EXERCICES — CHAPITRE 6

Statistiques univariées

Exercice 1 – Un commerçant observe, durant les huit premiers mois de l'ouverture de son officine, son chiffre d'affaires mensuel en milliers d'euros. Le résultat de l'observation est résumé dans le tableau suivant où *X* désigne le chiffre d'affaires correspondant.

Mois	1	2	3	4	5	6	7	8
X	12	13	15	19	21	22	24	23

Calculer la moyenne \overline{X} , la variance V(X) et la médiane de cette série.

Exercice 2 – Le tableau de l'espérance de vie *X* à la naissance pour les hommes, en France, entre 2010 et 2016, est le suivant :

Année	2010	2011	2012	2013	2014	2015	2016
Hommes	78.0	78.4	78.5	78.8	79.3	79.0	79.3

Déterminer la moyenne, la variance, le premier quartile, la médiane, le troisième quartile et l'écart inter-quartile de l'espérance de vie des hommes en France entre 2010 et 2016.

Exercice 3 – Le répartition des notes aux tests logiques de l'ESSEC pour les admissibles en 2018 est donnée par le tableau suivant :

Note	[0,4[[4,6[[6,8[[8, 10[[10, 12[[12, 14[[14, 16[[16, 20]
Fréquence (%)	1.08	4.81	21.03	32.45	28.00	9.50	2.88	0.24

Calculer la moyenne et la médiane de cette série. L'ESSEC annonce une moyenne de 9.40. Expliquer la différence avec la valeur trouvée.

Statistiques bivariées

Exercice 4 – Le tableau de l'espérance de vie à la naissance pour les hommes et les femmes en France, entre 2010 et 2016, est le suivant :

Année	2010	2011	2012	2013	2014	2015	2016
Hommes	78.0	78.4	78.5	78.8	79.3	79.0	79.3
Femmes	84.7	85.0	84.8	85.0	85.4	85.1	85.3

On note X l'espérance de vie des hommes et Y l'espérance de vie des femmes.

- 1. Calculer les moyennes empiriques \overline{X} et \overline{Y} .
- 2. Calculer les variances et écarts-types empiriques V(X), V(Y), σ_X et σ_Y .
- 3. Calculer la covariance empirique Cov(X, Y).
- 4. En déduire le coefficient de corrélation linéaire $\rho(X,Y)$. Un ajustement linéaire entre les variables mesurant les espérances de vie pour les hommes et pour les femmes est-il pertinent?
- 5. Tracer sur un même graphique le nuage de points associée à la série statistique double (*X*, *Y*) et la droite de régression linéaire.

Exercice 5 – L'évolution du chiffre d'affaires (en millions d'euros) d'une entreprise depuis sa création en 2012 est donnée par le tableau suivant :

Année	2012	2013	2014	2015	2016	2017	2018	2019
Chiffre d'affaires	0.7	1.6	2	2.4	2.5	2.8	3	3

On note X la variable donnant l'année et Y celle donnant le chiffre d'affaires.

- 1. Calculer les moyennes empiriques \overline{X} et \overline{Y} .
- 2. Calculer les variances et écarts-types empiriques V(X), V(Y), σ_X et σ_Y .
- 3. Calculer la covariance empirique Cov(X, Y).
- 4. En déduire le coefficient de corrélation linéaire $\rho(X, Y)$. Un ajustement linéaire entre X et Y est-il pertinent?
- 5. Calculer le coefficient de corrélation de *X* et exp(*Y*) et le comparer à celui de *X* et *Y*. En déduire ce que l'on appelle un *ajustement logarithmique* de *Y* en *X*.