

SUMO: Unbiased Estimation of Log Marginal Probability for Latent Variable Models

Yucen Luo*¹, Alex Beatson², Mohammad Norouzi³, Jun Zhu¹, David Duvenaud⁴, Ryan P. Adams², Ricky T. Q. Chen*⁴

Tsinghua University¹, Princeton University², Google³, University of Toronto⁴ (*Equal contribution)

Contributions

We introduce

- An unbiased estimator of the log marginal likelihood and its gradients for latent variable models (LVMs), which
- Allows us to **apply LVMs to new situations** where lower bound estimates are problematic.

Background: Latent Variable Models

Log marginal probability of a latent variable model:

$$\log p_{\theta}(x) \coloneqq \log \int_{\mathcal{Z}} p_{\theta}(x \mid z) p_{\theta}(z) dz = \log \mathbb{E}_{z \sim p_{\theta}(z)} \left[p_{\theta}(x \mid z) \right]. \tag{1}$$

Maximum likelihood estimation requires unbiased estimates of $\nabla_{\theta} \log p_{\theta}(x)$, which are not available for LVMs. Instead, lower bound estimators are developed, e.g. importance-weighted evidence lower bound:

$$\mathsf{IWAE}_{K}(x) \coloneqq \log \frac{1}{K} \sum_{k=1}^{K} \frac{p_{\theta}(x \mid z_{k}) \, p_{\theta}(z_{k})}{q(z_{k}; x)}, \quad z_{k} \stackrel{\textit{iid}}{\sim} q(z; x) \,. \tag{2}$$

Background: Russian Roulette Estimator

Estimates infinite series. With K drawn from p(K), RR estimator is:

$$\hat{Y}(K) = \sum_{k=1}^{K} \frac{\Delta_k}{\mathbb{P}(K \ge k)} \qquad \mathbb{E}_{K \sim p(K)}[\hat{Y}(K)] = \sum_{k=1}^{\infty} \Delta_k. \tag{3}$$

if (i) $\mathbb{P}(\mathcal{K} \ge k) > 0$, $\forall k > 0$, and (ii) the series converges absolutely, i.e., $\sum_{k=1}^{\infty} |\Delta_k| < \infty$.

SUMO: Russian Roulette to Tighten Lower Bounds

SUMO (Stochastically Unbiased Marginalization Objective): Let $\Delta_k(x) = \mathsf{IWAE}_{k+1}(x) - \mathsf{IWAE}_k(x)$,

$$\mathsf{SUMO}(x) = \mathsf{IWAE}_1(x) + \sum_{k=1}^K \frac{\Delta_k(x)}{\mathbb{P}(\mathcal{K} \geq k)} \text{ where } K \sim p(K),$$

This gives $\mathbb{E}\left[\mathsf{SUMO}(x)\right] = \log p_{\theta}(x)$ where the expectation is taken over p(K) and q(z;x).

Under some conditions, we also have

$$\mathbb{E}\left[\nabla_{\theta}\mathsf{SUMO}(x)\right] = \nabla_{\theta}\mathbb{E}\left[\mathsf{SUMO}(x)\right] = \nabla_{\theta}\log p_{\theta}(x)$$

Optimal p(K) for Reducing Variance-Compute Product

Optimal $\mathbb{P}(\mathcal{K} \geq k) \propto 1/k$ in terms of reducing *product of variance & compute*. We use a tail-modified version:

$$\mathbb{P}(\mathcal{K} \ge k) = \begin{cases} 1/k & \text{if } k < \alpha \\ 1/\alpha \cdot (1 - 0.1)^{k - \alpha} & \text{if } k \ge \alpha \end{cases} \tag{4}$$

We use $\alpha = 80$, which gives an expectation of ≈ 5 .

Trading variance and compute with m:

$$SUMO(x) = IWAE_m(x) + \sum_{k=m}^{K} \frac{\Delta_k(x)}{\mathbb{P}(K \ge k)}, \quad K \sim p(K)$$
 (5)

Training the Encoder to Reduce Variance

The gradients of SUMO w.r.t. ϕ are in expectation zero.

We optimize $q_{\phi}(z; x)$ to **reduce the variance** of the SUMO estimator:

$$\nabla_{\phi} \text{Var}[\text{SUMO}] = \nabla_{\phi} \mathbb{E}[\text{SUMO}^2] - \underline{\nabla_{\phi}} (\mathbb{E}[\text{SUMO}])^2 = \mathbb{E}[\nabla_{\phi} \text{SUMO}^2]. \quad (6)$$

Select References

Kahn. Use of different monte carlo sampling techniques. (1955)

Nowozin. Debiasing Evidence Approximations: On Importance-weighted Autoencoders ... (ICLR 2018)

Beatson & Adams. Efficient Optimization of Loops and Limits with Randomized Telescoping Sums. (ICML 2019)

Chen et al.. Residual Flows for Invertible Generative Modeling. (NeurIPS 2019)

Applications of Unbiased Log Marginal Probability

Minimizing $\log p_{\theta}(x)$. Appears in the "reverse-KL" objective, entropy-regularized reinforcement learning, posterior inference, etc. **Unbiased score function** $\nabla_{\theta} \log p_{\theta}(x)$. Appears in score matching, Hamiltonian Monte Carlo, REINFORCE gradient estimator, etc.

Density Modeling

Table: Test NLL estimated using IWAE(k=5000). For SUMO, k is expected cost.

	MNIST			OMNIGLOT		
Training Objective	<i>k</i> =5	k=15	k=50	k=5	k=15	k=50
ELBO [Burda et al., 2016]	86.47	_	86.35	107.62	_	107.80
IWAE [Burda et al., 2016]	85.54	_	84.78	106.12	<u> </u>	104.67
ELBO (Our impl.)	85.97 ± 0.01	85.99 ± 0.05	85.88 ± 0.07	106.79 ± 0.08	106.98 ± 0.19	106.84 ± 0.13
IWAE (Our impl.)	85.28 ± 0.01	84.89 ± 0.03	84.50 ± 0.02	104.96 ± 0.04	104.53 ± 0.05	103.99±0.12
JVI [Nowozin, 2018] (Our impl.)	_	_	84.75 ± 0.03	_	_	$104.08 {\pm} 0.11$
SUMO	85.09±0.01	84.71±0.02	84.40±0.03	104.85±0.04	104.29±0.12	103.79±0.14

Posterior Inference

Presence of an entropy maximization term, effectively a minimization of $\log p_{\theta}(x)$:

$$\min_{\theta} D_{\mathrm{KL}}(p_{\theta}(x)||p^*(x)) = \min_{\theta} \mathbb{E}_{x \sim p_{\theta}(x)}[\log p_{\theta}(x) - \log p^*(x)] \tag{7}$$

Modifying IWAE: $\min_{p(x,z)} \max_{q(z;x)} \mathbb{E}_{x \sim p(x)} [\mathsf{IWAE}_{\mathcal{K}}(x) - \log p^*(x)]$

IWAE is unstable and requires very large k to match performance of SUMO.

Combinatorial Optimization

Quadratic pseudo-Boolean optimization (QPBO) maximizes

$$R(x) = \sum_{i=1}^{\infty} w_i(x_i) + \sum_{i < j} w_{ij}(x_i, x_j)$$
 (8)

where $\{x_i\}_{i=1}^d \in \{0,1\}$ are binary variables. Baseline policy models:

$$p_{\mathsf{LVM}}(x) \coloneqq \int \prod_{i=1}^d p_{ heta}(x_i|z) p(z) dz, \quad p_{\mathsf{Autoreg}}(x) \coloneqq \prod_{i=1}^d p(x_i|x_{< i}), \quad p_{\mathsf{Indep}}(x) \coloneqq \prod_{i=1}^d p(x_i)$$

Without entropy regularization.

With entropy regularization

- SUMO works well with entropy regularization.
- Latent variable policies allow fast exploration while being highly expressive.
- Latent variable policy is 20x faster than autoregressive for d = 500.