Geometría Diferencial – 1° cuatrimestre 2016

Entrega Práctica 2

Recordemos: Una subvariedad de \mathbb{R}^n de dimensión k es un conjunto $M \subset \mathbb{R}^n$ con la topología de subespacio con la siguiente propiedad: para todo punto $p \in M$ existen un entorno abierto U de p, un abierto V de \mathbb{R}^n y un difeomorfismo $h: U \to V$ tal que $h(U \cap M) = V \cap (\mathbb{R}^k \times \{0\})$. Un par (U, h) como el indicado se llama una carta de U adaptada a M.

Ejercicio: Sea $W \subset \mathbb{R}^n$ abierto y $f: W \to \mathbb{R}^m$ una función diferenciable con la siguiente propiedad: para todo punto x tal que f(x) = 0 el rango de Df(x) es m. Probar que $f^{-1}(0)$ es una subvariedad de dimensión n - m.

Demostración Sea $M:=f^{-1}(0)\subset\mathbb{R}^n$ y dotémoslo de la topología subespacio, automáticamente por ser subespacio de \mathbb{R}^n es una variedad topológica. Sea $p\in M$, como $rk(Df)|_M=m=cte$ y f es diferenciable entonces por el teorema del rango constante $\exists (U,\phi)$ carta con $p\in U$ y (V,ψ) carta con $f(p)=0\in V$, $\psi(f(p))=0$ tal que $\psi\circ f\circ \phi^{-1}((x^1,\ldots x^n))=(x^1,\ldots,x^m,0,\ldots,0)$, o sea el siguiente diagrama conmuta:

$$U \subset \mathbb{R}^n \xrightarrow{f} V \subset \mathbb{R}^n$$

$$\downarrow \phi \downarrow \qquad \qquad \downarrow \psi \downarrow$$

$$\phi(U) \subset \mathbb{R}^n \xrightarrow{\overline{f}} \psi(V) \subset \mathbb{R}^n$$

Donde $\overline{f}((x^1, ..., x^n)) = (x^1, ..., x^m, 0, ..., 0))$

Por ende notemos que si tomamos $U\ni p$ el del teorema y tomamos $V=\phi(U)$ y tomamos como el difeomorfismo $h:=\phi$ entonces $\phi(U\cap M)=\{(\phi(u)_1=\phi(u)_m=0)\ ,\ u\in U\cap M\}=\phi(U)\cap (\mathbb{R}^{n-m}\times\{0\})$ pues si $p\in U\cap M$ entonces $\overline{f}\circ\phi(p)=(\phi(p)_1,\ldots,\phi(p)_m,0,\ldots,0)=\psi\circ f(p)=0$. Por ende M es una subvariedad de dimensión n-m por definición.