Семинар 18

Общая информация:

- Пусть V и U векторные пространства и $\beta \colon V \times U \to \mathbb{R}$ билинейная форма.
- Пусть $E \subseteq V$ подмножество, определим правое ортогональное дополнение $E^{\perp} = \{u \in U \mid \beta(E, u) = 0\} \subseteq U$. Аналогично, для $S \subseteq U$ определим левое ортогональное дополнение $^{\perp}S = \{v \in V \mid \beta(v, S) = 0\} \subseteq V$.
- ullet Заметим, что оба ортогональных дополнения всегда являются подпространствами, даже если E и S просто подмножества.
- Определим правое ядро формы $\ker^R \beta = V^{\perp} = \{ u \in U \mid \beta(V, u) = 0 \}$. Аналогично, левое ядро формы $\ker^L \beta = {}^{\perp} U = \{ v \in V \mid \beta(v, U) = 0 \}$.
- Определим отображение $\Psi_{\beta}^L \colon V \to U^*$ по правилу $v \mapsto \beta(v,-)$, т.е. $\Psi_{\beta}^L(v)(u) = \beta(v,u)$ для $u \in U$. Аналогично определяется $\Psi_{\beta}^R \colon U \to V^*$ как $\Psi_{\beta}^R(u) = \beta(-,u)$.
- Если форма $\beta\colon V\times V\to \mathbb{R}$ симметричная, то нет разницы между Ψ^R_β и Ψ^L_β , которые бьют из V в V^* .
- Форма называется невырожденной, если оба ее ядра нулевые.
- Ранг формы $rk \beta$ это ранг ее матрицы в произвольном базисе. Это определение не зависит от базиса, так как матрица формы B меняется по формуле $B \mapsto C^t B C$, где C матрица перехода от одного базиса к другому.

Задачи:

- 1. Задачник. §37, задача 37.6 (а).
- 2. Задачник. §37, задача 37.1 (а, б, в, г, д).
- 3. Привести пример формы $\beta \colon V \times V \to \mathbb{R}$ такой, что: (1) β симметрична, (2) β невырождена, (3) существует $0 \neq W \subseteq V$, такое что $W^{\perp} = W$.
- 4. Пусть $\beta \colon \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ задана матрицей $\begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ и пусть $U \subseteq \mathbb{R}^3$ подпространство натянутое на $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. Найти U^{\perp} и $^{\perp}U$.
- 5. Пусть $\beta \colon V \times U \to \mathbb{R}$ билинейная форма и $\dim V = \dim U$. Покажите, что форма невырождена тогда и только тогда, когда одно из ядер равно нулю.
- 6. **Двойственность.** Пусть V векторное пространство $\beta \colon V \times V^* \to \mathbb{R}$ естественная билинейная форма, т.е. $\beta(v,\xi) = \xi(v)$. Покажите:
 - (a) Форма β невырождена.
 - (b) Для любого подпространства $U \subseteq V$ верно $\dim U + \dim U^{\perp} = \dim V$.
 - (c) Для любого подпространства $U \subseteq V$ верно $^{\perp}(U^{\perp}) = U$.
 - (d) Для любых подпространств $U,W\subseteq V$ верно $(U+W)^\perp=U^\perp\cap W^\perp$ и $(U\cap W)^\perp=U^\perp+W^\perp$.

Аналогичные утверждения верны и для подпространств V^* , сформулируйте и проверьте их.

7. Двойственность для линейных отображений. Пусть $\phi \colon V \to U$ – линейное отображение векторных пространств. Определим двойственное линейное отображение $\phi^* \colon U^* \to V^*$ следующим образом:

$$V \xrightarrow{\phi} U \xrightarrow{\xi} \mathbb{R}$$

$$V^* \xleftarrow{\phi^*} U^*$$

$$\xi \circ \phi \longleftrightarrow \xi$$

 $^{^{1}}$ Думать про билинейную форму надо как про «плохую версию» скалярного произведения.

Пусть $\beta: V \times V^* \to \mathbb{R}$ – естественная билинейная форма, т.е. $\beta(v,\xi) = \xi(v)$. Ортогональные дополнения ниже берутся относительно этой формы.

- (a) Показать, что отображение ϕ^* линейно.
- (b) Пусть (e_1, \ldots, e_n) и (f_1, \ldots, f_m) базисы пространств V и U соответственно и отображение ϕ в этих базисах записывается матрицей $A \in \mathrm{M}_{m\,n}(\mathbb{R})$. Выберем в V^* и U^* двойственные базисы. Найдите матрицу отображения ϕ^* .
- (c) Покажите, что $(\operatorname{Im} \phi)^{\perp} = \ker \phi^*$.
- (d) Покажите, что $(\ker \phi)^{\perp} = \operatorname{Im} \phi^*$.
- (e) Покажите, что если $U \subseteq V$ подпространство такое, что $\phi(U) \subseteq U$, то $\phi^*(U^{\perp}) \subseteq U^{\perp}$.
- 8. «Подъем индексов». Пусть $\beta\colon V\times U\to \mathbb{R}$ билинейная форма. Рассмотрим $\Psi^L_\beta\colon V\to U^*.$
 - (a) Проверьте, что Ψ^L_{β} линейное отображение.
 - (b) Пусть в пространствах V и U выбраны базисы, а в U^* выбран двойственный базис. Пусть в этих базисах β задана матрицей B. Найти матрицу Ψ^L_{β} .
 - (c) Покажите $\ker \Psi_{\beta}^{L} = \ker^{L} \beta$
 - (d) Покажите $\operatorname{Im} \Psi^L_\beta = \{ \xi \in U^* \mid \xi(\ker^R \beta) = 0 \}.$
 - (e) $\operatorname{rk} \beta = \operatorname{rk} \Psi_{\beta}^{L}$.
- 9. Пусть $\beta \colon V \times U \to \mathbb{R}$ билинейная форма и $W \subseteq V$. Докажите неравенство

$$\dim U - \min(\dim W, \operatorname{rk} \beta) \leq \dim W^{\perp} \leq \min(\dim U, \dim U + \dim V - \dim W - \operatorname{rk} \beta)$$