Comp305

Biocomputation

Lecturer: Yi Dong

Comp305 Module Timetable

There will be 26-30 lectures, thee per week. The lecture slides will appear on Canvas. Please use Canvas to access the lecture information. There will be 9 tutorials, one per week.

Lecture/Tutorial Rules

Questions are welcome as soon as they arise, because

- Questions give feedback to the lecturer;
- 2. Questions help your understanding;
- 3. Your questions help your classmates, who might experience difficulties with formulating the same problems/doubts in the form of a question.

Comp305 Part I.

Artificial Neural Networks

Topic 4.

Perceptron

Perceptron Learning Algorithm

Algorithm 1: Perceptron Learning Algorithm

Data: Labelled data set D: r n-dimensional input points, each of which has m labels. Small positive real δ . Learning rate C.

```
Result: Weight matrix w = [w_1, \dots, w_m]
                                                       Then the convergence checking
  Initialize weights w randomly;
                                                       is only done after one epoch.
2 while !convergence (RMS \leq \delta) do
                                              A common way is to enumerate all the patterns in
       Pick random a' \in D;
3
                                              D sequentially. An epoch means training the neural
      a \leftarrow [1, a'];
4
                                              network with all the training data for one cycle.
       for j=1,\cdots,m do
5
          /* We represent the learning rule in the vector form w_j = w_j + C(t_j - X_j)a;
                                                                                            */
7 return w;
```

Network Performance

Q: Does the learning rule always converge?

Learning curve: dependency of the RMS error on the number of iterations.

- Initially, the adaptable weights are all set to small random values, and the network does not perform very well;
- Performance improves during training;
- Finally, the error gets close to zero, training stops. We say the network has converged.

Topic of Today's Lecture

Convergence of Perceptron Learning Algorithm

Conclusion

The perceptron learning algorithm can converge for the data set that is linearly-separable.

Without loss of generality, we consider a simplified case.

- There is only one output in the network,
- The learning rate C is set as 1.

- Recall the following informal definition we mentioned for MP neuron.
- Linear separability (for Boolean functions): There exists a line (plane) such that all inputs which produce a 1 for the function lie on one side of the line (plane) and all inputs which produce a 0 lie on other side of the line (plane).

• Definition: Two sets P and N of points in an n-dimensional space are called (absolutely) **linearly separable** if there exists a real vector $w = (w_1, \dots, w_n)$ such that every point $a' = (a_1, \dots, a_n) \in P$ satisfies $w^T a' > 0$ and every point $a' = (a_1, \dots, a_n) \in N$ satisfies $w^T a' < 0$.

- Recall the following informal definition we mentioned for MP neuron.
- Linear separability (for Boolean functions): There exists a line (plane) such that all inputs which produce a 1 for the function lie on one side of the line (plane) and all inputs which produce a 0 lie on other side of the line (plane).

• Definition: Two sets P and N of points in an n-dimensional space are called (absolutely) **linearly separable** if there exists a real vector $w = (w_1, \dots, w_n)$ such that every point $a' = (a_1, \dots, a_n) \in P$ satisfies $w^T a' > 0$ and every point $a' = (a_1, \dots, a_n) \in N$ satisfies $w^T a' < 0$.

• Definition: Two sets P and N of points in an n-dimensional space are called (absolutely) **linearly separable** if there exists a real vector $w = (w_1, \dots, w_n)$ such that every point $a' = (a_1, \dots, a_n) \in P$ satisfies $w^T a' > 0$ and every point $a' = (a_1, \dots, a_n) \in N$ satisfies $w^T a' < 0$.

• Definition: Two sets P and N of points in an n-dimensional space are called (absolutely) linearly separable if there exists a real vector $w = (w_1, \dots, w_n)$ such that every point $a' = (a_1, \dots, a_n) \in P$ satisfies $w^T a' > 0$ and every point $a' = (a_1, \dots, a_n) \in N$ satisfies $w^T a' < 0$.

If in the data set D, 1-label subset and 0-label subset are linearly separable, we say D is (absolutely) <u>linearly separable</u>.

Without loss of generality, we consider a simplified case.

- There is only one output in the network,
- The learning rate C is set as 1.

We assume the data set D is (absolutely) <u>linearly separable</u>.

We assume the data set D is (absolutely) <u>linearly separable</u>.

The set $D' = \{[1, a'] | a' \in D\}$ is also (absolutely) <u>linearly separable</u>. (Why?)

We assume the data set D is (absolutely) <u>linearly separable</u>.

The set $D' = \{[1, a'] | a' \in D\}$ is also (absolutely) <u>linearly separable</u>. (Why?)

Tip: Let $w_0 = 0$

Algorithm 2: Perceptron Learning (One output) **Data:** Labelled data set D: r n-dimensional input points, each of which has m labels. Small positive real δ . Weight vector: (w_0, w_1, \dots, w_n) Result: Weight matrix $w = [w_0, \dots, w_m]$ 1 $P \leftarrow$ Inputs with label 1; 2 $N \leftarrow$ Inputs with label 0; 3 Initialize weights w randomly; 4 while !convergence (RMS $< \delta$) do Pick random $a' \in D$: $a \longleftarrow [1, a'];$ if $a \in P$ and X = 0 ($w^T a < 0$) then /* t=1, learning rate is 1 */ w = w + a; end if $a \in N$ and X = 1 ($w^T a > 0$) then 10 $/\star$ t=0, learning rate is 1 */ 11 w = w - a; end 12 13 end 14 return w:

Rewriting the general perceptron learning algorithm.

 Since we only consider one output, the result becomes a weight vector

$$w = (w_0, w_1, \cdots, w_n)$$

rather than the weight matrix. Here w_i represents for the weight of the connection between the i-th input and the output.

```
Algorithm 2: Perceptron Learning (One output)
   Data: Labelled data set D: r n-dimensional input
         points, each of which has m labels. Small
         positive real \delta. Weight vector: (w_0, w_1, \dots, w_n)
   Result: Weight matrix w = [w_0, \dots, w_m]
1 P \leftarrow Inputs with label 1;
2 N \leftarrow Inputs with label 0;
3 Initialize weights w randomly;
4 while !convergence (RMS < \delta) do
      Pick random a' \in D:
      a \longleftarrow [1, a'];
      if a \in P and X = 0 (w^T a < 0) then
          /* t=1, learning rate is 1
          w = w + a;
      end
      if a \in N and X = 1 (w^T a \ge 0) then
          /\star t=0, learning rate is 1
11
          w = w - a;
      end
13 end
14 return w:
```

Rewriting the general perceptron learning algorithm.

• The data set $D' = \{[1, a'] | a' \in D\}$ can be divided into two separated set P and N, by the definition of absolutely linear separability.

That is, $D' = P \cup N$, $P \cap N = \emptyset$, and there exists a real vector $w^* = (w_0, w_1, \cdots, w_n)$ exist such that every point $a = (a_0, a_1, \cdots, a_n) \in P$ satisfies $w^{*T}a > 0$ and every point $a = (a_0, a_1, \cdots, a_n) \in N$ satisfies $w^{*T}a < 0$.

```
Algorithm 2: Perceptron Learning (One output)
  Data: Labelled data set D: r n-dimensional input
         points, each of which has m labels. Small
         positive real \delta. Weight vector: (w_0, w_1, \dots, w_n)
  Result: Weight matrix w = [w_0, \dots, w_m]
1 P \leftarrow Inputs with label 1;
2 N \leftarrow Inputs with label 0;
3 Initialize weights w randomly;
4 while !convergence (RMS < \delta) do
      Pick random a' \in D:
      a \longleftarrow [1, a'];
      if a \in P and X = 0 (w^T a < 0) then
          /* t=1, learning rate is 1
          w = w + a;
      end
      if a \in N and X = 1 (w^T a > 0) then
          /\star t=0, learning rate is 1
11
          w = w - a;
      end
13 end
14 return w:
```

Rewriting the general perceptron learning algorithm.

• The data set $D' = \{[1, a'] | a' \in D\}$ can be divided into two separated set P and N, by the definition of absolutely linear separability. (Line 1, Line 2)

That is, $D' = P \cup N$, $P \cap N = \emptyset$, and there exists a real vector $w^* = (w_0, w_1, \dots, w_n)$ exist such that every point a = $(a_0, a_1, \dots, a_n) \in P$ satisfies $w^{*T}a > 0$ and every point $a = (a_0, a_1, \dots, a_n) \in N$ satisfies $w^{*T}a < 0$. The convergence of the learning rule

means we successfully find a feasible w^* !

```
Algorithm 2: Perceptron Learning (One output)
  Data: Labelled data set D: r n-dimensional input
         points, each of which has m labels. Small
         positive real \delta. Weight vector: (w_0, w_1, \dots, w_n)
  Result: Weight matrix w = [w_0, \dots, w_m]
1 P \leftarrow Inputs with label 1;
2 N \leftarrow Inputs with label 0;
3 Initialize weights w randomly;
4 while !convergence (RMS < \delta) do
      Pick random a' \in D:
      a \longleftarrow [1, a'];
      if a \in P and X = 0 (w^T a < 0) then
          /* t=1, learning rate is 1
          w = w + a:
 8
     end
      if a \in N and X = 1 (w^T a > 0) then
10
          /* t=0, learning rate is 1
                                                         */
11
          w = w - a;
      end
13 end
14 return w:
```

Rewriting the general perceptron learning algorithm.

- The data set $D' = \{[1, a'] | a' \in D\}$ can be divided into two separated set P and N, by the definition of absolutely linear separability.
- We consider the different cases in terms of the input pattern and the corresponding output value.
 (Line 7 - 12)

$$\Delta w_{ji}^{k} = C e_{j}^{k} a_{i}^{k}$$

$$e_{j}^{k} = t_{j}^{k} - X_{j}^{k} = \begin{cases} 1, & t_{j}^{k} = 1, X_{j}^{k} = 0 \\ 0, & t_{j}^{k} = X_{j}^{k} \end{cases}$$

$$-1, & t_{j}^{k} = 0, X_{j}^{k} = 1$$

```
Algorithm 2: Perceptron Learning (One output)
  Data: Labelled data set D: r n-dimensional input
         points, each of which has m labels. Small
         positive real \delta. Weight vector: (w_0, w_1, \dots, w_n)
  Result: Weight matrix w = [w_0, \dots, w_m]
1 P \leftarrow Inputs with label 1;
2 N \leftarrow Inputs with label 0;
3 Initialize weights w randomly;
4 while !convergence (RMS < \delta) do
      Pick random a' \in D:
      a \longleftarrow [1, a'];
      if a \in P and X = 0 (w^T a < 0) then
          /\star t=1, learning rate is 1
          w = w + a;
 8
     end
      if a \in N and X = 1 (w^T a > 0) then
10
          /* t=0, learning rate is 1
                                                         */
11
          w = w - a;
      end
13 end
14 return w:
```

Rewriting the general perceptron learning algorithm.

- The data set D' = {[1, a']|a' ∈ D} can be divided into two separated set P and N, by the definition of absolutely linear separability. (Line 1, Line 2)
- We consider the different cases in terms of the input pattern and the corresponding output value . (Line 7 12) $\Delta w_{ji}^{k} = C e_{i}^{k} a_{i}^{k}$

$$e_{j}^{k} = t_{j}^{k} - X_{j}^{k} = \begin{cases} 1, & t_{j}^{k} = 1, X_{j}^{k} = 0 \\ 0, & t_{j}^{k} = X_{j}^{k} \\ -1, & t_{j}^{k} = 0, X_{j}^{k} = 1 \end{cases}$$

```
Algorithm 2: Perceptron Learning (One output)
   Data: Labelled data set D: r n-dimensional input
          points, each of which has m labels. Small
         positive real \delta. Weight vector: (w_0, w_1, \dots, w_n)
   Result: Weight matrix w = [w_0, \dots, w_m]
 1 P \leftarrow Inputs with label 1;
 2 N \leftarrow Inputs with label 0;
 3 Initialize weights w randomly;
 4 while !convergence (RMS < \delta) do
      Pick random a' \in D:
      a \longleftarrow [1, a'];
      if a \in P and X = 0 (w^T a < 0) then
          /\star t=1, learning rate is 1
                                                          */
          w = w + a:
 8
      end
      if a \in N and X = 1 (w^T a > 0) then
10
           /* t=0, learning rate is 1
11
          w = w - a;
      end
12
13 end
14 return w;
```

We first explore the intuition of the learning algorithm.

We plot all the input patterns a.

- Red arrows denote the points in P,
- Blue arrows denote the points in *N*,
- Thick black line denotes the barrier of $w^{*T}a = 0$

We can do this, due to the definition of absolutely linear separability.

Meanwhile, $w^{*T}a = 0$ means that the vector w^* and the barrier are orthogonal.

Meanwhile, $w^{*T}a = 0$ means that the vector w^* and the barrier are orthogonal.

Questions: There are two orthogonal vectors. Why don't we choose the dashed one?

$$a \cdot b = ||a|| ||b|| \cos\langle a, b \rangle$$

Meanwhile, $w^{*T}a = 0$ means that the vector w^* and the barrier are orthogonal.

For all $a \in P$, $w^{*T}a > 0$ means that the angle between the vector w^* and every input pattern in P is less than 90° .

$$a \cdot b = ||a|| ||b|| \cos \langle a, b \rangle$$

Meanwhile, $w^{*T}a = 0$ means that the vector w^* and the barrier are orthogonal.

For all $a \in P$, $w^{*T}a > 0$ means that the angle between the vector w^* and every input pattern in P is less than 90° .

For all $a \in N$, $w^{*T}a < 0$ means that the angle between the vector w^* and every input pattern in N is greater than 90° .

 $a \cdot b = ||a|| ||b|| \cos\langle a, b \rangle$


```
Algorithm 2: Perceptron Learning (One output)
  Data: Labelled data set D: r n-dimensional input
         points, each of which has m labels. Small
         positive real \delta. Weight vector: (w_0, w_1, \dots, w_n)
  Result: Weight matrix w = [w_0, \dots, w_m]
1 P \leftarrow Inputs with label 1;
2 N \leftarrow Inputs with label 0;
3 Initialize weights w randomly;
4 while !convergence (RMS < \delta) do
      Pick random a' \in D:
      a \longleftarrow [1, a'];
      if a \in P and X = 0 (w^T a < 0) then
          /\star t=1, learning rate is 1
                                                         */
          w = w + a;
      end
      if a \in N and X = 1 (w^T a > 0) then
          /* t=0, learning rate is 1
                                                         */
11
          w = w - a;
      end
13 end
14 return w;
```

This algorithm means that

- in each iteration, we "pull" the weight vector w closer to P, "push" the weight vector w farther to N, if misclassified.
- until the angle between w and each pattern in P is less than 90°, and the angle between w and each pattern in N is greater than 90°.
- In both cases, w gets closer to w^* .

```
Algorithm 2: Perceptron Learning (One output)
  Data: Labelled data set D: r n-dimensional input
         points, each of which has m labels. Small
         positive real \delta. Weight vector: (w_0, w_1, \dots, w_n)
   Result: Weight matrix w = [w_0, \dots, w_m]
 1 P \leftarrow Inputs with label 1;
2 N \leftarrow Inputs with label 0;
 3 Initialize weights w randomly;
 4 while !convergence (RMS < \delta) do
      Pick random a' \in D:
      a \longleftarrow [1, a'];
      if a \in P and X = 0 (w^T a < 0) then
          /* t=1, learning rate is 1
          w = w + a;
      end
      if a \in N and X = 1 (w^T a > 0) then
10
          /\star t=0, learning rate is 1
                                                        */
                                                                                           There exists a normalized feasible
          w = w - a;
11
                                                                                           solution w^* (||w^*|| = 1) (Why?),
      end
13 end
                                                                                           but don't know what it is.
14 return w;
```

```
Algorithm 2: Perceptron Learning (One output)
  Data: Labelled data set D: r n-dimensional input
         points, each of which has m labels. Small
         positive real \delta. Weight vector: (w_0, w_1, \dots, w_n)
   Result: Weight matrix w = [w_0, \dots, w_m]
 1 P \leftarrow Inputs with label 1;
2 N \leftarrow Inputs with label 0;
 3 Initialize weights w randomly;
 4 while !convergence (RMS < \delta) do
      Pick random a' \in D:
      a \longleftarrow [1, a'];
      if a \in P and X = 0 (w^T a < 0) then
          /\star t=1, learning rate is 1
          w = w + a;
      end
      if a \in N and X = 1 (w^T a > 0) then
10
          /\star t=0, learning rate is 1
                                                       */
                                                                                         The basic idea of the proof is
          w = w - a;
11
      end
                                                                                         to show w "tends" to get
13 end
                                                                                         closer to w^* during training.
14 return w;
```

Algorithm 2: Perceptron Learning (One output)

```
Data: Labelled data set D: r n-dimensional input
          points, each of which has m labels. Small
          positive real \delta. Weight vector: (w_0, w_1, \dots, w_n)
   Result: Weight matrix w = [w_0, \dots, w_m]
 1 P \leftarrow Inputs with label 1;
 2 N \leftarrow Inputs with label 0;
 3 Initialize weights w randomly;
 4 while !convergence (RMS \leq \delta) do
      Pick random a' \in D:
      a \longleftarrow [1, a'];
      if a \in P and X = 0 (w^T a < 0) then
          /\star t=1, learning rate is 1
                                                          */
          w = w + a;
      end
      if a \in N and X = 1 (w^T a > 0) then
10
          /\star t=0, learning rate is 1
                                                          */
          w = w - a;
11
      end
13 end
14 return w;
```

Now we start to prove the convergence.

Without loss of generality, we assume that D' = P. (why?)

Let
$$P' = -N$$
. $P = P \cup P'$.

Algorithm 2: Perceptron Learning (One output)

```
Data: Labelled data set D: r n-dimensional input
          points, each of which has m labels. Small
          positive real \delta. Weight vector: (w_0, w_1, \dots, w_n)
   Result: Weight matrix w = [w_0, \dots, w_m]
                      P = D
 3 Initialize weights w randomly;
 4 while !convergence (RMS \leq \delta) do
      Pick random a' \in D;
      a \longleftarrow [1, a'];
      if a \in P and X = 0 (w^T a < 0) then
          /\star t=1, learning rate is 1
                                                          */
          w = w + a;
      end
10
11
12
13 end
```

14 return w;

Now we start to prove the convergence.

Without loss of generality, we assume that D' = P. (why?)

Let
$$P' = -N$$
. $P = P \cup P'$.

Algorithm 2: Perceptron Learning (One output)

```
Data: Labelled data set D: r n-dimensional input
          points, each of which has m labels. Small
          positive real \delta. Weight vector: (w_0, w_1, \dots, w_n)
   Result: Weight matrix w = [w_0, \dots, w_m]
                      P = D
3 Initialize weights w randomly;
4 while !convergence (RMS \leq \delta) do
      Pick random a' \in D:
      a \longleftarrow [1, a'];
      if a \in P and X = 0 (w^T a < 0) then
          /\star t=1, learning rate is 1
                                                          */
          w = w + a:
      end
10
11
12
13 end
```

14 return w;

Now we start to prove the convergence.

Without loss of generality, we assume that D' = P. (why?)

Let
$$P' = -N$$
. $P = P \cup P'$.

Without loss of generality, we assume that for each a', ||a'|| = 1. (why?)

$$||a'|| = 1 \Leftrightarrow ||a|| = \sqrt{2}$$

Algorithm 2: Perceptron Learning (One output) **Data:** Labelled data set D: r n-dimensional input points, each of which has m labels. Small positive real δ . Weight vector: (w_0, w_1, \dots, w_n) **Result:** Weight matrix $w = [w_0, \dots, w_m]$ P = D3 Initialize weights w randomly; 4 while !convergence (RMS $< \delta$) do Pick random $a' \in D$: $a \longleftarrow [1, a'];$ if $a \in P$ and X = 0 ($w^T a < 0$) then $/\star$ t=1, learning rate is 1 */ w = w + a: end 10 11 12 13 end 14 return w:

Proof.

As we mentioned, we focus on how close the current w^{k+1} and the solution w^* , which can be evaluated by the angle θ^{k+1} between them.

$$\cos \theta^{k+1} = \frac{w^{k+1} \cdot w^*}{\|w^{k+1}\| \cdot \|w^*\|} = \frac{w^{k+1} \cdot w^*}{\|w^{k+1}\|}$$

Getting closer means $\cos \theta$ becomes bigger.

So, what we are going to do is to

- Check the denominator $||w^{k+1}||$,
- Check the numerator $w^{k+1} \cdot w^*$.

$\cos \theta^{k+1} = \frac{w^{k+1} \cdot w^*}{\|w^{k+1}\|}$

```
Algorithm 2: Perceptron Learning (One output)
   Data: Labelled data set D: r n-dimensional input
         points, each of which has m labels. Small
         positive real \delta. Weight vector: (w_0, w_1, \dots, w_n)
   Result: Weight matrix w = [w_0, \dots, w_m]
                     P = D
3 Initialize weights w randomly;
4 while !convergence (RMS < \delta) do
      Pick random a' \in D;
      a \longleftarrow [1, a'];
      if a \in P and X = 0 (w^T a < 0) then
          /\star t=1, learning rate is 1
          w = w + a:
      end
10
11
12
13 end
```

14 return w:

Proof.

Check the denominator $||w^{k+1}||$.

• If at k-th iteration, the input pattern a^k is misclassified, that is, $w^k \cdot a^k < 0$. By the algorithm we know $w^{k+1} = w^k + a^k$.

$$\begin{aligned} & \|w^{k+1}\| \\ &= \sqrt{(w^k + a^k)^2} \\ &= \sqrt{\|w^k\|^2 + 2w^k \cdot a^k + \|w^k\|^2} \\ &< \sqrt{\|w^k\|^2 + \|a^k\|^2} \end{aligned} \qquad \begin{aligned} & \text{Dot product} \\ &< \sqrt{\|w^k\|^2 + \|a^k\|^2} \\ &= \sqrt{\|w^k\|^2 + 2} \end{aligned} \qquad \begin{aligned} & \text{Assumption} \end{aligned}$$

• If the input pattern a_k is classified correctly.

$$||w^{k+1}|| = ||w^k||$$

$\cos \theta^{k+1} = \frac{w^{k+1} \cdot w^*}{\|w^{k+1}\|}$

```
Algorithm 2: Perceptron Learning (One output)
  Data: Labelled data set D: r n-dimensional input
         points, each of which has m labels. Small
         positive real \delta. Weight vector: (w_0, w_1, \dots, w_n)
   Result: Weight matrix w = [w_0, \dots, w_m]
                     P = D
3 Initialize weights w randomly;
4 while !convergence (RMS < \delta) do
      Pick random a' \in D:
      a \longleftarrow [1, a'];
      if a \in P and X = 0 (w^T a < 0) then
          /\star t=1, learning rate is 1
          w = w + a:
      end
10
11
12
13 end
```

14 return w:

Proof.

Check the denominator $||w^{k+1}||$.

• At *k*-th iteration,

$$||w^{k+1}|| < \sqrt{||w^k||^2 + 2}$$
 or $||w^{k+1}|| = ||w^k||$

Misclassified Correctly classified

Inductively, we know

$$||w^{k+1}|| < \sqrt{||w^1||^2 + 2k'}$$

where k' is the number of misclassified iterations among k iterations.

We got an **upper bound** of the denominator.

$\cos \theta^{k+1} = \frac{w^{k+1} \cdot w^*}{\|w^{k+1}\|}$

```
Algorithm 2: Perceptron Learning (One output)
```

Data: Labelled data set D: r n-dimensional input points, each of which has m labels. Small positive real δ . Weight vector: (w_0, w_1, \dots, w_n)

```
Result: Weight matrix w = [w_0, \dots, w_m]
P = D
```

3 Initialize weights w randomly; 4 while !convergence (RMS $\leq \delta$) do

```
Pick random a' \in D;

a \longleftarrow [1, a'];

if a \in P and X = 0 (w^T a < 0) then

\begin{vmatrix} /* & t = 1, & learning & rate & is & 1 \\ w = w + a; & end \end{vmatrix}

end
```

10 11

12

10

13 end

14 return w;

Proof.

Check the numerator $w^{k+1} \cdot w^*$.

• If at k-th iteration, the input pattern a_k is misclassified, that is, $w^k \cdot a^k < 0$. By the algorithm we know $w^{k+1} = w^k + a^k$.

$$w^{k+1} \cdot w^*$$

$$= (w^k + a^k) \cdot w^*$$

$$= w^k \cdot w^* + a_k \cdot w^*$$

$$\geq w^k \cdot w^* + \alpha$$

$$\forall a_k, w^* \cdot a^k > 0,$$
Let $\alpha = \min\{(w^*)^T a^k\} > 0$

If the input pattern a_k is classified correctly.

$$w^{k+1} \cdot w^* = w^k \cdot w^*$$

```
\cos \theta^{k+1} = \frac{w^{k+1} \cdot w^*}{\|w^{k+1}\|}
```

```
Algorithm 2: Perceptron Learning (One output)

Data: Labelled data set D: r n-dimensional input
```

points, each of which has m labels. Small positive real δ . Weight vector: (w_0, w_1, \dots, w_n)

Result: Weight matrix $w = [w_0, \dots, w_m]$

$$P = D$$

- 3 Initialize weights w randomly;
- 4 while !convergence (RMS $\leq \delta$) do

```
Pick random a' \in D;

a \leftarrow [1, a'];
```

if $a \in P$ and X = 0 ($w^T a < 0$) then /* t = 1, learning rate is 1

$$w = w + a;$$

9 end

10 11

12

13 end

14 return w;

Proof.

Check the numerator $w^{k+1} \cdot w^*$.

• At *k*-th iteration,

$$w^{k+1} \cdot w^* \ge w^k \cdot w^* + \alpha \operatorname{or} w^{k+1} \cdot w^* = w^k \cdot w^*$$

Misclassified

Correctly classified

Inductively, we know

$$w^{k+1} \cdot w^* \ge w^1 \cdot w^* + k'\alpha$$

where k' is the number of misclassified iterations among k iterations.

We got a **lower bound** of the numerator.

$\cos \theta^{k+1} = \frac{w^{k+1} \cdot w^*}{\|w^{k+1}\|}$

```
Algorithm 2: Perceptron Learning (One output)
```

```
Data: Labelled data set D: r n-dimensional input points, each of which has m labels. Small positive real \delta. Weight vector: (w_0, w_1, \dots, w_n)
```

```
Result: Weight matrix w = [w_0, \dots, w_m]
P = D
```

- 3 Initialize weights w randomly;
- 4 while !convergence (RMS $\leq \delta$) do

```
5 Pick random a' \in D;

6 a \longleftarrow [1, a'];

7 if a \in P and X = 0 (w^T a < 0) then

| /* t = 1, learning rate is 1 */

8 w = w + a;

9 end
```

9 enc

13 end

11 12

14 return w;

Proof.

$$\cos \theta^{k+1} = \frac{w^{k+1} \cdot w^*}{\|w^{k+1}\| \cdot \|w^*\|} = \frac{w^{k+1} \cdot w^*}{\|w^{k+1}\|}$$

- Check the denominator $||w^{k+1}||$, $||w^{k+1}|| \le \sqrt{||w^1||^2 + 2k'}$
- Check the numerator $w^{k+1} \cdot w^*$. $w^{k+1} \cdot w^* \ge w^1 \cdot w^* + k'\alpha$

Now we know

$$\cos \theta^{k+1} \ge \frac{w^1 \cdot w^* + k'\alpha}{\sqrt{\|w^1\|^2 + 2k'}}$$

$\cos \theta^{k+1} = \frac{w^{k+1} \cdot w^*}{\|w^{k+1}\|}$

Algorithm 2: Perceptron Learning (One output)

```
Data: Labelled data set D: r n-dimensional input points, each of which has m labels. Small positive real \delta. Weight vector: (w_0, w_1, \cdots, w_n)
```

```
Result: Weight matrix w = [w_0, \dots, w_m]
P = D
```

- 3 Initialize weights w randomly;
- 4 while !convergence (RMS $\leq \delta$) do

```
Pick random a' \in D;
a \longleftarrow [1, a'];
for a \in P \text{ and } X = 0 \text{ } (w^T a < 0) \text{ then}
| /* t = 1, \text{ learning rate is } 1 
| w = w + a;
| end
```

9 enc

12 | L

11

14 return w:

Proof.

$$\cos \theta^{k+1} = \frac{w^{k+1} \cdot w^*}{\|w^{k+1}\| \cdot \|w^*\|} = \frac{w^{k+1} \cdot w^*}{\|w^{k+1}\|}$$

- Check the denominator $||w^{k+1}||$, $||w^{k+1}|| \le \sqrt{||w^1||^2 + 2k'}$
- Check the numerator $w^{k+1} \cdot w^*$. $w^{k+1} \cdot w^* \ge w^1 \cdot w^* + k'\alpha$

Now we know

$$\cos \theta^{k+1} \ge \frac{w^1 \cdot w^* + k' \alpha}{\sqrt{\|w^1\|^2 + 2k'}}$$

 $\cos \theta^{k+1}$ grows proportional to $\sqrt{k'}$.

$\cos \theta^{k+1} = \frac{w^{k+1} \cdot w^*}{\|w^{k+1}\|}$

```
Algorithm 2: Perceptron Learning (One output)
```

```
Data: Labelled data set D: r n-dimensional input points, each of which has m labels. Small positive real \delta. Weight vector: (w_0, w_1, \dots, w_n)
```

```
Result: Weight matrix w = [w_0, \dots, w_m]
P = D
```

3 Initialize weights w randomly; 4 while !convergence (RMS $\leq \delta$) do

```
Pick random a' \in D;
a \longleftarrow [1, a'];
for a \in P \text{ and } X = 0 \text{ (}w^T a < 0\text{) then}
| \text{ } /* \text{ } t = 1\text{, learning rate is 1} 
| w = w + a;
| \text{end}
```

12 | 13 end

10

11

14 return w;

Proof.

$$\cos \theta^{k+1} = \frac{w^{k+1} \cdot w^*}{\|w^{k+1}\| \cdot \|w^*\|} = \frac{w^{k+1} \cdot w^*}{\|w^{k+1}\|}$$

Now we know

$$\cos \theta^{k+1} \ge \frac{w^1 \cdot w^* + k'\alpha}{\sqrt{\|w^1\|^2 + 2k'}}$$

 $\cos \theta^{k+1}$ grows proportional to $\sqrt{k'}$.

If the algorithm does not terminate, that is, there will be infinite misclassified inputs, k' would go to infinity, $\cos \theta^{k+1}$ would also go to infinity, which is impossible.

$$\cos \theta^{k+1} \le 1$$

Beyond Linear Separability

 Now we know the perceptron learning algorithm can finally converge for the data set that is <u>linearly separable</u>.

How about the one that is not linearly separable?