NAME: DESU VENKATA SAI MANOJ KUMAR

- REG NO: 21BCE8450
- CAMPUS: VIT-AP
- · Assignment 3 on sept 15
- Morning Slot (10-12 am)
- Google colab Link: https://colab.research.google.com/drive/16laM3lN76F-4HyuvBwwZKYUAh9hziiBu?usp=sharing

```
# Data Preprocessing.
# Import the Libraries.
# Import the dataset
# Checking for Null Values.

# Data Visualization.
# Outlier Detection
# Splitting Dependent and Independent variables
# Encoding
# Feature Scaling.
# Splitting Data into Train and Test.
```

Import the Libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

from google.colab import files
uploaded = files.upload()
```

Choose Files Titanic-Dataset.csv
 Titanic-Dataset.csv(text/csv) - 61194 bytes, last modified: 9/19/2023 - 100% done
 Saving Titanic-Dataset.csv to Titanic-Dataset.csv

df = pd.read_csv("/content/Titanic-Dataset.csv")

df.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embark
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	
				Heikkinen								

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
             Non-Null Count Dtype
# Column
---
     -----
                  _____
0 PassengerId 891 non-null
                                 int64
1
     Survived 891 non-null
                                 int64
    Pclass 891 non-null
Name 891 non-null
                                 int64
                                 object
                891 non-null
     Sex
                                 object
                714 non-null
                                 float64
5
     Age
               891 non-null
891 non-null
6
    SibSp
                                 int64
7
    Parch
                                 int64
               891 non-null
891 non-null
    Ticket
8
                                 object
9
    Fare
                                 float64
10 Cabin
                 204 non-null
                                 object
11 Embarked
                 889 non-null
                                 object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
```

df.describe()

<ipython-input-10-2f6f6606aa2c>:1: FutureWarning: The default value of numeric_only in DataFrame.corr i
 df.corr()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare	=
Passengerld	1.000000	-0.005007	-0.035144	0.036847	-0.057527	-0.001652	0.012658	ılı
Survived	-0.005007	1.000000	-0.338481	-0.077221	-0.035322	0.081629	0.257307	
Pclass	-0.035144	-0.338481	1.000000	-0.369226	0.083081	0.018443	-0.549500	
Age	0.036847	-0.077221	-0.369226	1.000000	-0.308247	-0.189119	0.096067	
SibSp	-0.057527	-0.035322	0.083081	-0.308247	1.000000	0.414838	0.159651	
Parch	-0.001652	0.081629	0.018443	-0.189119	0.414838	1.000000	0.216225	
Fare	0.012658	0.257307	-0.549500	0.096067	0.159651	0.216225	1.000000	

```
df.corr().Survived.sort_values(ascending = False)
```

<ipython-input-11-936bc0a2ea37>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future ve df.corr().Survived.sort_values(ascending = False)

Survived 1.000000
Fare 0.257307
Parch 0.081629
PassengerId -0.005007
SibSp -0.035322
Age -0.077221
Pclass -0.338481
Name: Survived, dtype: float64

Handling Missing/Null Values

```
df.isnull().any()
```

False PassengerId Survived False Pclass False Name False Sex False Age True SibSp False Parch False Ticket False Fare False Cabin True Embarked True dtype: bool

sum(df.Cabin.isnull())

687

sum(df.Age.isnull())

177

df["Age"].fillna(df["Age"].mean(),inplace=True)

```
sum(df.Embarked.isnull())
```

2

df["Embarked"].fillna(df["Embarked"].mode()[0],inplace=True)

df.describe()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare	Ħ
count	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000	ılı
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208	
std	257.353842	0.486592	0.836071	13.002015	1.102743	0.806057	49.693429	
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000	
25%	223.500000	0.000000	2.000000	22.000000	0.000000	0.000000	7.910400	
50%	446.000000	0.000000	3.000000	29.699118	0.000000	0.000000	14.454200	
75%	668.500000	1.000000	3.000000	35.000000	1.000000	0.000000	31.000000	
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200	

Data Visualization

plt.scatter(df["Fare"],df["Survived"])

<matplotlib.collections.PathCollection at 0x7b32cd9d3fa0>

sns.heatmap(df.corr(),annot=True)

- 1.0

<ipython-input-20-8df7bcac526d>:1: FutureWarning: The default value of numeric_only in DataFrame.corr i
 sns.heatmap(df.corr(),annot=True)
<Axes: >

sns.pairplot(df)

sns.barplot(x=df["Sex"],y=df["Survived"],ci=0)

<ipython-input-22-8ae461271d98>:1: FutureWarning:

The `ci` parameter is deprecated. Use `errorbar=('ci', 0)` for the same effect.

sns.barplot(x=df["Sex"],y=df["Survived"],ci=0)
<Axes: xlabel='Sex', ylabel='Survived'>

sns.barplot(x=df["Embarked"],y=df["Survived"],ci=0)

<ipython-input-23-d5b0276940a6>:1: FutureWarning:

The `ci` parameter is deprecated. Use `errorbar=('ci', 0)` for the same effect.

sns.barplot(x=df["Embarked"],y=df["Survived"],ci=0)
<Axes: xlabel='Embarked', ylabel='Survived'>

sns.barplot(x=df["Parch"],y=df["Survived"],ci=0)

 $\verb| <ipython-input-24-a1496fefeaf8>:1: Future Warning: \\$

The `ci` parameter is deprecated. Use `errorbar=('ci', 0)` for the same effect.

sns.barplot(x=df["Parch"],y=df["Survived"],ci=0)
<Axes: xlabel='Parch', ylabel='Survived'>

Outlier Detection

sns.boxplot(df)

sns.boxplot(df.Age)


```
Q1 = df['Age'].quantile(0.25)
Q3 = df['Age'].quantile(0.75)

IQR = Q3 - Q1

threshold = 1.5 * IQR

df = df[(df['Age'] >= Q1 - threshold) & (df['Age'] <= Q3 + threshold)]

sns.boxplot(df.Age)</pre>
```


sns.boxplot(df.SibSp)

p99 = df.SibSp.quantile(0.99)

df = df[df.SibSp < p99]</pre>

sns.boxplot(df.SibSp)

sns.boxplot(df.Parch)

```
<Axes: >
6 -
5 -
4 -

p99 = df.Parch.quantile(0.99)

df = df[df.Parch < p99]

sns.boxplot(df["Parch"])

<Axes: >
```


sns.boxplot(df["Fare"])


```
Q1 = df['Fare'].quantile(0.25)
Q3 = df['Fare'].quantile(0.75)

IQR = Q3 - Q1

threshold = 1.5 * IQR

df = df[(df['Fare'] >= Q1 - threshold) & (df['Fare'] <= Q3 + threshold)]

sns.boxplot(df.Fare)</pre>
```


Splitting Dependent and Independent Variables

```
x = df.drop(columns=["Survived","PassengerId","Name","Ticket","Cabin"],axis=1) # Independent variables should be in df or 2d array
x.head()
```

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	##
0	3	male	22.000000	1	0	7.2500	S	ılı
2	3	female	26.000000	0	0	7.9250	S	
3	1	female	35.000000	1	0	53.1000	S	
4	3	male	35.000000	0	0	8.0500	S	
5	3	male	29.699118	0	0	8.4583	Q	

y = pd.Series(df["Survived"])

y.head()

0213140

Name: Survived, dtype: int64

Encoding

 ${\it from sklearn.} {\it preprocessing import LabelEncoder}$

le = LabelEncoder()

 $x["Sex"] = le.fit_transform(x["Sex"])$

x.head()

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	
0	3	1	22.000000	1	0	7.2500	S	ılı
2	3	0	26.000000	0	0	7.9250	S	
3	1	0	35.000000	1	0	53.1000	S	
4	3	1	35.000000	0	0	8.0500	S	
5	3	1	29.699118	0	0	8.4583	Q	

print(le.classes_)

['female' 'male']

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	
0	3	1	22.000000	1	0	7.2500	2	ılı
2	3	0	26.000000	0	0	7.9250	2	
3	1	0	35.000000	1	0	53.1000	2	
4	3	1	35.000000	0	0	8.0500	2	
5	3	1	29.699118	0	0	8.4583	1	

```
print(le1.classes_)
```

['C' 'Q' 'S']

mapping1=dict(zip(le1.classes_,range(len(le1.classes_))))
mapping1

```
{'C': 0, 'Q': 1, 'S': 2}
```

Feature Scaling

```
from sklearn.preprocessing import MinMaxScaler
ms = MinMaxScaler()

x_Scaled = pd.DataFrame(ms.fit_transform(x),columns = x.columns)

x_Scaled.head()
```

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	-
0	1.0	1.0	0.372549	0.25	0.0	0.122054	1.0	ılı
1	1.0	0.0	0.450980	0.00	0.0	0.133418	1.0	
2	0.0	0.0	0.627451	0.25	0.0	0.893939	1.0	
3	1.0	1.0	0.627451	0.00	0.0	0.135522	1.0	
4	1.0	1.0	0.523512	0.00	0.0	0.142396	0.5	

Splitting Training and Testing Data

(562, 7) (141, 7) (562,) (141,)

```
from sklearn.model_selection import train_test_split

x_train,x_test,y_train,y_test = train_test_split(x_Scaled,y,test_size = 0.2,random_state =0)

print(x_train.shape,x_test.shape,y_train.shape,y_test.shape)
```

✓ 0s completed at 9:52 PM