18CSE479T Statistical Machine Learning SEMESTER- V

ACADEMIC YEAR: 2022-2023

NAME: TAPNANSHU ATHARVA

REG.NO: RA2011026010309

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING WITH SPECIALIZATION

IN ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

COLLEGE OF ENGINEERING AND TECHNOLOGY SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (Under SECTION 3 of the UGC Act, 1956) S.R.M. NAGAR, KATTANKULATHUR – 603203. CHENGALPATTU DISTRICT

NOVEMBER 2022

TITLE

Crime Prediction and Analysis

ABSTRACT

We are interested in applying machine learning methods to datasets regarding crime (crime statistics in particular cities) and possible related factors (such as tweet data, income, etc.). Specifically, we are interested in investigating if it is possible to predict criminal events for a specific time and place in the future (for example, assigning a risk level for a shooting within the next week to different neighborhoods)

To be better prepared to respond to criminal activity, it is important to understand patterns in crime. In our project, we analyze crime data from the Torronto Dataset, scraped from publicly available in kaggle.

The use of AI/ML in predicting crimes or an individual's likelihood for committing a crime has promise but is still more of an unknown. The biggest challenge will probably be "proving" to politicians that it works. When a system is designed to stop something from happening, it is difficult to prove the negative. Companies that are directly involved in providing governments with AI tools to monitor areas or predict crime will likely benefit from a positive feedback loop. Improvements in crime prevention technology will likely spur increased total spending on this technology. We also attempt to make our classification task more meaningful by merging multiple classes into larger classes. Finally, we report and reflect on our results with different classifiers, and dwell on avenues for future work.

Keywords—Python; Machine Learning; Clustering; Time Series; Education; Students; Performance;

Dataset Description:

	х	Υ	/ Index_	event_unique_id	occurrencedate	reporteddate	premisetype	ucr_code	ucr_ext	offence rep	portedyear	reported	dmonth re	portedday	reporte
0 -79	9.405228	43.656982	2 7801	GO- 20152165447	2015-12- 18T03:58:00.000Z	2015-12- 18T03:59:00.000Z	Commercial	1430	100	Assault	2015	De	ecember	18	3
1 -79	9.307907	43.778732	2 7802	GO- 20151417245	2015-08- 15T21:45:00.000Z	2015-08- 17T22:11:00.000Z	Commercial	1430	100	Assault	2015		August	17	,
2 -79	9.225029	43.765942	2 7803	GO- 20151421107	2015-08- 16T16:00:00.000Z	2015-08- 18T14:40:00.000Z	Apartment	2120	200	B&E	2015		August	18	1
3 -79	9.140823	43.778648	3 7804	GO- 20152167714	2015-11- 26T13:00:00.000Z	2015-12- 18T13:38:00.000Z	Other	2120	200	B&E	2015	De	ecember	18	1
4 -79	9.288361	43.691235	7805	GO- 20152169954	2015-12- 18T19:50:00.000Z	2015-12- 18T19:55:00.000Z	Commercial	1430	100	Assault	2015	De	ecember	18	3
4															•
	escribe	()													•
	escribe	x x		Y Index	_ ucr_code	ucr_ext	reportedyear	reported	day rep	orteddayofye	ear report	tedhour	occurrence	year occu	ırrenceday
df.d		х	06435.0000	Y Index			reportedyear 206435.000000	reported:		porteddayofye 206435.0000			occurrences 206376.000		
df.d	206435	х	06435.0000 43.7073	00 206435.00000	0 206435.000000				000		000 206435			0000 206	ırrenceday
df.d	206435	X		00 206435.00000 79 103218.00000	0 206435.000000 0 1696.667755	206435.000000	206435.000000	206435.000	000	206435.0000	000 206435 033 12	5.000000	206376.000	0000 206	urrenceday 376.00000
df.d	206435 -79	X .000000 20	43.7073	206435.00000 79 103218.00000 18 59592.79574	0 206435.000000 0 1696.667755 7 323.481988	206435.000000	206435.000000	206435.000	000 855 511	206435.0000	206435 133 12	i.000000 i.838617	206376.000) 171 1401	urrenceday 376.000000 15.511024
df.d count mean std	206435 -79 0 -79	X	43.7073 0.0527	206435.00000 79 103218.00000 18 59592.79574 193 1.00000	0 206435.000000 0 1696.667755 7 323.481988 0 1410.000000	206435.000000 145.973953 51.739660	206435.000000 2016.619323 1.717764	206435.0000 15.7466 8.770	0000 855 511 000	206435.0000 187.1399 103.6014	206435 133 12 112 6	i.000000 i.838617 i.583508	206376.000 2016.579 1.764	0000 206. 0171 1401	376.000000 15.511024 8.904154
count mean std min	206435 -79 0 -79	X .000000 20 .394940 .104386 .639267	43.7073 0.0527 43.5870	000 206435.00000 179 103218.00000 118 59592.79574 193 1.00000 52 51609.50000	0 206435.000000 0 1696.667755 7 323.481988 0 1410.000000 0 1430.000000	206435.000000 145.973953 51.739660 100.000000	206435.000000 2016.619323 1.717764 2014.000000	206435.0000 15.7466 8.7700 1.0000	0000 855 511 000	206435.0000 187.1399 103.6014 1.0000	206435 33 12 112 6 100 0	6.000000 2.838617 6.583508	206376.000 2016.579 1.764 2000.000	2000 206: 20171 1401 2000	376.000000 15.511024 8.904154 1.000000
count mean std min 25%	206435 -79 0 -79 -79	X .000000 24 .394940 .104386 .639267 .471481	43.7073 0.0527 43.5870 43.6611	000 206435.00000 779 103218.00000 18 59592.79574 93 1.00000 52 51609.50000 28 103218.00000	0 206435.000000 0 1696.667755 7 323.481988 0 1410.000000 0 1430.000000 0 1450.000000	206435.00000 145.973953 51.739660 100.000000 100.000000	2016.619323 1.717764 2014.000000 2015.000000	206435.0000 15.7460 8.7700 1.0000 8.0000	0000 855 511 000 000	206435.0000 187.1399 103.6014 1.0000		3.000000 2.838617 3.583508 0.000000 3.000000	206376.000 2016.579 1.764 2000.000 2015.000	20000 206. 3171 1401 20000 20000 20000	######################################
count mean std min 25%	206435 -79 0 -79 -79 -79	X .000000 26 .394940 .104386 .639267 .471481 .393333	43.7073 0.0527 43.5870 43.6611 43.7013 43.7520	000 206435.00000 779 103218.00000 18 59592.79574 93 1.00000 52 51609.50000 28 103218.00000	0 206435.000000 0 1696.667755 7 323.481988 0 1410.000000 0 1430.000000 0 1450.000000 0 2120.000000	206435.00000 145.973953 51.739660 100.00000 100.000000	206435.000000 2016.619323 1.717764 2014.000000 2015.000000 2017.000000	206435.0000 15.7466 8.7700 1.0000 8.0000	000 855 511 000 000 000	206435.0000 187.1399 103.6014 1.0000 100.0000		3.000000 3.838617 5.583508 9.000000 3.000000	206376.000 2016.579 1.764 2000.000 2015.000 2017.000	20000 2060 20171 20000 20000 20000 20000 20000	15.511024 8.904154 1.000000 8.000000

Modules Description:

<u>Architechtural diagram</u>:

K-means Clustering:

Kmeans algorithm is an iterative algorithm that tries to partition the dataset into Kpredefined distinct non-overlapping subgroups (clusters) where each data point belongs to only one group. It tries to make the intra-cluster data points as similar as possible while also keeping the clusters as different (far) as possible. It assigns data points to a cluster such that the sum of the squared distance between the data points and the cluster's centroid (arithmetic mean of all the data points that belong to that cluster) is at the minimum. The less variation we have within clusters, the more homogeneous (similar) the data points are within the same cluster.

PCA:

PCA is used in exploratory data analysis and for making predictive models. It is commonly used for dimensionality reduction by projecting each data point onto only the first few principal components to obtain lower-dimensional data while preserving as much of the data's variation as possible.

We have done clustering one without PCA and one with PCA and have found that applying PCA Before doing clustering can help in getting better clusters and also vizulazation becomes much better.

Elbow method was used to determine the number of clusters which should be used in order to get better clusters. It consists of plotting the explained variation as a function of the number of clusters. In this case we have considered 2 clusters.

Results and Discussion:

Confusion Matrix:

Output Image:

Evaluation Parameters Table :

	X	Υ	Index_	ucr_code	ucr_ext	reportedyear	reportedday	reporteddayofyear	reportedhour	occurrenceyear	occurrenceday
count	206435.000000	206435.000000	206435.000000	206435.000000	206435.000000	206435.000000	206435.000000	206435.000000	206435.000000	206376.000000	206376.000000
mean	-79.394940	43.707379	103218.000000	1696.667755	145.973953	2016.619323	15.746855	187.139933	12.838617	2016.579171	15.511024
std	0.104386	0.052718	59592.795747	323.481988	51.739660	1.717764	8.770511	103.601412	6.583508	1.764401	8.904154
min	-79.639267	43.587093	1.000000	1410.000000	100.000000	2014.000000	1.000000	1.000000	0.000000	2000.000000	1.000000
25%	-79.471481	43.661152	51609.500000	1430.000000	100.000000	2015.000000	8.000000	100.000000	8.000000	2015.000000	8.000000
50%	-79.393333	43.701328	103218.000000	1450.000000	100.000000	2017.000000	16.000000	189.000000	14.000000	2017.000000	16.000000
75%	-79.319374	43.752068	154826.500000	2120.000000	200.000000	2018.000000	23.000000	277.000000	18.000000	2018.000000	23.000000
max	-79.123100	43.850788	206435.000000	2135.000000	230.000000	2019.000000	31.000000	366.000000	23.000000	2019.000000	31.000000

Graph:

Code:

```
import numpy as np
import timeit
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
import matplotlib
from sklearn.decomposition import PCA
from sklearn.metrics import silhouette samples, silhouette score
import matplotlib.cm as cm
from sklearn.preprocessing import StandardScaler
from sklearn.model selection import train test split
from sklearn.preprocessing import OneHotEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.metrics import confusion matrix, classification report, accuracy score
                                                                                      In [2]:
df=pd.read_csv("C:/Users/KIIT/Downloads/MCI_2014_to_2019.csv")
df[Total] = 1
df.head()
df.dtypes
df.dropna()
print('Original Data Size after dropping Duplicates')
df = df.drop duplicates(subset='event unique id',keep='first')
df.shape
drop_colmns = ['X', 'Y', 'Index_', 'reporteddate', 'reportedyear', 'reportedmonth', 'reportedday',
'reporteddayofyear',
         'reporteddayofweek', 'reportedhour', 'Hood_ID', 'ucr_code', 'ucr_ext', 'Division',
'occurrencedayofyear']
df_dropped = df.drop(columns=drop_colmns)
                                                                                      In [6]:
df_dropped.dtypes
assault = df[df['MCI'] == 'Assault']
assault_types = assault.groupby('offence',as_index=False).size()
print(assault types)
ct = assault_types.sort_values(ascending = False)
ax = ct.plot.bar()
ax.set_xlabel('Types of Assault')
ax.set ylabel('Number of occurences')
ax.set_title('Assault crimes in Toronto',color = 'green',fontsize=20)
plt.show()
df_grouped = df_dropped.groupby(df_dropped['occurrenceyear'])
                                                                                      In [9]:
#Analysis by year
df_2015 = df_grouped.get_group(2015)
df_2016 = df_grouped.get_group(2016)
```

```
df_2017 = df_grouped.get_group(2017)
                                                                                    In [10]:
df_2015_grouped = df_2015.groupby(df_2015['MCI']).count()
df_2016_grouped = df_2016.groupby(df_2016['MCI']).count()
df_2017_grouped = df_2017.groupby(df_2017['MCI']).count()
                                                                                    In [11]:
plot = df_2015_grouped.iloc[:,0]
plot = pd.DataFrame(plot)
plot.columns = ['Number of Cases']
ax = plot.plot(kind='barh',figsize=(15,5),title='Number of Major Crimes Reported in Toronto
in 2015')
col_list = ['occurrenceyear',
         'occurrencemonth', 'occurrenceday', 'occurrenceday of year', 'occurrenceday of week', 'oc
                            'Division',
                                              'Hood_ID','premisetype']
currencehour', 'MCI',
df2 = df[col list]
df2 = df2[df2['occurrenceyear'] > 2013]
#Factorize dependent variable column:
crime var = pd.factorize(df2['MCI'])
df2['MCI'] = crime\_var[0]
definition_list_MCI = crime_var[1]
#factorize independent variables:
premise_var = pd.factorize(df2['premisetype'])
df2['premisetype'] = premise_var[0]
definition_list_premise = premise_var[1]
#factorize occurenceyear:
year_var = pd.factorize(df2['occurrenceyear'])
df2['occurrenceyear'] = year var[0]
definition_list_year = year_var[1]
#factorize occurencemonth:
month_var = pd.factorize(df2['occurrencemonth'])
df2['occurrencemonth'] = month_var[0]
definition_list_month = month_var[1]
#factorize occurenceday:
day_var = pd.factorize(df2['occurrenceday'])
df2['occurenceday'] = day_var[0]
definition_list_day = day_var[1]
#factorize occurencedayofweek:
dayweek_var = pd.factorize(df2['occurrencedayofweek'])
df2['occurrencedayofweek'] = dayweek var[0]
definition_list_day = dayweek_var[1]
#factorize division:
```

```
division_var = pd.factorize(df2['Division'])
df2['Division'] = division_var[0]
definition_list_division = division_var[1]
#factorize HOOD_ID:
hood var = pd.factorize(df2['Hood ID'])
df2['Hood\ ID'] = hood\ var[0]
definition_list_hood = hood_var[1]
#factorize occurencehour:
hour var = pd.factorize(df2['occurrencehour'])
df2['occurrencehour'] = hour_var[0]
definition_list_hour = hour_var[1]
#factorize occurencedayofyear:
dayyear_var = pd.factorize(df2['occurrencedayofyear'])
df2['occurrencedayofyear'] = dayyear_var[0]
definition list dayyear = dayyear var[1]
x = df2.drop(['MCI'],axis=1).values
y = df2['MCI'].values
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size = 0.25, random_state = 21)
binary_encoder = OneHotEncoder(sparse=False,categories='auto')
encoded_X = binary_encoder.fit_transform(x)
X_train_OH, X_test_OH, y_train_OH, y_test_OH = train_test_split(encoded_X, y, test_size
= 0.25, random state = 21)
classifier = RandomForestClassifier(n estimators = 100, criterion = 'entropy', random state =
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
print("Accuracy of Random Forest : ",accuracy_score(y_test, y_pred))
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test,y_pred, target_names=definition_list_MCI))
classifier = RandomForestClassifier(n_estimators = 100, criterion = 'entropy', random_state =
42)
classifier.fit(X_train_OH, y_train_OH)
y_pred_OH = classifier.predict(X_test_OH)
print("Accuracy of Random Forest with OneHotEncoder : ",accuracy_score(y_test, y_pred))
print(confusion_matrix(y_test_OH, y_pred_OH))
print(classification_report(y_test_OH,y_pred_OH, target_names=definition_list_MCI))
import seaborn as sns
mci_monthwise = df.groupby(['occurrencemonth','MCI'],as_index=False).agg({'Total':'sum'})
plt.figure(figsize=(15, 7))
crime_count = mci_monthwise.pivot("MCI","occurrencemonth","Total")
plt.yticks(rotation=1)
ax = sns.heatmap(crime_count,cmap="YlGnBu", linewidths=.5)
plt.title("Major Crime Indicators by Month",color = 'red',fontsize=14)
```

```
plt.show()
major_crime_indicator = df.groupby('MCI',as_index=False).size()
plt.subplots(figsize = (15, 6))
ct = major_crime_indicator.sort_values(ascending = False)
ax = ct.plot.bar()
ax.set_xlabel('Offence')
ax.set_ylabel('Total Number of Criminal Cases from 2014 to 2019')
ax.set title('Crime Indicator',color = 'red',fontsize=25)
plt.show()
hour_crime_group =
df.groupby(['occurrencehour','MCI'],as_index=False).agg({'Total':'sum'})
fig, ax = plt.subplots(figsize=(15,10))
hour_crime_group.groupby('MCI').plot(x="occurrencehour", y="Total", ax=ax,linewidth=5)
ax.set_xlabel('Hour')
ax.set_ylabel('Number of occurences')
ax.set_title('Crime Types by Hour of Day in Toronto',color = 'red',fontsize=25)
plt.figure(num=None, figsize=(10, 8))
plt.scatter("Long", "Lat", data = df, c = 'y',alpha = 0.1, edgecolor = 'black', s=2)
plt.grid()
plt.xlabel('long')
plt.ylabel('lat')
plt.title('Toronto Crime')
plt.tight_layout()
plt.axis('tight')
plt.show()
```

Conclusion:

While there is little reason to believe that the crime rate will increase dramatically in the first decade of the 21st century, given the anticipated increases in the globalization, sophistication and organization of crime, one may conclude that the impact of crime on western societies may be more severe than the witnessed under a similar rate of crime in the past. The goal of any society shouldn't be to just catch criminals but to prevent crimes from happening in the first place.

- 1. Predicting future crime spots.
- 2. Predicting who will commit the crime.