Chapter 2

Electrical basics

2.1 Physical quantities

Table 2.1 summarises key electrical quantities.

Quantity	Symbol	Unit	
Voltage	V	Volt	٧
Current	1	Ampere	Α
Resistance	R	Ohm	Ω
Power	P	Watt	W

Table 2.1: Key electrical quanities

Note that voltage is a difference between *two* points. Often measured in any system with respect to a common earth / ground.

2.2 Laws

There are two key laws that relate basic electrical quantities, Ohm's Law and the Power Relation.

2.2.1 Ohm's law

Voltage, current and resistance are related by Ohm's law, which can be written in terms of V, I or R. Re-arrange to calculate required quantity.

$$V = R \cdot I \tag{2.1}$$

$$\Rightarrow I = \frac{V}{R} \tag{2.2}$$

$$\Rightarrow R = \frac{V}{I} \tag{2.3}$$

Example 1 (Ohm's law). A 7 Ω resistance carries a current of 2 A. Determine the voltage across the component.

$$V = 7 \times 2 \tag{2.4}$$

$$= 14 V$$
 (2.5)

Example 2 (Ohm's law with rearrangement). When an electrical component is connected across a battery nominally supplying 12 V a current of 3 A flows. Calculate the resistance of the component.

$$V = R \cdot I \tag{2.6}$$

$$\Rightarrow R = \frac{V}{I} \tag{2.7}$$

$$=\frac{12}{3}$$
 (2.8)

$$=4\Omega \tag{2.9}$$

2.2.2 Power relation

Power quantifies how much energy is converted from one form to another per unit time. Measured in Joule per second $J s^{-1}$, more commonly the Watt W. Just as with Ohm's law, the power relation, Equation 2.10, can be rearranged to give V or I:

$$P = V \cdot I \tag{2.10}$$

$$\Rightarrow V = \frac{P}{I} \tag{2.11}$$

$$\Rightarrow I = \frac{P}{V} \tag{2.12}$$

Example 3 (Power calculation). A graphics card is supplied from the 12 V power supply in a computer. The current flowing is measured at 5 A. Determine the power consumed by the graphics card.

$$P = 12 \times 5 \tag{2.13}$$

$$= 60 \, \text{W}$$
 (2.14)

Example 4 (Power calculation with rearrangement). A computer power supply delivers 6 W to a hard disk drive on the 12 V line. Determine the current flowing in the cable.

$$I = \frac{P}{V} = \frac{6}{12} \tag{2.15}$$

$$= 0.5 A$$
 (2.16)

2.2.3 Combining

Ohm's law and the power relation can be combined by substituting one quantity for another.

2.3 Alternating current (AC)

Mains electricity is supplied in most parts of the world as alternating current (AC). In Ireland and most of the EU, mains electricity is supplied at a *nominal* voltage of 230 V and frequency 50 Hz. This means that the instantaneous voltage v(t) varies sinusoidally with respect to time.

$$v(t) = V_{\text{max}} \sin(2\pi f t) \tag{2.17}$$

A single cycle of a generic AC waveform is shown in Figure 2.1

Figure 2.1: AC waveform properties

Amplitude 2.3.1

The **maximum voltage** V_{max} of a sinusoid is the amplitude of the sine wave in both directions. The most positive value is V_{max} whilst the most negative value is $-V_{max}$.

Peak-to-peak voltage 2.3.2

We can thus define the **peak-to-peak** amplitude as the difference between these two values:

$$V_{\mathsf{PK-PK}} = V_{\mathsf{max}} - (-V_{\mathsf{max}}) \tag{2.18}$$

$$=2V_{\text{max}} \tag{2.19}$$

Example 5 (Peak-to-peak to amplitude). Calculate the amplitude of an AC waveform with a 650 V peak-to-peak amplitude.

$$V_{\text{max}} = \frac{V_{\text{PK-PK}}}{2}$$
 (2.20)
= $\frac{650}{2}$

$$=\frac{650}{2}$$
 (2.21)

$$= 325 V$$
 (2.22)

2.3.3 RMS Voltage

The voltage in western Europe is a nominal 230 V RMS. This is a root mean square value, which is equivalent to the heating power that the same DC voltage would deliver.

$$V_{\text{max}} = \sqrt{2}V_{\text{RMS}} \tag{2.23}$$

$$\Rightarrow V_{\text{RMS}} = \frac{V_{\text{max}}}{\sqrt{2}} \tag{2.24}$$

Example 6 (RMS to peak voltage). Calculate the amplitude of a 230 V RMS AC supply.

$$V_{\text{max}} = \sqrt{2}V_{\text{RMS}} \tag{2.25}$$

$$=\sqrt{2}\times230\tag{2.26}$$

$$= 325 \text{ V}$$
 (2.27)

Example 7 (Peak to RMS voltage). Calculate the RMS voltage of an AC supply with an amplitude of 100 V.

$$V_{\text{RMS}} = \frac{V_{\text{max}}}{\sqrt{2}} \tag{2.28}$$

$$=\frac{100}{\sqrt{2}}$$
 (2.29)

$$= 70.7 \text{ V}$$
 (2.30)

2.3.4 Frequency / Period

A single cycle lasts for a period of time, *T*. The period is directly related to the frequency:

$$T = \frac{1}{f} \tag{2.31}$$

$$\Rightarrow f = \frac{1}{T} \tag{2.32}$$

Example 8 (Frequency to period). Calculate the period of a signal that repeats at 20 Hz.

$$T = \frac{1}{20} \tag{2.33}$$

$$= 0.05 s$$
 (2.34)

Example 9 (Period to frequency). Determine the frequency of a signal with a period of 40 ms.

$$f = \frac{1}{40 \times 10^{-3}} \tag{2.35}$$

$$= 25 \text{ Hz}$$
 (2.36)

2.4 Mains electricity

Mains wiring in Ireland generally involves three conductors:

Live carries a 230 V RMS AC voltage.

Neutral provides the return path for current on the live conductor, and under normal conditions:

- 1. It will carry the same current in reverse as the live conductor.
- 2. It's voltage (measured with respect to earth) will be zero.

Earth is connected to earth and bonded to metal casings.

2.4.1 Circuit protection

Fuses: a piece of thin wire encased in a holder that is deliberatly designed to melt if the current exceeds the fuse rating.

Circuit Breakers (MCB): electromechanical devices that will trip when the current exceeds the circuit breaker's rating.

Residual current device (RCD): protect from electric shock by detecting any leakage of current to earth by comparing live and neutral currents. Trips if these differ by more than a set amount ΔI , normally 30 mA. Other names: GFI, ELCB.

Residual Current Breaker Overload (RCBO): combined MCB and RCD functionality in one device.

2.5 Computer power supplies

Power Supply Units (PSUs) are used to convert the mains-supplied power into a form suitable for use in computers.

2.5.1 Computer power requirements

Computers require a variety of DC voltages, the most common being:

3.3 V (orange)

5 V (red)

12 V (yellow).

These are normally supplied relative to a common ground (black).

Negative -12 V (blue) is often available.

A PSU also permanently supplies 5 V (purple) and will turn on when the green terminal is shorted to ground.

2.5.2 Power supply tasks

A computer's power supply unit (PSU) has two key jobs:

Rectify the mains-supplied AC to a steady DC supply.

Step down the voltage (230 V) to the required level(s).

The precise methods and order that these tasks are performed in will vary, and are outside the scope of our discussion.

2.5.3 Capacity

A power supply will usually have a rated capacity:

- This will either be given in terms of power (watts) or in current (amps).
- On a supply providing multiple voltages, there will usually be a limit on each rail as well as
 possibly an overall limit.

2.6 Three-phase supply

Mains power is generated and distributed in three-phase form, with 3 live conductors and one neutral conductor. The sine wave is shifted by 120 degrees, or $\frac{2\pi}{3}$ radians in any phase relative to one of the two other phases.

Figure 2.2: 3-phase waveform (Wikipedia)

Let $v_n(t)$ be the voltage in phase n of a three-phase supply. We can use Equation 2.17 for the first phase. Phase 2 must lags phase 1 by 120 degrees. Similarly, phase 3 leads phase 1 by 120

degrees.

$$v_1(t) = V_{\text{max}} \sin(2\pi f t) \tag{2.37}$$

$$v_2(t) = V_{\text{max}} \sin\left(2\pi f t - \frac{2\pi}{3}\right) \tag{2.38}$$

$$v_3(t) = V_{\text{max}} \sin\left(2\pi f t + \frac{2\pi}{3}\right) \tag{2.39}$$

2.6.1 Line and phase voltages

When dealing with three-phase power, we actually have two voltages to consider:

Phase voltage is the voltage between *any* phase and neutral.

Line voltage is the voltage measured between *any* two phases.

The line and phase voltages are related mathematically by $\sqrt{3}$:

$$V_{\text{line}} = \sqrt{3} \times V_{\text{phase}}$$
 (2.40)

$$\Rightarrow V_{\text{phase}} = \frac{V_{\text{line}}}{\sqrt{3}} \tag{2.41}$$

Example 10 (Line to phase voltage). A three phase power supply has a phase voltage of 220 V. Calculate the line voltage.

$$V_{\text{line}} = \sqrt{3} \times V_{\text{phase}}$$
 (2.42)

$$=\sqrt{3}\times220\tag{2.43}$$

$$= 381 \text{ V}$$
 (2.44)

Example 11 (Phase to line voltage). A three phase power supply has a line voltage of 400 V. Calculate the phase voltage.

$$V_{\text{phase}} = \frac{V_{\text{line}}}{\sqrt{3}}$$
 (2.45)

$$=\frac{400}{\sqrt{3}}$$
 (2.46)

$$= 231 \text{ V}$$
 (2.47)