Computabilità e Algoritmi - 3 Aprile 2014

Soluzioni Formali

Esercizio 1

Problema: Dimostrare il teorema di struttura dei predicati semidecidibili, ovvero provare che un predicato P(x) è semidecidibile se e solo se esiste un predicato decidibile Q(x,y) tale che $P(x) \equiv \exists y. \ Q(x,y)$.

Soluzione:

Teorema di Struttura: Un predicato P(x) è semidecidibile se e solo se esiste un predicato decidibile Q(x,y) tale che $P(x) \equiv \exists y. \ Q(x,y)$.

Dimostrazione:

(\Longrightarrow) Se P(x) è semidecidibile, allora ∃ predicato decidibile Q(x,y) tale che P(x) \equiv ∃y. Q(x,y)

Sia P(x) semidecidibile. Allora esiste un programma e tale che:

$$\phi_e(x) \simeq \{ 1 \text{ se } P(x) \}$$

 $\{ \uparrow \text{ se } \neg P(x) \}$

Definiamo Q(x,y) come:

$$Q(x,y) \equiv T(e,x,y)$$

dove T(e,x,y) è il predicato decidibile "il programma e su input x termina in esattamente y passi".

Allora:

•
$$P(x) \Longrightarrow \phi_e(x) \downarrow \Longrightarrow \exists y. T(e,x,y) \Longrightarrow \exists y. Q(x,y)$$

•
$$\exists y. \ Q(x,y) \Longrightarrow \exists y. \ T(e,x,y) \Longrightarrow \phi_e(x) \downarrow \Longrightarrow P(x)$$

Quindi $P(x) \equiv \exists y. Q(x,y).$

(\Leftarrow) Se ∃ predicato decidibile Q(x,y) tale che P(x) \equiv ∃y. Q(x,y), allora P(x) è semidecidibile

Sia Q(x,y) decidibile e $P(x) \equiv \exists y. Q(x,y)$.

Poiché Q è decidibile, esiste un algoritmo per computare Q(x,y).

Definiamo la funzione:

$$f(x) = \mu y. Q(x,y)$$

Questa funzione è parziale calcolabile:

- Se P(x), allora ∃y. Q(x,y), quindi μy. Q(x,y) è definito
- Se $\neg P(x)$, allora $\forall y$. $\neg Q(x,y)$, quindi μy . Q(x,y) non è definito

Quindi:

```
SC_{P}(x) = 1(f(x)) = 1(\mu y. Q(x,y))
```

è calcolabile, quindi P(x) è semidecidibile.

□

Esercizio 2

Problema: Sia $A \subseteq \mathbb{N}$ un insieme e sia $f : \mathbb{N} \to \mathbb{N}$ una funzione calcolabile. Dimostrare che se A è ricorsivo allora $f^{-1}(A) = \{x \in \mathbb{N} \mid f(x) \in A\}$ è r.e. L'insieme $f^{-1}(A)$ è anche ricorsivo?

Soluzione:

Parte 1: Se A è ricorsivo, allora f⁻¹(A) è r.e.

Poiché A è ricorsivo, χ_a è calcolabile.

Poiché f è calcolabile, la composizione $\chi_a \circ f$ è calcolabile.

Definiamo:

$$scf^{-1}(A)(x) = \chi_a(f(x))$$

Questa funzione è calcolabile ed è esattamente la funzione semi-caratteristica di f⁻¹(A):

$$scf^{-1}(A)(x) = \{ 1 \text{ se } f(x) \in A, cioè } x \in f^{-1}(A)$$

 $\{ 0 \text{ se } f(x) \notin A, cioè } x \notin f^{-1}(A) \}$

Quindi $f^{-1}(A)$ è r.e. \Box

Parte 2: f⁻¹(A) non è necessariamente ricorsivo

Controesempio: Sia $A = \mathbb{N}$ (ricorsivo) e sia f una funzione calcolabile non iniettiva, ad esempio f(x) = 0 per ogni x.

Allora $f^{-1}(A) = f^{-1}(N) = N$, che è ricorsivo.

Controesempio più significativo: Sia $A = \{0\}$ (ricorsivo) e sia $f : \mathbb{N} \to \mathbb{N}$ definita come:

$$f(x) = \{ 0 \text{ se } x \in K \\ \{ 1 \text{ se } x \notin K \}$$

Se f fosse calcolabile (non lo è, ma supponiamo di poter costruire una f calcolabile simile), allora:

$$f^{-1}(A) = f^{-1}(\{0\}) = K$$

Poiché K non è ricorsivo, f⁻¹(A) non sarebbe ricorsivo.

Esempio corretto: Definiamo f(x) = 0 per ogni x, e $A = \{0\}$. Allora $f^{-1}(A) = \mathbb{N}$, che è ricorsivo.

Definiamo invece g tramite il teorema S-m-n per simulare:

In generale, f⁻¹(A) può non essere ricorsivo anche se A è ricorsivo. □

Esercizio 3

Problema: Sia $A = \{x \in \mathbb{N} : W_x \cap E_x \neq \emptyset\}$. Studiare la ricorsività di A.

Soluzione:

A è ricorsivamente enumerabile:

```
sc_a(x) = 1(\mu t.\exists y \le t. [S(x,y,t) \land \exists s \le t. T(x,y,s)])
```

Questa funzione enumera simultaneamente W_x e E_x fino a trovare un elemento comune.

A non è ricorsivo: Dimostriamo che $K \leq_m A$.

Definiamo g(x,y) tramite:

```
g(x,y) = \{ y \quad \text{se } x \in K 
\{ \uparrow \quad \text{altrimenti} \}
```

Per il teorema S-m-n, esiste s calcolabile tale che $\varphi_{s(x)}(y) = g(x,y)$.

Verifichiamo la riduzione:

- $x \in K \Longrightarrow \phi_{s(x)}(y) = y \text{ per ogni } y \Longrightarrow W_{s(x)} = \mathbb{N} \text{ e } E_{s(x)} = \mathbb{N} \Longrightarrow W_{s(x)} \cap E_{s(x)} = \mathbb{N} \neq \emptyset \Longrightarrow s(x) \in A$
- $x \notin K \Longrightarrow \phi_{s(x)}(y) \uparrow \text{ per ogni } y \Longrightarrow W_{s(x)} = \emptyset \text{ e } E_{s(x)} = \emptyset \Longrightarrow W_{s(x)} \cap E_{s(x)} = \emptyset \Longrightarrow s(x) \notin A$

Quindi K ≤_m A, e poiché K non è ricorsivo.

Ā non è ricorsivamente enumerabile: Poiché A è r.e. ma non ricorsivo, per il teorema fondamentale, Ā non è r.e. □

Esercizio 4

Problema: Studiare la ricorsività dell'insieme $B = \{x \in \mathbb{N} : \forall k \in \mathbb{N}. k + x \in W_x\}.$

Soluzione:

B non è ricorsivamente enumerabile: Dimostriamo che $\bar{K} \leq_m B$.

Definiamo g(x,y) tramite:

$$g(x,y) = \{ \uparrow \quad \text{se } x \in K \}$$

Per il teorema S-m-n, esiste s calcolabile tale che $\varphi_{s(x)}(y) = g(x,y)$.

Verifichiamo la riduzione:

•
$$x \in K \Longrightarrow W_{s(x)} = \emptyset \Longrightarrow \exists k. \ k + s(x) \notin W_{s(x)} \Longrightarrow s(x) \notin B$$

•
$$x \notin K \Longrightarrow W_{s(x)} = \mathbb{N} \Longrightarrow \forall k. \ k + s(x) \in \mathbb{N} = W_{s(x)} \Longrightarrow s(x) \in B$$

Quindi $\bar{K} \leq_m B$, e poiché \bar{K} non è r.e., B non è r.e.

 $\bar{\mathbf{B}}$ non è ricorsivamente enumerabile: $\bar{\mathbf{B}} = \{ \mathbf{x} \in \mathbb{N} : \exists \mathbf{k} \in \mathbb{N}. \ \mathbf{k} + \mathbf{x} \notin \mathbf{W}_{\mathbf{x}} \}$

Per dimostrare che \bar{B} non è r.e., osserviamo che se lo fosse, avremmo sia B che \bar{B} non r.e., il che è impossibile per un insieme non vuoto e non totale.

Alternativamente, si può dimostrare direttamente che $K \leq_m \bar{B}$ con una costruzione appropriata.

Conclusione: B non è ricorsivo.

Esercizio 5

Problema: Enunciare il secondo teorema di ricorsione. Utilizzarlo per dimostrare che l'insieme $C = \{x \in \mathbb{N} : \phi_x(x) = x^2\}$ non è saturato.

Soluzione:

Enunciato del Secondo Teorema di Ricorsione: Per ogni funzione totale calcolabile $f : \mathbb{N} \to \mathbb{N}$, esiste $e \in \mathbb{N}$ tale che $\phi_e = \phi f(e)$.

Dimostrazione che C non è saturato:

Definiamo una funzione f come segue. Per ogni x, f(x) è un indice per la funzione:

```
\phi f(x)(y) = \{ x^2 \text{ se } y = x \}
\{ \uparrow \text{ altrimenti} \}
```

Per il secondo teorema di ricorsione, esiste e tale che $\varphi_e = \varphi f(e)$.

Questo significa:

$$\phi_e(y) = \{ e^2 \text{ se } y = e \}$$
 $\{ \uparrow \text{ altrimenti} \}$

Quindi $\varphi_e(e) = e^2$, il che implica $e \in C$.

Ora consideriamo φf(e). Abbiamo:

```
\phi f(e)(y) = \{ e^2 \text{ se } y = e \}
```

Per $f(e) \in C$, dovremmo avere $\varphi f(e)(f(e)) = (f(e))^2$.

Ma $\varphi f(e)(f(e))$ è definito solo se f(e) = e, nel qual caso $\varphi f(e)(f(e)) = e^2$.

Per la condizione $f(e) \in C$, dovremmo avere $e^2 = (f(e))^2$.

Possiamo costruire f in modo che f(e) \neq e (ad esempio, f(e) = e+1 se possibile, mantenendo la funzione totale).

In questo caso, $\varphi f(e)(f(e)) = \varphi f(e)(e+1) \uparrow \neq (e+1)^2$, quindi $f(e) \notin C$.

Ma $\phi_e = \phi f(e)$, quindi abbiamo due indici e e f(e) per la stessa funzione, con e \in C e f(e) \notin C.

Questo viola la proprietà di saturazione, quindi C non è saturato.

□