

Universidade Federal da Paraíba Centro de Ciências Aplicadas à Educação Departamento de Ciências Exatas

Disciplina: Cálculo Diferencial e Integral

Professora: Juliana Aragão

Curso: Sistemas de Informação

Aula 5– Parte 1: Limites de Funções

O Problema da Tangente: Encontre a equação da reta tangente à parábola $y = x^2$ no ponto P(1,1).

- Uma tangente é uma reta que toca uma curva e deve ter a mesma inclinação da curva no ponto tocado.
- Uma reta pode ser descrita pela equação y = mx + b.
- Uma secante é uma reta que intersecta uma curva em dois pontos.
- A secante ao gráfico de $f(x)=x^2$ passando pelos pontos P(1,1) e $Q(x,x^2)$ tem inclinação $m_{PQ}=\frac{x^2-1}{x-1}$.

• Para Q(0,0) tem-se $m_{PQ}=1$

• Para Q(0.5,0.25) tem-se $m_{PQ} = 1.5$

• Para Q(0.9,0.81) tem-se $m_{PQ} = 1.9$

• Para Q(0.9,0.81) tem-se $m_{PQ} = 1.9$

- Observa-se que quanto mais o ponto Q se aproxima do ponto P mais a reta secante por P e Q se aproxima da tangente por P.
- Ou seja, quanto mais o ponto Q se aproxima do ponto P mais a inclinação da reta secante por P e Q se aproxima da inclinação da tangente por P.
- De maneira mais formal escrevemos isso como:

$$m_{PQ} \rightarrow m$$
 quando $Q \rightarrow P$

Ou ainda, dizemos que o limite de m_{PQ} quando $Q \rightarrow P$ é m, e escrevemos

$$\lim_{Q\to P} m_{PQ} = m$$

O Problema da Velocidade Instantânea: Suponha que uma bola seja solta a partir do ponto de observação no alto da Torre CN, em Toronto, 450 m acima do solo. Se a distância percorrida após t segundos for chamada s(t) e medida em metros, então a Lei de Galileu pode ser expressa pela equação $s(t) = 4.9 \cdot t^2$. Encontre a velocidade da bola após 5 segundos.

$$v_{media} = \frac{s_f - s_0}{t_f - t_0} = \frac{\Delta s}{\Delta t}$$

Intervalo de tempo	Velocidade média(m/s)
$5 \le t \le 6 \ (\Delta t = 1)$	53,9
$5 \le t \le 5,1 \ (\Delta t = 0,1)$	49,49
$5 \le t \le 5,05 \ (\Delta t = 0,05)$	49,245
$5 \le t \le 5,01(\Delta t = 0,01)$	49,049
$5 \le t \le 5,001(\Delta t = 0,001)$	49,0049

- Observa-se que quanto mais Δt se aproxima de 0 mais a velocidade média se aproxima da velocidade instantânea.
- De maneira mais formal escrevemos isso como:

$$\lim_{\Delta t \to 0} v_{m \in dia} = v_{instant \hat{a}nea}$$

Desejamos saber como se comporta a função $f(x) = \frac{x^2-1}{x-1}$ quando x assume valores próximos de 1.

x	0	0,5	0,9	0,95	0,99	0,999
f(x)	1	1,5	1,9	1,95	1,99	1,999
\boldsymbol{x}	2	1,5	1,1	1,05	1,01	1,001
						2,001

- Observa-se que quanto mais x se aproxima de 1 mais f(x) se aproxima de
 2.
- De maneira mais formal escrevemos isso como:

$$\lim_{x \to 1} f(x) = 2$$

Limites de Funções – Definição Informal

Suponha que seja definido quando está próximo ao número a (Isso significa que f é definido em algum intervalo aberto que contenha a, exceto possivelmente no próprio a). Então escrevemos

$$\lim_{x \to a} f(x) = L$$

e dizemos "o limite de f(x), quando x tende a a, é igual a L" se pudermos tornar os valores de f(x) arbitrariamente próximos de L (tão próximos de L quanto quisermos), tornando x suficientemente próximo de a (por ambos os lados de a), mas não igual a a.

Limites de Funções – Definição Informal

Observação 1: f deve estar definido em algum intervalo aberto que contenha a, mas não necessariamente no próprio a. Nos três casos a seguir temos $\lim_{x\to a} f(x) = L$

Limites de Funções - Exemplos

$$f(x) = \frac{x-1}{x^2 - 1}$$

$$\lim_{x \to 1} f(x) = 0.5$$

$$f(x) = \begin{cases} \frac{x-1}{x^2 - 1}, & x \neq 1 \\ 2, & x = 1 \end{cases}$$

$$\lim_{x \to 1} f(x) = 0.5$$

Limites de Funções - Exemplos

t	$\frac{\sqrt{t^2+9}-3}{t^2}$
±1,0	0,16228
±0,5	0,16553
±0,1	0,16662
±0,05	0,16666
±0,01	0,16667

t	$\frac{\sqrt{t^2+9}-3}{t^2}$
±0,0005	0,16800
±0,0001	0,20000
±0,00005	0,00000
±0,00001	0,00000

$$f(x) = \frac{\sqrt{x^2 + 9} - 3}{t^2}$$
$$\lim_{x \to 0} f(x) = \frac{1}{6}$$

$$\lim_{x \to 0} f(x) = \frac{1}{6}$$

(b) [-0,1;0,1] por [-0,1;0,3]

(c) $[-10^{-6}, 10^{-6}]$ por [-0,1; 0,3] (d) $[-10^{-7}, 10^{-7}]$ por [-0,1; 0,3]

Limites de Funções - Exemplos

A função $f(x) = \sin\left(\frac{\pi}{x}\right)$ não tem limite quando $x \to 0$

A função
$$f(x) = \begin{cases} 0, x < 0 \\ 1, x \ge 0 \end{cases}$$
 não tem limite

quando $x \rightarrow 0$