Trabajo práctico: Filtrado digital IIR

1) Filtro Leaking Integrator (LI) con señales senoidales en MATLAB

- a) Genere una señal senoidal con frecuencia fundamental de 100Hz.
- b) Agregue ruido a la señal senoidal tal que la relación señal-ruido entre la señal senoidal y la señal con ruido sea de 15 dB.
 - c) Diseñe un filtro *leaking integrator* (LI) con λ igual a 0.7.
- d) Grafique la respuesta en frecuencia y fase del filtro LI. Use la función freqz(). Determine la frecuencia de corte fco con:

fco = - ln (
$$\lambda$$
) . fs / π

- e) Determine el cero y el polo del filtro con la función zplane(). ¿Es el filtro estable?.
- f) Aplique el filtro LI a la señal con ruido. Utilice la función filter().
- g) Grafique la respuesta en el tiempo de las señales original y filtrada y compare.
- h) Grafique la respuesta en frecuencia de las señales original y filtrada y compare. Utilice la función provista my dft().
- i) Repita los puntos c) a h) para λ igual a 0.9 y 0.98. Analice el comportamiento de la fco.

2) Filtro Leaking Integrator (LI) con señales de audio.

Repita el ejercicio 1 del punto a) al h) pero:

- a) Utilice el archivo Tchaikovsky.mat.
- b) Encuentre el valor máximo de λ para un fco igual a 3400 Hz.

3) Dimensiones de filtros FIR e IIR para un mismo tipo de filtro

- a) Ejecute la función iir_vs_fir.m.mlx.
- b) Analice las funciones fir_kaiser_3400_44100.m e iir_elliptic_3400_44100.m ¿Qué tipos de filtros implementan ambas funciones?.
- c) Observe ambas respuestas en frecuencia. ¿Qué diferencias hay entre ambas respuestas?

- d) Grafique las respuestas en fase y compárelas. ¿Qué diferencias hay entre ambas respuestas?
- e) ¿Cuál es la dimensión del numerador del filtro FIR y cuántos coeficientes presenta la matriz SOS del filtro IIR? ¿A qué conclusión puede abordar?

4) Diseño de un filtro IIR con transformada bilineal

Diseñe un filtro digital tipo IIR con la transformada bilineal a partir del diseño de un filtro analógico.

- a) Diseñe un filtro Chebyshev Tipo I pasa-banda entre 300 y 3.400 Hz con 3 dB en la banda pasante. Aplique precombado (pre-warping) a las frecuencias analógicas de interés. Use las funciones cheb1ap() y lp2bp().
 - b) Grafique la respuesta en frecuencia y fase del filtro analógico. Use la función fregs().
- c) Discretice el filtro analógico para una frecuencia de muestreo de 9600 Hz con el método de interpolación 'tustin'. Use la función c2d().
 - d) Grafique la respuesta en frecuencia y fase del filtro digital. Use la función freqz().
 - e) Compare con la respuestas de ambos filtros.

5) Filtros IIR de 2do orden tipo Direct I y Direct II en punto flotante en C

MATLAB permite ejecutar funciones desarrolladas en lenguaje C usando una función wrapper cuya finalidad es la actuar como interfaz entre MATLAB y C. Este wrapper debe adaptar las variables de entrada y salida entre ambos lenguajes.

- a) Abra la función wrapper iir_matlab_wrapper.c y analice las diferentes secciones. Al final de la misma verá que se invoca a la función iir filter I float().
- b) Las funciones en C que implementan diferentes filtros IIR de 2do orden se encuentran en el archivo iir_filters.c, donde hay funciones para filtros IIR tipo Direct I y Direct II, en punto flotante y en punto fijo. Ejecute en consola el comando:
 - >> mex iir matlab wrapper.c iir filters.c

La función mex es la encargada de compilar los archivos en C bajo MATLAB.

- c) Abra en el editor de MATLAB el script irr_matlab_offline.m y ejecútelo. Este se encarga de invocar la función iir_matlab_wrapper y de analizar su salida. Concéntrese en comparar las señales de salida para las funciones implementadas en MATLAB y en C.
- d) Comente la línea de la función iir_filter_l_float(), descomente la línea de la función iir_filter_ll_float() y vuelva a compilar. Ejecute nuevamente irr_matlab_offline .m. Observe la señal filtrada de salida, ¿detecta alguna diferencia respecto a la salida para el filtrado tipo Direct I?.

e) Abra el archivo iir_filters.c y analice las funciones que implementan los filtros IIR tipo Direct I y Direct II. Observe cómo la estructura de cada función representa los esquemas de los filtros IIR tipo Direct I y Direct II, respectivamente, vistos en teoría ¿Qué diferencias presentan estas funciones?

6) Filtros IIR de 2do orden tipo Direct I y Direct II en punto fijo en C

Con las funciones del ejercicio 3, escriba funciones en C para filtrado IIR tipo Direct I y Direct II en precisión punto fijo Q15. Verifique su correcto funcionamiento en MATLAB.

7) Filtros IIR de N orden tipo Direct I y Direct II en punto filo en C

Escriba funciones en C para implementar filtrado IIR tipo Direct I y Direct II de orden N. Verifique su correcto funcionamiento bajo MATLAB.