UGANDA MARTYR'S UNIVERSITY

FACULTY OF SCIENCE DEPARTMENT OF NATURAL SCIENCES

Second year Supplementary Examination

Semester I 2020/2021

First Year, MAT 1102:Linear Algebra

Instructions

- 1. Attempt only five questions questions
- 2. Give clear steps to earn more marks

Question 1

- (i) What is meant by vectors $\mathbf{v_i}, \mathbf{i} = 1, 2, \dots, \mathbf{n}$ being linearly independent [2 marks]
- (ii) Let $V = \mathbb{R}^n$ and consider the following elements in $V:\{e_1 = (1,0,0,\ldots,0), e_2 = (0,1,0,\ldots,0), \ldots e_n = (0,0,0,\ldots,1)\}$ Show that e_1,e_2,\ldots,e_n are linearly independent. [3 marks]
- (iii) Determine whether the following matrices are linearly depen-

dent or linearly independent in $M_2(\mathbb{R})$

$$A_1=\left[egin{array}{cc} 1 & -1 \ 2 & 0 \end{array}
ight], A_2=\left[egin{array}{cc} 2 & 1 \ 0 & 3 \end{array}
ight], A_3=\left[egin{array}{cc} 1 & -1 \ 2 & 1 \end{array}
ight] \left[4marks
ight]$$

- b(i) If $v_1=(1,2,-1), v_2=(2,-1,1), v_3=(8,1,1)$, show that $\{v_1,v_2,v_3\}$ is linearly dependent in \mathbb{R}^3 , and determine the linear dependency relationship [5 marks]
- (ii) Let $v_1 = (1, 2, 3), v_2 = (-1, 1, 4), v_3 = (3, 3, 2)$ and $v_4 = (-2, -4, -6)$.

 Determine a linearly independent set of vectors that spans the same subspace of \mathbb{R}^3 as span $\{v_1, v_2, v_3, v_4\}$ [6 marks]

Question 2

- (a) State the Wroskian method for linear dependency. hence find the Wroskian of $f_1(x) = 2x$, $f_2(x) = x^2$ and $f_3(x) = x^3$ [6 marks]
- (b) Determine whether the following functions are linearly dependent or linearly independent on $I=(-\infty,\infty)$ by

(i)
$$f_1(x) = e^x, f_2(x) = x^2 e^x$$
 [4 marks]

$$f_1(x) = x^2, f_2(x) = \begin{cases} 2x^2, & \text{if } x \ge 0 \\ -x^2, & \text{if } x < 0 \end{cases}$$

[5 marks]

(c) Show that the functions $f_1(x) = e^{r_1x}$, $f_2(x) = e^{r_2x}$, $f_3 = e^{r_3x}$ have a Wroskian

$$W[f_1, f_2, f_3](x) = e^{(r_1 + r_2 + r_3)(x)} \begin{bmatrix} 1 & 1 & 1 \\ r_1 & r_2 & r_3 \\ r_1^2 & r_2^2 & r_3^2 \end{bmatrix}$$
$$= e^{(r_1 + r_2 + r_3)(x)} (r_3 - r_1)(r_3 - r_2)(r_2 - r_1)$$

[5 marks]

Question 3

- (a) Determine whether the following functions are linear transformation. If they are, prove it; if not provide a counter example to one of the properties
- (i) $T: \mathbb{R}^2 \to \mathbb{R}^2$ with

$$T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+y \\ y \end{bmatrix} [4marks]$$

 $T:\mathbb{R}^2 o\mathbb{R}^2$

$$T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x^2 \\ y^2 \end{bmatrix} [4marks]$$

- (b) For the following linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$, find a matrix A such that $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$
- (i) $T: \mathbb{R}^2 \to \mathbb{R}^3$

$$T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x - y \\ 3y \\ 4x + 5y \end{bmatrix} [4marks]$$

(ii) $T: \mathbb{R}^2 \to \mathbb{R}^2$, satisfying $T: \mathbb{R}^n \to \mathbb{R}^3$

$$T\begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}1\\-2\end{bmatrix}, T\begin{bmatrix}2\\3\end{bmatrix} = \begin{bmatrix}-2\\5\end{bmatrix}[4marks]$$

(c) Construct a linear transformation $T: \mathbb{R}^4 \to \mathbb{R}$, T(x) = Bx, where $V = \ker(B)$. Then use B to construct a basis for $\ker(B)$. You will need to verify that what you have is a basis [4 marks]

Question 4

(a) (i) Define a bilinear form on a vector space V over a field K. (3 marks)

- (ii) Let ϕ and σ be any functionals on a vector space V. Let $f: VxV \to K$ be defined by $f(u,v) = \phi(u)\sigma(v)$. Show that f is bilinear form. (4marks)
- (b) Given a function f(u, v) where $u = (x_1, x_2)$ and $v = (y_1, y_2)$ determine whether $f(u, v) = 3x_2y_2$ is a bilinear form on \Re^2 , hence rewrite a function in matrix form.(3 marks)
- (c) Describe the conic C whose equation is $5x^2 4xy + 8y^2 36 = 0$ (6 marks)
- (d) Find the quadratic form $q(x_1, x_2, x_3)$ corresponding to the matrices below

(i)

$$\begin{bmatrix}
 1 & 2 & -4 \\
 2 & 3 & 5 \\
 -4 & 5 & -7
 \end{bmatrix}$$

(2 marks)

(ii)

$$\begin{bmatrix} 2 & -5 & -1 \\ -5 & -6 & -7 \\ 1 & -7 & -9 \end{bmatrix}$$

(2 marks)

Question 5

(a)

- (i) Define a dual space of a vector space V (3 marks).
- (ii) Consider the following basis of \Re^2 : $V_1=(2,1), V_2=(3,1)$. Find the dual basis $(\phi_1,\phi_2).(4 \text{ marks})$
- (b) Consider basis of \Re^2 : $S_1 = V_1 = (1,1), V_2 = (1,0)$ and $S_2 = w_1 = (4,3), w_2 = (3,2)$. Find the change of basis matrix P from s_1 to s_2 (5 marks)
- (c) Determine the invariant subspaces of A =

$$\begin{bmatrix} 2 & -4 \\ 5 & -2 \end{bmatrix}$$

viewed as a linear operator on ℓ^2

(d) Given a subspace W which is invariant under $s:V\to V$ and $T:V\to V$ show that W is invariant under S+T

(3marks)

Question 6

- (a) Define the matrix representation of a linear operator.(4 marks)
- (b) Find the matrix representation of the linear map $T: \Re^2 \to \Re^2$ defined by T(x,y) = 3x 4y, x + 5y relative to the basis $B = V_1 = (1,3), V_2 = (2,5)$ (5 marks)
- (c) Let V be the vector space of 2 x2 matrices over \Re and

$$M = \left[\begin{array}{cc} -1 & 2 \\ 2 & 5 \end{array} \right]$$

Let D denote the differential operator that is, $D(f(t)) = \frac{df}{dt}$. Each of the following sets is a basis of a vector space V of functions. Find the matrix representing D

(i)
$$(e^t, e^{2t}, te^{2t})$$
 [3 marks]

(ii)
$$(1,t,\sin 3t,\cos 3t)$$
 [3 marks]