PLANNING AND SEARCH

FOL AND SITUATION CALCULUS

Outline

- ♦ FOL continued
- ♦ Situation calculus
- ♦ Logic and planning

Equality

 $term_1 = term_2$ is true under a given interpretation if and only if $term_1$ and $term_2$ refer to the same object

E.g.,
$$1=2$$
 and $\forall\,x\,\,\times (Sqrt(x),Sqrt(x))=x$ are satisfiable $2=2$ is valid

E.g., definition of (full) Sibling in terms of Parent:

$$\forall x, y \; Sibling(x, y) \Leftrightarrow \left[\neg (x = y) \land \exists m, f \; \neg (m = f) \land Parent(m, x) \land Parent(f, x) \land Parent(m, y) \land Parent(f, y) \right]$$

Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at t=5:

```
Tell(KB, Percept([Smell, Breeze, None], 5))
Ask(KB, \exists a \ BestAction(a, 5))
```

I.e., does KB entail any particular actions at t=5? For example,

```
Answer: Yes, \{a/Shoot\} \leftarrow substitution (binding list)
```

Given a sentence S and a substitution σ , $S\sigma$ denotes the result of plugging σ into S; e.g., S = Smarter(x,y) $\sigma = \{x/Hillary, y/Bill\}$ $S\sigma = Smarter(Hillary, Bill)$

Ask(KB,S) returns some/all σ such that $KB \models S\sigma$

Knowledge base for the wumpus world

```
"Perception"
```

```
\forall b, g, t \ Percept([Smell, b, g], t) \Rightarrow Smelt(t)
\forall s, b, t \ Percept([s, b, Glitter], t) \Rightarrow AtGold(t)
```

Reflex: $\forall t \ AtGold(t) \Rightarrow Action(Grab, t)$

Reflex with internal state: do we have the gold already?

```
\forall t \ AtGold(t) \land \neg Holding(Gold, t) \Rightarrow Action(Grab, t)
```

Holding(Gold, t) cannot be observed

 \Rightarrow keeping track of change is essential

Deducing hidden properties

Properties of locations:

$$\forall x, t \ At(Agent, x, t) \land Smelt(t) \Rightarrow Smelly(x)$$

 $\forall x, t \ At(Agent, x, t) \land Breeze(t) \Rightarrow Breezy(x)$

Squares are breezy near a pit:

Diagnostic rule—infer cause from effect

$$\forall y \ Breezy(y) \Rightarrow \exists x \ Pit(x) \land Adjacent(x,y)$$

Causal rule—infer effect from cause

$$\forall x, y \ Pit(x) \land Adjacent(x, y) \Rightarrow Breezy(y)$$

Neither of these is complete—e.g., the causal rule doesn't say whether squares far away from pits can be breezy

Definition for the Breezy predicate:

$$\forall y \ Breezy(y) \Leftrightarrow [\exists x \ Pit(x) \land Adjacent(x,y)]$$

Keeping track of change

Facts hold in situations, rather than eternally E.g., Holding(Gold,Now) rather than just Holding(Gold)

Situation calculus is one way to represent change in FOL: Adds a situation argument to each non-eternal predicate E.g., Now in Holding(Gold, Now) denotes a situation

Situations are connected by the Result function Result(a,s) is the situation that results from doing a in s

Time points vs situations

 $\forall x \forall y \forall t \forall x_1 \forall y_1 \forall z$

$$At(x, y, z, t) \land MovedTo(x_1, y_1, z, t) \Rightarrow At(x_1, y_1, z, t + 1))$$

(if some z is located at coordinates (x, y) at time t, and at t it is moved to (x_1,y_1) , then at the next moment it is located at (x_1,y_1)).

However this does not distinguish between actions and static properties of the state, and identifies a 'state of the world' with a time point.

Situation calculus

Situation calculus is a dialect of FOL where situations (static states of the world) and actions are basic terms:

variables over situations are denoted $s, s_1, s_2, \ldots,$

a distinguished initial situation is denoted by a constant S_0 .

actions are terms like move(x,y,z) (move thing z to coordinates x,y) etc. Note that actions are also terms, not formulas: they denote an 'action' and are not true or false.

a special function Result takes an action and a situation and returns a new situation: Result(a,s) denotes a new situation which results from performing an action a in a situation s.

Fluents

Predicates and functions whose values vary from situation to situation are called fluents.

Last argument in a fluent is a situation:

$$\neg Holding(r,x,s) \land Holding(r,x,Result(pickup(r,x),s))$$

(a robot r is not holding x in s but is holding it in the situation resulting from s by picking x up).

A distinguished fluent Poss says which actions are possible in a given situation:

 $Poss(pickup(r,blockA), S_0)$

Preconditions of actions

A precondition is a condition which makes an action possible.

It can be expressed by a formula, sometimes called precondition axiom.

For example:

$$\forall r \forall x \forall s \ Poss(pickup(r,x),s) \ \Leftrightarrow \ \forall z (\neg Holding(r,z,s) \land \neg Heavy(x) \land NextTo(r,x,s))$$

(a robot can pick x up if it is not holding anything else, x is not heavy, and the robot is next to it).

Postconditions or effects of actions

A postcondition or effect of an action is a change resulting from executing the action.

Formulas expressing postconditions are sometimes called effect axioms.

For example, $\forall x \forall s \forall r (Fragile(x) \Rightarrow Broken(x, Result(drop(r, x), s)))$

Effect axioms for fluents which become true as a result of an action are called positive, and those where the fluent becomes false are called negative.

Frame axioms

We are considering a very simple world: actions have clearly predefined effects (no non-determinism), and the world changes only as a result of clearly specified actions.

For every action, we can also say which fluents it does not affect.

The formulas which specify which properties are not changed as a result of an action are called frame axioms.

For example,

 $\forall x \forall y \forall s \forall r$

$$\neg Broken(x,s) \land (x \neq y \lor \neg Fragile(x)) \Rightarrow \neg Broken(x, Result(drop(r,y),s))$$

Frame axioms do not logically follow from precondition and effect axioms.

They are called frame axioms because they limit or frame the effects of actions.

Why do we need frame axioms

A typical kind of task in reasoning about actions is to check whether

- (1) a certain sequence of actions a_1, \ldots, a_n will succeed (bring about some desired state of the world)
- (2) a certain sequence of actions is possible

In both cases, some relevant information about S_0 is given (which fluents hold in S_0).

The precondition and effects of actions are used to determine which fluents will be true in $Result(a_n, Result(a_{n-1}, \dots Result(a_1, S_0) \dots)$.

Some fluent may be a precondition of some action a_i which is true in S_0 and is unchanged by a_1, \ldots, a_{i-1} .

However we cannot derive that it is unchanged from just the precondition and effect axioms for a_1, \ldots, a_{i-1} : need to also have explicit frame axioms.

Frame problem

Frame problem is the problem of representing frame conditions coincisely (**not** with an axiom for each pair of action and fluent!).

Solution to the frame problem

For each fluent $F(\bar{x},s)$ (where \bar{x} are all the free variables of the fluent) we collect together all positive effect axioms. For example, if Broken(x,s) has two positive effect axioms:

$$\forall x \forall s \ Fragile(x) \Rightarrow Broken(x, Result(drop(x), s))$$

$$\forall x \forall s \ Broken(x, Result(break(x), s))$$

then together they can be written as:

$$\forall x \forall a \forall s (Fragile(x) \land a = drop(x)) \lor (a = break(x)) \Rightarrow Broken(x, Result(a, s))$$

In general, have an expression $\forall \bar{x} \forall a \forall s (\Pi_F(\bar{x}, a, s) \Rightarrow F(\bar{x}, Result(a, s)))$

Solution to the frame problem continued

Same for the negative effect axioms:

$$\forall \bar{x} \forall a \forall s (N_F(\bar{x}, a, s) \Rightarrow \neg F(\bar{x}, Result(a, s)))$$

For example:

$$\forall \bar{x} \forall a \forall s (a = fix(x) \Rightarrow \neg Broken(x, Result(a, s)))$$

Solution to the frame problem continued

Once we have a single formula Π_F for all actions which make F(x,s) true and a single formula N_F for all actions which make F false, we can write explanation closure axioms:

$$\forall \bar{x} \forall a \forall s (\neg F(\bar{x}, s) \land F(\bar{x}, Result(a, s)) \Rightarrow \Pi_F(\bar{x}, a, s))$$

$$\forall \bar{x} \forall a \forall s (F(\bar{x}, s) \land \neg F(\bar{x}, Result(a, s)) \Rightarrow N_F(\bar{x}, a, s))$$

They replace all frame axioms by saying that

F only becomes true if Π_F holds (only certain actions in certain circumstances make F true)

F only becomes false if N_F is true

 Π_F and N_F are short, and explanation axioms entail all the frame axioms (so the frame problem solved - for this simple case anyway).

One of the assumptions is that all actions are deterministic.

Successor state axioms

If some additional assumptions hold, namely:

- (1) no action has both a positive and negative effect on a fluent F,
- (2) action terms can only be equal if they are the same action name applied to the same arguments

then explanation closure axioms can be combined into a successor state axiom for a fluent: $\forall \bar{x} \forall a \forall s (F(\bar{x}, Result(a, s)) \Leftrightarrow \Pi_F(\bar{x}, a, s) \lor (F(\bar{x}, s) \land \neg N_F(\bar{x}, a, s)))$

Under those assumptions, all that is needed to solve the frame problem and describe the actions and fluents completely are: precondition axioms and successor state axioms

Summary: Describing actions I

"Effect" axiom—describe changes due to action $\forall s \; AtGold(s) \Rightarrow Holding(Gold, Result(Grab, s))$ "Frame" axiom—describe **non-changes** due to action $\forall s \; HaveArrow(s) \Rightarrow HaveArrow(Result(Grab, s))$

Frame problem: find an elegant way to handle non-change

- (a) representation—avoid frame axioms
- (b) inference—avoid repeated "copy-overs" to keep track of state

Qualification problem: true descriptions of real actions require endless caveats—what if gold is slippery or nailed down or . . .

Ramification problem: real actions have many secondary consequences—what about the dust on the gold, wear and tear on gloves, . . .

Summary: Describing actions II

Successor-state axioms solve the representational frame problem

Each axiom is "about" a **predicate** (not an action per se):

```
P true afterwards \Leftrightarrow [an action made P true \lor P true already and no action made P false]
```

For holding the gold:

```
 \forall \, a,s \; \, Holding(Gold,Result(a,s)) \Leftrightarrow \\ [(a = Grab \wedge AtGold(s)) \\ \vee (Holding(Gold,s) \wedge a \neq Release)]
```

Making plans

Initial condition in KB:

```
At(Agent, [1, 1], S_0)

At(Gold, [1, 2], S_0)
```

Query: $Ask(KB, \exists s \ Holding(Gold, s))$

i.e., in what situation will I be holding the gold?

Answer: $\{s/Result(Grab, Result(Forward, S_0))\}$

i.e., go forward and then grab the gold

Making plans: A better way

Represent plans as action sequences $[a_1, a_2, \ldots, a_n]$

PlanResult(p, s) is the result of executing p in s

Then the query $Ask(KB, \exists p \; Holding(Gold, PlanResult(p, S_0)))$ has the solution $\{p/[Forward, Grab]\}$

Definition of *PlanResult* in terms of *Result*:

```
 \forall s \ PlanResult([], s) = s \\ \forall a, p, s \ PlanResult([a|p], s) = PlanResult(p, Result(a, s))
```

Planning systems are special-purpose reasoners designed to do this type of inference more efficiently than a general-purpose reasoner

Summary

First-order logic:

- objects and relations are semantic primitives
- syntax: constants, functions, predicates, equality, quantifiers

Increased expressive power: sufficient to define wumpus world

Situation calculus:

- conventions for describing actions and change in FOL
- can formulate planning as inference on a situation calculus KB

Next lecture: Planning. Russell and Norvig, 3rd ed., Chapter 10.1-10.2.