Definitie

Voor $n \ge 2$, $\Delta = \prod_{1 \le i < j \le n} (x_i - x_j)$ met x_i variabelen.

Voorbeeld

$$\begin{array}{l} n=3\colon (x_1-x_2)(x_1-x_3)(x_2-x_3)\\ \text{Voor } \sigma\in S_n \text{ met } n\geq 2 \text{ is:}\\ \sigma(\Delta)=^{def}\prod_{1\leq i< j\leq n}(x_{\sigma(i)}-x_{\sigma(j)})=\epsilon(\sigma)\prod_{1\leq i< j\leq n}(x_i-x_j)=\epsilon(\sigma)\cdot \Delta\\ \text{met } \epsilon(\sigma)=\pm 1\\ \sigma=(1\ 2):\sigma(\Delta)=(x_2-x_1)(x_2-x_3)(x_1-x_3)=-\Delta\\ \text{Want: } \{\sigma(i),\sigma(j)\} \text{ met } i\neq j \text{ doorloopt precies alle } \{i,j\} \text{ met } i\neq j. \end{array}$$

Voorbeeld

$$\sigma = (1 \ 2) \in S_n
\Delta = (x_1 - x_2)(x_1 - x_3) \dots (x_1 - x_n)(x_2 - x_3) \dots (x_2 - x_n) \prod_{3 \le i < j \le n} (x_i - x_j)
\sigma(\Delta) = (x_2 - x_1)(x_2 - x_3) \dots (x_2 - x_n)(x_1 - x_3) \dots (x_1 - x_n) \prod_{3 \le i < j \le n} (x_i - x_j) = -\Delta, \text{ dus } \epsilon((1 \ 2)) = -1$$

Stelling

 $\epsilon: \mathcal{S}_n \to \{\pm 1\}$ voor $n \geq 2$ is een homomorfisme. Dat wil zeggen: $\epsilon(\sigma\tau) = \epsilon(\sigma)\epsilon(\tau)$. Het tekenhomomorfisme.

Bewijs

Neem
$$\sigma, \tau \in S_n$$
. Dan is $(\sigma \tau)(\Delta) = \prod_{1 \leq i < j \leq n} (x_{\sigma(\tau(i))} - x_{\sigma(\tau(j))})$
Stel k paren $(\tau(i), \tau(j))$ voldoen aan $\tau(i) > \tau(j)$. Dus $\epsilon(\tau) = (-1)^k$. Ook $(\sigma \tau)(\Delta) = \epsilon(\sigma \tau)\Delta = (-1)^k \prod_{1 \leq i' < j' \leq n} (x_{\sigma(i')} - x_{\sigma(j')}) = (-1)^k \epsilon(\sigma)\Delta$ met $i' = \tau(i)$ en $j' = \tau(j)$ Dus $\epsilon(\sigma \tau) = (-1)^k \epsilon(\sigma) = \epsilon(\tau)\epsilon(\sigma) = \epsilon(\sigma)\epsilon(\sigma)$

Gevolg

 $\epsilon: S_n \to \{\pm 1\}$ is een surjectief homomorfisme.

Want
$$\epsilon(e)=1$$
 en $\epsilon((1\ 2))=-1$

Definitie

 $n \geq 2$, $A_n = Ker(\epsilon)$. Dan $A_n \subseteq S_n$, $n \geq 1$ en voor n = 1, $A_1 = \{2\}$.

 $S_n/A_n\cong\{\pm 1\}$ voor $n\geq 2$ (1e isomorfie stelling)

 A_n is de alternerende groep op n elementen. S_n is de symmetrische groep op n elementen. $|A_n|=\frac{1}{2}|S_n|$ als $n\geq 2$: $|\frac{S_n}{A_n}|=\frac{|S_n|}{|A_n|}=2$

Definitie

 $\sigma \in S_n$ heet even als $\epsilon(\sigma) = 1$ en oneven als $\epsilon(\sigma) = -1$ Dus $A_n = \{\text{even permutaties}\}\ \text{geeft}\ S_n \setminus A_n \text{ is de rest} = \{\text{oneven permutaties}\}$

Opmerking

 $\epsilon(\tau \sigma \tau^{-1}) = ^{homomorfisme} \epsilon(\tau) \epsilon(\sigma) \epsilon(\tau)^{-1} = ^{abels} \epsilon(\sigma)$

Dus ϵ is constant op conjungatieklassen.

900

§3.5 S_n en A_n

Uit §4.3

De conjungatieklassen van S_n :

 $\sigma = \tau_1 \tau_2 \dots \tau_r$ met τ_i paarsgewijs disjunct en de lengte ≥ 1 met $n_i = \text{lengte } \tau_i$. Neem $n_1 < n_2 < \dots < n_r$.

Dan is $n_1 + n_2 + \cdots + n_r = n$.

 n_1, n_2, \ldots, n_r heet het cykeltype van σ .

Opmerking

De cykeltypen komen overeen met de partitie van n.

Voorbeeld

Neem n = 4:

Cykeltype	Voorbeeld	Mogelijkheden
4	(1 2 3 4)	$\frac{4!}{4} = 6$
1,3	$(1)(2\ 3\ 4) = (2\ 3\ 4)$	$\binom{4}{3}\frac{3!}{3} = 8$ $\binom{4}{2}\frac{2!}{2} = 6$
1,1,2	(1)(2)(3 4) = (3 4)	$\binom{4}{2} \frac{2!}{2} = 6$
2,2	(1 2)(2 4)	3
1,1,1,1	(1)(2)(3)(4) = e	1
		41 = 24

Stelling

2 elementen in S_n zijn geconjungeerd \Leftrightarrow ze hebben hetzelfde cykeltype. (σ en τ geconjungeerd $\Leftrightarrow \exists \rho$ met $\sigma = \rho \tau \rho^{-1}$)

Bewijs

 \Rightarrow : Als $\sigma = \tau_1 \tau_2 \dots \tau_r$ met τ_i paarsegewijs disjunct, $n_i =$ lengte τ_i en $n_1 \leq n_2 \leq \dots \leq n_r$ en $\rho \in S_n$, dan is $\rho \sigma \rho^{-1} = \rho \tau_1 \tau_2 \dots \tau_r \rho = \rho \tau_1 \rho^{-1} \rho \tau_2 \rho^{-1} \dots \rho \tau_r \rho^{-1}$ En $\rho \tau_i \rho^{-1}$ is een cykel van lengte n_i en de $\rho \tau_i \rho^{-1}$ zijn paarsgewijs disjunct.

 \Leftarrow : Stel $\sigma = \tau_1 \tau_2 \dots \tau_r$ en $\sigma' = \tau'_1 \tau'_2 \dots \tau'_r$ hebben hetzelfde cykeltype. Dan is τ_i paarsgewijs disjunct met lengte $(\tau_1) \leq \text{lengte}(\tau_2) \leq \dots$ enz...

Voorbeeld

$$\begin{array}{l} n=6,\ \sigma=(1\ 2\ 4\ 5\ 3),\ \sigma^{-1}=(1\ 3\ 2\ 4\ 6)\\ \sigma=(6)(1\ 2\ 4\ 5\ 3)\\ \sigma'=(5)(1\ 3\ 2\ 4\ 6)\\ \text{Neem}\ \rho(1)=1,\ \rho(2)=3,\ \rho(3)=6,\ \rho(4)=2,\ \rho(5)=4,\ \rho(6)=5\\ \text{Dus}\ \rho=(2\ 3\ 6\ 5\ 4)\ \text{en}\ \rho\sigma\rho^{-1}=\sigma^{-1} \end{array}$$

Gevolg

- Elke transpositie (= 2-cykels) heeft teken -1 (want $(a \ b)$ is geconjungeerd met $(1 \ 2)$ en het teken is constant op conjungatie klassen)
- Een m-cykel heeft teken $(-1)^{m-1}$ want $(a_1 \ a_2 \dots a_m) = (a_1 \ a_2)(a_2 \dots a_m) = (a_1 \ a_2)(a_2 \ a_3) \dots (a_{m-1} \ a_m)$ dit zijn m-1 2-cykels en ϵ is een homomorfisme.

Pas op!

m is even $\Leftrightarrow m$ -cykel is oneven (en omgekeerd)

Voorbeeld

Neem n = 4:

Cykeltype	Aantal	Teken in A ₄
1,1,1,1	1	1
1,1,2	6	-1
1,3	8	1
4	6	-1
2,2	3	1

Stelling

 $A_n \leqslant S_n$, A_n voortgebracht door alle 3-cykels

Bewijs

Een 3-cykel $(a\ b\ c)=(a\ b)(b\ c)$ is even en heeft teken 1, dus is in $A_n\Rightarrow \langle 3\text{-cykels}\rangle\subseteq A_n$

Voor de andere inclusie: Neem $\sigma \in A_n$, σ is een product van een oneven aantal 2-cykels, want $\sigma \in A_n$, ϵ (2-cykels) = -1. Dus σ is een product van $(a\ b)(c\ d)$ met $a \neq b$ en $c \neq d$

Nu is voldoende: $(a \ b)(c \ d)$ als product van 3-cykels te schrijven.

- $\{a,b,c,d\}$ heeft 2 elementen. Dan $(a\ b)=(c\ d)=(d\ c)$ en $(a\ b)(c\ d)=e$
- $\{a, b, c, d\}$ heeft 3 elementen. Dan is het element van de vorm (a' b')(b' c') met $a' \neq c'$ en dit is (a' b' c')
- $\{a, b, c, d\}$ heeft 4 elementen. Dan is $(a \ b)(b \ c)(b \ c)(c \ d) = (a \ b \ c)(b \ c \ d)$

Dus $A_n \subseteq \langle 3\text{-cykels} \rangle$. Dus $A_n = \langle 3\text{-cykels} \rangle$.

§3.5 S_n en A_n

Opmerking

 Δ heet de discriminant.

Voorbeeld

$$x^2+bx+c$$
 heeft wortels $\frac{-b\pm\sqrt{b^2-4ac}}{2a}=x_1\vee x_2$ Dan is $(x_1-x_2)^2=\frac{b^2-4c}{4}$