Setup

Consider the following setup. Let $(X, Y_1, Y_2, \delta) \stackrel{ind}{\sim} F$ for some distribution F that is unknown. We define $Z = (X, Y_1, Y_2 \text{ and we observe the following:}$

Table 1: This table shows some of our notation and some of the corresponding notation from [1].

Segments	X	Y_1	Y_2	Prob. Element in Segment	δ	C	$G_C(Z)$
A_{00}	\checkmark			π_{00}	δ_{00}	1	$\{X\}$
A_{10}	\checkmark	\checkmark		π_{10}	δ_{10}	2	$\{X, Y_1\}$
A_{01}	\checkmark		\checkmark	π_{01}	δ_{01}	3	$\{X,Y_2\}$
A_{11}	\checkmark	\checkmark	\checkmark	π_{11}	δ_{11}	∞	$\{X,Y_1,Y_2\}$

Define $\varpi(r,Z) = \Pr(C = r \mid Z)$. For now, we assume that $\varpi(r,Z)$ is known. Notice that $\varpi(\infty,Z) = \pi_1 1$, $\varpi(3,Z) = \pi_{01}$, $\varpi(2,Z) = \pi_{10}$, and $\varpi(1,Z) = \pi_{00}$. Since $\pi_{00} + \pi_{10} + \pi_{01} + \pi_{11} = 1$, we only need to define three inclusion probabilities.

Suppose that we want to estimate $\theta = E[g(X, Y_1, Y_2)]$ for a known function g. The goal is the show that over all functions $b_1(X, Y_1)$ and $b_2(X, Y_2)$, we have the optimal estimator in the form:

$$\hat{\theta} =$$

$$n^{-1} \sum_{i=1}^{n} E[g_i \mid X_i] + n^{-1} \sum_{i=1}^{n} \frac{\delta_{10}}{\pi_{10}} (b_1(X_i, Y_{1i}) - E[g_i \mid X_i]) + n^{-1} \sum_{i=1}^{n} \frac{\delta_{01}}{\pi_{01}} (b_2(X_i, Y_{2i}) - E[g_i \mid X_i])$$

$$+ n^{-1} \sum_{i=1}^{n} \frac{\delta_{11}}{\pi_{11}} (g_i - b_1(X_i, Y_{1i}) - b_2(X_i, Y_{2i}) + E[g_i \mid X_i])$$

$$(1)$$

Semiparametric Inference

We know from Theorem 7.2 of [1] that if $\Pr(C = \infty \mid Z) = \pi_{11} > 0$ then the semiparametric influence function has the form (see page 20 of notes):

$$\frac{I(C=\infty)g(Z)}{\varpi(\infty,Z)} + \frac{I(C=\infty)}{\varpi(\infty,Z)} \left(\sum_{r \neq \infty} \varpi(r, G_r(Z)) L_{2r}(G_r(Z)) \right) - \sum_{r \neq \infty} I(C=r) L_{2r}(G_r(Z))$$
 (2)

where $L_{2r}(G_r(Z))$ is an arbitrary function of $G_r(Z)$. Notice, that this form does not identify the optimal estimator but a class of semiparametric functions. A reasonable choice of an estimator for $L_{2r}(G_r(Z))$ is

$$L_{2r}(G_r(Z)) = c_r E[g(Z) \mid G_r(Z)]$$

where each c_r is a constant. This actually suggests a variety of estimators that each have different values of coefficients of δ . Initially, we tried a direct projection onto the nuisance tangent space, but I got stuck. See Appendix A for this work.

Different Classes of Estimators

All of the considered estimators have a similar form:

$$\hat{\theta} = \frac{\delta_{11}}{\pi_{11}} g(Z) + \beta_0(\delta, c_0) E[g(Z) \mid X] + \beta_1(\delta, c_1) E[g(Z) \mid X, Y_1] + \beta_2(\delta, c_2) E[g(Z) \mid X, Y_2].$$

In this case, c is a vector of constants $c = (c_0, c_1, c_2)$ that are chosen to minimize the variance of $\hat{\theta}$. See Appendix B for details on an example about choosing the values of \hat{c} .

Estimator	$\beta_0(\delta, c_0)$ $\beta_1(\delta, c_1)$	Implemented
$\hat{ heta}_{prop}$	$\left(1 - \frac{(\delta_{10} + \delta_{11})}{(\pi_{10} + \pi_{11})} - \frac{(\delta_{01} + \delta_{11})}{(\pi_{01} + \pi_{11})} + \frac{\delta_{11}}{\pi_{11}}\right) \qquad \left(\frac{\delta_{10} + \delta_{11}}{\pi_{10} + \pi_{11}} - \frac{\delta_{11}}{\pi_{11}}\right)$	✓
$\hat{ heta}_{prop}^{ind}$	$\left(1 - \frac{(\delta_{10})}{(\pi_{10})} - \frac{(\delta_{01})}{(\pi_{01})} + \frac{\delta_{11}}{\pi_{11}}\right) \qquad \left(\frac{\delta_{10}}{\pi_{10}} - \frac{\delta_{11}}{\pi_{11}}\right)$	\checkmark
$\hat{ heta}_c$	$c_0 \left(1 - \frac{(\delta_{10} + \delta_{11})}{(\pi_{10} + \pi_{11})} - \frac{(\delta_{01} + \delta_{11})}{(\pi_{01} + \pi_{11})} + \frac{\delta_{11}}{\pi_{11}} \right) c_1 \left(\frac{\delta_{10} + \delta_{11}}{\pi_{10} + \pi_{11}} - \frac{\delta_{11}}{\pi_{11}} \right)$	
$\hat{ heta}_{c,ind}$	$c_0 \left(1 - \frac{(\delta_{10})}{(\pi_{10})} - \frac{(\delta_{01})}{(\pi_{01})} + \frac{\delta_{11}}{\pi_{11}} \right) \qquad c_1 \left(\frac{\delta_{10}}{\pi_{10}} - \frac{\delta_{11}}{\pi_{11}} \right)$	\checkmark
$\hat{ heta}_{\delta}$	$c_0 \left(\frac{\delta_{11}}{\pi_{11}} - \frac{\delta_{00}}{\pi_{00}} \right) \qquad c_1 \left(\frac{\delta_{11}}{\pi_{11}} - \frac{\delta_{10}}{\pi_{10}} \right)$	✓

Simulation Studies

Simulation 1

To see which of these estimators is the best, we run a simulation study. In this study, we have the following variables:

$$\begin{bmatrix} x \\ e_1 \\ e_2 \end{bmatrix} \stackrel{ind}{\sim} N \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & \rho \\ 0 & \rho & 1 \end{bmatrix} \end{pmatrix}$$
$$y_1 = x + e_1$$
$$y_2 = \theta + x + e_2$$

Furthermore, $\pi_{11} = 0.4$ and $\pi_{00} = \pi_{10} = \pi_{01} = 0.2$. The goal of this simulation study is to find $\theta = E[Y_2]$. In other words, $g(Z) = Y_2$. There are several algorithms for comparison which are defined as the following:

$$Oracle = n^{-1} \sum_{i=1}^{n} g(Z_{i})$$

$$CC = \frac{\sum_{i=1}^{n} \delta_{11} g(Z_{i})}{\sum_{i=1}^{n} \delta_{11}}$$

$$IPW = \sum_{i=1}^{n} \frac{\delta_{11}}{\pi_{11}} g(Z_{i})$$

Table 2: The true value of θ is 5. $\rho = 0.5$. The test statistic and p-value are from a one-sample t-test to see if the estimator is biased.

Algorithm	Bias	SD	Tstat	Pval
Oracle	0.001	0.044	1.546	0.061
CC	0.002	0.058	1.549	0.061
IPW	0.006	0.210	1.504	0.066
$\hat{ heta}_{prop}$	0.002	0.051	1.911	0.028
$\hat{ heta}_{prop}^{ind}$	0.002	0.091	0.983	0.163
$\hat{ heta}_{c,ind}$	0.001	0.074	0.784	0.216
$\hat{ heta}_{\delta}$	0.002	0.051	1.964	0.025

The main takeaway from this simulation study is that $\hat{\theta}_{\delta}$ and $\hat{\theta}_{prop}$ have the smallest standard deviation among the non-oracle estimators.

Simulation 2

We now test a second simulation study. The setup of this simulation study is the same as the previous simulation. The only difference is that we are interested in estimating $\theta = E[Y_1^2 Y_2]$. In other words, now we have $g(Z) = Y_1^2 Y_2$.

Like the first simulation, $\hat{\theta}_{prop}$ and $\hat{\theta}_{\delta}$ performed the best.

Table 3: The true value of $E[g(Z)]$ is 10. $\rho = 0.5$.	The test statistic and p-value are from a
one-sample t-test to see if the estimator is biased.	

Algorithm	Bias	SD	Tstat	Pval
Oracle	0.007	0.529	0.741	0.229
CC	0.023	0.824	1.518	0.065
IPW	0.031	0.915	1.846	0.032
$\hat{ heta}_{prop}$	0.011	0.635	0.912	0.181
$\hat{ heta}_{c,ind}$	0.013	0.662	1.060	0.145
$\hat{ heta}_{\delta}$	0.011	0.636	0.983	0.163

Next Steps

1. It turns out that [1] contains a general technique for solving non-monotone missing data. They show that the optimal estimator is found via the following double projection:

$$L_2 = \Pi\left(\Pi\left(\frac{\delta_{11}}{\pi_{11}}g(Z) \mid C, G_C(Z)\right) \mid Z\right)$$

I can show that $\hat{\theta}_{\delta}$ is NOT such a double projection. However, I think it is worth exploring what such an estimator (especially if we consider a linear estimator) looks like.

2. Similar to the previous point, [1] discuss what the optimal estimator of a non-monotone problem looks like and they determine that it solves the estimating equation

$$\sum_{i=1}^{n} \mathcal{L}(\mathcal{M}^{-1}(g(Z)))$$

where $\mathcal{M}(g(Z)) = E[\mathcal{L}(g(Z)) \mid Z]$ and $\mathcal{L}(g(Z)) = E[g(Z) \mid C, G_C(Z)]$. The difficult part is understanding \mathcal{M}^{-1} , but there is conveniently the fact that

$$\mathcal{M}^{-1}(g(Z)) = \lim_{n \to \infty} \phi_{n+1}(Z) \text{ where } \phi_{n+1}(Z) = (I - \mathcal{M})\phi_n(Z) + g(Z) \text{ and } \phi_0(Z) = g(Z).$$

I have been investigating what this estimating equation yields if we approximate \mathcal{M}^{-1} with ϕ_1 . However, I have not finished this yet.

3. A different method to find the projection onto Λ_2 could be to try to minimize the (KL) divergence between L_2 and $\frac{\delta_{11}}{\pi_{11}}g(Z)$.

References

[1] Anastasios A Tsiatis. "Semiparametric theory and missing data". In: (2006).

A Linear Expectations

To simplify this problem, we consider the following estimator¹:

$$\hat{\theta}_{c} = \frac{\delta_{11}}{\pi_{11}} g(Z) + \left(1 - \left(\frac{\delta_{10} + \delta_{11}}{\pi_{10} + \pi_{11}}\right) - \left(\frac{\delta_{01} + \delta_{11}}{\pi_{01} + \pi_{11}}\right) + \frac{\delta_{11}}{\pi_{11}}\right) c_{0} E[g \mid X]
+ \left(\left(\frac{\delta_{10} + \delta_{11}}{\pi_{10} + \pi_{11}}\right) - \frac{\delta_{11}}{\pi_{11}}\right) c_{1} E[g \mid X, Y_{1}] + \left(\left(\frac{\delta_{01} + \delta_{11}}{\pi_{01} + \pi_{11}}\right) - \frac{\delta_{11}}{\pi_{11}}\right) c_{2} E[g \mid X, Y_{2}]$$
(3)

A.1 Projection onto Nuisance Tangent Space

The goal is now to find the coefficients c_0, c_1 , and c_2 such that $\langle \hat{\theta}_c, L_2 \rangle \equiv E[\hat{\theta}_c L_2] = 0$ for all $L_2 \in \Lambda_2$ (see [1] for definition of Λ_2). If we can find such coefficients that the estimator $\hat{\theta}_c$ will be orthogonal to Λ_2 and hence by Theorem 10.1 of [1] semiparametrically optimal. The good news is that we know (from Theorem 7.2) that any element $L_2 \in \Lambda_2$ has a form:

$$L_{2} = \left(\frac{\delta_{11}}{\pi_{11}}\pi_{00} - \delta_{00}\right)L_{20}(X) + \left(\frac{\delta_{11}}{\pi_{11}}\pi_{10} - \delta_{10}\right)L_{21}(X, Y_{1}) + \left(\frac{\delta_{11}}{\pi_{11}}\pi_{01} - \delta_{01}\right)L_{22}(X, Y_{2}). \tag{4}$$

Then expanding and solving $E[\hat{\theta}_c L_2] = 0$ yields:

$$\begin{split} &0 = E[\hat{\theta}_c L_2] \\ &E\left[\left(\frac{\pi_{00}}{\pi_{11}} + \left(\frac{\pi_{10}}{\pi_{10} + \pi_{11}}\right) \frac{\pi_{00} c_1}{\pi_{11}} + \left(\frac{\pi_{01}}{\pi_{01} + \pi_{11}}\right) \frac{\pi_{00} c_2}{\pi_{11}} + \frac{\pi_{00} (\pi_{10} \pi_{01} - \pi_{11}^2) c_0}{(\pi_{10} + \pi_{11}) (\pi_{01} + \pi_{11}) \pi_{11}}\right) E[g \mid X] L_{20}(X) \\ &+ \frac{\pi_{10}}{\pi_{11}} \left(E[g(Z) L_{21}(X, Y_1) \mid X] - c_1 E[E[g(Z) \mid X, Y_1] L_{21}(X, Y_1) \mid X] + \frac{\pi_{01} c_2}{\pi_{10} + \pi_{11}} E[E[g \mid X, Y_2] L_{21}(X, Y_1) \mid X] + \frac{\pi_{10} \pi_{01}}{\pi_{11} (\pi_{01} + \pi_{11})} E[g \mid X] E[L_{21}(X, Y_1) \mid X] c_0 \right) \\ &+ \frac{\pi_{01}}{\pi_{11}} \left(E[g(Z) L_{22}(X, Y_2) \mid X] + \frac{\pi_{10} c_1}{\pi_{10} + \pi_{11}} E[E[g(Z) \mid X, Y_1] L_{22}(X, Y_2) \mid X] - c_2 E[E[g \mid X, Y_2] L_{22}(X, Y_2) \mid X] + \frac{\pi_{10}}{(\pi_{01} + \pi_{11})} E[g \mid X] E[L_{22}(X, Y_2) \mid X] c_0 \right) \right] \end{split}$$

To solve for c_0, c_1 , and c_2 we need the following to hold for any $L_{21}(X, Y_1)$ and $L_{22}(X, Y_2)$:

$$\begin{split} &1 + c_0 \frac{\pi_{01}\pi_{10} - \pi_{11}^2}{(\pi_{10} + \pi_{11})(\pi_{01} + \pi_{11})} + c_1 \frac{\pi_{10}}{\pi_{01} + \pi_{11}} + c_2 \frac{\pi_{01}}{\pi_{01} + \pi_{11}} = 0 \\ &E\left[\left(g(Z) + c_0 \frac{\pi_{01}}{\pi_{01} + \pi_{11}} E[g(Z) \mid X] - c_1 E[g(Z) \mid X, Y_1] + c_2 \frac{\pi_{01}}{\pi_{10} + \pi_{11}} E[g(Z) \mid X, Y_2]\right) L_{21}(X, Y_1) \mid X\right] = 0 \\ &E\left[\left(g(Z) + c_0 \frac{\pi_{10}}{\pi_{10} + \pi_{11}} E[g(Z) \mid X] + c_1 \frac{\pi_{10}}{\pi_{10} + \pi_{11}} E[g(Z) \mid X, Y_1] - c_2 E[g(Z) \mid X, Y_2]\right) L_{22}(X, Y_2) \mid X\right] = 0 \end{split}$$

Unfortunately, I am now stuck because it is unclear to me how to use any actual data to solve this problem.

¹This estimator has slightly different coefficients compared to the initial estimator.

B Solving for \hat{c}

We can find the values of c_0 , c_1 , and c_2 in $\hat{\theta}_c$ that minimize the variance the estimator. We can find these values by differentiating by c_i and solving for c_i :

$$\begin{bmatrix} \hat{c}_{0} \\ \hat{c}_{1} \\ \hat{c}_{2} \end{bmatrix} = - \begin{bmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{bmatrix}^{-1} \times \begin{bmatrix} E[E[g \mid X]^{2}] \left(1 + \frac{\pi_{10}\pi_{01} - \pi_{11}^{2}}{\pi_{11}(\pi_{10} + \pi_{11})(\pi_{01} + \pi_{11})}\right) \\ E[E[g \mid X, Y_{1}]^{2}] \left(\frac{-\pi_{10}}{\pi_{11}(\pi_{10} + \pi_{11})}\right) \\ E[E[g \mid X, Y_{2}]^{2}] \left(\frac{-\pi_{01}}{\pi_{11}(\pi_{01} + \pi_{11})}\right) \end{bmatrix}$$

where

$$\begin{split} M_{11} &= E[E[g \mid X]^2] \left(\frac{\pi_{11}^2 + \pi_{10}\pi_{01}}{\pi_{11}(\pi_{10} + \pi_{11})(\pi_{01} + \pi_{11})} - 1 \right) \\ M_{12} &= E[E[g \mid X]^2] \left(\frac{-\pi_{10}\pi_{01}}{\pi_{11}(\pi_{10} + \pi_{11})(\pi_{01} + \pi_{11})} \right) \\ M_{13} &= E[E[g \mid X]^2] \left(\frac{-\pi_{10}\pi_{01}}{\pi_{11}(\pi_{10} + \pi_{11})(\pi_{01} + \pi_{11})} \right) \\ M_{22} &= E[V(E[g \mid X, Y_1] \mid X)] \left(\frac{\pi_{10}}{\pi_{11}(\pi_{10} + \pi_{11})} \right) \\ M_{23} &= E[E[g \mid X, Y_1] E[g \mid X, Y_2]] \left(\frac{\pi_{10}\pi_{01}}{\pi_{11}(\pi_{10} + \pi_{11})(\pi_{01} + \pi_{11})} \right) \\ M_{33} &= E[V(E[g \mid X, Y_2] \mid X)] \left(\frac{\pi_{01}}{\pi_{11}(\pi_{01} + \pi_{11})} \right) \end{split}$$

This estimator is similar to several other estimators:

$$\hat{\theta}_{c}^{ind} = \frac{\delta_{11}}{\pi_{11}} g(Z) + \left(1 - \left(\frac{\delta_{10}}{\pi_{10}} \right) - \left(\frac{\delta_{01}}{\pi_{01}} \right) + \frac{\delta_{11}}{\pi_{11}} \right) c_0 E[g \mid X]$$

$$+ \left(\frac{\delta_{10}}{\pi_{10}} - \frac{\delta_{11}}{\pi_{11}} \right) c_1 E[g \mid X, Y_1] + \left(\frac{\delta_{01}}{\pi_{01}} - \frac{\delta_{11}}{\pi_{11}} \right) c_2 E[g \mid X, Y_2]$$
(5)

$$\hat{\theta}_{c}^{\delta} = \frac{\delta_{11}}{\pi_{11}} g(Z) + \left(\frac{\delta_{11}}{\pi_{11}} - \frac{\delta_{00}}{\pi_{00}}\right) c_{0} E[g \mid X]$$

$$+ \left(\frac{\delta_{11}}{\pi_{11}} - \frac{\delta_{10}}{\pi_{10}}\right) c_{1} E[g \mid X, Y_{1}] + \left(\frac{\delta_{11}}{\pi_{11}} - \frac{\delta_{01}}{\pi_{01}}\right) c_{2} E[g \mid X, Y_{2}]$$
(6)

The first expression (Equation 5) is the proposed estimator with independent differences in each segment, while the second expression (Equation 6) is the optimal estimator with values of δ such that $\hat{\theta}_c^{\delta} \in \Lambda_2$, which means that it has the form of the semiparametric in Equation 2.