Lecture Three

Decision Tree Example

Example

age	income	student	redit_rating	ys_compu
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Tree induction example

$$\bullet info(D) = - p* log2p + - p* log2p -$$

$$Info(D) = -((9/14)log2(9/14))-(((5/14)log2(5/14))$$

= 0.940

$$/nfo_{age}(D) = 5/14((-2/5)\log_2(2/5)) - ((3/5)\log_2(3/5))$$

$$+ 4/14 ((-4/4)\log_2(4/4)) - ((0/4)\log_2(0/4))$$

$$+ 5/14((-3/5)\log_2(3/5)) - ((2/5)\log_2(2/5))$$

$$= 0.694 \text{ bits}$$

$$Gain(age) = Info(D) - Info(age) = 0.940 - 0.694 = 0.246 \text{ bits.}$$

$$4/14((-3/4) \log_2(3/4)) - ((1/4) \log_2(1/4)) + 6/14((-4/6) \log_2(4/6)) - ((2/6) \log_2(2/6)) + 4/14((-2/4) \log_2(2/4)) - ((2/4) \log_2(2/4)) = 0.91104 bits$$

Gain Income = Info Gain (D) – Info gain Income (D) =
$$0.940 - 0.91194 = 0.029$$
 bits

Info gain student(D) =
$$7/14((-4/7)\log_2(4/7)) - ((3/7)\log_2(3/7))$$

+ $7/14 ((-6/7)\log_2(6/7)) - ((1/7)\log_2(1/7))$
= **0.7884 bits.**

Gain student = InfoGain (D) – InfoGain student (D) =
$$0.940 - 0.7884 = 0.151$$
 bits.

Info gain credit_rating (D) ==
$$8/14((-6/8)\log_2(6/8)) - ((2/8)\log_2(2/8))$$

+ $6/14((-3/6)\log_2(3/6)) - ((3/6)\log_2(3/6))$
= 0.892 bits.

Gain = InfoGain (D) – Info gain credit_rating (D) =
$$0.940 - 0.892 = 0.048$$
 bits.

age	income	student	redit_rating	_com
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Gain = 0.246 = 0.029 = 0.151 = 0.048

Gain Ratio for Attribute Selection (C4.5)

$$SplitInfo_{A}(D) = -\sum_{j=1}^{\nu} \frac{|D_{j}|}{|D|} \times \log_{2}(\frac{|D_{j}|}{|D|})$$

split info بشوف عندي كام متغير في كل عمود وبحسب علي اساسه

$$SplitInfo_{Age}(D) = -\sum_{j=1}^{v} \frac{\mid D_{j} \mid}{\mid D \mid} \times \log_{2}(\frac{\mid D_{j} \mid}{\mid D \mid}) \quad \text{D[14]} \quad \text{age} \quad \underbrace{\begin{array}{c} <=30 \quad [5] \\ 31...40 \quad [4] \\ >40 \quad [5] \\ \end{array}}_{31...40} \quad \underbrace{\begin{array}{c} [4] \\ >40 \quad [5] \\ >40 \quad [5] \\ \end{array}}_{SplitInfo_{Age}(D) = -\frac{5}{14} \times \log_{2}(\frac{5}{14}) - \frac{4}{14} \times \log_{2}(\frac{4}{14}) - \frac{5}{14} \times \log_{2}(\frac{5}{14}) = 1.5774 \\ SplitInfo_{Income}(D) = -\sum_{j=1}^{v} \frac{\mid D_{j} \mid}{\mid D \mid} \times \log_{2}(\frac{\mid D_{j} \mid}{\mid D \mid}) \quad \text{D[14]} \quad \text{Medium [6]} \\ SplitInfo_{income}(D) = -\frac{4}{14} \times \log_{2}(\frac{4}{14}) - \frac{6}{14} \times \log_{2}(\frac{6}{14}) - \frac{4}{14} \times \log_{2}(\frac{4}{14}) = 1.557 \\ SplitInfo_{student}(D) = -\sum_{j=1}^{v} \frac{\mid D_{j} \mid}{\mid D \mid} \times \log_{2}(\frac{\mid D_{j} \mid}{\mid D \mid}) \quad \text{D[14]} \quad \text{Yes [7]} \\ SplitInfo_{student}(D) = -\sum_{j=1}^{v} \frac{\mid D_{j} \mid}{\mid D \mid} \times \log_{2}(\frac{\mid D_{j} \mid}{\mid D \mid}) \quad \text{D[14]} \quad \text{Fair [8]} \\ SplitInfo_{credit_rating}(D) = -\sum_{j=1}^{v} \frac{\mid D_{j} \mid}{\mid D \mid} \times \log_{2}(\frac{8}{14}) - \frac{6}{14} \times \log_{2}(\frac{6}{14}) = 0.9852 \\ \end{array} \quad \begin{array}{c} \text{Fair [8]} \\ \text{Excellent} \\ \text{[6]} \end{array}$$

age 🖵	incom€↓	studer:	<mark>:redit_rati</mark> r	_cor
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Gain =
$$0.246$$
 = 0.029 = 0.151 = 0.048 split Info = 1.5774 = 1.577 = 1 = 0.9852

	Age	Income	Student	credit rating
Gain	0.246	0.029	0.151	0.048
Split Info	1.5774	1.577	1	0.9852

Gain Ratio(Age) = Gain(age)/Split Info(age)

Gain Ratio(Age) = 0.246/1.5774 = 0.1559

Gain Ratio(Income) = Gain(income)/Split Info(income)

Gain Ratio(income) = 0.029/1.577 = 0.019

	Age	Income	Student	credit rating
Gain	0.246	0.029	0.151	0.048
Split Info	1.5774	1.577	1	0.9852

Gain Ratio(Student) = Gain(Student)/Split Info(Student)

Gain Ratio(Student) = 0.151/1=0.151

Gain Ratio(credit_rating) = Gain(credit_rating)/Split Info(credit_rating)

Gain Ratio(credit_rating) = 0.048/0.9852=0.048782

	Age	Income	Student	credit rating
Gain	0.246	0.029	0.151	0.048
Split Info	1.5774	0.926	1	0.9852
Gain Ratio	0.1559	0.019	0.151	0.048782

Age attribute with the maximum gain ratio is selected as the splitting attribute

age 🖫	incom€∓	studer:	redit_rati	buys_computer -
<=30	high	no	fair	no
<=30	high	no	excellent	no
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
<=30	medium	yes	excellent	yes

Info(
$$<=30$$
) = $-2/5(log_2(2/5))$
-3/5(log₂(3/5))
= 0.97

```
<=30 [2+,3-] Low [1+,0-] income Medium[1+,1-] High [0+,2-]
```

Gain(income) =
$$0.97 - 1/5[-1/1(\log_2(1/1)) - 0/1(\log_2(0/1))]$$

 $- 2/5[-1/2(\log_2(1/2)) - 1/2(\log_2(1/2))]$
 $- 2/5[-0/2(\log_2(0/2)) - 2/2(\log_2(2/2))]$
 $= 0.97 - 0.4 = 0.57$

<=30[2+, 3-] Fair [1+, 2-] Gain(credit_rating)

= 0.97

Excellent [1+, 1-]
$$-3/5[-1/3(\log_2(1/3))-2/3(\log_2(2/3))]$$

= 0.97 - 0.96 = 0.02

age 🗔	incom€-	studer:	<mark>redit_rati</mark> r	_cor=
<=30	high	no	fair	no
<=30	high	no	excellent	no
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
<=30	medium	yes	excellent	yes

Gain = 0.57 = 0.97 = 0.02

$$SplitInfo_{\underbrace{Income}_{<=30}}(D) = -\sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times \log_2(\frac{|D_j|}{|D|}) \quad \text{Income} \underbrace{\qquad \qquad \text{Medium [2]}}_{\text{High [2]}}$$

$$= -\frac{1}{5} \times \log_2(\frac{1}{5}) - \frac{2}{5} \times \log_2(\frac{2}{5}) - \frac{2}{5} \times \log_2(\frac{2}{5}) = 0.993$$

$$SplitInfo_{\substack{\text{student} \\ <=30}}(D) = -\sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times \log_2(\frac{|D_j|}{|D|}) \quad \text{D[5]}$$

$$-\frac{2}{5} \times \log_2(\frac{2}{5}) - \frac{3}{5} \times \log_2(\frac{3}{5}) = 0.970$$
No [3]

Yes [2]

$$SplitInfo_{\substack{\text{credit_rating} \\ <=30}}(D) = -\sum_{j=1}^{v} \frac{\mid D_{j}\mid}{\mid D\mid} \times \log_{2}(\frac{\mid D_{j}\mid}{\mid D\mid}) \quad \text{D[5]} \quad \text{credit_rating} \quad \text{Excellent[2]}$$

$$= \left(-\frac{3}{5} \times \log_2(\frac{3}{5})\right) - \frac{2}{5} \times \log_2(\frac{2}{5}) = 0.970$$

age 🖫	income.	studer:	<mark>:redit_rati</mark>	_cor=
<=30	high	no	fair	no
<=30	high	no	excellent	no
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
<=30	medium	yes	excellent	yes

Gain = 0.57 = 0.97 = 0.02 split Info = 0.993 = 0.970 = 0.970

	Age	Income	Student	credit rating
Gain	<= 30	0.057	0.97	0.02
Split Info		0.993	0.97	0.97

Gain Ratio(Income <=30) = Gain(income)/Split Info(income)

Gain Ratio(Income ≤ 30) = 0.057/0.993 = 0.0574

	Age	Income	Student	credit rating
Gain	<= 30	0.057	0.97	0.02
Split Info		0.993	0.97	0.97

Gain Ratio(Student <= 30) = Gain(Student)/Split Info(Student)

Gain Ratio(Student ≤ 30) = 0.97 /0.97 =1

Gain Ratio(credit_rating ≤ 30) = Gain(credit_rating)/Split Info(credit_rating)

Gain Ratio(credit_rating) = 0.02/0.97=0.0206

	Age	Income	Student	credit rating
Gain		0.057	0.97	0.02
Split Info	<= 30	0.993	0.97	0.97
GainRatio		0.0574	<u>1</u>	0.0206

Student attribute with the maximum gain ratio is selected as the splitting attribute

Tree induction example

Tree induction example

age 🖫	incom€-	studer:	<mark>:redit_rati</mark> r	_cor
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
>40	medium	yes	fair	yes
>40	medium	no	excellent	no

Info(>40) =
$$-3/5(\log 2(3/5))-2/5(\log_2(2/5))$$

= 0.97

Gain(income) =
$$0.97 - 2/5[-1/2(\log_2(1/2))-1/2(\log_2(1/2))]$$

- $3/5[-2/3(\log_2(2/3))-1/3(\log_2(1/3))]$
- $0/5[-0/0(\log_2(0/0))-0/0(\log_2(0/0))]$
= $0.97 - 0.75 = 0.22$

>40[3+,2-] student

YES [2+, 1-]

$$6ain(student)$$
 $= 0.97$
 $- 2/5[-1/2(log_2(1/2))-1/2(log_2(1/2))]$
 $- 3/5[-2/3(log_2(2/3))-1/3(log_2(1/3))]$
 $= 0.97 - 0.43 = 0.54$

age 🖫	incom€∓	studer:	<mark>redit_ratir=</mark>	_cor=
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
>40	medium	yes	fair	yes
>40	medium	no	excellent	no

Gain = 0.22 = 0.54 = 0.97

$$SplitInfo_{\underbrace{Income}_{>40}}(D) = -\sum_{j=1}^{v} \frac{|D_{j}|}{|D|} \times \log_{2}(\frac{|D_{j}|}{|D|}) \text{ income}$$
 = \text{ \text{Medium}[1+,1-]} \text{High [0+,0-]}

$$-\frac{2}{5} \times \log_2(\frac{2}{5}) - \frac{3}{5} \times \log_2(\frac{3}{5}) = 0.970$$

$$SplitInfo_{\text{student}}(D) = -\sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times \log_2(\frac{|D_j|}{|D|}) > 40[3+,2-]$$
 student
$$-\frac{2}{5} \times \log_2(\frac{2}{5}) - \frac{3}{5} \times \log_2(\frac{3}{5}) = 0.970$$

age 🖫	<mark>incom€</mark> -	studer:	<mark>redit_ratir</mark>	_cor
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
>40	medium	yes	fair	yes
>40	medium	no	excellent	no

Gain = 0.57 = 0.54 = 0.97 split Info = 0.970 = 0.970 = 0.970

	Age	Income	Student	credit rating
Gain		0.057	0.54	0.97
Split Info	> 40	0.970	0.97	0.97

Gain Ratio(Income > 40) = Gain(income)/Split Info(income)

Gain Ratio(Income > 40) = 0.057/0.970 = 0.05876

	Age	Income	Student	credit rating
Gain		0.057	0.54	0.97
Split Info	> 40	0.970	0.97	0.97

Gain Ratio(Student > 40) = Gain(Student)/Split Info(Student)

Gain Ratio(Student > 40) = 0.54 / 0.97 = 0.5567

Gain Ratio(credit_rating > 40) = Gain(credit_rating)/Split Info(credit_rating)

Gain Ratio(credit_rating) = 0.97/0.97 = 1

	Age	Income	Student	credit rating
Gain	> 40	0.057	0.54	0.97
Split Info		0.970	0.97	0.97
GainRatio		0.05876	0.5567	1

credit rating attribute with the maximum gain ratio is selected as the splitting attribute

Tree induction example

