Exemples

1.
$$u_0 = 1$$
 et $u_{n+1} = u_n - 6$.

C'est une suite arithmétique de raison négative donc cette suite est décroissante.

2.
$$u_n = 3 \times 0.9^n$$
.

C'est une suite géométrique de premier terme positif et de raison strictement comprise entre 0 et 1 donc u est décroissante.

3.
$$u_n = n^2 - 1$$
.

$$\mathbf{u}_{\mathbf{n}+1}$$
- $\mathbf{u}_{\mathbf{n}}$ =((n+1)²-1)-(n²-1)=n²+2n+1-1-n²+1=2n+1.

n>0 donc 2n+1>0 donc u_{n+1} - u_n >0 donc u est croissante.

4.
$$u_n = \frac{0.5^n}{n}$$

$$\frac{\mathbf{u}_{\mathsf{D}+1}}{\mathbf{u}_{\mathsf{D}}} = \frac{\frac{0.5^{\mathsf{N}+1}}{n+1}}{\frac{0.5^{\mathsf{N}}}{n}} = \frac{0.5^{\mathsf{N}+1}}{n+1} \times \frac{n}{0.5^{\mathsf{N}}} = 0.5 \times \frac{n}{n+1}$$

Comme 0,5<1 et n/(n+1)<1, 0,5×n/(n+1)<1 donc u_{n+1}/u_n <1 donc u est décroissante.

5.
$$u_n = n^2 + 2n - 3$$

On pose $f(x)=x^2+2x+3$.

f'(x)=2x+2. Lorsque x>0, f'(x)>0 donc f est croissante donc g est croissante.

Exercice 1

On considère la suite u définie par sa formule u_n =-5n+6.

Donne la valeur numérique de u₃.

Exercice 2

Une suite u est définie par son premier terme et une relation de récurrence.

$$\begin{cases} u_0 = -5 \\ u_{n+1} = -u_n + 10 \end{cases}$$

Combien vaut ²¹5?

Exercice 3

 $u_0 = 3$ u est une suite définie par $u_0 = 3$ $u_{n+1} = f(u_n).$

La courbe bleue est la représentation graphique de f.

De quelle couleur est représenté u₂?

Exercice 4

u est une suite définie par $\begin{cases} u_0 = 2 \\ u_{n+1} = 3u_n + 4 \end{cases}$.

On aimerait connaître u₁₀₀.

Complète l'algorithme suivant :

2->u de 1 à 100->u Fin de Afficher u

Exercice 5

u est une suite définie par $\begin{cases} u_0 = 9 \\ u_{x+1} = 2u_x + 5. \end{cases}$

On aimerait savoir à partir de quel indice les termes de la suite dépassent 10000.

Complète l'algorithme suivant :

Exercice 6

u est une suite arithmétique de premier terme u_0 =100 et de raison -3.

$$u_{100} =$$

Exercice 7

u est une suite géométrique de premier terme u_0 =-5 et de raison 2.

$$u_{10}^{-}$$

Exercice 8

u est une suite arithmétique.

$$u_3$$
=-10 et u_4 =-7.

$$u_0^{=}$$

Exercice 9

u est une suite géométrique.

$$u_3$$
=40 et u_4 =-80.

$$u_0$$
=

Exercice 10

Quelle est la somme des 100 premiers nombres entiers?

Exercice 11

u est une suite arithmétique de premier terme u_0 =5 et de raison 7.

Calcule u_{39} puis la somme des 40 premiers termes de cette suite.

$$u_{39}^{-}$$

somme=

Exercice 12

u est une suite arithmétique.

$$u_0 = 50$$
 et $u_4 = 42$.

Quelle est la somme de ses 100 premiers termes?

Exercice 13

u est une suite géométrique de premier terme u_0 =10 et de raison -3.

Quelle est la somme de ses 10 premiers termes?

Exercice 14

On place 200 euros sur un livret d'épargne rémunéré à 5% par an. Chaque année les intérêts s'accumulent et on n'effectue ni dépôt ni retrait.

Quel sera le montant sur le livret au bout de 20 ans? (arrondir à 1 euro près)

Exercice 15

Pimpim et Orphée creusent un puits dans le désert.

Ils creusent 2 mètres le premier jour, puis 2,10 mètres le deuxième, 2,20 mètres le troisième, et toujours 10 centimètres de plus chaque jour. L'eau est à une profondeur de 300 mètres.

Combien de jours leur faudra t-ils pour atteindre l'eau?

Exercice 16

Pimpim et Orphée veulent sortir du désert.

Ils parcourent 10 kilomètres le premier jour.

En raison de la fatigue, ils parcourent 5% de moins à chaque jour qui passe.

Combien de jours seront nécessaires pour atteindre le bout du désert situé à 150 kilomètres?