Machine Learning Homework 2

唐永承 4105053128 國立中興大學應用數學系

I. DATA SET AND DATA PREPORCESSING

這次的資料一共有卡通圖片 16 張和紋理圖片 8 張,我會先將圖片處理成一樣的,再拿來訓練使用。

A. Data Preprocessing

圖片大小和像素都不同會不方便使用,於是我都把 圖片切成正方形,且每邊邊長 128 個像素,訓練字 典時會轉為灰階來使用,並切切割成小塊。

B. Cartoon Image

總共 16 張卡通圖案,切割成正方形後如下圖(1)。訓練時除了轉為灰階和切割成小塊之外。如果是訓練一般的字典,還會再拉成一維向量來訓練。

圖(1)

C. Texture Image

總共8張紋理圖案,切割成方形後如下圖(2)。訓練時除了轉為灰階和切割成小塊之外。如果是訓練一般的字典,還會再拉成一維向量來訓練。

圖(2)

II. DICTIONARY

A. Dictionary Learning

在訓練一般字典時,目標為以下方程式

 $Minimize_{D,A} ||Y - DA||_F^2 + \lambda \Sigma |\alpha_i|_0$

Y為原始圖片,D為字典,A為圖片對應D的稀疏表示, λ 為係數, α_j 為A裡面第j個稀疏表示式。訓練字典時,輪流更新D和A至收斂即可。

重複以下訓練,直到收斂:

1. 稀疏編碼(Sparse Coding)

固定 D,使用以下數學式來更新 A。

 $\hat{A} = Minimize_A ||Y - \widehat{D}A||_F^2 + \lambda \Sigma |\alpha_i|_0$

2. 字典學習(Dictionary Learning)

固定 A,使用以下數學式來更新 D。

 $\widehat{D} = Minimize_D ||Y - D\widehat{A}||_F^2 + \lambda \Sigma |\alpha_i|_0$

B. Convolutional Dictionary Learning

在訓練卷積字典時,目標為以下方程式

 $Minimize_{\{a_l\},\{a_i\}} \Sigma_l \frac{1}{2} ||y_i - \Sigma_m d_m * a_{i,m}||_F^2 + \lambda \Sigma_m |a_{l,m}|_0$ y_i 為原始圖片, d_i 為卷積字典, a_i 為圖片對應 d_i 的稀疏表示, λ 為係數。訓練字典時,輪流更新 d_i 和 a_i 至收斂即可。

重複以下訓練,直到收斂:

- 1. 卷積稀疏編碼(Convolutional Sparse Coding, SCS) 固定 d,更新 a。
- 2. 卷積字典學習(Convolutional Dictionary Learning) 固定 a,更新 d。

III. RESULT

A. Dictionary Learning

1. Cartoon Image

以下圖(3)左邊為初始字典,用隨機產生,右邊 為使用卡通圖片所訓練完成後的字典。字典維度 為(64, 128),迭代 300 次。

圖(3)

2. Texture Image

以下圖(4)左邊為初始字典,用隨機產生,右邊 為使用卡通圖片所訓練完成後的字典。字典維度 為(64,128), 迭代 300 次。

圖(4)

B. Convolutional Dictionary Learning

1. Cartoon Image

以下圖(5)左邊為初始字典,用隨機產生,右邊 為使用卡通圖片所訓練完成後的字典。字典維度 為(8, 8, 64),迭代 200 次。

圖(5)

2. Texture Image

以下圖(6)左邊為初始字典,用隨機產生,右邊 為使用卡通圖片所訓練完成後的字典。字典維度 為(8, 8, 64), 迭代 200 次。

圖(6)