8 - Feb 1 Lecture

- Sample final exam questions
- Matrix equality/addition/multiplication
- 2 methods of matrix multiplication
- Properties of matrix multiplication
- 3 of the biggest matrix multiplication mistakes to watch out for
- Exponent of a matrix
- Transpose of a matrix
- Properties of transpose of a matrix

Example Question 1. Likely	Given the following system of equations, for what values of h is the system consistent?		
to apper on final exam.	$hx_1 + 3x_2 + 3x_3 = 1$		
	$x_1 + x_2 + x_3 = 0$		
	We want to move h as far down and to the right as possible.		
	$X_1 + X_2 + X_3 = 0$ $X_3 + X_2 + X_1 = 0$		
	Then convert to an augmented matrix and row reduce		
	$\Rightarrow \boxed{33 \text{ h}} \boxed{1}$		
	33 h I]		
	[1 1 1 0] if h=3, we would stop here		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	J SIVILE YOU D D 1 EXISTS		
	$\sim \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & \frac{1}{h-3} \end{bmatrix} R_2^{\frac{1}{2}} = \frac{1}{h-3} R_2 \qquad \leftarrow REF (can stop here)$		
	$\left[\begin{array}{c c} I & I & O & -\frac{1}{h-3} \end{array}\right] R_1^{'} = R_1 - R_2 \leftarrow RREF$		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	There are two possibilities:		
	① h-3 = 0 → inconsistent		
	② h-3 ≠ 0 → consistent		
	The system is consistent for all h≠3 and is inconsistent for h=3.		
A similar question.	[1]		
, common que com	Given $\vec{u} = 2$ and $\vec{v_1}$, $\vec{v_2}$, and $\vec{v_3}$, for what value of h is \vec{u} in Span $\{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$?		
	[h]		

Matrix Equality

Two matrices are equal if and only if they are the same dimension with the same components in the same positions.

Ex:
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \neq \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \neq \text{ anything other than } \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

Matrix Addition / Subtraction

Two matrices can only be added together if they are the same dimension. Subtraction works in the same way as addition

Ex 1:
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
, $B = \begin{bmatrix} -2 & 3 & 0 \\ -1 & -7 & 2 \end{bmatrix}$ $A + B = \begin{bmatrix} 1 - 2 & 2 + 3 & 3 + 0 \\ 4 - 1 & 5 - 7 & 6 + 2 \end{bmatrix} = \begin{bmatrix} -1 & 5 & 3 \\ 3 & -2 & 8 \end{bmatrix}$

Ex 2:
$$\begin{bmatrix} 1 & -1 \\ 2 & -4 \\ 0 & 1 \end{bmatrix}$$
 A+C = undefined B+C = undefined

Scalar Multiplication

Scalar multiplication works for matrices of all dimensions.

Ex 1:
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
 $2A = \begin{bmatrix} 2(1) & 2(2) & 2(3) \\ 2(4) & 2(5) & 2(6) \end{bmatrix} = \begin{bmatrix} 2 & 4 & 6 \\ 8 & 10 & 12 \end{bmatrix}$

$$\begin{bmatrix} 1 & -1 \\ 2 & -4 \\ 0 & 1 \end{bmatrix} - 3C = \begin{bmatrix} -3(1) & -3(-1) \\ -3(2) & -3(-4) \\ -3(0) & -3(1) \end{bmatrix} = \begin{bmatrix} -3 & 3 \\ -6 & 12 \\ 0 & -3 \end{bmatrix}$$

Matrix Multiplication Method 1: "computer way"

Let A be a mxn matrix and B be a nxp matrix.

Let b1, b2,..., bp be the columns of B. (bi is the ith column of B)

Then, ABi = [Ab1 Ab2 ... Abp] where ABi is the ith column of the resulting matrix

Note: the number of columns of A must be equal to the number of rows of B

→ Otherwise, product of A×B is undefined.

Ex 1:
$$A = \begin{bmatrix} 1 & 1 & -2 \\ 3 & -2 & 0 \end{bmatrix}$$
 $B = \begin{bmatrix} 2 & 1 \\ 2 & 0 \\ 0 & -1 \end{bmatrix}$ $B_1 = \begin{bmatrix} 2 \\ 2 \\ 0 \\ 0 \end{bmatrix}$ $B_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$

$$A \times B = \left[\left(2 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ -2 \end{bmatrix} + 0 \begin{bmatrix} -2 \\ 0 \end{bmatrix} \right) \quad \left(1 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + 0 \begin{bmatrix} 1 \\ -2 \end{bmatrix} - 1 \begin{bmatrix} -2 \\ 0 \end{bmatrix} \right) \right] = \left[\left(\begin{bmatrix} 2 \\ 6 \end{bmatrix} + \begin{bmatrix} 2 \\ -4 \end{bmatrix} \right) \left(\begin{bmatrix} 1 \\ 3 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 \end{bmatrix} \right) \right]$$

$$= \begin{bmatrix} 4 & 3 \\ 2 & 3 \end{bmatrix}$$

Ex 2:
$$C = \begin{bmatrix} -2 & 4 \\ 1 & -2 \end{bmatrix} \quad D = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} \quad D_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \quad D_2 = \begin{bmatrix} 2 \\ 6 \end{bmatrix}$$

$$C \times D = \left[\left(1 \begin{bmatrix} -2 \\ 1 \end{bmatrix} + 3 \begin{bmatrix} 4 \\ -2 \end{bmatrix} \right) \quad \left(2 \begin{bmatrix} -2 \\ 1 \end{bmatrix} + 6 \begin{bmatrix} 4 \\ -2 \end{bmatrix} \right) \right] = \left[\left(\begin{bmatrix} -2 \\ 1 \end{bmatrix} + \begin{bmatrix} 12 \\ -6 \end{bmatrix} \right) \quad \left(\begin{bmatrix} -4 \\ 2 \end{bmatrix} + \begin{bmatrix} 24 \\ -12 \end{bmatrix} \right) \right]$$

$$= \begin{bmatrix} 10 & 20 \\ -5 & -10 \end{bmatrix}$$
This method will produce the same results as the previous method, but is easier

Matrix Multiplication

Method 2: "human way"

This method will produce the same results as the previous method, but is easier for most people. You can use either method on a test.

$$(AB)_{ij} = \underbrace{\sum_{k=1}^{n} A_{i,k} \quad B_{k,j}}_{k=1} = A_{i,1} \quad B_{1,j} + A_{i,2} \quad B_{2,j} + ... + A_{i,n} \quad B_{n,j}$$

$$Ex: A = \underbrace{\sum_{k=1}^{n} A_{i,k} \quad B_{k,j}}_{2} = A_{i,1} \quad B_{1,j} + A_{i,2} \quad B_{2,j} + ... + A_{i,n} \quad B_{n,j}$$

$$A = \underbrace{\sum_{k=1}^{n} A_{i,k} \quad B_{k,j}}_{2} = A_{i,1} \quad B_{1,j} + A_{i,2} \quad B_{2,j} + ... + A_{i,n} \quad B_{n,j}$$

$$A = \underbrace{\sum_{k=1}^{n} A_{i,k} \quad B_{k,j}}_{3} = A_{i,1} \quad B_{1,j} + A_{i,2} \quad B_{2,j} + ... + A_{i,n} \quad B_{n,j}$$

$$A = \underbrace{\sum_{k=1}^{n} A_{i,k} \quad B_{k,j}}_{3} = A_{i,1} \quad B_{1,j} + A_{i,2} \quad B_{2,j} + ... + A_{i,n} \quad B_{n,j}$$

$$A = \underbrace{\sum_{k=1}^{n} A_{i,k} \quad B_{k,j}}_{3} = A_{i,1} \quad B_{1,j} + A_{i,2} \quad B_{2,j} + ... + A_{i,n} \quad B_{n,j}$$

$$A = \underbrace{\sum_{k=1}^{n} A_{i,k} \quad B_{k,j}}_{3} = A_{i,k} \quad B_{1,j} + A_{i,2} \quad B_{2,j} + ... + A_{i,n} \quad B_{n,j}$$

$$A = \underbrace{\sum_{k=1}^{n} A_{i,k} \quad B_{k,j}}_{3} = A_{i,k} \quad B_{1,j} + A_{i,2} \quad B_{2,j} + ... + A_{i,n} \quad B_{n,j}$$

$$A = \underbrace{\sum_{k=1}^{n} A_{i,k} \quad B_{k,j}}_{3} = A_{i,k} \quad B_{1,j} + A_{i,2} \quad B_{2,j} + ... + A_{i,n} \quad B_{n,j}$$

$$A = \underbrace{\sum_{k=1}^{n} A_{i,k} \quad B_{k,j}}_{3} = A_{i,k} \quad B_{1,j} + A_{i,2} \quad B_{2,j} + ... + A_{i,n} \quad B_{n,j}$$

$$A = \underbrace{\sum_{k=1}^{n} A_{i,k} \quad B_{k,j}}_{3} = A_{i,k} \quad B_{1,j} + A_{i,2} \quad B_{2,j} + ... + A_{i,n} \quad B_{n,j}$$

$$A = \underbrace{\sum_{k=1}^{n} A_{i,k} \quad B_{k,j}}_{3} = A_{i,k} \quad B_{1,j} + A_{i,2} \quad B_{2,j} + ... + A_{i,n} \quad B_{n,j}$$

$$A = \underbrace{\sum_{k=1}^{n} A_{i,k} \quad B_{i,k} \quad B_{i,j}}_{3} = A_{i,k} \quad B_{i,j} + A_{i,j} \quad B_{i,j} \quad A_{i,j} \quad B_{i,j} \quad A_{i,j} \quad$$

A cool trick for matrix multiplication

Ex 1:

This next trick is super cool and very useful for a chain of matrix multiplication (i.e. when more than 2 vectors are multiplied together). If you can write vectors with matching "inner numbers", then the "outer numbers" become the dimension of the resulting matrix.

Properties of Matrix	Let A be a man matrix	Let A be a mxn matrix Let BC be matrices of any sizes such that the following are		
Multiplication	defined. Let r, s be so	defined. Let r, s be scalars.		
	1) (AB)C = A(BC)			
	2) A(B+C) = AB + AC	(alternatively: (B+C)A = BA+CA))		
	3) r(AB) = (rA)B = A(rB)	(can multiply by r at any step)		
	4) Im A = A = AIn			
	5) Om A = AOn = Omxn	(size of identity and zero usually implied by context - no subscripts provided)		
Difference between AB and BA	Suppose AB is defined. BA	A might not be defined.		
	1 ''	ined, BA may not have the same dimensions as AB.		
	·	nsions match, BA may not equal AB.		
	•	possible. Square matrices and identity/zero matrices		
	commute, meaning	•		
	_			
PSA:	This is the biggest	mistake that students make every year. Do not calculate		
		e been asked to calculate AxB.		
1		y boon donous to company, yet		
Ex 1:		$\begin{bmatrix} 2 & 1 \end{bmatrix}$ $\begin{bmatrix} 2(1)+1(3) & 2(1)+1(-2) & 2(-2)+1(0) \end{bmatrix}$		
	A: 1 1 -2 B=	$\begin{bmatrix} 2 & 1 \\ 2 & 0 \\ 0 & -1 \end{bmatrix} \qquad BA = \begin{bmatrix} 2(1)+1(3) & 2(1)+1(-2) & 2(-2)+1(0) \\ 2(1)+0(3) & 2(1)+0(-2) & 2(-2)+0(0) \\ 0(1)-1(3) & 0(1)-1(-2) & 0(1)-1(0) \end{bmatrix}$		
	n 3 -2 0	0-1 0(1)-1(3) 0(1)-1(-2) 0(1)-1(0)		
-				
	Γ4 37	$ \begin{bmatrix} 5 & 0 & -4 \\ 2 & 2 & -4 \\ -3 & 2 & 0 \end{bmatrix} \neq AB $		
	$AB = \begin{bmatrix} 4 & 3 \\ 2 & 3 \end{bmatrix} \text{ as solved}$	above -3 2 0		
	_			
	(not equa	and different dimensions)		
1				
Ex 2:	[-2 4]	$\begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} CD = \begin{bmatrix} 10 & 20 \\ -5 & -10 \end{bmatrix} \text{ (from previous example)}$ $CD \neq DC$ $1(4)+2(-2) \\ 3(4)+6(-2) \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0_{2\times 2}$		
	C = 1 -2 D =	3 6 CD = -5 -10 k		
) cD ≠ DC		
	[1(-2)+2(1)	1(4)+2(-2)] [0 0]		
	DC = 3(-2)+6(1)	3(4)+6(-2) = 0 0 = 0 _{2×2}		
		7 5 3		
	Top 3 things to wat	tch out for:		
	1) AB ≠ BA.			
	2) XY = 0 does not mean	1 that X=0 or Y=0.		
	3) XY = XZ does not imp			
	(as an example : DC = l			

	must be a square for k times product to be defined
Exponent of a Matrix	Let A be a n×n matrix. Then, $A^k = A \times A \times \times A$ for a positive integer k
	We also define A° = In
	We will expand on this next week. (presumably in lecture 10)
T	Denoted using AT.
Transpose of a matrix	
	To transpose means to take all rows and write them as columns, and vice versa.
	If A is a mxn matrix then A^T is the mxn matrix such that $(A^T)_{i,j} = A_{j,i}$ (switch coordinates)
Ex 1:	$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \qquad A^{T} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$
	$A = \begin{bmatrix} 1 & 3 & A^T = 2 & 5 \end{bmatrix}$
	[3 6]
Ex 2:	[-1 -1] _ [-1 2]
	$B = \begin{bmatrix} -1 & -1 \\ 2 & 4 \end{bmatrix} B^{T} = \begin{bmatrix} -1 & 2 \\ -1 & 4 \end{bmatrix}$
r., 2.	۲,٦
Ex 3:	
	$\vec{\nabla} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad \vec{\nabla}^{T} = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$ $\begin{bmatrix} -1 \end{bmatrix} \qquad \text{row vector}$
	[-1] row vector
	column vector
Properties of transpose of	Let A, B be matrices such that calculations are defined and r is a scalar.
a matrix	1) $(A^T)^T = A$
	2) $(A+B)^{T} = A^{T} + B^{T}$
	3) $(rA)^T = r(A)^T$ (scalar multiplication can be applied before or after transpose)
	4) (AB) = BTAT (transpose reverses the order of multiplication)

This will likely be on the	$hx_1 + 3x_2 + 3x_3 = 1$ \iff $x_1 + x_2 + x_3 = 0$
final exam	$x_1 + x_2 + x_3 = 0$ $hx_1 + 3x_2 + 3x_3 = 1$
	$(X_3 + X_2 + X_1 = 0)$
	3x ₃ + 3x ₂ + hx ₁ = 1
	Goal: take variable and move to for right (bottom) corner
	'
	For what values of h is the sys. consistent?
	X3 X2 X,
	$\Rightarrow \begin{bmatrix} 1 & 1 & 1 & 0 \\ 3 & 3 & h & 1 \end{bmatrix}$
	[1110]
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	[1 (1 [0]
(REF)	
but can do	L 1 - 3 · · · · · · · · · · · ·
one more step to get RREF	2 possibilities:
,	
	② $h-3 \neq 0 \rightarrow \text{consistent}$ (we can divide row 2 by h-3 to get)
	Row 00012 does not exist
	Now yours ques not exist
	\therefore The system is consistent for all $h \neq 3$
	and is inconsistent for $h=3$.
	Wild to them to the term of th
Sim. Q	۲,7
31741 (2	$\overrightarrow{u} = \begin{bmatrix} 1 \\ 2 \\ h \end{bmatrix} \overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3} \text{for what value of } h$ is \overrightarrow{u} in Span $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}\}$?
	$\frac{1}{1}$ is \hat{u} in Span $\{\hat{v}_1,\hat{v}_2,\hat{v}_3\}$?
	The property of the second sec

Matrix Algebra Equality

Two matrices are equal if and only if they are the same dimensions with the same components in the same positions.

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \neq \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

Addition

Two matrices can only be added together if they are the same dimension. Addition is done component-wise:

A =
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
 B = $\begin{bmatrix} -2 & 3 & 0 \\ -1 & -7 & 2 \end{bmatrix}$ same dim \checkmark Subtraction works the same as addition

A + B = $\begin{bmatrix} 1 - 2 & 2 + 3 & 3 + 0 \\ 4 - 1 & 5 - 7 & 6 + 2 \end{bmatrix}$ = $\begin{bmatrix} -1 & 5 & 3 \\ 3 & -2 & 8 \end{bmatrix}$ same dimension)

Component

(component-wise, matrices

$$\begin{bmatrix} 1 & -1 \end{bmatrix} \leftarrow 3 \times 2 \text{ matrix}$$

$$C = \begin{bmatrix} 2 & -4 \\ 0 & 1 \end{bmatrix} \qquad A + C, B + C \text{ not defined}$$

Multiplication

Scalar multiplication is also done component-wise:

$$2 A = \begin{bmatrix} 2(1) & 2(2) & 2(3) \\ 2(4) & 2(5) & 2(6) \end{bmatrix} = \begin{bmatrix} 2 & 4 & 6 \\ 8 & 10 & 12 \end{bmatrix}$$
 (and dimension of matrix does not matter)

$$-3(C) = \begin{bmatrix} -3 & 3 \\ -6 & 12 \\ 0 & -3 \end{bmatrix}$$

Matrix Multiplication

(not done component-wise)

Let A be a m x n matrix and B be a n x p matrix.

Then AB; = [Ab, Abz ... Abp] where ABi is the ith column of the resulting matrix.

Important note: the # columns of A must be equal to the # rows of B. → If not, product of AB is undefined.

$$Ex. 1 \quad A = \begin{bmatrix} 1 & 1 & -2 \\ 3 & -2 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 2 & 1 \\ 2 & 0 \\ 0 & -1 \end{bmatrix}$$

$$B_1 = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix} \quad B_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

$$A \cdot B = \begin{bmatrix} 2 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ -2 \end{bmatrix} + 0 \begin{bmatrix} -2 \\ 0 \end{bmatrix} \right) \quad \left(1 \begin{bmatrix} 3 \\ 3 \end{bmatrix} + 0 \begin{bmatrix} -1 \\ -2 \end{bmatrix} - 1 \begin{bmatrix} -2 \\ 0 \end{bmatrix} \right)$$

$$= \begin{bmatrix} 4 & 3 \\ 2 & 3 \end{bmatrix}$$

$$Ex. 2 \quad C = \begin{bmatrix} -2 & 4 \\ 1 & -2 \end{bmatrix} \quad D = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} \quad d_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \quad d_2 = \begin{bmatrix} 2 \\ 6 \end{bmatrix}$$

$$CD = \begin{bmatrix} 1 \begin{bmatrix} -2 \\ 1 \end{bmatrix} + 3 \begin{bmatrix} 4 \\ -2 \end{bmatrix} \right) \quad \left(2 \begin{bmatrix} -2 \\ 1 \end{bmatrix} + 6 \begin{bmatrix} 4 \\ -2 \end{bmatrix} \right)$$

$$= \begin{bmatrix} 10 & 20 \\ -5 & -10 \end{bmatrix}$$
The other way to calculate AB:
$$(AB)_{i,j} = \sum_{k=1}^{N} A_{i,k} \quad B_{k,j} = A_{i,2} \quad B_{2,j} + A_{i,2} \quad B_{3,j} + ... + A_{i,n} \quad B_{n,j}$$

$$A = \begin{bmatrix} 1 & 1 & -2 \\ 3 & -2 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 2 & 1 \\ 2 & 0 \\ 0 & -1 \end{bmatrix} \quad Resulting \ matrix \ is \ 2 \times 2$$

Can also check this method with CxD, you'll get the same result.

2	If you see XY=0 that does not mean that X=0 or Y=0.
3	XY=XZ does not imply that Y=Z.
	Ex from above: (DC = DOzxz)
	Practice! Find examples from textbook / online.
	has to be square, multipliying
Exponent of a Matrix	Let A be a <u>n x n</u> matrix. has to be square, multipliying Let A be a <u>n x n</u> matrix.
	Then $A^k = A \times A \times \times A$ for k a positive integer.
	k times
	A needs to be a square for this product to be defined.
	We also define $A^{\circ} = I_n$.
	We will expand on this next week.
	if you see this it means transpose not exponent.
Transpose of a Matrix	Denoted A.T.
	"Take all rows and write as columns, and vice versa":
	$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \rightarrow A^{T} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \end{bmatrix}$
	$A = \begin{bmatrix} 4 & 5 & 6 \end{bmatrix} \rightarrow A = \begin{bmatrix} 2 & 5 \end{bmatrix}$
	1361
	simply (switch coordinates)
	If A is a mxn matrix then A^T is the mxn matrix s.t. $(A^T)_{i,j} = A_{j,i}$
	$\beta = \begin{bmatrix} -1 & -1 \\ 2 & 4 \end{bmatrix} \rightarrow \beta^{T} = \begin{bmatrix} -1 & 2 \\ -1 & 4 \end{bmatrix}$
	$\vec{V} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \vec{V}^T = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$
	$ \vec{V} = \vec{V} = \vec{V} ^T = [\vec{V} \vec{V} ^T = [\vec{V} \vec{V} \vec{V} ^T = \vec{V} \vec{V} \vec{V} ^T = [\vec{V} \vec{V} \vec{V} \vec{V} \vec{V} \vec{V} \vec{V} \vec{V} $
	col vector> row vector
	Let AB be matrices s.t calculations are defined and ris a scalar.
	$(A^{T})^{T} = A$
	$(A+B) = A^{T} + B^{T}$
	$(rA)^T = r(A)^T \rightarrow scalar mult. can be done before or after T.$
	(AB) ^T = B ^T A ^T → reverses order of multiplication
	$(ABCD)^{T} = D^{T}C^{T}B^{T}A^{T}$