Sebastian Arboleda

Data Assimilation Platform and Architecture

B.S. Electrical Engineering Eastern Nazarene College

Virtual Summer Research 2020

Sponsored by:
NASA Ames Research Centre,
Eastern Nazarene College,
& Precursor SPC

Current State of the Art

Distributed Microservices-oriented architecture

- Data Acquisition System
- Data Conversion System
- Data Scanning and Analysis in real-time
- Alerting and Notification System
- Continuous Integration
- Continuous Deployment Capabilities
- Comprehensive Documentation

System Architecture Design

Data Collection System

Data Collection System

We use a small computer (Raspberry Pi) to read data from 16 sensors and send it to our ENC servers through **MQTT**.

This data includes:

- Magnetic Field
- Surface Charges
- CO2 Levels

Backend Architecture

Data Acquisition, Conversion, and Storage

Data Acquisition, Conversion, and Storage

Data Acquisition, Conversion and Storage System

Data is first sent to our **connector** system, which stores it in a time-series database.

We store the raw sensor measurements initially as mV, to prevent time delays in our data collection system.

Then, a **calculator** service that takes these raw measurements, and using the sensors' documentation, converts the data into actual physical units.

Data Fusion and Analysis System

Data Fusion and Analysis System

Data Fusion and Analysis System

We are using **Machine Learning** and **AI** prediction techniques to analyze our acquired data in near real-time looking for anomalies.

We are currently testing different Artificial Neural Networks, including Autoencoders and Recurrent Neural Networks to see what the best approach is.

Data Visualization and Alerting System

Data Visualization and Alerting System

Data Visualization and Alerting System

We want the data to be available to our team anywhere for 2D graph visualization and downloads.

We are using **Grafana** which allows team members to graph all sensor measurements.

We also serve a **subscription**-based, real-time **notification** system to alert team members of suspicious activity.

Data Assimilation Platform

Open Forum – Q & A

"Knowledge is power. Information is liberating. Education is the premise of progress, in every society, in every family."

- Kofi Annan

United Nations Press Release SG/SM/6268 23 June 1997

