ILLUSTRATIVE EXAMPLES

EXAMPLE-1 Let $t: R^2 \to R^2$ be a linear transformation for which t(1,2) = (2,3) and t(0,1) = (1,4). Find a formula for t, find t(x,y).

SOLUTION We know that $B = \{(a_1, b_1), (a_2, b_2)\}$ forms a basis of R^2 iff $a_1b_2 \neq a_2b_1$. Clearly, $v_1 = (1, 2), v_2 = (0, 1)$ satisfy this relation. So, $\{v_1, v_2\}$ is a basis of R^2 .

Let v = (x,y) be an arbitrary vector in \mathbb{R}^2 . Then there exist unique scalars $a,b \in \mathbb{R}$ such that

$$v = av_1 + bv_2$$

$$\Rightarrow (x,y) = a(1,2) + b(0,1)$$

$$\Rightarrow (x,y) = (a,2a+b)$$

$$\Rightarrow a = x, b = y - 2x$$

As $t: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation.

Hence, $t: \mathbb{R}^2 \to \mathbb{R}^2$ is given by t(x,y) = (y, -5x + 4y) for all $(x,y) \in \mathbb{R}^2$.

EXAMPLE-2 Let $t: R^2 \to R^2$ be a linear transformation such that t(1,1) = (1,3), t(-1,1) = (3,1). Find a complete formula for t.

SOLUTION Clearly, $B = \{(1,1), (-1,1)\}$ forms a basis for R^2 . Let $(a,b) \in R^2$, then there exist scalars $\lambda, \mu \in R$ such that

$$(a,b) = \lambda(1,1) + \mu(-1,1)$$

$$(a,b) = (\lambda - \mu, \ \lambda + \mu)$$

$$\Rightarrow \lambda - \mu = a \text{ and } \lambda + \mu = b \Rightarrow \lambda = \frac{a+b}{2} \text{ and } \mu = \frac{b-a}{2}$$

gince $t: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation.

$$(a,b) = \lambda(1,1) + \mu(-1,1)$$

$$t(a,b) = \lambda t(1,1) + \mu t(-1,1)$$

$$\Rightarrow t(a,b) = \lambda(1,3) + \mu(3,1)$$

$$\Rightarrow t(a,b) = (\lambda + 3\mu, 3\lambda + \mu)$$

$$\Rightarrow t(a,b) = (2b-a, a+2b)$$

Hence, $t: \mathbb{R}^2 \to \mathbb{R}^2$ is given by t(a, b) = (2b - a, a + 2b) for all $(a, b) \in \mathbb{R}^2$.

EXAMPLE-3 Let $B = \{(-1,0,1), (0,1,-1), (1,-1,1)\}$ be a basis of $R^3(R)$ and $t: R^3 \to R^3$ be a linear transformation such that t(-1,0,1) = (1,0,0), t(0,1,-1) = (0,1,0), t(1,-1,1) = (0,0,1). Find formula for t(x,y,z) and use it to compute t(1,-2,3).

SOLUTION Clearly, B forms a basis for R^3 . Let $(x,y,z) \in R^3$. Then there exist scalars $a,b,c \in R$ such that

$$(x,y,z) = a(-1,0,1) + b(0,1,-1) + c(1,-1,1)$$

$$(x,y,z) = (-a+c, b-c, a-b+c)$$

$$-a+c=x, b-c=y, a-b+c=z$$

$$\Rightarrow$$
 $a=y+z, b=x+2y+z, c=x+y+z$

Since $t: \mathbb{R}^3 \to \mathbb{R}^3$ is a linear transformation. Therefore,

$$(x,y,z) = a(-1,0,1) + b(0,1,-1) + c(1,-1,1)$$

$$\Rightarrow t(x,y,z) = a t(-1,0,1) + b t(0,1,-1) + c t(1,-1,1)$$

$$\Rightarrow t(x,y,z) = a(1,0,0) + b(0,1,0) + c(0,0,1)$$

$$\Rightarrow t(x,y,z) = (a,b,c)$$

$$t(x,y,z) = (y+z, x+2y+z, x+y+z)$$

$$t(1,-2,3) = (1,0,2)$$

EXAMPLE-4 The range of a linear transformation $t: \mathbb{R}^3 \to \mathbb{R}^3$ has the subspace spanned by the vectors $v_1 = (1,0,-1)$ and $v_2 = (1,2,2)$. Find the transformation explicitly.

SOLUTION We know that $B = \left\{ e_1^{(3)} = (1,0,0), \ e_2^{(3)} = (0,1,0), \ e_3^{(3)} = (0,0,1) \right\}$ is a basis of $R^3(R)$. Also, $v_1 = (1,0,-1)$ and $v_2 = (1,2,2)$ are two vectors spanning the image of t. Therefore, $v_1 = (1,0,-1), v_2 = (1,2,2)$ and $v_3 = (0,0,0)$ also span $I_m(t)$. By Theorem 4, there exists a unique linear transformation $t: R^3 \to R^3$ such that

 $t(e_1^{(3)}) = v_1$, $t(e_2^{(3)}) = v_2$ and $t(e_3^{(3)}) = v_3$ Let v = (a, b, c) be an arbitrary vector in R^3 whose basis is B.

Clearly,

$$v = a e_1^{(3)} + b e_2^{(3)} + c e_3^{(3)}$$

$$\Rightarrow t(v) = a t \left(e_1^{(3)}\right) + b t \left(e_2^{(3)}\right) + c t \left(e_3^{(3)}\right)$$

$$\Rightarrow t(v) = av_1 + bv_2 + cv_3$$

$$\Rightarrow t(a, b, c) = a(1, 0, -1) + b(1, 2, 2) + c(0, 0, 0)$$

$$\Rightarrow t(a, b, c) = (a + b, 2b, -a + 2b)$$

REMARK. In the above example, we may choose v_3 as a linear combination of v_1 and v_2 accordingly t will also change. So, t is not unique.

EXAMPLE-5 Find a linear transformation $t: \mathbb{R}^3 \to \mathbb{R}^4$ whose image is spanned by the vectors $v_1 = (1, 2, 0, -4)$ and $v_2 = (2, 0, -1, -3)$.

SOLUTION We know that $B = \left\{e_1^{(3)}, e_2^{(3)}, e_3^{(3)}\right\}$ is the standard basis of $R^3(R)$. It is given that $v_1 = (1, 2, 0, -4), v_2 = (2, 0, -1, -3)$ span $I_m(t)$. Therefore, $v_1 = (1, 2, 0, -4), v_2 = (2, 0, -1, -3)$ and $v_3 = (0, 0, 0, 0)$ also span $I_m(t)$. By Theorem 4, there exists a unique linear transformation $t: R^3 \to R^4$ such that

$$t(e_1^{(3)}) = v_1, t(e_2^{(3)}) = v_2 \text{ and } t(e_3^{(3)}) = v_3$$

Let v = (a, b, c) be an arbitrary vector in \mathbb{R}^3 whose basis is \mathbb{B} . Clearly,

$$v = a e_1^{(3)} + b e_2^{(3)} + c e_3^{(3)}$$

$$\Rightarrow t(v) = a t \left(e_1^{(3)}\right) + b t \left(e_2^{(3)}\right) + c t \left(e_3^{(3)}\right)$$

$$\Rightarrow t(v) = av_1 + bv_2 + cv_3$$

$$\Rightarrow t(a,b,c) = a(1,2,0,-4) + b(2,0,-1,-3) + c(0,0,0,0)$$

$$\Rightarrow t(a,b,c) = (a+2b, 2a-b, -4a-3b)$$

REMARK. In the above example t is not unique. Instead of taking v_3 as the null vector in v_4 we may take $v_3 = v_1$ or, $v_3 = v_2$ or, v_3 as any linear combination of v_1 and v_2 . Accordingly linear transformation t changes.

EXERCISE 3.2

1. Let $t: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation given by

$$T(x, y, z) = (x+y, y+z).$$

Find a basis and the dimension of (i) the image of t (ii) the kernel of t.

- 2. Let $t: R^3 \to R^2$ be the linear transformation such that $t(1,2,3) = (1,0,0), \ t(1,2,0) = (0,1,0), \ t(1,-1,0) = (0,1,0)$. Find t(a,b,c) for any $(a,b,c) \in R^3$.
- 3. Let F be a field and $t: F^2 \to F^2$ be a linear transformation such that t(1,0) = (a,b) and t(0,1) = (c,d). Find t(x,y) for any $(x,y) \in F^2$.
- 4. Describe explicitly the linear transformation $t: \mathbb{R}^2 \to \mathbb{R}^2$ such that t(2,3) = (4,5) and t(1,0) = (0,0).
- 5. Find the linear transformation $t: R^2 \to R^2$ such that t(1, 0) = (1, 1), t(0, 1) = (-1, 2). Prove that t maps the square with vertices (0,0), (1,0), (1,1) and (0,1) into a parallelogram.

ANSWERS

- 1. (i) $\{(1,0), (0,1)\}, \dim I_m(t) = 2$ (ii) $\{(-1, 1, -1)\}, \dim Ker(t) = 1$
 - 2. $t(a,b,c) = \left(\frac{c}{3}, \frac{3a-c}{3}, 0\right)$ 3. t(x,y) = (xy+yc, xb+yd)
 - 4. $t(x, y) = \left(\frac{4y}{3}, \frac{5y}{3}\right)$