Numerical Linear Algebra in the Sliding Window Model

Vladimir Braverman¹, Petros Drineas², Jalaj Upadhyay¹, David P. Woodruff⁴, Samson Zhou³

samsonzhou@gmail.com

¹Johns Hopkins University, ²Purdue University, ³Carnegie Mellon University, ⁴Indiana University

PRELIMINARIES

- ❖ Input: Elements of an underlying data set *S*, which arrives sequentially
- ❖ Sliding Window: "Only the *W* most recent updates form the underlying data set *S*"
- ❖ Output: Evaluation (or approximation) of a given function
- ❖ Goal: Use space *sublinear* in the size of the input *S*

10111001101

Question:

Are there space efficient algorithms for numerical linear algebra in the sliding window model?

- Rows arrive one-by-one in the data stream
- $A \in \mathbb{R}^{W \times n}, W \gg n$
- Recent interactions, time sensitive

RESULTS

Problem	Space
Deterministic ℓ_2 Spectral $(1+\varepsilon)$ Approximation (Sliding Window)	$\tilde{O}\left(\frac{n^3}{\epsilon}\right)$
ℓ_2 Spectral $(1+\varepsilon)$ Approximation (Sliding Window)	$\widetilde{\Theta}\left(\frac{n^2}{\epsilon^2}\right)$
$(1 + \varepsilon)$ Rank k Approximation (Sliding Window)	$\widetilde{\Theta}\left(\frac{nk}{\epsilon^2}\right)$
$(1+\varepsilon)$ Rank k Approximation (Online)	$\widetilde{\Theta}\left(\frac{nk}{\epsilon^2}\right)$
Covariance Matrix Approximation (Sliding Window, Frobenius Norm Error)	$\widetilde{\Theta}\left(\frac{n}{\epsilon^2}\right)$
Also results for ℓ_1 Spectral $(1 + \varepsilon)$ Approximation when entries of A and x are bounded integers	

- - $(1 \epsilon) ||Ax||_2 \le ||Mx||_2 \le (1 + \epsilon) ||Ax||_2$
- $(1 + \varepsilon)$ Rank k Approximation: Given $\epsilon > 0$ and $A \in \mathbb{R}^{W \times n}$, find matrix $M \in \mathbb{R}^{m \times n}$ with $m \ll W$ such that
- $(1 \epsilon)\|A A_k\|_F \le \|M M_k\|_F \le (1 + \epsilon)\|A A_k\|_F$ Covariance Matrix Approximation: Given $\epsilon > 0$ and $A \in R^{W \times n}$, $W \gg n$, find $B \in R^{d \times n}$ such that $\|A^{\mathsf{T}}A - B^{\mathsf{T}}B\|_F \le \epsilon \|A^{\mathsf{T}}A\|_F$

APPROXIMATE MATRIX MULTIPLICATION

- ❖ Intuition: Large entries in A^TA come from large entries in A and suppose we know $||A||_F$
- **\Limin** Importance sampling: B =Sample row a_k of A with probability $p_k \propto \frac{\|a_k\|_2^2}{\|A\|_F^2}$ and rescale by $\frac{1}{\sqrt{p_k}}$.
- $Analyze E[||A^TA B^TB||_F^2]$ [DK01]
- \clubsuit Step 1: Show that $B^{\mathsf{T}}B$ is an unbiased estimator:

$$E[B^{\mathsf{T}}B] = \sum p_k \left(\frac{1}{\sqrt{p_k}} a_k^{\mathsf{T}} \frac{1}{\sqrt{p_k}} a_k\right) = A^{\mathsf{T}}A$$

 \clubsuit Step 2: Bound the variance of $(B^TB)_{i,j}$:

$$\operatorname{Var}[(B^{\mathsf{T}}B)_{i,j}] \leq \sum_{p_k} \frac{1}{p_k} (a_k^{\mathsf{T}}a_k)_{i,j}^2$$

Bound the expected error

$$E[\|A^{\mathsf{T}}Awef - B^{\mathsf{T}}B\|_F^2] \le \sum_{i,j,k} \frac{1}{p_k} (a_k^{\mathsf{T}}a_k)_{i,j}^2 = \sum_k \frac{1}{p_k} \|a_k\|_2^4$$

- ❖ For $p_k = \frac{c\|a_k\|_2^2}{\|A\|_F^2}$, $E[\|A^{\mathsf{T}}A B^{\mathsf{T}}B\|_F^2] \le \frac{1}{c}\|A\|_F^4$.
- $\sum p_k = c := \frac{1}{\epsilon^2}, \text{ so total number of sampled rows is }$ $O\left(\frac{1}{\epsilon^2}\log n\right) \text{ w.h.p.}$
- * Note it suffices to have \widehat{A} a 2-approximation of $||A||_F^2$
- ❖ Why? Sample row a_i of A with probability $p_i \propto \frac{2\|a_i\|_2^2}{\widehat{A}}$
- Frobenius norm is *smooth*, can use smooth histogram to maintain \widehat{A} [BO07]
- **Suppose** we have sampled row a_i of A with probability $p_i \propto \frac{\|a_i\|_2^2}{\|A\|_F^2}$
- New row arrives a_t : $||A||_F^2$ increases by $||a_t||_2^2$
- \clubsuit What do we do with a_i ?
- * Downsample: keep a_i with probability $\frac{\|A\|_F^2}{\|A\|_F^2 + \|a_t\|_2^2}$
- Sampled a_i with probability $p_i \propto \frac{\|a_i\|_2^2}{\|A\|_F^2 + \|a_t\|_2^2}$

- Separate instance of matrix multiplication streaming algorithm for each instance tracking the Frobenius norm
- * Total space: $O\left(\frac{1}{\epsilon^2}\log n\right)$ rows $\to O\left(\frac{n}{\epsilon^2}\log^2 n\right)$ bits of space
- **Can decrease to** $O\left(\frac{n}{\epsilon^2}\log n\left(\log\log n + \log\frac{1}{\epsilon}\right)\right)$ with bit representation tricks
- \Leftrightarrow Also give $\Omega\left(\frac{n}{\epsilon^2}\log n\right)$ space lower bound

ℓ_2 SPECTRAL APPROXIMATION

- Find a matrix B so that for all vectors x, $x^T B x$ is a good approximation for $x^T A x$
- Approximates *all* cuts of a graph
- Smooth histogram does not work!
- ❖ Johnson-Lindenstrauss based compression techniques also do not seem to help
- ❖ Intuition: If we tried to build a histogram, a lot of similar structure between instances: most rows are shared!
- Squared row norm sampling does not work!

- We should *always* store the most recent row
- Need a new sense of importance for both recency AND uniqueness of a row
- **Leverage score** sampling does not work!

REVERSE ONLINE LEVERAGE SCORES

- Leverage score of row a_i is $\ell_i = a_i (A^T A)^{-1} a_i^T$
- Rows before a_i might be deleted so they shouldn't count towards the importance of a_i
- Reverse online leverage score of row a_i is $\tau_i = a_i (B^T B)^{-1} a_i^T$ where B are the rows after a_i
- Algorithm: sample (and rescale) a number of rows
- ❖ New row arrives store it
- For each sampled (and rescaled) row a_i , sample \tilde{c} the row with probability $\propto \tau_i \longleftrightarrow \text{downsampling}$

- How to ensure rows remain after repeated sampling? How to deal with compounding error?
- **Correctness:** Show an invariant that each row a_i is sampled with probability \propto *final* reverse online leverage score (Suffices by [SS08])
- $\Rightarrow a_i$ remains with probability $\propto \tau_{\tilde{C}} \left(\frac{a_i}{\sqrt{p_i}} \right)$
- * Reverse online leverage score:

$$\left(\frac{a_i}{\sqrt{p_i}}\right) \left(\tilde{C}^{\mathsf{T}}\tilde{C}\right)^{-1} \left(\frac{a_i}{\sqrt{p_i}}\right)^{\mathsf{T}} = \left(\frac{a_i}{\sqrt{p_i}}\right) \left(\tilde{B}^{\mathsf{T}}\tilde{B} + r_t^{\mathsf{T}}r_t\right)^{-1} \left(\frac{a_i}{\sqrt{p_i}}\right)^{\mathsf{T}}$$

- Recall $(1 \epsilon)B^{\mathsf{T}}B \leq \tilde{B}^{\mathsf{T}}\tilde{B} \leq (1 + \epsilon)B^{\mathsf{T}}B$, so $(1 \epsilon)C^{\mathsf{T}}C \leq \tilde{C}^{\mathsf{T}}\tilde{C} \leq (1 + \epsilon)C^{\mathsf{T}}C$
- $*a_i$ survives w.p. $c_1\tau_C(a_i) \le p_i \le c_2\tau_C(a_i)$

LOW-RANK APPROXIMATION

- **Reverse online leverage score:** Sample each row a_i with probability $p_i \propto \tau_i = a_i (B^T B + \lambda I_n)^{-1} a_i^T$
- **\$\ldot\ Issues:** Compute $\lambda = \frac{\|A A_k\|_F^2}{k}$, Bound $\sum \tau_i$
- **�** Observation: it suffices to have a constant factor approximation of $\lambda = \frac{\|A A_k\|_F^2}{k}$
- ❖ Use projection-cost preserving sketch [CEMMP15] to reduce the dimension of each row and feed reduced rows into spectral approximation algorithm
- ❖ Space used by the algorithm → Bounding the sum of the reverse online leverage scores

$$\det(A^{\mathsf{T}}A + \lambda I_{n}) = \det(A_{W-1}^{\mathsf{T}}A_{W-1} + \lambda I_{n}) (1 + a_{W}(A_{W-1}^{\mathsf{T}}A_{W-1} + \lambda I_{n})^{-1}a_{W}^{\mathsf{T}})$$

$$= \det(A_{W-1}^{\mathsf{T}}A_{W-1} + \lambda I_{n}) (1 + \tau_{W})$$

$$\geq \det(A_{W-1}^{\mathsf{T}}A_{W-1} + \lambda I_{n}) (1 + e^{\tau_{W}/2})$$

$$\det(A^{\mathsf{T}}A + \lambda I_{n}) \geq \lambda^{n} e^{\sum \tau_{i}/2}$$

$$\det(A^{\mathsf{T}}A + \lambda I_{n}) = \prod \sigma_{i}(A^{\mathsf{T}}A + \lambda I_{n})$$

- Small singular values: $\sigma_{k+1} + ... + \sigma_n = ||A A_k||_F^2 + \lambda(n-k)$
- **\$\Psi By AM-GM**, $\prod_{i=k+1}^{i=n} \sigma_i \le \left(\frac{\|A A_k\|_F^2 + \lambda(n-k)}{n-k} \right)^{n-k}$
- ❖ Large singular values: $\sigma_i \le ||A||_2^2 + \lambda$ for $1 \le i \le k$ log det($A^TA + \lambda I_n$) = $O(k \log n)$
- Also gives a space efficient *online* algorithm for low-rank approximation!

ℓ_1 SPECTRAL APPROXIMATION

- **\Lapprox** Can show that if $||Ax||_1$ increases by $(1 + \epsilon)$, $||Ax||_2^2$ must increase by $(1 + \frac{\epsilon}{\text{poly}(n)})$
- Can use deterministic algorithm to find these breakpoints
- \clubsuit Use separate instances of streaming ℓ_1 spectral approximation algorithm starting at each of these breakpoints

REFERENCES

- ❖ [BO07] Vladimir Braverman, Rafail Ostrovsky.
 Smooth histograms for sliding windows. FOCS 2007
- ❖ [CEMMP16] Michael B. Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina Persu. Dimensionality reduction for k-means clustering and low rank approximation. STOC 2015
- ❖ [DK01] Petros Drineas, Ravi Kannan. Fast Monte-Carlo Algorithms for Approximate Matrix Multiplication. FOCS 2001
- ❖ [SS08] Daniel A. Spielman, Nikhil Srivastava. Graph sparsification by effective resistances. Funda Ergün, Hossein Jowhari, and Mert Saglam. Periodicity in streams. STOC 2008