Coloração de Grafos (r, ℓ)

Coloração de Grafos (r,ℓ)

Matheus S. D'Andrea Alves, Uéverton dos Santos Souza

Julho 2018

Universidade Federal Fluminense

Agenda

O problema

Nossa abordagem

A relação entre coloração e lista-coloração em $\operatorname{Grafos}(r,\ell)$

Parametrização pelo tamanho dos conjuntos independentes

Parametrização pelo tamanho da clique

Parametrização pela vizinhança da clique

Conclusão

O problema

Conceitos iniciais

$Grafo(r, \ell)$

Um grafo que pode ser particionado em r conjuntos independentes e ℓ cliques.

Coloração dos vértices de um grafo Uma coloração de um grafo G é uma associação de uma cor entre q cores a cada vértice do grafo de forma que, dado dois vértices vizinhos em G eles não compartilhem uma cor, e q seja o menor número de cores possíveis a respeitar tal restrição.

A PERGUNTA:

Quando tal problema se torna NP-Completo?

Porque?

Nossa abordagem

A idéia

Construir uma dicotomia sobre a complexidade do problema, baseando-se nos valores de r e ℓ .

Analisar os resultados e investigar padrões na dificuldade do problema.

- Um grafo nulo (i.e. um Grafo(0,0)) é 0-colorível.
- •
- •
- •
- •

- Um grafo nulo (i.e. um Grafo(0,0)) é 0-colorível.
- Um grafo sem arestas (i.e. um Grafo(1,0)) é 1-colorível.
- •
- •
- •

- Um grafo nulo (i.e. um Grafo(0,0)) é 0-colorível.
- Um grafo sem arestas (i.e. um Grafo(1,0)) é 1-colorível.
- Um grafo bipartido (i.e. um Grafo(2,0)) é 2-colorível.
- •
- •

Começaremos dos seguintes fatos:

- Um grafo nulo (i.e. um Grafo(0,0)) é 0-colorível.
- Um grafo sem arestas (i.e. um Grafo(1,0)) é 1-colorível.
- Um grafo bipartido (i.e. um Grafo(2,0)) é 2-colorível.
- Um grafo completo (i.e. um Grafo(0,1)) é n − colorivel onde n é a quantidade de vértices de G.

•

- Um grafo nulo (i.e. um Grafo(0,0)) é 0-colorível.
- Um grafo sem arestas (i.e. um Grafo(1,0)) é 1-colorível.
- Um grafo bipartido (i.e. um Grafo(2,0)) é 2-colorível.
- Um grafo completo (i.e. um Grafo(0,1)) é n colorivel onde n é a quantidade de vértices do grafo.
- Um grafo split (i.e. um Grafo(1,1)) é k-colorivel onde k é a quantidade de vértices na clique máxima do grafo.

Dicotomia parcial

r	0	1	2	3	4		n
0	P	P	?	?	?		?
1	P	P	?	?	?		?
2	P	?	?	?	?		?
3	?	?	?	?	?		?
4	?	?	?	?	?		?
:	:	:	:	:	:	٠.	?
n	?	?	?	?	?		?

Tabela 1: Dicotomia parcial para coloração de Grafos (r, ℓ)

A mais

Teorema

Coloração de Grafos(0,2) é Polinomial.

Demonstração.

Um grafo có-bipartido, é um grafo separável em 2 cliques em que todo vértice faz parte de alguma das cliques. A partir da literatura sabemos que um grafo co-bipartido é perfeito, portanto, seu número cromático é igual ao de sua clique máxima. Já foi mostrado que encontrar a clique máxima em um co-bipartido é equivalente a se encontrar uma cobertura de vértices em seu complemento e portanto polinomial.

A mais

Teorema

Coloração de Grafos(3,0) é Polinomial.

Demonstração.

Como sabemos que tal grafo é um Grafo(3,0) sabemos que o mesmo pode ser colorido com três cores. Saber se o mesmo pode ser colorido com duas ou uma cor é polinomial, portanto podemos afirmar que coloração em Grafos(3,0) é polinomial.

Dicotomia parcial

r	0	1	2	3	4		n
0	Р	P	P	?	?		?
1	P	P	?	?	?		?
2	P	?	?	?	?		?
3	P	?	?	?	?		?
4	?	?	?	?	?		?
:	:	:	:	:	:	٠.	?
n	?	?	?	?	?		?

Tabela 2: Dicotomia parcial para coloração de Grafos (r, ℓ)

A mais

Teorema

Coloração de Grafos(4,0) é NP-Completo.

Demonstração.

Sabemos que tal grafo é um Grafo(4,0), logo é possível o colorir com 4 cores. Precisamos descobrir se o mesmo pode ser colorido com menos cores; Note que 3-coloração de planar é NP-Completo, e que planares é uma sub-classe de Grafos(4,0), logo coloração de Grafos(4,0) é NP-Completo.

Dicotomia parcial

r	0	1	2	3	4		n
0	Р	P	P	?	?		?
1	P	P	?	?	?		?
2	P	?	?	?	?		?
3	P	?	?	?	?		?
4	NPc	?	?	?	?		?
:	:	:	:	:	:	٠	?
n	?	?	?	?	?		?

Tabela 3: Dicotomia parcial para coloração de $\operatorname{Grafos}(r,\ell)$

Dicotomia parcial

r	0	1	2	3	4		n
0	P	Р	Р	?	?		?
1	P	P	?	?	?		?
2	P	?	?	?	?		?
3	P	?	?	?	?		?
4	NPc	NPc	NPc	NPc	NPc		NPc
:	:	:	:	:	:	٠	NPc
n	NPc	NPc	NPc	NPc	NPc		NPc

Tabela 4: Dicotomia parcial para coloração de $\operatorname{Grafos}(r,\ell)$

A relação entre coloração e lista-coloração em $Grafos(r, \ell)$

A relação entre coloração e lista-coloração em $Grafos(r,\ell)$

Teorema

Lista coloração em Grafo (r,ℓ) é equivalente à coloração em Grafos $(r,\ell+1)$.

A relação entre coloração e lista-coloração em Grafos (r,ℓ)

Demonstração.

A prova consiste em mostrar que a solução do problema de lista coloração em um $\operatorname{Grafo}(r,\ell)$ G, implica em uma solução para o problema de coloração em $\operatorname{Grafos}(r,\ell+1)$ H_G .

Para tanto, mostraremos que:

- Se um grafo $G(r,\ell)$ possui uma lista coloração própria então H_G é k-colorível para k do tamanho da paleta C (1).
- Se H_G é k-colorível então G possui uma lista coloração própria (2).

A relação entre coloração e lista-coloração em Grafos (r, ℓ)

(1):

Seja G um $Grafo(r, \ell)$ tal que cada vértice $v \in V(G)$ tenha uma lista de cores; Cada lista tem pelo menos uma cor do seguinte conjunto:

$$C = \{c_1, c_2, c_3, ..., c_k\}.$$

Seja G uma instância para o problema de lista coloração, construirémos uma clique K, onde cada vértice $u \in V(K)$ representa uma cor de C.

Note que a clique K tem exatamente k vértices, portanto, podemos colorir K com apenas k cores, sem perda de generalidade* assumiremos que $u_i \in K$ será colorido com a cor c_i .

Suponha $H_G = G \cup K$, e para cada vértice $u_i \in V(K)$ e todo vértice $v_j \in V(G)$ adicione uma aresta (u_i, v_j) em H_G se e somente se c_i não é uma cor pertencente a lista de v_i .

Ao colorir G, colorir u_i com c_i em K não conflita para a coloração encontrada para G, e nos leva à coloração para H_G .

A relação entre coloração e lista-coloração em Grafos (r,ℓ)

(2):

Sabemos que o grafo H_G é um grafo $(r,\ell+1)$ e possui uma k-coloração.

Perceba que a remoção de K de H_G (que se tronará G) não afeta sua coloração, perceba que para os restantes vértices $v \in V(G)$ construímos suas listas baseando-se em seus não vizinhos em K portanto a coloração adquirida em H_G ainda é válida em G por construção.

Dessa forma mostramos que, se H_G é k-colorível, G é lista-colorível. \square

Corolários

Com o resultado obtido podemos afirmar que:

- Coloração em Grafos(1,2) é NP-Completo.
 Deriva da demonstração de NP-Completude para lista coloração em Split mostrado por Jensen et al. em "Generalized coloring for tree-like graphs".
- Coloração em Grafos(2,1) é NP-Completo.
 Deriva da demonstração de NP-Completude para lista coloração em bipartidos mostrado por Fellows et al. em "List Coloring and 3-Precoloring Extension are W[1]-hard parameterized by treewidth".

Peculiaridade do Grafo(2,1)

É trivial notar que essa classe de grafo possui um limite superior e um inferior para sua coloração (K+1 e K respectivamente), porém apesar das restrições é NP-Completo determinar qual delas é a correta.

Dicotomia parcial

r	0	1	2	3	4		n
0	P	P	P	?	?		?
1	P	P	NPc	NPc	NPc		NPc
2	P	NPc	NPc	NPc	NPc		NPc
3	P	NPc	NPc	NPc	NPc		NPc
4	NPc	NPc	NPc	NPc	NPc		NPc
:	: :	: :	: :	: :	: :	٠.	NPc
n	NPc	NPc	NPc	NPc	NPc		NPc

Tabela 5: Dicotomia parcial para coloração de Grafos (r, ℓ)

Corolário

Coloração de Grafos(0,3) é NP-Completo.

Demonstração.

Deriva da démonstração de NP-Completude para lista coloração em Grafos(0,2) demonstrado por Jensen et al. em "Complexity results for the optimum cost chromatic partition problem".

Complexidade computacional de Coloração em Grafoa (r, ℓ)

Os resultados encontrado preenchem a dicotomia.

r	0	1	2	3	4		n
0	P	P	Р	NPc	NPc		NPc
1	P	P	NPc	NPc	NPc		NPc
2	P	NPc	NPc	NPc	NPc		NPc
3	P	NPc	NPc	NPc	NPc		NPc
4	NPc	NPc	NPc	NPc	NPc		NPc
:	:	:	:	:	:	٠.	NPc
n	NPc	NPc	NPc	NPc	NPc		NPc

Tabela 6: Dicotomia de complexidade para coloração em Grafos (r, ℓ)

A idéia

O Problema é NP-Completo.

Queremos encontrar um algoritmo FPT, que tem formato $\mathcal{O}(f(k)n^c)$.

Usar o tamanho das partições de um $\operatorname{Grafo}(2,1)$ como parâmetros do problema.

Parametrização pelo tamanho dos

conjuntos independentes

Parametrização

Parametrização de Grafo(2,1) pelo tamanho do menor independente

Sabemos que podemos transformar esse problema em lista coloração de bipartido.

Fellows mostrou que lista-coloração é W[1]-difícil para bipartidos quando parametrizado pelo tamanho do menor independente.[1]

Portanto coloração é W[1]-difícil quando parametrizado pelo tamanho do menor independente em um ${\sf Grafo}(2,1).$

Parametrização

Parametrização de Grafo(2,1) pelo tamanho do maior independente.

Sabemos que podemos transformar esse problema em lista coloração de bipartido.

Em uma lista coloração de bipartido, se um vértice possui uma lista com mais cores do que o tamanho de sua vizinhança, ele sempre terá disponível uma cor para sua coloração, podemos portanto remover esse vértice do grafo sem alterar sua coloração.

Observe que isso implica que após a remoção de todos os vértices com esse padrão o tamanho das listas está agora limitado por uma função de k, portanto aplicar um algoritmo de força bruta nos dá um algoritmo FPT.

Parametrização pelo tamanho da clique

Queremos agora entender o comportamento e parametrização de coloração quando a clique é pequena.

Coloração de Grafo(2,1) quando a clique é restrita, é equivalente a lista coloração em bipartido com a paleta restrita.

Para isso iremos apresentar um problema que nos ajudará a entender o comportamento de lista coloração.

PreColoring extension

PreColoring extension

Entrada: Um grafo G onde alguns vértices já possuem uma coloração definida com cores escolhidas dentre k possíveis cores.

Pergunta: É possível estender a coloração já existente para todo o grafo sem que dois vértices adjacentes possuam a mesma cor?

Tal problema é mostrado ser NP-Completo para o caso restrito de 3-PreCloring extension.[3]

3-lista coloração em grafos bipartidos é NP-Completo.

3-lista coloração em grafos bipartidos é NP-Completo.

Tendo um grafo G e uma paleta C pertencente a uma instância P de 3- $PreColoring\ extension$.

Formamos um grafo G' usando todo vértice pré-colorido $v \in V(G)$ atribuindo ao mesmo uma lista com sua cor de G em G', aos demais vértices de G criamos um vértice com lista contendo todos as cores de C e mantendo sua vizinhança.

Uma coloração possível para G implica em uma coloração possível para G', já que nos basta atribuir aos vértices em G' as mesmas cores atribuídas em G. De forma análoga, uma lista coloração possível em G' implica em uma coloração possível em G.

Parametrização.

Parametrização pelo tamanho da clique.

Para demonstração da intratabilidade parametrizada, basta retornarmos à transformação do problema de coloração em Grafo(2,1) onde a clique é um triângulo em lista coloração de bipartido com paleta com três cores.

Estamos tentando parametrizar a resolução de lista coloração de bipartido pelo tamanho da paleta de cores, que mostramos ser inviável anteriormente.

Portanto esse problema é para-NP-Completo quando parametrizado pelo tamanho da clique.

Os resultados ainda são insatisfatórios. O que mais observamos sobre esse comportamento?

Observações

Usando um Grafo(2,1) onde a partição da clique também é a clique máxima e tem tamanho 3, nosso problema se torna o problema de 3-lista-coloração em bipartido.

- 3-coloração de bipartido é Polinomial.
- 2-coloração de bipartido é Polinomial
- 3-lista-coloração de bipartido é NP-Completo.
- O que ocorre quando o número de vértices com listas de tamanho 1, 2 e 3 variam?

Sobre a vizinhança da clique

Observe que, se um nó não é vizinho de nenhum vértice na clique, após a redução esse vértice tem lista de tamanho três. Todo vértice vizinho a clique, após a transformação tem vértice com lista de tamanho 3-x onde x é o número de seus vizinhos na clique.

Um vértice nunca terá uma lista de tamanho 0.

Parametrização pela vizinhança da clique

Teorema

Seis vértices com lista de tamanho um são suficientes para que lista coloração em bipartido seja NP-completo.

Demonstração.

Sabemos que em nosso problema temos dois conjuntos independentes, r_1 e r_2 , também é verdade que exceto pelos citados seis vértices todos os outros tem listas de tamanho três, os vértices de r_1 podem estar ligados arbitrariamente aos de r_2 . Observe o seguinte gadget.

Figura 1: Gadget com vértices de lista um reproduzindo vértice de lista um em vértice de lista três

Com o gadget apresentado é possível conduzir à escolha de uma cor para um vértice com lista tamanho três dado que a única coloração possível para o gadget é a coloração aonde a cor desejada ocorre.

Utilizando esse gadget é possível transformar uma instância de 3-PreColoring Extension em bipartidos em uma de lista coloração em bipartido, basta para tanto pegarmos os vértices do Grafo G que estão pré-coloridos e criar um vértice equivalente em um grafo G' com listas tamanho três, os ligando aos vértices com listas tamanho um e mantendo a bipartição de forma a excitar a cor que este vértice possuia em G, os demais vértices são mapeados para vértices com listas tamanho três, mantendo sua vizinhança equivalente a em G.

Teorema

Três vértices com lista de tamanho um são suficientes para que lista coloração em bipartido seja NP-completo.

Demonstração.

Usando o gádget apresentado anteriormente, dois vértices v com lista um em um vértice u com lista três são capazes de reproduzir um vértice de lista um através da retirada da lista de u as únicas possíveis cores para v, sendo assim tendo três vértices de distintas listas tamanho um, é possível obter seis vértices de lista um (com três listas distintas de cada lado) permitindo dessa forma a redução da instância de 3-Precoloring para instância de lista coloração.

Como já visto o problema é de trivial solução quando todos os vértices tem listas de tamanho três, portanto precisamos ainda encontrar qual número de vértices de tamanho dois onde o problema se mantém NP-Completo.

Teorema

Seis vértices com listas tamanho 2 são necessários e suficientes para que lista-coloração em bipartido seja NP-Completo.

Demonstração.

Se um conjunto independente contém apenas dois vértices com listas tamanho dois, todos os vértices nesse conjunto compartilham uma cor em suas listas, podendo colorir tal conjunto com essa cor.

Todos os outros vértices ainda têm pelo menos uma cor disponível para sua coloração podendo ser colorido com ela.

Para completar nossa demonstração basta portanto, encontrar uma configuração onde o problema de lista coloração permanece NP-Completo.

Para tanto nos é interessante agora a vizinhança entre os vértices com lista dois, iremos isolar as instâncias em alguns casos.

Todo vértice tem vizinhança de tamanho dois e nenhuma vizinhança fechada possui uma cor em comum

As restrições impostas a esse caso nos levam a uma única possível estrutura Γ onde suas duas possíveis colorações são intercambiáveis.

Portanto se mostra verdade que podemos excitar uma cor qualquer em outro vértice de lista tamanho três se o ligarmos a dois dos três vértices presentes no independente oposto sem ferir a bipartição do grafo.

Figura 2: Estrutura Γ e suas possíveis colorações.

Assim sendo para reduzir um problema de 3-PreColoring extension em bipartido Π ao nosso problema Π' basta que para todo vértice pré-colorido $v_{c_j} \in V(\Pi)|c_j \in C$ cria-se um paralelo $u \in V(\Pi')$ com lista de tamanho três e liga-o aos vértices de Γ a fim de excitar sua cor da seguinte forma:

Escolha sem perda de generalidade um vértice $v \in r1$ pré-colorido com a cor c_i , observe que Γ possui dois conjuntos de ligações capazes de excitar ci em u utilizando o gadget da Figura 1, escolha um desses conjuntos. Portanto $\forall v_{c_i} | j \neq i$ basta realizar a ligação com Γ respeitando o conjunto de ligações já escolhido. Os demais vértices de $V(\Pi)$ são construídos mantendo suas respectivas vizinhanças em Π' e com lista de tamanho três.

Uma resposta para Π' implica em uma resposta para Π , pois se Π' é lista colorível, então Π é colorível respeitando a pré-coloração, já que a coloração de Γ é indiferente para os vértices não vizinhos à ela e sempre respeita a coloração de sua vizinhança, para a demonstração da volta basta escolher as mesmas cores escolhidas em Π para seus respectivos em Π' que implicará em uma coloração para Γ inofensiva ao resultado.

Parametrizado pela quantidade de vértices não vizinhos a clique

Teorema

Lista coloração em bipartidos com listas de tamanho um a três é FPT quando parametrizado pela quantidade de vértices com lista de tamanho três.

Demonstração.

Dado que temos k vértices com 3 escolhas cada é possível montar um algoritmo de busca em árvore de altura limitada de tamanho 3^k , e então executar o algoritmo linear conhecido da literatura, obtendo um algoritmo $\mathcal{O}(3^k n^c)$

Conclusão

Resultados clássicos

Conseguimos portanto a partir desse trabalho descrever a complexidade computacional do problema em questão.

r	0	1	2	3	4		n
0	P	Р	P	NPc	NPc		NPc
1	P	P	NPc	NPc	NPc		NPc
2	P	NPc	NPc	NPc	NPc		NPc
3	P	NPc	NPc	NPc	NPc		NPc
4	NPc	NPc	NPc	NPc	NPc		NPc
:	:	:	:	:	:	٠.	NPc
n	NPc	NPc	NPc	NPc	NPc		NPc

Tabela 7: Dicotomia de complexidade para coloração em Grafos (r, ℓ)

Para tanto desenvolvemos uma estratégia inédita de redução de lista coloração à coloração, permitindo a identificação de características passíveis de parametrização.

Resultados colaterais

É conhecido que o problema de coloração em um grafo G pode ser visto como um problema de clique cover em seu complemento G'[2], dessa forma podemos estender a dicotomia P/NPc de coloração em (r,ℓ) para o problema de clique cover em grafos (r,ℓ) simplesmente trocando as linhas pelas colunas da tabela, dessa forma obtemos a seguinte dicotomia P/NPc:

r	0	1	2	3	4		n
0	P	Р	Р	Р	NPc		NPc
1	P	P		NPc	NPc		NPc
2	P	NPc	NPc	NPc	NPc		NPc
3	NPc	NPc	NPc	NPc	NPc		NPc
4	NPc	NPc	NPc	NPc	NPc		NPc
:	:	:	:	:	:	٠.	NPc
n	NPc	NPc	NPc	NPc	NPc		NPc

Tabela 8: Dicotomia P/NPc do problema de clique cover em Grafos (r, ℓ)

Resultados Parametrizados

Exploramos também o comportamento do problema em Grafos(2,1) Obtendo dessa forma:

- 2 algoritmos FPT.
- Uma demonstração de W[1] dificuldade
- Algumas de para-NP-completude

Mostrando colateralmente características inesperadas de dificuldade.

Trabalhos futuros

- Existe uma relação entre as parametrizações da coloração de Grafos(2, 1) e clique cover de Grafos(1, 2)?
- Quais são as características que afetam parametrizações em $Grafos(r, \ell)$ diferentes de Grafos(2, 1)?
- Existe algum parâmetro que seja possível extrair um algoritmo FPT para qualquer r ou ℓ ?

Referencias

Michael Fellows, Fedor V. Fomin, Daniel Lokshtanov, Frances Rosamond, Saket Saurabh. Stefan Szeider, and Carsten Thomassen.

On the complexity of some colorful problems parameterized by treewidth.

2007.

Michael R. Garey and David S. Johnson.

Computers and Intractability: A Guide to the Theory of NP-Completeness.

1979.

J. Kratochvil.

Precoloring extension with fixed color bound.

1994.