Insulated Wall Temperature

Overview

Reference:	F. Kreith, <i>Principles of Heat Transfer</i> , 2nd Printing, International Textbook Co., Scranton, PA, 1959, pg. 32, ex. 2-5.		
Analysis Type(s):	Thermal Analysis (ANTYPE = 0)		
Element Type(s):	Convection Link Elements (LINK34) 3-D Conduction Bar Elements (LINK33)		
Input Listing:	vm92.dat		

Test Case

A furnace wall consists of two layers, firebrick and insulating brick. The temperature inside the furnace is T_f and the inner surface convection coefficient is h_i . The ambient temperature is T_a and the outer surface convection coefficient is h_o . Neglect the thermal resistance of the mortar joints and determine the rate of heat loss through the wall q, the inner surface temperature T_i , and the outer surface temperature T_o .

Figure 92.1: Insulated Wall Temperature Problem Sketch

Material Properties	Geometric Properties	Loading
$k_1 = 0.8$ Btu/hr-ft-°F		
$k_2 = 0.1$ Btu/hr-ft-°F	$I_1 = 9 \text{ in} = 0.75 \text{ ft}$	T _f = 3000°F
$h_i = 12 \text{ Btu/hr-ft}^2 - {}^{\circ}\text{F}$	$I_2 = 5 \text{ in} = 5/12 \text{ ft}$	$T_a = 80^{\circ}F$
$h_0 = 2 \text{ Btu/hr-ft}^2 - F$		

Analysis Assumptions and Modeling Notes

A 1 ft² area is used for the convection and conduction elements. Nodes 1 and 5 are given arbitrary locations. Feet units are input as (inches/12) for convenience. POST1 is used to extract results from the solution phase.

Results Comparison

	Target[<u>1</u>]	Mechanical APDL	Ratio
q, Btu/hr	513.	513.	1.001
T _i , °F	2957.	2957.	1.000
T _o , °F	336.	337.	1.002

1. Rounded-off values (normalized)