Stat	532
HW	1
Due	9/16/16

Name:	

Please prepare your solutions using LATEX or another word processing software.

- 1. (24 points) Describe the differences between Bayesian and classical inference. Include a discussion on confidence and credible intervals.
- 2. (1 point) Do you consider yourself a Bayesian or classical statistician?
- 3. Assume you are hired by Bridger Bowl to compute the probability than an MSU student either skis (or snowboards).
 - (a) (10 points) If binary data is collected from 300 students, what is the sampling model for this research question? Please name the distribution and write out the corresponding sampling distribution.
 - (b) (10 points) Use a prior distribution from the Beta distribution and create a plot/histogram from this distribution. Why did you choose the α and β values for this prior distribution. Hint: R Code

```
x <- seq(0,1,length.out=100)
a <- .1
b <- .1
plot(x,dbeta(x,a,b),type='1',lwd=2,ylab='',xlab='',
sub=paste('alpha', '=' ,a, ',', 'beta', '=',b), main='Beta Distribution')</pre>
```

- (c) (15 points) Assume 234 of the sampled MSU students claim to either ski or snowboard. Compute the posterior distribution, $p(\theta|Y)$ where θ is the probability of MSU student skiing and Y is the observed responses.
- (d) (10 points) Plot the posterior distribution computed in part (c).

(e) (10 points) Compute a 95% credible interval for θ .
 4. Hoff Exercise 2.1 - Marginal and conditional probability: The social mobility data from Section 2.5 gives a joint probability distribution on (Y₁, Y₂) = (father's occupation, son's occupation). Using this joint distribution, calculate the following distribution: (a) (5 points) the marginal probability distribution of a father's occupation
(b) (5 points) the marginal probability distribution of a son's occupation
(c) (5 points) the conditional distribution of a father's occupation, given that the father is a farmer
(d) (5 points) the conditional distribution of a son's occupation, given that the son is a farmer