Алгебра

Мастера конспектов 22 января 2020 г.

Честно говоря, ненависть к этой вашей топологии просто невообразимая.

Содержание

. Бил	иеты
1.1	Определение кольца. Простейшие следствия из аксиом. Примеры. Области целостности
1.2	Евклидовы кольца. Евклидовость Z. Неприводимые и простые элементы
1.3	Идеалы, главные идеалы. Евклидово кольцо как кольцо главных идеалов
1.3 1.4	Основная теорема арифметики
1.5	Кольцо вычетов $\mathbb{Z}/_{n\mathbb{Z}}$. Китайская теорема об остатках
1.6	Определение поля. $\mathbb{Z}/_{p\mathbb{Z}}$ как поле. Поле частных целостного кольца
1.7	Определение пому. 22/ pZ как ноле. Поле частных целостного кольца Определение гомоморфизма и изоморфизма колец. Фактор-кольцо
1.8	Теорема о гомоморфизме
1.9	Кольцо многочленов. Целостность и евклидовость кольца многочленов над
1.0	полем
1 10	Лемма Гаусса
	Факториальность кольца многочленов
	Теорема Безу. Производная многочлена и кратные корни
	Интерполяция Лагранжа
	Интерполяция Эрмита
	Поле разложение многочлена
	Комплексные числа. Решение квадратных уравнений в
	Основная теорема алгебры
	Разложение рациональной функции в простейшие дроби над $\mathbb C$ и над $\mathbb R$
	Определение векторного пространства. Линейная зависимость. Существова-
1.10	ние базиса
1.20	Размерность векторного пространства
	Линейные отображения векторных пространств. Подпространство, фактор-
1.21	пространство. Ранг линейного отображения
1.22	Матрица линейного отображения. Композиция линейных отображений и про-
1,22	изведение матриц. Кольцо матриц
1.23	Элементарные преобразования. Метод Гаусса. Системы линейных уравнений
	Теорема Кронекера-Капелли
	Определение группы. Циклическая группа. Порядок элемента
	Группа перестановок. Циклы, транспозиции. Знак перестановки
	Действие группы на множестве. Орбиты. Классы сопряженности
	Группа обратимых элементов кольца. Вычисление обратимых элементов $\mathbb{Z}/n\mathbb{Z}$.
	Функция Эйлера
1.29	Гомоморфизмы и изоморфизмы групп. Смежные классы, теорема Лагранжа.
	Теорема Эйлера
1.30	Многочлены деления круга
	Конечные поля (существование, единственность, цикличность мультиплика-
	тивной группы)
1.32	Фактор-группа, теорема о гомоморфизме
	Определитель матрицы. Инвариантность при элементарных преобразовани-
	ях, разложение по строчке и столбцу

П	Іофамильный указатель всех мразей	8
	ния матриц	7
1.3	.36 Принцип продолжения алгебраических тождеств. Определитель произведе-	
1.	.35 Вычисление определителя методом Гаусса	7
1.3	.34 Присоединенная матрица. Формула Крамера. Определитель транспонированной матрицы	7
4.5	24 Приссединали допина Фермина Ирскова Отранования присседина при	

1 Билеты

1.1 Определение кольца. Простейшие следствия из аксиом. Примеры. Области целостности

Определение 1. *Кольцом* называется множество R вместе с бинарными операциями + и \cdot (которые называются сложением и умножением соответственно), удовлетворяющим аксиомам:

- операция сложения ассоциативна;
- по отношению к сложению существует нейтральный элемент;
- у каждого элемента есть обратный по сложению
- операция сложения коммутативна;
- умножение ассоциативно;
- умножение дистрибутивно по сложеиню.

Также можно добавить, что если на множестве выполныны три первые аксиомы, то оно будет называться *группой*, а если выполнены первые четыре, то это уже *абелева группа*. Нейтральный по сложению элемент кольца называют *нулём*.

Пример(ы) 1. Кольцо называется:

- коммутативным, если оно коммутативно по умножению;
- кольцом с единицей, если оно содержит нейтральный элемент по умножению (единица);
- *телом*, если в нём есть 1, и для любых $a \neq 0 \rightarrow a \cdot a^{-1} = a^{-1} \cdot a = 1$;
- полем, если это коммутативное тело;
- полукольцом, если нет требования противоположного элемента по сложению.

Следствие 1. Некоторые следствия из аксиом:

 $\bullet \ 0 \cdot a = 0$

Доказательство.

$$0 \cdot a = (0+0) \cdot a = 0 \cdot a + 0 \cdot a$$

 \Box

Прибавим к обеим частям $-0 \cdot a$ и получим требуемое.

• Нейтральный элемент по сложению единственный

Доказательство. Рассмотрим их сумму справа и слева.

Определение 2. Коммутативное кольцо R с единицей, обладающее свойством

$$xy = 0 \Longrightarrow x = 0 \lor y = 0 \ (\forall x, y \in R)$$

называется областью целостности или просто областью.

Определение 3. Число $d \neq 0$ называется *делителем нуля*, если существует такое $d' \neq 0$, что dd' = 0.

Нетрудно понять, что область целостности - в точности коммутативное кольцо с единицей без делителей нуля.

- 1.2 Евклидовы кольца. Евклидовость \mathbb{Z} . Неприводимые и простые элементы.
- 1.3 Идеалы, главные идеалы. Евклидово кольцо как кольцо главных идеалов
- 1.4 Основная теорема арифметики
- 1.5 Кольцо вычетов $\mathbb{Z}/_{n\mathbb{Z}}$. Китайская теорема об остатках
- 1.6 Определение поля. $\mathbb{Z}/_{p\mathbb{Z}}$ как поле. Поле частных целостного кольца
- 1.7 Определение гомоморфизма и изоморфизма колец. Фактор-кольцо
- 1.8 Теорема о гомоморфизме
- 1.9 Кольцо многочленов. Целостность и евклидовость кольца многочленов над полем
- 1.10 Лемма Гаусса
- 1.11 Факториальность кольца многочленов
- 1.12 Теорема Безу. Производная многочлена и кратные корни
- 1.13 Интерполяция Лагранжа
- 1.14 Интерполяция Эрмита
- 1.15 Поле разложение многочлена
- 1.16 Комплексные числа. Решение квадратных уравнений в
- 1.17 Основная теорема алгебры
- 1.18 Разложение рациональной функции в простейшие дроби над $\mathbb C$ и над $\mathbb R$
- 1.19 Определение векторного пространства. Линейная зависимость. Существование базиса
- 1.20 Размерность векторного пространства
- 1.21 Линейные отображения векторных пространств. Подпространство, фактор-пространство. Ранг линейного отображения
- 1.22 Матрица линейного отображения. Композиция линейных отображений и произведение матриц. Кольцо матриц
- 1.23 Элементарные преобразования. Метод Гаусса. Системы линейных уравнений
- 1.24 Теорема Кронекера-Капелли
- 1.25 Определение группы. Циклическая группа. Порядок элемента
- 1.26 Группа перестановок. Циклы, транспозиции. Знак перестанов-
- 1.27 Действие группы на множестве. Орбиты. Классы сопряженности
- 1.28 Группа обратимых элементов кольца. Вычисление обратимых элементов $\mathbb{Z}/_{n\mathbb{Z}}$. Функция Эйлера
- 1.29 Гомоморфизмы и изоморфизмы групп. Смежные классы, теорема Лагранжа. Теорема Эйлера

И в заключение...

2 Пофамильный указатель всех мразей

Быстрый список для особо заебавшегося поиска.

делитель нуля кольцо, а также его вариации

область целостности