Generative Modeling

Denis Derkach, Artem Ryzhikov, Maxim Artemev

Laboratory for methods of big data analysis

More on GANs

In this Lecture

- Special Discriminator Structures
 - Energy-based Generative Adversarial Network
 - Boundary Equilibrium Generative Adversarial Networks
 - Discriminator Rejection Sampling
- Additional tips for the infrastructure.

Reminder Contractive Denoising Autoencoders

The true signal is always situated on a manifold inside the R^D space.

Penoising autoencoder is trained to map a corrupted data point \tilde{x} back to the original data point x.

Vanilla GAN

Energy-based GAN

Autoencoder Discriminator

Pros:

- Takes into account the minibatch information properly.
- Uses the full information about the manifold.

Autoencoder Discriminator

Use AE to extract latent features of the input image by an encoder and reconstruct it again with the decoder with MSE loss:

$$D(x) = ||Dec(Enc(x)) - x||$$

Junbo Zhao et al., ICLR 2017

EB-GAN training

For
$$[.]^+ = \max(0,.)$$
:
$$\mathcal{L}_D(x,z) = D(x) + [m - D(G(z))]^+;$$

$$\mathcal{L}_G(x,z) = D(G(z)),$$

- **autoencoder**: reconstruction cost D(x) for real images is low;
- \triangleright D(x) is trained first several rounds;
- once G(z) generates sufficiently good images D(x) training resumes;
- repelling loss to address AE collapse problem:

$$f_{PT} = \frac{1}{N(N-1)} \sum_{i} \sum_{j \neq i} \frac{S_i^T S_j}{||S_i|| ||S_j||}.$$

where $S \in \mathbb{R}^{s \times N}$ a batch of sample of size N representations taken from the encoder output layer.

GAN energy interpretation

```
For [.]^+ = \max(0,.): \mathcal{L}_D(x,z) = D(x) + [m - D(G(z))]^+; \mathcal{L}_G(x,z) = D(G(z)),
```

- **autoencoder**: reconstruction cost D(x) for real images is low;
- \triangleright D(x) does not have probability interpretation;
- one can use energy interpretation instead.

EB-GAN results

Figure 4: Generation from the grid search on MNIST. Left(a): Best GAN model; Middle(b): Best EBGAN model. Right(c): Best EBGAN-PT model.

Boundary equilibrium GAN

Wasserstein Distance lower bound

Wasserstein distance:

$$W(\mu 1, \mu 2) = \inf_{\gamma \in \Pi} \mathbb{E}_{(x,y) \sim \gamma} ||x - y||$$

Jensen's inequality:

$$W(\mu 1, \mu 2) \ge \inf_{\gamma \in \Pi} |\mathbb{E}_{(x,y) \sim \gamma} |x - y|| =$$

= $|m_1 - m_2|$,

where m_i are the mean on μ_i .

D. Berthelot et al., 1703.10717

Wasserstein Discriminator

• We have D(x) as AE:

$$D(x) = ||Dec(Enc(x)) - x||$$

$$\mathcal{L}_D = W(\mu_1 \mu_2) \ge |m_1 - m_2|.$$

• We can use D(x) in minibatch instead of mean:

$$\mathcal{L}_D = D(x) - D(G(z)).$$

- We thus optimize W between losses.
- No need for K-Lipshitz, since no Kantorovich-Rubinstein duality is used.

Equilibrium term

 \triangleright we need to maintain balance between G and D:

$$\mathbb{E}(D(x)) = \mathbb{E}(D(G(z)))$$

we thus can use a parameter to balance the impact:

$$\gamma = \frac{\mathbb{E}(D(x))}{\mathbb{E}(D(G(z))}.$$

 \triangleright γ can be chosen to sharpen the image.

BEGAN formulation

We thus can write full optimization for BEGAN

$$\mathcal{L}_D = D(x) - k_t D(G(z));$$

$$\mathcal{L}_G = D(G(z));$$

$$k_{t+1} = k_t + \lambda_k (\gamma D(x) - D(G(z))).$$

- Dropping γ leads to mode collapse.
- ► To monitor the convergence:

$$M_{global} = D(x) + (\gamma D(x) - D(G(z)))$$

BEGAN results

(c) Our results (128x128 with 128 filters)

(d) Mirror interpolations (our results 128x128 with 128 filters)

Wrap-up

- We can change the architecture of discriminator.
- This might lead to change of the optimization idea.
- If we use autoencoder as discriminator we have access to the energy instead of probability.
- We can optimize Wasserstein distance not only for datasets, but also for results of function.

Rejection Sampling

Rejection Sampling


```
1 Input: P^*(X), Q(X), c

2 Output: S = \{x_i\}_{i=1}^n \sim P^*(X)

3 S \leftarrow \varnothing

4 for sample index i from 1 to n do

5 x_i \sim Q(X)

6 u_i \sim U(0, c Q(x_i))

7 if u_i < P^*(x_i) then

8 Accept x_i: S \leftarrow S \cup \{x_i\}

9 else

10 Reject x_i: i \leftarrow i-1
```

Ideal Discriminator

Ideal discriminator:

$$D^*(x) = \frac{p(x)}{p(x) + q_{\theta}(x)}.$$

Remember f-GAN idea of last layer:

$$D^*(x) = \frac{1}{1 + e^{-\widetilde{D}^*(x)}} = \frac{p(x)}{p(x) + q_{\theta}(x)}.$$

Thus:

$$\frac{p(x)}{q_{\theta}(x)} = e^{\widetilde{D}^*(x)}.$$

This defines constant for rejection sampling.

S. Azadi et al., NeurlPS 2019

Discriminator Rejection Sampling

ImageNet	IS	FID
Without DRS With DRS	52.34 ± 0.45 61.44 ± 0.09	$18.21 \pm 0.14 17.14 \pm 0.09$

Results suggest that the quality of sampling is improved

Your GAN is secretly an energy based model

Previous results can be revisited (with acceptance probability):

$$\frac{p(x)}{q_{\theta}(x)} = e^{\widetilde{D}^*(x)}.$$

And applied to the latent space. This will create a rule for new latent space distribution:

$$p_t(z) = p_0(z)r(z)/C.$$

Which can be rewritten as:

$$p_t(z) = e^{-E(z)}/Z_0$$
, with tractable $E(z)$:
 $E(z) = -\log p_0(z) - \widetilde{D} (G(z))$.

▶ This can be used to define MCMC in latent space and later obtain $x \sim G(z)$.

Energy-based sampling: results

Figure 4. Top-5 nearest neighbor images (right columns) of generated samples (left column).

Discussion

- GAN's discriminator can enable better modeling of the data distribution with Discriminator Driven Latent Sampling.
- The major advantage of DDLS is that it allows MCMC sampling in the latent space.

Implementing GANs

Motivation

- GANs, being the most popular generative models, often aim for production.
- The sampling speed thus becomes important.
- Easiest way: implement model description.

input E (30x30) input noise (16) FC (16 → 64) conv2D (32, stride=1) concatenate with conditions conv2D (64, stride=2) FC (64+5 → 256 → 512) Self-Attention (64) reshape (128×2×2) conv2D (128, stride=2) convTranspose2D (128, stride=2) Self-Attention (128) convTranspose2D (64, stride=2) Self-Attention (64) conv2D (256, stride=2) convTranspose2D (32, stride=2) flatten & concat with conditions Self-Attention (32) FC (256+5 → 64 → 32) convTranspose2D (1, stride=2) FC (32 → 1) output E (30x30)

Generator

EPJ Web of Conferences 251, 03043 (2021)

Discriminator

VS

100X

Rogachev et al., ACAT 2021 Ahmed et al., CERN seminar'2022

Acceleration techniques

- Memory compression minimize memory requirements.
- Computation optimization decrease number of mathematical operations.
- Dataflow optimization maximize data reuse and minimize ineffectual operations.

D. Tantawy et al., A survey on GAN acceleration using memory compression techniques, Journal of Engineering and Applied Sciences, 2021

Memory Compression

Pruning Decisions

Criteria

- random;
- threshold based;
- evolutionary.
- Granularity
 - structured;
 - unstructured.
- Application
 - Before/after training.
- D vs. G

Pruning for GANs

- Out-of-the-box techniques fail:
 - weak evaluation metrics;
 - unstable training;
 - high-dimensional input/output spaces.

C. Yu et al., Self-Supervised GAN compression, NeurlPS'20

Self-supervised Pruning

Use discriminator from the uncompressed GAN to train compressed one.

$$\begin{split} \textbf{\textit{L}}_{GC}(\textit{l-G}_O,\textit{l-G}_C) &= |\textit{l-Gen}_O - \textit{l-Gen}_C|/|\textit{l-Gen}_O| + \\ &\alpha|\textit{l-Cla}_O - \textit{l-Cla}_C|/|\textit{l-Cla}_O| + \\ &\beta|\textit{l-Rec}_O - \textit{l-Rec}_C|/|\textit{l-Rec}_O| \end{split}$$

$$m{L}_{DC}(l ext{-}m{D}_O, l ext{-}m{D}_C) = |l ext{-}m{D}im{s}_O - l ext{-}m{D}im{s}_C|/|l ext{-}m{D}im{s}_O| + \delta|l ext{-}m{G}m{P}_O - l ext{-}m{G}m{P}_C|/|l ext{-}m{G}m{P}_O|$$

$$L_{Overall} = L_{GC}(l-G_O, l-G_C) + \lambda L_{DC}(l-D_O, l-D_C)$$

C. Yu et al., Self-Supervised GAN compression, NeurIPS'20

Co-evolutionary Pruning

- Generator is a bitstream
 where each bit corresponds
 to a filter if the bit = 0 then
 the filter is pruned.
- Fitness:
 - the size of the network,
 - the compression distance,
 - the cycle loss.

H. Shu, ICCV 2019

Pruning during training

- Start from light-weight seed network.
- Grow width.
- Remove similar filters.

X. Song, SP-GAN: Self-Growing and Pruning Generative Adversarial Networks, IEEE TNN 2021

Knowledge Distillation Choices

- Teacher model acquiring
- Student model reconstruction
 - Pruning/architecturesearch/progressive growth
- Training Architecture
 - G/G+D/G+D+NN
- Loss functions

Direct Distillation

- Use pretrained teacher.
- Need per-pixel loss to stabilize student.

$$\mathcal{L}_{per_pixel} = loss(G_{student}(z), G_{teacher}(z))$$

$$\mathcal{L}_{recon} = \mathcal{L}_{gan} + \lambda \mathcal{L}_{per_pixel}$$

Aguinaldo et al., arXiv:1902.00159

Direct Distillation

- Clear dependence of quality on the complexity of student.
- Almost independent on losstype.
- Results are much better than for direct training of small generator.

10 FID 32 64 GAN Size (d) 7853212 teacher student control

15

Student (Joint) Teacher (d=128)

Aguinaldo et al., arXiv:1902.00159

Simultaneous Distillation

Triplet loss: to consider the fact that student is closer to teacher than teacher to reality.

$$\mathcal{L}_{tri}(D_S) = \frac{1}{n} \sum_{i=1}^{n} \left[\|\hat{D}_S(y_i) - \hat{D}_S(G_T(x_i))\|_1 - \|\hat{D}_S(y_i) - \hat{D}_S(G_S(x_i))\|_1 + \alpha \right]_+$$

H. Chen et al., Distilling portable Generative Adversarial Networks for Image Translation, AAAI 2020

Simultaneous Distillation

(a)Student GANs with 1/2 channels of the teacher GAN.

(b)Student GANs with 1/4 channels of the teacher GAN.

H. Chen et al., Distilling portable Generative Adversarial Networks for Image Translation, AAAI 2020

39

Content-aware loss

- Use masks to put correct attention to the content.
- The masked are specifically predefined.

Y. Liu et al., CVPR2021

Outlook

- More methods are available (like quantization).
- Current state-of-the-art methods use loss with several components.
- No unified approach exist.