Inteligência Artificial Aula 6 - Vídeo 2 - Métodos de Busca Informada

João C. P. da Silva

Dept. Ciência da Computação - UFRJ

16 de setembro de 2020

Função de Avaliação (heurística) f(n) = g(n) + h(n):

- g(n): custo real do nó inicial até n
- h(n): custo estimado do nó n até um nó objetivo

Exemplo

n	h(n)	n	h(n)
arad	366	mehadia	241
bucharest	0	neamt	234
cralova	160	oradea	380
dobreta	242	pitesti	100
etorie	161	rimnicu	193
fagaras	176	sibiu	253
glurgiu	77	timisoara	329
hirsova	151	urziceni	80
iasi	226	vaslul	199
lugoj	244	zerind	374

Figura: Artificial Intelligence: A Modern Approach - Russell and Norvig

$$f(n) = g(n) + h(n)$$

Figura: Artificial Intelligence: A Modern Approach - Russell and Norvig

Nó n	g(n)	h(n)	f(n)	g(n)	h*(n)	f*(n)
Α	0	366	366	0	418	418
s	140	253	393	140	278	418
R	220	193	413	220	198	418
Р	317	100	417	317	101	418
В	418	0	418	418	0	418

Nó n	g(n)	h(n)	f(n)	g(n)	h*(n)	f*(n)
A	0	366	366	0	418	418
S	140	253	393	140	278	418
R	220	193	413	220	198	418
Р	317	100	417	317	101	418
В	418	0	418	418	0	418

Heurística admissível : $h(n) \le h^*(n)$, onde $h^*(n)$ é o *custo real* a partir de n.

Teorema: A busca A^* é ótima.

Prova: Suponha que algum objetivo sub-ótimo G_2 foi gerado e está na lista.

Seja n um nó não-expandido em um caminho mais curto para um objetivo ótimo G.

Figura: Artificial Intelligence: A Modern Approach - Russell and Norvig

- $g(G_2) > g(G)$, pois G_2 é sub-ótimo
- Para todo nó solução : f(solução) = g(solução) + h(solução) = g(solução) + 0 = g(solução)

Logo:
$$f(G_2) = g(G_2) \in f(G) = g(G) \Rightarrow f(G_2) > f(G)$$
.

Como h é admissível : $h(n) \le h^*(n) \Rightarrow g(n) + h(n) \le g(n) + h^*(n) = f^*(n) = f(G)$.

Ou seja, $f(n) \le f(G) < f(G_2)$: qualquer nó n é sempre selecionado antes de G_2 .

Teorema: A busca A^* é ótima.

Prova:

Lema: A^* expande os nós em ordem crescente do valor de f.

Gradualmente acrescente "f -contornos" dos nós (como busca em largura acrescenta níveis).

Contorno i possui todos os nós com $f = f_i$, onde $f_i < f_{i+1}$.

Figura: Artificial Intelligence: A Modern Approach - Russell and Norvig

Avaliação

- Completa: Sim, a menos que exista um número infinito de nós com f ≤ f(G).
- Tempo: Exponencial (muitos nós no contorno).
- Espaço: Mantém todos os nós na memória.
- Ótima : Sim, não expande f_{i+1} até que f_i esteja terminado.

Exemplo - 8-puzzle

- $h_1(n) = n$ úmero de peças fora do lugar
- $h_2(n) = \text{distancia } Manhattan$

Figura: Artificial Intelligence: A Modern Approach - Russell and Norvig

- $h_1(StartState) = 7$
 - $h_2(StartState) = 2 + 3 + 3 + 2 + 4 + 2 + 0 + 2 = 18$

Heurísticas Admissíveis podem ser derivadas a partir do custo real da solução de uma versão relaxada do problema.

- Se as regras do 8-puzzle forem relaxadas de modo que uma peça pode se mover para qualquer posição, então $h_1(n)$ fornece a solução mais curta.
- Se as regras forem relaxadas de modo que uma peça pode se mover para qualquer quadrado adjacente, então $h_2(n)$ fornece a solução mais curta.

Dominância: Se $h_2(n) \ge h_1(n)$ para todo n (ambas admissíveis), então h_2 domina h_1 e é melhor para a busca.

	Searc	h Cost (nodes g	enerated)	Effective Branching Factor			
d	IDS	$A^*(h_1)$	$A^{*}(h_{2})$	IDS	$A^*(h_1)$	$A^*(h_2)$	
2	10	6	6	2.45	1.79	1.79	
4	112	13	12	2.87	1.48	1.45	
6	680	20	18	2.73	1.34	1.30	
8	6384	39	25	2.80	1.33	1.24	
10	47127	93	39	2.79	1.38	1.22	
12	3644035	227	73	2.78	1.42	1.24	
14	_	539	113	_	1.44	1.23	
16	_	1301	211	_	1.45	1.25	
18	_	3056	363	_	1.46	1.26	
20	_	7276	676	_	1.47	1.27	
22	_	18094	1219	_	1.48	1.28	
24	-	39135	1641	-	1.48	1.26	

Figura: Artificial Intelligence: A Modern Approach - Russell and Norvig

Sub-problemas de um dado Problema

O custo da solução ótima de um sub-problema, é um limite inferior do custo do problema como um todo.

Pattern Databases: Armazena os custos da solução a partir de todas as instâncias possíveis do sub-problema.

Start State

Goal State

Figura: Artificial Intelligence: A Modern Approach - Russell and Norvig

Inteligência Artificial Aula 6 - Vídeo 2 - Métodos de Busca Informada

João C. P. da Silva

Dept. Ciência da Computação - UFRJ

16 de setembro de 2020