Week 9: Function specific switching

- Idea: Measure the performance of the static algorithm selectors on instances
 1 to 5
- I used a 4-fold cross validation where I trained the selectors on ¾ of runs, and then let them predict the best algorithm for the remaining quarter.
- For each function, I set the switching point as the budget for which the static selector performed at that budget best on that function (lowest sum of precisions)
- I then trained random forests, one for each possible switching budget, that predict whether or not to switch for a run (so a binary prediction here)

Week 9: Function specific switching

- In a first attempt, I set the switch decision to true for a function and a budget, only if that budget is the right budget for the function
- This resulted in poor performance, because each run for which the right budget was not detected, then continued without switching, which is basically always a bad decision
- So, I set the switch decision to true for a function and a budget, if that budget is greater or equal than the right budget for that function. (So that if a run is not detected to switch at the right budget, it will switch somewhere behind that)
- This resulted in good performance

Results if we consider multiples of 50 as switching points

Method	Ratio		
selector_precision	0.6914739331516234		
static_B50	0.7342292114590188		
static_B200	0.7834688934562055		
static_B100	0.8096604126452549		
static_B150	0.8279748194510756		
static_B350	0.8295645201063693		
static_B450	0.8315831727495465		
static_B300	0.833793375248887		
static_B400	0.8454845500999881		
static_B250	0.8521377125549351		
static_B500	0.8646264151484486		
static_B550	0.8651682121985461		
static_B600	0.8680715726930405		
static_B650	0.8727674677814952		
static_B700	0.9691203768199774		
static_B750	1.170709233204784		
static_B800	1.2944068941955356		
static_B850	1.612240193937837		
static_B900	1.9356077011386117		
static_B950	2.5804227966401223		
static_B1000	3.9009662685339572		

Results for multiples of 50 and multiples of 8 lower than 100

	s
-	

Method	Ratio	
selector_precision	0.7348407859659998	
static_B80	0.8343698876143243	
static_B56	0.8431062571644096	
static_B64	0.865747418437369	
static_B24	0.8695766953339663	
static_B40	0.874061958394088	
static_B96	0.8749348244632318	
static_B200	0.8864525814801185	
static_B100	0.9095093121298923	
static_B48	0.9111641348804176	
static_B150	0.9256317196040164	
static_B350	0.9270311535031466	
static_B450	0.9288081993450942	
static_B32	0.9297976509890551	
static_B72	0.9301458725592493	
static_B300	0.9307538689849849	
static_B400	0.9410457603249096	
static_B250	0.9469026246627765	
static_B88	0.9556409676800052	
static_B500	0.9578965899148633	
static_B550	0.9583735408149151	
static_B600	0.9609294063383146	
static_B650	0.9650632630815067	
static_B16	0.9933172712163364	
static_B700	00 1.049883966110878	
static_B750	1.227345224853125	
static_B800	1.3362378641416175	
static_B8	1.3913457921804038	
static_B850	tic_B850 1.6160305989880546	
static_B900	tatic_B900 1.9006951677212154	
static_B950	static_B950 2.4683341759274477	
static_B1000	3.63082555044471	

Evaluation on new instances

- I also wanted to see if this works if we use runs on instances 6 and 7 (20 each) as a test set. Once again, I considered both sets of switching points
- The performance is worse here. Maybe this is because the distributions of training and test set are too different?

Method	Ratio		
selector_precision	0.7397463435645291		
static_B64	0.783110528315716	Method	Ratio
static_B80	0.7991784183080536	static B50	0.8052528171186433
static_B96	0.8011234209716904	selector_precision	0.8082308838341555
static_B56	0.8052528171186433		
static_B48	0.8091478061854296	static_B100	0.8340053853588267
static_B100	0.8340053853588267	static_B550	0.8507966151371419
static_B72	0.8350493625064949	static_B300	0.8522574095492805
static_B550	0.8507966151371419	static_B400	0.8527850943443569
static_B300	0.8522574095492805	static_B350	0.857926650631531
static_B400	0.8527850943443569	static B250	0.8623110386200014
static_B350	0.857926650631531	static B500	0.8793981739119423
static_B250	0.8623110386200014	static_B150	0.881782488942987
static_B500	0.8793981739119423		Proceedings (Color) (49-70-70-70-70-70-70-70-70-70-70-70-70-70-
static_B150	0.881782488942987	static_B600	0.8849761676564104
static_B600	0.8849761676564104	static_B450	0.8905819890916795
static_B450	0.8905819890916795	static_B650	0.8915562283902
static_B650	0.8915562283902	static_B200	0.900379391354849
static_B200	0.900379391354849	static_B700	0.9615915740558716
static_B88	0.9070488066040253	static_B750	1.1243501419530186
static_B24	0.9505310751659515	static_B800	1.2689075171966206
static_B700	0.9615915740558716	static B850	1.6472226745221685
static_B32	0.9655715603363839		1.9641426220843177
static_B16	1.011701664513621	static_B900	
static_B40	1.0258049077785734	static_B950	3.2024631000855757
static_B750	1.1243501419530186	static_B1000	8.075054376573444
static_B8	1.1955308516283178		
static_B800	1.2689075171966206		
static_B850	1.6472226745221685		
static_B900	1.9641426220843177		
static_B950	3.2024631000855757		
static_B1000	8.075054376573444		

Questions

- Is the switching selection done right? I think we could probably improve here.
 Currently, around 80% of runs switch at the right switching point. We need a way to handle the remaining runs.
- I also tried to tune the switching models (according to F1 score), but this did not improve the performance. Should I tune them according to a different metric?
- The performance of the static selectors on the training and test data often does not really match. I think we need more data (so more runs per instance) to really understand this. Currently, the performance of a static depends on only a few (un)lucky algorithm choices