Zachary K. Kingston

Lab Website https://commalab.org/ E-Mail zkingston@purdue.edu

Personal Website https://zkingston.com/ Google Scholar ID PqcZ56cAAAAJ
LinkedIn zachary-kingston-79421b294 DBLP ID 173/7760
ORCiD 0000-0002-3896-5110 GitHub zkingston

Research Interests

I am interested in fast, reactive planning for robots over large time scales satisfying complex constraints. I also want these methods to generalize to any system (e.g., manipulators, soft robots, mobile robots, etc.) and provide guarantees on performance, completeness, or solution quality. I am also interested in the intersection between theory and implementation, where software engineering and hardware acceleration (e.g., SIMD, CUDA, etc.) can synergize to bring real-time performance to even heavily constrained platforms.

Professional Experience

Purdue University at West Lafayette, IN	Assistant Professor in the Department of Computer Science	Aug. 2024-Present
Kavraki Lab at Rice University, Houston, TX	Post-Doctoral Researcher and Lab Manager Supervisor: Dr. Lydia Kavraki	Dec. 2021-Aug. 2024 https://kavrakilab.org/
	Graduate Student Advisor: Dr. Lydia Kavraki	Aug. 2016–Dec. 2021
	Undergraduate Researcher Advisor: Dr. Lydia Kavraki	Feb. 2015–Aug. 2016
Dexterous Robotics Lab at NASA JSC, Houston, TX	NSTRF Fellow Supervisor: Dr. Julia Badger	Aug. 2017-Aug. 2021 https://er.jsc.nasa.gov/er4/
	USRA Intern Supervisor: Dr. Julia Badger	Summer 2017
	Guest Researcher Supervisor: Dr. Julia Badger	Summer 2016
Multi-Robot Systems Lab at Rice University, Houston, TX	Undergraduate Researcher Advisor: Dr. James McLurkin	May 2014-May 2015 http://mrsl.rice.edu/

I 🄀

Education

Rice University Ph.D. in Computer Science Aug. 2016–Dec. 2021

Houston, TX Thesis: Toward Efficient and General Multi-Modal Planning

Advisor: Dr. Lydia E. Kavraki

M.S. in Computer Science Aug. 2016–Dec. 2017

Thesis: A Unifying Framework for Constrained Sampling-Based Planning

Advisor: Dr. Lydia E. Kavraki

B.S. in Computer Science Aug. 2012–May 2016

3

Publications

All publications are available on my lab's website and my Google Scholar. Author names are ordered by contribution unless otherwise marked. Undergraduate students I advised are marked with ^U. Graduate students I advised are marked with ^G. Purdue students are marked in gold. Publications after starting at Purdue have their label marked in gold. †marks equal contribution.

Peer-Reviewed Journal Articles

- J1. S. Bora Bayraktar, Andreas Orthey, **Zachary Kingston**, Marc Toussaint, and Lydia E. Kavraki. Solving rearrangement puzzles using path defragmentation in factored state spaces. *IEEE Robotics and Automation Letters*, 8(8):4529–4536, 2023. doi:10.1109/LRA.2023.3282788. Presented at ICRA 2024
- J2. **Zachary Kingston** and Lydia E. Kavraki. Scaling multi-modal planning: Using experience and informing discrete search. *IEEE Transactions on Robotics*, 39(1):128–146, 2023. doi:10.1109/TRO.2022.3197080
- *J3.* Constantinos Chamzas, Carlos Quintero-Peña, **Zachary Kingston**, Andreas Orthey, Daniel Rakita, Michael Gleicher, Marc Toussaint, and Lydia E. Kavraki. MotionBenchMaker: A tool to generate and benchmark motion planning datasets. *IEEE Robotics and Automation Letters*, 7(2):882–889, 2021. doi:10.1109/LRA.2021.3133603
- *J4.* **Zachary Kingston**, Mark Moll, and Lydia E. Kavraki. Exploring implicit spaces for constrained sampling-based planning. *The International Journal of Robotics Research*, 38(10–11):1151–1178, 2019. doi:10.1177/0278364919868530
- *J*₅. Neil T. Dantam, **Zachary Kingston**, Swarat Chaudhuri, and Lydia E. Kavraki. An incremental constraint-based framework for task and motion planning. *The International Journal of Robotics Research*, 37(10):1134–1151, 2018. doi:10.1177/0278364918761570
- *J6.* **Zachary Kingston**, Mark Moll, and Lydia E. Kavraki. Sampling-based methods for motion planning with constraints. *Annual Review of Control*, *Robotics, and Autonomous Systems*, 1(1):159–185, 2018. doi:10.1146/annurev-control-060117-105226

Peer-Reviewed Conference Papers

- C1. Lucas Chen^{†U}, Yitian Gao^{†U}, Sicheng Wang, Francesco Fuentes, Laura H. Blumenschein, and **Zachary Kingston**. Physics-grounded differentiable simulation for soft growing robots. In *IEEE-RAS International Conference on Soft Robotics*, 2025. URL https://arxiv.org/abs/2501.17963. To Appear
- C2. Tyler S. Wilson, Wil Thomason, Zachary Kingston, Lydia E. Kavraki, and Jonathan D. Gammell. Nearest-neighbourless asymptotically optimal motion planning with fully connected informed trees (FCIT*). In IEEE International Conference on Robotics and Automation, 2025. URL https://arxiv.org/abs/2411.17902. To Appear

- C3. Akshaya Agrawal^G, Parker Mayer, **Zachary Kingston**, and Geoffrey A. Hollinger. Constrained nonlinear Kaczmarz projection on intersections of manifolds for coordinated multi-robot mobile manipulation. In *IEEE International Conference on Robotics and Automation*, 2025. URL https://arxiv.org/abs/2410.21630. To Appear
- C4. Weihang Guo^G, **Zachary Kingston**, and Lydia E. Kavraki. CaStL: Constraints as specifications through LLM translation for long-horizon task and motion planning. In *IEEE International Conference on Robotics and Automation*, 2025. URL https://arxiv.org/abs/2410.22225. To Appear
- C5. Yuanchu Liang[†], Edward Kim[†], Wil Thomason[†], **Zachary Kingston**[†], Hanna Kurniawati, and Lydia E. Kavraki. Scaling long-horizon online POMDP planning via rapid state space sampling. In *International Symposium of Robotics Research*, 2024. URL https://arxiv.org/abs/2411.07032
- C6. Clayton W. Ramsey^G, **Zachary Kingston**[†], Wil Thomason[†], and Lydia E. Kavraki. Collision-affording point trees: SIMD-amenable nearest neighbors for fast collision checking. In *Robotics: Science and Systems*, 2024. doi:10.15607/RSS.2024.XX.038
- Cγ. Wil Thomason[†], **Zachary Kingston**[†], and Lydia E. Kavraki. Motions in microseconds via vectorized sampling-based planning. In *IEEE International Conference on Robotics and Automation*, pages 8749–8756, 2024. doi:10.1109/ICRA57147.2024.10611190
- C8. Carlos Quintero-Peña, Wil Thomason, **Zachary Kingston**, Anastasios Kyrillidis, and Lydia E. Kavraki. Stochastic implicit neural signed distance functions for safe motion planning under sensing uncertainty. In *IEEE International Conference on Robotics and Automation*, pages 2360–2367, 2024. doi:10.1109/ICRA57147.2024.10610773
- *Cg.* Khen Elimelech, **Zachary Kingston**, Wil Thomason, Moshe Vardi, and Lydia E. Kavraki. Accelerating long-horizon planning with affordance-directed dynamic grounding of abstract strategies. In *IEEE International Conference on Robotics and Automation*, pages 12688–12695, 2024. doi:10.1109/ICRA57147.2024.10610486
- *C10.* Rahul Shome, **Zachary Kingston**, and Lydia E. Kavraki. Robots as AI double agents: Privacy in motion planning. In *IEEE/RSJ International Conference on Intelligent Robots and Systems*, pages 2861–2868, 2023. doi:10.1109/IROS55552.2023.10341460
- C11. Carlos Quintero-Peña, **Zachary Kingston**, Tianyang Pan, Rahul Shome, Anastasios Kyrillidis, and Lydia E. Kavraki. Optimal grasps and placements for task and motion planning in clutter. In *IEEE International Conference on Robotics and Automation*, pages 3707–3713, 2023. doi:10.1109/ICRA48891.2023.10161455
- *C12.* Yiyuan Lee^G, Wil Thomason, **Zachary Kingston**, and Lydia E. Kavraki. Object reconfiguration with simulation-derived feasible actions. In *IEEE International Conference on Robotics and Automation*, pages 8104–8111, 2023. doi:10.1109/ICRA48891.2023.10160377
- C13. Zachary Kingston and Lydia E. Kavraki. Robowflex: Robot motion planning with MoveIt made easy. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3108–3114, 2022. doi:10.1109/IROS47612.2022.9981698
- *C14.* **Zachary Kingston**, Constantinos Chamzas, and Lydia E. Kavraki. Using experience to improve constrained planning on foliations for multi-modal problems. In *IEEE/RSJ International Conference on Intelligent Robots and Systems*, pages 6922–6927, 2021. doi:10.1109/IROS51168.2021.9636236
- C15. Mark Moll, Constantinos Chamzas, Zachary Kingston, and Lydia E. Kavraki. Hyper-Plan: A framework for motion planning algorithm selection and parameter optimization. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2511–2518, 2021. doi:10.1109/IROS51168.2021.9636651

III 💸

- *C16.* Andrew M. Wells, **Zachary Kingston**, Morteza Lahijanian, Lydia E. Kavraki, and Moshe Y. Vardi. Finite horizon synthesis for probabilistic manipulation domains. *IEEE International Conference on Robotics and Automation*, pages 6336–6342, 2021. doi:10.1109/ICRA48506.2021.9561297
- C17. Constantinos Chamzas, **Zachary Kingston**, Carlos Quintero-Peña, Anshumali Shrivastava, and Lydia E. Kavraki. Learning sampling distributions using local 3D workspace decompositions for motion planning in high dimensions. In *IEEE International Conference on Robotics and Automation*, pages 1283–1289, 2021. doi:10.1109/ICRA48506.2021.9561104
- *C18.* **Zachary Kingston**, Andrew M. Wells, Mark Moll, and Lydia E. Kavraki. Informing multi-modal planning with synergistic discrete leads. In *IEEE International Conference on Robotics and Automation*, pages 3199–3205, 2020. doi:10.1109/ICRA40945.2020.9197545
- *C19.* **Zachary Kingston**, Mark Moll, and Lydia E. Kavraki. Decoupling constraints from sampling-based planners. In Nancy M. Amato, Greg Hager, Shawna Thomas, and Miguel Torres-Torriti, editors, *Robotics Research*, pages 913–928. Springer International Publishing, Cham, 2020. ISBN 978-3-030-28619-4. doi:10.1007/978-3-030-28619-4_62
- C20. Golnaz Habibi, Sándor P. Fekete, Zachary Kingston, and James McLurkin. Distributed object characterization with local sensing by a multi-robot system. In Roderich Groß, Andreas Kolling, Spring Berman, Emilio Frazzoli, Alcherio Martinoli, Fumitoshi Matsuno, and Melvin Gauci, editors, Distributed Autonomous Robotic Systems: The 13th International Symposium, volume 6, pages 205–218. Springer Proceedings in Advanced Robotics, 2018. doi:10.1007/978-3-319-73008-0_15
- *C21.* William Baker, **Zachary Kingston**, Mark Moll, Julia Badger, and Lydia E. Kavraki. Robonaut 2 and you: Specifying and executing complex operations. In *IEEE Workshop on Advanced Robotics and its Social Impacts*, pages 1–8, Austin, TX, March 2017. doi:10.1109/ARSO.2017.8025204
- C22. Neil T. Dantam, **Zachary Kingston**, Swarat Chaudhuri, and Lydia E. Kavraki. Incremental task and motion planning: A constraint-based approach. In *Robotics: Science and Systems*, Ann Arbor, MI, June 2016. doi:10.15607/RSS.2016.XII.002
- C23. Zachary Kingston, Neil T. Dantam, and Lydia E. Kavraki. Kinematically constrained workspace control via linear optimization. In *IEEE-RAS International Conference on Humanoid Robots*, pages 758–764, Nov 2015. doi:10.1109/HUMANOIDS.2015.7363455
- C24. Golnaz Habibi, **Zachary Kingston**, Zijian Wang, Mac Schwager, and James McLurkin. Pipelined consensus for global state estimation in multi-agent systems. In *Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems*, pages 1315–1323. International Foundation for Autonomous Agents and Multiagent Systems, 2015. ISBN 9781450334136. doi:10.5555/2772879.2773320
- C25. Golnaz Habibi, **Zachary Kingston**, William Xie, Mathew Jellins, and James McLurkin. Distributed centroid estimation and motion controllers for collective transport by multi-robot systems. In *IEEE International Conference on Robotics and Automation*, pages 1282–1288, 2015. doi:10.1109/ICRA.2015.7139356

Book Chapters

B1. **Zachary Kingston**. *Encyclopedia of Robotics*, chapter Planning Under Manifold Constraints, pages 1–9. Springer Berlin Heidelberg, 2020. ISBN 978-3-642-41610-1. doi:10.1007/978-3-642-41610-1_174-1

Workshop Papers and Abstracts

W1. Qingxi Meng^G, Carlos Quintero-Peña, **Zachary Kingston**, Vaibhav Unhelkar, and Lydia E. Kavraki. Perception-aware planning for robotics: Challenges and opportunities. In 40th Anniversary of the IEEE Conference on Robotics and Automation (ICRA@40), 2024

IV 🄀 Updated: March 20, 2025

- W2. Carlos Quintero-Peña, Wil Thomason, **Zachary Kingston**, Anastasios Kyrillidis, and Lydia E. Kavraki. Stochastic implicit neural signed distance functions for safe motion planning under sensing uncertainty. In *IEEE ICRA 2024 Workshop—Back to the Future: Robot Learning Going Probabilistic*, 2024
- W3. Clayton W. Ramsey^G, **Zachary Kingston**[†], Wil Thomason[†], and Lydia E. Kavraki. Dynamic motion planning from perception via accelerated point cloud collision checking. In *IEEE ICRA 2024 Workshop—Agile Robotics: From Perception to Dynamic Action*, 2024
- W4. Qingxi Meng^{†G}, Carlos Quintero-Peña[†], **Zachary Kingston**, Nicole M. Fontenot, Shannan K. Hamlin, Vaibhav Unhelkar, and Lydia E. Kavraki. Monitoring constraints for robotic tutors in nurse education: A motion planning perspective. In *IEEE ICRA 2024 Workshop—Workshop on Nursing Robotics*, 2024

Theses

- *T1.* **Zachary Kingston**. *Toward Efficient and General Multi-Modal Planning*. PhD thesis, Rice University, Houston, TX, 2021. URL https://hdl.handle.net/1911/111679
- *T2.* **Zachary Kingston**. A unifying framework for constrained sampling-based planning. Master's thesis, Rice University, Houston, TX, 2017. URL https://hdl.handle.net/1911/105607

Preprints

- P1. Chih H. Huang[†], Pranav Jadhav^{†U}, Brian Plancher, and **Zachary Kingston**. pRRTC: GPU-parallel RRT-connect for fast, consistent, and low-cost motion planning. In *IEEE/RSJ International Conference on Intelligent Robots and Systems*, 2025. URL https://arxiv.org/abs/2503.06757. Under Review
- P2. Sai Coumar^U, Gilbert Chang^U, Nihar Kodkani^U, and **Zachary Kingston**. foam: A tool for spherical approximation of robot geometry. In *IEEE/RSJ International Conference on Intelligent Robots and Systems*, 2025. URL https://arxiv.org/abs/2503.13704. Under Review
- **P3.** Sai Coumar^U and **Zachary Kingston**. Evaluating machine learning approaches for ASCII art generation, 2025. URL https://arxiv.org/abs/2503.14375
- P4. Weihang Guo^G, **Zachary Kingston**, Kaiyu Hang, and Lydia E. Kavraki. Efficient multi-robot motion planning for manifold-constrained manipulators by randomized scheduling and informed path generation. *IEEE Robotics and Automation Letters*, 2024. URL https://arxiv.org/abs/2412.00366. Under Review

Invited Contributor

Claire Le Goues, Sebastian Elbaum, David Anthony, Z. Berkay Celik, Mauricio Castillo-Effen, Nikolaus Correll, Pooyan Jamshidi, Morgan Quigley, Trenton Tabor, and Qi Zhu. Software engineering for robotics: Future research directions; report from the 2023 workshop on software engineering for robotics, 2024. URL https://arxiv.org/pdf/2401.12317.pdf

Funding

Funding obtained after starting at Purdue has the label marked in *gold*.

Authored

G1. Zachary Kingston. Industrial grant withheld for confidentiality, 2025. \$136,010

V 🗡

G2. Rahul Shome, Jenny L. Davis, **Zachary Kingston**, and Lydia E. Kavraki. Virtues of Robot Inaction: Towards Theories of Automated Reasoning of Inaction in Human Contexts, 2023. URL https://services.anu.edu.au/research-support/funding-opportunities/computing-for-social-good-seed-grants-2023. ANU Humanising Machine Intelligence Computing for Social Good Seed Research Grant, AU\$25,000

Co-Authored

- cG1. Lydia E. Kavraki. Elements: Scalable Next-Generation Software Infrastructure for High-Dimensional Search, 2024–2027. URL https://www.nsf.gov/awardsearch/showAward?AWD_ID=2411219. NSF OAC 2411219, \$599,302
- cG2. Lydia E. Kavraki and Anshumali Shrivastava. A Framework for Manipulation Planning and Execution under Uncertainty in Partially-Known Environments, 2024–2027. URL https://www.nsf.gov/awardsearch/showAward?AWD_ID=2336612. NSF CCF 2336612, \$715,312
- cG3. Lydia E. Kavraki and Vaibhav Unhelkar. Collaborative Research: FW-HTF-R: The Future of Robot-Assisted Nursing: Interactive AI Frameworks for Upskilling Nurses and Customizing Robot Assistance, 2022–2023. URL https://nsf.gov/awardsearch/showAward?AWD_ID= 2222876. NSF HRD 2222876, \$121,713
- cG4. Lydia E. Kavraki. RI: Small: A Novel Framework for Informed Manipulation Planning, 2020–2023. URL https://nsf.gov/awardsearch/showAward?AWD_ID=2008720. NSF IIS 2008720, \$441,000

Awards and Honors

- A1. Rice Innovation Fellow, Liu Idea Lab for Innovation and Entrepreneurship, 2024
- A2. C13. Nominated, Best Paper in Industrial Robotics Research for Practicality, IEEE/RSJ IROS, 2022
- A.3. C17. Nominated, Best Paper in Cognitive Robotics, IEEE-RAS ICRA, 2021
- *A4.* Future Faculty Fellowship, Rice Engineering, 2020–21
- A.5. Best Presentation in COMP 600, Rice University Computer Science Department, 2018, 2020
- A6. NASA Space Technology Research Fellowship, NASA, 2017–2021
- A7. NSF Graduate Research Fellowship Program, NSF, 2017
- A8. Graduate Research Fellowship, Rice University Computer Science Department, 2016
- Ag. Distinction in Research and Creative Works, Rice University, 2016
- A 10. President's Honor Roll, Rice University, 2015–16

Research Supervision

Students who I am the primary advisor for have their label marked in gold.

Ph.D. Students

- D1. S. Talha Bukhari, Purdue University, 2024–Present
- D2. Akshaya Agrawal, Oregon State University, 2024-Present
- *D3.* Clayton Ramsey¹, Rice University, 2023–Present
- D4. Qingxi Meng, Rice University, 2023-Present
- D₅. Yiyuan Lee, Rice University, 2022–2023

VI 🗡

¹ Awarded NSTGRO and NDSEG 2024

Master's Students

- M1. Lucas Chen, Purdue University, 2024-Present, RA Funded
- M2. Yitian Gao, Purdue University, 2024-Present
- *M3.* Weihang Guo, Rice University, 2023–Present
- *M4.* Elliot Herring, Rice University, 2021–2022

Undergraduate Students

- *U*1. Isaac Fuksman, Purdue University, 2025–Present, CS 497 Project
- U2. Aaron Boes, Purdue University, 2025-Present, CS 497 Project
- U3. Andrew Liu, Purdue University, 2025–Present
- *U*₄. Gilbert Chang, Purdue University, 2025–Present
- *U*₅. Nihar Kodkani, Purdue University, 2025–Present
- U6. Joseph Ruan, Purdue University, 2025-Present
- U7. Andrew Lu, Purdue University, 2024–Present, CS 497 Project
- U8. Pranav Jadhav, Purdue University, 2024-Present
- *Ug.* Alexiy Buynitsky, Purdue University, 2024–Present
- *U10.* Stefan Bukorovic, University of Belgrade, 2023
- U11. Sofia Paola Medina-Chica, Pontificia Universidad Javeriana, 2023
- *U12.* Andreja Andrejic, University of Belgrade, 2022
- *U13.* Aedan Cullen, Rice University, 2022
- *U14.* Luis Leal², Rice University, 2021

Visiting Scholars

- V1. Miras Mengdibayev, Purdue University, 2025–Present
- V2. Sai Coumar, Purdue University, 2024–Present

Academic Committees

- AC1. Phu An Pham, CS Ph.D., Advisor: Aniket Bera, Purdue University
 - ❖ Ph.D. Preliminary Exam, Feb. 2025
- AC2. Dipam Patel, CS Ph.D., Advisor: Aniket Bera, Purdue University
- AC3. Maheep Brar, CS MS, Advisor: Joseph Campbell, Purdue University
- AC4. Akshaya Agrawal, CS Ph.D., Advisor: Geoffrey Hollinger, Oregon State University

Service

Program Committee

◆ IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR), 2025

Associate Editor

- ◆ IEEE Robotics and Automation Letters (Planning and Simulation) (RA-L), 2024–Present
- ◆ IEEE International Conference on Robotics and Automation (ICRA), 2024–2025

Organizer

- RoboARCH: Robotics Acceleration with Computing Hardware and Systems, ICRA 2025
- ◆ Evaluating Motion Planning Performance Workshop, IROS 2022

² Award for Excellence in Poster Presentations, Rice Summer Undergraduate Research Symposium

Conference and Journal Referee Work

- Robotics: Science and Systems (RSS), 2024–2025
- ◆ IEEE Robotics and Automation Letters (RA-L), 2020–2025
- ◆ IEEE-RAS International Conference on Soft Robotics (RoboSoft), 2025
- ◆ IEEE International Conference on Robotics and Automation (ICRA), 2018, 2022–2025
- → Journal of Artificial Intelligence Research (JAIR), 2024
- ◆ IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020–2024
- ◆ IEEE Transactions on Robotics (T-RO), 2022–2023
- ◆ IEEE/ASME Transactions on Mechatronics, 2020
- ◆ IEEE Transactions on Automation Science and Engineering (T-ASE), 2020
- ◆ Workshop on the Algorithmic Foundations of Robotics (WAFR), 2020
- ❖ International Symposium on Robotics Research (ISRR), 2017

Government Activities

- ◆ Proposed topic for NSF Emerging Frontiers in Research and Innovation (EFRI), reached Blue Ribbon Panel. 2025
- Reviewer for the NASA Space Technology Graduate Research Opportunity (NSTGRO), 2025

Department Service

❖ Graduate Admissions Committee, AY 2024–2025

Other Service

- ◆ Maintainer of OMPL Motion Planning Software, Dec. 2021–Present
- ◆ Judge for Purdue SIGBots Slam and Jam VEXU Qualifier, Mar. 2025
- ❖ Core Contributor to the *Movelt* Robot Motion Planning Software, Mar. 2019–Jun. 2020
- Maintainer of the MoveIt Robot Motion Planning Software , Sep. 2018–Mar. 2019
- ◆ Computer Science Representative, Graduate Student Association, Mar. 2018–May 2020
- ◆ Consultant for Rice's Center for Academic and Professional Communication, Aug. 2018–May 2019
- ❖ Treasurer, Computer Science Graduate Student Association , Aug. 2017–May 2019
- ◆ Consultant for Robot Revolution Exhibit at the Museum of Science and Industry, Chicago, IL, Jan. 2015–May 2015
- ❖ Summer Swarm Robotics Camp Instructor at Rice University, Jul. 2014

Teaching

- *T1.* **Software Engineering for Robotics** (Spring 2025), Instructor of Record, CS 593-SER, Purdue University, 24 Enrolled
- T2. Robot Manipulation (Fall 2024), Instructor of Record, cs 592-RM1, Purdue University, 5 Enrolled
- *T3.* **Introduction to Robotics** (Fall 2024), Guest Lecturer, CS 458, Purdue University
- T4. Physical Computing (Spring 2024), Instructor of Record, сомр 650, Rice University, 11 Enrolled
- T.5. Algorithmic Robotics (Fall 2020), Lecturer, COMP/ELEC/MECH 450/550, Rice University
- *T6.* **Algorithmic Robotics** (Fall 2016–2019, 2022), Teaching Assistant, COMP/ELEC/MECH 450/550, Rice University
- *T* γ . **Introduction to Computer Systems** (Spring 2015, 2018), In-Lab Teaching Assistant, COMP 321, Rice University
- *T8.* **Introduction to Computational Thinking** (Fall 2015), In-Class Teaching Assistant, COMP 140, Rice University
- *Tg.* **Introduction to Engineering Systems** (Fall 2014), In-Class Teaching Assistant, ENGI 128, Rice University

Invited Talks

Talks are organized by talk title. If available, a link to a video of the talk is provided with the □ link.

Efficient and General Planning for Robot Manipulation

Purdue CS Graduate Symposium	at West Lafayette, IN	Mar. 2025
Purdue CS Graduate Seminar	at West Lafayette, IN	Oct. 2024
Purdue CS Honor's Seminar	at West Lafayette, IN	Sep. 2024
UCSD ECE Seminar	at La Jolla, CA	Mar. 2024
Purdue Computer Science Seminar	at West Lafayette, IN	Feb. 2024
Texas A&M Computer Science Seminar	at College Station, TX	Feb. 2024

Motions in Microseconds via Vectorized Sampling-Based Planning

Intelligent Autonomous Systems Group	virtual at TU Darmstadt, w/ Wil Thomason	Jan. 2024
Pumps & Pipes	at the ION, w/ Wil Thomason	Dec. 2023

Scaling Multi-Modal Planning

AI, ML, and Friends Seminar	virtual at ANU School of Computing	Feb. 2023
University of Utah Robotics Seminar	virtual	Jul. 2021
Learning and Intelligent Systems Lab	virtual at TU Berlin	Jul. 2021

Robonaut 2 and You: Specifying and Executing Complex Operations

International Workshop on AI-Powered Space	at the <mark>ION</mark>	Nov. 2023
Humanoid Users Conference	at NASA JSC	May 2017

Robowflex: Simplifying Planning and Benchmarking with MoveIt

2022 MoveIt Community Meeting	virtual	Fel	2022
ZUZZ MIOVCIL CUITITIUTILA MICCLITIS	VIII.UUI	161	J. ZUZZ

Open Source Software

Maintainer

The Open Motion Planning Library (OMPL) https://ompl.kavrakilab.org/ https://github.com/KavrakiLab/robowflex Robowflex MotionBenchMaker https://github.com/KavrakiLab/motion_bench_maker HyperPlan https://github.com/KavrakiLab/hyperplan Vector-Accelerated Motion Planner (VAMP) https://github.com/KavrakiLab/vamp Differentiable Vine Simulator https://github.com/CoMMALab/DiffVineSimPy Foam https://github.com/CoMMALab/foam GPU-Parallel RRT-Connect https://github.com/CoMMALab/pRRTC

Contributor

MoveIt Robot Motion Planning Software

https://moveit.ros.org/