

Customer Churn Prediction

A telecommunications case study

By: Pablo González

Why customer churn?

- Relevant and challenging problem affecting even the largest, most stable companies.
- Crucial for maintaining a sustainable business growth.
- The costs of acquiring new customers can be higher than the ones of retaining loyal ones.

Business Problem

How to better predict which customer is likely to churn?

In other words, we want to know **who is likely** to turnover and be able to target him with a specific campaign.

Performance measures: Testing error, AUC and Sensitivity.

Data Source

- Telco Customer Churn data set.
- 7043 observations and 21 variables
- Contains information about customer churn, contracted services and demographic characteristics, among others.

kaggle.com/blastchar/telco-customer-churn

Preliminar Analysis

- 11 missing values
- No outliers (IQR method)
- Response variable: Churn

Customer Churn

Potential predictors

Ranked Cross-Correlations

10 most relevant

Methodology

Used models:

- Naive Bayes Classifier
- Logistic Regression
- Random Forest
- Boosting
- Suppor Vector Machines

Important clarifications:

- Train-test Split: 9:1
- 100-fold MC cross-validation
- Testing error, AUC, Sensitivity
- T-test and Wilcox-test

Results: Misclassification Error (Testing)

	Mean	Median	Variance
Naive Bayes	0.27185	0.27454	0.00025
Logistic Regression	0.19502	0.19488	0.00018
Random Forest	0.24371	0.24395	0.00028
Boosting	0.19565	0.19488	0.00020
Support Vector Machines	0.31664	0.31579	0.00030

Results: Area under the ROC curve (AUC)

	Mean	Median	Variance
Naive Bayes	0.81949	0.81973	0.00030
Logistic Regression	0.84655	0.84804	0.00027
Random Forest	0.84366	0.84273	0.00029
Boosting	0.84961	0.85067	0.00028
Support Vector Machines	0.82758	0.83539	0.00498

Results: Sensitivity

	Mean	Median	Variance
Naive Bayes	0.80763	0.80878	0.00080
Logistic Regression	0.55223	0.55076	0.00137
Random Forest	0.78972	0.78847	0.00084
Boosting	0.58436	0.58220	0.00155
Support Vector Machines	0.86230	0.86163	0.00063

Conclusions

- Naive Bayes, Random Forest and Support Vector Machines are the best performing models overall.
- Among them, the Random Forest classifier provides a significantly better performance in terms of testing error and AUC.
- The Support Vector Machines classifier is the best if we only care about sensitivity.

Image Sources

- www.qminder.com/customer-retention-strategies/
- www.retently.com/blog/three-leading-causes-churn/
- www.credilink.com.br/as-vantagens-do-churn-rate-para-seu-negocio/
- www.indyme.com/wp-content/uploads/2020/11/customer-icon.png
- www.vectorvest.ca/number-1-rule-to-investing-let-the-trend-be-your-friend/