TD: Accès Registre / Firmware

Exercice:

La structure des GPIOs de la famille F4 est différente de celle de la famille F1. Les bits de configuration des 16 pins ne sont pas regroupés ensemble, mais sont séparés dans plusieurs registres (*voir Annexe 3*).

Ainsi, on trouve pour chaque pin

- 2 bits pour la configuration du mode (Input =00, Output=01, Alternate=10 et Analog=11) dans le registre **GPIOx_MODER**
- 2 bits pour la configuration de la vitesse (low, medium, fast et high) pour chaque pin dans le registre GPIOx_OPSPEEDR.

Etc...

On veut développer une couche d'abstraction matérielle (Firmware) qui permet de faciliter la programmation des GPIOs de telle sorte à ce qu'au niveau utilisateur (main.c) la configuration peut se faire ainsi :

```
GPIO_InitTypedef GPIO_Struct;

GPIO_Struct.GPIO_Mode= ....;

GPIO_Struct.GPIO_Otype=....;

GPIO_Struct.GPIO_OSpeed=....;

GPIO_Struct.GPIO_PuPd=....;

GPIO_Struct.GPIO_Pin = GPIO_Pin_i | GPIO_Pin_j | .....; // (i,j,k : des valeurs de 0..15)

GPIO_Init (GPIOx , GPIO Struct); //x pouvant être A, B, C ou D.
```

Remarque : **GPIO_Init** étant une fonction qui permet de configurer les pins du GPIOx en fonction des paramètres passés au niveau de GPIO InitStruct et définie aunsi :

GPIO_Init (GPIO_Typedef* GPIOx , &GPIO_InitTypedef GPIO_InitStruct)

Questions:

- Q1- Donner la partie à ajouter au fichier stm32f4xx.h qui devrait contenir la partie memory map relative au GPIOs . (Voir *Annexe1* pour adresses et offset).
- Q2 Ecrire un programme qui permet de faire clignoter une Led connectée au pin PD12 en utilisant l'accès direct aux registres sachant que la famille **F4** contient uniquement un registre BSRR (pas de BRR comme F1) qui permet d'assurer la mise à 1 et la remise à 0 des 16 bits de ODR. (Voir Annexe2).

Rq: sans configurer les pins

- Q3- Donner le code à ajouter au fichier stm32f4xx_gpio.h et qui permet de décrire les paramètres de configuration du périphérique GPIO.
- Q4 Donner le code de la fonction GPIO Init.
- Q5 Donner les codes des fonctions *GPIO_SetBits* et *GPIO_ResetBits* qui permettent de mettre à 1 (resp à 0) un pin ou un ensemble de pins d'un GPIO donné.

Annexe:

Annexe 1: Adresses et Offsets

GPIOx	Α	В	С	D
@	0x4002	0x4002	0x4002	0x4002
	0000	0400	0800	0C00

Registre	MODER	OTYPER	OSPEEDR	PUPDR	IDR	ODR	BSRR
Offset	0x00	0x04	0x08	0x0C	0x10	0x14	0x18

Annexe 2: Le registre BSRR

GPIO port bit set/reset register (GPIOx_BSRR) (x = A..I/J/K)

Address offset: 0x18

Reset value: 0x0000 0000

w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w
BS15	BS14	BS13	BS12	BS11	BS10	BS9	BS8	BS7	BS6	BS5	BS4	BS3	BS2	BS1	BS0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
W	w	w	w	w	w	W	w	w	w	w	w	w	w	w	w
BR15	BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16

Bits 31:16 BRy: Port x reset bit y (y = 0..15)

These bits are write-only and can be accessed in word, half-word or byte mode. A read to these bits returns the value 0x0000.

0: No action on the corresponding ODRx bit

1: Resets the corresponding ODRx bit

Note: If both BSx and BRx are set, BSx has priority.

Bits 15:0 **BSy:** Port x set bit y (y= 0..15)

These bits are write-only and can be accessed in word, half-word or byte mode. A read to these bits returns the value 0x0000.

0: No action on the corresponding ODRx bit

1: Sets the corresponding ODRx bit

Annexe 3: Les registres de configuration :

GPIO port mode register (GPIOx_MODER) (x = A..I/J/K)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
MODE	R15[1:0]	MODE	R14[1:0]	MODE	R13[1:0]	MODE	R12[1:0]	MODE	R11[1:0]	MODE	R10[1:0]	MODE	R9[1:0]	MODE	R8[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	- 1	0
MODE	R7[1:0]	MODE	R6[1:0]	1:0] MODER5[1:0] MODER4[1:0]		R4[1:0]	MODERβ[1:0]		MODER2[1:0]		MODER1[1:0]		MODER0[1:		
rw	rw	rw	rw	rw	rw	rw	rw:	rw	rw	rw	rw	rw	rw	rw	rw

Bits 2y:2y+1 MODERy[1:0]: Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O direction mode

00: Input (reset state)

01: General purpose output mode

10: Alternate function mode

11: Analog mode

GPIO port output type register (GPIOx_OTYPER) (x = A..I/J/K)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OT15	OT14	OT13	OT12	OT11	OT10	OT9	OT8	OT7	OT6	OT5	OT4	OT3	OT2	OT1	OT0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

3its 15:0 OTy: Port x configuration bits (y = 0..15)

These bits are written by software to configure the output type of the I/O port.

0: Output push-pull (reset state)

1: Output open-drain

GPIO port output speed register (GPIOx_OSPEEDR) (x = A..I/J/K)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	EDR15 :0]		EDR14 :0]	11.	EDR13 :0]	1	EDR12 :0]	(00)00000000000000000000000000000000000	EDR11 :0]	The second second second second	EDR10 :0]		EDR9 :0]	45.55	EDR8 :0]
rw	rw	rw	rw	rw	rw	rw.	rw	rw	rw	rw	rw	rw	rw	rw	rw.
15	14	13	12	11	10	9	8	7	6	5	4	3	2	-1	0
OSPEE	DR7[1:0]	OSPEE	DR6[1:0]	OSPEE	DR5[1:0]	OSPEE	DR4[1:0]	OSPEE	DR3[1:0]	OSPEE	DR2[1:0]	OSPEEDR1 [1:0]			EDR0 :0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 2y:2y+1 OSPEEDRy[1:0]: Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O output speed.

00: Low speed

01: Medium speed

10: Fast speed

11: High speed

GPIO port pull-up/pull-down register (GPIOx_PUPDR) (x = A..I/J/K)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PUPDR15[1:0]		PUPDR14[1:0]		PUPDR13[1:0]		PUPDR12[1:0]		PUPDR11[1:0]		PUPDR10[1:0]		PUPDR9[1:0]		PUPDR8[1:0]	
TW	rw	rw	rw	rw	rw.	FW.	rw	rw	rw	rw	rw	rw	rw.	rw	rw.
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PUPD	R7[1:0]	PUPD	R6[1:0]	PUPD	R5[1:0]	PUPD	R4[1:0]	PUPD	R3[1:0]	PUPD	R2[1:0]	PUPDR1[1:0]		PUPD	R0[1:0]
rw	rw	rw	rw	rw	rw										

Bits 2y:2y+1 PUPDRy[1:0]: Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O pull-up or pull-down

00: No pull-up, pull-down

01: Pull-up

10: Pull-down