2.Multiplication by scalars

Denoting the sums $\vec{a} + \vec{a}$, $\vec{a} + \vec{a} + \vec{a}$, ... by $2\vec{a}$, $3\vec{a}$,... and defining $1\vec{a}$, $0\vec{a}$ as \vec{a} and 0, the vector $n\vec{a}$ ($n \in \mathbb{N}$) will denote a vector having the same direction and sense as \vec{a} and length n times that for \vec{a} :

For any $\lambda \in \mathbb{R}$, we define $\lambda \vec{a}$ as a vector of length $|\lambda| |\vec{a}|$ parallel¹ to \vec{a} and agreeing or disagreeing in sense with \vec{a} according as $\lambda > 0$ or $\lambda < 0$:

In particular for $\lambda = -1$, we have the vector $(-1)\vec{a} = -\vec{a}$ which is opposite to \vec{a} , called the <u>additive inverse</u> of \vec{a} , since $\vec{a} + (-\vec{a}) = 0$.

 $\lambda \vec{a}$ and \vec{a} have parallel supports, and are called collinear vectors.

The difference $\vec{a} - \vec{b}$ is by definition the sum $\vec{a} + (-\vec{b})$:

¹Two coplanar lines (lying on the same plane) having no common point are called <u>parallel</u>. But in this book parallelism of lines is defined to include also the coincidence of lines.