Übersichtstabellen zum SI-Einheitensystem

- SI-Basiseinheiten
- Einheitenvorsätze (Zehnerpotenzen)
- Physikalische Größen mit Einheiten
- Physikalische Konstanten

Tabelle der SI-Basiseinheiten						
Basisgröße Z	Zeichen	SI-Einheit				
Länge	1	1 m	Meter			
Masse	m	1 kg	Kilogramm			
Zeit	t	1 s	Sekunde			
Stromstärke	I	1 A	Ampere			
Temperatur	T	1 K	Kelvin			
Stoffmenge	n	1 mol	Mol			
Lichtstärke		1 cd	Candela			

Tabelle der SI-Vorsätze					
Name	Vorsatz	Faktor			
Peta	Р	10^{15}			
Tera	T	10^{12}			
Giga	G	10^{9}			
Mega	M	10^{6}			
Kilo	k	10^{3}			
Hekto	h	10^{2}			
Dezi	d	10^{-1}			
Zenti	С	10^{-2}			
Milli	m	10^{-3}			
Mikro	μ	10^{-6}			
Nano	n	10^{-9}			
Piko	p	10^{-12}			
Femto	f	10^{-15}			
Atto	a	10^{-18}			

Übersichtstabelle der physikalischen Größen und ihrer Einheiten

Name der Größe	Zeichen	Einheit		SI-Einheit [†]	def. Formel [‡]
Aktivität	A	1 Bq	(Becquerel)	<u>1</u> s	$A = -\frac{\Delta N}{\Delta t}$
Beschleunigung	а	$1 \frac{m}{s^2}$		$1 \frac{m}{s^2}$	$a = \frac{\Delta v}{\Delta t}$
Drehimpuls	L	1 N m s		$1\frac{\text{kg m}^2}{\text{s}}$	$L = J \cdot \omega$
Drehmoment	M	1 N m		$1 \frac{\text{kg m}^2}{\text{s}^2}$	$M = r \cdot F$
Druck	p	1 Pa	(Pascal)	$1\frac{N}{m^2}$	$p = \frac{F}{A}$
Elektrische Feldstärke	Ε	$1\frac{V}{m}$		$1\frac{N}{As}$	$E = \frac{F}{Q}$
Energie (elektr.)	$E_{\rm el.}$	1 J	(Joule)	1VAs	$E_{\rm el.} = Q \cdot U$
Leistung (elektr.)	P	1 W	(Watt)	1VA	$P = U \cdot I$
Fläche	A	$1\mathrm{m}^2$	(Quadratmeter)		$A = l \cdot b$
Frequenz	f	1 Hz	(Hertz)	$\frac{1}{s}$	$f = \frac{N}{t}$
Geschwindigkeit	v	$1\frac{m}{s}$		$1\frac{m}{s}$	$v=rac{\Delta s}{\Delta t}$
Impuls	p	1 Hy	(Huygens)	$1\frac{\text{kg m}}{\text{s}}$	$p = m \cdot v$
Induktivität	L	1H	(Henry)	$1\frac{Vs}{A}$	$L = U_L / \left(\frac{\Delta I}{\Delta t} \right)$
Intensität	I	$1\frac{W}{m^2}$		$1\frac{\mathrm{kg}}{\mathrm{s}^3}$	$I = \frac{\Delta W}{A \Delta t}$
Kapazität	С	1 F	(Farad)	$1\frac{As}{V}$	$C = \frac{Q}{U}$
Kraft	F	1 N	(Newton)	$1 \frac{m kg}{s^2}$	$F = m \cdot a$
Ladung	Q	1 C	(Coulomb)	1 A s	$Q = I \cdot t$
Leistung	P	1 W	(Watt)	$1\frac{Nm}{s}$	$P = \frac{W}{t}$
Magnetische Feldstärke	В	1 T	(Tesla)	$1\frac{\mathrm{V}\mathrm{s}}{\mathrm{m}^2}$	$B = \frac{F}{Is}$
Magnetischer Fluss	Φ	1Wb	(Weber)	1Vs	$\Phi = B \cdot A$
Energie (mechanisch)	$E_{\rm me.}$	1 J	(Joule)	1Nm	$E_{\text{me.}} = F \cdot s$
Potenzial	arphi	1 V	(Volt)	$1\frac{Nm}{As}$	$arphi=rac{W}{Q}$
Spannung	U	1 V	(Volt)	$1\frac{Nm}{As}$	$U=\Delta arphi$
Wasserstromstärke	I_W	$1\frac{m^3}{s}$		$1 \frac{m^3}{s}$	$I_W = \frac{\Delta v}{\Delta t}$
Trägheitsmoment	J	1 N m	s^2	$1 \text{kg} \text{m}^2$	$J = \frac{M}{\alpha}$
Volumen	V	$1\mathrm{m}^3$	(Kubikmeter)		$V = l \cdot b \cdot h$
Wellenlänge	λ	1 m			$\lambda = \frac{c}{f}$
Widerstand	R	1Ω	(Ohm)	$1\frac{V}{A}$	$R = \frac{U}{T}$
Winkel	θ	1 rad	(Bogenmaß)	1	$ heta=rac{b}{r}$
Winkelgeschwindigkeit	ω	$\frac{1}{s}$		$\frac{1}{s}$	$\omega = rac{\Delta heta}{\Delta t}$
Winkelbeschleunigung	α	$\frac{1}{s^2}$		$\frac{1}{s^2}$	$\alpha = \frac{\Delta\omega}{\Delta t}$

^{*} Für manche Größen wird dasselbe Zeichen verwendet, z.B. A für Fläche wie auch für Aktivität.

[†] Als SI-Einheit wird die Einheit der Größe in andere Einheiten zerlegt (m, kg, s, A, als auch N und V).

 $^{^{\}ddagger}$ Bei den definierenden Formeln wird der entsprechende Kontext angenommen. Einige Größen sind nicht angegeben, etwa Bogenlänge b und Radius r bei der Definition des Winkels θ , oder die Anzahl N bei der Frequenz.

Übersichtstabelle der physikalischen Konstanten

Name	Zeichen	Größenwert [†]	Beziehung
Atomare Masseneinheit	1 u	$1,66 \cdot 10^{-27} \mathrm{kg}$	$1 u = \frac{1}{12} m(^{12}C)$
Avogadro-Konstante	N_A	$6.02 \cdot 10^{23} \frac{1}{\text{mol}}$	
Boltzmann-Konstante	k_B	$1.38 \cdot 10^{-23} \frac{J}{K}$	
Elektrische Feldkonstante	$arepsilon_0$	$8.85 \cdot 10^{-12} \frac{\mathrm{As}}{\mathrm{Vm}}$	$\varepsilon_0 = \frac{1}{\mu_0 c^2}$
Elektronenvolt	1 eV	$1,602 \cdot 10^{-19} \mathrm{J}$	$1\mathrm{eV} = e \cdot 1\mathrm{V}$
Elementarladung	e	$1,602 \cdot 10^{-19} \mathrm{C}$	
Erdbeschleunigung	8	$9,81 \frac{m}{s^2}$	$g = \gamma \cdot \frac{m_E}{r_E^2}$
Gravitationskonstante	γ	$6,67 \cdot 10^{-11} \frac{\mathrm{m}^3}{\mathrm{kg s}^2}$	
Lichtgeschwindigkeit	С	$3,00 \cdot 10^8 \frac{\text{m}}{\text{s}}$	$c = \sqrt{\frac{1}{\varepsilon_0 \mu_0}}$
Magnetische Feldkonstante	μ_0	$4\pi\cdot 10^{-7}\tfrac{N}{A^2}$	$\mu_0 = \frac{1}{\varepsilon_0 c^2}$
Masse des Elektrons	m_e	$9,11 \cdot 10^{-31} \mathrm{kg}$	
Masse des Neutrons	m_n	1,0087 u	
Masse des Protons	m_p	1,0073 u	
Masse des Wasserstoffatoms	m_H	1,0078 u	
Plancksches Wirkungsquantum	h	$6,626 \cdot 10^{-34} \mathrm{J}\mathrm{s}$	
Spezifische Ladung des Elektrons	$\frac{e}{m_e}$	$1,76 \cdot 10^{11} \frac{C}{kg}$	
Molare Gaskonstante	R_m	$8,31 \cdot 10^3 \frac{J}{K \text{ kmol}}$	$R_m = N_A \cdot k_B$

 $^{^{\}dagger}$ Der Größenwert ist auf drei bzw. vier Stellen gerundet, auch bei exakt definierten Größen. Eine Ausnahme bildet die magnetische Feldkonstante μ_0 , die als Vielfaches von π angegeben ist. Werte entnommen aus der Codata-Datenbank, 2006.