#### (2) Produto Vetorial

Seja Oxyz sistema de coordenadas cartesianas ortogonais no espaço com base canônica  $B = \{\vec{i}, \vec{j}, \vec{k}\}$ . Sejam  $\vec{u} = (x_1, y_1, z_1)$  e  $\vec{v} = (x_2, y_2, z_2)$  vetores com coordenadas em Oxyz. Definimos o **produto vetorial** de  $\vec{u}$  por  $\vec{v}$  (nessa ordem) como sendo <u>o vetor</u>

$$\vec{u} \times \vec{v} = \det \begin{bmatrix} y_1 & z_1 \\ y_2 & z_2 \end{bmatrix} \vec{i} - \det \begin{bmatrix} x_1 & z_1 \\ x_2 & z_2 \end{bmatrix} \vec{j} + \det \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \end{bmatrix} \vec{k}.$$

O produto vetorial de  $\vec{u}$  e  $\vec{v}$  é também indicado por  $\vec{u} \wedge \vec{v}$ .

Essa fórmula pode ser obtida de maneira fácil usando a notação:

$$\vec{u} \times \vec{v} = det \begin{bmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{bmatrix}.$$

**Exemplo:** Dados  $\vec{u} = (5, 4, 3)$  e  $\vec{v} = (1, 1, 1)$ , temos que

$$\vec{u} \times \vec{v} = det \begin{bmatrix} \vec{i} & \vec{j} & \vec{k} \\ 5 & 4 & 3 \\ 1 & 1 & 1 \end{bmatrix} = (4-3)\vec{i} + (3-5)\vec{j} + (5-4)\vec{k} = \vec{i} - 2\vec{j} + \vec{k} = (1, -2, 1).$$

### Propriedades do Produto Vetorial

Sejam  $\vec{u}$ ,  $\vec{v}$  e  $\vec{w}$  vetores no espaço e  $\alpha \in \mathbb{R}$ .

- (1)  $\vec{u} \times \vec{v} = \vec{0}$  se, e somente se,  $\vec{u}$  é paralelo a  $\vec{v}$ .
- (2)  $\vec{u} \times \vec{v} = -\vec{v} \times \vec{u}$  (portanto, o produto vetorial não é comutativo);
- (3)  $\vec{\mathbf{u}} \times (\vec{\mathbf{v}} + \vec{\mathbf{w}}) = \vec{\mathbf{u}} \times \vec{\mathbf{v}} + \vec{\mathbf{u}} \times \vec{\mathbf{w}}$  (distributiva à direita)  $(\vec{\mathbf{u}} + \vec{\mathbf{v}}) \times \vec{\mathbf{w}} = \vec{\mathbf{u}} \times \vec{\mathbf{w}} + \vec{\mathbf{v}} \times \vec{\mathbf{w}}$  (distributiva à esquerda);
- (4)  $\alpha(\vec{u} \times \vec{v}) = (\alpha \vec{u}) \times \vec{v} = \vec{u} \times (\alpha \vec{v})$  (associativa em relação ao produto por escalar);
- (5)  $\vec{u} \cdot (\vec{v} \times \vec{w}) = (\vec{u} \times \vec{v}) \cdot \vec{w}$  (comutatividade em relação aos produtos escalar e vetorial)

Proposição (caracterização geométrica do produto vetorial): Sejam  $\vec{u}$  e  $\vec{v}$  vetores não paralelos no espaço. Então:

- (1) a direção de  $\vec{u} \times \vec{v}$  é ortogonal a  $\vec{u}$  e a  $\vec{v}$  simultaneamente.
- (2) o sentido de  $\vec{u} \times \vec{v}$  satisfaz a "regra da mão direita", ou seja,  $\vec{u}$ ,  $\vec{v}$  e  $\vec{u} \times \vec{v}$  possuem os sentidos estabelecidos pelos dedos indicador, médio e polegar, respectivamente, da mão direita.
- (3) o comprimento de  $\vec{u} \times \vec{v}$  é igual a área do paralelogramo gerado por  $\vec{u}$  e  $\vec{v}$ .



# Observação:

O sentido de  $\vec{u} \times \vec{v}$  pode também ser obtido pelo seguinte processo: sendo  $\theta$  o ângulo entre  $\vec{u}$  e  $\vec{v}$ , suponhamos que  $\vec{u}$  (1º vetor) sofra uma rotação de ângulo  $\theta$  até coincidir com  $\vec{v}$ . Se os dedos da mão direita forem dobrados na mesma direção da rotação, então o polegar estendido indicará o sentido de  $\vec{u} \times \vec{v}$ .



De modo rigoroso, do ponto de vista matemático, o sentido de  $\vec{u} \times \vec{v}$  é tal que, escrevendo  $\vec{u} = (x_1, y_1, z_1)$  e  $\vec{v} = (x_2, y_2, z_2)$  e  $\vec{u} \times \vec{v} = (x_3, y_3, z_3)$ , então

$$\det\begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{bmatrix} > 0.$$

#### **Exercícios:**

(1) Dados os vetores  $\vec{u} = (3,1,2)$  e  $\vec{v} = (-2,2,5)$ , determine:

- (a)  $\vec{u} \times \vec{v}$
- (b)  $(\vec{u} \times \vec{v}) \cdot \vec{u}$
- (c)  $(\vec{u} \times \vec{v}) \cdot \vec{v}$

## Solução:

(a) 
$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 3 & 1 & 2 \\ -2 & 2 & 5 \end{vmatrix} = 5\vec{i} - 4\vec{j} + 6\vec{k} + 2\vec{k} - 4\vec{i} - 15\vec{j} = \vec{i} - 19\vec{j} + 8\vec{k} = (1, -19, 8).$$

(b) 
$$(\vec{u} \times \vec{v}) \cdot \vec{u} = (1, -19, 8) \cdot (3, 1, 2) = 3 - 19 + 16 = 0.$$

(c) 
$$(\vec{u} \times \vec{v}) \cdot \vec{v} = (1, -19, 8) \cdot (-2, 2, 5) = -2 - 38 + 40 = 0.$$

(2) Seja  $B = \{\vec{i}, \vec{j}, \vec{k}\}$  base canônica do sistema de coordenadas cartesianas ortogonais do espaço. Mostre que  $\vec{i} \times \vec{j} = \vec{k}$ ,  $\vec{j} \times \vec{k} = \vec{i}$  e  $\vec{k} \times \vec{i} = \vec{j}$ .

Solução: Veja que

• 
$$\vec{i} \times \vec{j} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix} = 0\vec{i} + 0\vec{j} + 1\vec{k} - 0\vec{k} - 0\vec{i} - 0\vec{j} = \vec{k}.$$

• 
$$\vec{j} \times \vec{k} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = 1\vec{i} + 0\vec{j} + 0\vec{k} - 0\vec{k} - 0\vec{i} - 0\vec{j} = \vec{i}$$
.

• 
$$\vec{k} \times \vec{i} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{vmatrix} = 0\vec{i} + 1\vec{j} + 0\vec{k} - 0\vec{k} - 0\vec{i} - 0\vec{j} = \vec{j}.$$

- (3) Considere os vetores  $\vec{u} = (1, -1, -4)$  e  $\vec{v} = (3, 2, -2)$ , determinar um vetor que seja:
- (a) ortogonal a  $\vec{u}$  e  $\vec{v}$ .
- (b) ortogonal a  $\vec{u}$  e  $\vec{v}$  e unitário.

## Solução:

(a) Sabemos que um vetor simultaneamente ortogonal a  $\vec{u}$  e  $\vec{v}$  é dado pelo produto vetorial dos dois:

$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -1 & -4 \\ 3 & 2 & -2 \end{vmatrix} = 2\vec{i} - 12\vec{j} + 2\vec{k} + 3\vec{k} + 8\vec{i} + 2\vec{j} = 10\vec{i} - 10\vec{j} + 5\vec{k} = (10, -10, 5).$$

(b) Basta tomar o versor do vetor obtido no item anterior:

$$\frac{(10,-10,5)}{\|(10,-10,5)\|} = \frac{(10,-10,5)}{\sqrt{10^2 + (-10)^2 + 5^2}} = \frac{(10,-10,5)}{\sqrt{225}} = \frac{(10,-10,5)}{15} = \left(\frac{10}{15}, -\frac{10}{15}, \frac{5}{15}\right) = \left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right).$$

- (4) Dados os pontos  $A(2,1,1), B(3,-1,0) \in C(4,2,-2)$ , calcule:
- $(\mathbf{a})$  A área do triângulo ABC.
- (b) A altura do triângulo ABC relativa ao vértice C.

# Solução:

(a) Observe que a partir do triângulo ABC, podemos construir um paralelogramo ABDC, cuja área é o dobro da área do triângulo. Como o paralelogramo é determinado pelos vetores  $\overrightarrow{AB}$  e  $\overrightarrow{AC}$ , então  $A_{\Delta ABC} = \frac{1}{2} ||\overrightarrow{AB} \times \overrightarrow{AC}||$ . Logo:



$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & -2 & -1 \\ 2 & 1 & -3 \end{vmatrix} = (7, 1, 5) \Rightarrow A_{\Delta ABC} = \frac{1}{2} \| (7, 1, 5) \| = \frac{5}{2} \sqrt{3}.$$

(b) A altura do triângulo, indicada na figura é a mesma do paralelogramo. Como a área do paralelogramo é A=b.h, então

$$h = \frac{A}{b} = \frac{\|\overrightarrow{AB} \times \overrightarrow{AC}\|}{\|\overrightarrow{AB}\|} = \frac{\sqrt{75}}{\sqrt{6}} = \frac{5}{2}\sqrt{2}.$$

**Proposição:** Sejam  $\vec{u}$  e  $\vec{v}$  vetores não paralelos no espaço e  $0 < \theta < \pi$  a medida do ângulo, em radianos, entre os vetores  $\vec{u}$  e  $\vec{v}$ . Então:

$$\|\vec{u} \times \vec{v}\| = \|\vec{u}\| \cdot \|\vec{v}\| \operatorname{sen} \theta$$

## Demonstração:

Vamos dividir a demonstração em três casos:



• (1) Ângulo agudo:  $0 < \theta < \frac{\pi}{2}$ .

A área  $\mathcal{A}$  do paralelogramo gerado pelos vetores  $\vec{u} = \overrightarrow{AB}$  e  $\vec{v} = \overrightarrow{AD}$  é dada por  $\mathcal{A} = ||\vec{u}||.h$ , sendo h a altura do paralelogramo baixada do vértice D ao lado AB.

Da trigonometria aplicada ao triângulo AHD temos sen  $(\theta) = \frac{DH}{AD} = \frac{h}{||\vec{v}||} \Rightarrow h = ||\vec{v}|| \operatorname{sen}(\theta)$ .

Portanto,  $\mathcal{A} = ||\vec{\mathbf{u}}||.||\vec{\mathbf{v}}|| \operatorname{sen}(\theta).$ 

Pelo Item (3) da Proposição 2.13, temos  $\mathcal{A} = ||\vec{\mathbf{u}} \times \vec{\mathbf{v}}||$ .

Portanto,

$$||\vec{u} \times \vec{v}|| = ||\vec{u}||.||\vec{v}|| \operatorname{sen}(\theta).$$

• (2) Ângulo reto:  $\theta = \frac{\pi}{2}$ . Observemos a figura acima ao centro.

Neste caso, o paralelogramo gerado por  $\vec{u}$  e  $\vec{v}$  é, na verdade, um retângulo. Sua área é, portanto, dada por  $\mathcal{A} = ||\vec{u}||.||\vec{v}||.$ 

Como sen  $\left(\frac{\pi}{2}\right) = 1$ , então podemos escrever  $\mathcal{A} = ||\vec{\mathfrak{u}}||.||\vec{\mathfrak{v}}|| \operatorname{sen}\left(\frac{\pi}{2}\right)$ .

Pelo Item (3) da Proposição 2.13, temos  $\mathcal{A} = ||\vec{\mathbf{u}} \times \vec{\mathbf{v}}||$ .

Portanto,

$$\|\vec{u} \times \vec{v}\| = \|\vec{u}\| . \|\vec{v}\| \operatorname{sen}\left(\frac{\pi}{2}\right).$$

• (3) Ângulo obtuso:  $\frac{\pi}{2} < \theta < \pi$ .

Observemos a figura acima à direita.

A área  $\mathcal{A}$  do paralelogramo gerado pelos vetores  $\vec{u} = \overrightarrow{AB}$  e  $\vec{v} = \overrightarrow{AD}$  é dada por  $\mathcal{A} = ||\vec{u}||.h$ , sendo h a altura do paralelogramo baixada do vértice D à reta que contém o lado AB (neste caso, o ponto H não está no segmento AB).

Da trigonometria aplicada ao triângulo AHD temos sen  $(\pi - \theta) = \frac{DH}{AD} = \frac{h}{||\vec{v}||} \Rightarrow h = ||\vec{v}|| \operatorname{sen} (\pi - \theta)$ .

Mas  $sen(\pi - \theta) = sen(\pi)cos(\theta) - sen(\theta)cos(\pi) = sen(\theta)$ .

Portanto,  $h = ||\vec{v}|| \operatorname{sen}(\theta)$ , implicando em  $\mathcal{A} = ||\vec{u}||.||\vec{v}|| \operatorname{sen}(\theta)$ .

Pelo Item (3) da Proposição 2.13, temos  $\mathcal{A} = ||\vec{\mathbf{u}} \times \vec{\mathbf{v}}||$ .

Portanto,

$$||\vec{u} \times \vec{v}|| = ||\vec{u}||.||\vec{v}|| \operatorname{sen}(\theta).$$

Concluimos que, em qualquer situação:

$$||\vec{u} \times \vec{v}|| = ||\vec{u}||.||\vec{v}|| \operatorname{sen}(\theta)$$

como queríamos.

**Exemplo:** A medida, em radianos, do ângulo entre  $\vec{u}$  e  $\vec{v}$  é  $\frac{\pi}{6}$ . Sendo  $||\vec{u}|| = 1$  e  $||\vec{v}|| = 7$ , calcule  $||\vec{u} \times \vec{v}||$  e  $||\frac{1}{3}\vec{u} \times \frac{3}{4}\vec{v}||$ .

## Solução:

- No primeiro caso:  $\|\vec{u} \times \vec{v}\| = \|\vec{u}\| \cdot \|\vec{v}\| \operatorname{sen}\left(\frac{\pi}{6}\right) = 1.7 \cdot \frac{1}{2} = \frac{7}{2}$ .
- No segundo caso:  $\left\| \frac{1}{3} \vec{u} \times \frac{3}{4} \vec{v} \right\| = \frac{1}{3} \cdot \frac{3}{4} \cdot \|\vec{u} \times \vec{v}\| = \frac{1}{3} \cdot \frac{3}{4} \cdot \frac{7}{2} = \frac{7}{8}$ .

### Observações:

(1) No produto vetorial não vale a propriedade comutativa, ou seja, geralmente  $\vec{u} \times \vec{v} \neq \vec{v} \times \vec{u}$ . Os próprios vetores  $\vec{i}$  e  $\vec{j}$  da base canônica  $\mathcal{B} = \{\vec{i}, \vec{j}, \vec{k}\}$  servem de exemplo: façamos  $\vec{u} = \vec{i}$  e  $\vec{v} = \vec{j}$ . Logo,  $\vec{u} \times \vec{v} = \vec{i} \times \vec{j} = \vec{k}$  e

$$\vec{v} \times \vec{u} = \vec{j} \times \vec{i} \equiv \det \begin{bmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \equiv 0\vec{i} + 0\vec{j} - 1\vec{k} = (0, 0, -1) = -\vec{k}$$

Conclusão:  $\vec{\mathbf{u}} \times \vec{\mathbf{v}} \neq \vec{\mathbf{v}} \times \vec{\mathbf{u}}$ .

(2) No produto vetorial não vale a propriedade associativa, ou seja, geralmente  $(\vec{u} \times \vec{v}) \times \vec{w} \neq \vec{u} \times (\vec{v} \times \vec{w})$ . Mais uma vez, os vetores  $\vec{i}$  e  $\vec{j}$  da base canônica  $\mathcal{B} = \{\vec{i}, \vec{j}, \vec{k}\}$  servem de exemplo: façamos  $\vec{u} = \vec{v} = \vec{i}$  e  $\vec{w} = \vec{j}$ . Logo

$$\begin{cases} (\vec{\mathbf{u}} \times \vec{\mathbf{v}}) \times \vec{\mathbf{w}} = (\vec{\mathbf{i}} \times \vec{\mathbf{i}}) \times \vec{\mathbf{j}} = \vec{\mathbf{0}} \times \vec{\mathbf{j}} = \vec{\mathbf{0}} \text{ (faça!)} \\ \vec{\mathbf{u}} \times (\vec{\mathbf{v}} \times \vec{\mathbf{w}}) = \vec{\mathbf{i}} \times (\vec{\mathbf{i}} \times \vec{\mathbf{j}}) = \vec{\mathbf{i}} \times \vec{\mathbf{k}} = -\vec{\mathbf{j}} \text{ (faça!)} \end{cases}.$$

Conclusão:  $(\vec{\mathbf{u}} \times \vec{\mathbf{v}}) \times \vec{\mathbf{w}} \neq \vec{\mathbf{u}} \times (\vec{\mathbf{v}} \times \vec{\mathbf{w}}).$ 

(3) No produto vetorial não vale a "Lei do Cancelamento", ou seja, geralmente  $\vec{\mathbf{u}} \times \vec{\mathbf{v}} = \vec{\mathbf{u}} \times \vec{\mathbf{w}}$  não implica em  $\vec{\mathbf{v}} = \vec{\mathbf{w}}$ .

Eis um exemplo:  $\vec{\mathbf{u}} = \vec{\mathbf{w}} = (1,0,0)$  e  $\vec{\mathbf{v}} = (6,0,0)$ . Temos  $\vec{\mathbf{u}} \times \vec{\mathbf{v}} = \vec{\mathbf{0}} = \vec{\mathbf{u}} \times \vec{\mathbf{w}}$  (faça!) e, no entanto,  $\vec{\mathbf{v}} \neq \vec{\mathbf{w}}$ .

#### Exercícios:

- (1) Determinar o vetor  $\vec{x}$ , tal que  $\vec{x}$  seja ortogonal ao eixo y e  $\vec{u} = \vec{x} \times \vec{v}$ , sendo  $\vec{u} = (1, 1, -1)$  e  $\vec{v} = (2, -1, 1)$ .
- (2) Obter um vetor ortogonal ao plano determinado pelos pontos A(2,3,1), B(1,-1,1) e C(4,1,-2).
- (3) Dados os vetores  $\vec{u} = (1, -1, 1)$  e  $\vec{v} = (2, -3, 4)$ , calcular:
- a) a área do paralelogramo determinado por  $\vec{u}$  e  $\vec{v}$ ;
- b) a altura do paralelogramo relativa à base definida pelo vetor  $\vec{u}$ .
- (4) Dados os vetores  $\vec{u}=(2,1,-1)$  e  $\vec{v}=(1,-1,a)$ , calcular o valor de a para que a área do paralelogramo determinado por  $\vec{u}$  e  $\vec{v}$  seja igual a  $\sqrt{62}$ .
- (5) Sabendo que  $\|\vec{u}\| = 6$ ,  $\|\vec{v}\| = 4$  e 30° o ângulo entre  $\vec{u}$  e  $\vec{v}$ , calcular:
- a) a área do triângulo determinado por  $\vec{u}$  e  $\vec{v}$ ;
- b) a área do paralelogramo determinado por  $\vec{u} = -\vec{v}$ ;
- c) a área do paralelogramo determinado por  $\vec{u} + \vec{v}$  e  $\vec{u} \vec{v}$ .