Table of Contents

Given from Problem Statement

```
clc; clear variables; close all;
% Given Measurements
                                 % Units
x1 = 1.5625;
                                 % in
x2 = 2.375;
                                 % in
x3 = 3.125;
                                 % in
x4 = 0.6875;
                                 % in
L_{input} = 2.375;
                                 % in
N = L input/.0001+1;
                                 % Determine # points so that points at
at 0.001 increments
Sut = 148000;
                                 % psi
```

Basic

Results of statics analysis (from Maple)

```
Ay = 0;

Az = 6600/19;

Dy = 0;

Dz = 8600/19;

Ey = 22500/19;

Ez = -7500/19;

GR2 = 0;

GR4 = 0;

GT2 = 200;

GT4 = 600;

Hy = -5400/19;

Hz = -3900/19;
```

```
% Find Bending Momemnt: y-direction
[x,My,Mz] = deal(zeros(N,1));
for i = 1:N
  x(i) = (i-1)*L input/(N-1);
  My(i) = Ay^*heaviside(x(i))^*x(i)+GR2^*heaviside(x(i)-x4)^*(x(i)-x4)...
          -GR4*heaviside(x(i)-x1)*(x(i)-x1)+Dy*heaviside(x(i)-x1)
x2)*(x(i)-x2);
end
% z-direction
for i = 1:N
 Mz(i) = Az*heaviside(x(i))*x(i)-GT2*heaviside(x(i)-x4)*(x(i)-x4)...
          -GT4*heaviside(x(i)-x1)*(x(i)-x1)+Dz*heaviside(x(i)-x1)
x2)*(x(i)-x2);
end
% Resultant
MR = sqrt(My.^2+Mz.^2);
% Find resultant moment at key locations
xb = x4;
xG = 1.0625;
xc = x1;
for i = 1:length(x)
    xCheck = x(i);
    if xCheck == xb
        Ib = i;
    elseif xCheck == xG
        IG = i;
    elseif xCheck == xc
        Ic = i;
    end
end
Mb = MR(Ib);
MG = MR(IG);
Mc = MR(Ic);
% Create bending moment diagrams as subplot, label points b,G,c
figure(1)
subplot(3,1,1), plot(x,My,'g','LineWidth',1), grid on
title('Basic: Bending Moment Diagrams', 'FontSize', 20)
ylabel('M_{y} (lb_{f}-in)', 'FontSize', 12)
xlabel('x (in)','FontSize',12)
subplot(3,1,2), plot(x,Mz,'g','LineWidth',1), grid on
ylabel('M \{z\} (lb \{f\}-in))', 'FontSize', 12)
xlabel('Position (in)','FontSize',12)
subplot(3,1,3), plot(x,MR,'g','LineWidth',1), grid on
ylabel('M_{R} (lb_{f}-in))', 'FontSize', 12)
xlabel('Position (in)','FontSize',12)
hold on
plot(xb,Mb,'ro')
label = 'B';
text(xb,Mb,label,'VerticalAlignment','top','HorizontalAlignment','left')
```

```
plot(xG,MG,'ro')
label = 'G';
text(xG,MG,label,'VerticalAlignment','top','HorizontalAlignment','left')
plot(xc,Mc,'ro')
label = 'C';
text(xc,Mc,label,'VerticalAlignment','top','HorizontalAlignment','left')
% Run optimization problem
x0 = [7/16;5/8];
A = [-1 \ 0;
      0 -1
      1 -11;
b = [0;0;-1/16];
xSol = fmincon(@funObj,x0,A,b,[],[],[],
[],@(xVec)funcNL(xVec,Mb,MG,Mc));
% Solve for results with optimized value - rounded up to 1/16
increment
DB = ceil(xSol(1) * 16) / 16;
DC = ceil(xSol(2) * 16) / 16;
Cload = 1;
CsizeB = 0.869*DB^{(-0.097)};
CsizeG = CsizeB;
CsizeC = 0.869*DC^{(-0.097)};
Csurf = 2.7*148^-.265;
Ctemp = 1;
Creliab = 0.814;
Sep = 0.5*Sut;
SeB = Cload*CsizeB*Csurf*Ctemp*Creliab*Sep;
SeG = Cload*CsizeG*Csurf*Ctemp*Creliab*Sep;
SeC = Cload*CsizeC*Csurf*Ctemp*Creliab*Sep;
% find fatigue stress conectration factors at G
[Kt_bending,Kt_torsion] = interpFatigue(DC,DB);
q = 0.862;
Kf bending = 1+q*(Kt bending-1);
Kf_torsion = 1+q*(Kt_torsion-1);
sigma_G = Kf_bending*((32*MG)/(pi*DB^3));
T = 600;
tau torsion G = Kf torsion*((16*T)/(pi*DB^3));
sigma_m_G = sqrt(3)*tau_torsion_G;
sigma_m_B = 0;
sigma_m_C = (16*T*sqrt(3))/(pi*DC^3);
sigma_B = (32*Mb)/(pi*DB^3);
sigma C = (32*Mc)/(pi*DC^3);
FOSB = 1/(sigma_m_B/Sut + sigma_B/SeB);
FOSG = 1/(sigma_m_G/Sut + sigma_G/SeG);
FOSC = 1/(sigma_m_C/Sut + sigma_C/SeC);
fprintf('\n-----')
fprintf('\nOptimzation Solution: DB = %1.4f, DC = %1.4f
n', xSol(1), xSol(2))
```

```
fprintf('Round up to nearest 1/16": DB = 1.4f, DC = 1.4f\n', DB, DC) fprintf('FOSB = 1.4f\nFOSG = 1.4f\nFOSC = 1.4f\n', FOSB, FOSG, FOSC)
```

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the value of the optimality tolerance, and constraints are satisfied to within the value of the constraint tolerance.

Medium

Results of statics analysis (from Maple)

Ay = 22.98759375;Az = 347.3684211;

```
Dy = 122.6005000;
Dz = 452.6315789;
Ey = 1040.538065;
Ez = -394.7368421;
GR2 = 72.79404686;
GR4 = 218.3821406;
GT2 = 200.;
GT4 = 600.;
Hy = -358.9202060;
Hz = -205.2631579;
% Find Bending Momemnt: y-direction
[x,My,Mz] = deal(zeros(N,1));
for i = 1:N
 x(i) = (i-1)*L input/(N-1);
  My(i) = Ay^*heaviside(x(i))^*x(i)+GR2^*heaviside(x(i)-x4)^*(x(i)-x4)...
          -GR4*heaviside(x(i)-x1)*(x(i)-x1)+Dy*heaviside(x(i)-x1)
x2)*(x(i)-x2);
end
% z-direction
for i = 1:N
  Mz(i) = Az*heaviside(x(i))*x(i)-GT2*heaviside(x(i)-x4)*(x(i)-x4)...
          -GT4*heaviside(x(i)-x1)*(x(i)-x1)+Dz*heaviside(x(i)-x1)
x2)*(x(i)-x2);
end
% Resultant
MR = sqrt(My.^2+Mz.^2);
% Find resultant moment at key locations
xb = x4;
xG = 1.0625;
xc = x1;
for i = 1:length(x)
    xCheck = x(i);
    if xCheck == xb
        Ib = i;
    elseif xCheck == xG
        IG = i;
    elseif xCheck == xc
        Ic = i;
    end
end
Mb = MR(Ib);
MG = MR(IG);
Mc = MR(Ic);
% Create bending moment diagrams as subplot, label points b,G,c
figure(2)
subplot(3,1,1), plot(x,My,'g','LineWidth',1), grid on
title('Medium: Bending Moment Diagrams', 'FontSize', 20)
ylabel('M_{y} (lb_{f}-in)', 'FontSize', 12)
```

```
xlabel('x (in)','FontSize',12)
subplot(3,1,2), plot(x,Mz,'g','LineWidth',1), grid on
ylabel('M_{z} (lb_{f}-in))', 'FontSize', 12)
xlabel('Position (in)','FontSize',12)
subplot(3,1,3), plot(x,MR,'g','LineWidth',1), grid on
ylabel('M_{R} (lb_{f}-in))', 'FontSize', 12)
xlabel('Position (in)','FontSize',12)
hold on
plot(xb,Mb,'ro')
label = 'B';
text(xb,Mb,label,'VerticalAlignment','top','HorizontalAlignment','left')
plot(xG,MG,'ro')
label = 'G';
text(xG,MG,label,'VerticalAlignment','top','HorizontalAlignment','left')
plot(xc,Mc,'ro')
label = 'C';
text(xc,Mc,label,'VerticalAlignment','top','HorizontalAlignment','left')
% Run optimization problem
x0 = [7/16;5/8];
A = [-1 \ 0;
      0 -1
      1 -11;
b = [0;0;-1/16];
xSol = fmincon(@funObj,x0,A,b,[],[],[],
[],@(xVec)funcNL(xVec,Mb,MG,Mc));
% Solve for results with optimized value - rounded up to 1/16
increment
DB = ceil(xSol(1) * 16) / 16;
DC = ceil(xSol(2) * 16) / 16;
Cload = 1;
CsizeB = 0.869*DB^{(-0.097)};
CsizeG = CsizeB;
CsizeC = 0.869*DC^{(-0.097)};
Csurf = 2.7*148^-.265;
Ctemp = 1;
Creliab = 0.814;
Sep = 0.5*Sut;
SeB = Cload*CsizeB*Csurf*Ctemp*Creliab*Sep;
SeG = Cload*CsizeG*Csurf*Ctemp*Creliab*Sep;
SeC = Cload*CsizeC*Csurf*Ctemp*Creliab*Sep;
% find fatigue stress conectration factors at G
[Kt bending, Kt torsion] = interpFatigue(DC, DB);
q = 0.862;
Kf bending = 1+q*(Kt bending-1);
Kf_torsion = 1+q*(Kt_torsion-1);
sigma_G = Kf_bending*((32*MG)/(pi*DB^3));
T = 600;
tau torsion G = Kf torsion*((16*T)/(pi*DB^3));
sigma_m_G = sqrt(3)*tau_torsion_G;
sigma_m_B = 0;
```

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the value of the optimality tolerance, and constraints are satisfied to within the value of the constraint tolerance.

```
----- MEDIUM ------
Optimzation Solution: DB = 0.6345, DC = 0.6970
Round up to nearest 1/16": DB = 0.6875, DC = 0.7500
FOSB = 5.1965
FOSG = 1.8882
FOSC = 3.0985
```


Published with MATLAB® R2020a