

Data Science Assignment Chapter 5

Mardhani Dwi Novianto - DS03239

Kompi K

Models

Data yang digunakan untuk modeling

Rang	ss 'pandas.core.frame.D eIndex: 100409 entries, columns (total 9 colum	0 to 100408	
#	Column	Non-Null Count	Dtype
0	customer_id	100409 non-null	object
1	payment type	100409 non-null	object
2	total_order	100409 non-null	int64
	total installments	100409 non-null	int64
4	total payment	100409 non-null	int64
5	first segmentation	100409 non-null	object
6	basket size	100409 non-null	int64
7	monetary segmentation	100409 non-null	object
8	segmentation churn	100409 non-null	object
	es: int64(4), object(5) ry usage: 6.9+ MB		

Model yang dibuat

	==Comparison Base Model	liı	ng
Accuracy model	Logistic Regression		0.5982969823722737
Accuracy model	K Nearest Neighbor		0.7553032566477442
Accuracy model	Decision Tree		0.8317398665471567
Accuracy model	Random Forest		0.8403047505228562
Accuracy model	Naive Bayes		0.4027985260432228
Accuracy model	AdaBoost		0.8565879892440992

Dibuat 6 model Klasifikasi

- . Logistic Regression
- 2. K Nearest Neighbor
- 3. Decision Tree
- 1. Random Forest
- 5. Naive Bayes
- 6. AdaBoost

Diperoleh Akurasi tertinggi yaitu Model AdaBoost dengan akurasi 0.8565879892440992 atau 85.65%

Increase Performance

Add Features

<class 'pandas.core.frame.DataFrame'> Int64Index: 100409 entries, 0 to 100408 Data columns (total 13 columns): Column Non-Null Count Dtvpe customer id 100409 non-null object payment type 100409 non-null object total order 100409 non-null int64 total installments 100409 non-null int64 total payment 100409 non-null int64 first segmentation 100409 non-null object basket size 100409 non-null int64 monetary segmentation 100409 non-null object segmentation churn 100409 non-null object diff approved purchase 100409 non-null int64 10 diff carrier approved 100409 non-null int64 11 diff delivered carrier 100409 non-null int64 12 diff estimated delivered 100409 non-null int64 dtypes: int64(8), object(5) memory usage: 10.7+ MB

Membandingkan model 1 dan 2

```
=====Comparison Model 1 dan 2=====
Accuracy model Logistic Regression
Model 1: 0.5982969823722737
Model 2: 0.6116422667065033
Accuracy model K Nearest Neighbor
Model 1: 0.7553032566477442
Model 2: 0.5934169903396076
Accuracy model Decision Tree
Model 1: 0.8328353749626531
Model 2: 0.8338810875410816
Accuracy model Random Forest
Model 1: 0.8399063838263121
Model 2: 0.8652524648939348
Accuracy model Naive Bayes
Model 1: 0.4027985260432228
Model 2: 0.40947116821033763
Accuracy model AdaBoost
Model 1: 0.8565879892440992
Model 2: 0.8631112439000099
```

Diperoleh Akurasi tertinggi yaitu Model ke-2 dari model Random Forest dengan akurasi 0.8652524648939348 atau 86.52%

Increase Performance

Hyperparameter Tuning

Untuk model Decision Tree

Menggunakan max_depth dan max_leaf_nodes

Untuk model Random Forest

Menggunakan n_estimators dan max_features

Diperoleh Akurasi tertinggi yaitu Model ke-2 dari model **Random Forest** dengan akurasi 0.8652524648939348 atau 86.52%

Comparison Model	
Accuracy model Logistic Regression 1. Base Modeling 1 2. Modeling 2 (After add features)	: 0.5982969823722737 : 0.6116422667065033
Accuracy model K Nearest Neighbor 1. Base Modeling 1 2. Modeling 2 (After add features)	: 0.7553032566477442 : 0.5934169903396076
Accuracy model Decision Tree 1. Base Modeling 1 2. Modeling 2 (After add features) 3. Modeling After Hyperparameter Tuning using max_depth 4. Modeling After Hyperparameter Tuning using max_leaf_nodes	: 0.8328353749626531 : 0.8338810875410816 : 0.8565879892440992 : 0.8617667562991734
Accuracy model Random Forest 1. Base Modeling 1 2. Modeling 2 (After add features) 3. Modeling After Hyperparameter Tuning using n_estimators 4. Modeling After Hyperparameter Tuning using max_features	: 0.8399063838263121 : 0.8652524648939348 : 0.8500647345881884 : 0.8637585897818942
Accuracy model Naive Bayes 1. Base Modeling 1 2. Modeling 2 (After add features)	: 0.4027985260432228 : 0.40947116821033763
Accuracy model AdaBoost 1. Base Modeling 1 2. Modeling 2 (After add features)	: 0.8565879892440992 : 0.8631112439000099

Segmentation

Model Random Forest sebagai model yang terbaik dalam percobaan ini sehingga yang dapat digunakan untuk modeling dan predicting Churn.

Berdasarkan model yang dibangun, diperoleh segmentasi Churn sebagai berikut:

Segmentasi Churn Customer, sebanyak 59.7% atau 59913 orang, sementara sisanya 40.3% atau 40496 orang termasuk dalam segmentasi Non-Churn Customer

Solution

Berdasarkan Segmentasi Churn yang diperoleh,

Dengan meninjau fitur-fitur yang digunakan untuk modeling,

Maka menurut saya, terdapat beberapa cara yang dapat digunakan

untuk meminimalisir jumlah pelanggan yang melakukan churn :

- Jarak waktu antara produk yang dipesan dengan pesanan yang dikonfirmasi, dapat dipercepat, dengan kata lain pelayanan harus ditingkatkan.
- Jarak waktu antara pesanan dikonfirmasi dengan pesanan dikirim atau sampai, lebih baik dipersingkat atau dipercepat sehingga pelanggan tidak menunggu lama, dan segera mendapatkan update terbaru.
- 3. Dapat diupayakan adanya promo/reward atau fitur-fitur baru yang dapat memberikan kepuasan terhadap pelanggan. Dengan adanya kepuasan dari pelanggan, dapat meningkatkan pembelian dan berdampak pada rate atau basket size yang meningkat, juga secara tidak langsung dapat menambah profit perusahaan.

	columns (total 13 columns			
#	Column	Non-Nu	ll Count	Dtype
0	customer_id		non-null	object
1	payment_type	100409	non-null	object
2	total_order	100409	non-null	int64
	total_installments	100409	non-null	int64
4	total_payment	100409	non-null	int64
	first_segmentation	100409	non-null	object
	basket_size	100409	non-null	int64
	monetary_segmentation	100409	non-null	object
8	segmentation_churn	100409	non-null	object
	diff_approved_purchase	100409	non-null	int64
10	diff_carrier_approved	100409	non-null	int64
11	diff_delivered_carrier	100409	non-null	int64
12	diff estimated delivered	100409	non-null	int64