Introduction to Algorithms

Kostja Siefen

Senior Technical Account Manager

The World's Fastest Solver

About the Speaker

Kostja Siefen
Senior Technical Account Manager
Gurobi Optimization

Agenda

- 1. Linear programming (LP)
 - a. Define LP
 - b. LP examples
 - c. Algorithms (high-level)
- 2. Mixed-integer programming (MIP)
 - a. Define MIP
 - b. MIP example
- 3. Basic techniques for solving MIP
 - a. Bounding the optimal solution
 - b. Bound-and-bound
 - c. Improvements (heuristics, cuts, etc.)
 - d. Termination criteria
- 4. Log file interpretation
- 5. Outlook: Tuning

Introducing LP

What is LP?

$$\min_{x \in \mathbb{R}^n} \quad f(x)$$

$$\text{subject to} \quad h_1(x) \leq 0$$

$$h_2(x) \leq 0$$

$$\vdots$$

$$h_m(x) \leq 0$$

- This is a Linear Programming (LP) instance if:
 - The objective function f(x) is linear

• e.g.,
$$f(x) = 3x1 + 2x2$$

- The functions $h_1(x), ..., h_m(x)$ are linear
 - e.g., $h_1(x) = x1 17x2 + 10$, etc.

$\max_{x \in \mathbb{R}^2}$	x_1	_	x_2					$\iff -\min_{x\in\mathbb{R}^2}-(x_1-x_2)$
subject to	x_1	+	$17x_{2}$			\leq	10	$\iff x_1 + 17x_2 - 10 \le 0$
	$2x_1$	+	$3x_2$	_	5	\geq	0	$\iff -2x_1 - 3x_2 + 5 \le 0$
	$4x_1$	+	x_2	_	9	=	0	$\iff $
	$-x_1$					\leq	0	$\iff \begin{cases} 4x_1 + x_2 - 9 \le 0, \\ -4x_1 - x_2 + 9 \le 0, \end{cases}$
					$-x_2$	\leq	0	

LP by picture

Algorithmic LP ideas

 $\min_{x \in \mathbb{R}^2} c^T x$ ect to $Ax \leq b$ subject to

Traverses edges between polyhedron's vertices

Simplex

Generates sequence of points in interior of polyhedron

img src: mathstools.com

Introducing MIP

What is MILP?

$$\min_{x \in \mathbb{R}^n} \quad f(x)$$
subject to
$$h_1(x) \leq 0$$

$$h_2(x) \leq 0$$

$$\vdots$$

$$h_m(x) \leq 0$$
Some x_i are integer

- This is a Mixed-Integer Linear Programming (MILP) instance if:
 - The objective function f(x) is linear

• e.g.,
$$f(x) = 3x1 + 2x2$$

- The functions $h_1(x), ..., h_m(x)$ are linear
 - e.g., $h_1(x) = x1 17x2 + 10$, etc.
- MILP = LP + integrality constraints!

MIP example: furniture manufacturing

Variables:

- x: number of stools we make
- *y*: number of chairs we make

Solution:
$$x^* = 4.5, y^* = 5.5$$

$$\Leftrightarrow \max_{x,y} \quad 10x + 11y$$

$$\Leftrightarrow \text{ subject to } \quad x + y \leq 10$$

$$\Leftrightarrow \quad 3x + 4y \leq 36$$

$$\Leftrightarrow \quad 3x + 5y \leq 41$$

$$\Leftrightarrow \quad 4x + 2y \leq 35$$
integer
$$x, y \geq 0$$

MIP by picture

$$\max_{x,y} \quad 10x \quad + \quad 11y$$
subject to
$$x \quad + \quad y \quad \leq \quad 10$$

$$3x \quad + \quad 4y \quad \leq \quad 36$$

$$3x \quad + \quad 5y \quad \leq \quad 41$$

$$4x \quad + \quad 2y \quad \leq \quad 35$$
integer $x, y \geq 0$

Why not enumerate (try) all the integer feasible points?

Why not enumerate all combinations of 0-1 values?

- Try all 2ⁿ points on Summit supercomputer at ORNL
 - 200 petaflops (2×10^{17})

n	0 – 1 points to check	Time	
10	1024	0 seconds	
60	1.15×10^{18}	6 seconds	7
70	1.18×10^{21}	1.6 hours	
120	1.33×10^{36}	210 billion years	××

Solving MIP

Can we try something simple?

- x = 0, y = 0 is a feasible solution!
- Then z^* must at least as large as f(0,0) = 0
- Currently, (0,0) is our *incumbent* solution

GUROBI

What about upper bounds?

- Use linear constraints to get an upper bound on the optimal objective z*
- All solutions have objective $z^* \le 210$
 - This is currently our best (upper) bound

$$z^* \coloneqq \max_{x,y} \quad 10x + 11y$$
s.t.
$$x + y \leq 10$$

$$3x + 4y \leq 36$$

$$3x + 5y \leq 41$$

$$4x + 2y \leq 35$$
integer $x, y \geq 0$

$$x + y \leq 10$$

$$0$$

$$10x \leq 10 \text{ and } y \leq 10$$

$$0$$

$$0$$

$$10x \leq 100 \text{ and } 11y \leq 110$$

$$0$$

$$0$$

How good is the incumbent?

- Measure the quality by the *(relative) MIP gap:* $\frac{|BestBd Incumbent|}{|Incumbent|} \times 100\%$
- Current gap is $\frac{210-0}{0} \times 100\%$ (undefined or $+\infty$)
 - This is a very poor gap!

$$z^* \coloneqq \max_{x,y} \quad 10x \quad + \quad 11y$$
s. t.
$$x \quad + \quad y \quad \leq \quad 10$$

$$3x \quad + \quad 4y \quad \leq \quad 36$$

$$3x \quad + \quad 5y \quad \leq \quad 41$$

$$4x \quad + \quad 2y \quad \leq \quad 35$$
integer $x, y \geq 0$

Can we do better?

- A MIPGap of 0 means the incumbent solution is optimal
 - This happens when the bound and the incumbent have equal value
- Our goal: try to improve the bound and/or incumbent

Upper bound from relaxation

$$z^{\underbrace{kP}} \coloneqq \max_{x,y} \quad 10x \quad + \quad 11y$$
s.t.
$$x \quad + \quad y \quad \leq \quad 10$$

$$3x \quad + \quad 4y \quad \leq \quad 36$$

$$3x \quad + \quad 5y \quad \leq \quad 41$$

$$4x \quad + \quad 2y \quad \leq \quad 35$$
integer $x, y \geq 0$

Can we improve our upper bound?

- The integrality constraints are hard...let's temporarily ignore them
- LP (root) relaxation: relax (remove) integrality restrictions
- Optimal solution is (4.5, 5.5) $\Rightarrow z^{LP} = f(4.5, 5.5) = 105.5$ is an upper bound on z^* !

Lower bound from heuristics

Can we improve our incumbent?

- Let's "guess" at a good solution
 - This is commonly called a "heuristic"
- Try: round down the relaxed solution (4.5, 5.5): $\Rightarrow (|4.5|, |5.5|) = (4, 5)$ is feasible!
- f(4,5) = 95...we have improved our incumbent!

Cuts

$$z^* \coloneqq \max_{x,y} \quad 10x \quad + \quad 11y$$
s. t. $x \quad + \quad y \quad \leq \quad 10$
 $3x \quad + \quad 4y \quad \leq \quad 36$
 $3x \quad + \quad 5y \quad \leq \quad 41$
 $4x \quad + \quad 2y \quad \leq \quad 35$

LP optimum:
 $x = 4.5, y = 5.5$

Fractional solutions are bad!

- Is there an inequality for our MIP that "cuts off" the LP optimum (4.5, 5.5)?
- Cuts: inequalities that tighten our relaxation of the MIP feasible region
- Let's try to derive a cut that is violated by (4.5, 5.5)!

Cuts

$$\max_{x, y, s_1 x, s_2, s_3, s_4} 10x + 11y$$

$$x + y$$

$$S_{10} = 10$$

$$v + \$6 = 36$$

$$3x + 4y \le \$6 = 36$$

 $3x + 5y \le \$1 = 41$

$$4x + 2y \leq 35 = 35$$

$$s_1, s_i$$
nteger, $x, y \ge 0$

1. Aggregate

LP optimum:

x = 4.5, y = 5.5

$$-3x - 3y - 3s_1 = -30$$
 and

$$3x + 5y + s_3 = 41$$

$$2y - 3s_1 + s_3 = 11$$

$$y - \frac{3}{2}s_1 + \frac{1}{2}s_3 = \frac{11}{2}$$

2. Weaken

$$y - \frac{3}{2}s_1 + \frac{1}{2}s_3 = \frac{11}{2}$$

$$\downarrow \qquad \qquad \downarrow$$

$$y \not + \left[-\frac{3}{2}\right] \mathfrak{G}_1 + \lambda \left[\frac{1}{2}\right] \mathfrak{F}_3 \le \frac{11}{2}$$

$$\downarrow \qquad \qquad \downarrow$$

3. Strengthen

Satisfied

without

slack at

(4.5, 5.5)

$$y - 2s_1 \le \frac{11}{2}$$

$$\downarrow \qquad \qquad \downarrow$$

$$y - 2s_1 \le \left| \frac{11}{2} \right| = 5$$

New inequality!

Cuts

LP optimum:

$$x \neq 4.5,$$
 $y = 5.5$

$$z^* \coloneqq \max_{x,y} \quad 10x \quad + \quad 11y$$
s.t.
$$x \quad + \quad y \quad \leq \quad 10$$

$$3x \quad + \quad 4y \quad \leq \quad 36$$

$$3x \quad + \quad 5y \quad \leq \quad 41$$

$$4x \quad + \quad 2y \quad \leq \quad 35$$

$$3x \quad + \quad 2y \quad \leq \quad 25$$
integer $x, y \geq 0$

Is this new inequality any good?

- It cuts off the previous optimal solution!
- Solving the new, tightened relaxation yields a new upper bound
- New upper bound on z^* is 10(5) + 11(5) = 105

Improving bounds

What can we say about z^* ?

- New upper bound: $z^* \le 105$
- But the optimal solution to the relaxation is (5, 5)
 - This is feasible to the original problem!
 - 105 is a new incumbent objective value
- We have solved the problem: $z^* = 105$

Presolve

$$z^* \coloneqq \max_{x,y} \quad 10x \quad + \quad 11y$$
s.t. $x \quad + \quad y \quad \leq \quad 10$
 $3x \quad + \quad 4y \quad \leq \quad 36$
 $3x \quad + \quad 5y \quad \leq \quad 41$
 $4x \quad + \quad 2y \quad \leq \quad 35$
integer $x, y \geq 0$

Can we tighten the formulation just by looking at it?

- Tighten: reduce the feasible region of relaxation without removing any feasible points
- 4x is even, and so is 2y...
- This doesn't change optimal solution relaxation

Branch-and-bound

$$z^* \coloneqq \max_{x,y} \quad 10x \quad + \quad 11y$$
s.t. $x \quad + \quad y \quad \leq \quad 10$
 $3x \quad + \quad 4y \quad \leq \quad 36$
 $3x \quad + \quad 5y \quad \leq \quad 41$
 $4x \quad + \quad 2y \quad \leq \quad 34$
integer $x, y \geq 0$

Can we combine these ideas with brute-force enumeration?

- Yes! For example, consider the relaxation solution (x, y) = (4.5, 5.5)
 - x has to be integer. So is $x \le 4$ or $x \ge 5$?
 - Let's investigate!

Branch-and-bound tree

Branch-and-bound tree

Geometrically, what does this look like?

$$z^* \coloneqq \max_{x,y} \quad 10x \quad + \quad 11y$$
s.t.
$$x \quad + \quad y \quad \leq \quad 10$$

$$3x \quad + \quad 4y \quad \leq \quad 36$$

$$3x \quad + \quad 5y \quad \leq \quad 41$$

$$4x \quad + \quad 2y \quad \leq \quad 34$$
integer
$$x, y \geq 0$$

$$x \leq 4$$

$$y \geq 5$$

Branch-and-bound tree

Branch-and-bound

$$z^* \coloneqq \max_{x,y} \quad 10x \quad + \quad 11y$$
s.t. $x \quad + \quad y \quad \leq \quad 10$
 $3x \quad + \quad 4y \quad \leq \quad 36$
 $3x \quad + \quad 5y \quad \leq \quad 41$
 $4x \quad + \quad 2y \quad \leq \quad 34$
integer $x, y \geq 0$

Looks like a lot of work!

- For the computer not for you!
- Gurobi does presolve, cuts, heuristics, branch-and-bound and more "auto-magically"!

Termination criteria

- MIP gap
 - E.g., terminate if *relative* MIP gap $\leq 1\%$ or *absolute* MIP gap ≤ 10 ,
- Time spent solving
 - E.g., terminate after 3600 seconds have elapsed
- Number of nodes explored
 - E.g., terminate after solver visits 100,000 nodes
- Number of feasible solutions found
- ...and more!

See the Termination section of the Parameters page in the Reference Manual

Gurobi logs

Recognize these ideas in the Gurobi logs

Log file structure

LP

- 1. User input + model statistics
- 2. Presolve
- 3. Simplex or Barrier iterations
- 4. Termination statistics

MILP

- 1. User input + model statistics
- 2. Presolve
- 3. Root node relaxation
- 4. Branch-and-bound tree exploration
- 5. Termination statistics

Simplex log

Iteration	Objective	Primal Inf.	Dual Inf.	Time
0	1.7748600e+04	6.627132e+03	0.000000e+00	0s
9643	1.1574611e+07	1.418653e+03	0.000000e+00	5s
14440	1.1607748e+07	4.793500e+00	0.000000e+00	10s
15213	1.1266396e+07	0.000000e+00	0.000000e+00	11s

Solved in 15213 iterations and 10.86 seconds Optimal objective 1.126639605e+07

Barrier log

Barrier statistics:

AA' NZ : 2.836e+03

Factor NZ : 3.551e+03 (roughly 40 MBytes of memory)

Factor Ops: 1.739e+05 (less than 1 second per iteration)

Threads : 4

	Objective		Resid	dual		
Iter	Primal	Dual	Primal	Dual	Compl	Time
0	1.30273209e+06	0.00000000e+00	5.90e+02	0.00e+00	7.32e+00	12s
1	1.04326180e+05	-5.84079103e+02	4.84e+01	1.69e+00	5.95e-01	12s
2	9.46325157e+03	-4.40392705e+02	2.92e+00	1.35e+00	5.46e-02	12s
3	3.66683689e+03	9.27381244e+02	1.94e-01	5.35e-01	1.41e-02	12s
4	3.37449982e+03	1.79938013e+03	1.29e-01	2.41e-01	7.64e-03	12s
5	3.13244138e+03	1.90266941e+03	8.89e-02	2.07e-01	6.00e-03	12s
6	2.71282610e+03	2.11401255e+03	3.20e-02	1.15e-01	2.96e-03	12s
7	2.48856811e+03	2.18107490e+03	1.06e-02	7.26e-02	1.56e-03	12s
8	2.35427593e+03	2.21183615e+03	3.20e-03	4.52e-02	7.36e-04	12s
9	2.30239737e+03	2.22464753e+03	1.53e-03	2.38e-02	4.03e-04	12s
10	2.25547118e+03	2.23096162e+03	3.00e-04	1.40e-02	1.30e-04	12s
11	2.24052450e+03	2.23917612e+03	4.10e-06	6.33e-04	7.20e-06	12s
12	2.23967243e+03	2.23966346e+03	2.01e-08	5.01e-06	4.82e-08	12s
13	2.23966667e+03	2.23966666e+03	1.11e-10	1.14e-13	4.81e-11	13s

Barrier solved model in 13 iterations and 12.51 seconds Optimal objective 2.23966667e+03

Barrier crossover log

Barrier solved model in 13 iterations and 12.51 seconds Optimal objective 2.23966667e+03

Root crossover log...

40 DPushes	remaining with	DInf	0.0000000e+00	13s
0 DPushes	remaining with	DInf	7.8159701e-14	13s
1176 PPushes	remaining with	PInf	0.000000e+00	13s
0 PPushes	remaining with	PInf	0.0000000e+00	13s
Push phase comp	lete: Pinf 0.0	000000	e+00, Dinf 1.2079227e-13	13s

Root simplex log...

Iteration	Objective	Primal Inf.	Dual Inf.	Time
1219	2.2396667e+03	0.000000e+00	0.000000e+00	13s
1219	2.2396667e+03	0.000000e+00	0.000000e+00	13s

Root relaxation: objective 2.239667e+03, 1219 iterations, 0.43 seconds

MIP tree exploration

	No	des	Curren	nt Node		1	Objec	ctive Bounds		Wor]	ζ.
Ι	Expl	Unexpl	Obj Dep	th Int	Inf		Incumbent	BestBd	Gap	It/Node	Time
	О	0	8.0000e+08	0	72	3.	.1334e+09	8.0000e+08	74.5%	_	0s
Н	0	0			2	. 40	00019e+09	8.0000e+08	66.7%	_	0s
	0	0	8.0000e+08	0	72	2.	.4000e+09	8.0000e+08	66.7%	_	0s
Н	0	0			2	. 06	66683e+09	8.0000e+08	61.3%	_	0s
	0	0	8.0000e+08	0	72	2.	.0667e+09	8.0000e+08	61.3%	_	0s
	0	0	8.0000e+08	0	72	2.	.0667e+09	8.0000e+08	61.3%	-	0s
	0	2	8.0000e+08	0	72	2.	.0667e+09	8.0000e+08	61.3%	_	0s
Н	796	711			2	. 05	50016e+09	8.0000e+08	61.0%	4.4	0s
Н	796	675			2	. 05	50016e+09	8.0000e+08	61.0%	4.4	0s
*	3353	2003		109	2	. 00	00021e+09	8.0000e+08	60.0%	4.5	0s
Н	5097	3281			2	.00	00019e+09	8.0000e+08	60.0%	4.1	0s
Н	5571	3544			1	. 95	50018e+09	8.0000e+08	59.0%	4.0	0s
*	6228	4017		82	1	. 94	10019e+09	8.0000e+08	58.8%	3.9	1s
*	6347	4038		97	1	. 92	25019e+09	8.0000e+08	58.4%	3.9	1s
Н	6422	3912			1	. 83	33347e+09	8.0000e+08	56.4%	3.9	1s
*	7999			104			L6683e+09		56.0%	3.8	1s
Н	9958			-				8.0000e+08	55.6%	3.8	1s
11	2200	0012					000100100	0.00000000	00.00	.	

Solving a MIP model

© ZUZU GUIODI OPUIIIIZALIOII, LLC

Outlook: Algorithmic Performance

- Solving optimization problems is never fast enough
- Great solver performance is the sum of many parts
 - Model construction speed
 - Selection and configuration of the underlying algorithms
 - Hardware
 - ...and a lot more
- The default settings of Gurobi are carefully selected to perform best on a large variety of model instance
- However, there is usually some tuning potential left, e.g.
 - The model formulation itself
 - More efficient use of the API
 - Parameter changes
 - ...and a lot more

Thank you!

The World's Fastest Solver

Your Next Steps

- Try Gurobi 9.0 Now!
 - www.gurobi.com/free-trial
 - Get a 30-day commercial trial license of Gurobi at academic and research licenses are free!
- For questions about Gurobi pricing, please contact <u>sales@gurobi.com</u> or <u>sales@gurobi.de</u>
- Need help leveraging Optimization for your business?
 - Contact us at info@gurobi.com
- A recording of this webinar, including the slides, will be available in roughly one week.

This Week!

Wednesday, June 24th

- Compute Server and Cloud Demo
- Introduction to Algorithms
- Advanced Algorithms
- Ask the Experts: R&D Team
- Thursday, June 25th
 - Customer Case Study: KPMG
 - Customer Case Study: NFL
 - Ask the Experts: Fireside chat with Michael North, VP of Planning & Scheduling at NFL