Computational Complexity

Assignment 1

Due date: 30 Azar

Problem 1. Let c_1, c_2, c_3 are three positive integers such that $c_3 > 2$. prove or disprove that

$$c_1.n^{2^n}.2^{c_2n.c_3^n} \in 2^{2^{O(n)}}.$$

Problem 2. Let A, B be two languages in P and let the strings $x \in A$ and $y \notin A$ are given. Prove that there is a polytime reduction from A to B.

Problem 3. Consider the languages

- $A_1 = \{ < M > \mid L(M) \text{ is empty } \}$
- $A_2 = \{ \langle M, x \rangle \mid M \text{ accepts the string } x \}$
- $B_1 = \{ (\langle M \rangle, \langle N \rangle) \mid L(N) \text{ is the compliment of } L(M), \text{ i.e. } L(N) = \Sigma^* \setminus L(M) \}$
- $B_2 = \{ (\langle M \rangle, x) \mid M \text{ accepts the strings } x \text{ and } x^R \text{ (the reverse of string } x) \}$

where M, N are Turing machine and < M > is the representation of a machine M and L(M) is the language accepted by M. For each $i \in \{1, 2\}$, we know that A_i is undecidable, use this fact and prove that B_i is undecidable.

Problem 4. Define a TM M to be **oblivious** if its head movement does not depend on the input but only on the input length. That is, M is oblivious if for every input $x \in \{0,1\}^*$ and $i \in \mathbb{N}$, the location of each of M's heads at the ith step of execution on input x is only a function of |x| and i. Show that for every $T : \mathbb{N} \to \mathbb{N}$, if $L \in \mathbf{DTIME}(T(n))$ then there is an oblivious TM that decides L in time $O(T(n)^2)$.

Problem 5. In the *Two Hamilton Cycle* problem, we have a graph G and a Hamilton cycle C in G and asked whether G contains another Hamilton cycle. What is the complexity of this problem (polynomial solvable or NP-hard)?

Problem 6. In the 2023-SAT problem, the input is a boolean formula ϕ and the query is if ϕ has at least 2023 different satisfying assignments. Prove that 2023-SAT is NP-complete. (Hint: Make a reduction from SAT problem.)

Problem 7. Let X be a set and $P = \{P_1, \dots, P_n\}$ be a collection of subsets of X such that $\bigcup_{i=1}^n P_i = X$. A *nice sub-collection* for P is a subset $\{P'_1, \dots, P'_k\}$ of P such that $\bigcup_{i=1}^k P'_i = X$. In *nice sub-collection* problem, the input is a collection P and integer k and the question is if P has a nice sub-collection of size at most k. Prove that this problem is NP-complete.

Problem 8. Prove that PRIMES $\in NP$ without using the fact that PRIMES $\in P$. Hint: A number n is prime iff for every prime factor q of n-1, there exists a number $a \in \{2, \ldots, n-1\}$ satisfying $a^{n-1} = 1 \pmod{n}$ but $a^{(n-1)/q} \neq 1 \pmod{n}$. Use this fact and induction to guess certificates for prime factors of n-1. **Problem 9.** A language is called unary if every string in it is of the form 1^i (the string of i ones) for some i > 0. Show that if there exists an NP-complete unary language then P = NP.

Good luck!