A3C 1 Reinforcement Learning Review

Based on Prof. Oh's Reinforcement Learning Lectures

Suinne Lee

A3C (Asynchronous Advantage Actor-Critic)

- Utilizes multiple networks: global + multiple worker agents.
- The multiple networks share the same architecture. They compute on their own then incorporate everything into the global network.
- Each agent acts in its own state and acquires its own trajectory throughout time. → Multiple instances.
- (Same network, same environment, different instances!)

A3C (Asynchronous Advantage Actor-Critic)

 Parameters are updated on the global network... ASYNCHRONOUSLY!!

Synchronous vs Asynchronous?

- Synchronous update: each agent learns with their own policy. The parameters are updated simultaneously for all agents.
- Asynchronous: They are updated individually at the end of each agent's minibatch gradient descent

A3C In a Nutshell

- Multiple networks (namely global and worker networks) with its own copy of the environment (each other actor-critic networks)
- Asynchronous update

A3C - Advantages

- No need for experience replay (the multiple agent system reduces overall temporal correlation)
- Recall: actor policy, critic value function.
 - We can use V(s), Q(s,a) and A(s,a) for the value function!
- In order to evaluate the advantage we need two networks: Q(s,a) and V(s).
- But we instead use n-step return G_t^n in place of Q. (Doesn't require a network, it is automatically computed from the trajectory)
- $A(s,a) \approx G_t^n V(s)$

$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a]$$

To estimate $q_{\pi}(s, a)$, at first/every time-step t that the state s was visited and the action a was selected in an episode,

- increment count: $n(s, a) \leftarrow n(s, a) + 1$ (for all episodes experienced)
- increment total return: $S(s, a) \leftarrow S(s, a) + G_t$
- value of (s, a) is estimated by mean return: $Q(s, a) = \frac{S(s, a)}{n(s, a)}$

A3C - Advantages

Out of the two very important DRL algorithms,
 A3C also works with a continuous action space

	DQN	A3C
state space	disc/conti	disc/conti
action	disc	disc/conti

- Also.... is fast.
- Runs on a CPU (doesn't need a GPU)
- On-policy RL is possible.

On-Policy: target policy = behavior policy

Off-Policy: target policy $\pi \neq$ behavior policy μ

A3C – Advantages in a nutshell

- Less temporal correlation (no need for experience replay)
- Using G-V for advantage allows us to perform with only one network for V!
- Works for a continous action space
- Fast, efficient

A3C – how does it work?

Worker networks accululate gradients and then update (asynchronously)

A3C – how does it work?

Actor parameter θ and critic parameter ϕ

A3C – how does it work?

• During t_{max} steps, each agent computes an accumulated gradient (in its own process) and finally updates the shared parameters.

Agent Actor: $\Delta \theta \leftarrow \Delta \theta + (G_t^{(n)} - V_{\phi'}(s_t)) \nabla_{\theta'} \log \pi_{\theta'}(a_t | s_t)$

Agent Critic: $\Delta \phi \leftarrow \Delta \phi - (G_t^{(n)} - V_{\phi'}(s_t)) \nabla_{\phi'} V_{\phi'}(s_t)$

Global network: $\theta \leftarrow \theta + \alpha \Delta \theta$ and $\phi \leftarrow \phi - \beta \Delta \phi$

A3C – how does it work?

