МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«КРЫМСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ им. В. И. ВЕРНАДСКОГО» ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

Кафедра компьютерной инженерии и моделирования

ВЫБОР БЫСТРОДЕЙСТВИЯ ПРОЦЕССОРА И ДИСЦИПЛИНЫ ОБСЛУЖИВАНИЯ ПРИ СИНТЕЗЕ КС

Отчет по лабораторной работе №3 по дисциплине «Компьютерные системы» студента 3 курса группы ИВТ-б-о-222 Гоголева Виктора Григорьевича

Направления подготовки 09.03.01«Информатика и вычислительная техника»

Вариант №27

Задание

- 1. Найти минимальное значение быстродействия при котором существует стационарный режим обработки заданий.
- 2. Рассчитать оптимальное быстродействие процессора для КС. Режим обработки отсутствие ограничений на время ожидания заявок. Коэффициент k выбирается произвольно (k=0.5)
- 3. Определить времена ожидания заявок в очереди для потоков с входными данными по вариантам из Приложение 2.

d	та		Задачи	, pen			емой, и упления		енсивно	ость і	ΙX	
ме	пан		1		2		3		4		5	Приоритеты потоков
Ho	варі	№	λ_1	№	λ_2	№	λ_3	№	λ_4	№	λ_5	
2	7	7	1,5	14	3,9	13	0,6	4	2,3	18	0,9	$1 - 6\pi$, $2 - 6\pi$, $3 - 6\pi$, $4 - 6\pi$, $5 - 6\pi$

№ варианта	Ограничение на	Тип ВС	Базовая ЭВМ	Тип ВЗУ	Тип памяти	Исследуемое устройство (п. 2.1 задания)	Тип каналов	Длина пакета, Кбайт	Кол. абонентов
27	стоимость, 2800 \$	ВСТД	IBM PC	винчестер, флэш	любая	линия связи	кабельный, беспроводной	4	6

Таблица ПЗ.2

Трудоемкости задач и число обращений к файлам

Номер варианта	Трудоёмкость процессорных операций, млн. оп.	FI	F2	Сред	цнее чи F4	сло обј F5	ращені	ий к фа F7	йлам F8	F9	FIO	Количество обращений удаленных пользователей (ВСТ ЛВС)
-												
1	1000	100	150	_	-	-		100	40	_	-	10
2	2000	_	_	150	30	-	_	_	_	180	_	15
3	3000	-	-	100	-	150	-	-	-	-	40	20
4	4000	120	40	-	-	-	30	-	180	-	-	25
5	5000	-	150	80	-	60	-	120	-	-	-	30
6	6000	80	-	80	-	-	70	-	-	200	80	30
7	7000	100	-	-	50	-	-	110	-	200	-	25
8	8000	-	120	60	-	80	-	-	30	-	180	20
9	9000	100	50	-	90	-	-	-	-	-	80	15
10	10000	-	150	-	-	-	100	50	-	40	-	10
11	1000	120	-	80	100	-	-	-	40	30	10	10
12	3000	150	40	-	-	80	-	20	-	100	-	15
13	3000	-	50	50	-	-	80	-	100	-	-	20
14	4000	50	-	150	60	-	-	120	-	50	-	25
15	5000	-	100	180	-	-	50	-	40	-	40	30
16	6000	-	150	200	60	40	-	50	-	120	-	30
17	7000	30	40	-	80	-	100	-	-	-	50	25
18	8000	200	-	110	-	120	-	-	-	40	30	20
19	9000	-	40	-	150	-	-	50	-	-	40	15
20	10000	50	-	40	-	150	50	_	80	-	_	10

Параметры файлов	F1	F2	F3	F4	F5	F6	F7	F8	F9	F1O
Длина файла, Мбайт	370	250	360	280	320	375	280	350	140	350
Средняя длина блока записей, Кбайт	40	30	75	40	40	50	40	75	25	20

Ход работы

Инте	нсивность пост	упления			
	Λ =	9,20		λ	1,50
		-			3,90
Лоля з	адач класса т в	з обшей смеси			0,60
<u> </u>	Р =	0,16		_	2,30
		0,42			0,90
		0,07	1		
		0,25			
		0,10			

Рисунок 1 – расчет интенсивности поступления и доли задачи класса m в общей смеси

	θ	=	4,815E+09		1,141E+09		1141,30	
	U	_	4,013ET03					
					1,696E+09		1695,65	
					1,957E+08	4,815E+09	195,65	4815
					1,000E+09		1000,00	
					7,826E+08		782,61	
торой	нача	льны	м момент труд	доёмкости				
торой	нача θ ²	льны =	м момент труд 5,829E+18	доёмкости	1,30E+18			
торой				доёмкости	1,30E+18 2,88E+18			
торой				доёмкости		5,83E+18		
торой				доёмкости	2,88E+18	5,83E+18		

Рисунок 2 — расчет трудоемкости процессорных операций и второго начального момента трудоемкости

$$\begin{split} L &= \sum_{i=1}^{M} \lambda_{i} \theta_{i} \; ; \quad B > \sum_{i=1}^{M} \lambda_{i} \theta_{i} \; . \quad L^{(2)} = \sum_{i=1}^{M} \lambda_{i} \theta_{i}^{(2)} \; . \\ \\ B_{opt} &= L + 0.5L^{-1} \left\{ k \Lambda L^{(2)} + \left[(2L^{2} + k \Lambda L^{(2)}) k \Lambda L^{(2)} \right]^{0.5} \right\}, \end{split}$$

$$\mathcal{G}_i = \frac{\theta_i}{B},$$

Мини	имальное и	и оптимальн	ое быстродеі	йствие		
1	L =	1,145E+10	Li =	1,712E+09	L2i =	1,95E+18
2	B >	1,145E+10		6,613E+09		1,12E+19
	L2 =	1,60E+19		1,174E+08		2,30E+16
	B _{opt} =	1,853E+10		2,300E+09		2,30E+18
				7,043E+08		5,51E+17

Рисунок 3 – расчет минимального и оптимального быстродействия

Время ожидания	заявок				
δ =	0,100 8	S ² =	0,010	λ	1,50
	0,148		0,022		3,90
	0,017		0,000		0,60
	0,087		0,008		2,30
	0,068		0,005		0,90

Рисунок 4 – расчет времени ожидания заявок

$$R = \sum_{i=1}^{M} \rho_i$$

Заг	рузка	а сист	гемы						
F	R :	=	0,1224	ρ	=	0,15	ρ2	=	0,015
						0,58			0,086
						0,01			0,000
						0,20			0,018
						0,06			0,004

Рисунок 5 – расчет загрузки системы

$$w_{k} = \begin{cases} \frac{R_{k-1} \mathcal{G}_{k}}{1 - R_{k-1}} + \frac{\sum_{i=1}^{k} \lambda_{i} \mathcal{G}_{i}^{(2)}}{2(1 - R_{k-1})(1 - R_{k})} & (k = 1, ..., M_{1}) \\ \frac{R_{M_{1}} \mathcal{G}_{k}}{1 - R_{M_{1}}} + \frac{\sum_{i=1}^{M} \lambda_{i} \mathcal{G}_{i}^{(2)}}{2(1 - R_{k-1})(1 - R_{k})} & (k = M_{1} + 1, ..., M_{1} + M_{2}), \\ \frac{R_{M_{1}} \mathcal{G}_{k}}{1 - R_{M_{1}}} + \frac{\sum_{i=1}^{M} \lambda_{i} \mathcal{G}_{i}^{(2)}}{2(1 - R_{M_{1} + M_{2}})(1 - R)} & (k = M_{1} + M_{2} + 1, ..., M) \end{cases}$$

ассчёт вр	емени для	я заяі	вок						
			Абсол	іютный прио	ритет				
3		W4	=	0,0161305					
		W5	=	0,0356536					
		Относительный при							
		W2	=	0,1141774					
		W1	=	37,331288					
			Б	ез приоритет	a				
		W3	=	6,8077287					

Рисунок 6 – расчет времени для заявок

ВЫВОД

При выполнении лабораторной работы я изучил теоретические сведенья и основные формулы для вычисления, рассчитал минимальное значение быстродействия, определил оптимальное быстродействие процессора для КС, нашел время ожидания заявок в очереди для потоков с входными данными.

Цель работы и поставленные задачи выполнены в полном объеме.