Cotter Joint

Reference: Chapter # 3 Bhandari

- P: applied force
- d: diameter of rods A & B
- $\cdot d_1$: outside diameter of socket
- d_2 : diameter of spigot
- $\cdot d_3$: diameter of spigot-collar
- $\cdot d_4$: diameter of socket-collar
- *a*: distance from the end of slot the end of spigot on rod-B
- $\cdot b$: mean width of cotter
- c: axial distance from slot to end of socket collar
- t: thickness of cotter
- t_1 : thickness of spigot-collar
- *l*: length of cotter

Typical applications:

- Joint between connecting rod and cross head of steam engine
- Foundation bolts

Tensile failure of rods

$$\sigma_t = \frac{P}{\pi d^2/4}$$
 or $d = \sqrt{\frac{4P}{\pi \sigma_t}}$

 σ_t = Allowable tensile stress Thickness of collar is usually taken as t = 0.31d

Tensile failure of spigot 2.

$$\sigma_t = \frac{P}{\left[\pi d_2^2 / 4 - d_2 t\right]}$$

Tensile failure of socket 3.

$$\sigma_{t} = \frac{P}{\left[\pi \left(d_{1}^{2} - d_{2}^{2}\right) / 4 - \left(d_{1} - d_{2}\right)t\right]}$$

• d_2 : inside diameter of socket

4. Shear failure of cotter

$$au = rac{P/2}{ig(tbig)}$$

 τ = Allowable shear stress

5. Shear failure of spigot end

$$P = 2\tau a d_2$$

- d_2 : diameter of spigot
- *a*: distance from the end of slot the end of spigot on rod-B

6. Shear failure of socket end

$$P = 2\tau (d_4 - d_2)c$$

7. Crushing failure of spigot end

$$\sigma_c = \frac{P}{td_2}$$

- d_1 : outside diameter of socket
- d_4 : diameter of socket-collar
- c: axial distance from slot to end of socket collar

- d_2 : diameter of spigot
- t: thickness of cotter

8. Crushing failure of socket end

$$P = \sigma_c (d_4 - d_2)t$$

9. Bending failure of cotter

$$\sigma_b = \frac{P}{tb^2} \left(\frac{d_2}{4} + \frac{d_4}{2} \right)$$

- d_1 : outside diameter of socket
- d_4 : diameter of socket-collar
- c: axial distance from slot to end of socket collar

- **b**: mean width of cotter
- t: thickness of cotter

Sleeve and cotter joint

Gib and cotter joint

Cotter foundation bolt

- d: diameter of the bolt
- d_1 : enlarged diameter of bolt
- t: thickness of cotter
- b: width of cotter

Application:

• Hold down the base plate of machine tool to concrete foundation of shop floor

1. Tensile failure of bolt

$$\sigma_t = \frac{P}{\pi d^2/4}$$
 or $d = \sqrt{\frac{4P}{\pi \sigma_t}}$

2. Tensile failure of enlarged area of bolt

$$\sigma_t = \frac{P}{\left(\pi d_1^2 / 4 - d_1 t\right)}$$

Knuckle Joint

Reference: Chapter # 3 Bhandari

- P: applied force
- D: diameter of each rod
- D_1 : enlarged diameter of each rod
- d: diameter of knuckle pin
- d_0 : outside diameter of eye of fork pin
- a: thickness of each eye of fork
- b: thickness of eye-end of rod-B
- d_1 : diameter of pin head
- *x*: distance of the centre of fork radius *R* from the eye

Typical applications:

- Joint in valve mechanism of reciprocating engine
- Fulcrum for levers
- Joint between links of bicycle chain

Tensile failure of rods

$$\sigma_t = \frac{P}{\pi D^2/4}$$
 or $D = \sqrt{\frac{4P}{\pi \sigma_t}}$

- σ_t = Allowable tensile stress
- Enlarged diameter is usually taken as $D_1 = 1.1D$

Shear failure of pin 2.

$$au = \frac{P/2}{\pi d^2/4}$$
 or $d = \sqrt{\frac{2P}{\pi \tau}}$ $\tau = \text{Allowable shear stress}$ $d = \text{diameter of knuckle pin}$

Crushing failure of pin in eye **3.**

$$\sigma_c = \frac{P}{bd}$$

 σ_c = Allowable compressive stress d = thickness of eye-end of rod-B

Crushing failure of pin in fork

$$\sigma_c = \frac{P/2}{ad}$$
 or $a = \frac{P}{2d\sigma_c}$ $a = \text{thickness of each eye of fork}$

5. Bending failure of pin

$$\sigma_b = 16 \frac{P}{\pi d^3} \left(\frac{b}{4} + \frac{a}{3} \right)$$

- P: applied force
- d: diameter of knuckle pin
- *a*: thickness of each eye of fork
- b: thickness of eye-end of rod-B

6. Tensile failure of eye

$$\sigma_{t} = \frac{P}{(d_{0} - d)b}$$

- d: diameter of knuckle pin
- d_0 : outside diameter of eye of fork pin
- **b**: thickness of eye-end of rod-B

7. Shear failure of eye

$$\tau = \frac{P}{\left(d_0 - d\right)b}$$

8. Tensile failure of fork

$$\sigma_t = \frac{P}{2(d_0 - d)a}$$

- d: diameter of knuckle pin
- d_0 : outside diameter of eye of fork pin
- a: thickness of each eye of fork

7. Shear failure of fork

$$\tau = \frac{P}{2(d_0 - d)a}$$