Лабораторная работа №3

Задание 1

Синтезировать нерекурсивный симметричный фильтр порядка N=2M (КИХ-фильтр с линейной фазой типа I, с ЧХ (4.1) [1, стр.213] с заданной в таблице вариантов полосой пропускания, аналогично решению примера 4.2 [1, стр.218]. Построить амплитудно-частотную и фазочастотную характеристики. Сравнить полученную АЧХ с идеальной.

Задание 2

Реализовать в MATLAB функцию синтеза фильтра (т.е нахождения коэффициентов $\{b_k\}$ (k=0,..., 2M)), которая обеспечивает наилучшее равномерное приближение заданной AЧX по методу на основе частотной выборки [1, стр.217] и принимает в качестве аргументов:

- Положение полосы пропускания проектируемого фильтра на оси ω
- Положение полосы подавления проектируемого фильтра на оси ω
- Параметр *M*

С помощью реализованной функции синтезировать фильтр того же порядка N=2M, что и в п. 1.

Сравнить полученную AЧX с идеальной и с AЧX, найденной в п. 1. Для решения задачи оптимизации, возникающей при синтезе КИX-фильтра на основе частотной выборки, можно использовать встроенные функции MATLAB, например, fmincon, fminsearch.

Задание 3

Проверить, удовлетворяет ли фильтр, синтезированный в п. 2, требованиям к неравномерности АЧХ в полосах пропускания и подавления при заданных параметрах δ_p и δ_s . Определить минимальный порядок фильтра (N=2M), удовлетворяющего данным требованиям.

Залание 4

С помощью синтезированного в п. 2 фильтра обработать сигналы $x(n) = \sin(\omega n)$ для указанных в таблице вариантов значений ω . Определить задержку α гармонического колебания на выходе фильтра.

Задание 5

С помощью синтезированного в п. 3 фильтра провести фильтрацию тестового изображения - матрицы I из лабораторной работы 1 (согласно варианту). Для этого профильтровать последовательно каждую строку, затем каждый столбец изображения. Воспроизвести полученное изображение J и объяснить полученный результат. Помните о задержке сигнала после фильтрации и учитывайте наличие сдвига в начале изображения. Перед выводом изображения на экран, сдвиньте его на величину задержки.

Примечание

В заданиях 1-4 амплитуду на графиках АЧХ необходимо также выражать в дБ, т.е помимо графиков зависимости $|K(\omega)|$, нужно приводить график $20 \lg |K(\omega)/C|$, где C - коэффициент усиления в полосе пропускания (в рассмотренных выше примерах C=1). Для этого значения АЧХ в точках, где $|K(\omega)| \leq 10^{-7}$, принять равным 10^{-7} .

Варианты заданий

№ варианта	M	Полоса пропускания	Полоса подавления	δ_p	δ_s	ω
1	5	$[0; 0,6\pi]$	$[0,8\pi;\pi]$	0,0125	0,015	$\{0,3\pi;0,5\pi\}$
2	6	$[0; 0,4\pi]$	$[0,5\pi;\pi]$	0,0275	0,020	$\{0,2\pi;0,35\pi\}$
3	7	$[0; 0,55\pi]$	$[0,7\pi;\pi]$	0,010	0,060	$\{0,2\pi;0,45\pi\}$
4	8	$[0; 0,35\pi]$	$[0,5\pi;\pi]$	0,0075	0,030	$\{0,15\pi;0,3\pi\}$

Контрольные вопросы

- 1. Дать определение ЛДФ
- 2. Каковы основные характеристики линейных дискретных систем?
- 3. Показать взаимосвязь передаточной и импульсной характеристик.
- 4. Каков физический смысл АЧХ и ФЧХ?
- 5. Сформулировать задачу синтеза ЛДФ.
- 6. Сформулировать задачу оптимизации, возникающую при синтезе фильтра по методу на основе частотной выборки.

Литература

1. Умняшкин С.В. Основы теории цифровой обработки сигналов: Учебное пособие.