Solid of Structure

	1
	Quantum number!
	· ·
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	> muleus @ Azinmthal (subshell) I=0,1,2,n-1
	n(protons) = z = n(e-) Cach shell has n subshells.
	Each shell has n subshells.
	A lag netic
	\rightarrow Angulur $M_1 = -l, -l+1, \dots, 0, 1, \dots, l-1, l$
	Angulus $M_1 = -l, -l+1, \ldots, 0, 1, \ldots l-1, l$ $\Rightarrow spin M_s = \frac{1}{2}, -\frac{1}{2}$
	2 2
	$\Theta \subseteq \mathcal{S}_{0,0}$
	Each shell can acomodate 2nº e
	n=1 K shell 2 each subshell can accomplate 2(21+1) c
	n=2 L shell 8
	n=3 M (hu) 18 l=0 S 2
	n=4 N shell 32 l=1 p 6
	l=2 d 10
	L= 3 + 14
	I - eurount
Magn	utic moment u = IA (1) A = Area
F	$A = \pi r^2$ $I = ev$ $v = frequency$
	both due do spin and orbit angulou momentum.
	s
	01 1
	I & S can affect one another: L-S coupling affecting the resultant angular momentum
	affecting the resultant angular momentum
	` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

Force Force $\frac{A}{x^m} - \frac{B}{x^n}$ A, B, m, n depends on the nature of atoms. Potential energy, U(r) = \F(x) dr $= -\frac{a}{\pi m - 1} + \frac{b}{\pi n - 1}$ U(r) , at $r=r_0$ Equilibrium at minimum when $\frac{dU(r)}{dr} = 0$ (i) $\mathcal{T}_{\circ} = \left(\frac{M-1}{M-1} \frac{b}{a}\right)^{\frac{1}{M-M}}$ arrangent of atoms in solid > repetitive units Crystalline -> Orderly arrangement of atoms Structure-Wise → Armorphow. → e.g. glaw. Single - Long-range ordering : > Poly - short-range ordering grain boundary Braxais Lattice . Infinite arrangement of points, of any other point in the latter point is same as that called "lattice points" . The points are called "point lattice" or "space lattice" - 3D mit all equally spaced parallel intersection of parallel "Lattice parameters" While constants'

To generate a space lattice - translation vector T

$$T = L\overline{a} + m\overline{b} + n\overline{c}$$
 $L, m, n \in 0,1,2,...$

Cubic lattice

Tetragonal Cuttice

3,

Orthor hombic lattre

$$\alpha = \beta = \gamma = 90^{\circ}$$

4)
$$a = b = C$$
 Trigonal lattice $X = B = T \neq 90^{\circ}$ (Rhombohedood)

5)
$$\alpha = b \neq c$$

 $x = \beta = 90^{\circ}$, $7 = 120^{\circ}$ Hexagonal Lattice

6)
$$\alpha \neq b \neq c$$

 $x = y = 90° \neq B$

Monodinic lattice

7)
$$\alpha \neq b \neq C$$
 Triclinic daltice $x \neq b \neq x \neq 90^{\circ}$

- The points could be either in corners of the cell (simple), body - centered, face-centered and/or base-antered

· A total of 14 Lattice - Bravais Lattice