

# ➤ Big Data Session 5: Processing Large Data Streams

Frank Hopfgartner
Institute for Web Science and Technologies

#### Last week

- Map/Reduce framework
- Querying
  - Spark Core API
  - Pig, Pig Latin
- Machine Learning at Scale
  - Spark MLLib
  - Mahout

### **Recap: Four V's of Big Data**



Source: http://www.ibmbigdatahub.com/sites/default/files/infographic\_file/4-Vs-of-big-data.jpg

#### **Motivation**

- So far we have really just talked about processing historical, existing big data
  - Sitting on HDFS
  - Sitting in a database
- But how does new data get into your cluster? Especially if it is 'big data'?
- Streaming lets you publish this data, in real-time, to your cluster
  - And you can even process it in real-time as it comes in.

### **Intended Learning Outcomes**



### At the end of this lecture, you will be able to:

- Outline use cases to stream data
- Explain record-at-a-time streaming
- Distinguish between various declarative streaming cases

#### **Outline**



- Introduction
- Record-at-a-time streaming
- Declarative, functional streaming
- Declarative, relational streaming

### What is streaming?



Continuously integrating new, infinitely large data to compute results



Processing steps in pipeline fashion

#### Given a stream source



- The amount of data received is unlimited in size
- The volume of data is continuous/variable
  - Typically unpredictable
- Example: Twitter



### **Stream processing use cases**



- 1. Notifications and alerting
  - Redundant failures to log in
- 2. Real-time reporting
  - Dashboards, e.g. for production/traffic flow, system load, uptime,....
- 3. Incremental ETL
  - Update the data warehouse
  - Maintain correctness (do not lose data or add data twice)
- 4. Update data to serve in real time
  - e.g. updating a key-value or relational store with statistics
- 5. Real-time decision making
  - Analyzing new inputs, e.g. analyzing credit card transactions to discover and prevent fraud
- 6. Online machine learning
  - e.g. learning to recommend on changing platforms

# **Example: Thailand's Tsunami warning system**





#### **Example: Smart Grids**





### **Advantages of streaming**



- Lower latency
  - Timescale: minutes, seconds, milliseconds
  - No need to re-process all previously occurred data
  - Retaining state of system
- Higher efficiency for updates
  - Compared to repeated batch jobs

#### Batch vs. Stream: Same, same, but different



### Same functionality needed

- Computing account balances
- Computing statistics

• • •

### Batch processing

- Fixed data during processing
- Query triggers processing

### Stream processing

- Continuous arrival of new data
- New data triggers processing (mostly)

### **Challenges of stream processing**



- Batch processing is simpler to understand, troubleshoot and program
- Batch processing allows for much higher throughput
- Data may arrive out of order, e.g.,

```
{value: 1, time: "2017-04-07T00:00:00"}
{value: 2, time: "2017-04-07T01:00:00"}
{value: 5, time: "2017-04-07T02:00:00"}
{value: 10, time: "2017-04-07T01:30:00"}
{value: 7, time: "2017-04-07T03:00:00"}
```

- Consider a question like:
  - Did 2 10 5 appear?
  - Did 2 10 5 **not** appear?
- Remember events? For how long?
- Remember states?

# **Challenges of stream processing (2)**



- Processing out-of-order data based on application timestamps (event time)
- Maintaining large amounts of state
- Supporting high-data throughput
- Processing each event exactly once despite machine failures
- Handling load imbalance and stragglers
- Responding to events at low latency
- Joining with external data in other storage systems
- Determining how to update output sinks as new events arrive
- Writing data transactionally to output systems
- Updating your application's business logic at runtime

### **Streaming approaches**



#### **Record-at-a-Time:**

- API just hands over one record-at-a-time to application
- Application handles all challenges
- Apache Storm

#### **Declarative, functional API:**

- Describe what to compute, not how
- Functional: map, reduce, filter
- Dstreams API, Google Dataflow, Apache Kafka

#### **Declarative, relational API:**

- Rich automatic optimization of execution (beyond functional)
- Spark Structured Streaming, Apache Flink

# **Event time vs. processing time**





Web of Things

# Continuous vs. batch processing







Microbatches of DataFrames

#### **Trade-offs**



### **Continuous processing**

- Processes data immediately
- Lower base latency

### Microbatch processing

- Waits for some amount of data to arrive before processing
- Latencies starting at 100ms to 1s
- Improved throughput
- Preferred by distributed streaming
  - If scalability is an issue, throughput must be optimized

### Practical, continuous applications



- reacts to data in real time
- mixes
  - Streaming jobs
  - Batch jobs
  - Joins between streaming and offline data
  - Interactive ad-hoc queries

#### **Outline**



- Introduction
- Record-at-a-time streaming
  - Apache Storm
- Declarative, functional streaming
- Declarative, relational streaming

#### **Hadoop ecosystem**





#### **Apache Storm**



 Distributed and fault-tolerant real-time computation system for processing limitless streaming data



- Built at Twitter
- Real-time analytics
  - Not batch data processing like Hadoop
- Define a topology: graph of computation
  - Consumes streams of data and processes those streams in arbitrarily complex ways, repartitioning the streams as needed

# **Storm vs Hadoop**



| Storm                              | Hadoop                                         |
|------------------------------------|------------------------------------------------|
| Real-time streams of data          | Batch data processing                          |
| Stateless                          | Stateful (data stored on HDFS)                 |
| Zookeeper<br>coordination          | Zookeeper<br>coordination                      |
| 1K msg / sec processed             | TB/PB processed in minutes/hours               |
| Topology runs as more data arrives | M/R jobs completed and results written on HDFS |

### **Apache Storm**



- Two kinds of nodes: spouts and bolts
  - Spout: source of data streams
  - Bolt: process input stream and outputs new stream
- Nodes execute in parallel



### **Apache Storm**



#### Spout

- Data sources like Twitter Streaming API
- Kafka queue (see later)
- Read from datasources

#### Bolt

- Filtering, aggregation, joining operations
- Interact with other datasources, e.g., databases

# Topology

- Directed graph where vertices are computation and edges are stream of data
- Distributed over multiple worker nodes running all the time and waiting for jobs to process
- Multiple nodes can execute one bolt and take a share of the data
- Topology is run by the master node (called Nimbus) assigning tasks to nodes

# **Example: Twitter word count**





#### **Storm - Use cases**



|                    | "Prevent" Use Cases                       | "Optimize" Use Cases      |
|--------------------|-------------------------------------------|---------------------------|
| Financial Services | Securities fraud                          | Order routing             |
|                    | Operational risks & compliance violations | Pricing                   |
| Telecom            | Security breaches                         | Bandwidth allocation      |
|                    | Network outages                           | Customer service          |
| Retail             | Shrinkage                                 | Offers                    |
|                    | Stock outs                                | Pricing                   |
| Manufacturing      | Preventative maintenance                  | Supply chain optimization |
|                    | Quality assurance                         | Reduced plant downtime    |
| Transportation     | Driver monitoring                         | Routes                    |
|                    | Predictive maintenance                    | Pricing                   |

https://hortonworks.com/apache/storm/

#### **Outline**



- Introduction
- Record-at-a-time streaming
- Declarative, functional streaming
  - Apache Kafka
  - DStreams API
- Declarative, relational streaming

#### **Hadoop ecosystem**





#### **Apache Kafka**





- Originally built by LinkedIn (open-sourced in 2011)
- Kafka is a general-purpose publish/subscribe messaging system
- Kafka servers store all incoming messages from publishers for some period of time, and publishes them to a stream of data called a topic.
- Kafka consumers subscribe to one or more topics, and receive data as it is published
- A stream/topic can have many different consumers, all with their own position in the stream maintained
- It's not just for Hadoop.

#### Publish/subscribe model



- Broadcast data to multiple processes
- Producers: publish a stream of data
- Consumers: subscribe to a stream

Stream processors: consume and produce a

new stream



### **How Kafka operates**



- Kafka itself may be distributed among many processes on many servers
  - Will distribute the storage of stream data as well
- Consumers may also be distributed
  - Consumers of the same group will have messages distributed amongst themselves
  - Consumers of different groups will get their own copy of each message

### **Processing**



- Producers write into a sequence of records that is continually appended
  - Sequences are partitioned and distributed in the cluster to scale
  - Partitions are replicated for fault tolerance
  - Order only maintained within a partition!
- Kafka cluster retains all published records for a predefined retention period (e.g., 2 days)
- Consumers read content using offset information



### **Example Kafka applications**



- A retail application
  - takes in input streams of sales and shipment data
  - outputs a stream of reorders and price adjustments based on this data
- Usage at LinkedIn
  - https://engineering.linkedin.com/kafka/kafka-linkedin-current-andfuture
    - Page views, clicks
  - https://engineering.linkedin.com/kafka/running-kafka-scale
    - Multiple datacenters
    - Mirroring data across Kafka clusters

### **APIs in Spark**



#### **Batch APIs**

- RDD
  - Low level
- Data Frame
  - High level
  - Several means for selfoptimization available

### **Streaming APIs**

- Spark Streaming / DStreams API
  - Low level
- Structured Streaming API
  - High level
  - Several means for selfoptimization available

## **Spark streaming**



- An extension of the core Spark
- Process real-time data from different data sources
- Stream of data divided into small batches (Discretized Stream – DStream)
  - Build on RDDs
- Can seemlessly integrate with other Spark components
- Scalable, high-throughput, fault-tolerant stream processing of live data streams

#### **Spark streaming ecosystem**





#### **Spark Streaming - Data Sources**



- Kafka
  - Most popular (and older)
  - High throughput (20k msg/sec)
- Apache Flume
  - Streaming event log data (web page visits, clicks) from a web server
  - Distributed / high availability
- Kinesis
  - Amazon AWS solution
- Streams are represented as a sequence of RDDs.

## **Spark - Stream processing**



- Series of batch computations on small time intervals (windows over the stream)
- Spark Streaming receives live input data streams
- Divides the data into batches
- Spark engine processes batches



#### **Discretised Streams (DStreams)**



- Continuous stream of data
  - From source
  - Transforming an input file
- DStream is represented by a continuous series of RDDs
  - Each RDD has data from a certain interval
- Resilient Distributed Datasets (RDDs)
  - Keep data in memory
  - Can recover it without replication (track the lineage graph of operations that were used to build it)



#### **Window operations**



- Apply transformations (map, flatMap, etc) over a sliding window of data
- RDDs that fall within the window are combined and operated upon
  - Parameters: window length, sliding interval
  - Custom window-based transformations



## **Spark Streaming Fault-tolerance**



- Streams arrive 24/7
- Storage able to recover from failures (HDFS)
  - Store computation metadata
  - Store data from streams
- When a node fails, each node in the cluster works to recompute part of the lost node's RDDs
- Batch interval needs to be set such that the expected data rate in production can be sustained

#### **Spark Streaming - Use Cases**



#### Uber

- Data from mobile users
- Kafka as data source
- Event data to structured data into HDFS
- Analytics as M/R

#### Pinterest

- Real-time user interaction analysis
- Use this for recommendations (products to buy, places to visit)

#### **Outline**



- Introduction
- Record-at-a-time streaming
- Declarative, functional streaming
- Declarative, relational streaming
  - Spark Structured Streaming API
  - Apache Flink

## **Spark Structured Streaming**



- More recent
- More types of optimization (compared to Dstreams)
- Native support for event time
- Microbatches
- Write DataFrame or SQL computation!
   Integrates well with batch functionality!
- Output to Parquet (for downstream usage)

# **Structured Streaming Processing**





- 2. Process new row,
  - update internal state
  - update result
- (3.) Evict oldest rows

#### **Structured Streaming In/Out**



#### Input from

- Apache Kafka
- Files
  - HDFS
  - S3
- Socket

#### Output to

- Apache Kafka
- File
- Foreach sink
- Console sink (for testing)
- Memory sink (for debugging)

## **Apache Flink**



- Developed at TU Berlin, Apache project since 2014
- Big data processing engine: distributed and scalable streaming dataflow engine
- Exploits data streaming and in-memory processing and iteration operators to improve performance
- Seen as 4<sup>th</sup> Generation IFP system because:

Iterative algorithms

Internal optimization mechanisms

Uses Lambda architecture model

Hybrid programming architecture: allows simultaneous batch and realtime runs.



#### Who uses Apache Flink?



- Alibaba uses a Flink-based system to optimize search rankings in real-time
- Ericsson used Flink to build a real-time anomaly detector over large infrastructures using machine learning
- Huawei Cloud offers a product called "CloudStream", based on Apache Flink
- Netflix, Uber, Zalando, ...

See: https://cwiki.apache.org/confluence/display/FLINK/Powered+by+Flink

## **Apache Flink Framework**



- Several APIs in Java/Python/Scala
  - Dataset API Batch processing
  - DataStream API Real-time streaming analytics
  - Table API Relational Queries
- Domain specific libraries
  - FlinkML: Machine Learning Library for Flink
  - Gelly: Graph library for Flink
- Shell for interactive data analysis

#### Lambda architecture



- Batch layer: stores ALL the incoming data in an immutable master dataset and pre-computes batch views on historic data.
- Serving layer: indexes views on the master dataset.
- Real-time processing layer: requests data views depending on incoming queries.

#### Lambda architecture





#### **Stream Processing Frameworks**



G. van Dongen and D. Van den Poel, "Evaluation of Stream Processing Frameworks," in *IEEE Transactions on Parallel and Distributed Systems*, vol. 31, no. 8, pp. 1845-1858, 1 Aug. 2020, doi: 10.1109/TPDS.2020.2978480

#### **Summary**



- Introduction
- Record-at-a-time streaming
- Declarative, functional streaming
- Declarative, relational streaming

## What's next - Processing Graph Data



- Network Theory (Briefly)
- Data representation
- Graph Processing Examples
- Distributed Systems for Graph Processing