	discover the least expensive way to explore Short North nightlife by collecting pricing data from drink menus and the bar's corresponding yelp rating. This minimization problem ensures different types of drinks are purchased, the average yelp rating of all 10 bars is at least 3.5, and that multiple bars are visited. These constraints preserve the concept of exploration and offer a variety of establishments and drink types so one can get the most out of a single night. Model Formulation Decision Variables
	y_i , a binary variable that is 0 when the corresponding bar is not visited and 1 when it is, with $i=1,\ldots,10$ sc_i , an integer variable that is the number of signature cocktails bought at the corresponding bar, with $i=1,\ldots,9$ db_i , an integer variable that is the number of domestic beers bought at the corresponding bar, with $i=1,\ldots,4,6,\ldots,10$ cb_i , an integer variable that is the number of craft beers bought at the corresponding bar, with $i=1,\ldots,4,6,\ldots,10$ s_i , an integer variable that is the number of shots bought at the corresponding bar, with $i=1,\ldots,6,8,9$
	$W_{i,} \text{ an integer variable that is the number of wine bought at the corresponding bar, with } i=1,\ldots,4,6,\ldots,10$ $Z \text{ is money spent in dollars}$ \mathbf{Model} $MinZ=10sc_1+5.5db_1+6.5cb_1+7s_1+7w_1+12sc_2+5db_2+7cb_2+8s_2+8w_2+10sc_3+7db_3+8cb_3+4s_3+8w_3+10sc_4+7db_4+8cb_4+6s_4+9w_4+9sc_5+8s_5+17sc_6+6+8cb_6+15s_6+11w_6+12sc_7+7db_7+7cb_7+12w_7+8sc_8+3db_8+5cb_8+4s_8+6w_8+9sc_9+4.25db_9+5.75cb_9+5s_9+9w_9+5db_{10}+6.5cb_{10}+5w_{10}$ $\mathbf{S.T.}$
	$egin{align*} sc_1 + db_1 + cb_1 + s_1 + w_1 <= 2 \ \\ sc_2 + db_2 + cb_2 + s_2 + w_2 <= 2 \ \\ sc_3 + db_3 + cb_3 + s_3 + w_3 <= 2 \ \\ sc_4 + db_4 + cb_4 + s_4 + w_4 <= 2 \ \\ sc_5 + s_5 <= 2 \ \\ \hline \end{array}$
	$egin{align*} sc_6 + db_6 + s_6 + w_6 <= 2 \ \\ sc_7 + db_7 + cb_7 + w_7 <= 2 \ \\ sc_8 + db_8 + cb_8 + s_8 + w_8 <= 2 \ \\ sc_9 + db_9 + cb_9 + s_9 + w_9 <= 2 \ \\ db_{10} + cb_{10} + w_{10} <= 2 \ \\ db_1 + db_2 + db_3 + db_4 + db_6 + db_7 + db_8 + db_9 + db_{10} <= 2 \ \end{aligned}$
	$cb_1 + cb_2 + cb_3 + cb_4 + cb_6 + cb_7 + cb_8 + cb_9 + cb_{10} <= 2$ $sc_1 + sc_2 + sc_3 + sc_4 + sc_5 + sc_6 + sc_7 + sc_8 + sc_9 >= 1$ $sc_1 + db_1 + cb_1 + s_1 + w_1 + sc_2 + db_2 + cb_2 + s_2 + w_2 + sc_3 + db_3 + cb_3 + s_3 + w_3 + sc_4 + db_4 + cb_4 + s_4 + w_4 + sc_5 + s_5 + sc_6 + db_6 + cb_6 + s_6 + w_6 + sc_7 + db_7 + cb_7 + w_7 + sc_7 + db_8 + cb_8 + s_8 + w_8 + sc_9 + db_9 + cb_9 + s_9 + w_9 + db_{10} + cb_{10} + w_{10} == 8$ $100(1 - y_1) + sc_1 + db_1 + cb_1 + s_1 + w_1 >= 1$
	$egin{align*} 100(1-y_2) + sc_2 + db_2 + cb_2 + s_2 + w_2 > &= 1 \ 100(1-y_3) + sc_3 + db_3 + cb_3 + s_3 + w_3 > &= 1 \ 100(1-y_4) + sc_4 + db_4 + cb_4 + s_4 + w_4 > &= 1 \ 100(1-y_5) + sc_5 + s_5 > &= 1 \ 100(1-y_6) + sc_6 + db_6 + cb_6 + s_6 + w_6 > &= 1 \ 100(1-y_6) + sc_6 + db_6 + cb_6 + s_6 + w_6 > &= 1 \ 100(1-y_6) + sc_6 + db_6 + cb_6 + s_6 + db_6 > &= 1 \ 100(1-y_6) + sc_6 + db_6 + cb_6 + s_6 + db_6 > &= 1 \ 100(1-y_6) + sc_6 + db_6 + cb_6 + s_6 + db_6 > &= 1 \ 100(1-y_6) + sc_6 + db_6 + cb_6 + s_6 + db_6 > &= 1 \ 100(1-y_6) + sc_6 + db_6 + cb_6 + db_6 > &= 1 \ 100(1-y_6) + sc_6 + db_6 + cb_6 + db_6 > &= 1 \ 100(1-y_6) + sc_6 + db_6 + cb_6 + db_6 > &= 1 \ 100(1-y_6) + sc_6 + db_6 + db_6 + db_6 > &= 1 \ 100(1-y_6) + sc_6 + db_6 + db_6 + db_6 > &= 1 \ 100(1-y_6) + sc_6 + db_6 + db_6 + db_6 > &= 1 \ 100(1-y_6) + sc_6 + db_6 + db_6 + db_6 > &= 1 \ 100(1-y_6) + sc_6 + db_6 + db_6 + db_6 > &= 1 \ 100(1-y_6) + sc_6 + db_6 + db_6 + db_6 > &= 1 \ 100(1-y_6) + sc_6 + db_6 + db_6 + db_6 + db_6 > &= 1 \ 100(1-y_6) + sc_6 + db_6 + db_6 + db_6 + db_6 > &= 1 \ 100(1-y_6) + sc_6 + db_6 + db$
	$egin{align*} 100(1-y_7)+sc_7+db_7+cb_7+w_7>&=1 \ 100(1-y_8)+sc_8+db_8+cb_8+s_8+w_8>&=1 \ 100(1-y_9)+sc_9+db_9+cb_9+s_9+w_9>&=1 \ 100(1-y_{10})+db_{10}+cb_{10}+w_{10}>&=1 \ -100y_1+sc_1+db_1+cb_1+s_1+w_1<&=0 \ -100y_2+sc_2+db_2+cb_2+s_2+w_2<&=0 \ \end{aligned}$
	$egin{align*} -100y_3+sc_3+db_3+cb_3+s_3+w_3 <= 0 \ -100y_4+sc_4+db_4+cb_4+s_4+w_4 <= 0 \ -100y_5+sc_5+s_5 <= 0 \ -100y_6+sc_6+db_6+cb_6+s_6+w_6 <= 0 \ -100y_7+sc_7+db_7+cb_7+w_7 <= 0 \ \end{pmatrix}$
	$-100y_8 + sc_8 + db_8 + cb_8 + s_8 + w_8 <= 0$ $-100y_9 + sc_9 + db_9 + cb_9 + s_9 + w_9 <= 0$ $-100y_{10} + db_{10} + cb_{10} + w_{10} <= 0$ $y_1 + y_2 + y_3 + y_4 + y_5 + y_6 + y_7 + y_8 + y_9 + y_{10} >= 5$ $4y_1 + 4y_2 + 4y_3 + 4y_4 + 2.5y_5 + 4y_6 + 4.5y_7 + 3.5y_8 + 2y_9 + 2y_{10} >= 3.5(y_1 + y_2 + y_3 + y_4 + y_5 + y_6 + y_7 + y_8 + y_9 + y_{10})$
	$egin{align} sc_i >= 0, i = 1, \ldots, 9 \ db_i >= 0, i = 1, \ldots, 4, 6, \ldots, 10 \ cb_i >= 0, i = 1, \ldots, 4, 6, \ldots, 10 \ s_i >= 0, i = 1, \ldots, 6, 8, 9 \ w_i >= 0, i = 1, \ldots, 4, 6, \ldots, 10 \ \end{matrix}$
In []:	Breakdown OBJECTIVE FUNCTION $ \begin{aligned} MinZ &= 10sc_1 + 5.5db_1 + 6.5cb_1 + 7s_1 + 7w_1 + 12sc_2 + 5db_2 + 7cb_2 + 8s_2 + 8w_2 + 10sc_3 + 7db_3 + 8cb_3 + 4s_3 + 8w_3 + 10sc_4 + 7db_4 + 8cb_4 + 6s_4 + 9w_4 + 9sc_5 + 8s_5 + 17sc_6 + 6 + 8cb_6 + 15s_6 + 11w_6 + 12sc_7 + 7db_7 + 7cb_7 + 12w_7 + 8sc_8 + 3db_8 + 5cb_8 + 4s_8 + 6w_8 + 9sc_9 + 4.25db_9 + 5.75cb_9 + 5s_9 + 9w_9 + 5db_{10} + 6.5cb_{10} + 5w_{10} \end{aligned} $ $ \begin{aligned} \text{obj_func} &= (10*\text{sc}[0] + 12*\text{sc}[1] + 10*\text{sc}[2] + 10*\text{sc}[3] + 9*\text{sc}[4] + 17*\text{sc}[5] + 12*\text{sc}[6] + 8*\text{sc}[7] + 9*\text{sc}[8] \\ &+ 5.5*\text{db}[0] + 5*\text{db}[1] + 7*\text{db}[2] + 7*\text{db}[3] + 6*\text{db}[4] + 7*\text{db}[5] + 3*\text{db}[6] + 4.25*\text{db}[7] + 5*\text{db}[8] \\ &+ 6.5*\text{cb}[0] + 7*\text{cb}[1] + 8*\text{cb}[2] + 8*\text{cb}[3] + 8*\text{cb}[4] + 7*\text{cb}[5] + 5*\text{cb}[6] + 5.75*\text{cb}[7] + 6.5*\text{cb}[8] \\ &+ 6.5*\text{cb}[0] + 9*\text{cb}[1] + 8*\text{cb}[2] + 8*\text{cb}[3] + 6*\text{cb}[4] + 7*\text{cb}[5] + 5*\text{cb}[6] + 5.75*\text{cb}[7] + 6.5*\text{cb}[8] \end{aligned} $
	+ $7*s[0] + 8*s[1] + 4*s[2] + 6*s[3] + 8*s[4] + 15*s[5] + 4*s[6] + 5*s[7] + 7*w[0] + 8*w[1] + 8*w[2] + 9*w[3] + 11*w[4] + 12*w[5] + 6*w[6] + 9*w[7] + 5*w[8])$ problem = cp.Problem(cp.Minimize(obj_func), constraints) The Objective of our problem is to minimize the amount of money spent on the bar crawl, therefore it must contain the costs of each drink in each bar multiplied by the number of that drink taken. BAR DRINK LIMIT $sc_1 + db_1 + cb_1 + s_1 + w_1 \le 2$
	$egin{align} sc_2 + db_2 + cb_2 + s_2 + w_2 <&= 2 \ sc_3 + db_3 + cb_3 + s_3 + w_3 <&= 2 \ sc_4 + db_4 + cb_4 + s_4 + w_4 <&= 2 \ sc_5 + s_5 <&= 2 \ sc_6 + db_6 + cb_6 + s_6 + w_6 <&= 2 \ sc_7 + db_7 + cb_7 + w_7 <&= 2 \ \hline \end{array}$
In []:	$\begin{split} sc_8 + db_8 + cb_8 + s_8 + w_8 <&= 2 \\ sc_9 + db_9 + cb_9 + s_9 + w_9 <&= 2 \\ db_{10} + cb_{10} + w_{10} <&= 2 \\ \\ \text{constraints.append(sc[0] + db[0] + cb[0] + s[0] + w[0] <= 2)} \\ \text{constraints.append(sc[1] + db[1] + cb[1] + s[1] + w[1] <= 2)} \\ \text{constraints.append(sc[2] + db[2] + cb[2] + s[2] + w[2] <= 2)} \end{split}$
	constraints.append(sc[3] + db[3] + cb[3] + s[3] + w[3] <= 2) constraints.append(sc[4] + s[4] <= 2) constraints.append(sc[5] + db[4] + cb[4] + s[5] + w[4] <= 2) constraints.append(sc[6] + db[5] + cb[5] + w[5] <= 2) constraints.append(sc[7] + db[6] + cb[6] + s[6] + w[6] <= 2) constraints.append(sc[8] + db[7] + cb[7] + w[7] + s[7] <= 2) constraints.append(db[8] + cb[8] + w[8] <= 2) ln order to increase the variety of bars that are chosen, we sum the number of drinks taken at each bar and limit them to be less than or equal to two. BEER LIMIT
In []:	$db_1 + db_2 + db_3 + db_4 + db_6 + db_7 + db_8 + db_9 + db_{10} <= 2$ $cb_1 + cb_2 + cb_3 + cb_4 + cb_6 + cb_7 + cb_8 + cb_9 + cb_{10} <= 2$ $constraints.append(db[0] + db[1] + db[2] + db[3] + db[4] + db[5] + db[6] + db[7] + db[8] <= 2)$ $constraints.append(cb[0] + cb[1] + cb[2] + cb[3] + cb[4] + cb[5] + cb[6] + cb[7] + cb[8] <= 2)$ Since beer is generally the cheapest drink option, if there was not a limit on the number of total beers purchased, they would likely dominate the drinks purchased. Therefore, limiting the total numbers of each beer type to two should increase the variety of drinks purchased.
In []:	EXPENSIVE DRINK MIN $sc_1 + sc_2 + sc_3 + sc_4 + sc_5 + sc_6 + sc_7 + sc_8 + sc_9 >= 1$ constraints.append(sc[0] + sc[1] + sc[2] + sc[3] + sc[4] + sc[5] + sc[6] + sc[7] + sc[8] >= 1) Since the signature cocktails are a more expensive drink type, they will likely be avoided by the program if there is not a constraint enforcing that we include one. Thus the sum of all signature cocktails must be one. TOTAL DRINK GOAL
In []:	$sc_1 + db_1 + cb_1 + s_1 + w_1 + sc_2 + db_2 + cb_2 + s_2 + w_2 + sc_3 + db_3 + cb_3 + s_3 + w_3 + sc_4 + db_4 + cb_4 + s_4 + w_4 + sc_5 + s_5 + sc_6 + db_6 + cb_6 + s_6 + w_6 + sc_7 + db_7 + cb_7 + w_7 + sc_7 + db_8 + cb_8 + s_8 + w_8 + sc_9 + db_9 + cb_9 + s_9 + w_9 + db_{10} + cb_{10} + w_{10} == 8$ $constraints.append(sc[0] + db[0] + cb[0] + s[0] + w[0] + sc_1 + db_1 + cb_1 + sc_1 + db_2 + cb_2 + sc_2 + db_2 + cb_2 + sc_3 + db_3 + cb_3 + sc_4 + db_4 + cb_4 + sc_5 + s_5 + sc_6 + db_6 + cb_6 + s_6 + w_6 + sc_7 + db_7 + cb_7 + w_7 + sc_8 + db_8 + cb_8 + s_8 + w_8 + sc_9 + db_9 + cb_9 + s_9 + w_9 + db_{10} + cb_{10} + w_{10} == 8$ $constraints.append(sc[0] + db[0] + cb_1 + s_1 + w_1 + cb_1 + sc_1 + sc_1 + sc_2 + db_2 + cb_2 + sc_3 + db_3 + cb_3 + sc_4 + db_4 + cb_4 + sc_5 + s_5 + sc_6 + db_6 + cb_6 + s_6 + w_6 + sc_7 + db_7 + cb_7 + w_7 + sc_7 + db_7 + cb_7 + cb_7 + db_7 + db_7 + cb_7 + db_7 + cb_7 + db_7 + cb_7 + db_7 + cb_7 + db_7 + db_7 + cb_7 + db_7 + db_$
	Since the goal of the problem is to minimize the total cost of drinks, we need to ensure that we are actually purchasing drinks (otherwise the number of drinks purchased may be 0). Additionally, an inequality does nothing since the minimum drink limit will always be chosen as long as a feasible solution exists. We chose for the sum of all drinks to be equal to eight. IF THENS FOR BAR VISITS Ensures y's are 1 when the bar has been visited $100(1-y_1) + sc_1 + db_1 + cb_1 + s_1 + w_1 >= 1$
	$egin{align*} 100(1-y_2)+sc_2+db_2+cb_2+s_2+w_2>&=1 \ 100(1-y_3)+sc_3+db_3+cb_3+s_3+w_3>&=1 \ 100(1-y_4)+sc_4+db_4+cb_4+s_4+w_4>&=1 \ 100(1-y_5)+sc_5+s_5>&=1 \ 100(1-y_6)+sc_6+db_6+cb_6+s_6+w_6>&=1 \ 100(1-y_7)+sc_7+db_7+cb_7+w_7>&=1 \ \end{gathered}$
	$100(1-y_8)+sc_8+db_8+cb_8+s_8+w_8>=1$ $100(1-y_9)+sc_9+db_9+cb_9+s_9+w_9>=1$ $100(1-y_{10})+db_{10}+cb_{10}+w_{10}>=1$ Ensures y's are 0 when the bar has not been visited $-100y_1+sc_1+db_1+cb_1+s_1+w_1<=0$
	$egin{align*} -100y_2 + sc_2 + db_2 + cb_2 + s_2 + w_2 <&= 0 \ -100y_3 + sc_3 + db_3 + cb_3 + s_3 + w_3 <&= 0 \ -100y_4 + sc_4 + db_4 + cb_4 + s_4 + w_4 <&= 0 \ -100y_5 + sc_5 + s_5 <&= 0 \ -100y_6 + sc_6 + db_6 + cb_6 + s_6 + w_6 <&= 0 \ -100y_7 + sc_7 + db_7 + cb_7 + w_7 <&= 0 \ \end{pmatrix}$
In []:	$-100y_8 + sc_7 + dv_7 + cv_7 + w_7 \le 0$ $-100y_8 + sc_8 + db_8 + cb_8 + s_8 + w_8 <= 0$ $-100y_9 + sc_9 + db_9 + cb_9 + s_9 + w_9 <= 0$ $-100y_{10} + db_{10} + cb_{10} + w_{10} <= 0$ $\text{constraints.append}(100*(1-y[0]) + sc[0] + db[0] + cb[0] + s[0] + w[0] >= 1)$ $\text{constraints.append}(100*(1-y[1]) + sc[1] + db[1] + cb[1] + s[1] + w[1] >= 1)$ $\text{constraints.append}(100*(1-y[2]) + sc[2] + db[2] + cb[2] + s[2] + w[2] >= 1)$
	constraints.append($100*(1-y[3]) + sc[3] + db[3] + cb[3] + s[3] + w[3] >= 1$) constraints.append($100*(1-y[4]) + sc[4] + s[4] >= 1$) constraints.append($100*(1-y[5]) + sc[5] + db[4] + cb[4] + s[5] + w[4] >= 1$) constraints.append($100*(1-y[6]) + sc[6] + db[5] + cb[5] + w[6] >= 1$) constraints.append($100*(1-y[7]) + sc[7] + db[6] + cb[6] + s[6] + w[6] >= 1$) constraints.append($100*(1-y[8]) + sc[8] + db[7] + cb[7] + w[7] + s[7] >= 1$) constraints.append($100*(1-y[9]) + db[8] + cb[8] + w[8] >= 1$) constraints.append($-100*y[6] + sc[6] + db[6] + cb[6] + s[6] + w[6] <= 0$) constraints.append($-100*y[6] + sc[6] + db[6] + cb[6] + s[6] + w[6] <= 0$) constraints.append($-100*y[6] + sc[6] + db[6] + cb[6] + s[6] + w[6] <= 0$) constraints.append($-100*y[6] + sc[6] + db[6] + cb[6] + s[6] + w[6] <= 0$) constraints.append($-100*y[6] + sc[6] + db[6] + cb[6] + s[6] + w[6] <= 0$) constraints.append($-100*y[6] + sc[6] + db[6] + cb[6] + s[6] + w[6] <= 0$) constraints.append($-100*y[6] + sc[6] + db[6] + cb[6] + s[6] + w[6] <= 0$)
	constraints.append($-100*y[4] + sc[4] + s[4] <= 0$) constraints.append($-100*y[5] + sc[5] + db[4] + cb[4] + s[5] + w[4] <= 0$) constraints.append($-100*y[6] + sc[6] + db[5] + cb[5] + w[5] <= 0$) constraints.append($-100*y[7] + sc[7] + db[6] + cb[6] + s[6] + w[6] <= 0$) constraints.append($-100*y[8] + sc[8] + db[7] + cb[7] + w[7] + s[7] <= 0$) constraints.append($-100*y[9] + db[8] + cb[8] + w[8] <= 0$) The goal of these constraints is to create a series of either-or constraints that ensure that, for each bar, if a drink has been purchased at the bar, the corresponding binary variable is one. Otherwise the binary variable is zero. If the value is one, the greater than or equal to constraints are enforced. If the value is zero, the less than or equal to constraints are enforced. NUMBER OF LOCATIONS TO VISIT
In []:	$y_1 + y_2 + y_3 + y_4 + y_5 + y_6 + y_7 + y_8 + y_9 + y_{10} >= 5$ $\text{constraints.append}(y[\emptyset] + y[1] + y[2] + y[3] + y[4] + y[5] + y[6] + y[7] + y[8] + y[9] >= 5)$ We further enforce the number of bars visited here. Since these are one when a corresponding bar is visited, this ensures that the number of bars visited will be at least 5. AVERAGE REVIEW MIN $4y_1 + 4y_2 + 4y_3 + 4y_4 + 2.5y_5 + 4y_6 + 4.5y_7 + 3.5y_8 + 2y_9 + 2y_{10} >= 3.5(y_1 + y_2 + y_3 + y_4 + y_5 + y_6 + y_7 + y_8 + y_9 + y_{10})$
In []:	constraints append (4*y[0] + 4*y[1] + 4*y[2] + 4*y[3] + 2.5*y[4] + 4*y[5] + 4.5*y[6] + 3.5*y[7] + 2*y[8] + 2*y[9] >= 3.5*(y[0] + y[1] + y[2] + y[3] + y[4] + y[5] + 4.5*y[6] + 3.5*y[7] + 2*y[8] + 2*y[9] >= 3.5*(y[0] + y[1] + y[2] + y[3] + y[4] + y[5] + 4.5*y[6] + 3.5*y[7] + 2*y[8] + 2*y[9] >= 3.5*(y[0] + y[1] + y[2] + y[3] + y[4] + y[5] + y[5] + y[6]
In []:	$cb_i>=0, i=1,\ldots,4,6,\ldots,10$ $s_i>=0, i=1,\ldots,6,8,9$ $w_i>=0, i=1,\ldots,4,6,\ldots,10$ $\text{constraints.append(sc[0]>=0)} \\ \text{constraints.append(sc[1]>=0)} \\ \text{constraints.append(sc[2]>=0)} \\ \text{constraints.append(sc[3]>=0)}$
	<pre>constraints.append(sc[4] >= 0) constraints.append(sc[5] >= 0) constraints.append(sc[6] >= 0) constraints.append(sc[7] >= 0) constraints.append(sc[8] >= 0) constraints.append(db[0] >= 0) constraints.append(db[1] >= 0) constraints.append(db[2] >= 0) constraints.append(db[3] >= 0) constraints.append(db[4] >= 0)</pre>
	<pre>constraints.append(db[5] >= 0) constraints.append(db[6] >= 0) constraints.append(db[7] >= 0) constraints.append(db[8] >= 0) constraints.append(cb[0] >= 0) constraints.append(cb[1] >= 0) constraints.append(cb[1] >= 0) constraints.append(cb[3] >= 0) constraints.append(cb[4] >= 0)</pre>
	<pre>constraints.append(cb[5] >= 0) constraints.append(cb[6] >= 0) constraints.append(cb[7] >= 0) constraints.append(cb[8] >= 0) constraints.append(s[0] >= 0) constraints.append(s[1] >= 0) constraints.append(s[2] >= 0) constraints.append(s[3] >= 0) constraints.append(s[4] >= 0)</pre>
	<pre>constraints.append(s[5] >= 0) constraints.append(s[6] >= 0) constraints.append(s[7] >= 0) constraints.append(w[0] >= 0) constraints.append(w[1] >= 0) constraints.append(w[2] >= 0) constraints.append(w[3] >= 0) constraints.append(w[4] >= 0) constraints.append(w[4] >= 0) constraints.append(w[5] >= 0) constraints.append(w[6] >= 0)</pre>
	constraints append (w[7] >= 0) constraints append (w[8] >= 0) Since we do not want any of the integer variables to be negative, we ensure that they are all greater than or equal to zero. Results As showed above, our objective was to minimize the amount of money spent on drinks for one day in the short north. We had a set of constraints to ensure a successful bar crawl. First we made sure to purchase 8 drinks which could be changed or modified in the future. To ensure we would have an enjoyable time, we wanted the average yelp rating of our bars to be at least 3.5 out of 5. To make
In []:	sure we were purchasing a variety of drinks, we made sure to buy at least one signature cocktail, purchase a maximum of four beers total, and made sure to only buy two of the same drink at a bar. We also wanted to make sure we visited and bought drinks at no less than 5 different bars. The optimized solution came out to spending 40 dollars in total and visiting Standard, Bodega, Pint House, Union Cafe, and Brothers. The different drink types purchased include: shots, signature cocktail, domestic beers, and wine. The particular amount and drinks and where they were purchased are illustrated in the table below. # Results from optimization import pandas as pd def highlight_max(x): return ['font-weight: bold' if (v == x.loc[len(x) - 1]) else ''
	for v in x] bars_visited = ['Standard', 'Bodega', 'Pint House', 'Union Cafe', 'Brothers',
Out[]:	results_main.style.apply(highlight_max)
	Post-Optimality Analysis Our optimal solution is largely based on the constraints put on the objective function. When creating our model, we were interested in creating a balanced night that includes a variety of both drink types and bars visited. We decided to run our model under a few different sets of conditions, such as increasing the average Yelp rating to 4.1, removing the average Yelp rating constraint, and removing constraints requiring multiple drink types to be purchased. We have demonstrate below that the value for the objective function does not change by a large degree when the constraints are manipulated. However, it is the case that the distribution of drink types varies widely depending on what drinks are constrained. It was also apparent that when allowing the user to purchase many
[n []:	drinks at a single bar, the distribution of drink types lowers significantly and only 2 bars would be preferred when minimizing. Ultimately, our model is highly sensitive to the amount of bars required and how many drinks may be purchased at each bar. When these constraints are modified, the variety bars visited and drink types purchased may vary as shown in the tables below. # Table 1 def highlight_max(x): return ['font-weight: bold' if (v == x.loc[len(x) - 1]) else ''
Out[]:	<pre>drinks_purchased = ['Domestic Beer', 'Domestic Beer', 'Shots (2)',</pre>
	O Standard Domestic Beer \$5.50 1 Bristol Domestic Beer \$5.00 2 Bodega Shots (2) \$8.00 3 Gaswerks Domestic Beer (2) \$8.50 4 Union Cafe Domestic Beer (2) \$6.00 5 Total Cost \$33.00 The results of our minimization when we place no constraints on the types of drinks purchased. I.e, the amount of beer or signature cocktails purchased are not limited.
[n []:	<pre># Table 2 bars_visited = ['Bodega', 'Union Cafe', 'Union Cafe',</pre>
Out[]:	table_2.style.apply(highlight_max)
	The results of our minimization when the number of drinks purchased at a single bar is not constrained. This does not require an individual to visit multiple bars.
	The results of our minimization when the number of drinks purchased at a single bar is not constrained. This does not require an individual to visit multiple bars. Appendix A The presentation video can be found at: