第四节 目标规划

- ✓ 线性目标规划的数学模型
 - 单目标目标规划数学模型
 - 多目标目标规划数学模型
 - 线性目标规划的求解方法
 - 序列法 ★
 - 多阶段法
 - 単纯形法★

- 二. 线性目标规划的求解方法:
 - 1. 序列法
 - 序列法的基本思想和方法
 - 序列法的迭代步骤
 - 序列法的评价

1. 序列法

基本思想:

- ▶目标规划通过引入偏差变量将各级目标转化成目标约束,再极小化偏差变量来实现各级目标。当偏差变量达到极小值0时,该级目标被完全实现。
- ▶ 序列法是按照优先级别去极小化各级目标的偏差变量的,即极小化该级目标偏差变量是在不破坏上级目标已经达到的最优值的前提下进行的,所以该级目标的偏差变量未必能达到极小值0。那么该级目标偏差变量极小化的程度就是该级目标在不破坏前级目标最优值的前提下被实现的程度。

$$\min Z = P_{1}(d_{1}^{+} + d_{2}^{+}) + P_{2}d_{3}^{-} + P_{3}d_{4}^{+} + P_{4}(d_{1}^{-} + 1.5d_{2}^{-})$$

$$x_{1} \ge 30 \longleftrightarrow x_{1} + d_{1}^{-} - d_{1}^{+} = 30 \longrightarrow x_{1} \le 30$$

$$x_{2} \ge 15 \longleftrightarrow x_{2} + d_{2}^{-} - d_{2}^{+} = 15 \longrightarrow x_{2} \le 15$$

$$s.t. \begin{cases} 8x_{1} + 12x_{2} + d_{3}^{-} - d_{3}^{+} = 1000 \longrightarrow 8x_{1} + 12x_{2} \ge 1000 \\ x_{1} + 2x_{2} + d_{4}^{-} - d_{4}^{+} = 40 \longrightarrow x_{1} + 2x_{2} \le 40 \\ x_{1}, x_{2} \ge 0 \quad d_{1}^{-}, d_{1}^{+} \ge 0 \end{cases}$$

具体方法:

序列法按照目标函数中各目标的优先级别,顺序将目标规划分解为一系列单目标的线性规划,用单纯形法逐一求解。在求解过程中确定进基变量,离基变量及主元的原则与线性规划的单纯形法相同,不同的是要以不影响较高级目标的最优值为前提求解较低级目标的最优值。如此反复迭代,直到进行到最低级目标的目标函数达到最优为止。

- 二. 线性目标规划的求解方法:
 - 1. 序列法
 - ✓ 序列法的基本思想和方法
 - 序列法的迭代步骤
 - 序列法的评价

$$\min Z = P_{1}(d_{1}^{+} + d_{2}^{+}) + P_{2}d_{3}^{-} + P_{3}d_{4}^{+} + P_{4}(d_{1}^{-} + 1.5d_{2}^{-})$$

$$x_{1} + d_{1}^{-} - d_{1}^{+} = 30$$

$$x_{2} + d_{2}^{-} - d_{2}^{+} = 15$$

$$8x_{1} + 12x_{2} + d_{3}^{-} - d_{3}^{+} = 1000$$

$$x_{1} + 2x_{2} + d_{4}^{-} - d_{4}^{+} = 40$$

$$x_{1}, x_{2} \ge 0 \quad d_{j}^{-}, d_{j}^{+} \ge 0$$

迭代步骤:

(1) 建立 P_1 级目标的单目标线性规划:

$$\min Z_{1} = d_{1}^{+} + d_{2}^{+}$$

$$x_{1} + d_{1}^{-} - d_{1}^{+} = 30$$

$$x_{2} + d_{2}^{-} - d_{2}^{+} = 15$$

$$x_{1}, x_{2} \ge 0 \quad d_{j}^{-}, d_{j}^{+} \ge 0$$

(1) 建立 P_1 级的单目标线性规划:

用单纯形法求解:

		C_{j}	0	0	0	0	1	1
$C_{\!\scriptscriptstyle B}$	$X_{\scriptscriptstyle B}$	b	x_1	\mathcal{X}_2	d_1^-	d_2^-	$d_1^{\scriptscriptstyle +}$	d_2^+
0	d_1^-	30	1	0	1	0	-1 0	0
0	d_2^-	15	0	1	0	1	0	-1
		_					1	

$$\min Z_{1} = d_{1}^{+} + d_{2}^{+}$$

$$\begin{cases} x_{1} + d_{1}^{-} - d_{1}^{+} = 30 \\ x_{2} + d_{2}^{-} - d_{2}^{+} = 15 \\ x_{1}, x_{2} \ge 0 \quad d_{j}^{-}, d_{j}^{+} \ge 0 \end{cases}$$

$$y_{0j} = C_j - C_B B^{-1} p_j$$
$$y_{00} = C_B B^{-1} b$$

 $:: y_{0i}$ 都 ≥ 0,:. 对 P_1 级目标而言已是最优表。

 $:: \min Z_1 = d_1^+ + d_2^+ = 0$ 所以 P_1 级目标已被完全实现。

例4-7
$$\min Z = P_1(d_1^+ + d_2^+) + P_2d_3^- + P_3d_4^+ + P_4(d_1^- + 1.5d_2^-)$$

$$x_1 + d_1^- - d_1^+ = 30$$

$$x_2 + d_2^- - d_2^+ = 15$$

$$s.t. \begin{cases} 8x_1 + 12x_2 + d_3^- - d_3^+ = 1000 \\ x_1 + 2x_2 + d_4^- - d_4^+ = 40 \end{cases}$$

$$x_1, x_2 \ge 0 \quad d_j^-, d_j^+ \ge 0$$

(2) 建立 P_2 级目标的单目标线性规划:

$$\min Z_{2} = d_{3}^{-}$$

$$x_{1} + d_{1}^{-} - d_{1}^{+} = 30$$

$$x_{2} + d_{2}^{-} - d_{2}^{+} = 15$$

$$8x_{1} + 12x_{2} + d_{3}^{-} - d_{3}^{+} = 1000$$

$$d_{1}^{+} + d_{2}^{+} = 0$$

$$x_{1}, x_{2} \ge 0 \quad d_{j}^{-}, d_{j}^{+} \ge 0$$

(2) 建立 P_2 级目标的单目标线性规划:

$$\min Z_{2} = d_{3}^{-} \qquad \min Z_{2} = d_{3}^{-}
x_{1} + d_{1}^{-} - d_{1}^{+} = 30
x_{2} + d_{2}^{-} - d_{2}^{+} = 15$$

$$8x_{1} + 12x_{2} + d_{3}^{-} - d_{3}^{+} = 1000$$

$$x_{1} + d_{1}^{-} = 30
x_{2} + d_{2}^{-} = 15$$

$$8x_{1} + 12x_{2} + d_{3}^{-} - d_{3}^{+} = 10^{3}
x_{1}, x_{2} \ge 0 \qquad d_{j}^{-}, d_{j}^{+} \ge 0$$

$$x_{1}, x_{2} \ge 0 \qquad d_{j}^{-}, d_{j}^{+} \ge 0$$

化简:
$$: d_1^+ + d_2^+ = 0 : d_1^+ = d_2^+ = 0$$

(2) 建立*P*₂级的单目标线性规划: 用单纯形法求解:

$$\min Z_{2} = d_{3}^{-}$$

$$x_{1} + d_{1}^{-} = 30$$

$$x_{2} + d_{2}^{-} = 15$$

$$8x_{1} + 12x_{2} + d_{3}^{-} - d_{3}^{+} = 10^{3}$$

$$x_{1}, x_{2} \ge 0 \quad d_{j}^{-}, d_{j}^{+} \ge 0$$

		C_{j}	0	0	0	0	1	0
C_{B}	X_{B}	b	x_{l}	\mathcal{X}_2	d_1^-	d_2^-	d_3^-	d_3^+
0	d_1^-	30	1	0	1	0	0	0
0	d_2^-	15	0	1	0	1	0	0
1	d_{3}^{-}	10^3	8	12	0	0	1	4
						0		1

$$y_{0j} = C_j - C_B B^{-1} p_j$$
$$y_{00} = C_B B^{-1} b$$

 $: y_{0j}$ 不都 ≥ 0 , $: 对 P_2$ 级目标而言还未达到最优。 经过两次单纯形法的迭代,可得最优表。

(2) 建立 P_2 级的单目标线性规划: $x_2 + d_2^- = 15$

$$\min Z_{2} = d_{3}^{-}$$

$$x_{1} + d_{1}^{-} = 30$$

$$x_{2} + d_{2}^{-} = 15$$

$$8x_{1} + 12x_{2} + d_{3}^{-} - d_{3}^{+} = 10^{3}$$

$$x_{1}, x_{2} \ge 0 \qquad d_{i}^{-}, d_{i}^{+} \ge 0$$

最优表4-5

		C_{j}	0	0	0	0	1	0
$C_{\!\scriptscriptstyle B}$	X_{B}	b	\mathcal{X}_{1}	\mathcal{X}_2	d_1^-	d_2^-	d_3^-	d_3^+
0	x_1	30	1	0	1	0 1	0	0
0	\mathcal{X}_2	15	0	1	0	1	0	0
1	d_3^-	580	0	0	-8	-12	1	4
y_0) j —	580	0	0	8	12	0	1

此时对 P_2 级目标而言已达到最优。:: $\min Z_2 = d_3^- = 580$ 所以 P_2 级目标未被完全实现,还差580。

例4-7
$$\min Z = P_1(d_1^+ + d_2^+) + P_2d_3^- + P_3d_4^+ + P_4(d_1^- + 1.5d_2^-)$$

$$x_1 + d_1^- - d_1^+ = 30$$

$$x_2 + d_2^- - d_2^+ = 15$$

$$8x_1 + 12x_2 + d_3^- - d_3^+ = 1000$$

$$x_1 + 2x_2 + d_4^- - d_4^+ = 40$$

$$x_1, x_2 \ge 0 \quad d_j^-, d_j^+ \ge 0$$

(3) 建立 P_3 级目标的单目标线性规划:

$$\min Z_{3} = d_{4}^{+}$$

$$x_{1} + d_{1}^{-} - d_{1}^{+} = 30$$

$$x_{2} + d_{2}^{-} - d_{2}^{+} = 15$$

$$8x_{1} + 12x_{2} + d_{3}^{-} - d_{3}^{+} = 1000$$

$$x_{1} + 2x_{2} + d_{4}^{-} - d_{4}^{+} = 40$$

$$d_{1}^{+} + d_{2}^{+} = 0 \quad d_{3}^{-} = 580$$

$$x_{1}, x_{2} \ge 0 \quad d_{j}^{-}, d_{j}^{+} \ge 0$$

(3) 建立 P_3 级目标的单目标线性规划:

$$\min Z_3 = d_4^+$$

$$x_1 + d_1^- - d_1^+ = 30$$

$$x_2 + d_2^- - d_2^+ = 15$$

$$8x_1 + 12x_2 + d_3^- - d_3^+ = 1000$$

$$x_1 + 2x_2 + d_4^- - d_4^+ = 40$$

$$d_1^+ + d_2^+ = 0 \qquad d_3^- = 580$$

$$x_1, x_2 \ge 0 \qquad d_j^-, d_j^+ \ge 0$$
化简:
$$d_1^+ + d_2^+ = 0 \implies d_1^+ = d_2^+ = 0$$

由 P_2 级目标的最优表4-5,

例4-7
$$S_1 = S_0 + y_{0j}\theta$$

(2) 建立P,级的单目标线性规划:

$$\min Z_{2} = d_{3}^{-}$$

$$x_{1} + d_{1}^{-} = 30$$

$$x_{2} + d_{2}^{-} = 15$$

$$8x_{1} + 12x_{2} + d_{3}^{-} - d_{3}^{+} = 10^{3}$$

$$x_{1}, x_{2} \ge 0 \quad d_{i}^{-}, d_{i}^{+} \ge 0$$

最优表4-5

		C_{j}	0	0	0	0	1	0
						d_2^-		
0	\mathcal{X}_1	30	1	0	1	0 1	0	0
0	x_2	15	0	1	0	1	0	0
1	d_3^-	580	0	0	-8	-12	1	-1
y_0) j —	580	0	0	8	12	0	1

 $\min Z_2 = d_3 = 580$

 $:d_1^-,d_2^-,d_3^+$ 的检验数 分别是8,12,1>0 所以如果它们进基做

基变量将会使 P_2 级目标已得的最优值 $\min Z_2 = 580$ 个 为了不使 min Z, \uparrow , 必须令这些非基变量的取值永远为 0 $\mathbb{P} d_1^- = d_2^- = d_3^+ = 0$

(3) 建立P,级的单目标线性规划:

$$\min Z_3 = d_4^+$$

$$x_1 = 30, x_2 = 15$$
 $d_1^- = d_1^+ = 0$
 $d_2^- = d_2^+ = 0$
 $d_3^- = 580, d_3^+ = 0$
 $d_4^- = 0, d_4^+ = 20$

$$d_3^- = 580$$

化简:
$$d_1^+ + d_2^+ = 0 \longrightarrow d_1^+ = d_2^+ = 0$$

由 P_2 级目标的最优表4-5, $d_1^- = d_2^- = d_3^+ = 0$

迭代步骤

(4) 建立 P_{4} 级目标的单目标线性规划:

$$\min Z_4 = d_1^- + 1.5d_2^- = 0$$
 所以 P_4 级目标已 $x_1 = 30, x_2 = 15$ 被完全实现。 $d_1^- = d_1^+ = 0$ $d_2^- = d_2^+ = 0$ $d_3^- = 580, d_3^+ = 0$ $d_4^- = 0, d_4^+ = 20$

$$\min Z = P_1(d_1^+ + d_2^+) + P_2d_3^- + P_3d_4^+ + P_4(d_1^- + 1.5d_2^-)$$

$$x_{1} + d_{1}^{-} - d_{1}^{+} = 30 \longrightarrow x_{1} = 30$$

$$x_{2} + d_{2}^{-} - d_{2}^{+} = 15 \longrightarrow x_{2} = 15$$

$$8x_{1} + 12x_{2} + d_{3}^{-} - d_{3}^{+} = 1000 \longrightarrow 8x_{1} + 12x_{2} \ge 1000$$

$$x_{1} + 2x_{2} + d_{4}^{-} - d_{4}^{+} = 40 \longrightarrow x_{1} + 2x_{2} \le 40$$

$$x_{1}, x_{2} \ge 0 \quad d_{j}^{-}, d_{j}^{+} \ge 0$$

$$x_1 = 30, x_2 = 15$$
 $d_1^- = d_1^+ = 0$
 $d_2^- = d_2^+ = 0$
 $d_3^- = 580, d_3^+ = 0$
 $d_4^- = 0, d_4^+ = 20$

最优解: 最优值向量: $Z^* = (0, 580, 20, 0)$

结论:

 P_1, P_4 级目标已被完全实现, P_2, P_3 级目标未被完全实现。

- 二. 线性目标规划的求解方法:
 - 1. 序列法
 - ✓ 序列法的基本思想和方法
 - ✓ 序列法的迭代步骤
 - 序列法的评价

1. 序列法

优点: 求解思路清晰,在整个求解过程中仅用到了 我们所熟悉的单纯形方法.

缺点:需要对每一级目标构造一个相应的单目标线性规划,然后去求解。对于级别较多的模型, 迭代次数多,计算量大。

第四节 目标规划

- ✓ 线性目标规划的数学模型
 - 単目标目标规划数学模型
 - 多目标目标规划数学模型
 - 线性目标规划的求解方法
 - ✓ 序列法 ★
 - 多阶段法
 - 単纯形法 ★

- 二. 线性目标规划的求解方法:
 - 2. 单纯形法
 - 单纯形法的基本思想
 - 单纯形法的迭代步骤

2. 单纯形法

基本思想:

把目标中优先因子 P_j 理解为一种特殊意义下的正常数,用 P_j 取代(LP)中的成本系数 c_j ,从而目标规划可以理解为一个标准的(LP),然后用单纯形法求出它的最优解。

- 二. 线性目标规划的求解方法:
 - 2. 单纯形法
 - ✓ 单纯形法的基本思想
 - 单纯形法的迭代步骤

$$|| f_{j} ||_{4-7} \min Z = P_{1}(d_{1}^{+} + d_{2}^{+}) + P_{2}d_{3}^{-} + P_{3}d_{4}^{+} + P_{4}(d_{1}^{-} + 1.5d_{2}^{-})$$

$$x_{1} + d_{1}^{-} - d_{1}^{+} = 30$$

$$x_{2} + d_{2}^{-} - d_{2}^{+} = 15$$

$$s.t. \begin{cases} sx_{1} + 12x_{2} + d_{3}^{-} - d_{3}^{+} = 1000 \\ x_{1} + 2x_{2} + d_{4}^{-} - d_{4}^{+} = 40 \\ x_{1}, x_{2} \ge 0 \quad d_{j}^{-}, d_{j}^{+} \ge 0 \end{cases}$$

	c_{j}		0	0	P_4	$1.5P_{4}$	P_2	0	P_1	P_1	0	P_3
												d_4^+
P_4	d_1^-	30	1	0	1	0	0	0	-1	0	0	0
$1.5P_4$	d_2^-	15	0	1	0	1	0	0	0	- 1	0	0
									0			
0	d_4^-	40	1	2	0	0	0	1	0	0	0	-1

例4-7 表1

	C_{j}		0	0	P_{4}	$1.5P_{4}$	P_2	0	P_1	P_1	0	P_3
$C_{\scriptscriptstyle B}$	X_{B}	b	x_1	x_2	d_1^-	d_2^-	d_3^-	d_4^-	d_1^+	d_2^+	d_3^+	d_4^+
P_4	d_1^-	30	1	0	1	0	0	0	-1	0	0	0
$1.5P_4$		15	0	1	0	1	0	0	0	-1	0	0
P_2	d_3^-	10^3	8	12	0	0	1	0	0	0	-1	0
0	d_4^-	40	1	2	0	0	0	1	0	0	0	-1
1	D	0	0	0	0	0	0	0	1	1	0	0
I	D 2	10^{3}	-8	-12	0	0	0	0	0	0	1	0
I	D 3	0	0	0	0	0	0	0	0	0	0	1
	D	52.5	$\overline{-1}$	-1.5	0	0	0	0	1	1.5	0	0

$$y_{0j} = c_j - C_B B^{-1} p_j \quad y_{01} = c_1 - C_B p_1 = 0 - P_4 - 8P_2 = 0P_1 - P_4 - 8P_2 + 0P_3$$
$$y_{00} = C_B B^{-1} b = 30P_4 + 15 \times 1.5P_4 + 10^3 P_2 = 52.5P_4 + 10^3 P_2$$

例4-7 表1

	C_{j}		0	0	P_{4}	$1.5P_{4}$	P_2	0	P_1	P_1	0	P_3
C_{B}	$X_{\scriptscriptstyle B}$	b	\mathcal{X}_1	\mathcal{X}_2	d_1^-	d_2^-	d_3^-	d_4^-	d_1^+	d_2^+	d_3^+	d_4^+
	d_1^-		1	0	1	0	0	0	-1	0	0	0
$1.5P_4$	d_2^-	15	0	1	0	1	0	0	0	-1	0	0
P_2		10^3	8	12	0	0	1	0	0	0	-1	0
0	d_4^-	40	1	2	0	0	0	1	0	0	0	-1
I	D 1	0	0	0	0	0	0	0	1	1	0	0
I	2 –	10^{3}	-8	-12	0	0	0	0	0	0	1	0
\overline{I}	3	0	0	0	0	0	0	0	0	0	0	1
I) 4 –	52.5	-1 -	-1.5	0	0	0	0	1	1.5	0	0

 $: P_1$ 行检验数都 ≥ 0 : 当前的基本可行解对 P_1 级目标已达最优,故检查 P_2 行检验数。:: $\min Z_1 = d_1^+ + d_2^+ = 0$ 所以 P_1 级目标已被完全实现。 线性规划4-4

例4-7 表1 C_{i} $P_{4} 1.5P_{4} P_{2}$ $d_1^- d_2^- d_3^ \mathcal{X}_1$ $at_1^ 1.5P_{4}$ $d_3^-|10^3|$ 8 12 $d_4^-|_{40}$ () $\mathbf{0}$ -8 - 12() 52.5

 $:: P_2$ 行有检验数 < 0: 当前的基本可行解对 P_2 级目标不是最优的。 x_1 进基, d_1^- 离基。

例4-7 表2

	C_{j}		0	0	P_4	$1.5P_{4}$	P_2	0	P_1	P_1	0	P_3
C_{B}	X_{B}	b	\mathcal{X}_1	\mathcal{X}_2	d_1^-	d_2^-	d_3^-	d_4^-	d_1^+	d_2^+	d_{3}^{+}	d_4^+
0	x_1	30	1	0	1	0	0	0	-1	0	0	0
$1.5P_4$	d_2^-	15	0	1	0	1	0	0	0	-1	0	0
P_2	d_3^-	760	0	12	-8	0	1	0	8	0	-1	0
0	\mathbf{x}_{2}^{-}	10	0	2	-1	0	0	1	1	0	0	-1
I	D	0	0	0	0	0	0	0	1	1	0	0
I	D 2	-760	0	-12	8	0	0	0	-8	0	1	0
I	D 3	0	0	0	0	0	0	0	0	0	0	1
	D	22.5	0 -	-1.5	1	0	0	0	0	1.5	0	0

 P_2 行检验数 -12 < 0 所以 x_2 进基, d_4^- 离基。 P_2 行检验数 -8 < 0 但 P_1 行相应的检验数为1,: d_1^+ 的检验数为 P_1 -8 P_2 > 0 : P_1 >> P_2 : d_1^+ 不能进基。

例4-7 表3

	C_{j}		0	0	P_{4}	$1.5P_4$	P_2	0	P_1	P_1	0	P_3
C_{B}	X_{B}	b	\mathcal{X}_1	x_2	d_1^-	d_2^-	d_3^-	d_4^-	d_1^+	d_2^+	d_3^+	d_4^+
0	x_1	30	1	0	1	0	0	0	-1	0	0	0
1 B P ₄	$d_4^{\scriptscriptstyle +}$	10	0	0	0.5	1	0 -	-0.5-	-0.5	-1	0	0.5
P_2	d_3^-	700	0	0	-2	0	1	-6	2	0	-1	6
0	x_2	5	0	1 -	-0.5		0	0.5	0.5	0	0 -	-0.5
I	D 1	0	0	0	0	0	0	0	1	1	0	0
I	2 –	700	0	0	2	0	0	6	-2	0	1	-6
I	O 3	0	0	0	0	0	0	0	0	0	0	1
$\Box I$	O ₄ -	-15	0	0	0.25	0	0	0.75	0.75	1.5	0 -	-0.75

 P_2 行检验数 -2 < 0,但 P_1 行相应的检验数为1,:: d_1^+ 不能进基。 P_2 行检验数 -6 < 0,:: d_4^+ 进基, d_2^- 离基。

表4 → 最优表

	C_{j}		0	0	P_{4}	$1.5P_{4}$	P_2	0	P_1	P_1	0	P_3
C_{B}	X_{B}	b	\mathcal{X}_1	\mathcal{X}_2	d_1^-	d_2^-	d_3^-	d_4^-	d_1^+	d_2^+	d_3^+	d_4^+
0	x_1	30	1	0	1	0	0	0	-1	0	0	0
P_3	d_4^+	20	0	0	1	2	0	-1	-1	-2	0	1
P_2	d_3^-	580	0	0	-8	-12	1	0	8	12	-1	0
0	$ x_2 $	15	0	1	0	1	0	0	0	-1	0	0
1	D	0	0	0	0	0	0	0	1	1	0	0
I	D –	580	0	0	8	12	0	0	-8	-12	1	0
	D 3 -	-20	0	0	-1	-2	0	1	1	2	0	0
	D 4	0	0	0	1	1.5	0	0	0	0	0	0

当前基本可行解对 P_2 , P_3 , P_4 级目标都已达到最优,所以是最优解。

 $\min Z = P_1(d_1^+ + d_2^+) + P_2d_3^- + P_3d_4^+ + P_4(d_1^- + 1.5d_2^-)$ $0 P_4 1.5 P_4 P_2 0 P_1 P_1$ X_1 X_2 $d_1^ d_2^ d_3^ d_4^ d_1^+$ d_2^+ d_3^+ d_4^+ $x_1 |_{30}$ 1 0 1 0 $0 \quad 0 \quad -1 \quad 0$ 0 $d_4^+ |20|$ $0 \quad 0 \quad 1 \quad 2 \quad 0 \quad -1 \quad -1 \quad -2$ $0 \quad 0 \quad -8 \quad -12 \quad 1 \quad 0 \quad 8 \quad 12$ $d_{3}^{-}|580|$ 0 1 0 1 0 0 $x_2 | 15$ 0 0 - 1 00 0 0 0 0 $\mathbf{0}$ 0 ()0 0 8 12 -5800 - 1 - 2+20

最优解: $x_1 = 30$ $d_1^- = 0$ $d_2^- = 0$ $\overline{d_3^- = 580}$ $\overline{d_4^- = 0}$ $x_2 = 15$ $d_1^+ = 0$ $d_2^+ = 0$ $d_3^+ = 0$ $d_4^+ = 20$

最优目标值向量: $Z^* = (0, 580, 20, 0)$

- 二. 线性目标规划的求解方法:
 - 2. 单纯形法
 - ✓ 单纯形法的基本思想
 - ✓ 单纯形法的迭代步骤

第四节 目标规划

- ✓ 线性目标规划的数学模型
 - 単目标目标规划数学模型
 - 多目标目标规划数学模型
 - 线性目标规划的求解方法
 - ✓ 序列法
 - 多阶段法
 - ✓ 单纯形法 ★

作业: P296 9(2)

作业: P242 9(2)