数理逻辑

第12讲自然演绎系统

授课教师: 蒋琳

e-mail: zoeljiang@hit.edu.cn

哈尔滨工业大学(深圳)计算机科学与技术学院

自然演绎系统ND的语言部分

字母表是集合:

$$\sum = \{(,), \neg, \land, \lor, \longrightarrow, \phi, p, q, r, p_1, p_2, p_3, \dots\}$$

注释:

- (1) 三个部分构成: 助记符 + 联结词 + $Atom(L^p)$ 。
- (2) $\{p, q, r, p_1, p_2, \dots\}$ 就是 $Atom(L^p)$ 。
- (3) {¬,∧,∨,→,↔}是联结词。
- (4) {(,)}是助记符。目的是体现公式的层次感。

自然演绎系统ND的语言部分

字母表: $\Sigma = \{(,), \neg, \land, \lor, \longrightarrow, p, q, r, p_1, p_2, p_3, \ldots\}$

助记符+完备联结词组+ $Atom(L^p)$

ND的公式(递归定义):

- (1) $p,q,r,p_1,p_2,p_3,...$ 为(原子)公式。
- (2) 如果 A, B 是公式,那么($\neg A$), $(A \land B)$, $(A \lor B)$, $(A \rightarrow B)$, $(A \leftrightarrow B)$ 也是公式。
- (3) 只有(1)和(2)确定的 \sum *的字符串才是公式。(有限次)在不产生歧义的情况下,公式中最外层的括号可以省略。

自然演绎系统ND中的公理

公理模式:

$$\Gamma \cup \{A\} \vdash A \in$$

注释:

- (1) ND中只有这一条公理
- (2) Γ 代表的是ND中的公式集合
- (3) A代表的是ND中的公式
- (4) 该公理实际上表示了一个公理模板

推理规则: 共有14条推理规则

1、推理规则1: 假设引入规则, 出自重言式 $B \rightarrow (A \rightarrow B)$

$$\frac{\Gamma \vdash B}{\Gamma \cup \{A\} \vdash B} \ \ \textbf{(+)}$$

推理规则1的PC证明:

证明:

• 由 $\Gamma \vdash B$,则可得以 Γ 为前提对 $A \rightarrow B$ 的如下演绎序列:

$$B, B \rightarrow (A \rightarrow B), A \rightarrow B$$

• 从而 $\Gamma \vdash A \rightarrow B$, 再由演绎定理知 Γ ; $A \vdash B$ 。

演绎定理: 对PC中的任意公式集合 Γ 和公式 $A, B, \Gamma \cup \{A\} \vdash_{PC} B$ 当且仅当 $\Gamma \vdash_{PC} A \rightarrow B$

推理规则: 共有14条推理规则

2、**推理规则2**: 假设消除规则,出自重言式 $\neg A \rightarrow (A \rightarrow B)$

$$\frac{\Gamma;A \vdash B , \quad \Gamma; \neg A \vdash B}{\Gamma \vdash B} \quad (-)$$

推理规则2的PC证明:

(1) $A \rightarrow B$ 已知条件

证明: 由 Γ ; $A \vdash B$, Γ ; $\neg A \vdash B$, 根据演绎定理知:

$$\Gamma \vdash A \rightarrow B$$
, $\Gamma \vdash \neg A \rightarrow B$

- 可构造以厂为前提的如下演绎序列:
 - (2) $(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$ 定理13
 - (3) $\neg B \rightarrow \neg A$ (1) 和 (2) 用rmp分离规则

 - (4) $(\neg A \rightarrow B) \rightarrow (\neg B \rightarrow A)$ 定理14 (5) $\neg A \rightarrow B$ 已知条件
 - (6) $\neg B \rightarrow A$ (5) 和 (4) 用rmp分离规则
 - (7) $(\neg B \rightarrow A) \rightarrow ((\neg B \rightarrow \neg A) \rightarrow B)$ 定理16
 - (8) $(\neg B \rightarrow \neg A) \rightarrow B$ (6) 和 (7) 用rmp分离规则
 - (9) B (3) 和 (8) 用rmp分离规则
- 从上述演绎序列可知Γ ⊢ B

推理规则: 共有14条推理规则

3、**推理规则3**: 析取引入规则, 出自重言式 $A \rightarrow A \lor B, B \rightarrow A \lor B$

$$\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B}$$
, $\frac{\Gamma \vdash B}{\Gamma \vdash A \lor B}$ (V +)

推理规则3的PC证明:

定理19: $\vdash A \rightarrow A \lor B$, 其中 $A \lor B$ 定义为¬ $A \rightarrow B$

证明:

• 由 $\Gamma \vdash A$ 可以得到以 Γ 为前提的如下演绎序列:

$$A, A \rightarrow A \vee B, A \vee B$$

- 从上述演绎序列可知Γ ⊢ A ∨ B
- 由 $\Gamma \vdash B$ 可以得到以 Γ 为前提的如下演绎序列:

$$B, B \rightarrow A \vee B, A \vee B$$

从上述演绎序列可知Γ ⊢ A ∨ B

定理20: $\vdash A \rightarrow B \lor A$, 其中 $A \lor B$ 定义为¬ $A \rightarrow B$

推理规则: 共有14条推理规则

4、**推理规则4**: 析取消除规则,出自重言式($A \lor B$) ∧ ($A \to C$) ∧ ($B \to C$) $\to C$

$$\frac{\Gamma;A \vdash C, \Gamma;B \vdash C, \Gamma \vdash A \lor B}{\Gamma \vdash C} (\lor -)$$

推理规则4的PC证明: 定理22: $\vdash (A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow ((A \lor B) \rightarrow C))$

证明:

由Γ; A ⊢ C和Γ; B ⊢ C, 根据演绎定理知:

$$\Gamma \vdash A \rightarrow C$$
, $\Gamma \vdash B \rightarrow C$

- 可以构造以 / 为前提的如下演绎序列:
 - (1) $(A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow (A \lor B \rightarrow C))$ 定理22二难推理
 - (2) $A \rightarrow C$ 已知条件
 - (3) $(B \rightarrow C) \rightarrow (A \lor B \rightarrow C)$ (2) 和 (1) 用rmp分离规则
 - (4) $B \rightarrow C$ 已知条件
 - (5) $A \lor B \to C$ (4) 和 (3) 用rmp分离规则
 - (6) A V B 已知条件
 - (7) C (6) 和 (5) 用rmp分离规
- 从上述演绎序列可知Γ ⊢ C

推理规则: 共有14条推理规则

5、**推理规则5**: 合取引入规则,出自重言式 $A \rightarrow (B \rightarrow A \land B)$

$$\frac{\Gamma \vdash A, \ \Gamma \vdash B}{\Gamma \vdash A \land B} \quad (\land +)$$

推理规则5的PC证明:

证明:

- 由 $\Gamma \vdash A, \Gamma \vdash B$,可以构造以 Γ 为前提的如下演绎序列:
 - (1) A

已知条件

(2) B

已知条件

(3) $A \rightarrow (B \rightarrow A \land B)$ 定理26

- (4) $B \rightarrow A \land B$ (1) 和 (3) 用rmp分离规则
- (5) A ∧ B (2) 和 (4) 用rmp分离规则
- 从上述演绎序列可知, $\Gamma \vdash A \land B$

推理规则: 共有14条推理规则

6、**推理规则6**: 合取消除规则,出自重言式 $A \land B \rightarrow A, A \land B \rightarrow B$

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash A}$$
, $\frac{\Gamma \vdash A \land B}{\Gamma \vdash B}$ $(\land -)$

推理规则6的PC证明:

- 由 $\Gamma \vdash A \land B$,可以构造以 Γ 为前提的如下演绎序列:
 - (1) A ∧ B 已知条件
 - (2) $A \wedge B \rightarrow A$ 定理24
 - (3) A (1) 和 (2) 用rmp分离规则
- 从上述演绎序列可知, $\Gamma \vdash A$
- 由 $\Gamma \vdash A \land B$,也可以构造以 Γ 为前提的如下演绎序列:
 - (1) A ∧ B 已知条件
 - (2) $A \wedge B \rightarrow B$ 定理25
 - (3) B (1) 和 (2) 用rmp分离规则
- 从上述演绎序列可知, Γ ⊢ B

推理规则: 共有14条推理规则

7、推理规则7: 蕴涵引入规则

$$\frac{\Gamma;A \vdash B}{\Gamma \vdash A \to B} \ (\to +)$$

推理规则7的PC证明:

证明: 由 Γ ; $A \vdash B$,根据演绎定理知 $\Gamma \vdash A \to B$ 。

推理规则: 共有14条推理规则

8、推理规则8: 蕴涵消除规则

$$\frac{\Gamma \vdash A, \Gamma \vdash A \to B}{\Gamma \vdash B} \ \ (\to -)$$

推理规则8的PC证明:

证明:

- 由 $\Gamma \vdash A, \Gamma \vdash A \rightarrow B$ 可以构造以 Γ 为前提的如下演绎序列:
 - (1) A

已知条件

 $(2) A \rightarrow B$

已知条件

- (3) B (1) 和 (2) 用rmp分离规则

AL RESIDE DESIGNES DE

从上述演绎序列可知, $\Gamma \vdash B$

推理规则: 共有14条推理规则

9、推理规则9: ¬引入规则

$$\frac{\Gamma;A\vdash B,\Gamma;A\vdash \neg B}{\Gamma\vdash \neg A} \ (\neg+)$$

推理规则9的PC证明:

证明:

由Γ; A ⊢ B, Γ; A ⊢ ¬B根据演绎定理知:

$$\Gamma \vdash A \rightarrow B$$
, $\Gamma \vdash A \rightarrow \neg B$

- 可以构造以Γ 为前提的如下演绎序列:
 - (1) $A \rightarrow B$ 已知条件
 - (2) $A \rightarrow \neg B$ 已知条件
 - (3) $(A \rightarrow B) \rightarrow ((A \rightarrow \neg B) \rightarrow \neg A)$ 定理17
 - (4) $(A \rightarrow \neg B) \rightarrow \neg A$ (1) 和 (3) 用rmp分离规则
 - (5) ¬A(2)和(4)用rmp分离规则
- 从上述演绎序列可知, $\Gamma \vdash \neg A$

推理规则: 共有14条推理规则

10、**推理规则10**: ¬消除规则,出自重言式 $A \rightarrow (\neg A \rightarrow B)$

$$\frac{\Gamma \vdash A, \quad \Gamma \vdash \neg A}{\Gamma \vdash B} \left(\neg -\right)$$

推理规则10的PC证明:

- 由 $\Gamma \vdash A, \Gamma \vdash \neg A$,构造以 Γ 为前提的如下演绎序列:
 - (1) A 已知条件
 - (2) ¬A 已知条件
 - (3) $A \rightarrow (\neg A \rightarrow B)$ 定理7
 - (4) $\neg A \rightarrow B$ (1) 和 (3) 用rmp分离规则
 - (5) B (2) 和 (4) 用rmp分离规则
- 从上述演绎序列可知, $\Gamma \vdash B$

推理规则: 共有14条推理规则

11、**推理规则11**: ¬¬引入规则,出自重言式 $A \to \neg \neg A$ $\Gamma \vdash A$

$$\frac{\Gamma \vdash \Lambda}{\Gamma \vdash \neg \neg A} (\neg \neg +)$$

推理规则11的PC证明:

- 由 $\Gamma \vdash A$ 构造以 Γ 为前提的如下演绎序列:
 - (1) A 已知条件
 - (2) *A* → ¬¬*A* 定理12
 - (3) ¬¬A (1) 和 (2) 用rmp分离规则
- 从上述演绎序列可知, $\Gamma \vdash \neg \neg A$

推理规则: 共有14条推理规则

12、**推理规则12**: ¬¬消除规则,出自重言式¬¬ $A \rightarrow A$

$$\frac{\Gamma \vdash \neg \neg A}{\Gamma \vdash A} \ (\neg \neg -)$$

推理规则12的PC证明:

- 由 $\Gamma \vdash A$ 构造以 Γ 为前提的如下演绎序列:
 - (1) ¬¬A 已知条件
 - (2) ¬¬*A* → *A* 定理10
 - (3) A (1) 和 (2) 用rmp分离规则
- 从上述演绎序列可知, $\Gamma \vdash A$

推理规则: 共有14条推理规则

13、**推理规则13**: 等价引入规则,出自 \leftrightarrow 的定义 $\frac{\Gamma \vdash A \to B, \ \Gamma \vdash B \to A}{\Gamma \vdash A \leftrightarrow B} \ (\leftrightarrow +)$

推理规则13的PC证明:

证明: 根据↔的定义而得

推理规则: 共有14条推理规则

14、**推理规则14**: 等价消除规则,出自 \leftrightarrow 的定义 $\frac{\Gamma \vdash A \leftrightarrow B}{\Gamma \vdash A \to B}, \quad \frac{\Gamma \vdash A \leftrightarrow B}{\Gamma \vdash B \to A} \quad (\longleftrightarrow -)$

推理规则14的PC证明:

证明: 根据↔的定义而得

0、公理模式: Γ∪{A}⊢A(∈)

1、推理规则1:假设引入规则,
$$\frac{\Gamma \vdash B}{\Gamma \cup \{A\} \vdash B}$$
 (+)

2、推理规则2: 假设消除规则,
$$\frac{\Gamma;A\vdash B,\Gamma;\neg A\vdash B}{\Gamma\vdash B}$$
 (一)

3、推理规则3: 析取引入规则,
$$\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B}$$
, $\frac{\Gamma \vdash B}{\Gamma \vdash A \lor B}$ (V +)

4、推理规则4: 析取消除规则,
$$\frac{\Gamma;A\vdash C,\Gamma;B\vdash C,\Gamma\vdash A\lor B}{\Gamma\vdash C}$$
 (V 一)

5、推理规则5: 合取引入规则,
$$\frac{\Gamma \vdash A, \Gamma \vdash B}{\Gamma \vdash A \land B}$$
 (\wedge +)

6、推理规则6: 合取消除规则,
$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash A}$$
, $\frac{\Gamma \vdash A \land B}{\Gamma \vdash B}$ (\land —)

7、推理规则7:
$$\rightarrow$$
引入规则, $\frac{\Gamma;A\vdash B}{\Gamma\vdash A\to B}$ (\rightarrow +)

8、推理规则8:
$$\rightarrow$$
消除规则, $\frac{\Gamma \vdash A, \Gamma \vdash A \rightarrow B}{\Gamma \vdash B}$ (\rightarrow $-$)

9、推理规则9:
$$\neg$$
引入规则, $\frac{\Gamma;A\vdash B,\Gamma;A\vdash \neg B}{\Gamma\vdash \neg A}$ (\neg +)

10、推理规则10: ¬消除规则,
$$\frac{\Gamma \vdash A, \Gamma \vdash \neg A}{\Gamma \vdash B}$$
 (¬一)

11、推理规则11: ¬¬引入规则,
$$\frac{\Gamma \vdash A}{\Gamma \vdash \neg \neg A}$$
 (¬¬+)

12、推理规则12: ¬¬消除规则,
$$\frac{\Gamma \vdash \neg \neg A}{\Gamma \vdash A}$$
 (¬¬-)

13、推理规则13:
$$\leftrightarrow$$
 引入规则, $\frac{\Gamma \vdash A \to B, \Gamma \vdash B \to A}{\Gamma \vdash A \longleftrightarrow B}$ $(\longleftrightarrow +)$

14、推理规则14:
$$\leftrightarrow$$
 消除规则, $\frac{\Gamma \vdash A \leftrightarrow B}{\Gamma \vdash A \to B}$, $\frac{\Gamma \vdash A \leftrightarrow B}{\Gamma \vdash B \to A}$ (\leftrightarrow $-$)

推理规则2: 假设消除规则,
$$\frac{\Gamma;A\vdash B,\Gamma;\neg A\vdash B}{\Gamma\vdash B}$$
 (一)

求证:
$$\neg A \rightarrow A \vdash_{ND} A$$

$$1. \neg A \rightarrow A, A \vdash A$$
 公理

$$\Gamma \cup \{A\} \vdash A \in$$

$$2.\neg A \rightarrow A, \neg A \vdash A$$
 rmp分离规则

$$3.\neg A \rightarrow A \vdash A$$
 (1)(2)(-)

自然演绎系统ND的演绎和定理

定义:演绎结果和定理

在*ND*系统中称*A*为Γ的演绎结果,记为 $\Gamma \vdash_{ND} A$,如果存在一个序列:

$$\Gamma_1 \vdash_{ND} A_1, \Gamma_2 \vdash_{ND} A_2, \dots, \Gamma_m \vdash_{ND} A_m (\Gamma \vdash_{ND} A)$$

对任意的 $i = 1,2,...,m,\Gamma_i \vdash_{ND}A_i$ 都满足下列情况之一:

- $\Gamma_i \vdash_{ND} A_i$ 公理
- $\Gamma_i \vdash_{ND} A_i \not\equiv \Gamma_j \vdash A_j (j < i)$
- $\Gamma_i \vdash_{ND} A_i \ \exists \Gamma_{j_1} \vdash_{ND} A_{j_1}, \ \Gamma_{j_2} \vdash_{ND} A_{j_2}, \dots, \Gamma_{j_k} \vdash_{ND} A_{j_k} (j_1, j_2, \dots, j_k < i)$ 使用 推理规则导出

特别地,称A 为ND的定理,如果 $\Gamma \vdash NDA$,并且 $\Gamma = \emptyset$ 。即 $\vdash NDA$ 。

自然演绎系统ND的基本定理

定理1: ⊢_{ND} A ∨ ¬A

定理2: $\vdash_{ND} \neg (A \lor B) \leftrightarrow \neg A \land \neg B$

定理3: $\vdash_{ND} \neg (A \land B) \leftrightarrow \neg A \lor \neg B$

定理4: $\neg A \rightarrow B \vdash \dashv A \land \neg B$

定理5: $A \rightarrow B \vdash \dashv \neg A \lor B$

定理6: $\vdash A \land (B \lor C) \leftrightarrow (A \land B) \lor (A \land C)$

定理7: PC的公理是ND的定理,即

$$(1) \vdash_{ND} A \to (B \to A)$$

$$(2) \vdash_{ND} (A \to (B \to C)) \to ((A \to B) \to (A \to C))$$

 $(3) \vdash_{ND} (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$

定理1: ⊢_{ND} A ∨ ¬A

证明:

1. $A \vdash A$ (\in)

公理模式: $\Gamma \cup \{A\} \vdash A$ (∈)

2. $A \vdash A \lor \neg A$ (1)(\lor +)

 $3. \neg A \vdash \neg A$ (\in)

4. $\neg A \vdash A \lor \neg A \ (3)(\lor +)$

5. $\vdash A \lor \neg A$ (2)(4)(-)

推理规则3: 析取引入规则, $\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B}$, $\frac{\Gamma \vdash B}{\Gamma \vdash A \lor B}$ (V +)

 $\Gamma;A\vdash B,\Gamma;\neg A\vdash B$

推理规则2:假设消除规则,

定理2: $\vdash_{ND} \neg (A \lor B) \leftrightarrow \neg A \land \neg B$

证明思路:
$$(\leftrightarrow +) \qquad \qquad \frac{\mathbf{推理规则5}}{\Gamma \vdash A, \Gamma \vdash B} \qquad (\land +) \qquad \qquad \frac{\Gamma \vdash A, \Gamma \vdash B}{\Gamma \vdash A \land B} \qquad (\land +) \qquad \qquad \frac{\Gamma \vdash A, \Gamma \vdash B}{\Gamma \vdash A \land B} \qquad (\land +) \qquad \qquad \frac{\Gamma \vdash A \vdash B}{\Gamma \vdash A \land B} \qquad (\land +) \qquad \qquad \frac{\Gamma \vdash A \vdash B}{\Gamma \vdash A \land B} \qquad (\land +) \qquad \qquad \frac{\Gamma \vdash A \vdash B}{\Gamma \vdash A \land B} \qquad (\land +) \qquad \qquad \frac{\Gamma \vdash A \vdash B}{\Gamma \vdash A \rightarrow B} \qquad (\land +) \qquad \qquad \frac{\Gamma \vdash A \vdash B}{\Gamma \vdash A \rightarrow B} \qquad (\rightarrow +) \qquad \qquad \frac{\Gamma \vdash A \vdash B}{\Gamma \vdash A \rightarrow B} \qquad (\rightarrow +) \qquad \qquad \frac{\Gamma \vdash A \vdash B \vdash A}{\Gamma \vdash A \rightarrow B} \qquad (\neg +) \qquad \qquad \frac{\Gamma \vdash A \rightarrow B, \Gamma \vdash B \rightarrow A}{\Gamma \vdash A \rightarrow B} \qquad (\rightarrow +) \qquad \qquad \frac{\Gamma \vdash A \rightarrow B, \Gamma \vdash B \rightarrow A}{\Gamma \vdash A \rightarrow B} \qquad (\leftrightarrow +) \qquad \qquad (\rightarrow +) \qquad \qquad (\land \lor B); A \vdash (\land \lor B)$$

 $\vdash \neg (A \lor B) \to \neg A \land \neg B$ $(\to +) \downarrow$ $\neg (A \lor B) \vdash \neg A \land \neg B$

定理2: $\vdash_{ND} \neg (A \lor B) \leftrightarrow \neg A \land \neg B$

证明: 先证
$$\vdash \neg (A \lor B) \rightarrow \neg A \land \neg B$$

1.
$$\neg (A \lor B), A \vdash A$$
 (\in)

2.
$$\neg (A \lor B), A \vdash A \lor B$$
 (1)(\lor +)

$$3. \neg (A \lor B), A \vdash \neg (A \lor B) \quad (\in)$$

4.
$$\neg (A \lor B) \vdash \neg A$$
 (2)(3)(¬+)

$$5. \neg (A \lor B), B \vdash B \qquad (\in)$$

6.
$$\neg (A \lor B), B \vdash A \lor B$$
 (5)($\lor +$)

7.
$$\neg (A \lor B), B \vdash \neg (A \lor B) \in$$

8.
$$\neg (A \lor B) \vdash \neg B$$
 (6)(7)(¬+)

$$9. \neg (A \lor B) \vdash \neg A \land \neg B \quad (4)(8)(\land +)$$

10.
$$\vdash \neg (A \lor B) \rightarrow \neg A \land \neg B \ (9)(\rightarrow +)$$

$$(\land +)$$
 $\neg (A \lor B) \vdash \neg A \qquad \neg (A \lor B) \vdash \neg B$
 $(\neg +)$
 \downarrow
 $\neg (A \lor B); A \vdash ? \qquad \neg (A \lor B); B \vdash ?$
 $\neg (A \lor B); A \vdash \neg ? \qquad \neg (A \lor B); B \vdash \neg ?$
 $\neg (A \lor B); A \vdash (A \lor B)$
 $\neg (A \lor B); A \vdash \neg (A \lor B)$
 $\frac{\mathbf{trumum3}}{\Gamma \vdash A \lor B}; F \vdash A \lor B}$
 $(\lor +)$

定理2: $\vdash_{ND} \neg (A \lor B) \leftrightarrow \neg A \land \neg B$

推理规则5: 合取引入规则,
$$\frac{\Gamma \vdash A, \Gamma \vdash B}{\Gamma \vdash A \land B}$$
 (\wedge +)
推理规则7: \rightarrow 引入规则, $\frac{\Gamma; A \vdash B}{\Gamma \vdash A \rightarrow B}$ (\rightarrow +)
推理规则9: \neg 引入规则, $\frac{\Gamma; A \vdash B, \Gamma; A \vdash \neg B}{\Gamma \vdash \neg A}$ (\neg +)
推理规则13: \leftrightarrow 引入规则, $\frac{\Gamma \vdash A \rightarrow B, \Gamma \vdash B \rightarrow A}{\Gamma \vdash A \leftrightarrow B}$ (\leftrightarrow +)

推理规则3:析取引入规则, 公理模式: $\Gamma \cup \{A\} \vdash A$ (∈) $\Gamma \vdash A$ $\overline{\Gamma \vdash A \lor B}$ ' $\overline{\Gamma \vdash A \lor B}$ 定理2: $\vdash_{ND} \neg (A \lor B) \leftrightarrow \neg A \land \neg B$ **推理规则4:**析取消除规则 $\Gamma;A\vdash C,\Gamma;B\vdash C,\Gamma\vdash A\lor B$ 证明: 再证 $\vdash \neg A \land \neg B \rightarrow \neg (A \lor B)$ 11. $\neg A \land \neg B, A \lor B, A \vdash A \quad (\in)$ **推理规则5**: 合取引入规则, 12. $\neg A \land \neg B, A \lor B, A \vdash \neg A \land \neg B \in (\in)$ 13. $\neg A \land \neg B, A \lor B, A \vdash \neg A \ (12)(\land -)$ 14. $\neg A \land \neg B, A \lor B, A \vdash A \land \neg A$ (11)(13)(\(\lambda\)+) **推理规则6**: 合取消除规则, $\frac{\Gamma \vdash A \land B}{\Gamma \vdash A}$, $\frac{\Gamma \vdash A \land B}{\Gamma \vdash B}$ $(\land -)$ 15. $\neg A \land \neg B, A \lor B, B \vdash B$ 16. $\neg A \land \neg B, A \lor B, B \vdash \neg A \land \neg B \in A$ **推理规则7**: → 引 入 规 则 , 17. $\neg A \land \neg B, A \lor B, B \vdash \neg B$ (16)(\land –) $\frac{\Gamma;A \vdash B}{\Gamma \vdash A \to B} \ (\to +)$ $18. \neg A \land \neg B, A \lor B, B \vdash A \land \neg A$ (15)(17)(¬-) **推理规则9**: ¬引入规则, 19. $\neg A \land \neg B, A \lor B \vdash A \lor B$ (\in) $\underline{\Gamma;A\vdash B,\Gamma;A\vdash \neg B}$ 20. $\neg A \land \neg B, A \lor B \vdash A \land \neg A (14)(18)(19)(\lor -)$ 21. $\neg A \land \neg B, A \lor B \vdash A$ $(20)(\Lambda -)$ **推理规则10**: ¬消除 规则, 22. $\neg A \land \neg B, A \lor B \vdash \neg A$ $(20)(\Lambda -)$ $\Gamma \vdash A, \Gamma \vdash \neg A$ $(21)(22)(\neg +)$ 23. $\neg A \land \neg B \vdash \neg (A \lor B)$ 推理规则 $13: \leftrightarrow 引入规则$, $24. \vdash \neg A \land \neg B \rightarrow \neg (A \lor B)$ $(24)(\to +)$ $\Gamma \vdash A \rightarrow B, \Gamma \vdash B \rightarrow A$ 25. $\vdash \neg (A \lor B) \leftrightarrow \neg A \land \neg B$ $(10)(24)(\leftrightarrow +)$ $(\leftrightarrow +)$ $\Gamma \vdash A \longleftrightarrow B$

定理3: $\vdash_{ND} \neg (A \land B) \leftrightarrow \neg A \lor \neg B$

证明: 先证 $\vdash \neg (A \land B) \rightarrow \neg A \lor \neg B$

$$(1) \neg (A \land B), \neg A \vdash \neg A \ (\in)$$

(2)
$$\neg (A \land B), \neg A \vdash \neg A \lor \neg B$$
 (1)($\lor +$)

(3)
$$\neg (A \land B), A, B \vdash A \in (E)$$

$$(4) \neg (A \land B), A, B \vdash B \quad (\in)$$

(5)
$$\neg (A \land B), A, B \vdash A \land B$$
 (3)(4)($\land +$)

(6)
$$\neg (A \land B), A, B \vdash \neg (A \land B)$$
 (\in)

$$(7) \quad \neg (A \land B), A \vdash \neg B \quad (5)(6)(\neg +)$$

(8)
$$\neg (A \land B), A \vdash \neg A \lor \neg B$$
 (7)($\lor +$)

$$(9) \neg (A \land B) \vdash \neg A \lor \neg B \quad (8)(2)(-)$$

$$(10) \vdash \neg (A \land B) \rightarrow \neg A \lor \neg B \quad (9)(\rightarrow +)$$

公理模式: $\Gamma \cup \{A\} \vdash A$ (∈)

推理规则2: 假设消除规则,

$$\frac{\Gamma;A\vdash B,\Gamma;\neg A\vdash B}{\Gamma\vdash B} \ \ (-)$$

推理规则3:析取引入规则,

$$\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B}$$
, $\frac{\Gamma \vdash B}{\Gamma \vdash A \lor B}$ (V +)

推理规则5: 合取引入规则,

$$\frac{\Gamma \vdash A, \Gamma \vdash B}{\Gamma \vdash A \land B} \quad (\land +)$$

推理规则7: \rightarrow 引入规则,

$$\frac{\Gamma;A \vdash B}{\Gamma \vdash A \to B} \ (\to +)$$

推理规则9: ¬引入规则,

$$A \vdash B, I; A \vdash \neg B$$

公理模式: Γ∪{A}⊢A(€) **定理3**

推理规则4:析取消除规则, Γ ; $A \vdash C$, Γ ; $B \vdash C$, $\Gamma \vdash A \lor B$

定理3: $\vdash_{ND} \neg (A \land B) \leftrightarrow \neg A \lor \neg B$

证明: 再证 $\vdash \neg A \lor \neg B \to \neg (A \land B)$

 $(11) \neg A \lor \neg B, A \land B, \neg A \vdash A \land B \quad (\in)$

(12) $\neg A \lor \neg B, A \land B, \neg A \vdash A$ (11)($\land -$)

(13) $\neg A \lor \neg B, A \land B, \neg A \vdash \neg A \in A$

(14) $\neg A \lor \neg B, A \land B, \neg A \vdash A \land \neg A$ (12)(13)($\land +$)

(15) $\neg A \lor \neg B, A \land B, \neg B \vdash A \land B$ (\in)

(16) $\neg A \lor \neg B, A \land B, \neg B \vdash B$ (15)($\land -$)

 $(17) \neg A \lor \neg B, A \land B, \neg B \vdash \neg B \quad (\in)$

(18) $\neg A \lor \neg B, A \land B, \neg B \vdash A \land \neg A$ (16)(17)($\neg -$)

(19) $\neg A \lor \neg B, A \land B \vdash \neg A \lor \neg B$ (\in)

(20) $\neg A \lor \neg B, A \land B \vdash A \land \neg A \quad (14)(18)(19)(\lor -)$

(21) $\neg A \lor \neg B, A \land B \vdash A$ (20)($\land -$)

(22) $\neg A \lor \neg B, A \land B \vdash \neg A$ (20)(\land –)

(23) $\neg A \lor \neg B \vdash \neg (A \land B)$ (21)(22)(¬+)

 $(24) \vdash \neg A \lor \neg B \to \neg (A \land B) \quad (23)(\to +)$

 $(25) \vdash \neg (A \land B) \leftrightarrow \neg A \lor \neg B \quad (10)(24)(\leftrightarrow +)$

推理规则5:合取引入规则

 $\frac{\Gamma \vdash A, \Gamma \vdash B}{\Gamma \vdash A \land B} \quad (\land +)$

推理规则6: 合取消除规则,

 $\frac{\Gamma \vdash A \land B}{\Gamma \vdash A}$, $\frac{\Gamma \vdash A \land B}{\Gamma \vdash B}$ $(\land -)$

推理规则7: \rightarrow 引入规则,

 $\frac{\Gamma;A \vdash B}{\Gamma \vdash A \to B} \ (\to +)$

推理规则9: ¬引入规则,

 $\frac{\Gamma;A\vdash B,\Gamma;A\vdash \neg B}{\Gamma\vdash \neg A} \ (\neg+)$

推理规则10: ¬消除规则,

 $\frac{\Gamma \vdash A, \Gamma \vdash \neg A}{\Gamma \vdash B} \left(\neg -\right)$

推理规则 $13: \leftrightarrow 引入规则,$

 $\frac{\Gamma \vdash A \to B, \Gamma \vdash B \to A}{\Gamma \vdash A \longleftrightarrow B} \ (\longleftrightarrow \ +)$

定理 $4: \neg A \rightarrow B \vdash \dashv A \lor B$

证明: 先证 $\neg A \rightarrow B \vdash_{ND} A \lor B$

1:
$$\neg A \rightarrow B, A \vdash A \in$$

2:
$$\neg A \rightarrow B, A \vdash A \lor B$$
 (1)(\lor +)

3:
$$\neg A \rightarrow B$$
, $\neg A \vdash \neg A \in (\in)$

4:
$$\neg A \rightarrow B$$
, $\neg A \vdash \neg A \rightarrow B$ (\in)

5:
$$\neg A \rightarrow B$$
, $\neg A \vdash B$ (3)(4)(\rightarrow -)

6:
$$\neg A \rightarrow B$$
, $\neg A \vdash A \lor B$ (5)($\lor +$)

7:
$$\neg A \to B \vdash A \lor B \ (2)(6)(-)$$

公理模式: $\Gamma \cup \{A\} \vdash A \in$

推理规则3: 析取引入规则,
$$\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B}$$
, $\frac{\Gamma \vdash B}{\Gamma \vdash A \lor B}$ (\lor +)

$$\frac{\mathbf{#理规则8}: \rightarrow$$
消除规则, $\frac{\Gamma \vdash A, \Gamma \vdash A \rightarrow B}{\Gamma \vdash B}$ (→ 一)

定理4:¬A → B ⊢¬ A ∨ B

证明: 再证 $A \lor B \vdash_{ND} \neg A \to B$

1:
$$A \vee B$$
, $\neg A$, $A \vdash A$ (\in)

2:
$$A \vee B$$
, $\neg A$, $A \vdash \neg A$ (\in)

3:
$$A \vee B$$
, $\neg A$, $A \vdash B$ (1)(2)($\neg -$)

4:
$$A \vee B$$
, $\neg A$, $B \vdash B$ (\in)

5:
$$A \vee B$$
, $\neg A \vdash A \vee B$ (\in)

6:
$$A \vee B$$
, $\neg A \vdash B$ (3)(4)(5)(\vee –)

7:
$$A \lor B \vdash \neg A \rightarrow B \ (6)(\rightarrow +)$$

公理模式: $\Gamma \cup \{A\} \vdash A$ (€)

推理规则7: →引入规则,
$$\frac{\Gamma;A\vdash B}{\Gamma\vdash A\to B}$$
 (→ +)

定理5: $A \rightarrow B \vdash \dashv \neg A \lor B$

证明: 先证 $A \rightarrow B \vdash \neg A \lor B$

(1)
$$A \rightarrow B, \neg A \vdash \neg A$$

公理模式:
$$\Gamma \cup \{A\} \vdash A$$
 (∈)

(2)
$$A \rightarrow B$$
, $\neg A \vdash \neg A \lor B$

$$(1) (V +)$$

$$(3)$$
 $A \rightarrow B, A \vdash A$

(4)
$$A \rightarrow B, A \vdash A \rightarrow B$$

$$(5)$$
 $A \rightarrow B, A \vdash B$

$$(3)(4)(\rightarrow -)$$

(6)
$$A \rightarrow B, A \vdash \neg A \lor B$$

$$(5) (V +)$$

$$(7) A \rightarrow B \vdash \neg A \lor B$$

$$(6)(2)(-)$$

推理规则2: 假设消除规则,

$$\frac{\Gamma; A \vdash B, \Gamma; \neg A \vdash B}{\Gamma \vdash B} \left(- \right)$$

推理规则3: 析取引入规则,

$$\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B}$$
, $\frac{\Gamma \vdash B}{\Gamma \vdash A \lor B}$ (V +)

推理规则8: 蕴涵消除规则

$$\frac{\Gamma\vdash A,\,\Gamma\vdash A\to B}{\Gamma\vdash B}\ \left(\to\ -\right)$$

定理5: $A \rightarrow B \vdash \dashv \neg A \lor B$

公理模式: Γ∪{A} ⊢ A (€) **定理6**

定理6: $\vdash A \land (B \lor C) \leftrightarrow (A \land B) \lor (A \land C)$

证明: 先证 $\vdash A \land (B \lor C) \rightarrow (A \land B) \lor (A \land C)$ **推理规则3**:析取引入规则, 1: $A \wedge (B \vee C), B \vdash B \in (\in)$ $\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B}$, $\frac{\Gamma \vdash B}{\Gamma \vdash A \lor B}$ 2: $A \land (B \lor C), B \vdash A \land (B \lor C)$ (\in) 3: $A \wedge (B \vee C), B \vdash A$ (2)(\wedge –) **推理规则4**:析取消除规则, $\frac{\Gamma;A\vdash C,\Gamma;B\vdash C,\Gamma\vdash A\lor B}{\Gamma\vdash C} \, \, \big(\lor \, \, - \big)$ 4: $A \wedge (B \vee C), B \vdash A \wedge B$ (3)(1)(\wedge +) 5: $A \wedge (B \vee C), B \vdash (A \wedge B) \vee (A \wedge C) \quad (4)(\vee +)$ **推理规则5**: 合取引入规则, 6: $A \wedge (B \vee C), C \vdash C \in$ $\frac{\Gamma \vdash A, \Gamma \vdash B}{\Gamma \vdash A \land B} \quad (\land +)$ 7: $A \wedge (B \vee C), C \vdash A \wedge (B \vee C)$ (\in) 8: $A \wedge (B \vee C), C \vdash A \quad (7)(\wedge -)$ **推理规则6**: 合取消除规则, 10: $A \wedge (B \vee C) \cup A \wedge C$ (9)(\vee +) $\Gamma \vdash A \wedge B \cap A \wedge B$ (\wedge -) 11: $A \wedge (B \vee C) \cup A \wedge C$ **推理规则7**: →引入规则, 11: $A \wedge (B \vee C) \vdash A \wedge (B \vee C)$ (\in) $\frac{\Gamma;A \vdash B}{\Gamma \vdash A \to B} \ (\to +)$ 12: $A \wedge (B \vee C) \vdash B \vee C$ (11)(\wedge –) 13: $A \wedge (B \vee C) \vdash (A \wedge B) \vee (A \wedge C)$ (5)(10)(12)(\vee –) 14: $\vdash A \land (B \lor C) \rightarrow (A \land B) \lor (A \land C)$ (13)(\rightarrow +)

定理6: $\vdash A \land (B \lor C) \leftrightarrow (A \land B) \lor (A \land C)$

证明: 再证 $\vdash (A \land B) \lor (A \land C) \rightarrow A \land (B \lor C)$

15: $(A \land B) \lor (A \land C)$, $A \land B \vdash A$ (\in)之上做($\land -$)

16: $(A \wedge B) \vee (A \wedge C)$, $A \wedge B \vdash B$ (E)之上做(\wedge -)

17: $(A \land B) \lor (A \land C)$, $A \land B \vdash B \lor C$ (16) $(\lor +)$

18: $(A \wedge B) \vee (A \wedge C)$, $A \wedge B \vdash A \wedge (B \vee C)$ (15)(17)(\wedge +)

19: $(A \land B) \lor (A \land C)$, $A \land C \vdash A \in \mathbb{Z}$ 上做 $(\land -)$

20: $(A \land B) \lor (A \land C)$, $A \land C \vdash C \in \mathbb{Z}$ 上做 $(\land -)$

21: $(A \land B) \lor (A \land C)$, $A \land C \vdash B \lor C$ (20)(\lor +)

22: $(A \wedge B) \vee (A \wedge C)$, $A \wedge C \vdash A \wedge (B \vee C)$ (19)(21)(\wedge +)

23: $(A \land B) \lor (A \land C) \vdash (A \land B) \lor (A \land C)$ (\in)

24: $(A \land B) \lor (A \land C) \vdash A \land (B \lor C)$ (18)(22)(23)(\lor –)

25: $\vdash (A \land B) \lor (A \land C) \rightarrow A \land (B \lor C) \quad (24)(\rightarrow +)$

26: $\vdash (A \land B) \lor (A \land C) \leftrightarrow A \land (B \lor C) (14)(25)(\leftrightarrow +)$

定理7: PC的公理是ND的定理,即

- $(1) \vdash_{ND} A \to (B \to A)$
- $(2) \vdash_{ND} (A \to (B \to C)) \to ((A \to B) \to (A \to C))$
- $(3) \vdash_{ND} (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$

$$(1) : \vdash A \rightarrow (B \rightarrow A)$$

证明:

- 1: $A, B \vdash A$ (\in)
- 2: $A \vdash B \rightarrow A$ (1)(\rightarrow +)
- $3: \vdash A \rightarrow (B \rightarrow A) \ (2)(\rightarrow +)$

公理模式: $\Gamma \cup \{A\} \vdash A \in$

推理规则7: \rightarrow 引入规则,

$$\frac{\Gamma;A \vdash B}{\Gamma \vdash A \to B} \ (\to +)$$

推理规则8: →消除规则,

$$\frac{\Gamma \vdash A, \Gamma \vdash A \to B}{\Gamma \vdash B} \ (\to -)$$

定理7 公理模式: Γ∪{A}⊢A(∈)

定理7: PC的公理是ND的定理,即
$$(1) \vdash_{ND} A \to (B \to A)$$

$$(2) \vdash_{ND} (A \to (B \to C)) \to ((A \to B) \to (A \to C))$$

$$(3) \vdash_{ND} (\neg A \to \neg B) \to (B \to A)$$

$$(2) : \vdash (A \to (B \to C)) \to ((A \to B) \to (A \to C))$$
证明:
$$1: A \to (B \to C), A \to B, A \vdash A \quad (\in)$$

$$2: A \to (B \to C), A \to B, A \vdash A \to B \quad (\in)$$

$$3: A \to (B \to C), A \to B, A \vdash A \to B \quad (\in)$$

$$4: A \to (B \to C), A \to B, A \vdash B \quad (1)(2)(\to -)$$

$$5: A \to (B \to C), A \to B, A \vdash B \to C \quad (1)(3)(\to -)$$

$$6: A \to (B \to C), A \to B, A \vdash C \quad (4)(5)(\to -)$$

$$7: A \to (B \to C), A \to B, A \vdash C \quad (4)(5)(\to -)$$

$$7: A \to (B \to C), A \to B \vdash A \to C \quad (6)(\to +)$$

$$8: A \to (B \to C), A \to B \vdash A \to C \quad (6)(\to +)$$

$$9: \vdash (A \to (B \to C)) \to ((A \to B) \to (A \to C)) \quad (8)(\to +)$$

定理7: PC的公理是ND的定理,即

- $(1) \vdash_{ND} A \rightarrow (B \rightarrow A)$
- $(2) \vdash_{ND} (A \to (B \to C)) \to ((A \to B) \to (A \to C))$
- $(3) \vdash_{ND} (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$

$$(3) : \vdash (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$$

证明:

- 1: $\neg A \rightarrow \neg B, B, \neg A \vdash B$ (\in)
- 2: $\neg A \rightarrow \neg B, B, \neg A \vdash \neg A \in$
- 3: $\neg A \rightarrow \neg B, B, \neg A \vdash \neg A \rightarrow \neg B$ (\in)
- 4: $\neg A \rightarrow \neg B, B, \neg A \vdash \neg B$ (2)(3)($\rightarrow -$)
- 5: $\neg A \rightarrow \neg B, B \vdash \neg \neg A \ (1)(4)(\neg +)$
- 6: $\neg A \to \neg B, B \vdash A \ (5)(\neg \neg \neg)$
- 7: $\neg A \rightarrow \neg B \vdash B \rightarrow A \ (6)(\rightarrow +)$
- 8: $\vdash (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A) (7)(\rightarrow +)$

推理规则7: →引入规则

$$\frac{\Gamma;A \vdash B}{\Gamma \vdash A \to B} \left(\to + \right)$$

推理规则8: →消除规则

$$\frac{\Gamma \vdash A, \Gamma \vdash A \to B}{\Gamma \vdash B} \ (\to -)$$

推理规则9: ¬引入规则

$$\frac{\Gamma; A \vdash B, \Gamma; A \vdash \neg B}{\Gamma \vdash \neg A} \ (\neg +)$$

推理规则10: ¬消除规则

$$\frac{\Gamma\vdash A,\,\Gamma\vdash\neg A}{\Gamma\vdash B}\left(\neg\,-\right)$$

$$\frac{\Gamma \vdash \neg \neg A}{\Gamma \vdash A} \ (\neg \neg -)$$

自然演绎系统ND的基本定理

定理1: ⊢_{ND} A ∨ ¬A ✓

定理2: $\vdash_{ND} \neg (A \lor B) \leftrightarrow \neg A \land \neg B \checkmark$

定理3: $\vdash_{ND} \neg (A \land B) \leftrightarrow \neg A \lor \neg B \checkmark$

定理4:¬A → B ⊢¬ A ∧ ¬B \checkmark

定理5: $A \rightarrow B \vdash \neg \neg A \lor B$ ✓

定理6: $\vdash A \land (B \lor C) \leftrightarrow (A \land B) \lor (A \land C)$ ✓

定理7: PC的公理是ND的定理,即√

- $(1) \vdash_{ND} A \to (B \to A)$
- $(2) \vdash_{ND} (A \to (B \to C)) \to ((A \to B) \to (A \to C))$
- $(3) \vdash_{ND} (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$