Содержание

Постановка задачи	2
Математическое обоснование	3
Результаты экспериментов	4
Структура программы и спецификация функций	5
Сборка программы (Маке-файл)	7
Отладка программы, тестирование функций	8
\mathbf{K} люч $-test$	8
Программа на Си и на Ассемблере	9
Анализ допущенных ошибок	10
Список цитируемой литературы	11

Постановка задачи

С заданной точностью $\varepsilon=0.001$ вычилсить площадь плоской фигуры, ограниченной тремя кривыми, заданными уравнениями $f_1=\exp(x)+2, f_2=-2x+8, f_3=-\frac{5}{x}$. Для этого используется метод трапеций. Для поиска вершин фигуры использутеся метод хорд. Отрезки для применения этого метода вычислены аналитически. Также нужно подобрать значения точности ε_1 и ε_2 в данных численных методах, чтобы площадь вычислялась с уже заданной точностью ε

Математическое обоснование

Условие сходимости метода хорд: f(x) имеет на сегменте [a,b] монотонную и непрерывную производную, сохраняющую определенный знак[1]. $(f_1 - f_3)' = \exp(x) - 5/x^2$ - удовлетворяет критерию на [-3; -2], $(f_2 - f_3)'' = -5/x^2$ - удовлетворяет критерию на [-1; -0.5], $(f_1 - f_2)' = \exp(x)$ удовлетворяет критерию на [1; 2].

Условие сходимости метода трапеций: f(x) имеет на рассматриваемом сегменте непрерывную вторую производную[1]. В области определения все три функции имеют непрерывную вторую производную, поэтому метод применим. Точность вычисления определенного интеграла обеспечивается использованием правила Рунге[2].

При подсчете интеграла и нахождения корня использовались $\varepsilon_1 = \varepsilon_2 = 10^{-5}$ При нахождении точек пересечения функций мы теряем в точности интегрирования методом прямоугольников не более $\varepsilon_1 \cdot Fabsmax$, где Fabsmax = max(|F(a)|,|F(b)|), где a,b- границы отрезка, на котором ищется корень, F(x)-функция, у который ищется корень (если функции монотонны). Такое выражение для потери точности интегрирования характеризуется тем, что на одном из этапов мы оцениваем площадь разбиения сверху площадью прямоугольника со сторонами ε_1 и Fabsmax. При подсчёте каждого интеграла, потеря точности по оценке сверху составляет не более чем $\varepsilon_1 \cdot Fabsmax_{ij} + \varepsilon_1 \cdot Fabsmax_{kl} + \varepsilon_2$ (здесь считается потеря с двух концов отрезка интегрирования и сама погрешность интегрирования). Значит, итоговая оценка сверху: $2\varepsilon_1(Fabsmax_{12} + Fabsmax_{13} + Fabsmax_{23}) + 3\varepsilon_2$. $Fabsmax_{ij} = max(|f_i(a) - f_j(a)|, |f_i(b) - f_j(b)|)$.

Обозначим $F_{13} = f_1 - f_3$, $F_{12} = f_1 - f_2$, $F_{23} = f_2 - f_3$. Эти функции являются монотонными на заданных отрезках. Отсюда находим

 $Fabsmax_{13} = F_{13}(-3)$

 $Fabsmax_{12} = F_{12}(2)$

 $Fabsmax_{23} = F_{23}(-1)$

Вычисление площади с заданной точностью ε удается, если оценка погрешности сверху меньше ε , значит

 $2\varepsilon_1(Fabsmax_{12} + Fabsmax_{13} + Fabsmax_{23}) + 3\varepsilon_2 < \varepsilon$

Отсюда при $\varepsilon_1 = \varepsilon_2 = 10^{-5}$

 $2\varepsilon_1(Fabsmax_{12} + Fabsmax_{13} + Fabsmax_{23}) + 3\varepsilon_2 < 0.0003 < 0.001$

Значит, данные значения точности подходят для вычисления площади

Рис. 1: Плоская фигура, ограниченная графиками заданных уравнений

Результаты экспериментов

Кривые	x	y
1 и 2	-0.54951	9.099
2 и 3	1.251757	5.496
1 и 3	-2.390541	2.092

Таблица 1: Координаты точек пересечения

Рис. 2: Плоская фигура, ограниченная графиками заданных уравнений

Структура программы и спецификация функций

Программа состоит из двух модулей: main.c и s.asm.

В ассемблерном файле объявлены функции в соглашении cdecl, возвращающие значения математических функций, ограничивающих фигуру. Они используются в main.c

В main.c происходит поиск абцисс точек пересечения функций с заданной точностью, а также подсчет определенного интеграла. Программа поддерживает следующие ключи командной строки:

- -help Выводит список доступных флагов.
- -intersections Выводит абсциссы точек пересечения тестируемых функций.
- -iterations Выводит количество итераций, потребовавшихся для нахождения абсцисс точек пересечения тестируемых функций.
- -root_test Позволяет провести тестирование функции поиска абсцисс точек пересечения функций (функции, отрезок для поиска и точность вычисления выбираются пользователем).

- -integral_test Позволяет провести тестирование функции рассчета определенного интеграла (функция, отрезок для поиска и точность вычисления выбираются пользователем).
- -test Тестирование функций root и integral на удобных для аналитического вычисления функиях

Содержит в себе следующие функции:

- double root(double(*f)(double), double(*g)(double), double a, double b, double eps, int *iterations)
 Поиск абциссы пересечения функций f и g на заданном промежутке с заданной точностью с помощью метода хорд
- double integral(double(*f)(double), double a, double b, double eps)Данная функция считает определенный интеграл методом трапеций на заданном промежутке с заданной точностью.
- f1, f2, f3, fln, fsin, f0, fxx Принимают на вход значение double и выводят соответствующее значение математической функции.
- $int\ icheck(char *)$, $int\ fcheck(char *)$ Проверка пользовательского ввода на корректность.
- double check(double res, double ans, double eps)

 Функци для отладки программы: сравнивает вывод программы и аналитический ответю

Сборка программы (Маке-файл)

```
all: main.o s.o
gcc -m32 -o program main.o s.o -lm -Wall -Wextra
main.o: main.c
gcc -m32 -c -o main.o main.c
s.o: s.asm
nasm -f elf32 -o s.o s.asm
clean:
rm *.o
```

Makefile собирает все модули ключом -all. Конечный файл program зависит от объектных фалов main.o и s.o, они соответственно от main.c и s.asm. Ключ clean удаляет объектные файлы

Отладка программы, тестирование функций

Тестирование численных методов проводилось с помощью ключей командной строки, которые запускали функции численных методов с заданными параметрами.

\mathbf{K} люч -test

По этому ключу программа выводит результат работы функции на модельных примерах, где определенный интеграл и корни вычислимы аналитически

No	Функция
1	$\ln(x) - 1$
2	$x^4 + x^2 - 2$
3	$\sin(x)$

Результаты работы программы с ключом -test:

$N_{\overline{0}}$	Функция	Отрезок	Корень	Точность	Аналитическое решение
1	ln(x)-1	[1, 3]	2.718282	0.00001	e (2.7182818)
2	$x^4 + x^2 - 2$	[0, 2]	0.999997	0.00001	1
3	$\sin(x)$	[2, 4]	3.141590	0.001	$\pi(3.1415926)$

$N_{\overline{0}}$	Функция	Первообразная	Отрезок	Вывод	Точность	Ответ
1	$x^4 + x^2 - 2$	$\frac{x^5}{5} + \frac{x^3}{3}$	[0; 2]	-2.933330	0.00001	-2.9(3)
2	$\sin(x)$	$\cos(x)$	$[0;\pi]$	1.999994	0.00001	2

Также для отладки программы существуют ключи $-root_test$ и $-integral_test$, с помощью которых пользователь может сам выбирать функции и отрезки для тестирования, вводя их в командную строку.

Программа на Си и на Ассемблере

Исходные файлы программы прилогаются в архиве. Программа собирается с помощью цели all, запуск программы осуществляется с помощью команды ./program. Для ознакомления со списком ключей существует ключ '-help'

Анализ допущенных ошибок

В ходе разработки программы был допущен ряд ошибок и неточностей:

- Функция *integral* работала крайне неэффективно из-за перевычисления уже посчитанных значений, а также медленного роста числа разбиений отрезка.
- Была добавленна встроенная проверка корректности полученного результата для откладки программы.
- Компиляция программы с флагами -Wall-Wextra выдавала предупреждения. Для исправления были исправлены синтаксические неточности.
- Пользователький ввод не проверялся на корректность.
- В коде программы были лишние пробелы в концах строк.
- Аргументы в ключах $-integral_test$, $-root_test$ передавались в самой программе, а не в командной строке.

Список литературы

- [1] Ильин В. А., Садовничий В. А., Сендов Бл. X. Математический анализ. Ч. 1 Москва: Издательство Проспект, 2004.
- [2] А.А. Федотов, П.В. Храпов. Численные методы интегрирования, решения дифференциальных уравнений и задач оптимизации. Москва: Издательство МГТУ им. Н.Э.Баумана, 2015