

General information

Designation

Cork (low density)

Typical uses

Corks; stoppers; bungs for bottles; floats; lifebelts; walls; flooring; insulation; shoes; packaging; fancy goods; decoration; gaskets; road surfaces; linoleum; polishing; brake pads; vibration damping.

Composition overview

Compositional summary

40% Suberim/27% Lignin/12% Cellulose/4% Friedelin/17% Water

Material family Natural

Base material Wood (other: monocot, bark)
Renewable content 100 %

Composition detail (polymers and natural materials)

Wood	100	%

Price

-	* 1.22	- 6.08	USD/lb
	1.22		- 6.08

Physical properties

Density	0.00434	-	0.0065	lb/in^3
Relative density	0.1	-	0.16	
Cells/volume	3.28e9	-	8.19e9	/in^3
Anisotropy ratio	1.6	_	1.8	

Mechanical properties

Young's modulus	0.00189	-	0.00435	10^6 psi
Yield strength (elastic limit)	* 0.0435	-	0.104	ksi
Tensile strength	0.0725	-	0.174	ksi
Elongation	30	-	80	% strain
Compressive strength	0.0783	-	0.16	ksi
Compressive stress @ 25% strain	0.087	-	0.109	ksi
Compressive stress @ 50% strain	* 0.087	-	0.174	ksi
Flexural modulus	0.00145	-	0.00218	10^6 psi
Flexural strength (modulus of rupture)	0.0725	-	0.174	ksi
Shear modulus	3.63e-4	-	7.25e-4	10^6 psi
Shear strength	0.0435	-	0.087	ksi
Bulk modulus	0.00145	-	0.00218	10^6 psi
Poisson's ratio	0.05	-	0.45	
Shape factor	3.2			
Hardness - Brinell	* 0.102	-	0.131	ksi
Fatigue strength at 10^7 cycles	* 0.0435	-	0.087	ksi
Mechanical loss coefficient (tan delta)	0.1	-	0.3	
Densification strain	0.75	-	0.85	
Work to maximum strength	0.0786	-	0.0961	ft.lbf/in^3

Impact & fracture properties

Fracture toughness 0.0455 - 0.0728 ksi.in^0.5

Thermal properties

Glass temperature 171 - 216 °F

Cork (low density)

Maximum service temperature	248	-	284	°F
Minimum service temperature	* -99.4	-	-9.4	°F
Thermal conductivity	0.0202	-	0.0243	BTU.ft/hr.ft^2.°F

Specific heat capacity 0.454 - 0.502 BTU/lb.°F Thermal expansion coefficient 88.9 - 128 µstrain/°F

Electrical properties

Optical properties

Transparency Opaque

Magnetic properties

Magnetic type Non-magnetic

Bio-data

RoHS (EU) compliant grades?

Durability

Water (fresh) Acceptable Water (salt) Acceptable Weak acids Acceptable Strong acids Unacceptable Weak alkalis Acceptable Strong alkalis Unacceptable Organic solvents Acceptable Oxidation at 500C Unacceptable UV radiation (sunlight) Good

Flammability Self-extinguishing

Primary production energy, CO2 and water

Embodied energy, primary production 1.64e3 - 1.81e3 BTU/lb

Sources

4 MJ/kg (Hammond and Jones, 2008)

CO2 footprint, primary production 0.192 - 0.211 lb/lb

Sources

Data reported by sources are for CO2, values were converted to CO2 footprint using the relationship: CO2 footprint = CO2 * 1.06. Relationship taken from Hammond and Jones, 2008. Note that this is only captures fuel use (i.e. not including any process related emissions). This is for the average mixture of fuels used in the UK industry.

0.19 kg/kg (Hammond and Jones, 2008)

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed) * 226 249 BTU/lb Coarse machining CO2 (per unit wt removed) * 0.0394 0.0435 lb/lb * 418 BTU/lb Fine machining energy (per unit wt removed) 462 Fine machining CO2 (per unit wt removed) * 0.073 0.0807 lb/lb Grinding energy (per unit wt removed) * 633 699 BTU/lb Grinding CO2 (per unit wt removed) * 0.11 0.122 lb/lb

Cork (low density)

Recycling and end of life

Recycle

Recycle fraction in current supply

Downcycle

Combust for energy recovery

Heat of combustion (net)

Combustion CO2

Landfill

Biodegrade

×

%

0.1 •

1

* 8.49e3 - 9.16e3 BTU/lb * 1.69 - 1.78 lb/lb

~

Ž

Eco-indicators for principal component

Eco-indicator 99 57.6 millipoints/lb

Notes

Warning

Cork has a wide range of densities and properties.

Links

ProcessUniverse

Producers

Reference

Shape