

- □ : Exercices de cours à faire avant le TD et qui ne seront pas corrigés en séances
- : Exercices à préparer avant le TD et qui seront corrigés en séance
- 🔳 : Exercices non corrigés en TD (plus difficiles), pour réviser & s'entraîner

N'hésitez pas à demander des éclaircissements auprès de vos enseignant es.

On étudie un gaz parfait constitué de N bosons indépendants de masse m et de spin nul, libres mais astreints à se déplacer sur une surface d'aire S et à l'équilibre à la température T.

- 1 Déterminer la densité d'état en énergie $\rho_{2D}(\epsilon)$ (en appliquant des conditions aux limites périodiques pour le vecteur d'onde).
- 2 Rappeler quel est le nombre moyen d'occupation $n(\epsilon)$ d'un état quantique d'énergie ϵ lorsque le potentiel chimique du gaz est égal à μ . Pourquoi a-t-on $\mu < 0$?
- 3 En déduire la relation implicite qui détermine le potentiel chimique μ en fonction de N, S et T. Dans toute la suite, on notera $f = e^{\beta\mu}$
- 4 Montrer que $\frac{N}{S}\Lambda^2 = -\ln(1-f)$ où Λ est une longueur que l'on exprimera en fonction des données.
- 5 Vérifier que la formule précédente vous redonne bien, dans la limite classique (non quantique) l'expression de la fugacité d'un gaz parfait classique.
- 6 Conclure quant à l'existence, ou l'absence d'un phénomène de condensation de Bose-Einstein en deux dimensions.

On piège à présent notre assemblée d'atomes par un potentiel harmonique magnétique $V(r) = \frac{1}{2}m\omega^2r^2$. Les états propres de chaque atome sont indexés par deux entiers $i, j \geq 0$, et leur énergie associée est $\epsilon_{i,j} = \hbar\omega(i+j)$.

- 7 Dans le contexte expérimental qui nous concerne (des atomes de rubidium 87), on a $T \sim 100$ nK et $\omega \sim 2\pi \times 10$ Hz. Estimer numériquement $\beta\hbar\omega$.
- 8 Exprimer, en fonction de n, le nombre g_n d'états accessibles à un atome occupant le niveau d'énergie $n\hbar\omega$.
- 9 Exprimer N_0 le nombre d'atomes occupant l'état fondamental, en fonction de f.
- 10 Exprimer N_e le nombre d'atomes occupant des états excités sous la forme d'une somme sur des entiers ≥ 1 , d'une fonction de $\frac{N}{S}$, $\beta\hbar\omega$ et f.
- 11 Compte-tenu de l'application numérique ci-dessous, on admet que l'on peut approcher N_e par une intégrale. On introduit la fonction

$$g_2(f) = \frac{1}{\Gamma(2)} \int_0^{+\infty} dx \frac{x}{\frac{e^x}{f} - 1} = \sum_{k \ge 1} \frac{f^k}{k^2}$$

Exprimer N_e en fonction de $g_2(f)$ et des données.

- 12 g_2 est une fonction croissante. Quel est le maximum possible pour N_e en fonction de la température? On donne $\sum_{1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$.
- 13 Conclure quant à l'existence, ou l'absence, d'un phénomène de condensation de Bose-Einstein en deux dimensions en présence d'un piège harmonique.

2 Faux thons

Une cavité de volume V et à l'équilibre à la température T est le siège d'ondes électromagnétiques. On admet que ces ondes peuvent être décrites par une assemblée de photons obéissant à la statistique de Bose-Einstein à potentiel chimique nul.

À une onde de fréquence ν , on associe des photons d'énergie $\epsilon = h\nu = cp$ où c est la vitesse de la lumière et p l'impulsion (la quantité de mouvement) du photon.

- 1 On admet que la densité d'états dans l'espace des impulsions est $g(p)d^3p = 2\frac{V}{h^3}4\pi p^2dp$. (le facteur 2 est dû au fait que pour une impulsion donnée, un photon peut avoir deux états possibles de polarisation). Calculer la densité d'états en fonction de l'énergie.
- 2 Quel est le nombre moyen $n(\epsilon)$ de photons dans un mode d'énergie ϵ ?
- 3 On désigne par $\rho(\nu, T)$ l'énergie par unité de volume des photons ayant leur fréquence comprise entre ν et $\nu + d\nu$ (appelée aussi densité spectrale d'énergie). Déterminer $\rho(\nu, T)$.
- 4 La densité spectrale d'énergie est mesurable expérimentalement. Quelle est la forme de $\rho(\nu, T)$ aux basses fréquences (loi de Rayleigh-Jeans)? aux hautes fréquences (loi de Wien)? Montrer que la loi de Rayleigh-Jeans peut se retrouver par le théorème d'équipartition de l'énergie. On admet que $\rho(\nu, T)$ présente entre ces deux régimes un maximum pour une fréquence ν_M qui vérifie $h\nu_M = 2,82k_BT$.
- 5 Déduire de $\rho(\nu,T)$ l'expression de la densité d'énergie u(T) dans l'enceinte. On donne

$$\int_0^{+\infty} \frac{x^3 dx}{e^x - 1} = \frac{\pi^4}{15}$$

On perce un petit trou de surface A dans cette cavité d'où s'échappe une partie du rayonnement. On définit le pouvoir émissif W de cette cavité comme étant le flux d'énergie sortant de l'orifice (par unité de temps et de surface).

- 6 Calculer le nombre $d^3n_{\epsilon,\Omega}$ de photons par unité de volume ayant leur énergie comprise entre ϵ et $\epsilon + d\epsilon$ et leur impulsion pointant dans un angle solide $d\Omega$.
- 7 En déduire le nombre de photons ayant leur énergie comprise entre ϵ et $\epsilon + d\epsilon$ et leur impulsion pointant dans un angle solide $d\Omega$ qui quittent la cavité pendant le temps dt.
- 8 Calculer W en fonction de u(T). Montrer que l'on a $W = \sigma T^4$ et calculer σ .