BINUS University

Academic Career: Undergraduate / Master / Doctoral *)		Class Program: International / Regular / Smart Program / Global Class / BINUS Online Learning *)		
☑ Mid Exam	□ Compact Term E		Term: Odd/Even/C	-
☐ Final Exam	☐ Others Exam : _		Period (Only for BOL	L): 1/2*)
☑ Kemanggisan	☐ Senayan	☐ Semarang	Academic Year :	
☑ Alam Sutera	☐ Bandung			
☑ Bekasi	☐ Malang		2022 / 2023	
Exam Type*	: Onsite / Online		Faculty / Dept.	: School of Computer Science
Day / Date**	:		Code - Course	: COMP6226001 – Competitive Programming
Time**	:		Code - Lecturer	: Team Teaching
Exam	: Dopen Book	☐ Open Notes	BULC (Only for BOL)	: -
Specification***	☐ Close Book☐ Open E-Book	☐ Submit Project☐ Oral Test	Class	:
Equipment***	:		Student ID ***	:
☐ Exam Booklet	☐ Laptop ☐ Dr	awing Paper – A3	Name ***	:
		rawing Paper – A2	Signature ***	:
■ Dictionary	☐ Smartphone ☐ No	otes		
*) Strikethrough the	unnecessary items	**) For Online Exam, t	his is the due date	***) Only for Onsite Exam
Please insert the test paper into the exam booklet and submit both papers after the test. The penalty for CHEATING is DROP OUT!				

Learning Outcomes:

LO1: (C3) Application: apply algorithm techniques and methods

LO2: (C4) Analysis: calculate processing time and memory space of algorithms.

LO3: (C5) Synthesis: Create good and correct algorithm for problem solving

I. Case Study (100%)

Please submit your answer in the provided online judge. Your score will be taken from the online judge.

Verified by,	_
[Lecturer Name] (Lecturer ID) and sent to Department/Program on MMM DD, YYYY	

A. Jojo and GCD Subsequence (30 points)

You are given N integers, $A_1, A_2, ..., A_N$.

Denote the GCD of a subsequence as the greatest common divisor of all elements in the subsequence.

For each i that satisfy $1 \le i \le N$, determine the maximum GCD of all subsequences that consist of exactly i elements.

Constraints

- $1 \le N \le 10^5$
- $1 \le A_i \le 10^6$, for $1 \le i \le N$

Subtasks

- 1. (10 points) N = 3
- 2. (10 points) $1 \le A_i \le 100$, for $1 \le i \le N$
- 3. (10 points) No additional constraints.

Input Format

input i ormat		
N		
$A_1 A_2 \dots A_N$		

Output Format

Output N integers in a single line. The i-th integer represents the maximum GCD of all subsequences that consist of exactly i elements, for each i that satisfy $1 \le i \le N$.

Sample

S	
Input	Output
4	6 3 2 1
2 4 6 3	
3	4 4 4
4 4 4	
1	10
10	

Explanation

For the first sample, the maximum GCD of subsequences that consist of 1, 2, 3, and 4 elements are {6}, {6, 3}, {2, 4, 6}, and {2, 4, 6, 3}, respectively.

For the second sample, all subsequences have a GCD of 4.

B. Lili and Range Query (40 points)

You are given N integers, $A_1, A_2, ..., A_N$.

Denote the *score* of an array B as the sum of the product of all elements and its index. For instance, the score of an array B = [4,5,1] is $4 \cdot 1 + 5 \cdot 2 + 1 \cdot 3 = 17$.

You want to answer Q queries (numbered from 1 to Q). For query i, you are given two integers L_i and R_i . First, convert the subarray $A_{L_i...R_i}$ into a new array, which index starts from 1. Then, determine the score of the new array.

Constraints

- $1 \le N, Q \le 10^5$
- $1 \le A_i \le 10^9$, for $1 \le i \le N$
- $1 \le L_i \le R_i \le N$, for $1 \le i \le Q$

Subtasks

- 1. (10 points) $L_i = R_i$, for $1 \le i \le Q$
- 2. (10 points) $1 \le N, Q \le 100$
- 3. (10 points) $L_i = 1$, for $1 \le i \le Q$
- 4. (10 points) No additional constraints.

Input Format

NQ		
$\left egin{array}{l} N \ Q \ A_1 \ A_2 \ \ A_N \end{array} \right $		
$L_1 R_1$		
$L_2 R_2$		
$L_Q R_Q$		

Output Format

For each query, determine the score of the new array in that query.

Sample

Input	Output
4 3	25
2 4 6 3	6
2 4	40
3 3	
1 4	

Explanation

For the first sample:

- In the first query, the score of subarray [4, 6, 3] is $4 \cdot 1 + 6 \cdot 2 + 3 \cdot 3 = 25$
- In the second query, the score of subarray [6] is $6 \cdot 1 = 6$
- In the third query, the score of subarray [2, 4, 6, 3] is $2 \cdot 1 + 4 \cdot 2 + 6 \cdot 3 + 3 \cdot 4 = 40$

Verified by,

[Lecturer Name] (Lecturer ID) and sent to Department/Program on MMM DD, YYYY

C. Bibi and Homework (30 points)

You have *N* homeworks (numbered from 1 to *N*) for this semester.

Homework i appears on day T_i . You can only solve a homework if it already appears, i.e., the current day is not less than T_i . Initially, you are at day 0.

Homework i requires L_i days to finish. Formally, if you start working on day x, then you will finish on day $x + L_i - 1$. For each day, you can only work on **one** homework. Therefore, during day x until $x + L_i - 1$ (inclusive), you can only work on homework i.

Determine the fastest day such that all homeworks are finished.

Constraints

- $1 \le N \le 10^5$
- $1 \le T_i, L_i \le 10^9$, for $1 \le i \le N$

Subtasks

- 1. (10 points) $T_i = 1$, for $1 \le i \le N$
- 2. (10 points) $L_i = 1$, for $1 \le i \le N$
- 3. (10 points) No additional constraints.

Input Format

N		
$T_1 L_1$		
$T_1 L_1$ $T_2 L_2$		
$T_N L_N$		

Output Format

Output an integer which represents the fastest day such that all homeworks are finished.

Sample

umpe		
Input	Output	
3	9	
1 3		
1 1		
1 5		
3	5	
2 1		
5 1		
3 1		
3	9	
1 3		
2 5		
4 1		

Explanation

For the third sample, you can start working on homework 1 on day 1, homework 3 on day 4, and homework 2 on day 5.

Verified by,
[Lecturer Name] (Lecturer ID) and sent to Department/Program on MMM DD. YYYY