ANSWERS TO REVIEW QUESTIONS 3

1. What is the difference between a database and a table?

A table, a logical structure that represents an entity set, is only one of the components of a database. The database is a structure that contains one or more tables and metadata. The metadata are data about data. Metadata include the data (attribute) characteristics and the relationships between the entity sets.

2. What does a database expert mean when (s)he observes that a database displays both entity integrity and referential integrity?

Entity integrity describes a condition in which all tuples within a table are *uniquely* identified by their primary key. The unique value requirement prohibits a null primary key value, because nulls are not unique.

no duplicate or null values

Referential integrity describes a condition in which a foreign key value has a match in the corresponding table or in which the foreign key value is null.

establish relationships between tables by referencing the primary key of one table in another table.

3. Why are entity integrity and referential integrity important in a database?

Data Accuracy and Consistency: Data Integrity and Reliability Data Consistency across Tables Entity integrity is important, because it means that a proper search for an *existing* tuple (row) will always be successful. And the failure to find a match on a row search will always mean that the row for which the search is conducted does not exist in that table. Referential integrity is important, because its existence ensures that it will be impossible to assign a non-existing foreign key value to a table. For example, the referential integrity enforcement in a SALESREP *is assigned to* CUSTOMER relationship means that it will be possible for a customer not have a sales rep assigned to him or her, but it will be impossible to assign non-existing sales rep to a customer.

4. A database manual notes that "the file contains two hundred records, each one of which contains nine fields." Use appropriate relational database terminology (table, entity set, row, tuple, entity) to "translate" the preceding statement.

Using the proper relational terminology, the statement may be translated to "the table -- or entity set -- contains two hundred rows -- or, if you like, two hundred tuples, or entities. Each of these rows contains nine attributes."

Table name: STUDENT Table name: PROFESSOR						
	STU_CODE	PROF_CODE			PROF_CODE	DEPT_CODE
lack	100278			•	0	2
	128569	2			2	6
	512272	4			3	6
	531235	2			4	4
	531268		_			
	553427	1				

5. Draw the basic Entity Relationship diagram for the database shown in figure above.

6. Draw the relational schema for the database shown in figure above.

7. Suppose that you are using the following database composed of the two tables shown in figure below.

Table name: DIRECTO	OR					
		DIR_	NUM	DIR_LNAME	DIR_DOE	3
		100		Broadway	12-Jan-7	5
		101		Hollywoody	18-Nov-6	63
		102		Goofy	21-Jun-7	2
Table name: PLAY						
	PLAY_CO	DE	PLAY	NAME		DIR_NUM
	1001		Cat O	n a Cold, Bare R	loof	102
	1002		Hold t	he Mayo, Pass t	he Bread	101
	1003		I Neve	er Promised You	Coffee	102
	1004		Silly P	utty Goes To Wa	ashington	100
	1005		See N	o Sound, Hear N	No Sight	101
	1006		Starstruck in Biloxi			102
	1007		Strang	ger In Parrot Ice		101

• Identify the primary keys

DIR_NUM is the DIRECTOR table's primary key. PLAY_CODE is the PLAY table's primary key.

Identify the foreign keys

The foreign key is DIR_NUM, located in the PLAY table. Note that the foreign key is located on the "many" side of the relationship between director and play. (Each director can direct many plays ... but each play is directed by only one director.)

Draw the entity relationship model

Draw the relational schema to show the relationship between DIRECTOR and PLAY.

ANSWERS TO PROBLEMS 3

PART 1. Use the database shown in figure below to answer problems 1 through 9.

Table name: EMPLOYEE							
EMP_CODE	EMP_TITLE	EMP_LNAME	EMP_FNAME	EMP_INITIAL	EMP_DOB	STORE_CODE	
1	Mr	Govender	Adimoolam	W	21-May-70	3	
2	Ms	Ratula	Nancy		09-Feb-75	2	
3	Ms	Greenboro	Lottie	R	02-Oct-67	4	
4	Mrs	Rumpersfro	Jennie	S	01-Jun-77	5	
5	Mr	Smith	Robert	L	23-Nov-65	3	
6	Mr	Renselaer	Cary	Α	25-Dec-71	1	
7	Mr	Ogallo	Roberto	S	31-Jul-68	3	
8	Ms	Van Blerk	Elandri	1	10-Sep-74	1	
9	Mr	Eindsmar	Jack	W	19-Apr-61	2	
10	Mrs	Jones	Rose	R	06-Mar-72	4	
11	Mr	Broderick	Tom		21-Oct-78	3	
12	Mr	Washington	Alan	Y	08-Sep-80	2	
13	Mr	Smith	Peter	N	25-Aug-70	3	
14	Ms	Smith	Sherry	Н	25-May-72	4	
15	Mr	Olenko	Howard	U	24-May-70	5	
16	Mr	Archialo	Barry	V	03-Sep-66	5	
17	Ms	Grimaldo	Jeanine	K	12-Nov-76	4	
18	Mr	Rosenberg	Andrew	D	24-Jan-77	4	
19	Mr	Bophela	Ingwe	F	03-Oct-74	4	
20	Mr	Mckee	Robert	S	06-Mar-76	1	
21	Ms	Baumann	Jennifer	A	11-Dec-80	3	

e name: STORE						
STORE_CODE	STORE_NAME	STORE_YTD_SAL	ES REGION_CODE	EMP_CODE		
1	Access Junction	€792730.05	2	8		
2	Database Corner	€1123370.04	2	12		
3	Tuple Charge	€779558.74	1	7		
4	Attribute Alley	€746209.16	2	3		
5	Primary Key Point	€2314777.78	1	15		
Table name: REGION						
	REGION_CODE	REGION_DESC	REGION_DESCRIPT			
		1 East				
		2 West				

1. For each table, identify the primary key and the foreign key(s). If a table does not have a foreign key, write NONE in the assigned space.

Table	Primary key	Foreign Key(s)	
EMPLOYEE	EMP_CODE	STORE_CODE	
STORE	STORE_CODE	REGION_CODE, EMP_CODE	
REGION	REGION_CODE	NONE	

2. Do the tables exhibit entity integrity? Answer Yes or No, then explain your answer.

Table	Entity Integrity?	Explanation
EMPLOYEE	Yes	Each EMP_CODE value is unique and there are no nulls
STORE	Yes	Each STORE_CODE value is unique and there are no nulls
REGION	Yes	Each REGION_CODE value is unique and there are no nulls

3. Do the tables exhibit referential integrity? Answer Yes or No, then explain your answer. Write NA (Not Applicable) if the table does not have a foreign key.

Table	Referential Inte	grity? Explanation
EMPLOYEE	Yes	Each STORE_CODE value in EMPLOYEE points to an
		existing STORE_CODE value in STORE.
STORE	Yes	Each REGION_CODE value in STORE points to an
		existing REGION_CODE value in REGION and each
		EMP_CODE value in STORE points to an existing
		EMP_CODE value in EMPLOYEE.
REGION	NA	

4. Describe the type(s) of relationship(s) between STORE and REGION.

Because REGION_CODE values occur more than once in STORE, we may conclude that each REGION can contain many stores. But, since each STORE is located in only one REGION, the relationship between STORE and REGION is M:1. (It is, of course, equally true that the relationship between REGION and STORE is 1:M.)

5. Draw the Entity Relationship diagram for the relationship between STORE and REGION.

6. Draw the Relational Schema for the relationship between STORE and REGION.

7. Describe the type(s) of relationship(s) between EMPLOYEE and STORE. (*Hint*: Each store employs many employees, one of whom manages the store.)

There are TWO relationships between STORE and EMPLOYEE. The first relationship, expressed by STORE *employs* EMPLOYEE, is a 1:M relationship, because one store can employ many employees and each employee is

employed by one store. The second relationship, expressed by EMPLOYEE manages STORE, is a 1:1 relationship, because each store is managed by one employee and an employee manages only one store.

Note: It is useful to introduce several ways in which the *manages* relationship may be implemented. For example, rather than creating the *manages* relationship between EMPLOYEE and STORE, it is possible to simply list the manager's name as an attribute in the STORE table. This approach creates a redundancy which may not do much damage if the information requirements are limited. However, if it is necessary to keep track of each manager's sales and personnel management performance by store, the manages relationship we have shown here will do a much better job in terms of information generation.

8. Draw the **Entity Relationship diagram** to show the relationships **among EMPLOYEE**, **STORE**, and **REGION**.

9. Draw the Relational Schema to show the relationships between EMPLOYEE, STORE, and REGION.

Note: The relational schema was generated in Microsoft Access. If a relationship already exists between two entities, Access generates a virtual table (in this case, EMPLOYEE_1) to generate the additional relationship. The virtual table cannot be queried; its only function is to store the *manages* relationship between EMPLOYEE and STORE. Just how multiple relationships are stored and managed is a function of the software you use.

PART 2. Use the database shown in figure below to answer problems 1 through 5.

Table name: P	Table name: PRODUCT Primary key: PROD_CODE							
Foreign key: V	END_CODE							
PROD_ CODE	PROD_DESCRIPTION	PROD_STOCK_ DATE	PROD_ON_ HAND	PROD PRICE		VEND_ CODE		
12-WW/P2	18 cm power saw blade	07-Apr-16	12	10	.94	123		
1QQ23-55	6 cm wood screw, 100	19-Mar-16	123	13	.55	123		
231-78-W	PVC pipe, 8 cm, 2.44 m	07-Dec-15	45	17	.01	121		
33564/U	Rat-tail file, 0.5 cm, fine	08-Mar-16	18	10	.94	123		
AR/3/TYR	Cordless drill, 0.6 cm	29-Nov-15	8	136	.33	121		
DT-34-WW	Philips screwdriver pack	20-Dec-15	11	118	.40	123		
EE3-67/W	Sledge hammer, 7 kg	25-Feb-16	9	9 114.		121		
ER-56/DF	Houselite chain saw, 40 cm	28-Dec-15	7 1186		.04	125		
FRE-TRY9	Jigsaw, 30 cm blade	12-Aug-15	67	11	.15	125		
SE-67-89	Jigsaw, 20 cm blade	11-Oct-15	34	11	.07	125		
ZW-QR/AV	Hardware cloth, 0.6 cm.	23-Apr-16	14 110		.26	123		
ZX-WR/FR	Claw hammer	01-Mar-16	15	17	.07	121		
Table name: V	ENDOR	Primary key: VEN	ND_CODE					
Foreign key: no	one							
VEND_CODE	VEND_NAME	VEND_CONTACT	VEND_ARE	ACODE	VEND	PHONE		
120	Bargain Snapper, Inc.	Melanie T. Travis	0181		899-1	234		
121	Cut 'n' Glow Co.	Henry J. Olero	0181		342-9	896		
122	Rip & Rattle Supply Co.	Anne R. Morrins	0113		225-1127			
123	Tools 'R' Us	Juliette G. McHenry	0161		546-7894			
124	Trowel & Dowel, Inc.	George F. Frederick	0113		453-4	567		
125	Bow & Wow Tools	Bill S. Sedwick	0113		324-9	988		

1. For each table, identify the primary key and the foreign key(s). If a table does not have a foreign key, write NONE in the assigned space.

Table	Primary key	Foreign Key(s)
PRODUCT	PROD_CODE	VEND_CODE
VENDOR	VEND_CODE	NONE

2. Do the tables exhibit entity integrity? Answer Yes or No, then explain your answer.

Table	Entity Integrity?	Explanation
PRODUCT	Yes	All the PROD_CODE values in PRODUCT are unique
		and there are no nulls.
VENDOR	Yes	All the VEND_CODE values in VENDOR are unique
		and there are no nulls.

3. Do the tables exhibit referential integrity? Answer Yes or No, then explain your answer. Write NA (Not Applicable) if the table does not have a foreign key.

Table	Referential Integrity	? Explanation
PRODUCT	Yes	All the VEND_CODE values in PRODUCT point to
		existing VEND_CODE values in VENDOR
VENDOR	NA	

4. Draw the **Entity Relationship diagram** for this database.

Note: In this case, we assume that each product is supplied by a single vendor. It is, of course, possible for a situation to exist in which a vendor can supply many products and each product can be supplied by many vendors. In this latter scenario, there exists a M:N relationship between VENDOR and PRODUCT. This M:N relationship must then be decomposed into two sets of 1:M relationships, thus requiring the creation of a third table structure (a composite entity) to form the "bridge" between VENDOR and PRODUCT. We will learn how to decompose M:N relationships into two 1:M relationships in the following lectures.

5. Draw the Relational Schema for this database.

PART 3. Use the database shown in figure below to answer problems 1 through 5.

Table name: T	RUCK		Р	Primary key: TRUCK_NUM				
Foreign key: BASE-CODE, TYPE_CODE								
TRUCK_	BASE_	TYPE_	TRUC	TRUCK_ TRUCK_		C_BUY_	TRUCK_SERIAL_	
NUM	CODE	CODE	KM		DATE		NUM	
1001	501	1	32	123.50	23-Sep	-13	AA-322-12212-W11	
1002	502	1	769	984.30	05-Feb	-12	AC-342-22134-Q23	
1003	501	2	123	346.60	11-Nov	-13	AC-445-78656-Z99	
1004		1	28	394.30	06-Jan	-14	WQ-112-23144-T34	
1005	503	2	456	673.10	01-Mar	-13	FR-998-32245-W12	
1006	501	2	1932	245.70	15-Jul-	10	AD-456-00845-R45	
1007	502	3	320	012.30	17-Oct	-11	AA-341-96573-Z84	
1008	502	3	442	213.60	07-Aug	-12	DR-559-22189-D33	
1009	503	2	10932.90		12-Feb-14		DE-887-98456-E94	
Table name: B	ASE		Pi	rimary key	: BASE_C	CODE		
Foreign key: no	one							
BASE_CODE	BASE_CITY	BASE_PROVING	CE BA	SE_AREA	CODE	BASE_	BASE_MANAGER	
						PHONE		
501	Polokwane	Limpopo	0700			123-4567	Sibusiso Balisa	
502	Cape Town	Western Cape	7100		234-5678		Clementine Daniels	
503	Best	North Brabant	45	4567		345-6789	Maria J. Talindo	
504	Durban	KwaZulu-Natal	40	4001		456-7890	Pragasen Khan	
Table name: TYPE Primary key: TYPE_CODE Foreign key: none								
		TYPE_CODE	TYP	TYPE_DESCRIPTION				
	1				Single box, double-axle			
		2	Sing	Single box, single-axle				
	Ton	Tandem trailer, single-axle						

1. For each table, identify the primary key and the foreign key(s). If a table does not have a foreign key, write NONE in the assigned space.

Table	Primary key	Foreign Key(s)	
TRUCK	TRUCK_NUM *	BASE_CODE, TYPE_CODE	
BASE	BASE_CODE	NONE	
TYPE	$TYPE_CODE$	NONE	

Note: The TRUCK_SERIAL_NUM could also be designated as the primary key. But we prefer to design TRUCK_NUM as the primary key.

2. Do the tables exhibit entity integrity? Answer Yes or No, then explain your answer.

Table	Entity Integrity?	Explanation
TRUCK	Yes	The TRUCK_NUM values in the TRUCK table are
		all unique and there are no nulls.
BASE	Yes	The BASE_CODE values in the BASE table are all
		unique and there are no nulls.
TYPE	Yes	The TYPE_CODE values in the TYPE table are all
		unique and there are no nulls.

3. Do the tables exhibit referential integrity? Answer Yes or No, then explain your answer. Write NA (Not Applicable) if the table does not have a foreign key.

Table	Referential Integrity?	Explanation
TRUCK	Yes	The BASE_CODE values in the TRUCK table reference
		existing BASE_CODE values in the BASE table or they
		are null. (The TRUCK table's BASE_CODE is null for
		TRUCK_NUM = 1004.) Also, the TYPE_CODE values in
		the TRUCK table reference existing TYPE_CODE values
		in the TYPE table.
BASE	NA	
TYPE	NA	

4. Draw the Entity Relationship diagram for this database.

5. Draw the Relational Schema for this database.

