CS480 Translators

Finishing Lex Analysis
Chap. 3

Tokenize the following C statement:

float limitedSquare(x) float x; {

returns x-squared, but never more than 100% return (x<=-10.0||x>=10.0|?100:x*x,

- Given Σ = {a,b}, provide regular expressions for languages below:
 - all strings beginning and ending in a
 - all strings of a's and b's of even length
 - all strings with an odd number of a's
 - string of zero or more a's followed by same number of b's
- Give the FSA for each (DFA or NFA)...

a la (bla)*a Oregon State University 3

NFA to DFA

OPERATION	DESCRIPTION		
ϵ -closure(s)	Set of NFA states reachable from NFA state s		
	on ϵ -transitions alone.		
ϵ -closure (T)	Set of NFA states reachable from some NFA state s		
	in set T on ϵ -transitions alone; $= \bigcup_{s \text{ in } T} \epsilon$ - $closure(s)$.		
move(T, a)	Set of NFA states to which there is a transition on		
	input symbol a from some state s in T .		

```
while ( there is an unmarked state T in Dstates ) { mark T;
    for ( each input symbol a ) {  U = \epsilon \text{-}closure\big(move(T, a)\big);  if ( U is not in Dstates ) add U as an unmarked state to Dstates;  Dtran[T, a] = U;  }
```


Figure 3.34: NFA N for $(\mathbf{a}|\mathbf{b})^*\mathbf{abb}$

NFA STATE	DFA STATE	a	b
$\{0, 1, 2, 4, 7\}$	A	B	C
$\{1, 2, 3, 4, 6, 7, 8\}$	B	B	D
$\{1, 2, 4, 5, 6, 7\}$	C	B	C
$\{1, 2, 4, 5, 6, 7, 9\}$	D	B	E
$\{1, 2, 4, 5, 6, 7, 10\}$	E	B	C

DFA - (a|b)*abb

Figure 3.36: Result of applying the subset construction to Fig. 3.34

NFA w/ ε-transitions (Make a DFA)

• (aa*|bb*) а а start