Math 297 Discussion 11 Notes

Annie Xu

April 3, 2019

Group homomorphism

Definition 0.1. G, H are groups, a **group homomorphism** $f: G \to H$ is a function satisfying $f(xy) = f(x)f(y) \ \forall x, y \in G$ and f(1) = 1.

Examples

- 1) General Linear Group
- $GL_n(\mathbb{R}) = \{n \times n \text{ matrices with real entries that are invertible } (\det \neq 0)\}$
- $\cdot = \text{matrix multiplication}$
- 2) Let x be a plane figure, i.e. $x \in \mathbb{R}^2$

A **rigid motion** of \mathbb{R}^2 is a bijective continuous distance-preserving map.

The set of all rigid motions Γ forms a group under composition.

Consider $\{r \in \Gamma | r(x) = x\} = G$

Claim: G is a group under composition:

- i) composition is associative
- ii) identity is in G
- iii) inverse: $x = r^{-1}(x)$ so $r \in G \implies r^{-1} \in G$

Subgroup

Definition 0.2. If Γ is a group, a **subgroup** of Γ is a subset G containing 1, closed under composition $(x, y \in G \implies xy \in G)$, has inverses $(x \in G \implies x^{-1} \in G)$.

Example: regular hexagon

G contains rotation by 60° (or any multiple of 60°) and reflections through certain lines.

Let $a \in G$ be any reflection, $b \in G$ be rotation by 60°, every element of G has the form b^k or ab^k for a unique $0 \le k \le 5$.

$$\#G = 12$$

$$a^2 = 1, b^6 = 1$$

$$aba = b^{-1} \implies ab = b^{-1}a^{-1} = b^{-1}a$$
, i.e. $ab^{-1} = ba$

$$b^2ab=b(ba)b=b(ab^{-1})b=(ba)b^{-1}b=ab^{-1}b^{-1}b=ab^{-1}=ab^5$$

Presentation: $D_2 = \langle a, b | a^2 = 1, b^6 = 1, ab = b^{-1}a \rangle$

Generators | relations

 D_n = automorphisms of regular n-gon $\#D_n = 2n$ $< a, b|a^2 = b^n = 1, ab = b^{-1}a >$

Isomorphism

Definition 0.3. An **isomorphism** between groups G and H is a bijective homomorphism.

Definition 0.4. G is a group. Then **center** of G is $Z(G) = \{x \in G | \forall y \in G, xy = yx\}$

ex: Z(G) is a subgroup of G ex: $Z(Q) = \{1, -1\}$ $Z(D_4) = \{1, b^2\}$ (rotation by 180°)

Examples

1) Quarternion group: $Q = \{1, -1, i, -i, j, -j, k, -k\}$ $i^2 = -1$ $(-i)^2 = -1$ $j^2 = -1$ $(-j)^2 = -1$ $k^2 = -1$ $(-k)^2 = -1$ ij = -ji $-1 \cdot i = -i = i(-1)$ ij = k ik = -ki $-1 \cdot j = -j$ -j = ik jk = -kj $-1 \cdot k = -k$ 2) Cyclic group of order n

Definition 0.5. Suppose G is a group and H is a subgroup of G. A **left coset** of H in G is a set of the form $gH = \{gh|h \in H\}$ for some $g \in G$.

Note: right coset Hg is defined similarly.

ex: $G = \mathbb{Z}, H = 2\mathbb{Z}$, even integers

The coset of H is a set of the form n + H for some $n \in \mathbb{Z}$

There are exactly 2 cosets:

0 + H = all even numbers

1 + H =all odd numbers

Fact: any two left cosets are either equal or disjoint

 $g, g' \in G$, either gH = g'H or $gH \cap g'H = \emptyset \implies$ left cosets partition G.

Definition 0.6. The *index* of H in G, denoted [G : H], is the number of left cosets (= number of right).

Fact: Any left or right coset of H has cardinality #H

We find $[G:H] = \frac{\#G}{\#H}$ (if G finite) (Lagrange Theorem)

Corollary If G is a finite group, H is a subgroup, #H | #G

Corollary If $g \in G$, ord(g)|G