

input layor Holden

output layer

$$1.9.$$

$$\Rightarrow (n) = \begin{cases} 1, 270 \\ -1, 260 \end{cases}$$

Universal Approximation Hutorian

A shallow network (single hidden lager)

who a non-linear activation fet con tenen

ancitronily close any function.

Activation for

- (1) Sigmoid fet $\phi(x) = \frac{1}{1+x^{-2}}$
- (2) Hyperblic tengent (tenh) $\phi(x) = \frac{z e^{-x}}{e^{x} + e^{-x}}$
- \$(A)
- REclified linear

 Unit (RELU) $\phi(n) = \max(0, x) = \begin{cases} x, & x > 0 \end{cases}$

TEAKY RELU $\phi(x) = \int x, x > 0$ $\int Sx, x \leq 0$ $\delta = 0.01$

$$y_A = \phi(v_A) = \phi(1. x_1 - 1. x_2 + 1)$$

 $y_B = \phi(v_B) = \phi(-2. x_1 + 2. x_2 + 3)$

Line associated w/ ya:

line associated w/ y8:

(=)
$$\chi_2 = \chi_1 - \frac{3}{2}$$

>< 1	×z	J A	y B
0	0	\$(0-0+1) = 1	$\phi(0+0+3)=1$
0	2	$\phi(-2+1)=-1$	$\varphi(4+3)=1$
2	0	$\varphi(z+1)=1$	$\phi(-4+3)=-1$
		\	

(0,2)

(0,0)

3/2 (2,0) 2(1

output: $y = \phi(y_A + y_B)$

AND

STARTING ON WEIGHTS directly connected to output layer:

$$\mathcal{J}^{\mathcal{B}}$$
 $\mathcal{J}^{\mathcal{B}}$ $\mathcal{J}^{\mathcal{B}}$

output:
$$J_L = \phi(V_L)$$

$$\frac{\partial J(\omega)}{\partial \omega_{jL}} = \frac{\partial J}{\partial \varepsilon_{L}} \frac{\partial \varepsilon_{L}}{\partial \gamma_{L}} \frac{\partial \gamma_{L}}{\partial \gamma_{L}} \frac{\partial \gamma_{L}}{\partial \omega_{jL}} \frac{\partial \gamma_{L}}{\partial$$

gradient descent updote:

$$\omega_{jL}^{(t+1)} = \omega_{jL}^{(t)} + g \cdot E_L \cdot \varphi'(v_L) \cdot y_j$$

(t) = iteration t