多媒體實習-Opency教學6

OUTLINE

- Histogram Equalization (直方圖均值化)
- Histogram Specification (轉換指定直方圖)

HISTOGRAM EQUALIZATION

■ Histogram equalization (直方圖均化)

HISTOGRAM EQUALIZATION

未經均衡化的直方圖

經均衡化的直方圖

HISTOGRAM EQUALIZATION

- 假設圖片總共有n個pixels, n_i 代表灰階值i出現的次數
- $p_x(i) = p(x = i) = \frac{n_i}{n}$, $0 \le i < (255)$
- 累積分布函數 $cdf_x(i) = \sum_{j=0}^i p_x(j)$
- 原本pixel值為i,要轉換的pixel值為
- $-0 + cdf_{x}(i) * (255 0)$

EXAMPLE

■ 這邊舉例的為 value =[0, 7] 的圖像而已,實務上會是 [0, 255]

Pixel value (i)	Nums of this pixel in image (n_i)	Probability ($p_x(i)$)	$cdf_{\chi}(i)$	$0 + cdf_{x}(i) * (7-0)$	
0	790	0.19	0.19	1 (1.33)	
1	1023	0.25	0.44	3 (3.08)	
2	850	0.21	0.65	5 (4.55)	
3	656	0.16	0.81	6 (5.67)	
4	329	0.08	0.89	6 (6.23)	
5	245	0.06	0.95	7 (6.55)	
6	122	0.03	0.98	7 (6.86)	
7	81	0.02	1.00	7 (7.00)	

■ 你會看到原本 過度集中在 value = 1 的值 被取代為更高 的值(3)了

HISTOGRAM WATCHING

HISTOGRAM WATCHING

- 算出原圖及目標圖片之累積分布函數cdf₁,cdf₂
- ■建立原圖cdf₁與目標圖片cdf₂之對應表

0.01 -> 0.01

0.56 -> 0.57

.

- 建立 cdf₂-1 對應表
- 原圖中其中一 pixel 值 xl ,以 $cdf_1(x_1)$ 得累積機率值,在對應上述建立之對應表後得 $cdf_2(x_2)$ 之值,最後使用 cdf_2 -1得到轉換後數值。

作業

- 實作 Histogram equalization (直方圖均化), 不能 Call Histogram equalization Library
- ■需要測試一張過曝圖片(srcl.jpg)以及一張過暗圖片(src2.jpg),儲存轉換後的結果。

(srcl.jpg)

(result1.jpg)

加分題

- ■實作 Histogram matching (直方圖匹配)
- 給 src3.jpg 作為轉換圖片 給 target.jpg 作為目標圖片
- 將 src3.jpg之 RGB histogram 對應至 target.jpg之RGB histogram, 儲存轉換後的結果。

