2)
$$P(X \le 10+a) = 0.8 + \frac{1-0.8}{2} = 0.9$$

 $\alpha = 0.0256$

$$\frac{\overline{E}_{\times} 10}{0.97}$$

1.
$$P(X \le 50 + a) = 0.9 + \frac{1-0.9}{2} = 0.95$$

 $\Rightarrow 50 + a = 82.90 \Rightarrow a = 32.90$

$$P(D \le 15 + h) = 0.95 + \frac{1 - 0.95}{2} = 0.975$$

 $15 + h = 15,686 = h = 0.686$

Changement de variable
$$T = \frac{D-m}{T}$$

Alors T suit la la normale N(0;1)

$$P\left(\frac{14,3-14,9}{\sigma} \leq T \leq \frac{15,5-14,9}{\sigma}\right) = 0,9$$

$$P\left(-\frac{0.6}{T} \leq T \leq \frac{0.6}{T}\right) = 0.9$$

$$P(T \leq \frac{0.6}{5}) = 0.9 + \frac{1-0.9}{2} = 0.95$$

Donc
$$\frac{0,6}{\pi} = 1,645 \Rightarrow \sigma = 0,365$$

1.
$$P(X>55) = 0,1056$$

 $P(48 \le X \le 52) = 0,3829$

2.
$$P(X \leq r) = 0.025 = r = 42$$

2.
$$X$$
 suit $N(5; \sigma)$
Alors $T = \frac{X-5}{\sigma}$ suit $N(0; 1)$

$$P(T \leq \frac{0.16}{\sigma}) = 0.37 + \frac{1-0.97}{2} = 0.985$$

$$=> \frac{0.46}{\sigma} = 2,1701 => \sigma = \frac{0.46}{2,1701} = 0,212$$