CBSE Class-12 Chemistry Quick Revision Notes Chapter-09: Co-ordination Compounds

• Co-ordination compounds:

- a) A coordination compound contains a central metal atom or ion surrounded by number of oppositely charged ions or neutral molecules. These ions or molecules re bonded to the metal atom or ion by a coordinate bond.
- b) Example: K₄[Fe(CN)₆]
- c) They do not dissociate into simple ions when dissolved in water.

Double salt

- a) When two salts in stoichiometric ratio are crystallised together from their saturated solution they are called double salts
- b) Example:FeSO₄.(NH₄)2SO₄.6H2O (Mohr's salt)
- c) They dissociate into simple ions when dissolved in water.

Coordination entity:

- a) A coordination entity constitutes a central metal atom or ion bonded to a fixed number of ions or molecules.
- b) Example: In $K_4[Fe(CN)_6]$, $[Fe(CN)_6]^{4-}$ represents coordination entity.

• Central atom or ion:

- a) In a coordination entity, the atom/ion to which a fixed number of ions/groups are bound in a definite geometrical arrangement around it, is called the central atom or ion.
- b) Example: In $K_4[Fe(CN)_6]$, Fe^{2+} is the central metal ion.

• Ligands:

- a) A molecule, ion or group that is bonded to the metal atom or ion in a complex or coordination compound by a coordinate bond is called ligand.
- b) It may be neutral, positively or negatively charged.
- c) Examples: H₂O, CN⁻, NO⁺ etc.

Donor atom:

- a) An atom of the ligand attached directly to the metal is called the donor atom.
- b) Example: In the complex $K_4[Fe(CN)_6]$, CN is a donor atom.

Coordination number:

- a) The coordination number (CN) of a metal ion in a complex can be defined as the number of ligand donor atoms to which the metal is directly bonded.
- b) Example: In the complex $K_4[Fe(CN)_6]$, the coordination number of Fe is 6.

Coordination sphere:

- a) The central atom/ion and the ligands attached to it are enclosed in square bracket and are collectively termed as the coordination sphere.
- b) Example: In the complex $K_4[Fe(CN)_6]$, $[Fe(CN)_6]^{4-}$ is the coordination sphere.

Counter ions:

- a) The ions present outside the coordination sphere are called counter ions.
- b) Example: In the complex $K_4[Fe(CN)_6]$, K+ is the counter ion.

Coordination polyhedron:

a) The spatial arrangement of the ligand atoms which are directly attached to the central atom/ ion defines a coordination polyhedron about the central atom.

- b) The most common coordination polyhedra are octahedral, square planar and tetrahedral.
- c) Examples: $[PtCl_4]^{2-}$ is square planar, $Ni(CO)_4$ is tetrahedral while $[Cu(NH_3)_6]^{3+}$ is octahedral.

• Charge on the complex ion:

The charge on the complex ion is equal to the algebraic sum of the charges on all the ligands coordinated to the central metal ion.

• Denticity:

The number of ligating (linking) atoms present in ligand is called denticity.

• Unidentate ligands:

- a) The ligands whose only one donor atom is bonded to metal atom are called unidentate ligands.
- b) Examples: H₂O, NH₃, CO, CN⁻

• Didentate ligands:

- a) The ligands which contain two donor atoms or ions through which they are bonded to the metal ion.
- b) Examples: Ethylene diamine (H2NCH2CH2NH2) has two nitrogen atoms, oxalate ion

has two oxygen atoms which can bind with the metal atom.

• Polydentate ligand:

- a) When several donor atoms are present in a single ligand, the ligand is called polydentate ligand.
- b) Examples: In N(CH₂CH₂NH₂)₃, the ligand is said to be polydentate and Ethylenediaminetetraacetate ion (EDTA⁴⁻) is an important hexadentate ligand. It can bind through two nitrogen and four oxygen atoms to a central metal ion.

• Chelate:

- a) An inorganic metal complex in which there is a close ring of atoms caused by attachment of a ligand to a metal atom at two points.
- b) An example is the complex ion formed between ethylene diamine and cupric ion, $[Cu(NH_2CH_2NH_2)_2]^{2+}$.

• Ambidentate ligand:

- a) Ligands which can ligate (link) through two different atoms present in it are called ambidentate ligand.
- b) Example: NO²-and SCN⁻. Here, NO²- can link through N as well as O while SCN⁻ can link through S as well as N atom.

• Werner's coordination theory:

- a) Werner was able to explain the nature of bonding in complexes.
- b) The postulates of Werner's theory are:
 - Metal shows two different kinds of valencies: primary valence and secondary valence.
 - ii) The ions/ groups bound by secondary linkages to the metal have characteristic spatial arrangements corresponding to different coordination numbers.
 - iii) The most common geometrical shapes in coordination compounds are octahedral, square planar and tetrahedral.

Portal for CBSE Notes, Test Papers, Sample Papers, Tips and Tricks

• Primary valence

- a) This valence is normally ionisable.
- b) It is equal to positive charge on central metal atom.
- c) These valencies are satisfied by negatively charged ions.
- d) Example: In CrCl₃, the primary valency is three. It is equal to oxidation state of central metal ion.

• Secondary valence

- a) This valence is non ionisable.
- b) The secondary valency equals the number of ligand atoms coordinated to the metal. It is also called coordination number of the metal.
- c) It is commonly satisfied by neutral and negatively charged, sometimes by positively charged ligands.

• Oxidation number of central atom:

The oxidation number of the central atom in a complex is defined as the charge it would carry if all the ligands are removed along with the electron pairs that are shared with the central atom.

• Homoleptic complexes:

Those complexes in which metal or ion is coordinate bonded to only one kind of donor atoms. For example: $[Co(NH_3)_6]^{3+}$

• Heteroleptic complexes:

Those complexes in which metal or ion is coordinate bonded to more than one kind of donor atoms. For example: $[CoCl_2(NH_3)_4]^+$, $[Co(NH_3)_5Br]^{2+}$

Isomers:

Two or more compounds which have same chemical formula but different arrangement of atoms are called isomers.

• Types of isomerism:

- a) Structural isomerism
 - i. Linkage isomerism
 - ii. Solvate isomerism or hydrate isomerism
 - iii. Ionisation isomerism
 - iv. Coordination isomerism
- b) Stereoisomerism
 - i. Geometrical isomerism
 - ii. Optical isomerism

• Structural isomerism:

- a) It arises due to the difference in structures of coordination compounds.
- b) Structural isomerism, or constitutional isomerism, is a form of isomerism in which molecules with the same molecular formula have atoms bonded together in different orders.

• Ionisation isomerism:

- a) It arises when the counter ion in a complex salt is itself a potential ligand and can displace a ligand which can then become the counter ion.
- b) Example: [Co(NH₃)₅Br] SO₄ and [Co(NH₃)₅ SO₄] Br

• Solvate isomerism:

- a) It is isomerism in which solvent is involved as ligand.
- b) If solvent is water it is called hydrate isomerism, e.g., $[Cr(H_2O)_6]Cl_3$ and $[CrCl_2(H_2O)_4]$ Cl_2 . $2H_2O$.

• Linkage isomerism:

- a) It arises in a coordination compound containing ambidentate ligand.
- b) In the isomerism, a ligand can form linkage with metal through different atoms.
- c) Example: [Co(NH₃)₅ONO]Cl₂ and [Co(NH₃)₅NO₂]Cl₂.

• Coordination isomerism:

- a) This type of isomerism arises from the interchange of ligands between cationic and anionic entities of different metal ions present in a complex.
- b) Example: $[Co(NH_3)_6][Cr(C_2O_4)_3]$ and $[Cr(NH_3)_6][Co(C_2O_4)_3]$.

• Stereoisomerism:

This type of isomerism arises because of different spatial arrangement.

• Geometrical isomerism:

It arises in heteroleptic complexes due to different possible geometrical arrangements of ligands.

• Optical isomerism:

Optical isomers are those isomers which are non-superimposable mirror images.

• Valence bond theory:

- a) According to this theory, the metal atom or ion under the influence of ligands can use its (n-1)d, ns, np or ns, np, nd orbitals for hybridisation to yield a set of equivalent orbitals of definite geometry such as octahedral, tetrahedral, and square planar.
- b) These hybridised orbitals are allowed to overlap with ligand orbitals that can donate electron pairs for bonding.

Coordination number	Type of hybridisation	
	sp ³	Tetrahedral
	dsp ²	Square planar
	sp ³ d	Trigonal bipyramidal
	sp ³ d ² (nd orbitals are involved – outer orbital complex or high spin or spin free complex)	Octahedral
	d ² sp ³ (n-1) d orbitals are involved –inner orbital or low spin or spin paired complex)	Octahedral

• Magnetic properties of coordination compounds:

A coordination compound is paramagnetic in nature if it has unpaired electrons and diamagnetic if all the electrons in the coordination compound are paired.

Magnetic moment
$$\mu = \sqrt{n(n+2)}$$
 where n is number of unpaired electrons.

• Crystal Field Theory:

- a) It assumes the ligands to be point charges and there is electrostatic force of attraction between ligands and metal atom or ion.
- b) It is theoretical assumption.
- Crystal field splitting in octahedral coordination complexes:

• Crystal field splitting in tetrahedral coordination complexes:

• For the same metal, the same ligands and metal-ligand distances, the difference in

$$\Delta_t \, = -\frac{4}{9} \, \Delta_0 \, \label{eq:delta_t}$$
 energy between e_g and t_{2g} level is

• Metal carbonyls:

- a) Metal carbonyls are homoleptic complexes in which carbon monoxide (CO) acts as the ligand.
- b) Example: Ni(CO)₄
- c) The metal-carbon bond in metal carbonyls possess both *s* and *p* character.
- d) The M–C σ bond is formed by the donation of lone pair of electrons from the carbonyl carbon into a vacant orbital of the metal.
- e) The M–C π bond is formed by the donation of a pair of electrons from a filled d orbital of metal into the vacant antibonding π^* orbital of carbon monoxide.
- f) The metal to ligand bonding creates a synergic effect which strengthens the bond between CO and the metal.