SUMMARY OF FINDINGS

Major Findings and Implications

Summary of Findings

1. Influence of COVID-19 Lockdowns on AQI:

- The hypothesis that air quality would improve during the lockdowns due to reduced economic activity, driving, and commerce was only partially supported.
- Los Angeles, CA, St. Louis, MO, and Juneau, AK were analyzed for trends in AQI six months pre-pandemic, during the pandemic, and six months post-pandemic.
- Observations revealed no significant direct correlation between lockdowns and AQI improvements across all studied cities.

2. Seasonal Variations in AQI:

- A persistent summertime spike in AQI was noted, aligning with historical data showing AQI typically increases during the summer months.
- Extraneous factors such as:
 - Pollen levels
 - Increased travel during the summer
 - Specific weather patterns contributing to pollution retention or dispersion
- Highlighted the importance of addressing these independent variables when assessing lockdown impacts.

3. City-Specific Observations:

o Los Angeles:

 Being highly urbanized, AQI showed minor improvement during the lockdown but spiked post-lockdown due to resumed activity.

St. Louis:

 Moderate variations in AQI, with less reliance on heavy industry or transportation-related pollution compared to larger metropolitan areas.

o Juneau:

SUMMARY OF FINDINGS

 Negligible AQI changes due to its smaller population and limited industrial or vehicular pollution sources.

4. Need for Further Research:

 While lockdowns did reduce human activity, the lack of a strong AQI improvement suggests the influence of external factors, such as persistent natural and regional pollution contributors.

Implications

1. Policy and Urban Planning:

- The findings underscore the need for targeted environmental policies beyond reducing vehicle or industrial activity.
- Cities should focus on mitigating summertime AQI spikes by addressing predictable seasonal contributors like pollen and travel.

2. Environmental Awareness:

 Public education should emphasize the complexities of AQI beyond just human activities, integrating natural and seasonal influences.

3. Future Research Directions:

- Longitudinal studies that analyze AQI with a finer resolution of contributing factors, including economic, geographical, and natural phenomena, could better inform actionable strategies.
- Research could benefit from integrating real-time data with advanced simulation models to predict AQI changes.

4. Localized Intervention Strategies:

 Urban centers may require distinct interventions, as pollution drivers differ based on geographical, industrial, and demographic characteristics.

Question-by-Question Summary

1. What is AQI, and what does it measure?

SUMMARY OF FINDINGS

 AQI is a numerical scale (0-500 ppm) indicating air quality and its potential effects on human health. It measures six pollutants: ground-level ozone, particle pollution, carbon monoxide, sulfur dioxide, nitrogen dioxide, and lead.

2. How did the AQI change during the study period?

 Minimal direct improvements during lockdowns, with significant summertime spikes unrelated to human activity reductions.

3. What were the external factors influencing AQI?

 Seasonal influences, including pollen and weather patterns, and rebound effects post-lockdown due to resumed transportation and industrial activity.

4. What are the broader environmental implications?

 Future environmental policies must address both anthropogenic and natural contributors to pollution.

5. What further studies are needed?

 Examination of natural contributors, long-term impacts of pandemic-related behavioral shifts, and targeted approaches for addressing high-risk periods (e.g., summer).