P510/1 Physics Paper 1 July - August 2023 2 ½ Hours

UGANDA MUSLIM TEACHERS' ASSOCIATION

UMTA JOINT MOCK EXAMINATIONS - 2023

UGANDA ADVANCED CERTIFICATE OF EDUCATION

Physics
Paper 1
.2 Hours 30 Minutes

INSTRUCTIONS TO CANDIDATES

- Answer five questions including at least one, but not more than two from each of the Sections A, B and C.
- Any additional question(s) answered will not be marked.

Assume where necessary

 Universal gravitational constant, G^{AA} 	=	6.67 x 10 ⁻¹¹ Nm ³ Kg ⁻²
 Stefan's — Boltzmann's constant, σ 	$f_{i}i =$	5.67 x 10 -8 Wm-2K-4
 Speed of light in vacuum, Canada acceptant 	1=	$3.0 \times 10^8 \text{ms}^{-1}$
Specific heat connects of water	. <u>;</u> [[c	4200Jkg ¹ k ⁻¹
• Radius of earth	4 SIL	$6.4 \times 10^{5} m$
 Radius of sun 	3 <u>=</u>	$7x10^8m$
 Radius of earth's orbit about the sun 	=	$1.5 \times 10^{11} m$
Planck's constant, h	=	$6.6 \times 10^{-34} Js$
• Gas constant, R	=	8.31 Jmol 1K1
 Electron mass 	7000	9.11 x 10 ⁻³¹ Kg
Electron charge, e	=	1.6 x 10 ⁻¹⁹ C
• Density of water	=	1000 Kgm ⁻³
• Density of Mercury	=	13600 Kg m ⁻³
 Specific latent heat of vaporization of water 	=	$2.26 \times 10^6 J \text{Kg}^{-1}$
 Viscosity of air 	=	$1.8 \times 10^{-5} \text{Ns}^{-1} \text{m}^{-1}$
 Avogadro's number, NA 	=	$6.02 \times 10^{23} \text{ mol}^{-1}$
 Acceleration due to gravity, g 	=	9.81 ms ⁻²
 Mass of sun 	=	$2.0x10^{30}Kg$
 Mass of earth 	=	$6.0 \times 10^{24} \text{Kg}$
 Temperature of sun 	=	6000K
 Specific latent heat of fusion of ice 	=	3.4x10 ⁵ JKg-1
 Thermal conductivity of brick 	=	$8.0 \times 10^{-1} Wm^{-1}K^{-1}$
 Thermal conductivity of air 	=	••
Density of Oil		$2.4 \times 10^{-2} W m^{-1} K^{-1}$
, , , ,	=	$900 Kgm^{-3}$

SECTION A

- 1. (a) (i) State the principle of conservation of Mechanical energy (1 mark)
 - (ii) Give two types of forces in which the principle in a (i) is obeyed. (1 mark)
 - (b) A particle is thrown vertically upwards with speed U from the top of a tower of height, H. The time taken by the particle to hit the ground is n-times that taken to reach the highest point of its path.
 - (i) Sketch its displacement -time and velocity -time graphs for the particle. (2marks)
 - (ii) Show that: $2gH = n(n-2)u^2$.

(4 marks)

- (c) (i) Use molecular theory to explain the origin of frictional force between two surfaces in contact (3 marks)
 - (ii) Describe an experiment to determine the coefficient of kinetic friction.

(4 marks)

(d) A bullet of mass 20g is fired at close range into a wooden block of mass 980g connected to a spring of force constant 150Nm⁻¹ fixed at one end and resting on a rough horizontal surface of coefficient of friction 0.37. After collision, the bullet gets embedded into the wood and the spring is compressed through a distance of 2.4cm. Calculate the initial speed of the bullet before impact with the block (5 marks)

- 2. (a)(i) What is meant by
 - (i) an incompressible fluid?

(1 mark)

(ii) Pressure energy?

(1 mark)

(b) Explain why velocity of a liquid at a wide part of a tube is less than that at a narrow part.

(2marks)

(c) (i) State the law of floatation	(1 mark)
(ii) Show that the weight of fluid displaced by an object is equal to the the object.	
(iii) A 500kg wooden block is floating with 0.25 of its volume above the what is the volume of a metal of density $9.0 \times 10^2 \text{ Kgm}^{-3}$ which mu	water level,
attached to the under side of the block to completely submerge it.	(5 marks)
(d) Describe, stating the necessary precautions an experiment to measure the of viscosity of engine oil	e coefficient (6 marks)
3. (a) (i) What is meant by a parking orbit?	(1 mark)
(ii) Calculate the height above the earth's surface for a parking orbit.	(4 marks)
(b) (i) With aid of a diagram, describe a laboratory method of determining universal gravitational constant,G	the (6 marks)
(ii) State any precautions taken in b(i) above	(1 mark)
(c) State the conditions for mechanical equilibrium of a system of coplana	r forces.
	(2 marks)
(d) A uniform ladder of mass 40kg and length 5.0m rests with its upper end smooth vertical wall and with its lower end at 3.0m from the wall on a r ground. Find the	
(i) Least coefficient of friction between the ladder and the ground.	(3 marks)
(ii) Force exerted at the bottom of the ladder.	(3 marks)
4. (a) (i) What is meant by surface tension and angle of contact?	(2 marks)
(ii) With aid of a diagram, describe the capillary rise method of determinant surface tension of water	ining (5 marks)
(b) A U-tube is made up of capillary tubes of diameters 1.0mm and 3.2mm respectively. The tube is held vertically and partially filled with a liquid tension 0.075Nm ⁻¹ and zero angle of contact. If the difference in the lemeniscus is 1.25cm, Calculate the density of the liquid.	of surface

- (c) (i) Explain why the free surface of a liquid under no external forces is spherical. (3 marks)
 - (ii) An air bubble of diameter 10.0mm is formed at a depth of 50.0cm inside a container of soap solution of relative density 1.20. By what amount is the pressure inside the bubble greater than the atmospheric pressure? (3 marks)
- (d) If number of little droplets of water of surface tension Υ, all of the same radius, r combine to form a single drop of radius, R, show that the energy released is

$$4\pi R^3 \, \mathrm{V}\left(\frac{1}{r} - \frac{1}{R}\right)$$
 (3 marks)

SECTION B

5. (a) What is meant by

(i) triple point of water? (1 mark)

(ii) Cooling correction? (1 mark)

- (b) Explain clearly the steps taken to determine the cooling correction when measuring the specific heat capacity of a poor conductor of heat by the method of mixtures

 (6 marks)
- (c) 10g of dry steam is added to a copper calorimeter of heat capacity $80Jk^{-1}$ containing 50g of ice and 120g of water at 0°C. Calculate the final temperature after all the ice has melted. (5 marks)
 - (ii) Explain why systems based on circulation of steam are more efficient in warming a room than those based on circulation of boiling water. (2 marks)
- (d) (i) Give two advantages of gas thermometers over those of mercury thermometers. (2 marks)
 - (ii) The resistance of a platinum thermometer is 1.510Ω at ice point, 2.160Ω at steam point and 1.878Ω at 50° C on the gas scale. What is the difference between the values of the latter temperature on the two scales. (3 marks)

6	i. (a) (i) What is meant by kinetic theory of gases?	(1 mark)		
	(ii) Use the kinetic theory expression of pressure of an ideal gas to dedu Dalton's law of partial pressures.	ice (4 marks)		
	(b) Explain why;			
	(i) the behaviour of real gases at very low pressures approximates to tha Ideal gas.	t of an (2 marks)		
	(ii) air pressure inside a car tyre increases during driving	(3 marks)		
	(c) (i) With aid of a diagram, describe an experiment to determine the temper dependance of saturated vapour pressure of water.	erature (6 marks)		
	(ii) A mixture of air and saturated alcohol vapour in presence of liquid alcohol			
	exerts a pressure of 128mmHg at 20°C. When the mixture is heated at	constant		
	volume to the boiling point of alcohol at 78°C at standard pressure, the	pressure		
	becomes 860mmHg.Find the saturation vapour pressure of alcohol at 2	0°C. (4 marks)		
7.	.(a) Define the terms;			
	(i) Coefficient of the thermal conductivity	(1 mark)		
	(ii) heat current	(1 mark)		
	(b) (i) State Wien's displacement law	(1 mark)		
	(ii) Explain why there is the word displacement in Wien's displacement	ement law (2 marks)		
	(c) (i) With aid of a diagram. Describe Searle's method of determining ther conductivity of a material of high conductivity	mal (6 marks)		
	(ii) Why is the method in C(i) above best suited for a good conductor of	f heat? (2 marks)		

	(d) The external walls of a house consist of two layers of brick separated by cavity. The outer face of the wall is at a temperature of 20°C while the the house is at 5°C. If the thickness of each brick layer is 10.0cm and of	y an air nside of air cavity
	is 3.0cm (i) Explain why in steady state, the rate of heat transfer must be the same	100
	(ii) Calculate the rate of heat flow per square metre through the wall.	(6 marks)
	ns lo man and the rate of heat now per again	al.
	SECTION Grant and then a govern	- (1.6) - (1.4)
8.	(a) (i) What are positive rays?	(1 mark)
	(ii) State two differences between cathode rays and positive rays.	(2 marks)
	(b) With aid of a diagram, describe Millikan's experiment to determine the electronic charge.	value of (6 marks)
	(ii) Explain why the size of oil drops must be small in b(i) above	(2 marks)
	(c) In Millikan's apparatus the horizontal plates are 1.5cm apart. With the effeld switched off, an oil drop is observed to fall with a steady velocit $10^{-2} \ cm s^{-1}$. When the field is switched on, the drop just remains statio the P.d between the two plates is 1500V.	y of $2.5 \times$
	(i) Calculate the radius of the drop.	(3 marks)
	(ii) How many electronic charges does it carry?	(3 marks)
	(iii) If the P.d between the two plates remains unchanged, with what will the drop move when it has collected two more electrons as exposure to ionizing radiation?	t velocity
9.	(a) (i) What is meant by ionization potential?	(1mark)
	(ii) Explain how line spectra accounts for existence of discrete energy latoms.	evels in

- (b) The first excitation energy of a hydrogen atom is 10.4eV. Calculate the speed of the slowest electron that can excite a hydrogen atom. (3 marks)
- (c) (i) With aid of a diagram, describe how x-rays are produced in an X-ray tube.

 (5 marks)
 - (ii) Under what conditions does X-ray diffraction occur? (2 marks)
- (d) The closest spacing between planes of atoms in a crystal of NaCl is 2.82A°. First order diffraction maxima of a monochromatic beam of X-rays occurs at a glancing angle of 15° 30°.
 - (i) How many orders of diffraction of these X-rays could be observed from these planes.(4 marks)
 - (ii) Find the density of NaCl if its molecular weight is 59.5 (2 marks)
- 10. What is meant by
 - (i) Decay constant (1 mark)
 - (ii) Background count rate? (1 mark)
 - (b) (i) Describe the structure and operation of an expansion cloud chamber (5 marks)
 - (ii) Describe and explain the differences between the tracks formed in the chamber in b (i) above by alpha and beta particles (4 marks)
 - (c) (i) Explain the application of carbon -14 in carbon dating. (3 marks)
 - (ii) An element X has a stable isotope, 60_X and a radioactive isotope, 59_X of half-life 5.27 years whose atoms are 0.25% of those of the stable isotope. Estimate the rate of decay of 59_X with $5\mu g$ of 60_X after 10 years. (5marks)
 - (d) State one industrial use and one health hazard of radioactivity (1 mark)

END