

Jet Surface Interaction Scrubbing Noise from High Aspect-Ratio Rectangular Jets

Abbas Khavaran
Richard Bozak
NASA Glenn Research Center

Acoustics Technical Working Group Meeting April 21–22, 2015
NASA Langley, Hampton, VA

NASA Fundamental Aeronautics Program FW Projects

Motivation

Interaction of jet exhaust with nearby solid surfaces:

- Hybrid Wing Body (HWB) concepts
- High aspect ratio rectangular exhaust with extended beveled surfaces
- Over the wing engine mount
- Nearby structural components could provide noise shielding
- They could also produce new sources of sound

Geometry – Rectangular Exhaust

* J. Bridges, AIAA-2014-0876

Outline

- Governing Equations
- Propagation Green's Fun (GF) in High-AR Rectangular Jets
- Sample GF 8:1 Aspect Ratio Jet Exhaust
- Scrubbing Noise Spectra and Data Comparison
- Summary

Scrubbing Noise

- NS Equations → (Mean Flow + Linear Fluctuations)
- Locally Parallel Mean Flow
- Compressible
- Constant Static Pressure
- Ideal Gas Law

Variable density Pridmore-Brown eq.

$$L\pi' = \Gamma, \qquad \pi' \simeq \frac{p'(\vec{x}, t)}{\gamma \, \overline{p}} \qquad \text{(Goldstein 2010)}$$

$$L \equiv D \left(D^2 - \frac{\partial}{\partial x_j} (c^2 \frac{\partial}{\partial x_j}) \right) + 2c^2 \frac{\partial U}{\partial x_j} \frac{\partial^2}{\partial x_1 \partial x_j}, \quad D \equiv \frac{\partial}{\partial t} + U \frac{\partial}{\partial x_1} \frac{\partial}{\partial x_1} \left(\frac{\partial^2}{\partial x_1} (c^2 \frac{\partial}{\partial x_2}) \right) + 2c^2 \frac{\partial^2}{\partial x_2} \left(\frac{\partial^2}{\partial x_1} (c^2 \frac{\partial}{\partial x_2}) \right) + 2c^2 \frac{\partial^2}{\partial x_1} (c^2 \frac{\partial}{\partial x_2}) \left(\frac{\partial^2}{\partial x_2} (c^2 \frac{\partial}{\partial x_2}) \right) + 2c^2 \frac{\partial^2}{\partial x_2} (c^2 \frac{\partial}{\partial x_2}) \left(\frac{\partial}{\partial x_2} (c^2 \frac{\partial}{\partial x_2}) \right) + 2c^2 \frac{\partial^2}{\partial x_2} (c^2 \frac{\partial}{\partial x_2}) \left(\frac{\partial}{\partial x_2} (c^2 \frac{\partial}{\partial x_2}) \right) + 2c^2 \frac{\partial^2}{\partial x_2} (c^2 \frac{\partial}{\partial x_2}) \left(\frac{\partial}{\partial x_2} (c^2 \frac{\partial}{\partial x_2}) \right) + 2c^2 \frac{\partial}{\partial x_2} (c^2 \frac{\partial}{\partial x_2}) \left(\frac{\partial}{\partial x_2} (c^2 \frac{\partial}{\partial x_2}) \right) + 2c^2 \frac{\partial}{\partial x_2} (c^2 \frac{\partial}{\partial x_2}) \left(\frac{\partial}{\partial x_2} (c^2 \frac{\partial}{\partial x_2}) (c^2 \frac{\partial}{\partial x_2}) \right) + 2c^2 \frac{\partial}{\partial x_2} (c^2 \frac{\partial}{\partial x_2}) \left(\frac{\partial}{\partial x_2} (c^2 \frac{\partial}{\partial x_2}) (c^2 \frac$$

Green's Function Method

$$\pi'(\vec{x},t) = \int_{\vec{y}} \int_{\tau} G(\vec{x},t;\vec{y},\tau) \Gamma(\vec{y},\tau) d\tau d\vec{y}$$
$$LG(\vec{x},t;\vec{y},\tau) = \delta(\vec{x}-\vec{y})\delta(t-\tau)$$

 Wetted side of the plate only (Trailing Edge Noise component discussed by Goldstein et al, 2013)

Transform:
$$(x_1 - y_1, x_2 - y_2, t - \tau) \to (k_1, k_2, \omega)$$

 $G(\vec{x}, t; \vec{y}, \tau) \to \hat{G}(\vec{k}_t, x_3; y_3, \omega) \quad \vec{k}_t \equiv (k_1, k_2)$

Far-field Spectrum

$$\overline{p^2}(\vec{x},\omega) = \int_{\vec{y}} \int_{\vec{\xi}}^{\infty} \mathbf{G}^*(\vec{x},\vec{y}-\vec{\xi}/2;\omega) \mathbf{G}(\vec{x},\vec{y}+\vec{\xi}/2;\omega) q(\vec{y},\vec{\xi},\tau) e^{i\omega\tau} d\tau d\vec{\xi} d\vec{y}$$

GF Method (Cont'd)

■ Stationary Phase solution $(\kappa_o R \gg 1, \kappa_o = \omega/c_\infty)$

$$\vec{k}_t^s = \kappa_o(\sin\phi^s \cos\theta^s, \cos\phi^s)$$

(Khavaran, 2014)

$$\mathbf{G}(\vec{x}, \vec{y}; \boldsymbol{\omega}) \sim -i \frac{e^{i\Theta(\vec{k}_t^s, \vec{x}, \boldsymbol{\omega})}}{(2\pi)^3 R} \frac{\sin \theta^s \sin^2 \phi^s}{c_{\infty}^2 c(y_3)} \frac{b_2(\vec{k}_t^s, \boldsymbol{\omega}) V_1(\vec{k}_t^s, y_3, \boldsymbol{\omega})}{W_o(\vec{k}_t^s, \boldsymbol{\omega}, \overline{Z})} \frac{(1 - M_{\infty} \sin \phi^s \cos \theta^s)}{\left(1 - \frac{U(y_3)}{c_{\infty}} \sin \phi^s \cos \theta^s\right)^2}$$

$$\Theta(\vec{k}_{t}, \vec{x}, \boldsymbol{\omega}) = k_{1}(x_{1} - y_{1}) + k_{2}(x_{2} - y_{2}) - \chi_{\infty} x_{3}$$

$$V_{2}(\vec{k}_{t}, x_{3}, \boldsymbol{\omega}) = b_{2}(\vec{k}_{t}, \boldsymbol{\omega}) e^{-i\chi_{\infty} x_{3}} \qquad x_{3} \to \infty$$

Two linearly independent solutions

$$V_{j}(\vec{k}_{t}, x_{3}, \omega), j = 1,2$$

 $V''_{j} + f(\vec{k}_{t}, x_{3}, \omega)V_{j} = 0$

Numerical Results

SolidWorks RANS (k-ε Turb Model) – Commercial Code

XTE *

- Mapping Cloud Solution to Structured Grid
- Normalized GF $G_N \equiv \pi c_{\infty}^3 \, (\mathbf{G} \, / \, G_{FS} \,)$
- Strouhal Frequency $St \equiv a f / U_i$
- Source Location $\eta \equiv y_3 / a$

Simulation Conditions

8:1 Aspect Ratio Rectangular Exhaust (N8Z)					
Set Point	Standoff h (in)	XTE (in)	NPR	NTR	M j
SP07 (H02XTE12)	0.20	12	1.86	1.0	0.98
SP07 (H19XTE12)	1.90	12	1.86	1.0	0.98
SP07 (Isolated)	NA	NA	1.86	1.0	0.98
SP05 (H19XTE12)	1.90	12	1.42	1.0	0.72
SP03 (H19XTE12)	1.90	12	1.19	1.0	0.51

SolidWorks Mesh* - N8Z

* Rick Bozak, 2013

RANS Solution (Mapped to Rectangular Grid)

Mean Flow (SP07-H02-XTE12)

Mean Axial Velocity (SP07-H02-XTE12)

Turbulence (SP07-H02-XTE12)

G_N- Above Surface $(\theta = \pi / 4, St = 0.25)$ N8Z - SP07-H02-XTE12

(G_N – Analytical Profile)

G_N- Downstream the Plate $(\theta = \pm \pi / 4, St = 0.25)$

Sample Results (1/3 Octave Lossless Spectra, Arc = $100D_{eq}$)

N8Z - SP07-H02-XTE12

N8Z-SP07-H02X12, Inlet Angle = 60 deg (CL, CT) = (0.74, 0.93), (Am, Bm)=(4.727, 4.379), JSIT VER-5T Arc = 17.75FT, LOSSLESS

^{*} Measured Spectra, C. Brown & J. Bridges, GRC

N8Z - SP07-H02-XTE12

N8Z - SP07-H19-XTE12

N8Z - SP07-Isolated

Sample Results (Cont'd) N8Z - SP05-H19-XTE12

Sample Results (Cont'd) N8Z - SP03-H19-XTE12

Summary

- The GF was evaluated using RANS input (SolidWorks)
- The mean flow was considered as locally parallel in two directions (HAR rectangular jets)
- Source calibration parameters (length- and time-scales) follow the usual method (TKE and ε) in a RANS-based Acoustic Analogy.
- Spectral component associated with scrubbing noise dominated at HF
- Jet plume downstream of the TE contributed to low- to mid-frequency
- Trailing Edge Noise (TEN) should be superimposed on present predictions.

Next Step

- Consistency across operating conditions requires mean flow and turbulence validation (data and/or alternative RANS solvers)
- Heated jets (enthalpy-related source).

QUESTIONS?