Inference and Representation

David Sontag

New York University

Lecture 3, Sept. 26, 2016

Today's lecture

- Exact inference
 - Worst-case complexity of probabilistic inference
 - ② Elimination algorithm
 - Sunning-time analysis of elimination algorithm (treewidth)
- Approximate inference

Probabilistic inference

- Today we consider exact inference in graphical models
- In particular, we focus on conditional probability queries,

$$p(\mathbf{Y}|\mathbf{E} = \mathbf{e}) = \frac{p(\mathbf{Y}, \mathbf{e})}{p(\mathbf{e})}$$

(e.g., the probability of a patient having a disease given some observed symptoms)

Let W = X - Y - E be the random variables that are neither the query nor the evidence. Each of these joint distributions can be computed by marginalizing over the other variables:

$$p(\mathbf{Y}, \mathbf{e}) = \sum_{\mathbf{w}} p(\mathbf{Y}, \mathbf{e}, \mathbf{w}), \quad p(\mathbf{e}) = \sum_{\mathbf{y}} p(\mathbf{y}, \mathbf{e})$$

- Naively marginalizing over all unobserved variables requires an exponential number of computations
- Does there exist a more efficient algorithm?

Computational complexity of probabilistic inference

- Here we show that, unless P=NP, there does not exist a more efficient algorithm
- We show this by reducing 3-SAT, which is NP-hard, to probabilistic inference in Bayesian networks
- 3-SAT asks about the *satisfiability* of a logical formula defined on n literals Q_1, \ldots, Q_n , e.g.

$$(\neg Q_3 \lor \neg Q_2 \lor Q_3) \land (Q_2 \lor \neg Q_4 \lor \neg Q_5) \cdots$$

• Each of the disjunction terms is called a clause, e.g.

$$C_1(q_1,q_2,q_3) = \neg q_3 \vee \neg q_2 \vee q_3$$

In 3-SAT, each clause is defined on at most 3 literals.

 Our reduction also proves that inference in Markov networks is NP-hard (why?)

Reducing satisfiability to MAP inference

• Input: 3-SAT formula with n literals Q_1, \ldots, Q_n and m clauses C_1, \ldots, C_m

- One variable $Q_i \in \{0,1\}$ for each literal, $p(Q_i = 1) = 0.5$.
- One variable $C_i \in \{0,1\}$ for each clause, whose parents are the literals used in the clause. $C_i = 1$ if the clause is satisfied, and 0 otherwise:

$$p(C_i = 1 \mid \mathbf{q}_{\mathrm{pa}(i)}) = \mathbb{1}[C_i(\mathbf{q}_{\mathrm{pa}(i)})]$$

• Variable X which is 1 if all clauses satisfied, and 0 otherwise:

$$p(A_i = 1 \mid \mathbf{pa}(A_i)) = 1[\mathbf{pa}(A_i) = 1], \text{ for } i = 1, ..., m-2$$

 $p(X = 1 \mid a_{m-2}, c_m) = 1[a_{m-2} = 1, c_m = 1]$

Reducing satisfiability to MAP inference

• Input: 3-SAT formula with n literals $Q_1, \ldots Q_n$ and m clauses C_1, \ldots, C_m

- $p(\mathbf{q}, \mathbf{c}, \mathbf{a}, X = 1) = 0$ for any assignment \mathbf{q} which does not satisfy all clauses
- $p(\mathbf{Q} = \mathbf{q}, \mathbf{C} = \mathbf{1}, \mathbf{A} = \mathbf{1}, X = 1) = \frac{1}{2^n}$ for any satisfying assignment \mathbf{q}
- Thus, we can find a satisfying assignment (whenever one exists) by constructing this BN and finding the maximum a posteriori (MAP) assignment:

$$\operatorname*{argmax}_{\mathbf{q},\mathbf{c},\mathbf{a}} p(\mathbf{Q}=\mathbf{q},\mathbf{C}=\mathbf{c},\mathbf{A}=\mathbf{a} \mid X=1)$$

• This proves that MAP inference in Bayesian networks and MRFs is NP-hard

Reducing satisfiability to marginal inference

• Input: 3-SAT formula with n literals $Q_1, \ldots Q_n$ and m clauses C_1, \ldots, C_m

- $p(X=1) = \sum_{\mathbf{q},\mathbf{c},\mathbf{a}} p(\mathbf{Q} = \mathbf{q}, \mathbf{C} = \mathbf{c}, \mathbf{A} = \mathbf{a}, X = 1)$ is equal to the number of satisfying assignments times $\frac{1}{2^n}$
- Thus, p(X = 1) > 0 if and only if the formula has a satisfying assignment
- This shows that marginal inference is also NP-hard

Probabilistic inference in practice

- NP-hardness simply says that there exist difficult inference problems
- Real-world inference problems are not necessarily as hard as these worst-case instances
- The reduction from SAT created a very complex Bayesian network:

 Some graphs are easy to do inference in! For example, inference in hidden Markov models

and other tree-structured graphs can be performed in linear time

Marginal inference in HMMs

"Filtering" problem is to do marginal inference to find:

$$\Pr(x_n \mid y_1, \dots, y_n)$$

- How does one compute this?
- Applying rule of conditional probability, we have:

$$\Pr(x_n \mid y_1, \dots, y_n) = \frac{\Pr(x_n, y_1, \dots, y_n)}{\Pr(y_1, \dots, y_n)}$$

Naively, would seem to require kⁿ⁻¹ summations,

$$\Pr(x_n, y_1, \dots, y_n) = \sum_{x_1, \dots, x_{n-1}} \Pr(x_1, \dots, x_n, y_1, \dots, y_n)$$

Is there a more efficient algorithm?

Marginal inference in HMMs:

Use dynamic programming

$$\Pr(x_{n},y_{1},\ldots,y_{n}) = \sum_{x_{n-1}} \Pr(x_{n-1},x_{n},y_{1},\ldots,y_{n}) \\ \Pr(\vec{A} = \vec{a}) = \sum_{b} \Pr(\vec{B} = b,A = a) \\ \Pr(x_{n},y_{1},\ldots,y_{n}) = \sum_{x_{n-1}} \Pr(x_{n-1},x_{n},y_{1},\ldots,y_{n}) \\ \Pr(\vec{A} = \vec{a},\vec{B} = \vec{b}) = \Pr(\vec{A} = \vec{a}) \Pr(\vec{B} = \vec{b} \mid \vec{A} = \vec{a}) \\ = \sum_{x_{n-1}} \Pr(x_{n-1},y_{1},\ldots,y_{n-1}) \Pr(x_{n},y_{n} \mid x_{n-1},y_{1},\ldots,y_{n-1}) \\ \Pr(\vec{A} = a,B = b) = \Pr(\vec{A} = a) \Pr(\vec{B} = b \mid A = a) \\ = \sum_{x_{n-1}} \Pr(x_{n-1},y_{1},\ldots,y_{n-1}) \Pr(x_{n} \mid x_{n-1}) \Pr(y_{n} \mid x_{n},x_{n-1}) \\ \text{Conditional independence in HMMs} \\ = \sum_{x_{n-1}} \Pr(x_{n-1},y_{1},\ldots,y_{n-1}) \Pr(x_{n} \mid x_{n-1}) \Pr(y_{n} \mid x_{n})$$

- For n=1, initialize $Pr(x_1, y_1) = Pr(x_1) Pr(y_1 \mid x_1)$
- Total running time is O(nk²) linear time! Easy to do filtering

MAP inference in HMMs:

MAP inference in HMMs can be solved in linear time!

$$\arg \max_{\mathbf{x}} \Pr(x_1, \dots, x_n \mid y_1, \dots, y_n) = \arg \max_{\mathbf{x}} \Pr(x_1, \dots, x_n, y_1, \dots, y_n)$$

$$= \arg \max_{\mathbf{x}} \log \Pr(x_1, \dots, x_n, y_1, \dots, y_n)$$

$$= \arg \max_{\mathbf{x}} \log \left[\Pr(x_1) \Pr(y_1 \mid x_1) \right] + \sum_{i=2}^n \log \left[\Pr(x_i \mid x_{i-1}) \Pr(y_i \mid x_i) \right]$$

Formulate as a shortest paths problem

Called the Viterbi algorithm

Variable elimination (VE)

- Exact algorithm for probabilistic inference in any graphical model
- Running time will depend on the graph structure
- Uses dynamic programming to circumvent enumerating all assignments
- First we introduce the concept for computing marginal probabilities, $p(X_i)$, in Bayesian networks
- After this, we will generalize to MRFs and conditional queries

Basic idea

- Suppose we have a simple chain, $A \to B \to C \to D$, and we want to compute p(D)
- p(D) is a **set** of values, $\{p(D=d), d \in \operatorname{Val}(D)\}$. Algorithm computes sets of values at a time an entire distribution
- By the chain rule and conditional independence, the joint distribution factors as

$$p(A, B, C, D) = p(A)p(B \mid A)p(C \mid B)p(D \mid C)$$

• In order to compute p(D), we have to marginalize over A, B, C:

$$p(D) = \sum_{a,b,c} p(A = a, B = b, C = c, D)$$

Let's be a bit more explicit...

• There is structure to the summation, e.g., repeated $P(c^1|b^1)P(d^1|c^1)$

Simplifying the computation

Our goal was to compute

$$p(D) = \sum_{a,b,c} p(a,b,c,D) = \sum_{a,b,c} p(a)p(b \mid a)p(c \mid b)p(D \mid c)$$
$$= \sum_{c} \sum_{b} \sum_{a} p(D \mid c)p(c \mid b)p(b \mid a)p(a)$$

• We can push the summations inside to obtain:

$$p(D) = \sum_{c} p(D \mid c) \sum_{b} p(c \mid b) \underbrace{\sum_{a} \underbrace{p(b \mid a)p(a)}_{\psi_{1}(a,b)}}_{\tau_{1}(b)}$$

- Let's call $\psi_1(A,B) = P(A)P(B|A)$. Then, $\tau_1(B) = \sum_a \psi_1(a,B)$
- Similarly, let $\psi_2(B,C) = \tau_1(B)P(C|B)$. Then, $\tau_2(C) = \sum_b \psi_1(b,C)$
- This procedure is dynamic programming: computation is inside out instead of outside in

Summary so far

- Worst-case analysis says that marginal inference is NP-hard
- In practice, due to the structure of the Bayesian network, we can cache computations that are otherwise computed exponentially many times
- This depends on our having a good variable elimination ordering

Sum-product inference task

- We want to give an algorithm to compute p(Y) for BNs and MRFs
- This can be reduced to the following **sum-product** inference task:

Compute
$$\tau(\mathbf{y}) = \sum_{\mathbf{z}} \prod_{\phi \in \Phi} \phi(\mathbf{z}_{\text{Scope}[\phi] \cap \mathbf{Z}}, \ \mathbf{y}_{\text{Scope}[\phi] \cap \mathbf{Y}}) \ \ \forall \mathbf{y},$$

where Φ is a set of factors or potentials

ullet For a BN, Φ is given by the conditional probability distributions for all variables,

$$\Phi = \{\phi_{X_i}\}_{i=1}^n = \{p(X_i \mid \mathbf{X}_{\text{Pa}(X_i)})\}_{i=1}^n,$$

and where we sum over the set $\mathbf{Z} = \mathcal{X} - \mathbf{Y}$

- ullet For Markov networks, the factors Φ correspond to the set of potentials which we earlier called C
 - Sum-product returns an unnormalized distribution, so we divide by $\sum_{\mathbf{y}} \tau(\mathbf{y})$

Factor marginalization

- Let $\phi(\mathbf{X}, Y)$ be a factor where \mathbf{X} is a set of variables and $Y \notin \mathbf{X}$
- Factor marginalization of ϕ over Y (also called "summing out Y in ϕ ") gives a new factor:

$$\tau(\mathbf{X}) = \sum_{Y} \phi(\mathbf{X}, Y)$$

For example,

a^1	b^1	c^1	0.25				
a^1	b^1	c^2	0.35				
a^1	b^2	c^1	0.08				
a^1	b^2	c^2	0.16			a^1	c^1
a^2	b^1	c^1	0.05	/		a^1	c^2
a^2	b^1	c^2	0.07	/	\geq	a^2	c^1
a^2	b^2	c^1	0		\geq	a^2	c^2
a^2	b^2	c^2	0			a^3	c^1
a^3	b^1	c^1	0.15			a^3	c^2
a^3	b^1	c^2	0.21	-			
a^3	b^2	c^1	0.09				
a^3	b^2	c^2	0.18				

Sum-product variable elimination

- Order the variables **Z** (called the **elimination ordering**)
- Iteratively marginalize out variable Z_i , one at a time
- For each i,
 - **1** Multiply all factors that have Z_i in their scope, generating a new product factor
 - ② Marginalize this product factor over Z_i , generating a smaller factor
 - Remove the old factors from the set of all factors, and add the new one

Algorithm 9.1 Sum-Product Variable Elimination algorithm

```
Procedure Sum-Product-Variable-Elimination (
          \Phi, // Set of factors
         Z, // Set of variables to be eliminated
         \prec // Ordering on Z
         Let Z_1, \ldots, Z_k be an ordering of Z such that
        Z_i \prec Z_i \text{ iff } i < j
         for i = 1, \ldots, k
            \Phi \leftarrow \mathsf{Sum}\text{-}\mathsf{Product}\text{-}\mathsf{Eliminate}\text{-}\mathsf{Var}(\Phi, Z_i)
         \phi^* \leftarrow \prod_{\phi \in \Phi} \phi
6
         return \phi^*
      Procedure Sum-Product-Eliminate-Var (
          \Phi, // Set of factors
         Z // Variable to be eliminated
         \Phi' \leftarrow \{ \phi \in \Phi : Z \in Scope[\phi] \}
   \Phi'' \leftarrow \Phi - \Phi'
   \psi \leftarrow \prod_{\phi \in \Phi'} \phi
       \tau \leftarrow \sum_{z} \psi
         return \Phi'' \cup \{\tau\}
```

Example

• What is p(Job)? Joint distribution factorizes as:

p(C, D, I, G, S, L, H, J) = p(C)p(D|C)p(I)p(G|D, I)p(L|G)P(S|I)P(J|S, L)p(H|J, G) with factors

$$\Phi = \{\phi_{C}(C), \phi_{D}(C, D), \phi_{I}(I), \phi_{G}(G, D, I), \phi_{L}(L, G), \\ \phi_{S}(S, I), \phi_{J}(J, S, L), \phi_{H}(H, J, G)\}$$

• Let's do variable elimination with ordering $\{C, D, I, H, G, S, L\}$ on the board!

Elimination ordering

 We can pick any order we want, but some orderings introduce factors with much larger scope

Coherence	Step	Variable	Factors	Variables	New
—		eliminated	used	involved	factor
Difficulty Intelligence	1	C	$\phi_C(C), \phi_D(D, C)$	C, D	$\tau_1(D)$
	2	D	$\phi_G(G, I, D), \tau_1(D)$	G, I, D	$\tau_2(G, I)$
Grade SAT	3	I	$\phi_I(I), \phi_S(S, I), \tau_2(G, I)$	G, S, I	$\tau_3(G, S)$
/ 🗼 /	4	H	$\phi_H(H, G, J)$	H, G, J	$\tau_4(G, J)$
/ Letter /	5	G	$\tau_4(G, J), \tau_3(G, S), \phi_L(L, G)$	G, J, L, S	$\tau_5(J, L, S)$
Job	6	S	$\tau_5(J, L, S), \phi_J(J, L, S)$	J, L, S	$\tau_6(J, L)$
Нарру	7	L	$\tau_6(J, L)$	J, L	$\tau_7(J)$

Alternative ordering...

Step	Variable	Factors	Variables	New
	eliminated	used	involved	factor
1	G	$\phi_G(G, I, D), \phi_L(L, G), \phi_H(H, G, J)$	G, I, D, L, J, H	$\tau_1(I, D, L, J, H)$
2	I	$\phi_I(I), \phi_S(S, I), \tau_1(I, D, L, S, J, H)$	S, I, D, L, J, H	$\tau_2(D, L, S, J, H)$
3	S	$\phi_J(J, L, S), \tau_2(D, L, S, J, H)$	D, L, S, J, H	$\tau_3(D, L, J, H)$
4	L	$\tau_3(D, L, J, H)$	D, L, J, H	$\tau_4(D, J, H)$
5	H	$\tau_4(D, J, H)$	D, J, H	$\tau_5(D, J)$
6	C	$\tau_5(D, J), \phi_D(D, C)$	D, J, C	$\tau_6(D, J)$
7	D	$\tau_6(D, J)$	D, J	$\tau_7(J)$

How to introduce evidence?

Recall that our original goal was to answer conditional probability queries,

$$ho(\mathbf{Y}|\mathbf{E}=\mathbf{e})=rac{
ho(\mathbf{Y},\mathbf{e})}{
ho(\mathbf{e})}$$

- Apply variable elimination algorithm to the task of computing $P(\mathbf{Y}, \mathbf{e})$
- Replace each factor $\phi \in \Phi$ that has $\mathbf{E} \cap \operatorname{Scope}[\phi] \neq \emptyset$ with

$$\phi'(\mathbf{x}_{\mathrm{Scope}[\phi]-\mathbf{E}}) = \phi(\mathbf{x}_{\mathrm{Scope}[\phi]-\mathbf{E}}, \mathbf{e}_{\mathbf{E} \cap \mathrm{Scope}[\phi]})$$

- Then, eliminate the variables in $\mathcal{X} \mathbf{Y} \mathbf{E}$. The returned factor $\phi^*(\mathbf{Y})$ is $p(\mathbf{Y}, \mathbf{e})$
- To obtain the conditional p(Y | e), normalize the resulting product of factors the normalization constant is p(e)

Running time of variable elimination

Step	Variable	Factors	Variables	New
	eliminated	used	involved	factor
1	C	$\phi_C(C), \phi_D(D, C)$	C, D	$\tau_1(D)$
2	D	$\phi_G(G, I, D), \tau_1(D)$	G, I, D	$\tau_2(G, I)$
3	I	$\phi_I(I), \phi_S(S, I), \tau_2(G, I)$	G, S, I	$\tau_3(G, S)$
4	H	$\phi_H(H, G, J)$	H, G, J	$\tau_4(G, J)$
5	G	$\tau_4(G, J), \tau_3(G, S), \phi_L(L, G)$	G, J, L, S	$\tau_5(J, L, S)$
6	S	$\tau_5(J, L, S), \phi_J(J, L, S)$	J, L, S	$\tau_6(J, L)$
7	L	$\tau_6(J, L)$	J, L	$\tau_7(J)$

- Let *n* be the number of variables, and *m* the number of initial factors
- At each step, we pick a variable X_i and multiply all factors involving X_i , resulting in a single factor ψ_i
- Let N_i be the number of variables in the factor ψ_i , and let $N_{max} = \max_i N_i$
- The running time of VE is then $O(mk^{N_{max}})$, where k = |Val(X)|. Why?
- The primary concern is that N_{max} can potentially be as large as n

Running time in graph-theoretic concepts

- Let's try to analyze the complexity in terms of the graph structure
- G_{Φ} is the undirected graph with one node per variable, where there is an edge (X_i, X_i) if these appear together in the scope of some factor ϕ
- Ignoring evidence, this is either the original MRF (for sum-product VE on MRFs) or the moralized Bayesian network:

Elimination as graph transformation

When a variable X is eliminated,

- \bullet We create a single factor ψ that contains X and all of the variables ${\bf Y}$ with which it appears in factors
- We eliminate X from ψ , replacing it with a new factor τ that contains all of the variables \mathbf{Y} , but not X. Let's call the new set of factors Φ_X

How does this modify the graph, going from G_{Φ} to G_{Φ_X} ?

- ullet Constructing ψ generates edges between all of the variables $Y \in \mathbf{Y}$
- Some of these edges were already in G_{Φ} , some are new
- The new edges are called fill edges
- The step of removing X from Φ to construct Φ_X removes X and all its incident edges from the graph

Example

Induced graph

- We can summarize the computation cost using a single graph that is the union of all the graphs resulting from each step of the elimination
- We call this the **induced graph** $\mathcal{I}_{\Phi,\prec}$, where \prec is the elimination ordering

Example

Step	Variable	Factors	Variables	New
	eliminated	used	involved	factor
1	C	$\phi_C(C), \phi_D(D, C)$	C, D	$\tau_1(D)$
2	D	$\phi_G(G, I, D), \tau_1(D)$	G, I, D	$\tau_2(G, I)$
3	I	$\phi_I(I), \phi_S(S, I), \tau_2(G, I)$	G, S, I	$\tau_3(G, S)$
4	H	$\phi_H(H, G, J)$	H, G, J	$\tau_4(G, J)$
5	G	$\tau_4(G, J), \tau_3(G, S), \phi_L(L, G)$	G, J, L, S	$\tau_5(J, L, S)$
6	S	$\tau_5(J, L, S), \phi_J(J, L, S)$	J, L, S	$\tau_6(J, L)$
7	L	$\tau_6(J, L)$	J, L	$\tau_7(J)$

(Induced graph)

Properties of the induced graph

- **Theorem**: Let $\mathcal{I}_{\Phi, \prec}$ be the induced graph for a set of factors Φ and ordering \prec , then
 - **①** Every factor generated during VE has a scope that is a clique in $\mathcal{I}_{\Phi,\prec}$
 - 2 Every maximal clique in $\mathcal{I}_{\Phi,\prec}$ is the scope of some intermediate factor in the computation

(see Koller & Friedman for proof)

- ullet Thus, N_{max} is equal to the size of the largest clique in $\mathcal{I}_{\Phi,\prec}$
- The running time, $O(mk^{N_{max}})$, is exponential in the size of the largest clique of the induced graph

Induced width

- The width of an induced graph is #nodes in largest clique 1
- We define the **induced width** $w_{\mathcal{G}, \prec}$ to be the width of the graph $\mathcal{I}_{\mathcal{G}, \prec}$ induced by applying VE to \mathcal{G} using ordering \prec
- ullet The **treewidth**, or "minimal induced width" of graph ${\cal G}$ is

$$w_{\mathcal{G}}^* = \min_{\prec} w_{\mathcal{G},\prec}$$

- The treewidth provides a bound on the best running time achievable by VE on a distribution that factorizes over \mathcal{G} : $O(mk^{w_{\mathcal{G}}^*+1})$,
- Unfortunately, finding the best elimination ordering (equivalently, computing the treewidth) for a graph is NP-hard
- In practice, heuristics are used to find a good elimination ordering

Today's lecture

- Exact inference
 - Worst-case complexity of probabilistic inference
 - ② Elimination algorithm
 - 3 Running-time analysis of elimination algorithm (treewidth)
- Approximate inference

Approximate marginal inference

- Given the joint $p(x_1, ..., x_n)$ represented as a graphical model, how do we perform **marginal inference**, e.g. to compute $p(x_1 | e)$?
- We showed earlier in the lecture that doing this exactly is NP-hard
- Nearly all approximate inference algorithms are either:
 - Monte-carlo methods (e.g., Gibbs sampling, likelihood reweighting, MCMC)
 - 2 Variational algorithms (e.g., mean-field, loopy belief propagation)

Generating samples from a Bayesian network

Algorithm 12.1 Forward Sampling in a Bayesian network

```
Procedure Forward-Sample ( \mathcal{B} // Bayesian network over \mathcal{X} )

Let X_1,\ldots,X_n be a topological ordering of \mathcal{X} for i=1,\ldots,n

u_i \leftarrow x\langle \operatorname{Pa}_{X_i}\rangle // Assignment to \operatorname{Pa}_{X_i} in x_1,\ldots,x_{i-1}

Sample x_i from P(X_i \mid u_i)

return (x_1,\ldots,x_n)
```

(Koller & Friedman, Probabilistic Graphical Models, MIT Press 2009)

Monte-Carlo algorithms

• Given a joint distribution $p(x_1, ..., x_n)$, how do we compute marginals?

$$\begin{aligned} \rho[X_1 = x_1] &= E_{\mathbf{x} \sim p}[f(\mathbf{x})], \text{ where } f(\mathbf{x}) = \mathbb{1}[X_1 = x_1] \\ &= \sum_{\mathbf{x}} \rho(\mathbf{x}) f(\mathbf{x}). \end{aligned}$$

 Rather than explicitly enumerating all assignments, consider the following Monte-Carlo estimate of the expectation:

$$\mathbf{x}^1 \sim p(\mathbf{x})$$
 $\mathbf{x}^2 \sim p(\mathbf{x})$
 \vdots
 $\mathbf{x}^M \sim p(\mathbf{x})$

• Then, our estimate is $\hat{E}_p[f(x)] = \frac{1}{M} \sum_{m=1}^M f(\mathbf{x}^m)$. How good is it?