Philosophy 12, Problem Set 1

Tianshuang (Ethan) Qiu

February 2, 2022

1 Q1

1.1 1

No it is not, when $\phi=0, \psi=1, \ \phi \implies \psi$ is ture, but $\psi \implies \phi$ is false. Therefore they are not equivalent.

1.2 2

	ϕ	ψ	$\phi \implies \psi$	$\neg \psi \implies \neg \phi$
ĺ	1	1	1	1
	1	0	0	0
Ì	0	0	1	1
ĺ	0	1	1	1

Since every line is the same, they are equivalent.

1.3 3

Let $\phi = 0, \psi = 1, (\phi \implies \psi) = 0$ so $\neg(\phi \implies \psi) = 1$. However $\phi \lor \neg \psi = 0$. They are not equivalent.

1.4 4

ϕ	ψ	$\neg(\phi \implies \psi)$	$\phi \wedge \neg \psi$
1	1	0	0
1	0	1	1
0	0	0	0
0	1	0	0

Since every line is the same, they are equivalent.

1.5 5

Let $\phi=0, \psi=1, \ (\phi \iff \psi)=0$ so $\neg(\phi \iff \psi)=1$. However $\neg\phi \iff \neg\psi=0$. They are not equivalent.

1.6 6

q	5	ψ	$\neg(\phi \iff \psi)$	$\neg \phi \iff \psi$
1		1	0	0
1		0	1	1
()	0	0	0
)	1	1	1

Since every line is the same, they are equivalent.

1.7 7

ϕ	ψ	$(\phi \wedge \psi) \iff (\phi \vee \psi)$	$\phi \iff \psi$
1	1	0	0
1	0	0	0
0	0	1	1
0	1	0	0

Since every line is the same, they are equivalent.

2 Q2

2.1 1

q	r	$\neg (q \wedge r)$	$\neg r$
1	1	0	0
1	0	1	1
0	0	1	1
0	1	1	0

In all possible rows, there is no such row where both premises are true and the conclusion false, therefore this is a valid consequence.

$2.2 \quad 2$

p	q	r	$\neg p \lor \neg q \lor \neg r$	$q \vee r$
1	1	1	1	1
1	1	0	0	1
1	0	1	1	1
1	0	0	1	0
0	1	1	1	1
0	1	0	1	1
0	0	1	1	1
0	0	0	1	0

In all possible rows, there is no such row where all premises are true and the conclusion false, therefore this is a valid consequence.

3 Q3

3.1 a

Let "vinegar is included in the batter" be p, "baking soda is included in the batter" be q, "the velvet cake rises" be r.

Then we have $(p \land q) \implies r$. Our conclusion is that $\neg r \implies (\neg p \implies q)$. This statement is valid because either the vinegar or the baking soda must be absent. If the batter contained vinegar, then it must not have baking soda.

3.2 b

Let "Kovak wins the election" be p, "the taxes increase" be q, "her party maintains control of the legislature" be r.

Then we have $p \implies (r \implies q)$. Our conclusion is that $\neg q \implies (\neg p \land \neg r)$. This statement is not valid because Kovak could have won the election but her party did not maintain control. This satisfies the premise but contradicts the conclusion.

3.3 c

Let a = 0 be p, b = 0 be q, a + b = 0 be r.

Then we have $(p \land q) \implies r$. Our conclusion is $\neg r \implies (\neg q \lor \neg p)$.

This statement is valid because it is the contrapositive of the original.

3.4 d

Let "Jones drove the car" be p, "Smith is innocent" be q, "Brown fired the gun" be r.

Then we have $(p \implies q) \land (\neg r \implies \neg q)$. Our conclusion is $r \implies \neg q$.

This statement is invalid because in the case that Brown fired the gun, Smith is innocent, and Jones drove the car, all premises are met. However the conclusion is not: Jones did drive the car. Therefore the conclusion is invalid.

4 Q4

4.1 a

For (i):

q	r	$\neg (q \wedge r)$	$\neg r$
1	1	0	0
1	0	1	1
0	0	1	1
0	1	1	0