Коды Рида-Маллера

Гошин Егор Вячеславович

Самарский университет

25 сентября 2020 г.

Коды Рида-Маллера

Для линейных кодов Рида-Маллера RM(r, m):

$$n = 2^m$$
,

$$k = \sum_{i=0}^{r} C_m^i$$

И

$$d = 2^{m-r}$$
.

Рассмотрим альтернативный способ построения кодов Рида-Маллера, более подходящий для декодирования.

Обозначим координатные позиции в словах длины $n=2^m$ векторами K^m ($K=\{0,1\}$). Каждой позиции i поставим в соответствие двоичное представление целого числа i с использованием m разрядов с цифрами, расположенными в обратном порядке (как для циклических кодов).

Например:

 $\{0,1,2,3,4,5,6,7\} \leftrightarrow \{000,100,010,110,001,101,011,111\}$

Любая функция, преобразующая K^m в $\{0,1\}$ может быть единственным образом представлена в векторной форме $v=(f(u_0),f(u_1),...,f(u_{2^m-1}))\in K^n$, где $u_i\in K^m$, $n=2^m$ и u_i- двоичные представления векторов из K^m .

Рассмотрим конкретный класс базисных функций. Пусть задано подмножество $I\subseteq\{0,1,...,m-1\}$. Определим функцию

$$f_I(x_0, x_1, ..., x_2) = \begin{cases} \prod_{i \in I} (x_i + 1), & I \neq 0, \\ 1, & I = 0. \end{cases}$$

 f_I – это функция, отображающая K^m на $\{0,1\}$. Определим v_I как соответствующую векторную форму f_I .

Пусть m=3, тогда $n=2^3=8$ Если $I=\{1,2\}$, тогда $f_I(x_0,x_1,x_2)=(x_1+1)(x_2+1)$. Векторная форма $f_{\{1,2\}}(x_0,x_1,x_2)$ формируется посредством выбора всех возможных комбинаций элементов $x_0x_1x_2 \in K^3$ (с использованием ранее введённого бинарного представления) и вычисления для

$$f_{\{1,2\}}(0,0,0) = 1,$$

$$f_{\{1,2\}}(1,0,0) = 1,$$

$$f_{\{1,2\}}(0,1,0) = 0,$$

$$f_{\{1,2\}}(1,1,0) = 0,$$

$$f_{\{1,2\}}(0,0,1) = 0,$$

$$f_{\{1,2\}}(1,0,1) = 0,$$

$$f_{\{1,2\}}(0,1,1) = 0,$$

$$f_{\{1,2\}}(1,1,1) = 0.$$

Таким образом, $v_{\{1,2\}} = 11000000$.

них $f_{\{1,2\}}(x_0x_1x_2)$. Таким образом:

Если $I = \{0\}$, тогда $f_{\{0\}}(x_0, x_1, x_2) = (x_0 + 1)$. И $v_{\{0\}} = 10101010$. Если $I = \emptyset$, тогда $f_{\emptyset}(x_0, x_1, x_2) = 1$. И $v_{\emptyset} = 111111111$.

Два важных свойства f_I , которые мы дальше будем использовать.

- (1) $f_I(x_0, x_1, ..., x_{m-1}) = 1$ тогда и только тогда, когда $x_i = 0$ для всех $i \in I$.
- Так, в примере для $I = \{1,2\}$. $f_{\{1,2\}} = 1$ только в случае $f(x_0,0,0)$, где $x_0 \in \{0,1\}$.
- (2) Для каждого $u_i \in K^m$: $f_I(u_i)f_J(u_i) = f_{I \cup J}(u_i)$ и, следовательно:

$$v_I v_J = \sum_{i=0}^{2^m - 1} f_I(u_i) f_J(u_i) = \sum_{i=0}^{2^m - 1} f_{I \cup J}(u_i) = wt(v_{I \cup J}) \pmod{2}.$$

Будем обозначать множество целых чисел $\{0,1,2,...,m-1\}$ как Z_m .

Код Рида-Маллера RM(r,m) может быть определён как линейный код ($\{v_I|I\subseteq Z_m,|I|\le r\}$).

Можно показать, что $S = \{v_I | I \subseteq Z_m, |I| \le r\}$ – линейно независимое множество и, следовательно, может быть базисом RM(r,m).

Простой подсчёт слов v_I для $I\subseteq Z_m$ и $|I|\le r$ даёт нам

$$k = \sum_{i=0}^{r} C_m^i$$

и, очевидно,

$$n=2^m$$
.

Кодовые слова v_I могут быть расположены в любом порядке для формирования порождающей матрицы RM(r,m). Определим каноническую форму матрицы $G_{r,m}$ следующим образом. Строки этой матрицы упорядочены так, что v_I идёт раньше v_J если:

- (1) |I| < |J|
- (2) |I|=|J|, $f_I(u_j)< f_J(u_j)$ и $f_I(u_i)=f_J(u_i)$ при i>j. Порождающая матрица для RM(4,4) в канонической форме это $G_{4,4}$

Пример

```
νø
                                                   0
                                                       0
                                                            0
                                                                 0
                                                                      0
                                                                          0
                                                                               0
                                                                                    0
                                                                                              v_3
                                0
                                    0
                                         0
                                              0
                                                                      0
                                                                          0
                                                                               0
                                                                                    0
                                                                                              v_2
                                         0
                                              0
                                                                               0
                                                                                    0
                                                                                              v_1
                  0
                           0
                                    0
                                              0
                                                       0
                                                                 0
                                                                          0
                                                                                    0
                                                                                              v_0
                                0
                                    0
                                         0
                                              0
                                                   0
                                                       0
                                                            0
                                                                 0
                                                                      0
                                                                          0
                                                                               0
                                                                                    0
                                                                                             v_{2,3}
                                              0
                      0
                           0
                                         0
                                                   0
                                                       0
                                                            0
                                                                 0
                                                                      0
                                                                          0
                                                                               0
                                                                                    0
                                                                                             v_{1,3}
                  0
                                              0
                                                                               0
                           0
                                    0
                                                   0
                                                       0
                                                            0
                                                                 0
                                                                      0
                                                                          0
                                                                                    0
                                                                                             v_{0,3}
G_{4,4} =
                      0
                           0
                                0
                                    0
                                         0
                                              0
                                                            0
                                                                 0
                                                                      0
                                                                          0
                                                                               0
                                                                                    0
                                                                                             v_{1,2}
                  0
                           0
                                0
                                    0
                                         0
                                              0
                                                       0
                                                                 0
                                                                      0
                                                                          0
                                                                               0
                                                                                    0
                                                                                             v_{0,2}
                  0
                           0
                                    0
                                         0
                                              0
                                                       0
                                                                 0
                                                                               0
                      0
                                                            0
                                                                          0
                                                                                    0
                                                                                             v_{0,1}
                                    0
                      0
                           0
                                0
                                         0
                                              0
                                                   0
                                                       0
                                                            0
                                                                 0
                                                                      0
                                                                          0
                                                                               0
                                                                                    0
                                                                                             v_{1,2,3}
                  0
                           0
                                0
                                    0
                                         0
                                              0
                                                       0
                                                            0
                                                                 0
                                                                      0
                                                                          0
                                                                               0
                                                   0
                                                                                    0
                                                                                             v_{0,2,3}
                  0
                                    0
                                         0
                                              0
                                                   0
                                                       0
                                                                 0
                                                                      0
                                                                               0
                      0
                           0
                                                            0
                                                                          0
                                                                                    0
                                                                                             v_{0,1,3}
                  0
                      0
                           0
                                0
                                    0
                                         0
                                              0
                                                       0
                                                            0
                                                                 0
                                                                      0
                                                                          0
                                                                               0
                                                                                    0
                                                                                            v_{0,1,2}
                                    0
                                         0
                                              0
                                                                 0
                  0
                      0
                           0
                                                   0
                                                            0
                                                                      0
                                                                          0
                                                                               0
                                                                                           v_{0,1,2,3}
```

Кодирование, как и для любого линейного кода производится посредством умножения ссобщения на $G_{r,m}$. В этом случае любое кодовое слово может быть записано в виде

$$c = \sum_{J \subseteq Z_m, |I| \le r} m_I v_I,$$

где разряды сообщения обозначены m_I , чтобы соответствовать строкам v_I матрицы $G_{r,m}$.

Пример. Закодировать следующие сообщения m с использованием матрицы $G_{2,4}$.

(а) Если входное сообщение равно m=10000001000 (то есть, $m_\emptyset=1$ и $m_{\{0,3\}}=1$), тогда $c=v_\emptyset+v_{0,3}=0101010111111111$

$$c_2 = m_{\emptyset} + m_3 + m_2 + m_0 + m_{2,3} + m_{0,3} + m_{0,2},$$

 $c_3 = m_{\emptyset} + m_3 + m_2 + m_{2,3},$

$$c_6 = m_\emptyset + m_3 + m_0 + m_{0,3},$$

$$c_7 = m_\emptyset + m_3$$

$$c_2 + c_3 + c_6 + c_7 = m_{0,2}$$

$$m_{0,2} = c_0 + c_1 + c_4 + c_5$$

 $m_{0,2} = c_2 + c_3 + c_6 + c_7$
 $m_{0,2} = c_8 + c_9 + c_{12} + c_{13}$
 $m_{0,2} = c_{10} + c_{11} + c_{14} + c_{15}$

Декодирование Рида-Маллера

Декодирование Рида-Маллера производится посредством процесса известного как мажоритарное декодирование. Для любого $I\subseteq Z_m$ определим комплементарное множество $I^c=Z_m\backslash I$ Пусть $H_I=\{u\in K^m|f_I(u)=1\}$. Как мы заметили ранее, $f_I(x_0,...,x_{m-1})=1$ тогда и только тогда, когда $x_i=0$ для всех $i\in I$. Очевидно, если $x,y\in H_I$, тогда $x_i=y_i=0=x_i+y_i$ для всех $i\in I$, поэтому $x+y\in H_I$. Следовательно, H_I – подпространство K^m .

Для любого $u=(x_0,x_1,x_{m-1})\in K^m$ и любого $t=(t_0,t_1,t_{m-1})\in K^m$ определим функцию $f_{I,t}(x_0,x_1,x_{m-1})=f_I(x_0+t_0,x_1+t_1,x_{m-1}+t_{m-1})=f_I(x+t)$ и соответствующую ей векторную форму $v_{I,t}$.

Попробуем определить значение $v_{I,s} \cdot v_{J^c,t}$. Для этого подсчитаем число слов $u \in K^m$, для которых $f_{I,s}(u)f_{J^c,t}(u)=1$. По определению H_I : $f_{I,t}(u)=f_I(u+t)=1$ тогда и только тогда, когда $u+t=u'\in H_I$ или, что эквивалентно, $u=u'+t\in H_I+t$, где H_I+t – класс смежности H_I по t.

При этом значение

 $f_{I,s}(u)f_{J^c,t}(u) = \prod_{i \in I} (x_i + s_i + 1) \prod_{j \in J^c} (x_j + t_j + 1)$ остаётся постоянным для всех возможных $x_k \in \{0,1\}, k \in Z_m \setminus (I \cup J^c)$. Поскольку существует $2^{m-|I \cup J^c|}$ таких возможных u (потому что u принимает значения из K^m), то число случаев, когда

$$f_{I,s}(u)f_{J^c,t}(u)=1$$

делится на $2^{m-|I\cup J^c|}$ и, следовательно, чётно, кроме случая, когда $|I\cup J^c|=m$ или, что то же самое, $I\cup J^c=Z_m$.

Однако, если предположить, что $|I| \leq |J|$, то $|J^c| \leq |I^c|$. Тогда $|I \cup J^c| = |I| + |J^c| - |I \cap J^c| < m$ кроме случая, когда I = J. Если I = J, тогда существует единственный $u \in K^m$, для которого $f_{I,s}(u)f_{J^c,t}(u) = 1$, а именно u, для которого $x_i = s_i$ для всех $i \in I$ и $x_i = t_i$ для всех $i \in I^c$.

Ещё раз обратим внимание, что число позиций, для которых $f_{I,s}(u)f_{J^c,t}(u)=1$, даёт $v_{I,s}\cdot v_{J^c,t}$. В результате получаем следующее утверждение.

Лемма 1

Пусть I и J подмножества Z_m с $|I| \leq |J|$. Для любого $s \in H_{I^c}$ и для любого $t \in H_J$:

$$v_{I,s} \cdot v_{J^c,t} = 1$$

тогда и только тогда, когда I = J.

Теперь получим следующее утверждение, которое послужит основой для алгоритма декодирования.

Следствие 2

Если c – кодовое слово в RM(r,m) и если |J|=r, тогда $m_J=c\cdot v_{J^c,t}$ для любого $t\in H_J$.

Доказательство:

Если |J|=r тогда для любого $t\in H_J$:

$$c \cdot v_{J^c,t} = \sum_{I \subseteq Z_m, |I| \le r} m_I v_I \cdot v_{J^c,t} = m_J v_J \cdot v_{J^c,t} = m_J$$

поскольку по Лемме 1 единственное скалярное произведение в сумме не равное нулю – то, для которого I=J.

Лемма 3. Пусть $J \subseteq Z_m$. Для любого слова e (длины 2^m) $e \cdot v_{J^c,t} = 1$ не больше, чем для wt(e) значений $t \in H_J$.

И, наконец, перейдём к алгоритму декодирования.

Пусть w=c+e — полученное слово, где c — кодовое слово из RM(r,m), то есть $c=\sum_{I\subseteq Z_m}m_Iv_I)$, где $|I|\le r$. Тогда по лемме 3 $e\cdot v_{J^c,t}=0$ по меньшей мере для $|H_j|-wt(e)$ значений t из H_J . Для таких значений имеем:

$$w \cdot v_{J^c,t} = c \cdot v_{J^c,t} + e \cdot v_{J^c,t} = c \cdot v_{J^c,t} = m_J$$

Таким образом, если $2wt(e) < |H_J|$, то при присвоении t различных значений из H_J , больше половины значений $w \cdot v_{J^c,t}$ будут равны m_J .

Как только мы вычислим таким образом m_J для всех $J\subseteq Z_m$ с |J|=r определим $w(r-1)=w+\sum_{|J|=r}m_Jv_J$. Теперь декодируем w(r-1) как будто это слово, принятое кодом RM(r-1,m). Этот процесс может быть продолжен, пока не будут найдены m_J для всех $J\subseteq Z_m$ при $|J|\le r$.

Прежде чем привести алгоритм в итогой форме, заметим, что этот алгоритм исправляет все шаблоны ошибок веса меньше, чем $|H_J|/2$, где $|J| \leq r$. Однако, можно показать, что $|H_J| = wt(v_J) = 2^{m-|J|}$. Поэтому все шаблоны ошибок кратности меньше, чем 2^{m-r-1} исправляются этим кодом и, следовательно, минимальное кодовое расстояние кода Рида-Маллера RM(r,m) равно по меньшей мере 2^{m-r} . Однако, если $I \subseteq Z_m$ и |I| = r, тогда v_I – кодовое слово в RM(r,m) и имеет вес Хэмминга 2^{m-r} , что значит:

Лемма 4. Минимальное кодовое расстояние кода Хэмминга равно 2^{m-r}

Алгоритм мажоритарного декодирования

Пусть получено сообщение w.

- 1. Пусть i = r и пусть w(r) = w.
- 2. Для каждого $J \subseteq Z_m$ с |J| = i вычислим $w(i) \cdot v_{J^c,t}$ для каждого $t \in H_J$, пока либо 0, либо 1 не появится больше, чем 2^{m-i-1} раз. В этом случае назначим m_J значение 0 или 1, соответственно. Если 0 и 1 оба появились $e = 2^{m-r-1}$ раз запросить повторную

Если 0 и 1 оба появились $e = 2^{m-r-1}$ раз – запросить повторную отправку сообщения.

3. Если i>0, тогда $w(i-1)=w(i)+\sum_{J\subseteq Z_m}m_Jv_J$, где |J|=i.

Если w(i-1) имеет вес не больше $e=2^{m-r-1}-1$, тогда $m_J=0$ для всех $J\subseteq Z_M$ с $|J|\le r$ и остановить алгоритм.

Иначе, заменить i на i-1 и перейти к шагу 2. (Если i=0, тогда m_J было вычислено для всех $J\subseteq Z_m$ с $|J|\le r$ и наиболее вероятное сообщение было найдено).

Пример

Пусть получено слово w=0101.0111.1010.0000, закодированное с помощью $G_{2,4}$.

Начнём с i = r = 2 и w(2) = w.

Получим $m_{2,3}=0, m_{1,3}=0, m_{0,3}=0, m_{1,2}=0, m_{0,2}=1$ и $m_{1,2}=0.$

Тогда $w(1) = w(2) + v_{0,2} = 1111.0111.0000.0000$ и i = 1.

После очередного шага вычислений получим $m_3 = 1$, $m_2 = 0$, $m_1 = 0$ и $m_0 = 0$.

Пусть $w(0) = w(1) - v_3 = 0000.1000.0000.0000$ и пусть i = 0.

Поскольку w(0) имеет вес не выше e=1, обозначим $m_{\emptyset}=0$ и остановимся.

Таким образом, наиболее вероятное отправленное сообщение равно

0.1000.000010.

J	t	$v_{J^c,t}$	$w \cdot v_{J^c,t}$	m_J
{0,1}	0000	1111 0000 0000 0000	0	
	0010	0000 1111 0000 0000	1	0
	0001	0000 0000 1111 0000	0	
	0011	0000 0000 0000 1111	0	
{0,2}	0000	1100 1100 0000 0000	0	
	0100	0011 0011 0000 0000	1	1
	0001	0000 0000 1100 1100	1	
	0101	0000 0000 0011 0011	1	
{1,2}	0000	1010 1010 0000 0000	1	
	1000	0101 0101 0000 0000	0	0
	0001	0000 0000 1010 1010	0	
	1001	0000 0000 0101 0101	0	

J	t	$v_{J^c,t}$	$w \cdot v_{J^c,t}$	m_J
{0,3}	0000	1100 0000 1100 0000	0	
	0100	0011 0000 0011 0000	0	0
	0010	0000 1100 0000 1100	1	
	0110	0000 0011 0000 0011	0	
{1,3}	0000	1010 0000 1010 0000	0	
	1000	0101 0000 0101 0000	0	0
	0010	0000 1010 0000 1010	1	
	1010	0000 0000 0101 0101	0	
{2,3}	0000	1000 1000 1000 1000	1	
	1000	0100 0100 0100 0100	0	0
	0100	0010 0010 0010 0010	0	
	1100	0001 0001 0001 0001	0	

J	t	$v_{J^c,t}$	$ w\cdot v_{J^c,t} $	m_J
{0}	0000	1100 0000 0000 0000	0	
	0100	0011 0000 0000 0000	0	
	0010	0000 1100 0000 0000	1	0
	0110	0000 0011 0000 0000	0	
	0001	0000 0000 1100 0000	0	
	0101	0000 0000 0011 0000	0	
	0011	0000 0000 0000 1100		
	0111	0000 0000 0000 0011		
{1}	0000	1010 0000 0000 0000	0	
	1000	0101 0000 0000 0000	0	
	0010	0000 1010 0000 0000	1	0
	1010	0000 0101 0000 0000	0	
	0001	0000 0000 1010 0000	0	
	1001	0000 0000 0101 0000	0	
	0011	0000 0000 0000 1010		
	1011	0000 0000 0000 0101		

J	t	$v_{J^c,t}$	$ w\cdot v_{J^c,t} $	m_J
{2}	0000	1000 1000 0000 0000	1	
	1000	0100 0100 0000 0000	0	
	0100	0010 0010 0000 0000	0	0
	1100	0001 0001 0000 0000	0	
	0001	0000 0000 1000 1000	0	
	1001	0000 0000 0100 0100	0	
	0101	0000 0000 0010 0010		
	1101	0000 0000 0001 0001		
{3}	0000	1000 0000 1000 0000	1	
	1000	0100 0000 0100 0000	1	
	0100	0010 0000 0010 0000	1	1
	1100	0001 0000 0001 0000	1	
	0010	0000 1000 0000 1000	0	
	1010	0000 0100 0000 0100	1	
	0110	0000 0010 0000 0010		
	1110	0000 0001 0000 0001		