

UFSC – Campus Araranguá Departamento de Computação DEC7536 – Projeto e Análise Algoritmos

Algoritmos Gulosos

Prof. Antonio Carlos Sobieranski

2019 / 1

Objetivos da Aula

Objetivo Geral:

 Compreender as principais características dos Algoritmos Gulosos no contexto de Projeto de Algoritmos.

Objetivos Específicos:

- Apresentar os conceitos fundamentais e componentes básicos dos algoritmos gulosos.
- Apresentar exemplos de aplicação onde são encontrados resultados ótimos para esta classe de algoritmos, mais especificamente para problemas em grafos e tabela de prefixos.
- Compreender as vantagens e desvantagens das abordagens gulosas.

1. Introdução

- Um Algoritmo Guloso (AG) para um problema de otimização sempre faz a escolha que parece a melhor para o momento, e adiciona a solução parcial.
- Objetivo: a **sequência** de **soluções** parciais direcionam a uma **solução** final **ótima**.
- AG's possuem uma característica comum:
 - Fazem a escolha local ótima, a cada passo.
 Ex.: um grafo, escolhe a aresta mais promissora em cada instante.
 - Propriedade da **escolha gulosa**, 1 solução após a outra.
 - Não consideram planos futuros, nem reavaliam soluções passadas.
 - Mióticos, não exploram todas as possibilidades.
 - Podem ser ruins para várias classes de problemas.
 - Se conseguem **fornecer** a **melhor solução**, são escolhidos pela **performance**.

2. Contextualização

- A partir de um conjunto C, determinar $S \subseteq C$ tal que:
 - $\, {m S} \,$ satisfaça uma dada propriedade ${m P} \,$
 - S é mínimo ou máximo em relação a algum critério, que satisfaz $oldsymbol{P}$
- Um algoritmo guloso para o problema geral consiste em um processo iterativo em que S é construído adicionando elementos de C, um a um.

```
function Guloso (C: conjunto): Conjunto;
{ C: conjunto de candidatos }
begin
   S := Ø; { S contem conjunto solucao }
   while (C <> Ø) and not solucao(S) do
        begin
        x := seleciona (C);
        C := C - x;
        if viavel (S + x) then S := S + x;
        end;
        if solucao (S) then return (S) else return ('Nao existe solucao');
end;
```

Essência do Algoritmo Guloso: a função de escolha.

2. Contextualização

- Exemplo: dado um **conjunto** de **moedas** de **1, 2, 5 e 10** centavos.
- Demonstrar um algoritmo guloso para uma máquina que dê o troco com o menor número possível de moedas (solução ótima)
- Troco de 18 centavos
- Algoritmo parece ser sempre ótimo para alguns sistemas monetários
- e.g.: *USD* e *Euro*

```
function Guloso (C: conjunto): Conjunto;
{ C: conjunto de candidatos }
begin
   S := Ø; { S contem conjunto solucao }
   while (C <> Ø) and not solucao(S) do
        begin
        x := seleciona (C);
        C := C - x;
        if viavel (S + x) then S := S + x;
        end;
        if solucao (S) then return (S) else return ('Nao existe solucao');
end;
```


2. Contextualização

- Vamos modificar ligeiramente o problema:
 - Dado um conjunto de moedas de **1, 7 e 10**.
- Algoritmo guloso falha para fornecer uma solução ótima.
- Exemplo:
- Troco de 18 centavos
- Troco de 15 centavos

```
function Guloso (C: conjunto): Conjunto;
{ C: conjunto de candidatos }
begin
   S := ∅; { S contem conjunto solucao }
   while (C <> ∅) and not solucao(S) do
    begin
    x := seleciona (C);
   C := C - x;
   if viavel (S + x) then S := S + x;
   end;
   if solucao (S) then return (S) else return ('Nao existe solucao');
end;
```

Com Programação Dinâmica, a solução é ótima !!!

2. Contextualização

- Algoritmos gulosos são em geral formados por 5 componentes:
 - Conjunto candidato C, de onde a solução S será criada;
 - f(x) seleção: seleciona o melhor candidato para ser adicionado a S;
 (geralmente relacionada com a função objetivo)
 - f(x) viabilidade: usada para determinar se um candidato de C pode ser usado para contribuir com a solução; (possível completar o conjunto adicionando mais cadidatos de modo que 1 solução seja obtida ?)
 - f(x) solução: verifica se S é uma solução;
 - f(x) objetiva: fornece o valor da solução S final ou parcial.

3. Exemplos de Algoritmos Gulosos

- Vamos analisar algumas estratégias gulosas para o problemas abaixo:
 - Árvore geradora mínima (AGM): algoritmos geralmente eficientes em O(A log V)

Conecta todos os vértices **sem excesso** e sem **ciclos**

- Algoritmo guloso genérico AGM
- PRIM faz crescer uma árvore até se tornar geradora
- Kruskal faz crescer uma floresta até se tornar árvore
- Codificação e tabela de prefixos
 - Algoritmo de Huffmann

3.1. Árvore Geradora Mínima – Problema Geral

- Problema da Árvore Geradora Mínima
 - Dado um grafo G(V, A) não-dirigido com pesos, com $w_{i,j}$ denotando o peso da aresta entre i e j.

3.1. Árvore Geradora Mínima – Problema Geral

- Problema da Árvore Geradora Mínima
 - <u>Árvore geradora</u> é um sub-grafo $G'(V, A' \subseteq A)$ de G, tal que $\forall v_i, v_j \in V$ existe um caminho de v_i, v_j , e G' é acíclico.
 - <u>Árvore geradora mínima</u>: é uma árvore geradora G' com **peso mínimo** e total de arestas de comprimento |V| 1.

Remover qualquer aresta de G'torna o grafo desconexo, adicionar qualquer aresta torna um ciclo

UFSC

3.1. Árvore Geradora Mínima – Problema Geral

Árvore Geradora Mínima

Algoritmo GenéricoAGM

Entrada: um conjunto C de arestas A conectando os vértices v_i e v_j

Saída: uma árvore geradora de peso mínimo

$$S = \emptyset$$

while S não constitui uma árvore geradora mínima **do**

$$(u,v)$$
 = Seleciona(C)

if aresta (u,v) é segura para S **then**

$$S = S \cup \{(u,v)\}$$

return S

3.2. Algoritmo de PRIM

- Algoritmo de PRIM para árvore geradora mínima
 - Pode ser **derivado** ao *AGMGenérico* anterior

Algoritmo GenéricoAGM

Entrada: um conjunto C de arestas A conectando os vértices v_i e v_j

Saída: uma árvore geradora de peso mínimo

 $S = \emptyset$

while *S* não constitui uma árvore geradora mínima **do**

(u,v) = Seleciona(C) **if** aresta (u,v) é segura para S **then** $S = S \cup \{(u,v)\}$

return S

 Sempre seleciona a aresta de menor peso da árvore corrente para o resto do grafo → a aresta mais barata que cruza um corte.

3.2. Algoritmo de PRIM

- Algoritmo de PRIM para árvore geradora mínima
- Conceito de **aresta segura**:

Teorema: Seja G=(V, A) um grafo conexo, não direcionado e com pesos p sobre as arestas A.

Seja S um subconjunto de V que está incluído em alguma árvore geradora mínima para G, e seja (V', V-V') um corte qualquer que respeita S, e seja (u,v) uma aresta leve cruzando (V', V-V'). Logo, a aresta (u,v) é uma aresta segura para S.

Aresta leve => Propriedade Gulosa

3.2. Algoritmo de PRIM

• Algoritmo de PRIM para árvore geradora mínima

3.2. Algoritmo de PRIM

- Algoritmo de PRIM para árvore geradora mínima
 - Algoritmo de PRIM

3.2. Algoritmo de PRIM

- Algoritmo de PRIM para árvore geradora mínima
 - Algoritmo de PRIM

UFSC

3.2. Algoritmo de PRIM

- Algoritmo de PRIM para árvore geradora mínima
 - Algoritmo de PRIM

3.3. Algoritmo de Kruskal

- Algoritmo de Kruskal para árvore geradora mínima
 - Pode ser derivado do algoritmo AGMGenérico, com outro conceito de aresta segura.
 Algoritmo GenéricoAGM

```
Entrada: um conjunto C de arestas A conectando os vértices v_i e v_j Saída: uma árvore geradora de peso mínimo S = \emptyset while S não constitui uma árvore geradora mínima do (u,v) = \text{Seleciona}(C) if aresta (u,v) é segura para S then S = S \cup \{(u,v)\} return S
```

- Estratégia simples:
 - S é uma floresta. O algoritmo inicia com uma floresta de |V| árvores de 1 vértice: em |V| passos, une 2 árvores até que exista apenas 1 árvore na floresta.
 - Adiciona uma **aresta de menor peso** a *S* que **não** forma um **ciclo**.

3.3. Algoritmo de Kruskal

• Algoritmo de Kruskal para árvore geradora mínima

3.3. Algoritmo de Kruskal

• Algoritmo de Kruskal para árvore geradora mínima

3.3. Algoritmo de Kruskal

• Algoritmo de Kruskal para árvore geradora mínima

3.4. Codificação de Huffman

- Codificação de Huffman → **método guloso** para produzir códigos de prefixo
 - David Huffman, 1952, MIT
 - Método para criar prefixos, utilizado para compressão de dados sem perda.
 - **Objetivo** é codificar mensagens em um alfabeto de *n*-caracteres de modo que a mensagem codificada seja a menor possível (comprimento)
 - **Premissa básica gulosa**: agrupar 2 letras menos frequentes (*x* e *y*) como folhas em uma árvore, agrupando-as em um código composto (*xy*), e iniciar recursão.

1952 – A Method for the Construction of Minimum-Redundancy Codes

3.4. Codificação de Huffman

• Exemplo:

3.4. Codificação de Huffman

• Exemplo:

3.4. Codificação de Huffman

• Exemplo:

- Saída do Algoritmo: Tabela de símbolos, 0 à esquerda, 1 à direita.
- Símbolos obtidos pela varredura da árvore.

4. Vantagens e Desvantagens da Estratégia Gulosa

- Algoritmos gulosos apresentam uma série de **vantagens** algorítmicas:
 - **Simplicidade**: frequentemente fáceis de descrever;
 - **Eficiência**: frequentemente podem ser implementados mais eficientemente;
 - Se solucionam o problema (ótimo), são escolhidos por serem **rápidos**.
- Algoritmos gulosos apresentam **limitações**:
 - Projetar uma abordagem gulosa pode ser fácil. Projetar a abordagem correta pode ser difícil;
 - Pode não somente falhar, como trazer a pior solução possível (PCV);
 - Escolhas muito precoces, impedem de procurar ótimos globais;
 - Algoritmos gulosos nem sempre atingem soluções ótimas, mas são escolhidos quando.
- Algoritmos gulosos são excelentes para vários problemas em grafos.

4. Vantagens e Desvantagens da Estratégia Gulosa

Casos onde a estratégia gulosa funciona?

- Quando o problema apresentar a propriedade da escolha gulosa, ou seja, depender de soluções ótimas locais.
- **2 provas:** AG permanece à frente, transformação gradual.

Síntese da Aula

- Conceitos de Algoritmo Gulosos.
- PRIM : faz crescer uma árvore até que ela se torne geradora
- Kruskal : faz crescer uma floresta até que ela se torne árvore.
- Ambos tem a característica Gulosa: a cada iteração "abocanham" a aresta que parece mais promissora.
- Huffmann: genial pela sua simplicidade.

UFSC

Início do trabalho a ser entregue

Codificação por tabela de prefixos – Huffman

Referências Bibliográficas

- **Cormen**, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford. **Introduction to Algorithms (3rd ed.)**. Massachusetts Institute of Technology. pp. 253–280. ISBN 978-0-262-03384-8. 2009.
- **Ziviani,** Nivio. **Projeto de Algoritmos com Implementações em Pascal e C**, Segunda Edição. Editora Thomson, 2004.

