Осма Международна олимпиада по лингвистика

Стокхолм (Швеция), 19–24 юли 2010 г.

Решения на задачите от индивидуалното състезание

Задача №1. Правила:

- форма 1: -mV- след първата гласна, като V зависи от гласната в следващата сричка (a пред a, o пред o или u, e пред i, \ddot{o} пред \ddot{u});
- форма 2:
 - -a, ако основата завършва с -aR или -oR,
 - -Ra, ако основата завършва с -i, -u или - \ddot{u} ,

където R е l или n, ако в корена има някоя от тези съгласни, иначе е r;

• форма 3: форма 2 с -r- след първата гласна, освен ако непосредствено следва R. Отговори:

donus 1	donus 2	форма 3
форма 1	форма 2	форма э
<i>hamerki</i>	<i>ḥarkira</i>	
jömölkü	jölküla	jölküla
$qamal\dot{q}al$	$qal\dot{q}ala$	
$\it qumoroo_I u$	quroojura	quroojura
somon kon	$son \dot{k}on a$	$son \dot{k}on a$

форма 1	форма 2	форма 3
$amol\dot{q}ol$	$al\dot{q}ola$	$al\dot{q}ola$
emensi	ensina	
<i>ḥömörčü</i>	<i>hörčüra</i>	
čumaraqar		čuraġara
<i>hamoloju</i>		<i>ḥalo₁ula</i>
ïmankan		inkana
jemeči		jerčira

Задача №2.

- 1-4: caa 1, lue 2, köni 3, eke 4;
- 5, 10, 15: β -pi = 5 β (1 $\leq \beta \leq$ 3);
- 6–9, 11–14, 16–19: α -ngömen = $5 + \alpha$, α -ko = $10 + \alpha$, -e-ko > -ako α -qaihano = $15 + \alpha$ ($1 \le \alpha \le 4$);
- 20, 40, 60, 80: γ -atr = 20 γ (1 $\leq \gamma$); caa-atr > caatr, eke-atr > ekaatr
- 21–39, 41–59, ...: Γ nge $\Delta = \Gamma + \Delta$ ($\Gamma = 20\gamma, 1 \le \Delta \le 19$).
- (a) caatr nge caako: 31, caatr nge caangömen: 26, caatr nge caaqaihano: 36, ekaatr nge ekengömen: 89, köniatr nge köniko: 73, köniatr nge könipi: 75, köniatr nge köniqaihano: 78, lueatr nge lue: 42, lueatr nge luako: 52, lueatr nge luepi: 50.
- (b) köniatr nge eke: 64 + caatr nge luepi: 30 = ekaatr nge ekako: 94 luengömen: 7 + luako: 12 = ekeqaihano: 19
- (c) 21: caatr nge caa, 48: lueatr nge köningömen, 83: ekaatr nge köni.

Осма Международна олимпиада по лингвистика (2010). Решения на задачите от индивидуалното състезание

Задача №3. \equiv : съществително, \equiv : прилагателно, \equiv : глагол (ако в думата има повече от един символ, знакът се слага над най-левия).

Със стрелките-указатели (
^,
 $^{\checkmark},$
) се избират отделни части от символите.

(a)

) ,				
, [част на речта състав		значение
	^∠	глагол	уста + нос	дишам
	~ 0	съществително	вода + уста	слюнка
	Ó	прилагателно	кръг (слънце) + указател	западен
	٨	прилагателно	активност	активен
	\times	съществително	тяло + 2 указателя	кръст, талия
	° Z >	глагол	уста + (въздух + навън)	духам
	~	прилагателно	болен	болен
	ŏ,	съществително	уста + 2 указателя	устни
	°\$	глагол	око + (вода + надолу)	плача
	٨	съществително	активност	активност
	Ϋ́Υ	прилагателно	сърце + нагоре	весел

(b)

	част на речта	състав	значение
Z	съществително	нос	НОС
~	съществително	вода	вода, течност
Ŏ	съществително	тяло + указател	врат, шия
^	глагол	активност	действам, активен съм
>@	съществително	око с вежда + указател	вежда
A.	съществително	глава с шия + указател	врат, шия

(c)

	част на речта	СЪСТАВ	значение
7	съществително	въздух	въздух
0	съществително	ТЯЛО	ТЯЛО
Î	глагол	нагоре	издигам се
()	съществително	кръг (слънце) + указател	изток
φî	прилагателно	сърце + надолу	тъжен

Задача №4. Четирите полипентида от условието се състоят от общо 24, 10, 3 и 25 аминокиселини, а веригата иРНК съдържа $195 = ((24+10+3+25)+3) \times 3$ нуклеотида. Изглежда вероятно всеки нуклеотида (един триплет) да означават една аминокиселина или да са разделител между полипентиди (всъщност знак за прекратяване на синтеза). Само че понеже съществуват общо $4^3 = 64$ възможни триплета (всички без две са представени в условието), а само 20 различни аминокиселини, някои триплети имат едно и също значение.

	U	C	A	G
	$\mathtt{UUU} \to \mathit{Phe}$	$\mathtt{UCU} o Ser$	$\mathtt{UAU} \to \mathit{Tyr}$	$ ext{UGU} ightarrow ext{Cys}$
	$\mathtt{UUC} \to \mathit{Phe}$	$\mathtt{UCC} \to \mathit{Ser}$	$\mathtt{UAC} \to \mathit{Tyr}$	$\mathtt{UGC} o \mathit{Cys}$
U	$\mathtt{UUA} \to Leu$	$\mathtt{UCA} \to \mathit{Ser}$	$\mathtt{UAA} \to \boxed{\mathtt{STOP}}$	$\mathtt{UGA} \to \boxed{\mathtt{STOP}}$
	$\mathtt{UUG} o Leu$	$\mathtt{UCG} o Ser$	$\mathtt{UAG} \to \boxed{\mathtt{STOP}}$	$\mathtt{UGG} o Trp$
	$\mathtt{CUU} o Leu$	$\mathtt{CCU} o \mathit{Pro}$	$\mathtt{CAU} o \mathit{His}$	$\mathtt{CGU} o Arg$
C	$\mathtt{CUC} o Leu$	$\mathtt{CCC} o \mathit{Pro}$	$\mathtt{CAC} o \mathit{His}$	$\mathtt{CGC} o \mathit{Arg}$
C	$\mathtt{CUA} \to Leu$	$\mathtt{CCA} o \mathit{Pro}$	$\mathtt{CAA} o \mathit{Gln}$	$\mathtt{CGA} \to \mathit{Arg}$
	$\mathtt{CUG} o Leu$	$\mathtt{CCG} o \mathit{Pro}$	$\mathtt{CAG} o \mathit{Gln}$	$\mathtt{CGG} o Arg$
	$\mathtt{AUU} \to \mathit{Ile}$	$\mathtt{ACU} o \mathit{Thr}$	$\mathtt{AAU} \to Asn$	$\mathtt{AGU} \to Ser$
A	$\mathtt{AUC} \to \mathit{Ile}$	$\mathtt{ACC} \to \mathit{Thr}$	$\mathtt{AAC} \to \mathit{Asn}$	$\mathtt{AGC} \to \mathit{Ser}$
A	$\mathtt{AUA} \to \mathit{Ile}$	$\mathtt{ACA} \to Thr$	$\mathtt{AAA} \to Lys$	$\mathtt{AGA} \to \mathit{Arg}$
	$\mathtt{AUG} \to Met$	$\texttt{ACG} \to \textit{?}$	$\mathtt{AAG} \to Lys$	${\tt AGG} \to Arg$
G	$\texttt{GUU} \rightarrow \mathit{Val}$	$\mathtt{GCU} o Ala$	$\mathtt{GAU} \to Asp$	$\texttt{GGU} \rightarrow Gly$
	$\mathtt{GUC} o \mathit{Val}$	$\mathtt{GCC} o Ala$	${\tt GAC} \to \mathit{Asp}$	${\tt GGC} \to Gly$
	${\tt GUA} \to Val$	$\mathtt{GCA} o Ala$	$\mathtt{GAA} \to \mathit{Glu}$	${\tt GGA}\rightarrowGly$
	$\mathtt{GUG} o \mathit{Val}$	$\mathtt{GCG} o Ala$	$\mathtt{GAG} \to \mathit{Glu}$	$\texttt{GGG} \to \textit{?}$

Всички вериги иРНК започват с $AUG \rightarrow Met$.

(a) Met-Leu-?Thr-Phe STOP Met-Trp-?Gly-Gly-His-Gln. Веригата съдържа и двата нуклеотидни триплета, които липсваха в примера, така че не можем да бъдем сигурни в отговора, но като решим задачата докрай, ще получим потвърждение.

$$\textbf{(b)} \ \ \textit{Met-Lys-Cys-Ile} \leftarrow \texttt{AUG} \left\{ \begin{array}{c} \texttt{AAA} \\ \texttt{AAG} \end{array} \right\} \left\{ \begin{array}{c} \texttt{UGU} \\ \texttt{UGC} \end{array} \right\} \left\{ \begin{array}{c} \texttt{AUU} \\ \texttt{AUC} \\ \texttt{AUA} \end{array} \right\} (1 \times 2 \times 2 \times 3 = 12 \ \texttt{възможности}).$$

(c) Един корен XY е силен, ако XYA, XYG, XYC и XYU кодират една и съща аминокиселина (UC, CC, CG, GC). Един корен е слаб в противен случай (UU, CA, AG, GA).

Задача №5.

сурсилвански	енгадински	
uo	uo	пред съчетание от \boldsymbol{l} или \boldsymbol{r} и друга съгласна
u	u	пред \boldsymbol{l} или \boldsymbol{r} без друга съгласна
u	o	пред m
u	uo	пред друга съгласна

	сурсилвански	енгадински	
	uolm	uolm	бряст
	stumi	stomi	стомах
	cuort	cuort	КЪС
(a)	mund	muond	СВЯТ
	fuorcla	fuorcla	планински проход
	plumba	plomba	пломба
	mussar	muossar	показвам
	culant	culant	щедър

- (b) *lavur* на двата диалекта.
- (c) В сурсилвански (за разлика от енгадински) първото правило не е в сила за форми за множествено число. Това може да значи, че то не важи, ако първата съгласна е от основата, а втората от окончанието, или че гласната се избира, преди да се добави окончанието, или че гласната в множествено число се уподобява на гласната в единствено.
- (d) 'брястове': *uolms* (на двата диалекта). 'ъгли': *anguls* (сурсилвански), *anguols* (енгадински).