

A Project Report on

EduEmbed - Embeddings for Education

Web Science Lab (WSL)

Masters In Technology

COMPUTER SCIENCE AND ENGINEERING

BY

Sahil Khatri(MT2022095) Sheetal Agarwal(MT2022109)

Under the Guidance of

Prof. Srinath Srinivas
Anurag Mohanty

International Institute Of Information Technology
Bangalore
Jan - May 2023

Overall objective of the project	
Your responsibility in the project	
Sprint report	
Final summary of sprints	
Source code details	12
Structure of the code	13
Libraries Used	18
System requirements	19
Challenges faced (Bugs detection and correction)	19
Talks given	21

1. Overall objective of the project

The object of the EduEmbed project is to generate embeddings for the Education Domain using Knowledge Graph Models such that they can understand the underlying semantics of how the triples are correlated with each other. Once this has been done, the embeddings can be used for various education domain related tasks. Such as, curriculum generation, course sequencing, difficulty analysis, etc. To achieve this it is of utmost importance that the embeddings generated are very much effective in understanding the context of the domain. For these are training and analyzing various models such as TransE, HolE, and TransH and their generated embeddings.

Knowledge Graph Embeddings:

KG represents diverse types of information in the form of different types of entities connected via different types of relations. Information extracted from KGs in the form of embeddings is used to improve search, recommend products, and infer missing domain specific context. Popular KGE models are TransE, TransH, etc. which define different score functions to learn entity and relation embeddings. Input data for KGE is in the form of triplets (head, relation, tail).

KGE Models:

TransE

$$h+r$$
 and t , or $f=-\|h+r-t\|_{rac{1}{2}}$

2. Your responsibility in the project

Our responsibility in the project begins with understanding the objective and the existing work that was done till then. After that we had to understand the underlying technology i.e. Knowledge Graph Embeddings and its applications. Perform some basic tasks to get hold of the concepts that will be used across the project. After that we worked on creating and training the triples on TransE. Later included the weights for relations. Then trained the models and analyzed the embeddings at a very initial stage. With the detailed understanding of the working of the models we moved ahead on creating automation scripts which can be used to train multiple models (TransE, HolE, TransH) with multiple hyperparameters. Updated the package module to get some desired output as per our requirement. Filtered and extracted subset of the original data which can be later used for qualitative analysis of the embeddings. And summarize the results obtained.

3. Sprint report

Sheetal Agarwal

Sprint		Start Date	End Date	
Title	Sprint Description	of Sprint	of Sprint	Major Outcomes
	Understanding of			
Sprint 1	existing code	9/1/2023	15/1/2023	Understanding of existing code
	Software installation			
	and technology			Software installed and Knowledge graph
Sprint-2	understanding	16/1/2023	22/1/2023	understanding
	Implementation			
	understanding and			
Sprint 3	POC	23/1/2023	29/1/2023	POC and preprocessing
	TransE with Dummy			
Sprint-4	weights	30/1/2023	5/2/2023	TransE with Dummy weights
	TransE with actual			
Sprint-5	weight	6/2/2023	13/2/2023	TransE with actual weights
	Embedding			
Sprint-6	similarity, HolE	14/2/2023	20/2/2023	Embedding Similarity and HolE
	Scaling the weights			
	and splitting data for			scaling the weights and splitting data for each
Sprint-7	each relation	20/2/2023	27/2/2023	relation
	Run models for more			
	epochs and compare			Finding best hyperparameter based on
Sprint-8	evaluation	28/2/2023	6/3/2023	evaluation matrix
	Use thidf score to			
	generate weghts for			Use tfidf score to generate weghts for
Sprint-9	concept vocab index	6/3/2023	20/3/2023	concept vocab index
	Remove duplicates			
	from concept vocab			
	index and Tfidf as			Remove duplicates from concept vocab index
	weight for concept			to get better embeddings and used TFIDF
Sprint-10	vocab index.	20/3/2023	26/3/2023	score as weight for concept vocab index.

	Vectorization issue			
	faced due to certain			
	discrepancy in			
	training and test set			
	and Evaluation on			
	data with weights for			Quantitative result analysis and consistent
Sprint-11	TransE and HolE.	27/3/2023	2/4/2023	train and test set.
	-Cosine similarity of			
	H+R=T for transE			
	and TransH.			-Cosine similarity of H+R=T for transE and
	-Gather concept			TransH.
Sprint-12	vocab index list	3/4/2023	9/4/2023	-Gather concept vocab index list
	Custom setup to			
	fetch loss values and			
	storing it for			
	generating loss vs			
	epoch graphs of			
	TransE, TransH and			
	HolE for each			
	combination of			
	hyperparameters.			Tentatively finalized hyperparameter values
	This was done for			based on graph, score metrics and embedding
	two sets of data one			quality. This was done for two sets of data
	which contain the			one which contain the topic and
	topic and			concept-vocab relation while other didn't
	concept-vocab			have that relation.
	relation while other			After analysis data with concept-vocab and
	didn't have that			topic relation performed better than the other
Sprint-13	relation.	10/4/2023	16/4/2023	set.
	Evaluated cosine			
	similarity:			
	1. For two different			
	entities,			Qualitative analysis of the transH generated
Sprint-14	2. head+ relation and	17/4/2023	26/4/2023	embeddings.

tail,			
,			
3. head +			
relation(l_text_topic)			
of entity1 and head			
+relation(l_text_topi			
c) of entity2 (Both			
entity having same			
topic as tail)			
4. head +			
relation(concept_voc			
ab_index) of entity1			
and head			
+relation(concept_vo			
cab_index) of entity2			
(Both entity having			
same concept_vocab			
as tail)			

Sahil Khatri

		Start Date	End Date	
Sprint No.	Sprint Description	of Sprint	of Sprint	Major Outcomes
	Understanding of			
Sprint 1	existing code	9/1/2023	15/1/2023	Understanding of existing code
	Software package			
	installation and			
	technology			Software package installation and knowledge
Sprint 2	understanding	16/1/2023	22/1/2023	graph understanding
	Implementation			
	understanding and			
Sprint 3	POC	23/1/2023	29/1/2023	POC and preprocessing
	TransE with dummy			
Sprint 4	weights	30/1/2023	5/2/2023	TransE with dummy weights
	TransE with actual			
Sprint - 5	weights	6/2/2023	13/2/2023	TransE with actual weights
	Embedding similarity			
Sprint - 6	and HolE,	13/2/2023	20/2/2022	cosine similarity and holE
	Scaling the weights			
	and splitting data for			Scaling the weights and splitting data for
Sprint - 7	each relation.	20/2/2023	27/2/2023	each relation.
	Run for more epochs			
	and compare			Working on finding hyper parameters based
sprint 8	evaluation results.	27/2/2023	6/3/2023	on the evaluation results.
	Use tf-idf score to			
	generate weights for			Working on generating tf-idf score for the
Sprint - 9	concept vocab index	6/3/2023	20/3/2023	word corresponding to concept vocab index
	structural weight as			
	hyper parameter for			trained model with various hyperparameters
Sprint - 10	further training	20/3/2023	26/3/2023	giving more importance to weights
Sprint - 11	Evaluate model	27/3/2023	2/4/2023	Quantitative result analysis and consistent

	performance on new data with triple weights. Vectorization issue faced due to certain discrepancy in			train and test set.
	training and test set.			
	TransH model setup			
	to support our custom			
	dataset and triples			Successful setup of transH and Quantitative
Sprint - 12	weights	10/4/2023	16/4/2023	analysis for transH, transE, holE
	Automation to test multiple models and evaluate their results			
	based on			
	hyperparameter			
	values for TransE,			
	HolE, TransH. Also,			
	this was done for 2			Automated generation of separate directory
	sets of data, one			for each category of model for each
	which contained the			combination of hyperparameters. And use the
	relation between topic			corresponding generated embeddings and
	and concept vocab			results for cosine similarity and loss analysis
	while the other didn't			using graphs. The data with relation between
G : 10	contain these	10/4/2022	1.6/4/2022	topic and concept vocab performed better
Sprint - 13	relations.	10/4/2023	16/4/2023	comparatively.
	Find common			
	percentage of			
	concept_vocab_index			
	among 2 courses			
	which have similar	4=1415055		Used the file with same ltt and cv for cosine
sprint -14	l_text_topics	17/4/2023	26/4/2023	similarity tasks

4. Final summary of sprints

Sheetal Agarwal

First I had the understanding of the existing code, and the technology used in this project, which is Knowledge graph embedding, models used in it etc.

Installed the required softwares and ran that code on my own system.

Implemented TransE with dummy and actual weights. Did the same for the holE.

To generate weights used tf idf score for concept vocab index.

Split the data in such a way all the relation related triples include in the Train, Test and Validation set. And generate the embeddings from it for each Model (TransE, TransH and HolE).

Run each model (TransE, TransH and HolE) for different Hyperparameters to get the best hyperparameter out of it.

Removed the duplicates from concept vocab index to get better embeddings. Find the cosine similarity of embedding of head + embedding of relation and embedding of Tail entity (H+R=T) to check how accurate embedding are that are generated from transE and TransH.

Gather concept vocab index list related to this domain to have better triples. Finalized hyperparameter values based on graph, score metrics and embedding quality. This was done for two sets of data one which contain the topic and concept-vocab relation while the other didn't have that relation.

After analysis data with concept-vocab and topic relation performed better than the other set.

Sahil Khatri

After getting the understanding of the existing code, I learnt what knowledge graph is and its related models etc.

Installed the required softwares and ran that code on my own system.

Implemented TransE with dummy and actual weights. Did the same for the holE.

To generate weights used tf idf score for concept vocab index.

Split the data in such a way all the relation related triples include in the Train, Test and Validation set. And generate the embeddings from it for each Model.

Did set up of transH and Quantitative analysis of it.

Run each model (TransE, TransH and HolE) for different Hyperparameters to get the best hyperparameter out of it.

Removed the duplicates from concept vocab index to get better embeddings.

Finalized hyperparameter values based on graph, score metrics and embedding quality. This was done for two sets of data one which contain the topic and concept-vocab relation while the other didn't have that relation.

To do the above task create an automation script which generates a separate directory for each category of model for each combination of hyperparameters.

And use the corresponding generated embeddings and results for cosine similarity and loss analysis using graphs.

The data with relation between topic and concept vocab performed better comparatively.

5. Source code details

Repository Link:

The code base can be downloaded from the repository link.

- The codes are written to accomplish various tasks such as,
 - 1. Preparing the data
 - 2. Creating triples for different types of relations
 - 3. Assigning each triple with different a weight value
 - 4. Combining the triples and splitting it into train, val, test set
 - 5. Training different types of Knowledge Graph Models (such as TransE, TransH, HolE)
 - 6. Automation to support multiple model training with various combinations of hyper-parameter and to store their results in a properly defined directory hierarchy
 - 7. Files to find the cosine similarity among different types of inputs for the qualitative analysis of the embeddings (entity-entity similarity, head+relation & tail similarity, head+relation & head+relation)

Further detail of the code is mentioned in the README file of the Repository. The input output files required and expected by the script are mentioned in the respective python code.

The function description is also mentioned in detail along with commented example wherever needed

6. Structure of the code

The code structure is quite complex, it is not feasible to describe it completely here, so please refer to the README file in the repository for detailed structure of the code.

Here is the overview of the code structure.

- code
 - data
 - eduTransE HolE
 - eduTransH
 - embeddings final
 - transE
 - transE_50_5_40_0.1_0.1
 - transE_50_5_50_0.1_0.1

.

- holE
 - holE_50_5_40_0.1_0.1
 - holE_50_5_50_0.1_0.1

.

- transH
 - transH_50_5_40_0.1_0.1
 - transH_50_5_50_0.1_0.1

.

- input (contains multiple .csv files which are used as input to other files)
- output (contains the output files generated by various code modules)

- conceptvocab_percentage.py
- cosine_similarity.py
- embedding_generation.py
- graphs.py
- hr-hr_cosine_similarity.py
- hr-t_cosine_similarity.py
- hr-t_e1-e2_cosine_similarity.py
- Manual_generated_data.xlsx
- README.txt

Screenshots

Data Preprocessing and Feature Extraction

į,	file_name	text	course_name	temp	week	section	lesson	course_title	week_no	section_n	lesson_	no	text1	text_topics	l_text_topics	l_text_prob	join_text	concept_vocab
1	Course1_W1-S1- L1_Introduction_Part_1_11-17	okay welcome natural language processing name	Course1	W1- S1- L1	W1	S1	L1	Introduction	1	:		1	okay welcom natur languag process name michael	[0 11 10 12 7]	[1, 2, 6, 7, 9, 11, 14]	[13.13, 29.09, 2.45, 36.34, 12.84, 4.22, 1.85]	okay welcome natural language processing name	[vi43, vi106, vi1063, vi43,
	Course1_W1-S1- L2_Introduction_Part_2_10-28	next want talk key challenges nlp answering qu	Course1	W1- S1- L2	W1	51	L2	Introduction	1	:		2	next want talk key challeng nlp answer questio	[10 11 0 13 12]	[1, 2, 7, 9, 10]	[24.44, 52.35, 15.23, 3.47, 4.42]	next want talk key challenges nlp answering qu	[vi70, vi1068, vi136, vi43,
!	Course1_W1-S2- L1_Introduction_to_the_Language	okay first topic going cover course problem la	Course1	W1- S2- L1	W1	S2	L1	Introduction	1	:	!	1	okay first topic go cover cours problem langua	[11 6 0 10 3]	[5, 7, 9, 13]	[8.0, 5.07, 35.97, 50.77]	okay first topic going cover course problem la	[vi43, vi106 vi1575, vi828,
	Course1_W1-S2- L2_Introduction_to_the_Language	soon start talk techniques solve precisely pro	Course1	W1- S2- L2	W1	52	L2	Introduction	1	:	!		soon start talk techniqu solv precis problem p	[11 0 6 10 3]	[1, 6, 9, 13]	[43.18, 1.01, 7.11, 48.54]	soon start talk techniques solve precisely pro	[vi149, vi199, vi1419, vi1
	Course1_W1-S2- L3_Markov_Processes_Part_1_8-56	okay previous segments lecture gave basic defi	Course1	W1- S2- L3	W1	S2	L3	Markov	1	:	!	3	okay previou segment lectur gave basic definit	[311113	[12, 13]	[13.18, 86.63]	okay previous segments lecture gave basic defi	[vi1575, vi1575, vi888, vi1

Triples

head	variable	value
Course3_W9-S1-L3Summarizatio	l_text_topics	topic_11
Course3_W9-S1-L4Summarizatio	l_text_topics	topic_4
Course3_W9-S1-L4Summarizatio	l_text_topics	topic_6
Course3_W9-S1-L4Summarizatio	l_text_topics	topic_11
Course3_W9-S1-L4Summarizatio	l_text_topics	topic_12
Course3_W9-S1-L5Summarizatio	l_text_topics	topic_6
Course3_W9-S1-L6Sentence_Sim	l_text_topics	topic_1
Course3_W9-S1-L6Sentence_Sim	l_text_topics	topic_6
Course3_W9-S1-L6Sentence_Sim	l_text_topics	topic_9
Course3_W9-S1-L6Sentence_Sim	l_text_topics	topic_12
Course1_W1-S1-L1_Introduction_P	concept_vocab_index	vi912
Course1_W1-S1-L1_Introduction_P	concept_vocab_index	vi96

Concept-Vocab with weights using Tf-Idf

Course1_W10-S2-L3_The_Dependency_Parsing_Problem_Part_2_13-53	concept_vocab_index	vi946	0.01
Course1_W10-S2-L3_The_Dependency_Parsing_Problem_Part_2_13-53	concept_vocab_index	vi1178	0.05
Course1_W10-S2-L3_The_Dependency_Parsing_Problem_Part_2_13-53	concept_vocab_index	vi442	0.05
Course1_W10-S2-L3_The_Dependency_Parsing_Problem_Part_2_13-53	concept_vocab_index	vi47	0.01
Course1_W10-S2-L3_The_Dependency_Parsing_Problem_Part_2_13-53	concept_vocab_index	vi235	0.02
Course1_W10-S2-L3_The_Dependency_Parsing_Problem_Part_2_13-53	concept_vocab_index	vi262	0.03
Course1_W10-S2-L3_The_Dependency_Parsing_Problem_Part_2_13-53	concept_vocab_index	vi134	0.01
Course1_W10-S2-L3_The_Dependency_Parsing_Problem_Part_2_13-53	concept_vocab_index	vi74	0.02
Course1_W10-S2-L3_The_Dependency_Parsing_Problem_Part_2_13-53	concept_vocab_index	vi980	0.01
Course1_W10-S2-L4_GLMs_for_Dependency_Parsing_Part_1_11-59	concept_vocab_index	vi984	0.02
Course1_W10-S2-L4_GLMs_for_Dependency_Parsing_Part_1_11-59	concept_vocab_index	vi1206	0.11
Course1_W10-S2-L4_GLMs_for_Dependency_Parsing_Part_1_11-59	concept_vocab_index	vi873	0.03
Course1_W10-S2-L4_GLMs_for_Dependency_Parsing_Part_1_11-59	concept_vocab_index	vi1434	0.2
Course1_W10-S2-L4_GLMs_for_Dependency_Parsing_Part_1_11-59	concept_vocab_index	vi351	0.02
Course1_W10-S2-L4_GLMs_for_Dependency_Parsing_Part_1_11-59	concept_vocab_index	vi47	0.04
Course1_W10-S2-L4_GLMs_for_Dependency_Parsing_Part_1_11-59	concept_vocab_index	vi442	0.02
Course1_W10-S2-L4_GLMs_for_Dependency_Parsing_Part_1_11-59	concept_vocab_index	vi512	0.19
Course1_W10-S2-L4_GLMs_for_Dependency_Parsing_Part_1_11-59	concept_vocab_index	vi1422	0.02
Course1_W10-S2-L4_GLMs_for_Dependency_Parsing_Part_1_11-59	concept_vocab_index	vi55	0.05
Course1_W10-S2-L4_GLMs_for_Dependency_Parsing_Part_1_11-59	concept_vocab_index	vi98	0.03
Course1_W10-S2-L4_GLMs_for_Dependency_Parsing_Part_1_11-59	concept_vocab_index	vi122	0.02
Course1_W10-S2-L4_GLMs_for_Dependency_Parsing_Part_1_11-59	concept_vocab_index	vi988	0.1
Course1_W10-S2-L4_GLMs_for_Dependency_Parsing_Part_1_11-59	concept_vocab_index	vi1341	0.11
Course1_W10-S2-L4_GLMs_for_Dependency_Parsing_Part_1_11-59	concept_vocab_index	vi1338	0.05
Coursel With Call & Cl Ma for Dependency Descine Dort 1 11 E0	concept vessels indev	:1274	0.00

Cosine similarity (Embedding of TransH)

	_	_	_
head	relation	tail	cos_sim_score
Course1_W1-S2-L2_Introduction_to_the_Language_Modeling_Problem_Part_2_7-12	I_text_topics	topic_12	0.998957668603049
Course1_W1-S2-L3_Markov_Processes_Part_1_8-56	I_text_topics	topic_12	0.950749169979532
Course1_W1-S2-L4_Markov_Processes_Part_2_6-28	I_text_topics	topic_1	0.999668315237906
Course1_W1-S2-L4_Markov_Processes_Part_2_6-28	I_text_topics	topic_12	0.998995795113438
Course1_W1-S2-L5_Trigram_Language_Models_9-40	I_text_topics	topic_7	0.999854714837523
Course1_W1-S2-L5_Trigram_Language_Models_9-40	I_text_topics	topic_11	0.999100864631429
Course1_W1-S2-L5_Trigram_Language_Models_9-40	I_text_topics	topic_12	0.998965324818128
Course1_W1-S2-L6_Evaluating_Language_ModelsPerplexity_12-36	I_text_topics	topic_7	0.99820199170814
Course1_W1-S2-L6_Evaluating_Language_ModelsPerplexity_12-36	I_text_topics	topic_11	0.997567515183758
Course1_W1-S2-L6_Evaluating_Language_ModelsPerplexity_12-36	I_text_topics	topic_12	0.997636153669363
Course1_W1-S3-L1_Linear_Interpolation_Part_1_7-46	I_text_topics	topic_7	0.999848392190715
Course1_W1-S3-L1_Linear_Interpolation_Part_1_7-46	I_text_topics	topic_12	0.998951500896143
Course1_W1-S3-L2_Linear_Interpolation_Part_2_11-35	I_text_topics	topic_7	0.979916300031045
Course1_W1-S3-L2_Linear_Interpolation_Part_2_11-35	I_text_topics	topic_11	0.979582630834873
Course1_W1-S3-L3_Discounting_Methods_Part_1_9-26	I_text_topics	topic_7	0.996274158196031
Course1_W1-S3-L3_Discounting_Methods_Part_1_9-26	I_text_topics	topic_11	0.995690466993966
Course1_W1-S3-L4_Discounting_Methods_Part_2_3-34	I_text_topics	topic_7	0.940899408374497
Course1_W1-S3-L4_Discounting_Methods_Part_2_3-34	I_text_topics	topic_11	0.940876298894193

Directory Structure

```
✓ EMBEDDINGS_FINAL

√ holE

   > holE_50_5_40_0.1_0.1
   > holE_50_5_40_0.1_0.01
  > holE_50_5_50_0.1_0.1
  > holE_50_5_50_0.1_0.01
  > holE_100_5_40_0.1_0.1
  > holE_100_5_40_0.1_0.01
  > holE_100_5_50_0.1_0.1
  > holE_100_5_50_0.1_0.01
 > input
 > output

∨ transE

  > transE_50_5_40_0.1_0.1
  > transE_50_5_40_0.1_0.01
  > transE_50_5_50_0.1_0.1
  > transE_50_5_50_0.1_0.01
  > transE_100_5_40_0.1_0.1
  > transE_100_5_40_0.1_0.01
   > transE_100_5_50_0.1_0.1
 > transE_100_5_50_0.1_0.01

✓ transH

  > transH_50_5_40_0.1_0.1
```

Hyperparameter Metrices

model_nan ▼ e	epochs	batches_coun ▼	k ▼	structural_	lr 🔻	start_loss ▼	end_loss ▼	mrr	mr 🔻	hits_10 ▼	hits_5 ▼	hits_3 ▼
holE	100	5	50	0.1	0.1	1.003445855	0.13282739	0.136809785	77.36415929	0.238938053	0.180088496	0.142920354
? holE	100	5	40	0.1	0.01	1.000874222	0.177928071	0.135836614	70.40353982	0.260176991	0.18539823	0.137168142
) transH	100	5	40	0.1	0.1	4.311885308	1.131924913	0.131325459	84.93918919	0.261711712	0.184684685	0.13963964
transH	100	5	50	0.1	0.1	4.290151367	1.136793778	0.127743085	85.18918919	0.254954955	0.173873874	0.131081081
holE	150	5	40	0.1	0.01	1.000874222	0.145108493	0.12464887	64.92168142	0.263274336	0.181858407	0.131858407
transH	100	5	50	0.1	0.05	4.515290618	1.176531349	0.112728842	102.0216216	0.213963964	0.146846847	0.115765766
holE	200	5	40	0.1	0.01	1.000874222	0.142629618	0.110368248	68.72168142	0.257522124	0.165929204	0.111504425
'transE	150	5	40	0.1	0.05	2.95983568	1.875992047	0.110040697	94.97123894	0.223451327	0.148672566	0.110619469
transE	100	5	50	0.1	0.1	2.812907873	1.53011504	0.107742908	99.82389381	0.220353982	0.149557522	0.107079646
transE	150	5	40	0.1	0.1	2.928856111	2.250745307	0.106670958	86.20707965	0.241150442	0.152654867	0.104424779
transE	100	5	50	0.1	0.05	2.778270083	1.199851345	0.105732788	105.9137168	0.211504425	0.14380531	0.109734513
transE	100	5	40	0.1	0.1	2.928856111	1.381392054	0.105213873	98.43539823	0.221681416	0.147787611	0.107079646
transE	150	5	50	0.1	0.05	2.778270083	1.990873617	0.10503738	95.63230088	0.237610619	0.145575221	0.106637168
?transE	100	5	50	0.1	0.01	4.231377044	1.130923959	0.104927972	117.4252212	0.210619469	0.144690265	0.10840708
transE	100	5	40	0.1	0.05	2.95983568	1.142853235	0.104887689	105.4584071	0.22699115	0.150442478	0.104867257
transE	150	5	50	0.1	0.1	2.812907873	2.466611328	0.104418895	91.69646018	0.233185841	0.149115044	0.103539823
transE	150	5	50	0.1	0.01	4.231377044	1.636973741	0.103042215	99.47566372	0.217256637	0.148230088	0.101769912
holE	100	5	40	0.1	0.1	1.002921441	0.11768559	0.101072042	85.63451327	0.213716814	0.148672566	0.103539823
transE	150	5	40	0.1	0.01	4.395874566	1.630313766	0.100276449	100.1765487	0.203097345	0.138495575	0.108849558

Loss Evaluation for TransE, TransH, HolE

7. Libraries Used

For reference we have used a python library "ampligraph". The details of the library as as below:

Name: ampligraph Version: 1.4.0

Summary: A Python library for relational learning on knowledge graphs.

Home-page: https://github.com/Accenture/AmpliGraph/

Author: Accenture Dublin Labs

Author-email: about@ampligraph.org

License: Apache 2.0

Location: /home/user/anaconda3/envs/pe/lib/python3.7/site-packages

Requires: beautifultable, flake8, networkx, numpy, pandas, pytest, pyyaml, rdflib,

recommonmark, scikit-learn, scipy, setuptools, sphinx, sphinx-rtd-theme,

sphinxcontrib-bibtex, tqdm

Ampligraph provides the functionalities to train the different Knowledge Graph Embedding models such as TransE, HolE, ComplEx, etc.

8. System requirements

The code is system independent and can be executed across any OS platform.

The system environment used for the development of the code is as below:

OS : Ubuntu 22.04 Python : 3.7.16

IDE: Spyder, Jupyter Notebook, Google Colab

9. Challenges faced (Bugs detection and correction)

Few of the issues that we faced during the development of the projects are:

1. To get the embeddings of the entities and relations, we need to give the input entity which was given for the training of the KGE model.

To solve this issue, for every model that is being trained we are storing the train_triples, its entities and embeddings so that we can filter our input from these data in further stages (if required).

2. While preparing the triples from the original data, the l_text_topics and concept_vocab_index columns are in string format. Which is supposed to be a list. So we were not able to directly load the data as per the requirement.

To solve this, we incorporated the python code to convert the string data into list and then use it further.

3. For hyperparameter tuning and analysis, we had to go through a tedious task of entering values of each model execution manually into the excel sheet. It was not feasible when we had run the models of multiple parameters and that too for more than one model type.

To overcome these, we created an automated workflow, where based on the model type and its hyperparameter, a directory-subdirectory structure will be created and all the desired output files will be stored in the respective subdirectory of the model.

4. While training the KGE model we were not getting the loss value for each epoch. We had to keep an eye on the progress bar and observe manually how the loss is varying across the training of the model. Again this was not feasible for multiple models with multiple hyperparameters.

To solve these, we modified the package that was being used and made changes in the dependent files to store and return the list of losses for each epoch. And stored in a csv file. Later used these losses list to plot the loss vs epoch graphs, which helped us to identify which model hyperparameters are performing best.

9. Talks given

Review 1:

- Introduction about the project
- What is Knowledge Graph Embeddings
- What is TransE and how it works
- Preprocessing and Feature Extraction from the dataset
- Creating triples for Knowledge Graph
- Embedding generation using TransE

Review 2:

- Using dummy weights for all the triples
- Preparing triples with actual weight for l_text_topics (LDA probability)
- Exploring and Understanding the working of Knowledge Graph Embedding models such as TransE, HolE, TransH
- Comparing embeddings using cosine similarity to analyze the similarity/dissimilarity of the embeddings
- Scaling the weights to generalize the dataset
- Splitting the data uniformly across all the types of relations (l_text_topics, concept_vocab_index, prerequisite, level)
- Hyperparameter tuning
- Metric Evaluation
 - o mr_score
 - o mrr score
 - o rank score
 - o hits at n score

Review 3:

- Concept-Vocab with weights using Tf-Idf
- TransH cosine similarity to verify the head+relation=tail equation
- Automation of the model training to support multiple models with multiple hyperparameters.
- Hyperparameter Evaluation Metric
- Loss Evaluation for TransE, TransH, HolE
- Qualitative Analysis on the manually selected data with similar l_text_topics
- Cosine Similarity Evaluation
 - o Entity and Entity similarity
 - o Head + Relation and Tail similarity

- Entity1 (head + relation) and Entity2 (head + relation) for l_text_topics relation
- Entity2 (head + relation) and Entity2 (head + relation) for concept_vocab_index