

SEQUENCE LISTING

<110> Qian, Su
Van der Ploeg, Leonardus, H.T.
Chen, Howard
Weingarth, Drew T.
Trumbauer, Myrna
Metzger, Joseph M.

<120> Agouti-related protein deficient cells,
non-human transgenic animals and methods of selecting
compounds which regulate energy metabolism

<130> 21033YP

<150> PCT/US03/20245
<151> 2003-06-27

<150> 60/393,391
<151> 2002-07-03

<160> 14

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 923
<212> DNA
<213> Mus musculus

<400> 1
agactataca ggaattggga ctttctggga gcacatctct cagcgctgggt agggtaccct 60
aaggatgagg agagactaaa tgggggtttt cctgctgagc caggccatgc tgactgcaat 120
gttgctgagt tgtgttctgc tggggcact gcctcccaca ctgggggtcc agatgggcgt 180
ggctccactg aaggccatca gaaggcctga ccaggctctg ttcccaagagt tcccaaggtga 240
gtatggtcag gttggggata tgggggcaaa cgaccattgc tggccacaga cctgcccggcc 300
caggcttaga cctccttccc caatcccaat cccaaacctag ggaggtgggt acttggtgca 360
tgggggtgt ggccttcaca tcttcttgcc ccaggtctaa gtctgaatgg cctcaagaag 420
acaactgcag accgagcaga agaagttctg ctgcagaagg cagaagctt ggcggaggta 480
actcattagg gaaaggata aagtagaagg tagggcgcat cagataccat catctctccc 540
cacttccgga ttacccaacc tgggcagaac tgcagccctt ccctgacccctc agtccactgc 600
caccctactg gggtcggggt ttgagagttt cctgaacctt attccctac gaatgcaggt 660
gctagatcca cagaaccgcg agtctcggtc tccgcgtcgc tggtaaggc tgacgagtc 720
ctgcttggga cagcaggatc cttgctgca cccgtgcgtc acgtgctact gcccgttctt 780
caatgccttt tgctactgcc gcaagctggg taccgccacg aacctctgta gtcgcaccta 840
gccaatggat gttgttggg aaaggcaggg gatgagaata aaggatcggtt acggtttaac 900
cttaaagctg tggttatttc ttt 923

<210> 2
<211> 131
<212> PRT
<213> Mus musculus

<400> 2

Met Leu Thr Ala Met Leu Leu Ser Cys Val Leu Leu Leu Ala Leu Pro
 1 5 10 15
 Pro Thr Leu Gly Val Gln Met Gly Val Ala Pro Leu Lys Gly Ile Arg
 20 25 30
 Arg Pro Asp Gln Ala Leu Phe Pro Glu Phe Pro Gly Leu Ser Leu Asn
 35 40 45
 Gly Leu Lys Lys Thr Thr Ala Asp Arg Ala Glu Glu Val Leu Leu Gln
 50 55 60
 Lys Ala Glu Ala Leu Ala Glu Val Leu Asp Pro Gln Asn Arg Glu Ser
 65 70 75 80
 Arg Ser Pro Arg Arg Cys Val Arg Leu His Glu Ser Cys Leu Gly Gln
 85 90 95
 Gln Val Pro Cys Cys Asp Pro Cys Ala Thr Cys Tyr Cys Arg Phe Phe
 100 105 110
 Asn Ala Phe Cys Tyr Cys Arg Lys Leu Gly Thr Ala Thr Asn Leu Cys
 115 120 125
 Ser Arg Thr
 130

<210> 3

<211> 486

<212> DNA

<213> Homo sapien

<400> 3

gccatgctga ccgcagcgg gctgagctgt gcccgtctgc tggcactgcc tgccacgcga 60
 ggagccaga tggccttggc cccatggag ggcatacggaa ggcctgacca ggcctgctc 120
 ccagagctcc caggcctggg cctgcgggcc ccactgaaga agacaactgc agaacaggca 180
 gaagaggatc tggcagga ggctcaggcc ttggcagagg tactagacct gcaggaccgc 240
 gagcccccgt cctcacgtcg ctgcgttaagg ctgcgttgat cctgcctggg acagcagggt 300
 ccttgctgtg acccatgtgc cacgtgtac tgccgcttct tcaatgcctt ctgctactgc 360
 cgcaggctgg gtactgccc catatccctgc agccgcacct agctggccaa cgtcagggtc 420
 ggggctaggg tagggcaag gaaactcgaa taaaggatgg gaccaacaaa aaaaaaaaaa 480
 aaaaaa 486

<210> 4

<211> 132

<212> PRT

<213> Homo sapien

<400> 4

Met Leu Thr Ala Ala Val Leu Ser Cys Ala Leu Leu Leu Ala Leu Pro
 1 5 10 15
 Ala Thr Arg Gly Ala Gln Met Gly Leu Ala Pro Met Glu Gly Ile Arg
 20 25 30
 Arg Pro Asp Gln Ala Leu Leu Pro Glu Leu Pro Gly Leu Gly Leu Arg
 35 40 45
 Ala Pro Leu Lys Lys Thr Thr Ala Glu Gln Ala Glu Glu Asp Leu Leu
 50 55 60
 Gln Glu Ala Gln Ala Leu Ala Glu Val Leu Asp Leu Gln Asp Arg Glu
 65 70 75 80
 Pro Arg Ser Ser Arg Arg Cys Val Arg Leu His Glu Ser Cys Leu Gly
 85 90 95
 Gln Gln Val Pro Cys Cys Asp Pro Cys Ala Thr Cys Tyr Cys Arg Phe
 100 105 110

Phe Asn Ala Phe Cys Tyr Cys Arg Lys Leu Gly Thr Ala Met Asn Pro
 115 120 125
 Cys Ser Arg Thr
 130

<210> 5
 <211> 483
 <212> DNA
 <213> Mus musculus

<400> 5
 atgcttaggta acaagcgaat ggggctgtgt ggactgaccc tcgctctatc tctgctcgtg 60
 tgtttggca ttctggctga ggggtacccc tccaaagccgg acaatccggg cgaggacgcg 120
 ccagcagagg acatggccag atactactcc gctctgcgac actacatcaa tctcatcacc 180
 agacagagat atggcaagag atccagccct gagacactga tttcagaccc tttcatgtg 240
 gaaaggcacag aaaacgcccc cagaacaagg cttaatgtg cttccatgtg gtgatggaa 300
 atgaaaacttg ttctcccgac ttttccaagt ttccaccctc atctcatctc atccatcccc 360
 tggaaaccagt ctgcctgtcc caccaatgca tgccaccact aggctggact ccgcggcatt 420
 tcccttggttt ttgttgtata tatgtgttt taaaataaaagt accatgcatt caaaaaaaaaa 480
 aaa 483

<210> 6
 <211> 97
 <212> PRT
 <213> Mus musculus

<400> 6
 Met Leu Gly Asn Lys Arg Met Gly Leu Cys Gly Leu Thr Leu Ala Leu
 1 5 10 15
 Ser Leu Leu Val Cys Leu Gly Ile Leu Ala Glu Gly Tyr Pro Ser Lys
 20 25 30
 Pro Asp Asn Pro Gly Glu Asp Ala Pro Ala Glu Asp Met Ala Arg Tyr
 35 40 45
 Tyr Ser Ala Leu Arg His Tyr Ile Asn Leu Ile Thr Arg Gln Arg Tyr
 50 55 60
 Gly Lys Arg Ser Ser Pro Glu Thr Leu Ile Ser Asp Leu Leu Met Lys
 65 70 75 80
 Glu Ser Thr Glu Asn Ala Pro Arg Thr Arg Leu Glu Asp Pro Ser Met
 85 90 95
 Trp

<210> 7
 <211> 404
 <212> DNA
 <213> Homo sapien

<400> 7
 atgcttaggta acaagcgaact ggggctgtcc ggactgaccc tcgcccgtc cctgctcgtg 60
 tgccctgggtg cgctggccga ggcgtacccc tccaaagccgg acaacccggg cgaggacgca 120
 ccagcggagg acatggccag atactactcg ggcgtgcgac actacatcaa cctcatcacc 180
 aggcagagat atggaaaacg atccagccca gagacactga tttcagaccc tttcatgtg 240
 gaaaggcacag aaaatgttcc cagaactcgg cttaatgtg cttccatgtg gtgatggaa 300
 atgagacttg ctctctggcc ttttccattt ttcagcccat atttcatcgt gtaaaacgag 360
 aatccaccca tcctaccaat gcatgcagcc actgtgctga attc 404

<210> 8
 <211> 97
 <212> PRT
 <213> Homo sapien

<400> 8
 Met Leu Gly Asn Lys Arg Leu Gly Leu Ser Gly Leu Thr Leu Ala Leu
 1 5 10 15
 Ser Leu Leu Val Cys Leu Gly Ala Leu Ala Glu Ala Tyr Pro Ser Lys
 20 25 30
 Pro Asp Asn Pro Gly Glu Asp Ala Pro Ala Glu Asp Met Ala Arg Tyr
 35 40 45
 Tyr Ser Ala Leu Arg His Tyr Ile Asn Leu Ile Thr Arg Gln Arg Tyr
 50 55 60
 Gly Lys Arg Ser Ser Pro Glu Thr Leu Ile Ser Asp Leu Leu Met Arg
 65 70 75 80
 Glu Ser Thr Glu Asn Val Pro Arg Thr Arg Leu Glu Asp Pro Ala Met
 85 90 95
 Trp

<210> 9
 <211> 402
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Probe

<400> 9
 catgctgacc gcaatgttgc tgagttgtgt tctgctgttgc gcactgcctc ccacactggg 60
 ggtccagatg ggcgtggctc cactgaaggg catcagaagg cctgaccagg ctctgttccc 120
 agagttccca ggtctaagtc tgaatggcct caagaagaca actgcagacc gagcagaaga 180
 agttctgctg cagaaggcag aagcttggc ggaggtgcta gatccacaga accgcgagtc 240
 tcgttctccg cgtcgctgtg taaggctgca cgagtcctgc ttgggacagc aggtacctt 300
 ctgcgaccgg tgcgctacgt gctactgccc ctcttcaat gcctttgct actgccccaa 360
 gctgggtacg gccacgaacc tctgcagccg caccctagcca at 402

<210> 10
 <211> 45
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Antisense Oligonucleotides

<400> 10
 tgcagcagaa cttcttctgc tcggtctgca gttgtttct tgagg 45

<210> 11
 <211> 45
 <212> DNA
 <213> Artificial Sequence

<220>
<223> Antisense Oligonucleotides

<400> 11
agcttgcggc agtagcaaaa ggcattgaag aagcggcagt agcac 45

<210> 12
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 12
aaatcagaag gccacacccc ggt 23

<210> 13
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 13
aaatcgaccg cgtggtggtg ctaat 25

<210> 14
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 14
taaagcgcatt gctccagact gcctt 25