An overview of representations of reductive algebraic groups

George McNinch

Department of Mathematics Tufts University

May 2016

Contents

Cast of characters

The algebra of distributions

Simple representations

Reduction \pmod{p}

Outline

Cast of characters

The algebra of distributions

Simple representations

Reduction \pmod{p}

Linear algebraic groups and linear representations

Let k be a field, let G be a linear algebraic group over k, and consider a linear representation of G on a k-vector space V

- ▶ usually call V or (ρ, V) a G-module or G-representation.
- ▶ If V is fin. dim. the notation (ρ, V) implies a morphism $\rho: G \to \operatorname{GL}(V)$ of alg. groups. Thus V is a "rational repr".
- ▶ V is a co-module for the Hopf alg k[G]; i.e. \exists a "co-module map" $\Delta_V : V \to k[G] \otimes_k V$ encoding action of G.
- ▶ The co-module point-of-view allows to speak of G-modules which are infinite dim'l; e.g. the left regular repr $(\rho_{\ell}, k[G])$.

Cohomology and extensions

Proposition

- (a) If W is a G-module, there is an injective resolution of G-modules: $0 \to W \to I^0 \to I^1 \to I^2 \to \cdots$.
- (b) The "fixed-point functor" $(V \mapsto V^G)$: $G\operatorname{-mod} \to k\operatorname{-Vect}$ is left-exact
 - ▶ thus, take the cohomology groups $H^i(G, V)$ for $i \ge 0$ to be the derived functors of $V \mapsto V^G$
 - ▶ The reg repr k[G] is injective, and \exists injective resolution of k with $I^j = \bigoplus^j k[G]$ a sum of j copies of k[G].
 - So, can describe cohomology using "regular functions" G × · · · × G → V which satisfy usual "cocycle condition" of the cohomology of (abstract) groups.

Cohomology and extensions

- ▶ For a *G*-module V, $\operatorname{Ext}_G^i(V, -)$ are the derived functors of the left-exact functor $\operatorname{Hom}_G(V, -)$.
- ► For fin dim'l V, $\operatorname{Ext}_G^i(V,W) = H^i(G,\operatorname{Hom}_k(V,W))$.

Proposition

Applying $\operatorname{Hom}_k(C, -)$ to the SES (\clubsuit) $0 \to A \to B \to C \to 0$ of G-modules yields a connecting map

$$\operatorname{End}_G(C) \xrightarrow{\partial} \operatorname{Ext}_G^1(C,A)$$

and the extension (\clubsuit) is classified (up to isom. of extension) by the class $\alpha = \partial(1_C)$.

Reduction to reductive groups

Assume that the unip radical of $G_{\overline{k}}$ is defined over k – this is always the case if k is *perfect*; call this radical R. Thus G/R is a reductive k-group. Since R acts trivially on any simple G module, we have:

Theorem

The Grothendieck group of G-mod coincides with that of (G/R)-mod.

Standing assumptions

- For the remainder of this talk, we will consider a (connected) split reductive group G over a field k of characteristic p ≥ 0.
- ▶ In particular, we fix a Borel subgroup $B \subset G$ with unipotent radical U, and a split maximal torus $T \subset B$.

Outline

Cast of characters

The algebra of distributions

Simple representations

Reduction \pmod{p}

The "big cell" and triangular decomposition

- ▶ Write $\mathcal{B} = G/B$ for flag variety "variety of Borel subgps of G" and let $\pi : G \to \mathcal{B}$ be the orbit map $g \mapsto gBg^{-1}$.
- ▶ Let $T \subset B^+$ Borel subgp "opposite" to B.
- ▶ Roots of T in Lie(B) are neg, those in $Lie(B^+)$ pos.
- ▶ Recall $W = N_G(T)/T$ is "the" Weyl group of G. So $B^+ = \tilde{w}_0^{-1}B\tilde{w}_0$ for $\tilde{w}_0 \in N_G(T)$ repr the "long word" $w_0 \in W$.

Proposition

 $\tilde{w}_0^{-1}B\tilde{w}_0B=U^+B$ is an open subset of G, and the product mapping yields an isom of varieties

$$U^+ \times T \times U \rightarrow U^+ B$$
.

Triangular decomp of U(Lie(G))

Since U^+B is an open subset of G containing 1, we obtain:

$$\mathfrak{g}=\mathfrak{u}^+\oplus\mathfrak{t}\oplus\mathfrak{u}$$
,

where $\mathfrak{g} = \operatorname{Lie}(G)$, $\mathfrak{u} = \operatorname{Lie}(U)$ etc. This implies that

$$\mathbf{U}(\mathfrak{g}) = \mathbf{U}(\mathfrak{u}^+) \otimes \mathbf{U}(\mathfrak{t}) \otimes \mathbf{U}(\mathfrak{u})$$

where $\mathbf{U}(?)$ denotes the enveloping alg, and if p>0 it implies that

$$\mathbf{U}^{[p]}(\mathfrak{g}) = \mathbf{U}^{[p]}(\mathfrak{u}^+) \otimes \mathbf{U}^{[p]}(\mathfrak{t}) \otimes \mathbf{U}^{[p]}(\mathfrak{u})$$

where $\mathbf{U}^{[p]}(?)$ denotes restricted env alg. ; i.e. the quotient of the enveloping algebra by ideal generated by all $X^{[p]}-X^p$.

The algebra of distributions

For a linear algebraic group H, the algebra $\mathrm{Dist}(H)$ consists of all linear mapping $\lambda: k[H] \to k$ such that $\lambda_{|\mathfrak{m}^e} = 0$ for some $e \geq 1$, where \mathfrak{m} is the kernel of the augmentation homomorphism – i.e. the maximal ideal corresponding to the identity element of H.

- ► The group structure of *H* gives Dist(*H*) the structure of an *algebra*.
- ▶ If the char. of k is 0, Dist(H) may be identified with $U(\mathfrak{h})$.
- ▶ If the char. of k is p > 0, there is an embedding $\mathbf{U}^{[p]}(\mathfrak{h}) \to \mathrm{Dist}(H)$.
- ► For the reductive group *G*, again have triangular decomp

$$Dist(G) = Dist(U^+) \otimes Dist(T) \otimes Dist(U).$$

Distributions on G_a and G_m

- ▶ The additive gp G_a and the mult gp G_m arise by base change from smooth gp schemes $G_{a,Z}$ and $G_{m,Z}$ over Z.
- Fix basis vectors

$$H \in \operatorname{Lie}(\mathbf{G}_{m,\mathbf{Q}})$$
 and $X \in \operatorname{Lie}(\mathbf{G}_{a,\mathbf{Q}})$,

which we view as elts of $\mathrm{Dist}(\mathbf{G}_{m,\mathbf{Q}})$ resp. $\mathrm{Dist}(\mathbf{G}_{a,\mathbf{Q}})$. These choices determine **Z**-forms of $\mathbf{G}_{a,\mathbf{Q}}$ and $G_{m,\mathbf{Q}}$ with:

$$\operatorname{Dist}(\mathbf{G}_{m,\mathbf{Z}}) = \sum_{r \geq 0} \mathbf{Z} \binom{H}{r} \subset \operatorname{Dist}(\mathbf{G}_{m,\mathbf{Q}})$$
, and

$$\operatorname{Dist}(\mathbf{G}_{a,\mathbf{Z}}) = \sum_{r \geq 0} \mathbf{Z} X^{(r)} \subset \operatorname{Dist}(\mathbf{G}_{a,\mathbf{Q}}) \quad \text{where} \quad X^{(r)} = \frac{X^r}{r!}$$

▶ $Dist(\mathbf{G}_m) = Dist(\mathbf{G}_{m,\mathbf{Z}}) \otimes k$ and $Dist(\mathbf{G}_a) = Dist(\mathbf{G}_{a,\mathbf{Z}}) \otimes k$

More on distributions

▶ Let Φ be the roots of G (non-zero weights of T in Lie(G); see later). Then $U = \prod_{\alpha < 0} U_{\alpha}$ for root subgroups U_{α} , and

$$Dist(U) = \sum_{\vec{n} \ge \vec{0}} k \prod_{\alpha < 0} X_{\alpha}^{(n_{\alpha})}.$$

▶ If G is semisimple, $\mathrm{Dist}(G)$ may be identified with $\mathbf{U}_{\mathbf{Z}} \otimes k$ where $\mathbf{U}_{\mathbf{Z}}$ is the Kostant Z-form of $\mathbf{U}(\mathfrak{g}_{\mathbf{Q}})$ for a split semisimple Lie algebra $\mathfrak{g}_{\mathbf{Q}}$ over \mathbf{Q} with root sys of G.

Theorem

Let M, N be G-modules, and let $M' \subset M$ a k-subspace.

- (a) M' is a G-submodule $\iff M'$ is a Dist(G)-submodule.
- (b) $\operatorname{Hom}_G(M,N) = \operatorname{Hom}_{\operatorname{Dist} G}(M,N)$.

Outline

Cast of characters

The algebra of distributions

Simple representations

Reduction \pmod{p}

Flag variety of a split reductive group

Proposition

 $\mathcal{B} = G/B$ is a projective algebraic variety over k, called the flag variety of G.

Write $X = X^*(T) = \operatorname{Hom}(T, \mathbf{G}_m) \simeq \mathbf{Z}^{\dim T}$ for the lattice of *characters* of T.

Proposition

There is a bijection $\lambda \mapsto \mathcal{L}(\lambda)$ between X and the collection of G-linearized invertible sheaves on \mathcal{B} .

- ▶ Explicitly, λ determines a B-module k_{λ} , and $\mathcal{L}(\lambda)$ is the sheaf of sections of the line bundle $G \times^B k_{\lambda} \to G/B$.
- ▶ This bijection depends on the choice of *B* containing *T*.

Flag variety and standard modules

Induction and global sections

Can form $\operatorname{ind}_B^G(-) = \Gamma(\mathcal{B}, \mathcal{L}(-))$, a left-exact functor with right derived functors $R^i \operatorname{ind}_B^G(?) = H^i(?)$. We write $H^0(\lambda) = \operatorname{ind}_B^G(\lambda)$.

Frobenius recip in this context implies:

Proposition

For $\lambda \in X$, $H^0(\lambda) = H^0(\mathcal{B}, \mathcal{L}(\lambda))$ has the universal mapping property: for a G-module M, there is a natural isomorphism $\operatorname{Hom}_B(M_{|\mathcal{B}},k_\lambda) \simeq \operatorname{Hom}_G(M,H^0(\lambda))$.

Terminology

The $H^0(\lambda)$ are known as *standard modules*.

Flag variety and standard modules

Proposition

If $H^0(\lambda) \neq 0$, then $H^0(\lambda)^{U^+} = H^0(\lambda)_{\lambda}$ is 1 dimensional.

Sketch

An elt of $H^0(\lambda)^{U^+}$ corresponds to $f \in k[G]$ for which

$$f(u_1tu_2) = \lambda(t)^{-1}f(1)$$

for $t \in T$, $u_1 \in U^+$, $u_2 \in U$.

Now the result follows since U^+B is dense in G.

Dominant weights

Proposition

 $H^0(\lambda) \neq 0 \iff \lambda \text{ is dominant; i.e. } \langle \lambda, \alpha^\vee \rangle \geq 0 \text{ for } \alpha \in \Phi^+.$

Sketch

 \Rightarrow : The main point is to argue that any weight μ of $H^0(\lambda)$ satisfies $w_0\lambda \leq \mu \leq \lambda$. Dominance follows by considering the weight $s_\alpha\lambda$ of $H^0(\lambda)$ for simple roots α .

 \Leftarrow : Consider the regular function f_{λ} on U^+B defined by $u_1tu_2\mapsto \lambda(t)^{-1}$. Must argue that λ dominant $\Longrightarrow f_{\lambda}$ can be extended to a regular function on G. Enough to argue can extend f_{λ} over the open subvarieties $\dot{s}_{\alpha}U^+\dot{B}$ for simple α , since the complement of $U^+B\cup\bigcup_{\alpha\in\Delta}\dot{s}_{\alpha}U^+B$ has codimension ≥ 2 and G is a normal variety.

Simple *G*-modules

Proposition

- (a) $L(\lambda) = \operatorname{soc} H^0(\lambda)$ is a simple *G*-module \forall dominant λ .
- (b) The simple G-modules are precisely the $L(\lambda)$.

Sketch

- (a) $L_1, L_2 \subset H^0(\lambda)$ distinct irr submods $\implies \dim H^0(\lambda)^{U^+} \geq 2$.
- (b) L irr $\implies L^{U^{+'}}$ non-0 and T-inv so UMP gives $L \subset H^{0}(\lambda) \; \exists \lambda$

Relation to char. 0

Let λ a dominant weight.

Proposition

If char. k is 0, $H^0(\lambda) = L(\lambda)$ is simple as G- and $\mathfrak g$ -module

Proposition

For any k, the formal character $\chi(\lambda)=\operatorname{ch}(H^0(\lambda))$ - an elt of $\mathbf{Z}[X]^W$ - of is given by Weyl's character formula.

Remark

For $\mu \in X$, we set $\chi(\mu) = \sum_{i \geq 0} (-1)^i \operatorname{ch} H^i(\mu)$. Then $\chi(w \bullet \mu) = (-1)^{\ell(w)} \chi(\mu)$ for the "dot-action" of $w \in W$. The Borel-Bott-Weil Thm implies $\chi(\lambda) = \operatorname{ch} H^0(\lambda)$ for dom λ .

Properties of standard and Weyl modules

- if $\lambda \not< \mu$, $\operatorname{Ext}^1_G(L(\mu), L(\lambda)) \simeq \operatorname{Hom}_G(L(\mu), H^0(\lambda)/L(\lambda))$
- can dualize: set $V(\lambda) = H^0(-w_0\lambda)^{\vee}$
- ▶ the $V(\lambda)$ are known as "Weyl modules"
- any length 2 indecomposable is either a quotient of a Weyl module, or a submodule of a standard module.

Proposition

For dominant λ , μ ,

$$\operatorname{Ext}_G^i(V(\lambda),H^0(\mu)) = \begin{cases} 0 & \text{if } i \neq 0 \text{ or } \lambda \neq \mu \\ k & \text{if } i = 0 \text{ and } \lambda = \mu. \end{cases}$$

Outline

Cast of characters

The algebra of distributions

Simple representations

Reduction \pmod{p}

Integral forms

Let \mathcal{A} be a DVR with valuation ν , residues $\mathcal{A}/\pi\mathcal{A}=k$ and fractions K of char. 0. e.g. $\mathcal{A}=\mathbf{Z}_{(p)},\,\pi=p,\,k=\mathbf{F}_p$ and $K=\mathbf{Q}$.

Proposition

There is a split reductive group scheme $\mathcal{G} = G_{\mathcal{A}}$ over \mathcal{A} with $G = \mathcal{G}_k$ for which $G_K = \mathcal{G}_K$ is a split reductive group over K having "the same root datum" as G.

Sketch

Take G_K split reduc with specified root datum, and use choice of a Chev. basis in \mathfrak{g}_K to construct \mathcal{A} -forms of $T_K \simeq \prod \mathbf{G}_m$ and each $U_{\alpha,K} \simeq \mathbf{G}_a$. These \mathcal{A} -forms determine

$$\mathrm{Dist}(\mathcal{G})=\mathrm{Dist}(U_{\mathcal{A}}^+)\otimes_{\mathcal{A}}\mathrm{Dist}(T_{\mathcal{A}})\otimes_{\mathcal{A}}\mathrm{Dist}(U_{\mathcal{A}}).$$

And now $\mathcal{A}[\mathcal{G}] = \{ f \in K[G_K] \mid \mu(f) \in \mathcal{A} \ \forall \mu \in \mathrm{Dist}(\mathcal{G}) \}.$

Some G-modules

Proposition

If V is a fin dim G_K -module and $M \subset V$ an \mathcal{A} -lattice, then M is \mathcal{G} -stable $\iff \mathrm{Dist}(\mathcal{G})M = M$.

Constructions

- ▶ Let $H_K^0(\lambda)$ simple G_K -module, fix $0 \neq v_0 \in H_K^0(\lambda)_{\lambda}$, and consider $V_A(\lambda) = \text{Dist}(\mathcal{G})v_0$.
- ▶ $\lambda \in X$ determines B_A -mod A_λ ; now form G-module

$$H^i_{\mathcal{A}}(\lambda) = R^i \operatorname{ind}_{\mathcal{B}_{\mathcal{A}}}^{\mathcal{G}} \mathcal{A}_{\lambda} = H^i(\mathcal{G}/\mathcal{B}_{\mathcal{A}}, \mathcal{L}_{\mathcal{A}}(\lambda)), \quad i \geq 0.$$

Induced modules over A

Proposition

- (a) $H^0_{\mathcal{A}}(\lambda)$ is a \mathcal{G} -stable lattice in $H^0_K(\lambda)$
- (b) $H^0(\lambda) = H^0_{\mathcal{A}}(\lambda) \otimes_{\mathcal{A}} k$ as $G = \mathcal{G}_k$ -module.
- (c) Let $n = |\Phi^+| = \ell(w_0)$. Then

$$H_{\mathcal{A}}^{n}(w_{0} \bullet \lambda) \simeq V_{\mathcal{A}}(\lambda) \simeq H_{\mathcal{A}}^{0}(-w_{0}\lambda)^{\vee}.$$

In particular, $V(\lambda) = V_{\mathcal{A}}(\lambda) \otimes_{\mathcal{A}} k$ as G-modules.

Sketch

Part (c) depends in part on "Serre duality": namely,

$$H^i(\lambda) \simeq H^{n-i}(-(\lambda+2\rho))^{\vee}.$$

Interlude on lattices

Let M, M' fin. gen \mathcal{A} -modules and $\phi: M \to M'$ \mathcal{A} -linear s.t. $\phi_K: M \otimes_{\mathcal{A}} K \to M' \otimes_{\mathcal{A}} K$ bijective.

- ▶ Put $\nu(\phi) = \ell(\operatorname{coker} \phi)$ where $\ell(?)$ denotes length of \mathcal{A} -module.
- If ϕ is morphism of $T_{\mathcal{A}}$ -modules, put $\nu^{c}(\phi) = \sum_{\mu} \nu(\phi_{|M_{\mu}}: M_{\mu} \to M'_{\mu}) e(\mu) \in \mathbf{Z}[X].$

Proposition

Suppose M,M' are torsion free, put $\underline{M^i} = \{x \in M \mid \phi(x) \in \pi^i M'\}$, and let $\overline{M^i}$ image of M^i in $\overline{M} = M/\pi M = M \otimes_{\mathcal{A}} k$. Then:

- (a) $\sum_{i>0} \dim_k \overline{M^i} = \nu(\phi)$.
- (b) if ϕ is map of T_A -modules, then $\sum_{i>0} \operatorname{ch}(\overline{M^i}) = \nu^c(\phi)$.

The Jantzen sum formula

Theorem

There is a \mathcal{G} -morphism $T:V_{\mathcal{A}}(\lambda)=H^n_{\mathcal{A}}(w_0\bullet\lambda)\to H^0_{\mathcal{A}}(\lambda)$. The resulting filtration $\{V^i(\lambda)\}$ of $V(\lambda)=\overline{V_{\mathcal{A}}(\lambda)}$ satisfies

(a) $V(\lambda)/V^1(\lambda) \simeq L(\lambda)$, and

$$\text{(b)}\ \, \sum_{i>0} \operatorname{ch} V^i(\lambda) = \nu^c(T) = \sum_{\alpha>0} \sum_{i=1}^{\langle \lambda+\rho,\alpha^\vee\rangle-1} \nu(i) \cdot \chi(\lambda-i\alpha).$$

Remark

In fact, since $\operatorname{Ext}^1_G(V(\lambda),H^0(\lambda))=0$, $\operatorname{Hom}_{\mathcal G}(V_{\mathcal A}(\lambda),H^0_{\mathcal A}(\lambda))\simeq \mathcal A\cdot T$, so T is ! determ up to $\mathcal A^\times$. But the formula in (b) depends on an explicit description of T obtained by choosing a reduced decomposition of w_0 .

Examples

Notation

Let \mathcal{L} be an \mathcal{A} -lattice in $V_K = \mathcal{L} \otimes_{\mathcal{A}} K$. Suppose that γ is a non-degenerate bilinear form on V_K .

- ▶ $\mathcal{L}^* = \{x \in V_K \mid \gamma(x, \mathcal{L}) \subset \mathcal{A}\}$ is again an \mathcal{A} -lattice.
- ▶ If $\beta(\mathcal{L}, \mathcal{L}) \subset \mathcal{A}$, then $\mathcal{L} \subset \mathcal{L}^*$.

Examples: some representations

Symplectic group and $\lambda = \omega_2$

- ▶ Let $G = \operatorname{Sp}(V, \beta)$ with $\dim_k V = 2\ell$, and suppose $p \neq 2$.
- ▶ Let $V_K = H_K^0(\omega_1)$ and fix G_K -invt non-deg form on $\bigwedge^2 V_K$.
- ▶ Then $\bigwedge^2 V_K = K\beta \oplus \beta^{\perp}$ as G_K -modules, and $\beta^{\perp} \simeq H_K^0(\varpi_2)$.
- ▶ sum formula gives $\sum_{i>0}$ ch $V^i(\omega_2) = \nu(\ell)\chi(0)$.

Special Linear group and $\lambda = \omega_1 + \omega_\ell$

- ▶ Let G = SL(V) with $\dim_k V = \ell + 1$.
- ▶ Let $V_K = H_K^0(\omega_1)$ and consider trace form on $\operatorname{End}_K(V_K)$.
- ▶ Then $\operatorname{End}_K(V_K) = K\operatorname{Id} \oplus \operatorname{Id}^{\perp}$, and $\operatorname{Id}^{\perp} \simeq H_K^0(\varpi_1 + \varpi_{\ell})$.
- ▶ sum formula gives $\sum_{i>0}$ ch $V^i(\omega_1 + \omega_\ell) = \nu(\ell+1)\chi(0)$.

Examples: Lattice descriptions

Common features

For both $\operatorname{Sp}(V)$ and $\operatorname{SL}(V)$, have $\mathcal{L} = V_{\mathcal{A}}(\varpi_1) = H^0_{\mathcal{A}}(\varpi_1) \subset V_K$. May s'pose $\bigwedge^2 \mathcal{L} = (\bigwedge^2 \mathcal{L})^*$, resp. $\operatorname{End}_{\mathcal{A}}(\mathcal{L}) = \operatorname{End}_{\mathcal{A}}(\mathcal{L})^*$.

Proposition

(a) For $G = \operatorname{Sp}(\mathcal{L})$ and $\lambda = \omega_2$,

$$V_{\mathcal{A}}(\lambda) = \bigwedge^2 \mathcal{L} \cap \beta^{\perp}$$
 and $V_{\mathcal{A}}(\lambda) = H_{\mathcal{A}}^0(\lambda)^*$.

Moreover, $H^0_{\mathcal{A}}(\lambda)/V_{\mathcal{A}}(\lambda) \simeq \mathcal{A}/\ell\mathcal{A}$.

(b) For
$$G = SL(\mathcal{L})$$
 and $\lambda = \omega_1 + \omega_\ell$,

$$V_{\mathcal{A}}(\lambda) = \operatorname{End}_{\mathcal{A}}(\mathcal{L}) \cap \operatorname{Id}^{\perp}$$
 and $H_{\mathcal{A}}^{0}(\lambda) = V_{\mathcal{A}}(\lambda)^{*}$.

Moreover
$$H^0_A(\lambda)/V_A(\lambda) \simeq \mathcal{A}/(\ell+1)\mathcal{A}$$
.

Examples: conclusion

Proposition

- (a) If $G = \operatorname{Sp}(V)$, $V(\omega_2)$ is simple unless $p \mid \ell$, in which case $\operatorname{rad} V(\omega_2) = k$ is 1 dimensional.
- (b) If $G = \mathrm{SL}(V)$, $V(\varpi_1 + \varpi_\ell)$ is simple unless $p \mid \ell + 1$, in which case $\mathrm{rad}\,V(\varpi_1 + \varpi_\ell) = k$ is 1 dimensional.

Remark

By itself, the sum formula doesn't quite yield the preceding facts e.g. if $\ell=p^3$ resp. $\ell+1=p^3$.

