## Universidad Autónoma Metropolitana Unidad Azcapotzalco División de Ciencias Básicas e Ingeniería Licenciatura en Ingeniería en Computación

Proyecto de investigación

Algoritmo y heurística para incrustar métricas en una línea

Saúl Martínez Juárez 2113000992 Asesores de proyecto terminal

Dr. Francisco Javier Zaragoza Martínez Profesor Titular Departamento de Sistemas

Trimestre 2017 Invierno

23 de marzo de 2017

Yo, Francisco Javier Zaragoza Martínez, declaro que aprobé el contenido del presente Reporte de Proyecto de Integración y doy mi autorización para su publicación en la Biblioteca Digital, así como en el Repositorio Institucional de UAM Azcapotzalco.

Yo, Saúl Martínez Juárez, doy mi autorización a la Coordinación de Servicios de Información de la Universidad Autónoma Metropolitana, Unidad Azcapotzalco, para publicar el presente documento en la Biblioteca Digital, así como en el Repositorio Institucional de UAM Azcapotzalco.

Served My

### Resumen

En este proyecto se explora una solución para el problema de incrustación de una métrica en una línea recta, que ocupe el espacio más pequeño posible. Una métrica es una forma de representar espacios usualmente como una matriz.

La principal motivación para este trabajo es que el problema de incrustación es una constante en los ámbitos de la información hoy en día, tener virtualmente la misma información en un espacio menor es cada vez de mayor interés, un decremento dramático para el tamaño de la información como el que proponemos es valioso para cualquier aplicación tecnológica. De manera paralela se encuentra una solución para el problema del agente viajero cuando las distancias entre dos destinos son muy similares, tema que tiene gran peso en logística de transportes.

La solución determinística incluye una exploración completa aunque veloz de las soluciones en casos pequeños mientras que la solución heurística construye una solución cercana a la óptima en un tiempo razonable para todos los casos.

#### Abstract

In this project we explore a solution for the metric embedding on a straight line problem, which uses the smallest possible space. A metric is a way of representing any space, usually in a matrix.

The main motivation for this work is that the problem of embedding is quite common in the scope of information. To have virtually the same information in a smaller space (with smaller price) is increasingly interesting, a dramatic decrement in the size of information like the one we propose is valuable for any technological application. In parallel, there is a solution to the traveling salesman problem when the distances between any two vertex are very similar, topic that has big interest in transportation logistics.

The deterministic solution includes a complete, but quick exploration on small cases while the heuristic solution builds a near-optimal solution in a reasonable time for all cases.

# Índice

| 1.         | Introducción                                                                                                                                                                                                                                                                                        | 4                                        |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 2.         | Antecedentes                                                                                                                                                                                                                                                                                        | 4                                        |
| 3.         | Justificación                                                                                                                                                                                                                                                                                       | 5                                        |
| 4.         | Objetivos 4.1. Objetivo general                                                                                                                                                                                                                                                                     | <b>6</b><br>6                            |
| <b>5</b> . | Marco teórico                                                                                                                                                                                                                                                                                       | 6                                        |
| 6.         | Desarrollo del proyecto 6.1. Generación de Métricas                                                                                                                                                                                                                                                 | 8<br>8<br>8<br>10                        |
| 7.         | Resultados                                                                                                                                                                                                                                                                                          | 10                                       |
| 8.         | Análisis y discusión de resultados                                                                                                                                                                                                                                                                  | 15                                       |
| 9.         | Conclusiones                                                                                                                                                                                                                                                                                        | 19                                       |
| Bi         | ibliografía                                                                                                                                                                                                                                                                                         | 19                                       |
| 10         | 0. Apéndices                                                                                                                                                                                                                                                                                        | I                                        |
| 11         | 1.Entregables comprometidos en la propuesta                                                                                                                                                                                                                                                         | VII                                      |
| Ír         | ndice de figuras                                                                                                                                                                                                                                                                                    |                                          |
|            | 1. Gráfica original          2. Primer intento          3. Segundo intento          4. Resultado correcto          5. Algoritmo de Heap          6. Gráfica puntos-tiempo $n > 12$ 7. Gráfica puntos-tiempo $n < 1000$ 8. Gráfica puntos-distancia $n > 12$ 9. Gráfica deterministica puntos-tiempo | 7<br>7<br>7<br>9<br>16<br>16<br>17<br>17 |
|            | 11. Gráfica deterministica puntos-distancia                                                                                                                                                                                                                                                         | 18                                       |

## Índice de tablas

| 1.  | Pruebas de comparación entre algoritmo determinístico contra heurístico | i-  |
|-----|-------------------------------------------------------------------------|-----|
|     | co                                                                      | 12  |
| 2.  | Continuación de la Tabla 1                                              | 13  |
| 3.  | Pruebas de comparación entre algoritmo determinístico contra heurístico | i-  |
|     | co                                                                      | 14  |
| 4.  | Pruebas de desempeño heurístico                                         | 15  |
| 5.  | Pruebas de comportamiento para 3 puntos                                 | I   |
| 6.  | Pruebas de comportamiento para 4 puntos                                 | I   |
| 7.  | Pruebas de comportamiento para 5 puntos                                 | II  |
| 8.  | Pruebas de comportamiento para 6 puntos                                 | II  |
| 9.  | Pruebas de comportamiento para 7 puntos                                 | III |
| 10. | Pruebas de comportamiento para 8 puntos                                 | III |
| 11. | Pruebas de comportamiento para 9 puntos                                 | IV  |
| 12. | Pruebas de comportamiento para 10 puntos                                | IV  |
| 13. | Pruebas de comportamiento para 11 puntos                                | V   |
| 14. | Pruebas de comportamiento para 12 puntos                                | V   |
| 15. | Pruebas de comportamiento para $n > 12$                                 | VI  |
| 16. | Pruebas de comportamiento para $n < 1000$                               | VI  |

## 1. Introducción

El presente trabajo es acerca de la resolución de un problema planteado de manera original como la incrustación de la métrica en la línea recta. Los temas que aborda son:

- 1. Incrustación: Cuando tenemos una estructura matemática contenida en otra estructura, tal que la primera estructura conserve su congruencia aún cuando esté incrustada en la segunda estructura.
- 2. Espacio métrico: Una métrica se compone de una función para medir distancias y un arreglo de puntos, estos dos se conjuntan en una matriz de distancias entre los puntos.

La característica principal de un espacio métrico representado en una matriz es que las distancias entre los puntos son uniformes, no existen puntos que entre ellos esté demasiado distantes, ni demasiado cercanos.

La razón por la cual este trabajo fue desarrollado, es porque se cree que es un problema NP-Completo, lo que quiere decir que incluso si la parte del cálculo de las soluciones ya está hecho, nos toma mucho tiempo diferir si son o no solución del problema.

La investigación de este proyecto se realizó incluso aunque los fines profesionales pueden ser motivos mucho más lucrativos, el interés inicial fue que despierta su resolución a nivel académico, ya que el problema planteado es un subproblema del problema del agente viajero.

La estrategia fue diseñar buscando eficacia tanto en número de operaciones como en la memoria a utilizar en algoritmo determinístico y rapidez y congruencia en el algoritmo heurístico. Para esto en el algoritmo determinístico nos apoyamos en el algoritmo de Heap, bueno para producir permutaciones en el menor número de operaciones posible. Para el algoritmo heurístico buscamos con apoyo de la probabilidad, encontrar secuencialmente los puntos consecutivos.

### 2. Antecedentes

Hay algunos problemas que se asemejan o con los que comparte algunas características:

El problema de distribución de suelos es un problema que enfrenta la ingeniería industrial a maximizar la producción por unidad de suelo [8].

El problema de la administración de recursos en un fondo común cercano para evitar requerirlos de un lugar más costoso, siendo estos lo más heterogéneos posible [7].

También se parece al problema del agente viajero [6], con la diferencia de que la gráfica inicial de la que buscaremos el recorrido no está inicial ni estáticamente ponderada.

El proyecto terminal Encajes primitivos de gráficas planares exteriores [1] busca incrustar grafos en espacios (gráficas) bidimensionales. Se parece al proyecto pues logra hacerlo en un espacio reducido, acercándose al mínimo en tiempo polinomial, lo cual es un buen precedente. Se diferencia en que las gráficas son estrictamente planares y en este trabajo son métricas.

El proyecto terminal Encajes primitivos de árboles planos [2] incrusta árboles, que son un subconjunto de las gráficas, se diferencia en que dado que son árboles, no siempre hay un camino directo de un vértice a otro sino que hay una trayectoria de por medio. Esto es un caso especial de nuestro problema en el que las trayectorias son de tamaño 1.

El proyecto terminal Diseño de reglas de Golomb óptimas [3] nos ayuda mucho en el diseño de algoritmos en la fase entera, ya que hay buenos resultados en este campo y especialmente en este proyecto, pues genera una serie que podemos reutilizar. Sin embargo, en nuestro proyecto no siempre se generan reglas de Golomb, cosa que es requisito en esta referencia.

Finalmente el problema del incrustamiento con mínima distorsión [4], es el más parecido pues sólo hay que declarar que es una métrica lo que se va a incrustar.

## 3. Justificación

El interés principal del problema de incrustación radica en la compresión de datos; los archivos al ser comprimidos pueden ser transportados y almacenados a menor costo. Mientras nuestros recursos sean limitados (no infinitos) nos interesará reducir cualquier tipo de costo. En la actualidad, el trabajo de compresión es muy valorado, y con justa razón; cualquier aplicación de tecnología tiende a utilizar cada vez más información lo cual se convierte en un reto técnico.

Para almacenar métricas lo más común es guardarlas como matrices, simétricas de diagonal 0, y por consiguiente de tamaño  $\Theta(n^2)$ , donde n representa el total de puntos a representar. Este valor polinomial es el que es interesante reducir: si se incrusta la métrica en un espacio tridimensional, la métrica total termina midiendo  $\Theta(n)$ , por lo que el tamaño se redujo drásticamente. Lo mismo sucede con espacios bidimensionales y unidimensionales, como es el caso actual. Cualquier incrustación de métricas en espacios euclideanos n-dimensionales reducen la complejidad del espacio necesario para representarlas, por lo que la incrustación es necesariamente un método de compresión eficiente.

En ocasiones, métricas específicas no son las adecuadas para ciertas operaciones, por lo que es necesario traducirlas o interpretarlas hacia otra métrica, la conversión no es completamente biyectiva, por lo que tiende a tener un error, que en lenguaje de métricas se le conoce como distorsión. Para términos prácticos de compresión de los datos, esto es pérdida de información.

El producto final de este proyecto contiene especificaciones sobre el modo de manejar problemas de optimización en los que el conjunto de restricciones está incluida directamente en el producto final, que en este caso es una matriz incrustada en una línea recta.

La complejidad computacional de este problema permanece abierta, y los resultados de este proyecto pueden contribuir al estudio de los problemas NP y a su clasificación.

## 4. Objetivos

## 4.1. Objetivo general

 Diseñar, implementar y evaluar un algoritmo exacto y una heurística para el problema de incrustación de una métrica en una línea.

## 4.2. Objetivos específicos

- 1. Diseñar e implementar los algoritmos que generen métricas.
- 2. Diseñar e implementar un algoritmo exacto que resuelva el problema.
- 3. Diseñar e implementar un algoritmo heurístico que resuelva el problema.
- 4. Evaluar los resultados de ambos algoritmos.

## 5. Marco teórico

Una función  $d: X \times X \to \mathbb{R}$  es una métrica en un conjunto no vacío X si se satisfacen las siguientes condiciones para todo  $x, y, z \in X$ :

- Positividad: d(x,y) > 0; si  $x \neq y$ , y d(x,x) = 0.
- Simetría: d(x,y) = d(y,x).
- Desigualdad del triángulo:  $d(x, z) \le d(x, y) + d(y, z)$ .

A d(x, y) se le llama la distancia de x a y. Por poner dos ejemplos de métricas, si  $X = \mathbb{R}^n$  y  $x = (x_1, x_2, ..., x_n)$ ,  $y = (y_1, y_2, ..., y_n)$ , entonces la métrica euclideana se calcula como:

$$d_E(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$
 (1)

y la métrica Manhattan se calcula como:

$$d_M(x,y) = |x_1 - y_1| + |x_2 - y_2| + \dots + |x_n - y_n|.$$
(2)

Sea  $d_a$  una métrica en A y  $d_b$  una métrica en B. Entonces una función  $f: A \to B$  es una incrustación con contracción  $c_f$  y expansión  $e_f$  si para cada par de puntos  $p, q \in A$  se cumple que

$$\frac{d_a(p,q)}{c_f} \le d_b(f(p), f(q)) \le e_f \cdot d_a(p,q) \tag{3}$$

Figura 1: Gráfica original de tamaño 3.



Figura 2: La longitud total de la línea es z = 7 ( $\alpha = \frac{3+4}{2} = \frac{7}{2} = 3.5$ ).



Figura 3: La longitud total de la línea es z = 6 ( $\alpha = \frac{2+4}{3} = \frac{6}{3} =$ 2).



Figura 4: La longitud total de la línea es z = 5 ( $\alpha = \frac{3+2}{4} = \frac{5}{4} = 1.25$ )



Adicionalmente diremos que f no contrae si  $c_f \leq 1$ . Una función f que no contrae tiene distorsión  $\alpha$  si  $e_f \leq \alpha$ .

La compresión de datos es la codificación de un cuerpo de datos D en un cuerpo de datos más pequeño D'. Una parte central en la compresión es la redundancia en los datos. Sólo los datos con redundancia pueden comprimirse aplicando un método o algoritmo de compresión que elimine o remueva de alguna forma dicha redundancia. La redundancia depende del tipo de datos (texto, imágenes, sonido, etc), por tanto, no existe un método de compresión universal que pueda ser óptimo para todos los tipos de datos. La compresión puede ser sin pérdida (reversible) o con pérdida (irreversible).

La expansión de una métrica es equivalente a su distorsión, y también equivalente a una compresión con pérdida. La razón por la que vale la pena tener una distorsión, es reducir la complejidad de un espacio. Dependiendo de su uso posterior, algunos espacios son más complejos que otros.

Ejemplo: Considere la gráfica de tamaño 3 con pesos en las aristas de la figura 1, que intentamos colocar en una línea recta, en el primer intento las colocamos en orden numérico, y la longitud total es 7 (ver figura 2). Podemos mejorarlo y en el siguiente intento, la longitud es 6 (ver figura 3). Sin embargo, este resultado aún puede mejorarse al incrustar en una línea de longitud 5 (ver figura 4). Observe que en estos ejemplos, a menor longitud, también menor distorsión  $\alpha$ .

Entonces, el problema de incrustamiento de una métrica en una línea con distorsión mínima es un problema de optimización en el que incrustamos una métrica en una línea recta con el menor espacio posible.

En este trabajo se implementará un método exacto y un método heurístico para resolver el problema de incrustación de una métrica en una línea con la menor longitud posible.

## 6. Desarrollo del proyecto

El desarrollo de este proyecto quedó dividido en tres partes:

- Generación de Métricas: Se utilizó una clase punto, en la que declaramos e implementamos el concepto de Punto, cada punto vive dentro de un espacio d-dimensional ( $d \in [2, 10]$ ). Generamos puntos y tomamos sus coordenadas para luego generar una matriz que registre las distancias entre ellos.
- Algoritmo determinístico: Se utilizan varias técnicas tanto en el proceso como en el código final, todas con la misma estrategia de acción: generar una permutación, y compararla con respecto a las anteriores, determinar luego si era necesario recordarla o no.
- Algoritmo heurístico: Se utilizó principalmente la idea de un algoritmo glotón, que navega por el espacio de soluciones de manera que su solución mejora con cada paso que da.

### 6.1. Generación de Métricas

Tenemos tres generadores en los que a partir de la clase Punto podemos generar arreglos de puntos con la función generaPuntos(int, int, short) y calcular las distancias entre ellos: el generador euclideano genEuclideano(int, int, int) calcula la distancia con base en la distancia euclideana (1); el generador manhattan genManhattan(int, int, int) calcula la distancia con base en la distancia manhattan (2); y el generador gráfico, genGrafico(int, int) que sin la generación de puntos genera sólo distancias para luego con la función floydWarshall(int, int\*\*) seleccionar únicamente las distancias menores de un punto a otro.

#### 6.2. Solución determinística

El algoritmo determinístico pasó por diferentes etapas antes de alcanzar su estado actual. Al principio para tener un mayor dominio del proceso de búsqueda de soluciones, se calculaban secuencialmente dependiendo de un número en el que estaban ordenadas y al final tenemos una solución que explora las soluciones posibles, mientras va evaluando su valor parcialmente, incrustando en el proceso de la búsqueda el cálculo y evitando volver a visitar las soluciones.

El algoritmo final consta de 5 funciones:

Figura 5: Pseudocódigo que ilustra el funcionamiento del algoritmo de Heap.

```
\begin{array}{l} procedimiento\ genera(n\ :\ entero\ ,\ A\ :\ Arreglo\ de\ algo)\colon\\ si\ n=1\ entonces\\ imprime(A)\\ si\ no\\ para\ i\ :=\ 0;\ i\ <\ n-1;\ i\ +=\ 1:\\ genera(n-1,\ A)\\ si\ n\ es\ par\ entonces\\ swap(A[i],\ A[n-1])\\ si\ no\\ swap(A[0],\ A[n-1])\\ termina\ si\\ termina\ para\\ genera(n-1,\ A)\\ termina\ si\\ \end{array}
```

- calcSol(short, int\*, int \* \*): Sirve para evaluar una solución dada en un vector con el orden de los puntos, requiere la longitud del vector, un vector y una matriz donde se encuentran las distancias.
- evaluaMinimal(short, int \*\*): Es una función preparatoria para empezar el proceso de permutación.
- evenPermute(int, int, int\*, int\*, int): evenPermute es la rama de la solución que utilizamos cuando el número del procedimiento hacia la permutación que tenemos es un número par, dado que un número par nunca sera 1, esta rama siempre será no terminal, y nos llevará a un número impar luego de hacer la suma acumulada correspondiente.
- oddPermute(int, int, int\*, int\*, int): oddPermute es la rama de la solución que utilizamos cuando el número que tenemos es un número impar, en cuanto el número sea 1, procedemos a terminar la suma acumulada.
- permute(int, int, int\*, int \*\*): minimalPermute es un método que permite, mediante el uso del algoritmo de Heap como estructura, incrustar las operaciones de suma acumulada que necesitamos en el proyecto.

El algoritmo de Heap es un algoritmo recursivo que empieza con una variable contador en 0 y repetimos hasta que sea igual a N y mientras avanzamos, invocamos las (N-1) permutaciones que tienen el último elemento en común. El siguiente pseudocódigo ejemplifica la dinámica del contador y la decisión sobre si el número es par o impar:

#### 6.3. Solución heurística

En la solución heurística requerimos tener conocimiento de cual aproximadamente es el siguiente mejor punto a escoger. Por lo que sumamos los valores de todas las filas (o columnas) y los comparamos entre sí, de modo que el que tenga el menor valor inmediatamente tiene si no al valor más pequeño, a la suma de dos bastante pequeños. Luego restamos aquellos valores que ya hemos tomado en cuenta para seguir comparando a los demás y encontrar los puntos siguientes.

La solución heurística para el problema consta de 7 funciones:

- copia(int, int\*\*): A diferencia del algoritmo determinístico, en esta solución se requiere editar la matriz de distancias, por lo que hacemos una copia de seguridad y cambiamos los valores de la matriz, cambiando el objetivo de minimizar por maximizar de modo que los valores de cero en posiciones de la diagonal no afecten al desarrollo sin hacer comparaciones extra.
- suma(int, int\*\*): Genera la N columna de la matriz A, siendo esta la suma de la fila correspondiente.
- compara(int, pair < int, int >, int \*\*): Comparamos todos los valores de la columna de las sumas, y habiendo encontrado el mayor, comparamos los valores de la fila escogida, escogido el mayor tenemos ahora un par de puntos que nos indican las coordenadas en la matriz del valor mínimo.
- aparta(int, int \*\*, pair < int, int >, pair < int, int >): Ya que hemos elegido el valor mínimo que necesitamos, hacemos cero los valores que no deben seguir en las comparaciones, anulamos los valores que cierren la permutación, y los intermedios que ya no pueden ser escogidos.
- compara\_primera(int, int\*\*): Es el caso independiente de la función compara
  para la primera iteración, donde no tenemos en cuenta ninguna comparación
  anterior.
- aparta\_primera(int, int \* \*, pair < int, int >): Es el caso independiente de la función aparta para la primera iteración, donde no tenemos en cuenta ninguna comparación anterior y el número de anulaciones es mínimo.
- gloton(int, int \* \*): Es la función que engloba todas las demás, contiene la inicialización y la pauta de las iteraciones sobre compara y aparta.

### 7. Resultados

Para la solución determinística tenemos que dado que el algoritmo recorre todas las soluciones, el número de operaciones para recorrer es n!, mientras que en la suma, las operaciones son 4 veces esa cantidad menos cuatro veces (dos accesos, la suma entre ellos y la suma acumulada) que ya tenemos el resultado y

sólo es comparar  $4 \cdot n! - 4$ . Esto nos lleva a un total de 5n! - 4 operaciones. En el peor de los casos (n = 15) el número de operaciones a realizar es  $6.53837184 \cdot 10^{12}$  que tarda menos de 18 horas en terminar.

Para la solución heurística ocupamos las siguientes operaciones:

- copia: Necesitamos de  $1 + 3n + 3n^2$  operaciones.
- $suma: 2n + 3n^2$  operaciones.
- compara: 3n + 12 operaciones.
- aparta: 6n + 4 operaciones.
- $compara\_primera$ : 6n + 9 operaciones.
- aparta\_primera: 4 operaciones.

Efectuando la suma de todas las operaciones anteriores, queda un total de  $15n^2 + 20n - 18$  operaciones, tomamos únicamente la parte cuadrática y ahora las operaciones son  $15n^2$ , de orden  $\theta(n^2)$ . Y para el peor de los casos en el que n = 1000 tenemos que el número de operaciones total es de 15000000, cifra pequeña comparada con la cantidad a la que se pudiera llegar en en algoritmo determinístico.

Como resultados, presentamos 70 valores de pruebas con puntos n=12, dimensiones d=10, rango de valores l=100 y métrica euclideana.

Para las Tablas 1, 2 y las tablas que siguen podemos ver algunas de las siguientes 8 columnas:

- min: La distancia mínima global, encontrada por el algoritmo determinístico.
- $t_D$ : El tiempo en milisegundos que tarda el algoritmo determinístico en encontrar min. Cabe mencionar que para el código que se encuentra en los entregables de donde obtenemos estos resultados, utilizamos la función clock() de la biblioteca time.h que regresa ticks, por lo que había que hacer una conversión dividiendo el resultado arrojado entre  $TICKS\_PER\_SECOND$  que en la computadora usada para la evaluación era igual a 1000000. Por lo que un ticks equivale a  $1\mu s$ , y 1000ticks a 1ms que es la unidad de medida de tiempo que utilizamos.
- $min_H$ : La distancia mínima encontrada por el algoritmo heurístico.
- $t_H$ : El tiempo en milisegundos que tarda el algoritmo heurístico en encontrar  $min_H$ .
- $\epsilon$ : El error empírico, la diferencia entre  $min_H$  y min.
- $\epsilon_{\%}$ : El error porcentual tomado de dividir  $\epsilon$  entre min.

- $\blacksquare \ t_A\%$ : Tiempo ahorrado, producto de dividir  $t_D$ menos  $t_H,$ entre  $t_D$
- $\bullet \ n$ : El número de puntos que conforman la métrica evaluada.

Tabla 1: Pruebas de comparación entre algoritmo determinístico contra heurístico.

| ·    | 1         |         | <u>,</u> |            |                 | 1         |
|------|-----------|---------|----------|------------|-----------------|-----------|
| min  | $t_D$     | $min_H$ | $t_H$    | $\epsilon$ | $\epsilon_{\%}$ | $t_A\%$   |
| 908  | 26201.107 | 947     | 0.018    | 39         | 4.118270        | 99.991050 |
| 1054 | 26406.950 | 1136    | 0.020    | 82         | 7.218310        | 99.999924 |
| 1106 | 26528.356 | 1139    | 0.021    | 33         | 2.897280        | 99.999921 |
| 1050 | 26398.966 | 1114    | 0.023    | 64         | 5.745060        | 99.999913 |
| 1050 | 26468.729 | 1101    | 0.021    | 51         | 4.632150        | 99.999921 |
| 1051 | 26356.467 | 1103    | 0.019    | 52         | 4.714420        | 99.999928 |
| 1076 | 26390.431 | 1147    | 0.028    | 71         | 6.190060        | 99.999894 |
| 1041 | 26398.110 | 1139    | 0.024    | 98         | 8.604040        | 99.999909 |
| 931  | 27291.115 | 956     | 0.021    | 25         | 2.615060        | 99.999923 |
| 990  | 26813.083 | 1020    | 0.021    | 30         | 2.941180        | 99.999922 |
| 1009 | 26512.312 | 1026    | 0.027    | 17         | 1.656920        | 99.999898 |
| 1075 | 26497.678 | 1120    | 0.021    | 45         | 4.017860        | 99.999921 |
| 1291 | 26528.611 | 1349    | 0.022    | 58         | 4.299480        | 99.999917 |
| 981  | 26473.864 | 1013    | 0.021    | 32         | 3.158930        | 99.999921 |
| 1123 | 26434.045 | 1152    | 0.019    | 29         | 2.517360        | 99.999928 |
| 1006 | 25926.410 | 1050    | 0.019    | 44         | 4.190480        | 99.999927 |
| 1068 | 26555.939 | 1171    | 0.019    | 103        | 8.795900        | 99.999928 |
| 958  | 26128.766 | 1015    | 0.020    | 57         | 5.615760        | 99.999923 |
| 1078 | 26131.564 | 1126    | 0.022    | 48         | 4.262880        | 99.999916 |
| 1063 | 26212.811 | 1095    | 0.018    | 32         | 2.922370        | 99.999931 |
| 1060 | 25989.989 | 1115    | 0.020    | 55         | 4.932740        | 99.999923 |
| 1011 | 26247.894 | 1055    | 0.020    | 44         | 4.170620        | 99.999924 |
| 1071 | 26297.095 | 1133    | 0.020    | 62         | 5.472200        | 99.999924 |
| 1031 | 26171.812 | 1060    | 0.025    | 29         | 2.735850        | 99.999904 |
| 1160 | 26326.245 | 1224    | 0.022    | 64         | 5.228760        | 99.999916 |
| 999  | 26302.620 | 1054    | 0.021    | 55         | 5.218220        | 99.999920 |
| 1061 | 26237.790 | 1106    | 0.020    | 45         | 4.068720        | 99.999924 |
| 916  | 26161.955 | 1033    | 0.019    | 117        | 11.326200       | 99.999927 |
| 973  | 26926.302 | 1044    | 0.020    | 71         | 6.800770        | 99.999926 |
| 1059 | 26190.008 | 1114    | 0.021    | 55         | 4.937160        | 99.999920 |
| 1026 | 26373.266 | 1118    | 0.019    | 92         | 8.228980        | 99.999928 |
| 1036 | 26170.959 | 1073    | 0.019    | 37         | 3.448280        | 99.999927 |
| 1061 | 26201.441 | 1121    | 0.019    | 60         | 5.352360        | 99.999927 |
| 1174 | 26326.411 | 1218    | 0.020    | 44         | 3.612480        | 99.999924 |
| 1032 | 26136.981 | 1133    | 0.018    | 101        | 8.914390        | 99.999931 |
|      |           |         |          |            | - 1             |           |

† .

Tabla 2: Continuación de la Tabla 1.

| Tabla 2. Committation to la Tabla 1. |           |         |       |            |                 |           |  |  |
|--------------------------------------|-----------|---------|-------|------------|-----------------|-----------|--|--|
| min                                  | $t_D$     | $min_H$ | $t_H$ | $\epsilon$ | $\epsilon_{\%}$ | $t_{A\%}$ |  |  |
| 908                                  | 26197.016 | 947     | 0.019 | 39         | 4.118270        | 99.999927 |  |  |
| 1054                                 | 25840.734 | 1136    | 0.018 | 82         | 7.218310        | 99.999930 |  |  |
| 1106                                 | 26184.798 | 1139    | 0.018 | 33         | 2.897280        | 99.999931 |  |  |
| 1050                                 | 26235.115 | 1114    | 0.018 | 64         | 5.745060        | 99.999931 |  |  |
| 1050                                 | 26307.467 | 1101    | 0.027 | 51         | 4.632150        | 99.999897 |  |  |
| 1051                                 | 26316.716 | 1103    | 0.019 | 52         | 4.714420        | 99.999928 |  |  |
| 1076                                 | 26279.884 | 1147    | 0.019 | 71         | 6.190060        | 99.999928 |  |  |
| 1041                                 | 26282.789 | 1139    | 0.020 | 98         | 8.604040        | 99.999924 |  |  |
| 931                                  | 26263.607 | 956     | 0.019 | 25         | 2.615060        | 99.999928 |  |  |
| 990                                  | 26200.653 | 1020    | 0.020 | 30         | 2.941180        | 99.999924 |  |  |
| 1009                                 | 26212.855 | 1026    | 0.019 | 17         | 1.656920        | 99.999928 |  |  |
| 1075                                 | 25907.503 | 1120    | 0.019 | 45         | 4.017860        | 99.999927 |  |  |
| 1291                                 | 26166.378 | 1349    | 0.019 | 58         | 4.299480        | 99.999927 |  |  |
| 981                                  | 26243.127 | 1013    | 0.018 | 32         | 3.158930        | 99.999931 |  |  |
| 1123                                 | 27790.315 | 1152    | 0.019 | 29         | 2.517360        | 99.999932 |  |  |
| 1006                                 | 26296.059 | 1050    | 0.022 | 44         | 4.190480        | 99.999916 |  |  |
| 1068                                 | 26154.375 | 1171    | 0.019 | 103        | 8.795900        | 99.999927 |  |  |
| 958                                  | 26161.978 | 1015    | 0.021 | 57         | 5.615760        | 99.999920 |  |  |
| 1078                                 | 25868.246 | 1126    | 0.024 | 48         | 4.262880        | 99.999907 |  |  |
| 1063                                 | 26226.243 | 1095    | 0.018 | 32         | 2.922370        | 99.999931 |  |  |
| 1060                                 | 26322.103 | 1115    | 0.021 | 55         | 4.932740        | 99.999920 |  |  |
| 1011                                 | 26500.573 | 1055    | 0.023 | 44         | 4.170620        | 99.999913 |  |  |
| 1071                                 | 26347.304 | 1133    | 0.021 | 62         | 5.472200        | 99.999920 |  |  |
| 1031                                 | 26369.075 | 1060    | 0.023 | 29         | 2.735850        | 99.999913 |  |  |
| 1160                                 | 26267.478 | 1224    | 0.019 | 64         | 5.228760        | 99.999928 |  |  |
| 999                                  | 26216.909 | 1054    | 0.018 | 55         | 5.218220        | 99.999931 |  |  |
| 1061                                 | 25827.836 | 1106    | 0.019 | 45         | 4.068720        | 99.999926 |  |  |
| 916                                  | 26121.311 | 1033    | 0.018 | 117        | 11.326200       | 99.999931 |  |  |
| 973                                  | 26147.78  | 1044    | 0.019 | 71         | 6.800770        | 99.999927 |  |  |
| 1059                                 | 26180.339 | 1114    | 0.019 | 55         | 4.937160        | 99.999927 |  |  |
| 1026                                 | 26195.457 | 1118    | 0.021 | 92         | 8.228980        | 99.999920 |  |  |
| 1036                                 | 26306.031 | 1073    | 0.019 | 37         | 3.448280        | 99.999928 |  |  |
| 1061                                 | 26482.994 | 1121    | 0.019 | 60         | 5.352360        | 99.999928 |  |  |
| 1174                                 | 26162.097 | 1218    | 0.019 | 44         | 3.612480        | 99.999927 |  |  |
| 1032                                 | 26228.709 | 1133    | 0.024 | 101        | 8.914390        | 99.999908 |  |  |
|                                      |           |         |       |            |                 |           |  |  |

 $<sup>^\</sup>dagger$  En estas obervaciones El promedio del error porcentual es 5.233394 %, el error mínimo porcentual es de 0.999092 % mientras que el máximo alcanza 11.3262 %, sin embargo puede ocurrir que el error sea igual a cero.

Otra muestra de resultados los tenemos en la Tabla 3, que arroja medidas sobre la evolución con respecto al número de puntos, para poder comparar la progresión de los tiempos, de las soluciones, del error, error porcentual y de la varianza.

Tabla 3: Pruebas de comparación entre algoritmo determinístico contra heurístico.

| n  | min    | $t_D$      | $min_H$ | $t_H$ | $\epsilon$ | $\epsilon_{\%}$ | $\Delta_t$ |
|----|--------|------------|---------|-------|------------|-----------------|------------|
| 3  | 226.4  | 12.1       | 226.4   | 7.9   | 0          | 0               | 4.398106   |
| 4  | 328.8  | 13.6       | 343.4   | 8.3   | 14.6       | 4.102831        | 0.295275   |
| 5  | 424.1  | 19.4       | 461.9   | 9.2   | 37.8       | 7.999095        | 3.600989   |
| 6  | 521.7  | 55.3       | 544.9   | 10.2  | 23.2       | 4.055595        | 0.342511   |
| 7  | 613.1  | 296.3      | 636.3   | 10.7  | 23.2       | 3.644673        | 0.753433   |
| 8  | 716.7  | 2254.2     | 743.4   | 12.2  | 26.7       | 3.541959        | 0.856146   |
| 9  | 820.7  | 20085.8    | 869.5   | 16.3  | 48.8       | 5.603017        | 1.204911   |
| 10 | 903.2  | 200308.9   | 944.4   | 15.7  | 41.2       | 4.299304        | 0.098802   |
| 11 | 966.4  | 2205748    | 1020.7  | 17.4  | 54.3       | 5.278352        | 0.880246   |
| 12 | 1048.5 | 26597991.2 | 1109    | 30.5  | 60.5       | 5.456231        | 1.058125   |

 $<sup>^\</sup>dagger$  Esta tabla es un producto derivado, promedia los valores de las tablas que se encuentran en el Apéndice A. Tenemos un promedio de error porcentual de 4.398105 %.

En la Tabla 4 observamos el comportamiento de los tiempos y distancias mínimas encontradas en la heurística para n>12. No hay datos de la prueba determinística en estos casos pues se tardaría demasiado, el último caso efectuado con el algoritmo determinístico arrojó el resultado después de casi 18 horas para n=15.

Tabla 4: Pruebas de desempeño heurístico.

| n    | min     | $t_D$   |
|------|---------|---------|
| 15   | 1340.3  | 42.7    |
| 20   | 1894.3  | 44.3    |
| 25   | 2290.3  | 59.7    |
| 30   | 2684.7  | 64.0    |
| 35   | 3013    | 88.3    |
| 40   | 3528    | 100.3   |
| 45   | 3792    | 117.3   |
| 50   | 4066.7  | 137     |
| 100  | 7759.7  | 436.7   |
| 200  | 14203   | 1688    |
| 300  | 20436   | 3718    |
| 400  | 26357.3 | 6259.3  |
| 500  | 32063   | 9759.7  |
| 600  | 37732.7 | 14647.7 |
| 700  | 42861   | 20033   |
| 800  | 48285   | 26611   |
| 900  | 52907.3 | 34490.3 |
| 1000 | 58648.3 | 44246   |

<sup>†</sup> Esta tabla es un producto derivado, promedia los valores de las tablas que se encuentran en el Apéndice B.

Por último verificamos los datos para la solución determinística en la Figura 10 y la Figura 11 con los tiempos en los que se ejecuta la solución determinística y el valor mínimo de la distancia encontrado.

## 8. Análisis y discusión de resultados

Podemos observar de los resultados en las Tablas 1 y 2 que aunque las cifras en cuanto a minimización de la distancia objetivo sean relativamente similares, los tiempos cambian mucho, mientras que el error se mantiene cerca del 5 % aproximadamente. El error mínimo porcentual es del 1 % aproximadamente mientras que el máximo se encuentra por el 11 %.

En la Tabla 3 podemos observar la evolución de las pruebas conforme aumentamos el número de puntos a evaluar, evidentemente el valor a optimizar crece, el tiempo en el algoritmo determinístico crece con mucha rapidez, conforme a su orden factorial; el tiempo en el algoritmo heurístico también crece pero es menor, pareciese constante pero de igual modo es polinomial. El error y el error porcen-

Figura 6: Gráfica de puntos contra tiempo para n>12. Relación entre número de puntos y tiempo en el que resuelve.



Figura 7: Gráfica de puntos contra tiempo para n muy grandes. Relación entre número de puntos y tiempo en el que resuelve.



Figura 8: Gráfica de puntos contra distancia para n>12. Relación entre número de puntos y distancia mínima encontrada.



Figura 9: Gráfica de puntos contra distancia para n muy grandes. Relación entre número de puntos y distancia mínima encontrada.



tual parecen no tener una tasa de cambio fija, incluso el promedio del error y error porcentual son congruentes con los datos anteriores, por lo que podríamos pensar que el error se comporta de la misma manera aunque el número de puntos sea mayor.

En la Figura 10 podemos verificar que el tiempo necesario para determinar la solución óptima es mayor que polinomial, mientras que en la Figura 11 notamos el parecido con las soluciones heurísticas en las que además en la pendiente notamos apenas diferencia con las pruebas heurísticas.

Figura 10: Gráfica de puntos contra tiempo para n<12. Relación entre número de puntos y tiempo en el que resuelve.



Figura 11: Gráfica de puntos contra distancia para n pequeñas. Relación entre número de puntos y distancia mínima.



Por último en la Tabla 4 encontramos una sucesión de promedios en los que podemos notar el crecimiento lineal en el valor mínimo y uno caudrático en el tiempo, lo cual es congruente con el orden de complejidad de ambos procedimientos. Estos comportamientos los podemos observar mejor en las Figuras 6, 7, 8 y 9.

## 9. Conclusiones

Los resultados son muy buenos, el número de operaciones en la solución determinística son del orden de  $\theta(n!)$ , mientras que en la solución heurística el orden es de  $\theta(n^2)$ .

El error porcentual es también bajo, tiene un promedio cercano al 5% y la varianza ronda los 1.5% por lo que ofrecemos una solución bastante rápida y cercana a los valores óptimos.

## Referencias

- [1] J.A. Pérez Arcos, "Encajes primitivos de gráficas planares exteriores", proyecto terminal, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana Azcapotzalco, México, 2014.
- [2] C. D. Alfaro Quintero, "Encajes primitivos de árboles planos", proyecto terminal, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana Azcapotzalco, México, 2013.
- [3] J. J. Santana González, "Diseño de reglas de Golomb óptimas", proyecto terminal, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana Azcapotzalco, México, 2014.
- [4] Fedor V. Fomin, Daniel Lokshtanov and Saket Saurabh, "An Exact Algorithm for Minimum Distortion Embedding", Theoretical Computer Science, vol. 412, no. 29, pp 3530-3536, 2011.
- [5] Piotr Indyk, "Algorithmic Applications of Low-distortion Geometric Embeddings", FOCS IEEE, p. 40, 2001.
- [6] Ríos, R. González, J. "Investigación de operaciones en acción: Heurísticas para la solución del Problema del Agente Viajero". Ingenierías, vol. 3, p. 9, 2000.
- [7] Audet, Charles, "Pooling problem: Alternate formulations and solution methods". Management science, vol. 50, no 6, p. 761-776, 2004
- [8] Huchete, Joey; Dey, Santanu S.; Vielma, Juan Pablo. "Beating the SDP bound for the floor layout problem", arXiv preprint arXiv:1602.07802, 2016.

- [9] D. Salomon, "David. A guide to data compression methods", Springer Science & Business Media, 2013.
- [10] Fowler, E. James, R. Yagel, "Lossless compression of volume data", ACM, p. 43-50.

## 10. Apéndices

## Apéndice A: Pruebas de desempeño

Tabla 5: Pruebas de comportamiento para 3 puntos.

| min | $t_D$ | $min_H$ | $t_H$ | $\epsilon$ | $\epsilon_{\%}$ |
|-----|-------|---------|-------|------------|-----------------|
| 283 | 10    | 283     | 8     | 0          | 0               |
| 231 | 13    | 231     | 8     | 0          | 0               |
| 251 | 12    | 251     | 8     | 0          | 0               |
| 211 | 12    | 211     | 8     | 0          | 0               |
| 246 | 13    | 246     | 7     | 0          | 0               |
| 164 | 11    | 164     | 7     | 0          | 0               |
| 226 | 11    | 226     | 8     | 0          | 0               |
| 209 | 15    | 209     | 11    | 0          | 0               |
| 230 | 12    | 230     | 7     | 0          | 0               |
| 213 | 12    | 213     | 7     | 0          | 0               |

Tabla 6: Pruebas de comportamiento para 4 puntos.

| min | $t_D$ | $min_H$ | $t_H$ | $\epsilon$ | $\epsilon_{\%}$ |
|-----|-------|---------|-------|------------|-----------------|
| 281 | 12    | 281     | 8     | 0          | 0               |
| 321 | 13    | 354     | 8     | 33         | 9.32203         |
| 343 | 13    | 350     | 9     | 7          | 2               |
| 324 | 14    | 340     | 10    | 16         | 4.70588         |
| 306 | 15    | 331     | 9     | 25         | 7.55287         |
| 342 | 15    | 342     | 8     | 0          | 0               |
| 306 | 12    | 306     | 7     | 0          | 0               |
| 385 | 13    | 399     | 8     | 14         | 3.50877         |
| 342 | 13    | 370     | 8     | 28         | 7.56757         |
| 338 | 16    | 361     | 8     | 23         | 6.37119         |

†

Tabla 7: Pruebas de comportamiento para  $5\,$ puntos.

| min | $t_D$ | $min_H$ | $t_H$ | $\epsilon$ | $\epsilon_{\%}$ |
|-----|-------|---------|-------|------------|-----------------|
| 456 | 18    | 490     | 10    | 34         | 6.93878         |
| 431 | 18    | 481     | 10    | 50         | 10.395          |
| 434 | 22    | 434     | 8     | 0          | 0               |
| 483 | 18    | 512     | 9     | 29         | 5.66406         |
| 401 | 19    | 451     | 9     | 50         | 11.0865         |
| 436 | 21    | 462     | 9     | 26         | 5.62771         |
| 410 | 18    | 410     | 9     | 0          | 0               |
| 369 | 21    | 406     | 9     | 37         | 9.1133          |
| 401 | 20    | 469     | 9     | 68         | 14.4989         |
| 420 | 19    | 504     | 10    | 84         | 16.6667         |

† . Tabla 8: Pruebas de comportamiento para 6 puntos.

| min | $t_D$ | $min_H$ | $t_H$ | $\epsilon$ | $\epsilon_{\%}$ |
|-----|-------|---------|-------|------------|-----------------|
| 513 | 54    | 513     | 10    | 0          | 0               |
| 505 | 52    | 506     | 9     | 1          | 0.197628        |
| 471 | 67    | 471     | 10    | 0          | 0               |
| 556 | 50    | 625     | 10    | 69         | 11.04           |
| 623 | 58    | 655     | 10    | 32         | 4.8855          |
| 477 | 51    | 526     | 10    | 49         | 9.31559         |
| 477 | 54    | 538     | 10    | 61         | 11.3383         |
| 522 | 59    | 534     | 10    | 12         | 2.24719         |
| 482 | 52    | 487     | 12    | 5          | 1.02669         |
| 591 | 56    | 594     | 11    | 3          | 0.50505         |

Tabla 9: Pruebas de comportamiento para 7 puntos.

| min | $t_D$ | $min_H$ | $t_H$ | $\epsilon$ | $\epsilon_{\%}$ |
|-----|-------|---------|-------|------------|-----------------|
| 637 | 295   | 637     | 11    | 0          | 0               |
| 608 | 293   | 636     | 10    | 28         | 4.40252         |
| 557 | 292   | 594     | 12    | 37         | 6.22896         |
| 657 | 290   | 671     | 10    | 14         | 2.08644         |
| 620 | 293   | 651     | 10    | 31         | 4.7619          |
| 635 | 296   | 658     | 11    | 23         | 3.49544         |
| 584 | 331   | 639     | 11    | 55         | 8.6072          |
| 618 | 289   | 618     | 11    | 0          | 0               |
| 618 | 291   | 618     | 11    | 0          | 0               |
| 597 | 293   | 641     | 10    | 44         | 6.86427         |

 $^{\dagger}$ . Tabla 10: Pruebas de comportamiento para 8 puntos.

| min | $t_D$ | $min_H$ | $t_H$ | $\epsilon$ | $\epsilon_{\%}$ |
|-----|-------|---------|-------|------------|-----------------|
| 748 | 2246  | 777     | 11    | 29         | 3.7323          |
| 742 | 2265  | 822     | 13    | 80         | 9.73236         |
| 764 | 2264  | 766     | 12    | 2          | 0.261097        |
| 764 | 2247  | 766     | 12    | 2          | 0.261097        |
| 668 | 2256  | 678     | 13    | 10         | 1.47493         |
| 752 | 2264  | 786     | 12    | 34         | 4.3257          |
| 669 | 2256  | 713     | 12    | 44         | 6.17111         |
| 639 | 2253  | 678     | 12    | 39         | 5.75221         |
| 701 | 2244  | 728     | 13    | 27         | 3.70879         |
| 720 | 2247  | 720     | 12    | 0          | 0               |

Tabla 11: Pruebas de comportamiento para  $9\,$ puntos.

| min | $t_D$ | $min_H$ | $t_H$ | $\epsilon$ | $\epsilon_{\%}$ |
|-----|-------|---------|-------|------------|-----------------|
| 842 | 20036 | 880     | 16    | 38         | 4.31818         |
| 779 | 20001 | 836     | 24    | 57         | 6.81818         |
| 835 | 20078 | 894     | 15    | 59         | 6.59955         |
| 893 | 20156 | 941     | 14    | 48         | 5.10096         |
| 852 | 20098 | 901     | 15    | 49         | 5.4384          |
| 751 | 20142 | 814     | 17    | 63         | 7.73956         |
| 804 | 20104 | 844     | 15    | 40         | 4.73934         |
| 779 | 20075 | 803     | 16    | 24         | 2.98879         |
| 840 | 20099 | 909     | 16    | 69         | 7.59076         |
| 832 | 20069 | 873     | 15    | 41         | 4.69645         |

 $^{\dagger}$ . Tabla 12: Pruebas de comportamiento para 10 puntos.

| min  | $t_D$  | $min_H$ | $t_H$ | $\epsilon$ | $\epsilon_{\%}$ |
|------|--------|---------|-------|------------|-----------------|
| 836  | 200587 | 917     | 16    | 81         | 8.83315         |
| 980  | 202213 | 1013    | 15    | 33         | 3.25765         |
| 825  | 200480 | 825     | 16    | 0          | 0               |
| 950  | 200255 | 1032    | 16    | 82         | 7.94574         |
| 830  | 199146 | 887     | 16    | 57         | 6.42616         |
| 898  | 199156 | 982     | 15    | 84         | 8.55397         |
| 943  | 199626 | 961     | 15    | 18         | 1.87305         |
| 874  | 200226 | 893     | 16    | 19         | 2.12766         |
| 1052 | 200852 | 1071    | 16    | 19         | 1.77404         |
| 844  | 200548 | 863     | 16    | 19         | 2.20162         |

Tabla 13: Pruebas de comportamiento para 11 puntos.

| min  | $t_D$   | $min_H$ | $t_H$ | $\epsilon$ | $\epsilon_{\%}$ |
|------|---------|---------|-------|------------|-----------------|
| 961  | 2257244 | 974     | 17    | 13         | 1.3347          |
| 1004 | 2206139 | 1083    | 17    | 79         | 7.29455         |
| 861  | 2192925 | 909     | 16    | 48         | 5.28053         |
| 985  | 2190543 | 1020    | 17    | 35         | 3.43137         |
| 927  | 2205134 | 957     | 17    | 30         | 3.1348          |
| 962  | 2201447 | 1048    | 19    | 86         | 8.20611         |
| 920  | 2205176 | 1016    | 16    | 96         | 9.44882         |
| 1004 | 2204130 | 1067    | 18    | 63         | 5.9044          |
| 1048 | 2191204 | 1088    | 16    | 40         | 3.67647         |
| 992  | 2203538 | 1045    | 21    | 53         | 5.07177         |

 $^{\dagger}$ . Tabla 14: Pruebas de comportamiento para 12 puntos.

| min  | $t_D$    | $min_H$ | $t_H$ | $\epsilon$ | $\epsilon_{\%}$ |
|------|----------|---------|-------|------------|-----------------|
| 1112 | 26382161 | 1143    | 27    | 31         | 2.71216         |
| 1043 | 27490306 | 1099    | 38    | 56         | 5.09554         |
| 1020 | 26463627 | 1053    | 27    | 33         | 3.1339          |
| 1096 | 26464607 | 1138    | 30    | 42         | 3.69069         |
| 1043 | 26451406 | 1109    | 31    | 66         | 5.95131         |
| 1035 | 26393669 | 1107    | 37    | 72         | 6.50407         |
| 1011 | 26582212 | 1094    | 32    | 83         | 7.58684         |
| 1084 | 26499446 | 1168    | 32    | 84         | 7.19178         |
| 990  | 26713292 | 1082    | 25    | 92         | 8.50277         |
| 1051 | 26539186 | 1097    | 26    | 46         | 4.19325         |

† .

## Apéndice B: Pruebas heurísticas

Tabla 15: Pruebas de comporta<br/>- Tabla 16: Pruebas de comportamiento para n>12. miento para n<1000.

| P        |          |         | miento pere // Croot |       |       |  |
|----------|----------|---------|----------------------|-------|-------|--|
| n        | min      | $ t_D $ | n                    | min   | $t_D$ |  |
| $15_1$   | 1318     | 58      | $100_{1}$            | 7745  | 436   |  |
| $15_2$   | 1295     | 35      | $100_{2}$            | 7857  | 428   |  |
| $15_{3}$ | 1408     | 35      | $100_{3}$            | 7677  | 446   |  |
| $20_{1}$ | 1841     | 44      | $200_{1}$            | 14126 | 1678  |  |
| $20_{2}$ | 1979     | 44      | $200_{2}$            | 13927 | 1722  |  |
| $20_{3}$ | 1863     | 45      | $200_{3}$            | 14556 | 1664  |  |
| $25_{1}$ | 2323     | 62      | $300_{1}$            | 20359 | 3638  |  |
| $25_2$   | 2248     | 58      | $300_{2}$            | 20446 | 3740  |  |
| $25_{3}$ | 2300     | 59      | $300_{3}$            | 20503 | 3776  |  |
| $30_{1}$ | 2697     | 64      | $400_{1}$            | 26341 | 6276  |  |
| $30_{2}$ | 2785     | 63      | $400_{2}$            | 26648 | 6265  |  |
| $30_{3}$ | 2572     | 65      | $400_{3}$            | 26083 | 6237  |  |
| $35_{1}$ | 3009     | 83      | $500_1$              | 32132 | 9885  |  |
| $35_{2}$ | 2984     | 102     | $500_{2}$            | 32450 | 9757  |  |
| $35_{3}$ | 3046     | 80      | $500_{3}$            | 31607 | 9637  |  |
| $40_1$   | 3346     | 99      | $600_1$              | 37762 | 14557 |  |
| $40_{2}$ | 3703     | 99      | $600_{2}$            | 37891 | 14813 |  |
| $40_{3}$ | 3535     | 103     | $600_{3}$            | 37545 | 14573 |  |
| $45_1$   | 3859     | 117     | $700_{1}$            | 42720 | 19778 |  |
| $45_{2}$ | 3838     | 116     | $700_{2}$            | 42509 | 20734 |  |
| $45_{3}$ | 3679     | 119     | $700_{3}$            | 43354 | 19587 |  |
| $50_1$   | 3951     | 139     | 8001                 | 48458 | 26526 |  |
| $50_{2}$ | 4145     | 135     | 8002                 | 48356 | 26544 |  |
| $50_{3}$ | 4104     | 137     | 8003                 | 48041 | 26763 |  |
| † .      | <u> </u> |         | $900_{1}$            | 52480 | 34132 |  |
| •        |          |         | $900_{2}$            | 53333 | 34528 |  |
|          |          |         | $900_{3}$            | 52909 | 34811 |  |
|          |          |         | $1000_{1}$           | 58408 | 44055 |  |
|          |          |         | $1000_{2}$           | 58600 | 44531 |  |
|          |          |         | $1000_{3}$           | 58937 | 44152 |  |
|          |          |         |                      |       |       |  |

T

## 11. Entregables comprometidos en la propuesta

#### Clase Punto

```
#include "bibliotecas.h"
class Punto{
    int coord[10];
    unsigned short dimension;
public:
    Punto();
    Punto(unsigned short, list < unsigned int >);
    Punto(const Punto & old);
    ~Punto();
    unsigned int getCoord(unsigned int);
    unsigned short getDim();
    unsigned int distanciaEuclideana(Punto*);
    unsigned int distanciaManhattan(Punto*);
};
```

```
#include "Punto.h"
Punto::Punto(){
        dimension = 0;
        for (int i=0; i<10; i++)
                 coord[i]=0;
        }
Punto::Punto(unsigned short dimension,
  list < unsigned int > lista){
        this->dimension=dimension;
        list < unsigned int >::iterator it=lista.begin();
        for (int i=0; i< dimension; it++, i++)
                 coord[i] = *it;
        }
Punto::Punto(const Punto &old){
        dimension = old.dimension;
        for (int i=0; i<dimension; i++){
                 coord[i] = old.coord[i];
        }
Punto:: ~Punto(){}
unsigned int Punto::getCoord(unsigned int index){
        return coord [index];
}
```

#### Generadores

```
#include "bibliotecas.h"
using namespace std;
int** floydWarshall(int n,int** A);
std::list < unsigned int > generaPuntos(unsigned int i,
    unsigned short d, unsigned short l);
int** genEuclideano(unsigned short n, unsigned short d,
    unsigned short l);
int** genManhattan(unsigned short n, unsigned short d,
    unsigned short l);
int** genGrafico(unsigned short n, unsigned short l);
```

```
#include "genera.h"
#include "Punto.h"
int** floydWarshall(int n,int** A){
  for(int k=0;k<n;k++){
    for(int i=0;i<n;i++){
      for(int j=0;j<n;j++){
         A[i][j]= std::min(A[i][j],A[i][k] + A[k][j]);
      }
}</pre>
```

```
return A;
std::list < unsigned int > generaPuntos (unsigned int i,
  unsigned short d, unsigned short 1){
  int x;
         std::list < unsigned int > lista;
         //std::cout << "punto" << i << ":";
         for (int j=0; j< d; j++)
                  //x=distribution (generator);
                 x=rand()\%(l-1)+1;
                  lista.push_back(x);
                  // std :: cout << " " << x;
  return lista;
int ** genEuclideano (unsigned short n, unsigned short d,
  unsigned short 1){
        Punto punto [n];
         for (unsigned int i=0; i < n; i++)
                  Punto punkt(d, generaPuntos(i,d,l));
                  // std :: cout << endl;
                 punto [i]=punkt;
         int ** A = new int *[n];
         for (int i=0; i< n; i++){
                 A[i] = new int[n+2];
                  for (int j=0; j < n; j++){
                          A[i][j]=punto[i].
                             distancia Euclideana (&punto [j]);
                  }
         return A;
int ** genManhattan (unsigned short n, unsigned short d,
  unsigned short 1){
        Punto punto [n];
         for (unsigned int i=0; i < n; i++)
                  Punto punkt (d, generaPuntos (i, d, l));
                  cout << endl;
                  punto [i]=punkt;
  }
         int ** A = new int *[n];
         for (int i=0; i< n; i++)
```

```
A[i] = new int[n+2];
                 for (int j=0; j < n; j++)
                          A[i][j]=punto[i].
                             distanciaManhattan(&punto[j]);
                 }
        return A;
int ** genGrafico (unsigned short n, unsigned short 1) {
         int ** A = new int *[n];
         for (int i=0; i < n; i++)
                 A[i] = new int[n+2];
                 for (int j=0; j < n; j++){
                          A[i][j] = rand()\%(l-1)+1;
                 A[i][i]=0;
        for (int i=0; i< n; i++)
                  for (int j=0; j < n; j++){
                          A[i][j] = A[j][i];
                 A[i][i]=0;
        A = floydWarshall(n,A);
         return A;
```

#### Funciones de utilidad

```
#include "bibliotecas.h"
using namespace std;

void imprimeMatriz(unsigned short n,int** A);
void imprimeVector(int n,int* S);
void imprime_vector_matriz(int n,int j,int** A);
bool esMinima(int x,int &longitudMinima);
```

```
std :: cout << A[i][j] << " t ";
                  }
                           std::cout<<endl;
         }
void imprimeVector(int n, int* S){
         for (int i=0; i < n; i++)
                  std :: cout << S[i] << " \ t ";
         std::cout<<endl;
void imprime_vector_matriz(int n, int j, int ** A){
         for (int i = 0; i < n; i++){
                  std :: cout << A[i][j] << " t ";
         std::cout<<endl;
bool esMinima(int x, int &longitudMinima){
         longitudMinima=min(x,longitudMinima);
         if (longitudMinima!=x) {
                  return true;
         return false;
```

## Algoritmo determinístico

```
#include "bibliotecas.h"
#include "util.h"
long long int nf[16] = \{1, 1, 2, 6,
24,120,720,5040,40320,362880,
3628800,39916800,479001600,
6227020800,87178291200,
1307674368000};
int longitudMinima;
int respuesta [1001];
int contador;
int* genPerm(unsigned short n, long long int T){
  int * S = new int[n];
        int posE;
        int contador=0;
        vector<int> buffer;
        vector<int>::iterator it=buffer.begin();
```

```
for (int i = 0; i < n; i++)
                  buffer.push_back(i);
         for (int i=n-1; i>1; i--){
                 it=buffer.begin();
                 posE=(int)((long long int)T/nf[i]);
                 T=T\%nf[i];
                 S [contador] = buffer [posE];
                  contador++;
                  buffer.erase(it+posE);
         if(T\%2==0){
                 S[n-1] = buffer.back();
                  buffer.pop_back();
                 S[n-2] = buffer.back();
                  buffer.pop_back();
        }else{
                 S[n-2] = buffer.back();
                  buffer.pop_back();
                 S[n-1] = buffer.back();
                  buffer.pop_back();
  return S;
int calcSol(unsigned short n, int * S, int ** A){
         int longitud = 0;
         for (int i=1; i < n; i++)
                 longitud+=A[S[i]][S[i-1]];
        return longitud;
}
int * evalua (unsigned short n, int ** A) {
        longitudMinima=5000;
         int * S = new int [n+2];
         int buffer;
         for (long long int i=0; i < nf[n]; i++)
                 S=genPerm(n,i);
                 int x=calcSol(n,S, A);
                  if (!esMinima(x,longitudMinima)){
                           buffer=i;
                 }
        S=genPerm(n, buffer);
```

```
S[n]=longitudMinima;
         S[n+1] = buffer;
         return S;
int * evaluaMinimal(unsigned short n, int **A) {
         longitudMinima=5000;
         int * S = new int [n+2];
         for (int i = 0; i < n; i++){
                  S[i]=i;
         permute (n, n, S, A);
         return respuesta;
void evenPermute(int N, int n, int *S, int **A, int suma){
         if(N>n+1){
                  suma+=A[S[n]][S[n+1]];
         oddPermute(N, n-1, S, A, suma);
         for (int i=0; i<(n-1); i++){
                  \operatorname{swap}(S[i], S[n-1]);
                  oddPermute(N, n-1, S, A, suma);
         }
void oddPermute(int N, int n, int*S, int**A, int suma){
         if (n==1)
                  suma+=A[S[n-1]][S[n]]+A[S[n]][S[n+1]];
                  if (!esMinima(suma, longitudMinima)) {
                           for (int i = 0; i < N; i + +){
                                    respuesta [i]=S[i];
                  respuesta [N]=longitudMinima;
                  respuesta [N+1]=contador;
                  contador++;
         }else{
                  if (N>n+1){
                           suma + = A[S[n]][S[n+1]];
                  evenPermute (N, n-1, S, A, suma);
                  for (int i=0; i<(n-1); i++)
                           swap(S[0], S[n-1]);
                           evenPermute (N, n-1, S, A, suma);
                  }
         }
```

```
| }
| void permute(int N, int n, int * S, int ** A) {
| int suma=0;
| contador=0;
| longitudMinima=5000;
| int x=calcSol(n,S,A);
| if (n%2!=0) {
| oddPermute(N,n,S,A,suma);
| } else {
| evenPermute(N,n,S,A,suma);
| }
| }
| }
|
```

## Algoritmo heurístico

```
#include "bibliotecas.h"
bool apartado [1001];
bool ocupado [1001];
int** copia(int n, int** A){
         int**nueva = new int*[n];
         for (int i = 0; i < n; i++){
                  nueva[i]=new int[n+2];
                  for (int j=0; j < n; j++)
                           nueva[i][j]=300-A[i][j];
                  nueva [i][i]=0;
         return nueva;
void suma(int n, int ** A){
         for (int i = 0; i < n; i++){
                  A[i][n]=0;
                  for (int j=0; j < n; j++){
                           A[i][n] += A[i][j];
                  }
         }
}
pair < int , int > compara_primera (int n, int **A) {
         int minima_i, minima_j;
         \min_{a_i=0};
         \min_{j=0};
         for (int i=1; i < n; i++){
```

```
if(A[i][n] > A[minima_i][n])
                          minima_i=i;
        for (int j=1; j < n; j++){
                 if(A[minima_i][j] >
                   A[\min_{a_i}][\min_{a_j}]
                          minima_j=j;
                 }
        }
        pair<int , int> par;
        par.first=minima_i;
        par.second=minima_j;
        apartado [minima_i]=true;
        apartado [minima_j]=true;
        return par;
}
void aparta_primera(int n, int ** A,
  pair<int, int> indice_min){
        A[indice_min.first][n]+=300;
        A[indice_min.second][n]+=300;
        A[indice_min.first][indice_min.second]=0;
        A[indice_min.second][indice_min.first]=0;
pair < int , int > compara (int n, pair < int , int >
  indice_min, int **A) {
        int minima_i, minima_j;
        \min_{a_i=0};
        if (A[indice_min.first][n] >
          A[indice_min.second][n])
                 minima_i=indice_min.first;
        }else{
                 minima_i=indice_min.second;
        \min_{a_j=0};
        for (int j=1; j < n; j++)
                 if(A[minima_i][j] >= A[minima_i][minima_j]
                   && !ocupado[j]) {
                          minima_{-}j=j;
                 }
        }
        if (!apartado [minima_j]) {
```

```
apartado [minima_j]=true;
        ocupado [minima_i]=true;
         pair <int, int > par;
        par.first=minima_i;
         par.second=minima_j;
         return par;
}
void aparta(int n, int ** A, pair < int , int > indice_min ,
  pair < int , int > anterior) {
         for (int i=0; i< n; i++){
                 A[i][n]+=300;
        }
        A[anterior.second][n]-=A[anterior.first]
           [anterior.second];
         for (int i = 0; i < n; i++){
                 A[indice_min.first][i]=0;
                 A[i][indice_min.first]=0;
        A[indice_min.first][n]=0;
         anterior.first=indice_min.second;
}
int* gloton(int n, int** A){
         int * S=new int [n+2];
         int ** nueva;
         pair < int , int > indice_min , actual_min ;
        deque<int> orden;
        nueva=copia(n,A);
        suma(n, nueva);
         indice_min = compara_primera(n, nueva);
         aparta_primera (n, nueva, indice_min);
         orden.push_back(indice_min.first);
         orden.push_back(indice_min.second);
         for (int i=2; i < n; i++)
                 nueva [orden.front()] [orden.back()] = 0;
```

```
nueva [orden . back ()] [orden . front ()] = 0;
                 actual_min = compara(n, indice_min, nueva);
                 //actualiza minimo
                 if (orden.front() = actual_min.first){
                    orden.push_front(actual_min.second);
                 }else{
                    orden.push_back(actual_min.second);
                 indice_min.first=orden.front();
                 indice_min.second=orden.back();
                 aparta (n, nueva, actual_min, indice_min);
        deque<int>::iterator it=orden.begin();
        for (int i=0; i< n, it!=orden.end(); i++, it++)
                 S[i] = (*it);
        S[n] = calcSol(n, S, A);
        return S;
}
```

## Bibliotecas en general

```
#include <cmath>
#include <list >
#include <iostream>
#include <cstdlib >
#include <vector>
#include <ctime>
#include <deque>
using namespace std;

int calcSol(unsigned short n,int* S,int** A);
int* evalua(unsigned short n,int** A);
int* evaluaMinimal(unsigned short n,int**A);
void evenPermute(int N,int n,int*S,int**A,int suma);
void oddPermute(int N,int n,int*S,int**A,int suma);
void permute(int N,int n,int * S,int ** A);
int reEvalua(int N,int n,int * S,int ** A);
int reEvalua(int N,int i,int j,int** A,int* S,int suma);
```

```
int ** copia(int n, int ** A);
void suma(int n, int ** A);
pair < int , int > compara_primera(int n, int ** A);
void aparta_primera(int n, int ** A,
    pair < int , int > indice_min);
pair < int , int > compara(int n,
    pair < int , int > indice_min , int ** A);
void aparta(int n, int ** A, pair < int , int >
    indice_min , pair < int , int > anterior);
int ** gloton(int n, int ** A);
```

#### Función main

```
#include "Punto.h"
#include "bibliotecas.h"
#include "genera.h"
#include "util.h"
void prueba_det(){
         unsigned short n,d,l,switcher;
        // cin >> n >> d >> l >> s witcher;
        d=10; l=100; switcher=2;
         cin >> n;
         int**A;
         switch (switcher) {
         case 1:
                 A = genEuclideano(n,d,l);
                 imprimeMatriz(n,A);
                 break;
         case 2:
                 A = genManhattan(n,d,l);
                 imprimeMatriz(n,A);
                 break;
         case 3:
                 A = genGrafico(n, l);
                 imprimeMatriz(n,A);
                 break;
         default:
                 break;
         int * S=new int [n+2];
        S=evaluaMinimal(n,A);
```

```
cout << "Deterministicamente:" << endl;
        cout << "La menor incrustacion en la recta es de
           longitud "<<S[n]<<endl;
        cout <<"Y sigue la secuencia: "<<endl;
        imprimeVector(n,S);
        cout << "permutacion numero" << S[n+1] << endl;
}
void prueba_heu(){
        unsigned short n,d,l,switcher;
        d=10; l=100;
        cin >> n;
        int**A;
        int * S=new int [n+2];
        A = genEuclideano(n,d,l);
        S = gloton(n,A);
        cout <<"Heuristicamente: "<<endl;</pre>
        cout << "La menor incrustacion en la recta es de
           longitud "<<S[n]<endl;
        cout << "Y sigue la secuencia: " << endl;
        imprime Vector (n, S);
}
void det_contra_heu(int n){
        time_t inicia_d, termina_d, tiempo_d, inicia_h,
           termina_h, tiempo_h;
        unsigned short d, l;
        // cin >> n >> d >> 1;
        d=10; l=100;
        int**A;
        int ** nueva;
        int * S=new int [n+2];
        A = genEuclideano(n,d,l);
        int long_det, long_heu;
        float dif_porc;
        if (n < 13)
                 inicia_d=clock();
                 S=evaluaMinimal(n,A);
                 termina_d=clock();
                 tiempo_d=termina_d-inicia_d;
```

```
long_det=S[n];
                  cout << long\_det << ``\t" << tiempo\_d << ``\t";
                  inicia_h=clock();
                  S = gloton(n,A);
                  termina_h=clock();
                  tiempo_h=termina_h-inicia_h;
                  long_heu=S[n];
                  dif_{porc} = 100*((float)(long_{heu}-long_{det}))
                    /(float)long_heu;
                  cout << long_heu << "\t" << tiempo_h << "\t";
                  cout << (long_heu-long_det) << "\t" << dif_porc;
                  cout << "\t" << (tiempo_d - tiempo_h);
                  cout << endl;
        }else{
                  inicia_h=clock();
                  S = gloton(n,A);
                  termina_h=clock();
                  tiempo_h=termina_h-inicia_h;
                  long_heu=S[n];
                  cout << long_heu <<"\t"<< tiempo_h << endl;
         }
}
int main(){
         srand(time(NULL));
        //prueba_det();//15! tarda 19 hrs.
         //prueba_heu();
         det_contra_heu(12);
         return 0;
}
```