

Outline

- Fundamentals of deep learning
- ML programming paradigm
- Deep learning structure
- Gradient descent algorithm
- Common NN architectures
- Deep learning development with tensorflow

What is Deep Learning?

^{*}From Deep Learning with Python, Francois Chollet, 2018

New programming paradigm in ML

^{*}From Deep Learning with Python, Francois Chollet, 2018

Motivation from biological neurons

^{*}From Hand on Machine Learning with Scikit Learn, Keras, and TensorFlow, Aurelien Geron. 2019

Simple Idea

^{*}Neural Network and Deeplearning course, deeplearning.ai, Coursera

Input Features

Deep neural network for digit classification

^{*}From Deep Learning with Python, Francois Chollet, 2018

Deep learning structure

*From Deep Learning with Python, Francois Chollet, 2018

Gradient descent

*From MIT 6S191 Deep Learning Lecture 1

SOME COMMON NEURAL NETWORK ARCHITECTURES

Convolutional Neural Networks (CNN)

 $\underline{https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53}$

Recurrent Neural Networks (RNN)

Long Short Term Memory (LSTM)

Begin Deep Learning Development in Colab

2 types of cell in notebook

TensorFlow is already installed in Colab

CNN_example1.ipynb

HW 6: use the provided CNN_example1.ipynb notebook Train your model to recognize fashion_mnist dataset. The model must have the following layers

- 2 Conv2D layers,
- 2 MaxPooling2D layers
- 2 BatchNormalization() layers
- 1 Dropout() layer

Train your model to achieve test accuracy > 0.9

This is a tutorial of how to classify the Fashion-MNIST dataset with tr.keras, using a Convolutional Neural Network (CNN) architecture. In just a few lines of code, you can define and train a model that is able to classify the images with over 90% accuracy, even without much optimization.

Categories

[50] model.summary()

Model: "sequential_3"

Layer (type)	Output	Shape	Param #
conv2d_5 (Conv2D)	(None,	28, 28, 16)	160
max_pooling2d_5 (MaxPooling2	(None,	14, 14, 16)	0
conv2d_6 (Conv2D)	(None,	14, 14, 32)	4640
max_pooling2d_6 (MaxPooling2	(None,	7, 7, 32)	0
batch_normalization_1 (Batch	(None,	7, 7, 32)	128
dropout_1 (Dropout)	(None,	7, 7, 32)	0
batch_normalization_2 (Batch	(None,	7, 7, 32)	128
flatten_3 (Flatten)	(None,	1568)	0
dense_9 (Dense)	(None,	64)	100416
dense_10 (Dense)	(None,	64)	4160
dense_11 (Dense)	(None,	10)	650

Total params: 110,282 Trainable params: 110,154 Non-trainable params: 128

Fashion MNIST prediction

References

- F. Chollet. Deep Learning with Python. Manning Publications Co. 2018.
- A. Geron. Machine Learning with Scikit-Learn, Keras & TensorFlow. O'Reilly Media, Inc. 2019.
- I. GoodFellow, Y. Bengio and A. Courville. Deep Learning. <u>www.deeplearningbook.org</u>.
- Coursera
- Deep Learning Specialization. Deeplearning.ai.
- DeepLearning.AI TensorFlow Developer
- MIT 6.S191 Introduction to Deep Learning http://introtodeeplearning.com/