House Price Prediction

Importing Libraries and Data Loading

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

In [2]: df=pd.read_csv("/content/House price Prediction.csv")
 df

Out[2]:		date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view
	0	2014- 05-02 00:00:00	3.130000e+05	3.0	1.50	1340	7912	1.5	0	(
	1	2014- 05-02 00:00:00	2.384000e+06	5.0	2.50	3650	9050	2.0	0	۷
	2	2014- 05-02 00:00:00	3.420000e+05	3.0	2.00	1930	11947	1.0	0	C
	3	2014- 05-02 00:00:00	4.200000e+05	3.0	2.25	2000	8030	1.0	0	C
	4	2014- 05-02 00:00:00	5.500000e+05	4.0	2.50	1940	10500	1.0	0	(
							•••			
	4595	2014- 07-09 00:00:00	3.081667e+05	3.0	1.75	1510	6360	1.0	0	(
	4596	2014- 07-09 00:00:00	5.343333e+05	3.0	2.50	1460	7573	2.0	0	C
	4597	2014- 07-09 00:00:00	4.169042e+05	3.0	2.50	3010	7014	2.0	0	(
	4598	2014- 07-10 00:00:00	2.034000e+05	4.0	2.00	2090	6630	1.0	0	C
	4599	2014- 07-10 00:00:00	2.206000e+05	3.0	2.50	1490	8102	2.0	0	(

4600 rows × 18 columns

In [3]: df.head()

Out[3]:		date	price	bedroon	ns bathro	oms	sqft_living	sqft_lot	floors	waterfr	ont	view	cond
	0	2014- 05-02 00:00:00	313000.0	3	.0	1.50	1340	7912	1.5		0	0	
	1	2014- 05-02 00:00:00	2384000.0	5	.0	2.50	3650	9050	2.0		0	4	
	2	2014- 05-02 00:00:00	342000.0	3	.0	2.00	1930	11947	1.0		0	0	
	3	2014- 05-02 00:00:00	420000.0	3	.0	2.25	2000	8030	1.0		0	0	
	4	2014- 05-02 00:00:00	550000.0	4	.0	2.50	1940	10500	1.0		0	0	
4													•
In [4]:	df	tail()											
$O \cup + [A]$		ما	nto.	nuico	hadraams	hatl		ft living	caft lat	floors			vio
Out[4]:			ate	price	bedrooms	batl	hrooms sq	ft_living	sqft_lot	floors	wate	erfront	vie
Out[4]:	45	20	14- -09 308166	price 5.666667			hrooms sq	ft_living 1510	sqft_lot 6360	floors	wate	erfront 0	
Out[4]:		20° 95 07- 00:00	14- -09 308166 :00 14- -09 534333	5.666667	3.0						wate		
Out[4]:	45	95 07- 00:00 96 07- 00:00 20'	14- -09 308166 :00 14- -09 534333 :00 14- -09 416904	5.666667	3.0		1.75	1510	6360	1.0	wate	0	
Out[4]:	45	95 07- 00:00 96 07- 00:00 20 97 07- 97 07-	14- -09 308166 :00 14- -09 534333 :00 14- -09 416904 :00 14- -10 203400	3.333333	3.0		2.50	1510	6360 7573	2.0	wate	0	
Out[4]:	45	95 07- 00:00 96 07- 00:00 97 07- 00:00 20 98 07-	14- -09 308166 :00 14- -09 534333 :00 416904 :00 14- -10 203400 :00 14- -10 220600	6.666667 8.333333 8.166667	3.0 3.0 3.0		1.75 2.50 2.50	1510 1460 3010	6360 7573 7014	2.0	wate	0	
Out[4]:	45	95 07- 00:00 96 07- 00:00 97 07- 00:00 98 07- 00:00 20 20 98 07- 00:00	14- -09 308166 :00 14- -09 534333 :00 416904 :00 14- -10 203400 :00 14- -10 220600	6.666667 8.333333 4.166667	3.0 3.0 4.0		1.75 2.50 2.50 2.00	1510 1460 3010 2090	6360 7573 7014 6630	1.0 2.0 2.0	wate	0	
Out[4]:	45 45 45	95 07- 00:00 96 07- 00:00 97 07- 00:00 98 07- 00:00 20 20 98 07- 00:00	14- -09 308166 :00 14- -09 534333 :00 14- -09 416904 :00 14- -10 203400 :00	6.666667 8.333333 4.166667	3.0 3.0 4.0		1.75 2.50 2.50 2.00	1510 1460 3010 2090	6360 7573 7014 6630	1.0 2.0 2.0	wate	0	

 $file: /\!/\!/C:\!/Users/anjan/Downloads/Houseprice_Prediction.html$

Out[5]: 0 date 0 price 0 **bedrooms** 0 bathrooms 0 sqft_living 0 sqft_lot 0 floors 0 waterfront 0 view 0 condition 0 sqft_above 0 sqft_basement 0 yr_built 0 yr_renovated 0 street 0 city 0 statezip 0 country 0

dtype: int64

In [6]: df.dtypes

Out[6]:

```
0
         date
               object
         price float64
    bedrooms float64
   bathrooms float64
                  int64
    sqft_living
      sqft_lot
                  int64
        floors float64
   waterfront
                  int64
         view
                  int64
    condition
                  int64
   sqft_above
                  int64
sqft\_basement
                  int64
                  int64
      yr_built
 yr_renovated
                  int64
                 object
        street
          city
                 object
      statezip
                 object
                 object
      country
```

dtype: object

```
In [7]: df.drop(['date','street','city','country'],axis=1,inplace=True)
df
```

Out[7]:		price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition
	0	3.130000e+05	3.0	1.50	1340	7912	1.5	0	0	
	1	2.384000e+06	5.0	2.50	3650	9050	2.0	0	4	
	2	3.420000e+05	3.0	2.00	1930	11947	1.0	0	0	
	3	4.200000e+05	3.0	2.25	2000	8030	1.0	0	0	
	4	5.500000e+05	4.0	2.50	1940	10500	1.0	0	0	
	•••					•••				
	4595	3.081667e+05	3.0	1.75	1510	6360	1.0	0	0	
	4596	5.343333e+05	3.0	2.50	1460	7573	2.0	0	0	
	4597	4.169042e+05	3.0	2.50	3010	7014	2.0	0	0	
	4598	2.034000e+05	4.0	2.00	2090	6630	1.0	0	0	
	4599	2.206000e+05	3.0	2.50	1490	8102	2.0	0	0	
	4600 r	ows × 14 colu	mns							

In [8]: #Showing no.of unique values in each columns
 df.nunique()

Out[8]:

```
0
         price 1741
                  10
    bedrooms
                  26
   bathrooms
    {\bf sqft\_living}
                 566
      sqft_lot 3113
        floors
                   6
                   2
   waterfront
         view
                   5
                   5
    condition
   sqft_above
                 511
sqft_basement
                 207
      yr_built
                 115
 yr_renovated
                  60
      statezip
                  77
```

dtype: int64

```
In [9]: for i in df['yr_renovated']:
    if i!=0:
        df['yr_renovated']=df['yr_renovated'].replace(i,2024-i)
    df
```

Out[9]:		price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition
	0	3.130000e+05	3.0	1.50	1340	7912	1.5	0	0	
	1	2.384000e+06	5.0	2.50	3650	9050	2.0	0	4	
	2	3.420000e+05	3.0	2.00	1930	11947	1.0	0	0	
	3	4.200000e+05	3.0	2.25	2000	8030	1.0	0	0	
	4	5.500000e+05	4.0	2.50	1940	10500	1.0	0	0	
	•••									
	4595	3.081667e+05	3.0	1.75	1510	6360	1.0	0	0	
	4596	5.343333e+05	3.0	2.50	1460	7573	2.0	0	0	
	4597	4.169042e+05	3.0	2.50	3010	7014	2.0	0	0	
	4598	2.034000e+05	4.0	2.00	2090	6630	1.0	0	0	
	4599	2.206000e+05	3.0	2.50	1490	8102	2.0	0	0	

4600 rows × 14 columns

```
In [10]: df['statezip']=df['statezip'].str.replace('WA','')
    df['statezip']=df['statezip'].astype(int)
    df
```

Out[10]

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition
0	3.130000e+05	3.0	1.50	1340	7912	1.5	0	0	
1	2.384000e+06	5.0	2.50	3650	9050	2.0	0	4	
2	3.420000e+05	3.0	2.00	1930	11947	1.0	0	0	
3	4.200000e+05	3.0	2.25	2000	8030	1.0	0	0	
4	5.500000e+05	4.0	2.50	1940	10500	1.0	0	0	
•••									
4595	3.081667e+05	3.0	1.75	1510	6360	1.0	0	0	
4596	5.343333e+05	3.0	2.50	1460	7573	2.0	0	0	
4597	4.169042e+05	3.0	2.50	3010	7014	2.0	0	0	
4598	2.034000e+05	4.0	2.00	2090	6630	1.0	0	0	
4599	2.206000e+05	3.0	2.50	1490	8102	2.0	0	0	

4600 rows × 14 columns

```
In [11]:
            df.dtypes
Out[11]:
                                 0
                     price float64
                bedrooms float64
               bathrooms float64
                sqft_living
                             int64
                  sqft_lot
                             int64
                    floors float64
                             int64
               waterfront
                     view
                             int64
                 condition
                             int64
               sqft_above
                             int64
            sqft_basement
                             int64
                  yr_built
                              int64
             yr_renovated
                              int64
                  statezip
                              int64
```

dtype: object

```
In [12]: df1 = df.copy()
    #Correlation with Response Variable class
X = df1.drop(['price'],axis=1)
y = df1['price']
X.corrwith(y).plot.bar(
```

```
figsize = (16, 5), title = "Correlation with Response Variable class", fontsize = 1
rot = 45, grid = False)
plt.show()
```


In [13]: df.corr()

\cap 111	+ 1	12	
υu	L	TO	

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	
price	1.000000	0.200336	0.327110	0.430410	0.050451	0.151461	0.135648	0.2
bedrooms	0.200336	1.000000	0.545920	0.594884	0.068819	0.177895	-0.003483	0.1
bathrooms	0.327110	0.545920	1.000000	0.761154	0.107837	0.486428	0.076232	0.2
sqft_living	0.430410	0.594884	0.761154	1.000000	0.210538	0.344850	0.117616	0.3
sqft_lot	0.050451	0.068819	0.107837	0.210538	1.000000	0.003750	0.017241	0.0
floors	0.151461	0.177895	0.486428	0.344850	0.003750	1.000000	0.022024	0.0
waterfront	0.135648	-0.003483	0.076232	0.117616	0.017241	0.022024	1.000000	0.3
view	0.228504	0.111028	0.211960	0.311009	0.073907	0.031211	0.360935	1.0
condition	0.034915	0.025080	-0.119994	-0.062826	0.000558	-0.275013	0.000352	0.0
sqft_above	0.367570	0.484705	0.689918	0.876443	0.216455	0.522814	0.078911	0.1
sqft_basement	0.210427	0.334165	0.298020	0.447206	0.034842	-0.255510	0.097501	0.3
yr_built	0.021857	0.142461	0.463498	0.287775	0.050706	0.467481	-0.023563	-0.0
yr_renovated	-0.011928	-0.026228	-0.108796	-0.061498	-0.039293	-0.089938	0.000165	0.0
statezip	-0.046052	-0.153443	-0.206231	-0.210891	-0.133509	-0.064999	0.005937	0.0

```
Total alt figure/figure (10.10))
```

```
In [14]: plt.figure(figsize=(10,10))
    sns.heatmap(df.corr(),annot=True)
    plt.show()
```


Removal of Outliers

```
In [15]: for i in df.columns:
   plt.figure(figsize=(6,6))
      sns.boxplot(df[i],color='blue')
   plt.xlabel(i)
   plt.ylabel('Range')
```



```
Houseprice_Prediction
          df.drop(['waterfront','view'],axis=1,inplace=True)
In [16]:
In [17]: for i in df.columns:
            def iqr_method(df,variables):
              q1=df[variables].quantile(0.25)
              q3=df[variables].quantile(0.75)
              iqr=q3-q1
              upper=q3+(1.5*iqr)
              lower=q1-(1.5*iqr)
              return lower,upper
            lower_lim.upper_lim=iqr_method(df,i)
            df[i]=np.where(df[i]>upper_lim,upper_lim,np.where(df[i]<lower_lim,lower_lim,df[i]</pre>
In [18]: for i in df.columns:
           plt.figure(figsize=(6,6))
           sns.boxplot(df[i],color='blue')
           plt.xlabel(i)
           plt.ylabel('Range')
                  1e6
             1.2
             1.0
             0.8
          Range
9.0
```

price

0.4

0.2

0.0

In [19]: x=df.drop(['price'],axis=1)
 y=df['price']
 x

Out[19]:		bedrooms	bathrooms	sqft_living	sqft_lot	floors	condition	sqft_above	sqft_basement	у
	0	3.0	1.50	1340.0	7912.0	1.5	3.0	1340.0	0.0	
	1	5.0	2.50	3650.0	9050.0	2.0	5.0	3370.0	280.0	
	2	3.0	2.00	1930.0	11947.0	1.0	4.0	1930.0	0.0	
	3	3.0	2.25	2000.0	8030.0	1.0	4.0	1000.0	1000.0	
	4	4.0	2.50	1940.0	10500.0	1.0	4.0	1140.0	800.0	
	•••									
	4595	3.0	1.75	1510.0	6360.0	1.0	4.0	1510.0	0.0	
	4596	3.0	2.50	1460.0	7573.0	2.0	3.0	1460.0	0.0	
	4597	3.0	2.50	3010.0	7014.0	2.0	3.0	3010.0	0.0	
	4598	4.0	2.00	2090.0	6630.0	1.0	3.0	1070.0	1020.0	
	4599	3.0	2.50	1490.0	8102.0	2.0	4.0	1490.0	0.0	

4600 rows × 11 columns

```
In [20]: y
```

```
Out[20]:
                        price
              0 3.130000e+05
              1 1.153094e+06
              2 3.420000e+05
               4.200000e+05
                5.500000e+05
                3.081667e+05
          4595
          4596
               5.343333e+05
          4597 4.169042e+05
          4598
               2.034000e+05
          4599 2.206000e+05
         4600 rows × 1 columns
```

dtype: float64

```
In [21]: for i in x.columns:
    plt.scatter(x=y,y=x[i])
    plt.xlabel('price')
    plt.ylabel(i)
    plt.show()
```


In [22]: from sklearn.model_selection import train_test_split
 x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.30,random_state=1)
 x_train

Out[22]:

	bedrooms	bathrooms	sqft_living	sqft_lot	floors	condition	sqft_above	sqft_basement	у
3990	4.0	3.250	3990.0	9786.0	2.0	3.0	3965.0	0.0	
1507	4.0	2.500	2680.0	7178.0	2.0	3.0	2680.0	0.0	
1652	3.0	2.250	2675.0	20002.0	2.0	3.0	2675.0	0.0	
2279	5.5	3.625	3440.0	4500.0	2.0	3.0	3280.0	160.0	
2106	4.0	1.750	2220.0	6500.0	2.0	4.0	2220.0	0.0	
•••									
2895	4.0	1.500	1220.0	9600.0	1.0	3.0	1220.0	0.0	
2763	3.0	1.750	1970.0	8200.0	1.0	5.0	1420.0	550.0	
905	3.0	2.500	1720.0	1916.0	2.0	3.0	1720.0	0.0	
3980	4.0	3.250	4100.0	20002.0	2.0	3.0	2500.0	1525.0	
235	3.0	2.750	1540.0	6760.0	1.0	5.0	1210.0	330.0	

3220 rows × 11 columns

4										•
In [23]:	x_tes	st								
Out[23]:		bedrooms	bathrooms	sqft_living	sqft_lot	floors	condition	sqft_above	sqft_basement	3
	1351	5.0	2.000	2330.0	10750.0	1.0	4.0	1190.0	1140.0	
	1687	3.0	2.500	2730.0	5832.0	2.0	3.0	2730.0	0.0	
	1297	3.0	2.000	1220.0	1186.0	3.0	3.0	1220.0	0.0	
	2101	4.0	1.750	2700.0	7875.0	1.5	4.0	2700.0	0.0	
	3920	3.0	3.625	2080.0	2250.0	3.0	3.0	2080.0	0.0	
	•••									
	3490	4.0	2.500	2250.0	7526.0	2.0	3.0	2250.0	0.0	
	3584	2.0	0.750	840.0	20002.0	1.0	4.0	840.0	0.0	
	855	2.0	2.000	1360.0	4688.0	1.0	3.0	780.0	580.0	
	309	5.0	3.625	4270.0	8076.0	2.0	3.0	3400.0	870.0	
	1929	3.0	2.500	2680.0	9750.0	1.0	4.0	1610.0	1070.0	

1380 rows × 11 columns

In [24]: y_train

Out[24]:		price
	3990	866000.0
	1507	515000.0
	1652	660000.0
	2279	495000.0
	2106	480000.0
	•••	
	2895	310000.0
	2763	540000.0
	905	280000.0
	3980	775000.0
	235	503000.0

3220 rows × 1 columns

dtype: float64

```
y_test
In [25]:
Out[25]:
                      price
           1351
                  389000.00
           1687 1000000.00
           1297
                  355000.00
           2101
                  390000.00
           3920
                  715000.00
           3490
                  440000.00
           3584
                  528000.00
            855
                  488000.00
            309
                1153093.75
           1929
                  653000.00
```

1380 rows × 1 columns

dtype: float64

Model Creation and Performance Evaluation

```
In [26]: from sklearn.linear_model import LinearRegression
    from sklearn.ensemble import RandomForestRegressor,GradientBoostingRegressor
    from sklearn.tree import DecisionTreeRegressor
    from sklearn.metrics import r2_score
    linreg=LinearRegression()
```

```
ranfor=RandomForestRegressor()
dectree=DecisionTreeRegressor()
grad=GradientBoostingRegressor()
lst=[linreg,ranfor,dectree,grad]
```

```
In [27]: for i in lst:
    i.fit(x_train,y_train)
    y_pred=i.predict(x_test)
    print("R2score of",i,"is",r2_score(y_test,y_pred))
```

```
R2score of LinearRegression() is 0.483250199383935
R2score of RandomForestRegressor() is 0.6058197511228784
R2score of DecisionTreeRegressor() is 0.33683930554751207
R2score of GradientBoostingRegressor() is 0.6351632169487991
```