Diffusion Policies as an

**Expressive Policy Class for Offline** 

**Reinforcement Learning** 

### Related works : Diffusion model(DDPM)





- Diffusion process에서는 원래 이미지에 noise를 조금씩, 반복적으로 추가하여 원래 이미지와 거의 independent한 noise인 latent variable을 생성
- 각 step은 Markov decision process라 가정
- Reverse process는 이 diffusion process의 역과정을 neural network를 통해 학습

### **Diffusion model: Diffusion process**

$$q(x;\beta_t) \rightarrow \cdots \rightarrow q(x;\beta_t) \rightarrow q(x;\beta$$

$$q(x_{1:T}|x_0) = \prod_{t=1}^{T} q(x_t|x_{t-1}), \quad q(x_t|x_{t-1}) = N(\sqrt{1 - B_t}x_{t-1}, B_tI)$$

- q함수는 diffusion process이며 미세한 gaussian noise를 추가하는 과정
- Diffusion process는 trainable parameter가 없음(VDM에서 trainable로 변경)
- B₁는 noise scheduler

$$\begin{split} \mathbf{q}(\mathbf{x}_t|\mathbf{x}_0) &= N(\mathbf{x}_t\,; \sqrt{\overline{\alpha}_t}\mathbf{x}_{t-1},\, (1-\overline{\alpha}_t)\mathbf{I}) \\ &= \sqrt{\overline{\alpha}_t}\,\mathbf{x}_0 + \, \varepsilon \sqrt{1-\overline{\alpha}_t},\, \varepsilon \sim N(\mathbf{0},\, \mathbf{I}) \\ \text{with } \alpha_t &= \mathbf{1}\text{-}\, \mathbf{B}_t \text{ and } \overline{\alpha}_t = \prod_{s=0}^t \alpha_s \end{split}$$

위의 수식으로t time에 있는 latent variable을 바로 계산할 수 있음

### **Diffusion model: Reverse process**



$$p_{\theta}(x_{0:T}) = p(x_T) \prod_{t=1}^{T} p_{\theta}(x_{t-1} | x_t)$$

$$p_{\theta}(x_{t-1} | x_t) = N(\mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$

- mean에 해당하는  $\mu_{\theta}$ 와 covariance  $\Sigma_{\theta}$  학습이 목적
- NF에서는 change of variable theorem 으로 계산했지만 diffusion은 neural network를 사용
- 이때 diffusion process와 마찬가지로 reverse process 또한 Markov chain으로 가정함

### **Diffusion model (DDPM)**

- DDPM의 핵심은 neural network로 표현되는 p 함수가 q 를 보고 noise를 걷어내는 과정을 학습하는 것
- loss는 VAE의 loss와 유사하게 negative log-likelihood로 전개됨

$$Loss_{Diffusion} = D_{KL}(q(z \mid x_0) \| P_{ heta}(x_0 \mid z)) - E_{z \sim q(z \mid x)}[\log P_{ heta}(z)]$$

$$= D_{KL}(q(z \mid x_0) \| P_{ heta}(z)) + \sum_{t=2} D_{kL}(q(x_{t-1} \mid x_t, x_0) \| P_{ heta}(x_{t-1} \mid x_t)) - E_q[\log P_{ heta}(x_0 \mid x_1)]$$
Regularizer on Encoder Denoising Process Reconstruction on Decoder

$$Loss_{DDPM} = \left. \mathbb{E}_{x_0,\epsilon} \left[ \left| \epsilon - \epsilon_{ heta} \Big( \sqrt{ ilde{lpha}_t} + \sqrt{1 - ilde{lpha}_t} \epsilon, t \Big) 
ight|^2 
ight]$$

DDPM에서는 Loss가 굉장히 간단한 식으로 정의됨

### **Related works: Offline RL**

1. Constraining the learned value function to assign low values to OOD actions

2. Introducing model-based methods, which learn a model of the environment dynamics and perform pessimistic planning in the learned MDP

3. Treating offline RL as a problem of sequence prediction with return guidance(Offline Reinforcement Learning as One Big Sequence Modeling Problem, 2021)

- 4. Regularizing how far the policy can deviate from the behavior policy
- A method to perform policy regularization using diffusion models

### **Preliminaries**

- MDP :  $M = \{S, A, P, R, \gamma, d_0\}$
- In the offline setting, a static dataset  $D \triangleq \{(s, a, r, s')\}$
- Diffusion process :  $q(x_{1:T}|x_0) \coloneqq \prod_{t=1}^T q(x_t|x_{t-1})$
- Reverse diffusion chain,  $p_{\theta}(x_{0:T}) \coloneqq N(x_T; 0, I) \prod_{t=1}^{T} p_{\theta}(x_{t-1}|x_t)$

## **Diffusion policy**

• RL policy via the reverse process of a conditional diffusion model

$$\pi_{\theta}(a|s) = p_{\theta}(a^{0:N}|s) = N(a^{N}; 0, I) \prod_{t=1}^{T} p_{\theta}(a^{i-1}|a^{i}, s)$$

• We first sample  $a^N \sim N(0, I)$  and them from the reverse diffusion chain as

$$p_{\theta}(a^{i-1}|a^{i}) = \frac{a^{i}}{\sqrt{\alpha_{i}}} - \frac{\beta_{i}}{\sqrt{1-\alpha_{i}}} \varepsilon_{\theta}(a^{i}, s^{i}, i) + \sqrt{\beta_{i}} \varepsilon$$
$$\beta_{i} = 1 - \alpha_{i} = 1 - e^{-\beta_{\min}(\frac{1}{N}) - 0.5(\beta_{\max} - \beta_{\min})\frac{2i-1}{N^{2}}},$$

Objective function is proposed by DDPM,

$$\mathcal{L}_d(\theta) = \mathbb{E}_{i \sim \mathcal{U}, \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), (\mathbf{s}, \mathbf{a}) \sim \mathcal{D}} \left[ ||\epsilon - \epsilon_{\theta}(\sqrt{\bar{\alpha}_i} \mathbf{a} + \sqrt{1 - \bar{\alpha}_i} \epsilon, \mathbf{s}, i)||^2 \right]$$

### **Q-learning**

• The policy-regularization loss  $L_d(\theta)$  is a behavior-cloning term

 To improve the policy, we inject Q-value function guidance into the reverse diffusion chain in the training stage in order to learn to preferentially sample actions with high values

$$\pi = \operatorname*{arg\,min}_{\pi_{\theta}} \mathcal{L}(\theta) = \mathcal{L}_{d}(\theta) + \mathcal{L}_{q}(\theta) = \mathcal{L}_{d}(\theta) - \alpha \cdot \mathbb{E}_{\boldsymbol{s} \sim \mathcal{D}, \boldsymbol{a}^{0} \sim \pi_{\theta}} \left[ Q_{\phi}(\boldsymbol{s}, \boldsymbol{a}^{0}) \right]$$

We build two Q-networks, and target networks, optimize formula as

$$\mathbb{E}_{(\boldsymbol{s}_{t},\boldsymbol{a}_{t},\boldsymbol{s}_{t+1})\sim\mathcal{D},\boldsymbol{a}_{t+1}^{0}\sim\pi_{\boldsymbol{\theta}'}}\left[\left|\left|\left(r(\boldsymbol{s}_{t},\boldsymbol{a}_{t})+\gamma\min_{i=1,2}Q_{\phi_{i}'}(\boldsymbol{s}_{t+1},\boldsymbol{a}_{t+1}^{0})\right)-Q_{\phi_{i}}(\boldsymbol{s}_{t},\boldsymbol{a}_{t})\right|\right|^{2}\right].$$

### **Algorithm**

### Algorithm 1 Diffusion Q-learning

```
Initialize policy network \pi_{\theta}, critic networks Q_{\phi_1} and Q_{\phi_2}, and target networks \pi_{\theta'}, Q_{\phi'_1} and
Q_{\phi_{\alpha}'}
for each iteration do
    Sample transition mini-batch \mathcal{B} = \{(s_t, a_t, r_t, s_{t+1})\} \sim \mathcal{D}.
     \# Q-value function learning
   Sample \mathbf{a}_{t+1}^0 \sim \pi_{\theta'}(\mathbf{a}_{t+1} \mid \mathbf{s}_{t+1}) by Equation (1). p_{\theta}(a^{i-1} \mid a^i) = \frac{a^i}{\sqrt{\alpha_i}} - \frac{\beta_i}{\sqrt{1-\alpha_i}} \varepsilon_{\theta}(a^i, s^i, i) + \sqrt{\beta_i} \varepsilon_{\theta}(a^i, s^i, i)
    Update Q_{\phi_1} and Q_{\phi_2} by Equation (4). (max Q backup by Kumar et al. (2020) could be
                                                                        \mathbb{E}_{(\boldsymbol{s}_t, \boldsymbol{a}_t, \boldsymbol{s}_{t+1}) \sim \mathcal{D}, \boldsymbol{a}_{t+1}^0 \sim \pi_{\theta'}} \left| \left| \left| \left| \left( r(\boldsymbol{s}_t, \boldsymbol{a}_t) + \gamma \min_{i=1,2} Q_{\phi_i'}(\boldsymbol{s}_{t+1}, \boldsymbol{a}_{t+1}^0) \right) - Q_{\phi_i}(\boldsymbol{s}_t, \boldsymbol{a}_t) \right| \right|^2 \right|.
    added)
     # Policy learning
    Sample a_t^0 \sim \pi_\theta(a_t | s_t) by Equation (1).
    Update policy by minimizing Equation (3). \pi = arg\min L(\theta) + L_a(\theta) + L_a(\theta)
     # Update target networks
    \theta' = \rho \theta' + (1 - \rho)\theta, \phi'_i = \rho \phi'_i + (1 - \rho)\phi_i for i = \{1, 2\}.
end for
```

# **Experiments**

| Gym Tasks                    | BC    | AWAC | Diffuser | MoRel | Onestep RL | TD3+BC | DT    | $\mathbf{CQL}$    | IQL   | Diffusion-QL       |
|------------------------------|-------|------|----------|-------|------------|--------|-------|-------------------|-------|--------------------|
| halfcheetah-medium-v2        | 42.6  | 43.5 | 44.2     | 42.1  | 48.4       | 48.3   | 42.6  | 44.0              | 47.4  | <b>51.1</b> ± 0.5  |
| hopper-medium-v2             | 52.9  | 57.0 | 58.5     | 95.4  | 59.6       | 59.3   | 67.6  | 58.5              | 66.3  | $90.5 \pm 4.6$     |
| walker2d-medium-v2           | 75.3  | 72.4 | 79.7     | 77.8  | 81.8       | 83.7   | 74.0  | 72.5              | 78.3  | $87.0 \pm 0.9$     |
| halfcheetah-medium-replay-v2 | 36.6  | 40.5 | 42.2     | 40.2  | 38.1       | 44.6   | 36.6  | 45.5              | 44.2  | $47.8 \pm 0.3$     |
| hopper-medium-replay-v2      | 18.1  | 37.2 | 96.8     | 93.6  | 97.5       | 60.9   | 82.7  | 95.0              | 94.7  | $101.3 \pm 0.6$    |
| walker2d-medium-replay-v2    | 26.0  | 27.0 | 61.2     | 49.8  | 49.5       | 81.8   | 66.6  | 77.2              | 73.9  | $95.5 \pm 1.5$     |
| halfcheetah-medium-expert-v2 | 55.2  | 42.8 | 79.8     | 53.3  | 93.4       | 90.7   | 86.8  | 91.6              | 86.7  | $96.8 \pm 0.3$     |
| hopper-medium-expert-v2      | 52.5  | 55.8 | 107.2    | 108.7 | 103.3      | 98.0   | 107.6 | 105.4             | 91.5  | $111.1 \pm 1.3$    |
| walker2d-medium-expert-v2    | 107.5 | 74.5 | 108.4    | 95.6  | 113.0      | 110.1  | 108.1 | 108.8             | 109.6 | $110.1 \pm 0.3$    |
| Average                      | 51.9  | 50.1 | 75.3     | 72.9  | 76.1       | 75.3   | 74.7  | 77.6              | 77.0  | 88.0               |
| AntMaze Tasks                | BC    | AWAC | BCQ      | BEAR  | Onestep RL | TD3+BC | DT    | CQL               | IQL   | Diffusion-QL       |
| antmaze-umaze-v0             | 54.6  | 56.7 | 78.9     | 73.0  | 64.3       | 78.6   | 59.2  | 74.0              | 87.5  | 93.4 ± 3.4         |
| antmaze-umaze-diverse-v0     | 45.6  | 49.3 | 55.0     | 61.0  | 60.7       | 71.4   | 53.0  | 84.0              | 62.2  | $66.2 \pm 8.6$     |
| antmaze-medium-play-v0       | 0.0   | 0.0  | 0.0      | 0.0   | 0.3        | 10.6   | 0.0   | 61.2              | 71.2  | $76.6 \pm 10.8$    |
| antmaze-medium-diverse-v0    | 0.0   | 0.7  | 0.0      | 8.0   | 0.0        | 3.0    | 0.0   | 53.7              | 70.0  | $78.6 \pm 10.3$    |
| antmaze-large-play-v0        | 0.0   | 0.0  | 6.7      | 0.0   | 0.0        | 0.2    | 0.0   | 15.8              | 39.6  | $46.4 \pm 8.3$     |
| antmaze-large-diverse-v0     | 0.0   | 1.0  | 2.2      | 0.0   | 0.0        | 0.0    | 0.0   | 14.9              | 47.5  | $56.6 \pm 7.6$     |
| Average                      | 16.7  | 18.0 | 23.8     | 23.7  | 20.9       | 27.3   | 18.7  | 50.6              | 63.0  | 69.6               |
| Adroit Tasks                 | BC    | SAC  | BCQ      | BEAR  | BRAC-p     | BRAC-v | REM   | $_{\mathrm{CQL}}$ | IQL   | Diffusion-QL       |
| pen-human-v1                 | 25.8  | 4.3  | 68.9     | -1.0  | 8.1        | 0.6    | 5.4   | 35.2              | 71.5  | <b>72.8</b> ± 9.6  |
| pen-cloned-v1                | 38.3  | -0.8 | 44.0     | 26.5  | 1.6        | -2.5   | -1.0  | 27.2              | 37.3  | <b>57.3</b> ± 11.9 |
| Average                      | 32.1  | 1.8  | 56.5     | 12.8  | 4.9        | -1.0   | 2.2   | 31.2              | 54.4  | 65.1               |
| Kitchen Tasks                | BC    | SAC  | BCQ      | BEAR  | BRAC-p     | BRAC-v | AWR   | CQL               | IQL   | Diffusion-QL       |
| kitchen-complete-v0          | 33.8  | 15.0 | 8.1      | 0.0   | 0.0        | 0.0    | 0.0   | 43.8              | 62.5  | $84.0 \pm 7.4$     |
| kitchen-partial-v0           | 33.8  | 0.0  | 18.9     | 13.1  | 0.0        | 0.0    | 15.4  | 49.8              | 46.3  | $60.5 \pm 6.9$     |
| kitchen-mixed-v0             | 47.5  | 2.5  | 8.1      | 47.2  | 0.0        | 0.0    | 10.6  | 51.0              | 51.0  | $62.6 \pm 5.1$     |
|                              | 38.4  | 5.8  | 11.7     | 20.1  | 0.0        | 0.0    | 8.7   | 48.2              | 53.3  | 69.0               |

# Q&A