Matemática Discreta I

Lista 4 - Conjuntos

- 1) Seja $E = \{a, b, c, d, e, f, q, h\}, A = \{a, b, c, d\} \in B = \{c, d, e, f\}.$ Determine $A \cup B$, $A \cap B$ $A \backslash B$, $B \backslash A$, \overline{A}^E e $A \backslash \overline{B}^E$.
- **2)** Mostre que $A \subseteq B \land B \subset C \Longrightarrow A \subseteq C$.
- 3) Dizemos que dois conjuntos A e B são comparáveis se $A \subset B$ ou $B \subset A$. Exiba uma família F com infinitos elementos onde os conjuntos de F são dois a dois comparáveis.
- 4) Verifique se as proposições são verdadeiras ou falsas. Justifique sua resposta.
- a) $(\forall A)(\emptyset \in A)$
- **b)** $(\forall A)(\emptyset \subset A)$
- c) $\emptyset \in \{\emptyset, \{\emptyset\}\}$
- **d**) $\emptyset = \{0\}$
- e) $2 \in \{\{2\}, \{2, 3\}\}$
- $f) 2 \subset \{\{2\}, \{2,3\}\}$
- $\mathbf{g}) \ 2 \in \{2, \{2\}, \{2, 3\}\}\$
- 5) Apresente conjuntos $A, B \in C$ que satisfaçam simultaneamente as condições:

$$A \cup B = \{a, b, c, 1, 2, 4\}$$

$$A \cup C = \{a, b, 1, 2, 3, 4\}$$

$$A \cup B = \{a, b, c, 1, 2, 4\} \qquad A \cup C = \{a, b, 1, 2, 3, 4\} \qquad A \cup B \cup C = \{a, b, c, 1, 2, 3, 4\}$$

$$A \cap B = \{a, b\}$$

$$A \cap C = \{1, 2\} \qquad \qquad B \cap C = \{4\}$$

$$B \cap C = \{4\}$$

- 6) Verifique se as proposições são verdadeiras ou falsas. Justifique sua resposta.
- a) $(\forall A)(\forall B)(\forall C)(A \neq B \land B \neq C \rightarrow A \neq C)$
- **b)** $(\forall A)(\forall B)(\forall C)(A \not\subset B \land B \subset C \rightarrow A \not\subset C)$
- c) $(\forall A)(\forall B)(\forall C)(A \subset B \land B \in C \rightarrow A \subset C)$
- **d)** $(\forall A)(\forall B)(x \in A \land A \in B \rightarrow x \in B)$
- e) $(\forall A)(\forall B)(\forall C)((A \cap B) \cup C = A \cap (B \cup C))$
- 7) Seja E um conjunto que contém A e B, mostre que $A \cap B = B \setminus \overline{A}^E$.

1

8) Dados $a, b \in \mathbb{R}$ com a < b, denotamos por [a, b] o conjunto dos números reais entre a e b incluindo a e b, isto é, $[a, b] = \{x \in \mathbb{R} : a \le x \le b\}$. Determine

$$\bigcup_{n=1}^{\infty} [n,n+1], \quad \bigcup_{n=3}^{10} [-2n,\frac{1}{n}], \quad \bigcap_{n=3}^{\infty} [-n,0] \ e \ \bigcap_{x \in \mathbb{R}_+} [0,x].$$

- 9) Determine o conjunto das partes de $A = \{p, a, t, o\}$.
- 10) Encontre todas as partições do conjunto $\{1, 2, 3\}$.
- 11) Considere $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, verifique quais das seguintes famílias são partições de S.
- a) $A = \{\emptyset, \{1, 2, 3\}, \{4, 5, 6, 7\}, \{8, 9, 10\}\}$
- **b)** $B = \{\{2,3\}, \{5,9,10\}, \{1,4\}, \{7\}, \{6,8\}\}$
- c) $C = \{\{1,6\}, \{2,3,7\}, \{4,5,8\}, \{6,9,10\}\}$
- **d)** $D = \{\{1, 3\}, \{2, 6, 7\}, \{4, 5, 8\}, \{10\}\}$
- e) $E = \{a : a \in A\}$
- **12)** Sejam $A = \{1, 2, 3\}, B = \{3, 4\} \in C = \{a, b, c\}.$ Determine $A \times B, B \times A, B^2, (A \times B) \cap (A \times C) \in (A \times B) \cup (A \times C).$
- **13)** Ilustre no plano cartesiano o conjunto $A = \{(x, y) \in \mathbb{R}^2 : x > y\}.$
- **14)** Dados $a, b \in \mathbb{R}$ com a < b, denotamos por [a, b] o conjunto dos números reais entre $a \in b$ incluindo $a \in b$, isto é, $[a, b] = \{x \in \mathbb{R} : a \le x \le b\}$. Represente no plano cartesiano o conjunto $[1, 3] \times [-1, 2]$.