Por lo tanto, en x=a se alcanta el maximo absoluto y en x=o, se alcanta el mínimo absoluto:

$$G(0) = \int_{0}^{0} \sqrt{a^{2} - t^{2}} dt = 0$$

$$G(0) = \int_{-a}^{a} \sqrt{a^{2} - t^{2}} dt = 2 \int_{0}^{a} \sqrt{a^{2} - t$$

* Sen
$$z = \frac{t}{a}$$
 a cos z d $z = dt$
Si $t = a$ = D sen $z = 1$ = D $z = \frac{\pi}{2}$
Si $t = 0$ = D sen $z = 0$ = D $z = 0$

24) Dado
$$a \in \mathbb{R}^+$$
, calcular la imagen de la función $G: [0,a] \longrightarrow \mathbb{R}$

$$G(x) = \int_{-x}^{x} \sqrt{a^2 - t^2} dt \forall x \in [0,a]$$

Sea
$$f(t) = \sqrt{a^2 - t^2} \quad \forall t \in]-a, a[, f \in (]-a,a[)$$

Por el teorema fundamental del cálculo y la regla de la cadena, $G \in D([0,a])$ y:

$$= \sqrt{a^2 - x^2} + \sqrt{a^2 - x^2} = 2\sqrt{a^2 - x^2} \quad \forall x \in [0, a]$$

Ademan, G & C ([0,a]), por el th. de Weierstrass y

por el teorema del valor intermedio:

$$G'(x) = 0 = 0$$
 $2\sqrt{a^2 - x^2} = 0 = 0$ $x = \pm \alpha = 0$ $x = a$ de donde:
 $G'(0) = 2a > 0 = 0$ Ges estrictamente creciente en $[0,a]$