Problem Session March 25th Worksheet

 $\begin{array}{c} \text{Math } 70 \\ \text{March } 25,\, 2021 \end{array}$

(1) Consider the linear transformation T from $M_{2\times 2}$ to \mathbb{P}_2 defined by

$$T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = b + (c+d)t - (c+d)t^2.$$

Describe the kernel of T, and find a basis for the kernel. What is the dimension of the kernel?

- (2) Short answer questions
 - (a) If $\mathcal{B} = \left\{ \begin{bmatrix} 3 \\ -5 \end{bmatrix}, \begin{bmatrix} -4 \\ 6 \end{bmatrix} \right\}$ is a basis for \mathbb{R}^2 , and $[\vec{x}]_{\mathcal{B}} = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$, find what \vec{x} is (in standard coordinates).
 - (b) Is $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ in the null space of $\begin{bmatrix} 1 & -3 \\ -4 & 12 \end{bmatrix}$?

(c) Suppose the matrix product BC is defined and that BC is a 5×4 matrix. How many rows does B have?

(d) What is the determinant of the matrix $\begin{bmatrix} 1 & -3 \\ 4 & 2 \end{bmatrix}$?

(e) True/False: Every $n \times n$ invertible matrix is row equivalent to the identity matrix I_n .

(3) Recall that the union $H_1 \cup H_2$ of two subspaces H_1 and H_2 is the set of a vectors which are either in H_1 or H_2 (or both). Find two subspaces H_1 and H_2 in \mathbb{R}^2 whose union is not a subspace of \mathbb{R}^2 . Prove that this union is not a subspace. (You should use specific numerical vectors and show that at least one of the properties in the definition of a subspace is not satisfied.)

(4) Consider the matrix

$$A = \begin{bmatrix} 1 & -2 & 1 \\ 2 & -6 & 1 \\ 0 & 8 & 4 \end{bmatrix}.$$

- (a) Find a basis \mathcal{B} for Col A.
- (b) Show that $\vec{x} = \begin{bmatrix} 5 \\ 12 \\ -8 \end{bmatrix}$ is in Col A.
- (c) Find a basis for Nul A.