$\mathfrak{M}\models\phi[ar{b}]$ اگر عنصری چون $b\in M$ موجود باشد به طوری که $\mathfrak{M}\models\exists x\quad\phi[ar{a}]$

بدیهی است که تعریف بالا، به طور خاص، وقتی که ϕ یک جمله (یعنی فرمولِ بدون متغیر آزاد) باشد نیز کارگر است. در صورتی که $\phi = \mathfrak{M}$ گوییم M مُدلِی برای ϕ است. نقیض این سخن را با $\phi \not \equiv \mathfrak{M}$ نشان می دهیم.

به یک مجموعه از L – جملات، T وری T میگوییم. T را ارضاشدنی T میخوانیم هرگاه مدلی برای آن موجود باشد؛ یعنی ساختاری چون \mathfrak{M} موجود باشد، به طوری که برای هر T داشته باشیم $\mathfrak{M} \models \mathcal{M}$. در این صورت مینویسیم T

۵ معادل و نشاندن مقدماتی

در بخشِ ۲ درباره ی نشاندنها و زیرساختها سخن گفتیم. در برخی تئوریها، زیرساختها همه ی ویژگی های مرتبه ی اول یک ساختار را به ارث می برند. به هر زیرساخت اینچنین، زیرساختی مقدماتی می گوییم (این مفهوم را در ادامه تعریف کرده ایم). برای مثال، اگر M_1 , M_7 دو میدان بسته ی جبری باشند و M_1 آنگاه هر چند جمله ای ای با ضرایب در M_1 اگر در M_1 ریشه داشته باشد، مسلماً در M_1 هم ریشه دارد.

در این بخش (در طی چند تمرین) نخست به بررسی این نکته پرداختهایم که زیرساختها چه ویژگیهایی از ساختار شامل خود به ارث می برند، و سپس محکی برای وارسی این ارائه می کنیم که چه هنگام یک زیرساخت، مقدماتی است.

تمرین ۱۲: گیریم $M\subseteq N$ نشان دهید که $\mathfrak{M}\subseteq \mathfrak{M}$ اگروتنهااگر برای هر فرمولِ بدونِ سور $a_1,\dots,a_n\in M$ و هر $\phi(x_1,\dots,x_n)$

$$\mathfrak{M} \models \phi(a_1, \dots, a_n) \Leftrightarrow \mathfrak{N} \models \phi(a_1, \dots, a_n).$$

مجموعه ی همه ی فرمولهای بدون سور با پارامتر در M را (منظور جملههایی است به شکل مجموعه ی همه ی فرمولهای بدون سور با پارامتر در $\phi(a_1,\ldots,a_n)$ که در آن $\phi(a_1,\ldots,a_n)$ با $\phi(a_1,\ldots,a_n)$ نشان می دهیم. مشخص است که $\phi(a_1,\ldots,a_n)$ را میتوان به عنوان یک تئوری، ولی در زبان $\phi(a_1,\ldots,a_n)$ را میتوان به عنوان یک تئوری، ولی در زبان $\phi(a_1,\ldots,a_n)$

^{\4}theory

[&]quot;satisfiable

از افزودن ثابت برای عنصر در M به L حاصل شده است Δ مورد مطالعه قرار داد. پس حکم تمرین بالا را می توان بدین صورت بازنوشت:

تمرین ۱۳: نشان دهید که $\mathfrak{M}\models^{L_M} \mathrm{Diag}(\mathfrak{M})$ اگروتنهااگر L نشاندنی از \mathfrak{M} در \mathfrak{N} موجود باشد.

به طور مشابه، با $\operatorname{Diag}_{el}(\mathfrak{M})$ (دیاگرام مقدماتی \mathfrak{M}) مجموعهی همهی جملههایی را در زبان L نشان می دهیم که در \mathfrak{M} درستند. نیز با $\operatorname{Th}(\mathfrak{M})$ مجموعهی همهی جملههایی را در زبان L_M نشان می دهیم که در ساختار \mathfrak{M} درستند.

نشاندنِ $\mathfrak{M} \to \mathfrak{N}$ را مقدماتی میخوانیم هرگاه همه ی فرمولها (و نه فقط فرمولهای بیسور) نشاندنِ $a_1,\dots,a_n\in M$ و $\phi(x_1,\dots,x_n)$ و مرگاه برای هر فرمول و داشته باشیم

$$\mathfrak{M} \models \phi(a_1, \ldots, a_n) \Leftrightarrow \mathfrak{N} \models \phi(a_1, \ldots, a_n).$$

هرگاه نگاشت شمول، یک نشاندن مقدماتی باشد، مینویسیم $\mathfrak{M} op \mathfrak{M}$ ، و میگوییم که \mathfrak{M} زیرساختی مقدماتی از \mathfrak{M} است).

تمرین ۱۴: نشان دهید که $\mathfrak{M}\models^{L_M}\mathrm{Diag}_{el}(\mathfrak{M})$ اگروتنهااگر نشاندنی مقدماتی از \mathfrak{M} در \mathfrak{M} در زبان L موجود باشد.

نشاندن m o m را یک *ایزومرفیسم* میخوانیم هرگاه یکبهیک و پوشا باشد.

تمرین ۱۵: نشان دهید که هرگاه $\mathfrak{M} \to \mathfrak{M}$ یک ایزومرفیسم باشد، آنگاه \mathfrak{M} و \mathfrak{N} همارز مقدماتیند؛ یعنی هر L جمله، در \mathfrak{M} درست است اگروتنهااگر در \mathfrak{N} درست باشد (این را با نماد $\mathfrak{M} \equiv \mathfrak{M}$ نشان می دهیم).

 $\mathfrak{M}\models\mathrm{Th}(\mathfrak{N})$ عادل این است که \mathfrak{M} و \mathfrak{M} معادل این است که عمرارز مقدماتی بودن

تمرین ۱۶: آیا عکسِ تمرین بالا درست است؟ نشان دهید هرگاه M,N هر دو متناهی باشند و $\mathfrak{M}\equiv\mathfrak{M}$ آنگاه M و N ایزومرفند.

تمرین ۱۷: تحقیق کنید که $\langle \mathbb{R}, \leq \rangle \not = \langle \mathbb{R}, \leq \rangle$. نیز نشان دهید که $\langle \mathbb{R}, \leq \rangle \not = \langle \mathbb{R}, \leq \rangle$. (اثبات این دومی با ابزارهایی که هماکنون در درست داریم آسان نمینماید!)

تمرین ۱۸ (محک تارسکی): گیریم $\mathfrak{M} \subset \mathfrak{M}$ ؛ نشان دهید که $\mathfrak{M} \prec \mathfrak{M}$ اگروتنهااگر برای هر فرمول $ar b \in M$ ؛ نشان دهید که ϕ فرمولی بدون سور است) و هر $ar b \in M$ ، $ar b \in M$ (دقت کنید که a

 $\mathfrak{N} \models \exists x \quad \phi(x, \bar{b})$ آنگاه

 $\mathfrak{N} \models \exists x \in M \quad \phi(x, \bar{b}).$

حتماً خود به زیرکی دریافته اید که نوشتن عبارت بالا در منطق مرتبه ی اول، حداقل در زبان L، مجاز نیست. چنین جمله ای را تنها زمانی می توان نوشت که در زبان محمولی برای ساختار کوچکتر، در اینجا \mathfrak{M} ، داشته باشیم. با این حال هدفمان از آنگونه نوشتن تأکید بر این نکته بوده که منظور $\mathfrak{M} \models \exists x \quad \phi(x, \bar{b})$

تمرین ۱۹: گیریم $\{\leq\}$ شان دهید که $\mathrm{Th}(\langle\mathbb{Z},\leq\rangle)$ دارای مدلی است که ترتیب اعداد ِ گویا در آن مینشیند (یعنی ساختاری چون $\mathbb{Z},\leq\rangle$ به \mathbb{Z} به موجود هستند).

 \mathfrak{M}_1 تمرین ۲۰: گیریم $\mathfrak{M}_1 \subseteq \mathfrak{M}_2$ $\mathfrak{M}_1 \subseteq \mathfrak{M}_2$ $\mathfrak{M}_2 \subseteq \mathfrak{M}_3$ $\mathfrak{M}_3 \subseteq \mathfrak{M}_4$ نشان دهید که $\mathfrak{M}_4 \subseteq \mathfrak{M}_4$ چنان موجود تمرین ۲۱: گیریم $\mathfrak{M}_4 \subseteq \mathfrak{M}_4 \subseteq \mathfrak{M}_5$ پخان موجود است که $\mathfrak{M}_4 \subseteq \mathfrak{M}_5 \subseteq \mathfrak{M}_5$ است که $\mathfrak{M}_4 \subseteq \mathfrak{M}_5$ و و اتومرفیسمی از \mathfrak{M}_5 است که $\mathfrak{M}_5 \subseteq \mathfrak{M}_5$ و و اتومرفیسمی از $\mathfrak{M}_5 \subseteq \mathfrak{M}_5$ است که $\mathfrak{M}_5 \subseteq \mathfrak{M}_5$ و اتومرفیسمی از $\mathfrak{M}_5 \subseteq \mathfrak{M}_5$ است که $\mathfrak{M}_5 \subseteq \mathfrak{M}_5$ و اتومرفیسمی از $\mathfrak{M}_5 \subseteq \mathfrak{M}_5$ است که $\mathfrak{M}_5 \subseteq \mathfrak{M}_5$ و اتومرفیسمی از $\mathfrak{M}_5 \subseteq \mathfrak{M}_5$ است که $\mathfrak{M}_5 \subseteq \mathfrak{M}_5$ است که $\mathfrak{M}_5 \subseteq \mathfrak{M}_5$ انتریم از $\mathfrak{M}_5 \subseteq \mathfrak{M}_5$ است که $\mathfrak{M}_5 \subseteq \mathfrak{M}_5$ انتریم از $\mathfrak{M}_5 \subseteq \mathfrak{M}_5$ انتریک انتریم از $\mathfrak{M}_5 \subseteq \mathfrak{M}_5$ انتریک انت

تمرین ۲۲: در زبان گروهها، برای $n\neq n$ نشان دهید که $\mathbb{Z}_{p^{\infty}}^m \not\equiv \mathbb{Z}_{p^{\infty}}^m$ منشکل از همهی ریشههای p^k اُم واحد است.

 $\mathbb{Z}^m \not\equiv \mathbb{Z}^n$ داریم $m \not\equiv n$ داریم شان دهید که برای $m \not\equiv m$ داریم

 $\mathfrak{M}_1\otimes\mathfrak{M}_1$ تمرین ۲۴ (ضرب مستقیم): دو L – ساختار $\mathfrak{M}_1,\mathfrak{M}_1$ را در نظر بگیرید. L – ساختار $\pi_i:\mathfrak{M}_1\times\mathfrak{M}_1\to 0$ باشد و توابع طبیعی تصویر، یعنی $\mathfrak{M}_1\times\mathfrak{M}_1\to 0$ را طوری تعریف کنید که جهان آن $\mathfrak{M}_1\times\mathfrak{M}_1\to 0$ باشند: \mathfrak{M}_i نسبت بدان ویژگی جهانی زیر را داشته باشند:

برای هر L ساختارِ \mathfrak{N} و هموفریسمهای $\mathfrak{N}_i:\mathfrak{N}\to\mathfrak{N}_i$ (برای ۲ برای هر L ساختارِ $\psi:\mathfrak{N}\to\mathfrak{M}_1$ برای هر $\psi:\mathfrak{N}\to\mathfrak{M}_1\otimes\mathfrak{M}_1$ به طوری که $\psi:\mathfrak{N}\to\mathfrak{M}_1\otimes\mathfrak{M}_1$

تعریف همومرفیسم شبیه تعریف نشاندن است (تعریف ۷)، با این تفاوت که شرط یکبهیک بودن در آن نیاز نیست و مورد ۳ به صورت زیر است:

 $\langle a_1, \dots, a_n \rangle \in R^{\mathfrak{M}} \Rightarrow \langle e(a_1), \dots, e(a_n) \rangle \in R^{\mathfrak{N}}.$