MODELO DE MEMORIAL TÉCNICO DESCRITIVO

MICROGERAÇÃO DISTRIBUÍDA UTILIZANDO UM SISTEMA SOLAR FOTOVOLTAICO DE 2,98 kW CONECTADO À REDE DE ENERGIA ELÉTRICA DE BAIXA TENSÃO 220V CARACTERIZADO COMO <u>INDIVIDUAL</u>

JOSINETE VIANA DA SILVA *CPF:* 347.171.614-91

NAYANE MARIA SANTOS DA SILVA TECNICA EM ELETROTECNICA CFT-03 nº 12090161418

MARECHAL DEODORO- AL
09 - 2025

NAYANE MARW SANPOS DA SILVA Tecnica em Béliotécnica CRT-3: 12090161418

LISTA DE SIGLAS E ABREVIATURAS

ABNT: Associação Brasileira de Normas Técnicas

ANEEL: Agência Nacional de Energia Elétrica

BT: Baixa tensão (220/127 V, 380/220 V)

C.A: Corrente Alternada
C.C: Corrente Contínua

CD: Custo de disponibilidade (30 kWh, 50kWh ou 100 kWh em sistemas de baixa tensão monofásicos,

bifásicos ou trifásicos, respectivamente)

CI: Carga Instalada

DSP: Dispositivo Supressor de Surto

DSV: Dispositivo de seccionamento visível

FP: Fator de potência

FV: Fotovoltaico

GD: Geração distribuída HSP: Horas de sol pleno

IEC: International Electrotechnical Commission

I_N: Corrente Nominal

I_{DG}: Corrente nominal do disjuntor de entrada da unidade consumidora em ampéres (A)

Ist: Corrento de curto-circuito de módulo fotovoltaico em ampéres (A)

kW: kilo-watt

kWp: kilo-watt pico kWh: kilo-watt-hora

MicroGD: Microgeração distribuída MT: Média tensão (13.8 kV, 34.5 kV)

NF: Fator referente ao número de fases, igual a 1 para sistemas monofásicos e bifásicos ou $\sqrt{3}$ para

sistemas trifásicos

PRODIST: Procedimentos de Distribuição

PD: Potência disponibilizada para a unidade consumidora onde será instalada a geração distribuída

PR: Pára-raio

QGD: Quadro Geral de Distribuição

QGBT: Quadro Geral de Baixa Tensão

REN: Resolução Normativa

SPDA: Sistema de Proteção contra Descargas Atmosféricas

SFV: Sistema Fotovoltaico

SFVCR: Sistema Fotovoltaico Conectado à Rede

TC: Transformador de corrente TP: Transformador de potencial

UC: Unidade Consumidora

UTM: Universal Transversa de Mercator

V_N: Tensão nominal de atendimento em volts (V)

Voc: Tensão de circuito aberto de módulo fotovoltaico em volts (V)

NAYANE MARYY SANTOS DA SILVA Tecnica en Bletactécnica CRT-3: 12090161418

SUMÁRIO

1.	OBJE	TIVO4
2.	REFE	RÊNCIAS NORMATIVAS E REGULATÓRIA4
3.	DOC	JMENTOS OBRIGATÓRIOS Erro! Indicador não definido.
4.	DAD	OS DA UNIDADE CONSUMIDORA5
5.	PADI	RÃO DE ENTRADA 5
	5.1.	Tipo de Ligação e Tensão de Atendimento6
	5.2.	Disjuntor de Entrada6
	5.3.	Potência Disponibilizada7
	5.4.	Caixa de Medição7
	5.5.	Ramal de Entrada8
6.	LEVA	NTAMENTO DE CARGA E CONSUMO5
	6.1.	Levantamento de Carga5
	6.2.	Consumo Mensal6
7.	ESTI	MATIVA DE GERAÇÃO8
8.	DIME	NSIONAMENTO DO GERADOR8
9.	ESPE	CIFICAÇÕES TÉCN ICAS DO GERADOR Erro! Indicador não definido.
10.	DIME	NSIONAMENTO DO INVERSOR Erro! Indicador não definido.
11.	ESPE	CIFICAÇÕES TÉCNICAS DO INVERSOR Erro! Indicador não definido.
	DIME nido.	NSIONAMENTO DO TRANSFORMADOR DE ACOPLAMENTO Erro! Indicador não
	ESPE nido.	CIFICAÇÃO TÉCNICO DO TRANSFORMADOR DE ACOPLAMENTO Erro! Indicador não
14.	DIME	NSIONAMENTO DOS CABOS9
15.	DIME	NSIONAMENTO DA PROTEÇÃO9
	15.1.	Fusíveis9
	15.2.	Disjuntores9
	15.3.	DPS 9
	15.4.	Funções de Proteção e Ajustes Erro! Indicador não definido.

NAYANE MARIN SANPOS DA SILVA Tecnica um Périotécnica CRT-3: 12090161418

1. **OBJETIVO**

O presente memorial técnico descritivo tem como objetivo apresentar a metodologia utilizada para elaboração e apresentação à EQUATORIAL ALAGOAS, dos documentos mínimos necessários, em conformidadecom a REN 482, com o PRODIST Módulo 3 secção 3.7, com a NT.020 e com as normas técnicas nacionais (ABNT) ou internacionais (europeia e americana), para SOLICITAÇÃO DO PARECER DE ACESSO de uma microgeração distribuída conectada à rede de distribuição de energia elétrica através sistema SOLAR FOTOVOLTAICO de 2,98 kW, composto por 5 MÓDULOS FOTOVOLTAICOS E 1 INVERSOR SOLAR CC-CA, caracterizado como INDIVIDUAL.

2. REFERÊNCIAS NORMATIVAS E REGULATÓRIA

Para elaboração deste memorial técnico descritivo, no âmbito da área de concessão do estado de (o) ALAGOAS foram utilizadas as normas e resoluções, nas respectivas revisões vigentes, conforme descritas abaixo:

- a) ABNT NBR 5410: Instalações Elétricas de Baixa Tensão.
- b) ABNT NBR 10899: Energia Solar Fotovoltaica - Terminologia.
- ABNT NBR 11704: Sistemas Fotovoltaicos Classificação. c)
- d) ABNT NBR 16149: Sistemas fotovoltaicos (FV) – Características da interface de conexão com a rede elétrica de distribuição.
- ABNT NBR 16150: Sistemas fotovoltaicos (FV) Características da interface de conexão coma e) rede elétrica de distribuição – Procedimentos de ensaio de conformidade.
- f) ABNT NBR IEC 62116: Procedimento de Ensaio de Anti-ilhamento para Inversores de Sistemas Fotovoltaicos Conectados à Rede Elétrica.
- g) EQUATORIAL ENERGIA NT.020.EQTL.Normas e Padrões - Conexão de Microgeração Distribuída ao Sistema de Baixa Tensão.
- h) EQUATORIAL ENERGIA NT.001.EQTL.Normas e Padrões - Fornecimento de Energia Elétrica em Baixa Tensão.
- EQUATORIAL ENERGIA NT.030.EQTL.Normas e Padrões Padrões Construtivos de Caixas de i) Medição e Proteção.
- ANEEL Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional j) PRODIST: Módulo 3 – Acesso ao Sistema de Distribuição. Revisão 6. 2016, Seção 3.7.
- k) ANEEL Resolução Normativa nº 414, de 09 de setembro de 2010, que estabelece as condições gerais de fornecimento de energia elétrica.
- ANEEL Resolução Normativa ANEEL nº 482, de 17 de abril de 2012, que estabelece as I) condições gerais para o acesso de micro geração e mini geração distribuída aos sistemas de distribuição de energia elétrica e o sistema de compensação de energia elétrica.
- IEC 61727 Photovoltaic (PV) Systems Characteristics of the Utility Interface m)
- n) IEC 62116:2014 Utility-interconnected photovoltaic inverters - Test procedure of islanding

4 SANTOS DA SILVA

3. DADOS DA UNIDADE CONSUMIDORA

Número da Conta Contrato: 6425500

Classe: RESIDENCIAL

Nome do Titular da CC: JOSINETE VIANA DA SILVA

Endereço Completo: PV TUQUANDUBA, 18, ZONA RURAL, CEP: 57.160-000, MARECHAL DEODORO-AL

Número de identificação do poste e/ou transformador mais próximo: -

Coordenadas georrefenciadas:

UTM: X: 181526.75 Y: 8925821.25

Figura 1: Localização da unidade consumidora.

NAYANE MARUN SANTOS DA SILVA Tecnica com Elenotecnica CRI 2: 1000161418 5

4. LEVANTAMENTO DE CARGA E CONSUMO

4.1. Levantamento de Carga

Tabela 1 – Levantamento de carga

ITENS	DESCRIÇÃO	P (kW) [A]	QNTD [B]	CI (kW) [C=(A*B)]	FP [D]	CI (kVa) [E=C/D]	FD [F]	D (kW) [G=C*F]	D (kVa) [H=E*F]
1	AR-CONDICIONADO SPLIT DE 9.000 BTUS	1,2	1	1,2	100,00%	1,2	75,00%	0,9	0,9
4	CAFETEIRA	0,6	1	0,6	100,00%	0,6	80,00%	0,48	0,48
6	NOTEBOOK	0,15	1	0,15	100,00%	0,15	80,00%	0,12	0,12
8	GELADEIRA DUPLEX	0,5	1	0,5	100,00%	0,5	80,00%	0,4	0,4
9	FERRO ELETRICO	1	1	1	100,00%	1	75,00%	0,75	0,75
10	GELÁGUA	0,97	1	0,97	100,00%	0,97	80,00%	0,776	0,776
11	LÂMPADA DE 20W	0,02	5	0,1	100,00%	0,1	80,00%	0,08	0,08
13	LÂMPADA DE 9W	0,009	5	0,045	100,00%	0,045	80,00%	0,036	0,036
16	MAQUINA DE LAVAR ROUPA	1	1	1	100,00%	1	75,00%	0,75	0,75
20	TV LED 32 POLEGADAS	0,1	1	0,1	100,00%	0,1	80,00%	0,08	0,08
22	TV LED 40 POLEGADAS	0,13	1	0,13	100,00%	0,13	80,00%	0,104	0,104
24	VENTILADOR	0,1	1	0,1	100,00%	0,1	80,00%	0,08	0,08
TOTAL		_	•	5,90	-	5,90	-	4,56	4,56

NAYANEMARIA SANPOS DA SILVA Tecnica un plenotécnica CRT-3: 12090161418

6

4.2. Consumo Mensal

Tabela 2 – Consumo mensal dos últimos 12 meses.

MÊS	CONSUMO (kWh)
MÊS 1	30
MÊS 2	30
MÊS 3	30
MÊS 4	30
MÊS 5	30
MÊS 6	30
MÊS 7	30
MÊS 8	30
MÊS 9	30
MÊS 10	30
MÊS 11	30
MÊS 12	30
TOTAL	360
MÉDIA	30

5. PADRÃO DE ENTRADA

5.1. Tipo de Ligação e Tensão de Atendimento

A unidade consumidora é (será) ligada em ramal de ligação em baixa tensão, através de um circuito **MONOFÁSICO** à **DOIS** condutores, sendo **1** condutor(es) FASE dediâmetro nominal 10 mm² e um condutor NEUTRO de diâmetro nominal 10 mm², com tensão de atendimento em **220** V, derivado de uma rede **aérea** de distribuição secundária da EQUATORIAL ENERGIA no estado de(o) **ALAGOAS**.

5.2. Disjuntor de Entrada

No ponto de entrega/conexão é (será) instalado um disjuntor termomagnético, em conformidade com a norma NT.001.EQTL.Normas e Padrões da Equatorial Energia, com as seguintes características:

NÚMERO DE POLOS: 1

TENSÃO NOMINAL: 220 V

CORRENTE NOMINAL: 40 A

FREQUÊNCIA NOMINAL: 60 HZ

ELEMENTO DE PROTECAO: TERMOMAGNÉTICO

CAPACIDADE MAXIMA DE INTERRUPCAO: 3 kA;

ACIONAMENTO: MANUAL

CURVA DE ATUACAO (DISPARO): C.

NAYANE MARUY SANTOS DA SILVA Tecnica um Brenotécnica CRT-3: 12090161418

5.3. Potência Disponibilizada

A potência disponibilizada para unidades consumidora onde será instalada a microGD é (será) igual à:

PD $[kVA] = (V_N [V] X I_{DG} [A] X NF)/1000$

PD [kW] = PD [kVA] x FP

 $V_N = 220 V$

 $I_{DG} = 40 A$

NF = 1

FP = 0.92

PD (kVA) = 8,096 KVA

PD (kW) = 8.8 kW

NOTA 2: A potência de geração deve ser menor ou igual a potência disponibilizada PD em kW.

5.4. Caixa de Medição

A caixa de medição **existente polifásica** em material polimérico tem (terá) as dimensões de **260** mm x **423** mm x **130** mm (comprimento, altura e largura), está (será) instalada **fachada**, no ponto de entrega caracterizado como o limite da via pública com a propriedade, conforme fotos abaixo, atendendo aos requisitos de localização, facilidade de acesso e lay-out, em conformidade com as normas da concessionária NT.001.EQTL e NT.030.EQTL, conforme a FIGURA 2 e FIGURA 3.

Figura 2: Desenho dimensional detalhado da caixa de medição.

NAYANE MARUY SANPOS DA SILVA Tecnicas (CDT 2) 2000164442

Figura 3: Foto da caixa de medição ou do local de instalação da futura caixa de medição.

O aterramento da caixa de medição é(será) com 1 haste de aterramento de comprimento 1500 mm e diâmetro 5/8", condutor de 10 mm² com conexão em **solda exotérmica**.

5.5. Ramal de Entrada

O ramal de entrada da unidade consumidora é (será), através de um circuito **MONOFÁSICO** à **DOIS** condutores, sendo **UM** condutor(es) FASE de diâmetro nominal 6 mm² e um condutor NEUTRO de diâmetro nominal 6 mm², em 22**0V**.

6. ESTIMATIVA DE GERAÇÃO

Geração média estimada em 372,44 kWh/mês.

7. DIMENSIONAMENTO DO GERADOR

7.1. Dimensionamento do gerador

Descrever o dimensionamento do gerador e informar as características técnicas.

Tabela 3 - Características técnicas do gerador

Fabricante	TSUN POWER		
Modelo	TS595S8E-144GANT		
Potência nominal – Pn [W]	595		
Tensão de circuito aberto – Voc [V]	52,20		
Corrente de curto circuito – Isc [A]	13,65		
Tensão de máxima potência – Vpmp [V]	595		
Corrente de máxima potência – Ipmp [A]	43,59		
Eficiência [%]	22,0		
Comprimento [m]	2,384		
Largura [m]	1,134		
Área [m2]	2,703		
Peso [kg]	33,3		
Quantidade	5		
Potência do gerador [kW]	2,975		

NAYANE MARIA SANPOS DA SILVA Tecnica en presolécnica CRT-3: 12090161418

8. DIMENSIONAMENTO DO INVERSOR (SE HOUVER)

Descrever o dimensionamento do inversor e informar as características técnicas.

Tabela 4 – Características técnicas do inversor

Fabricante	SAJ			
Modelo	R5-3K-S2			
Quantidade	1			
ENTRADA				
Potência nominal – Pn [kW]	3			
Máxima potência na entrada CC – Pmax-cc [kW]	4,5			
Máxima tensão CC – Vcc-máx [V]	600			
Máxima corrente CC – Icc-máx [V]	12,5/12,5			
Máxima tensão MPPT – Vpmp-máx [V]	550			
Mínima tensão MPPT – Vpmp-min [V]	90			
Quantidade de Strings	1/1			
Quantidade de entradas MPPT	2			
SAIDA				
Potência nominal CA – Pca [kW]	3			
Máxima potência na saída CA – Pca-máx [kVA]	3,3			
Máxima corrente na saída CA – Imáx-ca [A]	13,1			
Tensão nominal CA – Vnon-ca [V]	220V/240V			
Frequência nominal – Fn [Hz]	50/60			
THD de corrente [%]	< 3%			
Eficiência máxima [%]	97,8%			

10
NAYANE MARY SAN POS DA SILVA
Tecnica un dienotécnica

9. **DIMENSIONAMENTO DA PROTEÇÃO**

9.1 CA

9.1.1 Disjuntores

Dimensionar e descrever as características técnicas do disjuntor CA:

Número de pólos: 1

Tensão nominal CA[V]: 220

Corrente Nominal [A]: 25

Frequência [Hz], para disjuntor CA: 60

Capacidade máxima de interrupção [kA]: 3

Curva de atuação: C

9.1.2 DPS

Tipo CA

Classe: II

Tensão CA [V]: 275

Corrente nominal [kA]: 10

Corrente máxima [kA]: 20

9.2 CC (PROTEÇÃO E CHAVE SECCIONADORA DO TIPO CC INTERNAS NO INVERSOR)

9.3 Aterramento

- 9.3.2 Geometria linear com distância mínima de 3m entre cada haste.
- 9.3.3 Hastes de comprimento de 1500 mm e diâmetro 5/8"
- 9.3.4 Quantidade de hastes: 1
- 9.3.5 Descrição das conexões: solda exotérmica
- 9.3.6 Valor da resistência de aterramento: 10 ohms
- 9.3.7 Descrição e dimensões:

CABOS DE ATERRAMENTO			
TENSÃO MÁXIMA SUPORTADA (V)	1 kV		
SEÇÃO TRANSVERSAL (MM²)	6		
CORRENTE MÁXIMA SUPORTADA (A)	54		
ISOLAÇÃO	XLPE		

11 POS DA SILVA

9.4 Requisitos de Proteção

Tabela 5 – Características técnicas do gerador

Requisito de Proteção	Obrigatório	Ajuste
Elemento de desconexão	Sim, quando não usar inversor	
Elemento de interrupção (52)	Sim	
Proteção de subtensão (27) e sobretensão (59)	Sim	
Proteção de subfrequência (81U) e sobrefrequência (81O)	Sim	
Relé de sincronismo (25)	Sim	
Anti-ilhamento (78 e 81 df/dt – ROCOF)	Sim	
Proteção direcional de potência (32)	Sim, quando não usar inversor	
Tempo de Reconexão (temporizador) (62)	Opcional, quando não usar inversor	

10. DIMENSIONAMENTO DOS CABOS

10.1 CABOS CC

Isolação: XLPEIsolamento: 1 kVBitola [mm2]: 6

• Capacidade de condução de corrente: 54A

10.1 CABOS CC

Isolação: XLPEIsolamento: 1 kVBitola [mm2]: 4

Capacidade de condução de corrente: 42A

10.1 CABOS CA

Isolação: XLPEIsolamento: 1 kVBitola [mm2]: 10

Capacidade de condução de corrente: 75A

10.1 CABOS CA

Isolação: XLPEIsolamento: 1 kVBitola [mm2]: 6

• Capacidade de condução de corrente: 54A

NAYANE MARLY SANTOS DA SILVA Tecnical multiplicationica CRT-3: 12090161418

11. PLACA DE ADVERTÊNCIA

Descrever forma e local de instalação, conforme modelo abaixo:

Características da Placa:

- Espessura: 2 mm;
- Material: Policarbonato com aditivos anti-raios UV (ultravioleta);
- Gravação: As letras devem ser em Arial Black;
- Acabamento: Deve possuir cor amarela, obtida por processo de masterização com 2%, assegurando opacidade que permita adequada visualização das marcações pintadas na superfície da placa;

Figura 3: Placa de advertência.

12. ANEXOS

- Formulário de Solicitação de Orçamento
- Documento de responsabilidade técnica (projeto e execução) do conselho profissional competente
- Diagrama unifilar contemplando, geração, inversor (se houver), cargas, proteção e medição.
- Diagrama de blocos contemplando geração, inversor (se houver), cargas, proteção e medição.
- Projeto Elétricos contendo: planta de situação, diagrama funcional, arranjos físicos ou lay-out, detalhes de montagem, manual com folha de dados do gerador e manual com folha de dados do inversor (se houver)
- Relatório de ensaio, em língua portuguesa, atestando a conformidade de todos os conversores de potência para a tensão nominal de conexão com a rede, sempre que houver a utilização de conversores
- Dados de registro
- Lista de rateio dos créditos
- Cópia de instrumento jurídico de solidariedade
- Para cogeração documento que comprove o reconhecimento pela ANEEL.

NAYANE MARKU SANTOS DA SILVA Tecnica em peratecnica CRT-3: 17090161418