DISKRETNA MATEMATIKA

- PREDAVANJE -

Jovanka Pantović

Svako distribuiranje celog ili delova ovih slajdova ZABRANJENO je i predstavlja povredu autorskog prava.

Definicija planarnog grafa

Ojlerova formula

Tvrđenje Kuratovskog

Tema 1

Definicija planarnog grafa

Planarni grafovi

Definicija

Graf je planaran ako može biti nacrtan u ravni tako da mu se grane ne seku. Za takvu reprezentaciju grafa kažemo da je planarna.

Primer

Grafovi K_4 i Q_3 su planarni. Njihove planarne reprezentacije su date na slici.

Primer

Grafovi K_4 i Q_3 su planarni. Njihove planarne reprezentacije su date na slici.

Primer

Grafovi K_4 i Q_3 su planarni. Njihove planarne reprezentacije su date na slici.

Primer

Kompletan bipartitan graf $K_{3,3}$ nije planaran. Dokazati!

Primer

Kompletan bipartitan graf $K_{3,3}$ nije planaran. Dokazati!

Pretpostavimo da $K_{3,3}$ jeste planaran graf.

 $K_{3,3}$

Primer

Kompletan bipartitan graf $K_{3,3}$ nije planaran. Dokazati!

Pretpostavimo da $K_{3,3}$ jeste planaran graf.

 $K_{3,3}$

Primetimo da grane $\{u_1,v_1\}$, $\{v_1,u_2\}$, $\{u_2,v_2\}$, $\{v_2,u_1\}$ kreiraju zatvorenu krivu koja deli ravan na dve oblasti, označićemo ih sa D_1 i D_2 .

Imamo dve mogućnosti da nacrtamo čvor \emph{v}_{3} .

Imamo dve mogućnosti da nacrtamo čvor v_3 .

Ako čvor v_3 nacrtamo unutar oblasti D_1 , za u_3 imamo jednu od tri mogućnosti:

Imamo dve mogućnosti da nacrtamo čvor v_3 .

Ako čvor v_3 nacrtamo unutar oblasti D_1 , za u_3 imamo jednu od tri mogućnosti:

(1) $u_3 \in D_{11} : \{u_3, v_1\}$ seče rub oblasti D_{11} ;

Imamo dve mogućnosti da nacrtamo čvor v_3 .

Ako čvor v_3 nacrtamo unutar oblasti D_1 , za u_3 imamo jednu od tri mogućnosti:

- (1) $u_3 \in D_{11} : \{u_3, v_1\}$ seče rub oblasti D_{11} ;
- (2) $u_3 \in D_{12} : \{u_3, v_2\}$ seče rub oblasti D_{12} ;

Imamo dve mogućnosti da nacrtamo čvor v_3 .

Ako čvor v_3 nacrtamo unutar oblasti D_1 , za u_3 imamo jednu od tri mogućnosti:

- (1) $u_3 \in D_{11} : \{u_3, v_1\}$ seče rub oblasti D_{11} ;
- (2) $u_3 \in D_{12} : \{u_3, v_2\}$ seče rub oblasti D_{12} ;
- (3) $u_3 \in D_2 : \{u_3, v_3\}$ seče rub oblasti D_2 .

Ako čvor v_3 nacrtamo unutar oblasti D_2 , za u_3 imamo jednu od tri mogućnosti:

(1) $u_3 \in D_1 : \{u_3, v_3\}$ seče rub oblasti D_1 ;

Ako čvor v_3 nacrtamo unutar oblasti D_2 , za u_3 imamo jednu od tri mogućnosti:

- (1) $u_3 \in D_1 : \{u_3, v_3\}$ seče rub oblasti D_1 ;
- (2) $u_3 \in D_{21} : \{u_3, v_2\}$ seče rub oblasti D_{21} ;

Ako čvor v_3 nacrtamo unutar oblasti D_2 , za u_3 imamo jednu od tri mogućnosti:

- (1) $u_3 \in D_1 : \{u_3, v_3\}$ seče rub oblasti D_1 ;
- (2) $u_3 \in D_{21} : \{u_3, v_2\}$ seče rub oblasti D_{21} ;
- (3) $u_3 \in D_{22} : \{u_3, v_1\}$ seče rub oblasti D_{22} .

Tema 2

Ojlerova formula

Teorema

Neka je $G=(V,E),\,|E|=m\geq 2,$ povezan planaran prost graf sa f oblasti u njegovoj planarnoj reprezentaciji. Tada je

$$f = |E| - |V| + 2.$$

Teorema

Neka je $G=(V,E),\,|E|=m\geq 2,$ povezan planaran prost graf sa f oblasti u njegovoj planarnoj reprezentaciji. Tada je

$$f = |E| - |V| + 2.$$

Posmatraćemo G_1, \ldots, G_m , gde G_1 graf koji sadrži proizvoljnu granu grafa G i njoj incidentne čvorove i važi:

• G_i je podgraf grafa G, za svako $i \in \{2, \ldots, m\}$,

Teorema

Neka je $G=(V,E),\,|E|=m\geq 2,$ povezan planaran prost graf sa f oblasti u njegovoj planarnoj reprezentaciji. Tada je

$$f = |E| - |V| + 2.$$

Posmatraćemo G_1, \ldots, G_m , gde G_1 graf koji sadrži proizvoljnu granu grafa G i njoj incidentne čvorove i važi:

- G_i je podgraf grafa G, za svako $i \in \{2, \ldots, m\}$,
- G_i ima granu incidentnu sa bar jednim čvorom u G_{i-1} , $2 \le i \le m$.

Teorema

Neka je $G=(V,E), |E|=m\geq 2$, povezan planaran prost graf sa f oblasti u njegovoj planarnoj reprezentaciji. Tada je

$$f = |E| - |V| + 2.$$

Posmatraćemo G_1, \ldots, G_m , gde G_1 graf koji sadrži proizvoljnu granu grafa G i njoj incidentne čvorove i važi:

- G_i je podgraf grafa G, za svako $i \in \{2, \ldots, m\}$,
- G_i ima granu incidentnu sa bar jednim čvorom u G_{i-1} , $2 \le i \le m$.

Treba pokazati da G_i zadovoljava Ojlerovu formulu za svako $i \in \{1, \dots, m\}$.

Dokazaćemo da za svako $k \in \{1, \dots, m\}$ važi

$$f_k = |E_k| - |V_k| + 2,$$

primenom matematičke indukcije.

Baza
$$k = 1$$
: $f_1 = |E_1| - |V_1| + 2 \Leftrightarrow 1 = 1 - 2 + 2$

Dokazaćemo da za svako $k \in \{1, \dots, m\}$ važi

$$f_k = |E_k| - |V_k| + 2,$$

primenom matematičke indukcije.

Baza
$$k = 1$$
: $f_1 = |E_1| - |V_1| + 2 \Leftrightarrow 1 = 1 - 2 + 2$

Induktivni korak $T_k \Rightarrow T_{k+1}$: Pretpostavimo da tvrđenje važi za sve vrednosti manje od k.

Neka je

$$G_{k+1} = G_k + \{u, v\}.$$

Ako je $u, v \in V(G_k)$, onda je

$$\begin{array}{lcl} f_{k+1} & = & f_k + 1 \\ |V(G_{k+1})| & = & |V(G_k)| \\ |E(G_{k+1})| & = & |E(G_k)| + 1. \end{array}$$

Dokazaćemo da za svako $k \in \{1, \dots, m\}$ važi

$$f_k = |E_k| - |V_k| + 2,$$

primenom matematičke indukcije.

Baza
$$k = 1$$
: $f_1 = |E_1| - |V_1| + 2 \Leftrightarrow 1 = 1 - 2 + 2$

Induktivni korak $T_k \Rightarrow T_{k+1}$: Pretpostavimo da tvrđenje važi za sve vrednosti manje od k.

Neka je

$$G_{k+1} = G_k + \{u, v\}.$$

Ako je $u, v \in V(G_k)$, onda je

$$\begin{array}{rcl} f_{k+1} & = & f_k + 1 \\ |V(G_{k+1})| & = & |V(G_k)| \\ |E(G_{k+1})| & = & |E(G_k)| + 1. \end{array}$$

Koristeći induktivnu pretpostavku, dobijamo

$$\begin{split} f_{k+1} = |E_{k+1}| - |V_{k+1}| + 2 & \Leftrightarrow & f_k + 1 = |E(G_k)| + 1 - |V(G_k)| + 2 \\ & \Leftrightarrow & f_k = |E(G_k)| - |V(G_k)| + 2. \end{split}$$

Ako je $u \in V(G_k)$ i $v \not\in V(G_k)$, onda je

$$\begin{array}{lcl} f_{k+1} & = & f_k \\ |V(G_{k+1})| & = & |V(G_k)| + 1 \\ |E(G_{k+1})| & = & |E(G_k)| + 1. \end{array}$$

Koristeći induktivnu pretpostavku, dobijamo

$$\begin{split} f_{k+1} &= |E_{k+1}| - |V_{k+1}| + 2 &&\Leftrightarrow & f_k &= |E(G_k)| + 1 - |V(G_k)| - 1 + 2 \\ &&\Leftrightarrow & f_k &= |E(G_k)| - |V(G_k)| + 2. \end{split}$$

Definition

Stepen oblasti D, u oznaci $\operatorname{st}(D)$ je broj grana na rubu te oblasti. Ako se grana pojavljuje dva puta na rubu, ona se računa dva puta.

Definition

Stepen oblasti D, u oznaci st(D) je broj grana na rubu te oblasti. Ako se grana pojavljuje dva puta na rubu, ona se računa dva puta.

Neka je $|V| \geq 3$.

$$2|E(G)| = \sum_{1 \le i \le f} \operatorname{st}(D_i) \ge 3 \cdot f \tag{1}$$

Posledica 1

Posledica

Ako je G=(V,E) povezan planaran prost graf sa bar 3 čvora, onda je

$$|E| \le 3|V| - 6.$$

Kako je $\operatorname{st}(D_i) \geq 3$, za svako $1 \leq i \leq f$, dobijamo

$$2|E| = \sum_{1 \le i \le f} \operatorname{st}(D_i) \ge 3 \cdot f$$

Posledica 1

Posledica

Ako je G=(V,E) povezan planaran prost graf sa bar 3 čvora, onda je

$$|E| \le 3|V| - 6.$$

Kako je $st(D_i) \geq 3$, za svako $1 \leq i \leq f$, dobijamo

$$2|E| = \sum_{1 \le i \le f} \operatorname{st}(D_i) \ge 3 \cdot f \Rightarrow f \le \frac{2}{3}|E|.$$

Posledica 1

Posledica

Ako je G=(V,E) povezan planaran prost graf sa bar 3 čvora, onda je

$$|E| \le 3|V| - 6.$$

Kako je $st(D_i) \geq 3$, za svako $1 \leq i \leq f$, dobijamo

$$2|E| = \sum_{1 \le i \le f} \operatorname{st}(D_i) \ge 3 \cdot f \Rightarrow f \le \frac{2}{3}|E|.$$

Iz Ojlerove formule dobijamo,oblast

$$|E| - |V| + 2 \le \frac{2}{3}|E| \Leftrightarrow |E| \le 3|V| - 6.$$

Primer

Graf K_5 nije planaran.

Primer

Graf K_5 nije planaran.

Za graf K_5 važi

$$|V(K_5)| = 5$$
 $|E(K_5)| = {5 \choose 2} = 10$

Primer

Graf K_5 nije planaran.

Za graf K_5 važi

$$|V(K_5)| = 5$$
 $|E(K_5)| = {5 \choose 2} = 10$

Ako pretpostavimo da je K_5 planaran,

Primer

Graf K_5 nije planaran.

Za graf K_5 važi

$$|V(K_5)| = 5$$
 $|E(K_5)| = {5 \choose 2} = 10$

Ako pretpostavimo da je K_5 planaran, onda je

$$10 \le 3 \cdot 5 - 6 = 9,$$

što dovodi do kontradikcije.

Posledica

Ako je G=(V,E) povezan planaran prost graf sa bar 3 čvora i G nema konture dužine 3, onda je

$$|E| \le 2|V| - 4.$$

Posledica

Ako je G=(V,E) povezan planaran prost graf sa bar 3 čvora i G nema konture dužine 3, onda je

$$|E| \le 2|V| - 4.$$

Ako u grafu ne postoje konture dužine tri, onda je stepen svake oblasti bar četiri. Odatle je

$$2|E| = \sum_{1 \le i \le I} \operatorname{st}(D_i) \ge 4 \cdot f$$

Posledica

Ako je G=(V,E) povezan planaran prost graf sa bar 3 čvora i G nema konture dužine 3, onda je

$$|E| \le 2|V| - 4.$$

Ako u grafu ne postoje konture dužine tri, onda je stepen svake oblasti bar četiri. Odatle je

$$2|E| = \sum_{1 \leq i \leq l} \operatorname{st}(D_i) \geq 4 \cdot f \Rightarrow f \leq \frac{1}{2}|E|.$$

Posledica

Ako je G=(V,E) povezan planaran prost graf sa bar 3 čvora i G nema konture dužine 3, onda je

$$|E| \le 2|V| - 4.$$

Ako u grafu ne postoje konture dužine tri, onda je stepen svake oblasti bar četiri. Odatle je

$$2|E| = \sum_{1 \le i \le l} \operatorname{st}(D_i) \ge 4 \cdot f \Rightarrow f \le \frac{1}{2}|E|.$$

Iz Ojlerove formule dobijamo

$$|E|-|V|+2 \leq \frac{1}{2}|E| \Leftrightarrow |E| \leq 2|V|-4.$$

Primer

Graf $K_{3,3}$ nije povezan.

Primer

Graf $K_{3,3}$ nije povezan.

Za graf $K_{3,3}$ važi

$$|V(K_{3,3})| = 6$$
 $|E(K_{3,3})| = \frac{3 \cdot 6}{2} = 9.$

Primer

Graf $K_{3,3}$ nije povezan.

Za graf $K_{3,3}$ važi

$$|V(K_{3,3})| = 6$$
 $|E(K_{3,3})| = \frac{3 \cdot 6}{2} = 9.$

i sve konture u $K_{3,3}$ su (parne) dužine ne manje od 4.

Primer

Graf $K_{3,3}$ nije povezan.

Za graf $K_{3,3}$ važi

$$|V(K_{3,3})| = 6$$
 $|E(K_{3,3})| = \frac{3 \cdot 6}{2} = 9.$

i sve konture u $K_{3,3}$ su (parne) dužine ne manje od 4.

Ako je $K_{3,3}$ planaran, onda je $9 \le 2 \cdot 6 - 4 = 8$.

Tema 3

Tvrđenje Kuratovskog

Homeomorfni grafovi

Definicija

Ako umesto grane $\{u,v\}$ dodamo novi čvor w i grane $\{u,w\}$ i $\{w,v\}$, kazaćemo da smo kreirali novi graf primenom elementarne deobe na polazni graf.

Homeomorfni grafovi

Definicija

Ako umesto grane $\{u,v\}$ dodamo novi čvor w i grane $\{u,w\}$ i $\{w,v\}$, kazaćemo da smo kreirali novi graf primenom elementarne deobe na polazni graf.

Definicija

Grafovi $G_1=(V_1,E_1)$ i $G_2=(V_2,E_2)$ su homeomorfni ako mogu dobijeni od istog graf primenom konačno mnogo elementarnih deoba grana.

Primer

Grafovi G_1 i G_2 su homeomorfni, zato što je G_1 dobijen od K_5 deobom grana $\{a,e\}$ i $\{e,d\}$, dok je G_2 dobijen od K_5 deobom grana $\{a,b\}$ i $\{c,d\}$.

Tvrđenje Kuratovskog

Teorema

Graf G nije planaran ako i samo ako sadrži podgraf koji je homeomorfan sa $K_{3,3}$ ili K_5 .

