This homework is due at 2pm, March 4, 2019.

Problem 1

Let $f: \mathbb{R}^p \to \mathbb{R}$. Its *gradient* is a *p*-dimensional vector given by

$$\nabla f(x) := \left(\frac{\partial f}{\partial x^{(1)}}(x), \dots, \frac{\partial f}{\partial x^{(p)}}(x)\right), \quad \forall x \in \mathbb{R}^p,$$

where $x^{(i)}$ denotes the *i*-th entry of the vector *x*. Its *Hessian* is a matrix in $\mathbb{R}^{p \times p}$ given by

$$\left[\nabla^2 f(x)\right]^{(i,j)} := \frac{\partial^2 f}{\partial x^{(i)} \partial x^{(j)}}(x), \quad \forall x \in \mathbb{R}^p,$$

for all $1 \le i, j \le p$, where $\left[\nabla^2 f(x)\right]^{(i,j)}$ denotes the (i,j)-th entry of the matrix $\nabla^2 f(x)$.

Define

$$g(x) := \frac{1}{2} \langle x, Ax \rangle, \quad \forall x \in \mathbb{R}^p,$$

for some symmetric matrix $A \in \mathbb{R}^{p \times p}$.

1. (10 points) Show that

$$\nabla g(x) = Ax, \quad \forall x \in \mathbb{R}^p.$$

2. (15 points) Show that

$$\nabla^2 g(x) = A, \quad \forall x \in \mathbb{R}^p.$$

Problem 2

Let $\mathcal{X} \subset \mathbb{R}^{p \times p}$ be the set of positive semi-definite matrices of unit trace.

1. (10 points) Show that for each $X \in \mathcal{X}$, we can write

$$X = \sum_{i=1}^{p} \lambda_i \Pi_i,$$

where $\lambda_1, \dots, \lambda_p$ are non-negative real numbers summing up to one, and Π_i are rank-1 matrices of unit trace.

2. (15 points) Let $Y \in \mathbb{R}^{p \times p}$ which may not be in \mathscr{X} . Define f(X) := Tr(YX), the trace of YX. Define

$$f^{\star} = \min_{X} \{ f(X) \mid X \in \mathcal{X} \}.$$

Show that there exists some rank-1 matrix $X^* \in \mathcal{X}$, such that $f^* = f(X^*)$.

Problem 3

Let ξ be a non-negative real-valued random variable, and η be a real-valued random variable.

1. (10 points) Show that

$$P(\xi \ge t) \le \frac{E\xi}{t}, \quad \forall t > 0,$$

where $P(\xi \ge t)$ denotes the probability that $\xi \ge t$, and $E\xi$ denotes the expectation of ξ .

Lecturer: Yen-Huan Li

2. (15 points) Suppose that η is a subgaussian random variable of parameter $\lambda > 0$, i.e.,

$$\mathsf{E}\exp\left(\lambda\eta^2\right) \le 2.$$

Show that

$$P(|\eta| \ge t) \le 2 \exp(-\lambda t^2), \quad \forall t \ge 0.$$

Problem 4

Let $\xi_1, ..., \xi_n$ be a sequence of independent Bernoulli random variable of expectation $\theta^{\natural} \in [0, 1]$, i.e.,

$$P(\xi_i = 1) = 1 - P(\xi_i = 0) = \theta^{\natural}, \quad 1 \le i \le n.$$

The maximum-likelihood estimator of θ is given by any minimizer of the function

$$f_n(\theta) := -\frac{1}{n} \sum_{i=1}^n \left[\xi_i \log \theta + (1 - \xi_i) \log(1 - \theta) \right],$$

on the interval [0,1].

1. (10 points) Show that indeed, the maximum-likelihood estimator, which we denote by $\hat{\theta}_n$, is given by

$$\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^n \xi_i.$$

2. (15 points) Show that as $n \to +\infty$, it holds that $\hat{\theta}_n$ converges to θ^{\natural} in probability, i.e.,

$$\lim_{n \to +\infty} \mathsf{P}\left(\left|\hat{\theta}_n - \theta^{\natural}\right| \ge t\right) = 0, \quad \forall \, t > 0.$$

Do not simply cite the law of large numbers.