

Probability, Odds, and Odds Ratios in Logistic Regression Models

Karen Grace-Martin

Is every ship equally likely to successfully navigate an asteroid field?

- 1. Collect Data
- 2. Run a logistic regression to see which, if any, variables predict the likelihood of successfully navigating an asteroid field

Logistic Regression Coefficients

Dependent Variable:

Successfully Navigates Asteroid Field

	*					
Variable	b	se	t	p	OR	
Intercept	-8.221	2.581	3.185	.000		
Size of Ship tons	128	.041	3.12	.000	.88	(0.50)
Presence of R2 unit	.959	.327	2.93	.026	2.61=	exp(.959)
	logs-odds					.959 e

Modeling Probability

$$P = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_k X_k$$

Why not?

- 1. The right hand side of the equation ranges from $-\infty$ to $+\infty$, but the left hand side ranges from 0 to 1.
- Relationship is not linear, but rather follows an S-shaped curve

Logistic Regression

$$Ln\left(\frac{P}{1-P}\right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_k X_k$$

Using algebra, we can solve for the probability of success.

$$P = \frac{e^{\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k}}{1 + e^{\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k}}$$

What are odds?

Odds ≠ Probability

"...probability, which is the odds of something occurring... A fair coin has 50% odds of heads coming up on any (IP)."

- Author anonymous to protect the guilty

A Coin Experiment

Flip a coin 10,000 times and get 5,001 heads

Probability

$$P(heads) = \frac{Number of heads}{Number of flips}$$

P(heads) =
$$\frac{5001}{10000}$$

$$P(heads) = .5001$$

Odds

$$Odds(heads) = \frac{Number of heads}{Number of tails}$$

$$Odds(heads) = \frac{5001}{4999}$$

Measure the same construct on different scales

Probability and Odds both measure likelihood on different scales.

.5 Odds ≠ .5 Probability

Celsius and Fahrenheit both measure temperature on different scales.

30°F ≠ 30°C

Probability

Heads	Tails	Total		
5001	4999	10000		

Proportion of successes to the total

$$P(Heads) = 5001/10000$$

P(Tails) = 4999/10000

Ranges from 0 to 1

$$P(Tails) = 1 - P(Heads)$$

 $P = .5 \rightarrow$ Heads and tails equally likely

 $P > .5 \rightarrow$ Heads is more likely than tails

 $P < .5 \rightarrow$ Heads is less likely than tails

Odds

Heads	Tails	Total	
5001	4999	10000	

proportion of successes to failures

$$Odds(Heads) = 5001/4999$$

$$Odds(Tails) = 4999/5001$$

ranges from 0 to ∞

Odds = $1 \rightarrow$ Heads and tails equally likely

Odds $> 1 \rightarrow$ Heads is more likely than tails

Odds $< 1 \rightarrow$ Heads is less likely than tails

Converting

$$Odds = \underbrace{\frac{P}{1 - P}}$$

Odds(heads) =
$$\frac{5001}{4999}$$
 Num #

Odds(heads) =
$$\frac{5001_{10000}}{4999_{10000}}$$
 Pr(H)

C-3PO:

odds un

Sir, the possibility of ^successfully navigating an asteroid field is approximately 3,720 to 1.

Odds(successful navigation) = 1/3720 Pr(successful navigation) = 1/3721

Number of Number of Successful ships unsuccessful ships of ships

Odds Ratios in Logistic Regression

Odds Ratios in Logistic Regression

$$Ln\left(\frac{P}{1-P}\right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_k X_k$$

$$\operatorname{Ln}\left(\operatorname{odds}\right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_k X_k$$

$$\beta_1$$
 is the effect of X_1 on the $\underline{\text{In}(\text{odds})}$ $\beta_1 = \underline{\Delta \text{In}(\text{odds})}$

Odds Ratios in Logistic Regression odds = $|0\rangle + 6 NS$ w $|R2\rangle = 10$ Ln $\left(\frac{P}{1-P}\right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2$ אייףטן

$$\operatorname{Ln}\left(\frac{P}{1-P}\right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

Logistic Regression Coefficients

Dependent Variable:

Successfully Navigates Asteroid Field

Variable		b	se	t	p OR 📐
Intercept		-8.221	2.581	3.185	.000
Size of Ship	4.128	128	.041	3.12	.000 (.88) =~2.72
Presence of R2 unit	2	.959	.327	2.93	.026 2.61

References and Resources

DeMaris, Alfred. (1995). A Tutorial in Logistic Regression. <u>Journal of Marriage</u> and Family, <u>57</u>, 956-968.

Menard, Scott. (1995). <u>Applied Logistic Regression Analysis</u>. Sage Publications, Thousand Oaks, CA.

At The Analysis Factor:

https://www.theanalysisfactor.com/resources/by-topic/logistic-regression/

Learn More

Title: Logistic Regression for Binary, Ordinal, and Multinomial Outcomes

Instructor: Karen Grace-Martin

Stage: 3 (Extensions of Linear Models)

Software: SPSS, R, Stata, SAS

Dates: 4 modules - 2 hours First is 4/25/19

Enrollment Closes: April 18

Full price: \$397 (Student \$247)

https://www.theanalysisfactor.com/workshop-logistic-regression/