リッジ回帰(Ridge Regression, RR)

Least Absolute Shrinkage and Selection Operator (LASSO)

Elastic Net (EN)

明治大学 理工学部 応用化学科 データ化学工学研究室 金子 弘昌

RR·LASSO·EN とは?

- ✓線形の回帰分析手法
- ✓目的変数の誤差の二乗和に加えて、それぞれ以下の項を最小化する ことで、過学習を防ぐ
- ✓RR: 回帰係数の二乗和
- ✓LASSO: 回帰係数の絶対値の和
- ✓EN: 回帰係数の二乗和と絶対値の和 (RRとLASSOとの中間)
- ✓LASSOとENは回帰係数の値が0になりやすく、変数選択としても 利用できる

OLS.RR.LASSO.EN.SVR

- ✓最小二乗法による線形重回帰分析 (Ordinary Least Squares, OLS)
- ✓リッジ回帰 (Ridge Regression, RR)
- ✓ Least Absolute Shrinkage and Selection Operator (LASSO)
- ✓ Elastic Net (EN)
- ✓サポートベクター回帰 (Support Vector Regression, SVR)

OLS・RR・LASSO・EN・SVRの共通点

✓線形の回帰分析手法

たとえば説明変数が2つのとき、目的変数・説明変数を オートスケーリングしたあと、

$$y = x_1b_1 + x_2b_2 + f$$

= $y_C + f$
($y_C = x_1b_1 + x_2b_2$)

y:目的変数

 x_1, x_2 : 説明変数 (記述子)

 b_1, b_2 : (標準)回帰係数

 y_C : yの、xで表すことができる部分

f: yの、xで表すことができない部分 (誤差、残差)

と表わされる

✓ある関数 G を最小化することで回帰係数を求める

OLS・RR・LASSO・EN・SVRの違い 1/2

✓OLS: G は誤差の二乗和

$$G = \sum_{i=1}^{n} f_i^2 = \|\mathbf{y} - \mathbf{X}\mathbf{b}\|^2$$

n:サンプル数

 f_i : i 番目のサンプルの誤差

行列の表し方についてはこちら

✓RR: G は誤差の二乗和と回帰係数の二乗和

$$G = \left\| \mathbf{y} - \mathbf{X} \mathbf{b} \right\|^2 + \lambda \sum_{i=1}^m b_i^2$$

m:説明変数の数

b_i: i 番目の説明変数の回帰係数

λ:重み

✓LASSO: G は誤差の二乗和と回帰係数の絶対値の和

$$G = \left\| \mathbf{y} - \mathbf{X} \mathbf{b} \right\|^2 + \lambda \sum_{i=1}^{m} \left| b_i \right|$$

OLS·RR·LASSO·EN·SVRの違い 2/2

✓EN: G は誤差の二乗和と回帰係数の二乗和と絶対値の和

$$G = \|\mathbf{y} - \mathbf{X}\mathbf{b}\|^{2} + \lambda \left(\alpha \sum_{i=1}^{m} b_{i}^{2} + (1-\alpha) \sum_{i=1}^{m} |b_{i}|\right) \qquad \alpha : \mathbf{重}$$

$$\alpha : \mathbf{重}$$

$$\alpha : \mathbf{重}$$

$$\alpha = 1 \to RR,$$

$$\alpha = 0 \to LASSO)$$

✓SVR: G はある誤差関数 h と回帰係数の二乗和

$$G = h(\mathbf{y} - \mathbf{Xb}) + \lambda \sum_{i=1}^{m} b_i^2$$

• h についてはSVRの資料のときに

回帰係数の求め方

G が最小値を取る

G が極小値を取る

Gを 各 b_i で偏微分したものが 0

$$\frac{\partial G}{\partial b_i} = 0$$

必要に応じて繰り返し計算により、

$$\frac{\partial G}{\partial b_i}$$
= 0 を満たす各 b_i を求める

どうしてLASSOは回帰係数がOになりやすいの?

どうしてLASSOは回帰係数がOになりやすいの?®

$$G = \left\| \mathbf{y} - \mathbf{X} \mathbf{b} \right\|^2 + \lambda \sum_{i=1}^m \left| b_i \right|$$

G が最小になる (b_1, b_2)

 b_1 もしくは b_2 が 0 になりやすい (ENも回帰係数が0になりやすい)

重 λ , α の決め方

- ✓グリッドサーチによって、 $\underline{DDZバリデーション}$ の後の r^2 の値が もっとも高い λ (RR, LASSO) もしくは λ と α の組み合わせ (EN) とする
- ✓RRにおける λ の候補の例: 0.01, 0.02, ..., 0.69, 0.7
- ✓LASSOにおける λ の候補の例: 0.01, 0.02, ..., 0.69, 0.7
- ✓ENにおける λ の候補の例: 0.01, 0.02, ..., 0.69, 0.7
- ✓ENにおける α の候補の例: 0, 0.01, ..., 0.99, 1