NP Hardness Reductions

Health Days This Week!

12Apr	13Apr	14Apr	15Apr	16Apr
Flow Applications		P vs NP and NP-hardness		Problem Reductions
Reading: KT §7.6 E §11		Reading: KT §8.1, 8.3 E §12.1–12.5		Reading: KT §8.1, 8.3 E §12.1–12.5
You are here		Assignment 7 out		§12.1–12.3
		Assignment 6 due		
19Apr	20Apr	21Apr	22Apr	23Apr
NP-hard Reductions				Intractability Wrap Up
		Health Day	Health Day	
Reading: Reading: KT §8.2, 8.4			·	Reading: KT §8.5–8.7;
I E §12.6–12.8				E §12.6–12.8

Rest and sunshine is here!

Reminders & Leftovers

- Assignment 7: aim to finish off the first 3 questions by tomorrow
- Please fill out TA survey! (Only 5 out of 40 students filled it out)
- Reduction recordings available from CS256-S20
 - Linked in GLOW; use as readings or for review
 - Can find in Course Media Gallery-> Pre-recorded lectures
- Reduction from Graph-2-Color to Graph-3-Color:
 - Input G: graph whose nodes we are trying to color with 2 colors
 - Create G' be the graph with all the nodes and edges as G plus 3 more nodes: r,g,b in a triangle with an edge (r,v) $\forall v \in V$
 - G has a valid 2 coloring if and only if G' has a valid 3 coloring

Reductions: General Pattern

- Describe a polynomial-time algorithm to transform an arbitrary instance x of Problem X into a special instance y of Problem Y
- Prove that:
 - If x is a "yes" instance of X, then y is a "yes" instance of Y
 - If y is a "yes" instance of Y, then x is a "yes" instance of X

Reductions: General Pattern

- Describe a polynomial-time algorithm to transform an arbitrary instance x of Problem X into a special instance y of Problem Y
- Notice that correctness of reductions are not symmetric:
 - the "if" proof needs to handle arbitrary instances of X
 - ullet the "only if" needs to handle the special instance of Y

IND-SET is NP Complete:

3SAT
$$\leq_p$$
 IND-SET

Problem Definition: 3-SAT

- Literal. A Boolean variable or its negation x_i or $\overline{x_i}$
- Clause. A disjunction of literals $C_j = x_1 \vee \overline{x_2} \vee x_3$
- Conjunctive normal form (CNF). A boolean formula ϕ that is a conjunction of clauses $\Phi=C_1 \wedge C_2 \wedge C_3$
- SAT. Given a CNF formula Φ , does it have a satisfying truth assignment?
- 3SAT. A SAT formula where each clause contains exactly 3 literals (corresponding to different variables)
- $\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)$
- SAT, 3SAT are both NP complete
- We will use 3SAT to prove other problems are NP hard

IND-SET

- Given a graph G = (V, E), an independent set is a subset of vertices $S \subseteq V$ such that no two of them are adjacent, that is, for any $x, y \in S$, $(x, y) \notin E$
- IND-SET Problem.

Given a graph G = (V, E) and an integer k, does G have an independent set of size at least k?

IND-SET: NP Complete

- To show Independent set is NP complete
 - Show it is in NP (already did in previous lectures)
 - Reduce a known NP complete problem to it
 - We will use 3-SAT
- Looking ahead: once we have shown 3-SAT \leq_p IND-SET
 - Since IND-SET \leq_p Vertex Cover
 - And Vertex Cover \leq_p Set Cover
 - We can conclude they are also NP hard
 - As they are both in NP, they are also NP complete!

IND-SET: NP hard

- Theorem. $3-SAT \leq_p IND-SET$
- Given an instance Φ of 3-SAT, we construct an instance $\langle G, k \rangle$ of IND-SET s.t. G has an independent set of size k iff ϕ is satisfiable.

Map the Problems

3SAT

What is a possible solution?

Ind-Set

An assignment of T/F to variables

A selection of vertices to be an IS S

What is the requirement?

Each clause must contain at least one literal that is True

S must contain at least k vertices

What are the restrictions?

x can be true iff \overline{x} is assigned false

If $(u, v) \in E$, then both u and v cannot be in S

- **Reduction.** Let k be the number of clauses in Φ .
 - G has 3k vertices, one for each literal in Φ
 - (Clause gadget) For each clause, connect the three literals in a triangle
 - (Variable gadget) Each variable is connected to its negation

Observations.

- Any independent set is G can contain at most 1 vertex from each clause triangle
- Only one of x_i or $\overline{x_i}$ can be in an independent set (consistency)

- Claim. Φ is satisfiable iff G has an independent set of size k
- (\Rightarrow) Suppose Φ is satisfiable, consider a satisfying assignment
 - There is at least one true literal in each clause
 - Select one true literal from each clause/triangle
 - This is an independent set of size k

- Claim. Φ is satisfiable iff G has an independent set of size k
- (\Leftarrow) Let S be in an independent set in G of size k
 - ullet S must contain exactly one node in each triangle
 - Set the corresponding literals to true
 - Set remaining literals consistently
 - All clauses are satisfied Φ is satisfiable \blacksquare

- Our reduction is clearly polynomial time in the input
 - G has 3k nodes, where k is #clauses, and n edges (one for each variable in G)
- Thus, independent is NP hard
- Since independent set is in NP (shown previously)
 - Independent set is NP complete

Reduction Strategies

- Equivalence
 - VERTEX-COVER \equiv_p IND-SET
- Special case to general case
 - VERTEX-COVER \leq_p SET-COVER
- Encoding with gadgets
 - 3-SAT ≤_p IND-SET
- Transitivity
 - 3-SAT \leq_p IND-SET \leq_p VERTEX-COVER \leq_p SET-COVER
 - Thus, IND-SET, VERTEX-COVER and SET-COVER are NP hard
 - Since they are all in NP, also NP complete

List of NPC Problems So Far

- 3-SAT
- INDEPENDENT SET
- VERTEX COVER
- SET COVER
- CLIQUE
- More to come:
 - Subset Sum
 - Knapsack
 - 3-COLOR
 - Hamiltonian cycle / path
 - TSP

SUBSET-SUM is NP Complete:

Vertex-Cover \leq_p SUBSET-SUM

Subset Sum Problem

SUBSET-SUM.

Given n positive integers $a_1, ..., a_n$ and a target integer T, is there a subset of numbers that adds up to exactly T

• SUBSET-SUM ∈ NP

- Certificate: a subset of numbers
- \bullet Poly-time verifier: checks if subset is from the given set and sums exactly to T
- Problem has a pseudo-polynomial O(nT)-time dynamic programming algorithm similar to Knapsack
- Will prove SUBSET-SUM is NP hard: reduction from vertex cover

- Theorem. VERTEX-COVER \leq_p SUBSET-SUM
- Proof. Given a graph G with n vertices and m edges and a number k, we construct a set of numbers a_1, \ldots, a_t and a target sum T such that G has a vertex cover of size k iff there is a subset of numbers that sum to T

Algorithm for Vertex Cover

Map the Problems

Vertex Cover

What is a possible solution?

Subset Sum

A selection of vertices to be in VC ${\it C}$ ${\it A}$ selection of numbers in subset ${\it S}$

What is the requirement?

C must contain at most k vertices

numbers in S must sum to T

What are the restrictions?

If $(u, v) \in E$, then either u or vmust be in S

S must be a subset of input integers

- Theorem. VERTEX-COVER \leq_p SUBSET-SUM
- **Proof.** Label the edges of G as 0,1,...,m-1.
- Reduction.
 - We'll create one integer for every vertex, and one integer for every edge
 - ullet Force selection of k vertex integers: so will make sure that we can't sum to T unless we have that
 - Force edge covering: for every edge (u, v), we will force that number can't sum to T unless either u or v is picked

- Theorem. VERTEX-COVER \leq_p SUBSET-SUM
- Label the edges of G as $0,1,\ldots,m-1$.
- **Reduction**. Create n + m integers and a target value T as follows
- Each integer is a m + 1-bit number in base four
- Vertex integer a_v : mth (most significant) bit is 1 and for i < m, the ith bit is 1 if ith edge is incident to vertex v
- Edge integer b_{uv} : mth digit is 0 and for i < m, the ith bit is 1 if this integer represents an edge i = (u, v)

Target value
$$T = k \cdot 4^m + \sum_{i=0}^{m-1} 2 \cdot 4^i$$

• Example: consider the graph G=(V,E) where $V=\{u,v,w,x\}$ and $E=\{(u,v),\,(u,w),\,(v,w),\,(v,x),\,(w,x)\}$

	5 th	4 th :(wx)	3 rd : (vx)	2 nd : (vw)	1st : (uw)	Oth: (uv)
a_u	1	0	0	0	1	1
a_v	1	0	1	1	0	1
a_w	1	1	0	1	1	0
a_{x}	1	1	1	0	0	0
b_{uv}	0	0	0	0	0	1
b_{uw}	0	0	0	0	1	0
b_{vw}	0	0	0	1	0	0
b_{vx}	0	0	1	0	0	0
b_{wx}	0	1	0	0	0	0

$$a_u := 111000_4 = 1344$$

 $a_v := 110110_4 = 1300$
 $a_w := 101101_4 = 1105$
 $a_x := 100011_4 = 1029$

$$b_{uv} := 010000_4 = 256$$

 $b_{uw} := 001000_4 = 64$
 $b_{vw} := 000100_4 = 16$
 $b_{vx} := 000010_4 = 4$
 $b_{wx} := 000001_4 = 1$

Correctness

- Claim. G has a vertex cover of size k if and only there is a subset X of corresponding integers that sums to value T
- (\Rightarrow) Let C be a vertex cover of size k in G, define X as $X := \{a_v \mid v \in C\} \cup \{b_i \mid \text{edge } i \text{ has exactly one endpoint in } C\}$

	5 th	4 th : (wx)	3 rd : (vx)	2 nd : (vw)	1st : (uw)	Oth: (uv)
a_u	1	0	0	0	1	1
a_v	1	0	1	1	0	1
a_w	1	1	0	1	1	0
a_{x}	1	1	1	0	0	0
b_{uv}	0	0	0	0	0	1
b_{uw}	0	0	0	0	1	0
b_{vw}	0	0	0	1	0	0
b_{vx}	0	0	1	0	0	0
b_{wx}	0	1	0	0	0	0

$$C = \{v, w\}$$

$$T = 222222_4 = 2730$$

$$T = k \cdot 4^m + \sum_{i=0}^{m-1} 2 \cdot 4^i$$

Correctness

- Claim. G has a vertex cover of size k if and only there is a subset X of corresponding integers that sums to value T
- (\Rightarrow) Let C be a vertex cover of size k in G, define X as $X := \{a_v \mid v \in C\} \cup \{b_i \mid \text{edge } i \text{ has exactly one endpoint in } C\}$

	5 th	4 th : (wx)	3 rd : (vx)	2 nd : (vw)	1st : (uw)	Oth: (uv)
a_v	1	0	1	1	0	1
a_w	1	1	0	1	1	0
b_{uv}	0	0	0	0	0	1
b_{uw}	0	0	0	0	1	0
b_{vx}	0	0	1	0	0	0
b_{wx}	0	1	0	0	0	0

$$C = \{v, w\}$$

$$T = 222222_4 = 2730$$

$$T = k \cdot 4^m + \sum_{i=0}^{m-1} 2 \cdot 4^i$$

Correctness

- Claim. G has a vertex cover of size k if and only there is a subset X of corresponding integers that sums to value T
- (\Rightarrow) Let C be a vertex cover of size k in G, define X as $X := \{a_v \mid v \in C\} \cup \{b_i \mid \text{edge } i \text{ has exactly one endpoint in } C\}$
- Sum of the most significant bits of X is k
- All other bit must sum to 2, why?
- Consider column for edge (u, v):
 - Either both endpoints are in ${\it C}$, then we get two 1's from a_v and a_u and none from b_{uv}
 - Exactly one endpoint is in C: get 1 bit from b_{uv} and 1 bit from a_u or a_v
- Thus the elements of X sum to exactly T

- Claim. G has a vertex cover of size k if and only there is a subset X of corresponding integers that sums to value T
- (\Leftarrow) Let X be the subset of numbers that sum to T
- That is, there is $V' \subseteq V, E' \subseteq E$ s.t.

$$X := \sum_{v \in V'} a_v + \sum_{i \in E'} b_i = T = k \cdot 4^m + \sum_{i=0}^{m-1} 2 \cdot 4^i$$

- These numbers are base 4 and there are no carries
- Each b_i only contributes 1 to the ith digit, which is 2
- Thus, for each edge i, at least one of its endpoints must be in V^\prime
 - V' is a vertex cover
- Size of V' is k: only vertex-numbers have a 1 in the mth position

Subset Sum: Final Thoughts

- Polynomial time reduction?
 - O(nm) since we check vertex/edge incidence for each vertex/edge when creating n+m numbers
- Does a O(nT) subset-sum algorithm mean vertex cover can be solved in polynomial time?
 - No! $T \approx 4^m$
- NP hard problems that have pseudo-polynomial algorithms are called weakly NP hard

Steps to Prove X is NP Complete

- Step 1. Show X is in NP
- Step 2. Pick a known NP hard problem Y from class
- Step 3. Show that $Y \leq_p X$
 - Show both sides of reduction are correct: if and only if directions
 - State that reduction runs in polynomial time in input size of problem \boldsymbol{Y}

Class Exercise:

SUBSET-SUM \leq_p Knapsack

Subset Sum to Knapsack

• Knapsack. Given n elements $a_1, ..., a_n$ where each element has a weight $w_i \ge 0$ and a value $v_i \ge 0$ and target weight W and value K. Does there exist a subset X of numbers such that

$$\sum_{a_i \in X} w_i \le W$$

$$\sum_{a_i \in X} v_i \ge K$$

- Knapsack ∈ NP
 - Can check if given subset satisfies the above conditions
- Exercise. Show Subset-Sum \leq_p Knapsack.

Subset Sum to Knapsack

• Knapsack. Given n elements a_1, \ldots, a_n where each element has a weight $w_i \geq 0$ and a value $v_i \geq 0$ and target weight W and value K. Does there exist a subset X of numbers such that

$$\sum_{a_i \in X} w_i \leq W \text{ and } \sum_{a_i \in X} v_i \geq K$$

- Subset-Sum \leq_p Knapsack Proof idea:
 - K = W = T and $w_i = v_i = a_i$ for all i
- If \exists subset S s.t. $\sum_{i \in S} a_i = T$, then pick those S to be in Knapsack
- If \exists a subset X s.t. weight of items less than W and value less than K, then X is exactly the subset of items that sum to T

Acknowledgments

- Some of the material in these slides are taken from
 - Kleinberg Tardos Slides by Kevin Wayne (https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
 04GreedyAlgorithmsI.pdf)
 - Jeff Erickson's Algorithms Book (http://jeffe.cs.illinois.edu/
 teaching/algorithms/book/Algorithms-JeffE.pdf)