

BOSTON PUBLIC LIBRARY

3 9999 06583 288 1

GOVDOC

BRA

3065

BOSTON
PUBLIC
LIBRARY

GOVDOC

BRA
3065

JAN. 00- 583

The other copy
Kept on This #
is more complete.

Functional Design Report

Reconstruction of MERRIMAC STREET, CAUSEWAY STREET, LOMASNEY WAY, MARTHA ROAD and J.F.F. EXPRESSWAY SURFACE ROAD

Prepared for
The Boston Redevelopment Authority

Incomplete?

P. V-28 M-16 There also

September 1984

CE MAGUIRE, INC.

Architects . Engineers . Planners
60 First Avenue, Waltham, Massachusetts 02254

Critical Movement Analysis: PLANNING *Calculation Form 1*

Intersection MERRIMAC ST. AT NEW CHARDON ST. Design Hour 1957 PM PH

Problem Statement FIND 1987 LOS

Step 1. Identify Lane Geometry

Step 2. Identify Volumes, in vph

Step 3. Identify Phasing

Step 4. Left Turn Check

- a. Number of change intervals per hour
 - b. Left turn capacity on change interval, in vph
 - c. G/C Ratio
 - d. Opposing volume in vph
 - e. Left turn capacity on green, in vph
 - f. Left turn capacity in vph (b + e)
 - g. Left turn volume in vph
 - h. Is volume > capacity? ($v_g > C_g$)

Approach

Step 6b. Volume Adjustment for Multiphase Signal Overlap

Probable Phase	Possible Critical Volume in vph	Volume Carryover to next phase	Adjusted Critical Volume in vph
----------------	---------------------------------	--------------------------------	---------------------------------

*Step 5. Assign Lane Volumes,
in vph*

Step 7. Sum of Critical Volumes

$$\underline{213} + \underline{225} + \underline{321} + \underline{\quad} = \underline{759} \text{ vph}$$

Step 8. Intersection Level of Service

(compare Step 7 with Table 6)

A

Step 9. Recalculate

Geometric Change _____

Signal Change _____

Volume Change _____

**Step 6a. Critical Volumes, in vph
(two phase signal)**

Comments

Critical Movement Analysis: PLANNING Calculation Form 1

LOMASNEY WAY AT CAUSEWAY ST.
Intersection HERRIMAC ST & STANIFORD ST.

Design Hour 1967 PM PH

Problem Statement FIND 1987 LOS FOR ALTERNATE "A"

Step 1. Identify Lane Geometry

Step 4. Left Turn Check

- Number of change intervals per hour
- Left turn capacity on change interval, in vph
- G/C Ratio
- Opposing volume in vph
- Left turn capacity on green, in vph
- Left turn capacity in vph (b + c)
- Left turn volume in vph
- Is volume > capacity ($g > ?$)

Approach	1	2	3	4
	40	40	40	
	80	80	80	
a. 25	.25	.25	.40	
b. 228	557	364		
c. 72	0	116		
d. 152	80	196		
e. 12	38	100		
f. 0	0	0	0	

Step 6b. Volume Adjustment for Multiphase Signal Overlay

Probable Phase	Possible Critical Volume in vph	Volume Carryover to next phase	Adjusted Critical Volume in-vph
A4 B3	200(A4 B3)	446-200=246	200
A4 B3	246	0	246
A3 B4	38(04)	479-38=441	38
A3 B4	140	0	140
A1 B2	419-140=299	0	299
A1 B2	233 (A3)	273-233=40(A1)	0
A3	273	0	273
A1 or A2 B1	0	0	> 190
A2 B1	190	0	190

Step 2. Identify Volumes, in vph

Approach 1	RT = .479
	TH = 1.27
	LT = .38
Approach 3	RT = .50
	TH = .314
	LT = .12
Approach 4	LT = .439
	TH = .303
	RT = .242
Approach 2	LT = .100
	TH = .392
	RT = .400

Step 5. Assign Lane Volumes, in vph

Step 7. Sum of Critical Volumes

$$200 + \frac{246}{38} + \frac{140}{299} + \frac{190}{190} = 111.3 \text{ vph}$$

Step 8. Intersection Level of Service

(compare Step 7 with Table 6)

D

Step 9. Recalculate

Geometric Change _____

Signal Change _____

Volume Change _____

Step 3. Identify Phasing

G/C

.15	↑	A4 B3
.25	↑↓	A4 B3 or A3 B4
.35	↑	A1 B2 or A3
.25	↑	A1 or A2 B1
A1 → A3 ↓	B1 ← B3 ↑	
A2 ← A4 ↑	B2 ← B4 ↓	

Step 6a. Critical Volumes, in vph (two phase signal)

Comments

① vehicle equivalent of an 18-second pedestrian movement timed every other cycle.

Critical Movement Analysis: PLANNING Calculation Form 1

LOMASNEY WAY AT CAUSIEWAY ST.
Intersection HERRIMAC ST & STANIFORD ST.

Design Hour 1967 PM PH

Problem Statement FIND 1967 LOS FOR ALTERNATE "B"

Step 1. Identify Lane Geometry

Step 4. Left Turn Check

- Number of change intervals per hour
- Left turn capacity on change interval, in vph
- G/C Ratio
- Opposing volume in vph
- Left turn capacity on green, in vph
- Left turn capacity in vph (b + c)
- Left turn volume in vph
- Is volume > capacity ($y > n$)?

Approach	1	2	3	4
40	40	40		
80	80	80		
.25	.25	.40		
226	557	364		
72	0	116		
152	80	196		
12	38	100		
0	0	0		

Step 6b. Volume Adjustment for Multiphase Signal Overlay

Probable Phase	Possible Critical Volume in vph	Volume Carryover to next phase	Adjusted Critical Volume in-vph
A4B3	200(A4B3)	446-200=246	200
A4B3	246	0	246
A3B4	38 (A4)	479-246=233 (A3)	38
1 Red B2	140 (1)	0	140
A1B2	439-140=299 (A2)	0	299
A2	233 (A3)	273-233 (A1)	> 299
A3	273-439 (A1)	0	
A1	0	0	0
A2B1	190	0	> 190

Step 2. Identify Volumes, in vph

Approach 1	RT = .479	TH = 1.27	LT = .38
Approach 3	RT = 56	TH = 314	LT = 12
Approach 4	LT = .439	TH = .303	RT = 2.42
Approach 2	LT = .273	TH = .392	RT = 1.00

Step 5. Assign Lane Volumes, in vph

Step 7. Sum of Critical Volumes

$$200 + \frac{246}{38} + 299 + 190 = 1113 \text{ vph}$$

Step 8. Intersection Level of Service

(compare Step 7 with Table 6)

D

Step 9. Recalculate

Geometric Change _____

Signal Change _____

Volume Change _____

Step 3. Identify Phasing

G/C	.15	A4B3
	.25	A4B3 or A3B4
	.35	A1B2 or A3
	.25	A1 or A2B1

Step 6a. Critical Volumes, in vph (two phase signal)

Comments

① Vehicle equivalent of an 18 second pedestrian movement timed every other cycle.

Critical Movement Analysis: PLANNING Calculation Form 1

LOMASNEY WAY AT CAUSEWAY ST.
INTERSECTION HERRIMAC ST & STAMFORD ST.

Design Hour 1987 PM PH

Problem Statement FIND 1987 LOS FOR ALTERNATE "C" & "D"

Step 1. Identify Lane Geometry

Step 4. Left Turn Check

- Number of change intervals per hour
- Left turn capacity on change interval, in vph
- G/C Ratio
- Opposing volume in vph
- Left turn capacity on green, in vph
- Left turn capacity in vph (b + e)
- Left turn volume in vph
- Is volume > capacity (\geq)?

Approach	1	2	3	4
a. 40	40	40	40	
b. 80	80	80	80	
c. .25	.25	.40		
d. 226	557	364		
e. 72	0	116		
f. 152	80	196		
g. 12	36	100		
h. 0N	0N	0N		

Step 6b. Volume Adjustment for Multiphase Signal Overlay

Probable Phase	Possible Critical Volume in vph	Volume Carryover to next phase	Adjusted Critical Volume in vph
- A4 B3	200 (A4 B3) 446-200 = 246	200	246
- A4 B3 or A3 B4	246	0	246
- A3 B4	= 28 (B4) 479-246 = 233 (A4)	233 (A4)	38
- All Red Clear	60.	60.	60
- Ped B2	140	0	140
- A1 B2	439-140=299	0	> 299
- A3	233 (A3)	0	
- A1	273-439 (A1)	0	
A2 B1	0	0	> 190
A2 B1	190	0	> 190

Step 2. Identify Volumes, in vph

Step 5. Assign Lane Volumes, in vph

Step 7. Sum of Critical Volumes

$$\frac{246}{200} + \frac{140}{38} + \frac{299}{233} + (190 \times 1.2) = 1211 \text{ vph}$$

Step 8. Intersection Level of Service

(compare Step 7 with Table 6)

D

Step 9. Recalculate

Geometric Change _____

Signal Change _____

Volume Change _____

Step 3. Identify Phasing

.15	↑	A4 B3
.25	↓↑	A4 B3 or A3 B4
.35	↓	A1 B2 or A3
.25	↑	A1 or A2 B1

A1 → A3 ↓ B1 ↑ B3 ↑
 A2 ← A4 ↑ B2 ↓ B4 ↓

Step 6a. Critical Volumes, in vph (two phase signal)

Comments

① 3 second all red results in a loss of lane volume of 1/2 vehicles per cycle for 40 cycles = 60

② Vehicle equivalent of c = 18 second pedestrian movement timed every other cycle.

③ Traffic volume increased by a factor of 1.2 to cover delay caused by dog leg movement.

Critical Movement Analysis: PLANNING

Calculation Form 1

LOMASNEY WAY AT CANALWAY ST.,

Intersection MERRIMAC ST & STANIFORD ST Design Hour 2000 PM PH

Problem Statement Find 2000 LOS ALTERNATE "C" & "D"

Step 1. Identify Lane Geometry

Step 4. Left Turn Check

	Approach			
	1	2	3	4
a. Number of change intervals per hour	40	40	40	
b. Left turn capacity on change interval, in vph	80	80	80	
c. G/C Ratio	35	30	45	
d. Opposing volume in vph	497	664	435	
e. Left turn capacity on green, in vph	0	0	105	
f. Left turn capacity in vph (b + c)	80	80	185	
g. Left turn volume in vph	10	38	150	
h. Is volume > capacity (g > h)?	ON	OK	OK	

Step 6b. Volume Adjustment for Multiphase Signal Overlap

Probable Phase	Possible Critical Volume in vph	Volume Carryover to next phase	Adjusted Critical Volume in vph
A4 B3	200 (A4 B3)	573-200 373	200
A4 B3 or A3 B4	373 38 (A4) = 373	38	38
A3 B4 or A1 B2	140 40 = 140 (A3)	0	140
Ped B2	140 0 = 140 (B2)	0	140
A1 B2 or A3	92 146 = 238 (A1)	0	146
A1 or A2 B1	244 279 = 244 (A1)	0	279

Step 2. Identify Volumes, in vph

Approach 1	RT = 519	Approach 3	RT = 52
	TH = 190		TH = 436
	LT = 38		LT = 10
Approach 1	LT = 463	Approach 2	RT = 516
	TH = 516		RT = 422
	RT = 264	Approach 2	LT = 150
			TH = 425
Approach 4	LT = 150	Approach 3	RT = 390
	TH = 390		RT = 273
	RT = 273	Approach 4	LT = 425
			TH = 425

Step 5. Assign Lane Volumes, in vph

Step 7. Sum of Critical Volumes

$$\begin{aligned} & 373 \\ & + 38 \\ & + 140 \\ & + (279 \times 1.2) \\ & = 1291 \text{ vph} \end{aligned}$$

Step 8. Intersection Level of Service

(compare Step 7 with Table 6)

E

Step 9. Recalculate

Geometric Change _____

Signal Change _____

Volume Change _____

Step 3. Identify Phasing

G/C	.30	.20	.35	.15

Step 6a. Critical Volumes, in vph (two phase signal)

Comments

- ① 3 second all-red clearance interval results in a loss of 1/2 vehicle volume of 11/2 vehicles per cycle for 4 cycles = 60
- ② Critical volume increased by a factor of 1.2 to cover delay caused by dog leg movement
- ③ Vehicle equivalent of an 18 second pedestrian movement timed every other cycle

Unsignalized "T" Intersection Capacity Calculation Form

Intersection CAUSEWAY ST AT PORTLAND ST.

Location Plan:

Counts:

Date 1987

Day WEEKDAY

Time PM PEAK HOUR

Control STOP SIGN

Prevailing Speed 30 MPH

Hourly Demand Traffic Volumes from _____ to _____ m

Approach	A ↗	B ↙	C ↘
Movement	$A_T \rightarrow$	$A_R \nwarrow$	$B_L \leftarrow$
Volume	887	0	0
pch (see Table 1)		0	26 47

Step 1 Right Turn from C	$C_R \curvearrowright$ Conflicting Flows = $M_H =$ (from Fig. 1) $\frac{1}{2} A_R + A_T =$ $0 + 887 = 887 \text{ pph}$ Critical Gap from Table 2 $T_g =$ 7.0 sec Capacity from Fig. 2 = $M_{N0} = M_1 = 230 \text{ pch}$ Shared Lane - See Step 3
Step 2 Left Turn from B	$B_L \curvearrowleft$ Conflicting Flows = $M_H =$ (from Fig. 1) $A_R + A_T =$ $----- + ----- = ----- \text{ pph}$ Critical Gap from Table 2 $T_g =$ $----- \text{ sec}$ Capacity from Fig. 2 = $M_{N0} = M_2 = \text{_____ pch}$ $B_L = \text{_____ pch}$ $100(B_L/M_2) = \text{_____ \%}$ $P_2 = \text{_____ }$ Demand = $M_2 - B_L = \text{_____ pch}$ Capacity Used = Impedance Factor from Fig. 3 = Available Reserve = Delay & Level of Service (Table 3)
Step 3 Left Turn from C	$C_L \curvearrowleft$ Conflicting Flows = $M_H =$ (from Fig. 1) $\frac{1}{2} A_R + A_T + B_L + B_T =$ $0 + 887 + 0 + 664 = 1551 \text{ pph}$ 8.0 sec Critical Gap from Table 2 $T_g =$ $M_{N0} = 45 \text{ pch}$ $M_{N0} \times P_2 = M_3 = 45 \text{ pch}$ Capacity from Fig. 2 = Adjust for Impedance No Shared Lane Demand = $C_L = 26 \text{ pch}$ Available Reserve = $M_3 - C_L = 19 \text{ pch}$ Delay & Level of Service (Table 3) Very long traffic delays [E]
Shared Lane Demand = Shared Lane with Right Turn Capacity of Shared Lane =	$C_R + C_L = C_{RL} = 73 \text{ pch}$ $M_{13} = \frac{(C_R + C_L)}{(C_R/M_1) + (C_L/M_3)}$ $M_{13} = 93 \text{ pch}$ Available Reserve = $M_{13} - C_{RL} = 30 \text{ pch}$ Delay & Level of Service (Table 3) Very Long Traffic Delays [E]

Overall Evaluation _____

Critical Movement Analysis: PLANNING Calculation Form 1

Intersection CAUSEWAY ST AT CANAL ST. Design Hour 1987 PM PH

Problem Statement Find 1987 LOS

Step 1. Identify Lane Geometry

Step 4. Left Turn Check

Approach	1	2	3	4
a. Number of change intervals per hour	60			
b. Left turn capacity on change interval, in vph		120		

a. Number of change intervals per hour
b. Left turn capacity on change interval, in vph
c. G/C Ratio
d. Opposing volume in vph
e. Left turn capacity on green, in vph
f. Left turn capacity in vph (b + c)
g. Left turn volume in vph
h. Is volume > capacity (g > f)?

Step 6b. Volume Adjustment for Multiphase Signal Overlap

Probable Phase	Possible Critical Volume in vph	Volume Carryover to next phase	Adjusted Critical Volume in vph

Step 2. Identify Volumes, in vph

Step 5. Assign Lane Volumes, in vph

Step 7. Sum of Critical Volumes

$$\begin{array}{r} 464 \\ + 83 \\ + 202 \\ \hline = 750 \end{array}$$

$$= 1049 \text{ vph}$$

Step 8. Intersection Level of Service

(compare Step 7 with Table 6)

B

Step 9. Recalculate

Geometric Change _____
Signal Change _____
Volume Change _____

Step 3. Identify Phasing

Step 6a. Critical Volumes, in vph (two phase signal)

Comments

* Assume 25 second side street phase for pedestrians.
Assume 60 second cycle.
 $25/60 \times 1200 = 500$. Use 500 vehicles for vehicle equivalent of side street ped movement

Critical Movement Analysis: PLANNING *Calculation Form 1*

CAUSEWAY ST. AT BEVERLY
ST. AND I-93 RAMPS

INTERSECTION ST. AND I-93 RAMPS

Design Hour 1987 PM PT

Problem Statement Find 1987 LOS

Step 1. Identify Lane Geometry

Step 2. Identify Volumes, in vph

Approach 1

$RT = \frac{4.6}{-}$
$TH = \frac{156}{-}$
$LT = \frac{264}{-}$

Approach 3

$RT = \frac{-}{4}$
$TH = \frac{427}{-}$
$LT = \frac{189}{-}$

Approach 2

$RT = \frac{5}{-}$
$TH = \frac{237}{-}$
$LT = \frac{-}{-}$

Approach 4

$RT = \frac{171}{8}$
$TH = \frac{8}{-}$
$LT = \frac{-}{-}$

Step 3. Identify Phasing

G/C		
.23		
.20		(10 sec)
.11		
.29		
.17		

Step 4. Left Turn Check

	Approach			
	1	2	3	4
a. Number of change intervals per hour	40	40	40	40
b. Left turn capacity on change interval, in vph	80	80	80	80
c. G/C Ratio				
d. Opposing volume in vph				
e. Left turn capacity on green, in vph				
f. Left turn capacity in vph (b + e)				
g. Left turn volume in vph				
h. Is volume > capacity ($v > c$)?				

**Step 5. Assign Lane Volumes,
in vph**

**Step 6a. Critical Volumes, in vph
(two phase signal)**

Step 6b. Volume Adjustment for Multiphase Signal Overlap

Probable Phase	Possible Critical Volume in vph	Volume Carryover to next phase	Adjusted Critical Volume in vph
----------------	---------------------------------	--------------------------------	---------------------------------

Step 7. Sum of Critical Volumes

$$\begin{array}{r} \underline{189} + \underline{246} + \underline{202} + \underline{171} \\ = \underline{\underline{806}} \text{ vph} \end{array}$$

Step 8. Intersection Level of Service

(compare Step 7 with Table 6)

A

Step 9. Recalculate

Geometric Change _____

Signal Change _____

Volume Change

Comments

Critical Movement Analysis: PLANNING Calculation Form 1

CAUSEWAY ST. AT BEVERLY ST.

Intersection AND I-93 RAMPS

Design Hour 2000 PM PH

Problem Statement FIND 2000 LOS

Step 1. Identify Lane Geometry

Step 4. Left Turn Check

- Number of change intervals per hour
- Left turn capacity on change interval, in vph
- G/C Ratio
- Opposing volume in vph
- Left turn capacity on green, in vph
- Left turn capacity in vph ($b + c$)
- Left turn volume in vph
- Is volume > capacity ($g > b$)?

Step 6b. Volume Adjustment for Multiphase Signal Overlap

Probable Phase	Possible Critical Volume in vph	Volume Carryover to next phase	Adjusted Critical Volume in vph

Step 2. Identify Volumes, in vph

Step 5. Assign Lane Volumes, in vph

Step 7. Sum of Critical Volumes

$$226 + 259 + 527 + 89 = 1103 \text{ vph}$$

Step 8. Intersection Level of Service

(compare Step 7 with Table 6)

C

Step 3. Identify Phasing

Step 6a. Critical Volumes, in vph (two phase signal)

Comments

Critical Movement Analysis: PLANNING *Calculation Form 1*

Intersection CANSEWAY ST. AT NORTH WASHINGTON
ST AND COMMERCIAL STREET D

Design Hour 1987 PM PH

Problem Statement Find 1987 LOS - PROPOSED PHASING

Step 1. Identify Lane Geometry

Step 1. Identify Lane Geometry

Step 2. Identify Volumes, in vph

Approach 1

$$RT = \frac{240}{}$$

$$TH = \frac{320}{}$$

$$LT = \underline{\underline{270}}$$

Approach 3

$$RT = \underline{\underline{350}}$$

$$TH = \underline{\underline{277}}$$

$$LT = \underline{\underline{37}}$$

Approach 4

$$LT = \underline{\underline{651}}$$

$$TH = \underline{\underline{397}}$$

$$RT = \underline{\underline{90}}$$

Approach 2

$$LT = \frac{110}{}$$

$$TH = \frac{957}{}$$

$$RT = \underline{\underline{94}}$$

Step 3. Identify Phasing

Step 4. Left Turn Check

- a. Number of change intervals per hour
 - b. Left turn capacity on change interval, in vph
 - c. G/C Ratio
 - d. Opposing volume in vph
 - e. Left turn capacity on green, in vph
 - f. Left turn capacity in vph
(b + e)
 - g. Left turn volume in vph
 - h. Is volume > capacity
(x > f?)

Approach

Step 6b. Volume Adjustment for Multiphase Signal Overlap

Probable Phase	Possible Critical Volume in vph	Volume Carryover to next phase	Adjusted Critical Volume in.vph
----------------	---------------------------------	--------------------------------	---------------------------------

4 φ

**Step 5. Assign Lane Volumes,
in vph**

Step 7. Sum of Critical Volumes

$$\underline{387} + \underline{157} + \underline{380} + \underline{276} \\ = \underline{1200} \text{ vph}$$

Step 8. Intersection Level of Service

(compare Step 7 with Table 6)

2

Step 9. Recalculate

Geometric Change

Signal Change

Volume Change

*Step 6a. Critical Volumes, in vph
(two phase signal)*

Comments

Critical Movement Analysis: PLANNING

Calculation Form 1

CAUSEWAY ST. AT NORTH WASHINGTON

Intersection ST AND COMMERCIAL ST.

Design Hour 1987 PM PH

Problem Statement Find 1987 LOS - EXISTING PHASING

Step 1. Identify Lane Geometry

Step 4. Left Turn Check

Approach	1	2	3	4
a. Number of change intervals per hour		30	30	
b. Left turn capacity on change interval, in vph		60	60	
c. G/C Ratio		.47	.47	
d. Opposing volume in vph		1051	560	
e. Left turn capacity on green, in vph		-487	9	
f. Left turn capacity in vph (b + c)		60	64	
g. Left turn volume in vph		276	110	
h. Is volume > capacity (g > f)?		Yes	Yes	

Step 6b. Volume Adjustment for Multiphase Signal Overlay

Probable Phase	Possible Critical Volume in vph	Volume Carryover to next phase	Adjusted Critical Volume in vph
			40

Step 2. Identify Volumes, in vph

Approach 1	RT = 240	TH = 320	LT = 276
Approach 3	RT = 350	TH = 277	LT = 37
Approach 4	LT = 651	TH = 327	RT = 90
	LT = 110	TH = 257	RT = 94

Step 5. Assign Lane Volumes, in vph

Step 7. Sum of Critical Volumes

$$A24 + 276 + 360 + 157 + \\ 50 = 1287 \text{ vph}$$

Step 8. Intersection Level of Service

(compare Step 7 with Table 6)

E

Step 9. Recalculate

Geometric Change _____

Signal Change _____

Volume Change _____

Step 3. Identify Phasing

4th	1st	2nd	3rd
PED			
↑			
TRK			
A1 → A3 ↓	B1 ↘ B3 ↗		
A2 ← A4 ↑	B2 ↙ B4 ↖		

Step 6a. Critical Volumes, in vph (two phase signal)

Comments

-Left turn check shows serious capacity deficiencies for N. Washington St left turns

① Vol equivalent for a ped. phase timed every four cycles

Critical Movement Analysis: PLANNING Calculation Form 1

Intersection LOMASHEY WAY at LOMASHEY/HASHUA COMM. Design Hour 1987 PM PH

Problem Statement FIND 1987 LOS

Step 1. Identify Lane Geometry

Step 4. Left Turn Check

- Number of change intervals per hour
 - Left turn capacity on change interval, in vph
 - G/C Ratio
 - Opposing volume in vph
 - Left turn capacity on green, in vph
 - Left turn capacity in vph (b + c)
 - Left turn volume in vph
 - Is volume > capacity ($g > l$)?
- | Approach | 1 | 2 | 3 | 4 |
|----------|-----|---|---|---|
| AO | 40 | | | |
| BO | 80 | | | |
| CO | .80 | | | |
| DO | 961 | | | |
| EO | 0 | | | |
| FO | 80 | | | |
| GO | 49 | | | |
| HO | no① | | | |

Step 6b. Volume Adjustment for Multiphase Signal Overlap

Probable Phase	Possible Critical Volume in vph	Volume Carryover to next phase	Adjusted Critical Volume in-vph

Step 2. Identify Volumes, in vph

Step 5. Assign Lane Volumes, in vph

Step 7. Sum of Critical Volumes

$$90 + 164 + 456 + \underline{\quad} \\ = 710 \text{ vph}$$

Step 8. Intersection Level of Service

(compare Step 7 with Table 6)

A

Step 9. Recalculate

Geometric Change _____

Signal Change _____

Volume Change _____

Step 3. Identify Phasing

G/C

.20 ① A1 B2

.60 A1 A2

.20 B4

A1 → A3 ↓ B1 ← B3
A2 ← A4 ↑ B2 → B4

Step 6a. Critical Volumes, in vph (two phase signal)

Comments

① First phase to be 10 second advance.

② This phase will be exclusive left turn phase when traffic volumes warrant it (year 2000)

Critical Movement Analysis: PLANNING Calculation Form 1

Intersection LOMASHEY WAY at LOMASHEY/NASHUA CONNECTOR Design Hour 2000 PM PH

Problem Statement FIND 1987 LOS

Step 1. Identify Lane Geometry

Step 4. Left Turn Check

- Number of change intervals per hour
- Left turn capacity on change interval, in vph
- G/C Ratio
- Opposing volume in vph
- Left turn capacity on green, in vph
- Left turn capacity in vph ($b + c$)
- Left turn volume in vph
- Is volume > capacity ($g > b$)?

Approach	1	2	3	4
a. Probable Phase	40			
b. Possible Critical Volume in vph	80			
c. Volume Carryover to next phase	.75			
d. Adjusted Critical Volume in vph	116.5			
e. Opposing volume in vph	0			
f. Left turn capacity in vph ($b + c$)	80			
g. Left turn volume in vph	160			
h. Is volume > capacity ($g > b$)?	yes			

Step 6b. Volume Adjustment for Multiphase Signal Overlap

Probable Phase	Possible Critical Volume in vph	Volume Carryover to next phase	Adjusted Critical Volume in vph

Step 2. Identify Volumes, in vph

Step 5. Assign Lane Volumes, in vph

Step 7. Sum of Critical Volumes

$$180 + 507 + 265 + \dots = 972 \text{ vph}$$

Step 8. Intersection Level of Service

(compare Step 7 with Table 6)

B

Step 3. Identify Phasing

Step 6a. Critical Volumes, in vph (two phase signal)

Comments

* equivalent of pedestrian movement activated every four phases

Critical Movement Analysis: PLANNING Calculation Form 1

Intersection Leverett Circle at J F.F. Expressway Surface Rd. Design Hour 1987 PM PH

Problem Statement Find 1987 LOS

Step 1. Identify Lane Geometry

Step 4. Left Turn Check

- Number of change intervals per hour
- Left turn capacity on change interval, in vph
- G/C Ratio
- Opposing volume in vph
- Left turn capacity on green, in vph
- Left turn capacity in vph (b + e)
- Left turn volume in vph
- Is volume > capacity (g > l)?

Approach

Approach	1	2	3	4
Probable Phase				
Possible Critical Volume in vph				
Volume Carryover to next phase				
Adjusted Critical Volume in-vph				

Step 6b. Volume Adjustment for Multiphase Signal Overlap

Step 2. Identify Volumes, in vph

Step 5. Assign Lane Volumes, in vph

Step 7. Sum of Critical Volumes

$$\begin{array}{r} 185 \\ + 621 \\ \hline 246 \end{array} + \text{_____} = 1676 \text{ vph}$$

Step 8. Intersection Level of Service

(compare Step 7 with Table 6)

F

Step 9. Recalculate

Geometric Change _____

Signal Change _____

Volume Change _____

Step 3. Identify Phasing

Step 6a. Critical Volumes, in vph (two phase signal)

Comments

- Timed concurrently with Charles St phase of Charles St @ Leverett Circle Signals
- Timed concurrently with Leverett Circle phase of Charles St @ Leverett Circle
- this assumes no time restraints (free operation) which is not the case. the time ratio (therefore the volume ratio) of A1 to A4 is approx 1.7 the time ratio of Charles St to Leverett Circle at that intersection

Table V-1
North Station Urban Renewal Area
EXISTING LAND USE

	Sub-Area I			Sub-Area II			Total		
	SQ.FT.	ACRES	%	SQ.FT.	ACRES	%	SQ.FT.	ACRES	%
Residential	17,424	.40	3				17,424	.40	.8
Commercial	31,363	.72	5				31,363	.72	1.5
Mixed Residential/ Commercial	13,504	.31	2				13,504	.31	.6
Uni-Public*	113,256	2.60	19	176,418	4.05	11	189,674	6.65	13.4
Utility				21,780	.50	1	21,780	.50	1.0
Railroad				180,338	4.14	12	180,338	4.14	8.4
Parking	186,001	4.27	32	480,031	11.02	31	666,032	15.29	30.8
Streets	233,481	5.36	39	373,510	8.57	24	606,991	13.93	28.1
Charles River				313,432	7.20	20	313,432	7.20	14.5
Other Open Space				19,602	.45	1	19,602	.45	.9
TOTAL	595,029	13.66	100	1,565,111	35.93	100	2,160,140	49.59	100

* North Station/Boston Garden, Registry, Rehabilitation Hospital

NORTH STATION
REDEVELOPMENT
PROJECT

EXISTING ZONING

0 200 400 FT
0 50 100 M

Figure V-8

BOSTON REDEVELOPMENT AUTHORITY

FIGURE V-9:

EXISTING NORTH STATION ROADWAY SYSTEM

Table V-2
NORTH STATION URBAN RENEWAL PROJECT

Traffic Volumes on Major Project Area Streets and Access Roadways (1980)

<u>Street</u>	<u>P.M. Peak (5-6 p.m.)</u>	<u>8-hour Peak (10 a.m.-6 p.m.)</u>	<u>AWDT</u>
Central Artery (Northbound)	4,400	45,635	71,700
(Southbound)	3,140	34,295	69,000
Storrow Drive Access Ramp (On)	2,754	22,129	46,440
(Off)	2,460	23,510	47,300
Storrow Drive (Eastbound)	2,850	19,182	45,190
(Westbound)	2,786	23,311	51,897
Causeway Street	1,452	11,480	25,880
Nashua Street	1,555	11,806	20,364
Lomasney Way	202	4,053	6,041
Martha Road	280	4,617	6,603
Charles River Dam (Northbound)	1,230	6,277	17,938
(Southbound)	1,008	9,260	21,542
Merrimac Street	546	4,371	5,712
North Washington Street	1,539	9,453	16,459
Canal Street	257	2,276	5,563

Source: BRA Transportation Planning Department

AVERAGE WEEKDAY TRAFFIC
NORTH STATION PROJECT

EXISTING (1980) NORTHERN TRAFFIC

FIGURE V-11

NORTH STATION PROJECT TRAFFIC IMPACT AREA

PEAK HOUR
LEVEL OF SERVICE ANALYSIS

1980 EXISTING

Average weekday (24-hour) volume is 110 trains. During both the morning peak hours (7-9 a.m.) and the evening peak hours (4-6 p.m.), a total of 35 trains arrive at and leave from North Station. Total average weekday ridership (1982) is 20,320 persons.

No MBTA bus routes directly serve the project area. However, several MBTA buses, both local and express, and private commuter bus lines which serve cities and towns outside of the Metropolitan Boston area are available at Haymarket station, a short walk from the North Station area.

Table V-4 below shows the current daily loadings of the public transportation facilities serving the North Station area.

Table V-4

Average Daily Boardings - North Station Area

Orange Line (1978)

North Station	4,186
---------------	-------

Green Line (1978)

Science Park	722
North Station (elevated)	1,659
North Station (surface)	2,059

Commuter Rail (1982) 10,314

TOTAL 18,940

Source: MBTA

3.3 Parking Facilities

Within the North Station project area there currently exist a total of 2,332 off-street parking spaces (see Table V-5 and Figure V-14).

Approximately 39% of these spaces, or 905 spaces, are open to the public, 375 spaces being located in a City of Boston-owned lot and the remainder in privately-owned lots. The remaining parking is primarily employee parking, principally for the Massachusetts Department of Public Works (552 spaces) and the Massachusetts General Hospital (800 spaces).

NORTH STATION
REDEVELOPMENT
PROJECT

EXISTING
OFF-STREET
PARKING
(1982)

Figure V-14

0 200 400 FT.
0 50 100 M.

NORTH STATION
REDEVELOPMENT
PROJECT

EXISTING UTILITIES
(1982)

Figure V-15

Figure V-16: MAJOR COMBINED SEWER AND STORM DRAINS

TABLE VI.C-2

NORTH STATION AVERAGE WEEKDAY TRIP GENERATION

Phase I

	<u>Arrival Rates</u> <u>Per Day</u>	<u>Daily Person Arrivals</u>	
		<u>Alternate 1</u> <u>(Office)</u>	<u>Alternate 2</u> <u>(Hotel)</u>
Retail/Commercial	18.3/1,000 s.f.	2,290	2,290
Office	7.3/1,000 s.f.	8,760	5,840
Hotel	4.6/Room	-	1,600
		<hr/>	<hr/>
		11,050	9,730

Phase II

	<u>Arrival Rates</u> <u>Per Day</u>	<u>Daily Person Arrivals</u>	
		<u>Preferred</u> <u>Program</u>	<u>Optional</u> <u>Program</u>
Retail/Commercial	18.3/1,000 s.f.	1,650	457
Office	7.3/1,000 s.f.	-	3,576
Hotel	4.6/Room	1,840	-
Residential	4.0/Unit	4,400	1,200
Public/Museum	10.0/1,000 s.f.	1,484	-
Hospital	4.0/Bed	-	1,140
		<hr/>	<hr/>
		9,374	6,373

TABLE VI.C-3

EMPLOYEE/NON-EMPLOYEE PERSON TRIPS

	% of Trips	Average Weekday Person Arrivals		
		Phase I		Phase II
		Preferred	Optional	
Retail				
Employee	15	343	247	69
Non-employee	85	1946	1403	388
Office				
Employee	66	5781	-	2360
Non-employee	34	2979	-	1216
Hotel				
Employee	24	-	442	-
Non-employee	76	-	1398	-
Residential				
Employee	2	-	88	24
Non-employee	98	-	4312	1176
Public/Museum				
Employee	5	-	58	-
Non-employee	95	-	1426	-
Hospital				
Employee	66	-	-	750
Non-employee	34	-	-	390
TOTAL				
Employee	178	6124	835	3203
Non-employee	422	4925	8539	3170
	<u>600</u>	<u>11047</u>	<u>9374</u>	<u>6373</u>

TABLE VI.C-4

PERCENTAGE OF AVERAGE WEEKDAY TRIPS DURING
PEAK HOURS AND PRIME OFF-PEAK HOUR

	<u>ARRIVE</u>			<u>DEPART</u>		
	8-9 A.M.	<u>OFF-PEAK</u>	5-6 P.M.	8-9 A.M.	<u>OFF-PEAK</u>	5-6 P.M.
Retail						
Employees	10	12	10	0	12	20
Non-employees	0	10	5	0	10	10
Office						
Employees	55	2	0	0	2	55
Non-employees	10	15	0	0	15	10
Hotel						
Employees	5	5	0	0	5	5
Non-employees	7	8	3	3	8	7
Residential						
Employees	25	5	5	5	5	25
Non-employees	0	5	55	55	5	0
Public/Museum						
Employees	10	12	10	0	12	20
Non-employees	0	12	10	0	12	20
Hospital						
Employees	50	30	0	10	30	50
Non-employees	10	10	10	10	10	10

TABLE VI.C-5

PEAK HOUR AND OFF-PEAK HOUR PERSON TRIPS

	ARRIVALS			DEPARTURES		
	A.M.	OFF	P.M.	A.M.	OFF	P.M.
<u>Phase I</u>						
Retail/Commercial						
Employees	34	41	34	0	41	69
Non-employees	0	194	97	0	194	194
Office						
Employees	3180	116	0	0	116	3180
Non-employees	298	447	0	0	497	298
	<u>3512</u>	<u>798</u>	<u>131</u>	<u>0</u>	<u>798</u>	<u>3741</u>
<u>Phase II Preferred</u>						
Retail/Commercial						
Employees	25	30	25	0	30	49
Non-employees	0	140	70	0	140	140
Total						
Employees	22	22	2	0	22	22
Non-employees	100	112	42	42	112	100
Residential						
Employees	22	4	4	2272	4	22
Non-employees	0	215	2272	2272	215	0
Public/Museum						
Employees	6	70	6	0	70	12
Non-employees	0	171	109	0	171	285
	<u>173</u>	<u>877</u>	<u>2628</u>	<u>2413</u>	<u>877</u>	<u>563</u>
TOTAL	3687	1675	2759	2413	1675	4304
<u>Phase II Optional</u>						
Retail/Commercial						
Employees	7	3	7	0	3	14
Non-employees	0	39	19	0	39	19
Office						
Employees	1298	47	0	0	47	1298
Non-employees	122	182	0	0	182	122
Residential						
Employees	6	1	1	604	1	6
Non-employees	0	55	604	604	55	0
Hospital						
Employees	375	225	0	73	225	375
Non-employees	39	39	19	14	19	39
	<u>1847</u>	<u>596</u>	<u>670</u>	<u>719</u>	<u>596</u>	<u>1893</u>
TOTAL	5359	1394	801	719	1394	5634

Among the considerations incorporated in the modal split percentages are the following specific data describing modal splits currently experienced in Downtown Boston.

- At Jordan Marsh's downtown store, 12% of the employees walk to work, 71% use transit, and 15% drive.
- The proportions of office workers using transit or commuter rail are as follows:

- First National Bank	73%
- State Street Bank	68%
- Liberty Mutual	41%
- John Hancock	54%
- Prudential	31%
- Hurley Building	50%
- John F. Kennedy Building	57%

Table VI.C-6 summarizes the above discussion and statistics as applied to the North Station project.

Vehicle Occupancy

Vehicle occupancy rate - the average number of riders per car - varies by trip purpose. Average auto occupancy rates in downtown Boston are as follows:

<u>Persons/Vehicle</u>		
<u>Employees</u>		
Office	1.23	1.11
Jordan Marsh (retail)	1.00	1.12
Statler Hilton (hotel)	1.00	1.07

The Central Transportation Planning Staff (CTPS), also using data generated by Wilbur Smith and Associates,(1) suggests that the following occupancy rates are experienced in downtown Boston:

Non-Home Based Trips	1.4 persons/vehicle
Work Trips	1.1 persons/vehicle
Home Based Non-Work Trips	1.75 persons/vehicle

The auto occupancy rates used in the traffic analysis for North Station are presented below:

TABLE VI-C-6

MODAL SPLIT

	Phase I						Average Weekday Person Arrivals	
	Percentages			Average Weekday Person Arrivals				
	Auto	Transit	Walk	Auto	Transit	Walk		
Retail/Commercial							TOTAL	
Employee	30	60	10	102	205	34	344	
Non-Employee	40	20	40	778	189	778	1945	
Office								
Employee	36	54	10	2660	2814	308	5782	
Non-Employee	45	40	15	1341	1191	447	2979	
	TOTAL			4881	4599	1567	11047	
Phase II Preferred								
	Auto	Transit	Walk	Auto	Transit	Walk	TOTAL	
Retail/Commercial								
Employee	30	60	10	75	150	25	250	
Non-Employee	40	20	40	560	280	560	1400	
Hotel								
Employee	12	73	15	53	322	66	442	
Non-Employee	60	25	15	838	349	210	1397	
Residential								
Employee	25	60	15	22	53	13	88	
Non-Employee	26	44	30	1121	1897	1294	4312	
Public/Museum								
Employee	30	60	10	17	35	6	58	
Non-Employee	40	50	10	570	713	143	1425	
	TOTAL			3144	3614	2283	9144	
Phase II Optional								
	Auto	Transit	Walk	Auto	Transit	Walk	TOTAL	
Retail/Commercial								
Employee	30	60	10	21	41	7	69	
Non-Employee	40	20	40	155	78	155	388	
Office								
Employee	36	54	10	850	1274	236	2360	
Non-Employee	45	40	15	547	486	182	1216	
Residential								
Employee	25	60	15	6	14	4	24	
Non-Employee	26	44	30	306	517	353	1176	
Hospital								
Employee	40	50	10	300	375	75	750	
Non-Employee	50	40	10	195	156	39	390	
	TOTAL			1378	2939	1041	6373	

TABLE VI.C-7

AVERAGE WEEKDAY DAILY NORTH STATION
VEHICULAR TRAFFIC ARRIVALS

	<u>Vehicles</u>		
	<u>Phase I</u>		<u>Phase II</u>
	<u>Preferred</u>	<u>Optional</u>	
Retail/Commercial			
Employee	73	53	15
Non-Employee	409	295	82
Office			
Employee	1784	--	629
Non-Employee	1219	--	497
Luxury Hotel			
Employee	--	35	--
Non-Employee	--	524	--
Residential			
Employee	--	17	5
Non-Employee	--	1019	259
Public/Museum			
Employee	--	13	--
Non-Employee	--	248	--
Hospital			
Employee	--	--	214
Non-Employee	--	--	59
TOTAL			
Employee	1857	118	863
Non-Employee	1628	2086	896
	<hr/> 3485	<hr/> 2204	<hr/> 1759

	<u>Auto Occupancy Rates</u>					
	<u>Retail</u>	<u>Office</u>	<u>Public/ Hotel</u>	<u>Residential</u>	<u>Museum</u>	<u>Hospital</u>
Employees	1.4	1.5	1.3	1.3	1.3	1.4
Non-Employees	1.9	1.1	1.4	1.1	2.3	1.6

1.4 Future Traffic Demand and Impacts

Average Weekday Project-Related Vehicular Traffic

Applying the vehicle occupancy rates to daily person trips by auto yields the daily site-generated traffic, as indicated in Table VI.C-7. Peak hour site-generated traffic by direction is presented in Table VI.C-8, determined by applying the values of Table VI.C-4 to Table VI.C-7.

Approach Sectors

Trips to and from the North Station area were allocated to approach streets on the basis of data compiled in the 1977 Origin and Destination Survey for the Boston Central Artery (5) prepared by the Massachusetts Department of Public Works, supplemented by up-to-date intersection turning movement counts taken at 15 locations within the North Station Traffic Impact Area (Figure V-12). The North Station Traffic Impact Area has been defined, by EOEA, to include the proposed Urban Renewal Area and adjacent areas within a perimeter bounded by Merrimac Street/Lomasney Way/Martha Road, New Sudbury Street, North Washington Street, and the Charles River, including the intersections along this perimeter. This assignment is indicated in Table VI.C-9 below. Appendix H shows the percentages of site-generated traffic assigned to streets within the North Station Traffic Impact Area. The actual site-generated traffic assigned to streets within the Traffic Impact Area for each of the build alternatives also is presented in Appendix H for the P.M. peak hours and in Figures VI.C-3a through VI.C-3c for the Average Weekday Traffic.

TABLE VI.C-8 (continued)

Peak-Hour North Station Vehicular Traffic

	Phase II Optional		P.M. Peak-Hour	
	To	From	To	From
Retail/Commercial				
Employee	2	0	2	3
Non-Employee	0	0	4	8
*Office				
Employee	346	0	0	346
Non-Employee	50	0	0	50
Residential				
Employee	1	1	1	1
Non-Employee	0	143	143	0
*Hospital				
Employee	151	30	0	151
Non-Employee	17	17	17	17
Sub-Total	<u>567</u>	<u>191</u>	<u>167</u>	<u>576</u>
TOTAL (Optional)	1672	191	194	1730

*49% of office trips and 100% of hospital trips are existing traffic from Registry Building and Massachusetts Rehabilitation Hospital.

TABLE VI.C-8

Peak-Hour North Station Vehicular Traffic

		<u>Phase I</u>			
		<u>A.M. Peak-Hour</u>	<u>To</u>	<u>P.M. Peak-Hour</u>	<u>To</u>
		<u>From</u>	<u>To</u>	<u>From</u>	<u>To</u>
Retail/Commercial					
Employee	7		0		7
Non-Employee	0		0		20
Office					
Employee	976		0		0
Non-Employee	122		0		0
	<u>Sub-Total</u>	<u>1105</u>	<u>0</u>	<u>27</u>	<u>1154</u>
		<u>Phase II</u>			
		<u>Preferred</u>			
Retail/Commercial					
Employee	5		0		5
Non-Employee	0		0		15
Office					
Employee	345		0		0
Non-Employee	50		0		0
Luxury Hotel					
Employee	2		0		0
Non-Employee	37		16		16
Residential					
Employee	4		1		1
Non-Employee	0		560		560
Public/Museum					
Employee	1		0		1
Non-Employee	0		0		25
	<u>Sub-Total</u>	<u>394</u>	<u>576</u>	<u>622</u>	<u>481</u>
TOTAL (Preferred)		1499	576	649	1635

FIGURE VI.C-3(a)

TRAFFIC ASSIGNMENTS
NORTH STATION

PHASE I 1987

AVERAGE WEEKDAY TRAFFIC
SITE GENERATED

(

(

Table VI.C-9
Traffic Assignments by Approach

	<u>%</u>
North Washington Street Bridge	13
Commercial Street	8
Haymarket Southbound On-ramp	2
Blackstone Street	2
New Congress Street	9
New Chardon Street	2
Staniford Street	8
Storrow Drive	18
Charles River Dam	19
Leverett Circle On-ramp	6
Causeway Street Southbound On-ramp	13
	<u>100</u>

1987 and 2000 Traffic Volumes

Total future traffic within the North Station Traffic Impact Area has been forecasted by adding future background traffic and future project-generated traffic, for both the preferred program and the optional program. In calculating future background traffic, a uniform growth factor of 0.5% per year was utilized.

Total 1987 and 2000 P.M. Peak Hour Directional traffic volumes at intersections affected by the North Station development are presented in Table VI.C-10 for the preferred and optional programs. Figures VI.C-4a through VI.C-4e indicate 1987 and 2000 average weekday traffic volumes for the development programs (background plus site-generated), together with the No-build AWDT for comparative purposes.

Intersection Capacity Analysis

Analysis of the capacity of major street intersections in the study area was undertaken to assess the traffic impact of the North Station project on the proposed street system and on related environmental factors, such as air quality. The capacity calculations and the production of parameters required for the air quality assessment were based upon a simplified critical lane method of analyses as presented in the National Cooperative Highway Research Bulletin 187.(6)

Each intersection was analyzed for the P.M. peak hour for existing (1980) conditions, the 1987 and 2000 no-build base condition, and the Phase I and Phase II (preferred and optional) development in the same corresponding future years.

Capacity analysis must assume a certain "Level-of-Service" which is related to the speed at which the traffic may flow, the number of stops, the occurrence of delays, etc. Lower volumes of traffic yield higher levels-of-service, so capacity must be defined at a

FIGURE VI.C-3(b)

TRAFFIC ASSIGNMENTS
NORTH STATION

PHASE II 2000
PREFERRED PROGRAM

6

€

NORTH STATION
REDEVELOPMENT
PROJECT

BOSTON REDEVELOPMENT AUTHORITY

EXISTING
LAND USE
(1982)

0 200 400 FT.
0 50 100 M.

Figure V-7

