13.06.02	1
Covergé	1
(a) (voir manuel p. 43	Q C 1 Q C 4
2) a) CM Henta OH = 0 16 = 216 => M=4	AN2
$= D C_{4} H_{10} D$ $b) C_{4} H_{8} C_{43} C_{43} H$ $c = c$ $H H C_{43} H$ $(Z) - but - z - iu (E) - but - z - iu$	QT 2
c) isomères optiques (1'nantionières) C2H5 C2H5 CH3 OH OH CH3 OH CH3 S-butou-2-al R-butou-2-al	Q т 3
	(12)
II (1) CHz-C, OH HO-CHz-CHz-CH-CHz acide i'Heavoi'que 3-mi'Hrylbutoue-1-ol	QT3
$CH_{3} = \frac{1}{2} 1$	
(2) a) $K = \frac{x \cdot x}{(0,276-x)(0,525-x)} <=> \frac{x^2}{(0,276-x)(0,525-x)} = 4$	
$=0 \times = 0.231$	
Malwel = 0,276 - 0,231 = 0,045 mil	AN3
Macide = 0,525 - 0,231 = 0,294 west	
Mester = Meour = 0,231 mol b) rendement: $\frac{0,231}{0,276} = 0,837 => 83,7\%$	ANI
c) l'équilibre n'est pous atteint, car	QT1
Quantité < quantité < quantité de l'élèment le l'alors	

-2-	N. N.
III (1 a) p.52	QC1
b) p. 52	QC4
c) $C_6H_5OH + H_2O \rightleftharpoons C_6H_5O^- + H_3O^+$ $A_1 B_2 B_1 A_2$	QT4
d) CH3 CH20" = base forte C6 H50" = base for ble	Q TA
1) plievel = donneur de donblet => effet M+	
deunité électronique 1 sur 0 polarisation de la liaison 0-H 7 => acidité 1 ciō-H 10-H 10-H 10-H	QT3
	ā
2 p. 65	Q c 3
(3) a) = proupement carbonyle	QT1
b) => fourtion aldely de	QTA
c) acide ramifie' => aldity de ramifie	QT1
2-méthylprojonal CH3-CH-C=0 CH3	414
	(16)
U 0 1-81	QC7
2) jour une borse forte pOH = - log Cobouse a) (=> pOH = - log 6. 10 ⁻³ <=> pOH = 2,22 pH = 14 - 2,22 = 11,78	
or 10,8 < 11,78 (olissocia tion partielle)	AN 2
0) pra = 4,87 (=> prb = 4,13 => rb = 7,41.10-5	AN2
ou $\alpha = \sqrt{\frac{K_b}{K_b}} = \sqrt{\frac{7.41.10^{-5}}{6.10^{-3}}} = 7 \propto 20.11$	
CO 6.10-3	
***	i

```
NHyCe - NHytarg + Clarg
acide M (pt. de vue pH)
                    faible
    pka = 9,20 =0 ka = 6,31.10-10
    PH = 5,60 = D [H30+] = 2,57.10-6 mol. 1-1
                                                           AND
    x2 + Wax - Ka co = 0 Quec x = CH30+J
(2,57.10-6)2+6,31.10-10.2,51.10-6-6,31.10-10c0=0
      (=> co = 0,01 mol. 1
(1) a) co AH = 0,1.24.4.10-3 <=> Co= 0,122 med. 1-1
                                                           (13)
   b) pH=pko+log MOAH or au PE MA-= MAH
(12, 2 WL NOOH)
                                                          QT 2
     = V pH= pKa + log 1

=> pH= pKa = 3,75
    c) Ka = 10-3,75 (=> Ka = 1,78-10-4 = D HCOOH
                                                         ANI
Dephérolphaleine, can sa roue de vironge comprend le pH on P.F.
                                                          QT1
(3) a) mélange hompon avec pH=pKa + log MHCOOT
    MOH COOH = 0,122.20.10-3 = 2,44.10-3 med
     Soit x le n'h de mal Na 04 ajoule'
      => M HCOO = X N MHCOOK = 2,44.10-3-X
                                                          AN3
     4 = 3,75 + log 2,44,10-3-x
    L=7 \log \frac{x}{2,44\cdot 10^{3}-x} = 0,25 = 7 \frac{x}{2,44\cdot 10^{-3}-x} = 1,78
      L=7 x = 1,78 (2,44.10-3-x) (=7 x = 1,56.10-3
    M = C \cdot V = V = \frac{1,56 \cdot 10^{-3}}{10^{-4}} = 15,6 \cdot 10^{-3} \ell
b) trus de Nor OH ( négliger la base faitste)

M Na OH ainesté : 10. 1. 20 15-3
   M Naon ajanti: 0, 1.28.10-3 = 2.8.10-3 med
   M Nack en en (28-2,44) . 10-3 = 0,36.10-3 wed AN3
    V total = (20 + 28). 10-3 = 48.10-3/
     CNOWN = 0,36.10-3 <=> CONAOH = 7,5.10-3 mol. 11
FOH = -log 7,5.10-3 (=> POH = 2,42
                            => PH = 11,88
```