Rational Agents (Chapter 2)

Outline

- Agent function and agent program
- Rationality
- PEAS (Performance measure, Environment, Actuators, Sensors)
- Environment types
- Agent types

Agents

 An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment through actuators

Agent function

 The agent function maps from percept histories to actions

 The agent program runs on the physical architecture to produce the agent function

agent = architecture + program

Vacuum-cleaner world

Percepts:

Location and status, e.g., [A,Dirty]

Actions:

Left, Right, Suck, NoOp

Example vacuum agent program:

function Vacuum-Agent([location,status]) returns an action

- if status = Dirty then return Suck
- else if location = A then return Right
- else if location = B then return Left

Rational agents

 For each possible percept sequence, a rational agent should select an action that is expected to maximize its performance measure, given the evidence provided by the percept sequence and the agent's built-in knowledge

Performance measure (utility function):
 An objective criterion for success of an agent's behavior

What does rationality mean?

- Rationality is not omniscience
 - Percepts may not supply all the relevant information
 - Consequences of actions may be unpredictable
- Agents can perform actions in order to modify future percepts so as to obtain useful information (information gathering, exploration)
- An agent is autonomous if its behavior is determined by its own experience (with ability to learn and adapt)

Back to vacuum-cleaner world

Percepts:

Location and status, e.g., [A,Dirty]

Actions:

Left, Right, Suck, NoOp

function Vacuum-Agent([location,status]) returns an action

- if status = Dirty then return Suck
- else if location = A then return Right
- else if location = B then return Left
- Is this agent rational?
 - Depends on performance measure, environment properties

Specifying the task environment

- Problem specification: Performance measure,
 Environment, Actuators, Sensors (PEAS)
- Example: automated taxi driver
 - Performance measure
 - Safe, fast, legal, comfortable trip, maximize profits
 - Environment
 - Roads, other traffic, pedestrians, customers
 - Actuators
 - Steering wheel, accelerator, brake, signal, horn
 - Sensors
 - Cameras, sonar, speedometer, GPS, odometer, engine sensors, keyboard

Agent: Part-sorting robot

- Performance measure
 - Percentage of parts in correct bins
- Environment
 - Conveyor belt with parts, bins
- Actuators
 - Robotic arm
- Sensors
 - Camera, joint angle sensors

Agent: Spam filter

- Performance measure
 - Minimizing false positives, false negatives
- Environment
 - A user's email account
- Actuators
 - Mark as spam, delete, etc.
- Sensors
 - Incoming messages, other information about user's account

Environment types

- Fully observable (vs. partially observable): The agent's sensors give it access to the complete state of the environment at each point in time
- Deterministic (vs. stochastic): The next state of the environment is completely determined by the current state and the agent's action
 - Strategic: the environment is deterministic except for the actions of other agents
- Episodic (vs. sequential): The agent's experience is divided into atomic "episodes," and the choice of action in each episode depends only on the episode itself

Environment types

- Static (vs. dynamic): The environment is unchanged while an agent is deliberating
 - Semidynamic: the environment does not change with the passage of time, but the agent's performance score does
- Discrete (vs. continuous): The environment provides a fixed number of distinct percepts, actions, and environment states
 - Time can also evolve in a discrete or continuous fashion
- Single agent (vs. multi-agent): An agent operating by itself in an environment
- Known (vs. unknown): The agent knows the rules of the environment

Examples of different environments

Chess with a clock

Scrabble

Taxi driving

Observable	Fully	Fully	Partially	Partially
Deterministic	Deterministic	Strategic	Stochastic	Stochastic
Episodic	Episodic	Sequential	Sequential	Sequential
Static	Static	Semidynamic	Static	Dynamic
Discrete	Discrete	Discrete	Discrete	Continuous
Single agent	Single	Multi	Multi	Multi

Hierarchy of agent types

- Simple reflex agents
- Model-based reflex agents
- Goal-based agents
- Utility-based agents

Simple reflex agent

Select action on the basis of current percept, ignoring all past percepts

Model-based reflex agent

 Maintains internal state that keeps track of aspects of the environment that cannot be currently observed

Goal-based agent

 The agent uses goal information to select between possible actions in the current state

Utility-based agent

 The agent uses a utility function to evaluate the desirability of states that could result from each possible action

Where does learning come in?

