Etude de fonction numérique

I. Branches infinies

Dans ce cours, le plan est rapporté à un repère orthonormé $(o, \vec{i}; \vec{j})$

Définition

Soit f une fonction numérique et (C_f) sa courbe

Soit M(x, f(x)) un point de (C_f) .

Si x ou f(x) tend vers l'infinie $(+\infty \text{ ou } -\infty)$; alors on dit que (C_f) admet une branche infinie.

1) Asymptote verticale – asymptote horizontale

<u>Activité</u>

Soit f une fonction numérique définie par $f(x) = \frac{x-1}{x-2}$ et (C_f) sa courbe.

Soient (D) et (Δ) deux droits d'équation x = 2 et y = 1

- 1) Déterminer D_f l'ensemble de définition de f
- 2) Calculer les limites suivantes $\lim_{x \to \infty} f(x)$ et $\lim_{x \to \infty} f(x)$
- 3) Que remarquez-vous sur (C_f) si x tend vers $+\infty$ ou $-\infty$
- 4) Calculer les limites suivantes $\lim_{x\to 2^+} f(x)$ et $\lim_{x\to 2^-} f(x)$
- 5) Que remarquez-vous sur (C_f) si x tend vers 2.

Définition

Soit f une fonction numérique et soient a et b deux nombres réels.

- Si $\lim_{x \to \infty} f(x) = b$ alors (C_f) admet une asymptote horizontale d'équation y = b
- Si $\lim_{x \to a} f(x) = \infty$ alors (C_f) admet une asymptote verticale d'équation x = a

Exemples

- a. On considère $f(x) = \frac{2x}{x-1}$; on a $\lim_{x \to +\infty} f(x) = 2$ donc (C_f) admet une asymptote horizontale d'équation y = 2
- b. On considère $f(x) = \frac{-2}{x-1}$; $\lim_{x \to 1^+} f(x) = -\infty$ alors (C_f) admet une asymptote verticale d'équation x=1

Application *O*

1) Soit *h* une fonction définie sur \mathbb{R} par $h(x) = 3 + \frac{x+1}{x^2+3}$

Calculer $\lim_{x \to +\infty} h(x)$ et $\lim_{x \to +\infty} h(x)$; puis interpréter les résultats graphiquement.

2) Soit g une fonction définie sur \mathbb{R} par $g(x) = \frac{x+5}{(x+2)^2}$

Calculer $\lim_{x\to -2} g(x)$ puis interpréter les résultats graphiquement.

3) Soit f une fonction numérique définie par le tableau de variations suivant :

- a. Déterminer D_f l'ensemble de définition de la fonction f
- b. Déterminer les limites aux bornes de D_f puis interpréter les résultats graphiquement.

2) Asymptote oblique

Activité :

Soit f une fonction numérique définie par $f(x) = \frac{x^2}{x+1}$ et (C_f) sa courbe et soit (D) une droit

- 1) Déterminer D_f l'ensemble de définition de f
- 2) Vérifier que $(\forall x \in D_f)$; $f(x) = x+1+\frac{1}{x-1}$
- 3) Calculer $\lim_{x \to +\infty} (f(x) (x+1))$
- 4) Que remarquez-vous sur (C_f) si x tend vers ∞
- 5) Calculer $\lim_{x \to +\infty} f(x)$

- 6) Déterminer a et b puis la droite d'équation y = ax + b sachant $\lim_{x \to +\infty} \frac{f(x)}{x} = a$ et $\lim_{x \to +\infty} (f(x) ax) = b$
- 7) Déduire les étapes pour déterminer l'asymptote oblique de (C_f) en $+\infty$

<u>Définition</u>

Soit f une fonction définie au voisinage de $+\infty$ ou $-\infty$.

Si $\lim_{x\to +\infty} (f(x)-(ax+b)) = 0$ ou $\lim_{x\to -\infty} (f(x)-(ax+b)) = 0$ avec $a\in R^*$ et $b\in R$ alors on dit que la droite d'équation y=ax+b est une asymptote oblique de la courbe (C_f) au voisinage de $+\infty$ ou au voisinage de $-\infty$.

Exemple: Soit f une fonction définie par $f(x) = 2x - 3 + \frac{3}{x^2}$

On a
$$\begin{cases} \lim_{x \to -\infty} (f(x) - (2x - 3)) = \lim_{x \to +\infty} (f(x) - (2x - 3)) \\ = \lim_{x \to -\infty} \frac{3}{x^2} = \lim_{x \to +\infty} \frac{3}{x^2} = 0 \end{cases}$$

Donc la droite d'équation y = 2x - 3 est une asymptote oblique de la courbe (C_f) au voisinage de $-\infty$ et $+\infty$.

Propriété :

Soit f une fonction numérique et (C_f) sa courbe.

On dit que la droite d'équation y = ax + b est une **asymptote oblique** de la courbe (C_f) au voisinage

de
$$\infty$$
 si et seulement si : $\lim_{x \to \infty} f(x) = \infty$; $\lim_{x \to \infty} \frac{f(x)}{x} = a$ et $\lim_{x \to \infty} (f(x) - ax) = b$

Remarque:

L'utilité de la propriété :

- Démontrer que la droite d'équation y = ax + b est une asymptote oblique au voisinage de ∞
- Déterminer l'équation de l'asymptote oblique au voisinage de ∞

Application @

Soit f une fonction numérique définie par $f(x) = \frac{x^2 - 3x + 1}{x - 1}$

- 1) Déterminer D_f l'ensemble de définition de la fonction f
- 2) Montrer que la droite d'équation y = x 2 est une asymptote oblique de (C_f) au voisinage de $+\infty$

3) <u>Position relative de (C_f) et l'asymptote oblique</u> :

Propriété

Si la courbe (C_f) admet la droite (Δ) : y = ax + b comme asymptote oblique ; alors la position relative de la courbe (C_f) et la droite (Δ) se déduit par l'étude le signe de f(x) - (ax + b)

- Si f(x) (ax + b) > 0 alors (C_f) est au-dessus de (Δ)
- Si f(x)-(ax+b)<0 alors (C_f) est au-dessous de (Δ) .
- Si f(x) (ax + b) = 0 alors (C_f) est coupe (Δ) .

Application 3

Soit g une fonction définie par : $g(x) = \frac{2x^2 + 3x - 1}{x + 2}$

- 1) Déterminer D_g l'ensemble de définition de la fonction g
- 2) Montrer que (C_g) admet une asymptote oblique (D) d'équation y = ax + b en $+\infty$, en déterminant a et b
- 3) Déterminer la position relative de (D) et (C_{φ}) .

4) Branche parabolique

Définitions

a) Branche parabolique orienté vers l'axe des abscisses

Soit f une fonction numérique et C_f sa courbe et $\lim_{x\to\infty} f(x) = \infty$

Si $\lim_{x\to\infty} \frac{f(x)}{x} = 0$ on dit que la courbe C_f admet une branche parabolique Orienté vers l'axe des abscisses au voisinage de ∞ .

b) Branche parabolique orienté vers l'axe des ordonnées

Soit f une fonction numérique et C_f sa courbe et $\lim_{x\to\infty} f(x) = \infty$

Si $\lim_{x\to\infty} \frac{f(x)}{x} = \infty$ on dit que la courbe C_f admet une branche parabolique orienté vers l'axe des ordonnées au voisinage de ∞ .

c) Branche parabolique orienté vers la droite d'équation y = ax

Soit f une fonction numérique et C_f sa courbe et $\lim_{x\to\infty} f(x) = \infty$

Si $\lim_{x\to\infty} \frac{f(x)}{x} = a$ et $\lim_{x\to\infty} (f(x) - ax) = \infty$ On dit que la courbe C_f admet une branche parabolique orienté vers la droite d'équation y = ax au voisinage de ∞

Branche parabolique vers l'axe des abscisses.

Branche parabolique vers la droite d'équation y = ax.

Branche parabolique vers l'axe des ordonnés.

Application @

Etudier les branches infinies de la fonction f dans les cas suivants :

1)
$$f(x) = 2x^3 - x$$

; 2)
$$f(x) = \sqrt{2x+1}$$
 ;

3)
$$f(x) = \frac{1}{2}x + \sqrt{x}$$

Schéma illustratif des Branches infinies $\lim f(x) = \infty$ $\lim_{x \to \infty} f(x) = b$ $\lim_{x \to \infty} f(x) = \infty$ La droite d'équation La droite d'équation y = b est une $\lim \frac{f(x)}{}$ x = a a est une asymptote horizontale à asymptote verticale à (C_f) au voisinage de (C_f) au voisinage de a $\lim \frac{f(x)}{1} = \infty$ La courbe (C_f) admet $\lim_{x \to \infty} \frac{f(x)}{x} = a$ La courbe (C_f) admet une une branche parabolique branche parabolique de de direction l'axe des direction l'axe des ordonnés abscisses $\lim_{x \to \infty} (f(x) - ax) = b$ $lim(f(x) - ax) = \infty$

La droite (Δ): y = ax + b est une La courbe (C_f) admet une asymptote oblique à (C_f) au voisinage de branche parabolique de direction la droite d'équation y = ax $\lim_{x\to\infty} (f(x) - (ax + b)) = 0$

II. Concavité d'une courbe - point d'inflexion

Définition

Soit f une fonction dérivable sur un intervalle ouvert I et C_f sa courbe.

- * On dit que C_f la courbe de la fonction f est **convexe** sur I (dirigée vers les ordonnés positifs) s'elle est au-dessus de ses tangentes.
- * On dit que C_f la courbe de la fonction f est **concave** sur I (dirigée vers les ordonnés négatifs) s'elle est au-dessous de ses tangentes.
- * On dit que le point A(a, f(a)) est un **point d'inflexion** de C_f la courbe de la fonction f, s'elle **change sa concavité** à gauche et à droite de a (changement de concavité).

<u>Remarque :</u>

Etudier la concavité de C_f signifie, déterminer les intervalles où C_f est concave et les intervalles où C_f est convexe.

Si C_f admet une point d'inflexion A alors la tangente de C_f en A; pénètre la courbe C_f .

<u>Propriété</u>

Soit f une fonction **deux fois** dérivable sur un intervalle ouvert I et C_f sa courbe dans un repère orthonormé.

- * Si $(\forall x \in I)$; $f''(x) \ge 0$ alors On dit que C_f la courbe de la fonction f est **convexe sur I.**
- * Si $(\forall x \in I)$; $f''(x) \le 0$ alors On dit que C_f la courbe de la fonction f est **concave sur I.**
- * Si f " s'annule et change le signe en A(a, f(a)) alors le point A est le point d'inflexion de C_f

<u>Exemple</u>

On considère une fonction f définie et deux fois dérivable sur \mathbb{R} par $f(x) = \frac{1}{2}x^3$ et sa courbe représentée dans la figure ci-dessous :

Le point O(0,0) est le point d'inflexion de la courbe car elle change la concavité dans ce point.

Exemple 2

On considère une fonction f définie et dérivable sur \mathbb{R} par $f(x) = x^3 - 3x^2 + x + 1$

On a
$$(\forall x \in \mathbb{R})$$
; $f'(x) = 3x^2 - 6x + 1$ donc $(\forall x \in \mathbb{R})$; $f''(x) = 6x - 6 = 6(x - 1)$

On résoudre l'équation f''(x) = 0

On a
$$f''(x) = 0 \Leftrightarrow 6(x-1) = 0 \Leftrightarrow x-1 = 0 \Leftrightarrow x = 1$$

On a
$$f''(x) > 0 \Leftrightarrow x > 1$$
 et $f''(x) < 0 \Leftrightarrow x < 1$

f" Change le signe en A donc le point A est le point d'inflexion de la courbe.

Application 5

Etudier la concavité de $\left(C_{f}\right)$ sur l'intervalle $\left[-4;4\right]$

III. Eléments de symétrie d'une courbe

1) Axe de symétrie d'une courbe

Propriété :

Soit f une fonction numérique définie sur D et (C_f) sa courbe dans un repère orthonormé

On dit que la droite d'équation x = a est **un axe de symétrie** de (C_f) si et seulement les conditions suivantes soient vérifiées :

- $(\forall x \in D)$ On a $(2a x) \in D$
- $(\forall x \in D)$; f(2a-x) = f(x)

Exemple

Soit f une fonction numérique définie sur \mathbb{R} par $f(x) = \cos(x)$

Montrons que la droite d'équation $x = \pi$ est l'axe de symétrie de (C_f)

On a $(\forall x \in \mathbb{R})$ on a $(2\pi - x) \in D$

Et on a $(\forall x \in \mathbb{R})$; $f(2\pi - x) = \cos(2\pi - x) = \cos(-x) = \cos(x) = f(x)$

Donc la droite d'équation $x = \pi$ est un axe de symétrie de (C_f) .

2) Centre de symétrie d'une courbe :

Propriété:

Soit f une fonction numérique définie sur D et (C_f) sa courbe dans un repère orthonormé.

On dit que le point I(a,b) est **le centre de symétrie** de (C_f) si et seulement les conditions suivantes soient vérifiées :

- $(\forall x \in D)$ On a $(2a x) \in D$
- $(\forall x \in D)$; f(2a-x) + f(x) = 2b Ou $(\forall x \in D)$; f(2a-x) = 2b f(x)

Application 6:

- 1) Montrer que la droite d'équation x = a est l'axe de symétrie de (C_f) dans les cas suivants :
 - a) $f(x) = x^2 + x + 1$ et $(\Delta): x = \frac{-1}{2}$
 - b) $f(x) = \sqrt{x^2 2x + 3}$ et $(\Delta): x = 1$
- 2) Montrer que I(a;b) est l'axe de symétrie de (C_f) dans les cas suivants :
 - a) $f(x) = -x^3 + 3x^2$ et I(1;2)
 - b) $f(x) = \frac{x^2 2}{x + 1}$ et I(-1, -2)
 - c) $f(x) = \frac{x-1}{2x+1}$ et $I(\frac{-1}{2}; \frac{1}{2})$