Projekt Optymalizacja nieliniowa Cz 1 Optymalizacja jednowymiarowa

Krawiec Piotr

07/11/2021

Zadanie

Dystans Ziemia-Mars zależy od ich pozycji na orbitach i zmienia się w czasie. Zadaniem jest obliczenie najmniejszego dystansu na jaki planety te zbliżą się. Dla ułatwienia orbity obu planet zostaną zamodelowane jako elipsy.

Pozycja planety w dowolnym punkcie czasu

Pozycje planet mogą być modelowane z pomocą liczb zespolonych 1 . Oto równanie pozwalające na symulację ruchu planety. Zostanie ono odpowienio przeskalowane poprzez dostosowanie parametru r. Model zakłada, że początkowy kąt między planetami wynosi 0 rad.

$$planet(t) = r * exp\left(2 \cdot \pi i r^{\frac{-3}{2}} t\right)$$

- r półoś wielka orbity planety (elipsy)
- AU jednostka astronomiczna 149 597 870 700 m
- $t czas^2$

¹https://www.johndcook.com/blog/2015/10/24/distance-to-mars/

²jednostka nie ma znaczenia, ponieważ szukamy najmniejszej odległości

Elipsa

Oto model orbity. Dostosowując parametr r (na rys a), możemy modelować dowolną z planet.

- a półoś wielka elipsy
- *b* półoś mała elipsy

Równanie dla ziemi i marsa

Ponieważ półoś wielka orbity Ziemi wokół słońca to 1AU przyjmiemy parametr r=1AU.

$$earth(t) = exp(2 \cdot \pi \cdot i \cdot t)$$

Ponieważ półoś wielka orbity Marsa wokół słońca to 1.524AU przyjmiemy parametr r=1.524AU.

$$mars(t) = 1.524 * exp\left(2 \cdot \pi \cdot i \cdot (1.524)^{\frac{-3}{2}} \cdot t\right)$$

Równanie dla ziemi i marsa - kod w R

```
r = 1.524 # półoś wielka orbity Marsa w AU
earth <- function(t) { exp(2*pi*1i*t) }
mars <- function(t) { r*exp(2*pi*1i*(r**-1.5*t)) }</pre>
```

Odległość między planetami można wyznaczyć jako wartość bezwzględą z różnicy w ich pozycjach w czasie t.

$$f(t) = abs(mars(t) - earth(t))$$

f <- function(x) { abs(mars(x) - earth(x)) }

Wykres funkcji odległości planet

Rysunek 1: Wykres funkcji distance(t)

Wykres funkcji odległości planet - porównanie z sin

Przeskalowana funkcja sin(x) na czerwono. Funkcja dystansu przypomina funkcję sinus, ale jak widać na wykresie poniżej nie są identyczne.

Rysunek 2: Wykres funkcji distance(t)

