

Why are computational skills important for biologists?

Increasing data size and complexity

 Increasing sophistication of statistical and mathematical analyses

 Transparency, reproducibility, and documentation

Why should biologists be interested in developing computational kung-fu?

- Automate impossibly tedious, monotonous, and lengthy tasks
- Increased rate and significance of discovery
- Career success
- Maximize potential

Why did I choose to develop this course?

- Historical lack of (introductory) computational courses for biologists
- Steep learning curve
- The days of easily succeeding in biological research without computational knowledge and skill are over

If you so choose, I will show you the philosophy of data science

- Automation
 - Interconnection
 - Modularity
- Reproducibility
 - Organization
 - Comprehension
- Openness
- Simplicity
- Correctness

Philosophy of Data Science

 All data is digitized and stored in files

 Data manipulations and analyses are documented in computer scripts that interface with data files and require no additional human intervention to complete analysis

 Data & scripts are published with the report and openly accessible to all

We Used to Follow The CSB Text Book, It's a Good Resource But Not Required

- Provides you with requisite breadth of tools at the expense of depth
- Showcase of Linux, Python, R
- Organized into 10 chapters, theoretically 1 per lecture
- Goal is to flatten your learning curve

https://computingskillsforbiologists.com/

We are Going to Learn How to Use R

- You will learn core principles of R that aren't taught in other courses that expect you to use R
- You will learn to use `tidyverse`,
 which was masterminded by the
 Author of the R for Data Science
 book, which is free.

Learning Objectives

- Recognize, describe, and organize data into standard biological data structures
- Locate scientific data repositories and extract data
- Operate UNIX/LINUX computers from command line
- Construct and modify computer programming/scripting logic structures for processing biological data

- Use version control software (git)
- Describe and use regular expressions to query data
- Typeset with LaTeX or MarkDown
- Use the most popular open-source tools for biological data manipulation
 - Shell scripting (bash)
 - Scientific computing (python)
 - Statistical computing (R)
 - Tool repositories

Syllabus & Course Organization

Syllabus is on blackboard and github

- 3 Parts of Course
 - Linux, R, Python
- Additional skills
 - Version control with git
 - Typesetting with LaTeX, markdown

Undergraduates:¶

ACTIVITY	% of FINAL GRADE
Participation	15
Assignments	40
Exam 1	15
Exam 2	15
Final Exam	15

Graduates:¶

ACTIVITY	% of FINAL GRADE
Participation	10
Assignments	20
Exam 1	10
Exam 2	10
Final Project	BIOL 5360: 50 MARB 6360: 40
Final Presentation	MARB 6360: 10

Lectures

- Environment for you to learn new concepts
- Hands-on with computers
- Power-point & GitHub driven
 - On zoom
- Independent exercises w/ MS
 Forms linked in GitHub

- Note: I update the course materials prior to each lecture.
 - Don't go ahead of where we are in the class

Assignments

- Generally due each week
 - See the schedule in our classroom repo (link in canvas)
- Scripts will be submitted through GitHub classroom
 - Starting with Assignment 2 Extra Credit
- For now, question-answer based work will be conducted with a MS Form "quiz"

SCHEDULE

SECTION 1. WELCOME TO THE MATRIX

- 08/30 Week00 Introduction & Data
 - Assignment_0 Due, 09/08
- 09/06 Week01 Unix I
 - Assignment_1, Due 09/13
 - o Grad Student Course Project: Ideas, Due 09/13

Final Project (Graduate Students)

- Automate the processing and analysis of your data
 - Follow guide on <u>How to Organize</u> Biological Data
- Document work on GitHub
- Report written in LaTeX or MarkDown
 - State problem/challenge
 - Describe strategy to solve
 - Describe how code works
 - 10 min presentation during Final Exam Period (PhD students)

- Wk 3: Project idea
- Wk 5: Plan/Outline
- Wk 6: GitHub Repo
- Wk 7: Commit working function
- Wk 8: Commit 2 working functions w data input and output
- Wk 11: Draft/ progress report
- Wk 14: Final report, Working code and data on GitHub
- Final Exam: Oral pres (MARB 6360)

Questions?

MILY SINGER SCIENCE 10.11.13 09:30 AM

Big Data Biology

- Massive amounts of data
- Associated tools, processes, procedures
- Volume, velocity, acceleration
- Goal is to tame the data
- Examples: DNA, climate, weather, remote sensing, GIS, all "omics", populations

BIOLOGY'S BIG PROBLEM: THERE'S TOO MUCH DATA TO HANDLE

..and not enough biologists with the motivation, interest, and/or skill to address the issue

Repositories for Data Big and Small

- Data associated with scientific papers should be published
 - Owned by the people
 - Should be freely available
 - Promotes acceleration of knowledge generation
- All Types of Data
 - www.datadryad.com
- DNA & Proteins
 - https://www.ncbi.nlm.nih.gov/
- GIS
 - https://data.usgs.gov/datacatalog/ #fq=dataType%3A(collection%200 R%20non-collection)&q=*%3A*
- Oceanographic
 - https://data.noaa.gov/datasetsearc h/
- Too many to list

Let's Explore a Data Set Published in Dryad

- www.datadryad.org
- Find Data from:
 - Direct and indirect effects of sexual signal loss on female reproduction in the Pacific field cricket (Teleogryllus oceanicus)
- Download the data and view it in MS Excel
 - It is important to open files, look at data, and understand how it is organized

Data from: Direct and indirect effects of sexual signal loss on female reproduction in the Pacific field cricket (Teleogryllus oceanicus)

Heinen-Kay J, Strub D, Balenger S, Zuk M

Date Published: August 29, 2019

DOI: https://doi.org/10.5061/dryad.v732vb1

Files in this package

Content in the Dryad Digital Repository is offered "as is." By downloading files, you agree to the <u>Dryad Terms of Service</u>. To the extent possible under law, the authors have waived all copyright and related or neighboring rights to this data.

Title	Data for Heinen-Kay et al. Sexual signal loss and female reproduction
Downloaded	3 times
Description	Data for (1) comparison of flatwing and normal-wing homozygous female reproductive tissue, (2) offspring production of flatwing and normal-wing females, and (3) reproductive tissue comparison between populations and acoustic treatments
Download	Data for Heinen-Kay et al. Sexual signal Ixlsx (36.79 Kb)
Details	View File Details

Tidy Data (Wickham 2014)

- Each row is the "smallest unit of observation"
 - Ex: an individual fish
- Each column is a variable or dimension of information about the units of observation
 - Ex: somatic mass

Journal of Statistical Software

August 2014, Volume 59, Issue 10.

http://www.jstatsoft.org/

Tidy Data

Hadley Wickham RStudio

Abstract

Common Data Formats & Structures are Not Always Tidy

- https://www.ncbi.nlm.nih.gov/
- Conduct the following search

GenBank Supports Several Formats, None Are Tidy

- https://www.ncbi.nlm.nih.gov/
- Switch to FASTA (text)

>AB263731.1 Cellana radiata enneagona mitochondrial COI gene for cytochrome c oxidase subunit I, partial cds, specimen_voucher: NUGB-L694(Nagoya University) TACATTATACATTATTATAGGAGTTTGATCTGGATTGGCAGGTACTGGTTTAAGTATGTTAATTCGGGCT GAATTAGGTCAACCTGGTTCTTTGCTAGGAGATGATCAGCTATATAACGTGATTGTTACTGCGCACGCTT ACTTGGGGCTCCAGATATGGCTTTTCCTCGTTTAAATAATATGAGGTTTTGGTTACTGGTTCCTTCTTTA CTAGAAATGTGGCCCATTCTGGTTCTTCTGTTGATTTGGCTATTTTTTCTCTTCATTTGGCTGGTATTTC TTCAATTCTTGGGGCTGTTAATTTTATTACTACAGTGGTAAACATTCGTTGGCGAGGTCTTCAGTTTGAA CGGCTACCTTTGTTTGTATGATCTGTTAAGATTACAGCTATTTTACTTCTTCTTTTCTCTTGTGTTGG CTGGGGCTATTACTATGCTTTTAACTGACCGTAATTTTAATACCTGTTTTTTTGACCCTGGAGGAGGAGG GGACCCCATTTTATATCAACATTTGTTT >AB263730.1 Cellana radiata enneagona mitochondrial COI gene for cytochrome c oxidase subunit I, partial cds, specimen voucher: NUGB-L693(Nagoya University) $\mathtt{TACATTATACATTATTATAGGAGTTTGATCTGGATTGGCA}$ GTACTGGTTTAAGTATGTTAATTCGGGCT GAATTAGGTCAACCTGGTTCTTTGCTAGGAGATGATCAGCTATATAACGTGATTGTTACTGCGCACGCTT ACTTGGGGCTCCAGATATGGCTTTTCCTCGTTTAAATAATATGAGGTTTTGGTTACTGGTTCCTTCTTTA CTAGAAATGTGGCCCATTCTGGTTCTTCTGTTGATTTGGCTATTTTTTCTCTTCATTTGGCTGGTATTTC TTCAATTCTTGGGGCTGTTAATTTTATTACTACAGTGGTAAACATTCGTTGGCGAGGTCTTCAGTTTGAA CTGGGGCTATTACTATGCTTTTAACTGACCGTAATTTTAATACCTGTTTTTTTGACCCTGGAGGAGGAGG GGACCCCATTTTATATCAACATTTGTTT >AB263729.1 Cellana radiata enneagona mitochondrial COI gene for cytochrome c oxidase subunit I, partial cds, specimen voucher: NUGB-L692(Nagoya University) TACATTATACATTATTATAGGAGTTTGATCTGGATTGGCAGGTACTGGTTTAAGTATGTTAATTCGGGCT ACTTGGGGCTCCAGATATGGCTTTTCCTCGTTTAAATAATATGAGGTTTTGGTTACTGGTTCCTTCTTTA TTTTTACTTCTTGCTTCTTCTGCTGTTGAAAGAGGAGTAGGTACAGGTTGGACAGTATACCCCCCTCTTT CTAGAAATGTGGCCCATTCTGGTTCTTCTGTTGATTTTGGCTATTTTTTCTCTTCATTTTGGCTGGTATTTC TTCAATTCTTGGGGCTGTTAATTTTATTACTACAGTGGTAAACATTCGTTGGCGAGGTCTTCAGTTTGAA CGGCTACCTTTGTTTGTATGATCTGTTAAGATTACAGCTATTTTACTTCTTCTTTTCTCTTTCTGTGTTGG CTGGGGCTATTACTATGCTTTTAACTGACCGTAATTTTAATACCTGTTTTTTTGACCCTGGAGGAGGAGG GGACCCCATTTTATATCAACATTTGTTT >AB263728.1 Cellana radiata enneagona mitochondrial COI gene for cytochrome c oxidase subunit I, partial cds, specimen voucher: NUGB-L691(Nagoya University) GAATTAGGTCAACCTGGTTCTTTGCTAGGAGATGATCAGCTATATAACGTGATTGTTACTGCGCACGCTT ACTTGGGGCTCCAGATATGGCTTTTCCTCGTTTAAATAATATGAGGTTTTGGTTACTGGTTCCTTCTTTA TTTTTACTTCTTGCTTCTTCTGCTGTTGAAAGAGGAGTAGGTACAGGTTGGACAGTATACCCCCCTCTTT CTAGAAATGTGGCCCATTCTGGTTCTTCTGTTGATTTGGCTATTTTTTCTCTTCATTTGGCTGGTATTTC TTCAATTCTTGGGGCTGTTAATTTTATTACTACAGTGGTAAACATTCGTTGGCGAGGTCTTCAGTTTGAA CTGGGGCTATTACTATGCTTTTAACTGACCGTAATTTTAATACCTGTTTTTTTGACCCTGGAGGAGGAGG GGACCCCATTTTATATCAACATTTGTTT

Common DNA Data Format

- https://www.ncbi.nlm.nih.gov/
- Switch to FASTA (text)
 - Wikipedia is an excellent resource for describing data formats
- FASTA Format
 - DNA
 - Lines beginning with `>` contain the ID of the unit of observation
 - Lines that don't being with `>` contain information, each character (nucleotide) is a dimension of the unit of observation

Data Formats

I will emphasize Tidy format

 Many fields of Biology have their own particular and peculiar data formats

 There are tools available for handing and converting among data formats

- Some data formats are intimidating, at first
 - There will exist published descriptions of these
 - Duckduckgo: sam specification
 - This is a common "big data" format for next generation sequencer data
 - Take a deep breath, it's not as intimidating as it initially seems

Repositories Can Include Scripts for Processing, Analyzing, & Visualizing Data

- www.datadryad.com
- Find Data from:
 - Meta-analyzing the likely cross-species responses to climate change
- Explore the files
 - *.xls, *.txt,
 - The extension indicates file format NOT data format
- R script
 - R is a statistical computer language
 - This file will analyze the data exactly the way it was reported in the publication

Recall The Philosophy of Data Science

- All data is digitized and stored in files
- Data manipulations and analyses are documented in computer scripts that interface with data files and require no additional human intervention to complete analysis
- Data & scripts are published with the report and openly accessible to all

GitHub – A Repository of Sorts

- A company
- Website is designed to aid in developing code, like an R script
- It also serves as a repository for data, code, and scripts
- Efficient mechanism to disseminate your code to users
- Can also be used to organize a class

https://github.com/orgs/tamucc
 -comp-bio/repositories

Conceptual Diagram of a GitHub Organization

