Clustering

- -K-means
- -Hierarchical clustering

Lin Guosheng School of Computer Science and Engineering Nanyang Technological University

Outline

- Basic methods for clustering:
 - K-means
 - Algorithm
 - Extension: K-means++
 - K-means with clustroid (non-examinable)
 - Optimization problem (non-examinable) (non-examinable content may be useful for your coursework projects)
 - Hierarchical Clustering

Application

15 -

10 -0 --15 -

Image clustering

Cluster image pixels to generate supperpixels

https://www.epfl.ch/labs/ivrl/research/slic-superpixels/

https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html

K-means

A simple example

Random initialized cluster centroids (K=2)

Iteration 1:

Assignment step (assign each point to the nearest cluster)

Centroid update step (compute the mean in each cluster)

Iteration 2: (converged)

Assignment step (assign each point to the nearest cluster)

Centroid update step (compute the mean in each cluster)

(a) Original dataset. (b) Random initial cluster centroids. (c-f) Illustration of running two iterations of k-means.

https://stanford.edu/~cpiech/cs221/handouts/kmeans.html

K-means

Algorithm 1 k-means algorithm

- 1: Specify the number k of clusters to assign.
- 2: Randomly initialize k centroids.
- 3: repeat
- 4: **expectation:** Assign each point to its closest centroid.
- 5: **maximization:** Compute the new centroid (mean) of each cluster.
- 6: **until** The centroid positions do not change.

Centroid update step

Assignment step

https://realpython.com/k-means-clustering-python/

Example

 Given the following data vectors and initial centroids, perform K-means for 1 iteration.

Data points:

Α	[-1, -1]
В	[-2, 0]
С	[1, 2]
D	[2, 1]

Initial centroids (2 clusters):

E (Cluster 1)	[2, 0]
F (Cluster 2)	[0, 1]

Data points:

Α	[1, -1]
В	[-2, o]
С	[1, 2]
D	[2, 1]

Initial centroids (2 clusters):

E (Cluster 1)	[2, 0]
F (Cluster 2)	[0, 1]

Iteration 1

Step 1: Cluster assignment

1) calculate squared L2 distance in Table 1

We can use squared L2 distance

as it will give the same comparison results as L2 distance.

E.g., SquaredL2(A, E) =
$$(1-2)^2 + (-1-0)^2 = 1 + 1 = 2$$
;
SquaredL2(A, F) = $(1-0)^2 + (-1-1)^2 = 1 + 4 = 5$;

Table 1 Squared L2 distance:

	E (2, 0) Cluster1	F (o, 1) Cluster2
A (1, -1)	2	5
B (-2, 0)	16	5
C (1, 2)	5	2
D (2, 1)	1	4

Squared L2 distance:

$$\|x-y\| = \sum_{i=1}^a (x_i-y_i)^2$$

L2 distance:

$$d_{L2}(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

2) Assign each point to its nearest centroid

Cluster1: (A, D) Cluster2: (B, C)

Step 2: Centroid update by compute the mean of each cluster Cluster1 E=[1.5, 0], F=[-0.5, 1]

$$E_1$$
= (1+2) /2 =1.5, E_2 = (-1 + 1)/2=0, -> E =[1.5, 0]
F1= (-2 + 1)/2= -0.5, F2= (0 + 2)/2= 1, -> F =[-0.5, 1]

Table 1 Squared L2 distance:

	E (2, 0) Cluster1	F (o, 1) Cluster2
A (1, -1)	2	5
B (-2, 0)	16	5
C (1, 2)	5	2
D (2, 1)	1	4

Before iteration 1 (initial centroids)

After iteration 1

Iteration 2

Beyond the question, we perform the 2nd iteration:

Step 1: Cluster assignment

- 1) calculate squared L2 distance in Table 2
- 2) assign each point to its nearest centroid

Cluster C1: (A, D) Cluster C2: (B, C)

There is no changes of cluster assignments compared to the previous iteration, the algorithm is converged.

Step 2: Centroid update

Cluster 1 (E): (1.5, 0)

Cluster 2 (F): (-0.5, 1)

Converged

Table: Squared L2 distance

	E(1.5, 0) C1	F (-0.5, 1) C2
A (1, -1)	1.25	6.25
B (-2, o)	12.25	3.25
C (1, 2)	4.25	3.25
D (2, 1)	1.25	6.25

After iteration 2 (converged)

- How to determine the K parameter?
 - K is the number of clusters

https://en.wikipedia.org/wiki/K-means_clustering

How to select k?

- Try different k, looking at the change in the average distance to centroid as k increases
- Average distance to centroid falls rapidly at the beginning,
 then it changes slowly after a certain value of k

Select a small k that can produce small average distance to centroid

- 1. We prefer a low average distance to centroid
- 2. We prefer a small k

The elbow method

Average distance to centroid: E

$$E=rac{1}{N}igg(\sum_{p_i\in C_1}\mathrm{d}(p_i,c_1)+\sum_{p_i\in C_2}\mathrm{d}(p_i,c_2)+\ldots\ +\sum_{p_i\in C_k}\mathrm{d}(p_i,c_k)igg)$$

d: distance, e.g., L2 distance or Squared L2 distance

p: a data point

c: a cluster centroid, C: a cluster

N: the total number of data points

Example

Table: Squared L2 distance

	E(1.5, 0) C1	F (-0.5, 1) C2
A (1, -1)	1.25	6.25
B (-2, 0)	12.25	3.25
C (1, 2)	4.25	3.25
D (2, 1)	1.25	6.25

k=2, use Squared L2 distance for d here:

$$y1 = d(A, C1) + d(D, C1) = 1.25 + 1.25 = 2.5$$

$$y2 = d(B, C2) + d(C, C2) = 3.25 + 3.25 = 6.5$$

Average distance to centroid:

$$E = (y1+y2)/4 = 9/4 = 2.25$$

- K-means
 - distance functions
 - Euclidean distance (L2 distance)
 - most commonly used
 - L1 distance
 - Cosine distance
 - Other distance functions

K-means

- Pros
 - Simple and fast, Easy to implement
- Cons
 - Need to choose K
 - Sensitive to outliers
 - Cannot work well on data with non-spherical shape
 - Sensitive to the initialization of the centroids

Limitation of K-means: sensitive to outliers

(A): Two natural clusters

(B): k-means clusters

Limitation of K-means: cannot handle arbitrary shapes. K-means is suitable for spherical or elliptical data.

K-means algorithm is sensitive to the initialization of the centroids

https://www.geeksforgeeks.org/ml-k-means-algorithm/

- K-mean++:
 - Better initialization
 - K-means++ is the standard K-means algorithm coupled with a smarter initialization of the centroids.

K-mean++:

Idea: select initial centroids that are far away from each other.

- 1. Sequentially initialize the centroids.
- 2. When selecting one centroid, we aim to select a data point that is far away from existing centroids.

http://ilpubs.stanford.edu:8090/778/1/2006-13.pdf

K-mean++:

let D(x) denote the shortest distance from a data point x to the existing centroids $(c_1, c_2, c_3, ..., c_n)$.

$$D(x) = \min_i \operatorname{distance}(x, c_i)$$

K-mean ++ (simplified version):

Step 1. choose the data point with the highest D(x) as the new centroid (C_{n+1}). The selected data point will be far away from all existing centroids.

Step 2. Repeat step 1 until we have k centroids.

- 1. If the data point x is close to any existing centroids, D(x) will be small
- 2. If the data point x is far away from any existing centroids, D(x) will be large

Select centroid 1

https://www.geeksforgeeks.org/ml-k-means-algorithm/

Select centroid 2

https://www.geeksforgeeks.org/ml-k-means-algorithm/

Select centroid 3 data points previously selected centroids next centroid 10 5 0 -10 10

https://www.geeksforgeeks.org/ml-k-means-algorithm/

Select centroid 4 15 data points previously selected centroids next centroid 10 5 0 -5 -10 10

https://www.geeksforgeeks.org/ml-k-means-algorithm/

Segmentation as Clustering

Let's just use the pixel intensities!

Segmentation: pixel grouping Assign pixels to clusters

k = 3

More examples:

https://github.com/topics/slic

More examples: SLIC for super-pixel segmentation https://github.com/topics/slic

- K-means with clustroid
 - Use clustroid to replace centroid
 - Clustroid: is an existing (data) point that is "closest" to all other points in the cluster.

Centroid is the avg. of all (data) points in the cluster.

Centroid is not an existing point. It is an "artificial" point.

Non-examinable

For a point *p*, calculate the average distance between *p* and all other members in the same cluster. Clustroid is the point that has the smallest average distance within the cluster.

The optimization problem for K-means

The squared distance to centroid for one cluster:

$$S(C_i) = \sum_{x_j \in C_i} (c_i - x_j)^2$$

 $S(C_i)$: squared distance to centroid for cluster C_i

 $x_i \in C_i$: a data point in cluster C_i

 $c_i \in C_i: ext{the cluster centroid of } C_i$

Slides from Stanford CS131

Goal: minimize average squared distance to centroid (or minimize within-cluster variance)

Objective function:
$$c^*, \ \delta^* = \underset{c, \delta}{\operatorname{arg\,min}} \frac{1}{N} \sum_{j}^{K} \sum_{i}^{K} \delta_{ij} \left(c_i - x_j \right)^2$$

Asterisk * indicates the solutions to

- 1. cluster centroids
- 2. and assignments

Whether x_j is assigned to c_i

 $ext{if } x_j ext{ is a member of cluster } c_i, \ \ \delta_{ij} = 1,; \ ext{otherwise}, \ \ \delta_{ij} = 0.$

K-means clustering

- 1. Initialize (t = 0): cluster centers $c_1, ..., c_K$
- 2. Compute δ^t : assign each point to the closest center
 - δ^t denotes the set of assignment for each \mathcal{X}_j to cluster $\,c_i^{}$ at iteration t

$$\delta^{\mathbf{t}} = rg \min_{\delta} rac{1}{N} \sum_{i}^{N} \sum_{i}^{K} \delta_{ij} (c_i^{t-1} - x_j)^2$$
 Freeze c, solve for δ

3. Computer c': update cluster centers as the mean of the points

Freeze δ , solve for c

Centroid update step

$$\mathbf{c^t} = rg \min_{\mathbf{c}} rac{1}{N} \sum_{j}^{N} \sum_{i}^{K} \delta_{ij}^t (c_i - x_j)^2$$

4. Update t = t + 1, Repeat Step 2-3 till stopped

- Hard to solve the optimization problem
 - Hard to obtain global optimal solutions

- The iterative algorithm is also referred to as Lloyd's algorithm
 - Empirically works well, usually converges in a few iterations

https://en.wikipedia.org/wiki/K-means_clustering

Further reading:

- Mini-batch K-means for large-scale data
 - Handle a small number of data points at a time, using stochastic gradient decent to gradually update the cluster centre.
 - Further reading:
 - Online tool: sklearn.cluster.MiniBatchKMeans

http://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html

Hierarchical clustering

- Hierarchical
 - Agglomerative (bottom up)
 - Initially, each point is a cluster
 - Repeatedly combine the two nearest clusters into one
 - Divisive (top down)
 - Start with one cluster and recursively split it

Hierachical clustering

Agglomerative clustering

(or bottom-up hierarchical clustering)

Simple algorithm

- Initialization:
 - Every point is its own cluster
- Repeat:
 - Find "most similar" pair of clusters
 - Merge into a parent cluster
- Until:
 - The desired number of clusters has been reached
 - There is only one cluster

First, make each data point a cluster, which forms N clusters.

Example 1:

https://dataaspirant.com/hierarchical-clustering-algorithm/

Take the next two nearest clusters and make them one cluster

Again, take the two nearest clusters and make them one cluster

Example 2

- What is missing here?
 - How to define the similarity of two clusters?

Single Linkage

 $D(c_1,c_2) = min D(x_1,x_2)$ Minimum distance or distance between closest elements in clusters

 $D(c_1,c_2) = \max D(x_1,x_2)$ Maximum distance between elements in clusters

Average Linkage

$$D(c_1,c_2) = \frac{1}{|c_1|} \frac{1}{|c_2|} \Sigma \Sigma D(x_1,x_2)$$

Average of the distances of all pairs

Centroid Method

Combining clusters with minimum distance between the centroids of the two clusters

Cluster 1 Cluster 2

Cluster 1 Cluster 2

Cluster 1 Cluster 2

Cluster 1 Cluster 2

We will discuss the following calculation example in the tutorial class:

Data points

Α	[0,-1]
В	[-2, 0]
C	[1, 2]
D	[2, 1]
Е	[1,-1]
H	[-1, 2]

When do we stop merging clusters?

- When some number k of clusters are found
- Keep merging until there is only 1 cluster

Hierarchical Clustering

Pros

- No need to set K: the number of clusters
- No assumption on the shape of the cluster
- Simple

Cons

- The algorithm can never undo the grouping.
 The data points may can be incorrectly grouped at an earlier stage.
- Different distance metrics may produce very different results.
 - Simple Linkage methods are sensitive to noise and outliers.
 - Complete linkage methods tend to break large clusters.

https://dataaspirant.com/hierarchical-clustering-algorithm/

