Module AP1 : Mécanique I Devoir Surveillé de Mécanique I Durée : 1 Heure 20 minutes

N.B : La justification des réponses et la clarté de la rédaction seront prises en compte.

EXERCICE 1:

Dans un repère cartésien fixe $\Re(Oxyz)$, un mobilé M est repéré par son vecteur position :

$$\overrightarrow{OM} = \overrightarrow{t} + a \overrightarrow{t}^2 \overrightarrow{j}$$

a est une constante positive, t est le temps. $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ est la base orthonormée directe associée à \Re

- 1. Trouver l'équation de la trajectoire du mobile M. Quelle est sa nature?
- 2. Déterminer le vecteur vitesse $\overrightarrow{V}(M)$ et calculer son module.
- 3. Déterminer le vecteur accélération $\overrightarrow{d}(M)$ et calculer son module.
- 4. Exprimer le vecteur accélération $\overrightarrow{d}(M)$ dans la base de Frenet
- 5. Calculer le rayon de courbure r_c de la trajectoire de M.
- 6. Exprimer les coordonnées polaires r et θ en fonction de t.

EXERCICE 2:

On considère un point matériel M suspendu à un fil inextensible de longueur L. Le point de suspension O_1 du pendule ainsi formé est en mouvement dans le référentiel $\Re(O,XYZ)$ le long de l'axe OY. La position de O_1 est repérée par y. Le mouvement de M a lieu dans le plan $\Re_1(O_1,X_1Y_1Z_1)$ le référentiel d'origine O_1 et dont les axes restent constamment parallèles à ceux de \Re .

- 2. Quel est le mouvement du référentiel \Re_1 par rapport à \Re ? Justifier votre réponse. En déduire la valeur de $\overrightarrow{\omega}(\Re_1/\Re)$.
- 3. En se basant sur votre réponse à la question 2, calculer la vitesse d'entrainement \overrightarrow{V}_e , l'accélération d'entrainement \overrightarrow{d}_e et l'accélération de *Coriolis* de \Re_1 par rapport à \Re .
- 4. En déduire la vitesse et l'accélération de M dans \Re .

EXERCICE 3:

Un système mécanique constitué par une tige de masse négligeable, reliée par un ressort de raideur k à son milieu et une petite boule de masse m à son extrémité comme représenté sur la figure. La boule est écartée d'un angle θ de sa position d'équilibre (la verticale) et on la lâche sans vitesse initiale.

- 1. Déterminer les expressions des énergies cinétique E_c et potentielle E_p de M. En déduire l'énergie mécanique E_m .
- 2. Établir l'équation différentielle régissant le mouvement de la boulé M.
- 3. Donner la forme générale de solution (sans résoudre) en précisant le nom et l'unité des différents paramètres.

