Упражнения: Основни команди

0. Празно Visual Studio решение (Blank Solution)

Създайте празно решение (**Blank Solution**) във Visual Studio. Решенията (solutions) във Visual Studio обединяват **група проекти**. Тази възможност е изключително удобна, когато искаме да работим по няколко проекта и бързо да превключваме между тях или искаме да обединим логически няколко взаимосвързани проекта.

В настоящото практическо занимание ще използваме **Blank Solution с няколко проекта** за да организираме решенията на задачите от упражненията – всяка задача в отделен проект и всички проекти в общ solution.

- 1. Стартирайте Visual Studio.
- 2. Създайте нов **Blank Solution**: [File] → [New] → [Project].

3. Изберете от диалоговия прозорец [Templates] → [Other Project Types] → [Visual Studio Solutions] → [Blank Solution] и дайте подходящо име на проекта, например "Simple-Calculations":

Сега имате създаден празен Visual Studio Solution (с 0 проекта в него):

Целта на този blank solution е да добавяте в него по един проект за всяка задача от упражненията.

1. Пресмятане на лице на квадрат

Първата задача от тази тема е следната: да се напише **конзолна програма**, която **прочита цяло число "а"**, въведено от потребителя, и **пресмята лицето на квадрат със страна "а"**. Задачата е тривиално лесна: въвеждате число от конзолата, умножавате го само по себе си и печатате получения резултат на конзолата.

1. Създайте нов проект в съществуващото Visual Studio решение. В Solution Explorer кликнете с десен бутон на мишката върху Solution 'Simple-Calculations'. Изберете [Add] → [New Project...]:

2. Ще се отвори диалогов прозорец за избор на тип проект за създаване. Изберете C# конзолно приложение с име "Square-Area":

Вече имате solution с едно конзолно приложение в него. Остава да напишете кода за решаване на задачата.

3. Отидете в тялото на метода Main(string[] args) и напишете кода от картинката по-долу:

```
namespace Square_Area
{
    Oreferences
    class Program
    {
        Oreferences
        static void Main(string[] args)
        {
            Console.Write("a = ");
            var a = int.Parse(Console.ReadLine());
            var area = a * a;
            Console.Write("Square = ");
            Console.WriteLine(area);
        }
    }
}
```

Кодът прочита цяло число с a = int.Parse(Console.ReadLine()), след това изчислява area = a * a и накрая печата стойността на променливата area.

4. Стартирайте програмата с [Ctrl+F5] и я тествайте с различни входни стойности:

2. От инчове към сантиметри

Да се напише програма, която **чете от конзолата число** (не непременно цяло), въведено от потребителя, и преобразува числото **от инчове в сантиметри**. За целта **умножава инчовете по 2.54** (защото 1 инч = 2.54 сантиметра).

1. Първо създайте нов C# конзолен проект в решението "Simple-Calculations". Кликнете с мишката върху решението в Solution Explorer и изберете [Add] \rightarrow [New Project...]:

Изберете [Visual C#] → [Windows] → [Console Application] и задайте име "Inches-to-Centimeters":

2. Напишете кода на програмата. Може да си помогнете с примерния код от картинката:

```
static void Main(string[] args)
{
    Console.Write("inches = ");
    var inches = double.Parse(Console.ReadLine());
    var centimeters = inches * 2.54;
    Console.Write("Centimeters = ");
    Console.WriteLine(centimeters);
}
```

3. **Стартирайте програмата**, както обикновено с [Ctrl+F5]:

```
a = 5
Square = 25
Press any key to continue . . . .
```

Изненада! Како става? Програмата не работи правилно... Всъщност това не е ли предходната програма? Във Visual Studio текущият активен проект в един solution е маркиран в получерно и може да се сменя:

4. За да включите режим на **автоматично преминаване към текущия проект**, кликнете върху главния solution с десния бутон на мишката и изберете [Set StartUp Projects...]:

Ще се появи диалогов прозорец, от който трябва да се избере [Startup Project] → [Current selection]:

5. Сега отново **стартирайте програмата**, както обикновено с [Ctrl+F5]. Този път ще се стартира текущата отворена програма, която преобразува инчове в сантиметри. Изглежда работи коректно:

6. Сега **превключете към преходната програма** (лице на квадрат). Това става с двоен клик на мишката върху файла **Program.cs** от предходния проект "**Square-Area**" в панела [Solution Explorer] на Visual Studio:

7. Натиснете пак [Ctrl+F5]. Този път трябва да се стартира другият проект:

8. Превключете обратно към проекта "Inches-to-Centimeters" и го стартирайте с [Ctrl+F5]:

```
inches = 10
centimeters = 25.4
Press any key to continue . . .
```

Превключването между проектите е много лесно, нали? Просто избираме файла със сорс кода на програмата, кликваме го два пъти с мишката и при стартиране тръгва програмата от този файл.

9. Тествайте с дробни числа, например с 2.5:

```
inches = 2.5
centimeters = 6.35
Press any key to continue . . .
```

Внимание: в зависимост от регионалните настройки на операционната система, е възможно вместо **десетична точка** (US настройки) да се използва **десетична запетая** (BG настройки). Ако програмата очаква десетична точка и бъде въведено число с десетична запетая или на обратно (бъде въведена десетична точка когато се очаква десетична запетая), ще се получи следната грешка:

Препоръчително е да промените настройките на компютъра си, така че да се използва десетична точка:

Clock, Language, and Region

3. Поздрав по име

Да се напише програма, която **чете от конзолата име на човек**, въведено от потребителя, и отпечатва "**Hello**, **<name>!**", където **<name>** е въведеното преди това име.

1. Първо създайте нов C# конзолен проект с име "Greeting" в решението "Simple-Calculations":

2. Напишете кода на програмата. Ако се затруднявате, може да ползвате примерния код по-долу:

3. Стартирайте програмата с [Ctrl+F5] и я тествайте:

4. Съединяване на текст и числа

Напишете С# програма, която прочита от конзолата име, фамилия, възраст и град, въведени от потребителя, и печата съобщение от следния вид: "You are <firstName> <lastName>, a <age>-years old person from <town>.".

- 1. Добавете към текущото Visual Studio решение още един конзолен С# проект с име "Concatenate-Data".
- 2. Напишете кода, който чете входните данни от конзолата:

```
var firstName = Console.ReadLine();
var lastName = Console.ReadLine();
var age = int.Parse(Console.ReadLine());
var town = Console.ReadLine();
```

3. Допишете код, който отпечатва описаното в условието на задачата съобщение.

"Your are (H) (1), a (2)-years old person from (1).", Firsthere, lasthere, age, tourly

На горната картинка кодът е нарочно даден размазан, за да помислите как да си го напишете сами.

4. **Тествайте** решението с [Ctrl+F5] и въвеждане на примерни данни.

5. Лице на трапец

Напишете програма, която чете от конзолата три числа **b1**, **b2** и **h**, въведени от потребителя, и **пресмята лицето на трапец** с основи **b1** и **b2** и височина **h**. Формулата за лице на трапец е (**b1** + **b2**) * **h** / 2.

На фигурата е показан трапец със страни 8 и 13 и височина 7. Той има лице (8 + 13) * 7 / 2 = 73.5.

- 1. Добавете към текущото Visual Studio решение още един конзолен С# проект с име "Trapezoid-Area".
- 2. Напишете кода, който чете входните данни от конзолата, пресмята лицето на трапеца и го отпечатва:

```
static void Main(string[] args)
{
    var b1 = double.Parse(Console.ReadLine());

    Console.WriteLine("Trapezoid area = " + area);
}
```

Кодът на картинката е нарочно размазан, за да си го доизмислите и допишете сами.

3. **Тествайте** решението локално с [Ctrl+F5] и въвеждане на примерни данни.

6. Периметър и лице на кръг

Напишете програма, която чете от конзолата **число r**,въведено от потребителя, и пресмята и отпечатва **лицето** и **периметъра на кръг** / окръжност с радиус **r**. Закръглете резултата до **2 знака след десетичната точка,** използвайки **Math.Round()**.

вход	изход
3	Area = 28.27 Perimeter = 18.85
4.5	Area = 63.62 Perimeter = 28.27

За изчисленията можете да използвате следните формули:

- area = Math.PI * r * r
- perimeter = 2 * Math.PI * r

7. Лице на правоъгълник в равнината

Правоъгълник е зададен с координатите на два от своите срещуположни ъгъла (x1, y1) – (x2, y2). Да се пресметнат площта и периметъра му. Входът се въвежда от потребителя. Числата x1, y1, x2 и y2 са дадени по едно наред. Изходът се извежда на конзолата и трябва да съдържа два реда с по една число на всеки от тях – лицето и периметъра.

вход	изход
60	1500
20	160
10	
50	
30	2000
40	180
70	
-10	
600.25	350449.6875
500.75	2402
100.50	
-200.5	

8. Лице на триъгълник

Напишете програма, която чете от конзолата **страна** и **височина** на **триъгълник**, въведени от потребителя, и пресмята неговото лице. Използвайте **формулата** за лице на триъгълник: **area = a * h / 2**. Закръглете резултата до **2 знака след десетичната точка**.

вход	изход
20 30	Triangle area = 300
15 35	Triangle area = 262.5
7.75 8.45	Triangle area = 32.74
1.23456 4.56789	Triangle area = 2.82

9. * Конвертор от °С към °F

Напишете програма, която чете **градуси по скалата на Целзий** (°C), въведени от потребителя, и ги преобразува до **градуси по скалата на Фаренхайт** (°F). Потърсете в Интернет подходяща формула, с която да извършите изчисленията. Примери:

вход	изход
25	77

вход	изход
0	32

вход	изход
-5.5	22.1

вход	изход
32.3	90.14

10. * Конвертор от радиани в градуси

Напишете програма, която чете **ъгъл** в <u>радиани</u> (rad), въведен от потребителя, и го преобразува в <u>градуси</u> (deg). Потърсете в Интернет подходяща формула. Числото π в С# програми е достъпно чрез **Math.PI**. Закръглете резултата до най-близкото цяло число използвайки **Math.Round()**. Примери:

вход	изход
3.1416	180

вход	изход
6.2832	360

вход	изход
0.7854	45

вход	изход
0.5236	30

11. * Конвертор от USD към BGN

Напишете програма за **конвертиране на щатски долари** (USD) **в български лева** (BGN). **Закръглете** резултата до **2 цифри** след десетичната точка. Използвайте фиксиран **курс** между долар и лев: **1 USD** = **1.79549 BGN**.

вход	изход
20	35.91 BGN

вход	изход	
100	179.55 BGN	

вход	изход	
12.5	22.44 BGN	

12. * Междувалутен конвертор

Напишете програма за **конвертиране на парична сума от една валута в друга**. Трябва да се поддържат следните валути: **BGN**, **USD**, **EUR**, **GBP**. Използвайте следните фиксирани валутни курсове:

Курс	USD	EUR	GBP
1 BGN	1.79549	1.95583	2.53405

Входът е **сума за конвертиране**, **входна валута**, **изходна валута**, въведени от потребителя. **Изходът** е едно число – преобразуваната сума по посочените по-горе курсове, закръглен до **2 цифри** след десетичната точка. Примери:

вход	изход	
20	35.91 BGN	
USD		
BGN		

вход	изход	
100	51.13	EUR
BGN		
EUR		

вход	изход	
12.35	9.53 GBP	
EUR		
GBP		

вход	изход
150.35	138.02 EUR
USD	
EUR	

13. ** 1000 дни на Земята

Напишете програма, която чете **рождена дата** във формат "**dd-MM-уууу**", въведена от потребителя, и пресмята датата, на която се навършват **1000 дни** от тази рождена дата и я отпечатва в същия формат.

вход	изход
25-02-1995	20-11-1997
07-11-2003	02-08-2006
30-12-2002	24-09-2005
01-01-2012	26-09-2014
14-06-1980	10-03-1983

^{*} Подсказки: потърсете информация за типа DateTime в С# и по-конкретно разгледайте методите ParseExact(str, format), AddDays(count) и ToString(format). С тяхна помощ може да решите задачата, без да е необходимо да изчислявате дни, месеци и високосни години.

Изпитни задачи от "ИТ Кариера"

14. * Учебна зала

Първа задача от изпита на 6 март 2016.

Учебна зала има правоъгълен размер w на h метра, без колони във вътрешността си. Залата е разделена на две части – лява и дясна, с коридор приблизително по средата. В лявата и в дясната част има редици с бюра. В задната част на залата има голяма входна врата. В предната част на залата има катедра с подиум за преподавателя.

Едно работно място заема 70 на 120 cm (маса с размер 70 на 40 cm + място за стол и преминаване с размер 70 на 80 cm). Коридорът е широк поне 100 cm. Изчислено е, че заради входната врата (която е с отвор 160 cm) се губи точно 1 работно място, а заради катедрата (която е с размер 160 на 120 cm) се губят точно 2 работни места. Напишете програма, която прочита размерите на учебната зала и изчислява броя работни места в нея при описаното разположение (вж. фигурата).

Вход

От конзолата се четат 2 **числа**, по едно на ред: \mathbf{h} (дължина в метри) и \mathbf{w} (широчина в метри) , въведени от потребителя.

Ограничения: **3** ≤ **h** ≤ **w** ≤ **100**.

Изход

Да се отпечата на конзолата едно цяло число: броят места в учебната зала.

Примерен вход и изход

Вход	Изход	Чертеж	Обяснения
15 8.9	129	коридор: поне 1 m	Залата е дълга 1500 cm. В тях могат да бъдат разположени 12 реда (12 * 120 cm = 1440 + 60 cm остатък). Залата е широка 890 cm. От тях 100 cm отиват за коридора в средата. В останалите 790 cm могат да се разположат по 11 бюра на ред (11 * 70 cm = 770 cm + 20 cm остатък). Брой места = 12 * 11 - 3 = 132 - 3 = 129 (имаме 12 реда по 11 места = 132 минус 3 места за катедра и входна врата).
8.4 5.2	39	е коридор: 1 m	Залата е дълга 840 cm. В тях могат да бъдат разположени 7 реда (7 * 120 cm = 840, без остатък). Залата е широка 520 cm. От тях 100 cm отиват за коридора в средата. В останалите 420 cm могат да се разположат по 6 бюра на ред (6 * 70 cm = 420 cm, без остатък). Брой места = 7 * 6 - 3 = 42 - 3 = 39 (имаме 7 реда по 6 места = 42 минус 3 места за катедра и входна врата).

15. * Зеленчукова борса

Първа задача от изпита на 26 март 2016.

Градинар продавал реколтата от градината си на зеленчуковата борса. Продава **зеленчуци за N лева на килограм** и **плодове за M лева за килограм**. Напишете програма, която да **пресмята приходите от реколтата в евро** (ако приемем, че **едно евро** е равно на **1.94лв**).

Вход

От конзолата се четат 4 числа, по едно на ред, въведени от потребителя:

- Първи ред Цена за килограм зеленчуци число с плаваща запетая
- Втори ред Цена за килограм плодове число с плаваща запетая
- Трети ред Общо килограми на зеленчуците цяло число
- Четвърти ред Общо килограми на плодовете цяло число

Ограничения: Всички числа ще са в интервала от 0.00 до 1000.00

Изход

Да се отпечата на конзолата **едно число с плаваща запетая**: **приходите от всички плодове и зеленчуци в евро**. Резултатът **да се форматира до втория знак след запетаята.**

Примерен вход и изход

Вход	Изход	Обяснения
0.194 19.4 10 10	101.00	Зеленчуците струват – 0.194лв. * 10кг. = 1.94лв. Плодовете струват – 19.4лв. * 10кг. = 194лв. Общо – 195.94лв. = 101евро
1.5 2.5 10 10	20.62	