

New directions in earthquake seismology

Introduction to Back-projection Exercise 1

Bo Li

E-mail: bli@geophysik.uni-muenchen.de

November 19, 2020

Install conda:

https://docs.conda.io/projects/conda/en/latest/commands/install.html

Set up python environment

https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html

Next, use pip to install some necessary libraries

Open terminal window: pip install pydsm Pip install obspy pip install imagesc Pip install geopy

Exercise 1:

- Data request and processing
- ARF test
- Locate a point source using array data (beamforming)

Exercise 2:

Pick up one earthquake and do BP

Example_1

Array response function (ARF)

The ratio of the amplitude of the output of the array to that of the same number of elements concentrated at one location (Sherrif & Geldart, 1995)

Files

There are two txt files containing the array locations

ARF_test.py is the python script to calculate the ARF for different arrays

ARF for different array configuration

ARF for various frequency/wavenumber

Data process and beamforming

Example_2

Data process and beamforming

- Download data
- Remove instrument response
- Beamforming for each array
- Find earthquake location

Global arrays & stations recorded the 2019 Ridgecrest earthquake

Data Request and Process

Request data from web: http://ds.iris.edu/wilber3/find_event

Data Request and Process

2004-12-26 MW9.0 Off W Coast Of Northern Sumatra

Latitude	Longitude	Date	Depth	Magnitude	Description	Related Pages
3.4125° N	95.9012° E	2004-12-26 00:58:52 UTC	26.1 km	MW9.0	Off W Coast Of Northern Sumatra	IRIS Event Page

Channel Code 2	Band / Sample Rate 2	Instrument Type 2	Orientation ②
HHZ	H: 80Hz - 250Hz	H: High Gain Seismometer	Z: Vertical \$
BHZ	B: 10Hz - 80Hz 💠	H: High Gain Seismometer \$	Z: Vertical \$
HNZ	H: 80Hz - 250Hz 💠	N: Accelerometer \$	Z: Vertical \$
EHZ	E: 80Hz - 250Hz \$	H: High Gain Seismometer \$	Z: Vertical \$

Data Request and Process

https://ds.iris.edu/mda/?

https://ds.iris.edu/gmap/#network=*&starttime=2011-06-06T00:00:00&endtime=2011-06-06T23:59:59&max lat=33.75&maxlon=-116.2&minlat=33.5&minlon=-117&drawingmode=box&planet=earth

Beamforming using P phase (SS array)

P phase beamforming for a Mg 1.4 events in Helsinki. Each dashed line shows the slowness vector direction in each bootstrap beamforming result. The red star represents catalog location.

Systematic slowness bias

After calibration

Beam Back-projection MAXIMILIANSUNIVERSITÄT MÜNCHEN

