Real time river water quality monitoring and control system

SPRINT - 4

TITLE	Real time river water quality monitoring and control system			
DOMAIN NAME	INTERNET OF THINGS			
TEAM ID	PNT2022TMID20521			

$\label{lem:commands} \textbf{Receiving commands from IBM cloud using Python program}$

import time import sys import ibmiotf.application import ibmiotf.device import random

#Provide your IBM Watson Device Credentials organization = "fwe3x0" deviceType = "IOT_device" deviceId = "1911010" authMethod = "token" authToken = "1911010abcdefgh"

```
# Initialize GPIO
```

```
def myCommandCallback(cmd):
  print("Command received: %s" % cmd.data['command'])
  status=cmd.data['command']
  if status == "motoron":
    print ("motor is on")
  elif status == "motor":
    print ("motor is off")
  else:
    print("Please send proper command")
  #print(cmd)
try:
        deviceOptions = {"org": organization, "type": deviceType, "id": deviceId, "auth-method": authMethod, "auth-token": authToken}
        deviceCli = ibmiotf.device.Client(deviceOptions)
        #.....
except Exception as e:
        print("Caught exception connecting device: %s" % str(e))
        sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an event of type "greeting" 10 times
deviceCli.connect()
while True:
    #Get Sensor Data from random function
    pH=random.randint(0,14)
    turbidity=random.randint(60,100)
    data={'pH':pH,'turbidity':turbidity}
    #print data
    def myOnPublishCallback():
       print (" Published pH = %s " % pH, "turbidity = %s %" % turbidity, "to IBM Watson")
    success = deviceCli.publishEvent("IoTSensor", "json", data, qos=0, on_publish=myOnPublishCallback)
    if not success:
       print("\n Not connected to IoTF")
```

```
def mvCommandCallback(cmd):
    print("Command received: %s" % cmd.data['command'])
status=cmd.data['command']
    if status == "motoron":
    print ("motor is on")
    elif status == "motor":
        print ("motor is off")
    else:
        print("Please send proper command")
    #print(cmd)
trv:
        deviceOptions = {"org": organization, "type": deviceType, "id": deviceId, "auth-method": authMethod, "auth-token": authToken}
        deviceCli = ibmiotf.device.Client(deviceOptions)
        #....
except Exception as e:
        print("Caught exception connecting device: %s" % str(e))
        svs.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an event of type "greeting" 10 times
deviceCli.connect()
while True:
        #Get Sensor Data from random function
        pH=random.randint(0,14)
        turbidity=random.randint(60,100)
        data={'pH':pH,'turbidity':turbidity}
        #print data
        def myOnPublishCallback():
    print (" Published pH = %s " % pH, "turbidity = %s %" % turbidity, "to IBM Watson")
        success = deviceCli.publishEvent("IoTSensor", "json", data, qos=0, on_publish=myOnPublishCallback)
        if not success:
            print("\n Not connected to IoTF")
```

```
■ *Python 3.7.0 Shell*
```

```
File Edit Shell Debug Options Window Help
PUDIISNEG PH = 12 C turplaity = 83 % to IBM watson
 Published pH = 12 C turbidity = 77 % to IBM Watson
 Published pH = 2 C turbidity = 97 % to IBM Watson
 Published pH = 0 C turbidity = 94 % to IBM Watson
 Published pH = 3 C turbidity = 72 % to IBM Watson
 Published pH = 9 C turbidity = 100 % to IBM Watson
 Published pH = 8 C turbidity = 76 % to IBM Watson
 Published pH = 6 C turbidity = 76 % to IBM Watson
 Published pH = 14 C turbidity = 99 % to IBM Watson
 Published pH = 13 C turbidity = 68 % to IBM Watson
 Published pH = 6 C turbidity = 66 % to IBM Watson
 Published pH = 5 C turbidity = 91 % to IBM Watson
 Published pH = 7 C turbidity = 70 % to IBM Watson
 Published pH = 5 C turbidity = 73 % to IBM Watson
 Published pH = 13 C turbidity = 94 % to IBM Watson
 Published pH = 6 C turbidity = 73 % to IBM Watson
 Published pH = 11 C turbidity = 91 % to IBM Watson
 Published pH = 2 C turbidity = 87 % to IBM Watson
 Published pH = 0 C turbidity = 96 % to IBM Watson
 Published pH = 4 C turbidity = 85 % to IBM Watson
 Published pH = 6 C turbidity = 77 % to IBM Watson
 Published pH = 8 C turbidity = 99 % to IBM Watson
 Published pH = 0 C turbidity = 63 % to IBM Watson
 Published pH = 1 C turbidity = 90 % to IBM Watson
 Published pH = 0 C turbidity = 62 % to IBM Watson
 Published pH = 10 C turbidity = 98 % to IBM Watson
 Published pH = 14 C turbidity = 73 % to IBM Watson
 Published pH = 8 C turbidity = 98 % to IBM Watson
 Published pH = 5 C turbidity = 89 % to IBM Watson
 Published pH = 8 C turbidity = 84 % to IBM Watson
 Published pH = 14 C turbidity = 82 % to IBM Watson
```


Advantages & Disadvantages:

- River water can be monitored and controlled remotely.
- Increase in convenience to control by the government.

- Less labor cost.
- Better standards of living

Disadvantages:

- Lack of internet/connectivity issues.
- Added cost of internet and internet gateway infrastructure.

Conclusion

Thus the objective of the project to implement an IoT system in order to help farmers to control and monitor their farms has been implemented successfully.

Bibliography

IBM cloud reference: https://cloud.ibm.com/

IoT simulator:

https://watson-iot-sensor-simulator.mybluemix.net/