MA 1140: Lecture 8 Eigenvalues and eigenvectors

Dipankar Ghosh (IIT Hyderabad)

February 27, 2019

Eigenvalues and eigenvectors (of linear operators)

Let $T: V \to V$ be a linear map, which we call linear operator.

Definition

A non-zero vector $v \in V$ is called an **eigenvector** of T if $T(v) = \lambda v$ for some $\lambda \in \mathbb{R}$. This λ is called the **eigenvalue** of T associated with the eigenvector v.

- Geometrically, an eigenvector, corresponding to an eigenvalue, points in a direction that is stretched by the transformation, and the eigenvalue is the factor by which it is stretched. If the eigenvalue is negative, the direction is reversed.
- An eigenvalue can be positive, negative or zero.

Eigenvalues and eigenvectors (of square matrices)

Since there is a one to one correspondence between the set of all linear operators from $V \cong \mathbb{R}^n$ to itself and the collection of all $n \times n$ matrices over \mathbb{R} , it is equivalent to define eigenvalues and eigenvectors of $n \times n$ matrices.

Definition

Let A be an $n \times n$ matrix over \mathbb{R} . A non-zero column vector $v \in \mathbb{R}^n$ is called an **eigenvector** of A if $Av = \lambda v$ for some $\lambda \in \mathbb{R}$. This λ is called the **eigenvalue** of A associated with the eigenvector v.

Example 1: eigenvalues and eigenvectors of stretching

Every $v \neq 0 \in \mathbb{R}^2$ is an eigenvector of T with the eigenvalue c.

Example 2: eigenvalues and eigenvectors of reflection

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 is defined by $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ -y \end{pmatrix}$.

Matrix repres. $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ -y \end{pmatrix}$.

 $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ -y \end{pmatrix}$.

 $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ -y \end{pmatrix}$.

For $x \neq 0$, $\begin{pmatrix} x \\ 0 \end{pmatrix}$ is an eigenvector of T with eigenvalue 1.

For $y \neq 0$, $\begin{pmatrix} 0 \\ y \end{pmatrix}$ is an eigenvector of T with eigenvalue -1.

These are ALL the eigenvectors of T. (Verify it!)

Example 3: eigenvalues and eigenvectors of projection

For $x \neq 0$, $\begin{pmatrix} x \\ 0 \end{pmatrix}$ is an eigenvector of T with eigenvalue 1.

For $y \neq 0$, $\begin{pmatrix} 0 \\ v \end{pmatrix}$ is an eigenvector of T with eigenvalue 0.

These are ALL the eigenvectors of T. (Verify it!)

Example 4: A may not have eigenvalues and eigenvectors

- Consider the matrix $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ over \mathbb{R} .
- Does A have eigenvalues and eigenvectors over \mathbb{R} ?
- If yes, then there are $\binom{x}{y} \in \mathbb{R}^2 \setminus \{\binom{0}{0}\}$ and $\lambda \in \mathbb{R}$ such that

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} -\lambda & 1 \\ -1 & -\lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Since $\begin{pmatrix} x \\ y \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\det \begin{pmatrix} -\lambda & 1 \\ -1 & -\lambda \end{pmatrix} = 0$. Hence $\lambda^2 + 1 = 0$. But no such λ exists in \mathbb{R} .

• So A does not have eigenvalues and eigenvectors over \mathbb{R} .

The existence of eigenvalues and eigenvectors

- Consider the matrix $A=\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ over $\mathbb C$, the set of complex numbers.
- Does A have eigenvalues and eigenvectors over \mathbb{C} ? Ans. Yes.
- Note that $\lambda^2 + 1$ has solutions: $\pm i \in \mathbb{C}$.
- Then, for each $\lambda=\pm i$, in view of the previous slide, one should solve the system

$$\begin{pmatrix} -\lambda & 1 \\ -1 & -\lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

to get

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} i \\ -1 \end{pmatrix} = i \begin{pmatrix} i \\ -1 \end{pmatrix} \text{ and } \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} i \\ 1 \end{pmatrix} = -i \begin{pmatrix} i \\ 1 \end{pmatrix}$$

• **Conclusion:** The existence of eigenvalues and eigenvectors of a given matrix depends on the base field.

Similarity of matrices

Definition

Two $n \times n$ matrices A and B are called **similar** if there exists an invertible $n \times n$ matrix P such that $B = P^{-1}AP$.

Some statements (without proof) about importance of similarity of matrices:

- Two matrices are similar if and only if they represent the same linear operator with respect to (possibly) different bases.
- Two similar matrices A and B share many properties:
 - rank(A) = rank(B) as operators from \mathbb{R}^n to itself.
 - det(A) = det(B); tr(A) = tr(B) (sum of all diagonal entries).
 - A and B have same characteristic polynomial, $det(xI_n A)$.
 - Minimal polynomials of A and B are same. A monic polynomial $p(X) \in \mathbb{R}[X]$ is said to be a minimal polynomial of A if p(A) = 0 (zero matriz) and p has minimal possible degree.
 - Jordan canonical forms of A and B are same.

Diagonalizable matrices

Motivation: For a matrix, eigenvalues and eigenvectors can be used to decompose the matrix, for example by diagonalizing it.

Definition

A matrix A is said to be **diagonalizable** if A is similar to a diagonal matrix D, i.e., if there is an invertible matrix P such that

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$
 (a diagonal matrix).

The set of eigenvectors helps us to test whether a matrix is diagonalizable or not.

The use of eigenvalues and eigenvectors on diagonalization

Theorem

Let A be an $n \times n$ matrix over \mathbb{R} . The following are equivalent:

- A is diagonalizable.
- The eigenvectors of A form a basis, or equivalently, A has n linearly independent eigenvectors v_1, \ldots, v_n with associated eigenvalues $\lambda_1, \ldots, \lambda_n$ (which need not be distinct).

Proof. (1) \Rightarrow (2): There is an $n \times n$ invertible matrix P such that

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} \quad \text{for some } \lambda_1, \dots, \lambda_n \in \mathbb{R}.$$

for some
$$\lambda_1,\ldots,\lambda_n\in\mathbb{R}$$
.

Hence
$$AP = P \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \end{pmatrix}$$
.

Proof of the theorem contd...

Proof. (1)
$$\Rightarrow$$
 (2): ... Thus $AP = P \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$.

Write $P = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$ for some $v_1, \dots, v_n \in \mathbb{R}^n$. Then $AP = \begin{bmatrix} Av_1 & Av_2 & \cdots & Av_n \end{bmatrix}$ and

$$P\begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} = \begin{bmatrix} P\begin{pmatrix} \lambda_1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} & P\begin{pmatrix} 0 \\ \lambda_2 \\ \vdots \\ 0 \end{pmatrix} & \cdots & P\begin{pmatrix} 0 \\ 0 \\ \vdots \\ \lambda_n \end{bmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_1 v_1 & \lambda_2 v_2 & \cdots & \lambda_n v_n \end{bmatrix}.$$

Therefore $Av_i = \lambda_i v_i$ for every $1 \le i \le n$.

Note that v_1, \ldots, v_n are linearly independent, since P is invertible.

Proof of the theorem contd...

Proof. (2) \Rightarrow (1): A has n linearly independent eigenvectors $v_1, \ldots, v_n \in \mathbb{R}^n$ with associated eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$. Set $P := \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$. Clearly P is an $n \times n$ matrix. Since v_1, \ldots, v_n are linearly independent, P is invertible. Moreover

$$AP = \begin{bmatrix} Av_1 & Av_2 & \cdots & Av_n \end{bmatrix} = \begin{bmatrix} \lambda_1v_1 & \lambda_2v_2 & \cdots & \lambda_nv_n \end{bmatrix}$$

$$= P \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}.$$

Therefore

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}.$$

Eigenspace associated with an eigenvalue

Let A be an $n \times n$ matrix over \mathbb{R} . Denote the identity matrix by I_n .

- The following are equivalent:
 - $v \in \mathbb{R}^n$ is an eigenvector of A with the corr. eigenvalue λ .
 - $v \in \mathbb{R}^n$ is a non-trivial solution of the system $(A \lambda I_n)X = 0$, i.e., $v \in \mathbb{R}^n \setminus \{0\}$ lies in $\text{Null}(A \lambda I_n)$.

Proof. Note that $Av = \lambda v$ if and only if $(A - \lambda I_n)v = 0$.

• The set of all eigenvectors of A corresponding to an eigenvalue λ , together with the zero vector, is called the **eigenspace** of A associated with λ . It is nothing but $\operatorname{Null}(A - \lambda I_n)$.

Characteristic polynomial of a matrix

Let A be an $n \times n$ matrix over \mathbb{R} . Denote the identity matrix by I_n .

- The following are equivalent:
 - $\lambda \in \mathbb{R}$ is an eigenvalue of A.
 - $\det(\lambda I_n A) = 0$.

Proof. Note that λ is an eigenvalue of A if and only if there is $v \neq 0$ in \mathbb{R}^n such that $Av = \lambda v$ if and only if $(A - \lambda I_n)v = 0$ for some $v \neq 0$ in \mathbb{R}^n if and only if $(A - \lambda I_n)X = 0$ has a non-trivial solution if and only if $\det(A - \lambda I_n) = 0$ if and only if $\det(\lambda I_n - A) = 0$.

Definition

The characteristic polynomial of A, denoted by $p_A(x)$, is the polynomial over \mathbb{R} defined by $p_A(x) := \det(xI_n - A)$.

Therefore the set of all eigenvalues of A in \mathbb{R} is given by all the real roots of the characteristic polynomial $p_A(x)$.

Example: Characteristic polynomial and eigenvalues

- Consider $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.
- The characteristic polynomial of A is given by

$$p_A(x) = \det(xI_2 - A) = \det\begin{pmatrix} x - 1 & -2 \\ -3 & x - 4 \end{pmatrix}$$
$$= (x - 1)(x - 4) - 6 = x^2 - 5x - 2.$$

- The roots of $p_A(x)$ are $\frac{5 \pm \sqrt{33}}{2}$.
- Therefore the eigenvalues of A are $\frac{5 \pm \sqrt{33}}{2}$.

How to compute eigenvalues and eigenvectors

- First compute the characteristic polynomial $p_A(x) = \det(xI_n A)$ of A.
- Next compute the roots of $p_A(x)$ by factorizing it into linear factors. Which gives the eigenvalues.
- Then, for each eigenvalue λ , solve the homogeneous system:

$$(A - \lambda I_n)X = 0$$

to get eigenspace of A associated with λ .

 Recall that in order to solve a linear system, you may apply elementary row operations to make it into a system with row reduced echelon coefficient matrix.

Cayley-Hamilton Theorem

- Let A be an $n \times n$ matrix over \mathbb{R} .
- Write A^r for the matrix multiplication of r many copies of A.
- For $c \in \mathbb{R}$, cA is just component wise scalar multiplication.
- If $f(x) = a_r x^r + \dots + a_2 x^2 + a_1 x + a_0 \in \mathbb{R}[x]$, then $f(A) = a_r A^r + \dots + a_2 A^2 + a_1 A + a_0 I_n$ is an $n \times n$ matrix/ \mathbb{R} .

Theorem (Cayley-Hamilton)

Consider the characteristic polynomial $p_A(x) := det(xI_n - A)$. Then $p_A(A) = 0$ (zero matrix of order $n \times n$).

Warning: $p_A(A) \neq \det(AI_n - A)$. LHS is a matrix; RHS is a scalar.

Example

If
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
, then $p_A(x) = x^2 - 5x - 2$. The Cayley-Hamilton

Theorem says that
$$A^2 - 5A - 2I_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
.

Similar matrices have same characteristic polynomial

Theorem

Let A and B be similar, i.e., $B = P^{-1}AP$ for some invertible matrix P. Then $det(xI_n - A) = det(xI_n - B)$.

Proof.
$$\det(xI_n - B) = \det(xP^{-1}I_nP - P^{-1}AP)$$

= $\det(P^{-1}(xI_n - A)P) = (1/\det(P))\det(xI_n - A)\det(P)$
= $\det(xI_n - A)$.

Theorem

Let A and B be similar, i.e., $B = P^{-1}AP$. For a polynomial $f(x) \in \mathbb{R}[x]$, f(A) = 0 if and only if f(B) = 0 (zero matrix).

Proof. Note: $P^{-1}A^rP = (P^{-1}AP)(P^{-1}AP) \cdots (P^{-1}AP) = B^r$, and $P^{-1}(c_1D_1 + c_2D_2)P = c_1(P^{-1}D_1P) + c_2(P^{-1}D_2P)$. Verify that $P^{-1}f(A)P = f(B)$ and $Pf(B)P^{-1} = f(A)$. Hence the theorem follows.

Proof of Cayley-Hamilton Thm for diagonalizable matrix

Let A be a diagonalizable matrix, i.e., there is P such that

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} = B \text{ (say)}.$$

Note that $\det(xI_n - A) = \det(xI_n - B) = (x - \lambda_1) \cdots (x - \lambda_n)$. By induction on n, one can verify that

$$(B - \lambda_1 I_n)(B - \lambda_2 I_n) \cdots (B - \lambda_n I_n) = 0.$$

Hence, multiplying P on left and P^{-1} on right, we get

$$(A - \lambda_1 I_n)(A - \lambda_2 I_n) \cdots (A - \lambda_n I_n) = 0$$

i.e., $p_A(A) = 0$ (zero matrix).

Thank You!