# Homework 3

### **Submission Instructions**

- Homework is due on: Sunday 18/08/19 23:55.
- Homework should be done **only in pairs**. Each pair is to do their own work, separate from the other pairs.
- We prefer you type your submission, however, you may submit scanned handwritten material as long as it is **clear and readable**.
- Submit only one PDF file. Please write your ID on the top of the file.
- Submission is done via Moodle website.
- Homework can be done using either MATLAB or Python.

# Question 1 - Soft SVM

- (a) Sketch the separating hyperplane for the three datasets below and for two values of C:
  - In the left column sketch the hyperplane for the case  $C \to \infty$ .
  - In the right column sketch the hyperplane for the case  $C < \infty$ . If the separation hyperplane does not exist, explain why.
- (b) In the last two problems (4 last figures) there is a circled data point, what is the suitable value of  $\xi$  (Equal to 0, between 0 to 1, greater than 1) for that point? Explain.

You should attach this page to your homework.



## Question 2

Consider a training set  $\{x_i\}_{i=1}^n$ ,  $(x_i) \in \mathbb{R}^n$  with labels  $y_i \in \{0,1\}$  (binary problem). After training a SVM classifier with  $C \to \infty$ , the number of support vector received was k=2, (k < n). Later, a new example  $x_{n+1}$  was added to the training set and a new classifier was learned. Determine which of the following options are possible, there could be more than one possible option (It is recommended to explain with a sketch):

- (a) The number of support vector remained k = 2.
- (b) The number of support vector grew to k+1
- (c) The number of support vector grew to n + 1.

### Question 3

Consider two kernel functions  $k_1, k_2 : X \times X \to \mathbb{R}$ . t is known that the classification problem is linearly separable for  $k_1$  but not for  $k_2$ . We define a new kernel function as

$$k_3(x, x') = k_1(x, x') + k_2(x, x')$$

- (a) Is  $k_3(x, x')$  is a valid kernel function? If yes, then explicitly show that it satisfies the conditions required from a kernel function.
- (b) Is the classification problem is linearly separable for  $k_3(x, x')$ ?

### Question 4

Which of the classifiers below have a zero training error on the following dataset:

| X        | Y  |
|----------|----|
| (-1,-1)  | -1 |
| (-1, +1) | +1 |
| (+1,-1)  | +1 |
| (+1,+1)  | -1 |

- 1. Linear SVM.
- 2. SVM with a polynomial kernel function of degree 2.
- 3. SVM with a Gaussian kernel function  $K_{\lambda}(x,z) = e^{-\frac{||x-z||^2}{\lambda}}$ .

# Question 5

Consider the following function:

$$f(x,y) = -20\left(\frac{x}{2} - x^2 - y^2\right) \exp\left(-x^2 - y^2\right).$$

- (a) Plot this function in the range of  $-3 \le x, y \le 3$  (You may use MATLAB functions *mesh* and *meshgrid*).
- (b) Implement the gradient descent method for finding the minimum point. Attach your code to your submitted pdf file.
- (c) Initialize your algorithm with the following values:
  - $[x_0, y_0] = [0.1, 1].$
  - $\eta = 0.01$ .

Plot the convergence graph of the algorithm (i.e. the value of the function at each step). To what point if any the algorithm converges?

- (d) Initialize your algorithm with the following values:
  - $[x_0, y_0] = [1.5, -1].$
  - $\eta = 0.05$ .

Plot the convergence graph of the algorithm. To what point if any the algorithm converges? Which phenomenon can be observed?

- (e) Initialize your algorithm with the following values:
  - $[x_0, y_0] = [1.5, -1].$
  - $\eta = 0.01$ .

Plot the convergence graph of the algorithm. To what point if any the algorithm converges? Compare your results with the results of part (d).