Лекция 11. Дифференциальное исследование функций

1. Условия монотонности функции

Теорема 15(необходимое и достаточное условие постоянства функции на отрезке по первой производной).

Для того, чтобы непрерывная на [a,b] и дифференцированная b(a,b) функция f(x) была постоянной на [a,b] необходимо и достаточно, чтобы $f'(x) \equiv 0$ на (a,b).

Доказательство вытекает из следствия теоремы Лагранжа о конечных приращениях.

Теорема 16 (необходимое и достаточное условие монотонности функции по первой производной).

Для того, чтобы непрерывная на [a,b], дифференцируемая в (a,b) функция f(x) была неубывающей (невозрастающей) на [a,b] необходимо и достаточно, чтобы $f'(x) \ge 0$ ($f'(x) \le 0$) на (a,b).

Доказательство. Необходимость.

Дано: дифференцируемая f(x)-неубывающая. **Доказать:** $f'(x) \ge 0$

Из того, что функция неубывающая вытекает $\frac{f(x) - f(x_0)}{x - x_0} \ge 0$, далее переходим к пределу, который существует в силу дифференцируемости f(x).

Достаточность.

> 0.

Дано: $f'(x) \ge 0$ на (a,b). **Доказать:** f(x) – неубывающая на [a,b].

Если x' < x'', то по теореме Лагранжа

 $f(x')-f(x')=f'(\xi)(x''-x')$ откуда и следует требуемая монотонность.

Теорема 17(необходимое и достаточное условие строгой монотонности функции на отрезке по первой производной)

Для того, чтобы непрерывная на [a,b], дифференцируемая в (a,b) функция f(x) была строго монотонно возрастающей (убывающей) на [a,b] необходимо и достаточно, чтобы $f'(x) \ge 0$ ($f'(x) \le 0$) на (a,b) и чтобы не существовало промежутка $[\alpha,\beta] \subset [a,b]$, на котором $f'(x) \equiv 0$.

Утверждение теоремы является непосредственным следствием теоремы 16

Следствие 1. Для непрерывной на [a,b], дифференцируемой в (a,b) функции f(x) условие f'(x) > 0 (f'(x) < 0) на (a,b) влечет строгое монотонное возрастание (убывание).

Пример 1. Доказать, что для любого n функция

 $f_n(x) = x(\pi/2 - \arctan nx)$ строго монотонно возрастает на $[0, +\infty)$.

$$f'_n(x) = \frac{\pi}{2} - \arctan nx - \frac{nx}{1 + n^2 x^2} = \frac{\pi}{2} - g(nx), \text{ где } g(u) = \arctan u + \frac{u}{1 + u^2}.$$
 Имеем $g'(u) = \frac{1}{1 + u^2} + \frac{1 - u^2}{(1 + u^2)^2} = \frac{2}{(1 + u^2)^2} > 0.$

$$g(0)=0, g(+\infty)=\pi/2$$
. Таким образом, $g(nx)<\pi/2$ и, следовательно, $f_n'(x)=\frac{\pi}{2}-g(nx)$

2.Локальные максимальные и минимальные значения функций (экстремумы)

Определение 4.(точки локального максимума функции) Пусть f(x) задана на [a,b] и $x_0 \in (a,b)$, x_0 называется точкой локального максимума функции f(x), если в некоторой окрестности точки x_0 выполнено неравенство $f(x) \le f(x_0)$ (2.43.1.)

и точкой локального строгого максимума, если в некоторой проколотой окрестности точки x_0 выполнено неравенство $f(x) < f(x_0)$. (2.43.2)

Аналогично определяются: минимум, строгий минимум.

Экстремум локальный: в точке локальный минимум или локальный максимум.

Экстремум строгий: в точке строгий локальный минимум или строгий локальный максимум. Это можно сформулировать, как сохранение знака приращения функции $f(x) - f(x_0)$ в некоторой проколотой окрестности точки x_0 .

Теорема 18 (Необходимое условие экстремума).

Если x_0 – точка экстремума функции f и существует $f'(x_0)$, то $f'(x_0)=0$.

Доказательство. Следует из теоремы Ферма.

Определение 5.(стационарной точки). Точка, в которой $f'(x_0)=0$ называется стационарной точкой.

Замечание 1. Таким образом, у дифференцируемой функции экстремум следует искать среди стационарных точек.

Пример 2. $f(x)=x^2$. Точка x=0- стационарная точка, и у $f(x)=x^3$, x=0-стационарная точка, но в первом случае эта точка-точка минимума, а во втором- в этой точке экстремума нет.

Определение 4.1.(Критической точкой 1 рода)

 x_0 ... критическая точка 1 рода функции f(x), если f(x) непрерывна в точке x_0 и выполняется одно из условий: 1) $f'(x_0)=0$ (стационарная точка); 2) $f'(x_0)=\infty$ (точка острого экстремума); 3) $f'(x_0)$ не существует (точка углового экстремума)

Теорема 19. (Первое достаточное условие экстремума)

Пусть1) точка x_0 ... критическая точка 1 рода f(x).2) f(x) дифференцируема в некоторой проколотой окрестности точки x_0 и 3) f'(x) меняет знак при переходе через точку x_0 , то x_0 есть точка строгого экстремума, причем если

производная меняет знак с минуса на плюс, то это минимум,

производная меняет знак с плюса на минус, то это максимум.

Доказательство. Применить теорему 17 на [x_0 - δ , x_0] и на [x_0 , x_0 + δ].

Пример 3. Y = /x/. x = 0-точка углового минимума.

Вопрос: Как быть, если первая производная функции равна 0 и в некоторой окрестности этой точки?

Теорема 20 (Второе достаточное условие экстремума (по второй производной))

Пусть1) x_0 — стационарная точка функции f и 2) $\exists f''(x_0)\neq 0$, тогда, если $f''(x_0)>0$, то в точке строгий минимум, если $f''(x_0)<0$, то в точке строгий максимум.

Доказательство. Пусть $f''(x_0) > 0$,

$$\lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0} = f''(x_0) > 0.$$

Из теоремы о сохранении знака в некоторой проколотой окрестности будет выполнено неравенство

$$\frac{f'(x)-f'(x_0)}{x-x_0}>0$$
 , или $\frac{f'(x)}{x-x_0}>0$. Тогда для $x>x_0$ будет

$$f'(x) > 0$$
, а для $x < x_0$: $f'(x) < 0$.

Аналогично для случая $f''(x_0) < 0$.

Задача. Из квадратного листа сделать выкройку коробки, открытой сверху, наибольшего объема

Объем коробки равен $(a-2x)^2x$. Для поиска максимального объема вычислим производную

 $f'(x)=(4x^3-4ax^2+a^2x)'=12x^2-8ax+a^2$. Нули производной

$$x_{1,2} = \frac{8a \pm \sqrt{64a^2 - 48a^2}}{24} = \frac{8a \pm 4a}{24} = \frac{a}{2}; \frac{a}{6}$$

Таким образом, $x = \frac{a}{6}$.

Исследование функций на экстремум по знаку высших производных

Пусть x_0 стационарная точка функции f, f(x) n-раз непрерывно дифференцируема в некоторой окрестности точки x_0 причем

 $f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0$, $f^{(n)}(x_0) \neq 0$. В этом случае по формуле Тейлора с остатком Лагранжа будет выполнено равенство $f(x) - f(x_0) = \frac{f^{(n)}(\xi)}{n!}(x - x_0)^n$.

1)
$$n=2k$$

Если $f^{(2k)}(x_0) > 0$, то в x_0 наблюдается строгий локальный минимум. Если $f^{(2k)}(x_0) < 0$, то в x_0 наблюдается строгий локальныймаксимум.

2)
$$n=2k+1$$

 x_0 не является точкой экстремума, так как приращение функции $f(x) - f(x_0)$ имеет разные знаки по разные стороны от точки x_0 .

Пример 4.
$$f(x) = \cosh x + \cos x - \frac{x^4}{12}$$
, в точке 0.

$$f'(x) = \sinh x - \sin x - \frac{x^3}{3}, f'(0) = 0,$$

$$f''(x) = \cosh x - \cos x - x^2$$
, $f''(0) = 0$,

$$f'''(x) = \sinh x + \sin x - 2x$$
, $f'''(0) = 0$,

$$f^{(4)}(x) = \cosh x + \cos x - 2$$
, $f^{(4)}(0) = 0$,

$$f^{(5)}(x) = \sinh x - \sin x, f^{(5)}(0) = 0,$$

$$f^{(6)}(x) = \operatorname{ch} x - \operatorname{cos} x, f^{(6)}(0) = 0,$$

$$f^{(7)}(x) = \sinh x + \sin x, f^{(7)}(0) = 0,$$

 $f^{(8)}(x)$ =ch $x + \cos x$, $f^{(8)}(0)$ =2 >0. Поэтому в точке 0 имеется строгий локальный минимум.

.Выпуклость функции, точки перегиба

Хорда, соединяющая точки $M_1(x_1, f(x_1)), M_2(x_2, f(x_2))$ графика функции f(x) задается функцией

$$y=L(x, x_1, x_2) = f(x_1) \frac{x_2 - x}{x_2 - x_1} + f(x_2) \frac{x - x_1}{x_2 - x_1}$$
(*)

Это проверяется подстановкой координат x_1 , x_2 в правую часть (*).

Определение 5.(выпуклости вверх) Функция f(x) называется выпуклой вверх на [a,b], если для $\forall x_1 < x < x_2$ из[a,b]

$$L(x, x_1, x_2) = f(x_1) \frac{x_2 - x}{x_2 - x_1} + f(x_2) \frac{x - x_1}{x_2 - x_1} \le f(x).$$
 (2.43.3.)

Puc.2.10

Аналогично определяется выпуклая вниз функция. Можно дать определение строгой выпуклости, заменив нестрогое неравенство на строгое в (2.43.3.)

Замечание 2.(о выпуклости функции вверх (вниз) в точке) Функция f(x)-выпуклая вверх (вниз) в точке x, если существует окрестность этой точки, в которой график функции расположен **nod** (над) касательной, проведенной в точке (x,f(x)).

Теорема 21 (Достаточное условие выпуклости).

Если f непрерывна на [a,b], дважды дифференцируема в (a,b) и f''(x)>0 на (a,b), то f строго выпукла вниз.

Доказательство. Для любых $x_1, x, x_2, a \le x_1 < x < x_2 \le b$ имеем

$$\begin{split} & \text{под} \! = \! = \! \left[f(x) \! - \! f(x_1) \right] \! \frac{x_2 \! - \! x}{x_2 \! - \! x_1} \! + \! \left[f(x) \! - \! f(x_2) \right] \! \frac{x \! - \! x_1}{x_2 \! - \! x_1} \! = \\ & f'(\xi_1) \! \frac{(x \! - \! x_1)(x_2 \! - \! x)}{x_2 \! - \! x_1} \! - \! f'(\xi_2) \! \frac{(x_2 \! - \! x)(x \! - \! x_1)}{x_2 \! - \! x_1} \! = \! - \! f''(\xi_3) (\xi_2 \! - \! \xi_1) \! \frac{(x \! - \! x_1)(x_2 \! - \! x)}{x_2 \! - \! x_1} \! < \! 0. \end{split}$$

Участвующие в этих соотношениях величины расположены на оси в показанном на рисунке 2.11 порядке.

Определение 6.(точки перегиба) Точка x_0 называется **точкой перегиба** функции f, если в точке x_0 существует касательная и в некоторой окрестности точки x_0 график f лежит по разные стороны от касательной.

Puc.2.12

Теорема 22 (Необходимое условие точки перегиба)

Если f дважды непрерывно-дифференцируема в окрестности точки перегиба x_0 , то $f''(x_0)=0$.

Доказательство. Предположим противное $f''(x_0) \neq 0$. По теореме о сохранении знака f''(x) сохраняет знак в окрестности точки x_0 . Применим формулу Тейлора с остатком Лагранжа

Левая часть этого равенства имеет смысл уклонения точки графика функции от касательной. Это, в свою очередь, означает, что график функции лежит с одной стороны от касательной. $f(x) - f(x_0) - f'(x_0)(x - x_0) = \frac{f''(\xi)}{2}(x - x_0)^2$ не меняет знак. Противоречие!

Puc.2.13

Теорема 23 (Достаточное условие точки перегиба)

- 1) $\exists f''(x) \ e \ U(x_0) \ u \ f''(x_0) = 0$
- 2) f'' меняет знак при переходе через точку x_0 . Тогда x_0 точка перегиба.

Доказательство. По формуле Тейлора с остатком Лагранжа

$$f(x) - f(x_0) - f'(x_0)(x - x_0) = \frac{f''(\xi)}{2}(x - x_0)^2.$$

Следствие 2. Если $f''(x_0)=0$ и $f'''(x_0)\neq 0$, то x_0 – точка перегиба.

Доказательство. При данных условиях f'' будет монотонной, и будет менять знак при переходе через x_0 .

Определение 6.1 (Критических точек 2 рода)

 x_0 ... критическая точка 1 рода функции f(x), если f(x) непрерывна в точке x_0 и выполняется одно из условий: 1) $f''(x_0)=0$; 2) $f''(x_0)=\infty$; 3) $f''(x_0)$ не существует.

Замечание3 Используя определение 6.1,, теоремы 22 и 23 можно записать в следующих формулировках.

Теорема 22.1 (Необходимое условие точки перегиба)

Если x_0 - точка перегиба, то она критическая точка 2 рода.

Теорема 23.1 (Достаточное условие точки перегиба)

Пусть 1) x_0 -критическая точка 2 рода; 2)в некоторой окрестности этой точки существует f''(x); 3)в некоторой проколотой окрестности этой точки $\exists f''(x)$ и она меняет знак при переходе через точку x_0 , тогда x_0 -точка перегиба.

Замечание 4.Этой лекцией заложены теоретические основы дифференциального исследования функции и построения ее графика