SILABO

INGENIERIA MECANICA ELECTRICA, ELECTRONICA Y SISTEMAS **FACULTAD** INGENIERIA DE SISTEMAS ESCUELA PROFESIONAL PROGRAMA DE ESTUDIOS CARRERA PURA

I. INFORMACIÓN GENERAL

I.1 Identificación Académica

Curso TOPICOS AVANZADOS EN INTELIGENCIA COMPUTACIONAL a)

b) Código

Prerequisito SIS225 - INTELIGENCIA COMPUTACIONAL c) Número de Horas 04h teóricas, 02h prácticas, Total 06 horas d)

Créditos e) f) Número de Horas virtuales 00 2022-II Año y Semestre Académico g) h) Ciclo de Estudios IX

Del 22 de agosto al 16 de diciembre del 2022 (17 semanas) i) Duración

Área Curricular Estudios específicos j)

Características del Curso I+D+ik)

I.2 Docente

Apellidos y Nombres SOSA MAYDANA CARLOS BORIS a)

Condición y Categoría NOMBRADO PRINCIPAL b) Especialidad ING.DE SISTEMAS c)

I.3 Ambiente donde se realizó el aprendizaje

a) 101PN/L4

II. SUMILLA

El curso de Tópicos avanzados de Inteligencia Artificial de naturaleza teórico - práctico, que pertenece al área curricular específico, cuyo propósito es aprender más acerca de nosotros mismos y a diferencia de la psicología y de la filosofía que también centran su estudio de la inteligencia, IA y sus esfuerzos por comprender este fenómeno están encaminados tanto a la construcción de entidades inteligentes como su comprensión. La Inteligencia Computacional se sitúa como una disciplina que tiene que ver con las ciencias de la computación que corresponden al esfuerzo por parte de gran cantidad de científicos que durante los últimos treinta años han realizado con el fin de dotar a las computadoras de inteligencia.

III. PERFIL DEL EGRESADO EN RELACIÓN AL CURSO

Capacidad de Investigar, liderar, diseñar y desarrollar sistemas informáticos de gran aporte y complejidad en áreas tan diversos como gestión de información en tiempo real, administración, finanzas, información geográfica, videojuegos, control industrial y sistemas de información gerencial.

IV. COMPETENCIA

Desarrolla programas para diversos dispositivos gestionando datos y conociendo sobre redes, con responsabilidad, trabajo en equipo y eficiencia.

V. LOGRO DE APRENDIZAJE DEL CURSO

Diseña e implementa modelos de inteligencia computacional utilizando técnicas avanzadas de inteligencia artificial.

VI. TRATAMIENTO DE UNIDADES DIDÁCTICAS

UNIDAD 1		UNIDAD 1: Sistemas basados en conocimiento y procesamiento de lenguaje natural			
LOGROS DE APRENDIZAJE DE LA UNIDAD Resuelve problemas de nuestro medio aplicando los principios de los sistemas inteligentes y diseña modelos de procesamiento de lenguaje natural.					
TIEMPO DE DESARROLLO Del 22 de agosto al 14 de octubre			lel 2022 (Total 48 horas)		
HORAS DE ENSEÑANZA VIRTUAL/UNIDAD		00			
SEMANAS	CRITERIO	S DE DESEMPEÑO	CONOCIMIENTO		
Semana 1	Comprende el ámbito de estudio de los sistemas inteligentes		Los sistemas basados en el conocimiento		
Semana 2	Comprende el ámbito de estudio de los sistemas inteligentes		Elicitación del conocimiento, Bases de conocimiento		
Semana 3	Comprende y aplica los fundamentos de NLP		NLP fundamentos: morfología, representación léxica, sintáctica, semántica, del discurso		
Semana 4	Comprende y aplica los fundamentos de NLP		NLP fundamentos: modelos de lenguaje (n-gram), clasificación de texto, clustering de texto		
Semana 5	Comprende y aplica los fundamentos de NLP		NLP fundamentos: traducción de texto, respuesta a preguntas, resumen automático		

Semana 6	Comprende y aplica los fundamentos de NLP	NLP fundamentos: traducción de texto, respuesta a preguntas, resumen automático		
Semana 7	Implementa un modelo basado en NLP	Aplicación de NLP		
Semana 8	Retroalimentación			
PORCENTAJE DE AVANCE ACADÉMICO DE LA UNIDAD: 100%				

UNIDAD 2		UNIDAD 2: Redes Neuronales y Algoritmos genéticos				
LOGROS DE APRENDIZAJE DE LA UNIDAD						
	Aplica redes neuronales y algoritmos genéticos para solucionar problemas de optimización con eficiencia y responsabilidad. [TIEMPO DE DESARROLLO] Del 17 de octubre al 16 de diciembre del 2022 (Total 54 horas)					
HORAS DE ENSEÑANZA VIRTUAL/UNIDAD		00				
SEMANAS	CRITERIO	S DE DESEMPEÑO	CONOCIMIENTO			
Semana 9	Comprende el ámbito de estudio de las redes neuronales y deep learning		Historia de las redes neuronales y del Deep Learning			
Semana 10	Aplica los principios de los diferentes tipos de redes neuronales.		FeedFordward: XOR, unidades ocultas, diseño de arquitectura, retropropagación			
Semana 11	Aplica los principios de los diferentes tipos de redes neuronales.		Regularización: restricciones, penalidades, Dropout			
Semana 12	Aplica los principios de los diferentes tipos de redes neuronales.		Optimización de entrenamiento de modelos basados en redes neuronales			
Semana 13	Aplica los principios de los diferentes tipos de redes neuronales.		Modelo de Redes Neuronales			
Semana 14	Comprende y aplica algoritmos genéticos para dar solución a problemas conceptúales		s Algoritmos genéticos			
Semana 15	Comprende y aplica algoritmos genéticos para dar solución a problemas conceptúales		Aplicación de Algoritmos genéticos			
Semana 16	implementación del modelo de inteligencia computacional		modelo de inteligencia computacional			
Semana 17	Retroalimentación					
PORCENTAJE DE AVANCE ACADÉMICO DE LA UNIDAD: 100%						

VII. ESTRATEGIAS METODOLÓGICAS

VII.1 De Enseñanza

Conceptualización, Diálogo y discusión, Enseñanza en grupo, Gráficos, Mapa conceptual, Trabajo dirigido

VII.2 De Aprendizaje

Elaboración y organización

VII.3 De Investigación Formativa

Mapa conceptual, mapa semántico, redes conceptuales y dinámicas grupales

VII.4 De Responsabilidad Social Universitaria

Vinculadas con actividades de extensión cultural, proyección social y responsabilidad social, según la naturaleza del componente

VII.5 De Enseñanza Virtual

Uso de la plataforma Aula Virtual de UNA Puno Laurassia donde se comparte material de aprendizaje y actividades con relación al curso.

Navegación en páginas web en el proceso de investigación.

Zoom para las conferencias

VIII. MEDIOS Y MATERIALES DIDÁCTICOS

Auditivos: Palabra hablada.

Visuales: Ficha de actividad de aprendizaje, diapositivas. Software: Google Colab, Jupyter Notebook, Python, Git, GitHub.

Guías de información, Textos

IX. PRODUCTO DE APRENDIZAJE

FECHA DE PRESENTACIÓN	PRODUCTO			
116 de diciembre del 2022	Informe de Modelo de aplicación de aprendizaje profundo en visión artificial, NLP o algoritmos genéticos.			

X. EVALUACIÓN DE APRENDIZAJE

X.1 Evidencias, indicaciones, técnicas e instrumentos de evaluación

UNIDAD	LOGROS DE APRENDIZAJE	EVIDENCIAS DESEMPEÑO: De acción, objeto o producto (%)	PONDERACIÓN (Obligatorio en base a 100%)	TÉCNICAS	INSTRUMENTOS
1	Resuelve problemas de nuestro medio aplicando los principios de los sistemas inteligentes y diseña modelos de procesamiento de lenguaje natural.	Comprende los conceptos de NLP, Realiza proyecto de NLP	50%	Examen,	Prueba escrita, Rubrica de evaluación, ficha de observación
2	Aplica redes neuronales y algoritmos genéticos para solucionar problemas de optimización con eficiencia y responsabilidad.	Comprende los conceptos de redes neuronales, Realiza proyecto de redes neuronales y algoritmos genéticos		Examen, observación	Prueba escrita, Rubrica de evaluación, ficha de observación

X.2 Calificación:

La fórmula para la obtención del promedio final del curso es la siguiente:

Promedio Final = (50%)IUPP+(50%)IIUPP

Donde:

IUPP: Primero unidad promedio parcial IIUPP: Segundo unidad promedio parcial

El cálculo del promedio de la Unidad será de acuerdo a la formula: 03 * LA1 + 0.4*LA2 + 0.3 * LA3

Donde:

LA1: Evidencia de

conocimiento. LA2:

Evidencia de

desempeño. LA3:

Evidencia de

producto.

XI. FUENTES DE INFORMACIÓN

X.1 Bibliográficas

Básica

- · NILS J. NILSSON, Inteligencia Artificial, McGraw Hill, España, 2001.
- · Stuart Russell y Peter Norvig, Inteligencia Artifical, Prentice Hall, España, 1996.
- · Borrajo B. Jurista M., Martinez V. y Pasos J., INTELIGENCIA ARTIFICIAL, METODOS Y TECNICAS, Centro de estudios Ramoanreces, Madrid., España,

1993.

- Stuart, Rousell y Norving, Meter, INTELIGENCIA ARTIFICIAL, Editorial Prentice Hall Hispanoamericana, Mexico, 2004.
- · STUART, RUSSELL; PETER, NORVIG, Inteligencia Artificial un Enfoque Moderno, ISBN, , 1996.
- · Freeman, James A, REDES NEURONALES, ALGORITMOS Y APLICACIONES Y TECNICAS DE PROGRAMACION, Editorial Addison Wesley

Iberoamericana, Estados unidos, 1994.

- · Martin del Brio B. Sanz A, REDES NEURONALES Y SISTEMAS BORROSOS, 2da edic. Editorial Ra-Ma, , 2001.
- HILERA GONZALES, Jose Ramon; MARTINEZ HERNANDO, Victor Jose, Redes Neuronales Artificiales: Fundamentos, Modelos y Aplicaciones, RA-MA; Addison Wesley Iberoamericana, Madrid, 1995.
- B. Martín del Brío, A. Sanz Molina, Redes Neuronales y Sistemas Borrosos. 2ª Edición Ampliada y Revisada, RA-MA, España, 2001.
- B. Martín del Brío, A. Sanz Molina, Redes Neuronales y Sistemas Borrosos, RA-MA, España, 2001.
- · GUIJARRO, Alonso, A, Lozano, J Palma. Ingeniería del conocimiento aspectos metodológicos. 1997.
- · RICHARD FROST. "Base de datos y Sistemas Expertos, Ingeniería de Conocimiento", primera edición, Editores Diaz de Santos SA, Madrid 1989.
- · STUART RUSSELL,PETER NORVIG."Inteligencia Artificial un Enfoque Moderno", primera edición, Editorial Prentice Hall Hispanoamericana SA, México

2012.

- T. Mitchell. Machine Learning, McGraw Hill, 1997.
- · S. Fernandez, J. Gonzales y J. Mira. Problemas resueltos de Inteligencia Artificial aplicada. 1998..
- Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). *Deep learning* (Vol. 1, p. 2). Cambridge: MIT press.
- · Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. O'Reilly

Media, Early Realease

, J. (2019). Deep learning for nlp and speech recognition (Vol. 84). Springer.

Complementarias

Electrónicas

- · GOOGLE COLAB, (2021). Documentación,
 - $\underline{https://colab.research.google.com/github/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/01.01-Help-And-Documentation.ipynbulker.pdf.}$
- · Tensorflow, (2021). Documentación, https://www.tensorflow.org/
- Aprendizaje Automático, (2021), Curso en línea de Google, https://developers.google.com/machine-learning/crash-course

Producción intelectual del docente relacionado con el curso