Приближение функций и производных

Задачи приближения функции можно условно разделить на два множества. Задачи первого множества сводятся к приближенному восстановлению достаточно гладкой функции по ее заданным значениям в некоторых фиксированных точках. В задачах второго множества речь идет о наилучшем (в некоторой метрике) приближении — замене сложной с точки зрения вычислений функции ее более простым аналогом. Типичным при таком подходе является поиск приближения в виде линейной комбинации «удобных» функций, например ортогональных алгебраических или тригонометрических многочленов. Многообразие математических постановок приводит к большому количеству применяемых методов, каждый из которых может оказаться оптимальным в своем классе. В этой главе рассмотрены наиболее известные в теории приближений подходы для функций одного переменного.

3.1. Полиномиальная интерполяция

Пусть $a=x_1 < x_2 < \ldots < x_n = b$ — набор различных точек (узлов) на отрезке [a,b], в которых заданы значения функции f(x) так, что $f_i = f(x_i)$, $i=1,\ldots,n$. Требуется построить многочлен наименьшей степени, принимающий в точках x_i значения f_i , и оценить погрешность приближения достаточно гладкой функции f(x) этим многочленом на всем отрезке [a,b].

Приведем в явном виде вспомогательные многочлены $\Phi_i(x)$ степени n-1, удовлетворяющие условиям $\Phi_i(x_i)=1, \Phi_i(x_j)=0$ при $j\neq i$. Имеем $\Phi_i(x)=\prod_{\substack{j=1\\j\neq i}}^n\frac{x-x_j}{x_i-x_j}$. Запишем с их помощью формулу для искомого *мно-*

гочлена Лагранжа $L_n(x) = \sum_{i=1}^n f_i \Phi_i(x)$. Так как существует единственный многочлен степени n-1, принимающий в n различных точках заданные значения, то многочлен $L_n(x)$ есть решение поставленной задачи.

Теорема. Пусть n-я производная функции f(x) непрерывна на отрезке [a,b]. Тогда для любой точки $x \in [a,b]$ существует точка $\xi \in [a,b]$ такая, что справедливо равенство

$$f(x) - L_n(x) = \frac{f^{(n)}(\xi)}{n!} \omega_n(x), \quad \epsilon \partial e \ \omega_n(x) = \prod_{i=1}^n (x - x_i).$$

Следствием этого представления является оценка погрешности в равномерной норме

$$||f(x) - L_n(x)|| \le \frac{||f^{(n)}(x)||}{n!} ||\omega_n(x)||, \quad \text{где} \quad ||f(x)|| = \max_{x \in [a,b]} |f(x)|.$$

Величина $\lambda_n = \max_{x \in [a,b]} \sum_{i=1}^n |\Phi_i(x)|$ называется константой Лебега интерполяционного процесса. Скорость ее роста в зависимости от величины n существенно влияет как на сходимость $L_n(x)$ к f(x), так и на оценку вычислительной погрешности интерполяции. Для равномерных сеток λ_n растет экспоненциально. Это приводит к тому, что построенный на равномерной сетке интерполяционный полином $L_n(x)$ при большом числе узлов может сильно отличаться от приближаемой функции. Так, например, для функции Рунге $f(x) = \frac{1}{25x^2+1}$ на отрезке [-1,1] известно, что $\max_{x \in [-1,1]} |L_n(x) - f(x)| \to \infty$ при $n \to \infty$. Для чебышёвских узлов соответствующий интерполяционный полином сходится к указанной функции; это верно и для произвольной непрерывно дифференцируемой функции: если f(x) удовлетворяет неравенству $\max_{[-1,1]} |f^{(m)}(x)| < \infty$, то для интерполяционного многочлена, построенного по чебышёвским узлам, справедливо соотношение $\max_{[-1,1]} |f(x) - L_n(x)| = O(n^{-m} \ln n)$ при $n \to \infty$.

Если приближаемая функция не обладает достаточной гладкостью, то никакая mаблица узлов интерполяции не может гарантировать сходимость интерполяционного процесса. Под таблицей узлов интерполяции на отрезке [a,b] понимают любой треугольный массив

$$x_1^1$$
 x_1^2
 x_2^2
 x_1^3
 x_2^3
 x_2^3
 x_2^3

с тем свойством, что все $x_i^j \in [a,b]$ и элементы каждой строки различны.

Теорема Фабера. Для любой заданной таблицы узлов интерполяции на отрезке [a,b], существует непрерывная на этом отрезке функция f(x) такая, что погрешность $||L_n(x) - f(x)||$ в равномерной норме не стремится κ нулю при $n \to \infty$.

3.1. Построить многочлен Лагранжа при n=3 для следующих случаев:

1)
$$x_1 = -1, x_2 = 0, x_3 = 1,$$
 2) $x_1 = 1, x_2 = 2, x_3 = 4,$ $f_1 = 3, f_2 = 2, f_3 = 5;$ $f_1 = 3, f_2 = 4, f_3 = 6.$

Ответ: 1) $L_3(x) = 2x^2 + x + 2$; 2) $L_3(x) = x + 2$.

3.2. Построение многочлена Лагранжа $L_n(x)$ эквивалентно задаче нахождения коэффициентов c_i из системы уравнений $\sum\limits_{i=0}^{n-1} c_i x_j^i = f_j$ при $j=1,\ldots,n$. Показать, что эта система при больших n может быть близка к вырожденной.

Указание. Определителем данной системы уравнений является определитель Вандермонда, следовательно, задача вычисления коэффициентов искомого многочлена имеет единственное решение. Пусть узлы интерполяции принадлежат отрезку [0,1]. Функции x^{n-2} , x^{n-1} при больших n на этом отрезке почти неразличимы, поэтому столбцы $(x_1^{n-2},\ldots,x_n^{n-2})^T$ и $(x_1^{n-1},\ldots,x_n^{n-1})^T$ матрицы получатся близкими.

3.3. Найти $\sum_{i=1}^{n} x_i^p \Phi_i(x)$ при $p = 0, \dots, n$.

Ответ: x^p при p = 0, ..., n-1, и $x^n - \omega_n(x)$ при p = n.

3.4. Пусть на отрезке [a,b] заданы равноотстоящие узлы: $x_i=a+\frac{b-a}{n-1}\,(i-1),\,i=1,\ldots,n.$ Вычислить $\|\omega_n(x)\|$ при n=2,3,4.

 \triangleleft Пусть n = 3. Выполним в формуле

$$\omega_3(x) = (x - a)\left(x - \frac{a+b}{2}\right)(x - b)$$

стандартную замену переменных

$$x = \frac{a+b}{2} + \frac{b-a}{2} \, y$$
, где $\, y \in [-1,1] \, .$

В результате получим

$$\omega_3(y) = \left(\frac{b-a}{2}\right)^3 (y^3 - y).$$

Точки экстремума кубического многочлена y^3-y на [-1,1] равны соответственно $y_{1,2}=\pm\frac{1}{\sqrt{3}}$. Следовательно,

$$\|\omega_3(x)\| = |\omega_3(y_{1,2})| = \frac{(b-a)^3}{12\sqrt{3}}.$$

Рассуждая аналогично для n=2 и n=4, получаем

$$\|\omega_2(x)\| = \frac{(b-a)^2}{4}, \quad \|\omega_4(x)\| = \frac{(b-a)^4}{81}.$$

3.5. Для многочлена $\omega_n(x)$ с равноотстоящими корнями на отрезке [a,b] получить оценку $\|\omega_n(x)\| \leqslant \frac{(b-a)^n(n-1)!}{4(n-1)^n}$ при $n \geqslant 2$.

< Выполним в формуле

$$\omega_n(x) = \prod_{j=1}^n (x - x_j),$$

где $x_j = a + \frac{b-a}{n-1} (j-1), j = 1, \dots, n, n \geqslant 2$, замену переменных

$$x = \frac{na-b}{n-1} + \frac{b-a}{n-1}y$$
, где $y \in [1, n]$.

В результате получим

$$\omega_n(x(y)) \equiv \omega_n(y) = \left(\frac{b-a}{n-1}\right)^n \prod_{j=1}^n (y-j).$$

Покажем, что справедливо неравенство

$$\max_{y \in [1,n]} \prod_{j=1}^{n} |y-j| \leqslant \frac{(n-1)!}{4}$$

с помощью специальной параметризации аргумента y. Пусть y=k+t, где k — целое. При $2\leqslant k\leqslant n-1$ будем предполагать, что $|t|\leqslant \frac{1}{2}$; при k=1 параметр t принимает значение из отрезка $\left[0,\frac{1}{2}\right]$, а при k=n- из отрезка $\left[-\frac{1}{2},0\right]$. Отметим равенство

$$\prod_{j=1}^{n} |y-j| = |t| (t+1) \dots (t+k-1) (1-t) \dots (n-k-t).$$

При t>0 справедливы неравенства

$$(t+1)\dots(t+k-1) < k!$$
 и $|t|(1-t)\dots(n-k-t) < \frac{1}{4}(n-k)!$

а при t < 0 — неравенства

$$|t|(t+1)\dots(t+k-1)<\frac{1}{4}(k-1)!$$
 M $(1-t)\dots(n-k-t)<(n-k+1)!$

В обоих случаях использование соотношения

$$k!(n-k)! \le (n-1)!, \ 1 \le k < n$$

приводит к искомому неравенству.

Окончательно имеем

$$\|\omega_n(x)\| = \max_{x \in [a,b]} \left| \prod_{j=1}^n (x-x_j) \right| = \left(\frac{b-a}{n-1} \right)^n \max_{y \in [1,n]} \left| \prod_{j=1}^n (y-j) \right| \le \frac{(b-a)^n (n-1)!}{4(n-1)^n}.$$

- **3.6.** Функция f(x) приближается на [a,b] по n равноотстоящим узлам $x_i=a+\frac{b-a}{n-1}\,(i-1), i=1,\ldots,n.$ Найти наибольшее целое p в оценке погрешности $\|f(x)-L_n(x)\|\leqslant 10^{-p}$ в равномерной норме для следующих случаев: 1) $[0,0,1], f(x)=\sin 2x, n=2;$ 2) $[-1,0], f(x)=\mathrm{e}^x, n=3.$ Ответ: 1) p=3; 2) p=2.
- **3.7.** Приближение к числу $\ln 15$, 2 вычислено следующим образом. Найдены точные значения $\ln 15$ и $\ln 16$ и построена линейная интерполяция между этими числами. Показать, что если x и y—соответственно точное и интерполированное значения $\ln 15$, 2, то справедлива оценка $0 < x y < 4 \cdot 10^{-4}$.

У казание. Использовать выпуклость функции $\ln x$ и представление погрешности (но не оценку погрешности!).

 \triangleright

3.8. Функция $f(x) = \frac{1}{A^2 - x}$ приближается на [-4, -1] многочленом Лагранжа по узлам -4, -3, -2, -1. При каких значениях A оценка погрешности в равномерной норме не превосходит 10^{-5} ?

 \triangleleft Поскольку $f^{(4)}(x) = \frac{4!}{(A^2 - x)^5}$ и $\|\omega_4(x)\| = 1$, для оценки погрешности имеем

$$||f(x) - L_4(x)|| \le \left\| \frac{1}{(A^2 - x)^5} \right\| = \frac{1}{(A^2 + 1)^5} \le 10^{-5}.$$

Следовательно, $|A| \geqslant 3$.

3.9. Доказать, что если узлы интерполяции расположены симметрично относительно некоторой точки c, а значения интерполируемой функции в симметричных узлах равны, то интерполяционный многочлен Лагранжа — функция, четная относительно точки c.

 Покажем сначала справедливость следующего представления:
 $\Phi_i(x) = \frac{\omega_n(x)}{(x-x_i)\omega_n'(x_i)}$. Действительно, так как $\omega_n'(x) = \sum_{k=1}^n \prod_{\substack{j=1 \ j \neq k}}^n (x-x_j),$

и при $x=x_i, k\neq i$ каждое из произведений под знаком суммирования обращается в нуль, то $\omega_n'(x_i)=\prod_{\substack{j=1\\i\neq i}}^n(x_i-x_j).$

Без ограничения общности можно считать c=0, т. е. $x_i=-x_{n+1-i},\ i=1,\ldots,n$. Рассмотрим теперь два слагаемых из общей формулы многочлена Лагранжа, соответствующих равным значениям функции f_k и f_{n+1-k} для некоторого k. Вынося одинаковый числовой множитель за скобку, получим

$$f_k \left[\frac{\omega_n(x)}{(x - x_k)\omega_n'(x_k)} + \frac{\omega_n(x)}{(x - x_{n+1-k})\omega_n'(x_{n+1-k})} \right] =$$

$$= f_k \left[\frac{\omega_n(x)}{(x - x_k)\omega_n'(x_k)} + \frac{\omega_n(x)}{(x + x_k)\omega_n'(-x_k)} \right].$$

Для четного n функция $\omega_n(x)$ —четная, а ее производная $\omega_n'(x)$ —нечетная. Поэтому выражение в квадратных скобках принимает вид $\frac{\omega_n(x)}{x^2-x_k^2}\cdot\frac{2x_k}{\omega_n'(x_k)}$, являясь, очевидно, четной функцией.

Аналогично для нечетного n функция $\omega_n(x)$ — нечетная, а ее производная $\omega_n'(x)$ — четная, и выражение в квадратных скобках также является четной функцией. В данном случае x=0 является узлом интерполяции с номером $k=\frac{n+1}{2}$, и у этого слагаемого нет пары. Но само слагаемое — четное, что и завершает доказательство.

Доказательство также может быть получено методом от противного из единственности многочлена Лагранжа для заданного набора узлов и значений, так как отражение относительно середины отрезка не меняет входных данных задачи.

3.10. Показать, что многочлен Лагранжа может быть построен рекуррентным способом:

$$L_1(x)=f(x_1),\; L_n(x)=L_{n-1}(x)+[f(x_n)-L_{n-1}(x_n)]\,rac{\omega_{n-1}(x)}{\omega_{n-1}(x_n)}\,,\; n\geqslant 2,$$
 где
$$\omega_1(x)=x-x_1,\; \omega_n(x)=\omega_{n-1}(x)\,(x-x_n).$$

- **3.11.** Построить многочлен Лагранжа $L_n(x)$ степени n-1, удовлетворяющий условиям $L_n(x_k) = y_k$:
 - 1) n = 4; $x_1 = 0$, $x_2 = 1$, $x_3 = 2$, $x_4 = 4$; $y_1 = 2$, $y_2 = 3$, $y_3 = 4$, $y_4 = 6$;
 - 2) n = 3; $x_k = 2k 1$, $y_k = 8\sin\frac{\pi}{6}(2k 1)$, k = 1, 2, 3.
- **3.12.** Построить интерполяционный многочлен для функции f(x) = |x| по узлам -1, 0, 1.
- **3.13.** Построить интерполяционный многочлен для функции $f(x) = x^2$ по узлам 0, 1, 2, 3.
- **3.14.** Построить многочлен Лагранжа $L_4(x)$ третьей степени, удовлетворяющий условиям $L_4(x_k)=y_k$: $x_k=k-5,\,y_k=3k^3+2k^2+k+1,\,k=1,2,3,4.$
- **3.15.** Функция f(x) приближается на [a,b] по n равноотстоящим узлам $x_i=a+\frac{b-a}{n-1}\,(i-1),\,i=1,\ldots,n.$ Найти наибольшее целое p в оценке погрешности $\|f(x)-L_n(x)\|\leqslant 10^{-p}$ в равномерной норме для следующих случаев: 1) $f(x)=\frac{1}{\pi}\int\limits_0^\pi\cos(x\sin t)dt,\,[0,1],\,n=3;\,2)\,\,f(x)=\ln x,\,[1,2],\,n=4$.
- **3.16.** Оценить погрешность приближения функции e^x интерполяционным многочленом Лагранжа $L_2(x)$, построенным по узлам $x_0=0,0,\ x_1=0,1,\ x_2=0,2,\$ в точке: 1) $x=0,05;\ 2)$ x=0,15.
- **3.17.** Функция $\sin x$ приближается на отрезке $\left[0,\frac{\pi}{4}\right]$ интерполяционным многочленом по значениям в точках $0,\frac{\pi}{8},\frac{\pi}{4}$. Оценить погрешность интерполяции на этом отрезке.
- **3.18.** Функция $\ln x$ приближается на отрезке [1,2] интерполяционным многочленом третьей степени по четырем узлам $1,\frac{4}{3},\frac{5}{3},2$. Доказать, что погрешность интерполяции в равномерной норме не превосходит $\frac{1}{300}$.
- **3.19.** Функция $f(x) = \exp(2x)$ приближается на отрезке $\left[-\frac{1}{2}, \frac{1}{2}\right]$ интерполяционным многочленом второй степени по трем узлам: $-\frac{1}{2}$, 0, $\frac{1}{2}$. Доказать, что погрешность интерполяции в равномерной норме не превосходит $\frac{\sqrt{3}}{0}$.

- **3.20.** Оценить погрешность интерполяции функции $f(x) = \arctan x$ на отрезке [0,1] многочленом Лагранжа пятой степени, построенным по равноотстоящим узлам.
- **3.21.** Оценить число равноотстоящих узлов интерполяции на отрезке $\left[0,\frac{\pi}{4}\right],$ обеспечивающее точность $\varepsilon\leqslant 10^{-2}$ приближения функции $f(x)=\sin x.$
- **3.22.** Определить степень многочлена Лагранжа на равномерной сетке, обеспечивающую точность приближения функции e^x на отрезке [0,1] не хуже 10^{-3} .
- **3.23.** Пусть функция $f(x) = \sin x$ задана на отрезке [0,b]. При каком b многочлен Лагранжа $L_3(x)$, построенный на равномерной сетке, приближает эту функцию с погрешностью $\varepsilon \leqslant 10^{-3}$?
- **3.24.** Привести пример непрерывной на отрезке [-1,1] функции, для которой интерполяционный процесс Лагранжа на равномерной сетке расходится.

Ответ: например, функция Рунге или |x|.

- **3.25.** Пусть функция f(x) задана на [a,b] и $\max_{x \in [a,b]} |f''(x)| \leqslant 1$. Оценить погрешность приближения f(x) кусочно-линейным интерполянтом, построенным на равномерной сетке с шагом h.
- **3.26.** С каким шагом следует составлять таблицу функции $\sin x$ на $\left[0, \frac{\pi}{2}\right]$, чтобы погрешность линейной интерполяции не превосходила $0, 5 \cdot 10^{-6}$?
- **3.27.** Пусть $f \in C^{(1)}[a,b]$ и p(x)—полином, аппроксимирующий f'(x) с точностью ε в норме C[a,b]. Доказать, что полином $q(x) = f(a) + \int\limits_a^x p(t)dt$ аппроксимирует f(x) с точностью $\varepsilon(b-a)$ в норме C[a,b].
- **3.28.** Построить многочлен $P_3(x) = a_0 + a_1x + a_2x^2 + a_3x^3$, удовлетворяющий условиям: $P_3(-1) = 0$, $P_3(1) = 1$, $P_3(2) = 2$, $a_3 = 1$.
- **3.29.** Построить многочлен $P_3(x) = a_0 + a_1x + a_2x^2 + a_3x^3$, удовлетворяющий условиям: $P_3(0) = P_3(-1) = P_3(1) = 0$, $a_2 = 1$.
- **3.30.** Построить многочлен $P_3(x) = a_0 + a_1x + a_2x^2 + a_3x^3$, удовлетворяющий условиям: $P_3(-1) = 0$, $P_3(1) = 1$, $P_3(2) = 2$, $a_1 = 1$.
- **3.31.** Построить многочлен $P_3(x) = a_0 + a_1x + a_2x^2 + a_3x^3$, удовлетворяющий условиям: $P_3(-1) = P_3(-2) = P_3(1) = 0$, $a_0 = 1$.
- **3.32.** Построить многочлен $P_4(x)=a_0+a_1x+a_2x^2+a_3x^3+a_4x^4$, удовлетворяющий условиям: $\sum\limits_{i=0}^4 a_i=0, P(0)=0, P(-1)=1, P(2)=2, P(3)=3.$

3.33. Построить многочлен $P_4(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4$, удовлетворяющий условиям: $P_4(1) = P_4(-1) = P_4'(0) = P_4''(0) = 0, P_4(0) = 1.$

3.34. Построить многочлен $P_4(x)=a_0+a_1x+a_2x^2+a_3x^3+a_4x^4$, удовлетворяющий условиям: $P_4(0)=0, P_4(1)=1, P_4(2)=2, P_4(3)=3, \sum_{i=1}^4 a_i=0.$

3.35. Доказать при целых t формулу:

$$L_n(x_0 + th) = \sum_{k=0}^{n-1} C_t^k \Delta^k f_0, \ \Delta^1 f_i = f_{i+1} - f_i, \ \Delta^0 f_i = f_i, \ x_{i+1} = x_i + h.$$

3.36. Доказать при целых t формулу:

$$L_n(x_0 - th) = \sum_{k=0}^{n-1} (-1)^k C_t^k \nabla^k f_0, \quad \nabla^1 f_i = f_i - f_{i-1}, \quad \nabla^0 f_i = f_i, \quad x_{i+1} = x_i + h.$$

3.37. Доказать при целых t формулу:

$$L_n(x_0 + th) = \sum_{k=0}^{n-1} C_t^k \delta^k f_{k/2}, \quad \delta^1 f_i = f_{i+1/2} - f_{i-1/2}, \quad \delta^0 f_i = f_i, \quad x_{i+1} = x_i + h.$$

3.38. Доказать, что если многочлен $P_s(x)$ степени s-1 удовлетворяет условиям

$$P_s(x_n) = f(x_n), \dots, P_s^{(M_n-1)}(x_n) = f^{(M_n-1)}(x_n),$$

 $M_1 + M_2 + \dots + M_n = s,$

то справедливо равенство

$$f(x) - P_s(x) = \frac{f^{(s)}(\xi)}{s!} \omega(x), \ \omega(x) = \prod_{i=1}^n (x - x_i)^{M_i}.$$

3.39. Пусть $a\leqslant x\leqslant b$ и $-1\leqslant y\leqslant 1$ и узлы интерполяции x_i и $y_i,$ $i=1,\ldots,n$ связаны линейным соотношением $x_i=x(y_i)=\frac{a+b}{2}+\frac{b-a}{2}\,y_i.$

Доказать, что константы Лебега $\lambda_n^{[a,b]}$ и $\lambda_n^{[-1,1]}$, соответствующие этим отрезкам, совпадают.

 \triangleleft По определению, вспомогательные многочлены (n-1)-й степени $\Phi_i(y),\ i=1,\dots,n$ обладают свойством $\Phi_i(y_k)=\delta_i^k$. Положим в формуле для $\Phi_i(x),$ обладающей теми же свойствами, x=x(y). Линейное преобразование не меняет степени многочлена. Кроме того, $\Phi_i(x_k)=\Phi_i(x(y_k))=\Phi_i(y_k)=\delta_i^k$, т. е. два многочлена (n-1)-й степени, совпадают в n точках. Отсюда следует их тождественное совпадение, следовательно, равенство констант Лебега $\lambda_n^{[a,b]}$ и $\lambda_n^{[-1,1]}$.

Таким образом, величина λ_n не зависит от длины и расположения отрезка интерполяции [a,b], а определяется только взаимным расположением узлов.

3.40. Показать, что для системы равноотстоящих узлов $\{x_i=i,i=1,\ldots,n\}$ при $n\geqslant 2$ справедлива оценка снизу для константы Лебега $\lambda_n\geqslant K\,\frac{2^n}{n^{3/2}}$ с постоянной K, не зависящей от n.

 \triangleleft По определению λ_n на отрезке [1,n] имеем

$$\lambda_n = \max_{x \in [1, n]} \sum_{i=1}^n \left| \prod_{\substack{j=1 \ i \neq i}}^n \frac{x - j}{i - j} \right|.$$

Справедливы следующие соотношения:

$$\prod_{\substack{j=1\\ j\neq i}}^{n} |i-j| = (i-1)! (n-i)!, \qquad \prod_{j=1}^{n} \left(j - \frac{1}{2}\right) \geqslant \frac{n!}{2\sqrt{n}}, \quad n \geqslant 1,$$

первое из которых очевидно, а второе доказывается по индукции. Проведем с их помощью оценку снизу для λ_n :

$$\lambda_n = \max_{x \in [1, n]} \sum_{i=1}^n \frac{1}{(i-1)!(n-i)!} \prod_{\substack{j=1 \ j \neq i}}^n |x-j| \geqslant \sum_{i=1}^n \frac{1}{(i-1)!(n-i)!} \prod_{\substack{j=1 \ j \neq i}}^n \left| \frac{3}{2} - j \right|$$

(использовано неравенство $\max_{x\in[1,n]}|f(x)|\geqslant |f(3/2)|$). Для оценки произведения в правой части выполним преобразования:

$$\prod_{\substack{j=1\\j\neq i}}^{n} \left| \frac{3}{2} - j \right| = \frac{1}{|i - \frac{3}{2}|} \prod_{j=1}^{n} \left| \frac{3}{2} - j \right| = \frac{1}{2|i - \frac{3}{2}|} \prod_{j=1}^{n-1} \left| \frac{1}{2} - j \right| \geqslant \frac{(n-1)!}{4(n-\frac{3}{2})\sqrt{n-1}} \ .$$

Наконец, получим искомое неравенство (K = 1/8):

$$\lambda_n \geqslant \frac{1}{4(n-\frac{3}{2})\sqrt{n-1}} \sum_{i=1}^n \frac{(n-1)!}{(i-1)!(n-i)!} \geqslant \frac{1}{4n^{3/2}} \sum_{i=1}^n C_{n-1}^{i-1} = \frac{1}{8} \frac{2^n}{n^{3/2}} . \quad \triangleright$$

3.41. Показать, что для системы равноотстоящих узлов $\{x_i=i, i=1,\ldots,n\}$ при $n\geqslant 2$ справедлива оценка сверху для константы Лебега $\lambda_n\leqslant K\,2^n$ с постоянной K, не зависящей от n.

$$\max_{x \in [1,n]} \prod_{\substack{j=1 \ i \neq j}}^{n} |x - j| \le (n - 1)!$$

с помощью специальной параметризации аргумента x. Пусть x=k+t, где k—целое. При $2\leqslant k\leqslant n-1$ будем предполагать, что $|t|\leqslant \frac{1}{2}$; при k=1 параметр t принимает значение из отрезка $\left[0,\frac{1}{2}\right]$, а при k=n-из отрезка $\left[-\frac{1}{2},0\right]$. Отметим равенство

$$\prod_{\substack{j=1\\i\neq j}}^{n}|x-j|=\left|\frac{t}{k-i+t}\right|(t+1)\dots(t+k-1)(1-t)\dots(n-k-t).$$

 \triangleright

При t>0 справедливы неравенства

$$(t+1)\dots(t+k-1) < k!$$
 и $(1-t)\dots(n-k-t) < (n-k)!$

а при t < 0 — неравенства

$$(t+1)\dots(t+k-1) < (k-1)!$$
 u $(1-t)\dots(n-k-t) < (n-k+1)!$.

В обоих случаях использование соотношений

$$\left| \frac{t}{k-i+t} \right| \le 1, \quad k!(n-k)! \le (n-1)!, \quad 1 \le k < n$$

приводит к искомому неравенству.

Тогда из решения 3.40 имеем

$$\lambda_n = \max_{x \in [1, n]} \sum_{i=1}^n \frac{1}{(i-1)! (n-i)!} \prod_{\substack{j=1\\ i \neq i}}^n |x-j| \leqslant \sum_{i=1}^n C_{n-1}^{i-1} = K 2^n, \ K = \frac{1}{2}.$$

Оценка доказана.

3.42. Определить узлы интерполяции, при которых константа Лебега λ_3 минимальна.

Ответ: константа Лебега не зависит от отрезка, поэтому будем считать, что $x\in[-1,1],$ тогда $x_1=-\xi,\ x_2=0,\ x_3=\xi,$ где $\xi-$ произвольное число из отрезка $\left\lceil\frac{\sqrt{8}}{3},1\right\rceil;\ \lambda_3=\frac{5}{4}.$

- **3.43.** Показать, что если x_1, \ldots, x_{2n} вещественные, то функция $T(x) = \prod_{k=1}^{2n} \sin \frac{x x_k}{2}$ является тригонометрическим полиномом вида $T(x) = \prod_{k=1}^{2n} (x_k x_k) + \sum_{k=1}^{n} (x_k x_k) + \sum_{k=1}^{n}$
- $=\frac{a_0}{2}+\sum_{k=1}^n(a_k\cos kx+b_k\sin kx)$ с вещественными коэффициентами a_k,b_k .
- **3.44.** Доказать, что интерполяционный тригонометрический полином T(x), удовлетворяющий условиям $T(x_j)=y_j,\ j=0,1,\dots,2n$, где $0\leqslant x_0< x_1<\dots< x_{2n}< 2\pi$, может быть записан в виде

$$T(x) = \sum_{k=0}^{2n} y_k t_k(x)$$
, где $t_k(x) = \prod_{\substack{s=0 \ s \neq k}}^{2n} \sin \frac{x - x_s}{2} / \sin \frac{x_k - x_s}{2}$.

- **3.45.** Доказать, что для любых x_0, x_1, \ldots, x_{2n} , удовлетворяющих условиям $0 \leqslant x_0 < x_1 < \cdots < x_{2n} < 2\pi$, и для любых y_0, y_1, \ldots, y_{2n} существует единственный тригонометрический полином $T(x) = \frac{a_0}{2} + \sum\limits_{k=1}^n (a_k \cos kx + b_k \sin kx)$, удовлетворяющий условиям $T(x_j) = y_j, \ j = 0, 1, 2, \ldots, 2n$. Если при этом y_0, y_1, \ldots, y_{2n} вещественные, то и коэффициенты a_k, b_k являются вещественными.
- **3.46.** Доказать, что для любых x_0, x_1, \ldots, x_n , удовлетворяющих условиям $0 \le x_0 < x_1 < \cdots < x_n < \pi$, и для любых y_0, y_1, \ldots, y_n существует единственный тригонометрический полином $C(x) = \sum_{k=0}^n a_k \cos kx$, удовлетворяющий условиям $C(x_j) = y_j$, $j = 0, 1, 2, \ldots, n$.

- **3.47.** Построить тригонометрический полином на отрезке [0,1] по заданным значениям f(0), f(h), f(2h), f(3h), $h=\frac{1}{3}$.
- **3.48.** Построить тригонометрический интерполяционный полином второй степени $T_2(x) = a_0 + a_1 \cos x + b_1 \sin x + a_2 \cos 2x + b_2 \sin 2x$, удовлетворяющий следующим условиям: $T_2(0) = 0$, $T_2\left(\frac{\pi}{4}\right) = 1$, $T_2\left(\frac{\pi}{2}\right) = 1$, $T_2\left(\frac{3\pi}{4}\right) = 1$, $T_2(\pi) = 1$.
- **3.49.** Построить интерполяционный тригонометрический полином минимальной степени по заданным значениям $f(-\pi) = 0, f\left(-\frac{\pi}{2}\right) = 0, f\left(\frac{\pi}{2}\right) = 1.$
- **3.50.** Доказать, что тригонометрический полином $T_n(z)$ степени n имеет в любой полосе $\text{Re}(z) \in [a, a+2\pi]$ ровно 2n корней.
- **3.51.** Пусть $T_n(x)$ тригонометрический интерполяционный многочлен степени n, построенный по равноотстоящим узлам на $[0,2\pi]$ для функции $f(x)\in C^{(\alpha)},\ \alpha>0$. Доказать, что в равномерной норме

$$\lim_{n\to\infty}||T_n-f||=0.$$

3.52. Вычислить для 2π -периодической функции

$$H(x) = \begin{cases} 1 & \text{при} \quad x \in [0, \pi], \\ 0 & \text{при} \quad x \in (\pi, 2\pi) \end{cases}$$

частичную сумму ряда Фурье $H_{2n}(x)$ и проанализировать их близость.

 \triangleleft При вычислении суммы первых 2n членов коэффициенты при косинусах равны нулю, поэтому

$$H_{2n}(x) = \frac{1}{2} + \frac{2}{\pi} \sum_{k=1}^{n} \frac{\sin(2k-1)x}{2k-1}.$$

Преобразуем полученное выражение

$$H_{2n}(x) = \frac{1}{2} + \frac{2}{\pi} \sum_{k=1}^{n} \int_{0}^{x} \cos(2k-1)t \, dt =$$

$$= \frac{1}{2} + \frac{2}{\pi} \int_{0}^{x} \sum_{k=1}^{n} \cos(2k-1)t \, dt = \frac{1}{2} + \frac{1}{\pi} \int_{0}^{x} \frac{\sin 2nt}{\sin t} \, dt,$$

из которого следует, что максимум и минимум для $0 \leqslant x \leqslant \pi$ достигаются в точках $\frac{d}{dx} H_{2n}(x) = \frac{1}{\pi} \frac{\sin 2nx}{\sin x} = 0,$

т. е. при $x_m = \frac{m\pi}{2n}$, $m = 1, 2, \dots, 2n - 1$. При этом экстремумы чередуются. Непосредственные вычисления показывают, что $H_{2n}(0) = 0.5$, $H_{2n}\left(\frac{\pi}{2n}\right) \to 1,08949\dots$ с дальнейшим убыванием амплитуды колебаний по мере удаления от точки разрыва.

Отклонение разрывной функции от ее ряда Фурье часто называют эффектом Гиббса.

- **3.53.** Функция двух переменных $f(x_1,x_2)$ аппроксимируется интерполяционным многочленом $P(x_1,x_2)=a_0+a_1x_1+a_2x_2+a_3x_1x_2$. При этом f(0,0)=1, f(1,0)=2, f(0,1)=4, f(1,1)=3. Найти $P\left(\frac{1}{2},\frac{1}{2}\right)$.
- **3.54.** Пусть $P(x_1,x_2)$ многочлен от двух переменных степени не выше n по каждой переменной и $P\left(\frac{k}{n},\frac{m}{n}\right)=0,\ k,m=0,1,...,n.$ Доказать, что $P(x_1,x_2)\equiv 0.$

3.2. Многочлены Чебышёва

Имеется несколько способов определения последовательности многочленов Чебышёва первого рода. Рассмотрим некоторые из них.

а) Рекуррентное соотношение:

$$T_0(x) = 1$$
, $T_1(x) = x$, $T_{n+1}(x) = 2x T_n(x) - T_{n-1}(x)$.

б) Тригонометрическая форма. При любом η имеем

$$\cos((n+1)\eta) = 2\cos\eta\cos(n\eta) - \cos((n-1)\eta).$$

Полагая $\eta = \arccos x$, получаем

$$T_n(x) = \cos(n \arccos x).$$

Простое следствие: $|T_n(x)| \leq 1$ при $|x| \leq 1$.

в) Разностное уравнение. Рекуррентное соотношение является разностным уравнением по переменной n. Ему соответствует характеристическое уравнение $\mu^2-2x\mu+1=0$. Следовательно, $\mu_{1,2}=x\pm\sqrt{x^2-1}$. При $x\neq\pm 1$ справедливо $T_n(x)=C_1\mu_1^n+C_2\mu_2^n$. Из начальных условий получаем $C_1=C_2=\frac{1}{2}$, что приводит к формуле

$$T_n(x) = \frac{1}{2} \left(\left(x + \sqrt{x^2 - 1} \right)^n + \left(x - \sqrt{x^2 - 1} \right)^n \right).$$

В силу непрерывности многочлена формула верна и при $x=\pm 1.$

Отметим, что все многочлены $T_{2n}(x)$ — четные, а $T_{2n+1}(x)$ — нечетные. При этом коэффициент при старшем члене равен 2^{n-1} .

- 3.55. Доказать следующие свойства многочленов Чебышёва:
 - 1) $T_{2n}(x) = 2T_n^2(x) 1$;

2)
$$I_{mn} = \int_{-1}^{1} \frac{T_n(x) T_m(x)}{\sqrt{1-x^2}} dx = \begin{cases} 0 & \text{при } n \neq m, \\ \frac{\pi}{2} & \text{при } n = m \neq 0, \\ \pi & \text{при } n = m = 0; \end{cases}$$

3)
$$\int_{1}^{x} T_{n}(y)dy = \frac{1}{2} \left(\frac{1}{n+1} T_{n+1}(x) - \frac{1}{n-1} T_{n-1}(x) \right) - \frac{(-1)^{n}}{n^{2}-1}, \ n \geqslant 2;$$

4)
$$(1-x^2) T_n''(x) - x T_n'(x) + n^2 T_n(x) = 0, \quad n \ge 0.$$