Operations Research III: Theory Lagrange Duality and the KKT Condition

Ling-Chieh Kung

Department of Information Management National Taiwan University

Road map

- ► Lagrange relaxation.
- ► The KKT condition.
- ▶ More about Lagrange duality.

Solving constrained NLPs

- ► For unconstrained NLPs, we have enough tools:
 - ▶ We may determine whether the objective function is convex.
 - ▶ We may use the FOC to find all local minima.
- ► How about **constrained NLPs**?
- ▶ We may always try the following strategy:
 - ▶ Ignore all the constraints.
 - Find a global minimum.
 - ► If it is feasible, it is optimal.
- ▶ If an unconstrained global minimum is infeasible, what should we do?

Solving single-variate constrained NLPs

► Let's solve

$$\min_{x \ge 0} f(x) = x^2 + 2x - 3.$$

- We have f'(x) = 2x + 2 and f''(x) = 2.
- ▶ f is convex and the solution satisfying the FOC is $\bar{x} = -1$. However, it is infeasible!
- ► For a single-variate NLP, the feasible solution that is **closest** to the FOC-solution is optimal.

$$f(x) = x^2 + 2x - 3.$$

Solving multi-variate constrained NLPs

► Let's solve

$$\min_{x \in \mathbb{R}^2} \quad f(x) = (x_1 - 2)^2 + 4(x_2 - 1)^2$$

s.t. $x_1 + 2x_2 \le 2$.

- ▶ For this CP, the FOC-solution $\bar{x} = (2, 1)$ is infeasible.
- ▶ The closest feasible point is **not** optimal!
- ▶ We need a way to deal with constraints.

$$f(x) = x^2 + 2x - 3.$$

Relaxation with rewards

- ▶ Recall our strategy: First ignore all constraints, and then ...
- ▶ Ignoring all constraints is "too much"!
 - ► An infeasible solution should be bad.
 - ▶ But this cannot be revealed in the relaxed NLP.
 - ▶ While we allow one to violate constraints, we **encourage** feasibility.
- ► Consider an original NLP

$$\begin{aligned} \max_{x \in \mathbb{R}^n} \quad & f(x) \\ \text{s.t.} \quad & g_i(x) \leq b_i \quad \forall i = 1, ..., m. \end{aligned}$$

- ▶ How to allow one to violate constraints but encourage feasibility?
 - For constraint i, let's associate a unit reward $\lambda_i \geq 0$ to it.
 - ▶ If a solution \bar{x} satisfies constraint i (so $b_i g_i(\bar{x}) \ge 0$), "reward" the solution by $\lambda_i[b_i g_i(\bar{x})]$. Let's add this into the relaxed NLP.

Lagrange relaxation

► For an original NLP

$$z^* = \max_{x \in \mathbb{R}^n} \Big\{ f(x) \Big| g_i(x) \le b_i \ \forall i = 1, ..., m \Big\},$$
 (1)

we relax the constraints and add **rewards for feasibility** into the objective function:

$$z^{L}(\lambda) = \max_{x \in \mathbb{R}^{n}} f(x) + \sum_{i=1}^{m} \lambda_{i} \left[b_{i} - g_{i}(x) \right].$$
 (2)

- ▶ Let's assume that λ_i s are given for a while.
- ▶ To help solve the NLP, we should have $\lambda_i \geq 0$. This **rewards feasibility** and **penalize infeasibility**.
- $\blacktriangleright \mathcal{L}(x|\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i [b_i g_i(x)]$ is the **Lagrangian** given λ .
- \triangleright λ_i s are the Lagrange multipliers.

An example

► Consider the following example

$$z^* = \max_{\text{s.t.}} x_1 + x_2$$

s.t. $x_1^2 + x_2^2 \le 8$
 $x_2 \le 6$.

- For this original NLP, the optimal solution is $x^* = (2, 2)$. $z^* = 4$.
- ► What may we do with Lagrange relaxation?

An example

- ► The original NLP is $z^* = \max_{x \in \mathbb{R}^2} \left\{ x_1 + x_2 \middle| x_1^2 + x_2^2 \le 8, x_2 \le 6 \right\}$.
- ▶ Given Lagrange multipliers $\lambda = (\lambda_1, \lambda_2) \geq 0$, the Lagrangian is

$$\mathcal{L}(x|\lambda) = x_1 + x_2 + \lambda_1(8 - x_1^2 - x_2^2) + \lambda_2(6 - x_2).$$

▶ We may solve

$$z^{L}(\lambda) = \max_{x \in \mathbb{R}^2} \mathcal{L}(x|\lambda)$$

given any $\lambda \geq 0$. E.g.,

- $z^L(0,1) = \max_{x \in \mathbb{R}^2} x_1 + 6 = \infty.$
- $z^{L}(1,2) = \max_{x \in \mathbb{R}^{2}} -x_{1}^{2} + x_{1} x_{2}^{2} x_{2} + 20 = 20.5.$
- $z^{L}(1,0) = \max_{x \in \mathbb{R}^2} -x_1^2 + x_1 x_2^2 x_2 + 8 = 8.5.$
- ▶ All the $z^L(\lambda)$ above is greater than $z^* = 4!$ Will this always be true?

Lagrange relaxation provides a bound

Lagrange relaxation provides a **bound** for the original NLP.

Proposition 1 (Weak duality of Lagrange relaxation)

For the two NLPs defined in (1) and (2), $z^L(\lambda) \geq z^*$ for all $\lambda \geq 0$.

Proof. We have

$$z^* = \max_{x \in \mathbb{R}^n} \left\{ f(x) \middle| g_i(x) \le b_i \ \forall i = 1, ..., m \right\}$$

$$\le \max_{x \in \mathbb{R}^n} \left\{ f(x) + \sum_{i=1}^m \lambda_i [b_i - g_i(x)] \middle| g_i(x) \le b_i \ \forall i = 1, ..., m \right\}$$

$$\le \max_{x \in \mathbb{R}^n} \left\{ f(x) + \sum_{i=1}^m \lambda_i [b_i - g_i(x)] \right\} = z^L(\lambda),$$

where the first inequality relies on $\lambda > 0$.

Lagrange duality

- ▶ Given a constrained original NLP, solving its Lagrange relaxation gives us some information.
- ► A similar situation happened to LP!
 - Any feasible dual solution gives a bound to the primal LP.
 - ▶ We look for an dual optimal solution that gives a tight bound.
- Given that $z^L(\lambda) \geq z^*$ for all $\lambda \geq 0$, it is natural to define

$$\min_{\lambda > 0} \ z^L(\lambda)$$

as the Lagrange dual program.

Lagrange multipliers are dual variables in NLP.

Road map

- Lagrange relaxation.
- ► The KKT condition.
- ► More about Lagrange duality.

The KKT condition

▶ Now we present the most useful optimality condition for general NLPs:

Proposition 2 (KKT condition)

For a "regular" NLP

$$\max_{x \in \mathbb{R}^n} \quad f(x)$$

$$s.t. \quad g_i(x) \le b_i \quad \forall i = 1, ..., m,$$

if \bar{x} is a local max, then there exists $\lambda \in \mathbb{R}^m$ such that

- $ightharpoonup g_i(\bar{x}) \leq b_i \text{ for all } i = 1, ..., m,$
- $\lambda \geq 0$ and $\nabla f(\bar{x}) = \sum_{i=1}^{m} \lambda_i \nabla g_i(\bar{x})$, and
- $\lambda_i[b_i g_i(\bar{x})] = 0 \text{ for all } i = 1, ..., m.$
- ▶ All NLPs in this course (and most in the world) are "regular".
- ▶ The condition is necessary for all NLPs but also sufficient for CPs.

The KKT condition

- \blacktriangleright There are three conditions for \bar{x} to be a local maximum.
- ▶ Primal feasibility: $g_i(\bar{x}) \leq b_i$ for all i = 1, ..., m.
 - ► It must be feasible.
- ▶ **Dual feasibility**: $\lambda \geq 0$ and $\nabla f(\bar{x}) = \sum_{i=1}^{m} \lambda_i \nabla g_i(\bar{x})$.
 - ▶ The equality is the **FOC** for the Lagrangian $\mathcal{L}(\bar{x}|\lambda)$:

$$\nabla \left\{ f(x) + \sum_{i=1}^{m} \lambda_i [b_i - g_i(x)] \right\} = 0 \quad \Leftrightarrow \quad \nabla f(\bar{x}) - \sum_{i=1}^{m} \lambda_i \nabla g_i(\bar{x}) = 0.$$

- ▶ Complementary slackness: $\lambda_i[b_i g_i(\bar{x})] = 0$ for all i = 1, ..., m.
 - ▶ Dual variable × primal slack = 0.
 - ▶ If a constraint is **nonbinding**, the Lagrange multiplier is 0.
- Let's visualize the KKT condition.

Visualizing the KKT condition

Consider

max
$$x_1 - x_2$$

s.t. $x_1^2 + x_2^2 \le 4$
 $-x_1^2 - (x_2 + 2)^2 \le -4$.

- Graphically, $x^* = (\sqrt{3}, -1)$ is optimal.
- ▶ What happens to ∇f , ∇g_1 , and ∇g_2 at x^* ?

Visualizing the KKT condition

max
$$f(x) = x_1 - x_2$$

s.t. $g_1(x) = x_1^2 + x_2^2 \le 4$
 $g_2(x) = -x_1^2 - (x_2 + 2)^2 \le -4$.

- ▶ We have $\nabla f(x) = (1, -1)$, $\nabla g_1(x) = (2x_1, 2x_2)$, and $\nabla g_2(x) = (-2x_1, -2(x_2 + 2))$.
- ► Therefore, $\nabla f(x^*) = (1, -1)$, $\nabla g_1(x^*) = (2\sqrt{3}, -2)$, and $\nabla g_2(x^*) = (-2\sqrt{3}, -2)$.

- ► The existence of $\lambda \geq 0$ such that $\nabla f(x^*) = \lambda_1 \nabla g_1(x^*) + \lambda_2 \nabla g_2(x^*)$ simply means that ∇f is "in between" ∇g_1 and ∇g_2 at x^* .
 - Otherwise there is a feasible improving direction.
 - Complementary slackness $\lambda_i[b_i g_i(x^*)]$ says that only constraints binding at x^* matter.

Example 1

▶ A retailer sells products 1 and 2 at supply quantities q_1 and q_2 . For product i, the market-clearing price is

$$p_i = a_i - b_i q_i, \quad i = 1, 2,$$

where $a_i > 0$ and $b_i > 0$ are known parameters for i = 1, 2. The retailer sets q_1 and q_2 to maximize its total profit while ensuring that the total supply does not exceed K > 0.

- Formulate the retailer's problem.
- ▶ Is this a convex program?
- ▶ Solve the retailer's problem.
- \blacktriangleright How do the optimal quantities change with K? Does that make sense?

Example 1: formulation

▶ The formulation is

$$\max_{\substack{q_1 \ge 0, q_2 \ge 0}} q_1(a_1 - b_1 q_1) + q_2(a_2 - b_2 q_2)$$

s.t. $q_1 + q_2 \le K$.

- Let $f(q_1, q_2) = -\begin{bmatrix} q_1(a_1 b_1q_1) + q_2(a_2 b_2q_2) \end{bmatrix}$, we have $\nabla^2 f(q_1, q_2) = \begin{bmatrix} 2b_1 & 0 \\ 0 & 2b_2 \end{bmatrix}$, which is positive semi-definite because $b_i > 0$. This implies that $f(q_1, q_2)$ is convex, i.e., the objective function $-f(q_1, q_2)$ is concave. As we are maximizing a concave function subject to linear constrains, this is a convex program.
- ▶ However, the first-order solution $(q_1, q_2) = (\frac{a_1}{2b_1}, \frac{a_2}{2b_2})$ may be infeasible.

Example 1: KKT condition

► The Lagrangian is

$$\mathcal{L}(x|\lambda) = q_1(a_1 - b_1q_1) + q_2(a_2 - b_2q_2) + \lambda(K - q_1 - q_2).$$

 $\nabla \mathcal{L} = 0$ requires

$$\frac{\partial}{\partial q_1} \mathcal{L} = a_1 - 2b_1 q_1 - \lambda = 0$$
$$\frac{\partial}{\partial q_2} \mathcal{L} = a_2 - 2b_2 q_2 - \lambda = 0.$$

- ▶ If $\lambda = 0$, we have $(q_1, q_2) = (\frac{a_1}{2b_1}, \frac{a_2}{2b_2})$. This is optimal if $\frac{a_1}{2b_1} + \frac{a_2}{2b_2} \leq K$.
- ▶ If $\lambda > 0$, we have $q_1 + q_2 = K$. Solving the three equations results in $(q_1, q_2) = (\frac{2b_2K + a_1 a_2}{2(b_1 + b_2)}, \frac{2b_1K + a_2 a_1}{2(b_1 + b_2)})$. This is optimal if $\frac{a_1}{2b_1} + \frac{a_2}{2b_2} > K$.

Example 1: solution and interpretation

▶ The optimal solution is

$$(q_1^*, q_2^*) = \begin{cases} \left(\frac{a_1}{2b_1}, \frac{a_2}{2b_2}\right) & \text{if } \frac{a_1}{2b_1} + \frac{a_2}{2b_2} \le K \\ \left(\frac{2b_2K + a_1 - a_2}{2(b_1 + b_2)}, \frac{2b_1K + a_2 - a_1}{2(b_1 + b_2)}\right) & \text{otherwise.} \end{cases}$$

▶ If K increases, q_1 and q_2 will weakly increase. If $a_1 = a_2$ and $b_1 = b_2$:

Example 2

► Let's solve

max
$$x_1 - x_2$$

s.t. $x_1^2 + x_2^2 \le 4$
 $-x_1^2 - (x_2 + 2)^2 < -4$.

- Note that this nonlinear program is nonconvex.
 - ► A typical numerical algorithm does not work.

Example 2: KKT condition

► The Lagrangian is

$$\mathcal{L}(x|\lambda) = x_1 - x_2 + \lambda_1(4 - x_1^2 - x_2^2) + \lambda_2(-4 + x_1^2 + (x_2 + 2)^2).$$

- ightharpoonup A solution \bar{x} is a local maximum only if there exists λ such that

$$x_1^2 + x_2^2 \le 4, -x_1^2 - (x_2 + 2)^2 \le -4$$

$$\lambda_1 \ge 0, \lambda_2 \ge 0$$

$$1 - 2(\lambda_1 - \lambda_2)x_1 = 0, -1 - 2(\lambda_1 - \lambda_2)x_2 + 4\lambda_2 = 0$$

$$\lambda_1(4 - x_1^2 - x_2^2) = 0, \lambda_2(-4 + x_1^2 + (x_2 + 2)^2) = 0,$$
(CS-1, CS-2)

Example 2: analysis

- ➤ To find all solutions that satisfy the KKT condition, we **examine all four cases**.
- ▶ Case 1. $\lambda_1 > 0$, $\lambda_2 > 0$: By (CS-1) and (CS-2), we have $x_1^2 + x_2^2 = 4$ and $x_1^2 + (x_2 + 2)^2 = 4$. Solving the two equations results in $(x_1, x_2) = (\sqrt{3}, -1)$ and $(-\sqrt{3}, -1)$. They certainly satisfy (PF-1) and (PF-2).
 - Plugging $(\sqrt{3}, -1)$ into (DFF-1) and (DFF-2) result in $\lambda_1 = \frac{1}{4} + \frac{1}{4\sqrt{3}}$ and $\lambda_2 = \frac{1}{4} \frac{1}{4\sqrt{3}}$. As this satisfies (DFS-1) and (DFS-2), $(\sqrt{3}, -1)$ is a KKT point.
 - Plugging $(-\sqrt{3}, -1)$ into (DFF-1) and (DFF-2) result in $\lambda_1 = \frac{1}{4} \frac{1}{4\sqrt{3}}$ and $\lambda_2 = \frac{1}{4} + \frac{1}{4\sqrt{3}}$. As this satisfies (DFS-1) and (DFS-2), $(-\sqrt{3}, -1)$ is also a KKT point.

Example 2: analysis

▶ Case 2. $\lambda_1 > 0$, $\lambda_2 = 0$: Plugging $\lambda_2 = 0$ into (DFF-1) and (DFF-2) leads to

$$1 - 2\lambda_1 x_1 = 0$$
 and $-1 - 2\lambda_1 x_2 = 0$,

which imply $x_1 = -x_2$. As $\lambda_1 > 0$ implies

$$x_1^2 + x_2^2 = 4$$

by (CS-1), we have two candidate solutions $(x_1, x_2) = (-\sqrt{2}, \sqrt{2})$ and $(\sqrt{2}, -\sqrt{2})$. Note that each of them requires $\lambda_1 = -\frac{1}{2\sqrt{2}}$ and $\lambda_1 = \frac{1}{2\sqrt{2}}$ due to (DFF-1) and (DFF-2), respectively. As the former violates $\lambda_1 > 0$, it cannot be a KKT point. For the latter, though $\lambda_1 > 0$ is good, it violates the second primal constraint $-x_1^2 - (x_2 + 2)^2 \le -4$. We thus conclude that there is no KKT point under this case.

Example 2: analysis

▶ Case 3. $\lambda_1 = 0$, $\lambda_2 > 0$: Similar to Case 2, $\lambda_2 > 0$ and (CS-2) require

$$x_1^2 + (x_2 + 2)^2 = 4,$$

and $\lambda_1 = 0$ and (DFF-1) and (DFF-2) require

$$1 + 2\lambda_2 x_1 = 0$$
 and $-1 + 2\lambda_2 x_2 + 4\lambda_2 = 0$.

Solving the three equations yields a KKT point $(x_1, x_2) = (-\sqrt{2}, \sqrt{2} - 2)$ with $\lambda_2 = \frac{1}{2\sqrt{2}}$. Note that another solution $(x_1, x_2) = (\sqrt{2}, -\sqrt{2} - 2)$ has $\lambda_2 = -\frac{1}{2\sqrt{2}}$, which violates $\lambda_2 > 0$.

▶ Case 4. $\lambda_1 = 0$, $\lambda_2 = 0$: As (DFF-1) and (DFF-2) become 1 = 0 and -1 = 0 in this case, there is no KKT point in this case.

Example 2: visualization

- ► To summarize, we have:
 - $\lambda_1 > 0, \ \lambda_2 > 0$: Two KKT points $(\sqrt{3}, -1)$ and $(-\sqrt{3}, -1)$.
 - $\lambda_1 > 0, \lambda_2 = 0$: No KKT point.
 - $\lambda_1 = 0, \lambda_2 > 0: A KKT point$ $(-\sqrt{2}, \sqrt{2} - 2).$
 - $\lambda_1 = 0, \lambda_2 = 0$: No KKT point.
- ► These are the **only candidates of local maxima** (and thus global maxima).
 - ▶ Direct comparison shows that $(\sqrt{3}, -1)$ is global optimal.
 - Note that not all of these three points are local optimal.

The KKT condition for analysis

- ► The condition is named by three scholars Karush, Kuhn, and Tucker.
- ightharpoonup In general, if there are n variables and m constraints.
 - ightharpoonup There are n primal variables (x) and m dual variables (λ) .
 - \triangleright There are n equalities for dual feasibility.
 - ightharpoonup There are m equalities for complementary slackness.
- ▶ As those equalities are nonlinear, there may be multiple solutions satisfying those equalities.
 - ► Those inequalities are then used to eliminate some solutions.
- ▶ If we have all local maxima, we compare them for a global maximum.
- Finding all local optima can be time consuming in general.
 - \triangleright 2^m cases to examine.
 - ▶ Nonlinear equations are hard to solve (even numerically).
- ► The KKT condition is still useful for analyzing many constrained nonlinear optimization problems.

Road map

- Lagrange relaxation.
- ► The KKT condition.
- ► More about Lagrange duality.

More about Lagrange duality

▶ Recall that, for the **primal NLP** defined in (1)

$$z^* = \max_{x \in \mathbb{R}^n} \left\{ f(x) \middle| g_i(x) \le b_i \ \forall i = 1, ..., m \right\},$$

we define its Lagrange dual program in (2) as

$$\min_{\lambda \ge 0} z^L(\lambda) = \min_{\lambda \ge 0} \left\{ \max_{x \in \mathbb{R}^n} f(x) + \sum_{i=1}^m \lambda_i \Big[b_i - g_i(x) \Big] \right\}.$$

- ▶ We have derived the **weak duality** theorem: $z^L(\lambda) \ge z^*$ for all $\lambda \ge 0$.
- ▶ Below we plan to talk more about for **Lagrange duality**:
 - ► The **convexity** of $z^L(\lambda)$.
 - **Strong duality** (which holds for "regular" convex programs).
 - ► An **example** of solving the Lagrange dual program.
 - ▶ Linear Programming duality is a special case of Lagrange duality.

Convexity of Lagrange relaxation

▶ Is it reasonable to solve the Lagrange dual program $\min_{\lambda \geq 0} z^L(\lambda)$?

Proposition 3 (Convexity of the Lagrange dual program)

The function $z^L(\lambda)$ defined in (2) is convex over $\lambda \in [0,\infty)^n$.

A nonrigorous proof. It is true that:

For any fixed $x \in \mathbb{R}^n$, the Lagrangian

$$\mathcal{L}(x|\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i \Big[b_i - g_i(x) \Big]$$

is a linear function of λ .

The maximum of convex functions is a convex function, i.e., $\max_{i=1,...,m} \{g_i(x)\}\$ is convex if $g_i(x)$ is convex for all i=1,...,m.

Combining the two facts implies that $z^L(\lambda) = \max_{x \in \mathbb{R}^n} \mathcal{L}(x|\lambda)$ is a convex function over the region in which λ is defined, i.e., $[0, \infty)^n$.

Convexity of Lagrange relaxation

▶ The above proposition shows that the Lagrange dual program

$$\min_{\lambda > 0} z^L(\lambda)$$

is a **convex program** for **any** primal NLP.

- ▶ It thus reasonable to ask someone to solve a Lagrange dual program.
- ▶ In most practical applications, a Lagrange dual program is solved by numerical algorithms.
 - ▶ In this lecture, we will give you one example in which a Lagrange dual program is solved analytically.

Strong duality

► Let

$$w^* = \min_{\lambda > 0} \ z^L(\lambda) \tag{3}$$

be the optimized objective value to the Lagrange dual program.

- Weak duality implies that $w^* > z^*$.
- ▶ Is it possible for the upper bound to be **tight**, i.e., $w^* = z^*$?

Proposition 4 (Strong duality of Lagrange relaxation)

For the two NLPs defined in (1) and (2) and w^* defined in (3), $w^* = z^*$ if the primal NLP in (1) is a "regular" convex program.

- ► This is the **strong duality** of Lagrange relaxation.
- ▶ The proof is beyond the scope of this course. We will give you an example.
- ▶ All NLPs in this course (and most in the world) are "regular".

An example

► Recall the example

$$z^* = \max_{\text{s.t.}} x_1 + x_2 \text{s.t.} x_1^2 + x_2^2 \le 8 x_2 \le 6.$$

- ▶ For this primal NLP, the optimal solution is $x^* = (2, 2), z^* = 4.$
- ► Lagrange relaxation leads to

$$w^* = \min_{\lambda_1 \ge 0, \lambda_2 \ge 0} z^L(\lambda) = \min_{\lambda_1 \ge 0, \lambda_2 \ge 0} \max_{x \in \mathbb{R}^2} \mathcal{L}(x|\lambda),$$

where
$$\mathcal{L}(x|\lambda) = x_1 + x_2 + \lambda_1(8 - x_1^2 - x_2^2) + \lambda_2(6 - x_2)$$
.

left Is $z^L(\lambda)$ convex? Is $w^* = z^*$?

An example: finding the dual program

▶ To solve the Lagrange dual program, first we solve

$$\max_{x \in \mathbb{R}^2} \mathcal{L}(x|\lambda) = \max_{x \in \mathbb{R}^2} \left\{ x_1 + x_2 + \lambda_1(8 - x_1^2 - x_2^2) + \lambda_2(6 - x_2) \right\}.$$

▶ This function is clearly jointly concave for x_1 and x_2 . The first-order condition yields

$$x_1 = \frac{1}{2\lambda_1}$$
 and $x_2 = \frac{1 - \lambda_2}{2\lambda_1}$.

Plugging these into $\mathcal{L}(x|\lambda)$ results in

$$z^{L}(\lambda) = \max_{x \in \mathbb{P}^{2}} \mathcal{L}(x|\lambda) = \frac{1 + (1 - \lambda_{2})^{2}}{4\lambda_{1}} + 8\lambda_{1} + 6\lambda_{2}.$$

▶ The Lagrange dual program is to look for $\lambda_1 \geq 0$ and $\lambda_2 \geq 0$ to minimize $z^L(\lambda)$.

An example: convexity of the dual program

► The Lagrange dual program

$$\min_{\lambda_1 \ge 0, \lambda_2 \ge 0} \frac{1 + (1 - \lambda_2)^2}{4\lambda_1} + 8\lambda_1 + 6\lambda_2$$

is another constrained NLP.

- Luckily, we know how to analytically solve it!
- $ightharpoonup z^L(\lambda)$ is convex over $(0,\infty)^2$. To see this, note that

$$\nabla z^L(\lambda) = \begin{bmatrix} -\frac{1 + (1 - \lambda_2)^2}{4\lambda_1^2} + 8 \\ -\frac{1 - \lambda_2}{2\lambda_1} + 6 \end{bmatrix} \text{ and } \nabla^2 z^L(\lambda) = \begin{bmatrix} \frac{1 + (1 - \lambda_2)^2}{2\lambda_1^3} & \frac{1 - \lambda_2}{2\lambda_1^2} \\ \frac{1 - \lambda_2}{2\lambda_1^2} & \frac{1}{2\lambda_1} \end{bmatrix}.$$

As $\frac{1+(1-\lambda_2)^2}{2\lambda_1^3} > 0$, and $|\nabla^2 z^L(\lambda)| = \frac{1}{4\lambda_1^4} > 0$, the convexity is proved.

▶ Proposition 3 is indeed true for this example.

An example: solving the dual program

► To solve

$$\min_{\lambda_1 \ge 0, \lambda_2 \ge 0} \frac{1 + (1 - \lambda_2)^2}{4\lambda_1} + 8\lambda_1 + 6\lambda_2,$$

let's apply the KKT condition.

- Note that $\lambda_1 \geq 0$ cannot be binding at an optimal solution. Let's ignore it directly.
- ▶ Let $\mu \ge 0$ be the Lagrange multiplier for $\lambda_2 \ge 0$, the Lagrangian is

$$\frac{1+(1-\lambda_2)^2}{4\lambda_1}+8\lambda_1+6\lambda_2-\mu\lambda_2.$$

The KKT condition requires an optimal solution to satisfy

$$-\frac{1+(1-\lambda_2)^2}{4\lambda_1^2}+8=0, -\frac{1-\lambda_2}{2\lambda_1}+6-\mu=0, \text{ and } \mu\lambda_2=0.$$

An example: solving the dual program

- ightharpoonup Suppose that $\mu > 0$.
 - ▶ This implies $\lambda_2 = 0$.
 - $-\frac{1+(1-\lambda_2)^2}{4\lambda^2} + 8 = 0$ requires $\lambda_1 = \frac{1}{4}$.
 - $-\frac{1-\lambda_2}{2\lambda_1} + 6 \mu = 0$ requires $\mu = 4$, which is feasible.
- ightharpoonup Suppose that $\mu = 0$.
 - $-\frac{1-\lambda_2}{2\lambda_1} + 6 = 0$ requires $\lambda_2 = 1 12\lambda_1$.
 - ▶ Plugging this into $-\frac{1+(1-\lambda_2)^2}{4\lambda_1^2} + 8 = 0$ results in $1 + 112\lambda_1^2 = 0$, which is impossible.
- ▶ The only KKT point is $(\lambda_1, \lambda_2) = (\frac{1}{4}, 0)$. Plugging this into $z^L(\lambda)$ gives us $w^* = 4$, which exactly equals z^* .
- ▶ Proposition 4 is indeed true for this example.

Lagrange duality vs. LP duality

- ► The last thing we want to do is to connect Linear Programming and Nonlinear Programming.
- ► The term "duality" is used both in LP duality and Lagrange duality. Somehow there must be some similarity.
- ► We will demonstrate one fact: LP duality is a **special case** of Lagrange duality.
 - Once we apply Lagrange duality on a primal LP, its Lagrange dual program will be its dual LP!

An example

► Consider an LP

$$\begin{array}{ll}
\max & c^T x \\
\text{s.t.} & Ax = b \\
& x \ge 0.
\end{array}$$

▶ Let $\lambda \in \mathbb{R}^m$ be the Lagrange multipliers, the Lagrange relaxation is

$$z^{L}(\lambda) = \max_{x \ge 0} c^{T}x + \lambda^{T}(b - Ax)$$
$$= \lambda^{T}b + \max_{x > 0} (c^{T} - \lambda^{T}A)x$$

• We set **no sign restriction** for λ . In fact, there is no multiplier with a specific sign that may reward feasibility or penalize infeasibility for equality constraints.

An example: Lagrange dual program

► The Lagrange dual program is

$$\begin{aligned} & & \min_{\lambda} \ z^{L}(\lambda) \\ & = & \min_{\lambda} \ \Big\{ \lambda^{T} b + \max_{x \geq 0} \ (c^{T} - \lambda^{T} A) x \Big\}. \end{aligned}$$

- ▶ The Lagrange dual program is to search for λ that minimizes $z^L(\lambda)$, which depends on the outcome of a maximization problem.
- ▶ The dual program is meaningful **only if** $c^T \leq \lambda^T A$. To see this, note that if $(c^T)_i > (\lambda^T A)_i$ for any i, $\max_{x \geq 0} (c^T \lambda^T A)x$ will be unbounded because we may keep increasing x_i to infinity.
- ▶ In other words, no choice of λ that violates $c^T \leq \lambda^T A$ may be optimal to the Lagrange dual program.

An example: dual linear program

► The Lagrange dual program is

$$\min_{\lambda} \ z^*(\lambda) = \min_{\lambda: c^T \leq \lambda^T A} \ \Big\{ \lambda^T b + \max_{x \geq 0} \ (c^T - \lambda^T A) x \Big\}.$$

- ▶ If λ satisfies $c^T \leq \lambda^T A$, we know $\max_{x>0} (c^T \lambda^T A)x = 0$.
- ► The Lagrange dual becomes

$$\min_{\lambda \text{ urs.}} \quad \lambda^T b$$
s.t.
$$\lambda^T A \ge c^T,$$

which is exactly the dual LP of

$$\max_{x \ge 0} c^T x$$
s.t. $Ax = b$.