2 Занятие 08/09/2020: σ - и δ -алгебры, конечные разложения, кольцо, порожденное полукольцом

Задачи

- (1) Покажите, что $A\triangle B\subseteq (A\triangle C)\cup (B\triangle C)$.
- (2) Покажите, что система множеств, замкнутая относительно операций объединения и пересечения, вообще говоря, не является кольцом.
- (3) (а) Докажите, что прямое произведение полуколец является полукольцом.
 - (b) Покажите, что прямое произведение колец может не быть кольцом.
- (4) Напомним, что кольцо множеств $\mathfrak A$ называется σ -кольцом если оно вместе с каждой последовательностью A_1,\ldots,A_n,\ldots содержит $\cup A_i$. Кольцо множеств $\mathfrak A$ называется δ -кольцом если оно вместе с каждой последовательностью A_1,\ldots,A_n,\ldots содержит $\cap A_i$. Множество E называется единицей системы множеств $\mathfrak A$, если $E\in \mathfrak A$ и для любого элемента $A\in \mathfrak A$ выполнено $A\cap E=A$. Кольцо множеств с единицей называется алгеброй множеств. Аналогичным образом, σ -алгебра это σ -кольцо с единицей, а δ -алгебра δ -кольцо с единицей. Таким образом, единица системы множеств $\mathfrak A$ это максимальное множество этой системы, содержащее все другие множества, входящие в $\mathfrak A$.

Докажите, что любая σ -алгебра является δ -алгеброй и любая δ -алгебра является σ -алгеброй.

(5) Напомним определение топологического пространства. Пусть X — некоторое множество. Топологией в X называется любая система τ его подмножеств G, такая, что: $\varnothing, X \in \tau, \bigcup_{\alpha} G_{\alpha}, \bigcap_{k=1}^{n} G_{k} \in \tau$, где все $G_{i} \in \tau$. Множество X с заданной на нем топологией τ называется топологическим простанством. Множества, принадлежащие τ называются открытыми, а множества, дополнительные к открытым, называются замкнутыми.

Пусть X — топологическое пространство. Покажите, что

$$\mathfrak{A} = \{C \cap O \colon C \text{ замкнутое}, O \text{ открытое}\}$$

полукольцо подмножеств X.

- (6) Пусть $\mathfrak A$ полукольцо подмножеств множества X и пусть $Y \subset X$. Определим **сужение** полукольца $\mathfrak A$ с X на Y как $\mathfrak A_Y = \{Y \cap A \colon A \in \mathfrak A\}$. Докажите, что $\mathfrak A_Y$ является полукольцом подмножеств множества Y.
- (7) Пусть множества A, A_1, \ldots, A_n являются элементами кольца \mathfrak{A} , причем множества A_1, \ldots, A_n попарно не пересекаются и все содержатся в A. Докажите, что набор множеств $A_i, 1 \leq i \leq n$ можно дополнить множествами $A_{n+1}, \ldots, A_s \in \mathfrak{A}$ до конечного разложения

$$A = \bigcup_{k=1}^{s} A_k, \quad s \ge n.$$

- (8) Пусть заданы A_1, \ldots, A_n элементы полукольца \mathfrak{A} . Докажите, что существует конечный набор попарно непересекающихся множеств $B_1, \ldots, B_n \in \mathfrak{A}$ таких, что каждое A_i может быть записано в виде объединения элементов из $\{B_1, \ldots, B_n\}$.
- (9) Пусть $\mathfrak A$ полукольцо. Докажите, что $\mathcal R(\mathfrak A)$ совпадает с системой $\mathfrak P$ множеств, которые могут быть представлены в виде

$$A = \bigcup_{k=1}^{n} A_k, \quad A_k \in \mathfrak{A}.$$

(10) Для любой системы множеств $\mathfrak A$ существует хотя бы одна σ -алгебра, содержащая эту систему. В самом деле, положим $X = \cup_{A \in \mathfrak A} A$ и рассмотрим систему $\mathcal B$ всех подмножеств множества X. Ясно, что $\mathcal B - \sigma$ -алгебра, содержащая $\mathfrak A$. Если $\tilde{\mathcal B} -$ произвольная σ -алгебра, содержащая $\mathfrak A$ и $\tilde X$ — ее единица, то ясно, что каждое $A \in \mathfrak A$ содержится в $\tilde X$ и, следовательно, $X = \cup_{A \in \mathfrak A} A \cup \tilde X$. Назовем σ -алгебру $\mathcal B$ неприводимой по отношению к системе множеств $\mathcal A$, если $\tilde X = \cup_{A \in \mathfrak A} A$. Таким образом, неприводимая σ -алгебра — это σ -алгебра, не содержащая точек, не входящих ни в одно из $A \in \mathfrak A$.

Докажите, что для любой непустой системы множеств $\mathfrak A$ существует неприводимая по отношению к этой системе σ -алгебра $\mathcal B(\mathfrak A)$, содержащая $\mathfrak A$ и содержащаяся в любой σ -алгебре, содержащей $\mathfrak A$.

- (11) Пусть $\mathfrak A$ некоторая система множеств, а $\tilde{\mathfrak A}$ совокупность характеристических функций множеств из $\mathfrak A$. Докажите, что $\mathfrak A$ является кольцом множеств тогда и только тогда, когда $\tilde{\mathfrak A}$ алгебраическое кольцо относительно сложения и умножения по модулю 2.
- (12) Пусть задано множество X и система его подмножеств $\mathfrak A$. Функция $\mu\colon \mathfrak A\to [0,+\infty]$ называется **мерой** если $\mu(\varnothing)=0$ и для любых двух непересекающихся $A,B\in \mathfrak A$ выполнено свойство аддитивности $\mu(A\cup B)=\mu(A)+\mu(B)$. Если $\mathfrak A$ кольцо множеств, то мера объединения любого конечного числа непересекающихся множеств равна сумме мер этих множеств:

$$\mu\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} \mu(A_i).$$

Пусть задана последоваттельность неотрицательных действительных чисел a_n . Определим μ как $\mu(\varnothing)=0$ и для каждого непустого $A\subseteq\mathbb{N}$ положим $\mu(A)=\sum_{n\in A}a_n$. Докажите, что μ — мера.