MA3205 Set Theory

AY2022/23 Semester 1 · Prepared by Tian Xiao @snoidetx

Morse-Kelley Set Rules

- 1. Everything is a class.
- 2. Every set is a class; every class is a collection of sets; a class is a set if and only if it is a member of some class.
- 3. Every collection of sets is a class.
- 4. If A is a class and x is a set, then $A \cap x$ is a set.
- 5. The image of a set under a function is a set.
- 6. If A and B are sets, then so are A, B, $\cup A$ and $\mathcal{P}(A)$.
- 7. (Axiom of Choice) If $\langle A_i : i \in I \rangle$ is any sequence of sets such that $\forall i \in I [A_i \neq \emptyset]$, then $\prod_{i \in I} A_i \neq \emptyset$.
- 8. (Axiom of Infinity) \mathbb{N} is a set.
- 9. (Axiom of Extensibility) $A = B \Leftrightarrow \forall x [x \in A \Leftrightarrow x \in B]$.

Set Operations

$Subset \subseteq$

D1.6. $A \subseteq B$ if $\forall x [x \in A \Rightarrow x \in B]$.

Empty Set \emptyset

- **D1.7.** A set x is empty if $\forall y [y \notin x]$.
- **F1.8.** If $x = \emptyset$ and A is any collection, then $x \subseteq A$.
- **F1.9.** If x and y are empty sets, then x = y.

$Union \cup and Intersection \cap$

$$\mathbf{D1.11.} \begin{cases} x \cup y = \{z : z \in x \lor z \in y\} \\ x \cap y = \{z : z \in x \land z \in y\} \end{cases}$$

$$\mathbf{D1.13.} \begin{cases} \bigcup A = \{x : \exists y [y \in A \land x \in y]\} \\ \bigcap A = \begin{cases} 0 & \text{if } A = \emptyset; \\ \{x : \forall y [y \in A \Rightarrow x \in y]\} \end{cases} & \text{otherwise.} \end{cases}$$

Other Operators \setminus , \triangle , \mathcal{P}

D1.11.
$$\begin{cases} x \backslash y = \{z : z \in x \land z \notin y \\ x \triangle y = x \backslash y \cup y \backslash x \\ \mathcal{P}(x) = \{z : z \subseteq x\} \end{cases}$$

Commutativity	$x \cup y = y \cup x$
	$x \cap y = y \cap x$
Associativity	$x \cup (y \cup z) = (x \cup y) \cup z$
	$x \cap (y \cap z) = (x \cap y) \cap z$
Distributivity	$x \cup (y \cap z) = (x \cup y) \cap (x \cup z)$
	$x \cap (y \cup z) = (x \cap y) \cup (x \cap z)$
De Morgan	$x \backslash (y \cup z) = (x \backslash y) \cap (x \backslash z)$
	$x \setminus (y \cap z) = (x \setminus y) \cup (x \setminus z)$

Relations and Functions

Ordered Pair $\langle a, b \rangle$

- **D2.1.** An ordered pair $\langle a, b \rangle$ is the set $\{\{a\}, \{a, b\}\}$.
- **L2.2.** $\langle x, y \rangle = \langle a, b \rangle \Leftrightarrow (x = a) \land (y = b).$
- **D2.3.** $A \times B = \{z : \exists a \in A \exists b \in B [z = \langle a, b \rangle] \}.$

Relation R

- **D2.6.** A relation R is a collection of ordered pairs $(\forall x \in$ $R \exists a \exists b [x = \langle a, b \rangle]).$
 - R is a relation on A if $R \subseteq A \times A$.
 - $dom(R) = \{a : \exists b \ [\langle a, b \rangle \in R] \}.$
 - $ran(R) = \{b : \exists a \ [\langle a, b \rangle \in R] \}.$
 - $R^{-1} = \{x : \exists a \exists b \ [\langle a, b \rangle \in R \land x = \langle b, a \rangle] \}.$
- **F2.9.** If R is a relation and $S \subseteq R$, then S is a relation.
- **D2.10.** If R is a relation and A is any collection, then Rrestricted to $A, R \upharpoonright A$, is $R \cap (A \times \operatorname{ran} R)$.
- **D2.12.** $\text{Im}_R(A) = \{b : \exists a \in A \ [\langle a, b \rangle \in R] \}.$
- **L2.15.** Let R be a relation and A be a collection, then **L2.22.** If $f: A \to B$ is 1-1 and onto B, then f^{-1} is 1-1 $\operatorname{Im}_R([\]A) = [\](I : \exists a \in A \ [I = \operatorname{Im}_R(a)]).$
- **L2.16.** Let R be a relation such that $\forall x, z \ [x \neq z \Rightarrow$ $\operatorname{Im}_R(\{x\}) \cap \operatorname{Im}_R(\{y\}) = \emptyset$. Let A and B be any collections, then:
 - $\operatorname{Im}_{R}(\bigcap A) = \bigcap \{I : \exists a \in A \ [I = \operatorname{Im}_{R}(a)] \}.$
 - $\operatorname{Im}_{R}(B \backslash A) = \operatorname{Im}_{R}(B) \backslash \operatorname{Im}_{R}(A)$.

Function f

- **D2.8.** A function is a relation such that no two of its elements have the same 1^{st} coordinate $(\forall a, b, c \mid (\langle a, b \rangle) \in$ $f \wedge \langle a, c \rangle \in f) \Rightarrow b = c$.
 - $f: A \to B$ if dom(f) = A and $ran(f) \subseteq B$.

- **F2.9.** If f is a function and $g \subseteq f$, then g is a function.
- **F2.11.** If f is a function and A is any collection, then $f \upharpoonright A$ is also a function.
 - If $A \subseteq \text{dom}(f)$, then $\text{dom}(f \upharpoonright A) = A$
- **D2.21.** $X^Y = \{ f : f \text{ is a function } \land f : Y \to X \}.$

Inverse of Function f^{-1}

- **D2.14.** If f is a function and B is a collection, $f^{-1}(B) =$ $\operatorname{Im}_{f^{-1}}(B) = \{a : \exists b \in B \ [\langle a, b \rangle \in f] \}.$
- **C2.17.** Let f be any function and A and B be any collections of sets. Then:
 - $\bullet f^{-1}(|A|) = |A| = I : \exists a \in A : I = f^{-1}(a).$
 - $f^{-1}(\bigcap A) = \bigcap \{I : \exists a \in A \mid I = f^{-1}(a).$
 - $f^{-1}(B \setminus A) = f^{-1}(B) \setminus f^{-1}(A)$.

Composite Function $g \circ f$

- **D2.18.** f composed with $g, g \circ f = \{x : \exists a \exists b \exists c [(\langle a, b \rangle \in A)] \mid \exists a \exists b \exists c [(\langle a, b \rangle \in A)] \mid \exists a \exists b \exists c [(\langle a, b \rangle \in A)] \mid \exists a \exists b \exists c [(\langle a, b \rangle \in A)] \mid \exists a \exists b \exists c [(\langle a, b \rangle \in A)] \mid \exists a \exists b \exists c [(\langle a, b \rangle \in A)] \mid \exists a \exists b \exists c [(\langle a, b \rangle \in A)] \mid \exists a \exists b \exists c [(\langle a, b \rangle \in A)] \mid \exists a \exists b \exists c [(\langle a, b \rangle \in A)] \mid \exists a \exists b \exists c [(\langle a, b \rangle \in A)] \mid \exists a \exists b \exists c [(\langle a, b \rangle \in A)] \mid \exists a \exists b \exists c [(\langle a, b \rangle \in A)] \mid \exists a \exists b \exists c [(\langle a, b \rangle \in A)] \mid \exists a \exists b \exists c [(\langle a, b \rangle \in A)] \mid \exists a \exists b \exists c [(\langle a, b \rangle \in A)] \mid \exists a \exists b \exists c [(\langle a, b \rangle \in A)] \mid \exists a \exists b \exists c [(\langle a, b \rangle \in A)] \mid \exists a \exists b \exists c [(\langle a, b \rangle \in A)] \mid \exists a \exists b \exists c [(\langle a, b \rangle \in A)] \mid \exists a \exists b \exists c [(\langle a, b \rangle \in A)] \mid \exists a \exists b \exists c [(\langle a, b \rangle \in A)] \mid \exists a \exists b \exists c [(\langle a, b \rangle \in A)] \mid \exists a \exists b \exists c [(\langle a, b \rangle \in A)] \mid \exists a \exists b \exists c [(\langle a, b \rangle \in A)] \mid \exists a \exists b \exists c [(\langle a, b \rangle \in A)] \mid \exists a \exists b \exists c [(\langle a, b \rangle \in A)] \mid \exists a \exists b \exists c [(\langle a, b \rangle \in A)] \mid \exists a \exists b \exists c [(\langle a, b \rangle \in A)] \mid \exists a \exists b \exists c [(\langle a, b \rangle \in A)] \mid \exists a \exists b \exists c [(\langle a, b \rangle \in A)] \mid \exists a \exists b \exists c [(\langle a, b \rangle \in A)] \mid \exists a \exists c [(\langle a, b \rangle \in A)] \mid \exists a \exists c [(\langle a, b \rangle \in A)] \mid \exists a \exists c [(\langle a, b \rangle \in A)] \mid \exists a [(\langle a, b \rangle \in$ $f) \wedge (\langle b, c \rangle \in q) \wedge (x = \langle a, c \rangle)]$.
- **L2.19.** Let f, g, h be functions, then:
 - $g \circ f$ is a function.
 - If $f: A \to B$ and $g: B \to C$, then $g \circ f: A \to C$.
 - (Associativity) $h \circ (g \circ f) = (h \circ g) \circ f$.

Injection, Surjection and Bijection

- **D2.20.** Let $f: A \to B$ be a function, then:
 - $(1-1) \forall a, a' \in A [f(a) = f(a') \Rightarrow a = a'].$
 - $(onto) \operatorname{ran}(f) = B$.
 - (bijective) 1-1 and onto.
- and onto A.

Directed Collection

D2.39. A collection G is called directed if

$$\forall a, b \in G \, \exists c \in G \, [a \subseteq c \land b \subseteq c]$$

L2.40. Let G be a directed collection of functions, then $f = \bigcup G$ is a function. Moreover, $dom(f) = \bigcup \{dom(\sigma) :$ $\sigma \in G$ } and ran $(f) = \bigcup \{ ran(\sigma) : \sigma \in G \}.$

Cartesian Product \prod

Conv. A function f such that $\forall f \in I = \text{dom}(f) [f(i) = A_i]$ is equivalent as a sequence $F = \langle A_i : i \in I \rangle$.

D2.36. $\prod F = \{ \text{func } f : \text{dom}(f) = I \land \forall i \in I \ [f(i) \in A_i] \}.$

T2.46. (General Distributive Laws) Let I be a set and $\langle J_i : i \in I \rangle$ be a sequence of sets. Suppose that $I \neq \emptyset$ and $\forall i \in I \ [J_i \neq \emptyset]$. For each $i \in I$, let $\langle A_{i,j} : j \in J_i \rangle$ be a sequence of sets. Then:

$$\bigcup_{i \in I} \bigcap_{j \in J_i} A_{i,j} = \bigcap \{ \bigcup_{i \in I} A_{i,f(i)} : f \in \prod_{i \in I} J_i \}$$

$$\bigcap_{i \in I} \bigcup_{j \in J_i} A_{i,j} = \bigcup \{ \bigcap_{i \in I} A_{i,f(i)} : f \in \prod_{i \in I} J_i \}$$

$$\prod_{i \in I} (\bigcup_{j \in J_i} A_{i,j}) = \bigcup \{ \prod_{i \in I} A_{i,f(i)} : f \in \prod_{i \in I} J_i \}$$

$$\prod_{i \in I} (\bigcap_{j \in J_i} A_{i,j}) = \bigcap \{ \prod_{i \in I} A_{i,f(i)} : f \in \prod_{i \in I} J_i \}$$

T2.47. Fix $n \geq 1$. Let X be a set and let A_1, A_2, \ldots, A_n be subsets of X. Then there are at most 2^{2^n} different sets that can be formed from A_1, A_2, \ldots, A_n using the operations $X \setminus \cdot, \cup$ and \cap (number of regions in a Venn diagram).

Russell's Paradox

T3.1. (Russell) $R = \{x : x \text{ is a set } \land x \notin x\}$ is not a set.

T3.3. $V = \{x : x \text{ is a set}\}\$ is not a set.

The Natural Numbers

F4.1. (*Peano Axioms*) **L4.6** + **L4.7** + **L4.14** + $\forall n \in \mathbb{N} [S(n) \neq 0]$.

 $Natural\ Number\ Set\ \mathbb{N}$

D4.3. 0 is the empty set \emptyset .

D4.2. $S(x) = x \cup \{x\}$. $1 = S(0) = \{0\}$.

D4.4. A class A is called inductive if $0 \in A$ and $\forall x \in A [S(x) \in A]$. A set n is called a natural number if it belongs to every inductive class.

L4.6.
$$\begin{cases} 0 \in \mathbb{N} \\ n \in \mathbb{N} \Rightarrow S(n) \in \mathbb{N} \end{cases}$$

L4.7. If X is any set of natural numbers such that $0 \in X$ and $\forall x \in X [S(x) \in X]$, then X is the set of all natural numbers.

F4.8. (Principle of Mathematical Induction) P is some property. Suppose that 0 has property P and $\forall n \in \mathbb{N}$ [n has property $P \Rightarrow S(n)$ has property P]. Then all natural numbers have property P.

L4.9.
$$\begin{cases} \forall x \in n \ [x \subseteq n] \\ n \subseteq \mathbb{N} \\ \forall x \ [(x \subseteq n \land x \neq \emptyset) \Rightarrow \exists m \in x \ [x \cap m = \emptyset]] \end{cases}$$
L4.10.
$$\begin{cases} n \notin n \\ m \subseteq n \Rightarrow (m \in n \lor m = n) \\ (m \subseteq n \land n \in k) \Rightarrow m \in k \\ \text{Either } m = n \text{ or } m \in n \text{ or } n \in m. \end{cases}$$

L4.11. Let $X \subseteq \mathbb{N}$. If $X \neq \emptyset$, then $\exists n \in X [X \cap n = \emptyset]$.

L4.14. $\forall n, m \in \mathbb{N} [n \neq m \Rightarrow S(n) \neq S(m)].$

Less Than Relation <

D4.12. $\forall n, m \in \mathbb{N} [m < n \Leftrightarrow m \subset n].$

F4.13. (Principle of Strong Induction) P is some property. Suppose that $\forall n \in \mathbb{N}$ [if P holds for all $m \in \mathbb{N}$ less than n, then P holds for n]. Then P holds for all $n \in \mathbb{N}$.

Extender \mathbf{E} , Addition + and Multiplication \cdot

D4.17. Let **FN** denote the class of all functions whose domain is some natural number (**FN** is a proper class):

$$\mathbf{FN} = \{ \sigma : \sigma \text{ is a function} \land \exists n \in \mathbb{N} \left[\text{dom}(\sigma) = n \right] \}$$

An extender is a function $\mathbf{E}: \mathbf{FN} \to \mathbf{V}$.

T4.19. Suppose $\mathbf{E}: \mathbf{FN} \to \mathbf{V}$ is any extender. Then $\exists! f: \mathbb{N} \to \mathbf{V} \ [\forall n \in \mathbb{N} \ [f(n) = \mathbf{E}(f \upharpoonright n)]].$

D4.25. Define
$$\mathbf{E}(\sigma) = \begin{cases} m & \operatorname{dom}(\sigma) = 0 \\ S(\sigma(\bigcup \operatorname{dom}(\sigma)) & \operatorname{dom}(\sigma) \neq 0 \end{cases}$$

 $\exists ! f_m \text{ corresponds to } \mathbb{E}. \text{ Define } m+n=f_m(n). \text{ Define }$

$$\mathbf{E}(\sigma) = \begin{cases} 0 & \operatorname{dom}(\sigma) = 0 \lor \sigma(\bigcup \operatorname{dom}(\sigma)) \notin \mathbb{N} \\ f_{\sigma(\bigcup \operatorname{dom}(\sigma))}(m) & \operatorname{dom}(\sigma) \neq 0 \land \sigma(\bigcup \operatorname{dom}(\sigma)) \in \mathbb{N} \end{cases}.$$
Similarly, $\exists [a, corresponds to \mathbb{K}, Define m, n = a, n]$

Similarly, $\exists ! g_m$ corresponds to \mathbb{E} . Define $m \cdot n = g_m(n)$.

Set Sizes

D5.1. $A \approx B \Leftrightarrow \exists f : A \to B$ which is both 1-1 and onto.

F5.2. For any set A, $\mathcal{P}(A) \approx \{0,1\}^A$.

D5.4. $A \lesssim B$ if there exists $f: A \to B$ which is 1-1.

L5.5. If f and g are both 1-1, then $g \circ f$ is also 1-1.

L5.6.
$$\begin{cases} A \lessapprox A \\ (A \lessapprox B \land B \lessapprox C) \Rightarrow (A \lessapprox C) \\ (A \approx B \land B \approx C) \Rightarrow (A \approx C) \end{cases}$$

T5.7. (Cantor) For any set $X, X \nleq \mathcal{P}(X)$.

D5.12. (Schröder-Bernstein) $A \lesssim B \wedge B \lesssim A \Rightarrow A \approx B$.

L5.20. Suppose A and B are sets and $f: A \to B$ is a 1-1 function. Then $\forall X, Y \subseteq A[\operatorname{Im}_f(X) = \operatorname{Im}_f(Y) \Rightarrow X = Y]$.

L5.21.
$$\begin{cases} A \lessapprox B \Rightarrow \mathcal{P}(A) \lessapprox \mathcal{P}(B) \\ A \lessapprox B \Rightarrow A^C \lessapprox B^C \\ (A \lessapprox B \land C \lessapprox D \land B \cap D = \emptyset) \Rightarrow A \cup C \lessapprox B \cup D \end{cases}$$

L5.23. If $n \in \mathbb{N}$ and \exists onto function $\sigma : n \to A$, then $A \lesssim n$.

 $Finite\ Set$

D5.19. A is finite if $\exists n \in \mathbb{N} [n \approx A]$, otherwise it is infinite. A is countable if $A \lesssim \mathbb{N}$, otherwise it is uncountable.

L5.22. If $n \in \mathbb{N}$ and $A \lesssim n$, then A is finite.

L5.24. If A and B are finite, then so is $A \cup B$.

T5.25. Let A be a finite set and f is a function with dom(f) = A, then:

- $X \subsetneq A \Rightarrow X \lessapprox A$.
- ran(f) is finite and $ran(f) \lesssim A$.
- If $\forall a \in A \ [a \text{ is finite}]$, then $\bigcup A$ is finite.
- $\mathcal{P}(A)$ is finite.

Legends

C	Corollary
D	Definition
F	Fact
L	Lemma
T	Theorem
Conv.	Convention