Департамент *Информатика Състезателно програмиране*СЪСТЕЗАНИЕ, 19 ноември 2022 г.

А. Бирени прости числа

Биро е програмист, обича бирата и простите числа. Забелязал е, че има бирени прости числа, които се записват само с мяколко различни цифри. Например с цифрите 1 и 7, и двете двуцифрени числа 17 и 71 са прости. 1777 също е просто, а 7117 не е. Google казва, че 7177 пак е просто! Да, но Биро не обича да пита Google, както не обича и да няма бира, а да пише програма и да има бира! Програмата проработва само с две бири и произвежда 5 четирицифрени прости числа, съдържащи само тези цифри. Напишете програма, която брои колко са бирените простите числа, записани само с дадени различни цифри.

$Bxo\partial$.

За всеки пример се задават няколко естествени числа: броя на цифрите на търсените бирени прости числа и различните цифри на тези числа.

Ограничения.

Броят на цифрите на търсените бирени прости числа е по-малък от 6.

Броят на различните цифри на търсените бирени прости числа е не по-голям от броя на цифрите на тези числа.

Изход.

За всеки пример от входа, на стандартния изход на отделен ред се отпечатва броя на намерените бирени прости числа.

$Bxo\partial$.	Изход.
3 1 2	1
4 7 1	5
2 1	1
3 1	0

Департамент *Информатика Състезателно програмиране*СЪСТЕЗАНИЕ, 19 ноември 2022 г.

В. Израз нула

Дадена е редица от n естествени числа. Да се поставят операции + и - между числата така, че резултатът след пресмятане на получения израз да бъде 0.

$Bxo\partial$.

На стандартния вход са задаени няколко примера – всеки на отделен ред.

Ограничения.

 $1 < n \le 20$

Числата в редицата са по-малки от 100.

Изход.

На стандартния изход (за всеки пример на отделен ред) да се изведе броя на решенията на задачата.

$Bxo\partial$.	Изход.
1 1	1
1 2 3 4 5 6 7 8	7
3 4 2	0
30 20 40 10	1

Департамент Информатика Cъстезателно програмиране СЪСТЕЗАНИЕ, 19 ноември 2022 г.

С. Коалиции

На изборите за Народно събрание n партии влизат в парламента. Да се напише програма, която определя всички възможни коалиции за образуване на правителство с изискването такава коалиция да има повече от половината депутати.

$Bxo\partial$.

Няколко примера са зададени на стандартния вход. Всеки пример започва с числото n и след него на n реда са дадени име на партия (низ без интервали) и брой на депутатите на тази партия.

Ограничения.

Най-много 10 партии влизат в парламента.

Общият брой на депутатите е най-много 500.

Изход.

На стандартния изход да се изведат списъци от имена на партии, влизащи в коалицията за съставяне на правителство, всеки списък на отделен ред с по един интервал между имената на партиите. Редът на партиите в коалицията е по броя на депутатите в намаляващ ред. Ако в коалицията две партии имат еднакъв брой депутати, наредбата на тези две партии е лексикографска по имената на партиите.

Най-напред се отпечатват коалиции с най-малко партии. При еднакъв брой партии в две колиции по-напред се отпечатва коалицията с повече депутати. Ако и броят на партиите и броят на депутатите в две коалиции са равни, наредбата е лексикографска на списъците на имената на партиите, както са подредени в коалицията.

$Bxo\partial$.	Изход.
4	A D
A 10	A B
B 6	D B
C 3	A D B
D 10	A D C
2	A B C
par1 100	DBC
par2 400	ADBC
	par2
	par2 par1

Департамент *Информатика Състезателно програмиране* СъСТЕЗАНИЕ, 19 ноември 2022 г.

D. Хипотеза на Голдбах

Известната (недоказана) хипотеза на Голдбах гласи: Всяко четно цяло число по-голямо от 2 може да бъде представено като сбор от две прости числа. Да се напише програма за намиране по колко начина може да стане това.

 $Bxo\partial$.

На стандартния вход е дадена редица от четни числа, по-големи от 2.

Ограничения.

Числата са по-малки от 10000.

Изход.

На стандартния изход да се отпечати редица, като всеки неин елемент е съответния брой представяния (сбор от прости числа) на числото от входната редица.

Пример:

 $Bxo\partial.$ Из $xo\partial.$

4 6 60 600 6000 1 1 6 32 178

Департамент *Информатика Състезателно програмиране*СЪСТЕЗАНИЕ, 19 ноември 2022 г.

Е. Анаграми

Низът X е анаграма на низа Y, ако X може да бъде получен от разместването на символите на Y. Например всеки от низовете "baba "abab "aabb"и "abba"е анаграма на "baba а низовете "aaab "aab"и "aabc"не са анаграми на "baba". По зададено множество от низове S да се намери най-голямото му подмножество, в което няма два или повече низа, които да са анаграми един на друг.

$Bxo\partial$.

Всеки тестов пример е зададен на стандартния вход с един непразен ред, съдържащ низовете от S, разделени с един или няколко интервала.

Ограничения.

Всяко множество S съдържа между 1 и 50 низа, всеки от които е с дължина от 1 до 50.

Изход.

За всеки тестов пример на стандартния изход да се изведе по едно число — броя на низовете в исканото подмножество.

$Bxo\partial.$	Изход.
abcd abac aabc bacd	2
wlrb m bhc arz wk yhi dqs dxr mowfr sjyb 1	LO
ab ba	L
z 1	L

Департамент *Информатика Състезателно програмиране*СъСТЕЗАНИЕ, 19 ноември 2022 г.

F. Автомат

Стоки, предлагани от автомат се продават за цяло число левове. Автоматът връща ресто под формата на монети от един лев, както и банкноти от по пет и по десет лева. Напишете програма за автомата, като се спазват следните две условия:

- 1. При всяка отделна покупка рестото съдържа по-малко от 5 монети.
- 2. При всяка отделна покупка рестото съдържа по-малко от две банкноти от 5 лева.

$Bxo\partial$.

Всеки отделен ред на стандартния вход описва един тестов пример, съдържащ две цели положителни числа. Първото е стойността на покупката, а второто – парите въведени в автомата. Краят на входа е ред, съдържащ две нули.

Ограничения.

Автоматът съдържа стоки за 10000 лева и може да връща неограничен брой банкноти и монети.

Изход.

За всеки тестов пример извеждайте по един отделен ред, състоящ се от: номера на поредния тест, рестото, броят на десет и пет левовите банкноти, както и този на монетите от един лев, върнати от автомата за конкретния пример. Изходът да бъде форматиран, както е показано по-долу.

Пример:

 $Bxo\partial$.

72 100	Case	1:	28 = 2 *	10 +	1	*	5	+	3	*	1	
37 200	Case	2:	163 = 16	* 10	+	0	*	5	+	3	*	1
5 50	Case	3:	45 = 4 *	10 +	1	*	5	+	0	*	1	
0 0												

Изход.

Департамент *Информатика Състезателно програмиране*СъСТЕЗАНИЕ, 19 ноември 2022 г.

G. Политическа сила

Във всеки съюз или обединение от политически субекти (напр. държави) се налага да се приеме система за вземане на решения. Една такава система е да се гласува с "да"или "не като всяка държава да има определен брой гласове. Решение се взема когато броят на гласовете "да"е по-голям или равен на определена граница. Коалиция се нарича група държави, която гласува с "да"за дадено предложение. Ако сумата от гласовете на държавите в коалицията е по-голяма или равна на определената граница, то предложението се приема и тази коалиция се нарича печеливша. Например през 1958 г. се създава Европейския съюз с точно такава система за вземане на решения. Участващите в съюза държави и гласовете им са: Франция, Германия, Италия — по 4 гласа, Белгия, Холандия — по 2 гласа, Люксембург — 1 глас. Предложение се приема, ако за него са гласували с "да"12 от общо 17 гласа. Две печеливши коалиции в съюза са например Франция, Германия и Италия или Франция, Германия, Белгия, Холандия и Люксембург.

Една от няколкото известни мерки за политическата сила на дадена държава в един съюз е индексът на Шапли-Шубик. Ето как се дефинира този индекс.

Нека съюзът се състои от държавите - p_1, p_2, \ldots, p_n . Разглеждаме всички възможни наредби на тези n държави. Нека индексите i_1, i_2, \ldots, i_n , $1 \le i_j \le n$, $j = 1, 2, \ldots, n$ задават една конкретна наредба. Държавата p_{i_k} , $1 \le k \le n$ се нарича централна за тази наредба, ако коалицията, състояща се от $p_{i_1}, p_{i_2}, \ldots, p_{i_{k-1}}$ не е печеливша, а коалицията $p_{i_1}, p_{i_2}, \ldots, p_{i_k}$ е печеливша. Индекс на Шапли-Шубик за държавата p се нарича отношението на броя на наредбите, в които p е централна към броя на всички възможни наредби. Да се напише програма за пресмятане на индекса на Шапли-Шубик.

$Bxo\partial$.

Стандартният вход съдържа няколко тестови примера. Данните за всеки от примерите са записани на два последователни реда. Първият ред съдържа две цели числа, разделени с един интервал – броят n на държавите в съюза и необходимият брой гласове v за вземане на решение. На следващия ред има n цели положителни числа x_i по-малки от 100 (разделени с по един интервал), които са гласовете на участниците в съюза. Входът завършва с ред, съдържащ числото 0.

Oграничения. $3 \le n \le 20,$ $x_i < v \le \sum_{i=1}^n x_i$

Изход.

За всеки пример на стандартния изход трябва да се изведат n числа, на един ред (с резделител един интервал), всяко равно на индекса на Шапли-Шубик, изразен в проценти за поредния участник в съюза. Числата да са с точност точно 1 цифра след десетичната точка.

```
Пример: Bxo\partial.
```

Изход.

3 51

50 49 1

6 12

4 4 4 2 2 1

0

66.7 16.7 16.7

23.3 23.3 23.3 15.0 15.0 0.0

Департамент *Информатика Състезателно програмиране*СъСТЕЗАНИЕ, 19 ноември 2022 г.

Н. Прости пермутации

Дадено е число n, колко от числата, получени като пермутации на цифрите на n, са прости числа?

$Bxo\partial$.

За всеки пример на стандартния вход на отделен ред се задава по едно естествено число n.

Ограничения.

n е наи-много 10-цифрено число.

Изход.

За всеки пример от входа, на стандартния изход на отделен ред се отпечатва броя на намерените прости числа. Ако n съдържаа нули, броят се и по-малко цифрените числа (с незначещи водещи нули).

$Bxo\partial$.	Изход.
21	0
71	2
7177	3
1234	4
30	1

Департамент *Информатика Състезателно програмиране*СъстЕЗАНИЕ, 19 ноември 2022 г.

I. N-то число

Дадени са цели числа a, b и n, където a и b са първите две числа от редица на Фибоначи, изградена чрез побитовия оператор Изключващо ИЛИ (XOR), т.е. k-ти член на тази редица на Фибоначи се получава като се приложи побитовия оператор Изключващо ИЛИ към k-1 и k-2 член или $F(k)=F(k\ 1) \wedge F(k\ 2)$, където \wedge е побитово XOR. Напишете програма, която намира n-ти член на описаната по-горе редица на Фибоначи.

$Bxo\partial$.

Стандартният вход за всеки тестови случай съдържа три стойности, разделени с интервал за a, b и n, съответно.

Изход.

На стандартния изход за всеки твестови случай се извежда n-ти член на описаната по-горе редица на Фибоначи

$Bxo\partial$.	Изход.
1 2 5	3
5 11 1000001	14

Департамент *Информатика* Състезателно програмиране Състезание, 19 ноември 2022 г.

J. Бирено парти

Смарти е програмист, който много обичал да пие бира. Един ден той бил поканен на бирено парти и се изправил пред следния проблем. Домакините на партито подредили в дълга редица N бутилки бира от K различни вида. Тъй като бил колекционер на празни бирени бутилки и нямал в колекцията си нито една бутилка от тези K вида, Смарти трябвало да направи нещо, за да си ги занесе в къщи. Единственият начин да си вземе няколко бирени бутилки бил, да избере една непрекъсната подредица от тях и да ги изпие. Смарти решил да избере най-късата непрекъсната подредица от бутилки, която съдържа поне по една от всичките K различни вида. Смарти е вече достатъчно пиян и не може да си спомни алгоритъма, който решава тази задача. Помогнете на Смарти, като напишете програма, която определя позициите в редицата на първата и последната бутилки от най-късата непрекъсната подредица, изпълняваща условието. Ако има няколко такива подредици, програмата трябва да намери тази, която се среща най-рано в редицата.

$Bxo\partial$.

Първият ред на стандартния вход съдържа броят T на тестовите случаи. Всеки тестови случай съдържа два реда – първият съдържа числата N и K, разделени с интервал, а вторият — N числа (от 1 до K), разделени с по един интервал.

Ограничения.

 $1 \le N \le 10000000$ 1 < K < 13000

Изход.

Стандартният изход за всеки тестови случай съдържа две числа — номерата на началната и крайната бутилки в подредицата, която трябва да изпие Смарти.

$Bxo\partial$.	Изход
2	3 5
5 3	2 5
1 3 3 2 1	
5 3	
1 1 2 2 3	

Департамент *Информатика Състезателно програмиране*СъСТЕЗАНИЕ, 19 ноември 2022 г.

К. Разбивания

По дадено естествено число n да се намерят всички възможни ненаредени представяния (разбивания) на n като сума от естествени числа (не непременно различни). Така например, числото 5 може да се разбие по следните 7 начина:

5 = 5

5 = 4 + 1

5 = 3 + 2

5 = 3 + 1 + 1

5 = 2 + 2 + 1

5 = 2 + 1 + 1 + 1

5 = 1 + 1 + 1 + 1 + 1

$Bxo\partial$.

За всеки пример на стандартния вход на отделен ред се задава по две естествени числа -n и k.

Ограничения.

1 < n < 50,

 $k \leq$ брой разбивания на n.

Изход.

За всеки пример от входа, на стандартния изход на отделен ред се отпечатват: броя на разбиванията на n и k-тото разбиване в лексикографската наредба на всички разбивания, записани по зададения по-горе формат.

Пример:

 $Bxo\partial$. Из $xo\partial$.

5 2 7 5=2+1+1+1

Департамент *Информатика Състезателно програмиране*СъСТЕЗАНИЕ, 19 ноември 2022 г.

L. Пъзел

Дадени са пъзели, състоящи се от главни букви на латинската азбука. На всяка буква отговаря различна цифра. При заместване на буквите със съответните им цифри се получава израз, който е аритметично правилен. Например,

AAAA + BBBB = CCCC

Този пъзел има много решения, едно от които е $A=1,\,B=2,\,C=3.$ Тогава 1111+2222=3333,

ще бъде аритметично правилен израз. По-обобщен вариант на задачата е:

Дадени са аритметични изрази в d-ична бройна система ($2 \le d \le 10$), състоящи се от последователност от букви, разделени със знаците +, - или =. Точният формат е следния:

WORD[+|-]WORD...[+|-]WORD = WORD, (*)

където WORD е последователност от главни латински букви, които са измежду първите d на латинската азбука. Дължината на WORD е максимум 9 символа, а максималния брой събираеми е 10.

Да се напише програма, която по зададен пъзел и бройна система, намира аритметично правилен израз в съответната бройна система, така че на различна буква да отговаря различна цифра.

$Bxo\partial$.

Стандартният входа за всеки тестови случай се състои от 2 реда. Първият ред съдържа числото d, което отговаря на бройната система, а вторият ред – пъзела във формата (*)

Изход.

Стандартният изхода за всеки тестови случай се състои от точно 1 ред, съдържащ пъзела, прочетен от стандартния вход, като замените всяка буква с цифра, по описания по-горе начин. Ако решенията за съответния пъзел са повече от едно, изведете кое да е от тях. Ако за даден пъзел не съществува нито едно решение — тогава изведете *No solution*.

Пример:

 $Bxo\partial.$ Из $xo\partial.$

2 01+01=10

AB+AB=BA