МИСИС УНИВЕРСИТЕТ НАУКИ И ТЕХНОЛОГИЙ

Типовой ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1

Математика 1 семестр

Институт ИТКН Группы ББИ-24-1 – 24-8.

№	Задание	МАХ число Баллов
1	Вычислить пределы функции a) $\lim_{x\to 0} \frac{(e^{2x}-1)\ln{(1+tgx)}}{(\sqrt{2+x}-\sqrt{2})sin4x}$, 6) $\lim_{x\to 1} (3-2x)^{\frac{x}{1-x}}$	8
2	Дана функция $z=e^{-x-3y}\sin\!\left(x+3y\right)$. Показать, что $9\frac{\partial^2 z}{\partial x^2}-\frac{\partial^2 z}{\partial y^2}=0$.	8
3	Выяснить взаимное расположение прямой L: $\begin{cases} x+y+z-2=0\\ 2x+y-z-1=0 \end{cases}$ и плоскости $P\colon x+z-1=0$. Если прямая параллельна плоскости, то найти расстояние между ними, а если прямая пересекает плоскость, то найти угол между ними и координаты точки их пересечения.	8
	Взаимное расположение прямых на плоскости. Написать формулу для нахождения расстояния от точки до прямой на плоскости.	3
4	Вычислить первую и вторую производные от функции заданной в параметрическом виде $\begin{cases} x = \arctan \frac{t+1}{t-1}, \\ y = \arcsin \sqrt{1-t^2}. \end{cases}$	8
	Определение производной функции, ее геометрический и физический смысл. Производная обратной функции. Вывести формулу $(arccos)' = -\frac{1}{\sqrt{1-x^2}}$.	6
5	Найти в векторном виде решение системы линейных уравнений : $\begin{cases} x_1 - 3x_2 + 4x_3 + 3x_4 = -1 \\ 3x_1 - 8x_2 + x_3 + 2x_4 = 0 \\ 2x_1 - 5x_2 - 3x_3 - x_4 = 3 \\ 4x_1 - 10x_2 - 6x_3 - 2x_4 = 7 \end{cases}$	8
	Дать определение обратной матрицы. Написать формулу для нахождения обратной матрицы.	3
6	Исследовать функцию $y = \frac{3 x }{2x^2+x-3}$ на непрерывность. Найти ее точки разрыва, исследовать их характер. Найти асимптоты. Построить эскиз графика функции.	10
	Сформулируйте необходимое и достаточное условия существования экстремума.	3
		65

Заведующий кафедрой математики

Давыдов А.А.

Типовой ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 2

Математика 1 семестр

Институт ИТКН Группы ББИ-24-1 – 24-08.

№	Задание	МАХ число Баллов
1	Вычислите пределы a) $\lim_{x \to \pi/4} \frac{1-\sin 2x}{(\pi-4x)^2}$; δ) $\lim_{x \to 0} (1+\sin x)^{2\cot x}$.	8
	Первый замечательный предел (с выводом).	6
2	Вычислить дифференциал функции $y = (\cos x - 3)^{ln(x-3)}$	8
	Выяснить взаимное расположение плоскостей P_1 : $2x + y + 5z - 3 = 0$ и	
3	P_2 : $x-2y-3z+1=0$. Если плоскости пересекаются, то найти угол между ними и параметрическое уравнение линии их пересечения, а если они параллельны, то найти расстояние между ними.	8
	Взаимное расположение прямых в пространстве. Написать формулу для нахождения расстояния между скрещивающимися прямыми.	3
4	Написать уравнение касательной плоскости и нормали к поверхности $x^2-2y^2-3lnz+14=0 \ \ \text{в точке } M(2;\ -3;\ z_0).$	8
	Необходимое и достаточное условия существования экстремума функции двух переменных.	3
5	Найти в векторном виде решение системы линейных уравнений : $\begin{cases} x_1 - x_2 - x_3 - x_4 = 2 \\ 5x_2 - 8x_3 - 11x_4 = -2 \\ x_1 - 2x_2 = 3 \\ x_1 - 3x_3 - 4x_4 = 2 \end{cases}$	8
	Написать формулы Крамера для нахождения решения системы трех линейных уравнений с тремя неизвестными.	3
6	Задана функция $f(x) = \frac{4(x-1)^2}{(x+1)^2}$. Найдите область ее определения, точки пересечения графика функции с осями координат, области постоянства знака значений функции; исследуйте поведение функции на границе области определения и найдите асимптоты (выпишите их уравнения). Найдите точки экстремума и точки перегиба функции. С учетом всей полученной информации постройте график этой функции.	10
		65

Заведующий кафедрой математики

Давыдов А.А.

Экзаменаторы