Laboratório de Circuitos Elétricos - 02/2024 - Turma 05 **Experimento 7** 09/01/2025

Grupo 5:

Yuri Shumyatsky - 231012826 Vinicius de Melo Moraes - 231036274

1 Introdução

2 Materiais

- National Instruments Elvis II
- $\bullet~1$ capacitor de $100 \mathrm{n} F$
- 1 resistor de 47Ω
- $\bullet~1$ indutor de 1mH

3 Procedimentos

Como já é de costume, são feitas as medidas dos valores de todos os componentes do ciruito e esses valores são comparados com os nominais. O resultado é o disposto na Tabela 1.

Grandeza	Valor nominal	Valor medido	Erro (%)
R	47Ω	47.359Ω	0.76
L	1mH	0.863 mH	13.70
С	100nF	107.500 nF	7.50

Tabela 1: Valores dos componentes

Em seguida, esses componentes são dispostos na configuração mostrada na Figura 1.

Figura 1: Circuito RLC com medição no capacitor

Usando o o gerador de funções do Elvis para gerar um onda senoidal com 4 Vpp, offset zero e frequência 10kHz e osciloscópio integrado ao Elvis para medir as tensões V_0 e V_1 , é obtido o Gráfico 1.

Gráfico 1: Coleta das tensões V_1 e V_0 no capacitor a 10kHz

Com isso obtemos os valores das amplitudes $|V_0|$, $|V_1|$ e a sua diferença de fase obtida através do dt, multiplicando simplesmente o dt por $\omega \cdot 2\pi$. Como $\omega = 10^4$, a diferença de fase

é de -43.20° , as amplitudes são $|V_0|=1.55V, |V_1|=1.81V$. Além disso, usando os valores das amplitudes das tensões é calculado o ganho da amplitude em decibéis através da fórmula $20log_{10}\left(\frac{|V_1|}{|V_0|}\right)=1.347$ e esses valores são todos adicionados à Tabela 2.

Para o cálculo dos valores teóricos, é usada a fórmula de divisor de tensão para identificar os valores de V_0 e V_1 . Na frequência de 10kHz, a impedância total do circuito é de 97 - j990 e a do capacitor é de -j1000. Portanto,

$$V_0 = 2 \cdot \frac{47 - j990}{97 - j990} = 1.57 \angle - 19.19^{\circ}V$$

$$V_1 = 2 \cdot \frac{-j1000}{97 - j990} = 2.33 \angle - 45.20^{\circ}V$$

$$20log_{10} \left(\frac{|V_1|}{|V_0|}\right) = 3.434$$

Diferença de fase: 26.01°

Esses valores também são adicionados à Tabela 2.

Em seguida, o processo é repetido com as frequências de 12.5kHz, 15.5kHz, 19.3kHz, 24.1kHz e 30kHz. Como as contas são todas completamente análogas, elas serão omitidas, mas seus resultados constam na Tabela 2. Seguem a seguir o gráfico 2, Gráfico 3, Gráfico 4, Gráfico 5 e Gráfico 6 para as próximas frequências.

Gráfico 2: Coleta das tensões V_1 e V_0 no capacitor a 12.5kHz

Gráfico 3: Coleta das tensões V_1 e V_0 no capacitor a 15.5kHz

Gráfico 4: Coleta das tensões V_1 e V_0 no capacitor a 19.3kHz

Gráfico 5: Coleta das tensões V_1 e V_0 no capacitor a 24.1kHz

Gráfico 6: Coleta das tensões V_1 e V_0 no capacitor a 30kHz

Frequência (kHz)	Grandeza	Valor nominal	Valor medido	Erro (%)
10	$ V_0 $	1.57V	1.55V	1.27
10	$ V_1 $	2.33V	1.81V	22.31
10	$20log_{10}(V_1 / V_0)$	3.434	1.347	60.77
10	Fase de V_1 em relação a V_0	26.01°	43.20°	66.09
12.5	$ V_0 $	1.25V	1.38V	10.40
12.5	$ V_1 $	2.35V	1.63V	30.64
12.5	$20log_{10}(V_1 / V_0)$	5.481	1.446	73.62
12.5	Fase de V_1 em relação a V_0	43.93°	57.24°	30.30
15.5	$ V_0 $	0.97V	1.34V	38.14
15.5	$ V_1 $	2.11V	1.46V	30.81
15.5	$20log_{10}(V_1 / V_0)$	6.733	0.745	88.94
15.5	Fase de V_1 em relação a V_0	83.58°	71.45°	14.51
19.3	$ V_0 $	1.17V	1.34V	14.53
19.3	$ V_1 $	1.58V	1.20V	24.05
19.3	$20log_{10}(V_1 / V_0)$	2.626	-0.958	136.48
19.3	Fase de V_1 em relação a V_0	129.54°	94.48°	27.06
24.1	$ V_0 $	1.51V	1.47V	2.65
24.1	$ V_1 $	1.02V	0.89V	12.75
24.1	$20log_{10}(V_1 / V_0)$	-3.381	-4.359	28.93
24.1	Fase de V_1 em relação a V_0	151.17°	121.47°	19.65
30	$ V_0 $	1.72V	1.64V	4.65
30	$ V_1 $	0.64V	0.63V	1.56
30	$20log_{10}(V_1 / V_0)$	-8.635	-4.155	51.88
30	Fase de V_1 em relação a V_0	160.86°	129.49°	19.51

Tabela 2: Valores referentes ao circuito 1

Agora que a Tabela 2 está completa, o circuito sofre uma alteração e sua configuração agora é de acordo com a Figura 2:

Figura 2: Circuito RLC com medição no resistor.

No entanto, todas as medições são exatamente análogas, mudando apenas que no divisor de tensão usa-se agora a resistência de 47Ω em vez da impedância do capacitor, portanto serão omitidas. Seguem os gráficos obtidos experimentalmente.

Gráfico 7: Coleta das tensões V_1 e V_0 no resistor a 10kHz

Gráfico 8: Coleta das tensões V_1 e V_0 no resistor a 12.5kHz

Gráfico 9: Coleta das tensões V_1 e V_0 no resistor a 15.5kHz

Gráfico 10: Coleta das tensões V_1 e V_0 no resistor a 19.3kHz

Gráfico 11: Coleta das tensões V_1 e V_0 no resistor a 24.1kHz

Gráfico 12: Coleta das tensões V_1 e V_0 no resistor a 30kHz

Todos os valores para o segundo circuito estão na Tabela 3.

Frequência (kHz)	Grandeza	Valor nominal	Valor medido	Erro (%)
10	$ V_0 $	1.57V	1.60V	1.91
10	$ V_1 $	0.69V	0.68V	1.45
10	$20log_{10}(V_1 / V_0)$	-7.160	-7.432	3.79
10	Fase de V_1 em relação a V_0	-63.99°	-60.45°	5.53
12.5	$ V_0 $	1.25V	1.42V	13.59
12.5	$ V_1 $	0.87V	0.76V	12.64
12.5	$20log_{10}(V_1 / V_0)$	-3.175	-5.429	70.99
12.5	Fase de V_1 em relação a V_0	-46.07°	-39.59°	14.07
15.5	$ V_0 $	0.97V	1.29V	32.99
15.5	$ V_1 $	0.97V	0.85V	12.37
15.5	$20log_{10}(V_1 / V_0)$	-0.055	-3.623	6487.27
15.5	Fase de V_1 em relação a V_0	-6.42°	-13.41°	108.88
19.3	$ V_0 $	1.17V	1.29V	10.25
19.3	$ V_1 $	0.90V	0.85V	5.56
19.3	$20log_{10}(V_1 / V_0)$	-2.257	-3.623	60.52
19.3	Fase de V_1 em relação a V_0	39.54°	22.23°	43.78
24.1	$ V_0 $	1.51V	1.47V	2.65
24.1	$ V_1 $	0.73V	0.76V	4.11
24.1	$20log_{10}(V_1 / V_0)$	-6.335	-5.730	9.55
24.1	Fase de V_1 em relação a V_0	61.17°	48.59°	20.57
30	$ V_0 $	1.72V	1.64V	4.65
30	$ V_1 $	0.57V	0.68V	19.29
30	$20log_{10}(V_1 / V_0)$	-9.687	-7.647	21.06
30	Fase de V_1 em relação a V_0	70.86°	51.79°	26.91

Tabela 3: Valores referentes ao circuito 2

Frequência (kHz)	Grandeza	Valor nominal	Valor medido	Erro (%)
10	$ V_0 $	1.57V	1.60V	1.91
10	$ V_1 $	0.92V	0.85V	7.61
10	$20log_{10}(V_1 / V_0)$	-4.639	-5.494	18.43
10	Fase de V_1 em relação a V_0	-96.42°	-100.78°	4.52
12.5	$ V_0 $	1.25V	1.47V	17.6
12.5	$ V_1 $	1.45V	1.11V	23.45
12.5	$20log_{10}(V_1 / V_0)$	1.285	-2.439	289.81
12.5	Fase de V_1 em relação a V_0	-136.07°	-86.40°	36.50
15.5	$ V_0 $	0.97V	1.38V	42.27
15.5	$ V_1 $	2.01V	1.37V	31.84
15.5	$20log_{10}(V_1 / V_0)$	6.274	-0.063	101.00
15.5	Fase de V_1 em relação a V_0	-96.42°	-66.98°	30.53
19.3	$ V_0 $	1.17V	1.38V	17.95
19.3	$ V_1 $	2.32V	1.59V	31.47
19.3	$20log_{10}(V_1 / V_0)$	5.976	1.230	79.42
19.3	Fase de V_1 em relação a V_0	-50.46°	-44.46°	11.89
24.1	$ V_0 $	1.51V	1.47V	2.65
24.1	$ V_1 $	2.34V	1.81V	21.98
24.1	$20log_{10}(V_1 / V_0)$	3.827	1.807	52.78
24.1	Fase de V_1 em relação a V_0	-28.83°	-41.65°	44.47
30	$ V_0 $	1.72V	1.60V	6.98
30	$ V_1 $	2.26V	1.94V	14.16
30	$20log_{10}(V_1 / V_0)$	2.377	1.673	29.62
30	Fase de V_1 em relação a V_0	-19.14°	-25.90°	35.32

Tabela 4: Valores referentes ao circuito 3