Recsys Advanced

Plan

- DL4Rec
 - NN as MF, DSSM, DLRM, DCNv2
 - Sequential Recs (SASRec)
- Подходы в ранжировании
 - Pointwise
 - Pairwise
 - Listwise

- Двухуровневые модели рекомендаций
- Нерешенные проблемы в рекомендациях
 - Offline-online
 - Feedback-loop
- Summary

NN as MF

$$\widehat{r}_{ui} = p_u^T \cdot q_i$$

- Идею мат. факт. Можно перекинуть на сетки и раскладывать матрицу взаимодействий с помощью них
- Как токен уже используем id юзера и id айтема
- Из лоссов можно выбирать регрессию (MSE), классификацию (cross-entropy)
- Нужны негативные примеры

NN as MF

Сэплинг негативных примеров

- Uniform берем айтемы из равномерного распределения всего набора айтемов
 - Просто, но есть проблема easy negative-ов
- Popularity based берем айтемы из частоного распределения всего набора айтемов
 - Уже учитываем популярность айтемов и примеры становятся качественней
- Hard-negatives используем оценки от предыдущих моделей
 - Так как нужно скорить примеры во время обучения, время обучения увеличивается, но при этом и негативные примеры становятся еще лучше
- In-batch сэпмлируем айтемы прямо в батче (uniform, popularity-based)

NN as MF

Dot-product можно усложнить - stack more layers

 Оказывается, что линейные слои работают хуже, чем обычный dot-product, поэтому не стоит слишком усложнять модель

NN as MF

- Pros:
 - Распространенность фреймворков
 - Можно легко дотюнить
- Cons:
 - о Туда не запихнуть свойства объектов и пользователя

DSSM (Two tower-model)

- Строим две башни юзера и айтема
- В башне юзера передаем (фичи юзера, user_id)
 - => передаем в MLP
 - => получаем финальный эмбеддинг юзера
- То же самое с башней для айтемов
- Берем dot-product юзер и айтем ембедингов

DSSM (Two tower-model)

- Pros:
 - Распространенность фреймворков
 - Можно легко дотюнить
 - Можно добавить признаки
- Cons:
 - Не учесть попарное взаимодействие признаков и временную динамику

DLRM

- Строим одну MLP под все признаки
- Строим эмбеды для пользователей и айтемов чисто под коллаборативку
- Берем попарные dot-product-ы эмбедов всех фичей, эмбедов юзеров и айтемов
- Concat-им эмбеды признаков и попарных dot-product-ов
- Скармливаем финальной MLP

DCNv2

• Левый блок:

- Перемножаем вектор фичей на инкрементальный вектор с добавлением матрицы весов и байеса
- Делаем так несколько раз
- Передаем в concat-слой
- Правый блок:
 - Скармливаем фичи MLP
 - Передаем в concat-слой
- Домножением на финальную матрицу весов + баес получаем финальный скор

Figure 1: The Deep & Cross Network

DCNv2

- Pros:
 - Распространенность фреймворков
 - Можно легко дотюнить
 - Можно добавить признаки
 - о Учитываем попарное взаимодействие признаков
- Cons:
 - Не учесть временную динамику

Sequential recommendations

- Токены айтемы
- Последовательности юзеры
- Предсказываем либо следующий токен по левому контексту, либо айтем, зная левый и правый контекс

SASRec (Self-Attentive Sequential Rec)

- Используя attention-маску стараемся предсказать следующий айтем
- От трансформера используется только decoder

SASRec (Self-Attentive Sequential Rec)

- Pros:
 - Очень сильный бейзлайн, использующий временную динамику
- Cons:
 - Не засунуть признаки

Pointwise

Идея: пытаемся приблизить оценки моделей к меткам объектов для каждого объекта отдельно

$$L = -\frac{1}{N} \sum_{i=1}^{N} y_i \cdot \log(P(\hat{y}_i)) + (1 - y_i) \cdot \log(1 - P(\hat{y}_i))$$

Pros:

• Просто, быстро

Cons:

• Мы рассматриваем объекты сами в себе не используя контекст всех остальных объектов

Pairwise

Идея: хотим использовать уже пары и сравнивая их друг с другом строить оценки модели

$$\begin{split} f &: x_i \to s_i \\ sign\Big(\ l_i - \ l_j \Big) = sign\Big(s_i - \ s_j \Big) \\ L_{ij} &= - \ y_{ij} \cdot \log\Big(\ P\Big(\overrightarrow{y_{ij}} \Big) \Big) - \Big(\ 1 - \ y_{ij} \Big) \cdot \log\Big(\ 1 - \ P\Big(\overrightarrow{y_{ij}} \Big) \Big) \\ P\Big(\overrightarrow{y_{ij}} \Big) &= \sigma\Big(s_i - s_j \Big) \\ y_{ij} &= \begin{cases} 1 \leftrightarrow l_i > l_j \\ 0 \leftrightarrow l_i < l_j \end{cases} \end{split}$$

Pairwise

Как считать градиенты?

$$L_{ij} = -\left(y_{ij} \cdot \log\left(P\left(y_{ij}\right)\right) + \left(1 - y_{ij}\right) \cdot \log\left(1 - P\left(y_{ij}\right)\right)\right)$$

$$L_{i} = \sum_{j: l_{i} \neq l_{j}} L_{ij}$$

Интуиция: аккумулируем все тянущие силы айтема в одну равнодействующую

Pairwise

Ranknet: Как выглядят градиенты

$$\begin{split} \frac{\partial L_{ij}}{\partial w_k} &= \frac{\partial L_{ij}}{\partial s_i} \cdot \frac{\partial s_i}{\partial w_k} + \frac{\partial L_{ij}}{\partial s_j} \cdot \frac{\partial s_j}{\partial w_k} \\ \frac{\partial L_{ij}}{\partial s_i} &= y_{ij} - \frac{1}{1 + e^{\left(s_i - s_j\right)}} = -\frac{\partial L_{ij}}{\partial s_j} \\ \lambda_{ij} &= \frac{\partial L_{ij}}{\partial s_i} \\ \frac{\partial L}{\partial w_k} &= \sum_{i,j} \left(\frac{\partial L_{ij}}{\partial s_i} \cdot \frac{\partial s_i}{\partial w_k} + \frac{\partial L_{ij}}{\partial s_j} \cdot \frac{\partial s_j}{\partial w_k} \right) = \sum_{i,j} \lambda_{ij} \cdot \left(\frac{\partial s_i}{\partial w_k} + \frac{\partial s_j}{\partial w_k} \right) = \\ &= \sum_{i} \frac{\partial s_i}{\partial w_i} \cdot \left(\sum_{(i,j)} \lambda_{ij} - \sum_{(j,i)} \lambda_{ji} \right) = \sum_{i} \frac{\partial s_i}{\partial w_k} \cdot \lambda_{j} \end{split}$$

Интуиция: таким образом косвенно оптимизируем метрику ROC-AUC

А если хотим оптимизировать другую метрику, например NDCG?

$$\frac{\partial L_{ij}}{\partial w_{k}} = \sum_{i,j} \lambda'_{ij} \left(\frac{\partial s_{i}}{\partial w_{k}} - \frac{\partial s_{j}}{\partial w_{k}} \right), \ \lambda'_{ij} = \lambda_{ij} \cdot \left| \triangle NDCG_{i,j} \right| - LambaRank$$

Вместо NDCG можно добавить например MAP и уже оптимизировать MAP

Pairwise

Pros:

- Решаем уже задачу, связанную с ранжированием
- Результаты получаются лучше чем у pointwise подхода

Cons:

• Оценки моделей становятся неинтерпретируемы

Идея: хотим использовать уже весь список

Двухуровневые модели рекомендаций

Мотивация

- Айтемов очень много (миллионы, миллиарды)
- Модели матричных разложений работают хорошо, но
 - Линейные модели не учитывают нелинейные зависимости
 - В целом у матричных разложений контекст, связан только со взаимодействиями пользователей и айтемов
- Хочется использовать не только коллаборативную инфу, но и использовать априорные и поведенческие свойства пользователей и объектов

Двухуровневые модели рекомендаций

Идея двухуровневой модели

- Первый уровень достаточно простые и легковесные, которые могут прожевать огромный список айтемов и выдать грубую оценку по каждому айтему и отсечь самый треш
- Второй уровень достаточно сложная и тяжелая модель, которая обрабатывает только самый топ айтемов и дает по каждому айтему более точную оценку и по этим оценкам уже строится финальное ранжирование

Нерешенные проблемы в рекомендациях

Offline-online evaluation

Проблема: увеличение метрик в оффлайне не всегда коррелирует с метриками в онлайне

- Делаем предсказания вместо рекомендаций
 - Нужно встраивать все бизнесс-правила и постобработку в оффлайн-оценку
 - Использовать простые таргеты
 - Делать оффлайн-оценку в соответствии с поведением прода
- В онлайне напрямую влияем на поведение пользователя

Нерешенные проблемы в рекомендациях

Feedback loop

Проблема: обучаем на том, что рекомендуем => попадаем в пузырь

• Можно подмешивать в рекомендации:

Айтемы от других моделей

Случайные айтемы (epsilon-greedy)

Summary

- DL4Rec
- Pairwise ранжирование
- Двухуровневые модели
- Нерешенные проблемы в рекомендациях

Спасибо за внимание!