		Note	e
Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)	1 2	I	II
Unterschrift der Kandidatin/des Kandidaten	3		
TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik	4		
Semestrale HÖHERE MATHEMATIK II	5		
Analysis 1 für Physiker	6		
11. Februar 2008, 10:30 – 12:00 Uhr			
Prof. Dr. H. Spohn, PD Dr. W. Aschbacher	7		
Hörsaal: Platz:	8		
Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 10 Aufgaben Bearbeitungszeit: 90 min	9		
Erlaubte Hilfsmittel: ein selbsterstelltes DIN A4 Blatt Bei Multiple-Choice-Aufgaben sind immer alle zutreffenden Aussagen anzukreuzen. Bei Aufgaben mit Kästchen werden nur die Resultate in diesen Kästchen berücksichtigt.	10		
Nur von der Aufsicht auszufüllen: Hörsaal verlassen von bis	Σ		
Vorzeitig abgegeben um			
Besondere Bemerkungen:	I	Erstkorrek	tur

- (a) Aus welchen Aussagen folgt, dass die reellwertige Folge (a_n) für $n \to \infty$ gegen $a \in \mathbb{R}$ konvergiert?
 - \Box $a \neq 0 \text{ und } \forall \delta > 0 \exists N \in \mathbb{N} \ \forall n > N : \left| \frac{a_n}{a} \right| \leq \delta$
 - $\square \quad \forall N \in \mathbb{N} \ \exists \varepsilon > 0 \ \forall n > N : |a_n a| < \varepsilon$
 - $\Box |a_n a| \to 0 \text{ für } n \to \infty$
 - $\square \quad \forall n \in \mathbb{N} : a_{n+1} \ge a_n \text{ und } \sup \{a_n | n \in \mathbb{N}\} = a$
- (b) Sei $f \in C([0,1],\mathbb{R})$. Welche Aussagen gelten für $g(x) = \int_0^x f(t) dt$ mit $x \in [0,1]$?
 - $\square \quad g \colon [0,1] \to \mathbb{R} \ \text{ ist stetig}.$
 - $\Box \quad g(1) = 0$
 - $\square \quad g \colon [0,1] \to \mathbb{R} \text{ ist differenzierbar}.$
- (c) Sei $f:[0,1] \to \mathbb{R}$ eine differenzierbare Funktion mit f(0) = f(1) = 0. Welche Aussagen treffen zu?
 - \Box f ist beschränkt.
 - \Box f' ist beschränkt.
 - \square Es existiert ein $x_0 \in (0,1)$ mit $f(x_0) = 0$.
 - \square Es existiert ein $x_0 \in (0,1)$ mit $f'(x_0) = 0$.

(a) Welchen Wert besitzt die folgende Reihe?

$$\sum_{n=1}^{\infty} \frac{1 - (-1)^n}{2^{n+1}} \qquad \qquad \Box \quad \frac{1}{4} \qquad \qquad \Box \quad \frac{3}{8} \qquad \qquad \Box \quad \frac{2}{3} \qquad \qquad \Box \quad \frac{5}{12} \qquad \qquad \Box \quad \frac{5}{6}$$

$$\Box$$
 $\frac{1}{4}$

$$\frac{3}{8}$$

$$\Box \frac{2}{3}$$

$$\Box \frac{5}{12}$$

$$\supset \frac{5}{6}$$

(b) Wo liegt der Grenzwert der Reihe $\sum_{n=1}^{\infty} \frac{(-1)^n}{(1+\frac{1}{n})^n}$?

$$\square \ = -\infty \qquad \square \in (-\infty,0) \qquad \square \ = 0 \qquad \square \ \in (0,\infty) \qquad \square \ = +\infty \qquad \square \ \ \text{existiert nicht}$$

$$\Box = 0$$

$$\square \in (0, \infty]$$

$$\Box = +\infty$$

(c) Wie gross ist der Konvergenzradius der folgenden Potenzreihe?

$$\sum_{n=1}^{\infty} n^{\log(n)/n} x^n$$

 \square 0 \square 1 \square e \square $\frac{1}{e}$ \square ∞

(d) Sei $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ mit $f(x) = \frac{1 - \cos^2 x}{x^2}$. Durch welchen Wert ist f bei x = 0 stetig fortsetzbar?

☐ nicht stetig fortsetzbar

 \square 2

 \Box 0

Untersuchen Sie die uneigentlichen Integrale auf Konvergenz und bestimmen Sie gegebenenfalls deren Wert.

(a) $\int_0^\infty \frac{\mathrm{d}x}{\sqrt{x}(1+x)}$

 \Box divergent \Box 1 \Box π

(b) $\int_0^1 \log x \, \mathrm{d}x$

 \Box divergent \Box -1 \Box -2 \Box $\frac{1}{2}$

 $\text{(c)} \int_0^{\pi/2} \frac{\mathrm{d}x}{\sin^2 x}$

- ☐ divergent
- \Box 1 \Box 2π \Box

Aufgabe 4. Inhomogenes Differentialgleichungssystem

[4 Punkte]

Sei $x : \mathbb{R} \to \mathbb{R}^3$ die Lösung des inhomogenen Differentialgleichungssystems

$$\dot{x}(t) = Ax(t) + b(t) \quad \text{mit} \quad A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix} \quad \text{und} \quad b(t) = \begin{bmatrix} \mathbf{e}^t \\ 0 \\ 0 \end{bmatrix}.$$

(a) Berechnen Sie den Propagator e^{tA} . Welche Form hat er bei t=1?

$$\Box \begin{bmatrix} e & 0 & e^2 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \Box \begin{bmatrix} e^2 & 0 & 2e^2 \\ 0 & e & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \Box \begin{bmatrix} e^2 & 0 & e^2 \\ 0 & 1 & 0 \\ 0 & 0 & e^2 \end{bmatrix} \quad \Box \begin{bmatrix} 1 & 0 & 2e^2 \\ e & 0 & 0 \\ 0 & 0 & e^2 \end{bmatrix}$$

Hinweis: Schreiben Sie A = D + N für ein diagonales D und ein nilpotentes N, sodass D und Nkommutieren.

(b) Wie lautet die erste Komponente von x(t) bei t = 1 unter der Anfangsbedingung $x(0) = [0, 0, 0]^T$?

$$\Box$$
 $e^2 - 1$

$$\square$$
 $e^2 - 1$ \square $e(e+1)$ \square $e^2 + 1$ \square $e(e-1)$

$$\Box$$
 e² + 1

$$\Box$$
 e (e – 1

Aufgabe 5. Parameterintegral

[5 Punkte]

Sei die Funktion $f \colon \mathbb{R} \to \mathbb{R}$ definiert durch

$$f(x) = \int_{1}^{\pi} \frac{\sin(tx)}{t} \, \mathrm{d}t.$$

Benutzen Sie den Satz von der dominierten Konvergenz um zu zeigen, dass $f'(0) = \pi - 1$.

[6 Punkte]

Aufgabe 6. Homogenes Differentialgleichungssystem Sei $x\colon\mathbb{R}\to\mathbb{R}^2$ die Lösung des homogenen Differentialgleichungssystems

$$\dot{x}(t) = Ax(t) \quad \text{mit} \quad A = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix} \quad \text{und} \quad x(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Bestimmen Sie x(t) zur Anfangsbedingung x(0), indem Sie eine Basis aus Eigenvektoren von A benutzen.

Sei die Funktion $f:(-1,1)\to\mathbb{R}$ definiert durch

$$f(x) = \frac{1}{\sqrt{1-x}},$$

und sei $\sum_{n=0}^{\infty} a_n x^n$ ihre Taylorreihe mit dem Ursprung als Entwicklungspunkt.

(a) Wie lauten die Koeffizienten a_n für $n \ge 1$?

$$\Box \qquad a_n = \frac{\prod_{j=1}^n (2j-1)}{2^n}$$

$$\Box \qquad a_n = \frac{\prod_{j=1}^n (2j-1)}{n! \, 2^n}$$

$$\Box \qquad a_n = \frac{\prod_{j=1}^{n-1} (2j-1)}{2^n}$$

$$\Box \qquad a_n = \frac{\prod_{j=1}^n (2j-1)}{(n-1)! \, 2^n}$$

(b) Wie gross ist der Konvergenzradius der Taylorreihe?

 \square 0 \square $\frac{1}{2}$ \square 1 \square e \square ∞

(c) Wie lauten die Koeffizienten b_n der Taylorreihe $\sum_{n=0}^{\infty} b_n x^n$ von f'(x) im gleichen Entwicklungspunkt?

Aufgabe 8. Stetigkeit [3 Punkte]

Seien $f,g\in C(\mathbb{R},\mathbb{R})$. Benutzen Sie die $\varepsilon\delta$ -Definition der Stetigkeit um zu zeigen, dass

$$f+g\in C(\mathbb{R},\mathbb{R}).$$

Aufgabe 9. Häufungwerte

[4 Punkte]

Sei (a_n) eine beschränkte reellwertige Folge und $\mathrm{H}(a_n)$ die Menge aller ihrer Häufungswerte. Zeigen Sie, dass

$$\sup H(a_n) \in H(a_n).$$

Aufgabe 10. Satz von Taylor

[2 Punkte]

(a) Sei $f \in C^{n+1}([0,1],\mathbb{R})$ für ein $n \in \mathbb{N}_0$. Wie lautet die Integralform des Restgliedes $R_{n+1}(x)$ in der Taylorformel *n*-ter Ordnung mit dem Ursprung als Entwicklungspunkt?

$$R_{n+1}(x) =$$

- (b) Welches Abfallverhalten hat $R_{n+1}(x)$ für $x \to 0^+$?
 - $R_{n+1}(x) = o(x^n)$
 - $R_{n+1}(x) = O(x^n)$

 - $R_{n+1}(x) = o(x^{n+1})$ $R_{n+1}(x) = O(x^{n+1})$