Q1 .scalable design principles are *
Principle of independence
Principle of balanced design
Principle of design for scalability
All of above
Q2.N-wide superscalar processor *
In which n-instructions issued at a time
in which n-instructions fetched,decoded,executed and committed per cycle
O Both of above
None of above
Q3 multi-core architecture have
single processor core on single die
multiple processor core on single die
Both of above
None of above
J. 1.3.1.2 S. 425.12
Q4.VLIW processor rely on *
Compile time analysis to identify and bundle instructions for concurrunt execution
Run time analysis to identify and bundle instructions for concurrunt execution
Run time and Link time analysis to identify and bundle instructions for concurrunt execution
○ None of above

Q5.memory performance depends on *	
○ Latency	
Bandwidth	
only A above	
Both A and B above	
Q6 Latency Hiding Techniques are *	
Prefetching	
multithreading	
Both of above	
None of above	
Q7.Parallelism can be expressed at	
Fine granularity level	
Course granularity level	
O Both of above	
Only A of above	
Q8.MIMD model having	
one common control unit for all processor	
Seperate control unit for each processor	
O Both of above	
None of above	

Q9.Shared address space multicomputers are
○ NUMA
○ UMA
Both UMA and NUMA
SUMA
Q10.Bisection width is
Farthest distance between two nodes
Closest distance between two nodes
Farthest distance between two networks
○ All of above
Q11. In communication network tw represents
oper hop time
start up time
oper word transfer time
onone of above
Q12.First step in developing parallel algorithm is
To begin executing tasks
To decompose the problem into tasks that can be executed concurrently
To decompose the problem into tasks that can be executed sequentially
None of above

Q13.General Mapping Techniques for load balancing are
static mapping
O Dynamic mapping
semi-static mapping
Both A and B above
Q14.Decomposition Techniques are
Recursive decomposition
O Data decomposition
Exploratory and Hybrid decomposition
○ All of above
Q15.Characteristics of Tasks are
Q15.Characteristics of Tasks are
○ Task generation
Task generation
○ Task sizes
Task sizes Size of data associated with tasks
○ Task sizes
Task sizesSize of data associated with tasksAll of above
 Task sizes Size of data associated with tasks All of above Q16.In static task generation
Task sizes Size of data associated with tasks All of above Q16.In static task generation Concurrent tasks can not be identified a-priori
 Task sizes Size of data associated with tasks All of above Q16.In static task generation
Task sizes Size of data associated with tasks All of above Q16.In static task generation Concurrent tasks can not be identified a-priori

Q17.Parallel algorithm design models are
Data parallel and Hybrid model
Work-pool and pipeline
Task graph and master slave
○ All of above
Q18.Degree of concurrency of a decomposition is
Number of tasks that can be executed in parallel
Number of tasks that can be executed sequentially
O Both of above
O None of above
Q19.Critical path is
The length of the shortest path in a task dependency graph
The length of the medium path in a task dependency graph
The length of the longest path in a task dependency graph
all of above
Q20.Recursive decomposition follows
Q20.Recursive decomposition follows Greedy strategy
Greedy strategy
Greedy strategy Divide and conquer approach

Q21.Explorator	decomposition means	
Exploration	of a state space of problem	
Exploration	of a state space of solutions	
Both of abo	е	
None of abo	ve	