Logic

Julian Dominic

DeMorgan's Laws $\neg (P \land Q)$ is equivalent to $\neg P \lor \neg Q$. $\neg (P \lor Q)$ is equivalent to $\neg P \land \neg Q$. Commutative Laws $P \wedge Q$ is equivalent to $Q \wedge P$. $P \vee Q$ is equivalent to $Q \vee P$. Associative Laws $P \wedge (Q \wedge R)$ is equivalent to $(P \wedge Q) \wedge R$. $P \vee (Q \vee R)$ is equivalent to $(P \vee Q) \vee R$. **Idempotent Laws** $P \wedge P$ is equivalent to P. $P \vee P$ is equivalent to P. Distributive Laws $P \wedge (Q \vee R)$ is equivalent to $(P \wedge Q) \vee (P \wedge R)$. $P \vee (Q \wedge R)$ is equivalent to $(P \vee Q) \wedge (Q \vee R)$. **Absorption Laws** $P \vee (P \wedge Q)$ is equivalent to P. $P \wedge (P \vee Q)$ is equivalent to P. **Double Negation Law** $\neg \neg P$ is equivalent to P. Tautology Laws $P \wedge (a \text{ tautology}) \text{ is equivalent to } P.$ $P \vee (a \text{ tautology}) \text{ is a tautology}.$ \neg (a tautology) is a contradiction. **Contradiction Laws** $P \wedge (a \text{ contradiction})$ is a contradiction. $P \vee (a \text{ contradition})$ is equivalent to P. \neg (a contradiction) is a tautology. **Conditional Laws** $P \to Q$ is equivalent to $\neg P \lor Q$. $P \to Q$ is equivalent to $\neg (P \land \neg Q)$. Contrapositive Laws $P \to Q$ is equivalent to $\neg Q \to \neg P$.

Biconditional Laws

$$P \leftrightarrow Q$$
 is equivalent to $(P \to Q) \land (Q \to P).$

Quantifier Negation Laws

$$\neg \exists x P(x)$$
 is equivalent to $\forall x \neg P(x)$

$$\neg \forall x P(x)$$
 is equivalent to $\exists x \neg P(x)$