25990-H040-R0-00

NASA CR-

TRW NOTE NO. 74-FMT-946

147451

SHUTTLE TASK JSC/TRW 542

PROGRAM MANUAL FOR THE SHUTTLE ELECTRIC POWER SYSTEM ANALYSIS COMPUTER PROGRAM (SEPS)

VOLUME I OF PROGRAM DOCUMENTATION

JUNE 1974

Prepared by **ELECTRICAL POWER SECTION**

(NASA-CR-147451) PROGRAM MANUAL FOR THE SHUTTLE ELECTRIC POWER SYSTEM ANALYSIS COMPUTER PROGRAM (SEPS) , VOLUME 1.OF PROGRAM DOCUMENTATION (TRW Systems Group) 314 p HC CSCL 09C G3/20

N76-18230

Unclas 18692

Prepared for MISSION PLANNING AND ANALYSIS DIVISION NATIONAL AERONAUTICS AND SPACE ADMINISTRATION JOHNSON SPACE CENTER HOUSTON, TEXAS NAS 9-13834

SHUTTLE TASK JSC/TRW 542

PROGRAM MANUAL FOR THE SHUTTLE ELECTRIC POWER SYSTEM ANALYSIS COMPUTER PROGRAM (SEPS)

VOLUME I OF PROGRAM DOCUMENTATION

JUNE 1974

Prepared for
MISSION PLANNING AND ANALYSIS DIVISION
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
JOHNSON SPACE CENTER
HOUSTON, TEXAS
NAS 9-13834

Prepared by: R. W

R. W. Bains

H. A. Herwig

J. K. Luedeman

E. M. Torina

Approved by

. B. Warren, Acting Manager

Electronic Systems

Engineering Department

Approved by

R. A. Mintz, Head

Electric Power Section

Approved by

D. M. Austgen Manager

Mission Trajectory Control

Program

ABSTRACT

The Shuttle Electric Power System Analysis Computer Program (SEPS) was developed by TRW under JSC/TRW Task 542 for the Consumables Analysis Section of the Mission Planning and Analysis Division. The SEPS program has two major uses; first, to perform detailed load analysis including predicting energy demands and consumables requirements when the shuttle electric power system is operated and perturbed in accordance with premission flight plans; and second, to perform parametric and special case studies on the Shuttle electric power system. As an additional feature, the SEPS program can be and has been used to analyze the ASTP Apollo electric power system. No program changes are required to use the SEPS program for analysis of the ASTP Apollo electric power system.

The SEPS Computer Program is written in FORTRAN V for use on the UNIVAC 1108 under the EXEC II operating system.

Documentation of the SEPS program is divided into two separate volumes.

VOLUME I - Program Manual contained herein

VOLUME II - User's Manual contains the information necessary for a user to adequately understand and use the SEPS Computer Program

TABLE OF CONTENTS

<u>Secti</u>	<u>on</u>	<u>Pa</u>	ige
	ABST	RACT	i
	TABL	E OF CONTENTS	٧
	LIST	OF FIGURES	X
1.0	INTR	ODUCTION	1
2.0	PROG	RAM DESCRIPTION	3
	2.1	PURPOSE	3
	2.2	SEPS PHASE I	3
		2.2.1 Discussion	3
	2.3	PHASE II	4
		2.3.1 Discussion	4
		2.3.2 Math Models	4
		2.3.3 Phase I/Phase II Interface	5
		2.3.3.1 Discussion	5
		2.3.3.2 Functional Flow Diagram	6
	2.4	EXTERNAL PROGRAM INTERFACES	8
3.0	SUBR	OUTINE DESCRIPTION	9
	3.1	CONTROL SUBROUTINE	9
		3.1.1 Subroutine: JVSEPS	9
	3.2	PHASE I SUBROUTINES	7
		3.2.1 Subroutine: PHASE1	7
		3.2.2 Subroutine: ACYCLE	25
		3.2.3 Subroutine: AHANDL	29

TABLE OF CONTENTS (CONTINUED)

Section																		<u>Page</u>
	3.2.4	Subroutine:	AREAD			•	•	•	•				•			•	•	35
	3.2.5	Subroutine:	CCYCLE	•		•		•	-	•	•	•			•	•	•	45
	3.2.6	Subroutine:	CHANDL	•	•	•		•	•	•	•	•	•	•	•	•	•	51
	3.2.7	Subroutine:	COMPCT	•	•			•		•	•	•	•	•	•	•	•	57
	3.2.8	Subroutine:	CREAD	•			•	٠		•	۰	•	•	•	•	•	•	61
	3.2.9	Subroutine:	CTAPE	•		•	c			•	•	•	•	•	•	•	•	69
	3.2.10	Subroutine:	CYCLE	•	•	•	•	•	•	•	•	•	e	•	•	•	•	75
	3.2.11	Subroutine:	MHANDL	•		•	•		•	•	۰	•	•	•	•	•		83
	3.2.12	Subroutine:	PCYCLE	•	•	•		•	•	•	•	•	•	•	•	•	•	87
	3.2.13	Subroutine:	PHANDL	•	•	•	•	•	•	•	•	•	•	÷	•	•	•	91
	3.2.14	Subroutine:	PLTNOW		•	•	•	•	٠	•	•	•	•	•	•	•	•	97
	3.2.15	Subroutine:	PRTPLT		•	•			•		•		•	•	•	•	•	103
	3.2.16	Subroutine:	RCYCLE	•	•	•		•	•	•		•	•	۰	•	•	•	107
	3.2.17	Subroutine:	RFIL .	•	•	•	•	•	•	•	•	٠	٠	۰	•	•	•	113
	3.2.18	Subroutine:	SHANDL	•	•	•	•	•	•	•	٠	•	۰	•	•	•	•	117
	3.2.19	Subroutine:	TPOUTJ	•						•		•	•	۰	•	•		123
	3.2.20	Subroutine:	TREAD	•	•	٠		•		•	•	٠	•	•	•		•	157
3.3	PHASE I	I SUBROUTINES	i	•	•	•	•	٠	•	•	•	٠		٠	•	•		167
	3.3.1	Subroutine:	PHASE2	. •	•			•	•	•	•		•		•	•		167
	3.3.2	Subroutine:	ACINVT	•	•			•	•	•	•		•		•	•		177
	3.3.3	Subroutine:	BATTIV	•	•	٠		•	•		•	•	•	•	•	•	•	185
	3.3.4	Subroutine:	CHARGE	•		•		•	•				•	•	•			191
	3.3.5	Subroutine:	DCSOLV		_	_	_			_	_	_			_	_	_	197

TABLE OF CONTENTS (CONTINUED)

<u>Section</u> ·																		Page
	3.3.6	Subroutine:	FUCLIV		•	•	•			•	•			•		•	•	225
	3.3.7	Subroutine:	FUCLTM	•	•	•	•		•		•	•	•	•				231
	3.3.8	Subroutine:	INCRA	•	•	•		•					•	•	•	•		239
	3.3.9	Subroutine:	INITAL	•	•	•				•	•		•	•		•	•	250
	3.3.10	Subroutine:	QCLTMP		•	•	•	•	•			•	•	•	•		•	261
	3.3.11	Subroutine:	REDLIN	•	•	•	•	•		-	٠	•	•	•			•	269
3.4	ANALYSI:	S SUBROUTINES				•	•	•	•		•	•	•	•			-	279
	3.4.1	Subroutine:	COMUSE	•	•			•	•	•	•	•		•			•	279
APPENDIX				•	•	• ,	•	•	•	•	•	•	•	•	•		•	A-1

LIST OF FIGURES

<u>F</u>	igure No.	<u>.</u>												Page
	3.1.1	FUNCTIONAL	FLOWCHART	0F	SUBROUTINE	JVSEPS			•	•		•		10
	3.2.1	FUNCTIONAL	FLOWCHART	0F	SUBROUTINE	PHASE1	•	•	•	•	•	•	•	18
	3.2.2	FUNCTIONAL	FLOWCHART	0F	SUBROUTINE	ACYCLE	•	•		•	•	•	•	26
	3.2.3	FUNCTIONAL	FLOWCHART	0F	SUBROUTINE	AHANDL	•	•	•	•	•			30
	3.2.4	FUNCTIONAL	FLOWCHART	0F	SUBROUTINE	AREAD	•	•		•	•	•	:	36
	3.2.5	FUNCTIONAL	FLOWCHART	OF	SUBROUTINE	CCYCLE		•		•	•	•		46
	3.2.6	FUNCTIONAL	FLOWCHART	0F	SUBROUTINE	CHANDL	•	•			•	•		52
	3.2.7	FUNCTIONAL	FLOWCHART	OF	SUBROUTINE	COMPCT					•	•	•	58
	3.2.8	FUNCTIONAL	FLOWCHART	0F	SUBROUTINE	CREAD		•		•	•			62
	3.2.9	FUNCTIONAL	FLOWCHART	0F	SUBROUTINE	CTAPE		•	•		•	•	•	70
	3.2.10	FUNCTIONAL	FLOWCHART	0F	SUBROUTINE	CYCLE		•	•	•	•	•	•	76
	3.2.11	FUNCTIONAL	FLOWCHART	0F	SUBROUTINE	MHANDL				•	•	•	•	84
	3.2.12	FUNCTIONAL	FLOWCHART	0F	SUBROUTINE	PCYCLE	•	•		•	•	•	•	88
	3.2.13	FUNCTIONAL	FLOWCHART	0F	SUBROUTINE	PHANDL	•	•	•	•	•	•	•	92
	3.2.14	FUNCTIONAL	FLOWCHART	0F	SUBROUTINE	PLTNOW			•	•	•	•	•	98
	3.2.15	FUNCTIONAL	FLOWCHART	0F	SUBROUTINE	PRTPLT			•	•	•	•	•	104
	3.2.16	FUNCTIONAL	FLOWCHART	OF	SUBROUTINE	RCYCLE	•	•			•	•	•	108
	3.2.17	FUNCTIONAL	FLOWCHART	0F	SUBROUTINE	RFIL .	•		•	•		•	•	114
	3.2.18	FUNCTIONAL	FLOWCHART	0F	SUBROUTINE	SHANDL	•	•	•		•	•	•	118
	3.2.19	FUNCTIONAL	FLOWCHART	0F	SUBROUTINE	TPOUTJ	•	•	•	•	•	•	•	124
	3.2.20	FUNCTIONAL	FLOWCHART	0F	SUBROUTINE	TREAD	•	•	•	•	•	•	•	158
	3.3.1	FUNCTIONAL	FLOWCHART	OF	SUBROUTINE	PHASE2	•	•	•	•	•		•	168
	3.3.2	FUNCTIONAL	FLOWCHART	0F	SUBROUTINE	ACINVT		•		•				177

LIST OF FIGURES (COMTINUED)

F	igure No.														Page
	3.3.3	FUNCTIONAL	FLOWCHART	0F	SUBROUTINE	BATTIV	•	•	•			•	٠	•	186
	3.3.4	FUNCTIONAL	FLOWCHART	0F	SUBROUTINE	CHARGE		•		•	•		•	•	192
	3.3.5	FUNCTIONAL	FLOWCHART	0F	SUBROUTINE	DCSOLV	•	•		•	•	•	•	•	198
	3.3.6	FUNCTIONAL	FLOWCHART	OF	SUBROUTINE	FUCLIV	•	•	•	•	•	•	•		226
	3.3.7	FUNCTIONAL	FLOWCHART	OF	SUBROUTINE	FUCLTM	•		•	•			•	•	232
	3.3.8	FUNCTIONAL	FLOWCHART	0F	SUBROUTINE	INCRA		•		•	•	•	•	•	240
	3.3.9	FUNCTIONAL	FLOWCHART	0F	SUBROUTINE	INITAL		•			•	•		•	250
	3.3.10	FUNCTIONAL	FLOWCHART	0F	SUBROUTINE	OCLTMP	٠		•	•	•	•	•	•	262
	3.3.11	FUNCTIONAL	FLOWCHART	0F	SUBROUTINE	REDLIN		•	•	•	•	•			270
	3.4.1	FUNCTIONAL	FLOWCHART	0F	SUBROUTINE	COMUSE									286

PRECEDING PAGE BLANK NOT FILMED

1.0 INTRODUCTION

1.0 INTRODUCTION

This document contains information pertaining to the Program Manual, Programmer Guide, and Program Utilization of the Shuttle Electrical Power System (SEPS) computer program. The main objective of this manual is to provide the information necessary to interpret and use the routines comprising the SEPS program.

The subroutine descriptions are divided into four categories; control, Phase I, Phase II, and analysis routines. The subroutine descriptions include the name, purpose, method (if applicable), variable definitions and logic flow.

The SEPS User's Manual provides the information necessary for a user to adequately understand and use the SEPS computer program.

2.0 PROGRAM DESCRIPTION

2.0 PROGRAM DESCRIPTION

2.1 PURPOSE

The TRW Shuttle EPS Analysis Computer Program (SEPS) was developed for use as a premission evaluation tool. The purposes of the program are to (a) predict EPS performance and EPS consumables usage when the system is operated and perturbed in accordance with premission flight plans, and (b) perform parametric and special case studies on the Shuttle EPS.

2.2 SEPS PHASE I

2.2.1 Discussion

The SEPS Computer Program Phase I, using a mission event timeline, develops an electrical load profile and provides subsystem and mission analyses of the power and energy demands for Shuttle missions. The analysis is based on a 28 VDC load bus voltage. The program utilizes a data base which describes all Shuttle electrical power consuming equipment in terms of power requirements and relating all the equipment to subsystems. This data combined with a desired mission event timeline provides the basis for the output interface tape consisting of event time point data and a listing of the activated components. The interface tape is utilized as the input driver for the Phase I COMUSE analyses and Phase II. The Phase I COMUSE analyses are discussed in more detail in the User's Manual, Section 2.1 (Formatted Printout Description).

The Phase I output and Phase I COMUSE output analyses have been adjusted to include an assumed 4% average line loss and an inverter efficiency of 80%. These data have been hard coded into the program and would require a change in Subroutine JVSEPS to revise these assumptions. The respective words are RESLOS for the line loss factor and PFEFF for the inverter efficiency. The line loss factor and inverter efficiency are not used in the Phase II analyses.

2.3 PHASE II

2.3.1 Discussion

The SEPS Phase II program integrates the various math models that define the operating characteristics of the power sources, distribution and equipment of the Shuttle electrical power system. This provides the capability of simulating the total electrical power system with which system design and design/mission requirements compatibility can be analyzed and parametric studies performed. Another capability of SEPS Phase II is the fuel cell cryogenic requirements which result from the mission profile electrical power demand and operating procedures.

The SEPS Phase II program utilizes the Phase I interface tape to provide the electrical load profile and active components. The user also has the capability to change or modify the configuration or input data through the use of an input card alter deck.

2.3.2 Math Models

In order to accomplish the SEPS Phase II capabilities several math models were required. A description of the math models, their intended use, and primary subroutine follows.

EPS Distribution Circuit Math Model - This model is a representation of the Shuttle dc electrical power distribution and control system.

Using a node analysis technique and the load profile contained on the Phase I interface tape, the distribution circuit model will determine the system bus voltages and currents and the load voltages and currents. The primary subroutine is DCSOLV.

Fuel Cell Math Model - This model is a representation of the Shuttle 7 KW average, 12 KW peak fuel cells. The fuel cell model is called by the distribution circuit model to provide source voltage as a function of source current. The fuel cell model also provides the cryogenic use rates to the cryogenics model. The primary subroutines are FUELIV and FUCLTM.

Inverter System Math Model - The inverter model is a simplified representation of the Shuttle 9 inverter/3 phase ac system. This model will calculate the inverter no load and load losses and reflect the ac inverter loads to the dc distribution system. The primary subroutine is ACINVT.

Constraints Model - The constraints model will provide for automatic program checking and flagging of distribution, power source, and reactant storage system constraint violations. As actual performance, test and limit data becomes available, the constraints model can be updated. The primary subroutine is REDLIN.

2.3.3 Phase I/Phase II Interface

2.3.3.1 Discussion

The SEPS Phase I/Phase II interface has been designed to allow maximum utilization of analysis subroutines, output subroutines, and user interface through program option and control cards. Section 2.3.3.2 flow charts the Phase I/Phase II program. The flow chart shows a commonality in program output and the use of the same analysis subroutines for both Phase I and Phase II. The user through program option and control cards can either allow or suppress virtually any portion of the combined Phase I/Phase II program outputs. The output interface tape of Phase I is the input driver for Phase II. Modifications to the interface tape data can be inserted by the user through an input card deck.

2.3.3.2 Functional Flow Diagram

2.3.3.2 Functional Flow Diagram (Continued)

ORIGINAL PAGE IS OF POOR QUALITY

2.4 EXTERNAL PROGRAM INTERFACES

To facilitate the SEPS program in meeting its defined requirements, the following interfacing programs have been developed:

1. CIFLIS

This program is used to list a given number of files from a card image tape.

2. CMPDAT

This program is used to give a component and/or mission phase comparison of two interface tapes

3. CREDJR

This program is used to make changes to the component definition card image tape file.

4. FILDUP

This program is used to duplicate card image files.

5. JYMMPS

This program is used to concentrate several timeline files together and to time order the resulting file.

6. NEWHLP

This program is used to construct a tape able to be plotted showing user designated component's time history of operation.

7. STLPLT

Generates CALCOMP plots from the unformatted interface output tapes.

8. WLCCIT

This program is used to create or alter a card image tape file, as a by-product the file is listed and each entry is numbered.

3.0 SUBROUTINE DESCRIPTION

3.0 SUBROUTINE DESCRIPTION

3.1 CONTROL SUBROUTINE

3.1.1 Subroutine: JVSEPS

PURPOSE: This routine controls the SEPS program execution.

METHOD: This routine controls the following functions:

- 1. Determines total area of random access available
- 2. Reads the option-units cards
- 3. Reads the abort time
- 4. If applicable, calls for the mission phase definition cards to be read
- 5. If applicable, calls for the compacted component dictionary to be read for use in a Phase II only run utilizing an interface tape
- 6. Controls the execution of
 - a. Phase I
 - b. Phase I COMUSE
 - c. Phase II
 - d. Phase II COMUSE

. VARIABLES: The variables used in this subroutine are listed in the common blocks of the functional flowchart, Figure 3.1.1. See Appendix for definition of all variables.

```
INCLUDE STRAGA
                                   INCLUDE STRAGI
INTEGER ODASG
                                   DIMENSION IFLAG(40)
                                   DIMENSION TITLT(2,20)
DIMENSION TITLO(3,40)
                                   DIMENSION NTAPE(20)
                                   DIMENSION ALPHA(29)
                                   DIMENSION ALPHAT(20)
  DATA TITLT /
                        "."PROCEDURES "."ACTIVITIES
"."RESTART OUT "."RESTART IN
".'INTERFACE 2 ".'PLOT 2
  "COMPONENTS
                                                                            ", "TIMELINE
                                                                           "."INTERFACE 1
  "FIXED DATA
  "PLOT 1
                                                                            ". "DICTIONARY
  "CIRCUIT DEF
DATA TITLO /
"EXECUTE PHASE 1 "."EXECUTE PHASE 2 "."PLOT ON PRINTER 1 "WRITE RESTART TAPE". "USE 3 PT LOAD DATA"."
"PRINT EACH INPUT 2".
                                                                    ". "CONSTRAINT ANAL
                                                                                                       2
                                "."PHASE 2 COMUSE
"."SUPPRESS ANL PRT 1"."PHASE 1 COMUSE ".
"ECHO COMPONENTS "."ECHO PROCEDURES "."ECHO ACTIVITIES ".
"ECHO TIMELINE "."SUP COMUSE CMP ANL"."AT MP LIST ACT CMP".
"MISSION PHASE AN 1"."SUPPRESS CMP CHNG "."SUPPRESS LOAD/BUS ".
"SUPPRESS SUBSYSTEM"/
DATA ALPHA /
           "."B
"."G
"."N
"."T
                                                          ","
","J
","P
                           "."C
"."H
                                          ".""
".""
"."V
                                                                                         "."E
"."R
"."Y
                                                                                                        ".
".
"A
                                                                         "."K
"."Q
"."X
"M
"S
"Z
                                 DATA NTAPE /20+6H
                                 DATA PWRTOT /-10./
                                          CONT.
                                                      ON PG 2
                                                                                                 JVSEPS
                                                                                                 PG I OF
```

FIGURE 3.1.1. FUNCTIONAL FLOWCHART OF SUBROUTINE: JVSEPS

ORIGINAL PAGE IS OF POOR QUALITY

.FIGURE 3.1.1 FUNCTIONAL FLOWCHART OF SUBROUTINE: JVSEPS (CONTINUED)

FIGURE 3.1.1. FUNCTIONAL FLOWCHART OF SUBROUTINE: JVSEPS (CONTINUED)

FIGURE 3.1.1. FUNCTIONAL FLOWCHART OF SUBROUTINE: JVSEPS (CONTINUED)

FIGURE 3.1.1. FUNCTIONAL FLOWCHART OF SUBROUTINE: JVSEPS (CONTINUED)

- FIGURE 3.1.1. FUNCTIONAL FLOWCHART OF SUBROUTINE: JVSEPS (CONTINUED)

JVSEPS PG 7 FINAL

FIGURE 3.1.1. FUNCTIONAL FLOWCHART OF SUBROUTINE: JVSEPS (CONTINUED)

3.2 PHASE I SUBROUTINES

3.2.1 Subroutine: PHASE1

PURPOSE: To control the creation of a load profile

METHOD: This routine controls the following functions

- 1. Creates a component dictionary
- 2. Creates a procedure dictionary
- 3. Creates an activity dictionary
- 4. Reads a timeline consisting of activities, procedures, components, switches, and cyclic elements and converts it to a component event timeline
- Compacts out the unused components in the component dictionary
- 6. Analyzes the component event timeline

VARIABLES: The variables used in this subroutine are listed in the common blocks of the functional flowchart, Figure 3.2.1. See Appendix for definition of all variables.

FIGURE 3.2.1 FUNCTIONAL FLOWCHART OF SUBROUTINE PHASE I

original page is of poor quality

FIGURE 3.2.1. FUNCTIONAL FLOWCHART OF SUBROUTINE PHASE I (CONTINUED)

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 3.2.1. FUNCTIONAL FLOWCHART OF SUBROUTINE PHASE I (CONTINUED)

FIGURE 3.2.1. FUNCTIONAL FLOWCHART OF SUBROUTINE PHASE I (CONTINUED)

FIGURE 3.2.1. FUNCTIONAL FLOWCHART OF SUBROUTINE PHASE I (CONTINUED)

ORIGINAL PAGE IN OF POOR QUALITY

FIGURE 3.2.1. FUNCTIONAL FLOWCHART OF SUBROUTINE PHASE I (CONTINUED)

PHASE1 PG 7 FINAL

FIGURE 3.2.1. FUNCTIONAL FLOWCHART OF SUBROUTINE PHASE I (CONTINUED)

ORIGINAL PAGE IS OF POOR QUALITY

3.2.2 Subroutine: ACYCLE

PURPOSE: This routine converts an Activity into Procedures and

Components.

METHOD: This routine interrogates the Activity dictionary and

calls the appropriate subroutines to correctly handle Procedures and Components. If the Activity cannot be

found, the following diagnostic is generated.

REQUESTED ACTIVITY NNNNNNNNN IS NOT IN THE DICTIONARY

VARIABLES: The variables used in this subroutine are listed in the common blocks of the functional flowchart, Figure 3.2.2.

See Appendix for definition of all variables.

NOTE: Subroutine ACYCLE is essentially identical to Subroutine

AHANDL. The requirement for these subroutines is dictated

by the program logic.

FIGURE 3.2.2. FUNCTIONAL FLOWCHART OF SUBROUTINE ACYCLE

ACYCLE PG 2 FINAL

FIGURE 3.2.2. FUNCTIONAL FLOWCHART OF SUBROUTINE ACYCLE (CONTINUED)

3.2.3 Subroutine: AHANDL

PURPOSE: This routine converts an Activity into Procedures,

Components and Switches.

METHOD: This routine interrogates the Activity dictionary and

calls the appropriate subroutines to correctly handle Procedures, Components, and Switches. If the Activity cannot be found, the following diagnostic is generated.

REQUESTED ACTIVITY NNNNNNNNN IS NOT IN THE DICTIONARY

VARIABLES: The variables used in this subroutine are listed in the

common blocks of the functional flowchart, Figure 3.2.3.

See Appendix for definition of all variables.

FIGURE 3.2.3. FUNCTIONAL FLOWCHART OF SUBROUTINE AHANDL

FIGURE 3.2.3. FUNCTIONAL FLOWCHART OF SUBROUTINE AHANDL (CONTINUED) .

FIGURE 3.2.3. FUNCTIONAL FLOWCHART OF SUBROUTINE AHANDL (CONTINUED)

AHANDL PG 4 FINAL

FIGURE 3.2.3. FUNCTIONAL FLOWCHART OF SUBROUTINE AHANDL (CONTINUED)

3.2.4 Subroutine: AREAD

PURPOSE: This routine reads the Activity/Procedure definition

cards and creates the Activity/Procedure dictionary.

METHOD: This routine is called twice; once to create the Activity dictionary and once to create the Procedure dictionary.

Each card as it is read in is tested to determine if it is a File Title card, a Card Type 1 (an Activity/Procedure title card), or a Card Type 2 (an Activity/Procedure definition card). As each Card Type 2 is read, it is related to its card type 1 and stored in a Sequentially/indexed file and its location in the file is stored in the dictionary.

The following diagnostics are provided:

INCORRECT TYPE AANNNNNN NOT A ACTIVITY PROCEDURE

NO MORE DRUM SPACE AVAILABLE - THE LAST CARD PROCESSED WAS AA

ID NNNNNN NUMBER NNNNNNNNN RUN ABORTED

READ ERROR ON CARD AANNNNNN (ACTIVITY PROCEDURE

VARIABLES: Calling Arguments:

IDICT - where the dictionary is to be stored

ICD - number of entries in IDICT

NWL - words of drum remaining

IDA - drum address

IU - unit definitions' are to be read form

ITY - entry type 1 - procedure 2 - activity

IDEM - IDICT dimension

The remaining variables listed in this subroutine are listed in the common blocks of the functional flowchart, Figure 3.2.4. See Appendix for definition of all variables.

PRECEDING PAGE BLANK NOT FILMED

FIGURE 3.2.4. FUNCTIONAL FLOWCHART OF SUBROUTINE AREAD

FIGURE 3.2.4. FUNCTIONAL FLOWCHART OF SUBROUTINE AREAD (CONTINUED)

AREAD PG 8 FINAL

FIGURE 3.2.4. FUNCTIONAL FLOWCHART OF SUBROUTINE AREAD (CONTINUED)

3.2.5 Subroutine: CCYCLE

PURPOSE: This routine creates the component portion of the event timeline.

METHOD: For each component the following are determined:

- 1. Location in the component dictionary
- 2. Shows the component as "active" and to be included in the compacted dictionary
- 3. Determines the event on and off time
- 4. Stores the event in the timeline array
- . 5. Writes the event on drum

VARIABLES: The variables used in this subroutine are listed in the common blocks of the functional flowchart, Figure 3.2.5. See Appendix for definition of all variables.

NOTE: Subroutine CCYCLE is essentially identical to Subroutine CHANDL. The requirement for these subroutines is dictated by the program logic.

PRECEDING PAGE BLANK NOT FILMEN

FIGURE 3.2.5. FUNCTIONAL FLOWCHART OF SUBROUTINE CCYCLE

FIGURE 3.2.5. FUNCTIONAL FLOWCHART OF SUBROUTINE CCYCLE (CONTINUED)

FIGURE 3.2.5. FUNCTIONAL FLOWCHART OF SUBROUTINE CCYCLE (CONTINUED)

FIGURE 3.2.5. FUNCTIONAL FLOWCHART OF SUBROUTINE CEYCLE (CONTINUED)

ORIGINAL PAGE IS

CCYCLE PG 5 FINAL

FIGURE 3.2.5. FUNCTIONAL FLOWCHART OF SUBROUTINE CCYCLE (CONTINUED,)

3.2.6 Subroutine: CHANDL

PURPOSE: This routine creates the component portion of the event timeline.

METHOD: For each component the following are determined:

- 1. Location in the component dictionary
- 2. Shows the component as "active" and to be included in the compacted dictionary
- 3. Determines the event on and off time
- 4. Stores the event in the timeline array
- 5. Writes the event on drum

VARIABLES: The variables used in this subroutine are listed in the common blocks of the functional flowchart, Figure 3.2.6. See Appendix for definition of all variables.

FIGURE 3.2.6. FUNCTIONAL FLOWCHART OF SUBROUTINE CHANDL

FIGURE 3.2.6. FUNCTIONAL FLOWCHART OF SUBROUTINE CHANDL (CONTINUED)

FIGURE 3.2.6. FUNCTIONAL FLOWCHART OF SUBROUTINE CHANDL (CONTINUED)

FIGURE 3.2.6. FUNCTIONAL FLOWCHART OF SUBROUTINE CHANDL (CONTINUED)

CHANDL PG 5 FINAL

FIGURE 3.2.6. FUNCTIONAL FLOWCHART OF SUBROUTINE CHANDL (CONTINUED)

3.2.7 Subroutine: COMPCT

PURPOSE: To eliminate unused components from the component

dictionary

METHOD: Only components found to be "active" are stored in

the compacted dictionary. If requested, the compacted dictionary is written to an auxiliary unit for use in

a later execution.

VARIABLES: The variables used in this subroutine are listed in the

common blocks of the functional flowchart, Figure 3.2.7. See Appendix for definition of all variables.

FIGURE 3.2.7. FUNCTIONAL FLOWCHART OF SUBROUTINE COMPCT

FIGURE 3.2.7. FUNCTIONAL FLOWCHART OF SUBROUTINE COMPCT (CONTINUED)

COMPCT PG 3 FINAL

FIGURE 3.2.7. FUNCTIONAL FLOWCHART OF SUBROUTINE COMPCT (CONTINUED)

3.2.8. Subroutine: CREAD

PURPOSE: This routine creates the component dictionary.

METHOD: The component definition is read. The component modes

are gathered together and written randomly on drum.

The component dictionary consists of component ID number

and drum location.

VARIABLES: The variables used in this subroutine are listed in the

common blocks of the functional flowchart, Figure 3.2.8.

See Appendix for definition of all variables.

FIGURE 3.2.8. FUNCTIONAL FLOWCHART OF SUBROUTINE CREAD

CONT. ON PG 3 CREAD PG 2 OF 6

FIGURE 3.2.8. FUNCTIONAL FLOWCHART OF SUBROUTINE CREAD (CONTINUED)

> CREAD PG 6 FINAL

FIGURE 3.2.8. FUNCTIONAL FLOWCHART OF SUBROUTINE CREAD (CONTINUED)

INTENTIONALLY

LEFT

BLANK

3.2.9 Subroutine: CTAPE

PURPOSE: To write the Phase I interface tape.

The changes of component loads and switch positions METHOD:

from the previous time are determined. Only the changes are written on the interface tape. The first record contains zero values for all switch positions. The first record is used for initialization.

The variables used in this subroutine are listed in the VARIABLES:

common blocks of the functional flowchart, Figure 2.3.9.

FIGURE 3.2.9. FUNCTIONAL FLOWCHART OF SUBROUTINE CTAPE

FIGURE 3.2.9. FUNCTIONAL FLOWCHART OF SUBROUTINE CTAPE (CONTINUED)

FIGURE 3.2.9. FUNCTIONAL FLOWCHART OF SUBROUTINE CTAPE (CONTINUED)

FIGURE 3.2.9. FUNCTIONAL FLOWCHART OF SUBROUTINE CTAPE (CONTINUED)

CTAPE PG 5 FINAL

FIGURE 3.2.9. FUNCTIONAL FLOWCHART OF SUBROUTINE CTAPE (CONTINUED)

3.2.10 Subroutine: CYCLE

PURPOSE: To control all cyclic elements.

METHOD: When a cyclic element is encountered it is stored in the

cyclic definition table. Periodically this routine is called to update the cyclic's condition by calling either AHANDL, PHANDL, or CHANDL depending upon the type of

cyclic element.

VARIABLES: The variables used in this subroutine are listed in the

common blocks of the functional flowchart, Figure 3.2.10.

```
SUBROUTINE CYCLE(T.N.MD.PER.PON.TT.KIND)
DIMENSION TS(100)
   DIMENSION NS(100)
    DIMENSION MS(100)
    DIMENSION PERS(100)
   DIMENSION PONS(100)
   DIMENSION TTS(100)
   DIMENSION NSTOR(100.6)
COMMON /TLINF / IOUT.IOUTM

COMMON /CYCLIC/ NS.MS.TS.PERS.PONS.TTS.I

COMMON /UNITS/ IU5.IU6.IU7.IU8.IU9.IU10.IU11

COMMON /FCYCL/ KF

DATA I /0/

DATA NS /100*999999/

EQUIVALENCE (NS(1).NSTOR(1.1))
                             IF(N.LT.0)
                                        T
                             GO TO
                                       10
                          IF(KIND.GT.0)
                             GO TO 10
                                 [=[+]
                                    ₹
                               TS(I)=T
                              MS(I)=MD
NS(I)=N
                                                                              CYCLE
PG 1
                          CONT. ON PG 2
                                                                                        OF
                                                                                               6
```

FIGURE 3.2.10. FUNCTIONAL FLOWCHART OF SUBROUTINE CYCLE

FIGURE 3.2.10. FUNCTIONAL FLOWCHART OF SUBROUTINE CYCLE (CONTINUED)

FIGURE 3.2.10. FUNCTIONAL FLOWCHART OF SUBROUTINE CYCLE (CONTINUED)

FIGURE 3.2.10. FUNCTIONAL FLOWCHART OF SUBROUTINE CYCLE (CONTINUED)

FIGURE 3.2.10. FUNCTIONAL FLOWCHART OF SUBROUTINE CYCLE (CONTINUED)

CYCLE PG 6 FINAL

FIGURE 3.2.10. FUNCTIONAL FLOWCHART OF SUBROUTINE CYCLE (CONTINUED)

3.2.11. Subroutine: MHANDL

Create the Mission Phase Definition Dictionary PURPOSE:

METHOD: Read the Mission Phase Definition cards and store

them in an array for later use.

VARIABLES: The variables used in this subroutine are listed in the

common blocks of the functional flowchart, Figure 3.2.11. See Appendix for definition of all variables.

PRECEDING PAGE BLANK NOT FILMED

FIGURE 3.2.11. FUNCTIONAL FLOWCHART OF SUBROUTINE MHANDL

FIGURE 3.2.11. FUNCTIONAL FLOWCHART OF SUBROUTINE MHANDL (CONTINUED)

MHANDL PG 3 FINAL

FIGURE 3.2.11. FUNCTIONAL FLOWCHART OF SUBROUTINE MHANDL (CONTINUED)

3.2.12 Subroutine: PCYCLE

PURPOSE: This routine converts Procedures into Components.

METHOD: This routine interrogates the Procedure dictionary and

calls the appropriate subroutine to correctly handle Components. If the Procedure cannot be found, the

following diagnostic is generated.

REQUESTED PROCEDURE NANNANANN IS NOT IN THE DICTIONARY

VARIABLES: The variables used in this subroutine are listed in the

common blocks of the functional flowchart, Figure 3.2.12.

See Appendix for definition of all variables.

NOTE: Subroutine PCYCLE is essentially identical to Subroutine

PHANDL. The requirement for these subroutines is dictated

by the program logic.

FIGURE 3.2.12. FUNCTIONAL FLOWCHART OF SUBROUTINE PCYCLE

PCYCLE PG 2 FINAL

FIGURE 3.2.12. FUNCTIONAL FLOWCHART OF SUBROUTINE PCYCLE (CONTINUED)

3.2.13 Subroutine: PHANDL

This routine converts a Procedure into Components and PURPOSE:

switches.

This routine interrogates the Procedure dictionary and METHOD:

calls the appropriate subroutines to correctly handle Components and Switches. If the Procedure cannot be

found, the following diagnostic is generated.

REQUESTED PROCEDURE NANNANNAN IS NOT IN THE DICTIONARY

The variables used in this subroutine are listed in the common blocks of the functional flowchart, Figure 3.2.13. VARIABLES:

See Appendix for definition of all variables.

PRECEDING PAGE BLANK NOT FILMED

FIGURE 3.2.13. FUNCTIONAL FLOWCHART OF SUBROUTINE PHANDL

FIGURE 3.2.13. FUNCTIONAL FLOWCHART OF SUBROUTINE PHANDL (CONTINUED)

FIGURE 3.2.13. FUNCTIONAL FLOWCHART OF SUBROUTINE PHANDL (CONTINUED)

FIGURE 3.2.13. FUNCTIONAL FLOWCHART FOR SUBROUTINE PHANDL (CONTINUED)

PHANDL PG 5 FINAL

FIGURE 3.2.13. FUNCTIONAL FLOWCHART OF SUBROUTINE PHANDL (CONTINUED)

3.2.14 Subroutine: PLTNOW

Write the plot of total source power versus time, as determined in Phase I, on the printer. PURPOSE:

Create headings necessary for the plot and write the METHOD:

plot on the printer.

The variables used in this subroutine are listed in the **VARIABLES:**

common blocks of the functional flowchart, Figure 3.2.14.

FIGURE 3.2.14. FUNCTIONAL FLOWCHART OF SUBROUTINE PLINOW

PLINOW PG 2 OF

FIGURE 3.2.14. FUNCTIONAL FLOWCHART OF SUBROUTINE PLTNOW (CONTINUED)

FIGURE 3.2.14. FUNCTIONAL FLOWCHART OF SUBROUTINE PLTNOW (CONTINUED)

FIGURE 3.2.14. FUNCTIONAL FLOWCHART OF SUBROUTINE PLTNOW (CONTINUED)

PLINOW PG 5 FINAL

FIGURE 3.2.14. FUNCTIONAL FLOWCHART OF SUBROUTINE PLTNOW (CONTINUED)

3.2.15 Subroutine: PRTPLT

PURPOSE: Create a plot of total source power versus time, as

determined in Phase I.

METHOD: Determine the scaling necessary for this point. Store

the point in the plot array. If the time elapsed has

exceeded 24 hours, call PLTNOW to print the plot.

VARIABLES: The variables used in this subroutine are listed in

the common blocks of the functional flowchart, Figure 3.2.15.

FIGURE 3.2.15. FUNCTIONAL FLOWCHART OF SUBROUTINE PRTPLT

FIGURE 3.2.15. FUNCTIONAL FLOWCHART OF SUBROUTINE PRTPLT (CONTINUED)

FIGURE 3.2.15. FUNCTIONAL FLOWCHART OF SUBROUTINE PRTPLT (CONTINUED)

3.2.16 Subroutine: RCYCLE

PURPOSE: To control all cyclic elements.

METHOD: Periodically this routine is called to update the

cyclic's condition by calling either AHANDL, PHANDL, or CHANDL depending upon the type of cyclic element.

VARIABLES: The variables used in this subroutine are listed in the

common blocks of the functional flowchart, Figure 3.2.16.

See Appendix for definition of all variables

FIGURE 3.2.16. FUNCTIONAL FLOWCHART OF SUBROUTINE RCYCLE

FIGURE 3.2.16. FUNCTIONAL FLOWCHART OF SUBROUTINE RCYCLE (CONTINUED)

FIGURE 3.2.16. FUNCTIONAL FLOWCHART OF SUBROUTINE RCYCLE (CONTINUED

FIGURE 3.2.16. FUNCTIONAL FLOWCHART OF SUBROUTINE RCYCLE (CONTINUED)

RCYCLE PG 5 FINAL

FIGURE 3.2.16. FUNCTIONAL FLOWCHART OF SUBROUTINE RCYCLE (CONTINUED)

3.2.17 Subroutine: RFIL

PURPOSE: To handle the situation created when the event array

overloads.

METHOD: If necessary, all cyclic elements status are brought up

to the present time. The event array is ordered on time. The number of points to be written to the event timeline unit (0) is determined. The points are written

to the tape and removed from the event array.

VARIABLES: The variables used in this subroutine are listed in the

common blocks of the functional flowchart, Figure 3.2.17.

See Appendix for definition of all variables.

FIGURE 3.2.17. FUNCTIONAL FLOWCHART OF SUBROUTINE RFIL

FIGURE 3.2.17. FUNCTIONAL FLOWCHART OF SUBROUTINE RFIL (CONTINUED)

RFIL PG 3 FINAL

FIGURE 3.2.17. FUNCTIONAL FLOWCHART OF SUBROUTINE RFIL (CONTINUED)

3.2.18 Subroutine: SHANDL

PURPOSE: This routine creates the switch portion of the event

timeline.

METHOD: For each switch the following are determined:

1. Determines the event on and off time

2. Stores the event in the timeline array

3. Writes the event on drum

VARIABLES: The variables used in this subroutine are listed in the

common blocks of the functional flowchart, Figure 3.2.18.

See Appendix for definition of all variables.

FIGURE 3.2.18. FUNCTIONAL FLOWCHART OF SUBROUTINE SHANDL

FIGURE 3.2.18. FUNCTIONAL FLOWCHART OF SUBROUTINE SHANDL (CONTINUED)

FIGURE 3.2.18. FUNCTIONAL FLOWCHART OF SUBROUTINE SHANDL (CONTINUED)

FIGURE 3.2.18. FUNCTIONAL FLOWCHART OF SUBROUTINE SHANDL (CONTINUED)

SHANDL PG 5 FINAL

FIGURE 3.2.18. FUNCTIONAL FLOWCHART OF SUBROUTINE SHANDL (CONTINUED)

3.2.19 Subroutine: TPOUTJ

PURPOSE: Analyze the event timeline and provide the interface

tape, plots, and all formatted printouts from Phase I.

METHOD: The event timeline is read to determine the change of

status for switches and components. If the change of status effects a component certain checks are made to insure the component is operating at its highest use factor. Changes in status happening within an input delta time of each other are grouped together and printed

and plotted as if they occurred at the same time.

WARIABLES: The variables used in this subroutine are listed in the

common blocks of the functional flowchart, Figure 3.2.19.

See Appendix for definition of all variables.

```
SUBROUTINE TPOUTJ
                           INCLUDE STRAGE
                           INTEGER CDAT(50)
                           INTEGER TDAT(8)
                           INTEGER TDATA(8)
INTEGER GDASG
                           DIMENSION PWR(3)
                           DIMENSION TRILD( 500.3)
                          DIMENSION TRILDE(3)
                          DIMENSION TRILDP(3)
DIMENSION BUS(24)
                          DIMENSION PFB(12)
                          DIMENSION ACLOAD(12)
                          DIMENSION IS(100)
                          DIMENSION TLOAD(100)
DIMENSION ITLINE(3000.3)
               DIMENSION COCT (500.4)
DIMENSION ICOCT(500.4)
               DIMENSION NAM(6)
               DIMENSION PWRM(4.10)
DIMENSION SUBSYS(100)
               DIMENSION ILCC(22)
               DIMENSION JLOCA(12)
               COMMON /THREE/ ID. ILNCP. NAM. PF. USF. PWRM
COMMON /FOUR / NUM .MD .UST .IAC .IPC .ISF .TC .TYP
COMMON /FIVE / NUMA.MDA.USTA.IACA.IPCA.ISFA.TCA.TYPA
COMMON /MISPHS/ STORMP
COMMON /ACPOWF/ PFEFF.RESLOS
COMMON /ALTERN/ ICDCB(750). ICDC(500.3). ICN
COMMON /BSLOC/ IBUSC(500). ISYSC(500)
COMMON /PHASI/ IDUM(3503). TM(50). MM. TITLM(6.50). TDELTI. TABORT
EQUIVALENCE (CDCT(1,1), ICDCT(1,1))
                        EQUIVALENCE (CDAT(1).ID)
                        EQUIVALENCE (TDAT(1).NUM)
EQUIVALENCE (TDATA(1).NUMA)
EQUIVALENCE ( IU. IUNIT( 8))
                        EQUIVALENCE (IUP, IUNIT( 9))
DATA PFEFF / 1.2/
DATA RESLOS_/ 1.04/
                         DATA NWAD /50/
                                                                                  TPOUTJ
                                   CONT. ON PG 2
                                                                                  PG 1 0F
                                                                                                  32
```

FIGURE 3.2.19. FUNCTIONAL FLOWCHART OF SUBROUTINE TPOUTJ

FIGURE 3.2.19. FUNCTIONAL FLOWCHART OF SUBROUTINE TPOUTJ (CONTINUED)

FIGURE 3.2.19. FUNCTIONAL FLOWCHART OF SUBROUTINE TPOUTJ (CONTINUED)

FIGURE 3.2.19. FUNCTIONAL FLOWCHART OF SUBROUTINE TPOUTJ (CONTINUED)

FIGURE 3.2.19. FUNCTIONAL FLOWCHART OF SUBROUTINE TPOUTJ (CONTINUED)

FIGURE 3.2.19. FUNCTIONAL FLOWCHART OF SUBROUTINE TPOUTJ (CONTINUED)

CONT. ON PG 8 TPOUTJ
PG 7 OF 32

FIGURE 3.2.19. FUNCTIONAL FLOWCHART OF SUBROUTINE TPOUTJ (CONTINUED)

ł

FIGURE 3.2.19. FUNCTIONAL FLOWCHART OF SUBROUTINE TPOUTJ (CONTINUED)

FIGURE 3.2.19. FUNCTIONAL FLOWCHART OF SUBROUTINE TPOUTJ (CONTINUED)

ORIGINAL PAGE 19

FIGURE 3.2.19. FUNCTIONAL FLOWCHART OF SUBROUTINE TPOUTJ (CONTINUED)

FIGURE 3.2.19. FUNCTINAL FLOWCHART OF SUBROUTINE TPOUTJ (CONTINUED)

147

FIGURE 3.2.19. FUNCTIONAL FLOWCHART OF SUBROUTINE TPOUTJ (CONTINUED)

TPOUTJ PG 32 FINAL

FIGURE 3.2.19. FUNCTIONAL FLOWCHART OF SUBROUTINE TPOUTJ (CONTINUED)

3.2.20 Subroutine: TREAD

PURPOSE: Read the input timeline and control the creation of

the event timeline.

METHOD: This routine reads an input timeline card, determines

its type, and calls the correct routine to handle the

type.

VARIABLES: The variables used in this subroutine are listed in the

common blocks of the functional flowchart, Figure 3.2.20.

See Appendix for definition of all variables.

PRECEDING PAGE BLANK NOT FILMED

```
SUBROUTINE TREAD(IU.IDA.NWL)
INCLUDE STRAGA
INCLUDE STRAG1
INTEGER DDAT(1000)
                          DIMENSION T(6)
                          DIMENSION NS(100)
                          DIMENSION MS(100)
                          DIMENSION PERS(100)
            DIMENSION PONS(100)
            DIMENSION TS(100)
            DIMENSION ISLINUJ
DIMENSION ITS(100)
COMMON /TLINF/ IOUT.IOUTM.IDRM.IEND.IFIL.LOC.NWR
COMMON /CYCLIC/ NS.MS.TS.PERS.PONS.ITS.NT
COMMON /FCYCL/ KF
COMMON /DRMFLG/ ISF
            DATA IOUTM /4000/
                           DATA IOUT /0/
DATA TSTR /0./
                           EQUIVALENCE (IUR. IUNIT( 6))
                           REWIND 18
                           LOC=IDA
                           NWR=NWL
                           IDRM=0
                           IEND=0
                                          IFIL=0
                                         CONTINUE
READ(IU.1000.END=600.ERR=400) IT.TYPE.NUMBER.MD.H.M.S.ISF.PRI.P01.
Ţ
                                      1000
                   FORMAT(2A1.17.11.A5.2A2.A1.2A5.3X.6A6)
                                             ON PG 2
                                     CONT.
                                                                                   TREAD
                                                                                   PG 1 OF 9
```

FIGURE 3.2.20. FUNCTIONAL FLOWCHART OF SUBROUTINE TREAD

FIGURE 3.2.20. FUNCTIONAL FLOWCHART OF SUBROUTINE TREAD (CONTINUED)

FIGURE 3.2.20. FUNCTIONAL FLOWCHART OF SUBROUTINE TREAD (CONTINUED)

FIGURE 3.2.20. FUNCTIONAL FLOWCHART OF SUBROUTINE TREAD (CONTINUED)

FIGURE 3.2.20. FUNCTIONAL FLOWCHART OF SUBROUTINE TREAD (CONTINUED)

FIGURE 3.2.20. FUNCTIONAL FLOWCHART OF SUBROUTINE TREAD (CONTINUED)

FIGURE 3.2.20. FUNCTIONAL FLOWCHART OF SUBROUTINE TREAD (CONTINUED)

FIGURE 3.2.20. FUNCTIONAL FLOWCHART OF SUBROUTINE TREAD (CONTINUED)

TREAD PG 9 FINAL

FIGURE 3.2.20. FUNCTIONAL FLOWCHART OF SUBROUTINE TREAD (CONTINUED)

3.3. PHASE II SUBROUTINES

3.3.1 Subroutine: PHASE2

PURPOSE: This routine controls the simulation of the Shuttle

vehicle's electrical power system.

METHOD: Using a user supplied time step this routine controls

the following functions to simulate the vehicle from some input simulation start time to some input simulation

abort time.

1. Reads initialization data and solves the initialization calculations

- 2. Determines the source I-V characteristics
- 3. Solves the distribution system to find node voltages and branch currents
- 4. Checks for constraint violations
- 5. Provides the required outputs
- 6. Repeats Steps 2 through 5 until the end of the simulation

VARIABLES: The variables used in this subroutine are listed in the common blocks of the functional flowchart, Figure 3.3.1. See Appendix for definition of all variables.

```
SUBROUTINE PHASE2
                ALL COMMUNICATION IS TO TAKE PLACE THROUGH POP ELEMENTS
       00000000
                             ALL DRIVER RELATED ELEMENTS
                STRAG1
                             ALL DC SYSTEM RELATED ELEMENTS
ALL AC SYSTEM RELATED ELEMENTS
                STRAG2
                STRAG3
                             ALL BATTERY RELATED ELEMENTS
                STRAG4
                STRAG5
                             ALL FUEL CELL RELATED ELEMENTS
                STRAG6
                             ALL
                                   TR UNIT RELATED ELEMENTS
                PROGRAM FLOW
                            READ OPTION CARD, FIXED DATA. INITIALIZE ALL SOURCES READ DOWN THE TIMELINE, DETERMINE INITIAL LOADING CIRCUIT SOLUTION DRIVER
                INITAL -
COCCOCC
                CIRSOL -
                             CALLS A. ACINVT - SOLVES AC INVERTERS APPLIES AS LOA
                                     TO DC CIRCUIT

B. DCSOLV - SOLVES OC CIRCUIT

C. TRAPLY - APPLIES TR UNIT AS LOAD TO AC CIRC
                                          ACSOLV - SOLVES AC CIRCUIT
                REDLIN - POWER MANAGEMENT
                         - CONTROLS TIMESTEP IF REQUIRED READS TIMELINE INPUT
CALLS A. TLREAD - READS CARD TIMELINE
- DETERMINES WHICH, IF ANY, 10 AH BATTERY IS CONNECTED
0000000
                INCRA
                CHARGE -
                TO THE BATTERY CHARGER AND UPDATES THAT BATTERYS STA
                BATTIV - CALCULATES CORRECT BATTERY OPERATING IV CURVE
                FUCLTM - UPDATES FUEL CELL STATUS
                FUCLIV - CALCULATES FUEL CELL OPERATING IV CURVE
TRUNIT - CALCULATES TRANSFORMER-RECTIFIER UNIT OPERATING IV C
C
                                        INCLUDE STRAGI
INCLUDE STRAG2
INCLUDE STRAG3
                                        INCLUDE STRAG4
INCLUDE STRAG5
INCLUDE STRAG6
                                        INTEGER QUASG
                                        DIMENSION SSOC(6)
                             COMMON /PRINT/ ICARD. ITAPE, IPRNT COMMON /TOTPWR/ PWRTOT
                             COMMON /ACPONF/ PFEFF.RESLOS
                                           CONT.
                                                                                         PHASE2
                                                     ON PG 2
                                                                                         <u>PG 1</u> 0F
                                                                                                        8.
```

FIGURE 3.3.1 FUNCTIONAL FLOWCHART OF SUBROUTINE PHASE2

FIGURE 3.3.1. FUNCTIONAL FLOWCHART OF SUBROUTINE PHASE2 (CONTINUED)

> PHASE2 PG 8 FINAL

FIGURE 3.3.1. FUNCTIONAL FLOWCHART OF SUBROUTINE PHASE2 (CONTINUED)

3.3.2 Subroutine: ACINVT

PURPOSE: To simulate the operation of the onboard dc-ac inverters

METHOD: The ac load and power factor for each inverter is

calculated. These values are used to calculate the equivalent dc load and inverter efficiency. If the inverter is not carrying an ac load or the ac load it is carrying is less than the input dc no-load value, the

inverter is set to dc no-load value.

VARIABLES: The variables used in this subroutine are listed in the

common blocks of the functional flowchart, Figure 3.3.2

See Appendix for definition of all variables.

PRECEDING PAGE BLANK NOT FILMED

```
SUBROUTINE ACINYT
                    INCLUDE STRAGI
INCLUDE STRAG2
COMMON /INVEFF/ ACEFF(3)
                    DIMENSION ACIN
                                          (3)
                    DIMENSION ACINL
                                          (3)
                    DIMENSION ACINE (3)
                    DIMENSION ACPF
                      DIMENSION ACPFAC(3)
                      DIMENSION ACVA (3)
DIMENSION CAPINV(3)
DIMENSION EFFT (2)
                                            (3)
                      DIMENSION EFFV
                      DIMENSION PF
                      DIMENSION PFV
                                             (3)
                      DIMENSION PRS
                                             (6)
                     DIMENSION VA (3)
DIMENSION VARAC (3)
                     DIMENSION VAV
                                           (9.3)
                     DATA CAPINY / 3*2250. /
DATA DCINNL / 112. /
                     DATA PFV / .7. .9, 1./
DATA VAV /
 300.. 460.. 625.. 795..1000..1200..1400..1600..1900..
 300., 470., 690., 900., 1070., 1290., 1500., 1635., 1810., 350., 520., 700., 800., 910., 1160., 1500., 1630., 1900./
DATA EFFV /
                 .698 .721 .732 .736 .734 .726 .746 .762 .764 .760 .754 .747 .756 .767 .770 .768 .750 .743
 .615. .666.
                                                                   .702.
 .662. .712.
                                                                   .730.
 .700, .730,
                                                                    .720/
       C
                 IF INVERTERS ARE DISCONNECTED RETURN
                SAVE INITIAL LOAD VALUES
                                ISPOS=0
                        O0 10
                                   I=I.NINVLD
                                                                  > 2
                           IB=INVLCD(I.1)
                           CONT.
                                    ØN PG 2
                                                                        ACINVT
                                                                               ...OF
                                                                                       6
```

FIGURE 3.3.2. FUNCTIONAL FLOWCHART OF SUBROUTINE ACINYT

FIGURE 3.3.2. FUNCTIONAL FLOWCHART OF SUBROUTINE ACINVT (CONTINUED)

FIGURE 3.3.2. FUNCTIONAL FLOWCHART OF SUBROUTINE ACINYT (CONTINUED)

FIGURE 3.3.2. FUNCTIONAL FLOWCHART OF SUBROUTINE ACINYT (CONTINUED)

FIGURE 3.3.2. FUNCTIONAL FLOWCHART OF SUBROUTINE ACINYT (CONTINUED)

ACINVT PG 6 FINAL

FIGURE 3.3.2. FUNCTIONAL FLOWCHART OF SUBROUTINE ACINVT (CONTINUED)

3.3.3 Subroutine: BATTIV

PURPOSE: To create the I-V curves used in the onboard battery

simulations.

METHOD: After determining the type of battery to be simulated,

an interpolation is made into a set of current-voltage curves as a function of temperature to determine the battery I-V curves at its operating temperature.

VARIABLES: The variables used in this subroutine are listed in the

common blocks of the functional flowchart, Figure 3.3.3.

See Appendix for definition of all variables.

PRECEDING PAGE BLANK NOT FILMED

FIGURE 3.3.3. FUNCTIONAL FLOWCHART OF SUBROUTINE BATTIV

FIGURE 3.3.3. FUNCTIONAL FLOWCHART OF SUBROUTINE BATTIV (CONTINUED)

FIGURE 3.3.3. FUNCTIONAL FLOWCHART OF SUBROUTINE BATTIV (CONTINUED)

FIGURE 3.3.3. FUNCTIONAL FLOWCHART OF SUBROUTINE BATTIV (CONTINUED)

BATTIV PG 5 FINAL

FIGURE 3.3.3. FUNCTIONAL FLOWCHART OF SUBROUTINE BATTIV (CONTINUED)

3.3.4 Subroutine: CHARGE

PURPOSE: To simulate the operation of the battery charger.

METHOD: A charge curve is calculated based on depth-of-discharge

and time since the last discharge. The curve is rate of charge versus time on charge. When the battery state-of-charge reaches 100 percent, the battery is removed from

the charger.

VARIABLES: The variables used in this subroutine are listed in the

common blocks of the functional flowchart, Figure 3.3.4.

See Appendix for definition of all variables.

```
SUBROUTINE CHARGE(II.IACT)
INCLUDE STRAGI
INCLUDE STRAG2'
INCLUDE STRAG4
       DIMENSION AA(3,2,4).BB(3,2,4).CCC(3,2).EE(3,2).FF(3,2)
DIMENSION DCHRG(5,2,3).NOMCHG(5,2).ION(3).ISS(3)
            DATA NOMCHG
            /39.39.38.96.33.5.32.7.30.7.0..1.2.2.2.2.3.2.4/
DATA AA
/0.,2.6.11.2.2.3.6.0.,0.,4.6.15.,2.3.8.0.,0.,6.3.17.3.2.3.1.06.0.,0.,7.6.21.,2.3.1.21.0./
DATA BB
/0..5.2.20..2.3.1.36..77.0..6.1.20..2.3.1.51.1.34.0..6.5.20..2.3.
1.84.1.52.0..7.3.20..2.3.2.08.2./
                       DATA CCC/0..6.75.10...33..5..5/
DATA EE /0..9..16...01.7..12.5/
DATA FF /0..3.9.9..0..1.4.4.0 /
                        DATA ION/3+0/
                 C
                           SET BATTERY CHARGER LOAD TO ZERO
                                 PR(ICHRBP)=CHRGLD
                 C
                           IS THIS BATTERY ALREADY ON CHARGE
                                   IFCIONCID.GT.0)
                                                 Ţ
                                       GO_TO 40
    C
              SET ROUTING FLAGS SAVE DISTRIBUTION SWITCH POSITION
                                   IB=NSOUR(IACT.1)
                                    CONT.
                                              ON PG
                                                                                  CHARGE
```

FIGURE 3.3.4. FUNCTIONAL FLOWCHART OF SUBROUTINE CHARGE

FIGURE 3.3.4. FUNCTIONAL FLOWCHART OF SUBROUTINE CHARGE (CONTINUED)

FIGURE 3.3.4. FUNCTIONAL FLOWCHART OF SUBROUTINE CHARGE (CONTINUED)

FIGURE 3.3.4. FUNCTIONAL FLOWCHART OF SUBROUTINE CHARGE (CONTINUED)

CHARGE PG 5 FINAL

FIGURE 3.3.4. FUNCTIONAL FLOWCHART OF SUBROUTINE CHARGE (CONTINUED)

3.3.5 Subroutine: DCSOLV

PURPOSE: To determine the operating characteristics of the

EPDC.

METHOD: Utilizing a user provided distribution circuit this

routine calculates the nodal equations of the circuit and solves these equations by means of the Gauss-Jordan method. This process is done iteratively until the change-in node voltages are less than some input value.

VARIABLES: The variables used in this subroutine are listed in the

common blocks of the functional flowchart, Figure 3.3.5.

See Appendix for definition of all variables.

FIGURE 3.3.5. FUNCTIONAL FLOWCHART OF SUBROUTINE DCSOLV

FIGURE 3.3.5. FUNCTIONAL FLOWCHART OF SUBROUTINE DCSOLV (CONTINUED)

FIGURE 3.3.5. FUNCTIONAL FLOWCHART OF SUBROUTINE DCSOLV (CONTINUED)

FIGURE 3.3.5. FUNCTIONAL FLOWCHART OF SUBROUTINE DCSOLV (CONTINUED)

FIGURE 3.3.5. FUNCTIONAL FLOWCHART OF SUBROUTINE DCSOLV (CONTINUED)

FIGURE 3.3.5. FUNCTIONAL FLOWCHART OF SUBROUTINE DCSOLV (CONTINUED)

FIGURE 3.3.5. FUNCTIONAL FLOWCHART OF SUBROUTINE DCSOLV (CONTINUED)

FIGURE 3.3.5. FUNCTIONAL FLOWCHART OF SUBROUTINE DCSOLV (CONTINUED)

FIGURE 3.3.5. FUNCTIONAL FLOWCHART OF SUBROUTINE DCSOLV (CONTINUED)

FIGURE 3.3.5. FUNCTIONAL FLOWCHART OF SUBROUTINE DCSOLV (CONTINUED)

FIGURE 3.3.5. FUNCTIONAL FLOWCHART OF SUBROUTINE DCSOLV (CONTINUED)

FIGURE 3.3.5. FUNCTIONAL FLOWCHART OF SUBROUTINE DCSOLV (CONTINUED)

FIGURE 3.3.5. FUNCTIONAL FLOWCHART OF SUBROUTINE DCSOLV (CONTINUED)

FIGURE 3.3.5. FUNCTIONAL FLOWCHART OF SUBROUTINE DCSOLV (CONTINUED)

FIGURE 3.3.5. FUNCTIONAL FLOWCHART OF SUBROUTINE DCSOLV (CONTINUED)

FIGURE 3.3.5. FUNCTIONAL FLOWCHART OF SUBROUTINE DCSOLV (CONTINUED)

FIGURE 3.3.5. FUNCTIONAL FLOWCHART OF SUBROUTINE DCSOLV (CONTINUED)

FIGURE 3.3.5. FUNCTIONAL FLOWCHART OF SUBROUTINE DCSOLV (CONTINUED)

FIGURE 3.3.5. FUNCTIONAL FLOWCHART OF SUBROUTINE DCSOLV (CONTINUED)

FIGURE 3.3.5. FUNCTIONAL FLOWCHART OF SUBROUTINE DCSOLV (CONTINUED)

FIGURE 3.3.5. FUNCTIONAL FLOWCHART OF SUBROUTINE DCSOLV (CONTINUED)

FIGURE 3.3.5. FUNCTIONAL FLOWCHART OF SUBROUTINE DCSOLV (CONTINUED)

CONT. ON PG 24 DCSOLV PG 23 OF 27

FIGURE 3.3.5. FUNCTIONAL FLOWCHART OF SUBROUTINE DCSOLV (CONTINUED)

DCSGLV PG 27 FINAL

FIGURE 3.3.5. FUNCTIONAL FLOWCHART OF SUBROUTINE DCSOLV (CONTINUED)

3.3.6 Subroutine: FUCLIV

PURPOSE: To create the I-V curves used in simulating the onboard

fuel cells

METHOD: An interpolation is made into a set of current-voltage

curves as a function of temperature to determine the fuel cell I-V curve at its operating temperature. The curve is further degraded by the parasitic load to be carried

by the fuel cell.

VARIABLES: The variables used in this subroutine are listed in

the common blocks of the functional flowchart, Figure 3.3.6.

See Appendix for definition of all variables.

FIGURE 3.3.6. FUNCTIONAL FLOWCHART OF SUBROUTINE FUCLIV

FIGURE 3.3.6. FUNCTIONAL FLOWCHART OF SUBROUTINE FUCLIV (CONTINUED)

FIGURE 3.3.6. FUNCTIONAL FLOWCHART OF SUBROUTINE FUCLIV (CONTINUED)

FUCLIV PG 4 FINAL

FIGURE 3.3.6. FUNCTIONAL FLOWCHART OF SUBROUTINE FUCLIV (CONTINUED)

3.3.7 Subroutine: FUCLTM

PURPOSE: To determine the change in fuel cell temperature and

certain gross cyrogenic quantities.

METHOD: Based on the current fuel cell operating temperature

and steady state temperatures versus current curves an ideal operating current is determined. The difference between the ideal current and the operating current is used to determine the change in fuel cell temperature.

Based on input purge times and rates, and input usage rates, the amount of oxygen and hydrogen used and the

quantity of water produced is calculated.

VARIABLES: The variables used in this subroutine are listed in the

common blocks of the functional flowchart, Figure 3.3.7.

See Appendix for definition of all variables.

PRECEDING PAGE BLANK NOT FILMED

SUBROUTINE FUCLIM(J)

IGURE 3.3.7. FUNCTIONAL FLOWCHART OF SUBROUTINE FUCLIM

232

FIGURE 3.3.7. FUNCTIONAL FLOWCHART OF SUBROUTINE FUCLTM (CONTINUED)

> FUCLTM PG 6 FINAL

FIGURE 3.3.7. FUNCTIONAL FLOWCHART OF SUBROUTINE FUCLTM (CONTINUED)

3.3.8 Subroutine: INCRA

To control the sequential time dependent operation of PURPOSE:

Phase II.

The present time (MET or GET) is incremented by the METHOD:

input time step. Both the input card timeline and the interface tape are checked to see if either or both should be read. If both are to be read, the interface

tape is read first, then the card timeline.

VARIABLES:

The variables used in this subroutine are listed in the common blocks of the functional flowchart, Figure 3.3.8.

See Appendix for definition of all variables.

PRECEDING PAGE BLANK NOT FILMED

```
SUBROUTINE INCRA
INCLUDE STRAGI
                            INCLUDE STRAG2
INCLUDE STRAG3
INCLUDE STRAG4
INCLUDE STRAG5
                            INCLUDE STRAGE
                            INTEGER OOASG
DIMENSION SUBSYS(100)
DIMENSION TLOAD(100)
DIMENSION PCDCT(500)
DIMENSION IARRI(4.3)
COMMON /CMPLOD/ PLOAD(500).PFB(12).TPLOAD(3,500).VLOAD(3)
COMMON /BSLOC / IBUSC(500).ISYSC(500)
COMMON /ALTERN/ ICDCB(750).ICDC(500,3).ICN
COMMON /INVEFF/ ACEFF(3)
      COMMON /TOTPWR/ PWRTOT
      COMMON /PHASI/ IDUM(3855), TABORT
      DATA TLOAD /100+0./
      DATA SUBSYS /100*0./
      DATA NIF /0/
      DATA [ARR1 /52,61,62,63,53,64,65,66,54,67,68,69/
                C
                          INCREMENT THE PRESENT TIME
                              SMET=MET
MET=MET+TDELTA
                      С
                               CHECK FOR TIMELINE
                                  YTIME=0.
                       IF(TREADC+.001, LT. TREADT)
                                 GO TO 10
                              CONT. ON PG 2
                                                                           INCRA
                                                                                  OF
                                                                                         8
                                                                           <u>PG 1</u>
```

FIGURE 3.3.8. FUNCTIONAL FLOWCHART OF SUBROUTINE INCRA

FIGURE 3.3.8. FUNCTIONAL FLOWCHART OF SUBROUTINE INCRA (CONTINUED)

> INCRA PG 8 FINAL

FIGURE 3.3.8. FUNCTIONAL FLOWCHART OF SUBROUTINE INCRA (CONTINUED)

3.3.9 Subroutine: INITAL

To prepare Phase2 for execution. PURPOSE:

All initialization procedures are followed and all necessary initial quantities are calculated. METHOD:

VARIABLES: The variables used in this subroutine are listed in the

common blocks of the functional flowchart, Figure 3.3.9. See Appendix for definition of all variables.

PRECEDING PAGE BLANK NOT FILMED

```
SUBROUTINE INITAL
                        INCLUDE STRAGI
INCLUDE STRAG2
INCLUDE STRAG3
                        INCLUDE STRAG4
INCLUDE STRAG5
INCLUDE STRAG6
                        DIMENSION A(80)
                      DIMENSION TLOAD(100)
                      DIMENSION SUBSYS(100)
                      INTEGER GOASG
                      DATA S/100*1/
DATA TREADC /1.E6/
DATA TREADT /1.E6/
                      DATA NSC /12+25/
                      DATA CHRGLD /30./
                      DATA NFCTA/9/
DATA TLOAD /100*0./
                       DATA SUBSYS /100*0./
                      DATA MET / -999./
  NAMELIST /CRDSF /
  ACPOW.CSUBD.DELTA.EFFAVR.FCT.FCTA.FCTN.FCWP1.FCWP2.
  HPT.HR.HUR.H2T.IT.NFCTA.NOSOCC.NSOCA.NSC.
  OPT.OR.OUR.02T.
  PFAC.PIH.PIO.PP.PR.PI.P2.P3.P4.R.
S.SOC.SSTVI.TB.TMAXFC.TPH.TPO.WPR.XNC.SOCA
NAMELIST /CRDSI / ACPOW.DELTA.FCT.H2T.INVLCA.MET.021.PFAC.PP.PR.S.S0C.TB.
NSC. MPRINT. MPRNT1. MPRNT2. MPRNT3. MPRNT4. MPRNT5. MPRNT6
   NAMELIST /CRDST /
   ACPOW. DELTA. CHRGLD. FCT. IABORT. ICHRG. INVLCA. ISOLVC.
   NOR. NPRT. PFAC. PP. PR. S. SOC. TB. TDELTA
                          WRITE(IU6.9000)
                          IU7 = IUNIT( 5)
IF7 = IFILE( 5)
                          IU8 = [UNIT(10]
                                                                     INITAL
                           CONT. ON PG 2
                                                                     PG I OF
                                                                                  . 10
```

FUNCTIONAL FLOWCHART OF SUBROUTINE INITAL

250

FIGURE 3.3.9.

FIGURE 3.3.9. FUNCTIONAL FLOWCHART OF SUBROUTINE INITAL (CONTINUED)

FIGURE 3.3.9. FUNCTIONAL FLOWCHART OF SUBROUTINE INITAL (CONTINUED)

FIGURE 3.3.9. FUNCTIONAL FLOWCHART OF SUBROUTINE INITAL (CONTINUED)

FIGURE 3.3.9. FUNCTIONAL FLOWCHART OF SUBROUTINE INITAL (CONTINUED)

FIGURE 3.3.9. FUNCTIONAL FLOWCHART OF SUBROUTINE INITAL (CONTINUED)

INITAL PG 10 FINAL

FIGURE 3.3.9. FUNCTIONAL FLOWCHART OF SUBROUTINE INITAL (CONTINUED)

3.3.10 Subroutine: QCLTMP

PURPOSE: To update battery status

METHOD: Based upon time elapsed, operating temperature, and operating current and voltage the following quantities

are calculated:

1. Charge and discharge efficiency

2. Heat produced

Change in capacity

4. Temperature

5. New ampere-hour status

6. State-of-charge

VARIABLES: The variables used in this subroutine are listed in the

common blocks of the functional flowchart, Figure 3.3.10.

See Appendix for definition of all variables.

PRECEDING PAGE BLANK NOT FILMED

```
INCLUDE STRAG1
INCLUDE STRAG2
INCLUDE STRAG4
         PRIMARY BATTERY SUBROUTINE CALCULATES A-H STATUS, SOC. DEGRATION TURNS ON HEATERS, CALCULATES HEAT GENERATED, AND TAKES DEPLETED
000000000
         BATTERIES OUT OF LINE
                                      INPUT
                              OPERATING CURRENT OF BATTERY BATTERY DESIGN CAPACITY
              CS
CSUBD
DT
                              TIMESTEP
              EFF
                              DISCHARGING BATTERY EFFICIENCY
                                      CHARGING BATTER EFFICIENCY
                      EFFAVR
        000000000
                      P1, P2, P3, P4
                                              CONSTANTS FOR HEAT GENERATION EQUATION
                                      HEATER OUTPUT CAPABILITY (WATTS)
BATTERY TEMPERATURE
                      IHO
                      TB
                                     OPERATING VOLTAGE OF BATTERY
TEMP VS TEMP RATE OF INCREASE
I=1 TEMP RATE FOR CURRENT CDX1
I=2 TEMP RATE FOR CURRENT CDX2
                      VP
                       TRFC(J.I)
                                                 I=3 TEMP RATE FOR CURRENT CDX3
I=4 TEMP IN DEGREES F
                  J= POINTS
                                                        OUTPUT
                                                 AMP HOUR STATUS OF BATTERY AMP HOUR CAPACITY OF BATTERY
                                 ÇC
VH
                                                HEAT PRODUCED (WATTS)
HEATER OUTPUT (WATTS)
                                 DQ
                                 QH
                                          PRESENT STATE-OF-CHARGE OF THE BATTERY TIME ON LAST MAJOR BATTERY DISCHARGE
           nn
                          SOC
TD
                              DIMENSION TRFC(8.4)
                              DATA CDX1, CDX2, CDX3 /15., 25.8, 36, 7/
                  DATA TREC /7..6.6.5.4.3.8.1.5.-1.2.-5..-9.4.
                                  9.2.9.8.1.6.8.5..2.7.0..-3.8.
12.6.12.5.12..11.2.9.8.8..5.9.3.
                                  30..40..60..80..100..120..140..160.
                                               CONT.
                                                         ON PG
                                                                                                  QCL TMP
                                                                     Ż
                                                                                                  PG 1 0F
                                                                                                                   _6_
```

SUBROUTINE OCLIMP(1. 1ACT)

262

ORIGINAL PAGE IS
OF POOR QUALITY

FIGURE 3.3.70. FUNCTIONAL FLOWCHART OF SUBROUTINE OCLTMP

FIGURE 3.3.10. FUNCTIONAL FLOWCHART OF SUBROUTINE QCLTMP (CONTINUED)

FIGURE 3.3.10. FUNCTIONAL FLOWCHART OF SUBROUTINE QCLTMP (CONTINUED)

FIGURE 3.3.10. FUNCTIONAL FLOWCHART OF SUBROUTINE QCLTMP (CONTINUED)

CONT. ON PG 6 QCLTMP PG 5 OF 6

FIGURE 3.3.10. FUNCTIONAL FLOWCHART OF SUBROUTINE QCLTMP (CONTINUED)

ORIGINAL PAGE TO OF POOR QUALITY

> OCLTMP PG 6 FINAL

FIGURE 3.3.10. FUNCTIONAL FLOWCHART OF SUBROUTINE QCLTMP (CONTINUED)

3.3.11 Subroutine: REDLIN

PURPOSE: To detect and identify EPS values which violate established

limits

METHOD: The subroutine consists of logic for tests on six individual EPS parameters. The parameters are:

- Node Voltage tested for violation of under voltage limit
- 2. Inverter Volt-amps checked for overload
- 3. Branch Current tested for current limit
- 4. Fuel Cell Power
 - a. Peak Power tested for power level exceeding peak power limit
 - b. Continuous Power tested for power level exceeding continuous power limit
 - c. Minimum Power tested for power level under minimum power level
- 5. Cryogen Level
 - a. 0_2 checked for depletion
 - b. Ho checked for depletion
- 6. Battery State-of-Charge checked for depletion

The tests are made by comparing an EPS parameter value to its appropriate limit from the fixed data tape. If the parameter value violates the limit, a message is constructed which contains the following data:

- 1. Time of Violation
- 2. Type of Violation
- 3. Value of Limit
- 4. Parameter Value

VARIABLES: The variables used in this subroutine are listed in the common blocks of the functional flowchart, Figure 3.3.11. See Appendix for definition of all variables.

FIGURE 3.3.11. FUNCTIONAL FLOWCHART OF SUBROUTINE REDLIN

FIGURE 3.3.11. FUNCTIONAL FLOWCHART OF SUBROUTINE REDLIN (CONTINUED)

CONT. ON PG 9 REDLIN PG 8 OF 9

FIGURE 3.3.11. FUNCTIONAL FLOW CHART OF SUBROUTINE REDLIN (CONTINUED)

REDLIN PG 9 FINAL

FIGURE 3.3.11. FUNCTIONAL FLOWCHART OF SUBROUTINE REDLIN (CONTINUED)

3.4 ANALYSIS SUBROUTINES

3.4.1 Subroutine: COMUSE

PURPOSE: To provide a component analysis

METHOD: Using the component dictionary, compacted dictionary, and

interface tape the following quantities are determined

for:

Mission Phase:

Subsystem Analysis

Average kilowatts (KW) Percent of total KW

Maximum KW Time of maximum

Phase Analysis

Total kilowatt hours (KWH) required

Accumulated KWH

Average KW for mission phase

Maximum KW

Time of maximum (KW)

2. Component

Average use factor Total on time Component energy required (WH) Percent of total mission energy required

3. Subsystem

By component

Average use factor

Total on time

Component energy required (WH)

Percent of subsystem energy required

VARIABLES: The variables used in this subroutine are listed in the

common blocks of the functional flowchart, Figure 3.4.1.

See Appendix for definition of all variables.

```
SUBROUTINE COMUSE(IU. IF)
              INCLUDE STRAGA
INCLUDE STRAGI
INTEGER QUASG
              DIMENSION TLOAD(
              DIMENSION PLOADS
                                      750)
             DIMENSION IPLODE 750)
              DIMENSION LNUM (
                                      750)
              DIMENSION TIMONO
                                       750)
              DIMENSION AUF ( 750)
DIMENSION POWER( 750)
              DIMENSION PFAC ( 750)
              DIMENSION NAME
                                       750.6)
              DIMENSION IDUM (100)
              DIMENSION SUBT(100)
              DIMENSION ICDAT(50)
              DIMENSION NAM(6)
DIMENSION PWRM(4.10)
              DIMENSION D1(4)
              DIMENSION D2(4)
              DIMENSION D3(4)
              DIMENSION IALL ( 750.13)
DIMENSION ALL ( 750.13)
              DIMENSION JS(750)
DIMENSION PS(750)
COMMON /SIX/ ID-ILNCP.NAM.PF.UF.PWRM
COMMON /ACPOWF/ PFEFF.RESLOS
COMMON /ALIERN/ ICDCB(750).ICDCA(500.3).IACT
EQUIVALENCE ([D.[CDAT(])]
EQUIVALENCE ([PLOD(]).PLOAD(]))
EQUIVALENCE ([ALL(].]).ALL([.1])
DATA NWCD /50/
                               750+0./
            DATA TLOAD /
            DATA TIMON / 750*0./
            DATA NAME
                            74500*6H
            DATA SUBT /100+0./
                      CONT. ON PG 2
                                                                    COMUSE
                                                                    PG 1 OF
```

FIGURE 3.4.1. FUNCTIONAL FLOWCHART OF SUBROUTINE COMUSE

FIGURE 3.4.1. FUNCTIONAL FLOWCHART OF SUBROUTINE COMUSE (CONTINUED)

FIGURE 3.4.1. FUNCTIONAL FLOWCHART OF SUBROUTINE COMUSE (CONTINUED)

FIGURE 3.4.1. FUNCTIONAL FLOWCHART OF SUBROUTINE COMUSE (CONTINUED)

CONT. ON PG 6 COMUSE PG 5 OF 12

FIGURE 3.4.1. FUNCTIONAL FLOWCHART OF SUBROUTINE COMUSE (CONTINUED)

COMUSE PG 12 FINAL

FIGURE 3.4.1. FUNCTIONAL FLOWCHART OF SUBROUTINE COMUSE (CONTINUED)

APPENDIX

PRECEDING PAGE BLANK NOT FILMED

PDP ELEMENT	COMMON BLOCK	VARIABLE NAME I	<u>J 1</u>	<u>K_</u>	DEFINITION
STRAGI	CONTRL	DT		S	Actual time interval between successive time steps in decimal sours
		IFLG01		>	Option Flag O - Execute Phase I O or blank - Do not execute Phase I
		IFLG02			0 - Execute Phase II 0 or blank - Do not execute Phase II
		IFLG03			0 - Plot on Printer 1 0 or blank - Do not plot on Printer 1
		IFLG04		N	ot Used
		IFLG05		>	0 - Use 3 point load data 0 or blank - Do not use 3 point load data
		IFLG06		N	ot Used
		IFLG07		N	ot Used
		IFLG08		N	ot Used
		IFLG09		N	ot Used
		IFLG10			0 - Print each Phase II timepoint 0 or blank - Do not print each Phase II timepoint
		IFLG11		N	ot Used
		IFLG12		N	ot Used
		IFLG13		N	ot Used
		IFLG14		N	ot Used
		IFLG15		N	ot Used
		IFLG16		N	ot Used
		IFLG17		N	ot Used

PDP ELEMENT	COMMON BLOCK	VARIABLE NAME	<u>I</u>	J	<u>K</u>	DEFINITION
STRAG1	CONTRL	IFLG18				Not Used
		IFLG19				Not Used
		IFLG20				> 0 - Execute Phase II COMUSE = 0 or blank - Do not execute COMUSE
		IFLG21				Not Used
		IFLG22		•		Not Used
		IFLG23				Not Used
		IFLG24				Not Used
		IFLG25				Not Used
		IFLG26				Not Used
		IFLG27				Not Used
		IFLG28			•	Not Used
		IFLG29				<pre>> 0 - Suppress analysis part 1 = 0 or blank - Do not suppress</pre>
		IFLG30				> 0 - Execute Phase I COMUSE = 0 or blank - Do not execute Phase I COMUSE
		IFLG31				> 0 - Print out input components = 0 or blank - No action taken
		IFLG32				> 0 - Print out input procedures = 0 or blank - No action taken
		IFLG33				> 0 - Print out input activities = 0 or blank - No action taken
		IFLG34				> 0 - Print out input timeline = 0 or blank - No action taken
		IFLG35				<pre>> 0 - Suppress COMUSE component</pre>

PDP ELEMENT	COMMON BLOCK	VARIABLE NAME	<u>I J K</u>	DEFINITION
STRAG1	CONTRL	IFLG36		 O - At the end of each mission phase provide a listing of all active components O or blank - No action taken
		IFLG37		O - Mission phase analysisO or blank - No mission phase analysis
		IFLG38		<pre>> 0 - Suppress cycled component listing = 0 or blank - Do not suppress</pre>
		IFLG39		 > 0 - Suppress print of compacted dictionary = 0 or blank - Do not suppress compacted dictionary printout
		IFLG40		 O - Suppress subsystem analysis at each time point O or blank - Do not suppress subsystem analysis
		IABORT		Set > 0 to abort simulation
		IFILE	20	
				I=1 File containing components
				I=2 File containing procedure
				I=3 File containing activities
				I=4 File containing timelines
				I=5 File containing fixed data
				I≈6 Not Used
				I=7 Not Used
				I=8 File containing Phase I interfaces
				I≈9 File containing Phase I plot
				I=10 File containing Phase II interface

PDP ELEMENT	COMMON BLOCK	VARIABLE NAME	I J K		<u>DEFINITION</u>
STRAG1	CONTRL	IFILE		I=11	File containing Phase II plot
				I=12	File containing compacted dictionary
				I=13	File containing circuit definition
				I=14	File containing constraint violations
				I=15	File containing subsystem names
				I=16	File containing mission phase
				I=17	Not Used
				I=18	Not Used
				I=19	Not Used
				I=20	Not Used
		ISOLVC		at a p	to request a circuit solution particular card timeline point. I to request solution
		IUNIT	20		
				I=1	Unit containing components
				I=2	Unit containing procedures
				I=3	Unit containing activities
				I=4	Unit containing timeline
				I=5	Unit containing fixed data
				I=6	Not Used
				I=7	Not Used
				I=8	Unit containing Phase I interface
				I=9	Unit containing Phase I plot

PDP ELEMENT	COMMON BLOCK	VARIABLE NAME	<u>I</u>	<u>J_</u>	<u>K</u> _		DEFINITION
STRAG1	CONTRL	IUNIT				I=10	Unit containing Phase II interface
						I=11	Unit containing Phase II plot
						I=12	Unit containing compacted dictionary
						I=13	Unit containing circuit definition
						I=14	Unit containing constraint violations
						I=15	Unit containing subsystem names
						I=16	Unit containing mission phases
						I=17	Not Used
						I=18	Not Used
						I=19	Not Used
						I=20	Not Used
		JPRINT					to request initialization to be printed out. Value >1
		NPRT					atted printout interval as a ple of TDELTA
		MET				Simul	ation start time
		TDELTA				Maxim	num simulator time increment
		TREADC				Next	time to read card input
		TREADT				Next	time to read tape input
	DEBUG	MPRNT				Debug	g print control
		MPRNT1				Debug	print control
		MPRNT2				Debug	print control

PDP ELEMENT	COMMON BLOCK	VARIABLE NAME	<u>I</u> _	<u>J</u>	<u>K</u>	DEFINITION
STRAG1	DEBUG	MPRNT3				Not Used
-		MPRNT4				Debug print control
		MPRNT5				Not Used
		MPRNT6				Not Used
	CMPCNT	CVAL	25			Component power value to be used in Phase II calculations in lieu of the component loads in TPLOAD. NOTE: LOC 1-5 for F/C 1-5 noncyclic loads and LOC 6-10 for F/C 1-5 cyclic loads
	CMPCNT	NCNT	25			Component numbers associated with the component loads in CVAL
		NCNTC				Number of loads defined in CVAL
		NCTP	25			For each LOAD in CVAL, defines if the load is constant power (>0) or constant resistance (=0)
	UNITS	IU5				Internal unit designation
		IU6				Internal unit designation
		IU7				Internal unit designation
		IN8				Internal unit designation
		IU9				Internal unit designation
		INJO				Internal unit designation
		IU11				Internal unit designation
	CONSTR	ACVA	9			AC volt-ampere load on inverter
		CAPINV	9			Inverter (I) maximum overload limit
		FCLIM	3			<pre>Fuel cell power limits, l = peak, 2 = average, 3 = minimum</pre>
		H2U				Unusable hydrogen quantity
		02U				Unusable oxygen quantity

PDP ELEMENT	COMMON BLOCK	VARIABLE NAME	<u>I</u> <u>J</u> <u>K</u>	DEFINITION
STRAGI	CONSTR	SOCUL		Minimum battery SOC limit
		TIMV	3	Length of time that fuel cell power limits apply, I = peak, 2 = average, 3 = minimum
STRAG2	DCCRCT	СВ	100	Branch current
		CL	50	Load current operating point
		CS	12	Source current operating point
		DELTA		Tolerance on node voltage solutions (normally 10-5)
		ES	12	Source voltage operating point
		ITER		Circuit solution internal iteration counter
		NITER		Maximum allowable iterations in the circuit polution
		NOR		Circuit reference node
		NSC		Number of I-V points in Source (I) used in the circuit solution
		NT3S		Number of points used in T3SRCS
		NT4S		Number of points used in T4SRCS
		PP		Constant power load for LOAD (I), variable not used when Phase II is driven by an interface tape
		PR		Constant resistive power load for LOAD (I), PP(I) and/or PR(I) may be used to represent LOAD (I), variable not used when Phase II is driven by an interface load
		R		Branch (I) line resistance
		RLOAD	3 51	Three point equivalent load I = load at 24v, 28v, 32v J = 50 possible loads J = 51 voltage equivalent

C, 4

PDP ELEMENT	COMMON BLOCK	VARIABLE NAME	<u>I</u>	<u>J</u>	<u>K</u> _	DEFINITION
STRAG2	DCCRCT	\$	100			Branch (I) switch position (I = closed, 0 = open)
		SC	15	2	12	Source curves
						I= Number of points in curve
						J=1 Voltage
						J=2 Current
						K= Source number
		T3SRCS	15	2		Third source type
						I= Number of points in curve
						J=1 Voltage
						J=2 Current
		T4SRCS	15	2		Fourth source type
		•				I= Number of points in curve
						J=1 Voltage
						J=2 Current
		Λ	30			Node voltage
		٧L	50			Load voltage operating point
		Z	100			Admittance of the branch
	CRTFLG	IACSOL				AC circuit solution flag
		IDCS0L				DC circuit solution flag
	INVERT	ACPOW	9			AC load for inverter AC BUS (I) variable not used when Phase II is driven by an interface tape
		INVOL	10			Inverter overload flag
		PFAC	9			AC load power factor for AC BUS (I) corresponding to loads in ACPOW(I). Not used with interface tape

PDP ELEMENT	COMMON BLOCK	VARIABLE NAME	<u>I</u> _	<u>J</u>	<u>K</u> _		DEFINITION
STRAG2	DEFCRT	CRCT	100	6		Branch	(I) diode or RPC definition
						I=	Branch No.
						J=1	Diode voltage drop
						J=2	Diode forward resistance
						J=3	Reverse resistance
						J=4	RPC no load resistance
							Forward or reverse resistance being used
						J=6	Branch current limit
		ICHRBP				Load 1	ocation of the battery charger
		ICRCT	100	4		Branch	(I) definition
						I≈	Branch No.
						J≈l	Node number current out
						J≈2	Node number current in
						J≈3	Source number
						J≈4	Load number
		INVLCA	9				er number connected to ac er bus (I)
		INVLCD	10	2			of branch no. vs inverter branch
]=	No. of entries in the table
						J=l	Branch No. containing dc load
							Associated inverter no. for above dc load
		LOADS	50			Branch	locations of the loads
		NCRT				Maximu in ICR	m or highest branch number CT

PDP ELEMENT	COMMON BLOCK	VARIABLE NAME	<u>I</u>	<u>J</u>	K	DEFINITION
STRAG2	DEFCRT	NINVLA				No. of inverters
		NINVLA				No. of ac load buses supplied by inverters
		NINVLD				No. of dc loads used for inverters
		NLDS				Highest load number
		NNODE				Highest node number used in circuit
		NSCS				Number of sources
		NSOUR	12	3		Source definition table
						I= Source number
						J=1 Branch location
						J=2 Source type
						J=3 Source reference numbers
		UV	30			Undervoltage limit for node (I)
STRAG3						Not Used
STRAG4	BATTRY	АН	6			Actual number of ampere hours remaining
		BC	6			Operating current point of the battery
		BV	6			Operating voltage point of the battery
		CC	6			Ampere hour capacity of the battery
		CHRGLD				DC power required by battery charger when charging batteries
		CSUBD	6			Battery amp-hour capacity for battery (I)
		DQ	6			Amount of heat generated by the battery in watts
		EFF	6			Battery decimal efficiency during charge and discharge

PDP ELEMENT	COMMON BLOCK	VARIABLE NAME	I	J_	K	DEFINITION
STRAG4	BATTRY	EFFAVR				Average amp-hour efficiency during charging
		ICHRG	6			Charge flag to initiate charging of battery (I)
		IT	5	2		Battery temperatures used in SOCA,
						I= Temperature
						J= Battery group
		NSOCA				Number of points used in SOCA for each I-V curve
		Pl				Constant used in the battery heat generation equation
		P2 -				Constant used in the battery heat generation equation
		P3				Constant used in the battery heat generation equation
		P4				Constant used in the battery heat generation equation
		SOC	6			Battery (I) initial state-of-charge
		SOCA	7	6	2	Battery I-V curves versus temperature, and battery group
						I= Number of points
						J=1 Current
						J=2-6 Voltage at temperature of IT
						<pre>K= Battery group 1 or 2 (1 = group of 3 common batteries) (2 = group of common batteries) (per cell voltage)</pre>
		ТВ	6			Battery (I) temperature
		TD	б			Time of last major battery discharge
		TSS				Battery steady state temperature

PDP ELEMENT	COMMON BLOCK	VARIABLE NAME	<u>I</u>	<u>J</u>	<u>K</u>	DEFINITION
STRAG4	BATTRY	XNC	6			Number of cells in battery I
STRAG5	FUSEL	DAT	5			Time the fuel cell has been operating in decimal hours (MET)
		MTD				Internal time step in FUCLTM
		FCCP	5			Fuel cell current
		FCHOL				Fuel cell high temperature limit - heater turns "OFF"
		FCHTL				Fuel cell redline limit - diagnostic warning
		FCLTL				Fuel cell lower temperature limit - heaters turn "ON"
		FCT	5			Operating temperature of fuel cell (I)
		FCTA	9	7		Array containing fuel cell I-V curves as a function of temperature
						I= Number of points
						J=1 Current value (amps)
						J=2 Voltage level at each temperature thru of FCTN J=7
		FCTN	6			Temperatures associated with the I-V curves of FCTA
		FCWP1	5			Parasitic pump and logic loads for fuel cell (I) - constant power
		FCWP2	5			Parasitic heater cyclic load for fuel cell (I) constant resistance
		HPT				Hydrogen purge time
		HR				Hydrogen purge ratē
		HUR				Hydrogen use rate based on amp-hour requirements
		H2I				Initial quantity of H ₂ loaded in 1bs

PDP ELEMENT	COMMON BLOCK	VARIABLE NAME	<u>I</u>	<u>J</u>	<u>K</u>	DEFINITION
STRAG5	FUSEL	H20T				Total quantity of H ₂ O accumulated in lbs
		HDUMT				Dummy filler variable
		HDUM2				Dummy filler variable
		HDUM3				Dummy filler variable
		Н2Т				Initial quantity of hydrogen available
		KHTR	5			Fuel cell parasitic load flag Value O implies no parasitic load Value l implies parasitic load
		NFCTA				Number of current points used in FCTA
		OPER	5		,	Flag indicating the on/off condition of the fuel cell
		OPT				Oxygen purge time
		OR				Oxygen purge rate
		OUR				Oxygen use rate based on amp-hour requirements
		021				Initial quantity of 0_2 loaded in lbs
		02T				Initial quantity of oxygen available
		PIH				Interval between hydrogen purges
		PIO				Interval between oxygen purges
		RES	5			Equivalent resistance of the fuel cell parasitic load at 28 VDC
		SSTVI	10	2		The T-I curve which the fuel cell follows as the fuel cell temperature reaches its steady state value
						J=1 · Temperature
						J=2 Current
		TMAXFC				Maximum time step through feul cell thermal model

PDP ELEMENT	COMMON BLOCK	VARIABLE NAME	<u>I</u>	<u>J K</u>	DEFINITION
STRAG5	FUSEL	ТРН	5		Time of last hydrogen purge for fuel cell (I)
		TPO	5		Time of last oxygen purge for fuel cell (I)
		WPR			Fuel cell water production rate
STRAG6					Not Used
STRAG7					Not Used
STRAGA	PHAS1	IADC	250	2	Activity dictionary
					I= Dictionary element
					J=1 Activity number
					J=2 Drum address
		IAN			Number of dictionary entries
		ICDC	750	2	Component dictionary
					I= Dictionary element
					J=1 Component number
					J=2 Drum address
		ICN			Number of dictionary entries
		IPDC	750		Procedure dictionary
					I= Dictionary element
					J=1 Procedure number
					J=2 Drum address
		IPN			Number of dictionary entries
		MM			Number of mission phases
		TABORT			Mission elapsed time to end the simulation, default is 500 hours

PDP ELEMENT	COMMON BLOCK	VARIABLE NAME	I	<u>J</u>	<u>K</u> _		DEFINITION
N/A	ACPOWF	PFEFF				Inver	ter efficiency
		RESLOS				Total	system line loss
N/A	ALTERN	IACT				Number dicti	r of entries in the compact onary
		ICDCA	500	3		Compa	ct component dictionary
		•				I=	Number of entries
						J=1	Component number
						J=2	Corresponding drum address
		*				J=3	Relative location in the component dictionary
		ICDCB	750			Сотро	nent usage count
N/A	BSLOC	IBUSC	500			Compo	nent load assignment (COMPACT)
		ISYSC	500			Compo	nent system assignment (COMPACT)
N/A	BSLOCA	IBUSC	750			Compo	nent load assignment
		ISYSC	750			Compo	nent systems assignment
N/A	CYCLIC	I				Numbe	r of entries
		MS	100			Cycli	c mode
		NS	100			Cycli	c number
		PERS	100			Cycli	c period
		PONS	100			Cycli	c percent on
		TS	100			Cycli	c type ⁻
		TTS	100			Cycli	c time to start cycle

PDP ELEMENT	COMMON BLOCK	VARIABLE NAME	<u>I</u>	<u>J</u>	<u>K</u>	DEFINITION
N/A	DRMFLG	ISF				Override control on illegal component turn off
N/A	FCYCL	KF				Type of entry indicator
N/A	INVEFF	ACEFF	3			Inverter efficiencies
N/A	INVPF	ACPFAC	9			AC load power factors
N/A	MPSF	ISF29	50			Same as IFLG29
		ISF36	50			Same as IFLG36
		ISF38	50			Same as IFLG38
		ISF40	50			Same as IFLG40
N/A	MTRANT	TIMEM	50			Mission elapsed time at end of mission phase
N/A	PRINT	ICARD				Card input read
		IPRNT				Input print required
		IRESET				Simulation reset point
		ITAPE	-			Tape input read
N/A	SUBSTM	ILOC	25			Subsystem number
		ILOCN				Number of subsystems
		TITLE	6	25		Subsystem name
N/A	TLINF	IDA				Present drum address
		IDRM				Drum full flag
		IEND				End of Phase I flag
		IFIL				Output file number
		IOUT				Output record number
		IOUTM				Maximum number of output records
		NWL				Number of drum words left
N/A	TOTPWR	PWRTOT				Total source power