

MA 102: Linear Algebra, Integral Transforms and Special Functions

Tutorial Sheet - 1

Second Semester of the Academic Year 2023-2024

1. Let V be the set of all pairs (x, y) of real numbers, and let F be the field of real numbers. Define

$$(x,y) + (x_1, y_1) = (x + x_1, y + y_1)$$

 $c(x,y) = (cx, y).$

Is V, with these operations, a vector space over the field of real numbers?

2. Let V be the set of all pairs (x,y) of real numbers, and let F be the field of real numbers. Define

$$(x,y) + (x_1,y_1) = (x + x_1,0)$$

 $c(x,y) = (cx,0).$

Is V, with these operations, a vector space over the field of real numbers?

3. On \mathbb{R}^n , define two operations

$$a \oplus b = a - b$$
$$ca = -ca.$$

The operations on the right are the usual ones. Which of the axioms for a vector space are satisfied by $(\mathbb{R}^n, \oplus, .)$?

- 4. Let V be the set C^2 with the usual vector addition, but with scalar multiplication defined by $\alpha \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \alpha y \\ \alpha x \end{pmatrix}$. Determine whether or not V is a vector space with these operations.
- 5. Let V be the set C^2 with the usual scalar multiplication, but with vector addition defined by $\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} z \\ w \end{pmatrix} = \begin{pmatrix} y+w \\ x+z \end{pmatrix}$. Determine whether or not V is a vector space with these operations.
- 6. For the vector space $V = \mathbb{R}^3$ over \mathbb{R} , check whether $W \subseteq V$ as given below, is a subspace or not:
 - (a) $W = \{(a, b, c) : a, b, c \in \mathbb{R} \mid a + b + c = 1\}.$
 - (b) $W = \{(a, b, c) : a, b, c \in \mathbb{R} \mid b = 0\}.$
 - (c) $W = \{(a, b, c) : a, b, c \in \mathbb{R} \mid a = b = c\}.$
- 7. Let $V = \mathbb{M}_{m,n}(\mathbb{R})$ be the vector space containing all $m \times n$ matrices with entries in \mathbb{R} . Then,
 - (a) for m = n, prove that the set $W_1 \subseteq V$ consisting of all antisymmetric matrices forms a subspace of V.
 - (b) for m=n, show that the set $W_1\subseteq V$ of all matrices with trace(M)=0 for all $M\in W_1$ is a subspace of V.
- 8. Prove that the intersection $W_1 \cap W_2$ of two subspaces $W_1, W_2 \subseteq V$ is again a subspace of V.

9. Let A be a 2x3 matrix.

(a) Let $U = \{x \in \mathbb{R}^3 : Ax = 0\}$. Show that U is a subspace of \mathbb{R}^3 .

(b) Is
$$W = \{x \in \mathbb{R}^3 : Ax = b\}$$
 a subspace when $b = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$? Explain.

- 10. Give an example of a nonempty subset U of \mathbb{R}^2 such that U is closed under scalar multiplication, but U is not a subspace of \mathbb{R}^2 .
- 11. Let V be the vector space of the functions $f:\mathbb{R}\to\mathbb{R}.$ Show that W is a subspace of V , where:
 - (a) $W = \{f(x) : f(1) = 0\}$, all functions whose value at 1 is 0.
 - (b) $W = \{f(x) : f(3) = f(1)\}$, all functions assigning the same value to 3 and 1.
 - (c) $W = \{f(x) : f(-x) = -f(x)\}$; the set of odd functions.

**** End ****