แบบฝึกหัดปฏิบัติการคาบที่ 12: Problem Solving

อ-นามสกุล		รหัสประจำตัวนักศึกษารหัสประจำตัวนักศึกษา		
วันที่เดือน	พ.ศ. 2564	Section		

1. [4G] จากการประมูลคลื่นระบบ 4G ที่ดุเดือด บริษัทให้บริการโทรศัพท์มือถือมีแนวโน้มที่จะออกแพ็คเกจบริการที่ซับซ้อน โดยมีการระบุว่าถ้าใช้แบบเติมเงินแล้วโทรตอนกลางวันจะคิดนาทีละ 0.75 บาท แต่ถ้าโทรตอนกลางคืนจะคิด 1.25 บาท ส่วนแบบจ่ายรายเดือนมีให้เลือก 2 ทางเลือกคือแบบ 300 บาทต่อเดือนและแบบ 600 บาทต่อเดือน โดยแบบ 300 บาทต่อ เดือนจะโทรได้ 500 นาทีถ้าเกินนั้นจะคิดค่าโทรนาทีละ 1.50 บาท ส่วนแบบ 600 บาทต่อเดือนจะโทรได้ 1200 นาทีถ้าเกิน นั้นจะคิดค่าโทรนาทีละ 1.50 บาท ส่วนแบบ 600 บาทต่อเดือนจะโทรได้ 1200 นาทีถ้าเกิน นั้นจะคิดค่าโทรนาทีละ 1.25 บาท

นักศึกษาต้องการประหยัดค่าใช้จ่ายมากที่สุดจึงได้ทำการบันทึกว่าในแต่ละสัปดาห์ตนเองโทรตอนกลางวันกี่นาทีและ ตอนกลางคืนกี่นาที โดยจดบันทึกข้อมูลการใช้โทรศัพท์นี้เป็นเวลา 4 สัปดาห์

จงเขียนโปรแกรมรับค่าตัวเล[้]ขจำนวนการโทรตอนกลางวัน และตอนกลางคืน จากนั้นโปรแกรมจะพิมพ์เลข 1 ถ้า แบบเติมเงินมีค่าใช้จ่ายน้อยที่สุด พิมพ์เลข 2 ถ้าแบบ 300 บาทต่อเดือนมีค่าใช้จ่ายน้อยที่สุด และพิมพ์เลข - ถ้าแบบ 600 บาทต่อเดือนมีค่าใช้จ่ายน้อยที่สุด

ข้อมูลน้ำเข้า บรรทัดที่ 1 - 4 จำนวนการโทรตอนกลางวัน และตอนกลางคืน

ข้อมูลส่งออก พิมพ์เลขทางเลือกแพ๊คเกจที่มีค่าใช้จ่ายน้อยที่สุด

ตัวอย่างข้อมูลนำเข้า	ตัวอย่างข้อมูลส่งออก	ตัวอย่างข้อมูลนำเข้า	ตัวอย่างข้อมูลส่งออก
100 100	3	50 20	2
100 100		60 70	
100 100		40 30	
100 100		50 50	

2. [Distance] กำหนดจุดในระนาบสามมิติมีตัวอย่างการเก็บในรูปแบบต่อไปนี้

 $float\ points[\][\] = \{\{-1,\ 0,\ 3\},\ \{-1,\ -1,\ -1\},\ \{4,\ 1,\ 1\},\{2,\ 0.5,\ 9\},\ \{3.5,\ 2,\ -1\},$

{3, 1.5, 3}, {-1.5, 4, 2}, {5.5, 4, -0.5}};

จงเขียนโปรแกรมเพื่อคำนวนระยะทางระหว่างจุดสองสุดในระนาบสามมิติที่มีระยะทางระหว่างจุดมากที่สุด 3 อันดับ แรก โดยระยะทางระหว่างสองจุด (x_1,y_1,z_1) และ (x_2,y_2,z_2) คำนวณได้จาก

$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$$

ข้อมูลนำเข้า

บรรทัดแรก ระบุจำนวนตัวเลข n บรรทัดที่ 2 ถึง n+1 ระบุจุดในระนาบสามมิติ

ข้อมูลส่งออก

บรรทัดที่ 1 - 3 แสดงระยะทางระหว่างจุดมากที่สุด 3 อันดับแรก

ตัวอย่างข้อมูลนำเข้า	ตัวอย่างข้อมูลส่งออก
8	10.71
-1 0 3	10.55
-1 -1 -1	10.22
4 1 1	
2 0.5 9	
3.5 2 -1	
3 1.5 3	
-1.5 4 2	
5.5 4 -0.5	

ชื่อ-นามสกล		รหัสประจำตั	ทั่วนักศึกษา
ั วันที่	เดือน	พ.ศ. 2564	ตอนเรียน Lab ที่

3. [Visible Trees] มีต้นไม้ ความสูงต่างๆกัน เรียงเป็นแนวเส้นตรง เมื่อญาญ่า เดินผ่านต้นไม้แต่ละต้น ได้บันทึก ความสูงของแต่ละต้นเอาไว้ ตามลำดับ จากนั้นเมื่อมองย้อนกลับไป จะมีต้นไม้จำนวนหนึ่งเท่านั้น ที่สามารถมองเห็นได้ ใน แนวเส้นตรงเดียวกัน เพราะ<u>ต้นไม้ที่มีความสูงเท่ากันหรือต่ำกว่า จะถูกบดบัง</u> จงหาว่า มีต้นไม้กี่ต้น ที่ญาญ่าจะสามารถ มองเห็นได้

ข้อมูลนำเข้า

บรรทัดแรกคือค่า n (1<=n<=10) จำนวน test case

และในอีก n บรรทัดต่อมา แต่ละบรรทัดคือ หนึ่ง test case ซึ่งประกอบด้วย T (1<=T<=80) ระบุจำนวนต้นไม้ และมีจำนวนเต็มบวกอีก T ค่า เป็นความสูงของต้นไม้แต่ละต้นที่บันทึกไว้ตามลำดับ

ข้อมูลส่งออก

แต่ละ Test case ให้แสดง จำนวนต้นไม้ที่สามารถมองเห็นได้

ตัวอย่างข้อมูลนำเข้า	ตัวอย่างข้อมูลส่งออก
3	1
12 1 2 3 4 5 6 7 8 9 10 11 12	3
8 2 13 6 1 7 2 1 3	4
5 15 10 10 9 8	

4. หน่วยสืบคดีพิเศษของประเทศแห่งหนึ่งต้องการค้นหาแหล่งกบดานของนักบวชรูปหนึ่ง โดยแหล่งที่พักของนักบวชรูปนี้มี ความสลับซับซ้อนเป็นพิเศษ บุคคลภายนอกไม่สามารถเข้าถึงได้โดยตรง ด้วยเหตุนี้หน่วยสืบคดีพิเศษจึงจำเป็นต้องอาศัย อากาศยานไร้คนขับ หรือโดรน ทำการถ่ายภาพบริเวณที่สนใจ **โดยภายในภาพถ่ายจะปรากฎจำนวนคน ณ บริเวณที่** กำหนด โดยเป็นรูปขนาด HxW ช่อง ซึ่งหน่วยสืบคดีพิเศษต้องการหานักบวชจากรูปภาพนี้ ตัวอย่างของรูปขนาด 4X5 แสดงเป็นตารางด้านล่างกำหนดตารางชื่อ A ตัวเลขในแต่ละช่องแสดงจำนวนคนที่อยู่ในช่องนั้น

5	1	2	10	4
4	30	3	0	100
3	25	10	4	10
3	20	4	8	5

ในการหาตำแหน่งของนักบวชเนื่องจากเป็นนักบวชที่มีความสำคัญจึงจำเป็นต้องมีคนอยู่รอบข้าง ดังนั้นจึงมีมีเงื่อนไข 3 ข้อดังนี้

- 1. นักบวชจะปรากฏในบริเวณที่เป็น 2 ช่องติดกันพอดี
- 2. สองช่องที่เป็นบริเวณที่มีนักบวชควรมีจำนวนคน ณ บริเวณนั้นต่างกันไม่เกิน 10
- 3. เนื่องจากเป็นนักบวชที่มีความสำคัญจึงจำเป็นต้องมีคนอยู่รอบข้าง ตำแหน่งที่นักบวชอาศัยอยู่จึงน่าจะเป็นตำแหน่ง ที่มีจำนวนคน ณ บริเวณนั้นอยู่เป็นจำนวนมาก คือต้องเป็นสองช่องที่มีผลรวมของจำนวนคน ณ บริเวณนั้นอยู่เป็น จำนวนมาก

จากตารางตำแหน่งที่ตรงตามเงื่อนไขคือ A[2][2] และ A[3][2]

จงเขียนโปรแกรมที่รับตารางแสดงตำแหน่งของนักบวช จากนั้นให้หาตำแหน่งมุมบนซ้ายของช่องที่น่าจะปรากฎ นักบวชมากที่สุด โดยระบุแถวและคอลัมภ์ช่องนั้น

ชื่อ-นามสกล	รหัสป	รหัสประจำตัวนักศึกษา		
ั วันที่เดือน	พ.ศ. 2564	ตอนเรียน Lab ที่		

ข้อมูลนำเข้า

บรรทัดแรก ระบุขนาดตาราง HxW

บรรทัดที่ 2 ถึง H+1 แสดงจำนวนคนในแถวที่ i โดยระบุเป็นจำนวนเต็มจำนวน W ตัว จำนวนที่ j จะเป็นจำนวนคน ในช่องที่อยู่ในคอลัมภ์ j

ข้อมูลส่งออก

มีบรรทัดเดียว คือ **มุมบนซ้ายของช่องที่น่าจะปรากฏนักบวชมากที่สุด**โดยระบุแถวและคอลัมภ์ช่องนั้น

ตัวอย่างข้อมูลนำเข้า	ตัวอย่างข้อมูลส่งออก	ตัวอย่างข้อมูลนำเข้า	ตัวอย่างข้อมูลส่งออก
4 5	2 2	4 4	3 2
5 1 2 10 4		0000	
4 30 3 0 100		0000	
3 25 10 4 10		0 1 1 1	
3 20 4 8 5		1 1 0 0	

5. [Line] เส้นตรงคือการนำจุดสองจุดใดมาเชื่อมต่อกันโดยเส้นตรงจะประกอบด้วยสมาชิกที่เป็นจุดจำนวน 2 จุด คือจุดที่ เป็นจุดเริ่มต้นของเส้นตรง (begin) และจุดที่เป็นจุดสุดท้ายของเส้นตรง (end) โดยมีโครงสร้างดังนี้

```
typedef struct{
   POINT begin;
   POINT end;
}LINE;

typedef struct{
   int x;
   int y;
}POINT;
```

จ[°]งเขียนโปรแกรมโดยการใช้ฟังก์ชันที่รับพารามิเตอร์ 2 ตัวที่มีชนิดข้อมูลเป็น POINT จากนั้นให้นำโครงสร้าง ดังกล่าวไปสร้างเป็นเส้นตรง (LINE) และคืนเป็นเส้นตรงออกมา หลังจากนั้นให้เขียนฟังก์ชันที่รับตัวแปรที่เป็น LINE เข้ามาใน ฟังก์ชันแล้วคืนเลข 1 2 หรือ 3 โดยที่

- 1 คือเส้นตรงที่มีลักษณะเป็นแนวตั้ง (Vertical)
- 2 คือเส้นตรงที่มีลักษณะเป็นแนวนอน (horizontal)
- 3 คือเส้นตรงที่ไม่ถูกนิยาม (oblique)

โดย Vertical line คือ เส้นตรงที่มีจุด begin กับจุด end มีพิกัด x อยู่ตำแหน่งเดียวกัน Horizontal line คือ เส้นตรงที่มีจุด begin กับจุด end มีพิกัด y อยู่ตำแหน่งเดียวกัน Oblique line คือ เส้นตรงที่ไม่เป็นทั้ง vertical line หรือ horizontal line

ชื่อ-นามสกุล		รหัสประจำตัวนักศึกษา	
วันที่	เดือนพ.ศ.	2564	ตอนเรียน Lab ที่

6. [พื้นที่ในอาร์เรย์สองมิติ] อาร์เรย์ของเลขจำนวนเต็ม 2 มิติ ประกอบไปด้วย R แถว และ C คอลัมน์ โดยที่ R และ C เป็น เลขคู่จำนวนเต็มบวก. ถ้าต้องการแบ่งพื้นที่ในอาร์เรย์นี้ออกเป็น 4 ส่วน ได้แก่ zone 1,2,3 และ A โดยที่แต่ละโซน จะประกอบไปด้วยพื้นที่สี่เหลี่ยมจัตุรัสขนาด $R/2 \times C/2$ ช่องในอาร์เรย์ ตัวอย่างเช่น การแบ่งพื้นที่ของอาร์เรย์ขนาด 6 คูณ 6 แสดงได้ดังรูปด้านล่าง

Zone 1—		6/2					Zone 2
_\	1	2	3	4	5	6	/
1	1	0	3	0	2	4	
6/2-2	1	3	0	5	2	6	
3	2	7	4	0	3	3	
4	3	1	0	6	7	2	
5	2	3	0	4	8	6	
6	1	5	4	1	2	2	
Zone 3/							Zone 4

จงเขียนโปรแกรมเพื่อแสดงผลบวกที่มากที่สุดของสมาชิกในแต่ละโซน (maximum total sum) ตัวอย่างเช่น ผลบวกของ โซน 1 ในอาร์เรย์ด้านบน คือ 1+0+3+1+3+0+2+7+4 = 21 ขณะที่ผลบวกของอาร์เรย์ในโซน 4 คือ 38

ข้อมูลเข้า

บรรทัดแรกเป็นจำนวนเต็มบวก R และ C

R บรรทัดต่อมาเป็นตัวเลขในอาร์เรย์แต่ละแถว โดยแต่ละแถวมี C คอลัมภ์

ข้อมูลส่งออก

ผลบวกที่มากที่สุดของสมาชิกในโซน

ตัวอย่างข้อมูลนำเข้า	ตัวอย่างข้อมูลออก
2 4	15
1 2 3 4	
5 6 7 8	
4 2	14
1 2	
3 4	
5 6	
7 8	