Cryptography examples

Secret Key Encryption (SKE)

• Perfect Secrecy

- perfectly secure:

- * One-time Pad
- * One-time Pad only for first l bits, discarding the rest (but allows some error for Dec as it just chooses the rest randomly)
- * shift cypher for one bit
- * Vigenère Cypher for fixed key length that equals message length
- * monoalphabetic substitution cypher for messages with length ≤ 26

- not perfectly secure:

- * One-time Pad where *Enc* appends 0 and 1 with different probabilities
- * XOR mod 5 with $\mathcal{M} = \{0, \dots, 4\}$ and $\mathcal{K} = \{0, \dots, 5\}$
- * One-time Pad but excluding 0 as key
- * Vigenère Cypher for msg length n where we first choose uniformly the key length $\leq n$ and then the actual key.
- * all schemes with $|\mathcal{K}| < |\mathcal{M}|$

• one-time Computational Security

- secure:

- * $\operatorname{Enc}(s, m) := G(s) \oplus m$ for secure PRG G
- * $\operatorname{Enc}(k, m) := m \oplus F_k(0^n)$ for PRF F

- not secure:

- * $\operatorname{Enc}(s,m) := G(s) \oplus m$ if G is not a secure PRG
- * $\operatorname{Enc}(s,m) := (r,G(r) \oplus m)$ for PRG G
- * mode of operation $c_i := F_i(r+i+m_i)$ for $c_0 := r \leftarrow \$\{0,1\}^n$ and PRP F

• Pseudorandom Generators (PRG)

- * $G'(s) := G(s_1 \cdots s_{\lceil \lambda/2 \rceil})$ for a PRG $G: \{0,1\}^{\lambda} \to \{0,1\}^{2\lambda}$
- * $G(s) := f(s) \parallel h(s)$ for f OWP and h harc-core for f
- * $F_k(0^n)$ for $k \in \{0,1\}^{\lambda}$ and PRF F
- * $G(s) := F_s(1) \parallel F_s(2) \parallel \cdots \parallel F_s(l)$ for a length-preserving PRF F

- not secure:

- * $G: \{0,1\}^{\lambda} \to \{0,1\}^{\lambda+1}, s \mapsto s \parallel \bigoplus_{i=1}^{\lambda} s_i$
- * $G'(s) := G(0^{|s|} \parallel s)$ for a PRG $G: \{0,1\}^{\lambda} \to \{0,1\}^{2\lambda}$
- * $G'(s) := G(s) \parallel G(s+1)$ for a PRG $G: \{0,1\}^{\lambda} \to \{0,1\}^{2\lambda}$
- * $G(x) := f(x) \parallel h(x)$ for OWF f and h hard-core for f

• One-way Functions (OWF)

- one-way:

- * for OWF f the construction $g(x_1, x_2) := (f(x_1), x_2)$ for $|x_1| = |x_2|$
- * for OWF f the construction $g(x_1, x_2) := (f(x_1), 0^{|x_2|})$ where $|x_1| = |x_2|$
- * (Gen, Samp, H) for CRH (Gen, H)
- * probably: prime factorization (equal length), discrete log
- * computing square roots (if factoring is hard)
- * $f(x) := F_x(0^{|x|})$ for (length-preserving) PRP F
- * for OWF h the construction

$$f(x) := \begin{cases} 0^{|x|} & \text{if } x_{n/2,\dots,x_n} = 0^{n/2}, \\ h(x_1,\dots,x_{n/2})0^{n/2} & \text{else} \end{cases}$$

- * $g(x) := f(x) \parallel f(f(x))$ for OWF f
- * $g(x \parallel j) := (f(x), j, x_j)$ for OWF f (but reveals a bit of x)
- * $g(x) := f(x \parallel 0)$ for OWF $f : \{0,1\}^{\lambda} \to \{0,1\}^{\lambda}$
- * $g \circ f$ for OWP g, f

- not one-way:

- * $f(x,y) := F_x(y)$ for (length-preserving) PRP F
- * $f(y) := F_{0^{|y|}}(y)$ for (length-preserving) PRP F
- * g(x) := f(f(x)) for length-preserving OWF f (but secure if f is OWP!)
- * $H_s(x) := x \oplus pad(s)$ for public padding-function pad

• Hard-core Predicates

- Goldreich-Levin: Let $f: \{0,1\}^n \to \{0,1\}^n$ be a OWF and

$$g: \{0,1\}^{2n} \to \{0,1\}^{2n}, (x,r) \mapsto g(x,r) := (f(x),r)$$

then g is a OWF and $h(x,r) := \langle x,r \rangle$ is hard-core for g.

• Pseudorandom Functions (PRF)

*
$$F'_k(x) := F_k(0 \parallel x) \parallel F_k(1 \parallel x)$$
 for a PRF $F : \{0,1\}^{2n} \to \{0,1\}^n$

* Goldreich-Goldwasser-Micali (GGM) construction: For a PRG $G: \{0,1\}^{\lambda} \to \{0,1\}^{2\lambda}, s \mapsto G(s) := (G_0(s), G_1(s)),$ the family

$$F_k: \{0,1\}^{\lambda} \to \{0,1\}^{\lambda}, x = x_1 \cdots x_n \mapsto F_k(x) := G_{x_n}(G_{x_{n-1}}(\dots(G_{x_1}(k)\dots)))$$

is a PRF

* 3-round Feistel: constructs PRP from PRF $F:\{0,1\}^{\lambda}\times\{0,1\}^n\to\{0,1\}^n$. Construction of a single round:

$$\Psi_F: \{0,1\}^{\lambda} \times \{0,1\}^{2n} \to \{0,1\}^{2n}, (k,x,y) \mapsto (y,x \oplus F_k(y))$$

then using $x' := y, y' := x \oplus F_k(y)$

- * $\mathcal{F}(\mathcal{H})$ for PRF \mathcal{F} and almost universal \mathcal{H}
- * $F_k(x) := H(k \parallel x)$ for Random-Oracle H
- * $F'_{k_1,...,k_n}(x) := F_{k_1}(x),...,F_{k_n}(x)$ for PRF F

- not secure:

- * $F_k'(x) := F_k(0 \parallel x) \parallel F_k(x \parallel 1)$ for a PRF $F: \{0,1\}^{2n} \to \{0,1\}^n$
- * $F_{A,b}: \{0,1\}^n \to \{0,1\}^n, x \mapsto Ax + b \text{ for a } n \times n \text{ matrix } A \text{ and } n\text{-bit vector } b$
- $* F_k(x) := k \oplus x$
- * AES (but used in practice instead of a PRP)
- * GGM construction for VIL

• Chosen-Plaintext Security (CPA)

- secure:

- * $Enc(k,m) := (r, F_k(r) \oplus m)$ for $r \leftarrow \$\{0,1\}^{n(\lambda)}, m \in \{0,1\}^{l(\lambda)}$ and PRP F
- * $Enc(k, m) := F_k(r \parallel m)$ for $r \leftarrow \$\{0, 1\}^{\lambda/2}, m \in \{0, 1\}^{\lambda/2}$ and PRP F
- * $Enc(k, m) := (r, m_1 \oplus F_k(r), m_2 \oplus F_k(r+1))$ for $m = m_1 \parallel m_2$ with $|m_1| = |m_2|$ and $r \leftarrow \$\{0, 1\}^n$
- * CBC (Cipher block chaining): choose $c_0 := r \leftarrow \$\{0,1\}^n$ and compute $c_i := F_k(c_{i-1} \oplus m_i)$
- * CTR (Counter mode): choose $c_0 := r \leftarrow \$\{0,1\}^n$, and compute $c_i := F_k(r+i-1) \oplus m_i$

- not secure:

- * all deterministic schemes
- * ECB (Electronic Code Box): every block m_i is encrypted separately by $F_k(m_i)$ for PRP F
- * modified CBC where $r_i = IV + i$ for $IV \leftarrow \$\{0,1\}^n$ instead of choosing r randomly each time.
- * CPA for PRP F where $l_{in}(\lambda)$ is too small, so overlap probability is too big (must be superlogarithmic to be secure, i.e. $l_{in}(\lambda) \in \omega(\log \lambda)$)

• Message Authentication Code (MAC)

- secure:

- * FIL: every PRF $\mathcal{F} = \{F_k : \{0,1\}^n \to \{0,1\}^l\}$
- * FIL: CBC-Mac for PRF F the construction

$$h_s(m_1,\ldots,m_t):=F_s(m_t\oplus F_s(m_{t-1}\oplus\cdots\oplus F_s(m_1)\cdots)),$$

i.e. $\text{Tag}_s(m_1, ..., m_t) = t_l \text{ for } t_0 := r = 0 \text{ and } t_i := F_k(t_{i-1} \oplus m_i)$

* FIL: XOR-MAC - for PRF ${\mathcal F}$ and almost XOR-universal ${\mathcal H}$

$$\operatorname{Tag}_k(m) := (r, F_k(r) \oplus h_s(m)),$$

where $r \leftarrow \$\{0,1\}$

- * VIL: for a FIL MAC Π' for messages of length n $(r, \tau_1, \ldots, \tau_d) \leftarrow \operatorname{Tag}_k(m_1, \ldots, m_d)$, where $\tau_i \leftarrow \operatorname{Tag}_k'(r \parallel l \parallel i \parallel m_i)$, $|m| = l < 2^{n/4}$, and $r \leftarrow \$\{0, 1\}^{n/4}$ (If necessary final block is padded with 0s; this is even strongly secure)
- * for secure MAC Π : Tag'_k $(m) := m[1] \parallel \tau$ for $\tau \leftarrow \text{Tag}_k(m)$
- * (not strongly secure) Π' for a secure MAC $\Pi = (\text{Tag, Vrfy})$: $\text{Tag}_k'(m) := \text{Tag}_k(m) \parallel 0, \text{Vrfy}_k'(t \parallel b) := \text{Vrfy}_k(t)$
- * (not if given Vrfy-Oracle access) Π' for secure MAC Π : $\operatorname{Tag}_k'(m) := (0, \tau, 0, 0)$ for $\tau \leftarrow \operatorname{Tag}_k(m)$ $\operatorname{Vrfy}_k'(c, t, i, b) : \operatorname{If} c = 0$ output 1 iff $\operatorname{Vrfy}_k(m, \tau) = 1$, if c = 1 output 1 iff $\operatorname{Vrfy}_k(m, \tau) = 1$ and $k_i = b$

- not secure:

- * Tag_k(m) := $F_k(0 \parallel m_0) \parallel F_k(1 \parallel m_1)$ for PRF $F : \{0, 1\}^{2n} \to \{0, 1\}^n$, where $m = m_0 \parallel m_1$ and $|m_0| = |m_1| = n 1$
- * $\operatorname{Tag}_k(m_1, \dots, m_l) := F_k(\langle 1 \rangle \parallel m_1) \oplus \dots \oplus F_k(\langle l \rangle \parallel m_l)$ for PRF F and $m_i \in \{0, 1\}^{n/2}$
- * $\operatorname{Tag}_k(m_1, \dots, m_l) := (r, F_k(r) \oplus F_k(\langle 1 \rangle \parallel m_1) \oplus \dots \oplus F_k(\langle l \rangle \parallel m_l))$ for PRF $F, m_i \in \{0, 1\}^{n/2}$ and $r \leftarrow \$\{0, 1\}^n$
- * Tag_k(m) := $F_k(m_1) \parallel F_k(F_k(m_2))$ for PRF F and $m = m_0 \parallel m_1$ with $|m_0| = |m_1| = n$
- * CBC-MAC as VIL-MAC or as FIL-MAC with $r \neq 0^n$ or if all blocks are output.
- * VIL: CBC-MAC where message length is appended at the end of the message
- * VIL: $\operatorname{Tag}_{s,k}(m) := H^s(k \parallel m)$ for CRH H when H is constructed via Merkle-Damgård
- * CBC-Mac with $F_k(m) := F'_k(m) \parallel \langle i \rangle$ where $F'_k : \{0,1\}^n \to \{0,1\}^{n/2}$ is a secure MAC and $\langle i \rangle$ the n/2-bit encoding of the number of leading zeros of m

• Chosen-Ciphertext Security (CCA)

- secure:
 - * all schemes that satisfy CPA+Auth
 - * all Encrypt-then-Authenticate schemes with CPA secure Π and strongly secure MAC: (for any Π and only secure MAC still unforgeable) choose $(k_E, k_M) \leftarrow \$\{0, 1\}^{\lambda}$, calculate $c \leftarrow \operatorname{Enc}_{k_E}(m)$, $\tau \leftarrow \operatorname{Tag}_{k_M}(c)$ and output (c, τ)
- not secure:
 - * CBC and CTR modes of operation

• Hash Functions

- collision resistant:
 - * $H^{s_1,s_2}(x) := H_1^{s_1}(x) \parallel H_2^{s_2}(x)$ where at least one of the hash functions H_1, H_2 is collision resistant
 - * $H \circ H$ for CRH H
 - * $H_s(x) := x \oplus \operatorname{pad}(s)$ for public padding-function pad
 - st bootstrap construction from CRH with small compression by Merkle-Damg ard or $Merkle\ Tree$

- not collision resistant:

- * VIL Merkle-Damgård (but can be strengthened to be CRH by including the length of the input)
- * for a CRH $\hat{h}:\{0,1\}^{2n-1}\to\{0,1\}^{n-1}$ the construction $h:\{0,1\}^{2n}\to\{0,1\}^n$ with

$$h^s(0 \parallel x) = 0 \parallel \hat{h}^s(x)$$
 and $h^s(1 \parallel x) = 1^n$

(but the Merkle-Damgård transform using h is CRH!)

Public Key Encryption (PKE)

Note: for PKE it is allowed that Dec fails with negligible probability

- Diffie-Hellman Key Excange (DDH/CDH)
 - 1. generate parameters $(\mathbb{G}, g, p) \leftarrow \$\text{GroupGen}(1^{\lambda})$
 - 2. A chooses $x \leftarrow \mathbb{Z}_p^*$ and sends $g^x \mod p$ to B, B chooses $y \leftarrow \mathbb{Z}_p^*$ and sends $g^y \mod p$ to A
 - 3. A and B calculate the shared key $g^{xy} \mod p$

• PKE constructions

- secure PRG:
 - * (assuming DDH holds for all $t(\lambda) = \text{poly}(\lambda)$) (\mathbb{G}, g, p) $\leftarrow \$\text{GroupGen}(1^{\lambda})$

$$G_{q,q}: \mathbb{Z}_q^{t+1} \to \mathbb{G}^{2t+1}, (x, y_1, \dots, y_t) \mapsto (g^x, g^{y_1}, g^{xy_1}, \dots, g^{y_t}, g^{xy_t})$$

- secure PRF:

* (under DDH assumption) Naor-Reingold: $(\mathbb{G}, g, p) \leftarrow \$GroupGen(1^{\lambda})$

$$F_{q,q,\vec{a}}: \{0,1\}^n \to \mathbb{G}, (x_1,\ldots,x_n) \mapsto (g^{a_0})^{\prod_{i=1}^n a_i^{x_i}}$$

- CRH:

* (under DL assumption) (\mathbb{QR}_p , g_1 , p = 2q + 1) \leftarrow \$GroupGen(1 $^{\lambda}$), for $g_2 \leftarrow \mathbb{QR}_p$

$$H_{g_1,g_2,p,q}: \mathbb{Z}_q^2 \to \mathbb{QR}_p, (x_1,x_2) \mapsto g_1^{x_1} g_2^{x_2}$$

* (assume RSA is hard relative to GenRSA) (Gen, H) for $\operatorname{Gen}(1^{\lambda}) = (N, e, y) =: s$ for $(N, e) \leftarrow \operatorname{GenRSA}(1^{\lambda}), y \leftarrow \mathbb{Z}_{N}^{*}$

$$H^s: \{0,1\}^{3n} \to \mathbb{Z}_N^*, x \mapsto f_{x_{3n}}^s \left(f_{x_{3n-1}}^s \left(\cdots \left(1 \right) \cdots \right) \right)$$

 $\text{for } f_0^s(x) := x^e \mod N, \, f_1^s(x) := yx^e \mod N$

* (under DL assumption) (\mathbb{G} , q, h_1) \leftarrow \$GroupGen(1 $^{\lambda}$), h_2 ,..., $h_t \leftarrow \mathbb{G}$ Gen(1 $^{\lambda}$) \rightarrow (\mathbb{G} , q, (h_1, \ldots, h_t)) $H^s: \mathbb{Z}_q^t \rightarrow \mathbb{G}$, $(x_1, \ldots, x_t) \mapsto \Pi_i h_i^{x_i}$

– hard-core predicate:

 \ast least-significant bit for RSA and Rabin TDP

* half(x) :=
$$\begin{cases} 0 & \text{if } 0 < x < N/2 \\ 1 & \text{if } N/2 < x < N \end{cases}$$
 for the RSA problem

• Trapdoor Permutation (TDP)

let n = pq (p, q distinct, odd primes)

– Rivest, Shamir, Adleman (RSA): (assuming factoring is hard) let e any value s.t. $gdc(e, \phi(n)) = 1$

GenRSA
$$\to$$
 (pk, sk) with $pk = (n, e)$, $sk = (n, d)$ and $de = 1 \mod \phi(n)$ $f_e(x) := x^e \mod n$, $f_d^{-1}(y) := y^d \mod n$

- Rabin: (EQUIVALENT to hardness of factoring) $p, q \equiv 3 \mod 4$ (ensures, that f is a permutation on \mathbb{QR}_n)

GenModulus
$$\rightarrow (pk, sk)$$
 with $pk = n$, $sk = (p, q)$

$$f: \mathbb{QR}_n \to \mathbb{QR}_n, x \mapsto x^2 \mod n$$

 f^{-1} computes square-roots using Chinese Remainder Theorem and sk

• CPA

- secure:

* $\Pi = (\text{KGen, Enc, Dec})$ for TPD (Gen, f, f^{-1}) and h hard-core for $f \colon \text{KGen}(1^{\lambda}) = \text{Gen}(1^{\lambda})$

Enc
$$(pk, m \in \{0, 1\}) \to (f(pk, r), h(pk, r) \oplus m), r \leftarrow \mathcal{X}_{pk}$$

Dec $(sk, (c_1, c_2)) := f^{-1}(sk, c_1) = r, m = h(pk, r) \oplus c_2$

- * the above construction for RSA or Rabin TDP with h := lsb and the constraint lsb(r) = m (assuming RSA/Rabin assumption holds)
- * modified RSA: (see RSA TDP) let $l \in \omega(\log \lambda)$ GenRSA $\to (pk, sk)$ with pk = (n, e), sk = (n, d) ($de = 1 \mod \phi(n)$) Enc $(pk, m) \to (m \parallel r)^e \mod n$, for $r \leftarrow \$\{0, 1\}^l$ Dec $(sk, c) = c^d \mod n = m \parallel r$, output m(standardized padding: $\hat{m} = 0 \parallel 1 \parallel r \parallel m, r \geq 8$ bytes)
- * multiple encryption from a CPA secure scheme $(\operatorname{Enc}'(pk, m) := \operatorname{Enc}(pk, m_1) \dots \operatorname{Enc}(pk, m_n))$
- * for single bit messages a variant of El Gamal:

$$\operatorname{Enc}(pk, b) \to \begin{cases} (g^{y}, h^{y}) & \text{for } y \leftarrow \mathbb{Z}_{q} & \text{if } b = 0\\ (g^{y}, g^{z}) & \text{for } y, z \leftarrow \mathbb{Z}_{q} & \text{if } b = 1 \end{cases}$$

$$\operatorname{Dec}(sk, (c_{1}, c_{2})) \text{ output } 0 \text{ if } c_{1}^{x} = c_{2}, \text{ else } 1$$

* El Gamal: (assuming DDH is hard relative to GroupGen) $\operatorname{Gen}(1^n) : \operatorname{obtain} (\mathbb{G}, g, q) \leftarrow \operatorname{GroupGen} \text{ with } g \text{ generator, } x \leftarrow \mathbb{Z}_q$ $\operatorname{and} h := g^x, \text{ set } pk := (\mathbb{G}, g, q, h), sk = (\mathbb{G}, g, q, x)$ $\operatorname{Enc}(pk, m) \to (g^y, h^y \cdot m) \text{ for } y \leftarrow \mathbb{Z}_q$ $\operatorname{Dec}(sk, (c_1, c_2)) = c_2/c_1^x$

- not secure:

- * RSA for $l \in \mathcal{O}(\log \lambda)$ or without padding
- * any scheme that outputs cyphertexts c with $|c| \in \mathcal{O}(\log \lambda)$
- * a variant of El Gamal with $\mathbb{G} := \mathbb{QR}_p$, p = 2q + 1 and $\operatorname{Enc}(pk, m) \to (g^r, h^r + m)$ for $r \leftarrow \mathbb{Z}_q$

• CCA

- * (CCA-1) Cramer-Shoup Lite: (assuming DDH is hard) $Gen(1^{n}) : obtain params := (\mathbb{G}, g_{1}, g_{2}, q) \leftarrow GroupGen \text{ with } g_{1}, g_{2}$ $generators, x_{i}, y_{i} \leftarrow \mathbb{Z}_{q} \text{ and } h_{i} := g_{1}^{x_{i}} g_{2}^{y_{i}} \text{ for } i = 1, 2.$ $Set \ pk := (params, h_{1}, h_{2}), \ sk = (x_{1}, y_{1}, x_{2}, y_{2})$ $Enc(pk, m) \rightarrow (g_{1}^{r}, g_{2}^{r}, h_{1}^{r} \cdot m, h_{2}^{r}) \text{ for } r \leftarrow \mathbb{Z}_{q}$ $Dec(sk, (c_{1}, c_{2}, c_{3}, c_{4})) := \begin{cases} c_{3}/(c_{1}^{x_{1}} c_{2}^{y_{1}}) & \text{if } c_{4} = c_{1}^{x_{2}} c_{2}^{y_{2}} \\ \bot & \text{else} \end{cases}$
- * (CCA-2) Cramer-Shoup: (assuming DDH is hard)
 Gen(1ⁿ): obtain params := (\$\mathbb{G}\$, \$g_1\$, \$g_2\$, \$q\$) \$\lefta\$ GroupGen with \$g_1\$, \$g_2\$ generators, \$x_i\$, \$y_i\$ \$\lefta\$ \$\mathbb{Z}_q\$ and \$h_i\$:= \$g_1^{x_i}g_2^{y_i}\$ for \$i=1,2,3\$.

 For CRH \$H\$ set \$pk\$:= (params, \$h_1\$, \$h_2\$, \$h_3\$, \$H\$), \$sk\$ = (\$x_1\$, \$y_1\$, \$x_2\$, \$y_2\$, \$x_3\$, \$y_3\$)

 Enc(\$pk\$, \$m\$) \$\righta\$ (\$g_1^r\$, \$g_2^r\$, \$h_1^r\$\cdot m\$, (\$h_2\$h_3^\beta)^r\$) for \$r\$ \$\lefta\$ \$\mathbb{Z}_q\$ and \$\beta\$:= \$H(c_1\$, \$c_2\$, \$c_3\$)

 Dec(\$sk\$, (\$c_1\$, \$c_2\$, \$c_3\$, \$c_4\$)) := \$\begin{cases} c_3/(c_1^{x_1}c_2^{y_1}) & \text{if } c_4 = c_1^{x_2+\beta x_3}c_2^{y_2+\beta y_3} \\ \$\pm\$ else

* (CCA-2) Π = (Setup, KGen, Enc, Dec) selective IND-ID-CPA IBE with ID space $\{0,1\}^n$ and Π' = (KGen', Sign, Vrfy) 1-time UF-CMA Signature

KGen"(1 $^{\lambda}$): $(mpk, msk) \leftarrow \$\text{Setup}(1^{\lambda})$, set ek = mpk, dk = mskEnc"(ek, m): sample $(vk, sk) \leftarrow \$\text{KGen}'(1^{\lambda})$ s.t. $|vk| = n(\lambda)$. Output $c'' := (c, vk, \sigma)$ for $c \leftarrow \$\text{Enc}(mpk, vk, m)$ $(ID = vk), \sigma \leftarrow \$\text{Sign}(sk, c)$ Dec"($dk, c'' = (c, vk, \sigma)$): check Vrfy(vk, c, σ) = 1, if not return \bot else return Dec(d_{vk}, c) where $d_{vk} \leftarrow \$\text{KGen}(msk, vk)$

- not secure:

- * RSA
- * multiple encryption from a CCA secure scheme $(\operatorname{Enc}'(pk, m) := \operatorname{Enc}(pk, m_1) \dots \operatorname{Enc}(pk, m_n))$
- * every malleable encryption scheme
- * El Gamal
- * CS-Lite is not CCA-2 secure

• Digital Signatures

- * Full-Domain Hash: (RO-model) for TPD (Gen, f, f^{-1}) KGen(1^{λ}) = Gen(1^{λ}) Sign(m, sk) = $f^{-1}(sk, H(m))$ for RO HVrfy(pk, m, σ) = 1 iff $f(pk, \sigma) = H(m)$
- * Waters Signature: (assuming CDH is hard) KGen(1^{\lambda}): obtain params := (\mathbb{G}, \mathbb{G}_T, g, q, \hat{\epsilon}) \top \mathbb{S} \text{BilGroupGen with} g generator of \mathbb{G}, \alpha \leftrightarrow \mathbb{Z}_q, \, g_1 := g^a, \, g_2, u_0, \ldots, u_k \leftrightarrow \mathbb{G}. Set \, pk := \text{(params, } g_1, g_2, u_0, \ldots, u_k), \, sk := g_2^a \text{Sign}(sk, m) \top \sigma := \left(g_2^a \cdot \alpha(m)^r, g^r) \text{ for } r \leftrightarrow \mathbb{Z}_q, \alpha(m) := u_0 \pi_{i=1}^k u_i^{m[i]} \text{ with } m = m[1] \ldots m[k] \text{Vrfy}(pk, m, (\sigma_1, \sigma_2)) : \text{check } \hat{\epsilon}(g, \sigma_1) = \hat{\epsilon}(\sigma_2, \alpha(m)) \cdot \hat{\epsilon}(g_1, g_2)
- * Fiat-Shamir Transform: (RO-model) for passively secure and canonical ID-scheme $\Pi = (\operatorname{Gen}_{ID}, \mathcal{P}_1, \mathcal{P}_2, \mathcal{V})$ $\operatorname{Gen}(1^{\lambda}) = \operatorname{Gen}_{ID}(1^{\lambda})$ and RO $H : \{0,1\}^* \to \mathcal{B}_{pk,\lambda}$ $\operatorname{Sign}(sk,m) \to (\alpha,\gamma)$ for $(\alpha,s) \leftarrow \mathcal{P}_1(sk), \beta := H(\alpha,m), \gamma := \mathcal{P}_2(sk,s,\beta)$ $\operatorname{Vrfy}(pk,m,(\alpha,\gamma)) : \text{ output 1 iff } \tau := (\alpha,\beta,\gamma) \text{ for } \beta = H(\alpha,m) \text{ is a valid transcript}$
- * (RO model) all canonical ID schemes with special soundness and honest verifyer zero knowledge (HVZK) s.t. $|\mathcal{B}_{pk,\lambda}| \in \omega(\log \lambda)$
- * (only 1-time) for OWP f and $\mathcal{M} := \{1, ..., \lambda\}$: $\operatorname{Gen}(1^{\lambda}) : \text{ for } x, x' \leftarrow \$\{0, 1\}^{\lambda} \text{ and } y := f^{(\lambda)}(x), y' := f^{(\lambda)}(x')$ $\operatorname{set } pk := (x, x'), \ sk = (y, y')$ $\operatorname{Sign}(sk, i) := (f^{(\lambda-i)}(x), f^{(i)}(x'))$ $\operatorname{Vrfy}(pk, i, (\sigma, \sigma')) = 1 \text{ iff } y = f^{(i)}(x) \text{ and } y' = f^{(\lambda-i)}(x')$ where f^k denotes the k-times application of f and $f^{(0)} := \operatorname{id}_{\{0,1\}^{\lambda}}$

- * $\Pi = (\text{Setup}, \text{KGen}, \text{Enc}, \text{Dec}) \text{ IND-ID-CPA IBE with } |\mathcal{M}_{IBE}| = \omega(\log \lambda) \text{ KGen}'(1^{\lambda}) : (mpk, msk) \leftarrow \$\text{Setup}(1^{\lambda}), \text{ set } vk = mpk, sk = msk \text{ Sign}(sk, m) \rightarrow \sigma := d_m \text{ for } d_m \leftarrow \$\text{KGen}(sk, ID = m) \text{ Vrfy}(vk, m, \sigma) : \text{Let } m = ID \text{ and } \sigma = d_{ID}, \text{ pick } \mu \leftarrow \$\mathcal{M}_{IBE} \text{ and encrypt } c \leftarrow \$\text{Enc}(ID, \mu). \text{ Check } \text{Dec}(\sigma = d_{ID}, c) = \mu$
- not secure:
 - * RSA using Sign $(sk, m) := m^d \mod n$
 - * (not even one-time) for OWP f and $\mathcal{M} := \{1, \dots, \lambda\}$: $\operatorname{Gen}(1^{\lambda}) := (pk, sk) = (y, x)$ for $x \leftarrow \$\{0, 1\}^{\lambda}$ and $y := f^{(\lambda)(x)}$ $\operatorname{Sign}(x, i) := f^{(\lambda - i)}(x)$ $\operatorname{Vrfy}(y, i, \sigma) = 1$ iff $y = f^{(i)}(x)$ where f^k denotes the k-times application of f and $f^{(0)} := \operatorname{id}_{\{0,1\}^{\lambda}}$

• Identification Schemes

- passively secure:
 - * Schnorr: (assuming DL is hard) three-round ID scheme $\Pi = (\text{Gen}, \mathcal{P}_1, \mathcal{P}_2, \mathcal{V})$ $\text{Gen}(1^{\lambda})$: obtain params := $(\mathbb{G}, g, q) \leftarrow \text{GroupGen}(1^{\lambda})$ with g generator, $x \leftarrow \mathbb{Z}_q$ and $y = g^x$.

Set $pk := (params, y), sk = x \text{ and } \mathcal{B}_{pk,\lambda} = \mathbb{Z}_q$

- 1. $\mathcal{P}_1(sk)$ chooses $a \leftarrow \mathbb{Z}_q$ and outputs $\alpha := g^a$ (state s = (pk, sk, a))
- 2. \mathcal{V} sends $\beta \leftarrow \mathbb{Z}_q$ to \mathcal{P}
- 3. $\mathcal{P}_2(sk, s, \beta)$ outputs $\gamma := \beta x + a$
- 4. \mathcal{V} checks if $g^{\gamma} \cdot y^{-\beta} = \alpha$

• Identity-Based Encryption (IBE)

- selective IND-ID-CPA:
 - * (assuming DBDH is hard) $\Pi = (\text{Setup}, \text{KGen}, \text{Enc}, \text{Dec})$ $\text{Setup}(1^{\lambda}) : \text{choose params} := (\mathbb{G}, \mathbb{G}_T, g, q, \hat{e}) \leftarrow \$\text{BilGroupGen}(1^{\lambda})$ with g generator of \mathbb{G} , $\alpha \leftarrow \$\mathbb{Z}_q$, $h, g_2 := g^{\beta} \leftarrow \\mathbb{G} and $g_1 := g^{\alpha}$. Set $mpk := (\text{params}, g_1, g_2, h)$, $msk = g_2^{\alpha}$ $\text{KGen}(msk, ID \in \mathbb{Z}_q) : \text{pick } r \leftarrow \$\mathbb{Z}_q \text{ and set } d_{ID} := (g_2^{\alpha} \cdot F(ID)^r, g^r)$ for $F : \mathbb{Z}_q \to \mathbb{G}, ID \mapsto g_1^{ID} \cdot h$ $\text{Enc}(ID, m \in \mathbb{G}) : \text{pick } \gamma \leftarrow \$\mathbb{Z}_q \text{ and output}$

$$c = (u, v, w) := (\hat{e}(g_1, g_2)^{\gamma} \cdot m, g^{\gamma}, F(ID)^{\gamma})$$

$$Dec(d_{ID} = (d_0, d_1), c = (u, v, w)) = \frac{u \cdot \hat{e}(d_1, w)}{\hat{e}(v, d_0)}$$