Information Retrieval and Organisation

Dell Zhang

Birkbeck, University of London

2015/16

IR Chapter 03

Dictionaries and Tolerant Retrieval

Dictionaries

 Dictionary: the data structure for storing the term vocabulary

Storing Dictionaries

- For each term, we need to store a couple of items:
 - document frequency
 - pointer to postings list
- Assume for the time being that
 - we can store this information in a fixed-length entry
 - we store these entries in an array

Storing Dictionaries

term	document	pointer to
	frequency	postings list
а	656,265	\longrightarrow
aachen	65	\longrightarrow
zulu	221	\longrightarrow

space needed: 20 bytes 4 bytes

4 bytes

- How do we look up an element in this array at query time?
- Remember: these dictionaries can be huge, scanning is not an option

Data Structures

- Two main classes of data structures: hash tables and trees
 - Some IR systems use hash tables, some use trees.
- Criteria for when to use hash tables vs trees:
 - ► Is there a fixed number of terms or will it keep growing?
 - What are the relative frequencies with which various keys will be accessed?
 - How many terms are we likely to have?

Hash Tables

- Each vocabulary term is hashed into an integer.
- Try to avoid collisions
- At query time, do the following:
 - hash query term
 - resolve collisions
 - locate entry in fixed-width array
- Pros:
 - Lookup in a hash table is faster than in a tree.
- Cons:
 - no prefix search (all terms starting with automat)
 - need to rehash everything periodically if vocabulary keeps growing

Trees

- Trees solve the prefix problem (find all terms starting with automat).
- Simplest tree: binary tree.
- However, binary trees are problematic:
 - Only balanced trees allow efficient retrieval
 - Rebalancing binary trees is expensive
- Use B-trees (the index structure that you know from database lectures)

B-Tree

Taken from documentation for Oracle 10g

Wildcard Queries

- mon*: find all docs containing any term beginning with mon
 - Easy with B-tree dictionary
 - retrieve all terms t in the range: mon $\leq t <$ moo
- *mon: find all docs containing any term ending with mon
 - Maintain an additional tree for terms backwards, then
 - retrieve all terms t in the range: nom $\leq t <$ non

Query Processing

- At this point, we have an enumeration of all terms in the dictionary that match the wildcard query.
- We still have to look up the postings for each enumerated term.
 - e.g., consider the query: gen* AND universit*
- This may result in the execution of many Boolean AND queries.

Wildcards in Middle of Term

- Example: m*nchen
- ▶ We could look up m* and *nchen in the B-tree and intersect the two term sets.
 - Expensive (there are probably thousands and thousands of terms beginning with "m")
- Alternative: permuterm index
 - Basic idea: Rotate every wildcard query, so that the * occurs at the end.

Permuterm Index

► For term hello: add hello\$, ello\$h, llo\$he, lo\$hel, o\$hell, and \$hello to the B-tree where \$ is a special symbol

Permuterm Index

- Queries
 - For X, look up X\$
 - ► For X*, look up \$X*
 - ► For *X, look up X\$*
 - For *X*, look up X*
 - ► For X*Y, look up Y\$X*
- Example:
 - ► For hel*o, look up o\$hel*
- It's really a tree and should be called permuterm tree
- But permuterm index is more common name.

Query Processing

- Once we modified the query (as shown on last slide), we can do a regular lookup on a B-tree
- This is much faster than looking up X* and *Y and combining results (for query X*Y)
- Permuterm index also handles leading wildcards: *X
- ▶ It has a disadvantage, though: quadruples the size of the dictionary compared to a regular B-tree (as every term is stored multiple times)

k-gram Index

- More space-efficient than permuterm index
- Enumerate all character k-grams (sequence of k characters) occurring in a term
 - 2-grams are also called bigrams
 - 3-grams are also called trigrams
- Example:
 - from April is the cruelest month we get the bigrams:
 \$2.20 pr ri il 15 \$i is \$5 \$t th he \$5
 - \$a ap pr ri il |\$ \$i is s\$ \$t th he e\$ \$c cr ru ue el le es st t\$ \$m mo on nt h\$
 - \$ is a special word boundary symbol.
- Maintain an inverted index from bigrams to the terms that contain the bigram

Postings List in a 3-gram Index

- Note that we now have two different types of inverted indexes
 - The term-document inverted index for finding documents based on a query consisting of terms
 - ► The k-gram index for finding terms based on a query consisting of k-grams

Processing Wildcard Queries

- Query mon* can now be run as: \$m AND mo AND on
- Gets us all terms with the prefix mon . . .
- ... but also many "false positives" like moon
- We must post-filter these terms against query
- Surviving terms are then looked up in the term-document inverted index.
- ▶ k-gram indexes are fast and space efficient (compared to permuterm indexes).

Processing Wildcard Queries

- We must potentially execute a large number of Boolean queries for each enumerated, filtered term (on the term-document index)
 - Recall the query: gen* AND universit*
 - Most straightforward semantics: Conjunction of disjunctions
 - Very expensive
- Users hate to type
 - ▶ If abbreviated queries like pyth* theo* for pythagoras' theorem are legal, users will use them ...
 - ...a lot

Spelling Correction

- Two principal uses
 - Correcting documents being indexed
 - Correcting user queries
- Two different methods
 - Isolated Word Spelling Correction
 - Check each word on its own for misspelling
 - Will not catch typos resulting in correctly spelled words, e.g., an asteroid that fell form the sky
 - Context-Sensitive Spelling Correction
 - Look at surrounding words
 - Can correct the form/from error above

Correcting Documents

- We're not interested in interactive spelling correction of documents (e.g., MS Word) in this class.
- In IR, we use document correction primarily for OCR'ed documents (i.e. documents digitized via Optical Character Recognition)
- ► The general philosophy in IR is: don't change the documents.

Correcting Queries

- First: isolated word spelling correction
 - ► Fundamental premise 1: There is a list of "correct words" from which the correct spellings come.
 - Fundamental premise 2: We have a way of computing the distance between a misspelled word and a correct word.
- Simple spelling correction algorithm: return the "correct" word that has the smallest distance to the misspelled word.
 - ► Example: *information* → *information*

Correcting Queries

- Can we use the term vocabulary of the inverted index as the list of correct words?
 - It can be very biased
 - It may be missing certain terms
- Alternatives:
 - A standard dictionary (Webster's, Encyclopædia Britannica, etc.)
 - An industry-specific dictionary (for specialized IR systems)
 - ► The term vocabulary of the collection, appropriately weighted

- How can we compute the distance between words?
- We'll look at some alternatives:
 - edit distance (Levenshtein distance)
 - weighted edit distance
 - k-gram overlap

Edit Distance

- ▶ The (minimum) edit distance between two strings s_1 and s_2 is the minimum number of basic operations to convert s_1 to s_2 .
- Levenshtein distance: the admissible basic operations are: insert, delete, and replace
 - Levenshtein distance dog→do: 1 (deletion)
 - Levenshtein distance cat→cart: 1 (insertion)
 - Levenshtein distance cat→cut: 1 (replacement)
 - Levenshtein distance cat→act: 2 (2 replacements or 1 insertion and 1 deletion)

Getting from cats to fast

	1111	f	а	S	t
""	"" <i>→</i> ""	"" → f	"" $ o$ fa	"" $ o$ fas	"" $ o$ fast
С	c -> ''''	$c \to f$	c o fa	c o fas	c o fast
а	ca → '"'	ca o f	ca o fa	ca o fas	ca o fast
t	cat o ```	$cat \to f$	cat o fa	cat o fas	cat o fast
S	cats → '"'	$cats \to f$	cats o fa	cats o fas	cats o fast

 Each cell will contain the (cheapest) cost of getting from the string on the left-hand side to the string on the right-hand side

- We know the costs for the uppermost row and the leftmost column:
 - we have to get from "" to fast by inserting characters
 - we have to get from cats to "" by deleting characters

	4477	f	а	S	t
4477	0	1	2	3	4
С	1				
а	2				
t	3				
S	4				

- For other cells, take the minimum of costs
 - Coming from (a):
 - ▶ add 1 to cost in (a) insertion
 - Coming from (b):
 - ▶ add 1 to cost in (b) deletion
 - Coming from (c):
 - if characters in row and column are equal, copy cost from (c)
 - otherwise, add 1 to cost in (c) — replacement

Resulting Matrix

Computing the costs for all cells results in the following matrix:

	1177	f	а	S	t
4477	0	1	2	3	4
С	1	1	2	3	4
а	2	2	1	2	3
t	3	3	2	2	2
S	4	4	3	2	3

So the Levenshtein distance is 3

Algorithm

```
EDITDISTANCE(s_1, s_2)
      int m[i, j] = 0
  2 for i \leftarrow 1 to |s_1|
  3 do m[i, 0] = i
  4 for i \leftarrow 1 to |s_2|
  5 do m[0, j] = j
     for i \leftarrow 1 to |s_1|
      do for i \leftarrow 1 to |s_2|
          do m[i, j] = \min\{m[i-1, j-1] + \text{if } (s_1[i] = s_2[j]) \text{ then } 0 \text{ else } 1\text{fi},
  8
  9
                                  m[i-1,j]+1,
                                  m[i, j-1]+1
10
11
      return m[|s_1|, |s_2|]
```

Weighted Edit Distance

- As Levenshtein distance, but weight of an operation depends on the characters involved.
- Meant to capture keyboard errors
 - e.g., m more likely to be mistyped as n than as q.
 - therefore, replacing m by n is a smaller edit distance than by q.
- We now require a weight matrix as input.
- Modify dynamic programming to handle weights.

Using Edit Distances

- Comparing query term q to all terms in the vocabulary is too expensive
- Solution: use heuristics to determine subset
 - Only compare to terms beginning with the same letter (doesn't work for typos at beginning)
 - Generate set of rotations for q and use a permuterm index (doesn't work well for replacements)
 - ► For each rotation, omit a suffix of *I* characters before doing lookup in permuterm index
 - Ensures that each term in query rotation shares a substring with retrieved terms
 - ► The value of / could be fixed to a constant length (e.g. 2), or depend on the length of q

Using a k-gram Index

- Enumerate all k-grams in the query term
- ▶ Use the k-gram index to retrieve "correct" words that match query term k-grams
- ► Threshold by number of matching *k*-grams
 - e.g., only vocabulary terms that differ by at most 3
 k-grams

Example with 2-grams

Suppose the misspelled word is "bordroom": \$b, bo, or, rd, dr, ro, oo, om, m\$

Example with 3-grams

- Suppose the correct word is "november": \$\$n, \$no, nov, ove, vem, emb, mbe, ber, er\$, r\$\$
- And the query term is "december": \$\$d, \$de, dec, ece, cem, emb, mbe, ber, er\$, r\$\$
- So 5 trigrams overlap (out of 10 in each term)
- ▶ Issue: Fixed number of *k*-grams that differ does not work for words of differing length.
- How can we turn this into a normalized measure of overlap?

Jaccard Coefficient

- A commonly used measure of two sets' overlap
- ▶ Let A and B be two sets
- Jaccard coefficient:

$$\frac{|A \cap B|}{|A \cup B|}$$

- ▶ A and B don't have to be the same size.
- Always assigns a number between 0 and 1.
- Application to spelling correction: declare a match if the coefficient is, say, > 0.8.

Context-Sensitive Correction

- Our example was: "an asteroid that fell form the sky"
- How can we correct form here?
- One idea: hit-based spelling correction
 - We'll return back to this idea when we talk about the *probabilistic* approach to spelling correction, in the second half of the module.

Context-Sensitive Correction

- Given query "flew form munich"
- Retrieve the correct terms close to each query term
 - ▶ flea for *flew*
 - ▶ from for form
 - munch for munich
- Now try all possible resulting phrases as queries, with one word fixed at a time
 - Try query "flea form munich"
 - Try query "flew from munich"
 - Try query "flew form munch"
- ► The correct query "flew from munich" should have the most hits.

Context-Sensitive Correction

- ► The *hit-based* algorithm we just outlined is not very efficient.
 - ► Suppose we have 7 alternatives for *flew*, 19 for *form* and 3 for *munich*
 - ▶ Then we have to test $7 \times 19 \times 3$ different variants
- More efficient alternative: look at the collection of queries, not documents
 - This assumes that we log queries

General Issues

- User interface
 - Automatic or suggested correction
 - "Did you mean" only works for one suggestion.
 - What about multiple possible corrections?
 - Tradeoff: simple vs powerful UI
- Cost
 - Spelling correction is potentially expensive.
 - Avoid running on every query?
 - Maybe just on queries that match few documents.

Phonetic Matching

- Soundex is the basis for finding phonetic (as opposed to orthographic) alternatives.
 - e.g., Chebyshev / Tchebyscheff
- ▶ Algorithm:
 - Turn every token to be indexed into a 4-character reduced form
 - Do the same with query terms
 - Build and search an index on the reduced forms

Soundex Algorithm

- 1. Retain the first letter of the term.
- 2. Change all occurrences of the following letters to 0 (zero):
 - A, E, I, O, U, H, W, Y
- 3. Change letters to digits as follows:
 - B, F, P, V ⇒ 1
 - ightharpoonup C, G, J, K, Q, S, X, Z \Rightarrow 2
 - ▶ D,T ⇒ 3
 - ► L ⇒ 4
 - ► M. N ⇒ 5
 - ► R ⇒ 6
- Repeatedly remove one out of each pair of consecutive identical digits
- 5. Remove all 0s from the resulting string; pad the resulting string with trailing 0s, and return the first four positions, which will consist of a letter followed by three digits

Soundex Algorithm

Example

	difficulty	difference
steps 1 and 2	d0ff0c0lt0	d0ff0r0nc0
step 3	d011020430	d011060520
step 4	d01020430	d01060520
step 5	d124	d165

- Vowels are viewed as being interchangeable
- Consonants with similar sounds (e.g. D and T) are put in equivalence classes
- Works fairly well for European languages

Summary

- How to organize a dictionary of an inverted index
- How to do imprecise searches on this dictionary handling
 - wildcards
 - spelling mistakes