

**D4: SYSTEM VALIDATION DIPOLE** 

### Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Certificate No: D5GHzV2-1019\_Feb09

Accreditation No.: SCS 108

Client BV-ADT (Auden)

# CALIBRATION CERTIFICATE

Object D5GHzV2 - SN: 1019 (1985) The Part of the Part

Calibration procedure(s) QA CAL-22.v1

Calibration procedure for dipole validation kits between 3-6 GHz

Calibration date: February 20, 2009

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID#                | Cal Date (Certificate No.)        | Scheduled Calibration  |
|-----------------------------|--------------------|-----------------------------------|------------------------|
| Power meter EPM-442A        | GB37480704         | 08-Oct-08 (No. 217-00898)         | Oct-09                 |
| Power sensor HP 8481A       | US37292783         | 08-Oct-08 (No. 217-00898)         | Oct-09                 |
| Reference 20 dB Attenuator  | SN: 5086 (20g)     | 01-Jul-08 (No. 217-00864)         | Jul-09                 |
| Type-N mismatch combination | SN: 5047.2 / 06327 | 01-Jul-08 (No. 217-00867)         | Jul-09                 |
| Reference Probe EX3DV4      | SN: 3503           | 8-Mar-08 (No. EX3-3503_Mar08)     | Mar-09                 |
| DAE4                        | SN: 601            | 14-Mar-08 (No. DAE4-601_Mar08)    | Mar-09                 |
| Secondary Standards         | ID #               | Check Date (in house)             | Scheduled Check        |
| Power sensor HP 8481A       | MY41092317         | 18-Oct-02 (in house check Oct-07) | In house check: Oct-09 |
| RF generator R&S SMT-06     | 100005             | 4-Aug-99 (in house check Oct-07)  | In house check: Oct-09 |
| Network Analyzer HP 8753E   | US37390585 S4206   | 18-Oct-01 (in house check Oct-08) | In house check: Oct-09 |
|                             | Name               | Function                          | Signature              |
| Calibrated by:              | Jeton Kastrati     | Laboratory Technician             | J-16-                  |

요하면 하는데 하는데 뭐요. 그렇다

Issued: February 23, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Katja Pokovic

Certificate No: D5GHzV2-1019\_Feb09

Approved by:

Page 1 of 14

### **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

### Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

### Calibration is Performed According to the Following Standards:

- a) IEC Std 62209 Part 2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", Draft Version 0.9, December 2004
- b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

#### Additional Documentation:

c) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                                                    | V5.0        |
|------------------------------|----------------------------------------------------------|-------------|
| Extrapolation                | Advanced Extrapolation                                   |             |
| Phantom                      | Modular Flat Phantom V5.0                                |             |
| Distance Dipole Center - TSL | 10 mm                                                    | with Spacer |
| Area Scan resolution         | dx, dy = 10 mm                                           |             |
| Zoom Scan Resolution         | dx, dy = 4.0 mm, dz = 2.5 mm                             |             |
| Frequency                    | 5200 MHz ± 1 MHz<br>5500 MHz ± 1 MHz<br>5800 MHz ± 1 MHz |             |

# Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

|                                  | Temperature     | Permittivity | Conductivity     |
|----------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters      | 22.0 °C         | 36.0         | 4.66 mho/m       |
| Measured Head TSL parameters     | (22.0 ± 0.2) °C | 35.4 ± 6 %   | 4.53 mho/m ± 6 % |
| Head TSL temperature during test | (22.0 ± 0.2) °C | F            |                  |

### SAR result with Head TSL at 5200 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | condition          |                            |
|-------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                          | 100 mW input power | 7.60 mW / g                |
| SAR normalized                                        | normalized to 1W   | 76.0 mW / g                |
| SAR for nominal Head TSL parameters <sup>1</sup>      | normalized to 1W   | 75.7 mW / g ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                            |
|---------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                            | 100 mW input power | 2.13 mW / g                |
| SAR normalized                                          | normalized to 1W   | 21.3 mW / g                |
| SAR for nominal Head TSL parameters <sup>1</sup>        | normalized to 1W   | 21.2 mW / g ± 19.5 % (k=2) |

<sup>&</sup>lt;sup>1</sup> Correction to nominal TSL parameters according to c), chapter "SAR Sensitivities

### Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

|                                  | Temperature     | Permittivity | Conductivity     |
|----------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters      | 22.0 °C         | 35.6         | 4.96 mho/m       |
| Measured Head TSL parameters     | (22.0 ± 0.2) °C | 34.9 ± 6 %   | 4.80 mho/m ± 6 % |
| Head TSL temperature during test | (22.0 ± 0.2) °C |              |                  |

### SAR result with Head TSL at 5500 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | condition          |                            |
|-------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                          | 100 mW input power | 7.66 mW / g                |
| SAR normalized                                        | normalized to 1W   | 76.6 mW / g                |
| SAR for nominal Head TSL parameters <sup>1</sup>      | normalized to 1W   | 76.2 mW / g ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          | ,                          |
|---------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                            | 100 mW input power | 2.15 mW / g                |
| SAR normalized                                          | normalized to 1W   | 21.5 mW / g                |
| SAR for nominal Head TSL parameters <sup>1</sup>        | normalized to 1W   | 21.4 mW / g ± 19.5 % (k=2) |

# Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

|                                  | Temperature     | Permittivity | Conductivity     |
|----------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters      | 22.0 °C         | 35.3         | 5.27 mho/m       |
| Measured Head TSL parameters     | (22.0 ± 0.2) °C | 34.3 ± 6 %   | 5.08 mho/m ± 6 % |
| Head TSL temperature during test | (22.0 ± 0.2) °C |              |                  |

### SAR result with Head TSL at 5800 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | condition          |                            |
|-------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                          | 100 mW input power | 7.42 mW / g                |
| SAR normalized                                        | normalized to 1W   | 74.2 mW / g                |
| SAR for nominal Head TSL parameters <sup>1</sup>      | normalized to 1W   | 73.7 mW / g ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                            |
|---------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                            | 100 mW input power | 2.07 mW / g                |
| SAR normalized                                          | normalized to 1W   | 20.7 mW / g                |
| SAR for nominal Head TSL parameters <sup>1</sup>        | normalized to 1W   | 20.5 mW / g ± 19.5 % (k=2) |

<sup>&</sup>lt;sup>1</sup> Correction to nominal TSL parameters according to c), chapter "SAR Sensitivities"

# Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

|                                  | Temperature     | Permittivity | Conductivity     |
|----------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters      | 22.0 °C         | 49.0         | 5.30 mho/m       |
| Measured Body TSL parameters     | (22.0 ± 0.2) °C | 47.5 ± 6 %   | 5.25 mho/m ± 6 % |
| Body TSL temperature during test | (21.2 ± 0.2) °C |              |                  |

### SAR result with Body TSL at 5200 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | condition          |                            |
|-------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                          | 100 mW input power | 7.69 mW / g                |
| SAR normalized                                        | normalized to 1W   | 76.9 mW / g                |
| SAR for nominal Body TSL parameters <sup>2</sup>      | normalized to 1W   | 76.4 mW / g ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                            |
|---------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                            | 100 mW input power | 2.15 mW / g                |
| SAR normalized                                          | normalized to 1W   | 21.5 mW / g                |
| SAR for nominal Body TSL parameters <sup>2</sup>        | normalized to 1W   | 21.3 mW / g ± 19.5 % (k=2) |

# Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

|                                  | Temperature     | Permittivity | Conductivity     |
|----------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters      | 22.0 °C         | 48.6         | 5.65 mho/m       |
| Measured Body TSL parameters     | (22.0 ± 0.2) °C | 46.8 ± 6 %   | 5.61 mho/m ± 6 % |
| Body TSL temperature during test | (21.2 ± 0.2) °C |              |                  |

### SAR result with Body TSL at 5500 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | condition          |                            |
|-------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                          | 100 mW input power | 8.30 mW / g                |
| SAR normalized                                        | normalized to 1W   | 83.0 mW / g                |
| SAR for nominal Body TSL parameters <sup>2</sup>      | normalized to 1W   | 82.4 mW / g ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                            |
|---------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                            | 100 mW input power | 2.30 mW / g                |
| SAR normalized                                          | normalized to 1W   | 23.0 mW / g                |
| SAR for nominal Body TSL parameters <sup>2</sup>        | normalized to 1W   | 22.8 mW / g ± 19.5 % (k=2) |

<sup>&</sup>lt;sup>2</sup> Correction to nominal TSL parameters according to c), chapter "SAR Sensitivities

# Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

|                                  | Temperature     | Permittivity | Conductivity     |
|----------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters      | 22.0 °C         | 48.2         | 6.00 mho/m       |
| Measured Body TSL parameters     | (22.0 ± 0.2) °C | 46.2 ± 6 %   | 5.97 mho/m ± 6 % |
| Body TSL temperature during test | (21.2 ± 0.2) °C |              |                  |

# SAR result with Body TSL at 5800 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | condition          |                            |
|-------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                          | 100 mW input power | 7.31 mW / g                |
| SAR normalized                                        | normalized to 1W   | 73.1 mW / g                |
| SAR for nominal Body TSL parameters <sup>2</sup>      | normalized to 1W   | 72.5 mW / g ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                            |
|---------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                            | 100 mW input power | 2.01 mW / g                |
| SAR normalized                                          | normalized to 1W   | 20.1 mW / g                |
| SAR for nominal Body TSL parameters <sup>2</sup>        | normalized to 1W   | 19.9 mW / g ± 19.5 % (k=2) |

 $<sup>^{\</sup>rm 2}$  Correction to nominal TSL parameters according to c), chapter "SAR Sensitivities

### **Appendix**

### Antenna Parameters with Head TSL at 5200 MHz

| Impedance, transformed to feed point | 51.6 Ω - 6.6 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | -23.5 dB        |

### Antenna Parameters with Head TSL at 5500 MHz

| Impedance, transformed to feed point | 51.5 Ω - 1.1 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | -34.7 dB        |

### Antenna Parameters with Head TSL at 5800 MHz

| Impedance, transformed to feed point | 56.9 Ω + 2.3 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | -23.4 dB        |

# Antenna Parameters with Body TSL at 5200 MHz

| Impedance, transformed to feed point | 51.7 Ω - 5.7 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | -24.7 dB        |

## Antenna Parameters with Body TSL at 5500 MHz

| Impedance, transformed to feed point | 51.4 Ω + 0.2 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | -37.0 dB        |

## Antenna Parameters with Body TSL at 5800 MHz

| Impedance, transformed to feed point | 57.0 Ω + 3.5 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | -22.8 dB        |

### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.204 ns |  |
|----------------------------------|----------|--|

After long term use with 40 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG             |
|-----------------|-------------------|
| Manufactured on | February 05, 2004 |

Certificate No: D5GHzV2-1019\_Feb09 Page 8 of 14

#### **DASY5 Validation Report for Head TSL**

12.02.2009 12:08:48

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 5GHz; Type: D5GHz; Serial: D5GHzV2 - SN:1019

Communication System: CW-5GHz; Frequency: 5200 MHz Frequency: 5500 MHz Frequency: 5800 MHz;

Duty Cycle: 1:1

Medium: HSL 5800 MHz

Medium parameters used: f = 5200 MHz;  $\sigma = 4.53$  mho/m;  $\varepsilon_r = 35.4$ ;  $\rho = 1000$  kg/m<sup>3</sup> Medium parameters used: f = 5500 MHz;  $\sigma = 4.80$  mho/m;  $\varepsilon_r = 34.9$ ;  $\rho = 1000$  kg/m<sup>3</sup> Medium parameters used: f = 5800 MHz;  $\sigma = 5.08$  mho/m;  $\varepsilon_r = 34.3$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

#### DASY5 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.63, 5.63, 5.63)ConvF(5.24, 5.24, 5.24)ConvF(5.04, 5.04, 5.04); Calibrated: 08.03.2008
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 14.03.2008
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

### d=10mm, Pin=100mW, f=5200 MHz/Area Scan (61x61x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 15.3 mW/g

#### d=10mm, Pin=100mW, f=5200 MHz/Zoom Scan (8x8x10), dist=2mm (8x8x10)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 49.6 V/m; Power Drift = 0.123 dB

Peak SAR (extrapolated) = 29.9 W/kg

SAR(1 g) = 7.6 mW/g; SAR(10 g) = 2.13 mW/g

Maximum value of SAR (measured) = 15.8 mW/g

### d=10mm, Pin=100mW, f=5500 MHz/Zoom Scan (8x8x10), dist=2mm (8x8x10)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 48.4 V/m; Power Drift = 0.103 dB

Peak SAR (extrapolated) = 31.4 W/kg

SAR(1 g) = 7.66 mW/g; SAR(10 g) = 2.15 mW/g

Maximum value of SAR (measured) = 16.2 mW/g

#### d=10mm, Pin=100mW, f=5800 MHz/Zoom Scan (8x8x10), dist=2mm (8x8x10)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 45.9 V/m; Power Drift = 0.091 dB

Peak SAR (extrapolated) = 32.4 W/kg

SAR(1 g) = 7.42 mW/g; SAR(10 g) = 2.07 mW/g

Maximum value of SAR (measured) = 16 mW/g



0 dB = 16 mW/g

# Impedance Measurement Plot for Head TSL



### **DASY5 Validation Report for Body TSL**

Date/Time: 20.02.2009 14:55:19

Test Laboratory: SPEAG, Zurich, Switzerland

### DUT: Dipole 5GHz; Type: D5GHz; Serial: D5GHzV2 - SN:1019

Communication System: CW-5GHz; Frequency: 5200 MHzFrequency: 5500 MHzFrequency: 5800 MHz;

Duty Cycle: 1:1

Medium: MSL 5800 MHz

Medium parameters used: f = 5200 MHz;  $\sigma = 5.3$  mho/m;  $\epsilon_r = 47.5$ ;  $\rho = 1000$  kg/m<sup>3</sup> Medium parameters used: f = 5500 MHz;  $\sigma = 5.66$  mho/m;  $\epsilon_r = 46.8$ ;  $\rho = 1000$  kg/m<sup>3</sup> Medium parameters used: f = 5800 MHz;

 $\sigma = 6.03 \text{ mho/m}; \, \varepsilon_r = 46.1; \, \rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

#### DASY5 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.95, 4.95, 4.95)ConvF(4.61, 4.61, 4.61)ConvF(4.74, 4.74, 4.74); Calibrated: 08.03.2008
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 14.03.2008
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

# d=10mm, Pin=100mW, f=5200 MHz/Area Scan (61x61x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 16.8 mW/g

#### d=10mm, Pin=100mW, f=5200 MHz/Zoom Scan (8x8x10), dist=2mm (8x8x10)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 57.8 V/m; Power Drift = 0.084 dB

Peak SAR (extrapolated) = 28.5 W/kg

SAR(1 g) = 7.69 mW/g; SAR(10 g) = 2.15 mW/g

Maximum value of SAR (measured) = 15.9 mW/g

### d=10mm, Pin=100mW, f=5500 MHz/Zoom Scan (8x8x10), dist=2mm (8x8x10)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 49.4 V/m; Power Drift = -0.00111 dB

Peak SAR (extrapolated) = 33.8 W/kg

SAR(1 g) = 8.3 mW/g; SAR(10 g) = 2.3 mW/g

Maximum value of SAR (measured) = 17.3 mW/g

### d=10mm, Pin=100mW, f=5800 MHz/Zoom Scan (8x8x10), dist=2mm (8x8x10)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 44.9 V/m; Power Drift = -0.066 dB

Peak SAR (extrapolated) = 31.2 W/kg

SAR(1 g) = 7.31 mW/g; SAR(10 g) = 2.01 mW/g

Maximum value of SAR (measured) = 15.6 mW/g



0 dB = 30 mW/g

# Impedance Measurement Plot for Body TSL

