Durée: 1 heure ... minutes

Contrôle d'algèbre linéaire $N^{\circ}3$

	-	
NOM:		Croupe
PRENOM:		Groupe

Barème sur 15 points

- 1. Dans le plan, muni d'une origine O et de la base canonique orthonormée $B = (\vec{e}_1, \vec{e}_2)$, on considère les trois endomorphismes suivants :
 - s: symétrie orthogonale d'axe (O, \vec{a}) tel que $\angle(\vec{e}_1; \vec{a}) = \frac{\pi}{3}$,
 - r: rotation de centre O et d'angle $\alpha = \frac{\pi}{48}$,
 - p: projection orthogonale du plan sur la droite 2y x = 0.
 - a) Relativement à la base B, déterminer la matrice M_q de l'application linéaire $q = s \circ r^8 \circ p$
 - b) Déterminer $\operatorname{Im} g$ et $\operatorname{Ker} g$.
 - c) Déterminer la nature géométrique de g.

... pts

- **2.** Le plan \mathbb{R}^2 est muni de la base canonique $B = (\vec{e}_1, \vec{e}_2)$. On considère une affinité f d'axe a: 2y-x=0 et de rapport $\lambda=-2$. Le point P(8,6) a pour image par f le point P'(2,-3).
 - a) Déterminer la direction \vec{v} de l'affinité. Soit $B' = (\vec{a}, \vec{v})$ où \vec{a} est un vecteur parallèle à l'axe a. Déterminer dans B' la matrice M'_f de f.

Soit g une application linéaire de \mathbb{R}^2 dans \mathbb{R}^2 telle que :

$$\begin{cases} g(\vec{e}_1) + 6 \, \vec{e}_2 - 4 \, \vec{e}_2 = \vec{0} \\ g(2 \, \vec{e}_2 - \vec{e}_1) = (2 \, \alpha - 4) \, \vec{e}_1 \,, \ \alpha \in \mathbb{R} \end{cases}$$

- b) Relativement à la base B, calculer:
 - la matrice, dépendante de $\alpha \in \mathbb{R}$, M_g de l'application g
 - la matrice de l'application l = 4f g.

Déterminer le paramètre $\alpha \in \mathbb{R}$ pour que l admette une droite de points fixes.

... pts

3. Dans l'espace muni de la base canonique orthonormée $B = (\vec{e_1}, \vec{e_2}, \vec{e_3})$, on considère l'endomorphisme f défini par sa matrice M par rapport à B:

$$M = \frac{1}{3} \left(\begin{array}{rrr} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{array} \right)$$

- a) Montrer que f est bijective.
- b) Montrer que l'ensemble des points fixes de f est un plan α dont on demande l'équation cartésienne.
- c) Pour tout vecteur vecteur \vec{x} appartenant à \mathbb{R}^3 , calculer : $(f \circ f)(\vec{x})$.
- d) Soit \vec{a} un vecteur normal à α , calculer $f(\vec{a})$. Déduire des résultats précédents la nature géométrique de f; donner la matrice de f dans une base judicieusement choisie à préciser.

... pts

4. On note P_2 l'espace vectoriel des polynômes de degré plus petit ou égal à deux. On munit P_2 de la base canonique $E = (1; x; x^2)$, et de la base

$$E' = (3; 1 + x(1 - x); x(1 + 2x)).$$

On munit \mathbb{R}^2 de la base canonique $B=(\vec{e}_1\,,\,\vec{e}_2)$ et de la base $B'=(\vec{u}\,,\,\vec{v})$ définie par

$$\begin{cases} \vec{u} - \vec{e}_1 + \vec{e}_2 = \vec{0} \\ 2\vec{e}_1 - \vec{v} - 4\vec{e}_2 = \vec{0} \end{cases}$$

On considère l'application linéaire f de P_2 dans \mathbb{R}^2 dont la matrice associée est $A' = \begin{pmatrix} 2 & 3 & 1 \\ 1 & 0 & 1 \end{pmatrix}$ par rapport à E et B'.

- a) Déterminer la matrice de passage de la base E à E' ainsi que la matrice M' de f par rapport à E' et B'.
- b) Soit la droite d dont l'équation cartésienne par rapport à la base B est

$$3x + 2y + 1 = 0.$$

Déterminer :

- l'équation cartésienne de d par rapport à la base B'
- les composantes de $f^{-1}(d)$ par rapport à la base E'.

... pts