清华大学统计学辅修课程

Design and Analysis of Experiments

Lecture 10 – Response Surface Methods & Designs

周在莹 清华大学统计学研究中心

http://www.stat.tsinghua.edu.cn

Outline

- Response Surface Methodology
 - > Three Basic Steps
 - > Sequential Procedure
- ► Three Models
 - > Screening Response Model
 - Steepest Ascent Model
 - Optimization Model
- Multiple Responses
- ▶ Designs for Fitting Response Surfaces
 - ➤ Central Composite Design(CCD,中心复合设计)
 - Box-Behnken Design

清华大学统计学研究中心

Overview of Response Surface Methods

- ▶ The primary focus of previous lessons was factor screening
 - > Two-level factorials, fractional factorials being widely used
- ► The objective of Response Surface Methods (RSM) is <u>optimization</u>, finding the best set of factor levels to achieve some goal
 - > optimize an underlying process
 - > look for the factor level combinations that give us the maximum yield and minimum costs
 - > hit a target or aim to match some given specifications
- ▶ RSM dates from the 1950's. Early applications were found in the chemical industry
- ▶ Modern applications of RSM span many industrial and business settings

Response Surface Methodology

- ► Collection of mathematical and statistical techniques useful for the modeling and analysis of problems in which a response of interest is influenced by several variables
- ► Objective is to **optimize the response**
 - > Discover a proper region to carry out experiment
 - > Find the optimal combination of factors
 - > Use a small number of experiments
- Challenges
 - > The response surface can be high dimensional
 - > The shape of the surface is unknown
 - > The target region of factors is unknown

Illustration of a RS

$$y = f(x_1, x_2) + \varepsilon$$

where ε represents the noise or error observed in the response y

► The surface $E(y) \triangleq \eta = f(x_1, x_2)$ is called a response surface

A three-dimensional response surface showing the expected yield (η) as a function of temperature (x_1) and pressure (x_2)

清华大学统计学研究中心

A contour plot of a response surface

Three Basic Steps

- ► Factor screening Find $x_1, ..., x_k$
 - > Start with a large number of factors
 - ➤ Select a few (\leq 5) important factors for response surface
- A series of 1st order experiments Find a suitable approximation for $y = f(x_1, ..., x_k)$
 - > Start from an initial configuration of the few selected factors
 - Move towards the region of the optimal configuration
- ▶ A 2nd order experiment When curvature is found find a new approximation
 - > An additional experiment in the neighborhood of the optimal configuration
 - > Perform the "Response Surface Analysis"
 - > Help to find the optimal configuration

RSM Is a Sequential Procedure

- ► Sequential exploration of Response Surface
 - > Factor screening
 - > Finding the region of the optimum
 - ➤ Modeling & Optimization of the response

Models Available

▶ Screening Response Model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \varepsilon$$

The single cross product factor represents the linear \times linear interaction component

▶ Steepest Ascent Model

Ignore cross products which gives an indication of the curvature of the response surface

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

▶ Optimization Model

When we think that we are somewhere near the 'top of the hill' we will fit a second order model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \varepsilon$$

RSM for 2 Factors

- ▶ Look at 2 dimensions easier to think about and visualize
- ► Imagine the ideal case where there is actually a 'hill' which has a nice centered peak
- ▶ Our quest, to find the values $X_1^{optimum}$ and $X_2^{optimum}$, where the response is at its peak
- ▶ We might have a hunch that the optimum exists in certain location. This would be good area to start some set of conditions
- ► Take natural units and then center and rescale them to the range from -1 to +1

'Climbing a hill' or 'Descending into a valley'

Steepest Ascent - The First Order Model

- ▶ When we are remote from the optimum, we usually assume that a first-order model is an adequate approximation to the true surface in a small region of the *x*'s
- ► A procedure for moving sequentially from an initial "guess" towards to region of the optimum
- The 1st order Taylor expansion $f(x_1, ..., x_k) \approx \beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k$
- Steepest ascent is a gradient procedure

$$\frac{\partial f}{\partial x_j} = \beta_j, j = 1, \dots, k$$

The steps along the path are proportional to the regression coefficients $\{\beta_i\}$

Note on the Steepest Ascent

- \triangleright Q: Why is gradient the direction of steepest ascent?
- $ightharpoonup \underline{A}$: For any arbitrary direction v, the rate of change along v is

$$\lim_{h \to 0} \frac{f(x + hv) - f(x)}{h} \approx \nabla f(x) \cdot v$$

➤ We know from linear algebra that the dot product is maximized when the two vectors point in the same direction. This means that the rate of change along an arbitrary vector v is maximized when v points in the same direction as the gradient. In other words, the gradient corresponds to the rate of steepest ascent/descent

Steepest Ascent: Procedure

- Experiments are conducted along the path of steepest ascent until no further increase in response is observed
- ► Then a new first-order model may be fit, a new path of steepest ascent determined, and the procedure continued
- ► Eventually, the experimenter will arrive in the vicinity of the optimum. This is usually indicated by lack of fit of a first-order model
- ▶ At that time, additional experiments will be conducted to obtain a more precise estimate of the optimum

Steepest Ascent: Chemical Yield Example

- ► To maximize the yield of a chemical process
- ► Two controllable variables: reaction time(A) and reaction temperature(B)
- ► The region center: (35min, 155°F)
- ▶ It is unlikely that this region contains the optimum, so there is little curvature in the system and the first-order model will be appropriate, followed by the method of steepest ascent
- Now the fitted first-order model is

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$$

$$= 40.44 + 0.775 x_1 + 0.325 x_2$$

Natural Variables		Co Vari	Response	
Ĕ 1	ξ ₂	x_1	x_2	у
30	150	-1	-1	39.3
30	160	-1	1	40.0
40	150	1	-1	40.9
40	160	1	1	41.5
35	155	0	0	40.3
35	155	0	0	40.5
35	155	0	0	40.7
35	155	0	0	40.2
35	155	0	0	40.6

Check the Adequacy of the First-Order Model

- ▶ Before exploring along the path of steepest ascent, the adequacy of the firstorder model should be investigated
- ▶ The 2^2 design with center points allows:
 - > 1. Obtain an estimate of error
 - > Use the replicates at the center
 - > 2. Check for interactions (cross-product terms) in the model

$$F = \frac{SS_{Interaction}}{Pure\ error}$$

- > 3. Check for quadratic effects (curvature)
 - > Compare the average response at the four points in the factorial with the average response at the center; the difference is a measure of curvature

Notes on Coef and SS

$$SS_C = \frac{(\sum_{i=1}^{a} c_i \bar{y}_{i.})^2}{\frac{1}{n} \sum_{i=1}^{a} c_i^2}$$

$$\hat{\beta}_{12} = \frac{1}{4}(1 \times 39.3 + 1 \times 41.5 - 1 \times 40.0 - 1 \times 40.9)$$

$$SS_{Interaction} = \frac{(1 \times 39.3 + 1 \times 41.5 - 1 \times 40.0 - 1 \times 40.9)^2}{4} = \hat{\beta}_{12}^2 S_{1212}$$

▶ β_{11} and β_{22} are the coefficients of the "pure quadratic" terms x_1^2 and x_2^2 Coefficients

> summary(
$$lm(y \sim x1 + x2 + I(x1^2) + I(x2^2), chem)$$
)

- $ightharpoonup \overline{y}_F \overline{y}_C$ is an estimate of $\beta_{11} + \beta_{22}$
- $\triangleright SS_{Pure\ Quadratic} = \frac{(\bar{y}_F \bar{y}_C)^2}{\frac{1}{n_F} + \frac{1}{n_C}}$

$$SS_{AB} = \frac{\left(\sum_{i=1}^{4} c_i \bar{y}_{i.}\right)^2}{4/n} = \frac{(ab + (1) - a - b)^2}{4n}$$

```
Coefficients: (1 not defined because of singularities)
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 40.46000 0.08355 484.282 7.13e-13 ***
x1
           0.77500
                    0.09341
                               8.297 0.000415 ***
           0.32500
                    0.09341
                               3.479 0.017671 *
x^2
                              -0.279 0.791209
          -0.03500
                    0.12532
I(x1^2)
I(x2^2)
              NA
                        NA
                                NA
                                       NA
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1868 on 5 degrees of freedom Multiple R-squared: 0.9419, Adjusted R-squared: 0.907 F-statistic: 27.01 on 3 and 5 DF, p-value: 0.001624

Analysis for the First-Order Model

- > full <- $lm(y \sim x1 + x2 + I(x1*x2) + I(x1^2)$, chem)
- > summary(full)
- > anova(full)
- ▶ Both the interaction and curvature checks are not significant, whereas the *F*-test for the overall regression is significant
- ► Both regression coefficients are large relative to their standard errors

Analysis of Variance Table

Response: y

Coefficients:

Residual standard error: 0.2074 on 4 degrees of freedom Multiple R-squared: 0.9427, Adjusted R-squared: 0.8854 F-statistic: 16.45 on 4 and 4 DF, p-value: 0.009471

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0	P-Value
Model (β_1, β_2)	2.8250	2	1.4125	47.83	0.0002
Residual	0.1772	6			
(Interaction)	(0.0025)	1	0.0025	0.058	0.8215
(Pure quadratic)	(0.0027)	1	0.0027	0.063	0.8142
(Pure error)	(0.1720)	4	0.0430		
Total	3.0022	8			

Decide the Direction

- $\hat{y} = 40.44 + 0.775x_1 + 0.325x_2$
- To move away from the design center $(x_1 = x_2 = 0)$ along the path of steepest ascent, we would move 0.775 units in the x_1 direction for every 0.325 units in the x_2 direction
- Thus, the path of steepest ascent passes through the point $(x_1 = x_2 = 0)$ and has a slope 0.325/0.775
- Use 5 minutes of reaction time as the basic step size, that is $\Delta x_1 = 1$ in the coded variable x_1
- Therefore, the steps along the path of steepest ascent are $\Delta x 1 = 1.0000$ and $\Delta x_2 = (0.325/0.775) = 0.42$

Get Moving

	Coded Variables		Natural Variables		Response
Steps	x_1	x_2	ξ_1	ξ ₂	у
Origin	0	0	35	155	
Δ	1.00	0.42	5	2	
Origin + Δ	1.00	0.42	40	157	41.0
Origin $+2\Delta$	2.00	0.84	45	159	42.9
Origin $+3\Delta$	3.00	1.26	50	161	47.1
Origin $+ 4\Delta$	4.00	1.68	55	163	49.7
Origin $+ 5\Delta$	5.00	2.10	60	165	53.8
Origin $+ 6\Delta$	6.00	2.52	65	167	59.9
Origin $+7\Delta$	7.00	2.94	70	169	65.0
Origin + 8∆	8.00	3.36	75	171	70.4
Origin $+ 9\Delta$	9.00	3.78	80	173	77.6
Origin + 10∆	10.00	4.20	85	175	80.3
Origin + 11∆	11.00	4.62	90	179	76.2
Origin + 12Δ	12.00	5.04	95	181	75.1

A new first-order model is fit around the point ($\xi 1 = 85$, $\xi 2 = 175$). The region of exploration for $\xi 1$ is [80, 90], and it is [170, 180] for $\xi 2$. Thus, the coded variables are $x_1 = (\xi_1 - 85)/5$, $x_2 = (\xi_2 - 175)/5$

Second First-Order Model

 \triangleright Once again, a 2^2 design with five center points is used

Natural Variables		Coded Variables		Response
ξ ₁	ξ_2	x_1	x_2	у
80	170	-1	-1	76.5
80	180	-1	1	77.0
90	170	1	-1	78.0
90	180	1	1	79.5
85	175	0	0	79.9
85	175	0	0	80.3
85	175	0	0	80.0
85	175	0	0	79.7
85	175	0	0	79.8

- ► The interaction and pure quadratic checks imply that the first-order model is not an adequate approximation
- ► This curvature in the true surface may indicate that we are near the optimum
- ▶ At this point, additional analysis must be done to locate the optimum more precisely


```
Analysis of Variance Table
```

```
Response: y
```


Path for Multiple Predictors

- ▶ Points on the path of steepest ascent are proportional to the magnitudes of the model regression coefficients
- ▶ The direction depends on the sign of the regression coefficient
- Step-by-step procedure:
- 1. Choose a step size in one of the process variables, say Δx_j . Usually, we would select the variable we know the most about, or we would select the variable that has the largest absolute regression coefficient $|\hat{\beta}_i|$
- 2. The step size in the other variables is $\Delta x_i = \frac{\widehat{\beta}_i}{\widehat{\beta}_j/\Delta x_j}$, $i \neq j$
- 3. Convert the Δx_i from coded variables to the natural variables

Second-Order Models in RSM

$$y = \beta_0 + \sum_{j=1}^k \beta_j x_j + \sum_{j=1}^k \beta_{jj} x_j^2 + \sum_{i< j}^k \beta_{ij} x_i x_j + \varepsilon$$

- ► These models are used widely in practice
- ► The Taylor series analogy
- ▶ Fitting the model is easy, some nice designs are available
- Optimization is easy
- ► There is a lot of empirical evidence that they work very well

2nd Order Approximation

The 2nd order Taylor expansion

$$f(x_1, ..., x_k) \approx \beta_0 + \sum_{j=1}^k \beta_j x_j + \sum_{j=1}^k \beta_{jj} x_j^2 + \sum_{i < j}^k \beta_{ij} x_i x_j$$

- ► Total curvature: $\sum_{i=1}^{k} \beta_{ii}$
- Matrix form:

atrix form:
$$b = (\hat{\beta}_1, \dots, \hat{\beta}_k)^T, \ B = \begin{bmatrix} \hat{\beta}_{11} & \frac{1}{2}\hat{\beta}_{21} & \dots & \frac{1}{2}\hat{\beta}_{1k} \\ \frac{1}{2}\hat{\beta}_{12} & \hat{\beta}_{22} & \frac{1}{2}\hat{\beta}_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{2}\hat{\beta}_{1k} & \frac{1}{2}\hat{\beta}_{2k} & \dots & \hat{\beta}_{kk} \end{bmatrix}$$

$$\hat{y}(x) = \hat{\beta}_0 + x^T b + x^T B x$$

$$\hat{z} = \hat{z}$$

E大学统计学研究中心

2nd Order Approximation

► The 2nd order Taylor expansion

$$\hat{y}(x) = \hat{\beta}_0 + x^T b + x^T B x$$

 \triangleright SVD of B

$$B = P\Lambda P^T$$
, $PP^T = P^TP = I$, $\Lambda = diag\{\lambda_1, ..., \lambda_k\}$

▶ A more convenient form- <u>canonical form</u> of the model

$$\hat{y}(x) = \hat{\beta}_0 + w^T P b + w^T \Lambda w = \hat{\beta}_0 + w^T b^* + \sum_{j=1}^k \lambda_j w_j^2$$
where $w = P^T x$, $b^* = P b = (b_1^*, \dots, b_k^*)^T$

4 Possible Scenarios

- The 2nd order approximation $\hat{y}(x) = \hat{\beta}_0 + w^T P b + w^T \Lambda w = \hat{\beta}_0 + w^T b^* + \sum_{j=1}^k \lambda_j w_j^2$
- ▶ Possible scenarios
 - a) Elliptic system: $\lambda_j > 0$ or < 0 for all j
 - b) Hyperbolic system: some $\lambda_j > 0$, some $\lambda_j < 0$
 - c) Stationary ridge system: some $\lambda_j \approx 0$, and the experiment region is close to the center
 - d) Rising/falling ridge system: some $\lambda_j \approx 0$, and the experiment region is far away from the center

Illustration of a Surface with a Maximum

Illustration of a Surface with a Minimum

Illustrating of a Saddle Point (or Minimax)

A Graphical Illustration of Ridge Systems(岭系统)

清华大学统计学研究中心

Characterization of the Response Surface

- ► Find out where our stationary point is
- ► Find what type of surface we have
 - Graphical Analysis
 - Canonical Analysis
- ▶ Determine the sensitivity of the response variable to the optimum value
 - Canonical Analysis

Finding the Stationary Point

 \blacktriangleright After fitting a second order model take the partial derivatives with respect to the x_i 's and set to zero

$$\delta y / \delta x_1 = \ldots = \delta y / \delta x_k = 0$$

- Stationary point represents
 - > Maximum Point
 - > Minimum Point
 - > Saddle Point
- $\hat{y}(x) = \hat{\beta}_0 + x^T b + x^T B x$

$$\Rightarrow x_S = -\frac{1}{2}B^{-1}b$$

$$\hat{y}_S = \hat{\beta}_0 + \frac{1}{2} x_S^T b$$

Canonical Analysis

- Used for sensitivity analysis and stationary point identification
- First to transform the model into a new coordinate system with the origin at the stationary point x_s and then to rotate the axes of this system until they are parallel to the principal axes of the fitted response surface
- Based on the analysis of the transformed model

$$\hat{y}(x) = y_s + \sum_{j=1}^{\kappa} \lambda_j w_j^2$$

- Canonical model

Eigenvalues

- ► The nature of the response can be determined by the signs and magnitudes of the eigenvalues
 - > {e} all positive: a minimum is found
 - > {e} all negative: a maximum is found
 - > {e} mixed: a saddle point is found
- ► Eigenvalues can be used to determine the sensitivity of the response with respect to the design factors
- ➤ The response surface is steepest in the direction (canonical) corresponding to the largest absolute eigenvalue

Complete Experiment for the Example

- ► Continue the analysis of the chemical process
- ▶ Augment the design with enough points to fit a second-order model

Natura	al Variables	Coded '	Variables		Response	es
ξ ₁	ξ ₂	x_1	x_2	y ₁ (Yield)	y ₂ (Viscosity)	y ₃ (Molecular Weight)
80	170	-1	-1	76.5	62	2940
80	180	-1	1	77.0	60	3470
90	170	1	-1	78.0	66	3680
90	180	1	1	79.5	59	3890
85	175	0	0	79.9	72	3480
85	175	0	0	80.3	69	3200
85	175	0	0	80.0	68	3410
85	175	0	0	79.7	70	3290
85	175	0	0	79.8	71	3500
92.07	175	1.414	0	78.4	68	3360
77.93	175	-1.414	0	75.6	71	3020
85	182.07	0	1.414	78.5	58	3630
85	167.93	0	-1.414	77.0	57	3150

In this second phase of the study, two additional responses were of interest: the viscosity(粘度) and the molecular weight (分子量)of the product

Central Composite Design (CCD)

- Focus on fitting a quadratic model to the yield response y_1
- > library(rsm)
- \rightarrow rs \leftarrow rsm(y1 \sim SO(x1, x2), chem)
- > summary(rs)

Results

Call:

 $rsm(formula = y1 \sim SO(x1, x2), data = chem)$

Estimate Std. Error t value Pr(>|t|)
(Intercept) 79.939955 0.119089 671.2644 < 2.2e-16 ***
x1 0.995050 0.094155 10.5682 1.484e-05 ***
x2 0.515203 0.094155 5.4719 0.000934 ***
x1:x2 0.250000 0.133145 1.8777 0.102519
x1^2 -1.376449 0.100984 -13.6303 2.693e-06 ***
x2^2 -1.001336 0.100984 -9.9158 2.262e-05 ***

Multiple R-squared: 0.9827, Adjusted R-squared: 0.9704

F-statistic: 79.67 on 5 and 7 DF, p-value: 5.147e-06

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Analysis of Variance Table

Response: y1

Df Sum Sq Mean Sq F value Pr(>F)
FO(x1, x2) 2 10.0430 5.0215 70.8143 2.267e-05
TWI(x1, x2) 1 0.2500 0.2500 3.5256 0.1025
PQ(x1, x2) 2 17.9537 8.9769 126.5944 3.194e-06
Residuals 7 0.4964 0.0709
Lack of fit 3 0.2844 0.0948 1.7885 0.2886
Pure error 4 0.2120 0.0530

Stationary point of response surface: x1 x2 0.3892304 0.3058466

Because both λ_1 and λ_2 are negative and the stationary point is within the region of exploration, we conclude that the stationary point is a maximum

Eigenanalysis: eigen() decomposition \$values [1] -0.9634986 -1.4142867

\$vectors

[,1] [,2] x1 -0.2897174 -0.9571122 x2 -0.9571122 0.2897174

- $x_s = (0.3892304, 0.3058466)$, $\xi 1 = 86.95 \approx 87$ minutes of reaction time and $\xi 2 = 176.53 \approx 176.5$ °F; $\hat{y}_s = \hat{\beta}_0 + \frac{1}{2} x_s^T b = 80.5$
- ▶ The canonical form of the fitted model is $\hat{y}(x) = 80.5 0.963w_1^2 1.414w_2^2$ 清华大学统计学研究中心

Response Surface & Contour Plots

- \triangleright contour(rs,~x1+x2, image = T)
- $ightharpoonup persp(rs, \sim x1+x2, col = rainbow(50), zlab='Yield', contours = list(z='bottom'))$

Multiple Responses

- ➤ Simultaneous consideration of multiple responses involves first building an appropriate response surface model for each response and then trying to find a set of operating conditions that in some sense optimizes all responses or at least keeps them in desired ranges
- We may obtain models for the viscosity and molecular weight responses (y_2 and y_3 , respectively) in chemical Example as follows:

$$\hat{y}_2(x) = 70 - 0.16x_1 - 0.95x_2 - 0.69x_1^2 - 6.69x_2^2 - 1.25x_1x_2$$

$$\hat{y}_3(x) = 3386.2 + 205.1x_1 + 177.4x_2$$

▶ In terms of the natural levels of time (ξ_1) and temperature (ξ_2) , these models are

$$\hat{y}_2(x) = -9030.74 + 13.393\xi_1 + 97.708\xi_2 - 2.75 \times 10^{-2}\xi_1^2 - 0.26757\xi_2^2 - 5 \times 10^{-2}\xi_1\xi_2$$

$$\hat{y}_3(x) = -6308.8 + 41.025\xi_1 + 35.473\xi_2$$

Note on $\hat{y}_2(x)$ and $\hat{y}_3(x)$

- > summary($rsm(v \sim SO(x1, x2), chem)$) #model for viscosity
- > summary($rsm(m \sim SO(x1, x2), chem)$) #model for molecular weight
- > summary($rsm(m \sim FO(x1, x2), chem)$) #model for molecular weight

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 70.00021 1.01731 68.8093 3.6e-11 ***
         -0.15527
                   0.80431 -0.1931 0.8524009
x1
x2
         -0.94839
                   0.80431 -1.1791 0.2768648
        -1.25000 1.13739 -1.0990 0.3081185
x1:x2
x1^2
        -0.68732
                  0.86265 -0.7968 0.4517659
                  0.86265 -7.7542 0.0001112 ***
x2^2
        -6.68913
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3375.975 77.066 43.8064 8.435e-10 ***
          205.126 60.930 3.3666 0.01198 *
x1
x2
          177.367
                   60.930 2.9110 0.02263 *
                   86.162 -0.9285 0.38406
x1:x2
          -80.000
x1^2
          -41.744
                   65.350 -0.6388 0.54330
x2^2
          58.286
                   65.350 0.8919 0.40206
```


Contour Plot and Response Surface Plot of Viscosity

Contour Plot and Response Surface Plot of Molecular Weight

Approach 1: Overlay Contour Plots(覆盖等高线图)

- ▶ Region of the optimum found by overlaying yield, viscosity, and molecular weight response surfaces
- > contour(rs, \sim x1+x2)
- \rightarrow contour(rsv,~x1+x2, add = T, col=2)
- \rightarrow contour(rsmw, \sim x1+x2, add = T, col=3)

Approach 2: Mathematical Programming Formulation

Formulate and solve the problem as a constrained optimization problem

 $\begin{aligned} &\text{Max } y_1 \\ &\text{subject to} \end{aligned}$

$$62 \le y_2 \le 68$$

$$y_3 \le 3400$$

Nonlinear Programming in R

```
> library('nloptr')
> x0 <- c(0, -.6) # x0 <- c(-.4, .5)
> fn <- function(x) -79.94-.99*x[1]-.52*x[2]-.25*x[1]*x[2]+1.38*x[1]^2+x[2]^2
> hin <- function(x)

c (70-.16*x[1]-.95*x[2]-.69*x[1]^2-6.69*x[2]^2-1.25*x[1]*x[2]-62,
68-70+.16*x[1]+.95*x[2]+.69*x[1]^2+6.69*x[2]^2+1.25*x[1]*x[2],
3400- 3386.2-205.1*x[1]-177.4*x[2] ) ## hin >= 0
```

> auglag(x0, fn, gr = NULL, hin = hin)

\$value [1] -79.32365

\$par [1] -0.3720258 0.5078785

\$value [1] -79.33962

Since
$$x_1 = (\xi_1 - 85)/5$$
, $x_2 = (\xi_2 - 175)/5$,

$$(\xi_1, \xi_2) = (86.4, 171.8)$$

 $(\xi_1, \xi_2) = (83.1, 177.5)$

Approach 3: Desirability Function(渴求函数) Method

- First convert each response y_i into an individual desirability function d_i that varies over the range $0 \le d_i \le 1$ where if the response y_i is at its goal or target, then $d_i = 1$ and if the response is outside an acceptable region, $d_i = 0$, $1 \le i \le m$
- ▶ Then the design variables are chosen to maximize the overall desirability

$$D = (d_1 d_2 \cdots d_m)^{1/m}$$

► Larger-the-better (望大特征)

$$d = \begin{cases} 0 & y < L \\ \left(\frac{y - L}{T - L}\right)^r & L \le y \le T \\ 1 & y > T \end{cases}$$

when the weight r = 1, the desirability function is linear. $_{0}$

Choosing r > 1 places more emphasis on being close to

(a) Objective (target) is to maximize y

the target value and choosing 0 < r < 1 makes this less important

▶ Smaller-the-better (望小特征)

$$d = \begin{cases} 1 & y < T \\ \left(\frac{U - y}{U - T}\right)^r & T \le y \le U \\ 0 & y > U \end{cases}$$

▶ Nominal-the-best (望目特征)

$$d = \begin{cases} 0 & y < L \\ \left(\frac{y - L}{T - L}\right)^{r_1} & L \le y \le T \\ \left(\frac{U - y}{U - T}\right)^{r_2} & T \le y \le U \\ 0 & y > U \end{cases}$$

The two-sided desirability function assumes that the target is located between the lower (L) and upper (U) limits

(c) Objective is for y to be as close as possible to the target

清华大学统计学研究中心

The 'desirability' Package in R

- ► For multivariate optimization using the desirability function approach of Harrington (1965)
- Chose T = 80 as the target for the yield response with L = 70 and set the weight for this individual desirability equal to unity
- Set T = 65 for the viscosity response with L = 62 and U = 68 (to be consistent with specifications), with both weights $r_1 = r_2 = 1$
- ▶ Any molecular weight between 3200 and 3400 was acceptable
- Two solutions were found:
 - > Solution 1

Time = 81.71 Temp = 179.19
$$D = 0.939$$

$$\hat{y}1 = 78.3$$
 $\hat{y}2 = 65$ $\hat{y}3 = 3400$

> Solution 2

Time =
$$86.1$$
 Temp = $170.2 D = 0.952$

$$\hat{y}1 = 78.63$$
 $\hat{y}2 = 65$ $\hat{y}3 = 3260.86$

清华大学统计学研究中心

res par*5+c(85, 175)

f1(res\$par)

f2(res\$par)

f3(res\$par)

$$f1 <- function(x) 79.94 + .99*x[1] + .52*x[2] + .25*x[1]*x[2] - 1.38*x[1]^2 - x[2]^2$$

 $f2 \leftarrow function(x) 70-.16*x[1]-.95*x[2]-.69*x[1]^2-6.69*x[2]^2-1.25*x[1]*x[2]$

 $f3 \leftarrow function(x) 3386.2 + 205.1 \times [1] + 177.4 \times [2]$

library(desirability)

d1 <- dMax(low=70, high=80)

d2 <- dTarget(low=62, target=65, high=68)

d3 < -dBox(low=3200, high=3400)

D <- function(x) -(predict(d1, f1(x))*predict(d2, f2(x))*predict(d3, f3(x))) $^(1/3)$

Desirability Function Response Surface & Contour Plot

清华大学统计学研究中心

Plots in R

清华大学统计学研究中心

In Short

- ▶ Multiple responses are common in practice
- ► Typically, we want to simultaneously optimize all responses, or find a set of conditions where certain product properties are achieved
- ▶ Approaches:
 - > 1. Model all responses & overlay the contour plots
 - > 2. Optimized the most import factors while setting constraints to other factors
 - > 3. Combine multiple responses into a "integrated response"

Experimental Designs for Fitting Response Surfaces

- ▶ When selecting a RS design, some of the features of a desirable design:
 - > 1. Provides a reasonable distribution of data points (and hence information) throughout the region of interest
 - > 2. Allows model adequacy, including lack of fit, to be investigated
 - > 3. Allows experiments to be performed in blocks
 - > 4. Allows designs of higher order to be built up sequentially
 - > 5. Provides an internal estimate of error
 - > 6. Provides precise estimates of the model coefficients
 - > 7. Provides a good profile of the prediction variance throughout the experimental region
 - > 8. Provides reasonable robustness against outliers or missing values
 - > 9. Does not require a large number of runs
 - > 10. Does not require too many levels of the independent variables
 - ▶ 11. Ensures simplicity of calculation of the model parameters 清华大学统计学研究中心

Designs for Fitting the First-Order Model

▶ With *k* variables

$$y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \varepsilon$$

- The orthogonal first-order designs is a unique class of designs that minimize the variance of the regression coefficients $\{\beta_i\}$
- A design is orthogonal if the off-diagonal elements of the (X'X) matrix are all zero. It includes the 2^k factorial and fractions of the 2^k series in which main effects are not aliased with each other. In using these designs, we assume that the low and high levels of the k factors are coded to the usual ± 1 levels

Note on Simplex(单纯形)

- ► Another orthogonal first-order design is the simplex
- \blacktriangleright It is a regularly sided figure with k+1 vertices in k dimensions
 - \triangleright for k = 2 it is an equilateral triangle(等边三角形)
 - \triangleright for k = 3 it is a regular tetrahedron(四面体)

Designs for Fitting the Second-Order Model

- ▶ Box-Wilson Central Composite Design(CCD, 中心复合设计) is the most popular class of designs used for fitting these models
- ▶ The CCD consists of a 2^k factorial (or fractional factorial of resolution V) with n_F factorial runs, 2^k axial or star runs(星点/轴点), and n_C center runs

Keys of CCD

- ► The practical deployment of a CCD often arises through sequential experimentation
- That is, a 2^k has been used to fit a first-order model, this model has exhibited lack of fit, and the axial runs are then added to allow the quadratic terms to be incorporated into the model
- The CCD is a very efficient design for fitting the second-order model. Two parameters must be specified:
 - \triangleright the distance α of the axial runs from the design center
 - \triangleright the number of center points n_C
- ▶ We now discuss the choice of these two parameters

The Rotatable CCD

- ► A 'good' model has <u>rotatability</u>. That means:
 - > It has a reasonably consistent and stable variance of the predicted response at points of interest x
 - $Var(\hat{y}(x)) = \sigma^2 x'(X'X)^{-1} x$

is the same at all points x that are at the same distance from the design center

> The variance of predicted response is constant on spheres

A design with this property will leave the variance of \hat{y} unchanged when the design is rotated about the center $(0, 0, \ldots, 0)$, hence the name rotatable design

清华大学统计学研究中心

(a) Contours of $\sqrt{V[\hat{y}(\mathbf{x})]}$

(b) The response surface plot

The Spherical CCD

- ▶ Rotatability is a spherical property; that is, it makes the most sense as a design criterion when the region of interest is a sphere.
- The best choice of α is to set $\alpha = \sqrt{k}$, called a spherical CCD, puts all the factorial and axial design points on the surface of a sphere of radius \sqrt{k}
- ▶ When this region is a sphere, the design must include center runs to provide reasonably stable variance of the predicted response. Generally, three to five center runs are recommended

The Box-Behnken Design

- ▶ Box and Behnken (1960) have proposed some <u>three-level designs</u> for fitting response surfaces
 - \triangleright formed by combining 2^k factorials with incomplete block designs
 - > are usually very efficient in terms of the number of required runs
 - > are either rotatable or nearly rotatable

- A spherical design, with all points lying on a sphere of radius $\sqrt{2}$
- Does not contain any points at the vertices of the cubic region

x_1	x_2	x_3
-1	-1	0
		0
1	-1	0
1	1	0
-1	0	-1
-1	0	1
1		-1
1		1
0		-1
		1
0	1	-1
0	1	1
	0	0
		0
0	0	0
	-1 -1 1 1 -1 -1 1 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

- When the region of interest is cuboidal rather than spherical, a useful variation of the CCD is the face-centered CCD/cube, in which $\alpha = 1$
- ► Locate the star/axial points on the centers of the faces of the cube
- ▶ Also used in practice when it is difficult to change factor levels
- Not rotatable
- ▶ Does not require as many center points as the spherical CCD. In practice, $n_C = 2$ or 3 is sufficient to provide good variance of prediction throughout the experimental region

Illustration of Non-constant Prediction Variance

The square root of prediction variance $\sqrt{Var(\hat{y}(x))}$ for the facecentered cube for k = 3 with $n_C = 3$ center points

The standard deviation of predicted response is reasonably uniform over a relatively large portion of the design space

清华大学统计学研究中心

Other Designs

- \blacktriangleright Equiradial designs (k=2 only): regular polygons
- ► The small composite design (SCD)
 - > Consists of a fractional factorial in the cube of resolution III and the usual axial and center runs
 - Not a great choice because of poor prediction variance properties
- ► Hybrid designs
 - > Excellent prediction variance properties
 - > Unusual factor levels
- ► Computer-generated designs

Standard Order	x_1	x_2	x_3
1	1.00	1.00	-1.00
2	1.00	-1.00	1.00
3	-1.00	1.00	1.00
4	-1.00	-1.00	-1.00
5	-1.73	0.00	0.00
6	1.73	0.00	0.00
7	0.00	-1.73	0.00
8	0.00	1.73	0.00
9	0.00	0.00	-1.73
10	0.00	0.00	1.73
11	0.00	0.00	0.00
12	0.00	0.00	0.00
13	0.00	0.00	0.00
14	0.00	0.00	0.00

In CEF

2.850

3.817

CEF

17.293

45.488

8.059

2.087

Ranitidine(呋喃硝胺) Experiment Example

► Consider an experiment to study three quantitative factors with up to 5 levels

Factor	Levels		
A. pH	2, 3.42, 5.5, 7.58, 9		
B. voltage (kV)	9.9, 14, 20, 26, 30.1		
C. a-CD (mM)	0, 2, 5, 8, 10		

► The design matrix and the data are ->

► The CCD design differs from 2^{k-p} design in two respects:

> 6 replicates at the center

> 6 runs along the three axes

ı	3	-1	1	-1	10.311	2.333	l
ı	4	1	1	-1	11757.084	9.372	
ı	5	-1	-1	1	16.942	2.830	
ı	6	1	-1	1	25.400	3.235	
ı	7	-1	1	1	31697.199	10.364	
ı	8	1	1	1	12039.201	9.396	
ı	9	0	0	-1.67	7.474	2.011	
ı	10	0	0	1.67	6.312	1.842	
ı	11	0	-1.68	0	11.145	2.411	
ı	12	0	1.68	0	6.664	1.897	
ı	13	-1.68	0	0	16548.749	9.714	
ı	14	1.68	0	0	26351.811	10.179	
ı	15	0	0	0	9.854	2.288	
ı	16	0	0	0	9.606	2.262	
ı	17	0	0	0	8.863	2.182	
	18	0	0	0	8.783	2.173	
	19	0	0	0	8.013	2.081	

Factor

Run

A question to think about

▶ Why do we need the "star points" in the central composite design?

Answer

- Corner points help to estimate main & interaction effects
- *Center points help to estimate noise term σ^2
- \clubsuit Star points help to estimate quadratic effects $\{\beta_{ii}\}$
 - ➤ Without star points, the quadratic effects are confounded together

Number of Runs Summary

If we have k factors, then we have, 2^k factorial points, 2^*k axial points and n_c center points. Below is a table that summarizes these designs and compares them to 3^k designs

		k=2	k=3	k=4	k = 5
	Factorial points 2 ^k	4	8	16	32
Central Composite Designs	Star points 2 ^k	4	6	8	10
	Center points n_c (varies)	5	5	6	6
	Total	13	19	30	48
3 ^k Designs		9	27	81	243
Chaire of a	Spherical design ($\alpha=\sqrt{k}$)	1.4	1.73	2	2.24
Choice of a	Rotatable design ($\alpha=(n_F)^{\frac{1}{4}}$)	1.4	1.68	2	2.38

Final Slide: Design Selection Guideline

	Current State of Possessed Knowledge				
Knowledge	Low ←	+	++	→ High	
Type of Design	Screening	Fractional Factorials	Factorials	Response Surface	
Usual # of Factors	>4	3-15	1-7	<8	
Purpose: Identification	Most important factors (vital few)	Some interactions	Relationships among all factors	Optimal factor setting	
Purpose: Estimation	Crude direction for improvement (linear effects)	All main effects and some interactions	All main effects and all interactions	Curvature in response, empirical models	

