

WIE MAN EINE KI IN DIE IRRE FÜHRT

Anton Winschel

7. November 2019 – IT Kongress Neu-Ulm | Ulm

KÜNSTLICHE INTELLIGENZ – ANWENDUNGEN

Autonomes Fahren

Medizinische Diagnosen

Industrie

- > Wie kann man eine KI in die Irre führen?
- > Beispiel: Klassifikation
 - > Funktionsweise
 - > Irreführung
- > Wie k\u00f6nnen KI-Systeme robuster gestaltet werden?

Quelle: medium.com/intro-to-artificial-intelligence pubs.rsna.org/doi/pdf/10.1148/radiol.2018171567 www.cross-compass.com/article2

IRREFÜHRUNG: OBJEKTERKENNUNG

Quelle: arXiv:1811.07018v1

IRREFÜHRUNG: SPRACHERKENNUNG

IRREFÜHRUNG: ERKENNUNG VON PERSONEN

"Unsichtbarkeits-T-Shirt"

Quelle: arXiv:1904.08653v1

cloakwear.co

IRREFÜHRUNG: AUTONOMES FAHREN

Limit 45

Quelle: arXiv:1707.08945v5

sites.nlsde.buaa.edu.cn/~xlliu/aaai19.pdf

KLASSIFIKATION – KUNSTRICHTUNG ERKENNEN

- - -

Training

Klassifikator

Expressionismus?

Impressionismus?

Quelle: wikiart.org

Jedes Bild wird als Punkt in einem hochdimensionalen Raum abgebildet

Z.B. $500px \times 500px \times 3 (rgb)$ $\approx 700.000 \text{ dim}$

Beim Training wird die Entscheidungsgrenze schrittweise angepasst

Quelle: wikiart.org

Mit der Entscheidungsgrenze wird eine Klassifikation durchgeführt

Quelle: wikiart.org

KLASSIFIKATION - FORMALE SICHT

$$f($$
 $0) + \epsilon =$ Expressionismus

Ziel:

- 1. Finde o, sodass ϵ minimal ist (Optimierungsproblem)
- 2. *f* soll auf unbekannte Daten generalisieren

KLASSIFIKATION – ANALYTISCHE SICHT

KLASSIFIKATION – ANALYTISCHE SICHT

Jedes Neuron berechnet ein Skalarprodukt der Vektoren $oldsymbol{x}$ und $oldsymbol{w}$

- > Jedes Neuron teilt den Eingangsraum in 2 Teile
- > Jedes Neuron ist ein binärer linearer Klassifikator
- > Ein neuronales Netz mit nur einer Schicht kann jede Funktion beliebig genau approximieren

IRREFÜHRUNG – GEOMETRISCHE SICHT

Verschiebung von x auf die andere Seite der Entscheidungsgrenze

- > Klassifizierung ändert sich
- Bei ungünstiger Entscheidungsgrenze ist kein visueller Unterschied erkennbar

IRREFÜHRUNG – ANALYTISCHE SICHT

IRREFÜHRUNG – ANALYTISCHE SICHT

 $m{r}$ kann durch die Ableitung von $m{f}$ berechnet werden

IRREFÜHRUNG – BEISPIEL

- > Klassifikator für 1000 Klassen
- > Wir möchten dass ein Wal als Hai klassifiziert wird

IRREFÜHRUNG – BEISPIEL

Entscheidungsgrenze

Wal

"Debugging" von neuronalen Netzen

Hai

Baseball?

Quelle: distill.pub/2019/activation-atlas

IRREFÜHRUNG – BEISPIEL

 $\boldsymbol{\chi}$

r

x + r

Wal

Baseball

Hai

LÖSUNGSANSÄTZE FÜR ROBUSTERE SYSTEME

Trainingsdatensatz

Irreführende Daten zum Training hinzunehmen Aber: Kein Schutz vor anderen Arten von Angriffen

LÖSUNGSANSÄTZE FÜR ROBUSTERE SYSTEME

Sonderbehandlung für Daten in der Nähe von Entscheidungsgrenzen

LÖSUNGSANSÄTZE FÜR ROBUSTERE SYSTEME

XITASO 💥

- Entscheidungsgrenzen verschieben
- Maximalen Abstand zu den Klassen gewährleisten
- Aufgrund hoher Dimension und Nichtlinearität schwierig
- > Erste Lösungsansätze aus der Forschung: arXiv:1810.12715v4

FAZIT

- > KI wird bereits in vielen Szenarien sinnvoll eingesetzt
- > KI birgt aber auch Schwächen und Risiken (Robustheit, Angriffssicherheit, ...)
- > Bei einer nicht-robusten KI reicht zufälliges Sensorrauschen für eine Irreführung aus
- > Ein "normales" Training erzeugt kein robustes System
- > Für den robusten Einsatz in sicherheitskritischen Szenarien sind zusätzliche Maßnahmen nötig

VIELEN DANK

XITASO

in Augsburg

Austraße 35 86153 Augsburg

Tel. +49 (0)821 885 882 0 E-Mail info@xitaso.com Web www.xitaso.com **XITASO**

in Magdeburg

Werner-Heisenberg-Straße 1 39106 Magdeburg

Tel. +49 (0)391 / 792 930 00

E-Mail info@xitaso.com Web www.xitaso.com