Information Theory: Probability Background

zqy1018

2020. 5. 3

Contents

1	Famous Inequalities In Probability Theory	
2	Convergence of Random Variables	
	2.1 Convergence In Probability	
	2.2 Convergence In Mean	
	2.3 Convergence With Probability 1	
	2.4 Relationship	
3	Law of Large Number	
4	Stochastic Process	
5	Markov Chain	
	5.1 Basic Definition	
	5.2 Basic Properties	
	5.3 Time-invariance And Transition Matrix	
6	Conditional Expected Value	
	6.1 Basic Definition	
	6.2 Basic Properties	

1 Famous Inequalities In Probability Theory

In this section, we review some famous and also useful inequalities.

Theorem 1. (Markov's Inequality) For any nonnegative random variable X and any t > 0,

$$p(X \ge t) \le \frac{\mathbf{E}X}{t}$$

Proof.

$$tp(X \ge t) = \int_{t}^{+\infty} tp(X = x) dx \le \int_{t}^{+\infty} xp(X = x) dx \le \int_{0}^{+\infty} xp(X = x) dx = EX$$

So
$$p(X \ge t) \le \frac{EX}{t}$$
.

We can easily construct a random variable that satisfies the equality. For example, let X=1 (i.e. p(X=1)=1). Then $p(X\geq 1)=\frac{\mathrm{E}X}{1}=1$.

Theorem 2. (Chebyshev's Inequality) For any random variable Y with mean value μ and variance σ^2 ,

$$p(|Y - \mu| > \epsilon) \le \frac{\sigma^2}{\epsilon^2}$$

Proof. Let $X = (Y - \mu)^2$. Then by Markov's inequality,

$$p(|Y - \mu| > \epsilon) = p(X > \epsilon^2) \le \frac{EX}{\epsilon^2} = \frac{D(Y - \mu) + [E(Y - \mu)]^2}{\epsilon^2} = \frac{\sigma^2}{\epsilon^2}$$

Note that we will use the Chebyshev's inequality to prove the weak law of large number.

2 Convergence of Random Variables

We define convergence on a sequence of random variables $X_1, X_2, \dots, X_n, \dots$. We usually use three different definitions of convergence.

2.1 Convergence In Probability

Definition. X_1, X_2, \cdots converges to X in probability if

$$\forall \epsilon > 0, \lim_{n \to \infty} p(|X_n - X| > \epsilon) = 0$$

Or to write it in epsilon-N language

$$\forall \epsilon > 0, \forall \delta > 0, \exists N \in \mathbb{N}, \forall n > N, p(|X_n - X| > \epsilon) < \delta$$

Usually denoted as $X_n \stackrel{p}{\to} X$.

2.2 Convergence In Mean

Definition. X_1, X_2, \cdots converges to X in the p-th mean (or in the L^p -norm) if

$$\lim_{n \to \infty} \mathbb{E}\left(|X_n - X|^p\right) = 0, 1 \le p < +\infty$$

Or to write it in epsilon-N language

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n > N, \mathrm{E}(|X_n - X|^p) = 0 < \epsilon$$

Usually denoted as $X_n \stackrel{L^p}{\to} X$.

Note.

- (1) We usually use p=2, and $X_n \stackrel{L^2}{\to} X$ is also called X_n converges **in mean square**.
- $(2) \ 1 \le q$

2.3 Convergence With Probability 1

Definition. X_1, X_2, \cdots converges to X with probability 1 (or almost surely) if

$$p\left(\lim_{n\to\infty} X_n = X\right) = 1$$

Or more explicitly,

$$p\left\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\right\} = 1$$

Usually denoted as $X_n \stackrel{a.s.}{\to} X$.

2.4 Relationship

We can prove that the X_1, X_2, \cdots converges to X either in mean or with probability 1 implies that it also converges in probability.

Theorem 3. $X_n \stackrel{L^p}{\to} X \implies X_n \stackrel{p}{\to} X$.

Theorem 4. $X_n \stackrel{a.s.}{\to} X \implies X_n \stackrel{p}{\to} X$.

3 Law of Large Number

Definition. X_1, X_2, \cdots are **i.i.d.** if they are independent of each other and obey the same distribution.

Note. X_1, X_2, \cdots can be treated as a sequence or many random variables. It depends on the context.

Theorem 5. (Strong Law of Large Number, Strong LLN) For i.i.d. X_1, X_2, \dots , let $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then

$$p\left(\lim_{n\to\infty}\overline{X}_n=\mathrm{E}(X_1)\right)=1$$

Or
$$\overline{X}_n \stackrel{a.s.}{\to} \mathrm{E}(X_1)$$
.

Theorem 6. (Weak Law of Large Number, Weak LLN) For i.i.d. X_1, X_2, \dots , let $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then $\overline{X}_n \stackrel{p}{\to} EX_1$.

Proof. We assume that $DX_1 = \sigma^2$.

By Chebyshev's inequality, we have

$$p(|\overline{X}_n - EX_1| > \epsilon) \le \frac{D\overline{X}_n}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}$$

where $D\overline{X}_n = \frac{\sum_{i=1}^n DX_i}{n^2} = \frac{\sigma^2}{n}$.

Then we take $n \to \infty$ and we have $\overline{X}_n \stackrel{p}{\to} EX_1$.

Note. Sometimes if the random variables are not well-defined, then the strong one may not hold. For example, when EX_1 does not exist. However, they share the same premises. So if the strong one holds, then the weak one will hold.

4 Stochastic Process

Definition. A (discrete) stochastic process is an indexed sequence of random variables.

The random variables can be related to each other. For example, $X_{i+1} = X_i + 1$.

There are many different types of stochastic processes. Here we focus on the stationary process.

Definition. A stochastic process is **stationary** if the joint distribution of *any subset* of the sequence of random variables is *time-shift-invariant*. That is,

$$\forall n, t, p(X_{i_1} = x_1, X_{i_2} = x_2, \dots, X_{i_n} = x_n) = p(X_{i_1+t} = x_1, X_{i_2+t} = x_2, \dots, X_{i_n+t} = x_n)$$

Note. The random variables in a stationary stochastic process obeys the same distribution since $\forall x, p(X_1 = x) = p(X_2 = x) = \cdots$.

5 Markov Chain

5.1 Basic Definition

Definition. For random variables X_1, X_2, \dots, X_n , where $n \geq 3$, $X_1 \rightarrow X_2 \rightarrow \dots \rightarrow X_n$ form a Markov chain if

$$p(x_1, x_2, \dots, x_n) = p(x_1)p(x_2|x_1)\cdots p(x_n|x_{n-1})$$

Note. It is easy to check that $X_1 \to X_2 \to \cdots \to X_n$ iff $X_n \to X_{n-1} \to \cdots \to X_1$. So sometimes we use another notation $X_1 \leftrightarrow X_2 \leftrightarrow \cdots \leftrightarrow X_n$ to represent this symmetry.

Actually, there is another equivalent definition, often seen in books about stochastic processes.

Definition. A discrete stochastic process X_1, X_2, \dots, X_n is said to be a Markov chain if

$$p(x_{n+1}|x_n, x_{n-1}, \dots, x_1) = p(x_{n+1}|x_n)$$

We can see their equivalence by chain rule.

5.2 Basic Properties

Theorem 7. $X_1 \to X_2 \to \cdots \to X_n$ iff

$$X_1 \to X_2 \to X_3$$

 $(X_1, X_2) \to X_3 \to X_4$
 \vdots
 $(X_1, X_2, \cdots, X_{n-2}) \to X_{n-1} \to X_n$

Proof. By induction.

Theorem 8. $X \to Y \to Z \iff X \perp Z|Y$, i.e. X and Z and X are conditionally independent given Y.

Proof. Notice that
$$X \to Y \to Z \iff p(x,y,z) = p(x)p(y|x)p(z|y) \iff p(x,z|y) = p(x|y)p(z|y)$$
.

Corollary 1. $X \to Y \to Z \iff I(X;Z|Y) = 0$.

Corollary 2. If Z = f(Y), then $X \to Y \to Z$.

5.3 Time-invariance And Transition Matrix

Definition. A Markov chain is **time-invariant** if $p(x_{n+1}|x_n)$ is independent of n. That is, $\forall n, p(X_{n+1} = a|X_n = b) = p(X_2 = a|X_1 = b)$.

Note. We assume that all X_i 's are defined in the same alphabet.

For convenience, we usually represent $p(x_2|x_1)$ with a **transition matrix** P, where $P_{ij} = p(X_2 = x_j|X_1 = x_i)$. And sometimes p(y|x) just denotes the transition matrix from X to Y.

For a time-invariant Markov chain, if the transition matrix and initial distribution are determined, then the whole stochastic process is determined.

6 Conditional Expected Value

Conditional expected values plays an important role in information theory. In fact, many information measures can be written as the conditional expected value of two random variables.

6.1 Basic Definition

Definition. The conditional expected value of X given Y = y is

$$E(X|Y = y) = \int xp(x|Y = y)dx$$

Once Y is given, E(X|Y=y) only depends on X. So E(X|Y) can be seen as a random variable related to Y.

6.2 Basic Properties

Theorem 9. E(E(X|Y)) = E(X).

Theorem 10. If X, Y are conditionally independent given Z, then E(XY|Z) = E(X|Z)E(Y|Z).

Acknowledgment

The contents are mainly based on the course materials of CS258, 2020 Spring, Shanghai Jiao Tong University and Wikipedia.