

○在构建形成的连通图中搜索最优路径

- ○精确算法: 生成精确的最优解
 - 深度优先法、广度优先法

- ○精确算法: 生成精确的最优解
 - 深度优先法、广度优先法

- ○精确算法: 生成精确的最优解
 - 深度优先法、广度优先法
 - 广度优先法算法优化形成了Dijkstra算法
 - 遍历获得所有路径后选择最优解
 - 存在问题: 耗时, 难以满足机器人在线快速规划要求

○近似算法

- 启发式搜索算法: A*, D*, Focused D*等
- 准启发式搜索算法: 退火、进化和蚁群优化等

A*

- ○是一种经典启发式搜索算法
- ○根据评估函数在静态连通图中寻找最优路径
 - 当前搜索结点往下选择下一步结点时,通过启发 式函数进行选择,选择代价最少的结点作为下一 步搜索结点而跳转其上

评估函数
$$f(n) = g(n) + h(n)$$

- n表示节点
- g(n) 表示从起始点到节点 的实际代价
- h(n) 为从节点 到目标点的最佳路径的估计代价

节点到邻节点的距离

指定路径起始节点和 终止节点 将起始点放入Openlist 并计算g(n),h(n),f(n) 从Openlist中取出f(n)最 小的节点 该节点是否 为终止节点? N 将该节点移出openlist,

放入closelist中

起点		终点	

74	60	54			
14 60	10 50	14 40			
60	起点	40		极占	
10 50	点	10 30		终点	
74	60	54			
14 60	10 50	14 40			

74	60	54			
14 60	10 50	14 40			
60	起	40		ルト 上	
10 50	起 点	10 30		终点	
74	60	54			
14 60	10 50	14 40			

74	60	54				
14 60	10 50	14	40			
60	起点	40			被占	
10 50	点	10	30		然从	
74	60	54				
14 60	10 50	14	40			

该节点被放入closelist,各邻节点已在openlist中,tg = 10+10 或14 ,大于各邻节点g(n),无操作

74	60	54			
14 60	10 50	14 40			
60	起点	40		ル 上	
10 50	点	10 30		终点	
74	60	54			
14 60	10 50	14 40			

74	60	54			
14 60	10 50	14 40			
60	起 点	40		从占	
10 50	点	10 30		紀念	
74	60	54			
14 60	10 50	14 40			

74	60	54					
14 60	10 50	14	40				
60	起点	40				极占	
10 50	点	10	30			然从	
74	60	54					
14 60	10 50	14	40				
	88	74		68			
	28 60	24	50	28	40		

	88	74	68		
	28 60	24 50	28 40		
74	60	54			
14 60	10 50	14 40			
60	起点	40		从占	
10 50	点	10 30		紀念	
74	60	54			
14 60	10 50	14 40			
	78	74	68		
	28 60	24 50	28 40		

	80	74	68		
	20 60	24 50	28 40		
74	60	54			
14 60	10 50	14 40			
60	起点	40		极占	
10 50	点	10 30		终点	
74	60	54			
14 60	10 50	14 40			
94	80	74	68		
24 70	20 60	24 50	28 40		

94	80	74	68		
24 70	20 60	24 50	28 40		
74	60	54			
14 60	10 50	14 40			
60	起 点	40		炒 占	
10 50	点	10 30		终点	
74	60	54			
14 60	10 50	14 40			
94	80	74	68		
24 70	20 60	24 50	28 40		

94	80	74	68		
24 70	20 60	24 50	28 40		
74	60	54			
14 60	10 50	14 40			
60	起 点	40		被占	
10 50	点	10 30		终点	
74	60	54			
14 60	10 50	14 40			
94	80	74	68		
24 70	20 60	24 50	28 40		

94	80	74	68			
24 70	20 60	24 50	28 40			
74	60	54				
14 60	10 50	14 40				
60	起 点	40				
10 50	点	10 30			是於	
74	60	54		62		
14 60	10 50	14 40		42 20		
94	80	74	68	68		
24 70	20 60	24 50	28 40	38 30		

94	80	74	68			
24 70	20 60	24 50	28 40			
74	60	54				
14 60	10 50	14 40				
60	起 点	40		62	56	
10 50	点	10 30		52 10	56 0	
74	60	54		62	62	
14 60	10 50	14 40		42 20	52 10	
94	80	74	68	68		
24 70	20 60	24 50	28 40	38 30		

94	80	74	68			
24 70	20 60	24 50	28 40			
74	60	54				
14 60	10 50	14 40				
60	夬	40		62	56	
10 50		10 30		52 10	56 0	
74	60	54		62	62	
14 60	10 50	14 40		42 20	52 10	
94	80	74	68	68		
24 70	20 60	24 50	28 40	38 30		

路径成本的计算

- o欧式距离(2-norm距离)
- o 曼哈顿距离(Manhattan distance, Block distance,1-norm距离,L1 distance)
- o切比雪夫距离(Chebychev distance, infinity norm距离)
- o 明可夫斯基距离(Minkowski距离)

欧式距离

○2-norm距离

$$\left\|\mathbf{x} - \mathbf{y}\right\|_2 = \sqrt{\sum_i (x_i - y_i)^2}$$

$$\mathbf{x} = (x_1, x_2, \dots, x_n)$$

$$\mathbf{y} = (y_1, y_2, \dots, y_n)$$

曼哈顿距离

Manhattan distance

$$\|\mathbf{x} - \mathbf{y}\|_1 = \sum_i |x_i - y_i|$$

用以标明两个点上在标准坐标系上的绝对轴距总和

绿线为欧氏距离 红线为曼哈顿距离 黄蓝线为等价曼哈顿距离

切比雪夫距离

Chebychev distance

$$\|\mathbf{x} - \mathbf{y}\|_{\infty} = \max_{i} |x_{i} - y_{i}|$$

起源于国际国王行走距离计算可用于仓储物流距离计算

明可夫斯基(Minkowski)距离

o两个体各个变量值绝对差的k次幂总和的k次

方根

$$Minkowski(\mathbf{x}, \mathbf{y}) = \sqrt[k]{\sum_{i} |x_{i} - y_{i}|^{k}}$$

k可以任意指定

k=1,曼哈顿距离

k=2,欧氏距离

 $k \to \infty$,切比雪夫距离