MATHEMATICS 1LT3 TEST 1

Day Class		E. Clements
Duration of Test: 60 mi	nutes	
McMaster University, 1		
	FIRST NAME (please print):	SOLNS
	FAMILY NAME (please print):	
	Student No.:	

THIS TEST HAS 8 PAGES AND 5 QUESTIONS. YOU ARE RESPONSIBLE FOR ENSURING THAT YOUR COPY OF THE PAPER IS COMPLETE.

Total number of points is 40. Marks are indicated next to the problem number. Any non-graphing calculator is allowed.

USE PEN TO WRITE YOUR TEST. IF YOU USE A PENCIL YOUR TEST WILL NOT BE ACCEPTED FOR REMARKING (IF NEEDED).

You need to show work to receive full credit.

Problem	Points	Mark
1	8	
2	5	
3	7	
4	12	
5	8	
TOTAL	40	

1. Use the separation of variables technique to solve each differential equation.

(a) [4]
$$P'(t) - 10P(t)t = 0$$
, $P(0) = 210$

$$\frac{dP}{dt} = 10P \cdot t$$

$$\int \frac{1}{P} dP = \int 10t dt$$

$$M|P| = 5t^{2} + C$$

$$1P| = e^{5t^{2}} + C$$

$$= e^{c} \cdot e^{5t^{2}}$$

$$P = \pm e^{c} \cdot e^{5t^{2}}$$

So,
$$P(t) = K e^{5t^2}$$
, when $K = te^{C}$
 $P(0) = 210 \Rightarrow 210 = Ke^{5(0)^2} = K = 210$

(b) (i) [3]
$$\frac{dy}{dx} = y^2 \cos x$$

$$\int y^{-2} dy = \int \cos x dx$$

$$-y^{-1} = \sin x + C$$

$$\frac{1}{y} = -\sin x - C$$

 $y = \frac{1}{-\sin x - c}$

(ii) [1] Are there any other solutions to this differential equation **not** covered by the equation you found in part (i)?

2. Assuming that there is competition within a population of bacteria for resources, a model for limited bacterial growth is given by

$$\frac{db}{dt} = \lambda(b)b$$

where the per capita production rate, λ , is a decreasing function of the population size, b.

Suppose that the per capita production rate is a linear function of population size with a maximum of $\lambda(0) = 1$ and a slope of -0.002.

(a) [2] Find $\lambda(b)$ and the differential equation for b.

$$\lambda(b) = -0.002b + 1$$

$$\frac{db}{dt} = (-0.002b + 1)b$$

(b) [1] Find equilibrium solutions of this autonomous differential equation.

$$\frac{db}{dt} = 0$$
 when $-0.002b + 1 = 0$ or $\boxed{b^2 = 0}$

(c) [2] When is the population increasing? When is it decreasing? Display this information using a phase-line diagram.

3. Consider the following autonomous differential equation, where α and β are parameters:

$$\frac{dW}{dt} = \alpha e^{\beta W} - 1$$

(a) [2] Find the equilibrium for this differential equation.

(b) [3] Using the stability theorem, determine the values of the parameter β for which this equilibrium is stable and the values for which it is unstable.

$$f'(w) = \alpha e^{\beta W} - 1$$

$$f'(w) = \alpha e^{\beta W} \cdot \beta$$

$$f'(-\frac{\ln \alpha}{\beta}) = \alpha e^{\beta (\frac{\ln \alpha}{\beta})} \cdot \beta$$

$$= \alpha \cdot e^{\frac{\ln \alpha}{\beta}} \cdot \beta$$

$$= \alpha \cdot e^{\frac{\ln \alpha}{\beta}} \cdot \beta$$

$$= \beta$$
when $\beta > 0$, $W^* = -\frac{\ln \alpha}{\beta}$
is unstable
$$= \alpha \cdot e^{\frac{\ln \alpha}{\beta}} \cdot \beta$$

(c) [2] Suppose that $\alpha = e$. Graph the equilibrium in part (a) as a function of the parameter value β . Use a solid line when the equilibrium is stable and a dashed line when the equilibrium is unstable.

$$d = e \Rightarrow W^* = -\frac{\ln e}{\beta} = -\frac{1}{\beta}$$

4. The logistic differental equation describing the growth of a population of monkeys is given by

$$\frac{dP}{dt} = 0.8P \left(1 - \frac{P}{400} \right).$$

(a) [2] Determine the equilibria for this population. What do these numbers represent?

$$\frac{d\rho}{dt} = 0$$
 when $\rho = 0$ or $\rho = 400$

P=0 is a trivial equilibrium since a pop" of size zero- will have a growth rate of zero.

P=400 represents the carrying capacity for this pop".

This is the max. # of monkeys the environment can support in the long run.

(b) [2] Sketch $\frac{dP}{dt}$ as a function of P.

(c) [2] Draw a phase-line diagram for this differential equation.

4. continued

(d) [4] Sketch the equilibrium solutions and sketch typical solution curves corresponding to the initial conditions P(0) = 20, P(0) = 300, and P(0) = 500.

(e) [2] The solution of this equation is given by
$$P(t) = \frac{400}{1 + 19e^{-0.8t}}$$
.

When will the population reach 95% of its carrying capacity?

$$P(t_{?}) = 0.95(400)$$

$$0.95(400) = \frac{400}{1 + 19e^{-0.8t}}$$

$$1 + 19e^{-0.8t} = \frac{1}{0.95}$$

$$\Rightarrow 19e^{-0.8t} = \frac{100}{95} - 1$$

$$e^{-0.8t} = \frac{1}{361}$$

$$\Rightarrow t = -\frac{100}{100} = \frac{100}{100} = \frac{100}{100}$$

Name:	
Student No.:	

5. The following pair of equations represent the population growth of two different species where one is the predator and the other is the prey.

$$\frac{dA}{dt} = 0.1A - 0.005AB$$

$$\frac{dB}{dt} = -0.05B + 0.0001AB$$

(a) [2] Determine the equilibrium solutions for this system of equations.

$$\frac{dA}{dt} = 0 \quad \underline{AND} \quad \frac{dB}{dt} = 0$$

$$A(0.1-0.005B) = 0 \qquad AND \qquad B(-0.05+0.0001A) = 0$$

$$A = 0 \quad 0.08 = 20 \qquad AND \qquad B = 0 \quad 0.001A) = 0$$

$$B = 0 \quad 0.005B = 0.001A = 0.0001A = 0$$

(b) [2] Which of the variables represents the predator population and which represents the prey population? Explain.

A represents the prey pop" since the coefficient of the interact" term is negative (interactions have a negative effect on growth rate of prey). Also, when B=0, A's pop" will grow exponentially (another characteristic of prey).

B represents the predator pop" since it benefits from intractions (+0.0001AB increases the growth rate of B) and without prey (ie when A=0) the pop" of B will die out exponentially (typical of predators).

${ m Name:} _$	
Student No.:	

5.continued...

(c) [1] Why are the coefficients of the AB term not the same in both equations?

"-0,005" is a measure of how hamful interactions are for pop" A and "+0.0001" measures how beneficial interactions are for type B.

The size of these numbers indicates that interactions will be very harmful for type A but only moderately beneficial for type B,

(d) [3] If $A_0 = 40$ and $B_0 = 15$, approximate the size of both populations after one year using Euler's method and a step size of 4 months. Here, t is measured in months.

$$A_1 = 40 + [0.1(40) - 0.005(40)(15)]4 = 44$$

$$A_a = 44 + [0.1(44) - 0.005(44)(12.24)] 4 = 50.8288 \times 50.83$$

$$B_2 = 12.24 + [-0.05(12.24) + .0001(44)(12.24)] H = 10.01$$

$$A_3 = 50.83 + [0.1(50.83) - 0.005(50.83)(10.01)] 4 \times 60.98$$

$$B_3 = 10.01 + [-0.05(10.03) + 0.001(50.83)(10.01)] 4 \times 60.98$$

$$\beta_3 = 10.01 + [-0.05(10.01) + .0001(50.83)(10.01)] 4 \times 60.6$$

i. After I year, pop" will have approximately 61 individuals and pop" B will have approximately 8.