LEC002 Demand Forecasting

VG441 SS2020

Cong Shi Industrial & Operations Engineering University of Michigan

Properties

- *Trend*: A long-term increase or decrease in the data. This can be seen as a slope (doesn't have to be linear) roughly going through the data.
- Seasonality: A time series is said to be seasonal when it is affected by seasonal factors (hour of day, week, month, year, etc.). Seasonality can be observed with nice cyclical patterns of fixed frequency.
- *Cyclicity*: A cycle occurs when the data exhibits rises and falls that are not of a fixed frequency. These fluctuations are usually due to economic conditions, and are often related to the "business cycle". The duration of these fluctuations is usually at least 2 years.
- *Residuals*: Each time series can be decomposed in two parts:
 - A forecast, made up of one or several *forecasted* values
 - Residuals. They are the difference between an observation and its predicted value at each time step. Remember that

Value of series at time t = Predicted value at time t + Residual at time t

Value = predict + residual

Examples

trend

Sesonal.

Examples

Decomposition of Time Series

Each time series can be thought as a mix between several parts:

- A trend (upward or downwards movement)
- A seasonal component
- Residuals

* Stationary is easy-to analyze

Simple Average

- Stationary model $D_t = I + \epsilon_t$ base signal
- Static forecast $\hat{y} = \frac{\sum_{t=1}^{N} D_t}{N}$
- Derived based on minimizing MSE

$$\frac{d\left(\sum_{t=1}^{N}e_{t}^{2}\right)}{d\hat{y}} = \frac{d\left[\sum_{t=1}^{N}\left(d_{t}-\hat{y}\right)^{2}\right]}{d\hat{y}} = -2\sum_{t=1}^{N}\left(d_{t}-\hat{y}\right) = 0$$
when square error

independent

identically

distributed

Simple Average Model

Moving Average (MA)

Average only the most recent data points

$$y_t = \frac{1}{N} \sum_{i=t-N}^{t-1} D_i$$

- Smooth out noise
- Can respond to change in process

Moving Average (MA)

Weighted Moving Average

A generalization of MA with weights

$$y_t = \frac{\sum_{i=t-N}^{t-1} w_i D_i}{\sum_{i=t-N}^{t-1} w_i}$$
 weight bosons
$$e.g.,$$

$$w_{t-1} = N, w_{t-2} = N-1, \ldots, w_{t-N} = 1$$

Exponential Smoothing

• Adjust forecast based on the recent data point

$$y_{t} = \alpha D_{t-1} + (1-\alpha) y_{t-1}$$

 It is a weighted average of all historical data points, with the weight decreasing exponentially with age

$$y_{t-1} = \alpha D_{t-2} + (1-\alpha)y_{t-2}$$

$$\forall y_t = \alpha D_{t-1} + \alpha (1-\alpha)D_{t-2} + (1-\alpha)^2 y_{t-2}$$

$$\forall y_t = \sum_{i=0}^{\infty} \alpha (1-\alpha)^i D_{t-i-1} = \sum_{i=0}^{\infty} \alpha_i D_{t-i-1}$$

$$\forall x_t \in \mathcal{X}$$

$$\forall x_t \in \mathcal{X}$$

$$\forall x_t \in \mathcal{X}$$

Exponential Smoothing

Double Exponential Smoothing (Holt)

节trend情况

Double exponential smoothing can be used to forecast demands with a linear trend

base signal
$$D_t = I + tS + \epsilon_t - \text{ind shock}$$
 ase and slope:

The predictor consists of base and slope:

$$y_t = I_{t-1} + S_{t-1}$$

$$I_t = \alpha D_t + (1-\alpha) \left(I_{t-1} + S_{t-1}\right) \quad \text{(in the proof of the p$$

Alpha is the smoothing constant and Beta is the trend constant

Triple Exponential Smoothing (Holt-Winters)

Random demands with trend and seasonality

Triple Exponential Smoothing (Holt-Winters)

Demand model $D_t = (I + tS)c_t + \epsilon_t \qquad \sum c_t = N \qquad \text{e.g. } c_{t=0.5}$ The predictor seasonal factor $y_t = (I_{t-1} + S_{t-1})c_{t-N}$

Basic idea is to "de-trend" and "de-seasonalize"

Python Time!

statsmodels.tsa.seasonal

statsmodels.tsa.holtwinters

Zimpletys moothing