Total No. of Questions:8]

P3984		
P 1484	\mathbf{n}_{2}	00
	P 7	474

[5561]-688

SEAT No.:	
[Total	No. of Pages :2

P.T.O.

B.E. (Computer Engineering) MACHINE LEARNING

(2015 Course) (410250) (Semester-II)

			(2015 Course) (110250) (Semester 11)	
Time	: 2	½Hours		[Max. Marks : 70
Instr	ucti	ions to t	the candidates:	
	<i>1</i>)		Q.1 or 2, Q.3 or 4, Q.5 or 6, Q.7 or 8,	
	2)		ne suitable data if necessary.	
	<i>3</i>)		liagrams must be drawn wherever necessary.	
,	<i>4</i>)	rigure	es to the right indicates full marks.	
Q 1)	a)	Witl	h reference to machine learning, explain the cond	cept of adaptive
		mac	chines.	[6]
	b)	Exp	lain the role of machine learning algorithms in follow	ing applications.
		J.		[6]
		(a)	Spam filtering.	
		b)	Natural Language processing.	
	c)	Exp	lain role of machine learning the following commo	on un-supervised
		lear	ning problems:	[8]
		a)	Object segmentation	
		b)	Similarity detection	
		U)		
			OR OR	
Q2)	a)	Exp	lain Data formats for supervised learning problem w	vith example.[6]
	b)	Wha	at is categorical data? What is its significance i	in classification
		prob	olems?	[6]
	c)	Exp	lain the Lasso, and ElasticNet types of regression.	[8]
				S
Q3)	a)	Wha	at problems are faced by SVM when used with rea	al datasets? [3]
	b)	Exp	lain the non-linear SVM with example.	[5]
	c)	Wri	te shorts notes on:	[9]
		i)	Bernoulli naive Bayes.	
		ii)	Bernoulli naive Bayes. multinomial naive Bayes.	
		iii)	Gaussian naive Baves.	

<i>Q4</i>)	a)	Define Bayes Theorem. Elaborate Naive Bayes Classifier working with example. [8]
	b)	What are Linear support vector machines? Explain with example. [4]
	c)	Explain with example the variant of SVM, the Support vector regression. [5]
<i>Q5</i>)	a)	Explain the structure of binary decision tree for a sequential decision process. [8]
	b)	With reference to Clustering, explain the issue of "Optimization of clusters" [5]
	c)	Explain Evaluation methods for clustering algorithms. [4]
0.0	,	OR OR
Q6)	a)	With reference to Meta Classifiers, explain the concepts of Weak and eager learner. [8]
	b) \	Write short notes on: [9]
		a) Adaboost.
		b) Gradient Tree Boosting.
		c) Voting Classifier.
<i>Q</i> 7)	a)	With reference to Hierarchical Clustering, explain the issue of connectivity constraints. [8]
	b)	What are building blocks of deep networks, elaborate. [8]
		OR OF INSTANCE
Q8)	a)	With reference to Deep Learning, Expalin the concept of Deep Architectures? [8]
	b)	Justify with elaboration the following statement: [8]
,		The k-means algorithm is based on the strong initial condition to decide the Number of clusters through the assignment of 'k' initial centroids or means.