COMP3052.SEC Computer Security

Session 11: OS Security II: Windows Security

Acknowledgements

- Some of the materials we use this semester may come directly from previous teachers of this module, and other sources ...
- Thank you to (amongst others):
 - Michel Valstar, Milena Radenkovic, Mike Pound, Dave Towey, ...

COMP3052.SEC Session 11

This Session

Windows Security

- Permissions
- Access Tokens
- Authentication
- Kerberos

COMP3052.SEC Session 11

Overview

- The Windows security model has seen a steady evolution
- This lecture is not windows version-specific
- Security in Windows is much more fine-grained than other operating systems

Security Subsystem

- Runs in user mode
- Logon processes (winlogon, LogonUI)
- Local Security Authority (LSA)
 - Checks User Accounts
 - Provides access token
 - Responsible for auditing
- Security Account Manager (SAM)
 - Maintains user account database used by LSA
 - Encrypts / hashes passwords

Windows

- Windows predominantly uses Access Control Lists, and has done since Windows NT
- Extends the usual read, write and execute with:
 - Take ownership
 - Change permissions
 - Delete
- 32-bit access masks (cf. Unix 9-bit)
- A higher degree of control, with the associated complexity increase!

Access Control

- Access control in windows treats more than just files, also:
 - Registry keys
 - Active directory objects
 - Groups
- Inheritance is implemented
 - File can inherit ACLs from parent directories

Principals

- Principals more broadly defined as well:
 - Local users
 - Domain users
 - Groups
 - Machines
- Each principal has a human-readable name and security ID (SID)

S-1-5-21-2475811070-2421845406-3333283485-1005

S-1-5-21-1664130791-3153540899-3044996548-279530

Local / Domain Principals

- Local Security Authority (LSA) creates local principals
 - principal = MACHINE\principal
 - > E.g., Host\Dave
- Domain principals administered on Domain Controller (DC) by domain admins
 - principal@domain = DOMAIN\principal
 - > net user / domain
 - net group / domain
 - net localgroup / domain

Groups

- Groups are collections of SIDs
- Group can itself be an SID
- Groups can thus be nested
- Groups are not nest-able on local machines
- Managed by a domain controller within Active Directory

Objects

- Objects are passive entities in access operations
- In Windows:
 - Private objects (files, directories)
 - Executive objects (processes, threads, etc.)
- Securable objects have a security descriptor
 - Private objects managed by application software
 - Built-in securable objects managed by the OS

Discretionary Access Control List (DACL)
System Access Control List (SACL)

Access Tokens

- Security credentials for a login session stored in access token
- Identifies the user, the user's groups, and the user's privileges

User SID
Groups and Alias SID
Privileges
Defaults for New Objects
Miscellaneous

Access Token

Subjects

- Windows subjects: Processes and threads
- New processes get a copy of the parent access token, possibly modified
- Individual access tokens are immutable, and can live beyond policy changes (TOCTTOU issue)

User Account Control

- After Vista, administrator users do not use an administrative access token by default
- Users have two tokens, one heavily restricted and used by default
- A prompt allows a user to spawn a process with the other token, or switch a process' token

Domains

- Single sign-on for network resources
- Centralised security administration
- Domain
 - A group of machines, sharing a common user account database and security policies
- Domain Controller (DC)
 - Handles user accounts and access control
- Multiple DCs allow for decentralisation by design

https://vdi.nottingham.edu.cn	
•••••	
UNNC_CHINA	
Cancel	Login

Interactive Logon

- The windows interactive logon allows a user to authenticate
- Windows logon begins with the Secure Attention
 Sequence Ctrl + Alt + Delete
 - Can prevent spoofing is tied directly to winlogon
- The logon process differs slightly for local and domain authentication

Interactive Logon

- The logon process contains:
 - Winlogon the process responsible for authenticating users
 - Graphical Identification and Authentication (GINA)
 - The Local Security Authority (LSA)
 - An authentication package (NTLM)
 - Security Account Manager (SAM)
 - Since Vista, additional Credential Providers are allowed

Local Logon – Pre vista

- Ctrl+Alt+Delete initiates a login prompt using GINA
- These collect credentials which are passed to the LSA
- 3. The LSA uses NTLM to check the credentials against the SAM database
- 4. Successful login provides an access token, which is used to spawn a shell (explorer.exe)

Domain Logon

- Replaces NTLM with Kerberos
- Replaces SAM with an Active Directory Domain Controller
- Checks of a user are now performed on the remote LSA

Credential Providers

- Since Vista, winlogon uses a LogonUI to query Credential Providers
- These don't
 actually log you in,
 they simply
 serialize your
 credentials and
 pass them to the
 LSA

Kerberos

- Originally developed at MIT
- Widely supported, in particular is the default authentication for network logon in Windows
- Uses symmetric encryption
- Requires a trusted third party

Encrypting Large-scale Networks

Ticket Granting Servers

Note: step 1 and 2 are very **Key Distribution Centre** similar, first with S then TGS Authentication Server Ticket Granting Server

Note: step 1 and 2 are very **Key Distribution Centre** similar, first with S then TGS $3.\{K_{at},A,L\}_{K_{st}},\{A,T_a,B,n'_a\}_{K_{at}}$ Authentication aServer Ticket Granting Server

 Note: step 1 and 2 are very similar, first with S then TGS

Authentication Server Ticket Granting Server

Key Distribution Centre

Note: step 1 and 2 are very **Key Distribution Centre** similar, first with S then TGS $3.\{K_{at},A,L\}_{K_{st}},\{A,T_a,B,n'_a\}_{K_{at}}$ aAuthentication Server $4.\{K_{ah}, n'_{a}, T_{t}, L, B\}_{K_{at}}$

 $\{K_{ab}, A, L\}_{K_{bt}}$

Ticket for B

Ticket Granting

Server

Step 3, Using A Service

Step 3, Using A Service

Important Features

- Including nonces and timestamps prevents replay attacks
 - But, clocks must be synchronised between principals
- Windows Kerberos buries domain group IDs inside tickets, for access checks
- The ticket granting ticket usually exists until logoff, or rotates daily
 - A problem if user rights have been changed TOCTTOU

COMP3052.SEC Session 11

Summary

- Windows Security
 - Permissions
 - Access Tokens
 - Authentication
- Kerberos

