ASSIGNMENT 2

IMPORT THE NECESSARY LIBRARIES

In []:
 import pandas as pd
 import numpy as np
 import matplotlib.pyplot as plt
 import seaborn as sns

IMPORT THE DATA SET INTO DATAFRAME

In [2]:	df=pd.read_csv('Churn_Modelling.csv')														
In [3]:	df.head()														
Out[3]:	RowNumber Customerld Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited												Exited		
	0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88	1
	1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	0
	2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	113931.57	1
	3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63	0
	4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	79084.10	0

VISUALIZATION

In [15]: #univariate analysis
 df.CreditScore.plot()

In [6]: sns.catplot(x='CreditScore',kind='box',data=df)

Out[6]

In [16]: df[1:10].groupby(['CustomerId']).sum().plot(kind='pie', y='CreditScore')

Out[16]:

In [17]:
 sns.scatterplot(df.CustomerId,df.Tenure)
 nlt.show()

C:\Users\darat\AppData\Local\Programs\Python\Python36\lib\site-packages\seaborn_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

df.plot() 1.6 RowNumber 1.4 Customerld CreditScore 1.2 Age Tenure Balance 1.0 0.8 NumOfProducts 0.6 HasCrCard IsActiveMember 0.4 EstimatedSalary 0.2 0.0 #bivariate analysis df.CreditScore[1:10].plot() df.Balance[1:10].plot() Out[25]: 160000 140000 120000 100000 80000

DESCRIPTIVE ANALYSIS

40000 20000

#multivariate analysis

df.describe() Out[31]: RowNumber CustomerId CreditScore Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited count 10000.00000 1.000000e+04 10000.000000 10000.000000 10000.000000 10000.000000 10000.000000 10000.00000 10000.000000 10000.000000 10000.000000 5000.50000 1.569094e+07 650.528800 38.921800 5.012800 76485.889288 1.530200 0.70550 0.515100 100090.239881 0.203700 2886.89568 7.193619e+04 96.653299 2.892174 62397.405202 0.581654 0.45584 0.499797 57510.492818 0.402769 10.487806 std 1.00000 1.556570e+07 min 350.000000 18.000000 0.000000 0.000000 1.000000 0.00000 0.000000 11.580000 0.000000 2500.75000 1.562853e+07 584.000000 32.000000 3.000000 0.000000 1.000000 0.00000 0.000000 51002.110000 0.000000 5000.50000 1.569074e+07 652,000000 1.000000 1.00000 100193,915000 50% 37.000000 5.000000 97198.540000 1.000000 0.000000 7500.25000 1.575323e+07 718.000000 44.000000 7.000000 127644.240000 2.000000 1.00000 1.000000 149388.247500 0.000000 10000.00000 1.581569e+07 850.000000 92.000000 10.000000 250898.090000 4.000000 1.00000 1.000000 199992.480000 1.000000

CHECKING FOR MISSING VALUES

In [32]: df.isnull().any() RowNumber False Out[32]: False CustomerId Surname False CreditScore False Geography False Gender False False Tenure False Balance False NumOfProducts False HasCrCard False IsActiveMember False EstimatedSalary False Exited False dtype: bool

```
df.isnull().sum()
Out[33]: RowNumber
         CustomerId
                            0
         Surname
         CreditScore
                            0
         Geography
         Gender
         Age
         Tenure
         Balance
         NumOfProducts
         HasCrCard
         IsActiveMember
         EstimatedSalary
                            0
         Exited
         dtype: int64
```

HANDLING VALUES

```
In [36]: #No null values to handle

In [37]: sns.heatmap(df.corr(),annot=True)
```

Out[37]:

OUTLIERS

In [38]:

#occurence of outliers
sns.boxplot(df.CreditScore)

C:\Users\darat\AppData\Local\Programs\Python\Python36\lib\site-packages\seaborn_decorators.py:43: FutureWarning: Pass the following variable as a keyw ord arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

Out[38]:


```
In [39]: Q1= df.CreditScore.quantile(0.25)
Q3=df.CreditScore.quantile(0.75)
In [40]: IQR=Q3-Q1
In [41]: upper_limit =Q3 + 1.5*IQR
lower_limit =Q1 - 1.5*IQR
```

df['CreditScore'] = np.where(df['CreditScore']>upper_limit,30,df['CreditScore'])

In [45]: sns.boxplot(df.CreditScore)

C:\Users\darat\AppData\Local\Programs\Python\Python36\lib\site-packages\seaborn_decorators.py:43: FutureWarning: Pass the following variable as a keyw ord arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or missinterpretation.

FutureWarning

Out[45]:

CATEGORICAL COLUMNS _ENCODING

```
In [46]: #Label encoder
from sklearn.preprocessing import LabelEncoder

In [47]: le=LabelEncoder()

In [52]: df.Gender= le.fit_transform(df.Gender)

In [54]: df.head(5)
```

Out[54]:		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiv	veMember	Estim	natedSala	ry Exited	
	0	1	15634602	Hargrave	619	France	0	42	2	0.00	1	1		1		101348	.88 1	
	1	2	15647311	Hill	608	Spain	0	41	1	83807.86	1	0		1		112542	.58 0	
	2	3	15619304	Onio	502	France	0	42	8	159660.80	3	1		0		113931	.57 1	
	3	4	15701354	Boni	699	France	0	39	1	0.00	2	0		0		93826	.63 0	
	4	5	15737888	Mitchell	850	Spain	0	43	2	125510.82	1	1		1		79084	.10 0	
In [55]:	#(one hot enco	odina															
In [55]: Out[55]:	df	one hot enco f_main=pd.ge f_main.head(RowNumber	et_dummies(ge Tenur	e Ba	alance	NumOfProd	ucts HasCrCard	IsActiveMen	nber E	EstimatedSa	lary	Exited	Geography_F	ranc
	df	f_main=pd.ge f_main.head(et_dummies(d			Gender Ag	•	е В а	alance	NumOfProd	ucts HasCrCard	IsActiveMen	nber E	EstimatedSa	•	Exited	Geography_F	Franc
Out[55]:	d†	f_main=pd.ge f_main.head(et_dummies(d	Surname	CreditScore	Gender Ag	12	2		NumOfProd	ucts HasCrCard 1 1 1 0	IsActiveMen			8.88	Exited 1 0	Geography_F	
Out[55]:	di di	f_main=pd.ge f_main.head(RowNumber	CustomerId	Surname Hargrave	CreditScore 619	Gender Ag 0 4	12 11	2	0.00	NumOfProd	1 1	IsActiveMen	1	10134	8.88	1	Geography_F	Franc
Out[55]:	0 1	f_main=pd.ge f_main.head(RowNumber 1	ct_dummies(a) CustomerId 15634602 15647311	Surname Hargrave	CreditScore 619 608	Gender Ag	12 11	2 1 83	0.00	NumOfProd	1 1 1	IsActiveMen	1	10134 11254	8.88 2.58 1.57	1	Geography_F	

SEPARATING INDEPENDENT AND DEPENDENT VARIABLES

In [70]: X=df_main.drop(columns=['EstimatedSalary'],axis=1)
 X.head()
 X_scaled=pd.DataFrame(scale(X),columns=X.columns)
 X_scaled.head()

Out[70]:		RowNumber	CustomerId	CreditScore	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Exited	Geography_France
	0	-1.731878	-0.783213	-0.326221	-1.095988	0.293517	-1.041760	-1.225848	-0.911583	0.646092	0.970243	1.977165	0.997204
	1	-1.731531	-0.606534	-0.440036	-1.095988	0.198164	-1.387538	0.117350	-0.911583	-1.547768	0.970243	-0.505775	-1.002804
	2	-1.731185	-0.995885	-1.536794	-1.095988	0.293517	1.032908	1.333053	2.527057	0.646092	-1.030670	1.977165	0.997204
	3	-1.730838	0.144767	0.501521	-1.095988	0.007457	-1.387538	-1.225848	0.807737	-1.547768	-1.030670	-0.505775	0.997204
	4	-1.730492	0.652659	2.063884	-1.095988	0.388871	-1.041760	0.785728	-0.911583	0.646092	0.970243	-0.505775	-1.002804

```
In [71]: y=df_main.EstimatedSalary
Out[71]: 0
                101348.88
               112542.58
113931.57
                 93826.63
                79084.10
                 96270.64
         9995
         9996
               101699.77
         9997
                 42085.58
                92888.52
         9999
                 38190.78
         Name: EstimatedSalary, Length: 10000, dtype: float64
         SCALING
          from sklearn.preprocessing import scale
In [73]: X_scaled=pd.DataFrame(scale(X),columns=X.columns)
          X scaled.head()
Out[73]: RowNumber Customerld CreditScore Gender
                                                       Age
                                                                      Balance NumOfProducts HasCrCard IsActiveMember
                                                                                                                      Exited Geography_France
         0
             -1.731878
                        -0.783213 -0.326221 -1.095988 0.293517 -1.041760 -1.225848
                                                                                   -0.911583
                                                                                             0.646092
                                                                                                           0.970243 1.977165
                                                                                                                                    0.997204
            -1.731531 -0.606534 -0.440036 -1.095988 0.198164 -1.387538 0.117350
                                                                                   -0.911583 -1.547768
                                                                                                           0.970243 -0.505775
                                                                                                                                   -1.002804
                                                                                                                   1.977165
             -1.731185
                                  -1.536794 -1.095988 0.293517 1.032908 1.333053
                                                                                             0.646092
                                                                                                           -1.030670
                                                                                                                                    0.997204
                      -0.995885
                                                                                    2.527057
             -1.030670 -0.505775
         3
                                                                                   0.807737 -1.547768
                                                                                                                                    0.997204
             -1.730492 0.652659 2.063884 -1.095988 0.388871 -1.041760 0.785728
                                                                                   -0.911583 0.646092
                                                                                                           0.970243 -0.505775
                                                                                                                                    -1.002804
        TRAIN AND TEST DATA
In [74]:
         from sklearn.model_selection import train_test_split
         X_train,X_test,y_train,y_test =train_test_split(X_scaled,y, test_size=0.3,random_state=0)
In [66]:
         X_train.shape
Out[66]: (7000, 14)
In [67]:
         X_test.shape
Out[67]: (3000, 14)
In [68]:
         y_train.shape
Out[68]: (7000,)
```

In [69]:

Out[69]: (3000,)

y_test.shape