Probability and Statistics

Matthew Scicluna matthew.scicluna@umontreal.ca

Probability Vs Statistics

Probability: Given Model, how likely is Data? \rightarrow Well-formed since these are Mathematical questions.

Statistics: Given Data, how likely is Model? \rightarrow Ill-formed since many Models can create the same data!

Probability Space

Probability Space: a triple (Ω, F, P) consisting of:

- 1. Ω the **Sample Space**
- 2. $F \subseteq 2^{\Omega}$ a σ -algebra on Ω i.e.
 - (a) $\Omega \in F$
 - (b) $E \in F \Rightarrow E^{\complement} \in F$

(c)
$$E_1, E_2, \dots \in F \Rightarrow \bigcup_{i=1}^{\infty} E_i \in F$$

- 3. $P: F \mapsto [0, 1]$ a Probability Measure i.e.
 - (a) $P(E) \ge 0$ for $E \in F$
 - (b) $P(\Omega) = 1$

(c)
$$P(\bigsqcup_{i=1}^{\infty} E_i) \Rightarrow \sum_{i=1}^{\infty} P(E_i)$$
 for $E_i \in F$

Given **Events** $E_i, E \in F$, P also satisfies:

1. Upward and Downward continuity of P:

(a)
$$E_i \uparrow E \Rightarrow \lim_{n \to \infty} P(E_n) = P(E)$$

(b)
$$E_i \downarrow E \Rightarrow \lim_{n \to \infty} P(E_n) = P(E)$$

2. **Monotonicity** of P:

(a)
$$E_i \subseteq E_j \Rightarrow P(E_i) \leq P(E_j)$$

Conditional Probability

We can compute Probabilities of Events Conditioned on other Events.

Conditional Probability of event A on event B with P(B) > 0 is:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B \mid A)P(A)}{P(B)}$$

A set of events $\{A_i\}$ are **Mutually Independent** if, for any n element subset of $\{A_i\}$:

$$P\left(\bigcap_{i=1}^{n} A_i\right) = \prod_{i=1}^{n} P(A_i)$$

Law of Total Probability: Given Events A and **Partition** $\{B_i\}$ (i.e. where $\bigsqcup_{i=1}^{\infty} B_i = \Omega$)

$$P(A) = \sum_{i=1}^{\infty} P(A \mid B_i) P(B_i)$$

Random Variables

A **Random Variable** is a \mathbb{B} -Measurable function $X: (\Omega, F) \mapsto (\mathbb{R}, \mathbb{B})$

- 1. For $A \in \mathbb{B}$ we can compute $P(X \in A)$
- 2. $P(X \in A) := P(X^{-1}(A)) = P(\{\omega \in \Omega : X(\omega) \in A\})$
- 3. $P(X^{-1}(\cdot)) := P_X(\cdot)$ which is called the **Push-Forward** Measure of P by X on $\mathbb R$
- 4. Hence X induces a new Probability Space $(\mathbb{R}, \mathbb{B}, P_X)$ from the original (Ω, F, P)

"world of possibilities"

"measurements"

Random Variables can be uniquely determined by their CDF: $F_X(t) := P_X\left((-\infty,t]\right) = P(X \le t)$

- 1. Right Continuous
- 2. Non-Negative
- 3. $\lim_{t \to \infty} F_X(t) = 1$, $\lim_{t \to -\infty} F_X(t) = 0$
- 4. Any function satisfying above properties is the CDF for some random variable.

Random Variables studied are usually either **Continuous** or **Discrete** (although they can be neither.)

- 1. If F_X Absolutely Continuous then X is Continuous.
 - (a) Absolutely Continuous: F differentiable a.e. and $\exists f(x)$ s.t. $F_X(x) = \int_{-\infty}^x f(u) du$
 - (b) f is called the PDF
 - (c) Where f is continuous, $\frac{d}{dx}F_X(x) = f(x)$
 - (d) hence, f is unique a.e. (may not be everywhere!)
- 2. If Range(X) is countable then X is Discrete.
- 3. If X Continuous and Non-negative: **Hazard** of X is $\lambda(t) = \frac{f(t)}{1 F(t)}$

(a)
$$1 - F(t) = \exp\left(-\int_0^t \lambda(x) dx\right)$$

- (b) $\lambda(t)$ interpreted as instantaneous survival rate at time t
- (c) $\lambda(t) = c \,\forall t \iff X \sim Exp(c)$

Random Vectors Moments of a Random Variable Convergence Theorems