Combinational Circuits

Chun-Jen Tsai National Chiao Tung University 10/22/2012

Logic Circuits for Digital Systems

- □ Logic circuits for digital systems may be combinational or sequential.
- □ A combinational circuit consists of logic gates whose outputs at any time are determined from only the current inputs.
- ☐ A sequential circuit contains small memory elements
 - the outputs are a function of the current inputs and the state of the memory elements
 - The memory elements imply that the outputs also depend on past inputs, not just current inputs

Combinational Circuit

- □ A combinational circuits
 - 2ⁿ possible combinations of input values

- Specific functions
 - Adders, subtractors, comparators, decoders, encoders, and multiplexers
 - MSI circuits or standard cells

Analysis of Combinational Circuits

- □ In general, give a logic diagram, we must perform some analysis to understand the function it implements:
- ☐ Steps of analysis:
 - Make sure that the logic is combinational, not sequential
 - No feedback path or memory elements
 - Label inputs, intermediate gate outputs, and the final outputs
 - Derive its Boolean functions (truth table)
 - A verbal explanation of its function

Example: Analysis of a Circuit (1/2)

- \Box The following logic diagram has three inputs, A, B, C, and two outputs:
 - \blacksquare $F_2 = AB + AC + BC$
 - $T_1 = A + B + C$
 - \blacksquare $T_2 = ABC$
 - $T_3 = F_2'T_1$
 - $F_1 = T_3 + T_2$

Example: Analysis of a Circuit (2/2)

- □ Put the function in canonical form:
 - $F_1 = T_3 + T_2 = F_2'T_1 + ABC$ = (AB + AC + BC)'(A + B + C) + ABC= (A' + B')(A' + C')(B' + C')(A + B + C) + ABC= (A' + B'C')(AB' + AC' + BC' + B'C) + ABC= A'BC' + A'B'C + AB'C' + ABC
- ☐ The function is a full adder
 - \blacksquare F_1 is the sum
 - \blacksquare F_2 is the carry

Α	В	С	F ₂	F ' ₂	<i>T</i> ₁	T ₂	<i>T</i> ₃	<i>F</i> ₁
0 0 0	0 0 1	0 1 0	0 0 0	1 1 1	0 1 1	0 0 0	0 1 1	0 1 1
0 1 1 1 1	1 0 0 1 1	1 0 1 0 1	1 0 1 1	0 1 0 0 0	1 1 1 1 1	0 0 0 0 0	0 1 0 0 0	0 1 0 0 1

Design of Combinational Circuits

- ☐ The design procedure of combinational circuits
 - State the function behavior (system specification)
 - Determine the inputs and outputs
 - The input and output variables are assigned symbols
 - Derive the truth table
 - Derive the simplified Boolean functions
 - Draw the logic diagram and verify the correctness

Design Implementation

- □ Today, Electronic Design Automation (EDA) tools are used for design implementation.
 - EDA tools take functional description (expressed in HDL codes or schematic diagrams) and design constraints as input, and generate a "netlist" as output.
- ☐ Considerations for Logic minimization:
 - Number of gates
 - Number of inputs to a gate
 - Propagation delay
 - Number of interconnection
 - Limitations of the driving capabilities

Code Conversion (1/4)

- □ Design a circuit to convert from BCD to excess-3 codes
- ☐ System specification:

	Inpu	t BCD)	Output Excess-3 Code				
A	В	C	D	W	X	y	Z	
0	0	0	0	0	0	1	1	
0	0	0	1	0	1	0	0	
0	0	1	0	0	1	0	1	
0	0	1	1	0	1	1	0	
0	1	0	0	0	1	1	1	
0	1	0	1	1	0	0	0	
0	1	1	0	1	0	0	1	
0	1	1	1	1	0	1	0	
1	0	0	0	1	0	1	1	
1	0	0	1	1	1	0	0	

Code Conversion (2/4)

☐ K-maps:

Code Conversion (3/4)

- ☐ The simplified functions
 - z = D' y = CD + C'D' x = B'C + B'D + BC'D' w = A + BC + BD
- □ Another implementation
 - z = D' y = CD + C'D' = CD + (C + D)' x = B'C + B'D + BC'D' = B'(C + D) + B(C + D)' w = A + BC + BD

Code Conversion (4/4)

☐ The logic diagram:

12/51

One-bit Half-Adder (1/2)

- ☐ The behavior of a 1-bit half-adder is as follows:
 - Input variables: *x* and *y*
 - Output variables: Sum (S) and carry (C)
 - Truth table:

Half Adder

	71000		
X	y	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

- Boolean functions:
 - $S = x'y + xy' = x \oplus y$
 - C = xy

One-bit Half-Adder (2/2)

☐ Gate-level implementation:

□ Alternative implementations:

$$\blacksquare S = (x + y)(x' + y')$$

$$S' = xy + x'y' \rightarrow S = (C + x'y')'$$

$$C = xy = (x' + y')'$$

One-bit Full-Adder (1/3)

- ☐ The behavior of a 1-bit full-adder is as follows:
 - Input variables: x, y, and z (carry from previous bit)
 - Output variables: Sum (S) and carry (C)
 - Truth table:

Full Adder

X	y	Z	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

■ K-maps:

(a)
$$S = x'y'z + x'yz' + xy'z' + xyz$$

One-bit Full-Adder (2/3)

☐ Gate-level implementation:

$$\blacksquare S = x'y'z + x'yz' + xy'z' + xyz$$

$$\blacksquare \quad C = xy + xz + yz$$

One-bit Full-Adder (3/3)

- □ We can use two 1-bit half-adders to construct a 1-bit full adder:

Binary Adder

☐ The behavior of a 4-bit binary adder

Subscript <i>i</i> :	3	2	1	0	
Input carry	0	1	1	0	$egin{array}{c} C_i \ A_i \ B_i \end{array}$
Augend	1	0	1	1	
Addend	0	0	1	1	
Sum	1	1	1	0	S_i C_{i+1}
Output carry	0	0	1	1	

Carry Propagation of Adders

- ☐ The carry propagation problem:
 - when the correct outputs are available
 - the critical path counts (the worst case)

 - The propagation delay is 8 gate levels for a 4-bit adder

Reduction of Propagation Delay

- ☐ To reduce the carry propagation delay, we can
 - Employ faster gates
 - Use look-ahead carry logic (more complex)
- □ Look-ahead carry generation:
 - Define two new variables:
 - Carry propagate $P_i = A_i \oplus B_i$
 - Carry generate $G_i = A_i B_i$
 - Now, sum $S_i = P_i \oplus C_i$
 - $\blacksquare \quad \text{Carry: } C_{i+1} = G_i + P_i C_i$
 - $C_1 = G_0 + P_0 C_0$
 - $C_2 = G_1 + P_1C_1 = G_1 + P_1G_0 + P_1P_0C_0$
 - $C_3 = G_2 + P_2C_2 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$

Look-Ahead Carry Generator

☐ Logic diagram:

Carry-Look Ahead Adder

- ☐ Three-level logic diagram:
 - \blacksquare $P_i = A_i \oplus B_i$
 - Carry generation
 - $S_i = P_i \oplus C_i$

Binary Subtractor (1/2)

- □ Logic behavior:
 - \blacksquare A B = A + (2's complement of B)
- ☐ Boolean expression:
 - If M = 0, A + B; if M = 1, A + B' + 1

Binary Subtractor (2/2)

- □ Since our adder has finite bits, we must perform overflow detection:
 - Add two positive numbers and obtain a negative number
 - Add two negative numbers and obtain a positive number
- □ Overflow detection rule:
 - If V = 0, no overflow; V = 1, overflow
- □ Examples:

$$\begin{array}{cccc}
0 & 1 \\
0 & 1000110 \\
\underline{0} & 1010000 \\
\hline
1 & 0010110
\end{array}$$

Decimal Adder (1/3)

- □ A BCD adder adds two BCD numbers:
 - 9 inputs: two BCD codes and one carry-in
 - 5 outputs: one BCD code and one carry-out
- ☐ The truth table has 29 entries, too large for efficient implementation
- ☐ Question: can we use binary full adders to implement BCD adders?
 - The sum of any two digits $\leq 9 + 9 + 1 = 19$
 - After binary addition, we perform binary to BCD conversion

Decimal Adder (2/3)

☐ Binary-to-BCD conversion of numbers ≤ 19

Derivation of BCD Adder

	Bir	ary S	um			В	CD Su	m		Decimal
K	Z ₈	Z ₄	Z ₂	Z ₁	C	S ₈	S ₄	S ₂	S ₁	
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	2
0	0	0	1	1	0	0	0	1	1	3
0	0	1	0	0	0	0	1	0	0	4
0	0	1	0	1	0	0	1	0	1	5
0	0	1	1	0	0	0	1	1	0	6
0	0	1	1	1	0	0	1	1	1	7
0	1	0	0	0	0	1	0	0	0	8
0	1	0	0	1	0	1	0	0	1	9
0	1	0	1	0	1	0	0	0	0	10
0	1	0	1	1	1	0	0	0	1	11
0	1	1	0	0	1	0	0	1	0	12
0	1	1	0	1	1	0	0	1	1	13
0	1	1	1	0	1	0	1	0	0	14
0	1	1	1	1	1	0	1	0	1	15
1	0	0	0	0	1	0	1	1	0	16
1	0	0	0	1	1	0	1	1	1	17
1	0	0	1	0	1	1	0	0	0	18
1	0	0	1	1	1	1	0	0	1	19

Decimal Adder (3/3)

- ☐ Conversion is needed if the sum > 9
 - The carry of BCD sum C = 1 if K = 1 or $Z_8Z_4 = 1$ or $Z_8Z_2 = 1$

$$\rightarrow C = K + Z_8 Z_4 + Z_8 Z_2$$

■ If C = 1, modify the binary sum by $-(10)_d$ or +6

☐ Block diagram:

Binary Multiplier (1/2)

- □ Two-bit multiplier for $(B_1B_0)\times(A_1A_0)$:
 - $C_0 = A_0 B_0$

 - $C_2 = A_1 B_1 \oplus (A_0 B_1)(A_1 B_0)$
 - $C_3 = (A_1B_1)(A_0B_1)(A_1B_0)$

Binary Multiplier (2/2)

 \square 4-bit by 3-bit multiplier for $(B_3B_2B_1B_0)\times (A_2A_1A_0)$:

Magnitude Comparator (1/2)

- □ Using the truth table to implement an n-bit number comparator requires 2^{2n} entries too large.
- □ Functions of comparing

$$A = A_3 A_2 A_1 A_0$$
 and $B = B_3 B_2 B_1 B_0$

- $F_{A=B} = x_3 x_2 x_1 x_0$, where $x_i = (A_i' B_i + A_i B_i')'$, for i = 0, 1, 2, 3.
- $F_{A>B} = A_3 B_3' + x_3 A_2 B_2' + x_3 x_2 A_1 B_1' + x_3 x_2 x_1 A_0 B_0'$
- $F_{A < B} = A_3'B_3 + x_3A_2'B_2 + x_3x_2A_1'B_1 + x_3x_2x_1A_0'B_0$

Magnitude Comparator (2/2)

☐ Logic diagram:

Decoder (1/2)

- □ An *n*-to-*m* decoder selects a particular output line give an input binary codeword:
 - \blacksquare an input binary code of n bits has 2^n possible output lines
 - only one output can be active (high) at any time
- □ Example: a 3-to-8 decoder

Truth Table of a Three-to-Eight-Line Decoder

Inputs			Outputs								
X	y	Z	D_0	<i>D</i> ₁	D ₂	D_3	D ₄	D ₅	D ₆	D ₇	
0	0	0	1	0	0	0	0	0	0	0	
0	0	1	0	1	0	0	0	0	0	0	
0	1	0	0	0	1	0	0	0	0	0	
0	1	1	0	0	0	1	0	0	0	0	
1	0	0	0	0	0	0	1	0	0	0	
1	0	1	0	0	0	0	0	1	0	0	
1	1	0	0	0	0	0	0	0	1	0	
1	1	1	0	0	0	0	0	0	0	1	

Decoder (2/2)

33/51

Decoder Implementation with NAND

- ☐ If NAND gates are used to implement a decoder, it is more efficient to use "active-low" logic
- □ Example: a 2-to-4 decoder with an enable input

E	\boldsymbol{A}	B	D_0	D_1	D_2	D_3
1	X	X	1	1	1	1
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	1

(b) Truth table

Demultiplexers

□ A demultiplexor (demux) is a decoder with an enable input line

Decoder Extension

- □ Large decoders can be constructed using smaller decoders with enable inputs.
- □ A 4×16 decoder constructed with two 3×8 decoders:

Combinational Logic Implementation

- ☐ A decoder can implement any combinational logics
 - Each output of the decoder represents a selected minterm
 - A function is implemented by summing all its minterms using an OR gate at the output of the decoder
 - For an n-input, m-output function, we need an $n \times 2^n$ deocder and m OR gates (each one has multiple inputs that corresponds to the number of minterms for each outputs)
- \Box To reduce the number of inputs to OR gates, we can use NOR to combine the minterms of F'
 - If there are k minterms in F, there are 2^n-k minterms in F'.
- ☐ In general, it is not a practical implementation

Example: A Full Adder

- ☐ Implementing a 1-bit full adder using a decoder:
 - $S(x, y, z) = \Sigma(1, 2, 4, 7)$
 - $C(x, y, z) = \Sigma(3, 5, 6, 7)$

Encoder

- ☐ Encoder is the inverse function of a decoder
- ☐ Example: octal-to-binary encoder

Inputs							Outputs			
D ₀	D ₁	D ₂	D ₃	D ₄	D ₅	D ₆	D ₇	X	y	Z
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

■ Boolean functions:

$$X = D_4 + D_5 + D_6 + D_7$$
, $Y = D_2 + D_3 + D_6 + D_7$, $Z = D_1 + D_3 + D_5 + D_7$

Priority Encoder (1/3)

- □ A priority encoder is an encoder that applies some priority policy to generate the output when multiple inputs are active simultaneously
- ☐ Example:

	Inp	uts	C	s		
D ₀	D ₁	D ₂	D ₃	X	y	V
0	0	0	0	X	X	0
1	0	0	0	0	0	1
X	1	0	0	0	1	1
X	X	1	0	1	0	1
X	X	X	1	1	1	1

- D_3 has the highest priority
- \blacksquare D_0 has the lowest priority
- *X*: don't-care conditions
- *V*: valid output indicator

Priority Encoder (2/3)

☐ The K-maps of the priority encoder:

Priority Encoder (3/3)

☐ Logic diagram:

- $= x = D_2 + D_3$
- $y = D_3 + D_1 D_2'$
- $V = D_0 + D_1 + D_2 + D_3$

Multiplexers

- □ A multiplexor (mux) selects binary information from one of input lines and direct it to a single output line
- \square There are 2^n input lines, n selection lines and one output line
- ☐ Example: 2-to-1-line multiplexer

4-to-1-line Multiplexer

☐ Logic diagram of a 4×1 multiplexor:

$$\begin{array}{c|ccccc} S_1 & S_0 & Y \\ \hline & 0 & 0 & I_0 \\ 0 & 1 & I_1 \\ 1 & 0 & I_2 \\ 1 & 1 & I_3 \\ \end{array}$$

(b) Function table

Multiplexor Extension

 \square *n*-bit signal selection logic can be constructed using *n*

1-bit multiplexors:

Multiplexors and Decoders

- □ Note that a 2^n -to-1 multiplexor is equivalent to an n-to- 2^n decoder plus an OR gate
 - The decoder decodes the *n* select lines and determines which input line of the multiplexor will be active
 - An additional OR gate that combines all the output lines of the decoder generate the 1-bit output of the multiplexor
- ☐ Similar to decoders, multiplexors can be used to implement combinational circuits as well

Boolean Function Implementation

- \square 2ⁿ-to-1 mux can implement any Boolean function of *n* input variable
 - Function inputs connects to the select lines of the mux and the minterms of the function maps to 1's in the input lines
 - Inefficient
- \Box A better solution is to implement the Boolean function using 2^{n-1} -to-1 mux
 - \blacksquare n-1 of these variables connects to the selection lines
 - the remaining variable (and its complement) connect to the inputs

Example: $F(x, y, z) = \Sigma(1, 2, 6, 7)$

☐ Implement the function with a 4-to-1 multiplexor:

х	y	Z	F	
0	0	0 1	0 1	F = z
0	1 1	0 1	1 0	F = z'
1 1	0	0 1	0	F = 0
1 1	1 1	0 1	1 1	F = 1

(a) Truth table

(b) Multiplexer implementation

Example: 4-input Function

 \square $F(A, B, C, D) = \Sigma(1, 3, 4, 11, 12, 13, 14, 15)$

A	В	C	D	F	
0 0	0	0	0 1	0 1	F = D
0	0	1 1	0 1	0 1	F = D
0	1 1	0	0 1	1 0	F = D'
0	1 1	1 1	0 1	0 0	F = 0
1 1	0	0	0 1	0	F = 0
1 1	0 0	1 1	0 1	0 1	F = D
1 1	1 1	0	0 1	1 1	F = 1
1 1	1 1	1 1	0 1	1 1	F = 1

Three-State Gates

- ☐ A multiplexor can be implemented using a tri-state gate (namely, a tri-state buffer)
- ☐ The output states of a tri-state gate are: 0, 1, and high-impedance
 - A high-impedance wire is an "open circuit" wire that will not affect the signal level of the wire it connects to.

Example: 4-to-1 Multiplexor

□ A 4-to-1 Mux implemented with a tri-state buffer:

