0.1 Sigma Protocols

0.2 Schnorr's Identification Protocol

One very useful protocol for demonstration purposes is Schnorr's identification protocol. It is a simple and elegant protocol that allows one party to prove to another party that it knows a discrete logarithm of a given element.

Let us formalize it using theory above. Introduce the language

Suppose \mathbb{G} is a cyclic group of prime order q with generator $g \in \mathbb{G}$. Suppose prover \mathcal{P} has a secret key $\alpha \in \mathbb{Z}_q$ and the corresponding public key $u = g^{\alpha} \in \mathbb{G}$ and he wants to convince the verifier \mathcal{V} that he knows α corresponding to the public key u.

Well, the easiest way how to proceed is simply giving α to \mathcal{V} , but this is obviously not what we want. Instead, the Schnorr protocol allows \mathcal{P} to prove the knowledge of α without revealing it.

Let us finally describe the protocol. The schnorr identification protocol $\Pi_{Schnorr} = (Gen, \mathcal{P}, \mathcal{V})$ with a generation function Gen and prover \mathcal{P} and verifier \mathcal{V} is defined as follows:

- Gen(1 $^{\lambda}$): As with most public-key cryptosystems, we take $\alpha \xleftarrow{R} \mathbb{Z}_q$ and $u \leftarrow g^{\alpha}$. We output the *verification key* as vk := u, and the *secret key* as $sk := \alpha$.
- The protocol between (P, V) is run as follows:
 - \mathcal{P} computes $\alpha_T \leftarrow \mathbb{Z}_q$, $u_T \leftarrow g^{\alpha_T}$ and sends u_T to \mathcal{V} .
 - \mathcal{V} sends a random challenge $c \stackrel{R}{\leftarrow} \mathbb{Z}_q$ to \mathcal{P} .
 - \mathcal{P} computes $\alpha_{\mathcal{C}} \leftarrow \alpha_{\mathcal{T}} + \alpha_{\mathcal{C}} \in \mathbb{Z}_q$ and sends $\alpha_{\mathcal{C}}$ to \mathcal{V} .
 - \mathcal{V} accepts if $q^{\alpha_c} = u_T \cdot u^c$, otherwise it rejects.