Analysis of Vorionce

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
0	KP281	18	Male	14	Single	3	4	29562	112
1	KP281	19	Male	15	Single	2	3	31836	75
2	KP281	19	Female	14	Partnered	4	3	30699	66
3	KP281	19	Male	12	Single	3	3	32973	85
4	KP281	20	Male	13	Partnered	4	2	35247	47

Incom Vs	Gender	\longrightarrow	- tut
(Num)	(Categorical - 2	caligoriu)	
Gender Vs	Product	\longrightarrow Ch	. Squared Text
	(Cot)		4 1 1
Freom Vs	Product	or more categor	ANOVA

Ho: all means are equal - shigh h-value

Ita: Allowst one mean is different from other - low h-value

ANOVA: dup dive Hight (Situb) American Barketball players (Novianes vittin grouf 2) variance lo/w grouf Indonnian college students Indian cricket team [Setup?] group people alphabetically. A to g f-ratio = Variance between groups H to N Varioner coulding groups o to 2 -> right F-ration will be high in setup 1 -> Ha Tailed will be low in select 2 -> H.

Assumptions of ANOVA:

(a) Data should be Gaussian Shopira

(b) Indefendence

(c) Equal variones in each group -> levene

When assumptions of ANOVA don't hold

we we Kruskal- Wallis

Sollot: Text if data is Gaussian H, X, X3 +10000 Empirical rule? 68/95/99 y, y, y, y, - actually Gaussian In percentil of x = In percentil of x 2nd percentil of x = 2nd percentil of x = 100 cm of y

Shafiro: Text whether data is Gaussian or not Ho: Data is Gaussian Post Read (Optional)

iP	iPhone sales in 3 stores							
	Α	В	С					
	25	30	18					
	25	30	30					
	27	25	29					
	30	24	29					
	23	26	24					
	20	28	26					
	25	26.5	26	25.83				
1	\bar{Y}_1	\bar{Y}_2	\bar{Y}_3	$ar{Y}$				
	2.40							

= 0.23

 $F = \frac{1}{14.9}$

 $F = \frac{MSB}{MSW}$

$$H_0\text{: All means are equal} \qquad H_a\text{: Means are different}$$
 Step 1 Compute individual group means $\bar{Y}_1=25$ $\bar{Y}_2=26.5$ $\bar{Y}_3=26.5$ Step 2 Compute mean of these 3 values $\bar{Y}=\frac{25+26.5+26}{3}=25.83$ Step 3 Between groups
$$SSB=6(25-25.83)^2+6(26.5-25.83)^2+6(26-25.83)^2=6.9$$
 DF = 3 - 1 = 2
$$MSB=\frac{SSB}{DF}=\frac{6.9}{2}=3.49$$
 Step 4 Within groups
$$SSW=(25-25)^2+(25-25)^2+(27-25)^2+\cdots+(20-25)^2+\cdots+(28-26.5)^2+(25-26.5)^2+(25-26.5)^2+\cdots+(28-26.5)^2+(28-26.5)^2+(28-26.5)^2+(28-26.5)^2+\cdots+(28-26.5)^2+(28-26.5)^2+(28-26.5)^2+\cdots+(28-26.5)^2+(28-26.5)^2+(28-26.5)^2+\cdots+(28-26.5)^2+(28-26.5)^2+(28-26.5)^2+\cdots+(28-26.5)^2+(28-26.5)^2+(28-26.5)^2+\cdots+(28-26.5)^2+(28-26.5)^2+(28-26.5)^2+\cdots+(28-26.5)^2+(28-26.5)^2+\cdots+(28-26.5)^2+(28-26.5)^2+(28-26.5)^2+\cdots+(28-26.5)^2+(28-26.5)^2+\cdots+(28-26.5)^2+(28-26.5)^2+(28-26.5)^2+\cdots+(28-26.5)^2+(28-26.5)^2+\cdots+(28-26.5)^2+(28-26.5)^2+\cdots+(28-26.5)^2+(28-26.5)^2+\cdots+(28-26.5)^2+\cdots+(28-26.5)^2+(28-26.5)^2+\cdots+(28-26.5)^2+\cdots+(28-26.5)^2+(28-26.5)^2+\cdots+(28-$$

 $MSW = \frac{SSW}{DF} = \frac{223}{15} = 14.9$