

Métodos Numéricos - MAT 1105

EGR. EDDY CAEL MAMANI CANAVIRI

Oruro - 2020

|METODO DE LA BISECCION

Sea la ecuación:
$$\frac{x \cdot \sqrt{2.1 - 0.5 \cdot x}}{(1 - x) \cdot \sqrt{1.1 - 0.5 \cdot x}} - 3.69$$
 DATOS INICIALES

$$a_0 = 0.6$$

$$b_0 = 0.8$$

$$f(a_0) = f(0.6) = \frac{0.6 \cdot \sqrt{2.1 - 0.5 \cdot 0.6}}{(1 - 0.6) \cdot \sqrt{1.1 - 0.5 \cdot 0.6}} - 3.69 = -1.44$$

$$f(b_0) = f(0.8) = \frac{0.8 \cdot \sqrt{2.1 - 0.5 \cdot 0.8}}{(1 - 0.8) \cdot \sqrt{1.1 - 0.5 \cdot 0.8}} - 3.69 = 2.54354978$$

$$tol = 0.00001$$

GRAFICANDO:

Ambos extremos tienen signo distinto, entonces podemos aplicar el metodo de la biseccion. HAREMOS 4 ITERACIONES MANUALES 1 ITERACION:

$$a_1 = 0.6$$

$$b_1 = 0.8$$

$$f(a_1) = f(0.6) = \frac{0.6 \cdot \sqrt{2.1 - 0.5 \cdot 0.6}}{(1 - 0.6) \cdot \sqrt{1.1 - 0.5 \cdot 0.6}} - 3.69 = -1.44$$

$$f(b_1) = f(0.8) = \frac{0.8 \cdot \sqrt{2.1 - 0.5 \cdot 0.8}}{(1 - 0.8) \cdot \sqrt{1.1 - 0.5 \cdot 0.8}} - 3.69 = 2.54354978$$

Calculamos el punto medio entre a_1 y b_1 :

$$p_1 = \frac{a_1 + b_1}{2} = \frac{0.6 + 0.8}{2} = 0.7$$

Ahora comparemos los valores de $f(a_1)$ y $f(p_1)$.

$$f(a_1) = f(0.6) = \frac{0.6 \cdot \sqrt{2.1 - 0.5 \cdot 0.6}}{(1 - 0.6) \cdot \sqrt{1.1 - 0.5 \cdot 0.6}} - 3.69 = -1.44$$

$f(p_1) = f(0.7) = \frac{0.7 \cdot \sqrt{2.1 - 0.5 \cdot 0.7}}{(1 - 0.7) \cdot \sqrt{1.1 - 0.5 \cdot 0.7}} - 3.69 = -0.125774459$

GRAFICANDO:

Esos valores tienen signos iguales. Entonces el valor de a_2 sera el valor de p_1 . El valor de b_2 se mantiene igual que b_1 .

2 ITERACION:

$$a_2 = 0.7$$

$$b_2 = 0.8$$

$$f(a_2) = f(0.7) = \frac{0.7 \cdot \sqrt{2.1 - 0.5 \cdot 0.7}}{(1 - 0.7) \cdot \sqrt{1.1 - 0.5 \cdot 0.7}} - 3.69 = -0.125774459$$

$$f(b_2) = f(0.8) = \frac{0.8 \cdot \sqrt{2.1 - 0.5 \cdot 0.8}}{(1 - 0.8) \cdot \sqrt{1.1 - 0.5 \cdot 0.8}} - 3.69 = 2.54354978$$
 Calculamos el punto medio entre a_2 y b_2 :

$$p_2 = \frac{a_2 + b_2}{2} = \frac{0.7 + 0.8}{2} = 0.75$$

Ahora comparemos los valores de $f(a_2)$ y $f(p_2)$.

$$f(a_2) = f(0.7) = \frac{0.7 \cdot \sqrt{2.1 - 0.5 \cdot 0.7}}{(1 - 0.7) \cdot \sqrt{1.1 - 0.5 \cdot 0.7}} - 3.69 = -0.125774459$$

$$f(p_2) = f(0.75) = \frac{0.75 \cdot \sqrt{2.1 - 0.5 \cdot 0.75}}{(1 - 0.75) \cdot \sqrt{1.1 - 0.5 \cdot 0.75}} - 3.69 = 0.937503982$$

GRAFICANDO:

Esos valores tienen signos opuestos. Entonces el valor de b_3 sera el valor de p_2 . El valor de a_3 se mantiene igual que a_2 .

3 ITERACION:

$$a_3 = 0.7$$

$$b_3 = 0.75$$

$$f(a_3) = f(0.7) = \frac{0.7 \cdot \sqrt{2.1 - 0.5 \cdot 0.7}}{(1 - 0.7) \cdot \sqrt{1.1 - 0.5 \cdot 0.7}} - 3.69 = -0.125774459$$

$$f(b_3) = f(0.75) = \frac{0.75 \cdot \sqrt{2.1 - 0.5 \cdot 0.75}}{(1 - 0.75) \cdot \sqrt{1.1 - 0.5 \cdot 0.75}} - 3.69 = 0.937503982$$

Calculamos el punto medio entre a_3 y b_3 :

$$p_3 = \frac{a_3 + b_3}{2} = \frac{0.7 + 0.75}{2} = 0.725$$

Ahora comparemos los valores de $f(a_3)$ y $f(p_3)$.

$$f(a_3) = f(0.7) = \frac{0.7 \cdot \sqrt{2.1 - 0.5 \cdot 0.7}}{(1 - 0.7) \cdot \sqrt{1.1 - 0.5 \cdot 0.7}} - 3.69 = -0.125774459$$
$$f(p_3) = f(0.725) = \frac{0.725 \cdot \sqrt{2.1 - 0.5 \cdot 0.725}}{(1 - 0.725) \cdot \sqrt{1.1 - 0.5 \cdot 0.725}} - 3.69 = 0.356566735$$

Esos valores tienen signos opuestos. Entonces el valor de b_4 sera el valor de p_3 . El valor de a_4 se mantiene igual que a_3 .

4 ITERACION:

$$a_4 = 0.7$$

$$b_4 = 0.725$$

$$f(a_4) = f(0.7) = \frac{0.7 \cdot \sqrt{2.1 - 0.5 \cdot 0.7}}{(1 - 0.7) \cdot \sqrt{1.1 - 0.5 \cdot 0.7}} - 3.69 = -0.125774459$$

$$f(b_4) = f(0.725) = \frac{0.725 \cdot \sqrt{2.1 - 0.5 \cdot 0.725}}{(1 - 0.725) \cdot \sqrt{1.1 - 0.5 \cdot 0.725}} - 3.69 = 0.356566735$$

Calculamos el punto medio entre a_4 y b_4 :

$$p_4 = \frac{a_4 + b_4}{2} = \frac{0.7 + 0.725}{2} = 0.7125$$

Ahora comparemos los valores de $f(a_4)$ y $f(p_4)$.

$$f(a_4) = f(0.7) = \frac{0.7 \cdot \sqrt{2.1 - 0.5 \cdot 0.7}}{(1 - 0.7) \cdot \sqrt{1.1 - 0.5 \cdot 0.7}} - 3.69 = -0.125774459$$
$$f(p_4) = f(0.7125) = \frac{0.7125 \cdot \sqrt{2.1 - 0.5 \cdot 0.7125}}{(1 - 0.7125) \cdot \sqrt{1.1 - 0.5 \cdot 0.7125}} - 3.69 = 0.104684214$$

Esos valores tienen signos opuestos. Entonces el valor de b_5 sera el valor de p_4 . El valor de a_5 se mantiene igual que a_4 .

FIN DE ITERACIONES MANUALES

Se encontro la solucion en 15 iteraciones

Raiz = 0.706951904, y la funcion evaluada en ese punto es:

$$\frac{0.706951904 \cdot \sqrt{2.1 - 0.5 \cdot 0.706951904}}{(1 - 0.706951904) \cdot \sqrt{1.1 - 0.5 \cdot 0.706951904}} - 3.69 = -0.000085111$$

Tabulando estos resultados se tiene la siguiente tabla TABLA DE ITERACIONES

i	a_i	b_i	p_i	$f(p_i)$
1	0.6	0.8	0.7	-0.125774459
2	0.7	0.8	0.75	0.937503982
3	0.7	0.75	0.725	0.356566735
4	0.7	0.725	0.7125	0.104684214
5	0.7	0.7125	0.70625	-0.013051568
6	0.70625	0.7125	0.709375	0.045169423
7	0.70625	0.709375	0.7078125	0.015899806
8	0.70625	0.7078125	0.70703125	0.001384658
9	0.70625	0.70703125	0.706640625	-0.005843281
10	0.706640625	0.70703125	0.706835937	-0.002231773
11	0.706835937	0.70703125	0.706933594	-0.000424173
12	0.706933594	0.70703125	0.706982422	0.000480088
13	0.706933594	0.706982422	0.706958008	0.000027919
14	0.706933594	0.706958008	0.706945801	-0.000198137
15	0.706945801	0.706958008	0.706951904	-0.000085111

METODO DE LA FALSA POSICION

Sea la ecuación:
$$\frac{x \cdot \sqrt{2.1 - 0.5 \cdot x}}{(1 - x) \cdot \sqrt{1.1 - 0.5 \cdot x}} - 3.69$$

$$a_0 = 0.6$$

$$b_0 = 0.8$$

$$f(a_0) = f(0.6) = \frac{0.6 \cdot \sqrt{2.1 - 0.5 \cdot 0.6}}{(1 - 0.6) \cdot \sqrt{1.1 - 0.5 \cdot 0.6}} - 3.69 = -1.44$$

$$f(b_0) = f(0.8) = \frac{0.8 \cdot \sqrt{2.1 - 0.5 \cdot 0.8}}{(1 - 0.8) \cdot \sqrt{1.1 - 0.5 \cdot 0.8}} - 3.69 = 2.54354978$$

$$tol = 0.00001$$

GRAFICANDO:

Ambos extremos tienen signo distinto, entonces podemos aplicar el metodo de la falsa posicion. HAREMOS 4 ITERACIONES MANUALES 1 ITERACION:

$$a_1 = 0.6$$

$$b_1 = 0.8$$

$$f(a_1) = f(0.6) = \frac{0.6 \cdot \sqrt{2.1 - 0.5 \cdot 0.6}}{(1 - 0.6) \cdot \sqrt{1.1 - 0.5 \cdot 0.6}} - 3.69 = -1.44$$

$$f(b_1) = f(0.8) = \frac{0.8 \cdot \sqrt{2.1 - 0.5 \cdot 0.8}}{(1 - 0.8) \cdot \sqrt{1.1 - 0.5 \cdot 0.8}} - 3.69 = 2.54354978$$

Calculamos el punto entre a_1 y b_1 :

$$p_1 = \frac{f(a_1) * b_1 - f(b_1) * a_1}{f(a_1) - f(b_1) *} = \frac{-1.44 * 0.8 + 2.54354978 * 0.6}{-1.44 - 2.54354978} = 0.672297327$$

GRAFICANDO:

Ahora comparemos los valores de $f(a_1)$ y $f(p_1)$.

$$f(a_1) = f(0.6) = \frac{0.6 \cdot \sqrt{2.1 - 0.5 \cdot 0.6}}{(1 - 0.6) \cdot \sqrt{1.1 - 0.5 \cdot 0.6}} - 3.69 = -1.44$$

$$f(p_1) = f(0.672297327) = \frac{0.672297327 \cdot \sqrt{2.1 - 0.5 \cdot 0.672297327}}{(1 - 0.672297327) \cdot \sqrt{1.1 - 0.5 \cdot 0.672297327}} - 3.69 = -0.572489191$$

Esos valores tienen signos iguales. Entonces el valor de a_2 sera el valor de p_1 . El valor de b_2 se mantiene igual que b_1 .

2 ITERACION:

$$a_2 = 0.672297327$$

$$b_2 = 0.8$$

$$f(a_2) = f(0.672297327) = \frac{0.672297327 \cdot \sqrt{2.1 - 0.5 \cdot 0.672297327}}{(1 - 0.672297327) \cdot \sqrt{1.1 - 0.5 \cdot 0.672297327}} - 3.69 = -0.572489191$$

$$f(b_2) = f(0.8) = \frac{0.8 \cdot \sqrt{2.1 - 0.5 \cdot 0.8}}{(1 - 0.8) \cdot \sqrt{1.1 - 0.5 \cdot 0.8}} - 3.69 = 2.54354978$$

Calculamos el punto entre a_2 y b_2 :

$$p_2 = \frac{f(a_2)*b_2 - f(b_2)*a_2}{f(a_2) - f(b_2)*} = \frac{-0.572489191*0.8 + 2.54354978*0.672297327}{-0.572489191 - 2.54354978} = 0.695759293$$

Ahora comparemos los valores de $f(a_2)$ y $f(p_2)$.

$$f(a_2) = f(0.672297327) = \frac{0.672297327 \cdot \sqrt{2.1 - 0.5 \cdot 0.672297327}}{(1 - 0.672297327) \cdot \sqrt{1.1 - 0.5 \cdot 0.672297327}} - 3.69 = -0.572489191$$

$$f(p_2) = f(0.695759293) = \frac{0.695759293 \cdot \sqrt{2.1 - 0.5 \cdot 0.695759293}}{(1 - 0.695759293) \cdot \sqrt{1.1 - 0.5 \cdot 0.695759293}} - 3.69 = -0.199561503$$

Esos valores tienen signos iguales. Entonces el valor de a_3 sera el valor de p_2 . El valor de b_3 se mantiene igual que b_2 .

3 ITERACION:

$$a_3 = 0.695759293$$

$$b_3 = 0.8$$

$$f(a_3) = f(0.695759293) = \frac{0.695759293 \cdot \sqrt{2.1 - 0.5 \cdot 0.695759293}}{(1 - 0.695759293) \cdot \sqrt{1.1 - 0.5 \cdot 0.695759293}} - 3.69 = -0.199561503$$

$$f(b_3) = f(0.8) = \frac{0.8 \cdot \sqrt{2.1 - 0.5 \cdot 0.8}}{(1 - 0.8) \cdot \sqrt{1.1 - 0.5 \cdot 0.8}} - 3.69 = 2.54354978$$

Calculamos el punto entre a_3 y b_3 :

$$p_3 = \frac{f(a_3)*b_3 - f(b_3)*a_3}{f(a_3) - f(b_3)*} = \frac{-0.199561503*0.8 + 2.54354978*0.695759293}{-0.199561503 - 2.54354978} = 0.70334281$$

Ahora comparemos los valores de $f(a_3)$ y $f(p_3)$.

$$f(a_3) = f(0.695759293) = \frac{0.695759293 \cdot \sqrt{2.1 - 0.5 \cdot 0.695759293}}{(1 - 0.695759293) \cdot \sqrt{1.1 - 0.5 \cdot 0.695759293}} - 3.69 = -0.199561503$$

$$f(p_3) = f(0.70334281) = \frac{0.70334281 \cdot \sqrt{2.1 - 0.5 \cdot 0.70334281}}{(1 - 0.70334281) \cdot \sqrt{1.1 - 0.5 \cdot 0.70334281}} - 3.69 = -0.066088913$$

Esos valores tienen signos iguales. Entonces el valor de a_4 sera el valor de p_3 . El valor de b_4 se mantiene igual que b_3 .

4 ITERACION:

$$a_4 = 0.70334281$$

$$b_4 = 0.8$$

$$f(a_4) = f(0.70334281) = \frac{0.70334281 \cdot \sqrt{2.1 - 0.5 \cdot 0.70334281}}{(1 - 0.70334281) \cdot \sqrt{1.1 - 0.5 \cdot 0.70334281}} - 3.69 = -0.066088913$$

$$f(b_4) = f(0.8) = \frac{0.8 \cdot \sqrt{2.1 - 0.5 \cdot 0.8}}{(1 - 0.8) \cdot \sqrt{1.1 - 0.5 \cdot 0.8}} - 3.69 = 2.54354978$$

Calculamos el punto entre a_4 y b_4 :

$$p_4 = \frac{f(a_4)*b_4 - f(b_4)*a_4}{f(a_4) - f(b_4)*} = \frac{-0.066088913*0.8 + 2.54354978*0.70334281}{-0.066088913 - 2.54354978} = 0.705790646$$

Ahora comparemos los valores de $f(a_4)$ y $f(p_4)$.

$$f(a_4) = f(0.70334281) = \frac{0.70334281 \cdot \sqrt{2.1 - 0.5 \cdot 0.70334281}}{(1 - 0.70334281) \cdot \sqrt{1.1 - 0.5 \cdot 0.70334281}} - 3.69 = -0.066088913$$

$$f(p_4) = f(0.705790646) = \frac{0.705790646 \cdot \sqrt{2.1 - 0.5 \cdot 0.705790646}}{(1 - 0.705790646) \cdot \sqrt{1.1 - 0.5 \cdot 0.705790646}} - 3.69 = -0.021503083$$

Esos valores tienen signos iguales. Entonces el valor de a_5 sera el valor de p_4 . El valor de b_5 se mantiene igual que b_4 .

FIN DE ITERACIONES MANUALES

Se encontro la solucion en 11 iteraciones

Raiz = 0.706956077, y la funcion evaluada en ese punto es:

$$\frac{0.706956077 \cdot \sqrt{2.1 - 0.5 \cdot 0.706956077}}{(1 - 0.706956077) \cdot \sqrt{1.1 - 0.5 \cdot 0.706956077}} - 3.69 = -0.000007846$$

Tabulando estos resultados se tiene la siguiente tabla TABLA DE ITERACIONES

i	a_i	b_i	p_{i}	$f(p_i)$
1	0.6	0.8	0.672297327	-0.572489191
2	0.672297327	0.8	0.695759293	-0.199561503
3	0.695759293	0.8	0.70334281	-0.066088913
4	0.70334281	0.8	0.705790646	-0.021503083
5	0.705790646	0.8	0.706580412	-0.006955675
6	0.706580412	0.8	0.706835184	-0.002245714
7	0.706835184	0.8	0.706917367	-0.000724609
8	0.706917367	0.8	0.706943877	-0.000233758
9	0.706943877	0.8	0.706952428	-0.000075405
10	0.706952428	0.8	0.706955187	-0.000024324
11	0.706955187	0.8	0.706956077	-0.000007846