	Dinal D-		Seme	ester/Acad. year	2 2022-2023
ВК	Final Exams		Date	, -	May 27 th , 2023
TP.HCM	Course title	Linear	Algeb	ra	
UNIVERSITY OF TECHNOLOGY - VNUHCM	Course ID	MT100	7	Question sheet code	1121
Faculty of Applied Science	Duration	100 mi	nutes	Shift	09:00
Instructions to students:					
 This is a closed book exam. Only your calculator is allowed. Total available score: 10. At the beginning of the working time, you MUST fill in your full name and student ID on this question sheet. There are 26 questions on 5 pages. Do not round between steps. Round your final answers to 4 decimal places. 					
Student's full name:			Invigilator 1:		
Student Id:	Invigilator 2:				
new-en-long					
Part I: Multiple choice (8 poin	nts, 80 minut	ces)			
1. Find m such that the following matrix is invertible: $A = \begin{pmatrix} -5 & -1 & 1 \\ 1 & -5 & 2 \\ -2 & -5 & m \end{pmatrix}$. (A) m does not exist. (B) $m = 0.8462$. (C) For all m . (D) m is not equal to 2.3462. (E) $m = -0.1538$.					
2. Find m such that the following system has unique solution $\begin{cases} -2x - 3y + z = 7, \\ -y + 2z = -1, \\ 4x - 2y + mz = 0. \end{cases}$					
A m = 18. B Does not eanswers are wrong.	exist m. ©	For all n	n. (I	m is different from	14. © Other
 3. In R³ let E = {(0, -2, 1)^T, (3, 4, m)^T, (3, 0, 2)^T} be a vector set. Find m such that E is not a basis of R³. (A) m = 4.5. (B) m does not exist. (C) For all m. (D) m = 0. (E) m = 2.5. 					
Questions 4 through 7			Ü	_	
A basis E for the nullspace of	$A = \begin{pmatrix} -3 & 3 \\ -12 & 1 \end{pmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{pmatrix} 5\\24 \end{pmatrix}$	has the form $\{(x, 1, y, 0)\}$	(0), (z, 0, t, 1).
4. Determine x, y, z, t .					
(A) $x = 1, y = 0, z = -2, t = $ wrong. (D) $x = -2, y = -1,$	z = -1 $z = 0, t = 1$	$= -2, y$ $\stackrel{\textstyle ({\text{E}})}{\text{E}} x =$	= -1, $-2, y =$	z = 1, t = 5 © C = $0, z = -2, t = -5$	ther answers are

5. Find u and v such that w = (u, 2, v, 5) is in Null(A). A u = -7.5, v = -8 B u = -7, v = -4.5

© Other answer are wrong.

(D) (5,5,5,5)

 \bigcirc u = -12, v = -1.5 \bigcirc Other answer are wrong.

 \bigcirc (75, 75, 80, 145)

(-5, 5, -5, 5)

6. Let θ be a vector in Null(A) such that $[\theta]_E = (5,5)^T$. Find the vector θ . \bigcirc (-75, 75, -80, 145)

$\langle x, y \rangle = 3x_1y_1 + 6x_2y_2 + 4x_3y_3.$				
Let X be the subspace of \mathbb{R}_3 that is spanned by the basis				
$S = \{u = (5, -4, 40), v = (-2, 2, -18)\}.$				
9. One basis of the orthogonal complement of X in \mathbb{R}_3 is $\textcircled{A} \{(-5.3333, 3.3333, 1)\}$. $\textcircled{B} \{(5, -4, 40), (-2, 2, -18)\}$. $\textcircled{C} \{(1, 0, 4), (0, 1, -5)\}$. \textcircled{D} All other answers are wrong. $\textcircled{E} \{(3.3333, -5.3333, 1)\}$.				
10. The projection of $z=(2,-5,2)$ onto X is A (8.4786, $-5.2991, -1.5897$). B (2, $-5,2$). C ($-5.3333, 3.3333, 1$). D All other answers are wrong. E (4.2393, $-2.6496, -0.7949$).				
11. The distance from z to X is A 0.7949. B All other answers are wrong C 1.5897. D 9.9279. E 19.8558.				
Question 12 through 13: Let $A = \begin{bmatrix} 3 & 6 & 1 & -4 \\ 1 & 2 & 2 & -8 \\ 3 & 6 & 3 & -12 \end{bmatrix}$ and T be a linear transformation defined by $T(x) = Ax^T$.				
12. Find the first component of the image vector $T(x)$ where $x = (-2, -4, 1, 5)^T$. \bigcirc All other answers are wrong. \bigcirc \bigcirc -49. \bigcirc -51.				
13. Which of the following sets is a basis of the range of T ? (A) $\{(-2,1,0,0),(0,0,4,1)\}$. (B) $\{(3,1,3),(1,2,3)\}$. (C) $\{(3,1,3),(1,2,3),(-4,-8,-12)\}$. (D) $\{(1,2,0,0),(0,0,1,-4)\}$. (E) All other answer are wrong.				
Question 14 through 17: In \mathbb{R}^2 with the standard inner product let d be the line $x - 2y = 0$.				
14. Find the matrix of the reflection transformation f about the line d . (A) $\begin{pmatrix} 0.8 & 0.4 \\ 0.4 & 0.2 \end{pmatrix}$. (B) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. (C) All other answers are wrong. (D) $\begin{pmatrix} 2 & 1 \\ 1 & -2 \end{pmatrix}$. (E) $\begin{pmatrix} 0.6 & 0.8 \\ 0.8 & -0.6 \end{pmatrix}$.				
Page 2				

7. Let F be another basis of Null(A) and the transition matrix from F to E is $T_{F\to E}=[[f_1]_E[f_2]_E]=$

(A) Other answer are wrong. (B) $(-74.5, -20.5)^T$. (C) $(-14.5, -70.5)^T$. (D) $(-75, -20)^T$.

 $(:,:):P_2(\mathbb{R})\times P_2(\mathbb{R})\to\mathbb{R}:(:p,q:)=p_0q_0+p_1q_1+p_2q_2$. Evaluate the inner product of the following two vectors $f=2+6x+11x^2,\quad g=-3-4x+8x^2$.

Question 9 through 11: In \mathbb{R}^3 we define the weighted inner product $\langle .,. \rangle$ that is given by the formula

(D) 796.

(E) 451.

8. In the vector space $P_2(\mathbb{R}) = \{p(x) = p_2x^2 + p_1x + p_0, a, b, c \in \mathbb{R}\}$ define the inner product

 $\begin{pmatrix} 1 & -4 \\ 5 & -19 \end{pmatrix}$. Find the coordinate vector of θ with respect to F.

(A) 3729. (B) 1231. (C) All other answers are wrong.

 $\stackrel{\smile}{\mathbb{E}}$ $(-15, -70)^T$.

15	. Find the reflection of the triangle with vertices A(-4, 1), B(3, 2), C(-3, 7) about the line d .
16	. Find the matrix of the rotation transformation g about the origin by $\pi/4$ degree clockwise.
	$\bigcirc (0.7071 0.7071)$ $\bigcirc (0.7071)$ $\bigcirc (0.7071)$ $\bigcirc (0.7071)$ $\bigcirc (0.7071)$ $\bigcirc (0.7071)$

17. Find the matrix of the composite transformation $f \circ g$.

(A) All other answers are wrong. (B)
$$\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$
 (C) $\begin{pmatrix} -0.1414 & 0.9899 \\ 0.9899 & 0.1414 \end{pmatrix}$ (D) $\begin{pmatrix} 0.8586 & 3.9899 \\ 3.9899 & 0.1414 \end{pmatrix}$ (E) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

18. Let $E = \{(570, 221)^T, (165, 64)^T\}$ and $F = \{(-546, -151)^T, (-159, -44)^T\}$ be two bases of \mathbb{R}^2 and $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation defined by T(x, y) = (-3x + 3y, -5y). Find the matrix A_{EF} of T with respect to the bases E and F.

(A) Other answers are wrong. (B)
$$\begin{pmatrix} -546 & -159 \\ -151 & -44 \end{pmatrix}$$
 (C) $\begin{pmatrix} -765 & 1200 \\ -299 & 469 \end{pmatrix}$ (D) $\begin{pmatrix} 570 & 165 \\ 221 & 64 \end{pmatrix}$ (E) $\begin{pmatrix} 819 & -1284 \\ 229 & -359 \end{pmatrix}$

19. Let $A = \begin{pmatrix} -6 & 4 \\ -1 & -1 \end{pmatrix}$. Find all eigenvalues of A.

```
\textcircled{A} All other answers are wrong. \textcircled{B} \lambda_1=-5, \lambda_2=-2 \textcircled{C} \lambda_1=-8, \lambda_2=2 \textcircled{D} \lambda_1=-4, \lambda_2=-4 \textcircled{E} \lambda_1=-9, \lambda_2=1
```

Questions 20 through 22 Suppose that $u = (-5, 3, -2, -5)^T$ is an eigenvector of the matrix A corresponding to $\lambda = 3$, and $v = (4, 2, 1, 1)^T$ is an eigenvector of A corresponding to $\lambda = 2$. Given that A is invertible.

20. Find the first component of the vector $A^5 \times u$.

21. Find the first component of the vector $A \times (4u + 2v)$.

$$\textcircled{A}$$
 -44 \textcircled{B} -43 \textcircled{C} Other answer are wrong. \textcircled{D} -39 \textcircled{E} -40

22. Find the second component of the vector $A^{-1} \times (6u + 3v)$.

$$\bigcirc$$
 Other answer are wrong. \bigcirc 8.5 \bigcirc 14 \bigcirc 4.5 \bigcirc 9

23. Let $A_{n\times n}\in M_n(\mathbb{R})$ be a matrix. λ is an eigenvalue of A corresponding to the eigenvector x. Choose the CORRECT statement.

(A)
$$x$$
 is a nonzero vector. (B) $\sqrt{\lambda}$ is an eigenvalue of A for all λ (C) It is impossible to tell anything. (D) λ is different from 0. (E) λ is an eigenvalue of A^m , for all $m \in \mathbb{N}, m > 1$.

Question 24 through 25:

On the plane OXY, given the points A(-2, -3), B(1, 4) and C(m, n).

- 24. Find the coordinates m, n of C such that we can construct a parabola passing through A,B,C.
 - (A) All other answers are wrong.
- (B) (-0.5, 0.5)
- (C) (-1.7, -2.3)
- (D) (4.3, 7.3)

- (E) (-0.8, -0.2)
- 25. With the point C found in the question 24, find the parabola.

 - $\bigcirc A = -40/189x^2 + 395/189x + 395/189$ $\bigcirc B = -40/189x^2 + 401/189x + 395/189$ $\bigcirc C = -40/189x^2 + 401/189x + 395/189$

(D) All other answers are wrong. (E) $401/189x^2 + 401/189x + 395/189$ 395/189x + 1/2

Part II: Essay (2 points, 20 minutes)

- 26. In a survey investigating changes in housing patterns in one urban area, it was found that 35% of the population lived in single-family dwellings and 65% in multiple housing of some kind. Five years later, in a follow-up survey, of those who had been living in, 73% still did so, but 27% had moved to multiple-family dwellings. Of those in multiple-family housing, 60% were still living in that type of housing, while 40% had moved to single-family dwellings. Assume these trends continue.
 - a. What is the transition matrix? (The 2 states should be in this order: single-family dwellings, multiple housing)
 - b. What are the eigenvalues and corresponding eigenvectors of the transition matrix?
 - c. Find the proportion of population in each class after 10 years.
 - d. Using the diagonalization method to find the percent of the population can be expected in after many years.

Answers Sheet

Question sheet code 1121:

1 D. 2 D. 3 D. 4 A. 5 E. 6 E. 7 D. 8 B. 9 A. 10 E. 11 D. 12 D. 13 B. 14 E. 15 A. 16 A. 17 C. 18 E. 19 B. 20 C. 21 A. 22 E. 23 A. 24 D. 25 B.

2 2022-2023 27/05/2023 09:00

1 1 2 1

MT1007

Linear Algebra OISP