Analysis time series using state space approach

Marko Laine

LUT 2015-12-07

Outline

Introduction

Dynamic linear model for time series analysis

Finnish temperature series

Conclusion

Typical features in climatic series

- Non-stationary behaviour driven by external forcing.
- Low frequency oscillation.
- Long time behaviour hard to estimate from short series.
- Persistent long range correlations.
- Long memory, slower than exponential decay of the autocorrelation function.

Satellite remote sensing observations.

- Non uniform sampling in space and time.
- Data combined from different instruments.
- Missing values.
- Instrument bias, aging, . . .

Time series modelling by DLM

- DLM: dynamic linear model.
- Components: trend, seasonality, external forcing, random noise.
- Process description of time series.
- Dynamic regression: the regression coefficients can change in time.

What is trend

- Trend is a change in the background level of the process.
- We are interested in (smooth) long term (decade) change.
- Need to filter out seasonality, external variation driven by known phenomena, random noise.

Bayesian hierarchical model

- y_t: observations,
- x_t: hidden model states,
- θ: model parameters,
- $t = 1, \ldots, n$: observation times.
- Observation model: $p(y_t|x_t, \theta)$
- Process model: $p(x_{t+1}|x_t, \theta)$
- Parameter model: $p(\theta)$
- Bayes formula:

$$p(x_{1:n},\theta|y_{1:n}) \propto \prod_{t=1}^{n} p(y_t|x_t,\theta) p(x_t|x_{t-1},\theta) p(\theta)$$

Dynamic linear model

$$\begin{aligned} y_t &= F_t x_t + v_t, & v_t \sim N_p(0, V_t) \\ x_t &= G_t x_{t-1} + w_t, & w_t \sim N_q(0, W_t) \\ V_t \sim p(\sigma_{\text{obs}}), & W_t \sim p(\sigma_{\text{mod}}) \end{aligned}$$

- Observation operator F_t, model operator G_t.
- Observation uncertainty v_t , model uncertainty w_t . Assumed Gaussian with covariance matrices V_t and W_t .
- Known, partly known, i.e. may contain parameters, unknown, i.e. must be estimated.

Simple example

Local level and trend model

$$y_t = \mu_t + \epsilon_{\mathrm{obs}},$$

 $\mu_t = \mu_{t-1} + \alpha_{t-1} + \epsilon_{\mathrm{level}},$
 $\alpha_t = \alpha_{t-1} + \epsilon_{\mathrm{trend}},$

 $\epsilon_{
m obs} \sim N(0, \sigma_{
m obs}^2)$, observations $\epsilon_{
m level} \sim N(0, \sigma_{
m level}^2)$, local level $\epsilon_{
m trend} \sim N(0, \sigma_{
m trend}^2)$, local trend

$$G = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \quad F = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad x_t = \begin{bmatrix} \mu_t & \alpha_t \end{bmatrix}^T.$$

When $\sigma_{\rm level}=$ 0, this is cubic spline smoothing with smoothness parameter $\lambda=\sigma_{\rm trend}^2/\sigma_{\rm obs}^2.$

Seasonal model

$$F_{\mathrm{seas}} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Seasonal model, with harmonic functions

$$G_{\operatorname{seas}(k)} = \begin{bmatrix} \cos(k2\pi/12) & \sin(k2\pi/12)) \\ -\sin(k2\pi/12) & \cos(k2\pi/12)) \end{bmatrix}, \ F =_{\operatorname{seas}} \begin{bmatrix} 1 & 0 \end{bmatrix}.$$

Covariates, proxy variables

$$G_{
m proxy} = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$$
 ,

$$F_t = \begin{bmatrix} X_{1,t} & X_{2,t} & X_{3,t} \end{bmatrix}$$
.

In stratospheric ozone analysis: proxies for solar activity, quasi biennial oscillation, ENSO.

Then combine all

$$G = egin{bmatrix} G_{ ext{trend}} & 0 & 0 \ 0 & G_{ ext{seasonal}} & 0 \ 0 & 0 & G_{ ext{covariates}} \end{bmatrix}$$
 ,

$$F = \begin{bmatrix} F_{\mathrm{trend}} & F_{\mathrm{seasonal}} & F_{\mathrm{covariates}} \end{bmatrix}$$
,

and estimate the hidden states by state space methods, i.e. estimate $p(x_{1:n}|y_{1:n})$, typically only the marginal distributions.

Why DLM

- Provides hierarchical statistical model for uncertainties in data, process, and parameters.
- Uses verifiable statistical assumptions.
- No need to assume stationarity.
- No problems with missing values.
- Classical regression, spline smoothing, ARIMA analyses are special cases.
- Efficient calculations by Kalman formulas.
- Extendible to non-linear models, hierarchical parameters, non Gaussian errors.

Model for ozone time series

$$y_t = \mu_t + \gamma_t + \beta_{1,t} X_{1,t} + \beta_{2,t} X_{2,t} + \beta_{3,t} X_{3,t} + \epsilon_t$$
 (1)

- Local level and trend, $\sigma_{\rm level} = 0$, $\sigma_{\rm trend} > 0$.
- Seasonality with two harmonic functions, $\sigma_{\rm seas} > 0$
- ullet Proxy variables for solar effect and QBO and ENSO, fixed coefficients, $\sigma_{
 m proxy}=0$

The matrices involved

Outline of the estimation

For dynamic linear models we have computational tools for all relevant statistical distributions.

- $p(x_t|y_{1:t},\theta)$ by Kalman filter
- $p(x_{t+1}|x_t, y_{1:t}, \theta)$ by Kalman filter
- $p(x_t|y_{1:n}, \theta)$ by Kalman smoother
- $p(x_{1:n}|y_{1:n},\theta)$ by simulation smoother
- $p(y_{1:n}|\theta)$ by Kalman filter likelihood
- $p(x_{1:n}, \theta|y_{1:n})$ by MCMC

Above, θ contains all the auxiliary model parameter, e.g., related to observation and model error covariances. They are either fixed, estimated by maximum likelihood, or marginalized over by MCMC.

Flowchart

Kalman filter

Assume the initial state distribution $N(x_1, C_1)$ is known. One step prediction prior mean and covariance, $p(x_t|x_{t-1}, y_{1:t-1}, \theta) = N(\widehat{x}_t, \widehat{C}_t)$ and covariance matrix for predicted observations $C_{v,t}$:

$$\widehat{x}_t = G_t x_{t-1}$$
 prior mean for state x_t , $\widehat{C}_t = G_t C_{t-1} G_t^T + W_t$ prior covariance for state x_t , $C_{y,t} = F_t \widehat{C}_t F_t^T + V_t$ Covariance for prediction y_t

and posterior mean and covariance, $p(x_t|y_{1:t}, \theta) = N(x_t, C_t)$

$$\begin{split} \mathcal{K}_t &= \widehat{C}_t F_t^T C_{y,t}^{-1} & \text{Kalman Gain,} \\ v_t &= y_t - F_t \widehat{x}_t & \text{prediction residuals,} \\ x_t &= \widehat{x}_t + K_t v_t & \text{tilan } x_t \text{ posterior mean,} \\ C_t &= \widehat{C}_t - K_t F_t \widehat{C}_t & \text{tilan } x_t \text{ posterior covariance,} \end{split}$$

for each time $t = 2, 3, \ldots, n$.

Kalman filter, Matlab code

```
for i=1:n
  v(:,i) = y(i,:)' - F*x(:,i);
  Cp(:,:,i) = F*C(:,:,i)*F' + diag(V(i,:).^2);
  K(:,:,i) = G*C(:,:,i)*F'/Cp(:,:,i);
  if i<n
    L = G-K(:,:,i)*F;
    x(:,i+1) = G*x(:,i) + K(:,:,i)*v(:,i);
    C(:,:,i+1) = G*C(:,:,i)*L' + W;
  end
end</pre>
```

Kalman smoother

Smoothed states $p(x_t|y_{1:n}, \theta) = N(\widetilde{x}_t, \widetilde{C}_t)$ are obtained by backward recursion:

$$\begin{split} L_t &= G_t - G_t K_t F_t \\ r_t &= F_t^T C_{y,t}^{-1} v_t + L_t^T r_{t+1} \\ N_t &= F_t^T C_{y,t}^{-1} F_t + L_t^T N_{t+1} L_t \\ \widetilde{x}_t &= \widehat{x}_t + \widehat{C}_t r_t \\ \widetilde{C}_t &= \widehat{C}_t - \widehat{C}_t N_t \widehat{C}_t \end{split}$$
 smoothed state mean

for each time t = n, n-1, ..., 1, with initialization r_{n+1} and N_{n+1} as zero.

Kalman smoother, Matlab code

```
for i=n:-1:1
  L = G-K(:,:,i)*F;
  r = F'/Cp(:,:,i)*v(:,i) + L'*r;
  N = F'/Cp(:,:,i)*F + L'*N*L;
  x(:,i) = x(:,i) + C(:,:,i)*r;
  C(:,:,i) = C(:,:,i) - C(:,:,i)*N*C(:,:,i);
end
```

Likelihood function from the Kalman filter

Marginal likelihood $p(y_{1:n}|\theta)$, with the state $x_{1:n}$ "integrated out" is obtained from one step predictions:

$$p(y_{1:n}|\theta) = p(y_1|\theta) \prod_{t=2}^{n} p(y_t|y_{1:t-1},\theta).$$

Individual predictions are obtained from Kalman filter recursion for a fixed parameter θ . For a linear model with Gaussian errors, we have:

$$p(y_{1:n}|\theta) \propto \exp\left\{-\frac{1}{2}\sum_{t=1}^{n}\left[\left(y_{t} - F_{t}\widehat{x}_{t}\right)^{T}C_{y,t}^{-1}\left(y_{t} - F_{t}\widehat{x}_{t}\right) + \log(|C_{y,t}|)\right]\right\}.$$

Sample from the estimated state

Kalman formulas give marginal distributions $p(x_t|y_{1:n})$ but there is efficient way to simulate values from the whole posterior distribution of the states $p(x_{1:n}|y_{1:n})$:

- 1. Sample from the system equations, $\widetilde{x}_{1:n}$, $\widetilde{y}_{1:n}$.
- 2. Smooth $\widetilde{y}_{1:n}$ to get $\widetilde{\widetilde{x}}_{1:n}$.
- 3. Add the residuals to the original smoothed state, $x_{1:n}^* = \widetilde{x}_{1:n} \widetilde{\widetilde{x}}_{1:n} + x_{1:n}$.

This is needed to get uncertainty estimates of trend related statistics.

Trend analysis by simulation

- Kalman formulas give marginal distributions $p(x_t|y_{1:n}, \theta)$.
- We can simulate DLM states from $p(x_{1:n}|y_{1:n}, \theta)$.
- Need MCMC to simulate from

$$p(x_{1:n}|y_{1:n}) = \int p(x_{1:n}|y_{1:n},\theta) d\theta.$$

This is needed to get uncertainty estimates of trend related statistics.

Estimating parameters

- How to select the model matrix G?
 - By considering all the relevant processes.
 - Diagnosing the residuals.
- How to choose initial state distribution $N(x_0, C_0)$?
 - By assuming diffuse priors
- How to estimate error covariances W_t and V_t ?
 - By Kalman filter likelihood:

$$-2\log(p(y_{1:n}|x_{1:n},\theta)) = \text{constant} + \sum_{t=1}^{n} \left[(y_t - F_t \widehat{x}_t)^T C_t^{y-1} (y_t - F_t \widehat{x}_t) + \log(|C_t^*|) \right]$$

 Maximum aposteriori by optimization, or Markov chain Monte Carlo (MCMC) to sample from the posterior distribution.

Matlab toolbox for DLM

- For DLM calculations at http://helios.fmi.fi/~lainema/dlm.
- You will need the MCMC toolbox, also, http://helios.fmi.fi/~lainema/mcmc.
- DLM tutorial at http://helios.fmi.fi/~lainema/dlm/dlmtut.html.

Finnish temperatures

Kilpisjärvi summer temperatures Matlab demo

Conclusion

- DLM framework offers flexible, intuitive and statistically sound way to analyse trends in time series.
- Matlab toolbox for DLM calculations for time series at http://helios.fmi.fi/~lainema/dlm.
- Kyrölä, E., Laine, M., Sofieva, V., Tamminen, J., Päivärinta, S.-M., Tukiainen, S., Zawodny, J., and Thomason, L. (2013): Combined SAGE II-GOMOS ozone profile data set for 1984–2011 and trend analysis of the vertical distribution of ozone *Atmos. Chem. Phys.*, 13, 10645–10658.
- Laine, M., Latva-Pukkila, N., and Kyrölä, E. (2013): Analyzing time varying trends in stratospheric ozone time series using state space approach, *Atmos. Chem. Phys. Discuss.*, 13, 20503–20530.
- Mikkonen, S., Laine, M., Mäkelä, H., Gregow, H., Tuomenvirta, H., Lahtinen, M., Laaksonen, A. (2015): Trends in the average temperature in Finland, 1847–2013, Stochastic Environmental Research and Risk Assessment, 29(6), 1521–1529.
- Roininen, L., Laine, M., Ulich, T. (2015): Time-varying ionosonde trend: Case study of Sodankylä hmF2 data 1957–2014, Journal of Geophysical Research: Space Physics, 120.