

密级状态: 绝密() 秘密() 内部() 公开($\sqrt{}$)

Rockchip_DRM_Panel_Porting_Guide

(技术部,第二系统产品部)

文件状态:	当前版本:	V1.7
[]正在修改	作 者:	闭伟勇/黄国椿
[√] 正式发布	完成日期:	2021-02-22
	审核:	
	完成日期:	

福州瑞芯微电子股份有限公司

Fuzhou Rockchips Electronics Co., Ltd

(版本所有,翻版必究)

版本历史

版本号	作者	修改日期	修改说明	备注
V1.0	闭伟勇	2017-4-15	初始版本	
V1.1	黄家钗	2017-4-17	加入 LVDS 屏配置说明	
V1.2	闭伟勇	2017-8-15	同步代码,更新 MIPI 章节。	
V1.3	闭伟勇	2017-12-9	更新文档,增加 Display	
			Routing&FAQ 章节。	
V1.4	黄家钗	2018-7-9	加入 MCU/CPU 屏配置说明	
V1.5	闭伟勇	2018-8-30	更新 RGB 配置说明	
V1.6	闭伟勇	2019-2-28	同步更新文档,增加 RK618 说明	
V1.7	闭伟勇/黄国椿	2021-02-22	增加 RK3566/RK3568 MIPI/EDP	
			配置说明	

目 录

1 Introduction	1
1.1 Display Pipe	
2 Panel	
2.1 Documentation and Source Code	
2.2 DT Bindings	2
2.3 常见问题	4
3 MIPI-DSI	5
3.1 Documentation and Source Code	5
3.2 DT Bindings	6
3.2.1 Host	6
3.2.2 PHY	9
3.2.3 VOP Routing	10
3.2.4 LOGO	10
3.2.5 Panel	11
3.3 Command	13
3.3.1 Data Type	14
3.3.2 Delay	16
3.3.3 Payload Length	16
3.3.4 Payload	16
3.3.5 Exmaple	16
3.4 常见问题	17
4 eDP	21
4.1 Documentation and Source Code	21
4.2 DT Bindings	22
4.2.1 Host	22

	4.2.2 PHY	23
	4.2.3 VOP Routing	23
	4.2.4 Logo	24
	4.2.5 Panel	25
4.3	常见问题	26
5 LVDS		26
5.1	Documentation and Source Code	26
5.2	DT Bindings	27
	5.2.1 Host	27
	5.2.2 PHY	28
	5.2.3 VOP Routing	28
	5.2.4 Logo	29
	5.2.5 Panel	30
5.3	Data Mapping	32
	5.3.1 6 bit output mode	32
	5.3.2 8 bit output mode	33
6 RGB		33
6.1	Documentation and Source Code	33
6.2	DT Bingdings	34
	6.2.1 Host	34
	6.2.2 PHY	34
	6.2.3 VOP Routing	35
	6.2.4 Logo	35
	6.2.5 Panel	36
6.3	Data Mapping	37
7 DP AI	t Mode	38

7.1 Documentation and Source Code	38
7.2 DT Bindings	39
7.2.1 DP_TX	39
7.2.2 USB Type-C PHY	39
7.2.3 USB PD	39
7.2.4 VOP Routing	40
8 RK618	40
8.1 Documentation and Source Code	40
8.2 DT Bindings	41
8.2.1 RK618	41
8.2.2 CRU	42
8.2.3 HDMI	43
8.2.4 LVDS	44
8.2.5 RGB	47
8.2.6 MIPI-DSI	50
8.2.7 Clone Mode	53
8.2.8 调试步骤	58
9 MCU/CPU	60
9.1 Interface	60
9.2 Panel	61
9.3 MCU timing	62
10 Dual-Display	62
11 DEBUG	65

1 Introduction

本文档主要描述 Rockchip 平台基于 DRM 显示框架的底层显示配置,以及相关调试手段。

1.1 Display Pipe

- 1)Rockchip 平台的 LCD Controller 称为 VOP(Video Output Processor),芯片中一般集成 1~2 个 VOP。只有支持两个 VOP 的芯片,才能支持双屏异显。在进行显示路由配置时,应该选择哪个 VOP 作为输入的依据主要是 VOP 支持的最大分辨率,以 RK3399 为例,RK3399 有两个 VOP,分别为 VOPB(4096x2160),VOPL(2560x1600),所以对于分辨率大于 2560x1600 的应用,只能选择 VOPB 作为输入。
- 2) Rockchip 平台的芯片集成丰富的显示接口,包括 HDMI/MIPI-DSI/RGB/LVDS/eDP/DP 等等,不同芯片可能包含其中的 N 个接口,不同的显示接口对应不同的驱动。
- 3)对于 Embedded Connection 的 Panel,一般不需要支持 HPD,需要手动配置上电时序以及显示相关信息,所以需要单独的驱动。而对于 box-to-box 的 Monitor,一般支持 HPD,可以自动识别显示相关信息,所以不需要单独的驱动。

2 Panel

2.1 Documentation and Source Code

Kernel (develop-4.4)

drivers/gpu/drm/panel/panel-simple.c

Documentation/devicetree/bindings/display/panel/simple-panel.txt

U-Boot (next-dev)

drivers/video/drm/rockchip panel.c

U-Boot (rkdevelop)

drivers/video/rockchip_panel.c
drivers/video/rockchip_dsi_panel.c

2.2 DT Bindings

1) simple-panel (LVDS/RGB/eDP)

```
panel {
        compatible = "simple-panel";
        backlight = <&backlight>;
        power-supply = <&vcc lcd>;
        enable-gpios = <&gpio1 13 GPIO_ACTIVE_HIGH>;
        prepare-delay-ms = <20>;
        enable-delay-ms = \langle 20 \rangle;
        display-timings {
                 native-mode = <&timing0>;
                 timing0: timing0 {
                          clock-frequency = <2000000000);
                          hactive = <1536>;
                          vactive = \langle 2048 \rangle;
                          hfront-porch = <12>;
                          hsync-len = <16>;
                          hback-porch = <48>;
                          vfront-porch = <8>;
                          vsync-len = <4>;
                          vback-porch = <8>;
                          hsync-active = <0>;
                          vsync-active = <0>;
                          pixelclk-active = <0>;
                 };
        };
        port {
                 panel_in_edp: endpoint {
                          remote-endpoint = <&edp_out_panel>;
                 };
         };
};
```

2) simple-panel-dsi (MIPI-DSI)

这里只列出通用配置,其他与特定显示接口相关的配置在各个显示接口章节中单独说明。

Property	Value	Comment
compatible	simple-panel or	
	simple-panel-dsi	
backlight		背光节点引用
power-supply		可选,Regulator 配置。
reset-gpios		可选,Reset GPIO 配置。
enable-gpios		可选,Enable GPIO 配置。
prepare-delay-ms		可选,具体时序参考屏驱动。
reset-delay-ms		可选,具体时序参考屏驱动。
init-delay-ms		可选,具体时序参考屏驱动。
enable-delay-ms		可选,具体时序参考屏驱动。
unprepare-delay-ms		可选,具体时序参考屏驱动。
disable-delay-ms		可选,具体时序参考屏驱动。
display-timings		LCD 时序参数,按屏规格书填写。
width-mm		LCD 物理宽度,按屏规格书填写。
height-mm		LCD 物理高度,按屏规格书填写。

2.3 常见问题

- 1. reset 脚一般为 LOW 有效,驱动最后会把 reset 脚拉高,如果 reset 脚为 HIGH 有效,驱动最后会把 reset 脚拉低。enable 脚一般为 HIGH 有效,驱动最后会把 enable 脚拉高,如果 enable 脚为 LOW 有效,驱动最后会把 enable 脚拉低。
- 2. 如果 drm 驱动一直 bind 失败,返回-517(-EPROBE_DEFER),往往是由于 panel 驱动 probe 失败引起的,这个时候就需要检查 panel 相关的配置,比如 reset/enable 是否与其他模块配置冲突。
- 3. Simple-panel 只是一个通用驱动,只能满足一般需求,如果代码不支持,可以考虑对现有驱

动进行扩展或者单独写一个特定的驱动。

3 MIPI-DSI

- 1) rk3128/rk3326/px30/rk3368 (1~4lanes, 1Gbps per lane)
- 2) rk3288/rk3399 (1~8lanes, 1.5Gbps per lane)
- 3) rk3566/rk3568 (1~8lanes, 1.2Gbps per lane)

3.1 Documentation and Source Code

Kernel (develop-4.19)

drivers/gpu/drm/rockchip/dw-mipi-dsi.c

drivers/phy/rockchip/phy-rockchip-inno-video-combo-phy.c

drivers/phy/rockchip/phy-rockchip-inno-mipi-dphy.c

Documentation/devicetree/bindings/display/rockchip/dw_mipi_dsi_rockchip.txt

Documentation/devicetree/bindings/phy/phy-rockchip-inno-video-combo-phy.txt

Documentation/devicetree/bindings/phy/phy-rockchip-inno-mipi-dphy.txt

Kernel (develop-4.4)

drivers/gpu/drm/rockchip/dw-mipi-dsi.c

drivers/phy/rockchip/phy-rockchip-inno-video-combo-phy.c

Documentation/devicetree/bindings/display/rockchip/dw_mipi_dsi_rockchip.txt

Documentation/devicetree/bindings/phy/phy-rockchip-inno-video-combo-phy.txt

U-Boot (next-dev)

drivers/video/drm/dw_mipi_dsi.c

drivers/video/drm/inno_video_combo_phy.c

drivers/video/drm/inno_mipi_phy.c

U-boot (rkdevelop)

drivers/video/rockchip-dw-mipi-dsi.c

drivers/video/rockchip-inno-mipi-dphy.c

3.2 DT Bindings

3.2.1 Host

1) Single-channel

RK3128/RK3326/PX30/RK3368/RK3288/RK3399:

RK3566/RK3568:

2) Dual-channel (RK3288/RK3399/RK3566/RK3568)

① 标准的 dual-channel 接口 MIPI 屏;

② 分别接一样的屏,组合成 dual-channel 接口 MIPI 屏,panel0 显示左半屏,panel1 显示右半屏。

RK3288/RK3399:

```
&dsi {
          rockchip,dual-channel = <&dsi1>;
          status = "okay";
};

&dsi1 {
          status = "okay";
};
```

RK3566/RK3568:

```
&dsi0 {
        status = "okay";
        rockchip,dual-channel = <&dsi1>;
};
&dsi1 {
        status = "okay";
};
```

3) Dual-link (RK3399/RK3566/RK3568)

因为 RK3399 的 MIPI_PHY_TX0 和 MIPI_PHY_TXRX 共用一个 PLL,所以 Dual-link 模式下,如果 panel0 和 panel1 是一样的屏,那么在同一个 lane-rate 下都能正常显示;但如果 panel0 和 panel1 是不一样的屏,只有两个屏都能在同一个 lane-rate 下都能正常显示,才能支持这种模式, 但 RK3566/RK3568 的 MIPI_PHY_TX0 和 MIPI_PHY_TX1 是独立的,因此 panel0 和 panel1 没有限制是相同的屏。

RK3288/RK3399:

RK3566/RK3568:

Property	Value	Comment
rockchip,lane-rate	0~1500 (RK3288/RK3399)	指定 DATA_LANE 的速率,单位为

	0~1200(RK3566/RK3568)	mbps/lane,CLK_LANE 的频率为该
		值的一半,比如配置为 400Mbps,相
		应的 CLK 频率为 200MHz。如果没有
		配置该属性,驱动会自动计算
		lane-rate。
rockchip,dual-chan		对于 Dual-channel mode,该属性必
nel		须配置。

3.2.2 PHY

RK3128/PX30/RK3326/RK3368:

```
&video_phy {
        status = "okay";
};
```

RK3566/RK3568:

只有 dsi0 使能的场景:

只有 dsil 使能的场景:

```
&mipi_dphy0 {
          status = "disabled";
};
&mipi_dphy1 {
          status = "okay";
};
```

dsi0 和 dsi1 都使能的场景:

NOTE: **RK3288/RK3399** 不需要使能 phy 相关节点。

3.2.3 VOP Routing

PX30/RK3288/RK3399:

RK3566/RK3568:

NOTE: 对于有两个 VOP 的芯片,需要选择其一,如果有打开 LOGO, route_dsi 的 connect 属性也要指定为同一个 VOP。

3.2.4 LOGO

PX30/RK3288/RK3399:

RK3368:

```
&route_dsi: route-dsi {
          connect = <&vop_out_dsi>;
          status = "okay"
};
```

RK3566/RK3568:

```
&route_dsi0 {
        status = "okay";
        connect = <&vp1_out_dsi0>;
};
```

3.2.5 **Panel**

1) Single-channel

```
panel@0 {
         compatible = "simple-panel-dsi";
         reg = <0>;
power-supply = <&vcc_lcd>;
         backlight = <&backlight>;
reset-gpios = <&gpio3 13 GPIO_ACTIVE_LOW>;
         enable-gpios = <&gpio2 27 GPIO_ACTIVE_HIGH>;
         dsi, format = <MIPI DSI FMT RGB888>;
         prepare-delay-ms = <20>;
         unprepare-delay-ms = <20>;
         panel-init-sequence = [
```



```
display-timings {
    native-mode = <&timing0;

    timing0: timing0 {
        clock-frequency = <740000000;
        hactive = <800;
        hfront-porch = <68;
        hsync-len = <18%;
        hback-porch = <68%;
        vactive = <1280%;
        vfront-porch = <6%;
        vsync-len = <4%;
        vback-porch = <6%;
        vsync-active = <0%;
        vsync-active = <0%;
        pixelclk-active = <0%;
};
};
};</pre>
```

2) Dual-channel

子模式①和 Single-channel 的主要区别是 dsi,lanes 的值大于 4。

子模式②和 Single-channel 的主要区别是 dsi,lanes, clock-frequency, hactive,

hfront-porch, hsync-len, hback-portch 在单个 panel 的基础上 x2。

Property	Value	Comment
compatible	simple-panel-dsi	
reg	0	virtual channel
dsi,flags	(MIPI_DSI_MODE_VIDEO	MIPI_DSI_MODE_VIDEO,
	1	MIPI_DSI_MODE_VIDEO_BURST,
	MIPI_DSI_MODE_VIDEO_	表示 Video Burst Mode。
	BURST	MIPI_DSI_MODE_LPM 表示默认在
	MIPI_DSI_MODE_EOT_PA	LP 模式下发送初始化序列。
	CKET	MIPI_DSI_MODE_EOT_PACKET 表
	MIPI_DSI_MODE_LPM)	示关闭 EOTP 特性。
dsi,format	MIPI_DSI_FMT_RGB888	Pixel Format
dsi,lanes	4	Lane Number(1~8),大于 4 表示

	为 Dual-channel MIPI-DSI
	Panel.
panel-init-sequenc	 屏的上电初始化序列,具体参数配置方
е	式参考下文说明。
panel-exit-sequenc	 屏的下电初始化序列,具体参数配置方
е	式参考下文说明。

3.3 Command

```
panel-init-sequence = [
39 00 04 b9 ff 83 94
...
15 00 02 df 8e
...
05 78 01 11
05 14 01 29
];
```

格式说明:头部 3 个字节(16 进制),分别代表 Data Type,Delay,Payload Length。从第四个字节开始的数据代表长度为 Length 的 Payload。

第一条命令的解析如下:

39 00 04 b9 ff 83 94

Data Type: 0x39 (DCS Long Write)

Delay: 0x00 (0 ms)

Payload Length: 0x04 (4 Bytes)

Payload: 0xb9 0xff 0x83 0x94

最后一条命令的解析如下:

05 14 01 29

Data Type: 0x05 (DCS Short Write, no parameters)

Delay: 0x14 (20 ms)

Payload Length: 0x01 (1 Bytes)

Payload: 0x29

3.3.1 Data Type

Table 16 Data Types for Processor-sourced Packets

Data Type, hex	Data Type, binary	Description	Packet Size
0x01	00 0001	Sync Event, V Sync Start	Short
0x11	01 0001	Sync Event, V Sync End	Short
0x21	10 0001	Sync Event, H Sync Start	Short
0x31	11 0001	Sync Event, H Sync End	Short
0x08	00 1000	End of Transmission packet (EoTp)	Short
0x02	00 0010	Color Mode (CM) Off Command	Short
0x12	01 0010	Color Mode (CM) On Command	Short
0x22	10 0010	Shut Down Peripheral Command	Short
0x32	11 0010	Turn On Peripheral Command	Short
0x03	00 0011	Generic Short WRITE, no parameters	Short
0x13	01 0011	Generic Short WRITE, 1 parameter	Short
0x23	10 0011	Generic Short WRITE, 2 parameters	Short
0x04	00 0100	Generic READ, no parameters	Short
0x14	01 0100	Generic READ, 1 parameter	Short
0x24	10 0100	Generic READ, 2 parameters	Short
0x05	00 0101	DCS Short WRITE, no parameters	Short
0x15	01 0101	DCS Short WRITE, 1 parameter	Short
0x06	00 0110	DCS READ, no parameters	Short
0x37	11 0111	Set Maximum Return Packet Size	Short
0x09	00 1001	Null Packet, no data	Long
0x19	01 1001	Blanking Packet, no data	Long
0x29	10 1001	Generic Long Write	Long
0x39	11 1001	DCS Long Write/write_LUT Command Packet	Long
0x0C	00 1100	Loosely Packed Pixel Stream, 20-bit YCbCr, 4:2:2 Format	Long
0x1C	01 1100	Packed Pixel Stream, 24-bit YCbCr, 4:2:2 Format	Long
0x2C	10 1100	Packed Pixel Stream, 16-bit YCbCr, 4:2:2 Format	Long
0x0D	00 1101	Packed Pixel Stream, 30-bit RGB, 10-10-10 Format	Long
0x1D	01 1101	Packed Pixel Stream, 36-bit RGB, 12-12-12 Format	Long

14

Data Type, hex	Data Type, binary	Description	Packet Size
0x3D	11 1101	Packed Pixel Stream, 12-bit YCbCr, 4:2:0 Format	Long
0x0E	00 1110	Packed Pixel Stream, 16-bit RGB, 5-6-5 Format	Long
0x1E	01 1110	Packed Pixel Stream, 18-bit RGB, 6-6-6 Format	Long
0x2E	10 1110	Loosely Packed Pixel Stream, 18-bit RGB, 6-6-6 Format	Long
0x3E	11 1110	Packed Pixel Stream, 24-bit RGB, 8-8-8 Format	Long
0xX0 and 0xXF, unspecified	XX 0000 XX 1111	DO NOT USE All unspecified codes are reserved	

① DCS Write

0101 DCS Short WRITE,	1 parameter	Short
	CO VALADO CONTRA DO COMO	
		•
		•
1001 DCC Lana Weite har	its LLIT Command Docket	Long
1	1 1001 DCS Long Write/wr	1 1001 DCS Long Write/write_LUT Command Packet

DCS packet 包括一个字节的 dcs 命令,以及 n 个字节的 parameters。

如果 n < 2,将以 Short Packet 的形式对 Payload 进行打包。n = 0,表示只发送 dcs 命令,不带参数,Data Type 为 0x05; n = 1,表示发送 dcs 命令,带一个参数,Data Type 为 0x15。

如果 n >= 2,将以 Long Packet 的形式对 Payload 进行打包。此时发送 dcs 命令,带 n 个参数,Data Type 为 0x39。

2 Generic Write

0x03	00 0011	Generic Short WRITE, no parameters	Short
0x13	01 0011	Generic Short WRITE, 1 parameter	Short
0x23	10 0011	Generic Short WRITE, 2 parameters	Short

Let	Letter 1	-1	
0x29	10 1001	Generic Long Write	Long

Gerneic Packet 包括 n 个字节的 parameters。

如果 n < 3,将以 Short Packet 的形式对 Payload 进行打包。n=0,表示 no parameters,Data Type 为 0x03; n=1,表示 1 parameter,Data Type 为 0x13; n=2,表示 2 parameters,Data Type 为 0x23。

如果 n >= 3,将以 Long Packet 的形式进行对 Payload 打包,表示 n parameters,Data

Type 为 0x29。

3.3.2 **Delay**

表示当前 Packet 发送完成之后,需要延时多少 ms,再开始发送下一条命令。

3.3.3 Payload Length

表示 Packet 的有效负载长度。

3.3.4 Payload

表示 Packet 的有效负载,长度为 Payload Length。

3.3.5 Exmaple

(B) On sequence

sequence	DataType (hex)	index (hex)	paramel # (he		comment
		SL	EEP MO	DE	
			1	L	
DCDC_EN L->H				DCDC_EN L->H (VSP,VSN on)	
wait 20ms			800		
command	05	01		soft reset	
wait 5ms					
command	23	B0	1 00) MCAP	
command	29	B3	1 04 2 00 3 00 4 22 5 00	Interface setting	
command	29	B4	1 00	Interface ID setting	
command	29	B6	1 3/ 2 D	A DSI control	
command	15	51	1 E	8 write display brightness	
command	15	53	1 20	C write control display	
command	15	3A	1 7	7 set pixel format	
command	39	2A	1 00 2 00 3 04 4 Al	set column address 4	
command	39	2B	1 00 2 00 3 00 4 71	7	
send image	39	2C/3C		write memory / write memory continue	
command	05	11		exit sleep mode	
wait 120ms					
command	05	29		set display on	
wait min 0ms	1,000				
LED EN L->H				LED EN L->H	
				L	
		NO	RMAL MO	DDE	

(C) Off sequence

sequence	DataTyp (hex)	index (hex)	paran # (description	comment
			IORMA	AL MO	DE	
				1		
command	05	28	-		set display off	
wait 20ms						
command	05	10	-	- e - 3	enter sleep mode	
wait 80ms						
DCDC EN H->L			18	- 8	DCDC_EN H->L (VSP,VSN off)	
wait 20ms						
Ž.		- 1	SLEEF	MOE	E	

3.4 常见问题

如何对 MIPI-DSI 外设进行读写操作。
 drivers/gpu/drm/drm_mipi_dsi.c
 drivers/gpu/drm/drm_mipi_dsi.h
 提供了对 MIPI-DSI 外设通信的相关 API。

2. 如何判断 MIPI-DSI 外设有正常工作?

可以对 MIPI-DSI 外设进行读操作,如果通信正常,说明外设有正常工作。比如支持 DCS 标准 MIPI_DCS_GET_POWER_MODE(0x0A)命令的外设,可以通过读取 power_mode 来判断。

```
a/drivers/gpu/drm/panel/panel-simple.c
+++ b/drivers/gpu/drm/panel/panel-simple.c
@@ -627,6 +627,7 @@ static int panel_simple_prepare(struct drm_panel *panel)
       struct panel_simple *p = to_panel_simple(panel);
       if (p->prepared)
               return 0;
@ -655,6 +656,11 @ static int panel_simple_prepare(struct drm_panel *panel)
       if (p->desc && p->desc->delay.init)
                panel simple sleep(p->desc->delay.init);
       if (p->on cmds) {
                if (p->dsi)
                        err = panel_simple_dsi_send_cmds(p, p->on_cmds);
👊 -664,6 +670,11 👊 static int panel simple prepare(struct drm panel *panel)
                       dev err(p->dev, "failed to send on cmds\n");
       p->prepared = true;
       return 0;
```



```
[ 29.339267] dw-mipi-dsi ff450000.dsi: final DSI-Link bandwidth: 460 x 4 Mbps
[ 29.407062] panel-simple-dsi ff450000.dsi.0: err=0, mode=08
[ 29.566445] panel-simple-dsi ff450000.dsi.0: err=0, mode=9c
```

在外设硬件复位之后,读取 power_mode, err=0 说明通信正常,从而判断设备供电和复位是正常的, mode=0x08 说明设备目前是 OFF 状态。在发送初始化命令之后,读取 power_mode, mode=0x9c, 说明设备目前是 ON 状态。

3. 如何支持 DCS 背光。

如果设备支持标准 DCS 背光调节,并且代码已经实现 DCS 背光驱动,可以使能 DCS 背光功能。

```
1. 删除dsi-panel节点下的backlight属性。
bivvy@rk-intel-1:~/rk3288/hardware/rockchip/liblights$ git diff
diff --git a/lights.cpp b/lights.cpp
index eebcd8f..55e3900 100644
--- a/lights.cpp
+++ b/lights.cpp
@@ -34,7 +34,7 @@
#define LOGE(fmt, args...) ALOGE(fmt, ##args)
 -#define BACKLIGHT_PATH "/sys/class/backlight/rk28_bl/brightness"
+#define BACKLIGHT_PATH "/sys/class/backlight/dcs-backlight/brightness"
 #define BACKLIGHT_PATH1 "/sys/class/backlight/backlight/brightness" // for kernel 4.4
 #define BUTTON_LED_PATH "sys/class/leds/rk29_key_led/brightness"
#define BATTERY_LED_PATH "sys/class/leds/battery_led/brightness"
3.
bivvy@rk-intel-1:~/rk3288/device/rockchip/common$ git diff
diff --git a/init.rk30board.rc b/init.rk30board.rc
index b7ae3e1..f031e73 100755
--- a/init.rk30board.rc
+++ b/init.rk30board.rc
@@ -139,7 +139,7 @@ on boot
    write /proc/sys/net/core/wmem_max 1048576
    # backlight
    chown system system /sys/class/backlight/rk28_bl/brightness
    chown system system /sys/class/backlight/dcs-backlight/brightness
    chown system system /sys/class/backlight/backlight/brightness
```

4. 如何使能 EOTP (EoT packet) 特性。

DSI 驱动根据 MIPI_DSI_MODE_EOT_PACKET 来判断是否使能 EOTP, 如果 flags 没有配置 MIPI_DSI_MODE_EOT_PACKET, 使能 EOTP 特性, 如果 flags 有配置 MIPI DSI MODE EOT PACKET, 关闭 EOTP 特性。

5. 如何发送 data_type 为 MIPI_DSI_SHUTDOWN_PERIPHERAL (0x22) 和 MIPI_DSI_TURN_ON_PERIPHERAL (0x32) 的 packet。

```
-- a/drivers/gpu/drm/panel/panel-simple.c
+++ b/drivers/gpu/drm/panel/panel-simple.c
  -580,6 +580,16 @@ static int panel_simple_disable(struct drm_panel *panel)
        if (p->desc && p->desc->delay.disable)
               panel_simple_sleep(p->desc->delay.disable);
       if (p->cmd_type == CMD_TYPE_MCU) {
               err = panel_simple_mcu_send_cmds(p, p->off_cmds);
                if (err)
  -685,6 +695,16 @@ static int panel_simple_enable(struct drm_panel *panel)
                panel simple sleep(p->desc->delay.enable);
       backlight enable(p->backlight);
```

6. 如何使能非连续时钟?

DSI 驱动根据 MIPI_DSI_CLOCK_NON_CONTINUOUS 来判断是否使能非连续时钟,如果 flags 没有配置 MIPI_DSI_CLOCK_NON_CONTINUOUS,表示连续时钟,如果 flags 有配置 MIPI_DSI_MODE_EOT_PACKET,表示非连续时钟。

4 eDP

- 1) rk3288/rk3368/rk3566/rk3568 (1/2/4 lanes, 1.62Gbps/2.7Gbps)
- 2) rk3399 (1/2/4 lanes, 1.62Gbps/2.7Gbps/5.4Gbps)

4.1 Documentation and Source Code

Kernel (develop-4.19):

drivers/gpu/drm/bridge/analogix/analogix_dp_core.c

drivers/gpu/drm/bridge/analogix/analogix_dp_reg.c

drivers/gpu/drm/rockchip/analogix_dp-rockchip.c

drivers/phy/rockchip/phy-rockchip-naneng-edp.c

Documentation/devicetree/bindings/display/bridge/analogix_dp.txt

Documentation/devicetree/bindings/display/rockchip/analogix_dp-rockchip.txt

Kernel (develop-4.4):

drivers/gpu/drm/bridge/analogix/analogix_dp_core.c

drivers/gpu/drm/bridge/analogix/analogix_dp_reg.c

drivers/gpu/drm/rockchip/analogix_dp-rockchip.c

drivers/phy/rockchip/phy-rockchip-dp.c

drivers/phy/rockchip/phy-rockchip-naneng-edp.c

Documentation/devicetree/bindings/display/bridge/analogix_dp.txt

Documentation/devicetree/bindings/display/rockchip/analogix_dp-rockchip.txt

Documentation/devicetree/bindings/phy/rockchip-dp-phy.txt

U-Boot (next-dev):

drivers/video/drm/analogix_dp.c
drivers/video/drm/analogix_dp_reg.c
drivers/phy/phy-rockchip-naneng-edp.c

U-Boot (rkdevelop)

drivers/video/rockchip_analogix_dp.c
drivers/video/rockchip_analogix_dp_reg.c

4.2 DT Bindings

4.2.1 Host

1) Embedded Connection

2) Box-to-box Connection

Property	Value	Comment
force-hpd		对于 Embedded Connection, 一般不需要
		HPD 功能,需要加上该属性。
hpd-gpios		对于 Box-to-box Connection,一般需要 HPD
		功能,需要配置该属性。

4.2.2 PHY

RK3288/RK3368/RK3566/RK3568:

```
&edp_phy {
         status = "okay";
};
```

4.2.3 VOP Routing

RK3288/RK3399:

RK3566/RK3568:

NOTE: 对于有多个 VOP/VP 的芯片,需要选择其一,如果有打开 LOGO,route_edp 的 connect 属性也要指定为同一个 VOP/VP。

4.2.4 Logo

RK3288/RK3399:

```
&route_edp {
          connect = <&vopb_out_edp>;
          status = "okay";
};
```

RK3368:

RK3566/RK3568:

4.2.5 Panel

```
panel {
        compatible = "simple-panel";
        backlight = <&backlight);</pre>
        power-supply = <&vcc_lcd>;
        enable-gpios = <&gpio1 13 GPIO ACTIVE HIGH>;
        prepare-delay-ms = <20>;
        enable-delay-ms = <20>;
        display-timings {
                native-mode = <&timing0>;
                timing0: timing0 {
                         clock-frequency = <2000000000);</pre>
                         hactive = <1536>;
                         vactive = <2048>;
                         hfront-porch = <12>;
                         hsync-len = <16>;
                         hback-porch = <48>;
                         vfront-porch = (8);
                         vsync-len = <4>;
                         vback-porch = <8>;
                         hsync-active = <0>;
                         vsync-active = <0>;
                         de-active = <0>;
                         pixelclk-active = <0>;
                 };
        };
        ports {
                panel in edp: endpoint {
                         remote-endpoint = <&edp_out_panel>;
                 };
        };
};
```

① 属性说明

Property	Value	Comment
bpc	6 or 8	Bit pixel component

bus-forma	MEDIA_BUS_FMT_RGB666_1X18	分别对应 6bit 和 8bit 屏
t	MEDIA_BUS_FMT_RGB888_1X24	

4.3 常见问题

- 1) Aux Transaction fail
- [33.319392] rockchip-dp ff970000.edp: Rx Max Link Rate is abnormal :c0!
- [33.319543] rockchip-dp ff970000.edp: Rx Max Lane count is abnormal :0!
- [33.322377] rockchip-dp ff970000.edp: AUX CH command reply failed!

Aux 通信失败一般是由于设备端没有正常工作或者屏线问题,导致没有应答,应当检查设备端的供电是否正常以及排线。

5 LVDS

- 1) rk3128/px30/rk3326/rk3368 (single-channel)
- 2) rk3288 (single-channel/dual-channel)

5.1 Documentation and Source Code

Kernel (develop-4.4):

drivers/gpu/drm/rockchip/rockchip_lvds.c

drivers/phy/rockchip/phy-rockchip-inno-video-combo-phy.c

drivers/phy/rockchip/phy-rockchip-inno-video-phy.c

Documentation/devicetree/bindings/display/rockchip/rockchip-lvds.txt

Documentation/devicetree/bindings/phy/phy-rockchip-inno-video-combo-phy.txt

Documentation/devicetree/bindings/phy/phy-rockchip-inno-video-phy.txt

U-Boot (next-dev):

drivers/video/drm/rockchip_lvds.c

drivers/video/drm/inno_video_combo_phy.c

drivers/video/drm/inno_video_phy.c

U-Boot (rkdevelop):

drivers/video/rockchip_lvds.c

5.2 DT Bindings

5.2.1 Host

1) Single-channel

2) Dual-channel

Property	Value	Comment
dual-channel		使能 Dual-channel 模式
rockchip,data-s		在 Dual-channel 模式下,对两个通道的奇偶像素进行互换。
wap		

5.2.2 PHY

```
&video_phy {
         status = "okay";
};
```

5.2.3 VOP Routing

```
&lvds_in_vopb {
          status = "okay";
};

&lvds_in_vopl {
          status = "disabled";
};
```

NOTE: 对于有两个 VOP 的芯片,需要选择其一,如果有打开 LOGO,route_lvds 的 connect 属性也要指定为同一个 VOP。

5.2.4 Logo

5.2.5 Panel

```
panel {
        compatible = "samsung, ls1070n101", "simple-panel";
        backlight = <&backlight>;
        power-supply = <&vcc3v3 lcd>;
        prepare-delay-ms = <20>;
        unprepare-delay-ms = <20>;
        bus-format = <MEDIA BUS FMT RGB888 1X7X4 SPWG>;
        width-mm = <217>;
        height-mm = \langle 136 \rangle;
        display-timings {
                 native-mode = <&timing0>;
                 timing0: timing0 {
                         clock-frequency = <49500000);
                         hactive = <1024>;
                         hback-porch = <90>;
                         hfront-porch = <90>;
                         vback-porch = <10>;
                         vfront-porch = <10>;
                         hsync-len = \langle 90 \rangle;
                         vsync-len = <10>;
                         hsync-active = <0>;
                         vsync-active = <0>;
                         de-active = <0>;
                         pixelclk-active = <0>;
                 };
        };
        port {
                 panel_in_lvds: endpoint {
                          remote-endpoint = <&lvds_out_panel>;
                 };
        };
};
```

① 属性说明

Property	Value	Comment
bus-form	MEDIA_BUS_FMT_RGB666_1X7X3_	LVDS 信号的数据映射方式,分别对应

at	SPWG	"vesa-18", "vesa-24", "jeida-24",
	MEDIA_BUS_FMT_RGB888_1X7X4_	"jeida-18"。 具体映射关系参考 data
	SPWG	mapping 说明。
	MEDIA_BUS_FMT_RGB888_1X7X4_	
	JEIDA	
	MEDIA_BUS_FMT_RGB666_1X7X3_	
	JEIDA	

5.3 Data Mapping

5.3.1 6 bit output mode

		VESA_6BIT	JEIDA_6BIT
	TX0	R0	R2
	TX1	R1	R3
180	TX2	R2	R4
Y	TX3	R3	R5
0	TX4	R4	R6
	TX6	R5	R7
	TX7	G0	G2
	TX8	G1	G3
	TX9	G2	G4
Y	TX12	G3	G5
1	TX13	G4	G6
	TX14	G5	G7
	TX15	в0	B2
	TX18	B1	В3
	TX19	B2	в4
	TX20	В3	B5
	TX21	В4	В6
Y	TX22	B5	В7
2	TX24	HSYNC	HSYNC
	TX25	VSYNC	VSYNC
	TX26	ENABLE	ENABLE
	TX27	GND	GND
	TX5	GND	GND
	TX10	GND	GND
Y	TX11	GND	GND
3	TX16	GND	GND
	TX17	GND	GND
	TX23	RSVD	RSVD

32

5.3.2 8 bit output mode

		VESA_8BIT	JEIDA_8BIT
Y 0	TX0 TX1 TX2 TX3 TX4 TX6 TX7	R0 R1 R2 R3 R4 R5 G0	R2 R3 R4 R5 R6 R7 G2
Y 1	TX8 TX9 TX12 TX13 TX14 TX15 TX18	G1 G2 G3 G4 G5 B0 B1	G3 G4 G5 G6 G7 B2 B3
Y 2	TX19 TX20 TX21 TX22 TX24 TX25 TX26	B2 B3 B4 B5 HSYNC VSYNC ENABLE	B4 B5 B6 B7 HSYNC VSYNC ENABLE
Y 3	TX27 TX5 TX10 TX11 TX16 TX17 TX23	R6 R7 G6 G7 B6 B7 RSVD	R0 R1 G0 G1 B0 B1 RSVD

6 RGB

1) rk3128/rk3326/px30/rk3288/rk3368

6.1 Documentation and Source Code

Kernel (develop-4.4):

drivers/gpu/drm/rockchip/rockchip_rgb.c

drivers/phy/rockchip/phy-rockchip-inno-video-combo-phy.c

drivers/phy/rockchip/phy-rockchip-inno-video-phy.c

Documentation/devicetree/bindings/display/rockchip/rockchip-rgb.txt

Documentation/devicetree/bindings/phy/phy-rockchip-inno-video-combo-phy.txt

Documentation/devicetree/bindings/phy/phy-rockchip-inno-video-phy.txt

U-Boot (next-dev):

```
drivers/video/drm/rockchip_rgb.c
```

drivers/video/drm/inno_video_combo_phy.c

drivers/video/drm/inno_video_phy.c

U-Boot (rkdevelop):

drivers/video/rockchip_lvds.c

6.2 DT Bingdings

6.2.1 Host

6.2.2 PHY

```
&video_phy {
         status = "okay";
};
```


6.2.3 VOP Routing

NOTE: 对于有两个 VOP 的芯片,需要选择其一,如果有打开 LOGO,route_rgb 的 connect 属性也要指定为同一个 VOP。

6.2.4 Logo

```
&route_rgb {
          connect = <&vopb_out_rgb>;
          status = "okay";
};
```


6.2.5 Panel

```
panel {
        compatible ="simple-panel";
        enable-gpios = <&gpio0 RK_PB5 GPIO_ACTIVE_LOW>;
        reset-gpios = <&gpio3 RK_PB7 GPIO_ACTIVE_LOW>;
        bus-format = <MEDIA BUS FMT RGB666 1X18>;
        display-timings {
                native-mode = <&timing0>;
                timing0: timing0 {
                        clock-frequency = <51200000>;
                        hback-porch = <100>;
                        hfront-porch = <120>;
                        vback-porch = <10>;
                        vfront-porch = <15>;
                        hsync-len = <100>;
                        vsync-len = <10>;
                        hsync-active = <0>;
                        vsync-active = <0>;
                        de-active = <0>;
                        pixelclk-active = <0>;
                };
        };
        port {
                panel_in_rgb: endpoint {
                        remote-endpoint = <&rgb_out_panel>;
                };
        };
};
```

Property	Value	Comment
bus-form	MEDIA_BUS_FMT_RBG888_1X24	RGB信号的输出关系,分别对应
at	MEDIA_BUS_FMT_RGB666_1X24_C	"OUT_P888" , "OUT_D888_P666" ,
	PADHI	"OUT_P666"。具体参考 data mapping
	MEDIA_BUS_FMT_RGB666_1X18	说明。

6.3 Data Mapping

Display	RGB	RGB	RGB	RGB	RGB Parallel	ITU656	ITU656	ITU656	MCU mode
mode	Parallel	Parallel	Parallel	Parallel	16-bit	Mode0	Mode1	Mode2	
	24-bit	18-bit	18-bit	16-bit					
Screen_fac	OUT_P88	OUT_D888_	OUT_P666	OUT_D888_	OUT_P565	OUT_S888/	OUT_S888/O	OUT_S888/OU	OUT_P888
e	8	P666		P565		OUT_S888	UT_S888DU	T_S888DUMY	
						DUMY	MY		
DCLK	DCLK	DCLK	DCLK	DCLK	DCLK	DCLK	DCLK	DCLK	RS
VSYNC	VSYNC	VSYNC	VSYNC	VSYNC	VSYNC				CS
HSYNC	HSYNC	HSYNC	HSYNC	HSYNC	HSYNC				WEN
DEN	DEN	DEN	DEN	DEN	DEN				REN
DATA	DATA[23:	DATA[23:18]	DATA[17:0]	DATA[23:19]	DATA[15:0]	DATA[7:0]	DATA[15:8]	DATA[14:7]	
	0]	DATA[15:10]		DATA[15:10]					
		DATA[7:2]		DATA[7:3]					
D23	R7	R5	*	R4	*	(0 * 0	7E3	(*)	D23
D22	R6	R4		R3	ğ	-	•		D22
D21	R5	R3	÷	R2	-	(9 4 ()	(2)		D21
D20	R4	R2	-	R1	-	(c = 0)	5#6	0 . 9	D20

D19	R3	Ri	114	R0	-	\$	(2)	2	D19
D18	R2	RO		(#)	3	15	187	*	D18
D17	RI		R5		-	\$	020	2	D17
D16	RO	5 3	R4		35	rii	151	8	D16
D15	G7	G5	R3	G5	R4	\$	D7	2	D15
D14	G6	G4	R2	G4	R3	ī.	D6	D7	D14
D13	G5	G3	RI	G3	R2	۶	D5	D6	D13
D12	G4	G2	RO	G2	RI	ī.	D4	D5	D12
D11	G3	G1	G5	G1	RO	\$	D3	D4	D11
D10	G2	G0	G4	G0	G5	£8	D2	D3	D10
D9	GI	<u>.</u>	G3	(2)	G4	\$	DI	D2	D9
D8	G0	10	G2	(#E)	G3	£3	D0	DI	D8
D7	B7	B5	G1	B4	G2	D7	020	D0	D7
D6	B6	B4	G0	вз	G1	D6	1.51	*	D6
D5	B5	В3	B5	B2	G0	D5	020	2	D5
D4	B4	B2	В4	В1	B4	D4		*	D4
D3	В3	BI	В3	В0	В3	D3	020		D3
D2	B2	В0	В2	(#E)	B2	D2	1.00	*	D2
D1	B1	<u></u>	B1	(2)	BI	DI	020	ž.	DI
D0	В0	10	В0	**	В0	D0	N. 	*	D0

7 DP Alt Mode

7.1 Documentation and Source Code

Kernel (develop-4.4):

drivers/gpu/drm/rockchip/cdn-dp-core.c

drivers/gpu/drm/rockchip/cdn-dp-reg.c

drivers/gpu/drm/rockchip/cdn-dp-link-training.c

drivers/phy/rockchip/phy-rockchip-typec.c

Documentation/devicetree/bindings/display/rockchip/cdn-dp-rockchip.txt

Documentation/devicetree/bindings/phy/phy-rockchip-typec.txt

7.2 DT Bindings

7.2.1 DP_TX

7.2.2 USB Type-C PHY

```
&tcphy0 {
        extcon = <&fusb0>;
        status = "okay";
};
```

7.2.3 USB PD

```
%i2c4 {
    status = "okay";

    fusb0: fusb30x@22 {
        compatible = "fairchild,fusb302";
        reg = <0x22>;
        pinctrl-names = "default";
        pinctrl-0 = <&fusb0_int>;
        int-n-gpios = <&gpio1 2 GPIO_ACTIVE_HIGH>;
        vbus-5v-gpios = <&gpio2 0 GPIO_ACTIVE_HIGH>;
        status = "okay";
    };
};
```


7.2.4 VOP Routing

```
&dp_in_vopb {
          status = "okay";
};
&dp_in_vopl {
          status = "disabled";
};
```

NOTE:对于有两个 VOP 的芯片,需要选择其一,一般选择 VOPB,因为需要支持 4K。

8 RK618

RK616/RK618 是 Rockchip 平台的配套显示转换芯片,该芯片具有如下特性:

- ① 两个 RGB 输入接口(LCD0,LCD1)。如果分别把 LCD0 和 LCD1 接到不同的源,可以实现 双屏异显;如果只接 LCD0,可以实现单屏/双屏同显,此时可以不使用 LCD1 或者将 LCD1 复用为 RGB 输出接口。
- ② 一个 RGB 输出口,与 LVDS 输出口复用。
- ③ 一个 LVDS 输出口,与 RGB 输出口复用,RK618 支持 dual-channel,RK616 不支持 dual-channel。
- ④ 一个 MIPI-DSI 输出口,RK618 支持该接口,RK616 不支持该接口。
- ⑤ 一个 HDMI 输出口。

8.1 Documentation and Source Code

Kernel (develop-4.4):

drivers/mfd/rk618.c

drivers/clk/rockchip/rk618/clk-rk618.c

drivers/gpu/drm/rockchip/rk618/rk618_lvds.c

drivers/gpu/drm/rockchip/rk618/rk618_rgb.c

drivers/gpu/drm/rockchip/rk618/rk618_scaler.c

drivers/gpu/drm/rockchip/rk618/rk618_vif.c

drivers/gpu/drm/rockchip/rk618/rk618_hdmi.c

drivers/gpu/drm/rockchip/rk618/rk618_dither.c

drivers/gpu/drm/rockchip/rk618/rk618_dsi.c

Documentation/devicetree/bindings/mfd/rk618.txt

Documentation/devicetree/bindings/clock/rockchip,rk618-cru.txt

Documentation/devicetree/bindings/display/rockchip/rockchip,rk618.txt

U-Boot (next-dev):

drivers/video/drm/rk618.c

drivers/video/drm/rk618_lvds.c

8.2 DT Bindings

8.2.1 RK618

```
%i2c0 {
    status = "okay";

    rk618: rk618@50 {
        compatible = "rockchip,rk618";
        reg = <0x50>;
        pinctrl-names = "default";
        pinctrl-0 = <&i2s1_2ch_mclk>;
        clocks = <&cru SCLK_I2S1_OUT>;
        clock-names = "clkin";
        assigned-clocks = <&cru SCLK_I2S1_OUT>;
        assigned-clock-rates = <120000000>;
        reset-gpios = <&gpio0 RK_PA0 GPIO_ACTIVE_LOW>;
        status = "okay";
    };
};
```

Property	Value	Comment
pinctrl-names		输入时钟 CLKIN 引脚复用配置
pinctrl-0		

clocks	输入时钟 CLKIN 引用
clock-names	
assigned-clocks	指定 CLKIN 初始频率为 12MHz
assigned-clock-rates	
reset-gpios	Reset 引脚配置,可选。
enable-gpios	Enable 引脚配置,可选。
power-supply	Regulator 配置,可选。

8.2.2 CRU

Property	Value	Comment
clocks		输入时钟 CLKIN 引用,以及 LCDC0_DCLKP 引用
clock-names		
assigned-clocks		指定内部时钟默认父时钟

ssigned-clock-rates				
---------------------	--	--	--	--

8.2.3 HDMI

Property	Value	Comment
interrupt-parent		INTERUPT 引脚配置
interrupts		

8.2.4 LVDS

Property	Value	Comment
dual-channel		使能 dual-channel 模式,RK616 不支持 dual-channel,
		RK618 支持 dual-channel。


```
panel {
        compatible = "chunghwa, claa101wh31-cw", "simple-panel";
        backlight = <&backlight>;
        power-supply = <&vcc3v3_lcd>;
enable-gpios = <&gpio0 RK_PB5 GPIO_ACTIVE_LOW>;
        prepare-delay-ms = <120>;
        unprepare-delay-ms = <120>;
        height-mm = \langle 154 \rangle;
        display-timings {
                 native-mode = <&timing1>;
                 timing1: timing1 {
                          clock-frequency = <720000000);</pre>
                          hback-porch = <60>;
                          hfront-porch = <60>;
                          vback-porch = <16>;
                          vfront-porch = <16>;
                          hsync-len = <40>;
                          vsync-len = <6>;
                          hsync-active = <0>;
                          vsync-active = <0>;
                          de-active = <0>;
                          pixelclk-active = <0>;
                 };
        port {
                 panel in lvds: endpoint {
                          remote-endpoint = <&lvds_out_panel>;
        };
};
```

8.2.5 RGB


```
panel {
        compatible = "simple-panel";
        backlight = <&backlight>;
        enable-gpios = <&gpio0 RK PB5 GPIO ACTIVE HIGH>;
        enable-delay-ms = <20>;
        prepare-delay-ms = \langle 20 \rangle;
        unprepare-delay-ms = <20>;
        disable-delay-ms = <20>;
        bus-format = <MEDIA BUS FMT RGB666 1X24 CPADHI>;
        height-mm = \langle 86 \rangle;
        display-timings {
                 native-mode = <&timing0>;
                 timing0: timing0 {
                          clock-frequency = <490000000);
                         hactive = <1024>;
                          vactive = <600);
                         hback-porch = <90>;
                         hfront-porch = <90>;
                         vback-porch = <10>;
                         vfront-porch = <10>;
                         hsync-len = <90>;
                         vsync-len = <10>;
                         hsync-active = <0>;
                         vsync-active = <0>;
                         pixelclk-active = <0>;
                 };
        };
        port {
                 panel_in_rgb: endpoint {
                          remote-endpoint = <&rgb out panel>;
                 };
        };
};
```

8.2.6 MIPI-DSI


```
panel@0 {
        reg = \langle 0 \rangle;
        power-supply = <&vcc3v3_lcd>;
        backlight = <&backlight>;
        reset-gpios = <&gpio2 RK PA0 GPIO ACTIVE LOW>;
        prepare-delay-ms = <20>;
        disable-delay-ms = <20>;
        unprepare-delay-ms = <20>;
        dsi,flags = <(MIPI_DSI_MODE_VIDEO |
```


8.2.7 Clone Mode

该模式需要选用横屏的 LCD,因为输入源的分辨率是 HDMI 分辨率,SCALER 模块会对这个源根据 LCD 分辨率进行缩放,如果 LCD 是竖屏,会造成显示效果不佳。


```
lvds {
    compatible = "rockchip,rk618-lvds";
    clocks = <&clock LVDS_CLK>;
    clock-names = "lvds";
    status = "okay";

ports {
        #address-cells = <1>;
        #size-cells = <0>;

        port@0 {
            reg = <0>;

            lvds_in_scaler: endpoint {
                 remote-endpoint = <&scaler_out_lvds>;
            };
        };
        port@1 {
            reg = <1>;
            lvds_out_panel: endpoint = <&panel_in_lvds>;
            };
        };
    };
};
```



```
vif {
    compatible = "rockchip,rk618-vif";
    clocks = <&clock VIF0_CLK>, <&clock VIF0_PRE_CLK>;
    clock-names = "vif", "vif_pre";
    status = "okay";

    ports {
        #address-cells = <1>;
        #size-cells = <0>;

        port@0 {
            reg = <0>;

            vif_in_rgb: endpoint {
                remote-endpoint = <&rgb_out_vif>;
            };
        };

        port@1 {
            reg = <1>;

            vif_out_hdmi: endpoint {
                 remote-endpoint = <&hdmi_in_vif>;
            };
        };
    };
};
```



```
panel {
        compatible = "simple-panel";
        backlight = <&backlight);
        enable-gpios = <&gpio@ RK_PB5 GPIO_ACTIVE_LOW>;
        prepare-delay-ms = <120>;
        enable-delay-ms = <120>;
        disable-delay-ms = <120>;
        unprepare-delay-ms = <120>;
        bus-format = <MEDIA BUS FMT RGB888 1X7X4 SPWG>;
        width-mm = \langle 231 \rangle;
        height-mm = \langle 154 \rangle;
        display-timings {
                 native-mode = <&timing1>;
                 timing1: timing1 {
                          clock-frequency = <72000000>;
                          vactive = <800>;
                          hback-porch = <60>;
                          hfront-porch = <60>;
                          vback-porch = <16>;
                          vfront-porch = <16>;
                          hsync-len = \langle 40 \rangle;
                          vsync-len = <6>;
                          hsync-active = <0>;
                          de-active = <0>;
                          pixelclk-active = <0>;
                 };
        };
        port {
                 panel_in_lvds: endpoint {
                          remote-endpoint = <&lvds out panel);
                 };
        };
};
```

8.2.8 调试步骤

1. 首先根据硬件设计,按 8.2.1 配置 RK618 节点,如果软件驱动没有报错,那么会生成相关调试节点,根据 registers 节点可以通过 I2C 读到 RK618 相关寄存器值。如果读出来的值是 XXXXXXXX,说明设备没有正常工作,需要确认 RK618 供电以及复位 IO 是否配置正确,

硬件设计是否有问题。如果供电和复位正常,需要确认 CLKIN 输入时钟是否为 12MHz 连续波形。

```
rk3326_evb:/ # cat /d/regmap/0-0050-core/registers
00: 00000000
04: 000100cb
08: 002c0898
0c: 084000c0
10: 00050465
14: 04610029
18: 00000000
1c: 00000000
20: 00000000
24: 00000000
28: 00000000
2c: 00000000
30: 00000014
34: 732d77fd
38: 00090734
3c: 005a050e
40: 04b400b4
44: 000a0276
48: 026c0014
4c: 04b400b4
50: 026c0014
54: 00000011
58: 00000280
5c: 00001d3e
60: 00000000
64: 00002184
68: 00003025
6c: 00000441
70: 00200000
74: 00005028
78: 00000441
7c: 00700000
80: 00000000
84: 00000020
88: 00003c00
8c: 0000ffff
90: 0000000f
94: 0000000f
98: 00000000
9c: 0006e020
```

2. 参考现有配置,并对板级配置进行适配。

目前驱动只支持 LCD0 作为输入的单显以及双屏同显应用。

如果需求是双屏同显,建议先把 HDMI 和单屏先分别调试完成,再修改配置为双屏同显。

Single-channel LVDS:

arch/arm64/boot/dts/rockchip/px30-ad-r35-mb-rk618-lvds.dts

Dual-channel LVDS:

arch/arm64/boot/dts/rockchip/px30-ad-r35-mb-rk618-dual-lvds.dts

HDMI: arch/arm64/boot/dts/rockchip/px30-ad-r35-mb-rk618-hdmi.dts

DSI: arch/arm64/boot/dts/rockchip/px30-z7-a0-rk618-dsi.dts

Clone Mode (HDMI and LVDS):

arch/arm64/boot/dts/rockchip/px30-ad-r35-mb-rk618-hdmi-lvds.dts

9 MCU/CPU

9.1 Interface

MCU 屏又叫 CPU 屏基于 i80 总线协议,具有 CS、RS、RD、WR 四根控制信号线和 8/16/18/24 数据线,MCU 屏的优点是控制简单,无需同步信号和时钟信号,缺点是屏内部需要 集成 GRAM,成本较高,无法做到大分辨率的屏。目前 RK3188、RK3308、RK3326/PX30 支持 MCU 屏。

控制信号:

CS: 屏的片选信号, 低有效, 和 VSYNC 复用。

RS: 数据和命令区分信号, 1 表示发送数据, 0 表示发送命令, 和 DCLK 复用。

RD: 1 表示发数据到屏, 0 表示从屏读数据(RK 平台不支持), 和 DEN 复用。

WR: 写使能信号,上升沿有效,和 HSYNC 复用。

9.2 Panel

特殊属性说明

Property	Value	Comment
rgb-mode	p888、p666、p565、s888、	屏的数据接口类型
	s888_dummy	
rockchip,cmd-type	spi or mcu	spi: 通过 spi 接口发送初始化命令
		mcu:通过 mcu 接口发送初始化命令

9.3 MCU timing

```
status = "okay";

mcu-timing {
    mcu-pix-total = <9>;
    mcu-cs-pst = <1>;
    mcu-cs-pend = <8>;
    mcu-rw-pst = <2>;
    mcu-rw-pend = <5>;
    mcu-hold-mode = <0>;
};
```

- 1) mcu-pix-total: 发送一次数据/命令需要几个 DCLK 周期;
- 2) mcu-cs-pst/mcu-cs-pend: 片选开始和结束位置;
- 3) mcu-rw-pst/mcu-rw-pend:数据发送开始和结束位置;时序图:

Figure 3-1 i8080 r/w timing

10 Dual-Display

1. 主副屏属性配置(HDMI-A/eDP/DP/LVDS/DPI/DSI)

Android7.1/Android8.1:

device/rockchip/common/ system.prop

sys.hwc.device.primary=eDP

sys.hwc.device.extend=HDMI-A

Android9.0 之后版本:

device/rockchip/common/ system.prop

vendor.hwc.device.primary=eDP

vendor.hwc.device.extend=HDMI-A

2. 关闭 AFBC 特性

Android11 前:

VOPL 不支持 AFBC(Arm Frame Buffer Compression),需要关闭 AFBC 特性。

hardware/rockchip/libgralloc/Android.mk

将-DUSE_AFBC_LAYER=\$(USE_AFBC_LAYER)改为-DUSE_AFBC_LAYER=0.

Android11之后版本:

在 device/rockchip/芯片平台/device.mk 中添加如下属性:

```
vendor.gralloc.no_afbc_for_fb_target_layer=1
vendor.gralloc.no afbc for sf client layer=1
```

3. DCLK 父时钟配置

如果是 RK3399 平台,并且 uboot 是 rkdevelop 分支,需要对 VOP 的 DCLK 父时钟进行调整,避免时钟切换影响正常显示。


```
--- a/arch/arm64/boot/dts/rockchip/rk3399-sapphire-excavator-edp.dtsi
+++ b/arch/arm64/boot/dts/rockchip/rk3399-sapphire-excavator-edp.dtsi
@@ -329,12 +329,12 @@

&vopb {
    assigned-clocks = <&cru DCLK_VOP0_DIV>;
    assigned-clock-parents = <&cru PLL_CPLL>;
};

&vopl {
    assigned-clock-parents = <&cru PLL_VPLL>;
};

&vopl {
    assigned-clocks = <&cru DCLK_VOP1_DIV>;
    assigned-clock-parents = <&cru PLL_VPLL>;
}

assigned-clock-parents = <&cru PLL_VPLL>;
};
```

4. 关闭 DDR 变频

如果是 RK3326/PX30 平台,如果因为带宽不足,导致 VOP 报错,需要将 auto-freq-en 属性设为 0。

```
&dmc {
          auto-freq-en = <0>;
};
```

5. 分配 vop dclk 的父时钟 PLL

RK3288:

RK3566/RK3568:

```
&vop {
          status = "okay";
          assigned-clocks = <&cru DCLK_VOPO>, <&cru DCLK_VOP1>;
          assigned-clock-parents = <&pmucru PLL_HPLL>, <&cru PLL_VPLL>;
};
```


11 DEBUG

1. 确认显示驱动已经正常加载。

```
px5:/# dmesg | grep drm
[ 0.000000] Reserved memory: failed to reserve memory for node 'drm-logo@00000000: base 0x000000000000000, size 0 MiB
[ 0.954629] platform vpu_service: allocator is drm
[ 0.954838] platform hevc_service: allocator is drm
[ 0.964883] [drm:drm_core_init] Initialized drm 1.1.0 20060810
[ 0.969040] rockchip-drm display-subsystem: bound ff930000.vop (ops vop_component_ops)
[ 0.969108] [drm:rockchip_lvds_bind] *ERROR* failed to find panel and bridge node
[ 0.969129] rockchip-drm display-subsystem: failed to bind ff968000.lvds (ops rockchip_lvds_component_ops): -517
[ 0.969400] rockchip-drm display-subsystem: bound ff930000.vop (ops vop_component_ops)
[ 4.885955] rockchip-drm display-subsystem: bound ff930000.vop (ops vop_component_ops)
[ 4.886041] [drm:rockchip_lvds_bind] *ERROR* failed to find panel and bridge node
[ 4.886044] rockchip-drm display-subsystem: master bind ff968000.lvds (ops rockchip_lvds_component_ops): -517
[ 5.401052] rockchip-drm display-subsystem: master bind failed: -517
[ 5.401052] rockchip-drm display-subsystem: bound ff930000.vop (ops vop_component_ops)
[ 5.401194] [drm:drm_vblank_init] Supports vblank timestamp caching Rev 2 (21.10.2013).
[ 5.401200] [drm:drm_vblank_init] Supports vblank timestamp caching Rev 2 (21.10.2013).
[ 5.401305] rockchip-drm display-subsystem: failed to parse loader memory
[ 5.404415] rockchip-drm display-subsystem: failed to parse loader memory
[ 5.4053879] [drm:drm_yblank_init] Supports vblank timestamp caching Rev 2 (21.10.2013).
```

Drm 驱动的加载存在依赖关系,所以可能会多次因为驱动资源暂时获取不到而返回-EPROBE_DEFER(-517),但是只要配置正确,待相关组件驱动能够完整获取到资源后,最终就会 bound 成功。

2. 当前显示信息


```
130 rk3399 all:/ # cat /d/dri/0/summary
VOP [ff900000.vop]: ACTIVE
   Connector: eDP
        overlay mode[0] bus format[100a] output mode[f] color space[0]
   Display mode: 1536x2048p60
        clk[200000] real clk[200000] type[8] flag[a]
        H: 1536 1548 1564 1612
        V: 2048 2056 2060 2068
   win0-0: DISABLED
   win1-0: DISABLED
   win2-0: ACTIVE
        format: XB24 little-endian (0x34324258) SDR[0] color space[0]
        csc: y2r[0] r2r[0] r2y[0] csc mode[0]
        zpos: 0
        src: pos[512x0] rect[1536x2048]
        dst: pos[0x0] rect[1536x2048]
        buf[0]: addr: 0x00000000086e6000 pitch: 8192 offset: 0
   win2-1: DISABLED
   win2-2: DISABLED
   win2-3: DISABLED
   win3-0: ACTIVE
        format: AB24 little-endian (0x34324241) SDR[0] color space[0]
        csc: y2r[0] r2r[0] r2y[0] csc mode[0]
        zpos: 1
        src: pos[0x0] rect[1536x2048]
        dst: pos[0x0] rect[1536x2048]
        buf[0]: addr: 0x0000000000c8de000 pitch: 6144 offset: 0
   win3-1: DISABLED
   win3-2: DISABLED
   win3-3: DISABLED
   post: sdr2hdr[0] hdr2sdr[0]
   pre : sdr2hdr[0]
   post CSC: r2y[0] y2r[0] CSC mode[1]
VOP [ff8f0000.vop]: DISABLED
rk3399_all:/ # cat /d/dri/0/summary
VOP [ff900000.vop]: DISABLED
VOP [ff8f0000.vop]: DISABLED
```

3. connector 当前连接状态

```
rk3399_all:/ # cat /sys/class/drm/card0-eDP-1/status
connected
rk3399_all:/ # cat /sys/class/drm/card0-HDMI-A-1/status
disconnected
```

4. connector 当前使能状态

```
rk3399_all:/ # cat /sys/class/drm/card0-eDP-1/enabled
enabled
rk3399_all:/ # cat /sys/class/drm/card0-HDMI-A-1/enabled
disabled
```

5. connector 支持的显示模式

```
rk3399_all:/ # cat /sys/class/drm/card0-eDP-1/modes
1536x2048p60
```

6. connector 当前的显示模式

```
rk3399_all:/ # cat /sys/class/drm/card0-eDP-1/mode
1536x2048p60
```


7. 手动灭屏/亮屏

echo off > /sys/class/drm/card0-eDP-1/status

echo on > /sys/class/drm/card0-eDP-1/status