Inventor: John Moetteli 2 Atty Docket No. 777

TRAFFIC LAW ENFORCEMENT SYSTEM

Background of the Invention:

This is a continuation-in-part application of PCT application No. PCT/US97/18871, filed 28 October 1997, the contents of which are incorporated herein by reference

This invention relates to traffic enforcement devices for use in enforcing traffic ordinances. Tore specifically, this invention relates to remotely operated enforcement systems having velocity extermining and recording means.

In the United States, the prevalent method of enforcing traffic laws is to utilize police officers ho patrol the streets in police patrol cars in an effort to pursue, detain and ticket or warn those ersons who they observe to have violated the traffic laws. Typically, an officer will monitor vehicle elocity by using a wide variety of alternative means to monitor such velocity, including the use of a adar gun (e.g., a Doppler radar), a laser beam, or sensing coils or pads placed on the roadway, as in 1.5 Pat No 4,234,923. These alternative means require the involvement of at least one police officer, and a patrol vehicle including all equipment normally supplied a patrol vehicle. These resources are ostly and are of limited supply. Further, the step of pursuing and detaining traffic ordinance violators an be dangerous to the police officer and the public at large. For example, an irate driver threatens the officer, the driver makes an effort to evade the officer, initiating a high speed chase, or the driver pulls over in an unsafe area on the highway, thus subjecting others to an unnecessary danger of collision.

Despite the dangers associated with the current methods of traffic ordinance enforcement, the renefits obtained outweigh the costs and dangers to the public. Proper enforcement results in the eduction in the number of traffic accidents and traffic fatalities, and a decrease in the costs to society of medical treatment and automotive and medical insurance. This was observed to have been the case when the national speed limit on interstate highways was reduced from 70 mph to 55 mph. In addition, the reduction of traffic accidents is highly correlated with a reduction in traffic congestion. When a patrol vehicle blocks even just one lane of a multi-lane highway, this may disproportionately decrease raffic through-flow due to the need of accommodating merging traffic and due to a phenomenon commonly known as "rubber-necking" (the tendency of persons who notice an accident or accident scene to slow down in order to better observe the accident scene).

Traffic enforcement devices, which provide a means for enforcement of the traffic ordinances without the direct involvement of a police officer or a patrol vehicle, have been in use for some time in Europe and in other regions of the world. U.S. Pat. Nos. 4,866,438 and 5.066.950 describe remotely ocated devices which include a radar device and means of automatically triggering a high resolution photographic camera when a vehicle passes within its field of detection. These systems require matching of the license plate number read from a photograph taken by the camera with a number in a

di tabase of registered vehicles in the state, region or nation. Upon identification, a traffic citation is is used and mailed to the registered owner of the vehicle in a non-confrontational manner without u dizing a patrol vehicle or a police officer's time. Despite these advantages, because the location of the violation must be noted on the citation (if it is not readily apparent from the photograph taken by the d vice) and is almost always supplied to the driver, the public may soon become aware of the location e the devices. When this occurs, drivers will know that they must slow down at this location in order to avoid receiving a traffic citation. Although slowing traffic to safe limits is a purpose of these prior a t devices, this purpose will only partly be accomplished (i.e., persons will obey the traffic ordinances v ithin the field of detection of the device). An effective system of such devices, capable of enforcing t e traffic ordinances within an entire urban area, will be prohibitively expensive, because the urban z ea which is to be monitored must have a sufficient number of these units to ensure that a majority of the streets in the area are, in fact, being monitored (i.e., in order to minimize or eliminate any streets on which drivers having knowledge of each enforcement unit location can violate the traffic ordinances th impunity). Using only conventional technology, this mandates that an effective system of cuforcement be comprised of a large number of these units which essentially blanket the urban area. recause each unit consists of relatively expensive and technologically sophisticated components, a system which blankets all drivable streets and highways is prohibitively expensive

Therefore, what is needed is a system which enables effective, low cost enforcement of traffic rdinances without requiring that a police officer and patrol vehicle pursue and detain suspected traffic rdinance violators. Further, what is needed is a system which cannot be defeated by radar jamming or y the driver merely slowing down within range of an enforcement unit.

Summary of the Invention

The foregoing problems are solved and a technical advantage is achieved by the provision of a raffic law enforcement system having two or more enforcement units and at least one central computer onnected via network devices. The enforcement units are spaced apart a given distance and each has a teense plate reader. The central computer receives inputs from the enforcement units. The inforcement units and the central computer cooperate to calculate an average velocity of a vehicle which passes between enforcement units by using the inputs of a) drivable distance between inforcement units which transmitted matching license plate numbers, b) posted speed limit data between enforcement units which transmitted matching license plate numbers, and c) time lapsed between the transmission of the matching license plate numbers to the central computer.

In another feature of the invention, a signal is sent to the enforcement unit which was last in time to send the matching license plate number. The signal causes the enforcement unit to capture and store evidentiary data (e.g., an image) of the vehicle having the matching license plate number for inforcement purposes

In another feature of the invention, the system may include more that two enforcement units which cooperate with each other and the central computer to identify a vehicle whose average velocity is calculated across paths between at least three enforcement units. This permits the capture of at least two images of the vehicle for evidentiary purposes.

An advantage achieved with the present invention is that a system is provided which enables e feetive, low cost enforcement of traffic ordinances without requiring that a police officer and patrol v hicle pursue and detain suspected traffic ordinance violators.

Another advantage of the present invention is that vehicles associated with wanted persons may be identified and the police department may be subsequently notified

Another advantage of the present invention is that the time in which the license plate numbers are held in a database need only be a short period. This is due to the fact that only those vehicles which chickly pass through or within an urban area generate an average velocity calculation which exceeds the posted limits between the two points. Thus, all license plate data may automatically be erased after only a few minutes. This will enable privacy concerns to be considered while, at the same time, it aintaining an effective enforcement system.

Another advantage of the present invention is that enforcement units need only be placed on the atskirts of opposite ends of a city, thus only measuring the speed, and potentially ticketing those chicles whose drivers use the city's roads, but do not pay city taxes. This permits a more politically acceptable application of the system for enforcement purposes.

Still another advantage is that decoy units may be randomly replaced with enforcement units nd vice versa, thus permitting the system to provide a deterrent effect while simplifying the system by uxing simply constructed decoy units with more complicated enforcement units

Brief Description of the Drawings

Other objects and advantages of this invention will become readily apparent as the same is effect understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein

- ig 1 is a landscape view showing the basic components of the system of the present invention.
- Fig. 2a is a perspective view of an enforcement unit and a mounting structure of the system of the present invention
- Fig. 2b is a perspective view of an alternate embodiment of the mounting structure of the system of the present invention
- Fig. 3 is a perspective view of either an enforcement unit or a decoy unit of the present invention
- Fig. 4a is a schematic view of an enforcement unit of the present invention
- Fig. 4b is a schematic view of the system of the present invention.
- Fig. 5 is a flow diagram of a sum mary method of the present invention

Fig. 6 is a representative map of a metropolitan area showing the locations of five enforcement units.

 $F_{1,2}$ 7 is a lookup table used in the system of the present invention.

F 3 8 is a flowchart of the method of the present invention.

<u>Jetailed Description of the Preferred Embodiment</u>

Now referring to Fig. 1, in which is shown a preferred embodiment of the system of the present in vention, the traffic law enforcement system 18 includes at least two enforcement units 20, optional decoy units 22 (shown in Fig. 3), and a receiving interface 24 onto which either the enforcement unit or any decoy unit 22 may be engaged

In order to permit identification of a potential violator, identifying indicia 82 is placed on a sible portion of an automobile 80, such indicia including a conventional license plate number, spection sticker, registration sticker, or alphanumeric symbols placed on the surface of the automobile which the characters are large enough to be read by a Number Plate Recognition (described in more estail below).

The vehicle speed determination and evidence capturing capability of the traffic law enforcement sistem 18, combined with the fact that motor vehicles 80 for use on freeways 90 have identifying license plates 92 with alphanumeric symbols of a size sufficient to be captured in a legible form, hables remote enforcement of the speed limits by ticketing or warning the registered owner of any whicle found to have exceeded the posted speed limits

Now referring to Fig. 2a. 2b. and 3, the enforcement unit 20 includes a mating interface 36, hown in dashed lines, a housing 100 and a multi-functional license Number Plate Recognition device 'NRD''). 30° The receiving interface 24a includes a mounting portion 32 and an interface end 34, which releasably engages with the mating interface 36 on the enforcement units 20 or the decoy unit 22. The mounting portion 32 is specially fabricated to interface with and securely mount to a structure 40, diacent to or above a highway or street, using a locking device 43 to prevent tampering. The receiving interface 24a and an alternate interface 24b enables secure, precise and repeatable attachment of an inforcement unit 20 or decoy unit 22 to various types of structures, such as a concrete railing, a idewall of an overpass, or a dedicated support structure. A power and/or communications junction box 45, and corresponding cable conduit 47 attach to the structure 40. A power and/or communications table 49 connects to the junction box 45.

The receiving interface 24a and the mating interface 36, enable routine relocation of the inforcement unit 20 to other geographic locations, and/or the substitution of a simply constructed decoy init 22 in the place of the enforcement unit, thus increasing the difficulty of a driver discriminating between active enforcement units and decoy units, decreasing the number of relatively complicated active enforcement units required in the system (by substituting most of them for simply constructed decoy units), and, consequently, decreasing the complexity and cost of the entire system 18.

In another configuration, the receiving interface 24a or 24b includes a mounting frame 42 w ich is permanently affixed to the structure 40 using conventional fastening devices, such as bolts 44. In the alternate configuration of the receiving interface 24b, the mounting portion 32 has the form of a hinger having a clamping and 46 which affixes to a highway structure 40, and an interface end 34 which releasably engages with either the enforcement 20 or decoy unit 22.

The housing 100 of the enforcement unit 20 further includes a panoramic portal 154 extending through an arc on the housing, the arc being of an angular magnitude sufficient to enable the retargeting o the video camera 26 within a range of angular increments which permit easy adjustment of the to getting of the camera. In case of a multi-lane highway or thoroughfare 90, an enforcement unit 20 is d dicated to each lane of the highway or street in order to minimize the possibility of a driver avoiding tle enforcement unit. Thus, if there are three lanes to the highway 90, all lanes directing traffic in a s agie direction, three enforcement units 20 are positioned over each lane. Such an arrangement further r duces the processing burden on each enforcement unit 20

The wiper device 156 optionally mounts above the portal 154. The wiper device 156 includes a moisture or water-activated sensor 160 which causes the wiper to wipe moisture from the portal 154 a predetermined intervals

The housing 100 further includes handles 162 mounted on the housing to facilitate the process cî substituting enforcement units 20 for decoy units 22 and vice versa.

Optionally, built-in blowers 164 and a heater 166, together with a thermostat and circuit 170 : ay be provided to avoid temperature extremes beyond the operational limits of the enforcement unit .0

A receiving dish 50 and a transmitting device 52 are affixed to the mounting frame 42 of the receiving interface 24a via a stanchion 54 and a mounting gimbal assembly 56, and are undisturbed hen the enforcement unit 20 or the decoy unit 22 is removed from the receiving interface 24a. This ennits one-time targeting of the receiver 50 and the transmitter 52 to its associated line-of-sight cell, ub or router 60. The subsequent interchange of enforcement units 20 does not disturb the targeting of ae receiver 50 or the transmitter 52

Referring now to Fig 4a in which a schematic of an enforcement unit 20 of the present nvention is shown, the camera 26 is operably connected to the NRD 30'. The camera 26 and NRD 30' are enclosed within a housing 100. The camera 26 may be standard or include IR illumination 140, as vell as features such as a 200m lens 134 and the capability of taking high-resolution video images. The NRD 30' includes a video capture device ("VCD") 302 connected to a computing device (essentially a ²C) which includes RAM memory 122 for image processing, a hard disk ("HD") 124 for image and lata storage including storage of pattern recognition software 260 (alternately, an EPROM 260' programmed with the pattern recognition software may substitute for the hard disk), a CPU 127, and a

n twork device 121. The network device 121 (e.g., an RS232 serial port and dedicated data line, a nodem, ethernet, radio or other wireless network device) capable of data transmission and reception, connects to the NRD 30' to permit near real-time transmission of signals to and from a central computer 350 (shown in Fig. 4b) at a command station 220 (shown in Fig. 4b). An NRD 30', suitable for this application, is available from such companies as Monitron International of Worcestershire, England. Under ideal conditions, the Monitron NRD 30' is able to reliably identify license plates on whicles traveling from 0 to 100 or more mph at a distance of 60 or more meters. Further, the Nonitron NRD 30' can handle traffic flow rates in excess of 100 vehicles per minute and can identify a license plate in less than one half second. However, performance of an NRD 30' can be easily tailored to the needs of the application through the appropriate selection of the individual components to make a custom NRD.

Now referring to Fig. 4b. the system 18 of the invention is shown. Enforcement units 20 and, attornally, decoy units 22 are placed in strategic locations along traffic flow routes, typically within a retropolitan area 600 (shown in Fig. 6). The enforcement units 20 are connected via network lines 68 to a network device 254. The network device 254 connects to the central computer 350 at the abundant station 220. The enforcement units 20 transmit data in a data stream including heense plate aumber data, time of transmission, and a location code in which the related data is separated by apparators and unrelated data is separated by start bits.

The central computer 350 within the command station 220 is an IBM compatible computer aving at least a "PENTIUM II" 233, or better, 32 MB of RAM memory, and a hard disk with 4 GB of vailable storage. Also, the central computer 350 is loaded with "WINDOWS" 3 11 or better "WINDOWS 95" OR "WINDOWS NT" can be used), a specially modified version of the above or untable substitute (such as a "UNIX DERIVED" operating system).

Referring again to Fig. 4a, any images captured by the VCD 302 which were stored during the ourse of a day are transmitted across the communications path 68 between the command station 220 nd the enforcement unit 20 at an appropriate time, such as during a period of low use or low noise e.g., in the nighttime hours). Note that the capacity of the HD 124 can be maximized and the data ransmission rate improved using JPEG image compression, for example. If the communications path 18 is a telephone line, then the image 108 may be transmitted via modem to the central computer 350, he central computer using the corresponding network device 254 to answer and communicate with the computer device at the enforcement unit 20. This enables real-time transmission of the lower resolution indee image, and transmission of larger high-resolution image files during off-peak hours via a elephone line. However, whenever the communications link permits, the transfer should take place immediately over the network line via a combink

It should be understood that the communications path described in the embodiments above may be comprised of any of a number of different paths, including UHF/VHF, microwave, cable, network

I ne. telephone line, optical fiber, cellular wireless, ethernet, line-of-sight wireless, satellite, a laser link. ϵ powerlines.

Where closed-circuit communications cable (e.g., a fiber-optic computer networking cable) provides the communications path between the enforcement unit and the command station, simpler a purpose that can be used.

The infrared illuminator 140 provides powerful infrared lighting that is invisible to the human eve, yet visible to the video camera, thus enabling the capturing of infrared images of a moving vehicle it might or day without startling or disturbing the driver. The illuminator 140 is mounted to the lousing, and includes a built-in photocell which automatically turns the illuminator on at night and off it dawn. Built-in blowers are also provided to keep the illuminator cool. A suitable illuminator, in inde-angle and narrow angle versions is, part no. HAS-7698A, and HAS-7698B, respectively, vailable from Home Automation Systems (URL: http://www.techmall.com/smarthome/7690 html) or the P345 IR Illuminator Module from Pearpoint Inc. of Thousand Palms, California. In addition, the amera 26 may have an infrared filter.

In a summary of the method of operation of the invention, as shown in Fig. 5, the traffic law inforcement system 18 executes four steps

In a first step 500, the method gathers license plate number data and transmits such data to the entral computer 350. The enforcement units 20 read license plate numbers from passing vehicles 80 tiwo or more locations and transmit the license plate numbers to the central computer 350.

In a second step 520, the central computer 350 associates a time of the transmission from the inforcement units 20 to the central computer and a location of the source of the license plate number in amanner which enables the central computer to recognize when a license plate number is received which matches another license plate number received earlier in time and within a predetermined maximum time period. The central computer 350 then accesses a data lookup table 700 (shown in Fig. 1). The table 700 includes i) in column 5, an estimation of a minimum drivable distance between the wo locations, for example X1 and X2, of the enforcement units 20 which sent the matching license plate numbers, and 11) in column 6, an estimation of the maximum average permissible velocity retween the two locations. This estimation is generated, at least indirectly, from speed limit data corresponding to road segments (612, 614, 616, 618 and 620 shown in Fig. 6) which defined the truitmum drivable distance between the at least two locations X1 and X2.

In a third step 540, the central computer 350 calculates the average velocity of the vehicle 80 between the two locations and compares the maximum average permissible velocity with the average velocity of the vehicle 80

In a fourth step 560, if the average speed of the vehicle exceeds by a predetermined margin the maximum average permissible velocity between the locations of the enforcement units 20, evidentiary

in ormation is stored for future retrieval (e.g. an image of the vehicle may optionally be captured for evidentiary purposes)

Referring now to Fig. 6, a representative map of a metropolitan area 600 is shown having five ei forcement units at locations X1 X2, X3, X4 and X5 placed throughout the area. Known paved surfaces 610 such as highways, representing road segments 612, 614, 616, 618 and 620 between ei forcement units 20, crisscross the metropolitan area 600.

Referring now to Fig. 7 in which is shown the lookup table 700, in column 1 of the table is a lifting of all possible combinations of any two enforcement units 20 at locations X1, X2, X3, X4, and X5. The shortest paved surface distances from one enforcement unit 20 to another is measured and sored in the table 700 in column 5, in a row corresponding to the combination of the two enforcement is in uts which transmitted the matching license plate numbers. In order to generate the data in column 6 of the table 700, the segment lengths and posted speed limits along each segment 612, 614, 616, 618 and 620 are noted in columns 2-4 for each segment. An average maximum permissible velocity (AMV) is calculated by an appropriate means. One such means is through the use of the below tormula:

AMV =
$$\frac{Dt}{((D1/PS1) - (D2/PS2) + (D3/PS3) + + (Dn/PSn))}$$

in velocity units such as riph, where:

AMV = average maximum permissible velocity between the two locations,

Dt = total distance between the two locations,

Dn = distance of the "nth" segment; and

PSn = the posted speed limit for the "nth" segment,

or empirically, using the following relationship

AMV = Dt/EMT, where

EMT = empirically measured time to drive the distance Dt. determined at maximum posted speed limits and for a safe rate of acceleration

The average maximum permissible velocity AMV for every possible combination of enforcement unit ocation is recorded in column 6 of the table 700, in the same row as the associated total distance and he combination of the two enforcement units which sent the matching license plate numbers

The method of the invention, shown in more detail in Fig. 8, includes the following steps

In a first step 800, data is gathered and transmitted to the central computer 350 for analysis. This first step 800 is made up of three substeps. In a first substep, using known license plate number

r cognition equipment and techniques (described in more detail above), enforcement units 20 routinely r ad license plates of passing vehicles 80, whether or not they are exceeding the posted speed limit. In a second substep, the location, time, and a license plate number of each vehicle 80 is transmitted to the command station 220 and stored in a license number database for a predetermined period of time. In a tird substep, the license number database is scanned and all license plate number inputs having an a sociated time which has been in storage longer than the predetermined period of time are deleted from the license number database. This predetermined period of time need be only a few minutes (e.g., 10 in inutes), due to the fact that only those vehicles 80 which pass quickly through or within a retropolitan area 600 generate an average velocity calculation which exceeds the posted limits between the locations of the enforcement units 20 which sent the matching license plate number data

Note that when the predetermined time period mentioned above is short, data inputs are deleted in a short period. Publication to the general public that such data will be quickly erased from the linense number database (unless a violation of the average maximum permissible velocity is exceeded by a predetermined margin or the vehicle is believed to be a stolen vehicle or registered to a wanted fillon) will tend to satisfy concerns of persons that such gathered data might be permanently stored in elder for enforcement authorities to learn of the travel and driving habits of individual persons, in a obtain of their rights of privacy. After this predetermined period passes, all license plate data may a tomatically be erased

In a second step 820, the license number database is scanned for trigger information. This scond step 820 is made up of three substeps. In a first substep, a subroutine operating on the central emputer 350 at the command station 220 reads the input license plate numbers and continuously empares them with other license plate numbers previously received in the license number database. In a second substep, when the subroutine reads the same license plate number, the subroutine either placeds to the next substep or initiates the sending of a signal from the command station 220' to the efforcement unit 20, the signal causing the capture of evidence (such as an image) related to the vehicle 8.1 In a third substep, the time and location data associated with the matching license plate numbers is a cessed.

In a third step 840, the average speed of the vehicle 80 is calculated. The subroutine calculates the time difference Td and accesses data in column 5 of the table 700 on the minimum paved distance E between the two enforcement units 20 which read the matching license plate numbers in order to a leulate an average velocity of the vehicle 80 associated with the license plates. This average velocity is subtracted from the average max mum permissible velocity ("AMV") obtained from column 6 of the table 700. The following formula may be used:

EV is velocity in excess of the AMV.

Signature values of AMV are ignored as such represent a vehicle traveling less than the AMV

In a fourth step 860, in the event of a violation of the traffic ordinances, evidentiary data is g thered to support subsequent ticketing or a warning notice. This fourth step 860 includes four s bsteps. In a first substep, if this average velocity exceeds the average velocity of a hypothetical vihicle 80 passing along the shortest paved path between the enforcement units 20, then the command s ation 220 immediately sends a signal along a communications path 68 to the enforcement unit 20 vihich sent the most recent signal, instructing the computer device in the enforcement unit to capture the image of the vehicle (if this has not already been done) and to either store the image on the HD 124 of the computing device in the enforcement unit for later retrieval, or to immediately transmit the captured image of the vehicle 80 to the central computer 350 for storage there

The output which would be obtained is used to support any subsequently issued ticket or aming letter. Such output might contain the following information:

time of violation \ license plate number \ speed in excess of AMV \ AMV

Uf course, this information would likely best be provided with an attached video image clearly showing the face of the driver

Note that the image could optionally be captured on the central computer 350 at the command ation 220°, were the video image transmitted real time to the central computer, thus eliminating the reed of a NRD 30' in each enforcement unit 20. Note also that no image need be captured at all. It has be politically more acceptable to rely purely on the evidentiary value of a print out of the license umber and associated data because such may be less likely to violate the privacy interests of drivers 1 a second substep of the fourth step 860, the image, if captured, may be stored on the hard disk (not nown) of the central computer 350 for use in subsequent ticketing or to support a warning. Such mage may also be stored in the HID 124' of the computer device in the enforcement unit 20 and then, at more convenient time, transferred via modern, for example, to the command station 220. In third ubstep, the earlier transmitted license plate number and associated data (such as location and time of cansmission) are deleted from the license number database and the enforcement unit 20 injects a new ignal into the data stream of licerse plate numbers and associated data being transmitted to the central omputer 350 This new signal is stored in the license number database which includes the license plate number, an associated location and a new time, together with a flag associating the data with the ecently stored or captured evidentiary data (such as a captured image). The flag may constitute the ile name of the captured and stored video image. Such evidentiary data, including associated data uch as time, location and license number, constitutes the flagged data as referred to hereinafter

In a fourth substep, when the central computer 350 recognizes another license plate number much with the flagged data, the match resulting from data sent from a third enforcement unit 20, then the method returns to the third step 840, and continues as described above. However, if a velocity as sociated with the flagged data exceeds the AMV between the two locations by a predetermined at ount, any resulting second set of evidentiary data (e.g., an image) is stored in association with the citier captured evidentiary data such that an operator can easily locate and associate the data for a forcement purposes. In addition, enforcement authorities now can choose which violation they would be for to prosecute the registrant of the vehicle 80 for, depending on the quality of the captured evidentiary data and the excess velocity of the vehicle at the time of capture. Enforcement authorities at distinct the public may prefer enforcement based on the second set of captured evidentiary data (particularly when such data includes images) and calculated average speed because of the better evidentiary quality of being able to associate the captured images at each time and location measuring point. This increases the likelihood that any resulting ticket will be legally enforceable.

In another embodiment of the invention, shown as step 510 in Fig. 5, the license plate data in the incense number database is compared with license numbers in a wanted-vehicle database (not si own). The license numbers in the wanted-vehicle database are of vehicles which enforcement at thorities have previously identified as vehicles of interest for further investigation. When a match is fit ind, the license number and time and location data are sent to enforcement authorities for further action. It is desirable in such instances that a match trigger an alarm in order to improve the response time of enforcement authorities. Such may be accomplished by using a dial-back on alarm condition feature, available from Monitron International of Worcestershire. England

In an advantage of the invention, the measuring of an average velocity between relatively di tant points discourages acceleration of a vehicle 80 between enforcement units 20, and then slowing di wn when a driver of the vehicle believes he is within their enforcement range. Thus drivers of vehicles 80 are less likely to be able to defeat the traffic law enforcement system 18 of the invention

An advantage achieved with the present invention is that a system is provided which enables at fective, low cost enforcement of traffic ordinances without requiring that a police officer and patrol value pursue and detain suspected traffic ordinance violators.

Another advantage of the present invention is that vehicles 80 associated with wanted persons to by be identified and the enforcement authorities, such as the police department, may be subsequently notified.

Another advantage of the present invention is that the time in which the identifying indicia 82 is held in storage need only be a short period. This will enable privacy concerns to be considered while, at the same time, maintaining an effective enforcement system 18

Another advantage of the present invention is that enforcement units 20 may be placed only on the outskirts of opposite ends of a city, thus only measuring the speed, and potentially ticketing those

whicles which use the city's roads, but do not pay city taxes. This permits a more politically a iceptable application of the system 18 because it helps ensure that those who use the city's roads in directly pay their share of the costs of maintaining such roads

Another advantage is that decoy units 22 may be randomly replaced with enforcement units 20 and vice versa, thus permitting the system 18 to provide a deterrent effect while simplifying the system to rough mixing simply constructed decoy units with more complicated enforcement units

Although illustrative embodiments of the invention have been shown and described, a wide ringe of modification, changes and substitution is contemplated in the foregoing disclosure. In some instances, some features of the present invention may be employed without a corresponding use of the other features. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention.

I dustrial Applicability

The invention is applicable industrially as a means of reducing the velocity of drivers to safe hints while enabling more effective and safer enforcement of the traffic ordinances (by requiring less place interaction and the dedication of fewer police resources, such as police cars and related efforcement equipment). Such a system should play an important role in permitting municipalities to discate police resources to the enforcement of more senious criminal laws, or, alternately, to reduce the manicipalities' traffic law enforcement costs.

What is claimed is:

1 A traffic law enforcement system wherein

at least two enforcement units having license plate readers are spaced apart a given distance,

at least one central computer receives inputs, including license plate numbers of vehicles which pa 5 the license plate readers, from the at least two enforcement units; and

the at least two enforcement units and the at least one central computer cooperate to calculate an average velocity of a vehicle which passes between the at least two enforcement units, using the in uts of a) drivable distance between enforcement units which transmitted matching license plate in orders, b) posted speed limit data between enforcement units which transmitted matching license plate numbers, and c) time lapsed between the transmission of the matching license plate numbers to the ce itral computer

- 2 The system of claim 1 further comprising at least one decoy unit and attachment means which et able an enforcement unit to be replaced by a decoy unit and vice versa
- 3 A traffic law enforcement system having at least two enforcement units at at least two locations and a central computer, wherein

the at least two enforcement units read identifying indicia from passing vehicles at the at least to locations and transmit at least the identifying indicia to the central computer, and wherein

the central computer

- a) associates a time of the transmission and a location of the source of the identifying indicial the that when the central computer recognizes that an identifying indicial was received which matches to their identifying indicial received earlier in time and within a predetermined maximum time period, the central computer accesses a table, the table including
- i) an estimation of a minimum drivable distance between the at least two enforcement mits which sent the matching identifying indicia and,
- n) an estimation of the maximum average permissible velocity between the two peations the estimation generated, at least indirectly, from speed limit data corresponding to road egiments which defined the minimum drivable distance between the at least two locations,
- b) calculates the average speed of an alleged vehicle which passed between the at least two ocations; and

- c) compares the maximum average permissible velocity with the average velocity of the vehicle for the purpose of determining whether the vehicle exceeded the maximum average permissible velocity between the at least two locations.
- 4 The system of claim 3 further comprising at least one decoy unit and attachment means which e able an enforcement unit to be replaced by a decoy unit and vice versa
- 5 The system of claim 3, wherein a signal is sent to the enforcement unit which was last in time to s, and matching identifying indicia to cause the enforcement unit to capture an image of the vehicle h ving the matching identifying indicia for enforcement purposes.
- The system of claim 1, wherein at least three enforcement units cooperate with the at least one control computer to identify a vehicle whose average velocity is calculated across the path of the at least three enforcement units and in which at least two images of the vehicle are recorded for evidentiary proses

CIP

Attorney Docket No 777

TRAFFIC LAW ENFORCEMENT SYSTEM <u>Abstract of the Disclosure</u>

A traffic law enforcement system having two or more enforcement units and at least one central computer connected via network devices. The enforcement units are spaced apart a given distance and or the have a license plate reader. The central computer receives inputs from the enforcement units, including license plate numbers of passing vehicles. The enforcement units and the central computer of operate to calculate an average velocity of a vehicle which passes between enforcement units by using the inputs of a) drivable distance between enforcement units which transmitted matching license plate numbers. b) posted speed limit data between enforcement units which transmitted matching license plate numbers, and c) time lapsed between the transmission of the matching license plate in inhers to the central computer.

Fig. 5

Fig. 6

Table

. dmc	Seg. no.\ dist. miles	speed limit in seg.	Seg. no.\ dist. miles	speed limit in seg.	Seg. no. dist. miles	speed limit in seg.	Dt miles 	AMV (mph)
¥1-X2	612\2	55					2	55
>1-X3	612\2	55	614\3	45			5	48.5
>1-X4	612\2	55	614\3	45	616\2	30	7	41.7
≯1-X5	620\3	10					3	10
>2-X3	614\3	45					3	45
}2-X4	614\3	45	616\2	30	1		5	37.6
22-X5	612\2	55	620\3	10			5	14.9
33-X4	616\2	30					2	30
}3- X5	616\2	30	618\4	45			6	39
24-X5	618\4	45					4	45
								i I

700

Fig. 7

Fig. 8

United States Patent & Trademark Office

Office of Initial Patent Examination -- Scanning Division

Application deficiencies found during scanning:

1	Application papers are not suitable for scanning and are not in compliance with 37 CFR 1.52 because
	□ All sheets must be the same size and either A4 (21 cm x 29.7 cm) or 8-1/2"x 11" Pages
	Papers contain improper margins. Each sheet must have a left margin of at least 2.5 cm (1") and top, bottom and right margins of at least 2.0 cm (3/4"). Papers contain hand lettering.
2	Drawings are not in compliance and were not scanned because: ☐ The drawings or copy of drawings are not suitable for electronic reproduction. ☐ All drawings sheets are not the same size. Pages must be either A4 (21 cm x 29.7 cm) or 8-1/2" x 11"
	Each sheet must include a top and left margin of at least 2.5 cm (1"), a right margin of at least 1.5 cm (9/16") and a bottom margin of at least 1.0 cm (3/8").
?	Page(s) are not of sufficient clarity, contrast and quality for electronic reproduction
	Paget s1 are missing.
:	OTHER NO DECLARATION