# SEQUENTIAL ESTIMATION OF DYNAMIC DISCRETE CHOICE GAMES

#### LECTURE 7

Econometric Society Summer School in Dynamic Structural Econometrics

Victor Aguirregabiria (University of Toronto)

UCL – July 1st, 2025

#### **OUTLINE**

- 1. Structure of empirical dynamic games
- 2. Markov Perfect Equilibrium
- 3. **Dynamic Games with Incomplete Information**
- 4. **Sequential Estimation** 
  - 4.1. **NPL Estimator**
  - 4.2. Alternative algorithms to compute NPL estimator
    - a. Fixed point iterations.
    - b. Newton's method.
    - Spectral method.



# 1. Structure of Dynamic Games

#### BASIC STRUCTURE

- ullet Time is discrete and indexed by t.
- The game is played by N firms that we index by i.
- The action is taken to maximize the expected and discounted flow of profits in the market,

$$E_t \left( \sum_{s=0}^{\infty} \delta_i^s \ \pi_{it+s} \right)$$

 $\delta_i \in (0,1)$  is the discount factor, and  $\pi_{it}$  is firm i's profit at period t.

- Every period t, firms make a investment/dynamic decision:  $a_{it}$ .
- Here I focus on discrete choice games:  $a_{it} \in \mathcal{A} = \{0, 1, ..., J\}$

◆□▶◆□▶◆壹▶◆壹▶ 壹 める◆

4 / 45

Victor Aguirregabiria DDC Games UCL – July 1st, 2025

#### **DECISIONS, STATES, and PROFITS**

• Current profit  $\pi_{it}$  depends on the firms's own action  $a_{it}$ , other firms' actions,  $a_{-it} = \{a_{it} : j \neq i\}$ , and a vector of state variables  $x_t$ .

$$\pi_{it} = \pi_i \left( a_{it}, \boldsymbol{a}_{-it}, \boldsymbol{x}_t \right)$$

- $x_t$  includes:
  - a. Endogenous state variables that depend on the firms' investment decisions in previous periods, e.g., capital stocks.
  - b. Exogenous state variables affecting costs and consumer demand.

#### **EXAMPLE: DYNAMIC COMPETITION IN PRODUCT QUALITY**

- Each firm has a **differentiated product**. Consumer demand depends on products' qualities  $(k_{it})$  and prices  $(p_{it})$ .
- State  $x_t$  consists of:
  - a. Endogenous product qualities:  $k_t = (k_{1t}, k_{2t}, ..., k_{Nt})$ .
  - b. Exogenous variables affecting demand or costs:  $z_t = (z_{1t}, z_{2t}, ..., z_{Nt})$ .
- Given  $x_t$ , firms' compete in prices a la Bertrand, and this determines **Bertrand equilibrium** variable profits for each firm:  $r_i(x_t)$ .
- The total profit,  $\pi_{it}$ , consists on  $r_i(x_t)$  minus the cost of investing in quality improvement:  $IC_i(a_{it}, k_{it})$ :

$$\pi_{it} = r_i(\mathbf{x}_t) - IC_i(a_{it}, k_{it})$$

Quality stock evolves endogeneously according to the transition rule:

$$k_{i,t+1} = k_{it} + a_{it}$$

Victor Aguirregabiria DDC Games UCL – July 1st, 2025 6 / 45

#### **EVOLUTION OF THE STATE VARIABLES**

- Exogenous common knowledge state variables: follow an exogenous Markov process with transition probability function  $f_z(z_{t+1}|z_t)$ .
- Endogenous state variables: The form of the transition rule depends on the application:
  - Market entry:  $k_{it} = a_{it-1}$ , such that  $k_{i,t+1} = a_{it}$
  - Investment without depreciation:  $k_{i,t+1} = k_{it} + a_{it}$ .
  - Investment deterministic depreciation:  $k_{i,t+1} = \lambda(k_{it} + a_{it})$
  - Investment stochastic depreciation:  $k_{i,t+1} = k_{it} + a_{it} \xi_{i,t+1}$
- In a compact way, we use  $f_x(x_{t+1}|a_t,x_t)$  to represent the transition probability function of all the state variables.

# 2. Markov Perfect Equilibrium

#### OPTIMAL DECISION RULE IN THE DYNAMIC GAME

Suppose that firm i believes that the other firms in the market behave
 now and in the future – according to the strategy function:

$$\alpha_j(\mathcal{I}_t)$$
 for any  $j \neq i$ 

where  $\mathcal{I}_t$  is a particular specification of the information used by firms at period t. More specifically:

$$\mathcal{I}_{t} = (\mathbf{x}_{t}, a_{t-1}, \mathbf{x}_{t-1}, ..., a_{t-p}, \mathbf{x}_{t-p})$$

• Given these beliefs  $\alpha_{-i}$ , firm i has the following the payoff:

$$\pi_i^{\boldsymbol{\alpha}}(a_{it}, \mathbf{x}_t) = \pi_i(a_{it}, \boldsymbol{\alpha}_{-i}(\mathbf{x}_t), \mathbf{x}_t)$$

• and the transition probability for the state variables:

$$\boldsymbol{\alpha}_{-i}(\mathcal{I}_t) \& f_x(\mathbf{x}_{t+1}|a_{it},\boldsymbol{\alpha}_{-i}(\mathcal{I}_t),\mathbf{x}_t) \Rightarrow f_{\mathcal{I},i}^{\boldsymbol{\alpha}}(\mathcal{I}_{t+1}|a_{it},\mathcal{I}_t)$$

#### **BEST RESPONSE & NASH EQUILIBRIUM**

• Given  $\pi_i^{\alpha}(a_{it}, \mathbf{x}_t)$  and  $f_{\mathcal{I},i}^{\alpha}(\mathcal{I}_{t+1}|a_{it}, \mathcal{I}_t)$ , we can define the best response of firm i as the solution to the single-agent DP problem defined by this Bellman equation:

$$V_i^{\alpha}(\mathcal{I}_t) = \max_{a_{it}} \left\{ \pi_i^{\alpha}(a_{it}, \mathbf{x}_t) + \delta_i \int V_i^{\alpha}(\mathcal{I}_{t+1}) \ f_{\mathcal{I},i}^{\alpha}(\mathcal{I}_{t+1}|a_{it}, \mathcal{I}_t) \right\}$$

- Let  $BR_i(\alpha_{-i})$  be the optimal strategy function that solves this DP problem. It is a best response to the beliefs  $\alpha_{-i}$ .
- A Nash Equilibrium of this dynamic game consists of an N-tuple of strategy functions  $\{\alpha_i(\mathcal{I}_t): i=1,2,...,N\}$  such that, for every firm i:

$$\alpha_i = BR_i(\boldsymbol{\alpha}_{-i})$$

#### That is:

- 1. Every firm behaves according to its best response strategy.
- 2. Beliefs are rational, i.e., the actual firms' strategies in equilibrium.

#### MARKOV PERFECT EQUILIBRIUM

- The previous definition of Nash Equilibrium depends on the choice of the information set  $\mathcal{I}_t$ . We have as many types of NE as possible selections of  $\mathcal{I}_t$ .
- Most dynamic IO models assume Markov Perfect Equilibrium (MPE), (Maskin & Tirole, ECMA 1988; Ericson & Pakes, REStud 1995).
- This solution concept corresponds to NE when players' strategies are functions of only payoff-relevant state variables,  $\mathcal{I}_t \equiv \mathbf{x}_t$ .
- Why this restriction?:
  - Rationality (Maskin & Tirole): if other players use this type of strategies, a player cannot make higher payoff by conditioning its behavior on pon-payoff relevant information (e.g., lagged values of the state variable)
  - **Dimensionality:** It is convenient because it reduces the dimensionality of the state space.

#### MARKOV PERFECT EQUILIBRIUM - DEFINITION

- Let  $\alpha = \{\alpha_i(\mathbf{x}_t) : i = 1, 2, ..., N\}$  be a set of strategy functions.
- A MPE is an N-tuple of strategy functions  $\alpha$  such that every firm is maximizing its value given the strategies of the other players.
- For given strategies of the other firms, the decision problem of a firm is a single-agent dynamic programming (DP) problem.

#### MARKOV PERFECT EQUILIBRIUM: Best Response DP

- Let  $V_i^{\alpha}(\mathbf{x}_t)$  be the value function of the DP problem that describes the best response of firm i to the strategies of the other firms in  $\alpha$ .
- This value function is the unique solution to the Bellman equation:

$$V_i^{\alpha}(\mathbf{x}_t) = \max_{a_{it}} \left\{ \pi_i^{\alpha}(a_{it}, \mathbf{x}_t) + \delta_i \int V_i^{\alpha}(\mathbf{x}_{t+1}) f_{x,i}^{\alpha}(\mathbf{x}_{t+1}|a_{it}, \mathbf{x}_t) d\mathbf{x}_{t+1} \right\}$$

with (here, I consider there is no time-to-build):

$$\pi_i^{\boldsymbol{\alpha}}(a_{it}, \mathbf{x}_t) = \pi_i(a_{it}, \boldsymbol{\alpha}_{-i}(\mathbf{x}_t), \mathbf{x}_t)$$

and:

$$f_{x,i}^{\alpha}(\mathbf{x}_{t+1}|a_{it},\mathbf{x}_t) = f_x(\mathbf{x}_{t+1}|a_{it},\alpha_{-i}(\mathbf{x}_t),\mathbf{x}_t)$$



#### MPE — EXISTENCE

- Doraszelski & Satterhwaite (RAND, 2010) show that existence of a MPE in pure strategies is not guaranteed in this model when the choice set for a<sub>it</sub> is discrete.
- A possible approach to guarantee existence is to allow for mixed strategies. However, computing a MPE in mixed strategies poses important computational challenges.
- To establish existence, Doraszelski & Satterhwaite (RAND, 2010) propose incorporating private information state variables.
- This incomplete information version of Ericson-Pakes model has been the one adopted in most empirical applications.
  - The main reason is that as we illustrate below i.i.d. private information shocks are very convenient type of unobservables from an econometric point of view.

# 3. Dynamic Games with Incomplete Information

#### PRIVATE INFORMATION SHOCKS

- State variables in  $\mathbf{x}_t$  are known to all the firms in the market at period t (common knowledge).
- In addition, a firm's investment cost function  $IC_i(.)$  depends on a vector of state variables  $\varepsilon_{it}$  with two properties:
  - 1.  $\varepsilon_{it}$  is **private information of firm** *i*. It is unknown to the other firms.
  - 2.  $\varepsilon_{it}$  is i.i.d. over time and independent across firms with CDF  $G_i$  that has full support on  $\mathbb{R}^{|A|}$ .
- Strategy functions are now  $\alpha_i(\mathbf{x}_t, \varepsilon_{it})$ .
- MPE has the same definition as above but with strategies  $\alpha_i(\mathbf{x}_t, \varepsilon_{it})$ .

#### CONDITIONAL CHOICE PROBABILITIES

• It is very convenient to represent a firm's strategy using **Conditional** Choice Probability (CCP) function. For any value  $(a, \mathbf{x})$ :

$$P_i(a|\mathbf{x}) \equiv \Pr\left(\alpha_i(\mathbf{x}_t, \varepsilon_{it}) = a \mid \mathbf{x}_t = \mathbf{x}\right)$$

- Since function  $P_i$  results from integrating function  $\alpha_i$  over the continuous variables in  $\varepsilon_{it}$ ,  $P_i$  is a lower dimensional object than  $\alpha_i$ .
- In discrete choice games with  $\varepsilon_{it}(a_{it})$  entering additively in the profit function, there is a **one-to-one relationship** between best-response strategy functions  $\alpha_i(\mathbf{x}_t, \varepsilon_{it})$  and its CCP function  $P_i(.|\mathbf{x}_t)$ .
- It is obvious that given  $\alpha_i(\mathbf{x}_t, \varepsilon_{it})$  there is a unique  $P_i(.|\mathbf{x}_t)$ .
- The inverse relationship given  $P_i(.|\mathbf{x}_t)$  there is a unique best response function  $\alpha_i(\mathbf{x}_t, \varepsilon_{it})$  is a corollary of **Hotz-Miller inversion** Theorem.

#### MPE as FIXED POINT OF a MAPPING IN CCPs

• Given strategy functions described by CCP functions  $\mathbf{P}_i$ , we can define expected profit  $\pi_i^{\mathbf{P}}$  and expected transition  $f_i^{\mathbf{P}}$  as:

$$\pi_i^{\mathbf{P}}(a_{it}, \mathbf{x}_t) = \sum_{a_{-it}} \left[ \prod_{j \neq i} P_j \left( a_{jt} \mid \mathbf{x}_t \right) \right] \pi_i \left( a_{it}, \mathbf{a}_{-it}, \mathbf{x}_t \right)$$

$$f_i^{\mathbf{P}}(\mathbf{x}_{t+1}|a_{it},\mathbf{x}_t) = \sum_{a_{-it}} \left[ \prod_{j \neq i} P_j \left( a_{jt} \mid \mathbf{x}_t \right) \right] f_x(\mathbf{x}_{t+1}|a_{it},\mathbf{a}_{-it},\mathbf{x}_t)$$

We also define expected conditional-choice values:

$$v_i^{\mathbf{P}}(a_{it}, \mathbf{x}_t) \equiv \pi_i^{\mathbf{P}}(a_{it}, \mathbf{x}_t) + \delta \int V_i^{\mathbf{P}}(\mathbf{x}_{t+1}) f_i^{\mathbf{P}}(\mathbf{x}_{t+1}|a_{it}, \mathbf{x}_t) d\mathbf{x}_{t+1}$$

with:

$$V_i^{\mathbf{P}}(\mathbf{x}_t) = \int \max_{a_{it}} \left\{ v_i^{\mathbf{P}}(a_{it}, \mathbf{x}_t) + \varepsilon_{it}(a_{it}) \right\} dG_i(\varepsilon_{it})$$

# MPE as FIXED POINT OF a MAPPING IN CCPs [2]

• A MPE is a vector of CCPs,  $\mathbf{P} \equiv \{P_i(a_i|\mathbf{x}) : \text{for any } (i,a_i,\mathbf{x})\}$ , such that, for any  $(i,a,\mathbf{x})$ :

$$P_i(a_i|\mathbf{x}) = \Pr\left(a_i = \arg\max_{a'}\left\{v_i^{\mathbf{P}}(a',\mathbf{x}) + \varepsilon_i(a')\right\} \mid \mathbf{x}\right)$$

 This system of equations defines a Fixed Point mapping from the space of CCPs P into itself:

$$\mathbf{P} = \Psi(\mathbf{P})$$

- Mapping  $\Psi(.)$  is continuous. Therefore, by Brower's Fixed Point Theorem an equilibrium exists.
- In general, this model has multiple equilibria.

#### MPE IN TERMS OF CCPs: AN EXAMPLE

- Suppose that vector  $\varepsilon_{it}$ 's are iid Extreme Value Type I.
- Then, a MPE is a vector  $P \equiv \{P_i(a|\mathbf{x}) : \text{for any } (i,a,\mathbf{x})\}$ , such that:

$$P_i(a|\mathbf{x}) = \frac{\exp\left\{v_i^{\mathbf{P}}(a,\mathbf{x})\right\}}{\sum_{a'} \exp\left\{v_i^{\mathbf{P}}(a',\mathbf{x})\right\}}$$

where

$$v_i^{\mathbf{P}}(a_{it}, \mathbf{x}_t) \equiv \pi_i^{\mathbf{P}}(a_{it}, \mathbf{x}_t) + \delta \sum_{\mathbf{x}_{t+1}} V_i^{\mathbf{P}}(\mathbf{x}_{t+1}) \ f_i^{\mathbf{P}}(\mathbf{x}_{t+1}|a_{it}, \mathbf{x}_t)$$

ullet and  $V_i^{m P}$  is the unique solution to the Bellman equation:

$$V_i^{\mathbf{P}}(\mathbf{x}_t) = \ln \left( \sum_{a_i} \exp \left\{ \pi_i^{\mathbf{P}}(a_{it}, \mathbf{x}_t) + \delta \sum_{\mathbf{x}_{t+1}} V_i^{\mathbf{P}}(\mathbf{x}_{t+1}) f_i^{\mathbf{P}}(\mathbf{x}_{t+1} | a_{it}, \mathbf{x}_t) \right\} \right)$$

# 4. SEQUENTIAL ESTIMATION

#### **ESTIMATION - PRELIMINARIES**

- Primitives of the model:  $\{\pi_i, \beta_i, f_x, G_{\varepsilon}\}$ , can be described in terms of a vector of parameters  $\theta$  that is unknown to the researcher.
- It is convenient to distinguish four sub-vectors in  $\theta$ ,  $(\theta_{\pi}, \theta_f, \beta, \theta_{\epsilon})$ .
- In most empirical applications, the main challenge is in the estimation of "dynamic parameters" in  $\theta_{\pi}$ :
  - $\theta_f$  can be estimated "outside" of the dynamic decision model.
  - Consumer demand and firms' variable costs which are part of  $\theta_{\pi}$  can be estimated "outside" of the dynamic decision model.
  - Most applications assume that  $\theta_{\varepsilon}$  (distribution of  $\varepsilon$ ) and  $\beta$  are known.
  - Often, the focus in the estimation of the dynamic game is parameters capturing dynamics, i.e., investment costs, entry/exit costs, fixed costs.

Victor Aguirregabiria DDC Games UCL – July 1st, 2025 22 / 45

#### **OUTLINE ON ESTIMATION**

- 1. Maximum Likelihood Est. (MLE) of models with unique equilibrium
  - Rust's Nested Fixed Point (NFXP) algorithm.
- 2. Maximum Likelihood Est. (MLE) of models with multiple equilibria
- 3. Sequential CCP methods

4.1. MLE WITH UNIQUE EQUILIBRIUM

#### MLE: MODELS WITH UNIQUE EQUILIBRIUM

- There exist sufficient conditions implying that a dynamic game has a unique equilibrium for every possible value of the parameters  $\theta$ .
- An example of sufficient conditions for equilibrium uniqueness are:
  - i. Finite horizon T.
  - ii. Within every period t, firms make decisions sequentially: firm 1 first, 2 second, ..., firm N last. These decisions become common knowledge to the firms later in the sequence.
- Let  $P_{it}(a_{it} \mid \mathbf{x}_t, \boldsymbol{\theta})$  be the equilibrium CCP function for firm i at period t when the vector of parameters is  $\boldsymbol{\theta}$ .
- The full log-likelihood function is:  $\ell(\theta) = \sum_{m=1}^{M} \ell_m(\theta)$ , where  $\ell_m(\theta)$  is the contribution of market m:

$$\ell_m(\boldsymbol{\theta}) = \sum_{i=1}^{N} \sum_{t=1}^{T} \log P_{it}(a_{imt}|\mathbf{x}_{mt}, \boldsymbol{\theta}) + \log f_x(\mathbf{x}_{m,t+1}|a_{mt}, \mathbf{x}_{mt}, \boldsymbol{\theta}_f)$$

#### **NESTED FIXED POINT (NFXP) ALGORITHM**

- The MLE is:  $\widehat{\boldsymbol{\theta}} = argmax_{\boldsymbol{\theta}} \ \ell(\boldsymbol{\theta}).$
- Rust's NFXP algorithm is a method to compute the MLE. It combines BHHH iterations (outer algorithm) with equilibrium solution algorithm (inner algorithm) for each trial value  $\theta$ .
  - 1. Start at an initial guess:  $\widehat{\boldsymbol{\theta}}_0$ .
  - 2. At every **outer iteration** k, apply a BHHH iteration:

$$\widehat{\boldsymbol{\theta}}_{k+1} = \widehat{\boldsymbol{\theta}}_k + \left( \sum_{m=1}^M \frac{\partial \ell_m(\widehat{\boldsymbol{\theta}}_k)}{\partial \boldsymbol{\theta}} \frac{\partial \ell_m(\widehat{\boldsymbol{\theta}}_k)}{\partial \boldsymbol{\theta}'} \right)^{-1} \left( \sum_{m=1}^M \frac{\partial \ell_m(\widehat{\boldsymbol{\theta}}_k)}{\partial \boldsymbol{\theta}} \right)$$

- 3. The score vector  $\partial \ell_m(\widehat{\theta}_k)/\partial \theta$  depends on  $\partial \log P_i(a_{imt}|\mathbf{x}_{mt},\widehat{\theta}_k)/\partial \theta$ . To obtain these derivatives, the **inner algorithm** solves for the equilibrium CCPs given  $\widehat{\theta}_k$  using fixed point iterations.
- 4. Outer BHHH iterations until  $||\widehat{\pmb{\theta}}_{k+1} \widehat{\pmb{\theta}}_k|| < \text{small constant}$

# 4.2. MLE WITH MULTIPLE EQUILIBRIA

(a) NFXP with Multiple Equilibria

(b) MPEC



#### NFXP WITH MULTIPLE EQUILIBRIA

- Let  $\mathcal{P}(\theta)$  the set of regular MPE associate with a value  $\theta$  of the structural parameters.
- Doraszelski & Satterwaite (2011) show that for every value of  $\theta$  the set  $\mathcal{P}(\theta)$  is discrete and finite.

$$\mathcal{P}(\boldsymbol{\theta}) = \{ \boldsymbol{P}^{\tau}(\boldsymbol{\theta}) : \ \tau = 1, 2, ..., \mathcal{T} \}$$

- Suppose that the model has a structure such that we have an algorithm to compute the equilibrium set  $\mathcal{P}(\theta)$  for any trial value of  $\theta$ .
- For instance, the Recursive Lexicographic Search (RLS) algorithm in Iskhakov, Rust, & Schjerning (2016).
- Then, the MLE is defined as:

$$(\widehat{\boldsymbol{\theta}}_{MLE}, \widehat{\boldsymbol{\tau}}_{MLE}) = argmax_{\boldsymbol{\theta}, \tau \in \mathcal{P}(\boldsymbol{\theta})} \sum_{i=1}^{N} \sum_{t=1}^{T} \log P_{it}^{\tau}(a_{imt} | \mathbf{x}_{mt}, \boldsymbol{\theta})$$

# NFXP WITH MULTIPLE EQUILIBRIA (2)

- The NFXP algorithm proceeds as follows.
  - 1. Start at initial guess,  $\theta^0$ .
  - 2. Inner Iteration-S Solution: At iteration n+1, given  $\theta^n$ , apply RLS algorithm to find the set of equilibria  $\mathcal{P}(\theta^n)$ .
  - 3. Inner Iteration-M Max in  $\tau$ : Maximize in  $\tau$ : Select the equilibrium type  $\tau^*(\theta^n)$  with the largest value of the likelihood given  $\theta^n$ .
  - 4. Outer Iteration BHHH: Given the equilibrium-specific log-likelihood function  $\ell^{\tau^*(\theta^n)}(\theta)$ , apply BHHH algorithm to obtain new  $\theta^{n+1}$ .
  - 5. Iterate until  $||\boldsymbol{\theta}^{n+1} \boldsymbol{\theta}^n|| < cconv.$



#### MPEC WITH MULTIPLE EQUILIBRIA

- With Multiple Equilibria,  $\ell(\theta)$  is not a function but a correspondence. The MLE cannot be defined as the argmax of  $\ell(\theta)$ .
- To define the MLE in a model with multiple equilibria, it is convenient to define an extended or Pseudo Likelihood function.
- For arbitrary values of  $\theta$  and firms' CCPs P, define:

$$Q(\boldsymbol{\theta}, \mathbf{P}) = \sum_{m=1}^{M} \sum_{i=1}^{N} \sum_{t=1}^{T} \log \Psi_{i}(a_{imt} \mid \mathbf{x}_{mt}, \boldsymbol{\theta}, \mathbf{P})$$

where  $\Psi_i$  is the best response probability function.

#### MPEC WITH MULTIPLE EQUILIBRIA

• The MLE is the pair  $(\widehat{\theta}_{MLE}, \widehat{\mathbf{P}}_{MLE})$  that maximizes Q subject to the constraint that CCPs are equilibrium strategies:

$$(\widehat{\boldsymbol{\theta}}_{\textit{MLE}}, \widehat{\boldsymbol{P}}_{\textit{MLE}}) = \left\{ \begin{array}{cc} \arg \max_{(\boldsymbol{\theta}, \boldsymbol{P})} & Q(\boldsymbol{\theta}, \boldsymbol{P}) \\ \\ \\ \text{subject to:} & \boldsymbol{P} = \Psi(\boldsymbol{\theta}, \boldsymbol{P}) \end{array} \right.$$

[2]

Or using the Lagrangian function:

$$(\widehat{\boldsymbol{\theta}}_{MLE}, \widehat{\mathbf{P}}_{MLE}, \widehat{\boldsymbol{\lambda}}_{MLE}) = \arg\max_{(\boldsymbol{\theta}, \mathbf{P}, \boldsymbol{\lambda})} \ Q(\boldsymbol{\theta}, \mathbf{P}) + \boldsymbol{\lambda}' \left[ \mathbf{P} - \Psi(\boldsymbol{\theta}, \mathbf{P}) \right]$$

• The F.O.C. are the Lagrangian equations:

$$\left\{ \begin{array}{rcl} \widehat{P}_{\textit{MLE}} - \Psi(\widehat{\theta}_{\textit{MLE}}, \widehat{P}_{\textit{MLE}}) & = & 0 \\ \nabla_{\theta} Q(\widehat{\theta}_{\textit{MLE}}, \widehat{P}_{\textit{MLE}}) - \widehat{\lambda}_{\textit{MLE}}' & \nabla_{\theta} \Psi(\widehat{\theta}_{\textit{MLE}}, \widehat{P}_{\textit{MLE}}) & = & 0 \\ \nabla_{P} Q(\widehat{\theta}_{\textit{MLE}}, \widehat{P}_{\textit{MLE}}) - \widehat{\lambda}_{\textit{MLE}}' & \nabla_{P} \Psi(\widehat{\theta}_{\textit{MLE}}, \widehat{P}_{\textit{MLE}}) & = & 0 \end{array} \right.$$

# MPEC WITH MULTIPLE EQUILIBRIA [3]

- A Newton method can be used to obtain a root of this system of Lagrangian equations.
- A key computational problem is the very high dimensionality of this system of equations.
- The most costly part of this algorithm is the calculation of the Jacobian matrix  $\nabla_P \Psi(\widehat{\theta}, \widehat{P})$ . In dynamic games, in general, this is not a sparse matrix, and can contain billions or trillions of elements.
- The evaluation of the best response mapping  $\Psi(\theta, \mathbf{P})$  for a new value of  $\mathbf{P}$  requires solving for a valuation operator and solving a system of equations with the same dimension as  $\mathbf{P}$ .

# 4.3. SEQUENTIAL CCP METHODS

#### TWO-STEP CCP METHODS

- Methods that avoid solving for firms' best responses or an equilibrium, even once.
- Hotz & Miller (REStud, 1993) was a seminal contribution on this class of methods. They show that the conditional choice values can be written as known functions of CCPs, transition probabilities, and  $\theta$ .
- Suppose that one-period profit is linear-in-parameters:

$$\pi_i(a_{it}, \mathbf{a}_{-it}, \mathbf{x}_t) = h(a_{it}, \mathbf{a}_{-it}, \mathbf{x}_t)' \, \boldsymbol{\theta}_{\pi,i}$$

where  $h(a_{it}, a_{-it}, \mathbf{x}_t)$  is a vector of known functions to the researcher.

• The conditional-choice value function  $v_i^{\mathbf{P}}(a_{it},\mathbf{x}_t)$  is:

$$v_i^{\mathbf{P}}(a_{it},\mathbf{x}_t) = \mathbb{E}\left(\sum_{j=0}^{\infty} \beta^j \ h(a_{t+j},\mathbf{x}_{t+j})' \ \boldsymbol{\theta}_{\pi,i} + \varepsilon_{i,t+j}(a_{i,t+j}) \mid a_{it},\mathbf{x}_t\right)$$

where future actions,  $a_{t+j}$ , are taken according to equilibrium CCPs.

# TWO-STEP CCP METHODS [2]

• We can write:

$$v_i^{\mathbf{P}}(a_{it}, \mathbf{x}_t) = \mathbf{P} a_{it}, \mathbf{x}_t) \theta_{\pi,i} + \tilde{e}_i^{\mathbf{P}}(a_{it}, \mathbf{x}_t) =$$

with:

$$\widetilde{h}_{i}^{\mathbf{P}}(a_{it},\mathbf{x}_{t}) = \mathbb{E}\left(\sum_{j=0}^{\infty}\beta^{j} h(a_{t+j},\mathbf{x}_{t+j}) \mid a_{it},\mathbf{x}_{t}\right)$$

$$\stackrel{\longleftarrow}{e_i}(a_{it}, \mathbf{x}_t) = \mathbb{E}\left(\sum_{j=0}^{\infty} \beta^j \left[\gamma - \ln P_i(a_{i,t+j}|\mathbf{x}_{t+j})\right] \mid a_{it}, \mathbf{x}_t\right)$$

• Given firms' equilibrium CCPs, P,  $\beta$ , and the transition probability of  $\mathbf{x}$ , we can calculate these present values using, for instance, forward Monte Carlo Simulation.

# TWO-STEP CCP METHODS [3]

- Given this representation of conditional choice values, the pseudo likelihood function  $Q(\theta, \mathbf{P})$  has practically the same structure as in a static or reduced form discrete choice model.
- Best response probabilities that enter in  $Q(\theta, \mathbf{P})$  can be seen as the choice probabilities in a standard random utility model:

$$\frac{\Psi_i(a_{imt} = j | \mathbf{x}_{mt}, \boldsymbol{\theta}, \mathbf{P})}{\sum_{k=0}^{J} \exp\{\widetilde{h}_i^{\mathbf{P}}(j, \mathbf{x}_{mt}) | \boldsymbol{\theta}_i + \widetilde{e}_i^{\mathbf{P}}(j, \mathbf{x}_{mt})\}} \\
\sum_{k=0}^{J} \exp\{\widetilde{h}_i^{\mathbf{P}}(k, \mathbf{x}_{mt}) | \boldsymbol{\theta}_i + \widetilde{e}_i^{\mathbf{P}}(k, \mathbf{x}_{mt})\}$$

• Given  $\widetilde{h}_{i}^{\mathbf{P}}(.,\mathbf{x}_{mt})$  and  $\widetilde{e}_{i}^{\mathbf{P}}(.,\mathbf{x}_{mt})$  and a parametric specification for the distribution of  $\varepsilon$  (e.g., logit, probit), the vector of parameters  $\boldsymbol{\theta}_{i}$  can be estimated as in a standard logit or probit model.

# TWO-STEP CCP METHODS [3]

- The method proceeds in two steps.
- Let  $\widehat{\mathbf{P}}^0$  be a consistent nonparametric estimator of true  $\mathbf{P}^0$ . The two-step estimator of  $\boldsymbol{\theta}$  is defined as:

$$\widehat{\boldsymbol{\theta}}_{2S} = \arg \max_{\boldsymbol{\theta}} \ Q(\boldsymbol{\theta}, \widehat{\mathbf{P}}^0)$$

- Under standard regularity conditions, this two-step estimator is root-M consistent and asymptotically normal.
- It can be extended to incorporate market unobserved heterogeneity (e.g., Aguirregabiria & Mira (2007); Arcidiacono & Miller (2011)).
- Monte Carlo Simulation can be used to compute present values: Bajari, Benkard, & Levin (2007).
- Limitation: Finite sample bias due to imprecise estimates of CCPs in the first step.

#### Nested Pseudo Likelihood (NPL)

- Imposes equilibrium restrictions but does NOT require:
  - Repeatedly solving for MPE for each trial value of heta (as NFXP)
  - Computing  $\nabla_{\mathbf{P}} \Psi(\widehat{\boldsymbol{\theta}}, \widehat{\mathbf{P}})$  (as NFXP and MPEC)
- A NPL  $(\widehat{\boldsymbol{\theta}}_{NPL}, \widehat{\mathbf{P}}_{NPL})$ , that satisfy two conditions:
  - (1) given  $\widehat{\mathbf{P}}_{NPL}$ , we have that:  $\widehat{\boldsymbol{\theta}}_{NPL} = \arg\max_{\boldsymbol{\theta}} \, Q(\boldsymbol{\theta}, \widehat{\mathbf{P}}_{NPL})$
  - (2) given  $\widehat{\boldsymbol{\theta}}_{NPL}$ , we have that:  $\widehat{\mathbf{P}}_{NPL} = \Psi(\widehat{\boldsymbol{\theta}}_{NPL}, \widehat{\mathbf{P}}_{NPL})$
- The NPL estimator is consistent and asymptotically normal under the same regularity conditions as the MLE. For dynamic games, the NPL estimator has larger asymptotic variance than the MLE.

# Nested Pseudo Likelihood (NPL)

- [2]
- An algorithm to compute the NPL is the NPL fixed point algorithm.
- Starting with an initial  $\widehat{\mathbf{P}}_0$ , at iteration  $k \geq 1$ :

```
(Step 1) given \widehat{\mathbf{P}}_{k-1}, \widehat{\boldsymbol{\theta}}_k = \arg\max_{\boldsymbol{\theta}} Q(\boldsymbol{\theta}, \widehat{\mathbf{P}}_{k-1}); (Step 2) given \widehat{\boldsymbol{\theta}}_k, \widehat{\mathbf{P}}_k = \Psi(\widehat{\boldsymbol{\theta}}_k, \widehat{\mathbf{P}}_{k-1}).
```

- A natural choice for the initial  $\widehat{P}_0$  is a frequency estimator of CCPs using the data.
- Step 1 is very simple in most applications. It has the same comp. cost as obtaining the MLE in a static single-agent discrete choice model.
- Step 2 is equivalent to solving once a system of linear equations with the same dimension as **P**.
- A limitation of this fixed point algorithm is that convergence is not guaranteed. An alternative algorithm that has been used to compute NPL is a Spectral Residual algorithm.

#### Algorithms to Compute the NPL Estimator

 The NPL estimator can be described as a fixed point in the space of the vector of CCPs:

$$\hat{\mathbf{P}} = \phi(\hat{\mathbf{P}})$$

where  $\phi\left(\widehat{\mathbf{P}}\right)$  is the NPL mapping:

$$\phi(\widehat{\mathbf{P}}) \equiv \Psi\left(\widehat{\mathbf{P}}, \ \widehat{\theta}(\widehat{\mathbf{P}})\right)$$

 $\Psi\left(\mathbf{P}, \boldsymbol{\theta}\right)$  is the equilibrium mapping.  $\widehat{\theta}(\widehat{\mathbf{P}})$  is Pseudo MLE mapping.

- We study 3 algorithms to compute the NPL estimator.
  - 1. Fixed point iterations in the NPL mapping  $\phi$ .
  - 2. Newton's method to solve system of equations  ${\bf P}-\phi({\bf P})=0$
  - 3. Spectral residual method to solve system of equations  ${f P}-\phi({f P})=0$
- (1) does not guarantee convergence. (2) does, but it is impractical in most applications. (3) has advantages relative to (1) &(2).

#### **Fixed Point NPL Iterations**

- Let  $\mathbf{P}^0 \equiv \{\mathbf{P}_i^0 : \text{for any } i\}$  be arbitrary vector of CCPs.
- At iteration *n*:

$$\mathbf{P}^n \ = \ \phi(\mathbf{P}^{n-1}) \ = \ \Psi\left(\mathbf{P}^{n-1}, \ \widehat{\theta}(\mathbf{P}^{n-1})\right)$$

We check for convergence:

$$\left\{ \begin{array}{ll} \text{if } \left\| \mathbf{P}^n - \mathbf{P}^{n-1} \right\| \leq \kappa \quad \text{then} \quad \mathbf{P}^n \text{ and } \boldsymbol{\theta}^n = \widehat{\boldsymbol{\theta}}(\mathbf{P}^{n-1}) \text{ is the NPL} \\ \\ \text{if } \left\| \mathbf{P}^n - \mathbf{P}^{n-1} \right\| > \kappa \quad \text{then} \quad \text{Proceed to iteration } n+1 \end{array} \right.$$

where  $\kappa$  is a small positive constant, e.g.,  $\kappa = 10^{-6}$ .

• Convergence is NOT guaranteed. This is a serious limitation.

41 / 45

Victor Aguirregabiria DDC Games UCL – July 1st, 2025

#### **Newton's Method**

- Define the function  $f(\mathbf{P}) \equiv \mathbf{P} \Psi\left(\mathbf{P}, \ \widehat{\theta}(\mathbf{P})\right)$ .
- $\bullet$  Finding the NPL estimator is equivalent to finding a zero (root) of f.
- We can use Newton's method to find a root of f.
- At iteration n:  $(\nabla f(\mathbf{P}) \text{ is the Jacobian matrix})$

$$\mathbf{P}^{n} = \mathbf{P}^{n-1} + \left[ \nabla f(\mathbf{P}^{n-1}) \right]^{-1} f(\mathbf{P}^{n-1})$$

- ullet We check for convergence:  $\left\|\mathbf{P}^n-\mathbf{P}^{n-1}\right\|\leq \kappa$
- Convergence is guaranteed (to one of the multiple equilibria).



# Newton's Method [2]

- The main computational cost of a Newton's iteration comes from the computation of Jacobian matrix  $\nabla f(\mathbf{P})$ .
- There is not a closed-form expression for the derivatives in this matrix. And in this class of models, this matrix is not sparse.
- This matrix is of dimension  $N|\mathcal{A}||\mathcal{X}| \times N|\mathcal{A}||\mathcal{X}|$ , and the computation of one single element in this matrix involves solving many single-agent dynamic programming problems, each of them with a complexity  $O(|\mathcal{X}|^3)$ .
- In summary, Newton's method is not practical in most empirical applications, in which  $|\mathcal{X}|$  is greater than  $10^5$ .



#### **Spectral Residual Method**

- It is a general method for solving high-dimension systems of nonlinear equations,  $f(\mathbf{P}) = 0$ .
- It has two very attractive features:
- 1. It is derivative free, and the cost of one iteration is equivalent to evaluation  $f(\mathbf{P})$  the same cost as one fixed point iteration.
- It converges to a solution under mild regularity conditions similar good convergence properties to Newton's.

# Spectral Residual Method [2]

Spectral methods propose the following updating rule/iteration:

$$\mathbf{P}_{n+1} = \mathbf{P}_n - \alpha_n \ f\left(\mathbf{P}_n\right)$$

where  $\alpha_n$  is the spectral steplength, which is a scalar.

• Different updating rules have been proposed in the literature. Barzilai and Borwein (1988) is commonly used:

$$\alpha_n = \frac{[\mathbf{P}_n - \mathbf{P}_{n-1}]'[f(\mathbf{P}_n) - f(\mathbf{P}_{n-1})]}{[f(\mathbf{P}_n) - f(\mathbf{P}_{n-1})]'[f(\mathbf{P}_n) - f(\mathbf{P}_{n-1})]}$$

• The intuition for the convergence of the Spectral Residual method is that the updating of  $\alpha_n$  can guarantee the right direction to convergence.