Acta Crystallographica Section E

### **Structure Reports**

Online

ISSN 1600-5368

### $3\beta$ -Acetoxy-6-hydroxyiminocholestane

### Kamal Aziz Ketuly, ‡ A. Hamid A. Hadi, Seik Weng Ng and Edward R. T. Tiekink\*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 25 February 2011; accepted 25 February 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma(C-C) = 0.005 \text{ Å}$ ; R factor = 0.050; wR factor = 0.114; data-to-parameter ratio = 10.9.

Two independent molecules comprise the asymmetric unit of the title cholestane derivative,  $C_{29}H_{49}NO_3$  {systematic name: (3S,8S,9S,10R,13R,14S,17R)-17-[(1R)-1,5-dimethylhexyl]-6-hydroxyimino-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,-16,17-tetradecahydro-1<math>H-cyclopenta[a]phenanthren-3-yl acetate}. The major differences between the molecules relate to the relative orientations of the terminal acetyl [C-C-O-C torsion angles = -158.8 (3) and -81.7 (3)°] and alkyl groups [C-C-C-C=168.9 (3) and 65.8 (4)°]. In the crystal, the independent molecules associate via pairs of  $O-H\cdots N$  hydrogen bonds, forming dimeric aggregates. Supramolecular layers in the ab plane are mediated by  $C-H\cdots O$  interactions.

#### **Related literature**

For background to this study and further details of the synthetic procedures, see: Ketuly & Hadi (2010). For previous syntheses, see: Anagnostopoulos & Fieser (1954); Petersen (1963); Choucair *et al.* (2004). For related structures, see: Ketuly *et al.* (1997, 2010). For ring conformational analysis, see: Cremer & Pople (1975).

#### **Experimental**

Crystal data

| $C_{29}H_{49}NO_3$             | $V = 2748.1 (5) \text{ Å}^3$              |
|--------------------------------|-------------------------------------------|
| $M_r = 459.69$                 | Z = 4                                     |
| Monoclinic, P2 <sub>1</sub>    | Mo $K\alpha$ radiation                    |
| a = 11.3934 (13)  Å            | $\mu = 0.07 \text{ mm}^{-1}$              |
| b = 9.6588 (11)  Å             | T = 100  K                                |
| c = 25.018 (3) Å               | $0.35 \times 0.30 \times 0.03 \text{ mm}$ |
| $\beta = 93.466 \ (2)^{\circ}$ |                                           |

Data collection

Bruker SMART APEX CCD diffractometer 26531 measured reflections 6690 independent reflections 4553 reflections with  $I > 2\sigma(I)$   $R_{\rm int} = 0.757, T_{\rm max} = 0.862$ 

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.050 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.114 & \text{independent and constrained} \\ S &= 0.99 & \text{refinement} \\ 6690 \text{ reflections} & \Delta \rho_{\text{max}} = 0.24 \text{ e Å}^{-3} \\ 615 \text{ parameters} & \Delta \rho_{\text{min}} = -0.23 \text{ e Å}^{-3} \\ 1 \text{ restraint} & \text{Absolute structure: nd} \\ Flack \text{ parameter: ?} \\ & \text{Rogers parameter: ?} \end{split}$$

**Table 1** Hydrogen-bond geometry (Å, °).

| D $ H···A$               | D-H      | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D-\mathrm{H}\cdots A$ |
|--------------------------|----------|-------------------------|-------------------------|------------------------|
| $O1-H1\cdots N2$         | 0.98 (4) | 1.88 (4)                | 2.809 (3)               | 157 (4)                |
| $O4-H4\cdots N1$         | 0.95 (4) | 1.82 (4)                | 2.733 (3)               | 160 (3)                |
| $C9-H9c\cdots O6^{i}$    | 0.98     | 2.58                    | 3.404 (4)               | 142                    |
| $C37-H37c\cdots O3^{ii}$ | 0.98     | 2.40                    | 3.373 (4)               | 169                    |

Symmetry codes: (i) x + 1, y, z; (ii)  $-x + 2, y - \frac{1}{2}, -z + 1$ .

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997), *DIAMOND* (Brandenburg, 2006) and *Qmol* (Gans & Shalloway, 2001); software used to prepare material for publication: *publicIF* (Westrip, 2010).

The authors thank the University of Malaya for support and greatly appreciate UMRG grant No. RG035/10BIO.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5806).

#### References

Anagnostopoulos, C. E. & Fieser, L. F. (1954). *J. Am. Chem. Soc.* **76**, 532–536. Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Bruker (2009). *APEX2* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA.

Choucair, B., Dherbomez, M., Roussakis, C. & Kihel, L. El. (2004). Tetrahedron Lett. 60, 11477–11486.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Gans, J. & Shalloway, D. (2001). J. Molec. Graphics Model, 19, 557-559.

Ketuly, K. A. & A. Hadi, A. H. (2010). Molecules, 15, 2347-2356.

Ketuly, K. A., Hadi, A. H. A., Ng, S. W. & Tiekink, E. R. T. (2010). *Acta Cryst.* E66, o2265.

<sup>‡</sup> Additional correspondence author, e-mail: kketuly@gmail.com.

### organic compounds

Ketuly, K. A., Yufit, D. S., Brooks, C. J. W. & Freer, A. A. (1997). *Acta Cryst.* C53, 981–982.

Petersen, Q. R. (1963). Proc. Indiana Acad. Sci. 73, 127-131.

Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122. Westrip, S. P. (2010). *J. Appl. Cryst.* **43**, 920–925.

**o774** Ketuly et al. • C<sub>29</sub>H<sub>49</sub>NO<sub>3</sub> Acta Cryst. (2011). E**67**, o773–o774

| supplementa | ry materials |  |  |
|-------------|--------------|--|--|
|             |              |  |  |
|             |              |  |  |
|             |              |  |  |
|             |              |  |  |

Acta Cryst. (2011). E67, o773-o774 [ doi:10.1107/S1600536811007306 ]

### $3\beta$ -Acetoxy-6-hydroxyiminocholestane

K. A. Ketuly, A. H. A. Hadi, S. W. Ng and E. R. T. Tiekink

#### Comment

The title compound, 3β-Acetoxy-6 N-hydroxyiminocholestane, (I), is a known species and has been utilized as an intermediate for the preparation of 6-ketocholestanol acetate, which it readily affords upon reduction with zinc and acetic acid followed by acid hydrolysis (Anagnostopoulos & Fieser, 1954; Petersen, 1963). Interest in hydroxyimino-steroids stems from a broad investigation into the correlation of structure with biological activity of modified steroid hormones (Choucair *et al.*, 2004). In continuation of systematic structural analyses of related steroidal compounds (Ketuly *et al.*, 1997; Ketuly *et al.*, 2010), the X-ray crystallographic analysis of (I) was conducted.

Two independent molecules comprise the asymmetric unit of (I), Fig. 1. These are linked into dimeric aggregates *via* O—H···N hydrogen bonds, Table 1. From the overlay diagram, Fig. 3, it is evident that the molecules differ in the relative orientations of the terminal acetyl and alkyl substituents. For the former, the different conformation is manifested in the values of the C3—C4—O2—C8 and C30—C31—O5—C36 torsion angles of -158.8 (3) and -81.7 (3) °, respectively. For the alkyl chains, the differences are seen in the C22—C24—C25—C26 and C51—C53—C54—C55 torsion angles of 168.9 (3) and 65.8 (4) °, respectively. Each of the six-membered rings adopts a chair conformation or close to a chair conformation, and each of the five-membered rings has a twisted conformation, about the C14—C15 and C42—C43 bonds, respectively (Cremer & Pople, 1975).

The most notable feature of the crystal packing other than the aforementioned O—H···N hydrogen bonds is the presence of C—H···O interactions, Table 1. These lead to the formation of supramolecular layers in the *ab* plane, Fig. 3.

#### **Experimental**

Hydroxylamine hydrochloride (13.5 mg) was dissolved in dried and purified pyridine (2 ml) and 3β-acetoxy-5α-chloestan-6-one (10 mg) added. The solution mixture was heated at 353 K for 4 h. The solvent was dried under vacuum, yielding crude crystals. Recrystallization from methanol and water (10:1, v/v) yielded compound (I): yield 9.1 mg, 88%, M.pt. 474–475 K. Lit. M.pt. 475–476 K (Petersen, 1963). Compound (I) was also isolated as an intermediate byproduct during the reduction of 3β-acetoxy-6-nitrocholest-5-ene to 3β-acetoxy-6-oxo-cholestanol. Thus, 3β-acetoxy-6-nitrocholest-5-ene (5 g, 10.6 mmol) was dissolved in glacial acetic acid (100 ml) and stirred with a Hershbury stirrer and diluted with water (5 ml). Zinc dust (10 g) was added in small portions over a period of 0.5 h. The suspension was then heated under reflux for 4.5 h. The solution was filtered and washed with acetic acid (2 x 6.5 ml). The filtrate was diluted with water (100 ml), cooled in an ice-bath and the organic layer was extracted with ether. The yellow viscous product was crystallized from methanol, dried (4.41 g) and recrystallized four times from methanol with a few drops of ether, yielding 3β-acetoxy-6-oxo-cholestanol (3.12 g), M.pt. 402–404 K. Lit. 409 K (Choucair *et al.*, 2004). The combined mother liquors were dried and four times recrystallized from methanol and water (10:1, v/v), yielding colourless plates of (I), (0.24 g), M.pt. 474–475 K. The purification and vacuum sublimation methods employed in the study follow literature precedents (Ketuly & Hadi, 2010).

#### Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.98 to 1.00 Å) and were included in the refinement in the riding model approximation, with  $U_{\rm iso}({\rm H})$  set to 1.2 to 1.5 $U_{\rm equiv}({\rm C})$ . The oxygen-bound H atoms were located from a difference map and refined freely. In the absence of significant anomalous scattering effects, 5428 Friedel pairs were averaged in the final refinement. However, the absolute configuration was assigned on the basis of the known chirality of the 3 $\beta$ -acetoxy-5 $\alpha$ -chloestan-6-one starting material. Two reflections, *i.e.* (0 0 1) and (0 0 2), were omitted from the final refinement owing to poor agreement.

#### **Figures**



Fig. 1. The molecular structures of the two independent molecules comprising the asymmetric unit of (I) showing displacement ellipsoids at the 50% probability level. The molecules are connected into dimeric aggregates *via* pairs of O—H···N hydrogen bonds (dashed lines).



Fig. 2. Overlay diagram the two independent molecules comprising the asymmetric unit of (I). The independent molecule having the N1 atom is shown in red.



Fig. 3. View in projection down the *a* axis of the crystal packing of (I). The O—H···N hydrogen bonds and C—H···O contacts are shown as orange and blue dashed lines, respectively.

(3S,8S,9S,10R,13R,14S,17R)- 17-[(1R)-1,5-dimethylhexyl]-6-hydroxyimino-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*- cyclopenta[a]phenanthren-3-yl acetate

Crystal data

 $C_{29}H_{49}NO_3$  F(000) = 1016  $M_r = 459.69$   $D_x = 1.111 \text{ Mg m}^{-3}$ 

Monoclinic,  $P2_1$  Mo  $K\alpha$  radiation,  $\lambda = 0.71073$  Å
Hall symbol: P 2yb Cell parameters from 2461 reflections

 a = 11.3934 (13) Å  $\theta = 2.3-20.8^{\circ}$  

 b = 9.6588 (11) Å  $\mu = 0.07 \text{ mm}^{-1}$  

 c = 25.018 (3) Å T = 100 K 

  $\beta = 93.466 (2)^{\circ}$  Plate, colourless

  $V = 2748.1 (5) \text{ Å}^3$   $0.35 \times 0.30 \times 0.03 \text{ mm}$ 

 $V = 2748.1 (5) \text{ Å}^3$ Z = 4

Data collection

Bruker SMART APEX CCD diffractometer 6690 independent reflections

Radiation source: fine-focus sealed tube 4553 reflections with  $I > 2\sigma(I)$ 

Radiation source. The focus seared tube 4333 reflections with  $1 \ge 20(1)$ 

graphite  $R_{\text{int}} = 0.086$ 

| ω scans                                                              | $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$ |
|----------------------------------------------------------------------|---------------------------------------------------------------------------|
| Absorption correction: multi-scan ( <i>SADABS</i> ; Sheldrick, 1996) | $h = -14 \longrightarrow 14$                                              |
| $T_{\min} = 0.757, T_{\max} = 0.862$                                 | $k = -11 \rightarrow 12$                                                  |
| 26531 measured reflections                                           | $l = -32 \longrightarrow 32$                                              |

#### Refinement

Refinement on  $F^2$ Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring Least-squares matrix: full

H atoms treated by a mixture of independent and  $R[F^2 > 2\sigma(F^2)] = 0.050$ 

constrained refinement

 $w = 1/[\sigma^2(F_0^2) + (0.0489P)^2]$  $wR(F^2) = 0.114$ where  $P = (F_0^2 + 2F_c^2)/3$ 

 $(\Delta/\sigma)_{\text{max}} < 0.001$ S = 0.996690 reflections  $\Delta \rho_{\text{max}} = 0.24 \text{ e Å}^{-3}$  $\Delta \rho_{min} = -0.23 \text{ e Å}^{-3}$ 615 parameters

Absolute structure: nd 1 restraint

Primary atom site location: structure-invariant direct methods

#### Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating Rfactors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\mathring{A}^2)$ 

|    | x            | y          | z            | $U_{\rm iso}*/U_{\rm eq}$ |
|----|--------------|------------|--------------|---------------------------|
| O1 | 0.84194 (18) | 0.5005 (3) | 0.55612 (8)  | 0.0249 (5)                |
| O2 | 1.37405 (18) | 0.6484 (2) | 0.51114 (8)  | 0.0238 (5)                |
| O3 | 1.4744 (2)   | 0.8086 (3) | 0.46763 (10) | 0.0369 (7)                |
| O4 | 1.08653 (19) | 0.4934 (3) | 0.62945 (9)  | 0.0321 (6)                |
| O5 | 0.55480 (19) | 0.3995 (2) | 0.69942 (9)  | 0.0261 (5)                |
| O6 | 0.5309 (2)   | 0.6211 (3) | 0.67381 (10) | 0.0321 (6)                |
| N1 | 0.9531 (2)   | 0.5325 (3) | 0.53618 (10) | 0.0191 (6)                |
| N2 | 0.9777 (2)   | 0.4768 (3) | 0.65324 (10) | 0.0240(6)                 |
| C1 | 0.9457 (3)   | 0.5799 (3) | 0.48875 (12) | 0.0182 (7)                |
| C2 | 1.0580(3)    | 0.6150(3)  | 0.46315 (12) | 0.0186 (7)                |
| H2 | 1.0485       | 0.7120     | 0.4495       | 0.022*                    |

| C3   | 1.1680 (3) | 0.6152 (4) | 0.50172 (12) | 0.0208 (7) |
|------|------------|------------|--------------|------------|
| Н3А  | 1.1554     | 0.6770     | 0.5324       | 0.025*     |
| Н3В  | 1.1829     | 0.5206     | 0.5157       | 0.025*     |
| C4   | 1.2728 (3) | 0.6646 (4) | 0.47275 (12) | 0.0221 (7) |
| H4A  | 1.2627     | 0.7643     | 0.4627       | 0.027*     |
| C5   | 1.2916 (3) | 0.5790 (4) | 0.42338 (12) | 0.0230(8)  |
| H5A  | 1.3142     | 0.4837     | 0.4343       | 0.028*     |
| H5B  | 1.3569     | 0.6192     | 0.4041       | 0.028*     |
| C6   | 1.1800 (3) | 0.5736 (4) | 0.38548 (12) | 0.0230 (7) |
| H6A  | 1.1947     | 0.5122     | 0.3549       | 0.028*     |
| Н6В  | 1.1637     | 0.6676     | 0.3711       | 0.028*     |
| C7   | 1.0709 (3) | 0.5212 (3) | 0.41278 (11) | 0.0177 (7) |
| C8   | 1.4698 (3) | 0.7243 (4) | 0.50283 (14) | 0.0261 (8) |
| C9   | 1.5689 (3) | 0.6876 (4) | 0.54238 (14) | 0.0322 (9) |
| H9A  | 1.6407     | 0.7351     | 0.5328       | 0.048*     |
| H9B  | 1.5817     | 0.5872     | 0.5419       | 0.048*     |
| Н9С  | 1.5492     | 0.7163     | 0.5783       | 0.048*     |
| C10  | 1.0868 (3) | 0.3688 (3) | 0.42964 (13) | 0.0235 (7) |
| H10A | 1.1521     | 0.3613     | 0.4568       | 0.035*     |
| H10B | 1.1040     | 0.3130     | 0.3984       | 0.035*     |
| H10C | 1.0144     | 0.3351     | 0.4445       | 0.035*     |
| C11  | 0.9585 (3) | 0.5404 (3) | 0.37497 (11) | 0.0181 (7) |
| H11  | 0.9568     | 0.6399     | 0.3640       | 0.022*     |
| C12  | 0.9603 (3) | 0.4552 (3) | 0.32305 (12) | 0.0209(7)  |
| H12A | 0.9672     | 0.3558     | 0.3324       | 0.025*     |
| H12B | 1.0307     | 0.4812     | 0.3040       | 0.025*     |
| C13  | 0.8498 (3) | 0.4763 (4) | 0.28501 (12) | 0.0226 (7) |
| H13A | 0.8484     | 0.5726     | 0.2715       | 0.027*     |
| H13B | 0.8537     | 0.4135     | 0.2539       | 0.027*     |
| C14  | 0.7370 (3) | 0.4477 (3) | 0.31316 (12) | 0.0190(7)  |
| C15  | 0.7391 (3) | 0.5408 (3) | 0.36309 (11) | 0.0192 (7) |
| H15  | 0.7478     | 0.6381     | 0.3502       | 0.023*     |
| C16  | 0.8436 (3) | 0.5132 (3) | 0.40277 (11) | 0.0174 (7) |
| H16  | 0.8419     | 0.4134     | 0.4132       | 0.021*     |
| C17  | 0.8359 (3) | 0.6006 (4) | 0.45354 (12) | 0.0210(7)  |
| H17A | 0.8273     | 0.6996     | 0.4439       | 0.025*     |
| H17B | 0.7665     | 0.5724     | 0.4728       | 0.025*     |
| C18  | 0.7281 (3) | 0.2929 (3) | 0.32761 (13) | 0.0239 (8) |
| H18A | 0.6553     | 0.2765     | 0.3455       | 0.036*     |
| H18B | 0.7956     | 0.2667     | 0.3516       | 0.036*     |
| H18C | 0.7278     | 0.2372     | 0.2949       | 0.036*     |
| C19  | 0.6195 (3) | 0.4962 (3) | 0.28363 (11) | 0.0195 (7) |
| H19  | 0.6335     | 0.5897     | 0.2680       | 0.023*     |
| C20  | 0.5362 (3) | 0.5155 (4) | 0.33006 (12) | 0.0251 (8) |
| H20A | 0.4877     | 0.5999     | 0.3241       | 0.030*     |
| H20B | 0.4830     | 0.4349     | 0.3321       | 0.030*     |
| C21  | 0.6149 (3) | 0.5290 (4) | 0.38261 (12) | 0.0241 (8) |
| H21A | 0.5940     | 0.6125     | 0.4029       | 0.029*     |
| H21B | 0.6075     | 0.4464     | 0.4056       | 0.029*     |
|      |            |            |              |            |

| C22  | 0.5642 (3) | 0.4040(3)  | 0.23836 (12) | 0.0220 (7)  |
|------|------------|------------|--------------|-------------|
| H22  | 0.5499     | 0.3106     | 0.2539       | 0.026*      |
| C23  | 0.6450(3)  | 0.3848 (4) | 0.19192 (12) | 0.0268 (8)  |
| H23A | 0.6010     | 0.3405     | 0.1617       | 0.040*      |
| H23B | 0.7120     | 0.3264     | 0.2037       | 0.040*      |
| H23C | 0.6737     | 0.4754     | 0.1807       | 0.040*      |
| C24  | 0.4450(3)  | 0.4623 (3) | 0.21712 (13) | 0.0255 (8)  |
| H24A | 0.4027     | 0.4976     | 0.2477       | 0.031*      |
| H24B | 0.4590     | 0.5416     | 0.1933       | 0.031*      |
| C25  | 0.3664(3)  | 0.3576 (4) | 0.18636 (13) | 0.0280(8)   |
| H25A | 0.3645     | 0.2707     | 0.2073       | 0.034*      |
| H25B | 0.4009     | 0.3363     | 0.1519       | 0.034*      |
| C26  | 0.2406(3)  | 0.4099 (4) | 0.17519 (14) | 0.0293 (8)  |
| H26A | 0.2134     | 0.4512     | 0.2085       | 0.035*      |
| H26B | 0.2415     | 0.4843     | 0.1480       | 0.035*      |
| C27  | 0.1525 (3) | 0.3005 (4) | 0.15556 (13) | 0.0263 (8)  |
| H27  | 0.1581     | 0.2220     | 0.1816       | 0.032*      |
| C28  | 0.0275 (3) | 0.3572 (4) | 0.15502 (15) | 0.0394 (10) |
| H28A | 0.0106     | 0.3874     | 0.1912       | 0.059*      |
| H28B | -0.0283    | 0.2846     | 0.1431       | 0.059*      |
| H28C | 0.0197     | 0.4361     | 0.1304       | 0.059*      |
| C29  | 0.1768 (3) | 0.2427 (5) | 0.10086 (15) | 0.0417 (10) |
| H29A | 0.2546     | 0.1992     | 0.1025       | 0.063*      |
| H29B | 0.1745     | 0.3180     | 0.0746       | 0.063*      |
| H29C | 0.1169     | 0.1736     | 0.0902       | 0.063*      |
| C30  | 0.7648(3)  | 0.4453 (4) | 0.69849 (12) | 0.0215 (7)  |
| H30A | 0.7533     | 0.5199     | 0.6716       | 0.026*      |
| H30B | 0.7732     | 0.3567     | 0.6792       | 0.026*      |
| C31  | 0.6589(3)  | 0.4380(3)  | 0.73216 (12) | 0.0228 (7)  |
| H31  | 0.6462     | 0.5305     | 0.7488       | 0.027*      |
| C32  | 0.6743 (3) | 0.3301(3)  | 0.77571 (12) | 0.0242 (8)  |
| H32A | 0.6789     | 0.2371     | 0.7593       | 0.029*      |
| H32B | 0.6053     | 0.3316     | 0.7979       | 0.029*      |
| C33  | 0.7860(3)  | 0.3571 (4) | 0.81116 (12) | 0.0242 (8)  |
| H33A | 0.7955     | 0.2823     | 0.8381       | 0.029*      |
| H33B | 0.7770     | 0.4454     | 0.8306       | 0.029*      |
| C34  | 0.8974(3)  | 0.3646 (3) | 0.77964 (12) | 0.0196 (7)  |
| C35  | 0.8765 (3) | 0.4736 (3) | 0.73399 (12) | 0.0193 (7)  |
| H35  | 0.8640     | 0.5644     | 0.7520       | 0.023*      |
| C36  | 0.4993 (3) | 0.5018 (4) | 0.67105 (13) | 0.0271 (8)  |
| C37  | 0.3957(3)  | 0.4475 (4) | 0.63748 (14) | 0.0316 (9)  |
| H37A | 0.3414     | 0.5237     | 0.6282       | 0.047*      |
| H37B | 0.3551     | 0.3770     | 0.6577       | 0.047*      |
| H37C | 0.4229     | 0.4063     | 0.6046       | 0.047*      |
| C38  | 0.9238 (3) | 0.2221 (3) | 0.75585 (13) | 0.0224 (7)  |
| H38A | 0.9534     | 0.1598     | 0.7845       | 0.034*      |
| H38B | 0.9832     | 0.2320     | 0.7294       | 0.034*      |
| H38C | 0.8516     | 0.1835     | 0.7385       | 0.034*      |
| C39  | 1.0043 (3) | 0.4165 (3) | 0.81616 (11) | 0.0197 (7)  |
|      |            |            |              |             |

| H39   | 0.9850     | 0.5135              | 0.8265       | 0.024*      |
|-------|------------|---------------------|--------------|-------------|
| C40   | 1.0249 (3) | 0.3368 (4)          | 0.86832 (12) | 0.0277 (8)  |
| H40A  | 1.0383     | 0.2381              | 0.8599       | 0.033*      |
| H40B  | 0.9529     | 0.3422              | 0.8885       | 0.033*      |
| C41   | 1.1297 (3) | 0.3902 (4)          | 0.90420 (12) | 0.0265 (8)  |
| H41A  | 1.1127     | 0.4852              | 0.9164       | 0.032*      |
| H41B  | 1.1406     | 0.3303              | 0.9362       | 0.032*      |
| C42   | 1.2428 (3) | 0.3912 (3)          | 0.87421 (12) | 0.0220(7)   |
| C43   | 1.2180(3)  | 0.4791 (3)          | 0.82297 (11) | 0.0201 (7)  |
| H43   | 1.1939     | 0.5728              | 0.8353       | 0.024*      |
| C44   | 1.1168 (3) | 0.4260(3)           | 0.78592 (12) | 0.0206(7)   |
| H44   | 1.1372     | 0.3313              | 0.7732       | 0.025*      |
| C45   | 1.0981 (3) | 0.5218 (4)          | 0.73689 (11) | 0.0229 (7)  |
| H45A  | 1.0953     | 0.6190              | 0.7492       | 0.028*      |
| H45B  | 1.1658     | 0.5124              | 0.7142       | 0.028*      |
| C46   | 0.9867(3)  | 0.4894(3)           | 0.70391 (11) | 0.0201 (7)  |
| C47   | 1.2818 (3) | 0.2435 (3)          | 0.86097 (13) | 0.0286 (8)  |
| H47A  | 1.2210     | 0.1991              | 0.8374       | 0.043*      |
| H47B  | 1.2934     | 0.1899              | 0.8942       | 0.043*      |
| H47C  | 1.3557     | 0.2471              | 0.8429       | 0.043*      |
| C48   | 1.3496 (3) | 0.4747 (3)          | 0.90062 (12) | 0.0239 (7)  |
| H48   | 1.3176     | 0.5633              | 0.9145       | 0.029*      |
| C49   | 1.4219 (3) | 0.5117 (4)          | 0.85183 (12) | 0.0265 (8)  |
| H49A  | 1.4518     | 0.6077              | 0.8552       | 0.032*      |
| H49B  | 1.4898     | 0.4483              | 0.8501       | 0.032*      |
| C50   | 1.3397 (3) | 0.4970 (4)          | 0.80088 (12) | 0.0254 (8)  |
| H50A  | 1.3425     | 0.5808              | 0.7782       | 0.030*      |
| H50B  | 1.3611     | 0.4153              | 0.7797       | 0.030*      |
| C51   | 1.4265 (3) | 0.4091 (4)          | 0.94657 (12) | 0.0270 (8)  |
| H51   | 1.4669     | 0.3263              | 0.9323       | 0.032*      |
| C52   | 1.3565 (3) | 0.3630 (4)          | 0.99354 (13) | 0.0351 (9)  |
| H52A  | 1.3037     | 0.2871              | 0.9821       | 0.053*      |
| H52B  | 1.3101     | 0.4410              | 1.0058       | 0.053*      |
| H52C  | 1.4107     | 0.3313              | 1.0229       | 0.053*      |
| C53   | 1.5206 (3) | 0.5147 (4)          | 0.96584 (14) | 0.0333 (9)  |
| H53A  | 1.5581     | 0.5514              | 0.9341       | 0.040*      |
| H53B  | 1.4808     | 0.5932              | 0.9826       | 0.040*      |
| C54   | 1.6177 (3) | 0.4619 (4)          | 1.00560 (15) | 0.0402 (10) |
| H54A  | 1.5811     | 0.4213              | 1.0369       | 0.048*      |
| H54B  | 1.6667     | 0.5411              | 1.0185       | 0.048*      |
| C55   | 1.6970 (3) | 0.3526 (4)          | 0.98144 (14) | 0.0347 (9)  |
| H55A  | 1.6528     | 0.2646              | 0.9775       | 0.042*      |
| H55B  | 1.7161     | 0.3833              | 0.9452       | 0.042*      |
| C56   | 1.8112 (3) | 0.3258 (4)          | 1.01455 (15) | 0.0410 (10) |
| H56   | 1.7915     | 0.3076              | 1.0523       | 0.0410 (10) |
| C57   | 1.8932 (3) | 0.4494 (5)          | 1.01459 (17) | 0.0476 (11) |
| H57A  | 1.9674     | 0.4262              | 1.0345       | 0.0470 (11) |
| H57B  | 1.8565     | 0.5283              | 1.0343       | 0.071*      |
| H57C  | 1.9087     | 0.3283              | 0.9776       | 0.071*      |
| 113/0 | 1.700/     | U. <del>1</del> /33 | 0.9770       | 0.071       |

0.0490 (12)

| C58              | 1.8720 (3)        | 0.1987 (5)         |           | 0.99400 ( | (17)         | 0.0490   | ` ′          |              |
|------------------|-------------------|--------------------|-----------|-----------|--------------|----------|--------------|--------------|
| H58A             | 1.9453            | 0.1825             |           | 1.0157    |              | 0.073*   | •            |              |
| H58B             | 1.8898            | 0.2132             |           | 0.9566    |              | 0.073*   | •            |              |
| H58C             | 1.8203            | 0.1181             |           | 0.9965    |              | 0.073*   | •            |              |
| H1               | 0.871 (4)         | 0.480(5)           |           | 0.5931 (1 | .7)          | 0.075    | (15)*        |              |
| H4               | 1.057 (3)         | 0.508 (4)          |           | 0.5936 (1 |              | 0.047    |              |              |
|                  | 1.00 / (5)        | 0.200(1)           |           | 0.0>50 (1 |              | 0.0.7    | (11)         |              |
|                  |                   |                    |           |           |              |          |              |              |
| Atomic displacen | nent parameters ( | $(\mathring{A}^2)$ |           |           |              |          |              |              |
| _                | $U^{11}$          | $U^{22}$           | $U^{33}$  |           | $U^{12}$     |          | $U^{13}$     | $U^{23}$     |
|                  |                   | _                  | -         |           | -            |          |              | _            |
| O1               | 0.0188 (12)       | 0.0347 (14)        | 0.0221 (1 |           | -0.0064 (11  | <i>'</i> | 0.0073 (10)  | 0.0009 (11)  |
| O2               | 0.0167 (12)       | 0.0278 (14)        | 0.0271 (1 |           | -0.0059 (10  | *        | 0.0026 (10)  | 0.0033 (10)  |
| O3               | 0.0334 (16)       | 0.0372 (16)        | 0.0408 (1 |           | -0.0089 (12  |          | 0.0073 (12)  | 0.0070 (13)  |
| O4               | 0.0194 (13)       | 0.0555 (18)        | 0.0222 (1 | 12)       | -0.0054 (13  |          | 0.0060 (10)  | 0.0065 (12)  |
| O5               | 0.0205 (12)       | 0.0240 (13)        | 0.0341 (1 | 12)       | 0.0005(10)   |          | 0.0049 (10)  | -0.0047 (11) |
| O6               | 0.0284 (14)       | 0.0222 (14)        | 0.0455 (1 | 15)       | 0.0027(11)   |          | 0.0015 (12)  | -0.0042 (12) |
| N1               | 0.0170 (14)       | 0.0208 (15)        | 0.0202 (1 | 13)       | -0.0027 (12  | )        | 0.0059 (11)  | -0.0026 (11) |
| N2               | 0.0165 (14)       | 0.0330 (18)        | 0.0235 (1 | 13)       | -0.0007 (13  | )        | 0.0086 (11)  | 0.0025 (13)  |
| C1               | 0.0174 (17)       | 0.0172 (17)        | 0.0201 (1 | 15)       | -0.0003 (13  | )        | 0.0026 (13)  | -0.0069(13)  |
| C2               | 0.0180 (17)       | 0.0161 (17)        | 0.0220 (1 | 16)       | -0.0003 (14  | )        | 0.0053 (14)  | 0.0015 (13)  |
| C3               | 0.0165 (17)       | 0.0248 (18)        | 0.0213 (1 |           | -0.0005 (14  | *        | 0.0027 (13)  | 0.0021 (14)  |
| C4               | 0.0201 (18)       | 0.0217 (18)        | 0.0241 (1 |           | -0.0019 (14  | *        | -0.0018 (14) | 0.0029 (14)  |
| C5               | 0.0183 (18)       | 0.0266 (19)        | 0.0246 (1 |           | -0.0005 (15  |          | 0.0056 (14)  | 0.0027 (15)  |
| C6               | 0.0216 (18)       | 0.0265 (19)        | 0.0213 (1 |           | 0.0017 (15)  |          | 0.0046 (14)  | 0.0018 (14)  |
| C7               | 0.0191 (17)       | 0.0177 (17)        | 0.0213 (1 |           | 0.00017 (13) |          | 0.0036 (12)  | 0.0019 (14)  |
| C8               | 0.0191 (17)       | 0.0177 (17)        | 0.0104 (1 |           | -0.0044 (15  |          | 0.0030 (12)  | -0.0056 (16) |
| C9               |                   |                    |           |           |              |          |              |              |
|                  | 0.023 (2)         | 0.037 (2)          | 0.037 (2) |           | -0.0075 (17  |          | 0.0029 (16)  | -0.0066 (17) |
| C10              | 0.0207 (18)       | 0.0208 (18)        | 0.0289 (1 |           | 0.0035 (15)  |          | 0.0023 (14)  | -0.0007 (14) |
| C11              | 0.0152 (17)       | 0.0191 (18)        | 0.0204 (1 |           | 0.0002 (13)  |          | 0.0034 (13)  | 0.0018 (13)  |
| C12              | 0.0189 (17)       | 0.0221 (18)        | 0.0219 (1 |           | -0.0020 (14  |          | 0.0039 (13)  | -0.0032 (14) |
| C13              | 0.0237 (18)       | 0.0242 (19)        | 0.0205 (1 |           | -0.0010 (15  | *        | 0.0055 (13)  | -0.0018 (14) |
| C14              | 0.0176 (17)       | 0.0175 (17)        | 0.0220 (1 |           | -0.0019 (14  |          | 0.0014 (13)  | -0.0008 (13) |
| C15              | 0.0187 (17)       | 0.0177 (17)        | 0.0215 (1 | 15)       | 0.0024 (13)  |          | 0.0037 (13)  | 0.0000 (13)  |
| C16              | 0.0180 (16)       | 0.0172 (16)        | 0.0174 (1 | 14)       | 0.0004 (14)  |          | 0.0046 (12)  | -0.0005 (13) |
| C17              | 0.0185 (18)       | 0.0238 (19)        | 0.0212 (1 | 16)       | 0.0029 (14)  |          | 0.0051 (14)  | -0.0011 (14) |
| C18              | 0.0229 (19)       | 0.0215 (19)        | 0.0273 (1 | 17)       | 0.0015 (15)  |          | 0.0020 (14)  | -0.0015 (14) |
| C19              | 0.0200 (17)       | 0.0168 (17)        | 0.0218 (1 | 15)       | -0.0002 (14  | )        | 0.0015 (13)  | 0.0032 (13)  |
| C20              | 0.0206 (18)       | 0.0278 (19)        | 0.0266 (1 | 16)       | 0.0016 (15)  |          | 0.0001 (14)  | -0.0058 (15) |
| C21              | 0.0216 (18)       | 0.029(2)           | 0.0216 (1 | 15)       | 0.0011 (15)  |          | 0.0032 (14)  | -0.0016 (15) |
| C22              | 0.0242 (18)       | 0.0155 (17)        | 0.0258 (1 | 16)       | -0.0011 (14  | )        | -0.0015 (14) | -0.0001 (14) |
| C23              | 0.0273 (19)       | 0.026(2)           | 0.0270 (1 | 17)       | -0.0027 (16  | )        | 0.0011 (15)  | -0.0014 (15) |
| C24              | 0.0243 (18)       | 0.0207 (18)        | 0.0311 (1 |           | -0.0006 (15  |          | -0.0014 (14) | -0.0005 (15) |
| C25              | 0.026 (2)         | 0.025 (2)          | 0.0325 (1 |           | 0.0037 (16)  | *        | -0.0030 (15) | -0.0027 (16) |
| C26              | 0.026 (2)         | 0.028 (2)          | 0.0332 (1 |           | 0.0037 (15)  |          | -0.0019 (15) | -0.0047 (16) |
| C27              | 0.029 (2)         | 0.024 (2)          | 0.0250 (1 |           | -0.0034 (16  |          | 0.0017 (13)  | -0.0007 (15) |
| C27              | 0.029 (2)         | 0.024 (2)          | 0.0230 (1 |           | -0.0072 (19  |          | 0.0001 (13)  | -0.016 (2)   |
|                  | 0.027 (2)         |                    |           |           |              |          |              |              |
| C29              |                   | 0.055 (3)          | 0.038 (2) |           | 0.002 (2)    |          | -0.0019 (18) | -0.017 (2)   |
| C30              | 0.0213 (18)       | 0.0215 (18)        | 0.0221 (1 | 10)       | 0.0015 (14)  |          | 0.0043 (14)  | -0.0013 (14) |
|                  |                   |                    |           |           |              |          |              |              |

C58

1.8720(3)

0.1987 (5)

0.99400 (17)

| C31           | 0.0185 (17)     | 0.0217 (18) | 0.0287 (17) | -0.0021 (14) | 0.0045 (14)  | -0.0049 (14) |
|---------------|-----------------|-------------|-------------|--------------|--------------|--------------|
| C32           | 0.0238 (19)     | 0.0221 (19) | 0.0282 (17) | -0.0023 (15) | 0.0123 (15)  | -0.0010 (15) |
| C33           | 0.0251 (19)     | 0.0262 (19) | 0.0221 (16) | -0.0004 (15) | 0.0074 (14)  | -0.0025 (14) |
| C34           | 0.0234 (18)     | 0.0173 (17) | 0.0186 (15) | -0.0005 (14) | 0.0063 (13)  | -0.0014 (13) |
| C35           | 0.0208 (17)     | 0.0148 (17) | 0.0229 (15) | 0.0002 (14)  | 0.0045 (13)  | -0.0025 (13) |
| C36           | 0.0207 (18)     | 0.030(2)    | 0.0315 (18) | 0.0058 (17)  | 0.0092 (15)  | -0.0065 (17) |
| C37           | 0.0237 (19)     | 0.032(2)    | 0.040(2)    | -0.0006 (16) | 0.0034 (16)  | -0.0063 (17) |
| C38           | 0.0252 (19)     | 0.0195 (18) | 0.0228 (16) | -0.0020 (14) | 0.0039 (14)  | -0.0037 (14) |
| C39           | 0.0249 (18)     | 0.0183 (17) | 0.0169 (14) | -0.0016 (14) | 0.0086 (13)  | 0.0004 (13)  |
| C40           | 0.027(2)        | 0.034(2)    | 0.0231 (17) | -0.0049 (16) | 0.0051 (15)  | 0.0022 (15)  |
| C41           | 0.029(2)        | 0.030(2)    | 0.0216 (16) | -0.0045 (16) | 0.0048 (15)  | 0.0032 (15)  |
| C42           | 0.0266 (19)     | 0.0165 (17) | 0.0236 (16) | 0.0016 (14)  | 0.0066 (14)  | 0.0017 (14)  |
| C43           | 0.0229 (17)     | 0.0190 (18) | 0.0190 (15) | 0.0013 (14)  | 0.0059 (13)  | 0.0004 (13)  |
| C44           | 0.0236 (18)     | 0.0178 (17) | 0.0209 (15) | 0.0010 (14)  | 0.0057 (14)  | -0.0023 (13) |
| C45           | 0.0244 (18)     | 0.0271 (19) | 0.0175 (15) | -0.0037 (16) | 0.0033 (13)  | 0.0032 (14)  |
| C46           | 0.0245 (18)     | 0.0158 (17) | 0.0205 (15) | -0.0009 (14) | 0.0056 (13)  | 0.0023 (13)  |
| C47           | 0.041(2)        | 0.0193 (19) | 0.0251 (17) | 0.0022 (16)  | 0.0003 (16)  | 0.0011 (15)  |
| C48           | 0.0304 (19)     | 0.0177 (18) | 0.0238 (16) | 0.0013 (15)  | 0.0026 (14)  | -0.0007 (14) |
| C49           | 0.0236 (18)     | 0.0265 (19) | 0.0294 (17) | 0.0019 (16)  | 0.0020 (14)  | -0.0013 (16) |
| C50           | 0.0257 (19)     | 0.0244 (19) | 0.0263 (16) | 0.0003 (16)  | 0.0042 (14)  | 0.0011 (15)  |
| C51           | 0.032(2)        | 0.0235 (19) | 0.0245 (17) | 0.0075 (16)  | -0.0040 (15) | -0.0033 (15) |
| C52           | 0.040(2)        | 0.035(2)    | 0.0294 (18) | 0.0081 (18)  | -0.0026 (17) | 0.0001 (17)  |
| C53           | 0.035(2)        | 0.026(2)    | 0.0374 (19) | 0.0044 (17)  | -0.0083 (16) | -0.0069 (17) |
| C54           | 0.035(2)        | 0.045 (3)   | 0.040(2)    | 0.0048 (19)  | -0.0099 (17) | -0.0055 (19) |
| C55           | 0.040(2)        | 0.031(2)    | 0.0341 (19) | 0.0023 (18)  | 0.0026 (17)  | 0.0048 (17)  |
| C56           | 0.032(2)        | 0.053(3)    | 0.037(2)    | 0.000(2)     | 0.0018 (17)  | 0.020(2)     |
| C57           | 0.035(2)        | 0.050(3)    | 0.057(3)    | -0.006(2)    | -0.004(2)    | 0.010(2)     |
| C58           | 0.038 (3)       | 0.049(3)    | 0.061(3)    | 0.006(2)     | 0.011 (2)    | 0.025 (2)    |
|               |                 |             |             |              |              |              |
| <i>C</i>      | ( 8 0)          |             |             |              |              |              |
| Geometric pai | rameters (Å, °) |             |             |              |              |              |
| O1—N1         |                 | 1.422 (3)   | C28—        | -H28A        | 0.98         | 00           |
| O1—H1         |                 | 0.98 (4)    | C28—        | -H28B        | 0.98         | 00           |
| O2—C8         |                 | 1.341 (4)   | C28—        | -H28C        | 0.98         | 00           |
| O2—C4         |                 | 1.464 (3)   | C29—        | -H29A        | 0.98         | 00           |
| O3—C8         |                 | 1.202 (4)   | C29—        | –H29B        | 0.98         | 00           |
| O4—N2         |                 | 1.417 (3)   | C29—        | -H29C        | 0.98         | 00           |
| O4—H4         |                 | 0.95 (4)    | C30—        | -C31         | 1.51         | 4 (4)        |
| O5—C36        |                 | 1.352 (4)   | C30—        | -C35         | 1.53         | 3 (4)        |
| O5—C31        |                 | 1.449 (4)   | C30—        | -H30A        | 0.99         | 00           |
| O6—C36        |                 | 1.208 (4)   | C30—        | -H30B        | 0.99         | 00           |
| N1—C1         |                 | 1.270 (4)   | C31—        | -C32         | 1.51         | 0 (4)        |
| N2—C46        |                 | 1.272 (4)   | C31—        | –H31         | 1.00         | 00           |
| C1—C17        |                 | 1.499 (4)   | C32—        | -C33         | 1.52         | 9 (4)        |
| C1—C2         |                 | 1.504 (4)   | C32—        | -H32A        | 0.99         | 00           |
| C2—C3         |                 | 1.535 (4)   | C32—        | -H32B        | 0.99         | 00           |
| C2—C7         |                 | 1.566 (4)   | C33—        | -C34         | 1.53         | 6 (4)        |
| C2—H2         |                 | 1.0000      | C33—        | –Н33А        | 0.99         | 00           |
| C3—C4         |                 | 1.511 (4)   | C33—        | –Н33В        | 0.99         | 00           |
|               |                 |             |             |              |              |              |

| С3—Н3А               | 0.9900    | C34—C38   | 1.536 (4) |
|----------------------|-----------|-----------|-----------|
| C3—H3B               | 0.9900    | C34—C39   | 1.560 (4) |
| C4—C5                | 1.513 (4) | C34—C35   | 1.561 (4) |
| C4—H4A               | 1.0000    | C35—C46   | 1.510 (4) |
| C5—C6                | 1.540 (4) | C35—H35   | 1.0000    |
| C5—H5A               | 0.9900    | C36—C37   | 1.501 (4) |
| C5—H5B               | 0.9900    | C37—H37A  | 0.9800    |
| C6—C7                | 1.540 (4) | С37—Н37В  | 0.9800    |
| C6—H6A               | 0.9900    | C37—H37C  | 0.9800    |
| C6—H6B               | 0.9900    | C38—H38A  | 0.9800    |
| C7—C10               | 1.539 (4) | C38—H38B  | 0.9800    |
| C7—C11               | 1.556 (4) | C38—H38C  | 0.9800    |
| C8—C9                | 1.498 (5) | C39—C40   | 1.521 (4) |
| C9—H9A               | 0.9800    | C39—C44   | 1.530 (4) |
| C9—H9B               | 0.9800    | C39—H39   | 1.0000    |
| C9—H9C               | 0.9800    | C40—C41   | 1.539 (4) |
| C10—H10A             | 0.9800    | C40—H40A  | 0.9900    |
| C10—H10B             | 0.9800    | C40—H40B  | 0.9900    |
| C10—H10C             | 0.9800    | C41—C42   | 1.530 (4) |
| C11—C12              | 1.538 (4) | C41—H41A  | 0.9900    |
| C11—C16              | 1.542 (4) | C41—H41B  | 0.9900    |
| C11—H11              | 1.0000    | C42—C47   | 1.537 (5) |
| C12—C13              | 1.545 (4) | C42—C43   | 1.549 (4) |
| C12—H12A             | 0.9900    | C42—C48   | 1.571 (4) |
| C12—H12B             | 0.9900    | C43—C44   | 1.524 (4) |
| C13—C14              | 1.527 (4) | C43—C50   | 1.533 (4) |
| C13—H13A             | 0.9900    | C43—H43   | 1.0000    |
| C13—H13B             | 0.9900    | C44—C45   | 1.541 (4) |
| C14—C15              | 1.538 (4) | C44—H44   | 1.0000    |
| C14—C18              | 1.543 (4) | C45—C46   | 1.504 (4) |
| C14—C19              | 1.562 (4) | C45—H45A  | 0.9900    |
| C15—C16              | 1.527 (4) | C45—H45B  | 0.9900    |
| C15—C21              | 1.529 (4) | C47—H47A  | 0.9800    |
| C15—H15              | 1.0000    | C47—H47B  | 0.9800    |
| C16—C17              | 1.532 (4) | C47—H47C  | 0.9800    |
| C16—H16              | 1.0000    | C48—C51   | 1.539 (4) |
| C17—H17A             | 0.9900    | C48—C49   | 1.555 (4) |
| C17—H17B             | 0.9900    | C48—H48   | 1.0000    |
| C18—H18A             | 0.9800    | C49—C50   | 1.542 (4) |
| C18—H18B             | 0.9800    | C49—H49A  | 0.9900    |
| C18—H18C             | 0.9800    | C49—H49B  | 0.9900    |
| C19—C22              | 1.545 (4) | C50—H50A  | 0.9900    |
| C19—C20              | 1.555 (4) | C50—H50B  | 0.9900    |
| C19—H19              | 1.0000    | C51—C52   | 1.526 (5) |
| C20—C21              | 1.552 (4) | C51—C53   | 1.520 (5) |
| C20—C21<br>C20—H20A  | 0.9900    | C51—C53   | 1.0000    |
| C20—H20A<br>C20—H20B | 0.9900    | C52—H52A  | 0.9800    |
| C21—H21A             | 0.9900    | C52—H52B  | 0.9800    |
| C21—H21A             | 0.9900    | C52—H52C  | 0.9800    |
| C21 1121B            | 0.7700    | 032 11320 | 0.7000    |

| C22—C24    | 1.535 (4) | C53—C54       | 1.530 (4) |
|------------|-----------|---------------|-----------|
| C22—C23    | 1.537 (4) | C53—H53A      | 0.9900    |
| C22—H22    | 1.0000    | C53—H53B      | 0.9900    |
| C23—H23A   | 0.9800    | C54—C55       | 1.537 (5) |
| C23—H23B   | 0.9800    | C54—H54A      | 0.9900    |
| C23—H23C   | 0.9800    | C54—H54B      | 0.9900    |
| C24—C25    | 1.527 (4) | C55—C56       | 1.521 (5) |
| C24—H24A   | 0.9900    | C55—H55A      | 0.9900    |
| C24—H24B   | 0.9900    | C55—H55B      | 0.9900    |
| C25—C26    | 1.529 (4) | C56—C58       | 1.515 (6) |
| C25—H25A   | 0.9900    | C56—C57       | 1.516 (5) |
| C25—H25B   | 0.9900    | C56—H56       | 1.0000    |
| C26—C27    | 1.519 (4) | C57—H57A      | 0.9800    |
| C26—H26A   | 0.9900    | C57—H57B      | 0.9800    |
| C26—H26B   | 0.9900    | C57—H57C      | 0.9800    |
| C27—C29    | 1.519 (5) | C58—H58A      | 0.9800    |
| C27—C28    | 1.525 (5) | C58—H58B      | 0.9800    |
| C27—H27    | 1.0000    | C58—H58C      | 0.9800    |
| N1—O1—H1   | 97 (2)    | C27—C29—H29C  | 109.5     |
| C8—O2—C4   | 117.1 (3) | H29A—C29—H29C | 109.5     |
| N2—O4—H4   | 99 (2)    | H29B—C29—H29C | 109.5     |
| C36—O5—C31 | 116.8 (3) | C31—C30—C35   | 110.3 (2) |
| C1—N1—O1   | 113.3 (2) | C31—C30—H30A  | 109.6     |
| C46—N2—O4  | 112.8 (2) | C35—C30—H30A  | 109.6     |
| N1—C1—C17  | 127.1 (3) | C31—C30—H30B  | 109.6     |
| N1—C1—C2   | 118.0 (3) | C35—C30—H30B  | 109.6     |
| C17—C1—C2  | 114.9 (3) | H30A—C30—H30B | 108.1     |
| C1—C2—C3   | 114.6 (2) | O5—C31—C32    | 106.6 (3) |
| C1—C2—C7   | 109.6 (2) | O5—C31—C30    | 110.5 (2) |
| C3—C2—C7   | 113.2 (3) | C32—C31—C30   | 111.8 (3) |
| C1—C2—H2   | 106.3     | O5—C31—H31    | 109.3     |
| C3—C2—H2   | 106.3     | C32—C31—H31   | 109.3     |
| C7—C2—H2   | 106.3     | C30—C31—H31   | 109.3     |
| C4—C3—C2   | 109.7 (2) | C31—C32—C33   | 110.9 (3) |
| C4—C3—H3A  | 109.7     | C31—C32—H32A  | 109.5     |
| C2—C3—H3A  | 109.7     | C33—C32—H32A  | 109.5     |
| C4—C3—H3B  | 109.7     | C31—C32—H32B  | 109.5     |
| C2—C3—H3B  | 109.7     | C33—C32—H32B  | 109.5     |
| H3A—C3—H3B | 108.2     | H32A—C32—H32B | 108.0     |
| O2—C4—C3   | 105.4 (2) | C32—C33—C34   | 113.3 (3) |
| O2—C4—C5   | 109.4 (3) | C32—C33—H33A  | 108.9     |
| C3—C4—C5   | 112.0 (3) | C34—C33—H33A  | 108.9     |
| O2—C4—H4A  | 110.0     | C32—C33—H33B  | 108.9     |
| C3—C4—H4A  | 110.0     | C34—C33—H33B  | 108.9     |
| C5—C4—H4A  | 110.0     | H33A—C33—H33B | 107.7     |
| C4—C5—C6   | 111.7 (3) | C33—C34—C38   | 110.1 (3) |
| C4—C5—H5A  | 109.3     | C33—C34—C39   | 110.8 (2) |
| C6—C5—H5A  | 109.3     | C38—C34—C39   | 110.5 (3) |
| C4—C5—H5B  | 109.3     | C33—C34—C35   | 108.3 (3) |
|            |           |               |           |

| C6—C5—H5B     | 109.3          | C38—C34—C35                  | 110.2 (2) |
|---------------|----------------|------------------------------|-----------|
| H5A—C5—H5B    | 108.0          | C39—C34—C35                  | 106.9 (2) |
| C5—C6—C7      | 113.3 (2)      | C46—C35—C30                  | 114.6 (2) |
| C5—C6—H6A     | 108.9          | C46—C35—C34                  | 109.8 (2) |
| C7—C6—H6A     | 108.9          | C30—C35—C34                  | 112.8 (3) |
| C5—C6—H6B     | 108.9          | C46—C35—H35                  | 106.3     |
| C7—C6—H6B     | 108.9          | C30—C35—H35                  | 106.3     |
| H6A—C6—H6B    | 107.7          | C34—C35—H35                  | 106.3     |
| C10—C7—C6     | 110.6 (3)      | O6—C36—O5                    | 122.6 (3) |
| C10—C7—C11    | 111.1 (3)      | O6—C36—C37                   | 126.0(3)  |
| C6—C7—C11     | 110.3 (2)      | O5—C36—C37                   | 111.4 (3) |
| C10—C7—C2     | 110.4 (2)      | C36—C37—H37A                 | 109.5     |
| C6—C7—C2      | 106.5 (2)      | C36—C37—H37B                 | 109.5     |
| C11—C7—C2     | 107.8 (2)      | H37A—C37—H37B                | 109.5     |
| O3—C8—O2      | 123.7 (3)      | C36—C37—H37C                 | 109.5     |
| O3—C8—C9      | 125.4 (3)      | H37A—C37—H37C                | 109.5     |
| O2—C8—C9      | 110.8 (3)      | H37B—C37—H37C                | 109.5     |
| C8—C9—H9A     | 109.5          | C34—C38—H38A                 | 109.5     |
| С8—С9—Н9В     | 109.5          | C34—C38—H38B                 | 109.5     |
| H9A—C9—H9B    | 109.5          | H38A—C38—H38B                | 109.5     |
| C8—C9—H9C     | 109.5          | C34—C38—H38C                 | 109.5     |
| H9A—C9—H9C    | 109.5          | H38A—C38—H38C                | 109.5     |
| H9B—C9—H9C    | 109.5          | H38B—C38—H38C                | 109.5     |
| C7—C10—H10A   | 109.5          | C40—C39—C44                  | 111.4 (3) |
| C7—C10—H10B   | 109.5          | C40—C39—C34                  | 114.5 (3) |
| H10A—C10—H10B | 109.5          | C44—C39—C34                  | 112.2 (2) |
| C7—C10—H10C   | 109.5          | C40—C39—H39                  | 106.0     |
| H10A—C10—H10C | 109.5          | C44—C39—H39                  | 106.0     |
| H10B—C10—H10C | 109.5          | C34—C39—H39                  | 106.0     |
| C12—C11—C16   | 110.2 (2)      | C39—C40—C41                  | 113.9 (3) |
| C12—C11—C7    | 113.4 (2)      | C39—C40—H40A                 | 108.8     |
| C16—C11—C7    | 113.4 (2)      | C41—C40—H40A                 | 108.8     |
| C12—C11—H11   | 106.5          | C39—C40—H40B                 | 108.8     |
| C12—C11—H11   |                | C41—C40—H40B                 |           |
|               | 106.5<br>106.5 |                              | 108.8     |
| C7—C11—H11    |                | H40A—C40—H40B<br>C42—C41—C40 | 107.7     |
| C11—C12—C13   | 113.5 (3)      |                              | 111.3 (3) |
| C11—C12—H12A  | 108.9          | C42—C41—H41A                 | 109.4     |
| C13—C12—H12A  | 108.9          | C40—C41—H41A<br>C42—C41—H41B | 109.4     |
| C11—C12—H12B  | 108.9          | C40—C41—H41B                 | 109.4     |
| C13—C12—H12B  | 108.9          |                              | 109.4     |
| H12A—C12—H12B | 107.7          | H41A—C41—H41B                | 108.0     |
| C14—C13—C12   | 111.6 (2)      | C41—C42—C47                  | 111.3 (3) |
| C14—C13—H13A  | 109.3          | C41—C42—C43                  | 107.0 (2) |
| C12—C13—H13A  | 109.3          | C47—C42—C43                  | 111.8 (3) |
| C14—C13—H13B  | 109.3          | C41—C42—C48                  | 116.8 (3) |
| C12—C13—H13B  | 109.3          | C47—C42—C48                  | 109.9 (3) |
| H13A—C13—H13B | 108.0          | C43—C42—C48                  | 99.4 (2)  |
| C13—C14—C15   | 107.3 (2)      | C44—C43—C50                  | 119.1 (2) |
| C13—C14—C18   | 110.6 (3)      | C44—C43—C42                  | 114.3 (3) |
|               |                |                              |           |

| C15—C14—C18                  | 112.0 (3) | C50—C43—C42   | 103.7 (2)      |
|------------------------------|-----------|---------------|----------------|
| C13—C14—C19                  | 116.7 (2) | C44—C43—H43   | 106.3          |
| C15—C14—C19                  | 100.3 (2) | C50—C43—H43   | 106.3          |
| C18—C14—C19                  | 109.6 (3) | C42—C43—H43   | 106.3          |
| C16—C15—C21                  | 118.7 (2) | C43—C44—C39   | 110.2 (2)      |
| C16—C15—C14                  | 113.5 (2) | C43—C44—C45   | 110.2 (3)      |
| C21—C15—C14                  | 104.3 (2) | C39—C44—C45   | 110.4(3)       |
| C16—C15—H15                  | 106.5     | C43—C44—H44   | 108.6          |
| C21—C15—H15                  | 106.5     | C39—C44—H44   | 108.6          |
| C14—C15—H15                  | 106.5     | C45—C44—H44   | 108.6          |
| C15—C16—C17                  | 111.2 (2) | C46—C45—C44   | 112.6 (3)      |
| C15—C16—C11                  | 109.1 (2) | C46—C45—H45A  | 109.1          |
| C17—C16—C11                  | 111.9 (2) | C44—C45—H45A  | 109.1          |
| C15—C16—H16                  | 108.2     | C46—C45—H45B  | 109.1          |
| C17—C16—H16                  | 108.2     | C44—C45—H45B  | 109.1          |
| C11—C16—H16                  | 108.2     | H45A—C45—H45B | 107.8          |
| C1—C17—C16                   | 109.1 (3) | N2—C46—C45    | 125.6 (3)      |
| C1—C17—H17A                  | 109.9     | N2—C46—C35    | 117.9 (3)      |
| C16—C17—H17A                 | 109.9     | C45—C46—C35   | 116.5 (2)      |
| C1—C17—H17B                  | 109.9     | C42—C47—H47A  | 109.5          |
| C16—C17—H17B                 | 109.9     | C42—C47—H47B  | 109.5          |
| H17A—C17—H17B                | 108.3     | H47A—C47—H47B | 109.5          |
| C14—C18—H18A                 | 109.5     | C42—C47—H47C  | 109.5          |
| C14—C18—H18B                 | 109.5     | H47A—C47—H47C | 109.5          |
| H18A—C18—H18B                | 109.5     | H47B—C47—H47C | 109.5          |
| C14—C18—H18C                 | 109.5     | C51—C48—C49   | 112.1 (3)      |
| H18A—C18—H18C                | 109.5     | C51—C48—C42   | 119.6 (3)      |
| H18B—C18—H18C                | 109.5     | C49—C48—C42   | 102.8 (2)      |
| C22—C19—C20                  | 112.1 (3) | C51—C48—H48   | 107.2          |
| C22—C19—C14                  | 118.3 (3) | C49—C48—H48   | 107.2          |
| C20—C19—C14                  | 103.1 (2) | C42—C48—H48   | 107.2          |
| C22—C19—H19                  | 107.6     | C50—C49—C48   | 107.2          |
| C20—C19—H19                  | 107.6     | C50—C49—H49A  | 110.2          |
| C14—C19—H19                  | 107.6     | C48—C49—H49A  |                |
| C21—C20—C19                  | 107.2 (2) | C50—C49—H49B  | 110.2<br>110.2 |
|                              |           |               |                |
| C21—C20—H20A<br>C19—C20—H20A | 110.3     | C48—C49—H49B  | 110.2          |
|                              | 110.3     | H49A—C49—H49B | 108.5          |
| C21—C20—H20B                 | 110.3     | C43—C50—C49   | 103.3 (2)      |
| C19—C20—H20B                 | 110.3     | C43—C50—H50A  | 111.1          |
| H20A—C20—H20B                | 108.5     | C49—C50—H50A  | 111.1          |
| C15—C21—C20                  | 103.6 (2) | C43—C50—H50B  | 111.1          |
| C15—C21—H21A                 | 111.0     | C49—C50—H50B  | 111.1          |
| C20—C21—H21A                 | 111.0     | H50A—C50—H50B | 109.1          |
| C15—C21—H21B                 | 111.0     | C52—C51—C53   | 109.9 (3)      |
| C20—C21—H21B                 | 111.0     | C52—C51—C48   | 113.2 (3)      |
| H21A—C21—H21B                | 109.0     | C53—C51—C48   | 108.4 (3)      |
| C24—C22—C23                  | 109.9 (3) | C52—C51—H51   | 108.4          |
| C24—C22—C19                  | 110.8 (3) | C53—C51—H51   | 108.4          |
| C23—C22—C19                  | 112.8 (3) | C48—C51—H51   | 108.4          |
|                              |           |               |                |

| C24—C22—H22                | 107.7                   | C51—C52—H52A    | 109.5      |
|----------------------------|-------------------------|-----------------|------------|
| C23—C22—H22                | 107.7                   | C51—C52—H52B    | 109.5      |
| C19—C22—H22                | 107.7                   | H52A—C52—H52B   | 109.5      |
| C22—C23—H23A               | 109.5                   | C51—C52—H52C    | 109.5      |
| C22—C23—H23B               | 109.5                   | H52A—C52—H52C   | 109.5      |
| H23A—C23—H23B              | 109.5                   | H52B—C52—H52C   | 109.5      |
| C22—C23—H23C               | 109.5                   | C54—C53—C51     | 116.5 (3)  |
| H23A—C23—H23C              | 109.5                   | C54—C53—H53A    | 108.2      |
| H23B—C23—H23C              | 109.5                   | C51—C53—H53A    | 108.2      |
| C25—C24—C22                | 114.3 (3)               | C54—C53—H53B    | 108.2      |
| C25—C24—H24A               | 108.7                   | C51—C53—H53B    | 108.2      |
| C22—C24—H24A               | 108.7                   | H53A—C53—H53B   | 107.3      |
| C25—C24—H24B               | 108.7                   | C53—C54—C55     | 113.1 (3)  |
| C22—C24—H24B               | 108.7                   | C53—C54—H54A    | 109.0      |
| H24A—C24—H24B              | 107.6                   | C55—C54—H54A    | 109.0      |
| C24—C25—C26                | 112.8 (3)               | C53—C54—H54B    | 109.0      |
| C24—C25—H25A               | 109.0                   | C55—C54—H54B    | 109.0      |
| C26—C25—H25A               | 109.0                   | H54A—C54—H54B   | 107.8      |
| C24—C25—H25B               | 109.0                   | C56—C55—C54     | 114.0 (3)  |
| C26—C25—H25B               | 109.0                   | C56—C55—H55A    | 108.8      |
| H25A—C25—H25B              | 107.8                   | C54—C55—H55A    | 108.8      |
| C27—C26—C25                | 115.1 (3)               | C56—C55—H55B    | 108.8      |
| C27—C26—H26A               | 108.5                   | C54—C55—H55B    | 108.8      |
| C25—C26—H26A               | 108.5                   | H55A—C55—H55B   | 107.7      |
| C27—C26—H26B               | 108.5                   | C58—C56—C57     | 110.1 (3)  |
| C25—C26—H26B               | 108.5                   | C58—C56—C55     | 110.3 (3)  |
| H26A—C26—H26B              | 107.5                   | C57—C56—C55     | 111.9 (3)  |
| C29—C27—C26                | 113.2 (3)               | C58—C56—H56     | 108.1      |
| C29—C27—C28                | 110.2 (3)               | C57—C56—H56     | 108.1      |
| C26—C27—C28                | 110.6 (3)               | C55—C56—H56     | 108.1      |
| C29—C27—H27                | 107.5                   | C56—C57—H57A    | 109.5      |
| C26—C27—H27                | 107.5                   | C56—C57—H57B    | 109.5      |
| C28—C27—H27                | 107.5                   | H57A—C57—H57B   | 109.5      |
| C27—C28—H28A               | 109.5                   | C56—C57—H57C    | 109.5      |
| C27—C28—H28B               | 109.5                   | H57A—C57—H57C   | 109.5      |
| H28A—C28—H28B              | 109.5                   | H57B—C57—H57C   | 109.5      |
| C27—C28—H28C               | 109.5                   | C56—C58—H58A    | 109.5      |
| H28A—C28—H28C              | 109.5                   | C56—C58—H58B    | 109.5      |
| H28B—C28—H28C              | 109.5                   | H58A—C58—H58B   | 109.5      |
| C27—C29—H29A               | 109.5                   | C56—C58—H58C    | 109.5      |
| C27—C29—H29B               | 109.5                   | H58A—C58—H58C   | 109.5      |
| H29A—C29—H29B              | 109.5                   | H58B—C58—H58C   | 109.5      |
|                            | -1.5 (4)                |                 |            |
| 01—N1—C1—C17               |                         | C36—O5—C31—C32  | 156.6 (3)  |
| 01—N1—C1—C2<br>N1—C1—C2—C2 | -179.0 (2)<br>-11.2 (4) | C36—O5—C31—C30  | -81.7 (3)  |
| N1—C1—C2—C3                | -11.2 (4)               | C35—C30—C31—O5  | -175.1 (3) |
| C17—C1—C2—C3               | 171.0 (3)               | C35—C30—C31—C32 | -56.5 (4)  |
| N1—C1—C2—C7                | 117.3 (3)               | O5—C31—C32—C33  | 177.2 (2)  |
| C17—C1—C2—C7               | -60.5 (3)<br>-174 8 (2) | C30—C31—C32—C33 | 56.3 (3)   |
| C1—C2—C3—C4                | -174.8 (3)              | C31—C32—C33—C34 | -56.0 (4)  |

| C7—C2—C3—C4     | 58.6 (4)   | C32—C33—C34—C38 | -66.9(3)   |
|-----------------|------------|-----------------|------------|
| C8—O2—C4—C3     | -158.8 (3) | C32—C33—C34—C39 | 170.5 (3)  |
| C8—O2—C4—C5     | 80.7 (3)   | C32—C33—C34—C35 | 53.6 (3)   |
| C2—C3—C4—O2     | -174.7(2)  | C31—C30—C35—C46 | -177.3(3)  |
| C2—C3—C4—C5     | -55.9(3)   | C31—C30—C35—C34 | 56.1 (4)   |
| O2—C4—C5—C6     | 171.0 (3)  | C33—C34—C35—C46 | 177.0 (3)  |
| C3—C4—C5—C6     | 54.6 (4)   | C38—C34—C35—C46 | -62.5(3)   |
| C4—C5—C6—C7     | -55.3 (4)  | C39—C34—C35—C46 | 57.6 (3)   |
| C5—C6—C7—C10    | -65.6 (3)  | C33—C34—C35—C30 | -53.9(3)   |
| C5—C6—C7—C11    | 171.1 (3)  | C38—C34—C35—C30 | 66.6 (3)   |
| C5—C6—C7—C2     | 54.3 (3)   | C39—C34—C35—C30 | -173.2 (2) |
| C1—C2—C7—C10    | -65.9 (3)  | C31—O5—C36—O6   | -2.6(4)    |
| C3—C2—C7—C10    | 63.4 (3)   | C31—O5—C36—C37  | 178.0 (3)  |
| C1—C2—C7—C6     | 174.0 (2)  | C33—C34—C39—C40 | 52.2 (4)   |
| C3—C2—C7—C6     | -56.7 (3)  | C38—C34—C39—C40 | -70.1(3)   |
| C1—C2—C7—C11    | 55.6 (3)   | C35—C34—C39—C40 | 169.9 (3)  |
| C3—C2—C7—C11    | -175.1 (2) | C33—C34—C39—C44 | -179.7(3)  |
| C4—O2—C8—O3     | 3.8 (5)    | C38—C34—C39—C44 | 58.0(3)    |
| C4—O2—C8—C9     | -175.1 (3) | C35—C34—C39—C44 | -61.9(3)   |
| C10—C7—C11—C12  | -59.8 (3)  | C44—C39—C40—C41 | 52.1 (4)   |
| C6—C7—C11—C12   | 63.1 (3)   | C34—C39—C40—C41 | -179.3 (3) |
| C2—C7—C11—C12   | 179.1 (3)  | C39—C40—C41—C42 | -55.7 (4)  |
| C10—C7—C11—C16  | 66.7 (3)   | C40—C41—C42—C47 | -66.6 (3)  |
| C6—C7—C11—C16   | -170.3 (3) | C40—C41—C42—C43 | 55.8 (4)   |
| C2—C7—C11—C16   | -54.4 (3)  | C40—C41—C42—C48 | 166.0 (3)  |
| C16—C11—C12—C13 | 52.9 (3)   | C41—C42—C43—C44 | -58.7 (3)  |
| C7—C11—C12—C13  | -178.9 (3) | C47—C42—C43—C44 | 63.4 (4)   |
| C11—C12—C13—C14 | -54.6 (4)  | C48—C42—C43—C44 | 179.4 (3)  |
| C12—C13—C14—C15 | 55.3 (3)   | C41—C42—C43—C50 | 170.1 (3)  |
| C12—C13—C14—C18 | -67.1 (3)  | C47—C42—C43—C50 | -67.9 (3)  |
| C12—C13—C14—C19 | 166.8 (3)  | C48—C42—C43—C50 | 48.2 (3)   |
| C13—C14—C15—C16 | -60.4 (3)  | C50—C43—C44—C39 | -179.9 (3) |
| C18—C14—C15—C16 | 61.1 (3)   | C42—C43—C44—C39 | 56.8 (3)   |
| C19—C14—C15—C16 | 177.2 (2)  | C50—C43—C44—C45 | -57.7 (4)  |
| C13—C14—C15—C10 | 169.0 (2)  | C42—C43—C44—C45 | 179.0 (3)  |
| C18—C14—C15—C21 | -69.5 (3)  | C40—C39—C44—C43 | -51.1 (4)  |
|                 |            | C34—C39—C44—C43 |            |
| C19—C14—C15—C21 | 46.6 (3)   | C40—C39—C44—C45 | 179.1 (3)  |
| C21—C15—C16—C17 | -52.5 (4)  |                 | -173.1 (3) |
| C14—C15—C16—C17 | -175.6 (3) | C34—C39—C44—C45 | 57.1 (3)   |
| C21—C15—C16—C11 | -176.4 (3) | C43—C44—C45—C46 | -169.9 (3) |
| C14—C15—C16—C11 | 60.5 (3)   | C39—C44—C45—C46 | -47.9 (4)  |
| C12—C11—C16—C15 | -54.2 (3)  | O4—N2—C46—C45   | 1.4 (5)    |
| C7—C11—C16—C15  | 177.6 (3)  | O4—N2—C46—C35   | -179.9 (3) |
| C12—C11—C16—C17 | -177.7 (3) | C44—C45—C46—N2  | -133.0 (3) |
| C7—C11—C16—C17  | 54.1 (3)   | C44—C45—C46—C35 | 48.3 (4)   |
| N1—C1—C17—C16   | -119.9 (3) | C30—C35—C46—N2  | -0.7 (4)   |
| C2—C1—C17—C16   | 57.7 (4)   | C34—C35—C46—N2  | 127.5 (3)  |
| C15—C16—C17—C1  | -174.7 (3) | C30—C35—C46—C45 | 178.2 (3)  |
| C11—C16—C17—C1  | -52.4 (3)  | C34—C35—C46—C45 | -53.7 (4)  |
|                 |            |                 |            |

| C13—C14—C19—C22 | 80.5 (4)   | C41—C42—C48—C51 | 80.1 (4)   |
|-----------------|------------|-----------------|------------|
| C15—C14—C19—C22 | -164.0 (3) | C47—C42—C48—C51 | -47.8 (4)  |
| C18—C14—C19—C22 | -46.1 (4)  | C43—C42—C48—C51 | -165.3 (3) |
| C13—C14—C19—C20 | -155.1 (3) | C41—C42—C48—C49 | -155.0(3)  |
| C15—C14—C19—C20 | -39.7 (3)  | C47—C42—C48—C49 | 77.1 (3)   |
| C18—C14—C19—C20 | 78.3 (3)   | C43—C42—C48—C49 | -40.4 (3)  |
| C22—C19—C20—C21 | 147.6 (3)  | C51—C48—C49—C50 | 148.8 (3)  |
| C14—C19—C20—C21 | 19.3 (3)   | C42—C48—C49—C50 | 19.1 (3)   |
| C16—C15—C21—C20 | -162.2 (3) | C44—C43—C50—C49 | -165.0(3)  |
| C14—C15—C21—C20 | -34.7 (3)  | C42—C43—C50—C49 | -36.6(3)   |
| C19—C20—C21—C15 | 9.0 (4)    | C48—C49—C50—C43 | 10.3 (4)   |
| C20—C19—C22—C24 | 55.8 (3)   | C49—C48—C51—C52 | -176.2(3)  |
| C14—C19—C22—C24 | 175.6 (3)  | C42—C48—C51—C52 | -55.8 (4)  |
| C20—C19—C22—C23 | 179.5 (3)  | C49—C48—C51—C53 | 61.6 (4)   |
| C14—C19—C22—C23 | -60.6 (4)  | C42—C48—C51—C53 | -178.1(3)  |
| C23—C22—C24—C25 | 73.6 (4)   | C52—C51—C53—C54 | 64.8 (4)   |
| C19—C22—C24—C25 | -161.0 (3) | C48—C51—C53—C54 | -171.0(3)  |
| C22—C24—C25—C26 | 168.9 (3)  | C51—C53—C54—C55 | 65.8 (4)   |
| C24—C25—C26—C27 | -167.5 (3) | C53—C54—C55—C56 | 165.0 (3)  |
| C25—C26—C27—C29 | -65.6 (4)  | C54—C55—C56—C58 | 168.9 (3)  |
| C25—C26—C27—C28 | 170.2 (3)  | C54—C55—C56—C57 | -68.2 (4)  |

### Hydrogen-bond geometry (Å, °)

| D— $H$ ··· $A$              | <i>D</i> —H | $H\cdots A$ | D··· $A$  | D— $H$ ··· $A$ |
|-----------------------------|-------------|-------------|-----------|----------------|
| O1—H1···N2                  | 0.98 (4)    | 1.88 (4)    | 2.809(3)  | 157 (4)        |
| O4—H4···N1                  | 0.95 (4)    | 1.82 (4)    | 2.733 (3) | 160 (3)        |
| С9—H9с···O6 <sup>i</sup>    | 0.98        | 2.58        | 3.404 (4) | 142            |
| C37—H37c···O3 <sup>ii</sup> | 0.98        | 2.40        | 3.373 (4) | 169            |

Symmetry codes: (i) x+1, y, z; (ii) -x+2, y-1/2, -z+1.

Fig. 1



Fig. 2



Fig. 3

