# почему матерые пентестеры лажают в Red Team / Хабр

habr.com/ru/companies/bastion/articles/829402

secm3n



secm3n 17 июл в 16:22

### Красная команда, черный день: почему матерые пентестеры лажают в Red Team

12 мин

8.4K

Кейс



Как правило, заказы на Red Team поступают к уже опытным хакерским командам, которые набили руку на многочисленных пентестах. У них есть проверенные тактики и методы взлома, а также уверенность в своих силах. А ещё иногда они совершают «детские» ошибки во время первых редтимингов в карьере. Знаю это по собственному опыту.

В этой статье тряхну стариной и расскажу об одном из первых Red Team-проектов:

1. Разберу различия между Red Team и пентестом с точки зрения исполнителя.

- 2. Поделюсь приемами оффлайн-разведки и рассмотрю процесс поиска уязвимостей на примере реального кейса.
- 3. Покажу типичные ошибки, которые совершают пентестеры, переходящие в Red Team.

Даже опытные специалисты не всегда видят тонкие различия между пентестами и Red Team. Разница кроется в подходе к выявлению уязвимостей и оценке безопасности организации.

Задача **Red Team** — смоделировать реальную кибератаку. Команда ищет критические уязвимости для достижения конкретной цели или нескольких целей, например, похищения коммерческой тайны. Команда ИБ заказчика не в курсе того, что происходит и может активно препятствовать редтиму в случае обнаружения.

**Пентест** выполняется в совсем других условиях: у пентестеров есть цель, достигнуть которой команда пытается одним единственным способом, оговоренным ранее (если заказчик не просит иного). Более того, служба ИБ заказчика всегда в курсе действий пентестеров и никак не препятствует им.

Ключевая особенность Red Team — скрытность действий. Команда минимизирует следы и старается не привлекать внимание службы безопасности компании. Это позволяет оценить компетенцию ИБ-специалистов заказчика. Red Team максимально приближен к реальным атакам, тогда как пентест — более формализованное мероприятие. Он часто включает общение обмен информацией с ИБ-службой и администраторами заказчика.

|                  | Red Team                                                                                                                                                                                                                                                                                             | Пентест                                                                                                                                                                            |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Методы<br>и цели | Подразумевает комбинацию различных подходов: социальная инженерия, имитация реальных атак, OWASP Testing Guide, MITRE ATT&CK Framework, SANS Penetration Testing Framework, Information Systems Security Assessment Framework (ISSAF), PTES. Цель — проверить скорость и качество реакции Blue Team. | Структурированная методология, нацеленная на поиск и эксплуатацию технических уязвимостей в сетях и системах. Цель — выявить угрозы и предоставить рекомендации по их исправлению. |

|        | Red Team                                                                                                                                                                                 | Пентест                                                                                                                                                                                                                                                                  |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Подход | Команда работает в реальной среде, средства защиты не отключены. Возможно активное противодействие со стороны клиента. Если действия Red Team разоблачают, проект считается завершенным. | Служба ИБ заказчика знает о времени начала и окончания тестирования, а также об основных этапах и условиях проведения пентеста. Между службой ИБ и пентестерами идет обмен информацией. Заказчик не только не мешает, а порой даже помогает в отдельных аспектах работы. |

Оба подхода — Red Team и пентест — позволяют оценить уровень защищенности компании, но проводятся в разных условиях. Чтобы наглядно это показать, я обратился к старым записям. Расскажу, как команда, с которой я работал, проводила свой первый Red Team.

### Редтиминг на практике. Постановка задачи

Нам предстояло исследовать компанию, оказывающую финансовые и кредитные услуги гражданам. Назовем ее Компания-Которую-Нельзя-Называть (ККНН). Некоторые детали и часть наших действий я скрою в интересах заказчика. Суть сохранится, но рассказ станет чуть проще и короче.

Мы должны были провести тестирование на проникновение методом Red Team, имитируя действия злоумышленников. О предстоящей атаке знал только директор службы информационной безопасности компании. В качестве целей заказчик выбрал разные компоненты корпоративной инфраструктуры:

- Хранилище аналитических данных (DWH);
- Базы с персональными данными клиентов и некоторые компоненты 1С;
- Бэкапы.

В идеальном исходе событий мы должны были справиться с задачей так, чтобы ИБслужба ничего не заметила. А как оно было в реальности?

# Активный и пассивный сбор информации

В начале проекта пентестеры обычно находятся в более выгодном положении: заказчик предоставляет им всю необходимую информацию: список доменов компании или диапазон IP-адресов для проверки. Исполнители часто согласуют свои действия с ИБ-службой, например при использовании эксплоитов в рабочей инфраструктуре, и не тратят время на бесперспективные векторы атак.

Red Team работает иначе: у нас было только название компании, а всю информацию об IT-инфраструктуре заказчика пришлось искать самим. Нас интересовали данные об офисах, сотрудниках, подрядчиках, клиентах и партнерах заказчика: эти люди могли иметь доступ к инфраструктуре или корпоративным сервисам.

Для пассивной разведки мы использовали несколько десятков утилит, включая HackerTarget, Hunter, IntelX, IPdata, IPinfo и NetworksDB, работающих с протоколами DNS, BGP и SSL-сертификатами. В результате мы обнаружили:

- Несколько дочерних проектов помимо основного сайта компании. Также выделили CIDR, относящийся к инфраструктуре заказчика.
- Местоположение офисов и документацию из открытых источников о физической защите объектов.
- Несколько тысяч корпоративных адресов электронной почты сотрудников, некоторые адреса фигурировали в парольных утечках.

Увы, мы не смогли использовать выявленные учетные данные для доступа к корпоративным сервисам — пароли уже сменили. Атаки Password Spraying с утёкшими email-адресами и распространёнными паролями тоже не удались.

Мы попытались провести фишинговую рассылку по адресам руководителей, чтобы получить первоначальный доступ в сеть заказчика, но и тут столкнулись со сложностями. Позже мы изучили почтовые ящики сотрудников и выяснили, что письма были распознаны СЗИ как фишинговые: поэтому они попадали в карантин.

Затем мы перешли к активной разведке. С помощью инструментов DNS-разведки мы составили список поддоменов в доменных зонах компании и просканировали работающие там сервисы.

Хотя легких путей мы не обнаружили, нам удалось собрать информацию для дальнейшей работы. Приоритетными целями для тестирования стали:

- 1. Основной веб-сайт и его АРІ.
- 2. Сервисы, функционирующие в домене.
- 3. Офисы компании, которые мы решили посетить лично и разместить там закладки.

### Тестирование внешнего сетевого периметра

Мы проанализировали сайт ККНН и нашли несколько критических уязвимостей. Их эксплуатация могла привести к массовой утечке конфиденциальной информации и персональных данных. Одна из них — классический IDOR (Insecure Direct Object References).

Доступ к некоторым объектам в системе был реализован по прямой ссылке с уникальными идентификаторами. Однако система не проверяла, принадлежит ли запрашиваемый идентификатор пользователю. К тому же сами идентификаторы имели слабую энтропию, что делало их уязвимыми к перебору.

```
GET /api/v1/file/1337/preview/big HTTP/1.1
Host: KHHH.com
Cookie: bonusHidden=false;
_platform=%7B%22firstName%22%3A%22T%22%2C%22lastName%22%3A%22T%22%7D
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101
Firefox/117.0
Accept: application/json, text/plain, */*
Accept-Language: en-US, en; q=0.5
Accept-Encoding: gzip, deflate
Content-Type: application/x-www-form-urlencoded
Authorization: Bearer [..]
Sec-Fetch-Dest: empty
Sec-Fetch-Mode: cors
Sec-Fetch-Site: same-origin
Te: trailers
Connection: close
```

Отправив GET-запрос вида /api/v1/file/1337/preview/big с произвольным числовым идентификатором файла, можно было получить доступ к базе с паспортами, договорами и другими документами клиентов ККНН. Это была большая база: свежезагруженные файлы получали идентификатор с номером более чем 3 000 000.



#### Демонстрация наличия IDOR

То же самое происходило при обращении методом GET к API: <u>/api/v1/file/10?</u> download=false.



Мы также обнаружили возможность внедрения произвольного кода в SQL-запрос в форме поиска личного кабинета на сайте. Эту уязвимость можно было реализовать с использованием Boolean-based техники. При таком сценарии атакующий получает разное содержимое в зависимости от логического результата (True или False) при отправке запроса к базе данных.



Саму уязвимость можно продемонстрировать двумя запросами. Если сравнить длину ответов, станет ясно, что они отличаются. Это происходит из-за того, что в первом случае в SQL-запрос внедрено условие, которое возвращает значение True, а во втором — False. Для упрощения работы с этим типом атак часто используется инструмент под названием sqli\_blinder.

В итоге нам удалось извлечь из базы refresh-токены административной учетной записи.

Компрометация refresh-токенов административной учетной записи

Помимо этих уязвимостей, мы выявили еще несколько десятков менее серьёзных багов. В результате мы получили доступ к некоторым базам с персональными данными, но не нашли ничего, что помогло бы проникнуть во внутренний контур компании.

Это ожидаемый результат. По нашей статистике, успешно пробить веб и развить атаку в корпоративной сети удается примерно в 10% случаев. Возможно, дело в том, что мы часто работаем с крупными компаниями, у которых достаточно зрелые ИБ-процессы и сервисы. Эти компании уже многократно пытались взломать до нас — и коллеги-пентестеры, и злоумышленники. Поэтому вопросам безопасности здесь уделяется много внимания, в том числе на уровне архитектуры. Например, внешние сервисы могут быть надежно изолированы от корпоративных сетей.

### Физическое проникновение в офисы заказчика

Часто инфраструктуру крупных компаний проще взломать оффлайн. Поэтому параллельно с внешним пентестом мы отправили своих агентов в офисы заказчика.

Сначала они занялись OSINT: изучили YouTube-канал компании и посмотрели плейлисты с HR-материалами. По видео можно понять примерную планировку офисов, организацию прохода внутрь, расположение розеток и даже слепые зоны камер видеонаблюдения и использовать эту информацию в своих целях.

# Первый объект

В первом офисе нам повезло: там проходил открытый для всех желающих митап по информационной безопасности в финансовой сфере. Мы совместили приятное с полезным — послушали доклады и нашли в холлах удобные RJ-45 розетки. Однако

мы решили не устанавливать проводные закладки, так как не смогли точно определить, какие розетки относятся к ЛВС заказчика, а какие — к сетям соседейарендаторов.

Оставался другой вариант — поработать с корпоративной Wi-Fi сетью. Для аудита использовали wifite. WPA-E с проверкой подлинности клиентов делал сеть устойчивой к типичным атакам на протоколы WPA/WPA2/WPS. Поэтому мы решили вернуться в офис на следующий день и установить там поддельную точку доступа.

Попасть внутрь после окончания митапа не получилось. Нам повезло — у сети был хороший сигнал и за пределами охраняемой территории например, в столовой бизнес-центра, куда можно было попасть с помощью временного пропуска. Именно там мы применили технику EvilTwin в связке с GTC Downgrade.



Дело в том, что клиенты и серверы аутентификации обычно настроены на поддержку различных методов EAP: это помогает снизить вероятность проблем с несовместимостью устройств. Среди этих методов есть и небезопасные — EAP-GTC и EAP-PAP. Атака GTC Downgrade — это атака на понижение версии EAP. С ее помощью можно заставить жертву пройти аутентификацию на поддельной точке доступа с использованием слабо защищенного метода EAP, который подразумевает передачу учетных данных в виде открытого текста или NetNTLM-хэшей.

В тот день при помощи <u>eaphammer</u> мы скомпрометировали 27 учетных записей: 22 пароля были получены в чистом виде, 5 — в виде хеша NetNTLM. Валидация перехваченных пар «логин-пароль» прошла успешно, мы получили доступ в домен и собрали информацию об объектах Active Directory с помощью BloodHound для дальнейшего анализа.

Учетные записи, полученные в ходе этой атаки, пригодились на следующих этапах редтиминга. Кроме того, мы спрятали в здании сетевой имплант — Android-смартфон с доступом в интернет, разблокированным загрузчиком и установленным Nethunter. Однако сигнал был нестабильным, поэтому продуктивно работать на постоянной основе через этот канал связи не получалось.

# Второй объект

Работа со вторым офисом ККНН сначала не задалась. Попасть внутрь не получилось даже при помощи лестницы и рабочего комбинезона. Кроме шуток, образ электрика служит универсальным пропуском почти в любой бизнес-центр, но

здесь трюк не сработал. Пришлось снова искать места, где можно поймать корпоративный Wi-Fi:

- Платная парковка в непосредственной близости от здания.
- Курилка для сотрудников и клиентов возле главного входа.
- Расположенный неподалеку ресторан.

Основная проблема заключалась в том, что нам негде было «закрепиться» для спокойной работы: нужно было оккупировать строго определенный столик в ресторане, либо часами дымить в курилке. В итоге мы на неделю арендовали каршеринговый автомобиль, который пригнали ночью на парковку и оставили в зоне покрытия целевой сети.



В багажнике спрятали набор из усиленной Wi-Fi антенны (<u>Alfa AWUS036NHA</u>), ноутбука и 4G-модема. Запитали все это от пары автомобильных аккумуляторов и подключались через AnyDesk. Наконец у нас появился стабильный удаленный канал связи с внутренней сетью заказчика.

# Исследование корпоративной инфраструктуры

Наладив связь, мы использовали учетные данные, полученные в первом офисе. Нам удалось войти в электронную почту сотрудников и сервисы Office 365 (SharePoint, Teams). Успех был обусловлен отсутствием двухфакторной аутентификации, которую администраторы компании не настроили.

В почтовых ящиках мы нашли учетные данные для других сервисов, а также инструкции и настройки корпоративной VPN-сети. Подключиться к VPN без второго фактора не получилось, но вход в 1С и data-docs прошел беспрепятственно.

Наиболее ценная находка ждала нас на одном из файловых серверов — файл экспорта 1Password, который содержал 163 уникальные записи с учетными данными от различных систем.



Получение файла с паролями

### Локальные учетные записи

В файле 1Password мы нашли пароль от локальной учетной записи sadmin. Эта запись имела права локального администратора на нескольких серверах ВРА.



К хостам применялась групповая политика, отключающая аудит

Эти серверы могли стать отправной точкой для атаки на организацию. Однако в этот момент служба безопасности что-то заподозрила и заблокировала одну из тех учетных записей, которые мы использовали параллельно. В ответ мы решили использовать другой вектор атаки, который казался более перспективным.

Все в том же экспорте 1Password мы обнаружили учетную запись, входящую в группу «Account Operators». Эта группа является одной из самых опасных из-за привилегий GenericAll над пользователями, компьютерами и другими группами. Исключения составляют лишь встроенные группы, такие как Domain Admins, Administrators, Backup Operators.



Нам удалось обнаружить учетные данные сотрудника технической поддержки, который входил в эту группу. Мы обнаружили, что в поле атрибута Description прописан путь к общему ресурсу «\cepsep\Shared\_Folders\IT» и предположили, что этот каталог может содержать ценную информацию. Поэтому было решено попытаться получить доступ к файловой системе сервера, на котором находился этот ресурс.

#### Чтение атрибута ms-msc-admpwd

Группа Account Operators обладает правами GenericAll над объектами домена. Это позволяет ей читать атрибут ms-msc-admpwd (LAPS) и получать пароль локальной учетной записи. А имя локальной учетной записи мы нашли в групповой политике local server admin, в которой стандартное имя administrator было изменено на sadmin.

Следующим шагом стало получение доступа к файловой системе, но полезной информации там не нашлось.

Network > dS >

Доступ на диск D\$

### Доступ к центру сертификации

Атака затягивалась. Мы несколько дней исследовали домен и начали беспокоиться о возможной потере доступа к учетной записи из группы Account Operators. Без нее мы потеряли бы шансы добраться до хранилища аналитических данных (DWH) и бекапов.



Чтобы закрепиться в инфраструктуре, мы решили получить корневой сертификат с центра сертификации. Это позволило бы выпускать поддельные сертификаты для любого пользователя.

Членство в группе servers\_admins давало нашей учетной записи права локального администратора на сервере. Групповая политика rdp certificate требовала наличия сертификата на стороне клиента, иначе подключиться к серверу по RDP было невозможно. Поэтому мы использовали технику PSRemoting для удаленного доступа к нужному серверу, после чего создали резервную копию сертификата центра сертификации.

CANS

Мы также создали дамп LSA, содержащий информацию о локальных учетных записях.

Домен заказчика работал на версии 2012 года. Это ограничивало возможности PKINIT, например, мы не могли получить TGT билет Kerberos с помощью сертификата. Однако сертификат все еще можно было использовать для техники Pass-The-Cert.

Pass-The-Cert позволяет использовать сертификат для подключения к LDAP. С его помощью можно выполнять различные запросы, например, создавать пользователей и добавлять их в группы при наличии соответствующих прав.

Результат техники Pass-the-Cert

Таким образом, созданную нами копию сертификата потенциально можно было использовать для генерации сертификата для любого пользователя.

# Результаты работ

В рамках проекта нам удалось достичь следующих результатов:

- 1. Получили доступ к базам данных с клиентскими документами.
- 2. Наладили надежный беспроводной доступ к внутренней сети компании.
- 3. Вошли в различные сервисы и системы компании из под скомпрометированных учетных записей сотрудников. Получили доступ к электронной почте, SharePoint, системе внутреннего документооборота, 1С КЭД и 1С ЗУП, Redash и другим системам.
- 4. Используя полученные привилегии в домене, получили доступ к системам резервного копирования. Однако из-за большого размера резервных копий их незаметная выгрузка из внутренней сети оказалась невозможной.

С точки зрения пентеста эти результаты можно считать успешными. Однако как Red Team мы выступили неудачно, ведь проект завершился раньше запланированного срока.

### Результаты проверки работы службы реагирования

Пока мы работали, безопасники заказчика не сидели сложа руки. Они периодически выявляли подозрительные действия — блокировали сервисные аккаунты с доступом к чувствительной информации, меняли пароли ещё до наших попыток получить к ней доступ. Благодаря большому числу скомпрометированных учетных записей, мы могли продолжать работу, однако в определенный момент представитель заказчика сообщил, что мы раскрыты.

Первые подозрения вызвал наш Wi-Fi-адаптер. Вначале забыли сменить MAC-адрес, и при первом подключении он определялся как Alpha. Этот бренд ассоциируется с хакерами и привлек внимание при анализе логов.

Кроме того, команда допустила небрежность во время анализа данных. Один из наших пентестеров подключил к скомпрометированному почтовому ящику свой Outlook. Учетную запись ящика заблокировали, и все бы ничего, если бы не особенности работы Outlook. Если программа не может аутентифицироваться под заданной учетной записью, она пытается использовать текущую учетную запись Windows. Название учетки совпадало с ником нашего сотрудника на Хабре и в Telegram, что позволило отследить его связь с нашей компанией.



Наконец, была допущена ошибка при организации фишинговой атаки. При регистрации домена для отправки почты аккаунт назвали LLC Bastion. В случае пентеста это не имеет особого значения, но когда служба ИБ ККНН начала расследование и изучила письма в карантине, она окончательно раскрыла операцию. А ведь главное правило Red Team гласит: если тебя раскрыли — игра окончена.

# ...И другие интересные ошибки

Что касается других ошибок, то на старте команда набивала самые разные шишки.

Например, социальные инженеры не брали с собой оборудование для проведения атак на этапе разведки, что было вдвойне обидно в случаях, когда проникновение в офис заказчика было успешным. В другой раз, попав в корпоративную сеть в пятницу вечером, Red Team отправилась праздновать на выходные. За два дня Blue Team обнаружила атаку и заблокировала доступ, а новый мы так и не получили.

Эти ошибки имеют общие причины: инерция мышления и отсутствие привычки работать скрытно в условиях активного противодействия. Ведь в классических пентестах маскировка не требуется, тогда как в редтиминге из-за нее необходимо учитывать множество мелких деталей.

Специалисты Red Team постоянно балансируют между двумя задачами. С одной стороны, нужно не навредить инфраструктуре заказчика. С другой — обеспечить конфиденциальность своих действий. Это требует постоянного внимания и значительно увеличивает когнитивную нагрузку.

Поэтому редтиминг считается одним из самых сложных мероприятий в практике ИБкоманд. Но эта сложность и делает его привлекательным вызовом для многих профессионалов. Ради таких задач многие приходят в профессию.