Control Board L4 用户手册

Author: qianwan Version: 1.0 Date: 2022.9.1

目录

概	述及简介	2
硬	件设计	3
	电源	3
	主控	3
	按键	4
	PWM 输入输出	5
	BMI160	5
	CAN 通讯	6
	USB-C B B G S S S S S S S S S S S S S S S S S	7
	D-BUS 电平转换	7
	UART1	8
	SWD	8
	牛角座	9
	RGB 灯	9

概述及简介

本项目设计了一块用于机器人控制的 STM32L4 开发板,开发板外部接口线序与RoboMaster C型开发板基本一致。项目原理图、Gerber、STM32工程请见 GitHub。

STM32L4系列单片机(以下统称单片机)采用 ARM v7-M 架构的 32 位 Cortex-M4 内核。芯片具有低功耗、高性能等特性,拥有硬件 FPU、一定数量模拟外设、丰富外部接口。

单片机主要由 M4 内核、电源控制器、总线、时钟及外设构成。内核负责逻辑控制,调度芯片外设以及系统调试;电源控制器吸收外部供电后为各部分提供稳定供电,并产生参考电平;总线负责外设与外设间、内核与内核间信息交换,并拥有 DMA 单元;时钟负责产生系统运行的时序;外设负责单片机与板载资源以及外部资源交换信息。

STM32L431RCT6 拥有 256K FLASH 以及 64KB RAM。芯片采用扇区方式管理 FLASH,每个扇区 2KB,共 128KB 扇区。开发板采用主 Flash 启动模式,上电复位后内置 FLASH 地址将被重映射到 0x0000000000 地址,代码从此开始执行。RAM 从内存高地址到内存低地址,依次存放着栈区、堆区、全局区、常量区、代码区。栈区由编译器自动分配释放,存放局部变量、常熟、const 修饰的局部变量等;堆区由动态内存分配,由用户申请使用;全局区由.bss 和.data 段组成,可读可写;常量区存放常量;代码区存放程序执行代码。

内核、DMA 对 RAM、FLASH 及总线的访问通过总线矩阵实现。L4 拥有五条主控总线: Cortex-M4 内核 I 指令总线、D 数据总线、S 系统总线、DMA1 存储器总线、DMA3 存储器总线; 八条被控总线: 内部 FLASH ICode 总线、内部 FLASH DCode 总线、内部 SRAM1、内部 SRAM2、AHB1 外设、AHB2 外设、FMC 和 QSPI 构成。

STM32L4 拥有最高 67 个中断源以及 16 个中断优先级, 通过 NVIC 嵌套中断向量控

制器管理。所有中断都可以被使能或者失能。STM32L4 允许中断嵌套行为,高优先级中断将打断低优先级中断,同等级中断将等待,低优先级中断无法打断高优先级中断。

STM32L431RCT6 拥有 64 个引脚,其中 52 个为 GPIO,其余为供电引脚。开发板使用了 37 个 GPIO 与全部供电引脚。GPIO 具有推挽、开漏、浮空输入、模拟输入四种工作模式。GPIO 可配置内部上下拉电阻,等效 40KΩ。大部分 GPIO 为 5V 兼容引脚,小部分耐压仅有 3.3V。

硬件设计

电源

电源树

开发板的主供电来自于板载 XT30 接口,输入电压范围为 6.5V~28V。

开发板 USB-C 接口仅能为串口转 USB 芯片供电,无法为整个开发板提供电源。

开发板舵机供电具有使能引脚,启动舵机电源输出需要将 SERVO EN 引脚置高。

主控

硬件选型

主控选择 STM32 L431RCT6 单片机。

本片单片机拥有硬件 FPU,配合 Cortex-M4 内核,可以在低功耗的同时拥有较

高的性能,相较于 STM32 F103ZE 系列有超过 100%的理论性能提升。

本片单片机拥有丰富的外设,开发板引出了6路PWM、3路UART、2路SPI、

1路 IIC 以及1路 CAN,用于板载外设或者外部设备通讯。

电路设计

BOOT 方式设置为 BOOTO FLASH 启动。

外部晶振使用了8M 3225 无源晶振。

每对供电引脚均放置了 100nF 去耦电容。

按键

电路设计

RST 按键与用户自定义 KEY 均没有防止外部上拉电阻,KEY 需要配置 GPIO 内部上拉。

PWM 输入输出

设计概述

调研发现机器人开发板 PWM 底座经常因为错误连接或者杂物导致 VCC 引脚与信号引脚发生短路,或者人体静电直接向信号引脚释放。为了保护脆弱的主控,本开发板添加了一片 74HC245 缓冲电路,并添加 DIR 信号用于控制信号传输方向。DIR 引脚已被电阻上拉。舵机 3P 底座靠近开发板外侧引脚为 GND。

电路设计

DIR 引脚电平	传输方向
高	向片外
低	向单片机

BMI160

设计概述

开发板搭载了一片 BMI160 六轴 IMU,可以提供最高±16g 的加速度测量与2000°/s 的角速度测量,并且具有优秀的温漂与零漂控制。IMU 还具有计步、摔落检测等功能。IMU 采用四线 SPI 与 MCU 连接,并引出了全部两个中断引脚。

IMU 配备了 3 颗 120 Ω 并联加热电阻并使用 5V 电源,加热电阻可以通过 PWM 控制,可以进行温度补偿。

IMU 挖槽形成孤岛,可以滤除高频噪音并减少热量发散。

电路设计

CAN 通讯

设计概述

STM32L431RCT6 有一路支持 CAN2.0B 标准的控制器局域网收发器。开发板使用了一片 TJA1042T 作为 CAN 收发芯片,支持 1Mbit/s 传输速率,并默认连接了 120 Ω 终端电阻。

电路设计

CAN 信号通过两个并联的 GH1.25 2Pin 接口引出,线序如下:

USB-C

设计概述

开发板搭载一个 USB-C 接口,板载串口转 USB 芯片。USB-C 口无法对外供电, 且对内供电只能驱动 USB 转串口芯片。MCU 的 UART2 用于连接 USB-C 接口。

硬件设计

D-BUS 电平转换

设计概述

开发板搭载 D-BUS 电平转换电路,支持接入使用 D-BUS 协议的遥控器接收机。 MCU 的 UART3 被用于连接 D-BUS 电平转换电路。

硬件设计

*靠近开发板外侧的引脚是 GND 引脚。

UART1

硬件设计

UART1 采用 GH1.25-4P 接口引出,线序如下:

	华		
5V	GND	UART1_TX	UART1_RX

接口可以对外提供 5V 供电,电流来自 RY8411。接口可提供最大 5W 的对外功率。

*2.0 及以下版本开发板(2022-8-15 及以前)的 UART1 线序与上述线序相反,为 RX\TX\GND\5V

SWD

硬件设计

开发板使用 SWD 对单片机进行调试,SWD 接口通过 MX1.25-4P 接口引出,线序

如下:

卡槽						
SWDIO	SWDCLK	GND	3V3			

可以通过 SWD 接口向单片机供电并实现程序烧录、驱动 IMU、点亮 RGB 灯等不需要 5V 供电的功能。

牛角座

硬件设计

牛角座引出了一路 SPI 与一路 IIC,并提供 5V 供电与 GND 接口。

RGB灯

硬件设计

开发板搭载一颗 RGB 灯,可调节 PWM 占空比控制灌电流大小进行调光,或者直接设置 GPIO 电平点亮灯光。