REPRESENTAÇÕES DE DESVIO DE FASE

Leandro Teodoro Jan/2017

1. INTRODUÇÃO

É muito comum quando se estuda sinais alternados nos depararmos com algumas notações para desvio de fase, o que algumas vezes pode trazer alguma confusão. Nesse artigo serão abordados algumas das representações mais comuns.

2. REPRESENTAÇÕES DE DESVIO DE FASE

2.1 - Fasores.

Dados os sinais alternados abaixo no domínio do tempo. Nota-se que o sinal V_B está adiantado 90° em relação a V_A , pois é necessário que VB percorresse esse intervalo de tempo para os dois sinais "casarem" em fase.

Figura 1

Deste modo podemos representar os sinais fasorialmente no seguinte modo:

Figura 2

Observe que o fasor de referência é V_A , que assume a posição horizontal do plano. Note também que para sinais adiantados a V_A o ângulo toma valor positivo e segue no sentido anti-horário.

Se caso V_{B} fosse a referência, o diagrama de fasores seria exibido da seguinte forma:

Figura 3

Neste caso V_A estaria atrasado em 90° em relação a V_B que é a referência. Abaixo observamos outro exemplo:

 V_B está atrasada relativamente a V_A de 30°.

 V_A está adiante de V_B de 30°.

Figura 4

2.2 – Representação por Equação Trigonométrica

Um sinal alternado pode ser algebricamente representado pela equação:

$$v_{(t)} = V.sen(wt + \varphi)$$
 onde:

 $v_{(t)}$: tensão instantânea em um dado momento

V: tensão de máxima do sinal (tensão de pico)

w: velocidade angular dada $por(2.\pi.f)$ onde f é a frequência do sinal

 φ : defasagem angular

Para os sinais da figura 4, é possível representá-los algebricamente do seguinte modo:

 $VB = VB_p$. sen(wt) referência;

 $VA = VA_p.sen(wt + 30)$ assim, V_A adiantado em 30° em relação a V_B .

Sendo que para formatação em radianos temos:

$$VB = VB_p.sen(wt)$$

$$VA = VA_p$$
. $sen\left(wt + \frac{\pi}{6}\right)$

Para VA como referência temos:

 $VA = VA_p$. sen(wt) referência;

 $VB = VB_p$. sen(wt - 30) assim, V_B atrasado em 30° em relação a V_A .

3. REFERÊNCIAS

- [1]. Eletricidade Básica Milton Gussow 2ª Edição Editora Makron Books
- [2]. Princípios de Telecomunicações Teoria e Prática Julio Cesar De Oliveira Medeiros 4ª Edição Editora Érica