## МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ВЯТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ТЕЛЕКОММУНИКАЦИЙ КАФЕДРА ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ

ОТЧЕТ ПО ДИСЦИПЛИНЕ «Системы искуственного интеллекта и принятия решений» ПО ЛАБОРАТОРНОЙ РАБОТЕ №6

| Выполнил студент группы ПМ-41       | Кислицын И.К   |
|-------------------------------------|----------------|
| Проверил доцент, к.т.н. кафедры ЭВМ | Ростовцев В.С. |

Целью выполнения лабораторной работы является изучение нейронной сети адаптивной резонансной теории (APT-1).

Входные данные: kislitsyn  $\rightarrow$  i, k, l, n, s, t, y

Ход работы:

Размер изображения: 32х32

Резервных нейронов: 7

Критерий схожести: 90,0%

Протокол работы сети

| Символ | Уровень шума, % | Входной вектор | Схожесть, % | Результат классификации |
|--------|-----------------|----------------|-------------|-------------------------|
| i      | 0.0             |                | 100,0       | Новый класс 0           |
| k      | 0.0             | K              | 100,0       | Новый класс 1           |
| 1      | 0.0             |                | 100,0       | Новый класс 2           |
| n      | 0.0             | n              | 100,0       | Новый класс 3           |
| S      | 0.0             | Ø              | 100,0       | Новый класс 4           |
| t      | 0.0             |                | 100,0       | Новый класс 5           |
| у      | 0.0             | y              | 100,0       | Новый класс 6           |
| i      | 1.0             |                | 93,4        | Класс 0                 |
| i      | 2.0             |                | 84,5        | Не классифицирован      |
| i      | 4.0             | <b>.</b>       | 81,8        | Не классифицирован      |
| k      | 1.0             | K              | 94,4        | Класс 1                 |
| k      | 2.0             | k              | 85,6        | Не классифицирован      |
| k      | 4.0             | R              | 79,9        | Не классифицирован      |
| 1      | 1.0             |                | 95,2        | Класс 2                 |
| 1      | 2.0             |                | 88,9        | Не классифицирован      |
| 1      | 4.0             |                | 79,7        | Не классифицирован      |

| n | 1.0 | h        | 92,9 | Класс 3            |
|---|-----|----------|------|--------------------|
| n | 2.0 |          | 86,0 | Не классифицирован |
| n | 4.0 | <b>m</b> | 74,7 | Не классифицирован |
| S | 1.0 | Ö        | 96,0 | Класс 4            |
| S | 2.0 | <b>S</b> | 80,9 | Не классифицирован |
| S | 4.0 |          | 76,0 | Не классифицирован |
| t | 1.0 |          | 95,1 | Класс 5            |
| t | 2.0 |          | 89,3 | Не классифицирован |
| t | 4.0 |          | 79,1 | Не классифицирован |
| у | 1.0 | y        | 94,4 | Класс 6            |
| у | 2.0 | `        | 93,7 | Класс 6            |
| у | 4.0 |          | 76,8 | Не классифицирован |

Вычисления при меньшем коэффициенте схожести (0.8)

Размер изображения: 32х32

Резервных нейронов: 7

Критерий схожести: 80,0%

Протокол работы сети

| Символ | Уровень шума, % | Входной вектор | Схожесть, % | Результат классификации |
|--------|-----------------|----------------|-------------|-------------------------|
| i      | 0.0             | Ī              | 100,0       | Новый класс 0           |
| k      | 0.0             | ×              | 100,0       | Новый класс 1           |
| 1      | 0.0             |                | 80,0        | Класс 0                 |
| n      | 0.0             | n              | 100,0       | Новый класс 2           |
| S      | 0.0             | Ø              | 100,0       | Новый класс 3           |

| t | 0.0 | t        | 100,0 | Новый класс 4      |
|---|-----|----------|-------|--------------------|
| у | 0.0 | У        | 100,0 | Новый класс 5      |
| i | 1.0 |          | 91,4  | Класс 0            |
| i | 2.0 |          | 88,7  | Класс 0            |
| i | 4.0 |          | 100,0 | Новый класс 6      |
| k | 1.0 | X        | 95,7  | Класс 1            |
| k | 2.0 | k        | 89,3  | Класс 1            |
| k | 4.0 | K        | 77,4  | Не классифицирован |
| 1 | 1.0 |          | 76,9  | Не классифицирован |
| 1 | 2.0 |          | 67,0  | Не классифицирован |
| 1 | 4.0 |          | 61,9  | Не классифицирован |
| n | 1.0 | n        | 94,3  | Класс 2            |
| n | 2.0 | h        | 83,3  | Класс 2            |
| n | 4.0 |          | 75,9  | Не классифицирован |
| S | 1.0 | M        | 95,2  | Класс 3            |
| S | 2.0 | j (m     | 85,1  | Класс 3            |
| S | 4.0 |          | 70,1  | Не классифицирован |
| t | 1.0 | ŧ.       | 94,6  | Класс 4            |
| t | 2.0 |          | 92,2  | Класс 4            |
| t | 4.0 |          | 78,6  | Не классифицирован |
| у | 1.0 | <b>3</b> | 92,8  | Класс 5            |
| у | 2.0 |          | 88,4  | Класс 5            |



## Выводы

При высоком коэффициенте схожести эффективно распознавались образы при ошибке до 1 %, при больших же распознавание проходило редко.

При низком коэффициенте схожести совпали буквы і и 1, распознавались образы с ошибкой до 2%.