

TD Quadripôles

Ex 1:

- 1. Déterminer en fonction des générateurs de Thévenin et Norton équivalents au quadripôle Q, vu des points A et B.
- 2. En déduire le gain en tension du quadripôle chargé par une résistance R_L

La tension d'entrée $u_{_{\varrho}}$ est sinusoïdale

Ex 2:

Considérons le circuit suivant :

- 1. Déterminer les paramètres hybrides de ce quadripôle.
- 2. Donner la signification physique de chaque terme.

Ex 3:

Soit T1 et T2 deux cellules en T

 \underline{V}_e et \underline{V}_s sont les tensions d'entrée et de sortie prises par rapport à la masse, \underline{I}_e et \underline{I}_s sont les courants d'entrée et de sortie.

On décrit les deux quadripôles par leur matrice admittance d'éléments respectifs Y_{ij} et X_{ij} .

- 1. Déterminer les matrices admittances des cellules T1 et T2.
- 2. Existe-t-il une façon simple de déduire X_{ij} de Y_{ij} ?

M

3. Quelles sont les conséquences de la symétrie des cellules T1 et T2 sur les paramètres Y_{ij} et X_{ii} ?

Ex 4:

Un générateur basse fréquence de résistance interne négligeable délivre une tension $u_{_1}(t) = U_{_1} cos \omega t$.

La tension $\boldsymbol{u}_{_{\! 1}}$ alimente le quadripôle Q , ce quadripôle est chargé par une résistance R.

On donne : $R = 30 \text{ K}\Omega$, C = 10 nF

- 1.a. Déterminer la fonction de transfert $\underline{H} = \underline{U}_{2} / \underline{U}_{1}$ du quadripôle Q (non chargé).
 - b. Tracer le diagramme de Bode en module et phase de $\underline{H}(j\omega)$.
 - c. Conclusion.
- 2.a. Déterminer l'impédance d'entrée Z ∫ du quadripôle chargé par R.
- b. Montrer que pour la pulsation de coupure, ce réseau est équivalent à un dipôle série $(R_1^{}, C_1^{})$ dont on calculera la résistance $R_1^{}$ et la capacité $C_1^{}$ équivalentes
 - c. Donner l'expression de l'impédance de sortie \underline{Z}_{-s} du quadripôle Q.
- 3. Le générateur étant réglé sur la fréquence de coupure, calculer :
 - a. La puissance P_1 fournie par le générateur au réseau.
 - b. La puissance P_2 recueillie sur la résistance de charge.