Devoir à la maison n° 20

À rendre le 23 mai

L'objectif de ce problème est de montrer le théorème d'approximation de Weierstrass : pour toute fonction continue $f:[0,1] \to \mathbb{R}$, il existe une suite de polynômes $(P_n)_{n\geqslant 1}$ telle que

$$\sup \{ |P_n(x) - f(x)| \mid x \in [0, 1] \} \xrightarrow[n \to +\infty]{} 0.$$

1) Montrer l'inégalité triangulaire : pour toute variable aléatoire réelle X définie sur un espace probabilisé fini, $|EX| \leq E|X|$.

Soit $f:[0,1]\to\mathbb{R}$ continue.

Pour tout $x \in [0,1]$, on considère une suite $(X_i^{(x)})_{i\geqslant 1}$ de variables aléatoires i.i.d. suivant la loi de Bernoulli de paramètre x. On définit ensuite pour tout $n\geqslant 1$

$$T_n^{(x)} = \frac{X_1^{(x)} + \dots + X_n^{(x)}}{n}$$

 et

$$P_n(x) = \mathrm{E}\left[f\left(T_n^{(x)}\right)\right].$$

- 2) Montrer que, pour tout $n \ge 1$, P_n est une fonction polynomiale.
- 3) Déterminer l'espérance et la variance de $T_n^{(x)}$.
- **4)** On fixe un réel $\varepsilon > 0$. Justifier l'existence d'un réel $\alpha > 0$ tel que, pour tout $x,y \in [0,1]$, si $|x-y| \le \alpha$, alors $|f(x)-f(y)| \le \varepsilon$.
- 5) Majorer $P(|T_n^{(x)} x| \ge \alpha)$ par une quantité ne dépendant pas de x.
- **6)** La fonction f est-elle bornée ? Proposer deux majorations de $\left|f(T_n^{(x)}) f(x)\right|$, l'une sur l'événement $\left[\left|T_n^{(x)} x\right| \geqslant \alpha\right]$, l'autre sur l'événement $\left[\left|T_n^{(x)} x\right| < \alpha\right]$.
- 7) En déduire une majoration de $|P_n(x) f(x)|$ ne dépendant pas de x et conclure.
- 8) Ce résultat s'étend sans problème à tout segment de \mathbb{R} . Est-il vrai sur \mathbb{R} entier?
- 9) On compare finalement deux modes de convergence de fonctions. Soit I un ensemble et f une fonction définie sur I.
 - a) Montrer que si $(P_n)_{n\geqslant 1}$ est une suite de polynômes vérifiant

$$\sup \{ |P_n(x) - f(x)| \mid x \in I \} \xrightarrow[n \to +\infty]{} 0,$$

alors pour tout $x \in I$, $P_n(x) \xrightarrow[n \to +\infty]{} f(x)$.

b) Montrer que, si $f : \mathbb{R} \to \mathbb{R}$ est continue, alors il existe une suite de polynômes $(P_n)_{n\geqslant 1}$ telle que, pour tout $x\in \mathbb{R}$, $P_n(x)\xrightarrow[n\to +\infty]{} f(x)$.