

Title <Title> Document Number <Doc> Size A3 Rev <RevCode> Thursday, April 07, 2022

TIGER LAKE PCH:

MCP -DP\HDMI

Name	Туре	Description
GPP_E14 / DDSP_HPDA / DISP_MISCA	I	Display Port A: HPD Hot-Plug Detect
GPP_A18 / DDSP_HPDB / DISP_MISCB / I2S4_RXD	I	Display Port B: HPD Hot-Plug Detect
GPP_A19 / DDSP_HPD1 / DISP_MISC1 / I2S5_SCLK	I	TCP Port 1: HPD Hot-Plug Detect
GPP_A20 / DDSP_HPD2 / DISP_MISC2 / I2S5_SFRM	I	TCP Port 2: HPD Hot-Plug Detect
GPP_A14 / USB_OC1# / DDSP_HPD3 / I2S3_RXD / DISP_MISC3 / DMIC_CLK_B1	I	TCP Port 3: HPD Hot-Plug Detect
GPP_A15 / USB_OC2# / DDSP_HPD4 / DISP_MISC4 / I2S4_SCLK	I	TCP Port 4: HPD Hot-Plug Detect

5.3 Display Interfaces

Table 33. DDI Ports Availability

SKU	UP4 Processor Line	UP3 Processor Line	
DDI A	eDP*/MIPI_0	eDP*/MIPI_0	
DDI B	eDP*/DP*/HDMI*/MIPI_1	eDP*/DP*/HDMI*	
TCP0	DP*/HDMI*	DP*/HDMI*	
TCP1	DP*/HDMI*	DP*/HDMI*	
TCP2	DP*/HDMI*	DP*/HDMI*	
TCP3	N/A	DP*/HDMI*	

Title

Size | Document Number | Rev |
A3 | <Doc> | Rev |
Sheet 3 of 41

MEMORY CHANNEL A

DDR4/LP4/LP5/LP5 CMD Flin LP4-LP5(NIL)/DDR4 (NIL)/DDR4 (IL) DDR0_CLK_P1/IDR3_CLK_P/DDR3_CLK_P/DDR3_CLK_P
DDR0_CLK_N/IDDR3_CLK_N/DDR3_CLK_N/DDR3_CLK_P
NC/IDR2_CLK_P/DDR2_C DDR0_DQ0_7/DDR0_DQ0_7/DDR0_DQ0_ CP52 DDR0_DQ0_6/DDR0_DQ0_6/DDR0_DQ0_6 DDR0_DQ0_5/DDR0_DQ0_5/DDR0_DQ0_5 1.CKP and CKN differential signal swapping within a pair is not allowed. Also, differential clock pair to clock pair swapping within a channel is not allowed. DDR0_DQ0_4/DDR0_DQ0_4 NC/DDR2_CLK_N/DDR2_CLK_N/DDR2_CLK CU53 DDR0 DQ0 3/DDR0 DQ0 3/DDR0 DQ0 3 NC/DDR1 CLK P/DDR1 CLK P/DDR1 CLK P NC/DDR1_CLK_P/DDR1_CLK_P/DDR1_CLK_P

NC/DDR1_CLK_N/DDR1_CLK_N/DDR1_CLK

CC52 DDR0_DQ0_2/DDR0_DQ0_2 CC52
M_0_CLK_DDR0_DP
RANK 0 CLK
M_0_CLK_DDR0_DN DDR0 DQ0 1/DDR0 DQ0 1 /DDR0 DQ0 1 DDR0 CLK P0 DDR0 CLK P/DDR0 CLK P/DDR0 CLK P CU49 DDR0_DQ0_0/DDR0_DQ0_0/DDR0_DQ0_0 DDR0_CLK_N0/DDR0_CLK_N/DDR0_CLK_N/DDR0_CLK CH53

CH52

DDR0_DQ1_7/DDR0_DQ1_7/DDR0_DQ1_7

DDR0_DQ1_6/DDR0_DQ1_6/DDR0_DQ1_6

DDR0_DQ1_6/DDR0_DQ1_6 DDR4/LP4/LP5/LP5 CMD Flip NC/DDR3_CKE0/DDR3_WCK_P/DDR3_WCK_P NC/DDR3_CKE1/DDR3_WCK_P/DDR3_WCK_P

NC/DDR3_CKE1/DDR3_WCK_N/DDR3_WCK
NC/DDR2_CKE0/DDR2_WCK_P/DDR2_WCK_P

BN51

BN51 CH50 DDR0_DQ1_5/DDR0_DQ1_ DDR0 DQ1 4/DDR0 DQ1 4/DDR0 DQ1 4 BN53 CD45 DDR0_DQ1_3/DDR0_DQ1_3 NC/DDR2_CKE1/DDR2_WCK_N/DDR2_WCK DDR0 DQ1 2/DDR0 DQ1 2/DDR0 DQ1 2 NC/DDR1 CKEN/DDR1 WCK P/DDR1 WCK P CL50 DDR0_DQ1_1/DDR0_DQ1_ /DDR0_DQ1_1 NC/DDR1_CKE1/DDR1_WCK_N/DDR1_WCK DDR0_DQ1_0/DDR0_DQ1_0/DDR0_DQ1_0 NC/DDR0 CKE0/DDR0 WCK P/DDR0 WCK P CT47 DDR1_DQ1_V/DDR1_DQ2_T/DDR1_DQ0_7
CV47 DDR1_DQ0_7/DDR0_DQ2_T/DDR1_DQ0_6 CA53 NC/DDR0_CKE1/DDR0_WCK_N/DDR0_WCK CV47 DDR1_DQ0_6/DDR0_DQ2_ /DDR1_DQ0_6 DDR4/LP4/LP5/LP5 CMD Flip BU52 M_0_CKE_1 M_0_CKE_0 CT45 DDR1_DQ0_5/DDR0_DQ2_5/DDR1_DQ0_5 DDR0 CKE1/DDR2 CA4/DDR2 CA5/DDR2 CA1 DDR1_DQ0_4/DDR0_DQ2_4 DDR0_CKE0/DDR2_CA5/DDR2_CA6/DDR2_CA0 DDR1 DQ0 3/DDR0 DQ2 3/DDR1 DQ0 3 DDR4/LP4/LP5/LP5 CMD Flip CV42 DDR1_DQ0_3/DDR0_DQ2_3/DDR1_DQ0_3
DDR1_DQ0_2/DDR0_DQ2_2/DDR1_DQ0_2
CT41 DDR1_DQ0_4/DDR0_DQ2_1/DDR1_DQ0_2 | DDR0_CSI|DDR1_CA1/DDR1_CA5|
| DDR0_CSI|NC/DDR1_CS1/DDR1_CA4|
| DDR0_CSI|NC/DDR1_CS1/DDR1_CA4| Chip Select: All commands are masked when CS n is registered HIGH. CS n provides for external Rank selection on systems with multiple Ranks. CS_n is considered part of the command code. DDR0_CS0/NC/DDR1_CS1/DDR1_CA4
DDR4/LP4/LP5/LP5 CMD Flip DDR1 DQ0 1/DDR0 DQ2 1/DDR1 DQ0 1 CV41 DDR1_DQ0_0/DDR0_DQ2_0/DDR1_DQ0_0 DDR1_DQ1_7/DDR0_DQ3_7/DDR1_DQ1_ NC/DDR0 CA0/DDR0 CA0/DDR0 CA6 CM47 DDR1_DQ1_6/DDR0_DQ3_6/DDR1_DQ1_6 NC/DDR0 CA1/DDR0 CA1/DDR0 CA5 DDR1_DQ1_5/DDR0_DQ3_5/DDR1_DQ1_5 NC/DDR2_CS0/DDR2_CA2/DDR2_CA2 DDR1 DQ1 4/DDR0 DQ3 4/DDR1 DQ1 4 CK42 DDR1_DQ1_3/DDR0_DQ3_3/DDR1_DQ1_3 CM42 DDR1 DQ1 2/DDR0 DQ3 2/DDR1 DQ1 2 CM41 DDR1_DQ1_1/DDR0_DQ3_/DDR1_DQ1_1
CK41 DDR1_DQ1_1/DDR0_DQ3_/DDR1_DQ1_1 DDR1_DQ1_0/DDR0_DQ3_0/DDR1_DQ1_0 BF53 DDR1_DQ1_0/DDR0_DQ4_1/DDR0_DQ2_7 BF52 DDR2_DQ0_6/DDR0_DQ4_6/DDR0_DQ2_6 DDR3 DQSP 0/DDR0 DQSP 6/DDR1 DQSP 2 DDR2 DQ0 5/DDR0 DQ4 5/DDR0 DQ2 5 DDR2_DQ0_4/DDR0_DQ4_4 Data Strobes: Differential data strobe pairs. The data is captured at the crossing point of DQS during reading and write transactions. DDR2 DO0 3/DDR0 DO4 3/DDR0 DO2 3 DDR2 DOSP 1/DDR0 DOSP 1/DDR0 DOSP 3 M 0 DQS 5 DF BA50 DDR2_DQSN_I/DDR0_DQSN_5/DDR0_DQSN_3

DDR2_DQSN_I/DDR0_DQSN_5/DDR0_DQSN_3

DDR2_DQSN_D/DDR0_DQSN_4/DDR0_DQSN_2

DDR2_DQSN_D/DDR0_DQSN_4/DDR0_DQSN_2

DR2_DQSN_D/DDR0_DQSN_4/DDR0_DQSN_2

CK444

M_0_DQS_4_DN DDR2_DQ0_2/DDR0_DQ4_2/DDR0_DQ2_2 BH49 DDR2_DQ0_1/DDR0_DQ4_1/DDR0_DQ2_1
DDR2_DQ0_0/DDR0_DQ4_0/DDR0_DQ2_0 AY53 DDR2_DQ1_7/DDR0_DQ5_7/DDR0_DQ3_7 DDR1_DQSP_1/DDR0_DQSP_3/DDR1_DQSP_1 DDR1 DQSN 1/DDR0 DQSN 3/DDR1 DQSN 1 DDR2 DQ1 6/DDR0 DQ5 6/DDR0 DQ3 6 AY50 DDR2_DQ1_5/DDR0_DQ5_5/DDR0_DQ3_5 0/DDR0_DQSP_2/DDR1_DQSP_0 CV44 | M__DQS_2_DN | CK51 | M__DQS_2_DN | CK50 | M__DQS_1_DN | CR51 | CK50 | M__DQS_1_DN | CR50 | M__DQS_0_DP | CR50 | M__DQS_0_DN | CK50 | CK AY49 DDR2 DQ1 4/DDR0 DQ5 4/DDR0 DQ3 4 DDR1 DQSN 0/DDR0 DQSN 2/DDR1 DQSN 0 BC53 DDR2_DQ1_3/DDR0_DQ5_3 1/DDR0_DQSP_1/DDR0_DQSP_1 DDR0_DQSP_ DDR2 DO1 2/DDR0 DO5 1/DDR0 DO3 2 DDR0 DQSN 1/DDR0 DQSN 1/DDR0 DQSN 1 DDR2_DQ1_1/DDR0_DQ5_1/DDR0_DQ3_1 DDR0_DQSP_0/DDR0_DQSP_0/DDR0_DQSP_0 BC49 DDR0_DQSN_0/DDR0_DQSN_0/DDR0_DQSN_0 DDR4/LP4/LP5/LP5 CMD Flip DDR2_DQ1_0/DDR0_DQ5_ DDR0_DQSN_bidDR0_fileSo DDR3_DQ0_7/DDR0_DQ6_1/DDR1_DQ2_7 BK45 DDR3_DQ0_6/DDR0_DQ6_6/DDR1_DQ2_6 | DDR0_ODTI|DDR1_CS0/IDDR1_CA1
| DDR0_MA15/IDDR1_CA2/IDDR1_CA3/IDDR1_CA3/IDDR1_CS0
| DDR0_MA15/IDDR1_CA2/IDDR1_CA3/IDDR1_CS0
| DDR0_MA15/IDDR1_CA2/IDDR1_CA3/IDDR1_CS0
| DDR0_MA15/IDDR1_CA2/IDDR1_CA3/IDDR1_CS0
| DDR0_MA15/IDDR1_CA2/IDDR1_CA3/IDDR1_CS0
| DDR0_MA15/IDDR1_CA3/IDDR1_CS0
| DDR0_MA15/IDDR1_CA3/IDDR1_CS0
| DDR0_MA15/IDDR1_CS0
| DDR0_MA15/IDD DDR3 DQ0 5/DDR0 DQ6 5/DDR1 DQ2 5 DDR3_DQ0_4/DDR0_DQ6_4/DDR1_DQ2_4 ignored if MR1 is programmed to disable RTT NOM. DDR3 DQ0 3/DDR0 DQ6 3/DDR1 DQ2 3 BK42 DDR3_DQ0_2/DDR0_DQ6_2/DDR1_DQ2_2 BK41 DDR3_DQ0_1/DDR0_DQ6_1/DDR1_DQ2_1 BH41 DDR3_DQ0_0/DDR0_DQ6_0/DDR1_DQ2_0 BD47 DDR3_DQ1_7/DDR0_DQ7_

Pin Name	Description	Pin Name	Description
A0-A16	SDRAM address bus	SCL	I ² C serial bus clock for SPD/TS and registe
BAO, BA1	Regsiter bank select input	SDA	I ² C serial data line for SPD/TS and register
BG0, BG1	Regsiter bank group select input	SA0-SA2	I ² C slave address select for SPD/TS and register
RAS_n ²	Register row address strobe input	PAR	Register parity input
CAS_n ³	Register column address strobe input	VDD	SDRAM core power
WE_n ⁴	Register write enable input		
CS0_n, CS1_n, CS2_n, CS3_n	DIMM Rank Select Lines input	12V	Optional Power Supply on socket but not used on RDIMM
CKE0, CEK1	Register clock enable lines input	VREFCA	SDRAM command/address reference supply
ODT0, ODT1	Register on-die termination control lines input	VSS	Power supply return (ground)
ACT_n	Register input for activate input	VDDSPD	Serial SPD/TS positive power supply
DQ0-DQ63	DIMM memory data bus	ALERT_n	Register ALERT_n output
CB0-CB7	DIMM ECC check bits	VPP	SDRAM Supply
TDQS9_t-TDQS17_t TDQS_c-TDQS17_c	Dummy loads for mixed populations of x4 based and x8 based RDIMMs.		
DQS0_t-DQS17_t	Data Buffer data strobes (positive line of differential pair)	RESET_n	Set Register and SDRAMs to a Known State
DBIO_n-DBI8_n	Data Bus Inversion	EVENT_n	SPD signals a thermal event has occurred
CK0_t, CK1_t	Register clock input (positive line of dif- ferential pair)	VTT	SDRAM I/O termination supply
CK0_c, CK1_c	Register clock input (negative line of differential pair)	RFU	Reserved for future use

Each lane of 8bits (Byte) of Data has it's own Data Strobe

- 1. RAS n is a multiplexed function with A16.
- 2. CAS_n is a multiplexed function with A15.

BB47 DDR0 MA1 //NC/DDR2_CS1/DDR2_CA4 BT51 BV42 DDR0_MA1 //DDR3_CA1/DDR3_CA1/DDR3_CA5 BU50 DDR3 DQ1 6/DDR0 DQ7 6/DDR1 DQ3 6 DDR3_DQ1_5/DDR0_DQ7_5/DDR1_DQ3_5 SM 0 MA10 DDR0_MA1/(DDR3_CA1/IDDR3_CA1/DDR3_CA5 DDR0_MA3/(DDR2_CA0/IDDR2_CA0/IDDR2_CA6 DDR0_MA3/(DDR0_CA2/IDDR0_CA3/IDDR0_CS0 DDR0_MA3/(DDR0_CA2/IDDR0_CA5/IDDR0_CS0 DDR3 DQ1 4/DDR0 DQ7 4/DDR1 DQ3 4 M 0 MA9 DORU_MA[1:0:0]
Address: These signals are used to provide the multiplexed row and column address to the SDRAM. BB42 DDR3_DQ1_3/DDR0_DQ7_3/DDR1_DQ3_3 Pin Descriptions BB41 BB41 DDR3_DQ1_2/DDR0_DQ7_2/DDR1_DQ3_2 DDR3_DQ1_1/DDR0_DQ7_1/DDR1_DQ3_1 DDR0_MAT/DDR0_CA4/DDR0_CA5/DDR0_CA1 BY52 DDR0_MA6/DDR0_CA3/DDR0_CA4/DDR0_CS1 DDR3_DQ1_0/DDR0_DQ7_0/DDR1_DQ3_0 DDR0_MA3/DDR0_CS1/DDR0_CS0/DDR0_CA3 DDR0 MA2/DDR3 CS0/DDR3 CA2/DDR3 CA2 DDR0_MA1/NC/DDR0_CS1/DDR0_CA4 DDR0_MA0/NC/DDR3_CS1/DDR3_CA4 BN50 M_0_BG1 M_0_BG0 DDR0_BG /DDR2_CA2/DDR2_CA3/DDR2_CS0 DDR0_BG)/DDR2_CA3/DDR2_CA4/DDR2_CS1 DDR4/LP4/LP5/LP5 CMD Flip CB42 M_0_BA1 M_0_BA0 DDR0 BA1/DDR1 CA5/DDR1 CA6/DDR1 CA0 DDR0_BA0/DDR3_CA0/DDR3_CA0/DDR3_CA6 DDR4/LP4/LP5/LP5 CMD Flip BT53 M_0_ACT_N (CTRL) DDR0_ACT#/DDR2_CS1/DDR2_CS0/DDR2_CA3 DDR4/LP4/LP5/LP5 CMD Flip BV45 >> M_0_PARITY ---> R3 Command and Address Parity Input : DDR4 Supports Even Parity check in DRAMs with MR 475R setting. Once it's enabled via Register in MR5, then DRAM calculates Parity with ACT n, RAS_n/A16, CAS_n/A15, WE n/A14, BG0-BG1, BAO-BA1, A17-A0. Input parity should maintain the rising edge of the clock and at the same time with command & address with CS_n LOW. DDR0_PAR/DDR3_CS1/DDR3_CS0/DDR3_CA3 AU49 +V_D4CH0_CA_VREE DDR0_VREF_CA eference voltage for control, command, and address pins. 0R4 O201 DRAM_RESET_N_R DV47 DRAM RESET# DDR RCOMP Place R541 as close as possible to MCP TGL UP3 IP EXT/BGA Document Number 3. WE_n is a multiplexed function with A14

MEMORY CHANNEL B

Catastrophic Error: This signal indicates that the system has experienced a catastrophic error and cannot continue to operate. The processor will set this signal for non-recoverable machine check errors or other unrecoverable internal errors. CATERR# is used for signaling the following types of errors: Legacy MCERRs, CATERR# is asserted for 16 BCLKs. Legacy IERRs, CATERR# remains asserted until warm or cold reset.

PROCHOT#

The PROCHOT# (processor hot) signal is asserted by the processor when the TCC is active. Only a single PROCHOT# pin exists at a package level. When any DTS temperature reaches the TCC activation temperature, the PROCHOT# signal will be asserted. PROCHOT# assertion policies are independent of Adaptive Thermal Monitor enabling. The PROCHOT# signal can be configured to the following modes:

- Input Only: PROCHOT is driven by an external device.
 Output Only: PROCHOT is driven by processor.
 Bi-Directional: Both Processor and external device can drive PROCHOT signal

Time Synchronization GPIO 0: Timed GPIO event for time synchronization for interfaces that do not support time synchronization natively.

Time Synchronization: Used for synchronization both input (latch time when pin asserted) and output (toggle pin when programmed time is hit).

4 OF 21 DV24 DW4? RSVD_2 RSVD_3 RSVD_4 DW49 A48 RSVD_5

U1D

TGL_UP3_IP_EXT/BGA

TP43

GNSS_DISABLE_N (GPP_H2 DV32 DW32 GPP_H1 GPP H0 V DJ27 UARTO_WAKE# <<-GPP H19/TIME SYNC0 TGL_UP3_IP_EXT/BGA

DBG_PMODE <<

+VCCST_CPU

21 OF 21

CATERR# PECI Platfo

PROCHOT#

THRMTRIP#

PROC POPIRCOMP

PCH_OPIRCOMP

DBG_PMODE

DB42 GPP_B4/CPU_GP3
DB4 GPP_B3/CPU_GP2
DF8 GPP_E7/CPU_GP1
GPP_E3/CPU_GP0

print E2

CT39

CW12

CM39

DF4

DF31

R57 49.9R,1%,0402

() TP42

H_PROCHOT_CPU# <<-

R55 49.9R 1%,0402 PROC_POPIRCOMP

R56 49.9R,1%,0402 PCH_OPIRCOMP

R348 R347 49.9R 49.9R R345 100R TP55 CPU_TRST_N JTAG_TMS JTAG_TDO PROC TRST# B9 PROC_TMS D12 A12 PROC_TDO PROC_TDI JTAG_CPU_TCK PCH_JTAGX JTAG_TMS JTAG_TDO JTAG_TDI JTAG_CPU_TCK PCH TMS R346 E12 PCH_TDO B12 PCH_TDI PCH_TCK H4 ¥9.9R,1%,0402 TP56 PCH_TRST# H4 CPU_TRST_N C11 CPU_PREQ_N CPU_PRDY_N TP54 PROC_PREQ# 1K,1%,0402 PROC_PRDY# G1 CPU EAR EAR_N/EAR_N_TEST_NCTF GPP_F7 OT15 EAR_N: GPP_F9 ST15 Stall CPU reset sequence GPP F10 T14 until de-asserted:

until de-asserted:
- 1 = (Default) Normal
Operation; No stall.

- 0 = Stall

+VCCSTG_TERM (CPU OUTPUT)

+VCCST_CPU

TIME SYNC:
The PCM supports two Timed GPIOs as native function (TIME SYNC) that is muxed on GPIO pins. The intent usage of the Timed GPIO function is for time synchronization purpose.
Timed GPIO can be an input or an output.
As an input, a GPIO input event triggers the HW to capture the PCH Always Running Timer (ART) time in the Time Capture register. The GPIO input event must be asserted for at least two crystal oscillator clocks period in order for the event to be recognized. ART time and the software programmed time allowering sets the HW to generate a GPIO output event and capture the ART time in the Time Capture register. If periodic mode is enabled, HW generates the periodic GPIO events based on the programmed interval. The GPIO output event is asserted by HW for at least two crystal oscillator clocks period.

Signal Name	Description	Dir.	Buffer Type	Link Type	Availability
BPM#[3:0]	Breakpoint and Performance Monitor Signals: Outputs from the processor that indicate the status of breakpoints and programmable counters used for monitoring processor performance.	I/O	GTL	SE	UP3/UP4/H Processor Lines
PROC_PRDY#	Probe Mode Ready: PROC_PRDY# is a processor output used by debug tools to determine processor debug readiness.	0	OD	SE	UP3/UP4/H Processor Lines
PROC_PREQ#	Probe Mode Request: PROC_PREQ# is used by debug tools to request debug operation of the processor.	I	GTL	SE	UP3/UP4/H Processor Lines
PROC_TCK	Test Clock: This signal provides the clock input for the processor Test Bus (also known as the Test Access Port). This signal should be driven low or allowed to float during power on Reset.	I	GTL	SE	UP3/UP4/H Processor Lines
PROC_TDI	Test Data In: This signal transfers serial test data into the processor. This signal provides the serial input needed for JTAG specification support.	I	GTL	SE	UP3/UP4/H Processor Lines
PROC_TDO	Test Data Out: This signal transfers serial test data out of the processor. This signal provides the serial output needed for JTAG specification support.	0	OD	SE	UP3/UP4/H Processor Lines
PROC_TMS	Test Mode Select: A JTAG specification support signal used by debug tools.	I	GTL	SE	UP3/UP4/H Processor Lines
PROC_TRST#	Test Reset: Resets the Test Access Port (TAP) logic. This signal should be driven low during power on Reset. Refer to the appropriate processor Debug Port Design Guide (Refer to Section 1.10, "Related Documents") for complete implementation details.	I	GTL	SE	UP3/UP4/H Processor Lines

Processor Internal Pull-Up / Pull-Down Terminations

Signal Name	Pull Up/Pull Down	Rail	Value
BPM#[3:0]	Pull Up/Pull Down	VCC _{IO} OUT	16-60 Ω
PROC_PREQ#	Pull Up	VCC _{STG}	3 ΚΩ
PROC_TDI	Pull Up	VCC _{STG}	3 ΚΩ
PROC_TMS	Pull Up	VCC _{STG}	3 ΚΩ
PROC_TRST#	Pull Down	VCC _{STG}	3 ΚΩ
PROC_TCK	Pull Down	VCC _{STG}	3 ΚΩ
CFG[17:0]	Pull Up	VCC _{IO} OUT	3 ΚΩ

<RevCode> Thursday, April 07, 2022 Sheet

Document Number <RevCode> Thursday, April 07, 2022

6.10.2 Legacy Audio Interface - Signal Description

Table 86. Legacy Audio Signals

Signal Name	Description
Intel [®] High Definition	n Audio Interface
HDA_RST#	Master hardware reset to external codec(s)
HDA_SYNC	48 KHz fixed rate sample sync to the codec(s)
HDA_BCLK	24.000 MHz serial data clock generated by the Intel® HD Audio controller.
HDA_SDO	Serial TDM data output to the codec(s)
HDA_SDIN [1:0]	Serial TDM data inputs from the codec(s)
I ² S Interface	
I2S_MCLK1	I ² S* Master Clock Output
I2S_MCLK2_INOUT	Second I ² S* Master Clock Output. Can be configured as input as a reference clock.
I2S[5:0]_SCLK	I ² S Serial Bit Clocks for connections to I ² S devices.
I2S[5:0]_TXD	I ² S Transmit Data (Serial Data Out) for connection to I ² S devices.
I2S[5:0]_RXD	I ² S Receive Data (Serial Data In) for connection to I ² S devices.
I2S[5:0]_SFRM	I ² S Serial Frame for connection to I ² S devices.
DMIC Interface	
DMIC_CLK_A[1:0]	Serial data clock to module A (left microphone) DMIC on interface/port 0 or 1.
DMIC_CLK_B[1:0]	Serial data clock to module B (right microphone) DMIC on interface/port 0 or 1.
DMIC_DATA[1:0]	Serial data input from the digital microphone module

AUDIO HAS NOT BEEN
IMPLEMENTED IN TENSOR 122.
INSTEAD, AUDIO TEL IS USED
AND IT ONLY NEEDS USB
SIGNALS. (P2)

6.11 SoundWire* Interface Design Guidelines

For the Tiger Lake platform, SoundWire* is still the newest audio interface targeting (but not limited to) the phone, mobile, and desktop market as an alternative to Slimbus. Its main advantage is the connection simplicity with a 2 wire multi-drop topology + PDM streaming capabilities. For the Tiger Lake PCH there are 4 separate SoundWire interfaces that can be used.

6.11.1 SoundWire* Platform Specific Important Information

On the Tiger Lake platform the SoundWire* interface and other audio interfaces can be configured by itself or at the same time with other interfaces for connection to end devices. Refer Tiger Lake PCH-LP External Design Specification (#576591) for specific sku pins assignments.

6.11.2 SoundWire* Signal Description

Table 87. SoundWire* Signals

Signal Name	Description
SNDW0_DATA	SoundWire Data 0: Serialized data line containing frame and data being transmitted /Received
SNDW0_CLK	SoundWire Clock 0: Serial bit clock used to control the timing of a transfer.
SNDW1_DATA	SoundWire Data 1: Serialized data line containing frame and data being transmitted /Received
SNDW1_CLK	SoundWire Clock 1: Serial bit clock used to control the timing of a transfer.
SNDW2_DATA	SoundWire Data 2: Serialized data line containing frame and data being transmitted /Received
SNDW2_CLK	SoundWire Clock 2: Serial bit clock used to control the timing of a transfer.
SNDW3_DATA	SoundWire Data 3: Serialized data line containing frame and data being transmitted /Received
SNDW3_CLK	SoundWire Clock 3: Serial bit clock used to control the timing of a transfer.

12.2 PCIe4 Gen4 Interface Signals

Signal Name	Description	Dir	Buffer Type	Link Type	Availability
PCIE4_RCOMP_P PCIE4_RCOMP_N	Resistance Compensation for PEG channel	I	Analog	Diff	UP3/UP4/H Processor Lines
PCIE4_TX_P[3:0] PCIE4_TX_N[3:0]	PCIe Transmit Differential Pairs	0	PCIE	Diff	UP3/UP4/H Processor Lines
PCIE4_RX_P[3:0] PCIE4_RX_N[3:0]	PCIe Receive Differential Pairs	I	PCIE	Diff	UP3/UP4/H Processor Lines

PCI Express* Clock Output: Serial Reference 100 MHz PCIe* specification compliant differential output clocks to PCIe* devices

• CLKOUT_PCIE_P/N [6:0] = Can be used for PCIe* Gen1, Gen2, and Gen3 support

• CLKOUT_PCIE_P/N [4, 3, 0] = Must be used for PCIe* Gen4 support +3<u>V3</u>S +3<u>V3</u>S All platforms are required to provide a 38.4 MHz input to the PCH to enable the PCH to generate all of its internal reference clocks and all of the single-ended and differential platform clock outputs. U1K 48/270 X1 38.4MHz,+/-20ppm NOP R28 11 OF 21 > 10K/1% 10K/1% PCIe Gen 3 TRIP #2 CLKOUT_PCIE_P6 CLKOUT_PCIE_N6 CLKOUT PCIE P6 OD GPP F19/SRCCLKREQ6# BW2 DF23 101 PU @ TRIP1 CLKOUT_PCIE_N6 OD GPP_H11/SRCCLKREQ5# DG25 108 PU @ M 2E M2E CLKRQ#
DT24 108 PU @ M 2M M2M CLKRQ#
DT30 108 PU @ M 2B M2B CLKRQ# OD GPP_H10/SRCCLKREQ4#
OD GPP_D8/SECCLKREQ3# 100 MHz PCIe CLK CLKOUT PCIE P5 PCIe Gen 3 LAN 2 - EB-TI22A I210 CLKOUT PCIE P5 (CB1 CLKOUT_PCIE_N5 100 MHz PCIe CLR OD GPP_D7/SRCCLKREQ2#
OD GPP_D6/\$RCCLKREQ1# DV30 OD GPP_05/SRCCLKREQ0# CLKOUT_PCIE_P4 CLKOUT_PCIE_N4 CLKOUT PCIE P4 ->> M.2_SSD_SUS_CLK PCIe Gen 3 LAN 1 - EB-TI22A CLKOUT_PCIE_N4 100 MHz PCIe CLK Suspend Clock: This clock is a digitally buffered version of the RTC clock. XTAL_IN CLKOUT_PCIE_P3 << CLKOUT PCIE P3 PCIe Gen 3 TRIP #1 CLKOUT_PCIE_N3 CL8 CLKOUT_PCIE_P3
CLKOUT_PCIE_N3
100 MHz PCIe CLK out GPD8/SUSCLK ->> M.2_BTWIFI_SUS_CLK XTAL_RTC_32K_OUT CLKOUT_PCIE_P2 << CLKOUT_PCIE_P2 PCIe Gen 3 M.2 - Key B CB5 CLKOUT_PCIE_N2 100 MHz PCIe CLK DR47 XTAL RTC 32K IN R15 1K, 1%, 0201 CLKOUT_PCIE_N2 < RTCX1 CLKOUT_PCIE_P1 CLKOUT_PCIE_N1 100 MHz PCIe CLK ->>> RTCRST# RTCRST# NOP BY3 DK37 SRTCRST# CLKOUT PCIE N1 CN7 CLKOUT_PCIE_P0 CLKOUT PCIE PO K PCIe Gen 4 M.2 - Key M CN8 CLKOUT_PCIE_N0 100 MHz PCIe CLK CLKOUT_PCIE_N0 < The PCH contains a real time clock (RTC) with 256 bytes of battery-backed SRAM. The internal RTC module provides two key functions: keeping date and time and storing system data in its RAM when the system is powered down. The PCH RTC module requires an external oscillating source 32.766KHz connected on the RTCX1 and RTCX2 balls. Figure below shows the external circuitry that comprises the oscillator of PCH RTC.
The PCH uses a crystal circuit to generate a low-swing 32 kHz input sine wave. This input is amplified and driven back to the crystal circuit via the RTCX2 signal. Internal to PCH, the RTCX1 signal is amplified to drive internal logic. DJ5 XCLK_BIASREF R34 Spacing for Mainroute: 150um (5.9 Mil) to 60.4R ground shield R31 10M/5% TGL_UP3_IP_EXT/BGA X2 32.768KHz VCCPRTC 3P C6 18pF 50V Crystal Input: Input connection for 38.4 MHz crystal to PCH Crystal Output: Output connection for 38.4 MHz crystal to PCH RTC Battery RTC RESET BUTTON BATT_HOLDER_2032 Vbatt 1uF When RTCRST# is asserted, bit 2 (RTC PWR STS) in the GEN PMCON 3 (General PMC Configuration 3) register is set to 1, and remains set until software clears it. As a result of this, when the system boots, the BIOS knows that the RTC result of this, when the system boots, the BIOS knows that the RTC battery has been removed.

The RTCRST# signal may also be used to detect a low battery voltage.

RTCRST# will be asserted during a power up from G3 state if the battery voltage is below 2V. This will set the RTC PWR STS bit as described above. If desired, BIOS may request that the user replace the battery. This RTCRST# circuit is combined with the diode circuit (refer figure above) whose purpose is to allow the RTC well to be powered by the battery when the system power is not available. The above figure is an example of this circuitry that is used in conjunction with the external diode circuit. conjunction with the external diode circuit. Rev <RevCode>

Document Number Thursday, April 07, 2022

NCTFVSS BTM_RIGHT_1 U1P NCTFVSS BTM_LEFT_2 16 OF 21 B19 VSS 223 VSS 289 B2 Botton B23 A32 VSS_224 VSS_290 A45 VSS_225 VSS_291 A49 B27 NCTFVSS BTM LEFT VSS 226 VSS 292 AA41 B32 B36 VSS_293 AA48 VSS 228 VSS 294 AB5 AB7 B39 B42 VSS_229 VSS_295 VSS_230 VSS_231 VSS_296 VSS_297 B48
B52
Bottom Left NCTF
B8
BA48 AB8 AC44 VSS_232 VSS_233 VSS_298 VSS_299 AC49 AD4 VSS_234 VSS_300 AD48 BA53 VSS 235 VSS 301 AD8 AF4 BB4 BB8 VSS_236 VSS_302 VSS_237 VSS_238 VSS 303 BC1 BC2 BD12 AF8 VSS_304 AG41 VSS_239 VSS_240 VSS_305 VSS_306 AG42 AG44 AG45 BD4 BD48 VSS_241 VSS_242 VSS_307 VSS 308 AG47 AG48 BD8 BF39 VSS_243 VSS_309 VSS_244 VSS_245 VSS_310 VSS_311 VSS_312 VSS_313 VSS_314 BF44 BF42 BF42 BF42 BF44 VSS 310 AG53 AH4 AH8 VSS_246 VSS_247 AK12 VSS_248 VSS_249 VSS_314 AK4 BF45 VSS_315 VSS_316 VSS_317 VSS_318 VSS_319 VSS_320 VSS_320 VSS 315 AK48 VSS_250 AK5 VSS_251 VSS_252 AK7 AK8 VSS_253 VSS_254 AM1 VSS_320 BG53 BH1 AM2 AM4 VSS_255 VSS_256 VSS_321 VSS 322 BH2 BH4 BH8 BK12 AM8 AN41 VSS_257 VSS_323 VSS_324 VSS 258 AN42 VSS_259 VSS_325 AN44 VSS_260 VSS_261 VSS_326 VSS_327 BK4 BK48 AN45 AN47 VSS_262 VSS_263 VSS_328 AN48 BK8 VSS 329 BL49 BM1 AN53 AP4 VSS_264 VSS_330 VSS_265 VSS_266 VSS 331 AP8 AT4 BM4 BM41 VSS_267 VSS_268 VSS 333 BM42 BM44 AT48 VSS_334 AT51 VSS_269 VSS_270 VSS_335 VSS_336 AT8 BM45 AV12 AV39 BM47 VSS_271 VSS_272 VSS_337 VSS_338 BM8 BN48 BP41 AV4 AV5 VSS_273 VSS_339 VSS_274 VSS_275 VSS 340 BP49 BP5 BP50 BP7 AV7 VSS_341 AV8 VSS_276 VSS_277 VSS 342 AW1 VSS_343 AW2 VSS_278 VSS_279 VSS_344 VSS_345 AW48 BT44 AY4 AY41 BT48 BU49 VSS_346 VSS_347 VSS_280 VSS 281 AY42 AY44 BV3 BV48 VSS_282 VSS_348 VSS_283 VSS_284 VSS 349 AY45 BV5 VSS_350 AY47 BW10 VSS_285 VSS_286 VSS_351 VSS_352 AY8 BY41 AY9 BY42 VSS_287 VSS_353 B13 VSS 288 TGL_UP3_IP_EXT/BGA

<Title>

Document Number

Thursday, April 07, 2022

Sheet

Rev <RevCode

Size A3

U1S 19 OF 21 RSVD_23
RSVD_24
RSVD_25
RSVD_25
RSVD_27
RSVD_27
RSVD_28
RSVD_29
RSVD_31

RSVD_19
RSVD_19
RSVD_1P_30
RSVD_1P_30
RSVD_1P_30
RSVD_1P_30
RSVD_1P_31
RSVD_1P_32
RSVD_1P_33
RSVD_1P_34
RSVD_1P_35
RSVD_1P_35
RSVD_1P_36
RSVD_1P_36
RSVD_1P_36
RSVD_1P_37
RSVD_1P_38
RSVD_1P_38
RSVD_1P_38
RSVD_1P_38
RSVD_1P_39
RSVD_1P_36
RSVD_1P_36
RSVD_1P_37
RSVD_1P_38
RSVD_1P_38
RSVD_1P_39
RSVD_1P_39
RSVD_1P_39
RSVD_1P_39
RSVD_1P_36
RSVD_1P_36
RSVD_1P_37
RSVD_1P_38
RSVD_1P_38
RSVD_1P_39
RSVD_1P_39 DF53_RSVD_19 DF52 RSVD_20 DT52 DU53 PCH_IST_TP_1 PCH_IST_TP_0 DF50 DF49 RSVD_21 RSVD_22 CY30 CY15 RSVD_TP_25 RSVD_TP_26 RSVD_TP_27

A6 IST_TP_1
IST_TP_0 TGL_UP3_IP_EXT/BGA Document Number <Doc> Rev <RevCode>

Configuration Signals: The CFG signals have a default value of '1' if not terminated on the board. Refer to the appropriate platform design guide for pull-down recommendations when a logic low is desired. Intel recommends placing test points on the board for CFG pins. CFG[3], CFG[0]: Reserved configuration lane. • CFG[2]: TGL UP4/UP3 Reserved CFG[2]: H PCI Express* Static x16 Lanes Numbering Reversal. - 1 - (Default) Normal - 0 - Reversed
• CFG[4]: eDP enable: UP3/UP4/H Processor Lines CFG[17:0] GTL SE — 1 = Disabled. CFG[6:5]: TGL UP4/UP3 Reserved CFG[6:5]: H PCI Express* Bifurcation
 00 = 1 x8, 2 x4 PCI Express*
 01 = reserved
 10 = 2 x8 PCI Express*
 11 = 1 x16 PCI Express* • CFG[13:7]: Reserved configuration lanes. 0 - Reversed
 CFG[17:15]: Reserved configuration lanes.

+VCCIO_OUT U1T 20 OF 21 R283 R349 R350 R284 R281 1K RSVD TP 7 CFG 14 PEG60 (PCIE4) Lane Reversal V17 RSVD_TP_8 CFG 13 K11 K12 RSVD_TP_9 CFG_11 RSVD TP 10 K9 T17 CFG_10 CP39 CU40 AK9 RSVD_TP_11 RSVD_TP_12 CFG_9 CFG_8 RSVD_12 K8 CFG 6 H9 E6 H5 E9 CFG_5 RSVD_13 4 eDP Emable Strap (1-Disabl CFG 4 RSVD_14 DW6
RSVD_15 CFG_3 CFG_2 CFG_1 D9 E7 RSVD_TP_13 DW3 CFG_0 NOP R517 1K NOP R510 R536 1K R536 NOP NOP NOP NOP NOP NOP NOP R511 R518 R522 R521 R523 R524 1K 1K 1K 1K 1K CFG_RCOMP NOP R520 1K NOP R525 1K NOP NOP R534 R535 R526 NOP Configuration U17 Resistance Compensation H11 0 R536 1K R528 49.9R RSVD TP 15 R516 1K CFG_16 Y1 M4 AB4 Y2 BPM# 3 RSVD_TP_18 BPM#_2 BPM#_1 RSVD TP 19 BPM# 0 RSVD TP 20 AB2 RSVD 6 RSVD_16 RSVD_7 TCP0 MBIAS RCOMP

MS: 500 um (19.6 mil) AL 10

SL/DSL: 380 um (14.9 mil) AM(2

R527

AH(2

AH(2

AR(2)

AR(2)

AR(2)

AR(3)

RSVD_TP_3

RSVD_TP_4

AR(3)

AR(4)

AR(4)

AR(5)

AR(5)

AR(5)

AR(6)

AR(7)

AR RSVD TP 21 TCP0 MBIAS RCOMP RSVD TP 22 RSVD_TP_23 2.2K,1%,0402 AJ10
TCPO MBIAS RCOMP should be connected even if TCSS interface is not used DV51 DV52 DV52 DV53 TP_4 RSVD_17 RSVD_18 RSVD_TP_6 BN10 BM12 DD13 RSVD_8 RSVD_9 RSVD_10 RSVD_10 DF13 in CRB: connected to SKTOCC# D52

TGL_UP3_IP_EXT/BGA

BPM#[3:0] Breakpoint and Performance Monitor Signals: Outputs from the processor that indicate the status of breakpoints and programmable counters used for monitoring processor performance.

Processor Internal Pull-Up / Pull-Down Terminations

Signal Name	Pull Up/Pull Down	Rail	Value
BPM#[3:0]	Pull Up/Pull Down	VCC _{IO} OUT	16-60 Ω
PROC_PREQ#	Pull Up	VCC _{STG}	3 ΚΩ
PROC_TDI	Pull Up	VCC _{STG}	3 ΚΩ
PROC_TMS	Pull Up	VCC _{STG}	3 ΚΩ
PROC_TRST#	Pull Down	VCC _{STG}	3 ΚΩ
PROC_TCK	Pull Down	VCC _{STG}	3 ΚΩ
CFG[17:0]	Pull Up	VCC _{IO} _OUT	3 КΩ

p.143/187 TL-EDS

12.6.3 Digital Display Interface (DDI) Signals

Signal Name	Description	Dir.	Buffer Type	Link Type	Availability
DDIA_TXP[3:0] DDIA_TXN[3:0] DDIB_TXP[3:0] TX DDIB_TXN[3:0]	Digital Display Interface Transmit: DisplayPort and HDMI Differential Pairs	0	DP*/HDMI	Diff	All Processor
DDIA_AUX_P DDIA_AUX_N DDIB_AUX_P AUX DDIB_AUX_N	Digital Display Interface Display Port Auxiliary: Half-duplex, bidirectional channel consist of one differential pair for each channel.	I/O	DP*	Diff	Lines.

p.103/507 TL-TDG

		Signal Mapping		
Description	Tiger Lake Processor	Tiger Lake PCH	CRB DisplayPort* Mapping	Note
	DDIx_TXP/N[3:0]	N/A	N/A	1
Main Link (Tx)	TCPx_TX_P/N[1:0] and TCPx_TXRX_P/N[1:0]	N/A	N/A	2
	DDIx_AUXP/N	N/A	N/A	1
Aux Channel AUX	TCPx_AUX_P/N	N/A	N/A	2
Hot Plug Detect	N/A	DDSP_HPD_x	N/A	
DISP_UTILS	Recommend 50 ohm no	ominal trace impedance. Require	es level shifting on the platform.	
DDIA_RCOMP	150 ohm +/-1% pull-d	own to VSS		3
TC_RCOMP	150 ohm +/-1% conne	cted between TC RCOMP P and	TC RCOMP N	4

- 1. Signals names apply for DDI A/B ports
- Signals names apply for TCP ports.
- Provide good noise isolation, Platform Rdc<0.2 Ohm, require if any DDI implemented
- Provide good noise isolation, Platform Rdc<0.2 Ohm, require if any TCP implemented

p.103/507 TL-TDG

Description	Sign	al Mapping	Note
Description	Processor	PCH	
Main Link (Tx)	DDIx_TXP/N[3:0]	N/A	1
TX	TCPx_TX_P/N[0:1] and TCPx_TXRX_P/N[0:1]	N/A	2
DDC DDC	N/A	DDPx_CTRLCLK and DDPx_CTRLDATA	
Hot Plug Detect	N/A	DDSP_HPD_x	
DDIA_RCOMP	150 ohm +/-1% pull-down to VSS Ohm	3	
TC_RCOMP	150 ohm +/-1% connected betwe	en TC_RCOMP_P and TC_RCOMP_N	4

<Title>

Document Number

RevCode

12.6.3 Digital Display Interface (DDI) Signals

Signal Name	Description	Dir.	Buffer Type	Link Type	Availability	
DDIA_TXP[3:0] DDIA_TXN[3:0] DDIB_TXP[3:0] DDIB_TXN[3:0]	Digital Display Interface Transmit: DisplayPort and HDMI Differential Pairs	0	DP*/HDMI	Diff	All Processor	
DDIA_AUX_P DDIA_AUX_N DDIB_AUX_P DDIB_AUX_N	Digital Display Interface Display Port Auxiliary: Half-duplex, bidirectional channel consist of one differential pair for each channel.	I/O	DP*	Diff	Lines.	

Table 38. DisplayPort* Signals

Description	Signal Mapping			
	Tiger Lake Processor	Tiger Lake PCH	CRB DisplayPort* Mapping	Note
	DDIx_TXP/N[3:0]	N/A	N/A	1
Main Link (Tx)	TCPx_TX_P/N[1:0] and TCPx_TXRX_P/N[1:0]	N/A	N/A	2
Aux Channel AUX	DDIx_AUXP/N	N/A	N/A	1
	TCPx_AUX_P/N	N/A	N/A	2
Hot Plug Detect	N/A	DDSP_HPD_x	N/A	
DISP_UTILS	Recommend 50 ohm nominal trace impedance. Requires level shifting on the platform.			
DDIA_RCOMP	150 ohm +/-1% pull-down to VSS			
TC_RCOMP	150 ohm +/-1% connected between TC_RCOMP_P and TC_RCOMP_N			

- 1. Signals names apply for DDI A/B ports.
- Signals names apply for TCP ports.
 Provide good noise isolation, Platform Rdc<0.2 Ohm, require if any DDI implemented.
 Provide good noise isolation, Platform Rdc<0.2 Ohm, require if any TCP implemented.

- Table 47. HDMI* Signals DDIx_TXP/N[3:0] TCPx_TX_P/N[0:1] and TCPx_TXRX_P/N[0:1] N/A DDC DDC Hot Plua Detec DDSP HPD x DDIA_RCOMP . Signal names apply for DDI A/B ports.
 - . Signal names apply for TCP ports.
 . Signal names apply for TCP ports.
 . Provide good noise isolation, Platform Rdc<0.2 Ohm, require if any DDI implemented.
 . Provide good noise isolation, Platform Rdc<0.2 Ohm, require if any TCP implemented

<Title> Document Numbe <RevCode>

VCCIN POWER CONVERSION PHASE I

VCCIN POWER CONVERSION PHASE II

VCCIN_AUX POWER CONVERSION PHASE I

PWR 5V

Document Number

Rev <RevCode>

3V3S\3V3A\VCCCST PWRGD

3

Date: The

Thursday, April 07, 2022 Sheet 35

M.2 M (SSD)

Document Number

Rev <RevCode>

Title SMBus_MUX/GPIO_EXPANDER

Size Document Number CRevCode>

Date: Thursday, April 07, 2022 Sheet 39 of 41

Title

TRIP 1&2

Size Document Number Rev < RevCo

Date: Thursday, April 07, 2022 Sheet 40 of 41

UN-IMPELEMNTED (VCCSTG CPU & VCCST CPU WERE MERGED TOGETHER):

Concept of VccST/VccST-G Power Override Mechanism: When the external debugger is plugged in, POD_PRSNT2_N will be driven to GND. VccST/VccST-G will be forced on in all Sx states to support PCH Sx open-chassis debug via JTAG without additional isolation logic. If S0-only open-chassis PCH debug is acceptable, then the override mechanism in red is not required unless CPU C10 debug support is required. MCP SLP_S3# / SLP S4# * Primary **CPU** DP V cc ST-U INVERTER → V cc ST-U Portion in Purple applicable only if board supports Connected STBY Power Gates -CPU_C10_GATE# POD_PRSNT2_N JTAG Integrated 10 Load Switch) 0Ω (Emp V cc ST-G X DP O verride Logic in Red. Inverter must be in V3P3A domain. "OR" gates are conceptual and may be replaced with other implementations as long as the logic function described is fulfilled VCC1p05_OUT_FET VCPRIM PCH * Refer to power delivery guidelines for choosing FIVR_1P05 the correct SLP_S signal for VCCST control.

Document Number

IN VOLUME: VccSTG gated by SLP S3#

IN Premium, VccSTG gated by {CPU_C10_GATE#}

