Data Visualization

Why Visualize Data?

Why Visualize Data?

- Abstraction
- Analysis
- Context
- Insight
- Communication
- Outlier Detection

Abstraction

- Computers are good with details humans are not
- Recall: Abstraction turn details into ideas
- I.e. ignore individuals and reason about populations
- Abstractions are pragmatic pick an abstraction to fit a purpose

Analysis

- Even after processing and querying data, it can be difficult to interpret
- Visualize data to extract meaning
- When information is abstracted, analysis becomes more obvious

Context

- A single value on its own ignores the bigger picture
- A key aspect of analysis is comparison

Insight

- Notice relationships between data points that would not be obvious when just looking at numbers
- Get new ideas about the data

Communication

- Insight is useless without action
- Action involves communicating findings to others
- Even if "The numbers speak for themselves", how they are presented will affect how others interpret them
- Visuals are a much more efficient way to share information than numbers

Communication

Communication

Storytelling With Data by Cole Nussbaumer Knaflic

Worth watching (long): https://www.youtube.com/watch?v=8EMW7io4rSI Worth watching (short): https://www.youtube.com/watch?v=6xsvGYIxJok

Outlier Detection

- Visualizations make outliers really obvious
- Outlier detection is useful for many applications:
 - Detecting errors
 - Cleaning data
 - Understanding where an analysis/prediction fails
 - Monitoring

Visualization Mediums

Dashboards

- Persistent
- Automated (Real time-ish)
- Interactive
- Purposes:
 - Monitoring
 - Decision making
 - Enabling others

Reports

- Can be automated or manually produced
- Often produced with a set frequency (but not necessarily)
- Mix of text and visualizations
- Visualizations are key to quickly informing report consumers
- Not interactive

Insights

- Visualizations can be used to highlight or emphasize a particular finding
- A visualization with the purpose of pointing out a particular idea is sometimes called an insight
- Insights can be included in reports or dashboards
- Commonly used in meetings as a discussion topic
- When building a business case (around a decision) insights are invaluable

Infographics

- Combines text and visualizations
- Often done by a graphic designer
- Meant for public consumption or marketing

EVALUATION REPORT (beta)

The data collected for this first round of beta reporting is illustrated in the infographic below.

In order to scale WEP and WLM to fit the charts presented, all their metrics have been scaled to 10% for illustration.

Follow along with the color-coding to see how each program contributed!

Wikipedia Education Program

GLAM Content Partnerships On-Wiki Writing Contests

Wiki Loves Monuments¹

Other Photo Contests

Editing Workshops

Edit-a-thons

OUTCOMES

Types of graphs

Product Type	Region	Store Type	Sales
Shoes	West	Kiosk	145
Shirts	West	Kiosk	85
Pants	West	Kiosk	46
Shoes	West	Outlet	241
Shirts	West	Outlet	143
Pants	West	Outlet	89
Shoes	East	Kiosk	154
Shirts	East	Kiosk	101
Pants	East	Kiosk	32
Shoes	East	Outlet	216
Shirts	East	Outlet	205
Pants	East	Outlet	67

Bar Plot

- https://python-graph-gallery.com/barplot/
- Shows relationship between numerical and categorical variable
- Great for comparing aggregations from a "group-by" operation

Total Sales

Total Sales Per Region

Stacked Bar Plot

- https://python-graph-gallery.com/stacked-barplot/
- For visualizing sub-groups
- Stacking vs. Grouping Bars
 - Grouping:
 - For comparisons across all sub-groups
 - Stacking:
 - Helps with comparing totals for a group
 - Helps with comparing proportion of a sub-group
- Normalize the bars if proportion is all you care about

Total Sales Per Region

Total Sales Per Region

Total Sales

Density Plot

- https://python-graph-gallery.com/density-plot/
- For showing the distribution of a numerical variable
- Bandwidth parameter determines smoothness of plot
 - Higher values = smoother curve, close approximation of underlying distribution
 - Lower values = more fluctuations, curve fits tighter to the data

https://python-graph-gallery.com/73-control-bandwidth-of-seaborn-density-plot/

https://python-graph-gallery.com/73-control-bandwidth-of-seaborn-density-plot/

Histogram

- https://python-graph-gallery.com/histogram/
- For showing the shape of a numerical variable
- Similar to Density plot
- Histograms visualize the actual shape of the variable and not the underlying distribution
- Number of bins is an important parameter
- Outliers can really decrease the effectiveness of this visualization

Scatterplot

- https://python-graph-gallery.com/scatter-plot/
- Visualize the relationship between two variables
- Usually two numerical variables
- A third categorical variable can be visualized by adding colour
 - Or numerical with color scale
- An additional numerical variable can be represented by the points size (called a bubble plot)
 - It is also possible to add fifth by using animation over time
- Great for visualizing a clustering that can be projected onto two or three dimensions

https://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen_

Box Plots

- http://python-graph-gallery.com/boxplot/
- Summarizes a numerical variable
- Can compare several numerical variables or one numerical variables split by a categorical variable
- Good for visualizing obvious outliers
- Hides the underlying distribution

Violin Plot

- https://python-graph-gallery.com/violin-plot/
- Similar to boxplot but it shows the underlying distribution
- Can display a single numerical variables, several categorical variables, or a single numerical variable split by group
- Good for comparing numerical variables while maintaining the underlying distribution
- Can be used in place of a density plot if variables overlap each other a lot

Heatmap

- https://python-graph-gallery.com/heatmap/
- Graphical representation of a matrix
- Cells are real numbers
- Number values are mapped to a colour gradient
- Generalized can map numbers to a gradient in any shape (e.g. a literal map)

Graphing Best Practices

Best practices

- Simplify
- Avoid 3D, animations etc.
- Use a colour pallette
 - Consider color-blind people
- Think about the point you want to make
- Label your axes
- Start values at 0 (if it makes sense)
- https://www.darkhorseanalytics.com/blog/data-looks-better-naked
- http://blog.visme.co/data-storytelling-tips/
- https://gramener.github.io/visual-vocabulary-vega/