

Study familial hypertrophic cardiomyopathy using patient-specific induced pluripotent stem cells

Lu Han¹, Yang Li¹, Jason Tchao¹, Aaron D. Kaplan², Bo Lin¹, You Li¹, Jocelyn Mich-Basso¹, Agnieszka Lis², Narmeen Hassan¹, Barry London³, Glenna C.L. Bett⁴, Kimimasa Tobita¹, Randall L. Rasmusson², and Lei Yang¹*

¹Department of Developmental Biology, University of Pittsburgh School of Medicine, 8117 Rangos Research Center, 530 45th Street, Pittsburgh, PA 15201, USA; ²Center for Cellular and Systems Electrophysiology, Department of Physiology and Biophysics, SUNY, Buffalo, NY 14214, USA; ³Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; and ⁴Department of Obstetrics and Gynecology, SUNY, Buffalo, NY 14214, USA

Lab Meeting Journal Club 12th of October

Aims	Familial hypertrophic cardiomyopathy (HCM) is one the most common heart disorders, with gene mutations in the
	cardiac sarcomere. Studying HCM with patient-specific induced pluripotent stem-cell (iPSC)-derived cardiomyocytes
	(CMs) would benefit the understanding of HCM mechanism, as well as the development of personalized therapeutic
	strategies.

Hypertrophic Cardiomyopathy

Common symptoms:

- · Chest pain
- Dyspnea
- Dizziness and fainting
- Fatigue

Complications:

- Sudden cardiac death
- Progressive heart failure
- Systolic disfunction
- Stroke

Genetic of HCM

Table 2 Genes associated with sarcomere hypertrophic cardiomyopathy

Gene	Sarcomere protein	OMIM #	Frequency (%)	
Thick myofilament				
MYBPC3	Myosin binding protein C	600958	~40	
MYH7	β -myosin heavy chain	160760	~40	
MYL2	Myosin light chain 2 1607		<1	
MYL3	Myosin light chain 3	160790	<1	
Thin myofilament				
ACTC1	Cardiac α -actin	102540	<1	
TNNC1	Cardiac troponin C	191040	<1	
TNNI3	Cardiac troponin I	191044	<5	
TNNT2	Cardiac troponin T2	191045	~10	
TPM1	lpha-tropomyosin	191010	<1	
Z-disc				
ACTN2	α -2 actinin	102573	<1	
CSRP3	Cysteine and glycine-rich protein 3	600824	<1	
MYOZ2	Myozenin 2	605602	<1	
TCAP	Telethonin	604488	<1	
TTN	Titin	188840	<1	

HCM iPSC reprogramming and genotyping

Establishment and characterization of HCM iPSCs

CM differentiation and genome-wide transcriptional profiling

CM differentiation and gene expression profile of HCM iPSC-CMs

Phenotypic characterization of HCM iPSC-CMs

Electrophysiological analyses of HCM iPSC-CMs

Electrophysiological behaviour of single HCM iPSC-CMs

Electrophysiological behaviour of CM monolayers

Characterization of action-potentials Recording from the control and HCM IPSC-derived single cardiomyocytes.

		Control		HCM	
		Mean	SE	Mean	SE
Spontaneous APs	Minimum Diastolic Value (mV)	-58.441	2.212364	-59.6188	1.905717
	Mean Diastolic Potential (mV)	-49.199	2.167509	-48.2268	1.894534
	Amplitude	79.67738	6.07583	86.24236	4.11967
	Peak (mV)	24.10327	2.688481	28.25754	2.620312
	dV/dT max	7.153617	0.433891	6.84151	0.284861
	APD90 (ms)	564.824	54.6295	711.7466	43.68447
	APD50 (ms)	450.2235	99.16871	595.9008	90.7935
Stimulated APs after a train of 4 beats	Vm (mV)	-56.0027		-58.1559	
at 0.5 Hz	Amplitude	90.10721	4.353515	94.40086	2.537365
	Peak (mV)	34.10453	4.033087	36.23168	1.954102
	dV/dT max	78.99483	2.803166	86.70454	2.336756
	APD90 (ms)	560.4995	81.31584	910.3749	86.85604
	APD50 (ms)	429.3339	84.10154	756.3583	82.2205
	Capcitance	65.99569	4.762481	66.55331	4.22310

Calcium transient behaviour in HCM iPSC-CMs

Analysis of calcium handling and ion channels

Ion channel current changes in HCM IPSC cardiomyocytes

Pharmaceutical treatment of HCM iPSC-CMs

RTCA recording of iPSC-derived monolayer CMs

Research Article

Mutation-Specific Phenotypes in hiPSC-Derived Cardiomyocytes Carrying Either Myosin-Binding Protein C Or α -Tropomyosin Mutation for Hypertrophic Cardiomyopathy

Marisa Ojala,¹ Chandra Prajapati,¹ Risto-Pekka Pölönen,¹ Kristiina Rajala,¹ Mari Pekkanen-Mattila,¹ Jyrki Rasku,² Kim Larsson,¹ and Katriina Aalto-Setälä¹,³,4

¹BioMediTech, University of Tampere, 33014 Tampere, Finland

²School of Information Sciences, University of Tampere, 33014 Tampere, Finland

³Medical School, University of Tampere, 33014 Tampere, Finland

⁴Heart Hospital, Tampere University Hospital, 33521 Tampere, Finland

MYBPC3-Gln1061X or TPM1-Asp175Asn mutation.

Aim: study the properties of HCM cardiomyocytes (CMs) derived from

patient-specific human induced pluripotent stem cells (hiPSCs) carrying either

Action Potential Characteristics of WT and HCM hiPSC- Derived Cardiomyocytes

TABLE 3: AP properties of ventricular-like CMs derived from control hiPSC lines (WT) and from hiPSC lines carrying *TPM1-Asp175Asn* (HCMT) or *MYBPC3-Gln1061X* (HCMM) mutations. In the results, the data of each group is comprised from two separate cell lines.

Group	11	Beating rate	APD_{50}	APD_{90}	APA	MDP
	71	(BPM)	(ms)	(ms)	(mV)	(mV)
WT	43	58.1 ± 2.3	277.3 ± 13.0	323.6 ± 13.9	119.5 ± 1.1	-76.8 ± 0.8
HCMT	71	$48.4 \pm 1.5**$	$372.3 \pm 13.2**$	$433.1 \pm 14.0**$	121.2 ± 1.1	-75.8 ± 0.7
HCMM	54	$47.1 \pm 1.8**$	$319.5 \pm 13.7^{\$}$	$377.6 \pm 15.0^{*,\$}$	$124.3 \pm 1.4^*$	-77.9 ± 0.8

^{*}HCMT or HCMM versus WT.

^{\$}HCMM versus HCMT.

^{\$} or *p < 0.05 and **p < 0.005.