Project Report

DETECTION OF PARKINSON'S DISEASE USING MACHINE LEARNING

Submitted By

PNT2022TMID54209

AARTHI.M - 210119104001

GAYATHRI.A - 210119104004

GOWSALYA.P - 210119205004

HARIBABU.B - 210119104005

MISSAL ISRAEL - 210119104007

DARVINESH.R - 210119205002

TABLE OF CONTENTS

1.	INTRODUCTION	4
	1.1 Project Overview	4
	1.2 Purpose	4
2.	LITERATURE SURVEY	5
	2.1 Existing problem	5
	2.2 References	5
	2.3 Problem Statement Definition	6
3.	IDEATION & PROPOSED SOLUTION	8
	3.1 Empathy Map Canvas	8
	3.2 Ideation & Brainstorming	9
	3.3 Proposed Solution	10
	3.4 Problem Solution fit	11
4.	REQUIREMENT ANALYSIS	12
	4.1 Functional requirement	12
	4.2 Non-Functional requirements	12
5.	PROJECT DESIGN	14
	5.1 Data Flow Diagrams	14
	5.2 Solution & Technical Architecture	14
	5.3 User Stories	16
6.	PROJECT PLANNING & SCHEDULING	18
	6.1 Sprint Delivery Schedule	18
	6.2 Sprint Planning & Estimation	18
	6.3 Reports from JIRA	19
7.	CODING & SOLUTIONING	20
8.	TESTING	22
	8.1 Test Cases	22
	8.2 User Acceptance Testing	22
	8.2.1.Defect Analysis	23
	8.2.2.Testcase Analysis	23
9.	RESULTS	25
	9.1 Performance Metrics	25
10.	ADVANTAGES & DISADVANTAGES	27
11.	CONCLUSION	28
12.	FUTURE SCOPE	29
13.	APPENDIX	30

Source Code	44
GitHub & Project Demo Link	44

CHAPTER - 1

INTRODUCTION

1.1.PROJECT OVERVIEW:

In the present decade of accelerated advances in Medical Sciences, most studies fail to lay focus on ageing diseases. These are diseases that display their symptoms at a much advanced stage and makes a complete recovery almost improbable. Parkinson's disease (PD) is the second most commonly diagnosed neurodegenerative disorder of the brain. One could argue, that it is almost incurable and inflicts a lot of pain on the patients. All these make it quite clear that there is an oncoming need for efficient, dependable and expandable diagnosis of Parkinson's disease. A dilemma of this intensity requires the automating of the diagnosis to lead accurate and reliable results. It has been observed that most PD Patients demonstrate some sort of impairment in speech or speech dysphonia, which makes speech measurements and indicators one of the most important aspects in prediction of PD. The aim of this work is to compare various machine learning models in the successful prediction of the severity of Parkinson's disease and develop an effective and accurate model in order to help diagnose the disease accurately at an earlier stage which could in turn help the doctors to assist in the cure and recovery of PD Patients. For the aforementioned purpose we plan on using the Parkinson's Tele monitoring dataset which was acquired from the UCIML repository.

1.2.PURPOSE:

The aim of this work is to compare various machine learning models in the successful prediction of the severity of Parkinson's disease and develop an effective and accurate model in order to help diagnose the disease accurately at an earlier stage which could in turn help the doctors to assist in the

cure and recovery. This project showed 90% efficiency. In our model, a huge amount of data is collected from the normal person and also previously affected person by Parkinson's disease.

CHAPTER - 2

LITERATURE SURVEY

2.1.EXISTING PROBLEM:

In existing system, PD is detected at the secondary stage only (Dopamine deficiency) which leads to medical challenges. Also doctor has to manually examine and suggest medical diagnosis in which the symptoms might vary from person to person so suggesting medicine is also a challenge. Thus the mental disorders are been poorly characterized and have many health complications. PD is generally diagnosed with the following clinical methods as,

- MRI or CT scan Conventional MRI cannot detect early signs of Parkinson's disease
- PET scan is used to assess activity and function of brain regions involved in movement
- SPECT scan can reveal changes in brain chemistry, such as a decrease in dopamine.

This results in a high misdiagnosis rate (up to 25% by non-specialists) and many years before diagnosis, people can have the disease. Thus existing system is not effective in early prediction and accurate medicinal diagnosis to the affected people.

2.2.REFERENCES:

- [1] Adrien Payan, Giovanni Montana, Predicting Alzheimer's disease: a neuroimaging study with 3D convolutional neural networks.
- [2] Alemami, Y. and Almazaydeh, L. (2014) Detecting of Parkinson Disease through Voice Signal Features. Journal of American Science.
- [3] Fayao Liu, Chunhua Shen, Learning Deep Convolutional Features for MRI Based Alzheimer's Disease Classification.
- [4] Hadjahamadi, A.H. and Askari, T.J. (2012) A Detection Support System for Parkinson's Disease Diagnosis Using Classification and Regression Tree. Journal of Mathematics and Computer Science, 4, 257-263.

- [5] Little, M.A., McSharry, P.E., Hunter, E.J. and Ramig, L.O. (2008), Suitability of Dysphonia Measurements for Telemonitoring of Parkinson's disease. IEEE Transactions on Biomed ical Engineering, 56, 1015-1022.
- [6] Muhlenbach, F. and Rakotomalala, R. (2015) Discretization of Continuous Attributes. In: Wang, J., Ed., Encyclopedia of Data Warehousing and Mining, Idea Group Reference, 397-402.
- [7] Olanrewaju, R.F., Sahari, N.S., Musa, A.A. and Hakiem, N. (2014) Application of Neural Networks in Early Detection and Diagnosis of Parkinson's Disease. International Conference on Cyber and IT Service Management.
- [8] Saman Sarraf, Danielle D. DeSouza, John Anderson, Ghassem Tofighi, DeepAD: Alzheimer's Disease Classification via Deep Convolutional Neural Networks using MRI and fMRI, Cold Spring Harbor Laboratory Press.

2.3.PROBLEM STATEMENT DEFINITION:

Problem Statement (PS)	I am (Customer)	I'm trying to	But	Because	Which makes me feel
PS-1	Patient	Consult a doctor	I can't consult a doctor	There is more crowd.	Restless
PS-2	Person	Check whether I am a PD patient or not.	I don't know how to recognize	I don't know the method of recognition	I am not with enough knowledge.

CHAPTER - 3

IDEATION & PROPOSED SOLUTION

3.1.EMPATHY MAP CANVAS:

3.2.IDEATION AND BRAINSTORMING:

3.3.PROPOSED SOLUTION:

S.NO	PARAMETER	DESCRIPTION
1	Problem Statement (Problem to be solved)	Creating a web application for the detection of Parkinson disease using machine learning to predict the disease at the earlier stage.
2	Idea / Solution description	They are recognized more faster and more accurate. The model trained to learn the low level to high level features and the classification results are validated.
3	Novelty / Uniqueness	Quick results. No prior knowledge is required.
4	Social Impact / Customer Satisfaction	It is free to use. Accurate results will be given. More secure.
5	Business Model (Revenue Model)	Less money is required. By using this application it will be easier to detect the disease at the earlier stage with no cost.
6	Scalability of the Solution	The performance of this application will be high. The cost of this application is decreased.

3.4.PROBLEM SOLUTION FIT:

3. TRIGGERS
What tiggers catchers to keft igs seeing the regishiour inviting solar panels, reading show a smore efficient solation in the news.

1. In your solution

If you are working on an entiting business, write down your current solution first, with down your current solution first.

If you are working on an entiting business, write down your current solution first, with load of sales and summers to keep it think until you fill in the conversal and once up with an obtained first within customer limitations, solves a problem and matches customer bulbackdoor.

S. CHANNELS of BEHAVIOUR

5.1 ONLINE

What light de down so the sales do comment to be solled? Extract solles classed in the string on a new visiting customer limitation, solves a problem and matches customer bulbackdoor.

They can upload images and predict through on line.

1.1 OFFLINE

1.2 ONLINE

1.3 ONLINE

1.3 ONLINE

1.4 ONLINE

1.5 ONLINE

What kind Of actions dO custOmers take offine? Extract Offine channels from N and use them for custOmer develOmmen* 4. EMOTIONS: BEFORE / AFTER \mathbf{EM} They are recognized more faster and How do customers feel when they face a problem or a job and afterwards?
¿¿ lost insecure > confident, in control - use it in your communication strategy & design. They have to prepare the spiral and more accurate. wave images by writing with hand and The person may feel insecure before . The model trained to learn the low level upload the images in the system. to high level features and the After this he will feel more secure. classification results are validated. Before it takes long for the disease to be predicted. After using this application more time will be

REQUIREMENT ANALYSIS

4.1.FUNCTIONAL REQUIREMENT:

FR NO:	FUNCTIONAL REQUIREMENT	SUB REQUIREMENT		
FR-1	User Registration			
		Registration through Gmail		
FR-2	User Confirmation			
		Confirmation via Email		
FR-3	Uploading Dataset			
		Spiral and wave images are to be uploaded.		
FR-4	Requesting Solution			
		Uploaded images are compared with the pre-defined Model and solution is generated.		
FR-5	Downloading Solution			
		The output can be downloaded in the PDF format.		

4.2.NON-FUNCTIONAL REQUIREMENT:

FR.NO:	NON-FUNCTIONAL REQUIREMENT	DESCRIPTION
NFR-1	Usability	
		The system allows the user to perform the tasks easily and efficiently.
NFR-2	Security	
		Assuring all data inside the system or its part will be protected against unauthorized access.
NFR-3	Reliability	
		The website takes time when

		the application runs in a single		
		server.		
NFR-4	Performance			
		Response time and the		
		processing time is fast.		
NFR-5	Availability			
		The system will be available		
		100% of the time.		
NFR-6	Scalability			
		The website is scalable.		

CHAPTER - 5

PROJECT DESIGN

5.1.DATA FLOW DIAGRAM:

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

5.2.SOLUTION AND TECHNICAL ARCHITECTURE:

Solution architecture is a complex process – with many sub-processes – that bridges the gap between business problems and technology solutions.

Its goals are to:

- Find the best tech solution to solve existing business problems.
- Describe the structure, characteristics, behavior, and other aspects of the software to project stakeholders.
- Define features, development phases, and solution requirements.
- Provide specifications according to which the solution is defined, managed, and delivered.

5.3.USER STORIES:

USER TYPE	FUNCTIONAL REQUIREMENT	USER STORY NUMBER	USER STORY/TASK	ACCEPTANCE CRITERIA	PRIORITY	RELEAS
Customer(Mobile User)	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account /dashboard	High	Sprint-1
	Login	USN-2	As a user, I can log into the application by entering email & password	E-mail ID accounts	High	Sprint-1
	Dashboard	USN-3	As a user I can view the page of the application where i can upload my images of spiral and wave.	I can access my account/Dashboard.	High	Sprint-2
Customer (Web user)	Registration	USN-4		I can register using my username and password.	High	Sprint-3
	Login	USN-5	As a user, I can login to my website dashboard with the login credentials.	I Can login using my user credentials.	High	Sprint-3
	Dashboard	USN-6	As a user, I can view the web application where I can upload my images.	I can access my accounts/Dashboard.	High	Sprint-4
Administrator	Login	USN-7	As a admin, I can login to the website using	website using my	High	Sprint-1

		my login credentials.			
Dashboard	USN-8	As a admin, I can view the dashboard of the application.	I can access my dashboard.	High	Sprint-2

PROJECT PLANNING AND SCHEDULING

6.1.SPRINT DELIVERY SCHEDULE:

TITLE	DESCRIPTION	DATE
Ideation Phase	Literature Survey	29 August 2022 –
	Empathy Map	17 september 2022
	Brainstorming	
	Problem Statement	
Project Design Phase 1	Problem Solution Fit	19 september 2022-
	 Proposed Solution 	01 october 2022
	Solution Architecture	
Project Design Phase 2	Requirement Analysis	03 october 2022-
	Customer Journey	15 october 2022
	 Data Flow Diagrams 	
	Technical Architecture	
Project Planning Phase	Sprint Delivery Plan	17 october 2022-
	JIRA files	22october 2022
Project Development Phase	• Sprint 1	24 october 2022-
	• Sprint 2	19 november 2022
	• Sprint 3	
	• Sprint 4	

6.2.SPRINT PLANNING AND ESTIMATION:

SPRINT	FUNCTIONAL REQUIREMENT	USER STORY NUMBER	USER STORY/TASK	STORY POINTS	PRIORITY	TEAM MEMBERS
Sprint-1	Pre-processing data	USN-1	Collect Dataset	5	High	Haribabu
Sprint-1		USN-2	Import the required libraries, Read&Clean the datasets.	5	High	Gowsalya
Sprint-2	Building the model	USN-1	Split the data into dependent and independent variables.	4	High	Gayathri

Sprint-2		USN-2	Apply using	2	Medium	Israel
			regression			
			model.			
Sprint-3	Application	USN-1	Build python	5	High	Aarthi
_	Building		flask			
			application and			
			HTML page.			
Sprint-3		USN-2	Execute and	2	Medium	Darvinesh
			test the			
			application.			
Sprint-4	Training the model	USN-1	Train machine	5	High	Gayathri
	-		learning model.			
		USN-2	Integrate flask.	5	High	Aarthi

6.3.REPORTS FROM JIRA:

CODING AND SOLUTION

```
1 from flask import Flask, request, render_template
3 import cv2
4 from skimage import feature
5 import os.path
6 #from werkzeug.utils import secure_filename
8 #from model import model
11 app = Flask(__name__)
12
13
15 def about():
      return render_template("home.html")
17
18
19 @app.route("/home")
      return render_template("home.html")
22
23
24 @app.route("/upload")
25 def test():
      return render_template("pred.html")
29 @app.route("/logout")
30 def log():
31
       return render_template("home.html")
```

```
34 @app.route('/predict', methods=['GET', 'POST'])
 35 def upload():
 36
        if request.method == 'POST':
             f = request.files['file'] # requesting the file
 37
 38
             #filename_secure = secure_filename(f.filename)
 39
             basepath = os.path.dirname(
 40
                '__file__') # storing the file directory
 41
             # storing the file in uploads folder
 42
             filepath = os.path.join(basepath, "uploads", f.filename)
 43
             f.save(filepath) # saving the file
 44
 45
             # Loading the saved model
 46
             print("[INFO] loading model...")
 47
             model = pickle.loads(open('parkinson.pkl', "rb").read())
 48
              '''local_filename = "./uploads/"
 49
             local_filename += filename_secure
             print(local_filename)'''
 50
 51
 52
             # Pre-process the image in the same manner we did earlier
 53
             image = cv2.imread(filepath)
 54
             output = image.copy()
 55
             # Load the input image, convert it to grayscale, and resize
 56
 57
             output = cv2.resize(output, (128, 128))
 58
              image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
 59
             image = cv2.resize(image, (200, 200))
 60
             image = cv2.threshold(image, 0, 255,
 61
                                  cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
 62
52
63
           # Quantify the image and make predictions based on the extracted features using the last trained Random Forest
           features = feature.hog(image, orientations=9,
65
                                 pixels_per_cell=(10, 10), cells_per_block=(2, 2),
56
                                 transform_sqrt=True, block_norm="L1")
57
          preds = model.predict([features])
58
           print(preds)
59
          ls = ["healthy", "parkinson"]
          result = ls[preds[0]]
70
71
           '''color = (0, 255, 0) if result == "healthy" else (0, 0, 255)
72
         cv2.putText(output, result, (3, 20),
                       cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
         cv2.imshow("Output", output)
74
75
          cv2.waitKey(0)'''
           return result
77
      return None
78
80 if __name__ == '__main__':
       app.run()
```

TESTING

8.1.TEST CASES:

Test case ID	Feature Type	Componen t	Test Scenario	Expected Result	Actual Result	Status
			Verify UI	The Home page		
UD TC 001	UI	Homo Dogo	elements in	must be displayed	Working as	Pass
HP_TC_001	01	Home Page	the Home	properly	expected	Pass
			Page			
			Check if the UI	The Home page		
			elements are	must be displayed		
UD TC 003	UI	Homo Dogo	displayed	properly in all sizes	Working as	Pass
HP_TC_002	01	Home Page	properly in		expected	Pass
			different			
			screen sizes			
				The input image		
			Check if user	should be	Working as	
HP_TC_003	Functional	Home page	can upload	uploaded to the	expected	Pass
			their file	application	expected	
				successfully		
			Check if user	The application		
HP_TC_004	Functional	Home page	cannot upload	should not allow	upload any	Pass
HF_1C_004	runctional	nome page	unsupported	user to select a	file	F d 3 5
			files	non image file		

Test case ID	Feature Type	Componen t	Test Scenario	Expected Result	Actual Result	Status
			Check if the	The page should		
			page redirects	redirect to the	14/	
HP_TC_005	Functional	Home page	to the result	results page	Working as	Pass
			page once the		expected	
			input is given			
			Check if all the	All the routes		
DE TC 001	Functional	Backend	routes are	should properly	Working as	Pass
BE_TC_001	Functional	backenu	working	work	expected	Pass
			properly			
			Check if the	The model should		
M TC 001	Functional	Model	model can	rescale the image	Working as	Pass
W_TC_001	Functional	Model	handle various	and predict the	expected	Pass
			image sizes	results		
			Check if the	The model should		
M TC 002	Functional	Model	model	predict the	Working as	Pass
W_TC_002	Tunctional	Wiodel	predicts the	image	expected	F d 3 3
			image			
	1		1		1	

Test case ID	Feature Type	Componen t	Test Scenario	Expected Result	Actual Result	Status
M_TC_003	Functional	Model	Check if the model can handle complex input image	The model should predict the number in the complex image	Working as expected	Pass
RP_TC_001	UI	Result Page	Verify UI	The Result page must be displayed properly	Working as expected	Pass
RP_TC_002	UI	Result Page	Check if the input image is displayed properly	The input image should be displayed properly	The size of the input image exceeds the display container	Fail
RP_TC_003	UI	Result Page	Check if the result is displayed properly	The result should be displayed properly	Working as expected	Pass

	RP_TC_004	UI	Result Page	other predictions	The other predictions should be displayed	Working as expected	Pass	
18				are displayed properly	properly	expected		
							-	٠

8.2.USER ACCEPTANCE TESTING:

8.2.1.DEFECT ANALYSIS:

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Severity 5
By Design	1	0	1	0	2
Duplicate	0	0	0	0	0
External	0	0	2	0	2
Fixed	4	1	0	1	6
Not	0	0	0	1	1
Reproduced					
Skipped	0	0	0	1	1
Won't Fix	1	0	1	0	2
Total	6	1	4	3	14

8.2.2.TEST CASE ANALYSIS:

SECTION	TOTAL CASES	NOT TESTED	FAIL	PASS
Client Application	10	0	3	7
Security	2	0	1	1
Performance	3	0	1	2

Exception	2	0	0	2
Reporting				

RESULT

9.1.PERFORMANCE METRICES:

S.NO	PARAMETER	VALUES	SCREENSHO	T	
1.	MODEL		Model: "sequential"		
	SUMMARY		Layer (Type)	Dalpul Shape	Param #
			convist (Convitt)	(%one, 26, 26, 64)	640
			conv24_3 (Conv20)	(None, 34, 24, 32)	38464
			flatten (Flatten)	(None, 1842)	
			dense (Dense)	(None, 39)	384330
			Total perwes: 285,454 Trainable perwes: 200,454 Mon-trainable paraes: 8		
2.	ACCURACY	Training Accuracy- 98% Validation Accuracy- 97%	0.23 0.20 0.13 0.30 0.05 0.00 0.5 1.0 0.99 0.99 0.99	LS 20 2S 3	Training loss validation loss s 15 40 haining accuracy slidation accuracy

ADVANTAGES AND DISADVANTAGES

ADVANTAGES:

- Reduces manual work
- More accurate than average human
- Capable of handling a lot of data
- Can be used anywhere from any device

DISADVANTAGES:

- Cannot handle complex data
- All the data must be in image format
- Requires a high performance server for faster predictions
- Prone to occasional errors

CHAPTER - 11

CONCLUSION

Parkinson's Disease is a totally grave disease and has no cure till date, since it impacts the actions of the parts of the body, the speech additionally stands affected, here, the gadget tries to offer a way of detecting Parkinson's ailment so one can bring about a quick action to reduce or even put off it from affecting the whole body. This gadget aims to make this method of expertise a case of Parkinson's on the earliest via each, the affected person as well as scientific experts, hence, the goal is to apply numerous machine getting to know strategies like Random Forest Classifier, CNN, for buying the maximum accurate result. Here using Decision Tree and building a classifier results in an accuracy of 98%.

FUTURE SCOPE

This project is far from complete and there is a lot of room for improvement.

Some of the improvements that can be made to this project are as follows:

- Add support to detect from multiple images and save the results
- Add support to detect multiple images
- Improve model to detect from complex images

This project has endless potential and can always be enhanced to become better. Implementing this concept in the real world will benefit several industries and reduce the workload on many workers, enhancing overall work efficiency.

CHAPTER - 13

APPENDIX

SOURCE CODE:

MODEL CREATION

Importing the Necessary Libraries

```
import numpy as np
import pandas as pd
import seaborn as sns
import zipfile as zf
import os
import random
import cv2
import pickle
from imutils import build montages
from imutils import build montages
from sklearn.metrics import classification_report,confusion_matrix
from sklearn import metrics
from sklearn.metrics import tabelEncoder,LabelBinarizer
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier,GradientBoostingClassifier,ExtraTreesClassifier
from google.colab.patches import cv2_imshow
In [2]:
sns.set()
os.getcwd()
```

Loading the training and testing dataset

```
In [3]: handle_spiral = zf.ZipFile(r'dataset1.zip')
handle_spiral.extractall('dataset1')

In [4]: spiral_train_healthy = os.listdir('dataset1/dataset/spiral/training/healthy/')
spiral_train_park = os.listdir('dataset1/dataset/spiral/training/parkinson/')

fp_spiral_train_healthy = 'dataset1/dataset/spiral/training/parkinson/'

fp_spiral_train_park = 'dataset1/dataset/spiral/training/parkinson/'

spiral_test_healthy = os.listdir('dataset1/dataset/spiral/testing/healthy/')
spiral_test_park = os.listdir('dataset1/dataset/spiral/testing/healthy/')
fp_spiral_test_healthy = 'dataset1/dataset/spiral/testing/parkinson/')

fp_spiral_test_park = 'dataset1/dataset/spiral/testing/parkinson/'
```

Quantifying Images

Splitting up of training and testing data

```
trainX = []
testX = []
outputs = []
testY = []

for i in spiral_train_healthy:
    image = cv2.imread(fp_spiral_train_healthy+i)
    image = cv2.cutcolor(image, cv2.CoLOR_BGR2GRAY)
    image = cv2.threshold(mage, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
    features = quantify_image(image)
    trainX.append(features)
    trainX.append(features)
    trainY.append(image, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]

for i in spiral_train_park:
    image = cv2.cvtclor(image, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
    image = cv2.cvtclor(image, 0, cv2.CoLOR_BGR2GRAY)
    image = cv2.cvtclor(image, 0, cv2.cvtclor(image, 0
```

```
for i in spiral_test_healthy:
       image = cv2.imread(fp_spiral_test_healthy+i)
       outputs.append(image)
       image = cv2.cvtColor(image , cv2.COLOR_BGR2GRAY)
image = cv2.resize(image , (200,200))
       image = cv2.threshold(image ,0,255,cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
       features = quantify_image(image)
       testX.append(features)
testY.append('healthy')
     for i in spiral test park:
       image = cv2.imread(fp_spiral_test_park+i)
       outputs.append(image)
        image = cv2.cvtColor(image , cv2.COLOR_BGR2GRAY)
       image = cv2.resize(image , (200,200))
       image = cv2.threshold(image ,0,255,cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
       features = quantify_image(image)
testX.append(features)
       testY.append('parkinson')
trainX = np.array(trainX)
     testX = np.array(testX)
trainY = np.array(trainY)
     testY = np.array(testY)
     trainX
```

```
In [9]: testX
           ...,
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.]])
        In [10]: testY
      Out[10]: array(['healthy', 'healthy', 'parkinson', 'par
                                                                Label Encoding
        In [11]: le = LabelEncoder()
                                                   trainY = le.fit_transform(trainY)
testY = le.transform(testY)
                                                   print(trainX.shape,trainY.shape)
                                                (72, 12996) (72,)
In [12]: trainY
1, 1, 1, 1, 1, 1])
In [13]:
                                       testY
Model Building
```

Training the model

```
In [14]: print("Training model....")
          model = RandomForestClassifier(n_estimators=100)
          model.fit(trainX,trainY)
```

Testing the Model

```
In [20]:
           testpath=list(paths.list_images(fp_spiral_train_healthy))
idxs=np.arange(0,len(testpath))
           idxs=np.random.choice(idxs,size=(25,),replace=False)
           images=[]
           for i in idxs:
               image=cv2.imread(testpath[i])
               output=image.copy()
               output=cv2.resize(output,(128,128))
image=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
               image=cv2.resize(image,(200,200))
               image=cv2.threshold(image,0,255,cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
               features= quantify_image(image)
                preds=model.predict([features])
               label=le.inverse_transform(preds)[0]
if label=="healthy":
                  color=(0,255,0)
               else:
                 (0,0,255)
                cv2.putText(output,label, (3,20),cv2.FONT_HERSHEY_SIMPLEX,0.5,color,2)
               images.append(output)
In [21]: '''montage = build_montages(images,(128,128),(5,5))[0]
           cv2.imshow(montage)
           cv2.waitKey(0)'
           montage=build_montages(images,(128,128),(5,5))[0]
           cv2_imshow(montage)
```

Predicting the model-Accuracy and Confusion Matrix

Save the Model

```
In [23]: pickle.dump(model,open('parkinson.pkl','wb'))
```

FLASK APP

```
from flask import Flask, request, render_template
 2 import pickle
3 import cv2
4 from skimage import feature
5 import os.path
 6 #from werkzeug.utils import secure_filename
8 #from model import model
10
11 app = Flask(__name__)
12
14 @app.route("/")
15 def about():
       return render_template("home.html")
16
17
18
19 @app.route("/home")
20 def home():
      return render_template("home.html")
22
23
24 @app.route("/upload")
25 def test():
      return render_template("pred.html")
28
29 @app.route("/logout")
30 def log():
31
       return render_template("home.html")
```

```
33
34 @app.route('/predict', methods=['GET', 'POST'])
35
    def upload():
36
       if request.method == 'POST':
37
           f = request.files['file'] # requesting the file
38
            #filename_secure = secure_filename(f.filename)
39
            basepath = os.path.dirname(
               '__file__') # storing the file directory
40
41
           # storing the file in uploads folder
42
            filepath = os.path.join(basepath, "uploads", f.filename)
            f.save(filepath) # saving the file
43
44
45
            # Loading the saved model
            print("[INFO] loading model...")
46
47
            model = pickle.loads(open('parkinson.pkl', "rb").read())
48
            '''local_filename = "./uploads/"
            local_filename += filename_secure
49
50
            print(local_filename)'''
51
52
            # Pre-process the image in the same manner we did earlier
53
            image = cv2.imread(filepath)
54
            output = image.copy()
55
56
            # Load the input image, convert it to grayscale, and resize
57
            output = cv2.resize(output, (128, 128))
58
            image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
59
            image = cv2.resize(image, (200, 200))
60
            image = cv2.threshold(image, 0, 255,
                                 cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
62
```

```
52
53
            # Quantify the image and make predictions based on the extracted features using the last trained Random Forest
54
            features = feature.hog(image, orientations=9,
65
                                   pixels_per_cell=(10, 10), cells_per_block=(2, 2),
                                    transform_sqrt=True, block_norm="L1")
57
          preds = model.predict([features])
           print(preds)
58
59
            ls = ["healthy", "parkinson"]
          result = ls[preds[0]]
'''color = (0, 255, 0) if result == "healthy" else (0, 0, 255)
70
71
72
          cv2.putText(output, result, (3, 20),
73
                       cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
        cv2.imshow("Output", output)
cv2.waitKey(0)'''
74
75
76
           return result
77
      return None
78
79
B0 if __name__ == '__main__':
       app.run()
```

HOME PAGE(HTML)

```
1 <!DOCTYPE html>
2 <html lang="en">
       <meta charset="UTF-8" />
        <meta name="viewport" content="width=device-width, initial-scale=1.0" />
       <meta http-equiv="X-UA-Compatible" content="ie=edge" />
       <title>HomePage</title>
8
       <style>
         body {
10
           background: linear-gradient(to right, #33ccff 0%, #99ffcc 100%);
11
           background-size: cover;
12
          background-position: relative;
13
           background-repeat: no-repeat;
14
           height: 100%;
15
           width: 100%;
16
17
         h3 {
18
          text-align: center;
19
           color: white;
20
21
         .main {
22
           margin-top: 100px;
23
24
25
           color: black;
           text-indent: 10px;
26
27
           margin: 10px;
```

```
24
          p {
  25
           color: black;
  26
           text-indent: 10px;
           margin: 10px;
  27
  28
           font-size: 20px;
  29
  30
  31
          color: grey;
float: right;
  32
  33
           text-decoration: none;
  35
           font-style: normal;
  36
           padding-right: 20px;
  37
  38
  39
         a:hover {
          background-color: black;
  40
  41
           color: white;
           font-size: 30px;
  43
           padding-left: 10px;
  44
           border-radius: 5px;
  45
  46
  47
         ul {
           align-items: center;
  48
  49
            display: flex;
           list-style-type: none;
  51
           width: 100%;
                                                                                                                  Activate V
47
             ul {
48
                align-items: center;
                display: flex;
               list-style-type: none;
50
51
               width: 100%;
                gap: 3rem;
52
53
                justify-content: center;
                font-size: 2rem;
55
                position: fixed;
56
               top: 0;
                margin: 0;
57
                padding: 1rem;
58
                background-color: white;
60
             }
61
             li {
62
               cursor: pointer;
63
             }
65
             li a {
66
              text-decoration: none;
                color: inherit;
67
68
             }
             li.active {
70
               font-weight: bold;
71
               color: orangered;
72
             }
```

```
74
          img {
 75
            width: 450px;
76
            height: 400px;
77
            padding: 25px;
78
79
          img:hover {
 80
           border-color: grey;
81
82
          #im {
83
            width: 1450px:
84
            height: 700px;
85
           padding: 25px;
86
87
        </style>
88
       </head>
 89
       <body>
90
        <nav>
91
           <a href="/home">Home</a>
92
93
           <a href="/upload">Predict-Results</a>
95
        </nav>
        <br /><br /><br />
97
        <h1>
98
           <b class="pd"
99
100
             ><font color="black" size="15" font-family="Comic Sans MS"
               >Detection of Parkinson's Disease using ML</font
101
```

```
101
                 >Detection of Parkinson's Disease using ML</font
102
103
           </center>
104
105
         </h1>
         <div>
107
          <center>
             108
109
               Parkinson disease (PD) is a progressive neuro degenerative disorder
               that impacts more than 6 million people around the world. Parkinson's
111
              disease is non-communicable, early-stage detection of Parkinson's can
112
              prevent further damages in humans suffering from it.
113
               However, Nonetheless, non-specialist physicians still do not have a
              definitive test for PD, similarly in the early stage of the diseased
115
              person where the signs may be intermittent and badly characterized. It
116
              resulted in a high rate of misdiagnosis (up to 25% among
117
               non-specialists) and many years before treatment, patients can have
118
               the disorder. A more accurate, unbiased means of early detection is
              required, preferably one that individuals can use in their home
119
120
               setting.However, it has been observed that PD's presence in a human is
121
               related to its hand-writing as well as hand-drawn subjects. From that
122
              perspective, several techniques have been proposed by researchers to
123
               detect Parkinson's disease from hand-drawn images of suspected people.
124
              But the previous methods have their constraints.
125
             126
           </center>
127
           <h4>
128
             <center>
                                                                                                                                              Activate V
120
               Ab class-"ad"
```

```
</center>
<h4>
                 ><font color="black" size="12" font-family="Comic Sans MS"
                       >Causes and Symptoms of Parkinson's Disease</font
           </b>
     </center>
</h4>
<span>
      <img
              src="https://www.narayanahealth.org/blog/wp-content/uploads/2015/04/parkinson.png"
            title="Disease"
 </span>
<span>
            src="https://stanfordmedicine25.stanford.edu/the25/parkinsondisease/_jcr_content/main/panel_builder_9/panel_0/panel_builder_9/panel_0/panel_builder_0/panel_builder_0/panel_builder_0/panel_builder_0/panel_builder_0/panel_0/panel_builder_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel_0/panel
             title="Symptoms"
/></span>
<span
     ><img
              src="https://www.verywellhealth.com/thmb/Aaqo8oM3QDHSNHCt_D1KCNeWoUk=/1500x0/filters:no_upscale():max_bytes(150000):strip_icc()/zhansen-5200700_Finaledit2-3e7eb00f1b
            title="Stages"
/></span>
<span
  ><img
```

```
154
               src="https://www.gutmicrobiotaforhealth.com/wp-content/uploads/2016/12/parkinson.jpg"
155
               title="Effect"
156
           /></span>
157
          <span
158
             ><img
159
              src="https://i.pinimg.com/originals/02/16/e4/0216e4b8a5db4d6e2a3f7043eaf7dc32.jpg"
160
              title="Cause"
161
           /></span>
162
163
            ><img
              src="https://jnnp.bmj.com/content/jnnp/91/8/795/F4.large.jpg"
164
165
              title="diagnosis"
166
167
           <h3>
168
            <center>
169
               <font color="black" size="12" font-family="Comic Sans MS"</pre>
170
                >Treatment for parkinson disease</font
171
              >
172
             </center>
173
           </h3>
174
           <span
175
            ><img
176
              src="https://www.mdpi.com/biomolecules/biomolecules-11-00612/article_deploy/html/images/biomolecules-11-00612-g001.png"
177
178
           /></span>
179
           <span
180
             ><img
               src="https://media.springernature.com/m685/springer-static/image/art%3A10.1038%2Fs41401-020-0365-y/MediaObjects/41401_2020_365_Fig1_HTML.png_{10}
181
```

```
cicie= diagnosis
     /×/span>
     <h3>
       <center>
         <font color="black" size="12" font-family="Comic Sans MS"</pre>
           >How brains looks during PD?</font
       </center>
      </h3>
     <span
       ><img
         src="https://ichef.bbci.co.uk/news/976/cpsprodpb/16161/production/_107456409_parkinsons.jpg"
     /></span>
     <span
         id="im"
         src="https://img.parkinsonsinfoclub.com/wp-content/uploads/back-conditions-neck-conditions-london-back-pain-clinic-scaled.jpeg" \\
     /></span>
     <br /><br />
   </div>
  </body>
</html>
```

BASE PAGE(HTML)

```
<html lang="en">
                  <head>
                       <meta charset="UTF-8" />
                        <meta name="viewport" content="width=device-width, initial-scale=1.0" />
                        <meta http-equiv="X-UA-Compatible" content="ie=edge" />
                        <title>Predict</title>
                       klink
                           href="https://cdn.bootcss.com/bootstrap/4.0.0/css/bootstrap.min.css"
                            rel="stylesheet"
11
                        12
                         <script src="https://cdn.bootcss.com/jquery/3.3.1/jquery.min.js"></script>
13
                         \verb|\script| src="https://cdn.bootcss.com/bootstrap/4.0.0/js/bootstrap.min.js"></script>|\script| src="https://cdn.bootcss.com/bootstrap/4.0.0/js/bootstrap.min.js"></script>|\script| src="https://cdn.bootcss.com/bootstrap/4.0.0/js/bootstrap.min.js"></script>|\script| src="https://cdn.bootcss.com/bootstrap/4.0.0/js/bootstrap.min.js"></script>|\script| src="https://cdn.bootcss.com/bootstrap/4.0.0/js/bootstrap.min.js"></script>|\script| src="https://cdn.bootcss.com/bootstrap/4.0.0/js/bootstrap.min.js"></script>|\script| src="https://cdn.bootcss.com/bootstrap/4.0.0/js/bootstrap.min.js"></script>|\script| src="https://cdn.bootcss.com/bootstrap/4.0.0/js/bootstrap.min.js"></script>|\script| src="https://cdn.bootcss.com/bootstrap/4.0.0/js/bootstrap.min.js"></script>|\script| src="https://cdn.bootcss.com/bootstrap/4.0.0/js/bootstrap.min.js"></script| src="https://cdn.bootcss.com/bootstrap/4.0.0/js/bootstrap.min.js"></script| src="https://cdn.bootcss.com/bootcss.com/bootstrap/4.0.0/js/bootstrap.min.js"></script| src="https://cdn.bootcss.com/bootcss.com/bootstrap/4.0.0/js/bootstrap.min.js"></script| src="https://cdn.bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com/bootcss.com
14
                           href="{{ url_for('static', filename='css/main.css') }}"
15
16
                          rel="stylesheet"
17
18
                        <style>
19
                            body {
20
                                background-image: url("https://img.freepik.com/free-vector/clean-medical-patterned-background-vector_53876-140867.jpg?w=1060&t=st=1667911964-exp=1667912564-hmac=429856
21
                                 background-position: center;
                                background-repeat: no-repeat;
                                 background-size: cover;
24
                                  height: 100%;
25
                                 width: 100%;
26
27
                             h1 {
                                  font-size: 40px;
28
                               text-align: center;
29
30
                                 color: black:
                                  font-style: italic;
31
```

```
h1 {
  font-size: 40px;
  text-align: center;
  color: black;
  font-style: italic;
  font-weight: bolder;
h2 {
  font-size: 35px;
  text-align: center;
  color: black;
  font-style: italic;
  font-weight: bolder;
h5 {
  font-size: 25px;
  text-align: center;
  color: black;
  font-weight: bolder;
a {
 color: grey;
  float: right;
  text-decoration: none;
  font-style: normal;
  padding-right: 20px;
                                                                                                                                 Activate
a:hover {
background-color: black;
color: white;
 font-size: 30px;
 padding-left: 10px;
 border-radius: 5px;
}
ul {
 align-items: center;
 display: flex;
 list-style-type: none;
 width: 100%;
 gap: 3rem;
 justify-content: center;
 font-size: 2rem;
 position: fixed;
 top: 0;
  margin: 0;
 padding: 1rem;
 background-color: white;
li {
 cursor: pointer;
li a {
 text-decoration: none;
                                                                                                                              Activate V
 color: inherit;
```

```
li.active {
       font-weight: bold;
      color: orangered;
    </style>
  </head>
  <body>
    <nav>
      <a href="/home">Home</a>
      class="active"><a href="/upload">Predict-Results</a>
     </nav>
    <br />
    <h1><b>Prevention is better than cure!</b></h1>
    <h2>
       ♥Diagnosis is not the end, but the beginning of practice.
    </h2>
    <br />
    <h2><center>♥Detect the disease and take measures wisely</center></h2>
    <br />
     NOTE: Upload an spiral or wave page drawn by the patient/user in a white
    </h5>
    <div class="container">
     <center>
       <div id="content" style="margin-top: 2em">
     <h2><center>♥Detect the disease and take measures wisely</center></h2>
      <br />
      <h5>
       NOTE: Upload an spiral or wave page drawn by the patient/user in a white
       sheet
      </h5>
      <div class="container">
        <center>
         <div id="content" style="margin-top: 2em">
           {% block content %}{% endblock %}
         </div>
        </center>
      </div>
    </body>
      <script
       src="{{ url_for('static', filename='js/main.js') }}"
       type="text/javascript"
      ></script>
    </footer>
</html>
```

PREDICTION PAGE(HTML)

```
\mbox{\{\% extends "base.html" \%\} \{\% block content \%\}}
<div>
    <form id="upload-file" method="post" enctype="multipart/form-data">
       <center>
           <label for="imageUpload" class="upload-label">
             Choose...
           </label>
           <input type="file" name="file" id="imageUpload" accept=".png, .jpg, .jpeg">
       </center>
    </form>
   <center> <div class="image-section" style="display:none;">
       <div class="img-preview">
           <div id="imagePreview">
           </div></center>
       </div>
       <center>
               <button type="button" class="btn btn-primary btn-lg " id="btn-predict">Predict!</button>
           </div>
       </center>
    </div>
   <div class="loader" style="display:none;"></div>
   <h3 id="result">
       <span> </span>
</div>
```

HOME PAGE(CSS)

```
.img-preview {
   width: 256px;
   height: 256px;
   position: relative;
   border: 5px solid #F8F8F8;
   box-shadow: 0px 2px 4px 0px rgba(0, 0, 0, 0.1);
   margin-top: 1em;
   margin-bottom: 1em;
.img-preview>div {
   width: 100%;
   height: 100%;
   background-size: 256px 256px;
   background-repeat: no-repeat;
   background-position: center;
input[type="file"] {
   display: none;
.upload-label {
   display: inline-block;
   padding: 12px 30px;
   background: #fe2727;
   color: #fff;
   font-size: 1em;
   transition: all .4s;
   cursor: pointer;
```

```
.upload-label:hover {
   background: #34495E;
   color: #39D2B4;
.loader {
  border: 8px solid #f3f3f3;
   /* Light grey */
  border-top: 8px solid #3498db;
   /* Blue */
   border-radius: 50%;
   height: 50px:
   animation: spin 1s linear infinite;
@keyframes spin {
   0% {
      transform: rotate(0deg);
   100% {
      transform: rotate(360deg);
```

HOME PAGE(JS)

```
$(document).ready(function() {
    // Init
    $('.image-section').hide();
    $('.loader').hide();
    $('#result').hide();
    // Upload Preview
    function readURL(input) {
       if (input.files && input.files[0]) {
           var reader = new FileReader();
            reader.onload = function(e) {
               $('#imagePreview').css('background-image', 'url(' + e.target.result + ')');
               $('#imagePreview').hide();
               $('#imagePreview').fadeIn(650);
            reader.readAsDataURL(input.files[0]);
        }
    $("#imageUpload").change(function() {
       $('.image-section').show();
       $('#btn-predict').show();
       $('#result').text('');
       $('#result').hide();
        readURL(this);
    });
    // Predict
    $('#btn-predict').click(function() {
       var form_data = new FormData($('#upload-file')[0]);
```

```
// Show loading animation
       $(this).hide();
       $('.loader').show();
       // Make prediction by calling api /predict
       $.ajax({
           type: 'POST',
           url: '/predict',
           data: form_data,
           contentType: false,
            cache: false,
            processData: false,
            async: true,
            success: function(data) {
               // Get and display the result
               $('.loader').hide();
               $('#result').fadeIn(600);
               $('#result').text('Prediction : ' + data);
               console.log('Success!');
            },
       });
    });
});
```

GITHUB

https://github.com/IBM-EPBL/IBM-Project-49323-1660817988.git

PROJECT DEMO LINK

https://drive.google.com/file/d/1Itoc0fK8vPaYUEtDLPlK3kGhI3RvxRU3/view?usp=share_link