

遨游"视"界 做你所想 Explore World, Do What You Want

Congestion Control Fairness and Active Queue Management Darren Ng / Akamai

2019.08.24

遨游"视"界 做你所想 Explore World, Do What You Want

LiveVideoStackCon 2019 深圳

2019.12.13-14

成为讲师: speaker@livevideostack.com

成为志愿者: volunteer@livevideostack.com

赞助、商务合作: kathy@livevideostack.com

Our Adventure Awaits

The Internet

北京 2019

Congestion Collapse

- Network congestion and retransmission is preventing the network from delivering data.
- 1986: Lasted over a year. Decrease in throughput by a factor of 1000.

TCP Congestion Control

 Congestion Control is TCP/IP's attempt to match performance with available network bandwidth.

A Definition: High latency or latency variation caused by excess

packet buffering in network equipment.

TCP Congestion Control - Reno

TCP Congestion Control - FastTCP

TCP Congestion Control - BBR

Congestion Control Fairness

Congestion Control Fairness

Congestion Control Fairness

TCP Initial CWND

Content Provider Fairness

30x download for 45 seconds with Host CP. Target CP joins after 5 seconds.

Key takeaways:

- 1) Who starts first matters
- 2) Cloudflare is very aggressive

$$fness(a,b) = \begin{cases} 1 - \frac{bytes(a)}{bytes(b)} & \text{if bytes(b)} \ge bytes(a) \\ -1 + \frac{bytes(b)}{bytes(a)} & \text{if bytes(a)} > bytes(b) \end{cases}$$

How Can Network Traffic Be More Fair?

Active Queue Management (AQM)

Routers and Switches employ AQM to drop packets from flows:

- 1) To minimize long standing buffers (bufferbloat)
- 2) To improve latency
- 3) To minimize congestion from aggressive and misbehaving flows

Common AQM Policies

- 1) Random Early Drop / Detection / Discard (RED)
 - Drop packets based on a statistical probability tied to average queue length.
- 2) Proportional Integrated Controller Enhanced (PIE)
 - Drop packets based on a statistical probability affected by queue latency.
- Controlled Delay (CoDEL)
 - If the lowest queuing delay experienced from all packets in a sliding time interval is greater than a set value (5ms), drop the last packet in the interval.
- 4) Fair Queue Control Delay (FQ-CoDel)
 - Uses fair queuing with CoDel to more evenly distribute bandwidth amongst flows.
- 5) Common Applications Kept Enhanced (CAKE)
 - Enhanced AQM that builds on FQ_CoDel.

Explicit Congestion Notification

CE to sender

遨游"视"界 做你所想 Explore World, Do What You Want

From: NetEye (https://www.neteye-blog.com/2016/01/explicit-congestion-notification-3/)

Latency Without ECN

AQM with CoDel

北京 2019

AQM With FQ CoDel

Fair queuing ensures that TCP flows are serviced equally.

Key takeaways

- 1) Bandwidth fairness is close
- 2) Aggressive congestion control algorithms are reigned in.

Conclusion

Adaptive Queue Management (AQM) is important for:

- 1. Bandwidth equality
- 2. Low latency via reduction in bufferbloat
- 3. A better Internet experience overall

遨游"视"界 做你所想 Explore World, Do What You Want

Thank you

