Digital Logic Design

Lecture 14

Decoder with Enable

- In general, attach m-enabling circuits to the outputs
- See truth table below for function
 - Note use of X's to denote both 0 and 1
 - Combination containing two X's represent four binary combinations
- Alternatively, can be viewed as distributing value of signal EN to 1 of 4 outputs
- In this case, called a demultiplexer

EN	A ₁	A_0	D ₀	D_1	D_2	D_3				
0	Χ	Χ	0	0	0	0				
1	0	0	1	0	0	0				
1	0	1	0	1	0	0				
1	1	0	0	0	1	0				
1	1	1	0	0	0	1				
(a)										

3 to 8 line decoder using 2 to 4 line decoder(s)

3 to 8 line decoder using 2 to 4 line decoder(s)

- The parallel inputs $A_1 & A_0$ are applied to each 2 to 4 decoder.
- The complement of input A₂ is connected to Enable, E of lower 2 to 4 decoder in order to get the outputs, Y_3 to Y_0 . These are the **lower four** min terms.
- The input, A₂ is directly connected to Enable, E of upper 2 to 4 decoder in order to get the outputs, Y_7 to Y_4 . These are the **higher four min terms**.

4 to 16 decoder using 3 to 8 decoders

Decoder-Based Combinational Circuits

- A decoder provides the 2^n minterms of n input variables.
- Since any Boolean function can be expressed as a sum of minterms, one can use a decoder to generate the minterms and combine them with an external OR gate to form a sum-ofminterms implementation.
- A combinational circuit with n inputs and m outputs can be implemented with an n-to- 2^n -line decoder and m OR gates.

Binary adder Bit using Decoder and OR gate

Truth Table for 1-Bit Binary Adder

x	Y	Z	С	s
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S(X, Y, Z) = \Sigma m(1, 2, 4, 7)$$

 $C(X, Y, Z) = \Sigma m(3, 5, 6, 7)$

Circuit Diagram

Encoding

- Encoding the opposite of decoding the conversion of an m-bit input code to a n-bit output code with $n \le n$ $m \leq 2^n$ such that each valid code word produces a unique output code
- Circuits that perform encoding are called encoders
- An encoder has 2^n (or fewer) input lines and n output lines which generate the binary code corresponding to the input values
- Typically, an encoder converts a code containing exactly one bit that is 1 to a binary code corresponding to the position in which the 1 appears.

Encoder Example

- A decimal-to-BCD encoder
 - **©**Inputs: 10 bits corresponding to decimal digits 0 through 9, $(D_0, ..., D_9)$
 - **Outputs:** 4 bits with BCD codes
 - **©** Function: If input bit D_i is a 1, then the output (A_3, A_2, A_1, A_0) is the BCD code for i,
- The truth table could be formed, but alternatively, the equations for each of the four outputs can be obtained directly.

Decimal to BCD Encoder

INPUTS								OUTPUTS					
D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	АЗ	A2	A1	A0
0	0	0	0	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	1
0	0	0	0	0	0	0	1	0	0	0	0	1	0
0	0	0	0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	0	1	0	0	0	0	0	1	0	0
0	0	0	0	1	0	0	0	0	0	0	1	0	1
0	0	0	1	0	0	0	0	0	0	0	1	1	0
0	0	1	0	0	0	0	0	0	0	0	1	1	1
0	1	0	0	0	0	0	0	0	0	1	0	0	0
1	0	0	0	0	0	0	0	0	0	1	0	0	1

Encoder Example (continued)

- Input D_i is a term in equation A_i if bit A_i is 1 in the binary value for i.
- Equations:

$$A_3 = D_8 + D_9$$

 $A_2 = D_4 + D_5 + D_6 + D_7$
 $A_1 = D_2 + D_3 + D_6 + D_7$
 $A_0 = D_1 + D_3 + D_5 + D_7 + D_9$

• $\mathbf{F_1} = \mathbf{D_6} + \mathbf{D_7}$ can be extracted from $\mathbf{A_2}$ and $\mathbf{A_1}$ Is there any cost saving?

Priority Encoder

- If more than one input value is 1, then the encoder just designed does not work.
- One encoder that can accept all possible combinations of input values and produce a meaningful result is a priority encoder.
- Among the 1s that appear, it selects the most significant input position (or the least significant input position) containing a 1 and responds with the corresponding binary code for that position.

Priority Encoder Example

Priority encoder with 5 inputs $(D_4, D_3, D_2, D_1, D_0)$ - highest priority to most significant 1 present - Code outputs A2, A1, A0 and V where V indicates at least one 1 present.

No. of Min-]	[nput:	S	Outputs				
terms/Row	D4	D3	D2	D 1	D0	A2	A1	A0	V
1	0	0	0	0	0	X	X	X	0
1	0	0	0	0	1	0	0	0	1
2	0	0	0	1	X	0	0	1	1
4	0	0	1	X	X	0	1	0	1
8	0	1	X	X	X	0	1	1	1
16	1	X	X	X	X	1	0	0	1

Xs in input part of table represent 0 or 1; thus table entries correspond to product terms instead of minterms. The column on the left shows that all 32 minterms are present in the product terms in the table

Priority Encoder Example (continued)

 Could use a K-map to get equations, but can be read directly from table and manually optimized if careful:

$$\begin{aligned} \mathbf{A}_2 &= \mathbf{D}_4 \\ \mathbf{A}_1 &= \overline{\mathbf{D}}_4 \mathbf{D}_3 + \overline{\mathbf{D}}_4 \overline{\mathbf{D}}_3 \mathbf{D}_2 = \overline{\mathbf{D}}_4 \mathbf{F}_1, \ \mathbf{F}_1 &= (\mathbf{D}_3 + \mathbf{D}_2) \\ \mathbf{A}_0 &= \overline{\mathbf{D}}_4 \mathbf{D}_3 + \overline{\mathbf{D}}_4 \overline{\mathbf{D}}_3 \overline{\mathbf{D}}_2 \mathbf{D}_1 = \overline{\mathbf{D}}_4 (\mathbf{D}_3 + \overline{\mathbf{D}}_2 \mathbf{D}_1) \\ \mathbf{V} &= \mathbf{D}_4 + \mathbf{F}_1 + \mathbf{D}_1 + \mathbf{D}_0 \end{aligned}$$