Mathematics Department

Special items:	ıtzni gniward	ruments, templates, notes on one unfolded sheet
smeji bisbnet?:		« preferred), pencils (including coloured), ection fluid/tape, eraser, ruler, highlighters
Materials required:	Calculator with (CAS capability (to be provided by the student)
Number of questions	8 ::	_
Time allowed for this	: task:45	suim
<u>т</u> язк type:	Кеsbonse	
Student name:		Теасһег пате:
Course Met	spoy:	Year 12
		WODERN SCHOOL students.

A4 paper, and up to three calculators approved for use in the

Note: All part questions worth more than 2 marks require working to obtain full marks.

Task weighting:

Marks available:

Formula sheet provided: Yes

%^{_}0l^{_}

__49___marks

snoitsnimex9 3DAW

1 | Page

(9 marks)

Q1 (3.1.7)
Use the product rule and/or quotient rule to differentiate the following.(Simplify)

$$y = (x - 11)(x^3 + 2)$$

(3 marks)

$$\frac{dy}{dx} = (x - 11)3x^2 + (x^3 + 2)(1)$$
$$= 3x^3 - 33x^2 + x^3 + 2$$
$$= 4x^3 - 33x^2 + 2$$

Specific behaviours

Solution

✓ demonstrates use of product rule

✓ differentiates correctly

√ simplifies

NOTE: Zero for answer only as done by classpad

$$y = \frac{2x+1}{(3-x)}$$
 (3 marks)

$$\frac{dy}{dx} = \frac{(3-x)2-(2x+1)(-1)}{(3-x)^2}$$

$$= \frac{6-2x+2x+1}{(3-x)^2}$$

$$= \frac{7}{(3-x)^2}$$

(May leave denominator in expanded form)

Specific behaviours

Solution

✓ demonstrates use of quotient rule

✓ differentiates correctly

✓ simplifies

NOTE: Zero for answer only as done by classpad

Mathematics Department Perth Modern

$$\begin{array}{c}
S(x^{2}+1)^{2} \left[15x-6x^{2}-x^{2}-1\right] \\
S(x^{2}+1)^{2} \left[3x(5-2x)-(x^{2}+1)^{2}(-2)\right] \\
S(x^{2}+1)^{2} \left[3x(5-2x)-(x^{$$

Specific behaviours

(3 marks)

✓ differentiates correctly for entire function ✓ demonstrates use of product **and** chain rules correctly

✓ Simplifies correctly

 $\sum_{x} (x^2 + 1)^2 \left[15x - 7x^2 - 1 \right]$

 $y = (5 - 2x)(x^2 + 1)^3$

v states equation ✓ solves for constant

NOTE: Zero for answer only as done by classpad

Determine the equation of the tangent to $y = (1 + xE)^{3}$ at the point (1, 64). (3 marks) ζÒ

	✓ uses chain rule to differentiate
cific behaviours	oodS
	08 - x ^{ΔΔ} 1= γ
	08 -= 3
	2+441=49
	$\lambda = I + x + c$
	$tt = \frac{xp}{\sqrt{p}}$
	$\varepsilon z(1+x\varepsilon)\varepsilon = \frac{\sqrt{p}}{xp}$
noitulo2	

3 P a g e 10 | Page

> (4 marks) (31.1.6)

Perth Modern

Consider a closed hollow cylinder with end radius $\,^{\Gamma}$ and length $\,^{\Lambda}$.

Mathematics Department

length, nearest cm, to maximise the capacity of the cylinder using calculus techniques. If the outside of the cylinder has a surface area of $^{300m^2}$ determine the dimensions of the radius and

Specific behaviours

✓ differentiates V and equates to zero ✓ states constraint equation in terms of r and h

√ uses second derivative test to show local max

rounded to nearest cm \checkmark solves for r and h, must be in decimal form but do not penalise if not

(3.1.11)

(6 marks)

A colony of bacteria is represented as a circle on a petri dish and is increasing in such a way that the number of bacteria present is given by N where $N = \sqrt{3x+2}$, x being the radius of the circle of

a) Determine N'(2) and explain its meaning.

(3 marks)

$$N' = \frac{3}{2}(3x+2)^{\frac{-1}{2}}$$

$$N'(2) \qquad 3 \qquad 3$$

$$N'(2) = \frac{3}{2\sqrt{8}} = \frac{3}{4\sqrt{2}} \approx 0.53$$

Rate of change of N at x=2 (SCSA preferred answer)

Specific behaviours

Solution

- \checkmark states derivative in terms of x
- ✓ states value at x=2(accept approx.)
- ✓ describes as rate of change at x=2 (accept gradient of tangent at x=2)

b) Determine N''(2) and explain its meaning.

(3 marks)

Solution

$$N'' = \frac{-3}{4} (3x + 2)^{\frac{-3}{2}} (3)$$

$$=\frac{-9}{4(8)^{\frac{3}{2}}} \approx -0.09943$$

Rate of change of N'(x) at x=2 (SCSA preferred answer)

Specific behaviours

- ✓ states second derivative in terms of x
- ✓ states value at x=2(accept approx.)
- ✓ describes as rate of change of N'(x) at **x=2** (accept gradient of dy/dx at x=2)

Note must mention at x=2 otherwise max 4 out of 6 marks

(8 marks) (9.1.8) Q($_X$) (3.1.8) (9.1.8) (7) $_X$ (9.1.8) (8.1.8) (8.1.8) (9

llowing x values.

 $\varepsilon = x \text{ is } (x) Q(x) q \text{ (s)}$

9	Z-	Ţ-	(x),Ò
£-	g	7	(x)
Z-	τ	0	(x),d
₽-	7	9	(x)d
L	3	τ-	X value

Determine the following derivatives at the given x values.'

Solution Solution
$$P(x)Q(x)$$

$$P(x)Q'(x)+Q(x)P'(x)$$

$$I$$
Specific behaviours

(S marks)

√ uses product rule ✓ states result

b) $\left[Q(x)\right]^3 = 1$ (3 marks)

	√states final result
	✓ snps values correctly
	demonstrates chain rule
Specific behaviours	
	- 12
	3[2], (-1)
	$3[Q(x)]^2Q'(x)$
Solution	

Mathematics Department Perth Modern

c) The distance travelled in the first 12 seconds. (2 marks)

FeD x=18

1=5.5 x=-12.25 turns around
1=12 x=30

Distance equals 18 +12.25 +12.25 +30=72.5 metres

Specific behaviours

A determines distance from start to turning pt

A determines total distance, no need for units.

(2 marks) and explain its meaning. (2 marks)

Solution

Acceleration of 2 at t=1 second

 \checkmark states acceleration at time t=1 (accept rate of change of v at t=1)

Specific behaviours

✓ states 2 for second derivative

If $y=3x^5$ use the small increments formula change in y when x decreases by 2%.

\checkmark obtains expression for approx, percentage change for y in terms of x	
✓ uses increments formula	
Specific behaviours	
V VO	
$\%01 = \frac{x}{x\nabla} \le \frac{{}_{\varsigma}x\Sigma}{x\nabla_{p}xS1} = $	
λ λ	
$\frac{xp}{x\sqrt{G}} \approx \frac{\sqrt{X}}{\sqrt{X}}$	
noibulos	

(3 marks)

 \checkmark obtains approx. percentage change for y

(3.1.10)

Mathematics Department Perth Modern

c)
$$\frac{\left[P(x)\right]^2}{Q(x)}$$
 at $x = 7$ (3 marks)

$$\frac{Q(x)2P(x)P'(x) - P^{2}(x)Q'(x)}{Q^{2}(x)}$$

$$\frac{(-3)2(-4)(-2) - (-4)^{2}(6)}{9}$$
-16

Specific behaviours

Solution

- ✓ demonstrates quotient **and** chain rule
- ✓ subs values correctly
- ✓ states final result

Q4 (3.1.14, 3.1.15)

(7 marks)

Use calculus techniques to determine the **exact** coordinates of any stationary points on the following curves and use the second derivative test to determine the nature of the stationary point.

a)
$$y = (x - 4)^3 - 1$$
 (3 marks)

 $y' = 3(x - 4)^{2} = 0$ x = 4y'' = 6(x - 4) $x = 4 \Rightarrow y'' = 0$

(4,-1) inflection

Specific behaviours

Solution

- ✓ determines first derivative
- ✓ equates to zero and solves for stationary pt and states y value
- ✓ determines value of second derivative and states horizontal inflection

6 | Page

Mathematics Department Perth Modern

b)
$$y = 2x^3 + 9x^2 - 60x + 12$$
 (4 marks)

Solution $y' = 6x^2 + 18x - 60 = 0$ $x^2 + 3x - 10 = (x + 5)(x - 2) = 0$ x = -5, 2 y'' = 12x + 18 x = -5 y'' = -42 .:.local max (-5, 287) x = 2 y'' = 42 .:.local min (2, -56)

Specific behaviours

✓ determines first derivative and equates to zero

✓ solves for stationary pts including y value

✓ determines second derivative for stationary pts

✓ identifies nature for each stationary point

Q5 (3.1.12) (7 marks)

The displacement of a body from an origin O, at time t seconds, is x metres where $^x=t^2-11t+18$, $^t\ge 0$.

Determine the following.

a) The velocity function.

(2 marks)

(3 marks)

	Solution
v = 2t - 11	
	Specific behaviours
✓ differentiates	
✓ expresses in terms of t	

b) The times and displacements when the body is at rest.

	Solution	
2t - 11 = 0		
t = 5.5		
x = -12.25		
Specific behaviours		
✓ equate velocity to zero		
✓ solves for time		
√ determines displacement		