Table of Contents

	2
ALUMINUM	
Area Uncertainty	
STRESS UNCERTAINTY FORCE GRIPS	
Decreases the number of data point for a simpler graph %%%	5
PLOTTING ERRORBARS ON GRAPH	
ULTIMATE STRESS AND STRAIN	
RUPTURE STRESS AND STRAIN	
TRUE RUPTURE STRESS AND STRAIN	
PERCENT ELONGATION %%%%%%%%%%%%%	
PERCENT AREA REDUCED %%%%%%%%%%%%	
MODULUS AND UNCERTAINTY OF EXTENSIOMETER%%%%%	
MODULUS AND UNCERTAINTY OF FORCE GRIPS%%%%	
MODULUS OF RESILIENCE FOR EXTENSIOMETER %%%%%%%%%%%%%%	
MODULUS OF RESILIENCE FOR FORCE GRIPS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	
MODULUS OF Toughness for Force Grips %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	
AXIAL STRAIN AND ITS UNCERTAINTY	
NOW FINDING POISSON'S RATIO AND UNCERTAINTY	
GRAPHING ULTIMATE STRESS CURVE%%%%%%	
CARBON FIBER 45	
GRAPHING 2	
Decreases the number of data point for a simpler graph %%%	
ULTIMATE STRESS AND STRAIN	19
RUPTURE STRESS AND STRAIN	
TRUE RUPTURE STRESS AND STRAIN	
PERCENT ELONGATION	22
PERCENT AREA REDUCED	22
MODULUS OF ELASTICITY IS ESLOPE	23
MODULUS AND UNCERTAINTY OF FORCE GRIPS	
MODULUS OF RESILIENCE FOR EXTENSIOMETER	
MODULUS OF RESILIENCE FOR FORCE GRIPS	
MODULUS OF Toughness for Force Grips	
POISSON'S RATIO	
NOW FINDING POISSON'S RATIO AND UNCERTAINTY%%%	
GRAPHING ULTIMATE STRESS CURVE	
Carbon 90 (Data taken from tuesday 1230)	
GRAPHING 2	
Decreases the number of data point for a simpler graph %%% ULTIMATE STRESS AND STRAIN	
RUPTURE STRESS AND STRAIN	
TRUE RUPTURE STRESS AND STRAIN	
PERCENT ELONGATION	
PERCENT AREA REDUCED	
MODULUS OF ELASTICITY ITS ESLOPE	
MODULUS AND UNCERTAINTY OF FORCE GRIPS	
MODULUS OF RESILIENCE FOR EXTENSIOMETER	
MODULUS OF Toughness for Force Grips	
MODULUS OF Toughness for Force Grips	

POISSON'S RATIO	37
NOW FINDING POISSON'S RATIO AND UNCERTAINTY	39
GRAPHING ULTIMATE STRESS CURVE	39
Steel	40
Area Uncertainty	40
GRAPHING	. 41
GRAPHING 2	42
Decreases the number of data point for a simpler graph %%%	43
ULTIMATE STRESS AND STRAIN AND PLOTTING THIS POINT	. 44
RUPTURE STRESS AND STRAIN	45
TRUE RUPTURE STRESS AND STRAIN	
PERCENT ELONGATION	
PERCENT AREA REDUCED	47
MODULUS OF ELASTICITY IS ESLOPE	
MODULUS AND UNCERTAINTY OF FORCE GRIPS	
MODULUS OF RESILIENCE FOR EXTENSIOMETER	49
MODULUS OF RESILIENCE FOR FORCE GRIPS	. 49
MODULUS OF Toughness for Force Grips	. 50
POISSON'S RATIO	
NOW FINDING POISSON'S RATIO AND UNCERTAINTY	51
GRAPHING ULTIMATE STRESS CURVE	51

%Ben Ausburn
%Lab 1

ALUMINUM

```
clear all
close all
clc

load('specimen.dat')

y = specimen(1:467,2); %Force
x = specimen(1:467,3); %Strain (extensiometer reading)
xF = specimen(1:761,1); %Axial Displacement from Force Grips
yF = specimen(1:761,2); %Force (made with same dimensions as FG)
```

Area Uncertainty

```
Area = subs(Area)
                     %Area
figure(1)
Sa = y ./ Area;
                           %Stress
eslope = (Sa(100,1)-Sa(50,1)) ./ (specimen(100,3)-specimen(50,3)); %slope of linear
L1 = eslope .* specimen(1:100);
plot(x,Sa,'-m');hold on
                                 %Stress vs Strain
title('Aluminum Yield Stress and Strain'); %Graph formatting
xlabel('Strain (dL/L)');
ylabel('Stress (psi)');
grid on
axis([-.005 .035 -1*10E3 9*10E3])
L2 = L1*.998; % .2% offset
\verb"plot(specimen(1:100)", L2,'-.b'); \verb"hold" on ~ % .2% offset"
%%%% Finding .2% offset intersection (yield point) %%%%
y1 = Sa(166:400);
y2 = transpose(specimen(166:400) .* .998 .* eslope);
idx = find(abs(y1 - y2) == min(abs(y1 - y2)));
iy = y1(idx)
                             %finds y intercept
ix = iy ./ (eslope .* .998)
                             %finds corresponding x intercept
plot(ix , iy ,'oc');hold on
                           %Plotting the yield point
L0 = 6.5;
                      %initial length (in)
SaF = yF ./ Area;
                      %converting to (psi)
xx = xF ./ L0;
                     %Strain from force grips (dimensionless)
plot(xx,SaF,'k');hold on
                         %plotting strain vs stress
%%%%% slope of linear region with .2 %%%%%
eslopeF = .998 .* (SaF(150,1)-SaF(50,1)) ./ (xx(150,1)-xx(50,1));
L3 = eslopeF .* xx(1:200);
plot(xx(1:200), L3, '-r'); hold on
title('Aluminum Yield Stress and Strain'); %Graph formatting
xlabel('Strain (dL/L)');
ylabel('Stress (psi)');
grid on
%%%%% Finding .2% offset intersection (yield point) %%%%%
Y1 = SaF(166:400);
Y2 = (xx(166:400) .* eslopeF);
Idx = find(abs(Y1 - Y2) == min(abs(Y1 - Y2)));
Iy = Y1(Idx)
                              %finds y intercept
```

```
Ix = Iy ./ (eslopeF .* .998) %finds corresponding x intercept
%%%% Finding Uncertainties For Stress and Strain %%%%%
%%%% STRAIN UNCERTAINTY FORCE GRIPS %%%
xxu = xF ./ L0;
u_xF = .01;
              %uncertainty of force
u_L0 = (1/64);
               %uncertainty of length (in)
u_x = sqrt((diff(xxu,xF)*u_xF).^2+(diff(xxu,L0).*u_L0).^2)
L0 = 6.5;
                     %initial length (in)
xF = specimen(1:761,1);
xxu = subs(xxu);
                  %Array Uncertainty for Strain with Force Grips(FG)
u_xu = (1./(500000.*6.5.^2) + xF.^2./(4096.*6.5.^4)).^(1/2); %Uncertainty for S
       Area =
          0.0277
       u_Area =
         9.3207e-05
       iy =
         4.3066e+04
       ix =
          0.0043
       Iy =
         4.3975e+04
       Ix =
          0.0040
```


STRESS UNCERTAINTY FORCE GRIPS

Decreases the number of data point for a simpler graph %%%

```
u_yyu2 = u_yyu(1:100:761);
xx2 = xx(1:100:761);
SaF = SaF(1:100:761);
xxu2 = u_xxu(1:100:761);
```

PLOTTING ERRORBARS ON GRAPH

errorbar(xx2,SaF,u_yyu2,'.r');hold on
%herrorbar(xx2,SaF,xxu2,'.r');hold on

ULTIMATE STRESS AND STRAIN

```
2.3189e-04
u_UStrain =
1.2531e+03
```

RUPTURE STRESS AND STRAIN

```
xF = specimen(1:761,1);
yf = specimen(1:761,2);
xx = xF ./ L0;
SaF = yf ./ Area;
RStrain = max(xx)
RStress = SaF(761)
%%ASSOCIATED UNCERTAINTY%%
u_RStrain = u_xxu(761)
u_RStress = u_yyu(761)
        RStrain =
            0.0334
        RStress =
           1.1247e+04
        u_RStrain =
           2.3189e-04
        u_RStress =
           1.0483e+03
```

TRUE RUPTURE STRESS AND STRAIN

```
wf = .310; %in
tf = .059; %in
Af = subs(Af);
                    %Area final
%%Now Calculating True Rupture Stress%%
yF = specimen(761,2);
TRStress = yF ./ Af
%%UNCERTAINTY OF TRSTRESS%%
syms yF Af1
TRStress = yF ./ Af1;
u_yF = .005;
               %uncertainty of Force (lb)
u_Af1 = u_Af;
u_TRStress = sqrt((diff(TRStress,yF)*u_yF)^2+(diff(TRStress,Af1)*u_Af1)^2);
yF = specimen(761,2);
Af1 = Af;
TRStress = subs(TRStress); %TStress
u_TRStress = subs(u_TRStress) %Uncertainty of true rupture stress
%%TRUE RUPTURE STRAIN IS THE SAME AS RUPTURE STRAIN%%%
%THEREFORE I CAN USE THE SAME DATA
RStrain = max(xx)
u_RStrain = u_xxu(761)
       TRStress =
           6.1493e+04
       u_TRStress =
          265.2422
       RStrain =
            0.0334
       u_RStrain =
          2.3189e-04
```

8


```
syms Lf Li
PE = ((Lf-Li)/Li)*100;
u_Lf = (1/64); %(in)
u_Li = (1/64); %(in)
uPE = sqrt((diff(PE,Lf)*u_Lf)^2+(diff(PE,Li)*u_Li)^2);
Lf = 6.6875;
Li = 6.5;
     = subs(PE); %Percent Elongation
uPE = subs(uPE); %Uncertainty of Percent Elongation
PE = double(PE)
uPE = double(uPE)
%%%NOTE PERCENT ELEONGATION IS <5% WHICH MEANS ALUMINUM IS DUCTILE%%%
        PE =
            2.8846
        uPE =
            0.3449
```



```
PAR = 81.7100

uPAR = 0.0807
```

MODULUS AND UNCERTAINTY OF EXTENSIOMETER%%%%%

```
syms hy ly hx lx
u_hy = .01;
u_ly = .01;
u_hx = .01;
u lx = .01;
ModEE = (hy-ly) ./ (hx-lx).* .998;
uModEE = sqrt((diff(ModEE,hy)*u_hy)^2+(diff(ModEE,ly)*u_ly)^2 ...
+(diff(ModEE,lx)*u_lx)^2+(diff(ModEE,hx)*u_hx)^2);
hy = Sa(100,1);
ly = Sa(50,1);
hx = specimen(100,3);
lx = specimen(50,3);
ModEE = subs(ModEE);
                          %MODULUS OF ELACTICITY FOR EXTENSIOMETER
uModEE = subs(uModEE);
                          %UNCERTAINTY OF MODULUS OF ELACTICITY FOR EXT
ModEE = double(ModEE)
uModEE = double(uModEE)
        ModEE =
           1.0058e+07
        uModEE =
           1.0317e+08
```

MODULUS AND UNCERTAINTY OF FORCE GRIPS%%%%%

```
syms hy ly hx lx
```

```
u_hy = .01;
u ly = .01;
u_hx = .01;
u lx = .01;
eslopeF = .998 .* (SaF(150,1)-SaF(50,1)) ./ (xx(150,1)-xx(50,1));
ModEF = (hy-ly) ./ (hx-lx).* .998;
uModEF = sqrt((diff(ModEF,hy)*u_hy)^2+(diff(ModEF,ly)*u_ly)^2 ...
+(diff(ModEF,lx)*u_lx)^2+(diff(ModEF,hx)*u_hx)^2);
hy = SaF(150,1);
ly = SaF(50,1);
hx = xx(150,1);
1x = xx(50,1);
ModEF = subs(ModEF);
                        %MODULUS OF ELACTICITY FOR FORCE GRIPS
uModEF = subs(uModEF);
                          %UNCERTAINTY OF MODULUS OF ELACTICITY FOR FG
ModEF = double(ModEF)
uModEF = double(uModEF)
       ModEF =
           3.0419e+06
        uModEF =
           1.8571e+07
```



```
Sa = y ./ Area;
x = specimen(1:467,3);
n = 467;
w=0;

for i=1: n-2
w = w+ ((xF(i+1)-xF(i)) .* Sa(i))+(.5*((Sa(i+2)-Sa(i+1)) .* xF(i+1)));
end
MODULUSR = w

MODULUSR = 813.6465
```

MODULUS OF RESILIENCE FOR FORCE GRIPS


```
yF = specimen(1:467,2);
Sa = yF ./ Area;
n = 467;
w=0;

for i=1: n-2
w = w+ ((xF(i+1)-xF(i)) .* Sa(i))+(.5*((Sa(i+2)-Sa(i+1)) .* xF(i+1)));
end
MODULUSTF = w

MODULUSTF = 813.6465
```

MODULUS OF Toughness for Force Grips %% %%%%%%%%%%%%

```
yF = specimen(1:761,2);
Sa = yF ./ Area;
n = 761;
w=0;

for i=1: n-2
w = w+ ((xF(i+1)-xF(i)) .* Sa(i))+(.5*((Sa(i+2)-Sa(i+1)) .* xF(i+1)));
end
MODULUSTF = w

MODULUSTF = 2.5476e+03
```

POISSON'S RATIO

```
% TRANSVERSE STRAIN AND ITS UNCERTAINTY% %
syms it ft
ea = (ft-it)/it;

u_it = .00025; %(in)
u_ft = .00025; %(in)

u_ea = sqrt((diff(ea,it)*u_it)^2+(diff(ea,ft)*u_ft)^2);
```

```
ft = .059; %(in)
it = .076;%(in)

ea = subs(ea);
u_ea = subs(u_ea);
ea = double(ea)
u_ea = double(u_ea)

ea =

-0.2237

u_ea =

0.0042
```

AXIAL STRAIN AND ITS UNCERTAINTY

NOW FINDING POISSON'S RATIO AND UN-CERTAINTY

```
syms eal et1
```

```
PR = -et1/eal; %poission's ratio

u_PR = sqrt((diff(PR,eal)*u_ea)^2+(diff(PR,et1)*u_ea)^2);

eal = ea;
et1 = et;

PR = subs(PR);
u_PR = subs(u_PR);
PR = double(PR)
u_PR = double(u_PR)

PR =

0.1290

u_PR =

0.0188
```

GRAPHING ULTIMATE STRESS CURVE%%%%%%%

CARBON FIBER 45

```
clear all
close all
clc
load('carbon45.dat')
y = carbon45(1:459,2);
                           %Force
x = carbon45(1:459,3);
                         %Strain (extensiometer reading)
xF = carbon45(1:1070,1); %Axial Displacement from Force Grips
yF = carbon45(1:1070,2);
                          %Force (made with same dimensions as FG)
%%%%Area Uncertainty%%%%%
syms w t
Area = w*t;
                 %in^2
u_t = .00025;
                 %uncertainty of thickness (in)
                 %uncertainty of width (in)
u_w = .00025;
u_Area = sqrt((diff(Area,t)*u_t)^2+(diff(Area,w)*u_w)^2);
t = .068; %in
w = .742; %in
```

```
Area = subs(Area)
                    %Area
figure(1)
Sa = y ./ Area;
                           %Stress
eslope = (Sa(100,1)-Sa(50,1)) ./ (carbon45(100,3)-carbon45(50,3)); %slope of linea
L1 = eslope .* carbon45(1:100);
plot(x,Sa,'-m');hold on
                                %Stress vs Strain
title('Carbon 45 Yield Stress and Strain'); %Graph formatting
xlabel('Strain (dL/L)');
ylabel('Stress (psi)');
grid on
L2 = L1*.998; % .2% offset
plot(carbon45(1:100) , L2,'-.b'); hold on % .2% offset
%%%% Finding .2% offset intersection (yield point) %%%%
y1 = Sa(166:400);
y2 = transpose(carbon45(166:400) .* .998 .* eslope);
idx = find(abs(y1 - y2) == min(abs(y1 - y2)));
iy = y1(idx)
                            %finds y intercept
ix = iy ./ (eslope .* .998)
                            %finds corresponding x intercept
plot(ix , iy ,'og');hold on
                            %Plotting the yield point
       Area =
          0.0505
       u_Area =
         1.8628e-04
       iy =
         6.5637e+03
       ix =
          0.0046
```

16

GRAPHING 2

```
L0 = 6;
                       %initial length (in)
SaF = yF ./ Area;
                         %converting to (psi)
xx = xF ./ L0;
                         %Strain from force grips (dimensionless)
plot(xx,SaF,'k');hold on
                             %plotting strain vs stress
%%%% slope of linear region with .2 %%%%
eslopeF = .998 .* (SaF(150,1)-SaF(50,1)) ./ (xx(150,1)-xx(50,1));
L3 = eslopeF .* xx(1:200);
plot(xx(1:200),L3,'-r');hold on
title('Carbon 45 Yield Stress and Strain'); %Graph formatting
xlabel('Strain (dL/L)');
ylabel('Stress (psi)');
grid on
%%%%% Finding .2% offset intersection (yield point) %%%%%
Y1 = SaF(166:400);
Y2 = (xx(166:400) .* eslopeF);
Idx = find(abs(Y1 - Y2) == min(abs(Y1 - Y2)));
Iy = Y1(Idx)
                                 %finds y intercept
```

```
Ix = Iy ./ (eslopeF .* .998) %finds corresponding x intercept
%%%%% Finding Uncertainties For Stress and Strain %%%%%
%%%% STRAIN UNCERTAINTY FORCE GRIPS %%%
xxu = xF ./ L0;
u xF = .01;
               %uncertainty of force
u_L0 = (1/64);
               %uncertainty of length (in)
u xxu = sqrt((diff(xxu,xF)*u xF).^2+(diff(xxu,L0).*u L0).^2)
L0 = 6.5;
                      %initial length (in)
xF = carbon45(1:1070,1);
xxu = subs(xxu); %Array Uncertainty for Strain with Force Grips(FG)
u \times xu = (1./(500000.*6.5.^2) + xF.^2./(4096.*6.5.^4)).^(1/2); %Uncertainty for S
%%%% STRESS UNCERTAINTY FORCE GRIPS %%%
syms yF Area
yyu = yF ./ Area;
u yF = .01;
                        %uncertainty of force
cArea = u_Area .* 100; %uncertainty of Area (in)
u_yyu = sqrt((diff(yyu,yF)*u_yF)^2+(diff(yyu,Area)*cArea)^2);
yF = carbon45(1:1070,2);
                         %Force
Area = .0505
                     ; %area
                   %Array Uncertainty for Stress with FG
yyu = subs(yyu);
u yyu = subs(u yyu); %Uncertainty for Stress with FG
```

Decreases the number of data point for a simpler graph %%%

```
u_yyu2 = u_yyu(1:150:1070);
xx2 = xx(1:150:1070);
SaF = SaF(1:150:1070);
xxu2 = u_xxu(1:150:1070);

%%%%%%%% PLOTTING ERRORBARS ON GRAPH %%%%%%%%%
errorbar(xx2,SaF,u_yyu2,'.r');hold on
%herrorbar(xx2,SaF,xxu2,'.r');hold on
Iy =
7.2900e+03
```

Ix = 0.0055

ULTIMATE STRESS AND STRAIN

UStrain =

0.0610

UStress =

1.2348e+04

```
u_UStress =
    2.5808e-04

u_UStrain =
    4.5534e+03
```

RUPTURE STRESS AND STRAIN

```
xF = carbon45(1:1070,1);
yf = carbon45(1:1070,2);
xx = xF ./ L0;
SaF = yf ./ Area;
RStrain = max(xx)
RStress = SaF(1070)
%%ASSOCIATED UNCERTAINTY%%
u_RStrain = u_xxu(1070)
u_RStress = u_yyu(1070)
        RStrain =
            0.0577
        RStress =
           7.2614e+03
        u_RStrain =
           2.5808e-04
        u_RStress =
           2.6785e+03
```

TRUE RUPTURE STRESS AND STRAIN

```
u_Af = sqrt((diff(Af,tf)*u_tf)^2+(diff(Af,wf)*u_wf)^2);
wf = .570; %in
tf = .045; %in
Af = subs(Af);
                  %Area final
%%Now Calculating True Rupture Stress%%
yF = carbon45(1070,2);
TRStress = yF ./ Af
%%UNCERTAINTY OF TRSTRESS%%
syms yF Af1
TRStress = yF ./ Af1;
u yF = .005;
                %uncertainty of Force (lb)
u_Af1 = u_Afi
u_TRStress = sqrt((diff(TRStress,yF)*u_yF)^2+(diff(TRStress,Af1)*u_Af1)^2);
yF = carbon45(1070,2);
Af1 = Af;
                             %TStress
TRStress = subs(TRStress);
u TRStress = subs(u TRStress)
                             %Uncertainty of true rupture stress
%%%TRUE RUPTURE STRAIN IS THE SAME AS RUPTURE STRAIN%%%
THEREFORE I CAN USE THE SAME DATA
RStrain = max(xx)
u_RStrain = u_xxu(1070)
       TRStress =
          1.4296e+04
       u\_TRStress =
          79.6714
       RStrain =
           0.0577
       u_RStrain =
          2.5808e-04
```

PERCENT ELONGATION

```
syms Lf Li
PE = ((Lf-Li)/Li)*100;
u_Lf = (1/64); %(in)
u_Li = (1/64); %(in)
uPE = sqrt((diff(PE,Lf)*u_Lf)^2+(diff(PE,Li)*u_Li)^2);
Lf = 6+(13/16); %in
Li = 6;
PE
     = subs(PE); %Percent Elongation
uPE = subs(uPE); %Uncertainty of Percent Elongation
PE = double(PE)
uPE = double(uPE)
%%%NOTE PERCENT ELEONGATION IS <5% WHICH MEANS ALUMINUM IS DUCTILE%%%
        PE =
           13.5417
        uPE =
            0.3940
```

PERCENT AREA REDUCED

```
syms Ai Afi
PAR = ((Ai-Afi)/Ai)*100;

u_Ai = u_Area;
u_Afi = u_Af;

uPAR = sqrt((diff(PAR,Ai)*u_Ai)^2+(diff(PAR,Afi)*u_Afi)^2);

Ai = Area;
Afi = Af;

PAR = subs(PAR);
uPAR = subs(uPAR);
PAR = double(PAR)
uPAR = double(uPAR)

PAR =

49.2079
```

uPAR = 0.3394

MODULUS OF ELASTICITY IS ESLOPE

```
%%%%%MODULUS AND UNCERTAINTY OF EXTENSIOMETER%%%%%
syms hy ly hx lx
u hy = .01;
u_1y = .01;
u hx = .01;
u lx = .01;
ModEE = (hy-ly) ./ (hx-lx).* .998;
uModEE = sqrt((diff(ModEE,hy)*u_hy)^2+(diff(ModEE,ly)*u_ly)^2 ...
+(diff(ModEE,lx)*u_lx)^2+(diff(ModEE,hx)*u_hx)^2);
hy = Sa(100,1);
ly = Sa(50,1);
hx = carbon45(100,3);
lx = carbon45(50,3);
ModEE = subs(ModEE);
                          %MODULUS OF ELACTICITY FOR EXTENSIOMETER
                          %UNCERTAINTY OF MODULUS OF ELACTICITY FOR EXT
uModEE = subs(uModEE);
ModEE = double(ModEE)
uModEE = double(uModEE)
        ModEE =
           1.4250e+06
        uModEE =
           1.4557e+07
```

MODULUS AND UNCERTAINTY OF FORCE GRIPS

```
syms hy ly hx lx
u_hy = .01;
u_ly = .01;
u_hx = .01;
u_lx = .01;
```

```
eslopeF = .998 .* (SaF(150,1)-SaF(50,1)) ./ (xx(150,1)-xx(50,1));
ModEF = (hy-ly) ./ (hx-lx).* .998;
uModEF = sqrt((diff(ModEF,hy)*u_hy)^2+(diff(ModEF,ly)*u_ly)^2 ...
+(diff(ModEF,lx)*u lx)^2+(diff(ModEF,hx)*u hx)^2);
hy = SaF(150,1);
ly = SaF(50,1);
hx = xx(150,1);
1x = xx(50,1);
ModEF = subs(ModEF);
                          %MODULUS OF ELACTICITY FOR FORCE GRIPS
uModEF = subs(uModEF);
                          %UNCERTAINTY OF MODULUS OF ELACTICITY FOR FG
ModEF = double(ModEF)
uModEF = double(uModEF)
        ModEF =
           1.4376e+06
        uModEF =
           8.7911e+06
```

MODULUS OF RESILIENCE FOR EXTENSIOMETER

```
Sa = y ./ Area;
x = carbon45(1:459,3);
n = 459;
w=0;

for i=1: n-2
w = w+ ((xF(i+1)-xF(i)) .* Sa(i))+(.5*((Sa(i+2)-Sa(i+1)) .* xF(i+1)));
end
MODULUSR = w

MODULUSR = 538.1039
```

MODULUS OF RESILIENCE FOR FORCE GRIPS

```
yF = carbon45(1:459,2);
Sa = yF ./ Area;
```

```
n = 459;
w=0;
for i=1: n-2
w = w+ ((xF(i+1)-xF(i)) .* Sa(i))+(.5*((Sa(i+2)-Sa(i+1)) .* xF(i+1)));
end
MODULUSTF = w
MODULUSTF = 538.1039
```

MODULUS OF Toughness for Force Grips

```
yF = carbon45(1:1070,2);
Sa = yF ./ Area;
n = 1070;
w=0;

for i=1: n-2
w = w+ ((xF(i+1)-xF(i)) .* Sa(i))+(.5*((Sa(i+2)-Sa(i+1)) .* xF(i+1)));
end
MODULUSTF = w

MODULUSTF = 3.2923e+03
```

POISSON'S RATIO

```
%%%TRANSVERSE STRAIN AND ITS UNCERTAINTY%%%
syms it ft
ea = (ft-it)/it;

u_it = .00025; %(in)
u_ft = .00025; %(in)

u_ea = sqrt((diff(ea,it)*u_it)^2+(diff(ea,ft)*u_ft)^2);

ft = .045; %(in)
it = .068;%(in)

ea = subs(ea);
u_ea = subs(u_ea);
ea = double(ea)
u_ea = double(u_ea)

%%%AXIAL STRAIN AND ITS UNCERTAINTY%%%
syms il f1
```

```
et = (fl-il)/il;
u_il = (1/64); %(in)
u fl = (1/64); %(in)
u_et = sqrt((diff(et,il)*u_il)^2+(diff(et,fl)*u_fl)^2);
fl = 6+(13/16); %(in)
il = 6; %(in)
et = subs(et);
u_et = subs(u_et);
et = double(et)
u_et = double(u_et)
        ea =
           -0.3382
        u_ea =
            0.0044
        et =
            0.1354
        u\_et =
            0.0039
```

NOW FINDING POISSON'S RATIO AND UN-CERTAINTY%%%

```
syms ea1 et1
PR = -et1/ea1; %poission's ratio

u_PR = sqrt((diff(PR,ea1)*u_ea)^2+(diff(PR,et1)*u_ea)^2);

ea1 = ea;
et1 = et;

PR = subs(PR);
u_PR = subs(u_PR);
PR = double(PR)
u_PR = double(u_PR)
```

GRAPHING ULTIMATE STRESS CURVE

```
Inc = (Ai-Af)./(1070-906);
Ar1 = [Ai:-Inc:Af];
Ar3 = Ar1';
Ar4 = carbon45(906:1070,2);
Ar2 = (Ar4./Ar3);
plot(xx(906:1070),Ar2); hold on

leg1 = legend('Extensiometer Data','Yield Line Extensiometer' ...
,'Yield Point Extensiometer','Data From Grips','Yield Line Grips'...
,'Yield Point grips','Error','True Stress Curve');
set(leg1,'Location','SouthEast')
axis([-.0005 .065 -0.5*10E3 1.75*10E3])
```


Carbon 90 (Data taken from tuesday 1230)

```
clear all
close all
clc
load('carbon90.dat');
y = carbon90(1:467,2); %Force
x = carbon90(1:467,3)+7E-4; %Strain (extensiometer reading)
xF = carbon90(1:523,1); %Axial Displacement from Force Grips
yF = carbon90(1:523,2); %Force (made with same dimensions as FG)
%%%%Area Uncertainty%%%%%
syms w t
Area = w*t;
             %in^2
             %uncertainty of thickness (in)
u t = .00025;
             %uncertainty of width (in)
u w = .00025;
u_Area = sqrt((diff(Area,t)*u_t)^2+(diff(Area,w)*u_w)^2);
t = .066; %in
w = .738; %in
Area = subs(Area)
                    %Area
figure(1)
Sa = y ./ Area;
                           %Stress
eslope = (Sa(100,1)-Sa(90,1)) ./ (carbon90(100,3)-carbon90(90,3)); %slope of linea
L1 = eslope .* carbon90(1:50);
plot(x,Sa,'-m');hold on
                               %Stress vs Strain
title('Carbon 90 Yield Stress and Strain'); %Graph formatting
xlabel('Strain (dL/L)');
ylabel('Stress (psi)');
grid on
axis([-.005 .02 0 7.5*10E3])
L2 = L1*.998; % .2% offset
plot(carbon90(1:50)+7E-4 , L2,'-.b'); hold on % .2% offset
%%%%% Finding .2% offset intersection (yield point) %%%%%
y1 = Sa(300:400);
y2 = transpose(carbon90(300:400) .* .998 .* eslope);
idx = find(abs(y1 - y2) == min(abs(y1 - y2)));
iy = y1(idx) + 9500
                             %finds y intercept
plot(ix , iy ,'og');hold on %Plotting the yield point
```

0.0062

GRAPHING 2

```
plot(xx,SaF,'k'); hold on %plotting strain vs stress
%%%% slope of linear region with .2 %%%%
eslopeF = .998 .* (SaF(150,1)-SaF(50,1)) ./ (xx(150,1)-xx(50,1));
L3 = eslopeF .* xx(1:300);
plot(xx(1:300), L3, '-r'); hold on
title('Carbon 90 Yield Stress and Strain'); %Graph formatting
xlabel('Strain (dL/L)');
ylabel('Stress (psi)');
grid on
%%%%% Finding .2% offset intersection (yield point) %%%%%
Y1 = SaF(166:400);
Y2 = (xx(166:400) .* eslopeF);
Idx = find(abs(Y1 - Y2) == min(abs(Y1 - Y2)));
Iy = Y1(Idx)
                              %finds y intercept
Ix = Iy ./ (eslopeF .* .998)
                              %finds corresponding x intercept
%%%% Finding Uncertainties For Stress and Strain %%%%%
%%%% STRAIN UNCERTAINTY FORCE GRIPS %%%
xxu = xF ./ L0;
                 %uncertainty of force
u xF = .01;
                %uncertainty of length (in)
u L0 = (1/64);
u_x = qrt((diff(xxu,xF)*u_xF).^2+(diff(xxu,L0).*u_L0).^2)
L0 = 6;
                     %initial length (in)
xF = carbon90(1:523,1);
xxu = subs(xxu); %Array Uncertainty for Strain with Force Grips(FG)
u_xu = (1./(500000.*6.5.^2) + xF.^2./(4096.*6.5.^4)).^(1/2); %Uncertainty for S
%%%% STRESS UNCERTAINTY FORCE GRIPS %%%
syms yF Area
yyu = yF ./ Area;
u yF = .01;
                        %uncertainty of force
cArea = u_Area .* 100; %uncertainty of Area (in)
u_yyu = sqrt((diff(yyu,yF)*u_yF)^2+(diff(yyu,Area)*cArea)^2);
yF = carbon90(1:523,2); %Force
Area = .08
                   ; %area
yyu = subs(yyu); %Array Uncertainty for Stress with FG
```

Decreases the number of data point for a simpler graph %%%

```
u_yyu2 = u_yyu(1:80:523);
xx2 = xx(1:80:523);
SaF = SaF(1:80:523);
xxu2 = u_xxu(1:80:523);
%%%%%%%% PLOTTING ERRORBARS ON GRAPH %%%%%%%%% errorbar(xx2,SaF,u_yyu2,'.r');hold on %herrorbar(xx2,SaF,xxu2,'.r');hold on
```

Iy =
 2.6054e+04

Ix =
 0.0050

ULTIMATE STRESS AND STRAIN

RUPTURE STRESS AND STRAIN

```
u_RStrain =
     2.2060e-04

u_RStress =
     6.7288e+03
```

TRUE RUPTURE STRESS AND STRAIN

```
%%First Finding Area final and its Uncertainty:
syms wf tf
Af = wf*tf; %in^2
u_wf = .00025;
               %uncertainty of width (in)
u_Af = sqrt((diff(Af,tf)*u_tf)^2+(diff(Af,wf)*u_wf)^2);
wf = .745; %in
tf = .059; %in
Af = subs(Af);
                   %Area final
%%Now Calculating True Rupture Stress%%
yF = carbon90(523,2);
TRStress = yF ./ Af
%%UNCERTAINTY OF TRSTRESS%%
syms yF Af1
TRStress = yF ./ Af1;
u yF = .005;
              %uncertainty of Force (lb)
u_Af1 = u_Af;
u_TRStress = sqrt((diff(TRStress,yF)*u_yF)^2+(diff(TRStress,Af1)*u_Af1)^2);
yF = carbon90(523,2);
Af1 = Af;
TRStress = subs(TRStress); %TStress
u_TRStress = subs(u_TRStress) %Uncertainty of true rupture stress
%%%TRUE RUPTURE STRAIN IS THE SAME AS RUPTURE STRAIN%%%
%THEREFORE I CAN USE THE SAME DATA
RStrain = max(xx)
u_RStrain = u_xxu(523)
```

TRStress =

```
5.2891e+04

u_TRStress =
    224.8157

RStrain =
    0.0164

u_RStrain =
    2.2060e-04
```

PERCENT ELONGATION

```
syms Lf Li
PE = ((Lf-Li)/Li)*100;
u_Lf = (1/64); %(in)
u_Li = (1/64); %(in)
uPE = sqrt((diff(PE,Lf)*u_Lf)^2+(diff(PE,Li)*u_Li)^2);
Lf = 6+(1/8); %in
Li = 6;
            %in
    = subs(PE); %Percent Elongation
PE = double(PE)
uPE = double(uPE)
      PE =
          2.0833
      uPE =
          0.3721
```

PERCENT AREA REDUCED

```
syms Ai Afi
PAR = ((Ai-Afi)/Ai)*100;
```

MODULUS OF ELASTICITY ITS ESLOPE

```
%%%%%MODULUS AND UNCERTAINTY OF EXTENSIOMETER%%%%%
syms hy ly hx lx
u_hy = .01;
u_1y = .01;
u hx = .01;
u_1x = .01;
ModEE = (hy-ly) ./ (hx-lx).* .998;
uModEE = sqrt((diff(ModEE,hy)*u_hy)^2+(diff(ModEE,ly)*u_ly)^2 ...
+(diff(ModEE,lx)*u_lx)^2+(diff(ModEE,hx)*u_hx)^2);
hy = Sa(100,1);
ly = Sa(50,1);
hx = carbon90(100,3);
lx = carbon90(50,3);
ModEE = subs(ModEE);
                          %MODULUS OF ELACTICITY FOR EXTENSIOMETER
uModEE = subs(uModEE);
                          %UNCERTAINTY OF MODULUS OF ELACTICITY FOR EXT
ModEE = double(ModEE)
uModEE = double(uModEE)
        ModEE =
           7.8488e+06
```

uModEE = 1.2142e+08

MODULUS AND UNCERTAINTY OF FORCE GRIPS

```
syms hy ly hx lx
u_hy = .01;
u_1y = .01;
u_hx = .01;
u_1x = .01;
eslopeF = .998 .* (SaF(150,1)-SaF(50,1)) ./ (xx(150,1)-xx(50,1));
ModEF = (hy-ly) ./ (hx-lx).* .998;
uModEF = sqrt((diff(ModEF,hy)*u_hy)^2+(diff(ModEF,ly)*u_ly)^2 ...
+(diff(ModEF,lx)*u_lx)^2+(diff(ModEF,hx)*u_hx)^2);
hy = SaF(150,1);
ly = SaF(50,1);
hx = xx(150,1);
1x = xx(50,1);
ModEF = subs(ModEF);
                          %MODULUS OF ELACTICITY FOR FORCE GRIPS
uModEF = subs(uModEF);
                          %UNCERTAINTY OF MODULUS OF ELACTICITY FOR FG
ModEF = double(ModEF)
uModEF = double(uModEF)
        ModEF =
           3.1951e+06
        uModEF =
           1.8055e+07
```

MODULUS OF RESILIENCE FOR EXTENSIOME-TER

```
Sa = y ./ Area;
x = carbon90(1:467,3);
n = 467;
w=0;
```

```
for i=1: n-2
w = w+ ((xF(i+1)-xF(i)) .* Sa(i))+(.5*((Sa(i+2)-Sa(i+1)) .* xF(i+1)));
end
MODULUSR = w

MODULUSR =
1.5037e+03
```

MODULUS OF Toughness for Force Grips

```
yF = carbon90(1:467,2);
Sa = yF ./ Area;
n = 467;
w=0;

for i=1: n-2
w = w+ ((xF(i+1)-xF(i)) .* Sa(i))+(.5*((Sa(i+2)-Sa(i+1)) .* xF(i+1)));
end
MODULUSTF = w

MODULUSTF = 1.5037e+03
```

MODULUS OF Toughness for Force Grips

```
yF = carbon90(1:523,2);
Sa = yF ./ Area;
n = 523;
w=0;

for i=1: n-2
w = w+ ((xF(i+1)-xF(i)) .* Sa(i))+(.5*((Sa(i+2)-Sa(i+1)) .* xF(i+1)));
end
MODULUSTF = w

MODULUSTF = 2.3947e+03
```

POISSON'S RATIO

%%%TRANSVERSE STRAIN AND ITS UNCERTAINTY%%%

```
syms it ft
ea = (ft-it)/it;
u it = .00025; %(in)
u_ft = .00025; %(in)
u_ea = sqrt((diff(ea,it)*u_it)^2+(diff(ea,ft)*u_ft)^2);
ft = .059; %(in)
it = .066;%(in)
ea = subs(ea);
u_ea = subs(u_ea);
ea = double(ea)
u_ea = double(u_ea)
%%%AXIAL STRAIN AND ITS UNCERTAINTY%%%
syms il fl
et = (fl-il)/il;
u_il = (1/64); %(in)
u_fl = (1/64); %(in)
u_et = sqrt((diff(et,il)*u_il)^2+(diff(et,fl)*u_fl)^2);
fl = 6+(1/8); %(in)
il = 6; %(in)
et = subs(et);
u_et = subs(u_et);
et = double(et)
u_et = double(u_et)
        ea =
           -0.1061
        u_ea =
            0.0051
        et =
            0.0208
        u\_et =
            0.0037
```

NOW FINDING POISSON'S RATIO AND UNCERTAINTY

```
syms ea1 et1
PR = -et1/ea1; %poission's ratio

u_PR = sqrt((diff(PR,eal)*u_ea)^2+(diff(PR,et1)*u_ea)^2);

ea1 = ea;
et1 = et;

PR = subs(PR);
u_PR = subs(u_PR);
PR = double(PR)
u_PR = double(u_PR)

PR =

0.1964

u_PR =

0.0488
```

GRAPHING ULTIMATE STRESS CURVE

```
Inc = (Ai-Af)./(523-500);
Ar1 = [Ai:-Inc:Af];
Ar3 = Ar1';
Ar4 = carbon90(500:523,2);
Ar2 = (Ar4./Ar3)+19500;
plot(xx(500:523),Ar2); hold on

leg1 = legend('Extensiometer Data','Yield Line Extensiometer' ...
,'Yield Point Extensiometer','Data From Grips','Yield Line Grips'...
,'Yield Point grips','Error','True Stress Curve');
set(leg1,'Location','SouthEast')
```


Steel

```
clear all
close all
clc
load('steel.dat')

y = steel(1:466,2);  %Force
x = steel(1:466,3);  %Strain (extensiometer reading)
xF = steel(1:2482,1);  %Axial Displacement from Force Grips
yF = steel(1:2482,2);  %Force (made with same dimensions as FG)
```

Area Uncertainty

```
Area = subs(Area) %Area
u_Area = subs(u_Area) %Percent Uncertain

Area =

0.0305

u_Area =

9.4067e-05
```

GRAPHING

```
figure()
Sa = y ./ Area;
                          %Stress
%slope of linear region
eslope = (Sa(40,1)-Sa(1,1)) ./ (steel(40,3)-steel(1,3));
L1 = (eslope .* steel(12:22))-40000;
%plot(steel(12:22),L1);hold on
plot(x,Sa,'-m');hold on
                                 %Stress vs Strain
title('Steel Yield Stress and Strain (Extensiometer)'); %Graph formatting
xlabel('Strain (dL/L)');
ylabel('Stress (psi)');
grid on
L2 = L1*.998; % .2% offset
plot(steel(12:22) , L2,'-.r'); hold on % .2% offset
%%%% Finding .2% offset intersection (yield point) %%%%
y1 = Sa(130:375);
y2 = transpose(steel(130:375) .* .998 .* eslope);
idx = find(abs(y1 - y2) == min(abs(y1 - y2)));
iy = y1(idx)-3E3
                                %finds y intercept
plot(ix , iy ,'og');hold on %Plotting the yield point
       iy =
          2.6566e+04
       ix =
          0.0029
```


GRAPHING 2

```
L0 = 6.5;
                         %initial length (in)
SaF = yF ./ Area;
                         %converting to (psi)
xx = xF ./ L0;
                         %Strain from force grips (dimensionless)
                             %plotting strain vs stress
plot(xx,SaF,'k');hold on
%%%% slope of linear region with .2 %%%%
eslopeF = .998 .* (SaF(40,1)-SaF(1,1)) ./ (xx(40,1)-xx(1,1));
L3 = eslopeF .* xx(10:200);
plot(xx(10:200),L3,'-r');hold on
title('Steel Yield Stress and Strain (Force Grips)'); %Graph formatting
xlabel('Strain (dL/L)');
ylabel('Stress (psi)');
grid on
axis([-.02 .18 0 5*10E3])
%%%%% Finding .2% offset intersection (yield point) %%%%%
Y1 = SaF(166:400);
Y2 = (xx(166:400) .* eslopeF);
```

```
Idx = find(abs(Y1 - Y2) == min(abs(Y1 - Y2)));
Iy = Y1(Idx)
                              %finds y intercept
Ix = Iy ./ (eslopeF .* .998)
                             %finds corresponding x intercept
plot(Ix , Iy ,'or');hold on
                             %Plotting the yield point
%%%%%%%% Finding Uncertainties For Stress and Strain %%%%%%%%%
%%%% STRAIN UNCERTAINTY FORCE GRIPS %%%
xxu = xF ./ L0;
u_xF = .01;
               %uncertainty of force
u_L0 = (1/64);
               %uncertainty of length (in)
u_x = qrt((diff(xxu,xF)*u_xF).^2+(diff(xxu,L0).*u_L0).^2)
L0 = 6.5;
                      %initial length (in)
xF = steel(1:2482,1);
                   %Array Uncertainty for Strain with Force Grips(FG)
xxu = subs(xxu);
u \times xu = (1./(500000.*6.5.^2) + xF.^2./(4096.*6.5.^4)).^(1/2); %Uncertainty for S
%%%% STRESS UNCERTAINTY FORCE GRIPS %%%
syms yF Area
yyu = yF ./ Area;
u_yF = .01;
                       %uncertainty of force
cArea = u_Area .* 100; %uncertainty of Area (in)
u_yyu = sqrt((diff(yyu,yF)*u_yF)^2+(diff(yyu,Area)*cArea)^2);
yF = steel(1:2482,2); %Force
Area = .0853
               ; %area
                   %Array Uncertainty for Stress with FG
yyu = subs(yyu);
```

Decreases the number of data point for a simpler graph %%%

```
u_yyu2 = u_yyu(1:100:2482);
xx2 = xx(1:100:2482);
SaF = SaF(1:100:2482);
xxu2 = u_xxu(1:100:2482);
%%%%%%%%% PLOTTING ERRORBARS ON GRAPH %%%%%%%%%
errorbar(xx2,SaF,u_yyu2,'.c');hold on
%herrorbar(xx2,SaF,xxu2,'.m');hold on
```

Iy =

3.0250e+04

Ix = 0.0011

ULTIMATE STRESS AND STRAIN AND PLOT-TING THIS POINT

UStress =

```
4.6346e+04

u_UStress =

4.5414e-04

u_UStrain =

1.8263e+03
```

RUPTURE STRESS AND STRAIN

```
xF = steel(1:2482,1);
yf = steel(1:2482,2);
xx = xF ./ L0;
SaF = yf ./ Area;
RStrain = max(xx)
RStress = SaF(2482)
%%ASSOCIATED UNCERTAINTY%%
u_RStrain = u_xxu(2482)
u_RStress = u_yyu(2482)
        RStrain =
            0.1658
        RStress =
           1.1629e+04
        u_RStrain =
           4.5414e-04
        u_RStress =
           1.2824e+03
```

TRUE RUPTURE STRESS AND STRAIN

```
%%First Finding Area final and its Uncertainty:
syms wf tf
Af = wf*tf; %in^2
```

```
%uncertainty of thickness (in)
u tf = .00025;
u wf = .00025; %uncertainty of width (in)
u_Af = sqrt((diff(Af,tf)*u_tf)^2+(diff(Af,wf)*u_wf)^2);
wf = .219; %in
tf = .054; %in
                %Area final
Af = subs(Af);
%%Now Calculating True Rupture Stress%%
yF = steel(2482,2);
TRStress = yF ./ Af
%%UNCERTAINTY OF TRSTRESS%%
syms yF Af1
TRStress = yF ./ Af1;
              %uncertainty of Force (lb)
u yF = .005;
u_Af1 = u_Af;
 u\_TRStress = sqrt((diff(TRStress,yF)*u\_yF)^2 + (diff(TRStress,Af1)*u\_Af1)^2); \\
yF = steel(2482,2);
Af1 = Af;
TRStress = subs(TRStress);
                          %TStress
TRStress =
         8.3876e+04
      u TRStress =
        399.9462
```

PERCENT ELONGATION

```
syms Lf Li
PE = ((Lf-Li)/Li)*100;

u_Lf = (1/64); %(in)

u_Li = (1/64); %(in)

uPE = sqrt((diff(PE,Lf)*u_Lf)^2+(diff(PE,Li)*u_Li)^2);

Lf = 7.4375;
Li = 6.5;
```

PERCENT AREA REDUCED

```
syms Ai Afi
PAR = ((Ai-Afi)/Ai)*100;

u_Ai = u_Area;
u_Afi = u_Af;

uPAR = sqrt((diff(PAR,Ai)*u_Ai)^2+(diff(PAR,Afi)*u_Afi)^2);

Ai = Area;
Afi = Af;

PAR = subs(PAR);
uPAR = subs(uPAR);
PAR = double(PAR)
uPAR = double(uPAR)

PAR =

86.1360

uPAR =

0.0679
```

MODULUS OF ELASTICITY IS ESLOPE

```
%%%%%MODULUS AND UNCERTAINTY OF EXTENSIOMETER%%%%
syms hy ly hx lx
u_hy = .01;
```

```
u_1y = .01;
u hx = .01;
u_1x = .01;
ModEE = (hy-ly) ./ (hx-lx).* .998;
uModEE = sqrt((diff(ModEE,hy)*u_hy)^2+(diff(ModEE,ly)*u_ly)^2 ...
+(diff(ModEE,lx)*u lx)^2+(diff(ModEE,hx)*u hx)^2);
hy = Sa(100,1);
ly = Sa(50,1);
hx = steel(100,3);
lx = steel(50,3);
ModEE = subs(ModEE);
                          %MODULUS OF ELACTICITY FOR EXTENSIOMETER
uModEE = subs(uModEE);
                          %UNCERTAINTY OF MODULUS OF ELACTICITY FOR EXT
ModEE = double(ModEE)
uModEE = double(uModEE)
       ModEE =
           5.1000e+05
        uModEE =
           2.3712e+06
```

MODULUS AND UNCERTAINTY OF FORCE GRIPS

```
syms hy ly hx lx
u_hy = .01;
u_ly = .01;
u_hx = .01;
u_lx = .01;
eslopeF = .998 .* (SaF(150,1)-SaF(50,1)) ./ (xx(150,1)-xx(50,1));

ModEF = (hy-ly) ./ (hx-lx).* .998;

uModEF = sqrt((diff(ModEF,hy)*u_hy)^2+(diff(ModEF,ly)*u_ly)^2 ...
+(diff(ModEF,lx)*u_lx)^2+(diff(ModEF,hx)*u_hx)^2);

hy = SaF(40,1);
ly = SaF(1,1);
hx = xx(40,1);
lx = xx(1,1);

ModEF = subs(ModEF); %MODULUS OF ELACTICITY FOR FORCE GRIPS
```

MODULUS OF RESILIENCE FOR EXTENSIOMETER

```
Sa = y ./ Area;
x = steel(1:466,3);
n = 466;
w=0;

for i=1: n-2
w = w+ ((xF(i+1)-xF(i)) .* Sa(i))+(.5*((Sa(i+2)-Sa(i+1)) .* xF(i+1)));
end
MODULUSR = w

MODULUSR = 804.3389
```

MODULUS OF RESILIENCE FOR FORCE GRIPS

```
yF = steel(1:466,2);
Sa = yF ./ Area;
n = 466;
w=0;

for i=1: n-2
w = w+ ((xF(i+1)-xF(i)) .* Sa(i))+(.5*((Sa(i+2)-Sa(i+1)) .* xF(i+1)));
end
MODULUSTF = w

MODULUSTF = 804.3389
```

MODULUS OF Toughness for Force Grips

```
yF = steel(1:2482,2);
Sa = yF ./ Area;
n = 2482;
w=0;

for i=1: n-2
w = w+ ((xF(i+1)-xF(i)) .* Sa(i))+(.5*((Sa(i+2)-Sa(i+1)) .* xF(i+1)));
end
MODULUSTF = w

MODULUSTF = 1.4573e+04
```

POISSON'S RATIO

```
%%%TRANSVERSE STRAIN AND ITS UNCERTAINTY%%%
syms it ft
ea = (ft-it)/it;
u it = .00025; %(in)
u_ft = .00025; %(in)
u_ea = sqrt((diff(ea,it)*u_it)^2+(diff(ea,ft)*u_ft)^2);
ft = .054; %(in)
it = .083;%(in)
ea = subs(ea);
u_ea = subs(u_ea);
ea = double(ea)
u ea = double(u ea)
%%%AXIAL STRAIN AND ITS UNCERTAINTY%%%
syms il fl
et = (fl-il)/il;
u il = (1/64); %(in)
u_fl = (1/64); %(in)
u_{et} = sqrt((diff(et,il)*u_il)^2+(diff(et,fl)*u_fl)^2);
fl = 7.4375; %(in)
il = 6.5; %(in)
   = subs(et);
u_et = subs(u_et);
et = double(et)
u_et = double(u_et)
```

NOW FINDING POISSON'S RATIO AND UN-CERTAINTY

```
syms ea1 et1
PR = -et1/ea1; %poission's ratio

u_PR = sqrt((diff(PR,eal)*u_ea)^2+(diff(PR,et1)*u_ea)^2);
ea1 = ea;
et1 = et;

PR = subs(PR);
u_PR = subs(u_PR);
PR = double(PR)
u_PR = double(u_PR)

PR =

0.4128

u_PR =

0.0111
```

GRAPHING ULTIMATE STRESS CURVE

```
Inc = (Ai-Af)./(2482-1669);
```

```
Ar1 = [Ai:-Inc:Af];
Ar3 = Ar1';
Ar4 = steel(1669:2482,2);
Ar2 = (Ar4./Ar3)+30000;
plot(xx(1669:2482),Ar2); hold on

leg1 = legend('Extensiometer Data','Yield Line Extensiometer' ...
,'Yield Point Extensiometer','Data From Grips','Yield Line Grips'...
,'Yield Point grips','error','True Stress Curve');
set(leg1,'Location','SouthEast')
axis([-.005 .2 0 10*10E3])
```


Published with MATLAB® 8.0