

Erinnerung

Zufallsexperiment Datenerhebungsprozess mit nicht vorhersagbarem Ausgang

Ergebnis ω Elementarer Ausgang eines Zufallsexperiments

Grundraum Ω Menge aller möglichen Ergebnisse

 $\Omega = \{\omega \mid \omega \text{ ist Ergebnis des Zufallsexperiments}\}$

Zufallsvariable

Eine Abbildung, die jedem Ergebnis eines Zufallsexperiments eine reelle Zahl zuordnet, wird **Zufallsvariable** genannt. Ein konkreter Wert $x = X(\omega)$ heißt **Realisation** der Zufallsvariable X.

$$X: \Omega \rightarrow \Re$$

$$\omega \mapsto X(\omega)$$

Zufallsvariable

Eine Abbildung, die jedem Ergebnis eines Zufallsexperiments eine reelle Zahl zuordnet, wird **Zufallsvariable** genannt. Ein konkreter Wert $x = X(\omega)$ heißt **Realisation** der Zufallsvariable X.

$$X: \Omega \rightarrow \Re$$
 $\omega \mapsto X(\omega)$

Beispiel Würfelwurf

Zufallsvariable Augenzahl: $X_1(\omega) = \omega$

Zufallsvariable

Eine Abbildung, die jedem Ergebnis eines Zufallsexperiments eine reelle Zahl zuordnet, wird **Zufallsvariable** genannt. Ein konkreter Wert $x = X(\omega)$ heißt **Realisation** der Zufallsvariable X.

$$X: \Omega \rightarrow \Re$$
 $\omega \mapsto X(\omega)$

Beispiel Würfelwurf

Zufallsvariable Augenzahl: $X_1(\omega) = \omega$

Zufallsvariable

Eine Abbildung, die jedem Ergebnis eines Zufallsexperiments eine reelle Zahl zuordnet, wird **Zufallsvariable** genannt. Ein konkreter Wert $x = X(\omega)$ heißt **Realisation** der Zufallsvariable X.

$$X: \Omega \rightarrow \Re$$
 $\omega \mapsto X(\omega)$

Beispiel zweifacher Münzwurf: ω_i = 1, falls i-ter Wurf Kopf, ω_i = 0, sonst Zufallsvariable Anzahl Kopf: $X([\omega_1, \omega_2]) = \omega_1 + \omega_2$

Zufallsvariable

Eine Abbildung, die jedem Ergebnis eines Zufallsexperiments eine reelle Zahl zuordnet, wird **Zufallsvariable** genannt. Ein konkreter Wert $x = X(\omega)$ heißt **Realisation** der Zufallsvariable X.

$$X: \Omega \rightarrow \Re$$

$$\omega \mapsto X(\omega)$$

Beispiel Mausaktivität: $\omega(t) = [x(t), y(t), c(t)]$ ZV Distanz zwischen ersten 2 Mausclicks

$$X(\omega) = \sqrt{[x(t_2) - x(t_1)]^2 + [y(t_2) - y(t_1)]^2}$$

$$t_1 = \min(t|c(t) > 0), t_2 = \min(t|c(t) > 0, t > t_1)$$

Verteilung eindimensionaler Zufallsvariablen

Die durch die Zufallsvariable definierte Abbildung von beliebigem Grundraum Ω auf die reellen Zahlen erlaubt die Zuordnung von Wahrscheinlichkeiten zu Teilmengen von \Re .

Verteilung eindimensionaler Zufallsvariablen

Die Wahrscheinlichkeitsverteilung oder kurz Verteilung einer Zufallsvariablen X ist definiert durch

$$P^{X}(B) = P(X \in B) = P(\{\omega \in \Omega \mid X(\omega) \in B\}), B \subseteq \Re$$

Diese Verteilung ist eindeutig definiert, wenn $P^{X}(B_{x})$ für jedes Intervall der Form $B_{x} = (-\infty, x]$ bekannt ist:

$$B = \{x_1^{}\} = \lim_{\epsilon \downarrow 0} \ (\{B_{x_1} \setminus B_{x_1 - \epsilon}^{}\}) \quad \Rightarrow \quad P^X(B) = \lim_{\epsilon \downarrow 0} \left[P^X(B_{x_1}^{}) - P^X(B_{x_1 - \epsilon}^{})\right] \text{, da } B_{x_1 - \epsilon} \subset B_{x_1}$$

Verteilung eindimensionaler Zufallsvariablen

Die Wahrscheinlichkeitsverteilung oder kurz Verteilung einer Zufallsvariablen X ist definiert durch

$$P^{X}(B) = P(X \in B) = P(\{\omega \in \Omega \mid X(\omega) \in B\}), B \subseteq \Re$$

Diese Verteilung ist eindeutig definiert, wenn $P^{X}(B_{x})$ für jedes Intervall der Form $B_{x} = (-\infty, x]$ bekannt ist:

$$\begin{bmatrix}
B = \{x_1\} \\
\end{bmatrix} = \lim_{\epsilon \downarrow 0} (\{B_{x_1} \setminus B_{x_1 - \epsilon}\}) \implies P^{X}(B) = \lim_{\epsilon \downarrow 0} [P^{X}(B_{x_1}) - P^{X}(B_{x_1 - \epsilon})], \text{ da } B_{x_1 - \epsilon} \subset B_{x_1}$$

$$x_1 \neq ... \neq x_k \colon \begin{bmatrix}
B = \{x_1, ..., x_k\} \\
\end{bmatrix} = \bigcup_{i=1}^{k} \lim_{\epsilon \downarrow 0} (\{B_{x_i} \setminus B_{x_i - \epsilon}\}) \implies P^{X}(B) = \sum_{i=1}^{k} \lim_{\epsilon \downarrow 0} [P^{X}(B_{x_i}) - P^{X}(B_{x_i - \epsilon})]$$

Verteilung eindimensionaler Zufallsvariablen

Die Wahrscheinlichkeitsverteilung oder kurz Verteilung einer Zufallsvariablen X ist definiert durch

$$P^{X}(B) = P(X \in B) = P(\{\omega \in \Omega \mid X(\omega) \in B\}), B \subseteq \Re$$

Diese Verteilung ist eindeutig definiert, wenn $P^{X}(B_{x})$ für jedes Intervall der Form $B_{x} = (-\infty, x]$ bekannt ist:

$$x_1 < x_2 : B = (x_1, x_2] = B_{x_2} \setminus B_{x_1} \Rightarrow P^{X}(B) = P^{X}(B_{x_2}) - P^{X}(B_{x_1})$$
, da $B_{x_1} \subset B_{x_2}$

Verteilung eindimensionaler Zufallsvariablen

Die Wahrscheinlichkeitsverteilung oder kurz Verteilung einer Zufallsvariablen X ist definiert durch

$$P^{X}(B) = P(X \in B) = P(\{\omega \in \Omega \mid X(\omega) \in B\}), B \subseteq \Re$$

Diese Verteilung ist eindeutig definiert, wenn $P^{X}(B_{x})$ für jedes Intervall der Form $B_{x} = (-\infty, x]$ bekannt ist:

$$B = \{x_1\} = \lim_{\epsilon \downarrow 0} (\{B_{x_1} \setminus B_{x_1 - \epsilon}\}) \implies P^{X}(B) = \lim_{\epsilon \downarrow 0} [P^{X}(B_{x_1}) - P^{X}(B_{x_1 - \epsilon})], \text{ da } B_{x_1 - \epsilon} \subset B_{x_1}$$

$$x_1 \neq ... \neq x_k \colon B = \{x_1, ..., x_k\} = \bigcup_{i=1}^k \lim_{\epsilon \downarrow 0} (\{B_{x_i} \setminus B_{x_i - \epsilon}\}) \implies P^{X}(B) = \sum_{i=1}^k \lim_{\epsilon \downarrow 0} [P^{X}(B_{x_i}) - P^{X}(B_{x_i - \epsilon})]$$

$$x_1 < x_2 : B = (x_1, x_2) = B_{x_2} \setminus B_{x_1} \implies P^X(B) = P^X(B_{x_2}) - P^X(B_{x_1}), da B_{x_1} \subset B_{x_2}$$

...

Beliebige Ereignisse lassen sich dann aus den halboffenen Intervallen durch Schnitte und Vereinigungen konstruieren.

Verteilung eindimensionaler Zufallsvariablen

Die Funktion $F = F^X : \Re \rightarrow [0,1]$ mit

$$F(x) = P^{X}((-\infty,x]) = P(X \le x) = P(\{\omega \in \Omega \mid X(\omega) \le x\}), x \in \Re,$$

wird Verteilungsfunktion von X genannt.

Die Entsprechung der Verteilungsfunktion in der deskriptiven Statistik ist die empirische Verteilungsfunktion, bei der an die Stelle von Wahrscheinlichkeiten kumulierte relative Häufigkeiten treten.

$$\begin{split} F_N(x) &= \begin{cases} & 0 & \text{falls} \quad x < x(1) \\ s_j &= \frac{\#\{x_n \mid x_n \le x(j)\}}{N} & \text{mit } j = \max\{\tilde{j} \mid x(\tilde{j}) \le x\} & \text{falls} \quad x(1) \le x \\ &= \frac{\#\{x_n \mid x_n \le x\}}{N} \end{cases} \end{split}$$

Verteilung eindimensionaler Zufallsvariablen

$$F = F^X : \mathfrak{R} \rightarrow [0,1] \text{ mit } F(x) = P^X((-\infty,x]) = P(X \le x) = P(\{\omega \in \Omega \mid X(\omega) \le x\}), x \in \mathfrak{R},$$

Eigenschaften der Verteilungsfunktion

(A)
$$\lim_{x\to -\infty} F(x) = 0$$
, $\lim_{x\to +\infty} F(x) = 1$

Beweis

$$\begin{split} \lim_{x \to -\infty} F(x) &= \lim_{x \to -\infty} P(\{\omega \in \Omega \, | \, X(\omega \,) \in (-\infty, x] \cap \Re \}) = P(\{\omega \in \Omega \, | \, X(\omega \,) \in \{-\infty\} \cap \Re \}) \\ &= P(\{\omega \in \Omega \, | \, X(\omega \,) = \varnothing \}) \, = P(\varnothing) = 0 \\ & * \, \left[\omega \in \Omega \ \, \Rightarrow \, X(\omega \,) \in \Re \, \right] \ \, \Leftrightarrow \ \, \left[X(\omega \,) \not \in \Re \, \Rightarrow \omega \not \in \Omega \, \right] \end{split}$$

$$\lim_{x\to\infty} F(x) = \lim_{x\to\infty} P(\{\omega\in\Omega\,|\,X(\omega\,)\in(\,-\infty,x]\cap\Re\}) = P(\{\omega\in\Omega\,|\,X(\omega\,)\in\Re\}) = P(\Omega\,) = 1$$

Verteilung eindimensionaler Zufallsvariablen

$$F = F^{X} : \Re \rightarrow [0,1] \text{ mit } F(x) = P^{X}((-\infty,x]) = P(X \le x) = P(\{\omega \in \Omega \mid X(\omega) \le x\}), x \in \Re,$$

Eigenschaften der Verteilungsfunktion

(A)
$$\lim_{x \to -\infty} F(x) = 0$$
 , $\lim_{x \to +\infty} F(x) = 1$

(B)
$$x < y \implies F(x) \le F(y)$$

$$F(x) = P(A) \text{ mit } A = \{\omega \in \Omega \mid X(\omega) \le x\}$$

 $F(y) = P(B) \text{ mit } B = \{\omega \in \Omega \mid X(\omega) \le y\}$

$$X < y \implies A \subseteq B \implies P(A) \le P(B) \iff F(x) \le F(y)$$

Verteilung eindimensionaler Zufallsvariablen

$$F = F^{X} : \Re \rightarrow [0,1] \text{ mit } F(x) = P^{X}((-\infty,x]) = P(X \le x) = P(\{\omega \in \Omega \mid X(\omega) \le x\}), x \in \Re,$$

Eigenschaften der Verteilungsfunktion

(A)
$$\lim_{x \to -\infty} F(x) = 0$$
, $\lim_{x \to +\infty} F(x) = 1$

(C)
$$\lim_{x \downarrow z} F(x) = F(z)$$

(B)
$$x < y \implies F(x) \le F(y)$$

Beweis: Setze
$$A_n = \{\omega \in \Omega \mid X(\omega) \in (-\infty, z + 1/n]\}, A_0 = \Omega$$

$$\Rightarrow A = \bigcap_{n=1}^{\infty} A_n = \{\omega \in \Omega \mid X(\omega) \in (-\infty,z]\}, A_n \subset A_{n-1}, A_{n-1}^c \subset A_n^c, n = 1,2,...$$

$$\boxed{F(z)} = P(A) = P\left(\bigcap_{n=1}^{\infty} A_n\right) = 1 - P\left(\bigcup_{n=1}^{\infty} A_n^{C}\right) = 1 - \sum_{n=1}^{\infty} P(A_n^{C} \setminus A_{n-1}^{C})$$

$$= 1-\lim_{N\uparrow\infty}\sum_{n=1}^{N}P(A_{n}^{C}\setminus A_{n-1}^{C}) = 1-\lim_{N\uparrow\infty}P(A_{N}^{C}) = \lim_{N\uparrow\infty}P(A_{N}) = \left[\lim_{x\downarrow z}F(x)\right]$$

Verteilung eindimensionaler Zufallsvariablen

$$F = F^{X} : \Re \rightarrow [0,1] \text{ mit } F(x) = P^{X}((-\infty,x]) = P(X \le x) = P(\{\omega \in \Omega \mid X(\omega) \le x\}), x \in \Re,$$

Eigenschaften der Verteilungsfunktion

(A)
$$\lim_{x \to -\infty} F(x) = 0$$
, $\lim_{x \to +\infty} F(x) = 1$

(C)
$$\lim_{x\downarrow z} F(x) = F(z)$$

(B)
$$x < y \implies F(x) \le F(y)$$

(C)
$$\lim_{x \downarrow z} F(x) = F(z)$$

(D) $P(a < X \le b) = F(b) - F(a)$

Beweis Setze $A = \{\omega \in \Omega \mid X(\omega) \in (-\infty, a]\}$ und $B = \{\omega \in \Omega \mid X(\omega) \in (-\infty, b]\}$

$$\Rightarrow P(a < X \le b) = P(\{\omega \in \Omega \mid X(\omega) \in (a,b]\}) = P(B \setminus A) = P(B) - P(A)$$
$$= P(X \le b) - P(X \le a) = F(b) - F(a)$$

Verteilung eindimensionaler Zufallsvariablen

$$F = F^X : \mathfrak{R} \rightarrow [0,1] \text{ mit } F(x) = P^X((-\infty,x]) = P(X \le x) = P(\{\omega \in \Omega \mid X(\omega) \le x\}), x \in \mathfrak{R},$$

Eigenschaften der Verteilungsfunktion

(A)
$$\lim_{x\to -\infty} F(x) = 0$$
, $\lim_{x\to +\infty} F(x) = 1$

(C)
$$\lim_{x\downarrow z} F(x) = F(z)$$

(B)
$$x < y \implies F(x) \le F(y)$$

(D)
$$P(a < X \le b) = F(b) - F(a)$$

(E)
$$P(X > a) = 1 - F(a)$$

Beweis

Setze
$$A = \{ \omega \in \Omega \mid X(\omega) \le a \} \Rightarrow A^{c} = \{ \omega \in \Omega \mid X(\omega) > a \}$$

$$\Rightarrow P(X > a) = P(A^{c}) = 1 - P(A) = 1 - F(a)$$

Verteilung eindimensionaler Zufallsvariablen

$$\Omega = \{\omega_1, \dots, \omega_n\} \implies X \in \{x_1, \dots, x_k\} \text{ mit } -\infty < x_1 < \dots < x_k < \infty, k \le n$$

$$F = F^X : \mathfrak{R} \rightarrow [0,1] \text{ mit } F(x) = P^X((-\infty,x]) = P(X \le x) = P(\{\omega \in \Omega \mid X(\omega) \le x\}), x \in \mathfrak{R}$$

Verteilung eindimensionaler Zufallsvariablen

$$\Omega = \{\omega_1, ..., \omega_n\} \implies X \in \{x_1, ..., x_k\} \text{ mit } -\infty < x_1 < ... < x_k < \infty, k \le n$$

(A)
$$\lim_{x\to-\infty} F(x) = 0$$
, $\lim_{x\to+\infty} F(x) = 1$

$$F(x) = P(A_x) \text{ mit } A_x = \{\omega \in \Omega \mid X(\omega) \in (-\infty, x] \cap \{x_1, \dots, x_k\}\}$$

$$x < x_1 \implies A_x = \emptyset \implies P(A_x) = 0$$

 $x \ge x_k \implies A_x = \Omega \implies P(A_x) = 1$

Verteilung eindimensionaler Zufallsvariablen

$$\Omega = \{\omega_1, \dots, \omega_n\} \implies X \in \{x_1, \dots, x_k\} \text{ mit } -\infty < x_1 < \dots < x_k < \infty, k \le n$$

(C)
$$\lim_{x\downarrow z} F(x) = F(z)$$

$$F(x) = P(A_x) \text{ mit } A_x = \{\omega \in \Omega \mid X(\omega) \in (-\infty, x] \cap \{x_1, ..., x_k\}\}\$$

$$\lim_{x \downarrow z} F(x) = F(z)$$

$$i = 1,..., n-1: x_i \le x < x_{i+1} \implies A_x = \{\omega \in \Omega \mid X(\omega) \in \{x_1,...,x_i\}\}$$

$$\implies P(A_x) = F(x_i)$$

Verteilung eindimensionaler Zufallsvariablen

$$\Omega = \{\omega_1, ..., \omega_n\} \implies X \in \{x_1, ..., x_k\} \text{ mit } -\infty < x_1 < ... < x_k < \infty, k \le n$$

(D)
$$P(a < X \le b) = F(b) - F(a)$$

$$A_b \setminus A_a = \{\omega \in \Omega \mid X(\omega) \in \{x_1, ..., x_k\}, a < X(\omega) \le b\}$$

$$P(a < X \leq b) = P(A_b \setminus A_a) = F(b) - F(a)$$

Verteilung eindimensionaler Zufallsvariablen

$$\Omega = \{\omega_1, \dots, \omega_n\} \implies X \in \{x_1, \dots, x_k\} \text{ mit } -\infty < x_1 < \dots < x_k < \infty, k \le n$$

(D)
$$i = 1,...,n$$
: $P(x_{i-1} < X \le x_i)$
 $(x_0 = -\infty)$

$$\mathsf{A}_{\mathsf{x}_{\mathsf{i}}} \setminus \mathsf{A}_{\mathsf{x}_{\mathsf{i},\mathsf{1}}} = \{ \omega \in \Omega \mid \mathsf{X}(\omega) \in \{\mathsf{x}_{\mathsf{i}}\} \}$$

$$P(X_{i-1} < X \le X_i) = P(A_{x_i} \setminus A_{x_{i-1}}) = P(X = x_i) = p_i$$

Verteilung eindimensionaler Zufallsvariablen

$$\Omega = \{\omega_1, \dots, \omega_n\} \implies X \in \{x_1, \dots, x_k\} \text{ mit } -\infty < x_1 < \dots < x_k < \infty, k \le n$$

Verteilung eindimensionaler Zufallsvariablen

Spezialfall diskrete Verteilungsfunktion (Ω abzählbar)

$$\Omega = \{\omega_1, \dots, \omega_n\} \implies X \in \{x_1, \dots, x_k\} \text{ mit } -\infty < x_1 < \dots < x_k < \infty, k \le n$$

Die Funktion p: $\Re \rightarrow [0,1]$ mit p(x) = P(X = x) heißt **Zähldichte von X**

Verteilung eindimensionaler Zufallsvariablen

Spezialfall diskrete Verteilungsfunktion (Ω abzählbar)

$$\Omega = \{\omega_1, \dots, \omega_n\} \implies X \in \{x_1, \dots, x_k\} \text{ mit } -\infty < x_1 < \dots < x_k < \infty, k \le n$$

Die Funktion p: $\Re \rightarrow [0,1]$ mit p(x) = P(X = x) heißt **Zähldichte von X**

Verteilung eindimensionaler Zufallsvariablen, diskrete Verteilungsfunktion

Beispiel: Anzahl Kopf beim 5-fachen Münzwurf

Zähldichte

X	0	1	2	3	4	5
A _x = {ω∈Ω X(ω)=x}						
p(x)=P(X=x) = $ A_x / \Omega $	1/32	5/32	10/32	10/32	5/32	1/32

Verteilung eindimensionaler Zufallsvariablen, diskrete Verteilungsfunktion

Beispiel: Anzahl Kopf beim **5-fachen Münzwurf**

Zähldichte

X	0	1	2	3	4	5
p(x)=P(X=x)	1/32	5/32	10/32	10/32	5/32	1/32

Verteilung eindimensionaler Zufallsvariablen, diskrete Verteilungsfunktion

Beispiel: Anzahl Kopf beim 5-fachen Münzwurf

Zähldichte und Verteilungsfunktion

	X	0	1	2	3	4	5	
	p(x)=P(X=x)	1/32	5/32 7 = 4 +	10/32	10/32	5/32 = 1	1/32 = V	_
F(x) = P	$P(X \le x) = \sum_{i=0}^{x} p(i)$	1/32	6/32	16/32	26/32	31/32	32/32	_

Verteilung eindimensionaler Zufallsvariablen

$$\omega \in \Omega$$
: $X(\omega) \in B$, $B \subseteq \Re$

$$F = F^X : \mathfrak{R} \rightarrow [0,1] \text{ mit } F(x) = P^X((-\infty,x]) = P(X \le x) = P(\{\omega \in \Omega \mid X(\omega) \le x\}), \ x \in \mathfrak{R}$$

Verteilung eindimensionaler Zufallsvariablen

$$\omega \in \Omega$$
: $X(\omega) \in B$, $B \subseteq \Re$

$$F = F^{X}: \mathfrak{R} \rightarrow [0,1] \text{ mit } F(x) = P^{X}((-\infty,x]) = P(X \leq x) = P(\{\omega \in \Omega \mid X(\omega) \leq x\}), \ x \in \mathfrak{R}$$

(C)
$$\lim_{x \downarrow z} F(x) = F(z) = \lim_{x \uparrow z} F(x)$$

Verteilung eindimensionaler Zufallsvariablen

$$\omega \in \Omega$$
: $X(\omega) \in B$, $B \subseteq \Re$

$$F = F^X : \mathfrak{R} \rightarrow [0,1] \text{ mit } F(x) = P^X((-\infty,x]) = P(X \le x) = P(\{\omega \in \Omega \mid X(\omega) \le x\}), \ x \in \mathfrak{R}$$

(C)
$$\lim_{x \downarrow z} F(x) = F(z) = \lim_{x \uparrow z} F(x)$$

(D) $P(a < X \le b) = F(b) - F(a)$

Verteilung eindimensionaler Zufallsvariablen

$$\omega \in \Omega$$
: $X(\omega) \in B$, $B \subseteq \Re$

$$F = F^X : \mathfrak{R} \rightarrow [0,1] \text{ mit } F(x) = P^X((-\infty,x]) = P(X \le x) = P(\{\omega \in \Omega \mid X(\omega) \le x\}), x \in \mathfrak{R}$$

(C)
$$\lim_{x\downarrow z} F(x) = F(z) = \lim_{x\uparrow z} F(x)$$

(D)
$$P(a < X \le b) = F(b) - F(a)$$

$$P(X = b) = \lim_{a \uparrow b} P(a < X \le b)$$

=
$$F(b) - \lim_{a \uparrow b} F(a) = F(b) - F(b) = 0$$

Verteilung eindimensionaler Zufallsvariablen

$$\omega \in \Omega$$
: $X(\omega) \in B$, $B \subseteq \Re$

$$F = F^X : \mathfrak{R} \rightarrow [0,1] \text{ mit } F(x) = P^X((-\infty,x]) = P(X \le x) = P(\{\omega \in \Omega \mid X(\omega) \le x\}), x \in \mathfrak{R}$$

(C)
$$\lim_{x\downarrow z} F(x) = F(z) = \lim_{x\uparrow z} F(x)$$

(D)
$$P(a < X \le b) = F(b) - F(a)$$

(F)
$$P(X = x) = 0, x \in \Re$$

Verteilung eindimensionaler Zufallsvariablen

Spezialfall stetige Verteilungsfunktion (Ω überabzählbar)

$$\omega \in \Omega$$
: $X(\omega) \in B$, $B \subseteq \Re$

$$F = F^X : \mathfrak{R} \rightarrow [0,1] \text{ mit } F(x) = P^X((-\infty,x]) = P(X \le x) = P(\{\omega \in \Omega \mid X(\omega) \le x\}), x \in \mathfrak{R}$$

$$\lim_{a \to b} P(a < X \le b) = 0$$

$$\lim_{c \downarrow 0} \frac{F(x+c) - F(x)}{c} = F'(x) = f(x)$$

Die Funktion f(x) wird **Dichtefunktion** bzw. **Dichte** von X genannt.

Sie beschreibt die Steigung (Grad der Verdichtung) der Verteilung X

Verteilung eindimensionaler Zufallsvariablen

$$F'(x) = f(x), F(x) = \int_{-\infty}^{x} f(t)dt, x \in \Re, \int_{-\infty}^{\infty} f(t)dt = 1$$

$$P(X \le z) = F(z) = \int_{-\infty}^{z} f(t) dt$$

Verteilung eindimensionaler Zufallsvariablen

$$F'(x) = f(x), F(x) = \int_{-\infty}^{x} f(t)dt, x \in \Re, \int_{-\infty}^{\infty} f(t)dt = 1$$

$$P(a < X \le b) = F(b) - F(a) = \int_{a}^{b} f(t) dt$$

Verteilung eindimensionaler Zufallsvariablen, stetige Verteilungsfunktion

Beispiel: Mausaktivität, exakter Zeitpunkt T des ersten Mausclicks

Annahme: T fällt in jedes Intervall gleicher Länge c zwischen t_{min} und t_{max} mit derselben Wahrscheinlichkeit

$$P(T < t_{min}) = 0 = F(t_{min}) \Longrightarrow F(t) = 0, t \le t_{min}$$

$$P(T > t_{max}) = 0 = 1 - F(t_{max}) \implies F(t) = 1, t \ge t_{max}$$

Verteilung eindimensionaler Zufallsvariablen, stetige Verteilungsfunktion

Beispiel: Mausaktivität, exakter Zeitpunkt T des ersten Mausclicks

Annahme: T fällt in jedes Intervall gleicher Länge c zwischen t_{min} und t_{max} mit derselben Wahrscheinlichkeit

$$F(t) = 0, t \le t_{min}$$

$$F(t) = \frac{t - t_{min}}{t_{max} - t_{min}} , t_{min} < t < t_{max}$$

$$F(t) = 1, t \ge t_{max}$$

Wahrscheinlichkeitsdichte

$$t \le t_{min}$$
: $F'(t) = f(t) = \partial 0/\partial t = 0$

$$t_{min} < t < t_{max}$$
:
$$F'(t) = f(t) = \partial \left(\frac{t - t_{min}}{t_{max} - t_{min}}\right) / \partial t = \frac{1}{t_{max} - t_{min}}$$

$$t>t_{max}$$
: $F'(t) = f(t) = \partial 1/\partial t = 0$

Verteilung eindimensionaler Zufallsvariablen, stetige Verteilungsfunktion

Beispiel: Mausaktivität, exakter Zeitpunkt T des ersten Mausclicks

Annahme: T fällt in jedes Intervall gleicher Länge c zwischen t_{min} und t_{max} mit derselben Wahrscheinlichkeit

$$F(t) = 0, t \le t_{min}$$

$$F(t) = 1, t \ge t_{max}$$

$$F(t) = \frac{t - t_{min}}{t_{max} - t_{min}}, t_{min} < t < t_{max}$$

Verteilung mehrdimensionaler Zufallsvariablen

Die **Wahrscheinlichkeitsverteilung** oder kurz **Verteilung** einer zweidimensionalen Zufallsvariablen (X,Y) ist definiert durch

$$P^{(X,Y)}(B) = P((X,Y) \in B) = P(\{\omega \in \Omega \mid (X(\omega), Y(\omega)) \in B\}), B \subseteq \Re^2$$

Die Funktion $F = F^{(X,Y)} : \Re^2 \rightarrow [0,1]$ mit

$$F(x,y) = P^{(X,Y)}((-\infty,x] \times (-\infty,y]) = P(X \le x, Y \le y) = P(\{\omega \in \Omega \mid X(\omega) \le x, Y(\omega) \le y\}), \ x,y \in \Re,$$

wird **Verteilungsfunktion** von (X,Y) genannt.

Verteilung mehrdimensionaler Zufallsvariablen

$$P^{(X,Y)}(B) = P((X,Y) \in B) = P(\{\omega \in \Omega \mid (X(\omega), Y(\omega)) \in B\}), B \subseteq \Re^2$$

$$\mathsf{F}(\mathsf{x},\mathsf{y}) = \mathsf{P}^{(\mathsf{X},\mathsf{Y})}((-\infty,\mathsf{x}] \times (-\infty,\mathsf{y}]) = \mathsf{P}(\mathsf{X} \leq \mathsf{x},\;\mathsf{Y} \leq \mathsf{y}) = \mathsf{P}(\{\omega \in \Omega \,|\, \mathsf{X}(\omega) \leq \mathsf{x},\;\mathsf{Y}(\omega) \leq \mathsf{y}\}),\;\;\mathsf{x},\mathsf{y} \in \mathfrak{R}$$

Eigenschaften

1.
$$\lim_{x\to -\infty} F(x,y) = \lim_{y\to -\infty} F(x,y) = \lim_{x,y\to -\infty} F(x,y) = 0$$

Beweis

$$\begin{split} A &= \{\omega \in \Omega \,|\, X(\omega \,) \leq x,\, Y(\omega \,) \leq y\} = A_{_X} \, \cap A_{_Y} \ \ \text{mit} \ A_{_X} &= \{\omega \in \Omega \,|\, X(\omega \,) \leq x\} \\ A_{_Y} &= \{\omega \in \Omega \,|\, Y(\omega \,) \leq y\} \end{split}$$

$$F(x,y) = P(A) = P(A_x \cap A_y) = 1 - P(A_x^c \cup A_y^c)$$

$$\lim_{x\to-\infty} F(x,y) = 1 - P(A_{-\infty}^{c} \cup A_{y}^{c}) = 1 - P(\Omega \cup A_{y}^{c}) = 1 - [P(\Omega) + P(A_{y}^{c}) - P(A_{y}^{c})] = 1 - 1 = 0$$

Verteilung mehrdimensionaler Zufallsvariablen

$$P^{(X,Y)}(B) = P((X,Y) \in B) = P(\{\omega \in \Omega \mid (X(\omega), Y(\omega)) \in B\}), B \subseteq \Re^2$$

$$\mathsf{F}(\mathsf{x},\mathsf{y}) = \mathsf{P}^{(\mathsf{X},\mathsf{Y})}((-\infty,\mathsf{x}] \times (-\infty,\mathsf{y}]) = \mathsf{P}(\mathsf{X} \leq \mathsf{x},\;\mathsf{Y} \leq \mathsf{y}) = \mathsf{P}(\{\omega \in \Omega \,|\, \mathsf{X}(\omega) \leq \mathsf{x},\;\mathsf{Y}(\omega) \leq \mathsf{y}\}),\;\;\mathsf{x},\mathsf{y} \in \mathfrak{R}$$

Eigenschaften

1.
$$\lim_{x \to -\infty} F(x,y) = \lim_{y \to -\infty} F(x,y) = \lim_{x,y \to -\infty} F(x,y) = 0$$
, $\lim_{x,y \to \infty} F(x,y) = 1$

2.
$$\lim_{y\to\infty} F(x,y) = F^{X}(x)$$
, $\lim_{x\to\infty} F(x,y) = F^{Y}(y)$

Beweis

$$\begin{split} A &= \{\omega \in \Omega \,|\, X(\omega \,) \leq x,\, Y(\omega \,) \leq y\} = A_{_X} \, \cap A_{_Y} \ \ \text{mit} \ A_{_X} &= \{\omega \in \Omega \,|\, X(\omega \,) \leq x\} \\ A_{_Y} &= \{\omega \in \Omega \,|\, Y(\omega \,) \leq y\} \end{split}$$

$$F(x,y) = P(A) = P(A_x \cap A_y) = 1 - P(A_x^c \cup A_y^c)$$

$$\lim_{x\to\infty} F(x,y) = 1 - P(A_{\infty}^{c} \cup A_{y}^{c}) = 1 - P(\varnothing \cup A_{y}^{c}) = 1 - [P(A_{y}^{c})] = P(A_{y}) = F^{Y}(y)$$

Verteilung mehrdimensionaler Zufallsvariablen

$$P^{(X,Y)}(B) = P((X,Y) \in B) = P(\{\omega \in \Omega \mid (X(\omega), Y(\omega)) \in B\}), B \subseteq \Re^2$$

$$F(x,y) = P^{(X,Y)}((-\infty,x] \times (-\infty,y]) = P(X \le x, Y \le y) = P(\{\omega \in \Omega \mid X(\omega) \le x, Y(\omega) \le y\}), x,y \in \Re$$

Eigenschaften

1.
$$\lim_{x \to -\infty} F(x,y) = \lim_{y \to -\infty} F(x,y) = \lim_{x,y \to -\infty} F(x,y) = 0$$
, $\lim_{x,y \to \infty} F(x,y) = 1$

2.
$$\lim_{y\to\infty} F(x,y) = F^{x}(x)$$
, $\lim_{x\to\infty} F(x,y) = F^{y}(y)$

Beweis

$$\lim_{x \to \infty} F(x,y) = F^{Y}(y)$$

$$\lim_{x \to \infty} F(x,y) = \lim_{y \to \infty} F^{Y}(y) = 1$$

Beweis für $F^{X}(x)$ analog.

F^X(x) und F^Y(y) heißen Randverteilungen von X und Y

Verteilung mehrdimensionaler Zufallsvariablen

$$P^{(X,Y)}(B) = P((X,Y) \in B) = P(\{\omega \in \Omega \mid (X(\omega), Y(\omega)) \in B\}), B \subseteq \Re^2$$

$$F(x,y) = P^{(X,Y)}((-\infty,x] \times (-\infty,y]) = P(X \le x, Y \le y) = P(\{\omega \in \Omega \mid X(\omega) \le x, Y(\omega) \le y\}), \ x,y \in \Re$$

Eigenschaften

1.
$$\lim_{x \to -\infty} F(x,y) = \lim_{y \to -\infty} F(x,y) = \lim_{x,y \to -\infty} F(x,y) = 0$$
, $\lim_{x,y \to \infty} F(x,y) = 1$

2.
$$\lim_{y\to\infty} F(x,y) = F^X(x)$$
, $\lim_{x\to\infty} F(x,y) = F^Y(y)$

3.
$$x_1 < x_2 \implies F(x_1, y) \le F(x_2, y)$$
, $y_1 < y_2 \implies F(x, y_1) \le F(x, y_2)$

Beweis

$$F(x_i,y) = P(A_i) \text{ mit } A_i = \{\omega \in \Omega \mid X(\omega) \leq x_i, Y(\omega) \leq y\}$$

$$A_1 \subseteq A_2 \Rightarrow P(A_1) \le P(A_2) \Leftrightarrow F(x_1,y) \le F(x_2,y)$$

Beweis für $F(x,y_1)$ analog

$$F(x,y) = P(X \le x, Y \le y), x,y \in \Re$$

$$P(\boxed{x_1} < X \le x_2], \boxed{y_1} < Y \le y_2]) = P(X \le x_2], Y \le y_2]$$

$$P(\boxed{x_1} < X \le x_2], \boxed{y_1} < Y \le y_2]) = P(X \le x_2], Y \le y_2]$$

$$P(\boxed{x_1} < X \le x_2], \boxed{y_1} < Y \le y_2]) = P(X \le x_2], Y \le y_2]$$

$$- P(X \leq X_2, Y \leq Y_1)$$

$$P(X_1 < X \le X_2, Y_1 < Y \le Y_2) = P(X \le X_2, Y \le Y_2)$$

$$- P(X \le X_2, Y \le Y_1)$$

+ P(
$$X \leq x_1$$
 , $Y \leq y_1$

$$= F(x_2, y_2) - F(x_1, y_2) - F(x_2, y_1) + F(x_1, y_1)$$

Verteilung mehrdimensionaler Zufallsvariablen

Spezialfall diskrete Verteilungsfunktion (Ω abzählbar)

$$\Omega = \{\omega_{1}, ..., \omega_{n}\} \implies X \in \{X(\omega_{1}), ..., X(\omega_{n})\} = \{x_{1}, ..., x_{n}\} \quad \text{mit} - \infty < x_{1} \le ... \le x_{2} < \infty$$
$$Y \in \{Y(\omega_{1}), ..., Y(\omega_{n})\} = \{y_{1}, ..., y_{n}\} \quad \text{mit} - \infty < y_{1} \le ... \le y_{2} < \infty$$

Verteilung mehrdimensionaler Zufallsvariablen

Spezialfall diskrete Verteilungsfunktion (Ω abzählbar)

$$\Omega = \{\omega_{1}, ..., \omega_{n}\} \implies X \in \{X(\omega_{1}), ..., X(\omega_{n})\} = \{x_{1}, ..., x_{n}\} \quad mit - \infty < x_{1} \le ... \le x_{2} < \infty$$
$$Y \in \{Y(\omega_{1}), ..., Y(\omega_{n})\} = \{y_{1}, ..., y_{n}\} \quad mit - \infty < y_{1} \le ... \le y_{2} < \infty$$

Die Funktion p: $\Re^2 \rightarrow [0,1]$ mit p(x,y) = P(X = x, Y = y) heißt **Zähldichte von (X,Y)**

Verteilung mehrdimensionaler Zufallsvariablen, diskrete Verteilungsfunktion

Beispiel: **4-facher Münzwurf**, X=Anzahl Kopf nach 4 Würfen, Y=Anzahl Kopf nach 2 Würfen **Zähldichte**

↓ y x→	0	1	2	3	4
0					
1				1999 9199	
2				PPD	₩₩₩

Verteilung mehrdimensionaler Zufallsvariablen, diskrete Verteilungsfunktion

Beispiel: **4-facher Münzwurf**, X=Anzahl Kopf nach 4 Würfen, Y=Anzahl Kopf nach 2 Würfen **Zähldichte**

↓ у х→	0	1	2	3	4
0	1/16	2/16	1/16		
1		2/16	4/16	2/16	
2			1/16	2/16	1/16

Verteilung mehrdimensionaler Zufallsvariablen, diskrete Verteilungsfunktion

Beispiel: **4-facher Münzwurf**, X=Anzahl Kopf nach 4 Würfen, Y=Anzahl Kopf nach 2 Würfen **Zähldichte**

Verteilung mehrdimensionaler Zufallsvariablen

Spezialfall stetige Verteilungsfunktion (Ω überabzählbar)

$$\omega \in \Omega$$
: $(X(\omega), Y(\omega)) \in B$, $B \subset \Re^2$

$$F = F^{XY} : \Re^2 \rightarrow [0,1] \text{ mit } F(x,y) = P(X \le x, Y \le y) = P(\{\omega \in \Omega \mid X(\omega) \le x, Y(\omega) \le y\}), x,y \in \Re$$

Die Funktion f:
$$\Re^2 \rightarrow [0,1]$$
 mit $f(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y}$

heißt die gemeinsame Dichtefunktion von X und Y.

Es gilt:
$$F(x,y) = P(X \le x,Y \le y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(s,t)dtds$$
, $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(s,t)dtds = 1$

Die Randdichten f^X und f^Y von X und Y sind definiert durch

$$f^{x}(x) = \int_{-\infty}^{\infty} f(x,t) dt \text{ und } f^{y}(y) = \int_{-\infty}^{\infty} f(s,y) ds$$

Verteilung mehrdimensionaler Zufallsvariablen

Spezialfall stetige Verteilungsfunktion (Ω überabzählbar)

