Ministry of Communications and Information Technology

FINAL PROJECT

Data Analyst Specialist Track

I Learn - CAI1_DAT1_G12d

Amr Desouky

Ahmed Rabie

Youssef Yasser in

Alaa Marouf

FINAL PROJECT

\$

Supply Chain

Under Supervision

Eng. Ahmed Samir

Deliverables:

- Cleaned dataset ready for analysis.
- Data preprocessing notebook.

Analysis Questions Phase

Set of analysis questions that can be answered via the dataset

Forecasting Questions Phase 🔁

- **Deliverables:**
 - Visualization plots answering forecasting questions

Visualization Dashboard and Recommendation

- **Deliverables:**
 - Visualization dashboard.
 - Recommendation for the business

Supply Chain Project Over View

Content

Build Data Model, Data Cleaning and Preprocessing

Analysis Questions Phase

Digital Egypt Pioneers

Forecasting Questions Phase

Visualization Dashboard and Recommendation

1.1 Data Exploration

Data Overview

The provided dataset, likely named "supply_data," is a CSV file containing 100 rows and 24 columns. This indicates a relatively small but potentially informative dataset for analyzing supply chain-related information.

Data Types

The data within the columns is represented using a mix of data types: Numeric: used for quantities, costs, times, and rates, which is appropriate for numerical calculations. Categorical: used for categorical variables such as product types, shipping carriers, supplier names, inspection results, transportation modes, and routes, suggesting that these columns contain distinct categories or textual descriptions.

1.2 Data Preparation

The initial data was extracted from an Excel file with 24 columns. This data was separated into 7 main CSV files, each representing a specific aspect of the supply chain

- Customers
- Inventory
- Products
- Quality Control
- Sales
- Suppliers
- Transportation

1.3 CSV File Creation

The separated data was saved as tab-delimited CSV files. Below is an example of how to create a Transportation table in SQL Server:

1.4 Creating the Database

A new database called Supply Chain was created in SQL Server.

1.5 Creating Tables

For each of the CSV files, corresponding tables were created in the SQL Server database. For example, the Products table was created as follows

```
SQLQuery1.sql - DE...74S3\EI Noby (63))* 
CREATE DataBase SupplyChain

CREATE TABLE Sales (
Sale_ID INT PRIMARY KEY IDENTITY(1,1),
SKU VARCHAR(50),
Number_of_products_sold INT,
Revenue_generated DECIMAL(15, 2),
Order_quantities INT,
Customer_demographics VARCHAR(255),
FOREIGN KEY (SKU) REFERENCES Products(SKU)

);
```


1.6 Data Ingestion

Data was imported into each table using the BULK INSERT command. Below is an example for the Transportation table

```
SQLQuery1.sql - DE...74S3\EI Noby (63))* 

BULK INSERT Transportation

FROM 'D:\Personal\learn\data analysis\DEPI\Final Project\SQL\Transportation.txt'

WITH (

FIELDTERMINATOR = ' ',

ROWTERMINATOR = '\n',

FIRSTROW = 2

);

select * from Transportation
```

1.7 Data Relationships

Once the tables were populated, relationships were established among them, leveraging foreign keys to ensure referential integrity

1.8 Data Cleaning and Preprocessing in Python

Loading Data into Python ,The CSV files were loaded into Python for data cleaning and preprocessing using the Pandas package:

1.9.1 Data Discovering

Data Discovering find the data types and columns heads:

```
data_head = data.head()
  data info, data head
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 24 columns):
                            Non-Null Count Dtype
0 Product type
                             100 non-null object
1 SKU
                             100 non-null
2 Price
                             100 non-null
3 Availability
                             100 non-null
4 Number of products sold 100 non-null
8 Lead times
   Order quantities
10 Shipping times
                             100 non-null
                                           object
12 Shipping costs
                             100 non-null
13 Supplier name
                             100 non-null object
14 Location
                             100 non-null object
15 Lead time
17 Manufacturing lead time 100 non-null
                             100 non-null float64
dtypes: float64(6), int64(9), object(9)
memory usage: 18.9+ KB
Output is truncated. View as a scrollable element or open in a text editor. Adjust cell output settings...
```


1.9.2 Data Discovering

Data Discovering find Nulls and Duplicated Values:

1.10 Data Cleaning

Data cleaning involved stripping whitespace from string fields:

	Product type	SKU	Price	Availability	Number of products sold	Revenue generated	Customer demographics	Stock levels	Lead times	Order quantities	Loca	tion Le		iction lumes	Manufacturing lead time	Manufacturing costs	Inspection results	Defect rates	Transportation modes	Routes	c
0	haircare	SKU0	69.808006	55	802	8661.996792	Non-binary	58	7	96	Mur	nbai	29	215	29	46.279879	Pending	0.226410	Road	Route B	187.75
1	skincare	SKU1	14.843523	95	736	7460.900065	Female	53	30	37	Mur	nbai	23	517	30	33.616769	Pending	4.854068	Road	Route B	503.06
2	haircare	SKU2	11.319683	34	8	9577.749626	Unknown	1	10	88	Mur	nbai	12	971	27	30.688019	Pending	4.580593	Air	Route C	141.92
3	skincare	SKU3	61.163343	68	83	7766.836426	Non-binary	23	13	59	Kol	kata	24	937	18	35.624741	Fail	4.746649	Rail	Route A	254.77
4	skincare	SKU4	4.805496	26	871	2686.505152	Non-binary	5	3	56	[elhi	5	414	3	92.065161	Fail	3.145580	Air	Route A	923.4

1.11 Saving the Cleaned Data

Finally, the cleaned data was saved to a new CSV file:

* For Accessing the Python File

1.12 Conclusion

the complete process from data extraction to cleaning and preprocessing. The structured approach ensures that data integrity is maintained, and the cleaned data is ready for analysis

Content

Build Data Model, Data Cleaning and Preprocessing

Analysis Questions Phase

Digital Egypt Pioneers

Forecasting Questions Phase

Visualization Dashboard and Recommendation

2. Analysis Questions Phase

2.1 Introduction

This section outlines the process of conducting a comprehensive data analysis to uncover valuable insights from the provided dataset. The analysis will focus on formulating and answering key questions that are relevant to the organization's decision-making process.

By leveraging SQL, we will explore the dataset to identify patterns, trends, and correlations that can inform strategic initiatives and enhance overall business performance.

We have sperate the Qeustion Regarding Each part:

- 2.2 Sales and Revenue
- 2.3 Customer Segmentation
- 2.4 Transportation 2.5 Supplier
- 2.6 Quality Control

2. AnalysisQuestions Phase

2.2 Sales and Revenue

2.2.1 What is the Impact of Product Category on Sales Performance?

2.2.2 How do lead times and shipping times affect sales performance?

2. AnalysisQuestions Phase

2.3 Customer Segmentation

2.3.1 What is Sales Trends Based on Customer Demographics?

2.3.2 How do customer demographics influence purchasing behavior?

2. Analysis Questions Phase

2.4 Transportation

2.4.1 Which transportation modes are associated with the lowest costs and fastest delivery times?

2.4.2 Which Location have the largest amount of order shipping from?

2. Analysis Questions Phase

2.5 Supplier

2.5.1 Average each Supplier Performance For lead time?

2.5.2 What are the Location trends in Supplier orders number?

2. AnalysisQuestions Phase

2.6 Quality Control

2.6.1 the overall Inspection results regarding each category

2.6.2 the Supplier with the highest average Defect rates

2. Analysis Questions Phase

2.6 Quality Control

2.6.3 total revenue lost regarding failed Inspection results

2.7 Conclusion

This analysis provides a comprehensive overview of the dataset, leveraging SQL to extract, clean, and analyze the data. The findings reveal valuable insights that can inform strategic decision-making.

* For Accessing the Python File

Content

Build Data Model, Data Cleaning and Preprocessing

Analysis Questions Phase

Digital Egypt Pioneers

Forecasting Questions Phase

Visualization Dashboard and Recommendation

3. Forecasting Questions Phase

Using Linear Regression Packages in Python for Forecasting

- The goal is to use linear regression to analyze trends in a given dataset and answer forecasting questions. This involves:
- Identifying key trends: Determining the patterns or relationships within the data.
- Formulating forecasting questions: Creating specific questions based on the identified trends
- Applying linear regression: Using a Python library to model the relationship between variables and predict future values.
- Visualizing results: Creating plots to illustrate the trends and forecasts

^{*} For Accessing the Python File

Content

Build Data Model, Data Cleaning and Preprocessing

Analysis Questions Phase

Digital Egypt Pioneers

Forecasting Questions Phase

Visualization Dashboard and Recommendation

4.1 Introduction

In this final phase of our project, we will transition from data analysis to data visualization.

By creating a comprehensive **Tableau dashboard**, we aim to transform the insights gained from our SQL queries into a visually compelling and interactive narrative. This dashboard will serve as a **powerful tool for stakeholders** to explore and understand the key findings of our analysis

We have Organize Information: Grouped related visualizations into logical sections

We have visualize each visualization with two pieces of information at least To achieve maximum benefit

Store	Shipping	Manufacturing
Product type	Product type	Product type
SKU	SKU	SKU
Price	Order quantities	Production volumes
Availability	Shipping times	Manufacturing lead time
Number of products sold	Shipping carriers	Manufacturing costs
Revenue generated	Shipping costs	Inspection results
Customer demographics	Supplier name	Defect rates
Stock levels	Location	costs
Lead times	Lead time	
	Transportation modes	
	Routes	

^{*} For Tableau full Dashboard click here

Store

Shipping Costs / Carrier

Shipping

Manufacturing

1. Target Skincare Products to Female:

Our analysis suggests that skincare products are a popular category among female customers. Consider focusing marketing efforts and product development on this segment to maximize sales and customer satisfaction.

2. Increase Skincare Product Stock:

Given the current stock levels falling below availability thresholds, it is **recommended to increase the inventory of skincare products**. This will help ensure product availability, prevent stockouts, and meet customer demand effectively.

1. Prioritize Road Transportation for Cost and Speed:

Our analysis indicates that Road transportation is the most cost-effective and efficient mode for shipping. Consider utilizing road transportation whenever possible to optimize shipping costs and delivery times.

2. Partner with Carrier A for Optimal Shipping Costs:

Based on our findings, Carrier A consistently offers shipping costs that are below or within the overall average.

Partnering with Carrier A can help reduce shipping expenses and improve overall supply chain efficiency.

1. Address Quality Issues with Supplier 5:

Supplier 5 has been identified as having the highest average defect rates. It is recommended to conduct a thorough investigation into the root causes of these defects and implement corrective actions to improve product quality.

2. Optimize Lead Times with Supplier 3:

Supplier 3 has been identified as having the longest average lead times.

With the lowest order Quantity, explore ways to expedite the procurement process and delivery timelines from Supplier 3 to improve supply chain efficiency and reduce costs.

3. Mitigate Revenue Loss from Failed Inspections:

The analysis reveals that skincare products experience the highest revenue loss due to failed inspections, followed by hair care and cosmetics. To minimize financial impact, focus on implementing stricter quality control measures for these product categories

THANKS.

* For Full Project Attachment