Princípios da Computação

Numeral systems. Arithmetic.

Numeral systems

Representing quantities

- Throughout history, there have been various ways to represent quantities.
- We commonly use the Indo-Arabic numeral system, characterised by:
 - Decimal base
 - It uses ten symbols: { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }
 - Positional notation
 - The value of a digit depends on its relative position within the number.

Positional notation

- The value of a digit depends on the order (i.e. the relative position) it occupies in the composition of the number.
 - The first position to the left of the decimal point is order zero.
 - Orders increase to the left and decrease to the right.

Positional notation

- The value of a digit is given by its intrinsic value multiplied by the weight of the order.
- The weight of the order is given by the base raised to the order.

Positional notation

- The value of the number is the sum of the values of the digits that compose it.
- It is represented in the form of a polynomial of powers of the base.
 - 1724.3

• =
$$1 \times 10^3 + 7 \times 10^2 + 2 \times 10^1 + 4 \times 10^0 + 3 \times 10^{-1}$$

• = 1 thousand, 7 hundreds, 2 tens, 4 units and 3 tenths.

Other numeral bases?

- Besides the decimal, we can use any other base with at least 2 symbols to represent quantities:
 - **Binary.** 2 symbols: { 0, 1 }
 - **Hexadecimal.** 16 symbols: { 0, ..., 9, A, B, C, D, E, F }
 - Octal. 8 symbols: { 0, 1, 2, 3, 4, 5, 6, 7 }
 - or any other base with 2 or more symbols
 - One symbol for nothing
 - One symbol for the unit

Binary numbering system

- Today's digital computers use binary electronic circuits:
- They only operate in TWO valid states: ON / OFF.
- The two states can be represented by two binary symbols: the binary digits aka bits.
- Circuits operate simultaneously on groups of binary symbols: the word.

Binary numbering system

- Any information on a computer is represented by a sequence of bits: numbers, text, sound, video, etc...
- In other words, current digital computers
 operate numbers that are expressed in the
 binary number system.
- Natural for computers, strange for humans!

Conversion between bases

Quantities vs. numbers

- Numbers are graphical abstractions that represent quantities.
- The representation of a quantity depends on the number of symbols available in the numeral base.
- The same quantity is represented in different ways, in different numeral bases.
- It is possible to convert numbers from one numeral base to another.

Quantities vs. numbers

Ten-fingered Donald vs. Eight-fingered Donald

Binary-to-decimal conversion

- Evaluate the polynomial of powers of the base.
- Problem: represent $1110.01_{(2)}$ in decimal form.
- Solution:

$$1 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} + 0 \times 2^{-1} + 1 \times 2^{-2} =$$

$$= 8 + 4 + 2 + 0 + 0 + 0.25 =$$

$$= 14.25_{(10)}$$

• Remember that $1110.01_{(2)}$ and $14.25_{(10)}$ represent the same quantity: only the numeral bases are different.

Decimal-to-binary conversion

- The conversion from decimal to binary consists of two distinct processes:
 - One process for the integer part: successive divisions by 2.
 - Another process for the **fractional part**: successive multiplications by 2.

Decimal-to-binary conversion (integer part)

- Perform successive divisions by 2.
- Record the remainders at each step.
- The binary representation is obtained by arranging the remainders in reverse order.

$$\begin{array}{c|c}
 & 13 & 2 \\
 & 6 & 2 \\
 & 0 & 3
\end{array}$$

$$\begin{array}{c|c}
 & 1 & 2 \\
 & 1 & 1 \\
 & 1 & 0
\end{array}$$

$$\begin{array}{c|c}
 & 1 & 2 \\
 & 1 & 0
\end{array}$$

$$\begin{array}{c|c}
 & 1 & 1 & 0 \\
 & 1 & 1 & 0
\end{array}$$

$$\begin{array}{c|c}
 & 1 & 1 & 0 & 1 \\
 & 1 & 1 & 0 & 1
\end{array}$$

$$\begin{array}{c|c}
 & 1 & 1 & 0 & 1 \\
 & 1 & 1 & 0 & 1
\end{array}$$

$$\begin{array}{c|c}
 & 1 & 1 & 0 & 1 \\
 & 1 & 1 & 0 & 1
\end{array}$$
ISEP

Visualisation of the process

Decimal-to-binary conversion (fractional part)

- Perform successive multiplications of the fractional part by 2.
- Record the integer part (0 or 1) after each multiplication.
- The binary representation is obtained by reading these values in order.

Octal and hexadecimal systems

- Since the binary system only has two symbols, the representation of values is not very compact.
- This makes the binary system less easily understood by humans.
- Octal and hexadecimal systems represent values in a way that looks more alike the decimal system.
- They have the advantage of offering direct conversions to and from binary.

Binary-Hexadecimal conversion

- The hexadecimal system has 16 symbols:
 - { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F }
- A hexadecimal symbol directly represents 4 bits.
- Conversion is always carried out from the decimal point.

Binary-Hexadecimal conversion

Bin	Hex	Dec
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7

Bin	Hex	Dec
1000	8	8
1001	9	9
1010	Α	10
1011	В	11
1100	С	12
1101	D	13
1110	E	14
1111	F	15

Bin-to-Hex example

- To convert the binary number $1011011.101_{(2)}$ to hexadecimal:
 - Fill with zeros to make 4-bit groups
 - Binary number: 0101 1011 . 1010
 - Convert each 4-bit group to hexadecimal:
 - 0101 (binary) = 5 (hexadecimal)
 - 1011 (binary) = B (hexadecimal)
 - 1010 (binary) = A (hexadecimal)
- So, the hexadecimal representation is $5B.A_{(16)}$.

Binary-Octal conversion

- The octal system has 8 symbols:
 - { 0, 1, 2, 3, 4, 5, 6, 7 }
- An octal symbol directly represents 3 bits.
- Conversion is always carried out from the decimal point.

Binary-Octal conversion

Bin	Oct	Dec
000	0	0
001	1	1
010	2	2
011	3	3
100	4	4
101	5	5
110	6	6
111	7	7

Bin-to-Oct example

- To convert the binary number 1011011.101 to octal:
 - Fill with zeros to make 3-bit groups:
 - Binary number: 001 011 011 . 101
 - Convert each 3-bit group to octal:
 - 001 (binary) = 1 (octal)
 - 011 (binary) = 3 (octal)
 - 011 (binary) = 3 (octal)
 - 101 (binary) = 5 (octal)
- So, the octal representation is $133.5_{(8)}$.

Conversions (summary)

- Decimal to Base N
 - Integer part: Successive divisions by N
 - Fractional part: Successive multiplications by N
- Base N to Decimal
 - Evaluate the polynomial using the powers of N

Conversions (summary)

- Binary to Hexadecimal/Octal
 - Group 3 (for octal) or 4 (for hexadecimal) bits and convert each group directly to a symbol.
- Hexadecimal/Octal to Binary
 - Convert each symbol directly to 3 (for octal) or 4 (for hexadecimal) bits.

Arithmetic

Arithmetic vs. numeral systems

- The rules of arithmetic are universal, i.e., they do not depend on the numerical base used.
- Therefore, arithmetic operations in binary are carried out in the same way as in decimal.

Arithmetic operations in binary

- Although the rules are the same, let's review (with examples) the following operations:
 - Addition
 - Subtraction
 - Multiplication
 - Division

- The terms are aligned by the decimal point.
- The sums are performed from the rightmost column towards the leftmost column.
- When the result of adding a column has more than one digit, the rightmost digit stays, and the remaining digits are carried over to the next column.

$$1 + 1 + 1 = 11$$
 (i.e. 3)

$$1 + 0 + 1 = 10$$
 (i.e. 3)

Subtraction

- The subtraction algorithm functions correctly only when the minuend (top number) has a greater absolute value than the subtrahend (bottom number).
- Numbers are aligned at the decimal point.
- Subtraction is performed from the rightmost column to the leftmost column.
- If the minuend digit is smaller than the subtrahend digit, a unit is borrowed from the next column.

Subtraction

$$1 - 0 = 1$$

$$10 - 1 = 1$$

$$1 - (0 + 1) = 0$$

$$1 - 1 = 0$$

- Multiplication requires knowing the times table for the base being used.
 - In binary, the times table is extremely simple!
- Numbers are aligned to the right, not by the decimal point.
- First, multiply the top factor by each digit of the bottom factor.
- Then, sum the partial results to get the final product.

- Division also requires knowing the times table for the base being used.
 - In binary, the times table is incredibly simple!
- At each step, you determine how many times the divisor fits into the current part of the dividend.
- In binary, the only options are
 - 0 (it doesn't fit), or
 - 1 (it fits).

