NYU Tandon Bridge

Homework 3

Kamel Bassel M Gazzaz

01/29/2021

a) Exercise 3.1.1

- a. All multiples of 3 are elements in A. 3*9 = 27. So $27 \in A$ is **True**
- b. A perfect square can be written $y=x^2$ for an integer x. $\sqrt{27} \approx 5.196$ which is not an integer. So $27 \in B$ is **False.**
- c. A perfect square can be written $y=x^2$ for an integer x. $\sqrt{100} \approx 10$. So $100 \in B$ is **True.**
- d. {3, 6, 9} ⊆ {4, 5, 9, 10} so E is not a subset of C. Conversely,
 {4, 5, 9, 10} ⊆ {3, 6, 9} so C is not a subset of E. So, E ⊆ C or C ⊆ E is False
- e. 3 * 1 = 3, 3 * 2 = 6, 3 * 3 = 9, so 3, 6, and 9 are all integer multiples of 3. As such, $\{3, 6, 9\} \subseteq \{x \in Z : x \text{ is an integer multiple of } 3\}$ so $E \subseteq A$ is **True.**
- f. $27 \in A$ but $27 \notin E$. So not all elements of A are in E. Therefore, A \subseteq E is **False**.
- g. The set $\{3, 6, 9\}$ is not a multiple of 3 and therefore not an element in A (even though the elements inside the set are multiples of 3). So, $E \in A$ is **False.**

b) Exercise 3.1.2

- a. 15 is an element not a set. So, $15 \subset A$ is **False**.
- b. Since 3 * 5 = 15, we get $15 \in A$. Also, 3 * 1 = 3, so $3 \in A$ but $3 \notin \{15\}$. As such, all elements in $\{15\}$ are also elements in A, but not all elements in A are in $\{15\}$. Therefore, $\{15\} \subset A$ is **True.**
- c. All elements in \emptyset (none), are also in A. However, A contains elements (e.g. 3) that are not in \emptyset . Therefore, $\emptyset \subset A$ is **True**.

- d. Since the criteria for being an element in A and A are the same (because they're the same set), all elements in A are also in A. Therefore, $A \subseteq A$ is **True**.
- e. \emptyset is an empty set, not an element. So, $\emptyset \in B$ is **False**.

c) Exercise 3.1.5

b. $\{x \in \mathbb{Z}^+: x \text{ is an integer multiple of 3}\}$. The set is infinite.

Can also be defined as $\{x \in \mathbb{N}: x \text{ is a positive integer multiple of } 3\}$. If we want to write it without English, we can also say $\{3x: x \in \mathbb{Z}^+\}$.

d. $\{x \in \mathbb{N}: x \text{ is an integer multiple of } 10 \text{ and } x \leq 1000\}$ and the cardinality is 101.

If we want to write it without English, we can also say: $\{10x: x \in \mathbb{N}, 0 \le x \le 100\}$.

d) Exercise 3.2.1

- a. 2 is the fourth element in the X roster notation. So, $2 \in X$ is **True.**
- b. 2 is the fourth element in the X roster notation. So $\{2\}$ is a subset of X. Therefore, $\{2\} \subseteq X$ is **True**.
- c. $\{2\}$ does not appear in the roster as an element in X. So, $\{2\} \in X$ is **False**.
- d. 3 does not appear in the roster as an element in X. So, $3 \in X$ is False.
- e. $\{1, 2\}$ is the third element in the X roster notation. So, $\{1, 2\} \in X$ is **True**.
- f. 1 and 2 are both elements in X. So, the subset containing only 1 and 2 must be a subset of X. Therefore, $\{1, 2\} \subseteq X$ is **True**.
- g. 2 and 4 are both elements in X. So, the subset containing only 2 and 4 must be a subset of X. Therefore, $\{2, 4\} \subseteq X$ is **True**.
- h. $\{2,4\}$ does not appear as an element in the roster for X. So, $\{2,4\} \in X$ is **False**.
- i. 3 is not an element in X. So, $\{2, 3\} \subseteq X$ is **False**.
- j. $\{2,3\}$ does not appear as an element in the roster for X. So, $\{2,3\} \in X$ is **False**.
- k. There are 6 elements in X. Therefore, |X| = 7 is **False**.

Exercise 3.2.4

b. Let $A = \{1, 2, 3\}$. What is $\{X \in P(A): 2 \in X\}$?

Step 1: Determine P(A)

P(A) is a set of all the subsets of A.

$$P(A) = {\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}}$$

Step 2: Determine which elements are in $\{X \in P(A): 2 \in X\}$

Let us name this set $B = \{X \in P(A): 2 \in X\}$

From the set builder definition, we understand that the set B consists of all elements X in P(A) such that 2 is an element in X. In other words, all elements in P(A) that have a 2 in them.

Therefore, $B = \{\{2\}, \{1,2\}, \{2,3\}, \{1,2,3\}\}$.

a) Exercise 3.3.1

c.
$$A \cap C = \{-3, 0, 1, 4, 17\} \cap \{x \in Z: x \text{ is odd}\}\$$

$$A \cap C = \{-3, 1, 17\}$$

d.
$$A \cup (B \cap C) = A \cup (\{-12, -5, 1, 4, 6\} \cap \{x \in Z: x \text{ is odd}\})$$

$$A \cup (B \cap C) = A \cup \{-5, 1\}$$

$$A \cup (B \cap C) = \{-3, 0, 1, 4, 17\} \cup \{-5, 1\}$$

$$A \cup (B \cap C) = \{-5, -3, 0, 1, 4, 17\}$$

e.
$$A \cap B \cap C = \{-3, 0, 1, 4, 17\} \cap \{-12, -5, 1, 4, 6\} \cap C$$

$$A \cap B \cap C = \{1, 4\} \cap C$$

$$A \cap B \cap C = \{1, 4\} \cap \{x \in Z: x \text{ is odd}\}\$$

$$A \cap B \cap C = \{1\}$$

b) Exercise 3.3.3

a.
$$\bigcap_{i=2}^{5} Ai = A_2 \cap A_3 \cap A_4 \cap A_5$$

$$\bigcap_{i=2}^{5} Ai = \{2^{0}, 2^{1}, 2^{2}\} \cap \{3^{0}, 3^{1}, 3^{2}\} \cap \{4^{0}, 4^{1}, 4^{2}\} \cap \{5^{0}, 5^{1}, 5^{2}\}$$

$$\bigcap_{i=2}^{5} Ai = (\{1, 2, 4\} \cap \{1, 3, 9\}) \cap \{1, 4, 16\} \cap \{1, 5, 25\}$$

$$\bigcap_{i=2}^{5} Ai = (\{1\} \cap \{1, 4, 16\}) \cap \{1, 5, 25\}$$

$$\bigcap_{i=2}^{5} Ai = \{1\} \cap \{1, 5, 25\}$$

$$\bigcap_{i=2}^{5} Ai = \{1\}$$

b.
$$\bigcup_{i=2}^{5} Ai = A_2 \cup A_3 \cup A_4 \cup A_5$$

$$\bigcap_{i=2}^{5} Ai = \{2^{0}, 2^{1}, 2^{2}\} \cup \{3^{0}, 3^{1}, 3^{2}\} \cup \{4^{0}, 4^{1}, 4^{2}\} \cup \{5^{0}, 5^{1}, 5^{2}\}$$

$$\bigcup_{i=2}^{5} Ai = (\{1, 2, 4\} \cup \{1, 3, 9\}) \cup \{1, 4, 16\} \cup \{1, 5, 25\}$$

$$\bigcup_{i=2}^{5} Ai = (\{1, 2, 3, 4, 9\} \cup \{1, 4, 16\}) \cup \{1, 5, 25\}$$

$$\bigcup_{i=2}^{5} Ai = \{1, 2, 3, 4, 9, 16\} \cup \{1, 5, 25\}$$

$$\bigcup_{i=2}^{5} Ai = \{1, 2, 3, 4, 5, 9, 16, 25\}$$

e.
$$\bigcap_{i=1}^{100} Ci = C_1 \cap C_2 \cap ... \cap C_{100}$$

$$\bigcap_{i=1}^{100} Ci = \{x \in R : -1/1 \le x \le 1/1\} \cap \{x \in R : -1/2 \le x \le 1/2\} \cap \dots \cap \{x \in R : -1/100 \le x \le 1/100\}$$

We can see that as *i* increases, the set C_i further contracts on itself. C_{100} is a subset of C_{99} which is a subset of C_{98} ... C_2 is a subset of C_1 .

Visually this is represented as:

As such, because we are taking the intersection of all those sets. Only the values in the smallest (innermost) set will be common to all the sets C_i .

So, the elements of the set C_{100} will be common to all sets in $\bigcap_{i=1}^{100} Ci$

Therefore,
$$\bigcap_{i=1}^{100} Ci = \{x \in \mathbb{R}: -1/100 \le x \le 1/100\}$$

f.
$$\bigcup_{i=1}^{100} Ci = C_1 \cup C_2 \cup ... \cup C_{100}$$

$$\bigcup_{i=1}^{100} Ci = \{x \in R : -1/1 \le x \le 1/1\} \cap \{x \in R : -1/2 \le x \le 1/2\} \cap \dots \cap \{x \in R : -1/100 \le x \le 1/100\}$$

We can see that as *i* increases, the set C_i further contracts on itself. C_{100} is a subset of C_{99} which is a subset of C_{98} ... C_2 is a subset of C_1 .

Visually this is represented as:

As such, because we are taking the union of all those sets. Only the values of the largest (outermost) set will contain all the other values of the rest of the sets C_i .

So, the elements of the set C_I will contain all the other elements in all sets in $\bigcup_{i=1}^{100} Ci$

Therefore,
$$\bigcup_{i=1}^{100} Ci = \{x \in R : -1 \le x \le 1\}$$

c) Exercise 3.3.4

b.
$$P(A \cup B) = P(\{a, b\} \cup \{b, c\})$$

$$P(A \cup B) = P(\{a, b, c\})$$

$$P(A \cup B) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\$$

c.
$$P(A) \cup P(B) = P(\{a, b\}) \cup P(\{b, c\})$$

$$P(A) \cup P(B) \, = \, \{ \{ \emptyset, \, \{a\}, \, \{b\}, \, \{a, \, b\} \} \cup P(\{b, \, c\})$$

$$P(A) \cup P(B) \, = \, \{ \{ \emptyset, \, \{a\}, \, \{b\}, \, \{a, \, b\} \} \cup \{ \emptyset, \, \{b\}, \, \{c\}, \, \{b, \, c\} \}$$

$$P(A) \cup P(B) \, = \, \{ \emptyset, \, \{a\}, \, \{b\}, \, \{c\}, \, \{a, \, b\}, \, \{b, \, c\} \}$$

a) Exercise 3.5.1

b. In order to be an element in $B \times A \times C$, the element must be an ordered triplet with the first item coming from $B = \{\text{foam, no-foam}\}$, the second coming from $A = \{\text{tall, grande, venti}\}$, and the third element coming from $C = \{\text{non-fat, whole}\}$. We can choose any one element from each set.

Therefore, $(no - foam, venti, non - fat) \in B \times A \times C$

c. The set $B \times C$ consists of all ordered pairs created with the first element coming from B and the second from C. We get:

$$B \times C = \{(foam, non - fat), (foam, whole), (no - foam, non - fat), (no - foam, whole)\}$$

b) Exercise 3.5.3

b.
$$Z^2 \subseteq R^2$$

We know that all elements in \mathbb{Z} are integers and all elements in \mathbb{R} are real numbers. We also know that all integers are all real numbers. Therefore, all elements in \mathbb{Z} are also in \mathbb{R} . So, we get $\mathbb{Z} \subseteq \mathbb{R}$.

Next, all elements in \mathbb{Z}^2 are formed by taking the first element from \mathbb{Z} and the second element from \mathbb{Z} . Similarly, all elements in \mathbb{R}^2 are formed by taking the first element from \mathbb{R} and the second element from \mathbb{R} .

Since, we know that all elements in \mathbb{Z} are all also elements in \mathbb{R} . All those integer elements can also be used to create ordered pairs in \mathbb{R}^2 .

Therefore, since all elements in \mathbb{Z}^2 are also in \mathbb{R}^2 , we conclude that $\mathbb{Z}^2 \subseteq \mathbb{R}^2$ is **True**.

Note: In fact, for any two sets, A and B, if $A \subseteq B$, then $A^2 \subseteq B^2$.

c.
$$\mathbb{Z}^2 \cap \mathbb{Z}^3 = \emptyset$$

We know that all elements in \mathbb{Z}^2 are formed by taking a first element from \mathbb{Z} and a second element from \mathbb{Z} . However, all elements in \mathbb{Z}^3 are formed by taking a first element from \mathbb{Z} , a second element from \mathbb{Z} , and a third element from \mathbb{Z} .

As such, all elements in \mathbb{Z}^2 are ordered pairs whereas all elements in \mathbb{Z}^3 are ordered triplets.

Therefore, there is no overlap between the elements of \mathbb{Z}^2 and \mathbb{Z}^3 .

We conclude that $\mathbb{Z}^2 \cap \mathbb{Z}^3 = \emptyset$ is True.

e. For any three sets, A, B, and C, if $A \subseteq B$, then $A \times C \subseteq B \times C$.

This statement is in the form of a conditional statement. If the premise $A \subseteq B$ is false, then the statement is true regardless of the value of the implication.

So the only case we must consider is when $A \subseteq B$ is true. We need to show that $A \times C \subseteq B \times C$ is also true

In this case, we know that $A \subseteq B$. Therefore, all elements in A are also elements in B.

The set $A \times C$ is the set of all possible combinations of a first element from A and a second element from C. The set is composed of ordered pairs created from the combination of all elements in A and all elements in C.

Similarly, the set $B \times C$ is the set of all possible combinations of a first element from B and a second element from C. The set is composed of ordered pairs created from the combination of all elements in B and all elements in C.

Since all elements in A are also elements in B. Then those elements can also be used to create ordered pairs for the set $B \times C$. So all elements of $A \times C$ must also be in $B \times C$.

We conclude that if $A \subseteq B$, then $A \times C \subseteq B \times C$ is **True**.

c) Exercise 3.5.6

```
d. \{xy: \text{ where } x \in \{0\} \cup \{0\}^2 \text{ and } y \in \{1\} \cup \{1\}^2\}
```

In this example, we can tell that the set is composed of strings of two elements x and y that are concatenated. Let's get all possible values for x and y and then concatenate them to create the desired set.

```
We are given that x \in \{0\} \cup \{0\}^2.

Therefore: x \in \{0\} \cup \{00\}

x \in \{0, 00\}

We are given that y \in \{1\} \cup \{1\}^2.

Therefore: y \in \{1\} \cup \{11\}

y \in \{1, 11\}
```

So all combinations of x and y are:

- 01
- 011
- 001
- 0011

Therefore, we can express the set $\{xy: \text{ where } x \in \{0\} \cup \{0\}^2 \text{ and } y \in \{1\} \cup \{1\}^2\} \text{ in roster notation as } \{01, 011, 001, 0011\}.$

e.
$$\{xy: x \in \{aa, ab\} \text{ and } y \in \{a\} \cup \{a\}^2\}$$

In this example, we can tell that the set is composed of strings of two elements x and y that are concatenated. Let's get all possible values for x and y and then concatenate them to create the desired set.

We are given that $x \in \{aa, ab\}$. We are given that $y \in \{a\} \cup \{a\}^2$. Therefore: $y \in \{a\} \cup \{aa\}$ $y \in \{a, aa\}$ So all combinations of x and y are:

- aaa
- aaaaa
- aba
- abaa

Therefore, we can express the set $\{xy: x \in \{aa, ab\} \text{ and } y \in \{a\} \cup \{a\}^2\}$ in roster notation as $\{aaa, aaaa, aba, abaa\}$.

d) Exercise 3.5.7

Consider the elements:

- $\bullet \quad A = \{a\}$
- $\bullet \quad B = \{b, c\}$
- $C = \{a, b, d\}$

c.

$$(A \times B) \cup (A \times C) = (\{a\} \times \{b, c\}) \cup (\{a\} \times \{a, b, d\})$$

$$(A \times B) \cup (A \times C) = \{ab, ac\} \cup (\{a\} \times \{a, b, d\})$$

$$(A \times B) \cup (A \times C) = \{ab, ac\} \cup \{aa, ab, ad\}$$

$$(A \times B) \cup (A \times C) = \{aa, ab, ac, ad\}$$

f.

$$P(A \times B) = P(\{a\} \times \{b, c\})$$

$$P(A \times B) = P(\{ab, ac\})$$

$$P(A \times B) = \{\emptyset, \{ab\}, \{ac\}, \{ab, ac\}\}\$$

g.

$$P(A) \times P(B) = P(\{a\}) \times P(\{b, c\})$$

$$P(A) \times P(B) = {\emptyset, \{a\}} \times {\emptyset, \{b\}, \{c\}, \{b, c\}}$$

$$P(A) \times P(B) = \{(\emptyset, \emptyset), (\emptyset, \{b\}), (\emptyset, \{c\}), (\emptyset, \{b, c\}), (\{a\}, \emptyset), (\{a\}, \{b\}), (\{a\}, \{c\}), (\{a\}, \{b, c\})\}\}$$

a) Exercise 3.6.2

b.

Step	Statement	Law/Identity
1	$(B \cup A) \cap (\overline{B} \cup A)$	
2	$(A \cup B) \cap (\overline{B} \cup A)$	Commutative Law on line 1
3	$(A \cup B) \cap (A \cup \overline{B})$	Commutative Law on line 2
4	$A \cup (B \cap \overline{B})$	Distributive Law on line 3
5	$A \cup \varnothing$	Complement Law on line 4
6	A	Identity Law on line 5

c.

Step	Statement	Law/Identity
1		
	$A\cap \overline{B}$	
2	_	De Morgan's Law on line 1
	$\overline{A}\cup\overline{B}$	
3	- -	Double Complement Law on line 2
	$A \cup B$	

b) Exercise 3.6.3

- b. We can prove this in two ways.
 - Proof 1: Counterexample

If we set
$$A = \{1, 2\}$$
 and $B = \{1, 2, 3, 4\}$.
We get: $A - (B \cap A) = \{1, 2\} - (\{1, 2\} \cap \{1, 2, 3, 4\})$.
 $A - (B \cap A) = \{1, 2\} - \{1, 2\}$.
 $A - (B \cap A) = \emptyset$.

Therefore, since $\emptyset \neq \{1, 2\}$, we conclude that $A - (B \cap A) = A$ is **False**.

• Proof 2: Simplify with identity laws then counterexample.

Step	Statement	Law/Identity
1	$A - (B \cap A)$	
2	$A\cap \overline{(B\cap A)}$	Subtraction Law on line 1
3	$A\cap (\overline{B}\cup \overline{A})$	De Morgan's Law on line 2
4	$(A \cap \overline{B}) \cup (A \cap \overline{A})$	Distributive Law on line 3
5	$(A\cap \overline{B})\cup \varnothing$	Complement Law on line 4
6	$A\cap \overline{B}$	Identity Law on line 5

If we take $A = \{1,2\}$ and $B = \{x \in N : x \text{ is odd}\}$, then $A \cap \overline{B} = \{2\}$. So, $A \cap \overline{B} \neq A$.

Therefore, $A - (B \cap A) = A$ is **False**.

d. We can prove this in two ways.

• Proof 1: Counterexample.

If we set $A = \{1,2\}$ and $B = \{1, 2, 3, 4\}$.

$$(B-A) \cup A = (\{1,2,3,4\} - \{1,2\}) \cup \{1,2\}$$

$$(B-A) \cup A = \{3, 4\} \cup \{1, 2\}$$

$$(B-A) \cup A = \{1,2,3,4\}$$

Therefore, since $\{1, 2, 3, 4\} \neq \{1, 2\}$, we conclude that $(B - A) \cup A = A$ is **False**.

• Proof 2: Simplify with identity laws.

Step	Statement	Law/Identity
1	$(B-A)\cup A$	
2	$(B\cap \overline{A})\cup A$	Subtraction Law on line 1
3	$A \cup (B \cap \overline{A})$	Commutative Law on line 2
4	$(A \cup B) \cap (A \cup \overline{A})$	Distributive Law on line 3
5	$(A \cup B) \cap U$	Complement Law on line 4
6	$A \cup B$	Identity Law on line 5

If we set $A = \{1,2\}$ and $B = \{1, 2, 3, 4\}$.

$$A \cup B = \{1,2\} \cup \{1, 2, 3, 4\}$$

$$A \cup B = \{1, 2, 3, 4\}$$

Therefore, since $\{1, 2, 3, 4\} \neq \{1, 2\}$, we conclude that $(B - A) \cup A = A$ is **False**.

c) Exercise 3.6.4

b.

Step	Statement	Law/Identity
1	$A\cap (B-A)$	
2	$A\cap (B\cap \overline{A})$	Subtraction Law on line 1
3	$(A \cap B) \cap \overline{A}$	Associative law on line 2
4	$(B\cap A)\cap\overline{A}$	Commutative law on line 3
5	$B\cap (A\cap \overline{A})$	Associative law on line 4
6	$B\cap arnothing$	Complement law on line 5
7	Ø	Domination law on line 6

Step	Statement	Law/Identity
1	$A \cup (B-A)$	
2	$A \cup (B \cap \overline{A})$	Subtraction Law on line 1
3	$(A \cup B) \cap (A \cup \overline{A})$	Distributive law on line 2
4	$(A \cup B) \cap U$	Complement law on line 3
5	$A \cup B$	Identity law on line 4