Sciences Industrielles de

Chapitre 3 - Application du Principe Fondamental de la Dynamique

l'Ingénieur

Activation 5

Bras de robot

Pôle Chateaubriand - Joliot-Curie

Savoirs et compétences :

- □ Mod2.C17.SF1 : déterminer le torseur dynamique d'un solide, ou d'un ensemble de solides, par rapport à un autre solide
- Res1.C2 : principe fondamental de la dynamique
- Res1.C1.SF1 : proposer une démarche permettant la détermination de la loi de mouvement

Mise en situation

On s'intéresse à un robot oscillant dans le plan vertical $(O, \overrightarrow{x}, \overrightarrow{y})$ du repère fixe $\mathcal{R}_0 = (O; \overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$ associé au bâti 0. Ce robot est constitué de deux bras cylindriques 1 et 2 identiques homogènes de masse m, de longueur $2 \times a$ et de section négligeable.

On note $\mathcal{R}_1 = (0; \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z})$ un repère associé à 1 tel que $\overrightarrow{OA} = 2a\overrightarrow{x_1}$ et on pose $\alpha = (\overrightarrow{x}, \overrightarrow{x_1})$.

On note $\Re_2 = (0; \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z})$ un repère associé à 2 tel que $\overrightarrow{AB} = 2a\overrightarrow{x_2}$ et on pose $\beta = (\overrightarrow{x}, \overrightarrow{x_2})$.

On note *G* le centre d'inertie du bras 2 situé au milieu du segment AB.

Travail à réaliser

Question 1 Tracer les figures de changement de base.

2 Déterminer l'expression de la matrice d'inertie du bras 2 au point G dans \mathcal{B}_2 .

Question 3 Déterminer au point A les éléments de ré*duction du torseur dynamique* $\{\mathcal{D}(2/0)\}$.

Question 4 Déterminer au point O les éléments de ré*duction du torseur dynamique* $\{\mathcal{D}(1+2/0)\}$.

l'Ingénieur

Modéliser le comportement des systèmes mécaniques dans le but d'établir une loi de comportement ou de déterminer des actions mécaniques en utilisant le PFD

Chapitre 3 – Application du Principe Fondamental de la Dynamique

Activation 5 -Corrigé

Bras de robot

Pôle Chateaubriand - Joliot-Curie

Savoirs et compétences :

- □ Mod2.C17.SF1 : déterminer le torseur dynamique d'un solide, ou d'un ensemble de solides, par rapport à un autre solide
- Res1.C2 : principe fondamental de la dynamique
- Res1.C1.SF1 : proposer une démarche permettant la détermination de la loi de mouvement

Mise en situation

On s'intéresse à un robot oscillant dans le plan vertical $(O, \overrightarrow{x}, \overrightarrow{y})$ du repère fixe $\mathcal{R}_0 = (O; \overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$ associé au bâti 0. Ce robot est constitué de deux bras cylindriques 1 et 2 identiques homogènes de masse m, de longueur $2 \times a$ et de section négligeable.

On note $\mathcal{R}_1 = (0; \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z})$ un repère associé à 1 tel que $\overrightarrow{OA} = 2a\overrightarrow{x_1}$ et on pose $\alpha = (\overrightarrow{x}, \overrightarrow{x_1})$.

On note $\Re_2 = (0; \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z})$ un repère associé à 2 tel que $\overrightarrow{AB} = 2a\overrightarrow{x_2}$ et on pose $\beta = (\overrightarrow{x}, \overrightarrow{x_2})$.

On note G le centre d'inertie du bras 2 situé au milieu du segment AB.

Travail à réaliser

Question 1 Tracer les figures de changement de base.

Correction

Question Déterminer l'expression de la matrice d'inertie du bras 2 au point G dans \mathcal{B}_2 .

Correction

Question 3 Déterminer au point A les éléments de réduction du torseur dynamique $\{\mathcal{D}(2/0)\}$.

Correction

Question 4 Déterminer au point O les éléments de réduction du torseur dynamique $\{\mathcal{D}(1+2/0)\}$.

Correction

1.
$$I_G(2) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & m\frac{a^2}{3} & 0 \\ 0 & 0 & m\frac{a^2}{3} \end{pmatrix}_{\mathcal{B}_2} A.$$

2.
$$\{\mathscr{D}(2/0)\}=\left\{\begin{array}{l} ma\left(\ddot{\beta}\overrightarrow{y_2}-\dot{\beta}^2\overrightarrow{x_2}\right)+2ma\left(\ddot{\alpha}\overrightarrow{y_1}-\dot{\alpha}^2\overrightarrow{x_1}\right)\\ 2ma^2\left(\frac{2}{3}\ddot{\beta}+\ddot{\alpha}\cos\left(\beta-\alpha\right)+\dot{\alpha}^2\sin\left(\beta-\alpha\right)\right)\overrightarrow{z}\end{array}\right\}_A$$

1.
$$I_{G}(2) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & m\frac{a^{2}}{3} & 0 \\ 0 & 0 & m\frac{a^{2}}{3} \end{pmatrix}_{\mathcal{B}_{2}} A.$$

2. $\{\mathscr{D}(2/0)\} = \begin{cases} ma(\ddot{\beta}\overrightarrow{y_{2}} - \dot{\beta}^{2}\overrightarrow{x_{2}}) + 2ma(\ddot{\alpha}\overrightarrow{y_{1}} - \dot{\alpha}^{2}\overrightarrow{x_{1}}) \\ 2ma^{2}(\frac{2}{3}\ddot{\beta} + \ddot{\alpha}\cos(\beta - \alpha) + \dot{\alpha}^{2}\sin(\beta - \alpha))\overrightarrow{z} \end{cases}_{A}$

3. $\{\mathscr{D}(1+2/0)\} = \begin{cases} ma(\ddot{\beta}\overrightarrow{y_{2}} - \dot{\beta}^{2}\overrightarrow{x_{2}}) + 3ma(\ddot{\alpha}\overrightarrow{y_{1}} - \dot{\alpha}^{2}\overrightarrow{x_{1}}) \\ 2ma^{2}(\frac{2}{3}\ddot{\beta} + \frac{8}{3}\ddot{\alpha} + (\ddot{\alpha} + \ddot{\beta})\cos(\beta - \alpha) + (\dot{\alpha}^{2} - \dot{\beta}^{2})\sin(\beta - \alpha))\overrightarrow{z} \end{cases}_{O}$

3