Supplementary materials to STRUCS 2018 395 Manuscript Submitted

for Review in the Journal of Structural Safety

- The polynomial function $g(\cdot)$, in Eq. 2, for the SEA 3, LA9, and LA3 M1 building models are
- 4 shown below:

$$5 g_{SEA3}\left(f_{yc}, f_{yb}, \rho_s, C_d, C_{cx}, H, V, \delta_d\right) = -55.3 - 2.31 \ln(f_{yc}) - 0.65 \ln(f_{yb}) + 6.01 \ln(C_d) + 6.01 \ln(C$$

6 2.42
$$\ln(\rho_s)$$
 + 5.7 $\ln(C_{cx})$ + 10.6 $\ln(h)$ + 17.1 $\ln(u)$ + 1.30 $\ln(\delta_d)$ + 0.13 $\ln(h) \ln(\delta_d)$ +

7 1.83
$$\ln(u) \ln(\delta_d) - 0.045 \ln(h) \ln(\delta_d)^2 + 0.124 \ln(u) \ln(\delta_d)^2 + 4.21 \ln(\delta_d)^2 +$$

8
$$1.47 \ln(\delta_d)^3 + 0.223 \ln(\delta_d)^5 + 0.011 \ln(\delta_d)^5$$
 (S1)

9
$$g_{LA.9}(f_{vc}, f_{vb}, \rho_s, C_d, C_{cx}, H, V, \delta_d) = -53.4 - 4.94 \ln(f_{vc}) - 1.91 \ln(f_{vb}) + 9.63 \ln(C_d) +$$

7.71
$$\ln(\rho_s) + 9.3 \ln(C_{cx}) + 6.93 \ln(h) + 22.3 \ln(u) + 42.9 \ln(\delta_d) - 3.02 \ln(h) \ln(\delta_d) +$$

12
$$4.19 \ln(\delta_d)^3 + 0.51 \ln(\delta_d)^4 + 0.02 \ln(\delta_d)^5$$
 (S2)

13
$$g_{LA \ 3 \ M1}(f_{yc}, f_{yb}, \rho_s, C_d, C_{cx}, H, V, \delta_d) = -546.0 - 24.6 \ln(f_{yc}) - 5.78 \ln(f_{yb}) +$$

14 37.9
$$\ln(C_d)$$
 + 41.4 $\ln(\rho_s)$ + 38.3 $\ln(C_{cx})$ + 63.9 $\ln(h)$ + 75.0 $\ln(u)$ - 0.41 $\ln(\delta_d)^4$ -

15
$$8.06 \ln(\delta_d)^3 - 51.2 \ln(\delta_d)^4 - 137.0 \ln(\delta_d)$$
 (S3)

- Figure S1 shows 100,000 samples of the normalized coefficients are obtained using affine
- 17 invariant MCMC sampler [1] with a burn-in period of 500,000 samples; recall that during logistic
- 18 regression all the variables were scaled to have zero mean and 0.5 standard deviation and all
- variables are transformed to the log scale.
- Table S1 lists the LA 3 building model limit state specific fragility models' $g(\cdot)$ functions
- 21 for exceeding drift capacity ranging from 0.5% to 8.0%.

Figure S1. Histogram of the simulated coefficients in $g_{LA3}(\cdot)$.

Table S1. $g(\cdot)$ functions for the LA 3 building model limit state specific fragility models

	Drift capacity limit state (%)								
Variable	0.5	1.0	1.5	2.0	2.5	4.0	5.0	6.0	7.0
Const.	-282	-215	-183	-162	-209	-133	-142	-95.4	-120
$ln(f_{yc})$	-0.37	-7.94	-9.8	-10	-8.52	-8.16	-6.32	-7.72	-6.52
$ln(f_{yb})$	-0.64	-3.22	-4.36	-5.5	-4.12	-6.52	-8.16	-8.76	-9.02
$ln(C_d)$	17.8	19.4	18.3	17.5	16.1	16.9	17.7	16.8	17.6
$\ln(\rho_s)$	22.1	18.7	18.6	16	20	11.4	11.3	5.27	8.26
$ln(C_{cx})$	17	18	16.7	17.7	17.5	15.8	17	16.5	17.4
ln(h)	30.8	33.3	28	30.4	30.3	29.3	30.9	33.6	33.8
ln(u)	35.5	37	33.8	34.2	34.9	32.9	34.7	36.3	34.6

References

 [1] Goodman J, Weare J. Ensemble samplers with affine invariance. Commun Appl Math Comput Sci 2010;5:65–80. doi:10.2140/camcos.2010.5.65.