A

00000EC401121901

Pages: 2

Reg No.:_____ Name:____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech S7 (S) Examination Sept 2020

Course Code: EC401

Course Name: INFORMATION THEORY & CODING

Max. Marks: 100 Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks. Marks

- 1 a) Explain the necessary and sufficient conditions for a code to be instantaneous. (3) Give examples.
 - b) A zero memory source has a source alphabet, $S = \{s_1, s_2, s_3\}$ with $P = \{0.5, 0.3, 0.2\}$. Find the entropy of the source. Find the entropy of its second extension and verify.
 - c) Explain the properties of mutual information. (7)
- 2 a) Prove that the entropy of a discrete memory less source S is upper bounded by average code word length L for any distortion less source encoding scheme. (5)
 - b) Given a binary source with two symbols x_1 and x_2 . Given x_2 is twice as long as x_1 (4) and half as probable. The duration of x_1 is 0.3 seconds. Calculate the information rate of the source.
 - c) Consider a source with 8 alphabets, *a* to *h* with respective probabilities 0.2, 0.2, 0.18, 0.15, 0.12, 0.08, 0.05 and 0.02. Construct a minimum redundancy code and determine the code efficiency.
- 3 a) Consider a message ensemble $S = \{s_1, s_2, s_3, s_4, s_5, s_6, s_7\}$ with probabilities $P = \{0.45, 0.15, 0.12, 0.08, 0.08, 0.08, 0.04\}$. Construct a binary code and determine its efficiency using Shannon Fano coding procedure.
 - b) Given a binary symmetric channel with $P(Y/X) = \begin{bmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{3}{4} \end{bmatrix}$ and (10)

 $P(x_1) = \frac{1}{3}$; $P(x_2) = \frac{1}{3}$. Calculate the mutual information and channel capacity.

PART B

Answer any two full questions, each carries 15 marks.

- 4 a) Explain the significance of Shannon-Hartley's theorem. (5)
 - b) Define standard array. How is it used in syndrome decoding? Explain with an (10) example.

00000EC401121901

- 5 a) What are the properties to be satisfied by a linear block code? (2)
 - b) The parity matrix for a (6,3) systematic linear block code is given by (8)

$$P = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

- (i) Find all code words. (ii) Find generator and parity check matrix. (iii) Draw encoding circuit. (iv) Draw syndrome circuit.
- c) A communication system employs a continuous source. The channel noise is white and Gaussian. The bandwidth of the source output is 10 MHz and signal to noise power ratio at the receiver is 100.
 - (i) Determine the channel capacity.
 - (ii) If the signal to noise ratio drops to 10, how much bandwidth is needed to achieve the same channel capacity as in (i).
 - (iii) If the bandwidth is decreased to 1 MHz, what S/N ratio is required to maintain the same channel capacity as in (i).
- 6 a) Define the minimum distance of a code. How is it important in error detection (5) and correction?
 - b) Derive Shannon Limit. (5)
 - c) What is the capacity of a channel of infinite bandwidth? (5)

PART C

Answer any two full questions, each carries 20 marks.

- 7 a) What is a perfect code? Explain the features of (7,4) Hamming code. (5)
 - b) Consider the (7, 4) cyclic code generated by $g(x) = 1 + x + x^3$. Suppose the message u = 1111 is to be encoded. Compute the code word in systematic form. Draw the encoder circuit.
 - c) Draw a (2, 1, 3) encoder, if the generator sequences are $(1\ 0\ 0\ 0)$ and $(1\ 1\ 0\ 1)$ (8) respectively. Also find the code vector for the input $\mathbf{u} = 1101$ using transform domain approach.
- 8 a) Draw a convolutional encoder with generator sequences $g^{(1)} = 100$ and $g^{(2)} = 101$ (10) . Draw state and Trellis diagrams.
 - b) Write *H* matrix for (15, 11) cyclic code using $g(x) = 1 + x + x^4$. Calculate the code polynomial for a message polynomial $d(x) = 1 + x^3 + x^7 + x^{10}$.
- 9 a) Explain maximum likelihood decoding of convolutional codes. (6)
 - b) What is free distance of a convolutional code? (6)
 - c) Explain decoder for cyclic code with the help of a block diagram. (8)
