Representation Group

Alexandre Charland

 $March\ 20,\ 2025$

Chapter 1

Module

Lemma 1 (HomAMisoM). Soit A un anneau unitaire et M un A-module.

$$Hom_A(A, M) \cong M$$

Proof. Soit $m \in M$, $\psi_m : A \to M$ tq $\psi_m(a) = am$

Soit $\phi: M \to (A \to M)$ tq $\phi(m) = \psi_m$

Il faut montré que ψ_m est un homomorphisme.

Soit $a, b \in A$.

$$\psi_m(a+b) = (a+b)m = am + bm = \psi_m(a) + \psi_m(b)$$

On a que ϕ est un homomorphisme, car

 $\phi(m+n) = \psi_{m+n}.$

 $\forall a \in A,\, \psi_{m+n}(a) = a(m+n) = (am) + (an) = \psi_m(a) + \psi_n(a)$

Donc $\psi_{m+n} = \psi_m + \psi_n \Rightarrow \phi(m+n) = \phi(m) + \phi(n)$

Par le premier théorème d'isomorphisme de module, $\frac{M}{\ker(\phi)}\cong \mathrm{Im}(\phi)$

Seul $\phi(0)$ envoit à l'identité de $\operatorname{Hom}_A(A,M)$, donc le noyau est trivial. Il ne reste plus qu'a montré que ϕ atteint tous les homomorphismes de A à M.

Soit $\sigma \in \operatorname{Hom}_A(A, M)$ et $m \in M$, tq $\sigma(1) = m$.

Soit $a \in A$

 $\sigma(a) = \sigma(a \cdot 1) = a \cdot \sigma(1)$, car tous élément de l'algèbre agit comme un scalaire sur l'homomorphisme.

Donc $\forall a \in A, \sigma(a) = a \cdot \sigma(1) = a \cdot m$.

 $\sigma = \psi_m$.

Donc ϕ est surjectif et on obtient le résultat voulu.

Lemma 2 (MdirectSumIdemp). Soit A un algèbre et $e \in A$ un idempotant de A.

$$A = Ae \oplus A(1 - e)$$

Proof. Il suffit de montré que $\forall m \in Ae$ et $\forall n \in A(1-e)$ tq $m+n=0 \Rightarrow m=n=0$. Soit m,n tq décris plus haut.

Comme $m \in Ae, \exists a \in A \text{ tq } ae = m.$

Comme $n \in A(1-e), \exists b \in A \text{ tq } b(1-e) = n.$

$$m+n=ae+b(1-e)=0 \Rightarrow ae^2+be-be^2=ae+be-be=0e \Rightarrow m=ae=0$$

$$0+n=0 \Rightarrow n=0$$

Lemma 3 (HomAeM). Soit A un anneau unitaire, M un A-module et e un idempotant de A.

$$\forall \phi \in Hom_A(Ae, M), \exists m \in eM, \phi(e) = m$$

Proof. Si e=0

On a que A0 = 0 donc $\forall a \in A$

$$\phi(0) = \phi(a0) = a\phi(0)$$

On conclue que la seul valeur de $\phi(0) = 0 \in 0M$

Si e=1

Par le lemme HomAMisoM

Sinon $\exists n \in M \text{ tq } \phi(e) = n$

$$\phi(e) = n \Rightarrow e\phi(e) = \phi(e) = en \Rightarrow n = en$$

Il faut que n soit en mesure d'absorber $e \notin 0, 1$. On conclue que $n \in eM$

Lemma 4 (HomAeMisoeM). Soit A un anneau unitaire, M un A-module et e un idempotant de A.

$$Hom_A(Ae, M) \cong eM$$

Proof. Soit $m \in eM$, $\psi_m : Ae \to M$ tq $\psi_m(a) = am$

Il faut montré que ψ_m est un homomorphisme.

Soit $a, b \in Ae$.

$$\psi_m(a+b)=(a+b)m=am+bm=\psi_m(a)+\psi_m(b)$$

Soit $\phi: eM \to (Ae \to M)$ tq $\phi(m) = \psi_m$

On a que ϕ est un homomorphisme, car

 $\phi(m+n) = \psi_{m+n}.$

 $\forall a \in A,\, \psi_{m+n}(a) = a(m+n) = (am) + (an) = \psi_m(a) + \psi_n(a)$

Donc $\psi_{m+n} = \psi_m + \psi_n \Rightarrow \phi(m+n) = \phi(m) + \phi(n)$ Par le premier théorème d'isomorphisme de module, $\frac{eM}{\ker(\phi)} \cong \operatorname{Im}(\phi)$

Seul $\phi(0)$ envoit à l'identité de $\operatorname{Hom}_A(A,M),$ donc le noyau est trivial.

Par le lemme HomAeM, on a que tous les homomorphismes de $\operatorname{Hom}_A(A,M)$ sont atteint.

Chapter 2

YoungTableau

Definition 5 (Young Tableau). Un Young Tableau est une fonction des cellules d'un Young Digram de taille n et retourne un naturel de 0 à n-1	ia-
Lemma 6 (injYu). Un YoungTableau est injectif sur les entrés qui sont dans le YoungDiagra	am
Proof. Par définition d'un YoungTableau	
Lemma 7 (bijYu). Un YoungTableau est une bijection entre les case de son YoungDiagram les naturels de 0 à n-1	et
<i>Proof.</i> Comme il est injectif et le domaine et codomaine sont fini et ont la même cardinalité. La fonction doit être bijective	
Lemma 8 (preImYu). Tous nombre de θ à n -1 possède une unique case associé dans μ par Y	Y_{μ}
<i>Proof.</i> Trivial sachant que Y_{μ} est bijectif	
Definition 9 (Pu). P_{μ} est un sous groupe de S_n , défini de la façon suivante: Un élément de P_{μ} permute les entré du YoungDiagram si ils sont sur la même rangé.	
Proof. Il y a trois choses à vérifier. Le sous-groupe est fermé sous la composition de fonction Preuve: Soit $\alpha, \beta \in P_{\mu}$, mq $\alpha \circ \beta(Y_{\mu}(\mathbf{i})) = Y_{\mu}(\mathbf{j}) \to \mathbf{i}.\mathbf{y} = \mathbf{j}.\mathbf{y}$ Comme Y_{μ} est une bijection, $\exists k \in \mu$ tq $Y_{\mu}(\mathbf{k}) = \beta(Y_{\mu}(\mathbf{j}))$ Comme $\beta \in P_{\mu}$ on a que $\mathbf{k}.\mathbf{y} = \mathbf{j}.\mathbf{y}$ De plus on a que $\alpha(Y_{\mu}(\mathbf{k})) = \alpha \circ \beta(Y_{\mu}(\mathbf{i})) = Y_{\mu}(\mathbf{j})$ On peut déduire que $\mathbf{i}.\mathbf{y} = \mathbf{k}.\mathbf{y} = \mathbf{j}.\mathbf{y}$	
L'élement neutre est élément de P_{μ} La preuve découle de l'injectivité de Y_{μ}	
L'inverse est élément de P_{μ} Soit $\alpha \in P_{\mu}$, mq $\alpha^{-1} \in P_{\mu}$ Comme alpha est une bijection, on a que $\alpha^{-1}(Y_{\mu}(i)) = Y_{\mu}(j) \Leftrightarrow Y_{\mu}(i) = \alpha(Y_{\mu}(j))$	
Definition 10 (PuCard). Le nombre d'élément de P_{μ} est fini.	
Proof. Comme P., est un sous-groupe d'un groupe fini, il a un nombre fini d'élément.	

 Definition 11 (Qu). Q_{μ} est un sous groupe de $S_n,$ défini de la façon suivante: Un élément de Q_{μ} permute les entré du Young Diagram si ils sont sur la même colonne.

Proof. La même preuve que Pu

Definition 12 (QuCard). Le nombre d'élément de Q_{μ} est fini.

Proof. Comme Q_{μ} est un sous-groupe d'un groupe fini, il a un nombre fini d'élément.

Lemma 13 (sect PuQu). Pour un même Young Tableau, l'intersection de P_μ et Q_μ est 1

Proof. Il faut mq $P_{\mu} \cap Q_{\mu} \subseteq 1$

Soit $\alpha \in P_{\mu} \cap Q_{\mu}$ et $\mathbf{i} \in \mu$ Comme Y_{μ} est bijectif, $\exists \ \mathbf{j} \in \mu$, $\alpha(Y_{\mu}(i)) = Y_{\mu}(j)$ $\alpha \in P_{\mu} \cap Q_{\mu}$ donc $\mathbf{i}.\mathbf{x} = \mathbf{j}.\mathbf{x}$ et $\mathbf{i}.\mathbf{y} = \mathbf{j}.\mathbf{y}$ Donc $\mathbf{i}=\mathbf{j} \rightarrow \alpha(Y_{\mu}(i)) = Y_{\mu}(i)$

Donc alpha est la fonction id

Definition 14 (PuQu). $P_{\mu}Q_{\mu} := \{g: [0, n-1] \to [0, n-1] | \exists p \in P_{\mu} \land \exists q \in Q_{\mu}, g = pq \}$

Definition 15 (Gu). G_{μ} est une permutation de [0, n-1] tq

$$\forall i,j,k,l \in \mu, ((i \neq j) \land (G_{\mu} \circ Y_{\mu}(i) = Y_{\mu}(k)) \land (G_{\mu} \circ Y_{\mu}(j) = Y_{\mu}(l))) \rightarrow ((i.x \neq j.x) \lor (k.y \neq l.y))$$

Definition 16 (YuInv). Y_{μ}^{-1} est une l'inverse de Y_{μ}

Lemma 17 (staysInY).

$$\forall m \in [0,n-1], (Y_{\mu}^{-1}(m).x,Y_{\mu}^{-1}(G_{\mu}(m)).y) \in \mu$$

Proof. No idea... TODO Figure it out

Definition 18 (qu). q_{μ} est une permutation de [0, n-1] défini comme

$$q_{\mu}(m) = Y_{\mu}((Y_{\mu}^{-1}(m)).x, (Y_{\mu}^{-1} \circ G_{\mu}(m)).y)$$

Proof. Par le lemme staysInY, on sait que la fonction q_{μ} est bien défini.

Il ne reste plus qu'a montré que q_{μ} est une bijection. TODO

Definition 19 (quInv). q_{μ}^{-1} est la fonction inverse de q_{μ}

Lemma 20 (staysInX).

$$\forall m \in [0,n-1], ((Y_{u}^{-1} \circ G_{u} \circ q_{u}^{-1}(m)).x, (Y_{u}^{-1}(m)).y) \in \mu$$

Proof. No idea... TODO Figure it out

Definition 21 (pu). p_{μ} est une permutation de [0,n-1] défini comme

$$q_{\mu}(m) = Y_{\mu}(Y_{\mu}^{-1}(m).x,Y_{\mu}^{-1}(G_{\mu}(m)).y)$$

Proof. TODO

Lemma 22 (No2FromSameColToSameRow). Soit $g:[0,n-1] \to [0,n-1]$ une fonction bijective et Y_{μ} un Young Tableau.

Si
$$\forall i, j, k, l \in \mu, i \neq j, g(Y_{\mu}(i)) = Y_{\mu}(k), g(Y_{\mu}(j)) = Y_{\mu}(l)$$
 alors $i.x \neq j.x \lor k.y \neq l.y.$ Alors $g \in P_{\mu}Q_{\mu}$

 $\begin{array}{l} \textit{Proof. Posons} \ q(Y_{\mu}(i)) := Y_{\mu}(i.x, (Y_{\mu}^{-1} \circ g \circ Y_{\mu}(i)).y). \\ \text{Par le lemme qWellDefined, nous avons que q est bien définit.} \end{array}$

Montrons que $q \in Q_{\mu}$

Si q n'est pas injectif alors $\exists k,l \in \mu$ tq $k \neq l, q(Y_{\mu}(k)) = q(Y_{\mu}(l)).$

 $\begin{array}{l} \text{Donc } Y_{\mu}((Y_{\mu}^{-1}\circ g\circ Y_{\mu}(k)).x,k.y) = Y_{\mu}((Y_{\mu}^{-1}\circ g\circ Y_{\mu}(l)).x,l.y).\\ \text{Comme } Y_{\mu}^{-1}\circ g\circ Y_{\mu} \text{ est bijectif, } \exists !i,j\in \mu \text{ tq } i\neq j,Y_{\mu}^{-1}\circ gY_{\mu}(k)=i,Y_{\mu}^{-1}\circ gY_{\mu}(l)=j.\\ \text{Donc } \exists i,j,k,l\in \mu,i\neq j,g(Y_{\mu}(i))=Y_{\mu}(k),g(Y_{\mu}(j))=Y_{\mu}(l) \text{ et } i.x=j.x\wedge k.y=l.y. \end{array}$

Contradiction d'hypothèse.

Donc q est injectif. De plus comme le domaine et codomaine sont finis et de même taille, on a que q est une bijection. Ainsi $q \in Q_{\mu}$.

Posons
$$p(Y_{\mu}(i)) := Y_{\mu}((Y_{\mu}^{-1} \circ g \circ q^{-1} \circ Y_{\mu}(i)).x, i.y).$$
 On remarque $p \circ q = g$. Soit $i \in \mu$. $\exists j \in \mu$ tq $g(Y_{\mu}(i)) = Y_{\mu}(j)$. Donc $Y_{\mu}^{-1} \circ g \circ Y_{\mu}(i) = j$

$$\begin{split} p \circ q(Y_{\mu}(i)) &= p(Y_{\mu}(i.x, (Y_{\mu}^{-1} \circ g \circ Y_{\mu}(i)).y)) = p(Y_{\mu}(i.x, j.y)) \\ Y_{\mu}((Y_{\mu}^{-1} \circ g \circ q^{-1} \circ Y_{\mu}(i.x, j.y)).x, j.y) &= Y_{\mu}((Y_{\mu}^{-1} \circ g \circ Y_{\mu}(i)).x, j.y) \\ Y_{\mu}(j.x, j.y) &= Y_{\mu}(j) \end{split}$$

Donc p est bien définit, et $g \in P_{\mu}Q_{\mu}$

Definition 23 (IneqYoungDiagram). Soit μ et λ deux YoungDiagram de même cardinalité. On dit que $\mu > \lambda$ si $\exists i \in \mathbb{N}$ tq $\mu_i > \lambda_i$ et $\forall j \in \mathbb{N}_{< i}$, $\mu_i = \lambda_i$.

Chapter 3

SpechtModules

Definition 24 (YoungProjectors). Un Young projector est défini par un YoungDiagram μ

$$a_{\mu} := \frac{1}{|P_{\mu}|} \sum_{g \in P_{\mu}} g$$

$$b_{\mu} := \frac{1}{|Q_{\mu}|} \sum_{g \in Q_{\mu}} (-1)^g g$$

Où $(-1)^g$ est le signe de g

Definition 25 (Young Symmetriser). Un Young symmetriser est défini par un Young Diagram μ $c_{\mu} := a_{\mu}b_{\mu}$

Definition 26 (SpechtModules). Soit μ un YoungDiagram.

$$V_{\mu} := \mathbb{C}[S_n]c_{\mu}$$

 V_{μ} est appelé un Specht modules. Il est un sous-espace de $\mathbb{C}[S_n].$

Lemma 27 (Linear Transformation). $\exists l_{\mu}\ une\ fonction\ linéaire\ tq$ $\forall x \in \mathbb{C}[S_n], \ a_{\mu}xb_{\mu} = l_{\mu}(x)c_{\mu}$

Proof. Soit $\mathbf{x} \in \mathbb{C}[S_n]$.

x est de la forme $\sum_{g \in S_n} a_g g$. Examinons se qu'il se passe pour différent g. Si $g \in P_\mu Q_\mu$, alors $\exists p \in P_\mu$ et $q \in Q_\mu$ tq g=pq

$$a_{\mu}gb_{\mu} = \frac{1}{|P_{\mu}|} \sum_{g \in P_{\mu}} g \ pq \frac{1}{|Q_{\mu}|} \sum_{h \in Q_{\mu}} (-1)^{h}$$

$$\frac{1}{|P_{\mu}|} \sum_{g \in P_{\mu}} gp = \frac{1}{|P_{\mu}|} \sum_{g' \in P_{\mu}} g'$$

On peut faire le changement de variable en posant g' = gp et en utilisant le fait que $\phi(g) = gp$ est un isomorphisme de groupe. Ainsi les deux sommes sont équivalantes à un réordenement près.

$$\frac{1}{|Q_{\mu}|} \sum_{h \in Q_{\mu}} (-1)^h qh = \frac{1}{|Q_{\mu}|} \sum_{h \in Q_{\mu}} (-1)^h qh = (-1)^{q^{-1}} \frac{1}{|Q_{\mu}|} \sum_{h' \in Q_{\mu}} (-1)^{h'} h'$$

$$a_\mu g b_\mu = (-1)^q c_\mu$$

Il ne reste plus à montrer que si g $\notin P_\mu Q_\mu$ alors $l_\mu(g)$ =0, car g ne peut pas être exprimer par c_μ Donc il faut mq $a_\mu g b_\mu$ =0 ou de façon équivalente $a_\mu g b_\mu = -a_\mu g b_\mu$ Il suffit de trouver $t \in P_\mu$ tq $g^{-1}tg \in Q_\mu$ et $(-1)^t = -1$, car

$$a_{\mu}gb_{\mu}=a_{\mu}tgb_{\mu}=a_{\mu}(gg^{-1})tgb_{\mu}=a_{\mu}g(g^{-1}tg)b_{\mu}=(-1)^{g^{-1}tg}a_{\mu}gb_{\mu}=-a_{\mu}gb_{\mu}$$

Plusieurs changements de variables ont été effectuer pour "faire apparaître et disparaître" des éléments. $(-1)^{g^{-1}tg}=(-1)^{g^{-1}}\cdot(-1)^t\cdot(-1)^g=(-1)^g\cdot(-1)^t\cdot(-1)^g=-1$

Par la contraposé du lemme No2FromSameColToSameRow, on a que

 $\exists i,j,k,l\in\mu \text{ tq } i\neq j, g(Y_{\mu}(i))=Y_{\mu}(k), g(Y_{\mu}(j))=Y_{\mu}(l), i.x=j.x \text{ et } k.y=l.y.$ Posons t : [0,n-1] \rightarrow [0,n-1]

$$t(n) = \begin{cases} Y_{\mu}(k) & \text{si } n = Y_{\mu}(l) \\ Y_{\mu}(l) & \text{si } n = Y_{\mu}(k) \\ n & \text{sinon} \end{cases}$$

Par construction, $t \in P_{\mu}$ et $(-1)^t = -1$. Il suffit de montré que $g^{-1}tg \in Q_{\mu}$

$$g^{-1}\circ t\circ g(Y_{\mu}(i))=g^{-1}\circ t(Y_{\mu}(k))=g^{-1}(Y_{\mu}(l))=Y_{\mu}(j)$$

$$g^{-1}\circ t\circ g(Y_{\mu}(j))=g^{-1}\circ t(Y_{\mu}(l))=g^{-1}(Y_{\mu}(k))=Y_{\mu}(i)$$

On remarque que si $m \in \mu \backslash \{i,j\}, g(Y_\mu(m)) \notin \{Y_\mu(k), Y_\mu(l)\}$. Donc $t(g(Y_\mu(m)))$ se comporte comme la fonction identité. Ainsi $g^{-1}tg \in Q_\mu$.

Lemma 28 (SmallerImpZero). $Si \mu > \lambda$, alors

 $a_{\mu}\mathbb{C}[S_n]b_{\lambda}=0$

Proof. Comme $\mu > \lambda$

TODO montré que

Donc, il existe deux éléments de la même colomne que g envoit sur la même rangé

Ainsi un peut construire un t tq t $\in P_{\mu}$ et $g^{-1}tg \in Q_{\lambda}$.

Par le même argument que le dernier lemme, $a_{\mu}\mathbb{C}[S_n]b_{\lambda}=0$

Lemma 29 (CuPropIdempotent). c_{μ} est proportionel à un idempotent. De façon mathématique

$$\exists a \in \mathbb{C}, c_{\mu}^2 = a \cdot c_{\mu}$$

Proof. On applique le lemme LinearTransformation avec $x = b_{\mu} a_{\mu} \in \mathbb{C}[S_n]$.