Solving Linear DSGE Models with Newton Methods

Alexander Meyer-Gohde Johanna Saecker

Goethe University Frankfurt Institute for Monetary and Financial Stability (IMFS)

> saecker@hof.uni-frankfurt.de meyer-gohde@econ.uni-frankfurt.de

ESEM-EEA 2023, Barcelona

August 30, 2023

Overview

Problem Statement

Newton-based Methods

Results

Problem Statement

Existing methods:

- using QZ/generalized Schur decomposition: Adjemian et al. (2011), Sims (2001), Uhlig (1999), Klein (2000)
- ▶ other: Anderson (2010), Binder and Pesaran (1997), Adjemian et al. (2011)

Research question:

Can Newton-based methods be an interesting alternative for solving linear DSGE models?

Results: YES!

- gains in accuracy compared to Dynare's QZ-based solution
- ▶ if good starting guess → gains in speed

Problem Statement

Nonlinear DSGE model approximated linearly around the steady state

$$0 = AE_t[y_{t+1}] + By_t + Cy_{t-1} + D\varepsilon_t$$
 (1)

A, B, C, D: matrices with derivatives, dimensions $n_y \times n_y$ y_t : vector of n_y endogenous variables in (log) deviations from steady states

 ε_t : vector of n_e exogenous shocks with a known distribution

Goal: find recursive linear solution of the form

$$y_t = P \ y_{t-1} + Q \ \varepsilon_t \tag{2}$$

Restrictions:

$$0 = A \mathbf{P}^2 + B \mathbf{P} + C \tag{3}$$

$$0 = (A \mathbf{P} + B) Q + D \tag{4}$$

 \Rightarrow looking for unique **P** with eigenvalues inside the closed unit circle

Given P, unique Q can be found (Lan and Meyer-Gohde, 2014)

2 Newton-based Methods

Newton's Method (Higham and Kim, 2001)

Goal: find *P* which fulfills

$$M(P) \equiv AP^2 + BP + C = 0 \tag{5}$$

- ▶ iterate through different P_j by updating $P_{j+1} = P_j + \Delta P$
- ightharpoonup calculate ΔP : Newton-step in each iteration j
- ▶ stop when M(P) close enough to zero

$$M(P + \Delta P) = A(P + \Delta P)^2 + B(P + \Delta P) + C = 0$$
 (6)

$$M(P + \Delta P) = M(P) + \underbrace{(A \Delta PP + (AP + B) \Delta P)}_{\mathscr{D}_{P}(\Delta P)} + A \Delta P^{2} = 0$$

$$A \Delta PP + (AP + B) \Delta P = -M(P)$$
(7)

Baseline Newton algorithm (Higham and Kim, 2001)

- (1) Baseline (Higham and Kim, 2001)
 - ▶ Given A, B, C, an initial P_0 , and a convergence criterion ϵ
 - ▶ While criterion $(M(P_j)) > \epsilon$
 - 1. Solve for ΔP_j in

$$A \Delta P_j P_j + (A P_j + B) \Delta P_j = -M(P_j)$$
 (8)

- 2. Set $P_{j+1} = P_j + \Delta P_j$
- 3. Advance j = j + 1
- ightharpoonup Return P_j

⇒ quadratic convergence, computationally intense/iteration

Newton algorithms

- (2) Modified:
 - ▶ never update P_j ⇒ save time each iteration, linear convergence
- (3) With Šamanskii technique (ŠT):
 - ▶ add an iteration like in (2) before updating all P_j ⇒ cubic convergence for good starting guess

. . .

1. Solve for ΔP_j in

$$A \Delta P_j P_j + (A P_j + B) \Delta P_j = -M(P_j)$$
 (9)

2. Set $P_{j+1} = P_j + \Delta P_j$

. . .

Newton algorithms: line searches

- ⇒ improve global convergence
- (4) With exact line searches (LS) (Higham and Kim, 2001):
 - ► calculate multiple t_j of step size ΔP_j for updating based on norm criterium in each iteration
- (5) With occasional line searches (Long et al., 2008)
 - exact line searches only if far away from convergence criterium
- (6) With occ. line searches or Šamanskii T. (Long et al., 2008):
 - criterium-based line searches, otherwise Šamanskii step
 - 1. Solve for ΔP_j in

$$A \Delta P_j P_j + (A P_j + B) \Delta P_j = -M(P_j)$$
 (10)

2. Set $P_{i+1} = P_i + t_i \Delta P_i$

3 Results

1. MMB Comparison: Setup

- Macroeconomic Model Data Base (MMB) (Wieland et al., 2012)
- test Newton methods for 99 models
- compare to Dynare's QZ-based algorithm
 - accuracy
 - speed
- starting guess
 - 1. zero matrix
 - 2. Dynare's P

1. MMB Comparison: Speed & Convergence

Method	Conv.	R	Iterations		
		Median	Min	Max	
Dynare (QZ)	99	1	1	1	1
Baseline	53	1.74	0.16	6.86	8
Modified	51	61.81	7.15	329.85	686
Šamanskii T.	43	1.95	0.19	10.41	5
LS	67	2.25	0.64	340.54	9
Occ. LS	67	2.28	0.68	354.94	9
Occ. LS & ŠT	67	2.51	0.68	382.05	9

Initial guess: zero-matrix. Conv.: models that converged to the stable solution. Run time relative to Dynare.

Initial guess: zero-matrix

- \Rightarrow no guarantee of convergence to unique stable solution (< 68%)
- ⇒ modestly slower

1. MMB Comparison: Accuracy

Method	Forward Error 1			Forward Error 2			
	Median	Min	Max	Median	Min	Max	
Dynare (QZ)	1	1	1	1	1	1	
Baseline	0.076	2.5e-3	2.3	0.1	0.00082	1.2	
Modified	0.85	0.008	1.2e + 7	0.65	0.035	1.3e + 6	
Šamanskii T.	0.13	1.6e-3	1.6	0.1	0.0042	1.1	
LS	0.11	2.5e-4	5.3	0.086	3.2e-5	1.8	
Occ. LS	0.096	2.5e-4	2	0.094	3.2e-5	0.99	
Occ. LS & ŠT	0.09	2.5e-4	2	0.082	3.2e-5	1.4	

Initial guess: zero-matrix. Forward error calculation according to Meyer-Gohde (2022).

\Rightarrow one order of magnitude more accurate

$$\underbrace{\frac{\left\|P - \hat{P}\right\|_{F}}{\|P\|_{F}}}_{\text{forward error}} \leq \underbrace{\frac{\left\|H_{\hat{P}}^{-1}\text{vec}\left(R_{\hat{P}}\right)\right\|_{2}}{\left\|\hat{P}\right\|_{F}}}_{\text{bound 1}} \leq \underbrace{\left\|H_{\hat{P}}^{-1}\right\|_{2} \frac{\left\|R_{\hat{P}}\right\|_{F}}{\left\|\hat{P}\right\|_{F}}}_{\text{bound 2}}$$

1. MMB Comparison: Distribution

Initial guess: zero-matrix. Only models converging to unique stable solution.

Initial guess: zero-matrix

- \Rightarrow slower
- ⇒ more accurate

2. MMB Comparison: Speed & Convergence

Method	Convergence	Rı	ın Time		Iterations
		Median	Min	Max	
Dynare (QZ)	99	1	1	1	1
Baseline Newton Method	99	0.34	0.032	29	1
Modified Newton Method	99	0.34	0.031	25	1
with Šamanskii Technique	99	0.49	0.055	70	1
with Line Searches	99	0.34	0.033	30	1
with Occ. Line Searches	99	0.33	0.032	63	1
with Occ. LS & ŠT	99	0.54	0.058	71	1

Initial guess: QZ-based solution. Run time relative to Dynare.

Initial guess: Dynare's solution

- \Rightarrow convergence rate significantly improved
- ⇒ one order of magnitude quicker

2. MMB Comparison: Distribution

Initial guess: Dynare's solution

 $\Rightarrow \underline{\textbf{all}}$ methods more accurate than Dynare(QZ)

Summary

What we did:

- ▶ use 6 Newton algorithms to solve P-matrix
- solve 99 models of Macro Modelbase

What we found:

- ▶ gains in **accuracy** compared to Dynare's QZ solution
- good starting guess necessary to a) guarantee convergence to desirable solution, b) gains in speed

Paper:

- ▶ Newton methods strong in iterative environments
- solve different parameterizations of Taylor rule in Smets and Wouters (2007) model

Part of a research agenda

- Solving linear DSGE models with Bernoulli iterations (Meyer-Gohde, 2023)
- Solving linear DSGE models with Structure-Preserving Doubling methods (Huber, Meyer-Gohde, Saecker)
- Backward Error and Condition Number Analysis of Linear DSGE Solutions (Meyer-Gohde, 2022)

Bibliography I

- ADJEMIAN, S., H. BASTANI, M. JUILLARD, F. MIHOUBI, G. PERENDIA, M. RATTO, AND S. VILLEMOT (2011): "Dynare: Reference Manual, Version 4," Dynare Working Papers 1, CEPREMAP.
- Anderson, G. S. (2010): "A Reliable and Computationally Efficient Algorithm for Imposing the Saddle Point Property in Dynamic Models," *Journal of Economic Dynamics and Control*, 34, 472–489.
- BINDER, M. AND M. H. PESARAN (1997): "Multivariate Linear Rational Expectations Models: Characterization of the Nature of the Solutions and Their Fully Recursive Computation," *Econometric Theory*, 13, 877–88.
- HIGHAM, N. J. AND H.-M. KIM (2001): "Solving a Quadratic Matrix Equation by Newton's Method with Exact Line Searches," *SIAM Journal on Matrix Analysis and Applications*, 23, 499–519.
- KLEIN, P. (2000): "Using the Generalized Schur Form to Solve a Multivariate Linear Rational Expectations Model," *Journal of Economic Dynamics and Control*, 24, 1405–1423.
- Lan, H. and A. Meyer-Gohde (2014): "Solvability of Perturbation Solutions in DSGE Models," *Journal of Economic Dynamics and Control*, 45, 366–388.

Bibliography II

- LONG, J., X. Hu, AND L. ZHANG (2008): "Improved Newton's method with exact line searches to solve quadratic matrix equation," *Journal of Computational and Applied Mathematics*, 222, 645–654.
- MEYER-GOHDE, A. (2022): "Backward Error and Condition Number Analysis of Linear DSGE Solutions," mimeo, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).
- ——— (2023): "Solving linear DSGE models with Bernoulli iterations," Tech. rep., IMFS Working Paper Series.
- SIMS, C. A. (2001): "Solving Linear Rational Expectations Models," Computational Economics, 20, 1–20.
- SMETS, F. AND R. WOUTERS (2007): "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," *The American Economic Review*, 97, 586–606.
- UHLIG, H. (1999): "A Toolkit for Analysing Nonlinear Dynamic Stochastic Models Easily," in *Computational Methods for the Study of Dynamic Economies*, ed. by R. Marimon and A. Scott, Oxford University Press, chap. 3, 30–61.

Bibliography III

WIELAND, V., T. CWIK, G. J. MÜLLER, S. SCHMIDT, AND M. WOLTERS (2012): "A new comparative approach to macroeconomic modeling and policy analysis," *Journal of Economic Behavior & Organization*, 83, 523–541.

 $1 \; \mathsf{Appendix}$

- ▶ Given A, B, C, an initial P_0 , and a convergence criterion ϵ
- ▶ While criterion $(P_j) > \epsilon$
 - 1. Solve for ΔP_j in

$$A \Delta P_j P_j + (A P_j + B) \Delta P_j = -M(P_j)$$
 (11)

- 2. Set $P_{i+1} = P_i + \Delta P_i$
- 3. Advance j = j + 1
- ► Return *P_j*

Modified Newton Method

- ▶ Given A, B, C, an initial P_0 , and a convergence criterion ϵ
- ▶ While criterion(P_i) > ϵ
 - 1. Solve for ΔP_j in

$$A \Delta P_j P_0 + (A P_0 + B) \Delta P_j = -M(P_j)$$
 (12)

- 2. Set $P_{j+1} = P_j + \Delta P_j$
- 3. Advance j = j + 1
- ► Return *P_j*

Newton's Method with Šamanskii Technique

- ▶ Given A, B, C, an initial P_0 , an integer m, and a convergence criterion ϵ
- ▶ While criterion $(P_i) > \epsilon$
- ▶ Set i = 0 and $P_{j,0} = P_j$
 - 1. While i < m
 - 1.1 Solve for $\Delta P_{j,i}$ in

$$A \Delta P_{j,i} P_j + (A P_j + B) \Delta P_{j,i} = -M(P_{j,i})$$
 (13)

- 1.2 Set $P_{j,i+1} = P_{j,i} + \Delta P_{j,i}$
- 1.3 Advance i = i + 1
- 2. Set $P_{j+1} = P_{j,m}$
- 3. Advance j = j + 1
- ▶ Return P_j

Newton-Based Method with Exact Line Searches

- ▶ Given A, B, C, an initial P_0 , and a convergence criterion ϵ
- ▶ While criterion(P_j) > ϵ
 - 1. Solve for ΔP_j in

$$A \Delta P_j P_j + (A P_j + B) \Delta P_j = -M(P_j)$$
 (14)

2. Solve for t_i in

$$t_{j} = \underset{x \in [0,2]}{\operatorname{argmin}} \| M(P_{j} + x \Delta P_{j}) \|_{F}^{2}$$
 (15)

- 3. Set $P_{j+1} = P_j + t_j \Delta P_j$
- 4. Advance j = j + 1
- ▶ Return P_j

Newton-Based Method with Occasional Exact Line Searches

- ▶ Given A, B, C, an initial P_0 , and two convergence criteria ϵ and ϵ_0
- ▶ While criterion $(P_j) > \epsilon$
 - 1. Solve for ΔP_i in

$$A \Delta P_j P_j + (A P_j + B) \Delta P_j = -M(P_j)$$
 (16)

2. if criterion $(P_j + \Delta P_j) > \epsilon_0$ 2.1 Solve for t_i in

$$t_{j} = \underset{x \in [0,2]}{\operatorname{argmin}} \| M(P_{j} + x\Delta P_{j}) \|_{F}^{2}$$
 (17)

2.2 Set
$$P_{i+1} = P_i + t_i \Delta P_i$$

3. else

3.1 Set
$$P_{i+1} = P_i + \Delta P_i$$

- 4. Advance j = j + 1
- ► Return P_i

Newton-Based Method with Occasional Exact Line Searches and Šamanskii Technique

- ▶ Given A, B, C, an initial P_0 , m and two convergence criteria ϵ and ϵ_0
- ▶ While criterion(P_i) > ϵ
 - 1. Solve for ΔP_i in

$$A \Delta P_j P_j + (A P_j + B) \Delta P_j = -M(P_j)$$
 (18)

- 2. if criterion $(P_i + \Delta P_i) > \epsilon_0$
 - ▶ line search
- 3. else
 - ► Šamanskii step
- 4. Advance j = j + 1
- ▶ Return P_j