q iQuHack 2023

Problem

Find the Maximal Independent Set of a graph on a neutral atom quantum computer.

Approach

Adjusting Graphs

- 1. Higher number of qubits and density
- Cycling through different, random graph types

State Preparation and Optimizers Approach

Adiabatic Evolution

- 1. Strength of the transverse field (Ω)
- 2. Strength of the detuning Δ
- 3. Phase Factor φ

QAOA

Approach

Choose the graph – applications?

Take the radius into account as the Unit Disk Graph (UDG) is generated

Balance optimization of the graphs, the pulse parameters (amplitude, detuning, phase), and protocols other than adiabatic evolution

Graph, Hamiltonian parameters, optimization protocol

Implementation and Results

100 Node/Qubit "Snake"70 shots

Average pre-processed size: 34.9571 Average post-processed IS size: 33.1852

King's Graph

Average pre-processed size: 28.5714 Average post-processed IS size: 27.0667

100 Node "Snake" 70 shots

Adiabatic evolution from Pitcher et. al. Smaller blockade radius

Average pre-processed size: 31.4429 Average post-processed IS size: 30.0357

QAOA

Results not shown -failed to converge to MIS due to converging at local minima

Future Work

- In-depth analysis of how optimization protocols (state preparation)
 correlate to the graph type
- Exploring control of individual Rydberg blockade radii when that functionality is added
- Improving and increasing classical optimization protocol use
- Applying our research to map coordinates or other "real-world" problems