Comparing Rules for Identity in sequent systems & natural deduction

Greg Restall

PROOF THEORY VIRTUAL SEMINAR · 21 APRIL 2021

 $\verb|https://consequently.org/presentation/2021/comparing-identity-rules|$

My Aim

To explore different rules for an identity predicate in natural deduction and the sequent calculus.

My Plan

Sequent Calculus & Natural Deduction

Defining Rules

Defining Rules for Identity

Identity Axioms

SEQUENT CALCULUS

Intuitionistic Proofs & Derivations

A derivation of X > Abuilds a proof from X to A.

$$\frac{\frac{\mathsf{q} \mathrel{\succ} \mathsf{q}}{\mathsf{q}, \neg \mathsf{q} \mathrel{\succ} \mathsf{r}} \mathrel{\sim}^{\neg L}}{\frac{\mathsf{q}, \neg \mathsf{q} \mathrel{\succ} \mathsf{r}}{\mathsf{q}, \neg \mathsf{q} \mathrel{\succ} \mathsf{r}} \mathrel{\kappa}} \underset{\mathsf{r} \mathrel{\succ} \mathsf{r}}{\mathsf{r} \mathrel{\succ} \mathsf{r}} \mathrel{\vee}_{L}}{\mathsf{p} \mathrel{\rightarrow} (\mathsf{q} \mathrel{\vee} \mathsf{r}), \mathsf{p}, \neg \mathsf{q} \mathrel{\succ} \mathsf{r}} \underset{\mathsf{r} \mathrel{\rightarrow} (\mathsf{q} \mathrel{\vee} \mathsf{r}), \mathsf{p}}{\wedge} \mathrel{\neg}_{\mathsf{q}} \mathrel{\succ} \mathsf{r}} \underset{\mathsf{r} \mathrel{\rightarrow} \mathsf{q}}{\wedge}_{L}}{\mathsf{p} \mathrel{\rightarrow} (\mathsf{q} \mathrel{\vee} \mathsf{r}), \mathsf{p} \mathrel{\wedge} \neg \mathsf{q} \mathrel{\succ} \mathsf{r}} \underset{\mathsf{r} \mathrel{\rightarrow} \mathsf{q}}{\wedge}_{\mathsf{r}}} \underset{\mathsf{r} \mathrel{\rightarrow} \mathsf{r}}{\wedge}_{\mathsf{r}}$$

$$\frac{p \to (q \lor r) \quad \frac{[p \land \neg q]^2}{p}}{\frac{q \lor r}{}} \land_E \frac{\frac{[p \land \neg q]^2}{\neg q} \land_E [q]^1}{\frac{\sharp}{r} \stackrel{K}{K}} \neg_E} \xrightarrow{[r]^1} \lor_{E^1}}{\frac{r}{(p \land \neg q) \to r} \to l^2}$$

$$\frac{\frac{\mathsf{q} \succ \mathsf{q}}{\mathsf{q}, \neg \mathsf{q} \succ} \neg L}{\frac{\mathsf{q}, \neg \mathsf{q} \succ}{\mathsf{q}, \neg \mathsf{q} \succ} K} \xrightarrow{r \succ r} \lor L}$$

$$\frac{p \succ p}{p \to (\mathsf{q} \lor r), p, \neg \mathsf{q} \succ r} \to L$$

$$\frac{p \to (\mathsf{q} \lor r), p, \neg \mathsf{q} \succ r}{p \to (\mathsf{q} \lor r), p \land \neg \mathsf{q} \succ r} \land L$$

$$p \to (\mathsf{q} \lor r) \succ (p \land \neg \mathsf{q}) \to r} \to R$$

$$\frac{p \to (q \lor r) \quad \frac{[p \land \neg q]^2}{p}}{\frac{q \lor r}{}} \land_E \frac{\frac{[p \land \neg q]^2}{\neg q} \land_E \frac{[q]^1}{\frac{\sharp}{r} \, K} \neg_E}{\frac{\sharp}{r} \, K} \xrightarrow{[r]^1} \lor_{E^1}}{\frac{r}{(p \land \neg q) \to r} \to_{I^2}}$$

$$\frac{\frac{\mathsf{q} \mathrel{\succ} \mathsf{q}}{\mathsf{q}, \neg \mathsf{q} \mathrel{\succ} \mathsf{r}} \stackrel{\neg L}{\mathsf{k}}}{\frac{\mathsf{q}, \neg \mathsf{q} \mathrel{\succ} \mathsf{r}}{\mathsf{q}, \neg \mathsf{q} \mathrel{\succ} \mathsf{r}} \stackrel{\Gamma}{\mathsf{k}}}{\mathsf{r} \mathrel{\succ} \mathsf{r}} \bigvee_{\mathsf{k}} L}$$

$$\frac{\mathsf{p} \mathrel{\succ} \mathsf{p}}{\mathsf{p} \to (\mathsf{q} \lor \mathsf{r}), \mathsf{p}, \neg \mathsf{q} \mathrel{\succ} \mathsf{r}} \xrightarrow{\mathsf{k}} L}$$

$$\frac{\mathsf{p} \to (\mathsf{q} \lor \mathsf{r}), \mathsf{p} \land \neg \mathsf{q} \mathrel{\succ} \mathsf{r}}{\mathsf{p} \to (\mathsf{q} \lor \mathsf{r}), \mathsf{p} \land \neg \mathsf{q} \mathrel{\succ} \mathsf{r}} \xrightarrow{\mathsf{k}} L}$$

$$\frac{\mathsf{p} \to (\mathsf{q} \lor \mathsf{r}), \mathsf{p} \land \neg \mathsf{q} \mathrel{\succ} \mathsf{r}}{\mathsf{p} \to (\mathsf{q} \lor \mathsf{r}) \mathrel{\succ} (\mathsf{p} \land \neg \mathsf{q}) \to \mathsf{r}} \xrightarrow{\mathsf{k}} R}$$

$$\frac{p \to (\mathsf{q} \lor r) \ \frac{[p \land \neg \mathsf{q}]^2}{p}}{\frac{\mathsf{q} \lor r}{}^{} \to \mathsf{E}} \land \mathsf{E} \ \frac{\frac{[p \land \neg \mathsf{q}]^2}{\neg \mathsf{q}} \land \mathsf{E} \ \frac{[\mathsf{q}]^1}{\frac{\sharp}{r} \ \mathsf{K}} \ }{\frac{\sharp}{r} \ \mathsf{K}} \to \mathsf{E}^1} \xrightarrow{\mathsf{p} \to \mathsf{E}^1} \mathsf{K}$$

$$\frac{\frac{\mathsf{q} \mathrel{\succ} \mathsf{q}}{\mathsf{q}, \neg \mathsf{q} \mathrel{\succ} r} \overset{\neg L}{\underset{K}{\neg \mathsf{q}} \mathrel{\succ} r} \overset{\neg L}{\underset{K}{\neg \mathsf{q}} \mathrel{\succ} r} \vee_{L}}{\frac{\mathsf{q}, \neg \mathsf{q} \mathrel{\succ} r}{\mathsf{q} \mathrel{\vee} r, \neg \mathsf{q} \mathrel{\succ} r} \to_{L}} \xrightarrow{\mathsf{q} \mathrel{\vee} r, \neg \mathsf{q} \mathrel{\succ} r} \to_{L}} \frac{\mathsf{p} \mathrel{\rightarrow} (\mathsf{q} \mathrel{\vee} r), \mathsf{p}, \neg \mathsf{q} \mathrel{\succ} r}{\mathsf{p} \mathrel{\rightarrow} (\mathsf{q} \mathrel{\vee} r), \mathsf{p} \mathrel{\wedge} \neg \mathsf{q} \mathrel{\succ} r} \wedge_{L}} \xrightarrow{\mathsf{p} \mathrel{\wedge} \mathsf{q} \mathrel{\vee} r} \to_{R}} \times_{L}$$

$$\frac{p \to (q \lor r) \frac{[p \land \neg q]^2}{p} \land E}{\frac{q \lor r}{} \xrightarrow{\rightarrow E}} \land E \frac{\frac{[p \land \neg q]^2}{\neg q} \land E \frac{[q]^1}{r}}{\frac{\sharp}{r} K} \neg E}{\frac{r}{r} \land E} \xrightarrow{[r]^1} \lor E^1}$$

$$\frac{\frac{\mathsf{q} \mathrel{\succ} \mathsf{q}}{\mathsf{q}, \neg \mathsf{q} \mathrel{\succ} \mathsf{r}} \stackrel{\neg L}{\mathsf{q}}}{\frac{\mathsf{q}, \neg \mathsf{q} \mathrel{\succ} \mathsf{r}}{\mathsf{q}, \neg \mathsf{q} \mathrel{\succ} \mathsf{r}}} \stackrel{\neg L}{\mathsf{K}}}{\mathsf{q} \mathrel{\vee} \mathsf{r}, \neg \mathsf{q} \mathrel{\succ} \mathsf{r}} \vee L}$$

$$\frac{\mathsf{p} \mathrel{\succ} \mathsf{p}}{\frac{\mathsf{p} \mathrel{\rightarrow} (\mathsf{q} \mathrel{\vee} \mathsf{r}), \mathsf{p}, \neg \mathsf{q} \mathrel{\succ} \mathsf{r}}{\mathsf{p} \mathrel{\rightarrow} (\mathsf{q} \mathrel{\vee} \mathsf{r}), \mathsf{p}} \wedge \neg \mathsf{q} \mathrel{\succ} \mathsf{r}}}{\mathsf{p} \mathrel{\rightarrow} (\mathsf{q} \mathrel{\vee} \mathsf{r}), \mathsf{p}} \wedge \neg \mathsf{q} \mathrel{\succ} \mathsf{r}} \wedge L}$$

$$\frac{\mathsf{p} \mathrel{\rightarrow} (\mathsf{q} \mathrel{\vee} \mathsf{r}), \mathsf{p}}{\mathsf{p} \mathrel{\rightarrow} (\mathsf{q} \mathrel{\vee} \mathsf{r}), \mathsf{p}} \wedge \neg \mathsf{q} \mathrel{\succ} \mathsf{r}}}{\mathsf{p} \mathrel{\rightarrow} (\mathsf{q} \mathrel{\vee} \mathsf{r}), \mathsf{p}} \wedge \neg \mathsf{q} \mathrel{\succ} \mathsf{r}} \wedge L}$$

$$\frac{p \to (q \lor r)}{\frac{q \lor r}{p} \to E} \xrightarrow{AE} \frac{\frac{[p \land \neg q]^2}{\neg q} \land E}{\frac{\sharp}{r} K} \xrightarrow{R} \frac{[r]^1}{r} \to E} \frac{\frac{p \to (q \lor r)}{p} \to E}{\frac{r}{(p \land \neg q) \to r} \to I^2}$$

$$\frac{\frac{\mathsf{q} \mathrel{\succ} \mathsf{q}}{\mathsf{q}, \neg \mathsf{q} \mathrel{\succ} \mathsf{r}} \mathrel{\sim}_{L}}{\frac{\mathsf{q}, \neg \mathsf{q} \mathrel{\succ} \mathsf{r}}{\mathsf{q}, \neg \mathsf{q} \mathrel{\succ} \mathsf{r}} \mathrel{\kappa}} r \mathrel{\succ} \mathsf{r}} \underset{\mathsf{p} \mathrel{\rightarrow} (\mathsf{q} \mathrel{\vee} \mathsf{r}), \, \mathsf{p}, \neg \mathsf{q} \mathrel{\succ} \mathsf{r}}{\mathsf{p} \mathrel{\rightarrow} (\mathsf{q} \mathrel{\vee} \mathsf{r}), \, \mathsf{p}, \neg \mathsf{q} \mathrel{\succ} \mathsf{r}} \underset{\mathsf{p} \mathrel{\rightarrow} (\mathsf{q} \mathrel{\vee} \mathsf{r}), \, \mathsf{p}}{\mathsf{\wedge} \neg \mathsf{q} \mathrel{\succ} \mathsf{r}}} \overset{\mathsf{\wedge}_{L}}{\mathsf{\wedge}_{L}} \underset{\mathsf{p} \mathrel{\rightarrow} (\mathsf{q} \mathrel{\vee} \mathsf{r}) \mathrel{\succ} (\mathsf{p} \mathrel{\wedge} \neg \mathsf{q}) \mathrel{\rightarrow} \mathsf{r}}{\mathsf{p}} \overset{\mathsf{\wedge}_{R}}{\mathsf{q}} \underset{\mathsf{p} \mathrel{\sim} \mathsf{q}}{\mathsf{q}} \underset{\mathsf{q} \mathrel{\sim} \mathsf{q}}{\mathsf{q}} \underset{\mathsf{q}}{\mathsf{q}} \underset{\mathsf{q} \mathrel{\sim} \mathsf{q}}{\mathsf{q}} \underset{\mathsf{q}}{\mathsf{q}} \underset{\mathsf{q} \mathrel{\sim} \mathsf{q}}{\mathsf{q}} \underset{\mathsf{q} \mathrel{\sim} \mathsf{q}}{\mathsf{q}} \underset{\mathsf{q}}{\mathsf{q}} \underset{\mathsf{q}}{\mathsf{q}} \underset{\mathsf{q} \mathrel{\sim} \mathsf{q}}{\mathsf{q}} \underset{\mathsf{q} \mathrel{\sim} \mathsf{q}}{\mathsf{q}} \underset{\mathsf{q}}{\mathsf{q}} \underset{\mathsf{q}}{\mathsf{q}} \underset{\mathsf{q}}{\mathsf{q}} \underset{\mathsf{q}}{\mathsf{q}} \underset{\mathsf{q}}{\mathsf{q}} \underset{\mathsf{q}}{\mathsf{q}} \underset{\mathsf{q}}}{\mathsf{q}} \underset{\mathsf{q} \mathrel{\sim} \mathsf{q}}{\mathsf{q}} \underset{\mathsf{q} \mathrel{\sim} \mathsf{q}} \underset{\mathsf{q}}{\mathsf{q}} \underset{\mathsf{q}}{\mathsf{q}} \underset{\mathsf{q}}{\mathsf{q}} \underset{\mathsf{q}}{\mathsf{q}} \underset{\mathsf{q}}{\mathsf{q}} \underset{\mathsf{$$

$$\frac{p \to (q \lor r) \frac{[p \land \neg q]^2}{p} \land_E \frac{[p \land \neg q]^2}{\neg q} \land_E [q]^1}{\frac{\sharp}{r} K} \neg_E} \xrightarrow{\text{NATURAL DEDUCTION}} \frac{p \to (q \lor r) \frac{[p \land \neg q]^2}{p} \land_E [q]^1}{\frac{\sharp}{r} K} \lor_E^1} \lor_E^1$$

$$\frac{\frac{\mathsf{q} \mathrel{\succ} \mathsf{q}}{\mathsf{q}, \neg \mathsf{q} \mathrel{\succ} r} \mathrel{\sim}^{\neg L}}{\frac{\mathsf{q}, \neg \mathsf{q} \mathrel{\succ} r}{\mathsf{q}, \neg \mathsf{q} \mathrel{\succ} r} \mathrel{\wedge}^{K}} \underset{\rightarrow}{r \mathrel{\succ} r} \lor L}{\frac{\mathsf{p} \mathrel{\succ} \mathsf{p}}{\mathsf{p} \mathrel{\rightarrow} (\mathsf{q} \lor r), \mathsf{p}, \neg \mathsf{q} \mathrel{\succ} r} \mathrel{\rightarrow}^{L}}}{\frac{\mathsf{p} \mathrel{\rightarrow} (\mathsf{q} \lor r), \mathsf{p} \mathrel{\wedge} \neg \mathsf{q} \mathrel{\succ} r}{\mathsf{p} \mathrel{\rightarrow} (\mathsf{q} \lor r), \mathsf{p} \mathrel{\wedge} \neg \mathsf{q} \mathrel{\succ} r}} \mathrel{\wedge}^{L}}}{\mathsf{p} \mathrel{\rightarrow} (\mathsf{q} \lor r) \mathrel{\succ} (\mathsf{p} \mathrel{\wedge} \neg \mathsf{q}) \mathrel{\rightarrow} r}} \overset{\rightarrow}{\rightarrow}^{R}}$$

$$\frac{p \to (q \lor r) \quad \frac{[p \land \neg q]^2}{p}}{\frac{q \lor r}{}} \land_E \frac{\frac{[p \land \neg q]^2}{\neg q} \land_E [q]^1}{\frac{\sharp}{r} \stackrel{K}{K}} \xrightarrow{r} \frac{[r]^1}{\lor E^1}}{\frac{r}{(p \land \neg q) \to r} \to I^2} \lor_E I$$

$$\frac{\frac{\mathsf{q} \mathrel{\succ} \mathsf{q}}{\mathsf{q}, \neg \mathsf{q} \mathrel{\succ} r} \mathrel{\sim}^{\neg L}}{\frac{\mathsf{q}, \neg \mathsf{q} \mathrel{\succ} r}{\mathsf{q}, \neg \mathsf{q} \mathrel{\succ} r} \mathrel{\wedge}^{K}} \underset{\rightarrow}{r \mathrel{\succ} r} \lor L}{\frac{\mathsf{p} \mathrel{\succ} \mathsf{p}}{\mathsf{q} \mathrel{\vee} r, \neg \mathsf{q} \mathrel{\succ} r} \to L}} \xrightarrow{\mathsf{p} \mathrel{\sim} (\mathsf{q} \mathrel{\vee} r), \mathsf{p}, \neg \mathsf{q} \mathrel{\succ} r}} \land L}{\frac{\mathsf{p} \mathrel{\rightarrow} (\mathsf{q} \mathrel{\vee} r), \mathsf{p}, \neg \mathsf{q} \mathrel{\succ} r}{\mathsf{p} \mathrel{\rightarrow} (\mathsf{q} \mathrel{\vee} r), \mathsf{p} \mathrel{\wedge} \neg \mathsf{q} \mathrel{\succ} r}} \land L}{\mathsf{p} \mathrel{\rightarrow} (\mathsf{q} \mathrel{\vee} r) \mathrel{\succ} (\mathsf{p} \mathrel{\wedge} \neg \mathsf{q}) \to r}} \xrightarrow{\rightarrow} R}$$

$$\frac{p \to (\mathsf{q} \lor r)}{\frac{\mathsf{q} \lor r}{\mathsf{q}} \to E} \xrightarrow{\wedge E} \frac{\frac{[\mathsf{p} \land \neg \mathsf{q}]^2}{\neg \mathsf{q}} \land E}{\frac{\sharp}{\mathsf{r}} \mathsf{K}} \xrightarrow{\mathsf{r}} \frac{\mathsf{NATURAL DEDUCTION}}{[\mathsf{r}]^1} \\ \frac{\mathsf{r}}{(\mathsf{p} \land \neg \mathsf{q}) \to r} \to I^2$$

$$\frac{\frac{\mathsf{q} \mathrel{\succ} \mathsf{q}}{\mathsf{q}, \neg \mathsf{q} \mathrel{\succ} \mathsf{r}} \mathrel{\sim}^{\neg L}}{\frac{\mathsf{q}, \neg \mathsf{q} \mathrel{\succ} \mathsf{r}}{\mathsf{q}, \neg \mathsf{q} \mathrel{\succ} \mathsf{r}} \mathrel{\kappa} r \mathrel{\succ} \mathsf{r}}{\mathsf{q} \mathrel{\vee} \mathsf{r}, \neg \mathsf{q} \mathrel{\succ} \mathsf{r}} \mathrel{\vee}_{L}}$$

$$\frac{\mathsf{p} \mathrel{\succ} \mathsf{p}}{\frac{\mathsf{p} \mathrel{\rightarrow} (\mathsf{q} \mathrel{\vee} \mathsf{r}), \mathsf{p}, \neg \mathsf{q} \mathrel{\succ} \mathsf{r}}{\mathsf{p} \mathrel{\rightarrow} (\mathsf{q} \mathrel{\vee} \mathsf{r}), \mathsf{p} \mathrel{\wedge} \neg \mathsf{q} \mathrel{\succ} \mathsf{r}}} \mathrel{\wedge}_{L}}{\mathsf{p} \mathrel{\rightarrow} (\mathsf{q} \mathrel{\vee} \mathsf{r}), \mathsf{p} \mathrel{\wedge} \neg \mathsf{q} \mathrel{\succ} \mathsf{r}}} \mathrel{\wedge}_{L}$$

$$\frac{\mathsf{p} \mathrel{\rightarrow} (\mathsf{q} \mathrel{\vee} \mathsf{r}), \mathsf{p} \mathrel{\wedge} \neg \mathsf{q} \mathrel{\succ} \mathsf{r}}{\mathsf{p} \mathrel{\rightarrow} (\mathsf{q} \mathrel{\vee} \mathsf{r}), \mathsf{p} \mathrel{\wedge} \neg \mathsf{q} \mathrel{\succ} \mathsf{r}}} \mathrel{\wedge}_{L}$$

$$\frac{p \to (\mathsf{q} \lor \mathsf{r})}{\frac{\mathsf{q} \lor \mathsf{r}}{\mathsf{p}}} \xrightarrow{\to E} \frac{\frac{[\mathsf{p} \land \neg \mathsf{q}]^2}{\neg \mathsf{q}} \land E}{\frac{\sharp}{\mathsf{r}} \mathsf{K}} \xrightarrow{\mathsf{r}} \frac{\mathsf{NATURAL DEDUCTION}}{\mathsf{p}}$$

$$\frac{\mathsf{p} \to (\mathsf{q} \lor \mathsf{r})}{\frac{\mathsf{q} \lor \mathsf{r}}{\mathsf{p}} \to E} \xrightarrow{\to E} \frac{\frac{\mathsf{p} \land \neg \mathsf{q}}{\mathsf{p}} \land E}{\frac{\sharp}{\mathsf{r}} \mathsf{K}} \xrightarrow{\mathsf{r}} \frac{\mathsf{p}}{\mathsf{r}} \mathsf{K}$$

$$\frac{\mathsf{r}}{\mathsf{p} \land \neg \mathsf{q}} \to \mathsf{r}^2$$

$$\frac{\frac{\mathsf{q} \mathrel{\succ} \mathsf{q}}{\mathsf{q}, \neg \mathsf{q} \mathrel{\succ} \mathsf{r}} \mathrel{\sim}^{\neg L}}{\frac{\mathsf{q}, \neg \mathsf{q} \mathrel{\succ} \mathsf{r}}{\mathsf{q}, \neg \mathsf{q} \mathrel{\succ} \mathsf{r}} \mathrel{\kappa}} \underset{\mathsf{q} \mathrel{\vee} \mathsf{r}, \neg \mathsf{q} \mathrel{\succ} \mathsf{r}}{\mathsf{r} \mathrel{\succ} \mathsf{r}} \mathrel{\vee}_{\mathsf{L}}}{\frac{\mathsf{p} \mathrel{\rightarrow} (\mathsf{q} \mathrel{\vee} \mathsf{r}), \mathsf{p}, \neg \mathsf{q} \mathrel{\succ} \mathsf{r}}{\mathsf{p} \mathrel{\rightarrow} (\mathsf{q} \mathrel{\vee} \mathsf{r}), \mathsf{p} \mathrel{\wedge} \neg \mathsf{q} \mathrel{\succ} \mathsf{r}}} \underset{\mathsf{L}}{\wedge}_{\mathsf{L}}} \underset{\mathsf{d}}{\wedge}_{\mathsf{L}}}{} \underset{\mathsf{p} \mathrel{\rightarrow} (\mathsf{q} \mathrel{\vee} \mathsf{r}), \mathsf{p} \mathrel{\wedge} \neg \mathsf{q} \mathrel{\succ} \mathsf{r}}} \underset{\mathsf{p} \mathrel{\rightarrow} \mathsf{R}}{\wedge}_{\mathsf{L}}}$$

$$\frac{p \to (\mathsf{q} \lor \mathsf{r})}{\frac{\mathsf{q} \lor \mathsf{r}}{\mathsf{q}} \to E} \xrightarrow{\wedge E} \frac{\frac{[\mathsf{p} \land \neg \mathsf{q}]^2}{\neg \mathsf{q}} \land E}{\frac{\sharp}{\mathsf{r}} K} \xrightarrow{\mathsf{R}} \frac{\mathsf{NATURAL DEDUCTION}}{\mathsf{p}}$$

$$\frac{\mathsf{q} \lor \mathsf{r}}{\frac{\mathsf{q} \lor \mathsf{r}}{\mathsf{p}} \to E} \xrightarrow{\mathsf{r}} \frac{\mathsf{p}}{\mathsf{r}} \mathsf{r}$$

$$\frac{\mathsf{r}}{\mathsf{p} \land \neg \mathsf{q}) \to \mathsf{r}} \to I^2$$

The one proof can be built in different ways

$$\frac{p \succ p \qquad q \lor r \succ q \lor r}{p \to (q \lor r), p \succ q \lor r} \to L \qquad \frac{\frac{q \succ q}{q, \neg q \succ} \neg L}{q, \neg q \succ r} \land L \qquad r \succ r}{q \lor r, \neg q \succ r} \lor L$$

$$\frac{\frac{p \to (q \lor r), p, \neg q \succ r}{q \lor r, \neg q \succ r} \land L}{p \to (q \lor r), p, \neg q \succ r} \to R$$

$$\frac{p \to (q \lor r), p \land \neg q \succ r}{p \to (q \lor r) \succ (p \land \neg q) \to r} \to R$$

$$\frac{p \to (q \lor r) \frac{[p \land \neg q]^2}{p} \land_E}{\frac{q \lor r}{} \xrightarrow{\to E}} \land_E \frac{\frac{[p \land \neg q]^2}{\neg q} \land_E [q]^1}{\frac{\sharp}{r} K} \xrightarrow{r} F}{\frac{r}{(p \land \neg q) \to r} \to_I^2}$$

Classical derivations build . . . what?

$$\frac{\frac{p \succ p}{\succ \neg p, p} \neg_{R}}{\succ \neg p \lor p} \lor_{R} \qquad \frac{\frac{p \succ p, q}{\succ p, p \to q} \rightarrow_{R}}{\frac{(p \to q) \to p \succ p, p}{(p \to q) \to p \succ p}} \xrightarrow{W}$$

Add focus

From $P_1, P_2, P_3 \succ C_1, C_2, C_3$ to $P_1, P_2, P_3 \succ C_1; C_2, C_3$

Add focus

From $P_1, P_2, P_3 \succ C_1, C_2, C_3$ to $P_1, P_2, P_3 \succ C_1; C_2, C_3$

A focussed sequent has the shape X > C; Y where C is either a formula or is *empty*, and X and Y are finite multisets of formulas.

(The empty case corresponds to a proof of a contradiction.)

Add focus

From
$$P_1, P_2, P_3 \succ C_1, C_2, C_3$$
 to $P_1, P_2, P_3 \succ C_1; C_2, C_3$

A focussed sequent has the shape X > C; Y where C is either a formula or is empty, and X and Y are finite multisets of formulas.

(The empty case corresponds to a proof of a contradiction.)

A proof for P_1 , P_2 , $P_3 \succ C_1$; C_2 , C_3 is a proof of C_1 from the context P_1 , P_2 , P_3 (positive) and C_2^- , C_3^- (negative).

Focus, Defocus; Retrieve and Store

NATURAL DEDUCTION

$$\begin{bmatrix} A^{-} \end{bmatrix}$$

$$\frac{\pi}{A}$$
Retrieve

$$\frac{X \succ \; ; A, Y}{X \succ A; Y} \; \textit{Focus}$$

Focus, Defocus; Retrieve and Store

NATURAL DEDUCTION

$$\begin{array}{c}
[A^{-}] \\
\Pi \\
\frac{\sharp}{A} \text{ Retrieve}
\end{array}$$

$$\frac{X \succ ; A, Y}{X \succ A; Y} \text{ Focus}$$

$$\frac{A}{\parallel} \frac{A^{-}}{\parallel}$$
 Store

$$\frac{X \succ A; Y}{X \succ ; A, Y} \text{ Defocus}$$

SEQUENT CALCULUS

$\frac{\frac{p \succ p;}{p \succ ;p}}{\frac{p \succ p;}{p \succ q;p}} \xrightarrow{Focus} \frac{\frac{p \succ p;}{p \succ q;p}}{\frac{p \succ p;}{p \rightarrow q;p}} \xrightarrow{Pocus} \frac{p \succ p;}{\frac{(p \rightarrow q) \rightarrow p \succ p;p}{(p \rightarrow q) \rightarrow p \succ p;p}} \xrightarrow{Defocus} \frac{(p \rightarrow q) \rightarrow p \succ p;}{p \rightarrow p;p} \xrightarrow{Focus} \frac{p \succ p;}{p \rightarrow q;p} \xrightarrow{Focus} \frac{p \rightarrow q;}{p \rightarrow q;p} \xrightarrow{Focus} \frac{p \rightarrow p;}{p \rightarrow q;p} \xrightarrow{Focus} \frac{p \rightarrow q;}{p \rightarrow q;} \xrightarrow{Foc$

$$\frac{\frac{[p]^1 \ [p^-]^2}{\frac{\#}{q} \ \textit{Retrieve}}}{\frac{p}{p \to q} \to I^1} \\ \frac{p}{\frac{\#}{q} \ \textit{Retrieve}} Store$$

SEQUENT CALCULUS

$\frac{\frac{p \succ p;}{p \succ ;p}}{\frac{p \succ p;}{p \succ q;p}} \stackrel{\textit{Defocus}}{\textit{Focus}}$ $\frac{p \succ p;}{p \succ q;p} \xrightarrow{\rightarrow R} \xrightarrow{\rightarrow L}$ $\frac{(p \rightarrow q) \rightarrow p \succ p;p}{(p \rightarrow q) \rightarrow p \succ ;p,p} \xrightarrow{\textit{Pocus}}$ $\frac{(p \rightarrow q) \rightarrow p \succ p;}{(p \rightarrow q) \rightarrow p \succ p;} \xrightarrow{\textit{Focus}}$

$$\frac{\frac{[p]^1 \ [p^-]^2}{\frac{\#}{q} \ \textit{Retrieve}}}{\frac{[p \to q) \to p}{\frac{p}{p \to q}} \xrightarrow{\to E} \frac{[p^-]^2}{p}} \textit{Store}$$

SEQUENT CALCULUS

$$\frac{\frac{p \succ p,}{p \succ ;p}}{\frac{p \succ p;}{p \succ q;p}} \stackrel{Defocus}{\text{Focus}}$$

$$\frac{p \succ p;}{p \succ q;p} \xrightarrow{\rightarrow R} \xrightarrow{\rightarrow R}$$

$$\frac{(p \rightarrow q) \rightarrow p \succ p;p}{(p \rightarrow q) \rightarrow p \succ ;p,p} \stackrel{Defocus}{\text{Focus}}$$

$$\frac{(p \rightarrow q) \rightarrow p \succ p;}{(p \rightarrow q) \rightarrow p \succ p;}$$

$$\frac{\frac{[p]^1 \ [p^-]^2}{\frac{\#}{q} \ \textit{Retrieve}}}{\frac{[p \to q) \to p}{\frac{p}{p \to q} \to I^1}} \underbrace{\frac{p}{p \to q} \to I^1}_{\text{Retrieve}}$$

SEQUENT CALCULUS

$\frac{\frac{p \succ p;}{p \succ ;p}}{\frac{p \succ p;}{p \succ q;p}} \xrightarrow{Pocus} \frac{\frac{p \succ p;}{p \succ q;p}}{p \succ p;p} \xrightarrow{Pocus} \frac{Pocus}{(p \rightarrow q) \rightarrow p \succ p;p} \xrightarrow{Defocus} \frac{(p \rightarrow q) \rightarrow p \succ p;p}{(p \rightarrow q) \rightarrow p \succ p;} \xrightarrow{Focus} \frac{Pocus}{(p \rightarrow q) \rightarrow p \succ p;}$

$$\frac{\frac{[p]^1 \ [p^-]^2}{\frac{\#}{q} \ \textit{Retrieve}}}{\frac{[p \to q) \to p}{\frac{p}{p \to q} \to I^1}} \underbrace{\frac{p}{p \to q} \to I^1}_{\text{Retrieve}}$$

SEQUENT CALCULUS

$$\frac{\frac{p \succ p;}{p \succ ;p} \text{ Defocus}}{\frac{p \succ p;}{p \succ q;p} \text{ Focus}}$$

$$\frac{p \succ p;}{p \rightarrow q;p} \xrightarrow{\rightarrow R} \xrightarrow{\rightarrow L}$$

$$\frac{(p \rightarrow q) \rightarrow p \succ p;p}{(p \rightarrow q) \rightarrow p \succ ;p,p} \xrightarrow{\text{Pocus}}$$

$$\frac{(p \rightarrow q) \rightarrow p \succ p;}{(p \rightarrow q) \rightarrow p \succ p;}$$

$$\frac{\frac{[p]^1 \ [p^-]^2}{\frac{\#}{q} \ \textit{Retrieve}}}{\frac{\frac{\#}{q} \ \textit{Retrieve}}{\frac{p \longrightarrow q}{p \longrightarrow q} \longrightarrow I^1}}$$

$$\frac{p}{\frac{\#}{q} \ \textit{Retrieve}} \ \textit{Store}$$

SEQUENT CALCULUS

$\frac{\frac{p \succ p,}{p \succ ;p} \; \textit{Defocus}}{\frac{p \succ p;}{p \succ q;p} \; \textit{Focus}}$ $\frac{\frac{p \succ p;}{p \rightarrowtail q;p} \; \overset{\rightarrow R}{\rightarrow L}}{\frac{(p \rightarrow q) \rightarrow p \succ p;p}{(p \rightarrow q) \rightarrow p \succ ;p,p}} \; \overset{Defocus}{\xrightarrow{Focus}}$ $\frac{(p \rightarrow q) \rightarrow p \succ p;}{(p \rightarrow q) \rightarrow p \succ p;}$

$$\frac{\frac{[p]^1 \ [p^-]^2}{\frac{\sharp}{q} \ \textit{Retrieve}}}{\frac{p}{p \to q} \xrightarrow{\to E} \frac{[p^-]^2}{p} \ \textit{Store}}$$

SEQUENT CALCULUS

$\frac{\frac{p \succ p;}{p \succ ;p}}{\frac{p \succ p;}{p \succ q;p}} \xrightarrow{Focus} \frac{\frac{p \succ p;}{p \succ q;p}}{p \succ p;p} \xrightarrow{Defocus} \frac{(p \rightarrow q) \rightarrow p \succ p;p}{(p \rightarrow q) \rightarrow p \succ ;p,p} \xrightarrow{Focus} \frac{(p \rightarrow q) \rightarrow p \succ p;}{(p \rightarrow q) \rightarrow p \succ p;}$

$$\frac{\frac{[p]^1 \ [p^-]^2}{\frac{\#}{q} \ \textit{Retrieve}}}{\frac{p}{p \to q} \xrightarrow{\to E} \frac{[p^-]^2}{p} \ \textit{Store}}$$

SEQUENT CALCULUS

$$\frac{\frac{p \succ p;}{p \succ ;p}}{\frac{p \succ q;p}{p \succ q;p}} \xrightarrow{Focus} \frac{\frac{p \succ p;}{p \succ q;p}}{\xrightarrow{Pocus}} \xrightarrow{Pocus} \frac{Pocus}{(p \rightarrow q) \rightarrow p \succ p;p} \xrightarrow{Defocus} \frac{(p \rightarrow q) \rightarrow p \succ p;p}{(p \rightarrow q) \rightarrow p \succ p;} \xrightarrow{Focus}$$

$$\frac{\frac{[p]^{1} \ [p^{-}]^{2}}{\frac{\#}{q} \ Retrieve}}{\frac{p \rightarrow q) \rightarrow p}{\frac{p}{q} \rightarrow q} \xrightarrow{\rightarrow E} \frac{[p^{-}]^{2}}{\frac{\#}{q} \ Retrieve}}$$

SEQUENT CALCULUS

$$\frac{\frac{p \succ p;}{p \succ ;p}}{\frac{p \succ p;}{p \succ q;p}} \xrightarrow{Pocus} \frac{\frac{p \succ p;}{p \succ q;p}}{\frac{p \succ p;}{p \rightarrow q;p}} \xrightarrow{Pocus} \frac{Pocus}{(p \rightarrow q) \rightarrow p \succ p;p} \xrightarrow{Defocus} \frac{(p \rightarrow q) \rightarrow p \succ p;}{(p \rightarrow q) \rightarrow p \succ p;} \xrightarrow{Focus} \frac{Pocus}{(p \rightarrow q) \rightarrow p \succ p;}$$

$$\frac{\frac{[p]^1 \ [p^-]^2}{\frac{\#}{q} \ \textit{Retrieve}}}{\frac{p}{p \to q} \xrightarrow{\to E} \frac{[p^-]^2}{p} \ \textit{Store}}$$

That's Classical logic

Adding the Store/Retrieve rules to Gentzen-Prawitz Natural Deduction gives you a well-behaved, normalising natural deduction system for classical logic.

That's Classical logic

Adding the Store/Retrieve rules to Gentzen-Prawitz Natural Deduction gives you a well-behaved, normalising natural deduction system for classical logic.

(It's basically Michel Parigot's $\lambda\mu$ calculus.)

Interpreting Sequents with Focus

X > A; Y — a proof of A, from a context where X is asserted and Y is denied.

Interpreting Sequents with Focus

X > A; Y — a proof of A, from a context where X is asserted and Y is denied.

 $X \rightarrow Y$ — a refutation of asserting X and denying Y.

I'll pass freely between sequent derivations and natural deduction proofs with alternatives.

DEFINING RULES

What makes rules well behaved?

$$\frac{A \quad B}{A \wedge B} \wedge I \qquad \frac{A \wedge B}{A} \wedge E \quad \frac{A \wedge B}{B} \wedge E$$

What makes rules well behaved?

$$\frac{A \quad B}{A \wedge B} \wedge I \qquad \frac{A \wedge B}{A} \wedge E \quad \frac{A \wedge B}{B} \wedge E$$

$$\frac{A}{A \ tonk \ B} \ tonk B \qquad \frac{A \ tonk \ B}{B} \ tonk E$$

38

ANALYSIS

THE RUNABOUT INFERENCE-TICKET

By A. N. PRIOR

IT is sometimes alleged that there are inferences whose validity arises solely from the meanings of certain expressions occurring in them. The precise technicalities employed are not important, but let us say that such inferences, if any such there be, are analytically valid.

One sort of inference which is sometimes said to be in this sense analytically valid is the passage from a conjunction to either of its conjuncts, e.g., the inference 'Grass is green and the sky is blue, therefore grass is green'. The validity of this inference is said to arise solely from the meaning of the word 'and'. For if we are asked what is the meaning of the word 'and', at least in the purely conjunctive sense (as opposed to, e.g., its colloquial use to mean 'and then'), the answer is said to be completely given by saying that (i) from any pair of statements P and Q we can infer the statement formed by joining P to Q by 'and' (which statement we hereafter describe as 'the statement P-and-Q') that (ii)

One option . . .

One way to be analytically valid is to be a *definition* . . .

One option . . .

One way to be analytically valid is to be a definition . . .

... but $\triangle I$ and $\triangle E$ don't look much like definitions.

Invertible rules look *more* like definitions.

$$\frac{X,A,B \succ Z}{X,A \land B \succ Z} \land \textit{Df} \qquad \frac{X,A \succ B;Y}{X \succ A \rightarrow B;Y} \rightarrow \textit{Df} \qquad \frac{X,A \succ ;Y}{X \succ \neg A;Y} \neg \textit{Df}$$

They charaterise *one* aspect of the behaviour of the introduced concept (positively or negatively). The structural rules settle the rest.

Defining rules define

They are conservative and uniquely defining.

From Defining Rules to Left/Right Rules ...

 $\triangle L$ is one half of $\triangle Df$

From Defining Rules to Left/Right Rules ...

 $\triangle L$ is one half of $\triangle Df$

$$\frac{X' \succ B; Y'}{X \succ A , B \succ A \land B;} \stackrel{Id}{\underset{Cut}{\longrightarrow}} \frac{X' \succ B; Y'}{X', A \succ A \land B; Y'} \stackrel{Cut}{\underset{Cut}{\longrightarrow}} Cut$$

From Defining Rules to Left/Right Rules ...

$$\frac{X,A,B \succ Z}{X,A \land B \succ Z} \land \!\! \mathit{Dfl} \qquad \frac{X,A,B \succ Z}{X,A \land B \succ Z} \land \!\! \mathit{L}$$

 $\triangle L$ is one half of $\triangle Df$

$$\frac{X' \succ B; Y'}{X, X' \succ A \land B; Y'} \xrightarrow{A \land B \succ A \land B; Cut} \frac{X \succ A; Y \qquad X' \succ B; Y'}{X, X' \succ A \land B; Y, Y'} \land R$$

 $\land R$ is formed from the other half, using *Id* and *Cut*.

... and back

$$\frac{\overline{A \succ A;}^{Id} \ \overline{B \succ B;}^{Id}}{\underbrace{A, B \succ A \land B;}^{X, A \land B} \ \underset{Cut}{\times} \ X, A \land B \succ Z}_{Cut} \qquad \frac{X, A \land B \succ Z}{X, A, B \succ Z} \land Df \uparrow$$

We can recover $\triangle Df \uparrow$ from $\triangle R$, given *Id* and *Cut*, and $\triangle Df \downarrow$ is $\triangle L$.

$$\frac{\Delta \qquad \Delta' \qquad \qquad \Delta''}{X \succ A; Y \qquad X' \succ B; Y'} \land_{R} \qquad \frac{X'', A, B \succ Z''}{X'', A \land B \succ Z''} \land_{L}}{X, X', X'' \succ Z'', Y, Y'} \land_{Cut}$$

Unpacks into . . .

$$\frac{\Delta}{X \succ A; Y \qquad X' \succ B; Y'} \land_{R} \qquad \frac{\Delta''}{X', A, B \succ Z''} \land_{L} \\ \frac{X, X' \succ A \land B; Y, Y'}{X, X', X'' \succ Z'', Y, Y'} \land_{Cut}$$

Unpacks into . . .

$$\frac{\Delta'}{X \succ A; Y} \frac{\overline{A \land B \succ A \land B;}^{Id}}{X' \succ B; Y'} \xrightarrow{\overline{A \land B \succ A \land B;}^{Cut}} \frac{\Delta''}{Cut}$$

$$\frac{X \succ A; Y}{X', A \succ A \land B; Y'} \xrightarrow{Cut} \frac{\Delta''}{X'', A, B \succ Z''} \xrightarrow{Cut}$$

$$\frac{X, X' \succ A \land B; Y, Y'}{X'', X'' \succ Z'', Y, Y'} \xrightarrow{Cut}$$

$$\frac{\Delta \qquad \Delta' \qquad \qquad \Delta''}{X \succ A; Y \qquad X' \succ B; Y'} \land R \qquad \frac{X'', A, B \succ Z''}{X'', A \land B \succ Z''} \land L}{X, X', X'' \succ Z'', Y, Y'} \land L$$

Unpacks into . . .

$$\frac{\Delta'}{X \succ A; Y} \frac{\overline{A \land B \succ A \land B;}^{Id}}{X' \succ B; Y'} \xrightarrow{\overline{A \land B \succ A \land B;}^{Cut}} \frac{\Delta''}{Cut}$$

$$\frac{X \succ A; Y}{X', A \succ A \land B; Y'} \xrightarrow{Cut} \frac{\Delta''}{X'', A, B \succ Z''} \xrightarrow{Cut}$$

$$\frac{X, X' \succ A \land B; Y, Y'}{X'', X'' \succ Z'', Y, Y'} \xrightarrow{Cut} Cut$$

Permuting the *Cuts*, this becomes . . .

Permuting the Cuts, this becomes ...

$$\frac{\overline{A \land B \succ A \land B}}; \stackrel{Id}{\land} \frac{\Delta''}{X'', A, B \succ Z''} \land Df1$$

$$\Delta \qquad \qquad X' \succ B; Y' \qquad \qquad X'', A, B \succ Z'' \qquad Cut$$

$$X \succ A; Y \qquad \qquad X', A \succ Z'', Y'$$

$$X, X', X'' \succ Z'', Y, Y'$$
Cut

... which (since the $Id/Df\uparrow/Df\downarrow/Cut$ detour is redundant) simplifies to:

Permuting the *Cuts*, this becomes . . .

$$\frac{\Delta'}{A \land B \succ A \land B;} \stackrel{Id}{\underset{A,B \succ A \land B;}{\Delta'}} \frac{\Delta''}{X'',A,B \succ Z''} \land Df \downarrow$$

$$\frac{\Delta'}{X \succ A;Y} \frac{X' \succ B;Y'}{X'',A \succ Z'',Y'} \stackrel{Cut}{\underset{Cut}{X'',A \succ Z'',Y'}} \land Df \downarrow$$

... which (since the $Id/Df\uparrow/Df\downarrow/Cut$ detour is redundant) simplifies to:

$$\frac{\Delta}{X \succ A; Y} \frac{X' \succ B; Y' \qquad X'', A, B \succ Z''}{X', A \succ Z'', Y'}_{X, X', X'' \succ Z'', Y, Y'}_{Cut}$$

$\triangle Df$ in Natural Deduction

SEQUENT CALCULUS

NATURAL DEDUCTION

$$\frac{X, A, B \succ Z}{X, A \land B \succ Z} \land Df \downarrow$$

$$\begin{array}{ccc}
 & [A, B] \\
 & \Pi \\
 & C \\
 \hline
 & C
\end{array}$$

∧Df in Natural Deduction

SEQUENT CALCULUS

NATURAL DEDUCTION

$$\frac{X,A,B\succ Z}{X,A\land B\succ Z} \land \texttt{Dfl}$$

$$\begin{array}{ccc} & [A,B] \\ & \Pi \\ \hline A \wedge B & C \\ \hline C & \wedge E \end{array}$$

$$\frac{X,A \wedge B \succ Z}{X,A,B \succ Z} \land Df \cap$$

$$\frac{A \quad B}{A \wedge B} \wedge I \\ \Pi$$

Conservativity and Unique Definability

Cut Elimination and the Subformula Property for rules other than Cut gives Conservative Extension.

Conservativity and Unique Definability

Cut Elimination and the Subformula Property for rules other than Cut gives Conservative Extension.

The shape of the defining rules gives Uniqueness.

Defining Rules and Generality

$$\frac{X \succ A(n); Y}{X \succ \forall x A(x); Y} \forall \textit{Df}$$

Defining Rules and Generality

$$\frac{X \succ A(n); Y}{X \succ \forall x A(x); Y} \forall \textit{Df}$$

n is absent from the lower sequent, and it must be *inferentially general*.

Specification as a Rule

$$\frac{\forall x Fx \succ \forall x Fx;}{\forall x Fx \succ Fn;} \forall Df \uparrow$$

$$\frac{\forall x Fx \succ Fn;}{\forall x Fx \succ Ft;}$$

Specification as a Rule

$$\frac{\forall x Fx \succ \forall x Fx;}{\forall x Fx \succ Fn;} \forall \textit{Df} \uparrow \\ \frac{\forall x Fx \succ Fn;}{\forall x Fx \succ Ft;}$$

Specification as a Rule

$$\frac{\forall x Fx \succ \forall x Fx;}{\forall x Fx \succ Fn;} \forall Df \uparrow \\ \frac{\forall x Fx \succ Fn;}{\forall x Fx \succ Ft;}$$

$$\frac{X \succ Z}{X[n/t] \succ Z[n/t]} \textit{Spec}_t^n$$

The Status of Spec

Spec, like *Id* and *Cut*, are primitive rules in the system with *Df* rules.

The Status of Spec

Spec, like *Id* and *Cut*, are primitive rules in the system with *Df* rules.

Spec is admissible (height preserving admissible, in fact) as are *Id* (for complex formulas) and *Cut* in the system with *L/R* rules.

DEFINING RULES

FOR IDENTITY

Identity and Harmony

Identity and harmony

STEPHEN READ

1. Harmony

The inferentialist account of logic says that the meaning of a logical operator is given by the rules for its application. Prior (1960–61) showed that a simple and straightforward interpretation of this account of logicality reduces to absurdity. For if "tonk" has the meaning given by the rules Prior proposed for it, contradiction follows. Accordingly, a more subtle interpretation of inferentialism is needed. Such a proposal was put forward initially by Gentzen (1934) and elaborated by, e.g., Prawitz (1977). The meaning of a logical expression is given by the rules for the assertion of statements containing that expression (as designated component); these are its introduction-rules. The meaning so given justifies further rules for drawing inferences from such assertions; these are its elimination-rules:

The introductions represent, as it were, the 'definitions' of the symbols concerned, and the eliminations are no more, in the final analysis, than the consequence of these definitions. (Gentzen 1934: 80)

For example, if the only ground for assertion of 'p tonk q' is given by Prior's rule:

$$\frac{p}{p \text{ tonk } q} \text{ tonk-I}$$

then Prior mis-stated the elimination-rule. It should read

$$\frac{p \text{ tonk } q - r}{r} \text{ tonk-E}$$

$$\frac{X, Fa \succ Fb; Y \qquad X, Fb \succ Fa; Y}{X \succ a = b; Y} = Df$$

(Here, F is *inferentially general*, and absent from the lower sequent.)

$$\frac{X, Fa \succ Fb; Y \qquad X, Fb \succ Fa; Y}{X \succ a = b; Y} = Df$$

(Here, F is inferentially general, and absent from the lower sequent.)

Denying a = b has the same significance as taking there to be *some* feature F that holds of a but not b, or *vice versa*.

$$\frac{X, Fa \succ Fb; Y \qquad X, Fb \succ Fa; Y}{X \succ a = b; Y} = Df$$

(Here, F is inferentially general, and absent from the lower sequent.)

Denying a = b has the same significance as taking there to be some feature F that holds of a but not b, or vice versa.

Or equivalently, to prove that a = b, prove Fb from the assumption Fa (and *vice versa*), where the predicate F is *arbitrary*.

$$\frac{X, Fa \succ Fb; Y \qquad X, Fb \succ Fa; Y}{X \succ a = b; Y} = Df$$

(Here, F is inferentially general, and absent from the lower sequent.)

Denying a = b has the same significance as taking there to be *some* feature F that holds of a but not b, or *vice versa*.

Or equivalently, to prove that a = b, prove Fb from the assumption Fa (and *vice versa*), where the predicate F is *arbitrary*.

Identity is a kind of indistinguishability.

=Df↑ in Natural Deduction

SEQUENT CALCULUS

$$\frac{X \succ \alpha = b; Y}{X, F\alpha \succ Fb; Y} = \text{Dft}_1 \qquad \frac{X \succ \alpha = b; Y}{X, Fb \succ F\alpha; Y} = \text{Dft}_2$$

=Df↑ in Natural Deduction

SEQUENT CALCULUS

$$\frac{X \succ \alpha = b; Y}{X, \texttt{F}\alpha \succ \texttt{F}b; Y} = \texttt{Df} \upharpoonright_1 \qquad \frac{X \succ \alpha = b; Y}{X, \texttt{F}b \succ \texttt{F}\alpha; Y} = \texttt{Df} \upharpoonright_2$$

NATURAL DEDUCTION

$$\frac{\Pi}{a = b \quad Fa}_{Fb} = E_1 \qquad \frac{\Pi}{a = b \quad Fb}_{Fa} = E_2$$

=Df↑ in Natural Deduction

SEQUENT CALCULUS

$$\frac{X \succ \alpha = b; Y}{X, F\alpha \succ Fb; Y} \stackrel{= \textit{Df} \uparrow_1}{\underset{X, P\alpha \succ Pb; Y}{\text{Spec}_P^F}} \qquad \frac{X \succ \alpha = b; Y}{\underset{X, Fb \succ F\alpha; Y}{\text{X}}} \stackrel{= \textit{Df} \uparrow_2}{\underset{Y}{\text{Spec}_P^F}}$$

$$\frac{\Pi}{a = b \quad Pa}_{Pb} = E_1 \qquad \frac{\Pi}{a = b \quad Pb}_{Pa} = E_2$$

$$\frac{X, Fa \succ Fb; Y \quad X, Fb \succ Fa; Y}{X \succ a = b; Y} = \underbrace{Df} \qquad \frac{X \succ A[x/a]; Y}{X \succ (\lambda x. A)a; Y} \lambda Df \qquad \frac{X \succ Z}{X[F/P] \succ Z[F/P]} \textit{Spec}_{P}^{F}$$

$$\begin{array}{c|c} \underline{Fa \succ Fa;} & \underline{Fa \succ Fa;} \\ \underline{ \succ a = a;} \\ \underline{ \succ (\lambda x. x = a)a;} & \underline{\lambda Df \downarrow} \\ \\ \underline{ \begin{array}{c} a = b \succ a = b; \\ \hline a = b, Fa \succ Fb; \end{array}} = \underline{Df \uparrow} \\ \underline{ \begin{array}{c} a = b \succ (\lambda x. x = a)a \succ (\lambda x. x = a)b; \\ \hline a = b \succ (\lambda x. x = a)b; \\ \hline a = b \succ b = a; \end{array}} \\ \underline{ \begin{array}{c} a = b \succ (\lambda x. x = a)b; \\ \hline a = b \succ b = a; \end{array}}$$

$$\frac{X, Fa \succ Fb; Y \quad X, Fb \succ Fa; Y}{X \succ a = b; Y} = Df \qquad \frac{X \succ A[x/a]; Y}{X \succ (\lambda x. A)a; Y} \xrightarrow{\text{λDf$}} \qquad \frac{X \succ Z}{X[F/P] \succ Z[F/P]} \textit{Spec}_{P}^{F}$$

$$\frac{F\alpha \succ F\alpha; \quad F\alpha \succ F\alpha;}{ \succ \alpha = \alpha;} \xrightarrow{Df\downarrow} \frac{\alpha = b \succ \alpha = b;}{\alpha = b, F\alpha \succ Fb;} \xrightarrow{Df\uparrow} \frac{}{\alpha = b, (\lambda x. x = \alpha)\alpha \succ (\lambda x. x = \alpha)b;} \xrightarrow{Cut} \frac{\alpha = b \succ (\lambda x. x = \alpha)b;}{\alpha = b \succ (\lambda x. x = \alpha)b;} \xrightarrow{\Delta Df\uparrow}$$

$$\frac{X, Fa \succ Fb; Y \quad X, Fb \succ Fa; Y}{X \succ a = b; Y} = \underbrace{Df} \qquad \frac{X \succ A[x/a]; Y}{X \succ (\lambda x. A)a; Y} \lambda Df \qquad \frac{X \succ Z}{X[F/P] \succ Z[F/P]} \ \mathit{Spec}_{P}^{F}$$

$$\frac{F\alpha \succ F\alpha; \quad F\alpha \succ F\alpha;}{\succ \alpha = \alpha;} \xrightarrow{\lambda Df\downarrow} \frac{\frac{\alpha = b \succ \alpha = b;}{\alpha = b, F\alpha \succ Fb;} = Df\uparrow}{\frac{\alpha = b, F\alpha \succ Fb;}{\alpha = b, (\lambda x. x = \alpha)\alpha \succ (\lambda x. x = \alpha)b;}} \xrightarrow{Spec_{(\lambda x. x = \alpha)}^F} Cut$$

$$\frac{X, Fa \succ Fb; Y \quad X, Fb \succ Fa; Y}{X \succ a = b; Y} = Df \qquad \frac{X \succ A[x/a]; Y}{X \succ (\lambda x. A)a; Y} \ \lambda Df \qquad \frac{X \succ Z}{X[F/P] \succ Z[F/P]} \ \textit{Spec}_{p}^{F}$$

$$\frac{F\alpha \succ F\alpha; \quad F\alpha \succ F\alpha;}{\succ \alpha = \alpha;} \xrightarrow[]{Df} \frac{\frac{\alpha = b \succ \alpha = b;}{\alpha = b, F\alpha \succ Fb;}} = Df \uparrow \frac{}{\alpha = b, F\alpha \succ Fb;} = Df$$

$$\frac{X, Fa \succ Fb; Y \quad X, Fb \succ Fa; Y}{X \succ a = b; Y} = Df \qquad \frac{X \succ A[x/a]; Y}{X \succ (\lambda x. A)a; Y} \lambda Df \qquad \frac{X \succ Z}{X[F/P] \succ Z[F/P]} \ \textit{Spec}_{p}^{F}$$

$$\frac{X, Fa \succ Fb; Y \quad X, Fb \succ Fa; Y}{X \succ a = b; Y} = Df \qquad \frac{X \succ A[x/a]; Y}{X \succ (\lambda x. A)a; Y} \xrightarrow{\text{λDf$}} \qquad \frac{X \succ Z}{X[F/P] \succ Z[F/P]} \; \textit{Spec}_{p}^{F}$$

$$\frac{F\alpha \succ F\alpha; \quad F\alpha \succ F\alpha;}{\succ \alpha = \alpha;} \xrightarrow{Df\downarrow} \frac{\alpha = b \succ \alpha = b;}{\alpha = b, F\alpha \succ Fb;} \xrightarrow{Df\uparrow} \frac{spec_{(\lambda x. x = \alpha)}^{F}}{a = b, (\lambda x. x = \alpha)a \succ (\lambda x. x = \alpha)b;} \xrightarrow{Cut} \frac{\alpha = b \succ (\lambda x. x = \alpha)b;}{\alpha = b \succ b = \alpha;}$$

From Defining Rules to L/R rules: $=Df \downarrow$ is =R

$$\frac{X, Fa \succ Fb; Y \quad X, Fb \succ Fa; Y}{X \succ a = b; Y} = \text{Dfl}$$

Deriving = L rules

$$\frac{\frac{a=b \succ a=b;}{a=b, Fa \succ Fb;}}{\frac{a=b, Fa \succ Fb;}{a=b, Pa \succ Pb;}} \stackrel{\textit{Spec}_{P}^{F}}{\underset{\textit{Cut}}{\text{Cut}}} \frac{X \succ Pa; Y \qquad \qquad X', Pb \succ Z'}{a=b, X, X' \succ Z', Y}$$

Deriving = L rules

$$\frac{a = b \succ a = b;}{\frac{a = b, Fa \succ Fb;}{a = b, Pa \succ Pb;}} \stackrel{\textit{Df} \uparrow}{\underset{\textit{Cut}}{\text{Spec}_{P}^{F}}}$$

$$\frac{X \succ Pa; Y \qquad a = b, Pa \succ Pb;}{a = b, X \succ Pb; Y \qquad X', Pb \succ Z'} \stackrel{\textit{Cut}}{\underset{\textit{Cut}}{\text{Cut}}}$$

$$\frac{X \succ Pa; Y \qquad X', Pb \succ Z'}{a = b, X, X' \succ Z', Y} = L_1$$

Deriving = L rules

$$\frac{a = b \succ a = b;}{\frac{a = b, Fb \succ Fa;}{a = b, Fb \succ Fa;}} \stackrel{\textit{Df} \uparrow}{\underset{\textit{Cut}}{\text{Spec}_{P}^{F}}}$$

$$\frac{X \succ Pb; Y \qquad a = b, Pb \succ Pa;}{a = b, X \succ Pa; Y \qquad \qquad X', Pa \succ Z'} \stackrel{\textit{Cut}}{\underset{\textit{Cut}}{\text{Cut}}}$$

$$\frac{X \succ Pa; Y \quad X', Pb \succ Z'}{a = b, X, X' \succ Z', Y} = L_1 \quad \frac{X \succ Pb; Y \quad X', Pa \succ Z'}{a = b, X, X' \succ Z', Y} = L_2$$

Comparing L/R rules and I/E rules

SEQUENT CALCULUS

$$\frac{X, Fa \succ Fb; Y \qquad X, Fb \succ Fa; Y}{X \succ a = b; Y} = L$$

$$\begin{aligned} & [Fa] & [Fb] \\ & \Pi & \Pi' \\ & \frac{Fb}{a} & Fa \\ & a = b \end{aligned} = I$$

Comparing L/R rules and I/E rules

SEQUENT CALCULUS

$$\frac{X, Fa \succ Fb; Y \qquad X, Fb \succ Fa; Y}{X \succ a = b; Y} = L$$

$$\frac{X \succ Pa; Y \qquad X', Pb \succ Z'}{a = b, X, X' \succ Z', Y} = L_1$$

$$\frac{a = b \qquad Pa}{Pb \qquad Fb} = E_2$$

Comparing L/R rules and I/E rules

SEQUENT CALCULUS

$$\frac{X, Fa \succ Fb; Y \qquad X, Fb \succ Fa; Y}{X \succ a = b; Y} = L$$

$$\frac{X \succ Pa; Y \qquad X', Pb \succ Z'}{a = b, X, X' \succ Z', Y} = L_1$$

$$\frac{X \succ Pb; Y \qquad X', Pa \succ Z'}{a = b, X, X' \succ Z', Y} = L_2$$

$$\frac{a = b}{Pb} \frac{Pa}{Pb} = E_2$$

$$\frac{a = b \quad Pb}{Pa}_{Ba} = E_2$$

Our Symmetry Derivation in Natural Deduction

$$\frac{[Fa] \quad [Fa]}{a = a} = I$$

$$\frac{(\lambda x. x = a)a}{\lambda I} \quad a = b$$

$$\frac{(\lambda x. x = a)b}{b = a} \lambda E$$

With these Left/Right Rules . . .

Spec is height-preserving admissible.

We can eliminate *Cut*, as usual.

But eliminating Cut hardly seems worth it!

$$\frac{X, Fa \succ Fb; Y \qquad X, Fb \succ Fa; Y}{X \succ a = b; Y} = R$$

Each rule breaks the subformula property. =R might be excusable (by analogy with $\forall R/\exists L$), but in =L, P can be any predicate, primitive or complex.

But eliminating Cut hardly seems worth it!

$$\frac{X, Fa \succ Fb; Y \qquad X, Fb \succ Fa; Y}{X \succ a = b; Y} = R$$

$$\frac{X \succ P\alpha; Y \quad X', Pb \succ Z'}{\alpha = b, X, X' \succ Z', Y} = L_1 \quad \frac{X \succ Pb; Y \quad X', P\alpha \succ Z'}{\alpha = b, X, X' \succ Z', Y} = L_2$$

Each rule breaks the subformula property. =R might be excusable (by analogy with $\forall R/\exists L$), but in =L, P can be any predicate, primitive or complex.

For analytic rules, we must look elsewhere.

IDENTITY AXIOMS

The Power of Reflexivity

$$\frac{X, Fa \succ Fb; Y \qquad X, Fb \succ Fa; Y}{X \succ a = b; Y} = \mathbb{R}$$

=R says that we have a = b if we can transport a-features to b (and *vice versa*).

The Power of Reflexivity

$$\frac{X, Fa \succ Fb; Y \qquad X, Fb \succ Fa; Y}{X \succ a = b; Y} = \mathbb{R}$$

=R says that we have a = b if we can transport a-features to b (and *vice versa*).

So we are in a position to transport α -features to b, and if we already knew that being identical to α was an α -feature, then that's enough show that α is identical to α .

From Rules to Axioms: from =R to Refl

$$\overline{\succ \alpha = \alpha;}^{\text{ Refl}}$$

From Rules to Axioms: from =R to Refl

$$\overline{\succ a = a}$$
; Refl

$$\frac{Fa \succ Fa; \quad Fa \succ Fa;}{ \succ a = a;} = \mathbb{R}$$

And Refl is enough to recover =R

Replace this:

$$\frac{\Delta_{1}}{X, \texttt{Fa} \succ \texttt{Fb}; Y} \quad \begin{array}{c} \Delta_{2} \\ X, \texttt{Fb} \succ \texttt{Fa}; Y \\ X \succ \alpha = b; Y \end{array} =_{R}$$

And *Refl* is enough to recover =R

Replace this:

$$\frac{\Delta_{1}}{X, Fa \succ Fb; Y} \frac{\Delta_{2}}{X, Fb \succ Fa; Y}_{=R} = 0$$

With this:

$$\begin{array}{c|c} \overline{ \begin{array}{c} \overline{ \ } \ } \overline{ \ } \\ \overline{ \begin{array}{c} \ } \ \\ \overline{ \ } \ \\ \overline{ \ } \ \\ \overline{ \begin{array}{c} \ \\ \ \\ \ \\ \ \end{array} } \end{array} \begin{array}{c} \Delta_1[F/\lambda x.(\alpha=x)] \\ \overline{ \begin{array}{c} \ \\ \ \\ \ \\ \ \end{array} } \\ \overline{ \begin{array}{c} \ \\ \ \\ \ \\ \ \end{array} \begin{array}{c} X,\lambda x.(\alpha=x)\alpha \succ \lambda x.(\alpha=x)b; Y \\ \overline{ \begin{array}{c} \ \\ \ \\ \ \end{array} \end{array} \begin{array}{c} Cut \\ \overline{ \begin{array}{c} \ \\ \ \\ \ \end{array} \end{array} } \end{array} \begin{array}{c} Cut \\ \overline{ \begin{array}{c} \ \\ \ \\ \ \end{array} \begin{array}{c} X \succ \lambda x.(\alpha=x)b; Y \\ \hline X \succ \alpha=b; Y \end{array} \end{array}$$

The Problem with =L

$$\frac{X \succ P\alpha; Y \qquad X', Pb \succ Z'}{\alpha = b, X, X' \succ Z', Y} = _{L_1} \quad \frac{X \succ Pb; Y \qquad X', P\alpha \succ Z'}{\alpha = b, X, X' \succ Z', Y} = _{L_2}$$

This looks just like a *Cut* on Pa/Pb, at the cost of granting a = b.

From =L to =L.ax and back.

$$\frac{}{a=b, Pa \succ Pb;} \stackrel{=\text{L.ax}_1}{=a=b, Pb \succ Pa;} \stackrel{=\text{L.ax}_2}{=a=b, Pb \succ Pa;}$$

From =L to =L.ax and back.

$$\overline{a=b, Pa \succ Pb;}^{=\text{L.ax}_1} \quad \overline{a=b, Pb \succ Pa;}^{=\text{L.ax}_2}$$

$$\frac{\mathsf{Pa} \succ \mathsf{Pa};}{\mathsf{a} = \mathsf{b}, \mathsf{Pa} \succ \mathsf{Pb};} = L_1 \qquad \frac{\mathsf{Pb} \succ \mathsf{Pb};}{\mathsf{a} = \mathsf{b}, \mathsf{Pb} \succ \mathsf{Pa};} = L_2$$

From =L to =L.ax and back.

$$\overline{a = b, Pa \succ Pb}$$
; =L.ax₁ $\overline{a = b, Pb \succ Pa}$; =L.ax₂

$$\frac{X \times Pa; Y \qquad \overline{a = b, Pa \times Pb;}}{a = b, X \times Pb; Y \qquad \qquad Cut} = L.ax_1$$

$$\underline{a = b, X \times Pb; Y \qquad \qquad X', Pb \times Z'}$$

$$\underline{a = b, X, X' \times Z', Y}$$

$$\frac{X \times Pb; Y \qquad \overline{a = b, Pb \times Pa;}}{a = b, X \times Pa; Y \qquad \qquad Cut}$$

$$\underline{a = b, X \times Pa; Y \qquad \qquad X', Pa \times Z'}$$

$$\underline{a = b, X, X' \times Z', Y}$$

$$\underline{Cut}$$

We can restrict =L.ax to primitive predicates

$$\frac{\overline{\alpha = b, P\alpha \succ Pb;}^{=L.ax_1}}{\overline{\alpha = b, P\alpha \land Q\alpha \succ Pb;}^{AL}} \frac{\overline{\alpha = b, Q\alpha \succ Qb;}^{=L.ax_1}}{\overline{\alpha = b, P\alpha \land Q\alpha \succ Qb;}^{AL}} \stackrel{\wedge L}{\underset{\wedge R}{\wedge}} \frac{\alpha = b, P\alpha \land Q\alpha \succ Qb;}{\underset{\alpha = b, \lambda x. (Px \land Qx)\alpha \succ \lambda x. (Px \land Qx)b;}{\wedge}} ^{\land L}$$

We can restrict =L.ax to primitive predicates

$$\frac{\overline{a = b, Pb \succ Pa;}}{\overline{a = b, Pb, \neg Pa \succ ;}}^{\neg L}_{\neg R}$$

$$\frac{\overline{a = b, Pb, \neg Pa \succ ;}^{\neg R}_{\neg R}}{\overline{a = b, \neg Pa \succ \neg Pb;}}^{\neg R}$$

$$\overline{a = b, \lambda x. (\neg Px) a \succ \lambda x. (\neg Px) b;}^{\lambda}$$

We can restrict =L.ax to primitive predicates

$$\frac{\overline{a = b, Pac \succ Pbc;}^{=L.ax_2}}{\overline{a = b, \forall y Pay \succ Pbc;}^{\neg L}}^{-L}$$

$$\frac{\overline{a = b, \forall y Pay \succ \forall y Pby;}^{\neg R}}{\overline{a = b, \lambda x.(\forall y Pxy)a \succ \lambda x.(\forall y Pxy)b;}}^{\lambda}$$

Identity axioms in Natural Deduction

SEQUENT CALCULUS

$$\overline{\hspace{0.2cm} \succ \alpha = \alpha;} \ ^{\textit{Refl}}$$

$$a = a$$

Identity axioms in Natural Deduction

SEQUENT CALCULUS

$$\overline{\succ \alpha = \alpha;}^{\textit{Refl}}$$

$$\mathfrak{a}=\mathfrak{a}$$

$$\frac{}{a = b, Pa > Pb;}$$
 L.ax₁

$$\frac{a = b}{Pb} = Pa$$

$$\overline{a = b, Pb \succ Pa}$$
; L.ax₂

$$\frac{a=b}{Pa} = \frac{Pb}{P}$$

Now eliminate Cut

Now that identity is given by axioms, Cut elimination proceeds largely like the system without identity.

Now that identity is given by axioms, *Cut* elimination proceeds largely like the system *without* identity.

$$\frac{\overline{\alpha = b, Pa \succ Pb;} \stackrel{=\text{\textit{L.ax}}_1}{} \frac{\overline{c = b, Pb \succ Pc;}}{\overline{c = b, Pa \succ Pc;}} \stackrel{=\text{\textit{L.ax}}_2}{}{}_{\textit{Cut}}$$

Now that identity is given by axioms, Cut elimination proceeds largely like the system without identity.

$$\frac{\overline{\alpha = b, Pa \succ Pb;} \stackrel{= \textit{L.ax}_1}{} \frac{\overline{c = b, Pb \succ Pc;}}{\overline{c = b, Pa \succ Pc;}} \stackrel{= \textit{L.ax}_2}{}{}_{\textit{Cut}}$$

becomes
$$\frac{a=b,c=b,Pa \succ Pc;}{=L??}$$

It suffices to close the axioms under Cut.

$$\overline{I_b^a, Pa \succ Pb}$$
; =L.ax*

Where I_b^a is any multiset of identities *linking* a *to* b, and P is any primitive predicate.

It suffices to close the axioms under Cut.

$$\frac{}{I_b^a, Pa \succ Pb;} = L.ax^*$$

Where I_b^a is any multiset of identities *linking* a *to* b, and P is any primitive predicate.

- (a) The *empty* multiset links a to a.
- (b) a = b links a to b and b to a.
 - (c) If X links a to b and Y links b to c then X, Y links a to c.

It suffices to close the axioms under Cut.

$$\frac{}{I_b^a, Pa \succ Pb;} = L.ax^*$$

Where I_b^a is any multiset of identities *linking* a *to* b, and P is any primitive predicate.

- (a) The *empty* multiset links a to a.
- (b) a = b links a to b and b to a.
 - (c) If X links a to b and Y links b to c then X, Y links a to c.

(We can leave 'Pa' out if it is a = a.)

- ightharpoonup = Df + Cut + Spec
 - It's easy to show that =Df is uniquely defining.

- \triangleright = Df + Cut + Spec
 - It's easy to show that =Df is uniquely defining.
- ightharpoonup = L/R + Cut + Spec
 - Straightforward translation between =Df and =L/R.

- \triangleright = Df + Cut + Spec
 - It's easy to show that =Df is uniquely defining.
- ightharpoonup = L/R + Cut + Spec
 - Straightforward translation between =Df and =L/R.
- ightharpoonup = L/R + Cut
 - Since *Spec* is height-preserving admissible.

- ightharpoonup =Df + Cut + Spec
 - It's easy to show that =Df is uniquely defining.
- ightharpoonup = L/R + Cut + Spec
 - Straightforward translation between =Df and =L/R.
- ightharpoonup = L/R + Cut
 - Since *Spec* is height-preserving admissible.
- ightharpoonup = L/R
 - =L/R rules don't have the subformula property.

- ightharpoonup = Df + Cut + Spec
 - It's easy to show that =Df is uniquely defining.
- ightharpoonup = L/R + Cut + Spec
 - Straightforward translation between =Df and =L/R.
- ightharpoonup = L/R + Cut
 - Since *Spec* is height-preserving admissible.
- ightharpoonup = L/R
 - =L/R rules don't have the subformula property.
- ightharpoonup = L.ax + Refl + Cut
 - Easy translation between =L/R and =L.ax + Refl, using Cut.

- ightharpoonup = Df + Cut + Spec
 - It's easy to show that =Df is uniquely defining.
- ightharpoonup = L/R + Cut + Spec
 - Straightforward translation between =Df and =L/R.
- ightharpoonup = L/R + Cut
 - Since *Spec* is height-preserving admissible.
- ightharpoonup = L/R
 - -- =L/R rules don't have the subformula property.
- ightharpoonup = L.ax + Refl + Cut
 - Easy translation between =L/R and =L.ax + Refl, using Cut.
- $ightharpoonup = L.ax^* + Refl$
 - -- =L.ax* + Refl are analytic and conservatively extending.

Kinds of Identity Rules

$$\frac{X, Fa \succ Fb; Y \qquad X, Fb \succ Fa; Y}{X \succ a = b; Y} = \textit{D}f$$

► =Df defines identity by giving conditions under which a=b may be proved. We're in a position to prove a=b iff we're in a position to transfer Fa to Fb (and back) for arbitrary F.

Kinds of Identity Rules

- ► =Df defines identity by giving conditions under which a = b may be proved. We're in a position to prove a = b iff we're in a position to transfer Fa to Fb (and back) for arbitrary F.
- ▶ Refl and $=L.ax_*$ are semantic constraints connecting primitive predicates.

Kinds of Identity Rules

$$\frac{X, Fa \succ Fb; Y \qquad X, Fb \succ Fa; Y}{X \succ a = b; Y} = \textit{Df}$$

$$\overline{ _{\succ \alpha = \alpha;}} \; \text{Refl} \qquad \overline{I_b^{\alpha}, P\alpha \succ Pb;} \; ^{=\text{L.ax}_*}$$

- ► =Df defines identity by giving conditions under which a = b may be proved. We're in a position to prove a = b iff we're in a position to transfer Fa to Fb (and back) for arbitrary F.
- ▶ Refl and $=L.ax_*$ are semantic constraints connecting primitive predicates.
- ► These two characterisations are *equivalent* as far as derivability goes.

THANK YOU!

References: Natural Deduction and Sequent Systems

ARTHUR N. PRIOR

"The Runabout Inference-Ticket" *Analysis* 21:38–39, 1960

NUEL D. BELNAP
"Tonk, Plonk and Plink" *Analysis* 22:130–134, 1962

SARA NEGRI AND JAN VON PLATO
Structural Proof Theory
Cambridge University Press,

MICHEL PARIGOT

"λμ-Calculus: An Algorithmic Interpretation of Classical Natural Deduction"

International Conference on Logic for Programming Artificial Intelligence and Reasoning, LNAI 624, 190–201, 1992

GREG RESTALL

"Speech Acts & the Quest for a Natural Account of Classical Proof"

Presentation at the Berkeley Logic Group, September 2020 https://consequently.org/presentation/

References: Defining Rules, Specification and Identity

DANA SCOTT

"Rules and Derived Rules"

Logical Theory and Semantic Analysis, Springer, 147–161, 1974

IAN HACKING

"What is Logic?"

Journal of Philosophy, 76:285-319, 1979

KOSTA DOŠEN

"Logical Constants as Punctuation Marks" Notre Dame Journal of Formal Logic 30:362–381, 1989

ARNON AVRON

"Gentzen-type systems, Resolution and Tableaux"

Journal of Automated Reasoning 10:265–281, 1993

G. SAMBIN, G. BATTILOTTI AND C. FAGGIAN

"Basic logic: Reflection,

Symmetry, Visibility" Journal of Symbolic Logic 65:979–1013, 2014

GREG RESTALL

"Generality and Existence 1: Quantification and Free Logic"

Review of Symbolic Logic, 12:1–29, 2019

STEPHEN READ

"Identity and Harmony" Analysis, 64(2):113-115, 2004

Thank you!

SLIDES: https://consequently.org/presentation/2021/

comparing-identity-rules

FEEDBACK: @consequently on Twitter,

or email atrestall@unimelb.edu.au