Systèmes d'exploitation

Syllabus

Enseignant responsable

Thibaud Martinez

thib aud.martinez@dauphine.psl.eu

Présentation

Ce cours est une introduction aux concepts des systèmes d'exploitation pour les étudiants en **troisième année de licence informatique à l'université Paris-Dauphine**. Il s'intéresse au fonctionnement des systèmes Unix, ceux-ci étant très répandus et existant dans des versions *open source*. Le cours conjugue études théoriques, au travers de cours magistraux, et travaux pratiques permettant d'illustrer la théorie.

Organisation

- 15 heures de CM
- 15 heures de TP

Prérequis

- Une précédente expérience avec un langage de programmation (C, C++, Java, etc.).
- Une expérience élémentaire avec l'utilisation d'un système d'exploitation (Unix de préférence).

Objectifs du cours

- 1. Comprendre le rôle d'un système d'exploitation et de ses composants.
- 2. Être capable d'interagir avec un système d'exploitation de type Unix grâce à l'interpréteur de commandes.
- 3. Comprendre le lien entre développement applicatif et système d'exploitation.
- 4. Maîtriser les bases de la programmation système sous Unix en C.
- 5. Comprendre les mécanismes centraux d'un système d'exploitation (virtualisation, concurrence et persistence) et leurs implémentations.

Évaluation

- Projet informatique (30 % de la note finale).
- Examen terminal (70 % de la note finale).

Ouvrages de référence

Ce cours est basé sur l'excellent **Operating Systems: Three Easy Pieces** de *Remzi H. Arpaci-Dusseau* et *Andrea C. Arpaci-Dusseau*. L'ouvrage est disponible librement sur son site Internet.

Il est nécessaire d'acquérir une maîtrise basique du langage de programmation C pour ce cours. Des rappels du langage sont donnés dans le cours.

L'ouvrage de référence recommandé pour le langage C est Effective C par Robert C. Seacord.

Le classique **The C Programming Language, 2nd Edition** par *Brian W. Kernighan* et *Dennis M. Ritchie* vaut toujours le détour même s'il ne tient pas compte des développements les plus récents du langage.

Pour une vue d'ensemble relativement courte des éléments clés du langage C (45 pages), on pourra se référer au document Essential C mis gracieusement à disposition par Stanford CS Education Library.

Programme

Date	Type	Titre	Chapitres
3/02	CM	Ch 1 - Introduction	Introduction
13/02	TP	TP 1 - Utilisation du shell	
16/02	CM	$\operatorname{Ch}\ 2$ - $\operatorname{Virtualisation}\ (\operatorname{CPU}): \operatorname{les}$	Processes • Process API
		processus	
6/03	TP	TP 2 - Processus	
8/03	CM	Ch 3 - Virtualisation (CPU) :	Limited Direct Execution • CPU
		ordonnancement	Scheduling • Multi-level Feedback
9/03	TP	TP 2 - Processus (suite)	
20/03	CM	Ch 4 - Virtualisation (mémoire) :	Address Spaces • Memory API •
		segmentation	Address Translation •
			Segmentation
22/03	TP	TP 3 - Ordonnancement	
3/04	CM	Ch 5 - Virtualisation (mémoire) :	Paging • Faster Translations
		pagination	(TLBs) • Smaller Tables
5/04	TP	TP 4 - Mémoire	
19/04	CM	Ch 6 - Concurrence : threads et	Concurrency • Thread API •
		verrous	Locks
20/04	TP	Projet	
10/05	CM	Ch 7 - Concurrence : condition	Condition Variables • Semaphores
		variables et sémaphores	• Common Concurrency Problems
11/05	TP	TP 5 - Threads et verrous	

Date	Type	Titre	Chapitres
24/05	CM	Ch 8 - Persistence : périphériques	I/O Devices • Hard Disk Drives
		d'entrées-sorties	
25/05	TP	TP 6 - Sémaphores	
7/06	CM	Ch 9 - Persistence : implémentation	Files and Directories • File System
		des systèmes de fichiers	Implementation
7/06	CM	Ch 10 - Persistence : cohérence du	FSCK and Journaling
		système de fichiers et journalisation	
8/06	TP	TP 7 - Interface du système de	
,		fichiers	
21/06	Examen	Examen	
22/06	CM/TP	Ch 11 - Une introduction à Docker	
	•	et aux conteneurs	