Introduction to ML & DL

Shan-Hung Wu shwu@cs.nthu.edu.tw

Department of Computer Science, National Tsing Hua University, Taiwan

Machine Learning

Outline

- 1 What's Machine Learning?
- 2 What's Deep Learning?
- 3 About this Course...
- 4 FAQ

Outline

- 1 What's Machine Learning?
- 2 What's Deep Learning?
- 3 About this Course...
- 4 FAQ

To solve a problem, we need an algorithm
E.g., sorting

- To solve a problem, we need an algorithm
 - E.g., sorting
 - A priori knowledge is enough

- To solve a problem, we need an algorithm
 - E.g., sorting
 - A priori knowledge is enough
- For some problem, however, we do not have the a priori knowledge
 - E.g., to tell if an email is spam or not
 - The correct answer varies in time and from person to person

- To solve a problem, we need an algorithm
 - E.g., sorting
 - A priori knowledge is enough
- For some problem, however, we do not have the a priori knowledge
 - E.g., to tell if an email is spam or not
 - The correct answer varies in time and from person to person
- Machine learning algorithms use the a posteriori knowledge to solve problems

- To solve a problem, we need an algorithm
 - E.g., sorting
 - A priori knowledge is enough
- For some problem, however, we do not have the a priori knowledge
 - E.g., to tell if an email is spam or not
 - The correct answer varies in time and from person to person
- Machine learning algorithms use the a posteriori knowledge to solve problems
 - Learnt from examples (as extra input)

Example Data X as Extra Input

• Unsupervised:

$$\mathbb{X} = \{x^{(i)}\}_{i=1}^N$$
, where $x^{(i)} \in \mathbb{R}^D$

 \bullet E.g., $x^{(i)}$ an email

Example Data X as Extra Input

• Unsupervised:

$$\mathbb{X} = \{ \pmb{x}^{(i)} \}_{i=1}^N, \text{ where } \pmb{x}^{(i)} \in \mathbb{R}^D$$

- \bullet E.g., $x^{(i)}$ an email
- Supervised:

$$\mathbb{X} = \{(\pmb{x}^{(i)}, \pmb{y}^{(i)})\}_{i=1}^N, \text{ where } \pmb{x}^{(i)} \in \mathbb{R}^D \text{ and } \pmb{y}^{(i)} \in \mathbb{R}^K,$$

• E.g., $y^{(i)} \in \{0,1\}$ a spam label

General Types of Learning (1/2)

• Supervised learning: learn to predict the labels of future data points

$$X \in \mathbb{R}^{N \times D}$$
: 6 1 9 4 2

$$x' \in \mathbb{R}^D$$
:

$$\mathbf{y} \in \mathbb{R}^{N \times K}$$
: $[\mathbf{e}^{(6)}, \mathbf{e}^{(1)}, \mathbf{e}^{(9)}, \mathbf{e}^{(4)}, \mathbf{e}^{(2)}]$ $\mathbf{y}' \in \mathbb{R}^{K}$: ?

General Types of Learning (1/2)

Supervised learning: learn to predict the labels of future data points

• Unsupervised learning: learn (latent) patterns in X, and optionally generate new x's

General Types of Learning (2/2)

 Reinforcement learning: learn from "good"/"bad" feedback of actions (instead of correct labels) to maximize the goal

General Types of Learning (2/2)

 Reinforcement learning: learn from "good"/"bad" feedback of actions (instead of correct labels) to maximize the goal

- AlphaGo [1] is a hybrid of reinforcement learning and supervised learning
 - Supervised learning from the game records
 - Then, reinforcement learning from self-play

① Data collection, preprocessing (e.g., integration, cleaning, etc.), and exploration

- ① Data collection, preprocessing (e.g., integration, cleaning, etc.), and exploration
 - Split a dataset into the training and testing datasets

- Data collection, preprocessing (e.g., integration, cleaning, etc.), and exploration
 - Split a dataset into the training and testing datasets
- 2 Model development
 - ① Assume a **model** $\{f(\cdot; w)\}$ that is a collection of candidate functions f's (representing posteriori knowledge) we want to discover
 - $\mathbf{1}$ f is assumed to be parametrized by \mathbf{w}

- ① Data collection, preprocessing (e.g., integration, cleaning, etc.), and exploration
 - Split a dataset into the training and testing datasets
- 2 Model development
 - ① Assume a **model** $\{f(\cdot; w)\}$ that is a collection of candidate functions f's (representing posteriori knowledge) we want to discover
 - $\mathbf{1}$ f is assumed to be parametrized by \mathbf{w}
 - ② Define a **cost function** $C(w; \mathbb{X})$ (or functional $C[f; \mathbb{X}]$) that measures "how good a particular f can explain the training data"

- ① Data collection, preprocessing (e.g., integration, cleaning, etc.), and exploration
 - Split a dataset into the training and testing datasets
- 2 Model development
 - ① Assume a **model** $\{f(\cdot; w)\}$ that is a collection of candidate functions f's (representing posteriori knowledge) we want to discover
 - ② Define a **cost function** $C(w; \mathbb{X})$ (or functional $C[f; \mathbb{X}]$) that measures "how good a particular f can explain the training data"
- **3 Training**: employ an algorithm that finds the best (or good enough) function $f^*(\cdot; \mathbf{w}^*)$ in the model that minimizes the cost function

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} C(\mathbf{w}; \mathbb{X})$$

- ① Data collection, preprocessing (e.g., integration, cleaning, etc.), and exploration
 - Split a dataset into the training and testing datasets
- 2 Model development
 - ① Assume a **model** $\{f(\cdot; w)\}$ that is a collection of candidate functions f's (representing posteriori knowledge) we want to discover
 - ② Define a **cost function** $C(w; \mathbb{X})$ (or functional $C[f; \mathbb{X}]$) that measures "how good a particular f can explain the training data"
- **3 Training**: employ an algorithm that finds the best (or good enough) function $f^*(\cdot; \mathbf{w}^*)$ in the model that minimizes the cost function

$$w^* = \arg\min_{w} C(w; \mathbb{X})$$

Testing: evaluate the performance of the learned f^* using the testing dataset

- ① Data collection, preprocessing (e.g., integration, cleaning, etc.), and exploration
 - Split a dataset into the training and testing datasets
- 2 Model development
 - ① Assume a **model** $\{f(\cdot; w)\}$ that is a collection of candidate functions f's (representing posteriori knowledge) we want to discover
 - $\mathbf{1}$ f is assumed to be parametrized by \mathbf{w}
 - ② Define a **cost function** $C(w; \mathbb{X})$ (or functional $C[f; \mathbb{X}]$) that measures "how good a particular f can explain the training data"
- **3 Training**: employ an algorithm that finds the best (or good enough) function $f^*(\cdot; w^*)$ in the model that minimizes the cost function

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} C(\mathbf{w}; \mathbb{X})$$

- **4 Testing**: evaluate the performance of the learned f^* using the testing dataset
- S Apply the model in the real world

- Random split of your past emails and labels
 - **1** Training dataset: $X = \{(\boldsymbol{x}^{(i)}, y^{(i)})\}_i$
 - **2** Testing dataset: $\mathbb{X}' = \{(\mathbf{x}'^{(i)}, \mathbf{y}'^{(i)})\}_i$

- Random split of your past emails and labels
 - **1** Training dataset: $\mathbb{X} = \{(\boldsymbol{x}^{(i)}, y^{(i)})\}_i$
 - 2 Testing dataset: $X' = \{(x'^{(i)}, y'^{(i)})\}_i$
- 2 Model development
 - **1 Model**: $\{f : f(x; w) = w^{\top}x\}$

- Random split of your past emails and labels
 - **1** Training dataset: $\mathbb{X} = \{(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})\}_i$
 - 2 Testing dataset: $X' = \{(x'^{(i)}, y'^{(i)})\}_i$
- 2 Model development
 - **1** *Model*: $\{f: f(x; w) = w^{\top}x\}$
 - **2** Cost function: $C(w; \mathbb{X}) = \Sigma_i 1(w; f(\mathbf{x}^{(i)}; \mathbf{w}) \neq y^{(i)})$

- Random split of your past emails and labels
 - **1** Training dataset: $\mathbb{X} = \{(x^{(i)}, y^{(i)})\}_i$
 - 2 Testing dataset: $X' = \{(x'^{(i)}, y'^{(i)})\}_i$
- 2 Model development
 - **1** *Model*: $\{f: f(x; w) = w^{\top}x\}$
 - **2** Cost function: $C(w; \mathbb{X}) = \Sigma_i 1(w; f(x^{(i)}; w) \neq y^{(i)})$
- **3** Training: to solve $w^* = \arg\min_{\mathbf{w}} \Sigma_i 1(\mathbf{w}; f(\mathbf{x}^{(i)}; \mathbf{w}) \neq y^{(i)})$

- Random split of your past emails and labels
 - **1** Training dataset: $\mathbb{X} = \{(\boldsymbol{x}^{(i)}, y^{(i)})\}_i$
 - 2 Testing dataset: $X' = \{(x'^{(i)}, y'^{(i)})\}_i$
- 2 Model development
 - **1** *Model*: $\{f: f(x; w) = w^{\top}x\}$
 - **2** Cost function: $C(w; \mathbb{X}) = \Sigma_i 1(w; f(x^{(i)}; w) \neq y^{(i)})$
- **3** Training: to solve $w^* = \arg\min_{\mathbf{w}} \Sigma_i 1(\mathbf{w}; f(\mathbf{x}^{(i)}; \mathbf{w}) \neq y^{(i)})$
- **① Testing**: accuracy $\frac{1}{|\mathbb{X}'|} \Sigma_i 1(\mathbf{x}'^{(i)}, y'^{(i)}; f(\mathbf{x}'^{(i)}; \mathbf{w}^*) = y'^{(i)})$

- Random split of your past emails and labels
 - **1** Training dataset: $\mathbb{X} = \{(x^{(i)}, y^{(i)})\}_i$
 - 2 Testing dataset: $X' = \{(x'^{(i)}, y'^{(i)})\}_i$
- 2 Model development
 - **1** *Model*: $\{f: f(x; w) = w^{\top}x\}$
 - **2** Cost function: $C(w; \mathbb{X}) = \Sigma_i 1(w; f(x^{(i)}; w) \neq y^{(i)})$
- **3** Training: to solve $w^* = \arg\min_{\mathbf{w}} \Sigma_i 1(\mathbf{w}; f(\mathbf{x}^{(i)}; \mathbf{w}) \neq y^{(i)})$
- **① Testing**: accuracy $\frac{1}{|\mathbb{X}'|} \Sigma_i 1(\mathbf{x}'^{(i)}, y'^{(i)}; f(\mathbf{x}'^{(i)}; \mathbf{w}^*) = y'^{(i)})$
- \bullet Use f^* to predict the labels of your future emails

- Random split of your past emails and labels
 - **1** Training dataset: $\mathbb{X} = \{(x^{(i)}, y^{(i)})\}_i$
 - 2 Testing dataset: $X' = \{(x'^{(i)}, y'^{(i)})\}_i$
- 2 Model development
 - **1** *Model*: $\{f: f(x; w) = w^{\top}x\}$
 - **2** Cost function: $C(w; \mathbb{X}) = \Sigma_i 1(w; f(x^{(i)}; w) \neq y^{(i)})$
- **3** Training: to solve $w^* = \arg\min_{\mathbf{w}} \Sigma_i 1(\mathbf{w}; f(\mathbf{x}^{(i)}; \mathbf{w}) \neq y^{(i)})$
- **Testing**: accuracy $\frac{1}{|\mathbf{x}'|} \Sigma_i 1(\mathbf{x}'^{(i)}, \mathbf{y}'^{(i)}; f(\mathbf{x}'^{(i)}; \mathbf{w}^*) = \mathbf{y}'^{(i)})$
- **5** Use f^* to predict the labels of your future emails
- See Notation

Outline

- 1 What's Machine Learning?
- 2 What's Deep Learning?
- 3 About this Course...
- 4 FAQ

Deep Learning

• ML where an $f(\cdot; w)$ has many (deep) layers

$$\hat{\mathbf{y}} = f^{(L)}(\cdots f^{(2)}(f^{(1)}(\mathbf{x}; \mathbf{w}^{(1)}); \mathbf{w}^{(2)}) \cdots; \mathbf{w}^{(L)})$$

$$\mathbf{x} \longrightarrow f^{(1)}(\cdot; \mathbf{w}^{(1)}) \longrightarrow f^{(2)}(\cdot; \mathbf{w}^{(2)}) \longrightarrow \cdots \qquad f^{(L)}(\cdot; \mathbf{w}^{(L)}) \longrightarrow \hat{\mathbf{y}}$$

Deep Learning

• ML where an $f(\cdot; w)$ has many (deep) layers

$$\hat{\mathbf{y}} = f^{(L)}(\cdots f^{(2)}(f^{(1)}(\mathbf{x}; \mathbf{w}^{(1)}); \mathbf{w}^{(2)}) \cdots; \mathbf{w}^{(L)})$$

$$\mathbf{x} \longrightarrow f^{(1)}(\cdot; \mathbf{w}^{(1)}) \longrightarrow f^{(2)}(\cdot; \mathbf{w}^{(2)}) \longrightarrow \cdots \qquad f^{(L)}(\cdot; \mathbf{w}^{(L)}) \longrightarrow \hat{\mathbf{y}}$$

- Pros:
 - Learns to pre-process data automatically
 - Learns a complex function (e.g., visual objects to labels)

Deep Learning

• ML where an $f(\cdot; w)$ has many (deep) layers

$$\hat{\mathbf{y}} = f^{(L)}(\cdots f^{(2)}(f^{(1)}(\mathbf{x}; \mathbf{w}^{(1)}); \mathbf{w}^{(2)}) \cdots; \mathbf{w}^{(L)})$$

$$\mathbf{x} \longrightarrow f^{(1)}(\cdot; \mathbf{w}^{(1)}) \longrightarrow f^{(2)}(\cdot; \mathbf{w}^{(2)}) \longrightarrow \cdots \qquad f^{(L)}(\cdot; \mathbf{w}^{(L)}) \longrightarrow \hat{\mathbf{y}}$$

- Pros:
 - Learns to pre-process data automatically
 - Learns a complex function (e.g., visual objects to labels)
- Cons:
 - Usually needs large data to train a model well
 - Higher computation costs (for both training and testing)

Outline

- 1 What's Machine Learning?
- 2 What's Deep Learning?
- 3 About this Course...
- 4 FAQ

Target Audience

- Senior undergraduate and graduate CS students
 - Easy-to-moderate level of theory
 - Coding and engineering (in Python)
 - Clean datasets (small & large)

Target Audience

- Senior undergraduate and graduate CS students
 - Easy-to-moderate level of theory
 - Coding and engineering (in Python)
 - Clean datasets (small & large)
- No prior knowledge about ML is needed

Topics Covered

Supervised, unsupervised learning, and reinforcement learning

Topics Covered

- Supervised, unsupervised learning, and reinforcement learning
- with structural output:

A man holding a tennis racquet on a tennis court.

A group of young people playing a game of Frisbee

Two pizzas sitting on top of a stove top oven

A man flying through the air while riding a snowboard

- Part 1: math review (2 weeks)
 - Linear algebra
 - Probability & information theory
 - Numerical optimization

- Part 1: math review (2 weeks)
 - Linear algebra
 - Probability & information theory
 - Numerical optimization
- Part 2: machine learning basics (3 weeks)
 - Learning theory
 - Parametric/non-parametric models
 - Experiment design

- Part 1: math review (2 weeks)
 - Linear algebra
 - Probability & information theory
 - Numerical optimization
- Part 2: machine learning basics (3 weeks)
 - Learning theory
 - Parametric/non-parametric models
 - Experiment design
- Part 3: deep supervised learning (6 weeks)
 - Neural Networks (NNs), CNNs, RNNs

- Part 1: math review (2 weeks)
 - Linear algebra
 - Probability & information theory
 - Numerical optimization
- Part 2: machine learning basics (3 weeks)
 - Learning theory
 - Parametric/non-parametric models
 - Experiment design
- Part 3: deep supervised learning (6 weeks)
 - Neural Networks (NNs), CNNs, RNNs
- Part 4: unsupervised learning (2 weeks)
 - Autoencoders, manifold learning, GANs

- Part 1: math review (2 weeks)
 - Linear algebra
 - Probability & information theory
 - Numerical optimization
- Part 2: machine learning basics (3 weeks)
 - Learning theory
 - Parametric/non-parametric models
 - Experiment design
- Part 3: deep supervised learning (6 weeks)
 - Neural Networks (NNs), CNNs, RNNs
- Part 4: unsupervised learning (2 weeks)
 - Autoencoders, manifold learning, GANs
- Part 5: reinforcement learning (3 weeks)
 - Value/gradient policies, action/critics, reinforce RNNs

Grading (Tentative)

- Prerequisite quiz: 15%
 - On next Thu (9/21)
 - You have to pass to be able to take this course: >70 or within top-70
- Contests (x 4): 40%
 - At the end of each part
- Assignments: 20%
 - Come with the labs
- Final exam: 25%
- Bonus: 6%
 - Math labs (x 4)
 - Optional ML topics (x 2)

Classes Info

- Lectures on Tue (2 hours)
 - Concepts & theories
 - with companion videos
- Labs on Thu (1 hour)
 - Implementation (in Python) & engineering topics
- TA time: 4:20pm-5:30pm on Thu at Delta 729
- More info can be found in the course website

Outline

- 1 What's Machine Learning?
- 2 What's Deep Learning?
- 3 About this Course...
- 4 FAQ

Q: Should we team up for the contests?

A: Yes, 2~4 students per team

Q: Should we team up for the contests?

A: Yes, 2~4 students per team

Q: Which GPU card should I buy?

A: Nvidia GTX 1060 or above; 1050 Ti (4G RAM) minimal

Q: Should we team up for the contests?

A: Yes, 2~4 students per team

Q: Which GPU card should I buy?

A: Nvidia GTX 1060 or above; 1050 Ti (4G RAM) minimal

Q: Do we need to attend the classes?

A: No, as long as you can pass. But you have attendance bonus...

Q: Should we team up for the contests?

A: Yes, 2~4 students per team

Q: Which GPU card should I buy?

A: Nvidia GTX 1060 or above; 1050 Ti (4G RAM) minimal

Q: Do we need to attend the classes?

A: No, as long as you can pass. But you have attendance bonus...

Q: Is this a light-loading course or heavy-loading one?

A: Should be very heavy to most students. Please reserve your time

FAQ (2/2)

Q: What's the textbook?

A: No formal textbook. But if you need one, read the Deep Learning book

FAQ(2/2)

Q: What's the textbook?

A: No formal textbook. But if you need one, read the Deep Learning book

Q: Why some sections are marked with "*" or "**" in the slides?

A: The mark "*" means "can be skipped for the first time reader," and "**" means "materials for reference only"

TODO

- Assigned reading:
 - Calculus
 - Get your feet wet with Python

Reference I

- [1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al.
 - Mastering the game of go with deep neural networks and tree search. *Nature*, 529(7587):484–489, 2016.