4 Types de Nucléosynthèses

Définition (Nucléosynthèse)

Formation de noyaux atomiques

Nucléosynthèse primordiale

- Épisode du Big Bang
- Création des éléments légers : ¹/₁H,
 ⁴/₂He, ...

Nucléosynthèse interstellaire

- ou Spallation cosmique
- Bombardement de la matière par des rayonnement cosmique
 - Production d'éléments légers : 3Li, 4Be, 5B

Nucléosynthèse stellaire

- Vie de l'étoile
 - Création de l'Hélium entre le ⁴₂He et le ₂₆Fe
- « Fin de Vie » de l'étoile
 - Création d'éléments plus lourd iusqu'au 26Fe
 - Capture (lente) de neutrons : après le 26Fe

Nucléosynthèse explosive

- Capture de protons
- Capture (rapide) de neutrons
 - Au delà du 26 Fe

Nucléosynthèse Interstellaire

Les Rayons Cosmiques

Atmosphère

62/1

Nucléosynthèse stellaire

Combustion de ¹₁H

- Composé : ¹H , ⁴He
- Fusion ¹₁H : \nearrow ⁴₂He
- Contraction gravitationnelle

Fin de la combustion de ¹/₁H

- ► Peu ¹H au coeur
- Contraction de coeur ⁴He
- Contraction
 - T au coeur et en périphérie
 - Combustion possible en couche d'1H

Combustion de ⁴He

- Combustion du coeur d'4He
- Combustion en couche
- Contraction
 - ► ✓ taille ► T en surface
- Couleur rouge

Figure 36 - https://fr.wikipedia.org/wiki/Naine_blanche

Nucléosynthèse stellaire des Étoiles massives

Combustion	Produits	Température en K	$ ho$ en g cm $^{-3}$	Durée
Hydrogène	⁴ He	4×10^{7}	4	$7 imes10^6$ années
Hélium	12°C, 16°D	2×10^{8}	760	$8 imes 10^5$ années
Carbone	¹⁶ 0, ²⁰ Ne, ²⁴ Mg	8×10^{8}	10 ⁵	500 années
Néon	160, 24Mg, 28Si	$1,6 \times 10^{9}$	$3.9 imes 10^6$	0,9 années
Oxygène	²⁸ Si ³² S	2.1×10^{9}	$3,6 imes 10^{6}$	0,4 années
Silicium	⁵⁶ Fe	4×10^9	3×10^7	1 jour

Figure 37 — Représentation de la structure en « oignon » https://fr.wikipedia.org/wiki/ Supernova_Ää_effondrement_de_coeur

- ► Coeur du **groupe du fer**
- La fusion s'arrête (car plus de création d'énergie)
- Le coeur de l'étoile refroidit
- La pression de radiation baisse
- La pression des électrons se maintient
- Quand le coeur de l'étoile atteint la Masse de Chandrasekhar 1,4M_☉
- ► Effondrement gravitationnel du coeur
- Supernova de type II

La Nucléosynthèse Explosive

Les Naines blanches

Caractéristiques

- Densité élevée

 - Masse : ≤ M_☉ (/ jusqu'à 8)
 Volume : ~ celui de la Terre
 - ▶ Masse Volumique : $\sim 1 \text{ t cm}^{-3}$
- Température de surface élevée
 - ► Initialement > 100 000 K
- Faible luminosité ~ ¹/₁₀₀₀ L_⊙
- Composition : 6C et 80

- Origine
 - ► Étoile de masse < 8M_☉
- Formation
 - Cœur de l'étoile parente
 - Couches externes sont expulsées et formé une nébuleuse planétaire
- Évolution
 - Si isolée
 - Très stabilité
 - se refroidir très lentement
 - Jusqu'à devenir une naine noire
 - Sinon
 - Supernova de Type la