Visualizing COVID19 data from different countries

Martin Beneš

Supervisor: Krzysztof Bartoszek

732A76 Research Project

2020-01-12

Goals

- Download mortality, population and COVID19 death data.
- Design similarity measure for administrative divisions.
 - What features are used?
 - Are regions of Czechia, Poland and Sweden comparable?
 - Clusters? Outliers?
- Design similarity measure for the COVID19 deaths data.
 - Use the metric to make regional comparison.
 - Clusters? Outliers?
 - Explain the observations

Administrative divisions

Administrative divisions

Data: Czechia

```
import covid19czechia as CZ
x = CZ.covid_deaths()
```

Listing 1: covid19czechia usage example

- https://onemocneni-aktualne.mzcr.cz/
- Death cases with date, sex, age, region (LAU-1)
- CSV format
- Python package covid19czechia

Data: Sweden

```
import covid19sweden as SE
x = SE.covid_deaths()
```

Listing 2: covid19sweden usage example

- https://scb.se/om-scb/nyheter-ochpressmeddelanden/overdodligheten-fortsatter-att-sjunka-eftertoppen-i-april/
- Weekly counts by region (NUTS-3)
- XLSX format
- Python package <u>covid19sweden</u>

$$w_i \sim \text{Multinomial}(n = w, \pi_i = \frac{1}{7}), i = 1, \dots, 7$$
 (9)

Data: Poland

```
import covid19poland as PL
x = PL.covid_deaths()
```

Listing 3: covid19poland usage example

- https://twitter.com/MZ GOV PL
 - RegEx parsing the tweets
 - Data between 2020-03-12 and 2020-10-09 = by region, gender, age
 - Data between 2020-10-10 and 2020-11-23 = overall country counts
- https://www.gov.pl/web/koronawirus/pliki-archiwalne-wojewodztwa
 - Data after 2020-11-24 = overall regional counts
 - CSV
- Python package <u>covid19poland</u>

Age distribution

Region statistics

- Population, area
- Population density

Region statistics

Figure 7. Summary of the regional divisions.

Statistics		Countries		
		Czechia	Sweden	Poland
	N	14	21	16
Population	μ	753845	491790	2402327
	σ	343842	587474	1266901
Area	μ	5634	19394	19542
	σ	2759	22605	6836
Density	μ	297	51	129
	σ	651	78	76

Figure 12. IQR outliers.

Country	Outliers				
Country	Population	Area	Density		
Sweden		SE322, SE331, SE332	SE110		
Poland	PL9, PL22		PL22		
Czechia			CZ010		

Regional statistics

$$H_0: \operatorname{Data} \sim t(\cdot)$$
 $H_A: \operatorname{Data} \not\sim t(\cdot)$ (7)

Figure 8. P-values for Kolmogorov-Smirnov test (eq. 7).

Country	Attributes			
Country	Population	Area	Density	
Czechia	0.141	0.001	0.097	
Sweden	0.116	0.009	0.083	
Poland	0.001	0.001	0.129	

$$H_0: \mu_1 = \mu_2$$

 $H_A: \mu_1 \neq \mu_2$ (6)

Figure 9. P-values for t-test test (eq. 6).

Country		Attributes		
		Population	Area	Density
Sweden	Poland	$1.82 \cdot 10^{-5}$	0.98	$4.2 \cdot 10^{-3}$
Sweden	Czechia	0.143	0.031	0.094
Poland	Czechia	$1.01 \cdot 10^{-4}$	$3 \cdot 10^{-7}$	0.314

Regional comparison

- Hypothesis: Close regions might form outbreak clusters.
- What are close regions?
 - Close by distance

$$kd(x_1, x_2) = \exp\left(-\frac{d_{GC}(x_1, x_2)^2}{2h^2}\right)$$
 (1)

Close by number of common neighbors

$$d(x,y) = 1 - \frac{\left| neighbors(x) \cap neighbors(y) \right|}{\left| neighbors(x) \cup neighbors(y) \right|}$$
 (2)

Both

$$d(x,y) = \sqrt{kd(\overline{x},\overline{y}) \cdot d_{adj}(x,y)}$$
 (3)

Regional comparison: location

- Östergötland, Jonköping, Kalmar, Blekinge, Kronoberg, Skåne, Halland (Southern Sweden)
- Örebro, Södermanland, Stockholm, Uppsala,
 Västmanland (Stockholm)
- Jämtland, Västernorrland, Västerbotten, Norrbotten (Northern Sweden)
- Prague, Central Bohemian, Liberec, Hradec Králové, Dolnoślaskie (*Bohemia*)
- Dolnoślaskie, Lubuskie, Wielkopolskie, Zachodniopomorskie (Western Poland)
- Łódzkie, Mazowieckie, Podlaskie (Northern Poland)
- Podkarpackie, Świetokrzyskie, Ślaskie (Eastern Poland)
- Ślaskie, Opolskie, Moravian-Silesian, Zlín, Olomouc (Silesia)
- Pardubice, South Moravian, Vysočina (Moravia + Bohemia)
- Plzeň, Ústí nad Labem, Karlovy Vary (Bohemia)

Czekanowski diagram

Czekanowski diagram

Listing 4: Genetic algorithm

$$U_m = \frac{2}{n^2} \sum_{j=1}^{n-1} \sum_{i=j+1}^n \frac{(i-j)^2}{W_{ij} + 1}$$
 (5)

Smoothing

Dynamic Time Warping

Epidemic comparison

- Method
 - Dynamic Time Warping (DTW)
 - RBF kernel
 - Czekanowski diagram

```
# distance matrix (metric dtw)
D = _covid.dtw_distance(data = data)
# rbf kernel
D = _czekanowski.distance_rbf(D)
# column permutation
P = _czekanowski.plot(D, cols = columns)

# Czekanowski diagram
import matplotlib.pyplot as plt
plt.scatter(P.x, P.y, s=P.Distance); plt.show()
```

Listing 5: Czekanowski DTW method

Results

- Central Bohemian, South Bohemian, Hradec Králové, Liberec, South Moravian, Zachodniopomorskie, Pomorskie, Kujawsko-Pomorskie
- Warmińsko-Mazurskie, Zlín, Lubelskie
- Ústí nad Labem, Świetokrzyskie, Lubuskie, Plzeň
- Podlaskie, Podkarpackie
- Mazowieckie, Opolskie, Dolnoślaskie
- Uppsala, Dalarna, Gävleborg, Västmanland, Halland
- Skåne, Blekinge, Kalmar, Karlovy Vary, Jämtland, Gotland, Prague

Results

Results

Conclusions

- Method yields reasonable results.
- Parameter values (kernel width) are crucial.
- Close regions sometimes do form infection clusters.

Weekday-independent deaths

$$H_0: \mu_i = \frac{1}{7}$$
 $H_A: \mu_i \neq \frac{1}{7}$
(10)

Figure 21. P-values for equal ratio t-test (eq. 10).

Day	Country			
	Czechia	Poland	Sweden	
Monday	0.581	0.001	0.429	
Tuesday	0.496	0.06	0.088	
Wednesday	0.784	0.112	0.731	
Thursday	0.375	0.181	0.924	
Friday	0.298	0.764	0.507	
Saturday	0.112	0.737	0.394	
Sunday	0.294	0.044	0.947	

Thank you for attention!

Děkuji za pozornost! Dziękuję za uwagę!