有限元大作业报告

S230200251 唐铭

问题描述:对于一二维悬臂梁,左端全约束固定,右端中点受一y方向拉力 F,对于该模型求其位移。

利用有限元方法,采用线性三角形单元、二次四边形元离散化悬臂梁模型。线性三角形单元有3个节点、6个自由度,二次四边形元8个节点、16个自由度。

对于二次四边形元,列出其在自然坐标系下的8个形函数:

N1=(1-a)*(1-b)*(-a-b-1)/4;

N2=(1+a)*(1-b)*(a-b-1)/4;

N3=(1+a)*(1+b)*(a+b-1)/4;

N4=(1-a)*(1+b)*(-a+b-1)/4;

N5=(1-b)*(1+a)*(1-a)/2;

N6=(1+a)*(1+b)*(1-b)/2;

N7=(1+a)*(1+b)*(1-a)/2;

N8=(1-a)*(1+b)*(1-b)/2;

雅可比矩阵给定如下:

$$[J] = \begin{bmatrix} \frac{\partial x}{\partial a} \frac{\partial y}{\partial a} \\ \frac{\partial x}{\partial b} \frac{\partial y}{\partial a} \end{bmatrix}$$

其中 x、y 由下式确定:

x=N1*x1+N2*x2+N3*x3+N4*x4+N5*x5+N6*x6+N7*x7+N8*x8; y=N1*y1+N2*y2+N3*y3+N4*y4+N5*y5+N6*y6+N7*y7+N8*y8; 矩阵 B 如下所示:

[B] = [D'][N]

其中,[D'],[N]由下式确定:

$$[D'] = \frac{1}{[J]} \begin{bmatrix} \frac{\partial y}{\partial b} \frac{\partial ()}{\partial a} - \frac{\partial y}{\partial a} \frac{\partial ()}{\partial b} & 0 \\ 0 & \frac{\partial x}{\partial a} \frac{\partial ()}{\partial b} - \frac{\partial x}{\partial b} \frac{\partial ()}{\partial a} \\ \frac{\partial x}{\partial b} \frac{\partial ()}{\partial b} - \frac{\partial x}{\partial b} \frac{\partial ()}{\partial a} & \frac{\partial y}{\partial b} \frac{\partial ()}{\partial a} - \frac{\partial y}{\partial a} \frac{\partial ()}{\partial b} \end{bmatrix}$$

 $[N] = \begin{bmatrix} N1 & 0 & N2 & 0 & N3 & 0 & N4 & 0 & N5 & 0 & N6 & 0 & N7 & 0 & N8 & 0 \\ 0 & N1 & 0 & N2 & 0 & N3 & 0 & N4 & 0 & N5 & 0 & N6 & 0 & N7 & 0 & N8 \end{bmatrix}$ 平面应力情况,矩阵[D]如下式:

[C] =
$$\frac{E}{1-nu^2}\begin{bmatrix} 1 & nu & 0\\ nu & 1 & 0\\ 0 & 0 & \frac{1-nu}{2} \end{bmatrix}$$

二次四边形元单元刚度矩阵写成二重积分形式如下所示:

$$[ke] = t \iint [B]'[D][B][J] da db$$

利用 matlab 编写相应有限元程序,输入梁的尺寸 nelx=5、nely=4,材料参数 弹性模量 E、泊松比 nu,厚度 t,拉力大小 F。输出梁模型位移图(蓝色为原模型,红色为施加拉力后变形模型),各节点位移 u。对比两不同单元程序运行结果。

表 1: 位移结果记录

二次四边形元	线性三角形单元
0.005437689	0.004553815
-0.00265562	-0.002229304
0.004706143	0.004524968
-0.001342444	-0.001177871
0.004650329	0.004858829
-2.90E-18	-2.07E-05
0.004706143	0.00464761
0.001342444	0.001305479
0.005437689	0.005272371
0.00265562	0.002734038
0.009716597	0.008755892
-0.003769501	-0.003015321

0.009367594
-0.001753048
0. 010557238
7. 43E-05
0.009784279
0.002376958
0.009712213
0.004012411
0. 012346111
-0.003145628
0. 014185121
-0.002008313
0. 017362734
0.000135326
0.015001114
0.003232606
0. 013318987
0.004749017
0. 014818484
-0.002299082
0.018500567
-0.001581394
0.026265824
0.000256472
0. 019977051
0.003463328
0. 01495082
0.003450111
0. 01584573

0. 003248529	0.000868909
0. 021227374	0. 021265366
0.004919402	0.001518417
0.054127576	0. 040013475
-4.02E-17	0.003017935
0. 021227374	0. 0214758
-0.004919402	-0.00158496
0.013056111	0. 015211554
-0.003248529	-0.001845694

图 1: 二次四边形元程序结果

图 2: 线性三角形元程序结果