SAS4302 Polymer Science Chapter 2 Molecular Weight

- Polymers are heterogeneous consisting of molecules of different lengths or sizes
- Unlike simple organic compounds, which have a precise, accurate molecular weight irrespective of method of separation or method of determination

So polymer molecular weights are average values

1. Number-average molecular weight M_n

 the total weight of polymer divided by the total number of molecules

2. Weight-average molecular weight M_w

- depends not only on the number of molecules present, but also on the weight of molecule 3

Molecular weight distribution curve for a typical heterogeneous polydisperse

Distribution of molecular weight in a typical polymer

i.e.
$$M_w > M_v > M_{\text{Molecular Weigh}}$$

Number-average molecular weight,

- = no. of molecules of i species
- = molecular weight of molecules of species

2. Weight molecular weight,

3. Viscosity-average molecular weight,

 α is a constant for a given polymersolvent system.

If $\alpha = 1$, then

(PS-Toluene : $\alpha = 0.62$ and K = 3.7 x 10 ⁻⁴)

is always greater than for polydisperse system

The ratio or is called the index of polydispersity (Dispersity factor)

It indicates how broad or narrow the molecular weight distribution is

Example

Polymer sample consists of

- •1 chain molecular weight 150,000
- 1 chain molecular weight 50,000
- •5 chains molecular weight 100,000.

Calculate, and the index of polydispersity.

Solution:

Solution:

Index of polydispersity:

= 1.07

 If one chain of 300,000 is now added to this mixture, then

= 125000

= 165000

Index of polydispersity:

= 1.32

- If , the polymer is monodisperse and is homogeneous
- It is an ideal case; it rarely happens in polymers

	Distribution
<5	narrow
5-20	medium
>20	broad

- For example Nylon 6,6 it is often equal to 2
- However for chain growth polymer any number may be possible

Methods of determining molecular weight averages

a. End group analysis

End group analysis is mainly used for step growth polymers because they have end groups that are easily analyzed

e.g.

- -NH₂ and -COOH in polyamides
- -COOH and -OH in polyesters
- OH and -N=C=O in polyurethanes

Araldite - Epoxy Adhesive

Example (Ref : Acid Number)

 Suppose 1 g of an Epoxy (Araldite) adhesive is taken which is known to contain one -COOH group per polymer molecule. If 10.00 mL of 0.01M NaOH solution is needed to neutralize this sample, what is the molecular weight of the polymer?

Solution

- no. of moles of NaOH used are $(10 \times 0.01)/1000 = 10^{-4}$ moles
- .. no. of moles of -COOH groups $= 10^{-4}$ moles
- Since each polymer molecule contains one -COOH group, the no. of moles of polymer present = 10⁻⁴ moles.

- But 10 ⁻⁴ moles of polymer weighs 1 g
- .:.1 mole of polymer weighs $1/10^{-4}$ $^4 = 10^4$
- Since this method of end group analysis has involved counting the number of -COOH groups
 - ⇒ the no. of polymer molecules present ∴the number-average molecular weight of the polymer

Limitations

- The end group analysis has an upper working limit, for , of ~25,000
- This method is useful for low relative molecular weight condensation polymers
- Other groups can be detected easily include -OH (in polyesters); -NH₂ groups (in polyamides)

e.g. initiator residues

 Due to higher molecular weight of chain growth polymers, there are few end-groups (low concentration) present in a given mass of polymer

- i. Depression of freezing point (Cryometry)
- ii. Elevation of boiling point (Ebulliometry)
- iii. Lowering of vapour pressure

Colligative properties are properties of solutions that depend on the *ratio of the number of solute particles to the number of solvent molecules* in a solution.

Molecular Weight

27

 Each of these can be measured for solutions of different concentrations and the results obtained depend on the total number of solute present in a fixed amount of solvent

 1 mole solute in benzene Intre water /

Boiling Point Elevation

i. 1.86°C / 5.0°C

Lowering of vapor pressures

ii. 0.52°C / 2.70°C

iii. 0.5 mm Hg

iv. 22.4 atmospheric pressure

Osmometry

- For i and ii. ,
- The smaller the molecular weight the larger the change in temperature,
 - ...the higher the molecular weight the is so small which is difficult to detect

a. <u>Light scattering</u>

Light scattering depends on the shape and size, the size depends on the molecular weight

- sedimentation equilibrium
- done in vacuum condition (~10⁻⁵ torr)
- very high speed spin
- use optical technique e.g.
 refractive index

(note: 1 torr = 1 mm Hg)

3.

- solution viscosity e.g. 1% polystyrene in toluene
- a U-tube viscometer
- e.g.
- a. Ostwald
- b. Ubbelohde suspended-level or Dilution viscometer

Figure 3.8 Common solution viscometers: (1) Cannon-Fenske Opaque, (2) Cannon-Ubbelohde Semi-Micro Dilution, (3) Cannon-Manning Semi-Micro, (4) Cannon-Fenske Routine, (5) Cannon-Ubbelohde Shear Dilution. (with permission from Cannon Instrument Company).

Molecular Weight

Capillary viscometers commonly used for measurement of dilutesolution viscosity: (a) Cannon-Fenske; (b) Ubbelohde

Advantages of Ubbelohde Viscometer over Ostwald Viscometer

- i. It does not require to be filled with same volume of solution each time
- ii. It is possible to carry out dilutions of the polymer solution in the viscometer itself

Advantages of viscosity methods

- The experimental procedure is quick and easy
- ii. The apparatus is cheap
- iii. The calculation of results is simple

Disadvantages of viscosity methods

- i. It is not an absolute method
- ii. Each polymer system must be first calibrated with absolute molecular weight determinations (e.g. light scattering) run on fractionated polymer samples
- iii. The concentration of the test sample is ~ 0.5 g /100mL solvent Molecular Weight

4. and

Gel Permeation Chromatography (GPC) or Gel

Filtration or Size Exclusion

- modern instrument
- similar to High Performance Liquid

Chromatography (HPLC)

- expensive
- for high molecular weight compounds,

results can be got within several hours

Molecular Weight

Functionality

- 1. Functionality, f
- 2. Extent of reaction, p
- 3. Degree of polymerization,
- 4. Carothers equation

Functional group

Functionality, f

6

1. Functionality, f

- The functionality of the monomer is the number of *reactive groups* present in a molecule and is normally known as *f*
- Functionality is very important for step-growth polymerization

a. If monofunctional materials are used,

low molecular weight products are formed

i.
$$C_2H_5OH$$
 + CH_3COOH = C_2H_5O - C - CH_3 + C_2H_5O - C - C

HO-(CH₂)-OH + CH₃COOH = HO-(CH₂)-OC-CH₃ + H₂O
f=2 f=1 CH₃COOH
f=1 CH₃COOH
f=1
$$CH_3$$
COOH
f=1 CH_3 COOH

Whenever monofunctional material is present, the molecular weight is reduced or controlled

b. In order to make a high molecular weight linear polymers, the materials used should have a functionality of 2

c. Materials with functionality greater than 2 lead to the formation of lead to the lead to the lead to the formation of lead to the lead t

$$HO - (CH_2) - O$$
 $+ H_2O$
 $HOOC$
 $COOH$

Trimesic acid

Addition of monofunctional material will control the molecular weight of the

polymer
$$x \text{ HOOC}\text{--}R\text{---}COOH + x H_2N\text{---}R'\text{---}NH_2 + y$$
 $R''COOH$

Product

Calculate the average functionality

1. 10 HOOCRCOOH + 10 HOR'OH

2. 10 HOOCRCOOH + 10 HOR'OH + 10 R"COOH

3. 10 HOOCRCOOH + 10 HOR'OH + 10 $C_6H_3(COOH)_3$

e.g.

1. 10 HOOCRCOOH + 10 HOR'OH

Average functionality =
$$\frac{2 \times 10 + 2 \times 10}{10 + 10}$$

$$\overline{f} = 2$$

2. 10 HOOCRCOOH + 10 HOR'OH + 10 R"COOH

Average functionality =
$$\frac{2 \times 10 + 2 \times 10 + 1 \times 10}{10 + 10 + 10}$$

$$\overline{f} = 1.67$$

З.

Average functionality =
$$\frac{2 \times 10 + 2 \times 10 + 3 \times 10}{10 + 10 + 10}$$
$$\overline{f} = 2.33$$

Summary

- > f < 2, low molecular weight products, due to presence of monofunctional compounds
- f = 2, high molecular weight linear polymers. The raw materials for producing the polymers should have the purity of > 99.9% since the purity will seriously affect the molecular weight of the polymers

Summary

> f > 2, high molecular weight crosslinked polymers formed due to presence of monomers with functionality of 3 or more

e.g. pentaerythritol glycerol

Exception

A monomer must not simply bifunctionality (f = 2), but the ability to form 2 or more bonds to other monomers

It is bifunctional
It does not form a polymer, because
its functional groups do not react
with each other

It can produce a polymer, because it can form 2 bonds to other monomers, the π bond being converted into 2 halves 6 2 8 2 6 1 2 5 1 2 5 1 2 3 2 5 1 2 5 1 2 3 2 5 1 2 2 5 1 2 3 2 5 1 2 3 2 5 1 2 3 2 5 1 2 3 2 5 1 2 3 2 5 1 2 3 2 5 1 2 3 2 5 1 2 3 2 5 1 2 3 2 5 1 2 3 2 5 1 2 3 2 5 1 2 3 2 5 1 2 2 5 1 2 3 2 5 1 2 3 2 5 1 2 2 5 1 2 3 2 5 1 2 2 5

PETN (pentaerythritoltetranitrate) 是另一個晚近發展出來的爆炸 物質,很遺憾卻淪爲恐怖分子的新寵。PETN與橡膠混合可以製造出 所謂的塑膠炸藥,它的特色是可以塑造成任何形狀。 PETN 的化學名 稱聽來複雜,但它的結構並不然,其化學性質與硝化甘油非常相似, 只不過它具有五個碳原子(硝化甘油有三個),並多了一個硝基。

$$CH_2-O-NO_2$$
 CH_2-O-NO_2 CH_2-O-NO_2 CH_2-O-NO_2 CH_2-O-NO_2 CH_2-O-NO_2 CH_2-O-NO_2 CH_2-O-NO_2 CH_2-O-NO_2 CH_2-O-NO_2

(以粗體即為硝基)

PETN 容易引燃、對震動敏感、威力強大,也幾乎沒有氣味,即使是 訓練有素的防爆犬,也很難偵測出來,因此常被恐怖分子做成飛機炸 彈。其中最讓人印象最深刻的例子,就是一九八八年泛美航空103班 機在蘇格蘭洛克比上空爆炸,並造成二百七十人罹難的悲劇,當時曾 於飛機殘骸中發現PETN的成分。^⑩還有一次是著名的"鞋子炸彈客" 事件。^⑤一名自巴黎搭乘美國航空班機的乘客,意圖引爆藏於鞋底的 PETN,所幸機組人員與乘客機警制伏,避免一場可能發生的悲劇。

[☺] 一九九三年二月二十六日,恐怖分子在紐約世貿大樓外側引爆汽車炸彈,造成六人喪 生,一干多人受傷。紐約世貿大樓已於二〇〇一年的九一一攻擊事件中化為灰燼。

[◎] 一九九五年四月十九日,一輛滿載炸藥的卡車在奧克拉荷馬市的聯邦大樓引爆,造成 包括十九名兒童在内的一六八人喪生,六七四人受傷。主嫌麥克維為美國激進派,已 於二〇〇一年伏法。此爆炸案為美國本土傷亡第二慘重的不幸事件。

2. Extent of reaction, p

The extent of reaction, **p**, is the number of monomer units which have reacted

Normally it is expressed as a percentage of the originally monomer available

If p = 0.99 or 99%, it means that 99% of the monomers have been used up

3. Degree of polymerization,

Degree of polymerization of all polymer molecules in any system is simply the original number of molecules (\mathbf{N}_{o}) divided by the number of molecules at the end of reaction (\mathbf{N})

i.e. **=**

$$\mathbf{x} \operatorname{CH}_2 = \operatorname{CH}_2 \quad ---- \rightarrow \mathbf{x}/\mathbf{y} \ (R - Q \mathbf{N}_2) - \operatorname{CH}_2 - R \ (N)_{\mathbf{y}}$$

Thus,
$$= = = y$$

If
$$x = 1000$$
, $y = 500$
i.e. $N_0 = x = 1000$, $N = x/y = 2$
 $\therefore = N_0/N = 500 = y$

 $ightharpoonup Molecular weight = M_r \times DP$ (i.e. y), where M_r is the molecular weight of monomer

If for polypropylene is 252,000, what is its?

Hint:

$$nCH_2 = CHCH_3 \longrightarrow R-(CH_2CHCH_3)_n-R$$

Solution

► Molar mass of propylene = 42

> therefore = 252,000/42 = 6000

4. Carothers equation

Relationship between DP and p is known as Carothers equation

⇒DP = 1/(1 - p), applies to **step**growth polymerization (condensation) ONLY


```
p = 50\%, DP = 1/(1 - 0.5) = 2
\mathbf{p} = 95\%, DP = 1/(1 - 0.95) = 20
\mathbf{p} = 98\%, DP = 1/(1 - 0.98) = 50
p = 99.99\%, DP = 1/(1 - 0.9999) =
10,000
```

- ►In a single polymeric molecule, DP is the number of monomers joined together
- But in most polymers, a mixture of different molecular size is obtained so DP is an average value

$$100 \text{ M}_{o} -- \rightarrow [\text{M}_{o}]_{20} + [\text{M}_{o}]_{25} + [\text{M}_{o}]_{10} + [\text{M}_{o}]_{30} + [\text{M}_{o}]_{15}$$

average = 20

$$N_o = 100, N = 5$$

average = 20

Example 2

5 HOOC
$$\longrightarrow$$
 NH $_2$

HOOC \longrightarrow NH $_2$

+
HOOC \longrightarrow NH $_2$

NH $_2$

NH $_2$

or

or