Compito Laboratorio di Fisica I

30 Gennaio 2012

(2.5) 1. La grandezza F è legata alla alla grandezza x dalla relazione $F = \frac{A}{x^2} + B$. I risultati di alcune misure delle due grandezze sono i seguenti:

x (mm)	1.000	1.500	2.000	2.500	3.000	4.000
$F(dyne^2)$	20.0	17.3	16.2	15.8	15.5	15.2
$\Delta F (dyne^2)$	0.5	0.1	0.3	0.2	0.1	0.2

Determinare graficamente A e B, dando anche una stima della loro incertezza.

(1.5) 2. Calcolare i valori delle seguenti funzioni, nei punti indicati, con una approssimazione relativa di 10^{-2} :

sen(x/4) in $x = 0.8^{\circ}$; e^{-x^2} in $x = 2.0 \cdot 10^{-1}$

(0.7) 3. Avendo misurato con un calibro a cursore il diametro di una sfera, si sono ottenuti i seguenti valori (in mm):

12.50 12.40 12.45 12.45 12.40

Si è poi misurato l'offset dello strumento ottenendo i valori:

-0.05 -0.05 0.00

Determinare la miglior stima del raggio della sfera e della sua incertezza di misura.

(1.0) 4. Nella relazione

$$\gamma = k \cdot \left(\alpha \cdot \sin\left(-wt\right) + \frac{\tau \cdot \beta}{\log P}\right)$$

 γ è una potenza, α il modulo di una forza, t un intervallo di tempo e τ un momento di inerzia, è immediato stabilire le dimensioni di w e P. Si determinino poi le dimensioni di k e β e le loro unità di misura nei sistemi S.I. e c.g.s., calcolando anche il fattore di conversione tra di esse.

(0.5) 5. Determinare il numero di cifre significative dei risultati delle seguenti misure della grandezza fisica y (Δy indica l'incertezza di misura):

y 583.15 $7.31472 \cdot 10^1$ $4.2442 \cdot 10^{-3}$ $0.000145 \cdot 10^2$ Δy $2 \cdot 10^{-1}$ 0.4 $1. \cdot 10^{-4}$ $1 \cdot 10^{-3}$

- (0.5) 6. Determinare la miglior stima sia del "valore vero" sia dell'incertezza di misura dalla seguente serie di misure, giustificando la procedura utilizzata:
 43.23; 43.25; 43.24; 43.24; 43.24; 43.22; 43.27; 43.23; 43.21; 43.26; 43.25
- (1.5) 7. Determinare, con approssimazione del 1% e del 0.1%, i valori delle seguenti operazioni: $\sqrt{47}$ $(\frac{25}{49})^{\frac{3}{2}}$
- (1.8) 8. Avendo eseguito le seguenti misure: massa del picnometro vuoto $m_P = (25.0 \pm 0.2) \ g$, massa del picnometro riempito con acqua fino al segno di affioramento $m_{P+A} = (125.0 \pm 0.2) \ g$ e massa del picnometro riempito con liquido incognito fino al segno di affioramento $m_{P+X} = (115.0 \pm 0.2) \ g$ e tenendo conto che la temperatura ambiente durante la misura è stata di 18 oC , determinare la densità assoluta del liquido incognito alla temperatura ambiente.

Si ricorda che la densità assoluta dell'acqua assume i seguenti valori (in g/cm^3):

 $0.99910\ a\ 15\ {}^{o}C$ $0.99821\ a\ 20\ {}^{o}C$ $0.99705\ a\ 25\ {}^{o}C$