Computational Microelectronics L17

Sung-Min Hong

smhong@gist.ac.kr

Semiconductor Device Simulation Laboratory, GIST

Failure of naïve implementation

Electron density at equilibrium

- Drift-diffusion result at 0 V
 - -401 mesh points, 129 mesh points, and 41 mesh points

Negative electron density?

- It's non-sense.
 - Failure of our discretization scheme with a coarse grid
 - -81 mesh points and 51 mesh points

Doping dependance

- Spacing of 3.125 nm
 - -10^{17} cm⁻³, $2X10^{17}$ cm⁻³, and $4X10^{17}$ cm⁻³
 - Worse result for a higher doping density

Forward IV

• Anode current at V_{anode} = 0.1 V and 0.7 V -101, 129, 161, 201, 251, 321, 401, and 801 mesh points

Potential difference at equilibrium

- Recall that negative densities are found with 5 nm spacing.
 - Maximum potential difference (absolute value) of 0.05 V seems to be a threshold for the negative density.

Scharfetter-Gummel scheme

Derivation (1)

- The electron current density in 1D
 - It is treated as a differential equation for n.

$$J_n = -q\mu_n n \frac{d\phi}{dx} + qD_n \frac{dn}{dx}$$

- -Assumption: J_n is a constant. (Current continuity, $\frac{dJ_n}{dx} = 0$)
- -Assumption: $\frac{d\phi}{dx} \approx \frac{\Delta\phi}{\Delta x}$
- After simple manipulation,

$$\frac{dn}{dx} - \frac{1}{V_T} \frac{\Delta \phi}{\Delta x} n = \frac{J_n}{q D_n}$$

Treated as constants

Derivation (2)

- First-order differential equation
 - -The solution has the following form:

$$n(x) = C_1 \exp\left(\frac{1}{V_T} \frac{\Delta \phi}{\Delta x} x\right) + C_2$$

Homogeneous solution

– We must find out two contants, C_1 and C_2 , to satisfy

$$n(x_i) = n_i$$

$$n(x_{i+1}) = n_{i+1}$$

Derivation (3)

- Boundary values
 - At two boundaries,

$$n_{i} = C_{1} \exp\left(\frac{1}{V_{T}} \frac{\Delta \phi}{\Delta x} x_{i}\right) + C_{2}$$

$$n_{i+1} = C_{1} \exp\left(\frac{1}{V_{T}} \frac{\Delta \phi}{\Delta x} x_{i+1}\right) + C_{2}$$

Taking the difference,

$$n_{i+1} - n_i = C_1 \exp\left(\frac{1}{V_T} \frac{\Delta \phi}{\Delta x} x_i\right) \times \left(\exp\frac{\Delta \phi}{V_T} - 1\right)$$

– Now, we know C_1 .

Derivation (4)

- Calculate C_2 .
 - Recall that

$$C_2 = n_i - C_1 \exp\left(\frac{1}{V_T} \frac{\Delta \phi}{\Delta x} x_i\right)$$

-By using C_1 ,

$$C_{2} = n_{i} - \frac{n_{i+1} - n_{i}}{\exp{\frac{\Delta\phi}{V_{T}}} - 1} = n_{i} \frac{\exp{\frac{\Delta\phi}{V_{T}}}}{\exp{\frac{\Delta\phi}{V_{T}}} - 1} - n_{i+1} \frac{1}{\exp{\frac{\Delta\phi}{V_{T}}} - 1}$$

$$-\operatorname{From} J_n = -\frac{qD_n}{V_T} \frac{\Delta \phi}{\Delta x} B,$$

Derivation (5)

• We are almost there.

$$-\operatorname{From} J_n = -\frac{qD_n}{V_T} \frac{\Delta \phi}{\Delta x} C_2,$$

$$J_n = \frac{qD_n}{\Delta x} \left(n_{i+1} \frac{\frac{\Delta \phi}{V_T}}{\exp \frac{\Delta \phi}{V_T} - 1} - n_i \frac{\frac{\Delta \phi}{V_T} \exp \frac{\Delta \phi}{V_T}}{\exp \frac{\Delta \phi}{V_T} - 1} \right)$$

Comparison

Electron current density

$$J_{n}(x_{i+0.5}) = \frac{qD_{n}}{x_{i+1} - x_{i}} \left[(n_{i+1} - n_{i}) - \frac{1}{V_{T}} \frac{n_{i+1} + n_{i}}{2} (\phi_{i+1} - \phi_{i}) \right]$$

$$J_{n}(x_{i+0.5}) = \frac{qD_{n}}{qD_{n}} \left[n_{i+1}B\left(\frac{\phi_{i+1} - \phi_{i}}{V_{T}}\right) - n_{i}B\left(-\frac{\phi_{i+1} - \phi_{i}}{V_{T}}\right) \right]$$

Hole current density

$$J_{p}(x_{i+0.5}) = -\frac{qD_{p}}{x_{i+1} - x_{i}} \left[(p_{i+1} - p_{i}) + \frac{1}{V_{T}} \frac{p_{i+1} + p_{i}}{2} (\phi_{i+1} - \phi_{i}) \right]$$

$$J_{p}(x_{i+0.5}) = -\frac{qD_{p}}{x_{i+1} - x_{i}} \left[p_{i+1}B\left(-\frac{\phi_{i+1} - \phi_{i}}{V_{T}}\right) - p_{i}B\left(\frac{\phi_{i+1} - \phi_{i}}{V_{T}}\right) \right]$$

Bernoulli function, B

A nonlinear function

$$B(x) = \frac{x}{\exp x - 1}$$

- -0) B(x) > 0 everywhere
- -1) B(0) = 1
- $-2) B(x) \sim x \exp(-x)$ when $x \to \infty$
- $-3) B(x) \sim -x \text{ when } x \rightarrow -\infty$
- -4) Monotonically decreasing
- $-5) B'(0) = -\frac{1}{2}$
- Careful implementation is needed.

Its derivative, B'

• We also need its derivative.

$$B'(x) = \frac{1}{\exp x - 1} - B(x) \frac{\exp x}{\exp x - 1}$$

- It can be implemented with B(x) and $\frac{1}{\exp x - 1}$.

Jacobian, electron dependence

Electron current density

$$J_n(x_{i+0.5}) = \frac{qD_n}{x_{i+1} - x_i} \left[n_{i+1} B\left(\frac{\phi_{i+1} - \phi_i}{V_T}\right) - n_i B\left(-\frac{\phi_{i+1} - \phi_i}{V_T}\right) \right]$$

- Components of Jacobian matrix are given as

$$\frac{\partial J_{n}(x_{i+0.5})}{\partial n_{i+1}} = \frac{qD_{n}}{x_{i+1} - x_{i}} \left[B\left(\frac{\phi_{i+1} - \phi_{i}}{V_{T}}\right) \right] > 0$$

$$\frac{\partial J_{n}(x_{i+0.5})}{\partial n_{i}} = \frac{qD_{n}}{x_{i+1} - x_{i}} \left[-B\left(-\frac{\phi_{i+1} - \phi_{i}}{V_{T}}\right) \right] < 0$$

Jacobian, potential dependence

Electron current density

$$J_n(x_{i+0.5}) = \frac{qD_n}{x_{i+1} - x_i} \left[n_{i+1} B\left(\frac{\phi_{i+1} - \phi_i}{V_T}\right) - n_i B\left(-\frac{\phi_{i+1} - \phi_i}{V_T}\right) \right]$$

- Components of Jacobian matrix are given as

$$\begin{split} &\frac{\partial J_{n}(x_{i+0.5})}{\partial \phi_{i+1}} \\ &= \frac{qD_{n}}{x_{i+1} - x_{i}} \bigg[n_{i+1}B' \bigg(\frac{\phi_{i+1} - \phi_{i}}{V_{T}} \bigg) + n_{i}B' \bigg(-\frac{\phi_{i+1} - \phi_{i}}{V_{T}} \bigg) \bigg] \frac{1}{V_{T}} \\ &\frac{\partial J_{n}(x_{i+0.5})}{\partial \phi_{i}} \\ &= \frac{qD_{n}}{x_{i+1} - x_{i}} \bigg[-n_{i+1}B' \bigg(\frac{\phi_{i+1} - \phi_{i}}{V_{T}} \bigg) - n_{i}B' \bigg(-\frac{\phi_{i+1} - \phi_{i}}{V_{T}} \bigg) \bigg] \frac{1}{V_{T}} \end{split}$$
GIST Lecture 2024

Improved results

Electron density at equilibrium, again

- 41 mesh points
 - Excellent agreement with the nonlinear Poisson result

1 2.3322320401031856e-14

Doping dependence, again

- Spacing of 3.125 nm and 4X10¹⁷ cm⁻³
 - Excellent agreement with the nonlinear Poisson result

Forward IV, again

- Anode current at V_{anode} = 0.1 V
 - -101, 129, 161, 201, 251, 321, 401, and 801 mesh points
 - Even for 41 mesh points, we have 3.168X10⁻¹⁶ A/um².

Homework#17

- Due: AM08:00, November 19
- Problem#1
 - Calculate the forward and reverse IV characteristics of the PN junctions, by using the drift-diffusion simulator (Scharfetter-Gummel).

Thank you for your attention!