www.cellwise-semi.com CW1073-DS V1.6

CW1073

6~7 节电池保护 IC

功能特性

- 过充电检测功能
 - 阈值范围 3.750V、4.175V~4.450V, 25mV 步进, ±25mV 精度
- 过放电检测功能
 - 阈值范围 2.100V~3.000V, 100mV 步进, ±80mV 精度
- 过电流检测功能
 - 过流检测 1

阈值范围 0.050V~0.100V, 50mV 步进,

- ±5mV 精度
- 过流检测 2

阈值范围 0.100V~0.200 V, 100mV 步进,

- ±5mV 精度
- 短路保护

阈值范围 0.200V~0.500V, 100mV 步进,

- ±10mV 精度
- 温度检测功能
 - 充电高低温保护,温度外部可设
 - 放电高温保护,放电低温保护可选
- 均衡功能
- 通过 SEL 端子实现 6 节、7 节电池切换
- 断线检测功能
- 负载检测功能

PWM 控制驱动

- 低工作电流
 - 工作状态 15μA (25°C)
 - 休眠状态 5μA (25°C)
- 封装形式: SSOP24

应用领域

- 电动工具
- 电动自行车
- 吸尘器
- 锂离子及锂聚合物电池包

基本描述

CW1073系列产品是一款内置高精度检测电路和延迟电路的锂电池保护芯片,适用于6~7串锂离子电池或锂聚合物电池包。为锂电池包提供过充电检测、过放电检测、过电流检测、均衡、断线检测以及充放电高低温等保护功能。

CW1073内置MOSFET驱动功能,支持外部PWM信号通过DCTRL端子来控制DO_PWM端子输出,实现电机调速以及软启动功能。

典型应用框图

产品选择指南

封装形式: S: SSOP24 参数类型: 从A到Z

- 电池类型: A:代表锂离子电池 B:代表磷酸铁锂电池

功能和版本信息:从A到Z

产品目录

产品型号	过充阈值	过充延时	过充解除	过放阈值	过放延时	过放解除
厂加型写	[V _{oc}]	[T _{oc}]	[V _{OCR}]	[V _{OD}]	[T _{OD}]	[V _{ODR}]
CW1073AAAS	4.250V	1s	4.150V	2.700V	1s	3.000V
CW1073AABS	4.200V	1s	4.100V	2.700V	1s	3.000V
CW1073AACS	4.250V	1s	4.150V	2.500V	1s	3.000V
CW1073AADS	4.200V	1s	4.100V	2.500V	1s	3.000V
CW1073AAES	4.175V	1s	4.075V	2.700V	1s	3.000V
CW1073ABCS	3.750V	1s	3.650V	2.100V	1s	2.400V
CW1073AAFS	4.225V	1s	4.125V	2.700V	1s	3.000V
CW1073AAGS	4.175V	1s	4.075V	2.700V	1s	3.000V
CW1073AAJS	4.200V	1s	4.050V	2.700V	1s	3.000V
CW1073AAKS	4.150V	1s	4.000V	2.700V	1s	3.000V
CW1073AALS	4.200V	1s	4.050V	2.700V	0.3s	3.000V
CW1073AAIS	4.200V	1s	4.100V	2.800V	1s	3.000V

产品型号	均衡启动阈值	过流1阈值	过流2阈值	短路阈值	放电低	放电过温恢
厂加坐写	[V _{BAL}]	[V _{EC1}]	[V _{EC2}]	[V _{SHR}]	温保护	复负载检测
CW1073AAAS	4.125V	0.100V	0.200V	0.500V	N	Y
CW1073AABS	4.075V	0.100V	0.200V	0.500V	N	Y
CW1073AACS	4.125V	0.100V	0.200V	0.500V	N	Y
CW1073AADS	-	0.100V	0.200V	0.400V	N	N
CW1073AAES	4.050V	0.100V	0.200V	0.500V	N	Y
CW1073ABCS	3.625V	0.100V	0.200V	0.500V	N	Y
CW1073AAFS	-	0.100V	0.200V	0.400V	N	N
CW1073AAGS	-	0.100V	0.200V	0.400V	N	N
CW1073AAJS	4.025V	0.100V	0.200V	0.500V	Ν	Y
CW1073AAKS	-	0.050V	0.100V	0.200V	N	Υ
CW1073AALS	4.025V	0.050V	0.100V	0.200V	Υ	Y
CW1073AAIS	4.075V	0.100V	0.200V	0.500V	Υ	N

C€//Wi5€ CW1073

引脚排列图

			1
1	VDD	VSS	24
2	VC7	CIT	23
3	VC6	ROT	22
4	VC5	RUT	21
5	VC4	SEL	20
6	VC3	CW1073	19
7	VC2	CVV1073	18
8	VC1	VM	17
9	VC0	DO_PWM	16
10	cs	DO	15
11	NC	NC	14
12	NC	NC	13
			l

引脚定义

编号	名称	功能描述
1	VDD	芯片电源,连接电池组最高电位,若7节电池,则为电池7正极端子
2	VC7	电池7正极连接端子
3	VC6	电池 6 正极连接端子
4	VC5	电池 5 正极连接端子
5	VC4	电池 4 正极连接端子
6	VC3	电池 3 正极连接端子
7	VC2	电池2正极连接端子
8	VC1	电池 1 正极连接端子
9	VC0	电池 1 负极连接端子
10	CS	过电流检测端子
11	NC	无连接
12	NC	无连接
13	NC	无连接
14	NC	无连接
15	DO	放电保护输出端子,推挽输出,驱动 NMOS

16	DO_PWM	放电保护输出端子,推挽输出,驱动 NMOS
17	VM	P-端电压检测端子
18	CO	充电保护输出端子,开漏输出,驱动 PMOS
19	DCTRL	DO_PWN 控制端子,PWM 信号输入
20	SEL	6、7节电池选择端子
21	RUT	低温检测端子
22	ROT	过温检测端子
23	CIT	过流延时设置端子
24	VSS	芯片接地端子,连接电池 1 负极

绝对最大额定值

	范	* *		
		最小值	最大值	単位
端子输入电压	VDD, VM, CO, SEL, CS, DCTRL	VSS-0.3	VSS+40	V
端子输入电压	ROT, RUT, CIT	VSS-0.3	6	V
端子输入电压	VCx, DO, DO_PWM	VSS-0.3	VDD+0.3	V
工作温度	T1	-30	85	°C
存储温度	T2	-40	125	°C

注意:绝对最大额定值是指无论在任何条件下都不能超过的额定值,如果超过此额定值,有可能造成产品损伤。

ESD 等级

			参数值	单位
V _(ESD) 等级	&纵 静田放田 —	HBM 模式	± 4000	V
		CDM 模式	±1000	V

额定工作电压

描述	项目	最小值	典型值	最大值	单位
VDD 输入电压	V_{DD}	4		31.5	V
VCx输入电压	VCx	0		4.5	V
端子输入电压	VCIT, VROT, VRUT	0		5	V

电气特性

除特殊说明外 T=25℃

描述	项目	测试条件	最小值	典型值	最大值	单位
电源						
正常工作电流	lopr	VC1=VC2=VC3=VC4=VC5=VC6=VC7=3.7V		15	20	μА
休眠电流	ISLEEP	VC1=VC2=VC3=VC4=VC5=VC6=VC7=2.0V			5	μА
通道输入电流	ICELL	VC1=VC2=VC3=VC4=VC5=VC6=VC7=3.7V			0.5	μА
电压、温度检测和保	护阈值					
过充检测电压	V _{OC} *1	VC1=VC2=VC3=VC4=VC5=VC6=3.7V VC7=3.7V→4.5V	V _{OC} - 0.025	Voc	Voc + 0.025	V
过充解除电压	Vocr	VC1=VC2=VC3=VC4=VC5=VC6=3.7V VC7=4.5V→3.7V	V _{OCR} - 0.030	Vocr	V _{OCR} + 0.030	٧
过放检测电压	V _{OD}	VC1=VC2=VC3=VC4=VC5=VC6=3.7V VC7=3.7V→2.0V	V _{OD} - 0.080	V _{OD}	V _{OD} + 0.080	٧
过放解除电压	Vodr	VC1=VC2=VC3=VC4=VC5=VC6=3.7V VC7=2.0→3.7V	V _{ODR} - 0.100	Vodr	V _{ODR} + 0.100	٧
均衡启动电压	V_{BAL}	VC1=VC2=VC3=VC4=VC5=VC6=3.7V VC7=3.7V→4.4V	V _{BAL} - 0.025	V_{BAL}	V _{BAL} + 0.025	V
过流 1 检测电压	V _{EC1}	VC1=VC2=VC3=VC4=VC5=VC6=VC7=3.7V CS=0→0.15V	V _{EC1} -	V _{EC1}	V _{EC1} + 0.005	V
过流 2 检测电压	V _{EC2}	VC1=VC2=VC3=VC4=VC5=VC6=VC7=3.7V CS=0→0.3V	V _{EC2} -	V _{EC2}	V _{EC2} + 0.005	V
短路检测电压	V_{SHR}	VC1=VC2=VC3=VC4=VC5=VC6=VC7=3.7V CS=0→0.6V	V _{SHR} - 0.010	V _{SHR}	V _{SHR} + 0.010	V
充电过温检测温度	T _{COT} *2	V _{DD} =25.9V,NTC=103AT B=3435	Тсот-3	Тсот	Тсот+3	°C
充电过温保护解除迟 滞温度	T _{COTR}			5		°C
放电过温检测温度	T _{DOT} *2	V _{DD} =25.9V,NTC=103AT B=3435	T _{DOT} -3	Трот	T _{DOT} +3	°C
放电过温保护解除迟 滞温度	T_{DOTR}			5		°C
充电低温检测温度	T _{CUT}	V _{DD} =25.9V,NTC=103AT B=3435	T _{CUT} -3	T _{CUT}	T _{CUT} +3	°C
充电低温保护解除迟 滞温度	T _{CUTR}			5		°C
放电低温检测温度	T _{DUT}	V _{DD} =25.9V,NTC=103AT B=3435	Трит-3	T _{DUT}	Трит+3	°C
放电低温保护解除迟 滞温度	T _{DUTR}			5		°C
DCTRL 端子高电平输 入电压	Vctrlh		2.5			V
DCTRL 端子低电平输入电压	Vctrll				1	>
放电状态判断电压	VDCH		2	3.5	5	mV
断线判断电压	V_{OW}		20	50	100	mV

描述	项目	测试条件	最小值	典型值	最大值	单位		
负载检测电压	V_{LD}			2		V		
延迟时间								
计太阳的延时	T	VC1=VC2=VC3=VC4=VC5=VC6=3.7V	0.8*	_	1.2*			
过充保护延时	Toc	VC7=3.7V→4.5V	Toc	Toc	Toc	S		
过充保护重置延时	T _{RESET}		1	2.5	4	ms		
过充保护解除延时	T _{OCR}	VC1=VC2=VC3=VC4=VC5=VC6=3.7V VC7=4.5V→3.7V	150	200	250	ms		
过放保护延时	T _{OD}	VC1=VC2=VC3=VC4=VC5=VC6=3.7V VC7=3.7V→2.0V	0.7* T _{OD}	T _{OD}	1.3* T _{OD}	s		
过放保护解除延时	T _{ODR}	VC1=VC2=VC3=VC4=VC5=VC6=3.7V VC7=2.0V→3.7V	150	200	360	ms		
均衡启动延时	T _{BAL}	VC1=VC2=VC3=VC4=VC5=VC6=3.7V VC7=3.7V→4.5V			64	ms		
均衡关闭延时					64	ms		
过流 1 保护延时	T _{EC1}	CIT 连接 0.1μF 电容	0.7	1	1.3	S		
过流 2 保护延时	T _{EC2}	CIT 连接 0.1μF 电容	60	100	140	ms		
短路保护延时	T _{SHORT}		180	240	300	μS		
过流解除延时	T _{ECR} *3		90	120	150	ms		
负载锁定态解除延时	T_LLR	VC1=VC2=VC3=VC4=VC5=VC6=VC7=3.7V VM <v<sub>LD</v<sub>	5	10	16	ms		
休眠延时	T _{SLP}		25	30	40	S		
充电过温保护延时	Тсот		0.8	1.5	2	S		
充电过温保护解除延 时	Тсотк		0.8	1.5	2	s		
放电过温保护延时	T _{DOT}		0.8	1.5	2	S		
放电过温保护解除延时	T _{DOTR}		0.8	1.5	2	s		
充电低温保护延时	Тсит		0.8	1.5	2	S		
充电低温保护解除延 时	T _{CUTR}		0.8	1.5	2	s		
放电低温保护延时	Трит		0.8	1.5	2	s		
放电低温保护解除延时	T _{DUTR}		0.8	1.5	2	S		
断线检测延时	Tow	输入电容=0.1μF		1		S		
断线回复延时	Towr			6		S		
放电状态检测延时	Трсн		3	5	10	ms		
0V 充电功能								
0V 充电开始电压	V ₀ V		1.5			V		
VM 端子					-			
VM 和 VSS 间电阻	Rvmvss		30	50	80	kΩ		

描述	项目	测试条件	最小值	典型值	最大值	单位	
引脚输出电压							
CO 逻辑低电平输出	CO*4			VSS		V	
电压	CO			V 3 3		V	
DO 逻辑高电平输出		V _{DD>=} 11V		10.6		V	
电压		VDD>=11V		10.6		V	
DO 逻辑高电平输出	DO	V _{DD} <11V		VDD -		V	
电压		VDD<11V		0.7		V	
DO 逻辑低电平输出				VSS		V	
电压				V 3 3		V	
DO_PWM 逻辑高电		V _{DD>=} 11V		10.6		V	
平输出电压		VDD>=11V		10.0		V	
DO_PWM 逻辑高电	DO_	V _{DD} <11V		VDD -		V	
平输出电压	PWM	VDDCTTV		0.7		V	
DO_PWM 逻辑低电				VSS		V	
平输出电压				V 33		V	
驱动电流*5							
CO 端子输出电流	СО	CO端子逻辑高电平				μΑ	
UU 编丁制凸电视	CO	CO 端子逻辑低电平		10		μΑ	
DO 洪乙龄山山沟	DO	DO 端子逻辑高电平		70		μΑ	
DO 端子输出电流) DO	DO 端子逻辑低电平		-680		μΑ	
DO_PWM 端子							
DO_PWM 上拉电阻	DO_	DO_PWM 端子逻辑高电平		3.7		kΩ	
DO_PWM 下拉电阻	PWM	DO_PWM 端子逻辑低电平		700		Ω	

^{*1} 详细保护阈值选择,请参阅选择指南表

^{*2} 充电过温保护温度取决于不同电阻的设定,放电过温保护温度默认为充电过温保护温度+20℃,即充电过温保护温度为 50℃,则放电过温保护温度为 70℃;充放电低温保护温度设置与充放电高温设置一致;

^{*3} 所有过电流保护(包括过流 1,过流 2 和短路保护)解除延迟时间均为 120ms

^{*4} CO 端子的输出高电平为高阻态

^{*5} CO、DO 端子输出电流测试的外部电压源为 0.5V

原理框图

功能描述

正常状态

所有电池电压处于过充检测电压(V_{OC})和过放检测电压(V_{OD})之间,电池温度在工作范围内,且 CS端子电压低于过流检测电压(V_{EC1})时,CW1073 处于正常工作状态。

过充电状态

正常状态下,任意一节电池电压高于过充检测电压(V_{oc}),且超过过充保护延迟时间(T_{oc}),CO 端子输出高阻态关断充电MOSFET,停止充电。

过充保护延时时间(T_{OC})内,若所检测电池电压低于过充检测电压(V_{OC})的时间超过过充重置延时(T_{RESET}),则过充累积的延迟时间(T_{OC})重置。否则,电池电压的下降则认为是无关的干扰从而被屏蔽。

过充电保护解除条件:

所有电池电压低于过充解除电压(VocR)且超过过充解除延迟时间(TocR)。

过放电状态

正常状态下,任意一节电池电压低于过放保护电压(V_{OD}),且超过过放保护延迟时间(T_{OD}),DO 端子、DO PWM 端子输出低电平关断放电 MOSFET,停止放电。

过放电保护解除条件:

VM 端子电压低于 2V(负载解除),所有电池电压高于过放解除电压(V_{ODR})且维持超过过放解除延时(T_{ODR})。

过电流状态

CW1073 内置三级过流检测,过流 1,过流 2 和短路保护。

保护机制:通过 CS 端子检测主回路上电流采样电阻的电压,判断 CW1073 是否进入相应的过流保护状态。

以过流 1 保护为例,放电电流跟随外部负载变化,若 CS 端子检测到电流采样电阻上的电压高于过流 1 保护阈值(V_{EC1})并维持超过过流 1 保护延迟时间(T_{EC1}),DO 端子、DO_PWM 端子输出低电平关断放电 MOSFET,停止放电。

过电流保护解除条件:

VM 端子电压低于 2V(负载解除),且超过过流解除延时时间(TECR),过流保护解除。

温度保护功能

CW1073 通过一颗 NTC 电阻实现充放电过温保护以及充电低温保护功能,ROT、RUT 端子检测 NTC 电阻电压,若检测电压达到内部比较阈值,且维持充放电温度保护延时时间,温度保护功能触发。

充电温度保护后,充电 MOSFET 关断,停止充电;

放电温度保护后,放电 MOSFET 关断,停止放电;

充电温度保护解除条件:

温度回到充电解除温度以内,且时间超过充电温度解除延时,充电温度保护解除。

放电温度保护解除条件:

- 1. 芯片带有温度保护恢复负载锁定功能: VM 端子电压低于 2V(负载解除),温度回到放电解除温度以内,且时间超过放电温度解除延时,放电温度保护解除。
- 2. 芯片不带温度保护恢复负载锁定功能:温度回到放电解除温度以内,且时间超过放电温度解除延时,放电温度保护解除。

过温阈值设置步骤

1. 选择 NTC 电阻, CW1073 推荐 NTC 电阻型号为: 103AT, B=3435;

- 2. 确定充电过温保护阈值,如:50°C;
- 3. 根据 NTC 电阻的温度曲线图,找到 50°C 对应的电阻值,如 3.5kΩ;
- 4. 使用 10 倍阻值的正常电阻连接至 ROT 端子,即 35kΩ;
- 5. 确定充电过温保护阈值后,放电过温保护阈值默认为 50° C+ 20° C = 70° C;
- 6. 充电低温保护设置使用相同的方法,但电阻需连接至 RUT 端子;
- 7. 详细电路请参考应用电路,通过选择电阻来设定合适的保护温度;

CW1073 可选放电低温保护功能,放电低温保护温度设置默认为充电低温保护温度-20℃。

低功耗状态

CW1073 进入过放保护状态,并超过休眠延时时间(T_{SLP}),则 CW1073 进入低功耗状态。DO 端子保持低电平,维持放电 MOSFET 关闭, CO 端子保持低电平状态,维持充电 MOSFET 开启。

休眠状态解除条件:

电池电压高于过放解除电压(VoDR)且维持超过过放解除延时(ToDR)。

均衡功能

CW1073 内置均衡功能,内部均衡电阻 100Ω,通过外部电压采样电阻调节均衡电流,推荐外部电压采样电阻 200Ω~1kΩ,如需大电流均衡可外部增加均衡电路扩流,均衡电流由外部均衡电阻决定。

均衡功能示意图

正常状态下,任意一节电池电压高于均衡检测电压(V_{BAL}),其余电池电压低于均衡检测电压(V_{BAL}),在且超过均衡启动延迟时间(T_{BAL}),CW1073 开始均衡。

均衡停止条件:

- 1. 所有电池电压低于均衡检测电压(VBAL)。
- 2. 所有电池电压高于均衡检测电压(VBAL)。
- 3. CW1073 进入断线保护状态、放电温度保护状态、低功耗状态。

CW1073 采用奇偶通道分时均衡,均衡功能不影响正常的电池电压采样,当同时开启多路均衡通道,奇数通道会先进入均衡状态,偶数通道在下一个周期进入均衡状态,具体电池电压采样和均衡开启时序图如下:

电压采样、均衡开启时序图

断线保护功能

CW1073 包含断线检测和保护功能。

正常状态下,当电池包中任意一节电池的检测线断开,且维持超过断线检测延时(T_{OW}),DO端子、DO_PWM端子输出低电平关断放电 MOSFET; CO输出高阻态关断充电 MOSFET; CW1073进入断线保护状态。

断线保护状态解除条件:

VM 端子电压低于 2V(负载解除),检测线重新连接,并维持超过断线解除延时(T_{OWR}),断线保护状态解除。

ov 充电(允许)

CW1073 支持电池 0V 充电功能,即当电池电压低于芯片正常工作电压时,电池包可正常充电。

CW1073 的 VDD 电压高于 0V 充电开始电压(Vov),连接充电器且充电器输出电压高于充电 MOSFET 开启阈值,电池包开始充电。

延迟时间设置

延迟时间是指 CW1073 从检测到电压达到设定的保护阈值至 CW1073 驱动 CO 或 DO 端子输出高低电平的时间。

CW1073 的过流 1 和过流 2 保护可通过外部电容来设置延迟时间。

串数选择

SEL 端子是电池串联数选择端子,可通过它来选择电池串联数量。

SEL 端子串联电阻接地,则 CW1073 保护的电池串数为 6 串, 6 串电池应用时, VC7 端子与 VC6 端子短接;

SEL 端子悬空,则 CW1073 保护的电池串数为 7 串;

放电状态检测功能

充放电同口应用中,电池包处于过充电,充电温度保护状态,若 CS 端子检测电压高于 3.5mV,并持续放电状态检测延时(T_{DCH}),则认为电池包处于放电状态, CO 端子输出低电平,将充电 MOSFET 导通。

PWM 控制驱动

CW1073 内置 MOS 驱动功能,支持外部 PWM 信号可通过 DCTRL 端子控制 DO_PWM 端子输出,DCTRL 端子输入电压高于 2.5V,DO_PWM 端子输出低电平; DCTRL 端子输入电压低于 1V,DO_PWM 端子输出高电平。不需要外部信号控制 DO_PWM 端子时,DCTRL 端子串联电阻接地;

当 CW1073 芯片内部保护状态发生,如过放、过流、放电过温以及断线保护,芯片的保护动作会优先执行。

C€//Wi5€ CW1073

参考应用电路

7 串带均衡功能应用电路

7 串带均衡功能应用电路

参考应用电路

7 串不带均衡功能应用电路

6 串不带均衡功能应用电路

封装图和封装尺寸

CVMPOL	MILLIMETER				
SYMBOL	MIN.	NOM.	MAX.		
А			1.75		
A1	0.10	0.15	0.25		
A2	1.30	1.40	1.50		
A3	0.60	0.65	0.70		
b	0.23		0.31		
b1	0.22	0.25	0.28		
С	0.20		0.24		
c1	0.19	0.20	0.21		
D	8.55	8.65	8.75		
E	5.80	6.00	6.20		
E1	3.80	3.90	4.00		
е		0.635BSC			
h	0.30		0.50		
L	0.50		0.80		
L1	1.05REF				
θ	0		8°		

Ce//Wise

版本履历

日期	版本	修改项目	修改	批准
2017-08-25	1.0	新版说明书发布	曾抗	周军
2018-01-25	1.1	增加 CW1073AACS 型号	曾抗	周军
2018-06-29	1.2	增加 CW1073AADS 型号	曾抗	周军
2018-08-14	1.3	 增加 CW1073AAES 型号 修改 CW1073AADS 参数 修改放电过温恢复条件,均衡功能描述 增加 ESD 等级说明 	曾抗	周军
2018-11-26	1.4	 修改参考应用电路 增加参数上下限 增加 PWM 控制说明 	曾抗	周军
2019-01-14	1.5	增加 CW1073AAFS, CW1073AAGS 型号	曾抗	周军
2019-06-18	1.6	1.增加 CW1073AAJS,AAKS,AAIS 产品型号 2.调整过放延时精度	曾抗	周军

声明

赛微微电子公司为提高产品的可靠性、功能或设计,保留对其做出变动的权利,恕不另行通知。对于本文描述的任何产品和电路应用中出现的问题,赛微微电子公司不承担任何责任;不转让其专利权下的任何许可证,也不转让其他权利。

若无赛微微电子公司总裁正式的书面授权,其产品不可作为生命支持设备或系统中的关键器件。

具体如下:

- 生命支持器件或系统是指如下的设备或系统: (a)用于外科植入人体,或(b)支持或维持生命,以及即使依照标示中的使用说明进行正确操作,但若操作失败,仍将对使用者造成严重的伤害。
- 2. 关键器件是指生命支持设备或系统中,由 于该器件的失效会导致整个生命支持设备 或系统的失效,或是影响其安全性及使用 效果。