

2023317519

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 08139681 A

(43) Date of publication of application: 31.05.96

(51) Int. CI H04B 10/152 H04B 10/142 H04B 10/04 H04B 10/06 H04B 10/28 H04B 10/26 H04B 10/14 H04L 25/497

(21) Application number: 07257276

(22) Date of filing: 11.09.95

(30) Priority:

12.09.94 JP 06217612

(71) Applicant:

NIPPON TELEGR & TELEPH

CORP <NTT>

(72) Inventor:

YONENAGA KAZUSHIGE **KUWANO SHIGERU** SHIBATA NOBURU **NORIMATSU SELJI**

(54) DEVICE AND SYSTEM FOR OPTICAL TRANSMISSION

(57) Abstract:

PURPOSE: To increase capacity, to accelerate speed and to extend a distance by minimizing the light intensity of a duobinary signal corresponding to a central value and modulating the light intensity while inverting a phase corresponding to the other two values with the same light intensity.

CONSTITUTION: A binary digital data signal is converted into the duobinary signal by a code converting circuit 80. The duobinary signal of three values (0, 1 and 2) is branched into two parts, one part is inputted to an inverter circuit 11 so as to generate a duobinary signal (-1, 0 and 1) without two DC components of the same, amplitude and mutually inverted phases, and a voltage proportional to that signal is respectively impressed to electrodes 74a and 74b of an MZ type light Intensity modulator 70. The light intensity of output light from a semiconductor laser 76 is modulated corresponding to these two duobinary signals of the mutually inverted phases, and that light intensity converted signal is transmitted to an optical fiber transmission line 77. When modulating the light intensity while using the duobinary signal of three values (0, 1 and 2), a bias

voltage is adjusted so that the intensity of output light can be minimized in comparison with its central value (1).

COPYRIGHT: (C)1996,JPO

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公院番号

特開平8-139681

(43)公開日 平成8年(1996)5月31日

(51) Int.CL.*

識別記号

庁内整理番号

F I

技術表示箇所

H 0 4 B 10/152 10/142

10/04

H04B 9/00

L

審査請求 未請求 請求項の数7 FD (全 12 頁) 幾終頁に続く

(21) 出剧番号

特謝平7-257276

(22) 出數日

平成7年(1995)9月11日

(31) 優先權主要番号 特職平6-217612

(32) 優先日 (33) 優先権主製団

日本 (JP)

平6 (1994) 9月12日

(71)出額人 000004226

日本電信電影株式会社

東京都新宿区西新宿三丁目19番2号

(72)発明者 米永 一茂

東京都千代田区内幸町一丁目 1 番 6 号 日

本電信電話株式会社内

(72) 発明者 桑斯 茂

東京都千代田区内幸町一丁目1番6号 甘

本電信電話株式会社内

(72) 発明者 柴田 宣

東京都千代田区内学町一丁目1番8号 日

本電信電話株式会社内

(74)代理人 并建士 山本 惠一

最終夏に続く

(54) 【発明の名称】 光送信装置および光伝送システム

(57) 【要約】

【課題】 光強度変調を用いる光送信装置およびそれを 用いた光伝送システムに関し、デュオパイナリ信号によ り光強度変調を行う構成において、受信感度劣化および 受信回路の複雑化を伴うことなく信号スペクトルにおけ るキャリア周波数成分を抑圧し、かつ信号帯域を従来の 2 値の光強度変調信号の半分にして大容量化、高速化、 長距離化を図る。

【解決手段】 2値のデータ信号をデュオバイナリ信号 に変換する符号変換手段と、デュオパイナリ信号の中央 値に対する光強度を最小とし、他の2値に対して同じ光 強度で互いに位相を反転させた光強度変調を行う光強度 変調手段とにより構成される光送信装置、およびその光 送信装置と、光ファイバ伝送路と光受信手段により構成 される光伝送システム。

特開平8-139681

(2)

【特許請求の範囲】

【請求項1】 2値のデータ信号を入力する入力増子

2023317519

族入力端子に結合し2値のデータ信号をデュオパイナリ 信号に変換する符号変換手段と、

該符号変換手段の出力に結合し、前記デュオバイナリ信 号により光搬送波に強度変調を与える光変調手段であっ て、デュオパイナリ信号の中央値に対する変調光の強さ が最小であり、デュオバイナリ信号の他の2億に対する 変顔光の強さが最大であり、これら2値に対する変調光 の位相が相互に逆であるような変調を行なう光変調手段

該光変調手段の出力に結合し変調光を光ファイバに送出 する出力増子とを有することを特徴とする光送信装置。

【請求填2】 前記光変調手段が、デュオパイナリ信号 の中央値に対する最小の出力として光強度のを与える。 請求項1記載の光送信装置。

【請求項3】 前記光変調手段が、

光搬送波を提供する光源と、

前記デュオパイナリ信号の値に応じて振幅が同じで位相 が逆の1対の相補的な変調器駆動信号を提供する変調器 駆動信号生成手段と、

前記1対の相補的な変調器駆動信号を入力する2つの変 調器駆動信号入力端子をもち、その2つの入力信号に対 して2つに分岐された光の位相をそれぞれ変化させて光 強度変闘を行うことができるマッハツェンダ干渉計型光 強度変調器とを有し、

前記変調器は前記光源の出力光を変調して、前記変調器 駆動信号が中央値のとき出力光が最小で前記変関器駆動 信号が他の2値のとき出力光が最大で、これら2値に対 する出力光の位相が相互に逆であるように変調すること を特徴とする請求項 1 記載の光送信器置。

【請求項4】 前記符号変換手段が、

2値のデータ信号を2つに分岐する信号分岐回路と、 一方の2値のデータ信号をデュオバイナリ信号に変換す る符号変換回路と、

他方の2億データ信号を反転する反転回路とにより構成 され、

前記光変調手段が、

光嶽送波を提供する光源と、

前記反転回路の出力に従って前記光徹送波を変調する光 強度変調器と、

前記デュオパイナリ信号に従って前記光強度変調器の出 力光を変調する光位相変調器とを有し、

それらを前記デュオバイナリ信号の中央値に対する光強 度は最小で、他の2億に対する光強度は最大で、これら **光弦度を最大とする2値に対する位相が相互に逆である** ように動作させることを特徴とする請求項1 記載の光送 信裝置。

【請求項5】 前記符号変換手段の出力と、前記光変調

手段の入力の間に低域通過フィルタがもうけられ、光変 調手段への入力信号の帯域を制限する請求項1ー4のい ずれかに記載の光送信装置。

【請求項8】 請求項1-5のいずれかに記載の光送信 装置と、復調2値信号を提供する光受信装置と、該光送 信装置と、前記光受信装置を結合する光伝送路とを有す ることを特徴とする光伝送システム。

【請求項7】 前記光受信装置は、受信光を直接検波す る光検波回路と、該光検波回路の出力に結合し2値信号 の各種を識別する識別器と、該識別器の出力の符号を反 転する論理反転回路と、鉄反転回路の出力に結合して復 の光伝送システム。

【発明の詳細な説明】

[0001]

【発明の真する技術分野】本発明は、基幹伝送に用いら れる長距離・大容量光伝送システムに関する。

[0002]

【従来の技術】光遠信システムでは、光強度変調一直接 検波方式(以下「IM-DD方式」という。)が最も簡 **島な光伝送方式である。光強度変調には、半導体レーザ** を直接駆動する直接変調方式と、光弦度変調器を用いる 外部変調方式がある。直接変調方式では、光強度変化に 伴う周波数変調成分すなわちチャーピングの発生により 通剰なスペクトル広がりが生じ、伝送路となる光ファイ パの波長分散等によって伝送特性が劣化する。一方、外 部変調方式では様々な形態の光強度変調器が用いられる が、マッハツェンダ干渉計型(以下「MZ型」とい う。〉は原理的にチャーピングを抑圧することができる

ので、超高速・長距離伝送に適した光強度変調器として 広く用いられている。 【0003】閏13は、MZ型光強度変調器を用いた従

来の光伝送方式のシステム構成を示す。図において、M Z型光強度変調器70は、カプラ71で2本の光導波路 72a、72bに分岐された光に位相差を与え、カプラ 73で合流させることにより光強度変調を行う構成であ る。MZ型光強度変調器70は、図14に示すように、 電極への印加電圧に応じた位相差によって透過率が周期 的に変化する。従来の2値のIM-DD方式では2値信 号を隣接する最大透過率の点Aと最小透過率の点Bに対 応させて変調する。なお、本構成では2値のデータ信号 を2分岐し、一方を反転回路75に入力して互いに論理 が反転した2つのデータ信号を生成し、それに比例した 電圧を各光導波路728,726に対応する電極74 a,74bにそれぞれ印加する。これにより印加電圧が ブッシュブル動作し、チャーピングを完全に除去するこ とができる (F. Koyama and K. Iga, IEEE J. Lightway e Technol., val. 8, No. 1, pp. 87-93, 1988).

【〇〇〇4】半導体レーザ76の出力光は、この互いに **論理が反転した2つのデータ信号に応じて光強度変調さ**

れ、その光強度変調信号が光ファイバ伝送路ファに送出される。光ファイバ伝送路ファから出力される光強度変調光は光検波回路78で直接検波され、その検波信号を 臓別器79で機別することによりデータ信号が復期される。

【0005】ところで、2値の光強度変調信号のスペクトルは、図15に示すようにキャリア周波数に大きなスペクトル成分をもち、キャリア周波数を中心にピットレートの2倍まで広がったものとなる。なお、図15に示す例はピットレートを5Gbit/s とし、横軸は1目盛り1.2GHzであり、縦軸は1目盛り5dBである。

【0006】このキャリア周波数成分は、光ファイバの 非線形性による伝送特性の劣化、特に誘導プリルアン散 乱による光ファイバ入力パワーの制限をもたらし(T. Su gie, IEEE J. Lightwave Technol., vol. 9, pp. 1145-115 5, 1991) 、さらに光波長多重伝送系において 4 光波混 合によるクロストークを増大させる要因となる(M. Shib ata et al., IEEE J. Quantum Electron., vol. QE-23, pp. 1205-1210, 1987)。また、信号スペクトルの広がり は、長距離大容量伝送を行う際に生じる光ファイバの波 長分散による受信感度劣化や、光波長多重伝送系におい てチャネル間クロストークにより周波数利用効率を低下 させる要因となる。高速波長多量信号の長距離伝送にお いては、たとえ分散シフトファイパを用いたとしても分 散スロープにより、チャネルによっては波長分散の影響 が無視できなくなる。これらは、伝送距離、伝送速度、 伝送容量を制限する大きな要因となるので、光ネットワ 一クを拡張する上で解決しなければならない課題であ **る**。

【0007】 そこで、液長分散によって制限される伝送 距離を伸ばすために、光弦度変調信号のスペクトル広が りを抑圧する手段として、デュオバイナリ信号を用いた 3 値の光強度を送信する光伝送方式が提案されている (X. Gu and L. C. Blank, Electron, Lett. vol. 29, No. 25, pp. 2209-2211, 1993)。

【0008】図16は、デュオバイナリ信号を用いた従来の光伝送方式のシステム様成を示す。図において、2値のデータ信号は、符号変換回路80で3値のデュオバイナリ信号に変換される。符号変換回路80は、2値のデータ信号を差勁符号化する1ビット選延器(T)81 および排他的論理和回路(EXOR)82と、その中間系列から3値のデュオバイナリ信号を生成するデュオバイナリ信号生成用低域通過フィルタ87により構成される。デュオバイナリ信号生成用低域通過フィルタとしても働く。光強度変調器85はこのデュオバイナリ信号により半導体レーザ86より出党を変調信号が光ファイバ伝送路77に送出される。光つされる3億円の光強とで変調信号が光ファイバ伝送路77に送出される。光つマイバ伝送路77から出力される光強度変調信号は光後でする8で直接検波される。この検波信号は3値を示す

ので、2つの識別器79a,79bで識別し、識別された2つの信号をEXOR回路79cに入力することにより2値のデータ信号を復調することができる。

【0009】このようなデュオバイナリ信号を用いた光 伝送方式では光弦度変調信号のスペクトルが狭いので、 光ファイバの液長分散による伝送特性の劣化が小さいと いう特徴がある。すでにMZ型光弦度変調器を用いた10 Gbit/s 、 100k mの伝送実験でその有効性が確認され ている(X. Qu and L. C. Blank, Electron, Lett. vo 1.29, No.25、pp.2208-2211, 1993)。

[0010]

【発明が解決しようとする課題】しかし、デュオバイナリ信号により光強度を3億に設定する光伝送方式では、3値化による信号点間距離の減少により3dB程度の受信 感度劣化が生じる (X. Gu and L. C. Blank, Electron. Lett. vol. 29, No. 25, pp. 2209-2211, 1883)。また、受信 側で直接検波された3値のペースパンド信号から2値のデータ信号を復聞するために、複雑な受信回路が必要となる。さらに、2値の光強度変調信号と同様に、キャリア周波数に大きなスペクトル成分をもつので、誘導ブリルアン散乱による光ファイバ入カパワーの制限や、光波長多重伝送系において4光波混合によるクロストークを増大させる要因となる。

【0011】本発明は、デュオバイナリ信号により光強 度変調を行う構成において、受信感度劣化および受信回 路の複雑化を伴うことなく信号スペクトルにおけるキャ リア周波数成分を抑圧し、かつ信号帯域を従来の2値の 光強度変調信号の半分にして大容量化、高速化、長距離 化を図ることができる光送信装置および光伝送システム を提供することを目的とする。

[0012]

【課題を解決するための手段】本発明の光送信線置は、2値のデータ信号をデュオバイナリ信号に変換する符号 変換手段と、デュオバイナリ信号の中央値に対する光強 度を最小とし、他の2値に対して同じ光強度で互いに位 相を反転させた光強度変調を行う光変襲手段とにより構成される。本発明の光伝送システムは、前記光送信装置 と、その光送信装置から出力された光信号を伝送する光 伝送路と、先信号を受信する光受信手段により構成される。

【0013】なお、光強度変調手段は、デュオバイナリ信号の中央値に対する光強度を調手段は、デュオバイナリ信号の中央値に対する光強度を調手段は、デュオバイナリ信号から振畅が同じで互いに位相が反転した2つの変調器駆動信号を生成する変調器駆動信号生成手段と、光散送波を発生する光源と、2つの変調器駆動信号を2つの電極に印加し、変調器駆動信号が中央値のときに出力光強度を最小とし、他の2億のときに同じ光強度で互いに位相を反転させた光強度変調を行うMZ型光強度変調器とにより構成される。

【0014】また、光変調手段は、光散送波を発生する 光源と、反転された2値データ信号を用いて出力光をオ ンーオフで変調する光強度変調器と、デュオバイナリ信 号を用いて出力光の位相を0一元/2一元で変調する光 位相変調器とにより構成される。このとき、符号変換手 段は、2値データ信号を2つに分岐する分岐回路と、一 方の信号を反転する反転回路と他方の信号をデュオバイ ナリ信号に変換する符号変換回路により構成される。な お、光強度変調手段の入力部に低域通過フィルタを挿入 して変調光の帯域を制限することが好ましい。

【0015】受信手段は、光変調信号を直接検抜する光検波回路と、検波された2値信号を識別する識別器と、 識別された2値信号を論理反転する反転回路とにより構成される。なお、この光送信装置から出力された送信光 のディジタルデータを復調する手段としては、DD方式だけでなく、局部発振光を重量して受信するコヒーレント検波方式も適用できる。

【0016】本発明の光送信装置および光伝送システムでは、2値のデータ信号をデュオバイナリ信号に変換する。このとき、例えばデータ信号の「0」はデュオバイナリ信号の「0」と「2」に対応し、「1」は「1」に対応する。ここで、デュオバイナリ信号「0」、

「1」、「2」に対して光強度「1」、「0」、「1」を対応させ、かつデュオバイナリ信号「0」、「2」に対する光位相を互いに反転させて光強度変調する。すなわち、デュオバイナリ信号の中央値に対する光強度を最小(理想的には0)とし、他の2値に対して同じ光強度で互いに位相を反転させた光強度変調信号を生成することにより、変調された光信号のスペクトルは、ベースパンドでのデュオバイナリ信号のスペクトルをそのまま光周波数帯に移動したものとなる。従って光変調信号スペクトルは、キャリア周波数成分が抑圧され、また信号帯域が従来の2値の光強度変調信号の半分となる。

【0017】また、本発明における光強度変調信号の強度は"オン"と"オフ"の2値しかとらないので、2値の直接検波受信機をそのまま用いることができる。但し、2億データ信号の"1"、"0"に対して光変調信号の強度は、"オフ"、"オン"となるため、受信機で論理反転を行う必要がある。

【0018】また、本免明方式における光強度変調信号の信号点間距離は、従来方式の2値の光強度変調信号と等しいので、原理的には従来の2値のIM-DD方式に比べて受信感度劣化は生じない。また、光変調手段の入力部に低減通過フィルタを揮入することによって、光変調信号の帯域を制限することになるので、耐分散特性を向上させることができる。

[0018]

【発明の実施の形態】図1Aは、本発明の光伝送方式のシステム構成の第1実施例を示す。本実施例では、2つの電極に電圧を印加することにより2つの光導波路を伝

機する光の遅延を独立に変化させることができるデュアルドライブM Z 型光強度変調器を用いる構成を示す。
【0020】図において、2値のディジタルデータ信号は、符号変換回路 80は従来構成と同様であり、1ピット遅延器(T)81,83、排他的論理和回路(EXOR)82、加算器 84により構成される。この3値(0,1,2)のデュオパイナリ信号を2分岐し、一方を反転回路 11に入力して振幅が同じで互いに位相が反転した2つのDC成分のないデュオバイナリ信号(一1,0,1)を生成し、それに比例した電圧をM Z 型光 強度変調器 70の電極 74a,74bにそれぞれ印加す

【0021】半導体レーザ78の出力光は、この互いに位相が反転した2つのデュオバイナリ信号に応じて光強度変調信号は光ファイバ伝送路77に送出される。光ファイバ伝送路77から出力される光強度変調光は光検波回路78で直接検波され、その検波信号を識別器79で識別し、反転回路12で論理反転することによりデータ信号が復調される。

【0022】本発明の特徴は、3値(0,1,2)のデュオバイナリ信号で光強度変調するときに、その中央値(1)に対して出力光強度が最小になるようにバイアス程圧を調整するところにある。理想的には中央値(1)のときに出力光強度がOとなることが望ましい。また、2つの電模743,746に印加する電圧は、その絶対値が等しく、光の位相を元変化させるのに必要な電圧すなわち半波長電圧以下となるように設定する。理想的にはピーク間電圧は半坡長電圧であることが望ましい。このとき、図2に示すようにデュオバイナリ信号の3つの信号点が最大透過率の点A、最小透過率の点B、最大透過率の点Cに対応する。なお、点Aと点Cではともに光強度変調信号の強度が最大となるが、位相が反転する。

【0023】これらの調整を行うために、各分岐路に相補的デュオパイナリ信号の振幅を開節するための振幅調整回路78a,78bがもうけられ、一方の分岐路には電程74aに渡正なパイアス電圧を与えるためのパイアス調整回路78cがもうけられる。電框74gと74bは各々、抵抗78a,78bを介して接地される。

【0024】図1日は図1Aの変形例を示す。図1Bの特徴は各分岐路に低域通過フィルタ(LPF)75a,75bを揮入して高隅波成分を除去して光変関器を駆動するペースパンド信号の帯域を制限することにある。このフィルタは信号分岐の前に1個だけ挿入してもよい。これらのフィルタの通過帯域は無限大からゼロまで任意に設計できる。光変関帯を駆動する信号の帯域が制限されると、図10に示すように伝送距離をのばすことができる。ここで横軸は伝送距離(km)、たて軸はアイ閉口劣化(dB)を示し、白点曲線は帯域幅3カクス型LP

(5)

F)、黒点曲線は帯域制限なしの場合を示す。帯域幅を制限する白点曲線(B=0.5)は黒点曲線よりも伝送可能距離が長いことがわかる。図18に示すようにデュオバイナリ信号を生成する符号変換器の低域通過フィルタを有するときは、符号変換器の低域通過フィルタカイナリ信号の帯域を制限する低域通過フィルタラ5a,75bを兼ねることができる。図16の低域フィルタをもつ符号変換器の使用は、図1日で低域通過フィルタとしてピットレートの半分の帯域で速断する理想矩形フィルタを用いた場合と等価である。

【0025】図10はマッハツェンダ形光強度変調器の変形例705を示し、一方の電極が分割されて74a〜1と74a〜2となり、直流パイアス電圧が特定の電極74a〜2に印加される。この場合パイアス関節回路76eは省略される。

【0026】ここで、3値(0.1、2)のデュオバイナリ信号と、本発明における光強度変調信号の光強度および光位相との関係を図3に示す。光強度は「1(オン)」と「0(オフ)」の2値であるが、光強度「1(オン)」に対して光位相が「0」と「 π 」の2値をとる。なお、デュオバイナリ信号は「0」と「2」との間では符号遷移は起こらないので、光強度が一定のまま光位相が「0」と「 π 」との間で直接変化することはない。

【0027】デュオパイナリ信号(-1,0,1)のパワースペクトル密度は、図4に示すようにDC成分が存

在せず、ピットレートの半分の帯域にほとんどのパワーが集中する。また、本発明における光強度変調信号の位相反転請係を正と負の振幅とみなせば、光強度変調信号はデュオバイナリ信号と光キャリアの乗算で表すことができる。したがって、本発明における光強度変調信号のスペクトルは、このスペクトルをそのまま光周波数帯へ移動したものとなりキャリアが抑圧され、キャリア周波数を中心としたピットレート帯域内にパワーが集中する。

【0028】このようにして得られた光強度変調信号を直接検波し、反転回路12で論理反転することにより、2値のデータ信号を復調することができる。ここで、①2値のデータ信号 $\{a_k\}$ 、②差動符号化した中間系列 $\{b_k\}$ 、③デュオパイナリ信号 $\{d_k\}$ 、④反転されたデュオパイナリ信号

【数1】

 $\{\overline{\mathbf{a}_{\mathbf{k}}}\}$

、⑤光強度変調信号 { e k } 、⑥検液信号 { | e k | 2 } 、の復調されたデータ信号

【数2】

 $\{|e_x|^2\}$

の一例を表1に示す。

【表1】

0	B _K		0	0	0	1	0	0	1	1	0	1	0	1	1 1 1	L
②	b _k =a _k ⊕b _{k-1}	0	0	0	0	1	1	1	0	1	1	0	0	1	010)
3	dk=pk+pk+1		0	0	0	1	2	2	1	1	2	1	0	1	1 1 1	l
(4)	d _{sc}		2	2	2	1	0	0	1	1	0	1	2.	1	111	Ļ
6	e _κ =-cos[d _κ π/2]		-1	-1	-1	0	1	1	0	0	1	0	-1	0	000)
(B)	e _× ^s		1	1	1	D	1	1	Đ	0	1	0	1	0	000)
Ø	le _k i [±]		0	٥	0	1	0	0	1	1	0	1	0	1	1.1.1	l

【0029】なお、光強度変調信号のの「1」と「一1」は位相反転を示すが、その検波信号はともに1となる。ここでは、24 - 1 疑似ランダムピット列における符号化から復号化までの信号の流れを示したが、一般の信号列について同様である。

【0030】以上示した構成による実験結果を示す。実験ではピットレート5Gbit/s とした。図5(a)は光強度変異用のデュオパイナリ信号波形を示し、図5

(b) は受信信号紋形を示す。図6は、デュオバイナリ信号スペクトルを示す。ピットレートの半分の帯域にほとんどのパワーが集中しているのがわかる。図7は、本発明における光強度変調信号スペクトルを示す。キャリア周波数成分が抑圧され、帯域が従来の2値の光強度変調信号(図15)の半分になっていることがわかる。図8は、本発明方式と従来方式(2値のIM-DD方式)の符号類り率特性を示す。両者の違いはほとんどなく、

本発明方式をとっても受信悪度が劣化しないことがわか る。

【0031】図9Aは、本発明の光伝送方式のシステム 構成の第2実施例を示す。本実施例の特徴は、デマルチ プレクサを利用して2値のデータ信号から互いに位相が 反転した2つのデュオバイナリ信号を生成するところに ある。

【0032】図において、2値のデータ信号は1ピット 運延器(T) 81および排他的論理和回路(EXOR) 82で差動符号化され、その中間系列がデマルチプレク サ (DEMUX) 21に入力される。デマルチプレクサ 21は入力された中間系列をピット単位で多重分離し、 その反転データとともに出力する。デマルチプレクサネ 1から出力される2チャネルのデータを加算器84aで 加算し、2チャネルの反転データを加算器846で加算 することにより、振幅が同じで互いに位相が反転した2 つのデュオパイナリ信号が生成される。この2つのデュ オバイナリ信号に比例した電圧をMZ型光強度変調器で Oの電框74m, 74bにそれぞれ印加する。その他の 構成は第1実施例と同様である。図9日は、本発明の第 2実施例の変形例を示す。これは第1実施例と同様に低 域通過フィルタを挿入することによって耐分散特性の向 上を回ったものである。

【0033】ここで、デマルチプレクサを用いたデュオバイナリ信号の生成過程を図10に示す。①は2値のデータ信号、②は中間系列、②と④はデマルチプレクサ21のチャネル1(ch.1)およびチャネル2(ch.2)の出力、⑤はデュオバイナリ信号を示す。

【0034】図11Aは、本発明の光伝送方式のシステム様成の第3実施例を示す。本実施例の特徴は、光強度変調器と光位相変調器を縦続に接続し、2値のデータ信号の反転信号で光強度変調器を駆動し、2値のデータ信号から生成されたデュオバイナリ信号で光位相変調器を駆動するところにある。光強度変調器はオンーオフ動作が可能であり、光位相変調器は0一束の位相変調動作が可能であればよい。

【0035】図において、2種のデータ信号は、符号変換回路80および反転回路75に入力される。半導体レーザ76の出力光は光強度変調器31に入力され、反応回路75を介して反転したデータ信号によって光強度変調される。その光強度変調器80で2値のデータ信号から変換されたデュオバイナリ信号によって光位相変調器32で発表された光強度変調信号が光ファイバ伝送路77に送出る。この光強度変調信号が光ファイバ伝送路77に送出る。この光強度変調信号が光ファイバ伝送路77に送出る。これと光強度変調信号が光ファイバ伝送路77に送出る。これと光強度変調信号が光ファイバ伝送路77に送出る。これと光強度変調信号が光ファイバ伝送路77に送出る。これと光強度変調により構成される。以1ピット運延額(T)81,83、排放される。受信側の構成は第1実施例と同様である。図11日は本発明の第3実施例の変形例を示す。これは第1実施例、第

2 実施例と同様に低域通過フィルタを挿入することによって耐分散特性の向上を図ったものである。

【0036】ここで、光弦度変調器31および光位相変 調器32の駆動信号を図12に示す。光位相変調器32 を駆動するデュオバイナリ信号「0」、「1」、「2」 に対して光強度「1」、「0」、「1」が対応し、かつ デュオバイナリ信号「0」、「2」に対する光位相が互 いに反転することがわかる。このようにして変調された 光信号は第1実施例の光弦度変調信号と同じになるの で、第1実施例と同様に直接検波して論理反転を行うこ とによりデータ信号を復調することができる。

[0037]

【発明の効果】以上説明したように、本発明の光伝送方式では、受信感度劣化および受信回路の複雑化を伴うことなく、信号スペクトルにおけるキャリア周波数成分を抑圧することができる。したがって、誘導プリルアン散乱による光ファイバ入力パワーの制限を緩和できるとともに、光波長多重伝送系において4光波混合によるクロストークを低減することができる。さらに、信号帯域を従来の2値の光強度変調信号の半分とすることができるので、光ファイバ波長分散の影響が小さくなるとともに、光波長多重伝送系における周波数利用効率を向上させることができる。すなわち、本発明の光伝送方式では、従来方式で光ファイバの波長分散や非線形性により制限されていた大容量化、高速化、長距離化をさらに進めることができる。

【図面の簡単な説明】

【図1A】本発明の光伝送方式のシステム模成の第1実施例を示すプロック図。

【図18】本発明の第1実施例の変形例。

【図1 C】本発明における光強度変調信号の耐波長分散 特性。

【図10】図1Aの光強度変調器の変形例。

【図2】第1実施例におけるMI型光強度変調器の動作 を説明する図。

【図3】第1実施例におけるデュオバイナリ信号と本発 明における光強度変調信号の関係を説明する図。

【図4】デュオバイナリ信号のパワースペクトル密度を 示す図。

【図5】デュオパイナリ信号波形および受信信号波形を 示す図。

【図6】デュオパイナリ債号スペクトルを示す図。

【図7】本発明における光強度変顯信号スペクトルを示 す図。

【図8】本発明方式と従来方式(2値の I MーDD方式)の符号誤り率特性を示す図。

【図9A】本発明の光伝送方式のシステム構成の第2実 施例を示すブロック図。

【図98】本発明の第2実施例の変形例。

【図10】デマルチプレクサを用いたデュオバイナリ信

特闘平8-139681

(7)

号の生成過程を示す図。

【図11A】本発明の光伝送方式のシステム構成の第3 実施例を示すブロック図。

【図118】本発明の第3実施例の変形例。

【図12】第3実施例における光強度変調器および光位 相変調器の駆動信号を示す図。

【図13】MZ型光強度変調器を用いた従来の光伝送方式のシステム構成を示す図。

【図14】従来の光伝送方式におけるM2型光強度変調 器の動作を説明する図。

【図15】従来の2値の光伝送方式における光強度変調 信号スペクトルを示す図。

【図16】デュオバイナリ信号を用いた従来の光伝送方式のシステム構成を示す図。

【符号の説明】

- 11, 12, 75 反転回路
- 21 デマルチプレクサ (DEMUX)
- 31 光強度変調器
- 32 光位相変調器

- 70 MZ型光強度変調器
- 71, 73 カプラ
- 72 光導波路
- フム 管理
- 75a, 75b 低域通過フィルタ
- 76 半導体レーザ
- 78a, 76b 振幅調整回路
- 76c バイアス調整回路
- ファ 光ファイバ伝送路
- 78 光検波回路
- 78a、78b 抵抗
- 79 地別森
- 80 符号変換回路
- 81,83 1ビット遅延器(T)
- 82 排他的論理和回路(EXOR)
- 84 加算器
- 85 レーザ変調器
- 86 半導体レーザ
- 87 デュオパイナリ信号生成用低域通過フィルタ

[因1A]

本舞明の光伝港方式のシステム構成の第1実施例

---- --

【图 4】

【図2】

(図3)

第1夫施例におけるMZ型光強度使開動の動作

第1典集例におけるデュオパイナリ教导と光強度変数信号の関係

(8) 特勝平8-139681 【図1B】 [図6] 本発明の光伝送方式のシステム構成の第1実施例 ゲュオパイナリ世号スペクトル 80 符号安美国路 [図10] 【図1D】 技术对亚四片 帯域器限ない アイ第ロ条化(4B) 2 [図5] デュオバイナリ番号波形および英信信号波形 100 (a) I (P)

(B)

特開平8-139681

[図7]

[図8]

[図9A]

本質的の光伝送方式のシステム構成の第2実施例

[图9B]

本売明の光伝送方式のシステム構成の第2支証例

(10)

特開平8-139681

(B10]

デマルチプレクサを用したデュオバイナリ信号の生成過程

[図14]

従来の光伝送方式におけるM2型光致直査問題の動作

[図11A]

本発明の光伝送方式のシステム構成の第3実施例

[図11B]

本階明の光伝送方式のシステム構成の第3実施例

(11)

特開平8-139681

[図12]

[図15]

[213]

MZ型光強度変襲器を用いた従来の光伝送方式のシステム構成

[図16]

チュオパイナリ信号を用いた従来の光位処方式のシステム構成

(12)

特開平8-139681

フロントページの続き

(51) Int. 01. 6 **地**別記号 **庁内整理番号** 技術表示簡所 HO4B 10/08

10/28

10/26

10/14

HO4L 25/497 9199-5K

(72)発明者 景松 雑司

東京都千代田区内阜町一丁目1番6号 日

本電信電話株式会社内