Práctica*

2023-2024

Diego Mestanza

2023-12-16

1. Diagrama de Fases

- ## [1] "-2 es un punto LAE"
- ## [1] "1 es un punto inestable"

Diagrama de Fases

Los puntos de equilibrio son las soluciones de la ecuación x = f(x). En este caso, al resolver $x(x^2 + 1) = x^3 + x^2 + 2x - 2$, obtenemos los siguientes equilibrios: x = -2 y x = 1.

El diagrama de fases muestra que el punto de equilibrio 1 es inestable. Las trayectorias que comienzan en el intervalo $(1, +\infty]$ se elejan de ese equilibrio. Por otro lado, el punto -2 es localmente asintóticamente estable (LAE). Para este equilibrio se puede ver que las soluciones que comienzan en el intervalo [-6, 1) convergen hacia él.

^{*}El R Script utilizado para esta práctica se encuentra aquí.

2. Trayectorias

[1] "-2 es un punto LAE"
[1] "1 es un punto inestable"

3. Estudio de estabilidad analíticamente

El comportamiento descrito en el Diagrama de Fases también puede verse analíticamente. Para ello, debemos recordar que un punto de equilirbio, x^* , de una ecuación en diferencias, $x_{t+1} = f(x_t)$, es LAE si $|f'(x^*)| < 1$ y es inestable si $|f'(x^*)| > 1$.

En nuestro caso, se puede corroborar que |f'(-2)| = 0.4 y, por tanto, es un punto de equilibrio LAE; mientras que |f'(1)| = 2.5 y, por tanto, es un punto de equilibrio inestable.