4. Praktikum

Modellbildung und Regelung von Robotersystemen

Das dritte Praktikum steht im Zeichen der Modellbildung und Regelung dynamischer Mehrkörpersysteme. Für die praktische Realisierung der Versuche steht der *CRS CataLyst-5* Roboter (siehe Abb. 4.1) zur Verfügung. Er verfügt über eine offene Schnittstelle und kann über das Echtzeitsystem *QUARC* der Fa. Quanser gesteuert werden. Ziel dieser Laborübung ist die Vermittlung eines tieferen Verständnisses bei der dynamischen Modellierung mittels der Projektionsgleichung.

Abbildung 4.1: CRS CataLyst-5 Roboter

4.1 Ermittlung der nichtlinearen Bewegungsgleichung des Laborroboters

Für die Modellierung mechanischer Systeme bietet sich die Projektionsgleichung

$$\sum_{i=1}^{N} \left[\left(\frac{\partial_{R} \mathbf{v}_{S}}{\partial \dot{\mathbf{q}}} \right)^{T} \left(\frac{\partial_{R} \boldsymbol{\omega}_{S}}{\partial \dot{\mathbf{q}}} \right)^{T} \right]_{i} \left[\begin{array}{c} (_{R} \dot{\mathbf{p}} +_{R} \widetilde{\boldsymbol{\omega}}_{IR} R \mathbf{p} -_{R} \mathbf{f}^{e}) \\ \left(_{R} \dot{\mathbf{L}} +_{R} \widetilde{\boldsymbol{\omega}}_{IR} R \mathbf{L} -_{R} \mathbf{M}^{e} \right) \end{array} \right]_{i} = \mathbf{0}, \tag{4.1}$$

an. Als Ergebnis errechnet sich die Bewegungsgleichung

$$\mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{g}(\mathbf{q}, \dot{\mathbf{q}}) = \mathbf{Q}. \tag{4.2}$$

Aufgabe 4.1 Modellieren Sie den Laborroboter aus Abb. 4.2 mit 3 Freiheitsgraden mit Hilfe der Projektionsgleichung in MAPLE. Verwenden Sie die Abmessungen und die Koordinatensysteme nach Abb. 4.2. Als Minimalkoordinate soll $\mathbf{q}^T = (q_1, q_2, q_3)$ fungieren und als Eingänge die Motormomente M_1 , M_2 und M_3 . Berücksichtigen Sie den Einfluss der Gravitation auf das System.

Abbildung 4.2: CRS CataLyst-5 Roboter, Schnittbilder

Motorträgheiten	Massen
$B_{M1} = 1.89\text{e-}5 \text{ kgm}^2$	$m_2 = 1.866 \text{ kg}$
$C_{M2} = 1.89 \text{e-} 5 \text{ kgm}^2$	$m_3 = 2.173 \text{ kg}$
$C_{M3} = 1.89 \text{e-} 5 \text{ kgm}^2$	Getriebeübersetzung
Trägheitsmomente der Körper	für Motor 1,2,3
(jeweils körperfestes Koordinatensyst.)	i = 72
$B_{S1} = 0.1030 \text{ kgm}^2$	Längen & Schwerpunktabstände
$A_{S2} = 0.0036 \text{ kgm}^2$	$s_2 = 0.125 \text{ m}$
$B_{S2} = 0.0159 \text{ kgm}^2$	$s_3 = 0.131 \text{ m}$
$C_{S2} = 0.0170 \text{ kgm}^2$	$l_2 = 0.25 \text{ m}$
$A_{S3} = 0.0021 \text{ kgm}^2$	$l_3 = 0.25 \text{ m}$
$B_{S3} = 0.0180 \text{ kgm}^2$	
$C_{S3} = 0.0583 \text{ kgm}^2$	
Gravitationskonstante	
$g = 9.81 \ m/s^2$	

Tabelle 4.1: Parameter des CRS Catalyst-5 Laborroboter

Aufgabe 4.2 Zur Simulation der Dynamik des Systems in Matlab/Simulink soll eine S-Function mit Hilfe des Sim-Code C-Package generiert werden. Verwenden Sie die Motormomente als Eingang und den Zustand als Ausgang des Systems.

Aufgabe 4.3 Vergleichen Sie das erhaltene Modell mit der Musterdatei Verifikation_Dyn_R201x.slx, verwenden Sie dabei die in Tab. 4.1 zusammengefassten Parameterwerte (sind bereits in init_CRS255_ss.m gespeichert). Der Vergleich in den Zuständen soll mit der Verifikationsdatei identisch sein.

Hinweis 4.1 Die erste und zweite Drehung (q_1 und q_2) sind in Relativwinkeln angegeben. Die dritte Drehung ist ein absoluter Winkel und wird aus der Horizontalen bestimmt.

Hinweis 4.2 Der Motor Nr. 3 (M_3) stützt sich am Körper 1 ab und treibt über einen Kettentrieb den Körper 3.

Hinweis 4.3 Die Rotorträgheiten

$$A_{M1} = 0, C_{M1} = 0$$

 $A_{M2} = 0, B_{M2} = 0$
 $A_{M3} = 0, B_{M3} = 0$

$$(4.3)$$

können vernachlässigt werden.

4.2 Ermittlung der linearen Bewegungsgleichung des Laborroboters

Aufgabe 4.4 Linearisieren Sie die Bewegungsgleichung im Konfigurationsraum um eine allgemeine Ruhelage \mathbf{q}_s . Es gilt $\mathbf{q} = \mathbf{q}_s + \Delta \mathbf{q}$ mit der Grundlösung \mathbf{q}_s und der Abweichung $\Delta \mathbf{q}$ (siehe auch UE Technische Mechanik III) 1 . Bestimmen Sie auch die Haltemomente $M_{s,i}$, die nötig sind, um den Roboter in dieser Lage halten zu können.

Aufgabe 4.5 Bringen Sie das linearisierte Modell des Roboters in die Zustandsraumdarstellung

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}
\mathbf{y} = \mathbf{C}\mathbf{x}$$
(4.4)

mit $\mathbf{x}^T = (\Delta \mathbf{q}^T, \Delta \dot{\mathbf{q}}^T)$, $\mathbf{u}^T = (\Delta M_1, \Delta M_2, \Delta M_3)$ und $\mathbf{y} = \mathbf{x}$.

Aufgabe 4.6 Überlegen Sie sich, wie Sie die Stabilität des System beurteilen können.

 $^{^{1}}$ Um einer Verwechslung zwischen dem Systemausgang \mathbf{y} und der Abweichung der Konfiguration von einer stationären Lösung (in der Technischen Mechanik III ebenfalls als \mathbf{y} bezeichnet) vorzubeugen, wird in diesem Fall die Abweichung mit $\Delta \mathbf{q}$ bezeichnet.