A Data Driven In-Air-Handwriting Biometric Authentication System

Duo Lu, Kai Xu, Dijiang Huang

School of Computing, Informatics, and Decision Systems, Arizona State University

{duolu, kaixu, dijiang.huang}@asu.edu

In-Air-Handwriting

- More like password than fingerprint or face
 - Changeable and revocable
 - Preserving privacy
 - Large password space,i.e. arbitrary strokes vs. characters
- Technical Challenges:
 - Hand movement tracking is difficult
 - Tolerating minor variations of writing
- Application Scenarios:
 - Virtual Reality applications
 - Wearable computing platforms

Objective

Verify whether you are the owner of the account that you claim to possess,

like a password:

- instead of whether you are the person that you claim to be,
- without linking the account to the person (i.e., one person multiple accounts)
- by comparing the hand motion signal with the template,

like a biometric:

- while prevent the user to give the passcode to someone else,
- and prevent spoofer (even with the leakage of the passcode content)

Device Prototype - data glove

Datasets

200 passcodes created and written by 116 users, 5 + 5 repetitions.

7 impostors to mimic the writing of all 200 passcodes, 5 repetitions each.

21 passcodes by 7 users are tracked for 4 weeks, on average twice a week, 5 repetitions each time.

three classes:

- true-user: S and T are from the same account
- false-user: S and T are from different accounts
- spoof: S is from the impostors

S is the signal in the request, T is the template

Signal Model

- R is d × I matrix
 - o d is sensor dimension

acc

(x-y-z)

- I is signal length
- R is preprocessed to get S
 - o Trim
 - Low-Pass Filter
 - Normalize
 - Alignment

Preprocessing Example

Before preprocessing

After preprocessing

Alignment Example

After alignment

Before alignment

Temporal Distance

$$\bullet \quad D_{ij} = |S_{ij} - T_{ij}|$$

• TD = histogram(
$$D_{ij} * k_1 * k_2$$
)

Distance Scaling

•
$$k_1 = 1 / (1 + w_1 * C_{ij})$$

•
$$k_2 = 1 / (1 + w_1 * T_{ij})$$

Statistical Similarity

$$SS = (\Delta M, \Delta \Sigma, \Delta P, \Delta \Lambda, \Delta H)$$

- Mean: Mean of each sensor axis, $\mathbf{M} = (\mu_1, ..., \mu_d)$, where $\mu_i = \text{mean}(\mathbf{S}_i)$.
- Variance: Variance of each sensor axis, $\Sigma = (\sigma_1, ..., \sigma_d)$, where $\sigma_i = \text{var}(S_i)$.
- Correlation: Correlation among sensor axes, $P = (\alpha_{xy}, \alpha_{yz}, \alpha_{xz}, \beta_{xy}, \beta_{yz}, \beta_{xz}, \gamma_{xy}, \gamma_{yz}, \gamma_{xz})$, where α_{xy} , β_{xy} , γ_{xy} is the correlation of acc, gyro, Euler axis x and y
- Amplitude: Sum of amplitude of each axis, $\Lambda = (\lambda_1, ..., \lambda_d)$, where $\lambda_i = \Sigma |S_{ij}|$.
- Entropy: Entropy of each axis (treat S_{ij} as random variable), $H = (\eta_1, ..., \eta_d)$, where $\eta_i = -\sum_i p(S_{ij}) \log_2 p(S_{ij})$

Statistical Features Correlation

Visualization (t-SNE)

The signals from the same accounts clustered in the statistical feature space.

30 20 10 10 11 -10 12 -20 13 -30 15 16 -40 -20 20 -40 40 60

Statistical Features of Signals from 17 Accounts

Features and Classification

Temporal Distance

$$\mathbf{TD} = \text{histogram}(\mathbf{D}_{ij} * \mathbf{k}_1 * \mathbf{k}_2)$$

Statistical Similarity

$$SS = (\Delta M, \Delta \Sigma, \Delta P, \Delta \Lambda, \Delta H)$$

Length Difference

$$\Delta L = |\operatorname{len}(S) - \operatorname{len}(T)| / \operatorname{len}(T)$$

Final feature vector $\mathbf{x} = (\mathbf{TD}, \mathbf{SS}, \Delta \mathbf{L})$

Using binary soft margin SVM classifier

```
if x * w + b < decision_threshold
accept.</pre>
```

else

reject.

Score distribution with temporal distance

3.1% overlap between true-user and spoof

Classification Results

one SVM model for all accounts		Classifier	EER	EER	FMR	FMR	Zero
				(spoof)	10K	100K	-FMR
		SVM(TD)	0.2%	1.4%	1.8%	3.6%	5.1%
		SVM(TD, SS)	0.2%	1.4%	1.5%	2.8%	3.9%
nor account		SVM*(TD, SS)	0.1%	1.4%	0.5%	0.7%	1.5%
per account _ SVM model		DTW(baseline)	0.4%	4.2%	4.4%	8.4%	16.4%

Reasons for performance improvement over DTW:

- Our method exploits the large passcode capacity and rich information in the in-air-handwriting.
- Consistency in hand movement by eliminating constraints helps performance.
- Higher quality of motion signal, better preprocessing technique help performance further.
- Good features, efficient classifier.

Conclusions

In-Air-Handwriting based authentication has good potentials.

Limitations

- Behavior change in the long term
- Template protection and template update

Future Work

- More data with longer time span to study the behavior persistence.
- o Using a different type of sensor, e.g., a depth camera.
- Template encryption by a key directly generated from the in-air-writing signal

Thank you!

Q & A

Device Prototype - ver. 2 - hand band

False Non-Match Rate (FNMR) and False Match Rate (FMR)

Receiver Operating Characteristic (ROC)

Classification results of each account (one model)

Classification results of each account (one model)

