B 7. An equilateral triangle is shown below. Express the missing coordinates in terms of s

- 8. A rhombus is shown above. Find the missing coordinates.
- **9.** Rhombus *OABC* is shown at the right. Express the missing coordinates in terms of a and b. (*Hint*: See Exercise 8.)

- 10. Supply the missing coordinates to prove: The segments that join the midpoints of opposite sides of any quadrilateral bisect each other. Let H, E, A, and R be the midpoints of the sides of quadrilateral SOMK. Choose axes and coordinates as shown.
 - **a.** R has coordinates $(\underline{},\underline{})$.
 - **b.** E has coordinates $(\underline{},\underline{})$.
 - c. The midpoint of \overline{RE} has coordinates $(\underline{},\underline{})$.
 - **d.** A has coordinates $(\underline{?},\underline{?})$.
 - e. H has coordinates (?, ?).
 - f. The midpoint of \overline{AH} has coordinates $(\frac{?}{AH}, \frac{?}{AH})$.
 - **g.** Because $(\underline{},\underline{},\underline{})$ is the midpoint of both \overline{RE} and \overline{AH} , \overline{RE} and \overline{AH} bisect each other.

Draw the figure named. Select axes and label the coordinates of the vertices in terms of a single letter.

C 11. a regular hexagon

12. a regular octagon

13. Given isosceles trapezoid HOJK and the axes and coordinates shown, use the definition of an isosceles trapezoid to prove that e = c and d = a - b.

