Problem Set 7

D. Zack Garza

October 26, 2019

Contents

1	Regular Problems	1
	1.1 Problem 1	1
	1.1.1 Case 1: $p = q$	1
	1.1.2 Case 2: $p > q$	2
2	Qual Problems	2

1 Regular Problems

1.1 Problem 1

Note that if either p=1 or q=1, G is a p-group, which is a nontrivial center that is always normal. So assume $p \neq 1$ and $q \neq 1$.

We want to show that G has a non-trivial normal subgroup. Noting that $\#G = p^2q$, we will proceed by showing that either n_p or n_q must be 1.

We immediately note that

$$n_p \equiv 1 \mod p$$

$$n_q \equiv 1 \mod q$$

$$n_p \mid q \qquad \qquad n_q \mid p^2,$$

which forces

$$n_p \in \{1, q\}, \quad n_1 \in \{1, p, p^2\}.$$

If either $n_p = 1$ or $n_q = 1$, we are done, so suppose $n_p \neq 1$ and $n_1 \neq 1$. Proceeding by cases:

1.1.1 Case 1: p = q.

Then $\#G = p^3$ and G is a p-group. But every p-group has a non-trivial center $Z(G) \leq G$, and the center is always a normal subgroup.

1.1.2 Case 2: p > q.

Since $n_p \neq 1$ by assumption, we must have $n_p = q$. Now consider sub-cases for n_q :

- $n_q = p$: If $n_q = p = 1 \mod q$ and p < q, this forces p = 1.
- $n_1 = p^2$: We will reach a contradiction by showing that this forces

$$\left| P \coloneqq \bigcup_{S_p \in \operatorname{Syl}(p,G)} S_p \setminus \{e\} \right| + \left| Q \coloneqq \bigcup_{S_q \in \operatorname{Syl}(q,G)} S_q \setminus \{e\} \right| + |\{e\}| > |G|.$$

Towards this end, consider the contribution of Q, which is exactly

$$n_q(q-1) = p^2(q-1) = p^2q - p^2$$

elements. Every such element is of order q, so this leaves

$$|G| - |Q| = p^2q - (p^2q - p^2) = p^2$$

elements of order **not** equal to q.

2 Qual Problems