TIPURI DE FORȚE: GREUTATEA, FORȚA ELASTICĂ FIȘĂ DE LUCRU – Clasa a VI-a

Prof. Antici Adina – Ionela Liceul Teoretic "Miron Costin", Iași

Se consideră accelerația gravitațională g = 10 N/kg.

- 1. O sferă metalică cu volumul exterior $V=160~cm^3$ prezintă regiuni fără substanță al căror volum reprezintă un sfert din volumul sferei. Știind că sfera este din fier ($\rho_{fier}=7800~kg/m^3$), să se afle greutatea ei.
- 2. Un vas plin cu lichid cântărește 86,4 kg, ceea ce reprezintă de 6 ori masa vasului gol. Știind volumul interior al vasului, V=0,09 kl, să se calculeze:
 - a) densitatea lichidului;
 - b) greutatea lichidului.
- 3. Un corp cu greutatea G=22 N conține fontă și lemn în raport de mase 10:1. Să se afle:
 - a) cu cât este mai mare masa de fontă decât cea de lemn;
 - b) raportul dintre volumul fontei și cel al lemnului. Se cunosc: $\rho_{fontă} = 7000 \text{ kg/m}^3$ și $\rho_{lemn} = 500 \text{ kg/m}^3$.
- 4. Două plăci paralelipipedice au aceleași dimensiuni: lungimea L=10 cm, lățimea l=5 cm și înălțimea h=2 cm. Împreună, plăcile au greutatea G=16 N. Știind că una dintre ele este din fier (ρ_{fier} = 7800 kg/m³), să se afle:
 - a) masa fiecărei plăci;
 - b) densitatea celeilalte plăci.
- 5. Un vas gol cântărește m₁=250 g, iar plin cu apă m₂=300 g. În el, plin, se introduce un corp solid cu masa m₃=4 g. Ca urmare, curge o parte din masa aflată în vas. Cântărind din nou vasul, se obține m₄=302 g. Să se afle:
 - a) densitatea corpului;
 - b) greutatea apei rămase în vas după introducerea corpului solid. Se cunoaște $\, \rho_{apă} = 1000 \ kg/m^3 . \,$
- 6. Să se afle alungirea resortului de constantă elastică k=250 N/m, atunci când de acesta este suspendat un cilindru cu aria bazei S=12.5 cm², înălțimea h=2 cm și densitatea $\rho=11300$ kg/m³.
- 7. Cu cât se modifică alungirea unui resort de constantă elastică k=510 N/m dacă se înlocuiește cubul din aluminiu suspendat de resort cu unul din fier, de același volum V=0,001 m³? Se cunosc: ρ_{aluminiu} = 2700 kg/m³ și ρ_{fier} = 7800 kg/m³.

- 8. De capetele unui resort vertical sunt prinse corpurile 1 și 2, de mase m₁=2 kg, respectiv m₂=3 kg. Când sistemul (resort și corpuri) este suspendat la capătul la care este prins corpul 1, lungimea lui este 1₁=10 cm; când sistemul este așezat cu celălalt capăt pe un suport, lungimea resortului devine 1₂=4 cm. Să se afle lungimea resortului nedeformat și constanta elastică a resortului.
- 9. În tabelul următor sunt date valorile forței deformatoare ce acționează în lungul unui resort și valorile alungirilor corespunzătoare.

F(N)	0	0,5	1	1,5	2	2,5	3	3,5	4
Δl (mm)	0	5	12	18	24	30	36	42,5	49

Se cere:

- a) să se traseze graficul legii deformărilor elastice;
- b) să se calculeze constanta elastică a resortului;
- c) să se afle valoarea forței deformatoare care produce o micșorare a lungimii resortului nedeformat cu 3,5 cm.
- 10. În figură este dată reprezentarea grafică a legii deformărilor elastice pentru un resort. Să se afle:
 - a) constanta elastică a resortului;
 - b) alungirea resortului când asupra lui acționează forța deformatoare F=45 N;
 - c) pentru ce valoare a forței deformatoare alungirea este $\Delta l_2 = 7.5$ cm;
 - d) cu cât trebuie să se modifice forța deformatoare pentru ca alungirea să crească de la $\Delta l_3 = 3$ cm la $\Delta l_4 = 4.5$ cm;
 - e) forța deformatoare având valoarea F₅=24 N, de câte ori se modifică alungirea dacă forța deformatoare crește cu 25%?

