FAETERJ-Rio Cálculo I

Professor DSc. Wagner Zanco

Solução dos Exercícios 1.7 – 1.12

1.7) Calcule o limite de

a)
$$\lim_{x \to 1^+} \left(\frac{x+3}{x-1} \right)$$

$$x \rightarrow 1^+$$

X	1,1	1,01	1,001	1,0001
<i>x</i> - 1	0,1	0,01	0,001	0,0001
<i>x</i> + <i>3</i>	4,1	4,01	4,001	4,0001
x + 3				
$\overline{x-1}$	41	401	4001	40001

Quanto mais x se aproxima de 1, mais a expressão x-1 tende a 0, e maior vai ser o resultado da divisão $\frac{x+3}{x-1}$. Em outras palavras:

$$\lim_{x\to 1^+} \left(\frac{x+3}{x-1}\right) = +\infty$$

b)
$$\lim_{x \to 1^{-}} \left(\frac{x+3}{x-1} \right)$$

$$x \rightarrow 1^-$$

X	0,9	0,99	0,999	0,9999
<i>x</i> - 1	-0,1	-0,01	-0,001	-0,0001
<i>x</i> + <i>3</i>	3,9	3,99	3,999	3,9999
x + 3				
$\overline{x-1}$	-39	-399	-3999	-39999

Seguindo a mesma lógica do item a, concluímos que

$$\lim_{x \to 1^{-}} \left(\frac{x+3}{x-1} \right) = -\infty$$

1.8) Seja
$$f(x) = \begin{cases} \frac{1}{x}, & se \ x > 0 \\ 3x + 2, se \ x < 0 \end{cases}$$

a)
$$\lim_{x\to 0^+} f(x)$$

 $x \to 0^+$

X	0,1	0,01	0,001	0,0001
f(x)	10	100	1000	10000

$$\lim_{x \to 0^+} \frac{1}{x} = +\infty$$

b)
$$\lim_{x\to 0^-} f(x)$$

 $x \rightarrow 0^-$

\boldsymbol{x}	-0,1	-0,01	-0,001	-0,0001
f(x)	2	2	2	2

$$\lim_{x \to 0^{-}} 3x + 2 = 2$$

c)
$$\lim_{x\to+\infty} f(x)$$

 $x \to +\infty$

\boldsymbol{x}	10	100	1000	10000	
f(x)	0,1	0,01	0,001	0,0001	•••

$$\lim_{x \to +\infty} \frac{1}{x} = 0$$

d)
$$\lim_{x\to-\infty} f(x)$$

 $x \to -\infty$

$$\lim_{x \to -\infty} 3x + 2 = -\infty$$

1.9) Calcule:

a)
$$\lim_{x \to -\infty} \left(\frac{3x^2 - 5}{4x^2 - 5} \right)$$

Como f e g têm o mesmo grau, temos que

$$\lim_{x \to -\infty} \left(\frac{3x^2 - 5}{4x^2 - 5} \right) = \frac{3}{4}$$

b)
$$\lim_{x \to +\infty} \left(\frac{2x-7}{x^2-8} \right)$$

Como o grau de g é maior que o grau de f, temos que

$$\lim_{x\to+\infty} \left(\frac{2x-7}{x^2-8} \right) = 0$$

c)
$$\lim_{x \to +\infty} \left(\frac{5x+2}{\sqrt{x^2-3x+1}} \right)$$

$$x \to +\infty$$

X	10	100	1.000	10.000	100.000	•••
f(x)	52	502	5.002	50.002	500.002	•••
g(x)	8,42	96,44	998,48	9.998,49	99.998.49	
f(x)/g(x)	6,17	5,2	5	5	5	

$$\lim_{x \to +\infty} \left(\frac{5x+2}{\sqrt{x^2-3x+1}} \right) = 5$$

d)
$$\lim_{x \to -\infty} \left(\frac{5x+2}{\sqrt{x^2-3x+1}} \right)$$

$$\chi \to -\infty$$

X	-10	-100	-1.000	-10.000	-100.000	•••
f(x)	-48	-498	-4.998	-49.998	-400.998	•••
g(x)	8,42	96,44	998,48	9.998,49	99.998.49	•••
f(x)/g(x)	-5,7	-5,1	-5	-5	-5	

$$\lim_{x \to -\infty} \left(\frac{5x+2}{\sqrt{x^2-3x+1}} \right) = -5$$

1.10) Determine as assíntotas verticais e horizontais do gráfico da função racional $f(x) = \frac{3x^2 - 5x + 2}{6x^2 - 5x + 1}$.

Obs:. As assíntotas verticais são determinadas pelas raízes do denominador e as assíntotas horizontais podem ser encontradas pela Regra B.

As assíntotas verticais são as raízes de $6x^2 - 5x + 1$. $x' = \frac{1}{3} e x'' = \frac{1}{2}$.

Como g tem um grau maior que f, a assíntota horizontal é $\frac{3}{6}$.

1.11) Calcule os seguintes limites:

a)
$$\lim_{x \to +\infty} (2x^{11} - 5x^6 - 3x^2 + 1)$$

$$\lim_{x \to +\infty} (2x^{11}) = +\infty$$

b)
$$\lim_{x \to -\infty} (-4x^7 + 23x^3 + 5x^2 + 1)$$
 $\lim_{x \to -\infty} (-4x^7) = +\infty$

c)
$$\lim_{x \to -\infty} (2x^4 - 12x^2 + x - 7)$$

 $\lim_{x \to -\infty} (2x^4) = +\infty$

d)
$$\lim_{x \to -\infty} (2x^3 - 12x^2 + x - 7)$$
 $\lim_{x \to -\infty} (2x^3) = -\infty$

e)
$$\lim_{x \to -\infty} (-x^8 + 2x^7 - 3x^3 + x)$$

 $\lim_{x \to -\infty} (-x^8) = -(x^8) = -(-\infty^8) = -\infty$

f)
$$\lim_{x \to -\infty} (-2x^5 + 3x^4 - 2x^3 + x^2 - 4)$$

 $\lim_{x \to -\infty} (-2x^5) = +\infty$

1.12) Calcule os seguintes limites

a)
$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{-}} f(x)$$
, se $f(x) = \begin{cases} 7x - 2 & \text{se } x \ge 2 \\ 3x + 5 & \text{se } x < 2 \end{cases}$

$$\lim_{x \to 2^{+}} f(x) = 7.2 - 2 = 12$$

$$\lim_{x \to 2^{-}} f(x) = 3.2 + 5 = 11$$

b)
$$\lim_{x \to 0^+} \frac{|x|}{x} e \lim_{x \to 0^-} \frac{|x|}{x}$$

$$\lim_{x \to 0^+} \frac{|x|}{x} = 1$$

$$\lim_{x \to 0^-} \frac{|x|}{x} = -1$$

c)
$$\lim_{x \to 0^+} \left(\frac{1}{x} - \frac{1}{x^2} \right)$$

$$\lim_{x \to 0^+} \left(\frac{1}{x} - \frac{1}{x^2} \right) = \lim_{x \to 0^+} \frac{x^2 - x}{x \cdot x^2} = \lim_{x \to 0^+} \frac{x^2 - x}{x^3}$$

$$x \to 0^+$$

$\boldsymbol{\mathcal{X}}$	0,1	0,01	0,001	0,0001	
f(x)	-0,09	-0,009	-0,0009	-0,00009	
g(x)	0.001	0,000001	0,000000001	0.000000000001	•••
f(x)/g(x)	-9	-9.000	-900.000	-90.000.000	•••

$$\lim_{x \to 0^+} \frac{x^2 - x}{x^3} = -\infty$$

d)
$$\lim_{x \to 3^+} \left(\frac{x+3}{x^2-9} \right) e \lim_{x \to 3^-} \left(\frac{x+3}{x^2-9} \right)$$

$$x \rightarrow 3^+$$

X	3,1	3,01	3,001	3,0001	
f(x)	6,1	6,01	6,001	6,0001	
g(x)	0,1	0,01	0,001	0.0001	
f(x)/g(x)	61	601	6001	60001	•••

$$\lim_{x \to 3^+} \left(\frac{x+3}{x^2 - 9} \right) = +\infty$$

$$x \rightarrow 3^-$$

X	2,9	2,99	2,999	2,9999	
f(x)	5,9	5,99	5,999	5,9999	
g(x)	-0,5	-0,05	-0,005	-0,0005	
f(x)/g(x)	-11,8	-119,8	-1.199,8	-11.999,8	•••

$$\lim_{x \to 3^{-}} \left(\frac{x+3}{x^2-9} \right) = -\infty$$

e)
$$\lim_{x \to 3^+} \left(\frac{x^2 - 5x + 6}{x - 3} \right) e \lim_{x \to 3^-} \left(\frac{x^2 - 5x + 6}{x - 3} \right)$$

$$x \rightarrow 3^+$$

\boldsymbol{x}	3,1	3,01	3,001	3,0001	
f(x)	0,1	0,01	0,001	0,0001	
g(x)	0,1	0,01	0,001	0.0001	•••
f(x)/g(x)	1	1	1	1	

$$\lim_{x \to 3^+} \left(\frac{x^2 - 5x + 6}{x - 3} \right) = 1$$

$$x \rightarrow 3^-$$

X	2,9	2,99	2,999	2,9999	
f(x)	-0,09	-0,009	-0,0009	-0,00009	
g(x)	-0,1	-0,01	-0,001	-0.0001	•••
f(x)/g(x)	1	1	1	1	•••

$$\lim_{x \to 3^{-}} \left(\frac{x^2 - 5x + 6}{x - 3} \right) = 1$$

f)
$$\lim_{x \to 3^+} \left(\frac{1}{x^2 - 7x + 12} \right) e \lim_{x \to 3^-} \left(\frac{1}{x^2 - 7x + 12} \right)$$

$$x \rightarrow 3^+$$

X	3,1	3,01	3,001	3,0001	•••
f(x)	1	1	1	1	
g(x)	-0,09	-0,009	-0,0009	-0,00009	
f(x)/g(x)	11,1	111,1	1.111,1	11.111,1	

$$\lim_{x \to 3^+} \left(\frac{1}{x^2 - 7x + 12} \right) = +\infty$$

$$x \rightarrow 3^-$$

<i>X</i>	2,9	2,99	2,999	2,9999	•••
f(x)	1	1	1	1	
g(x)	0,1	0,01	0,001	0.0001	
f(x)/g(x)	10	100	1000	10000	
J(x)/g(x)	10	100	1000	10000	•••

$$\lim_{x \to 3^{-}} \left(\frac{1}{x^2 - 7x + 12} \right) = +\infty$$

g)
$$\lim_{x \to +\infty} \left(\frac{1}{3x+5} \right) e \lim_{x \to -\infty} \left(\frac{1}{3x+5} \right)$$

Como o grau de g é maior que o grau de f, temos que

$$\lim_{x \to +\infty} \left(\frac{1}{3x+5} \right) = 0 \quad \text{e} \quad \lim_{x \to -\infty} \left(\frac{1}{3x+5} \right) = 0$$

h)
$$\lim_{x \to +\infty} \left(\frac{3x^3 + x^2}{5x^3 - 1} \right) e \lim_{x \to -\infty} \left(\frac{3x^3 + x^2}{5x^3 - 1} \right)$$

$$\lim_{x \to +\infty} \left(\frac{3x^3 + x^2}{5x^3 - 1} \right) = \frac{3}{5}$$

$$\lim_{x \to -\infty} \left(\frac{3x^3 + x^2}{5x^3 - 1} \right) = \frac{3}{5}$$

i)
$$\lim_{x \to +\infty} \left(\frac{x^2 + 4x - 5}{3x + 1} \right) e \lim_{x \to -\infty} \left(\frac{x^2 + 4x - 5}{3x + 1} \right)$$

$$\lim_{x \to +\infty} \left(\frac{x^2 + 4x - 5}{3x + 1} \right) = +\infty$$

$$\lim_{x \to -\infty} \left(\frac{x^2 + 4x - 5}{3x + 1} \right) = -\infty$$

$$1.3.(-1)^{2-1} = 3.(-1) = -3$$

j)
$$\lim_{x \to +\infty} \left(\frac{2x^3 + x - 5}{5x^4 - 1} \right) e \lim_{x \to -\infty} \left(\frac{2x^3 + x - 5}{5x^4 - 1} \right)$$

$$\lim_{x \to +\infty} \left(\frac{2x^3 + x - 5}{5x^4 - 1} \right) = 0$$

$$\lim_{x \to -\infty} \left(\frac{2x^3 + x - 5}{5x^4 - 1} \right) = 0$$

k)
$$\lim_{x \to +\infty} \left(\frac{4x-1}{\sqrt{x^2+2}} \right) e \lim_{x \to -\infty} \left(\frac{4x-1}{\sqrt{x^2+2}} \right)$$

$$\gamma \to +\infty$$

<i>x</i>	10	100	1.000	10.000	100.000	•••
f(x)	39	399	3.999	39.999	399.999	
g(x)	10	100	1.000	10.000	100.000	
f(x)/g(x)	3,9	3,9	3,9	3,9	3,9	

$$\lim_{x \to +\infty} \left(\frac{4x - 1}{\sqrt{x^2 + 2}} \right) = 3.9$$

$$\chi \to -\infty$$

X	-10	-100	-1.000	-10.000	-100.000	•••
f(x)	-41	-401	-4.001	-40.001	-400.001	

$$g(x)$$
 10 100 1.000 10.000 ... $f(x)/g(x)$ -4,1 -4,1 -4,1 -4,1

$$\lim_{x \to -\infty} \left(\frac{4x - 1}{\sqrt{x^2 + 2}} \right) = -4.1$$

1)
$$\lim_{x \to +\infty} \left(\frac{3x^3 - 1}{\sqrt{x^4 - 2}} \right) e \lim_{x \to -\infty} \left(\frac{3x^3 - 1}{\sqrt{x^4 - 2}} \right)$$

 $x \to +\infty$

χ	10	100	1.000	
f(x)	2.999	2.999.999	2.999.999.999	•••
g(x)	99,9	9.999,9	9.999.999,9	•••
f(x)/g(x)	30	300	3000	

$$\lim_{x \to +\infty} \left(\frac{3x^3 - 1}{\sqrt{x^4 - 2}} \right) = +\infty$$

 $\chi \to -\infty$

X	-10	-100	-1.000	
f(x)	-3001	-3.000,001	-3.000.000.001	•••
g(x)	99,9	9.999,9	9.999.999,9	•••
f(x)/g(x)	-30	-300	-3000	

$$\lim_{x \to -\infty} \left(\frac{3x^3 - 1}{\sqrt{x^4 - 2}} \right) = -\infty$$

m)
$$\lim_{x \to +\infty} \left(\frac{7x-4}{\sqrt{x^3+5}} \right) e \lim_{x \to -\infty} \left(\frac{7x-4}{\sqrt{x^3+5}} \right)$$

 $x \to +\infty$

X	10	100	1.000	10.000	
f(x)	66	696	6.996	69.996	•••
g(x)	31,7	1000	31.622,7	1.000.000	•••
f(x)/g(x)	2	0,69	0,22	0,069	•••

$$\lim_{x \to +\infty} \left(\frac{7x - 4}{\sqrt{x^3 + 5}} \right) = 0$$

$$\chi \to -\infty$$

<u>x</u>	-10	-100	-1.000	
f(x)	-74	-704	-7004	•••
g(x)	∄	∄	∄	

$$\lim_{x \to -\infty} \left(\frac{7x - 4}{\sqrt{x^3 + 5}} \right) = \nexists$$

n)
$$\lim_{x \to +\infty} \left(\frac{\sqrt{x^2+5}}{3x^2-2} \right) e \lim_{x \to -\infty} \left(\frac{\sqrt{x^2+5}}{3x^2-2} \right)$$

$x \to +\infty$

	10	100	1.000	10.000	•••
f(x)	66	696	6.996	69.996	•••
g(x)	31,7	1000	31.622,7	1.000.000	•••
f(x)/g(x)	2	0,69	0,22	0,069	

$$\lim_{x \to +\infty} \left(\frac{\sqrt{x^2 + 5}}{3x^2 - 2} \right) = 0$$

$x \to -\infty$

X	-10	-100	-1.000	-10.000	•••
f(x)	10,2	100	1000	10.000	•••
g(x)	298	29.998	2.999.998	299.999.998	•••
f(x)/g(x)	0,03	0,003	0,0003	0,00003	

$$\lim_{x \to -\infty} \left(\frac{\sqrt{x^2 + 5}}{3x^2 - 2} \right) = 0$$

o)
$$\lim_{x \to +\infty} \left(\frac{2x+5}{\sqrt[3]{x^3+4}} \right) e \lim_{x \to -\infty} \left(\frac{2x+5}{\sqrt[3]{x^3+4}} \right)$$

$x \to +\infty$

x	10	100	1.000	10.000	
f(x)	25	205	2.005	20.005	•••
g(x)	10	100	1.000	10.000	•••
f(x)/g(x)	0,25	2	2	2	

$$\lim_{x \to +\infty} \left(\frac{2x+5}{\sqrt[3]{x^3+4}} \right) = 2$$

$$\gamma \to -\infty$$

X	-10	-100	-1.000	-10.000	•••
f(x)	-15	-195	-1.995	-19.995	•••
g(x)	-10	-100	-1.000	-10.000	•••
f(x)/g(x)	1.5	1,95	2	2	

$$\lim_{x \to -\infty} \left(\frac{2x + 5}{\sqrt[3]{x^3 + 4}} \right) = 2$$

p)
$$\lim_{x \to +\infty} \left(\frac{4x-3}{\sqrt[3]{x^2+1}} \right) e \lim_{x \to -\infty} \left(\frac{4x-3}{\sqrt[3]{x^2+1}} \right)$$

$x \to +\infty$

$\boldsymbol{\mathcal{X}}$	10	100	1.000	10.000	•••
f(x)	37	397	3.997	49.997	
g(x)	4,64	21,54	100	464,1	
f(x)/g(x)	7,9	18,43	39,97	107,7	

$$\lim_{x \to +\infty} \left(\frac{4x - 3}{\sqrt[3]{x^2 + 1}} \right) = +\infty$$

$$\chi \to -\infty$$

X	-10	-100	-1.000	-10.000	•••
f(x)	-43	-403	-4.003	-40.003	•••
g(x)	4,64	21,54	100	464,1	•••
f(x)/g(x)	-9,2	-18,7	-40	-86,1	

$$\lim_{x \to -\infty} \left(\frac{4x - 3}{\sqrt[3]{x^2 + 1}} \right) = -\infty$$

q)
$$\lim_{x \to +\infty} \left(\frac{x^2 - 5}{3 + 5x - 2x^2} \right)$$

$$\lim_{x \to +\infty} \left(\frac{x^2 - 5}{3 + 5x - 2x^2} \right) = -\frac{1}{2}$$

$$r) \lim_{x \to 3^+} \left(\frac{\sqrt{x^2 - 9}}{x - 3} \right)$$

$$x \rightarrow 3^+$$

X	3,1	3,01	3,001	3,0001	
f(x)	0,78	0,24	0,077	0,024	•••
g(x)	0.1	0,01	0,001	0,0001	•••
f(x)/g(x)	7,8	40	77	240	

$$\lim_{x \to 3^+} \left(\frac{\sqrt{x^2 - 9}}{x - 3} \right) = +\infty$$

s)
$$\lim_{x \to -\infty} \left(\frac{x^4 - 7x^3 + 4}{x^2 - 3} \right)$$
$$1.1(-1)^{4-2} = 1.1 = 1$$
$$\lim_{x \to -\infty} \left(\frac{x^4 - 7x^3 + 4}{x^2 - 3} \right) = +\infty$$

Gabarito:

1.7a)+∞. 1.7b)-∞. 1.8a)+∞. 1.8b) 2. 1.8c) 0. 1.8d) -∞. 1.9 a) $\frac{3}{4}$. 1.9b) 0. 1.9c) 5. 1.9d) -5. 1.10) Assíntotas verticais $\Rightarrow \frac{1}{2} e^{\frac{1}{3}}$; Assíntota horizontal $\Rightarrow \frac{1}{2}$. 1.11a)+∞. 1.11b)+∞. 1.11c)+∞. 1.11d) -∞. 1.11e)-∞. 1.11f) +∞. 1.12a)12 e 11. 1.12b) 1 e -1. 1.12c)-∞. 1.12d)+∞ e -∞. 1.12e)1 e 1. 1.12f)+∞ e +∞. 1.12g) 0 e 0. 1.12h) $\frac{3}{5} e^{\frac{3}{5}}$. 1.12i)0 e 0. 1.12j) 0. 1.12k) 3,9 e -4,1. 1.12l)+∞ e -∞. 1.12j) 0 e 0. 1.12k) 4 e 4. 1.12l)+∞ e -∞. 1.12m) 0 e (não existe). 1.12n) 0 e 0. 1.12o) 2 e 2. 1.12p) +∞ e -∞. 1.12q) $\frac{-1}{2}$. 1.12r) +∞. 1.12s) +∞.