

THE NCUK INTERNATIONAL FOUNDATION YEAR

IFYCH002 Chemistry End of Semester 1 Test

2016-17

Test SessionSemester One

Time Allowed 2 Hours 10 minutes (including 10 minutes reading time)

INSTRUCTIONS TO STUDENTS

SECTION A Answer ALL questions. This section carries 60 marks.

SECTION B Answer TWO questions. This section carries 40 marks.

The marks for each question are indicated in square brackets [].

- Answers must not be written during the first 10 minutes.
- A data sheet is included in the front of the test booklet.
- Graph paper will be provided.
- An approved calculator may be used in the test.
- Show ALL workings in your answer booklet.
- Test materials must not be removed from the room.

DO NOT OPEN THIS QUESTION PAPER UNTIL INSTRUCTED BY THE INVIGILATOR

The Periodic Table of the Elements

The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question.

O IIA		19.0 T	Fluorir 9	32.5 C	Chlorine 17	79.9 B	Bromine 35	126.9 131.3 Xe	lodine 53	210.0 At	Astatine Radon 85			173.0 175.0
5		16.0 O	Oxygen 8		s Sulphur 16	79.0 Se	Selenium 34	127.6 Te	Antimony Tellurium 51 52	210.0 Po	Polonium 84			168.9
>		0.4 Z	Nitroge 7	31.0 P	Phosphor 15	74.9 As	Arsenic 33	121.8 Sb	Antimorry 51	209.0 B	Bismuth 83			167.3
≥		15.0 C	Carbon 6	28.1 Si	Silicon 14	72.6 Ge	Germaniun 32	118.7 Sn	Tin 50	207.2 Pb	Lead 82			164.9
≡		10.8 B	Boron 5	27.0 A	Aluminium 13	69.7 Ga		114.8 n	Indium 49	204.4 T	Thallium 81			140.9 144.2 144.9 150.4 152.0 157.3 158.9 162.5 164.9
						65.4 Zn	Zinc 30	115.4 G-1	Cadmium 48	200.6 H	Mercury 80			158.9
						20.5	Copper 29	107.9 Ag	Silver 47	197.0 Au	Gold 79			157.3
						58.7 N	œ	^ Ծ	adium	-5	finum			152.0
						28.9 0	Cobalt 27	102.9 H	Rhodium 45	192.2 	Iridium 77			150.4
							Pe Iron	101.1 Bu	Ruthenium 44	190.2 Os	Osmium 76			144.9
		-6.9 L	Lithium 3			54.9 Mn	Manganese 25	98.9 Tc	Technetium 43	186.2 Re	Rhenium 75			144.2
						ن د	Chromium Manganese 24 25	95.9 Mo	bium Molybdenum Technetium Ruthenium Rhodium Palls 42 45 45 45	183.9 W	m Tungsten 74			140.9
		relative atomic mass	umber –			50.9 V	Vanadium 23	92.9 Nb	₈ ⁴	180.9 Ta	Tantalum 73			140.1
	Key	relative a	atomic number –			47.9 T	Titanium 22	91.2 Zr	Zirconium 40	178.5 H	Hafnium 72			
						45.0 Sc	Scandium 21	88.9 ×	Yffrium 39	138.9 La	Lanthanum 57 * 7	227 Ac	Actinium 89 †	
=		9.0 Be	Beryllium 4	24.3 Mg	5	-79 Ca		87.6 Sr		137.3 Ba		226.0 Ra	Radium 88	
-	1.0 H Hydrogen 1	6.9 I	Lithium 3	23.0 Na	Sodium 11	39.1 X	Potassium 19	85.5 Rb		132.9 Cs	_	223.0 Fr	Francium 87	

Thorium

† 90 - 103 Actinides

Section A Answer ALL questions. This section carries 60 marks.

Question A1

An atom of ⁴⁰ Ca has how many neutrons?					
a)	20				
b)	21				
c)	22				
d)	23				
Que	estion A2				
Whi	ich of the following is the correct electron configuration for magnesium?	[1]			
a)	1s ² 2s ² 2p ⁶ 3s ²				
b)	1s ² 2s ² 2p ⁶ 3s ² 3p ³				
c)	1s ² 2s ² 3s ² 3p ⁶ 4s ²				
d)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ²				
Que	estion A3				
	estion A3 at type of bonding exists between sodium and chlorine in NaCl?	[1]			
		[1]			
Wha	at type of bonding exists between sodium and chlorine in NaCl?	[1]			
Wha	at type of bonding exists between sodium and chlorine in NaCl? Hydrogen bonding	[1]			
Wha a) b)	at type of bonding exists between sodium and chlorine in NaCl? Hydrogen bonding Metallic bonding	[1]			
Wha a) b) c)	at type of bonding exists between sodium and chlorine in NaCl? Hydrogen bonding Metallic bonding Coordinate bonding	[1]			
Wha a) b) c) d)	at type of bonding exists between sodium and chlorine in NaCl? Hydrogen bonding Metallic bonding Coordinate bonding	[1]			
Wha a) b) c) d)	At type of bonding exists between sodium and chlorine in NaCl? Hydrogen bonding Metallic bonding Coordinate bonding Ionic bonding	[1]			
Wha a) b) c) d)	At type of bonding exists between sodium and chlorine in NaCl? Hydrogen bonding Metallic bonding Coordinate bonding Ionic bonding				
Wha a) b) c) d) Que	At type of bonding exists between sodium and chlorine in NaCl? Hydrogen bonding Metallic bonding Coordinate bonding Ionic bonding estion A4 ich of the following compounds is the least soluble in water?				
Whataa) b) c) d) Que Whitaa)	At type of bonding exists between sodium and chlorine in NaCl? Hydrogen bonding Metallic bonding Coordinate bonding Ionic bonding estion A4 ich of the following compounds is the least soluble in water? Barium sulphate				

Which one of the following has the highest electronegativity?

[1]

- a) N
- b) O
- c) P
- d) Br

Question A6

[1]

On the periodic table, atomic radius decreases:

- a) Down a group, and left to right across a period.
- b) Up a group, and left to right across a period.
- c) Down a group, and right to left across a period.
- d) Up a group, and right to left across a period.

Question A7

What is the correct name for Na₂[NiCl₄]?

[1]

- a) Sodium nickeltetrachlorate (II)
- b) Nickel sodiumtetrachlorate (I)
- c) Sodium tetrachloronickelate (II)
- d) Sodium nickeltetrachlorate (I)

Question A8

Which of the following have the same number of particles as 12g of ¹²C?

[1]

- a) 12g of H₂O
- b) 12g of Mg
- c) 14g of S
- d) 44g of CO₂

Which definition suits the following isotope: ¹⁵N?

[1]

- a) An atom of 7 protons, 7 electrons and 8 neutrons
- b) A cation of 7 protons, 6 electrons and 8 neutrons.
- c) An anion of 7 protons, 8 electrons and 8 neutrons.
- d) An atom of 7 protons, 7 electrons and 7 neutrons.

Question A10

What is the shape of the molecule ammonia, NH₃?

[1]

- a) Pyramidal
- b) Square planar
- c) Tetrahedral
- d) Trigonal bipyramidal

Question A11

This question is about redox chemistry.

a) i. Define the term "reduction".

- [1]
- ii. State the oxidation number of the named element in each of the following compounds

[1]

II Nitrogen in NO₂

[1]

III Nitrogen in HNO₃

[1]

IV Chlorine in HCIO

[1]

b) The following reaction can be described as a redox reaction:

$$MnO_2 + 4HCI \longrightarrow MnCI_2 + 2H_2O + CI_2$$

i. Identify the element that has been oxidised.

[1]

ii. Identify the element that has been reduced.

- [1]
- c) The following reaction is an example of a disproportionation reaction:
- [3]

Using this equation, describe what a disproportionation reaction is.

This question is about atomic structure.

- a) i. Explain why the nitrogen molecule is non polar. [1]
 - ii. What is the difference between ¹⁴N and ¹⁶N atoms? [1]
 - iii. Explain why the two isotopes in a(ii) have identical chemical [1] properties.
- b) Draw a fully labelled diagram showing a hydrogen bond between two water [3] molecules.
- c) Complete the table below: [4]

Compound Formula	Number of Lone Pairs	Number of Bonded Pairs	Name of Shape
BF ₃			
NH ₃			
SF ₆			
H ₂ O			

Question A13

The first ionisation energies of some of the elements in periods 2 and 3 are shown below. Some ionisation energies have been omitted. The units are kJmol⁻¹.

Period				Group			
	I	II	III	IV	٧	VI	VII
2	Li	Be	В	С	N	0	F
	520		801	1086	1402	1314	1681
3	Na	Mg	Al	Si	P	S	CI
	496	738	578		1012	1000	1251

- a) Define the term "first ionisation energy". [2]
- b) i. Explain why there is a decrease in the value for the first ionisation [2] energy from magnesium to aluminium.
 - ii. Explain why there is a decrease in the value of the first ionisation energy [2] from lithium to sodium.
- c) i. Predict the values for the first ionisation energies of beryllium and silicon. [2]
 - ii. Using your knowledge of the trend in first ionisation energies, arrange the following elements in order of increasing ionisation energy:

 Ge, As, Se, Br.

This question is about molarity and reacting masses in reactions of group 2 and group 7 elements.

- 1.0g of calcium hydroxide $Ca(OH)_2$ is dissolved in water. A concentrated solution of sodium carbonate Na_2CO_3 is added and a white precipitate of calcium carbonate appears.
- a) i. Give the balanced equation for the reaction producing this white [1] precipitate.
 - ii. When no more precipitate is produced the addition of sodium [1] carbonate is stopped and the calcium carbonate is filtered off, thoroughly dried and weighed. What is its mass?
 - iii. How many molecules of calcium carbonate are there in the precipitate? [1] (Avagadro's number is 6.02×10^{23})
- b) One molar hydrochloric acid solution is slowly added to the precipitate until it is just completely dissolved. Carbon dioxide is given off.
 - i. What volume of hydrochloric acid solution has been added when this [2] point is reached?
 - ii. How many grams of carbon dioxide are produced? [2]
 - iii. Give another method by which carbon dioxide may be produced from [1] calcium carbonate.
- c) What will happen if silver nitrate solution is added to the solution in b) after [2] all the carbon dioxide has been given off? Give an equation.

Question A15

This question is about carbon and some of its compounds.

- a) Using "box notation", draw the full electronic configuration of carbon [2] labelling each set of orbitals.
- b) Naturally occurring carbon exists as two isotopes. The percentage [2] abundances of these isotopes are 1.1% ¹³C, 98.9% ¹²C. Calculate the relative atomic mass of carbon to two decimal places.
- c) i. Briefly describe the processes that occur inside the mass spectrometer **[5]** when measuring the relative atomic mass, taking the element carbon as an example.
 - ii. Why is the mass spectrometer evacuated (emptied) of air before any **[1]** sample is introduced into it?

Section B Answer <u>2</u> questions. This section carries 40 marks.

Question B1

a)	i.	Which would you expect to have the larger radius, S or S^2 ? Explain why.	[3]
	ii.	Draw the dot and cross diagram for S ²⁻ .	[1]
b)	Ехр	lain the following:	
	i.	Why do most monatomic cations, such as Na^+ , have a charge equal to the group number in the periodic table that they are in ?	[1]
	ii.	Why do most monatomic anions, such as Cl ⁻ , have a charge equal to their group number minus eight?	[1]
c)		the following pairs of elements state the type of bonding that is present ween the atoms and give the molecular formula.	
	i.	Sr and O	[2]
	ii.	C and Br	[2]
	iii.	Al and F	[2]
	iv.	Ca and CI	[2]
d)	Giv	e an example of a compound that has coordinate covalent bonding.	[1]
e) i.	i.	An ionic compound has the following percentage composition:	[4]
		23.3% Mg, 30.7% S, 46.0% O	
		Calculate the empirical formula of this compound.	
	ii.	What is the name of the compound in e (i)?	[1]

Question B2

This question is about elements found in group II and group VII of the periodic table, and those in periods 2 and 3.

State the complete electronic structure of calcium. Г11 a) i. Give an equation, including state symbols, for the reaction of calcium **[2]** metal and hydrochloric acid. Explain with reasons whether you would expect the first ionisation [3] energy of calcium to be less than or greater than the first ionisation energy of strontium. b) i. Give the ionic equation for the reaction between aqueous solutions of Γ21 barium ions and sulphate ions. The hydrated form of sodium sulphate has the formula Na₂SO₄.xH₂O. [4] 3.22g of this compound when added to an excess of barium chloride produced 2.33g of barium sulphate. Calculate the value of x in $Na_2SO_4.xH_2O.$ c) i. Solid iodine consists of iodine molecules in a regular crystal lattice. [2] What types of bonding are present in solid iodine? ii. How would you show that iodide ions were present in an aqueous [2] solution? Give a common use for large scale amounts of chlorine. [1] d) i. Give the name of an element in period 3 that forms a chloride with the [1] formula XCI₅. Give the formula of an oxide of an element in period 3 that will dissolve [1] in water to form a strongly alkaline solution. Give the name of an element in period 2 that exists in more than one [1] form (allotrope), one of the forms being a non-metal that conducts electricity.

Question B3

This question is about transition metal compounds.

a) Give the full electronic configuration of the Ni²⁺ ion. [2] b) A compound of nickel has the composition 24.7% Ni, 40.4% O, 5.0% H, [3] 29.9% Cl. Calculate its empirical formula. The empirical formula is found to be the same as the molecular formula. A [4] solution in water conducts electricity. Suggest and draw the most likely three dimensional structure of the compound and explain the electrical conductivity. d) Name the type of bonding that takes place between the nickel in the [2] compound and the atom(s) that nickel is bonded to. e) i. The compound gives a green solution in water. Explain this in terms of [5] electronic energy levels. ii. Explain why adding ammonia to this solution turns it from green to [2] Give two other properties apart from colour that transition metal [2] compounds show.

This is the end of the test.