The Perceptron

Jiayu Zhou

¹Department of Computer Science and Engineering Michigan State University East Lansing, MI USA

Case Study: Credit Approval

age	32 years
gender	male
salary	40,000
debt	26,000
years in job	1 year
years at home	3 years

Approve for credit?

Case Study: Credit Approval

age	32 years
gender	male
salary	40,000
debt	26,000
years in job	1 year
years at home	3 years

Approve for credit?

- Using salary, debt, years in residence, etc. approve for credit or not
- No magic credit approval formula
- Banks have lots of data
 - customer information: salary, debt, etc.
 - whether or not they defaulted on their credit.

Case Study: Credit Approval

age	32 years
gender	male
salary	40,000
debt	26,000
years in job	1 year
years at home	3 years
	1

Approve for credit?

- Using salary, debt, years in residence, etc. approve for credit or not
- No magic credit approval formula
- Banks have lots of data
 - customer information: salary, debt, etc.
 - whether or not they defaulted on their credit.

A pattern exists. We don't know it. We have data to learn it.

The Key Players

- Salary, debt, years in residence
- Approve credit or not
- ullet True relationship between ${\bf x}$ and y
- Data on customers

- ullet input $\mathbf{x} \in \mathbb{R}^d \equiv \mathcal{X}$
- ullet output $y \in \{-1, +1\} \equiv \mathcal{Y}$
- ullet target function $f:\mathcal{X} o \mathcal{Y}$
- $\bullet \ \mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$

 \mathcal{X}, \mathcal{Y} and \mathcal{D} are *given* by the learning problem; The target f is fixed but unknown

The Key Players

- Salary, debt, years in residence
- Approve credit or not
- ullet True relationship between ${\bf x}$ and y
- Data on customers

- ullet input $\mathbf{x} \in \mathbb{R}^d \equiv \mathcal{X}$
- ullet output $y \in \{-1, +1\} \equiv \mathcal{Y}$
- ullet target function $f:\mathcal{X} o \mathcal{Y}$

 \mathcal{X}, \mathcal{Y} and \mathcal{D} are *given* by the learning problem; The target f is fixed but unknown

Goal: learn the function f from the data \mathcal{D} .

Learning

ullet Start with a set of candidate hypothese ${\mathcal H}$ which you think are likely to represent f.

$$\mathcal{H} = \{h_1, h_2, \ldots, \}$$

is called the hypothesis set or *model*.

- Select a hypothesis g from \mathcal{H} . The way we do this is called a *learning algorithm*.
- Use g for new customers. We hope $g \approx f$.

Jiayu Zhou

 \mathcal{X}, \mathcal{Y} and \mathcal{D} are given by the learning problem;

The target f is **fixed but unknown**

We choose ${\mathcal H}$ and the learning algorithm

Summary of the Learning Setup

• Input vector $\mathbf{x} = [x_1, \dots, x_d]^T$, Give importance weights to the different features and compute a "Credit Score" "Credit Score" $= \sum_{i=1}^d w_i x_i$.

- Input vector $\mathbf{x} = [x_1, \dots, x_d]^T$, Give importance weights to the different features and compute a "Credit Score" "Credit Score" $= \sum_{i=1}^d w_i x_i$.
- Approve credit if the "Credit Score" is acceptable.

Approve credit if
$$\sum_{i=1}^{d} w_i x_i > \text{threshold}, (\text{``Credit score''} \text{ is good})$$

Deny credit if
$$\sum_{i=1}^{d} w_i x_i < \text{threshold}$$
, ("Credit score" is bad)

- Input vector $\mathbf{x} = [x_1, \dots, x_d]^T$, Give importance weights to the different features and compute a "Credit Score" "Credit Score" $= \sum_{i=1}^d w_i x_i$.
- Approve credit if the "Credit Score" is acceptable.

Approve credit if
$$\sum_{i=1}^d w_i x_i > \text{threshold}, (\text{"Credit score" is good})$$

Deny credit if $\sum_{i=1}^d w_i x_i < \text{threshold}, (\text{"Credit score" is bad})$

• How to choose the importance weights w_i ?

 x_i is important \Rightarrow large weight x_i is beneficial for credit \Rightarrow positive weight x_i is detrimental for credit \Rightarrow negative weight

Approve credit if
$$\sum_{i=1}^{d} w_i x_i > \text{threshold}, (\text{"Credit score" is good})$$

Deny credit if $\sum_{i=1}^{d} w_i x_i < \text{threshold}, (\text{"Credit score" is bad})$

can be written formally as

$$h(\mathbf{x}) = \operatorname{sign}\left(\left(\sum_{i=1}^d w_i x_i\right) + w_0\right)$$

The "bias weight" w_0 correspond to the threshold. (How?)

The Perceptron Hypothesis Set

We have defined a Hypothesis set ${\mathcal H}$

$$\mathcal{H} = \left\{ h(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^{d} w_i x_i + w_0\right) = \operatorname{sign}(\mathbf{w}^T \mathbf{x}) \right\}$$

which is uncountably infinite.

The Perceptron Hypothesis Set

We have defined a Hypothesis set ${\cal H}$

$$\mathcal{H} = \left\{ h(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^{d} w_i x_i + w_0\right) = \operatorname{sign}(\mathbf{w}^T \mathbf{x}) \right\}$$

which is uncountably infinite. We have used the "dummy variable":

$$\mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ \dots \\ w_d \end{bmatrix} \in \mathbb{R}^{d+1}, \quad \mathbf{x} = \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_d \end{bmatrix} \in \{1\} \times \mathbb{R}^d$$

This hypothesis set is called the perceptron or linear separator

Jiayu Zhou

Geometry of The Perceptron

• In 2-d space, $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$ defines a line that separates the space.

• In higher dimensional space, this corresponds to a hyperplane.

Geometry of The Perceptron

So many choices...

Which one should we pick?

Use the Data to Pick a Line

- A perceptron fits the data by using a line to separate the +1 from -1 data.
- **Fitting the data**: How to find a hyperplane that separates the data?

How to Learn a Final Hypothesis g from ${\mathcal H}$

- We want to select $g \in \mathcal{H}$ so that $g \approx f$.
- ullet We certainly want $g \approx f$ on the data set \mathcal{D} . Ideally,

$$g(\mathbf{x}_n) = y_n$$

• How do we find such a g in the *infinite* hypothesis set \mathcal{H} , if it exists?

How to Learn a Final Hypothesis g from ${\mathcal H}$

- We want to select $g \in \mathcal{H}$ so that $g \approx f$.
- ullet We certainly want $g \approx f$ on the data set \mathcal{D} . Ideally,

$$g(\mathbf{x}_n) = y_n$$

- How do we find such a g in the *infinite* hypothesis set \mathcal{H} , if it exists?
- Idea! Start with some weight vector and try to improve it.

Jiayu Zhou

A simple iterative method:

- **1** $\mathbf{w}(1) = 0$
- **2** for iteration t = 1, 2, 3, ...
- the weight vector is $\mathbf{w}(t)$
- From $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)$ pick any misclassified sample.
- Solution Call the misclassified example (\mathbf{x}_*, y_*) , i.e.,

$$sign(\mathbf{w}(t)^T\mathbf{x}_*) \neq y_*$$

Output
Update the weight:

$$\mathbf{w}(t+1) = \mathbf{w}(t) + y_* \mathbf{x}_*$$

 $t \leftarrow t + 1$

PLA implements our idea: start at some weights and try to improve: "incremental learning" on a single sample at a time.

- Identify misclassified example (\mathbf{x}_*, y_*) and update $\mathbf{w}(t+1) = \mathbf{w}(t) + y_*\mathbf{x}_*$
- For a positive sample

- Identify misclassified example (\mathbf{x}_*, y_*) and update $\mathbf{w}(t+1) = \mathbf{w}(t) + y_* \mathbf{x}_*$
- For a positive sample

- Identify misclassified example (\mathbf{x}_*, y_*) and update $\mathbf{w}(t+1) = \mathbf{w}(t) + y_* \mathbf{x}_*$
- For a positive sample

- ullet Identify misclassified example (\mathbf{x}_*, y_*) and update $\mathbf{w}(t+1) = \mathbf{w}(t) + y_* \mathbf{x}_*$
- For a negative sample

- Identify misclassified example (\mathbf{x}_*, y_*) and update $\mathbf{w}(t+1) = \mathbf{w}(t) + y_* \mathbf{x}_*$
- For a negative sample

- Identify misclassified example (\mathbf{x}_*, y_*) and update $\mathbf{w}(t+1) = \mathbf{w}(t) + y_* \mathbf{x}_*$
- For a negative sample

- Invented in 1957 by Frank Rosenblatt, funded by ONR.
- The perceptron was intended to be a machine, rather than a program.
- Mark I perceptron was designed for image recognition: 400 photocells, weight updates during learning were performed by electric motors.

"the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence."

— New York Times, 1958

Does PLA Work

Theorem. If the data can be fit by a linear separator, then after some finite number of steps, PLA will find one.

Does PLA Work

Theorem. If the data can be fit by a linear separator, then after some finite number of steps, PLA will find one.

Why does PLA Work

- Identify misclassified example (\mathbf{x}_*, y_*) and update $\mathbf{w}(t+1) = \mathbf{w}(t) + y_* \mathbf{x}_*$
- We can show that the weight update rule above has the nice interpretation that it moves in the direction of classifying x_{*} correctly.
 - Show that $y_* \mathbf{w}(t)^T \mathbf{x}_* < 0$;

Why does PLA Work

- Identify misclassified example (\mathbf{x}_*, y_*) and update $\mathbf{w}(t+1) = \mathbf{w}(t) + y_* \mathbf{x}_*$
- We can show that the weight update rule above has the nice interpretation that it moves in the direction of classifying x_{*} correctly.
 - Show that $y_* \mathbf{w}(t)^T \mathbf{x}_* < 0$;
 - Show that $y_* \mathbf{w}(t+1)^T \mathbf{x}_* > y_* \mathbf{w}(t)^T \mathbf{x}_*$;

Why does PLA Work

- Identify misclassified example (\mathbf{x}_*, y_*) and update $\mathbf{w}(t+1) = \mathbf{w}(t) + y_* \mathbf{x}_*$
- We can show that the weight update rule above has the nice interpretation that it moves in the direction of classifying x_{*} correctly.
 - Show that $y_* \mathbf{w}(t)^T \mathbf{x}_* < 0$;
 - Show that $y_* \mathbf{w}(t+1)^T \mathbf{x}_* > y_* \mathbf{w}(t)^T \mathbf{x}_*$;
 - Move from $\mathbf{w}(t)$ to $\mathbf{w}(t+1)$ is a move 'in the right direction' in terms of classifying \mathbf{x}_*

Issues with PLA

Theorem. If the data can be fit by a linear separator, then after some finite number of steps, PLA will find one.

• Converge after how long?

Issues with PLA

Theorem. If the data can be fit by a linear separator, then after some finite number of steps, PLA will find one.

- Converge after how long?
- What if the data cannot be fit by a linear separator?

Issues with PLA

Theorem. If the data can be fit by a linear separator, then after some finite number of steps, PLA will find one.

- Converge after how long?
- What if the data cannot be fit by a linear separator?

Is it common? The XOR problem.

Converge after how long?

• Assume that there exists a hyperplane \mathbf{w}^* that separates the data, i.e., exists δ , such that for y = +1, $(\mathbf{w}^*)^T \mathbf{x} > \delta$ and for y = -1, $(\mathbf{w}^*)^T \mathbf{x} < -\delta$. Or equivalently,

$$y(\mathbf{w}^*)^T \mathbf{x} > \delta, \forall (\mathbf{x}, y) \in \mathcal{D}$$
 (1)

Jiayu Zhou

Converge after how long?

 Assume that there exists a hyperplane w* that separates the data, i.e., exists δ , such that for $y = +1, (\mathbf{w}^*)^T \mathbf{x} > \delta$ and for y = -1, $(\mathbf{w}^*)^T \mathbf{x} < -\delta$. Or equivalently,

$$y(\mathbf{w}^*)^T \mathbf{x} > \delta, \forall (\mathbf{x}, y) \in \mathcal{D}$$
 (1)

• We only update when we found a misclassified example, i.e., for any updated iteration i, we have $y(i)\mathbf{w}(i)^T\mathbf{x}(i) < 0$

Jiayu Zhou

Converge after how long?

• Assume that there exists a hyperplane \mathbf{w}^* that separates the data, i.e., exists δ , such that for y = +1, $(\mathbf{w}^*)^T \mathbf{x} > \delta$ and for y = -1, $(\mathbf{w}^*)^T \mathbf{x} < -\delta$. Or equivalently,

$$y(\mathbf{w}^*)^T \mathbf{x} > \delta, \forall (\mathbf{x}, y) \in \mathcal{D}$$
 (1)

- We only update when we found a misclassified example, i.e., for any updated iteration i, we have $y(i)\mathbf{w}(i)^T\mathbf{x}(i) < 0$
- Assume our algorithm ends after t iterations, all we need to show is that t is upper bounded.

ullet When start from a zero vector $\mathbf{w}(0) = \mathbf{0}$, then we have

$$\mathbf{w}(t) = y(0)\mathbf{x}(0) + y(1)\mathbf{x}(1) + \dots + y(t-1)\mathbf{x}(t-1)$$

ullet When start from a zero vector $\mathbf{w}(0) = \mathbf{0}$, then we have

$$\mathbf{w}(t) = y(0)\mathbf{x}(0) + y(1)\mathbf{x}(1) + \dots + y(t-1)\mathbf{x}(t-1)$$

It follows that:

$$(\mathbf{w}^*)^T \mathbf{w}(t) = y(0)(\mathbf{w}^*)^T \mathbf{x}(0) + \dots + y(t-1)(\mathbf{w}^*)^T \mathbf{x}(t-1)$$

 $\geq t\delta$

• According to Cauchy-Schwartz inequality:

$$\begin{split} &\left((\mathbf{w}^*)^T \mathbf{w}(t) \right)^2 \leq \|\mathbf{w}^*\|_2^2 \|\mathbf{w}(t)\|_2^2 \\ \Rightarrow &\|\mathbf{w}(t)\|_2^2 \geq \frac{\left((\mathbf{w}^*)^T \mathbf{w}(t) \right)^2}{\|\mathbf{w}^*\|_2^2} \geq \frac{t^2 \delta^2}{\|\mathbf{w}^*\|_2^2} \end{split}$$

Also we can show that

$$\|\mathbf{w}(t)\|^{2} = \mathbf{w}(t)^{T}\mathbf{w}(t)$$

$$= (\mathbf{w}(t-1) + y(t-1)\mathbf{x}(t-1))^{T}(\mathbf{w}(t-1) + y(t-1)\mathbf{x}(t-1))$$

$$= \|\mathbf{w}(t-1)\|_{2}^{2} + \|\mathbf{x}(t-1)\|_{2}^{2} + 2y(t-1)\mathbf{w}(t-1)^{T}\mathbf{x}(t-1)$$

$$\leq \|\mathbf{w}(t-1)\|_{2}^{2} + \|\mathbf{x}(t-1)\|_{2}^{2}$$

It follows that

$$\|\mathbf{w}(t)\|_2^2 \le \|\mathbf{x}(t-1)\|_2^2 + \dots + \|\mathbf{x}(0)\|_2^2 \le t \max \|\mathbf{x}(.)\|_2^2$$

• Combine the two results.

$$\frac{t^2\delta^2}{\|\mathbf{w}^*\|_2^2} \le \|\mathbf{w}(t)\|_2^2 \le t \max \|\mathbf{x}(.)\|_2^2$$

• Combine the two results.

$$\frac{t^2 \delta^2}{\|\mathbf{w}^*\|_2^2} \le \|\mathbf{w}(t)\|_2^2 \le t \max \|\mathbf{x}(.)\|_2^2$$

$$t \leq \frac{\|\mathbf{w}^*\|_2^2 \cdot \max \|\mathbf{x}(.)\|_2^2}{\delta^2}$$

• Combine the two results.

$$\frac{t^2 \delta^2}{\|\mathbf{w}^*\|_2^2} \le \|\mathbf{w}(t)\|_2^2 \le t \max \|\mathbf{x}(.)\|_2^2$$

$$t \leq \frac{\|\mathbf{w}^*\|_2^2 \cdot \max \|\mathbf{x}(.)\|_2^2}{\delta^2}$$

- What does this bound tell us about the Perceptron?
 - \bullet δ measures how close the solution decision boundary is to the input patterns.

• Combine the two results.

$$\frac{t^2 \delta^2}{\|\mathbf{w}^*\|_2^2} \le \|\mathbf{w}(t)\|_2^2 \le t \max \|\mathbf{x}(.)\|_2^2$$

$$t \leq \frac{\|\mathbf{w}^*\|_2^2 \cdot \max \|\mathbf{x}(.)\|_2^2}{\delta^2}$$

- What does this bound tell us about the Perceptron?
 - \bullet δ measures how close the solution decision boundary is to the input patterns.
 - If the input classes are difficult to separate (are close to the decision boundary) it will take many iterations for the algorithm to converge.

Combine the two results.

$$\frac{t^2 \delta^2}{\|\mathbf{w}^*\|_2^2} \le \|\mathbf{w}(t)\|_2^2 \le t \max \|\mathbf{x}(.)\|_2^2$$

$$t \leq \frac{\|\mathbf{w}^*\|_2^2 \cdot \max \|\mathbf{x}(.)\|_2^2}{\delta^2}$$

- What does this bound tell us about the Perceptron?
 - ullet δ measures how close the solution decision boundary is to the input patterns.
 - If the input classes are difficult to separate (are close to the decision boundary) it will take many iterations for the algorithm to converge.
 - Additional assumption required: $\max \|\mathbf{x}(.)\|_2^2$ is bounded.

We can Fit the Data

• We are able to find a *h* that works from <u>infinitely</u> many (for the perceptron). So computationally, things seem good.

We can Fit the Data

- We are able to find a h that works from <u>infinitely</u> many (for the perceptron). So computationally, things seem good.
- Ultimately, our goal is to *predict*: we don't care about the training data, we care about "outside the training data".

We can Fit the Data

- We are able to find a *h* that works from <u>infinitely</u> many (for the perceptron). So computationally, things seem good.
- Ultimately, our goal is to *predict*: we don't care about the training data, we care about "outside the training data".

Can a limited data set reveal enough information to pin down an entire target function, so that we can predict outside the data?