Six-dimensional sphere packing and linear programming

joint with Maria Dostert and Maryna Viazovska

Matthew de Courcy-Ireland Stockholm University

International seminar on automorphic forms
January 30, 2024

Plan

- Intro (sphere packing, linear programming bound)
- Main result: "a bound on the bound"
 the linear programming bound is strictly higher
 than the density of any packing in dimension 6
- Even though the lattices E_6 and E_8 are closely related, the method that proves what is the best packing in dimension 8 fails in dimension 6
- We construct a "fake packing" that tricks the method, using modular forms

Why 1, 2, 8, 24?

- There is a modular form (weight 3, two quadratic characters)

$$g \in M_3(\Gamma_0(48), \chi_3) \oplus M_3(\Gamma_0(48), \chi_4)$$

with Fourier expansion and transform $\widetilde{g}(z) = (-iz)^{-k} N^{-k/2} g\left(\frac{-1}{Nz}\right)$

$$g(z) = 1 + \frac{a_7e(7z)}{n \ge 8} + \sum_{n \ge 8} a_n e(nz), \quad \widetilde{g}(z) = \sum_{n=0}^{\infty} b_n e(nz)$$

all coefficients $a_n, b_n \ge 0$

$$b_0 > 0.6168$$

Moreover

$$n \equiv 1 \mod 4 \implies a_n = 0$$

Sphere packing

Disjoint equal-sized balls in \mathbb{R}^D

$$\mathcal{P}=\bigcup_{z\in\mathcal{S}}B_r(z)$$

$$|z-z'| \ge 2r$$
 for $z \ne z'$ in S

Density a.k.a. packing fraction

$$\Delta(\mathcal{P}) = \limsup_{R \to \infty} \frac{\operatorname{vol}(\mathcal{P} \cap B_R)}{\operatorname{vol}(B_R)}$$

$$\Delta_D = \sup\{\Delta(\mathcal{P}) \; ; \; \mathcal{P} \; \text{is a packing in } \mathbb{R}^D\}$$

$$\Delta_D$$
 known for

$$D = 1, 2, 3, 8, 24$$

Linear programming bound

- Cohn–Elkies (2003): suppose a function $f: \mathbb{R}^D \to \mathbb{R}$ and r > 0 satisfy

$$f(x) \le 0 \text{ for } |x| > r$$

 $\widehat{f} > 0$

Then all packings in \mathbb{R}^D have density at most

$$\operatorname{\mathsf{vol}}(B_{r/2})f(0) \div \widehat{f}(0)$$

rotation+scaling: WLOG f radial we may fix two of r, f(0), $\widehat{f}(0)$

There are such *f*

- Recall

$$\widehat{f} \geq 0, \ f(x) \leq 0 \ \text{for} \ |x| > r \implies \text{density} \ \leq \text{vol}(B_{r/2})f(0) \div \widehat{f}(0)$$

There are such f in any dimension!

$$f=\mathbb{1}*\mathbb{1}, \qquad \widehat{f}=\widehat{\mathbb{1}}^2\geq 0, \qquad \mathbb{1}(x)=egin{cases} 1 & ext{if } |x|<1 \ 0 & ext{if } |x|>1 \end{cases}$$

or

$$f(x) = P(|x|^2) \exp(-\pi |x|^2)$$

finitely many inequalities on polynomial $P \implies \checkmark$

Sharp cases

- Cohn-Elkies (2003): suppose $f(x) \le 0$ for |x| > r and $\widehat{f} \ge 0$. Then all sphere packings in \mathbb{R}^D have density at most $\operatorname{vol}(B_{r/2})f(0) \div \widehat{f}(0)$

```
D = 1 f = 1 * 1 gives a sharp bound
```

- D = 8 Viazovska (2017) constructs f matching the density of the E_8 lattice
- D = 24 Cohn–Kumar–Miller–Radchenko–Viazovska (2017) similar construction for the Leech lattice
- D = 2 the bound appears to be sharp but f remains elusive
- CKMRV (2021) same for energy when D = 8,24 ("universal optimality")

Proof sketch: density $\lesssim f(0) \div \widehat{f}(0)$

- For simplicity: assume centers of spheres form a lattice Λ $(x, y \in \Lambda) \implies x y \in \Lambda$
- Rescale: $|x| \ge r$ for $0 \ne x \in \Lambda$ spheres have radius r/2
- Poisson summation

$$f(0) \ge \sum_{x \in \Lambda} f(x) = \rho \sum_{\xi \in \Lambda^*} \widehat{f}(\xi) \ge \rho \widehat{f}(0)$$

- $1/\rho$ = volume of fundamental domain One ball $B_{r/2}$ per domain, so

$$\mathsf{density} = \mathsf{vol}(B_{r/2})\rho \leq \mathsf{vol}(B_{r/2})f(0) \div \widehat{f}(0)$$

Duality

Dual program: a bound on the bound

- Suppose function f and measure μ satisfy

$$egin{aligned} f(x) & \leq 0 \quad ext{for} \quad |x| > r & \widehat{f} \geq 0 \ \mu & = \delta_0 +
u \
u & \geq 0 \ ext{supported in} \ |x| > r & \widehat{\mu} \geq c \delta_0 \end{aligned}$$

Then

$$f(0) \ge \langle \mu, f \rangle = \langle \widehat{\mu}, \widehat{f} \rangle \ge c\widehat{f}(0)$$

The LP bound is at least $c \cdot \text{vol}(B_{r/2})$

Recall

$$\widehat{f} \geq 0, \ f(x) \leq 0 \ \text{for} \ |x| > r \implies \text{density} \ \leq \text{vol}(B_{r/2})f(0) \div \widehat{f}(0)$$

Cohn (2002), Torquato–Stillinger (2006)

Zeros and spikes

- Recall proof:

$$f(0) \ge \langle \mu, f \rangle = \langle \widehat{\mu}, \widehat{f} \rangle \ge c\widehat{f}(0)$$

- To have equality

f should vanish on support of μ , \widehat{f} on support of $\widehat{\mu}$

(except 0)

 \implies want spikes at zeros of f and \hat{f}

Every fourth spike missing in our μ

 $|x|^2$ on horizontal axis

- First two zeros of both f and \hat{f} align well with supports of μ , $\hat{\mu}$
- Thanks to de Laat, Leijenhorst!

 Julia package to compute f, \hat{f} as polynomials times $e^{-\pi |x|^2}$

D	Record density	SDP bound	Dual bound	LP upper bound	
1	1			1	
2	0.906899			0.906899?	
3	0.740480	0.770271	0.770657	0.779747	↑
4	0.616850	0.636108	0.637303	0.647705	Rupert Li
5	0.465257	0.512646	0.517236	0.524981	\downarrow
6	0.372947	0.410304	0.410948	0.417674	dci-
7	0.295297	0.321148	0.301191	0.327456	Dostert-
8	0.253669			0.253669	Viazovska
9	0.145774	0.191121	0.164925	0.194556	Cohn,
10	0.099615	0.143411	0.106256	0.147954	de Laat,
11	0.066238	0.106726	0.078504	0.111691	Salmon
12	0.049454	0.079712	0.083381	0.083776	\leftarrow
13	0.032014	0.060165	0.032522	0.062482	Cohn
14	0.021624	0.045062		0.046365	and
15	0.016857	0.033757		0.034249	Triantafillou
16	0.014708	0.023995	0.025011	0.025195	\leftarrow
					13/39

Construction using modular forms

Cohn-Triantafillou (2021)

$$\mu = \sum_n a_n \delta_{\sqrt{n}}$$
 $a_n = ext{coefficients of a modular form}$ $g(z) = \sum_n a_n \exp(2\pi i n z)$

- Weight k = D/2 for dimension D. Simplest if D is a multiple of 4. Fix level $N \implies$ finite-dimensional space of g, explicit transforms $\widehat{\mu}$
- $-g=\Theta_{\Lambda}$ theta series recovers density of lattice packing
- Eisenstein series versus cuspforms (Deligne bound)

$$a_n = a_{n, ext{eis}} + a_{n, ext{cusp}}$$
 $a_{n, ext{eis}} pprox n^{k-1}$ $|a_{n, ext{cusp}}| < n^{(k-1)/2 + o(1)}$

 $g: \mathbb{H} \to \mathbb{C},$ k = D/2 integer or half-integer, N > 0

$$\widetilde{g}(z) = (-iz)^{-k} \mathsf{N}^{-k/2} g\left(rac{-1}{\mathsf{N} z}
ight)$$

Suppose g and \tilde{g} are both periodic

$$g(z) = \sum_{n=0}^{\infty} a_n e^{2\pi i n z}$$
 $\widetilde{g}(z) = \sum_{n=0}^{\infty} b_n e^{2\pi i n z}$

Then

$$\sum_{n=0}^{\infty} a_n \delta_{\sqrt{n}} \quad \text{and} \quad (2/\sqrt{N})^k \sum_{n=0}^{\infty} b_n \delta_{2\sqrt{n/N}}$$

are Fourier transforms of each other as distributions on \mathbb{R}^D , where δ_r denotes a spherical delta at radius r.

Level N, weight k, character χ

- Recall

$$\widetilde{g}(z) = (-iz)^{-k} N^{-k/2} g\left(rac{-1}{Nz}
ight)$$

$$g\left(rac{az+b}{cz+d}
ight)=\chi(d)(cz+d)^kg(z)$$

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ N & 1 \end{pmatrix} \implies g, \widetilde{g} \text{ both periodic}$$

- Restrict to modular forms for $\Gamma_0(N)$

$$\mu = \sum_{n=0}^{\infty} a_n \delta_{\sqrt{n}} = \delta_0 + a_T \delta_{\sqrt{T}} + \dots$$

$$\widehat{\mu} = (2/\sqrt{N})^k \sum_{n=0}^{\infty} b_n \delta_{2\sqrt{n/N}}$$

- k = D/2 for dimension D
- $N o \infty$ increases space of candidates
- If both $a_n, b_n \ge 0$ for all n, then the LP bound is at least

$$c \operatorname{vol}(B_{r/2}) \approx b_0 N^{-k/2} T^k$$

$$N = 48$$
, $T = 7$, $b_0 \approx 0.6168$

There is a modular form (weight 3, two quadratic characters)

$$g \in M_3(\Gamma_0(48), \chi_3) \oplus M_3(\Gamma_0(48), \chi_4)$$

with Fourier expansion and transform

$$g(z) = 1 + a_7 e(7z) + \sum_{n \geq 8} a_n e(nz), \quad \widetilde{g}(z) = \sum_{n=0}^{\infty} b_n e(nz)$$

all coefficients $a_n, b_n \ge 0$ (quadratic irrationals)

$$b_0 > 0.6168$$

Moreover

$$n \equiv 1 \mod 4 \implies a_n = 0$$

Optimization space

e + c dimensions of Eisenstein + cuspidal subspaces

Scaling structure of the basis

$$f_2(z) = f_1(2z), \quad f_7(z) = f_6(2z), \quad f_{24}(z) = f_{23}(2z), \quad f_{30}(z) = f_{29}(2z)$$

$$f_{25}(z) = f_{23}(3z), \quad f_{31}(z) = f_{29}(3z)$$

$$f_3(z) = f_1(4z), \quad f_8(z) = f_6(4z), \quad f_{26}(z) = f_{24}(4z), \quad f_{32}(z) = f_{29}(4z)$$

$$f_{27}(z) = f_{23}(6z), \quad f_{33}(z) = f_{29}(6z)$$

$$f_4(z) = f_1(8z), \quad f_9(z) = f_6(8z),$$

$$f_{28}(z) = f_{23}(12z), \quad f_{34}(z) = f_{29}(12z)$$

$$f_5(z) = f_1(16z) \quad f_{10}(z) = f_6(16z)$$

$$f_{14}(z) = f_{13}(2z) \quad f_{15}(z) = f_{13}(4z)$$

$$f_{17}(z) = f_{16}(2z)$$

$$f_{19}(z) = f_{18}(2z)$$

$$f_{36}(z) = f_{35}(2z) \quad f_{37}(z) = f_{35}(4z)$$

$$f_{39}(z) = f_{38}(2z) \quad f_{40}(z) = f_{38}(4z) \qquad f_{42}(z) = f_{41}(3z)$$

21/39

Quadratic twists

$$\sum_{n} c_{n}e^{2\pi i n z}$$
 \Longrightarrow $\sum_{n} c_{n} \tau(n)e^{2\pi i n z}$
Level N $\operatorname{lcm}(N, N^{*}t, t^{2})$
character $\chi \mod N^{*}$ $\chi \tau^{2}$ $(= \chi \text{ if } \tau^{2} = 1)$
twist by $\tau \mod t$

- $N=48=4^2\cdot 3$ allows twisting by $au=\chi_4$ \Longrightarrow $a_n=0$ for $n\equiv 1 \mod 4$
- Two Eisensteins $f_{11}=f_1\otimes\chi_4,\,f_{12}=f_6\otimes\chi_4$
- Cuspforms

$$\begin{pmatrix} f_{20} \\ f_{21} \\ f_{22} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 3 & 0 & -1 \\ 0 & 2 & -2 \end{pmatrix} \begin{pmatrix} f_{13} \otimes \chi_4 \\ f_{16} \otimes \chi_4 \\ f_{18} \otimes \chi_4 \end{pmatrix}$$

44 equations, 44 unknowns

 $x_1, \ldots, x_{44} \in \mathbb{Q}(\sqrt{3})$ are the unique solution to a system of equations:

1 equation
$$a_0 = 1$$
 $x_{10} = x_{41} = x_{43} = 0$
11 equations $a_n = 0$ for $n \equiv 1 \mod 4$ $x_1 + x_{11} = 0$
20 equations $a_n = 0$ for $n \in \{2, 3, 4, 6, 8, 10, 11, 12, 22, 26, 32, 38, 60, 64, 88, 90, 92, 106, 164, 1932\} $x_{35} - x_{38} = 0$
12 equations $b_n = 0$ for $n \in \{1, 2, 3, 4, 7, 8, 9, 10, 13, 14, 36, 82\}$ $x_{13} + x_{20} + 3x_{21} = 0$
 $x_{18} - x_{21} - 2x_{22} = 0$$

Inequalities for large *n*

- Goal: $a_n, b_n \ge 0$ for all n
- Eisenstein series versus cuspforms

$$a_n = a_{n,\mathrm{eis}} + a_{n,\mathrm{cusp}}$$

- $a_{n,\mathrm{eis}} \geq \varepsilon n^{k-1}$
- Deligne bound

$$|a_{n,\text{cusp}}| < n^{(k-1)/2 + o(1)}$$

- k=3 for $D=6 \implies$ compare $\varepsilon n^2 \gg n^{1+o(1)}$
- $a_n \ge 0$ once n is large enough that $n^{1-o(1)} > 1/\varepsilon$

Vanishing on a progression

- $a_{n,\text{eis}} \ge \varepsilon n^{k-1}$ fails for $n \equiv 1 \mod 4$

$$a_n = 0$$
 for $n \equiv 1 \mod 4$

- All four parts vanish (Eisenstein and cuspidal for both characters)
- e.g. Eisenstein part for χ_3 $\chi_1 = -\chi_{11} \implies f_1$ and $f_{11} = f_1 \otimes \chi_4$ cancel
- How to show $\overline{a_{n,\text{cusp}}} = 0$?

Cuspidal part

Hecke operators are skew self-adjoint on forms with a character

$$\langle T_n f, g \rangle = \chi(n) \langle f, T_n g \rangle$$

If $T_n h = \lambda(n) h$, then λ is

$$\begin{cases} \text{real} & \text{if } \chi(n) = 1 \\ \text{pure imaginary} & \text{if } \chi(n) = -1 \end{cases}$$

- Change to a Hecke basis, e.g. there is h for χ_4 so that (coefficient-wise)

$$f_{35} = 2 \operatorname{Re}(h)$$

 $f_{38} = -f_{35} - 2\sqrt{3} \operatorname{Im}(h)$

 $x_{35} = x_{38} \implies$ coefficients of q^n cancel when $n \equiv 1 \mod 4$

$n=2^a\cdot 3^b\cdot n_0$

 $a, b \implies \text{ which scalings appear?} f(2z), f(3z), \text{ etc.}$

 $n_0 \mod 4 \qquad \implies \quad \text{effect of twists} \otimes \chi_4 \ a_{n, \text{eis}} = 0 \text{ for } n \equiv 1 \mod 4$

 $n_0 \mod 3, 4 \implies \text{real/imaginary Hecke eigenvalues}$ $a_{n,\text{cusp}} = 0 \text{ for } n \equiv 1 \mod 4$

Factors of $n_0 \implies \text{size of Eisenstein part}$

Eisenstein part

- Given character χ and weight k

$$\sigma^+(n) = \sum_{d \mid n} d^{k-1} \chi \left(\frac{n}{d} \right) = n^{k-1} + \dots$$
 $\sigma^-(n) = \sum_{d \mid n} d^{k-1} \chi(d) = \chi(n) n^{k-1} + \dots$
 $= \chi(n) \sigma^+(n) \quad \text{(if } n, \chi \text{ share no factors)}$

- k=3 for us; choose two quadratic characters χ mod 3 or 4
- Linear combination of $\sigma^{\pm}(\textit{n/s})$ for divisors \emph{s} , different χ

$$\mathcal{A}_{n,\mathrm{eis}} = X_3 \sigma_3^+(n_0) + X_4 \sigma_4^+(n_0) = \sigma_3^+(n_0) (X_3 + X_4 \sigma_4^+ \div \sigma_3^+)$$

Eisenstein part, even $n = 2^a \cdot 3^b \cdot n_0$

$$\sigma^{-}(2^a 3^b n_0) = \sigma(2^a) \sigma(3^b) \sigma(n_0), \qquad \qquad \sigma^{-}(n_0) = \chi(n_0) \sigma^{+}(n_0)$$

- Collect terms:
$$a_{n,\mathrm{eis}} = X_3 \sigma_3^+(n_0) + X_4 \sigma_4^+(n_0) = \sigma_3^+(n_0)(X_3 + X_4 \sigma_4^+ \div \sigma_3^+)$$

$$a_{n,\text{eis}} = \sigma_3^+(n_0)(X_3 + X_4\sigma_4^+(n_0) \div \sigma_3^+(n_0)) \ge \varepsilon n^2 \leftarrow \text{to show}$$

$$\sigma^+(n) = \sum d^2 \chi(n/d) \implies \sigma^+(p) = p^2 \pm 1$$

For n_0 not divisible by 2 or 3.

$$0.94999 < \prod_{\substack{p \equiv 7 \bmod 12}} \frac{p^2 - 1}{p^2 + 1} \le \frac{\sigma_4^+(n_0)}{\sigma_3^+(n_0)} \le \prod_{\substack{p \equiv 5 \bmod 12}} \frac{p^2 + 1}{p^2 - 1} < 1.09696$$

$$0.9429 < \prod_{\substack{p \equiv 2 \bmod 3 \\ p \ne 2}} (1 - p^{-2}) \le \frac{\sigma_3^+(n_0)}{n_0^2} \le \prod_{\substack{p \equiv 1 \bmod 3}} (1 + p^{-2}) < 1.0336$$

$$0.9631 < \prod_{\substack{p \equiv 3 \bmod 4 \\ p \ne 3}} (1 - p^{-2}) \le \frac{\sigma_4^+(n_0)}{n_0^2} \le \prod_{\substack{p \equiv 1 \bmod 4}} (1 + p^{-2}) < 1.0545$$

Computer assistance (GP/Pari)

-
$$a_{n, \text{eis}} \ge \varepsilon n^2$$

 $\varepsilon = 8.7536 \times 10^{-6}$

- $egin{aligned} -|a_{n, ext{cusp}}| &\leq C \cdot n\sigma_0(n) \ C &= 21.6161 \ \sigma_0(n) &= \sigma_0(n) \end{aligned}$ number of divisors
- Nicolas-Robin (1983), Wigert

$$\sigma_0(n) \le \exp(1.07 \log n \div \log \log n)$$

The bounds show $a_n \geq 0$ for $n > 5347177639 \approx 5 \times 10^9$

- Check remaining cases!
- No need unless $a_{n,eis} Cn\sigma_0(n) < 0$ Most such n have many factors, making it easier to compute $a_{n,excomp}$

Thanks! Summary

- Why does a method that works perfectly in dimension 8 not work in other dimensions? (fake packings)
- How to interpolate mixed data on f and \widehat{f} ? (modular forms can be useful)

Open problems:

- Prove LP bound is sharp for D = 2
- Estimate the asymptotics as $D \to \infty$
- Prove there are only finitely many sharp cases (D = 1, 2, 8, 24)

bonus slides

Eisenstein part

 $a_{n,\mathrm{eis}}$

Cuspidal part

