Autovalores e Autovetores de Matrizes Reais Simétricas - O Algoritmo QR

EP2 - MAP3121 - Data de entrega: 21/07/2021

June 30, 2021

Regras do Jogo

- Você deve implementar o exercício programa em C/C++ ou Python3.7 (alunos da elétrica preferencialmente em C, os demais preferencialmente em Python)
- Python:
 - Pode usar: Matplotlib, NumPy (apenas para trabalhar com aritmética de vetores, matrizes, leitura/escrita de dados), bibliotecas básicas auxiliares: sys, time, datetime, os, math.
 - Não pode usar: SciPy ou outras bibliotecas de algebra linear computacional
- C, C++:
 - Não pode usar recursos de versões além de C/C++14.
 - Pode usar qualquer biblioteca nativa do gcc/g++ (que não exiga instalção adicional).
- Incluir, obrigatoriamente, um arquivo LEIAME.txt com instruções de compilação e execução, indicando versão de interpretador/compilador necessário.
- O exercício pode ser feito em duplas. As duplas podem ser formadas livremente, com alunos de turmas e / ou engenharias distintas.
- Apenas um aluno deve entregar o exercício, destacando no relatório e no código o nome de ambos os alunos.
- A entrega deve conter o relatório (em .pdf), contendo a análise do problema estudado, e o código usado para as simulações computacionais (arquivos fonte). A entrega deve ser feita em um arquivo compactado único.
- O relatório deve apresentar resultados e análises de todas as tarefas descritas neste enunciado.
- O seu código deve estar bem documentado, de forma a facilitar a correção. Rodar os testes também deve ser fácil para o usuário do seu programa, sem que este tenha que editar seu código. Ou seja, você deve pedir como entrada qual teste o usuário quer rodar, qual método e os parâmetros para o teste.

1 Introdução

No Exercício Programa 1 vimos como calcular autovalores e autovetores de matrizes reais simétricas tridiagonais usando o Algoritmo QR. Nosso objetivo agora é calcular autovalores e autovetores de matrizes reais simétricas arbitrárias. Estas matrizes sempre podem ser reduzidas a uma matriz real tridiagonal simétrica por uma transformação de similaridade ortogonal. Podemos então usar o algoritmo do EP1. A transformação poderia ser feita usando-se rotações de Givens mas, como a cada etapa serão modificados mais de um elemento de uma linha/coluna, as transformações de Householder são mais eficientes, e também são estáveis numericamente.

2 Transformações de Householder e redução de uma matriz simétrica a uma matriz tridiagonal simétrica semelhante

Dado $w \in \mathbb{R}^n$ definimos a transformação de Householder $H_w : \mathbb{R}^n \to \mathbb{R}^n$ dada por $H_w = I - \frac{2ww^T}{w \cdot w}$ (onde I é a identidade), que a cada $x \in \mathbb{R}^n$ associa $H_w x = x - 2 \frac{w \cdot x}{w \cdot w} w$. Esta transformação determina a reflexão do vetor x em relação ao espaço w^{\perp} .

A transformação linear H_w é ortogonal e simétrica, ou seja, $H_w^{-1} = H_w^T = H_w$. Verifiquemos:

$$H_w^T = (I - \frac{2ww^T}{w \cdot w})^T = I - \frac{2(ww^T)^T}{w \cdot w} = H_w \text{ e}$$

$$H_w H_w = (I - \frac{2ww^T}{w \cdot w})(I - \frac{2ww^T}{w \cdot w}) = I - \frac{4ww^T}{w \cdot w} + \frac{4w(w^T w)w^T}{(w \cdot w)^2} = I.$$

Observemos ainda que uma transformação ortogonal preserva a norma de um vetor, ou seja

$$||H_w u||^2 = H_w u \cdot H_w u = (H_w u)^T H_w u = u^T H_w^T H_w u = u^T I u = u^T u = ||u||^2$$

Dados dois vetores x e y não nulos em \mathbb{R}^n podemos definir uma transformação de Householder tal que $H_w x = \lambda y$, com $\lambda \in \mathbb{R}$. Para tanto basta tomarmos $w = x + \alpha y$, onde $\alpha = \pm \frac{||x||}{||y||}$ (verifique!). Como exemplo, consideremos x e y em R^3 , com $x^T = (1, 1, 0)$ e $y^T = (0, -1, 1)$. Definindo w = x + y temos $w^T = (1, 0, 1)$ e

$$H_w x = x - 2 \frac{w \cdot x}{w \cdot w} w = x - w = -y .$$

Note que para o cálculo de $H_w x$ não necessitamos da representação matricial da transformação H_w , bastando calcular os produtos escalares de w por x e de w por w e depois adicionar dois vetores. Poderíamos escrever a matriz que representa $H_w : \mathbb{R}^3 \to \mathbb{R}^3$ como

$$H_w = \left[\begin{array}{rrr} 0 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{array} \right]$$

e então multiplicar pelo vetor x. Isto não só é desnecessário, como seria computacionalmente bem mais ineficiente (teríamos $O(n^2)$ multiplicações na montagem de H_w e também no cálculo de H_wx ao multiplicar a matriz pelo vetor, enquanto que o cálculo dos produtos internos e a soma dos vetores envolve apenas O(n) operações).

Agora mostraremos como transformar uma matriz $A_{n\times n}$ em uma matriz tridiagonal $T=HAH^T$, onde $H=H_{w_{n-2}}H_{w_{n-3}}...H_{w_1}$ é produto de transformações de Householder. A matriz T é semelhante a A, possuindo os mesmos autovalores que esta. A primeira transformação H_{w_1} quando aplicada à matriz A irá zerar os elementos da primeira coluna de A da terceira linha em diante. Para tal, definiremos $\tilde{a}_1^T=(0,A_{2,1},A_{3,1},...,A_{n,1})$ e w_1 tal que a transformação H_{w_1} não altere a primeira linha de A e leve o vetor a_1 , correspondendo à primeira coluna de A em um vetor com elementos nulos da posição B0 em diante. Isto é feito definindo B1 e B2 e B3 e B4 e B4 e B5 e B5 e scolheremos o B6 nesta expressão igual ao sinal de $A_{2,1}$. Note que B5 e B6, B7 e B8 e B9 e B

$$H_{w_1} = \left[\begin{array}{cc} 1 & \mathbf{0}^T \\ \mathbf{0} & H_{\bar{w}_1} \end{array} \right] \quad ,$$

com $\mathbf{0}$ um vetor nulo de dimensão n-1.

Após a aplicação de H_{w_1} à matriz A, obteremos

$$H_{w_1}A = \begin{bmatrix} x & x & x & \dots & x \\ x & x & x & \dots & x \\ 0 & x & x & \dots & x \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & x & x & \dots & x \end{bmatrix} ,$$

onde os x representam valores quaisquer e zera-se a primeira coluna abaixo da diagonal principal. Lembremos que A é uma matriz simétrica. Escrevendo

$$A = \left[\begin{array}{cc} A_{1,1} & \alpha^T \\ \alpha & A_1 \end{array} \right] \quad ,$$

onde α representa a primeira coluna de A da segunda linha em diante e A_1 é a submatrix de A da segunda linha e coluna em diante, observamos que:

$$H_{w_1}AH_{w_1} = \left[\begin{array}{cc} A_{1,1} & \alpha^T H_{\bar{w}_1} \\ H_{\bar{w}_1}\alpha & H_{\bar{w}_1}A_1 H_{\bar{w}_1} \end{array} \right]$$

é simétrica (pois A e H_{w_1} o são) e tem zeros na primeira coluna (e primeira linha) da terceira posição em diante. Observamos que a aplicação de H_{w_1} à esquerda da matriz A só a altera da segunda linha em diante e que, como anteriormente, não necessitamos montar a matriz H_{w_1} . Ao aplicarmos à matriz resultante H_{w_1} à direita, modificamos as linhas, da segunda à n-ésima coluna. Como antes, não precisamos montar a matriz H_{w_1} . Devido à simetria da matriz resultante, já sabemos qual será o resultado na primeira linha, sem a necessidade de repetir cálculos.

Este mesmo processo é aplicado de forma a ir tornando a matriz tridiagonal. Na i-ésima etapa a matriz H_{w_i} tem o formato:

$$H_{w_i} = \left[\begin{array}{cc} I_i & \mathbf{0}^T \\ \mathbf{0} & H_{\bar{w}_i} \end{array} \right] \quad ,$$

com I_i a identidade $i \times i$ e $H_{\bar{w}_i}$ de tamanho $n-i \times n-i$, definida a partir de $\bar{w}_i = \bar{a}_i + \delta \frac{||\bar{a}_i||}{||e||} e = \bar{a}_i + \delta ||\bar{a}_i|| e$, com os vetores \bar{a}_i e e de tamanho n-i, onde e=(1,0,..,0), \bar{a}_i é a primeira coluna da submatriz formada pelas últimas n-i linhas e colunas da matriz obtida ao final da etapa anterior e δ é o sinal do primeiro elemento de \bar{a}_i . Nesta etapa só se alteram as últimas n-i linhas da coluna i em diante quando se aplica a transformação de Householder à esquerda e depois as últimas n-i colunas da linha i em diante na aplicação à direita. Observamos que devido à simetria, a i-ésima linha resultará igual à i-esima coluna (que não mais se alterará) e portanto já a conhecemos sem precisar repetir cálculos. Após n-2 etapas teremos obtido uma matriz tridiagonal simétrica.

Vejamos um exemplo, com a matriz:

$$A = \left[\begin{array}{cccc} 2 & -1 & 1 & 3 \\ -1 & 1 & 4 & 2 \\ 1 & 4 & 2 & -1 \\ 3 & 2 & -1 & 1 \end{array} \right] .$$

Definimos então $\bar{w}_1 = (-1 - \sqrt{11}, 1, 3)^T = (-4.3166, 1, 3)^T$. Após a multiplicação de A à esquerda por H_{w_1} obtemos (com 5 significativos, valores modificados em vermelho):

$$H_{w_1}A = \begin{bmatrix} 2 & -1 & 1 & 3\\ 3.3166 & 2.7136 & -1.5076 & 0\\ 0 & 3.6030 & 3.2759 & -0.53667\\ 0 & 0.809068 & 2.8277 & 2.3900 \end{bmatrix}.$$

Multiplicando a matriz obtida por H_{w_1} à direita chegamos a (valores modificados em vermelho, em verde valores obtidos sem calcular, devido à simetria):

$$H_{w_1}AH_{w_1} = \begin{bmatrix} 2 & 3.3166 & 0 & 0 \\ 3.3166 & -1.2727 & -0.58407 & 2.7704 \\ 0 & -0.58407 & 4.2458 & 2.3733 \\ 0 & 2.7704 & 2.3733 & 1.0268 \end{bmatrix} .$$

Para o cálculo de H^T , aplicamos nesta etapa H_{w_1} à direita da matriz identidade, obtendo:

$$IH_{w_1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -0.30151 & 0.30151 & 0.90453 \\ 0 & 0.30151 & 0.93015 & -0.20955 \\ 0 & 0.90453 & -0.20955 & 0.37136 \end{bmatrix}.$$

Define-se então $\bar{w}_2 = (-0.58407 - 2.8313, 2.7704)^T$. Multiplicando-se a matriz atual por H_{w_2} à esquerda obtemos (valores modificados em vermelho):

$$H_{w_2}H_{w_1}AH_{w_1} = \left[\begin{array}{cccc} 2 & 3.3166 & 0 & 0 \\ 3.3166 & -1.2727 & -0.58407 & 2.7704 \\ 0 & 2.8313 & 1.4464 & 0.51517 \\ 0 & 0 & 4.6441 & 2.5341 \end{array} \right]$$

e finalmente multiplicando por H_{w_2} à direita chegamos à matriz tridiagonal (valores modificados em vermelho, em verde os obtidos por simetria):

$$H_{w_2}H_{w_1}AH_{w_1}H_{w_2} = \begin{bmatrix} 2 & 3.3166 & 0 & 0 \\ 3.3166 & -1.2727 & 2.8313 & 0 \\ 0 & 2.8313 & 0.20572 & 1.5215 \\ 0 & 0 & 1.5215 & 5.0670 \end{bmatrix}.$$

Para completar H^T aplicamos H_{w_2} à direita, obtendo:

$$H_{w_1}H_{w_2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -0.30151 & 0.82288 & 0.48162 \\ 0 & 0.30151 & -0.39692 & 0.86692 \\ 0 & 0.90453 & 0.40660 & -0.12843 \end{bmatrix} .$$

Os valores potencialmente modificados estão representados em azul.

3 O algoritmo

Dada uma matriz real simétrica $A_{n\times n}$:

• Obtenha a matriz tridiagonal simétrica

$$T = HAH^T$$
,

onde $H = H_{w_{n-2}}H_{w_{n-3}}...H_{w_1}$ é produto de transformações de Householder. Como queremos calcular também os autovetores, devemos também calcular H^T . Inicialize-a com a identidade e a cada passo aplique a transformação de Householder à direita da matriz (calculando $H^T = H^T H_{w_i}$). Observe que não há necessidade de montar as matrizes H_{w_i} e usar produtos de matrizes.

- Use o Algoritmo QR tridiagonal com deslocamento do EP1 para obter a sua forma diagonal semelhante $T = V\Lambda V^T$.
- Os autovalores de A estão na diagonal de Λ (ou seja, coincidem com os autovalores da matriz tridiagonal T). A matriz ortogonal de autovetores de Λ é igual a H^TV .

Para a avaliação de H^TV basta utilizar a matriz H^T como a matriz $V^{(0)}$ do algoritmo para a matriz tridiagonal (ou seja, você partirá de H^T como matriz inicial e não da identidade). Assim, ao final terá a matriz com os autovetores de A.

4 Tarefa

Implemente o algoritmo descrito acima para o cálculo dos autovalores e autovetores de uma matriz real simétrica e use-o nos problemas abaixo.

4.1 Testes

Calcule os autovalores e autovetores das matrizes abaixo. Em cada caso, imprima a matriz, os autovalores e a matriz dos autovetores. Verifique se $Av = \lambda v$ para cada auto valor λ e o seu autovetor correspondente. Verifique também se a matriz formada pelos autovetores é ortogonal.

(a)
$$A = \begin{pmatrix} 2 & 4 & 1 & 1 \\ 4 & 2 & 1 & 1 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & 2 & 1 \end{pmatrix}$$

(os autovalores são 7, 2, -1 e - 2).

(b) A matriz

$$A = \begin{pmatrix} n & n-1 & n-2 & \cdots & 2 & 1 \\ n-1 & n-1 & n-2 & \cdots & 2 & 1 \\ n-2 & n-2 & n-2 & \cdots & 2 & 1 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 2 & 2 & 2 & \cdots & 2 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{pmatrix}$$

possui autovalores

$$\lambda_i = \frac{1}{2} \left[1 - \cos \frac{(2i-1)\pi}{2n+1} \right]^{-1}, \quad i = 1, 2, \dots, n.$$

Use o seu programa com n = 20.

4.2 Aplicação: Treliças Planas

Uma treliça é uma estrutura reticulada formada por barras, com juntas em suas extremidades, denominadas nós. Nosso objetivo será calcular as frequências e os modos de vibração da treliça plana esquematizada na Figura 1^1 . Todas as barras são formadas pelo mesmo material, com módulo de elasticade E e densidade de massa ρ , e possuem seções transversais iguais de área A. As barras verticais e horizontais têm comprimento L.

Para simplificar o problema, assumiremos que a massa de cada barra está concentrada nos seus pontos extremos. Ou seja, se m_k denota a massa concentrada no nó k, $1 \le k \le 12$, então cada barra de massa m_{ij} conectando os nós i e j contribui com $0.5m_{ij}$ para m_i e $0.5m_{ij}$ para m_j . Por exemplo, a massa atribuída ao nó 2 será $m_2 = 0.5 \cdot (\rho AL + \rho A\sqrt{2}L + \rho AL)$ devido às contribuições m_{12} , m_{24} e m_{25} , respectivamente. O vetor \boldsymbol{x} contendo os deslocamentos horizontal e vertical de cada nó (24 componentes ao todo, estando fixados os pontos de suporte) caracterizam completamente o estado do sistema. Como a resposta dinâmica do sistema independe da deformação estática devida à gravidade, para as equações do movimento precisaremos somente da energia de deformação das barras e da energia cinética do sistema, que são funções de \boldsymbol{x} e da sua derivada temporal $\dot{\boldsymbol{x}}$.

Para equacionar o problema, especificaremos o vetor (24×1) \boldsymbol{x} na forma

$$x_{2i-1} = h_i =$$
deslocamento horizontal do nó i
$$x_{2i} = v_i =$$
deslocamento vertical do nó i

para $i=1,2,\ldots,12$. A barra que conecta os nós i e j será denotada por $\{i,j\}$. Assumindo pequenos deslocamentos, obtemos da teoria da elasticidade linear que a energia de deformação $D^{\{i,j\}}$ da barra $\{i,j\}$ é igual a

$$D^{\{i,j\}} = \frac{1}{2} (x_{2i-1}, x_{2i}, x_{2j-1}, x_{2j}) \cdot K^{\{i,j\}} \cdot \begin{pmatrix} x_{2i-1} \\ x_{2i} \\ x_{2j-1} \\ x_{2j} \end{pmatrix}.$$

A matriz de rigidez $K^{\{i,j\}}$ da barra $\{i,j\}$ é

$$K^{\{i,j\}} = \frac{AE}{L_{\{i,j\}}} \cdot \begin{pmatrix} C^2 & CS & -C^2 & -CS \\ CS & S^2 & -CS & -S^2 \\ -C^2 & -CS & C^2 & CS \\ -CS & -S^2 & CS & S^2 \end{pmatrix}, \tag{1}$$

onde $L_{\{i,j\}}$ é o comprimento da barra,

$$C = \cos \theta_{\{i,j\}}, \quad S = \sin \theta_{\{i,j\}},$$

sendo $\theta_{\{i,j\}}$ o ângulo que a barra $\{i,j\}$ forma com o eixo horizontal no estado não deformado. A energia total de deformação D é igual

$$D = \frac{1}{2} \boldsymbol{x}^T K \boldsymbol{x},$$

¹Exemplo tirado de http://stanford.edu/class/me200c/pspdf/h17.pdf.

Figure 1: Treliça plana formada por 28 elementos (barras) conectados por 12 nós e dois pontos de suporte.

onde K é a matriz de rigidez total, que pode ser construída da seguinte forma: inicie K com zeros em todas as entradas. Depois, para cada barra $\{i,j\}$, adicione a sua contribuição de (1) nas posições

$$\begin{array}{lllll} (2i-1,2i-1) & (2i-1,2i) & (2i-1,2j-1) & (2i-1,2j) \\ \\ (2i,2i-1) & (2i,2i) & (2i,2j-1) & (2i,2j) \\ \\ (2j-1,2i-1) & (2j-1,2i) & (2j-1,2j-1) & (2j-1,2j) \\ \\ (2j,2i-1) & (2j,2i) & (2j,2j-1) & (2j,2j) \end{array}$$

As contribuições das barras $\{11,14\}$ e $\{12,13\}$ também devem ser adicionadas à matriz de rigidez total, pois elas também são deformadas, nas posições correspondendes aos deslocamentos dos nós 11 e 12 $(h_{11}, v_{11}, h_{12} \text{ e } v_{12})$. Os nós 13 e 14 têm deslocamentos nulos e não contribuem para a energia. Para a montagem da matriz de rigidez é conveniente escrever uma rotina que, dados os extremos de uma barra, seu comprimento e o ângulo que forma com a horizontal, adicione as contribuições nas posições correspondentes. Nesta mesma rotina, também pode-se adicionar as contribuições às massas dos nós extremos da barra.

A energia cinética do nó i é igual a $\frac{1}{2}m_i(\dot{h_i}^2+\dot{v_i}^2)$ e portanto a energia cinética T da treliça fica

$$T = \frac{1}{2}\dot{\boldsymbol{x}}^T M \dot{\boldsymbol{x}},$$

onde a matriz de massa M é a matriz 24×24 diagonal com entradas

$$M_{2i-1,2i-1} = m_i,$$

 $M_{2i,2i} = m_i,$

para i = 1, 2, ..., 12.

A equação do movimento para a treliça é então dada por

$$M\ddot{x} + Kx = 0.$$

As frequências de vibração ω e os respectivos modos de vibração z são obtidos substituindo-se

$$\boldsymbol{x}(t) = \boldsymbol{z}e^{i\omega t},$$

levando-nos à equação generalizada de autovalores

$$K\boldsymbol{z} = \omega^2 M \boldsymbol{z}.$$

Como a matriz M é diagonal com entradas diagonais positivas, podemos transformar o problema acima em um problema convencional de autovalores fazendo-se a substituição

$$\boldsymbol{z} = M^{-\frac{1}{2}} \boldsymbol{y},$$

levando-nos a

$$\tilde{K}\mathbf{y} = \omega^2 \mathbf{y},$$

onde

$$\tilde{K} = M^{-\frac{1}{2}} K M^{-\frac{1}{2}}$$

é uma matriz simétrica definida positiva. (Note que poderíamos multiplicar a equação por M^{-1} , mas fazendo isso a matriz resultante não seria simétrica).

Use o seu programa para calcular as frequências e os modos de vibração. Imprima as 5 menores frequências e os respectivos modos. Estes são os modos que requerem menos energia, sendo portanto os mais importantes na prática. Use os valores $\rho=7.8\times10^3\frac{\mathrm{kg}}{\mathrm{m}^3},~A=10^{-1}~\mathrm{m}^2,~E=200~\mathrm{GPa},~\mathrm{e}~L=10~\mathrm{m}$ (comprimento das barras horizontais e verticais), o que nos dá $\frac{EA}{L}=\frac{2\times10^{11}\times10^{-1}}{10}=2\times10^9~\frac{\mathrm{N}}{\mathrm{m}}$. A altura dos nós 11 e 12 em relação ao nível dos nós fixos 13 e 14 é de 10 m.

Dados de entrada:

Para facilitar os testes, são fornecidos três dados de entrada, referentes às tarefas. Os arquivos **input-**a e **input-b** contêm as matrizes para os testes iniciais. A primeira linha do arquivo traz a dimensão n da matriz e as n linhas seguintes trazem as linhas da matriz. Já o arquivo **input-c** traz os dados relativos ao teste da treliça. Na primeira linha são fornecidos, nesta ordem, o número total de nós da treliça, o número de nós que não estão fixos e o número de barras da treliça. Na segunda linha do arquivo são fornecidos respectivamente, a densidade ρ em kg/m^3 , a área A da seção transversal das barras (em m^2) e o módulo de elasticidade E (em GPa). As linhas seguintes trazem para cada barra, respectivamente, os nós dos extremos, o ângulo da barra com a horizontal e o comprimento da barra. Note que com esta estrutura, seu programa pode ser escrito para tratar uma treliça plana qualquer, apenas cuidando de numerar os nós fixos como os últimos.

Tarefa Bônus

Depois do cálculo dos modos de vibração, o interessante seria vizualizar a treliça vibrando. Para os modos de menor frequência desenvolva uma animação (um gif por exemplo) com a treliça se movimentando de acordo, ou seja, com cada nó sob efeito dos deslocamentos horizontais e verticais. Lembre-se que esta teoria é valida para pequenos deslocamentos. Ou seja, os autovetores calculados, representam a intensidade relativa e a direção dos deslocamentos. Procure uma escala adequada para representar estes deslocamentos (usando múltiplos adequados dos autovetores).

A execução correta desta tarefa assegura ao aluno mais meio-ponto na média geral da disciplina, além da admiração de seus professores !