Primes in Arithmetic Progressions - Dirichlet's Theorem

Extensions of Euclid's argument establishing the infinitude of primes

Proposition 1: There are infinitely many primes p = 3 mod 4 Proct: Let &p,..., px 3 be any finite list of primes with py = 3 mod 4. Consider N=4p1...pn-1. Since N>1 it has prime divisors, at least one of which must be = 3 mod 4 (since N # 1 mod 4) But as PitN for all I=jsk, this prime is not on original list. []

Exercise (1):

- (a) Prove that there are infinitely many primes p \$1 mod q (9,3).
- (b) Prove that if H is a proper subgroup of (ZL/qZL), then there are infinitely many primes which are not in H when reduced mad q.

Proposition 2: There are infinitely many primes p = 1 mod 4.

Proof: We will use the basic number theory fact that

-1= [mod p (*) p= 1 mod 4. (*)

Now given any {p1,..., px } list of primes with p; = 1 mod 4, we

 $N = (2p_1 \cdots p_k)^2 + 1$

Since N>1, \exists odd prime $p!N \Rightarrow (2p_1 \cdots p_n)^2 \equiv -1 \mod p$ But p; YN for alliesek. $\Rightarrow p \equiv 1 \mod 4 \pmod (by(*))$.

In fact, we can also establish the following.

Proposition 3: There are infinitely many primes p=1 mod q (q>2).

Proof: Let 2p,..., Pu3 be any finite list of primes all = 1 mod q.

Consider the 9th cyclotomic polynomial primative 9th roots of unity $\overline{F}_{q}(x) = T \left(x - e^{2\pi i a/q}\right) \in \mathbb{Z}[x].$

evaluated at $n=lqp_1\cdots p_k$ with $l\in IN$ chosen large enough to ensure that $\overline{I}_q(n)>1$. Since the constant coefficients of $\overline{I}_q(n)$ are ± 1 , it follows that

follows that $\overline{Q}_q(n) \equiv \pm 1 \mod n \equiv \pm 1 \mod p_j$, $1 \leq j \leq k$.

In particular, $\overline{\mathcal{A}}_q(n)$ is not divisible by any p_i or any prime dividing q. But as $\overline{\mathcal{A}}_q(n) > 1$ it must have a prime divisor p and since

Ig(n) | n2-1

this prime must also divide N^2-1 . Note that if order of n mod p equals q, then we must have $q|p-1 \iff p \equiv 1 \mod q$.

Exercise (2): Show that the order of n mod p equals q.

Naturally, every class a mode with (a,q)=1 should contain infinitely many primes.

Theorem (Dirichlet) This is the case!

It is to the proof of this Theorem that we now turn our attention.

Theorem 2 For any a with (a,q)=1 we have for all x > 2,

 $\sum_{n \leq X} \frac{\Lambda(n)}{n} = \frac{1}{\varphi(q)} \log X + O_q(1).$ $n \leq x \mod q$

Corollary 1: For any a with (a, q) = 1 we have for all x > 2,

 $\sum_{\substack{p \leq x \\ p \equiv a \bmod q}} \frac{\log p}{p} = \frac{1}{\varphi(q)} \log x + O_q(1)$

In particular, there are infinitely many primes p = a mod q.

[Corollary 1 follows from Theorem 2 as in proof of Theorem 3.1 (b)]
In light of Mertens' theorem (Theorem 3.1 (a) & (b)), we can view these results as equidistribution statements, asserting that (in a peculiar average sense) the fraction of the primes falling into a given coprime residue class is exactly 1/9/9).

Exercise 3: Show that if $\pi(x;q,a) := \sum_{i=1}^{\infty} 1 \sim c \frac{x}{\log x}$ then c must equal $\frac{1}{2} \log x$. $p = a \mod q$

Hint: Show that of some M>1, $TT(Mx;q,a)-TT(x;q,a) >> \frac{X}{\log x}$ for all x > 2. Conclude from this that $TT(x;q,a) >> \frac{X}{\log x}$ Then arope as in proof of Theorem 3.2.

By the orthogonality of Dirichlet characters modulo q (Corollary 1 in Supplement 1)

$$\sum_{\substack{n \leq x \\ n \equiv a \mod q}} \frac{\lambda(n)}{n} = \frac{1}{\varphi(q)} \sum_{\chi} \overline{\chi}(a) \left(\sum_{\substack{n \leq x \\ n \leq x}} \frac{\chi(n) \Lambda(n)}{n} \right) \tag{*}$$

Lemma 1:
$$\sum_{n \leq x} \frac{\chi(n) \Lambda(n)}{n} = S\chi \log x + O_q(1)$$

where $S\chi = \begin{cases} 1 & \text{if } \chi = \chi_o \\ 0 & \text{if } \chi \neq \chi_o \text{ and } L(1,\chi) \neq 0 \\ -1 & o/w \end{cases}$

$$L(s,\chi):=\frac{\infty}{\sum_{n \in I} \frac{\chi(n)}{n^s}} = \frac{Dirichlet \ L-series}{(associated to \chi)}$$

Setting a=1 and plugging Lemma 1 into (*) gives

$$\sum_{n \leq x} \frac{\Lambda(n)}{n} = \frac{1}{\varphi(q)} \left(\sum_{\chi} S_{\chi} \right) \log_{\chi} + O_{q}(1)$$

$$n \equiv 1 \mod q$$

Hence $\sum S\chi > 0$. This show that there is at most one character $\chi \neq \chi_0$ with $L(1,\chi) = 0$. (Since if such a χ does exist, it must be real because $L(1,\chi) = 0$ implies $L(1,\chi) = 0$).

Lemma 2: If X + Xo is real, then L(1, X) + O

Lemmas 1 & 2 together imply Theorem 1, it also establishes Theorem 3. (Dirichlet) If $\chi \neq \chi_0$, then $L(1,\chi) \neq 0$.

* This is far from the most elegant way to prove Theorem 3 ...

• Suppose
$$\chi = \chi_0$$
: Since $\sum_{n \leq x} \frac{\Lambda(n)}{n} = \log_x + O(1)$ and

$$\sum_{n \leq x} \frac{\Lambda(n)}{n} - \sum_{n \leq x} \frac{\chi_0(n)\Lambda(n)}{n} = \sum_{\substack{p \mid q \\ k \neq 1}} \frac{\log p}{p^k} \leq \sum_{\substack{p \mid q \\ k \neq 1}} \frac{\log p}{p-1} = O_q(1)$$

$$\Rightarrow \sum_{n \leq x} \frac{\chi_0(n)\Lambda(n)}{n} = \log_x + O_q(1)$$

· Suppose X = X0 & L(1,X) = 0:

Proof: By orthogonality $\sum \chi(n) = 0$ when summed over any block of q consecutive integers, and hence $|\sum \chi(n)| \leq \varphi(q)$.

$$\sum_{n > x} \frac{\chi(n)}{n} = \lim_{y \to \infty} \left(\frac{S(y)}{y} - \frac{S(x)}{x} + \int_{x}^{y} \frac{S(4)}{t^{2}} dt \right) = -\frac{S(x)}{x} + \int_{x}^{\infty} \frac{S(4)}{t^{2}} dt$$

$$|\cdot| \leq \frac{\varphi(q)}{x} \quad |\cdot| \leq \frac{\varphi(q)}{x}$$

$$\sum_{n \leq x} \chi(n) \frac{\log n}{n} = \sum_{n \leq x} \chi(n) \frac{1}{n} \sum_{d \mid n} \chi(d) \qquad \left[\log n = \sum_{d \mid n} \chi(d) \right]$$

$$= \sum_{d \leq x} \chi(d) \Lambda(d) d^{-1} \sum_{m \leq x} \chi(m) m^{-1}$$

$$= \sum_{d \leq x} \chi(d) \Lambda(d) d^{-1} \left(L(1, x) + Q(\frac{d}{x}) \right) \qquad \left[\text{Sublemma} \right]$$

$$= L(1, x) \sum_{d \leq x} \chi(d) \Lambda(d) + Q(1) \qquad \left[\text{Chebyshev} \right]$$

$$\sum_{n \in X} \chi(n) \frac{\log n}{n} = S(x) \frac{\log x}{x} - \int_{1}^{x} S(t) \frac{1 - \log t}{t^2} dt = O_q(1)$$

Since
$$|S(x)| \le q/q$$
, $\frac{\log x}{x} \le 1$, and $\int_{1}^{\infty} \frac{1-\log t}{t^2} dt = O(1)$.

· Suppose X + X & L(1, X) = 0:

Sublemma2:
$$\sum \mu(d) = \begin{cases} 1 & \text{if } n=1 \\ 0 & \text{olw} \end{cases} & \Lambda(n) = -\sum \mu(d) \log d$$

where µ(d) is the Möbius Runchan defined by

Proof: Exercise or see Supplement 2 on Möbius miversion.

Since
$$\sum_{n \in X} \frac{\chi(n)}{n} \Lambda(n) = -\sum_{n \in X} \frac{\chi(n)}{n} \sum_{n \in X} \mu(d) \log d$$

and
$$\log x = \sum_{n \leq x} \frac{\chi(n)}{n} \sum_{\substack{p \mid d \\ d \mid n}} \mu(d) \log x$$

$$\Rightarrow \log_{x} + \sum_{n \leq x} \frac{\chi(n)}{n} \Lambda(n) = \sum_{n \leq x} \frac{\chi(n)}{n} \sum_{n \leq x} \mu(d) \log \left(\frac{x}{d}\right)$$

$$= \sum_{d \in n} \mu(d) \frac{\chi(d)}{d} \log \left(\frac{x}{d}\right) \sum_{m \leq x \leq d} \frac{\chi(m)}{m}$$

=
$$L(1, x) \sum_{d \in x} \mu(d) \frac{\chi(d)}{d} \log(\frac{x}{d}) + O_q(1)$$
.

Since
$$L(1,x)=0 \Rightarrow \sum_{n \in x} \frac{\chi(n)}{n} \chi(n) = -\log x + Oq(1)$$
.

Proof of Lemma 2: (i.e. Nonvanishing of L(1,X) for X = X0 and real)

Sublemma 3: Let X be a real Dirichlet character mod q.

For every ne IN

 $\sum \chi(d) \geq \begin{cases} 1 & \text{if n is a perfect square} \\ 0 & \text{for all n} \end{cases}$

Proof: The proof of this sublemma is simple. If n is a power of a prime, say $n=p^a$, then the divisors of n are 1, p, p^2 , ..., p^a and $\sum \chi(d) = \chi(1) + \chi(p) + ... + \chi(p^a)$

 $Z_{i} \chi(d) = \chi(1) + \chi(p) + \dots + \chi(p^{\alpha})$ $= \chi(1) + \chi(p) + \dots + \chi(p)^{\alpha}.$

Since X is real, we have X(p)=0,1, or-1, and hence

 $\sum_{i=1}^{n} \chi(a) = \begin{cases} a+1 & \text{if } \chi(p)=1\\ 1 & \text{if } \chi(p)=-1 \text{ and a is even}\\ 0 & \text{if } \chi(p)=-1 \text{ and a is odd}\\ 1 & \text{if } \chi(p)=0, \text{ that is plg.} \end{cases}$

In general, if $n = P_n^{l_n} \cdot P_n^{l_k}$, then any divisor of n which take the form $p_1^{m_1} \cdot p_k^{m_k}$ with $0 \le m_j \le l_j$, $1 \le j \le k$. Therefore, the multiplicative property of χ given

$$\sum_{j=1}^{k} \chi(d) = \prod_{j=1}^{k} (\chi(i) + \chi(p_j) + \chi(p_j)^2 + \cdots + \chi(p_j)^2),$$

and the proof is complete.

By partial summation and Sublemma I we see that

$$L(1,\chi) = \sum_{n \leq x} \frac{\chi(n)}{n} + \sum_{n > x} \frac{\chi(n)}{n}$$

$$= \frac{S(x)}{x} + \int_{1}^{x} \frac{S(t)}{t^{2}} dt + O_{q}(\frac{1}{x})$$

where $S(x) = \sum_{n \leq x} \chi(n)$. Since $|S(x)| \leq ep(q)$ it follows that

$$\times L(1,\chi) = \int_{1}^{\chi} \left(\sum_{n \leq t} \chi(n) \right) \frac{\chi}{t^{2}} dt + O_{q}(1)$$

$$= \int_{1}^{\chi} \left(\sum_{n \leq t} \chi(n) \right) \left[\frac{\chi}{t} \right] \frac{1}{t} dt + O_{q}(\log \chi)$$

$$= \int_{1}^{\chi} \sum_{n \leq t} \chi(n) \sum_{n \leq t} \frac{1}{t} dt + O_{q}(\log \chi)$$

$$= \sum_{n \leq t} \sum_{n \leq t} \chi(n) \sum_{n \leq t} \frac{1}{t} dt + O_{q}(\log \chi) .$$

$$= \sum_{n \leq t} \sum_{n \leq t} \chi(n) \sum_{n \leq t} \frac{1}{t} dt + O_{q}(\log \chi) .$$

$$= \sum_{n \leq t} \chi(n) \sum_{n \leq t} \frac{1}{t} dt + O_{q}(\log \chi) .$$

$$= \sum_{n \leq t} \chi(n) \sum_{n \leq t} \frac{1}{t} dt + O_{q}(\log \chi) .$$

$$= \sum_{n=1}^{\infty} \chi(n) \log \frac{x}{an}$$

$$= \sum_{N \leq x} \left(\sum_{d|N} \chi(d) \right) \log \frac{x}{N}$$

Sublemma 3
$$\sum_{M \leq \sqrt{X'}} \log \frac{X}{M^2} > 2 \sum_{M \leq \sqrt{X'}} \log \frac{X^{V_2}}{M} = 2 \log 2 \left[\frac{\sqrt{X'}}{2} \right]$$

Hence for all x = 2, $\times L(1,\chi) > 2\log_2\left[\frac{\sqrt{\chi}}{2}\right] + O_q(\log_x) > O \quad (as x \to \infty) \Rightarrow L(1,\chi) > O.$