Blatt 8

1. a) Setzt man

$$A = \left(\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{array}\right)$$

so rechnet man sofort nach, daß die drei Einheitsvektoren Eigenvektoren zu diesen drei Eigenwerten sind:

$$A \circ \vec{e_1} = 2\vec{e_1} \quad A \circ \vec{e_2} = 3\vec{e_1} \quad A \circ \vec{e_3} = 5\vec{e_1}$$

Da A eine 3×3 -Matrix ist, kann A nicht mehr als 3 Eigenwerte besitzen.

b) Setze

$$I = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{array}\right)$$

Dann ist offenbar $I \neq E$, obwohl I nur den Eigenwert 1 besitzt. Das letztere erkennt man daran, daß das charakteristische Polynom von I

$$\det(I - tE) = (1 - t)^3$$

nur die Nullstelle 1 besitzt.

2. Aufgrund der Angaben gelten für den Übergang vom t-ten zum t+1-ten Jahr die Gleichungen

$$v_{t+1,1} = \frac{1}{10} \cdot v_{t,2} + v_{t,3}$$

$$v_{t+1,2} = v_{t,1}$$

$$v_{t+1,3} = \frac{9}{10} \cdot v_{t,2}$$

Dieses ergibt die Übergangsmatrix

$$A = \begin{pmatrix} 0 & \frac{1}{10} & 1\\ 1 & 0 & 0\\ 0 & \frac{9}{10} & 0 \end{pmatrix}$$

Eine Fahrzeugverteilung \vec{v}_* ist konstant, wenn sie sich von einem Jahr zum nächsten nicht verändert, d. h. falls gilt

$$A \circ \vec{v}_* = \vec{v}_*$$

Dieses bedeutet, daß eine mögliche konstante Verteilung durch einen Eigenvektor \vec{v}_* zum Eigenwert 1 dargestellt wird. Falls die Matrix A tatsächlich einen solchen Eigenwert besitzt, muß das homogene Gleichungssystem

$$(A - E) \circ \vec{x} = \begin{pmatrix} -1 & \frac{1}{10} & 1 \\ 1 & -1 & 0 \\ 0 & \frac{9}{10} & -1 \end{pmatrix} \circ \vec{x} = 0$$

eine von Null verschiedene Lösung besitzen. Man prüft dieses nach, indem man die Matrix A - E mit dem Gaußschen Verfahren reduziert; man erhält als reduzierte Matrix

$$\left(\begin{array}{ccc}
1 & -\frac{1}{10} & -1 \\
0 & 1 & -\frac{10}{9} \\
0 & 0 & 0
\end{array}\right)$$

Man erkennt, daß diese Matrix den Rang 2 bzw. den Corang 1=3-2 und damit eine von Null verschiedene Grundlösung besitzt. Diese Grundlösung und damit ein Eigenvektor der Matrix A zum Eigenwert 1 lautet

$$\vec{u} = \begin{pmatrix} 10/9 \\ 10/9 \\ 1 \end{pmatrix}$$

Als mögliche konstante Verteilungen kommen positive Vielfache von \vec{u} in Frage:

$$\vec{v}_* = \mu \cdot \vec{u} \quad \text{mit} \quad \mu > 0$$

Unabhängig vom Faktor μ gilt bei einer solchen konstanten Verteilung: je 34.5% der Fahrzeuge sind ein oder zwei Jahre alt, 31.0% der Fahrzeuge sind drei Jahre alt.

Bemerkung: Man kann natürlich auch mit Hilfe des charakteristischen Polynoms der Matrix A nachprüfen, ob diese Matrix den Eigenwert 1 besitzt. Das charakteristische Polynom lautet:

$$p(t) = -t^3 + 0.1t + 0.9$$

- p(t) besitzt nur die (reelle) Nullstelle 1.
- 3. <u>Lösung</u>: Aufgrund der Information des Spitzels weiß man, daß der Klartextbuchstabe "R" im Schlüsseltext dem Buchstaben "W" entspricht. Ist k der (zunächst noch unbekannte) Schlüssel, so muß aufgrund der Arbeitsweise des Caesar-Verfahrens gelten:

$$R + k = W \mod 26$$
 bzw. $17 + k = 22 \mod 26$

Daher ist lautet der Schlüssel k=5 bzw. k = 1 Damit kann jetzt der Text entschlüsselt werden:

INJBJYYJWFZXXNHMYJSXNSISNHMYLZY

Man ersetzt hier jeden Buchstaben durch seine Nummer aus $\{0, \dots, 25\}$:

 $8\ 13\ 9\quad 1\ 9\ 24\ 24\ 9\ 22\ 5\ 25\ 23\ 23\ 13\ 7\ 12\ 24\ 9\ 18\ 23\ 13\ 18\ 8\ 18\ 13\ 7\ 12\ 24\ 11\ 25\ 24$

3 8 4 22 4 19 19 4 17 0 20 18 18 8 2 7 19 4 13 18 8 13 3 13 8 2 7 19 6 20 19 mod 26

≙D IEWETTERAUSSICHTENSINDNICHTGUT

4. Lösung:

m	n	Di	vis	ion mit Rest	a = b'	$b=a'{-}qb'$
2431	2601	2431	=	$0 \cdot 2601 + 2431$	-46	43
2601	2431	2601	=	$1 \cdot 2431 + 170$	43	-46
2431	170	2431	=	$14 \cdot 170 + 51$	-3	43
170	51	170	=	$3 \cdot 51 + 17$	1	-3
51	17	51	=	$3 \cdot 17 + 0$	0	1
17	0	ggT	(24	31,2601) = 17	1	0

Damit wurde berechnet:

$$17 = ggT(2431, 2601) = -46 \cdot 2431 + 43 \cdot 2601$$

m	n	Divis	sic	on mit Rest	a = b'	b = a' - qb'
27047	3363	27047 =	=	$8 \cdot 3363 + 143$	-682	5485
3363	143	3363 =	=	$23\cdot 143+74$	29	-682
143	74	143 =	=	$1\cdot 74+69$	-15	29
74	69	74 =	=	$1\cdot 69+5$	14	-15
69	5	69 =	=	$13 \cdot 5 + 4$	-1	14
5	4	5 =	=	$1 \cdot 4 + 1$	1	-1
4	1	4 =	=	$4 \cdot 1 + 0$	0	1
1	0	ggT(27)	70	47,3363) = 1	1	0

Damit wurde berechnet:

$$1 = ggT(27047, 3363) = -682 \cdot 27047 + 5485 \cdot 3363$$

- 5. <u>Lösung</u>: Da zwei gerade Zahlen zumindest den gemeinsamen Teiler 2 besitzen, können sie nicht teilerfremd sein.
- 6. Lösung: Es gibt mehrere Lösungsmöglichkeiten; zwei sollen hier erläutert werden:
 - (a) Multipliziert man die Potenz $(u+1)^k$ aus¹, so erhält man eine Summe mit zahlreichen Summanden von denen genau einer den Wert 1 hat und alle übrigen durch u teilbar sind. Faßt man die durch u teilbaren zusammen und klammert u aus, so erhält man mit einem $a \in \mathbb{Z}$ für die Potenz $(u+1)^k$ die Darstellung

$$(u+1)^k = a \cdot u + 1 \tag{1}$$

Das liefert wiederum

$$(u+1)^k - a \cdot u = (a \cdot u + 1) - a \cdot u = 1$$

¹Man könnte den Binomischen Lehrsatz verwenden.

Also:

$$(u+1)^k - a \cdot u = 1$$

Gäbe es nun einen gemeinsamen Teiler d > 1 von u und $(u+1)^k$, so wäre das auch ein Teiler von 1; und das kann nicht sein. Folglich müssen u und $(u+1)^k$ teilerfremd sein.

(b) Man führt eine vollständige Induktion über den Exponenten k durch. Für k=1 sind u und $(u+1)^1$ wegen

$$(u+1) - u = 1$$

teilerfremd: Ein gemeinsamer Teiler d>1 müßt auch 1 teilen, was nicht möglich ist. Für k>0 werde angenommen, daß u und $(u+1)^{k-1}$ teilerfremd ist. Da im Induktionsanfang bereits gezeigt wurde, daß u und u+1 teilerfremd sind, folgt mit Hilfe eines Hilfssatzes der Vorlesung, daß auch

$$u$$
 und $(u+1)^k = (u+1)^{k-1} \cdot (u+1)$

teilerfremd sind.

7. Lösung:

$$157 = 31 \cdot 5 + 2
31 = 6 \cdot 5 + 1
6 = 1 \cdot 5 + 1
1 = 0 \cdot 5 + 1
\Rightarrow 157 = (1112)_5$$

$$785 = 157 \cdot 5 + 0
157 = 31 \cdot 5 + 2
31 = 6 \cdot 5 + 1
6 = 1 \cdot 5 + 1
1 = 0 \cdot 5 + 1
\Rightarrow 785 = (11120)_5$$