

Figure 1

1. The two-layer feedforward perceptron network shown in figure 1 has weights and biases initialized as indicated and receives 2-dimensional inputs (x_1, x_2) . The network is to respond with $\boldsymbol{d}_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ and $\boldsymbol{d}_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ for input patterns $\boldsymbol{x}_1 = \begin{pmatrix} 1.0 \\ 3.0 \end{pmatrix}$ and $\boldsymbol{x}_2 = \begin{pmatrix} -2.0 \\ -2.0 \end{pmatrix}$, respectively.

Analyse a single feedforward and feedback step for gradient decent learning of the two patterns by doing the following:

- (a) Find the weight matrix W to the hidden-layer and weight matrix V to the output-layer, and the corresponding biases.
- (b) Calculate the synaptic input z and output h of the hidden-layer, and the synaptic input u and output $y = (y_1, y_2)$ of the output layer.
- (c) Find the mean square error cost *J* between the outputs and targets.
- (d) Calculate the gradients $\nabla_u J$ and $\nabla_z J$ at the output-layer and the hidden-layer, respectively.
- (e) Compute the new weights and biases.
- (f) Write a program to continue iterations until convergence and find the final weights and biases.

Assume a learning rate of 0.05.

Repeat above (a) - (f) for stochastic gradient decent learning.

2. A feedforward neural network with one hidden layer is to perform the following classification:

class	inputs
Α	(1.0, 1.0), (0.0, 1.0)
В	(3.0, 4.0), (2.0, 2.0)
С	(2.0, -2.0), (-2.0, -3.0)

The network has a hidden layer consisting of three perceptrons and a softmax output layer.

Initialize the weights W and biases b to the hidden layer, and the weights V and biases c to the output layer as follows:

$$W = \begin{pmatrix} -0.10 & 0.97 & 0.18 \\ -0.70 & 0.38 & 0.93 \end{pmatrix}, b = \begin{pmatrix} 0.0 \\ 0.0 \\ 0.0 \end{pmatrix}$$
$$V = \begin{pmatrix} 1.01 & 0.09 & -0.39 \\ 0.79 & -0.45 & -0.22 \\ 0.28 & 0.96 & -0.07 \end{pmatrix}, c = \begin{pmatrix} 0.0 \\ 0.0 \\ 0.0 \end{pmatrix}$$

Show one iteration of gradient descent learning and plot the learning curves until convergence at a learning rate $\alpha=0.1$.

Determine the weights and biases at convergence.

Find the class labels predicted by the trained network for patterns:

$$\pmb{x}_1 = {2.5 \choose 1.5}$$
 and $\pmb{x}_2 = {-1.5 \choose 0.5}$

3. Design a deep neural network consisting of two ReLU hidden layers to approximate the following function:

$$\phi(x,y) = 0.8x^2 - y^3 + 2.5xy$$
 for $-1.0 \le x, y \le 1.0$.

Use 10 neurons and 5 neurons at first and second hidden layers, respectively, and a linear neuron at the output layer.

- (a) Divide the input space equally into square regions of size 0.25×0.25 and use grid points as data points to learn the function ϕ .
- (b) Train the network using gradient decent learning at learning rate $\alpha=0.01$ and plot the learning curve (mean square error vs. iterations) and the predicted data points.
- (c) Compare the behaviour of learning by plotting learning curves at rates $\alpha = 0.005, 0.001, 0.01, \text{ and } 0.05.$