- 1. Define $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2$ when $x \in \mathbb{Q}$, and $f(x) = -x^2$ when $x \notin \mathbb{Q}$. At which points is f (a) continuous (b) differentiable?
- 2. Carefully define what it means that $f(x) \to \ell$ as $x \to \infty$. Prove that this happens if and only if $f(x_n) \to \ell$ for every sequence such that $x_n \to \infty$.
- 3. Let $f_n: [0,1] \to [0,1]$ be a continuous function for each $n \in \mathbb{N}$. Let $h_n(x) = \max\{f_1(x), f_2(x), \dots, f_n(x)\}$. Show that h_n is continuous on [0,1] for each n. Must the function h defined by $h(x) = \sup\{f_n(x) : n \in \mathbb{N}\}$ be continuous on [0,1]?
- 4. Let $g: [0,1] \to [0,1]$ be a continuous function. Prove that there exists some $c \in [0,1]$ such that g(c) = c. Such a c is called a *fixed point* of g. Give an example of a bijection $h: [0,1] \to [0,1]$ with no fixed point. Give an example of a continuous bijection $k: (0,1) \to (0,1)$ with no fixed point.
- 5. A function f defined on a set A is locally bounded if every point in A has a neighbourhood on which f is bounded: for all $a \in A$ there exist $\delta > 0$ and $C \in \mathbb{R}$ such that if $x \in A$ and $|x a| < \delta$ then $|f(x)| \leq C$. Show that every continuous function is locally bounded. Show that a locally bounded function on a closed bounded interval is bounded.
- 6. (i) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2 \sin\left(\frac{1}{x}\right)$ if $x \neq 0$ and f(0) = 0. Prove that f is differentiable everywhere. For which x is f' continuous at x? (ii) Give an example of a function $g: \mathbb{R} \to \mathbb{R}$ that is differentiable everywhere such that g' is not bounded on the interval $(-\delta, \delta)$ for any $\delta > 0$.
- 7. Suppose that $f: \mathbb{R} \to \mathbb{R}$ satisfies the inequality $|f(x) f(y)| \leq |x y|^2$ for every $x, y \in \mathbb{R}$. Show that f is constant.
- 8. Prove that the real polynomial $p(x) = 2x^5 + 3x^4 + 2x + 16$ takes the value 0 exactly once, and that the number where it takes that value is somewhere in the interval [-2, -1].
- 9. Let $D \subset \mathbb{C}$ be a disc and $f: D \to \mathbb{R}$ be a continuous function. Show that the image f(D) of f is an interval.

- 10. Let $f: [0,1] \to \mathbb{R}$ be continuous with f(0) = f(1) = 0. Suppose that for every $x \in (0,1)$ there exists $\delta > 0$ such that both $x \delta$ and $x + \delta$ belong to (0,1) and $f(x) = \frac{1}{2} (f(x \delta) + f(x + \delta))$. Prove that f(x) = 0 for all $x \in [0,1]$.
- 11. Prove Cauchy's mean value theorem: let $f, g: [a, b] \to \mathbb{R}$ be continuous functions which are differentiable on the open interval (a, b); show that for some $c \in (a, b)$ the vectors (f(b) f(a), g(b) g(a)) and (f'(c), g'(c)) in \mathbb{R}^2 are parallel. Does this generalize to three or more functions?
- 12. Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable everywhere. Prove that if $f'(x) \to \ell$ as $x \to \infty$ then $f(x)/x \to \ell$ as $x \to \infty$. If $f(x)/x \to \ell$ as $x \to \infty$, does it follow that $f'(x) \to \ell$?
- 13. Define a function $f: \mathbb{R} \to \mathbb{R}$ by setting f(x) = 0 if x is irrational, and f(x) = 1/q when x = p/q for coprime integers p and q with q > 0. Prove that f is continuous at every irrational and discontinuous at every rational. f(x) = 1/q be there exist a function f(x) = 1/q which is continuous at every rational and discontinuous at every irrational?
- 14. A function $f: I \to \mathbb{R}$ on an interval I is convex if

$$f((1-t)x+ty) \leqslant (1-t)f(x)+tf(y) \qquad \forall x,y \in I \ \forall t \in [0,1] \ .$$

Assume now that I is an open interval. Show the following.

- (i) If f is convex then it is continuous.
- (ii) Assume f is locally bounded and satisfies $f(\frac{1}{2}x + \frac{1}{2}y) \leq \frac{1}{2}f(x) + \frac{1}{2}f(y)$ for all $x, y \in I$. Show that f is continuous, and deduce that f is convex.
- (iii) If f is convex then for each $c \in I$ there exists $m \in \mathbb{R}$ such that

$$m(x-c) + f(c) \leqslant f(x)$$
 for all $x \in I$,

and if in addition f is differentiable at c then f'(c) is the unique m that works. In general, must m be unique?

(iv) If f is differentiable on I, then f is convex if and only if f' is increasing.