CO3053 – Embedded Systems

2. Embedded Platform Architecture

Contents

Embedded hardware overview

Processor

Memory

Buses

Embedded Board

 In embedded devices, all electronics hardware resides on a embedded board or Printed Circuit Board (PCB).

 All of hardware on an embedded board is located in hardware layer of Embedded System Model

Hardware Block Architecture

Central Processing Unit (CPU)

The master processor.

Memory

where the system's software is stored.

Input Device

 Input slave processors and relative electrical components.

Output Device

 Output slave processors and relative electrical components.

Bus

 Interconnect the other components includes any wires, bus bridges, bus controllers.

Image Source: Internet

Cisco Catalyst 6500 Supervisor 2T

IPhone 5S

Image Source: Internet

Processors

- The center of the platform.
 - 32 bit or 64 bit processor
 - Complex Instruction Set Computer (CISC)
 - Example: Intel processor
 - Reduced Instruction Set Computer (RISC)
 - Example: ARM, MIPS, Power PC
 - Scalar or superscalar architecture.
 - SISD vs. MIMD

System Memory Map

0x000,0000

• Memory map is a list of physical addresses of all the resources on the platform

Volatile Memory Types

- Volatile Memory
 - Static Random Access Memory (SRAM)
 - Generally expensive.
 - Used inside processors.
 - Dynamic Random Access Memory (DRAM)
 - Longer access times than SRAM.
 - Used as main memory in computer systems.
 - SDR SDRAM, DDR, DDR2, DDR3

- Retain data even when the power is removed from the device
 - OS, application, configuration, user data, ...
- Varying storage
 - Capacities, densities, performance reliability, and size
- Two primary nonvolatile storages
 - Solid state memory (SSD): NOR flash, NAND flash.
 - Magnetic storage media: hard drives (HDD).

Buses

- All of major components are interconnected via buses.
 - Bus is simply a collection of wires carrying various data signals, addresses, and control signals (clock, ack, data type).
- On more complex boards, multiple buses can be integrated on one board.

Bus Types

- System buses
- Backplane buses
- I/O buses
- Bus Expansion
 - PCMCIA, PCI, IDE, SCSI, USB
 - I2C, SPI
- Bus Arbitration & Timing

Bus Types

System buses

- Interconnect external main memory and cache to the master CPU and any bridges to other bus.
- Typical short, high speed.

Backplane buses

All in one bus, interconnect memory, master processor, I/O devices.

I/O buses

 Extensions of the system bus to connect I/O devices to system bus via bridge or processor I/O ports.

anhpham@hcmut.edu.vn

Bus Arbitration and Timing

- Every bus includes some type of protocol that defines bus arbitration, handshaking and signals.
- Bus arbitration process of gaining access to the bus, determine by bus's arbitration scheme
- Bus handshaking way to communicate over the bus, determine by bus's timing scheme
- Bus arbitration scheme
 - Master devices, devices that can initiate a bus transaction.
 - Slave devices, devices that can only gain access to a bus in response to master device's request.
 - Multiple master scheme require arbitrator

Bus Arbitration - Dynamic Central Parallel Scheme

 Arbitrator is centrally located, all bus masters connect to the central arbitrator.

• Masters are granted access to the bus via FIFO or Priority-based system.

FIFO-based Arbitration

- FIFO queue stores list of master devices ready to use the bus in order of bus requests.
- Master device is allowed access bus from the start of the queue.
- However, arbitrator don't intervene even if the master at the front never release its control.

Priority-based Arbitration

- Every master device is assigned a priority.
- For preemptive priority-based, the master with highest priority can preempt lower priority devices.

Bus Arbitration - Central-serialized Scheme

Central-serialized (daisy-chain) arbitration

- Arbitrator is connected to all masters, and the masters are connected in serial.
- The first master in chain is granted the bus, and pass the "bus grant" on the next master when the bus is no longer needed.

Bus Arbitration - Distributed Arbitration Scheme

- No central arbitrator and no additional circuitry.
- Master arbitrate themselves by trading priority information.
- Or could remove arbitration lines and listen to collision.

Arbitration lines removed/ collision detection based bus

Bus Timing Scheme

Synchronous timing scheme

- A synchronous bus includes a clock signal.
- All components run at the same clock rate as bus.
- Data is transmitted either on the rising or fallings edge.
- Problem with long bus and high clock rate, potential of a skew in the synchronization.

Asynchronous timing scheme

- Using "handshaking" signals instead of clock signal.
- More complicate in handling request and reply command.
- Could support long bus and larger number of components.
- Need other "synchronizer" to manage the exchange of information.

Bus Expansion

Expandable bus

- PCMCIA, PCI, IDE, SCSI, USB
- Additional components can be plugged into the board on-the-fly.
- More expensive to implement.

Non-expandable bus

- Additional component cannot be simply plugged into and communicate to others over that bus.
- DIB, VME, I2C

PCI Bus

- Peripheral Component Interconnect (PCI)
 - Synchronous bus
 - 33 MHz 66 MHz
 - Bus width
 - 32 bits 64 bits.
 - Throughput
 - 132 MB/s (33MHz, 32bits)
 - 528 MB/s (66Mhz, 64 bits)
- Two connection interfaces
 - Internal interface that connects it to the main board via EIDE channel
 - Expansion interface, which consist of the slots.

I2C Bus

- 2 wires bus
 - Serial data line (SDA)
 - Serial clock line (SCL)

- Master/Slave relationship
 - Master initiates data transfer
 - Generate clock signals.
- I2C is a serial, 8-bit bus.
 - Only one byte of data is transferred at one time

SPI Bus

- Four-wire bus
 - Serial clock
 - Master output/slave input
 - Master input/slave output
 - Device select.

Speed up to 80MHz

Used to connect to serial flash for initial boot code in Intel platforms.

Summary

• QnA

- Further Readings
 - https://www.sciencedirect.com/topics/engineering/embedded-system-architecture

