GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

MATRICULE ÉTUDIANT:

INFORMATIONS UTILES

Date : Le jeudi 16 décembre 2021

Heure: 13 h 30 à 16 h

Documentation: Une feuille manuscrite recto verso 8.5" x 11"

Calculatrice : Calculatrice autorisée seulement

RÉPONDEZ DIRECTEMENT SUR LE QUESTIONNAIRE DANS L'ESPACE PRÉVU À CETTE FIN. <u>NE</u> DÉTACHEZ AUCUNE PAGE DE CE QUESTIONNAIRE.

CE QUESTIONNAIRE COMPREND 21 PAGES.

NOM :	MATRICU	JLE :	
PRÉNOM :			
SIGNATURE :		Total:	/20

Cet examen est composé de quatre questions :

Question 1 : Questions en rafale	
Total	/4

Question 3 : La condensation d'acétone	
A)	/2,5
В)	/3
Total	/5,5

Question 2 : Place au développement		
dur	rable	
A)	/0,75	
В)	/2,25	
Total	/3	

Question 4 : Production d'huile chaude		
A)	/1	
В)	/1,5	
C)	/2	
D)	/3	
Total	/7,5	

Si vous n'avez pas suffisamment d'espace pour inscrire vos démarches dans une question, de l'espace supplémentaire est disponible à la page 17.

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

MATRICULE ÉTUDIANT:

1.	Qu	estic	ns	en	rafa	le
----	----	-------	----	----	------	----

(4 points)

Temps suggéré : 20 minutes

Pour chacun des énoncés présentés dans le tableau ci-dessous, répondez à la question dans la colonne **Réponse**. Détaillez vos démarches dans la colonne **Calculs ou Justifications** lorsque les cases sont blanches.

	Énoncé	Réponse	Calculs ou Justifications
A)	Un gaz est refroidi à pression		
	constante. Est-ce que sa masse		
	volumique augmente, diminue ou		
	reste constante ? (0,25 point)		
В)	Quelle serait la valeur de la température T_1 (en K) sachant que T_2 = 111K et que ΔT = T_2 – T_1 = 129 °F? (0,5 point)		Calculs:
C)	Qui suis-je? Pression à laquelle, pour une température donnée, il y a un équilibre liquide-vapeur. (0,25 point)		
D)	La sélectivité est un rapport adimensionnel. Vrai ou Faux? (0,25 point)		Si vous répondez Faux, justifiez votre réponse.
E)	D'où provient la constante 3,76 dans la relation suivante : $\dot{n}_{N2}=3,76\cdot\dot{n}_{O2}$? (0,5 point)	Réponse et justificati	on:

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

Énoncé	Réponse	Calculs ou Justifications
F) Un réservoir contient uniquement de l'ammoniac pur (NH ₃) dont une fraction est en phase vapeur et		Calculs:
l'autre en phase liquide. Sachant que la pression est de 5 atm, quelle est la température dans le réservoir (°C) ? (0,5 point)		
G) Un courant d'air humide à 20°C passe dans un séchoir afin de sécher des grains de maïs. Est-ce que l'humidité absolue du		
courant d'air entre l'entrée et la sortie augmente, diminue ou reste constante ? (0,25 point)		
H) À la sortie d'un réacteur, les produits et les réactifs n'ayant pas réagi sont séparés, puis les réactifs sont entièrement recyclés à		Justifiez votre réponse.
l'entrée du réacteur. La conversion simple-passe de chacun de ces réactifs est donc de 100 %. Vrai ou Faux ? (0,25 point)		
		Justifiez votre réponse.
I) Dans un procédé réactif, la température de référence doit toujours être posée à 25°C. Vrai ou Faux ? Pourquoi ? (0,25 point)		

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

Énoncé	Réponse	Calculs ou Justifications
J) Si vous doublez le débit alimenté à un procédé réactif, alors l'enthalpie spécifique de chaque substance entrante au réacteur doublera aussi. Vrai ou Faux ? (0,25 point)		Justifiez votre réponse.
(-, ,		

- K) Un mélange équimolaire de benzène (B, T_{eb} = 80°C) et de toluène (T, T_{eb} = 110°C) est alimenté de façon continue à 10°C à un évaporateur. Ce mélange est chauffé à 50°C et une partie du mélange se vaporise. Le produit liquide obtenu contient 40 % molaire de B et la vapeur contient 68,4 % molaire de B.
 - i) Quelle formule permet de calculer l'enthalpie spécifique du toluène dans la phase vapeur en fonction de la référence posée ? Référence : T_(I), 50°C, 1 atm. *Aucun calcul n'est requis pour cette question.* (0,5 point)
 - ii) Quel sera le signe de la chaleur à fournir Q pour cet évaporateur ? Pourquoi ? (0,25 point)

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

2.	Place au développement durable Temps suggéré : 20 minutes (3 points)
A)	Dans le contexte de la responsabilité sociale d'entreprise (RSE), identifiez deux éléments parmi les incitatifs et les exigences <i>vues dans les capsules vidéo du cours</i> qui motivent les entreprises à adopter des actions qui prônent une approche plus durable dans leurs activités. <i>(0,75 point)</i>
В)	Le projet Mozilla Firefox est un projet logiciel Open Source qui fournit entre autres le navigateur web du même nom, gratuitement. Un projet Open Source collaboratif comme Mozilla Firefox implique que des développeurs logiciels de partout dans le monde peuvent contribuer au code source en soumettant des suggestions d'améliorations et de nouvelles fonctionnalités (merge request). Toutes ces suggestions sont agglomérées dans un service web centralisé payant (par exemple Gitlab) qui performe automatiquement sur chacune d'elle des tests de qualité de code et d'intégration dans le cadre d'un processus préprogrammé de validation et d'intégration appelé pipeline. Dans le cas de ce projet spécifiquement, c'est plus de 100 000 builds (compilations de code) qui sont produits chaque jour. En effet, le navigateur web doit fonctionner sur plusieurs systèmes d'exploitation (Windows, MacOS, Linux) et doit donc offrir des builds compatibles avec chacun d'eux. Évidemment, ces opérations automatiques sauvent énormément de temps de correction de qualité de code et de découverte de bogues. i) Donnez un impact positif de cette situation en regard du pilier social du développement durable. Vous devez expliquer clairement votre impact et faire un lien avec le pilier.
	(0,75 point)

ÉCOLE POLYTECHNIQUE DE MONTRÉAL DÉPARTEMENT DE GÉNIE CHIMIQUE GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

ii)	Donnez un impact positif ou négatif de cette situation en regard du pilier environnemental du développement durable. Vous devez expliquer clairement votre impact et faire un lien avec le pilier. (0,75 point)
iii)	Tel que précisé en i), ce projet a des impacts positifs sur le pilier social du développement durable. Pourquoi alors ne peut-on pas qualifier ce projet de durable ? Répondez en deux phrases au maximum. <i>(0,75 point)</i>

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

MATRICULE ÉTUDIANT:

3. La condensation d'acétone

(5,5 points)

Temps suggéré : 40 minutes

Un courant gazeux contenant de l'acétone (CH₃COCH₃, noté A sur le schéma) et de l'air sort d'une unité de récupération de solvant à un débit de 142 L/s, une température de 150 °C et une pression de 1,3 atm. Ce courant est acheminé à un condenseur partiel où la majorité de l'acétone est liquéfiée. Le condenseur partiel opère à -18°C et 5 atm.

Afin d'augmenter la pression de 1,3 atm à 5 atm, un compresseur est intégré au condenseur et fournit un travail de 25,2 kW. Un échantillon du courant gazeux à l'entrée du condenseur a été prélevé et analysé. On a alors déterminé que ce courant contient 15 % molaire d'acétone. Le diagramme annoté est présenté à la figure suivante.

Figure 1 - Condenseur partiel d'acétone

Tableau 1 - Données utiles

Substance	ΔĤ _{vap} (kJ/mol)	Cp du liquide (kJ/mol·°C)	Cp de la vapeur ou du gaz (kJ/mol·°C)
Acétone	30,2 (T _{eb} = 56°C @ P _{atm})	0,123	0,072 + 0,0002 T
Air			0,029

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

MATRICULE ÉTUDIANT:

A) Calculez les débits molaires n_1 et n_2 à la sortie du condenseur ainsi que la fraction molaire y_1 . *(2,5 points)*

Votre ami.e a résolu la lettre A), mais a fait des erreurs. Il a obtenu les débits partiels indiqués dans le tableau 2 suivant.

Tableau 2 – Débits partiels erronés obtenus en A) par votre ami.e

Substance	ṅ _{in} (mol/s)	n˙ _{out} (mol/s)
Acétone (I)	-	1,46
Acétone (g)	2,02	0,56
Air (g)	8,67	8,67

- B) En utilisant les débits partiels du tableau 2, quelle quantité de chaleur (kW) doit être soutirée du condenseur afin de permettre le refroidissement de 150 °C à -18 °C ? *(3 points)*
- A) Calculez les débits molaires n_1 et n_2 à la sortie du condenseur ainsi que la fraction molaire y_1 . (2,5 points)

ÉCOLE POLYTECHNIQUE DE MONTRÉAL DÉPARTEMENT DE GÉNIE CHIMIQUE GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

MATRICULE ÉT			

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

MATRICULE ÉTUDIANT:

4. Production d'huile chaude

(7,5 points)

Temps suggéré : 60 minutes

Le diagramme d'écoulement partiellement annoté présenté ci-dessous illustre une fournaise permettant de chauffer une huile froide à 30° C circulant dans les tubes grâce à la combustion d'un courant d'hydrocarbures gazeux de 100 mol/s. Ce courant contient 40 % molaire de n-butane (C_4H_{10}) et 60 % molaire de n-pentane (C_5H_{12}).

Figure 2 – Diagramme d'écoulement du procédé (à annoter adéquatement)

Le débit d'huile à chauffer est de 50 mol/s. Les hydrocarbures sont alimentés à 25°C et brûlés en présence d'air humide alimenté à 30°C et 1 atm. L'humidité relative de l'air est de 30 %. Les gaz de combustion sortent à 600°C. Une analyse des gaz de combustion a permis de déterminer que les conversions du n-butane et du n-pentane sont de 90 %. Les réactions de combustion sont représentées ci-dessous par les réactions 1 et 2.

De plus, cette analyse a révélé la présence de monoxyde de carbone (CO). Ce CO provient de la combustion incomplète uniquement du C_4H_{10} représenté par la réaction indésirable 3.

$$C_4H_{10} + 13/2 O_2 \rightarrow 4 CO_2 + 5 H_2O$$
 [1]
 $C_5H_{12} + 8 O_2 \rightarrow 5 CO_2 + 6 H_2O$ [2]
 $C_4H_{10} + 9/2 O_2 \rightarrow 4 CO + 5 H_2O$ [3]

Finalement, l'excès d'air est de 50 % et le rendement en CO₂ est de 84 %.

Note : Vous pouvez annoter directement le diagramme précédent afin de déclarer les différentes variables que vous utiliserez.

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

MATRICULE ÉTUDIANT:

- A) Effectuez une analyse des degrés de liberté sur la fournaise (sans considérer le courant d'huile) qui visera à calculer la quantité de chaleur dégagée par la combustion des hydrocarbures. (1 point)
- B) Déterminez les débits partiels du courant d'air humide alimenté à la fournaise. (1,5 point)
- C) Déterminez les débits partiels de la conduite des gaz de combustion. (2 points)
- D) En utilisant la méthode des chaleurs de réaction, calculez la quantité d'énergie transférée aux tubes de la fournaise (kW). *(3 points)*

Tableau 2 - Données utiles

Substances	$\Delta \widehat{H}_f^o$ (kJ/mol)	Cp (kJ/mol • °C)	\widehat{H}_i (kJ/mol) à 30°C (à partir d'une référence à 25°C)	\widehat{H}_i (kJ/mol) à 600°C (à partir d'une référence à 25°C)
Huile		0,08		
C ₄ H _{10(g)}	-124,7	0,092		53,0
C ₅ H _{12(g)}	-146,4	0,115		89,0
O _{2(g)}	0		0,15	
$N_{2(g)}$	0		0,15	
H _{2(g)}	0			
CO _{2(g)}	-393,5			
H ₂ O _(g)	-241,83		0,17	
CO _(g)	-110,52			

A) Effectuez une analyse des degrés de liberté sur la fournaise (sans considérer le courant d'huile) qui visera à calculer la quantité de chaleur dégagée par la combustion des hydrocarbures. (1 point)

ÉCOLE POLYTECHNIQUE DE MONTRÉAL DÉPARTEMENT DE GÉNIE CHIMIQUE 30 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES

MATRICULE ÉTUDIANT :

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

B)	Déterminez les débits partiels du courant d'air humide alimenté à la fournaise. (1,5 point)

ÉCOLE POLYTECHNIQUE DE MONTRÉAL DÉPARTEMENT DE GÉNIE CHIMIQUE GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

C)	Déterminez les débits partiels de la conduite des gaz de combustion. (2 points)

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

tubes de la fournaise (kW). <i>(3 points)</i>							

ÉCOLE POLYTECHNIQUE DE MONTRÉAL DÉPARTEMENT DE GÉNIE CHIMIQUE GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

Bonne chance! Patrice Farand

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

MATRICULE ÉTUDIANT :

Page supplémentaire pour inscrire vos démarches (Inscrivez clairement le numéro de la question)

1	17	

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

MATRICULE ÉTUDIANT :

Annexes

Tableau de conversion d'unités

Quantité	Équivalences
Masse	$1 \text{ kg} = 1000 \text{ g} = 0,001 \text{ t} = 2,204 62 \text{ lb}_m = 35,273 92 \text{ oz} \\ 1 \text{ lb}_m = 16 \text{ oz} = 453,593 \text{ g}$
Longueur	1 m = 100 cm = 1000 mm = $10^6 \mu m = 10^{10} \text{ Å}$ = 39,37 po = 3,280 8 pi = 1,093 6 vg = 0,000 621 4 mi 1 pi = 12 po = $1/3$ vg = 0,304 8 m = 30,38 cm
Volume	1 m ³ = 1000 L = 10 ⁶ cm ³ = 10 ⁶ mL = 35,3145 pi ³ = 264,17 gal 1 pi ³ = 1728 po ³ = 7,480 5 gal = 0,028 317 m ³ = 28,317 L = 28 317 cm ³
Force	$ 1 \text{ N} = 1 \text{ kg} \cdot \text{m/s}^2 = 10^5 \text{ dyn} = 10^5 \text{ g} \cdot \text{cm/s}^2 = 0,22481 \text{ lb}_f $ $ 1 \text{ lb}_f = 32,174 \text{ lb}_m \cdot \text{ft/s}^2 = 4,448 \text{ 2 N} = 4,448 \text{ 2 x } 10^5 \text{ dyn} $
Pression	1 atm = $1,01325 \times 10^5 \text{ N/m}^2$ (Pa) = $101,325 \text{ kPa}$ = $1,01325 \text{ bar}$ = $1,01325 \times 10^6 \text{ dyn/cm}^2$ = = $760 \text{ mm Hg à } 0^{\circ}\text{C}$ = $10,333 \text{ m H}_2\text{O à } 4^{\circ}\text{C}$ = $14,696 \text{ lb}_f/\text{po}^2$ (psi) = $33,9 \text{ pi H}_2\text{O à } 4^{\circ}\text{C}$ = $29,921 \text{ po Hg à } 0^{\circ}\text{C}$
Énergie	1 J = 1 N•m = 10 ⁷ dyn•cm = 2,778 x 10 ⁻⁷ kW•h = 0,239 01 cal = 9,486 x 10 ⁻⁴ Btu
Puissance	$1 \text{ W} = 1 \text{ J/s} = 0.239 01 \text{cal/s} = 9.486 \text{x} 10^{-4} \text{Btu/s} = 1.341 \text{x} 10^{-3} \text{hp}$

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

4 1 1 1 4 1 7 1 4 1 8 1 E E E E E	Tableau périodique des éléments III A II A VA VIA VIIA VIIA VIA VIIA VI	6 N 0 carbone azote oxygène 12,01 15,16	5 6 7 8 9 10 11 12 aluminium silicium silicium superantium supe	23 24 25 26 27 28 29 30 V Cr Mn Fe Co Ni Cu Zn vanadium chrome mannanèse fer cobalt nickel cuivre zinc	50,94 55,00 54,94 55,85 58,93 58,69 65,35 65,35 67,00 72,59 77,59 77,89 6	41 42 43 44 45 46 47 48 49 50 51 52 Nb Mo Tc Ru Rh Pd Ag Cd In Sn Te	niobium molybden technétium ruthénium ruthén	74 75 76 77 78 79 80 81 82 83 84 W Re Os Ir Pt Au Hg TI Ph Bi Po	um tantale tungstère rifeium osmium iridium platine or mercure thallium plomb bisnuth polonium 180,9 186,2 190,2 195,1 195,1 197,0 200,6 204,4 207,2 209,0 (210)	104 105 106 107 108 109 Rf Db Sg Bh Hs Mt nutherfordum dubnium seaborgium bohrium (257) (265) (265) (265) (265) (266)	59 60 61 62 63 64 65 66 67 68 Pr Nd Pm Sm Eu Gd Tb Dy Ho Er um praséodyme récodyme prométhium samarium europium gadolinium terbium holium erbium 1 149,9 144,2 (147) 150,4 157,3 158,9 162,5 164,9 167,3	Pa U Np
5 6 6 V B VIB 23 24 V Cr V	Tableau périodiq		8 9 VIIIIB ————————————————————————————————	26 27 Fe Co	55,85 58,93	43 44 45 Tc Ru Rh	technétium ruthénium rhodium (98) 101,1	76 77 0s Ir	osmium iridium 190,2 192,2	107 108 Bh Hs bohrium hassium (262) (265)	Nd Pm Sm eodyme prométhium samarium 44,2 (147)	Np Pu potentium plutonium
			5 < B	23 V	50,94 52,00	41 42 Nb Mo	ium niobium molyt 92,91 95,94	73 74 W	tantale 180,9	fordium dubnium (260)		

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

MATRICULE ÉTUDIANT:

Table B.4 Antoine Equation Constants^a

 $\log_{10} p^* = A - \frac{B}{T+C}$ p^* in mm Hg, T in °C Example: The vapor pressure of acetaldehyde at 25°C is determined as follows: $\log_{10} p^*_{C_2H_4O}(25^\circ C) = 8.00552 - \frac{1600.017}{25 + 291.809} = 2.9551$ $\implies p^*_{C_2H_4O}(25^\circ C) = 10^{2.9551} = 902 \text{ mm Hg}$

Compound	Formula	Range (°C)	A	В	С
Acetaldehyde	C_2H_4O	-0.2 to 34.4	8.00552	1600.017	291.809
Acetic acid	$C_2H_4O_2$	29.8 to 126.5	7.38782	1533.313	222.309
Acetic acid*	$C_2H_4O_2$	0 to 36	7.18807	1416.7	225
Acetic anhydride	$C_4H_6O_3$	62.8 to 139.4	7.14948	1444,718	199.81
Acetone	C_3H_6O	-12.9 to 55.3	7.11714	1210.595	229.66
Acrylic acid	$C_3H_4O_2$	20.0 to 70.0	5.65204	648.629	154.68
Ammonia*	NH_3	-83 to 60	7.55466	1002.711	247.88
Aniline	C ₆ H ₇ N	102.6 to 185.2	7.32010	1731.515	206.04
Benzene	C ₆ H ₆	14.5 to 80.9	6.89272	1203.531	219.88
n-Butane	n-C4H10	-78.0 to -0.3	6.82485	943.453	239.71
i-Butane	i-C4H10	-85.1 to -11.6	6.78866	899.617	241.94
1-Butanol	$C_4H_{10}O$	89.2 to 125.7	7.36366	1305.198	173.42
2-Butanol	$C_4H_{10}O$	72.4 to 107.1	7.20131	1157.000	168.27
1-Butene	C_4H_8	-77.5 to -3.7	6.53101	810.261	228.0€
Butyric acid	$C_4H_8O_2$	20.0 to 150.0	8.71019	2433.014	255.18
Carbon disulfide	CS ₂	3.6 to 79.9	6.94279	1169.110	241.59
Carbon tetrachloride	CCI ₄	14.1 to 76.0	6.87926	1212.021	226.40
Chlorobenzene	C ₆ H ₅ Cl	62.0 to 131.7	6.97808	1431.053	217.5
Chlorobenzene*	C ₆ H ₅ Cl	0 to 42	7.10690	1500.0	224.0
Chlorobenzene*	C ₆ H ₅ Cl	42 to 230	6.94504	1413.12	216.0
Chloroform	CHCl ₃	-10.4 to 60.3	6.95465	1170.966	226.2
Chloroform*	CHCl ₃	-30 to 150	6.90328	1163.03	227.4
Cyclohexane	C_6H_{12}	19.9 to 81.6	6.84941	1206.001	223.1
Cyclohexanol	$C_6H_{12}O$	93.7 to 160.7	6.25530	912.866	109.1
n-Decane	$n-C_{10}H_{22}$	94.5 to 175.1	6.95707	1503.568	194.7
1-Decene	C ₁₀ H ₂₀	86.8 to 171.6	6.95433	1497.527	197.0
1.1-Dichloroethane	C ₂ H ₄ Cl ₂	-38.8 to 17.6	6.97702	1174.022	229.0
1,2-Dichloroethane	C ₂ H ₄ Cl	-30.8 to 99.4	7.02530	1271.254	222.9
Dichloromethane	CH_2Cl_2	-40.0 to 40	7.40916	1325.938	252.6
Diethyl ether	$C_4H_{10}O$	-60.8 to 19.9	6.92032	1064.066	228.7
Diethyl ketone	$C_5H_{10}O$	56.5 to 111.3	7.02529	1310.281	214.1
Diethylene glycol	$C_4H_{10}O_2$	130.0 to 243.0	7.63666	1939.359	162.7
Dimethyl ether	C ₂ H ₆ O	-78.2 to -24.9	6.97603	889.264	241.9
Dimethylamine	C ₂ H ₇ N	-71.8 to 6.9	7.08212	960.242	221.6
N,N-Dimethylformamide	C ₃ H ₇ NO	30.0 to 90.0	6.92796	1400.869	196.4
1,4-Dioxane	$C_4H_8O_2$	20.0 to 105.0	7.43155	1554.679	240.3
Ethanol	C ₂ H ₆ O	19.6 to 93.4	8.11220	1592.864	226.1
Ethanolamine	C2H7NO	65.4 to 170.9	7.45680	1577.670	173.3
Ethyl acetate	$C_4H_8O_2$	15.6 to 75.8	7.10179	1244.951	217.8
Ethyl acetate*	$C_4H_8O_2$	-20 to 150	7.09808	1238.710	217.0
Ethyl chloride	C ₂ H ₅ Cl	-55.9 to 12.5	6.98647	1030.007	238.6
Ethylbenzene	C_8H_{10}	56.5 to 137.1	6.95650	1423.543	213.0

Table B.4 (Continued)

Compound	Formula	Range (°C)	Α	В	С
Ethylene glycol	$C_2H_6O_2$	50.0 to 200.0	8.09083	2088.936	203.454
Ethylene oxide	C ₂ H ₄ O	0.3 to 31.8	8.69016	2005.779	334.765
1,2-Ethylenediamine	$C_2H_8N_2$	26.5 to 117.4	7.16871	1336.235	194.366
Formaldehyde	HCHO	-109.4 to -22.3	7.19578	970.595	244.124
Formic acid	CH_2O_2	37.4 to 100.7	7.58178	1699.173	260.714
Glycerol	$C_3H_8O_3$	183.3 to 260.4	6.16501	1036.056	28.097
n-Heptane	n-C7H16	25.9 to 99.3	6.90253	1267.828	216.823
i-Heptane	i-C7H16	18.5 to 90.9	6.87689	1238.122	219.783
1-Heptene	C7H14 '	21.6 to 94.5	6.91381	1265,120	/220.051
n-Hexane	n-C6H14	13.0 to 69.5	6.88555	1175.817	224.86
i-Hexane	i-C6H14	12.8 to 61.1	6.86839	1151.401	228.47
1-Hexene	C6H12	15.9 to 64.3	6.86880	1154.646	226.046
Hydrogen Cyanide	HCN	-16.4 to 46.2	7.52823	1329.49	260.418
Methanol	CH ₃ OH	14.9 to 83.7	8.08097	1582.271	239.720
Methanol*	CH ₃ OH	-20 to 140	7.87863	1473.11	230.0
Methyl acetate	C ₃ H ₆ O ₂	1.8 to 55.8	7.06524	1157.630	219.72
Methyl bromide	CH ₃ Br	-70.0 to 3.6	7.09084	1046.066	244.91
Methyl chloride	CH ₃ Cl	-75.0 to 5.0	7.09349	948,582	249.33
Methyl ethyl ketone	C ₄ H ₈ O	42.8 to 88.4	7.06356	1261.339	221.96
Methyl isobutyl ketone	C ₆ H ₁₂ O	21.7 to 116.2	6.67272	1168,408	191.94
Methyl methacrylate	C ₅ H ₈ O ₂	39.2 to 89.2	8.40919	2050.467	274.36
Methylamine	CH ₅ N	-83.1 to -6.2	7.33690	1011.532	233.28
Methylcyclohexane	C ₇ H ₁₄	25.6 to 101.8	6.82827	1273.673	
Naphthalene	C ₁₀ H ₈	80.3 to 179.5	7.03358	1756.328	221.72 204.84
Nitrobenzene	C ₆ H ₅ NO ₂	134.1 to 210.6	7.11562	1746.586	201.78
Nitromethane	CH ₃ NO ₂	55.7 to 136.4	7.28166	1446.937	227.60
n-Nonane	n-C ₉ H ₂₀	70.3 to 151.8	6.93764	1430.459	
1-Nonane	C ₉ H ₁₈	66.6 to 147.9	6.95777	1430.459	201.80
n-Octane	n-C ₈ H ₁₈	52.9 to 126.6	6.91874	1351.756	205.81
i-Octane	i-C ₈ H ₁₈	41.7 to 118.5			209.10
1-Octane	C ₆ H ₁₆	44.9 to 122.2	6.88814	1319.529	211.62
n-Pentane			6.93637	1355.779	213.02
i-Pentane	n-C ₅ H ₁₂	13.3 to 36.8	6.84471	1060.793	231.54
1-Pentane 1-Pentanol	i-C ₅ H ₁₂	16.3 to 28.6	6.73457	992.019	229.56
1-Pentanoi	C ₅ H ₁₂ O	74.7 to 156.0	7.18246	1287.625	161.33
	C ₅ H ₁₀	12.8 to 30.7	6.84268	1043.206	233.34
Phenol	C ₆ H ₆ O	107.2 to 181.8	7.13301	1516.790	174.95
1-Propanol	C₃H ₈ O	60.2 to 104.6	7.74416	1437.686	198.46
2-Propanol	C ₃ H ₈ O	52.3 to 89.3	7.74021	1359.517	197.52
Propionic acid	C ₃ H ₆ O ₂	72.4 to 128.3	7.71423	1733.418	217.72
Propylene oxide	C ₃ H ₆ O	-24.2 to 34.8	7.01443	1086.369	228.59
Pyridine	C ₅ H ₅ N	67.3 to 152.9	7.04115	1373.799	214.97
Styrene	C_8H_8	29.9 to 144.8	7.06623	1507.434	214.98
Toluene	C_7H_8	35.3 to 111.5	6.95805	1346.773	219.69
1,1,1-Trichloroethane	$C_2H_3Cl_3$	-5.4 to 16.9	8.64344	2136.621	302.76
1,1,2-Trichloroethane	C ₂ H ₃ Cl ₃	50.0 to 113.7	6.95185	1314.410	209.19
Trichloroethylene	C ₂ HCl ₃	17.8 to 86.5	6.51827	1018.603	192.73
Vinyl acetate	$C_4H_6O_2$	21.8 to 72.0	7.21010	1296.130	226.65
Water*	H ₂ O	0 to 60	8.10765	1750.286	235.00
Water*	H_2O	60 to 150	7.96681	1668.210	228.00
m-Xylene	$m-C_8H_{10}$	59.2 to 140.0	7.00646	1460.183	214.82
o-Xylene	$o-C_8H_{10}$	63.5 to 145.4	7.00154	1476.393	213.87
p-Xylene	$p - C_8 H_{10}$	58.3 to 139.3	6.98820	1451.792	215.11

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

Table B.8 Specific Enthalpies of Selected Gases: SI Units

	$\hat{H}(kJ/mol)$ Reference state: Gas, $P_{ref} = 1$ atm, $T_{ref} = 25^{\circ}C$							
T	Air	O ₂	N ₂	H_2	СО	CO ₂	H ₂ O	
0	-0.72	-0.73	-0.73	-0.72	-0.73	-0.92	-0.84	
25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
100	2.19	2.24	2.19	2.16	2.19	2.90	2.54	
200	5.15	5.31	5.13	5.06	5.16	7.08	6.01	
300	8.17	8.47	8.12	7.96	8.17	11.58	9.57	
400	11.24	11.72	11.15	10.89	11.25	16.35	13.23	
500	14.37	15.03	14.24	13.83	14.38	21.34	17.01	
600	17.55	18.41	17.39	16.81	17.57	26.53	20.91	
700	20.80	21.86	20.59	19.81	20.82	31.88	24.92	
800	24.10	25.35	23.86	22.85	24.13	37.36	29.05	
900	27.46	28.89	27.19	25.93	27.49	42.94	33.32	
1000	30.86	32.47	30.56	29.04	30.91	48.60	37.69	
1100	34.31	36.07	33.99	32.19	34.37	54.33	42.18	
1200	37.81	39.70	37.46	35.39	37.87	60.14	46.78	
1300	41.34	43.38	40.97	38.62	41.40	65.98	51.47	
1400	44.89	47.07	44.51	41.90	44.95	71.89	56.25	
1500	48.45	50.77	48.06	45.22	48.51	77.84	61.09	

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

MATRICULE ÉTUDIANT:

INFORMATIONS UTILES

Date : Le jeudi 16 décembre 2021

Heure: 13 h 30 à 16 h 00

Documentation: Une feuille manuscrite recto verso 8.5" x 11"

Calculatrice : Calculatrice autorisée seulement

RÉPONDEZ DIRECTEMENT SUR LE QUESTIONNAIRE DANS L'ESPACE PRÉVU À CETTE FIN. <u>NE</u> DÉTACHEZ AUCUNE PAGE DE CE QUESTIONNAIRE.

CE QUESTIONNAIRE COMPREND 22 PAGES.

NOM :	MATRIC	JLE :	
PRÉNOM :			
SIGNATURE :		Total:	/20

Cet examen est composé de quatre questions :

Question 1 : Questions en rafale		
Total	/4	

Question 3 : La condensation d'acétone		
A) /2,5		
В)	/3	
Total /5,5		

Question 2 : Place au développement		
durable		
A)	/0,75	
B) /2,25		
Total	/3	

Question 4 : Production d'huile chaude		
A) /1		
В)	/1,5	
C)	/2	
D)	/3	
Total	/7,5	

Si vous n'avez pas suffisamment d'espace pour inscrire vos démarches dans une question, de l'espace supplémentaire est disponible à la page 18.

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

MATRICULE ÉTUDIANT:

1. Questions en rafale

(4 points)

Temps suggéré : 20 minutes

Pour chacun des énoncés présentés dans le tableau ci-dessous, répondez à la question dans la colonne **Réponse**. Détaillez vos démarches dans la colonne **Calculs ou Justifications** lorsque les cases sont blanches.

	Énoncé	Réponse	Calculs ou Justifications
A)	Un gaz est refroidi à pression constante. Est-ce que sa masse volumique augmente, diminue ou reste constante? (0,25 point)	Augmente (0.25 point)	
В)	Quelle serait la valeur de la température T_1 (en K) sachant que $T_2 = 111$ K et que $\Delta T = T_2 - T_1 = 129$ °F? (0,5 point)	39.3 K (0.25 point)	Calculs: $\Delta T(K) = \Delta T(^{\circ}C) = \Delta T(^{\circ}F)/1.8 = 71.7K$ (0.25 point) $T_{1} = 111 - 71.7 = 39.3K$
C)	Qui suis-je? Pression à laquelle, pour une température donnée, il y a un équilibre liquide-vapeur. (0,25 point)	Tension de vapeur (0.25 point)	
D)	La sélectivité est un rapport adimensionnel. Vrai ou Faux? (0,25 point)	FAUX	Si vous répondez Faux, justifiez votre réponse. La sélectivité possède des unités de mol X/mol Y. (0.25 point)
E)	D'où provient la constante 3,76 dans la relation suivante : $\dot{n}_{N2}=3,76\cdot\dot{n}_{O2}$? (0,5 point)	Réponse et justificati	from: $\frac{y_{N2}}{y_{O2}} = \frac{0.79}{0.21}$ (0,5 point)

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

Énoncé	Réponse	Calculs ou Justifications
F) Un réservoir contient uniquement de l'ammoniac pur (NH ₃) dont une fraction est en phase vapeur et l'autre en phase liquide. Sachant que la pression est de 5 atm, quelle est la température dans le réservoir (°C)? (0,5 point)	T = 4.4 °C (0.25 point)	Calculs: $P_{TOT} = P_{NH3}^{0} = 5 \text{ atm}$ (0.25 point) $\log(5 \cdot 760) = 7.55466 - \frac{1002.711}{T + 4.4}$ $T = 4.4^{\circ}C$
G) Un courant d'air humide à 20°C passe dans un séchoir afin de sécher des grains de maïs. Est-ce que l'humidité absolue du courant d'air entre l'entrée et la sortie augmente, diminue ou reste constante? (0,25 point)	Augmente (0.25 point)	
H) À la sortie d'un réacteur, les produits et les réactifs n'ayant pas réagi sont séparés, puis les réactifs sont entièrement recyclés à l'entrée du réacteur. La conversion simple-passe de chacun de ces réactifs est donc de 100%. Vrai ou Faux? (0,25 point)	FAUX (0.25 point)	Justifiez votre réponse. C'est la conversion globale qui est de 100%.
I) Dans un procédé réactif, la température de référence doit toujours être posée à 25°C. Vrai ou Faux ? Pourquoi ? (0,25 point)	VRAI (0.25 point)	Justifiez votre réponse. Cela est obligatoire, car les chaleurs de formation sont tabulées à cette température.

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

MATRICULE ÉTUDIANT:

Énoncé	Réponse	Calculs ou Justifications
J) Si vous doublez le débit alimenté à un procédé réactif, alors l'enthalpie spécifique de chaque substance entrante au réacteur doublera aussi. Vrai ou Faux ? (0,25 point)	FAUX (0.25 point)	Justifiez votre réponse. L'enthalpie spécifique (kJ/mol) est indépendante de la quantité de matière.

- K) Un mélange équimolaire de benzène (B, T_{eb} = 80°C) et de toluène (T, T_{eb} = 110°C) est alimenté de façon continue à 10°C à un évaporateur. Ce mélange est chauffé à 50°C et une partie du mélange se vaporise. Le produit liquide obtenu contient 40% molaire de B et la vapeur contient 68.4% molaire de B.
 - i) Quelle formule permet de calculer l'enthalpie spécifique du toluène dans la phase vapeur en fonction de la référence posée ? Référence : T_(I), 50°C, 1 atm. *Aucun calcul n'est requis pour cette question.* **(0,5 point)**
 - ii) Quel sera le signe de la chaleur à fournir Q pour cet évaporateur ? Pourquoi ? *(0,25 point)*

$$\widehat{H_T} = \int_{50^{oC}}^{110^{oC}} Cp_l dT + \Delta H_{vap} + \int_{110^{oC}}^{50^{oC}} Cp_g dT$$
 (0,5 point)

Q sera positif car on ajoute de l'énergie au système. (0,25 point)

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

MATRICULE ÉTUDIANT:

2. Place au développement durable

(3 points)

Temps suggéré : 20 minutes

A) Dans le contexte de la responsabilité sociale d'entreprise (RSE), identifiez deux éléments parmi les incitatifs et les exigences vues dans les capsules vidéo du cours qui motivent les entreprises à adopter des actions qui prônent une approche plus durable dans leurs activités. (0,75 point)

→ Crédits carbones, normes resserrées, subventions pour projets à faibles émissions,

accréditations internationales, image de marque, valeurs d'entreprises, etc.

- B) Le projet Mozilla Firefox est un projet logiciel Open Source qui fournit entre autres le navigateur web du même nom, gratuitement. Un projet Open Source collaboratif comme Mozilla Firefox implique que des développeurs logiciels de partout dans le monde peuvent contribuer au code source en soumettant des suggestions d'améliorations et de nouvelles fonctionnalités (merge request). Toutes ces suggestions sont agglomérées dans un service web centralisé payant (par exemple Gitlab) qui performe automatiquement sur chacune d'elle des tests de qualité de code et d'intégration dans le cadre d'un processus préprogrammé de validation et d'intégration appelé pipeline. Dans le cas de ce projet spécifiquement, c'est plus de 100 000 builds (compilations de code) qui sont produits chaque jour. En effet, le navigateur web doit fonctionner sur plusieurs systèmes d'exploitation (Windows, MacOS, Linux...) et doit donc offrir des builds compatibles avec chacun d'eux. Évidemment, ces opérations automatiques sauvent énormément de temps de correction de qualité de code et de découverte de bogues.
 - i) Donnez un impact positif de cette situation en regard du pilier social du développement durable. Vous devez expliquer clairement votre impact et faire un lien avec le pilier. (0,75 point)
- → Le processus est beaucoup plus simple que si toutes ces intégrations étaient faites

manuellement. Il permet de sauver énormément de temps et d'améliorer la qualité du

travail produit en allégeant la tâche des responsables pour qu'ils se concentrent sur

d'autres aspects importants de leur travail.

ÉCOLE POLYTECHNIQUE DE MONTRÉAL DÉPARTEMENT DE GÉNIE CHIMIQUE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORM

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

MATRICULE ÉTUDIANT:

- ii) Donnez un impact positif ou négatif de cette situation en regard du **pilier environnemental** du développement durable. Vous devez expliquer clairement votre impact et faire un lien avec le pilier. (0,75 point)
- → La quantité d'énergie et d'infrastructure nécessaire pour supporter toutes ces

compilations est énorme. De plus, autant de suggestions proposées nécessitent un

espace de stockage non négligeable et une consommation électrique conséquente.

→ Cela évite les émissions de gaz à effet de serre qui serait engendrées si toutes ces

personnes devaient se rassembler dans un lieu physique (transport) pour partager ces suggestions. Cela évite aussi les émissions reliées à la communication de ces suggestions de code par courriel par exemple, car les pièces jointes qui voyagent sont toujours chargées au complet et restent dans les chaînes de message.

- iii) Tel que précisé en i), ce projet a des impacts positifs sur le pilier social du développement durable. Pourquoi alors ne peut-on pas qualifier ce projet de durable? Répondez en deux phrases au maximum. (0,75 point)
- → Simplement car un projet durable doit respecter équitablement l'ensemble des

sphères du développement durable, on ne peut pas qualifier un projet de durable s'il

n'en respecte qu'une des trois.

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

MATRICULE ÉTUDIANT:

3. La condensation d'acétone

(5,5 points)

Temps suggéré : 40 minutes

Un courant gazeux contenant de l'acétone (CH₃COCH₃, noté A sur le schéma) et de l'air sort d'une unité de récupération de solvant à un débit de 142 L/s, une température de 150°C et une pression de 1.3 atm. Ce courant est acheminé à un condenseur partiel où la majorité de l'acétone est liquéfié. Le condenseur partiel opère à -18°C et 5 atm.

Afin d'augmenter la pression de 1,3 atm à 5 atm, un compresseur est intégré au condenseur et fourni un travail de 25.2 kW. Un échantillon du courant gazeux à l'entrée du condenseur a été prélevé et analysé. On a alors déterminé que ce courant contient 15% molaire d'acétone. Le diagramme annoté est présenté à la figure suivante.

Figure 1 - Condenseur partiel d'acétone

Tableau 1 - Données utiles

Substance	ΔĤ _{vap} (kJ/mol)	Cp du liquide (kJ/mol·°C)	Cp de la vapeur ou du gaz (kJ/mol·°C)
Acétone	30,2 (T _{eb} = 56°C @ P _{atm})	0,123	0,072 + 0,0002 T
Air			0,029

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

MATRICULE ÉTUDIANT:

A) Calculez les débits molaires n_1 et n_2 à la sortie du condenseur ainsi que la fraction molaire y_1 . (2,5 points)

Votre ami.e a résolu la lettre A), mais a fait des erreurs. Il a obtenu les débits partiels indiqués dans le tableau 2 suivant.

Tableau 2 – Débits partiels erronés obtenus en A) par votre ami.e

Substance	ṅ _{in} (mol/s)	n˙ _{out} (mol/s)
Acétone (I)	-	1,46
Acétone (g)	2,02	0,56
Air (g)	8,67	8,67

- B) En utilisant les débits partiels du tableau 2, quelle quantité de chaleur (kW) doit être soutirée du condenseur afin de permettre le refroidissement de 150°C à -18°C ? *(3 points)*
- A) Calculez les débits molaires n_1 et n_2 à la sortie du condenseur ainsi que la fraction molaire y_1 . (2,5 points)

Conversion du débit d'entrée : $n = PV/RT = 1,3 \times 142 / (0,082 \times 423) = 5,32 \text{ mol/s}$ (0,5 point)

On a un équilibre L/V : P°_{AC} (-18°C) = $10^{(7,11714 - 1210,592 / (-18 + 229,664))}$ = 21 mm Hg (0,25 point)

Hypothèse : Les coefficients A, B et C sont valides même si nous sommes hors de l'intervalle de température. **(0,25 point)**

Loi de Raoult : $P^{o}_{AC} x_{AC} = P_{tot} y_{AC}$ Ici, $x_{AC} = 1$ (0,25 point)

 $y_{AC} = 21/760 / 5 = 0,0055 = y_1$ (0,25 point)

 $y_{Air} = 1 - 0.0055 = 0.9944$

Bilan global : $5,32 = n_1 + n_2$ (0,25 point)

Bilan sur Ac: $0.15 \times 5.32 = 0.0055 \, n_1 + n_2$ (0.25 point)

On obtient : $0,798 = 0,0055 (5,32 - n_2) + n_2$

 $n_2 = 0,773 \text{ mol}$ (0,25 point)

 $n_1 = 5.32 - 0.773 = 4.547 \text{ mol}$ (0,25 point)

ÉCOLE POLYTECHNIQUE DE MONTRÉAL DÉPARTEMENT DE GÉNIE CHIMIQUE GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

MATRICULE ÉTUDIANT:

B) En utilisant les débits partiels du tableau 2, quelle quantité de chaleur (kW) doit être soutirée du condenseur afin de permettre le refroidissement de 150°C à -18°C ? *(3 points)*

Bilan d'énergie : $\dot{Q} - \dot{W}_S = \Delta \dot{H} + \Delta \dot{E}_K + \Delta \dot{E}_P$

Simplifications:

- Pas d'accélération importante : $\Delta \dot{E}_K = 0$

- Pas de changement d'altitude : $\Delta \dot{E}_P = 0$

 $\dot{Q} = \dot{W}_S + \Delta \dot{H}$ (0.5 point pour le bilan et les simplifications)

États de référence: Acétone(1) -18°C 1 atm et Air(g) à -18°C et 1 atm. (0.5 point)

Substance	ṅ _i (mol/s)	Ĥ _i (kJ/mol)	ή _j (mol/s)	\widehat{H}_{j} (kJ/mol)
Acétone (I)	-	-	1,46	\widehat{H}_3
Acétone (g)	2,02	\widehat{H}_{1}	0,56	\widehat{H}_4
Air (g)	8,67	\widehat{H}_2	8,67	\widehat{H}_{5}

$$\widehat{H}_{1} = \int_{-1.8^{\circ}C}^{56^{\circ}C} (C_{p})_{Ac(I)} dT + (\Delta \widehat{H_{v}})_{Ac} + \int_{56^{\circ}C}^{150^{\circ}C} (C_{p})_{Ac(v)} dT$$

$$=9.10 + 30.2 + 8.70 = 48 \text{ kJ/mol} (0.5 \text{ point})$$

$$\hat{H}_2 = \int_{-18^{\circ}C}^{150^{\circ}C} (C_p)_{Air(g)} dT = 4.87 \text{ kJ/mol (0.25 point)}$$

$$\hat{H}_3 = 0$$
 (0.25 point)

$$\widehat{H}_{4} = \int_{-18^{\circ}C}^{56^{\circ}C} (C_{p})_{Ac(I)} dT + (\Delta \widehat{H_{v}})_{Ac} + \int_{56^{\circ}C}^{-18^{\circ}C} (C_{p})_{Ac(v)} dT$$

$$\hat{H}_5 = 0$$
 (0.25 point)

$$\dot{Q} = \dot{W}_S + \Delta \dot{H} = \dot{W}_S + \sum_{sortie} \dot{n}_j \hat{H}_j - \sum_{entr\acute{e}e} \dot{n}_i \hat{H}_i$$

=
$$-25.2 + [(0.56x33.7)] - [(2,02x48) + (8.67x4.87)]$$

 $\dot{Q} = -154 \, kW \text{ (0.25 point)}$

ÉCOLE POLYTECHNIQUE DE MONTRÉAL DÉPARTEMENT DE GÉNIE CHIMIQUE GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

MATRICULE ÉTUDIANT :	

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

MATRICULE ÉTUDIANT:

4. Production d'huile chaude

(7,5 points)

Temps suggéré : 60 minutes

Le diagramme d'écoulement partiellement annoté présenté ci-dessous illustre une fournaise permettant de chauffer une huile froide à 30° C circulant dans les tubes grâce à la combustion d'un courant d'hydrocarbures gazeux de 100 mol/s. Ce courant contient 40% molaire de n-butane (C_4H_{10}) et 60% molaire de n-pentane (C_5H_{12}).

Figure 2 – Diagramme d'écoulement du procédé (à annoter adéquatement)

Le débit d'huile à chauffer est de 50 mol/s. Les hydrocarbures sont alimentés à 25°C et brûlés en présence d'air humide alimenté à 30°C et 1 atm. L'humidité relative de l'air est de 30%. Les gaz de combustion sortent à 600°C. Une analyse des gaz de combustion a permis de déterminer que les conversions du n-butane et du n-pentane sont de 90%. Les réactions de combustion sont représentées ci-dessous par les réactions 1 et 2.

De plus, cette analyse a révélé la présence de monoxyde de carbone (CO). Ce CO provient de la combustion incomplète uniquement du C_4H_{10} représenté par la réaction indésirable 3.

$$C_4H_{10} + 13/2 O_2 \rightarrow 4 CO_2 + 5 H_2O$$
 [1]
 $C_5H_{12} + 8 O_2 \rightarrow 5 CO_2 + 6 H_2O$ [2]
 $C_4H_{10} + 9/2 O_2 \rightarrow 4 CO + 5 H_2O$ [3]

Finalement, l'excès d'air est de 50% et le rendement en CO₂ est de 84%.

Note : Vous pouvez annoter directement le diagramme précédent afin de déclarer les différentes variables que vous utiliserez.

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

MATRICULE ÉTUDIANT:

- A) Effectuez une analyse des degrés de liberté sur la fournaise (sans considérer le courant d'huile) qui visera à calculer la quantité de chaleur dégagée par la combustion des hydrocarbures. (1 point)
- B) Déterminez les débits partiels du courant d'air humide alimenté à la fournaise. (1,5 points)
- C) Déterminez les débits partiels de la conduite des gaz de combustion. (2 points)
- D) En utilisant la méthode des chaleurs de réaction, calculez la quantité d'énergie transférée aux tubes de la fournaise (kW). *(3 points)*

Tableau 2 - Données utiles

Substances	$\Delta \widehat{H}_f^o$ (kJ/mol)	Cp (kJ/mol • °C)	\widehat{H}_i (kJ/mol) à 30°C (à partir d'une référence à 25°C)	\widehat{H}_i (kJ/mol) à 600°C (à partir d'une référence à 25°C)
Huile		0.08		
$C_4H_{10(g)}$	-124.7	0.092		53.0
C ₅ H _{12(g)}	-146.4	0.115		89.0
O _{2(g)}	0		0.15	
$N_{2(g)}$	0		0.15	
H _{2(g)}	0			
CO _{2(g)}	-393.5			
$H_2O_{(g)}$	-241.83		0.17	
CO _(g)	-110.52			

A) Effectuez une analyse des degrés de liberté sur la fournaise (sans considérer le courant d'huile) qui visera à calculer la quantité de chaleur dégagée par la combustion des hydrocarbures. (1 point)

Inconnus: n_1 , n_2 , n_3 , n_4 _C4H10, n_5 _C5H12, n_6 _O2, n_7 _N2, n_8 _CO2, n_9 _H2O, n_{10} _CO, ξ_1 , ξ_2 , ξ_3 , Q (14)

Équations: 6 bilans moléculaires réactifs (C₄H₁₀, C₅H₁₂, O₂, CO₂, CO, H₂O)

- 1 bilan moléculaire non-réactif (N₂)
- 4 spécifications (2 conversions, 1 excès, rendement)
- 1 spécification (HR)
- 1 bilan d'énergie

<u>1 relation (ratio O₂/N₂ alimenté)</u> **1 point (-0.5 par erreur)**

0

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES **EXAMEN FINAL — AUTOMNE 2021**

MATRICULE ÉTUDIANT:

B) Déterminez les débits partiels du courant d'air humide alimenté à la fournaise. (1,5 points)

Excès: $0.5 = (n_1 - n_{02_st}) / n_{02_st}$

 $n_{02 \text{ st}} = 40 \times 13/2 + 60 \times 8 = 740 \text{ mol/s}$ (0.25 point)

 $n_1 = 1110 \text{ mol/s } (0.25 \text{ point})$

Ratio: $n_1/n_2 = 0.21/0.79$ $n_2 = 4175.7 \text{ mol/s } (0.25 \text{ point})$

Humidité relative : $0.3 = P_{H2O}/P_{H2O}^O$ Avec la loi d'Antoine : $P_{H2O}^O(30^{\circ}C) = 31.83$ mm Hg (0.25 point)

 $P_{H2O} = 9.55 \text{ mm Hg}$ $y_{H2O} = P_{H2O}/P_{tot} = 0.0126 (0.25 \text{ point})$

 $y_{H2O} = n_3/(n_1 + n_2 + n_3)$ $n_3 = 67.45 \text{ mol/s } (0.25 \text{ point})$

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

MATRICULE ÉTUDIANT:

C) Déterminez les débits partiels de la conduite des gaz de combustion. (2 points)

Bilans de matière sur la fournaise : Bilans: C_4H_{10} : n_4 C_4H_{10} = 40 - ξ_1 - ξ_3 C_5H_{12} : n_5 C_5H_{12} = 60 - ξ_2 O₂: $n_{6 O2} = 1110 - 13/2 \xi_{1} - 8 \xi_{2} - 9/2 \xi_{3}$ N_2 : $n_7 N_2 = n_2$ CO_2 : $n_8 co_2 = 4\xi_1 + 5\xi_2$ H_2O : $n_9 H_{2O} = n_3 + 5\xi_1 + 6\xi_2 + 5\xi_3$ (0.5 point pour tous les bilans, -0.25 point par erreur) CO: $n_{10 CO} = 4\xi_3$ Conversions: $0.9 = (40 - n_4 c_{4H10})/40$ $n_4 c_{4H10} = 4 mol/s$ $0.9 = (60 - n_5 C5H12)/60$ $n_5 C5H12 = 6 mol/s$ (0.25 point) On trouve alors : $\xi_2 = 54 \text{ mol/s}$ (0.25 point) $n_{8_CO2_Id\acute{e}al} = 4*40 + 5*60 = 460 \text{ mol/s } (0.25 \text{ point})$ Rendement : $0.84 = n_{8_{CO2}}/n_{8_{CO2_{Idéal}}}$ $0.84 = 4\xi_1 + 5\xi_2 / 460 = 4\xi_1 + 5*54 / 460$ $\xi_1 = 29.1 \text{ mol/s (0.25 point)}$ Avec le bilan sur C4H10 : $\xi_3 = 40 - 29,1 - 4 = 6,9 \text{ mol/s}$ (0.25 point) On obtient alors: $n_{6 O2} = 457.8 \text{ mol/s}$ $n_7 N_2 = 4175.7 mol/s$ $n_{8 CO2} = 386.4 \text{ mol/s}$ $n_9 H_{20} = 571.45 mol/s$ n_{10} co = 27.6 mol/s (0.25 point pour les valeurs finales)

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

MATRICULE ÉTUDIANT:

D) En utilisant la méthode des chaleurs de réaction, calculez la quantité d'énergie transférée aux tubes de la fournaise (kW). *(3 points)*

Bilan d'énergie : $Q - W_s = \Delta E_K + \Delta E_P + \Delta H$

W_s = 0 (pas de pièces mobiles)

 $\Delta E_K = 0$ (diamètres des conduites inconnus)

 $\Delta E_P = 0$ (Δz considéré négligeable) (0.5 point)

 $Q = \Delta H$

Références : $C_4H_{10(g)}$, $C_5H_{12(g)}$, $O_{2(g)}$, $N_{2(g)}$, $CO_{2(g)}$, $H_2O_{(g)}$, $CO_{(g)}$ à 25°C et 1 atm (0.5 point)

Tableau des enthalpies :

Substance	n _{in} (mol/s)	Ĥ _{in} (kJ/mol)	n _{out} (mol/s)	Ĥ _{out} (kJ/mol)
C ₄ H _{10(g)}	40	Ĥ ₁	4	Ĥ ₆
C ₅ H _{12(g)}	60	Ĥ ₂	6	Ĥ ₇
O _{2(g)}	1110	Ĥ ₃	457.8	Ĥ ₈
N _{2(g)}	4175.7	Ĥ ₄	4175.7	Ĥ ₉
CO _{2(g)}			386.4	Ĥ ₁₀
H ₂ O _(g)	67.45	Ĥ ₅	571.45	Ĥ ₁₁
CO _(g)			27.6	Ĥ ₁₂

Calcul des enthalpies :

 $\hat{H}_1 = 0$

 $\hat{H}_2 = 0$

 $\hat{H}_3 = 0.15 \text{ kJ/mol}$

 $\hat{H}_4 = 0.15 \text{ kJ/mol}$

 $\hat{H}_5 = 0.17 \text{ kJ/mol}$

 $\hat{H}_6 = 53 \text{ kJ/mol}$

 $\hat{H}_7 = 89 \text{ kJ/mol}$

 $\hat{H}_8 = 18.41 \text{ kJ/mol}$

 $\hat{H}_9 = 17.39 \text{ kJ/mol}$ (0.5 point, - 0.25 point par erreur)

 $\hat{H}_{10} = 26.53 \text{ kJ/mol}$

 $\hat{H}_{11} = 20.91 \text{ kJ/mol}$

 $\hat{H}_{12} = 17.57 \text{ kJ/mol}$

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

MATRICULE ÉTUDIANT:

Calcul des chaleurs de réactions : (0.75 point)

$$\hat{H_{R1}^0} = -2658.5kJ/mole$$

 $\hat{H_{R2}^0} = -3272.1kJ/mole$
 $\hat{H_{R3}^0} = -1526.5kJ/mole$

Calcul de la chaleur fournie :

$$\dot{Q} = \Delta \dot{H} = \xi_1 H_{R1}^o + \xi_2 H_{R2}^o + \xi_3 H_{R3}^o + \sum n_{out} H_{out} - \sum n_{in} H_{in}$$
 (0.25 point)

$$\dot{Q} = \Delta \dot{H} = 29.1 * (-2658.5) + 54 * (-3272.1) + 6.9 * (-1526.5) + 104475 - 804$$

$$\dot{Q} = \Delta \dot{H} = -160918 \text{ kW}$$
 (0.5 point)

Bonne chance! Patrice Farand

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

MATRICULE ÉTUDIANT :

Page supplémentaire pour inscrire vos démarches (Inscrivez clairement le numéro de la question)

	1	
18		

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

MATRICULE ÉTUDIANT :

Annexes

Tableau de conversion d'unités

Quantité	Équivalences
Masse	$1 \ kg = 1000 \ g = 0,001 \ t = 2,20462 \ lb_m = 35,27392 \ oz \\ 1 \ lb_m = 16 \ oz = 453,593 \ g$
Longueur	$1 \text{ m} = 100 \text{ cm} = 1000 \text{ mm} = 10^6 \mu\text{m} = 10^{10} \text{ Å}$ $= 39,37 \text{ po} = 3,2808 \text{ pi} = 1,0936 \text{ vg} = 0,0006214 \text{ mi}$ $1 \text{ pi} = 12 \text{ po} = 1/3 \text{ vg} = 0,3048 \text{ m} = 30,38 \text{ cm}$
Volume	1 m ³ = 1000 L = 10 ⁶ cm ³ = 10 ⁶ mL = 35,3145 pi ³ = 264,17 gal 1 pi ³ = 1728 po ³ = 7,4805 gal = 0,028317 m ³ = 28,317 L = 28 317 cm ³
Force	$1 N = 1 kg \cdot m/s^2 = 10^5 dyn = 10^5 g \cdot cm/s^2 = 0,22481 lb_f$ $1 lb_f = 32,174 lb_m \cdot ft/s^2 = 4,4482 N = 4,4482 x 10^5 dyn$
Pression	1 atm = $1,01325 \times 10^5 \text{ N/m}^2$ (Pa) = $101,325 \text{ kPa}$ = $1,01325 \text{ bar}$ = $1,01325 \times 10^6 \text{ dyn/cm}^2$ = = $760 \text{ mm Hg à } 0^{\circ}\text{C}$ = $10,333 \text{ m H}_2\text{O à } 4^{\circ}\text{C}$ = $14,696 \text{ lb}_f/\text{po}^2$ (psi) = $33,9 \text{ pi H}_2\text{O à } 4^{\circ}\text{C}$ = $29,921 \text{ po Hg à } 0^{\circ}\text{C}$
Énergie	1 J = 1 N•m = 10 ⁷ dyn•cm = 2,778 x 10 ⁻⁷ kW•h = 0,23901 cal = 9,486 x 10 ⁻⁴ Btu
Puissance	$1 \text{ W} = 1 \text{ J/s} = 0.23901 \text{ cal/s} = 9.486 \text{ x } 10^{-4} \text{ Btu/s} = 1.341 \text{ x } 10^{-3} \text{ hp}$

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

gène						lab	lean p	erioai	dne de	lableau periodique des elements	nents						18 VIII A
	2 11 A											13 III A	14 IV A	15 VA	16 ∨I A	17 VII A	2 He hélium 4,003
6,941	Be bérylium 9,012											5 B bore 10,81	6 C carbone 12,01	7 N azote 14,01	8 0 oxygène 16,00	9 fluor 19,00	10 Ne néon 20,18
	ésium			5	9	7	ω	6	10	11	12	13 AI aluminium	14 Si silicium	15 P phosphore	16 S soufre	17 CI chlore	18 Ar argon
22,99 24 24 19 Z	20 21 S1		17 B	√ B ∠ 3	NI B	VIIB	26 F e	VIIIIB —	28 N:	IB 53	330 Zn		28,09 32 G	30,97 33 As	32,07 34 \$6	35,45 35	39,95 7
ussium .0	Er 8	Ę	9 00	vanadium 50,94	chrome 52,00	manganèse 54,94	fer 55,85	cobalt 58,93	nickel 58,69	cuivre 63,55	zinc 65,39	gallium 69,72	germanium 72,59	arsenic 74,92	sélénium 78,96	brome 79,90	krypton 83,80
37 33 Rb S	38 Sr 39			41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd		6d Cd		50 Sn	51 Sb	52 Te	53 I	Xe
mni	tium	yttrium z 9 9 9	nium	niobium 92,91	ne	technétium (98)	ruthénium 101,1	rhodium 102,9	palladium 106,4		cadmium 112,4	indium 114,8	étain 118,7	antimoine 121,8	tellure 127,6		xénon 131,3
55 55 F	56 57 S		72 Hf	73 Ta	74 W		76 O c		78 4		& T	81 I	82 P	83 E	8 4	85 A	86 P.n
E	E	ane	un.	tantale 180,9	tungstène 183,9	rhénium 186,2	osmium 190,2	iridium 192,2	platine 195,1	or 197,0	mercure 200,6	thallium 204,4	plomb 207,2	bismuth 209,0	polonium (210)	astate (210)	radon (222)
87	88 89 Ra Ac radium actini (226) (227)	ium	Rf Db rutherfordium dubnium (257)	105 Db dubnium (260)	Sg seaborgium (263)	Bh bohrium (262)	108 Hs hassium (265)	109 Mt meitnerium (266)									
				58 Ce cérium 140,1	Pr praséodyme r 140,9	Nd Nd néodyme 144,2	61 Pm prométhium (147)	62 Sm samarium 150,4	63 Eu europium 152,0	Gd ium gadolinium 157,3	65 Tb terbium 158,9	66 Dy dysprosium 162,5	67 Ho holium 164,9	68 Er erbium 167,3	69 Tm thulium 168,9	70 Yb ytterbium 173,0	71 Lu lutécium 175,0
POL MON	POLYTECHNIQUE Montréal	3 U E		90 Th thorium 232,0	91 92 U protactinium (231) 238,0	92 U uranium 238,0	93 Np neptunium (237)	94 Pu plutonium (242)	95 Am américium (243)	96 Cm curium (247)	97 BK berkélium (247)	98 Cf californium (249)	99 Es einsteinium (254)		101 102 Nd No mendélévium nobélium (256)	102 No nobélium (254)	103 Lr lawrencium (257)

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

MATRICULE ÉTUDIANT:

Table B.4 Antoine Equation Constants^a

 $\log_{10} p^* = A - \frac{B}{T+C}$ p^* in mm Hg, T in °C Example: The vapor pressure of acetaldehyde at 25°C is determined as follows: $\log_{10} p^*_{C_2H_4O}(25^\circ C) = 8.00552 - \frac{1600.017}{25 + 291.809} = 2.9551$ $\implies p^*_{C_2H_4O}(25^\circ C) = 10^{2.9551} = 902 \text{ mm Hg}$

Compound	Formula	Range (°C)	A	В	С
Acetaldehyde	C_2H_4O	-0.2 to 34.4	8.00552	1600.017	291.809
Acetic acid	$C_2H_4O_2$	29.8 to 126.5	7.38782	1533.313	222.309
Acetic acid*	$C_2H_4O_2$	0 to 36	7.18807	1416.7	225
Acetic anhydride	$C_4H_6O_3$	62.8 to 139.4	7.14948	1444,718	199.81
Acetone	C_3H_6O	-12.9 to 55.3	7.11714	1210.595	229.66
Acrylic acid	$C_3H_4O_2$	20.0 to 70.0	5.65204	648.629	154.683
Ammonia*	NH_3	-83 to 60	7.55466	1002.711	247.88
Aniline	C_6H_7N	102.6 to 185.2	7.32010	1731.515	206.04
Benzene	C_6H_6	14.5 to 80.9	6.89272	1203.531	219.88
n-Butane	$n-C_4H_{10}$	−78.0 to −0.3	6.82485	943.453	239.71
i-Butane	i-C4H10	-85.1 to -11.6	6.78866	899.617	241.94
1-Butanol	$C_4H_{10}O$	89.2 to 125.7	7.36366	1305.198	173.42
2-Butanol	$C_4H_{10}O$	72.4 to 107.1	7.20131	1157.000	168.27
1-Butene	C_4H_8	-77.5 to -3.7	6.53101	810.261	228.06
Butyric acid	$C_4H_8O_2$	20.0 to 150.0	8.71019	2433.014	255.18
Carbon disulfide	CS_2	3.6 to 79.9	6.94279	1169.110	241.59
Carbon tetrachloride	CCl ₄	14.1 to 76.0	6.87926	1212.021	226.40
Chlorobenzene	C ₆ H ₅ Cl	62.0 to 131.7	6.97808	1431.053	217.55
Chlorobenzene*	C ₆ H ₅ Cl	0 to 42	7.10690	1500.0	224.0
Chlorobenzene*	C ₆ H ₅ Cl	42 to 230	6.94504	1413.12	216.0
Chloroform	CHCl ₃	-10.4 to 60.3	6.95465	1170.966	226.23
Chloroform*	CHCl₃	-30 to 150	6.90328	1163.03	227.4
Cyclohexane	C_6H_{12}	19.9 to 81.6	6.84941	1206.001	223.14
Cyclohexanol	$C_6H_{12}O$	93.7 to 160.7	6.25530	912.866	109.1
n-Decane	$n-C_{10}H_{22}$	94.5 to 175.1	6.95707	1503.568	194.7
1-Decene	$C_{10}H_{20}$	86.8 to 171.6	6.95433	1497.527	197.0
1,1-Dichloroethane	$C_2H_4Cl_2$	-38.8 to 17.6	6.97702	1174.022	229.0
1,2-Dichloroethane	C_2H_4Cl	-30.8 to 99.4	7.02530	1271.254	222.9
Dichloromethane	CH_2Cl_2	-40.0 to 40	7.40916	1325.938	252.6
Diethyl ether	$C_4H_{10}O$	-60.8 to 19.9	6.92032	1064.066	228.7
Diethyl ketone	$C_5H_{10}O$	56.5 to 111.3	7.02529	1310.281	214.1
Diethylene glycol	$C_4H_{10}O_2$	130.0 to 243.0	7.63666	1939.359	162.7
Dimethyl ether	C₂H ₆ O	-78.2 to -24.9	6.97603	889.264	241.9
Dimethylamine	C_2H_7N	-71.8 to 6.9	7.08212	960.242	221.6
N,N-Dimethylformamide	C_3H_7NO	30.0 to 90.0	6.92796	1400.869	196.4
1,4-Dioxane	$C_4H_8O_2$	20.0 to 105.0	7.43155	1554.679	240.3
Ethanol	C_2H_6O	19.6 to 93.4	8.11220	1592.864	226.1
Ethanolamine	C_2H_7NO	65.4 to 170.9	7.45680	1577.670	173.3
Ethyl acetate	$C_4H_8O_2$	15.6 to 75.8	7.10179	1244.951	217.8
Ethyl acetate*	$C_4H_8O_2$	-20 to 150	7.09808	1238.710	217.0
Ethyl chloride	C ₂ H ₅ Cl	-55.9 to 12.5	6.98647	1030.007	238.6
Ethylbenzene	C_8H_{10}	56.5 to 137.1	6.95650	1423.543	213.0

Table B.4 (Continued)

Compound	Formula	Range (°C)	A	В	С
Ethylene glycol	$C_2H_6O_2$	50.0 to 200.0	8.09083	2088.936	203.45
Ethylene oxide	C ₂ H ₄ O	0.3 to 31.8	8.69016	2005.779	334.76
1,2-Ethylenediamine	$C_2H_8N_2$	26.5 to 117.4	7.16871	1336.235	194.36
Formaldehyde	HCHO	-109.4 to -22.3	7.19578	970.595	244.12
Formic acid	CH_2O_2	37.4 to 100.7	7.58178	1699.173	260.71
Giycerol	$C_3H_8O_3$	183.3 to 260.4	6.16501	1036.056	28.09
n-Heptane	$n-C_7H_{16}$	25.9 to 99.3	6.90253	1267.828	216.82
i-Heptane	i-C ₇ H ₁₆	18.5 to 90.9	6.87689	1238.122	219.78
1-Heptene	C7H14 *	21.6 to 94.5	6.91381	1265,120	/220.05
n-Hexane	n-C6H14	13.0 to 69.5	6.88555	1175.817	224.86
i-Hexane	i-C6H14	12.8 to 61.1	6.86839	1151.401	228.47
1-Hexene	C_6H_{12}	15.9 to 64.3	6.86880	1154.646	226.04
Hydrogen Cyanide	HCN	-16.4 to 46.2	7.52823	1329.49	260,41
Methanol	CH ₃ OH	14.9 to 83.7	8.08097	1582,271	239.72
Methanol*	CH ₃ OH	-20 to 140	7.87863	1473.11	230.0
Methyl acetate	C ₃ H ₆ O ₂	1.8 to 55.8	7.06524	1157.630	219.77
Methyl bromide	CH ₃ Br	-70.0 to 3.6	7.09084	1046.066	244.9
Methyl chloride	CH ₃ Cl	-75.0 to 5.0	7.09349	948.582	249.3
Methyl ethyl ketone	C ₄ H ₈ O	42.8 to 88.4	7.06356	1261.339	221.9
Methyl isobutyl ketone	C ₆ H ₁₂ O	21.7 to 116.2	6.67272	1168,408	191.9
Methyl methacrylate	C ₅ H ₈ O ₂	39.2 to 89.2	8.40919	2050.467	274.30
Methylamine	CH ₄ N	-83.1 to -6.2	7.33690	1011.532	233.2
Methylcyclohexane	C_7H_{14}	25.6 to 101.8	6.82827	1273.673	221.7
Naphthalene	C ₁₀ H ₈	80.3 to 179.5	7.03358	1756.328	204.8
Nitrobenzene	C ₆ H ₅ NO ₂	134.1 to 210.6	7.11562	1746.586	201.7
Nitromethane	CH ₃ NO ₂	55.7 to 136.4	7.28166	1446.937	227.6
n-Nonane	n-C ₉ H ₂₀	70.3 to 151.8	6.93764	1430.459	201.8
1-Nonane	C ₉ H ₁₈	66.6 to 147.9	6.95777	1437.862	205.8
n-Octane	n-C ₈ H ₁₈	52.9 to 126.6	6.91874	1351.756	209.1
i-Octane	i-C ₈ H ₁₈	41.7 to 118.5	6.88814	1319.529	211.6
1-Octene	C ₈ H ₁₆	44.9 to 122.2	6.93637	1355.779	213.0
n-Pentane	n-C ₅ H ₁₂	13.3 to 36.8	6.84471	1060.793	231.5
i-Pentane	i-C ₅ H ₁₂	16.3 to 28.6	6.73457	992.019	229.5
1-Pentanol	C ₅ H ₁₂ O	74.7 to 156.0	7.18246	1287.625	161.3
1-Pentene	C ₅ H ₁₀	12.8 to 30.7	6.84268	1043.206	233.3
Phenol	C ₆ H ₆ O	107.2 to 181.8	7.13301	1516.790	174.9
1-Propanol	C ₃ H ₈ O	60.2 to 104.6	7.74416	1437.686	198.4
2-Propanol	C ₃ H ₈ O	52.3 to 89.3	7.74021	1359.517	197.5
Propionic acid	C ₃ H ₆ O ₂	72.4 to 128.3	7.71423	1733.418	217.7
Propylene oxide	C ₃ H ₆ O ₂	-24.2 to 34.8	7.01443	1086.369	228.5
Pyridine	C ₅ H ₅ N	67.3 to 152.9	7.04115	1373.799	214.9
Styrene	C ₈ H ₈	29.9 to 144.8	7.06623	1507.434	214.9
Toluene	C ₂ H ₈	35.3 to 111.5	6.95805	1346.773	219.6
1,1,1-Trichloroethane	C ₂ H ₃ Cl ₃	-5.4 to 16.9	8.64344	2136.621	302.7
1,1,2-Trichloroethane					
Trichloroethylene	C ₂ H ₃ Cl ₃ C ₂ HCl ₃	50.0 to 113.7 17.8 to 86.5	6.95185 6.51827	1314.410 1018.603	209.1 192.7
Vinyl acetate		21.8 to 72.0			
Water*	C ₄ H ₆ O ₂		7.21010	1296.130	226.6
Water*	H₂O	0 to 60	8.10765	1750.286	235.0
	H₂O	60 to 150	7.96681	1668.210	228.0
m-Xylene	m-C ₈ H ₁₀	59.2 to 140.0	7.00646	1460.183	214.8
o-Xylene	o-C ₈ H ₁₀	63.5 to 145.4	7.00154	1476.393	213.8
p-Xylene	$p - C_8 H_{10}$	58.3 to 139.3	6.98820	1451.792	215.1

GCH2730 — ÉNERGIE ET DÉVELOPPEMENT DURABLE DANS LES SYSTÈMES INFORMATIQUES EXAMEN FINAL — AUTOMNE 2021

Table B.8 Specific Enthalpies of Selected Gases: SI Units

	Ref	erence sta	,	/mol) _{ref} = 1 ati	$m, T_{ref} =$	25°C	
T	Air	O_2	N ₂	H ₂	CO	CO ₂	H ₂ O
0	-0.72	-0.73	-0.73	-0.72	-0.73	-0.92	-0.84
25	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100	2.19	2.24	2.19	2.16	2.19	2.90	2.54
200	5.15	5.31	5.13	5.06	5.16	7.08	6.01
300	8.17	8.47	8.12	7.96	8.17	11.58	9.57
400	11.24	11.72	11.15	10.89	11.25	16.35	13.23
500	14.37	15.03	14.24	13.83	14.38	21.34	17.01
600	17.55	18.41	17.39	16.81	17.57	26.53	20.91
700	20.80	21.86	20.59	19.81	20.82	31.88	24.92
800	24.10	25.35	23.86	22.85	24.13	37.36	29.05
900	27.46	28.89	27.19	25.93	27.49	42.94	33.32
1000	30.86	32.47	30.56	29.04	30.91	48.60	37.69
1100	34.31	36.07	33.99	32.19	34.37	54.33	42.18
1200	37.81	39.70	37.46	35.39	37.87	60.14	46.78
1300	41.34	43.38	40.97	38.62	41.40	65.98	51.47
1400	44.89	47.07	44.51	41.90	44.95	71.89	56.25
1500	48.45	50.77	48.06	45.22	48.51	77.84	61.09