

MACS 2017

>

A/C Valve Application & Service

Jeffrey A. Schultz, P.E. Product Engineering Manager

→ TOPICS

▶ 1. Selection of valves for mobile AC Systems

▶ 2. Servicing AC Valves in mobile AC Systems

>> Selection of valves for MAC Systems

>> Valve Applications

Three AC Valve Applications

SYSTEM APPLICATION	LOW PERMEATION	HIGH FLOW *	ROBUSTNESS	LOCATION
Factory Fill	Х	X	X	HS, LS, Both
Service Fill	Χ		X	LS
Switch Ports	X			HS & LS Switch

^{*} Depends on Assembly Plant Process

>> Selection of Charge / Access Valve

High Flow Cores
- Factory Fill Process

M10 Core

"Primary Seal" (Integrated Valve)

Shown in 134a configuration

>> Selection of Charge / Access Valve

Medium & Low Flow Cores
- System Access and Service

►► M8 (North America) Core

Valve TechnologyM8 Core (Europe)

>> JRA Core

Shown in 134a configuration

>> Standard Core (North America)

Shown in 134a configuration

Charge / Access Valve Materials

OE preference for Seal Materials

Valve Technology Seal Material Availability

Valve	Neoprene	HNBR	EPDM
Primary Seal	X	X	X
10mm Core	X	X	X
8mm Core	X	X	X
JRA Core		X	
Standard Core	X	X	

Valve Technology

SEAL SELECTION

- 1. POLYMER Chemical resistance to refrigerant oils (Worst to Best)
 - a. Neoprene PAG & PVE systems only
 - b. HNBR All Systems
 - c. EPDM PAG & PVE systems only
 - d. FKM.....GFL....GFLT Not Suitable for AC Service
- 2. COMPOUND MODIFIERS for durability
- 3. HARDNESS seal-ability v durability
 - a. 70 durometer higher seal consistency
 - b. 8o durometer higher strength & durability

>> Valve Technology

SEAL SELECTION

Permeation rate: Refrigerant loss (Best to Worst)

- 1. Neoprene
- 2. HNBR
- 3. EDPM

Valve Technology Relative Application Guidelines

	Integrity		Flow
Valve	Permeation	Robustness	Evacuation
Primary Seal	+	+++	+++
10mm Core	В	++	+++
8mm Core	++	++	++
JRA Core	++	+	+
Standard Core	++	В	В

B is Baseline

High Flow Valves – Factory Fill

- 1. Remove moisture
- 2. Conduct leak test

Schematic of Charging Process

Evac and Fill Process

Idealized Evac and Fill Process Timeline

actory Evacuation and Fill Process

Issue 1. Remove air and water from the system in the <u>minimum</u> process time:

Large bore charge valves (or dual evacuation!) are critical to achieving optimum evacuation prior to charging

Evacuation Time

134a Charge System

y Evacuation and Fill Process

Issue 2. Leak check prior to charging:

- a. The leak check currently performed after evacuation is inadequate to find leaks smaller that 75 lbs/yr of refrigerant.
- b. High flow valves minimize evacuation time allowing increased time for leak testing.

► Evacuation Time – Typical Vehicle

Evacuation Pressure vs. Time

>> Valve Technology

Evacuation Capability, Pressure after 30 seconds:

Valve	System Pressure (mm Hg)	Cabinet Pressure (mm Hg)	Pressure Rise Equalization (mmHg)
Standard Core	77	14	63
JRA Core	42	10	32
8mm Core	35	6	29
10mm Core	22	5	17
Integrated Valve	20	7	13

Demonstration Stand Data

>> Servicing AC Valves

Simplify the choices in servicing charge valves

1975 Cadillac Eldorado Biarritz

Charge and Service Valves

For OE customers, there are 16 options from us alone, depending on:

- 1. Refrigerant
- 2. Refrigerant oil
- 3. Assembly plant charging system
- 4. Sealing system rubber compound preference

For <u>Service marketplace</u>, we simplify to 6 options:

- Schrader family of Universal Valves
- 2. 6 Cores, one of each style
- 3. OE Quality, made in USA

Valve Service

IMPORTANT STEPS

- Assess valve Condition
- a) When
- b) How
- 2. Replacing Valves
 - a) When
- b) How
- 3. Other Service Issues
 - 1. Replacing / Refilling Refrigerant & Oil
 - 2. Converting Refrigerant

ASSESSING VALVE CONDITION

- a) When: Test valve leakage <u>before</u> recharging
- b) How:
- c) **1. Look for dye**
- d) 2. Look for oil
- e) 3. Use halogen leak detector
 - a) Use proper instrument sensitivity
 - b) Flush top of valve of accumulated refrigerant

REPLACING VALVES

When: When valve leakage is found

How:

- 1. Never re-use a valve that has been removed
- 2. Clean the port before removing valve
- 3. Use proper drive tool
 - a) Octagon socket for integrated valve
 - b) "Right-sized" core driver
- 4. Clean the open port of thread debris

REPLACING VALVES

- 5. Use Schrader Universal Valve or OE Part
- 6. Lubricate external o-rings with refrigerant oil
- 7. Torque the valve correctly
- 8. Confirm core pin height after assembly
- 9. Reinstall the cap

▶ RECOMMENDED VALVE TORQUE

Std. Core: 0.36 - 0.67 Nm / 3 - 6 in-lbs

JRA: 0.56 - 1.13 Nm / 5 - 10 in-lbs

8mm: 1.13 - 2.26 Nm / 10 - 20 in-lbs

10mm: 1.70 - 3.40 Nm / 15 - 30 in-lbs

Primary Seal (HS): 9.5 - 13.6 Nm / 7 - 10 ft-lbs

Primary Seal (LS): 6.8 – 9.5 Nm / 5 – 7 ft-lbs

Valve Service

REPLACING / REFILLING REFRIGERANT or REFRIGERANT OIL

- 1. Refrigerant
- a) Use same refrigerant as new
- b) Use only known sources of quality refrigerant
- c) May not back convert R-1234yf to R-134a
- 2. Refrigerant Oil
 - a) PAG Use oil recommended by OEM
 - b) POE ABSOLUTELY use same oil recommended by OEM
 - c) PAG & POE Do not use an R134a oil in a R1234yf system.

i.

i.

>> Importance of Quality

Experiment by Toyota SAE J2843 development

Small Leak Defects

No Defect
No oil on O-ring
wrong size O-ring
Evap block damage (screwdriver)
Dust contaminant from working gloves(180µm)
A hair (70μm)

Large Leak Defects

No O-ring	
Forgotten fasten bolts	
Missing fasten bolt torque	
Scratch O-ring surface D cut	
Scratch O-ring surface) V cut	
Cut/Torn O-ring	
Pinch O-ring	

Reference Leak Paths

Slide from Toyota Presentation on SAE J2843 development

DOTABLE STIONS?

Schematic of Factory System

Q - volumetric flow rate

► Evacuation Time – Typical Vehicle

Evacuation Pressure vs. Time

Evacuation Rate is a Function of Pressure

- > Flow in vacuum (evacuation) depends on communication between gaseous molecules
 - ▶ Communication between molecules is a function of the "Mean Free Path" between molecules
 - ▶ Mean Free Path is a function of pressure and flow path width:

$$ar{l} = rac{k \cdot T}{\sqrt{2} \cdot \pi \cdot p \cdot d_m^2}$$

Evacuation Rate as a Function of Knudsen Number

► Evacuation Time – Typical Vehicle

Evacuation Pressure vs. Time

Schrader Test Setup Charge Port Evacuation Trials

