Examples of how to use shortex.sty

Created by Trevor Campbell, Jonathan Huggins, and Jeff Negrea Updated February 3, 2023

1 Brackets and bracket-like functions

You can specify a bracket size using $-1, \ldots, 4$, where -1 uses \left and \right, 0 uses nothing, and positive numbers use increasingly large fixed sizes. The default behavior is 0 when in text mode and -1 when in display mode.

Description	Example	Text style	Display style
Regular brackets (parentheses)	\rbra{\frac{x}{y}}	$\left(\frac{x}{y}\right)$	$\left(\frac{x}{y}\right)$
Curly brackets	\cbra[2]{\frac{x}{y}}	$\left\{\frac{x}{y}\right\}$	$\left\{\frac{x}{y}\right\}$
Square brackets	\sbra[4]{\frac{x}{y}}	$\left[rac{x}{y} ight]$	$\left[rac{x}{y} ight]$

Many other bracket-like, semantic commands are also available:

Description	Example	Text style	Display style
Absolute value	$\abs{\frac{x}{y}}$	$\left \frac{x}{y}\right $	$\left \frac{x}{y}\right $
Set	$\ \left\{ \frac{x}{y}, \frac{y}{z} \right\}$	$\left\{\frac{x}{y}, \frac{y}{z}\right\}$	$\left\{\frac{x}{y}, \frac{y}{z}\right\}$
Floor	\floor{\frac{x}{y}}	$\lfloor \frac{x}{y} \rfloor$	$\left\lfloor \frac{x}{y} \right\rfloor$
Ceiling	$\c \frac{x}{y}$	$\lceil \frac{x}{y} \rceil$	$\left\lceil \frac{x}{y} \right\rceil$
Norm	<pre>\norm{\frac{x}{y}}</pre>	$\ \frac{x}{y}\ $	$\left\ \frac{x}{y} \right\ $
Inner product	$\label{linear} $$ \displaystyle \lim_{x}{y}}{\frac{y}}{z}}$	$\langle \frac{x}{y}, \frac{y}{z} \rangle$	$\left\langle \frac{x}{y}, \ \frac{y}{z} \right\rangle$
Cardinality	\card{\whA}	$ \widehat{A} $	$\left \widehat{A}\right $

Some examples of each size option:

	-1	0	1	2	3	4
\abs{\frac{x}{y}}	$\left \frac{x}{y}\right $	$\left \frac{x}{y}\right $	$\left \frac{x}{y}\right $	$\left \frac{x}{y}\right $	$\left \frac{x}{y} \right $	$\left \frac{x}{y} \right $
\floor{\frac{x}{y}}	$\left\lfloor \frac{x}{y} \right\rfloor$	$\lfloor \frac{x}{y} \rfloor$	$\lfloor \frac{x}{y} \rfloor$	$\left\lfloor \frac{x}{y} \right\rfloor$	$\left\lfloor \frac{x}{y} \right\rfloor$	$\left\lfloor \frac{x}{y} \right\rfloor$
$\norm{\frac{x}{y}}$	$\left\ \frac{x}{y} \right\ $	$\ \frac{x}{y}\ $	$\left\ \frac{x}{y} \right\ $	$\left\ \frac{x}{y} \right\ $	$\left\ \frac{x}{y} \right\ $	$\left\ \frac{x}{y} \right\ $

The norm and inner product commands also have versions with a subscript argument:

Description	Example	Text style	Display style
Norm with subscript	$\verb normsub{\frac{x}{y}}{2} $	$\ \frac{x}{y}\ _2$	$\left\ \frac{x}{y} \right\ _2$
Inner product with subscript	$\label{linersub} $$ \displaystyle \lim_{x \to \infty} \{y\} \{z\} \{2\} $$$	$\langle \frac{x}{y}, z \rangle_2$	$\left\langle \frac{x}{y}, z \right\rangle_2$

2 L_p Spaces and Operators

Description	Example	Text style	Display style
L_p space	\Lp{2}	L_2	L_2
L_p space for specified measure	\Lpmeas{2}{\hmu}	$L_2(\hat{\mu})$	$L_{2}\left(\hat{\mu}\right)$
	\Lpmeas[1]{2}{\hmu}	$L_2(\hat{\mu})$	$L_2(\hat{\mu})$
L_p norm	\Lpnorm{\hGamma}{2}	$\ \hat{\Gamma}\ _{L_2}$	$\left\ \hat{\Gamma} \right\ _{L_2}$
	\Lpnorm[-1]{\hGamma}{2}	$\left\ \hat{\Gamma} \right\ _{L_2}$	$\left\ \hat{\Gamma} \right\ _{L_2}$
L_p norm for specified measure	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$\ \hat{\Gamma}\ _{L_2(\hat{\mu})}$	$\left\ \hat{\Gamma}\right\ _{L_2(\hat{\mu})}$
	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$\ \hat{\Gamma}\ _{L_2(\hat{\mu})}$	$\left\ \hat{\Gamma} \right\ _{L_2(\hat{\mu})}$
L_p inner product	\Lpinner{\hGamma}{\Gamma}{2}	$\langle \hat{\Gamma}, \; \Gamma \rangle_{L_2}$	$\left\langle \hat{\Gamma}, \; \Gamma \right\rangle_{L_2}$
	$\label{limits} $$ \coprod_{-1} {\hGamma}_{\Gamma}_{2} $$$	$\left\langle \hat{\Gamma}, \; \Gamma \right\rangle_{L_2}$	$\left\langle \hat{\Gamma}, \; \Gamma \right\rangle_{L_2}$
L_p inner product for specified measure	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$\langle \hat{\Gamma}, \; \Gamma \rangle_{L_2(\hat{\mu})}$	$\left\langle \hat{\Gamma}, \; \Gamma \right\rangle_{L_2(\hat{\mu})}$
	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$\langle \hat{\Gamma}, \; \Gamma \rangle_{L_2(\hat{\mu})}$	$\left\langle \hat{\Gamma}, \; \Gamma \right\rangle_{L_2(\hat{\mu})}$

3 annotation commands

 \bar{A} \barA \bara \bar{a} \bA Ā \bB \bar{B} \balpha $\bar{\alpha}$ \bGamma $\bar{\Gamma}$ \mbox{mcA} \mathcal{A} \mbox{hmcA} Â \mfA \mathfrak{A} \mbox{mfa} \mathfrak{a} \mathfrak{A} \bmfA \bmfa \mathfrak{a} \hA Â \ha \hat{a} \halpha $\hat{\alpha}$ $\hat{\Gamma}$ \hGamma Â \bhA \bha â \bhalpha $\hat{\alpha}$ $\hat{f \Gamma}$ \bhGamma \widehat{A} \whA $\$ \hat{a} \tdA \tilde{A} \tda \tilde{a} \tdalpha $\tilde{\alpha}$ $\tilde{\Gamma}$ \tdGamma $\tilde{\mathbf{A}}$ \btdA \btda $\tilde{\mathbf{a}}$ **\btdalpha** $\tilde{\alpha}$ $ilde{f \Gamma}$ \btdGamma \biA \boldsymbol{A} \bia \boldsymbol{a} \bhiA $\hat{m{A}}$ \bhia

4 new approach to annotation commands

Out of the box we can get all sorts of cool fonts in math mode using f[<fontcodestring>]A. For the time being I only implemented 2 fonts and 1 accent. These can be expanded once everything else is set. We see the effect of single font codes:

\f[b]A A \f[k]A \widehat{A} \f[h]A \widehat{A}

And multiple font codes:

 $\begin{array}{ccc} \texttt{\flat} & \widehat{\mathbf{A}} \\ \texttt{\flat} & \widehat{\mathbf{A}} \\ \texttt{\flat} & \widehat{\mathbf{A}} \\ \texttt{\flat} & \widehat{\mathbb{A}} \\ \texttt{\flat} & \widehat{\mathbb{A}} \\ \end{array}$

Note that these are expanded in the reverse of the order they appear: the font code furthest to the right is applied first. This natches the order that the corresponding commands would appear in TeX code.

We can also avoid typing [] for some combinations of font codes we sue frequently. To do this, use $\parsefontstylesstrings{{<fcstr1>}, {<fcstr2>}, ...}{{<alphabet>}}$ as demonstrated below. For "ease of use" we have implemented $\parsefontstylesstrings{{<fcstr1>}, ...}{{<alphabet>}}$ and $\parsefontstylesstrings{{<fcstr1>}, ...}{{<alphabet>}}$.

Since $\mbox{mathbb<lowercaseletter>}$ is defined to give weird characters, our macros do the same.