

Kennedy Space Center

Image Analysis via Soft Computing: Prototype Applications at NASA KSC and Product Commercialization.

Kennedy Space Center

*Jesus A. Dominguez
Steve Klinko*

ASRC Aerospace Corp.

photo: NASA/Pat McCracken

Outline

Kennedy Space Center

- ***System Development.***
- ***Performance results compared with existing approaches.***
- ***NASA applications.***
- ***Commercialization.***

ASRC Aerospace Corp.

Kennedy Space Center

System Development

Soft Computing (SC):

differs from conventional (hard) computing in that, unlike hard computing, it is tolerant of imprecision, uncertainty, partial truth, and approximation.

provides flexible information processing to handle real life ambiguous situations and achieve tractability, robustness, low solution cost, and close resemblance of human decision making.

ASRC Aerospace Corp.

System Development

Kennedy Space Center

- FRED (Fuzzy Reasoning Edge Detection):
Image edge extraction technique developed at KSC (patent protected).
- FRAT (Fuzzy Reasoning Adaptive Thresholding):
Image binarization technique developed at KSC (patent protected).
- Set of Image Enhancement Techniques:
Techniques developed at KSC (one patent protected).
- Visual/Pattern Recognition:
Commercially available technique (NeuroShell) via Artificial Neural Network (ANN) and GA (Genetic Algorithm).

ASRC Aerospace Corp.

Software implementation (Cont.).

Kennedy Space Center

Performance results compared with existing approaches: FRED

Kennedy Space Center

Original Image: CD containing a hard-to-see major scratch on the center

FRED: The major scratch is clearly shown as well as other minor ones

ASRC Aerospace Corp.

Performance results compared with existing approaches: FRED

Kennedy Space Center

Sobel Approach: less clear features, major scratch invisible

Prewit Approach: less clear features, major scratch invisible

Kennedy Space Center

Performance results compared with existing approaches: FRAT

Original 8-bit Image

Size: 246×245

Otsu's Method

CPU time: 1.5 ms

Threshold: 88

Huang-Wang Method

CPU time: 10.8 ms

Threshold: 89

New Method

CPU time: 2.0 ms

Threshold: 8

ASRC Aerospace Corp.

NASA Applications

Kennedy Space Center

- *Real-Time (RT) Anomaly Detection.*
- *Real-Time (RT) Moving Debris Detection.*
- *Columbia Investigation.*

Kennedy Space Center

RT Anomaly Detection

- Image Preprocessing.
Enhancement
Segmentation (Binarization)
- Classification and Learning Processes.
Artificial Neural Network (ANN)
Genetic Algorithm (GA).

FRAT

RT Anomaly Detection

Kennedy Space Center

Astronauts training on the emergency egress system.

Anomalies on the basket slidewire

Broken strand.

Molten spots caused by lighting.

RT Anomaly Detection (Cont.)

Kennedy Space Center

Cable and Line Inspection Mechanism (CLIM)

The National Aeronautics and Space Administration (NASA) seeks to transfer the NASA-developed Cable and Line Inspection Mechanism technology to private industry for use in commercial applications. This mechanism was developed at the John F. Kennedy Space Center (KSC) to provide a means for automated inspection of the seven slidewire cables used in the emergency egress system for the Space Shuttle. There are two sets of gantry cables plus an overhead lightning cable that require periodic inspection. These cables are nonferrous stainless steel; therefore, magnetic cable testers are not suitable for such inspections. Prior to this invention, cable inspections required 150 man-hours twice per year, with inspectors being hoisted in baskets to manually inspect the cables by

direct touch and sight. The CLIM technology eliminates the hazardous, manpower-intensive, and time-consuming methods previously required to maintain the emergency egress system at peak performance standards. In addition, CLIM is capable of inspecting the top end of ferrous wire ropes near the attachment point in the cable housing where magnetic cable testers are unable to reach. CLIM has a further application with respect to radio frequency (RF) tower guy-wire inspections. The low-carbon, low-magnetic inductance of the stainless-steel guy-wire cables, combined with added RF radiation interference from the tower, yields magnetic cable testers ineffective. Therefore, CLIM's ability to conduct a 360-degree view of the cable without incurring RF radiation interference is significant.

National Aeronautics and Space Administration
John F. Kennedy Space Center, FL

Cable & Line Inspection Mechanism (CLIM) built by NASA.

CLIM at the lab.

CLIM at the Shuttle Pad

FT: 21 IN: 3 DIA:0.755

Slidewire image acquired by CLIM

RT Anomaly Detection (Cont.)

ASRC Aerospace Corp.

Kennedy Space Center

Background Extraction + FRED

Original

FT: 19 IN: 9 DIA:0.780

Binarization via FRAT

Blob analysis via ANN-GA engine (input)

Anomaly Detection via ANN-GA engine (output)

RT Anomaly Detection (Cont.)

Kennedy Space Center

End-user front end built via MFC.

Main Menu

RT Anomaly Detection (Cont.)

Kennedy Space Center

*End-user front
end built via
MFC.*

Training Stage.

RT Anomaly Detection (Cont.)

Kennedy Space Center

NeuroShell Classifier - Trained Network Information

Network filename: C:\sessions\data\session11\session11G3.net

The network was trained on:

Filename: C:\sessions\data\session11\session11.dat
Total data rows: 798
Training rows: 798
Start row: 1
End row: 798

Results of training session:

Training time: 1:20:16"
Generations trained: 178
Correct classifications: 98.87% (789 of 798)
Incorrect classifications: 1.13% (9 of 798)
Performance by category:
"0" 90.48% (38 of 42)
"10" 99.34% (751 of 756)

Network structure:

Training strategy: Genetic
Output name: "Class"
Number of inputs: 13
List of inputs and their relative importance:
"Contrast0" 0.006
"Contrast1" 0.163
"AngMom20" 0.074
"AngMom21" 0.018
"MeanVal0" 0.018
"MeanVal1" 0.074
"Homogen0" 0.095
"Homogen1" 0.045
"Entropy0" 0.184
"Entropy1" 0.01
"FormFact" 0.094
"Angle" 0.115
"Edginess" 0.106

ASRC Aerospace Corp.

*Development of
classification
model via ANN &
GA (NeuroShell)*

Kennedy Space Center

RT Anomaly Detection (Cont.)

*Anomaly Detected
& displayed in RT.*

Firing stage

RT Anomaly Detection (Cont.)

Kennedy Space Center

ASRC Aerospace Corp.

Original image acquired by CLIM

*Automated Region of Interest (ROI)
extraction and anomaly detection.*

RT Moving FOD Detection

Kennedy Space Center

- Blob Generation (single image).
Segmentation (Binarization)
- Blob/FOD Selection and Trajectory Computation
Logical path analysis (consecutive images).

FRAT

RT Moving FOD Detection (Cont.)

Kennedy Space Center

ASRC Aerospace Corp.

RT Moving FOD Detection (Cont.)

Kennedy Space Center

RT Moving FOD Detection (Cont.)

Kennedy Space Center

Kennedy Space Center

Columbia Investigation

Foam Debris

- *2D: Detection & Location.*
Segmentation (Binarization)
Characterization (center of mass, borders, etc.)
- *3D: Location & Trajectory*
Optimal path at three consecutive 3D projections.

FRAT

Kennedy Space Center

Columbia Investigation

STS-107 REPORT:

***2D-Detection, 3D-Location & 3D-Velocity Estimation of
Foam Debris Based on Images acquired by E212 & E208
Video Cameras.***

ASRC Aerospace Corp.

***Jesus A. Dominguez, ASRC Aerospace Corp.
NASA Kennedy Space Center, June 12, 2003***

Columbia Investigation: Foam Debris Detection/Location (Cont.)

Kennedy Space Center

ASRC Aerospace Corp.

— E212 at 21.753 s

— ET208 at 21.757 s

— E212 at 21.769 s

Columbia Investigation: Foam Debris Detection/Location (Cont.)

Kennedy Space Center

ASRC Aerospace Corp.

E212 at 21.722 s

ET208 at 21.724 s

E212 at 21.738 s

E212 at 21.722 s *E212 at 21.738 s*
ET208 at 21.724 s *Optimized path.*

Columbia Investigation: Foam Debris Detection/Location (Cont.)

ASRC Aerospace Corp.

Kennedy Space Center

E212 at 21.753 s

ET208 at 21.757 s

E212 at 21.769 s

E212 at 21.753 s **E212 at 21.769 s**
ET208 at 21.757 s **Optimized path.**

Columbia Investigation: Foam Debris Detection/Location (Cont.)

Kennedy Space Center

ASRC Aerospace Corp.

E212 at 21.784 s

**Debris not detected:
Location assumed**

ET208 at 21.791 s

E212 at 21.800 s

E212 at 21.784 s **E212 at 21.800 s**
ET208 at 21.791 s **Optimized path.**

Kennedy Space Center

Columbia Investigation: Foam Debris Detection/Location (Cont.)

ASRC Aerospace Corp.

E212 at 21.816 s

ET208 at 21.824 s

Debris not detected.
Location assumed

E212 at 21.831 s

3D Connecting Distance

Optimal Debris Path

E212 at 21.816 s E212 at 21.831 s
ET208 at 21.824 s Optimized path.

Columbia Investigation: Foam Debris Trajectory

Kennedy Space Center

Current Work — **Lane-Nelson work via LightWave3D**

ASRC Aerospace Corp.

Columbia Investigation: Foam Debris Trajectory

Kennedy Space Center

Current Work

Lane-Nelson work via LightWave3D

Columbia Investigation: Foam Debris Velocity

Kennedy Space Center

Proposed Debris Analysis Software System Development at KSC

Kennedy Space Center

Automated Debris Detection at KSC VAB Launch Analysis Laboratory

*Current OS housing FRAT,
FRED, SC-based image
pattern recognition.*

*VAB Launch Analysis Laboratory at
KSC equipped with recently acquired
SGI Reality Center facility with a 7-
foot display, and advanced SGI
TP9500 data management
subsystem.*

ASRC Aerospace Corp.

Kennedy Space Center

Patent

NASA KSC

Commercialization: Licensing

Technology Marketing

*Research Triangle Institute (RTI)
Center for Technology Applications
PO Box 12194, 3040 Cornwallis
Research Triangle Park, NC 27709*

NASA Technology Applications Team:

Kirsten Rieth

Phone: (919) 967-4991

Fax: (919) 541-6221

Email: krieth@rti.org

John Geikler

Phone: (919) 941-8372

Fax: (919) 941-8399

Email: johng@thesolutioncenter.com

Commercialization (Cont.)

Kennedy Space Center

<http://nasa.rti.org/ksc/imaging>

Figure 8

Commercialization (Cont.)

Kennedy Space Center

Catalog

Figure 9

Commercialization (Cont.)

Kennedy Space Center

Budapest2004 - Netscape

File Edit View Go Communicator Help

Back Forward Reload Home Search Netscape Print Security Shop Close

Bookmarks Location http://www.conferences.hu/budapest2004/ What's Related

Tutorials

Paper Submissions
IJCNN 2004
FUZZ 2004

Registration and Hotel Reservation

Papers & Fees Policy

About Budapest

Venue

Key Dates

Evening Program

Exhibition

Tours

General Travel Information

Time Series Prediction Competition

Sponsors
IJCNN 2004
FUZZ-IEEE 2004

Chairs
IJCNN 2004
FUZZ-IEEE 2004

International Program Committees
IJCNN 2004
FUZZ-IEEE 2004

Grants

Student Travel Grants by IEEE-NTTS
Student Travel Grants by IEEE
Ph.D. students with EBB
memberships
Travel grants

Contact

Satellite event
SISUS 2004

Home

BUDAPEST 2004

IJCNN 2004
International Joint Conference on Neural Networks

FUZZ - IEEE 2004
IEEE International Conference on Fuzzy Systems

Budapest, Hungary
25-29 July 2004

Document: Done

Start | SDOY2004Comme... | Sshortpresentati... | Astronomy Picture... | Bookmarks - b... | Search Results | SDOY2004Covering | YYearProposal.ppt | Adobe Acrobat... | YYearHomepage.b... | YTechniBriefPage1... | Inbox - Microsoft... | Imaging Science... | budapest2004...

2:01 PM

Commercialization (Cont.)

Kennedy Space Center

Commercialization: Status Summary

Kennedy Space Center

- *Patents already filed by NASA (February 2004).*
- *Marketing and Promotion already in place by RTI.*
- *2 Software Usage Agreements executed.*
- *2 License Agreements executed.*
- *3 License Agreements being executed.*
- *3 License Agreements in negotiation.*

Commercialization: Selected Applications

Kennedy Space Center

Image enhancement

Commercialization: Selected Applications

Kennedy Space Center

이것은 비상사태 방송 체계의
시험이다.

Original gray-scaled image

이것은 비상사태 방송 체계
시험이다.

Binarization via FRAT.

이것은 비상사태 방송 체계의
시험이다.

Enhancement prior Binarization
(via FRAT).

이것은 비상사태 방송 체
험이다.

Binarization via Otsu method.

이것은 비상사태 방송
시험이다.

Binarization via Huang-Wang method.

Commercialization: Selected Applications

ASRC Aerospace Corp.

Kennedy Space Center

Image enhancement

Commercialization: Selected Applications

Kennedy Space Center

AS&E Inc.

Human Screening & Privacy Protection

Commercialization: Selected Applications

Kennedy Space Center

NASA JSC

Visual inspection based on x-ray images

Original x-ray image of two pyrotechnic valves.

Enhancement via FRED

Segmentation via FRAT

Kennedy Space Center

Commercialization: Selected Applications

Baylor School of Medicine

3D heart Visualization

Original image

FRED

FRAT

A. Cross-sectional (tomographic) image of the left ventricular cavity of the dog heart acquired by an intracardiac echocardiography (ICE) catheter. Circle indicates ICE catheter. Dark region indicates blood-filled cavity, which is bounded by the interior surface of the heart (endocardium). **B.** Result of FRED demo when applied to the ICE image depicted in A. **C.** Result of FRAT demo when applied to the ICE image depicted in A.

Kennedy Space Center

Commercialization: Selected Applications

Zeus Technologies, Inc.

Tumor detection on Sonograms

Tumor

Kennedy Space Center

Commercialization: Selected Applications

Zeus Technologies, Inc.

X-ray image visualization enhancement

