pieczątka szkoły (dotyczy etapu szkolnego)

Skrót przedmiotowy konkursu gFI -- 2018/2019 (numer porządkowy z kodowania)

Nr identyfikacyjny - wyjaśnienie

g – gimnazjum, symbol przedmiotu (np. FI – fizyka), numer porządkowy wynika z numeru stolika wylosowanego przez ucznia

WOJEWÓDZKI KONKURS PRZEDMIOTOWY z Fizyki dla uczniów dotychczasowych gimnazjów i klas dotychczasowych gimnazjów 2018/2019

TEST ELIMINACJE REJONOWE

•	Arkusz liczy 11 stron i zawiera 10 zadań oraz brudnopis.	Czas
•	Przed rozpoczęciem pracy sprawdź, czy Twój arkusz jest kompletny. Jeżeli zauważysz usterki,	
	zgłoś je Komisji Konkursowej.	pracy:
•	Zadania czytaj uważnie i ze zrozumieniem.	
•	Odpowiedzi wpisuj długopisem bądź piórem, kolorem czarnym lub niebieskim.	
•	Dbaj o czytelność pisma i precyzję odpowiedzi.	90 min.
•	W zadaniach zamkniętych prawidłową odpowiedź zaznacz stawiając znak X na odpowiedniej	
	literze.	
•	Jeżeli się pomylisz, błędne zaznaczenie otocz kółkiem i zaznacz znakiem X inną odpowiedź.	
•	Oceniane będą tylko te odpowiedzi, które umieścisz w miejscu do tego przeznaczonym.	
•	Obok każdego numeru zadania podana jest maksymalna liczba punktów możliwa do uzyskania za prawidłową odpowiedź.	
•	Pracuj samodzielnie. Postaraj się udzielić odpowiedzi na wszystkie pytania.	
•	Nie używaj korektora. Jeśli się pomylisz, przekreśl błędną odpowiedź i wpisz poprawną.	
•	Nie używaj pomocy (np. kalkulator), jeżeli nie pozwala na to regulamin konkursu.	
	Powodzenia!	

Wypełnia Komisja Konkursowa po zakończeniu sprawdzenia prac

Zadanie	1	2	3	4	5	6	7	8	9	10	11	12	13	Razem
Punkty możliwe do uzyskania	1	1	1	1	2	1	3	6	6	13	4	6	5	50 pkt.
Punkty uzyskane														 pkt

Podpis	y członków komisji sprawdzających prace:	Imię i nazwisko ucznia
1.	(imię i nazwisko)(podpis)	
2.	(imię i nazwisko)(podpis)	

UWAGA.

We wszystkich zadaniach przyjmij wartość przyspieszenia grawitacyjnego równą 10 m/s²

Informacje potrzebne do zadań:

$$d_{wody} = 1000 \; \frac{kg}{m^3}$$

Ciepło właściwe wody	$4200 \frac{J}{kg \cdot {}^{\circ}C}$
Ciepło właściwe lodu	$2100 \frac{J}{kg \cdot {}^{\circ}C}$
Ciepło właściwe pary wodnej	$1020 \frac{J}{kg \cdot {}^{\circ}C}$
Ciepło topnienia lodu	$335 \frac{kJ}{kg}$
Ciepło parowania wody	$2,258\frac{MJ}{kg}$

Zadanie 1. (0-1)

W pracowni fizycznej uczniowie przeprowadzili doświadczenie polegające na pomiarze aluminiową linijką długości szklanego pręta ogrzewanego w wodzie o różnej temperaturze.

Pierwszego pomiaru dokonali po wyciągnięciu szklanego pręta z wody o temperaturze 30°C.

Następnie przełożyli szklany pręt do innego naczynia z wodą. Po wykonaniu drugiego pomiaru okazało się, że przy nie zmienionej temperaturze otoczenia, otrzymana długość szklanego pręta jest mniejsza niż w pierwszym pomiarze.

Dokończ zdanie. Wybierz właściwa odpowiedź spośród podanych.

Temperatura wody, z której wyciągnięto szklany pręt do drugiego pomiaru, jest:

- a) większą niż 30°C
- b) mniejszą niż 30°C

Zadanie 2. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Dostarczając 835 kJ energii cieplnej do lodu o temperaturze 0°C można całkowicie stopić maksymalnie

- a) ok. 0,5 kg lodu
- b) ok. 1,5 kg lodu
- c) ok. 2,5 kg lodu
- d) ok. 3,5 kg lodu

Zadanie 3. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Energia kinetyczna kulki rzuconej ku górze z pewną prędkością po pierwszej sekundzie lotu:

- a) wzrasta
- b) maleje
- c) nie zmienia swojej wartości

Zadanie 4. (0-1)

Dwie naelektryzowane kulki przyciągają się wzajemnie jednakowymi siłami.

Dokończ zdanie. Wybierz właściwa odpowiedź spośród podanych.

Jeśli przy niezmienionej odległości między kulkami ładunek pierwszej zwiększymy dwa razy a ładunek drugiej zmniejszymy cztery razy, to siła oddziaływania między nimi:

- a) zmaleje 2 razy
- b) wzrośnie 4 razy
- c) wzrośnie 2 razy
- d) zmaleje 4 razy

Zadanie 5. (0-2)

Samochód o masie 3 t zaczął hamować na płaskiej drodze i w czasie 2 s zmniejszył swoją prędkość z 30 m/s do 20 m/s. Opory powietrza zaniedbujemy.

Zadanie 5.1. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Siła tarcia kół o jezdnię wynosi

- a) 15 000 N
- b) 30 000 N
- c) 45 000 N
- d) 60 000 N.

Zadanie 5.2. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Współczynnik tarcia kół o jezdnię wynosi:

- a) 3
- b) 2

- c) 1,5
- d) 0,5

Zadanie 6. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Opór elektryczny 15 połączonych równoleg
le jednakowych oporników o oporze 20Ω każdy wynosi:

- a) 300Ω
- b) 0.75Ω
- c) 1,(3) Ω
- d) 150Ω

Zadanie 7. (0-3)

Wykres przedstawia zależność wychylenia od czasu dla wahadła matematycznego o masie 50g.

Zadanie 7.1. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Częstotliwość ruchu drgającego wahadła wynosi:

- a) 1,2 Hz
- b) 0,83 Hz
- c) 1,2 s
- d) 0,83 s

Zadanie 7.2. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Długość wahadła wynosi:

- a) ok.567 m
- b) ok. 5,68 m
- c) ok. 36,5 cm
- d) ok. 0,4 cm

Zadanie 7.3. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Stwierdzenie "Energia kinetyczna badanego wahadła matematycznego ma największą wartość w 0,6s i 1,2 s ruchu" jest:

- a) prawdziwe
- b) fałszywe.

Zadanie 8. (0-6)

Oblicz moc grzałki, która w ciągu 2 minut topi całkowicie lód o masie 150 g umieszczony w kalorymetrze. Pomiń straty energii związane z ogrzewaniem kalorymetru i otoczenia. Oblicz natężenie prądu płynącego przez tę grzałkę, jeżeli jest ona podłączona do źródła zasilania o napięciu 230 V.

Zadanie 9. (0-6)

W kalorymetrze znajduje się 1,5 kg lodu o temperaturze -10°C. Oblicz jaką najmniejszą ilość wody o temperaturze 40°C należy włać do kalorymetru, aby stopić całkowicie lód i otrzymać wodę o temperaturze 0°C.

Pomiń straty energii związane z ogrzewaniem kalorymetru i otoczenia.

Zadanie 10. (0-13)

Upuszczona swobodnie z pewnej wysokości śnieżna kulka o masie 5 dag uderzyła o ziemię z prędkością o wartości 10 m/s.

W obliczeniach pomiń opory ruchu.

Zadanie 10.1. (0-2)

Oblicz po jakim czasie kulka śnieżna osiągnie maksymalną wysokość.

Zadanie 10.2. (0-2)

Oblicz maksymalną wysokość jaką osiągnie kulka śnieżna.

Zadanie 10.3. (0-2)

Korzystając z zasady zachowania energii mechanicznej, napisz wzór na całkowitą energię mechaniczną śnieżnej kulki, gdy znajdowała się ona:

- a) na maksymalnej wysokości
- b) w połowie maksymalnej wysokości.

Zadanie 10.4. (0-5)

Narysuj wykres zależności energii kinetycznej od wysokości w trakcie opadania śnieżnej kulki z maksymalnej wysokości. Przyjmij skalę wysokości co 1m.

Zadanie 10.5. (0-2)

Na wykresie z zadania 10.4 narysuj zależność całkowitej energii mechanicznej od wysokości dla opadającej śnieżnej kulki.

Zadanie 11.(0-4)

Do dna jeziora za pomocą liny umocowano boję ostrzegawczą. Boja ma masę 0,5 kg i objętość 5 dm³. Oblicz siłę napinającą linę, jeżeli 1/4 boi jest ponad wodą.

Zadanie 12. (0-6)

W pewnej odległości od siebie znajdują się dwa statki. Z dolnego pokładu statku A, znajdującego się tuż pod poniżej powierzchni wody, wysłany został pojedynczy sygnał dźwiękowy echosondy we wszystkich kierunkach.

- a) Wyjaśnij dlaczego statek B odebrał dwa sygnały w odstępie 2 s.
- b) Oblicz w jakiej odległości od siebie znajdują się statki A i B, jeżeli głębokość morza pomiędzy nimi wynosi 3 km, a wartość prędkości dźwięku w wodzie to 1500 m/s.

Zadanie 13. (0-5)

Wykaż jak zmieni się moc kuchenki elektrycznej po wymianie spirali grzejnej, jeśli nowa spirala wykonana jest z identycznego rodzaju drutu, o większym niż poprzednio przekroju, a napięcie zasilania pozostanie bez zmian.

BRUDNOPIS (nie podlega ocenie)