EF-ROM REPORT

XUPING XIE

1 EF-ROM-DF

The following are burgers equation,

$$\begin{cases} u_t - \nu u_{xx} + \overline{u}u_x = f & x \in \Omega, \\ u(x,0) = u_0(x) & x \in \Omega, \\ u(x,t) = g(x,t) & x \in \partial\Omega \end{cases}$$
 (1.1)

where ν is the diffusion parameter, f the forcing term, $\Omega \subset R$ the computational domain, $t \in [0, T]$.

$$u_0(x) = \begin{cases} 1 & x \in (0, \frac{1}{2}], \\ 0 & x \in (\frac{1}{2}, 1). \end{cases}$$
 (1.2)

where $\nu = 10^{-3}$, domain $x \in [0,1]$, time interval $t \in [0,1]$. The boundary conditions are homogeneous Dirichlet u(0,t) = u(1,t) = 0 for all t, the forcing term f = 0. The following parameters were used in the computation $\Delta x = 1/1024$; time-step $\Delta t = 10^{-3}$ with Backward Euler in DNS, $\Delta t = 10^{-4}$ with Forward Euler in EF-ROM and L-ROM; number of snapshots m=101 (i.e. saved at every 10 step in DNS), the above figure

Figure 1.1: this is the DNS solution

indicates optimal $\delta = 0.0003$, and $\delta = 0.0006$. Then, we check the time evolution: From the above the optimal $\delta = 0.0003$.

2 POD-LERAY-DF

I used r = 6, 10, 20. The optimal for each one is pretty close. See the following picture 2.1.

So, according to optimal L^2 error, the optimal around $\delta=0.135$. I plot the time-evolution, for $\delta=0.135$ and $\delta=0.5$.see fig.2.2

From the above, we know that, $\Delta t = 1/10000$, as δ increase, the solution becomes bad. BUT, when we try $\Delta t = 1/30000$.

3 EF-ROM-PROJECTION

For EF-ROM-projection, I did 2 test, one is for r=6 while R=2,4,5, another is for $r=20,\,R=5,10,15$. I also calculated the kinetic energy at each time level. My results show that IF r and R are small, the results are bad. BUT if r and R are large, EF-ROM-projection can still be good. see the plots 3.1, 3.2.

4 POD-LERAY-PROJECTION

For Leray-Projection, those results are good if we choose R is pretty close to r. It doesn't matter how large r it is. see plots 4.1, 4.2.