

Planet Enterprises

Quinn Morley Principal Investigator quinn@quinnmorley.com

Tom Bowen Co-Investigator thomaswadebowen@gmail.com

Special Thanks To: Dr. Kris Zacny, Dr. Chris Dreyer, Dr. Mike Malaska, Dr. Peter Buhler, Dr. Than Putzig, and Laura Forczyk.

Thanks to the Space Technology Mission Directorate and NIAC for this incredible opportunity.

Mission Context:

- Drill 50 m into the Mars South Polar Layered Deposits (SPLD)
- Analyze and cache ice cores; analyze and log borehole wall

Extended Mission Goal:

Drill 1.5 km, access subglacial lake (or basal unit)

Innovation:

Self-driving robots (borebots) drive up and down the borehole

NASA Innovative Advanced Concepts

Autonomous Robotic Demonstrator for Deep Drilling (ARD3)

NIAC Phase I Study

Tracks are flexible ring gears

Failsafe Sample

Primer Cord for

Failsafe Separation — Outer Barrel

Borebot Drivetrain

Directional drilling innovations

Modular Drill Heads

.mp4 video available at https://git.io/JsKah Iris closure innovation for high dust content / crumbly cores

Iris remixed from: Lalish, Emmett. 2016. "Preassembled Iris Box."

thingiverse.com/thing:1811143

Rover Instruments

→ Handoff from ACA to internal rover science instrument payload

→ Coring tool "re-cores" ice cores to extract a pristine core center

The "Turret Corer" tool is relocated from robot arm to rover chassis

The Perseverance Adaptive Caching Assembly (ACA) is used

Water Sampler / Penetrator Probe

To simplify the process of breaking through into subglacial liquid environments, we developed a penetrator probe instrument to perform the final subglacial access and extract a liquid water sample. Our calculations show that the ice thickness prior to "normal" breakthrough can be as little as 4 cm.

Main Bladder Valve

Failsafe Bladder Valve

Separation Valve

Inner Barrel

Drivetrain components remixed from: Lalish, Emmett. 2013. "Gear Bearing." thingiverse.com/thing:53451

- The Penetrator Probe deploys in-situ via counter-rotation of the borebot drill motor • 10 mm shear-nut ensures proper torque for deployment and "setting" of the telescoping sections of the probe (this friction fit is critical), the nut breaks off when torque is reached
- A "nut pocket" on the rover's arm/chassis can hold the nut during deployment

Science Instruments

Downhole Instruments

- Microscopic imager (white/UV)
- Spectrometer (deep UV) Conductivity/Eddy current

Simple and efficient for clean ice

Talalay P.G. 2014. "Drill heads of the deep ice electromechanical drills."

doi:10.1016/j.coldregions.2013.09.009

Deep UV Raman

 D/H hydrogen measurement Sonar for ice / layer thickness

Microscopic imager with white and UV LEDs

Zacny, K. et. al, 2016. "Development of [PDD]" Eshelman, M. et. al, 2019. "WATSON..." doi:10.1061/9780784479971.027 doi:10.1089/ast.2018.1925

Urey instrument for

Sample Processing

Aubrey, Andrew D., et. al. 2008. "The Urey Instrument..." Boeder & Soares, 2020. "Mars 2020: mission..." doi:10.1089/ast.2007.0169 doi:10.1117/12.2569650