Contents

Preface to the Second Edition			
P	reface	e to the First Edition	xvii
Sı	ımma	ary of Notation	xix
1	Intr	oduction	1
	1.1	Reinforcement Learning	1
	1.2	Examples	4
	1.3	Elements of Reinforcement Learning	6
	1.4	Limitations and Scope	7
	1.5	An Extended Example: Tic-Tac-Toe	8
	1.6	Summary	13
	1.7	Early History of Reinforcement Learning	13
I	Tal	bular Solution Methods	23
2		ti-armed Bandits	25
	2.1	A k-armed Bandit Problem	
	2.2	Action-value Methods	
	2.3	The 10-armed Testbed	
	2.4	Incremental Implementation	
	2.5	Tracking a Nonstationary Problem	
	2.6	Optimistic Initial Values	
	2.7	Upper-Confidence-Bound Action Selection	
	2.8	Gradient Bandit Algorithms	
	2.9	Associative Search (Contextual Bandits)	
	2.10	Summary	42

viii Contents

3	Fini	te Markov Decision Processes	47		
•	3.1	The Agent–Environment Interface	47		
	3.2	Goals and Rewards	53		
	3.3	Returns and Episodes	54		
	3.4	Unified Notation for Episodic and Continuing Tasks	57		
	$3.4 \\ 3.5$	Policies and Value Functions	58		
	3.6	Optimal Policies and Optimal Value Functions	62		
	3.7		67		
	3.8	Optimality and Approximation	68		
	3.0	Summary	00		
4	Dynamic Programming 73				
	4.1	Policy Evaluation (Prediction)	74		
	4.2	Policy Improvement	76		
	4.3	Policy Iteration	80		
	4.4	Value Iteration	82		
	4.5	Asynchronous Dynamic Programming	85		
	4.6	Generalized Policy Iteration	86		
	4.7	Efficiency of Dynamic Programming	87		
	4.8	Summary	88		
_	ъ Л	A. Carla Madha la	01		
5	5.1	nte Carlo Methods Monte Carlo Prediction	91		
	$5.1 \\ 5.2$	Monte Carlo Estimation of Action Values			
	5.3	Monte Carlo Control			
	5.4	Monte Carlo Control without Exploring Starts			
	5.5	Off-policy Prediction via Importance Sampling			
	5.6	Incremental Implementation			
	5.7	Off-policy Monte Carlo Control			
	5.8	*Discounting-aware Importance Sampling			
	5.9	*Per-decision Importance Sampling			
	5.10	Summary	115		
6	Tem	poral-Difference Learning	119		
	6.1	TD Prediction	119		
	6.2	Advantages of TD Prediction Methods	124		
	6.3	Optimality of $TD(0)$			
	6.4	Sarsa: On-policy TD Control			
	6.5	Q-learning: Off-policy TD Control			
	6.6	Expected Sarsa			
	6.7	Maximization Bias and Double Learning			
	6.8	Games, Afterstates, and Other Special Cases			
	6.9	Summary			

Contents ix

7	n-st	ep Bootstrapping	141
	7.1	<i>n</i> -step TD Prediction	142
	7.2	<i>n</i> -step Sarsa	145
	7.3	<i>n</i> -step Off-policy Learning	148
	7.4	*Per-decision Methods with Control Variates	150
	7.5	Off-policy Learning Without Importance Sampling:	
		The <i>n</i> -step Tree Backup Algorithm	
	7.6	*A Unifying Algorithm: n -step $Q(\sigma)$	154
	7.7	Summary	157
8	Plar	aning and Learning with Tabular Methods	159
	8.1	Models and Planning	159
	8.2	Dyna: Integrated Planning, Acting, and Learning	161
	8.3	When the Model Is Wrong	166
	8.4	Prioritized Sweeping	
	8.5	Expected vs. Sample Updates	
	8.6	Trajectory Sampling	
	8.7	Real-time Dynamic Programming	
	8.8	Planning at Decision Time	
	8.9	Heuristic Search	
	8.10	Rollout Algorithms	
		Monte Carlo Tree Search	
		Summary of the Chapter	
		Summary of Part I: Dimensions	
Π	\mathbf{A}	pproximate Solution Methods	195
9	On-	policy Prediction with Approximation	197
Ū	9.1	- · ·	
		The Prediction Objective ($\overline{\text{VE}}$)	
	9.3	Stochastic-gradient and Semi-gradient Methods	
	9.4	Linear Methods	
	9.5	Feature Construction for Linear Methods	
	0.0	9.5.1 Polynomials	
		9.5.2 Fourier Basis	
		9.5.3 Coarse Coding	
		9.5.4 Tile Coding	
		9.5.5 Radial Basis Functions	
	9.6	Selecting Step-Size Parameters Manually	
	9.0	Nonlinear Function Approximation: Artificial Neural Networks	
	9.8	Least-Squares TD	
	0.0	LOWDU DYGGEDD ID	~~

x Contents

	9.9	Memory-based Function Approximation	230
	9.10	Kernel-based Function Approximation	232
	9.11	Looking Deeper at On-policy Learning: Interest and Emphasis	234
	9.12	Summary	236
10	On-	policy Control with Approximation	243
	10.1	Episodic Semi-gradient Control	243
	10.2	Semi-gradient <i>n</i> -step Sarsa	247
	10.3	Average Reward: A New Problem Setting for Continuing Tasks	249
	10.4	Deprecating the Discounted Setting	253
	10.5	Differential Semi-gradient <i>n</i> -step Sarsa	255
	10.6	Summary	256
11	*Off	f-policy Methods with Approximation	257
		Semi-gradient Methods	258
		Examples of Off-policy Divergence	
		The Deadly Triad	
	11.4	Linear Value-function Geometry	266
		Gradient Descent in the Bellman Error	
	11.6	The Bellman Error is Not Learnable	274
	11.7	Gradient-TD Methods	278
	11.8	Emphatic-TD Methods	281
	11.9	Reducing Variance	283
	11.10	O Summary	284
12	Elig	ibility Traces	287
	12.1	The λ -return	288
	12.2	$\mathrm{TD}(\lambda)$	292
	12.3	n -step Truncated λ -return Methods	295
	12.4	Redoing Updates: Online λ -return Algorithm	297
	12.5	True Online $\mathrm{TD}(\lambda)$	299
	12.6	*Dutch Traces in Monte Carlo Learning	301
		$Sarsa(\lambda)$	
	12.8	Variable λ and γ	307
	12.9	*Off-policy Traces with Control Variates	309
	12.10) Watkins's $Q(\lambda)$ to Tree-Backup (λ)	312
	12.1	1 Stable Off-policy Methods with Traces	314
	12.12	2 Implementation Issues	316
	12.13	3 Conclusions	317

Contents

13	Poli	cy Gradient Methods	321
	13.1	Policy Approximation and its Advantages	. 322
		The Policy Gradient Theorem	
		REINFORCE: Monte Carlo Policy Gradient	
	13.4	REINFORCE with Baseline	. 329
	13.5	Actor–Critic Methods	. 331
	13.6	Policy Gradient for Continuing Problems	. 333
	13.7	Policy Parameterization for Continuous Actions	. 335
		Summary	
III	Ι	Looking Deeper	339
14	\mathbf{Psv}	chology	341
		Prediction and Control	. 342
		Classical Conditioning	
		14.2.1 Blocking and Higher-order Conditioning	
		14.2.2 The Rescorla–Wagner Model	
		14.2.3 The TD Model	
		14.2.4 TD Model Simulations	
	14.3	Instrumental Conditioning	
		Delayed Reinforcement	
		Cognitive Maps	
		Habitual and Goal-directed Behavior	
		Summary	
15	Neu	roscience	377
	15.1	Neuroscience Basics	. 378
	15.2	Reward Signals, Reinforcement Signals, Values, and Prediction Errors .	. 380
	15.3	The Reward Prediction Error Hypothesis	. 381
	15.4	Dopamine	. 383
	15.5	Experimental Support for the Reward Prediction Error Hypothesis	. 387
	15.6	TD Error/Dopamine Correspondence	. 390
	15.7	Neural Actor–Critic	. 395
	15.8	Actor and Critic Learning Rules	. 398
	15.9	Hedonistic Neurons	. 402
	15.10	O Collective Reinforcement Learning	. 404
	15.1	1 Model-based Methods in the Brain	. 407
	15.13	2 Addiction	. 409
	15.13	3 Summary	. 410

xii Contents

Applications and Case Studies			
16.1 TD-Gammon	421		
16.2 Samuel's Checkers Player			
16.3 Watson's Daily-Double Wagering			
16.4 Optimizing Memory Control			
16.5 Human-level Video Game Play			
16.6 Mastering the Game of Go			
16.6.1 AlphaGo			
16.6.2 AlphaGo Zero			
16.7 Personalized Web Services			
16.8 Thermal Soaring			
17 Frontiers	459		
17.1 General Value Functions and Auxiliary Tasks	459		
17.2 Temporal Abstraction via Options			
17.3 Observations and State			
17.4 Designing Reward Signals			
17.5 Remaining Issues			
17.6 The Future of Artificial Intelligence			
References	481		
Index			