MA Assignment 1

Netish Joseph DBA16012

```
require(conjoint)
## Loading required package: conjoint
##
## This is package 'modeest' written by P. PONCET.
## For a complete list of functions, use 'library(help = "modeest")' or 'help.start()'.
slevn = read.csv("D:/Business Analytics/LIBA Class Room Materials/Prof Rajesh/assignment/slevn.c
sv", header = TRUE)
sprefm = read.csv("D:/Business Analytics/LIBA Class Room Materials/Prof Rajesh/assignment/spref
m.csv", header = TRUE)
```

sprof = read.csv("D:/Business Analytics/LIBA Class Room Materials/Prof Rajesh/assignment/sprof.c

slevn

sv", header = TRUE)

```
##
             levels
              >$250
## 1
## 2
        $100 - $250
## 3
              <$100
## 4
              large
## 5
             medium
## 6
              small
## 7
          polyester
## 8
      polycarbonate
## 9
              nylon
## 10
                yes
## 11
                  no
```

```
sprof
```

sprefm

##		profil1	profil2	•	profil4	profil5	profil6	profil7	profil8
##	1	10	6	5	3	8	10	7	1
##	2	1	5	6	4	3	6	10	8
##	3	8	10	8	6	7	4	3	2
##	4	9	2	3	1	2	10	2	2
##	5	5	5	10	10	2	3	4	4
##	6	6	7	4	8	8	6	10	4
##	7	1	4	9	7	1	5	4	7
##	8	2	6	10	1	4	1	2	8
##	9	1	4	9	1	4	5	1	2
##	10	6	2	2	10	1	5	7	3
##	11	7	10	9	5	2	6	3	2
##	12	10	2	2	4	7	7	6	1
##	13	4	7	7	4	9	10	4	4
##	14	7	5	3	5	8	3	6	4
##	15	8	8	6	2	9	2	9	1
##	16	8	5	7	4	8	4	5	5
##	17	3	8	1	1	7	2	6	5
##	18	10	2	3	4	2	9	2	4
##	19	6	2	7	3	6	1	1	5
##	20	10	6	2	4	9	1	1	2
##	21	1	8	6	2	1	3	2	3
##	22	3	4	1	9	4	2	9	4
##	23	4	1	5	7	1	8	5	4
##	24	4	7	2	3	10	7	7	2
##	25	8	1	1	9	5	10	6	2
##	26	6	5	6	10	10	2	9	10
##	27	9	10	4	3	6	8	1	9
##	28	3	6	4	6	6	9	3	5
##	29	10	5	3	1	7	9	4	2
##	30	7	8	7	10	8	10	1	8
##	31	8	1	4	10	4	9	7	9
##		6	1	10	3	8	6	4	9
##		3	3	2	4	9	3	2	5
##		10	4	3	10	1	2	1	3
##		7	7	3	9	4	10	6	10
	36	9	3	3	1	10	7	6	4
##		8	2	7	6	1	1	7	8
##		10	2	1	2	6	1	4	10
##		10	2	8	9	8	7	4	2
##		8	6	9	2	8	2	9	2
##		8	4	5	2	8	9	4	1
	42	3	10	4	9	10	9	9	9
##		8	8	1	1	5	2	10	10
##		9	1	5	5	7	3	2	3
##		9	9	3	4	8	8	4	3
##		4	9	1	10	2	3	6	9
##		6	4	3	4	1	4	4	2
## ##		1	3	8	2	8	1	7	3
## ##		6	4	2	5	10	6	2	10
## ##		4	10	7	2	10	3	5	3
## ##			9		1	6	5		3 4
## ##		6		2				9	
##	52	3	3	6	10	7	8	8	9

##	53	6	8	1	1	8	4	8	4
##	54	1	9	4	10	10	8	2	5
##	55	3	2	4	2	7	5	2	1
##	56	6	1	4	10	5	2	6	1
	57	8	3	6	8	5	4	5	2
	58	3	9	5	7	6	2	6	8
	59	4	5	4	3	4	2	4	2
##		2	3	9	1	3	4	5	6
					7				
##		8	6	4		7	10	10	9
	62	1	4	1	6	9	9	8	3
##		6	5	3	3	9	2	1	10
	64	4	10	9	2	9	5	8	9
##		4	4	6	1	6	4	6	10
	66	6	4	8	10	10	5	2	3
##	67	6	2	8	9	6	1	3	7
##	68	6	8	1	8	2	10	6	4
##	69	8	6	10	3	4	1	5	7
##	70	6	10	7	5	9	4	7	1
##	71	7	3	8	8	3	10	7	10
##	72	4	3	2	8	1	4	4	10
##	73	6	10	8	5	4	8	6	8
	74	2	8	5	6	1	5	1	2
	75	2	7	1	4	9	5	7	3
	76	5	8	4	5	7	6	4	4
##		2	10	10	8	1	4	4	2
	78	3	3	7	4	9	8	1	9
##		5	9	7	8	8	9	10	6
##		3			9				
			1	1		10	6	10	4
##		1	9	3	1	10	2	4	7
	82	4	6	9	5	1	7	5	1
##		9	5	6	9	5	9	7	10
	84	6	2	2	6	9	3	3	1
##		2	9	3	3	5	1	5	5
	86	3	1	5	3	1	1	2	4
##	87	1	9	4	3	9	2	5	10
##	88	6	10	2	1	3	6	10	9
##	89	8	9	8	1	9	6	9	1
##	90	8	4	6	7	7	6	3	1
##	91	5	2	2	1	5	10	7	10
##	92	1	1	8	3	5	9	7	1
##	93	9	5	2	4	6	7	6	8
##	94	4	6	3	7	6	4	7	1
##		10	7	5	10	7	2	5	2
	96	6	7	8	6	1	1	10	8
	97	10	7	7	4	4	3	1	9
##		7	9	8	10	10	8	6	3
	99	4	7	5	8	9	5	2	8
	100	2	8	9	2	9	10	4	4
	101	5	10	8	2	6	2	10	7
	102	9	4	7	7	3	2	2	1
	103	9	2	2	4	2	9	2	10
	104	6	9	7	9	1	10	7	9
	105	4	6	3	4	6	6	6	5
##	106	10	9	4	2	5	7	5	5

## 107	7	9	2	9	2	6	6	3
## 108	9	2	10	1	8	5	9	1
## 109	8	8	2	9	7	1	7	2
## 110	7	6	2	10	9	5	4	2
## 111	10	4	4	7	8	2	1	2
## 112	6	4	1	1	3	6	1	9
## 113	8	4	6	7	10	5	5	5
## 114	6	6	7	4	1	5	6	9
## 115	4	9	9	5	5	2	2	10
## 116	7	9	7	6	3	4	6	10
		9 7						
	6		3	10	4	4	5	6
## 118	5	7	5	2	2	8	5	1
## 119	9	4	9	5	2	2	10	6
## 120	2	4	2	9	1	10	7	5
## 121	6	4	2	1	10	3	2	3
## 122	5	3	7	1	7	8	7	2
## 123	8	7	4	10	5	1	9	8
## 124	1	6	2	3	2	7	3	1
## 125	10	4	9	3	5	10	9	6
## 126	10	2	1	7	2	3	8	4
## 127	4	4	3	7	5	10	1	8
## 128	2	3	1	7	9	5	10	1
## 129	9	1	6	1	9	7	10	9
## 130	4	5	7	3	3	7	2	2
## 131	3	8	5	5	5	5	3	7
## 132	4	2	6	2	1	5	1	9
## 133	8	8	7	10	5	7	2	7
## 134	5	6	5	8	8	6	1	1
## 135	10	10	7	7	1	6	9	2
## 136	2	10	7	2	4	3	6	6
## 137	9	1	7	6	2	3	2	4
## 138	4	9	1	6	1	8	7	8
## 139	3	5	10	6	7	8	9	7
## 140	9	6	9	6	5	4	6	6
## 141	3	4	5	10	1	10	6	4
## 142	10	7	2	6	2	3	10	3
## 143	9	5	2	2	10	4	6	8
## 144	4	7	1	2	9	1	4	8
## 145	10	10	8	8	6	10	6	5
## 146	9	8	5	5	10	4	2	3
## 147	2	8	1	6	8	1	3	10
## 147	1	7	2	1	3	8	9	5
	4	7	4	8	6	5	5	2
## 149								8
## 150	8	2	3	2	10	10	1	
## 151	6	10	7	3	4	1	5	10
## 152	3	2	6	4	1	6	6	3
## 153	6	6	2	2	5	1	6	8
## 154	8	6	2	5	3	4	10	8
## 155	1	4	9	3	2	2	1	5
## 156	6	5	6	10	10	3	10	5
## 157	10	8	6	1	5	9	3	4
## 158	2	2	4	7	10	5	2	5
## 159	7	5	1	10	2	2	3	3
## 160	6	4	2	6	6	9	8	5

## 1	161	10	1	6	9	8	9	6	7
## 3	162	6	7	4	9	1	2	6	8
## 3	163	5	7	6	3	4	2	3	1
## 3	164	10	4	2	2	8	8	8	7
## 3	165	8	3	5	1	8	5	8	6
## 3		6	10	8	10	5	5	5	8
## :		3	9	10	7	6	4	8	7
## 3		5	2	4	8	2	9	7	9
		4	4						
## :				5	10	4	2	10	2
## 1		10	4	4	7	7	8	2	6
## 1		9	5	6	3	4	3	8	4
## 3		1	4	6	2	10	1	7	7
## 3		6	8	5	1	2	10	2	7
## 3	174	5	10	8	3	8	10	6	7
## 3	175	10	8	9	8	4	8	9	3
## 3	176	5	3	2	1	6	6	10	2
## 3	177	7	9	5	2	6	2	8	7
## 3	178	10	8	8	3	7	6	3	6
## 3	179	5	3	5	10	1	4	6	2
## 3		8	7	7	10	8	5	1	7
	181	3	2	5	6	10	9	10	6
## :		10	8	4	9	10	6	7	2
## 3		5	4	9	3	7	6	1	3
## 1		4	8	4	3	4	2	5	10
## 1		1	10	7	1	3	6	4	9
## 1		5	3	10	4	7	7	5	5
## 3		9	4	10	9	10	4	6	4
	188	4	9	5	2	3	8	10	4
## 1	189	9	2	2	9	2	4	8	6
## 3	190	10	7	4	10	3	3	1	8
## 3	191	10	10	9	1	9	3	3	10
## 3	192	9	7	3	2	10	6	3	10
## 3	193	8	9	6	8	8	6	9	5
## 3	194	8	7	5	1	5	5	4	5
## 3	195	8	9	7	6	8	7	7	5
## 3		3	8	1	4	1	7	2	9
## 3		1	9	10	4	3	4	8	10
## :		2	6	10	6	6	1	7	1
## 3		3	9	10	5	10	6	3	5
## 2		5	7	5	8	6	5	10	8
##	200		profil10	ر	O	Ü	ر	ΤΩ	O
	1								
## 1		1	10						
## 2		4	4						
## 3		9	9						
## 4		9	5						
## !		5	4						
## (2	7						
## 7	7	10	3						
## 8	8	4	3						
## 9	9	10	3						
## 3	10	1	7						
## 3		5	4						
## 3		8	10						
## 3		7	6						
## .	13	/	O						

## 14	9	7
## 15	6	1
## 16	10	3
## 17	1	3
## 18	5	7
## 19	2	8
## 20	7	4
## 21	7	5
## 22	3	3
## 23	9	5
## 24	8	5
## 25	8	2
## 26	9	8
## 27	7	10
## 28	1	8
## 29	4	8
## 30	9	3
## 31	4	6
## 32	1	5
## 33	3	8
## 34	4	1
## 35	8	8
## 36	1	3
## 37	7	2
## 37	10	10
		9
## 39	6 9	
## 40		8
## 41	2	2
## 42	10	9
## 43	4	5
## 44	1	4
## 45	9	8
## 46	5	5
## 47	9	4
## 48	9	7
## 49	5	6
## 50	8	10
## 51	9	4
## 52	1	1
## 53	1	10
## 54	7	7
## 55	4	9
## 56	5	3
## 57	5	4
## 58	3	6
## 59	6	1
## 60	2	1
## 61	5	6
## 62	9	3
## 63	6	6
## 64	1	7
## 65	10	5
## 66	1	4
## 67	5	1

##	68	10	7
##	69	5	3
##	70	10	6
##	71	3	1
##	72	5	6
##	73	1	2
##	74	7	2
##	75	1	6
##	76	2	5
##	77	5	3
##	78	6	4
##	79	9	8
##	80	7	2
##	81	5	4
##	82	3	3
##	83	9	10
##	84	7	4
##	85	2	3
##	86	5	5
##	87	4	6
##	88	10	10
##	89	10	3
##	90	9	8
##	91	6	3
##	92	6	2
##	93	6	6
##	94	10	7
##	95	10	6
##	96	10	2
##	97	3	9
##	98	1	8
##	99	6	10
##	100	2	1
##	101	10	8
##	102	2	1
##	103	2	2
##	104	4	10
##	105	5	5
##	106	7	5
##	107	7	5
##	108	9	3
##	109	9	10
##	110	2	2
##	111	6	10
##	112	9	7
##	113	3	4
##	114	10	1
##	115	10	5
##	116	6	9
##	117	2	8
##	118	10	8
##	119	10	7
##	120	4	8
##	121	2	4

##	122	7	2
##	123	4	3
##	124	8	7
##	125	7	5
##	126	1	9
##	127	8	6
##	128	3	4
##	129	1	3
##	130	8	3
##	131	6	10
##	132	7	6
##	133	8	8
##	134	10	6
##	135	10	1
##	136	10	7
##	137	2	7
##	138	10	9
##	139	2	2
##	140	4	7
##	141	4	3
##	142	4	5
##	143	6	2
##	144	2	6
##	145	1	10
##	146	4	8
##	147	10	2
##	148	1	4
##	149	8	10
##	150	4	7
##	151	5	8
##	152	2	6
##	153	6	4
##	154	2	2
##	155	4	3
##	156	2	2
##	157	5	5
##	158	9	5
##	159	2	3
##	160	5	5
##	161	4	1
##	162	7	1
##	163	9	4
##	164	4	7
##	165	7	9
##	166	1	2
##	167	10	3
##	168	1	8
##	169	2	1
##	170	5	3
##	171	7	8
##	172	10	8
##	173	6	10
##	174	10	1
##	175	8	9

```
## 176
               4
                         3
## 177
               8
                         7
## 178
              10
                         3
## 179
                         5
               6
## 180
               7
                         2
## 181
               5
                         5
## 182
              10
                         5
                         7
## 183
               6
## 184
               7
                         7
## 185
               1
                         1
               5
## 186
                         4
## 187
               5
                         4
                         3
## 188
              10
## 189
               1
                         1
## 190
               1
                         3
## 191
               3
                         6
## 192
               1
                         7
## 193
               1
                         4
## 194
              10
                         5
## 195
               7
                         9
## 196
                         2
               7
               9
                         2
## 197
## 198
               3
                        10
## 199
               2
                         7
## 200
               3
                         2
```

caModel(y=sprefm[1,], x=sprof) # all attribute levels with intercept

```
##
## Call:
## lm(formula = frml)
##
## Residuals:
##
                       2
                                   3
   1.571e+00 -2.921e-16 1.262e-15 -5.697e-16 2.714e+00 -1.571e+00
##
            7
##
                       8
##
    5.406e-16 1.520e-16 -4.286e+00 1.571e+00
##
## Coefficients:
##
                       Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                        4.45238
                                   2.48624
                                              1.791
                                                       0.215
## factor(x$price)1
                        3.19048
                                   3.24369
                                              0.984
                                                       0.429
## factor(x$price)2
                       -5.38095
                                   5.57123 -0.966
                                                       0.436
## factor(x$size)1
                        3.23810
                                   2.51255
                                              1.289
                                                       0.326
## factor(x$size)2
                        0.09524
                                    2.51255
                                              0.038
                                                       0.973
## factor(x$material)1 2.04762
                                    2.99054
                                              0.685
                                                       0.564
## factor(x$material)2 -0.95238
                                    5.57123
                                             -0.171
                                                       0.880
## factor(x$sets)1
                       -0.35714
                                    2.43277
                                             -0.147
                                                       0.897
##
## Residual standard error: 4.071 on 2 degrees of freedom
## Multiple R-squared: 0.7064, Adjusted R-squared:
## F-statistic: 0.6876 on 7 and 2 DF, p-value: 0.7037
```

```
##
## Call:
## lm(formula = frml)
##
## Residuals:
##
               1Q Median
      Min
                              3Q
                                    Max
## -4,8186 -2,3550 -0,1686 2,3393 4,8700
##
## Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
##
                                0,12450 42,289 < 2e-16 ***
## (Intercept)
                     5,26488
## factor(x$price)1
                     -0,08952
                                0,16243 -0,551 0,58158
## factor(x$price)2
                     -0,20595
                                0,27898 -0,738 0,46046
## factor(x$size)1
                     -0,09857 0,12582 -0,783 0,43345
## factor(x$size)2
                      0,39357
                                0,12582 3,128 0,00178 **
## factor(x$material)1 -0,09571
                                0,14975 -0,639 0,52279
## factor(x$material)2 0,34929
                                0,27898 1,252 0,21071
## factor(x$sets)1
                     -0,03964 0,12182 -0,325 0,74490
## ---
## Signif. codes: 0 '***' 0,001 '**' 0,05 '.' 0,1 ' ' 1
##
## Residual standard error: 2,883 on 1992 degrees of freedom
## Multiple R-squared: 0,007332, Adjusted R-squared: 0,003844
## F-statistic: 2,102 on 7 and 1992 DF, p-value: 0,04035
```

```
## [1] "Part worths (utilities) of levels (model parameters for whole sample):"
##
             levnms
                      utls
          intercept 5,2649
## 1
## 2
              >$250 -0,0895
        $100 - $250 -0,206
## 3
             <$100 0,2955
## 4
## 5
             large -0,0986
             medium 0,3936
## 6
## 7
             small -0,295
## 8
         polyester -0,0957
## 9 polycarbonate 0,3493
## 10
             nylon -0,2536
## 11
               yes -0,0396
## 12
                no 0,0396
## [1] "Average importance of factors (attributes):"
## [1] 35,50 23,14 26,86 14,50
## [1] Sum of average importance:
## [1] "Chart of average factors importance"
```

```
caTotalUtilities(y=sprefm, x=sprof) # compare respondents
```

```
##
             [,1] [,2] [,3] [,4] [,5]
                                            [,6] [,7] [,8] [,9]
                                                                     [,10]
##
     [1,]
                                 3 5.286 11.571
                                                     7
                                                           1 5.286
                                                                     8.429
            8.429
                      6
                            5
##
     [2,]
            2.286
                      5
                            6
                                 4 2.857
                                           4.714
                                                    10
                                                           8 2.857
                                                                     5.286
##
     [3,]
            6.571
                     10
                            8
                                 6 8.714
                                           5.429
                                                     3
                                                           2 8.714
                                                                     7.571
                            3
                                 1 5.286
                                           9.571
                                                     2
                                                           2 5.286
##
     [4,]
            9.429
                      2
                                                                     5.429
                                10 3.857
##
     [5,]
            4.286
                      5
                          10
                                           3.714
                                                     4
                                                           4 3.857
                                                                     3.286
##
     [6,]
            5.429
                      7
                            4
                                 8 5.286
                                           6.571
                                                    10
                                                           4 5.286
                                                                     6.429
                                                           7 4.571
##
     [7,]
            2.857
                      4
                            9
                                 7 4.571
                                           3.143
                                                     4
                                                                     4.857
     [8,]
                                 1 4.000
                                                     2
##
            2.000
                      6
                          10
                                           1.000
                                                           8 4.000
                                                                     3.000
##
     [9,]
            3.286
                            9
                                 1 5.857
                                           2.714
                                                     1
                                                           2 5.857
                                                                     5.286
                      4
##
    [10,]
            4.000
                      2
                            2
                                10 2.000
                                           7.000
                                                     7
                                                           3 2.000
                                                                     5.000
##
    [11,]
            6.571
                     10
                            9
                                 5 3.714
                                           6.429
                                                     3
                                                           2 3.714
                                                                     3.571
##
    [12,]
            8.429
                      2
                            2
                                 4 8.286
                                           8.571
                                                           1 8.286
                                                                     8.429
                                                     6
    [13,]
                      7
                            7
                                 4 6.857
                                                           4 6.857
##
            6.286
                                           7.714
                                                     4
                                                                     8.286
##
    [14,]
            6.286
                      5
                            3
                                 5 8.857
                                           3.714
                                                           4 8.857
                                                                     6.286
                                                     6
##
    [15,]
                                 2 7.429
                                                     9
                                                           1 7.429
            8.143
                      8
                            6
                                           1.857
                                                                     1.143
                            7
                                 4 8.714
##
    [16,]
            8.571
                      5
                                           3.429
                                                     5
                                                           5 8.714
                                                                     3.571
##
    [17,]
            3.000
                                 1 4.000
                                           2.000
                                                           5 4.000
                                                                     3.000
                      8
                            1
                                                     6
##
    [18,]
            8.714
                            3
                                 4 4.143 10.286
                                                     2
                                                           4 4.143
                                                                     5.714
                      2
                            7
    [19,]
                                 3 5.286
##
            3.429
                      2
                                           3.571
                                                     1
                                                           5 5.286
                                                                     5.429
##
    [20,]
            8.571
                      6
                            2
                                 4 8.714
                                           2.429
                                                     1
                                                           2 8.714
                                                                     2.571
##
    [21,]
            1.286
                                 2 3.857
                                           2.714
                                                           3 3.857
                                                                     5.286
                      8
                            6
                                                     2
##
    [22,]
            2.857
                      4
                            1
                                 9 3.571
                                           2.143
                                                     9
                                                           4 3.571
                                                                     2.857
                                 7 4.429
##
    [23,]
            5.143
                            5
                                           6.857
                                                     5
                                                           4 4.429
                                                                     6.143
                      1
    [24,]
                            2
                                 3 8.000
                                                           2 8.000
                                                                    7.000
##
            6.000
                      7
                                           5.000
                                                     7
                                 9 5.571
##
    [25,]
            9.857
                      1
                            1
                                           8.143
                                                     6
                                                           2 5.571
                                                                     3.857
    [26,]
                                10 9.857
                                                     9
##
            5.286
                      5
                            6
                                           2.714
                                                          10 9.857
                                                                     7.286
    [27,]
            7.714
                            4
                                 3 7.143
                                           9.286
                                                           9 7.143
                                                                     8.714
##
                     10
                                                     1
##
    [28,]
            3.429
                      6
                            4
                                 6 3.286
                                           8.571
                                                     3
                                                           5 3.286
                                                                     8.429
##
    [29,]
            9.000
                      5
                            3
                                 1 6.000 10.000
                                                     4
                                                           2 6.000
                                                                     7.000
                                                                     5.429
##
    [30,]
            9.429
                      8
                            7
                                10 7.286
                                           7.571
                                                     1
                                                           8 7.286
                                10 4.143
                                                           9 4.143
##
    [31,]
            7.714
                      1
                            4
                                           9.286
                                                     7
                                                                     5.714
##
    [32,]
            5.857
                                 3 4.571
                                                     4
                                                           9 4.571
                                                                     4.857
                      1
                          10
                                           6.143
    [33,]
                            2
                                 4 6.286
                                                           5 6.286
                                                                    7.429
##
            2.429
                      3
                                           3.571
                                                     2
                                10 3.429
    [34,]
            8.143
                      4
                                           3.857
                                                           3 3.429 -0.857
##
                            3
                                                     1
##
    [35,]
            7.286
                      7
                            3
                                 9 5.857
                                           9.714
                                                     6
                                                          10 5.857
                                                                    8.286
    [36,]
                            3
                                 1 5.429
                                                           4 5.429
##
            9.143
                      3
                                           6.857
                                                     6
                                                                     3.143
##
    [37,]
            6.571
                      2
                            7
                                 6 4.714
                                           2.429
                                                     7
                                                           8 4.714
                                                                     0.571
##
    [38,]
            6.857
                      2
                            1
                                 2 9.571
                                           4.143
                                                          10 9.571
                                                                     6.857
##
    [39,]
            8.571
                      2
                            8
                                 9 7.714
                                           8.429
                                                     4
                                                           2 7.714
                                                                     7.571
                                                           2 9.286
                                 2 9.286
##
    [40,]
            6.429
                      6
                            9
                                           3.571
                                                     9
                                                                     6.429
##
    [41,]
            9.143
                      4
                            5
                                 2 4.429
                                           7.857
                                                     4
                                                           1 4.429
                                                                    3.143
##
    [42,]
            5.000
                            4
                                 9 9.000
                                           7.000
                                                     9
                                                           9 9.000 11.000
                     10
    [43,]
                                 1 5.429
                                                          10 5.429
                                                                     3.143
##
            6.143
                      8
                            1
                                           3.857
                                                    10
    [44,]
                            5
##
            7.286
                                 5 4.857
                                           4.714
                                                     2
                                                           3 4.857
                                                                     2.286
                      1
##
    [45,]
            8.857
                      9
                            3
                                 4 8.571
                                           8.143
                                                     4
                                                           3 8.571
                                                                    7.857
##
    [46,]
            3.286
                      9
                            1
                                10 3.857
                                           3.714
                                                     6
                                                           9 3.857
                                                                     4.286
##
    [47,]
            5.714
                            3
                                 4 5.143
                                           4.286
                                                           2 5.143
                                                                     3.714
                                                     4
    [48,]
                                 2 8.286
                                           0.571
                                                     7
                                                           3 8.286
##
            1.429
                      3
                            8
                                                                     7.429
##
    [49,]
            6.429
                      4
                            2
                                 5 7.286
                                           5.571
                                                     2
                                                          10 7.286
                                                                     6.429
##
    [50,]
            3.429
                     10
                            7
                                 2 9.286
                                           3.571
                                                     5
                                                           3 9.286
                                                                     9.429
                            2
##
    [51,]
            6.714
                      9
                                 1 7.143
                                                     9
                                                           4 7.143
                                                                     4.714
                                           4.286
                            6
                                10 2.857
                                           5.714
                                                           9 2.857 3.286
##
    [52,]
            5.286
                      3
                                                     8
```

##	[53,]	3.857	8	1		5.571	6.143	8		5.571	7.857
##	[54,]	3.429	9	4		7.286	5.571	2		7.286	9.429
##	[55,]	2.571	2	4		5.714	5.429	2		5.714	8.571
##	[56,]	5.429	1	4		5.286	2.571	6		5.286	2.429
##	[57,]	7.143	3	6	8	5.429	4.857	5	2	5.429	3.143
##	[58,]	2.286	9	5	7	4.857	2.714	6	8	4.857	5.286
##	[59,]	4.571	5	4	3	4.714	1.429	4	2	4.714	1.571
##	[60,]	3.000	3	9	1	2.000	3.000	5	6	2.000	2.000
##	[61,]	8.571	6	4	7	5.714	9.429	10	9	5.714	6.571
##	[62,]	5.000	4	1	6	7.000	5.000	8	3	7.000	7.000
##	[63,]	5.286	5	3	3	7.857	2.714	1	10	7.857	5.286
##	[64,]	3.714	10	9	2	5.143	5.286	8	9	5.143	6.714
##	[65,]	4.857	4	6	1	7.571	3.143	6	10	7.571	5.857
##	[66,]	6.143	4	8	10	5.429	4.857	2	3	5.429	4.143
##	[67,]	5.857	2	8	9	5.571	1.143	3	7	5.571	0.857
##	[68,]	6.857	8	1	8	5.571	9.143	6	4	5.571	7.857
##	[69,]	6.429	6	10	3	5.286	2.571	5	7	5.286	1.429
##	[70,]	6.429	10	7	5	9.286	3.571	7	1	9.286	6.429
##	[71,]	8.429	3	8	8	2.286	8.571	7	10	2.286	2.429
##	[72,]	3.143	3	2	8	3.429	4.857	4	10	3.429	5.143
##	[73,]	6.714	10	8	5	2.143	7.286	6	8	2.143	2.714
##	[74,]	3.429	8	5	6	3.286	3.571	1		3.286	3.429
##	[75,]	2.571	7	1		4.714	4.429	7		4.714	6.571
##	[76,]	5.143	8	4		4.429	5.857	4		4.429	5.143
##	[77,]	2.571	10	10		2.714	3.429	4		2.714	3.571
##	[78,]	5.429	3	7		6.286	5.571	1		6.286	6.429
##	[79,]	6.286	9	7		7.857	7.714	10		7.857	9.286
##	[80,]	5.714	1	1		7.143	3.286	10		7.143	4.714
##	[81,]	2.286	9	3		6.857	0.714	4		6.857	5.286
##	[82,]	4.571	6	9		1.714	6.429	5		1.714	3.571
##	[83,]	8.143	5	6		7.429	9.857	7		7.429	9.143
##	[84,]	6.286	2	2		7.857	2.714	3		7.857	4.286
##	[85,]		9	3		3.571	1.143	5		3.571	2.857
##	[86,]	1.857	1	5		3.571		2		3.571	3.857
	[87,]	1.429	9	4		6.286	1.571	5		6.286	6.429
##											
##	[88,]	5.000	10	2		7.000	7.000	10		7.000	9.000
##	[89,]	9.286	9	8		8.857	4.714	9		8.857	4.286
##	[90,]	7.429	4	6		8.286	6.571	3		8.286	7.429
##	[91,]	7.143	2	2		4.429	7.857	7		4.429	5.143
##	[92,]	4.286	1	8		3.857	5.714	7		3.857	5.286
##	[93,]	8.429	5	2		6.286	7.571	6		6.286	5.429
##	[94,]	4.286	6	3		7.857		7		7.857	7.286
##	[95,]	8.429	7	5		9.286	3.571	5		9.286	4.429
##	[96,]	5.571	7	8		5.714	1.429	10		5.714	1.571
##	[97,]	6.429	7	7		5.286	6.571	1		5.286	5.429
##	[98,]	6.571	9	8		5.714	8.429	6		5.714	7.571
##	[99,]	3.571	7	5		7.714	5.429	2		7.714	9.571
##	[100,]	5.571	8	9		3.714		4		3.714	4.571
##	[101,]	4.143	10	8	2	8.429	2.857	10	7	8.429	7.143
##	[102,]	7.429	4	7	7	3.286	3.571	2	1	3.286	-0.571
##	[103,]	9.000	2	2	4	2.000	9.000	2	10	2.000	2.000
##	[104,]	5.000	9	7	9	3.000	11.000	7	9	3.000	9.000
##	[105,]	4.714	6	3	4	5.143	5.286	6	5	5.143	5.714
##	[106,]	9.429	9	4	2	6.286	7.571	5	5	6.286	4.429

## [107,]	6.571	9	2	9	4.714	6.429	6	3 4.714	4.571
## [108,]	9.429	2	10		8.286	4.571	9	1 8.286	3.429
## [109,]	5.429	8	2	9	9.286	3.571	7	2 9.286	7.429
## [110,]	7.429	6	2	10	5.286	4.571	4	2 5.286	2.429
## [111,]	6.857	4	4	7	8.571	5.143	1	2 8.571	6.857
## [112,]	5.714	4	1	1	6.143	6.286	1	9 6.143	6.714
## [113,]	7.857	4	6	7	6.571	5.143	5	5 6.571	3.857
## [114,]	7.000	6	7	4	5.000	4.000	6	9 5.000	2.000
## [115,]	4.143	9	9	5	7.429	1.857	2	10 7.429	5.143
## [116,]	4.857	9	7	6	5.571	6.143	6	1 5.571	6.857
## [117,]	4.000	7	3	10	4.000	6.000	5	6 4.000	6.000
## [118,]	5.286	7	5	2	5.857	7.714	5	1 5.857	8.286
## [119,]	6.714	4	9	5	7.143	4.286	10	6 7.143	4.714
## [120,]	2.714	4	2	9	2.143	9.286	7	5 2.143	8.714
## [121,]	5.714	4	2	1	6.143	3.286	2	3 6.143	3.714
## [122,]	7.286	3	7	1	5.857	5.714	7	2 5.857	4.286
## [123,]	6.429	7	4	10	5.286	2.571	9	8 5.286	1.429
## [124,]	2.143	6	2	3	4.429	5.857	3	1 4.429	8.143
## [125,]	10.286	4	9	3	5.857	9.714	9	6 5.857	5.286
## [126,]	5.857	2	1	7	3.571	7.143	8	4 3.571	4.857
## [127,]	5.857	4	3	7	5.571	8.143	1	8 5.571	7.857
## [128,]	3.429	3	1	7	5.286	3.571	10	1 5.286	5.429
## [129,]	9.000	1	6	1	5.000	7.000	10	9 5.000	3.000
## [130,]	5.571	5	7	3	4.714	5.429	2	2 4.714	4.571
## [131,]	2.286	8	5	5	5.857	5.714	3	7 5.857	9.286
## [132,]	3.714	2	6	2	4.143	5.286	1	9 4.143	5.714
## [133,]	7.286	8	7	10	6.857	7.714	2	7 6.857	7.286
## [134,]	6.143	6	5	8	8.429	4.857	1	1 8.429	7.143
## [135,]	10.143	10	7	7	5.429	5.857	9	2 5.429	1.143
## [136,]	2.286	10	7	2	6.857	2.714	6	6 6.857	7.286
## [137,]	5.857	1	7	6	3.571	6.143	2	4 3.571	3.857
## [138,]	4.143	9	1	6	5.429	7.857	7	8 5.429	9.143
## [139,]	5.143	5	10	6	3.429	5.857	9	7 3.429	4.143
## [140,]	6.857	6	9	6	5.571	6.143	6	6 5.571	4.857
## [141,]	4.857	4	5	10	1.571	8.143	6	4 1.571	4.857
## [142,]	7.429	7	2	6	4.286	5.571	10	3 4.286	2.429
## [143,]	9.286	5	2	2	7.857	3.714	6	8 7.857	2.286
## [144,]	3.000	7	1	2	6.000	2.000	4	8 6.000	5.000
## [145,]	8.143	10	8	8	4.429	11.857	6	5 4.429	8.143
## [146,]	7.286	8	5	5	7.857	5.714	2	3 7.857	6.286
## [147,]	3.714	8	1	6	8.143	-0.714	3	10 8.143	3.714
## [148,]	2.429	7	2	1	1.286	6.571	9	5 1.286	5.429
## [149,]	3.429	7	4	8	7.286	5.571	5	2 7.286	9.429
## [150,]	8.571	2	3	2	6.714	9.429	1	8 6.714	7.571
## [151,]	3.571	10	7	3	5.714	3.429	5	10 5.714	5.571
## [152,]	2.571	2	6	4	1.714	6.429	6	3 1.714	5.571
## [153,]	5.000	6	2	2	6.000	2.000	6	8 6.000	3.000
## [154,]	7.000	6	2	5	3.000	5.000	10	8 3.000	1.000
## [155,]	1.286	4	9	3	2.857	1.714	1	5 2.857	3.286
## [156,]	6.286	5	6	10	5.857	2.714	10	5 5.857	2.286
## [157,]	9.714	8	6	1	5.143	9.286	3	4 5.143	4.714
## [158,]	4.143	2	4	7	8.429	2.857	2	5 8.429	7.143
## [159,]	5.286	5	1	10	2.857	3.714	3	3 2.857	1.286
## [160,]	7.000	4	2	6	5.000	8.000	8	5 5.000	6.000

```
## [161,] 11.143
                               9 5.429 7.857
                                                       7 5.429 2.143
                     1
                          6
                                                  6
                     7
                          4
                               9 4.143
                                        2.286
                                                       8 4.143
## [162,]
           5.714
                                                  6
                                                                0.714
## [163,]
           4.857
                     7
                          6
                               3 6.571
                                        2.143
                                                  3
                                                       1 6.571
                                                                3.857
                          2
## [164,]
           9.143
                               2 6.429
                                        8.857
                                                  8
                                                       7 6.429
                                                                6.143
## [165,]
           6.714
                     3
                          5
                               1 8.143
                                        6.286
                                                  8
                                                       6 8.143
                                                                7.714
                              10 3.000
                                                       8 3.000 2.000
## [166,]
           6.000
                    10
                          8
                                        5.000
                                                  5
## [167,]
           4.714
                    9
                         10
                               7 7.143
                                        2.286
                                                  8
                                                       7 7.143
                                                                4.714
## [168,]
           4.286
                     2
                          4
                               8 1.857
                                        9.714
                                                  7
                                                       9 1.857 7.286
           4.000
                          5
                              10 3.000
                                        2.000
                                                       2 3.000 1.000
## [169,]
                     4
                                                 10
## [170,] 10.286
                          4
                               7 5.857
                                        7.714
                                                       6 5.857
                                                                3.286
                     4
                                                  2
                     5
                               3 6.714
                                        5.429
## [171,]
           6.571
                          6
                                                  8
                                                       4 6.714
                                                               5.571
## [172,]
                               2 9.714
                                        0.429
                                                  7
                                                       7 9.714
           1.571
                     4
                          6
                                                                8.571
                               1 4.286 10.571
                                                       7 4.286
## [173,]
           5.429
                     8
                          5
                                                                9.429
## [174,]
          8.714
                    10
                          8
                               3 7.143
                                        6.286
                                                       7 7.143
                                                                4.714
                                                  6
## [175,]
           8.571
                     8
                          9
                               8 6.714
                                        9.429
                                                  9
                                                       3 6.714 7.571
                          2
                               1 4.571
                                                       2 4.571
## [176,]
           5.857
                     3
                                        5.143
                                                 10
                                                                3.857
## [177,]
           5.571
                     9
                          5
                               2 7.714
                                        3.429
                                                  8
                                                       7 7.714
                                                               5.571
                               3 8.286
                                                       6 8.286
                                                                3.429
## [178,] 10.429
                     8
                          8
                                        5.571
                                                  3
## [179,]
           4.286
                     3
                          5
                              10 3.857
                                        4.714
                                                  6
                                                       2 3.857 4.286
## [180,]
           8.714
                     7
                          7
                              10 7.143
                                        4.286
                                                  1
                                                       7 7.143 2.714
## [181,]
           5.429
                          5
                               6 6.286
                                        6.571
                                                       6 6.286
                     2
                                                 10
                                                                7.429
                               9 9.857
## [182,] 10.286
                          4
                                        5.714
                                                  7
                                                       2 9.857
                                                                5.286
## [183,]
           5.143
                     4
                          9
                               3 6.429
                                        5.857
                                                  1
                                                       3 6.429
                                                                7.143
## [184,]
           3.000
                               3 6.000
                                        3.000
                                                      10 6.000 6.000
                     8
                          4
                                                  5
## [185,]
           2.714
                    10
                          7
                               1 1.143
                                        4.286
                                                  4
                                                       9 1.143
                                                                2.714
## [186,]
                     3
                               4 5.429
                                        5.857
                                                       5 5.429 5.143
           6.143
                         10
                                                  5
                               9 7.714
                                        4.429
                                                       4 7.714 3.571
## [187,]
           8.571
                     4
                         10
                                                  6
## [188,]
           6.143
                     9
                          5
                               2 5.429
                                        5.857
                                                 10
                                                       4 5.429 5.143
                               9 2.143
## [189,]
           7.714
                     2
                          2
                                        5.286
                                                  8
                                                       6 2.143 -0.286
## [190,]
           7.714
                    7
                          4
                              10 3.143
                                        5.286
                                                  1
                                                       8 3.143
                                                                0.714
                               1 7.000
## [191,]
           8.000
                    10
                                        5.000
                                                      10 7.000
                                                               4.000
## [192,]
           7.714
                    7
                          3
                               2 6.143
                                        7.286
                                                  3
                                                      10 6.143
                                                                5.714
           7.571
                               8 4.714
                                                       5 4.714 3.571
## [193,]
                          6
                                        6.429
                                                  9
                               1 7.571
                                                       5 7.571 4.857
## [194,]
           7.857
                    7
                          5
                                        5.143
                                                  4
## [195,]
           7.286
                     9
                          7
                               6 7.857
                                        7.714
                                                  7
                                                       5 7.857 8.286
                               4 3.143
## [196,]
           4.714
                     8
                                        5.286
                                                  2
                                                       9 3.143
                                                                3.714
                          1
## [197,]
                     9
                               4 5.000
           3.000
                         10
                                        2.000
                                                  8
                                                      10 5.000 4.000
## [198,]
           0.143
                         10
                               6 5.429
                                        2.857
                                                  7
                                                       1 5.429 8.143
## [199,]
           3.571
                     9
                         10
                               5 5.714
                                        5.429
                                                  3
                                                       5 5.714
                                                                7.571
## [200,]
           5.714
                     7
                          5
                               8 4.143 4.286
                                                 10
                                                       8 4.143 2.714
```

caSegmentation(y=sprefm, x=sprof, c=3) # clusters

```
## K-means clustering with 3 clusters of sizes 67, 62, 71
##
## Cluster means:
                 [,2]
                          [,3]
                                   [,4]
                                           [,5]
                                                    [,6]
                                                             [,7]
         [,1]
                                                                      [8,]
## 1 4.238806 6.194030 4.865672 3.059701 5.537313 4.283582 4.014925 6.865672
## 2 6.000016 4.338710 4.612903 7.612903 4.032258 5.661274 6.403226 5.306452
## 3 7.150986 6.535211 5.830986 5.084507 7.199239 6.018028 5.704225 3.732394
##
        [,9]
                [,10]
## 1 5.537313 5.582090
## 2 4.032258 3.693565
## 3 7.199239 6.066479
##
## Clustering vector:
     \begin{smallmatrix} 1 \end{smallmatrix} ] \ 3 \ 2 \ 3 \ 3 \ 2 \ 2 \ 1 \ 1 \ 1 \ 2 \ 3 \ 3 \ 3 \ 3 \ 3 \ 1 \ 2 \ 1 \ 3 \ 1 \ 2 \ 2 \ 3 \ 2 \ 3 \ 1 \ 1 \ 3 \ 3 \ 2 \ 1 \ 1 \ 2 \ 2 
## [36] 3 2 1 3 3 3 3 1 2 3 2 2 1 1 3 3 2 1 3 1 2 2 1 1 1 2 3 1 1 1 2 2 3 1 3
## [71] 2 2 2 1 1 1 2 1 3 2 1 2 3 3 1 1 1 1 3 3 1 2 3 3 3 2 1 3 1 1 3 2 2 2 1
## [176] 2 1 3 2 3 2 3 3 1 1 3 3 3 2 2 1 1 2 3 3 1 1 3 1 2
##
## Within cluster sum of squares by cluster:
## [1] 3529.905 3290.644 3670.672
##
   (between_SS / total_SS = 20.6 %)
##
## Available components:
##
## [1] "cluster"
                     "centers"
                                    "totss"
                                                   "withinss"
## [5] "tot.withinss" "betweenss"
                                    "size"
                                                  "iter"
## [9] "ifault"
library(arules)
## Loading required package: Matrix
##
## Attaching package: 'arules'
## The following objects are masked from 'package:base':
##
##
      abbreviate, write
library(arulesViz)
## Loading required package: grid
library(datasets)
```

data(Groceries)

itemFrequencyPlot(Groceries,topN=25,type="absolute")


```
rules <- apriori(Groceries, parameter = list(supp = 0.001, conf = 0.8))
```

```
## Apriori
##
##
   Parameter specification:
##
    confidence minval smax arem aval originalSupport maxtime support minlen
##
           0.8
                  0.1
                         1 none FALSE
                                                  TRUE
                                                                 0.001
##
    maxlen target
                    ext
##
        10 rules FALSE
##
   Algorithmic control:
##
    filter tree heap memopt load sort verbose
##
       0.1 TRUE TRUE FALSE TRUE
                                          TRUE
##
##
  Absolute minimum support count: 9
##
##
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].
## sorting and recoding items ... [157 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 5 6 done [0.01s].
## writing ... [410 rule(s)] done [0.00s].
## creating S4 object ... done [0.00s].
```

```
options(digits=2)
inspect(rules[1:5])
```

```
##
       1hs
                                                 support confidence lift
                                  rhs
## [1] {liquor,red/blush wine} => {bottled beer} 0.0019 0.90
                                                                    11.2
## [2] {curd,cereals}
                               => {whole milk}
                                                                     3.6
                                                 0.0010 0.91
## [3] {yogurt,cereals}
                               => {whole milk}
                                                 0.0017 0.81
                                                                     3.2
## [4] {butter, jam}
                               => {whole milk}
                                                 0.0010 0.83
                                                                     3.3
## [5] {soups,bottled beer}
                              => {whole milk}
                                                 0.0011 0.92
                                                                     3.6
```

```
1hs
##
                            rhs
                                   support confidence lift
## [1] {coffee,
        misc. beverages} => {soda} 0.0010
##
                                                 0.77 4.4
## [2] {yogurt,
##
        rolls/buns,
##
        bottled water,
        newspapers}
                         => {soda} 0.0010
                                                 0.77 4.4
##
## [3] {sausage,
        bottled water,
##
##
        bottled beer}
                         => {soda} 0.0011
                                                 0.73 4.2
## [4] {sausage,
##
        white bread,
##
        shopping bags}
                         => {soda} 0.0010
                                                 0.67 3.8
## [5] {rolls/buns,
##
        bottled water,
        chocolate}
##
                         => {soda} 0.0013
                                                 0.65 3.7
```

```
support confidence lift
##
       lhs
                 rhs
## [1] {soda} => {whole milk}
                                     0.040
                                             0.23
                                                        0.90
## [2] {soda} => {rolls/buns}
                                     0.038
                                             0.22
                                                        1.20
## [3] {soda} => {other vegetables} 0.033
                                             0.19
                                                        0.97
## [4] {soda} => {bottled water}
                                     0.029
                                             0.17
                                                        1.50
## [5] {soda} => {yogurt}
                                     0.027
                                             0.16
                                                        1.12
```

```
library(arulesViz)
plot(rules,method="graph",interactive=TRUE,shading=NA)
```

```
require(ggplot2)
```

```
## Loading required package: ggplot2
```

bank = read.csv("D:/Business Analytics/LIBA Class Room Materials/Prof Rajesh/assignment/bank.cs
v", header = TRUE, stringsAsFactors = FALSE)
str(bank)

```
4521 obs. of 9 variables:
## 'data.frame':
## $ age
              : int 30 33 35 30 59 35 36 39 41 43 ...
## $ Jobtype : int 3 2 1 1 2 1 1 2 1 2 ...
## $ marital : chr "married" "married" "single" "married" ...
## $ education: chr "primary" "secondary" "tertiary" "tertiary" ...
  $ default : chr "no" "no" "no" "no" ...
##
  $ balance : int 1787 4789 1350 1476 0 747 307 147 221 -88 ...
                    "no" "yes" "yes" "yes" ...
   $ housing : chr
                     "no" "yes" "no" "yes" ...
##
   $ loan
              : chr
## $ response : chr "no" "no" "no" "no" ...
```

```
## 'data.frame':
                    4521 obs. of 9 variables:
   $ response : Factor w/ 2 levels "No", "Yes": 1 1 1 1 1 1 1 1 1 1 1 ...
##
               : int 30 33 35 30 59 35 36 39 41 43 ...
   $ jobtype : Factor w/ 3 levels "1","2","3": 3 2 1 1 2 1 1 2 1 2 ...
##
   $ marital : Factor w/ 3 levels "Divorced", "Married",..: 2 2 3 2 2 2 2 2 ...
   $ education: Factor w/ 4 levels "Primary", "Secondary",..: 1 2 3 3 2 3 3 2 3 1 ...
##
   $ default : Factor w/ 2 levels "No", "Yes": 1 1 1 1 1 1 1 1 1 1 ...
##
##
   $ balance : int 1787 4789 1350 1476 0 747 307 147 221 -88 ...
   $ housing : Factor w/ 2 levels "No", "Yes": 1 2 2 2 2 1 2 2 2 2 ...
##
##
   $ loan
               : Factor w/ 2 levels "No", "Yes": 1 2 1 2 1 1 1 1 1 2 ...
```

summary(bank2)

```
education
##
   response
                    age
                            jobtype
                                        marital
                                                    Primary : 678
##
   No:4000
                     :19
                           1:1798
                                    Divorced: 528
              Min.
##
   Yes: 521
              1st Qu.:33
                           2:2131
                                    Married :2797
                                                    Secondary: 2306
##
              Median :39
                           3: 592
                                    Single :1196
                                                    Tertiary:1350
                                                    Unknown: 187
##
              Mean
                      :41
##
               3rd Qu.:49
##
              Max.
                      :87
##
   default
                 balance
                              housing
                                          loan
##
   No:4445
              Min.
                    :-3313
                              No :1962
                                         No:3830
   Yes: 76
              1st Qu.:
                              Yes:2559
                                         Yes: 691
##
                         69
              Median : 444
##
##
              Mean
                    : 1423
##
               3rd Qu.: 1480
##
               Max.
                     :71188
```

```
bankf = {response ~ age + jobtype + education + marital + default + balance + housing + loan}
bankmodel = glm(bankf, family=binomial, data=bank2 )
summary(bankmodel)
```

```
##
## Call:
## glm(formula = bankf, family = binomial, data = bank2)
##
## Deviance Residuals:
##
     Min
              1Q Median
                              3Q
                                     Max
## -0.939 -0.543 -0.444 -0.361
                                   2.622
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.71e+00
                          2.98e-01
                                     -9.07 < 2e-16 ***
                                     2.47
## age
               1.25e-02
                          5.04e-03
                                             0.0133 *
## jobtype1
              -5.37e-02
                          7.41e-02
                                     -0.73
                                             0.4680
## jobtype2
              -2.36e-01
                          7.32e-02
                                   -3.22
                                             0.0013 **
## education1 -1.59e-01
                                             0.2039
                          1.25e-01
                                    -1.27
## education2 1.24e-01
                          9.14e-02
                                   1.36
                                             0.1743
## education3 2.92e-01
                                      2.84
                                             0.0045 **
                          1.03e-01
## marital1
              1.22e-01
                          9.39e-02
                                      1.30
                                            0.1936
                          6.82e-02 -4.06 4.9e-05 ***
## marital2
              -2.77e-01
## default1
              -7.90e-02
                                   -0.43
                                             0.6649
                          1.82e-01
                                      0.06
## balance
               9.46e-07
                          1.47e-05
                                             0.9487
## housing1
               2.47e-01
                          4.99e-02
                                     4.95 7.6e-07 ***
## loan1
               3.60e-01
                          8.37e-02
                                      4.30 1.7e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 3231.0 on 4520 degrees of freedom
## Residual deviance: 3108.1 on 4508 degrees of freedom
## AIC: 3134
##
## Number of Fisher Scoring iterations: 5
```

```
bank2$predictm = predict.glm(bankmodel, type = "response")
ggplot(bank2,aes(x=bank2$predictm, color=response, linetype=response))+ geom_density()
```



```
bank2$Predictm =ifelse((bank2 $predictm > 0.1), 1, 0) #@10% cutoff
bank2$Predictm = factor(bank2$Predictm,levels = c(0, 1), labels = c("NO", "YES"))
confusion_matrix = table(bank2$Predictm, bank2$response)
print(confusion_matrix)
```