Bone fracture healing under Ilizarov fixator: Influence of fixator configuration, fracture geometry, and loading

Philip Frederik Ligthart Dept of Mech & Mechatronic Eng, Stellenbosch University, South Africa

Journal Club

Necessary background Talk focus Numerical model

Bone fracture healing

Primary bone healing

- Every day process
- Requires absolute stability

- Plate fixation
- intramedullary nailing

Secondary bone healing

- Occurs with relative stability
- Involves callus formation new bone

External fixation

Journal Club

Necessary background

Numerical model

Secondary bone healing

- Stellenbosch
 UNIVERSITY
 IYUNIVESITHII
 UNIVERSITEIT
- Journal Club
- Necessary background
- Talk focus Numerical model

- Bone ends are not in direct contact
- Relative motion between bone ends Interfragmentary movement (IFM)
- Bone healing is influenced (theories) by Interfragmentary strain (IFS)

Found 10 different mechanoregulation measures in literature

Generally, $2-10\,\%$ engineering strain is desired

Ilizarov fixator

- Circular rings
- Tensioned wires k-wires -1.5-1.8 mm
- Half pins Schanz screws -3-6 mm
- Threaded rods

Taylor Spatial Frame (TSF)

Journal Club

background

Talk focus Numerical model

Focus of the talk

Journal Club

Necessary background

Talk focus

Numerical model

Finite element model

- Stellenbosch

 UNIVERSITY
 IYUNIVESITHI
 UNIVERSITEIT
- **Journal Club**
- Necessary background
- Tatk Tocus
- Numerical model

- Second order tetrahedral elements all parts
- ≈ 215 000 elements
- Convergence criteria:
 - 0.1 mm for displacement (Absolute)
- Mesh convergence study
 - ≤ 2 % difference between meshes considered converged