## Zur Mächtigkeit der Potenzmenge

Definition 1: Zwei Mengen A und B heißen gleichmächtig, wenn eine bijektive Abbildung von A auf B (damit auch von B auf A bzw. zwischen A und B) existiert. Bezeichnung:  $A \sim B$  (auch |A| = |B|).

Definition 2: Eine Menge B heißt mächtiger als A, wenn es eine injektive Abbildung f  $| A \rightarrow B$  gibt, aber keine bijektive Abbildung, Schreibweise: |A| < |B|.

Satz: Es sei E eine nichtleere Menge. Dann ist die Potenzmenge  $M = \mathcal{P}(E)$  mächtiger als E.

Beweis: 1) Die Abbildung  $f \mid E \to M$  mit  $f(x) = \{x\}$ , die jedem  $x \in E$  die einelementige Menge  $\{x\} \in M$  zuordnet, ist offensichtlich injektiv.

2) Wir zeigen, dass es keine bijektive Abbildung von E auf M gibt. Dieser Teil des Beweises erfolgt indirekt. Angenommen es gäbe doch eine bijektive Abbildung g  $\mid E \rightarrow M$ . Die Abbildung g ist dann auch surjektiv. Der Kernpunkt des Beweises ist die folgende Teilmenge A von E (also  $A \in M$ ):  $A = \{x \in E \mid x \notin g(x)\}$ . Veranschaulichung von A: Es werden jeweils in einem Diagramm ein Element x

<u>Veranschaulichung von A:</u> Es werden jeweils in einem Diagramm ein <u>Element x</u> und die zugeordnete Teilmenge g(x) von E schematisch dargestellt.



## E <u>Diagramm 1:</u>

Das Element  $x_1$  gehört nicht zur zugeordneten Menge  $g(x_1)$ :  $x_1 \notin g(x_1)$ . Das bedeutet aber gemäß Definition der Menge A, dass  $x_1 \in A$  gilt.



## Diagramm 2:

Das Element  $x_2$  gehört zur zugeordneten Menge  $g(x_2)$ :  $x_2 \in g(x_2)$ .

Das bedeutet aber gemäß Definition der Menge A, dass  $x_2 \notin A$  gilt.

Da die Abbildung  $g \mid E \to M$  als surjektiv angenommen wurde, müsste es ein  $a \in E$  geben mit g(a) = A. Dies führt aber zum Widerspruch, wie folgende Fallunterscheidung zeigt.

- 1. Fall:  $a \in A = g(a)$ , dann ist a nach Definition von A kein Element von A, denn A soll genau die Elemente x von E enthalten, die nicht zur zugeordneten Menge g(x) gehören, damit entsteht der Widerspruch  $a \notin A$ .
- 2. Fall:  $a \notin A = g(a)$ , dann ist a nach Definition von A ein Element von A, denn A soll genau die Elemente x von E enthalten, die nicht zur zugeordneten Menge g(x) gehören, also auch a. Damit entsteht der Widerspruch  $a \in A$ .

Die Annahme der Surjektivität von g führt also zum Widerspruch. Es gibt also keine surjektive  $^*$  und damit auch keine bijektive Abbildung von E auf  $M = \mathcal{P}(E)$ .

\*) Anschaulich: E enthält "zu wenig" Elemente x, um jedes Element von M, also jede Teilmenge von E, als Bild g(x) zu erhalten.