

Professor: Michael Christ Vishal Raman

Contents

	August 27th, 2020	3
	1.1 Introduction	3
	1.2 Fourier Analysis	3
	1.3 On Tori of Arbitrary Dimension	
	1.4 Euclidean Spaces	
	September 1st, 2020	7
	2.1 Proof of Plancherel's Theorem	7
	2.2 Introduction to Convolution	8
	2.3 General Convolution	9
3	September 3rd, 2020	11
	3.1 Convolution and Continuity	11
	3.2 Convolution and Differentiation	
	3.3 Approximations	

§1 August 27th, 2020

§1.1 Introduction

We begin by considering the problem of conduction of heat in a circle. We use the map $x \mapsto e^{ix}, x \in [0, 2\pi)$. Where u is the temperature, t is the time, we believed that $u_t = \gamma u_{xx}$, where subscripts denote partial derivatives. We also have an initial condition, f(x) = u(x, 0).

There are some simple solutions $e^{inx}e^{-\gamma n^2t}|_{t=0}=e^{inx}$. The product of solutions, the sum of solutions, and scalar multiple of solutions are all solutions, so he wrote the solution as

$$f(x) = \sum_{n = -\infty}^{\infty} a_n e^{inx}, u(x, t) = \sum_n a_n e^{-\gamma n^2 t} e^{inx}.$$

§1.2 Fourier Analysis

We take a circle $\{z \in \mathbb{C} : |z=1|\}$, which can also be thought of as $\mathbb{R}/(2\pi\mathbb{Z})$, with the map $x \mapsto e^{ix}$. Suppose we have G a finite abelian group, and $\widehat{G} = \{\text{hom } \varphi : G \to \mathbb{R}/\mathbb{Z}\}$, the dual group. \widehat{G} is also a group, formally known as the set of characters.

Example 1.1

If we take $G = \mathbb{Z}_N = \mathbb{Z}/N\mathbb{Z}$, with the map $x \mapsto e^{2\pi i x n/N}$, for $n \in \mathbb{Z}_n$. Similarly, taking $G \cong \mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2} \times \dots$, we take $x \mapsto \prod e^{2\pi i x n/N_i}$.

Take $e_{\xi}(x) = e^{2\pi i \xi(x)}$, where $\xi: G \mapsto \mathbb{R}/\mathbb{Z}$. Working in $L^2(G)$, we note the following:

Fact 1.2. If $\xi \neq \varphi$, then $\langle e_{\xi}, e_{\varphi} \rangle = 0$.

Proof.

$$\sum_{x \in G} \xi(x) \overline{\varphi(x)} = \sum_{u} \xi(u+y) \overline{\varphi(u+y)} - \left(\sum_{u} \xi(u) \overline{\varphi(u)}\right) \xi(y) \overline{\varphi(u)}.$$

Hence, either $\langle \xi, \varphi \rangle = 0$ or $\xi(y)\overline{\varphi}(y) = 1$ for all $y \in G$, which implies $\xi = \varphi$.

If follows that $\{e_f : f \in \widehat{G}\}$ is an orthonormal set in $L^2(G)$ Then, the dimension is $|\widehat{G}| = |G| = \dim(L^2(G))$. Hence, the set forms an orthonormal basis for $L^2(G)$.

Then, for all $f \in L^2(G)$, we have

$$||f||_{L^2(G)}^2 = \sum_{\varphi \in \widehat{G}} |\langle f, e_{\xi} \rangle|^2,$$

$$f = \sum_{e_{\varepsilon} \in \widehat{G}} \langle f, e_{\xi} \rangle e_{\varphi}.$$

§1.3 On Tori of Arbitrary Dimension

We define $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$, from $[0, 2\pi]$. We then work on \mathbb{T}^d , $d \geq 1$. For $f \in L^2(\mathbb{T}^d)$, we define

$$\widehat{f}(n) = (2\pi)^{-d} \int f(x)e^{-inx} dx.$$

We have an inner product $\langle f, g \rangle = \int_{\mathbb{T}^d} f(x) \overline{g(x)} d\mu(x)$ defined over a Lebesgue measure or Euclidean measure on \mathbb{T}^d .

Theorem 1 (Parseval's Theorem)

For all $f \in L^2(\Pi^d)$,

$$||f||_{L^2}^2 = (2\pi)^d \sum_{n \in \mathbb{Z}^d} |\widehat{f}(n)|^2,$$

and we have

$$f = \sum_{n \in \mathbb{Z}^d} \widehat{f}(n)e^{inx},$$

in the sense that

$$||f - \sum_{n \in \mathbb{Z}^d} \widehat{f}(n)e^{inx}||_L^2 \to 0.$$

Note: you can usually figure out the constant with the simplest example, f = 1.

Proof. Take \mathbb{T}^d , $e_n(x) = e^{in \cdot x}$. The $\{(2\pi)^{-d/2}e^n : n \in \mathbb{Z}^d\}$ is orthonormal(left as an exercise). Then, for all f, $\sum_n \langle f, (2\pi)^{-d/2}e_n \rangle \leq \|f\|_{L^2}^2$, with equality if the set is a basis(Bessel's inequality).

It suffices to show that span $\{e_n\}$ is dense in L^2 . Take $P = \text{span}\{e_n\}$, and note that P is an algebra of continuous functions on Π^d , closed under conjugation, contains 1, and separates points. Hence, the Stone-Weierstrass theorem implies that P is dense in $C^o(\Pi^d)$ with respect to $\|\cdot\|_{C^o}$. Then $C^o \subset L^2$ is dense(general theory about Compact Hausdorff spaces, Radon Measures).

The statement $||f - \sum_{n \in \mathbb{Z}^d} \widehat{f}(n)e^{inx}||_L^2 \to 0$ follows from the general theory of orthonormal systems.

§1.4 Euclidean Spaces

We work in \mathbb{R}^d , $(d \ge 1)$. Take $\xi \in R^d$, and $x \mapsto x\xi \in \mathbb{R}$ is a homomorphism from $\mathbb{R}^d \to \mathbb{R}$, but if we take $x \mapsto e^{ix\xi}$, we have a homomorphism from $\mathbb{R}^d \mapsto \Gamma$. We try to define the following:

$$\widehat{f}(\xi) = \int_{\mathbb{R}^d} f(x)e^{-ix\xi} dx = \langle f, e_{\xi} \rangle_{L^2(\mathbb{R}^d)},$$

where $e_{xi}(x) = e^{ix\xi}$.

Some problems:

- 1. $e_{\xi} \not\in L^2(\mathbb{R}^d)$
- 2. $f(x)e^{-ix\xi}$ need not be in L^1 if $f \in L^2$.

We fix this by imposing extra conditions.

Definition 1.3. For $f \in L^1(\mathbb{R}^d)$, we define

$$\widehat{f}(\xi) = \int_{\mathbb{R}^d} f(x)e^{-ix\xi}dx.$$

Note that $f \in L^1$ implies that \widehat{f} is bounded, continuous. We see this as follows: $\widehat{f}(\xi+u) - \widehat{f}(\xi) = \int f(x)e^{-ix\xi}(e^{-ixu}-1)dx$. If we let $u \to 0$, the right goes to 0 pointwise, and $(2|f|) \in L^1$ dominates the integral, it goes to 0.

Proposition 1.4

If $f \in L^1 \cap L^2(\mathbb{R}^d)$, $\widehat{f} \in L^2(\mathbb{R}^d)$,

$$\|\widehat{f}\|_{L^2}^2 = (2\pi)^d \|f\|_{L^2}^2.$$

Theorem 2 (Plancherel's Theorem)

 $\pi: L^1 \cap L^2 \to L^2$ extends uniquely to $\widehat{\pi}: L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$, linear, bounded, $\|\widehat{\pi}f\|_{L^2}^2 = (2\pi)^d \|f\|_{L^2}^2$, and for all $f \in L^2$, we have an inverse Fourier Transform, $\check{f}(y) = \int f(\xi) e^{iy\xi} d\xi$ for $f \in L^1 \cap L^2$, and $\check{\cdot}$ also extends.

Finally,

$$||f - (2\pi)^{-d} \int_{|\xi| \le R} \widehat{f}(\xi) e^{ix\xi} d\xi||_{L^2} \to 0.$$

Note that $\check{f}(y) = \widehat{f}(-y)$.

Proof. We first prove that $||f||_{L^2}^2 = (2\pi)^{-d} ||\widehat{f}||_{L^2}^2$ for all $f \in L^1 \cap L^2$. We prove this for a dense subspace \mathscr{P} of L^2 . We will show later that there exists a subspace $V \subset L^2(\mathbb{R}^d)$ so that V is dense in L^2 , $V \subset L^1$, $\forall f \in V$, there exists $C_f < \infty$, so for all $\xi \in \mathbb{R}^d$, $|\widehat{f}(\xi)| \leq C_f(f(\xi))^{-d}$ and f is continuous with compact support.

We are given $f: \mathbb{R}^d \to \mathbb{C}$ supported where $|x| \leq R = R_f < \infty$. For large $t \geq 0$, define $f_t(x) = f(tx)$ (this shrinks the support of f), supported where $|x| \leq R/t < \pi$. We can then think of $f_t: \mathbb{T}^d \to \mathbb{C}$.

Now, we calculate

$$\widehat{f}_{t}(n) = (2\pi)^{d} \int_{\mathbb{T}^{d}} f_{t}(x) e^{-inx} dx$$

$$= t^{-d} (2\pi)^{d} \int_{\mathbb{R}^{d}} f(x) e^{-in/ty} dy$$

$$= t^{-d} (2\pi)^{-d} \widehat{f}(t^{-1}n),$$

where the first hat is on \mathbb{T}^d and the second is on \mathbb{R}^d , so the Fourier coefficients in the euclidean case are scalar multiples of the Fourier coefficients in the Tori case.

Thus,

$$||f_t||_{L^2(\mathbb{T}^d)}^2 = t^{-d}||f||_{L^2(\mathbb{R}^d)}^2 = c_d \sum_{n \in \mathbb{Z}^d} |\widehat{f_t}(n)|^2 = c_d' t^{-2d} \sum_n |\widehat{f}(t^{-1}n)|^2$$

Hence,

$$||f||_{L^2(\mathbb{R}^d)}^2 = c'_d t^{-d} \sum_n |\widehat{f}(t^{-1}n)|^2.$$

This has a nice tiling Riemann sum interpretation: if we take \mathbb{R}^d and tile it with cubes of sidelength 1/t where one corner is at $t^{-1}n$ for $n \in \mathbb{Z}^d$, then

$$||f||_{L^2(\mathbb{R}^d)}^2 = c'_d t^{-d} \sum_n \left| \widehat{f}(t^{-1}n) \right|^2 = \int_{\mathbb{R}^d} |g_t|^2 dx,$$

where $g(x) = \widehat{f}(t^{-1}n)$.

We claim

$$\int_{\mathbb{R}^d} |g_t|^2 \to \int_{\mathbb{R}^d} |\widehat{f}|^2,$$

which follows from the dominated convergence theorem: where we take a sequence over t going to infinity, with dominator $C_f^2(1+|\xi|)^{-2d}$ in L^1 and $|\widehat{f}(\xi)| \leq C_f^2(1+|\xi|)^{-2d}$. Furthermore, we have $g_t(\xi) \to \widehat{f}(\xi)$ as $t \to 0$, and \widehat{f} is continuous so g_t is pointwise convergent, and we have

$$|g_t(\xi)| = |\widehat{f}(t^{-1}n)| \le C_f(1 + |t^{-1}n|)^{-d} \le C'(1 + |\xi|)^{-d}.$$

§2 September 1st, 2020

§2.1 Proof of Plancherel's Theorem

Last time

 $\bullet \mathbb{R}^d$.

$$\widehat{f}(\xi) = \int_{\mathbb{R}^d} e^{-ix\cdot\xi} f(x) dx.$$

- $V = (f \in L_1 \cap L_2(\mathbb{R}^d)) : |\widehat{f}(\xi)| \langle \xi \rangle^d$ is a bounded linear function, $\langle x \rangle = (1+|x|^2)^{1/2} \ge 1, = |x|$ for x large.
- Claim: V is dense in $L^2(\mathbb{R}^d)$. Then $\|\widehat{f}\|_{L^2} = (2\pi)^{d/2} \|f\|_{L^2}$ for all $f \in V$ so there exists a unique bounded linear operator \mathscr{F} on $L^2(\mathbb{R}^d)$, where \mathscr{F} takes a function to it's fourier transform.
- We discussed some properties of \mathscr{F} .
 - $\|\mathscr{F}f\|_2 = (2\pi)^{d/2} \|f\|_2$
 - $-\mathscr{F}$ is onto.
 - For all $f \in L^2$,

$$\left\| f - (2\pi)^{-d} \int_{|\xi| \le R} e^{ix \cdot \xi} \mathscr{F}(f)(\xi) d\xi \right\|_{L^2} \to 0,$$

in the limit where $R \to \infty$.

First note that \mathscr{F} has closed range(this was an exercise). It suffices to show: If $g \in L^2$, $g \perp \mathscr{F}(f)$ for all $f \in V$, then g = 0.

Proof. First, note that

$$0 = \langle g, \mathscr{F}(f) \rangle = \langle \mathscr{F}^*(g), f \rangle,$$

and for all $g \in V$,

$$\mathscr{F}^*g(x) = \int g(\xi)e^{ix\cdot\xi}d\xi$$

Therefore, $\mathscr{F}^*(g)(x) = (\mathscr{F}g)(-x)$ for all $g \in V$, which is dense in L^2 . Hence, $\mathscr{F}g = 0$, and the Fourier transform preserves norms, so g = 0.

We also claimed the following: Let $f \in L^2$:

$$||f(x) - (2\pi)^{-d} \int_{|\xi| < R} (\mathscr{F}f)(\xi) e^{ix \cdot \xi} d\xi||_2^2 \to 0.$$

Proof. Let $g_r = (2\pi)^{-d} \int_{|\xi| \le R} (\mathscr{F}f)(\xi) e^{ix\cdot \xi} d\xi$. We have to show $\langle f, g_r \rangle \to ||f||_2^2$. Then

$$||f - g_r||_2^2 = ||f||_2^2 + ||g_r||_2^2 - 2\operatorname{Re}\langle f, g_r \rangle \to ||f||_2^2 + ||f||_2^2 - 2||f||_2^2.$$

$$\langle f, g_R \rangle = (2\pi)^{-d} \int f(x) \overline{\int_{|\xi| \le R} (\mathscr{F}f)(\xi) e^{ix \cdot \xi} d\xi} dx$$

$$= (2\pi)^{-d} \int_{|\xi| \le R} \left(\int f(x) e^{-ix \cdot \xi} dx \right) \overline{(\mathscr{F}f)(\xi) d\xi}$$

$$= (2\pi)^{-d} \int_{|\xi| \le R} |\mathscr{F}f(\xi)|^2 d\xi \to (2\pi)^{-d} ||\mathscr{F}f||_2^2 = ||f||_2^2.$$

However, it's not clear that we can use Fubini's theorem. We would need $f \in L^1 \cap L^2$. But this is not an issue as $L^1 \cap L^2 \subset L^2$ is dense, so if we let $\epsilon > 0$, f = G + h, $||h||_2 \le \epsilon$ and $G \in L^1 \cap L^2$. Showing the convergence from here is an exercise.

We still need $V = (f \in L^1 \cap L^2 : \langle \xi \rangle^d (\widehat{f}(\xi))$ is bounded) is dense in L^2 . We'll discuss this in the future.

§2.2 Introduction to Convolution

Our meta definition is $f * g(x) = \int f(x-y)g(y)dy$, but it will depend on the conditions of the function for the integral to be defined.

Convolution is generally associated to a group, where

$$\int_G f(xy^{-1}g(y)d\mu(y)),$$

with the Haar measure(done in 202b).

If we substitute y = x - u, then

$$f * g(x) = \int f(u)g(x-u)du = g * f(x).$$

It is also associative: (f * g) * g = f * (g * h) for all f, g, h (involves Fubini's theorem). We can formally write

$$f * g(x) = \int_{\mathbb{R}^d \times \mathbb{R}^d} f(u)g(v)d\lambda_x(u,v),$$

where λ_x is supported on $\Lambda = \{(u,v) : u+v=\lambda\}$ (an affline subspace). If we have a subset $E \subset \Lambda$, $\lambda_x(E) = |\pi_1(E)| = |\pi_2(E)|$, where π_i are Lebesgue measures of projections on the *i*-th factor. Note the following: suppose that f,g are continuous with compact support. Then $\operatorname{supp}(f*g) \subset \operatorname{supp}(f) + \operatorname{supp}(g)$, where $A+B=\{a+b:(a,b)\in A\times B\}$. Let $T:C_0^0(\mathbb{R}^d)\to C_b^0(\mathbb{R}^d)$ be bounded, linear and $T\circ\tau_y=\tau_y\circ T$ for all $x\in\mathbb{R}^d$ ($\tau_y f(x)=f(x+y)$, a translation). Then, there exists a Complex Radon measure μ on \mathbb{R}^d so that for all $f\in C_0^0$, $T(f)=f*\mu$, where

$$f * \mu(x) = \int f(x - y) d\mu(y).$$

In the case of \mathbb{T}^1 , $f(x) = \sum_{n=-\infty}^{\infty} \widehat{f}(n)e^{inx}$ for all $f \in L^2$. Suppose we wanted to consider the partial sums,

$$\sum_{n=-N}^{N} \widehat{f}(n)e^{inx} = S_N(f)(x).$$

In what sense does $S_N f \to f$, and for which functions f do we have convergence?

$$S_N(f)(x) = \sum_{n=-N}^{N} e^{inx} (2\pi)^{-1} \int_{-\pi}^{\pi} f(y) e^{-iny} dy = (2\pi)^{-1} \int f(y) \sum_{n=-N}^{N} e^{in(x-y)} dy$$
$$= (2\pi)^{-1} \int_{-\pi}^{\pi} f(y) D_n(x-y) dy.$$

The Dirichlet Kernels, $D_N(x) = \sum_{n=-N}^N e^{inx} = \frac{\sin{(N+1/2)x}}{\sin{(x/2)}}$ if $x \neq 0$ or $D_N(x) = 2N+1$ if x = 0.

§2.3 General Convolution

Theorem 3

Let $f, g \in L^1(\mathbb{R}^d)$. Then, the following are true:

- $y \mapsto f(x-y)g(y) \in L^1(\mathbb{R}^d)$ for almost every $x \in \mathbb{R}^d$.
- $x \mapsto \int f(x-y)g(y)dy$ is Lebesgue measurable.
- $f * g \in L^1(\mathbb{R}^d)$ and $||f * g||_1 \le ||f||_1 ||g||_1$.
- If $f, g \ge 0$, then $||f * g||_1 = \int f * g = \int f \int g$.
- The operation commutative and associative, so L^1 is an algebra, but it no multiplicative identity, so no inverses.
- For $f, g \in L^1$, $\widehat{(f \star g)} = \widehat{f} \cdot \widehat{g}$.

In other words, convolution is a nice bilinear operation.

Proof. Let F(x,y) = f(x-y)g(y), $F: \mathbb{R}^{d+d} \to \mathbb{C}$ is Lebesgue measurable. We claim that $F \in L^1(\mathbb{R}^d \times \mathbb{R}^d)$. It follows from

$$\int |F(x,y)| dx dy = \int |f(x-y)| |g(y)| dx dy = \int |g(y)| dy \int |f(x)| dx = ||g||_1 ||f||_1 < \infty.$$

Now, $F \in L^1$, so by Fubini's theorem, for almost every $x, y \to f(x-y)g(y) \in L^1$ and $x \mapsto \int f(x-y)g(y)dy$ is Lebesgue measurable.

$$||f*g||_1 = \int |f*g(x)| dx = \int \left| \int f(x-y)g(y) dy \right| dx \le \int \int |f(x-y)||g(y)| dy dx = ||f||_1 ||g||_1.$$

Note that $\int (f * g)(x) dx = ||f||_1 ||g||_1$, for non-negative functions. Finally,

$$(f * g)^{\wedge}(\xi) = \int e^{-ix \cdot \xi} \left(\int f(x - y)g(y)dy \right) dx$$

$$= \int \left(\int e^{-ix \cdot \xi} f(x - y)dx \right) dy, x = u + y$$

$$= \int \left(e^{-i(u + y) \cdot \xi} f(u)du \right) g(y)dy$$

$$= \int e^{-iy \cdot \xi} \widehat{f}(u)g(y)dy$$

$$= \widehat{f}(\xi) \cdot \widehat{g}(\xi).$$

Example 2.1 (A Warning)

In \mathbb{R}^1 , $f(x) = |x|^{-2/3} 1_{|x| \le 1}$, which has an asymptote at 0. $f \in L^1$, and

$$(f * f)(0) = \int_{-1}^{1} |u|^{-4/3} dy = +\infty.$$

Proposition 2.2

Let $p \in [1, \infty]$. Let $f \in L^1, g \in L^p$. Then,

- $y \mapsto f(x-y)g(y) \in L^1$ for almost every $x \in \mathbb{R}^d$. $x \mapsto \int f(x-y)g(y)dy$ is Lebesgue measurable.
- $f * g \in L^p(\mathbb{R}^d), \|f * g\|_p \le \|f\|_1 \|g\|_p.$

Proof. For $p = \infty$, $\int f(x - y)g(y)dy \in C_0(\mathbb{R}^d)$. If $1 , <math>L^P \subset L^1 + L^\infty$, as follows:

$$f(x) = f(x)1_{|f(x)| < 1} + f(x)1_{f(x) > 1}.$$

We can prove the rest with Minkowski's inequality, or a simpler way. Let $q = p' = \frac{p}{p-1}$ (hence $\frac{1}{q} + \frac{1}{p} = 1$). We use the norm definition,

$$||f * g||_p = \sup_{\|h\|_q \le 1} \int |g * f| \cdot |h|.$$

$$\int |g * f| \cdot h \le \int (|g| * |f|) \cdot h = \int \int |g(x - y)| |f(y)| dy h(x) dx$$

$$= \int |f(y)| \int |g(x - y)| h(x) dx dy \le \int |f(y)| ||g||_p * 1 dy = ||f||_1 ||g||_p.$$

§3 September 3rd, 2020

§3.1 Convolution and Continuity

Recall convolution:

$$f * g(x) = \int f(x - y)g(y)dy, f * \mu(x) = \int_{\mathbb{R}^d} f(x - y)d\mu(y),$$

where f is continuous, bounded, μ is a complex Radon measure($|\mu|$ is finite)

Proposition 3.1

Let $T: C_0^0 \to C_b^0$. Suppose T is translation invariant: $T \circ \tau_y = \tau_y \circ T$ for all $y \in \mathbb{R}^d$. [There exists $A < \infty : \|Tf\|_{C_0} \le A\|f\|_{C_0}$ for all f. Recall $\|f\|_{C_0} = \sup_x |f(x)|$, and C_0^0, C_b^0 are Banach spaces.] There exists a complex radon measure μ such that $Tf = f * \mu$ for all f.

Proof. Given $T: C_0^0 \to C_b^0$, consider the map $\ell: \mathbb{C}_0^0 \to \mathbb{C}$ given by $f \mapsto (Tf)(0)$. It is clear that ℓ is linear. Furthermore, ℓ is bounded, since

$$|Tf(0)| \le ||Tf||_{C_0} \le A||f||_{C_0}$$

so $\ell \in (C_0^0)^*$. Recall the Riesz Representation Theorem, there exists ν , a complex Radon measure, such that for all $f \in C_0^0$

$$\ell(f) = \int f d\nu.$$

Let $y \in \mathbb{R}^d$. We have

$$Tf(-y) = Tf(0-y) = (\tau_y Tf)(0) = T(\tau_y f)(0) = \int \tau_y f(x) d\nu(x) = \int f(x-y) d\nu(x).$$

Similarly, for all x, $(Tf)(-x) = \int f(y-x)d\nu(y)$. [See lecture notes for correct algebra, sad].

§3.2 Convolution and Differentiation

Informally,

$$\frac{\partial}{\partial x_j} \int f(x-y)g(y)dy = \int \frac{\partial f}{\partial x_j} f(x-y)g(y)dy.$$

Proposition 3.2

Assume $f \in C^1(\mathbb{R}^d), g \in L^1$ and $f, \nabla f$ is bounded. Then

$$f * g \in C^1, \frac{\partial}{\partial x_j} (f \star g) = \left(\frac{\partial f}{\partial x_j}\right) * g.$$

Proof. We assume d=1 for clarity.

$$\frac{(f * g)(x+t) - (f * g)(x)}{t} = \int \frac{f(x+t-y) - f(x-y)}{t} g(y) dy.$$

Let $t \to 0$. Use DCT, with dominator

$$|g(y)| \cdot \sup_{t,u} \frac{|f(u+t) - f(u)|}{|t|}.$$

The supremum is finite by the mean value theorem.

Example 3.3

Take $g \in L^{\infty}$, $f \in C_1$, and there exists $a < \infty$ such that for all x,

$$|f(x)| + |\nabla f(x)| \le A\langle x \rangle^{-\gamma}.$$

Hence, $f, \nabla f \in L^1$. Then $f * g \in C^1, \nabla (f * g) = (\nabla f) * g$.

We can iterate this: Under appropriate conditions

$$\frac{\partial^{\alpha}(f*g)}{\partial x^{\alpha}} = \frac{\partial^{\alpha}f}{\partial x^{\alpha}} * g,$$

$$\frac{\partial^{\alpha+\beta}(f*g)}{\partial x^{\alpha_{\beta}}} = \frac{\partial^{\alpha}f}{\partial x^{\alpha}} * \frac{\partial^{\beta}g}{\partial x^{\beta}}.$$

Proposition 3.4

If $f \in L^1$ and $g \in L^{\infty}$, then $f * g \in C_b^0$.

Proof. Recall: If $f \in L^1(\mathbb{R}^d)$, then $y \mapsto \tau_y f \in L^1$ is continuous: As $y \to 0$,

$$\|\tau_y f - f\|_1 \to 0.$$

Then,

$$(f*g)(x) - (f*g)(x') = \int (f(x-y) - f(x'-y))g(y)dy = \int [f(x-y) - (\tau_u f)(x-y)]g(y)dy,$$

where u = x' - x. As $u \to 0$, $||f - \tau_u f||_1 \to 0$, and $g \in L^{\infty}$, so the integral approaches 0, as desired.

§3.3 Approximation

Definition 3.5 (Approximate Identity Sequence). An approximate identity sequence for \mathbb{R}^d is $(\varphi_n)_{n\in\mathbb{N}}, \varphi_n \in L^1(\mathbb{R}^d)$ with the following conditions:

- $\int_{\mathbb{R}^d} \varphi_n = 1.$
- For all $\delta > 0$, $\int_{|x| \ge \delta} |\varphi_n| dx \to 0$ as $n \to \infty$.

Let (φ_n) be an approximate identity sequence in \mathbb{R}^d .

- 1. Let $f \in C_b^0$ be uniformly continuous. Then $f * \varphi_n \to f$ uniformly.
- 2. Let $f \in C_b^0$. Then $f * \varphi_n \to f$ uniformly on every compact set. 3. If $1 \le p \le \infty$, then for all $f \in L^p$, $||f * \varphi_n f||_p \to 0$.

[All the above limits are taken for $n \to \infty$.]

Proof.

$$f * \varphi_n(x) - f(x) = \int f(x - y)\varphi_n(y)dy - f(x)$$
$$= \int (f(x - y) - f(x))\varphi_n(y)dy$$

Then,

$$|f * \varphi_n(x) - f(x)| \le \int |f(x-y) - f(x)| |\varphi_n(y)| dy.$$

Let $\delta > 0$. Then,

$$\int |f(x-y) - f(x)| |\varphi_n(y)| dy = \int_{|y \le \delta|} |f(x-y) - f(x)| |\varphi_n(y)| dy + \int_{|y \ge \delta|} |f(x-y) - f(x)| |\varphi_n(y)| dy.$$

$$\int_{|y \le \delta|} |f(x - y) - f(x)| |\varphi_n(y)| dy \le \|\varphi_n\|_1 \cdot \sup_{x, |y| \le \delta} |f(x - y) - f(x)|$$

$$= \|\varphi_n\|_1 \cdot \omega_f(\delta)$$

$$\le A \cdot \omega_f(\delta).$$

Then

$$\int_{|y| \geq \delta} |f(x-y) - f(x)| |\varphi_n(y)| dy \leq \int_{|y| \geq \delta} 2||f||_{C^0} \cdot |\varphi_n(y)| dy$$
$$\leq 2||f||_{C^0} \int_{|y| \geq \delta} |\varphi_n| dy.$$

Hence

$$|f * \varphi_n(x) - f(y)| \le A\omega_f(\delta) + 2||f||_{C^0} \int_{|y| > \delta} |\varphi_n| dy.$$

Taking the lim sup, the second term goes to 0, so for all $\delta > 0$,

$$\lim_{n \to \infty} \sup \|f * \varphi_n - f\|_{C^0} \le A\omega_f(\delta).$$

Since f is uniformly continuous, $\lim_{\delta\to 0} \omega_f(\delta) = 0$, which proves the claim.

Corollary 3.6

 $C^{\infty} \cap L^p$ is dense in L^p for all $1 \leq p \leq \infty$.

Proof. We want to construct (φ_n) with $\varphi_n \in C_0^{\infty}$. We claim there exists a function $\varphi \in C_0^{\infty}(\mathbb{R}^d)$ with $\int \varphi = 1$ and $\varphi \geq 0$. In d = 1, take $h(x) = 1x > 0e^{-\|x\|}$. Then, define $\varphi(x) = h(x)h(1-x) \in C_0^{\infty}$. Then, we normalize φ . Now, take $\varphi_n(x) = n^d \varphi(nx)$.

Example 3.7

Let $\varphi \geq 0$, $\int \varphi = 1$. Define $\varphi_n(x) = n^d \varphi(nx)$. Then $\int \varphi_n = 1$. Furthermore,

$$\int_{|x| \ge \delta} n^d \varphi(nx) dx = \int_{|y| \ge n\delta} \varphi(y) dy \to 0.$$

Example 3.8

Let $\varphi(x) = (2\pi)^{-d/2} e^{-|x^2|/2}$, $x \in \mathbb{R}^d$. Let t > 0 and $\varphi_t(x) = (2\pi)^{-d/2} t^{-d/2} e^{-|x|^2/(2t)}$. Now $t \to 0^+$ and

$$\int_{|x| \ge \delta} \varphi_t(x) dx \to 0.$$

This is an approximate identity family.

Example 3.9 (Interpretation of f * g)

$$f * g = \int \tau_y f(x) \cdot g(y) dy.$$

If $g \ge 0$ and $\int g = 1$, then we have an **average** of translates of f.

As $n \to \infty$, $g = \varphi_n$ so the weight concentrates asymptotically at the origin.