Unifying Vision-and-Language Tasks via Text Generation

Jaemin Cho, Jie Lei, Hao Tan, Mohit Bansal UNC Chapel Hill

Presenters:
Siba Smarak Panigrahi

Reading Session X

Kharagpur Data Analytics Group

IIT Kharagpur

August 07, 2021

Important Notes

- We expect you all to have certain queries regarding the presentation, certain intricate doubts maybe... Please put them in the chat of this meeting (if you feel shy) else unmute and speak.
- Finally, a **Google Form** [Link] will be released for feedback but most importantly, we ask you to put up name of any Al-related paper to be presented in the upcoming sessions!

Link to GitHub Repo: Click Here

Link to join Slack Workspace : <u>Click Here</u>

Link to KDAG YouTube Channel: Click Here

Link to doc on good Al Blogs/Resources/Topics: Click Here

Major Contribution

A unified framework (VL-T5 & VL-BART):

- learns different tasks in a single architecture with multimodal conditional text generation
- learn to generate labels "as texts" on the visual and textual inputs

Major Contribution

A unified framework (VL-T5 & VL-BART):

- learns different tasks in a single architecture with multimodal conditional text generation
- learn to generate labels "as texts" on the visual and textual inputs
- Earlier modeled as discriminative tasks, this paper provides a generative approach
- Generation of **open-ended natural language answers**, whereas with discriminative tasks we obtained one answer out of the fixed set of options

Model

- Visual Embeddings
 - Region of Interest (Rol) object features
 - Rol bounding box coordinates
 - Image ids (# of different images in input)
 - \circ Region ids $e^v = \{e_1^v, \dots, e_n^v\}$

Final Visual embeddings:

Model

- Text Embeddings
 - Different prefixes for different tasks
 - \circ Addition of visual sentinel tokens: {<vis_1>, <vis_2>, <vis_n>} $e^x = \{e_1^x, \dots, e_{|x|}^x\}$
 - Augmented text x encoded as learned embedding (after tokenization)

Framework for "visual-grounding task"

Comparison between generative and discriminative architectures

Model

- Encoder-Decoder architecture
 - Encoder:
 - Bi-directional, multimodal
 - Stacked m-transformer blocks; self-attention
 - fully connected layer + residual connections
 - Decoder:
 - similar to encoder with additional cross-attention layer in each block

$$\mathcal{L}_{\theta}^{\text{GEN}} = -\sum_{j=1}^{|y|} \log P_{\theta}(y_j | y_{< j}, x, v)$$

Input-Output format for different tasks in pre-training

Tasks	Input image	Input text	Target text
Pretraning tasks (Sec. 4)			
Multimodal LM (VL-T5)		span prediction: A <text_1> is <text_2> over a fire hydrant.</text_2></text_1>	<text_1> man <text_2> jumping</text_2></text_1>
Multimodal LM (VL-BART)		denoise: A <mask> is <mask> over a fire hydrant.</mask></mask>	A man is jumping over a fire hydrant
^a Visual question answering		vqa: what is the color of the man's shirt?	blue
Image-text matching		image text match: A man with blue shirt is jumping over fire hydrant.	true
Visual grounding		visual grounding: yellow fire hydrant	<vis_3></vis_3>
Grounded captioning		caption region: <vis_3></vis_3>	yellow fire hydrant
Downstream tasks (Sec. 5)			3
VQA		vqa: [Q]	[A]
GQA	2	gqa: [Q]	[A]
^b NLVR ²	1	nlvr: [text]	true/false
$VCR Q \rightarrow A$		vcr qa: question [Q] answer: [A]	true/false
$VCR QA \rightarrow R$	10 00	vcr qar: question [Q] answer: [A] rationale: [R]	true/false
RefCOCOg	3	visual grounding: [referring expression]	[region id]
COCO captioning		caption:	[caption]
COCO captioning (w/ object tags)		caption with tags: [Tag1 Tag2]	[caption]
Multi30K En-De translation		translate English to German: [English text]	[German text]

Visual Question Answering

Method	In-domain	Out-of-domain	Overall	
Discriminativ	ve .			
UNITER _{Base}	74.4	10.0	70.5	
VL-T5	70.2	7.1	66.4	
VL-BART 69.4		7.0	65.7	
Generative				
VL-T5	71.4	13.1	67.9	
VL-BART	72.1	13.2	68.6	

• In-domain performance is comparable, while the out-of-domain performance is significantly higher.

Visual Question Answering

Method	In-domain	Out-of-domain	Overall	
Discriminativ	ve .			
UNITER _{Base}	74.4	10.0	70.5	
VL-T5	70.2	7.1	66.4	
VL-BART 69.4		7.0	65.7	
Generative				
VL-T5	71.4	13.1	67.9	
VL-BART	72.1	13.2	68.6	

- In-domain performance is comparable, while the out-of-domain performance is significantly higher.
- Also show that a single model can successfully handle multiple VQA tasks without dataset-specific prefixes

Natural Language Visual Reasoning (NLVR)

Method	Setting	dev	test-P	
UNITER _{Base}	Triplet	73.0	73.9	
UNITER $_{Base}$	Pair	75.9	75.8	
UNITER $_{Base}$	Pair-biattn	77.2	77.9	
LXMERT	Pair	74.9	74.5	
$Oscar_{Base}$	Pair	78.1	78.4	
VL-T5	Triplet	74.6	73.6	
VL-BART	Triplet	71.7	70.3	

Similar performance in triplet setting (which is half the computational cost of other settings)

Natural Language Visual Reasoning (NLVR)

Method	Setting	dev	test-P
UNITER _{Base}	Triplet	73.0	73.9
$UNITER_{Base}$	Pair	75.9	75.8
UNITER $_{Base}$	Pair-biattn	77.2	77.9
LXMERT	Pair	74.9	74.5
$Oscar_{Base}$	Pair	78.1	78.4
VL-T5	Triplet	74.6	73.6
VL-BART	Triplet	71.7	70.3

Similar performance in triplet setting (which is half the computational cost of other settings)

Referring Expression Comprehension: RefC0C0g

Method	V&L PT	val^d	$test^d$
MattNet		66.9	67.3
${\tt UNITER}_{Base}$	✓	74.3	74.5
VL-T5		63.4	62.9
VL-T5	\checkmark	71.2	71.3
VL-BART		21.8	23.0
VL-BART	✓	23.6	22.4

- With pre-training VL-T5 reaches similar performance similar with UNITER-base.
- Poor performance of TL-BART: BART adds learned absolute positional embedding to text token embedding, whereas T5 uses relative position biases in self-attention layers instead

Multimodal Machine Translation: Multi30K

Method	V&L PT	test2016	test2017	test2018
MSA		38.7	·	-
MeMAD		38.9	32.0	70
MSA [†]		39.5		-
$MeMAD^{\dagger}$		45.1	40.8	2
MeMAD [†] *		45.5	41.8	38.5
T5 (text only)		44.6	41.6	39.0
VL-T5		45.3	42.4	39.5
VL-T5	✓	45.5	40.9	38.6
BART (text only)		41.2	35.4	33.3
VL-BART		41.3	35.9	33.2
VL-BART	✓	37.7	29.7	28.1

- Best performance across all the test-sets.
- Vision & Language Pre-training didn't help: the source text contains sufficient information for translation

Multi-task fine-tuning

Single-task vs. Multi-task Fine-tuning

v		Discriminative tasks					Generative tasks		
Method	Finetuning tasks	# Params	VQA Karpathy test Acc	GQA test-dev Acc	NLVR ² test-P Acc	RefCOCOg test ^d Acc	VCR val Acc	COCO Caption Karpathy test CIDEr	Multi30K En-De test2018 BLEU
VL-T5 VL-T5	single task all tasks	7P P	67.9 67.2	60.0 58.9	73.6 71.6	71.3 69.4	57.5 55.3	116.1 110.8	38.6 37.6

- Fine-tune a single VL-T5 for 20 more-epochs; tackle 7 tasks simultaneously.
- Multi-task model achieves comparable performance to the separately optimized single-task models on all 7 tasks with a single set of parameters

Multi-task fine-tuning

Single shared head vs. Task-specific heads

Method	# Params	VQA Karpathy test Acc	GQA test-dev Acc	COCO Caption Karpathy test CIDEr
Single shared head	P	68.3	59.3	110.6
Task-specific heads	P+7H=1.8P	68.5	59.3	110.9

- 7 additional task-specific heads are added for each downstream tasks
- With **fewer parameters**, the single shared head has **similar performance** to task specific heads

Conclusion

- VL-T5 and VL-BART to tackle vision-and-language tasks with a **unified text generation objective**, a single architecture to have fewer parameters and without losing much performance.
- VL-T5 and VL-BART can achieve comparable performance with state-of-the-art vision-and-language transformers on diverse vision-and-language tasks without hand-crafted architectures and objectives
- Generative approach is better suited for open-ended visual question answering.

Thank You