

Выпускная квалификационная работа по теме:

Разработка системы управления прецизионным поворотным столом

Автор: Уткин Игорь Игоревич

Руководитель: к.т.н. Быстров Сергей Владимирович

Санкт-Петербург 2018

Цель выпускной квалификационной работы

Разработка быстродействующей системы управления прецизионным поворотным столом для обработки драгоценных материалов

Технические требования к разрабатываемой системе

Диапазон угловых перемещений	0° - 180°
Шаг угловых перемещений	2'
Время переходного процесса	0.1 c
Переходный процесс	Аппериодический
Погрешность позиционирования	5%
Питание	220 В 50 Гц

Функциональная схема системы

Характеристики пьезодвигателя

Характеристики	RSPA30XS
Диапазон угловых перемещений	> 2π
Минимальный шаг перемещения	0.1 мрад
Максимальная скорость	6 рад/с
Крутящий момент	13.3 H*mm
Максимальная нагрузка	150 г

Характеристики углового датчика

Характеристики	ЛИР-390А
Напряжение питания	+ 5 B
Момент трогания ротора	≤ 0.05 H*M
Класс точности	± 5 угловых секунд
Основной диаметр	Ø90

Перевод линейной зависимости в угловую

$$L = r * sin\alpha$$

$$sin\alpha \approx \alpha$$

$$L = r * \alpha$$

$$L = 0.005 * 0.002 = 0.00001$$

$$L = K_{\text{усил}} * x$$
$$L = 2 * x$$

Структурная схема пьезодвигателя

$$W(s) = \frac{K_u * K_o}{(T_u s + 1)(T_m s^2 + \frac{K_d}{C_p} s + 1)}$$

Схема моделирования пьезодвигателя

Переходный процесс

$$L = 2*5*10^6$$
 $lpha = rac{L}{r} = 0.002 \, ext{мрад} = 1'$

Переходный процесс с регулятором

Схема моделирования с дискретным регулятором

Переходный процесс с дискретным регулятором

Заключение

Диапазон угловых перемещений	0° - 360°
Шаг угловых перемещений	1'
Время переходного процесса	0.1 c
Переходный процесс	Аппериодический
Погрешность позиционирования	5%
Питание	220 В 50 Гц

Спасибо за внимание!

Автор: Уткин Игорь Игоревич Группа Р3440

