Problem Set: Probability

Problem 1 (LOTUS). Let X be the number of heads in two tosses of a fair coin.

- (a) Find the support and pmf $f_X(x) = P(X = x)$.
- (b) Compute the CDF $F_X(x) = P(X \le x)$ for all real x.
- (c) Compute the median of X, i.e., any m with $F_X(m) \ge 1/2$ and $P(X < m) \le 1/2$. (You may also use the quantile definition $F_X^{-1}(q) = \inf\{x : F_X(x) \ge q\}$.)
- (d) Using the law of the unconscious statistician (LOTUS), compute E[g(X)] for $g(x) = x^2$.

Problem 2 (Continuous Uniform, CDF, PDF, and Quantiles). Let $X \sim U(a, b)$ with a < b.

- (a) Write the pdf f_X , the CDF F_X , and the quantile function F_X^{-1} .
- (b) Compute $P(a < X \le \frac{a+b}{2})$.
- (c) Give a concrete example (choose a, b) where the pdf takes values greater than 1. Explain why this does not contradict P(X = x) = 0 for continuous X.

Problem 3 (Joint pmf, Marginals, Conditionals, and Independence). Consider the discrete bivariate random vector (X, Y) with joint pmf

$$\begin{array}{c|cccc} & Y = 0 & Y = 1 \\ \hline X = 0 & \frac{1}{5} & \frac{1}{10} \\ X = 1 & \frac{3}{10} & \frac{2}{5} \end{array}$$

- (a) Compute the marginals $f_X(x)$ and $f_Y(y)$.
- (b) Compute P(X = 0 | Y = 0) and P(Y = 1 | X = 1).
- (c) Check independence by comparing $f_{X,Y}(x,y)$ to $f_X(x)f_Y(y)$ for all support points. Conclude whether X and Y are independent.

Problem 4 (Bivariate Normal: Standardization and Conditioning). Suppose (X, Y) is bivariate normal with means (μ_X, μ_Y) , variances (σ_X^2, σ_Y^2) , and covariance σ_{XY} .

- (a) Show that $Z_X = (X \mu_X)/\sigma_X \sim N(0,1)$ and express $P(a < X \le b)$ in terms of the standard normal CDF Φ .
- (b) Compute $P(Y \le \mu_Y \mid X = \mu_X)$, given the distribution of $Y \mid X = x$,

$$Y \mid X = x \sim N \left(\mu_Y + \frac{\sigma_{XY}}{\sigma_X^2} (x - \mu_X), \quad \sigma_Y^2 - \frac{\sigma_{XY}^2}{\sigma_X^2} \right).$$

(c) State a necessary and sufficient condition for X and Y to be independent in the bivariate normal case, and justify briefly.