Exercise 4

G = (N, T, P, S). The terminals T are given by $T = \{\text{number, variable}, +, -, \cdot, /\}$, the non-terminals are given by $N = \{\text{Term, Factor}, S, A\}$. we have the following production rules P:

$$S \longrightarrow \operatorname{Term} \ | \ \operatorname{Term} \ \operatorname{addExpression} \ S$$

$$\operatorname{Term} \longrightarrow \operatorname{Factor} \ | \ \operatorname{Factor} \ \operatorname{multExpression} \ \operatorname{Factor}$$

$$\operatorname{Factor} \longrightarrow \operatorname{number} \ | \ \operatorname{variable}$$

$$\operatorname{addExpression} \longrightarrow + \ | \ -$$

$$\operatorname{multExpression} \longrightarrow \cdot \ | \ /$$

The fact that the start symbol S only allows Terms but not Factors as following non-terminals, ensures that the multiplication/division are parsed as nodes within terms. One could also understand it as first splitting the nodes at the +'s in order to not wrongly split factors.

example

• The only matching parse tree for $1 + 2 \cdot a + b$ is:

