Osnovna svojstva podataka

Milan M.Milosavljević

Osnovni pojmovi o podacima

Objekti

-primeri

- Skup objekata i njihovih atributa
- Atributi su svojstvo ili karakteristika objekta
 - Primer: temperatura, boja auta, veličina ekrana, itd.
 - Atributi su poznati i kao promenljive, polja, osobine, karakteristike, ...
- Skup atributa opisuje objekat
 - Objekat je takođe poznat i kao slog, tačka, slučaj, primer, entitet, instanca, ...

Atributi- obeležja (eng. Features)

1)
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Tipovi atributa

- Vrednosti atributa su brojevi ili simboli koji su im pridruženi
- Osobine i operacije (nad brojevima) koje se najčešće koriste radi određivanja tipa atributa su:

• Različitost: = i ≠

• Uređenje: <, ≤, > i ≥

• Aditivnost: + i -

Multiplikativnost: * i /

Tipovi atributa

- Prema ovim osobinama mogu se definisati
 - Imenski atributi različitost
 - Primer: JMBG, boja očiju, poštanski broj, radno mesto
 - Redni atributi različitost i uređenje
 - Primer: rangiranje, godine studija, poređenja (dobar, loš, zao), ...
 - Intervalni atributi različitost, uređenje i aditivnost
 - Primer: dan u nedelji, datum, temperatura (u stepenima Celzijusa)
 - Razmerni atributi sve četiri osobine
 - Primer: temperatura u Kelvinima, dužina, vreme, ...

Tip atributa	Opis	Primeri	Operacije
Imenski (eng. Nominal)	Vrednost imenskog atributa su upravo različita imena, tj. imenski atributi pružaju samo mogućnost razlikovanja jednog od drugog objekta (=, ≠)	poštanski kodovi, identifikacije zaposlenih, boja očiju, pol (muški, ženski)	način, entropija, korelacija kontingenata, χ² test
Redni (eng. Ordinal)	Vrednosti rednih atributa pružaju dovoljno informacija za uređenje objekata (<, >)	tvrdoća minerala, stepeni, redni brojevi zgrada u ulici	procenat, korelacija ranga, izvršavanje testova oznake testova
Intervalni (eng. Interval)	Za intervalne atribute , ima smisla razlika između vrednosti, tj. postoji jedinica mere takvih atributa (+, -)	datumi u kalendaru, temepratura u stepenima Celizijusa	srednja vrednost, standardna devijacija
Razmerni (eng. Ratio)	Kod razmernih atributa ima smisla i proizvod i količnik (*, /) tih atributa	temepratura u Kelvinima, količina novca, godine, masa, dužina	geometrijska sredina, harmonijska sredina, procenat varijacije

\					
Vrsta atributa	Transformacija	Komentar			
Imenski	Bilo koja permutacija vrednosti, tj. preslikavanje 1-1	Ako svi zaposleni dobiju nove identifikacije to neće doneti bilo kakve razlike			
Redni	Promena vrednosti koja čuva uređenje: new_value = f(old_value) gde je f monotona funkcija	Atribut koji sadrži poređenje dobar, bolji, najbolji podjednako dobro je predstavljen vrednostima {1, 2, 3} ili { 0.5, 1, 10}.			
Intervalni	<pre>new_value =a * old_value + b gde su a i b konstante</pre>	Celizijusova i Farenhatjova temperaturna skala se razlikuju u veličini stepena i u tome gde je nula			
Razmerni	new_value = a * old_value	Dužina može da se meri u metrima ili stopama.			

Diskretni i kontinuirani atributi

Diskretni atributi

- Imaju konačan ili prebrojivo beskonačan skup vrednosti
- Primer: poštanski brojevi, računi, skup reči u nekom dokumentu
- Često se prikazuju kao celobrojne promenljive
- Binarni atributi su specijalan slučaj diskretnih atriubuta

Kontinuirani (neprekidni) atribututi

- Skup vrednosti ovih atributa čine realni brojevi
- Primer: temepratura, visina, težina, pritisak, brzina
- Realne vrednosti mogu da se mere i predstavljaju samo preko konačnog broja cifara
- Uobičajen način predstavljanja je u obliku realnih brojeva u pokretnom zarezu

Asimetrični atributi

- Jedino se prisustvo ne-nula vrednosti smatra značajnim
 - Na primer, neka je objekat student čiji su atributi informacija da li je student slušao neki od kurseva koji se drže na univerzitetu.
 - Za konkretnog studenta vrednost atributa 1 znači da je on slušao kurs pridružen tom atributu, a 0 da nije slušao
 - Najveći broj vrednosti će biti 0
 - Efikasnije je koncentrisati se na ne-nula vrednosti (ako to ne uradimo, a studenti se porede npr. po kursevima koje nisu uzeli tada će svi studenti biti vrlo slični jer je broj mogućih kurseva velik)
- Binarni atributi kod kojih su bitne ne-nula vrednosti se zovu asimetrični binarni atributu.

Tipovi skupova podataka

- Data set skup podataka
- Slogovi
 - Matrica podataka
 - Podaci u dokumentima
 - Transakcioni podaci
- Grafovi
 - World Wide Web
 - Molekulane strukture
- Podaci sa poretkom (eng. Ordered)
 - Prostorni podaci
 - Vremenski (zavisni) podaci
 - Redosledni podaci
 - Genetički redosledni podaci

Značajne karakteristike struktuiranih podataka

- Dimenzionalnost
 - Broj atributa koje poseduje objekat iz skupa podataka
 - Prokletstvo dimenzionalnosti teškoće pri analizi podataka sa velikim brojem dimenzija
 - Primenjuje se dimenzionalna redukcija
- Proređenost
 - Broji se samo prisustvo. Npr. asimetrični atributi
 - Prednost zbog ušteda prostora i vremena
- Rezolucija
 - Obrasci zavise od skaliranja. Npr. različite razmere pri predstavljanju površine Zemlje

Slogovni podaci

 Podaci se sastoje od skupa slogova od kojih se svaki sastoji od fiksnog skupa atributa

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Matrica podataka

- Ako objekti imaju identičan skup fiksiranih numeričkih atributa, tada možemo da ih posmatramo kao da su u pitanju tačke u višedimenzionalnom prostoru u kome svaka dimenzija odgovara jednom od različitih atributa.
- Takvi skupovi podataka se predstavljaju matricama gde su objekti predstavljeni u vrstama a atributi u kolonama.

Projection of x Load	Projection of y load	Distance	Load	Thickness
10.23	5.27	15.22	2.7	1.2
12.65	6.25	16.22	2.2	1.1

Matrica terma u dokumentima

- Svaki dokument postaje vektor
 - moguće reči u dokumentima su termi koji se navode kao komponente vektora,
 - vrednost svake komponente je broj pojavljivanja te reči

	team	oo ach	play	ball	score	eueb	win	lost	timeout	Season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Proređene matrice

- Specijalan slučaj matrice podataka u kojoj su atributi istog tipa i asimetrični
- Primer: prethodna matrica terma u dokumentima
- U praksi se čuvaju jedino ne-nula upisi u ovakvoj matrici

Transakcioni podaci

- Specijalni tip slogovnih podataka za koje važi:
 - svaki slog (transakcija) sadrži skup stavki
 - Na primer, podaci o prodavnici prehrambene robe.
 Transakciju predstavlja skup proizvoda koji je neki kupac kupio. Stavke su pojedinačni proizvodi.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Grafovski podaci

Primer: Generički graf i HTML veze

Podaci o hemijskim strukturama

- Molekul benzena: C₆H₆
 - Prikaz strukture (ugljenik crno, vodonik sivo)

Sekvencijalni podaci (podaci sa poretkom)

- Nazivaju se i vremenski podaci
- Niz transakcija

Sekvencijalni podaci (podaci sa poretkom)

Genomske sekvence

Sekvencijalni podaci (podaci sa poretkom)

- Prostorno-vremenski podaci
- U prostorne podatke spadaju i podaci vezani za vremenske serije

Prosečne mesečne temeprature kopna i mora

Kvalitet podataka

- Koje su vrste problema pri određivanju kvaliteta podataka?
- Kako odrediti probleme sa podacima?
- Šta raditi sa uočenim problemima?
- Primer problema kvaliteta podataka:
 - šum i elementi van granica
 - nedostajuće vrednosti
 - duplirani (multiplicirani) podaci

Šum

- Šum predstavlja modifikaciju originalnih vrednosti
 - Primer: Izobličenje glasa osobe koja govori u mikrofon i pojava 'snega' na ekranu televizora, pogrešno očitani senzori

Signal dve sinusoide

Signal dve sinusoide + šum

Šum

- Eliminacija šuma nije jednostavna
- Robusni algoritmi daju prihvatljiva rešenja i kada je šum prisutan
- Deterministička izobličenja (npr. zamućenje na istom mestu celog skupa fotografija) se nazivaju *artifacts*

Vrednosti van granica (autlajeri)

 Autlajeri su objekti sa karakteristikama koje su značajno različite od najvećeg broja objekata u skupu podataka

Nedostajuće vrednosti

- Razlozi za pojavu
 - Informacije nisu prikupljene (npr. ljudi odbijaju da prikažu svoju težinu, starost, veličinu plate,...)
 - Atributi nisu primenljivi u svim slučajevima (npr. plata nije primenljiva na decu)
- Rukovanje nedostajućim vrednostima
 - Eliminacija objekata
 - Procena nedostajućih vrednosti
 - Ignorisanje nedostajućih vrednosti pri obradi
 - Zamena sa svim mogućim vrednostima (poređanim težinski prema verovatnoći pojavljivanja)
 - Nekonsistentne vrednosti

Duplirani podaci

- Skupovi podataka mogu da uključe duplikate, ili skoro identične podatke
 - Najčešće se javljaju kod spajanja podataka iz heterogenih izvora
- Primer:
 - Ista osoba sa više elektronskih adresa
- Proces obrade (eliminacije) duplikata se naziva čišćenje podataka

Preprocesiranje podataka

Primenjuje se radi dobijanja podataka koji više odgovaraju potrebama istraživanja podataka

- Agregacija
- Izbor uzoraka (eng. sampling)
- Smanjenje dimenzije
- Izbor podskupa atributa
- Formiranje atributa
- Diskretizacija i binarizacija
- Transformacija atributa

Agregacija

- Kombinovanje dva ili više atributa (ili objekata) u jedan atribut (objekat)
- Svrha
 - Redukcija podataka
 - Smanjivanje broja atributa ili objekata
 - Promena skale
 - Npr. umesto 365 dana dobijamo 12 meseci
 - 'Stabilniji' podaci
 - Agregirani podaci imaju tendenciju da imaju manja odstupanja

Agregacija

Primer: Vrednosti padavina u Australiji

Standardna devijacija prosečnih mesečnih padavina

Standardna devijacija prosečnih godišnjih padavina

Izbor uzoraka

- Izbor uzoraka je glavna tehnika koja se koristi u izdvajanju podataka.
 - Često se koristi kako za preliminarna istraživanja tako i za konačne analize podataka
- Statističari biraju uzorke jer je dobijanje kompletnog skupa podatakak koji su od interesa jako skupo i vremenski zahtevno
- Izbor uzoraka se koristi jer je obrada kompletnog skupa podataka od interesa računarski skupa ili vremenski zahtevna

Izbor uzoraka

- Ključni principi za efektivan izbor uzoraka su:
 - Korišćenjem uzoraka koji su reprezentativni dobija se skoro isti efekat kao da je rađeno na kompletnom skupu podataka
 - Uzorak je reprezentativan ako ima aproksimativno iste osobine kao i originalni skup podataka

Tipovi uzoraka

- Jednostavan slučajni uzorak
 - Postoji jednaka verovatnoća za izbor bilo koje slučajne stavke
- Izbor uzoraka bez zamene
 - Svaka stavka koja se bira uklanja se iz populacije
- Izbor uzoraka sa zamenom
 - Objekti se ne uklanjaju iz populacije po izboru u uzorak.
 - Posledica: isti objekat može da bude izabran više puta.
 - Jednostavnije za analizu jer verovatnoća izbora svake stavke ostaje ista u procesu izbora uzorka
- Izbor uzorka po slojevima
 - Podaci se dele u više delova, a zatim se bira jednostavan slučajni uzorak iz svakog od delova

Veličina uzorka

 Veličina uzorka treba da bude dovoljno velika da se ne naruši struktura objekta ili izostave interesantne osobine

Veličina uzorka

 Koja treba da je veličina uzorka da bi se u njemu našao po jedan objekat iz svake od 10 grupa?

Verovatnoća da uzorak sadrži tačke iz svake od 10 grupa

Prokletstvo dimenzionalnosti

- Kada se dimenzionalnost povećava, podaci postaju sve proređeniji u prostoru koji zauzimaju
- Definicije gustine i rastojanja između tačaka koje su kritične za klasterovanje i otkrivanje elemenata van granica postaju kontra intuitivne

- •Slučajno se generiše 500 tačaka
- Računa se razlika maksimuma i minimuma rastojanja parova tačaka

Redukcija dimenzija

- Veliki broj algoritama bolje rade sa podacima manjih dimenzija
- Eliminišu se šum, redundantni podaci,
- Potreba za manjim obučavajućim i test skupovima
- Dobija se jednostavniji model
- Lakša vizualizacija

Redukcija dimenzija

- Metode redukcije dimenzija se generalno dele na
- Endogene cilj je da zadrže što više informacija o skupu podataka kao celina (primer PCA)
- Egzogene cilj je da zadrže diskriminatornu informaciju unutar datog skupa podatala (primer LDA)
- Tehnike
 - Analiza glavnih komponenata (eng. Principle Component Analysis)
 - Dekompozicija singularne vrednosti (eng. Singular Value Decomposition)
 - Druge nelinearne tehnike i tehnike sa nadzorom

Izbor podskupa atributa (feature selection)

- Redundatni atributi
 - ponavljanje jedne ili svih informacija sadržanih u jednom ili više atributa
 - Primer: cena proizvoda i PDV
- Atributi sa irelevantnim vrednostima
 - sadrže informacije koje nisu korisne za proces IP-a
 - Primer: broj indeksa studenta je irelevantan za predviđanje prosečne ocene studenta

Izbor podskupa atributa (feature selection)

- Metod grube sile (Brute force):
 - Probaju se svi mogući podskupovi atributa kao ulaz u ML algoritam
 - Neprikladan zbog velikog broja podskupova
- Ugradjeni (Embedded) metode:
 - Izbor podskupova atributa je deo algoritma.
- Filterske metode:
 - atributi se biraju pre početka rada ML algoritma nekim pristupom koji je nezavisan od ML procesa
- Metode omotača (Wrapper):
 - Koristi se ML algoritam kao crna kutija koja pronalazi najbolji podskup skupa atributa.
 - •Slično primeni grube sile ali se ne uzimaju u obzir baš svi podskupovi

Filters vs. Wrappers

Formalno se razlikuju u kriterijumskoj funkciji

Formiranje obeležja (Feature extraction)

- Formiraju se nova obeležja koja sadrže najvažnije informacije iz skupa podataka na mnogo efikasniji način nego originalna obeležja
- Opšte metodologije:
 - Izdvajanje obeležja
 - zavisi od domena
 - Preslikavanje obeležja u novi prostor
 - Konstrukcija obeležja
 - kombinovanje (starih) obeležja

Preslikavanje atributa u novi prostor

- Furijeove transformacije (Fourier transformation)
- Transformacije talasićima (Wavelet transformation)

Primena Furijeovih transformacija za identifikaciju frekvencija u podacima sa vremenskim serijama

Diskretizacija i binarizacija

- Transformacija neprekidnih u disktetne atribute diskretizacija
- Transformacija neprekidnih i diskretnih atributa u binarne - binarizacija
- Jednostavna tehnika binarizacije: ako ima m diskretnih vrednosti tada se svakoj dodeljuje jedinstven broj u intervalu [0,m-1] i konvertuje svaki od tih brojeva u binarnu vrednost

Diskretizacija i binarizacija

- Diskretizacija se obično primenjuje na atribute koji se koriste u klasifikaciji ili analizi zasnovanoj na pravilima pridruživanja
- Transformacija neprekidnih atributa u diskretne se sastoji iz dve faze:
 - odabrati broj kategorija
 - odrediti kako preslikati vrednosti neprekidnih atributa u te kategorije
- Na kraju prve faze, posle sortiranja, vrednosti neprekidnih atributa se dele u n intervala navođenjem n-1 tačke razdvajanja
- U drugoj fazi sve vrednosti iz jednog intervala se preslikavaju u istu kategoričku vrednost.

Diskretizacija korišćenjem informacija o klasama

Pristup zasnovan na entropiji

Diskretizacija bez korišćenja informacija o klasama

Transformacija atributa

- Transformacija promenljive označava transformaciju koja se primenjuje na sve vrednosti te promenljive.
- Za svaki objekat, transformacija se primenjuje na vrednosti promenljive za taj objekat.

Transformacija atributa – jednostavne funkcije

- Jednostavne funkcije, npr.: \(\forall x\), \(x^k\), \(\log(x)\), \(e^x\), \(|x|\), \(1/x\)
- U statistici se često koriste Vx, log(x) i 1/x radi transformacije podataka koji nemaju Gausovu (normalnu) raspodelu u podatke koji imaju tu raspodelu
- U ML procesu ima i drugih razloga. Npr. ako je vrednost promenljive između 1 i 1.000.000.000, primenom log funkcije se dobijaju bolji odnosi kod poređenja (npr. 10⁸ sa 10⁹ i 10 sa 1000)
- Transformaciju promenljivih treba primenjivati sa oprezom jer može da promeni prirodu podataka (npr. transformacija sa 1/x)

Transformacija atributa -Standardizacija (normalizacija)

- Cilj: kompletan skup vrednosti treba da dobije neku željenu osobinu
- Primer: ako je \overline{x} srednja vrednost (vrednosti) atributa i s_x strandardna devijacija vrednosti tog atributa, tada transformacija $x' = (x-\overline{x})/s_x$ formira novu promenljivu koja ima srednju vrednost 0 i standardnu devijaciju 1.
- Ako se različite promenljive kombinuju ne neki od načina, tada je ovakva transformacija neophodna da bi se izbegla dominacija u izračunavanjima promenljive koja ima veću vrednost

Transformacija atributa -Standardizacija (normalizacija)

- Primer: potrebno je porediti osobe uzimajući u obzir atribute starost i prihod. Ako se ne uzme u obzir različita priroda atributa, razlika u prihodima dve osobe je mnogo veća nego razlika u godinama.
- Sredina i standardna devijacija su jako osetljive na elemente van granica →vrši se modifikacija transformacije.
- Umesto srednje vrednosti se uzima medijana, a standardna devijacija se zamenjuje apsolutnom standardnom devijacijom (x_i je i-ta vrednost promenljive, m broj objekata a μ ili srednja vrednost ili sredina)

$$\sigma A = \sum_{i=1}^{m} \left| x_i - \mu \right|$$

Sličnost i različitost

- Sličnost
 - Numerička mera koliko su dva objekta slični
 - Što dva objekta više liče jedan na drugi sličnost im je veća
 - Često se meri vrednostima u intervalu [0,1]
- Različitost
 - Numerička mera koliko su dva objekta različiti
 - Što dva objekta više liče jedan na drugi različitost im je manja
 - Najmanja različitost je često 0; gornja granica varira
 - Kao sinonim koristi se i termin rastojanje
- Blizina (eng. proximity) označava ili sličnost ili različitost

Sličnost i različitost - transformacije

- Najčešće se vrši radi
 - konverzije sličnosti u različitost i obratno
 - transformacije mere blizine u interval [0,1]
 - U opštem slučaju transformacija
 - •sličnosti u interval [0,1] se vrši izrazom

•različitosti u interval [0,1] se vrši izrazom

$$d'=(d-min_d)/(max_d-min_d)$$

gde su s i d početne vrednosti, s' i d' su nove vrednosti, max i min su najveće odnosno najmanje vrednosti sličnosti i različitosti, respektivno

Sličnost i različitost objekata sa više atributa

- Bliskost objekata sa većim brojem atributa se tipično definiše kao kombinacija bliskosti pojedinačnih atributa.
- Neki načini određivanja sličnosti i različitosti za jednostavne (pojedinačne) atribute su prikazani u narednoj tabeli

Sličnost i različitost za jednostavne atribute

Attribute	Dissimilarity	Similarity	
Type			
Nominal	$d = \left\{egin{array}{ll} 0 & ext{if } p = q \ 1 & ext{if } p eq q \end{array} ight.$	$s = \left\{ egin{array}{ll} 1 & ext{if } p = q \ 0 & ext{if } p eq q \end{array} ight.$	
Ordinal	$d = \frac{ p-q }{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s = 1 - \frac{ p-q }{n-1}$	
Interval or Ratio	d = p - q	$s = -d, s = \frac{1}{1+d}$ or	
		$s = -d, s = \frac{1}{1+d} \text{ or}$ $s = 1 - \frac{d - min_{-}d}{max_{-}d - min_{-}d}$	

p i q su vrednosti atributa za dva objekta

Euklidsko rastojanje

Euklidsko rastojanje

$$dist = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$

gde su n je broj dimenzija (atributa), p_k i q_k su vrednosti k-tih atributa objekata p i q

 Ako se skale razlikuju neophodno je izvršiti njihovu stadradizaiciju

Euklidsko rastojanje

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

x i y koordinate tačaka

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Matrica rastojanja

Rastojanje Minkovskog

 Rastojanje Minkovskog je uopštenje Euklidskog rastojanja

$$dist = (\sum_{k=1}^{n} |p_k - q_k|^r)^{\frac{1}{r}}$$

gde su r parametar, n broj dimenzija (atributa), a p_k i q_k su vrednosti k-tih atributa objekata p and q

Rastojanje Minkovskog: Primeri

- r = 1. Gradski blok (City block) (L_1 norma) rastojanje.
 - Najčešći primer ovoga je Hamingovo rastojanje koje predstavlja broj različitih bitova između dva binarna vektora.
- r = 2. Euklidsko rastojanje
- $r \to \infty$. "supremum" (L_{max} norma, L_{∞} norma) rastojanje.
 - Predstavlja maksimum razlike između odgovarajućih komponenti vektora. Računa se kao lim po r u prethodnom izrazu.

Rastojanje Minkovskog: Primeri

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

x i y koordinate tačaka p1-p4

L1	p1	p2	р3	p4
p1	0	4	4	6
p2	4	0	2	4
р3	4	2	0	2
p4	6	4	2	0

L2	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

\mathbf{L}_{∞}	p1	p2	р3	p4
p1	0	2	3	5
p2	2	0	1	3
р3	3	1	0	2
p4	5	3	2	0

Matrice rastojanja

Uobičajene osobine rastojanja

Rastojanja, kao što je npr. Euklidsko, imaju neke dobro poznate osobine:

- 1. Pozitivna određenost
 - 1. $d(p, q) \ge 0$ za svako $p \mid q$
 - 2. d(p, q) = 0 samo ako je p = q
- 2. Simetrija d(p, q) = d(q, p) for all p and q
- 1. Nejednakost trougla $d(p, r) \le d(p, q) + d(q, r)$ za sve tačke p, q, i r.

gde je d(p, q) rastojanje (različitost) između tačaka (objekata) p iq

Rastojanje koje zadovoljava ove uslove se naziva metrika

Uobičajene osobine rastojanja

- Ne moraju sve različitosti da zadovoljavaju ovu metriku
- Razlika skupova A i B definisana kao d(A,B)=broj(A-B) gde broj(X)=broj elemenata skupa X

Metrika važi ako se definiše d(A,B)=broj(A-B) + broj(B-A)

Mera razlike između dva vremena d(t1,t2)
 Dati definiciju

Uobičajene osobine sličnosti

Sličnost takođe ima dobro poznate osobine:

- 1. s(p, q) = 1 ako je p = q $(0 \le s \le 1)$
- 2. s(p, q) = s(q, p) za svako p i q (Simetrija)

gde je s(p, q) sličnost između tačaka (objekata) p i q

Ne moraju sve sličnosti da zadovoljavaju ovu metriku.

 Na primer, matrica konfuzije za prepoznavanje slova o kao 0 i 0 kao slova o

Mera sličnosti za binarne podatke

- Neka su p i q binarni vektori. Mera njihove sličnost se obično naziva koeficijenat sličnosti i obično je u [0,1]
- Sličnost se računa pomoću sledećih vrednosti
 M₀₁ = broj atributa koji su 0 u p i 1 u q
 M₁₀ = broj atributa koji su 1 u p i 0 u q
 M₀₀ = broj atributa koji su 0 u p i 0 u q
 M₁₁ = broj atributa koji su 1 u p i 1 u q

Mera sličnosti za binarne podatke

 Koeficijent jednostavnog slaganja (eng. Simple Matching Coefficient -SMC)

SMC = broj složenih / broj atributa
=
$$(M_{11} + M_{00}) / (M_{01} + M_{10} + M_{11} + M_{00})$$

Džakardovi (Jaccard) koeficijenti
 Koriste se u slučaju asimetričnih atributa

J = broj parova 11/ broj ne oba-su-nula vrednosti atributa = $(M_{11}) / (M_{01} + M_{10} + M_{11})$

Porimer: poređenje SMC i J

```
p = 1000000000
q = 0000001001
```

$$M_{01} = 2$$
 (broj atributa koji su 0 u p i 1 u q)

$$M_{10} = 1$$
 (broj atributa koji su 1 u p i 0 u q)

$$M_{00} = 7$$
 (broj atributa koji su 0 u p i 0 u q)

$$M_{11} = 0$$
 (broj atributa koji su 1 u p i 1 u q)

$$SMC = (M_{11} + M_{00})/(M_{01} + M_{10} + M_{11} + M_{00}) = (0+7) / (2+1+0+7) = 0.7$$

$$J = (M_{11}) / (M_{01} + M_{10} + M_{11}) = 0 / (2 + 1 + 0) = 0$$

Kosinusna sličnost

• Ako su d_1 i d_2 dva vektora dokumenata, tada važi $\cos(d_1, d_2) = (d_1 \bullet d_2) / ||d_1|| ||d_2||$, gde \bullet označava skalarni proivod vektora ||d|| je dužina vektora d.

Koristi se kod velikog broja parova tipa '00' pri čemu može da barata sa nebinarnim vektorima (npr. poređenje sličnosti dva dokumenta po rečima koje se javljaju u njima)

Primer:

$$d_1 = 3205000200$$

 $d_2 = 1000000102$

$$\begin{aligned} &d_1 \bullet d_2 = \ 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5 \\ &||d_1|| = (3*3 + 2*2 + 0*0 + 5*5 + 0*0 + 0*0 + 0*0 + 2*2 + 0*0 + 0*0)^{0.5} = (42)^{0.5} = 6.481 \\ &||d_2|| = (1*1 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 0*0 + 2*2)^{0.5} = (6)^{0.5} = 2.245 \end{aligned}$$

$$\cos(d_1, d_2) = .3150$$

Prošireni Džakardovi koeficijenti (Koeficijenti Tanimoto-a)

 Varijanta Džakardovih koeficijenata primenljiva na neprekidne i prebrojive atribute

 U slučaju binarnih atributa redukuje se na Džakardove koeficijente

$$T(p,q) = rac{p ullet q}{\|p\|^2 + \|q\|^2 - p ullet q}$$

Korelacija

Korelacija dva objekta koji imaju binarne ili neprekidne atribute je mera linearnog odnosa između njihovih atributa.

/(standardna devijacija(x) *standardna devijacija(y))

$$r = \frac{\sum (x_i - \bar{X})(y_i - \bar{Y})}{\sqrt{\sum (x_i - \bar{X})^2 \sum (y_i - \bar{Y})^2}}$$

tj. kovarinajca(x,y)=

$$S_{xy} = \frac{1}{n-1} \sum_{k=1}^{n} (x_k - \overline{x})(y_k - \overline{y})$$

Korelacija (nastavak)

Gde važe uobičajene statističke formule:

• kovarinajns(x,y)
$$S_{xy} = \frac{1}{n-1} \sum_{k=1}^{n} (x_k - \overline{x})(y_k - \overline{y})$$

• standardna devijacija(z) $s_z = \sqrt{\frac{1}{n-1}} \sum_{k=1}^{n} (x_k - \overline{x})^2$

• Srednja vrednost od z
$$\overline{z} = \frac{1}{n} \sum_{k=1}^{n} z_k$$

Korelacija (nastavak)

• Za izračunavanje korelacije neophodno je standardizovati objekte x i y i zatim naći njihov skalarni proizvod.

$$x'_{k} = (x_{k} - \overline{x}) / std(x)$$

$$y'_{k} = (y_{k} - \overline{y}) / std(y)$$

$$corr(x, y) = x' \cdot y'$$

Ako je korelacija =1 (-1) \rightarrow perfektni pozitivan (negativan) linearni odnos $x_k=ay_k+b$

Vizuelno ocenjivanje korelacije

Rasute tačke pokazuju slličnost od –1 do 1.

Mahanalobisovo rastojanje

- Predstavlja uopštenje Euklidskog rastojanja koje se koristi kada postoji korelacija nekih atributa, uz eventualni dodatak u razlikama opsega vrednosti atributa.
- Mahanalobisovo rastojanje je korisno kada važi
 - atributi su u korelaciji
 - imaju različite opsege vrednosti (različite varijanse)
 - raspodela podataka je približno normalna (Gausova)
- Mahanalobisovo rastojanje dva objekta (vektora) p i q je

mahalanobis
$$(p,q) = (p-q)\sum^{-1}(p-q)^T$$

gde je ∑⁻¹ inverzna matrica matrici kovarijansi podataka.

Mahanalobisovo rastojanje

 Σ je matrica kovarijansi za ulazni podataka X

$$\Sigma_{j,k} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{ij} - \overline{X}_{j})(X_{ik} - \overline{X}_{k})$$

Euklidsko rastojanje crvene tačke je 14.7, a Mahalanobisovo rastojanje je 6

Mahanalobisovo rastojanje

