Revisit Sampling

- Why sample?
 - Draw samples to approximate a distribution
 - Intractable pdfs (infinite summation in integrals at high dimensions/ The integral has no closed-form solution)

Revisit Sampling

- Why sample?
 - Draw samples to approximate a distribution
 - Intractable pdfs (infinite summation in integrals at high dimensions/ The integral has no closed-form solution)
- Proposal Distribution in Metropolis-Hasting Sampling
 - acceptance ratio includes ratio of proposal distributions

$$r = \frac{p(\theta^*|y)/J_t(\theta^*|\theta^{t-1})}{p(\theta^{t-1}|y)/J_t(\theta^{t-1}|\theta^*)} = \frac{p(\theta^*|y)J_t(\theta^{t-1}|\theta^*)}{p(\theta^{t-1}|y)J_t(\theta^*|\theta^{t-1})}$$

$$\theta^t = \begin{cases} \theta^* & \text{with probability min}(r, 1) \\ \theta^{t-1} & \text{otherwise} \end{cases}$$

Hierarchical Model

- Exchangeability
- Bayesian analysis of hierarchical models
- Hierarchical normal model
- Weakly informative priors for hierarchical variance parameters

Hierarchical model

- Example: Treatment effectiveness
 - in hospital j the survival probability is θ_j
 - observations y_{ij} tell whether patient i survived in hospital j

Hierarchical model

- Example: Treatment effectiveness
 - in hospital j the survival probability is θ_j
 - observations y_{ij} tell whether patient i survived in hospital j

• sensible to assume that θ_j are similar

- natural to think that θ_i have common population distribution
- θ_j is not directly observed and the population distribution is unknown

Compare

"Separate model" (model with separate/independent effects)

Compare

"Separate model" (model with separate/independent effects)

"Joint model" (model with a common effect / pooled model)

Compare

"Separate model" (model with separate/independent effects)

"Joint model" (model with a common effect / pooled model)

Hierarchical model

Hierarchical model

Level 1: observations given parameters $p(y_{ii}|\theta_i)$

$$p(\theta_j| au)$$
 θ_1 θ_2 \cdots θ_n parameters
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad p(y_{ij}|\theta_j) \qquad y_{i1} \qquad y_{i2} \qquad y_{in} \qquad \text{observations}$$

Joint posterior

$$p(\theta, \tau | y) \propto p(y | \theta, \tau) p(\theta, \tau)$$

 $\propto p(y | \theta) p(\theta | \tau) p(\tau)$

Hierarchical model

Level 1: observations given parameters $p(y_{ij}|\theta_j)$

Level 2: parameters given hyperparameters $p(\theta_j|\tau)$

hyperparameter

parameters

observations

Joint posterior

$$p(\theta, \tau | y) \propto p(y | \theta, \tau) p(\theta, \tau)$$

 $\propto p(y | \theta) p(\theta | \tau) p(\tau)$

- Medicine testing
- Type F344 female rats in control group
 - count how many get endometrial stromal polyps (a kind of tumor)
 - Binomial model for number of tumors, given θ

- Medicine testing
- Type F344 female rats in control group
 - count how many get endometrial stromal polyps (a kind of tumor)
 - Binomial model for number of tumors, given θ
- Experiment has been repeated 71 times

0/20	0/20	0/20	0/20	0/20	0/20	0/20	0/19	0/19	0/19
0/20	0/20	0/20	0/20	0/20	0/20	0/20	0/19	0/19	0/19
0/19	0/18	0/18	0/17	1/20	1/20	1/20	1/20	1/19	1/19
1/18	1/18	2/25	2/24	2/23	2/20	2/20	2/20	2/20	2/20
2/20	1/10	5/49	2/19	5/46	3/27	2/17	7/49	7/47	3/20
3/20	2/13	9/48	10/50	4/20	4/20	4/20	4/20	4/20	4/20
4/20	10/48	4/19	4/19	4/19	5/22	11/46	12/49	5/20	5/20
6/23	5/19	6/22	6/20	6/20	6/20	16/52	15/46	15/47	9/24
4/14									

Pooled model

Separate model

• Hierarchical binomial model for rats prior parameters α and β are unknown

$$\theta_j | \alpha, \beta \sim \mathsf{Beta}(\theta_j | \alpha, \beta)$$

$$y_j | n_j, \theta_j \sim \text{Bin}(y_j | n_j, \theta_j)$$

· multiple parameters

• Hierarchical binomial model for rats prior parameters α and β are unknown

$$\theta_j | \alpha, \beta \sim \mathsf{Beta}(\theta_j | \alpha, \beta)$$

$$y_j | n_j, \theta_j \sim \text{Bin}(y_j | n_j, \theta_j)$$

- multiple parameters
- factorize $\prod_{i=1}^{J} p(\theta_i | \alpha, \beta, y) p(\alpha, \beta | y)$

• Write the joint posterior density, $p(\alpha, \beta, \theta|y)$, in unnormalized form as a product of the hyperprior distribution $p(\alpha, \beta)$, the population distribution $p(\theta|\alpha, \beta)$, and the likelihood $p(y|\theta)$.

- Write the joint posterior density, $p(\alpha, \beta, \theta|y)$, in unnormalized form as a product of the hyperprior distribution $p(\alpha, \beta)$, the population distribution $p(\theta|\alpha, \beta)$, and the likelihood $p(y|\theta)$.
- Determine analytically the conditional posterior density of θ given the hyperparameters α, β ; $p(\theta | \alpha, \beta, y)$.

- Write the joint posterior density, $p(\alpha, \beta, \theta|y)$, in unnormalized form as a product of the hyperprior distribution $p(\alpha, \beta)$, the population distribution $p(\theta|\alpha, \beta)$, and the likelihood $p(y|\theta)$.
- Determine analytically the conditional posterior density of θ given the hyperparameters α , β ; $p(\theta|\alpha, \beta, y)$.
- Estimate α , β using the Bayesian paradigm; that is, obtain its marginal posterior distribution, $p(\alpha, \beta|y)$

- Hyperprior $p(\alpha, \beta)$?
 - α, β both affect the location and scale
 - BDA3 has $p(\alpha, \beta) \propto (\alpha + \beta)^{-5/2}$
 - diffuse prior for location and scale (BDA3 p. 110)

The marginal of α and β

Beta(α , β) given posterior draws of α and β

Population distribution (prior) for $\boldsymbol{\theta}_j$

Separate model

Separate model

Hierarchical model

Hierarchical model

Population distribution (prior) for $\boldsymbol{\theta}_j$

Hierarchical normal model: factory

- Factory has 6 machines which quality is evaluated
- Assume hierarchical model
 - each machine has its own (average) quality θ_j and common variance σ^2

 Can be used to predict the future quality produced by each machine and quality produced by a new similar machine

Hierarchical normal model: factory

- Factory has 6 machines which quality is evaluated
- Assume hierarchical model
 - each machine has its own (average) quality θ_j and own variance σ_i^2

 Can be used to predict the future quality produced by each machine and quality produced by a new similar machine

- Example: SAT coaching effectiveness
 - in USA commonly used Scholastic Aptitude Test (SAT) is designed so that short term practice should not improve the results significantly
 - schools have coaching courses
 - test the effectiveness of the coaching courses
- SAT
 - standardized multiple choice test
 - mean about 500 and standard deviation about 100
 - scores between 200 and 800
 - different topics, e.g., V=Verbal, M=Mathematics
 - pre-test PSAT

- Effectiveness of the SAT coaching
 - students had made pre-tests PSAT-M and PSAT-V
 - part of students were coached
 - linear regression was used to estimate the coaching effect y_j for the school j (could be denoted with $\bar{y}_{.j}$, too) and variances σ_i^2
 - y_j approximately normally distributed, with variances assumed to be known based on about 30 students per school
 - data is group means and variances (not personal results)

• Data:	School	Α	В	С	D	Ε	F	G	Н
	Уi	28	8	-3	7	-1	1	18	12
	σ_i	15	10	16	11	9	22	20	28

Separate or Pooled Model?

Separate model

Separate or Pooled Model?

Separate model

Pooled model

Hierarchical normal model for group means

• J experiments, unknown θ_j and known σ^2

$$y_{ij}|\theta_j \sim N(\theta_j, \sigma^2), \quad i = 1, \dots, n_j; \quad j = 1, \dots, J$$

• Group *j* sample mean and sample variance

$$\bar{y}_{.j} = \frac{1}{n_j} \sum_{i=1}^{n_j} y_{ij}$$

$$\sigma_j^2 = \frac{\sigma^2}{n_i}$$

Use model

$$\bar{y}_{.j}|\theta_j \sim \mathsf{N}(\theta_j, \sigma_j^2)$$

this model can be generalized so that, σ_j^2 can be different from each other for other reasons than n_i

Hierarchical normal model for group means

$$\bar{\mathbf{y}}_{.j}|\theta_j \sim \mathsf{N}(\theta_j, \sigma_j^2)$$

Separate model

Pooled model

Hierarchical model

