Intro to estimation and calibration using system priors

IrisToolbox Knowledge Base

Priors in bayesian estimation

- Traditionally, priors on individual parameters
- However, more often than not we simply wish to control some properties of the model as a whole system: system properties
- And not so much the individual parameters

Examples of system properties

- · Model-implied correlation between output and inflation
- Model-implied sacrifice ratio
- Frequency response function from output to potential output (band of periodicities ascribed to potential output)
- Suppress secondary cycles in shock responses (e.g. more than 90% of a shock response has to occur within the first 10 quarter)
- Make sure a type 2 policy error is costly (delays in the policy response to inflationary shocks calls for a larger reaction later)
- Anything...
- Even **qualitative** properties (e.g. sign restrictions) can be expressed as system priors

System priors formally

Posterior density

$$\underbrace{p\left(\theta\mid Y,m\right)}_{\text{Posterior}} \propto \underbrace{p\left(Y\mid \theta,m\right)}_{\text{Data likelihood}} \times \underbrace{p\left(\theta\mid m\right)}_{\text{Prior}}$$

Prior density typically consists of independent marginal priors

$$p\left(heta\mid m
ight)=p_{1}\left(heta_{1}\mid m
ight) imes p_{2}\left(heta_{2}\mid m
ight) imes\cdots imes p_{n}\left(heta_{n}\mid m
ight)$$

Complement or replace with density involving a property of the model as a whole, $h(\theta)$

$$p\left(heta\mid m
ight)=p_{1}\left(heta_{1}\mid m
ight) imes\cdots imes p_{n}\left(heta_{n}\mid m
ight) imes q_{1}ig(h(heta)\mid mig) imes\cdots imes q_{k}ig(h(heta)\mid mig)$$

Benefits of system priors in estimation

- A relatively low number of system priors can push parameter estimates into a region where the properties of the model as a whole make sense and are well-behaved...
- ...without enforcing a tighter prior structure on individual parameters

Non-bayesian interpretation of priors: Penalty/shrinkage

- Shrinkage (or penalty) function
- Keep the parameters close to our "preferred" values
- "Close" is defined by the shape/curvature of the shrinkage/penalty function
- Example: Normal priors are equivalent to quadratic shrinkage/penalty

Priors in calibration: Maximize prior mode

- · Exclude/disregard data likelihood
- Only maximize prior mode
- Case 1: only independent priors on individual parameters
 - ⇒ modes of marginals

$$p\left(heta\mid m
ight)=p_{1}\left(heta_{1}\mid m
ight) imes\cdots imes p_{n}\left(heta_{n}\mid m
ight) imes\cdots$$

- Case 2: only a small number of system priors
 - ⇒ very likely underdetermined (singular)

$$p\left(heta\mid m
ight)=q_{1}ig(h(heta)\mid mig) imes\cdots imes q_{k}ig(h(heta)\mid mig)$$

Case 3: Combination of priors on individual parameters and system priors
 ⇒ deviate as little as possible from the "preferred" values of parameters while
 delivering sensible system properties

$$p\left(heta\mid m
ight)=p_{1}\left(heta_{1}\mid m
ight) imes\cdots imes p_{n}\left(heta_{n}\mid m
ight) imes q_{1}ig(h(heta)\mid mig) imes\cdots imes q_{k}ig(h(heta)\mid mig)$$

Implemenation in IrisT

The following <code>@Model</code> class functions (methods) can be used to construct a <code>@SystemProperty</code> object for efficient evaluation of system properties

Function	Description
simulate	Any kind of simulation, including complex simulation design
acf	Autocovariance and autocorrelation functions
xsf	Power spectrum and spectral density functions
ffrf	Filter frequency response function