2.3 The internal circuit of a particular op amp can be modeled by the circuit shown in Fig. E2.3. Express v_3 as a function of v_1 and v_2 . For the case $G_m = 10$ mA/V, R = 10 k Ω , and $\mu = 100$, find the value of the open-loop gain A.

Ans. $v_3 = \mu G_m R(v_2 - v_1)$; A = 10,000 V/V or 80 dB

Figure E2.3

2.2 The Inverting Configuration

As mentioned above, op amps are not used alone; rather, the op amp is connected to passive components in a feedback circuit. There are two such basic circuit configurations employing an op amp and two resistors: the inverting configuration, which is studied in this section, and the noninverting configuration, which we shall study in the next section.

Figure 2.5 shows the inverting configuration. It consists of one op amp and two resistors R_1 and R_2 . Resistor R_2 is connected from the output terminal of the op amp, terminal 3, back to the inverting or negative input terminal, terminal 1. We speak of R_2 as applying negative **feedback**; if R₂ were connected between terminals 3 and 2 we would have called this **positive feedback**. Note also that R_2 closes the loop around the op amp. In addition to adding R_2 , we have grounded terminal 2 and connected a resistor R_1 between terminal 1 and an input signal source

Figure 2.5 The inverting closed-loop configuration.

with a voltage v_I . The output of the overall circuit is taken at terminal 3 (i.e., between terminal 3 and ground). Terminal 3 is, of course, a convenient point from which to take the output, since the impedance level there is ideally zero. Thus the voltage v_O will not depend on the value of the current that might be supplied to a load impedance connected between terminal 3 and ground.

2.2.1 The Closed-Loop Gain

We now wish to analyze the circuit in Fig. 2.5 to determine the **closed-loop gain** G, defined as

$$G \equiv \frac{v_O}{v_I}$$

We will do so assuming the op amp to be ideal. Figure 2.6(a) shows the equivalent circuit, and the analysis proceeds as follows: The gain A is very large (ideally infinite). If we assume that the circuit is "working" and producing a finite output voltage at terminal 3, then the voltage between the op-amp input terminals should be negligibly small and ideally zero. Specifically, if we call the output voltage v_o , then, by definition,

$$v_2 - v_1 = \frac{v_O}{A} = 0$$

It follows that the voltage at the inverting input terminal (v_1) is given by $v_1 = v_2$. That is, because the gain A approaches infinity, the voltage v_1 approaches and ideally equals v_2 . We speak of this as the two input terminals "tracking each other in potential." We also speak of a "virtual short circuit" that exists between the two input terminals. Here the word *virtual* should be emphasized, and one should *not* make the mistake of physically shorting terminals 1 and 2 together while analyzing a circuit. A **virtual short circuit** means that whatever voltage is at 2 will automatically appear at 1 because of the infinite gain A. But terminal 2 happens to be connected to ground; thus $v_2 = 0$ and $v_1 = 0$. We speak of terminal 1 as being a **virtual ground**—that is, having zero voltage but not physically connected to ground.

Now that we have determined v_1 we are in a position to apply Ohm's law and find the current i_1 through R_1 (see Fig. 2.6) as follows:

$$i_1 = \frac{v_I - v_1}{R_1} = \frac{v_I - 0}{R_1} = \frac{v_I}{R_1}$$

Where will this current go? It cannot go into the op amp, since the ideal op amp has an infinite input impedance and hence draws zero current. It follows that i_1 will have to flow through R_2 to the low-impedance terminal 3. We can then apply Ohm's law to R_2 and determine v_0 ; that is,

$$\begin{split} v_O &= v_1 - i_1 R_2 \\ &= 0 - \frac{v_I}{R_1} R_2 \end{split}$$

Thus,

$$\frac{v_O}{v_I} = -\frac{R_2}{R_1}$$

Figure 2.6 Analysis of the inverting configuration. The circled numbers indicate the order of the analysis steps.

which is the required closed-loop gain. Figure 2.6(b) illustrates these steps and indicates by the circled numbers the order in which the analysis is performed.

We thus see that the closed-loop gain is simply the ratio of the two resistances R_2 and R_1 . The minus sign means that the closed-loop amplifier provides signal inversion. Thus if $R_2/R_1 = 10$ and we apply at the input (v_I) a sine-wave signal of 1 V peak-to-peak, then the output v_0 will be a sine wave of 10 V peak-to-peak and phase-shifted 180° with respect to the input sine wave. Because of the minus sign associated with the closed-loop gain, this configuration is called the **inverting configuration**.