5 ПРОГРАМУВАННЯ ДВОВИМІРНИХ МАСИВІВ

Мета: здобути навички програмування обчислювальних процесів з використанням двовимірних масивів.

5.1 Короткі теоретичні відомості

Двовимірний масив — різновид массиву де доступ до його елементів досягається через використання двох індексів. Найчастіше двовимірні масиви використовуються при необхідності роботи з таблицями або матрицями.

Організацію двовимірного масиву у більшості мов програмування реалізують через створення одновимірного масиву кожен з елементів якого ϵ теж одновимірним масивом.

5.2 Завдання

Створити нову матрицю, кожний елемент якої дорівнює відповідному елементу матриці $A_{n\times n}$, розділеному на найбільший елемент цієї матриці.

5.3 Хід роботи

5.3.1 Постановка задачі

Дано: n, $A_{n\times n}$.

Bизначити: max, $A_{n \times n}/max$.

5.3.2 Метод реалізації інформаційного процесу

Для знаходження величин скористаємось наступними формулами:

$$A[i,j] > A[i+1,j+1], mo\ max = A[i+1,j+1]$$
 (5.1)

5.3.3 Алгоритм реалізації інформаційного процесу

Рисунок 9.1 — Алгоритм розв'язку задачі

5.3.4 Програмування

Побудова таблиці ідентифікаторів.

Таблиця 9.1 — Таблиця ідентифікаторів

№ 3/П	Змінна або константа	Ідентифікатор	№ 3/П	Змінна або константа	Ідентифікатор
1	i	i	4	A	А
2	n	n	5	max	max
3	j	j			

Введення тексту програми:

#include <cstdlib>
#include <iostream>
#include <iomanip>

```
#include <math.h>
using namespace std;
int main() {
   int n, max, tmp;
    max = 0;
    cout << "Enter amount of rows: n = ";</pre>
    cin >> n:
    int** A = new int*[n];
    int** B = new int*[n];
    for (int i = 0; i < n; i++) A[i] = new int[n];</pre>
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++) A[i][j] = rand() % 101;
    cout << "A: " << endl;
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) cout << A[i][j] << '\t';
        cout << endl;</pre>
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            tmp = A[i][j];
            if(max < tmp) max = tmp;</pre>
    cout << "max = " << max << endl;
    for (int i = 0; i < n; i++) B[i] = new int[n];</pre>
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            B[i][j] = A[i][j]/max;
    cout << "B: " << endl;
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) cout << B[i][j] << '\t';
        cout << endl;</pre>
    delete[]A;
    delete[]B;
    system("PAUSE");
    return 0;
```

5.3.5 Тестування та виявлення помилок

Для виявлення алгоритмічних помилок та вирішення проблеми достовірності отриманих результатів можна виконати обчислення у електронній таблиці і порвняти отримані розв'язки.

Для цього у електронній книзі "Обчислення функцій" *Лист* 5 перейменовуємо на ЛР9 та виконуємо обчислення за формою:

Розв'язок задачі										
Вхдідні дані	кдідні дані Доломіжні дані									
n	А[і,j]-сгенерована матриця									
4	41	65	31	41						
	19	15	72	11						
	78	69	37	23						
	29	63	75	4						
Максимальне значення										
=MAX(C5:F8)	=ROUNDDOWN(C5/\$A\$10)	=ROUNDDOWN(D5/\$A\$10)	=ROUNDDOWN(E5/\$A\$10)	=ROUNDDOWN(F5/\$A\$10)						
	=ROUNDDOWN(C6/A\$10)	=ROUNDDOWN(D6/\$A\$10)	=ROUNDDOWN(E6/\$A\$10)	=ROUNDDOWN(F6/\$A\$10)						
	=ROUNDDOWN(C7/A\$10)	=ROUNDDOWN(D7/\$A\$10)	=ROUNDDOWN(E7/\$A\$10)	=ROUNDDOWN(F7/\$A\$10)						
	=ROUNDDOWN(C8/A\$10)	=ROUNDDOWN(D8/\$A\$10)	=ROUNDDOWN(E8/\$A\$10)	=ROUNDDOWN(F8/\$A\$10)						
	=ROUNDDOWN(C9/A\$10)	=ROUNDDOWN(D9/\$A\$10)	=ROUNDDOWN(E9/\$A\$10)	=ROUNDDOWN(F9/\$A\$10)						

Рисунок 9.2 — Розв'язок задачі у ЕТ

5.3.6 Обчислення, обробка і аналіз результатів

У ході виконання даної роботи отримано наступні результати:

```
Enter amount of rows: n = 4
A:
41
   65
       31
           41
19 15
      72 11
78
   69 37
           23
29
   63 75
max = 78
B:
           0
   0
0
   0
       0 0
1
   0
       0
           0
sh: PAUSE: command not found
Program ended with exit code: 0
```

Рисунок 9.3 — Результат обчислень

Розв'язок задачі									
Вхдідні дані	Зхдідні дані — <u>Допоміжні</u> дані								
n		А[i,j]-сгенерована матриця							
4		41	65	31	41				
		19	15	72	11				
		78	69	37	23				
		29	63	75	4				
Максимальне значення									
78		0	0	0	0				
		0	0	0	0				
		1	0	0	0				
		0	0	0	0				
		0	0	0	0				

Рисунок 9.4 — Результат обчислень у електронній таблиці

Порівнюючи результати, отримані трьома різними способами з високою вірогідністю можна стверджувати, що обчислення виконано правильно, так як отримані значення співпали.

5.4 Програми та обладнання.

OpenOffice Cals, OpenOffice Draw, Xcode

5.5 Висновки.

Під час выконання ЛР були здобутиі навички програмування обчислювальних процесів з використанням двовимірних масивів.