Biochemie 1

Les 2

Na afloop van deze les kun je

...uitleggen wat sterke en zwakke zuren en basen zijn

...rekenen met de pH, Ka, pKa en de Henderson-Hasselbach vergelijking

...uitleggen wat buffers zijn en waarom deze belangrijk zijn binnen de biochemie/ biologie

...de basisstructuur van een aminozuur tekenen

...uitleggen wat zwitterionen zijn

...de zijketens van de aminozuren tekenen

De pH is een belangrijke parameter in biologische systemen.

Zuren, basen en pH (herhaling)

Zuur: proton donor

Base: proton acceptor

Sterk zuur: zuur dat, opgelost in water, volledig dissocieert B.v. HCl, HBr, HI, HNO₃, HClO₄, and H₂SO₄

Sterke base: base die, opgelost in water, volledig dissocieert B.v. LiOH, NaOH, KOH, Ca(OH)₂, and Ba(OH)₂

$$pH = -log[H^+]$$

$$pOH = -log[OH^{-}]$$

$$pH + pOH = 14$$

Oefening

Bereken bij de volgende voorbeelden de pH:

Sterk zuur:

Sterke base:

 $[HCI] = 1x10^{-3} M$

 $[NaOH] = 1x10^{-4} M$

By W. Oelen (http://woelen.homescience.net/science/index.html) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

Oefening - antwoorden

Sterk zuur:

$$[HCI] = 1x10^{-3} M$$

 $HCI \rightarrow H^{+} + CI^{-}$
 $pH = -log[H^{+}]$
 $pH = 3$

Sterke base:

[NaOH] =
$$1 \times 10^{-4}$$
 M
NaOH \rightarrow Na⁺ + OH⁻
pOH = $-\log[OH^{-}]$
pOH = 4
pH + pOH = 14
pH = 10

Sterke base:

```
(andere manier)

[OH-] = 1x10-4 M

[H+][OH-] = 10-14

Dus [H+] = 1x10-10 M

pH = 10
```

Zuiver water pH 7: $[H^+] = 10^{-7}M = [OH^-]$

Zwakke zuren

Dissociëren niet volledig in water (b.v. azijnzuur)

$$HA \longrightarrow H^+ + A^-$$
zuur geconjungeerde base

Hoe bereken je dan de pH?

Zuren, basen en pH

$$HA \longrightarrow H^+ + A^-$$

$$K_{\rm a} = \frac{[\mathrm{H}^+][\mathrm{A}^-]}{[\mathrm{HA}]}$$

Hoe groter K_a, hoe sterker het zuur

Henderson-Hasselbalch vergelijking

$$HA \iff H^+ + A^-$$

$$K_{a} = \frac{\lfloor H^{+} \rfloor \lfloor A^{-} \rfloor}{\lfloor HA \rfloor}$$

$$pK_a = -\log_{10} K_a$$

$$pH = pK_a + log \frac{[A^-]}{[HA]}$$

De afleiding hoef je niet te kennen, maar is te vinden in het boek.

Een zuur met een pKa van 8.0 is aanwezig in een oplossing met een pH van 6.0. Wat is de ratio tussen de geprotoneerde en de gedeprotoneerde vorm?

Een zuur met een pKa van 8.0 is aanwezig in een oplossing met een pH van 6.0. Wat is de ratio tussen de geprotoneerde en de gedeprotoneerde vorm?

PH = pka + log
$$\frac{CA^{-3}}{EHA^{-3}}$$

6.0 = 8.0 + log $\frac{CA^{-3}}{EHA^{-3}}$

Log $\frac{CA^{-3}}{EHA^{-3}}$ = -2

 $\frac{CA^{-3}}{EHA^{-3}}$ = -2

Aspirine is een zuur met een pKa van 3,5. Om te kunnen worden opgenomen in de bloedsomloop, moet aspirine het membraan van de maag en de dunne darm passeren. Neutrale moleculen gaan makkelijker door een membraan dan geladen moleculen.

Waar wordt meer aspirine opgenomen: in de maag (pH 1) of in de dunne darm (pH 6)? Licht je antwoord toe met een berekening.

maaq

$$1 = 3.5 + \log \frac{EA}{EHA}$$

$$\log \frac{CA^{-3}}{CHA^{-3}} = -2.5 \qquad \text{dus [HA] > [A^{-}]}$$

dam

dus $[HA] < [A^-]$

Laat met behulp van de Henderson-Hassebalch vergelijking zien dat de pKa de pH is waarbij de concentraties van het zuur en de geconjugeerde base gelijk zijn.

Laat met behulp van de Henderson-Hassebalch vergelijking zien dat de pKa de pH is waarbij de concentraties van het zuur en de geconjugeerde base gelijk zijn.

Henderson-Hasselbalch vergelijking

$$pH = pK_a + log \frac{[A^-]}{[HA]}$$

pK_a is de pH waarbij de helft van het zuur gedissocieerd is

$$pH > pKa \rightarrow [A-] > [HA]$$

$$pH < pKa \rightarrow [A-] < [HA]$$

de pH is belangrijk

• Enzymreacties:

Maar ook bloed!

Specifieke pH voor elke situatie

Buffers

Gaan veranderingen in pH, na toevoeging van kleine hoeveelheden zuur of base, tegen

De meeste cellen hebben een buffercapaciteit om de pH binnen de cel constant te houden (meestal pH~7)

Een buffer bestaat meestal uit een geconjungeerd zuur-base paar (b.v. azijnzuur en acetaat)

Buffers

Rekenvoorbeeld buffer

(ter illustratie)

Buffers

Buffers

Een buffer werkt het best bij een pH tussen de pKa-1 en pKa+1

Buffers en Henderson Hasselbalch

$$pH = pK_a + log \frac{[A^-]}{[HA]}$$

Als de verhouding $[A^-]/[HA] = 1$, dan pH = pK_a

Bij deze pH is de buffer op zijn "best": een beetje base of zuur zal de pH maar weinig veranderen

pH, pKa en Henderson-Hasselbalch

meer oefeningen op Blackboard

Hoofdstuk 3 - aminozuren

Basisstructuur L-aminozuur

Fisher projectie in het boek

Fisher projectie in de file op BB

Beide weergaven zijn goed.

Aminozuren

Unnumbered 3 p38a

Blochemistry: A Short Course, Third Edition

2015 Macmillan Education

Fisher projectie: Horizontaal komt naar de kijker toe Verticaal gaat van de kijker af

Stereochemical rendering of alanine

Unnumbered 3 p38b

Biochemistry: A Short Course, Third Edition

2015 Macmillan Education

Aminozuren zijn chiraal

Figure 3.1

Biochemistry: A Short Course, Third Edition

© 2015 Macmillan Education

Aminozuren zijn chiraal

Met uitzondering van Glycine hebben alle aminozuren die in eiwitten voorkomen ten minste één chiral centrum (het α-koolstofatoom)

Samuel-L-Jackson

Het overgrote deel van de aminozuren die in cellen worden gebruikt in biochemische reacties hebben de L-configuratie

Aminozuren

pKa carboxylgroep = 2

pKa aminogroep = 9

Welke vorm kom je tegen bij pH 7,4?

Aminozuren zijn zwitterionen

Figure 3.2

Biochemistry: A Short Course, Third Edition

© 2015 Macmillan Education

Zijgroepen van aminozuren

- Hydrofoob
- Polair ongeladen (lading is niet evenredig verdeeld)
- Positief geladen (bij pH ~7,4)
- Negatief geladen (bij pH ~7,4)

Aminozuren met apolaire zijketens

(vaak) start eiwit invloed op structuur!

aromatisch

Aminozuren met polaire zijketens

Tyrosine is polair én aromatisch

Aminozuren met polaire zijketens

Disulfide bruggen

Aminozuren met basische groep

Positief geladen bij neutrale (fysiologische) pH

pKa van de imidazoolgroep in Histidine ~ 6,0

Histidine

pKa van de imidazoolgroep in Histidine ~ 6,0

Binding/verliezen van protonen rond fysiologische pH (enzymen!)

Aminozuren met zuurgroep

Figure 3.7

Biochemistry: A Short Course, Third Edition

© 2015 Macmillan Education

Asparagine vs Aspartaat (Asn vs Asp)

Asparagine (Asn, N)

Aspartate (Asp, D)

Figure 3.7

Biochemistry: A Short Course, Third Edition

© 2015 Macmillan Education