Q1: In this direct mapped cache, each block contains 64 bytes or 16 words. How many bits does the following contain:

- Byte offset
- Index
- Tag

Solution

Tag Index Offset

Direct mapped cache

	V	Tag	Data0	Data1	Data2	Data3
0	1	0x000004	0x412C1232	0x41111234	0x11241239	0x412C1111
1	1	0xCC3003	0x002C12AB	0x00111235	0x00011238	0x412C1000
2	0	0xAA4004	0x41AC1200	0x41100237	0x115411255	0x412C1133
3	1	0x500001	0x002AAA38	0x001112AA	0x00011222	0x412C1000
4	1	0xA57000	0xAAAC1232	0x41111234	0x11111230	0x412C1BB
5	1	0x000200	0xCA1C1238	0xCC111235	0x030100234	0x412C10A4
	2					8
15				ą.		,
			22	32	00	32_
			32	32 _{\psi}	32	<i>□</i> 2.

Q2 Consider a direct mapped cache which uses 4-word blocks, 32-bit data words (4 bytes) and 32-bit addresses.

Say you are trying to read data from memory location 0x00020013. Assume you are reading the bytes individually. What would be the:

Tag field value

Offset value

The cache line or block in which the data should be found

Is it a cache hit? If yes, what is the data that is read assuming a byte read?

Tag Index Offset

Direct mapped cache

1	/	Tag	Data0	Data1	Data2	Data3
1	L	0x000004	0x412C1232	0x41111234	0x11241239	0x412C1111
1	l	0xCC3003	0x002C12AB	0x00111235	0x00011238	0x412C1000
0)	0xAA4004	0x41AC1200	0x41100237	0x115411255	0x412C1133
1	L	0x500001	0x002AAA38	0x001112AA	0x00011222	0x412C1000
1	L	0xA57000	0xAAAC1232	0x41111234	0x11111230	0x412C1BB
1	L	0x000200	0xCA1C1238	0xCC111235	0x030100234	0x412C10A4
			22	22		32
			32 📗	32	32 _	52 ₄

Soln:

Consider a direct mapped cache which uses 4-word blocks, 32-bit data words (4 bytes) and 32-bit addresses.

Address: 0000 0000 0000 0010 0000 0000 0001 0011 (0x00020013)

16 lines \rightarrow 4 index bits. Each block or line has 4 words i.e., 16 bytes. To address each byte, we need 4 bits of offset. Remaining 24 bits are tag bits.

Tag field value → 0x000200

Block offset value → 3 or 0011

The cache line in which the data will be found \rightarrow Index 0001 -- Line 1

Is it a cache hit? → Cache miss.

11/10/2019/2019/2019		
Tag	Index	Offset

Direct mapped cache

					•	
	٧	Tag	Data0	Data1	Data2	Data3
0	1	0x000004	0x412C1232	0x41111234	0x11241239	0x412C1111
1	1	0xCC3003	0x002C12AB	0x00111235	0x00011238	0x412C1000
2	0	0xAA4004	0x41AC1200	0x41100237	0x115411255	0x412C1133
3	1	0x500001	0x002AAA38	0x001112AA	0x00011222	0x412C1000
4	1	0xA57000	0xAAAC1232	0x41111234	0x11111230	0x412C1BB
5	1	0x000200	0xCA1C1238	0xCC111235	0x030100234	0x412C10A4
15				gi .		,
			22	32	20	32_
			32	32 _{\psi}	32	⁵² √

Q3 Consider a direct mapped cache which uses 4-word blocks, 32-bit data words (4 bytes) and 32-bit addresses.

Say you are trying to read data from memory location 0x00020053. Assume you are reading the bytes individually. What would be the:

Is it a cache hit? If yes, what is the data that is read assuming a byte read?

Tag Index Offset

Direct mapped cache

					1 1	
	V	Tag	Data0	Data1	Data2	Data3
0	1	0x000004	0x412C1232	0x41111234	0x11241239	0x412C1111
1	1	0xCC3003	0x002C12AB	0x00111235	0x00011238	0x412C1000
2	0	0xAA4004	0x41AC1200	0x41100237	0x115411255	0x412C1133
3	1	0x500001	0x002AAA38	0x001112AA	0x00011222	0x412C1000
4	1	0xA57000	0xAAAC1232	0x41111234	0x11111230	0x412C1BB
5	1	0x000200	0xCA1C1238	0xCC111235	0x030100234	0x412C10A4
	9					
15				- P		
			22	32	20	32_
			32	32 _{\psi}	32	∪2 ↓

Soln:

Consider a direct mapped cache which uses 4-word blocks, 32-bit data words (4 bytes) and 32-bit addresses.

Address: 0000 0000 0000 0010 0000 0000 **0101** 0011 (0x00020053)

Hit: Data read is 38

Index	Offset	
	Index	

Direct mapped cache

					1.1	
	V	Tag	Data0	Data1	Data2	Data3
)	1	0x000004	0x412C1232	0x41111234	0x11241239	0x412C1111
1	1	0xCC3003	0x002C12AB	0x00111235	0x00011238	0x412C1000
2	0	0xAA4004	0x41AC1200	0x41100237	0x115411255	0x412C1133
3	1	0x500001	0x002AAA38	0x001112AA	0x00011222	0x412C1000
1	1	0xA57000	0xAAAC1232	0x41111234	0x11111230	0x412C1BB
5	1	0x000200	0xCA1C1238	0xCC111235	0x030100234	0x412C10A4
15						
			22	32		32_
			32 ↓	32 V	32	~~ √

Q4

Consider a direct mapped cache which uses 4-word blocks, 32-bit data words (4 bytes) and 32-bit addresses.

Can data from locations 0x00012329 and 0x00322FF9 be present in the cache at the same time? Explain.

11.000000000000000000000000000000000000		
Tag	Index	Offset

Q4

Consider a direct
mapped cache
which uses 4-word
blocks, 32-bit data
words (4 bytes)
and 32-bit
addresses

Direct mapped cache

	V	Tag	Data0	Data1	Data2	Data3
)	1	0x000004	0x412C1232	0x41111234	0x11241239	0x412C1111
L	1	0xCC3003	0x002C12AB	0x00111235	0x00011238	0x412C1000
2	0	0xAA4004	0x41AC1200	0x41100237	0x115411255	0x412C1133
3	1	0x500001	0x002AAA38	0x001112AA	0x00011222	0x412C1000
1	1	0xA57000	0xAAAC1232	0x41111234	0x11111230	0x412C1BB
5	1	0x000200	0xCA1C1238	0xCC111235	0x030100234	0x412C10A4
	2					
L5						
			22	22	20	32_
			32 ↓	32	32	52 ↓

Soln: Index for 0x00012329 is 2. Index for 0x00322FF9 is F.

Line 2 and F are different indices and index to different cache lines. So, they can be present.

Q5: This is a 2 way set associative cache whose index number, tag and data are shown in the following table. The address we obtain is:

1010 1010 0100 11 0111 0000

Assume no byte offset. What is the data fetched, if it is a cache hit?

Tag (14 bits)	Index or Set ID	Data
10100001001001	01101101	0016
11100001100100	01101101	1016
11001011010110	01101110	2016
11100101101011	01101110	3016
11110110110100	01101111	40 ₁₆
10100111010101	01101111	5016
10101010111110	01110000	8416
10101010010011	01110000	9416
01110001001000	01110001	A4 ₁₆
00001101101101	01110001	B4 ₁₆
01011010010010	01110010	C4 ₁₆
10101111001011	01110010	D4 ₁₆

This is a 2 way set associative cache whose index number, tag and data are shown in the following table.

The address we obtain is:

1010 1010 0100 11 0111 0000

Assume no byte offset. What is the data fetched, if it is a cache hit?

•	Tag (14 bits)	Index or Set ID	Data
	10100001001001	01101101	0016
	11100001100100	01101101	1016
	11001011010110	01101110	2016
	11100101101011	01101110	3016
	11110110110100	01101111	40 ₁₆
	10100111010101	01101111	5016
	10101010111110	01110000	8416
	10101010010011	01110000	9416
	01110001001000	01110001	A4 ₁₆
	00001101101101	01110001	B4 ₁₆
	01011010010010	01110010	C4 ₁₆
	10101111001011	01110010	D4 ₁₆

Q6

- Show the hits and misses and final cache contents for a <u>fully associative cache with four-</u> word blocks and a total size of 8 words.
 Assume LRU replacement.
 - Assume the sequence: 2,3,10,11,0,21,16

Solution

- 2: Miss: 0-3
- 3: Hit
- 10: 8-11, 0-3
- 11: Hit
- 0: Hit
- 21: 20-23 (replace 8-11), 0-3
- 16: miss