Package 'mAr'

October 13, 2022

Version 1.2-0

Title Multivariate AutoRegressive Analysis
Description R functions for the estimation and eigen-decomposition of multivariate autoregressive models.
Author Susana Barbosa
Maintainer S. M. Barbosa < susana.barbosa@fc.up.pt>
Date 2022-05-31
License GPL (>= 2)
Depends MASS
NeedsCompilation no
Repository CRAN
Date/Publication 2022-05-31 22:40:02 UTC
R topics documented:
mAr.eig
mAr.est
mAr.pca
mAr.sim
pinkham
sparrows
waves
Index 9

2 mAr.eig

mAr.eig

Eigendecomposition of m-variate AR(p) model

Description

 $\label{eq:composition} Eigen-decomposition of the estimated matrix of autoregressive coefficients from an m-variate AR(p) model$

Usage

```
mAr.eig(A, C = NULL, ...)
```

Arguments

A matrix of estimated autoregression coefficients

C noise covariance matrix

... additional arguments for specific methods

Value

A list with components:

modes periods and damping times associated to each eigenmode

eigv m*p m-dimensional eigenvectors

Author(s)

S. M. Barbosa

References

Barbosa S.M., Silva M.E., Fernandes M.J. (2006), Multivariate autoregressive modelling of sea level time series from TOPEX/Poseidon satellite altimetry. Nonlinear Processes in Geophysics, 13, 177-184.

Neumaier, A. and Schneider, T. (2001), Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Transactions on Mathematical Software, 27, 1, 27-57.

Schneider, T. and Neumaier, A. (2001), A Matlab package fo the estimation of parameters and eigenmodes of multivariate autoregressive models, 27, 1, 58-65.

Examples

```
data(pinkham)
y=mAr.est(pinkham,2,5)
mAr.eig(y$AHat,y$CHat)
```

mAr.est 3

mAr.est

Estimation of multivariate AR(p) model

Description

Stepwise least-squares estimation of a multivariate AR(p) model based on the algorithm of Neumaier and Schneider (2001).

Usage

```
mAr.est(x, p, ...)
```

Arguments

x matrix of multivariate time series

p model order

... additional arguments for specific methods

Details

Fits by stepwise least squares an m-variate AR(p) model given by

$$X[t] = w + A1X[t-1] + \ldots + ApX[t-p] + e[t]$$

where

X[t]=[X1(t)...Xm(t)]' is a vector of length m

w is a m-length vector of intercept terms

A=[A1 ... Ap] is a mp x m matrix of autoregressive coefficients

e(t) is a m-length uncorrelated noise vector with mean 0 and m x m covariance matrix C

Value

A list with components:

SBC Schwartz Bayesian Criterion

wHat vector of intercept terms

AHat matrix of estimated autoregression coefficients for the fitted model

CHat noise covariance matrix

resid residuals from the fitted model

Author(s)

S. M. Barbosa

4 mAr.pca

References

Barbosa S.M., Silva M.E., Fernandes M.J. (2006), Multivariate autoregressive modelling of sea level time series from TOPEX/Poseidon satellite altimetry. Nonlinear Processes in Geophysics, 13, 177-184.

Neumaier, A. and Schneider, T. (2001), Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Transactions on Mathematical Software, 27, 1, 27-57.

Schneider, T. and Neumaier, A. (2001), A Matlab package fo the estimation of parameters and eigenmodes of multivariate autoregressive models, 27, 1, 58-65.

Lutkepohl, H. (1993), Introduction to Multiple Time Series Analysis. Springer-Verlag, Berlin.

Examples

```
data(pinkham)
y=mAr.est(pinkham,2,5)
```

mAr.pca

Multivariate autoregressive analysis in PCA space

Description

Estimation of m-variate AR(p) model in reduced PCA space (for dimensionality reduction) and eigen-decomposition of augmented coefficient matrix

Usage

```
mAr.pca(x, p, k = dim(x)[2], ...)
```

Arguments

x matrix of multivariate time series

p model order

k number of principal components to retain... additional arguments for specific methods

Value

A list with components:

p model order

SBC Schwartz Bayesian Criterion

fraction.variance

fraction of variance explained by the retained components

resid residuals from the fitted model eigv m*p m-dimensional eigenvectors

modes periods and damping times associated to each eigenmode

mAr.sim 5

Author(s)

S. M. Barbosa

References

Neumaier, A. and Schneider, T. (2001), Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Transactions on Mathematical Software, 27, 1, 27-57.

See Also

```
mAr.est
```

Examples

```
data(sparrows)
A=mAr.est(sparrows,1)$AHat
mAr.eig(A)$modes
mAr.pca(sparrows,1,k=4)$modes
```

mAr.sim

Simulation from a multivariate AR(p) model

Description

Simulation from an m-variate AR(p) model

Usage

```
mAr.sim(w, A, C, N, ...)
```

Arguments

W	vector of intercept terms
A	matrix of AR coefficients
С	noise covariance matrix
N	length of output time series
	additional arguments

6 pinkham

Details

Simulation from an m-variate AR(p) model given by

$$X[t] = w + A1X[t-1] + ... + ApX[t-p] + e[t]$$

where

X[t]=[X1(t)...Xm(t)]' is a vector of length m

w is a m-length vector of intercept terms

A=[A1 ... Ap] is a m x mp matrix of autoregressive coefficients

e(t) is a m-length uncorrelated noise vector with mean 0 and m x m covariance matrix C

Value

returns a list containg the N simulated observations for each of the m time series

Author(s)

S. M. Barbosa

References

Neumaier, A. and Schneider, T. (2001), Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Transactions on Mathematical Software, 27, 1, 27-57.

Schneider, T. and Neumaier, A. (2001), A Matlab package fo the estimation of parameters and eigenmodes of multivariate autoregressive models, 27, 1, 58-65.

Lutkepohl, H. (1993), Introduction to Multiple Time Series Analysis. Springer-Verlag, Berlin.

Examples

```
w=c(0.25,0.1)
C=rbind(c(1,0.5),c(0.5,1.5))
A=rbind(c(0.4,1.2,0.35,-0.3),c(0.3,0.7,-0.4,-0.5))
x=mAr.sim(w,A,C,N=300)
```

pinkham

Lydia Pinkham Annual Advertising and Sales data

Description

Annual domestic advertising and sales of Lydia E. Pinkham Medicine Company in thousands of dollars 1907-1960

Usage

data(pinkham)

sparrows 7

Format

A data frame with 54 observations on the 2 variables.

Source

Pankratz, A. (1991) Forecasting With Dynamic Regression Models, Wiley.

References

Wei, W. (1994) Time series analysis - univariate and multivariate methods

sparrows

Body measurements of sparrows

Description

Body measurements of 48 female sparrows.

Usage

data(sparrows)

Format

A data frame with 48 observations on 5 variables

Source

Manly, B. F. J. (1994). Multivariate Statistical Methods, second edition, Chapman and Hall.

waves

Time series of ocean wave height measurements

Description

Ocean wave height measurements from an wire wave gauge and an infrared wave gauge

Usage

data(waves)

8 waves

Format

A data frame with 4096 observations on the following 2 variables.

wire.gauge height of ocean waves from wire wave gauge ir.gauge height of ocean waves from infrared wave gauge

Details

Time series of ocean wave height measurements (sampling = 1/30 seconds)

Source

Applied Physics Laboratory (Andy Jessup)

References

Jessup, A. T., Melville, W. K., Keller, W. C. (1991). Breaking Waves Affecting Microwave Backscatter: Detection and Verification (1991). Journal of Geophysical Research, 96, C11, 20,547–59.

Percival, D. B. (1993). Spectral Analysis of Univariate and Bivariate Time Series, Chapter 11 of "Statistical Methods for Physical Science," Stanford, J. L. and Vardeman, S. B. (Eds), Academic Press

Index

```
\ast datasets
    pinkham, 6
    sparrows, 7
    waves, 7
* multivariate
    mAr.eig, 2
    mAr.est, 3
    {\tt mAr.pca,4}
    mAr.sim, 5
mAr.eig, 2
mAr.est, 3, 5
mAr.pca,4
mAr.sim, 5
pinkham, 6
sparrows, 7
waves, 7
```