## પ્રશ્ન 1(અ) [3 માર્ક્સ]

યોગ્ય આકૃતિ સાથે નોડ, બ્રાન્ય અને લૂપ વ્યાખ્યાયિત કરો.

જવાબ:

આકૃતિ:



- **નોડ**: એક બિંદુ જ્યાં બે કે વધુ સર્કિટ તત્વો એકબીજા સાથે જોડાય છે
- બ્રાન્ય: બે નોડ્સને જોડતું એક સિંગલ એલિમેન્ટ
- લૂપ: સર્કિટમાં કોઈપણ બંધ પાથ જ્યાં કોઈ નોડ એક કરતાં વધુ વખત આવતો નથી

મેમરી ટ્રીક: "NBA સર્કિટ" - Nodes જંક્શનો છે, Branches રસ્તાઓ છે, Loops વૈકલ્પિક માર્ગો છે

## પ્રશ્ન 1(બ) [4 માર્ક્સ]

નેટવર્ક માટે "ટ્રી" અને "ગ્રાફ" સમજાવો.

જવાબ:





| લક્ષણ    | ગ્રાફ                                 | ટ્રી                                              |
|----------|---------------------------------------|---------------------------------------------------|
| વ્યાખ્યા | નેટવર્કનું સંપૂર્ણ ટોપોલોજિકલ રજૂઆત   | કનેક્ટેડ સબગ્રાફ જેમાં બધા નોડ્સ હોય પણ લૂપ ન હોય |
| તત્વો    | બધી બ્રાન્ય અને નોડ્સ ધરાવે છે        | N-1 બ્રાન્ય ધરાવે છે જ્યાં N નોડ્સની સંખ્યા છે    |
| લૂપ્સ    | લૂપ્સ ધરાવે છે                        | કોઈ લૂપ્સ નથી                                     |
| ઉપયોગ    | સંપૂર્ણ સર્કિટ એનાલિસિસ માટે વપરાય છે | નેટવર્ક ગણતરીઓને સરળ બનાવવા માટે વપરાય છે         |

મેમરી ટ્રીક: "GRAND Tree" - Graph માં Routes And Nodes with Detours છે, Tree માં ફક્ત સિંગલ Routes છે

# પ્રશ્ન 1(ક) [7 માર્ક્સ]

યોગ્ય આકૃતિનો ઉપયોગ કરી "મેષ કરંટ મેથડ" સમજાવો.

જવાબ:

આકૃતિ:



Mesh

| પગલું | นต์า                                                                                    |
|-------|-----------------------------------------------------------------------------------------|
| 1     | સર્કિટમાં સ્વતંત્ર મેશ ઓળખો                                                             |
| 2     | મેશ કરંટ્સ (I <sub>1</sub> , I <sub>2</sub> , વગેરે) ઘડિયાળના કાંટાની દિશામાં અસાઇન કરો |
| 3     | દરેક મેશ માટે KVL લાગુ કરો                                                              |
| 4     | ઇક્વેશન્સ બનાવો: ΣR·I(સ્વયં) - ΣR·I(અડીને) = ΣV                                         |
| 5     | સિમલ્ટેનિયસ ઇક્વેશન્સ ઉકેલો                                                             |

• ફાયદો: બ્રાન્ય કરંટ મેથડ કરતાં ઓછા ઇક્વેશન્સ

• ઉપયોગ: પ્લેનર નેટવર્ક્સ માટે શ્રેષ્ઠ

• મર્યાદા: નોન-પ્લેનર નેટવર્ક્સ માટે ઓછું કાર્યક્ષમ

મેમરી ટ્રીક: "MIAMI" - Meshes Identified, Assign currents, Make equations, Intersection currents calculated, Solve કરો

# પ્રશ્ન 1(ક) [7 માર્ક્સ (વિકલ્પ)]

યોગ્ય રેખાકૃતિનો ઉપયોગ કરીને "નોડ પેર વોલ્ટેજ પદ્ધતિ" સમજાવો.

જવાબ:



| પગલું | વર્ણન                                                                          |
|-------|--------------------------------------------------------------------------------|
| 1     | રેફરન્સ નોડ (ગ્રાઉન્ડ) પસંદ કરો                                                |
| 2     | બાકીના નોડ્સને નોડ વોલ્ટેજ (V <sub>1</sub> , V <sub>2</sub> , વગેરે) અસાઇન કરો |
| 3     | દરેક નોડ પર KCL લાગુ કરો (રેફરન્સ સિવાય)                                       |
| 4     | ઓહ્મના નિયમનો ઉપયોગ કરીને કરંટ્સને નોડ વોલ્ટેજમાં વ્યક્ત કરો                   |
| 5     | સિમલ્ટેનિયસ ઇક્વેશન્સ ઉકેલો                                                    |

- ફાયદો: ઘણા મેશવાળા સર્કિટ્સ માટે મેશ મેથડ કરતાં ઓછા ઇક્વેશન્સ
- ઉપયોગ: નોન-પ્લેનર સર્કિટ્સ માટે કાર્યક્ષમ
- **મુખ્ય ઇક્વેશન**: ΣG·V(સ્વયં) ΣG·V(અડીને) = ΣΙ

ਮੇਮਣੀ ਟ੍ਰੀਡ: "GRAND" - Ground node fixed, Remaining nodes numbered, Apply KCL, Note voltage differences, Derive solutions

## પ્રશ્ન 2(અ) [3 માર્ક્સ]

KCL ઉદાહરણ સાથે સમજાવો.

જવાબ:

आङ्गति:

**કિરચોફનો કરંટ લૉ (KCL)**: કોઈપણ નોડ પર પ્રવેશતા અને છોડતા તમામ કરંટ્સનો અલજેબ્રાઇક સરવાળો શૂન્ય હોય છે.

| ગાણિતિક સ્વરૂપ | ઉદાહરણ ઉપયોગ                                                                   |  |
|----------------|--------------------------------------------------------------------------------|--|
| $\Sigma I = 0$ | નોંડ પર: I <sub>1</sub> - I <sub>2</sub> - I <sub>3</sub> + I <sub>4</sub> = 0 |  |
| Σlin = Σlout   | પ્રવેશતા કરંટ્સ = બહાર નીકળતા કરંટ્સ                                           |  |

ਮੇਮਣੀ ਟ੍ਰੀs: "ZINC" - Zero Is Net Current at a node

## પ્રશ્ન 2(બ) [4 માર્ક્સ]

યોગ્ય આકૃતિનો ઉપયોગ કરી Z-પેરામીટર, Y-પેરામીટર h-પેરામીટર અને ABCD-પેરામીટર સમજાવો.

જવાબ:

### આકૃતિ:



| પેરામીટર | વ્યાખ્યા               | સમીકરણો                                                    | ઉપયોગ                  |
|----------|------------------------|------------------------------------------------------------|------------------------|
| Z        | ઇમ્પિડન્સ પેરામીટર્સ   | $V_1 = Z_{11}I_1 + Z_{12}I_2, V_2 = Z_{21}I_1 + Z_{22}I_2$ | હાઇ ઇમ્પિડન્સ સર્કિટ્સ |
| Υ        | એડમિટન્સ પેરામીટર્સ    | $I_1 = Y_{11}V_1 + Y_{12}V_2, I_2 = Y_{21}V_1 + Y_{22}V_2$ | લો ઇમ્પિડન્સ સર્કિટ્સ  |
| h        | હાઇબ્રિડ પેરામીટર્સ    | $V_1 = h_{11}I_1 + h_{12}V_2, I_2 = h_{21}I_1 + h_{22}V_2$ | ટ્રાન્ઝિસ્ટર સર્કિટ્સ  |
| ABCD     | ટ્રાન્સમિશન પેરામીટર્સ | $V_1 = AV_2 - BI_2$ , $I_1 = CV_2 - DI_2$                  | કેસ્કેડેડ નેટવર્ક્સ    |

ਮੇਮਰੀ ਟ੍ਰੀs: "ZANY HAB" - Z for high impedance, A for low, hy-brid for transistors, ABCD for Cascades

# પ્રશ્ન 2(ક) [7 માર્ક્સ]

π-ટાઈપ નેટવર્કને Τ-ટાઈપ નેટવર્ક અને Τ-ટાઈપ નેટવર્કને π-ટાઈપ નેટવર્કમાં રૂપાંતરિત કરવા માટેના સમીકરણો મેળવો.

જવાબ:





| રૂપાંતરણ | ફોર્મ્યુલા                                                                                                                                                                                   |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| π थी Τ   | $Z_{1} = (Z_{12} \cdot Z_{31})/(Z_{12} + Z_{23} + Z_{31})$ $Z_{2} = (Z_{12} \cdot Z_{23})/(Z_{12} + Z_{23} + Z_{31})$ $Z_{3} = (Z_{23} \cdot Z_{31})/(Z_{12} + Z_{23} + Z_{31})$             |
| Т थी π   | $Z_{12} = (Z_1 \cdot Z_2 + Z_2 \cdot Z_3 + Z_3 \cdot Z_1)/Z_3$ $Z_{23} = (Z_1 \cdot Z_2 + Z_2 \cdot Z_3 + Z_3 \cdot Z_1)/Z_1$ $Z_{31} = (Z_1 \cdot Z_2 + Z_2 \cdot Z_3 + Z_3 \cdot Z_1)/Z_2$ |

- ઉપયોગ: નેટવર્ક સરળીકરણ અને વિશ્લેષણ
- શરત: બંને નેટવર્ક્સ ટર્મિનલ્સ પર સમાન હોવા જોઈએ
- મર્યાદા: ફક્ત લીનિયર નેટવર્ક્સ માટે લાગુ પડે છે

મેમરી ટ્રીક: "TRIP" - T and  $\pi$  networks Relate Impedances through Products and sums

# પ્રશ્ન 2(અ OR) [3 માર્ક્સ]

KVL ઉદાહરણ સાથે સમજાવો.

જવાબ:

આકૃતિ:

**કિરયોફનો વોલ્ટેજ લૉ (KVL)**: કોઈપણ બંધ લૂપમાં તમામ વોલ્ટેજનો અલજેબ્રાઇક સરવાળો શૂન્ય હોય છે.

| ગાણિતિક સ્વરૂપ    | ઉદાહરણ ઉપયોગ                                                                     |
|-------------------|----------------------------------------------------------------------------------|
| $\Sigma V = 0$    | લૂપમાં: V <sub>1</sub> - IR <sub>1</sub> - IR <sub>2</sub> - IR <sub>3</sub> = 0 |
| ΣVrises = ΣVdrops | વોલ્ટેજ વધારા = વોલ્ટેજ ઘટાડા                                                    |

ਮੇਮਵੀ ਟ੍ਰੀs: "ZERO" - Zero is Every voltage Round a loop's Output

# પ્રશ્ન 2(બ OR) [4 માર્ક્સ]

વિવિદ્ય ઈલેક્ટ્રોનિક્સ નેટવર્કનું વર્ગીકરણ કરો અને સમજાવો.

જવાબ:

| નેટવર્ક પ્રકાર               | વર્ણન                                     | ઉદાહરણ                                 |
|------------------------------|-------------------------------------------|----------------------------------------|
| લીનિયર vs નોન-લીનિયર         | સમાનુપાતિકતાના સિદ્ધાંતનું પાલન કરે/ન કરે | રેઝિસ્ટર્સ vs ડાયોડ્સ                  |
| પેસિવ vs એક્ટિવ              | ઊર્જા પ્રદાન કરતા નથી/કરે છે              | RC સર્કિટ vs એમ્પ્લિફાયર               |
| બાયલેટરલ vs યુનિલેટરલ        | બંને દિશામાં સમાન/અલગ ગુણધર્મો            | રેઝિસ્ટર્સ vs ડાયોડ્સ                  |
| લમ્પ્ડ vs ડિસ્ટ્રિબ્યુટેડ    | પેરામીટર્સ કેન્દ્રિત/ફેલાયેલા છે          | RC સર્કિટ vs ટ્રાન્સમિશન લાઇન          |
| ટાઇમ વેરિઅન્ટ vs ઇન્વેરિઅન્ટ | પેરામીટર્સ સમય સાથે બદલાય/ન બદલાય         | ઇલેક્ટ્રોનિક સ્વિય vs ફિક્સ્ડ રેઝિસ્ટર |

### આકૃતિ:



ਮੇਮਰੀ ਟ੍ਰੀs: "PLANT" - Proportionality for Linear, Lively for Active, All directions for bilateral, Near for lumped, Time-fixed for invariant

# પ્રશ્ન 2(ક OR) [7 માર્ક્સ]

T-નેટવર્ક અને  $\pi$ -નેટવર્ક માટે કૅરૅક્ટરીસટીક્સ ઇમપીડેસનું સમીકરણ મેળવો.

જવાબ:





| નેટવર્ક   | કૅરૅક્ટરીસટીક્સ ઇમપીડંસ સમીકરણ           | મેળવવાના પગલાં                                                                                                                                         |
|-----------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| T-નેટવર્ક | $Z_0T = \sqrt{[(Z_1 + Z_2)(Z_2 + Z_3)]}$ | 1. સિમેટ્રિકલ લોડ Z <sub>o</sub> લાગુ કરો<br>2. ઇનપુટ ઇમ્પીડન્સ શોધો<br>3. ઇમ્પીડન્સ મેચિંગ માટે, Zin = Z <sub>o</sub><br>4. Z <sub>o</sub> માટે ઉકેલો |
| π-નેટવર્ક | $Z_0\pi = 1/\sqrt{[(Y_1+Y_3)(Y_2+Y_3)]}$ | 1. સિમેટ્રિકલ લોડ Z₀ લાગુ કરો<br>2. ઇનપુટ ઇમ્પીડન્સ શોધો<br>3. ઇમ્પીડન્સ મેચિંગ માટે, Zin = Z₀<br>4. Z₀ માટે ઉકેલો                                     |

• સંબંધ:  $Z_0T \times Z_0\pi = Z_1 \cdot Z_3$ 

• ઉપયોગ: ઇમ્પીડન્સ મેચિંગ અને ફિલ્ટર્સ

• **મર્યાદા**: ફક્ત સિમેટ્રિકલ નેટવર્ક્સ માટે માન્ય

મેમરી ટ્રીક: "TIPSZ" - T-networks and  $\pi$ -networks Impedances are Products and Square roots of Z values

# પ્રશ્ન 3(અ) [3 માર્ક્સ]

ડ્યુઆલિટી ના સિદ્ધાંતને ઉદાહરણ સાથે સમજાવો.

જવાબ:



**ક્યુઆલિટીનો સિદ્ધાંત**: દરેક ઇલેક્ટ્રિકલ નેટવર્ક માટે, એક ક્યુઅલ નેટવર્ક અસ્તિત્વમાં છે જ્યાં:

| ઓરિજિનલ        | ક્યુઅલ         | ઉદાહરણ                                      |
|----------------|----------------|---------------------------------------------|
| વોલ્ટેજ (V)    | કરંટ (Ι)       | 10V સોર્સ → 10A સોર્સ                       |
| કરંટ (I)       | વોલ્ટેજ (V)    | 5A → 5V                                     |
| રેઝિસ્ટન્સ (R) | કન્ડક્ટન્સ (G) | $100\Omega \rightarrow 100S$                |
| સીરીઝ કનેક્શન  | પેરેલલ કનેક્શન | સીરીઝ રેઝિસ્ટર્સ → પેરેલલ કન્ડક્ટર્સ        |
| KVL            | KCL            | $\Sigma V = 0 \longrightarrow \Sigma I = 0$ |

ਮੇਮਣੀ ਟ੍ਰੀਡ: "VIGOR" - Voltage to current, Impedance to admittance, Graph remains, Open to closed, Resistors to conductors

## પ્રશ્ન 3(બ) [4 માર્ક્સ]

થેવેનિનના થિચરમનો ઉપયોગ કરીને સર્કિટમાં લોડ પ્રવાહની ગણતરી કરવાનાં પગલાં સમજાવો.

જવાબ:



| પગલું | વર્ણન                                                   |
|-------|---------------------------------------------------------|
| 1     | સર્કિટમાંથી લોડ રેઝિસ્ટરને દૂર કરો                      |
| 2     | લોડ ટર્મિનલ વચ્ચે ઓપન-સર્કિટ વોલ્ટેજ (Vth) શોધો         |
| 3     | સર્કિટમાં પાછા જોતા થેવેનિન રેઝિસ્ટન્સ (Rth) ગણો        |
| 4     | થેવેનિન ઇક્વિવેલન્ટ સર્કિટ (Rth સાથે સીરીઝમાં Vth) દોરો |
| 5     | થેવેનિન સર્કિટ પર લોડ રેઝિસ્ટર (RL) ફરીથી જોડો          |
| 6     | લોડ કરંટ ગણો: IL = Vth/(Rth+RL)                         |

ਮੇਮਣੀ ਟ੍ਰੀਡ: "REVOLT" - Remove load, Evaluate Voc, Obtain Rth, Look at Thevenin circuit, Use I = V/R formula

## પ્રશ્ન 3(ક) [7 માર્ક્સ]

સુપરપોઝિશન થિયરમનો ઉપયોગ કરીને લોડ રેઝિસ્ટરમાંથી પસાર થતો વિદ્યુતપ્રવાહ શોદ્યો.

જવાબ:

આકૃતિ:



#### કોષ્ટક: પગલા-દર-પગલા ઉકેલ:

| પગલું | વર્ણન                                               | ગણતરી                                                                                      |
|-------|-----------------------------------------------------|--------------------------------------------------------------------------------------------|
| 1     | ફક્ત 12V સોર્સ ધ્યાનમાં લો (12A ને ઓપન સાથે બદલો)   | I <sub>1</sub> = 12/(4+6+10) = 0.6A<br>6Ω માંથી I <sub>1</sub> = 0.6A                      |
| 2     | ફક્ત 12A સોર્સ ધ્યાનમાં લો (12V ને શોર્ટ સાથે બદલો) | I <sub>2</sub> = -12×10/(4+10+6) = -6A<br>6Ω માંથી I <sub>2</sub> = -12×4/(4+10+6) = -2.4A |
| 3     | સુપરપોઝિશન લાગુ કરો                                 | $IL = I_1 + I_2 = 0.6 + (-2.4) = -1.8A$                                                    |

**જવાબ**: IL = -1.8A (6Ω લોડ રેઝિસ્ટરમાં ઉપર તરફ વહેતો કરંટ)

મેમરી ટ્રીક: "SONAR" - Sources Only one at a time, Neutralize others, Add Results

## પ્રશ્ન 3(અ OR) [3 માર્ક્સ]

મહત્તમ પાવર ટ્રાન્સફર થિયરમનું નિવેદન લખો. એસી અને ડીસી નેટવર્ક માટે મહત્તમ પાવર ટ્રાન્સફર માટેની શરતો શું છે?

જવાબ:

**મહત્તમ પાવર ટ્રાન્સફર થિયરમ**: જ્યારે લોડ ઇમ્પીડન્સ સોર્સ આંતરિક ઇમ્પીડન્સના કોમ્પ્લેક્સ કોન્જુગેટ જેટલી હોય ત્યારે સોર્સથી લોડમાં મહત્તમ પાવર ટ્રાન્સફર થાય છે.

| નેટવર્ક પ્રકાર | મહત્તમ પાવર ટ્રાન્સફર માટેની શરત                                                                        |
|----------------|---------------------------------------------------------------------------------------------------------|
| ડીસી નેટવક્સં  | RL = Rth (લોડ રેઝિસ્ટન્સ થેવેનિન રેઝિસ્ટન્સ જેટલી હોય)                                                  |
| એસી નેટવર્ક્સ  | ZL = Zth* (લોડ ઇમ્પીડન્સ થેવેનિન ઇમ્પીડન્સના કોમ્પ્લેક્સ કોન્જુગેટ જેટલી હોય)<br>RL = Rth અને XL = -Xth |

आङ्गति:



મેમરી ટ્રીક: "MATCH" - Maximum power At Terminals when Conjugate impedances are Honored

### પ્રશ્ન 3(બ OR) [4 માર્ક્સ]

નોટોનના થિયરમનો ઉપયોગ કરીને સર્કિટમાં લોડ પ્રવાહની ગણતરી કરવાનાં પગલાં સમજાવો.

જવાબ:

आङ्गति:



| પગલું | વર્ણન                                                 |
|-------|-------------------------------------------------------|
| 1     | સર્કિટમાંથી લોડ રેઝિસ્ટરને દૂર કરો                    |
| 2     | લોડ ટર્મિનલ્સ વચ્ચે શોર્ટ-સર્કિટ કરંટ (In) શોધો       |
| 3     | સર્કિટમાં પાછા જોતા નોર્ટન રેઝિસ્ટન્સ (Rn) ગણો        |
| 4     | નોર્ટન ઇક્વિવેલન્ટ સર્કિટ (Rn સાથે પેરેલલમાં In) દોરો |
| 5     | નોર્ટન સર્કિટ પર લોડ રેઝિસ્ટર (RL) ફરીથી જોડો         |
| 6     | લોડ કરંટ ગણો: IL = In×Rn/(Rn+RL)                      |

મેમરી ટ્રીક: "SENIOR" - Short terminals, Evaluate Isc, Notice Rn value, Implement Norton circuit, Obtain result

## પ્રશ્ન 3(ક OR) [7 માર્ક્સ]

આપેલ નેટવર્ક પર રેસીપ્રોસીટી થિયરમ કેવી રીતે લાગુ થાય છે તે દર્શાવો.

જવાબ:

આકૃતિ:



### કોષ્ટક: રેસીપ્રોસીટી થિયરમ લાગુ કરવું:

| પગલું | સર્કિટ 1                                                            | સર્કિટ 2                                                            | ચકાસણી                                                        |
|-------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------|
| 1     | ડાબી બાજુ 10V સોર્સ, જમણી બાજુ I₁<br>શોધો                           | જમણી બાજુ 10V સોર્સ, ડાબી બાજુ l₂<br>શોધો                           | I <sub>1</sub> = I <sub>2</sub> રેસીપ્રોસીટી પુષ્ટિ<br>કરે છે |
| 2     | KVL વાપરીને મેશ ઇક્વેશન્સ બનાવો                                     | બદલાયેલ સોર્સ માટે નવા મેશ ઇક્વેશન્સ<br>બનાવો                       | બંને સિસ્ટમ ઉકેલો                                             |
| 3     | $I_1 = 10 \times 2/(2 \times 4 + 2 \times 2 + 4 \times 2) = 0.625A$ | $I_2 = 10 \times 2/(2 \times 4 + 2 \times 2 + 4 \times 2) = 0.625A$ | I <sub>1</sub> = I <sub>2</sub> = 0.625A ✓                    |

**સિદ્ધાંત**: બાયલેટરલ તત્વો ધરાવતા પેસિવ નેટવર્કમાં, જો બ્રાન્ય 1માં વોલ્ટેજ સોર્સ E બ્રાન્ય 2માં કરંટ I ઉત્પન્ન કરે, તો બ્રાન્ય 2માં મૂકેલો તે જ વોલ્ટેજ સોર્સ E બ્રાન્ય 1માં તે જ કરંટ I ઉત્પન્ન કરશે.

મેમરી ટ્રીક: "RESPECT" - Rewire sources, Exchange positions, See if currents Preserve Equality when Circuit Transformed

# પ્રશ્ન 4(અ) [3 માર્ક્સ]

કપલ્ડ સર્કિટ સમજાવો.

જવાબ:

आङ्गति:



**કપલ્ડ સર્કિટ**: એક સર્કિટ જ્યાં મ્યુચ્યુઅલ ઇન્ડક્ટન્સ દ્વારા ઇન્ડક્ટર્સ વચ્ચે ઊર્જા ટ્રાન્સફર થાય છે.

| પેરામીટર                  | વર્ણન                                                         |
|---------------------------|---------------------------------------------------------------|
| મ્યુચ્યુઅલ ઇન્ડક્ટન્સ (M) | કોઇલ્સ વચ્ચે મેગ્નેટિક કપલિંગનું માપ                          |
| કપલિંગ કોઇફિશિયન્ટ (k)    | k = M/√(L₁L₂), 0 (કોઈ કપલિંગ નહીં) થી 1 (પરફેક્ટ કપલિંગ) સુધી |
| ઉપયોગો                    | ટ્રાન્સફોર્મર, ફિલ્ટર્સ, ટ્યુન્ડ સર્કિટ્સ                     |

મેમરી ટ્રીક: "MICE" - Mutual Inductance Creates Energy transfer

## પ્રશ્ન 4(બ) [4 માર્ક્સ]

કપલ્ડ સર્કિટ માટે co-efficient of coupling નું સમીકરણ મેળવો.

જવાબ:

આકૃતિ:



| પગલું | વર્ણન                                 | સમીકરણ                                                               |
|-------|---------------------------------------|----------------------------------------------------------------------|
| 1     | મ્યુચ્યુઅલ ઇન્ડક્ટન્સ વ્યાખ્યાયિત કરો | $M = N_2 \cdot \varphi_{12} / I_1$                                   |
| 2     | સેલ્ફ-ઇન્ડક્ટન્સ વ્યાખ્યાયિત કરો      | $L_1 = N_1 \cdot \varphi_{11}/I_1, L_2 = N_2 \cdot \varphi_{22}/I_2$ |
| 3     | મહત્તમ શક્ય M                         | $Mmax = \sqrt{(L_1 \cdot L_2)}$                                      |
| 4     | કપલિંગ કોઇફિશિયન્ટ વ્યાખ્યાયિત કરો    | $k = M/\sqrt{(L_1 \cdot L_2)}$                                       |

- **રેન્જ**: 0 ≤ k ≤ 1
- **લૌતિક અર્થ**: એક કોઇલનો કેટલો ફ્લક્સ બીજી કોઇલ સાથે લિંક થાય છે તેનું પ્રમાણ
- **પરફેક્ટ કપલિંગ**: k = 1, જ્યારે બધો ફ્લક્સ બંને કોઇલ્સને લિંક કરે છે

મેમરી ટ્રીક: "MASK" - Mutual inductance And Self inductances create K

### પ્રશ્ન 4(ક) [7 માર્ક્સ]

સિરીઝ રેઝોનન્સ સર્કિટની રેઝોનન્સ ફિક્વન્સીનું સમીકરણ તારવો. R=20Ω, L=1H, C=1μF સાથે સિરીઝ RLC સર્કિટની રેઝોનન્ટ ફ્રિક્વન્સી, Q ફેક્ટર અને બેન્ડવિડ્થની ગણતરી કરો.

જવાબ:

आड्रति:



### મેળવણી:

| પગલું | นญ์า                            | સમીકરણ                                                  |
|-------|---------------------------------|---------------------------------------------------------|
| 1     | સિરીઝ RLC ની ઇમ્પીડન્સ          | $Z = R + j(\omega L - 1/\omega C)$                      |
| 2     | રેઝોનન્સ પર, Im(Z) = 0          | $\omega L - 1/\omega C = 0$                             |
| 3     | રેઝોનન્ટ ફ્રિક્વન્સી માટે ઉકેલો | $\omega_0=1/\sqrt{(LC)}$ અથવા $f_0=1/(2\pi\sqrt{(LC)})$ |

### ગણતરીઓ:

| પેરામીટર             | ફોર્મ્યુલા                  | ગણતરી                                   | પરિણામ    |
|----------------------|-----------------------------|-----------------------------------------|-----------|
| રેઝોનન્ટ ફ્રિક્વન્સી | $f_0 = 1/(2\pi\sqrt{(LC)})$ | $f_0 = 1/(2\pi\sqrt{(1\times10^{-6})})$ | 159.15 Hz |
| Q ફેક્ટર             | $Q = \omega_0 L/R$          | Q = 2π×159.15×1/20                      | 50        |
| બેન્ડવિડ્થ           | $BW = f_0/Q$                | BW = 159.15/50                          | 3.18 Hz   |

ਮੇਮਣੀ ਟ੍ਰੀਡ: "FQBR" - Frequency from reactances, Q from resistance ratio, Bandwidth from Resonance divided by Q

# પ્રશ્ન 4(અ OR) [3 માર્ક્સ]

Quality factor સમજાઓ.

જવાબ:



**ક્વોલિટી ફેક્ટર (Q)**: એક ડાયમેન્શનલેસ પેરામીટર જે બતાવે છે કે રેઝોનેટર કેટલો અન્ડર-ડેમ્પ્ક છે, અથવા વૈકલ્પિક રીતે, રેઝોનેટરની બેન્ડવિડ્થ તેની કેન્દ્ર ફિક્વન્સી સાપેક્ષે કેટલી છે.

| વ્યાખ્યા               | ગાણિતિક અભિવ્યક્તિ                                                                      |
|------------------------|-----------------------------------------------------------------------------------------|
| ઊર્જા પરિપ્રેક્ય       | Q = 2π × સંગ્રહિત ઊર્જા / સાયકલ દીઠ વેડફાતી ઊર્જા                                       |
| સર્કિટ પરિપ્રેક્ષ્ય    | Q = X/R (જ્યાં X રિએક્ટન્સ છે, R રેઝિસ્ટન્સ છે)                                         |
| ફિક્વન્સી પરિપ્રેક્ષ્ય | Q = f <sub>0</sub> /BW (જ્યાં f <sub>0</sub> રેઝોનન્ટ ફ્રિક્વન્સી છે, BW બેન્ડવિડ્થ છે) |

મેમરી ટ્રીક: "QSEL" - Quality shows Energy vs. Loss and Selectivity

## પ્રશ્ન 4(બ OR) [4 માર્ક્સ]

કેપેસીટર માટે Quality factor નું સમીકરણ તારવો.

જવાબ:

આકૃતિ:



#### મેળવણી:

| પગલું | વર્ણન                               | સમીકરણ                                                         |
|-------|-------------------------------------|----------------------------------------------------------------|
| 1     | સંગ્રહિત ઊર્જા વ્યાખ્યાયિત કરો      | Estored = CV <sup>2</sup> /2                                   |
| 2     | સાયકલ દીઠ ઊર્જા લોસ વ્યાખ્યાયિત કરો | Eloss = $\pi CV^2/\omega CR = \pi V^2/\omega R$                |
| 3     | Q ફેક્ટર વ્યાખ્યાયિત કરો            | $Q = 2\pi \times Estored / Eloss$                              |
| 4     | સબસ્ટિટ્યૂટ કરો અને સિમ્પ્લિફાય કરો | $Q = 2\pi \times (CV^2/2) \div (\pi V^2/\omega R) = \omega CR$ |

ફાઈનલ ઈકવેશન:  $Q = \omega CR = 1/(\omega RC) = 1/tan\delta$ 

જ્યાં:

- ω = એન્ગ્યુલર ફ્રિક્વન્સી (2πf)
- R = ઇક્વિવેલન્ટ સિરીઝ રેઝિસ્ટન્સ (ESR)
- C = કેપેસિટન્સ
- tanδ = ડિસિપેશન ફેક્ટર

મેમરી ટ્રીક: "CORE" - Capacitors' Quality equals One over Resistance times Capacitance

## પ્રશ્ન 4(ક OR) [7 માર્ક્સ]

પેરેલલ રેઝોનન્સ સર્કિટની રેઝોનન્સ ફિક્વન્સીનું સમીકરણ તારવો. R=30Ω, L=1H, C=1μF સાથે પેરેલલ RLC સર્કિટની રેઝોનન્ટ ફિક્વન્સી, Q ફેક્ટર અને બેન્ડવિડ્થની ગણતરી કરો.

જવાબ:

### आङ्गति:



#### મેળવણી:

| પગલું | વર્ણન                           | સમીકરણ                                                  |
|-------|---------------------------------|---------------------------------------------------------|
| 1     | પેરેલલ RLC ની એડમિટન્સ          | $Y = 1/R + 1/j\omega L + j\omega C$                     |
| 2     | રેઝોનન્સ પર, Im(Y) = 0          | $1/j\omega L + j\omega C = 0$                           |
| 3     | રેઝોનન્ટ ફ્રિક્વન્સી માટે ઉકેલો | $\omega_0=1/\sqrt{(LC)}$ અથવા $f_0=1/(2\pi\sqrt{(LC)})$ |

### ગણતરીઓ:

| પેરામીટર             | ફોર્મ્યુલા                  | ગણતરી                                   | પરિણામ    |
|----------------------|-----------------------------|-----------------------------------------|-----------|
| રેઝોનન્ટ ફ્રિક્વન્સી | $f_0 = 1/(2\pi\sqrt{(LC)})$ | $f_0 = 1/(2\pi\sqrt{(1\times10^{-6})})$ | 159.15 Hz |
| Q ફેક્ટર             | $Q = R/\omega_0 L$          | Q = 30/(2π×159.15×1)                    | 0.03      |
| બેન્ડવિડ્થ           | $BW = f_0/Q$                | BW = 159.15/0.03                        | 5305 Hz   |

ਮੇਮਰੀ ਟ੍ਰੀਡ: "FPQB" - Frequency from Parallel elements, Q from Resistance divided by reactance, Bandwidth from division

## પ્રશ્ન 5(અ) [3 માર્ક્સ]

T પ્રકાર એટેન્યુએટર સમજાવો.

જવાબ:



**T-પ્રકાર એટેન્યુએટર**: T કોન્ફિગરેશનમાં સિગ્નલની એમ્પ્લિટ્યુડ ઘટાડવા માટે વપરાતું પેસિવ નેટવર્ક.

| કમ્પોનન્ટ  | વર્ણન             | ફોર્મ્યુલા                 |
|------------|-------------------|----------------------------|
| Z1, Z2     | સિરીઝ આર્મ્સ      | $Z1 = Z2 = Z_0(N-1)/(N+1)$ |
| <b>Z</b> 3 | શન્ટ આર્મ         | $Z3 = 2Z_0/(N^2-1)$        |
| N          | એટેન્યુએશન રેશિયો | N = 10^(dB/20)             |

• લક્ષણ: મેચ્ડ સોર્સ અને લોડ માટે સિમેટ્રિકલ

• ઉપયોગો: સિગ્નલ લેવલ કંટ્રોલ, ઇમ્પિડન્સ મેચિંગ

• ફાયદો: યોગ્ય ડિઝાઇન સાથે ઇમ્પિડન્સ મેચિંગ જાળવે છે

મેમરી ટ્રીક: "TSAR" - T-shape with Series Arms and Resistance in middle

## પ્રશ્ન 5(બ) [4 માર્ક્સ]

વિવિદ્ય પેસિવ ફિલ્ટર સર્કિટસનું વર્ગીકરણ કરો.

જવાબ:



| ફિલ્ટર પ્રકાર | รเข้                          | ટિપિકલ સર્કિટ   | ઉપયોગો                            |
|---------------|-------------------------------|-----------------|-----------------------------------|
| લો પાસ        | નીચી ફ્રિક્વન્સી પસાર કરે     | RC, RL સર્કિટ્સ | ઓડિયો ફિલ્ટર્સ, પાવર સપ્લાય       |
| હાઇ પાસ       | ઊંચી ફ્રિક્વન્સી પસાર કરે     | CR, LR સર્કિટ્સ | નોઇઝ ફિલ્ટરિંગ, સિગ્નલ કન્ડિશનિંગ |
| બેન્ડ પાસ     | ફ્રિક્વન્સીનો બેન્ડ પસાર કરે  | RLC સર્કિટ્સ    | રેડિયો ટ્યુનિંગ, સિગ્નલ સિલેક્શન  |
| બેન્ડ સ્ટોપ   | ફ્રિક્વન્સીનો બેન્ડ બ્લોક કરે | પેરેલલ RLC      | ઇન્ટરફેરન્સ રિજેક્શન              |

મેમરી ટ્રીક: "LHBB" - Low High Band Band filters for Pass and Block

## પ્રશ્ન 5(ક) [7 માર્ક્સ]

કટ ઓફ ફ્રિક્વન્સી=1000Hz અને 500Ω લોડ ધરાવતા T-section સાથે કોન્સ્ટન્ટ-k ટાઈપ લો પાસ અને હાઇ પાસ ફિલ્ટર ડિઝાઈન કરો.

જવાબ:

આકૃતિ:



#### ડિઝાઇન ગણતરીઓ:

કોન્સ્ટન્ટ-k T-ટાઇપ લો પાસ ફિલ્ટર માટે:

| પેરામીટર          | ફોર્મ્યુલા            | ગણતરી              | મૂલ્ય     |
|-------------------|-----------------------|--------------------|-----------|
| કટ-ઓફ ફ્રિક્વન્સી | fc = 1000 Hz          | આપેલ               | 1000 Hz   |
| લોડ ઇમ્પિડન્સ     | $R_0 = 500 \Omega$    | આપેલ               | 500 Ω     |
| સિરીઝ ઇન્ડક્ટર    | $L = R_0/\pi fc$      | L = 500/(π×1000)   | 159.15 mH |
| હાલ્ફ સેક્શન્સ    | L/2                   | 159.15/2           | 79.58 mH  |
| શન્ટ કેપેસિટર     | $C = 1/(\pi f c R_0)$ | C = 1/(π×1000×500) | 0.636 μF  |

કોન્સ્ટન્ટ-k T-ટાઇપ હાઇ પાસ ફિલ્ટર માટે:

| પેરામીટર       | ફોર્મ્યુલા             | ગણતરી               | મૂલ્ય     |
|----------------|------------------------|---------------------|-----------|
| સિરીઝ કેપેસિટર | $C = 1/(4\pi f c R_0)$ | C = 1/(4π×1000×500) | 0.159 μF  |
| હાલ્ફ સેક્શન્સ | C/2                    | 0.159/2             | 0.0795 μF |
| શન્ટ ઇન્ડક્ટર  | $L = R_0/(4\pi fc)$    | L = 500/(4π×1000)   | 39.79 mH  |

મેમરી ટ્રીક: "FRED" - Frequency Ratio determines Element Dimensions

# પ્રશ્ન 5(અ OR) [3 માર્ક્સ]

π પ્રકાર એટેન્યુએટર સમજાઓ.

જવાબ:

આકૃતિ:



π-પ્રકાર એટેન્યુએટર: π કોન્ફિંગરેશનમાં સિગ્નલની એમ્પ્લિટ્યુડ ઘટાડવા માટે વપરાતું પેસિવ નેટવર્ક.

| કમ્પોનન્ટ | વર્ણન             | ફોર્મ્યુલા                 |
|-----------|-------------------|----------------------------|
| <b>Z2</b> | સિરીઝ આર્મ        | $Z2 = 2Z_0/(N^2-1)$        |
| Z1, Z3    | શન્ટ આર્મ્સ       | $Z1 = Z3 = Z_0(N+1)/(N-1)$ |
| N         | એટેન્યુએશન રેશિયો | N = 10^(dB/20)             |

• લક્ષણ: મેચ્ડ સોર્સ અને લોડ માટે સિમેટ્રિકલ

• ઉપયોગો: સિગ્નલ લેવલ કંટ્રોલ, ઇમ્પિડન્સ મેચિંગ

• ફાયદો: ઇનપુટ અને આઉટપુટ વચ્ચે સારું આઇસોલેશન

મેમરી ટ્રીક: "PASS" - Pi-Attenuator has Series in middle and Shunt arms outside

## પ્રશ્ન 5(બ OR) [4 માર્ક્સ]

વિવિદ્ય પ્રકારના એટેન્યુએટરનું વર્ગીકરણ કરો.

જવાબ:



| એટેન્યુએટર પ્રકાર | લક્ષણો               | ઉપયોગો               | ફાયદા                     |
|-------------------|----------------------|----------------------|---------------------------|
| Т-язіг            | સિરીઝ-શન્ટ-સિરીઝ     | ઓડિયો સિસ્ટમ્સ       | સરળ ડિઝાઇન                |
| π-уεις            | શન્ટ-સિરીઝ-શન્ટ      | RF સર્કિટ્સ          | વધુ સારું આઇસોલેશન        |
| L-มรเง            | સિરીઝ-શન્ટ           | સરળ મેચિંગ           | ઇમ્પિડન્સ ટ્રાન્સફોર્મેશન |
| બ્રિજ્ડ-T         | બેલેન્સ્ડ સ્ટ્રક્ચર  | ટેસ્ટ ઇક્વિપમેન્ટ    | મિનિમલ ડિસ્ટોર્શન         |
| બેલેન્સ્ડ         | સિમેટ્રિક ડ્યુઅલ પાથ | ડિફરેન્શિયલ સિગ્નલ્સ | કોમન મોડ રિજેક્શન         |

भेभरी ट्रीड: "TPLBV" - T, Pi, L, Bridged-T, and Variable attenuators

## પ્રશ્ન 5(ક OR) [7 માર્ક્સ]

40dBનું એટેન્યુએશન આપવા અને 500Ω ના લોડમાં કામ કરવા માટે સપ્રમાણ T પ્રકારના એટેન્યુએટર અને π પ્રકારનું એટેન્યુએટર ડિઝાઇન કરો.

જવાબ:

આકૃતિ:



### ડિઝાઇન ગણતરીઓ:

| પગલું   | ફોર્મ્યુલા         | ગણતરી           | મૂલ્ય |
|---------|--------------------|-----------------|-------|
| આપેલ    | એટેન્યુએશન = 40 dB | -               | 40 dB |
| પગલું 1 | N = 10^(dB/20)     | 10^(40/20)      | 100   |
| પગલું 2 | K = (N-1)/(N+1)    | (100-1)/(100+1) | 0.98  |

### T-પ્રકાર એટેન્યુએટર માટે:

| કમ્પોનન્ટ              | ફોર્મ્યુલા          | ગણતરી                 | મૂલ્ય  |
|------------------------|---------------------|-----------------------|--------|
| R <sub>1</sub> (સિરીઝ) | Z₀·K                | 500 × 0.98            | 490 Ω  |
| R <sub>2</sub> (શન્ટ)  | $Z_0/(K\cdot(N-K))$ | 500/(0.98×(100-0.98)) | 5.15 Ω |

### π-પ્રકાર એટેન્યુએટર માટે:

| કમ્પોનન્ટ              | ફોર્મ્યુલા        | ગણતરી                   | મૂલ્ય    |
|------------------------|-------------------|-------------------------|----------|
| R <sub>1</sub> (શન્ટ)  | Z <sub>0</sub> /K | 500/0.98                | 510.2 Ω  |
| R <sub>2</sub> (સિરીઝ) | $Z_0$ ·K·(N-K)    | 500 × 0.98 × (100-0.98) | 48,541 Ω |

મેમરી ટ્રીક: "DANK" - dB Attenuation is Number K, which determines resistor values