

Universidade do Minho

Escola de Ciências

Departamento de Matemática e Aplicações

Folha 1

Exercício 1.1 Para cada um dos conjuntos, identifique o interior, a aderência, o derivado e a fronteira; indique se existem pontos isolados e diga se se trata de um conjunto aberto, fechado ou limitado.

a)
$$A = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1 \text{ e } 1 \le y < 2\} \cup \{(0, 0)\};$$

b)
$$B = \{(x, y) \in \mathbb{R}^2 : y > 0\};$$

c)
$$C = \{(x, y) \in \mathbb{R}^2 : 2 < x^2 + y^2 \le 4\};$$

d)
$$D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 4\} \cup \{(x, 0) \in \mathbb{R}^2 : 3 \le x < 4\};$$

e)
$$E = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1 \text{ ou } z = 0\};$$

f)
$$F = \{(x, y) \in \mathbb{R}^2 : x \neq 0 \text{ e } y \neq 0\};$$

g)
$$G = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 1\};$$

h)
$$H = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 4\}.$$

Exercício 1.2 Indique o domínio da função real de variáveis reais, definida por:

a)
$$f(x,y) = \frac{x+y}{x-y}$$
;

c)
$$f(x,y) = \ln(1+xy)$$
;

b)
$$f(x,y) = \sqrt{4x^2 + 9y^2 - 36}$$
;

d)
$$f(x,y) = \frac{1}{\sqrt{x^2 - y^2}}$$
.

Exercício 1.3 Esboce uma representação gráfica da função real de variáveis reais, definida por:

a)
$$f:[0,2]\times[0,3]\longrightarrow\mathbb{R}$$
 tal que $f(x,y)=x$;

b)
$$f: [-1,1]^2 \longrightarrow \mathbb{R}$$
 tal que $f(x,y) = y^2$.

c)
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
 tal que $f(x,y) = \sqrt{x^2 + y^2}$.

Determine e esboce algumas curvas de nível da função real de variáveis reais, definida por:

a)
$$f(x,y) = x^2 - y^2$$
;

b)
$$f(x,y) = 3\left(1 - \frac{x}{2} - \frac{y}{4}\right);$$

a)
$$f(x,y) = x^2 - y^2$$
; b) $f(x,y) = 3\left(1 - \frac{x}{2} - \frac{y}{4}\right)$; c) $f(x,y) = \sqrt{9 - x^2 - y^2}$.

Exercício 1.5 Esboce ou descreva as superfícies definidas pelas seguintes equações:

a)
$$4x^2 + y^2 = 16$$
:

d)
$$\frac{x}{4} = \frac{y^2}{4} + \frac{z^2}{9}$$
;

g)
$$z = \frac{y^2}{4} - \frac{x^2}{9}$$
;

b)
$$x + 2z = 4$$
:

e)
$$z = x^2$$
:

h)
$$4x^2 - 3y^2 + 2z^2 = 0$$

c)
$$z^2 = y^2 + 4z$$

f)
$$y^2 + z^2 = 4$$

a)
$$4x^2 + y^2 = 16$$
; d) $\frac{x}{4} = \frac{y^2}{4} + \frac{z^2}{9}$; g) $z = \frac{y^2}{4} - \frac{x^2}{9}$; b) $x + 2z = 4$; e) $z = x^2$; h) $4x^2 - 3y^2 + 2z^2 = 0$; c) $z^2 = y^2 + 4$; f) $y^2 + z^2 = 4$; i) $\frac{x^2}{9} + \frac{y^2}{12} + \frac{z^2}{9} = 1$.

Determine o domínio da função vetorial, definida por: Exercício 1.6

a)
$$\boldsymbol{f}(t) = (t, \sin t);$$

c)
$$h(x, y, z) = (x^2, \sqrt{y-1}, \sqrt{5-z});$$

b)
$$\mathbf{g}(x,y) = (\sqrt[3]{x-2}, \frac{x-1}{\sqrt{x^2-1}}, y);$$

d)
$$r(t) = (\ln t, \frac{t}{t-1}, e^{-t}).$$