Lecture 13

1 Lie Group

Definition. A Lie group (G,\cdot) is a group and a smooth manifold that satisfies

- (i) The map $\mu:(g_1,g_2)\mapsto g_1\cdot g_2$ is smooth
- (ii) The map $i: g \mapsto g^{-1}$ is smooth.

Example.

- $(\mathbb{R}^n, +_{\mathbb{R}^n})$ is a commutative Lie group called the n-dimensional translation group.
- $U(1):=(S^1,\cdot_{\mathbb{C}})$, where $S^1:=\{z\in\mathbb{C}\mid |z|=1\}$
- The general linear group $GL(n,\mathbb{R}) := \{\phi : \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n \mid \det \phi \neq 0\}$ with operation \circ .
- Suppose V is a \mathbb{R} -vector space. Let

$$O(p,q) := \{ \psi : V \xrightarrow{\sim} V \mid (\psi(v), \psi(w)) = (w,v) \} \subseteq GL(p+q,\mathbb{R})$$

 $(O(p,q),\circ)$ is called the *orthogonal group* w.r.t. pseudo-inner product (\cdot,\cdot) .

Definition. A psuedo-inner product (\cdot, \cdot) satisfies the following properties:

- (i) It is bilinear
- (ii) It is symmetric
- (iii) It is non-degenerate: $\forall w \in V : (v, w) = 0 \Rightarrow v = 0$

Theorem. There always exists a basis $\{e_i\}$ of V such that the matrix (e_i, e_j) has ± 1 on the diagonal and 0 in all other entiries.

Definition. Suppose the basis is chosen so that (e_i, e_j) takes the above form, and there are p 1's and q -1's on the diagnoal. (p, q) is called the *signature* of the metric.

Theorem. There are (up to isomorphism) only as many pseudo-inner products on V as there are different signatures.

2 The Lie algebra of a Lie group

Definition. Suppose (G, \cdot) is a Lie group, then for any $g \in G$, the *left translation* $l_g : G \to G$ is defined as

$$l_q(h) := g \cdot h$$

It can be easily verified that l_g is bijective. Furthermore, l_g and its inverse are smooth by definition of a Lie group, therefore it is a diffeomorphism.

Remark. The push-forward of a vector in general cannot be extended to a vector field, unless the underlying map is a diffeomorphism.

Definition. The push-forward of a vector field X on G is defined as:

$$\left(l_{g*}X\right)_{gh} := l_{g*}(X_h)$$

Definition. A vector field X on G is called *left-invariant* if for any $g \in G$,

$$l_{g*}X = X \tag{1}$$

or equivalently,

$$\forall h \in G: l_{a*} X_h = X_{ah} \tag{2}$$

Proposition. If X is left-invariant, then

$$X(f \circ l_g) = Xf \circ l_g \tag{3}$$

Proof. By definition of left-invariance, $(l_{q*}X_h)f = X_{qh}f$,

$$LHS = X_h(f \circ l_a) = [X(f \circ l_a)](h)$$

$$RHS = (Xf)(gh) = [Xf \circ l_a](h)$$

Definition. The set of all left-invariant vector fields on a Lie group G is denoted L(G). It can be verified that L(G) is a $C^{\infty}(G)$ -submodule of $\Gamma(TG)$, and hence also a \mathbb{R} -vector space.

Definition. A Lie algebra $(L, +, \cdot, [\![\cdot, \cdot]\!])$ is a k-vector space $(L, +, \cdot)$ equiqqed with a Lie bracket $[\![\cdot, \cdot]\!]$ that satisfies:

- (i) It is bilinear.
- (ii) It is antisymmetric: [x, y] = -[y, x]
- (iii) Jacobi identity: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

Example. $(\Gamma(TM), +, \cdot, [\cdot, \cdot])$ is an infinite-dimensional Lie algebra.

Theorem. $(L(G), [\cdot, \cdot])$ is a Lie subalgebra of $\Gamma(TG), [\cdot, \cdot]$.

Proof. It remains to be shown that $[\cdot,\cdot]:L(G)\times L(G)\to L(G)$ is closed, or equivalently, $\forall X,Y\in L(G):[X,Y]\in L(G)$. Using (3), it suffices to show that

$$[X,Y](f \circ l_q) = [X,Y]f \circ l_q$$

which follows immediately from the definition of L(G).

Theorem.

$$L(G) \cong_{\text{vector space}} T_e G$$

Corollary.

$$\dim L(G) = \dim T_e G = \dim G$$

Proof. Define a map $j: T_eG \xrightarrow{\sim} L(G)$ as

$$j(A)_g := l_{g*}A, \quad \forall g \in G$$

It can be verified that j is an isomorphism of the vector spaces. If we further define a Lie bracket on T_eG as $[\![A,B]\!]:=j^{-1}[j(A),j(B)]$, then

$$(T_eG, \llbracket \cdot, \cdot \rrbracket) \cong_{\text{Lie algebra}} (L(G), [\cdot, \cdot])$$