

Université Sultan Moulay Slimane Ecole National des Sciences Appliquées Khouribga

Réalisé par :

• HABIBI MOHAMED

2021/2022

DM en étoile et flocon de neige.

Nous avons travaillé sur le schéma suivant : Purchasing

Pour réaliser le Data Mart approprié nous allons procéder suivant les questions suivantes :

Identification le principal événement d'affaires. Identification de la table de fait et les attributs associés aux faits.

Identification des dimensions et de leurs attributs. Réalisation du schéma en étoile finale.

Identification du principal événement d'affaires

Achat d'un **produit** x1 dont le statut de la commande qui est effectuée dans la date(**OrderDate**) x2 et x3 vendu par un **vendeur** x4 selon une **méthode de shipping** x5 effectué par un **employé** x6 dans une date(**Ship Date**) donnée x7.

Identification de la table de fait et les attributs associés aux faits

Table de fait: PurchasingProducts

Attributs:

Foreign Keys:

ProductID

VendorID

ShipDateID

DueDateID

OrderDateID

EmployeeID

ShipMethodID

StatutID

Mesures:

Freight as [ship Rate]*[weight]

LineTotal as [OrderQty]*[Unit Price]

SubTotal as SUM(PurchaseOrderDetail.LineTotal)

TotalDue as [SubTotal]+[TaxAmt])+[Freight]

Identification des dimensions et de leurs attributs

Table: dimProduct

Attributs:

ProductID

Name

Color

Price

Size

Weight

DaysToManufacture

Class

Style

SellStartDate

SellEndDate

Table: dimVendor

Attributs:

VendorID

AccountNumber

Name

CreditRating

Contact

Adresse

Table: dimDate

Attributs:

DateID

OrderDate

ShipDate

DueDate (Date the product is expected to be received)

Table: dimEmployee

Attributs: EmployeeID

NationalIDNumber

LoginID

JobTitle

BirthDate

MaritalStatus

Gender

HireDate

VacationHours

SalariedFlag

CurrentFlag

Table: dimShip Method

Attributs:

ShipMethodID

Name

ShipBase

Table: dimStatus

Attributs:

StatutID

TypeStatus (1 = Pending; 2 = Approved; 3 = Rejected; 4 = Complete)

Notre DataMart sera comme suite :

Création du datamart dans sql server :

Création du schéma en flocon :

Alimentation du DataMart via ETL

Pour la dimension ShipMethode:

On a rempli notre table dimension DimShipMethod avec la requête suivante :

select ShipMethodID,Name,ShipBase,ShipRate from Purchasing.ShipMethod;

Pour la dimension Product :

On a rempli notre table dimension DimProduct Après le Remplissage des champs

Color: random color Class: Indefinite Style: Universal Size: Standard

Weight: moy 74.069219 SellEndDate: En cours

avec la requête suivante :

select

ProductID,Name,Color,ListPrice,Size,Weight,DaysToManufactue,Class, Style,SellStartDate,SellEndDate from Production.Product

Pour la dimension Vendor:

On a rempli notre table dimension DimVendor avec la requête suivante :

select

BusinessEntityID,AccountNumber,CreditRating,Name,ActiveFlag from Purchasing.Vendor order by BusinessEntityID asc

Pour la dimension Status :

On a rempli directement dans notre table DimStatus dans notre datamart :

	StatusID	TypeStatus
1	1	Pending
2	2	Approved
3	3	Rejected
4	4	Complete

Pour la dimension Employee:

On a rempli notre table dimension DimEmployée avec la requête suivante :

select

he.BusinessEntityID,NationalIDNumber,LoginID, pp.FirstName, pp.LastName, JobTitle,BirthDate,MaritalStatus,Gender,HireDate from HumanResources.Employee he, Person.Person pp where he.BusinessEntityID=pp.BusinessEntityID order by he.BusinessEntityID asc

Pour la dimension Date :

On a remplir notre table dimension Date avec les trois requêtes suivantes :

Pour La date orderdate :

select poh.orderdate as DateID, DATEPART(MM, poh.orderdate) as Month, DATEPART(QQ, poh.orderdate) as Quarter, DATEPART(YY,

poh.orderdate) as Year from Purchasing.PurchaseOrderDetail pod, Purchasing.PurchaseOrderHeader poh where poh.PurchaseOrderID = pod.PurchaseOrderID order by pod.duedate

Pour La date Shipdate :

select poh.shipdate as DateID,DATEPART(MM, poh.shipdate) as Month,DATEPART(QQ, poh.shipdate) as Quarter, DATEPART(YY, poh.shipdate) as Year from Purchasing.PurchaseOrderDetail pod, Purchasing.PurchaseOrderHeader poh where poh.PurchaseOrderID = pod.PurchaseOrderID order by pod.duedate

Pour La date Duedate :

select pod.dueDate as DateID,DATEPART(MM, pod.DueDate) as Month,DATEPART(QQ, pod.DueDate) as Quarter, DATEPART(YY, pod.DueDate) as Year from Purchasing.PurchaseOrderDetail pod, Purchasing.PurchaseOrderHeader poh where poh.PurchaseOrderID = pod.PurchaseOrderID order by pod.duedate

Pour La date Qui rassemble Toutes les Dates :

select distinct DateID, Year, Month, Quarter from dbo.dimDate_init order by DateID asc

Pour la table de Fait :

Finalement on a rempli notre table de fait FactPurchasingOrders avec la requête suivante :

select

distinct pod.PurchaseOrderDetailID as DateID, pod.PurchaseOrderDetailID as StatusID, pod.ProductID, pv.BusinessEntityID as VendorID, he.BusinessEntityID as EmployeeID, ps.ShipMethodID, pod.Order Qty, pod.Unit Price, poh.TaxAmt from Purchasing.PurchaseOrderHeader poh, Purchasing.PurchaseOrderDetail pod, Purchasing.Vendor pv, HumanResources.Employee he, Purchasing.ShipMethod ps, Production.Product pp where pod.PurchaseOrderID=poh.PurchaseOrderID and pod.ProductID=pp.ProductID and poh.EmployeeID=he.BusinessEntityID and ps.ShipMethodID = poh.ShipMethodID and poh.VendorID=pv.BusinessEntityID.

Création des tâches

1. Job_CheckingConnections

Cette tâche nous permet de vérifier les connections (on a choisit 3 connections) l'une correspond A la connection de notre datawarehouse , la deuxième pour la datamart et la dernière pour les tableaux intermédiaires .

2. Job_CheckingTables

Cette tâche nous permet de vérifier les Tableaux sélectionnés s'il existe ou non dans notre data mart .

3. Job_CheckingIntermediateTables

Cette tâche nous permet de vérifier l'existence des Tables intermédiaires sélectionnées s'il existe ou non dans notre base de données.

4. Job_CheckingTablesColumns

Cette tâche nous permet de vérifier l'existence des champs dans chaque table de notre data mart.

Visualisation selon Les tableaux de bord / Rapports (Power BI).

La première interface concerne la visualisation des mesures selon la dimension de l'employé, le graphe m barres groupées montre le nombre de chaque employé dans la table de fait avec par son JobTitle deuxième graphe donne le pourcentage des employées qui ont un jobTitle = {Buyer, Purchasing Assistant, Purchasing Manager}

Nos mesures qui sont de type Money se changent selon les filtres year, status, month et gender.

le chiffre d'affaire qui se compose de SubTotal et TotalDue et TaxAmt et LineTotal se change des options choisis = {year, status, month, gender}

La deuxième interface présente la visualisation des mesures selon la dimension du vendeur.

le premier graphe représente le nombre des vendeurs dans la table de fait selon VendorID

le deuxième graphe est un histogramme qui montre le nombre de chaque vendor qui existe dans la table de fait selon CreditRating $= \{5, 4, 3, 2, 1\}$

3eme graphe montre le pourcentage des vendeurs qui ne sont plus actifs et et les vendors sont actifs.

avec chiffre d'affaire qui se change selon les options choisis = {year, quarter, month}

Le premier graphe représente TotalDue pour chaque produit selon l'année choisis .

Et pour le deuxième graphe représente LineTotal pour chaque vendeur selon l'année choisie.

Cette interface présente la visualisation des mesures selon ShipMethod Le premier graphe donne le pourcentage de chaque shipmethod = {cargo transport 5, overnight j-fast, ZY - express, XRQ - truck ground, overseas -deluxe} Le deuxième graphe est un histogramme donnant le nombre des ship Méthodes qui sont effectuées selon les mois de l'année avec chiffre d'affaires qui sera personnalisé selon les paramètres choisis = {year, quarter, month}

Cette interface montre la comparaison entre les années 2013 et 2014 selon les mesures LineTotal = OrderQty * UnitPrice et TotalDue = SubTotal + TaxAmt + Freight

Génération des vues métier Avec saiku.

Nous avons choisi comme analyse dans saiku les opérations OLAP suivantes :

		Appro	oved	Com	plete	Pen	ding	Reje	ected
Year	SellEndDate	LineTotal	TotalDue	LineTotal	TotalDue	LineTotal	TotalDue	LineTotal	TotalDue
2011	CurrentSales			398,330.59	1,235,994.11	272.101	601.344	4,533.113	9,667.493
2012	CurrentSales		1.0	3,547,702.179	9,284,247.339			379,190.868	790,613,738
2013	CurrentSales	122,152	331,960.86	17,492,338.516	48,830,587.573	-	¥	444,543.257	883,682.287
2014	2012-05-29 00:00:00.0000000	1,020	2,244	+	-	-		-	-
	2013-05-29 00:00:00.0000000	625,636.5	6,970,666.45	2	- 8	- 2	- 4		-
	CurrentSales	1,415,530,415	9,971,630.95	35,381,687.25	94,169,253,478	3,505,501.367	9,274,512.901	473,558.683	985,441.967

nest(Year, SellEndDate) - Year_SellEndDate_Status

		Chicago City Saddles		
Year	Name	LineTotal	TotalDue	
2011	ZY - EXPRESS	79,204.125	437,602.791	
2012	OVERNIGHT J-FAST	73,377.15	324,327.003	
	ZY - EXPRESS	152,581.275	843,011.545	
2013	CARGO TRANSPORT 5	168,635.775	428,885.833	
	OVERNIGHT J-FAST	192,474.975	643,733.966	
	ZY - EXPRESS	401,795.625	2,318,627.937	
2014	CARGO TRANSPORT 5	117,775.35	260,283.524	
	OVERNIGHT J-FAST	322,487.55	806,656.851	
	ZY - EXPRESS	1,520,776.95	9,694,036.102	

split1(nameVendor) - Year_NameShipMethod_NameVendor

		Norstan Bike Hut		
Year	Name	LineTotal	TotalDue	
2012	CARGO TRANSPORT 5	544.73	2,407.704	
	OVERNIGHT J-FAST	1,352.831	8,272.699	
2013	OVERNIGHT J-FAST	7,255.647	42,175.239	
2014	CARGO TRANSPORT 5	1,244.754	4,126.36	
	OVERNIGHT J-FAST	18,402.174	157,013.016	

split2(nameVendor) - Year_NameShipMethod_NameVendor

		Wood Fitness		
Year	Name	LineTotal	TotalDue	
2012	OVERNIGHT J-FAST	377.244	416.854	
2013	OVERNIGHT J-FAST	1,886.22	2,084.273	
2014	OVERNIGHT J-FAST	4,023.936	4,446.448	

split3(nameVendor) - Year_NameShipMethod_NameVendor

		CARGO TRANSPORT 5	OVERSEAS - DELUXE
TypeStatus	Year	TotalDue	TotalDue
Approved	2013	-	331,960.86
	2014	-	16,944,541.4
Complete	2011	269,935.26	210,928.771
	2012	4,278,814.368	631,487.644
	2013	19,660,890.875	3,820,868.356
	2014	40,391,323.815	8,299,274.521
Pending	2011	601.344	-
	2014	4,129,629.851	1,052,423.211
Rejected	2011	350.686	-
	2012	301,926.938	169,699.905
	2013	637,463.964	-
	2014	672,541.326	169,699.905

slice(nameMethod) - TypeStatus - Year - ShipMethod

Conclusion:

Ce projet nous a permis d'appliquer toutes les connaissances que nous avons acquises durant le cours de l'Informatique Décisionnelle ou Business Intelligence avec P. Nassima Soussi. Nous avons effectivement pu commencer m zéro, en appliquant l'architecture fonctionnelle du SD ou BI. Nous avons sûrement rencontré plusieurs difficultés soit au niveau de la conception, durant le travail sur la création de notre data mart ainsi au niveau d' Alimentation du DM via ETL (Extraction Transformation Loading) qui est le processus de copie des données depuis les systèmes transactionnels vers notre data mart. Nous avons pu créer quelques vues métiers et des rapports représentant la visualisation de nos données importées dans le data mart.

Néanmoins, en tant que groupe ou équipe de travail sur ce projet, nous avons pu réaliser un bon travail dont nous sommes fiers. Nous adressons toute notre gratitude m notre professeur du module-Entrepôts et bases de données relationnelles , Mme. Nassima Soussi. Nous voudrions aussi exprimer notre reconnaissance envers nos collègues qui nous ont apporté leurs conseils et toutes les informations qu'on avait besoin durant la réalisation de ce projet.