Overview

This folder contains a formalization (in the Coq proof assistant) of the methodology proposed in the following manuscript.

Ximeng Li, Shanyan Chen, Yong Guan, Qianying Zhang, Guohui Wang, Zhiping Shi: Correctness Proofs for Extended OS Kernels. (under submission)

The manuscript proposes an approach to formally verify an *extended OS kernel* based on existing verification result for the *OS kernel*. This verification result for the OS kernel is obtained using a concurrent separation logic (e.g., CSL-R [1]). The extension of the OS kernel is by introducing new objects (called *service objects*) that augment the functionalities of the objects in the OS kernel (*kernel objects*). For this development, the OS kernel is $\mu C/OS$ -II, and the kernel objects are the Event Control Blocks (ECBs) for the event objects --- the mutexes, semaphores, and message queues --- of the kernel.

This manuscript is a substantial extension of the conference paper [2].

The formalization in this folder includes

- 1. formalization of code patterns for the creation, deletion and usage of service objects (in a general sense), and a design of invariant conditions that help ascertain a generic integrity condition about the connection between service objects and kernel objects as established by the execution of the code patterns (Section 3 of the manuscript)
- 2. formalization of an enhancement of the CSL-R verification framework that supports the expression of the following content in the abstract specification of API functions, with a soundness proof (Section 4 of the manuscript)
 - a) the results of the internal functions that are subsequently used in their callers
 - b) the assumptions about the data provided by client applications
- 3. formalization of a technique that helps verify the global properties of modules in the extended OS kernel, and the formal verification of a global property for semaphores --- the initial value of a semaphore, increased by the number of successful V operations, and decreased by the number of successful P operations, is greater than or equal to the current value of the semaphore (Section 5 of the manuscript)

Paper-to-code Correspondence

The following tables shows the correspondence between each specific formalized content and the corresponding formal (mechanized) content.

Formalized content	Manuscript	File	Name of Formalization
Code patterns for	Section 3.3	certiucos/code/obj/	Definition service_obj_create_impl
creation/deletion/use of		service_obj_create.v	
service objects		certiucos/code/obj/	Definition service_obj_delete_impl
		service_obj_delete.v	
		certiucos/code/obj/	Definition service_obj_oper_impl
		service_obj_oper.v	
Requirement 1	Section 3.1	certiucos/spec/os_inv.v	Definition RH_OBJ_ECB_P
Requirement 2	Section 3.2	certiucos/spec/os_inv.v	Definition objref_distinct
The invariant condition	Section 3.5	certiucos/spec/os_inv.v	Definition OBJ_AUX_P
sobj_kobj_aux			
The invariant condition	Section 3.5	certiucos/spec/os_inv.v	Definition OBJ_AUX_P
cre_del_mut_ex			Definition objcre_nodup

			Definition objdel_nodup
Refinement verification of	Section 3.5	certiucos/proofs/obj/	Lemma service_obj_create_Proof
the service functions		service obj create proof.v	
(thereby establishing the		certiucos/proofs/obj/	 Lemma service_obj_delete_Proof
preservation of the		service obj delete proof.v	
invariant conditions)		certiucos/proofs/obj/	 Lemma service_obj_oper_Proof
		service obj oper proof.v	
		certiucos/proofs/obj/	Lemma kernel_obj_create_proof
		kernel_obj_create_proof.v	
		certiucos/proofs/obj/	Lemma kernel_obj_delete_proof
		kernel_obj_delete_proof.v	
		certiucos/proofs/obj/	Lemma kernel_obj_oper_proof
		kernel_obj_oper_proof.v	
		certiucos/proofs/obj/	Lemma get_free_obj_idx_proof
		get_free_obj_idx_proof.v	
Adaption of the framework	Section 4	framework/model/opsem.v	Inductive spec_step (modified wrt. CSL-R)
to express results of			Inductive hapistep (constructor
internal functions and			hapienter_step modified wrt. CSL-R)
assumptions (semantic		framework/proof/	CoInductive MethSimMod (modified wrt. CSL-R)
level)		simulation.v	CoInductive MethSim (modified wrt. CSL-R)
			CoInductive TaskSim (modified wrt. CSL-R)
			CoInductive ProgSim (modified wrt. CSL-R,
			corresponding to Definition 4.1 in the manuscript)
Adaption of the framework	Section 4	framework/logic/inferules.v	Definition BuildPreA' (modified wrt. CSL-R)
to express results of			Inductive absinfer (modified wrt. CSL-R)
internal functions and			Inductive absinferfull (modified wrt. CSL-R)
assumptions (syntactical			Inductive InfRules (addition of
level)			absabort_rule wrt. CSL-R)
Adaption of the soundness	Section 4.4	framework/proof/	Theorem RuleSound
proof for the CSL-R		soundness.v	Lemma SmCTaskSim'
verification framework		framework/proof/	Lemma SmCTaskSim
		toptheorem.v	Lemma tsimtopsim
		and the files relied upon by	Theorem toptheorem
		these two files	Theorem Soundness (corresponding to Theorem 4.2
			in the manuscript)
Instrumented model of	Section 5.2	properties/anno_language.v	Inductive spec_code (corresponding to the
computation (syntax)			syntax of \hat{s} in the manuscript)
	~		
Instrumented model of	Section 5.2	properties/anno_opsem.v	Inductive spec_step (modified to maintain local
computation (semantics)			auxiliary states LAuxSt)
			Inductive htstep (modified to maintain local
			auxiliary states LAuxSt)
			Inductive hpstep (modified to maintain mappings
			from task IDs to local auxiliary states
	g .: 5.5		LAuxStMod.map)
Syntactical descendant	Section 5.2	properties/succ_gen.v	Inductive has_succ0
relations for annotated			Definition has_succ
abstract statements			Lemma step_succ0 (corresponding to Lemma 5.1

			in the manuscript) Lemma succ_step_preserve (corresponding to
	G 4: 52	/ 1.6	Lemma 5.2 in the manuscript)
Satisfaction of current	Section 5.2	properties/common_defs.v	Fixpoint head_asrt_sat (corresponding to the
assertion in given			predicate asrt_sat in the manuscript)
annotated abstract			
statement by given local			
auxiliary state			
Proof method for global	Section 5.3	properties/proof_method.v	Lemma proof_method (corresponding to Theorem
properties			5.3 in the manuscript)
Instrumented	Section 5.4	properties/sem_sys.v	Definition sem_pend
specifications for the			Definition semwait
semaphores			Definition sem_post
			Definition semsignal
Invariant conditions for	Section 5.4	properties/sema_invs.v	Definition cond_pv1
verifying the correctness			Definition cond_pv0
property of semaphores			Definition dtinv
Verification of correctness	Section 5.4	properties/sema_correct.v	Theorem sema_correct
property for semaphores			

Building and Running the Proof Scripts

This formalization is developed using Coq 8.13.2 (September 2021).

To build the proof scripts, first ensure that the "bin" folder of the Coq installation is in the system path.

A makefile should be generated from CoqProject with the following command:

```
coq_makefile -f _CoqProject -o Makefile
```

To build the complete development, issue the "make" command in the top-level folder.

The enhanced verification framework for CSL-R can be built separately with the following command:

```
make framework/proof/toptheorem.vo
```

The refinement verification result for the extended kernel (mainly encompassing the operations of service objects in a general sense, the functions for creating and deleting tasks, and a simplistic tick handler that realizes preemptive scheduling) can be built separately with the following command:

```
make certiucos/proofs/funcs_refine_spec.vo
```

The verification result for the global correctness of semaphores can be built separately with the following command:

```
make properties/sema_correct.vo
```

After the proof scripts are built, they can be run using Proof General or CoqIDE.

References:

- [1] Fengwei Xu, Ming Fu, Xinyu Feng, Xiaoran Zhang, Hui Zhang, and Zhaohui Li. A Practical Verification Framework for Preemptive OS Kernels. In Proceedings of 28th International Conference on Computer Aided Verification (CAV), pp. 59-79, 2016.
- [2] Ximeng Li, Shanyan Chen, Yong Guan, Qianying Zhang, Guohui Wang, and Zhiping Shi. Refinement Verification of OS Services based on a Verified Preemptive Microkernel. In Proceedings of 27th International Conference on Fundamental Approaches to Software Engineering (FASE), Held as Part of ETAPS, pp. 188-209, 2024.