

DEPARTMENT OF CHEMICAL & PROCESS ENGINEERING

Degree of BEng/MEng in Chemical Engineering

CP203/CP211 Thermodynamics and Chemical Principles

Date: Friday 7th May 2021 Time: 14:00-17:00

Duration: 3 hours

Answer All Questions

The paper is divided into TWO sections

Answer each section in a separate booklet

There are 100 marks available in each section of the paper

Calculators must not be used to store text and/or formulae nor be capable of communication. Invigilators may require calculators to be re-set.

Remember to clearly state any assumptions you make when solving each question.

Equation sheets and periodic table are provided at the end of the paper.

Section A: Answer All Questions

QA1. Methane gas is continually fed into a steady-state isothermal compressor at an inlet absolute pressure of 500 bar and temperature of 200 K. The gas exits the compressor at an absolute pressure of 750 bar. The compressibility factor of methane in this range of conditions obeys the following equation:

$$Z = a + bP$$

with the constants taking the values a = 0.28 and b = 0.00208 bar⁻¹.

Calculate the final volume of the gas in cm³ and the molar work of compression in kJ/mol.

[16 marks]

QA2. Calculate the value of the Joule-Thomson coefficient for a gas that is described by the following equation of state:

$$P = \frac{RT}{v - b}$$

where *b* is a constant with the value 0.03 m³ mol⁻¹. The constant pressure heat capacity of the gas is $c_P = 21$ J mol⁻¹ K⁻¹.

[16 marks]

QA3. A thermodynamic cycle is composed of four steps: **i)** reversible isothermal expansion at 130 °C; **ii)** irreversible adiabatic expansion to a temperature of 20 °C; **iii)** reversible isothermal compression at 20 °C; **iv)** reversible adiabatic compression back to the initial state at 130 °C. The entropy change in the first step of the process is $\Delta s_1 = 18 \text{ J mol}^{-1} \text{ K}^{-1}$ and the entropy change in step **ii)** is $\Delta s_2 = 3 \text{ J mol}^{-1} \text{ K}^{-1}$.

Choose the correct sketch of the cyclic process on a temperature-entropy (TS) diagram (among 4 options).

Calculate the efficiency of the real heat engine, as well as the efficiency of a Carnot engine operating between the same two temperatures.

[20 marks]

PLEASE TURN OVER

QA4. A vapour mixture composed of 75% of heptane and 25% of octane (molar basis), at a temperature of 100 °C, is in equilibrium with a liquid mixture of the same components. The vapour phase can be assumed to be an ideal gas and the liquid phase can be assumed to form an ideal mixture. Making use of the data presented in **Table QA4**, calculate the pressure in bar and the mole fraction of heptane in the liquid phase.

[18 marks]

Table QA4: Physical data for pure heptane and octane.

Component	heptane	octane
Enthalpy of Vaporisation at 100 °C (kJ mol ⁻¹)	36	41
Boiling Temperature at 1 bar (°C)	98.5	125.7

QA5. An ideal gas, initially at 25 °C, is compressed adiabatically so that its final pressure is three times its initial pressure. The constant volume heat capacity of the gas is $c_V = 18.5 \text{ J mol}^{-1} \text{ K}^{-1}$.

Calculate the ratio of heat capacities, γ , and the final temperature of the gas in °C.

[12 marks]

QA6. An adiabatic turbine operates with an inlet stream of air at 6 bar and 400 K. The air leaves the turbine at 2 bar and 330 K. Over this range of conditions, you can assume that air behaves as an ideal gas, with a constant pressure heat capacity of $c_P = 30 \text{ J mol}^{-1} \text{ K}^{-1}$.

Calculate the entropy change during operation of the turbine in J mol⁻¹ K⁻¹.

Calculate the efficiency of the turbine relative to its isentropic mode of operation at the same inlet conditions and outlet pressure.

[18 marks]

Section B: Answer All Questions

- QB1. Given that the insertion of a tube (0.34 mm bore) into bulk water results in the rise of a column of water above the incident bulk liquid surface to a height of 6.1 mm, at 325 K, determine the surface tension of water at this temperature. [10 marks]
- **QB2.** Data for the surface tension of an uncharged surfactant, measured with increasing concentration at 25 °C, is analysed using the Gibbs equation, giving a gradient of -9.475 x 10⁻³ N m⁻¹, from a plot of γ against log(concentration).
 - i) Calculate Γ for the system studied.
 - **ii)** Calculate the area occupied by one molecule of the surfactant.
 - iii) Discuss what change would be expected in the area occupied per molecule if the surfactant were charged.

[15 marks]

QB3. An adsorption surface experiences 9.83 x 10²⁶ collisions per square metre per second from a pure diatomic gas at 0.35 atm and 323 K. Determine the gas present.

[10 marks]

QB4. Using the Antoine equation:

$$log P = A - \frac{B}{T + C}$$

where T is temperature in °C and P is pressure in Torr, and the data provided in **Table QB4**:

- i) Calculate the boiling points of phenol, hexane and benzene.
- **ii)** Explain the trend in boiling points for these three molecules.

Table QB4: Antoine constants and chemical structures of chemicals in QB4

Chemical	benzene	phenol	hexane
Chemical structure		ОН	H H H H H H H H H H H H H H H H H H H
Temperature range/°C	8 to 103	107 to 182	-29 to 92
Α	6.90565	7.1330	6.87601
В	1211.033	1516.79	1171.17
С	220.790	174.95	224.41

[14 marks]

PLEASE TURN OVER

- **QB5.** a) What assumptions are made in the derivation of the Langmuir equation? Use a diagram to illustrate your answer.
 - b) A material has a monolayer capacity of 12.30 mmol g⁻¹ for nitrogen adsorption at 77 K. Given that the area occupied by 1 molecule of nitrogen is 1.62 x 10⁻¹⁵ cm², what is the surface area of the material? Comment on the answer obtained in the context of your understanding of this parameter.

[16 marks]

- **QB6.** Define the term 'equilibrium vapour pressure' and discuss:
 - i) the molecular basis of this physical quantity
 - ii) the effect of temperature
 - iii) the effect of surface area.

[14 marks]

QB7. Using an appropriate sketch, explain the expected trend in the surface tension of benzene with increasing temperature.

[8 marks]

- **QB8.** Given the data in **Table QB8** for adsorption of ethanol on a mesoporous carbon at 28 °C, at which temperature the saturated vapour pressure for ethanol is 70.9 mbar, and that the molar heat of condensation for ethanol is 38.56 kJ mol⁻¹, determine:
 - i) the monolayer coverage
 - ii) the value of the C constant for the process
 - iii) the heat of adsorption

Note that you may use graph paper or software to plot your graphs.

Table QB8: Molar uptakes for adsorption of ethanol on mesoporous carbon

p/pº	p/n(pº-p) / g mmol ⁻¹
0.05	0.0077
0.15	0.0179
0.25	0.0284
0.35	0.0392

[13 marks]

Information:

 $g = 9.81 \text{ m s}^{-2}$

 $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

Avogadro's number = 6.023 x 10²³ molecule mol⁻¹

Boltzmann Constant = 1.38 x 10⁻²³ J K⁻¹ molecule⁻¹

1 atm = 101325 Pa

Thermodynamics Equation Sheet

All symbols have the same meaning as given in class materials.

First Law (general)

$$\Delta U = Q + W - \Delta \left(\frac{1}{2}mv^2\right) - \Delta (mgz)$$

Gibbs phase rule

$$F = 2 - \pi + N$$

Thermal expansion coefficient

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{P,m}$$

Isothermal compressibility

$$\beta = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_{T, R}$$

Heat capacities

$$C_{V} = \left(\frac{\partial U}{\partial T}\right)_{V} = T\left(\frac{\partial S}{\partial T}\right)_{V}$$

$$C_{P} = \left(\frac{\partial H}{\partial T}\right)_{P} = T\left(\frac{\partial S}{\partial T}\right)_{P}$$

$$C_{P} - C_{V} = T\left(\frac{\partial V}{\partial T}\right)_{P} \left(\frac{\partial P}{\partial T}\right)_{V}$$

Van der Waals equation of state

$$P = \frac{RT}{v - h} - \frac{a}{v^2}$$

Virial equation of state

$$Z = 1 + \frac{B}{V} + \frac{C}{V^2} + \frac{D}{V^3} + \dots$$

Thermodynamic potentials

$$H = U + PV$$

$$A = U - TS$$

$$G = H - TS$$

Fundamental thermodynamic relations

$$dU = TdS - PdV$$

$$dH = TdS + VdP$$

$$dA = -SdT - PdV$$

$$dG = -SdT + VdP$$

Maxwell equations

$$\left(\frac{\partial T}{\partial V}\right)_{S} = -\left(\frac{\partial P}{\partial S}\right)_{V}$$

$$\left(\frac{\partial T}{\partial P}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{P}$$

$$\left(\frac{\partial S}{\partial P}\right)_{T} = -\left(\frac{\partial V}{\partial T}\right)_{E}$$

$$\left(\frac{\partial S}{\partial V}\right)_{T} = \left(\frac{\partial P}{\partial T}\right)_{V}$$

Internal energy and enthalpy

$$\left(\frac{\partial U}{\partial V}\right)_{T} = T\left(\frac{\partial P}{\partial T}\right)_{V} - P$$

$$\left(\frac{\partial U}{\partial P}\right)_{T} = -T\left(\frac{\partial V}{\partial T}\right)_{P} - P\left(\frac{\partial V}{\partial P}\right)_{T}$$

$$\left(\frac{\partial H}{\partial V}\right)_{T} = T\left(\frac{\partial P}{\partial T}\right)_{V} + V\left(\frac{\partial P}{\partial V}\right)_{T}$$

$$\left(\frac{\partial H}{\partial V}\right)_{T} = T\left(\frac{\partial V}{\partial V}\right)_{V} + V\left(\frac{\partial P}{\partial V}\right)_{T}$$

$$\left(\frac{\partial H}{\partial P}\right)_{T} = -T\left(\frac{\partial V}{\partial T}\right)_{P} + V$$

Carnot relationship

$$\left|\frac{Q_1}{Q_2}\right| = \frac{T_1}{T_2}$$

Entropy

$$\Delta S = \int_{1}^{2} \frac{dQ_{rev}}{T}$$

$$dS = \frac{C_P}{T} dT - \left(\frac{\partial V}{\partial T}\right)_P dP$$

$$\Delta S_{IG} = C_P \ln \frac{T_2}{T_1} - nR \ln \frac{P_2}{P_1}$$

Thermodynamics Equation Sheet

Joule-Thomson coefficient

$$\left(\frac{\partial T}{\partial P}\right)_{H} = \frac{V}{C_{P}}(\alpha T - 1)$$

Phase equilibrium

$$\frac{dP^{sat}}{dT_b} = \frac{\Delta h}{T_b \Delta v}$$

$$\frac{dP^{sat}}{dT_b} = \frac{\Delta hP^{sat}}{RT_b^2}$$

$$\ln P^{sat} = A - \frac{B}{T_b + C}$$

Multi-component systems (m or M stand for any extensive property)

$$dU = TdS - PdV + \sum_{i=1} \mu_i dn_i$$

$$\mu_{i} = \left(\frac{\partial G}{\partial n_{i}}\right)_{T,P,nj}$$

$$m = \sum_{i} x_{i} \overline{m}_{i}$$

$$\Delta M_{\text{Mix}} = \sum_{i} n_{i} \overline{m}_{i} - \sum_{i} n_{i} m_{i}^{0}$$

$$\sum_{i} x_{i} d\overline{m}_{i} = 0$$

Ideal mixture

$$\mu_{i} = \mu_{i}^{0} + RT \ln x_{i}$$

$$U = \sum_{i} n_{i} u_{i}^{0}$$

$$H = \sum_{i} n_{i} h_{i}^{0}$$

$$V = \sum_{i} n_{i} v_{i}^{0}$$

$$S = \sum_{i} n_{i} s_{i}^{0} - nR \sum_{i} x_{i} \ln x_{i}$$

$$G = \sum_{i} n_{i} \mu_{i}^{0} + nRT \sum_{i} x_{i} \ln x_{i}$$

$$Py_{i} = P_{i}^{\text{sat}} x_{i}$$

Relative volatility

$$\alpha_{ij} = \frac{P_i^{\text{sat}}}{P_j^{\text{sat}}}$$

Chemical Principles Equation Sheet

All symbols have the same meaning as given in class materials.

$$V = -\frac{\mu_A \mu_B}{4\pi \varepsilon R^3} \left[-2 \cos \theta_A \cos \theta_B + \sin \theta_A \sin \theta_B \cos(\phi_B - \phi_A) \right]$$

$$\frac{M_t}{M_e} = A_1 \left[1 - e^{-(k_1 \varepsilon)^{\beta_1}} \right] + A_2 \left[1 - e^{-(k_2 \varepsilon)^{\beta_2}} \right]$$

$$F_{electrostatic} = -k \frac{q_1 \cdot q_2}{r^2}$$

$$\varepsilon_P = \frac{\varepsilon}{\varepsilon_0}$$

$$V = -\frac{\mu Q \cos \theta}{4\pi \varepsilon R^2}$$

$$V = -\frac{\alpha Q^2 e^2}{32\pi^2 \varepsilon^2 R^4}$$

$$V = -\frac{\alpha Q^2 e^2}{32\pi^2 \varepsilon^2 R^4}$$

$$V = -\frac{\alpha B \mu_A^2 (3 \cos^2 \theta_A + 1)}{32\pi^2 \varepsilon^2 R^6}$$

$$V = -\frac{3h(v_A v_B) \alpha_A \alpha_B}{512(v_A + v_B) \pi^4 \varepsilon^4 R^6}$$

$$V = r^* e^{\frac{v_M \Delta P}{RT}}$$

$$V = r^* e^{\frac{v_M \Delta P}$$

Chemical Principles Equation Sheet

$$\gamma = \frac{rh\rho g}{2\cos\theta}$$

$$ratio = \frac{V}{A \cdot L}$$

$$PV = nRT$$

$$\left(p + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$$

$$\Gamma = \frac{-1}{RT}\left(\frac{d\gamma}{dlnc}\right)_{p,T}$$

$$A = \frac{1}{N_A\Gamma}$$

$$\Delta G = \Delta H - T\Delta S$$

$$Z = \frac{P}{(2\pi mk_BT)^{\frac{1}{2}}}$$

$$T = \frac{Number of sites}{Collision rate}$$

$$P = \frac{1}{RT} \left(\frac{d\gamma}{dlog}\right)_{p,T}$$

$$D = B\left(\frac{T}{\beta}\right)^2$$

$$D = B\left(\frac{T}{\beta}\right)^2$$

$$S = n_m A_m L$$

$$\frac{dlnp}{dT} \left(\frac{d^1}{dT}\right)_{\theta} = \frac{\Delta_{ad}H^*}{R}$$

$$\Delta G = -RT lnK$$

$$C = exp\left(\frac{|\Delta H_A| - |\Delta H_L|}{RT}\right)$$

$$C = exp\left(\frac{|\Delta$$

Periodic Table

Group	-	2		3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18
1 1						e e e		e e	0						Š		5000		
	_																		2
	T																		He.
3													525		20.00				4.003
		4												2	9	7	00	0	10
		Be												8	ပ	z	0	щ	Ne
_		9.012												10.81	12.01	14.01	16.00	19.00	20.18
-		12											54	13	14	15	16	17	18
		Mg												A	Si	۵.	S	ប	Ar
100		24.31												26.98	28.09	30.97	32.07	35.45	39.95
		20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
		Ca		Sc	F	>	ပ်	Mn	Fe	ပိ	Z	Cu	Zn	Ga	Ge	As	Se	ā	궃
1		40.08		44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.41	69.72	72.64	74.92	78.96	79.90	83.80
		38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
		Sr		>	Z	NP	Mo	<u>2</u>	Ru	뫈	Pd	Ag	B	드	Sn	Sb	Te	_	Xe
**		87.62		88.91	91.22	92.91	95.94	86	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
4		99		71	72	73	74	75	9/	11	78	79	80	81	82	83	84	85	98
		8	*	3	Ξ	Ta	>	Re	SO	<u></u>	풉	Au	Hg	F	Pp	ā	Po	At	R
100		137.3		175.0	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	209	210	222
		88		103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
		Ra	+	۲	Ŗ	op	Sg	B	H	M	Ds	Rg	Oub	Out	Ouq	Oup	Uuh	Ous	Ono
- 2	223	226		260	260 267	268	271	272	270	276	281	280	285	284	289	288	293	1	294
				27	58	50	BO	63	63	63	64	65	99	67	68	69	70		
an a	*I anthanoids	<u>v</u>	*	_	9	3	N	Pm	Sm	E II	S _O	2	2	£	3 1	E	X P		
				138.9	140.1	140.9	144.2	145	150.3	151.9	157.2	158.9	132.5	164.9	167.2	168.9	173.0		
				89	06	91	92	93	94	95	96	16	86	66	100	101	102		
Ă	†Actinoids	,-	+	Ac	F	Pa	-	Np	Pu	Am	E _D	æ	ţ	Es	Fm	Md	å		
				227	232.0	231.0	238.0	237	244	243	247	247	251	252	257	258	259		

Thermodynamics Steam Tables

TEMPERATURE: t $^{\circ}$ C (TEMPERATURE: T kelvins)

							(TEMPERATU	RE: T kelvins)			
P/kPa (t sat /°C)		sat. liq.	sat. vap.	150 (423.15)	175 (448.15)	200 (473.15)	220 (493.15)	240 (513.15)	260 (533.15)	280 (553.15)	300 (573.15)
325 (136.29)	V U H S	1.076 572.847 573.197 1.7004	561.75 2545.7 2728.3 6.9640	583.58 2568.7 2758.4 7.0363	622.41 2609.6 2811.9 7.1592	660.33 2649.6 2864.2 7.2729	690.22 2681.2 2905.6 7.3585	719.81 2712.7 2946.6 7.4400	749.18 2744.0 2987.5 7.5181	778.39 2775.3 3028.2 7.5933	807.47 2806.6 3069.0 7.6657
350 (138.87)	V U H S	1.079 583.892 584.270 1.7273	524.00 2548.2 2731.6 6.9392	540.58 2567.1 2756.3 6.9982	576.90 2608.3 2810.3 7.1222	612.31 2648.6 2863.0 7.2366	640.18 2680.4 2904.5 7.3226	667.75 2712.0 2945.7 7.4045	695.09 2743.4 2986.7 7.4828	722.27 2774.8 3027.6 7.5581	749.33 2806.2 3068.4 7.6307
375 (141.31)	V U H S	1.081 594.332 594.737 1.7526	491.13 2550.6 2734.7 6.9160	503.29 2565.4 2754.1 6.9624	537.46 2607.1 2808.6 7.0875	570.69 2647.7 2861.7 7.2027	596.81 2679.6 2903.4 7.2891	622.62 2711.3 2944.8 7.3713	648.22 2742.8 2985.9 7.4499	673.64 2774.3 3026.9 7.5254	698.94 2805.7 3067.8 7.5981
400 (143.62)	V U H S	1.084 604.237 604.670 1.7764	462.22 2552.7 2737.6 6.8943	470.66 2563.7 2752.0 6.9285	502.93 2605.8 2807.0 7.0548	534.26 2646.7 2860.4 7.1708	558.85 2678.8 2902.3 7.2576	583.14 2710.6 2943.9 7.3402	607.20 2742.2 2985.1 7.4190	631.09 2773.7 3026.2 7.4947	654.85 2805.3 3067.2 7.5675
425 (145.82)	V U H S	1.086 613.667 614.128 1.7990	436.61 2554.8 2740.3 6.8739	441.85 2562.0 2749.8 6.8965	472.47 2604.5 2805.3 7.0239	502.12 2645.7 2859.1 7.1407	525.36 2678.0 2901.2 7.2280	548.30 2709.9 2942.9 7.3108	571.01 2741.6 2984.3 7.3899	593.54 2773.2 3025.5 7.4657	615.95 2804.8 3066.6 7.5388
450 (147.92)	V U H S	1.088 622.672 623.162 1.8204	413.75 2556.7 2742.9 6.8547	416.24 2560.3 2747.7 6.8660	445.38 2603.2 2803.7 6.9946	473.55 2644.7 2857.8 7.1121	495.59 2677.1 2900.2 7.1999	517.33 2709.2 2942.0 7.2831	538.83 2741.0 2983.5 7.3624	560.17 2772.7 3024.8 7.4384	581.37 2804.4 3066.0 7.5116
475 (149.92)	V U H S	1.091 631.294 631.812 1.8408	393.22 2558.5 2745.3 6.8365	393.31 2558.6 2745.5 6.8369	421.14 2601.9 2802.0 6.9667	447.97 2643.7 2856.5 7.0850	468.95 2676.3 2899.1 7.1732	489.62 2708.5 2941.1 7.2567	510.05 2740.4 2982.7 7.3363	530.30 2772.2 3024.1 7.4125	550.43 2803.9 3065.4 7.4858
500 (151.84)	V U H S	1.093 639.569 640.116 1.8604	374.68 2560.2 2747.5 6.8192		399.31 2600.6 2800.3 6.9400	424.96 2642.7 2855.1 7.0592	444.97 2675.5 2898.0 7.1478	464.67 2707.8 2940.1 7.2317	484.14 2739.8 2981.9 7.3115	503.43 2771.7 3023.4 7.3879	522.58 2803.5 3064.8 7.4614
525 (153.69)	V U H S	1.095 647.528 648.103 1.8790	357.84 2561.8 2749.7 6.8027		379.56 2599.3 2798.6 6.9145	404.13 2641.6 2853.8 7.0345	423.28 2674.6 2896.8 7.1236	442.11 2707.1 2939.2 7.2078	460.70 2739.2 2981.1 7.2879	479.11 2771.2 3022.7 7.3645	497.38 2803.0 3064.1 7.4381
550 (155.47)	V U H S	1.097 655.199 655.802 1.8970	342.48 2563.3 2751.7 6.7870		361.60 2598.0 2796.8 6.8900	385.19 2640.6 2852.5 7.0108	403.55 2673.8 2895.7 7.1004	421.59 2706.4 2938.3 7.1849	439.38 2738.6 2980.3 7.2653	457.00 2770.6 3022.0 7.3421	474.48 2802.6 3063.5 7.4158
575 (157.18)	V U H S	1.099 662.603 663.235 1.9142	328.41 2564.8 2753.6 6.7720		345.20 2596.6 2795.1 6.8664	367.90 2639.6 2851.1 6.9880	385.54 2672.9 2894.6 7.0781	402.85 2705.7 2937.3 7.1630	419.92 2738.0 2979.5 7.2436	436.81 2770.1 3021.3 7.3206	453.56 2802.1 3062.9 7.3945
600 (158.84)	V U H S	1.101 669.762 670.423 1.9308	315.47 2566.2 2755.5 6.7575		330.16 2595.3 2793.3 6.8437	352.04 2638.5 2849.7 6.9662	369.03 2672.1 2893.5 7.0567	385.68 2705.0 2936.4 7.1419	402.08 2737.4 2978.7 7.2228	418.31 2769.6 3020.6 7.3000	434.39 2801.6 3062.3 7.3740
625 (160.44)	V U H S	1.103 676.695 677.384 1.9469	303.54 2567.5 2757.2 6.7437		316.31 2593.9 2791.6 6.8217	337.45 2637.5 2848.4 6.9451	353.83 2671.2 2892.3 7.0361	369.87 2704.2 2935.4 7.1217	385.67 2736.8 2977.8 7.2028	401.28 2769.1 3019.9 7.2802	416.75 2801.2 3061.7 7.3544
650 (161.99)	V U H S	1.105 683.417 684.135 1.9623	292.49 2568.7 2758.9 6.7304		303.53 2592.5 2789.8 6.8004	323.98 2636.4 2847.0 6.9247	339.80 2670.3 2891.2 7.0162	355.29 2703.5 2934.4 7.1021	370.52 2736.2 2977.0 7.1835	385.56 2768.5 3019.2 7.2611	400.47 2800.7 3061.0 7.3355
675 (163.49)	V U H S	1.106 689.943 690.689 1.9773	282.23 2570.0 2760.5 6.7176		291.69 2591.1 2788.0 6.7798	311.51 2635.4 2845.6 6.9050	326.81 2669.5 2890.1 6.9970	341.78 2702.8 2933.5 7.0833	356.49 2735.6 2976.2 7.1650	371.01 2768.0 3018.5 7.2428	385.39 2800.3 3060.4 7.3173
700 (164.96)	V U H S	1.108 696.285 697.061 1.9918	272.68 2571.1 2762.0 6.7052		280.69 2589.7 2786.2 6.7598	299.92 2634.3 2844.2 6.8859	314.75 2668.6 2888.9 6.9784	329.23 2702.1 2932.5 7.0651	343.46 2735.0 2975.4 7.1470	357.50 2767.5 3017.7 7.2250	371.39 2799.8 3059.8 7.2997
725 (166.38)	V U H S	1.110 702.457 703.261 2.0059	263.77 2572.2 2763.4 6.6932	:::::::	270.45 2588.3 2784.4 6.7404	289.13 2633.2 2842.8 6.8673	303.51 2667.7 2887.7 6.9604	317.55 2701.3 2931.5 7.0474	331.33 2734.3 2974.6 7.1296	344.92 2767.0 3017.0 7.2078	358.36 2799.3 3059.1 7.2827

Note: u and h are in units of kJ kg⁻¹; s in units of kJ kg⁻¹ K⁻¹; v is in units of cm³ g⁻¹