P(C5): 0.001965 01203-, 0.1637

P(C) 0.00000 0.011003-20.1673

Total = 0.012003

C5 1/509 -> 0.001965

C6 1/498 , 0.002008

|                                                                                                                                                                                               |          |              |        |         | -       |         |          |            |            |         |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|--------|---------|---------|---------|----------|------------|------------|---------|--|
| Step 4. C                                                                                                                                                                                     | rosso    | ver (s       |        |         |         |         |          |            |            |         |  |
| Pair1: C1 = [1,3,1,2,3,2,1] Pair2: C1. [1,3,1,2,3,2,1] Pair3: C2 = [3,2,2,1,1,3,2]                                                                                                            |          |              |        |         |         |         |          |            |            |         |  |
| $C_{6} = \begin{bmatrix} 2, 2, 3, 2, 1, 1, 3 \end{bmatrix} \qquad C_{2} = \begin{bmatrix} 3, 2, 2, 1, 1, 3, 2 \end{bmatrix} \qquad C_{6} = \begin{bmatrix} 2, 2, 3, 2, 1, 1, 3 \end{bmatrix}$ |          |              |        |         |         |         |          |            |            |         |  |
| Cross-over at '3': Cross-over at '2': Crossover at '4':                                                                                                                                       |          |              |        |         |         |         |          |            |            |         |  |
| $01 = \begin{bmatrix} 1,3,1,2,1,1,3 \end{bmatrix} \qquad 0_3 = \begin{bmatrix} 1,3,2,1,1,3,2 \end{bmatrix} \qquad 0_5 = \begin{bmatrix} 3,2,2,1,1,3 \end{bmatrix}$                            |          |              |        |         |         |         |          |            |            |         |  |
| $O_2 = \begin{bmatrix} 2,2,3,2,3,2,1 \end{bmatrix}$ $O_4 = \begin{bmatrix} 3,2,1,2,3,2,1 \end{bmatrix}$ $O_6 = \begin{bmatrix} 2,2,3,2,1,3,2 \end{bmatrix}$                                   |          |              |        |         |         |         |          |            |            |         |  |
| Step 5: Mutation (20% chance)                                                                                                                                                                 |          |              |        |         |         |         |          |            |            |         |  |
| 01=[1,3,1,2,1,1,3] -> swapping position & and 5 => [1,81,1,2,1,3,3]                                                                                                                           |          |              |        |         |         |         |          |            |            |         |  |
| 02 = [2,2,3,2,3,2,1]                                                                                                                                                                          |          |              |        |         |         |         |          |            |            |         |  |
| 03 = [1,3,2,1,1,3,2]                                                                                                                                                                          |          |              |        |         |         |         |          |            |            |         |  |
| O4=[3,2,1,2,3,2,1] -> swapping position 4 and 5=> (3,2,1,2,2,3,1)                                                                                                                             |          |              |        |         |         |         |          |            |            |         |  |
| $O_{5} = \begin{bmatrix} 3, 2, 2, 1, 1, 1, 3 \end{bmatrix}$                                                                                                                                   |          |              |        |         |         |         |          |            |            |         |  |
| 06 = [2,2,3,2,1,3,2]                                                                                                                                                                          |          |              |        |         |         |         |          |            |            |         |  |
| Step 6: Fitness of new population. Loads                                                                                                                                                      |          |              |        |         |         |         |          |            |            |         |  |
| Offspring                                                                                                                                                                                     | Task1    | Task2        | Task3  | Tasky   | Task5   | Task6   | Task7    | F1         | F2         | F3      |  |
| 01                                                                                                                                                                                            | 5 10 50  | 8×15-120     | 4.8-32 | 7×10,70 | Gx14=84 | 3×10=30 | 9213=117 | 5+8+4+6=23 | 7          | 3+9=12  |  |
| 02                                                                                                                                                                                            | 5×12=60  | 8 - 14 - 112 | 4,7=28 | 7=10=70 | 6×12=72 | 3×8=24  | 9211=99  | 9          | 5+8+7+3=23 | 4+6=10  |  |
| 03                                                                                                                                                                                            | 5.10.50  | 9×16=128     | 4.9:36 | 7212:84 | 6214=84 | 3×10-30 | 9×12=108 | 5+7+6=18   | 4+9=13     | 8+3=11  |  |
| 04                                                                                                                                                                                            | 5×9=45   | 8214=112     | 428=32 | 7×10=70 | 6×13=79 | 3×10=30 | 9211-99  | 4+9= 13    | 8+7+6=21   | 5+3=8   |  |
| 05                                                                                                                                                                                            | 5.9=45   | 8x14=112     | 4.9=36 | 7,12:84 | 6×14-34 | 329-27  | 9213-117 | 7+6+3=16   | 8+4=12     | 5+9= 14 |  |
| 06                                                                                                                                                                                            | 5x 12=60 | 8 *14=112    | 4x7=28 | 720=70  | 6×14=84 | 3×10=30 | 9×12=108 | 6          | 5+8+7+9=29 | 4+3=7   |  |
| Fitness:                                                                                                                                                                                      |          |              |        |         |         |         |          |            |            |         |  |
| 01 = 50+120+32+70+84+30+117 => 503                                                                                                                                                            |          |              |        |         |         |         |          |            |            |         |  |
| 02 = 60+112+28+70+72+24+99 => 465                                                                                                                                                             |          |              |        |         |         |         |          |            |            |         |  |
| 03=50+128+36+84+84+30+108=> 520                                                                                                                                                               |          |              |        |         |         |         |          |            |            |         |  |
| 04= 45+112+32+70+78+30+99=> 466                                                                                                                                                               |          |              |        |         |         |         |          |            |            |         |  |
| 05=45+112+36+84+84+27+117=> 505                                                                                                                                                               |          |              |        |         |         |         |          |            |            |         |  |
| 06=60+112+28+70+84+30+108=, 492                                                                                                                                                               |          |              |        |         |         |         |          |            |            |         |  |
|                                                                                                                                                                                               |          |              |        |         |         |         |          |            |            |         |  |
|                                                                                                                                                                                               |          |              |        |         | 17.     |         |          |            |            |         |  |

My version of sudoky solver is different from Google OR tools solver because it uses pure python with no external libraries to ensure optimization. Moreover, it lacks bearistics like MRV unlike chatapt and OR-Tools.

By adding heuristics (MRV), forward checking and reducing are recolculation, the custom version can improve its speed significantly

| BHT-4H  |     | _   |       | V   |          |    |     |       |       |      |        | Date:        | -  |    |    |
|---------|-----|-----|-------|-----|----------|----|-----|-------|-------|------|--------|--------------|----|----|----|
| Qu      |     |     |       |     |          |    |     | x     |       |      |        |              |    |    |    |
|         |     |     |       |     |          |    |     | ×     |       |      |        |              |    |    |    |
|         |     |     |       |     |          |    |     | 00    |       |      |        |              |    |    |    |
|         |     |     |       |     |          |    |     |       |       |      |        |              |    |    |    |
|         |     |     |       |     |          |    |     |       |       |      |        |              |    |    |    |
|         | /   |     | _     |     | X        | -  | X   | 1x    | T     | X    |        |              |    | -  |    |
| XX      |     |     | -     |     | X        |    |     | xx    | XTT   | X    | X      |              |    | X  |    |
| X       |     |     |       |     | 0        | 0  |     |       | 110   | 00   |        |              |    | χ  |    |
| 00      |     |     |       |     | <u> </u> | ب  |     |       |       |      |        |              |    | 00 | X  |
|         |     |     | -     |     |          |    |     |       |       |      |        |              |    | 1  | 1  |
| 1       | /   | /   | 1     | -   | -        |    |     | 4     | -     | 5    |        | 6/           | 7, | 8  |    |
| TITT    | V V |     | 7     | Tx  | 3 X      | T  | TX  | x  O  |       |      |        | & Ox         | TI | X  | T  |
| -       | XX  |     | +     | X   | 1        | 0  |     |       |       | X    | 111    |              | 0  | X  | 0  |
|         | X-( |     | +     | 0   |          | -  | O   |       |       | - 11 | 111    |              | OX | I  | OX |
| 000     | 010 | 7   |       | 10  |          |    | 11- | 101   |       | 1    | 2)/( ) | 001/11-1     |    |    | -  |
| -       | 10. | 1   | 100   |     |          |    |     | TR+BL | Sum R | c. 0 | le 0   | V=SUM(R,C,D) | 1  |    |    |
| States  |     |     | R3    |     |          |    |     |       | 000   |      |        |              |    |    |    |
| State 1 |     | 1   | -1000 | 1 1 | 1        |    |     | -10   |       | 1    | -100   | -100         |    |    |    |
| State 2 |     | 1   | -ko   | 1 1 | 1        |    |     | -600  |       | 0    | -100   | -100         |    |    |    |
| State 3 | 1 1 | 1   | -100  | 1   |          |    |     | -10   | 0     | -10  | -90    | -190         |    |    |    |
| State 4 | 1 1 | 1 1 | -100  | 1 1 | 1        | 1  |     | -100  |       | -10  | -90    |              |    |    |    |
| State 5 | 1 1 | 1   | 0     | 1 1 | 1 1      |    |     | -10   | +10   | -90  | 90     | +10          |    |    |    |
| State 6 | 0   | 10  | 0     | 0   | 10       | 0  |     |       |       | -10  | 0      | 0            |    |    |    |
| State 7 | 10  | 0   | 0     | 0   | -100     | 10 | 0   | -100  | 10    | - 90 |        |              |    |    |    |
| State 8 | 10  | 0   | 0     | 0   | -10      | 0  | 100 | -10   | 10    | -10  | 90     | 90           |    |    |    |
| 5, 0    |     |     |       |     |          |    |     |       |       | 1    | -      |              |    |    |    |





| Rutzan                      |               |                     | Dates         |              |       |
|-----------------------------|---------------|---------------------|---------------|--------------|-------|
| Q <sub>6</sub>              |               |                     |               |              |       |
| 0)                          |               |                     |               |              |       |
| 1. Players.                 |               |                     |               |              |       |
| Max (Defender): f           | II-powered I  | Os which wi         | 11 defend     | the network  | 5     |
|                             | from externa  |                     |               |              |       |
| Min (Attacker); It's        | goal is to    |                     | work using    | g various    |       |
|                             | <b>∽</b> \5.  |                     |               |              |       |
| 2. Decision-Making:         | a chrahenia   | like deploying      | firmule       | Optobing su  | tom   |
| Max (Defender): Use<br>or i | on singles    | te to minimize      | the dam       | COC CUISO    | 21211 |
|                             |               | ts to minimize      | che com       | 292 000320   |       |
| while maintaining           | citharka lika | Rusta Fara          | Ph: - L: - 2  | or D. Fre    | olo:1 |
| Min (Attacker): Uses        | allacks like  | Harke In man        | the           | domana       | 74016 |
|                             |               | Hacks to mas        | אווווואס נוופ | . admoge     |       |
| caused to the he            |               |                     |               |              |       |
| 3. Stochastic Elements      |               | م ا ا ا ا ا ا ا ا ا | 11 50         | 'l Guess     |       |
| Attacks Tero-Day            | exploit are   | hiopania seic       | loc. I        | 7. Success   |       |
| rate. They introdu          | ce uncertain  | ory and the         | derender      | may need     |       |
| to shift its focu           |               | st-case to a        | ierage case   | based on     |       |
| probability (e.g Ex         | pectimax)     |                     |               |              |       |
| b).                         | QI.           | defender            |               |              |       |
|                             |               |                     |               |              |       |
|                             |               |                     |               |              |       |
| Deploy Firewall             | Patch Syste   | m                   |               | Ignore Alert | S     |
|                             |               |                     |               |              | >     |
| BPZFR                       | BPZ           | FR                  | В             | PZF          | R     |
|                             |               |                     |               |              | 1     |
| -1 -5 -10 0 0 -20           | -1 -5 -10 0   | 0 -20               | -1 -          | 5 10 0 0     | -20   |

9)





1. success (50%) -> damage = -10

fail (50%) -> damage = 0

Expected Value = [0.5 x (-10)] + [0.5 x (0)] => -5

This means that, on average, if the attacker chooses zero-day exploit, the expected damage to the system will be -5.

2. If the defender switches to expectimax instead of minimax, it doesn't always assume the worst case, hatted instead it also takes into account the probabilities of attack successes therefore, it may choose defenses that have lower expected damage, an even if the worst case deals high damage.