Theoretische Informatik 2 Berechenbarkeit und Komplexität

Inoffizielles Skript Marvin Borner

WARNUNG WIP: Fehler zu erwarten! Stand: 28. April 2023, 16:22

Bitte meldet euch bei mir, falls ihr Fehler findet.

Vorlesung gehalten von **Ulrike von Luxburg** Sommersemester 2023

 $\underline{0}$ Inhalt $\underline{1}$

Inhalt

1 Reguläre Sprachen und endliche Automaten		2	
	1.1	Motivation	2
	1.2	Wörter und Sprachen	2
	1.3	Endlicher, deterministischer Automat	3
	1.4	Reguläre Sprachen und Abschlusseigenschaften	5
		Nicht-deterministische Automaten	
	1.6	Mächtigkeit	7
	1.7	Reguläre Ausdrücke	8

Inhalt 2

1 Reguläre Sprachen und endliche Automaten

Motivation 1.1

- Eingabe
- Verarbeitung (Berechnungen, Zustände)
- Ausgabe

Wörter und Sprachen

Definition

Ein Alphabet Σ sei eine nicht-leere, endliche Menge. Ein Wort w ist entsprechend eine Folge von Elementen aus Σ .

Beispiel

• $\Sigma = \{a, ..., z\}, w = \text{luxburg}, |w| = 7$

Definition

 Σ^n ist die Menge aller Wörter der Länge n. Die Kleene'sche Hülle ist $\Sigma^* := \bigcup_{n=0}^{\infty} \Sigma^n$. $\Sigma^+ := \bigcup_{n=1}^{\infty} \Sigma^n$.

Sprache L über Σ ist eine Teilmenge von Σ^* .

Definition

Eine Konkatenation ist eine Aneinanderhängung zweier Wörter u und w. Eine Konkatenation zweier Sprachen L_1, L_2 ist $L_1 \circ L_2 := \{uw \mid u \in L_1, w \in L_2\}$. Die Kleene'sche Hülle einer Sprache L ist dann $L^* := \{x_1...x_k \mid x_i \in L, k \in \mathbb{N}_0\}.$

Konkatenation von k Wörtern Eine k-fache Aneinanderhängung von Wörtern ist $w_k = \underbrace{w...w}$.

Beispiel

- $\bullet \quad w=010, \ u=001, \ wu=\underbrace{010}_{w}\underbrace{001}_{u}, \ uwu=\underbrace{001}_{u}\underbrace{010}_{w}\underbrace{001}_{u}$
- $w^3 = 010\ 010\ 010$

Bemerkung

Die Konkatenation auf Σ^* hat die Eigenschaften:

- assoziativ: a(bc) = (ab)c
- nicht kommutativ: $ab \neq ba$
- neutrales Element ε : $\varepsilon a = a\varepsilon = a$
- ein inverses Element

Definition

Ein Wort x heißt Teilwort eines Wortes y, falls es Wörter u und v gibt, sodass y = uxv.

- Falls $u = \varepsilon$, x Präfix von y
- Falls $v = \varepsilon$, x Suffix von y

Beispiel

- 01 ist Teilwort von 0**01**11
- 10 ist Präfix von **10**10011
- 011 ist Suffix von 10101110**011**

1.3 Endlicher, deterministischer Automat

Definition

Für einen endlichen, deterministischen Automat $(Q, \Sigma, \delta, q_0, F)$ ist

- Q eine endliche Menge der Zustände
- Σ das Alphabet
- $\delta: Q \times \Sigma \to Q$ die Übergangsfunktion
- $q_0 \in Q$ der Startzustand
- $F \subset Q$ die Menge der akzeptierenden Zustände

Beispiel

 $Q = \{q_1, q_2, q_3\}, \ \Sigma = \{0, 1\}, \ q_1 \ \text{Startzustand}, \ F = \{q_2\}.$ δ kann dargestellt werden durch

$$\begin{array}{c|cccc} \hline / & 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ q_2 & q_3 & q_2 \\ q_3 & q_2 & q_2 \\ \hline \end{array}$$

Die Zustandsfolge ist mit w = 001

$$q_1 \xrightarrow{0} q_1 \xrightarrow{0} q_1 \xrightarrow{1} q_2.$$

Definition

- partielle Übergangsfunktion: nicht alle Übergänge sind definiert
- totale Übergangsfunktion: alle Übergänge sind definiert

Definition

Eine Folge $s_0,...,s_n \in Q$ von Zuständen heißt Berechnung des Automaten $M=(Q,\Sigma,\delta,q_0,F)$ auf dem Wort $w=w_1...w_n$, falls

- $s_0 = q_0, q$
- $\forall i = 0, ..., n-1 : s_{i+1} = \delta(s_i, w_{i+1})$

Es ist also eine "gültige" Folge von Zuständen, die man durch Abarbeiten von w erreicht.

Beispiel

• w = 001 ergibt die Zustandsfolge $q_1q_1q_1q_2$

Definition

Eine Berechnung akzeptiert das Wort w, falls die Berechnung in einem akzeptierten Zustand endet.

Die von einem endlichen Automaten M akzeptierte (erkannte) Sprache L(M) ist die Menge der Wörter, die von M akzeptiert werden:

$$L(M) := \{ w \in \Sigma^* \mid M \text{ akzeptiert } w \}$$

Bemerkung

Eine Berechnung kann mehrmals in akzeptierenden Zuständen eintreten/austreten. Wichtig ist der Endzustand, nachdem der letzte Buchstabe des Eingabewortes verarbeitet wurde.

Beispiel

- $w = 1101 \rightarrow q_1q_2q_2q_1q_2 \rightarrow w$ wird akzeptiert
- $w = 010 \rightarrow q_1q_1q_2q_1 \rightarrow w$ wird **nicht** akzeptiert

Es folgt:

$$L(M) = \{ w \in \Sigma^* \mid w = \varepsilon \text{ oder } w \text{ endet mit } 0 \}$$

Definition

Sei $\delta: Q \times \Sigma \to Q$ eine Übergangsfunktion. Die erweiterte Übergangsfunktion $\delta^*: Q \times \Sigma^* \to Q$ sei induktiv definiert:

- $\delta^*(q,\varepsilon) = q$ für alle $q \in Q$
- Für $w \in \Sigma^*$, $a \in \Sigma$ ist:

$$\delta^*(q, wa) = \delta(\underbrace{\delta^*(q, w), a}^{\text{Lesen von Buchstabe } a}).$$
Zustand nach Lesen von w

Reguläre Sprachen und Abschlusseigenschaften

Definition

Eine Sprache $L \subset \Sigma^*$ heißt reguläre Sprache, wenn es einen endlichen Automaten M gibt, der diese Sprache akzeptiert.

Die Menge aller regulären Sprachen ist REG.

Satz

Sei L eine reguläre Sprache über Σ . Dann ist auch $\bar{L} := \Sigma^* \setminus L$ eine reguläre Sprache.

Beweis

- L regulär \implies es gibt Automaten $M = (Q, \Sigma, \delta, q_0, F)$, der L akzeptiert
- Definiere "Komplementautomat" $\bar{M} = (Q, \Sigma, \delta, q_0, \bar{F})$ mit $\bar{F} := Q \setminus F$.
- Dann gilt:

$$w \in \bar{L} \iff M$$
 akzeptiert w nicht $\iff \bar{M}$ akzeptiert w .

Q.E.D.

Die Menge der regulären Sprachen ist abgeschlossen bezüglich der Vereinigung:

$$L_1, L_2 \in REG \implies L_1 \cup L_2 \in REG.$$

Beweis

Sei $M_1 = (Q_1, \Sigma_1, \delta_1, s_1, F_1)$ ein Automat, der L_1 erkennt, $M_2 = (Q_2, \Sigma_2, \delta_2, s_2, F_2)$ ein Automat, der L_2 erkennt.

Wir definieren den Produktautomaten $M := M_1 \times M_2$: $M = (Q, \Sigma, \Delta, s, F)$ mit

- $Q = Q_1 \times Q_2$
- $\Sigma = \Sigma_1 \cup \Sigma_2$,
- $s = (s_1, s_2), F = \{(f_1, f_2) \mid f_1 \in F_1 \text{ oder } f_2 \in F_2\},$ neuer Startzustand
 $\Delta : Q \times \Sigma \to Q,$

•
$$\Delta: Q \times \Sigma \to Q$$
,

neue Übergangsfunktion

$$\Delta((\underbrace{r_1}_{\in Q_1},\underbrace{r_2}_{\in Q_2}),\underbrace{a}_{\in \Sigma}) = (\delta_1(r_1,a),\delta(r_2,a)).$$

Übertragung der Definition auf erweiterte Übergangsfunktionen: Beweis durch Induktion (ausgelassen).

Nach Definition von F akzeptiert M ein Wort w, wenn M_1 oder M_2 das entsprechende Wort akzeptieren. Der Satz folgt. Q.E.D.

Beispiel

 M_1 :

 M_2 : TODO

 $M_1 \times M_2$: TODO

Satz

Seien L_1, L_2 zwei reguläre Sprachen. Dann sind auch $L_1 \cap L_2$ und $L_1 \setminus L_2$ reguläre Sprachen.

Beweis

• $L_1 \cap L_2$: Beweis funktioniert analog wie für $L_1 \cup L_2$, nur mit

$$F := \{(q_1, q_2) \mid q_1 \in F_1 \text{ und } q_2 \in F_2\}.$$

• $L_1 \setminus L_2 = L_q \cap \bar{L_2}$

Q.E.D.

1.5 Nicht-deterministische Automaten

Beispiel

TODO (ggf. auch Sipser).

Definition

Ein nicht-deterministischer Automat besteht aus einem 5-Tupel $(Q, \Sigma, \delta, q_0, F)$.

- Q, Σ, q_0, F wie beim deterministischen Automat,
- $\delta: Q \times \Sigma \cup \{\varepsilon\} \to \widetilde{\mathcal{P}(Q)}$ Übergangsfunktion
- (*): Die Funktion definiert die **Menge** der möglichen Zustände, in die man von einem Zustand durch Lesen eines Buchstabens gelangen kann.

Definition

Sei $M = (Q, \Sigma, \delta, q_0, F)$ ein nicht-deterministischer endlicher Automat, $w = w_1...w_n \in \Sigma^*$. Eine Folge von Zuständen $s_0, s_1, ..., s_m \in Q$ heißt Berechnig von M auf w, falls man w schreiben kann als $w = u_1u_2...u_m$ mit $u_i \in \Sigma \cup \{ \varepsilon \}$, sodass

Übergänge
$$\varepsilon$$
, hier $u_i = \varepsilon$

- $s_0 = q_0$,
- für alle $0 \le i \le m-1 : s_{i+1} \in \delta(s_1, u_{i+1})$.

Die Berechnung heißt akzeptierend, falls $s_m \in F$.

Der nicht-deterministische Automat M akzeptiert Wort w, falls es eine akzeptierende Berechnung von M auf w gibt.

Bemerkung

 ε -Transitionen: TODO.

Beispiel

Betrachte die regulären Sprachen

- $A := \{x \in \{0, 1\}^* \mid \text{Anzahl 0 gerade}\}\$
- $B := \{x \in \{0,1\}^* \mid \text{Anzahl 0 ungerade}\}\$

Zugehörige Automaten: TODO

Nun betrachte Konkatenation AB. Um die Sprache zu erkennen, müsste der Automat bei einer Eingabe zunächst einen ersten Teil A des Wortes betrachten und schauen, ob die Anzahl der 0 gerade ist. **Irgendwann** müsste er beschließen, dass nun der zweite Teil B des Wortes anfängt und er müsste schauen, ob dort die Anzahl der 0 ungerade ist.

"Irgendwann" \implies nicht-deterministisch.

TODO: Graph.

1.6 Mächtigkeit

Bemerkung

Die Mächtigkeit eines Automaten wird hierbei beschrieben durch die Anzahl an Sprachen, die dieser erkennen kann.

Definition

Zwei Automaten M_1 , M_2 heißen äquivalent, wenn sie die gleiche Sprache erkennen:

$$L(M_1) = L(M_2)$$

Satz

Zu jedem nicht-deterministischen endlichen Automaten gibt es einen äquivalenten deterministischen endlichen Automaten.

Beweis

Lang aber trivial. Basically konstruiert man einfach eine deterministische Übergangsfunktion auf den nicht-deterministischen Verzweigungen.

Satz

Es folgt:

Eine Sprache L ist regulär \iff es gibt einen nicht-deterministischen Automaten, der L akzeptiert.

Satz

Die Klasse der regulären Sprachen ist abgeschlossen unter Konkatenation:

$$L_1, L_2 \in REG \implies L_1L_2 \in REG$$

Satz

Die Klasse REG ist abgeschlossen unter Bildung der Kleene'schen Hülle, d.h.:

$$L \in REG \implies L^* \in REG$$

1.7 Reguläre Ausdrücke

Definition

Sei Σ ein Alphabet. Dann:

leeres Wort

• \emptyset und $\widehat{\varepsilon}$ sind reguläre Ausdrücke.

leere Sprache

- Alle Buchstaben aus Σ sind reguläre Ausdrücke.
- Falls R_1 , R_2 reguläre Ausdrücke sind, dann sind auch die folgenden Ausdrücke regulär:
 - $-R_1 \cup R_2$
 - $-R_1\circ R_2,$
 - $-R_1^*$.

Definition

Sei R ein regulärer Ausdruck. Dann ist die $von\ R$ induzierte $Sprache\ L(R)$ wie folgt definiert:

- $R = \emptyset \implies L(R) = \emptyset$
- $R = \epsilon \implies L(R) = \{\varepsilon\}$
- $R = \sigma$ für ein $\sigma \in \Sigma \implies L(R) = {\sigma}$
- $R = R_1 \cup R_2 \implies L(R) = L(R_1) \cup L(R_2)$
- $R = R_1 \circ R_2 \implies L(R) = L(R_1) \circ L(R_2)$
- $R = R_1^* \implies L(R) = (L(R_1))^*$

Satz

Eine Sprache ist genau dann regulär, wenn sie durch einen regulären Ausdruck beschrieben wird.

Beweis

Strukturelle Induktion. Tja.