핸디형 비전을 활용한 복합기 조작부 상태 감지 시스템 개발

1조 정인재 설승진 박성철 박정민 김효진 이경윤

CONTENTS

01 02 03

피드백

- 이전 진행 상황
- 피드백

모델 설계

- 데이터 확장
- 데이터 증강
- 모델 학습 및 결과

UI 구현

- UI 구현과정
- 모델 영상

이전 진행 상황

- 개요
- video를 10프레임 단위로 추출한 이미지를 pass와 target1~4로 분류하여 학습 및 검증 진행.
- 데이터 구성
- 학습 데이터 video 1~3에서 추출한 이미지를 증강하여 불균형 해결.
- 검증 데이터 video 4와 1cycle image 사용.
- 클래스 구성 pass(16,000장), target1(255장), target2(1,428장), target3(110장), target4(137장)로 구성.
- **데이터 증강** (아래 그림의 기법 사용) Pass 데이터는 16,000장으로 Target을 증강시켜도 많음.
- → 500장 선택해 증강하여 Class당 1500장 확보.

- 사용한 모델
- EfficientNet, ConvNext
- : 실시간 처리에 적합하고 빠르고 효율적인 CNN계열 모델
- 선택 이유
- SIFT, YOLO에 비해 빠른 처리 속도와 높은 정확도, 회전, 밝기 변화 등 다양한 조건에서도 안정적인 성능 발휘.
- 학습 설정
- 학습률: 1e-4, 손실 함수: CrossEntropyLoss, Optimizer: Adam
- 클래스는 총 5개 (Pass 1개 + Target 4개)
- 정확도 1이 나올 때까지 학습 진행, 가장 성능이 좋았던 모델 저장

피드백 사항

실제 현장에서 타겟을 늘려서 진행하고자 할때 개발자의 손을 거치지 않고 작업자가 바꿀 수 있는가?

class를 5에서 6으로 확장하여 학습한 모델 구축

데이터 확장

기존 video 1,2,3 에서 아래의 사진을 새로운 class로 임의로 확장

+) Pass(나머지 사진)

데이터 증강

"New class"에 해당하는 데이터셋을 Video 1, 2, 3에서 추출한 뒤, 이전에 Target 1, Target 2, Target 3, Target 4에 사용한 것과 동일한 증강(Augmentation) 방식으로 증강

모델 학습 과정& 결과

• 학습과정

1. Train Dataset 수정

"new class"에 해당하는 이미지를 기존 "pass" 클래스에서 제외하고, 부족한 만큼 video1, 2, 3에서 채워 추가.

2. New Class 데이터 수집 및 증강

video1, 2, 3에서 "new class"에 해당하는 데이터를 추출하고, 이전 타겟들과 동일한 방식으로 증강 후 학습 데이터에 추가.

3. 클래스 구성

new class, pass, target1, target2, target3, target4로 클래스를 구성. 이전 방식과 동일하게, 클래스의 개수는 가장 적은 클래스를 기준으로 균형을 맞춤.

4. Train / Validation 세트 생성

위에서 구성된 클래스에 맞춰 train과 validation 세트를 생성.

5. 모델 학습 진행

준비된 데이터를 기반으로 모델 학습을 진행.

● 학습 결과

- 정확도가 1이 될때까지 모델을 학습시킴.
- Epoch 15에 도달하자 정확도가 1에 도달하고 최종 모델 저장
- 한 에포크당 30초가량 학습시간이 걸림.
- 대략 450초 만에 모델 학습 완료

```
Epoch 1/15 — Train Loss: 0.2859, Train Acc: 0.9191 | Val Loss: 0.0526, Val Acc: 0.9721 | Time: 32.1s

New best model saved at epoch 1

Checkpoint saved to: test/best_model_epoch_1.pth

Best model also saved to: test/best_model.pth

Epoch 2/15 — Train Loss: 0.0494, Train Acc: 0.9789 | Val Loss: 0.0141, Val Acc: 0.9970 | Time: 32.2s

New best model saved at epoch 2

Checkpoint saved to: test/best_model_epoch_2.pth
```

Epoch 14/15 - Train Loss: 0.0190, Train Acc: 0.9931 | Val Loss: 0.0003, Val Acc: 1.0000 | Time: 32.4s Epoch 15/15 - Train Loss: 0.0185, Train Acc: 0.9928 | Val Loss: 0.0002, Val Acc: 1.0000 | Time: 32.6s Training complete. Best validation accuracy: 1.0000 Final model saved to: test/final model.pth

모델 학습 과정& 결과

재학습 후 video 4로 테스트 진행한 결과

```
예측 시작 - 이미지 개수: 2012
frame_000001.jpg \rightarrow pass (0.1350 s)
frame_000002.jpg \rightarrow pass (0.0049 s)
frame_000003.jpg \rightarrow pass (0.0049 s)
frame_000004.jpg \rightarrow pass (0.0049 s)
frame_000005.jpg \rightarrow pass (0.0049 s)
frame_000006.jpg \rightarrow pass (0.0049 s)
frame_000007.jpg \rightarrow pass (0.0049 s)
frame_000008.jpg \rightarrow pass (0.0048 s)
frame_000009.jpg \rightarrow pass (0.0049 s)
frame_000010.jpg \rightarrow pass (0.0048 s)
frame_000011.jpg \rightarrow pass (0.0049 s)
frame_000012.jpg \rightarrow pass (0.0049 s)
frame_000013.jpg \rightarrow pass (0.0049 s)
frame_000014.jpg \rightarrow pass (0.0049 s)
frame_000015.jpg \rightarrow pass (0.0049 s)
frame_000016.jpg \rightarrow pass (0.0049 s)
frame_000017.jpg \rightarrow pass (0.0049 s)
frame_000018.jpg \rightarrow pass (0.0050 s)
frame_000019.jpg \rightarrow pass (0.0049 s)
frame_000020.jpg \rightarrow pass (0.0049 s)
frame_000021.jpg \rightarrow pass (0.0049 s)
frame_000022.jpg \rightarrow pass (0.0049 s)
frame_000023.jpg \rightarrow pass (0.0049 s)
frame_000024.jpg \rightarrow pass (0.0049 s)
frame_000025.jpg \rightarrow pass (0.0049 s)
frame_000026.jpg \rightarrow pass (0.0049 s)
frame_000027.jpg \rightarrow pass (0.0049 s)
frame_000028.jpg \rightarrow pass (0.0049 s)
frame_000029.jpg \rightarrow pass (0.0048 s)
frame_000030.jpg \rightarrow pass (0.0048 s)
frame_000031.jpg \rightarrow pass (0.0049 s)
frame_000032.jpg \rightarrow pass (0.0049 s)
frame_000033.jpg \rightarrow new_class (0.0049 s)
frame_000034.jpg \rightarrow new_class (0.0048 s)
frame 000035.jpg \rightarrow new class (0.0049 s)
frame_000036.jpg \rightarrow new_class (0.0050 s)
frame_000037.jpg \rightarrow new_class (0.0049 s)
frame_000038.jpg \rightarrow new_class (0.0048 s)
frame_000039.jpg \rightarrow new_class (0.0114 s)
frame_000040.ipg \rightarrow new_class (0.0049 s)
frame_000041.jpg \rightarrow new_class (0.0049 s)
frame_000042.jpg \rightarrow new_class (0.0048 s)
frame 000043.ipg \rightarrow new class (0.0050 s)
frame_000044.jpg \rightarrow new_class (0.0048 s)
```

```
frame_000045.jpg \rightarrow new_class (0.0050 s)
frame_000046.jpg \rightarrow new_class (0.0048 s)
frame_000047.jpg \rightarrow new_class (0.0049 s)
frame_000048.jpg → new_class (0.0048 s)
frame_000049.jpg \rightarrow new_class (0.0049 s)
frame_000050.jpg \rightarrow new_class (0.0048 s)
frame_000051.jpg \rightarrow new_class (0.0048 s)
frame_000052.jpg \rightarrow new_class (0.0048 s)
frame_000053.jpg \rightarrow new_class (0.0049 s)
frame_000054.jpg → new_class (0.0048 s)
frame_000055.jpg \rightarrow new_class (0.0048 s)
frame_000056.jpg \rightarrow new_class (0.0048 s)
frame_000057.jpg \rightarrow new_class (0.0049 s)
frame 000058.jpg \rightarrow new_class (0.0048 s)
frame_000059.jpg → new_class (0.0048 s)
frame_000060.jpg \rightarrow new_class (0.0048 s)
frame_000061.jpg \rightarrow new_class (0.0048 s)
frame_000062.jpg \rightarrow new_class (0.0048 s)
frame_000063.jpg \rightarrow new_class (0.0048 s)
frame_000064.jpg \rightarrow new_class (0.0048 s)
frame_000065.jpg \rightarrow new_class (0.0048 s)
frame_000066.jpg \rightarrow new_class (0.0048 s)
frame_000067.jpg \rightarrow new_class (0.0049 s)
frame_000068.jpg \rightarrow new_class (0.0049 s)
frame_000069.jpg → new_class (0.0048 s)
frame_000070.jpg \rightarrow new_class (0.0048 s)
frame_000071.jpg \rightarrow new_class (0.0050 s)
frame_000072.jpg \rightarrow new_class (0.0054 s)
frame_000073.jpg \rightarrow new_class (0.0049 s)
frame_000074.jpg \rightarrow new_class (0.0049 s)
frame_000075.jpg → new_class (0.0049 s)
frame_000076.jpg \rightarrow new_class (0.0049 s)
frame_000077.jpg \rightarrow new_class (0.0050 s)
frame_000078.jpg \rightarrow new_class (0.0113 s)
frame_000079.jpg → new_class (0.0051 s)
frame 000080.ipg \rightarrow new class (0.0049 s)
frame_000081.jpg \rightarrow new_class (0.0049 s)
frame_000082.jpg \rightarrow new_class (0.0049 s)
frame_000083.jpg \rightarrow new_class (0.0049 s)
frame_000084.jpg \rightarrow new_class (0.0049 s)
frame_000085.jpg \rightarrow new_class (0.0049 s)
frame_000086.jpg \rightarrow new_class (0.0049 s)
frame 000087, ipg \rightarrow new class (0.0049 s)
```

```
frame 000792.jpg \rightarrow pass (0.0048 s)
frame_000793.jpg \rightarrow pass (0.0049 s)
frame_000794.jpg \rightarrow pass (0.0048 s)
frame_000795.jpg \rightarrow pass (0.0050 s)
frame 000796.jpg \rightarrow pass (0.0048 s)
frame_000797.jpg \rightarrow pass (0.0048 s)
frame_000798.jpg \rightarrow pass (0.0048 s)
frame_000799.jpg \rightarrow target_1 (0.0048 s)
frame_000800.jpg \rightarrow target_1 (0.0049 s)
frame_000801.jpg \rightarrow target_1 (0.0049 s)
frame_000802.jpg \rightarrow target_1 (0.0050 s)
frame_000803.jpg \rightarrow target_1 (0.0048 s)
frame_000804.jpg \rightarrow target_1 (0.0048 s)
frame_000805.jpg \rightarrow target_1 (0.0050 s)
frame_000806.jpg \rightarrow target_1 (0.0048 s)
frame_000807.jpg \rightarrow target_1 (0.0049 s)
frame_000808.jpg \rightarrow target_1 (0.0049 s)
frame 000809.jpg \rightarrow target 1 (0.0048 s)
frame_000810.jpg \rightarrow target_1 (0.0050 s)
frame_000811.ipg \rightarrow target_1 (0.0048 s)
frame_000812.jpg \rightarrow target_1 (0.0049 s)
frame_000813.jpg \rightarrow target_1 (0.0049 s)
frame 000814.ipg \rightarrow target 1 (0.0049 s)
frame_000815.jpg \rightarrow target_1 (0.0050 s)
frame_000816.jpg \rightarrow target_1 (0.0049 s)
frame_000817.jpg \rightarrow target_1 (0.0105 s)
frame_000818.jpg \rightarrow target_1 (0.0050 s)
frame 000819.jpg \rightarrow target 1 (0.0050 s)
frame_000820.jpg \rightarrow target_1 (0.0049 s)
frame_000821.jpg \rightarrow target_1 (0.0049 s)
frame_000822.jpg \rightarrow target_1 (0.0049 s)
frame_000823.jpg \rightarrow target_1 (0.0049 s)
frame 000824.jpg \rightarrow pass (0.0048 s)
frame_000825.jpg \rightarrow pass (0.0049 s)
frame_000826.jpg \rightarrow pass (0.0049 s)
frame_000827.jpg \rightarrow pass (0.0048 s)
frame_000828.jpg \rightarrow pass (0.0049 s)
frame 000829.jpg \rightarrow pass (0.0049 s)
frame_000830.jpg \rightarrow pass (0.0048 s)
frame_000831.jpg \rightarrow pass (0.0049 s)
frame_000832.jpg \rightarrow pass (0.0049 s)
frame_000833.jpg \rightarrow pass (0.0049 s)
frame 000834.jpg \rightarrow pass (0.0049 s)
frame_000835.jpg \rightarrow pass (0.0119 s)
frame_000836.jpg \rightarrow pass (0.0080 s)
```

```
frame_001130.ipg \rightarrow pass (0.0049 s)
frame_001131.jpg \rightarrow pass (0.0049 s)
frame_001132.jpg \rightarrow pass (0.0050 s)
frame_001133.jpg \rightarrow pass (0.0050 s)
frame_001134.jpg \rightarrow target_2 (0.0049 s)
frame_001135.jpg \rightarrow target_2 (0.0049 s)
frame_001136.jpg \rightarrow target_2 (0.0049 s)
frame_001137.jpg \rightarrow target_2 (0.0049 s)
frame_001138.jpg \rightarrow target_2 (0.0050 s)
frame_001139.jpg \rightarrow target_2 (0.0056 s)
frame_001140.jpg \rightarrow target_2 (0.0049 s)
frame_001141.jpg \rightarrow target_2 (0.0049 s)
frame 001142.ipg \rightarrow target 2 (0.0049 s)
frame_001143.jpg \rightarrow target_2 (0.0049 s)
frame_001144.jpg \rightarrow target_2 (0.0049 s)
frame_001145.jpg \rightarrow target_2 (0.0050 s)
frame 001146.jpg \rightarrow target 2 (0.0049 s)
frame_001147.jpg \rightarrow target_2 (0.0050 s)
frame_001148.jpg → target_2 (0.0050 s)
frame_001149.jpg \rightarrow target_2 (0.0049 s)
frame_001150.jpg \rightarrow target_2 (0.0056 s)
frame_001151.jpg \rightarrow target_2 (0.0050 s)
frame_001152.jpg \rightarrow target_2 (0.0050 s)
frame_001153.jpg \rightarrow target_2 (0.0051 s)
frame_001154.jpg \rightarrow target_2 (0.0056 s)
frame_001155.jpg \rightarrow target_2 (0.0051 s)
frame_001156.ipg \rightarrow target_2 (0.0048 s)
frame_001157.jpg \rightarrow target_2 (0.0049 s)
frame_001158.jpg \rightarrow target_2 (0.0049 s)
frame_001159.jpg \rightarrow target_2 (0.0049 s)
frame_001160.jpg \rightarrow target_2 (0.0049 s)
frame_001161.jpg \rightarrow target_2 (0.0049 s)
frame_001162.jpg \rightarrow target_2 (0.0049 s)
frame_001163.jpg \rightarrow target_2 (0.0049 s)
frame_001164.jpg \rightarrow target_2 (0.0049 s)
frame_001165.jpg \rightarrow target_2 (0.0049 s)
frame 001166.jpg \rightarrow target 2 (0.0049 s)
frame_001167.jpg \rightarrow target_2 (0.0049 s)
frame_001168.jpg \rightarrow target_2 (0.0048 s)
frame_001169.jpg \rightarrow target_2 (0.0049 s)
```

UI 구현 과정

1. 모델 전이 학습 기능

- 기존에 잘 학습된 ConvNext모델에 전이 학습이 가능하도록 설계.
- Class추가/삭제 버튼을 통해 새로운 클래스를 쉽게 추가할 수 있음. 기존 클래스: 기존 체크포인트의 가중치를 그대로 사용 새로운 클래스: FC Layer 확장 후 랜덤 초기화하여 학습

2. 데이터 증강 기능

- UI에서 회전 후 학습 시 사용했던 증강 기법 선택 가능.
- 버튼 클릭 시 증강된 데이터셋이 자동 생성됨.

3. 학습 설정 및 실행

- 하이퍼파라미터 입력창을 통해 모델 설정.
- Train 버튼 클릭 시 기존 클래스는 체크포인트의 가중치를 그대로 사용.
- new class 추가 시: FC Layer 차원 확장 후 새로 추가된 부분만 랜덤 초기화하여 학습.

4. 학습 방법

- 데이터를 Train/ Test/ Validation 세트로 데이터를 분리하여 학습.
- Fold기법과 Dropdown기법을 사용-> 유연한 학습이 가능하도록 구현. 모델의 일반화 성능 향상 및 과적합 방지 설정값을 빠르게 변경할 수 있는 인터페이스 제공

5. 장/단점

- 직관적인 UI를 통해 전이 학습, 데이터 증강, 학습 설정을 간편하게 수행.
- 모델 성능 유지와 새로운 클래스 학습을 동시에 해결할 수 있음.
- 클래스 추가는 쉽지만, 학습을 위한 **고성능 컴퓨팅 자원**이 필수적임.
- 딥러닝의 장점은 단순히 데이터를 추가해 학습하면 높은 인식 성능을 낼 수 있지만, 학습을 위한 환경(컴퓨팅 자원)이 부족하면 현실적으로 구현하기 어려움.

모델 적용 영상

발표를 들어주셔서 감사합니다.

정인재 설승진 박성철 박정민 김효진 이경윤