

Universidade Federal do Piauí Laboratório de Inteligência Artificial - LINA

Introdução à Deep Learning

Bruno Vicente Alves de Lima

Deep Learning resolve problemas introduzindo representações a partir de outras representações mais simples." (Goodfellow et al.,2016);

Possuem capacidade de extrair características mais relevantes no problema, reduzindo a necessidade de interferência humana.

●Conceitos

- ➤ Grande quantidade de dados;
 - Big Data
- ➤ Problema de Dimensionalidade;
- ➤ Função de Ativação;
 - Utilização da Função Relu
 - Softmax na saída
- ➤ Regularização;
 - Dropout
 - 11
 - L2

●Influência da Quantidade de dados

Morte do Gradiente (Vanishing Gradiente)

Regularização Dropout

Elimina aleatoriamente (e temporariamente) alguns dos neurônios ocultos na rede, deixando os neurônios de entrada e saída intocados;

Reduz o overfitting causado pela profundidade da rede;

●Proposto em:

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012). **Improving neural networks by preventing co-adaptation of feature detectors**. arXiv preprint arXiv:1207.0580.

Regularização Dropout

Extração de Características "Tradicional"

Vermelho da Camisa - X1

Azul do Calção – X2

Azul do Sapado – X3

X1	X2	Х3	X4	X5	Х6	Υ
8,97	3,45	2,35	0,00	0,00	0,00	Bart
6,75	0,94	0,52	0,00	0,00	0,00	Bart
9,69	4,10	1,56	0,00	0,00	0,00	Bart
0,00	0,00	0,00	4,68	0,66	0,01	Home
0,00	0,00	0,00	0,12	2,50	0,03	Home
0,00	0,00	0,00	5,80	0,50	1,28	Home

Marrom da boca – X4

Azul da Calça – X5

Cinza do sapado – X6

Redes Neurais Convolucionais (CNN)

Redes Neurais Convolucionais (Aplicações)

Descrição de Cenários

Redes Neurais Convolucionais (Aplicações)

● Detecção de Objetos

Redes Neurais Convolucionais (Aplicações)

Detecção e Reconhecimento Facial

Camada de Convolução

Entrada

- ●Para CNN a entrada é uma imagem;
- Uma imagem é uma matriz usualmente tridimensional;
- Pode ser representada no RGB;

Pode ser preto e branco;

Entrada

	E-000-00-00-00-00-00-00-00-00-00-00-00-0		
35	19	25	6
13	22	16	53
4	3	7	10
0	8	1	3

Preto e Branco

- Operação linear, que a partir de duas funções gera uma terceira;
- Utiliza um filtro ou kernel que realiza operação de multiplicação de matrizes em pedaços da imagem;
- Em aplicação do kernel, a região é alterada de acordo com um parâmetro chamado stride;
- O tamanho do kernel é predefinido antes do treino;
- Reduz a dimensionalidade da entrada.

● Dado a Imagem de Entrada e o Filtro

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

1	0	1	
0	1	0	
1	0	1	
Kernel			

Entrada

- O Kernel é aplicado à imagem, considerando stride = 1 para esse exemplo;
- Sucessivas multiplicações entre matrizes;

Sendo, A e B são as matrizes (pedaços da imagem) e K o kernel e n e m o tamanho do Kernel.

Padding

- Processo de adicionar alguns pixels (com valor Zero) ao redor da imagem antes da convolução;
- Finalidade de manter a dimensionalidade da imagem resultante durante a operação;
- Esse processo é utilizado porque essas imagens resultantes podem conter elementos que facilitam a identificação da classe alvo para a rede.

$$O=\frac{(W-K+2P)}{S}+1,$$

W=tamanho (altura) da entrada, K=tamanho do filtro, P=padding, S = stride.

Operation	Kernel ω	Image result g(x,y)	
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$		
	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$		
Edge detection	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$		
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$		
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$		

Etapa de Relu (Ativação)

Após a convolução, aplica-se a função de ativação Relu na imagem;

$$f(x) = \max(0, x).$$

- Com a convolução pode-se criar uma saída linear, a função de ativação adiciona a não-linearidade;
- Como utiliza-se função Relu, os valores dos pixels ficam todos maiores ou igual a zero;

Etapa de Pooling

Serve para simplificar a informação da camada anterior, reduzindo a dimensionalidade;

■ Resolve problemas de invariância na imagem;

Etapa Pooling

Uma unidade de área é escolhida para transitar por toda a saída após a ativação;

Se a entrada foi de 24 x 24 a saída será 12 x 12, utilizando uma área de 2 x 2;

Utiliza-se um método para realizar a sumarização no pooling, o mais utilizado é MaxPooling;

Outros Possíveis: Sumpooling, AveragePooling;

Etapa Pooling

Utilizando o maxpooling no exemplo:

Etapa Pooling

Flatten

Utilizada na divisão das duas partes da CNN;

Transforma a matriz da imagem para um array de 1 dimensão;

Fully Connected

●Ao final é colocada uma camada totalmente conectada;

- Pode ser uma MLP rasa ou profunda;
- Essa rede recebe como entrada o resultado do Flatten;

Treinamento

Outras Arquiteturas

O ILSVRC 2012 ficou marcado como o primeiro ano no qual uma CNN atingiu o primeiro lugar desse desafio.

Ano	Descrição	Erro
2010	SIFT + LBP + Fisher Vector + PCA + SVM	28.2
2011	Otimização do método de 2010	25.8
2012	AlexNet	16.4
2013	Zf Net	11.7
2014	GoogLeNet	6.7
2015	ResNet	3.6
2016	DenseNet	3.0
2017	SENets	2.3

Exemplo Prático

● Classificação de Imagens:

- ➤ Base MNIST
- ➤ Base Fashion
- ➤ Base CIFAR10

Universidade Federal do Piauí Laboratório de Inteligência Artificial - LINA

Introdução à Deep Learning

Bruno Vicente Alves de Lima