# Redefining rows: Wide vs narrow data organization

Instructor - Soumya Mukherjee Content Credit- Dr. Matthew Beckman and Olivia Beck July 20, 2023

## Cases, Variables, and Values

A data table is comprised of cases and variables.

Each variable comprises values (or levels).

There is no hard distinction between a variable and a value. What's a variable in one situation may be a value in another, and vice versa.

Here are 2 tables with the same information.

The question is what IS different and what is NOT different.

#### Table 1:

Hide example eagle nests region 2009 2007 <chr> <dbl> <dbl> Pacific 1039 2587 Southwest 51 176 **Rocky Mountains and Plains** 200 338 3 rows

Table 2:

example\_eagle\_nests\_tidy

| region                     | year        | num_nests   |
|----------------------------|-------------|-------------|
| <chr></chr>                | <chr></chr> | <dbl></dbl> |
| Pacific                    | 2007        | 1039        |
| Pacific                    | 2009        | 2587        |
| Southwest                  | 2007        | 51          |
| Southwest                  | 2009        | 176         |
| Rocky Mountains and Plains | 2007        | 200         |
| Rocky Mountains and Plains | 2009        | 338         |
| 6 rows                     |             |             |

# Cases, Variables, and Values

#### For Table 1 ....

• Variables: 2007, 2009

Values:

2007 : count of nests2009 : count of nests

• Cases: Regions {Pacific, Southwest, Rocky Mountains and Plains}

| region <chr></chr>         | <b>2007</b> <dbl></dbl> | <b>2009</b> <dbl></dbl> |
|----------------------------|-------------------------|-------------------------|
| Pacific                    | 1039                    | 2587                    |
| Southwest                  | 51                      | 176                     |
| Rocky Mountains and Plains | 200                     | 338                     |
| 3 rows                     |                         |                         |

#### For Table 2

• Variables: year, num\_nests

Values:

year: 2007 and 2009num\_nests: count of nests

• Cases: Regions and Year

| region<br><chr></chr>      | year<br><chr></chr> | num_nests<br><dbl></dbl> |
|----------------------------|---------------------|--------------------------|
| Pacific                    | 2007                | 1039                     |
| Pacific                    | 2009                | 2587                     |
| Southwest                  | 2007                | 51                       |
| Southwest                  | 2009                | 176                      |
| Rocky Mountains and Plains | 2007                | 200                      |
| Rocky Mountains and Plains | 2009                | 338                      |
| 6 rows                     |                     |                          |

Neither of the tables are wrong, but sometimes one form is more helpful than the other.

## Two formats

- Data in Key/Value format are narrow
  - o possible to get too narrow if the meaning of case becomes awkward

|     | ID   | Key Value  |  |
|-----|------|------------|--|
| ID1 | Key1 | value(1,1) |  |
| ID1 | Key2 | value(1,2) |  |
|     |      |            |  |
| ID2 | Key1 | value(2,1) |  |

|     | ID |      | Key |            | Value |
|-----|----|------|-----|------------|-------|
| ID2 |    | Key2 |     | value(2,2) |       |

... ...

- The corresponding wide format has
  - separate variables for each level in key
  - sets the values for those variables from the info in value

| ID  | Key1       | Key2       |  |
|-----|------------|------------|--|
| ID1 | value(1,1) | value(1,2) |  |
| ID2 | value(2,1) | value(2,2) |  |
|     |            |            |  |

### Narrow

Let's remember our original table:

Hide

| example_eagle_nests |  |  |
|---------------------|--|--|

| region<br><chr></chr>      | <b>2007</b> <dbl></dbl> | <b>2009</b> <dbl></dbl> |
|----------------------------|-------------------------|-------------------------|
| Pacific                    | 1039                    | 2587                    |
| Southwest                  | 51                      | 176                     |
| Rocky Mountains and Plains | 200                     | 338                     |
| 3 rows                     |                         |                         |

Let's make it narrow

```
narrow_table <-
  example_eagle_nests %>%
pivot_longer(
  cols = c(`2007`, `2009`),  #names of columns we want to become a new variable
  names_to = "year",  #what you want to call the new column of the data in the line above
  values_to = "num_nests"  #what you want to call the variable that stores the values
)
narrow_table
```

| region<br><chr></chr>      | <b>year</b><br><chr></chr> | num_nests<br><dbl></dbl> |
|----------------------------|----------------------------|--------------------------|
| Pacific                    | 2007                       | 1039                     |
| Pacific                    | 2009                       | 2587                     |
| Southwest                  | 2007                       | 51                       |
| Southwest                  | 2009                       | 176                      |
| Rocky Mountains and Plains | 2007                       | 200                      |
| Rocky Mountains and Plains | 2009                       | 338                      |
| 6 rows                     |                            |                          |

This is a good narrow table (and a tidy table!). Each case (region, year, quarter combination) has a row and each variable has a column.

Be careful you don't make your tables too narrow where we loose the definition of a case (example on next slide).

#### Wide

Let's remember our narrow table.

Hide

narrow\_table

| region<br><chr></chr>      | <b>year</b><br><chr></chr> | num_nests<br><dbl></dbl> |
|----------------------------|----------------------------|--------------------------|
| Pacific                    | 2007                       | 1039                     |
| Pacific                    | 2009                       | 2587                     |
| Southwest                  | 2007                       | 51                       |
| Southwest                  | 2009                       | 176                      |
| Rocky Mountains and Plains | 2007                       | 200                      |
| Rocky Mountains and Plains | 2009                       | 338                      |
| 6 rows                     |                            |                          |

NA

Now we can make our narrow table wide again.

```
wide_table <-
narrow_table %>%
pivot_wider(
  names_from = year,  # the column in the narrow table with the column names for the wide table
  values_from = num_nests  # the column in the narrow table with the values in the narrow wide
)
wide_table
```

| region <chr></chr> | <b>2007</b> <dbl></dbl> | <b>2009</b> <dbl></dbl> |
|--------------------|-------------------------|-------------------------|
| Pacific            | 1039                    | 2587                    |
| Southwest          | 51                      | 176                     |

| region <chr></chr>         | <b>2007</b> <dbl></dbl> | <b>2009</b> <dbl></dbl> |
|----------------------------|-------------------------|-------------------------|
| Rocky Mountains and Plains | 200                     | 338                     |
| 3 rows                     |                         |                         |

We can compare this to the original table to make sure its the same thing. Yep!

Hide

example\_eagle\_nests

| region <chr></chr>         | <b>2007</b><br><dbl></dbl> | <b>2009</b><br><dbl></dbl> |
|----------------------------|----------------------------|----------------------------|
| Pacific                    | 1039                       | 2587                       |
| Southwest                  | 51                         | 176                        |
| Rocky Mountains and Plains | 200                        | 338                        |
| 3 rows                     |                            |                            |

# (Too) Narrow

Say this is the data set we have:

Hide

 ${\tt class\_example\_Table}$ 

| region<br><chr></chr> | <b>2007_Q1</b> <dbl></dbl> | <b>2007_Q2</b> <dbl></dbl> | <b>2007_Q3</b> <dbl></dbl> | <b>2007_Q4</b> <dbl></dbl> | <b>2009_Q1</b> <dbl></dbl> | <b>2009_Q2</b> <dbl></dbl> | <b>2009_Q3</b> <dbl></dbl> | <b>2009_Q4</b> <dbl></dbl> |
|-----------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Pacific               | 87                         | 346                        | 173                        | 433                        | 216                        | 862                        | 431                        | 1078                       |
| Southwest             | 4                          | 17                         | 8                          | 21                         | 15                         | 59                         | 29                         | 73                         |

| region<br><chr></chr>      | <b>2007_Q1</b> <dbl></dbl> | <b>2007_Q2</b> <dbl></dbl> | <b>2007_Q3</b> <dbl></dbl> | <b>2007_Q4</b> <dbl></dbl> | <b>2009_Q1</b> <dbl></dbl> | <b>2009_Q2</b> <dbl></dbl> | <b>2009_Q3</b> <dbl></dbl> | <b>2009_Q4</b> <dbl></dbl> |
|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Rocky Mountains and Plains | 17                         | 67                         | 33                         | 83                         | 28                         | 113                        | 56                         | 141                        |
| 3 rows                     |                            |                            |                            |                            |                            |                            |                            |                            |
|                            |                            |                            |                            |                            |                            |                            |                            |                            |

NA

We can make it (appropriately) narrow like this:

| region<br><chr></chr> | <b>Year</b><br><chr></chr> | Quarter<br><chr></chr> | NestCount<br><dbl></dbl> |
|-----------------------|----------------------------|------------------------|--------------------------|
| Pacific               | 2007                       | Q1                     | 87                       |
| Pacific               | 2007                       | Q2                     | 346                      |
| Pacific               | 2007                       | Q3                     | 173                      |
| Pacific               | 2007                       | Q4                     | 433                      |
| Pacific               | 2009                       | Q1                     | 216                      |
| Pacific               | 2009                       | Q2                     | 862                      |
| Pacific               | 2009                       | Q3                     | 431                      |
| Pacific               | 2009                       | Q4                     | 1078                     |

| region <chr></chr> | Year<br><chr></chr> | Quarter <chr></chr> |            | NestCount<br><dbl></dbl> |
|--------------------|---------------------|---------------------|------------|--------------------------|
| Southwest          | 2007                | Q1                  |            | 4                        |
| Southwest          | 2007                | Q2                  |            | 17                       |
| 1-10 of 24 rows    |                     |                     | Previous 1 | 2 3 Next                 |

NA

But we could have made it too narrow. None of the data has been lost here, but it's not a helpful form since there isn't a useful definition of "case".

```
Warning: Using an external vector in selections was deprecated in tidyselect 1.1.0.
Please use `all_of()` or `any_of()` instead.
# Was:
data %>% select(names)

# Now:
data %>% select(all_of(names))

See <https://tidyselect.r-lib.org/reference/faq-external-vector.html>.
```

| key<br><chr></chr> | value<br><chr></chr> |          |   |   |   |      |
|--------------------|----------------------|----------|---|---|---|------|
| region             | Pacific              |          |   |   |   |      |
| 2007_Q1            | 87                   |          |   |   |   |      |
| 2007_Q2            | 346                  |          |   |   |   |      |
| 2007_Q3            | 173                  |          |   |   |   |      |
| 2007_Q4            | 433                  |          |   |   |   |      |
| 2009_Q1            | 216                  |          |   |   |   |      |
| 2009_Q2            | 862                  |          |   |   |   |      |
| 2009_Q3            | 431                  |          |   |   |   |      |
| 2009_Q4            | 1078                 |          |   |   |   |      |
| region             | Southwest            |          |   |   |   |      |
| 1-10 of 27 rows    |                      | Previous | 1 | 2 | 3 | Next |

# So what?

- This allows us to easily redefine how rows are presented in the data
  - Possibly motivated by the research question
  - Possibly motivated by desire to join two data tables with different case definitions
  - Possibly motivated by a data visualization
- Also, some operations are easy in wide format, but hard in narrow and vice versa
- We need tools that make it easy to switch back and forth

# Example from BabyNames

| name<br><chr></chr> | sex<br><chr></chr> | count<br><int></int> | year<br><int></int> |
|---------------------|--------------------|----------------------|---------------------|
| Eden                | F                  | 1927                 | 2012                |
| Eden                | M                  | 348                  | 2012                |
| Eden                | F                  | 2022                 | 2013                |
| Eden                | M                  | 377                  | 2013                |
| Hazel               | F                  | 1780                 | 2012                |
| Hazel               | F                  | 2039                 | 2013                |
| Hazel               | M                  | 6                    | 2013                |
| Jack                | F                  | 10                   | 2012                |
| Jack                | M                  | 7915                 | 2012                |
| Jack                | F                  | 6                    | 2013                |
| 1-10 of 11 rows     |                    |                      | Previous 1 2 Next   |

## Questions:

- Research Question 1. How many babies of each name and sex?
- Research Question 2. For each name, is it primarily given to girls or boys? Which names are gender neutral?

## In narrow format

```
data("BabyNames", package = "dcData")

BabyNames <-
BabyNames %>%
filter( name %in% c("Eden", "Jack", "Hazel"))
```

#### RQ 1. How many babies of each name and sex?

Hide

```
BabyTotals <-
BabyNames %>%
group_by(name, sex) %>%
summarise(total = sum(count))
```

`summarise()` has grouped output by 'name'. You can override using the `.groups` argument.

| name<br><chr></chr> | sex<br><chr></chr> | total <int></int> |
|---------------------|--------------------|-------------------|
| Eden                | F                  | 23892             |
| Eden                | М                  | 3640              |
| Hazel               | F                  | 238522            |
| Hazel               | М                  | 2644              |
| Jack                | F                  | 2611              |
| Jack                | М                  | 650847            |
| 6 rows              |                    |                   |

Easy!

## In Wide format

#### RQ 2. Which names are most gender neutral?

```
WideOutput <-
NarrowInput %>%
pivot_wider(names_from = var1, values_from = var2, values_fill = 0)
```

- we want a new column for each category of sex , so names\_from = sex
  - we will "unstack" each available category as a new variable (a.k.a. cast, spread, unfold)
  - o categories of sex were "F" and "M" in this example
- the values/entries for our new variables are coming from total, so values\_from = total
  - values\_fill = 0 specifies a default value to fill when missing

BabyTotalsWide < BabyTotals %>%
 pivot\_wider(names\_from = sex, values\_from = total, values\_fill = 0)
BabyTotalsWide

| name<br><chr></chr> | F <int></int> | M <int></int> |
|---------------------|---------------|---------------|
| Eden                | 23892         | 3640          |
| Hazel               | 238522        | 2644          |
| Jack                | 2611          | 650847        |
| 3 rows              |               |               |

# With sexes side by side...

We can easily calculate balance associated with names

| name<br><chr></chr> | fem<br><int></int> | male<br><int></int> | <b>prop_fem</b> <dbl></dbl> | prop_male<br><dbl></dbl> | name_specificity<br><dbl></dbl> |
|---------------------|--------------------|---------------------|-----------------------------|--------------------------|---------------------------------|
| Eden                | 23892              | 3640                | 0.867790208                 | 0.1322098                | 0.8677902                       |
| Hazel               | 238522             | 2644                | 0.989036597                 | 0.0109634                | 0.9890366                       |
| Jack                | 2611               | 650847              | 0.003995666                 | 0.9960043                | 0.9960043                       |
| 3 rows              |                    |                     |                             |                          |                                 |

# pivot\_longer( ) —when you have "Wide" and want "Narrow"

#### Syntax:

```
NarrowOutput <-
WideInput %>%
pivot_longer(cols = c(wide_var1, wide_var2, ...), names_to = "long_var1", values_to "long_var2")
```

- The cols are the variables we want to combine (a.k.a. melt, stack, fold, gather)
- e.g. prop\_fem and prop\_male in this case

```
BabyTotalsNarrow <-
BabyTotalsWide %>%
select(prop_fem, prop_male) %>%
pivot_longer(cols = c(prop_fem, prop_male), names_to = "sex", values_to = "proportion")
```

Adding missing grouping variables: `name`

Hide

#### BabyTotalsNarrow

| name<br><chr></chr> | sex<br><chr></chr> | proportion<br><dbl></dbl> |
|---------------------|--------------------|---------------------------|
| Eden                | prop_fem           | 0.867790208               |
| Eden                | prop_male          | 0.132209792               |
| Hazel               | prop_fem           | 0.989036597               |
| Hazel               | prop_male          | 0.010963403               |
| Jack                | prop_fem           | 0.003995666               |
| Jack                | prop_male          | 0.996004334               |
| 6 rows              |                    |                           |

# With sexes stacked again...

We can make an intuitive bar chart (though some clean up is needed...)

```
BabyTotalsNarrow %>%
  ggplot() +
  geom_bar(aes(x = name, fill = sex, weight = proportion))
```



NA

#### With some improvements

- clean up labels of sexes
- add title, source, & better axis labels (y-axis label had been flat wrong)

```
# first, clean up the labels in `sex` for plotting
BabyTotalsNarrow %>%
  mutate(sex = if else(sex == "prop fem",
                      true = "female",
                      false = if else(sex == "prop male",
                                      true = "male",
                                      false = "unk") # end of "inner" if else()
                                                       # ends the "outer" if else()
        ) %>%
                                                       # ends the mutate()
  ggplot() +
  geom_bar(aes(x = name, fill = sex, weight = proportion)) +
  ggtitle("Gender Balance among Names of Beckman Kids",
          subtitle = "source: U.S. Social Security Administration") +
  xlab("Name") +
 ylab("Proportion")
```

# Gender Balance among Names of Beckman Kids source: U.S. Social Security Administration



NA

# **Assignment Reminders**

• Activity: PopularNames (due Friday July 21, 9:59 am)

- Reading quiz DataComputing Ebook Chapters 10 and 11 (due Friday July 21, 9:59 am)
- Reading quiz DataComputing Ebook Chapter 12 (due Monday July 24, 9:59 am)
- Activity: STAT184-Bird-Species (due Tuesday July 24, 9:59 am)
- Activity: STAT184-Bicycle-Sharing (due Tuesday July 24, 9:59 am)

## A few words about the final project

- · Will be individual assignements
- Similar in nature to the Activities that you are doing
- You will need to explore and analyze using EDA 2 different data sets that are not part of an R package (could be a csv file, could be a dataset hosted on github, could be from a webpage)
- · For now, try to think about interesting topics you might want to explore and where could you find relevant datasets
- For some it will seem daunting to start from scratch looking for one or more "interesting" data sets. There are lots of useful repositories out there. Here are a few links to get you started, but please feel free to use any data that interest you!
  - https://www.springboard.com/blog/free-public-data-sets-data-science-project/ (https://www.springboard.com/blog/free-public-data-sets-data-science-project/)
  - https://www.dataquest.io/blog/free-datasets-for-projects/ (https://www.dataquest.io/blog/free-datasets-for-projects/)
  - https://data.cityofnewyork.us/ (https://data.cityofnewyork.us/)
  - http://www.icpsr.umich.edu/icpsrweb/ICPSR/ (http://www.icpsr.umich.edu/icpsrweb/ICPSR/)
  - https://github.com/awesomedata/awesome-public-datasets (https://github.com/awesomedata/awesome-public-datasets)
  - https://github.com/fivethirtyeight/data (https://github.com/fivethirtyeight/data)
- I repeat: you can use any data set you want and it may not be in the above list. The list is just a starting point .