Отчёт о выполнении лабораторных работ 2.2 и 2.3 «Изучение спектров атомов водорода и дейтерия» и «Изучение молекулярного спектра йода»

Цель работы: исследовать спектральные закономерности в оптических спектрах водорода и дейтерия, вычислить постоянные Ридберга, потенциалы ионизации и изотопические сдвиги линий для этих изотопов водорода; исследовать спектр поглощения паров йода в видимой области, вычислить энергию колебательного кванта молекулы йода и энергию ее диссоциации в основном и возбужденном состояниях.

Оборудование: призменный монохроматор, неоновая, ртутная, водородная лампы, кювета с парами йода, лампа накаливания.

Теория

Связь длины волны, заряда и линии спектра для водородоподобных атомов:

$$\frac{1}{\lambda_{mn}} = RZ^2 \left(\frac{1}{n^2} - \frac{1}{m^2} \right) \tag{1}$$

где R — постоянная Ридберга.

$$E = E_{\text{эл}} + E_{\text{кол}} + E_{\text{вращ}} \tag{2}$$

$$\psi = \psi_{\text{эл}} \psi_{\text{кол}} \psi_{\text{вращ}} \tag{3}$$

Энергия колебательного кванта возбужденного состояния молекулы йода:

$$h\nu_2 = \frac{h\nu_{1,5} - h\nu_{1,0}}{5} \tag{4}$$

Ход работы

Измерения и наблюдения

Калибровочные измерения.

Неон

Угол барабана, °	λ , Å	Полоса
2008	5852	22
1947	5401	23
1912	5341	24
2260	5945	20
2314	6074	17
2326	6096	16
2344	6143	15
2354	6164	14
2396	6267	12
2422	6334	10
2448	6402	8
2486	6507	7
2544	6678	4
2622	6929	2

Ртуть

Угол барабана, °	λ , Å	Полоса
2612	6907	K1
2380	6234	K2
2175	5791	1
2164	5770	2
1988	5461	3
1578	4916	4
908	4358	5
366	4047	6

Измерения для веществ:

Водород

2 0A 0 P 0A		
Угол барабана, °	Полоса	
2499	H_{α}	
1514	H_{β}	
879	H_{γ}	
464	H_{δ}	

Йод

1 1	
Угол барабана, °	Полоса
2338	$h\nu_{1,0}$
2243	$h\nu_{1,5}$
1840	$h\nu_{\mathrm{rp}}$?
1718	$h\nu_{\rm rp}$?

Обработка

По известным длинам волн неона и ртути построим градуировочную кривую.

Погрешность измерения угла поворота барабана $\approx 1^{\circ}$.

По известной градуировочной кривой определим длины волн спектров испускания водорода и поглощения йода.

Водород
n - F - n

ŗ	1 L 11
λ , Å	Полоса
6550	H_{α}
4860	H_{β}
4340	H_{γ}
4095	H_{δ}

Йод

иод		
λ, A	Полоса	
6140	$h\nu_{1,0}$	
5920	$h\nu_{1,5}$	
5245	$h\nu_{ m rp}$?	
5090	$h\nu_{\rm rp}$?	

Определение спектра поглощения йода

Примем погрешность определения длины волны за $\pm 5 \text{Å}$.

В лабораторной работе исследуется серия Бальмера для водорода; для нее n=2, а m=3,4,5,6 для $H_{\alpha},H_{\beta},H_{\gamma},H_{\delta}$ соответственно (уравнение (1)).

Найдем, соответственно, значения R для различных линий, чтобы, усреднив, получить истинное значение.

λ, A	Полоса	R	σ_R
6550	H_{α}	$1,099 \cdot 10^{-3} \text{ Å}^{-1}$	$8, 4 \cdot 10^{-7} \text{Å}^{-1}$
4860	H_{β}	$1,097 \cdot 10^{-3} \text{ Å}^{-1}$	$1,13 \cdot 10^{-6} \text{Å}^{-1}$
4340	H_{γ}	$1,097 \cdot 10^{-3} \text{ Å}^{-1}$	$1,26 \cdot 10^{-6} \text{Å}^{-1}$
4095	H_{δ}	$1,099 \cdot 10^{-3} \text{ Å}^{-1}$	$1,34 \cdot 10^{-6} \text{Å}^{-1}$

Итак, $R=1,098\cdot 10^{-3}\pm 5,77\cdot 10^{-7}$ Å $^{-1}=1,098\cdot 10^{5}\pm 5,77\cdot 10$ см $^{-1}$. Вычислим энергии для йода:

λ , Å	Полоса	E	σ_E
6140	$h\nu_{1,0}$	2,019 эВ	$1, 6 \cdot 10^{-3} \text{ 9B}$
5920	$h\nu_{1,5}$	2,094 эВ	$1,8 \cdot 10^{-3} \text{ 9B}$
5245	$h\nu_{\rm rp}$?	2,364 эВ	$2, 3 \cdot 10^{-3}$ эВ
5090	$h\nu_{\rm rp}$?	2,436 эВ	$2, 4 \cdot 10^{-3}$ эВ

Тогда:

• по 4 $h\nu_2=0,015\pm2,4\cdot10^{-3}$ эВ — энергия колебательного кванта возбужденного состояния молекулы йода.

- $h\nu_{\text{эл}} = h\nu_{1,5} \frac{h\nu_1}{2} = 2,081 \pm 1,8 \cdot 10^{-3} \text{ эВ}.$
- $D_1 = h\nu_{\rm rp} E = 1,496 \pm 2,3 \cdot 10^{-3}$ эВ энергия диссоциации молекулы в основном состоянии.
- $D_2 = h\nu_{\rm rp} h\nu_{\rm эл} + 5,5h\nu_2 = 0,4375 \pm 3,5 \cdot 10^{-3}$ эВ энергия диссоциации молекулы в возбужденном состоянии.

Обсуждение

Выполнив данную лабораторную работу, мы научились строить и использовать градуировочную кривую монохроматора, изучили спектры испускания атомарного водорода и поглощения паров молекулярного йода, вычислили постоянную Ридберга для водородоподобных атомов и энергии диссоциации молекул йода.

Все значения оказались близки к табличным.

Граница схождения спектра поглощения йода, обнаруженная моим напарником, оказалась ближе к истинной, чем обнаруженная мной; но истинная граница, если судить по вычисленным энергиям диссоциации, лежит дальше в коротковолновом диапазоне.

Вывод

 $R=1,098\cdot 10^5\pm 5,77\cdot 10~{\rm cm}^{-1},$ что близко к табличному значению.