Name
Signature
P525/3
CHEMISTRY
(Practical)
Paper 3
Sep/Oct. 2023
3 ¼ HOURS

WWEK PRACTICALS

Uganda Advanced Certificate of Education S6 CHEMISTRY (PRACTICAL)

Paper 3

3 hours 15 minutes

INSTRUCTIONS TO CANDIDATES:

Answer **all** questions. Use **blue** or **black** ink. Any work done in pencil will **not** be marked **except** drawings.

Record your answers on this question paper in the spaces provided.

Mathematical tables and silent non-programmable scientific calculators may be used.

Reference books (i.e. text books, booklets on qualitative analysis, etc.) should **not** be used.

Candidates are **not** allowed to start working with the apparatus for the first **15 minutes**. This time is to enable candidates to read the question paper and make sure they have all the apparatus and chemicals that they may need.

FOR EXAMINER'S USE ONLY				
Q.1	Q.2	Q.3	TOTAL	

ving:				
icid				
FA2, which is approximately a 0.1 M sodium hydroxide solution				
I				
onate.				
and use it to determi	ne the percentage of the	impurity in		
		cm ³		
F A1		cm ³		
	cid I sodium hydroxide sonate. and use it to determine FA2 into a conicate the titration until y	cid I sodium hydroxide solution onate. and use it to determine the percentage of the FA2 into a conical flask. Titrate with at the titration until you obtain consistent resu		

Question:			
Calculate the concentration in moles	s per litre of solution F A	A2 .	
			• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •	•••••
Pipette 20.0cm ³ or 25.0cm ³ of I phenolphthalein as the indicator. Re			FA4 using
Results:			
Mass of container + $\mathbf{W} = \dots$			g
Mass of empty container =			g
Mass of $\mathbf{W} = \dots$			g
<u>Table:</u>			
Volume of pipette used			cm ³
Final burette reading (cm ³)			
Initial burette reading (cm ³)			
Volume of FA2 used (cm ³)			
Values used to calculate the average	e of FA4 .	1	1
	and		cm^3

Averag	ge volume of FA4 used
• • • • • • • • • • • • • • • • • • • •	
Questi	ons:
(a) Ca	lculate the:
	umber of moles of hydrochloric acid that was in 100cm ³ of FA4 .
•••••	
•••••	
hydroc	umber of moles of the metal carbonate that reacted. (the metal carbonate reacts with chloric acid in the ratio 1:2)
(b) D	etermine the percentage of the impurity in W . (Relative formula mass of the metal
ca	arbonate is 84)
• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	
•••••	
2.	You are provided with a substance P containing two cations and two anions. You are required to carry out tests on substance P to identify the cations and anions in it. Identify any gas(es) evolved. Record your observations and deductions in Table 3 below. (30 marks)

Table 3

TESTS	OBSERVATIONS	DEDUCTIONS
(a) Shake two spatula endfuls of P with 5cm ³ of water. Filter, keep both the filtrate and residue . Divide the filtrate into four parts.		
(i) To the first part of the filtrate, add 2-3 drops of dilute sulphuric acid.		
(ii) To the second part of the filtrate, add 2-3 drops of lead (II) nitrate solution followed by sodium hydroxide solution dropwise until in excess.		
(iii) To the third part of the filtrate, add 2-3 drops barium nitrate solution followed by dilute nitric acid.		

(iv) Use the fourth part of the filtrate to carryout a test of your choice to confirm the anion in P . TEST:	
(b) Wash the residue from part (a) with water thrice. Dissolve it in dilute hydrochloric acid. Add sodium hydroxide solution dropwise until in excess. Filter, keep both the filtrate and residue .	
(c) To the filtrate from part (b), add dilute hydrochloric acid until the solution is just acidic. Divide the resultant solution into four parts.	
(i) To the first part of acidic solution, add sodium hydroxide solution dropwise until in excess.	
(ii) To the second part of acidic solution, add 2-3 drops of potassium iodide solution.	

(iii)	To the third part of acidic solution, add ammonia solution dropwise until in excess	
(iv)	Use the fourth part of acidic solution to carryout your own test to confirm the first cation in P .	
TEST		
twice w solution. I	Dissolve it in dilute nitric de the resultant solution	
(i)	To the first part of the solution, add sodium hydroxide solution dropwise until in excess.	
(ii)	To the second part of the solution, add ammonia solution dropwise until in excess.	
(iii)	To the third part of the solution, add one spatula endful of zinc dust and leave to stand.	

(iv)	Use the fourth part of	
	the solution to carryout a	
	test of your choice to	
	confirm the second	
	cation in P .	
TEST	<u>':</u>	

(e i) Cations in P	
are	.and
(ii) Anions in P are	.and

3. You are provided with an organic compound **Z**. You are required to carry out tests on **Z** to identify its nature. Identify any gas(es) evolved. Record your observations and deductions in **Table 4** below. (20 marks)

Table 4

TESTS	OBSERVATIONS	DEDUCTIONS
(a) Burn Z on a spatula end or porcelain dish.		
(b) Shake two spatula endfuls of Z with about 10cm ³ of water. Test the resultants solution with litmus paper. Divide the resultant solution into six parts.		

(i)	To the first part of the solution, add 2-3 drops of sodium carbonate solution.	
(ii)	To the second part of the solution, add 2-3 drops of Iron (III) chloride solution.	
(iii)	To the third part of the solution, add 2-3 drops of Brady's reagent.	
(iv)	To the fourth part of the solution, add 2-3 drops of acidified potassium manganate (VII) solution and heat.	
(v)	To the fifth part of the solution add Fehling's solution and heat.	
(vi)	To the sixth part of the solution, add 2-3 drops of Tollen's reagent and heat.	

(vii) To the seventh part of		
the solution, add 2-3		
drops of Iodine solution		
followed by sodium		
hydroxide solution until		
the brown colour of		
Iodine is discharged.		
Warm the mixture and		
allow to cool.		
andw to cool.		
Comment on the nature of Z .		
•••••	•••••	•••••

END

CONFIDENTIAL

FA1- 0.1M HCI

FA2- 0.1M NaOH

FA3- 2M HCI

Solid W- MgCO₃

 $\mbox{\bf P-}$ Potassium chromate, Zinc carbonate and Copper (II) carbonate in ratio $1{:}3{:}2$

Z- Glucose