NUEN 301 Notes

Donald Doyle

September 6, 2020

1 Material for Test One

```
\begin{split} &\mathbf{I} = \text{beam intensity } \frac{neutrons}{cm^2s} \\ &\mathbf{u} = \text{neutron density } \frac{neutrons}{cm^3} \\ &\mathbf{v} = \text{neutron speed } \frac{cm}{s} \\ &\mathbf{A} = \text{target area } cm^2 \\ &\Delta x = \text{target thickness cm} \\ &\sigma_t = \text{constant of proportionality [area per nucleus]} \\ &\text{Reaction rate } = \sigma_t IAN\Delta x \\ &\left[\frac{particles}{s}\right] = \left[\frac{cm_2}{nucleaus}\right] \left[\frac{particles}{cm^2s}\right] \left[cm^2\right] \left[\frac{nuclei}{cm^3}\right] \left[cm\right] \\ &\sigma + t \text{ is effective cross sectional area that a nucleus presents to a neutron units of barns.} \\ &1barn = 1[b] = 10^-24[cm^2] \end{split}
```

Microscopic cross sections depend on relative speeds of the neutrons and nucleus and on nuclide (type of nucleus).

 $\sigma_t = \sigma_s + \sigma_a$

 $\sigma_t = \text{total microscopic cross section}$

 $\sigma_s = \text{scattering microscopic cross section}$

 $\sigma_a = \text{absorption cross section}$

 $\sigma_t = \sigma_s + \sigma_a = \sigma_e + \sigma_p + \sigma_i n + \sigma_\alpha + \sigma_f + \sigma_n, 2n + \sigma_n, 3n\sigma_n.\alpha + \sigma_n, p$

 σ_e = elastic scattering microscopic cross section

 $\sigma_e, r =$ resonance elastic scattering microscopic cross section

 σ_p = potential scattering microscopic cross section

 $\sigma_i n$ = inelastic scattering microscopic cross section

 σ_{α} = radiative capture microscopic cross section

 σ_f = fission microscopic cross section

 $\sigma_n, 2n = 2$ neutrons emitted microscopic cross section $\sigma_n, 3n = 3$ neutrons emitted microscopic cross section $\sigma_n, \alpha =$ alpha particle emitted microscopic cross section $\sigma_n, p = \text{proton emitted microscopic cross section}$

 $\frac{\sigma_x}{\sigma_t}$ = probability in a given collision that X will occur. Macroscopic cross section for reaction X $\Sigma = N\sigma_x[cm^{-1}]$

For multiple isotopes $N^i=\gamma^i\frac{\rho N_a}{M}$ where γ^i is the atom fraction Density from weight percent $N^i=w^i\frac{\rho N_a}{M_i}$ where $w^i=\gamma^i\frac{M}{M^i}$ I(x) = intensity of neutrons that reach X distance into material without interacting with atoms

$$I(x + dx) = AI(x) + PR + -LR = AI(x) + O + \Sigma I(x)Adx$$
 cancel the area

$$I(x + dx) = I(x) - \Sigma dx$$
 simplify

$$\frac{dI}{dx} = -\Sigma(x)$$
 integrate both sides $I_x = I_0 e^{(-\Sigma x)}$
Mean free path $= \frac{1}{\Sigma_t}$
Absorption mean free path $= \frac{1}{\Sigma_a}$
Scattering mean free path $= \frac{1}{\Sigma_s}$

$$\sum_{t} = \sum_{s} + \sum_{a}$$

$$1 = \frac{\Sigma_s}{\Sigma_t} + \frac{\Sigma_a}{\Sigma_t}$$

Molar mass $A_x = \sum_i (\frac{\gamma_i}{100}) A_i$ [g/mol] Atomic mass $M_x = A_x * U$ [amu]

Example:

 H_2O molar mass

$$2M_H + M_O = M_{H_2O}$$

$$2(\gamma_H M_{H_1} + (1 - \gamma_{H_1})M_{H_2} + M_O)$$

Molar density:

$$N_{H_2O} = \frac{\rho_{H_2O}N_a}{M_{H_2O}}$$

$$N_H = 2N_{H_2O}$$

$$N_H = 2N_{H_2O}$$

$$N_{H_1} = \gamma_{H_1} N_H$$

$$N_{H_2} = \gamma_{H_2} N_H$$

$$N_O = N_{H_2O}$$

Macroscopic scattering cross section of H_2O

$$\Sigma_s^{H_2O} = N_H \sigma_s^H + N_O \sigma_s^O$$