Question 4.

Algorithms Assignment 1

Faaiq Bilal **23100104**

1 Part a

True, for all k > 5 and $n \ge 0$, $k \cdot n^3$ is greater than $5n^3$. Hence $5n^3 \in O(n^3)$

2 Part b

True

This condition is true as $100n^2 < n^4$ for some n > 10 e.g. $100 \times 11^2 < k \times 11^4$ for all $k \ge 1$

Since there exists a k, for which $100n^2 < k \cdot n^4$ is true for all $n \ge 0$, $100n^2 \epsilon O(n^4)$

3 Part c

True

 $\log n^2 = 2\log n$

 $2\log n < k \cdot \log n$ for any k > 2

Since there exists a k, for which $2 \log n < k$ is true for all $n \ge 0$, $\log n^2 \in O(\log n)$

4 Part d

True

The largest term in the above expression (once expanded) will be $(n^2)^3 = n^6$. All other terms will be smaller. Hence, there exists a constant k for which $k \cdot n^6$ is greater than the expression given, and the function will be $O(n^6)$

5 Part e

True In this part, it will be helpful to consider the bounds of the two functions. Before that, we can do some simplification.

 $\sqrt{n} \le k \cdot (\log n)^3$ $\sqrt[6]{n} \le k_2 \cdot \log n$

We can now compare the two functions.

The point of intersection is at about a value of n=2.205. The functions then diverge permanently, and $\log n$ stays larger than $\sqrt[6]{n}$. This means that $\sqrt[6]{n} \le k \cdot \log n$ for values of k, and all values of n larger than 2.205.