

Machine Learning

A Brief Introduction

Marvin N. Wright

Leibniz Institute for Prevention Research & Epidemiology – BIPS
University of Bremen
University of Copenhagen

March 2023

Outline

- 1. Introduction
- 2. Supervised Learning
- 3. Decision Trees
- 4. Model Evaluation
- 5. Resampling
- 6. Hyperparameter Tuning
- 7. Nested Resampling
- 8. Discussion

Machine Learning

Machine Learning

new observation

11 nearest neighbors

2x x 9x o

5

new observation

11 nearest neighbors

2x x 9x o

6

What is kNN formally?

- $N_k({m x})$ neighborhood of ${m x}$ defined by k closest points ${m x}_i$ in training data
- $\hat{y} = \frac{1}{k} \sum_{x_i \in N_k(x)} y_i$
- Closeness implies metric
- Standard metrics: Euclidian, Mahalanobis distance
- Generalization: Weighting schemes, e.g. $w = \frac{1}{d(x,x_i)}$
- kNN assumes: Regression function $\mathbb{E}(y \mid x)$ well approximated by locally constant function

Outline

- 1. Introduction
- 2. Supervised Learning
- 3. Decision Trees
- 4. Model Evaluation
- 5. Resampling
- 6. Hyperparameter Tuning
- 7. Nested Resampling
- 8. Discussion

Example: House Prices

Predict the price for a house in a certain area

Features x				Target y
square footage of the house	number of bedrooms	swimming pool (yes/no)		house price in US\$
1,180	3	0		221,900
2,570	3	1		538,000
770	2	0		180,000
1,960	4	1		604,000

Example: Length of hospital stay

Predict days a patient has to stay in hospital

	Target y				
diagnosis category	admission type	gender	age		Length-of-stay in the hospital in days
heart disease	elective	male	75		4.6
injury	emergency	male	22		2.6
psychosis	newborn	female	0		8
pneumonia	urgent	female	67		5.5

a

Example: Life Insurance

Predict risk category for a life insurance customer

	Target y			
job type	age	smoker		risk group
carpenter	34	1		3
stuntman	25	0		5
student	23	0		1
white-collar worker	39	0		2

11

Learn a functional relationship between features \boldsymbol{x} and target \boldsymbol{y}

	Feat	ures x	Target y	
	People in Office (Feature 1) x_1	Salary (Feature 2) x_2	Worked Minutes Week (Target Variable)	
	4	4300 € 🗼	2220	
$n=3$ $\left\langle ight.$	y 12	2700 €	1800	
\downarrow	5	3100 €	1920	*
$x_1^{(2)}$	p =	= 2	$x_2^{(1)}$	$y^{(3)}$

12

Use labeled data to learn a model f Use model f to predict target y of new data

	x_1	x_2	Functional Relationship	y
	4	4300 €	NO.	2200
Already seen {	12	2700 €	1	1800
Jutu	15	3100 €	f	1920
Name Data	6	3300 €	A CO	???
New Data	5	3100 €		???

Model

Functional relationship between $\ensuremath{\mathbf{features}}\ x$ and $\ensuremath{\mathbf{target}}\ y$

Learner (or inducer)

Algorithm for finding model

Train Set

y	x_1	x_2
2200	4	4300
1800	12	2700
1920	15	3100

14

Example

- Learner: Artificial neural network (as a concept)
- Model: Actual network with learned weights

Models differ in size and complexity

- Linear model: Coefficients β
- Neural network: Weights for all units in all layers
- Decision trees: Many binary splits
- k-nearest neighbors: Complete training data

15

Summary

- ullet Learn relationship between **features** x and **target** y
- Model: Learned relationship f(x)
- Learner: Algorithm for finding a model
- Predict $\hat{y} = f(x)$
- ullet Later: Evaluate by comparing \hat{y} with y
- Tomorrow: Understand / interpret / explain model f or predictions $\hat{y} = f(x)$

Unsupervised Learning

No target y available Search for patterns in the data x, e.g. clustering:

Unsupervised Learning

No target y available Search for patterns in the data x, e.g. clustering:

Outline

- 1. Introduction
- 2. Supervised Learning
- 3. Decision Trees
- 4. Model Evaluation
- 5. Resampling
- 6. Hyperparameter Tuning
- 7. Nested Resampling
- 8. Discussion

19

- 1. Grow tree
- 2. Stop tree growing process
- 3. Prune back branches
- 4. Select optimal tree

19

- 1. Grow tree: Recursively split nodes
 - a) For each independent variable x_j , consider each possible binary split (partition), compute child node impurity
 - b) Select variable x_j and split point yielding largest decrease in impurity
 - c) Split in exactly two child nodes at optimal split point
- 2. Stop tree growing process
- 3. Prune back branches
- 4. Select optimal tree

19

- 1. Grow tree
- 2. Stop tree growing process
 - a) In a node with only identical outcome (pure node)
 - b) In a node with only identical variable values (no split possible)
 - c) If external limit on tree complexity, tree depth or node size reached
- 3. Prune back branches
- 4. Select optimal tree

- 1. Grow tree
- 2. Stop tree growing process
- 3. Prune back branches
 - a) Tradeoff between complexity and accuracy
 - b) Estimate accuracy in test data set
 - c) Time consuming
- 4. Select optimal tree

Outline

- 1. Introduction
- 2. Supervised Learning
- 3. Decision Trees
- 4. Model Evaluation
- 5. Resampling
- 6. Hyperparameter Tuning
- 7. Nested Resampling
- 8. Discussion

21

How goood is a prediction model?

Compare true target y with predicted target \hat{y}

Examples

- How many patients correctly diagnosed?
- How many emails correctly detected as ham or spam?
- How close is the predicted price of a house to the true value?
- How close is the length of hospitalization to the true value?

22

Dichotomous (binary) outcome

- Proportion of correct classifications (PC); also accuracy: $\widehat{PC} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{u_i = \hat{y}_i}$
- Sensitivity, specificity, ROC, AUC: $\hat{\mathbb{P}}(y=1\mid x)$
- Brier score (BS), i.e., MSE of probability estimates; also probability score (PS): $\widehat{BS} = \frac{1}{n} \sum_{i=1}^{n} \left(y_i \hat{\mathbb{P}} \left(y_i = 1 \mid x_i \right) \right)^2$

Multicategory outcome

- Proportion of correct classifications (PC)
- Averaged class-wise PC
- ROC, AUC: several extensions

23

Continuous outcome

- MSE: $\widehat{MSE} = \frac{1}{n} \sum_{i=1}^{n} (y_i \hat{y}_i)^2$
- MAE: $\widehat{MAE} = \frac{1}{n} \sum_{i=1}^{n} |y_i \hat{y}_i|$
- RMSE: $\widehat{RMSE} = \sqrt{\widehat{MSE}}$
- Explained variance: $\hat{R}^2 = \frac{1 \widehat{MSE}}{\widehat{\mathbb{V}ar}(y)}$

Survival outcome

- Time-dependent Brier Score
- Integrated Brier score
- C-Index

Training error

Evaluate performance on training data

Training error

Evaluate performance on training data

Problem: Overfitting

Overfitting

Overfitting

25

Overfitting

25

Overfitting

27

Test error

28

Training and test error

- Training error heavily biased
- Test error (almost) unbiased but variance unknown

Resampling

- Repeated training/test splits (subsampling)
- Cross validation
- Repeated cross validation
- Bootstrap

Hyperparameters

Most (all?) learners have hyperparameters, e.g.:

- k-nearest neighbors: Number of neighbors k, distance weighting, etc.
- Decision trees: Tree depth, splitting criterion, etc.
- Neural networks: Number and size of layers, activation function, regularization, etc.

Hyperparameter tuning

- Optimize (tune) the hyperparameters
- Do not tune and evaluate on same data
- → 3-fold split into training, validation, test
- → Nested resampling

Outline

- 1. Introduction
- 2. Supervised Learning
- 3. Decision Trees
- 4. Model Evaluation
- 5. Resampling
- 6. Hyperparameter Tuning
- 7. Nested Resampling
- 8. Discussion

- Estimate performance on independent data
- Used for
 - Performance estimation
 - Hyperparameter tuning
 - Model selection
- Resampling based performance estimation
 - 1. Split dataset in several (smaller) datasets D_b
 - 2. On each dataset D_b :
 - 2.1 Train learner
 - 2.2 Estimate performance on $D_b^* = D \backslash D_b$
 - 3. Aggregate performance estimates

Subsampling

34

Subsampling

- Sample B training datasets D_b from D without replacement, usually $n_b = \frac{2}{3}n$
- Use $D_b^* = D \backslash D_b$ as test datasets
- D_b and D_b^* disjunct
- D_1 and D_2 not disjunct
- D_1^* and D_2^* not disjunct
- Performance estimator biased
- No optimal B, usually 100 < B < 1000
- Special case with B=1: Single train/test split (holdout)

Bootstrapping

 D_2

 D_3

 D_B

- Sample B training datasets D_b from D with replacement, usually $n_b = n$
- Use $D_b^* = D \backslash D_b$ as test datasets
- D_b and D_b^* disjunct
- D_1 and D_2 not disjunct
- D_1^* and D_2^* not disjunct
- Performance estimator biased
- Adaptive weighting to reduce bias (.632+ bootstrap)
- Small variance (large B)
- No optimal B, usually 100 < B < 1000

Cross validation (CV)

38

Cross validation (CV)

- Split D in B test datasets D_b^*
- Use $D_b = D \backslash D_b^*$ as training datasets
- D_b and D_b^* disjunct
- D_1 and D_2 not disjunct
- D_1^* and D_2^* disjunct
- Special case with B=n: Leave-one-out CV (LOOCV)
 - Small bias, high variance
 - Long runtime
- No optimal B, usually B=5,10
 - Slightly more bias than LOOCV, but lower variance
 - Lowest B of all resampling methods \rightarrow fast computation

How to choose the resampling method?

Outline

- 1. Introduction
- 2. Supervised Learning
- 3. Decision Trees
- 4. Model Evaluation
- 5. Resampling
- 6. Hyperparameter Tuning
- 7. Nested Resampling
- 8. Discussion

41

Hyperparameters

Learners have hyperparameters, e.g.:

- ullet Number of nearest neighbors k
- Depth of a tree
- Number of features to consider in each split of a random forest (mtry)
- Number of boosting iterations
- Kernel of SVM
- Architecture of neural network

Most learners have several hyperparameters

Have to be jointly optimized

42

Search entire parameter space

- All possible combinations
- Grid search
- Randomly select combinations
- Model-based optimization

Use resampling

- Evaluate each parameter combination on all resampling iterations/folds
- Choose parameter maximizing aggregated performance measure

Grid search 43

44

Grid search

Advantages

- Easy to implement
- All parameter types possible
- · Easily parallelized

Disadvantages

- Computationally intensive
- Inefficient: Searches large irrelevant areas
- Arbitrary: Which values / discretization?

Random search

46

Random search

Advantages

- Same as grid search: Easy to implement, all parameter types possible, trivial parallelization
- Easy to adjust to computational budget
- No discretization
- Superior performance compared to grid search

Disadvantages

- Computationally intensive
- Inefficient: Searches large irrelevant areas

47

Model-based optimization

Surrogate model

Learn relationship between hyperparameters and prediction performance

Algorithm

- 1. Pick initial configuration (e.g. random)
- 2. Learn surrogate model
- 3. Predict new configuration with surrogate model
- 4. Repeat steps 2 and 3

48

Model-based optimization

Advantages

- All parameter types possible
- Efficient: Focus on promising areas
- Superior performance compared to grid and random search

Disadvantages

- Computationally intensive
- Non-trivial parallelization
- Harder to implement

Outline

- 1. Introduction
- 2. Supervised Learning
- 3. Decision Trees
- 4. Model Evaluation
- 5. Resampling
- 6. Hyperparameter Tuning
- 7. Nested Resampling
- 8. Discussion

Benchmarking

50

How can performance be compared?

Be fair!

- Compare all learners and models on same data
- Tune parameters of all learners
- Don't overfit
- Don't publish over-optimistic results

Never learn, tune or evaluate on same data!

Nested Resampling

Model Selection

Dataset D $S\left(M_{D_2;h_1^+}^1\mid D_2^*
ight)$ $S\left(M_{D_1;\mathbb{A}_1^*}^1\mid D_1^*
ight)$ $S\left(M_{D_1;h_2^+}^2\mid D_1^*
ight)$ $S(M_{D_2;h_2^+}^2 | D_2^*)$ $S\left(M_{D_1;h_k^k}^k\mid D_1^*\right)$ $S\left(M_{D_2;h_k^k}^k \mid D_2^*\right)$ $\hat{S}\left(M_D^1\mid\mathcal{P}\right)$

Nested Resampling

53

How to build a final model?

- 1. Select best learner with nested resampling
- 2. Find optimal hyperparameters of best learner with resampling
- 3. Train best learner with optimal hyperparameters on full data

Outline

- 1. Introduction
- 2. Supervised Learning
- 3. Decision Trees
- 4. Model Evaluation
- 5. Resampling
- 6. Hyperparameter Tuning
- 7. Nested Resampling
- 8. Discussion

Discussion

Is there a single best learner?

No!

Learner recommendations

- Typically RF ≈ Boosting > Tree > kNN
- RF robust, easy to tune and fast
- Boosting often slightly better than RF on tabular data (when properly tuned)
- Support vector machine (SVM) good alternative for binary classification with numerical features (when properly tuned)
- Image, text and speech data → Deep Learning
- Consider ensembles, e.g. stacking → SuperLearner

Discussion

Tuning recommendations

- Never use default parameter settings
- Tune hyperparameters
- Tune hyperparameters jointly
- Parameter tuning simple and straightforward for
 - kNN
 - Decision trees
 - Boosting
 - Random forests
- Parameter tuning complex and not straightforward for
 - SVM: hyperparameters depend on kernel
 - ANN: tuning of architecture
- Use adequate resampling strategy
- Gold standard: nested cross validation

Acknowledgements

57

Some figures from course Introduction to Machine Learning (I2ML)

Bernd Bischl, Fabian Scheipl, Daniel Schalk, Heidi Seibold et al. https://github.com/compstat-lmu/lecture_i2ml

License:

