Univariate conjugate prior distributions for various one-parameter likelihoods from a sample of size n. Also given are the corresponding posterior parameters and the predictive distribution for a single new observation \tilde{y}^{\dagger} . See Appendix C and/or Bernardo and Smith (1994), pp. 427–435, for definitions of distributions.

Sampling distribution	Conjugate prior	Posterior parameters	Predictive distribution
$y \theta \sim \text{Binomial}(\theta, n)$ including Bernoulli $(n = 1)$	$\theta \sim \mathrm{Beta}(a,b)$	$a_n = a + y,$ $b_n = b + n - y$	Beta-Binomial (a_n, b_n, n)
$y \mu \sim \prod_{i=1}^n \text{Normal}(\mu, \sigma^2)$	$\mu \sim \text{Normal}(\gamma, \omega^2 = \frac{\sigma^2}{n_0})$	$\gamma_n = \frac{n_0 \gamma + n\bar{y}}{n_0 + n},$ $\omega_n^2 = \frac{\sigma^2}{n_0 + n}$	$Normal(\gamma_n, \omega_n^2 + \sigma^2)^{\ddagger}$
$y \sigma^2 \sim \prod_{i=1}^n \text{Normal}(\mu, \sigma^2)$	$\sigma^{-2} \sim \text{Gamma}(a, b)$	$a_n = a + \frac{n}{2},$ $b_n = b + \frac{1}{2} \sum_i (y_i - \mu)^2$	Student- $t(\mu, \frac{b_n}{a_n}, 2a_n)^\S$
$y \theta \sim \prod_{i=1}^{n} \text{Poisson}(\theta)$	$\theta \sim \text{Gamma}(a, b)$	$a_n = a + n\bar{y},$ $b_n = b + n$	$\operatorname{NegBin}(\frac{b_n}{b_n+1}, a_n)$
$y \theta \sim \prod_{i=1}^{n} \text{Gamma}(\alpha, \theta)$ including Exponential $(\alpha = 1)$	$\theta \sim \text{Gamma}(a, b)$	$a_n = a + n\alpha, b_n = b + n\bar{y}$	Gamma-Gamma (a_n, b_n, α)
$y \theta \sim \prod_{i=1}^{n} \mathrm{Uniform}(0,\theta)$	$\theta \sim \operatorname{Pareto}(a, b)$	$a_n = a + n, b_n = \max\{b, y\}$	$\begin{cases} \frac{a_n}{a_{n+1}} \operatorname{Uniform}(0, b_n), \ \tilde{y} \leq b_n \\ \frac{1}{a_n+1} \operatorname{Pareto}(a_n, b_n), \ \tilde{y} > b_n \end{cases}$
$y \theta \sim \text{NegBin}(\theta, r)$ including Geometric $(r = 1)$	$\theta \sim \mathrm{Beta}(a,b)$	$a_n = a + r,$ $b_n = b + y$	Negative-Binomial-Beta (a_n, b_n, r_p)