Eigenvalues of Compact, Self-adjoint Operators

Theorem

Let A be a compact, self-adjoint operator on a Hilbert space H:

There exists and eigenvalue λ of A such that $|\lambda| = ||A||$.

Proof

From a previous theorem, there exists a bounded sequence (\vec{x}_n) in H such that:

- $\|\vec{x}\| = 1$
- $\exists \lambda \in \sigma(A)$ such that $A\vec{x}_n \lambda \vec{x}_n \to 0$
- $|\lambda| = ||A||$

Since A is compact, $(A\vec{x}_n)$ has a convergent subsequence $(A\vec{x}n_k)$. Let $(A\vec{x}_{n_k}) \to \vec{y} \in H$.

And so
$$A\vec{x}_{n_k} - \lambda \vec{x}_{n_k} \to 0 \implies \vec{y} - \lambda \vec{x}_{n_k} \to 0 \implies \vec{x}_{n_k} \to \frac{1}{\lambda} \vec{x}_y$$
.

Thus \vec{x}_n contains a convergent subsequence $\vec{x}_{n_k} \to \frac{1}{\lambda} \vec{x}_y = \vec{x} \in H$.

And so $A\vec{x} - \lambda \vec{x} = 0$ or $A\vec{x} = \lambda \vec{x}$ where $\vec{x} \neq 0$.

Therefore λ is an eigenvalue of A and $|\lambda| = ||A||$.

Corollary

Let A be a compact, self-adjoint operator on a Hilbert space H. $\exists \vec{x}_0 \in H$ such that $\|\vec{x}_0\| = 1$ and:

$$|\langle A\vec{x}_0, \vec{x}_0 \rangle| = \sup_{\|\vec{x}\|=1} |\langle A\vec{x}, \vec{x} \rangle|$$

Proof

By previous theorem, there exists an eigenvector λ of A such that $|\lambda| = \|A\|$. Also by previous theorem, $\sup_{\|\vec{x}\|=1} |\langle A\vec{x}, \vec{x} \rangle| = \|A\|$.

Assume \vec{x}_0 is an eigenvalue of A such that $||\vec{x}_0|| = 1$:

$$|\langle A\vec{x}_0, \vec{x}_0 \rangle| = |\langle \lambda \vec{x}_0, \vec{x}_0 \rangle| = |\lambda \langle \vec{x}_0, \vec{x}_0 \rangle| = |\lambda| ||\vec{x}_0||^2 = |\lambda| = ||A||$$

$$\therefore |\langle A\vec{x}_0, \vec{x}_0 \rangle| = \sup_{\|\vec{x}\|=1} |\langle A\vec{x}, \vec{x} \rangle|$$

Theorem

Let A be a compact operator on a Hilbert space H. For all eigenvalues λ of A:

$$\lambda \neq 0 \implies \dim E_{\lambda} < \infty$$

In other words, eigenspaces for non-zero eigenvalues are finite-dimensional.

Proof

Assume λ is an eigenvalue of A such that $\lambda \neq 0$.

ABC: E_{λ} is infinite-dimensional.

Since $E_{\lambda} = \ker(A - \lambda I)$, E_{λ} is a closed subspace of H and is thus also Hilbert (and separable).

So there exists a complete orthonormal sequence (\vec{x}_n) in E_{λ} , where $\vec{x}_n \stackrel{w}{\longrightarrow} 0$.

Thus, since A is compact, $A\vec{x}_n \to 0$.

And so $A\vec{x}_n = \lambda \vec{x}_n \to 0$.

But $\lambda \neq 0$ and so $\vec{x}_n \rightarrow 0$.

CONTRADICTION!

Therefore E_{λ} is finite-dimensional.

Definition

Let H be a Hilbert space and let A be an operator on H:

$$\Lambda = \{ \lambda \in \mathbb{C} \mid \lambda \text{ is an eigenvalue of } A \}$$

Theorem

Let A be a compact, self-adjoint operator on a Hilbert space H. One of the following is true:

- 1). Λ is finite.
- 2). L is infinitely-countable such that $\lambda_n \to 0$.

Proof

First, Assume A=0.

Thus, $\lambda = 0$ is the only eigenvalue for A and therefore Λ is finite.

So, assume Λ is infinite.

Since \boldsymbol{A} is self-adjoint and compact, eigenvectors for distinct eigenvalues are orthogonal.

And so there exists an orthonormal sequence (\vec{x}_n) where \vec{x}_n is an eigenvector of λ_n .

But H is separable and so (\vec{x}_n) is countable.

Therefore Λ is countable.

Now, since (\vec{x}_n) is orthonormal, $\vec{x}_n \stackrel{w}{\longrightarrow} 0$.

But A is compact and so $A\vec{x} \to 0$.

$$||A\vec{x}|| = ||\lambda\vec{x}|| = |\lambda| \, ||\vec{x}|| = |\lambda| \to 0$$