# Práctica 2

- Conjuntos Disjuntos (DS)
- Árboles Abarcadores Mínimos (MST)
- Problema del Viajante

#### I. TAD CONJUNTO DISJUNTO

#### I-A. TAD Conjunto Disjunto

Vamos a implementar un conjunto disjunto (CD) S sobre un conjunto universal {0, 1, ..., n-1} con n índices utilizando como estructura de datos un array o bien de padres o bien de rangos negativos según se ha descrito en clase.

#### 1. Escribir una función

init\_cd(n: int)-> np.ndarray:

que devuelve un array con valores -1 en las posiciones {0, 1, ..., n-1}.

#### 2. Escribir una función

union(rep 1: int, rep 2: int, p cd: np.ndarray)-> int:

que devuelve el representante del conjunto obtenido como la unión por rangos de los representados por los índices  $rep_1$ ,  $rep_2$  en el CD almacenado en el array  $p_cd$ .

#### 3. Escribir una función

find(ind: int, p cd: np.ndarray)-> int:

que devuelve el representante del índice ind en el CD almacenado en  $p_{cd}$  realizando compresión de caminos.

## Un Ejemplo

• Para una partición en subcojuntos del conjunto universal [1, 2, 3, 4, 5, 6, 7, 8, 9]



the associated table would be

[-1, 1, 6, 2, 1, 5, -1, 7, 8]

# El efecto de la compresión de caminos

• Izquierda: estado del árbol después de find(3); derecha: estado después de find\_cc(3)



```
cd = [-3, 0, 5, 1, 0, 4, -2, 6, 7]
print("(a)", cd)
r1 = find(3, cd)
print("(b)", r1, cd)
r2 = find(2, cd)
print("(c)", r2, cd)
r3 = find(8, cd)
print("(d)", r3, cd)
r4 = union(0, 6, cd)
print("(e)", r4, cd)

(a) [-3, 0, 5, 1, 0, 4, -2, 6, 7]
(b) 0 [-3, 0, 5, 0, 0, 4, -2, 6, 7]
(c) 0 [-3, 0, 0, 0, 0, 0, -2, 6, 6]
(e) 0 [-3, 0, 0, 0, 0, 0, 0, 6, 6]
```











### II. ÁRBOLES ABARCADORES MÍNIMOS

### II-A. Algoritmo de Kruskal

En esta sección vamos a implementar el algoritmo de Kruskal para encontrar un árbol abarcador mínimo de un grafo no dirigido ponderado. Para ello supondremos que en un grafo no dirigido con n vértices, estos vienen dados como índices 0, 1, ..., n-1 y que los vértices están dados por una lista  $l\_g$  cuyas ramas se representan como tuplas (u, v, w), donde u, v son dos ints que representan la rama y w otro int que da el peso de la rama (u, v). Por lo tanto, nuestros grafos vendrán representados como una tupla  $(n, l\_g)$ .

El primer paso en el algoritmo de Kruskal es insertar las distintas ramas de un grafo en una cola de prioridad. Para ello vamos a usar la clase *PriorityQueue* del módulo *queue*, que debemos de importar como

import queue

from queue import PriorityQueue

En una tal cola pq se inserta un elemento item con prioridad w como pq.put((w, item)) y se extrae con w, item = pq.get().

#### 1. Escribir una función

create\_pq(n: int, l\_g: List)-> queue.PriorityQueue

que inserte las ramas del grafo no dirigido dado por el par n,  $l\_g$  en una cola de prioridad y la devuelva.

2. Completar a continuación el desarrollo del algoritmo de Kruskal escribiendo una función kruskal(n: int, | g: List)-> Tuple[int, List]

que devuelve, si lo hay, un árbol abarcador mínimo (AAM) para el grafo n,  $l\_g$  como un nuevo grafo n,  $l\_t$ , donde  $l\_t$  son las ramas de dicho árbol. La implementación de Kruskal debe vaciar la cola de prioridad antes de volver.

Si no hay un tal árbol, debe devolver *None*.

### II. ÁRBOLES ABARCADORES MÍNIMOS

#### II-B. Coste de Kruskal

Vamos a comparar el rendimiento del algoritmo de Kruskal de acuerdo a diferentes variantes en su implementación, trabajando con grafos no dirigidos completos (esto es, donde todos los vértices están conectados entre sí).

#### 1. Escribir una función

def complete\_graph(n\_nodes: int, max\_weight=50)-> Tuple[int, List]:

que genere un grafo completo con  $n\_nodes$  nodos generando ramas u, v con u < v, y pesos w obtenidos mediante  $random.randint(1, max\_weight)$ . La función devolverá la tupla  $n\_nodes$ ,  $l\_g$  donde en la lista  $l\_g$  insertamos los elementos u, v, w que vamos generando.

#### 2. Escribir una función

time kruskal(n graphs: int, n nodes ini: int, n nodes fin: int, step: int)-> List

que genera *n\_graphs* grafos completos con pesos aleatorios según la función anterior y devuelve una lista con los tiempos medios de ejecución de nuestra función kruskal correspondientes a cada número de nodos entre *n\_nodes\_ini, n nodes fin* incrementando éste según *step*.

3. El tiempo de ejecución de Kruskal está dominado por la inserción en la cola de prioridad. Modificar la función anterior a una nueva

time\_kruskal\_2(n\_graphs: int, n\_nodes\_ini: int, n\_nodes\_fin: int, step: int)-> List

para que mida únicamente los tiempos de ejecución asociados a la gestión del CD.

Para ello modificar nuestra función kruskal para obtener una función kruskal\_2 que además de un AAM, devuelva también los tiempos de ejecución acumulados sobre las primitivas del conjunto disjunto.

# MST Examples

On the graph



a first MST with cost 17 is



# Applying Kruskal's Algorithm

We apply it on the previous graph



• The PQ is (1,4), (6,7), (1,2), (2,4), (3,6), (1,3), (4,7), (5,7), (4,6), (2,5), (3,4), (4,5)

```
n0 = 5
1_{g0} = [
(0, 1, 1.),
(1, 0, 1.),
(1, 2, 1.),
(1, 3, 1.),
(1, 4, 2.),
(2, 1, 1.),
(2, 3, 2.),
(2, 4, 1.),
(3, 1, 1.),
(3, 2, 2.),
(3, 4, 1.),
(4, 2, 1.),
(4, 3, 1.),
(4, 1, 2.)
```

```
n1 = 7
l_g1 = [
(0, 1, 2.),
(0, 2, 4.),
(0, 3, 1.),
(1, 3, 3.),
(1, 4, 10.),
(2, 3, 11.),
(2, 5, 3.),
(3, 4, 12.),
(3, 5, 8.),
(3, 6, 4.),
(4, 6, 6.),
(5, 6, 1.)
]
```





```
print(kruskal(n0, l_g0))
print(kruskal(n1, l_g1))

(5, [(0, 1, 1.0), (1, 2, 1.0), (1, 3, 1.0), (2, 4, 1.0)])
(7, [(0, 3, 1.0), (5, 6, 1.0), (0, 1, 2.0), (2, 5, 3.0), (0, 2, 4.0), (4, 6, 6.0)])
```





#### III. EL PROBLEMA DEL VIAJANTE DE COMERCIO

#### III-A. Algoritmo del Vecino Más Cercano

Vamos a explorar el algoritmo codicioso basado en el vecino más cercano para encontrar un circuito que dé una solución razonable al problema del viajante (*Travelling Salesman Problem, TSP*). Para ello usaremos la función siguiente

```
def dist_matrix(n_nodes: int, w_max=10) -> np.ndarray:
    """

m = np.random.randint(1, w_max+1, (n_nodes, n_nodes))
    m = (m + m.T) // 2
    np.fill_diagonal(m, 0)
    return m
```

que genera la matriz de distancias de un grafo con *n\_nodes* nodos, valores enteros con un máximo *w\_max*; observar que la función trabaja con *arrays* de *Numpy* y nos devuelve una matriz simétrica con diagonal 0.

### III-A. Algoritmo del Vecino Más Cercano

1. Escribir una función

greedy tsp(dist m: np.ndarray, node ini=0)-> List

que reciba una matriz de distancias y un nodo inicial y devuelva un circuito codicioso como una lista con valores entre 0 y el número de nodos menos 1.

2. Escribir una función

len\_circuit(circuit: List, dist\_m: np.ndarray)-> int

que reciba un circuito y una matriz de distancias y devuelva la longitud de dicho circuito.

- 3. <u>TSP repetitivo</u>. Una forma sencilla de mejorar nuestro primer algoritmo TSP codicioso es aplicar nuestra función *greedy\_tsp* a partir de todos los nodos del grafo y devolver el circuito con la menor longitud. Escribir una función repeated\_greedy\_tsp(dist\_m: np.ndarray)-> List que implemente esta idea.
- 4. <u>TSP exhaustivo</u>. Para grafos pequeños podemos intentar resolver TSP simplemente examinando todos los posibles circuitos y devolviendo aquel con la distancia más corta. Escribir una función

exhaustive tsp(dist m: np.ndarray)-> List

que implemente esta idea usando la librería *itertools*. Entre los métodos de iteración implementados en la biblioteca, se encuentra la función *permutations*(*iterable*, r=None) que devuelve un objeto iterable que proporciona sucesivamente todas las permutaciones de longitud r en orden lexicográfico. Aquí r es por defecto la longitud del iterable pasado como parámetro, es decir, se generan todas las permutaciones con len(iterable) elementos.

### Vecino más cercano:

- Es una buena aproximación, pero no proporciona la solución óptima.
- El método consiste en una vez establecido el nodo de partida, evaluar y seleccionar su vecino más cercano.



|   | A  | В  | C  | D  | E  |
|---|----|----|----|----|----|
| Α | -  | 2  | 1  | 10 | 25 |
| В | 2  | -  | 18 | 5  | 5  |
| С | 1  | 18 | -  | 20 | 2  |
| D | 10 | 5  | 20 | := | 8  |
| Е | 25 | 5  | 2  | 8  |    |

Ciudad origen: A

Camino: 23

A-C-E-B-D-A



VECINO MÁS CERCANO



SOLUCIÓN ÓPTIMA

## Repetitivo:

Aplicar vecino más cercano a todos los nodos del grafo y obtener aquel trayecto con menor longitud.

|   | A  | В  | C  | D  | E  |
|---|----|----|----|----|----|
| Α | 0  | 2  | 1  | 10 | 25 |
| В | 2  | 0  | 18 | 5  | 5  |
| С | 1  | 18 | 0  | 20 | 2  |
| D | 10 | 5  | 20 | 0  | 8  |
| E | 25 | 5  | 2  | 8  | 0  |

Ciudad origen: A Camino: 23 A-C-E-B-D-A

Ciudad origen: C Camino: 18 C-A-B-D-E-C Ciudad origen: B Camino: 23

B-A-C-E-D-A

Ciudad origen: D

Camino: 18

D-B-A-C-E-D

Ciudad origen: E

Camino: 18

E-C-A-B-D-E

## Exhaustivo:

- Examinar todos los posibles circuitos, devolviendo aquel con la distancia más corta.
- Librería itertools (<a href="https://docs.python.org/3/library/itertools.html">https://docs.python.org/3/library/itertools.html</a>).
- Orden lexicográfico: orden de diccionario.
- Ejemplo: las palabras de cinco letras en el alfabeto A, B.
  - En orden lexicográfico sería: AAAAA, AAAAB, AAABA, AAABB, etc.