MATH358 - Advanced Calculus

Based on lectures from Winter 2025 by Prof. John Toth. Notes by Louis Meunier

1 Differentiation _______2

§1 DIFFERENTIATION

For a function $f:(a,b)\to\mathbb{R}$, f differentiable at $x_0\in(a,b)$ if $L:=\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h}$ exists, and write $f'(x_0)=L$. Equivalently, $f'(x_0)$ exists and is equal to L if

$$\frac{|f(x) - f(x_0) - L(x - x_0)|}{|x - x_0|} \to 0$$

as $x \to x_0$. This characterization motivates the generalization we'll follow in the general dimensional case.

Let $\Omega \subset \mathbb{R}^n$ a connected, open set. We call such a set a *domain* to follow. Let $f: \Omega \to \mathbb{R}^m$.

→ Definition 1.1: f differentiable at $x_0 ∈ Ω$ if there exists a linear map $L : \mathbb{R}^n \to \mathbb{R}^m$ (which can be viewed as a matrix) such that

$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{\|f(x) - f(x_0) - L(x - x_0)\|_{\mathbb{R}^m}}{\|x - x_0\|_{\mathbb{R}^n}} = 0.$$

Equivalently, $\forall \varepsilon > 0$, there is a $\delta > 0$ such that if $0 < ||x - x_0|| < \delta$, then

$$||f(x) - f(x_0) - L(x - x_0)|| \le \varepsilon ||x - x_0||.$$

 \hookrightarrow **Theorem 1.1**: If *L* as in the previous definition exists, then it is unique.

We write then $Df(x_0) := L$.

PROOF. Suppose $L_1, L_2 : \mathbb{R}^n \to \mathbb{R}^m$ are two linear maps such that \dagger holds. Fix $\varepsilon > 0$ and let $\delta > 0$ such that \dagger holds for both L_1, L_2 with $\frac{\varepsilon}{2}$. Then, for x such that $0 < \|x - x_0\| < \delta$, then

$$\begin{split} \|(L_1-L_2)(x-x_0)\| &\leq \|f(x)-f(x_0)-L_1(x-x_0)\| + \|f(x)-f(x_0)-L_2(x-x_0)\| \\ &\leq \varepsilon \, \|x-x_0\|. \end{split}$$

Put $h = \frac{x - x_0}{\|x - x_0\|}$ which is a unit vector in \mathbb{R}^n . Then, this gives

$$\|(L_1 - L_2)h\| \le \varepsilon.$$

For any vector $y \in \mathbb{R}^n$, there is a constant $\rho = ||y||$ and appropriate h such that $y = \rho h$, and so

$$\|(L_1-L_2)(\rho h)\| = |\rho| \, \|(L_1-L_2)h\| \le |\rho| \, \varepsilon,$$

by linearity, and since ε arbitrary, it must be that $L_1 = L_2$.

 \hookrightarrow Proposition 1.1: If $f: Ω \to \mathbb{R}^m$ is differentiable at $x_0 ∈ Ω$, then f is continuous at x_0 .

PROOF. Let $\varepsilon = 1$ and $\delta > 0$ such that \dagger holds. Then, for x such that $0 < \|x - x_0\| < \delta$,

$$||f(x) - f(x_0)|| \le ||L(x - x_0)|| + ||f(x) - f(x_0) - L(x - x_0)||$$

$$< (||L|| + 1) ||x - x_0|| =: K ||x - x_0||.$$

where $\|L\|$ is the "maximal value" of $L(x-x_0)$, which is finite. Let, then, $\delta' < \min\{\delta,\frac{\varepsilon}{K}\}$. Then, if x is such that $\|x-x_0\| < \delta'$, then

$$||f(x) - f(x_0)|| < K ||x - x_0|| < \varepsilon,$$

proving continuity.

 \hookrightarrow Definition 1.2: Let $f = (f_1, ..., f_m) : Ω \to R^m$. Define, for i = 1, ..., n, j = 1, ..., m, $\frac{\partial f_j}{\partial x_i}(x_1, ..., x_n) := \lim_{\substack{h \to 0 \\ h \to 0}} \left[\frac{f_j(x_1, ..., x_i + h, ..., x_n) - f_{j(x_1, ..., x_n)}}{h} \right],$

the partial derivative of the *j*th component of f with respect to x_i .

Proposition 1.2: If *f* differentiable at $x_0 ∈ Ω$, then $\frac{\partial f_j}{\partial x_i}(x_0)$ exists for each i = 1, ..., n, j = 1, ..., m, and moreover, $L = Df(x_0) = \left(\frac{\partial f_j}{\partial x_i}\right)$.

PROOF. Denote the entries of $L = (a_{ji})$. Put for arbitrary $h, x = x_0 + he_i$. Then,

$$\frac{\|f(x) - f(x_0) - L(x - x_0)\|}{\|x - x_0\|} = \left(\sum_{j=1}^m \left[\frac{f_j(x) - f_j(x_0)}{h} - a_{ji}\right]^2\right)^{\frac{1}{2}}.$$

This term converges to zero by assumption as $h \to 0$, and by continuity of $(\cdot)^{\frac{1}{2}}$, and the fact that the summation is over nonnegative summands, it must be that

$$\lim_{h \to 0} \frac{f_j(x_0 + he_i) - f_j(x_0)}{h} = a_{ji}$$

for each i, j. The LHS limit is simply $\frac{\partial f_j}{\partial x_i}(x_0)$, completing the proof.