AMENDMENTS TO THE CLAIMS:

The following listing of claims will replace all prior versions and listings of claims in the application.

Claims 1-12 (canceled)

Claim 13 (previously presented): An N-substituted pyrazolylcarboxanilide of formula (I)

$$\begin{array}{c|c}
R^1 & O \\
N & I^4 \\
R^4 & I^2
\end{array}$$

$$\begin{array}{c}
R^3 \\
R_3 & C \\
C & C \\
H_3 & C
\end{array}$$
(I)

in which

R⁴

R¹ represents methyl, trifluoromethyl, or difluoromethyl,

R² represents hydrogen, fluorine, chlorine, methyl or trifluoromethyl, either

(a) R³ represents hydrogen, and

represents C_1 - C_8 -alkyl, C_1 - C_6 -alkylsulphinyl, C_1 - C_6 -alkylsulphonyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -cycloalkyl; represents C_1 - C_6 -haloalkyl, C_1 - C_4 -haloalkylthio, C_1 - C_4 -haloalkylsulphinyl, C_1 - C_4 -haloalkylsulphonyl, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl- C_1 - C_3 -alkyl, $(C_1$ - C_3 -alkyl)carbonyl- C_1 - C_3 -alkyl, or $(C_1$ - C_3 -alkoxy)carbonyl- C_1 - C_3 -alkyl; represents halo- $(C_1$ - C_3 -alkyl)-carbonyl- C_1 - C_3 -alkyl or halo- $(C_1$ - C_3 -alkoxy)carbonyl- C_1 - C_3 -alkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; represents $(C_3$ - C_8 -cycloalkyl)carbonyl; represents $(C_3$ - C_8 -halocycloalkyl)carbonyl having 1 to 9 fluorine, chlorine and/or bromine atoms; or represents -C(=O)C(=O) R^5 , -CON R^6 R^7 , or -CH₂N R^8 R^9 ,

or

- R^3 (b) represents halogen, C₁-C₈-alkyl, or C₁-C₈-haloalkyl, and R⁴ represents C₁-C₈-alkyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, or $(C_1-C_3-alkoxy)$ carbonyl- $C_1-C_3-alkyl$; represents halo- $(C_1-C_3-alkyl)$ carbonyl-C₁-C₃-alkyl or halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; represents (C₁-C₈-alkyl)carbonyl, (C₁-C₈-alkoxy)carbonyl, (C₁-C₄alkoxy-C₁-C₄-alkyl)carbonyl, or (C₃-C₈-cycloalkyl)carbonyl; represents $(C_1-C_6-haloalkyl)$ carbonyl, $(C_1-C_6-haloalkoxy)$ carbonyl, $(halo-C_1-C_4-haloalkyl)$ alkoxy-C₁-C₄-alkyl)carbonyl, or (C₃-C₈-halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents -C(=O)C(=O)R⁵, -CONR⁶R⁷, or -CH₂NR⁸R⁹, and
- R⁵ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; or represents C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms,
- R⁶ and R⁷, independently of one another, each represent hydrogen, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represent C₁-C₈-haloalkyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R⁶ and R⁷ together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹⁰.
- R⁸ and R⁹, independently of one another, represent hydrogen, C₁-C₈-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-haloalkyl or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R⁸ and R⁹ together with the nitrogen atom to which they are attached form a saturated hetero-

CS8775 - 3 -

cycle having 5 to 8 ring atoms that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C_1 - C_4 -alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹⁰, and

R¹⁰ represents hydrogen or C₁-C₆-alkyl.

Claim 14 (previously presented): An N-substituted pyrazolylcarboxanilide of formula (I) according to Claim 13 in which

R¹ represents methyl, trifluoromethyl, or difluoromethyl,

R² represents hydrogen, fluorine, chlorine, methyl, or trifluoromethyl, either

(a) R³ represents hydrogen, and

represents C_1 - C_6 -alkyl, C_1 - C_4 -alkylsulphinyl, C_1 - C_4 -alkylsulphonyl, C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, or C_3 - C_6 -cycloalkyl; represents C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkylthio, C_1 - C_4 -haloalkylsulphinyl, C_1 - C_4 -haloalkylsulphonyl, halo- C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, or C_3 - C_6 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl- C_1 - C_3 -alkyl, (C_1 - C_3 -alkyl)carbonyl- C_1 - C_3 -alkyl, or (C_1 - C_3 -alkoxy)carbonyl- C_1 - C_3 -alkyl; represents halo-(C_1 - C_3 -alkyl)-carbonyl- C_1 - C_3 -alkyl, or halo-(C_1 - C_3 -alkoxy)carbonyl- C_1 - C_3 -alkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; represents (C_3 - C_6 -cycloalkyl)carbonyl; represents (C_3 - C_6 -halocycloalkyl)carbonyl having 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents -C(=O)C(=O) R^5 , -CON R^6 R^7 , or -CH $_2$ N R^8 R^9 ,

or

(b) R³ represents fluorine, chlorine, bromine, iodine, C₁-C₆-alkyl, or C₁-C₆-haloalkyl having 1 to 13 fluorine, chlorine, and/or bromine atoms, and R⁴ represents C₁-C₆-alkyl, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl,

represents C_1 - C_6 -alkyl, C_1 - C_4 -alkylsulphinyl, C_1 - C_4 -alkylsulphonyl, C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, or C_3 - C_6 -cycloalkyl; represents C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkylthio, C_1 - C_4 -haloalkylsulphinyl, C_1 - C_4 -haloalkylsulphinyl, haloalkylsulphinyl, or C_3 - C_6 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl- C_1 - C_3 -alkyl, $(C_1$ - C_3 -alkyl)carbonyl- C_1 - C_3 -alkyl,

- 4 -

CS8775

or $(C_1-C_3-alkoxy)$ carbonyl- $C_1-C_3-alkyl$; or represents halo- $(C_1-C_3-alkyl)$ -carbonyl- $C_1-C_3-alkyl$, halo- $(C_1-C_3-alkoxy)$ carbonyl- $C_1-C_3-alkyl$ having in each case 1 to 13 fluorine, chlorine and/or bromine atoms; represents $(C_1-C_6-alkyl)$ carbonyl, $(C_1-C_6-alkoxy)$ carbonyl, $(C_1-C_3-alkoxy-C_1-C_3-alkyl)$ carbonyl, or $(C_3-C_6-cycloalkyl)$ carbonyl; represents $(C_1-C_4-halo-alkyl)$ carbonyl, $(C_1-C_4-halo-alkyl)$ carbonyl, $(C_1-C_4-halo-alkyl)$ carbonyl, or $(C_3-C_6-halocycloalkyl)$ carbonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents $-C(=O)C(=O)R^5$, $-CONR^6R^7$, or $-CH_2NR^8R^9$, and

- R⁵ represents hydrogen, C_1 - C_6 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, or C_3 - C_6 -cycloalkyl; represents C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy, halo- C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, or C_3 - C_6 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms,
- R^6 and R^7 , independently of one another, each represent hydrogen, $\mathsf{C}_1\text{-}\mathsf{C}_6\text{-}$ alkyl, $\mathsf{C}_1\text{-}\mathsf{C}_3\text{-}$ alkoxy- $\mathsf{C}_1\text{-}\mathsf{C}_3\text{-}$ alkyl, or $\mathsf{C}_3\text{-}\mathsf{C}_6\text{-}$ cycloalkyl; represent $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}$ haloalkyl, halo- $\mathsf{C}_1\text{-}\mathsf{C}_3\text{-}$ alkoxy- $\mathsf{C}_1\text{-}\mathsf{C}_3\text{-}$ alkyl, or $\mathsf{C}_3\text{-}\mathsf{C}_6\text{-}$ halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R^6 and R^7 together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms that is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of halogen and $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}$ alkyl, where the heterocycle optionally contain 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur and NR^{10} ,
- R^8 and R^9 , independently of one another, represent hydrogen, C_1 - C_6 -alkyl, or C_3 - C_6 -cycloalkyl; represent C_1 - C_4 -haloalkyl or C_3 - C_6 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R^8 and R^9 together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms that is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of halogen and C_1 - C_4 -alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR^{10} , and

 R^{10} represents hydrogen or C_1 - C_4 -alkyl.

CS8775 - 5 -

Claim 15 (previously presented): An N-substituted pyrazolylcarboxanilide of formula (Ib)

$$\begin{array}{c|c}
R^1 & O \\
N & I & R^2 \\
H_3C & F & H_3C & H \\
H_3C & CH_3
\end{array}$$
(Ib)

in which

represents C_1 - C_8 -alkyl, C_1 - C_6 -alkylsulphinyl, C_1 - C_6 -alkylsulphonyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -cycloalkyl; represents C_1 - C_6 -haloalkyl, C_1 - C_4 -haloalkylthio, C_1 - C_4 -haloalkylsulphinyl, C_1 - C_4 -haloalkylsulphonyl, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl- C_1 - C_3 -alkyl, (C_1 - C_3 -alkyl)carbonyl- C_1 - C_3 -alkyl, or (C_1 - C_3 -alkoxy)carbonyl- C_1 - C_3 -alkyl represents halo-(C_1 - C_3 -alkyl)carbonyl- C_1 - C_3 -alkyl or halo-(C_1 - C_3 -alkoxy)carbonyl- C_1 - C_3 -alkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; represents (C_3 - C_8 -cycloalkyl)carbonyl; represents (C_3 - C_8 -halocycloalkyl)carbonyl having 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents -C(=O)C(=O) R^5 , - $CONR^6R^7$, or - $CH_2NR^8R^9$,

R¹ represents methyl, trifluoromethyl, or difluoromethyl,

R² represents hydrogen, fluorine, chlorine, methyl or trifluoromethyl,

R⁵ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; or represents C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms,

R⁶ and R⁷, independently of one another, each represent hydrogen, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represent C₁-C₈-haloalkyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R⁶ and R⁷ together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle optionally contains 1 or 2 further non-

CS8775 - 6 -

adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹⁰, and

R⁸ and R⁹, independently of one another, represent hydrogen, C₁-C₈-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-haloalkyl or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R⁸ and R⁹ together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹⁰.

Claim 16 (previously presented): An N-substituted pyrazolylcarboxanilide of formula (Ic)

$$\begin{array}{c|c}
R^1 & O \\
N & R^{4B} \\
R^{4B} & R^2 \\
R^{3B} & R^3B
\end{array}$$

$$\begin{array}{c}
H_3C & R^{3B} \\
CH_3 & CH_3
\end{array}$$

in which

R^{3B} represents halogen, C₁-C₈-alkyl, or C₁-C₈-haloalkyl,

represents C₁-C₈-alkyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; represents halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl or halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; represents (C₁-C₈-alkyl)carbonyl, (C₁-C₈-alkoxy)carbonyl, (C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, or (C₃-C₈-cycloalkyl)carbonyl; represents (C₁-C₆-haloalkyl)carbonyl, (C₁-C₆-haloalkoxy)carbonyl, having in each case 1 to 9

CS8775 - 7 -

- fluorine, chlorine, and/or bromine atoms; or represents -C(=O)C(=O)R⁵, -CONR⁶R⁷, or -CH₂NR⁸R⁹,
- R¹ represents methyl, trifluoromethyl, or difluoromethyl,
- R² represents hydrogen, fluorine, chlorine, methyl or trifluoromethyl,
- R⁵ represents hydrogen, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -cycloalkyl; or represents C_1 - C_6 -haloalkyl, C_1 - C_6 -haloalkoxy, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms,
- R⁶ and R⁷, independently of one another, each represent hydrogen, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represent C₁-C₈-haloalkyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R⁶ and R⁷ together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹⁰, and
- R⁸ and R⁹, independently of one another, represent hydrogen, C₁-C₈-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-haloalkyl or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R⁸ and R⁹ together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹⁰.

Claim 17 (previously presented): An N-substituted pyrazolylcarboxanilide of formula (I) according to Claim 13 in which R⁴ represents formyl.

Claim 18 (previously presented): An N-substituted pyrazolylcarboxanilide of formula (I) according to Claim 13 in which R⁴ represents -C(=O)C(=O)R⁵ and R⁵ is as defined in Claim 13.

CS8775 - 8 -

Claim 19 (canceled)

Claim 20 (previously presented): A composition for controlling unwanted microorganisms comprising one or more N-substituted pyrazolylcarboxanilides of formula (I) according to Claim 13 and one or more extenders and/or surfactants.

Claim 21 (previously presented): A method of controlling unwanted microorganisms comprising applying an effective amount of an N-substituted pyrazolylcarboxanilide of formula (I) according to Claim 13 to the microorganisms and/or their habitat.

Claims 22-23 (canceled)

Claim 24 (previously presented): A pyrazolylcarboxanilide of formula (IV)

$$\begin{array}{c|c}
R^1 & O \\
N & R^2 \\
R^4 & R^3 \\
H_3C & CH_3
\end{array}$$
(IV)

in which

 R^4

R¹ represents methyl, trifluoromethyl, or difluoromethyl,

R² represents hydrogen, fluorine, chlorine, methyl or trifluoromethyl, and either

(a) R³ represents hydrogen, and

represents C₁-C₈-alkyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkylhaving in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; represents halo-(C₁-C₃-alkyl)-carbonyl-C₁-C₃-alkyl or halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; represents (C₃-C₈-cycloalkyl)carbonyl; represents (C₃-C₈-halocyclo-

CS8775 - 9 -

alkyl)carbonyl having 1 to 9 fluorine, chlorine and/or bromine atoms; or represents -C(=O)C(=O)R⁵, -CONR⁶R⁷, or -CH₂NR⁸R⁹,

or

(b) R^3 R^4

represents halogen, C₁-C₈-alkyl, or C₁-C₈-haloalkyl, and represents C₁-C₈-alkyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; represents halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl or halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; represents (C₁-C₈-alkyl)carbonyl, (C₁-C₈-alkoxy)carbonyl, (C₁-C₄alkoxy-C₁-C₄-alkyl)carbonyl, or (C₃-C₈-cycloalkyl)carbonyl; represents (C₁-C₆-haloalkyl)carbonyl, (C₁-C₆-haloalkoxy)carbonyl, (halo-C₁-C₄alkoxy-C₁-C₄-alkyl)carbonyl, or (C₃-C₈-halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents -C(=O)C(=O)R⁵, -CONR⁶R⁷, or -CH₂NR⁸R⁹.

CS8775 - 10 -