PCA: Find Projections to Minimize Reconstruction Error

Assume data is set of d-dimensional vectors, where nth vector is

We can represent these in terms of any d orthogonal vectors $\boldsymbol{u}_1 \dots \boldsymbol{u}_d$

$$\mathbf{x}^n = \sum_{i=1}^d z_i^n \mathbf{u}_i; \quad \mathbf{u}_i^T \mathbf{u}_j = \delta_{ij}$$

PCA: given M<d. Find $\langle \mathbf{u}_1 \dots \mathbf{u}_M \rangle$

that minimizes
$$E_M \equiv \sum_{n=1}^N \frac{||\mathbf{x}^n - \hat{\mathbf{x}}^n||^2}{||\mathbf{x}^n - \hat{\mathbf{x}}^n||^2}$$
 where $\hat{\mathbf{x}}^n = \bar{\mathbf{x}} + \sum_{i=1}^M z_i^n \mathbf{u}_i$

PCA

PCA: given M<d. Find $\langle \mathbf{u}_1 \dots \mathbf{u}_M \rangle$

PCA: given M\langle \mathbf{u}_1 \dots \mathbf{u}_M \rangle that minimizes
$$E_M \equiv \sum_{n=1}^N ||\mathbf{x}^n - \hat{\mathbf{x}}^n||^2$$
 where $\hat{\mathbf{x}}^n = \bar{\mathbf{x}} + \sum_{i=1}^M z_i^n \mathbf{u}_i$

where
$$\hat{\mathbf{x}}^n = \bar{\mathbf{x}} + \sum_{i=1}^m z_i^n \mathbf{u}_i$$

Note we get zero error if M=d, so all error is due to missing components.

Therefore,
$$E_{M} = \sum_{i=M+1}^{d} \sum_{n=1}^{N} \left[\mathbf{u}_{i}^{T}(\mathbf{x}^{n} - \bar{\mathbf{x}})\right]^{2}$$
$$= \sum_{i=M+1}^{d} \mathbf{u}_{i}^{T} \mathbf{\Sigma} \ \mathbf{u}_{i}$$

This minimized when u_i is eigenvector of Σ , the covariance matrix of X. i.e., minimized when:

$$\Sigma \mathbf{u}_i = \lambda_i \mathbf{u}$$

Covariance matrix: $\Sigma = \sum_{n=1}^{N} (\mathbf{x}^n - \bar{\mathbf{x}}) (\mathbf{x}^n - \bar{\mathbf{x}})^T$ $\Sigma \mathbf{u}_i = \lambda_i \mathbf{u}_i$ $\Sigma_{ij} = \sum_{n=1}^{N} (x_i^n - \bar{x}_i) (x_j^n - \bar{x}_j)$

$$\Sigma_{ij} = \sum_{n=1}^{N} (x_i^n - \bar{x}_i)(x_j^n - \bar{x}_j)$$

PCA

Minimize
$$E_M = \sum_{i=M+1}^d \mathbf{u}_i^T \mathbf{\Sigma} \ \mathbf{u}_i$$

$$\rightarrow E_M = \sum_{i=M+1}^d \lambda_i$$

PCA algorithm 1:

- X ← Create N x d data matrix, with one row vector xⁿ per data point
- 2. $X \leftarrow$ subtract mean \overline{x} from each row vector x^n in X
- 3. $\Sigma \leftarrow$ covariance matrix of X
- 4. Find eigenvectors and eigenvalues of Σ
- 5. PC's ← the M eigenvectors with largest eigenvalues

PCA Example

$$\hat{\mathbf{x}}^n = \bar{\mathbf{x}} + \sum_{i=1}^M z_i^n \mathbf{u}_i$$

$\widehat{\mathbf{x}}^n = \bar{\mathbf{x}} + \sum_{i=1}^M z_i^n \mathbf{u}_i$ $\widehat{\mathbf{x}}^n = \bar{\mathbf{x}} + \sum_{i=1}^M z_i^n \mathbf{u}_i$ Reconstructed data using only first eigenvector (M=1) Figure 1 Figure 2 First eigenvector Second eigenvector 1 First eigenvector

___X

Very Nice When Initial Dimension Not Too Big

What if very large dimensional data?

• e.g., Images (d , 10^4)

Problem:

- Covariance matrix Σ is size (d x d)
- d=10⁴ \rightarrow | Σ | = 10⁸

Singular Value Decomposition (SVD) to the rescue!

- pretty efficient algs available, including Matlab SVD
- some implementations find just top N eigenvectors

Singular Value Decomposition

To generate principle components:

- Subtract mean $\bar{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}^n$ from each data point, to create zero-centered data
- Create matrix X with one row vector per (zero centered) data point
- Solve SVD: $X = USV^T$
- Output Principle components: columns of V (= rows of V^T)
 - Eigenvectors in $\it V$ are sorted from largest to smallest eigenvalues
 - S is diagonal, with s_k^2 giving eigenvalue for kth eigenvector

Singular Value Decomposition

To project a point (column vector x) into PC coordinates: $V^T x$

 $X = U S V^{T}$

If x_i is ith row of data matrix X, then

- (ith row of US) = $V^T x_i^T$
- $(US)^T = V^T X^T$

To project a column vector x to M dim Principle Components subspace, take just the first M coordinates of $V^T x$

Independent Components Analysis (ICA)

- PCA seeks orthogonal directions $< Y_1 \dots Y_M >$ in feature space X that minimize reconstruction error
- ICA seeks directions < Y₁ ... Y_M> that are most statistically independent. I.e., that minimize I(Y), the mutual information between the Y_i:

$$I(Y) = \left[\sum_{j=1}^{J} H(Y_j)\right] - H(Y)$$

