Chapter 11 Statistics – (Study) Formula Sheet

11.1 - Statistical Studies

Observational Study vs Experiment

- **Observational study** Observes existing data.
 - Can reveal association or correlation between variables, but not causation.
- **Experiment** Generates data to help identify cause-and-effect relationships.
 - <u>Imposes</u> treatments and controls randomly to groups.

Principles of Experimental Design

- 1. Randomize the control and treatment groups.
- 2. Control for outside effects on the variable.
- Replicate the experiment a significant number of times to see meaningful patterns.

11.2 - Displaying Data

Frequency Tables

- <u>Summarize datasets</u> by <u>counting</u> the number of observations for each category, distinct value or interval.

Frequency	Percent
11	11/50 = 22%
23	23/50 = 46%
9	9/50 = 18%
7	7/50 = 14%
	11 23 9

Number of Pets	Frequency			
1-2	7			
3-4	(3)			
5-6	3			
7-8	2			
T-tal - 15				

Number of Students

Graphical Displays of Data

- Pie charts (categorical data)
 - Compare parts to a whole (slices are proportion of a category).

<u>Examples</u>

a) What percent of observations have between 1 and 4 pets inclusive?

$$\frac{7+3}{15} = \frac{10}{3} = \frac{66.7\%}{}$$

b) What percent of students prefer Football or Hockey?

- Bar graphs (categorical data) and Histograms (numeric data)
 - Height of bar represents amount of data in each category (counts or relative frequencies).

- Line graph
 - Shows changes in a numerical variable over time.

c) Bar graph – Which season has the highest frequency?

d) Histogram – How many items cost between \$11 and \$40 inclusive?

e) How many days was the temperature between 55 and 60 °F?

11.3 - Describing and Analyzing Data

Measures of Center

- Mean (average) =
$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

- NOT resistant → Affected by outliers
- Median (middle)
 - The middle value in an ordered list.
 - Resistant → NOT affected by outliers.
- Mode (most common)
 - The most frequently occurring value(s).
 - Resistant → NOT affected by outliers.
 - Only measure of center that can be used with categorical data.

Measures of Spread

- Standard deviation
 - Measures average distance from the mean.
 - (Don't calculate by hand).

Use calculator to answer these it possible!!!

Example

Dataset: 1, 2, 7, 3, 6, 9, 1, 0, 4, 7

N = 10

a) Find the mean.

By hand $(+2+\cdots+7) = \boxed{x} = 4$ (Data in L₁)

b) Find the median. Med 2 3 6

9, X, V, 7, 3, y 8, 7, 7, 9

c) Find the mode.

d) Find the range.

Ronge =
$$hax - min$$

 $V = q - 0 = q$

e) Find the sample standard deviation.

- A percentile tells you the percent of observations/individuals you are higher than.
- Quartiles are specific percentiles.
 - Q₁ is the 25th Percentile.
 - Q₃ is the 75th Percentile.
 - Q_2 is the 50th Percentile = Median.
- Inner Quartile Range (IQR)

$$- \left\{ |QR = Q_3 - Q_1| \right\}$$

5-number summary

Min, Q_1 , Med, Q_3 , Max \rightarrow Points of a boxplot

Example: Calculate the 5-number summary and sketch a boxplot for the following dataset.

By Calc:
$$2 \text{ var} \text{ (fats | L_1 = \#s)} \rightarrow \text{min} = 3$$
 $R_1 = 12$
 $R_2 = 4$
 $\text{max} = 75$

1.4 – The Normal Distribution

Add: 9

12 By cale: 1 var (tats (Li = #5) ->

11.4 – The Normal Distribution

"Step"

68% of the data lies within 1 st dev of the mean.

95% of the data lies within 2 st devs of the mean.

99.7% of the data lies within 3 st devs of the mean.

- Finding probabilities using the Empirical Rule.
 - Step 1 \rightarrow **Draw** and **label** curve.
 - Step 2 \rightarrow **Shade** curve.
 - Step 3 \rightarrow Use empirical rule.

a) Find the percent of trees between 50 m and 70 m tall.

- 65
- 68% 16% 1 Step 60
- b) Find the percent of trees greater than 65 m

$$0 + 5 : de = \frac{\text{Total}}{100\%} - \frac{\text{Inside}}{68\%} = 32\%$$

$$0 \times 17 = 32\%$$

$$0 \times 17 = 32\%$$

Finding probabilities based on the normal distribution

Step 1 \rightarrow Standardize using the z-score.

- Ex) X has a normal distribution with mean 10 and st dev 2. Find the z-score for X = 13.
 - $2 = \frac{13 10}{2} = 1.5$
- Step 2 → Draw, label and shade curve.

- Step 3 → Use 'Standard Normal Distribution' table to find the probability for Z.
 - Table ALWAYS gives probability LESS THAN Z: P(Z < z).
 - Examples (How to use table)
 - Left probability = TABLE (Directly)

$$P(Z<1.2) = 0.8849$$

Right probability = 1 - LEFT

$$P(Z > -0.65) = | - P(z < -0.65) > -0.7578$$

Between probability = LEFT Z₂ - LEFT Z₁

$$P(-1.13 < Z < 0.75) = (0.75) - (0.75)$$

12.3 - Data Exploration

Scatterplots:

Form: Linear, lurved, or random scatter

Direction: Positive, negative or no association

Strength: Weak, moderate or strong

Correlation (r):

- Interpreting correlation (LINEAR)
 - Sign = Direction (
 - Absolute value |r| = Strength
- Calculate using calculator
 - LinReg(ax+b) or 2-Var Stats
 - $L_1 = X$, $L_2 = Y$

Regression:

- Step 1 → Determine if there is a significant correlation (linear relationship).
 - Compare |r| and Critical Value (CV) for n (sample size) and significance level α .

, , ,		,		
- A If r >		ictically si	rnificant	A
- 6 [II I >	uv 🔿 Stati	istically si	gnincant.	*
~ 1a ~	~~~	~~~	لسمت	110

$$\widehat{y} = ax + b$$
 (get results from correlation calculation)
= slope · x + intercept

- Step 3 → Make **predictions** using the regression line.
 - Just plug in the new *X* value to our equation and this will give us the predicted *Y*.

Critical Values of the

Pearson Correlation

Coefficient

 $\alpha = 0.01$

0.990

0.959

0.917

0.875

 $\alpha = 0.05$

0.950

0.878

0.811

0.754

4

5

6 7

Example

Dataset:

Х	3	5	4	7	6	10
Υ	24	40	34	32	17	18

a) Calculate the correlation r.

b) Determine if r is significant for $\alpha = 0.01$.

$$N = 6$$
 $|V| = 0.4305 \ (0.417 = CV)$
 $\Rightarrow N = 0.4305 \ (0.417 = CV)$

c) Suppose we have different regression equation where $\hat{y} = 5x + 2$.

Predict Y for X = 3: