UCS405 (Discrete Mathematical Structures)

Tutorial Sheet-8

- 1. Which of these relations on $\{0, 1, 2, 3\}$ are partial orderings?
 - a) $\{(0,0), (1,1), (2,2), (3,3)\}$
 - b) $\{(0,0), (1,1), (2,0), (2,2), (2,3), (3,2), (3,3)\}$
 - c) $\{(0,0), (1,1), (1,2), (2,2), (3,3)\}$
 - d) $\{(0,0),(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)\}$
 - e) $\{(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,2), (3,3)\}$
- 2. Draw the Hasse diagram for divisibility on the set
 - a) {1, 2, 3, 4, 5, 6, 7, 8}.
 - b) {1, 2, 3, 5, 7, 11, 13}.
 - c) $\{1, 2, 3, 6, 12, 24, 36, 48\}$.
 - d) {1, 2, 4, 8, 16, 32, 64}.
- 3. Answer these questions for the poset ({3, 5, 9, 15, 24, 45}, /).
 - a) Find the maximal elements.
 - b) Find the minimal elements.
 - c) Is there a greatest element?
 - d) Is there a least element?
 - e) Find all upper bounds of $\{3, 5\}$.
 - f) Find the least upper bound of $\{3, 5\}$, if it exists.
 - g) Find all lower bounds of {15, 45}.
 - h) Find the greatest lower bound of {15, 45}, if it exists.
- 4. Draw the Hasse diagram for inclusion on the set P(S), where $S = \{1, 2, 3, 4\}$.
- 5. Answer these questions for the poset ($\{\{1\}, \{2\}, \{4\}, \{1, 2\}, \{1, 4\}, \{2, 4\}, \{3, 4\}, \{1, 3, 4\}, \{2, 3, 4\}\}, \subseteq$).
 - a) Find the maximal elements.
 - b) Find the minimal elements.
 - c) Is there a greatest element?
 - d) Is there a least element?
 - e) Find all upper bounds of {{2}, {4}}.
 - f) Find the least upper bound of $\{\{2\}, \{4\}\}\$, if it exists.
 - g) Find all lower bounds of $\{\{1, 3, 4\}, \{2, 3, 4\}\}.$
 - h) Find the greatest lower bound of $\{\{1, 3, 4\}, \{2, 3, 4\}\}$, if it exists.

6. Determine whether the posets with these Hasse diagrams are lattices

7. Schedule the tasks needed to build a house, by specifying their order, if the Hasse diagram representing these tasks is as shown in the figure.

