ТФКП 2 курс Домашнее задание Владислав Мозговой 1789769386

29 марта 2021 г.

Домашнее задание 2

Цифры Вашего кода $-a_0, \ldots, a_9$. В каждом из четырех блоков задач Вам нужно решить только один вариант, выбор которого определяется цифрами Вашего кода так, как указано.

- 1. Вам нужно решить тот пункт, номер которого совпадает с последней цифрой числа $a_0 + a_1$. Найдите множество, в которое отображается множество $X\subset\overline{\mathbb{C}}$ при дробно-линейном преобразовании $f:\overline{\mathbb{C}}\to\overline{\mathbb{C}}$. Нарисуйте это множество и вычислите его параметры (например, если это окружность или диск, то найдите центр и радиус).
 - (0) $X = {\text{Im}(z) = 0}, f(z) = \frac{2iz}{z-2}$

 - (1) $X = \{|z| = 2\}, \ f(z) = 1/z$ (2) $X = \{|z| = \frac{1}{3}\}, \ f(z) = (z+3)/z$
 - (3) $X = {\text{Im}(z) = 0}, f(z) = \frac{(1+i)z}{4z-2}$
 - (4) $X = \{|z| = \frac{1}{2}\}, f(z) = (z+i)/z$
 - (5) $X = \{ \text{Re}(z) = 1 \}, \ f(z) = (z+1)/(z-1) \}$
 - (6) $X = {\text{Im}(z) = -4}, f(z) = iz/(z+4i)$
 - (7) $X = {\text{Im}(z) = 1}, f(z) = z/(z-i)$
 - (8) $X = {\text{Re}(z) = -3}, f(z) = (z i)/(z + 3)$
 - (9) $X = \{|z| = 3\}, f(z) = -9i/z$
- 2. Вам нужно решить тот пункт, номер которого совпадает с последней цифрой числа $3a_2 + a_3$. Отождествим расширенную плоскость $\mathbb{C} \cup \{\infty\}$ со сферой с центром в (0,0,1) и радиусом 1 при помощи стереографической проекции из северного полюса (0,0,2)на горизонтальную плоскость $\{(\text{Re}(z), \text{Im}(z), 0)\}.$
- (0) Найдите преобразования расширенной плоскости z, соответствующие при стереографической проекции вращению сферы относительно оси с направляющим вектором (1,0,0) на угол $\pi/2$.
- (1) Найдите образ экватора (пересечения сферы с плоскостью, проходящей через центр сферы параллельно плоскости проекции) при стереографической проекции.
- (2) Найдите преобразования расширенной плоскости z, соответствующие при стереографической проекции вращению сферы относительно оси с направляющим вектором (1,0,0) на угол π .
- (3) Введём на сфере сферические координаты как на глобусе (широта и долгота). Найдите образ части сферы, лежащей выше 30-ой параллели северной широты.
- (4) Найдите преобразования расширенной плоскости z, соответствующие при стереографической проекции вращению сферы относительно оси с направляющим вектором (0,1,0) на угол $\pi/2$.

- (5) Введём на сфере сферические координаты как на глобусе (широта и долгота). Найдите образ 45-ого мериадиана западной долготы (0-ой меридиан проходит через точку (1,0,1)).
- (6) Найдите преобразования расширенной плоскости z, соответствующие при стереографической проекции вращению сферы относительно оси с направляющим вектором (0,1,0) на угол π .
- (7) Введём на сфере сферические координаты как на глобусе (широта и долгота). Найдите образ части сферы, лежащей ниже 30-ой параллели южной широты.
- (8) Найдите преобразования расширенной плоскости z, соответствующие при стереографической проекции вращению сферы относительно оси с направляющим вектором (0,0,1) на угол $\pi/3$.
- (9) Введём на сфере сферические координаты как на глобусе (широта и долгота). Найдите образ 60-го мериадиана восточной долготы (0-ой меридиан проходит через точку (1,0,1)).
- **3.** Вам нужно решить тот пункт, номер которого совпадает с последней цифрой числа $a_4 + 2a_5$.
- (0) Найдите центр и радиус обобщенной окружности, заданной уравнением $z\overline{z} i\overline{z} + iz 1 = 0$
- (1) Задайте уравнением относительно координаты z прямую, проходящую через точки 1+i и 2+3i
- (2) Найдите множество, в которое отображается множество X при преобразовании f

$$X = {\text{Re}(z) > 0; \text{Im}(z) < 0}, f(z) = z^4 + 2$$

- (3) Задайте уравнением относительно координаты z прямую, проходящую через точки 1+i и $e^{\frac{\pi i}{4}}$
- (4) Найдите центр и радиус обобщенной окружности, заданной уравнением $iz\overline{z}+\overline{z}-z-3i=0$
- (5) Задайте уравнением относительно координаты z прямую, проходящую через точки -3+i и 2-4i.
- (6) Найдите центр и радиус обобщенной окружности, заданной уравнением $z\overline{z} |z| = 1$
- (7) Найдите множество, в которое отображается множество X при преобразовании f

$$X = {\text{Re}(z) > 0; \text{Im}(z) - i}, f(z) = (z + i)^2 - i$$

- (8) Найдите центр и радиус обобщенной окружности, заданной уравнением $z\overline{z} + \overline{z} + z 1 = 0$
- (9) Найдите множество, в которое отображается множество X при преобразовании f

$$X = {\text{Re}(z) < 0; \text{Im}(z) > 0}, f(z) = z^3 - i$$

- **4.** Вам нужно решить тот пункт, номер которого совпадает с последней цифрой числа $2a_6 + 3a_7$. Дайте геометрическое описание следующих множеств:
 - (0) $|z-i|+|z-1| \leq 2$
 - (1) |z-i| = 2|z|
 - (2) $Re(\frac{z}{1-z}) = 1$
 - (3) |z-2| = |z+2|
 - (4) |z-i| = |z+1|
 - (5) $|z| \geqslant |\text{Re}(z)| + |\text{Im}(z)|$
 - (6) $|\text{Re}(z)| + |\text{Im}(z)| \leqslant \frac{3}{\sqrt{5}}|z|$
 - (7) $|z-i|-|z-1| \leqslant 1$
 - (8) Im $\left(\frac{z+1}{z-1}\right) = 1$
 - (9) |z+1| = 3|z|
- **5.** Бонусная задача. Эту задачу не надо записывать. Вы можете рассказать ее вашему семинаристу и получить за нее бонусные баллы. Решайте тот пункт, номер которого совпадает с последней цифрой числа $3a_0 + 4a_8$.
- (0) Найдите центр и радиус окружности, описанной вокруг треугольника с вершинами $a,\ b,\ c.$ Выразите ответ в симметричном виде.
- (1) Найдите все пары коммутирующих дробно-линейных преобразований.
- (2) Найдите два семейства окружностей или прямых со следующим свойством. Каждое из двух семейств инвариантно относительно всех дробно-линейных преобразований с неподвижными точками ± 1 (в том смысле, что каждое дробно-линейное преобразование f, такое, что $f(\pm 1)=\pm 1$, переводит каждую окружность или прямую каждого семейства в окружность или прямую того же семейства).
- (3) Пусть даны две различные точки $a, b \in \mathbb{C}$ и положительное действительное число r>0. Докажите, что геометрическое множество точек $z \in \mathbb{C}$, таких, что

$$\frac{|z-a|}{|z-b|} = r,$$

является окружностью или прямой.

(4) Найдите общий вид дробно-линейного преобразования, соответствующего вращению сферы при стереографической проекции на $\overline{\mathbb{C}}$.

- (5) Дробно-линейное преобразование называется эллиптическим, если оно сопряжено в группе дробно-линейных преобразований евклидовому вращению вокруг некоторого центра. Докажите, что если дробно-линейное преобразование f удовлетворяет тождеству f(f(z)) = z, то f эллиптическое.
- (6) Рассмотрим преобразование $f(z) = \frac{z}{1-z}$. Найдите явную формулу для n-ой итерации $f^n = \underbrace{f \circ \cdots \circ f}_n$.
- (7) Выпишите дифференциальное уравнение, которому удовлетворяет частное любых двух линейно независимых решений уравнения

$$u''(z) + e^z u(z) = 0.$$

- (8) Докажите, что комплексные точки a,b,c,d лежат на одной окружности (или на одной прямой) тогда и только тогда, когда их двойное отношение $\frac{(c-a)(d-b)}{(c-b)(d-a)}$ является вещественным числом.
- (9) Дробно-линейное преобразование f имеет только одну неподвижную точку в $\overline{\mathbb{C}}$. Докажите, что f сопряжено в группе дробно-линейных преобразований отображению $z\mapsto z+1$.

Решения

Задача 1

Необходимо решить задачу $a_0 + a_1 = 1 + 7 = 8 \mod 10$

$$X = \{ \text{Re}(z) = -3 \}, \ f(z) = \frac{z - i}{z + 3}$$

$$\frac{(x + iy) - i}{(x + iy) + 3} = 1 - \frac{3 + i}{(x + iy) + 3}$$

$$X : 1 - \frac{3 + i}{(x + iy) + 3} = 1 - \frac{3 + i}{(-3 + iy) + 3} = 1 - \frac{3 + i}{iy}$$

То есть мы получим прямую с выколотой точкой $z_0=1$

Задача 2

Необходимо решить задачу $3a_2 + a_3 = 3 \cdot 8 + 9 = 3 \mod 10$

Заметим, что часть сферы, лежащая выше 30-ой параллели является шапочкой данной сферы, точнее ее частью, лежащей выше $z=1+\sin(30)=1.5$, тогда мы можем посмотреть, куда отображается эта параллель, а она отображается в окружность, точки которой имеют модуль $x=2\sqrt{3}$, то есть образ части сферы будет лежать вне этой окружности и задаваться формулой $z\overline{z}>(2\sqrt{3})^2=12$

Задача 3

Необходимо решить задачу $a_4 + 2a_5 = 7 + 2 \cdot 6 = 9 \mod 10$

$$X = {\text{Re}(z) < 0, \text{Im}(z) > 0}, f(z) = z^3 - i$$

Замеьтим, что при преобразовании $z \to z^3 - i$ модуль z возводится в куб, аргумент умножается на 3, а затем результат сдвигается на i. Заметим, что аргументы элементов множества X лежат в интервале $\left(\frac{\pi}{2},\pi\right)$, а следовательно, после умножения на 3, аргументы будут лежать в $\left(\frac{3\pi}{2},3\pi\right)$. А следовательно в итоге будет множество $A = \mathbb{C} \setminus \{z \in \mathbb{C} : \operatorname{Re}(z) < 0, \operatorname{Im}(z) < -1\}$

5

Задача 4

Необходимо решить задачу $2a_6 + 3a_7 = 2 \cdot 9 + 3 \cdot 3 = 7 \mod 10$

$$\begin{split} |z-i|-|z-1| &\leqslant 1 \\ |x+i(y-1)|-|(x-1)+iy| &\leqslant 1 \\ \sqrt{x^2+(y-1)^2}+\sqrt{(x-1)^2+y^2} &\leqslant 1 \\ x^2+(y-1)^2 &\leqslant 1+(x-1)^2+y^2+2\sqrt{(x-1)^2+y^2} \\ 2x-2y-1 &\leqslant 2\sqrt{(x-1)^2+y^2} \\ (2x-2y-1)^2 &\leqslant 4(x^2-2x+1+y^2) \\ (2x-2y-1)(2x-2y-1) &= 4x^2+4y^2-8xy-4x+4y+1 \leqslant 4x^2-8x+4y^2+4-8xy+4x+4y \leqslant 3 \\ y(4-8x) &\leqslant 3-4x \end{split}$$

Тогда при $4-8x>0: \ x<\frac{1}{2}, \ y\leqslant \frac{3-4x}{4-8x}$ и при $4-8x<0: \ x>\frac{1}{2}, \ y\geqslant \frac{3-4x}{4-8x}$

