AMATH 584 Assignment 3

Tyler Chen

Exercise 6.1

If P is an orthogonal projector, then I-2P is unitary. Prove this algebraically, and give a geometric interpretation.

Solution

Suppose P is an orthogonal projector. Then $P^2 = P = P^*$. Thus,

$$(I-2P)(I-2P)^* = (I-2P)(I^*-2P^*) = (I-2P)(I-2P) = I^2 - 2P - 2P + 4P^2 = I - 4P + 4P = I$$

This proves I - 2P is unitary.

Figure 1: Image of I-2P acts on v

Using Figure 1 it is clear that I-2P reflects points about orthogonal compliment of range(P). Reflecting across $(\operatorname{range}(P))^{\perp} = \ker(P)$ twice will do nothing. Since $(I-2P)^2 = (I-2P)(I-2P)^* = I$, this coincides with the algebraic proof above.

Exercise 6.4

Consider the matrices

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Answer the following questions by hand calculation.

(a) What is the orthogonal projector P onto $\operatorname{range}(A)$, and what is the image under P of the vector $(1,2,3)^*$?

(b) Same question for B

Solution

(a) First observe,

$$(A^*A)^{-1} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{bmatrix}$$

Thus,

$$P_A = A(A^*A)^{-1}A^* = \begin{bmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}$$

So,

$$P_A(1,2,3)^* = (2,2,2)^*$$

(b) First observe,

$$(B^*B)^{-1} = \begin{bmatrix} 2 & 2 \\ 2 & 5 \end{bmatrix}^{-1} = \frac{1}{6} \begin{bmatrix} 5 & -2 \\ -2 & 2 \end{bmatrix} = \begin{bmatrix} \frac{5}{6} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

Thus,

$$P_B = B(B^*B)^{-1}B^* = \begin{bmatrix} \frac{5}{6} & \frac{1}{3} & \frac{1}{6} \\ \frac{1}{3} & \frac{1}{3} & -\frac{1}{3} \\ \frac{1}{6} & -\frac{1}{3} & \frac{5}{6} \end{bmatrix}$$

So,

$$P_B(1,2,3)^* = (2,0,2)^*$$

Exercise 7.1

Consider again the matrices A and B of Exercise 6.4.

(a) Using any method you like, determine (on paper) a reduced QR factorization $A = \hat{Q}\hat{R}$ and a full QR factorization A = QR.

(b) Again using any method you like, determine reduced and full QR factorizations $B = \hat{Q}\hat{R}$ and B = QR.

Solution

The book gives the following algorithm for calculating a reduced QR decomposition.

- (a) We have $a_1 = (1,0,1)^*$, $a_2 = (0,1,0)^*$. We use the algorithm listed above:
 - (1) with j = 1:
 - (2) $v_1 = a_1$
 - (6) $r_{11} = ||v_1||_2 = \sqrt{2}$.
 - (7) $q_1 = v_1/r_{11} = (1/\sqrt{2}, 0, 1/\sqrt{2})^*$
 - (1) with j=2
 - (2) $v_2 = a_2$
 - (3) with i = 1

(4)
$$r_{21} = q_1^* a_2 = (1/\sqrt{2}, 0, 1/\sqrt{2})(0, 1, 0) = 0$$

(5)
$$v_2 = v_2 - 0q_1 = (0, 1, 0)$$

- (6) $r_{22} = ||v_2||_2 = 1$
- (7) $q_2 = v_2/r_{22} = (0, 1, 0)$

This gives reduced QR factorization,

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0 \\ 0 & 1 \end{bmatrix}$$

We extend this to a full QR factorization by finding a vector orthogonal to q_1, q_2 . First,

$$0 = (1/\sqrt{2}, 0, 1/\sqrt{2})(a, b, c)^* = (a+c)/\sqrt{2}$$
$$0 = (0, 1, 0)(a, b, c)^* = b$$
$$1 = \sqrt{a^2 + b^2 + c^2}$$

Thus $q_3 = (a, b, c) = (1/\sqrt{2}, 0, -1/\sqrt{2})$ so

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

- (b) We have $b_1 = (1,0,1)^*, b_2 = (2,1,0)^*$ We use the algorithm listed above:
 - (1) with j = 1:

(2)
$$v_1 = b_1$$

(6)
$$r_{11} = ||v_1||_2 = \sqrt{2}$$
.

(7)
$$q_1 = v_1/r_{11} = (1/\sqrt{2}, 0, 1/\sqrt{2})^*$$

- (1) with i=2
 - (2) $v_2 = b_2$
 - (3) with i = 1

(4)
$$r_{12} = q_1^* a_2 = (1/\sqrt{2}, 0, 1/\sqrt{2})(2, 1, 0) = 2/\sqrt{2}$$

(5)
$$v_2 = v_2 - r_{12}q_1 = (1, 1, -1)$$

(6)
$$r_{22} = ||v_2||_2 = \sqrt{3}$$

(7)
$$q_2 = v_2/r_{22} = (1/\sqrt{3}, 1/\sqrt{3}, -1/\sqrt{3})$$

This gives reduced QR factorization,

$$B = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{3}} \end{bmatrix} \begin{bmatrix} \sqrt{2} & \frac{2}{\sqrt{2}} \\ 0 & \sqrt{3} \end{bmatrix}$$

We extend this to a full QR factorization by finding a vector orthogonal to q_1, q_2 . First,

$$0 = \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right) (a, b, c)^* = \frac{a+c}{\sqrt{2}}$$

$$0 = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}\right) \begin{bmatrix} a \\ b \\ c \end{bmatrix} (a, b, c)^* = \frac{a+b-c}{\sqrt{3}}$$

$$1 = \sqrt{a^2 + b^2 + c^2}$$

Thus $q_3 = (a, b, c) = (-1/\sqrt{6}, 2/\sqrt{6}, 1/\sqrt{6})$ so,

We extend this to a full QR factorization,

$$B = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} \sqrt{2} & \sqrt{2} \\ 0 & \sqrt{3} \\ 0 & 0 \end{bmatrix}$$

Exercise 7.5

Let A be a $m \times n$ matrix $(m \ge n)$, and let $A = \hat{Q}\hat{R}$ be a reduced QR factorization.

- (a) Show that A has rank n if and only if all the diagonal entries of \hat{R} are nonzero.
- (b) Suppose \hat{R} has k nonzero diagonal entries for some k with $0 \le k \le n$. What does this imply about the rank of A? Exactly k? At least k? At most k? Give a precise answer, and prove it.

Solution

We first prove the following: If F is full rank, and FA is well defined, then FA and A have the same rank.

Indeed, let F be a full rank matrix, and let A be a matrix such that FA is well defined. By the rank-nullity theorem, $\ker(F) = \{0\}$ That is, $Fu = 0 \Leftrightarrow u = 0$.

Then,

$$w \in \ker(A) \Leftrightarrow Aw = 0 \Leftrightarrow FAw = 0 \Leftrightarrow w \in \ker(FA)$$

Thus ker(A) = ker(FA), so by the rank-nullity theorem, A and FA have the same rank.

With this is mind, let A be a $m \times n$ matrix $(m \ge n)$, and let $A = \hat{Q}\hat{R}$ be a reduced QR factorization. Then \hat{Q} is full rank and \hat{R} is upper triangular.

- (a) By the above result, the fact that the determinant of a triangular matrix is the product of the diagonal, and by the invertible matrix theorem, the following are equivalent:
 - \hat{R} has no nonzero entries
 - \hat{R} has nonzero determinant
 - \hat{R} has rank n
 - A has rank n

This proves A has rank n if and only if all the diagonal entries of \hat{R} are nonzero.

(b) Suppose \hat{R} has k nonzero diagonal entries. Consider the k columns corresponding to the nonzero diagonal entries labeled $c_1, c_2, ..., c_k$. Observe c_j has a nonzero component with higher index than any c_i with i < j. Therefore c_j is not in the span of $c_1, ..., c_{j-1}$. By induction it is clear that $c_1, ..., c_k$ are linearly independent.

Then \hat{R} has at least k linearly independent columns. That is, the rank of \hat{R} is at least k.

Equality is not always attained. For instance, $A = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right]$ is rank 1. However the QR

factorization is A = IA, which has no nonzero diagonal entires on $\hat{R} = A$.

Therefore, since \hat{Q} is full rank, the rank of A is at least k.

Exercise 8.1

Let A be an $m \times n$ matrix. Determine the exact number of floating point additions, subtractions, multiplications, and divisions involved in computing the factorization $A = \hat{Q}\hat{R}$ by Algorithm 8.1

Solution

Let A be an $m \times n$ matrix. Algorithm 8.1 is displayed below, along with line numbering.

First observe a_i, v_i, q_i are all vectors in \mathbb{C}^m .

The first for loop simply reassigns v_i to a_i . This does not require any floating point operations, however it does require memory allocation.

In line 4 we assign $r_i i$ to $||v_i||$. Calculating the norm of v_i takes m products, m-1 sums, and then one square root. Thus, this link takes m + (m-1) + 1 = 2m flops.

In line 5 we assign q_i to v_i/r_{ii} . We have calculated r_{ii} in the previous line, so this requires m divisions.

In line 7 we assign r_{ij} to $q_i^*v_j$. This inner product takes m multiplications and m-1 additions. Thus, this line takes m + (m-1) = 2m-1 flops.

In line 8 we assign $v_j = v_j - r_{ij}q_i$. We have already calculated r_{ij} and q_i so this takes m multiplications. We then have m subtractions.

For a fixed i, lines 7 and 8 occur at each j = i + 1, i + 2, ..., n.

Lines 4 through 8 occur for i = 1, 2, ..., n.

The total number of flops is then give by,

of flops =
$$\sum_{i=1}^{n} \left[m + (m-1) + 1 + m + \sum_{j=i+1}^{n} [m + (m-1) + m + m] \right]$$
=
$$\sum_{i=1}^{n} \left[3m + \sum_{j=i+1}^{n} [4m-1] \right]$$
=
$$\left(3m \sum_{i=1}^{n} 1 \right) + \left((4m-1) \sum_{i=1}^{n} \sum_{j=i+1}^{n} 1 \right)$$
=
$$3mn + (4m-1)(n(n-1)/2)$$

Alternatively, highlighting the specific floating point operations,

```
# of flops = (# of addition + # of subtraction + # of multiplication + # of division)  = \sum_{i=1}^{n} \left[ m + (m-1) + 1 + m + \sum_{j=i+1}^{n} [m + (m-1) + m + m] \right] 
 = (m-1)n + (m-1)(n(n-1)/2) + mn(n-1)/2 + mn + 2m(n(n-1)/2) + mn + n 
 = (m-1)(n(n+1)/2) + mn(n-1)/2 + mn^2 + mn + n 
# of addition = (m-1)(n(n+1))/2
# of subtraction = mn(n-1)/2
# of multiplication = mn^2
# of division = mn
# of others = n
```