MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER- 16 EXAMINATION Model Answer

Subject Code:

17105

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
No.	Q. N.	Allswei	Scheme
Q. 1		Attempt any <u>TEN</u> of the following:	20
		Find x, if $\begin{vmatrix} -2 & 0 & 0 \\ -6 & x & 1 \\ -4 & 0 & -1 \end{vmatrix} = -4$	02
	Ans	$\begin{vmatrix} -2 & 0 & 0 \\ -6 & x & 1 \\ -4 & 0 & -1 \end{vmatrix} = -4$	
		$\therefore -2(-x-0)-0(6+4)+0(0+4x)=-4$	1
		$\therefore 2x - 0 + 0 = -4$ $\therefore 2x = -4$	1/2
		$\therefore x = -2$	1/2
			72
	b)	If $A = \begin{bmatrix} 2 & 3 & 1 \\ 0 & -1 & 5 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 & -6 \\ 0 & -1 & 3 \end{bmatrix}$ find $3A - B$	02
	Ans	$ 3A - B = 3 \begin{bmatrix} 2 & 3 & 1 \\ 0 & -1 & 5 \end{bmatrix} - \begin{bmatrix} 1 & 2 & -6 \\ 0 & -1 & 3 \end{bmatrix} $	
		$= \begin{bmatrix} 6 & 9 & 3 \\ 0 & -3 & 15 \end{bmatrix} - \begin{bmatrix} 1 & 2 & -6 \\ 0 & -1 & 3 \end{bmatrix}$	1
		$= \begin{bmatrix} 5 & 7 & 9 \\ 0 & -2 & 12 \end{bmatrix}$	1

WINTER - 16 EXAMINATION

Model Answer

If $A = \begin{bmatrix} 1 & -1 & -2 \\ -1 & -2 \end{bmatrix}$, show that A^2 is null matrix $A^2 = AA$ $= \begin{bmatrix} 2 & 4 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ -1 & -2 \end{bmatrix}$ $= \begin{bmatrix} 4-4 & 8-8 \\ -2+2 & -4+4 \end{bmatrix}$ $= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ Show that the matrices $A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & -1 \\ 1 & 4 \end{bmatrix}$ are commute $Ans AB = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 4 & -1 \\ 1 & 4 \end{bmatrix}$ $= \begin{bmatrix} 8+3 & -2+12 \\ -12+2 & 3+8 \end{bmatrix}$ $= \begin{bmatrix} 11 & 10 \\ -10 & 11 \end{bmatrix}$ $BA = \begin{bmatrix} 4 & -1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}$ $= \begin{bmatrix} 8+3 & 12-2 \\ 2-12 & 3+8 \end{bmatrix}$ $= \begin{bmatrix} 11 & 10 \\ -10 & 11 \end{bmatrix}$ $\therefore AB = BA$ $\therefore A \text{ and } B \text{ are commute}$	Q. No.	Sub Q. N.	Answer	Marking Scheme
$= \begin{bmatrix} 2 & 4 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ -1 & -2 \end{bmatrix}$ $= \begin{bmatrix} 4-4 & 8-8 \\ -2+2 & -4+4 \end{bmatrix}$ $= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $= \begin{bmatrix} 3 & 3 \\ 0 & 0 \end{bmatrix}$ Show that the matrices $A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & -1 \\ 1 & 4 \end{bmatrix}$ are commute $AB = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 4 & -1 \\ 1 & 4 \end{bmatrix}$ $= \begin{bmatrix} 8+3 & -2+12 \\ -12+2 & 3+8 \end{bmatrix}$ $= \begin{bmatrix} 11 & 10 \\ -10 & 11 \end{bmatrix}$ $BA = \begin{bmatrix} 4 & -1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & 3 & 2 \end{bmatrix}$ $= \begin{bmatrix} 8+3 & 12-2 \\ 2-12 & 3+8 \end{bmatrix}$ $= \begin{bmatrix} 11 & 10 \\ -10 & 11 \end{bmatrix}$ $\therefore AB = BA$ $\therefore A \text{ and B are commute}$	1	c)	If $A = \begin{bmatrix} 2 & 4 \\ -1 & -2 \end{bmatrix}$, show that A^2 is null matrix	02
$= \begin{bmatrix} 4-4 & 8-8 \\ -2+2 & -4+4 \end{bmatrix}$ $= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ Show that the matrices $A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & -1 \\ 1 & 4 \end{bmatrix}$ are commute $AB = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 4 & -1 \\ 1 & 4 \end{bmatrix}$ $= \begin{bmatrix} 8+3 & -2+12 \\ -12+2 & 3+8 \end{bmatrix}$ $= \begin{bmatrix} 11 & 10 \\ -10 & 11 \end{bmatrix}$ $BA = \begin{bmatrix} 4 & -1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & 3 \end{bmatrix}$ $= \begin{bmatrix} 8+3 & 12-2 \\ 2-12 & 3+8 \end{bmatrix}$ $= \begin{bmatrix} 11 & 10 \\ -10 & 11 \end{bmatrix}$ $AB = BA$		Ans	$A^2 = A.A$	
$= \begin{bmatrix} 4-4 & 8-8 \\ -2+2 & -4+4 \end{bmatrix}$ $= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $= \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 4 & -1 \\ 1 & 4 \end{bmatrix}$ $= \begin{bmatrix} 8+3 & -2+12 \\ -12+2 & 3+8 \end{bmatrix}$ $= \begin{bmatrix} 11 & 10 \\ -10 & 11 \end{bmatrix}$ $= \begin{bmatrix} 8+3 & 12-2 \\ 2-12 & 3+8 \end{bmatrix}$ $= \begin{bmatrix} 11 & 10 \\ -10 & 11 \end{bmatrix}$ $\therefore AB = BA$ $\therefore A \text{ and B are commute}$,		$ = \begin{bmatrix} 2 & 4 \end{bmatrix} \begin{bmatrix} 2 & 4 \end{bmatrix}$	
				1
d) Show that the matrices $A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & -1 \\ 1 & 4 \end{bmatrix}$ are commute $AB = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 4 & -1 \\ 1 & 4 \end{bmatrix}$ $= \begin{bmatrix} 8+3 & -2+12 \\ -12+2 & 3+8 \end{bmatrix}$ $= \begin{bmatrix} 11 & 10 \\ -10 & 11 \end{bmatrix}$ $BA = \begin{bmatrix} 4 & -1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}$ $= \begin{bmatrix} 8+3 & 12-2 \\ 2-12 & 3+8 \end{bmatrix}$ $= \begin{bmatrix} 11 & 10 \\ -10 & 11 \end{bmatrix}$ $\therefore AB = BA$ $\therefore A \text{ and B are commute}$			$ = \begin{bmatrix} 4-4 & 8-8 \\ -2+2 & -4+4 \end{bmatrix} $	1
d) Show that the matrices $A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & -1 \\ 1 & 4 \end{bmatrix}$ are commute $AB = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 4 & -1 \\ 1 & 4 \end{bmatrix}$ $= \begin{bmatrix} 8+3 & -2+12 \\ -12+2 & 3+8 \end{bmatrix}$ $= \begin{bmatrix} 11 & 10 \\ -10 & 11 \end{bmatrix}$ $BA = \begin{bmatrix} 4 & -1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}$ $= \begin{bmatrix} 8+3 & 12-2 \\ 2-12 & 3+8 \end{bmatrix}$ $= \begin{bmatrix} 11 & 10 \\ -10 & 11 \end{bmatrix}$ $\therefore AB = BA$ $\therefore A \text{ and B are commute}$			$=\begin{bmatrix}0&0\\0&0\end{bmatrix}$	1
Ans $AB = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 4 & -1 \\ 1 & 4 \end{bmatrix}$ $= \begin{bmatrix} 8+3 & -2+12 \\ -12+2 & 3+8 \end{bmatrix}$ $= \begin{bmatrix} 11 & 10 \\ -10 & 11 \end{bmatrix}$ $BA = \begin{bmatrix} 4 & -1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}$ $= \begin{bmatrix} 8+3 & 12-2 \\ 2-12 & 3+8 \end{bmatrix}$ $= \begin{bmatrix} 11 & 10 \\ -10 & 11 \end{bmatrix}$ $\therefore AB = BA$ $\therefore A \text{ and B are commute}$				
$ \begin{bmatrix} 8+3 & -2+12 \\ -12+2 & 3+8 \end{bmatrix} \\ = \begin{bmatrix} 11 & 10 \\ -10 & 11 \end{bmatrix} \\ BA = \begin{bmatrix} 4 & -1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix} \\ = \begin{bmatrix} 8+3 & 12-2 \\ 2-12 & 3+8 \end{bmatrix} \\ = \begin{bmatrix} 11 & 10 \\ -10 & 11 \end{bmatrix} \\ \therefore AB = BA $ $\therefore A \text{ and B are commute}$		d)	Show that the matrices $A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & -1 \\ 1 & 4 \end{bmatrix}$ are commute	02
$=\begin{bmatrix} 11 & 10 \\ -10 & 11 \end{bmatrix}$ $BA = \begin{bmatrix} 4 & -1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}$ $= \begin{bmatrix} 8+3 & 12-2 \\ 2-12 & 3+8 \end{bmatrix}$ $= \begin{bmatrix} 11 & 10 \\ -10 & 11 \end{bmatrix}$ $\therefore AB = BA$ $\therefore A \text{ and B are commute}$		Ans		
$=\begin{bmatrix} 11 & 10 \\ -10 & 11 \end{bmatrix}$ $BA = \begin{bmatrix} 4 & -1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}$ $= \begin{bmatrix} 8+3 & 12-2 \\ 2-12 & 3+8 \end{bmatrix}$ $= \begin{bmatrix} 11 & 10 \\ -10 & 11 \end{bmatrix}$ $\therefore AB = BA$ $\therefore A \text{ and B are commute}$			$=\begin{bmatrix} 8+3 & -2+12 \\ 12+2 & 2+9 \end{bmatrix}$	
$BA = \begin{bmatrix} 4 & -1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}$ $= \begin{bmatrix} 8+3 & 12-2 \\ 2-12 & 3+8 \end{bmatrix}$ $= \begin{bmatrix} 11 & 10 \\ -10 & 11 \end{bmatrix}$ $\therefore AB = BA$ $\therefore A \text{ and B are commute}$				
$= \begin{bmatrix} 8+3 & 12-2 \\ 2-12 & 3+8 \end{bmatrix}$ $= \begin{bmatrix} 11 & 10 \\ -10 & 11 \end{bmatrix}$ $\therefore AB = BA$ $\therefore A \text{ and B are commute}$	ļ		$=\begin{bmatrix} 11 & 10 \\ -10 & 11 \end{bmatrix}$	1/2
$\begin{bmatrix} = \begin{bmatrix} 2-12 & 3+8 \end{bmatrix} \\ = \begin{bmatrix} 11 & 10 \\ -10 & 11 \end{bmatrix} \\ \therefore AB = BA \\ \therefore A \text{ and B are commute} \\ & \vdots \\ $			$BA = \begin{bmatrix} 4 & -1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}$	
$= \begin{bmatrix} 11 & 10 \\ -10 & 11 \end{bmatrix}$ $\therefore AB = BA$ $\therefore A \text{ and B are commute}$			$=\begin{bmatrix} 8+3 & 12-2 \\ 2 & 12 & 2 & 9 \end{bmatrix}$	
$\therefore AB = BA$ $\therefore A \text{ and B are commute}$				1/2
∴ A and B are commute	,		$=\begin{bmatrix} 11 & 10 \\ -10 & 11 \end{bmatrix}$	
			$\therefore AB = BA$	1/2
2			∴ A and B are commute	1/2
ω		- 1	2	0.5
		e)	Resolve into the partials $\frac{2}{x^2 + x - 2}$	02
Ans $\frac{2}{x^2 + x - 2} = \frac{2}{(x - 1)(x + 2)}$		Ans	$\frac{2}{x^2+x-2} = \frac{2}{(x-1)(x+2)}$	
				1/2
(x-1)(x+2) $x-1$ $x+2$			(x-1)(x+2) $x-1$ $x+2$	

WINTER - 16 EXAMINATION

Model Answer

Q.	Sub	Answer	Marking
No.	Q. N.	Allswei	Scheme
1	e)	$\therefore 2 = (x+2)A + (x-1)B$	
		Put $x = 1$	
		2=(3)A	1/2
		$A = \frac{2}{3}$	
		Put $x = -2$	
		2 = (-3)B	1/2
		$\therefore B = \frac{-2}{3}$	
		$\frac{2}{3}$ $\frac{-2}{3}$	1/2
		$\therefore \frac{2}{(x-1)(x+2)} = \frac{\frac{2}{3}}{x-1} + \frac{\frac{-2}{3}}{x+2}$	
	f)	If $A = \begin{bmatrix} 1 & 2 \\ 5 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 6 \\ -3 & 4 \end{bmatrix}$, find $(AB)^T$	02
	Ans	$AB = \begin{bmatrix} 1 & 2 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} 2 & 6 \\ -3 & 4 \end{bmatrix}$	
		$= \begin{bmatrix} -4 & 14 \\ 1 & 42 \end{bmatrix}$	1
		$\therefore (AB)^T = \begin{bmatrix} -4 & 1 \\ 14 & 42 \end{bmatrix}$	1
		$\begin{bmatrix} 11 & 12 \end{bmatrix}$ $\begin{bmatrix} 14 & 42 \end{bmatrix}$	
	g)	Without using calculator find the value of sin15 ⁰	02
	Ans	$\sin 15^0 = \sin \left(45^0 - 30^0 \right)$	1/2
		$= \sin 45^{\circ} \cos 30^{\circ} - \cos 45^{\circ} \sin 30^{\circ}$	1/2
		$=\frac{1}{\sqrt{2}}\frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}}\frac{1}{2}$	1/2
		$=\frac{\sqrt{3}-1}{2\sqrt{2}}=$	1/2
	h)	Prove that $\cos(\pi + \theta) = -\cos\theta$	02
	Ans	$\cos(\pi + \theta) = \cos\pi\cos\theta - \sin\pi\sin\theta$	1/2
		$= (-1)\cos\theta - (0)\sin\theta$	1
		$=-\cos\theta$	1/2
	1		<u> </u>

WINTER - 16 EXAMINATION

Model Answer

Q.	Sub	Anguar	Marking
No.	Q. N.	Answer	Scheme
1	i)	If $2\sin 40^{\circ} \cdot \cos 10^{\circ} = \sin A + \sin B$ then find A and B	02
	Ans	$\sin(40^{0} + 10^{0}) + \sin(40^{0} - 10^{0}) = \sin A + \sin B$	1
		$\sin 50^0 + \sin 30^0 = \sin A + \sin B$	1/2
		$\therefore A = 50^{\circ} \text{ and } B = 30^{\circ}$	1/2
		OR	, -
		$2\sin 40^{\circ}.\cos 10^{\circ} = \sin A + \sin B$	
		$\therefore \sin A + \sin B = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$	
		$\therefore 2\sin 40^{\circ}.\cos 10^{\circ} = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$	1
		$\therefore \frac{A+B}{2} = 40^{\circ} \text{ and } \frac{A-B}{2} = 10^{\circ}$	1/2
		$A + B = 80^{\circ} \text{ and } A - B = 20^{\circ}$	
		$\therefore A = 50^{\circ} \text{ and } B = 30^{\circ}$	1/2
	j)	Express as product and evaluate: $\sin 81^{\circ} - \sin 99^{\circ}$	02
	Ans	$\sin 81^{0} - \sin 99^{0} = 2\cos\left(\frac{81^{0} + 99^{0}}{2}\right) \sin\left(\frac{81^{0} - 99^{0}}{2}\right)$	1
			1/2+1/2
		$=2\cos\left(90^{\circ}\right)\sin\left(-9^{\circ}\right)=0$	/2+/2
		k) Comment:If Question is attempted and results are as per model answer then	
		give the credit to the student accordingly.	
	k)	Show that the lines $2x + 3y - 1 = 0$ and $3x + 2y + 6 = 0$ are perpendicular	02
	Ans	Slope of $2x + 3y - 1 = 0$ is $m_1 = \frac{-2}{3}$	1/2
		Slope of $3x + 2y + 6 = 0$ is $m_2 = \frac{-3}{2}$	1/2
		$\therefore m_1 m_2 = \frac{-2}{3} \cdot \frac{-3}{2} = 1$	1/2
		∴ lines are not perpendicular	1/2
	l)	Find the equation of line passing through the point $(-3, 2)$ and having slope 5/2.	02
	Ans	Equation of line is $y - y_1 = m(x - x_1)$	
		$y-2=\frac{5}{2}(x+3)$	1
		5x-2y+19=0	1

WINTER - 16 EXAMINATION

Model Answer

0	Cuh		Marking
Q. No.	Sub Q. N.	Answer	Marking Scheme
2		Attempt any Four of the following:	16
	a)	If $A = \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 2 \\ -1 & -1 \end{bmatrix}$, $C = \begin{bmatrix} 4 & -3 \\ -2 & 3 \end{bmatrix}$ verify that $(A+B)C = AC + BC$	04
	Ans	$A + B = \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix} + \begin{bmatrix} 2 & 2 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} 3 & 5 \\ 1 & 0 \end{bmatrix}$	1/2
		$ (A+B)C = \begin{bmatrix} 3 & 5 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 4 & -3 \\ -2 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 6 \\ 4 & -3 \end{bmatrix} $	1
		$AC = \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 4 & -3 \\ -2 & 3 \end{bmatrix} = \begin{bmatrix} -2 & 6 \\ 6 & -3 \end{bmatrix}$	1
		$BC = \begin{bmatrix} 2 & 2 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 4 & -3 \\ -2 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ -2 & 0 \end{bmatrix}$	1
		$AC + BC = \begin{bmatrix} 2 & 6 \\ 4 & -3 \end{bmatrix}$	17
		$\therefore (A+B)C = AC + BC$	1/2
	b)	Find the inverse of matrix $A = \begin{bmatrix} 1 & 2 & 4 \\ -1 & 2 & 3 \\ 1 & 4 & 1 \end{bmatrix}$ using adjoint method	04
	Ans	$A = \begin{bmatrix} 1 & 2 & 4 \\ -1 & 2 & 3 \\ 1 & 4 & 1 \end{bmatrix}$ $ A = -26 \neq 0$ $\therefore A^{-1} \text{ exists}$	1/2
		Matrix of minors = $\begin{bmatrix} \begin{vmatrix} 2 & 3 \\ 4 & 1 \end{vmatrix} & \begin{vmatrix} -1 & 3 \\ 1 & 1 \end{vmatrix} & \begin{vmatrix} -1 & 2 \\ 1 & 4 \end{vmatrix} \\ \begin{vmatrix} 2 & 4 \\ 4 & 1 \end{vmatrix} & \begin{vmatrix} 1 & 4 \\ 1 & 1 \end{vmatrix} & \begin{vmatrix} 1 & 2 \\ 1 & 4 \end{vmatrix} \\ \begin{vmatrix} 2 & 4 \\ 2 & 3 \end{vmatrix} & \begin{vmatrix} -1 & 3 \\ -1 & 3 \end{vmatrix} & \begin{vmatrix} -1 & 2 \\ -1 & 2 \end{vmatrix} \end{bmatrix}$	1
		$= \begin{bmatrix} -10 & -4 & -6 \\ -14 & -3 & 2 \\ -2 & 7 & 4 \end{bmatrix}$	1/2

WINTER - 16 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
2	b)	Matrix of cofactors = $\begin{bmatrix} -10 & 4 & -6 \\ 14 & -3 & -2 \\ -2 & -7 & 4 \end{bmatrix}$ $\begin{bmatrix} -10 & 14 & -2 \end{bmatrix}$	1/2
		$Adj.A = \begin{bmatrix} -10 & 14 & -2 \\ 4 & -3 & -7 \\ -6 & -2 & 4 \end{bmatrix}$ $A^{-1} = \frac{1}{ A }Adj.A$ $\begin{bmatrix} -10 & 14 & -2 \end{bmatrix}$	1/2
		$A^{-1} = \frac{1}{-26} \begin{bmatrix} -10 & 14 & -2 \\ 4 & -3 & -7 \\ -6 & -2 & 4 \end{bmatrix}$	1
	c)	Resolve into partial fractions $\frac{x-5}{x(x+3)(x-2)}$	04
	Ans	$\frac{x-5}{x(x+3)(x-2)} = \frac{A}{x} + \frac{B}{x+3} + \frac{C}{x-2}$	1/2
		x(x+3)(x-2) - x - x+3 - x-2 x-5 = A(x+3)(x-2) + Bx(x-2) + Cx(x+3)	
		Put x = 0	
		-5 = A(3)(-2)	
		$-5 = -6A$ $\therefore A = \frac{5}{6}$	1
		Put $x = -3$	
		-3-5=B(-3)(-3-2)	
		-8 = B(-3)(-5)	
		-8 = B(15)	
		$\therefore B = \frac{-8}{15}$	1
		Put $x = 2$	
		2-5=C(2)(2+3)	
		-3 = C(2)(5)	
		-3 = C(10)	
		$\therefore C = \frac{-3}{10}$	1
		Page No C	

WINTER - 16 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
2	c)	$\therefore \frac{x-5}{x(x+3)(x-2)} = \frac{\frac{5}{6}}{x} + \frac{\frac{-8}{15}}{x+3} + \frac{\frac{-3}{10}}{x-2}$	1/2
	d)	Prove that $\sqrt{2 + \sqrt{2 + 2\cos 4\theta}} = 2\cos \theta$	04
	Ans	$\sqrt{2 + \sqrt{2 + 2\cos 4\theta}}$ $= \sqrt{2 + \sqrt{2(1 + \cos 4\theta)}}$	1/2
		$=\sqrt{2+\sqrt{2(2\cos^2 2\theta)}}$	1
		$= \sqrt{2 + \sqrt{4\cos^2 2\theta}}$ $= \sqrt{2 + 2\cos 2\theta}$	1/2
		$= \sqrt{2(1+\cos 2\theta)}$ $= \sqrt{2(2\cos^2 \theta)}$ $= \sqrt{4\cos^2 \theta}$	1
		$=2\cos\theta$	1
	e)	Prove that: $\tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{13}\right) = \cot^{-1}\left(\frac{9}{2}\right)$	04
	Ans	$\tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{13}\right) = \tan^{-1}\left(\frac{\frac{1}{7} + \frac{1}{13}}{1 - \frac{1}{7} \cdot \frac{1}{13}}\right)$	2
		$= \tan^{-1} \left(\frac{20}{90} \right)$	
		$= \tan^{-1}\left(\frac{2}{9}\right)$	1
		$=\cot^{-1}\left(\frac{9}{2}\right)$	1
	f)	If $\tan(x+y) = \frac{3}{4}$ and $\tan(x-y) = \frac{1}{3}$, find $\tan 2x$	04

WINTER - 16 EXAMINATION

Model Answer

		L_	
Q. No.	Sub Q. N.	Answer	Marking Scheme
2	Ans	$\tan(2x) = \tan(x+y+x-y)$	1
		$= \frac{\tan(x+y) + \tan(x-y)}{1 - \tan(x+y) \cdot \tan(x-y)}$ $= \frac{\frac{3}{4} + \frac{1}{3}}{1 - \frac{3}{4} \cdot \frac{1}{3}}$ $= \frac{\frac{9+4}{12}}{\frac{12-3}{12-3}}$	1
		$\frac{12-3}{12}$ $=\frac{13}{9}$	1
3		Attempt any <u>FOUR</u> of the following:	16
	a)	Solve by Cramer's Rule: $x + y = 3$, $y + z = 5$, $x + z = 4$	04
	Ans	$D = \begin{vmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix} = 1[1 - 0] - 1[0 - 1] + 0[0 - 1] = 2$ $\begin{vmatrix} 3 & 1 & 0 \end{vmatrix}$	1
		$D_{x} = \begin{vmatrix} 3 & 1 & 0 \\ 5 & 1 & 1 \\ 4 & 0 & 1 \end{vmatrix} = 3[1-0]-1[5-4]+0[0-4] = 2$	1/2
		$D_{y} = \begin{vmatrix} 1 & 3 & 0 \\ 0 & 5 & 1 \\ 1 & 4 & 1 \end{vmatrix} = 1[5-4]-3[0-1]+0[0-5] = 4$ $\begin{vmatrix} 1 & 1 & 3 \end{vmatrix}$	1/2
		$D_{z} = \begin{vmatrix} 1 & 1 & 3 \\ 0 & 1 & 5 \\ 1 & 0 & 4 \end{vmatrix} = 1[4-0]-1[0-5]+3[0-1] = 6$ $D_{z} = \begin{vmatrix} 2 & 2 & 3 \\ 0 & 1 & 5 \\ 0 & 4 & 3 \end{vmatrix}$	1/2
		$x = \frac{D_x}{D} = \frac{2}{2} = 1$	1/2
		$y = \frac{D_{y}}{D} = \frac{4}{2} = 2$ $z = \frac{D_{z}}{D} = \frac{6}{2} = 3$	1/2
		$z = \frac{D_z}{D} = \frac{6}{2} = 3$	1/2
		Page No C	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER - 16 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
3	b)	Express the matrix A as sum of a symmetric and skew symmetric matrices, where $A = \begin{bmatrix} 4 & 2 & -3 \\ 1 & 3 & -6 \\ -5 & 0 & -7 \end{bmatrix}$ $A + A^{T} = \begin{bmatrix} 4 & 2 & -3 \\ 1 & 3 & -6 \\ -5 & 0 & -7 \end{bmatrix} + \begin{bmatrix} 4 & 1 & -5 \\ 2 & 3 & 0 \\ -3 & -6 & -7 \end{bmatrix}$ $= \begin{bmatrix} 8 & 3 & -8 \\ 3 & 6 & -6 \\ -8 & -6 & -14 \end{bmatrix}$ $A - A^{T} = \begin{bmatrix} 4 & 2 & -3 \\ 1 & 3 & -6 \\ -5 & 0 & -7 \end{bmatrix} - \begin{bmatrix} 4 & 1 & -5 \\ 2 & 3 & 0 \\ -3 & -6 & -7 \end{bmatrix}$	1
		$= \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & -6 \\ -2 & 6 & 0 \end{bmatrix}$ $\therefore A = \frac{1}{2} (A + A^{T}) + \frac{1}{2} (A - A^{T})$ $= \frac{1}{2} \begin{bmatrix} 8 & 3 & -8 \\ 3 & 6 & -6 \\ -8 & -6 & -14 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & -6 \\ -2 & 6 & 0 \end{bmatrix}$ $= \begin{bmatrix} 4 & \frac{3}{2} & -4 \\ \frac{3}{2} & 3 & -3 \\ -4 & -3 & -7 \end{bmatrix} + \begin{bmatrix} 0 & \frac{1}{2} & 1 \\ -\frac{1}{2} & 0 & -3 \\ -1 & 3 & 0 \end{bmatrix}$	1 1
	c)	Resolve into partial fraction: $\frac{2x+1}{x^2(x+1)}$	04
	Ans	$\frac{2x+1}{x^2(x+1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+1}$	1/2

WINTER - 16 EXAMINATION

Model Answer

Q.	Sub	Answer	Marking
No.	Q. N.	Allswei	Scheme
3	c)	$2x+1 = Ax(x+1) + B(x+1) + Cx^2$	
		Put $x = 0$	
		1 = B(0+1) B = 1	1
		Put $x = -1$	
		$2(-1)+1=C(-1)^2$	
		-2+1=C	
		C = -1	1
		Put $x = 1$	
		$2(1)+1=A(1)(1+1)+B(1+1)+C(1)^{2}$	
		3 = A(1)(2) + B(2) + C(1)	
		3 = 2A + 2B + C	
		3 = 2A + 2(1) + (-1)	
		3=2A+1	
		3-1=2A	1
		2=2A : $A=1$	1
		$\therefore \frac{2x+1}{x^2(x+1)} = \frac{1}{x} + \frac{1}{x^2} + \frac{-1}{x+1}$	1/2
		d) Comment:If Question is attempted and results are as per model answer then	
		give the credit to the student accordingly.	
		$\frac{1-\tan^2\theta.\tan\theta - \cos 3\theta}{\cos 3\theta}$	
	d)	Prove that, $\frac{1 - \tan^2 \theta \cdot \tan \theta}{1 + \tan^2 \theta \cdot \tan \theta} = \frac{\cos 3\theta}{\cos \theta}$	04
	Ans	Consider LHS= $\frac{1-\tan^2\theta.\tan\theta}{1+\tan^2\theta.\tan\theta}$	04
		$\sin^2\theta \sin\theta$	
		$-\frac{1-\frac{\sin^2\theta}{\cos^2\theta}\cdot\frac{\sin\theta}{\cos\theta}}{\cos\theta}$	1
		$\frac{1}{1+}\frac{\sin^2\theta}{\sin\theta}$ $\frac{\sin\theta}{\theta}$	
		$\cos^2\theta \cos\theta$	
		$\frac{\cos^2\theta\cos\theta - \sin^2\theta\sin\theta}{\cos^2\theta\cos\theta}$	
		$= \frac{\cos 2\theta \cos \theta}{\cos^2 \theta \cos \theta + \sin^2 \theta \sin \theta}$	
		$\cos 2\theta \cos \theta$	
		$=\frac{\cos^2\theta\cos\theta-\sin^2\theta\sin\theta}{2}$	1
		$-\cos^2\theta\cos\theta + \sin^2\theta\sin\theta$	
		$RHS = \frac{\cos 3\theta}{\cos \theta} = \frac{\cos (2\theta + \theta)}{\cos (2\theta - \theta)}$	1
		$\cos \theta = \cos(2\theta - \theta)$	
L	1	Page No. 1	1

WINTER – 16 EXAMINATION

Model Answer

Q.	Sub		Marking
No.	Q. N.	Answer	Scheme
3	d)	$-\cos 2\theta \cos \theta - \sin 2\theta \sin \theta$	1
		$= \frac{\cos 2\theta \cos \theta - \sin 2\theta \sin \theta}{\cos 2\theta \cos \theta + \sin 2\theta \sin \theta} \neq LHS$	
	۵۱	$\cos A \sin A$	
	e)	Prove that, $\frac{\cos A}{1 - \tan A} + \frac{\sin A}{1 - \cot A} = \sin A + \cos A$	04
	Ans	Consider $\frac{\cos A}{1-\tan A} + \frac{\sin A}{1-\cot A}$	
		$= \frac{\cos A}{\sin A} + \frac{\sin A}{\sin A}$	
		$= \frac{1 - \frac{\sin A}{\cos A} + \frac{\cos A}{1 - \frac{\cos A}{\sin A}}$	1
		COSA SIII A	
		$= \frac{\cos A}{\cos A - \sin A} + \frac{\sin A}{\sin A - \cos A}$	
		$\frac{\cos A}{\cos A} = \frac{\sin A}{\sin A}$	
		$=\frac{\cos^2 A}{\cos^2 A} + \frac{\sin^2 A}{\cos^2 A}$	
		$\cos A - \sin A \sin A - \cos A$	1
		$= \frac{\cos^2 A}{\cos A - \sin A} - \frac{\sin^2 A}{\cos A - \sin A}$	
		$\cos A - \sin A \cos A - \sin A$ $\cos^2 A - \sin^2 A$	1/2
		$=\frac{1}{\cos A - \sin A}$	
		$= \frac{(\cos A - \sin A)(\cos A + \sin A)}{(\cos A + \sin A)}$	1
		$\cos A - \sin A$	
		$=\sin A + \cos A$	1/2
	f)	Prove that, $\sin(3\theta) = 3\sin\theta - 4\sin^3\theta$	04
	Ans	$\sin 3\theta$	
	7113	$=\sin(\theta+2\theta)$	4
		$= \sin \theta \cos 2\theta + \cos \theta \sin 2\theta$	1
		$= \sin\theta \left(1 - 2\sin^2\theta\right) + \cos\theta \left(2\sin\theta \cdot \cos\theta\right)$	1
		$= \sin \theta - 2\sin^3 \theta + 2\sin \theta \cos^2 \theta$	
		$= \sin \theta - 2\sin^3 \theta + 2\sin \theta \left(1 - \sin^2 \theta\right)$	1
		$= \sin \theta - 2\sin^3 \theta + 2\sin \theta - 2\sin^3 \theta$	
		$=3\sin\theta-4\sin^3\theta$	1
4		Attempt any <u>FOUR</u> of the following:	16
	a)		04
	,	Using matrix inversion method, solve the equations: $x + 3x + 3z = 12, x + 4x + 4z = 15, x + 3x + 4z = 13$	
		x+3y+3z=12, x+4y+4z=15, x+3y+4z=13	

WINTER – 16 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
4		$ A = \begin{vmatrix} 1 & 3 & 3 \\ 1 & 4 & 4 \\ 1 & 3 & 4 \end{vmatrix} = 1[16 - 12] - 3[4 - 4] + 3[3 - 4]$ $ A = 1 \neq 0 \qquad \therefore A^{-1} \text{ exist}$ $A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 4 \\ 1 & 3 & 4 \end{bmatrix}$ $Matrix \text{ of minors} = \begin{bmatrix} \begin{vmatrix} 4 & 4 & 1 & 4 & 1 & 4 \\ 3 & 4 & 1 & 4 & 1 & 3 \\ 3 & 3 & 1 & 3 & 1 & 3 \\ 3 & 4 & 1 & 4 & 1 & 4 \end{bmatrix}$ $\begin{bmatrix} 4 & 0 & -1 \\ 2 & 1 & 0 \end{bmatrix}$	1/2
		$\begin{bmatrix} 4 & 0 & -1 \\ 3 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ Matrix of cofactors = $\begin{bmatrix} 4 & 0 & -1 \\ -3 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$ $Adj.A = \begin{bmatrix} 4 & -3 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix}$ $A^{-1} = \frac{1}{ A }Adj.A = \frac{1}{1}\begin{bmatrix} 4 & -3 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix}$ $A^{-1} = \begin{bmatrix} 4 & -3 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix}$ $\therefore \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 & -3 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 12 \\ 15 \\ 13 \end{bmatrix}$ $\begin{bmatrix} x \end{bmatrix} \begin{bmatrix} 48 - 45 + 0 \\ 1 \end{bmatrix}$	1/2
		$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 48 - 45 + 0 \\ 0 + 15 - 13 \\ -12 + 0 + 13 \end{bmatrix}$ Page No.12	

WINTER – 16 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
4	a)	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$ $\therefore x = 3, y = 2, z = 1$	1 1/2
	b) Ans	If $A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 5 \\ 2 & 4 & 7 \end{bmatrix}$ Verify that $(AB)^T = B^T A^T$	04
		$AB = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 5 \\ 2 & 4 & 7 \end{bmatrix}$ $\begin{bmatrix} 1+2+2 & 2+2+4 & 3+10+7 \end{bmatrix}$	
		$AB = \begin{bmatrix} 0+2+6 & 0+2+12 & 0+10+21 \\ 0+0+2 & 0+0+4 & 0+0+7 \end{bmatrix}$ $AB = \begin{bmatrix} 5 & 8 & 20 \\ 8 & 14 & 31 \end{bmatrix}$	
			1
			1/2
		$B^{T}.A^{T} = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 4 \\ 3 & 5 & 7 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 1 & 3 & 1 \end{bmatrix}$ $\begin{bmatrix} 1+2+2 & 0+2+6 & 0+0+2 \end{bmatrix}$	1
		$B^{T}.A^{T} = \begin{bmatrix} 1+2+2 & 0+2+6 & 0+0+2 \\ 2+2+4 & 0+2+12 & 0+0+4 \\ 3+10+7 & 0+10+21 & 0+0+7 \end{bmatrix}$ $\begin{bmatrix} 5 & 8 & 2 \end{bmatrix}$	
		$B^{T}.A^{T} = \begin{bmatrix} 5 & 8 & 2 \\ 8 & 14 & 4 \\ 20 & 31 & 7 \end{bmatrix}$	1
		$\therefore (AB)^T = B^T . A^T$	1/2

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 16 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
4	c)	Resolve into partial fraction: $\frac{2x-3}{(x+1)(x^2+4)}$	04
	Ans	$\frac{2x-3}{(x+1)(x^2+4)} = \frac{A}{x+1} + \frac{Bx+C}{x^2+4}$	1/2
		$2x-3 = A(x^2+4) + (Bx+C)(x+1)$	
		Put $x = -1$	
		$2(-1)-3 = A((-1)^2+4)$	
		-5 = A(5)	
		A = -1	1
		Put $x = 0$	
		$2(0)-3 = A((0)^{2}+4)+(B(0)+C)((0)+1)$	
		-3 = 4A + C(1)	
		-3=4(-1)+C	
		-3+4=C	1
		C=1	
		Put $x = 1$	
		$2(1)-3 = A((1)^{2}+4)+(B(1)+C)((1)+1)$	
		-1 = A(5) + (B+C)(2)	
		-1 = 5A + 2B + 2C	
		-1 = 5(-1) + 2B + 2(1) -1 = -5 + 2B + 2	
		-1 = -3 + 2B + 2 -1 = -3 + 2B	
		2 = 2B	
		B=1	1
		$\frac{2x-3}{(x+1)(x^2+4)} = \frac{-1}{x+1} + \frac{(1)x+1}{x^2+4}$	17
		$(x+1)(x^2+4)^{-1}x+1^{-1}x^2+4$	1/2
	d)	Show that $\frac{\sin 5A + 2\sin 8A + \sin 11A}{\sin 5A + 2\sin 8A + \sin 11A} = \frac{\sin 8A}{\sin 11A}$	
		Show that $\frac{\sin 8A + 2\sin 11A + \sin 14A}{\sin 8A + 2\sin 11A + \sin 14A} = \frac{\sin 6A}{\sin 11A}$	04
	Ans	$\frac{\sin 11A + \sin 5A + 2\sin 8A}{\sin 11A + \sin 5A + 2\sin 8A}$	
		$\sin 14A + \sin 8A + 2\sin 11A$	

WINTER – 16 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
140.	Q. IV.		Scheme
4	d)	$= \frac{2\sin(8A)\cos(3A) + 2\sin 8A}{2\sin(8A)\cos(3A) + 2\sin 8A}$	2
		$-2\sin(11A)\cos(3A) + 2\sin 11A$	
		$-\frac{2\sin 8A(\cos 3A+1)}{2\sin 8A(\cos 3A+1)}$	1
		$-2\sin 11A(\cos 3A+1)$	_
		$=\frac{\sin 8A}{\cos \theta}$	
		$\sin 11A$	1
	e)	Show that, $\cos(A+B)$. $\cos(A-B) = \cos^2 A - \sin^2 B$	04
	-	$\cos(A+B).\cos(A-B)$	
	Ans		
		$= [\cos A \cos B - \sin A \sin B].[\cos A \cos B + \sin A \sin B]$	1
		$=(\cos A\cos B)^2-(\sin A\sin B)^2$	1
		$=\cos^2 A \cdot \cos^2 B - \sin^2 A \cdot \sin^2 B$	
		$= \cos^2 A \cdot \left(1 - \sin^2 B\right) - \left(1 - \cos^2 A\right) \cdot \sin^2 B$	1
		$=\cos^2 A - \cos^2 A \cdot \sin^2 B - \sin^2 B + \cos^2 A \cdot \sin^2 B$	_
		$=\cos^2 A - \sin^2 B$	1
	f)	Find the equation of the line passing through $(2,5)$ and the point of intersection	0.4
		of $x + y = 0$ and $2x - y = 9$	04
	Ans	x + y = 0	
		2x - y = 9	
		3x = 9	1/2
		x = 3	72
		3 + y = 0	1/2
		y = -3	72
		point of intersection $(3, -3)$	
		∴ Equation of line is	
		$\frac{y-y_1}{y-y_1} = \frac{x-x_1}{y-y_1}$	
		$\begin{array}{ccc} y_1 - y_2 & x_1 - x_2 \\ y_1 - y_2 & y_1 - y_2 \end{array}$	
		$\frac{y-5}{5+3} = \frac{x-2}{2-3}$	2

WINTER - 16 EXAMINATION

Model Answer

		<u> </u>	
Q.	Sub		Markin
No.	Q. N.	Answer	g
110.	Q. 14.		Scheme
4	f)	5 2	
•	''	$\frac{y-5}{8} = \frac{x-2}{-1}$	
		-y+5=8x-16	
		8x + y - 21 = 0	1
		OR	
		x + y = 0	
		2x - y = 9	
		2 0	
		3x = 9	1/2
		x = 3	/2
		3 + y = 0	
		y = -3	1/2
		\therefore Point of intersection is $(3,-3)$	
		· /	
		$\therefore \text{Slope m} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-3 - 5}{3 - 2} = -8$	1
		equation is,	
		$y - y_1 = m(x - x_1)$	
		y-5=-8(x-2) OR $y+3=-8(x-3)$	1
		8x + y - 21 = 0	
		0x + y - 21 - 0	1
5		Attempt any FOUR of the following:	16
	a)	Resolve into partial fractions: $\frac{x^4}{x^3+1}$	04
		x^3+1	04
	Ans	$\frac{x}{\sqrt{x}}$	
	Ans	$x^3+1)x^4$	
		$x^4 + x$	
		-x	
		$\therefore \frac{x^4}{x^3 + 1} = x + \frac{-x}{x^3 + 1} = x - \frac{x}{x^3 + 1}$	
		$x^3 + 1$ $x^3 + 1$ $x^3 + 1$	1
		Consider $\frac{x}{x} = \frac{x}{x}$	
		Consider $\frac{x}{x^3+1} = \frac{x}{(x+1)(x^2-x+1)}$	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 16 EXAMINATION

Model Answer

	,		•
Q. No.	Sub Q. N.	Answer	Marking Scheme
5	a)	$\frac{x}{(x+1)(x^2-x+1)} = \frac{A}{x+1} + \frac{Bx+C}{x^2-x+1}$ $x = A(x^2-x+1) + (Bx+C)(x+1)$ Put $x = -1$ $-1 = A((-1)^2 - (-1)+1)$ $-1 = A(1+1+1)$ $-1 = A(3)$ $\therefore A = -\frac{1}{3}$ Put $x = 0$ $0 = A(0-0+1) + (B(0)+C)(0+1)$ $0 = A+C$ $0 = -\frac{1}{3} + C$	1/2
		$\therefore C = \frac{1}{3}$ Put $x = 1$ $1 = A((1)^2 - (1) + 1) + (B(1) + C)((1) + 1)$ $1 = A(1) + (B + C)(2)$ $1 = A + 2B + 2C$ $1 = -\frac{1}{3} + 2B + 2(\frac{1}{3})$ $2B = 1 + \frac{1}{3} - \frac{2}{3}$	1/2
		$2B = \frac{2}{3} \qquad \therefore B = \frac{1}{3}$ $\frac{1}{(x+1)(x^2 - x + 1)} = \frac{-\frac{1}{3}}{x+1} + \frac{\left(\frac{1}{3}\right)x + \frac{1}{3}}{x^2 - x + 1}$	1
		$\therefore \frac{x^4}{x^3 + 1} = x - \frac{x}{x^3 + 1} = x - \left(\frac{-\frac{1}{3}}{x + 1} + \frac{\left(\frac{1}{3}\right)x + \frac{1}{3}}{x^2 - x + 1}\right)$	1/2

WINTER - 16 EXAMINATION

Model Answer

Q.	Sub	Answer	Marking
No.	Q. N.	Allswei	Scheme
5	b) Ans	$A = \begin{bmatrix} 2 & -2 \\ 3 & 1 \end{bmatrix}, B = \begin{bmatrix} -1 & 5 \\ 4 & -3 \end{bmatrix}, C = \begin{bmatrix} 7 & -5 \\ 0 & 5 \end{bmatrix}$ $\text{verify that : } (AB)C = A(BC)$ $AB = \begin{bmatrix} 2 & -2 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -1 & 5 \\ 4 & -3 \end{bmatrix}$	04
		$= \begin{bmatrix} 3 & 1 & 1 & 4 & -3 \\ -2 - 8 & 10 + 6 \\ -3 + 4 & 15 - 3 \end{bmatrix}$ $= \begin{bmatrix} -10 & 16 \\ 1 & 12 \end{bmatrix}$	1
		$ (AB)C = \begin{bmatrix} -10 & 16 \\ 1 & 12 \end{bmatrix} \begin{bmatrix} 7 & -5 \\ 0 & 5 \end{bmatrix} $ $ = \begin{bmatrix} -70 + 0 & 50 + 80 \\ 7 + 0 & -5 + 60 \end{bmatrix} $	
		$= \begin{bmatrix} -70 & 130 \\ 7 & 55 \end{bmatrix}$	1
		$BC = \begin{bmatrix} -1 & 5 \\ 4 & -3 \end{bmatrix} \begin{bmatrix} 7 & -5 \\ 0 & 5 \end{bmatrix}$ $= \begin{bmatrix} -7+0 & 5+25 \\ 28+0 & -20-15 \end{bmatrix}$	
		$= \begin{bmatrix} -7 & 30 \\ 28 & -35 \end{bmatrix}$	1
		$A(BC) = \begin{bmatrix} 2 & -2 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -7 & 30 \\ 28 & -35 \end{bmatrix}$ $= \begin{bmatrix} -14 - 56 & 60 + 70 \\ -21 + 28 & 90 - 35 \end{bmatrix}$	
		$= \begin{bmatrix} -70 & 130 \\ 7 & 55 \end{bmatrix}$	1
		$\therefore (AB)C = A(BC)$ $= (3) \qquad (8) \qquad (77)$	
	c)	Prove that: $\sin^{-1}\left(\frac{3}{5}\right) + \sin^{-1}\left(\frac{8}{17}\right) = \sin^{-1}\left(\frac{77}{85}\right)$	04
	Ans	Let $\sin^{-1}\left(\frac{3}{5}\right) = A$ $\therefore \sin A = \frac{3}{5}$	
		$\cos^2 A = 1 - \sin^2 A$	

WINTER – 16 EXAMINATION

Model Answer

		Model Answer	
Q. No.	Sub Q. N.	Answer	Marking Scheme
5	c)	$\cos^2 A = 1 - \left(\frac{3}{5}\right)^2$	
		$=1-\frac{9}{25}$	
		$=\frac{16}{25}$	
		$\cos A = \frac{4}{5}$	
		Let $\sin^{-1}\left(\frac{8}{17}\right) = B : \sin B = \frac{8}{17}$	1
		$\cos^2 B = 1 - \sin^2 B$	
		$=1-\left(\frac{8}{17}\right)^2$	
		$=1-\frac{64}{289}$	
		$=\frac{225}{289}$	1
		$\cos B = \frac{15}{17}$	1
		$\sin(A+B) = \sin A \cdot \cos B + \cos A \cdot \sin B$	
		$\sin(A+B) = \left(\frac{3}{5}\right)\left(\frac{15}{17}\right) + \left(\frac{4}{5}\right)\left(\frac{8}{17}\right) = \frac{77}{85}$	1
		$A + B = \sin^{-1}\left(\frac{77}{85}\right)$	
		$\therefore \sin^{-1}\left(\frac{3}{5}\right) + \sin^{-1}\left(\frac{8}{17}\right) = \sin^{-1}\left(\frac{77}{85}\right)$	1
		<u>OR</u>	
		5 17 85	
		3 8 77 4 15 36	
		$\sin^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\left(\frac{3}{4}\right) \qquad \qquad \sin^{-1}\left(\frac{8}{17}\right) = \tan^{-1}\left(\frac{8}{15}\right) \qquad \qquad \sin^{-1}\left(\frac{77}{85}\right) = \tan^{-1}\left(\frac{77}{36}\right)$	1/2+1/2+1/2
		$LHS = \sin^{-1}\left(\frac{3}{5}\right) + \sin^{-1}\left(\frac{8}{17}\right)$	
L	ı		ı

WINTER – 16 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
5	c)	$= \tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{8}{15}\right)$	
		$= \tan^{-1} \left(\frac{\frac{3}{4} + \frac{8}{15}}{1 - \frac{3}{4} \cdot \frac{8}{15}} \right)$	1
		$= \tan^{-1} \left(\frac{\frac{45+32}{60}}{\frac{60-24}{60}} \right)$	
		$= \tan^{-1}\left(\frac{77}{36}\right)$	1
		$=\sin^{-1}\left(\frac{77}{85}\right)$	1/2
		= RHS	
	d)	Without using calculator prove that $\sin(-420^{\circ}).\cos(390^{\circ}) + \cos(-660^{\circ}).\sin(330^{\circ}) = -1$	04
	Ans	$\sin(-420) = -\sin(420) = -\sin(4\times90 + 60) = -\sin 60 = -\frac{\sqrt{3}}{2}$	1
		$\cos(390) = \cos(4 \times 90 + 30) = \cos 30 = \frac{\sqrt{3}}{2}$	1/2
		$\cos(-660) = \cos(660) = \cos(7 \times 90 + 30) = \sin 30 = \frac{1}{2}$	1
		$\sin(330) = \sin(3 \times 90 + 60) = -\cos 60 = -\frac{1}{2}$	1/2
		LHS = $\sin(-420).\cos(390) + \cos(-660).\sin(330)$	
		$= \left(-\frac{\sqrt{3}}{2}\right) \cdot \left(\frac{\sqrt{3}}{2}\right) + \left(\frac{1}{2}\right) \left(-\frac{1}{2}\right)$ $= \left(\frac{-3}{4}\right) + \left(\frac{-1}{4}\right)$	
		$= \frac{-4}{4}$ $= -1$	1
		= RHS OR	

WINTER – 16 EXAMINATION

Model Answer

Q.	Sub		Marking
No.	Q. N.	Answer	Scheme
5	d)	LHS = $\sin(-420).\cos(390) + \cos(-660).\sin(330)$	
	ر م ا		_
		$=-\sin(360+60).\cos(360+30)+\cos(720-60).\sin(360-30)$	1
		$= -\sin 60.\cos 30 + \cos 60(-\sin 30)$	1
		$=-\sin 60.\cos 30 - \cos 60.\sin 30$	1/2
		$=-\sin(60+30)$	1
		$=-\sin 90=-1=RHS$	1/2
	e) Ans	Prove that $\sin C + \sin D = 2\sin\left(\frac{C+D}{2}\right)\cos\left(\frac{C-D}{2}\right)$	04
	Alls	We know that	
		$\sin(A+B) + \sin(A-B) = 2\sin A \cos B$	1
		Let $A + B = C$	1
		$A - B = D$ $\therefore 2A = C + D$	1
		$\therefore A = \frac{C+D}{2}$	1
		$\therefore B = \frac{C - D}{2}$	
		$\therefore \sin C + \sin D = 2\sin\left(\frac{C+D}{2}\right)\cos\left(\frac{C-D}{2}\right)$	1
		f) Comment: Question is incomplete. If any student has considered appropriate	
		data and attempted to solve then consider accordingly. If Question is considered	
		as follows:	
		Find the equation of line passing through the point of intersection of the lines	
	f)	4x+3y=8 and $x+y=1$ parallel to the line $5x-7y=3$	
	_	consider $4x + 3y = 8$ and $x + y = 1$	
	Ans	4x + 3y = 8	
		3x + 3y = 3	
		$x=5$ $\therefore y=-4$	1/2+1/2
		point of intersection is $(5,-4)$	
		slope of line $5x - 7y = 3$ is $m = \frac{5}{7}$	1

WINTER – 16 EXAMINATION

Model Answer

Q.	Sub		Marking
No.	Q. N.	Answer	Scheme
5	f)	∴ Equation of line is	
	,	$y - y_1 = m(x - x_1)$	
		$y+4=\frac{5}{7}(x-5)$	1
		5x-7y-53=0	1
			_
6		Attempt any <u>FOUR</u> of the following:	16
	a)	If M ₁ and M ₂ are the slopes of the lines, then prove that the angle	
		between the two lines is $Q = \tan^{-1} \left \frac{m_1 - m_2}{1 + m_1 \cdot m_2} \right $	04
	Ans	Let θ_1 = Inclination of L_1	
		θ_2 =Inclination of L_2	
		\therefore Slope of L_1 is $m_1 = \tan \theta_1$ Slope of L_2 is $m_2 = \tan \theta_2$	
		$\begin{array}{c} & & L_1 \\ & & \\ &$	1
		∴ from figure,	
		Let $\theta = Q = \theta_1 - \theta_2$	
		$\therefore \tan Q = \tan (\theta_1 - \theta_2)$	1
		$= \frac{\tan \theta_1 - \tan \theta_2}{1 + \tan \theta_1 \tan \theta_2}$	1
		$\therefore \tan Q = \frac{m_1 - m_2}{1 + m_1 \cdot m_2}$	
		$1 + m_1 \cdot m_2$ Since Q is acute	
		$\therefore \tan Q = \left \frac{m_1 - m_2}{1 + m_1 \cdot m_2} \right $	
		$\therefore Q = \tan^{-1} \left \frac{m_1 - m_2}{1 + m_1 \cdot m_2} \right $ Page No. 3	1

WINTER - 16 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
6	b) Ans	Find the equation of the straight which passes through the point of intersection of lines $2x+3y=13,5x-y=7$ and perpendicular to the line $2x-5y+7=0$ consider $2x+3y=13,5x-y=7$ $2x+3y=13$ $15x-3y=21$	04
		$17x = 34$ $x = 2$ $\therefore y = 3$	1/2
		∴ point of intersection is (2,3) slope of line $2x - 5y + 7 = 0$ is $\frac{2}{5}$	1/2
		∴ Slope of required line is $m = \frac{-5}{2}$ ∴ Equation of line is $y - y_1 = m(x - x_1)$	1/2
		$y - 3 = \frac{-5}{2}(x - 2)$ $5x + 2y - 16 = 0$	1
	c)	Find the perpendicular distance between the parallel lines $3x+2y-6=0$ and $6x+4y-24=0$ Given $3x+2y-6=0$, $3x+2y-12=0$	04
	Ans	Perpendicular distance between the parallel lines is $p = \left \frac{c_1 - c_2}{\sqrt{a^2 + b^2}} \right $	1
		$= \left \frac{-6+12}{\sqrt{(3)^2 + (2)^2}} \right $ $= \frac{6}{\sqrt{13}}$	2
	d)	$= \frac{1}{\sqrt{13}}$ Find the length of the perpendicular from $(-3, -4)$ onto the line $4x - 3y + 20 = 0$	04
	Ans	Perpendicular distance $p = \left \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right $	1

WINTER - 16 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
6	d)	$p = \left \frac{(4)(-3) + (-3)(-4) + 20}{\sqrt{(4)^2 + (-3)^2}} \right $ $= \left \frac{-12 + 12 + 20}{\sqrt{16 + 9}} \right $ $= \left \frac{20}{5} \right $	2
		5 = 4	1
	e)	Resolve into partial fractions: $\frac{\sin \theta + 1}{(\sin \theta + 2)(\sin \theta + 3)}$	04
	Ans	$\frac{\sin \theta + 1}{(\sin \theta + 2)(\sin \theta + 3)}$ put $\sin \theta = t$	
		$\frac{t+1}{(t+2)(t+3)} = \frac{A}{t+2} + \frac{B}{t+3}$ $t+1 = A(t+3) + B(t+2)$	1
		Put $t = -2$ -2+1 = A(-2+3)	
		A = -1 Put $t = -3$	1
		-3+1=B(-3+2) $B=2$	1
		$\therefore \frac{t+1}{(t+2)(t+3)} = \frac{-1}{t+2} + \frac{2}{t+3}$	
		$\therefore \frac{\sin\theta + 1}{(\sin\theta + 2)(\sin\theta + 3)} = \frac{-1}{\sin\theta + 2} + \frac{2}{\sin\theta + 3}$	1
	f)	If $\sin \theta = \frac{-4}{5}$, $\pi < \theta < \frac{3\pi}{2}$	04
	Ans	Find $(i)\sin 2\theta, (ii)\cos 2\theta, (iii)\tan 2\theta$ $\sin \theta = \frac{-4}{5}$	
		$\cos \theta = \sqrt{1 - \sin^2 \theta}$	
	•	Pago No 2	

WINTER - 16 EXAMINATION

Model Answer

Scheme
1
Il the possible alternative Still student may follow see whether the method ive appropriate marks in