

به نام خدا

دانشگاه تهران دانشکده مهندسی برق و کامپیوتر آزمایشگاه معماری کامپیوتر

گزارش کار

سیاوش شمس، محمدرضا توکلی	نام و نام خانوادگی اعضای گروه
۸۱۰۱۹۷۴۷۷ ۵۸۱۰۱۹۷۶۴۴	شماره دانشجویی اعضای گروه
٠١/٠۴/٠٣	تاریخ ارسال گزارش

ر ش ،	گ ۱	سيت	قص
			75

٣	Arm
۶	Forwarding
Υ	SRAM
١.	Cache

Arm

توضیح بخش های مختلف پردازنده ARM و شیوه پیاده سازی :

Instruction Fetch .\

آدرس از رجیستر PC آمده و از instruction memory دستور خوانده شده و در لوله به جلو ارسال می شود. همچنین یک سیگنال freeze برای hazard detection وجود دارد.

Instruction Decode .7

که یک بخش control unit دارد که وضعیت تمام سیگنال های کنترلی مانند memoryReadEn یا WBEn را مشخص می کند.

یک بخش condition check وضعیت سیگنال های ZCV را بررسی می کند.

رجیستر فایل که دو آدرسی که از مقدار آنها در خروجی نمایش داده می شود و یک آدرس برای wb به آن داده می شود

Execution Stage. \(\text{*}

یک بخش ALU که control unitدر بخش قبل سیگنالهای کنترلی آن را تولید کرده

Val2generator که ورودی دوم را با توجه به مود آن تعیین می کند.

Memory Stage.

synchronous و read , written و یک سیگنال دیتا و خروجی دارد. که به صورت Memory address

داده ها در خروجی قرار میگیرند.

WB Stage.Δ

از روی سیگنال MEM_R_EN متوجه می شویم که در مالتی پلکسر خروجی مموری یا ALU برای WB برای باید ارسال شود.

HAZARD DETECTION UNIT.9

با توجه به نوع دستور و رجیستر های مورد استفاده سیگنال hazard detected تولید می شود.

حالت هاى اتفاق افتادن Hazard:

Src1 = EXE_Des & EXE_WB_EN

Src1 = MEM_Dest & MEM_WB_EN

Src2 = EXE_Dest & EXE_WB_EN&Two_SRC=1

Src2 = MEM_Det & MEM_WB_EN&Two_SRC=1

شکل شماره ۱ – خروجی arm در

$$clock\ cycles = \frac{11160}{40} = 279$$

$$CPI = \frac{clock}{instructions} = \frac{279}{182} = 1.532$$

Flow Status Successful - Fri Jun 24 12:09:04 2022

Quartus II 64-Bit Version 13.0.1 Build 232 06/12/2013 SP 1 SJ Web Edition

 Revision Name
 test_armi

 Top-level Entity Name
 test_armi

 Family
 Cyclone II

 Device
 EP2C35F672C6

Timing Models Final

Total logic elements 7,873 / 33,216 (24 %)

Total combinational functions 4,723 / 33,216 (14 %)

Dedicated logic registers 5,964 / 33,216 (18 %)

Total registers 5964

Total pins 418 / 475 (88 %)

Total virtual pins 0

Total memory bits 82,944 / 483,840 (17 %)

Embedded Multiplier 9-bit elements 0 / 70 (0 %)
Total PLLs 0 / 4 (0 %)

		Node	
Ту	e Alia	s Name	248 256 264 272 280 288 296 304 312 320 328 336 344 352 360 368
B)	isterFile:RF reg_file[1]	4 X -2147483648
B)	isterFile:RF reg_file[2]	3 X 4 X -1073741824
8	9	isterFile:RF reg_file[3]	1 X 2 X 3 X 41
B	>	isterFile:RF reg_file[4]	1028 X 1032 X 8192
Ş)	Stage_Reg:IF_reg PC	_0000_00_000000000000000000000000000000
in	_	SW[2]	

$$clock\ cycles = 279$$

$$CPI = \frac{clock}{instructions} = \frac{279}{182} = 1.532$$

Forwarding

Forwarding برای جلوگیری از stall ایجاد شده در hazard اضافه می شود با استفاده از آن می freeze برای جلوگیری از stall ایجاد شده در توان تاخیر را به جز در دستور لود حذف کرد حال آنکه برای دستور لود همچنان یک کلاک stall توان تاخیر را به جز در دستور لود حذف کرد حال آنکه برای دستور لود همچنان یک کلاک علاک علایم.

به این منظور ماژول forwarding unit اضافه شده که ورودی ها به WB_stage را به وسیله ی یک mux می تواند از خروجی ALU یا MEM_STAGE مستقیما دریافت کند.

شکل شماره ۴ – خروجی modelsim forwarding

$$clock\ cycles = \frac{7780}{40} = 194.5$$

$$CPI = \frac{clock}{instructions} = \frac{194.5}{182} = 1.068$$

Successful - Fri Jun 24 13:23:02 2022 13.0.1 Build 232 06/12/2013 SP 1 SJ Web Edition new_forwarding new_forwarding
new_forwarding
new forwarding
··-·· <u>-</u> ·-··-· -
Cyclone II
EP2C35F672C6
Final
6,878 / 33,216 (21 %)
4,553 / 33,216 (14 %)
4,883 / 33,216 (15 %)
4883
418 / 475 (88 %)
0
50,176 / 483,840 (10 %)
0 / 70 (0 %)
0 / 4 (0 %)
C E F 6 4 4 4 6 5 6

شکل شماره ۵ – خروجی سنتز در کوآرتس forwading

forwading شکل شماره $9 - \epsilon$ روجی تست شده روی بورد

$$clock\ cycles = 256$$

$$CPI = \frac{clock}{instructions} = \frac{256}{182} = 1.4$$

با مقایسه ی cpi ها در بالا متوجه بهبود عملکرد نسبت به حالت arm بدون forwarding می شویم.

SRAM

حافظه داخلی پردازنده ما محدود است و در عمل ما از حافظه SRAM روی برد استفاده می کنیم، برای استفاده از این حافظه نیاز است تغییراتی در ساختار پردازنده اعمال کنیم که در ادامه به شرح این تغییرات می پردازیم

RTL مدار پردازنده به همراه SRAM مدار پردازنده به همراه

ارتباط ما با حافظه SRAM_UB_N, SRAM_OE_N, من باشد. که به غیر از SRAM_WE_EN می باشد. که به غیر از SRAM_WE_EN, SRAM_WE_EN می باشد. که به غیر از SRAM_CE_EN, SRAM_WE_EN بقیه سیگنال های کنترلی را و قرار می دهیم. این سیگنال کنترلی از طریق SRAM_Controller به SRAM_Controller بودن سیگنال های حافظه داده می شود. کنترلر حافظه شامل یک شمارنده می باشد که در صورت ۱ بودن سیگنال های ورودی mem_w_en یا mem_r_en شروع به شمارش می کند و اگر دستور ما از نوع write بود کنترلر سیگنال سیگنال SRAM_WE_E را صفر می کند و در طی دو سیکل و قرار دادن آدرس مربوطه روی باس address داده را روی SRAM می نویسد و اگر دستور ما از نوع read باشد کنترلر سیگنال SRAM_WE_E را یک می کند و در طی دو سیکل و قرار دادن آدرس مربوطه روی باس sRAM_WE_E را از روی SRAM می خواند. همچنین در طی مراحل خواندن و نوشتن نیاز است تا سیگنال ready است که در طی عملیات خواندن و نوشتن خط لوله را متوقف می صفر باشد، این سیگنال همان freeze است که در طی عملیات خواندن و نوشتن خط لوله را متوقف می

SRAM شکل Λ شکل موج پردازنده به همراه

شکل ۹- شکل موج پردازنده به همراه SRAM با تست روی برد

همانطور که می بینیم نتیجه برنامه در تعداد کلاک بیشتری آماده شده است و در نتیجه کارایی پردازنده کاهش می یابد.

Quartus II 64-Bit Version	13.0.1 Build 232 06/12/2013 SP 1 SJ Web Edition
Revision Name	sram_report
Top-level Entity Name	sram_report
Family	Cyclone IV GX
Total logic elements	2,648
Total combinational functions	2,159
Dedicated logic registers	815
Total registers	815
Total pins	418
Total virtual pins	0
Total memory bits	0
Embedded Multiplier 9-bit elements	0
Total GXB Receiver Channel PCS	0
Total GXB Receiver Channel PMA	0
Total GXB Transmitter Channel PCS	0
Total GXB Transmitter Channel PMA	0
Total PLLs	0

$$clock\ cycles = \frac{8430}{20} = 422$$

$$CPI = \frac{clock}{instructions} = \frac{422}{182} = 2.32$$

Cache

			Node	0													
Тур	oe .	Alias	Name	248 256	264	272	280	288 296	304	312	320	328	336	344	352	360	368
Be	>		$ \\ \hline \pm \cdots isterFile:RF[reg_file[1]$	4		\equiv X \equiv					-214748	3648					
Ba	>		isterFile:RF reg_file[2]	3	X	4 X					-10737	1824					
Bo	9		• isterFile:RF[reg_file[3]	1 (2	Х 3	X					4	1					
B-	» T		⊞ ·isterFile:RF reg_file[4]	1028	1032		X				8	192					
≨ ₃	>		Stage_Reg:IF_reg PC			0000000	_xxxxxxxxxx	>>>>>>	XXXXXXXXXXX	XXXXXXXX	000000000	XXXXXXXXX	XXXXXXXX	000000000	0000000000	XXXXXXXXXX	00000000
B	_		SW[2]														

$$clock\ cycles = 279$$

$$CPI = \frac{clock}{instructions} = \frac{279}{182} = 1.532$$

شکل ۱۲- شکل موج پردازنده به همراه SRAM با تست روی برد

$$clock\ cycles = 834$$

$$CPI = \frac{clock}{instructions} = \frac{834}{182} = 4.58$$

شکل۱۳- شکل موج پردازنده به همراه SRAM و Cache با تست روی برد

$$clock\ cycles = 705$$

$$CPI = \frac{clock}{instructions} = \frac{705}{182} = 3.87$$

Quartus II 64-Bit Version	13.0.1 Build 232 06/12/2013 SP 1 SJ Web Edition
Revision Name	test_cache_rep
Top-level Entity Name	test_cache_rep
Family	Cyclone IV GX
Total logic elements	19,441
Total combinational functions	18,913
Dedicated logic registers	856
Total registers	856
Total pins	418
Total virtual pins	0
Total memory bits	0
Embedded Multiplier 9-bit elements	0
Total GXB Receiver Channel PCS	0
Total GXB Receiver Channel PMA	0
Total GXB Transmitter Channel PCS	0
Total GXB Transmitter Channel PMA	0
Total PLLs	0

شكل ۱۴- سخت افزار مورد استفاده

همانطور که می بینیم با اضافه کردن cache کارایی پردازنده بهبود یافته است اما هزینه سخت افزاری افزایش داشته است. و با مقایسه ۳ حالت فوق می بینیم که کارایی پردازنده هنگام استفاده از حافظه داخلی پردازنده از بقیه حالت ها بیشتر است و همچنین سخت افزار کمتری استفاده می شود اما دیدیم که حافظه داخلی پردازنده محدودیت هایی دارد و معمولا از حافظه بیرونی استفاده می شود. استفاده از SRAM همراه کردازنده محدودیت بهتری نسبت به SRAM تنها دارد اما هزینه سخت افزاری آن بیشتر است.

