Exercise 3.8

Proof. Noticed that $p|\binom{p}{k}$ for any $1 \le k \le p-1$. So $(x+y)^p = \sum_{k=0}^p \binom{p}{k} x^k y^{p-k} = x^p + y^p$ for any $x, y \in R$. Combining with the fact that $(xy)^p = x^p y^p$ for any $x, y \in R$, and $1^p = 1$, we have this map is a ring homomorphism.

Exercise 6.8

(a)

Proof. By definition of ideal, $ij \in I \cap J, \forall i \in I, j \in J. \Rightarrow i_1j_1 + \dots + i_nj_n \in I \cap J$ since $I \cap J$ is an ideal by Ex3.13. $\Rightarrow IJ \subset I \cap J$

 $\forall t \in I \cap J, \text{ since } 1 \in R = I + J \Rightarrow 1 = i + j \text{ for some } i \in I, j \in J \Rightarrow t = t \cdot 1 = t \cdot (i + j) = ti + tj \text{ where } ti \in I, tj \in J \Rightarrow t \in IJ$

(b)

Proof. Let $a=i_a+j_a, b=i_b+j_b$ where $i_a,i_b\in I, j_a,j_b\in J$ Then $j_a+i_b-a=i_b-i_a\in I, j_a+i_b-b=j_a-j_b\in J\Rightarrow x=j_a+i_b$ satisfies that $x\equiv a$ modulo I and $x\equiv b$ modulo J.

(c)

Proof. If IJ = 0, then $I \cap J = 0$.

Then $\forall r \in R$, if r = i + j = i' + j', $i, i' \in I.j, j' \in J$, then $i - i' = j' - j \in I \cap J \Rightarrow i = i' = j' - j = 0$. So r can be uniquely written as $r = i + j, i \in I, j \in J$. (\star) Define $\varphi : R \to (R/I) \times (R/J), r \mapsto (r + I, r + J)$. Easy to check that φ is a ring homomorphism.(In fact, $\varphi(rs) = (rs + I, rs + J) = (r + I, r + J)(s + I, s + J), \varphi(r + s) = (r + s + I, r + s + J) = (r + I, r + J) + (s + I, s + J)$ If (r + I, r + J) = (r' + I, r' + J), then $r - r' \in I, r - r' \in J \Rightarrow r - r' \in I \cap J$, $\Rightarrow r - r' = 0$. So φ is injective.

 $\forall m+I \in R/I, n+J \in R/J$, by Chinese Remainder Theorem we have $x \in R$ s.t. $x+I=m+I, x+J=n+J \Rightarrow \varphi(x)=(m+I,n+J) \Rightarrow \varphi$ is surjective. Thus φ is isomorphic.

(d)Idempotents in $(R/I) \times (R/J)$ is $(\overline{e_1}, \overline{e_2})$ where $\overline{e_1}^2 = \overline{e_1}$ in R/I, $\overline{e_2}^2 = \overline{e_2}$ in R/J.

Exercise 7.4

The answer is no. By Prop7.7.7(a), a ring R is a cyclic group under the law of composition +. So $(id+id+id) \cdot (id+id+id+id+id) = 15 \cdot id = 0$ where id is the identity element of R (under multiplication). However (3id), (5id) is not zero since R is a cyclic group, hence R is not a domain. i.e. every ring of order 15 is not a domain.

M.3 Define $M_n = \{a \in R : \mathbf{n}\text{-th component of a equals } \mathbf{0}\}$. Easy to check that M_n is an ideal. And for $a \notin M_n$, we have $(0,0,\cdots,a_n^{-1},0,\cdots) \cdot a = (0,0,\cdots,1,\cdots)$. Then $(a)+M_n$ contains a basis of R (under addition), hence $(a)+M_n=R \Rightarrow M$ is maximal ideal.

If M maximal ideal but not one of M_n . We prove that $a=(a_1,\cdots)\in M,$ $0=a_n=a_{n+1}=\cdots$. Otherwise, R/M is a field \Rightarrow There exists b s.t. $ab-(1,1,1,\cdots)\in M$. i.e. $(a'_1,\cdots,a'_{n-1},-1,-1,\cdots)\in M$. Since $M\neq M_n$, and $M\not\subset M_n$, there exists $B^m\in M$ s.t. m-th component of $B^m, B^m_m\neq 0$. By Gauss elimation, any element $t\in R$ can be expressed as $m+t', m'inM, t'_i=0, \forall 1\leq i\leq n-1$. Then $t'=(0,0,\cdots,-t'_n,-t'_{n+1},\cdots)\cdot (a'_1,\cdots,a'_{n-1},-1,-1,\cdots)\in M$ $\Rightarrow M=R\Rightarrow$ contradiction.

Therefore $M \supset (a:a_i=1, \forall 1 \leq i \leq n-1; a_i=0, \forall i \geq n; n \in \mathbb{Z}_+)$. Actually, $N=(a:a_i=1, \forall 1 \leq i \leq n-1; a_i=0, \forall i \geq n; n \in \mathbb{Z}_+)$ is a maximal ideal. That's because: for $t \notin M$, $t=(t_1, cdots), 0 \neq t_n=t_{n+1}=\cdots$. Then $t \cdot (1,1,\cdots,t_n^{-1},t_{n+1}^{-1},\cdots)-(1,1,1,\cdots) \in N \Rightarrow t$ is a unit in $R/N \Rightarrow R/N$ is a field $\Rightarrow N$ is a maximal ideal.

Therefore, M is a maximal ideal if and only if $M = M_n$ or $M = N = (a : a_i = 1, \forall 1 \le i \le n-1; a_i = 0, \forall i \ge n; n \in \mathbb{Z}_+)$

5. (a) Every ideal contains 0 so $V(0) = Spec\,R.\,\,R$ is not prime ideal $\Rightarrow V(R) = \emptyset$

- (b) $V(\cup_{\lambda \in \Lambda} E_{\lambda}) = \{ p \in \operatorname{Spec} R | p \supset \cup_{\lambda \in \Lambda} E_{\lambda} \} = \{ p \in \operatorname{Spec} R | p \supset E_{\lambda} \forall \lambda \in \Lambda \} = \bigcap_{\lambda \in \Lambda} \{ p \in \operatorname{Spec} R | p \supset E_{\lambda} \} = \bigcap_{\lambda \in \Lambda} V(E_{\lambda})$
- (c) $\forall p \supset IJ$, $p \in Spec\,R$, then $\forall t \in I \cap J$, $t^2 \in IJ \subset p \Rightarrow t \in p$ since p is prime ideal. So $I \cap J \subset p \Rightarrow p \in V(I \cap J)$. $\forall p \supset I \cap J$, $p \in Spec\,R$, then $IJ \subset I \cap J \subset p \Rightarrow p \in V(IJ)$. Therefore $V(I \cap J) = V(IJ)$.

 $\forall p \in V(IJ)$, if $\exists i \in I, i \notin p$, then $\forall j \in J, ij \in IJ \subset p \Rightarrow j \in p$ since p prime ideal. $\Rightarrow J \subset p \Rightarrow p \in V(J)$. If not, then $I \subset P \Rightarrow p \in V(I)$. Thus, $V(IJ) \subset V(I) \cup V(J)$.

 $\forall p \in V(I), \ p \supset I \supset I \cap J \Rightarrow p \in V(I \cap J) = V(IJ).$ Similarly for $p \in V(J), p \in V(IJ). \Rightarrow V(I) \cup V(J) \subset V(IJ).$

Therefore $V(IJ) = V(I) \cup V(J)$.

(d) For any decreasing net of nonempty closed subsets $(V(E_{\lambda}))_{\lambda \in \Lambda}$, we have $p_{\lambda} \in V(E_{\lambda})$. Then $\cup_{\lambda \in \Lambda} E_{\lambda} \subset \cup_{\lambda \in \Lambda} p_{\lambda}$. Since $\forall xy \in \cup_{\lambda \in \Lambda} p_{\lambda}$, $xy \in p_{\lambda}$ for some $\lambda \in \Lambda$, $\Rightarrow x \in \cup_{\lambda \in \Lambda} p_{\lambda}$ or $\cup_{\lambda \in \Lambda} p_{\lambda}$. And since $1 \notin p_{\lambda} \Rightarrow 1 \notin \cup_{\lambda \in \Lambda} p_{\lambda}$. Thus $\cup_{\lambda \in \Lambda} p_{\lambda}$ is a prime ideal containing $\cup_{\lambda \in \Lambda} E_{\lambda}$. i.e. $\cup_{\lambda \in \Lambda} p_{\lambda} \in V(\cup_{\lambda \in \Lambda} E_{\lambda}) = \cap_{\lambda \in \Lambda} V(E_{\lambda})$ $\Rightarrow \cap_{\lambda \in \Lambda} V(E_{\lambda}) \neq \emptyset$.

By decreasing chain property, we have X = Spec R is compact.

Note: you can check dereasing chain property in https://binguimath.github.io/Files/2023_Analysis.pdf, page136, Propsition 8.15.