UVIC ROCKETRY

DESIGN

- Detachable Fins
 - Small transporting profile
 - Quick replacement
- Materials
 - 3D printed PLA + carbon fiber
 - Aluminum
 - Foam + carbon fiber
- Manufacturing
 - Cost effective
 - Easy to manufacture
 - Consistent final product

MODES OF FAILURE

- Bending
 - Due to wind gusts and flight path corrections
 - Fin acts as a lifting device
- Flutter
 - Due to relative air velocity
 - Aeroelasticity (aerodynamic and elastic forces)
- Sandwich structure
 - Anisotropic material
 - Properties determined experimentally

BENDING

- Bending
 - Wind deflects the rocket
 - Fins act as lifting bodies
- Expected loading
 - Wind speed of 6 m/s
 - 341 N at Mach 2
- Highest loading
 - Wind speed of 10 m/s
 - 550 N at Mach 2
- Assumptions
 - Higher velocities are hard to reach
 - Sea level conditions

FLUTTER CALCULATIONS

- Bending-torsion flutter
 - Most common flutter
 - Once started, flutter results in failure
 - Effective shear modulus from testing
- NACA TN 4197 paper
 - Preliminary design for thin fins
 - λ : taper ratio
 - X : geometric flutter factor
 - Critical Mach number is 1.4

STATIC BENDING TEST

- Fin is tested for bending
- Fin must withstand 570 N (60 kg)
- Weights hang off tip of fin
- Tested for failure

TORSIONAL STIFFNESS TEST

- Torsional stiffness is tested
- Test is non-destructive
- Deflection and loading is recorded
- Shear modulus is calculated to get a flutter safety factor

Method	Stiffness	Strength
One layer carbon fiber wrap	Baseline, fins are too weak	
Heat treatment (60°C for 30 min)	Decreased by 40%	No effective change
Two layer carbon fiber wrap	2x stiffer than baseline	40% stronger than baseline
Carbon fiber insert (8-layer plate)	4x stiffer than baseline	60% stronger than baseline

RESULTS

- 24 fins tested
- Carbon fiber insert improves strength and stiffness
- Fastener tear-out only in last fin design
- Last fins were consistent

MANUFACTURING

- 2-piece PLA 3D-print
- Carbon fiber insert for extra stiffness
- Overwrapped with 2 layers of carbon fiber
- Low cost for manufacturing
- Surface sanded smooth

CONCLUSION

- Proof of concept: Detachable fins
 - Perform up to Mach 2
 - Can guide a 28 kg heavy rocket
 - Easy and cheap to manufacture
- Stiffness is driving mode of failure
 - Taper, span and thickness have high influence
 - Length and base radius have least influence
- Launch will give final confirmation
 - Validation of calculations and assumptions

UVIC ROCKETRY

HYAK - 1

THANK YOU

- 1. Background Main Page: visibleearth.nasa.gov, 'Panorama of the Pacific Northwest', Available: https://visibleearth.nasa.gov/view.php?id=86041, Accessed 20.04.2018
- 2. Background Slides: lightsinthedark.com, 'Video screen capture from one of the four HDEV cameras mounted on the ISS on May 7, 2014 (NASA)', Available: https://lightsinthedark.com/2014/05/07/now-you-can-watch-beautiful-live-video-of-earth-from-space/, Accessed 20.04.2018
- 3. Martin, D. J., "Summary of flutter experiences as a guide to the preliminary design of lifting surfaces on missiles", NACA TN 4197, 1958

HYAK - 1