UNIVERSIDADE PRESBITERIANA MACKENZIE

NOTAS DE AULA

Elementos de LINGUAGENS FORMAIS E AUTÔMATOS

([©]Distribuição restrita: para uso próprio dos alunos.)

Pedro Paulo Balbi de Oliveira pedrob@mackenzie.br professor.mackenzie.br/pedrob

27 de fevereiro de 2024

UNIDADE 1

REVISÃO DE CONJUNTOS

1.1 DEFINIÇÕES GERAIS

Def. 1.1: CONJUNTO - uma coleção qualquer de elementos.

 $a \in A$ [a pertence a A] $a \notin A$ [a não pertence a A]

$$A = \{a_1, a_2, ..., a_n\} \iff a_1 \in A, a_2 \in A, ..., a_n \in A$$

Ex.: $\mathbb{N} = \{1, 2, 3, \dots\}$ NATURAIS

 $\mathbb{Z} = \{ ..., -3, -2, -1, 0, 1, 2, 3, ... \}$ INTEIROS

 \mathbb{Q} = números da forma i/j, i, j $\in \mathbb{Z}$, j $\neq 0$ RACIONAIS

Def. 1.2: <u>CARDINALIDADE:</u> Número de elementos do conjunto (#A)

Def. 1.3: CONJUNTO VAZIO: Conjunto que não tem elementos (\emptyset)

$$\emptyset \equiv \{ \}$$

Obs. 1: $\#\emptyset = 0$

Obs. 2: Especificação de conjuntos

$$x = \{-3, -2, -1, 0, 1, 2, 3\} = \{x \mid x \in \mathbb{Z}, -3 \le x \le 3\}$$

= $\{x \in \mathbb{Z} \mid -3 \le x \le 3\}$

Obs. 3: $\#\mathbb{R} \to \infty$

Def. 1.4: IGUALDADE

$$A = B \Leftrightarrow \forall x \in A \Leftrightarrow \forall x \in B$$

Def. 1.5: SUBCONJUNTO

 $A \subseteq B$, se $\forall a \in A \Rightarrow a \in B$ [caso contrário: $A \not\subset B$]

Obs. 1: $A \subset B$ A está contido em B $B \supset A$ B contém A

Obs. 2: SUBCONJUNTO PRÓPRIO: $A \subset B$ (A é subconjunto de B, mas $A \neq B$)

Obs. 3: $A = B \Leftrightarrow A \subset B \in B \subset A$

Obs.
$$4: \forall A \Rightarrow \begin{cases} \varnothing \subset A \\ A \subset A \end{cases}$$

Def. 1.6: CONJUNTO POTÊNCIA (Power Set)

Conjunto de todos os subconjuntos de um conjunto A. Representação: 2^A.

3

Ex.:
$$A = \{1, 2, 3\}$$

 $2^A = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$

Obs.:
$$A = \{a_1, a_2, ..., a_n\}$$

 $\#2^A = 2^n$

Def. 1.7: COMPLEMENTO

$$\overline{A} = \{u \mid u \notin A\}$$

OBS: $u \in U$ (conjunto universo)

$$A \text{ -} B = \{a \mid a \in A \ \land \ a \not\in B \ \} = A \setminus B$$

$$A \cup B = \{u \mid u \in A \ \lor \ u \in B\}$$

Def. 1.10: <u>INTERSECÇÃO</u>

$$A \cap B = \{u \mid u \in A \land u \in B \}$$

Def. 1.11: CONJUNTO DISJUNTOS

$$A \cap B = \emptyset$$
 (A e B são disjuntos)

Def. 1.12: DIAGRAMA DE VENN

U = conjunto universo

OBS: Leis de Morgan

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Def. 1.13: PARTIÇÃO

 $\pi = \{A_i\} \ i \in K, \ K \ é \ um \ conjunto \ de \ índices \ arbitrários$

 π $\,$ é uma partição de A se todo elemento de A está exatamente em dos $A_{i}.$

Obs.: Os Ai são os <u>blocos</u> da partição

$$\begin{array}{ll} \pi_A \; = \; \{\; A_1,\, A_2,\, A_3,\, A_4,\, A_5 \; \} \\ \pi_B \; = \; \{\; B_1,\, B_2,\, B_3,\, B_4,\, B_5,\, B_6,\, B_7 \; \} \end{array}$$

 $\pi_B \ \underline{refina} \ \pi_A \ \Leftrightarrow \ todos \ B_j \subset A_i$

Def. 1.14: R – TUPLA

Seqüência ordenada escrita na forma $(a_1, a_2, ..., a_r)$ O i-ésimo termo \Rightarrow i-ésima coordenada Se $r = 2 \Rightarrow par ordenado$

Def. 1.15: PRODUTO CARTESIANO

 $A_1, A_2, ..., A_r$: conjunto qualquer

Produto cartesiano: todas as r-tuplas $(a_1, a_2, ..., a_r)$ tal que $a_1 \in A_1, a_2 \in A_2, ..., a_r \in A_r$

Representação: $A_1 \times A_2 \times ... \times A_r$

Se os A_i são idênticos: $A_1 \times A_2 \times ... \times A_r = A^r$

Ex.:
$$A = \{0, 1\}$$
 e $B = \{1, 2, 3\}$
 $A \times B = \{(0,1), (0,2), (0,3), (1,1), (1,2), (1,3)\}$
 $B \times A = \{(1,0), (1,1), (2,0), (2,1), (3,0), (3,1)\}$
 $A \times A = A^2 = \{(0,0), (0,1), (1,1), (1,0)\}$

1.2 RELAÇÕES

Def. 1.16: RELAÇÃO

 \forall subconjunto do produto cartesiano $A_1 \times A_2 \times ... \times A_r$

RELAÇÃO BINÁRIA

Quando r = 2, tem-se os subconjuntos de $A_1 \times A_2 = \{ (x,y) \mid x \in A_1 \ e \ y \in A_2 \}$

Notação:

- R é uma relação de A em B \Rightarrow (a,b) \in R
- a é relacionado com b ⇒ a R b
- se $(x, y) \in R$: x R y ou y = R(x)

Ex.: $A = \{2, 3, 4\}$ e $B = \{2, 3, 4, 5, 6\}$ Seja R de A em B: <u>a R b \Leftrightarrow a divide b</u>, ou seja resto(b/a) = 0.

$$R = \{ (2, 2), (2,4), (2,6), (3,3), (3,6), (4,4) \}$$

Obs.: Representação de uma relação binária como grafo:

$$R = \{ (0,0), (0,3), (3,2), (2,3), (2,0), (2,1) \}$$

Def. 1.17: DOMÍNIO

 $\{a \in A \mid a R b \text{ existe, para algum b}\}\$

Def. 1.18: CONTRADOMÍNIO

 $\{b \in B \mid a R b \text{ existe, para algum a}\}\$

Ex.: $R = \{ (2,2), (2,4), (2,6), (3,3), (3,6), (4,4) \}$

Domínio = {2, 3, 4} [elementos de A usados em R]

Contradomínio = {2, 3, 4, 6} [elementos de B usados em R]

Def. 1.19: RELAÇÃO INVERSA

 \check{R} : se R é de A em B, então \check{R} é de B em A, tal que b \check{R} a \Leftrightarrow a R b Ou seja: os pares de \check{R} são os pares de R em ordem inversa

Ex.: A
$$\{2, 3, 4\}$$

B = $\{2, 3, 4, 5, 6\}$ seja $\check{\mathbf{R}} = b \, \check{\mathbf{R}} \, a \Leftrightarrow a \, \text{divide } b$

$$R = \{(2,2), (4,2), (6,2), (3,3), (6,3), (4,4)\}$$

Def. 1.20: COMPOSIÇÃO DE RELAÇÕES

$$\begin{array}{c} R_1 \text{ de } A_1 \text{ em } A_2 \\ a_i \quad (R_1 \circ R_2 \text{ }) \quad a_j \quad [\text{ou } R_1 \circ R_2 \text{ } (a_i, a_j)] \\ R_2 \text{ de } A_2 \text{ em } A_3 \\ \end{array} \\ \begin{array}{c} sse \quad a_k \in A_2 \Rightarrow \begin{cases} a_i \quad R_1 \quad a_k \\ \end{cases} \\ A_1 \\ A_2 \\ A_3 \\ \end{array}$$

Ex.:
$$A_1 = \{1, 2, 3, 4\}$$

 $A_2 = \{2, 3, 4\}$
 $A_3 = \{1, 2, 3\}$
 $R_1 = \{(a_i, a_k) | a_i + a_k = 6\} = \{(2,4), (3,3), (4,2)\}$
 $R_2 = \{(a_x, a_j) | a_k - a_j = 1\} = \{(3,2), (4,3), (2,1)\}$
 $R_1 \circ R_2 = \{(2,3), (3,2), (4,1)\} \implies \{(a_i, a_j) / a_i + a_j = 5\}$
Pois: $a_i + a_k = 6 \implies a_i + (1 + a_j) = 6$
 $a_i + a_j = 5$

Def. 1.21: <u>RELAÇÃO REFLEXIVA</u>

 $\forall a_i \, \in A \; , \; a_i \; R \; a_i$

Ex: Divide.

Def. 1.22: RELAÇÃO SIMÉTRICA

 $\forall a_i\,,\,a_j\in A,\ a_i\;R\;a_j\;\Rightarrow\;a_i\;\;R\;\;a_i$

Ex: Ser irmão de.

Def. 1.23: RELAÇÃO TRANSITIVA

 $\forall a_i\,,\,a_j,\,a_k\in A\;,\;a_i\;R\;a_j\;\;\wedge\;\;a_j\;R\;a_k\;\Longrightarrow\;a_i\;\;R\;a_k$

Ex : Maior do que.

Def. 1.24: RELAÇÃO DE ORDEM TOTAL

Relação tal que $\ \forall \ a_i \,,\, a_j \in A \Rightarrow \ a_i \ R \ a_j \ \lor \ a_j \ R \ a_{i1}$

Quando isso não acontece ⇒ <u>RELAÇÃO DE ORDEM PARCIAL</u>

Ex. 1: \mathbb{R} é totalmente ordenado pela relação \leq .

Ex. 2: A relação / definida sobre um conjunto de inteiros, onde i/j ⇔ j um divisor de i, é uma R.O.P.

 $A = \{2, 3, 4, 6, 8, 12, 36, 60\}$

1.3 RELAÇÕES DE EQUIVALÊNCIA

Def. 1.25: Uma relação binária R sobre S é uma <u>RELAÇÃO DE EQUIVALÊNCIA</u> se:

- 1. R é reflexiva
- 2. R é simétrica
- 3. R é transitiva.

Exemplos:

1) Seja a relação binária Ri definida sobre o conjunto ${\mathcal H}$ dos seres humanos, tal que

Ri não é uma relação de equivalência. Por que?

2) Seja R de A em B: <u>a R b ⇔ a divide b</u>. R <u>não é</u> uma relação de equivalência. Por que?

TEOREMA 1.1:

Se R é uma relação de equivalência sobre S então é possível dividir S em K subconjuntos distintos (K > 1), chamados de CLASSES DE EQUIVALÊNCIA, tais que:

a R b \Leftrightarrow a e b pertencem ao mesmo conjunto.

Em outras palavras: uma relação de equivalência R sobre S induz uma partição de S.

Exemplo:

Seja Rs definida sobre o conjunto \mathcal{H} dos seres humanos, tal que:

Rs é uma relação de equivalência?

Se sim, represente a partição Π s induzida por Rs no conjunto \mathcal{H} .

- **Def. 1.26:** O <u>índice</u> de uma relação de equivalência R, representado por i (R), é o número de classes de equivalência de R.
- **Def. 1.27:** Sejam R₁ e R₂ relações de equivalência:

$$R_1$$
 refina R_2 se $R_1 \subset R_2$ (isto é, $x R_1 y \Rightarrow x R_2 y$)

Obs.: se R_1 refina R_2 , então: $i(R_1) \ge i(R_2)$

1.4 FUNÇÕES

Def. 1. 25: <u>FUNÇÃO</u>

 \acute{E} uma regra que designa para cada $\,a_i \in A,$ um único $\,b_i \in B\,$ $f: A \rightarrow B$ (Domínio → Contradomínio)

Notação:
$$(x,y) \in f$$

 $y = f(x)$
 $x f y$

Ex.:
$$f: \mathbb{R} \to \mathbb{R}$$
, $y = f(x) = x + 1$
Se $x \ge 0 \Rightarrow y \ge 1$
(Imagem)

Função de r variáveis:

$$f(a_1, a_2, \ldots, a_r)$$

$$f:A_1\times A_2\times ...\times A_r\,\to\, B$$

Com r=2:
$$z = x + y$$
, $x \in \mathbb{R}$, $y \in \mathbb{R}$
(função do tipo $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$ ou $\mathbb{R}^2 \to \mathbb{R}$)

Def. 1.26: INJEÇÃO

Para quaisquer 2 elementos de A correspondem 2 elementos distintos em B

função não injetiva

Def. 1.27: SOBREJEÇÃO Esgota B

A B

Def. 1.28: BIJEÇÃO

Acontece injeção e sobrejeção.

OBS: Somente a bijeção aceita inversa

f⁻¹ é inversa de f.

Ex.: y = ax + b \Rightarrow Inversa: x = (y - b)/a

(Fonte dos diagramas: www.todoestudo.com.br)

Def. 1.29: COMPOSIÇÃO DE FUNCÕES

$$h = f \circ g = g(f)$$

$$f(x) = sen(x)$$

$$g(x') = e^{-x'}$$

$$h(x) = e^{-sen(x)}$$

UNIDADE 2

LINGUAGENS, GRAMÁTICAS E RECONHECEDORES

2.1 ALFABETOS E LINGUAGENS

Def. 2.1: Um alfabeto (ou vocabulário) Σ é um conjunto finito, não vazio de símbolos.

Def. 2.2: Uma **palavra** (ou **cadeia**, ou **string**) sobre um alfabeto Σ é uma sequência finita de símbolos de Σ .

$$x \notin \text{uma cadeia} \Rightarrow x = a_1 \ a_2 \ ... \ a_n \ , \ n \ge 0$$

$$a_i \in \sum , \ i = 1, 2, ..., n$$

Quando $n = 0 \implies \mathcal{E}$ (cadeia vazia)

Def. 2.3: Comprimento de uma cadeia x sobre um alfabeto Σ (representado por $|\mathbf{x}|$) é o número de ocorrências de símbolos de Σ em x.

Ex.:
$$\Sigma = \{0, 1\} \Rightarrow$$

$$\begin{cases} |011| = 3 \quad \text{(n.° de elementos na cadeia)} \\ |\varepsilon| = 0 \end{cases}$$

Def. 2.4: Sejam x e y duas cadeias sobre \sum a <u>concatenação</u> de x e y é definida como a cadeia xy.

Ex.:
$$\Sigma = \{0, 1\}$$
, $x = 010$, $y = 10$ \Rightarrow $\begin{cases} xy = 01010 \\ yx = 10010 \end{cases}$

OBS.1: A cadeia vazia é o elemento neutro da operação de concatenação $\Rightarrow \varepsilon \varepsilon x = x \varepsilon = \varepsilon x = x$

OBS.2: Concatenação sucessiva:
$$(10)^n = 101010...10$$

n ocorrências concatenadas da cadeia 10

Def. 2.5: Sejam X e Y <u>conjuntos de cadeias</u> sobre ∑. O <u>produto</u> de X e Y é definido por:

$$XY = \{xy \mid x \in X, y \in Y\}$$

Notação:
$$X^0 = \{ \epsilon \}$$

$$X^{i+1} = X^i \: X \: , \: \: i \geq 0$$

Operações com um conjunto X de cadeias:

Fechamento de Kleene (*Kleene's closure*): X* **Fechamento Positivo** (*positive closure*): X+

$$X^+ = \bigcup X^i$$
, $i \ge 1$... todas as concatenações possíveis

$$X^* = \bigcup X^i$$
, $i \ge 0$... todas as concatenações possíveis, mais a cadeia vazia.

Exemplo:
$$\Sigma = \{0, 1\}$$

$$\Sigma^* = \{ \epsilon, 0, 1, 01, 10, 00, 11, ... \}$$

$$\Sigma^+ = \{ 0, 1, 01, 10, 00, 11, ... \}$$

Exercício:

Sejam $\Sigma = \{0, 1\}$, $N = \{A, B\}$ e $V = \Sigma \cup N$. Para cada expressão abaixo, dizer se ela é falsa ou verdadeira:

$0 \in V^*$	$AA \in V^*$	$\#V^* \rightarrow \infty$	$AA \in V^{\scriptscriptstyle +}$
$\epsilon \in V^*$	$B1\mathcal{E}0B \in V^*$	$B1\textbf{E}0B \in V^{\scriptscriptstyle +}$	$01 \in V^+NV^+$
$A \in V^*NV^*$	$\epsilon \in V^*NV^*$	$01 \in V^*NV^*$	$0A1 \in V^+NV^+$
$AA \in V^*NV^*$	$AA \in V^+NV^+$	$01A \in V^+NV^+$	$AAA \in V^+NV^+$

Def. 2.6: Uma \varliminf linguagem \bot é um conjunto qualquer de cadeias sobre um alfabeto Σ , ou seja: $\bot \subset \Sigma^*$.

Como representar L?

- Se L é finito, basta listar todas as cadeias.
- Se L é <u>infinito</u>, existem 2 sistemas principais para representação de linguagens:
 - 1. O sistema gerador: Gramática
 - 2. O sistema reconhecedor: Autômato

2.2 RECONHECEDORES E GRAMÁTICAS

Um reconhecedor de ${\bf L}$ é a representação de um procedimento que, quando apresentado a uma cadeia qualquer:

- pára e responde sim, após um número finito de passos, caso a cadeia pertença a L; ou
- pára e responde não, caso a cadeia não pertença a L; ou
- não pára, caso a cadeia não pertença a L.

Simbolicamente:

Uma configuração do reconhecimento é uma descrição:

- (a) do estado do controle finito
- (b) do conteúdo da fita de entrada e da posição da cabeça
- (c) do conteúdo da memória.

Um reconhecedor aceita (ou reconhece) uma cadeia w se:

- 1. partindo de uma configuração inicial;
- 2. faz uma seqüência finita de movimentos; e
- 3. termina em uma configuração final.

A linguagem aceita por um reconhecedor R é:

$$L(R) = \{w \in \Sigma^* \mid R \text{ aceita } w\}$$

Def. 2.7: Uma gramática é uma 4-upla $G = (\Sigma, N, S, P)$ onde:

 Σ é um conjunto finito não vazio de símbolos, chamados de terminais,

N é um conjunto finito não vazio de símbolos, chamados de não-terminais, com $\Sigma \cap N = \emptyset$

 $S \in N$, é o símbolo (não terminal) <u>inicial</u>

P é um conjunto de regras (de produção) da forma $\alpha \rightarrow \beta$, onde:

$$\alpha \in (N \cup \Sigma)^* \ N \ (N \cup \Sigma)^*$$

 $\beta \in (N \cup \Sigma)^*$

Ex.:
$$G = (\Sigma, N, S, P)$$
 onde:

$$N = \{A, S\}$$
S: símbolo (não-terminal) inicial
$$\sum = \{a, b\}$$

$$P = \{S \rightarrow ab, \frac{Notação}{Letra maiúscula: não-terminais}$$

$$S \rightarrow aASb, \frac{Letra minúscula: terminais}{Letra minúscula: terminais}$$

$$AS \rightarrow bSb, \frac{A \rightarrow \mathcal{E}, \frac{A \rightarrow \mathcal{E}, \frac{A}{ASAb \rightarrow aa}}{ASAb \rightarrow aa}$$

Exemplo de cadeias geradas por essa gramática:

- 1. $S \rightarrow ab$
- 2. $S \rightarrow aASb \rightarrow abSbb \rightarrow ababbb$

Ou seja, a linguagem gerada $L(G) = \{ ab, ababbb, ... \}$

OBS:

- A linguagem gerada por G pode ser obtida pela construção da Árvore de Derivação correspondente.
- Se L é gerada por G, qualquer gramática G' obtida a partir de G passa a gerar L', possivelmente diferente de L.
- Ao se projetar uma gramática que gere L, deve-se tomar o cuidado de permitir a geração de <u>todas</u> <u>e apenas</u> as cadeias de L.

Exercício:

Construa uma gramática para cada uma das 3 linguagens abaixo. Lembrem-se de que a gramática tem de ser capaz de gerar <u>todas</u> as cadeias da linguagem, <u>nem mais</u> e <u>nem menos</u>.

 $L_3 = \{ \text{ Números inteiros decimais, com ou sem sinal (sem iniciar com zero) } \}$

Def. 2.8: Sejam: uma gramática $G = (\sum, N, S, P)$, $V = N \cup \sum$, $\alpha' \in V^*$, $e \beta' \in V^*$.

$$\alpha'$$
 deriva diretamente β' $(\alpha'\Rightarrow\beta')$ se existem $\alpha_1,\,\alpha_2,\,\alpha\;,\,\beta\;\in V^*$ tais que:
$$\alpha'=\alpha_1\;\alpha\;\alpha_2\;\;,\\ \beta'=\alpha_1\;\beta\;\alpha_2\;\;,\;e\\ \alpha\;\to\;\beta\;\in P$$

Por exemplo, segundo G definido anteriormente:

 $\underline{\text{Notação}} \colon \stackrel{n}{\Rightarrow} \quad \text{deriva em n passos}$

⇒ deriva em zero ou mais passos

Def. 2.9: Sejam $G = (\sum, N, S, P)$ e $V = N \cup \sum$. O conjunto de <u>Formas Sentenciais</u> de G é definido por: $S(G) = \{ \alpha \in V^* \mid S \Rightarrow \alpha \}$

Def. 2.10: Sejam $G = (\sum, N, S, P)$ e $V = N \cup \sum$. A <u>Linguagem Gerada</u> (ou <u>Representada</u>) por G é o conjunto: $L(G) = \{ w \in \sum^* | S \stackrel{n}{\Rightarrow} w \} = \sum^* \cap S(G)$

Ou seja: são todas as cadeias terminais, deriváveis a partir de S.

OBS:

As formas sentenciais de uma gramática são a própria árvore de derivação associada à gramática, enquanto a linguagem gerada constitui o conjunto das folhas da árvore.

OBS: No contexto usual de linguagens de programação,

- 1. \sum (símbolos) = palavras reservadas + variáveis definidas + símbolos numéricos + operadores + delimitadores...
- 2. cadeia ≡ programa sintaticamente correto
- 3. L (linguagem) \equiv conjunto de programas sintaticamente corretos
- 4. G (gramática) ≡ estrutura sintática

2.3 HIERARQUIA DE CHOMSKY

A gramática, como foi definida anteriormente, é chamada de gramática <u>Irrestrita</u> ou <u>Tipo-0</u> (ou ainda: Recursivamente Enumerável, gramática Semi-Thue; ou gramática de Estrutura de Frase).

Def. 2.11: $G = (\sum, N, S, P)$ com $V = N \cup \sum$ é gramática <u>Sensível ao Contexto</u> ou <u>Tipo-1</u>, se toda produção de P é da forma:

2) S → E, sendo que se esta regra de produção ocorrer, S não pode aparecer no lado direito de qualquer outra produção, se isto puder ocasionar redução do tamanho da cadeia da direita (por exemplo, uma regra de produção como S → 1S não geraria problema).

Exemplo 1: Algumas regras de produção da primeira gramática apresentada não estão expressas na forma canônica do tipo sensível ao contexto:

$$G = (\{a, b\}, \{A, S\}, S, P)$$

$$P = \{$$

$$S \rightarrow ab,$$

$$S \rightarrow aASb,$$

$$S \rightarrow bSb,$$

$$AS \rightarrow bSb,$$

$$A \rightarrow \varepsilon,$$

$$aASAb \rightarrow aa$$

$$\}$$

Def. 2.12: $G = (\sum, N, S, P)$ é gramática <u>Livre de Contexto</u> ou <u>Tipo-2</u> se toda produção de P é da forma:

Def. 2.13: $G = (\sum, N, S, P)$ é uma gramática <u>Regular</u> ou <u>Tipo-3</u>, se toda produção de P é da forma <u>linear à direita</u> (*right-linear*):

1)
$$A \rightarrow wB$$

2) $A \rightarrow w$
$$\begin{cases} A, B \in N \\ w \in \Sigma^* \end{cases}$$

Ou da forma linear à esquerda (*left-linear*):

3)
$$A \rightarrow Bw$$

$$\begin{cases} A, B \in N \\ w \in \Sigma^* \end{cases}$$

Exemplo 2: $L_1 = \{ 01^n, n \ge 1 \}$ é regular, mas G_1 não evidencia o fato.

$$G_{1} = (\{0, 1\}, \{I, A\}, I, P_{1})$$

$$P_{1} = \{$$

$$I \rightarrow 0A1,$$

$$A \rightarrow 1A,$$

$$A \rightarrow \epsilon$$

$$\}$$

$$I \rightarrow 01,$$

$$I \rightarrow 11$$

$$\}$$

Def. 2.14: Uma linguagem L é do $\underline{\text{Tipo-x}}$, se existe uma gramática $\underline{\text{Tipo-x}}$, G, tal que L = L(G) (isto é, a linguagem L é gerada pela gramática G).

OBS:

Tipos 2 e 3: Só existe 1 não-terminal do lado esquerdo (e nenhum terminal).

Tipo-1: Pode haver mais de 1 não-terminal do lado esquerdo, mas só 1 é transformado em

cada regra de produção.

Tipo-0: Qualquer quantidade de não-terminais do lado esquerdo das produções,

Hierarquia de Chomsky:

Relacionamento entre Gramáticas (ou Linguagens) e seus reconhecedores correspondentes.

OBS2: Uma visão mais sintética, segundo Wolfram:

Tipo-0: Produções arbitrárias.

M.T.: Memória arbitrariamente grande.

 $\text{Tipo-1: Produções da forma } \alpha \to \beta \ \text{ tal que } |\alpha| \leq |\beta| \ , \ \alpha \in (N \cup \Sigma)^+ \, , \, \beta \in (N \cup \Sigma)^*.$

A.L.L.: Memória proporcional ao comprimento da cadeia de entrada.

Tipo-2: Produções da forma $A \to \alpha$ tal que $A \in N$, $\alpha \in (N \cup \Sigma)^*$, $e \mid \alpha \mid$ finito.

P.D.A.: Memória em pilha, com uma quantidade fixa de elementos disponíveis em um dado tempo.

Tipo-3: Produções da forma (unitária) $A \to sB$ ou $A \to s$ tal que $A, B \in N$, $s \in (\Sigma \cup \mathcal{E})$.

A.F.: Memória apenas de constantes ou de quantidades indeterminadas.

UNIDADE 3

AUTÔMATOS FINITOS E LINGUAGENS REGULARES

3.1 AUTÔMATOS FINITOS

Def 3.1: Um autômato finito é uma **5-upla** $A = (Q, \Sigma, \delta, q_0, F)$ onde:

Q	Conjunto finito não vazio (Estados)
\sum	Alfabeto (de entrada); $\sum \cap Q = \phi$
$q_0 \in Q$	Estado inicial
$F \subseteq Q$	Conjunto de estados finais
$\delta: Q \times \Sigma \to Q$	Função de transição de estados

Simbolicamente:

 $\delta(\mathbf{q}, \mathbf{a}) = \mathbf{q}'$ \Leftrightarrow O autômato estando no estado \mathbf{q} e lendo o símbolo \mathbf{a} na fita de entrada, move a cabeça leitora uma posição para a <u>direita</u> e vai para o estado \mathbf{q}' .

Função δ ' estendida: δ ': $Q \times \Sigma^* \to Q$

 $\delta'(q, \mathcal{E}) = q$ transição que não altera estado

$$\delta'(q, xa) = \delta (\delta (q, x), a) ; x \in \Sigma^*$$

$$a \in \Sigma$$

 $\delta'(q, x) = q' \Leftrightarrow O$ autômato estando no estado q e lendo o símbolo mais à esquerda da cadeia x, vai estar no estado q' após todos os símbolos de x terem sido lidos.

Def. 3.2:

Sejam A um autômato finito e $x \in \Sigma^*$, x é <u>aceita</u> por A se $\delta'(q_0, x) \in F$. Caso contrário, diz-se que a cadeia é rejeitada (ou, não aceita).

Def. 3.3:

Seja A um autômato finito. A linguagem <u>reconhecida</u> por A é $L(A) = \{ x \in \Sigma^* \mid \delta'(q_0, x) \in F \}.$

Exemplo de um Autômato Finito (AF):

(Diagrama de Transição de Estados)

$$A = (Q, \Sigma, \delta, q_0, F)$$

$$A = (\{q_0, q_1\}, \{0,1\}, \delta, q_0, \{q_1\})$$

Tabela de Transição de Estados

$\delta(q_0, 0) = q_0$	$\delta(q_1, 0) = q_1$
$\delta(q_0, 1) = q_1$	$\delta(q_1, 1) = q_0$

Exemplos de cadeias aceitas por A: 1,01,01101,...

Exemplos de cadeias rejeitadas por A: 0,101,101101,...

 $L(A) = \{ x \in \Sigma^* \mid x \text{ tem quantidade impar de 1's } \}$

Exercícios:

Para cada uma das linguagens a seguir, todas definidas sobre o alfabeto $\Sigma = \{a, b\}$, construa um autômato finito que a reconheça. Lembrem-se de que:

- 1. O autômato criado tem de ser capaz de reconhecer <u>todas</u> as cadeias da linguagem, <u>nem mais</u> e <u>nem menos</u>.
- 2. As transições de estado <u>só podem estar associadas aos símbolos do alfabeto</u> (portanto, não se pode ter transição via cadeia vazia).
- 3. De cada estado tem de sair <u>uma</u> (<u>e apenas uma</u>) transição de estado para cada um dos símbolos do alfabeto.

$$L_1 = \sum^+$$

$$L_2 = \{ \epsilon \}$$

$$L_3 = \sum^*$$

$$L_4 = \{ \}$$

 $L_5 = \{ \text{ Todas as cadeias em que tanto os } a$'s quanto os b's ocorrem em quantidades pares $\}$

Def. 3.4:

Seja R, relação de equivalência sobre Σ^* . R é uma <u>relação de equivalência à direita</u> (ou, <u>relação</u> invariante à direita) se: $xRy \Rightarrow (\forall z \in \Sigma^*) xzRyz$

Ex: Seja R sobre Σ^* definida por:

$$xRy \Leftrightarrow \delta(q_0, x) = \delta(q_0, y)$$

$$\begin{split} xRy & \Rightarrow \delta(q_0,\,x) = \delta(q_0,\,y) = q' \\ Mas: \quad \delta(q_0,\,xz) & = \delta(\,\delta(q_0,\,x),\,z) = \delta(q',\,z) = \delta(\,\delta(q_0,\,y),\,z) = \delta(q_0,\,yz) \\ & \Rightarrow xzRyz \end{split}$$

Intuitivamente: R é a resposta do autômato à cadeia.

Def 3.5:

Sejam R, relação de equivalência sobre Σ^* , e $L \subseteq \Sigma^*$.

R refina L se xRy \Rightarrow (x \in L \Leftrightarrow y \in L). Ou seja: se R refina L, L \acute{e} a união de algumas (ou todas) as classes de equivalência de R.

Def 3.6:

Seja $L \subseteq \Sigma^*$. A relação R_L é definida por: $xR_L y \Leftrightarrow (\forall z \in \Sigma^*) (xy \in L \Leftrightarrow yz \in L)$

Teorema 3.1: (1) R_L é uma relação de congruência à direita.

- (2) R_L refina L.
- (3) Se R é uma relação de congruência à direita que refina $L \Rightarrow R \subseteq R_L$.

Ou seja: R_L é a <u>menor</u> (i.e., menor número de classes de equivalência) relação de congruência à direita, que refina L.

Teorema 3.2: Teorema de Myhill-Nerode

Seja L $\subset \Sigma^*$; são equivalentes:

- 1. L é regular.
- 2. Existe uma relação de congruência à direita R sobre Σ^* , que refina L, e que tem índice finito.
- 3. $i(R_L)$ é finito.

OBS.: Este teorema é muito útil para provar que certas linguagens não são regulares.

3.2 MINIMIZAÇÃO DE AUTÔMATOS FINITOS

OBS.: Computabilidade × Performance:

- Computabilidade: Ser ou não ser capaz de computar.
- Performance: Qual a facilidade de computar (gasto de memória; tempo de execução; esforço de codificação; facilidade de manutenção; etc).

A. F. Mínimo: Mesma computabilidade, porém melhor performance.

Def 3.7:

Seja A= (Q, Σ , δ , q, F). Um estado q \in Q é <u>accessível</u> se \exists x \in Σ * tal que q = δ (q₀, x).

Def 3.8:

O <u>autômato conexo</u> associado a $A = (Q, \Sigma, \delta, q, F)$ é definido por :

$$A^c$$
 = (Q', Σ , δ ', q_0 , F ') onde:

$$Q' = \{ q \in Q \mid q \text{ \'e acess\'ivel } \}$$

$$F' = F \cap Q'$$

$$\delta' = \delta \cap (Q' \times \Sigma^* \times Q')$$

Def 3.9:

Dois autômatos A_1 e A_2 são <u>equivalentes</u>, se $L(A_1) = L(A_2)$.

Teorema 3.3:

Para todo autômato finito A, A e A^c são equivalentes. A determinação de estados acessíveis pode ser mecanizada, organizando-se a função δ em forma de árvore e verificando-se os estados que ocorrem.

Ex: Seja A, onde $\Sigma = \{a, b, c\}$; $Q = \{0, 1, 2, 3, 4, 5\}$; $q_0 = 0$; $F = \{3, 4\}$, $e \delta$ dado por

δ	a	b	c
0	1	2	0
1	2	1	3
2	0	2	3
3	3	1	2
4	5	1	2
5	0	4	5

Conclusão: $\begin{cases} 4, 5: & \text{Não acessíveis} \\ 0, 1, 2, 3: & \text{Acessíveis} \end{cases}$

Portanto:

$$A^c = (\ Q',\ \Sigma,\delta',q_0,F'\) \ onde: \ \ Q' = \{\ 0,\ 1,\ 2,\ 3\ \}$$

$$F' = \{\ 3\ \}$$

$$\sum = \{a,b,c\}$$

$$q_0 = 0$$

δ': Tabela de transição de estados

δ	a	b	c
0	1	2	0
1	2	1	3
2	0	2	3
3	3	1	2

Def. 3.10:

Dois <u>estados</u> q e q' são <u>equivalentes</u> $(q\equiv q')$ sse $(\forall x\in \Sigma^*)$ $(\delta(q,x)\in F\Leftrightarrow \delta(q',x)\in F)$. Consequentemente também vale que: $(\forall x\not\in \Sigma^*)$ $(\delta(q,x)\not\in F\Leftrightarrow \delta(q',x)\not\in F)$.

A relação \equiv é uma relação de equivalência. Portanto, ela particiona o conjunto Q (de estados). A importância disso é que ela permite identificar elementos redundantes de Q (do ponto de vista de reconhecimento de linguagem), pois, se $q\equiv q$ (q e q' na mesma classe de equivalência), não irá fazer diferença se o autômato se encontra no estado q ou no estado q' quando uma cadeia $x\in \Sigma^*$ começar a ser processada. Logo, o autômato pode ser minimizado, escolhendo-se apenas um elemento de cada uma das classes de equivalência da relação \equiv .

Def. 3.11:

Dois <u>estados</u> q e q' são <u>k-equivalentes</u> (q $\stackrel{k}{\equiv}$ q') sse ($\forall x \in \Sigma^*$, $|x| \le k$) ($\delta(q, x) \in F \Leftrightarrow \delta(q', x) \in F$)

OBS.:

- A relação ^k ≡ também é uma relação de equivalência.
- Da definição, segue que: se $q \stackrel{k}{\equiv} q'$, então $q \stackrel{k'}{\equiv} q'$ para todo $k' \le k$.
- Portanto, π_k (partição de Q induzida por $\stackrel{k}{\equiv}$) refina $\pi_{k'}$ (ou seja, $i(\pi_k) \ge i(\pi_{k'})$, $k' \le k$).

Teorema 3.4:

Pode-se encontrar a relação \equiv , considerando-se sucessivamente as relações $\stackrel{0}{\equiv}$, $\stackrel{1}{\equiv}$, $\stackrel{2}{\equiv}$ e assim por diante, até que $\pi_k = \pi_{k+1}$, $k \ge 0$.

Teorema 3.5:

O processo a que se refere o teorema anterior sempre pára, i.e., pode-se construir um algoritmo para construir a relação ≡.

Ou seja, em conjunto:

$$\begin{array}{l} q \stackrel{0}{\equiv} q' \quad \Rightarrow \quad \pi_0 \\ \\ q \stackrel{1}{\equiv} q' \quad \Rightarrow \quad \pi_1 \\ \vdots \qquad \vdots \qquad \vdots \\ q \stackrel{k}{\equiv} q' \quad \Rightarrow \quad \pi_k \\ \\ q \stackrel{k+1}{\equiv} q' \quad \Rightarrow \quad \pi_{k+1} = \pi_k \quad \Rightarrow \quad q \equiv q' \end{array}$$

Quando dois π_k subsequentes são iguais, fica determinada a equivalência.

OBS.:

Uma descrição do algoritmo pode encontrada na p.67 do Hopcroft &Ullman, ou no livro do P.Blauth.

Exemplo de minimização de um autômato finito:

$$A = (\{A, B, C, D, E, F\}, \{0,1\}, \delta, A, \{E, F\})$$

δ	0	1
A	В	С
В	Е	F
C	A	A
D	F	Е
E	D	F
F	D	Е

Autômato Finito Mínimo:

δ	0	1
A	BD	С
C	A	A
BD	EF	EF
EF	BD	EF

3.3 EXPRESSÕES REGULARES

Def. 3.12:

Seja Σ um alfabeto. As <u>expressões regulares</u> sobre Σ , e os conjuntos que elas representam, são definidos, recursivamente, como:

- a) ϕ é uma expressão regular, e representa o conjunto ϕ .
- b) & é uma expressão regular e representa o conjunto {&}.
- c) Se $\mathbf{a} \in \Sigma$, então \mathbf{a} é uma expressão regular e representa o conjunto $\{\mathbf{a}\}$.
- d) Se \mathbf{r} e \mathbf{s} são expressões regulares representando, respectivamente, os conjuntos \mathbf{R} e \mathbf{S} , então $\mathbf{r}+\mathbf{s}$, $\mathbf{r}\mathbf{s}$, \mathbf{r}^* e \mathbf{s}^+ são expressões regulares representando, respectivamente, $\mathbf{R} \cup \mathbf{S}$, $\mathbf{R}\mathbf{S}$, \mathbf{R}^* e \mathbf{S}^+ .

OBS.: Para se poder eliminar alguns parênteses, assume-se que a prioridade das operações é:

- 1) Fechamento (de Kleene, e positivo)
- 2) Concatenação
- 3) Soma

EXPRESSÃO REGULAR	LINGUAGEM REPRESENTADA
$aa \equiv a^2$	Somente a palavra aa
aa + b	Somente as palavras aa e b
a ⁺	Todas as palavras com a's concatenados.
ba*	Todas as palavras que iniciam por b, seguido por zero ou mais a's
(a+b) ⁺	Todas as palavras sobre {a, b}
(a+b)*	Todas as palavras sobre {a, b}, e também a cadeia vazia
(a+b)*aa(a+b)*	Todas as palavras contendo aa como subpalavra
a*ba*ba*	Todas as palavras contendo exatamente 2 b's
(a+b)*(aa+bb)	Todas as palavras que terminam com aa ou bb
(a+E)(b+ba)*	Todas as palavras que não possuem 2 a's consecutivos (incluindo: $\mathcal{E} + a + b$)

Exercício:

É possível construir um autômato finito que reconheça a linguagem $L = \{0^n1^n \mid n \ge 1\}$?

3.4 AUTÔMATO FINITO NÃO-DETERMINÍSTICO

Def. 3.13:

Um autômato finito não determinístico é uma 5-upla $A = (Q, \Sigma, \delta, q_0, F)$, com Q, Σ, q_0 e F definidos como no caso determinístico, e δ da forma

$$\delta: Q \times \Sigma \to 2^Q$$
,

onde 2^Q é o conjunto potência de Q.

δ(q, a) = {q₁, q₂, ..., qn} ⇔ O autômato estando no estado q e tendo o símbolo a na fita de entrada, move sua cabeça leitora uma posição para a direita, transitando para cada um dos qi estados, i=1,, n; conceitualmente, é equivalente a imaginar que o autômato se subdivide em n cópias, cada uma das quais transita para um qi distinto, i=1,, n.

Exemplo:

Def. 3.14:

Seja $x \in \Sigma^*$; \underline{x} é aceita pelo AFND $A = (Q, \Sigma, \delta, q_0, F)$, se $\delta(q_0, x) \cap F \neq \phi$. Ou seja, \exists algum estado final em $\delta(q_0, x)$.

Portanto, $L(A) = \{ x \in \Sigma^* \mid \delta(q_0, x) \cap F \neq \emptyset \}.$

Teorema 3.6:

Seja L um conjunto aceito por um AFND. Então existe um autômato finito determinístico (AFD) que aceita L.

"Prova" informal, por construção. Sejam

$$A = (Q, \Sigma, \delta, q_0, F) \qquad AFND$$

$$A' = (Q', \Sigma, \delta', q_0', F') \qquad AFD$$

tal que A' é equivalente a A. Como construir A', a partir A?

- 1) Cada elemento de Q' será representado por $[q_1q_2 ... q_i]$ onde $q_1, q_2, ..., q_i \in Q$.
- 2) $q_0' = [q_0]$.
- 3) $Q' = 2^Q$, com a notação do passo anterior.
- 4) F' = conjunto formado pelos estados de Q' que possuem pelo menos um estado em F.
- 5) $\delta'([q_1q_2...q_i], a) = [r_1 r_2...r_i] \Leftrightarrow \delta(q_1, a) \cup \delta(q_2, a) \cup ... \cup \delta(q_i, a) = \{r_1, r_2, ..., r_i\}.$

Exemplo: Seja A= ($\{q_0,q_1\}, \{0,1\}, \delta, q_0, \{q_1\}$), com δ dada por:

OBS:

Transições de estado não-especificadas no AFND devem levar ao estado ϕ , o qual terá, no AFD equivalente, o significado de um <u>estado de erro</u>, i.e., um estado que, se atingido durante o processamento de alguma cadeia de entrada, significará seu não reconhecimento.

No exemplo acima:

$$\delta(q_1,0) = \phi$$

$$\delta(\phi, 0) = \phi$$

$$\delta(\phi, 1) = \phi$$

Determinar A' equivalente a A (i.e., ambos devem reconhecer a mesma linguagem): $A'(Q', \{0,1\}, q_0', F', \delta')$

$$2^Q \, = \{ \, \phi, \, \{q_0\}, \, \{q_1\}, \, \{q_1, \, q_0\} \, \} \, \implies \, Q \, \dot{} = \, \{ \, \phi, \, [q_0], \, [q_1], \, [q_0q_1] \, \}$$

$$q_0' = [q_0]$$

$$F' = \{ [q_1], [q_0q_1] \}$$

E ainda:

$$\delta(q_0,0) \cup \delta(q_1,0) = \{q_0,q_1\} \quad \bigstar'([q_0q_1],0) = [q_0q_1]$$

$$\{q_0,q_1\} \quad \downarrow \quad \phi =$$

$$\delta(q_0, 1) \cup \delta(q_1, 1) = \{q_0, q_1\} \quad \bigstar'([q_0q_1], 1) = [q_0q_1]$$

$$\{q_1\} \quad \cup \{q_0, q_1\} = \blacksquare$$

OBS:
$$\{A, B\} \cup \phi = \{A, B\}$$

 $\{A, B\} \cup \{\phi\} = \{A, B, \phi\}$

$AFD A' \equiv AFND A$

$$L(A) = L(A') = \{\ 1,\ 11x,\ 0x\ \mid\ x\in \textstyle\sum^{\textstyle *}\ \} = L\ (A_{min})$$

$$1 + 11(0+1)* + 0(0+1)*$$

Teorema 3.7:

Seja G uma gramática regular $\Rightarrow \exists$ um AFD A | L(G) = L(A).

Teorema 3.8:

Seja A um AFD $\Rightarrow \exists$ uma gramática regular G | L(G) = L(A).

Exercício:

Seja A = ($\{q_0,q_1,q_2\}$, $\{a,b\}$, δ , q_0 , $\{q_2\}$) um autômato finito não-determinístico, onde δ é dada por:

δ	a	b
qo	$\{q_0,q_1\}$	ф
\mathbf{q}_1	ф	$\{q_0,q_1,q_2\}$
\mathbf{q}_2	ф	ф

- 1.a) Desenhe o diagrama de transição de estados e determine L(A).
- 1.b) Construa o autômato finito determinístico mínimo, equivalente a A.

3.5 AUTÔMATO FINITO NÃO-DETERMINÍSTICO COM ε-MOVIMENTO

Um AFND- ϵ é uma 5-tupla $M = (\Sigma, Q, \delta, q_0, F)$, com δ da forma:

$$\delta: Q \times (\Sigma \cup \{\mathcal{E}\}) \rightarrow 2^Q$$

 $\delta(q_1, \ \ E) = \{ \ q_1, \ q_2, \dots, \ q_k \} \Leftrightarrow Ao \ processar \ E, o \ autômato \ assume, simultaneamente, o \ estado de origem \ q_1, e todos os \ estados de \ destino \ q_1, \ q_2, \dots, \ q_k.$ Ou seja, mesmo sem ler nada na fita de entrada, num determinado momento, ele é capaz de mudar de estado.

Exemplo:

$$M = (\{a,b\}, \{q_0, q_f\}, \delta, q_0, \{q_f\})$$

 $\delta(\ q_0,\ \epsilon\) = \{\ q_0,\ q_f\} \ \Leftrightarrow \ \ \text{Ao processar ϵ, o autômato assume, simultaneamente, o estado inicial q_0 e o estado final q_f.}$

$$L(M) = a*Eb* = a*b*$$

Teorema 3.9:

Para todo AFND-E, é possível construir um AFND equivalente (Blauth, 2001).

$$L = a*Eb*Ea* = a*b*a*$$

Teorema 3.10:

Seja \mathbf{r} uma expressão regular e $\mathbf{L}(\mathbf{r})$ a linguagem representada por \mathbf{r} . Então existe um AFND- \mathcal{E} A, tal que $\mathbf{L}(\mathbf{A}) = \mathbf{L}(\mathbf{r})$. A prova do teorema (Blauth, 2001; Hopcroft & Ullman, 1979) é construtiva, permitindo construir o AFND- \mathcal{E} diretamente a partir de \mathbf{r} .

OBS.1: A capacidade de fazer o E-movimento não se traduz em maior poder computacional, já que os AFND-E continuam reconhecendo apenas linguagens regulares.

OBS.2: No Hopcroft & Ullman, a partir de r = 01* + 1, mostra-se como construir diretamente um AFND- ϵ que reconhece L(r).

Teorema 3.11:

Obtenção de uma Gramática Regular (Linear Unitária), a partir de um Autômato Finito (Determinístico ou Não-Determinístico) correspondente.

Executam-se os 4 passos abaixo (apesar de que produções desnecessárias poderão ser geradas):

- 1) Cada estado do autômato dá origem a um símbolo não-terminal da gramática.
- 2) O estado inicial do autômato dá origem ao não-terminal inicial da gramática.
- 3) Transições para estados finais e não-finais no autômato, dão origem, na gramática, a regras de produção do tipo:

$$A \to s B \qquad \begin{cases} A, B \in N \\ s \in \Sigma \end{cases}$$

4) Transições para estados finais no autômato, dão origem, na gramática, a regras de produção do tipo:

$$A \rightarrow s$$
 , $s \in \Sigma$

Exemplo:

$$q_0 \qquad q_1 \qquad q_1 \qquad q_2 \qquad q_3 \qquad q_4 \qquad q_5 \qquad q_6 \qquad q_6$$

$$G = (\Sigma, N, S, P) \Rightarrow \quad \textbf{(1)} \quad \left\{ \begin{array}{l} q_0 \ \ \text{d\'a origem ao n\~ao-terminal inicial} \quad S \\ q_1 \ \ \ \ \text{d\'a origem ao n\~ao-terminal} \end{array} \right. \quad \textbf{(2)}$$

(3)
$$\left\{ \begin{array}{l} S \rightarrow & 0S / 1A \\ A \rightarrow & 0A / 1S \end{array} \right\}$$

$$\left\{ \begin{array}{l} \textbf{(4)} & \left\{ \begin{array}{l} \textbf{S} \rightarrow \textbf{1} \\ \textbf{A} \rightarrow \textbf{0} \end{array} \right. \right\}$$

Teorema 3.12:

Obtenção de um Autômato Finito Não-Determinístico, a partir de uma Gramática Regular correspondente.

São os passos inversos do Teorema anterior (3.11), apenas observando-se que uma regra de produção do tipo $B \to \mathcal{E}$, B não-terminal, dará origem a uma transição de estado com a cadeia vazia (i.e., um AFND- \mathcal{E} será obtido).

Exemplo:

Seja r = 1+01*. A partir de r, construir G que gera L(r), e daí, construir um AFND que reconhece L(r).

Apresentam-se 2 soluções, obtidas a partir das gramáticas G_1 (N, Σ, P_1, S) e G_2 (N, Σ, P_2, S) , tais que:

 $N = \{ S, B \}$

S: Símbolo não-terminal inicial

 $\Sigma = \{ 0, 1 \}$

P₁ e P₂: Conjuntos de regras de produção

Autômato finito determinístico, equivalente aos AFNDs acima:

$$P = \{ S \to 0A / 1D / 0 / 1, \\ A \to 1A / 1 / 0B, \\ D \to 0B / 1B, \\ B \to 0B / 1B \}$$

Removendo B e D, pois não há como trocá-los por símbolos terminais $(B \rightarrow 0/1/\epsilon)$:

$$P = \{ S \to 0A / 0 / 1,
A \to 1A / 1 \}$$
34

Notação: Transição no autômato finito

$$(q, ax) \vdash (q', x) \Leftrightarrow \delta(q, a) = q'$$

Com essa notação, pode-se escrever: $L(A) = \{ x \in \Sigma^* \mid (q_0, x) \mid^* (q, \mathcal{E}), q \in F \}$

$$L(A) = \{ x \in \Sigma^* \mid (q_0, x) \mid *-(q, \mathcal{E}), q \in F \}$$

Seja a gramática

$$G = (\{S, B\}, \{0,1\}, P, S), \text{ com } P = \{\{S \to 0B, B \to 0B, B \to 1S, B \to 0\}\}$$

e o AFND correspondente (construído a partir do procedimento anterior):

Assim, pode-se representar os processos de geração e de reconhecimento da cadeia 00100, respectivamente, como:

$$S \Rightarrow 0B \Rightarrow 00B \Rightarrow 001S \Rightarrow 0010B \Rightarrow 00100$$

Na geração

$$(S, 00100) \models (B, 0100) \models (B, 100) \models (S, 00) \models (B, 0) \models (F, E)$$

No reconhecimento

OBSERVAÇÕES:

1) Além do Teorema de Myhill-Nerode, há um outro teorema importante para ajudar a provar que uma determinada linguagem não é regular. Trata-se do chamado Pumping Lemma (ou Teorema do Bombeamento). Com ele pode-se provar, por exemplo, que a linguagem L abaixo não é regular:

$$L = \{ 0^n 1^n \mid n \ge 1 \}$$

- 2) Os conjuntos regulares apresentam várias propriedades interessantes. Por exemplo:
 - Se X e Y são conjuntos regulares \Rightarrow X \cup Y também é regular.
 - A classe das linguagens regulares é fechada sob a complementação, isto é, se L é regular sobre Σ^* , então a linguagem Σ^* -L também é regular.
- 3) As linguagens regulares e os autômatos finitos são bem comportados no contexto de problemas de decisão, ou seja, tipicamente existem algoritmos para várias questões que envolvem os autômatos finitos e as linguagens regulares.

Por exemplo:

- Se X e Y são linguagens regulares " $X \subseteq Y$?" ou " $X \equiv Y$?" são decidíveis.
- Se A_1 e A_2 são autômatos finitos " $A_1 \equiv A_2$?" é decidível.

3.6 VARIANTES DE AUTÔMATOS FINITOS

Autômatos Finitos com saída:

- Máquina de Moore
- Máquina de Meally

Def. 3.15: Máquina de Moore

Constitui-se de uma 6-upla $(Q, \Sigma, \Delta, \delta, \lambda, q_0)$, onde:

 Δ : Alfabeto de saída ($\#\Delta \ge 2$)

 λ : Q $\rightarrow \Delta$ Função de saída: a saída se define exclusivamente a partir do estado da máquina.

Exemplo:

O que faz esta máquina?

Dado um número natural que lhe é fornecido, em representação binária, ela <u>calcula</u> o resto da divisão inteira desse número por 3 (i.e., ela <u>implementa</u> a operação MOD3 sobre o número).

Exemplo: In: $0 \ 1 \ 0 \ 1$ $(0101)_2 = (5)_{10} \implies Mod(5, 3) = ?$

Out: 0

Def. 3.16: Máquina de Meally

Também constitui-se de uma 6-upla $(Q, \Sigma, \Delta, \delta, \lambda, q_0)$, mas a função λ tem agora uma caracterização mais refinada:

 $\lambda: Q \times \Sigma \to \Delta$ Função de saída: a saída se define não só a partir do estado da máquina, mas também em função do símbolo lido na fita.

Exemplo: In: 1 0 1 1

Out:

O que faz esta máquina? Ela reconhece a linguagem representada por (0+1)*(00+11). OBS: O AFD_{mín} requer 5 estados!

3.7 Autômatos Finitos como Formalismo de Modelagem de Sistemas:

Exemplo 1 (P. B. Menezes):

Neste exemplo, uma Máquina de Mealy trata algumas situações típicas de um diálogo que cria e atualiza arquivos. A seguinte simbologia é adotada no grafo da função de transição:

- \langle ... \rangle : Entrada fornecida pelo usuário (em um teclado, por exemplo).
- "...": Saída gerada pelo programa (em um vídeo, por exemplo).
- [...] : Ação interna ao programa, sem comunicação com o usuário.
- (...) : Resultado de uma ação interna ao programa; é usado como entrada no grafo.

Exemplo 2 (Hopcroft & Ullman): duas canaletas verticais interligadas e três desvios

Uma cadeia binária representa uma seqüência de bolas que entrarão no sistema mecânico abaixo, onde:

A, B: Entradas das bolasC, D: Saídas das bolas

 X_1, X_2, X_3 : Desvios que mudam de posição a cada bola que passa por elas.

Bola em $\underline{\mathbf{A}}$: 0 Bola em $\underline{\mathbf{B}}$: 1

Questão que deve ser respondida:

Assumindo as alavancas na posição inicial em que se encontram no desenho, quais são as cadeias binárias de entrada, tais que a <u>última</u> bola sempre saia pela saída **D**?

A Máquina de Mealy a seguir <u>modela</u> o mecanismo, representando os 8 estados possíveis do conjunto de 3 alavancas. Em cada estado, os símbolos / ou \ afixados aos identificadores das alavancas, indicam o posicionamento de cada alavanca.

AUTÔMATO FINITO E VARIAÇÕES: QUADRO RESUMO

UNIDADE 4

MÁQUINAS COM PILHA

Recordação: Uma gramática livre de contexto (GLC) é uma 4-upla

$$G = (N, \Sigma, P, S)$$

onde:

N – Conjunto de símbolos não-terminais

 Σ – Alfabeto (símbolos terminais) $(N \cap \Sigma = \emptyset, V = N \cup \Sigma)$

S - Símbolo não termina inicial: $(S \in N)$

P – Conjunto de produções da forma:

$$A \rightarrow \alpha$$
 , $A \in N$, $\alpha \in V^*$

Exemplo de GLC, representada na BNF (Backus-Naur Form)

$$G = (N, \Sigma, P, S)$$

$$N = \{S, \langle op \rangle, \langle var \rangle, \langle cte \rangle \}$$

$$\Sigma = \{1, 0, x, y, z, (,), +, * \}$$

$$P = \{S ::= \langle var \rangle \mid \langle cte \rangle \mid S \langle op \rangle \mid S \mid (S),$$

$$\langle op \rangle ::= + \mid *,$$

$$\langle var \rangle ::= x \mid y \mid z,$$

$$\langle cte \rangle ::= 0 \mid 1 \mid 0 \langle cte \rangle \mid 1 \langle cte \rangle \}$$

$$(x + 101)*y \subset L(G)$$

4.1 AUTÔMATOS DE "EMPILHAMENTO" (Pushdown Automata – PDA)

Linguagem Livres de Contexto são reconhecidas pelos PDAs

Intuitivamente:

Dependendo do:

- Estado do controle finito,
- Símbolo que está sendo lido na fita de entrada,
- Símbolo no topo da pilha,

o autômato de empilhamento:

- Muda de estado,
- Escreve **um número finito** de símbolos na pilha (escrever ε corresponde a apagar o símbolo no topo), e
- Move sua cabeça leitora **uma** posição para a direita.

O autômato de empilhamento pode também efetuar E-movimentos (movimentos com a cadeia vazia) que corresponde a mudar de estado e mudar o conteúdo da pilha, sem ler o símbolo na fita de entrada (isto é, sem mover sua cabeça leitora para a direita).

Definição 4.1: Um autômato de empilhamento é uma 7-upla

$$A = (Q, \Sigma, \Gamma, \delta, q_0, z_0, F),$$

onde:

 $\begin{array}{ll} Q & \quad & \text{Conjunto finito n\~ao vazio de estados} \\ \Sigma & \quad & \text{Alfabeto de entrada} \\ \Gamma & \quad & \text{Alfabeto da pilha} \\ q_0 \in Q & \quad & \text{Estado inicial} \\ z_0 \in \Gamma & \quad & \text{S\'imbolo inicial da pilha} \\ F \subseteq Q & \quad & \text{Conjunto de estados finais} \\ \end{array}$

$$\delta: Q \times (\Sigma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\}) \rightarrow 2^{(Q \times \Gamma^*)}$$
 (não determinístico!)

OBS: Ou seja, PDAs são não-determinísticos e, já adiantando, possuem poder computacional maior que a versão determinística (PDAD).

Definição 4.2:

Uma **configuração** de um PDA é um elemento de $Q \times \Sigma^* \times \Gamma^*$.

Definição 4.3:

Uma transição do autômato de empilhamento é representada por

$$(q, ax, zw) \mid (q', x, yw) \iff (q', y) \in \delta(q, a, z)$$

com:
$$q,\,q'\in Q$$
 ; $a\in\Sigma\,\cup\{\epsilon\}$; $x\in\Sigma^{\boldsymbol *}$; $w,\,y\in\Gamma^{\boldsymbol *}$; $z\in\Gamma$

<u>OBS</u>: A condição $z \in \Gamma$ impõe que o PDA não faz transição se sua pilha estiver vazia.

Definição 4.4:

A linguagem aceita por
$$A = (Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$$
, por estado final é:
$$L(A) = \{ w \in \Sigma^* / (q_0, w, z_0) \mid \forall (q, \epsilon, x) ; q \in F ; x \in \Gamma^* \}$$

Definição 4.5:

A linguagem aceita por
$$A = (Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$$
 por pilha vazia é: $N(A) = \{ w \in \Sigma^* / (q_0, w, z_0) \mid \forall (q, \epsilon, \epsilon), q \in Q \}$

OBS:
$$L(A) = N(A)$$

Definição 4.7: Seja Σ um alfabeto e A um autômato de empilhamento.

$$L_{\Sigma} = \{L \subseteq \Sigma^* / L = L(A)\}$$
 Conjunto das linguagens aceitas por estado final $N_{\Sigma} = \{L \subseteq \Sigma^* / L = N(A)\}$ Conjunto das linguagens aceitas por pilha vazia

Proposição 4.1:
$$L_{\Sigma} = N_{\Sigma}$$

$$L = L(A) \implies L = N(B)$$

Lema 4.1:

Se L = L(A), para algum autômato de empilhamento A, então existe autômato de empilhamento B tal que L = N(B).

Proposição 4.2: $L_{\Sigma} = N_{\Sigma} = \{L \subseteq \Sigma^* / L \text{ é linguagem livre de contexto}\}$

Exemplo: Construir autômato de empilhamento que aceita $L = \{ 0^n 1^n / n \ge 0 \}$

$$A = (\{q_0, q_1, q_2\}, \{0,1\}, \{z,0\}, \delta, q_0, z, \{q_0\})$$

onde δ é dado por:

$$\delta(q_1, 1, 0) = \{(q_2, \varepsilon)\}$$

Para cada 1 encontrado, desempilha um 0.

$$\delta(q_2, 1, 0) = \{(q_2, \varepsilon)\}$$

$$\delta(q_2, \varepsilon, z) = \{(q_0, z)\}$$

Pode-se provar que a linguagem $\{0^n1^n / n \ge 0\}$ é livre de contexto **determinística**. O autômato A do exemplo acima (reconhecedor da linguagem $\{0^n1^n / n \ge 0\}$) é **determinístico**.

Definição 4.6:

Um autômato de empilhamento $A = (Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$ é **determinístico** se, para todo $(q, a, z) \in Q \times \Sigma \times \Gamma$, tem-se:

- 1) $|\delta(q, a, z)| \le 1$
- 2) Apenas 1 das configurações a seguir é válida (ou seja, é $\neq \emptyset$): $\delta(q, a, z), \ \delta(q, \varepsilon, z), \ \delta(q, a, \varepsilon), \ \delta(q, \varepsilon, \varepsilon).$

OBS:

- Diferentemente dos AFDs, **PDADs admitem ε-movimentos** sobre a fita, ou seja, $\delta(\cdot, \varepsilon, \cdot)$, já que sua configuração também envolve a pilha.
- Há ainda ε-movimentos na pilha, i.e., $\delta(_, _, ε)$.
- A condição 1 estabelece que cada transição leva a no máximo 1 configuração.
- A condição 2 estabelece que isso deve ocorrer mesmo quando ε-movimentos são possíveis na fita e na pilha.

Ou seja:

 $\delta(q, a, z)$ e $\delta(q, \epsilon, z)$: seria um movimento ignorando a **fita**

 $\delta(q, a, z)$ e $\delta(q, a, \epsilon)$: seria um movimento ignorando a **pilha**

 $\delta(q,\,a,\,z)$ e $\delta(q,\,\epsilon,\,\epsilon)$: seria um movimento ignorando a **fita** e a **pilha**

 $\delta(q, \varepsilon, z)$ e $\delta(q, a, \varepsilon)$: seria um movimento ignorando a **fita** e a **pilha**

 $\delta(q,\,\epsilon,\,z)$ e $\delta(q,\,\epsilon,\,\epsilon)$: seria um movimento ignorando a **fita** e a **pilha**

 $\delta(q,\,a,\,\epsilon)\,$ e $\,\delta(q,\,\epsilon,\,\epsilon)$: seria um movimento ignorando a **fita** e a **pilha**

Um exemplo de como intuir que a computabilidade dos PDAs possa ser maior que a dos PDADs:

Considere-se a linguagem

$$L = \{ ww^R / w \in \{0,1\}^* ; w^R \text{ \'e o reverso de } w \}$$
 (ou seja, L \'e formada por palíndromes *pares*)

Intuitivamente, um autômato de empilhamento para reconhecer L deverá ser não determinístico porque, durante o processamento de uma cadeia ww^R, não há maneira de saber quando termina a cadeia w e começa a cadeia w^R. Assim, para cada símbolo lido, o autômato deve prever duas possíveis situações:

- a cadeia w ainda não terminou
- a cadeia w terminou e os próximos símbolos serão de w^R

Para a linguagem L' = $\{waw^R / w \in \{0,1\}^*, \Sigma = \{0, 1, a\} \}$, pode-se construir um **PDAD** que a reconhece. No entanto, não é possível construir um PDAD para reconhecer L; para isso é necessário um PDA, pois L é livre de contexto (mas **não** l.c. determinística).

OBS: Replicações de um PDA que reconhece a linguagem L de palíndromes pares, ao processar a cadeia 001100.

Exercício: Pode-se provar que a linguagem $\{a^ib^jc^k \mid i,j,k \ge 0 \text{ com } i=j \text{ or } i=k\}$ é livre de contexto, mas **não** é livre de contexto deterministica. Construir um PDA que reconhece L.

Exemplo [Hopcroft, Motwani e Ullman, 3rd ed., 2007, p.230]: PDA que reconhece a linguagem de palíndromes binárias pares

$$L = \{ ww^R / w \in \{0,1\}^*; w^R \text{ \'e o reverso de w} \}.$$

A notação empregada no exemplo para as transições de estado é mais compacta do que a que definimos:

a,b / b \Rightarrow lendo o símbolo **a** na fita e **b** na pilha, a pilha não se altera a,b / Xb \Rightarrow lendo o símbolo **a** na fita e **b** na pilha, adicione a cadeia **X** à pilha

Ou seja, cada uma das transições de estado acima corresponde na nossa notação a duas transições:

$$a,b / b \implies \{a,b / \epsilon \implies a,b / b\}$$

 $a,b / Xb \implies \{a,b / \epsilon \implies a,b / Xb\}$

Configuração inicial: $(q_0, 0, Z_0)$

Sequência de transições que levam à aceitação da cadeia de entrada: 0 1 1 0 (mas há transições alternativas, que não levariam ao reconhecimento)

$$(q_0, 0, Z_0) \Rightarrow (q_0, 0 Z_0)$$
 Pilha: $0 Z_0$
 $(q_0, 1, 0) \Rightarrow (q_0, 1 0)$ Pilha: $1 0 Z_0$

Neste ponto ocorre um ε -movimento para o estado q_1 :

$$\begin{array}{lll} (q_0,\,\epsilon,\,1) \,\Rightarrow\, (q_1,\,1) & \text{Pilha: } 1 \;0 \;Z_0 \\ (q_1,\,1,\,1) \,\Rightarrow\, (q_1,\,\epsilon) & \text{Pilha: } 0 \;Z_0 \\ (q_1,\,0,\,0) \,\Rightarrow\, (q_1,\,\epsilon) & \text{Pilha: } Z_0 \\ \end{array}$$

Neste ponto ocorre um ε-movimento para o estado q₂:

$$(q_1, \varepsilon, Z_0) \Rightarrow (q_2, Z_0)$$
 Pilha: Z_0

Definição 4.8: Derivações em gramáticas livres de contexto:

Gramática de balanceamento de parênteses:

$$G_{bp} = (N = \{S\}, \Sigma = \{(,)\}, S, P_{bp}), com P_{bp} = \{S \rightarrow SS \mid (S) \mid ()\}$$

1. Derivações Mais-à-Esquerda (*leftmost derivations*):

$$S \Rightarrow_{lm} SS \Rightarrow_{lm} (S)S \Rightarrow_{lm} (())S \Rightarrow_{lm} (())()$$

2. Derivações Mais-à-Direita (*rightmost derivations*):

$$S \Rightarrow_{rm} SS \Rightarrow_{rm} S() \Rightarrow_{rm} (S)() \Rightarrow_{rm} (())()$$

3. Derivações arbitrárias:

$$S \Rightarrow SS \Rightarrow SSS \Rightarrow S()S \Rightarrow ()()S \Rightarrow ()()()$$

$$S \Rightarrow SS \Rightarrow SSS \Rightarrow S()S \Rightarrow ()()S \Rightarrow ()()()$$

Não são derivações mais-à-direita nem mais-à-esquerda.

Definição 4.9: Gramática Ambígua:

Uma gramática livre de contexto é **ambígua**, se alguma das cadeias geradas a partir dela possuir mais de uma derivação mais-à-esquerda (ou mais-à-direita), o que acaba gerando <u>mais de uma árvore sintática</u> (parsing tree) associada.

OBS:

- 1) O fato de G_{bp} ter duas derivações diferentes para a cadeia (())() não garante que é G_{bp} ambígua (pois essas derivações não são mais-à-esquerda).
- 2) A multiplicidade de derivações mais-à-esquerda tem uma certa maior importância, pois escrevemos e lemos código computacional a partir da esquerda.
- 3) Não existe (e nunca existirá) um algoritmo para determinar se uma gramática livre de contexto arbitrária é ambígua ou não!

Exemplo 1:

A gramática livre de contexto de somas e subtrações $A \rightarrow A + A \mid A - A \mid a$ é ambígua pois a cadeia a + a - a possui 2 derivações mais-à-esquerda:

$$A \Longrightarrow \underline{A} + A \qquad A \Longrightarrow \underline{A} - A$$

$$\Longrightarrow a + \underline{A} \qquad \Longrightarrow \underline{A} + A - A$$

$$\Longrightarrow a + \underline{A} - A \qquad \Longrightarrow a + \underline{A} - A$$

$$\Longrightarrow a + a - \underline{A} \qquad \Longrightarrow a + a - \underline{A}$$

$$\Longrightarrow a + a - a \qquad \Longrightarrow a + a - a$$

Ou, a cadeia a + a - a possui 2 árvores sintáticas $(A \rightarrow A + A \mid A - A \mid a)$:

Exemplo 2: O problema do else pendurado (dangling else).

Numa gramática contendo as regras

```
Comando → If Condição then Comando |

If Condição then Comando else Comando |

...

Condição → ...
```

A cadeia (expressão)

```
If a then If b then s1 else s2
```

é ambígua (tem duas interpretações sintáticas possíveis), dependendo se o **else** é associado ao primeiro ou ao segundo **If**:

```
If a then begin If b then s1 end else s2
If a then begin If b then s1 else s2 end
```

Definição 4.10: Linguagem Inerentemente Ambígua:

Uma linguagem livre de contexto é **inerentemente ambígua** se todas as gramáticas livres de contexto geradoras desta linguagem são ambíguas.

Exercícios:

(1) Mostre que a gramática $G_1 = \{ \{S, A\}, \{0, 1, +\}, S, P_1 \}, \text{ com} \}$

$$P_1 = \{ S \rightarrow A + A, A \rightarrow 0 / 1 \}$$

é não ambígua.

(2) Mostre que a gramática $G_2 = \{ \{S, E\}, \{1, 2, 3, +, *\}, S, P_2 \}, \text{ com} \}$

$$P_2 = \{ S \rightarrow E, \\ E \rightarrow E + E, \\ E \rightarrow E * E, \\ E \rightarrow 1/2/3 \}$$

é ambígua.

<u>Dica</u>: Tome como base a derivação da cadeia 1 + 2 * 3.

(3) Com base na gramática G₂ do exercício anterior, como o conjunto de regras de produção P₂ poderia ser alterado de forma que G₂ deixasse de ser ambígua?

Dica: Considere a adição de dois símbolos terminais novos: (e).

Análise Sintática Descendente com Retorno:

Seja a gramática G livre de contexto definida com:

$$\sum = \{ a, +, \times, (,) \}$$

$$N = \{ E, T, F \}$$

$$S = E$$

$$P = \{$$

$$E \rightarrow E + T / T,$$

$$T \rightarrow T \times F / F,$$

$$F \rightarrow a / (E)$$

$$\}$$

Eis um PDA que reconhece sua linguagem correspondente (por pilha vazia!):

```
\begin{split} PDA_G &= (\ \{q\}, \sum, \Gamma, \delta, q, E, \emptyset\ ), \ com \\ \sum &= \{\ a, +, \times, (,)\ \}, \\ \Gamma &= \sum \cup \{\ E, T, F\ \} \\ e \ \delta \ dado \ por: \qquad \delta(q, \epsilon, E) &= \{\ (q, E+T), (q, T)\ \} \qquad \{\ 1a\ , 1b\ \} \\ \delta(q, \epsilon, T) &= \{\ (q, T\times F), (q, F)\ \} \qquad \{\ 2a\ , 2b\ \} \\ \delta(q, \epsilon, F) &= \{\ (q, a), (q, (E))\ \} \qquad \{\ 3a\ , 3b\ \} \\ \delta(q, x, x) &= \{\ (q, \epsilon)\ \}, \ x \in \Sigma \qquad \{\ 4\ \} \end{split} \begin{aligned} \textbf{Notação usada}: \ \delta(\ \_, \ \_, topo\ da\ pilha\ ) &= (\ \_, cadeia\ que\ substituir\'a\ o\ topo\ da\ pilha\ ) \\ \delta(\ \_, \ \_, x) &= (\ \_, Y) \ \equiv \ (\delta(\ \_, \ \_, x) = (\ \_, \epsilon) \ \Rightarrow \ \delta(\ \_, \ \_, \ \_) = (\ \_, Y) \ ) \end{aligned}
```

A cadeia $\underline{a+a\times a}$ pode ser reconhecida com a seguinte sequência de transições:

```
(q, a+a\times a,
                           <u>E</u> )
                          E+T)
                                             (OBS: O topo da pilha é E.)
1a
       (q, a+a\times a,
1b
       (q, a+a\times a,
                          \underline{T}+T)
2b
       (q, a+a\times a, F+T)
                          a+T)
3a
       ( q,
             \mathbf{a}+a×a,
                          +T
4
             a+a×a,
       ( q,
4
       ( q,
             a+a\times a
                          T
                          T \times F)
2a
       ( q,
              a+a\times a
2b
                          F \times F)
       (q,
             \mathbf{a} + \mathbf{a} \times \mathbf{a}
3a
       (q, a+a\times a, a\times F)
4
                         \times F )
       (q, a+a\times a,
4
       (q, a+a\times a,
                                )
                                )
3a
       (q, a+a\times a, a
              a+a\times a\epsilon, \epsilon
4
       ( q,
```

Observando as transições do PDA_G, nota-se que a fita de entrada contém, a cada instante, a parte da cadeia de entrada que falta ser analisada, e que o conteúdo da pilha simula uma derivação mais à esquerda:

$$\underline{E} \Rightarrow \underline{E} + T \Rightarrow \underline{T} + T \Rightarrow \underline{F} + T \Rightarrow a + \underline{T} \Rightarrow a + \underline{T} \times F \Rightarrow a + \underline{F} \times F \Rightarrow a + a \times \underline{F} \Rightarrow a + a \times a$$

Este autômato de pilha é conhecido como **Reconhecedor Descendente** ou **Analisador Sintático Descendente** (*top-down parser*), porque, como simula derivações mais à esquerda, constrói a árvore sintática da cadeia de entrada, de cima para baixo (e da esquerda para a direita), que no exemplo corresponde a:

Entretanto, como pode ser observado da definição da função de transição de estados δ , o autômato PDA_G é não-determinístico, sendo que as transições mostradas foram convenientemente escolhidas a cada passo. Uma questão interessante é: Seria possível automatizar este processo? A resposta é <u>sim</u>, através de um algoritmo que implementa o processo conhecido como **Análise Sintática Descendente com Retorno** (*top-down backtrack parsing*), a qual é descrita pelos 4 passos a seguir:

- (1) Começar a árvore sintática pelo símbolo inicial da pilha (o símbolo inicial da gramática). Esse símbolo é o <u>nó ativo inicial</u>. Em seguida, executar os passos (2) e (3), recursivamente.
- (2) Se o nó ativo é um não-terminal A, escolher a primeira A-produção ainda não utilizada $A \to X_1 X_2 ... X_k$ e criar na árvore sintática $X_1, X_2, ..., X_k$ como descendentes diretos de A. Marcar o primeiro destes descendentes (o mais à esquerda) como ativo.
- (3) Se o nó ativo é um terminal a, então compará-lo com o símbolo atual de entrada. Se eles foram iguais, então tornar ativo o símbolo imediatamente à direita de a na árvore, e avançar com a cabeça leitora para o próximo símbolo de entrada. Se eles forem diferentes, retornar ao último não terminal A expandido, para o qual existe uma A-produção ainda não utilizada.
- (4) Se não existe nó ativo e todos os símbolos de entrada foram lidos, então a análise sintática termina com sucesso (a cadeia foi reconhecida). Caso contrário, rejeitar a cadeia (isto é, existe um erro sintático na cadela).

Exemplo:

Seja a gramática $G = (\sum = \{a, b, c\}, N = \{S\}, S, P = \{S \rightarrow aSbS / aS / c\}),$ com a cadeia de entrada <u>aacbc</u>.

ARYORE	CADETA	OBSERVAÇÕES
S	åacbc	o símbolo [] mostra o no alvalment ativo; t indica o símbolo de evitada que está sendo lido
a s s s	aacsc	escolhe-se a primeira alterna- tiva para expandir S.
a s b s	aåcbc	o símbolo de estada "easa" com o nó da árrore; o próximo símbolo é considerado.
a s b s	aacbc	escolhe-se a primeira alleina- kva para expandir S
a s b s a s b s	aacbe	"casameulo" de simbolos; passau ao próximo nó da árvore
a s b s a s b s a s b s	aacbc	o símbolo 5 foi expandido; A escolha no evhavb é inconc- ta purque não há "casamonto" de terminais. Tevlar a pró- xima alternativa
a s b s a s b s	aacbc	essa alternativa também é incorreta; leutau a próxima alternativa.
S S S S S S S S S S S S S S S S S S S	aacbc	"casamento"

OBS: Exemplos de linguagens que <u>não são</u> livres de contexto:

1) L₁ = { ww | w ∈ {a, b}*}

G₁ = ({S, A, B, C, D, E}, {a, b}, P, S)

$$P = {S \rightarrow ABC, AB \rightarrow aAD, AB \rightarrow bAE, DC \rightarrow BaC, EC \rightarrow BbC, Da \rightarrow aD, Db \rightarrow bD, Ea \rightarrow aE, Eb \rightarrow bE, AB \rightarrow \epsilon, C \rightarrow \epsilon, aB \rightarrow Ba,$$

2)
$$L_2 = \{ w \in \{a, b, c\}^+ \mid \#a = \#b = \#c \}$$

$$G_2 = (\{S, A, B, C\}, \{a, b, c\}, P, S)$$

$$P = \{ S \rightarrow ABC, \\ S \rightarrow ABCS, \\ AB \rightarrow BA, \\ AC \rightarrow CA, \\ BC \rightarrow CB, \\ BA \rightarrow AB, \\ CA \rightarrow AC, \\ CB \rightarrow BC, \\ A \rightarrow a, \\ B \rightarrow b, \\ C \rightarrow c \}$$

 $bB \rightarrow Bb$ }

3) L₃ = {
$$0^n 1^n 2^n$$
, $n \ge 0$ }

4) L₄ = {
$$a^p \mid p \text{ \'e um n\'umero primo }}$$

OBS 1: Como saber se uma dada linguagem L é de determinado tipo?

- Não há solução geral, nem mesmo quando a pergunta é "L é regular?"
- Teoremas ajudam a determinar se L <u>não é</u> de determinado tipo:
 - Teorema de Myhill-Nerode
 - Pumping lemma para linguagens regulares
 - Pumping lemma para linguagens livre de contexto
 - etc...

OBS 2: Como saber se uma dada gramática G é de determinado tipo?

- Além das técnicas acima, é útil reescrever as regras de produção de G de forma que as novas regras sigam formas normais conhecidas.
- Outras formas normais existem para GLC $(a \in \Sigma; S, X, Y, Z \in N; W \in N^*)$:
 - Chomsky: $X \rightarrow a$ / $X \rightarrow YZ$ / $S \rightarrow \epsilon$
 - Greibach: $X \rightarrow a$ / $X \rightarrow aW$ / $S \rightarrow \epsilon$

Ex.: Seja a linguagem livre de contexto $L = \{ ww^R \mid w \in \{a, b\}^* \}$ (palíndromes pares de a's de b's)

```
G(L):
\Sigma = \{a, b\}
N = \{I\}
I: Símbolo inicial
P = \{I \rightarrow \epsilon, I \rightarrow a/b, I \rightarrow aIa/bIb\}
```

Exercício:

Reescrever a gramática acima segundo as formas normais de Chomsky e de Greibach.

4.2 AUTÔMATO DE EMPILHAMENTO E VARIAÇÕES

LINGUAGENS

$$L = \{ww^R / w \in \{0,1\}^*; w^R \text{ \'e o reverso de } w\}$$

OBS:

LL(k) e LR(k) são apropriadas para análise sintática sem retorno (sem backtracking)

4.3 "STACK AUTOMATA" (Autômatos de Pilha)

- PDA + 1) Cabeça bidirecional
 - 2) Fita com endmarkers
 - 3) Modo adicional de deslocamento na pilha: **apenas-leitura** ao longo de toda a sua extensão (uma vez neste modo, ele só termina quando a cabeça da pilha voltar ao topo)
- Aceitação: por estado final
- No início:
- Cabeça de entrada está na extremidade à esquerda da fita.
- Controle está em q₀.
- Pilha tem um único símbolo (Γ_0), definido como de início do processo.

4.4 AUTÔMATO LIMITADO LINEARMENTE (Linear Bounded Automata)

- Equivale a uma Máquina de Turing não-determinística, com fita limitada
- Linguagens sensíveis ao contexto:

$$?$$
 A.L.L.Det. \equiv A.L.L. Não-det.