artificial intelligence and music

threats & opportunities

alexander lerch

intro

education

- Electrical Engineering (Technical University Berlin)
- Tonmeister (music production, University of Arts Berlin)

professional

- Associate Dean for Research & Creative Practice, College of Design, Georgia Tech
- Associate Professor, School of Music, Georgia Tech
- prev: 2000-2013: CEO at zplane.development

background

- machine learning for audio and music (20+ years)
- audio algorithm design (20+ years)
- commercial music software development (10+ years)
- entrepreneurship (10+ years)

Ť

ww.linkedin.com/ir

introduction artificial intelligence

■ artificial intelligence

- unclear definition: everything that is perceived to act intelligently
- changes over time

machine learning

 data-driven: algorithm is more agnostic to task and is parametrized through training with data

■ deep learning

deep neural networks are the ML approach used

■ generative AI

• deep neural networks generating content

- mapping function is learned from patterns and characteristics from data
- ⇒ model success largely depends on training data
- technical challenges concerning data
 - imbalance & bias (distribution is skewed, biased)
 - diversity & representativeness
 - subjectivity of annotations
 - noisiness (bad quality, bad annotations, ...)
 - amount

- mapping function is learned from patterns and characteristics from data
- ⇒ model success largely depends on training data
- technical challenges concerning data
 - imbalance & bias (distribution is skewed, biased)
 - diversity & representativeness
 - subjectivity of annotations
 - noisiness (bad quality, bad annotations, . . .)

machine learning importance of data

machine learning: generic algorithm mapping an input to an output

- mapping function is learned from patterns and characteristics from data
- ⇒ model success largely depends on training data
- technical challenges concerning data
 - imbalance & bias (distribution is skewed, biased)
 - diversity & representativeness
 - subjectivity of annotations
 - noisiness (bad quality, bad annotations, ...)
 - amount

- mapping function is learned from patterns and characteristics from data
- ⇒ model success largely depends on training data
- technical challenges concerning data
 - imbalance & bias (distribution is skewed, biased)
 - diversity & representativeness
 - subjectivity of annotations
 - noisiness (bad quality, bad annotations, ...)
 - amount

- mapping function is learned from patterns and characteristics from data
- ⇒ model success largely depends on training data
- technical challenges concerning data
 - imbalance & bias (distribution is skewed, biased)
 - diversity & representativeness
 - subjectivity of annotations
 - noisiness (bad quality, bad annotations, ...)
 - amount

- mapping function is learned from patterns and characteristics from data
- ⇒ model success largely depends on training data
- technical challenges concerning data
 - imbalance & bias (distribution is skewed, biased)
 - diversity & representativeness
 - subjectivity of annotations
 - noisiness (bad quality, bad annotations, ...)
 - amount

threats & opportunities

4 / 9

Georgia Center for Music Tech Techology

- **creation of musical ideas** ("score")
 - defines style and idea
- realization of musical ideas into acoustical rendition
 - interpretation, modification, addition, and dismissal of score information
 - unique acoustic representation of score
- recording, mixing, and editing (in case of record media)
 - editing and splicing of recorded data: timbre, equalization choices
 - not separable from performance in a recording
- distribution & listening
 - music recommendation and discovery

- **creation of musical ideas** ("score")
 - defines style and idea
- realization of musical ideas into acoustical rendition
 - interpretation, modification, addition, and dismissal of score information
 - unique acoustic representation of score
- recording, mixing, and editing (in case of record media)
 - editing and splicing of recorded data: timbre, equalization choices
 - not separable from performance in a recording
- distribution & listening
 - music recommendation and discovery

- **creation of musical ideas** ("score")
 - defines style and idea
- realization of musical ideas into acoustical rendition
 - interpretation, modification, addition, and dismissal of score information
 - unique acoustic representation of score
- recording, mixing, and editing (in case of record media)
 - editing and splicing of recorded data; timbre, equalization choices
 - not separable from performance in a recording
- distribution & listening
 - music recommendation and discovery

- **creation of musical ideas** ("score")
 - defines style and idea
- realization of musical ideas into acoustical rendition
 - interpretation, modification, addition, and dismissal of score information
 - unique acoustic representation of score
- recording, mixing, and editing (in case of record media)
 - editing and splicing of recorded data; timbre, equalization choices
 - not separable from performance in a recording
- **■** distribution & listening
 - music recommendation and discovery

musical communication musical communication and Al

composition

- intelligent assistance, e.g., ideas, auto-arrangements
- automatic composition
- performance
 - interactive music education systems
 - generation of 'human' performance
- production
 - auto-edit and auto-mix
- distribution
 - match music style and consumer
- consumption
 - intelligent music discovery & adaptable music

Georgia Center for Music Tech

composition

- intelligent assistance, e.g., ideas, auto-arrangements
- automatic composition

performance

- interactive music education systems
- generation of 'human' performance
- production
 - auto-edit and auto-mix
- distribution
 - match music style and consumer
- consumption
 - intelligent music discovery & adaptable music

musical communication musical communication and Al

composition

- intelligent assistance, e.g., ideas, auto-arrangements
- automatic composition

performance

- interactive music education systems
- generation of 'human' performance

production

- auto-edit and auto-mix
- distribution
 - match music style and consumer
- consumption
 - intelligent music discovery & adaptable music

composition

- intelligent assistance, e.g., ideas, auto-arrangements
- automatic composition

performance

- interactive music education systems
- generation of 'human' performance

production

auto-edit and auto-mix

distribution

- match music style and consumer
- consumption
 - intelligent music discovery & adaptable music

composition

- intelligent assistance, e.g., ideas, auto-arrangements
- automatic composition

performance

- interactive music education systems
- generation of 'human' performance

production

auto-edit and auto-mix

distribution

match music style and consumer

consumption

• intelligent music discovery & adaptable music

music ai opportunities & threats

Georgia Center for Music Tech Technology

opportunities

- content creation:
 - speed-up, increased efficiency
 - creative possibilities (morphing, etc.)
 - co-creative idea givers
 - democratization
- consumption:
 - personalization
 - effective discovery and accessibility

threats

- both:
 - 'mainstreamification'
 - bias through for-profit system control
 - sustainability and energy
- content creation:
 - ethical use of data
 - plagiarism growth
 - liability for harmful content
- consumption:
 - user distrust through
 - ► inflationary ai-generated content
 - ► inexplainable block-box systems

conclusion

paradigm shift has to be actively managed

- management and mitigation of impact on workforce
- transparency and informing consumers
- models for fair compensation

■ short-term

- opportunities for efficiency in content production
- new tech will always be used in unforeseen creative ways
- accessibility increases dramatically

■ fundamental questions worth asking

- when is a musical piece considered creative
- what makes a human performance unique
- can generated content be art

links

alexander lerch: www.linkedin.com/in/lerch

mail: alexander.lerch@gatech.edu

book: www.AudioContentAnalysis.org

music informatics group: musicinformatics.gatech.edu

github.com/alexanderlerch