MATHEMATICAL FOUNDATION FOR COMPUTER SCIENCE

Prepared by: Er. Ankit Kharel

Nepal college of information technology

PREDICATE LOGIC

- 2.NESTED QUANTIFIERS
- 3.TRANSLATION FROM ENGLISH

I. Consider the following:

"The sum of any two positive real number is positive"

This assertion can be restated as:

"for ever x and for every y, If x>0 and y>0, then x+y>0"

Let,

$$p(x, y) : (x>0)^{(y>0)} \rightarrow (x+y)>0$$

The given statement says that the sum of any two positive real number is positive, so we need two Universal quantifiers.

$$\forall_x \forall_y [p(x,y)]$$

3. Consider the following:

"Some student in your class has taken some computer training course"

Restating above statement as:

"For some student x, there exist a computer training course y such that x has taken y"

let, Q(x, y): "Student x has taken training y"

$$\exists_{x} \exists_{y} [Q(x, y)]$$

4. Consider the following:

"If a person is female and is a parent, then this person is someone's mother"

Restating above statement as:

"For every person x, if x is a female and person x is a parent, then there exist a person y such that person x is the mother of y.

```
let, F(x) : "x is female"
P(x) : "x is parent"
M(x, y) : "x is the mother of y"
```

$$= \forall_{x} [(F(x)^{P}(x)) \rightarrow \exists_{y} M(x,y)]$$
$$= \forall_{x} \exists_{y} [(F(x)^{P}(x)) \rightarrow M(x,y)]$$

5. Consider the following:

"There is a man that has taken a flight on every airline in the world"

Restating above statement as:

"There is a man x, for all airlines a ,there exist a flight f such that x has taken flight f"

let, P(x, f) :"x has taken flight f"

Q(f, a) :" f is a flight on airline a"

$$=\exists_x \forall_a \exists_f [(P(x, f) \land Q(f, a)]$$

```
Let,
L(x, y): "x loves y"
```

- a) "Everyone Loves Somebody" =For every person x, there exist person y such that x loves y $= \forall_x \exists_y L(x, y)$
- b) "Someone Loves Somebody" =There exist some person x and some person y such that x loves y = $\exists_x \exists_y L(x, y)$
- c) "Someone is loved by everyone" =There exist some person y for all x such that x loves y. = $\exists_y \forall_x L(x, y)$
- d) "Everybody Loves Everybody" = $\forall_x \forall_y L(x, y)$

Q. Let Q(x, y) denote "x + y = 0."

What are the truth values of the quantifications

- a) $\exists_y \forall_x \mathbf{Q}(x, y)$ and b) $\forall_x \exists_y \mathbf{Q}(x, y)$, where the domain for all variables consists of all real numbers? Solution:
- a) The quantification $\exists_y \forall_x Q(x, y)$ denotes the proposition "There is a real number y such that for every real number x, Q(x, y)." No matter what value of y is chosen, there is only one value of x for which x + y = 0. Because there is no real number y such that x + y = 0 for all real numbers x, the statement $\exists_y \forall_x Q(x, y)$ is false.
- b) The quantification $\forall_x \exists_y Q(x, y)$ denotes the proposition "For every real number x there is a real number y such that Q(x, y)." Given a real number x, there is a real number y such that x + y = 0; namely, y = -x. Hence, the statement $\forall_x \exists_y Q(x, y)$ is true.

Q. Let P (x, y) be the statement "x + y = y + x."

What are the truth values of the quantifications a) $\forall_x \forall_y P(x, y)$ and b) $\forall_y \forall_x P(x, y)$ where the domain for all variables consists of all real numbers?

Solution:

- a) The quantification $\forall_x \forall_y P(x, y)$ denotes the proposition "For all real numbers x, for all real numbers y, x + y = y + x." Because P(x, y) is true for all real numbers x and y the proposition $\forall_x \forall_y P(x, y)$ is true.
- b) The quantification $\forall_y \forall_x P(x, y)$ says "For all real numbers y, for all real numbers x, x + y = y + x." Because P(x, y) is true for all real numbers x and y the proposition $\forall_y \forall_x P(x, y)$ is true.

Q. Let Q(x, y) denote "x + y = xy."

What are the truth values of the quantifications

- a) $\exists_x \exists_y Q(x, y)$ and b) $\exists_y \exists_x Q(x, y)$, domain for all variables consists of all positive real numbers? Solution:
- a) The quantification $\exists_x \exists_y Q(x, y)$ denotes the proposition "There is exist a number x such that for some number y, Q(x, y)." Q(x, y) is true for x=(0,2) and y=(0,2). Hence, $\exists_x \exists_y Q(x, y)$ is TRUE
- b) The quantification $\exists_y \exists_x Q(x, y)$ denotes the proposition "There is exist a number y such that for some number x, Q(x, y)." Q(x, y) is true for y=(0,2) and x=(0,2). Hence, $\exists_y \exists_x Q(x, y)$ is TRUE

$$\exists_{y} \forall_{x} \mathbf{Q}(x, y) != \forall_{x} \exists_{y} \mathbf{Q}(x, y)$$

$$\forall_x \forall_y P(x, y) = \forall_y \forall_x P(x, y)$$

$$\exists_x \exists_y P(x, y) = \exists_y \exists_x P(x, y)$$

2. <u>NEGATING NESTED QUANTIFIERS:</u>

- > Statements involving nested quantifiers can be negated by successively applying the De-Morgan's rules for negating statements involving a single quantifier.
- a) Express the negation of the statement $\forall_x \exists_y (xy = 1)$. = $\neg [\forall_x \exists_y (xy = 1)]$

$$= \exists_{x} \neg [\exists y(xy = I)]$$
$$= \exists_{x} \forall_{y} \neg (xy = I)$$

$$= \exists_{x} \forall_{y} (xy!=1)$$

b)
$$\exists_{x}\exists_{y} P(x,y) \land \forall_{x}\forall_{y} Q(x,y)$$

= $\neg[\exists_{x}\exists_{y} P(x,y) \land \forall_{x}\forall_{y} Q(x,y)]$
= $\neg[\exists_{x}\exists_{y} P(x,y)] \lor \neg[\forall_{x}\forall_{y} Q(x,y)]$
= $\forall_{x}\neg\exists_{y} P(x,y) \lor \exists_{x}\neg\forall_{y} Q(x,y)$
= $\forall_{x}\forall_{y} \neg P(x,y) \lor \exists_{x}\exists_{y} \neg Q(x,y)$

Statement	When True?	When False?
∀x ∀y P(x,y) ∀y ∀x P(x,y)	P(x,y) is true for every pair x,y	There is a pair x,y for which P(x,y) is false
∀x∃yP(x,y)	For every x there is a y for which P(x,y) is true	There is an x such that P(x,y) is false for every y
∃x ∀y P(x,y)	There is an x for which P(x,y) is true for every y	For every x there is a y for which P(x,y) is false
Bx By P(x,y) By Bx P(x,y)	There is a pair x,y for which P(x,y) is true	P(x,y) is false for every pair x,y

$$\forall x \exists y P(x, y)$$

$$= \neg [\forall x \exists y P(x, y)]$$

$$= \exists_x \neg \exists y P(x, y)$$

$$= \exists_x \forall_y \neg P(x, y)$$

$$\exists_{x} \forall_{y} P(x, y)$$

$$= \neg [\exists_{x} \forall_{y} P(x, y)]$$

$$= \forall_{x} \neg \forall_{y} P(x, y)$$

$$= \forall_{x} \exists_{y} \neg P(x, y)$$

3. TRANSLATING FROM NESTED QUANTIFIERS INTO ENGLISH:

Q. Translate the statement:

 $\forall_x [C(x) \lor \exists_y (C(y) \land F(x,y))]$ into English, where

C(x) is "x has a computer,"

F (x, y) is "x and y are friends," and the domain for both x and y consists of all students in your school.

Solution:

The statement says that "for every student x in your school, x has a computer or there is a student y such that y has a computer and x and y are friends."

In other words, "Every student in your school has a computer or has a friend who has a computer"

3. TRANSLATING FROM NESTED QUANTIFIERS INTO ENGLISH:

Q. Translate the statement:

 $\forall_x [S(x) \lor \exists_y (S(y) \land F(x,y))]$ into English, where

S(x) is "x uses snapchat"

F (x, y) is "x and y are friends," and the domain for both x and y consists of all students in your school.

Solution:

The statement says that "for every student x in your school, x either uses snapchat or there is a student y such that y uses snapchat and y and x are friends."

In other words, "Every student in your school either uses snapchat or are friends with a student who uses snapchat"

3. TRANSLATING FROM NESTED QUANTIFIERS INTO ENGLISH:

Q. Translate the statement

 $\exists_{x} \forall_{y} \forall_{z} ((F(x, y) \land F(x, z) \land (y != z)) \rightarrow \neg F(y, z))$

into English, where F(a, b) means a and b are friends and the domain for x, y, and z consists of all students in your school.

Solution:

We first examine the expression $(F(x, y) \land F(x, z) \land (y = z)) \rightarrow \neg F(y, z)$. This expression says that if students x and y are friends, and students x and z are friends, and furthermore, if y and z are not the same student, then y and z are not friends.

It follows that the original statement, which is triply quantified, says that "there is a student x such that for all students y and all students z other than y, if x and y are friends and z and z are friends, then y and z are not friends. In other words,

"There is a student none of whose friends are also friends with each other."