Structure-Preserving Signatures on Equivalence Classes (SPS-EQ)

Adwaiya Srivastav

SPS EQ Project

April 15, 2025

Outline

- Introduction
- Mathematical Background
- SPS-EQ
- 4 Notions
- Construction using Pairings
- Security Guarantees
- Incorporating SPS-EQ in our scheme
- 8 Implementation and Features

• Primitive introduced by G. Fuchsbauer, C. Hanser, and D. Slamanig in 2015.

- Primitive introduced by G. Fuchsbauer, C. Hanser, and D. Slamanig in 2015.
- Based on bilinear pairings

- Primitive introduced by G. Fuchsbauer, C. Hanser, and D. Slamanig in 2015.
- Based on bilinear pairings
- Messages are equivalence classes of group elements

- Primitive introduced by G. Fuchsbauer, C. Hanser, and D. Slamanig in 2015.
- Based on bilinear pairings
- Messages are equivalence classes of group elements
- Signatures remain valid across equivalent messages

- Primitive introduced by G. Fuchsbauer, C. Hanser, and D. Slamanig in 2015.
- Based on bilinear pairings
- Messages are equivalence classes of group elements
- Signatures remain valid across equivalent messages
- Extends randomizable signatures where a tuple (M, σ) using a scalar μ and pk can be converted to (M, σ') .

- Primitive introduced by G. Fuchsbauer, C. Hanser, and D. Slamanig in 2015.
- Based on bilinear pairings
- Messages are equivalence classes of group elements
- Signatures remain valid across equivalent messages
- Extends randomizable signatures where a tuple (M, σ) using a scalar μ and pk can be converted to (M, σ') .
- Here, a tuple (M, σ) can be converted to (M', σ') using a scalar μ and pk.

Mathematical Background: Bilinear Pairings

For elliptic curve groups $\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T$ with generators $P \in \mathbb{G}_1$ and $\hat{P} \in \mathbb{G}_2$, a bilinear pairing is a map $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ that satisfies the following properties:

- Bilinear: $e(aP, b\hat{P}) = e(P, \hat{P})^{ab}$
- Non-degenerate: $e(P, \hat{P}) \neq 1$
- Computable: There exists an efficient algorithm to compute e(S,T) for any $S \in \mathbb{G}_1$ and $T \in \mathbb{G}_2$

Mathematical Background: Bilinear Pairings

For elliptic curve groups $\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T$ with generators $P \in \mathbb{G}_1$ and $\hat{P} \in \mathbb{G}_2$, a bilinear pairing is a map $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ that satisfies the following properties:

- Bilinear: $e(aP, b\hat{P}) = e(P, \hat{P})^{ab}$
- Non-degenerate: $e(P, \hat{P}) \neq 1$
- Computable: There exists an efficient algorithm to compute e(S,T) for any $S \in \mathbb{G}_1$ and $T \in \mathbb{G}_2$

Types:

- $\bullet \ \, \mathsf{Type}\text{-}1: \,\, \mathbb{G}_1=\mathbb{G}_2$
- Type-2: $\mathbb{G}_1 \neq \mathbb{G}_2$ but there exists an efficiently computable homomorphism $\phi: \mathbb{G}_2 \to \mathbb{G}_1$
- Type-3: No restrictions on \mathbb{G}_1 and \mathbb{G}_2 (Used in this work)

Lets define a relation $\mathcal R$ on $(\mathbb G_1^*)^\ell$ as follows:

$$\mathcal{R} = \{ (\textit{M}, \textit{M}') \mid (\textit{M}, \textit{M}') \in (\mathbb{G}_1^*)^{2 \cdot \ell} \text{ and } \exists \mu \in \mathbb{Z}_p^* \text{ s.t. } \textit{M}' = \mu \cdot \textit{M} \}$$

Proposition: \mathcal{R} is an equivalence relation $\leftrightarrow |\mathbb{G}_1| = p$ prime. *Proof:*

- \Rightarrow For transitivity we require if $A \mathcal{R} B$ and $B \mathcal{R} C$ then $A \mathcal{R} C$. Thus, $B = \nu \cdot C$ and $A = \mu \cdot B = (\mu \cdot \nu) \cdot C$. Thus, $\mu \cdot \nu \in \mathbb{Z}_n^*$ for arbitrary $\mu, \nu \in \mathbb{Z}_n^*$. This means there are no zero divisors in \mathbb{Z}_n^* implying n is prime.

• **Definition 0.1:** For a message $M \in (\mathbb{G}_1^*)^{\ell}$, we define its mutual ratios as:

$$r_M = \left(\frac{M_1}{x_2}, \frac{M_1}{x_3}, \dots, \frac{M_1}{x_\ell}, \frac{M_2}{x_3}, \dots, \frac{M_2}{x_\ell}, \dots, \frac{M_\ell}{x_\ell}\right)$$

where x_i is the discrete log of M_i in \mathbb{G}_1 .

• **Definition 0.1:** For a message $M \in (\mathbb{G}_1^*)^{\ell}$, we define its mutual ratios as:

$$r_M = \left(\frac{M_1}{x_2}, \frac{M_1}{x_3}, \dots, \frac{M_1}{x_\ell}, \frac{M_2}{x_3}, \dots, \frac{M_2}{x_\ell}, \dots, \frac{M_\ell}{x_\ell}\right)$$

where x_i is the discrete log of M_i in \mathbb{G}_1 .

• **Definition 0.1:** For a message $M \in (\mathbb{G}_1^*)^{\ell}$, we define its mutual ratios as:

$$r_M = \left(\frac{M_1}{x_2}, \frac{M_1}{x_3}, \dots, \frac{M_1}{x_\ell}, \frac{M_2}{x_3}, \dots, \frac{M_2}{x_\ell}, \dots, \frac{M_\ell}{x_\ell}\right)$$

where x_i is the discrete log of M_i in \mathbb{G}_1 .

• **Proposition 0.1:** Mutual ratios remain invariant under scalar multiplication.

• **Definition 0.1:** For a message $M \in (\mathbb{G}_1^*)^{\ell}$, we define its mutual ratios as:

$$r_M = \left(\frac{M_1}{x_2}, \frac{M_1}{x_3}, \dots, \frac{M_1}{x_\ell}, \frac{M_2}{x_3}, \dots, \frac{M_2}{x_\ell}, \dots, \frac{M_\ell}{x_\ell}\right)$$

where x_i is the discrete log of M_i in \mathbb{G}_1 .

• **Proposition 0.1:** Mutual ratios remain invariant under scalar multiplication. *Proof:*

$$r_{\mu \cdot M} = \left(\frac{\mu \cdot M_1}{\mu x_2}, \frac{\mu \cdot M_1}{\mu x_3}, \dots, \frac{\mu \cdot M_1}{\mu x_\ell}, \frac{\mu \cdot M_2}{\mu x_3}, \dots, \frac{\mu \cdot M_2}{\mu x_\ell}, \dots, \frac{\mu \cdot M_\ell}{\mu x_\ell}\right)$$

$$= \left(\frac{M_1}{x_2}, \frac{M_1}{x_3}, \dots, \frac{M_1}{x_\ell}, \frac{M_2}{x_3}, \dots, \frac{M_2}{x_\ell}, \dots, \frac{M_\ell}{x_\ell}\right)$$

$$= r_M$$

• Proposition 0.2: $M \mathcal{R} M' \leftrightarrow r_M = r_{M'}$.

- Proposition 0.2: $M \mathcal{R} M' \leftrightarrow r_M = r_{M'}$.
 - \Rightarrow If $M \mathcal{R} M'$, then $M' = \mu \cdot M$ for some $\mu \in \mathbb{Z}_p^*$. Thus by above proposition, $r_M = r_{M'}$.
 - \leftarrow If $r_M = r_{M'}$, then $M_i = \mu \cdot M'_i$ for some $\mu \in \mathbb{Z}_p^*$. Thus, $M \mathcal{R} M'$.

- Proposition 0.2: $M \mathcal{R} M' \leftrightarrow r_M = r_{M'}$.
 - \Rightarrow If $M \mathcal{R} M'$, then $M' = \mu \cdot M$ for some $\mu \in \mathbb{Z}_p^*$. Thus by above proposition, $r_M = r_{M'}$.
 - \leftarrow If $r_M = r_{M'}$, then $M_i = \mu \cdot M'_i$ for some $\mu \in \mathbb{Z}_p^*$. Thus, $M \mathcal{R} M'$.

Mutual ratios can be used to check if two messages are equivalent by only knowing the discrete log of one of them.

- Proposition 0.2: $M \mathcal{R} M' \leftrightarrow r_M = r_{M'}$.
 - \Rightarrow If $M \mathcal{R} M'$, then $M' = \mu \cdot M$ for some $\mu \in \mathbb{Z}_p^*$. Thus by above proposition, $r_M = r_{M'}$.
 - \leftarrow If $r_M = r_{M'}$, then $M_i = \mu \cdot M'_i$ for some $\mu \in \mathbb{Z}_p^*$. Thus, $M \mathcal{R} M'$.

Mutual ratios can be used to check if two messages are equivalent by only knowing the discrete log of one of them.

Consider two messages $M, M' \in (\mathbb{G}_1^*)^{\ell}$ and $x_1, x_2, \dots, x_{\ell} \in \mathbb{Z}_p$ s.t. $M_i = x_i \cdot P$. Define,

$$r_{(M',M)} = \left(\frac{M'_1}{x_2}, \frac{M'_1}{x_3}, \dots, \frac{M'_1}{x_\ell}, \frac{M'_2}{x_3}, \dots, \frac{M'_2}{x_\ell}, \dots, \frac{M'_\ell}{x_\ell}\right).$$

- Proposition 0.2: $M \mathcal{R} M' \leftrightarrow r_M = r_{M'}$.
 - \Rightarrow If $M \mathcal{R} M'$, then $M' = \mu \cdot M$ for some $\mu \in \mathbb{Z}_p^*$. Thus by above proposition, $r_M = r_{M'}$.
 - \leftarrow If $r_M = r_{M'}$, then $M_i = \mu \cdot M'_i$ for some $\mu \in \mathbb{Z}_p^*$. Thus, $M \mathcal{R} M'$.

Mutual ratios can be used to check if two messages are equivalent by only knowing the discrete log of one of them.

Consider two messages $M, M' \in (\mathbb{G}_1^*)^{\ell}$ and $x_1, x_2, \dots, x_{\ell} \in \mathbb{Z}_p$ s.t. $M_i = x_i \cdot P$. Define,

$$r_{(M',M)} = \left(\frac{M'_1}{x_2}, \frac{M'_1}{x_3}, \dots, \frac{M'_1}{x_{\ell}}, \frac{M'_2}{x_3}, \dots, \frac{M'_2}{x_{\ell}}, \dots, \frac{M'_{\ell}}{x_{\ell}}\right).$$

Claim: $M \mathcal{R} M' \leftrightarrow r_M = \lambda \cdot r_{(M',M)}$.

- Proposition 0.2: $M \mathcal{R} M' \leftrightarrow r_M = r_{M'}$.
 - \Rightarrow If $M \mathcal{R} M'$, then $M' = \mu \cdot M$ for some $\mu \in \mathbb{Z}_p^*$. Thus by above proposition, $r_M = r_{M'}$.
 - \leftarrow If $r_M = r_{M'}$, then $M_i = \mu \cdot M'_i$ for some $\mu \in \mathbb{Z}_p^*$. Thus, $M \mathcal{R} M'$.

Mutual ratios can be used to check if two messages are equivalent by only knowing the discrete log of one of them.

Consider two messages $M, M' \in (\mathbb{G}_1^*)^{\ell}$ and $x_1, x_2, \dots, x_{\ell} \in \mathbb{Z}_p$ s.t. $M_i = x_i \cdot P$. Define,

$$r_{(M',M)} = \left(\frac{M'_1}{x_2}, \frac{M'_1}{x_3}, \dots, \frac{M'_1}{x_{\ell}}, \frac{M'_2}{x_3}, \dots, \frac{M'_2}{x_{\ell}}, \dots, \frac{M'_{\ell}}{x_{\ell}}\right).$$

Claim: $M \mathcal{R} M' \leftrightarrow r_M = \lambda \cdot r_{(M',M)}$. *Proof:*

- \Rightarrow If $M \mathcal{R} M'$, then $M = \mu \cdot M'$ for some $\mu \in \mathbb{Z}_p^*$. Thus, $r_M = \mu \cdot r_{(M',M)}$.
- $\Leftarrow \text{ If } r_M = \lambda \cdot r_{(M',M)}, \text{ then } M_i = \lambda \cdot M_i' \text{ for some } \lambda \in \mathbb{Z}_p^*. \text{ Thus, } M \mathcal{R} M_{7/29}'$

Definition(SPS-EQ): A structure-preserving signature scheme for equivalence relation \mathcal{R} over \mathbb{G}_1 is a tuple SPS EQ of following PPT algorithms:

• **BGGgen**_{\mathcal{R}} (1^{κ}) : is a bilinear group generator algorithm that outputs a bilinear group BG of prime order p where p is a κ bit prime

- **BGGgen**_{\mathcal{R}} (1^{κ}) : is a bilinear group generator algorithm that outputs a bilinear group BG of prime order p where p is a κ bit prime
- **KeyGen**_{\mathcal{R}}(BG, 1^ℓ): is a probabilistic algorithm which on input a bilinear group BG and a vector of length $\ell > 1$, outputs a key pair (sk, pk)

- **BGGgen**_{\mathcal{R}} (1^{κ}) : is a bilinear group generator algorithm that outputs a bilinear group BG of prime order p where p is a κ bit prime
- **KeyGen**_{\mathcal{R}}(BG, 1^ℓ): is a probabilistic algorithm which on input a bilinear group BG and a vector of length $\ell > 1$, outputs a key pair (sk, pk)
- $\mathbf{Sign}_{\mathcal{R}}(\vec{M}, sk)$: is a probabilistic algorithm that which on input a representative $\vec{M} \in (\mathbb{G}_1^*)^\ell$ of an equivalence class $[\vec{M}]_{\mathcal{R}}$, a secret key sk, outputs a signature σ on \vec{M}

- **BGGgen**_{\mathcal{R}} (1^{κ}) : is a bilinear group generator algorithm that outputs a bilinear group BG of prime order p where p is a κ bit prime
- **KeyGen**_{\mathcal{R}}(BG, 1^{ℓ}): is a probabilistic algorithm which on input a bilinear group BG and a vector of length $\ell > 1$, outputs a key pair (sk, pk)
- $\mathbf{Sign}_{\mathcal{R}}(\vec{M}, sk)$: is a probabilistic algorithm that which on input a representative $\vec{M} \in (\mathbb{G}_1^*)^\ell$ of an equivalence class $[\vec{M}]_{\mathcal{R}}$, a secret key sk, outputs a signature σ on \vec{M}
- ChgRep $_{\mathcal{R}}(\vec{M}, \sigma, \mu, pk)$: is a probabilistic algorithm which on input a representative $\vec{M} \in (\mathbb{G}_1^*)^\ell$ of an equivalence class $[\vec{M}]_{\mathcal{R}}$, a signature σ on \vec{M} , a scalar μ , and a public key pk, outputs an updated signature σ' on $\vec{M}' = \mu \cdot \vec{M}$

Abstract Scheme (continued)

• **Verify**_{\mathcal{R}}(\vec{M}, σ, pk): is a deterministic algorithm which on input a representative $\vec{M} \in (\mathbb{G}_1^*)^\ell$, and a signature σ , outputs 1 if σ is valid for \vec{M} under pk and 0 otherwise.

Abstract Scheme (continued)

- **Verify** $_{\mathcal{R}}(\vec{M},\sigma,pk)$: is a deterministic algorithm which on input a representative $\vec{M} \in (\mathbb{G}_1^*)^\ell$, and a signature σ , outputs 1 if σ is valid for \vec{M} under pk and 0 otherwise.
- **VKey**_{\mathcal{R}}(sk, pk): is a deterministic algorithm which on input a secret key sk and a public key pk, checks their consistency and outputs 1 if sk is valid for pk and 0 otherwise.

Definition 1 (Correctness): An SPS-EQ scheme SPS-EQ over \mathbb{G}_1 is correct if for all security parameters $\kappa \in \mathbb{N}$, for all $\ell > 1$, and all bilinear groups $\mathsf{BG} = (p, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, e, P, \hat{P}) \in [BGGen_R(1^\kappa)]$, all key pairs $(sk, pk) \in [\mathsf{KeyGen}(\mathsf{BG}, 1^\ell)]$ and all messages $\vec{M} \in (\mathbb{G}_1^*)^\ell$ and scalars $\mu \in \mathbb{Z}_p^*$, the following holds:

Definition 1 (Correctness): An SPS-EQ scheme SPS-EQ over \mathbb{G}_1 is correct if for all security parameters $\kappa \in \mathbb{N}$, for all $\ell > 1$, and all bilinear groups $\mathsf{BG} = (p, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, e, P, \hat{P}) \in [\mathsf{BGGen}_R(1^\kappa)]$, all key pairs $(\mathsf{sk}, \mathsf{pk}) \in [\mathsf{KeyGen}(\mathsf{BG}, 1^\ell)]$ and all messages $\vec{M} \in (\mathbb{G}_1^*)^\ell$ and scalars $\mu \in \mathbb{Z}_p^*$, the following holds:

• $VKey_{\mathcal{R}}(\mathit{sk}, \mathit{pk}) = 1$

Definition 1 (Correctness): An SPS-EQ scheme SPS-EQ over \mathbb{G}_1 is correct if for all security parameters $\kappa \in \mathbb{N}$, for all $\ell > 1$, and all bilinear groups $\mathsf{BG} = (p, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, e, P, \hat{P}) \in [\mathsf{BGGen}_R(1^\kappa)]$, all key pairs $(\mathsf{sk}, \mathsf{pk}) \in [\mathsf{KeyGen}(\mathsf{BG}, 1^\ell)]$ and all messages $\vec{M} \in (\mathbb{G}_1^*)^\ell$ and scalars $\mu \in \mathbb{Z}_p^*$, the following holds:

- \bullet VKey $_{\mathcal{R}}(\mathit{sk},\mathit{pk}) = 1$
- ullet Verify $_{\mathcal{R}}(\mathit{pk},ec{\mathit{M}},\mathsf{Sign}_{\mathcal{R}}(\mathit{sk},ec{\mathit{M}}))=1$

Definition 1 (Correctness): An SPS-EQ scheme SPS-EQ over \mathbb{G}_1 is correct if for all security parameters $\kappa \in \mathbb{N}$, for all $\ell > 1$, and all bilinear groups $\mathsf{BG} = (p, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, e, P, \hat{P}) \in [\mathsf{BGGen}_R(1^\kappa)]$, all key pairs $(\mathsf{sk}, \mathsf{pk}) \in [\mathsf{KeyGen}(\mathsf{BG}, 1^\ell)]$ and all messages $\vec{M} \in (\mathbb{G}_1^*)^\ell$ and scalars $\mu \in \mathbb{Z}_p^*$, the following holds:

- ullet VKey $_{\mathcal{R}}(\mathit{sk},\mathit{pk})=1$
- $\mathsf{Verify}_{\mathcal{R}}(\mathit{pk},\vec{M},\mathsf{Sign}_{\mathcal{R}}(\mathit{sk},\vec{M})) = 1$
- $\bullet \ \mathsf{Verify}_{\mathcal{R}}(\vec{\textit{M}}',\mathsf{ChgRep}_{\mathcal{R}}(\vec{\textit{M}},\mathsf{Sign}_{\mathcal{R}}(\textit{sk},\vec{\textit{M}}),\mu,\textit{pk})) = 1$

Notions: EUF-CMA Security

Definition 2 (EUF-CMA Security): An SPS-EQ scheme over \mathbb{G}_1 is existentially un- forgeable under *adaptive chosen-message attacks* if for all $\ell > 1$, all PPT algorithms \mathcal{A} with oracle access to $\mathsf{Sign}_{\mathcal{R}}(\cdot, \mathsf{sk})$, \exists negligible function $\epsilon(\cdot)$:

Notions: EUF-CMA Security

Definition 2 (EUF-CMA Security): An SPS-EQ scheme over \mathbb{G}_1 is existentially un-forgeable under *adaptive chosen-message attacks* if for all $\ell > 1$, all PPT algorithms \mathcal{A} with oracle access to $\mathsf{Sign}_{\mathcal{R}}(\cdot, \mathsf{sk})$, \exists negligible function $\epsilon(\cdot)$:

$$\Pr \begin{bmatrix} \mathsf{BG} \ \stackrel{\$}{\leftarrow} \ \mathsf{BGGen}_{\mathcal{R}}(1^\kappa), (\mathsf{sk}, \mathsf{pk}) \ \stackrel{\$}{\leftarrow} \ \mathsf{KeyGen}_{\mathcal{R}}(\mathsf{BG}, 1^\ell), \\ (\vec{M}^*, \sigma^*) \ \stackrel{\$}{\leftarrow} \ \mathcal{A}^{\mathsf{Sign}_{\mathcal{R}}(\cdot, \mathsf{sk})}(\mathsf{pk}) : \forall \vec{M} \in \mathcal{Q} : [\vec{M}^*]_{\mathcal{R}} \neq [\vec{M}]_{\mathcal{R}} \\ \wedge \ \mathsf{Verify}_{\mathcal{R}}(\vec{M}^*, \sigma^*, \mathsf{pk}) = 1 \end{bmatrix} \leq \epsilon(\kappa)$$

where Q is the set of queries that A makes to the signing oracle.

Notions: Class Hiding

Definition 3 (Class Hiding): Let $\ell > 1$ and \mathbb{G}_i^* be a base group of a bilinear group. The message space $(\mathbb{G}_i^*)^\ell$ is *class-hiding* if for all PPT adversaries $\mathcal A$ there is a negligible function $\epsilon(\cdot)$ such that

Notions: Class Hiding

Definition 3 (Class Hiding): Let $\ell > 1$ and \mathbb{G}_i^* be a base group of a bilinear group. The message space $(\mathbb{G}_i^*)^\ell$ is *class-hiding* if for all PPT adversaries $\mathcal A$ there is a negligible function $\epsilon(\cdot)$ such that

$$\Pr\left[\begin{matrix} b \overset{\$}{\leftarrow} \{0,1\}, \mathsf{BG} \overset{\$}{\leftarrow} \mathsf{BGGen}_{\mathcal{R}}(1^{\kappa}), \vec{M} \overset{\$}{\leftarrow} (\mathbb{G}_{i}^{*})^{\ell}, \\ \vec{M}^{(0)} \overset{\$}{\leftarrow} (\mathbb{G}_{i}^{*})^{\ell}, \vec{M}^{(1)} \overset{\$}{\leftarrow} [\vec{M}]_{\mathcal{R}}, b^{*} \overset{\$}{\leftarrow} \mathcal{A}(\mathsf{BG}, \vec{M}, \vec{M}^{(b)}) : \\ b^{*} = b \end{matrix} \right] - \frac{1}{2} \leq \epsilon(\kappa)$$

Notions: Class Hiding

Definition 3 (Class Hiding): Let $\ell > 1$ and \mathbb{G}_i^* be a base group of a bilinear group. The message space $(\mathbb{G}_i^*)^\ell$ is *class-hiding* if for all PPT adversaries $\mathcal A$ there is a negligible function $\epsilon(\cdot)$ such that

$$\Pr\left[\begin{matrix} b \overset{\$}{\leftarrow} \{0,1\}, \mathsf{BG} \overset{\$}{\leftarrow} \mathsf{BGGen}_{\mathcal{R}}(1^{\kappa}), \vec{M} \overset{\$}{\leftarrow} (\mathbb{G}_{i}^{*})^{\ell}, \\ \vec{M}^{(0)} \overset{\$}{\leftarrow} (\mathbb{G}_{i}^{*})^{\ell}, \vec{M}^{(1)} \overset{\$}{\leftarrow} [\vec{M}]_{\mathcal{R}}, b^{*} \overset{\$}{\leftarrow} \mathcal{A}(\mathsf{BG}, \vec{M}, \vec{M}^{(b)}) : \\ b^{*} = b \end{matrix} \right] - \frac{1}{2} \leq \epsilon(\kappa)$$

Proposition 1: Let $\ell > 1$ and \mathbb{G} be a group of prime order p. Then $(\mathbb{G}^*)^\ell$ is a class- hiding message space if and only if the DDH assumption holds in \mathbb{G} .

Notions: Signature Adaptation

Definition 4 (Signature Adaptation): Let $\ell > 1$. An SPS-EQ scheme on $(\mathbb{G}_i^*)^{\ell}$ perfectly adapts signatures if for all tuples $(sk, pk, \vec{M}, \sigma, \mu)$ with:

- $VKey_{\mathcal{R}}(sk, pk) = 1$
- $\vec{M} \in (\mathbb{G}_1^*)^\ell$
- Verify_{\mathcal{R}} $(\vec{M}, \sigma, pk) = 1$
- $\mu \in \mathbb{Z}_p^*$

the distributions of $\mathsf{ChgRep}_{\mathcal{R}}(\vec{M}, \sigma, \mu, pk)$ and $\mathsf{Sign}_{\mathcal{R}}(\mu \cdot \vec{M}, sk)$ are identical.

Notions: Signature Adaptation under Malicious Keys

Definition 5 (Signature Adaptation under Malicious Keys): Let $\ell > 1$. An SPS-EQ scheme on $(\mathbb{G}_i^*)^\ell$ perfectly adapts signatures under malicious keys if for all tuples $(pk, \vec{M}, \sigma, \mu)$ with:

- $\vec{M} \in (\mathbb{G}_i^*)^\ell$
- Verify $_{\mathcal{R}}(\vec{M}, \sigma, pk) = 1$
- $\mu \in \mathbb{Z}_p^*$

we have the output $\mathsf{ChgRep}_{\mathcal{R}}(\vec{M}, \sigma, \mu, pk)$ is a uniformly random element in the space of signatures, conditioned on $\mathsf{Verify}_{\mathcal{R}}(\mu \cdot \vec{M}, \sigma, pk) = 1$.

SPS-EQ: Bilinear Group Generation

$\mathsf{BGGgen}_\mathcal{R}(1^\kappa)$:

• Outputs $\mathsf{BG} = (p, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, e, P, \hat{P})$

SPS-EQ: Bilinear Group Generation

$\mathsf{BGGgen}_\mathcal{R}(1^\kappa)$:

- Outputs BG = $(p, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, e, P, \hat{P})$
- $\mathbb{G}_1, \mathbb{G}_2$ are bilinear groups of prime order p with generator $P \in \mathbb{G}_1$, $\hat{P} \in \mathbb{G}_2$

SPS-EQ: Bilinear Group Generation

$\mathsf{BGGgen}_\mathcal{R}(1^\kappa)$:

- Outputs BG = $(p, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, e, P, \hat{P})$
- $\mathbb{G}_1, \mathbb{G}_2$ are bilinear groups of prime order p with generator $P \in \mathbb{G}_1$, $\hat{P} \in \mathbb{G}_2$
- ullet $e:\mathbb{G}_1 imes\mathbb{G}_2 o\mathbb{G}_{\mathcal{T}}$ is a Type-3 bilinear pairing

KeyGen(BG, 1^{ℓ}):

ullet Generate secret key $sk=(x_1,\ldots,x_\ell)\in (\mathbb{Z}_p^*)^\ell$

KeyGen(BG, 1^{ℓ}):

- ullet Generate secret key $sk = (x_1, \dots, x_\ell) \in (\mathbb{Z}_p^*)^\ell$
- Compute public key $pk = (X_1, \ldots, X_\ell) = (x_1 \hat{P}, \ldots, x_\ell \hat{P}) \in \mathbb{G}_2^\ell$

KeyGen(BG, 1^{ℓ}):

- Generate secret key $sk = (x_1, \dots, x_\ell) \in (\mathbb{Z}_p^*)^\ell$
- Compute public key $pk = (X_1, \ldots, X_\ell) = (x_1 \hat{P}, \ldots, x_\ell \hat{P}) \in \mathbb{G}_2^\ell$
- Return (sk, pk)

KeyGen(BG, 1^{ℓ}):

- Generate secret key $sk = (x_1, \dots, x_\ell) \in (\mathbb{Z}_p^*)^\ell$
- Compute public key $pk = (X_1, \ldots, X_\ell) = (x_1 \hat{P}, \ldots, x_\ell \hat{P}) \in \mathbb{G}_2^\ell$
- Return (sk, pk)

Intuition:

- (x_1, \ldots, x_ℓ) are the discrete logs of (X_1, \ldots, X_ℓ) with respect to \hat{P}
- ullet By DLOG assumption, it is infeasible to compute (x_1,\ldots,x_ℓ) from (X_1,\ldots,X_ℓ)
- Each X_i is a public commitment to the corresponding secret value x_i

Sign(\vec{M} , sk):

• Input: Message $\vec{M}=(M_1,\ldots,M_\ell)\in (\mathbb{G}_1^*)^\ell$ and secret key $sk=(x_1,\ldots,x_\ell)$

- Input: Message $\vec{M}=(M_1,\ldots,M_\ell)\in (\mathbb{G}_1^*)^\ell$ and secret key $sk=(x_1,\ldots,x_\ell)$
- Choose random $y \in \mathbb{Z}_p^*$

- Input: Message $\vec{M}=(M_1,\ldots,M_\ell)\in (\mathbb{G}_1^*)^\ell$ and secret key $sk=(x_1,\ldots,x_\ell)$
- Choose random $y \in \mathbb{Z}_p^*$
- Compute $Z = y \cdot \langle \vec{M}, \vec{x} \rangle$, where $\langle \vec{M}, \vec{x} \rangle = \sum_{i=1}^{\ell} x_i \cdot M_i$

- Input: Message $\vec{M}=(M_1,\ldots,M_\ell)\in (\mathbb{G}_1^*)^\ell$ and secret key $sk=(x_1,\ldots,x_\ell)$
- Choose random $y \in \mathbb{Z}_p^*$
- Compute $Z = y \cdot \langle \vec{M}, \vec{x} \rangle$, where $\langle \vec{M}, \vec{x} \rangle = \sum_{i=1}^{\ell} x_i \cdot M_i$
- Compute $Y = y^{-1} \cdot P$ and $\hat{Y} = y^{-1} \cdot \hat{P}$

- Input: Message $\vec{M}=(M_1,\ldots,M_\ell)\in(\mathbb{G}_1^*)^\ell$ and secret key $sk=(x_1,\ldots,x_\ell)$
- Choose random $y \in \mathbb{Z}_p^*$
- Compute $Z = y \cdot \langle \vec{M}, \vec{x} \rangle$, where $\langle \vec{M}, \vec{x} \rangle = \sum_{i=1}^{\ell} x_i \cdot M_i$
- Compute $Y = y^{-1} \cdot P$ and $\hat{Y} = y^{-1} \cdot \hat{P}$
- Return signature $\sigma = (Z, Y, \hat{Y})$

Sign(\vec{M} , sk):

- Input: Message $\vec{M}=(M_1,\ldots,M_\ell)\in (\mathbb{G}_1^*)^\ell$ and secret key $sk=(x_1,\ldots,x_\ell)$
- Choose random $y \in \mathbb{Z}_p^*$
- Compute $Z = y \cdot \langle \vec{M}, \vec{x} \rangle$, where $\langle \vec{M}, \vec{x} \rangle = \sum_{i=1}^{\ell} x_i \cdot M_i$
- Compute $Y = y^{-1} \cdot P$ and $\hat{Y} = y^{-1} \cdot \hat{P}$
- Return signature $\sigma = (Z, Y, \hat{Y})$

Intuition:

- The inner product $\langle \vec{M}, \vec{x} \rangle$ binds the message to the secret key
- Randomization factor y prevents signature forgery
- Z captures the inner product, while Y and \hat{Y} enable verification
- ullet When message is scaled by μ , the inner product scales linearly
- \bullet The structure ensures signatures can be transformed for equivalent messages

Verify(\vec{M} , σ , pk):

• Input: Message $\vec{M} = (M_1, \dots, M_\ell)$, signature $\sigma = (Z, Y, \hat{Y})$, public key $pk = (X_1, \dots, X_\ell)$

Verify(\vec{M} , σ , pk):

- Input: Message $\vec{M} = (M_1, \dots, M_\ell)$, signature $\sigma = (Z, Y, \hat{Y})$, public key $pk = (X_1, \dots, X_\ell)$
- If for some $i \in [I]$, $M_i \notin \mathbb{G}_1^*$, or $X_i \notin \mathbb{G}_2^*$, or $Z \notin \mathbb{G}_1$ or $Y \notin \mathbb{G}_1^*$, or $\hat{Y} \notin \mathbb{G}_2^*$, output 0 and halt

Verify(\vec{M} , σ , pk):

- Input: Message $\vec{M} = (M_1, \dots, M_\ell)$, signature $\sigma = (Z, Y, \hat{Y})$, public key $pk = (X_1, \dots, X_\ell)$
- If for some $i \in [I]$, $M_i \notin \mathbb{G}_1^*$, or $X_i \notin \mathbb{G}_2^*$, or $Z \notin \mathbb{G}_1$ or $Y \notin \mathbb{G}_1^*$, or $\hat{Y} \notin \mathbb{G}_2^*$, output 0 and halt
- Check 1: $\prod_{i=1}^{\ell} e(M_i, X_i) = e(Z, \hat{Y})$

Verify(\vec{M} , σ , pk):

- Input: Message $\vec{M} = (M_1, \dots, M_\ell)$, signature $\sigma = (Z, Y, \hat{Y})$, public key $pk = (X_1, \dots, X_\ell)$
- If for some $i \in [I]$, $M_i \notin \mathbb{G}_1^*$, or $X_i \notin \mathbb{G}_2^*$, or $Z \notin \mathbb{G}_1$ or $Y \notin \mathbb{G}_1^*$, or $\hat{Y} \notin \mathbb{G}_2^*$, output 0 and halt
- Check 1: $\prod_{i=1}^{\ell} e(M_i, X_i) = e(Z, \hat{Y})$
- Check 2: $e(Y, \hat{P}) = e(P, \hat{Y})$

Verify(\vec{M} , σ , pk):

- Input: Message $\vec{M} = (M_1, \dots, M_\ell)$, signature $\sigma = (Z, Y, \hat{Y})$, public key $pk = (X_1, \dots, X_\ell)$
- If for some $i \in [\mbox{$/$}]$, $M_i \notin \mathbb{G}_1^*$, or $X_i \notin \mathbb{G}_2^*$, or $Z \notin \mathbb{G}_1$ or $Y \notin \mathbb{G}_1^*$, or $\hat{Y} \notin \mathbb{G}_2^*$, output 0 and halt
- Check 1: $\prod_{i=1}^{\ell} e(M_i, X_i) = e(Z, \hat{Y})$
- Check 2: $e(Y, \hat{P}) = e(P, \hat{Y})$
- Return 1 if both checks pass, 0 otherwise

Intuition:

- ullet Check 1 verifies that Z correctly encodes the message-secret key relationship
- The left side $\prod_{i=1}^{\ell} e(M_i, X_i) = \prod_{i=1}^{\ell} e(M_i, x_i \hat{P}) = e(\sum x_i M_i, \hat{P}) = e(\langle \vec{M}, \vec{x} \rangle, \hat{P})$
- The right side $e(Z, \hat{Y}) = e(y \cdot \langle \vec{M}, \vec{x} \rangle, y^{-1} \hat{P}) = e(\langle \vec{M}, \vec{x} \rangle, \hat{P})$
- Check 2 confirms Y and \hat{Y} are properly formed with the same y value

ChgRep(\vec{M} , σ , μ , pk):

• Input: Representative \vec{M} of equivalence class $[\vec{M}]_{\mathcal{R}}$, signature $\sigma = (Z, Y, \hat{Y})$, scalar $\mu \in \mathbb{Z}_p^*$, public key pk

ChgRep(\vec{M} , σ , μ , pk):

- Input: Representative \vec{M} of equivalence class $[\vec{M}]_{\mathcal{R}}$, signature $\sigma = (Z, Y, \hat{Y})$, scalar $\mu \in \mathbb{Z}_p^*$, public key pk
- Return \perp if $Verify(\vec{M}, \sigma, pk) = 0$

ChgRep(\vec{M} , σ , μ , pk):

- Input: Representative \vec{M} of equivalence class $[\vec{M}]_{\mathcal{R}}$, signature $\sigma = (Z, Y, \hat{Y})$, scalar $\mu \in \mathbb{Z}_p^*$, public key pk
- Return \perp if $Verify(\vec{M}, \sigma, pk) = 0$
- $\bullet \ \mathsf{Sample} \ \psi \xleftarrow{\$} \mathbb{Z}_p^*$

ChgRep(\vec{M} , σ , μ , pk):

- Input: Representative \vec{M} of equivalence class $[\vec{M}]_{\mathcal{R}}$, signature $\sigma = (Z, Y, \hat{Y})$, scalar $\mu \in \mathbb{Z}_p^*$, public key pk
- Return \perp if $Verify(\vec{M}, \sigma, pk) = 0$
- Sample $\psi \stackrel{\$}{\leftarrow} \mathbb{Z}_p^*$
- Return new signature $\sigma' = (\psi \cdot \mu \cdot Z, \psi^{-1} \cdot Y, \psi^{-1} \cdot \hat{Y})$. This is a valid signature on $\mu \cdot \vec{M}$

ChgRep(\vec{M} , σ , μ , pk):

- Input: Representative \vec{M} of equivalence class $[\vec{M}]_{\mathcal{R}}$, signature $\sigma = (Z, Y, \hat{Y})$, scalar $\mu \in \mathbb{Z}_p^*$, public key pk
- Return \perp if $Verify(\vec{M}, \sigma, pk) = 0$
- $\bullet \ \mathsf{Sample} \ \psi \xleftarrow{\$} \mathbb{Z}_p^*$
- Return new signature $\sigma' = (\psi \cdot \mu \cdot Z, \psi^{-1} \cdot Y, \psi^{-1} \cdot \hat{Y})$. This is a valid signature on $\mu \cdot \vec{M}$

Intuition:

- When we scale \vec{M} by μ , the inner product $\langle \mu \cdot \vec{M}, \vec{x} \rangle = \mu \cdot \langle \vec{M}, \vec{x} \rangle$ also scales by μ
- ullet For a valid signature on $\mu\cdot ec{M}$, we need to adjust Z proportionally by μ
- \bullet The random ψ provides re-randomization, making the new signature indistinguishable from a fresh one
- ullet Y and \hat{Y} are adjusted by ψ^{-1} to maintain the verification equation consistency

SPS-EQ: Key Validation

VKey(sk, pk):

• Input: Secret key $sk=(x_1,\ldots,x_\ell)\in(\mathbb{Z}_p^*)^\ell$, public key $pk=(X_1,\ldots,X_\ell)\in\mathbb{G}_2^\ell$

SPS-EQ: Key Validation

VKey(sk, pk):

- Input: Secret key $sk=(x_1,\ldots,x_\ell)\in(\mathbb{Z}_p^*)^\ell$, public key $pk=(X_1,\ldots,X_\ell)\in\mathbb{G}_2^\ell$
- Output 1 if for all $i \in [1,\ell]$, $x_i \in \mathbb{Z}_p^*$ and $X_i \in \mathbb{G}_2^*$ and $X_i = x_i \hat{P}$

SPS-EQ: Key Validation

VKey(sk, pk):

- Input: Secret key $sk = (x_1, \dots, x_\ell) \in (\mathbb{Z}_p^*)^\ell$, public key $pk = (X_1, \dots, X_\ell) \in \mathbb{G}_2^\ell$
- Output 1 if for all $i \in [1,\ell]$, $x_i \in \mathbb{Z}_p^*$ and $X_i \in \mathbb{G}_2^*$ and $X_i = x_i \hat{P}$
- Output 0 otherwise

• **Theorem 1**: The SPS-EQ scheme is correct (satisfies Definition 1)

- **Theorem 1**: The SPS-EQ scheme is correct (satisfies Definition 1)
- **Theorem 2**: This construction is EUF-CMA (Definition 2) secure in the Generic Group Model for Type-3 pairings

21 / 29

- **Theorem 1**: The SPS-EQ scheme is correct (satisfies Definition 1)
- **Theorem 2**: This construction is EUF-CMA (Definition 2) secure in the Generic Group Model for Type-3 pairings
 - In ASIACRYPT 2024, Bauer, Fuchsbauer, and Regen proved that the SPS-EQ scheme is EUF-CMA secure in the Algebraic Group Model for Type-3 pairings [BFR'24].

21 / 29

- **Theorem 1**: The SPS-EQ scheme is correct (satisfies Definition 1)
- **Theorem 2**: This construction is EUF-CMA (Definition 2) secure in the Generic Group Model for Type-3 pairings
 - In ASIACRYPT 2024, Bauer, Fuchsbauer, and Regen proved that the SPS-EQ scheme is EUF-CMA secure in the Algebraic Group Model for Type-3 pairings [BFR'24].
- Lemma 1: This construction has perfect adaptation of signatures and perfect adaptation of signatures under malicious keys (Definition 5).

Incorporating SPS-EQ in our scheme

- Each user requires a unique equivalence class for signature transformation
- ullet World population: pprox 8 billion equivalence classes needed

Counting equivalence classes:

Incorporating SPS-EQ in our scheme

- Each user requires a unique equivalence class for signature transformation
- ullet World population: pprox 8 billion equivalence classes needed

Counting equivalence classes:

• $\vec{M} = (M_1, \dots, M_\ell) \sim_{\mathcal{R}} (P, M_2/x_1, \dots, M_\ell/x_1)$ where x_1 satisfies $M_1 = x_1 \cdot P$

Incorporating SPS-EQ in our scheme

- Each user requires a unique equivalence class for signature transformation
- ullet World population: pprox 8 billion equivalence classes needed

Counting equivalence classes:

- $\vec{M} = (M_1, \dots, M_\ell) \sim_{\mathcal{R}} (P, M_2/x_1, \dots, M_\ell/x_1)$ where x_1 satisfies $M_1 = x_1 \cdot P$
- Each M_i can have p-1 possible values

- Each user requires a unique equivalence class for signature transformation
- World population: \approx 8 billion equivalence classes needed

- $\vec{M} = (M_1, \dots, M_\ell) \sim_{\mathcal{R}} (P, M_2/x_1, \dots, M_\ell/x_1)$ where x_1 satisfies $M_1 = x_1 \cdot P$
- Each M_i can have p-1 possible values
- Number of equivalence classes: $(p-1)^{\ell-1}$

- Each user requires a unique equivalence class for signature transformation
- ullet World population: pprox 8 billion equivalence classes needed

- $\vec{M} = (M_1, \dots, M_\ell) \sim_{\mathcal{R}} (P, M_2/x_1, \dots, M_\ell/x_1)$ where x_1 satisfies $M_1 = x_1 \cdot P$
- Each M_i can have p-1 possible values
- Number of equivalence classes: $(p-1)^{\ell-1}$
- For security parameter $\kappa=128,\ p\geq 2^{\kappa}$

- Each user requires a unique equivalence class for signature transformation
- ullet World population: pprox 8 billion equivalence classes needed

- $\vec{M} = (M_1, \dots, M_\ell) \sim_{\mathcal{R}} (P, M_2/x_1, \dots, M_\ell/x_1)$ where x_1 satisfies $M_1 = x_1 \cdot P$
- Each M_i can have p-1 possible values
- Number of equivalence classes: $(p-1)^{\ell-1}$
- For security parameter $\kappa=128,\ p\geq 2^{\kappa}$
- With $\ell=2$, we have 2^{128} equivalence classes

- Each user requires a unique equivalence class for signature transformation
- ullet World population: pprox 8 billion equivalence classes needed

- $\vec{M} = (M_1, \dots, M_\ell) \sim_{\mathcal{R}} (P, M_2/x_1, \dots, M_\ell/x_1)$ where x_1 satisfies $M_1 = x_1 \cdot P$
- Each M_i can have p-1 possible values
- Number of equivalence classes: $(p-1)^{\ell-1}$
- For security parameter $\kappa=128,\ p\geq 2^{\kappa}$
- With $\ell=2$, we have 2^{128} equivalence classes
- Scheme dictates $\ell > 1$

- Each user requires a unique equivalence class for signature transformation
- ullet World population: pprox 8 billion equivalence classes needed

- $\vec{M} = (M_1, \dots, M_\ell) \sim_{\mathcal{R}} (P, M_2/x_1, \dots, M_\ell/x_1)$ where x_1 satisfies $M_1 = x_1 \cdot P$
- Each M_i can have p-1 possible values
- Number of equivalence classes: $(p-1)^{\ell-1}$
- For security parameter $\kappa=128,\ p\geq 2^{\kappa}$
- With $\ell=2$, we have 2^{128} equivalence classes
- Scheme dictates $\ell > 1$
- ⇒ Vector length is minimum for our application

Method 1: Without using user's public key. Server has (sk_{SP}, pk_{SP}) .

 Service provider maintains a mapping of users to their equivalence classes

- Service provider maintains a mapping of users to their equivalence classes
- Generates $\vec{M} = [P, aP] \in (\mathbb{G}_1^*)^2$ such that no existing user is mapped to aP

- Service provider maintains a mapping of users to their equivalence classes
- Generates $\vec{M} = [P, aP] \in (\mathbb{G}_1^*)^2$ such that no existing user is mapped to aP
- It signs \vec{M} with $sk_{\rm SP}$ and sends (σ, \vec{M}) to the user

- Service provider maintains a mapping of users to their equivalence classes
- Generates $\vec{M} = [P, aP] \in (\mathbb{G}_1^*)^2$ such that no existing user is mapped to aP
- It signs \vec{M} with $sk_{\rm SP}$ and sends (σ, \vec{M}) to the user
- ullet When user i wants to sign message \emph{m} , it generates a random $\mu \overset{\$}{\leftarrow} \mathbb{Z}_p^*$

- Service provider maintains a mapping of users to their equivalence classes
- Generates $\vec{M} = [P, aP] \in (\mathbb{G}_1^*)^2$ such that no existing user is mapped to aP
- It signs \vec{M} with $sk_{\rm SP}$ and sends (σ, \vec{M}) to the user
- ullet When user i wants to sign message m, it generates a random $\mu \stackrel{\$}{\leftarrow} \mathbb{Z}_p^*$
- It computes $\sigma' = \mathsf{ChgRep}_{\mathcal{R}}(\vec{M}, \sigma, \mu, \mathit{pk}_{\mathsf{SP}})$ and $M' = \mu \cdot \vec{M}$ and sends (σ', M') to another user.

- Service provider maintains a mapping of users to their equivalence classes
- Generates $\vec{M} = [P, aP] \in (\mathbb{G}_1^*)^2$ such that no existing user is mapped to aP
- It signs \vec{M} with $sk_{\rm SP}$ and sends (σ, \vec{M}) to the user
- ullet When user i wants to sign message \emph{m} , it generates a random $\mu \overset{\$}{\leftarrow} \mathbb{Z}_p^*$
- It computes $\sigma' = \mathsf{ChgRep}_{\mathcal{R}}(\vec{M}, \sigma, \mu, \mathit{pk}_{\mathsf{SP}})$ and $M' = \mu \cdot \vec{M}$ and sends (σ', M') to another user.
- User verifies (σ', M') with pk_{SP} .

- Service provider maintains a mapping of users to their equivalence classes
- Generates $\vec{M} = [P, aP] \in (\mathbb{G}_1^*)^2$ such that no existing user is mapped to aP
- It signs \vec{M} with $sk_{\rm SP}$ and sends (σ, \vec{M}) to the user
- ullet When user i wants to sign message m, it generates a random $\mu \overset{\$}{\leftarrow} \mathbb{Z}_p^*$
- It computes $\sigma' = \mathsf{ChgRep}_{\mathcal{R}}(\vec{M}, \sigma, \mu, pk_{\mathsf{SP}})$ and $M' = \mu \cdot \vec{M}$ and sends (σ', M') to another user.
- User verifies (σ', M') with pk_{SP} .
- SP to revoke user i publishes $(\vec{x'}, r_{M'})$ of M' (Definition 0.1) where \vec{x} are discrete logs of \vec{M} . To check if a user is banned, another user simply checks if there exists a set of published $(\vec{x'}, r_{M'})$ such that for their received M, $\exists \lambda \in \mathbb{Z}_p^*$ s.t. $r_{M'} = \lambda \cdot r_{(M,M')}$.

Method 1: Without using user's public key. Server has (sk_{SP}, pk_{SP}) .

- Service provider maintains a mapping of users to their equivalence classes
- Generates $\vec{M} = [P, aP] \in (\mathbb{G}_1^*)^2$ such that no existing user is mapped to aP
- It signs \vec{M} with sk_{SP} and sends (σ, \vec{M}) to the user
- ullet When user i wants to sign message m, it generates a random $\mu \stackrel{\$}{\leftarrow} \mathbb{Z}_p^*$
- It computes $\sigma' = \mathsf{ChgRep}_{\mathcal{R}}(\vec{M}, \sigma, \mu, \mathit{pk}_{\mathsf{SP}})$ and $M' = \mu \cdot \vec{M}$ and sends (σ', M') to another user.
- User verifies (σ', M') with pk_{SP} .
- SP to revoke user i publishes $(\vec{x}, r_{M'})$ of M' (Definition 0.1) where \vec{x} are discrete logs of \vec{M} . To check if a user is banned, another user simply checks if there exists a set of published $(\vec{x'}, r_{M'})$ such that for their received M, $\exists \lambda \in \mathbb{Z}_p^*$ s.t. $r_{M'} = \lambda \cdot r_{(M,M')}$.

Problem: Signature is not linked to public key

Method 2: Using user U's public key. Server has (sk_{SP}, pk_{SP}) .

• Let g_{pk_U} represent the mapping of U's public key pk_U to \mathbb{G}_1^* . User sends (pk_U, g_{pk_U}) to SP

- Let g_{pk_U} represent the mapping of U's public key pk_U to \mathbb{G}_1^* . User sends (pk_U, g_{pk_U}) to SP
- SP generates $\vec{M} = [aP, g_{pk_U}]$ where a is chosen appropriately in \mathbb{Z}_p^* to get an unused equivalence class $[aP, g_{pk_U}] \in (\mathbb{G}_1^*)^2$. SP signs \vec{M} with sk_{SP} and sends (σ, \vec{M}) to the user

- Let g_{pk_U} represent the mapping of U's public key pk_U to \mathbb{G}_1^* . User sends (pk_U, g_{pk_U}) to SP
- SP generates $\vec{M} = [aP, g_{pk_U}]$ where a is chosen appropriately in \mathbb{Z}_p^* to get an unused equivalence class $[aP, g_{pk_U}] \in (\mathbb{G}_1^*)^2$. SP signs \vec{M} with sk_{SP} and sends (σ, \vec{M}) to the user
- User (U) generates new public key pk' and $g_{pk'}$. It sets $\mu=x_{pk'}/x_{pk}$ where $x_{pk},x_{pk'}$ are the discrete logs of $g_{pk},g_{pk'}$ in \mathbb{G}_1^*

- Let g_{pk_U} represent the mapping of U's public key pk_U to \mathbb{G}_1^* . User sends (pk_U, g_{pk_U}) to SP
- SP generates $\vec{M} = [aP, g_{pk_U}]$ where a is chosen appropriately in \mathbb{Z}_p^* to get an unused equivalence class $[aP, g_{pk_U}] \in (\mathbb{G}_1^*)^2$. SP signs \vec{M} with sk_{SP} and sends (σ, \vec{M}) to the user
- User (U) generates new public key pk' and $g_{pk'}$. It sets $\mu = x_{pk'}/x_{pk}$ where $x_{pk}, x_{pk'}$ are the discrete logs of $g_{pk}, g_{pk'}$ in \mathbb{G}_1^*
- User computes $\sigma' = \operatorname{ChgRep}_{\mathcal{R}}(\vec{M}, \sigma, \mu, pk_{\mathsf{U}})$ which is a signature on $M' = \mu \cdot \vec{M} = [(\mu a)P, \mu \cdot g_{\mathsf{pk}}]$ $= [(\mu a)P, (x_{\mathsf{pk'}}/x_{\mathsf{pk}}) \cdot x_{\mathsf{pk}} \cdot P] = [(\mu a)P, x_{\mathsf{pk'}} \cdot P] = [(\mu a)P, g_{\mathsf{pk'}}]$ and sends (σ', M') to another user.

- Let g_{pk_U} represent the mapping of U's public key pk_U to \mathbb{G}_1^* . User sends (pk_U, g_{pk_U}) to SP
- SP generates $\vec{M} = [aP, g_{pk_U}]$ where a is chosen appropriately in \mathbb{Z}_p^* to get an unused equivalence class $[aP, g_{pk_U}] \in (\mathbb{G}_1^*)^2$. SP signs \vec{M} with sk_{SP} and sends (σ, \vec{M}) to the user
- User (U) generates new public key pk' and $g_{pk'}$. It sets $\mu = x_{pk'}/x_{pk}$ where $x_{pk}, x_{pk'}$ are the discrete logs of $g_{pk}, g_{pk'}$ in \mathbb{G}_1^*
- User computes $\sigma' = \operatorname{ChgRep}_{\mathcal{R}}(\vec{M}, \sigma, \mu, pk_{\mathsf{U}})$ which is a signature on $M' = \mu \cdot \vec{M} = [(\mu a)P, \mu \cdot g_{\mathsf{pk}}]$ $= [(\mu a)P, (x_{\mathsf{pk'}}/x_{\mathsf{pk}}) \cdot x_{\mathsf{pk}} \cdot P] = [(\mu a)P, x_{\mathsf{pk'}} \cdot P] = [(\mu a)P, g_{\mathsf{pk'}}]$ and sends (σ', M') to another user.
- User verifies (σ', M') with pk_{SP} and can further check if $g_{pk'}$ is a valid mapping of pk' to \mathbb{G}_1^*

- Let g_{pk_U} represent the mapping of U's public key pk_U to \mathbb{G}_1^* . User sends (pk_U, g_{pk_U}) to SP
- SP generates $\vec{M} = [aP, g_{pk_U}]$ where a is chosen appropriately in \mathbb{Z}_p^* to get an unused equivalence class $[aP, g_{pk_U}] \in (\mathbb{G}_1^*)^2$. SP signs \vec{M} with sk_{SP} and sends (σ, \vec{M}) to the user
- User (U) generates new public key pk' and $g_{pk'}$. It sets $\mu = x_{pk'}/x_{pk}$ where $x_{pk}, x_{pk'}$ are the discrete logs of $g_{pk}, g_{pk'}$ in \mathbb{G}_1^*
- User computes $\sigma' = \mathsf{ChgRep}_{\mathcal{R}}(\vec{M}, \sigma, \mu, pk_{\mathsf{U}})$ which is a signature on $M' = \mu \cdot \vec{M} = [(\mu \mathsf{a})P, \mu \cdot g_{\mathsf{pk}}]$ $= [(\mu \mathsf{a})P, (x_{\mathsf{pk'}}/x_{\mathsf{pk}}) \cdot x_{\mathsf{pk}} \cdot P] = [(\mu \mathsf{a})P, x_{\mathsf{pk'}} \cdot P] = [(\mu \mathsf{a})P, g_{\mathsf{pk'}}]$ and sends (σ', M') to another user.
- User verifies (σ', M') with pk_{SP} and can further check if $g_{\text{pk}'}$ is a valid mapping of pk' to \mathbb{G}_1^*
- SP can revoke user *i* same as before.

Problems and Challenges:

- ullet User needs knowledge of discrete logarithm of g_{pk_1} in \mathbb{G}_1
- Requires a secure mapping function from public keys to group elements
- Revocation checking requires server to have discrete logs of banned users
- Revocation checking requires comparing against all banned mutual ratios
- Another user can transform receive (M, σ) to another (M', σ') in the same equivalence class

Implementation in Python

- Implemented the SPS-EQ scheme using py_ecc library for elliptic curve operations
- Use the bn128 ($y^2 = x^3 + 3$) elliptic curve for the scheme where \mathbb{G}_1 and \mathbb{G}_2 are of prime order p
- \mathbb{G}_1 is over base field \mathbb{F}_p and \mathbb{G}_2 is over extension field \mathbb{F}_{p^2} . \mathbb{G}_T is a subgroup of $\mathbb{F}_{p^{12}}$
- ullet Operations in \mathbb{G}_1 are faster, hence why messages are in \mathbb{G}_1
- Implementation below is a watered down version for presentation's sake.

Key Functions in Python (1/2)

```
# multiply, add are elliptic curve operations
# curve order is the order of the elliptic curve. For bn128, its prime and same for G1, G2.
# pairing is the elliptic curve pairing, e(., .).
# For some reason, p_{Q} ecc defines pairings as e(Q,P) where Q is in G2 and P is in G1.
from py ecc.bn128 import G1 as P, G2 as P hat, multiply, add, curve order as p, pairing as e
import random
def inner_product(vec_a, vec_b):
   zero = P.zero()
   for i in range(len(vec a)):
        zero = add(zero, multiply(vec a[i], vec b[i]))
    return zero
def kevgen(1):
    sk = [random.randint(1, p - 1) for _ in range(1)]
    pk = [multiply(P_hat, sk[i]) for i in range(1)]
   return sk. pk
def sign(M, sk):
   v = random.randint(1, p - 1) # Random element in Z p*
   Z = multiply(inner product(M, sk), v)
   Y = multiplv(P, pow(v, -1, p))
   Y hat = multiply(P hat, pow(v, -1, p))
   return (Z, Y, Y hat)
```

Key Functions in Python (2/2)

```
# FQ12 is the target group G_T for bn128
from py_ecc.bn128 import FQ12
def verify(M, sig, pk):
   Z, Y, Y_hat = sig
    # Check 1
   e_1 = FQ12.one()
   for i in range(len(M)):
       e_1 = e_1 * pairing(M[i], pk[i])
   e_2 = pairing(Z, Y_hat)
   if e 1 != e 2:
       return ()
    # Check 2
   e_3 = pairing(Y, P_hat)
   e 4 = pairing(P, Y hat)
   return 1 if e 3 == e 4 else 0
def chgRep(M, sigma, mu, pk):
   Z, Y, Y hat = sigma
   psi = random.randint(1, curve_order - 1) # Randomization factor
   scalar = (psi * mu) % curve order
    return (
       multiply(Z, scalar),
       multiply(Y, pow(psi, -1, curve_order)),
       multiply(Y_hat, pow(psi, -1, curve_order))
```

References

py_ecc: Elliptic curve crypto in Python
https://github.com/ethereum/py_ecc