Jessica Spokoyny April 28, 2017 Project #2

OpenMP: Static vs Dynamic and

Small vs. Large Chunksize

1. My Machine:

I ran this program on the flip server in linux from a windows 10 laptop. My main function is contained in a file called project2.cpp which I compiled by typing:

 $\% \ \ g++$ -I/usr/local/common/gcc-5.4.0/ project2.cpp –o proj2 –lm –fopenmp Then I executed the program with:

% ./proj2

2. My performance results:

	static-1	static-4096	dynamic-1	dynamic-4096
1	274.98	273.73	273.6	274.35
2	547.83	469.3	527.92	487.06
4	1051.36	765.9	1050.75	769.83
6	1575.55	934.35	1498.74	934.61
8	2034.43	1121.39	2097.21	1149.34
10	2299.36	1117	2425.55	1141.5
12	2458.81	1128.68	2613.92	1130.39
14	2591.51	1133.56	2780.81	1135.25
16	2741.84	1124.68	2910.51	1127.33
32	3085.03	1126.76	3182.39	1121.1
48	3249.64	1130.14	3344.01	1130.59
64	3569.62	1128.63	3679.3	1121.46

3. Graph of Performance:

4. Speed Patterns I Noticed:

As the number of threads increased, the performances of static-4096 and dynamic-4096 were very similar. This was also the case for the performances of static-1 and dynamic-1. The performance was much higher and increased much more rapidly for chunksize of 1 rather than chunksize of 4096. This held true for both dynamic and static scheduling.

5. Chunksize 1 vs. 4096:

In this program, I used an array of size 32678. Clearly, if we have a chunksize of 4096, we can have a maximum of 8 threads running at a time (because each will get a chunk of 4096 and 32678/4096 = 8). It can be seen clearly in the graph above in that both static-4096 (orange) and

dynamic-4096 (yellow) the performance stops increasing after 8 threads regardless of how many more threads are added.

For example, if we have an array of size 8, and chunksize of 2:

With 1 thread: ** ** ** ** With 2 threads: 1: 2: With 3 threads: 2: 3: With 4 threads: 1: 2: 3: 4: With 5 threads: 1: 2: 3: 4: 5: With 6 threads: 1: 2: 3: 4:

5: 6:

Clearly, increasing the number of threads > 4 has no effect in the above example and the case is the same in our original problem for number of threads > 8.

On the other hand, when we have a chunksize of 1, we can continue to drastically increase performance by adding more threads (for the parallelizable portion of the problem).

6. Static vs. Dynamic:

Because each iteration of the for-loop being parallelized takes the same amount of time to execute, there is little-to-no difference in the static vs dynamic performance. We can see in the graph above that static-4096 (orange) and dynamic-4096 (yellow) have almost exactly the same performance. While static-1 (blue) and dynamic-1 (grey) have similar performance as well.