```
In [32]:
          import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
          import seaborn as sns
          from sklearn.model selection import train test split
          from sklearn.linear_model import LinearRegression
          from sklearn.metrics import mean_squared_error, r2_score
          from sklearn.preprocessing import LabelEncoder
          from sklearn.tree import DecisionTreeClassifier
          from sklearn.ensemble import RandomForestClassifier
          from sklearn.metrics import accuracy score
 In [2]: train= pd.read csv('train.csv')
 In [3]:
          train.head()
Out[3]:
              Passengerld Survived Pclass
                                              Name
                                                           Age SibSp Parch
                                                                                 Ticket
                                                       Sex
                                                                                           Fare
                                                                                                Cal
                                             Braund,
           0
                       1
                                0
                                        3
                                           Mr. Owen
                                                      male 22.0
                                                                            0 A/5 21171
                                                                                         7.2500
                                                                                                  Ν
                                              Harris
                                           Cumings,
                                           Mrs. John
                                             Bradley
           1
                       2
                                                                              PC 17599 71,2833
                                                                                                  C
                                 1
                                                     female
                                                           38.0
                                            (Florence
                                              Briggs
                                               Th...
                                           Heikkinen,
                                                                              STON/O2.
           2
                       3
                                 1
                                        3
                                                    female 26.0
                                                                                         7.9250
                                               Miss.
                                                                                                  Ν
                                                                                3101282
                                              Laina
                                            Futrelle.
                                               Mrs.
                                            Jacques
           3
                       4
                                 1
                                                     female 35.0
                                                                           0
                                                                                 113803 53.1000
                                                                                                 C1
                                              Heath
                                            (Lily May
                                               Peel)
                                            Allen, Mr.
                       5
                                             William
                                                      male 35.0
                                                                                 373450
                                                                                         8.0500
                                              Henry
```

STEP1:Remove duplicates from the dataset.

No duplicate data

Step 2: Handle missing values by imputing or removing them.

```
In [6]: train.isnull().sum()
Out[6]: PassengerId
                           0
        Survived
                           0
         Pclass
                           0
        Name
         Sex
                           0
                        177
        Age
         SibSp
                           0
         Parch
                           0
        Ticket
                           0
         Fare
                           0
        Cabin
                        687
         Embarked
                           2
         dtype: int64
In [7]: | sns.heatmap(train.isnull(),yticklabels=False,cbar=False,cmap='viridis')
```

Out[7]: <Axes: >

In [8]: #Applying Imputation on Ages factor
sns.displot(train['Age'].dropna())

Out[8]: <seaborn.axisgrid.FacetGrid at 0x1db715b9e10>


```
In [9]: sns.set_style('whitegrid')
sns.boxplot(x='Pclass',y='Age' ,data=train)
```

```
Out[9]: <Axes: xlabel='Pclass', ylabel='Age'>
```



```
In [10]:     def impute_age(cols):
          Age = cols[0]
          Pclass = cols[1]

          if pd.isnull(Age):
               if Pclass == 1:
                    return 38
                elif Pclass == 2:
                    return 29
                   else:
                    return Age
```

```
In [11]: train['Age'] = train[['Age', 'Pclass']].apply(impute_age, axis=1)
```

In [12]: sns.heatmap(train.isnull(),yticklabels=False,cbar=False,cmap='viridis')

Out[12]: <Axes: >

In [13]: train.drop('Cabin',axis=1,inplace=True)

```
In [14]: sns.heatmap(train.isnull(),yticklabels=False,cbar=False,cmap='viridis' )
Out[14]: <Axes: >
```


In [15]: #Our missing data has been handeld

Step 3: Check and handle outliers in the data.

In [16]: #In order to check outliers we will use Inter Quantile Range(IQR)

```
In [17]: train.boxplot()
```

Out[17]: <Axes: >


```
In [18]: Q1=train['Age'].quantile(0.25)
    Q3=train['Age'].quantile(0.75)
    IQR=Q3-Q1
    Lower_Bond=Q1-(1.5*IQR)
    Upper_Bond=Q3+(1.5*IQR)
    outlier=train[(train['Age']<Lower_Bond)|(train['Age']>Upper_Bond)]
    train.dropna(inplace=True)
```

In [19]: outlier

Out[19]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
33	34	0	2	Wheadon, Mr. Edward H	ma l e	66.0	0	0	C.A. 24579	10.5000
54	55	0	1	Ostby, Mr. Engelhart Cornelius	male	65.0	0	1	113509	61.9792
96	97	0	1	Goldschmidt, Mr. George B	male	71.0	0	0	PC 17754	34.6542
116	117	0	3	Connors, Mr. Patrick	male	70.5	0	0	370369	7.7500
170	171	0	1	Van der hoef, Mr. Wyckoff	male	61.0	0	0	111240	33.5000
252	253	0	1	Stead, Mr. William Thomas	male	62.0	0	0	113514	26.5500
275	276	1	1	Andrews, Miss. Kornelia Theodosia	fema l e	63.0	1	0	13502	77.9583
280	281	0	3	Duane, Mr. Frank	male	65.0	0	0	336439	7.7500
326	327	0	3	Nysveen, Mr. Johan Hansen	male	61.0	0	0	345364	6.2375
366	367	1	1	Warren, Mrs. Frank Manley (Anna Sophia Atkinson)	female	60.0	1	0	110813	75.2500
438	439	0	1	Fortune, Mr. Mark	male	64.0	1	4	19950	263.0000
456	457	0	1	Millet, Mr. Francis Davis	male	65.0	0	0	13509	26.5500
483	484	1	3	Turkula, Mrs. (Hedwig)	female	63.0	0	0	4134	9.5875
493	494	0	1	Artagaveytia, Mr. Ramon	male	71.0	0	0	PC 17609	49.5042
545	546	0	1	Nicholson, Mr. Arthur Ernest	male	64.0	0	0	693	26.0000
555	556	0	1	Wright, Mr. George	male	62.0	0	0	113807	26.5500
570	571	1	2	Harris, Mr. George	male	62.0	0	0	S.W./PP 752	10.5000
587	588	1	1	Frolicher- Stehli, Mr. Maxmillian	male	60.0	1	1	13567	79.2000

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
625	626	0	1	Sutton, Mr. Frederick	male	61.0	0	0	36963	32.3208
630	631	1	1	Barkworth, Mr. Algernon Henry Wilson	male	80.0	0	0	27042	30.0000
672	673	0	2	Mitchell, Mr. Henry Michael	male	70.0	0	0	C.A. 24580	10.5000
684	685	0	2	Brown, Mr. Thomas William Solomon	male	60.0	1	1	29750	39.0000
694	695	0	1	Weir, Col. John	male	60.0	0	0	113800	26.5500
745	746	0	1	Crosby, Capt. Edward Gifford	male	70.0	1	1	WE/P 5735	71.0000
829	830	1	1	Stone, Mrs. George Nelson (Martha Evelyn)	female	62.0	0	0	113572	80.0000
851	852	0	3	Svensson, Mr. Johan	male	74.0	0	0	347060	7.7750

```
In [20]: Q1=train['Fare'].quantile(0.25)
    Q3=train['Fare'].quantile(0.75)
    IQR=Q3-Q1
    Lower_Bond=Q1-(1.5*IQR)
    Upper_Bond=Q3+(1.5*IQR)
    outlier=train[(train['Fare']<Lower_Bond)|(train['Fare']>Upper_Bond)]
    train.dropna(inplace=True)
```

In [21]: outlier

: 	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	E
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	
27	28	0	1	Fortune, Mr. Charles Alexander	male	19.0	3	2	19950	263.0000	
31	32	1	1	Spencer, Mrs. William Augustus (Marie Eugenie)	fema l e	38.0	1	0	PC 17569	146.5208	
34	35	0	1	Meyer, Mr. Edgar Joseph	male	28.0	1	0	PC 17604	82.1708	
52	53	1	1	Harper, Mrs. Henry Sleeper (Myna Haxtun)	female	49.0	1	0	PC 17572	76.7292	
846	847	0	3	Sage, Mr. Douglas Bullen	male	23.0	8	2	CA. 2343	69.5500	
849	850	1	1	Goldenberg, Mrs. Samuel L (Edwiga Grabowska)	fema l e	38.0	1	0	17453	89.1042	
856	857	1	1	Wick, Mrs. George Dennick (Mary Hitchcock)	fema l e	45.0	1	1	36928	164.8667	
863	864	0	3	Sage, Miss. Dorothy Edith "Dolly"	female	23.0	8	2	CA. 2343	69.5500	
879	880	1	1	Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)	female	56.0	0	1	11767	83.1583	

Step 4: Normalize or standardize numerical features.

```
In [ ]:
```

In [22]: print(train.dtypes)

PassengerId int64 Survived int64 Pclass int64 Name object Sex object float64 Age SibSp int64 Parch int64 Ticket object Fare float64 Embarked object dtype: object

```
In [23]: from sklearn.preprocessing import MinMaxScaler, StandardScaler
numerical_features = ['Age', 'Fare', 'SibSp', 'Parch']
```

min_max_scaler = MinMaxScaler()
train[numerical_features] = min_max_scaler.fit_transform(train[numerical_featurent)

standard_scaler = StandardScaler()
train[numerical_features] = standard_scaler.fit_transform(train[numerical_features]

In [24]: train

Ticke	Parch	SibSp	Age	Sex	Name	Pclass	Survived	Passengerld	
A/5 2117	-0.474326	0.431350	-0.519303	male	Braund, Mr. Owen Harris	3	0	1	0
PC 1759	-0.474326	0.431350	0.684864	female	Cumings, Mrs. John Bradley (Florence Briggs Th	1	1	2	1
STON/O2 310128	-0.474326	-0.475199	-0.218261	female	Heikkinen, Miss. Laina	3	1	3	2
11380	-0.474326	0.431350	0.459082	female	Futrelle, Mrs. Jacques Heath (Lily May Peel)	1	1	4	3
37345	-0.474326	-0.475199	0.459082	male	Allen, Mr. William Henry	3	0	5	4
21153	-0.474326	-0.475199	-0.143001	male	Montvila, Rev. Juozas	2	0	887	886
11205	-0.474326	-0.475199	-0.745084	female	Graham, Miss. Margaret Edith	1	1	888	887
W./C 660	2.006119	0.431350	-0.444042	female	Johnston, Miss. Catherine Helen "Carrie"	3	0	889	888
11136	-0.474326	-0.475199	-0.218261	male	Behr, Mr. Karl Howell	1	1	890	889
37037	-0.474326	-0.475199	0.233301	male	Dooley, Mr. Patrick	3	0	891	890

Step 5: Encode categorical variables.

0.459082 -0.475199 -0.474326 -0.484133

```
In [25]: train.drop('Name',axis=1,inplace=True)
```

In [26]: train.drop('Ticket',axis=1,inplace=True)

5

0

3

In [27]: train.head()

Out[27]: Passengerld Survived Pclass SibSp Fare Embarked Sex Age Parch 0 1 0 S 3 -0.519303 0.431350 -0.474326 -0.500240 male 2 С 1 1 1 female 0.684864 0.431350 -0.474326 0.788947 2 3 1 3 female -0.218261 -0.475199 -0.474326 -0.486650 S 3 1 S 4 0.459082 0.431350 -0.474326 0.422861 female

male

```
In [28]: from sklearn.preprocessing import LabelEncoder
    cols=['Sex','Embarked']
    Le=LabelEncoder()
    for col in cols:
        train[col]=Le.fit_transform(train[col])
```

In [29]: train.head()

Out[29]:		Passengerld	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
	0	1	0	3	1	-0.519303	0.431350	-0.474326	-0.500240	2
	1	2	1	1	0	0.684864	0.431350	-0.474326	0.788947	0
	2	3	1	3	0	-0.218261	-0.475199	-0.474326	-0.486650	2
	3	4	1	1	0	0.459082	0.431350	-0.474326	0.422861	2
	4	5	0	3	1	0.459082	-0.475199	-0.474326	-0.484133	2

S

```
In [30]:
         # Encode categorical variables (if any)
         le = LabelEncoder()
         train['Sex'] = le.fit_transform(train['Sex'])
         # Split the data into features (X) and target variable (y)
         X = train.drop('Survived', axis=1)
         y = train['Survived']
         # Split the data into training and testing sets
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random
         # Create a linear regression model
         model = LinearRegression()
         # Fit the model to the training data
         model.fit(X_train, y_train)
         # Make predictions on the test data
         y pred = model.predict(X test)
         # Evaluate the model
         mse = mean_squared_error(y_test, y_pred)
         r2 = r2_score(y_test, y_pred)
         print(f'Mean Squared Error: {mse}')
         print(f'R^2 Score: {r2}')
```

Mean Squared Error: 0.14646788999915136

R^2 Score: 0.3829692026681144

```
In [33]: # Split the data into features (X) and target variable (y)
         X = train.drop('Survived', axis=1)
         y = train['Survived']
         # Split the data into training and testing sets
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random

         # Linear Regression
         linear model = LinearRegression()
         linear_model.fit(X_train, y_train)
         linear pred = linear model.predict(X test)
         linear acc = accuracy score(y test, [round(pred) for pred in linear pred])
         # Decision Tree
         tree model = DecisionTreeClassifier()
         tree_model.fit(X_train, y_train)
         tree pred = tree model.predict(X test)
         tree_acc = accuracy_score(y_test, tree_pred)
         # Random Forest
         forest model = RandomForestClassifier()
         forest_model.fit(X_train, y_train)
         forest_pred = forest_model.predict(X_test)
         forest_acc = accuracy_score(y_test, forest_pred)
         # Evaluate models
         print(f'Linear Regression Accuracy: {linear acc}')
         print(f'Decision Tree Accuracy: {tree_acc}')
         print(f'Random Forest Accuracy: {forest_acc}')
```

Linear Regression Accuracy: 0.797752808988764
Decision Tree Accuracy: 0.7303370786516854
Random Forest Accuracy: 0.797752808988764

both Linear Regression and Random Forest models have similar accuracy on the test set, and they outperform the Decision Tree model.

suggestion

Feature Engineering: Hyperparameter Tuning: Model-Specific Strategies:

```
In [ ]:
```