Sintaxis para cálculo λ con pares

¿Qué hay que agregar?

• ...términos para representar el constructor y los observadores

$$M ::= ... \mid \langle M, N \rangle \mid \pi_1(M) \mid \pi_2(M)$$

• ...y un tipo para estas nuevas expresiones

$$\sigma ::= \dots \mid \sigma \times \tau$$

Reglas de tipado para pares

¿Qué hay que agregar?

- Al menos una regla por cada forma nueva de sintaxis, porque cada una de ellas precisa poder ser tipada.
- Notar que, de no hacerlo, sería imposible construir términos tipables (útiles) con dicha forma.

Regla de tipado para el constructor

$$\frac{\Gamma \triangleright M : \sigma \quad \Gamma \triangleright N : \tau}{\Gamma \triangleright \langle M, N \rangle : \sigma \times \tau}$$

Reglas de tipado para las proyecciones

$$\frac{\Gamma \triangleright M : \sigma \times \tau}{\Gamma \triangleright \pi_1(M) : \sigma}$$

$$\frac{\Gamma \triangleright \mathsf{N} : \sigma \times \tau}{\Gamma \triangleright \pi_2(\mathsf{N}) : \tau}$$

Semántica para pares

¿Qué reglas hay que agregar?

 Necesitamos reducir todos los pares con sentido que no sean valores.

¿Cuáles son los valores?

Empecemos por ahí entonces...

Extensión de los valores

$$V ::= ... \mid \langle V, W \rangle$$

Reglas de semántica para pares

Ahora sí, las reglas

$$\frac{M \to M'}{< M, N > \to < M', N >} \qquad \frac{N \to N'}{< \textcolor{red}{V}, N > \to < \textcolor{red}{V}, N' >}$$

Reglas de semántica para las proyecciones

$$\frac{M \to M'}{\pi_1(M) \to \pi_1(M')} \qquad \frac{M \to M'}{\pi_2(M) \to \pi_2(M')}$$

$$\pi_1(\langle V, W \rangle) \rightarrow V$$
 $\pi_2(\langle V, W \rangle) \rightarrow W$

Sintaxis para cálculo λ con árboles binarios

¿Qué hay que agregar?

...términos para representar los constructores y observadores
 M ::= ... | Nil_σ | Bin(M, N, O) | root(M) | right(M) | left(M) | isNil(M)

• ...y un tipo para estas nuevas expresiones

$$\sigma ::= ... \mid AB_{\sigma}$$

Reglas de tipado para los constructores

$$\Gamma \triangleright Nil_{\sigma} : AB_{\sigma}$$

$$\frac{\Gamma \triangleright M : AB_{\sigma} \quad \Gamma \triangleright O : AB_{\sigma} \quad \Gamma \triangleright N : \sigma}{\Gamma \triangleright Bin(M, N, O) : AB_{\sigma}}$$

- Nil_{σ} es una constante diferente según el tipo σ .
 - ¡No tenemos polimorfismo!
- Para Bin, en cambio, el tipo queda determinado por el tipo de los subtérminos.

Reglas de tipado para los observadores

$$\frac{\Gamma \triangleright M : AB_{\sigma}}{\Gamma \triangleright root(M) : \sigma} \qquad \frac{\Gamma \triangleright M : AB_{\sigma}}{\Gamma \triangleright isNil(M) : Bool}$$

$$\frac{\Gamma \triangleright M : AB_{\sigma}}{\Gamma \triangleright left(M) : AB_{\sigma}} \qquad \frac{\Gamma \triangleright M : AB_{\sigma}}{\Gamma \triangleright right(M) : AB_{\sigma}}$$

Semántica para árboles binarios

• Primero, empecemos por los valores:

$$V ::= ... \mid Nil_{\sigma} \mid Bin(V, W, Y)$$

Reglas de semántica para los constructores

$$\frac{\textit{M} \rightarrow \textit{M'}}{\textit{Bin}(\textit{M},\textit{N},\textit{O}) \rightarrow \textit{Bin}(\textit{M'},\textit{N},\textit{O})}$$

$$\frac{\textit{N} \rightarrow \textit{N}'}{\textit{Bin}(\textit{V},\textit{N},\textit{O}) \rightarrow \textit{Bin}(\textit{V},\textit{N}',\textit{O})}$$

$$\frac{O \rightarrow O'}{\textit{Bin}(\textit{\textbf{V}}, \textit{\textbf{W}}, O) \rightarrow \textit{Bin}(\textit{\textbf{V}}, \textit{\textbf{W}}, O')}$$

Reglas de semántica para los observadores (1/2)

$$\frac{M \to M'}{\mathsf{left}(M) \to \mathsf{left}(M')} \qquad \frac{M \to M'}{\mathsf{right}(M) \to \mathsf{right}(M')}$$

$$\frac{\textit{M} \rightarrow \textit{M}'}{\textit{root}(\textit{M}) \rightarrow \textit{root}(\textit{M}')} \qquad \frac{\textit{M} \rightarrow \textit{M}'}{\textit{isNil}(\textit{M}) \rightarrow \textit{isNil}(\textit{M}')}$$

Reglas de semántica para los observadores (2/2)

$$isNil(Nil_{\sigma}) o true$$
 $isNil(Bin(V, W, Y)) o false$

$$left(Bin(V, W, Y)) \rightarrow V$$
 $right(Bin(V, W, Y)) \rightarrow Y$

$$root(Bin(V, W, Y)) \rightarrow W$$

Sintaxis para cálculo λ con árboles binarios bis

Los tipos quedan igual que en el caso anterior:

$$\sigma ::= ... \mid AB_{\sigma}$$

Y los términos,

$$M ::= ... \mid Nil_{\sigma} \mid Bin(M, N, O) \mid$$

 $Case_{AB_{\sigma}} M \text{ of } Nil \leadsto N \text{ ; } Bin(m, n, o) \leadsto O$

Aquí las minúsculas (m,n,o) representan variables.

Reglas de tipado para árboles binarios bis

• Para los constructores son las que ya teníamos.

$$\Gamma \triangleright Nil_{\sigma} : AB_{\sigma}$$

$$\frac{\Gamma \triangleright M : AB_{\sigma} \quad \Gamma \triangleright O : AB_{\sigma} \quad \Gamma \triangleright N : \sigma}{\Gamma \triangleright Bin(M, N, O) : AB_{\sigma}}$$

Regla de tipado para el Case

```
 \begin{array}{c|c} \Gamma \rhd M : AB_{\sigma} & \Gamma \rhd N : \tau \\ \hline \Gamma \cup \{m : AB_{\sigma}, n : \sigma, o : AB_{\sigma}\} \rhd O : \tau \\ \hline \hline \Gamma \rhd Case_{AB_{\sigma}} M \text{ of } Nil \leadsto N \text{ }; Bin(m, n, o) \leadsto O : \tau \end{array}
```

Semántica para los árboles binarios bis

• Tenemos los mismos valores que antes:

$$V ::= ... \mid Nil_{\sigma} \mid Bin(V, W, Y)$$

Reglas de semántica para los constructores

Análogas a las que ya teníamos.

$$\frac{\textit{M} \rightarrow \textit{M}'}{\textit{Bin}(\textit{M},\textit{N},\textit{O}) \rightarrow \textit{Bin}(\textit{M}',\textit{N},\textit{O})}$$

$$\frac{\textit{N} \rightarrow \textit{N}'}{\textit{Bin}(\textit{V},\textit{N},\textit{O}) \rightarrow \textit{Bin}(\textit{V},\textit{N}',\textit{O})}$$

$$\frac{\textit{O} \rightarrow \textit{O'}}{\textit{Bin}(\textit{V}, \textit{W}, \textit{O}) \rightarrow \textit{Bin}(\textit{V}, \textit{W}, \textit{O'})}$$

Reglas de semántica para el Case

$$\begin{array}{c} M \to M' \\ \hline \textit{Case}_{AB_{\sigma}} \ \textit{M of Nil} \leadsto \textit{N} \ ; \textit{Bin}(\textit{m},\textit{n},\textit{o}) \leadsto \textit{O} \\ \to \\ \hline \textit{Case}_{AB_{\sigma}} \ \textit{M' of Nil} \leadsto \textit{N} \ ; \textit{Bin}(\textit{m},\textit{n},\textit{o}) \leadsto \textit{O} \end{array}$$

$$Case_{AB_{\sigma}} \ \textit{Nil}_{\sigma} \ \textit{of} \ \textit{Nil} \leadsto \textit{N} \ ; \textit{Bin}(\textit{m},\textit{n},\textit{o}) \leadsto \textit{O} \rightarrow \textit{N}$$

Case_{AB_o}
$$Bin(V, W, Y)$$
 of $Nil \rightsquigarrow N$; $Bin(m, n, o) \rightsquigarrow O$
 $\rightarrow O\{m \leftarrow V, n \leftarrow W, o \leftarrow Y\}$