242

Sea v un vector diferente de cero. Entonces para cualquier otro vector u el vector

$$\mathbf{w} = \mathbf{u} \, \frac{(\mathbf{u} \cdot \mathbf{v})}{\left|\mathbf{v}\right|^2} \mathbf{v}$$

es ortogonal a v.

Demostración

$$\mathbf{w} \cdot \mathbf{v} = \left[\mathbf{u} - \frac{(\mathbf{u} \cdot \mathbf{v})\mathbf{v}}{|\mathbf{v}|^2} \right] \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{v} - \frac{(\mathbf{u} \cdot \mathbf{v})(\mathbf{v} \cdot \mathbf{v})}{|\mathbf{v}|^2}$$
$$= \mathbf{u} \cdot \mathbf{v} - \frac{(\mathbf{u} \cdot \mathbf{v})|\mathbf{v}|^2}{|\mathbf{v}|^2} = \mathbf{u} \cdot \mathbf{v} - \mathbf{u} \cdot \mathbf{v} = 0$$

Los vectores **u**, **v** y **w** se ilustran en la figura 4.14.

Figura 4.14

El vector $\mathbf{w} = \mathbf{u} - \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|} \mathbf{v}$ es ortogonal a \mathbf{v} .

Definición 4.2.4

Proyección

Sean \mathbf{u} y \mathbf{v} dos vectores diferentes de cero. Entonces la **proyección** de \mathbf{u} sobre \mathbf{v} es un vector denotado por proy $_{\mathbf{v}}$ \mathbf{u} , que se define por

$$\operatorname{proy}_{\mathbf{v}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2} \mathbf{v} \tag{4.2.4}$$

La componente de \mathbf{u} en la dirección de \mathbf{v} es $\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|}$, y es un escalar. (4.2.5)

Observe que $\frac{\mathbf{v}}{|\mathbf{v}|}$ es un vector unitario en la dirección de \mathbf{v} .

Observación 1. De las figuras 4.14 y 4.15 y del hecho de que $\cos \varphi = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| |\mathbf{v}|}$ se deduce que

v y proy_v u tienen:

- i) la misma dirección si $\mathbf{u} \cdot \mathbf{v} > \mathbf{0}$ y
- ii) direcciones opuestas si $\mathbf{u} \cdot \mathbf{v} < \mathbf{0}$.