CHƯƠNG 3 KỸ THUẬT MÃ HÓA TÍN HIỆU

Các kỹ thuật mã hóa

- Digital Data, Digital Signal
- Analog data, Digital Signal
- Digital Data, Analog Signal
- Analog data, Analog Signal

Digital Data, Digital Signal Dữ liệu sô, tín hiệu số

- Tín hiệu số
 - Các xung điện áp rời rạc, không liên tục
 - Mỗi xung là một phần tử tín hiệu
 - Dữ liệu nhị phân được mã hóa thành các phần tử tín hiệu

Các thuật ngữ

- Unipolar
 - Tất cả các phần tử tín hiệu có cùng dấu
- Polar
 - Một trạng thái logic được biểu diễn bằng mức điện áp dương, trạng thái logic khác được biểu diễn bằng mức điện áp âm
- Tốc độ dữ liệu (data rate)
 - Tốc độ truyền dẫn dữ liệu theo bps (bit per second)
- Khoảng rộng hoặc chiều dài 1 bit
 - □ Thời gian (thiết bị phát) dùng để truyền 1 bit

Các thuật ngữ (tiếp)

- Tốc độ điều chế (modulation)
 - Tốc độ mức tín hiệu thay đổi
 - Đơn vị là baud = số phần tử tín hiệu trong 1 giây
- Mark và Space
 - Tương ứng với 1 và 0 nhị phân

Diễn giải các tín hiệu

- Cần biết
 - Thời gian của các bit (khi nào chúng bắt đầu và kết thúc)
 - Mức tín hiệu
- Yếu tố ảnh hưởng đến việc diễn giải tín hiệu
 - □ Tỉ số SNR
 - Tốc độ dữ liệu
 - Băng thông

So sánh các phương thức mã hóa

Phổ tín hiệu

- Giảm thiểu tần số cao sẽ giảm đòi hỏi băng thông
- Giảm thiểu thành phần DC cho phép cho dòng xoay chiều kết hợp qua biến thế đưa tới sự cách ly.
- Mức độ tập trung năng lượng tại trung tâm của băng thông

Thời gian

- Đồng bộ giữa thiết bị gửi và nhận
- Đồng hồ ngoài
- Cơ chế đông bộ dự trên tín hiệu

So sánh các phương thức mã hóa (2)

- Định lỗi
 - Có thể đưa vào trong khi mã hoá tín hiệu
- Giảm thiếu giao thoa tín hiệu và nhiễu
 - Một số phương thức mã hóa tốt hơn các tphương thức khác
- Phí tốn và độ phức tạp
 - Tốc độ tín hiệu cao (cùng với tốc độ dữ liệu cao)
 dẫn đến phí tổn cao
 - Một số phương thức đòi hỏi tốc độ tín hiệu cao hơn tốc độ dữ liệu

Các phương thức mã hóa

- Nonreturn to Zero-Level (NRZ-L)
- Nonreturn to Zero Inverted (NRZI)
- Bipolar -AMI
- Pseudoternary
- Manchester
- Differential Manchester
- B8ZS
- HDB3

Nonreturn to zero (NRZ-L)

- 2 mức điện áp khác nhau cho bit 1 và bit 0,
- Điện áp không thay đổi (không có transition) khi không có sự thay đổi tín hiệu
- Ví dụ: khi không có điện áp của bít 0, sẽ có một mức điện áp không đổi cho các bít 1
- Điện áp thay đối (có transition) khi có sự thay đổi tín hiệu (từ 0→1 hoặc từ 1→0)
- Thông thường, có mức điện áp âm và mức điện áo dương

Nonreturn to zero Inverted (NRZI)

- Nonreturn to zero Inverted với các bit 1
- Dữ liệu được mã hóa căn cứ vào việc có hay không sự thay đổi tín hiệu ở đầu thời khoảng bit.
- Bit 1: được mã hóa bằng sự thay đối điện áp (có transition)
- Bit 0: được mã hóa bằng sự không thay đối điện áp (không có transition)

Nonreturn to zero

Mã hóa sai phân

- Dữ liệu được biểu diễn bằng việc thay đổi hơn là mức tín hiệu)
- Nhận biết sự thay đổi dễ dàng hơn so với nhận biết mức
- Trong các hệ thống truyền dẫn phức tạp, cảm giác cực tính dễ dàng bị mất

Ưu và nhược điểm của mã hóa NRZ

- U'u
 - Dễ dàng nắm bắt với các kỹ sư
 - Sử dụng hiệu quả băng thông
- Nhược
 - Có thành phần một chiều
 - Thiếu khả năng đồng bộ
- Dùng trong việc ghi băng từ
- Ít dùng trong việc truyền tín hiệu

Multilevel Binary

- Dùng nhiều hơn 2 mức điện áp
- Bipolar-AMI (Alternate Mark Inversion)
 - Bit-0 được biểu diễn bằng không có tín hiệu
 - Bit-1 được biểu diễn bằng xung dương hay xung âm
 - Các xung 1 thay đối cực tính xen kẽ
 - Không mất đồng bộ khi dữ liệu là một dãy 1 dài (dãy 0 vẫn bị vấn đề đồng bộ)
 - Không có thành phần một chiều
 - Băng thông thấp
 - Phát hiện lỗi dễ dàng

Pseudoternary

- 1 được biểu diễn bằng không có tín hiệu
- 0 được biểu diễn bằng xung dương âm xen kẽ nhau
- Không có ưu điểm và nhược điểm so với bipolar-AMI

Bipolar-AMI and Pseudoternary

Hạn chế của Multilevel Binary

- Không hiệu quả bằng NRZ
 - Mỗi phần tử tín hiệu chỉ biểu diễn 1 bit
 - □ Hệ thống 3 mức có thể biểu diễn log₂3 = 1.58 bit
 - Bộ thu phải có khả năng phân biệt 3 mức điện áp (+A, -A, 0)
- Cần thêm khoảng 3dB công suất để đạt được cùng xác suất bit lỗi

Biphase

Manchester

- Thay đổi ở giữa thời khoảng bit
- Thay đổi được dùng như tín hiệu đồng bộ dữ liệu
- □ L→H biểu diễn 1
- □ H→L biểu diễn 0
- □ Dùng trong IEEE 802.3

Differential Manchester

- Thay đổi giữa thời khoảng bit chỉ dùng cho đồng bộ
- Thay đổi đầu thời khoảng biểu diễn 0
- Không có thay đổi ở đầu thời khoảng biểu diễn 1
- Dùng trong IEEE 802.5

Manchester Encoding

Manchester Encoding

Differential Manchester Encoding

Differential Manchester Encoding

Ưu và nhược điểm của Biphase

- Nhược điểm
 - Tối thiểu có 1 thay đổi trong thời khoảng 1 bit và có thể có tới 2
 - Tốc độ điều chế tối đa bằng 2 lần NRZ
 - Cần nhiều băng thông hơn
- Uu điểm
 - Đồng bộ dựa vào sự thay đối ở giữa thời khoảng bit (self clocking)
 - Không có thành phần một chiều
 - Phát hiện lỗi
 - Khi thiếu sự thay đổi mong đợi

So sánh tốc độ điều biến

Scrambling

- Dùng kỹ thuật scrambling để thay thế các chuỗi tạo ra hằng số điện áp
- Chuỗi thay thế
 - Phải tạo ra đủ sự thay đổi tín hiệu, dùng cho việc đồng bộ hóa
 - Phải được nhận diện bởi bộ thu và thay thế trở lại chuỗi ban đầu
 - Cùng độ dài như chuỗi ban đầu
- Không có thành phần một chiều
- Không tạo ra chuỗi dài các tín hiệu mức 0
- Không giảm tốc độ dữ liệu
- Có khả năng phát hiện lỗi

B8ZS

- B8ZS (Bipolar With 8 Zeros Substitution)
- Dựa trên bipolar-AMI
- Nếu có 8 số 0 liên tiếp và xung điện áp cuối cùng trước đó là dương, mã thành 000+–0–+
- Nếu có 8 số 0 liên tiếp và xung điện áp cuối cùng trước đó là âm, mã thành 000-+0+-
- Gây ra 2 vi phạm mã AMI
- Khó có thể xuất hiện với tác động bởi nhiễu
- Bộ thu phát hiện và diễn giải chúng thành 8 số 0 liên tiếp

B8ZS

Amplitude

HDB3

- HDB3 (High Density Bipolar 3 Zeros)
- Dựa trên bipolar-AMI
- Chuỗi 4 số 0 liên tiếp được thay thế bởi một hoặc hai xung

HDB3

(a) If the number of 1s since the last substitution is odd

(b) If the number of 1s since the last substitution is even

28

B8ZS and HDB3

B = Valid bipolar signal V = Bipolar violation

nal 29

Dữ liệu số, tín hiệu tuần tự

- Dùng để truyền dữ liệu số trên mạng điện thoại công cộng
 - \square 300Hz \rightarrow 3400Hz
 - Sử dụng thiết bị MODEM (MOdulator-DEMulator)
- Điều biên: Amplitude-Shift Keying (ASK)
- Điều tần: Frequency-Shift Keying (FSK)
- Điều pha: Phase-Shift Keying (PSK)

Các kỹ thuật điều biến

Điều biên (ASK)

- Các giá trị thể hiện bằng các biên độ khác nhau của sóng mang
- Thông thường một biên độ bằng 0
- Dễ bị ảnh hưởng khi có sự thay đổi nhiễu điện áp
- Phương pháp này chỉ phù hợp trong truyền số liệu tốc độ thấp (~1200bps trên kênh truyền thoại)
- Tần số của tín hiệu sóng mang được dùng phụ thuộc vào chuẩn giao tiếp đang được sử dụng
- Kỹ thuật được dùng trong cáp quang

Điều biên (ASK)

Amplitude-Shift Keying

$$s(t) = \begin{cases} A_1 \cos(2\pi f_c t) & binary 1\\ A_2 \cos(2\pi f_c t) & binary 0 \end{cases}$$

Với một biên độ bằng 0

$$s(t) = \begin{cases} A_1 \cos(2\pi f_c t) & binary 1\\ 0 & binary 0 \end{cases}$$

Điều biên (ASK) với một biên độ bằng 0

Binary Frequency-Shift Keying (BFSK)

- Sử dụng hai tần số sóng mang: tần số cao tương ứng mức 1, tần số thấp tương ứng mức 0.
- Ít lỗi hơn so với ASK
- Được sử dụng truyền dữ liệu tốc độ 1200bps hay thấp hơn trên mạng điện thoại
- Có thể dùng tần số cao (3-30MHz) để truyền trên sóng radio hoặc cáp đồng trục

Binary Frequency-Shift Keying (BFSK)

Multiple Frequency-Shift Keying

- Dùng nhiều hơn 2 tần số
- Băng thông được dùng hiệu quả hơn
- Khả năng lỗi nhiều hơn
- Mỗi phần tử tín hiệu biểu diễn nhiều hơn 1 bit dữ liêu

Điều tần trên đường truyền mức âm thanh

Figure 5.8 Full-Duplex FSK Transmission on a Voice-Grade Line

Điều pha (PSK)

- Sử dụng một tần số sóng mang và thay đổi pha của sóng mang này
- Điều pha hai pha (Binary PSK): có 2 pha thể hiện 2 số nhị phân
- Điều pha biến pha (Differential PSK) thay đổi pha tương đối so với sóng trước đó (thay vì so với sóng tham chiếu cố định)

Điều pha hai pha (Binary PSK)

$$s(t) = \begin{cases} A\cos(2\pi f_c t) \\ A\cos(2\pi f_c t + \pi) \end{cases} = \begin{cases} A\cos(2\pi f_c t) & binary 1 \\ -A\cos(2\pi f_c t) & binary 0 \end{cases}$$

Điều pha biến pha (Differential PSK)

Điều pha 4 pha (Quadrature PSK - QPSK)

- Hiệu quả sử dụng cao khi mỗi thành phần tín hiệu thể hiện nhiều hơn 1 bit
 - Chuyển π/2 (90°)
- Mỗi thành phần tín hiệu thể hiện 2 bit
- Có thể sử dụng tới 8 góc và nhiều hơn 1 biên độ
- Modem tốc độ 9600bps sử dụng 12 góc, 4 trong đó có 2 biên độ.
- Offset QPSK (orthogonal QPSK)
 - Chậm lại tại Q stream

Điều pha 4 pha (PSK)

Quadrature PSK - QPSK

$$s(t) = \begin{cases} A\cos(2\pi f_c t + \frac{\pi}{4}) & 11\\ A\cos(2\pi f_c t + \frac{3\pi}{4}) & 01\\ A\cos(2\pi f_c t - \frac{3\pi}{4}) & 00\\ A\cos(2\pi f_c t - \frac{\pi}{4}) & 10 \end{cases}$$

QPSK and OQPSK Modulators

Quadrature Amplitude Modulation (QAM)

- QAM được dùng trong ADSL và một số hệ thống wireless
- Kết hợp giữa ASK và PSK
- Mở rộng logic của QPSK
- Gởi đồng thời 2 tín hiệu khác nhau cùng tần số mang
 - Dùng 2 bản sao của sóng mang, một cái được dịch đi 90
 - Mỗi sóng mang là ASK đã được điều chế
 - 2 tín hiệu độc lập trên cùng môi trường
 - Giải điều chế và kết hợp cho dữ liệu nhị phân ban đầu

Quadrature Amplitude Modulation (QAM)

QAM Modulator

Digital → Analog

Dữ liệu tuần tự, tín hiệu số

- Dùng để truyền dữ liệu tương tự trên mạng truyền dữ liệu số
- Dữ liệu số có thể truyền dùng NRZ-L hay các loại mã khác
- Thiết bị: CODEC (COder-DECoder)
- Kỹ thuật
 - Điều chế xung mã: Pulse Code Modulation (PCM)
 - Điều chế Delta: Delta Modulation (DM)

Số hóa dữ liệu tuần tự

Điều chế xung mã (PCM)

- Nếu tín hiệu f(t) được lấy mẫu đều với tốc độ lấy mẫu cao hơn tối thiểu 2 lần tần số tín hiệu cao nhất, thì các mẫu thu được chứa đủ thông tin của tín hiệu ban đầu.
- Dữ liệu tiếng nói có giới hạn tần số <4000Hz
- Tốc độ lấy mẫu cần thiết là 8000 mẫu/giây
- Analog samples (Pulse Amplitude Modulation, PAM)
- Mỗi mẫu sẽ được gán một giá trị số

Điều chế xung mã (PCM)

- PAM (Pulse Amplitude Modulation)
 - □ Các xung được lấy mẫu ở tần số R=2B
- Lượng tử hóa các xung PAM
 - Xác định giá trị của điểm được lấy mẫu, rơi vào khoảng nào thì lấy giá trị khoảng đó
 - Tùy thuộc vào các mức lượng tử 2ⁿ (n là số bit cần thiết để số hóa 1 xung)
- Mã hóa dữ liệu
 - Thực hiện các thao tác mã hóa thông tin trước khi truyền đi

Điều chế xung mã (PCM)

Điều chế xung mã

Non-linear coding

- Mức lượng tử không đều
- Giảm méo tín hiệu

Điều chế Delta (DM)

- Tín hiệu tương tự được xấp xỉ bởi hàm bậc thang (staircase)
- Hành vi nhị phân
 - Đi lên hay xuống 1 mức (δ) tại mỗi thời khoảng lấy mẫu

Điều chế Delta (DM)

Điều chế Delta (DM)

(a) Transmission

(b) Reception

Hiệu suất của điều chế

- Để tái tạo tiếng nói tốt
 - □ PCM 128 mức (7 bit)
 - Băng thông thoại 4khz
 - □ Cần 8000 x 7 = 56kbps đối với PCM
- Kỹ thuật nén dữ liệu có thế cải thiện thêm
 - Ví dụ: kỹ thuật mã xen khung (interframe coding) cho video

Dữ liệu tuần tự, tín hiệu tuần tự

- Lý do điều biến
 - Dùng để điều chế dữ liệu tương tự: thay đối tần số truyền (tần số cao hơn truyền dẫn tốt hơn)
 - Dùng cho frequency division multiplexing
- Kỹ thuật
 - Điều chế biên: Amplitude Modulation (AM)
 - Điều chế tần số: Frequency Modulation (FM)
 - Điều chế pha: Phase Modulation (PM)

Điều chế biên (AM)

Điều chế tần số (FM)

Kỹ thuật điều chế tuần tự

HÉT CHƯƠNG 3