

De la silhouette au squelette à la silhouette

La squelettisation

• Qu'est ce que c'est ?

• A quoi ça peut servir ?

Origines

Quelques propriétés du squelette

Homotopie

Préservation de la géométrie

Reconstructibilité

Fonctionnement

Partie 1

- Calcul de profondeur
 - → Simulation du « feu de forêt »
- Amincissement

original

profondeur

Fonctionnement

Partie 2

- Récupération du squelette
- Reconstitution approximative de la forme initiale

Déterminisation de profondeur

Pseudo-code

```
Entrée : Matrice de l'image

Debut

Pour chaque pixel de l'image :

Pour chaque orientation de l'image (haut-gauche,bas-gauche,haut-droite,bas-droite) :

Si le pixel appartient a l'image :

Si ses pixels précédent selon l'orientation n'appartiennent pas à l'image :

profondeur du pixel=1

sinon :

profondeur du pixel=plus petite profondeur précédente+1

Pour chaque pixel de l'image :

Affecter la plus petite profondeur entre les quatre a ce pixel.

Fin
```

Exemple

1	1	1 ∏	1				1	1	1
1 =	2 0	> Ž					2 ⊕		1
1 -	>ž □	⇒ š					3 <	þž ∢	≒ 1
1 -	≥ 2				2 <	ի 1			
1 -	2				2 <	1 □			
1	1	1		1	1	1			

Amincissement de l'image

Pseudo-code

Fin

```
Pour chaque niveau de profondeur :
Pour chaque pixel de ce niveau :
determiner les frontières du pixel (cotés n'appartenant pas a la forme)
Pour chaque point cardinal (N,S,E,O) :
Pour chaque points frontière de cette cardinalité :
si le pixel est simplifiable(voir plus bas) :
le marquer pour suppression
supprimer les pixels marqués.
```

Entrée : liste des pixels de la forme par ordre de profondeur

Explications

Relation de voisinage

8-voisinage (8d)

Point simple

4d

8d

Explications

Point terminal

- Un point avec un seul voisin ou isolé est toujours terminal
- Cela peut causer des filaments

Explications des tests

4d

Terminal

Terminal

Simple si jaune=1

Simple si jaune=1

Création des coordonnées du squelette

squelette

Dimension de l'image

Reconstitution

Pseudo-code

Entrée : Fichier « squelette » (dimensions de l'image et coordonées du squelette)

Debut

Pour chaque point du squelette :

Remplir chaque points dans les quatre directions a une distance correspondant à la profondeur du point originel (y compris en diagonale)

(optionnellement) si le point du squelette est une extrémité :

remplir chaque point autour de ce pixel à une distance euclidienne égale a sa profondeur.

Retourne une matrice de l'image reconstituée.

Fin

Exemple et démonstration

Conclusion et remerciements

Un grand merci à
Mr. François-Xavier DUPE
pour le temps qu'il nous a consacré
et son aide!