Design and Analysis of Algorithm

Divide and Conquer strategy (Maximum Sub-array Problem)

Lecture -23

Overview

 Learn the technique of "divide and conquer" in the context of the maximum sub-array with analysis.

The Maximum subarray Problem (A Divide and Conquer Approach)

- Divide the problem into a number of sub problems.
- Conquer the sub problems by solving them recursively.
 - Base case: If the sub problems are small enough, just solve them by brute force.
- **Combine** the sub problem solutions to give a solution to the original problem.

- ➤ **Problem:** In a share market you can buy a unit of stock, only one time, then sell it at a later date
 - ➤ Buy/sell at end of day
- > Strategy: buy low, sell high
 - ➤ The lowest price may appear after the highest price
 - ➤ Assume you know future prices
- ➤ **Objective:** Can you maximize profit by buying at lowest price and selling at highest price?

> Example 1:

Day	0	1	2	3	4
Price	10	11	7	10	6

Daywise stock price information

Concept: Buy lowest sell highest Objective : Maximize the profit

Transformation of Example 1

- Find sequence of days so that:
 - > the net change from last to first is maximized
- ➤ Look at the daily change in price
 - \triangleright Change on day i = price on day(i) price day (i 1)
 - We now have an array of changes (numbers),

Day	0	1	2	3	4
Price	10	11	7	10	6
Changes		1	-4	3	-4

- ➤ Hence the changes are : 1, -4, 3, -4
- Find contiguous subarray with largest sum
- maximum subarray-E.g.: buy after day 2, sell after day 3

> Example 2:

D	ay	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Pr	ice	100	113	110	85	105	102	86	63	81	101	94	106	101	79	94	90	97

Day wise stock price information

Concept: Buy lowest sell highest Objective : Maximize the profit

> Transformation of Example 2:

- Find sequence of days so that:
 - ➤ the net change from last to first is maximized
- ➤ Look at the daily change in price
 - \triangleright Change on day i = price on day(i) price day (i 1)
 - We now have an array of changes (numbers),

Day	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Price	100	113	110	85	105	102	86	63	81	101	94	106	101	79	94	90	97
Changes		13	-3	-25	20	-3	-16	-23	18	20	-7	12	-5	-22	15	-4	7

- Hence the changes are: 13, -3, -25, 20, -3, -16, -23, 18, 20, -7, 12, -5, -22, 15, -4, and 7
- ➤ Find contiguous subarray with largest sum
- maximum subarray-E.g.: buy after day 7, sell after day 11

Question

➤ How many buy/sell pairs are possible over 'n' days? (i.e. search every possible pair of buy and sell dates in which the buy date precedes the sell date)

> Brute force Approach

> Evaluate each pair and keep track of maximum.

> Brute force Approach

Day	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Price	100	113	110	85	105	102	86	63	81	101	94	106	101	79	94	90	97
		[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]	[16]
S[0,1]	[1]	13															
S[1,2]	[2]		-3														
S[2,3]	[3]			-25													
S[3,4]	[4]				20												
S[4,5]	[5]					-3											
S[5,6]	[6]						-16										
S[6,7]	[7]							-23									
S[7,8]	[8]								18								
S[8,9]	[9]									20							
S[9,10]	[10]										-7						
S[10,11]	[11]											12					
S[11,12]	[12]												-5				
S[12,13]	[13]													-22			
S[13,14]	[14]														15		
S[14,15]	[15]															-4	
S[15,16]	[16]																7

> Brute force Approach

Day	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Price	100	113	110	85	105	102	86	63	81	101	94	106	101	79	94	90	97
		[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]	[16]
S[0,2]	[1]	13	10														
S[1,3]	[2]		-3	-28													
S[2,4]	[3]			-25	-5												
S[3,5]	[4]				20	17											
S[4,6]	[5]					-3	-19										
S[5,7]	[6]						-16	-39									
S[6,8]	[7]							-23	-5								
S[7,9]	[8]								18	38							
S[8,10]	[9]									20	13						
S[9,11]	[10]										-7	5					
S[10,12]	[11]											12	7				
S[11,13]	[12]												-5	-27			
S[12,14]	[13]													-22	-7		
S[13,15]	[14]														15	11	
S[14,16]	[15]															-4	3
	[16]																7

> Brute force Approach

Day	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Price	100	113	110	85	105	102	86	63	81	101	94	106	101	79	94	90	97
		[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]	[16]
S[0,3]	[1]	13	10	-15													
S[1,4]	[2]		-3	-28	-8												
S[2,5]	[3]			-25	-5	-8											
S[3,6]	[4]				20	17	1										
S[4,7]	[5]					-3	-19	-42									
S[5,8]	[6]						-16	-39	-21								
S[6,9]	[7]							-23	-5	15							
S[7,10]	[8]								18	38	31						
S[8,11]	[9]									20	13	25					
S[9,12]	[10]										-7	5	0				
S[10,13]	[11]											12	7	-15			
S[11,14]	[12]												-5	-27	-12		
S[12,15]	[13]													-22	-7	-11	
S[13,16]	[14]														15	11	18
	[15]															-4	3
	[16]																7

> Brute force Approach

_		_			_	_		_	_	_							
Day	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Price	100	113	110	85	105	102	86	63	81	101	94	106	101	79	94	90	97
		[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]	[16]
S[0,4]	[1]	13	10	-15	2												
S[1,5]	[2]		-3	-28	-8	-27											
S[2,6]	[3]			-25	-5	-8	-47										
S[3,7]	[4]				20	17	1	-4									
S[4,8]	[5]					-3	-19	-42	-24								
S[5,9]	[6]						-16	-39	-21	-1							
S[6,10]	[7]							-23	-5	15	8						
S[7,11]	[8]								18	38	31	43					
S[8,12]	[9]									20	13	25	20				
S[9,13]	[10]										-7	5	0	-22			
S[10,14]	[11]											12	7	-15	0		
S[11,15]	[12]												-5	-27	-12	-16	
S[12,16]	[13]													-22	-7	-11	-4
	[14]														15	11	18
	[15]															-4	3
	[16]																7

> Brute force Approach

Day	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Price	100	113	110	85	105	102	86	63	81	101	94	106	101	79	94	90	97
							SUB	STRIN	IG ARI	RAY (i.e	. S Arı	ay)					
		[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]	[16]
	[1]	13	10	-15	5	2	-14	-37	-19	1	-6	6	1	-21	-6	-10	-3
	[2]		-3	-28	-8	-11	-27	-50	-32	-12	-19	-7	-12	-34	-19	-23	-16
	[3]			-25	-5	-8	-24	-47	-29	-9	-16	-4	-9	-31	-16	-20	-13
	[4]				20	17	1	-22	-4	16	9	21	16	-6	9	5	12
	[5]					-3	-19	-42	-24	-4	-11	1	-4	-26	-11	-15	-8
	[6]						-16	-39	-21	-1	-8	4	-1	-23	-8	-12	-5
	[7]							-23	-5	15	8	20	15	-7	8	4	11
	[8]								18	38	31	43	38	16	31	27	34
	[9]									20	13	25	20	-2	13	9	16
	[10]										-7	5	0	-22	-7	-11	-4
	[11]											12	7	-15	0	-4	3
	[12]												-5	-27	-12	-16	-9
	[13]													-22	-7	-11	-4
	[14]														15	11	18
	[15]															-4	3
	[16]																7

> Brute force Approach

Di att				PT.			_		_	_						I	
Day	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Price	100	113	110	85	105	102	86	63	81	101	94	106	101	79	94	90	97
							SUB	STRIN	IG ARI	RAY (i.e	. S Arı	ay)					
		[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]	[16]
	[1]	13	10	-15	5	2	-14	-37	-19	1	-6	6	1	-21	-6	-10	-3
	[2]		-3	-28	-8	-11	-27	-50	-32	-12	-19	-7	-12	-34	-19	-23	-16
	[3]			-25	-5	-8	-24	-47	-29	-9	-16	-4	-9	-31	-16	-20	-13
	[4]				20	17	1	-22	-4	16	9	21	16	-6	9	5	12
	[5]					-3	-19	-42	-24	-4	-11	1	-4	-26	-11	-15	-8
	[6]						-16	-39	-21	-1	-8	4	-1	-23	-8	-12	-5
	[7]							-23	-5	15	8	20	15	-7	8	4	11
	[8]								18	38	31	43	38	16	31	27	34
	[9]									20	13	25	20	-2	13	9	16
	[10]										-7	5	0	-22	-7	-11	-4
	[11]											12	7	-15	0	-4	3
	[12]												-5	-27	-12	-16	-9
	[13]													-22	-7	-11	-4
	[14]														15	11	18
	[15]															-4	3
	[16]																7

Hence, maximum subarray–E.g.: buy after day 7, sell on day 11

- > Brute force Approach
 - The total number of pairs (Combinations) are $\binom{n}{2}$. Hence the complexity is $\Theta(n^2)$
 - > Can we do better?

- > Brute force Approach
 - The total number of pairs (Combinations) are $\binom{n}{2}$. Hence the complexity is $\Theta(n^2)$
 - > Can we do better?

Let's rewrite the problem again:

The maximum sum subarray problem is the task to find a contiguous subarray with the largest sum of a given one-dimensional array Arr[1..n] of numbers. The task is to find indices 'i' and 'j' with the condition $1 \le i \le j \le n_i$, such that:

$$\sum_{x=i}^{j} Arr[x]$$

Is as large as possible.

(Note: The number of the input array may be positive, negative or zero)

- **Input:** an array A[1..n] of n numbers
 - Assume that some of the numbers are negative, because this problem is trivial when all numbers are nonnegative
- Output: a nonempty subarray A[i..j] having the largest sum

$$S[i, j] = A_i + A_{i+1} + ... + A_j$$

ı	Day	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
P	Price	100	113	110	85	105	102	86	63	81	101	94	106	101	79	94	90	97
Ch	anges		13	-3	-25	20	-3	-16	-23	18	20	-7	12	-5	-22	15	-4	7
	1	2	3	4	5	6	7	8	9	10	0 1	1	12	13	14	15	16	Ó
\boldsymbol{A}	13	-3	-25	20	-3	-16	-23	18	20	-7	12	-	5	-22	15	-4	7	
										\								

maximum subarray

- ➤ Divide and Conquer Approach
- Subproblem: Find a maximum subarray of A[low .. high]
 In initial call, low =1 and high= n.
- **Divide:** the subarray into two subarrays of as equal size as possible. Find the midpoint mid of the subarrays, and consider the subarrays A[low ..mid] and A[mid+1 .. high].
- **Conquer:** by finding the maximum subarrays of A[low .. mid] and A[mid+1..high].
- **Combine:** by finding a maximum subarray that crosses the midpoint, and using the best solution out of the three (the subarray crossing the midpoint and the two solutions found in the conquer step).

➤ Divide and Conquer Approach

Possible locations of a maximum subarray A[i..j] of A[low..high], where $mid = \lfloor (low+high)/2 \rfloor$

- entirely in A[low..mid] ($low \le i \le j \le mid$)
- entirely in A[mid+1..high] ($mid < i \le j \le high$)
- crossing the midpoint ($low \le i \le mid < j \le high$)

➤ Divide and Conquer Approach

Fig (b): A[i..j] comprises two subarrays A[i..mid] and A[mid+1..j]

A[i..mid]

➤ Divide and Conquer Approach

For example:

-1 3 4 -5 9 -2

➤ Divide and Conquer Approach

crosses the midpoint $low \qquad mid \qquad high$ |mid+1| $entirely in A[low..mid] \qquad entirely in A[mid+1..high]$

For example:

Right Sum = -5 + 9 + -2 = 2Cross Midpoint Sum = 3 + 4 + -5 + 9 = 11

Left Sum = -1 + 3 + 4 = 6

Hence, Max sum =11 and sequence is (3, 4, -5, 9)

Changes(A)	13	-3	-25	20	-3	-16	-23	18	20	-7	12	-5	-22	15	-4	7	
indices	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
S[88]			ma	<i>x</i> –	left	\Rightarrow		18	20								S[99]
S[78]							-5			13							S[910]
S[68]						-21					25		$\leftarrow r$	nax	– ri	ght	S[911]
S[58]					-24							20					S[912]
S[48]				-4									-2				S[913]
S[38]			-29											13			S[914]
S[28]		-32													9		S[915]
S[18]	-19															16	S[916]

 \Rightarrow maximum subarray crossing mid is S[8..11] = 18 + 25 = 43

Find-Max-Crossing-Subarray(A, low, mid, high)

rleft-sum=-∞
sum=0
for i=mid downto low
sum=sum+A[i]
if sum>left-sum
left-sum=sum
max-left=i

Changes(A)	13	-3	-25	20	-3	-16	-23	18	20	-7	12	-5	-22	15	-4	7		
indices	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		
S[88]		$max - left \Rightarrow$						18	20									S[99]
S[78]							-5			13								S[910]
S[68]		-21									25		← r	S[911]				
S[58]					-24							20						S[912]
S[48]				-4									-2					S[913]
S[38]			-29											13				S[914]
S[28]		-32													9			S[915]
S[18]	-19															16		S[916]

Find-Max-Crossing-Subarray(A, low, mid, high)

Changes(

A)

<i>∏left-sum=-∞</i>
sum=0
for <i>i=mid</i> downto <i>low</i>
sum = sum + A[i]
if sum>left-sum
left-sum=sum
max-left=i

right-sum=-∞

for j=mid+1 **to** high

sum = sum + A[j]**if** *sum>right-sum*

max-right=j

sum=0

	,																	
nid downto low n=sum+A[i]	indices	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
um>left-sum	S[88]			ma	x - i	left	\Rightarrow		18	20								S[99]
left-sum=sum	S[78]							-5			13							S[910]
max-left=i	S[68]						-21					25		$\leftarrow r$	nax	– ri	ght	S[911]
ım=-∞	S[58]					-24							20					S[912]
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	S[48]				-4									-2				S[913]
nid+1 to $highn=sum+A[j]$	S[38]			-29											13			S[914]
um>right-sum	S[28]		-32													9		S[915]
right-sum=sum																		

16

S[9..16]

-3 -25 20 -3 -16 -23 18 20 -7 12 -5 -22 15 -4 7

// Return the indices and the sum of two subarrays **return**(*max-left*, *max-right*, *left-sum+right-sum*)

S[1..8]

-19

```
FIND-MAXIMUM-SUBARRAY (A, low, high)
 if high == low
      return (low, high, A[low])
                                           // base case: only one element
 else mid = \lfloor (low + high)/2 \rfloor
      (left-low, left-high, left-sum) =
          FIND-MAXIMUM-SUBARRAY (A, low, mid)
      (right-low, right-high, right-sum) =
          FIND-MAXIMUM-SUBARRAY (A, mid + 1, high)
      (cross-low, cross-high, cross-sum) =
          FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
      if left-sum \geq right-sum and left-sum \geq cross-sum
          return (left-low, left-high, left-sum)
      elseif right-sum \ge left-sum and right-sum \ge cross-sum
          return (right-low, right-high, right-sum)
      else return (cross-low, cross-high, cross-sum)
```

Initial call: FIND-MAXIMUM-SUBARRAY(A,1,n)

- Divide by computing *mid*.
- Conquer by the two recursive calls to FIND-MAXIMUM-SUBARRAY.
- Combine by calling FIND-MAX-CROSSING-SUBARRAY and then determining
- which of the three results gives the maximum sum.
- Base case is when the subarray has only 1 element.

The Maximum subarray problem(Analysis)

```
FIND-MAXIMUM-SUBARRAY (A, low, high) \longrightarrow T(n)
 if high == low \longrightarrow \Theta(1)
     return (low, high, A[low]) // base case: only one element
 else mid = \lfloor (low + high)/2 \rfloor \longrightarrow \Theta(1)
     (left-low, left-high, left-sum) =
          FIND-MAXIMUM-SUBARRAY (A, low, mid)
     (right-low, right-high, right-sum) =
         FIND-MAXIMUM-SUBARRAY(A, mid + 1, high)
     (cross-low, cross-high, cross-sum) =
          FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high) ———
     if left-sum \geq right-sum and left-sum \geq cross-sum
         return (left-low, left-high, left-sum)
     elseif right-sum \ge left-sum and right-sum \ge cross-sum
                                                                        \Theta(1)
          return (right-low, right-high, right-sum)
     else return (cross-low, cross-high, cross-sum)
```

The Maximum subarray problem(Analysis)

FIND-MAXIMUM-SUBARRAY
$$(A, low, high)$$
 \longrightarrow $T(n)$

if $high == low$ \longrightarrow $\Theta(1)$

return $(low, high, A[low])$ // base case: only one element

else $mid = \lfloor (low + high)/2 \rfloor$ \longrightarrow $\Theta(1)$
 $(left-low, left-high, left-sum) =$

FIND-MAXIMUM-SUBARRAY (A, low, mid) \longrightarrow $T\left(\frac{n}{2}\right)$
 $(right-low, right-high, right-sum) =$

FIND-MAXIMUM-SUBARRAY $(A, mid + 1, high)$ \longrightarrow $T\left(\frac{n}{2}\right)$
 $(cross-low, cross-high, cross-sum) =$

FIND-MAX-CROSSING-SUBARRAY $(A, low, mid, high)$ \longrightarrow $\Theta(n)$

if $left-sum \geq right-sum$ and $left-sum \geq cross-sum$

return $(left-low, left-high, left-sum)$

elseif $right-sum \geq left-sum$ and $right-sum \geq cross-sum$

return $(right-low, right-high, right-sum)$

else return $(cross-low, cross-high, cross-sum)$

$$T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$$

The Maximum subarray problem(Analysis)

FIND-MAXIMUM-SUBARRAY
$$(A, low, high)$$
 \longrightarrow $T(n)$

if $high == low$ \longrightarrow $\Theta(1)$

return $(low, high, A[low])$ // base case: only one element

else $mid = \lfloor (low + high)/2 \rfloor$ \longrightarrow $\Theta(1)$
 $(left-low, left-high, left-sum) =$

FIND-MAXIMUM-SUBARRAY (A, low, mid) \longrightarrow $T\left(\frac{n}{2}\right)$
 $(right-low, right-high, right-sum) =$

FIND-MAXIMUM-SUBARRAY $(A, mid + 1, high)$ \longrightarrow $T\left(\frac{n}{2}\right)$
 $(cross-low, cross-high, cross-sum) =$

FIND-MAX-CROSSING-SUBARRAY $(A, low, mid, high)$ \longrightarrow $\Theta(n)$

if $left-sum \geq right-sum$ and $left-sum \geq cross-sum$

return $(left-low, left-high, left-sum)$

elseif $right-sum \geq left-sum$ and $right-sum \geq cross-sum$

return $(right-low, right-high, right-sum)$

else return $(cross-low, cross-high, cross-sum)$

$$T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n) \Longrightarrow \Theta(nlg n)$$

Analysing Maximum subarray problem

Simplifying assumption: Original problem size is a power of 2, so that all subproblem sizes are integer. [We made the same simplifying assumption when we analyzed merge sort.]

Let T(n) denote the running time of FIND-MAXIMUM-SUBARRAY on a subarray of n elements.

Base case: Occurs when high equals low, so that n = 1. The procedure just returns $\Rightarrow T(n) = \Theta(1)$.

Recursive case: Occurs when n > 1.

- Dividing takes Θ(1) time.
- Conquering solves two subproblems, each on a subarray of n/2 elements. Takes T(n/2) time for each subproblem $\Rightarrow 2T(n/2)$ time for conquering.
- Combining consists of calling FIND-MAX-CROSSING-SUBARRAY, which takes Θ(n) time, and a constant number of constant-time tests ⇒ Θ(n) + Θ(1) time for combining.

Analysing Maximum subarray problem

Recurrence for recursive case becomes

$$T(n) = \Theta(1) + 2T(n/2) + \Theta(n) + \Theta(1)$$

= $2T(n/2) + \Theta(n)$ (absorb $\Theta(1)$ terms into $\Theta(n)$).

The recurrence for all cases:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 2T(n/2) + \Theta(n) & \text{if } n > 1. \end{cases}$$

Same recurrence as for merge sort. Can use the master method to show that it has solution $T(n) = \Theta(n \lg n)$.

Thus, with divide-and-conquer, we have developed a $\Theta(n \lg n)$ -time solution. Better than the $\Theta(n^2)$ -time brute-force solution.

Analysing Maximum subarray problem

A complete example given in next slide for easy under standing.

➢ Divide and Conquer Approach

Start Division

13	-3	-25	20	-3	-16	-23	18	20	-7	12	-5	-22	15	-4	7
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	<i>16</i>

➢ Divide and Conquer Approach

➤ Divide and Conquer Approach

➢ Divide and Conquer Approach

➤ Divide and Conquer Approach

➢ Divide and Conquer Approach

Start Conquer

13	-3	-25	20	-3	-16	-23	18	20	-7	12	-5	-22	15	-4	7
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

13	-3	-25	20	-3	-16	-23	18	20	-7	12	-5	-22	15	-4	7
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

13	-3	-25	20	-3	-16	-23	18	20	-7	12	-5	-22	15	-4	7
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	<i>16</i>

13	-3	-25	20	-3	-16	-23	18	20	-7	12	-5	-22	15	-4	7
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

13	-3	-25	20	-3	-16	-23	18	20	-7	12	-5	-22	15	-4	7
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

➢ Divide and Conquer Approach

13	-3	-25	20	-3	-16	-23	18	20	-7	12	-5	-22	15	-4	7
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

13	-3	-25	20	-3	-16	-23	18	20	-7	12	-5	-22	15	-4	7
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

13	-3	-25	20	-3	-16	-23	18	20	-7	12	-5	-22	15	-4	7
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

➢ Divide and Conquer Approach

13	-3	-25	20	-3	-16	-23	18	20	-7	12	-5	-22	15	-4	7
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

13	-3	-25	20	-3	-16	-23	18	20	-7	12	-5	-22	15	-4	7
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	<i>16</i>

13	-3	-25	20	-3	-16	-23	18	20	-7	12	-5	-22	15	-4	7
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

13	-3	-25	20	-3	-16	-23	18	20	-7	12	-5	-22	15	-4	7
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

[Note: Where LS (Left Sum), RS (Right Sum) and CS (Cross Sum)]

Conquer

➢ Divide and Conquer Approach

13	-3	-25	20	-3	-16	-23	18	20	-7	12	-5	-22	15	-4	7
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

13	-3	-25	20	-3	-16	-23	18	20	-7	12	-5	-22	15	-4	7
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

13	-3	-25	20	-3	-16	-23	18	20	-7	12	-5	-22	15	-4	7
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

➤ Divide and Conquer Approach

13	-3	-25	20	-3	-16	-23	18	20	-7	12	-5	-22	15	-4	7
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

13	-3	-25	20	-3	-16	-23	18	20	-7	12	-5	-22	15	-4	7
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

➤ Divide and Conquer Approach

	13	-3	-25	20	-3	-16	-23	18	20	-7	12	-5	-22	15	-4	7
Γ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

➢ Divide and Conquer Approach

Home Assignment

• Solve the Maximum Subarray problem in $\Theta(n)$ time.

