

// The Problem

• Given a MxN matrix, we want to calculate the sum of each row and each column

• Results are M values (row sums) and N values (column sums)

// Pseudocode

loop over i = 1, M; j = 1, N

- $rowsum_i = rowsum_i + matrix_{i,j}$
- $columnsum_j = columnsum_j + matrix_{i,j}$

end loop

// MPI Implementation

- Matrix is decomposed across procs over one of its dims (Scenario A)
- Matrix is decomposed across procs over both of its dims (Scenario B)

0	0	1	2	3
1	4	5	6	7
2	8	9	10	11
3	12	13	14	15

0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

0				1			2			3					
0	4	8	12	1	5	9	13	2	6	10	14	3	7	11	15

// Scenario A approach (meh)

- Create **Communicator** across all processes (root)
- Scatter data based on decomposition (row-wise or column-wise)
- Each process calculates sum locally (row or column)
- Root gathers sums
- Root Reduces on every array position

// Scenario B approach ()

- Create **Communicator** across all processes (root)
- Scatter array decomposed on first of two dims
- Each process calculates the sum locally
- Root collects sums
- Communicator **scatters** array decomposed on second dim
- Each process calculates the sum locally
- Root gathers sums

Fin