

(2)

QorlQ T4220 Multi-core

Multi-Bus

store-and-forward

pass-through

ARM926EJ-S

• 32-bit Harvard architecture (2001)

Capacitance (nF)				Power (mW)	
Cca	C _{cs}	C _{ma}	C _{ms}	List	R
0.505	0.224	0.540	0.210	6.570	67.434

- Assuming continuous use continuous optimization
- Assuming discrete perform exhaustive search

Notation N = # Nordes L= packet length in bits
W= link width in bits
f= transmission frequency (bandworth=Wf)
Po= propagation delay

- we'll assume that arbitration can be performed in parallel with a prior transmission and hence no cost

On-Chip Interconnect Types
(1) Bus

Crossbar

2) Crossbar 3) MultiBus (with bridges) 4) Network-on-Chy (NoC)

Bus

- Common connection between all nudes

- longer wires => higher capacitance => higher power and low speed
- lacks parallelism of transfers scales poorly: suitable for 4-8 nodes

- July connected network of Nignets and Montputs

- requires N×M×W drivers
 mex 1 active driver per output line
 O-M active drives per injust line

- can scale beyond busies and crossbars

Bridge Types a) store-and-forward b) pass-option

Store-and-Forward (hardout - page 2)
- a buffer in each direction

- example operation: send packet from NI to N3
 - 1) NI contends for Bus A, was arbitration, sends to
 - packet to the bridge's A > B buffer
 (2) the bridge contends for Bus B, wins a sitration, sends packet to N3
 - latercy: \$2 hus = 2 \$\Dates hus (assuming law bridge over latercy)

- lateray: Dzms = Dms + 3×Po C (L/fw + Pp)

- example operation: NI > N3

Pass-Through (hardout)

- no buffering

- can deadlork: example, NI > N3 and Node 4 > N2 (1) NI wins Bus A white NY wins Bus B (2) both notify the bridge simultaneously - can be solved with pribrities and NACK from bridge > NY (asont and retry)

		:•	
			(8)
Multibus Example: - multimedia platform	Ol 11. A		
Multipus Example:	Millips Nex	Aeria Mander	J-page 3)
- multimedia platform	r e.g. die	ital TV set-to	n box
	0		,
- 2 processors (ge	neal, medon)	· accelerators	
- 2 processors (gen			
MTPS fret more b	118 71 10	7	
MTDC (1 member	1 his strase	1 1.0	
Time sow perfection	hrite	brodge	
Tribeara proc. rus	1 Thorte		
MIPS fast proc. b MIPS slow perphera TriMedra proc. bus Memory bus(high b	(w) 1		
- addresses space i	3 partitioned	among the ru	ges
- routing is built into	the bridges	8	
- addresses space i - rowting is built into eg, pocket TriM gran 1: TM bus	ledra -> WAR	7	
astern 1: TM bu	s - MIPS slaw	bus	
coton 2) TM bus	- Men bus - F	ast bus - Slow !	rus
- pass-through bridg speed, width, p	es only wor	to of the buse	s share
Care I walth	octor of the	-10170 ileo ctros	-As I forward
Speed, willy fu	, 01000	-wise lose sivic	. 00 W. 10. 1003 g

-the crossbars	9)
Vetwork-on-Chips typics	
- network of switches connected by links	
- one node per chip	
- full-duplex links most common	
Network-on-Chip - network of switches connected by links - one node per chip - full-duplex links most common Node Switch Switch Node Node Node Node	
- good scalability, but requires multiple hips (latercy	
Links	<i>H</i> _
Links - short => low capacitance => low power and high speed (~6 - propagation delay to perhap: 1/f (scycle)	"Z
TSUR	
a) flow-control	
a) flow-control b) routing c) topologics	
Nifferences with Off-Chip Networks	
- synchronization is easier (common clock, short wires	5)
- wide links (us PCIe, Ethernet, SATA - serval)	
Differences with Off-Chip Networks - synchronization is easier (common clock, short wires - wide links (vs PCJe, Ethernet, SATA - serval) - buffers are relatively costly (area, power)	

Wormhole Switching the worth - design goal: minimize butterny
- packets are subdivided no blits (size=link width) that can be sent in I cycle
- switches butter I flit
- packet "snakes" through the network
e.g. packet NI->N2, flits fl, f2, f3, f4

[Node I k | Switch k | Snatch | Node 2]

hops, H = 3 # flits, L/W = 4

latercy = H + L/W - 1
= 3 + 4 - 1 = 6

Diwm = H + L/W - 1

Tworm = f W

How Control - handling contention at swiches: reduce blocking/maximize
throughput
- there is no preemption of packet filts flats; once the
rowe is established all flots follow uninterrupted 1) Back-Pressure - switches relay blocked status back to the sender Node 1 Switch Switch Node 2 Slocked God Fy Node 3 snotch snotch Node 4

- Flexible but requires additional buffering

2) Virtual Circuit - send an initral flit to reserve switch parts from source to destruction - after ACK is received at the sender, it sends the packet, a flit per cycle
- adds 2×H latery, so it only works well for long packets (L/W >> H) other it results in low throughput | Llink width (L/W=# flits)

3) Offline Scheduling
- build a contention-free schedule offline - nodes and switches, follow the schedule table (~ like TIMA ever the wide No () - simplifies switches and is deterministic (good for real-time) but is in flexible

Routing
- goals: minimize contention, maximize bandwidth
- statiz: "x-y routing
- first route horizontally, then vertically
- prevents deadlock
- dynamiz: eg. back pressure routing
- congested switches in form their neighbours which
route packets away

Topologies

a) Mesh
b) Torus
c) Ring

Mesh Topology
- Hardonts > unchip Connect: mesh & torus diagrams

- for a square mesh
links = N + TN (TN-1) + TN (TN-1)
to each #rows #cols # cols # rows

Maximal shortest runte, Honax = 2 JN (JN-1 horzy to Sub-linear scaling)

(sub-linear scaling)

through per nucle (Tworm) = Tworm only if nucles communicate to neights

Topologies

Vipin, "AsyncBTree: Revisiting Binary Tree Topology for Efficient FPGA-Based NoC Implementation," International Journal of Reconfigurable Computing, 2019.

Blocking

- single queue per input port
- N_{2,1} -> N_{1,2} is being transmitted (in/out ports reserved until packet done)
- N_{3,2} -> N_{1,2} blocks
- $N_{3,1}$ -> $N_{2,2}$ blocks because packet from $N_{3,2}$ is waiting for link to $N_{2,2}$

Torus Topdogy

- for square torus

links = 3 N = $(1 + 4 \times \frac{1}{2}) \times N$ to each

The

Hmax = 1 + LJN/2 + LJN/2 + 1
rem
re
rentally vert. + PE

- disadvantage: longer wires to connect end notes/ suitches

- route: choose shortest path: clockurse or counter

Hmax = $\lfloor N/2 \rfloor + 2$ $t_0/fran PE$ $t_1/fran PE$ $t_1/fran PE$

Other Topologres: linear (bus), tree,

Switch Besign arther unit inputs cryput 3 PF BUTTOM BUTTOM RIGHT RIGHT

Virtual Channels

- see handout: Blocking
- packets are blocked unnecessarily by other blocked markets

- increase total throughout with urtual - each input purt has multiple queues/buffers
- a packet is assigned to a virtual channel
- see hardout: Virtual Channels
stochastic model shaved that throughput increased

level off around, 4-8 virtual channels / input (see hardout)

Virtual Channels

- Multiple buffers per input port
- OUT 1 (top) occupied
 by N_{2,1} -> N_{1,2} flits
- N_{3,2} -> N_{1,2} blocked on OUT 1
- N_{3,1} -> N_{2,2} proceeds to OUT 0 (node)

-same scenario as previous figure, but Packet 3 is not blocked

Stochastic Model: Throughput vs # Virtual Channels

- Assumptions: random source, destination for each packet
- Poisson arrival process on each node
- Fixed storage for 16 flits at each input port
- n is the number of hops

Phillips Nexperia

Dutta, Jensen, Rieckmann, "Viper: A Multiprocessor SOC for Advanced Set-Top Box and Digital TV Systems," *IEEE Design and Test of Computers*, 2001.

Lang, Kapre, Pellizzoni, "NOCS '21". "Worst-case propagation delay ...