# Product-moment covariance and PM<sub>10</sub> outlier detection

2021-09-06

#### **Product-moment covariance estimation**

Raymaekers, J., & Rousseeuw, P. J. (2021). Fast robust correlation for high-dimensional data. *Technometrics*, 63(2), 184-198.

#### **Estimation procedure**

- 1. Obtain robust location and scale estimate  $\hat{\mu}_i$  and  $\hat{\sigma}_i$ .
- 2. Transform  $x_{ij}$  to

$$x_{ij}^* = g(x_{ij}) = \hat{\mu}_j + \hat{\sigma}_j \psi_{b,c} \left( \frac{x_{ij} - \hat{\mu}_j}{\hat{\sigma}_j} \right),$$

where

$$\psi_{b,c}(z) = \begin{cases} z, & 0 \le |z| < b, \\ q_1 \tanh \left( q_2(c - |z|) \right) \operatorname{sign}(z), & b \le |z| < c, \\ 0, & c \le |z|. \end{cases}$$

3. Compute covariance matrix using transformed data  $x_{ij}^*$ .

#### Missing data

- Raymaekers(2021)는 missing이 존재할 경우,  $\hat{\mu}_j$ 으로 대체하여 사용
- 지금처럼 missing이 많은 경우에 모두  $\hat{\mu}_j$ 으로 대체하는 경우에는 각 curve의 특성이 사라지며, 실제로 시뮬 레이션 결과에서도 오히려 M-est보다 좋지 않았음
- 따라서 missing을 그대로 두고, 이 값들을 제외하여 covariance를 계산할 경우 M-est나 GK 보다 좋은 결과를 보여줌
- Imputation으로  $L_2$ -distance가 가장 가까운 일부 curve들의 평균으로 imputation하여 covariance를 계산한 결과가 NA를 제외하고 한 경우보다 약간 더 좋았음
  - 예를 들어, 1st curve의 missing을 제외한 부분과의 distance가 가까운 curve들을 순서대로 나열한 후, 차례대로 missing인 부분에 대해서만 colMeans를 하며 NA가 포함되지 않을 때까지의 개수만을 사용 하여 평균 계산

#### **Simulation results**

- 50 simulations
- 모두 noise variance를 고려하였으며, Yao et al.(2005) 방법으로 계산
- 비교 방법론
  - Mest : 기존의 proposed method
  - GK: Gnanadesikan and Kettenring (1972) method (박연주 교수님 코드 사용)
  - PM: Product-moment method proposed by Raymaekers (2021)
  - PM-NA: PM 방법에 NA를 그대로 두고 이를 제외하여 covariance를 계산한 방법
  - PM-Im: PM 방법에서 전체 평균 imputation 대신, distance가 가까운 일부만을 사용한 평균으로 imputation한 방법

# Delaigle setting

| Method   | PVE  | Reconstruction |        | Completion |        | Eigenfunction |        |
|----------|------|----------------|--------|------------|--------|---------------|--------|
| Mest     | 0.82 | 0.18           | (0.03) | 0.40       | (0.13) | 0.17          | (0.11) |
| Mest-sm  | 0.97 | 0.15           | (0.03) | 0.32       | (0.11) | 0.14          | (0.11) |
| GK       | 0.86 | 0.17           | (0.03) | 0.38       | (0.12) | 0.16          | (0.11) |
| GK-sm    | 0.98 | 0.15           | (0.02) | 0.31       | (0.10) | 0.14          | (0.11) |
| PM       | 0.86 | 0.16           | (0.03) | 0.37       | (0.12) | 0.16          | (0.10) |
| PM-sm    | 0.96 | 0.15           | (0.03) | 0.33       | (0.11) | 0.15          | (0.10) |
| PM-NA    | 0.87 | 0.15           | (0.03) | 0.33       | (0.11) | 0.14          | (0.09) |
| PM-sm-NA | 0.97 | 0.14           | (0.02) | 0.29       | (0.10) | 0.12          | (0.09) |
| PM-Im    | 0.88 | 0.15           | (0.03) | 0.31       | (0.10) | 0.13          | (0.10) |
| PM-sm-Im | 0.97 | 0.14           | (0.02) | 0.28       | (0.10) | 0.12          | (0.10) |

### **Boente setting**

| Method   | PVE  | Reconstruction |        | Completion |        | Eigenfunction |        |
|----------|------|----------------|--------|------------|--------|---------------|--------|
| Mest     | 0.84 | 0.36           | (0.07) | 0.49       | (0.17) | 0.94          | (0.05) |
| Mest-sm  | 0.92 | 0.32           | (0.07) | 0.42       | (0.16) | 0.94          | (0.05) |
| GK       | 0.88 | 0.39           | (0.09) | 0.58       | (0.21) | 0.89          | (0.08) |
| GK-sm    | 0.95 | 0.38           | (0.09) | 0.54       | (0.20) | 0.89          | (0.08) |
| PM       | 0.89 | 0.34           | (0.08) | 0.52       | (0.21) | 0.93          | (0.06) |
| PM-sm    | 0.91 | 0.33           | (0.08) | 0.50       | (0.19) | 0.93          | (0.06) |
| PM-NA    | 0.92 | 0.29           | (0.06) | 0.35       | (0.11) | 0.92          | (0.06) |
| PM-sm-NA | 0.95 | 0.28           | (0.06) | 0.34       | (0.10) | 0.92          | (0.06) |
| PM-Im    | 0.94 | 0.26           | (0.05) | 0.27       | (0.07) | 0.94          | (0.05) |
| PM-sm-Im | 0.96 | 0.25           | (0.05) | 0.27       | (0.07) | 0.94          | (0.05) |

# $\mathbf{PM}_{10}$ outlier detection

Region 1

### Eigenfunctions



**Covariance surfaces** 



• Score distance vs Orthogonal distance plot



#### **Outlier detection**

- 4가지 outlier detection 고려 (1~3의 경우, completion 후에 적용)
  - 1. robMah: the outlier detection method corresponds to the approach of Rousseeuw and Leroy (1987) using the robust Mahalanobis distance.
  - 2. LRT: the outlier detection method corresponds to the approach of Febrero et al. (2007) using the likelihood ratio test.
  - 3. HU: the outlier detection method corresponds to the approach of Hyndman and Ullah (2008) using the integrated square forecast errors.
  - 4. PCA-dist : Outlie map에서 1사분면에 해당하는 curve를 outlier로 결정



Figure 1: From the left, robMah, LRT, HU and PCA-dist, respectively.

Region 2
Eigenfunctions



**Covariance surfaces** 





**Outlier detection** 



Figure 2: From the left, robMah, LRT, HU and PCA-dist, respectively.

Region 3
Eigenfunctions









**Outlier detection** 



Figure 3: From the left, robMah, LRT, HU and PCA-dist, respectively.

Region 4
Eigenfunctions



# **Covariance surfaces**







**Outlier detection** 



Figure 4: From the left, robMah, LRT, HU and PCA-dist, respectively.