BIOST/STAT 578B Modern inference in infinite-dimensional models

Chapter 3: Overview of efficiency theory

Marco Carone
Department of Biostatistics
School of Public Health, University of Washington

Winter 2015

Contents of this chapter

- Review of parametric efficiency theory
- Concept of tangent space
- Pathwise differentiability of statistical parameters and gradients
- Characterizing the set of influence functions
- Efficiency bounds and the efficient influence function (EIF)
- Impact and role of nuisance modeling in determining the EIF

In this chapter, we will give an exposition of efficiency theory for estimating a finite-dimensional parameter in general models. This will then guide our efforts to construct optimal estimators.

Suppose that $\mathcal{M} = \{P_{\theta} : \theta \in \Theta\}$ with $\Theta \subseteq \mathbb{R}$ is a regular parametric model and that all members of \mathcal{M} are absolutely continuous relative to Lebesgue measure.

We observe $O_1, O_2, \ldots, O_n \stackrel{iid}{\sim} P_{\theta_0}$ with $\theta_0 \in \Theta$ and are interested in estimating the unknown scalar $\tau_0 := \tau(\theta_0)$.

Recall that the **Fisher information** for θ is defined as

$$\mathfrak{I}(heta) := P_{ heta} \left(rac{\partial}{\partial heta} \log p_{ heta}
ight)^2.$$

It is a measure of the curvature of the loglikelihood – the curvier, the more information there is about the parameter!

Hájek's convolution theorem states that

- \blacksquare if $\mathcal M$ is a sufficiently smooth model,
- if the information $\Im(\theta_0) > 0$, and
- lacksquare if au_n is a regular estimator of au_0 with $n^{1/2}(au_n- au_0)\stackrel{d}{\longrightarrow} Z$,

then $Z\stackrel{d}{=}Z_0+\Delta_0$ for two independent variates $Z_0\sim N\left(0,\nu_0\right)$ and Δ_0 , where

$$v_0(\mathfrak{M}) = v_0 := \left(\left. \frac{\partial}{\partial heta} au(heta) \right|_{ heta = heta_0}
ight)^2 rac{1}{\mathfrak{I}(heta_0)} \; .$$

Based on the above, we have that

the asymptotic variance of any regular estimator is no smaller than v_0 .

A regular estimator which achieves this bound asymptotically is said to be asymptotically efficient.

Suppose $O_1, O_2, \ldots, O_n \stackrel{iid}{\sim} P_0 \in \mathcal{M}$ and consider the parameter $\Psi : \mathcal{M} \to \mathbb{R}$. We wish to estimate $\psi_0 := \Psi(P_0)$ from the available data.

If M is infinite-dimensional, what is the corresponding efficiency theory?

A promising starting point:

Estimation of ψ_0 in ${\mathfrak M}$ should be no easier than in any (parametric) submodel through P_0 .

Let ψ_n be a regular estimator of ψ_0 such that $n^{1/2}(\psi_n - \psi_0) \stackrel{d}{\longrightarrow} Z$, and write $\sigma_0^2 := \operatorname{var}_{P_0}(Z) < +\infty$.

For any given $P \in \mathcal{M}$, denote by $S_0(P)$ the set of all regular one-dimensional parametric submodels of \mathcal{M} parametrized to go through P at the origin.

Suppose \mathcal{H} is an index set for $S_0(P_0)$. Then, for each $h \in \mathcal{H}$, we have that $\mathcal{M}_h = \{P_{\theta,h} : \theta \in \Theta\} \in S_0(P_0)$, and furthermore, $\mathcal{M} = \bigcup_{h \in \mathcal{H}} \mathcal{M}_h$.

Since estimating ψ_0 over ${\mathfrak M}$ is certainly no easier than over any possible ${\mathfrak M}_\hbar$, we can write that

$$\sigma_0^2 \geq \sup_{h \in \mathcal{H}} \nu_0(\mathcal{M}_h) \geq \sup_{h \in \mathcal{H}} \frac{\left(\frac{\partial}{\partial \theta} \Psi(P_{\theta,h})\big|_{\theta=0}\right)^2}{\mathbb{I}_{\mathcal{M}_h}(0)} ,$$

where $\mathfrak{I}_{\mathcal{M}_h}(0) := P_{\theta,h} \left(\frac{\partial}{\partial \theta} \log p_{\theta,h} \right)^2 \Big|_{\theta=0}$ with $p_{\theta,h}$ denoting the density of $P_{\theta,h}$ is the Fisher information for estimating $\theta_0 = 0$ in the submodel \mathcal{M}_h .

Several questions naturally arise. . .

- \blacksquare Do we really need to account for the whole index set $\mathcal{H}?$
 - Only the local behavior of $P_{\theta,h}$ around $\theta = 0$ seems to matter.
 - Could we index (equivalence classes of) submodels by their score at $\theta = 0$?
- 2 Do we have any grasp on the numerator and denominator?
 - This requires some "differentiability" of the path \mathcal{M}_h and of Ψ over paths.
- Can the resulting maximization problem be performed explicitly?
 - Beyond this, is the resulting bound attainable?

How can we describe the **local behavior of the path** \mathcal{M}_h **around** $\theta = 0$?

For simplicity, suppose all members of $\mathfrak M$ are dominated by the same measure μ . Let $\mathfrak M_0:=\{p_\theta:\theta\in \mathfrak S_0(P_0), \text{ and denote by } p_\theta \text{ the density of } P_\theta \text{ relative to } \mu.$

If p_{θ} is smooth enough in θ around $\theta = 0$, we might expect that

$$\frac{p_{\theta}(o)}{p_{0}(o)} = 1 + \theta g(o) + \theta r_{\theta}(o) \tag{*}$$

with $g(o) := \frac{\partial}{\partial \theta} p_{\theta}(o) \big|_{\theta=0} / p_0(o)$ and $r_{\theta} \to 0$ in an appropriate sense.

$$rac{p_{ heta}(o)}{p_0(o)} = 1 + heta g(o) + heta r_{ heta}(o)$$

A few observations:

- \blacksquare g is simply the score of θ at $\theta = 0$ in \mathfrak{M}_0 ;
- **g** completely determines the (first-order) local behavior of p_{θ} around $\theta = 0$, and is the 'direction' from which P_{θ} approaches P_0 as $\theta \to 0$;
- formally, we refer to differentiability in quadratic mean, i.e., there exists some 'score' g such that

$$\int \left(rac{\sqrt{
ho_ heta}-\sqrt{
ho_0}}{ heta}-rac{1}{2}g\sqrt{
ho_0}
ight)^2d\mu o 0 \;.$$

In order to understand local deviations from p_0 in \mathfrak{M} , it becomes clear that we need to enumerate all possible g. This leads us to the following concept.

For $P \in \mathcal{M}$, denote by $L_2^0(P)$ the collection of all real-valued functions f defined on the support of P and such that Pf = 0 and $Pf^2 < +\infty$.

If we endow $L_2^0(P)$ with the so-called *covariance inner product*

$$(f_1, f_2) \mapsto \langle f_1, f_2 \rangle_P := P(f_1 f_2)$$
,

it is easy to verify that $L_2^0(P)$ is a Hilbert space.

The tangent set of \mathcal{M} at P is the set of elements $g \in L_2^0(P)$ arising in (\star) for some submodel in $\mathcal{S}_0(P)$. The closure of its linear span is called the tangent space of \mathcal{M} at P and will be denoted by $T_{\mathcal{M}}(P) \subseteq L_2^0(P)$.

An important case: a nonparametric model

Suppose \mathcal{M}_* consists of all d-variate probability distributions dominated by μ . Then, it follows that $T_{\mathcal{M}_*}(P) = L_2^0(P)$.

To see this, take any $h \in L_2^0(P)$ and define pointwise the density function

$$p_{\theta}(o) := c(\theta)^{-1} \operatorname{expit}[2\theta h(o)]p(o)$$

relative to μ , where we have set $c(\theta) := \int \exp[2\theta h(o)] dP(o)$.

If P_{θ} is the distribution corresponding to p_{θ} , then $\mathfrak{M}_{h} := \{P_{\theta} : \theta \in \mathbb{R}\}$ is an element of $\mathfrak{S}_{0}(P)$ with score for θ at $\theta = 0$ equal to h. So, $L_{2}^{0}(P) \subseteq T_{\mathfrak{M}_{*}}(P)$.

If $T_{\mathcal{M}}(P) = L_2^0(P)$ at each $P \in \mathcal{M}$, we say that \mathcal{M} is a **nonparametric model**, even if $\mathcal{M} \subsetneq \mathcal{M}_*$. If $T_{\mathcal{M}}(P)$ is finite-dimensional at each $P \in \mathcal{M}$, we say that \mathcal{M} is a **parametric model**. Otherwise, \mathcal{M} is a **semiparametric model**.

Suppose that $O := (X, Y, Z) \sim P_{X,Y,Z} \in \mathcal{M}$ and that

$$\mathfrak{M}=\mathfrak{M}_X\otimes \mathfrak{M}_{Y|X}\otimes \mathfrak{M}_{Z|Y,X}\ ,$$

with \mathfrak{M}_X , $\mathfrak{M}_{Y|X}$ and $\mathfrak{M}_{Z|Y,X}$ models for P_X , $P_{Y|X}$ and $P_{Z|Y,X}$, respectively, so that orthogonal components of $P_{X,Y,Z}$ are modeled orthogonally.

The total tangent space can be written as the direct sum

$$T_{\mathcal{M}}(P) = T_{\mathcal{M}_X}(P) \oplus T_{\mathcal{M}_{Y|X}}(P) \oplus T_{\mathcal{M}_{Z|Y,X}}(P)$$

of partial tangent spaces. This decomposition is very useful in many contexts.

For any $v \in T_{\mathcal{M}}(P)$, we have that

$$\Pi_{T_{\mathcal{M}}(P)}v = \Pi_{T_{\mathcal{M}_X}(P)}v + \Pi_{T_{\mathcal{M}_{Y|X}}(P)}v + \Pi_{T_{\mathcal{M}_{Z|Y,X}}(P)}v ,$$

where $\Pi_{\mathcal{R}}$ denotes projection onto \mathcal{R} .

If \mathfrak{M}_X , $\mathfrak{M}_{Y|X}$ and $\mathfrak{M}_{Z|Y,X}$ are nonparametric, respectively, then

$$\begin{split} T_{\mathcal{M}_X}(P) &= \{x \mapsto s(x) : P_X s = 0\} \\ T_{\mathcal{M}_{Y|X}}(P) &= \{(y,x) \mapsto s(y,x) : P_{Y|X} s = 0\} \\ T_{\mathcal{M}_{Z|Y,X}}(P) &= \{(z,y,x) \mapsto s(z,y,x) : P_{Z|Y,X} s = 0\} \;. \end{split}$$

Furthermore, it is easy to verify that, if $(z, y, x) \mapsto s(z, y, x) \in L_2^0(P)$, then

$$\Pi_{T_{\mathcal{M}_{X}}(P)}s = x \mapsto E_{P}[s(Z, Y, X)|X = x]
\Pi_{T_{\mathcal{M}_{Y|X}}(P)}s = (y, x) \mapsto E_{P}[s(Z, Y, X)|X = x, Y = y] - E_{P}[s(Z, Y, X)|X = x]
\Pi_{T_{\mathcal{M}_{Z|Y,X}}(P)}s = (z, y, x) \mapsto s(z, y, x) - E_{P}[s(Z, Y, X)|X = x, Y = y]$$

As an example, suppose $O := (X, Y) \sim P_0 \in \mathcal{M}$, where \mathcal{M} is the class of all bivariate distributions on \mathbb{R}^2 under which X and Y are independent.

What is the corresponding tangent space $T_{\mathcal{M}}(P)$?

Approach #1: (conditional decomposition)

We know from the previous slides that we may write

$$T_{\mathfrak{M}}(P) = T_{\mathfrak{M}_X}(P) \oplus T_{\mathfrak{M}_{Y|X}}(P)$$
.

Since the model \mathcal{M}_X is nonparametric, we have that $T_{\mathcal{M}_X}(P) = L_2^0(P_X)$.

Because of independence, the model $\mathcal{M}_{Y|X}$ is simply the unrestricted model \mathcal{M}_Y for the marginal of Y – this is simply given by $L_2^0(P_Y)$.

It follows then that $T_{\mathcal{M}}(P) = L_2^0(P_X) + L_2^0(P_Y)$.

Approach #2: (direct fluctuation approach)

Suppose p is the density of P and take $\{p_{\theta}: \theta \in \Theta\}$ as a one-dimensional parametric submodel of $\mathbb M$ such that $p_{\theta=0}=p$. It must then be that for

$$p_{\theta}(x, y) = p_{X,\theta}(x)p_{Y,\theta}(y)$$

for every (x, y) and θ for some marginal densities $p_{X,\theta}$ and $p_{Y,\theta}$ satisfying that $p_{X,\theta=0}=p_X$ and $p_{Y,\theta=0}=p_Y$.

It follows then

$$\left. \frac{\partial}{\partial \theta} \log p_{\theta}(x, y) \right|_{\theta=0} = \left. \frac{\partial}{\partial \theta} \log p_{X, \theta}(x) \right|_{\theta=0} + \left. \frac{\partial}{\partial \theta} \log p_{Y, \theta}(y) \right|_{\theta=0},$$

which suggests that $T_{\mathcal{M}}(P) \subseteq T_{\mathcal{M}_X}(P) + T_{\mathcal{M}_Y}(P)$. Given scores $s_X \in L_2^0(P_X)$ and $s_Y \in L_2^0(P_Y)$, we see that $p_{\theta}(x,y) = [1 + \theta s_X(x)][1 + \theta s_Y(y)]p(x,y)$ has score $s_X(x) + s_Y(y)$, and so, $T_{\mathcal{M}}(P) \supseteq T_{\mathcal{M}_X}(P) + T_{\mathcal{M}_Y}(P)$.

Suppose that $O \sim P_0 \in \mathcal{M}$, where \mathcal{M} is the **parametric model** $\{P_\theta : \theta \in \Theta\}$, where $\Theta \subseteq \mathbb{R}^p$ is open and convex.

What is the corresponding tangent space $T_{\mathcal{M}}(P_{\theta})$?

For each smooth submodel of $\mathbb M$ through P_{θ} , there is some $u \in \mathbb R^p$ such that $\mathcal M_{\theta,u} := \{P_{\theta,\epsilon} := P_{\theta+\epsilon u} : \epsilon\} \subseteq \mathbb M$ locally approximates P_{θ} . Setting $\nu_{\theta}(\epsilon) := \theta + \epsilon u$, the score for ϵ at $\epsilon = 0$ is then

$$s_{\theta,u}(o) := \frac{\partial}{\partial \epsilon} \log p_{\theta+\epsilon u}(o) \Big|_{\epsilon=0} = \frac{\partial}{\partial \nu_{\theta}(\epsilon)} \log p_{\nu_{\theta}(\epsilon)}(o) \cdot \frac{\partial}{\partial \epsilon} \nu_{\theta}(\epsilon) \Big|_{\epsilon=0}$$
$$= u^{\top} \frac{\partial}{\partial \theta} \log p_{\theta}(o) .$$

The tangent space $T_{\mathcal{M}}(P)$ is simply given by $\{s_{\theta,u}:u\in\mathbb{R}^{P}\}$ – this is nothing but the linear span of the components of the usual score function.

As we see from the numerator of the generalized Crámer-Rao bound, the development of a general efficiency theory requires that the statistical parameter $\Psi: \mathcal{M} \to \mathbb{R}$ be differentiable in some appropriate fashion.

A notion of differentiability valid over an arbitrary model space is needed.

- Common types require a locally convex model space.
- In semiparametric and parametric models, models are often not so.

How can we define differentiability over a possibly complex model space?

Over a parametric path, usual differentiability of real functions suffices. Can we extend this to a general model by defining derivatives over all parametric paths?

A parameter $\Psi: \mathcal{M} \to \mathbb{R}$ is **pathwise differentiable** at $P \in \mathcal{M}$ if there exists a continuous linear map $\dot{\Psi}_P: L_2^0(P) \to \mathbb{R}$ such that, for every $h \in T_{\mathcal{M}}(P)$,

$$\left. \frac{\partial}{\partial \theta} \Psi(P_{\theta}) \right|_{\theta=0} = \dot{\Psi}_P(h)$$

for each regular one-dimensional parametric submodel $\{P_{\theta}: \theta \in \Theta\}$ through P at $\theta = 0$ and with score for θ at $\theta = 0$ equal to h.

Any element $D(P) \in L_2^0(P)$ such the pathwise derivative can be represented as

$$\dot{\Psi}_P(h) = \langle D(P), h \rangle_P = P[D(P)h]$$

for each $h \in T_{\mathfrak{M}}(P)$ is called a **gradient** of Ψ at P relative to $T_{\mathfrak{M}}(P)$.

A few observations on pathwise differentiability:

- The pathwise derivative depends on the chosen path only through its associated score at $\theta = 0$.
- The Riez Representation Theorem guarantees the existence of a gradient.
- There is a direct parallel here between the pathwise derivative over general model spaces and the directional derivative in multivariate calculus.
 - If $f: \mathbb{R}^p \to \mathbb{R}$, \vec{u} is a unit vector in \mathbb{R}^p and x is a point in \mathbb{R}^p , the directional derivative of f at x in the direction of \vec{u} is given by

$$D_{\vec{u}}f(x) = \vec{\nabla}f(x) \cdot \vec{u}$$
,

an inner product between the gradient of f at x and a directional vector.

- The function and location are disentangled from the direction of motion.
- This parallel explains the use of the term *gradient* to describe D(P).

Unless ${\mathfrak M}$ is nonparametric, there are many gradients.

Denote by $\mathfrak{G}_{\mathfrak{M}}(P) \subset L_2^0(P)$ the set of gradients of Ψ at P relative to model \mathfrak{M} . If $D_0(P)$ is any given gradient, then

$$\mathfrak{G}_{\mathbb{M}}(P) = \left\{ D(P) = D_0(P) + q(P) : q(P) \in T_{\mathbb{M}}(P)^{\perp} \right\},$$

where $T_{\mathcal{M}}(P)^{\perp}$ is the orthogonal complement of $T_{\mathcal{M}}(P)$ in $L_2^0(P)$.

There is only one gradient, say $D^*(P)$, in $T_{\mathfrak{M}}(P)$ – it is referred to as the **canonical gradient**. It is found by projecting any gradient D(P) into $T_{\mathfrak{M}}(P)$:

$$D^*(P) = \Pi_{T_{\mathfrak{M}}(P)}D(P)$$
 for each $D(P) \in \mathfrak{G}_{\mathfrak{M}}(P)$.

Statistical inference in infinite-dimensional models relies heavily on knowledge of gradients, and the canonical gradient is critical for efficiency.

For a given parameter and model, how can we identify a gradient?

We can, for example, use the definition of pathwise differentiability directly.

- Take a smooth one-dimensional parametric submodel $\{P_{\theta}: \theta \in \Theta\} \subseteq \mathcal{M}$ with $P_{\theta=0}=P$ and score $h \in T_{\mathcal{M}}(P)$ at $\theta=0$.
- **2** Compute $\frac{\partial}{\partial \theta} \Psi(P_{\theta})\big|_{\theta=0}$ and express it as $P[D_{\diamond}(P)h]$, with $D_{\diamond}(P)$ not depending on the particular submodel chosen.
- **8** Recenter $D_{\diamond}(P)$ by $PD_{\diamond}(P)$, that is, take $D(P) := D_{\diamond}(P) PD_{\diamond}(P)$.

Relationship between gradients in nested models

An easy but important fact is that

$$\mathfrak{G}_{\mathfrak{M}_2}(P) \subseteq \mathfrak{G}_{\mathfrak{M}_1}(P)$$
 whenever $\mathfrak{M}_1 \subseteq \mathfrak{M}_2$.

In practice, this implies that we can always relax $\mathfrak M$ to a nonparametric model in step 1 above, provided Ψ is properly defined or can be extended there.

This allows us to use very simple submodels, including

- $p_{\theta}(o) := [1 + \theta h(o)] p(o);$
- $p_{\theta}(o) := \exp \left[\theta h(o)\right] p(o)/c(\theta)$, where $c(\theta) := \int \exp \left[\theta h(o)\right] dP(o)$;
- **3** $p_{\theta}(o) := \text{expit} [2\theta h(o)] p(o)/c(\theta)$, where $c(\theta) := \int \text{expit} [2\theta h(o)] dP(o)$.

Submodels 1 and 2 generally require that h be bounded, whereas submodel 3 does not. For the sake of computing a gradient, submodel 1 generally suffices.

Example 1: a general moment

Suppose that $\Psi(P) := Pf_0$ for a fixed and known function f_0 .

With $p_{\theta}(o) := [1 + \theta h(o)] p(o)$, we find $\Psi(P_{\theta}) = \Psi(P) + \theta P(f_0 h)$ and so,

$$\left. \frac{\partial}{\partial \theta} \Psi(P_{\theta}) \right|_{\theta=0} = P(f_0 h) = P[(f_0 - Pf_0) h].$$

Thus, $D(P)(o) := f_0(o) - \Psi(P)$ is a gradient of Ψ at P. Furthermore, it is the canonical gradient if the model for P is nonparametric.

Example 2: the average density value

Suppose that $\Psi(P) := \int p^2(u)du = Pp$, where p is the Lebesgue density of P.

With $p_{\theta}(o) := [1 + \theta h(o)] p(o)$, we find $\Psi(P_{\theta}) = \Psi(P) + 2\theta P(ph) + \theta^2 P(ph^2)$ and so,

$$\left. \frac{\partial}{\partial \theta} \Psi(P_{\theta}) \right|_{\theta=0} = P(2ph) = P[2(p-Pp)h].$$

Thus, $D(P)(o) := 2[p(o) - \Psi(P)]$ is a gradient of Ψ at P. Again, this is the canonical gradient of Ψ in a nonparametric model for P.

Characterizing the set of influence functions

To understand the relevance of computing gradients of a statistical parameter, we first define the notion of regularity.

An estimator ψ_n of $\psi_0 := \Psi(P_0)$ is **locally regular** at P_0 if for any $g \in T_{\mathfrak{M}}(P_0)$, there is a path $\{P_\theta\}$ through P_0 at $\theta = 0$ and with score g at $\theta = 0$ such that, under sampling from $P_{n^{-1/2}}$ and P_0 , respectively,

$$n^{1/2} (\psi_n - \psi_{0n})$$
 and $n^{1/2} (\psi_n - \psi_0)$

have the same limit distribution, where we denote $\psi_{0n} := \Psi(P_{n^{-1/2}})$.

If this holds uniformly over \mathcal{M} , then ψ_n is said to be **regular** over \mathcal{M} .

This guarantees that small perturbations in the data-generating distribution do not affect the limiting distribution of the estimator.

Characterizing the set of influence functions

Key result #1: influence functions are gradients

Suppose that ψ_n is an asymptotically linear estimator of $\psi_0 := \Psi(P_0)$ with influence function ϕ_{P_0} . Then, the following statements are equivalent:

- \blacksquare Ψ is pathwise differentiable and ϕ_P is a gradient of Ψ at P;
- **2** the estimator ψ_n is regular.

Key result #2: gradients are influence functions (Klaassen, 1987)

Under certain regularity conditions and for a given gradient ϕ_P , the following statements are equivalent:

- **1** an asymptotically linear estimator of ψ_0 with influence function ϕ_{P_0} exists;
- **2** it is possible to estimate ϕ_{P_0} consistently (in an appropriate sense).

Characterizing the set of influence functions

Why is this relevant information?

- If we wish to construct regular asymptotically linear (RAL) estimators, then this suggests that
 - we must restrict ourselves to pathwise differentiable parameters;
 - studying the pathwise derivative of our parameter is critical.
- A gradient can be found by computing the influence curve of an estimator known to be RAL.
 - For this, it is sometimes useful to consider the discrete setting as a guide.
 - Example: suppose $O_i := (W_i, A_i, Y_i), O_1, O_2, \dots, O_n \stackrel{iid}{\sim} P_0$ and consider

$$\psi_n := \frac{1}{n} \sum_{k=1}^n \frac{\frac{1}{n} \sum_{i=1}^n Y_i A_i I(W_i = W_k)}{\frac{1}{n} \sum_{i=1}^n A_i I(W_i = W_k)}$$

as an estimator of $\psi_0 := E_{P_0} E_{P_0}(Y|A=1,W)$ when W has finite support.

This link between influence functions and gradients is critical to **establishing efficiency bounds** in arbitrary models.

Say ψ_n is a RAL estimator of ψ_0 . Then, $n^{1/2}(\psi_n - \psi_0)$ has asymptotic variance $P_0D(P_0)^2$ for some gradient $D(P_0) \in L_2^0(P_0)$.

■ We can represent any D as $D^* + H$ for some $H \in T^{\perp}_{\mathfrak{M}}(P)$ – in fact, we can take $H(P) := \prod_{T^{\perp}_{\mathfrak{M}}(P)} D(P)$. This allows us to write that

$$P_0 D(P_0)^2 = P_0 D^*(P_0)^2 + 2P_0 D^*(P_0) H(P_0) + P_0 H(P_0)^2$$

= $P_0 D^*(P_0)^2 + P_0 H(P_0)^2$
 $\geq P_0 D^*(P_0)^2$.

■ This lower bound is exactly achieved whenever $D(P_0) = D^*(P_0)$.

Characterization of an efficient estimator:

A regular asymptotically linear estimator ψ_n of ψ_0 is efficient

if and only if

$$\psi_n = \psi_0 + \frac{1}{n} \sum_{i=1}^n D^*(P_0)(O_i) + o_P(n^{-1/2}).$$

For this, the canonical gradient is often referred to as the **efficient influence** function: it is the influence function of any efficient RAL estimator of ψ_0 .

For such an estimator ψ_n , the asymptotic variance of $n^{1/2}(\psi_n - \psi_0)$ is exactly equal to $\sigma_0^2 := P_0 D^*(P_0)^2$.

How does this relate to the generalized Crámer-Rao bound?

If $\{P_{\theta,g}:\theta\in\Theta\}$ is a one-dimensional parametric submodel through P_0 at $\theta=0$ and with score g for θ at $\theta=0$, the Crámer-Rao lower bound is

$$\frac{\left(\frac{\partial}{\partial \theta} \Psi(P_{\theta,g})\big|_{\theta=0}\right)^2}{\mathbb{I}_{M_g}(0)} = \frac{\left(P_0 D^*(P_0) g\right)^2}{P_0 g^2} \leq \frac{P_0 D^*(P_0)^2 P_0 g^2}{P_0 g^2} = P_0 D^*(P_0)^2.$$

The generalized Crámer-Rao bounder should then satisfy that

$$\sup_{g \in T_{\mathcal{M}}(P)} \frac{\left(\frac{\partial}{\partial \theta} \Psi(P_{\theta,g})\big|_{\theta=0}\right)^2}{\mathfrak{I}_{\mathcal{M}_g}(0)} \leq P_0 D^*(P_0)^2 \ .$$

Since this upper bound side is achieved by a submodel with $g = D^*(P)$, it defines the efficiency bound.

Any such submodel is said to be a least-favorable parametric submodel.

As an example, suppose that $O := (X, Y) \sim P_0 \in \mathcal{M}$, where \mathcal{M} consists of all bivariate distributions on \mathbb{R}^2 under which X and Y are independent. We wish to estimate a moment $P_0 f_0$ for fixed f_0 using n independent draws from P_0 .

We found before that the tangent space here is $T_{\mathcal{M}}(P) = L_2^0(P_X) + L_2^0(P_Y)$. Given $s \in L_2^0(P)$, we can verify that the projection of s onto $T_{\mathcal{M}}(P)$ is simply given pointwise by $\Pi_{T_{\mathcal{M}}(P)}s(x,y) = E_P[s(x,Y)] + E_P[s(X,y)]$.

Using as initial gradient (relative to \mathfrak{M}) the nonparametric EIF of Ψ , known to be $D(P):=f_0-P_0f_0$, we obtain the EIF of Ψ relative to \mathfrak{M} as

$$\Pi_{T_{\mathcal{M}}(P)}D(P)(x,y) = E_{P}[f_{0}(x,Y)] + E_{P}[f_{0}(X,y)].$$

This allows us to check, for example, that $F_n^*(x_0,y_0) = F_{X,n}(x_0)F_{Y,n}(y_0)$ is an asymptotically efficient estimator of $F_0(x_0,y_0) := P_0I_{(-\infty,x_0]\times(-\infty,y_0]}$, where $F_{X,n}$ and the $F_{Y,n}$ are the empirical marginal CDFs based on the X and Y samples, respectively, whereas the empirical bivariate CDF at (x_0,y_0) is not!!!

Not all restrictions on ${\mathfrak M}$ have an impact on the efficiency bound.

Say P=Qg with $\Psi:\mathcal{M}\to\mathbb{R}$ depending on P through Q alone, and that $P\in\mathcal{M}$ iff $Q\in\mathcal{M}_Q$ and $f\in\mathcal{M}_g$, i.e., Q and g are variationally independent.

A few important observations follow:

- lacksquare the total tangent space can be expressed as $T_{\mathfrak{M}}(P) = T_{\mathfrak{M}_{Q}}(P) \oplus T_{\mathfrak{M}_{g}}(P)$;
- shrinking $T_{\mathfrak{M}_g}(P)$ generally enlarges $T_{\mathfrak{M}}^{\perp}(P)$;
- \P $\mathfrak{G}_{\mathfrak{M}}(P)$ and $T_{\mathfrak{M}_{g}}(P)$ are orthogonal to each other;
- since the EIF is strictly contained in $T_{\mathcal{M}_Q}(P)$, it is not affected by any shrinking of $T_{\mathcal{M}_g}(P)$.

Conclusion:

Even though restrictions on \mathcal{M}_g generally yield more gradients, in no way do they impact the EIF.

Thus, to find EIF, we may as well do as if g were completely known!

Example: estimating the mean counterfactual

Writing $P_O = P_{Y|A,W} P_{A|W} P_{W}$, we note that Ψ does not depend on $P_{A|W}$ – the latter is an **orthogonal nuisance parameter**.

Restrictions on the model for $P_{A|W}$ do not change the EIF. If \mathcal{M}_* is the fully nonparametric model and \mathcal{M}_0 is the same model with additional knowledge that g is completely known (i.e., $g=g_0$), the EIF in \mathcal{M}_* and \mathcal{M}_0 are the same.

In \mathcal{M}_0 , the estimator $\frac{1}{n}\sum_{i=1}^n \frac{Y_i A_i}{g_0(W_i)}$ can be used – it has influence function

$$D(P)(o) := \frac{ya}{g_0(w)} - \Psi(P) .$$

This is a gradient in \mathcal{M}_0 (but not in \mathcal{M}). Upon projecting it onto the tangent space

$$T_{\mathfrak{M}_0}(P) = T_{\mathfrak{M}_{Y|A,W}}(P) + T_{\mathfrak{M}_W}(P) ,$$

we recover the EIF $D^*(P)(o) := \frac{a}{g(w)} \left[y - \bar{Q}(w) \right] + \bar{Q}(w) - \Psi(P)$.

Suppose that P=Qg with $\Psi: \mathcal{M} \to \mathbb{R}$ depending on P through Q alone, and that $P\in \mathcal{M}$ iff $Q\in \mathcal{M}_Q$ and $g\in \mathcal{M}_g$.

For given $g \in \mathcal{M}_g$, define the model $\mathcal{M}(g) = \{P = Qg : Q \in \mathcal{M}_Q\}.$

(Theorem 2.3 of van der Laan & Robins, 2003) Provided that

- **1** $\psi_n(g_0)$ is an asymptotically linear estimator of $\psi_0 := \Psi(P_0)$ in $\mathcal{M}(g_0)$, say with influence function IC_{P_0} ;
- $\psi_n(g_n) \psi_0 = \psi_n(g_0) \psi_0 + \chi(g_n) \chi(g_0) + o_P(n^{-1/2})$ for some functional χ ;
- $\chi(g_n)$ is an efficient estimator of $\chi(g_0)$ in the model M,

the estimator $\psi_n(g_n)$ of ψ_0 is asymptotically linear with influence function

$$\mathrm{IC}_{P_0}^* := \mathrm{IC}_{P_0} - \Pi_{T_{\mathfrak{M}_g}(P_0)} \mathrm{IC}_{P_0} \ .$$

Why is this an improvement in efficiency?

We can decompose the entire space as the direct sum

$$L_2^0(P) = T_{\mathcal{M}}^{\perp}(P) \oplus T_{\mathcal{M}}(P)$$

= $T_{\mathcal{M}}^{\perp}(P) \oplus T_{\mathcal{M}_Q}(P) \oplus T_{\mathcal{M}_g}(P)$.

In general, ${\rm IC}_{P_0}$ has a component in each of these three summands, each given by an appropriate projection. Specifically, setting

$$v_0:=\Pi_{\mathcal{T}_{\mathcal{M}}^\perp(P_0)}\mathrm{IC}_{P_0}, \quad v_1:=\Pi_{\mathcal{T}_{\mathcal{M}_Q(P_0)}}\mathrm{IC}_{P_0} \quad \text{and} \quad v_2:=\Pi_{\mathcal{T}_{\mathcal{M}_g(P_0)}}\mathrm{IC}_{P_0} \ ,$$

we have that $IC_{P_0}=v_0+v_1+v_2$ while $IC_{P_0}^*=v_0+v_1$. Since all summands are orthogonal, we have that

$$P_0 IC_{P_0}^2 = P_0 IC_{P_0}^{*2} + P_0 v_2^2 \ge P_0 IC_{P_0}^{*2}$$
.

Of course, there is still not optimal if $v_0 \not\equiv 0!$

Recall the example at the end of Chapter 2: estimating a mean counterfactual using an IPTW estimator with known or estimated propensity score.

The influence function $\mathrm{IC}_{P_0}^*$ for the IPTW estimator using an estimator $g_n:=g_{\theta_n}$ of the true propensity $g_0:=g_{\theta_0}$ based on the parametric model $\{g_\theta:\theta\in\Theta\}$ is given by

$$IC_{P_0}^* = IC_{P_0} + \gamma_0 \phi_{\theta_0} ,$$

where IC_{P_0} is the influence function of the IPTW estimator using the known g_0 , $\gamma_0 = -\int \bar{Q}(w,1) \left. \frac{\partial}{\partial \theta} \log g_\theta(w) \right|_{\theta=\theta_0} dQ_{W,0}(w)$ and ϕ_{θ_0} is the influence function of θ_n .

We derived this result in Chapter 2. We can show that

$$\gamma_0 \phi_{\theta_0} = -\Pi_{T_{\mathfrak{M}_{\sigma}}(P_0)} \mathrm{IC}_{P_0} ,$$

thereby directly establishing the previous theorem in this context.

Indeed, we can verify each of the following facts:

 \blacksquare the score for the conditional distribution of A given W is given

$$s_{A|W,\theta}(a,w) := rac{rac{\partial}{\partial \theta} g_{\theta}(w)}{g_{\theta}(w)[1-g_{\theta}(w)]} \left[a-g_{\theta}(w)\right];$$

- $(\operatorname{IC}_{P_0}, s_{A|W,\theta_0})_{P_0} = P_0 \left[\operatorname{IC}_{P_0} s_{A|W,\theta_0} \right] = -\gamma_0;$
- the tangent space $T_{\mathcal{M}_g}(P_0)$ of the model for the conditional distribution of A given W is simply given by $\{\alpha s_{A|W,\theta_0}: \alpha \in \mathbb{R}\}$;
- if θ_n is asymptotically efficient, then $\phi_{\theta_0} = s_{A|W,\theta_0}/\langle s_{A|W,\theta_0}, s_{A|W,\theta_0} \rangle_{P_0}$;
- the projection of IC_{P_0} onto $T_{M_g}(P_0)$ is given by

$$\frac{\langle \mathrm{IC}_{P_0}, s_{A|W,\theta_0} \rangle_{P_0}}{\langle s_{A|W,\theta_0}, s_{A|W,\theta_0} \rangle_{P_0}} s_{A|W,\theta_0} = -\gamma_0 \phi_{\theta_0} .$$

Relevant references

- Klaassen, CAJ (1987). Consistent estimation of the influence function of locally asymptotically linear estimators. Annals of Statistics.
- Pfanzagl, J (1990). Estimation in semiparametric models. Springer. (Chapter 1)
- Newey, W (1991). The asymptotic variance of semiparametric estimators. Working paper,
 Department of Economics, Massachusetts Institute of Technology.
- Bickel, PJ, Klaassen, CAJ, Ritov Y & Wellner, JA (1993). Efficient and adaptive estimation for semiparametric models. Springer. (Chapter 3)
- van der Laan, MJ & Robins, JM (2003). Unified methods for censored longitudinal data and causality. Springer. (Chapters 1-2)
- van der Laan, MJ & Rose, S (2013). Targeted learning: causal inference for observational and experimental data. Springer. (Appendices 4, 5 and 7)