

MACHINE LEARNING-HEART DISEASE

ROFIK-

Link Colab:

https://drive.google.com/file/d/13r9_R1B8SF9u-6UaGXgdfVV11mVijcO7/view?usp=sharing

TABLE OF CONTENTS

INTRODUCTION

Penyakit jantung, sering disebut sebagai pembunuh nomor satu di seluruh dunia, telah menjadi epidemi global yang mendalam. Pentingnya deteksi penyakit jantung menjadi semakin nyata seiring dengan meningkatnya angka kematian dan dampak negatif yang ditimbulkannya pada kualitas hidup individu. Ini adalah masalah kesehatan yang memengaruhi jutaan orang di seluruh dunia, tidak mengenal usia, jenis kelamin, atau latar belakang.

Definisi Problem Statement

Case-Heart Disease

Tujuan dari proyek ini adalah untuk membangun model Machine Learning yang dapat memprediksi risiko penyakit jantung berdasarkan atribut medis pasien seperti usia, jenis kelamin, tekanan darah, kadar kolesterol, dan lainnya. Prediksi ini akan membantu dokter dan peneliti untuk mengidentifikasi faktor risiko yang signifikan dan mengambil langkah-langkah pencegahan yang sesuai.

Mengapa Machine Learning?

Machine Learning

Machine Learning adalah cabang dari kecerdasan buatan yang memungkinkan komputer untuk belajar dari data dan pengalaman sebelumnya untuk membuat keputusan atau melakukan tugas tanpa pemrograman eksplisit. Ini memungkinkan komputer 'mengerti' pola, mengidentifikasi tren, dan membuat prediksi dengan berdasarkan pada data yang ada. Machine Learning memiliki aplikasi luas, termasuk dalam pengenalan wajah, prediksi pasar saham, diagnosis medis, dan banyak lagi

Machine Learning dapat menjadi pendekatan yang tepat untuk masalah ini karena:

Pemilihan Model Algoritma

Forest
Random Forest adalah salah satu
algoritma yang sering memberikan
hasil yang baik dalam masalah
klasifikasi penyakit jantung. Ini
adalah kombinasi dari banyak pohon
keputusan yang menggabungkan
prediksi mereka untuk hasil yang
lebih kuat.

Algoritma seperti Gradient Boosting (misalnya, XGBoost, LightGBM, atau CatBoost) adalah pendekatan lain yang kuat untuk klasifikasi penyakit jantung. Mereka bekerja dengan cara memperbaiki model secara berurutan, fokus pada sampel yang salah diklasifikasikan sebelumnya.

Jaringan Saraf Tiruan (Neural Networks):

Jaringan saraf tiruan, terutama jaringan saraf dalam (deep neural networks), dapat mengatasi masalah klasifikasi yang kompleks. Mereka sering digunakan untuk masalah medis seperti diagnosis penyakit jantung.

Pemilihan Model Algoritma

Regresi Logistik

Regresi logistik adalah pendekatan klasik yang sering digunakan dalam analisis medis. Ini memberikan interpretasi yang mudah dimengerti tentang dampak atribut pada peluang terjadinya penyakit. Apalagi algoritma ini biasa digunakan untuk kelas kategorikal yang sesuai dengan case ini

K-Nearest Neighbors (KNN)

KNN adalah metode berbasis instansi yang dapat efektif digunakan dalam klasifikasi penyakit jantung, terutama ketika terdapat pola jelas dalam data. Karena cara kerjanya yang mencoba mengklasifikasikan berdasarkan ketetanggaan.

Pohon Keputusan

Pohon keputusan dapat memberikan pemahaman yang baik tentang atribut mana yang paling berpengaruh dalam diagnosis penyakit jantung. Mereka juga dapat digunakan dalam ensemble seperti Random Forest.

Pemilihan Model Algoritma

SVM sangat cocok untuk tugas klasifikasi penyakit jantung karena dapat memberikan kejelasan dalam memisahkan pasien yang memiliki penyakit jantung dan yang tidak. Dengan menemukan hyperplane optimal yang memiliki margin terbesar, SVM memberikan prediksi yang akurat dalam diagnosis penyakit jantung. Kemampuannya dalam menangani data yang tumpang tindih dan fleksibilitas dalam pemilihan kernel membuat SVM menjadi pilihan yang kuat dalam analisis medis seperti ini.

Hapus data duplikat

Penyeimabangan data dengan SMOTE

Dimodelkan setelah melalui tahap preprocessing

Standarisasi data dengan Standard scaler

Eksekusi Model Pertama

Standarisasi data dengan Standard scaler

Penghapusan Outlier

Dimodelkan setelah melalui tahap preprocessing

Hapus data duplikat

Eksekusi Model Kedua

Penyeimbangan data dengan SMOTE

Standarisasi data dengan Standard scaler

Penghapusan Outlier

Hapus data duplikat

Dimodelkan setelah melalui tahap preprocessing

Seleksi Fitur dengan Random Forest

Hyperparameter Tunning menggunakan GridSearchCV

Eksekusi Model Ketiga

Kenapa Menyeimbangkan data dengan

SMOTE?

SMOTE digunakan untuk mengatasi ketidakseimbangan kelas dalam masalah klasifikasi. Dengan menambah sampel sintetis ke kelas minoritas, SMOTE membantu meningkatkan kinerja model, mengurangi overfitting, menghilangkan bias dalam evaluasi, dan mengoptimalkan hasil klasifikasi.

Standarscaler untuk Standarisasi data?

Standard Scaler digunakan untuk standarisasi data dalam machine learning. Tujuannya adalah untuk mengubah distribusi nilai-nilai atribut sehingga memiliki rata-rata 0 dan deviasi standar 1. Dengan demikian, semua atribut berada dalam skala yang serupa, sehingga memudahkan model untuk memahami dan memproses data. Standard Scaler membantu menghilangkan perbedaan skala antar atribut, yang dapat memengaruhi kinerja algoritma yang sensitif terhadap skala, seperti regresi logistik dan analisis diskriminan. Selain itu, standarisasi juga membantu mengatasi masalah outlier dan mempermudah konvergensi pada algoritma berbasis gradien. Dengan kata lain, Standard Scaler adalah langkah penting dalam pra-pemrosesan data yang dapat meningkatkan kualitas dan hasil dari model machine learning.

Seleksi Fitur dengan Random Forest?

Seleksi fitur menggunakan Random Forest memberikan keunggulan dalam mengidentifikasi atribut paling penting dalam prediksi penyakit jantung. Algoritma Random Forest memilih fitur yang memberikan kontribusi terbesar dalam membedakan pasien yang memiliki penyakit jantung dengan yang tidak. Dengan menggunakan hanya fitur-fitur yang paling penting, kita dapat mempercepat pelatihan model, mengurangi overfitting, dan meningkatkan akurasi prediksi. Ini memungkinkan kita untuk fokus pada atribut yang paling relevan, menghasilkan model yang lebih efisien, dan memperkuat kemampuan kita dalam mengklasifikasikan penyakit jantung.

Cross-validation?

Cross-validation digunakan untuk mengukur sejauh mana model klasifikasi dapat melakukan generalisasi pada data yang belum pernah dilihat sebelumnya. Pendekatan ini penting karena memungkinkan kita untuk menghindari overfitting, yaitu keadaan di mana model terlalu sesuai dengan data pelatihan tetapi tidak mampu melakukan prediksi yang baik pada data baru. Dengan menguji model pada beberapa lipatan (fold) data yang berbeda, cross-validation memberikan perkiraan yang lebih akurat tentang seberapa baik model dapat memprediksi data yang belum dikenal. Ini membantu kita memastikan bahwa model yang dipilih memiliki kinerja yang baik secara umum dan dapat diterapkan pada data dunia nyata.

Hyperparameter Tunning menggunakan GridSearchCV?

GridSearchCV adalah metode optimisasi hyperparameter yang digunakan dalam machine learning untuk mencari kombinasi terbaik dari hyperparameter suatu model. Metode ini bekerja dengan mencoba semua kombinasi hyperparameter yang telah ditentukan sebelumnya, dan melakukan evaluasi menggunakan teknik cross-validation pada dataset training. Dengan menggunakan GridSearchCV, para peneliti dan praktisi machine learning dapat mengidentifikasi konfigurasi hyperparameter yang memberikan performa terbaik untuk model mereka. Pendekatan ini menghemat waktu dan usaha karena mengeliminasi kebutuhan untuk mencoba satu per satu kombinasi hyperparameter secara manual. Hasil optimal dari GridSearchCV dapat meningkatkan akurasi dan kinerja model machine learning, memungkinkan pengambilan keputusan yang lebih baik berdasarkan data.

Heatmap untuk melihat fitur penting yang berkolerasi kuat dengan target

Berdasrkan correlation test, dapat diketahui bahwa ada hubungan positif antara cp (0.45), restecg (0.19), thalach (0.45), slope (0.36).

Korelasi yang paling kuat:
- positif dengan target cp,
thalach, slope
- negatif dengan target
exang, oldpeak, ca, thal

Seleksi fitur dengan Random Forest

Digunakan 6 fitur yang paling berkolerasi dengan target, untuk pemodelan ke-3. Yaitu fitur cp, thalach, oldpeak, ca, dan age

```
Fitur: cp, Feature Importance: 0.1514

Fitur: thalach, Feature Importance: 0.1376

Fitur: oldpeak, Feature Importance: 0.1262

Fitur: ca, Feature Importance: 0.1018

Fitur: age, Feature Importance: 0.0924

Fitur: thal, Feature Importance: 0.0913

Fitur: chol, Feature Importance: 0.0749

Fitur: trestbps, Feature Importance: 0.0733

Fitur: slope, Feature Importance: 0.0360

Fitur: exang, Feature Importance: 0.0329

Fitur: sex, Feature Importance: 0.0302

Fitur: restecg, Feature Importance: 0.0211

Fitur: fbs, Feature Importance: 0.0107
```

Perbandingan Performa tiap algoritma dan pengembangan metodenya

Perbandingan akurasi dari Pemodelan Kedua

Pemodalan kedua, menggunakan dataset, yang sebelumnya data outliernya dihapus terlebih dahulu. Yaitu menggunakan 308 record data. Meskipun akurasi yang dihasilkan dari NN dan DT adalah 77%, pemodelan kedua ini berhasil memperoleh akurasi lebih besar dibanding pemodelan pertama. Yang mana algoritma Logistic Regression dan SVM memperoleh akurasi sebesar 82%. Meskipun data yang dilatih cenderung lebih kecil dibanding pemodelan pertama, namuan di algoritma LR dan DT memberi performa yang bagus.

Perbandingan akurasi dari Pemodelan Ketiga

Pemodelan ketiga menggunakan data yang outliernya telah dihapus, dan hanya menggunakan 6 fitur saja. Yang mana fitur-fitur tersebut diperoleh dari Feature selection menggunakan Feature Importance. Namun meskipun demikian, dengan menggunakan data yang lebih minim dibanding pemodelan 1 dan 2, NN dan SVM bekerja dengan baik. Ditunjukan pada performanya yang memperoleh akurasi yang cukup tinggi yaitu 84%.

NN lebih unggul karena lebih tidak overfitting. Perbedaan tidak terlalu jauh dari akurasi training dan testingnya.

Dari ROC Curve juga dapat dilihat performa tiap algoritmanya. Random Forest juga bisa dipertimbangkan karena nilai AUC nya tinggi.

Jika dilihat berdasarkan precision dan recallnya, mungkin algoritma Random Forest, KNN, Logistic Regression, Neural Network dan SVM merupakan algoritma yang patut dipertimbangkan.

Penerapan Hyperparameter tunning menggunakan GridSearchCV ternyata tidak membuat model berperforma lebih baik. Bisa dikatakan cara tersebut tidak tepat dengan model atau dataset yang digunakan. Atau juga karena parameter yang diterapkan.

Kesimpulan

Pada case ini ditunjukkan bahwa model yang menggunakan data yang bebas outlier dan hanya menggunakan fitur-fitur yang paling berpengaruh menunjukkan model lebih optimal dalam memprediksi HD. Dan ini juga menunjukkan juga bahwa, dengan data yang lebih sedikit namun tidak kotor akan membuat model lebih bekerja dengan baik pula. Algoritma SVM dan Neural Network menjadi algoritma yang paling bagus dan mendeteksi HD apabila dibandingkan dengan model lainnya.
 Namun metode hyperparameter tunning menggunakan GridSearchCV dengan parameter-parameter yang diterapkan, ternyata tidak membuat model lebih bekerja dengan optimal dan tidak lebih berperforma baik.

Rekomendasi

 Untuk mencapai akurasi yang lebih, mungkin bisa diuji cobakan menggunakan metode lain, seperti penggunaan metode seleksi fiturnya, pemilihan algoritmanya, penggunaan metode hyperparameter tunningnya. Atau mungkin saja membangun modek yang lebih kompleks lagi menggunakan model Stacking Ensemble, Vooting ataupun Bagging. "Health is a treasure, and the heart is its keeper. Let's take good care of our hearts and cherish the gift of life."

THANKS!

Link Colab:

https://colab.research.google.com/drive/1D4aDirFhwf Ey1HDewaJtVs2-B3xxo8BA?usp=sharing

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**