciech Mula https://commons.wikimedia.org/wiki/File:Recursive_raytracing.sv Public Domain

32

Ray Tracing Recursivo

Transparência Refrativa

- Modelagem com a lei de Snell
 - η_1 índice de refração do meio 1
 - $-\,\,\eta_2$ índice de refração do meio 2

 $\sin(\theta_2) = \sin(\theta_1)\eta_1/\eta_2$

Super Amostragem

- De forma ingênua o cálculo da intensidade é feito por pixel
 - Um raio é disparado por pixel
- Contudo
 - As arestas ficam serrilhadas (aliasing)

- Solução
 - Super amostrar os pixels
 - Usar mais de um raio por pixel e agrupar as contribuições
 - Por exemplo, amostrar os cantos e o centro do pixel
 - Fazer a média dos valores para o pixel

34

Visão Geral do Ray Tracing

- Preparar a base de dados para o Ray Tracing
 - Organizar os objetos em estruturas de dados eficientes
 Kd-trees, bounding volumes, etc.
 - Facilitam o cálculo da interseção do raio com objetos
- Para cada amostra

Gerar raio	Varrer objetos da cena e obter menor t		\rightarrow	Calcula iluminação
	,			
Para cada pixel			\dashv	Gera raios secundários
Agrupar amostras	Gerar valor final do pixel			

35

Perguntas ?????

Greg L https://commons.wikimedia.org/wiki/File:Ray-traced_steel_balls.jpg CC BY-SA 3.0