САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МАТЕМАТИКО-МЕХАНИЧЕСКИЙ ФАКУЛЬТЕТ

Кафедра теории вероятностей и математической статистики

ПРОЕКТНАЯ РАБОТА

студента 311 группы:

Подлужного Ивана Андреевича

Руководитель:

к. ф-м. н., О.В. Русаков

Содержание

1	Пос	становка задачи	3
Ι	Te	оретическая модель	4
2	Сходимость параметров выборки гауссова вектора		4
	2.1	Базовые сходимости	4
		2.1.1 Сходимость почти наверное	4
		2.1.2 Сходимость в L^2	5
	2.2	Сходимость прямых регрессии	6
	2.3	Сходимость наилучших прямых выборки гауссова вектора к глав-	
		ным осям гауссова вектора	6
		2.3.1 Сходимость прямых при $\sigma_X \neq \sigma_Y$	6
		2.3.2 Случай $\sigma_X = \sigma_Y, \rho = 0$	8
	2.4	Сходимость сумм расстояний до наилучшей прямой	8
	2.5	Сходимость при случайной величине ρ	8
II	П	рактическая реализация	11
3	Mo,	делирование распределений	11
	3.1	Нормальное распределение	11
	3.2	Бета-распределение	13
4	Про	ограммное обеспечение	14
II	I I	Приложение	18
	4.1	Регрессии	18
	4.2	Наименее уклоняющаяся прямая	18
	4.3	О двумерном гауссовом векторе	20
5	Лиз	гература	22

1 Постановка задачи

Рассмотрим следующий процесс: путь на плоскость \mathbb{R}^2 случайным образом ставят точки — независимые реализации случайного вектора, имеющего нормальное распределение с параметрами σ_X , σ_Y , ρ . На каждом шаге проводится прямая МНК и прямые регрессии X на Y и Y на X. К чему и как быстро будут сходится предельные $n \longrightarrow \infty$ параметры прямых? В работе также рассмотрены смеси нормального распределения со случайным параметром ρ , где нам удалось ответить на часть поставленных вопросов. Результаты подкреплены математической моделью данного процесса в среде \mathbb{R} .

Работа разбита на 3 части:

- 1. Исследование сходимости при постоянном параметре ρ
- 2. Исследование смесей нормального распределения
- 3. Практическая реализация

Все необходимые предварительные выкладки находятся в Приложении.

Часть I

Теоретическая модель

2 Сходимость параметров выборки гауссова вектора

2.1 Базовые сходимости

Пусть $\mathbf{z_k} = (x_k, y_k)$ н.о.р с плотностью

$$p_{\mathbf{z}}(x,y) = \frac{1}{2\pi\sigma_X \sigma_Y \sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)} \left(\frac{x^2}{\sigma_X^2} - 2\frac{\rho xy}{\sigma_X \sigma_Y} + \frac{y^2}{\sigma_Y^2}\right)\right)$$

To есть $\mathbb{E}x_k = 0$, $\mathbb{E}y_k = 0$, $\mathbb{D}x_k = \sigma_X^2$, $\mathbb{D}y_k = \sigma_Y^2$.

Рассмотрим поведение прямых выборки $(x_k, y_k)_{k=1}^n$ при $n \longrightarrow \infty$. Рассмотрим сходимости почти наверное и в среднем порядка 2.

2.1.1 Сходимость почти наверное

Рассмотрим сходимости $\frac{\sum\limits_{k=1}^{n}x_k}{n}=\bar{x}_n$ и $\frac{\sum\limits_{k=1}^{n}y_k}{n}=\bar{y}_n$: По закону повторного логарифма почти наверное

$$\lim \sup \frac{\sum_{k=1}^{n} x_k}{n} \frac{1}{\sigma_X} \sqrt{\frac{n}{\ln \ln n}} = \sqrt{2}$$

$$\lim \inf \frac{\sum_{k=1}^{n} x_k}{n} \frac{1}{\sigma_X} \sqrt{\frac{n}{\ln \ln n}} = -\sqrt{2}$$
(1)

то есть $|\bar{x}_n|=O(\sigma_X\sqrt{\frac{2\ln\ln n}{n}})$ и $\exists\, n_k\;|\bar{x}_{n_k}|>(\sigma_X-\varepsilon)\sqrt{\frac{2\ln\ln n}{n}})$. Аналогичное верно и для \bar{y}_k .

Перейдём к выборочным дисперсиям. Заметим, что $n\overline{x^2}_n$ тоже сумма случайных величин, только теперь уже имеющая распределение χ^2 с числом степеней свободы равном 1, и матожидание σ_X^2 , дисперсию $2\sigma_X^4$. Тогда по закону повторного логарифа

$$\overline{Dx}_n = \frac{\sum\limits_{k=1}^n x_i^2}{n} - \left(\frac{\sum\limits_{k=1}^n x_i}{n}\right)^2$$

По закону повторного логарифма, $\frac{\sum\limits_{k=1}^n x_i^2 - \sigma_X^2}{\sqrt{2}\sigma_X^2\sqrt{n\ln\ln n}}$, строго "лежит" между $-\sqrt{2}$ и $\sqrt{2}$. Но последнее выражение равно:

$$\left(\overline{Dx}_n + \left(\frac{\sum\limits_{k=1}^n x_i}{n}\right)^2 - \sigma_X^2\right) \frac{\sqrt{n}}{\sqrt{2}\sigma_X^2 \sqrt{\ln \ln n}} =$$

$$= \left(\overline{Dx}_n - \sigma_X^2\right) \frac{\sqrt{n}}{\sqrt{2}\sigma_X^2 \sqrt{\ln \ln n}} + \left(\frac{\sum\limits_{k=1}^n x_i}{n} \frac{\sqrt[4]{n}}{\sqrt[4]{4}\sigma_X^4 \ln \ln n}\right)^2$$
(2)

, где последнее слагаемое сходится к 0. Таким образом, \overline{Dx}_n сходится к σ_X^2 со "скоростью" $\sigma_X \sqrt{\frac{\ln \ln n}{n}}$, (т.е. почти наверное разность есть $O\left(2\sigma_X^2\sqrt{\frac{\ln \ln n}{n}}\right)\right)$) Аналогично \overline{Dy}_n сходится к σ_Y^2 .

Рассмотрим $\overline{Cov(x,y)}_n$ По закону повторного логарифма, $\frac{\sum\limits_{i=1}^n X_iY_i-n\mathbb{E}XY}{\sqrt{n(\mathbb{D}XY)n\ln\ln n}}$ "строго" лежит между $[-\sqrt{2},\sqrt{2}]$

Но $DXY=\mathbb{E}X^2Y^2-(\mathbb{E}XY)^2\leqslant \frac{\mathbb{E}X^4+\mathbb{E}Y^4}{2}=3\frac{\sigma_X^4+\sigma_Y^4}{2}$ и как в случае с дисперсиями, слагаемое с $\sum\limits_{i=1}^n X_iY_i$ будет сходится медненее всего и в итоге получим оценку $\frac{\sqrt{3(\sigma_X^4+\sigma_Y^4)}}{2}\sqrt{\frac{\ln \ln n}{n}}$.

2.1.2 Сходимость в L^2

Рассмотрим аналогичную ситуацию в L^2 . Ограничимся здесь цепочками переходов к нужным неравенствам:

$$\sqrt{\mathbb{E}\left(\frac{\sum_{k=1}^{n} X_i}{n}\right)^2} = \sqrt{\frac{\mathbb{E}X^2}{n}} = \frac{\sigma_X}{\sqrt{n}}$$
 (3)

Теперь для \overline{Dx} :

$$\sqrt{\mathbb{E}\left(\overline{\mathbb{D}X} - \sigma_X^2\right)^2} = \sqrt{\mathbb{E}\left(\frac{\sum\limits_{k=1}^n X_i^2}{n} - \left(\frac{\sum\limits_{k=1}^n X_i}{n}\right)^2 - \sigma_X^2\right)^2} \leqslant$$

$$\leqslant \sqrt{\mathbb{E}\left(\frac{\sum\limits_{k=1}^n X_i^2}{n} - \sigma_X^2\right)^2} + \sqrt{\mathbb{E}\left(\frac{\sum\limits_{k=1}^n X_i}{n}\right)^4} = \sqrt{\mathbb{E}\left(\frac{\sum\limits_{k=1}^n X_i^2 - \sigma_X^2}{n}\right)^2} + \sqrt{\mathbb{E}\left(\frac{\sum\limits_{k=1}^n X_i}{n}\right)^4} =$$

$$= \sqrt{\frac{3\sigma_X^4}{n}} + \sqrt{\frac{3\sigma_X^4}{n^3} + \frac{6\sigma_X^4(n^2 - n)}{n^4}} \leqslant \frac{2\sigma_X^2}{\sqrt{n}}$$

$$\text{If } \overline{Cov(X, Y)} \tag{4}$$

$$\sqrt{\mathbb{E}\left(\overline{Cov(X,Y)} - \rho\sigma_{X}\sigma_{Y}\right)^{2}} \leqslant \sqrt{\mathbb{E}\left(\frac{\sum\limits_{k=1}^{n}X_{i}Y_{i}}{n} - \rho\sigma_{X}\sigma_{Y}\right)^{2}} + \sqrt{\mathbb{E}\left(\frac{\sum\limits_{k=1}^{n}X_{i}}{n}\frac{\sum\limits_{k=1}^{n}Y_{i}}{n}\right)^{2}} =$$

$$= \sqrt{\frac{\mathbb{E}(XY - \rho\sigma_{X}\sigma_{Y})^{2}}{n}} + \sqrt{\mathbb{E}\left(\frac{\sum\limits_{k=1}^{\infty}X_{i}^{2} + \sum\limits_{k=1}^{\infty}X_{i}X_{j})(\sum\limits_{k=1}^{n}Y_{i}^{2} + \sum\limits_{k=1}^{\infty}Y_{i}Y_{j}}{n^{4}}\right)} =$$

$$= \frac{C}{\sqrt{n}} + \sqrt{\mathbb{E}\left(\frac{\sum\limits_{k=1}^{\infty}X_{i}^{2}Y_{j}^{2} + \sum\limits_{k=1}^{\infty}X_{i}^{2}Y_{j}^{2} + 2\sum\limits_{k=1}^{\infty}X_{i}X_{j}Y_{k}Y_{l}}{n^{4}}\right)} =$$

$$= \frac{C}{\sqrt{n}} + \sqrt{\mathbb{E}\left(\frac{\sum\limits_{k=1}^{\infty}X_{i}^{2}Y_{j}^{2} + \sum\limits_{k=1}^{\infty}X_{i}^{2}Y_{j}^{2} + 2\sum\limits_{k=1}^{\infty}X_{i}X_{j}Y_{k}Y_{l}}{n^{4}}\right)} =$$

$$\frac{C}{\sqrt{n}} + \sqrt{\frac{\mathbb{E}X^{2}Y^{2} + n(n-1)\sigma_{X}^{2}\sigma_{Y}^{2} + 2n(n-1)\rho\sigma_{X}\sigma_{Y}}{n^{4}}} \leqslant \frac{C + \varepsilon}{\sqrt{n}}}$$
(5)

2.2Сходимость прямых регрессии

Ещё раз выпишем выборки уравнений регресии:

$$\widehat{a_{x,n}} = \frac{\overline{Cov(x,y)}_n}{\overline{Dx}_n} \\
\widehat{b_{x,n}} = \overline{y}_n - \widehat{a_{x,n}}\overline{x}_n \\
\widehat{a_{y,n}} = \frac{\overline{Cov(x,y)}_n}{\overline{Dy}_n} \\
\widehat{b_{y,n}} = \overline{x}_n - \widehat{a_{y,n}}\overline{y}_n$$
(6)

Заметим, что как мы упомянули ранее, $\overline{Dx}_n \longrightarrow \sigma_X^2 \neq 0$, $\overline{Dy}_n \longrightarrow \sigma_Y^2 \neq 0$, $\overline{Cov(x,y)}_n \longrightarrow \rho\sigma_X\sigma_Y$. Таким образом, почти наверное:

$$\begin{array}{ccc}
\widehat{a_{x,n}} & \longrightarrow \frac{\rho \sigma_Y}{\sigma_X} \\
\widehat{a_{y,n}} & \longrightarrow \frac{\rho \sigma_X}{\sigma_Y}
\end{array} \tag{7}$$

и, в силу того, что $\widehat{a_{x,n}}$ и $\widehat{a_{y,n}}$ почти наверное:

$$\widehat{b_{x,n}} = \overline{y}_n - \widehat{a_x} \overline{x}_n \longrightarrow 0
\widehat{b_{y,n}} = \overline{x}_n - \widehat{a_y} \overline{y}_n \longrightarrow 0$$
(8)

Так как $\overline{Dx}_n \longrightarrow \sigma_X$, то скорость сходимости $\widehat{a_{x,n}}$ будет равна хотя бы $\frac{\sqrt{3(\sigma_X^4+\sigma_Y^4)}}{2\sigma_X^2}\sqrt{\frac{\ln \ln n}{n}}$. Аналогично, скорость сходимости $\widehat{a_{y,n}}$ будет $\frac{\sqrt{3(\sigma_X^4+\sigma_Y^4)}}{2\sigma_Y^2}\sqrt{\frac{\ln \ln n}{n}}$.

Сходимость наилучших прямых выборки гауссова вектора к главным осям гауссова вектора

2.3.1 Сходимость прямых при $\sigma_X \neq \sigma_Y$

Из сходимостей
$$\overline{\mathbb{D}x}_n$$
, $\overline{\mathbb{D}y}_n$ и $\overline{Cov(x,y)}_n$ следует сходимость $A_n = \begin{pmatrix} \overline{\mathbb{D}x}_n & \overline{Cov(x,y)}_n \\ \overline{Cov(x,y)}_n & \overline{Dy}_n \end{pmatrix}$ к $A = \begin{pmatrix} \sigma_X^2 & \rho\sigma_X\sigma_Y \\ \rho\sigma_X\sigma_Y & \sigma_Y^2 \end{pmatrix}$ по L_2 , так как $||A||_2 \leqslant \sqrt{|a_{11}|^2 + |a_{12}|^2 + |a_{21}|^2 + |a_{22}|^2}$. Тогда имеем

$$||A - A_n||_2 \to 0$$

со скоростью $C\sqrt{\frac{\ln \ln n}{n}}$. Разложим A_n в сумму A и $A-A_n$. Заметим, что так как $A-A_n$ симметрична, все собственные числа также вещественны и $\max_{i=1,2} |\mu_{i,n}| = ||A-A_n||_2 \to 0$. Тогда, разложим A_n в сумму A и A_n-A и так как обе матрицы симметричны, выполнены следующие тождества:

Пусть $\alpha_{1,n} \leqslant \alpha_{2,n}$ — собственные числа $A_n, \mu_{1,n} \leqslant \mu_{2,n}$ — собственные числа $A_n - A$ и $\lambda_1 \leqslant \lambda_2$ собственные числа A. Используем такой факт: если A_n , Aсимметричные матрицы и α, μ, λ такие как выше, то верны следующие неравенства:

$$\begin{cases}
\alpha_{1,n} \geqslant \lambda_1 + \mu_{1,n} \\
\alpha_{1,n} \leqslant \lambda_1 + \mu_{2,n} \\
\alpha_{2,n} \geqslant \lambda_2 + \mu_{1,n} \\
\alpha_{2,n} \geqslant \lambda_2 + \mu_{2,n}
\end{cases} \tag{9}$$

Откуда $|\lambda_1 - \alpha_{1,n}| \leqslant \max_{i=1,2} |\mu_{i,n}| = ||A - A_n||_2 \to 0$. Аналогично $|\lambda_2 - \alpha_{2,n}| \leqslant$ $\max_{i=1,2} \lvert \mu_{i,n} \rvert = \lvert \lvert A - A_n \rvert \rvert_2 o 0.$ При этом:

$$||A - A_n||_2 \leqslant \sqrt{\sum |a_{ij}^0 - a_{ij}^n|^2} \leqslant \sqrt{\frac{\ln \ln n}{n}} \sqrt{4(\sigma_X^4 + \sigma_Y^4) + \frac{3}{4}(\sigma_X^4 + \sigma_Y^4)} \leqslant \sqrt{5(\sigma_X^4 + \sigma_Y^4)}$$
(10)

Аналогично для второго собственного числа.

Но раз так, то пусть $u_{1,n}$ собственный вектор A_n при с.ч. $\lambda_{1,n}$ и $||u_{1,n}||=1$, т.е. $A_nu_{1,n}=\lambda_{1,n}u_{1,n},\,\lambda_{1,n}\to\lambda_1$. Тогда

$$|(A - \lambda_1 E)u_{1,n}| \le |(A_n - \lambda_{1,n} E)u_n| + |u_{1,n}||\lambda_1 - \lambda_{1,n}| + ||A - A_n|||u_{1,n}| \to 0$$
(11)

причём порядок сходимости $\sqrt{\frac{\ln \ln n}{n}}$ не меняется –обе части убывают одинаково быстро.

Пусть же теперь ещё и dim $\ker(A-\lambda_1 E)=1$, то есть $\lambda_1\neq\lambda_2$. Тогда $||A-\lambda E||_2=|\lambda_2-\lambda_1|$, тогда имеем

$$d_2(u_{1,n}, \ker(A - \lambda_1 E)) = \frac{|(A - \lambda_1 E)u_{1,n}|}{||A - \lambda_E||_2} = \frac{|(A - \lambda_1 E)u_{1,n}|}{|\lambda_2 - \lambda_1|} \to 0$$
 (12)

Но по предположению, $\ker(A - \lambda_1 E)$ однмерно, значит $\ker(A - \lambda_1 E) = \langle u_1 \rangle$. То есть точка $u_{1,n}$ приближается к прямой, заданной вектором u_1 . Аналогичное верно и для u_2 .

Напоследок
$$|\lambda_2 - \lambda_1| = \left| \frac{\sigma_X^2 - \sigma_Y^2}{\cos 2\varphi} \right| = \left| \frac{\sigma_X^2 - \sigma_Y^2}{\cos 2\varphi} \right| = \sqrt{(\sigma_X^2 - \sigma_Y^2)^2 + 4\sigma_X^2 \sigma_Y^2 \rho^2} = \sqrt{(\sigma_X^2 + \sigma_Y^2 - 2\sqrt{1 - \rho^2}\sigma_X\sigma_Y)(\sigma_X^2 + \sigma_Y^2 + 2\sqrt{1 - \rho^2}\sigma_X\sigma_Y)}$$

Итог: Пусть есть выборка (x_i, y_i) гауссова вектора \mathbf{z} с нулевым средним, диперсиями компонент σ_X , σ_Y и ковариацией $\rho\sigma_X\sigma_Y$. Пусть $\left(\frac{\overline{\mathbb{D}}x_n}{Cov(x,y)_n}, \frac{\overline{Cov}(x,y)_n}{\overline{D}y_n}\right)$ и $A = \begin{pmatrix} \sigma_X^2 & \rho\sigma_X\sigma_Y \\ \rho\sigma_X\sigma_Y & \sigma_Y^2 \end{pmatrix}$ Тогда

1.
$$\bar{x} \to 0$$
 и $\bar{y} \to 0$ почти наверное со "скоростями" $\sigma_X \sqrt{\frac{2 \ln \ln n}{n}}$ и $\sigma_Y \sqrt{\frac{2 \ln \ln n}{n}}$.

2.
$$||A_n-A||_2 \to 0$$
 хотя бы как $\sqrt{5(\sigma_X^4+\sigma_Y^4)}\sqrt{\frac{\ln \ln n}{n}}$ почти наверное

3. Собственные числа A_n сходятся к собственным числам A с той же скоростью.

Пусть дополнительно собственные числа матрицы $\begin{pmatrix} \sigma_X^2 & \rho \sigma_X \sigma_Y \\ \rho \sigma_X \sigma_Y & \sigma_Y^2 \end{pmatrix}$ не равны друг другу, т.е. $\sigma_X \neq \sigma_Y$ и $\rho \neq 0$ при $\sigma_X = \sigma_Y$, то тогда:

- 1. Собственные вектора A_n сближаются с прямыми, порождёнными соответствующими собственными веторами A.
- 2. Наилучшая прямая для выборки (x_i, y_i) , порождена собственным вектором u матрицы A_n при её наибольшем собственном числе и сходится к главному направлению \mathbf{z}

Обе этих сходимости порядка
$$\frac{1}{\sqrt{(\sigma_X^2 - \sigma_Y^2)^2 + 4\sigma_X^2 \sigma_Y^2
ho^2}} \sqrt{\frac{\ln \ln n}{n}}$$

2.3.2 Случай $\sigma_X = \sigma_Y, \ \rho = 0$

Пусть теперь $A = \sigma_X E$ и соответственно dim $\ker(A - \sigma_X E) = 2$. Посмотрим на ситуацию иначе:

Наши $\{(x_i,y_i)\}_{i=1}^n$ это выборка гауссова вектора \mathbf{z} , $\sigma_X=\sigma_Y$ и $\rho=0$, а значит некоторая случайный вектор в \mathbb{R}^{2n} . Угол наилучшей прямой это почти наверное определённая функция $\psi\in[0,2\pi)/\pi\mathbb{Z}$ от этого вектора, причём если каждую пару $\begin{pmatrix} x_i\\y_i \end{pmatrix}$ заменить на $U_{\varphi}\begin{pmatrix} x_i\\y_i \end{pmatrix}$, то функция ψ_n перейдёт в $\psi_n+\varphi$. Тогда рассмотрим такое событие: $\psi_n\in(\alpha,\beta)$ $\alpha,\beta\in[0,2\pi)/\pi\mathbb{Z}$. Но если заменить $\{(x_i,y_i)\}_{i=1}^n$ на $\{(x_i,y_i)U_{\varphi}\}_{i=1}^n$, то ничего не изменится, так как распределения (x_i,y_i) и $(x_i,y_i)U_{\varphi}$ равны. Но, как мы говорили, при этой замене событие $\psi_n\in(\alpha,\beta)$ перейдёт в $\psi_n+\varphi\in(\alpha,\beta)$. Значит:

$$\mathbb{P}(\psi_n \in (\alpha, \beta)) = \mathbb{P}(\psi \in (\alpha - \varphi, \beta - \varphi)) \quad \forall \alpha, \beta, \varphi \in \varphi \in [0, 2\pi)/\pi\mathbb{Z}$$
 (13)

И ясно, что $\mathbb{P}(\psi_n \in (0,\pi)) = 1$. Тогда отсюда следует, что ψ_n равномерно распределена на $[0,2\pi)/\pi\mathbb{Z}$. Заметим, что этот результат не зависит от n.

2.4 Сходимость сумм расстояний до наилучшей прямой

Как мы отметитли ранее

$$R^{2} = \frac{n}{2} \left(\left(\overline{Dx} + \overline{Dy} \right) + \cos 2\varphi \left(\overline{Dx} - \overline{Dy} \right) + 2\sin 2\varphi \overline{Cov(x, y)} \right) =$$

$$= \frac{n}{2} \left(\overline{Dx} + \overline{Dy} - \sqrt{\left(\overline{Dx} - \overline{Dy} \right)^{2} + 4\overline{Cov(x, y)}^{2}} \right)$$
(14)

To есть при $n \longrightarrow \infty$ почти наверное

$$\left(\frac{R}{\sqrt{n}}\right)^2 \longrightarrow \frac{1}{2} \left(\sigma_X^2 + \sigma_Y^2 - \sqrt{\left(\sigma_X^2 - \sigma_Y^2\right)^2 + 4\rho\sigma_X^2\sigma_Y^2}\right) \tag{15}$$

То есть, R имеет асимптотику порядка

$$\sqrt{n}\sqrt{\sigma_X^2 + \sigma_Y^2 - \sqrt{(\sigma_X^2 - \sigma_Y^2)^2 + 4\rho\sigma_X^2\sigma_Y^2}}$$
(16)

2.5 Сходимость при случайной величине ho

Пусть ρ теперь случайная величина, расперделённая на [-1,1], имеющая плотность $p_{\rho}(t)$. Тогда заметим, что у теперь уже не гауссова вектора **z** можно вычислить $\mathbb{E}\mathbf{z}$, σ_X^2 , σ_Y^2 и Cov(x,y) достаточно просто, так как его плотность будет равна $p_{\mathbf{z}}(x,y) = \int\limits_{-1}^{1} p_{\rho}(t) p_{XY}(x,t) \, dt$ по формуле условной вероятности. Тогда, применяя теорему Фубини:

$$p_{\mathbf{z}}(x,y) = \int_{-1}^{1} p_{\rho}(t) \frac{1}{2\pi\sigma_X \sqrt{1-t^2}} \exp\left(-\frac{1}{2\sigma_X^2(1-t^2)} \left(\mathbf{x}, B(t)\mathbf{x}\right)\right) dt$$
 где $B(t) = \begin{pmatrix} 1 & -t \\ -t & 1 \end{pmatrix}$. (17)

$$\mathbb{E}x = \int_{\mathbb{R}^2} x \int_{-1}^1 p_{\rho}(t) p_{XY}(x,t) \, dt \, dx \, dy = \int_{-1}^1 p_{\rho}(t) \int_{\mathbb{R}^2} x p_{XY}(x,t) \, dx \, dy \, dt = 0$$
 (18)

Аналогично с $\mathbb{E}y$

$$\mathbb{D}x = \int_{\mathbb{R}^2} x^2 \int_{-1}^1 p_{\rho}(t) p_{XY}(x,t) dt dx dy = \int_{-1}^1 p_{\rho}(t) \int_{\mathbb{R}^2} x^2 p_{XY}(x,t) dx dy dt =
= \sigma_X^2 \int_{-1}^1 p_{\rho}(t) dt = \sigma_X^2$$
(19)

Аналогично с $\mathbb{D}y$

$$Cov(x,y) = \int_{\mathbb{R}^2} xy \int_{-1}^1 p_{\rho}(t) p_{XY}(x,t) dt dx dy =$$

$$= \int_{-1}^1 p_{\rho}(t) \int_{\mathbb{R}^2} xy p_{XY}(x,t) dx dy dt = \sigma_X \sigma_Y \int_{-1}^1 p_{\rho}(t) \rho dt =$$

$$= \sigma_X \sigma_Y \mathbb{E} \rho$$

$$(20)$$

Таким образом, ситуация со сходимостью \bar{x}_n и \bar{y}_n будет похожа: они будут сходиться к 0 со "скоростью" $\sigma_X \sqrt{\frac{2 \ln \ln n}{n}}$, аналогичное верно и для \bar{y}_n .

Заметим, что в предыдущих выкладках мы почти ничего не требовали от распеределения **z**, кроме существования дисперсии обеих компонент. Значит, выкладки для линий регрессии останутся полностью без изменений. Для наилучших прямых можно также рапространить имеющиеся результаты, лишь бы $\sigma_X \neq \sigma_Y$ и $\mathbb{E}\rho \neq 0$ при $\sigma_X = \sigma_Y$.

В отличие от нормального вектора, пределельное распределение в случае $\mathbb{E}\rho = 0\sigma_X = \sigma_Y$ описывается по-другому.

Для начала отметим, что если ρ имеет плотность, то:

$$\frac{2\overline{Cov(x,y)}}{\overline{Dx}-\overline{Dy}} - \frac{2\overline{XY}_n}{\overline{X^2}_n - \overline{Y^2}_n} \longrightarrow 0$$
 (21)

по вероятности. Это можно доказать напрямую, а можно заметить, что при вычитании, числитель интговой дроби будет иметь больший порядок малости, чем нижний.

Таким образом, мы можем перейти к изучению дроби
$$\frac{2\overline{XY}_n}{\overline{X^2}_n - \overline{Y^2}_n}$$
. Рассмотрим $U_i = 2X_iY_i, V_i = X_i^2 - Y_i^2, \overline{2U} = \overline{2XY}, \overline{V} = \overline{X^2 - Y^2}$. Тогда вектор $\frac{\sum_i (U_i, V_i)}{\sqrt{n}} \to N(0, K)$ по многомерной ЦПТ, где $K = \begin{pmatrix} \mathbb{D}U_i & \rho Cov(U_i, V_i) \\ Cov(U_i, V_i) & \mathbb{D}V_i \end{pmatrix}$

Вычислим элементы этой матрицы. Для этого воспользуемся представлением:

$$U_{i} = 2X_{i}Y_{i} = 2\sigma_{X}^{2}\alpha \left(\rho\alpha + \sqrt{1 - \rho^{2}}\beta\right)$$

$$V_{i} = X_{i}^{2} - Y_{i}^{2} = \sigma_{X}^{2}\left((\alpha^{2} - \beta^{2})(1 - \rho^{2}) - 2\rho\sqrt{1 - \rho^{2}}\alpha\beta\right),$$
(22)

где $\alpha, \beta \in N(0,1)$ и вычислим элементы K:

$$\mathbb{D}U_i = 4\mathbb{E}X_i Y_i = 4\sigma_X^4 \left(\mathbb{E}\rho^2 + 1\right)$$

$$\mathbb{D}V_i = \mathbb{E}X_i^2 - Y_i^2 = 4\sigma_X^4 \left(1 - \mathbb{E}\rho^2\right) .$$

$$Cov(U_i, V_i) = 0$$
(23)

Теперь заметим, что угол наклона прямой $\varphi \in S_1/\pi\mathbb{Z}$ непрерывно зависит от $\frac{\sum U_i}{\sqrt{n}}$ и $\frac{\sum V_i}{\sqrt{n}}$ в $\mathbb{R}^2 \setminus \{0\}$. Отсюда следует, что $\varphi(\sqrt{n}\overline{U}_n, \sqrt{n}\overline{V}_n) \to \varphi(U_0, V_0)$, где (U_0, V_0) распределён как N(0, K). Вычислим это распределение.

Мы знаем, что

$$\sin 2\varphi = \frac{-U_0}{\sqrt{U_0^2 + V_0^2}}$$

$$\cos 2\varphi = \frac{-V_0}{\sqrt{U_0^2 + V_0^2}}.$$
(24)

Тогда

$$\tan \varphi = \frac{\sin 2\varphi}{1 + \cos 2\varphi} = -\frac{U_0}{\sqrt{U_0^2 + V_0^2} - V_0}.$$
 (25)

Пусть $U_0=r\sin\xi,\,V_0=r\cos\xi.$ Тогда

$$\tan \varphi = \frac{\sin 2\varphi}{1 + \cos 2\varphi} = -\frac{U_0}{\sqrt{U_0^2 + V_0^2} - V_0} = -\tan \frac{\xi}{2}.$$
 (26)

То есть $\varphi = -\frac{\xi}{2}$, где $\xi \in (-\pi, \pi)$. Совместная плотность (U_0, V_0) выглядит так:

$$p_{(U_0,V_0)}(r,\xi) = \frac{r}{2\mu_X \mu_Y \pi} \exp\left(-\frac{r^2}{2} \left(\frac{\sin^2 \xi}{\mu_X^2} + \frac{\cos^2 \xi}{\mu_Y^2}\right)\right) , \qquad (27)$$

где

$$\mu_X = \sqrt{\mathbb{D}U_0} = 2\sigma_X^2 \sqrt{\mathbb{E}\rho^2 + 1} \mu_Y = \sqrt{\mathbb{D}V_0} = 2\sigma_X^2 \sqrt{1 - \mathbb{E}\rho^2}$$
 (28)

Найдём плотность ξ :

$$p_{\xi}(t) = \int_{0}^{\infty} p_{(U_0, V_0)}(r, t) dr = \int_{0}^{\infty} \frac{r}{2\pi\mu_X \mu_Y \sqrt{1 - \eta^2}} \exp\left(-\frac{r^2}{2} \left(\frac{\sin^2 t}{\mu_X^2} + \frac{\cos^2 t}{\mu_Y^2}\right)\right) dr = \frac{1}{2\pi \left(\frac{\sin^2 t}{\mu_X^2} + \frac{\cos^2 t}{\mu_Y^2}\right)}$$
(29)

При этом, $\varphi = -\frac{\xi}{2}$. То есть плотность $p_{\varphi}(t)$ равна

$$p_{\varphi}(t) = \frac{1}{\pi \mu_X \mu_Y \left(\frac{\sin^2 2t}{\mu_X^2} + \frac{\cos^2 2t}{\mu_Y^2}\right)} \quad t \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \ . \tag{30}$$

Рассмотрим случай ρ распределённую как 2B(k,k)-1, где B(k,k) бета распределение.

Рис. 1: Гистограмма частот угла наилучшей прямой для $\rho \in \mathrm{U}[-1,1], \, n=1000,$ число проб 10^5

Как мы видим, при $k \to 0$, предельное распределение всё больше походит на дискретное распределение с параметрами

$$\begin{cases}
-\frac{\pi}{4} & \frac{1}{2} \\
\frac{\pi}{4} & \frac{1}{2}
\end{cases}$$
(31)

А при $k \longrightarrow \infty$ распределение переходит в $\mathrm{U}[-\frac{\pi}{2},\frac{pi}{2}].$

Рис. 2: Эмпирические плотности угла наилучшей прямой для $\rho \in 2B(k,k)-1$, для различных n=1000, число проб 10^4

Часть II

Практическая реализация

3 Моделирование распределений

3.1 Нормальное распределение

Рассмотрим $\mathbf{z}=(\xi,\eta)$ стандартный гауссовский вектор, т.е. $p_{\mathbf{z}}(x,y)=\frac{1}{2\pi}\exp\left(-\frac{x^2+y^2}{2}\right)$. Если мы перейдём к полярным координатам $x=r\sin\,\varphi\,\,y=r\cos\,\varphi$, то:

$$p_{\mathbf{z}}(r,\varphi) = \frac{r}{2\pi} \exp\left(-\frac{r^2}{2}\right)$$

Таким образом, $\operatorname{Arg}\xi+i\eta$ равномерно распределён на $[0,2\pi)$, а $r=|\xi+i\eta|$ имеет плотность $p_{|\mathbf{z}|}(r)=r\exp\left(-\frac{r^2}{2}\right)$ и $F_{|\mathbf{z}|}(t)=1-\exp\left(-\frac{t^2}{2}\right)$. Но по формуле обращения $\xi=\sqrt{-2\ln\alpha}$, где α имеет равномерное распределение на

[0, 1]. Таким образом, будем моделировать нормальную величину следующим образом:

$$\xi = \sqrt{-2 \ln \alpha_1} \cos 2\pi \alpha_2$$

$$\eta = \sqrt{-2 \ln \alpha_1} \sin 2\pi \alpha_2$$

где α_1, α_2 незаависимы и равномерно распределены на [0, 1].

Теперь смоделируем произвольный гауссовский вектор с параметрами σ_X, σ_Y, ρ . Для этого достаточно подобрать матрицу $A = \begin{pmatrix} a & 0 \\ b & c \end{pmatrix}$, такую, что умножив её

на вектор $\binom{\xi}{n}$ из независимых стандартных нормальных с.в. мы бы получили требуемое.

Распишем
$$\begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \begin{pmatrix} \xi \\ \eta \end{pmatrix} = \begin{pmatrix} a\xi \\ b\xi + c\eta \end{pmatrix} = \begin{pmatrix} X \\ Y \end{pmatrix}.$$

Распишем $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \begin{pmatrix} \xi \\ \eta \end{pmatrix} = \begin{pmatrix} a\xi \\ b\xi + c\eta \end{pmatrix} = \begin{pmatrix} X \\ Y \end{pmatrix}$. И заметим, что $\sigma_X = a$, $\mathbb{E}XY = ab = \rho\sigma_X\sigma_Y$ и значит $b = \rho\sigma_Y$ и $\mathbb{D}Y = \sigma_X\sigma_Y$

$$b^{2} + c^{2} = \sigma_{Y}^{2}$$

$$c^{2} = \sigma_{Y}^{2} - b^{2} = \sigma_{Y}^{2} (1 - \rho^{2})$$

$$c = \sigma_{Y} \sqrt{1 - \rho^{2}}$$

Соответственно, получаем всё коэффициенты матрицы:

$$a = \sigma_X$$

$$b = \rho \sigma_Y$$

$$c = \sigma_Y \sqrt{1 - \rho^2}$$

Алгоритм ниже иллюстрирует принцип работы $Gauss(\sigma_X, \sigma_Y, \rho)$

Data: Числа σ_X , σ_Y , ρ , генератор равномерного на [0, 1] распределения RANDOM() с независимыми вызовами

Result: Вектор (y_1, y_2) имеющий нормальное распределение с заданными параметрами

 $\alpha_1 = RANDOM()$

 $\alpha_2 = \text{RANDOM}()$

 $x_1 = \sqrt{-2\ln\alpha_1}\cos 2\pi\alpha_2$

4 $x_2 = \sqrt{-2 \ln \alpha_1} \sin 2\pi \alpha_2$

5 $y_1 = \sigma_X x_1$

6 $y_2 = \rho \sigma_Y x_1 + \sigma_Y \sqrt{1 - \rho^2} x_2$

Algorithm 1: Схема работы $Gauss(\sigma_X, \sigma_Y, \rho)$

3.2 Бета-распределение

Также нам потребуется смоделировать с.в. ξ , имеющую бета-распределение. Для этого сформулируем такой факт:

Теорема 1. Пусть
$$\{\alpha_i\}_{i=0}^{\infty}$$
 совместно независимые, $\alpha_i \in \mathrm{U}[0,1]$. Пусть $k = \{\min N > 0 : \alpha_{2N-1}^{\frac{1}{\nu}} + \alpha_{2N}^{\frac{1}{\mu}} \leqslant 1 \}$. Тогда $\xi = \frac{\alpha_{2k-1}^{\frac{1}{\nu}}}{\alpha_{2k-1}^{\frac{1}{\nu}} + \alpha_{2k}^{\frac{1}{\mu}}} \in \mathrm{B}(\nu,\mu)$

Доказательство. Пусть $B_N = \left\{ \omega : \alpha_{2N-1}^{\frac{1}{\nu}} + \alpha_{2N}^{\frac{1}{\mu}} \leqslant 1 \right\}$ и $\zeta_N = \alpha_{2N-1}^{\frac{1}{\nu}} + \alpha_{2N}^{\frac{1}{\mu}}$. Попробуем упростить формулу распределения (ξ,ζ) . Сделаем невырожденную за-

$$y_1 = \frac{x_1^{\bar{\nu}}}{x_1^{\bar{\nu}} + x_2^{\bar{\mu}}}$$
$$y_2 = x_1^{\bar{\nu}} + x_2^{\bar{\nu}}$$

$$x_1 = (y_1 y_2)^{\nu}$$

$$x_2 = y_2^{\mu} (1 - y_1)^{\mu}$$
Якобиан равен $J = \mu \nu y_1^{\nu-1} (1 - y_1)^{\mu-1} y_2^{\mu+\nu-1}$. И $p_{\xi\eta}(y_1, y_2) = J = \mu \nu y_1^{\nu-1} (1 - y_1)^{\mu-1} y_2^{\mu+\nu-1}$ на $\left\{ y_1 \in [0, 1]; y_2 \in \left[0, \min\{\frac{1}{y_1}, \frac{1}{1-y_1}\}\right] \right\}$.

Таким образом, $\frac{\alpha_{2N-1}^{\frac{1}{\nu}}}{\alpha_{2N-1}^{\frac{1}{\nu}} + \alpha_{2N}^{\frac{1}{\nu}}}$ при B_N

Тогда $p_{\xi}(y_1) = p_{\xi|_{B_N}}(y_1) = \frac{\int\limits_0^1 p_{\xi\eta}(y_1, y_2) \, dy_2}{\int\limits_0^1 \int\limits_0^1 p_{\xi\eta}(y_1, y_2) \, dy_1 \, dy_2} = \frac{\int\limits_0^1 y_1^{\nu-1} (1-y_1)^{\mu-1} y_2^{\mu+\nu-1} \, dy_2}{\int\limits_0^1 \int\limits_0^1 y_1^{\nu-1} (1-y_1)^{\mu-1} y_2^{\mu+\nu-1} \, dy_1 \, dy_2} = \frac{\int\limits_0^1 y_1^{\nu-1} (1-y_1)^{\mu-1} \, dy_1}{\int\limits_0^1 \int\limits_0^1 y_1^{\nu-1} (1-y_1)^{\mu-1} \, dy_1} = \frac{y_1^{\nu-1} (1-y_1)^{\mu-1}}{B(\nu,\mu)}$

что и требовалось доказать.

Таким образом, применим следующий алгоритм:

```
Data: Числа \nu и \mu, генератор равномерного на [0,1] распределения RANDOM() с независимыми вызовами

Result: \xi имеющая распределение B(\nu,\mu) или -1

1 \alpha[1] = \text{RANDOM}()

2 \alpha[2] = \text{RANDOM}()

3 k=1

4 while \alpha[1]^{\frac{1}{\nu}} + \alpha[2]^{\frac{1}{\mu}} > 1 OR (k<10) do

5 \alpha[1] = \text{RANDOM}()

6 \alpha[2] = \text{RANDOM}()

7 \alpha[3] = \text{RANDOM}()

8 end

9 if \alpha[3] = \frac{\alpha[1]^{\frac{1}{\nu}}}{\alpha[1]^{\frac{1}{\nu}} + \alpha[2]^{\frac{1}{\mu}}}

11 else

12 \alpha[3] = \frac{\beta}{\beta} = -1

13 end
```

Algorithm 2: Схема работы $Beta(\nu, \mu)$

Таким образом, мы получили генератор $Beta(\nu, \mu)$ бета-распределения.

4 Программное обеспечение

Данная модель представлена несколькоми файлами в R. Приведём здесь краткое описание основных фукций:

- Gauss $(\sigma_X, \sigma_Y, \rho, N)$ выдаёт массив N пар векторов (x_N^1, x_N^2) , представляющих выборку независимых одинаково распределённых гауссовых векторов с параметрами σ_X, σ_Y, ρ .
- Beta (ν, μ, N) выдаёт выборку из N независимых одинаково распределённых величин, имеющих $\mathrm{B}(\nu, \mu)$
- GaussB $(\sigma_X, \sigma_Y, \rho, \nu, \mu, N)$ выдаёт массив N пар векторов (x_N^1, x_N^2) , представляющих выборку независимых одинаково распределённых векторов

при независимо выбираемом $\rho \in 2B(\nu, \mu) - 1$ и гаусовом распределении с параметрами σ_X, σ_Y, ρ .

• SumInf $(selections_{array})$ – по выборке из двумерного распределения рассчитывает: выборочные средние по X и Y, выборочные дисперсии, ковариацию, коэффициенты a и b наилучшей прямой y = ax + b для выборки, и ортогональной к ней, и собственные вектора матрицы $\left(\frac{\overline{\mathbb{D}x}_n}{Cov(x,y)_n}, \frac{\overline{Cov}(x,y)_n}{\overline{D}y_n}\right)$

Все функции прописаны в файле func.R, перед началом работы нужно запустить этот файл. Для построения следующих графиков нам понадобится подключить пакет ggplot2, хотя для работы самих функций он не обязателен.

Примеры работы программы:

Выборка нормального распределения Построим выборку нормального распределения на плоскости и найдём для неё наилучшую прямую (красным цветом) и прямую, отвечающую второму собственноу числу "ковариационной матрице" выборки:

```
dat <- Gauss(1,1,0.7,1000)
S <- SumInf(dat)

library(ggplot2)
ggplot(dat, aes(x=xvar, y=yvar)) +
   geom_point(shape=1)+
   geom_abline(intercept = (S$cx)[1], slope = (S$cy)[1] ,color="red")+
   geom_abline(intercept = (S$cx)[2], slope = (S$cy)[2] ,color="green")</pre>
```

```
Выборка GaussB(\sigma_X, \sigma_Y, \rho, \nu, \mu, N) dat <- GaussB(1,1,0.1,0.1,1000) S <- SumInf(dat) library(ggplot2) ggplot(dat, aes(x=xvar, y=yvar)) + geom_point(shape=1) + geom_abline(intercept = (S$cx)[1], slope = (S$cy)[1], color="red") + geom_abline(intercept = (S$cx)[2], slope = (S$cy)[2], color="green")
```

Оценка сходимости вектора наилучшей прямой

```
N=10000
u=rep(0,N)
sx=1
sy=1
r=0.5
if(sx == sy){
  tg=c(1,-1)
```


Рис. 3: Выборка из 1000 точек с помощью ${\tt Gauss}(1{,}1{,}0.7\ 1000)$

Рис. 4: Выборка из 1000 точек с помощью ${\tt GaussB}(1,\!1,\!0.1,\!0.1,\!1000)$

Рис. 5: Расстояние между единичным вектором предельной прямой и единичным вектором наилучшей прямой

```
}else{
tg2=(2*sx*sy*r)/(sx^2-sy^2)
if(r>0){
  tg=c(-1/tg2+sqrt(1+1/tg2^2),-1/tg2-sqrt(1+1/tg2^2))
}else{
  tg=c(-1/tg2-sqrt(1+1/tg2^2),-1/tg2+sqrt(1+1/tg2^2))
}
}
costg=1/sqrt(1+tg^2)
sintg=tg/sqrt(1+tg^2)
d <- Gauss(sx,sy,r,N+1)</pre>
z=rep(0,N)
for(n in 2:(N+1))
  {
  dat <- SumInf(head(d,n))</pre>
  z[n-1]=sqrt((((dat)\$evp)[1] - costg[1])^2+(((dat)\$evp)[2]-sintg[1])^2)
  u[n-1]=z[n-1]*sqrt((n)/(log(log(max(exp(1),n)))))
}
plot(z[100:10000],type="l")
```

Часть III

Приложение

4.1 Регрессии

Пусть на плоскости есть n точек: $\{(x_i, y_i)\}_{i=1}^n$. Будем искать прямую $\widehat{a_x}x + \widehat{b_x}$, то есть регрессию y на x, такую, что $R(\widehat{a_x}, \widehat{b_x}) = \sum\limits_{i=1}^n (y_i - \widehat{a_x}x_i - \widehat{b_x})^2$.

Чтобы найти минимум R, вычислим частные производные по $\widehat{a_x}$ и \widehat{b} :

$$\begin{cases} \frac{\partial R}{\partial \widehat{a_x}} = -2\sum_{k=1}^n 2x_k (y_k - \widehat{a_x} x_k - \widehat{b_x}) = 0\\ \frac{\partial R}{\partial \widehat{b_x}} = -2\sum_{k=1}^n 2(y_k - \widehat{a_x} x_k - \widehat{b_x}) = 0 \end{cases}$$
(32)

$$\begin{cases}
\widehat{a_x}\overline{x^2}_n + \widehat{b_x}\overline{x}_n = \overline{x}\overline{y}_n \\
\widehat{a_x}\overline{x}_n + \widehat{b_x} = \overline{y}_n
\end{cases}$$
(33)

$$\begin{cases}
\widehat{a_x} = \frac{\overline{xy_n} - \overline{x_n} \overline{y_n}}{\overline{x^2_n} - \overline{x_n^2}} \\
\widehat{b_x} = \overline{y_n} - \widehat{a_x} \overline{x_n}
\end{cases}$$
(34)

При $\overline{x^2}_n = \overline{x}_n^2$, коэффициент $\widehat{a_x}$ не определён. Но в этом случае $x_i = Const$ по неравенству Коши-Буняковского и соответственно все точки лежат на одной вертикальной прямой. Ясно, что в таком случае прямой такого вида не сущетвует.

Аналогично, если мы ищем прямую вида $\widehat{a_y}y+\widehat{b_y}$, или x на y, то уравнения будут:

$$\begin{cases}
\widehat{a}_y = \frac{\overline{x}\overline{y}_n - \overline{x}_n \overline{y}_n}{y^2_n - \overline{y}_n^2} \\
\widehat{b}_y = \overline{x}_n - \widehat{a}_y \overline{y}_n
\end{cases}$$
(35)

4.2 Наименее уклоняющаяся прямая

Пусть на плоскости есть n точек: $\{(x_i, y_i)\}_{i=1}^n$. Будем искать наименее уклоняющуюся от них прямую. Для этого, повернём всю плоскость на угол φ , сдвинем на a по оси Ox и вычислим сумму квадратов расстояний до оси x, то есть:

$$x_k' = \cos\varphi \, x_k - \sin\varphi \, y_k \tag{36}$$

$$\sum_{k=1}^{n} (x_k' - a)^2 = R^2 \tag{37}$$

Будем минимизировать (37) по a и φ .

$$\begin{cases} \frac{\partial R}{\partial a} = -\sum_{k=1}^{n} 2(\cos\varphi x_k - \sin\varphi y_k - a) = 0\\ \frac{\partial R}{\partial \varphi} = \sum_{k=1}^{n} -2(\sin\varphi x_k + \cos\varphi y_k)(\cos\varphi x_k - \sin\varphi y_k - a) = 0 \end{cases}$$
(38)

Введём обозначения:

$$\frac{\bar{x} = \frac{\sum_{k=1}^{n} x_k}{n}}{\frac{Dx = x^2}{Cov(x, y)} = \overline{xy} - \bar{x}\bar{y}}$$
(39)

Раскроем (37)

$$\sum_{k=1}^{n} (\cos \varphi \, x_k - \sin \varphi \, y_k - a)^2 = n \left(\cos^2 \varphi \overline{Dx} + \sin^2 \varphi \overline{Dy} + 2 \cos \varphi \sin \varphi \overline{Cov(x, y)} \right) = R^2$$
(40)

или

$$R^{2} = \frac{n}{2} \left(\left(\overline{Dx} + \overline{Dy} \right) + \cos 2\varphi \left(\overline{Dx} - \overline{Dy} \right) + 2\sin 2\varphi \overline{Cov(x, y)} \right)$$
(41)

Минимизируем последние два слагаемых в 41:

$$\cos 2\varphi \left(\overline{Dx} - \overline{Dy}\right) + 2\sin 2\varphi \overline{Cov(x,y)} \tag{42}$$

Минимум будет равен $\sqrt{\left(\overline{Dx}-\overline{Dy}\right)^2+4\overline{Cov(x,y)}^2}$ и достигаться при

$$\sin 2\varphi = -2\frac{2\overline{Cov(x,y)}}{\sqrt{(\overline{Dx} - \overline{Dy})^2 + 4\overline{Cov(x,y)}^2}}$$
(43)

Или

$$\tan 2\varphi = -2\frac{\overline{x}\overline{y} - \overline{x}\overline{y}}{(\overline{x^2} - \overline{x}^2) - (\overline{y^2} - \overline{y}^2)}$$

$$\tag{44}$$

Соответтвенно $a = \cos \varphi \, \bar{x} - \sin \varphi \, \bar{y}$.

Чтобы получить искомую прямую, нужно снова прямую x'=a повернуть обратно на φ то есть:

$$\cos\varphi x - \sin\varphi y = \cos\varphi \bar{x} - \sin\varphi \bar{y} \tag{45}$$

Или

$$(x - \bar{x}) = \tan \varphi (y - \bar{y}) \tag{46}$$

где φ угол наклона прямой относительно Oy В более привычном виде,

$$tan \psi(x - \bar{x}) = (y - \bar{y})
tan 2\psi = \frac{2\overline{Cov(x,y)}}{\overline{Dx} - \overline{Dy}}
sin 2\psi = -2 \frac{2\overline{Cov(x,y)}}{\sqrt{(\overline{Dx} - \overline{Dy})^2 + 4\overline{Cov(x,y)}^2}}$$
(47)

Также, как будет доказано позже вектора $\begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix}$ и $\begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix}$ будут собственными векторами $\begin{pmatrix} \overline{\mathbb{D}x} & \overline{Cov(x,y)} \\ \overline{Cov(x,y)} & \overline{Dy} \end{pmatrix}$, $\begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix}$, то есть вектор направления кратчайшей прямой, будет собственным при наибольшем собственном значении. Случай, когда такого вектора нет: $\overline{Cov(x,y)} = 0$, $\overline{\mathbb{D}x} = \overline{Dy}$.

В этом случае, $\sqrt{\left(\overline{Dx}-\overline{Dy}\right)^2+4\overline{Cov(x,y)}^2}=0$ и R^2 не меняется при выборе ψ

О двумерном гауссовом векторе

Пусть (X,Y) невырожденный гауссов вектор с нулевым средним, т.е.

$$p_{XY}(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)} \left(\frac{x^2}{\sigma_X^2} - 2\frac{\rho xy}{\sigma_X\sigma_Y} + \frac{y^2}{\sigma_Y^2}\right)\right)$$
(48)

 $\sigma_X, \sigma_Y \in \mathbb{R}_+, \ \rho \in (-1,1)$. Или, если $R = \begin{pmatrix} \sigma_X^2 & \rho \sigma_X \sigma_Y \\ \rho \sigma_X \sigma_Y & \sigma_Y^2 \end{pmatrix}, \ |R| = \sigma_X^2 \sigma_Y^2 (1 - \rho \sigma_X \sigma_Y)$

$$p_{XY}(\mathbf{x}) = \frac{1}{2\pi\sqrt{|R|}} \exp\left(-\frac{1}{2}\left(\mathbf{x}, R^{-1}\mathbf{x}\right)\right)$$
(49)

Пусть ${\bf z}$ -стандартный гауссовский вектрор, т.е.

$$p_{\mathbf{z}}(\mathbf{x}) = \frac{1}{2\pi} \exp\left(-\frac{1}{2}(\mathbf{x}, \mathbf{x})\right)$$

И пусть A невыродженная матрица и |A| > 0. Тогда плотность вектора $A\mathbf{z}$ равна $p_{A\mathbf{z}} = \frac{1}{2\pi|A|} \exp\left(-\frac{1}{2}(\mathbf{x}, R^{-1}\mathbf{x})\right)$, где $R = AA^{\top}$. Легко видеть, что $\sqrt{\det R} =$ |A| и тогда она превращается в формулу

Буде искать
$$A$$
 в виде $A=\begin{pmatrix}\cos\varphi&-\sin\varphi\\\sin\varphi&\cos\varphi\end{pmatrix}\begin{pmatrix}\alpha&0\\0&\beta\end{pmatrix},\,(\alpha\geqslant\beta>0)$

Тогда $AA^{\top} = R$ распиывется ка

$$\begin{cases} \alpha^2 \cos^2 \varphi + \beta^2 \sin^2 \varphi = \sigma_X^2 \\ \alpha^2 \sin^2 \varphi + \beta^2 \cos^2 \varphi = \sigma_Y^2 \\ \cos \varphi \sin \varphi (\alpha^2 - \beta^2) = \rho \sigma_X \sigma_Y \end{cases}$$
 (50)

Или

$$\begin{cases}
\alpha^2 + \beta^2 = \sigma_X^2 + \sigma_Y^2 \\
(\alpha^2 - \beta^2)\cos 2\varphi = \sigma_X^2 - \sigma_Y^2 \\
\sin 2\varphi(\alpha^2 - \beta^2) = 2\rho\sigma_X\sigma_Y
\end{cases}$$
(51)

Откуда:

$$\begin{cases}
\alpha^2 + \beta^2 = \sigma_X^2 + \sigma_Y^2 \\
(\alpha^2 - \beta^2)\cos 2\varphi = \sigma_X^2 - \sigma_Y^2 \\
\tan 2\varphi = \frac{2\rho\sigma_X\sigma_Y}{\sigma_X^2 - \sigma_Y^2}
\end{cases}$$
(52)

Причём: $tg(2\varphi)$ даёт 2 ортогональные прямые с углами φ и $\varphi + \frac{\pi}{2}$, соответ-

$$\varphi = \frac{1}{2}\arctan\frac{2\rho\sigma_X\sigma_Y}{\sigma_X^2 - \sigma_Y^2}$$
 при $\frac{2\rho\sigma_X\sigma_Y}{\sigma_X^2 - \sigma_Y^2} > 0$ и $\varphi = \frac{1}{2}\arctan\frac{2\rho\sigma_X\sigma_Y}{\sigma_X^2 - \sigma_Y^2} + \frac{pi}{2}$ при $\frac{2\rho\sigma_X\sigma_Y}{\sigma_X^2 - \sigma_Y^2} < 0$

причем. $tg(2\varphi)$ дает 2 ортогональные прямые с углами φ и $\varphi+\frac{1}{2}$, соответственно. Но $\cos 2\varphi=-\cos \left(2\varphi+\frac{\pi}{2}\right)$ и, по выбору $\alpha\geqslant\beta$ $\varphi=\frac{1}{2}\arctan\frac{2\rho\sigma_X\sigma_Y}{\sigma_X^2-\sigma_Y^2}\text{ при }\frac{2\rho\sigma_X\sigma_Y}{\sigma_X^2-\sigma_Y^2}>0\text{ и }\varphi=\frac{1}{2}\arctan\frac{2\rho\sigma_X\sigma_Y}{\sigma_X^2-\sigma_Y^2}+\frac{pi}{2}\text{ при }\frac{2\rho\sigma_X\sigma_Y}{\sigma_X^2-\sigma_Y^2}<0$ При $\rho=0$ $\varphi=0$ при $\sigma_X>\sigma_Y$, и $\rho=\frac{\pi}{2}$ при $\sigma_X<\sigma_Y$. При $\sigma_X=\sigma_Y$ и $\rho>0$ $\varphi=\frac{\pi}{4}$, при $\rho<0$ $\varphi=-\frac{\pi}{4}$. Если $\sigma_X=\sigma_Y$ и $\rho=0$, то возможны оба поворота. α^2 и β^2 выводятся из первых двух уравнений:

$$\begin{cases} \alpha^2 \cos^2 \varphi + \beta^2 \sin^2 \varphi = \sigma_X^2 \\ \alpha^2 \sin^2 \varphi + \beta^2 \cos^2 \varphi = \sigma_Y^2 \end{cases}$$
 (53)

$$\alpha^{2} = \frac{\sigma_{X}^{2} \cos^{2} \varphi - \sigma_{Y}^{2} \sin^{2} \varphi}{\cos^{2} \varphi - \sin^{2} \varphi}$$

$$\beta^{2} = \frac{\sigma_{Y}^{2} \cos^{2} \varphi - \sigma_{X}^{2} \sin^{2} \varphi}{\cos^{2} \varphi - \sin^{2} \varphi}$$
(54)

при $\sigma_X = \sigma_Y$ и $\rho \neq 0$, собственные числа матрицы можно вычислить явно, так как матрица имеет простой вид:

$$\sigma_X^2 \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \tag{55}$$

и её собственные числа равны $\lambda_{1,2}=\sigma_X^2(1\pm\rho).$ Таким образом, оси Ox и Oy под углом в $\varphi.$ Будем их называть главными направлениями **z**

Заметим, что если $R=AA^{\top}=U_{\varphi}\begin{pmatrix} \alpha^2 & 0 \\ 0 & \beta^2 \end{pmatrix}U_{-\varphi}$, то собственные числа R совпадают с такими у $\begin{pmatrix} \alpha^2 & 0 \\ 0 & \beta^2 \end{pmatrix}$, а собственные вектора равны $U_{\varphi}\begin{pmatrix} 1 \\ 0 \end{pmatrix} =$ $\begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix}$ и $U_{\varphi} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix}$ Это в точности главные направления нашего гауссова вектора \mathbf{z} , причём α ,

при $\alpha \neq \beta$ соответствует именно $\begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix}$

5 Литература

Список литературы

- [1] Ю.С.Харин, В.И.Малюгин, В.Л. Кирлица, В.И.Лобач, Г.А.Хацкевич Основи иммитационного и статистического моделирования, Дизайн-ПРО, 1997 г.
- [2] Прасолов В. В. Задачи и теоремы линейной алгебры., М.: Наука, 1996. $304~\mathrm{c.}$ ISBN 5-02-014727-3.
- [3] А.В.Булинский, А.Н. Ширяев Теория случайных процессов, Физматлит, 2005 г.