

Universidade Federal de Ouro Preto – UFOP Instituto de Ciências Exatas e Biológicas – ICEB Departamento de Computação – DECOM Disciplina: Teoria dos Grafos Professor: Marco Antonio M. Carvalho

decom
departamento
de computação

sor: Marco Antonio M. Carvaino

Lista de Exercícios 01

Instruções

- A resolução da lista de exercícios deve ser entregue em um arquivo formato PDF legível no *Moodle*;
- Ao final desta lista de exercícios, está disponível o padrão para as respostas;
- A resolução deve considerar estritamente a mesma numeração e ordem dos exercícios;
- A avaliação da lista de exercícios consiste de: (I) aderência ao enunciado e ao padrão das respostas; (II) verificação de plágio; (III) verificação da corretude das respostas. As três etapas da avaliação são eliminatórias:
- Somente exercícios corretos serão considerados para frequência. Cada exercício das listas e cada caso de testes do estudo dirigido possui o mesmo peso.
- 1. Para a rede abaixo, nas quais os rótulos apresentam os limites mínimos e máximos para o fluxo em cada arco, adicione (se necessário) vértices e arcos artificiais para que todo vértice possua fluxo conservativo, (a) determine um fluxo viável e (b) o valor do fluxo máximo, pela aplicação do algoritmo de *Ford & Fulkerson*. Prove que o valor do fluxo máximo é ótimo, apresentando o corte mínimo associado.

2. Para a rede abaixo, nas quais os rótulos apresentam os limites mínimos e máximos para o fluxo em cada arco, adicione (se necessário) vértices e arcos artificiais para que todo vértice possua fluxo conservativo, (a) determine um fluxo viável e (b) o valor do fluxo máximo, pela aplicação do algoritmo de *Ford & Fulkerson*. Prove que o valor do fluxo máximo é ótimo, apresentando o corte mínimo associado.

3. Para a rede abaixo, nas quais os rótulos apresentam os limites mínimos e máximos para o fluxo em cada arco, adicione (se necessário) vértices e arcos artificiais para que todo vértice possua fluxo conservativo, (a) determine um fluxo viável e (b) o valor do fluxo máximo, pela aplicação do algoritmo de *Ford & Fulkerson*. Prove que o valor do fluxo máximo é ótimo, apresentando o corte mínimo associado.

4. Para a rede abaixo, nas quais os rótulos apresentam os limites mínimos e máximos para o fluxo em cada arco, adicione (se necessário) vértices e arcos artificiais para que todo vértice possua fluxo conservativo, (a) determine um fluxo viável e (b) o valor do fluxo máximo, pela aplicação do algoritmo de *Ford & Fulkerson*. Prove que o valor do fluxo máximo é ótimo, apresentando o corte mínimo associado.

5. Para a tabela abaixo, determine a atribuição ótima de atividades usando o *método húngaro*. Caso a matriz não seja quadrada, insira linhas com conteúdo zero.

	Tarefa 1	Tarefa 2	Tarefa 3	Tarefa 4
Filho 1	\$1	\$4	\$6	\$3
Filho 2	\$9	\$7	\$10	\$9
Filho 3	\$4	\$5	\$11	\$7
Filho 4	\$8	\$7	\$8	\$5

6. Para a tabela abaixo, determine a atribuição ótima de atividades usando o *método húngaro*. Caso a matriz não seja quadrada, insira linhas com conteúdo zero.

	Saúde	Moradia	Educação	Alimentação	Segurança
Alegrete	\$10000	\$37000	\$15000	\$18000	\$11000
Uruguaiana	\$8000	\$30000	\$119000	\$21000	\$9000
Bagé	\$12000	\$32000	\$14000	\$20000	\$9000
Rosário do Sul	\$15000	\$35000	\$4000	\$22000	\$10000

7. O Rio de Janeiro está preparando uma campanha de vacinação. O mapa abaixo mostra uma suposta localização de postos de vacinação. Cada posto de vacinação pode ser transformado em um posto de coordenação e distribuição de vacinas. Para facilitar a logística, um ponto de coordenação não deve atender mais do que quatro postos de vacinação. Modele o problema utilizando a teoria dos grafos e determine a quantidade mínima de postos de coordenação necessários para que todos os postos de vacina sejam apoiados por pelo menos um posto de coordenação.

8. Uma escola deve programar a distribuição dos exames especiais de forma que os alunos não tenham que fazer mais do que um exame por dia. Existem oito disciplinas no curso e a secretaria organizou um quadro que marca com um asterisco as disciplinas que possuem alunos em comum. Utilizando a teoria dos grafos, responda quantos dias de exame serão necessários.

	Português	Matemática	História	Geografia	Inglês	Biologia	Química	Física
Português	-	*	-	*	-	*	*	*
Matemática		-	*	-	-	-	*	*
História			-	*	-	-	-	*
Geografia				-	*	*	-	*
Inglês					-	*	-	-
Biologia						-	*	-
Química							-	*
Física								-

9. Em uma creche há 10 crianças matriculadas, porém, nunca estão todas ao mesmo tempo na creche. É necessário planejar os escaninhos em que os pais deixam as refeições das crianças. A tabela abaixo apresenta a permanência de cada criança (enumeradas de 1 a 10) na creche nos horários entre 7:00 e 12:00 – o horário em que a creche funciona. Um asterisco indica que uma determinada criança está na creche no horário indicado, e deve ter um escaninho reservado para sua refeição. Modele o problema utilizando a teoria de grafos e determine o número mínimo de escaninhos necessários para que cada criança tenha um escaninho individual.

	01	02	03	04	05	06	07	08	09	10
07:00	*	-	-	-	*	-	-	*	-	-

08:00	*	*	*	-	*	-	-	*	-	-
09:00	*	*	*	-	-	*	-	*	-	*
10:00	*	*	-	-	-	*	*	-	*	*
11:00	*	-	-	*	-	-	*	-	*	*
12:00	-	-	-	*	-	-	-	-	*	*

- 10. Existem *n* experimentos biológicos sendo processados *e*1, *e*2,..., *ei* em determinado laboratório. Cada um desses experimentos possui várias lâminas de ensaio que devem ser mantidas refrigeradas segundo uma temperatura constante em um intervalo de temperatura [*li*, *hi*]. A temperatura pode ser fixada livremente dentro do intervalo, contudo, uma vez fixada, não mais poderá ser alterada, sob pena de destruir os elementos biológicos. Dados os intervalos e sabendo-se que cada refrigerador é grande o suficiente para preservar todas as lâminas de todos os experimentos, cada refrigerador deverá funcionar em apenas uma temperatura. Modele o problema utilizando a teoria de grafos e determine o menor número possível de refrigeradores capazes de atender ao laboratório.
- 11. Determine a cor do vértice *v* no grafo abaixo dentre verde, vermelho, amarelo e azul, utilizando operações de troca em cadeias Kempe.

- 12. Justifique: O número cromático é invariante sob isomorfismo. Em outras palavras, se G e H são grafos isomorfos então $\chi(G) = \chi(H)$.
- 13. Identifique 3 das árvores geradoras do grafo abaixo.

14. Identifique todas árvores geradoras do grafo abaixo.

15. Execute o algoritmo de Prim para o grafo abaixo.

16. Execute o algoritmo de Prim para o grafo abaixo.

17. Execute o algoritmo de Kruskal para o grafo abaixo.

18. Execute o algoritmo de Kruskal para o grafo abaixo.

19. Execute o algoritmo de Kahn para obtenção de ordenações topológicas para o grafo abaixo.

20. Execute o algoritmo baseado em DFS para obtenção de ordenações topológicas para o grafo abaixo.

Gabarito Exemplo

As questões 1-4 devem ser respondida por meio de tabelas. Adeque a quantidade de linhas de acordo com cada rede.

a. Indique na tabela cada arco da rede e o fluxo viável associado.

Fluxo viável					
Arco	Fluxo				
(vértice s, vértice 1)	Χ				
(vértice 1, vértice 2)	Υ				
(vértice 2, vértice 3)	Z				
(vértice 3, vértice t)	Α				

b. Semelhante à letra (a), porém, agora relacionado ao fluxo máximo. Preencha também a segunda tabela referente ao corte mínimo.

Fluxo máximo					
Arco	Fluxo				
(vértice s, vértice 1)	Χ				
(vértice 1, vértice 2)	Υ				
(vértice 2, vértice 3)	Z				
(vértice 3, vértice t)	Α				

Capacidade do corte mínimo:	
X = {	}
X' = {	}

5. Esta resposta deve indicar as transformações realizadas nas matrizes pelo algoritmo Húngaro em cada operação realizada. Ao final, apresente a solução e o valor associado. Adeque as dimensões das matrizes aos problemas tratados.

Valor da solução: XYZ

- 6. Idem ao anterior.
- 7. Esta é uma questão dissertativa. Modele genericamente o problema enunciado utilizando a teoria dos grafos, indicando o que significam os vértices e as adjacências. Identifique também qual problema em grafos está associado a cada um dos problemas e como ambos se relacionam para determinação da solução do problema original.
- 8. Esta é uma questão dissertativa. Modele genericamente o problema enunciado utilizando a teoria dos grafos, indicando o que significam os vértices e as adjacências. Identifique também qual problema em grafos está associado a cada um dos problemas e como ambos se relacionam para determinação da solução do problema original.

- 9. Esta é uma questão dissertativa. Modele genericamente o problema enunciado utilizando a teoria dos grafos, indicando o que significam os vértices e as adjacências. Identifique também qual problema em grafos está associado a cada um dos problemas e como ambos se relacionam para determinação da solução do problema original.
- 10. Esta é uma questão dissertativa. Modele genericamente o problema enunciado utilizando a teoria dos grafos, indicando o que significam os vértices e as adjacências. Identifique também qual problema em grafos está associado a cada um dos problemas e como ambos se relacionam para determinação da solução do problema original.
- 11. Apresente textualmente as cadeias Kempe utilizadas para eliminar a cor preta, indicando as novas cores dos vértices envolvidos. Alternativamente, o diagrama do grafo também pode ser apresentado.
- 12. Esta é uma questão dissertativa.
- 13. Esta resposta deve conter os diagramas das árvores geradoras do grafo.
- 14. Esta resposta deve conter os diagramas das árvores geradoras do grafo.
- 15. Esta resposta deve conter apenas a árvore geradoras mínima geradas pelo algoritmo.
- 16. Idem ao anterior.
- 17. Idem ao anterior.
- 18. Idem ao anterior.
- 19. Esta resposta deve conter apenas a ordenação topológica gerada: L={a, b, c, d, e}.
- 20. Idem ao anterior.