Programación lineal: variables ficticias en método SIMPLEX

Rodrigo Maranzana

Conceptos iniciales y repaso

SIMPLEX es un método de resolución de problemas lineales.

 Minimiza la ruta de búsqueda a través de los vértices de un poliedro convexo.

Suposiciones del método SIMPLEX

- Variables continuas
- Solo puede trabajar con variables positivas.

SIMPLEX con restricciones de \leq siempre comienza la búsqueda (iteración #0):

- Dentro del espacio de factibilidad.
- Con las variables slack en la base: origen de coordenadas.

Fuente: https://en.wikipedia.org/wiki/Simplex_algorithm

Ejemplo disparador

$$Max\ Z = 4X_1 + 3X_2$$
 $sujeto\ a$:
 $Y_1:\ 6X_1 + 16X_2 \ge 108$
 $Y_2:\ 12X_1 + 6X_2 \ge 89$
 $Y_3:\ 2X_1 + X_2 \le 160$
 $Y_4:\ X_1 + 2X_2 \le 180$
 $X_1, X_2 \ge 0$

Modelo Extendido

$$Max Z = 4X_1 + 3X_2$$

 $sujeto a$:
 Y_1 : $6X_1 + 16X_2 - X_3 = 108$
 Y_2 : $12X_1 + 6X_2 - X_4 = 89$
 Y_3 : $2X_1 + X_2 + X_5 = 160$
 Y_4 : $X_1 + 2X_2 + X_6 = 180$

Ejemplo disparador

$$Max Z = 4X_1 + 3X_2$$
 sujeto a:

$$Y_1$$
: $6X_1 + 16X_2$
 Y_2 : $12X_1 + 6X_2$
 Y_3 : $2X_1 + X_2$
 Y_4 : $X_1 + 2X_2$
 $X_1 + X_2$
 $X_2 + X_3$
 $X_1 + X_2$
 $X_2 + X_3$
 $X_1 + X_2$
 $X_2 + X_3$
 $X_1 + X_2$
 $X_2 + X_3$

Variables no básicas (#0) Variables básicas (#0)

$$X_1, X_2 \geq 0$$

- Inicio de búsqueda en origen de coordenadas fuera del espacio de factibilidad.
- Variable slack negativa, fuera del espacio de factibilidad.

Variables Ficticias en restricciones

$$Y_1$$
: $6X_1 + 16X_2$ $-X_3$ $+u_1$ = 108 Y_2 : $12X_1 + 6X_2$ $-X_4$ $+u_2$ = 89 Y_3 : $2X_1 + X_2$ $+X_5$ = 160 Y_4 : $X_1 + 2X_2$ $+X_6$ $= 180$

- Variables Ficticias (u_i) para salvar la negatividad de la variable.
- Inicio de búsqueda punto factible.

Variables Ficticias en función objetivo

Variables slack
$$\longrightarrow$$
 $Max\ Z = 4X_1 + 3X_2 + 0X_3 + 0X_4 + 0X_5 + 0X_6 - Mu_1 - Mu_2$

En la función objetivo representan un término de penalización.

- Variables Ficticias (u_i) agregadas en función objetivo.
- No son una variable original del problema, son un artilugio algorítmico:
 - Si el problema las selecciona es penalizado M veces.
 - M es un número muy grande.
 - El signo tiene la dirección contraria de optimización: (-M) si max; (+M) si min.

Problema de optimización LP

$$Max Z = 4X_1 + 3X_2 - Mu_1 - Mu_2$$

 $sujeto a$:
 Y_1 : $6X_1 + 16X_2$ $-X_3$ $+u_1$ $= 108$
 Y_2 : $12X_1 + 6X_2$ $-X_4$ $+u_2$ $= 89$
 Y_3 : $2X_1 + X_2$ $+X_5$ $= 160$
 Y_4 : $X_1 + 2X_2$ $+X_6$ $= 180$

$$X_1, X_2 \geq 0$$

Modelo Matricial

 $Max Z = 4X_1 + 3X_2 - Mu_1 - Mu_2$ sujeto a:

$$Y_1$$
: $6X_1 + 16X_2$ $-X_3$ $+u_1$ = 108
 Y_2 : $12X_1 + 6X_2$ $-X_4$ $+u_2$ = 89
 Y_3 : $2X_1 + X_2$ $+X_5$ = 160
 Y_4 : $X_1 + 2X_2$ $+X_6$ = 180

$$X_1, X_2 \geq 0$$

 $Max Z = C^T X$ sujeto a:

$$AX = b$$
$$X \ge 0$$

Valores de matrices:

$$A = \begin{bmatrix} 6 & 16 & -1 & 0 & 0 & 0 & 1 & 0 \\ 12 & 6 & 0 & -1 & 0 & 0 & 0 & 1 \\ 2 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

$$C = \begin{bmatrix} 108 \\ 89 \\ 160 \\ 180 \end{bmatrix} \qquad C = \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \\ -M \\ -M \end{bmatrix} \qquad X = \begin{bmatrix} X_2 \\ X_3 \\ X_4 \\ X_5 \\ X_6 \\ u_1 \\ u_2 \end{bmatrix}$$

Tablas SIMPLEX

$$Max Z = 4X_1 + 3X_2 - Mu_1 - Mu_2$$
 $sujeto a$:

 $Y_1: 6X_1 + 16X_2 - X_3 + u_1 = 108$
 $Y_2: 12X_1 + 6X_2 - X_4 + u_2 = 89$
 $Y_3: 2X_1 + X_2 + X_5 = 160$
 $Y_4: X_1 + 2X_2 + X_6 = 180$
 $X_1, X_2 \ge 0$

$$Max Z = C^{T}X$$

$$sujeto a:$$

$$AX = b$$

$$X \ge 0$$

$$A = \begin{bmatrix} 6 & 16 & -1 & 0 & 0 & 0 & 1 & 0 \\ 12 & 6 & 0 & -1 & 0 & 0 & 0 & 1 \\ 2 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

$$C = \begin{bmatrix} 4 \\ 3 \\ 0 \\ 0 \\ 0 \\ -M \\ -M \end{bmatrix} \quad X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ X_5 \\ X_6 \\ u_1 \\ u_2 \end{bmatrix} \quad b = \begin{bmatrix} 108 \\ 89 \\ 160 \\ 180 \end{bmatrix}$$

	C_{j}		4	3	0	0	0	0	-M	-M	B_k
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	<i>X</i> ₅	X_6	u_1	u_2	$/A_{ij}$
-M	u_1	108	6	16	-1	0	0	0	1	0	
-M	u_2	89	12	6	0	-1	0	0	0	1	
0	X_5	160	2	1	0	0	1	0	0	0	
0	X_6	180	1	2	0	0	0	1	0	0	
Z	$Z_j - C_j$										

	C_{j}		4	3	0	0	0	0	-M	-M	B_k
C _j Base	X _j Base	\boldsymbol{B}_k	<i>X</i> ₁	X_2	X_3	X_4	X_5	X_6	u_1	u_2	$/A_{ij}$
-M	u_1	108	6	16	-1	0	0	0	1	0	
-M	u_2	89	12	6	0	-1	0	0	0	1	
0	X_5	160	2	1	0	0	1	0	0	0	
0	<i>X</i> ₆	180	1	2	0	0	0	1	0	0	
-197 <i>M</i>	Z_j –	- <i>C_j</i>	-18M-4	-22M-3	М	M	0	0	0	0	

Resolvemos $Z_j - C_j$ y valor del funcional Z

Existen variables no básicas con $Z_j - C_j$ negativo, ¡Z puede mejorar!

Seleccionamos X_2 para entrar a la base

	c_{j}		4	3	0	0	0	0	-M	-M	B_k
C_j Base	X _j Base	\boldsymbol{B}_{k}	<i>X</i> ₁	<i>X</i> ₂	X_3	X_4	X_5	X_6	u_1	u_2	$/A_{ij}$
-M	u_1	108	6	16	-1	0	0	0	1	0	6.75
-M	u_2	89	12	6	0	-1	0	0	0	1	14.83
0	X_5	160	2	1	0	0	1	0	0	0	160.00
0	X_6	180	1	2	0	0	0	1	0	0	90.00
Z	$Z_j - C_j$		-18M-4	-22M-3	M	M	0	0	0	0	

Resolvemos B_k / A_{ij}

Mínimo positivo B_k / A_{ij} en $oldsymbol{u_1}$

Sale u_1 , entra X_2

Actualización #0 a #1

Tabla #0

	C_{j}		4	3	0	0	0	0	-M	-M	B_k
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	X_5	<i>X</i> ₆	u_1	u_2	$/A_{ij}$
-M	u_1	108	6	16	-1	0	0	0	1	0	6.75
-M	u_2	89	12	6	0	-1	0	0	0	1	14.83
0	<i>X</i> ₅	160	2	1	0	0	1	0	0	0	160.00
0	X_6	180	1	2	0	0	0	1	0	0	90.00
Z	Z_j -	- <i>C_j</i>	-18M-4	-22M-3	M	M	0	0	0	0	

Tabla #1

	C_{j}		4	3	0	0	0	0	-M	-M	B_k
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	X_5	X_6	u_1	u_2	$/A_{ij}$
3	X_2	6.75	0.375	1	-0.062	0	0	0	0.062	0	
-M	u_2	48.50	9.750	0	0.375	-1	0	0	-0.375	1	
0	X_5	153.25	1.625	0	0.062	0	1	0	-0.062	0	
0	X_6	166.5	0.250	0	0.125	0	0	1	-0.125	0	
Z	Z_j –	· <i>C_j</i>	-9. 75 M	0	-0.37M	M	0	0	1.37M	0	
			-2.875		-0.187				+0.187		

	C_{j}		4	3	0	0	0	0	-M	-M	B_k
C _j Base	X _j Base	\boldsymbol{B}_{k}	<i>X</i> ₁	X_2	X_3	X_4	X_5	X_6	u_1	u_2	$/A_{ij}$
3	X_2	6.75	0.375	1	-0.062	0	0	0	0.062	0	
-M	u_2	48.50	9.750	0	0.375	-1	0	0	-0.375	1	
0	X_5	153.25	1.625	0	0.062	0	1	0	-0.062	0	
0	X_6	166.5	0.250	0	0.125	0	0	1	-0.125	0	
-48.5M + 20.25	, ,		-9.75M -2.875	0	-0.37M -0.187	M	0	0	1.37M +0.187	0	

Resolvemos $Z_j - C_j$ y valor del funcional Z

Existen variables no básicas con $Z_j - C_j$ negativo, ¡Z puede mejorar!

Seleccionamos X_1 para entrar a la base

	C_j		4	3	0	0	0	0	-M	-M	B_k
C _j Base	X _j Base	\boldsymbol{B}_{k}	<i>X</i> ₁	X_2	X_3	X_4	<i>X</i> ₅	<i>X</i> ₆	u_1	u_2	$/A_{ij}$
3	X_2	6.75	0.375	1	-0.062	0	0	0	0.062	0	18.00
-M	u_2	48.50	9.750	0	0.375	-1	0	0	-0.375	1	4.97
0	<i>X</i> ₅	153.25	1.625	0	0.062	0	1	0	-0.062	0	92.88
0	X_6	166.5	0.250	0	0.125	0	0	1	-0.125	0	666.00
-48.5M + 20.25	J - J		-9.75M -2.875	0	-0.37M -0.187	M	0	0	1.37M +0.187	0	

Resolvemos B_k / A_{ij}

Mínimo positivo B_k / A_{ij} en $oldsymbol{u_2}$

Sale u_2 , entra X_1

Actualización #1 a #2

Tabla #1

	C_{j}		4	3	0	0	0	0	-M	-M	. D //
C _j Base	X_j Base	\boldsymbol{B}_{k}	<i>X</i> ₁	X_2	X_3	X_4	<i>X</i> ₅	X_6	u_1	u_2	B_k/A_{ij}
3	X_2	6.75	0.375	1	-0.062	0	0	0	0.062	0	18.00
-M	u_2	48.50	9.750	0	0.375	-1	0	0	-0.375	1	4.97
0	<i>X</i> ₅	153.25	1.625	0	0.062	0	1	0	-0.062	0	92.88
0	X_6	166.5	0.250	0	0.125	0	0	1	-0.125	0	666.00
-48.5M + 20.25	1 -1		-9.75M -2.875	0	-0.37M -0.187	M	0	0	1.37M +0.187	0	

Tabla #2

	C_{j}		4	3	0	0	0	0	-M	-M	D / A
C _j Base	X_j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	X_5	X_6	u_1	u_2	B_k/A_{ij}
3	X_2	4.88	0	1	-0.077	0.038	0	0	0.077	-0.038	
4	X_1	4.97	1	0	0.038	-0.102	0	0	-0.038	0.102	
0	X_5	145.17	0	0	0	0.167	1	0	0	-0.166	
0	X_6	165.26	0	0	0.115	0.025	0	1	-0.115	-0.025	
Z	Z_j –	- <i>C_j</i>	0	0	-0.076	-0.294	0	0	M	M	
									+0.076	+0.294	

	C_{j}		4	3	0	0	0	0	-M	-M	B_k
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	<i>X</i> ₅	X_6	u_1	u_2	$/A_{ij}$
3	X_2	4.88	0	1	-0.077	0.038	0	0	0.077	-0.038	
4	<i>X</i> ₁	4.97	1	0	0.038	-0.102	0	0	-0.038	0.102	
0	<i>X</i> ₅	145.17	0	0	0	0.167	1	0	0	-0.166	
0	<i>X</i> ₆	165.26	0	0	0.115	0.025	0	1	-0.115	-0.025	
34.52	Z_j-C_j		0	0	-0.076	-0.294	0	0	M +0.076	M +0.294	

Resolvemos $Z_j - C_j$ y valor del funcional Z

Existen variables no básicas con $Z_j - C_j$ negativo, ¡Z puede mejorar!

Seleccionamos X_4 para entrar a la base

	C_{j}		4	3	0	0	0	0	-M	-M	B_k
C _j Base	X _j Base	\boldsymbol{B}_{k}	<i>X</i> ₁	X_2	X_3	<i>X</i> ₄	X_5	X_6	u_1	u_2	$/A_{ij}$
3	<i>X</i> ₂	4.88	0	1	-0.077	0.038	0	0	0.077	-0.038	128.42
4	<i>X</i> ₁	4.97	1	0	0.038	-0.102	0	0	-0.038	0.102	-497.00
0	X_5	145.17	0	0	0	0.167	1	0	0	-0.166	869.28
0	X_6	165.26	0	0	0.115	0.025	0	1	-0.115	-0.025	6610.4
34.52	Z_j-C_j		0	0	-0.076	-0.294	0	0	M +0.076	M +0.294	

Resolvemos B_k / A_{ij}

Mínimo positivo B_k / A_{ij} en X_2

Sale X_2 , entra X_4

Actualización #2 a #3

Tabla #2

	C_j		4	3	0	0	0	0	-M	-M	D /A
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	<i>X</i> ₅	X_6	u_1	u_2	B_k/A_{ij}
3	X_2	4.88	0	1	-0.077	0.038	0	0	0.077	-0.038	128.42
4	<i>X</i> ₁	4.97	1	0	0.038	-0.102	0	0	-0.038	0.102	-497.00
0	X_5	145.17	0	0	0	0.167	1	0	0	-0.166	869.28
0	X_6	165.26	0	0	0.115	0.025	0	1	-0.115	-0.025	6610.4
34.52	$Z_j - C_j$		0	0	-0.076	-0.294	0	0	М	M	
									+0.076	+0.294	

Tabla #3

	C_{j}		4	3	0	0	0	0	-M	-M	D /1
C_j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	X_5	X_6	u_1	u_2	B_k/A_{ij}
0	X_4	128.42	0	26.31	-2.026	1	0	0			
4	X_1	18.07	1	2.667	-0.167	0	0	0			
0	X_5	123.72	0	-4.334	0.334	0	1	0			
0	X_6	162.05	0	-0.667	0.167	0	0	1			
Z	Z_j -	- <i>C_j</i>	0	7.667	-0.667	0	0	0			

	C_{j}		4	3	0	0	0	0	-M	-M	B_k
C_j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	X_5	X_6	u_1	u_2	$/A_{ij}$
0	X_4	128.42	0	26.31	-2.026	1	0	0			
4	X_1	18.07	1	2.667	-0.167	0	0	0			
0	<i>X</i> ₅	123.72	0	-4.334	0.334	0	1	0			
0	X_6	162.05	0	-0.667	0.167	0	0	1			
72.28	Z_j –	- <i>C_j</i>	0	7.667	-0.667	0	0	0			

Resolvemos $Z_j - C_j$ y valor del funcional Z

Existen variables no básicas con $Z_j - C_j$ negativo, ¡Z puede mejorar!

Seleccionamos X_3 para entrar a la base

	C_{j}		4	3	0	0	0	0	-M	-M	B_k
C_j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	<i>X</i> ₃	X_4	X_5	X_6	u_1	u_2	$/A_{ij}$
0	X_4	128.42	0	26.31	-2.026	1	0	0			-64.21
4	X_1	18.07	1	2.667	-0.167	0	0	0			-108.20
0	<i>X</i> ₅	123.72	0	-4.334	0.334	0	1	0			370.42
0	<i>X</i> ₆	162.05	0	-0.667	0.167	0	0	1			970.36
72.28	Z_j –	- <i>C_j</i>	0	7.667	-0.667	0	0	0			

Resolvemos B_k / A_{ij}

Mínimo positivo B_k / A_{ij} en X_5

Sale X_5 , entra X_3

Actualización #3 a #4

Tabla #3

	C_{j}		4	3	0	0	0	0	-M	-M	. D /A
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	X_5	X_6	u_1	u_2	B_k/A_{ij}
0	X_4	128.42	0	26.31	-2.026	1	0	0			-64.21
4	<i>X</i> ₁	18.07	1	2.667	-0.167	0	0	0			-108.20
0	<i>X</i> ₅	123.72	0	-4.334	0.334	0	1	0			370.42
0	<i>X</i> ₆	162.05	0	-0.667	0.167	0	0	1			970.36
72.28	Z_j -	- <i>C_j</i>	0	7.667	-0.667	0	0	0			

Tabla #4

	\mathcal{C}_{j}		4	3	0	0	0	0	-M	-M	D /1
C _j Base	X_j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	X_5	X_6	u_1	u_2	B_k/A_{ij}
0	X_4	878.89	0	0.02	0	1	6.06	0			
4	X_1	79.93	1	0.50	0	0	0.50	0			
0	X_3	370.42	0	-13.00	1	0	3.00	0			
0	X_6	100.19	0	1.50	0	0	-0.50	1			
Z	Z_j –	- <i>C_j</i>	0	-1.00	0	0	2.00	0			

	C_{j}		4	3	0	0	0	0	-M	-M	B_k
C _j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	<i>X</i> ₅	X_6	u_1	u_2	$/A_{ij}$
0	X_4	878.89	0	0.02	0	1	6.06	0			
4	X_1	79.93	1	0.50	0	0	0.50	0			
0	X_3	370.42	0	-13.00	1	0	3.00	0			
0	X_6	100.19	0	1.50	0	0	-0.50	1			
319.72	Z_j –	- <i>C_j</i>	0	-1.00	0	0	2.00	0			

Resolvemos $Z_j - C_j$ y valor del funcional Z

Existen variables no básicas con $Z_j - C_j$ negativo, ¡Z puede mejorar!

Seleccionamos X_2 para entrar a la base

	C_{j}		4	3	0	0	0	0	-M	-M	B_k
C_j Base	X _j Base	\boldsymbol{B}_{k}	X_1	<i>X</i> ₂	X_3	X_4	X_5	X_6	u_1	u_2	$/A_{ij}$
0	<i>X</i> ₄	878.89	0	0.02	0	1	6.06	0			43944. 50
4	X_1	79.93	1	0.50	0	0	0.50	0			159.86
0	X_3	370.42	0	-13.00	1	0	3.00	0			-28.49
0	<i>X</i> ₆	100.19	0	1.50	0	0	-0.50	1			66.79
319.72	Z_j –	- <i>C_j</i>	0	-1.00	0	0	2.00	0			

Resolvemos B_k / A_{ij}

Mínimo positivo B_k / A_{ij} en X_6

Sale X_6 , entra X_2

Actualización #4 a #5

Tabla #4

	\mathcal{C}_{j}		4	3	0	0	0	0	-M	-M	D / A
C _j Base	X_j Base	B_k	X_1	<i>X</i> ₂	X_3	X_4	<i>X</i> ₅	X_6	u_1	u_2	B_k / A_{ij}
0	X_4	878.89	0	0.02	0	1	6.06	0			43944.50
4	X_1	79.93	1	0.50	0	0	0.50	0			159.86
0	<i>X</i> ₃	370.42	0	-13.00	1	0	3.00	0			-28.49
0	X_6	100.19	0	1.50	0	0	-0.50	1			66.79
319.72	Z_j -	- <i>C_j</i>	0	-1.00	0	0	2.00	0			

Tabla #5

	\mathcal{C}_{j}		4	3	0	0	0	0	-M	-M	D / A
C _j Base	X _j Base	B_k	X_1	X_2	X_3	X_4	X_5	X_6	u_1	u_2	B_k/A_{ij}
0	X_4	877.50	0	0	0	1	6.00	0			
4	X_1	46.67	1	0	0	0	0.67	-0.34			
0	X_3	1238.67	0	0	1	0	-1.34	8.67			
3	X_2	66.67	0	1	0	0	-0.34	0.67			
Z	Z_j -	- <i>C_j</i>	0	0	0	0	1.67	0.67			

	C_{j}		4	3	0	0	0	0	-M	-M	B_k
C_j Base	X _j Base	\boldsymbol{B}_{k}	X_1	X_2	X_3	X_4	X_5	X_6	u_1	u_2	$/A_{ij}$
0	X_4	877.50	0	0	0	1	6.00	0			
4	X_1	46.67	1	0	0	0	0.67	-0.34			
0	<i>X</i> ₃	1238.6 7	0	0	1	0	-1.34	8.67			
3	X_2	66.67	0	1	0	0	-0.34	0.67			
386.67	Z_j –	$-C_j$	0	0	0	0	1.67	0.67			

Resolvemos $Z_j - C_j$ y valor del funcional Z

No existen variables no básicas con $Z_j - C_j$ negativo, ¡Z es óptimo!

Representación gráfica

Solución:

 $Z^* = 386.67$

 $X_1^* = 46.67$

 $X_2^{*} = 66.67$

 \textit{RP}_i : restricciones de positividad

Check con Python PuLP

```
import pulp
lp01 = pulp.LpProblem("SIMPLEX variables ficticias", pulp.LpMaximize)
x = pulp.LpVariable('x', lowBound=0, cat='Continuous')
y = pulp.LpVariable('y', lowBound=0, cat='Continuous')
lp01 += 4*x + 3*y, "Z"
lp01 += 6*x + 16*y \ge 108
lp01 += 12*x + 6*y \ge 89
lp01 += 2*x + 1*y \leq 16
lp01 += 1*x + 2*y \leq 180
```

```
# Resolver:
lp01.solve()

# Imprimir resultados:
pulp.LpStatus[lp01.status]
print(pulp.LpStatus[lp01.status])

for variable in lp01.variables():
    print("%s = %.2f" % (variable.name, variable.varValue))
print(pulp.value(lp01.objective))
```

```
- □ ×

>> Optimal

>> x = 46.67

>> y = 66.67

>> 386.666666899999996
```

