NAMED SETS

empty set	Ø
real numbers	R
ordered pairs	\mathbf{R}^2
integers	Z
positive integers	$\mathbf{Z}_{>0}$
positive real numbers	$\mathbf{R}_{>0}$

EXPONENTS

For $a, b \in \mathbb{R}_{>0}$, $x \in \mathbb{R}$, and $m, n \in \mathbb{R}$,

$$a^{0} = 1,$$
 $0^{a} = 0$
 $1^{x} = 1,$ $a^{n} a^{m} = a^{n+m}$
 $a^{n}/a^{m} = a^{n-m},$ $(a^{n})^{m} = a^{n \cdot m}$
 $a^{-m} = 1/a^{m},$ $(a/b)^{m} = a^{m}/b^{m}$
 $\sqrt{x^{2}} = |x|$

TRIGONOMETRIC IDENTITIES

We define dom(arccot) = $(0, \pi)$.

$$(\cos(x))^{2} + (\sin(x))^{2} = 1$$

$$2(\cos(x))^{2} = 1 + \cos(2x)$$

$$2(\sin(x))^{2} = 1 - \cos(2x)$$

$$(\cos(x))^{2} - (\sin(x))^{2} = \cos(2x)$$

$$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$$

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$

$$\operatorname{arccot}(x) = \pi/2 - \arctan(x)$$

$$\operatorname{arccsc}(x) = \arcsin(1/x)$$

$$\operatorname{arccsc}(x) = \arccos(1/x)$$

$$\operatorname{arcsec}(x) = \arccos(1/x)$$

$$\operatorname{arcsin}(x) + \operatorname{arccos}(x) = \pi/2$$

HYPERBOLIC FUNCTIONS

 $arcsec(x) + arccsc(x) = \pi/2$

$$2\cosh(x) = \exp(x) + \exp(-x)$$
$$2\sinh(x) = \exp(x) - \exp(-x)$$
$$\tanh(x) = \sinh(x)/\cosh(x)$$
$$\cosh(x)^{2} - \sinh(x)^{2} = 1$$

LOGARITHMS

$$\log_a(x) = \frac{\ln(x)}{\ln(a)}$$

DERIVATIVES

Specific cases

opecine cuses	
F(x)	F'(x)
$\cos(x)$	$-\sin(x)$
$\sin(x)$	$\cos(x)$
tan(x)	$sec(x)^2$
sec(x)	sec(x) tan(x)
$\csc(x)$	$-\cot(x)\csc(x)$
$\cot(x)$	$-\csc(x)^2$
arccos(x)	$-1/\sqrt{1-x^2}$
$\arcsin(x)$	$1/\sqrt{1-x^2}$
arctan(x)	$1/(x^2+1)$
cosh(x)	sinh(x)
sinh(x)	cosh(x)
tanh(x)	$1/\cosh(x)^2$
arccosh(x)	$1/\sqrt{x^2-1}$
arcsinh(x)	$1/\sqrt{1+x^2}$
arctanh(x)	$1/(1-x^2)$
$\exp(x)$	$\exp(x)$
ln(x)	1/ <i>x</i>

General Cases

F(x)	F'(x)
af(x) + bg(x)	af'(x) + bg'(x)
f(x)g(x)	$\int f'(x)g(x) + f(x)g'(x)$
1/g(x)	$-g'(x)/g(x)^2$
f(x)/g(x)	$(g(x)f'(x)-f(x)g'(x))/g(x)^2$
f(g(x))	g'(x)f'(g(x))
$f^{-1\prime}(x)$	$1/f'(f^{-1}(x))$

ANTIDERIVATIVES

$$\int a \, dx = ax$$

$$\int x^a \, dx = \frac{1}{1+a} x^{a+1}, \quad \text{if } a \neq -1$$

$$\int \frac{1}{x} \, dx = \ln|x|$$

$$\int \cos(x) \, dx = \sin(x)$$

$$\int \sin(x) \, dx = -\cos(x)$$

$$\int \tan(x) \, dx = \ln|\sec(x)|$$

$$\int \sec(x) \, dx = \ln|\tan(x) + \sec(x)|$$

$$\int \csc(x) \, dx = -\ln|\csc(x) + \cot(x)|$$

$$\int \cot(x) \, dx = \ln|\sin(x)|$$

$$\int |x| \, dx = x|x|/2$$

Sums

For $n \in \mathbb{Z}_{>0}$

$$\sum_{k=0}^{n-1} 1 = n, \quad \sum_{k=0}^{n-1} k = (n-1)n/2$$

$$\sum_{k=0}^{n-1} k^2 = (n-1)n(2n-1)/6,$$

$$\sum_{k=0}^{n-1} x^k = \sum_{k=1}^n x^{k-1} = \frac{1-x^n}{1-x}, \quad x \neq 1$$

$$\sum_{k=0}^{\infty} x^k = \begin{cases} \frac{1}{1-x} & x \in (-1,1) \\ \infty & x \in [1,\infty] \end{cases}.$$

When $x \in (-\infty, -1]$, the series $\sum_{k=0}^{\infty} x^k$ diverges.

APPLICATIONS

Arc length of curve y = f(x) with $a \le x \le b$

$$= \int_a^b \sqrt{1 + f'(x)^2} \, \mathrm{d}x$$

For the region Q of the xy plane given by

$$Q = \{(x, y) \mid f(x) \le y \le g(x) \land a \le x \le b\},\$$

we have

Area(Q) =
$$\int_{a}^{b} g(x) - f(x) dx$$

Assuming $0 \le f(x)$ and rotating about the x-axis

$$Vol(Q) = \pi \int_{a}^{b} g(x)^{2} - f(x)^{2} dx$$

Assuming $0 \le a < b$ and rotating about the v-axis

$$Vol(Q) = 2\pi \int_{a}^{b} x(g(x) - f(x)) dx$$

Centroid

Area(Q) ×
$$\overline{x}$$
 = $\int_{a}^{b} x (g(x) - f(x)) dx$
Area(Q) × \overline{y} = $\frac{1}{2} \int_{a}^{b} (g(x)^{2} - f(x)^{2}) dx$

For the region Q of the xy plane given by

$$Q = \{(x,y) \mid f(y) \leq x \leq g(y) \land a \leq y \leq b\},$$

interchange x and y in all the previous formu-

FAMOUS TRIANGLES

The 30-60-90 triangle

The 45-45-90 triangle

LAWS OF COSINE & SINE

Law of cosine: $C^2 = A^2 + B^2 - 2AB\cos(\gamma)$

Law of sines: $\frac{\sin(\alpha)}{A} = \frac{\sin(\beta)}{B} = \frac{\sin(\gamma)}{C}$

VOLUMES

Right Circular Cylinder

Volume: $V = \pi r^2 h$

Area: (not including circular ends) $A = 2\pi r h$

Sphere with radius r

Area: $A = 4\pi r^2$ Volume: $V = \frac{4\pi}{2}r^3$

Volume:
$$V = \pi r^2 h/3$$

$$A = \pi r \sqrt{r^2 + h^2}$$
 (not including circular base).

P-Series, Divergence Test, Ratio Test, Comparison, & AST

The series $\sum_{k=1}^{\infty} \frac{1}{k^p}$ converges when $p \in (1,\infty)$; otherwise it diverges.

If $\lim_{k\to\infty} a_k \neq 0$, the series $\sum a_k$ diverges.

Let *a* be a sequence with $0 \notin \text{range}(a)$. Define $L = \lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right|$.

- $L \in [0,1) \Longrightarrow \sum |a_k|$ converges. $L \in (1,\infty] \Longrightarrow \sum |a_k|$ diverges.

Let *a* and *b* be positive sequences. Define $L = \lim_{k \to \infty} \frac{a_k}{b_k}$.

- If $L \in \mathbf{R}_{>0}$ and $\sum a_k$ converges, then $\sum b_k$ converges. If $L \in \mathbf{R}_{>0}$ and $\sum a_k$ diverges, then $\sum b_k$ diverges. If L = 0 and $\sum b_k$ converges, then $\sum a_k$ converges If $L = \infty$ and $\sum b_k$ diverges, then $\sum a_k$ diverges.

Let a be a positive and eventually decreasing sequence. Then $\sum (-1)^k a_k$ converges if and only if

TAYLOR AND MACLAURIN SERIES

If a function F is infinitely differentiable at a, its Taylor series centered at a is

$$\sum_{k=0}^{\infty} \frac{F^{(k)}(a)}{k!} (x-a)^k.$$

When a is zero, the Taylor series is also known as a MacLaurin Series.

POLAR TO CARTESIAN

$$x = r\cos(\theta)$$
 $y = r\sin(\theta)$

For r > 0 and $0 \le \theta < 2\pi$

$$r = \sqrt{x^2 + y^2}, \quad \theta = \begin{cases} 2\pi - \arccos(x/r) & \text{if } y < 0\\ \arccos(x/r) & \text{if } y \ge 0 \end{cases}$$

INTEGRATE POWERS OF TRIG

Let $m, n \in \mathbb{Z}_{\geq 0}$. Then

•
$$\int \cos(x)^{2m} \sin(x)^{2n} dx = \int \left(\frac{1 + \cos(2x)}{2}\right)^m \left(\frac{1 - \cos(2x)}{2}\right)^n dx$$

•
$$\int \cos(x)^{2m+1} \sin(x)^n dx = \int (1-z^2)^m z^n dz, \text{ where } z = \sin(x)$$

•
$$\int \cos(x)^m \sin(x)^{2n+1} dx = -\int z^m (1-z^2)^n dz$$
, where $z = \cos(x)$

- $\int \sec(x)^n dx = \frac{1}{n-1} \sec(x)^{n-2} \tan(x) + \frac{n-2}{n-1} \int \sec(x)^{n-2} dx$, provided $n \neq 1$.
- $\int \tan(x)^{2m+1} \sec(x)^n dx = \int (z^2 1)^m z^{n-1} dz$, where $z = \sec(x)$
- $\int \tan(x)^{2m} \sec(x)^n dx = \int (\sec(x)^2 1)^m \sec(x)^n dx.$

TRIG SUBSTITUTIONS

- $\int F\left(x,\left(1-x^2\right)^{n/2}\right) dx$, use $x = \sin(\theta)$, where $\theta \in [-\pi/2,\pi/2]$, then integrate $\int F(\sin(\theta),\cos(\theta)^n)\cos(\theta)\,\mathrm{d}\theta$
- $\int F(x,(1+x^2)^{n/2}) dx$, use $x = \sinh(\theta)$, where $\theta \in \mathbf{R}$, then integrate $\int F(\sinh(\theta),\cosh(\theta)^n)\cosh(\theta)\,\mathrm{d}\theta$
- $\int F(x,(x^2-1)^{n/2}) dx$, use $x = \sec(\vartheta)$, then integrate $\int F(\sec(\theta), \tan(\theta)^n) \sec(\theta) \tan(\theta) d\theta$

UNIT CIRCLE

Revised November 16, 2023. Barton Willis is the author of this work. This work is licensed under Attribution 4.0 International (CC BY 4.0) . For the current version of this document, visit