Definition: Enc-Forge_{\mathcal{A},Π}(n): Run Gen(1^n) to obtain k. Adversary \mathcal{A} is given input 1^n and access to an encryption oracle $\mathsf{Enc}_k(\cdot)$. They output ciphertext c. Let $m := \mathsf{Dec}_k(c)$, and let Q denote the set of all queries that \mathcal{A} asked its encryption oracle. The output of the experiment is 1 iff $m \neq \bot$ and $m \notin Q$.

Definition: Unforgeable: A private-key encryption scheme Π such that for all PPT adversaries \mathcal{A} , $\Pr[\mathsf{Enc}\text{-}\mathsf{Forge}_{\mathcal{A},\Pi}(n)=1] \leq \mathsf{negl}(n)$.

Definition: <u>Authenticated</u>: A private-key encryption scheme that is CCA-secure and unforgeable.

Construction: Encrypt-and-authenticate: Given plaintext m, sender transmits $\langle c, t \rangle$, where $c \leftarrow \mathsf{Enc}_{k_E}(m)$ and $t \leftarrow \mathsf{Mac}_{k_M}(m)$. The receiver behaves as expected, obtaining m from $\mathsf{Dec}_{k_E}(c)$, and running $\mathsf{Vrfy}_{k_M}(m,t)$. It is likely the case here that t leaks information about the message (often, MACs are deterministic, breaking CPA-security), and so this is $\underline{\mathsf{not}}$ an authenticated encryption scheme.

Construction: Authenticate-then-encrypt: Given plaintext m, sender transmits c, where $t \leftarrow \mathsf{Mac}_{k_M}(m)$ and $c \leftarrow \mathsf{Enc}_{k_E}(m||t)$. The receiver behaves as expected, decrypting m||t from c, then checking $\mathsf{Vrfy}_{k_M}(m,t)$. If, for example, a CBC-mode-with-padding scheme is used, the decrypt algorithm will return a "bad padding" error, while if the padding passes, Vrfy will return an "authentication failure". This difference can leak information and allow for various attacks on the scheme, so this is $\underline{\mathsf{not}}$ an authenticated encryption scheme.

Construction: Encrypt-then-authenticate: Given plaintext m, sender transmits $\langle c, t \rangle$, where $c \leftarrow \operatorname{Enc}_{k_E}(m)$ and $t \leftarrow \operatorname{Mac}_{k_M}(m)$. The receiver behaves as expected, checking $\operatorname{Vrfy}_{k_M}(c,t)$, then decrypting m as $\operatorname{Dec}_{k_E}(c)$. Of the three listed, this is the only one that is an authenticated encryption scheme (Assuming that Enc is CPA-secure, Mac is strongly secure, and k_E and k_M are chosen independently uniformly at random.) There are 3 major types of network attacker attacks. In a reordering attack, an attacker swaps the order of messages sent across a network, making c_2 arrive before

In a <u>replay attack</u>, an attacker resends messages later. In a <u>reflection attack</u>, an attacker sends messages from a sender back to them at a later time, which the other person never sent.

 c_1 .

The first two attacks can be prevented when A and B (the two people communicating across the network) keep counters, $\mathsf{ctr}_{A,B}$ and $\mathsf{ctr}_{B,A}$, of how many messages have been sent/received in each direction.

A reflection attack can either be prevented by having a reflection bit b to say who the sender is, or by having a different key-set for messages going different directions.

In the $\mathsf{Mac}\text{-}\mathsf{forge}^{1\text{-}\mathsf{time}}_{\mathcal{A},\Pi}$ experiment, adversary \mathcal{A} outputs m', is given a tag $t' \leftarrow \mathsf{Mac}_k(m')$, then can calculate and think, then output $(m,t), m \neq m'$, which are verified as usual to determine success.

Definition: $\underline{\varepsilon}$ -secure (also one-time ε -secure): A MAC $\Pi = (\mathsf{Gen}, \mathsf{Mac}, \mathsf{Vrfy})$ such that for all (even unbounded) adversaries $\mathcal{A}, \Pr[\mathsf{Mac}\text{-}\mathsf{forge}^{1\text{-}\mathsf{time}}_{\mathcal{A},\Pi} = 1] \leq \varepsilon.$

Definition: Strongly universal: A function $h: \mathcal{K} \times \mathcal{K} \to \mathcal{T}$ such that for all distinct $m, m' \in \mathcal{M}$, and all $t, t' \in \mathcal{T}$, it holds that $\Pr[h_k(m) = t \land h_k(m1) = t'] = \frac{1}{|\mathcal{T}|^2}$, where the probability is taken over uniform choice of $k \in \mathcal{K}$.

Construction: : Let $h: \mathcal{K} \times \mathcal{M} \to \mathcal{T}$ be a strongly universal function. Define a MAC as follows: **Gen**: uniform $k \in \mathcal{K}$. Mac: given k, m, output tag $t := h_k(m)$. Vrfy: On input k, m, t, output 1 iff $t \stackrel{?}{=} h_k(m)$.

Theorem: : If h is a strongly universal function, then the above construction is a $\frac{1}{|\mathcal{T}|}$ -secure MAC for messages in \mathcal{M} .

Theorem: : for any prime p, the function h defined as $h_{a,b}(m) = [a \cdot m + b \mod p]$, where $\mathcal{M} = \mathbb{Z}_p$, and $\mathcal{K} = \mathbb{Z}_p \times \mathbb{Z}_p$, so $(a,b) \in \mathcal{K}$, $m \in \mathcal{M}$, is strongly universal.

Definition: <u>Hash function</u>: A function with output length ℓ is a pair of PPT algorithms (Gen, H) such that Gen(1ⁿ) outputs a key s, and H takes s and a string $x \in \{0,1\}^*$, and outputs a string $H^s(x) \in \{0,1\}^n$, assuming n is implicit in s.

Definition: Compression function (fixed-length hash function for inputs of length ℓ'): a hash function where H^s is only defined for inputs $x \in \{0,1\}^{\ell'(n)}$, and $\ell'(n) > \ell(n)$.

Definition: Hash-Coll_{A,Π}(n): $s \leftarrow \text{Gen}(1^n)$. Adversary A is given s and outputs x, x'. (If Π is fixed-length, then $x, x' \in \{0, 1\}^{\ell'(n)}$.) The output is 1 (success) iff $x \neq x'$ but $H^s(x) = H^s(x')$.

Definition: Collision resistant: A has function $\Pi = (\mathsf{Gen}, H)$ such that for all PPT adversaries \mathcal{A} , $\mathsf{Pr}[\mathsf{Hash}\text{-}\mathsf{Coll}_{\mathcal{A},\Pi}(n) = 1] \leq \mathsf{negl}(n)$.

Definition: Second-preimage resistance (target-collision resistance): A hash function such that given s and x, an adversary cannot find x' such that $x' \neq x$ and $H^s(x) \neq H^s(x')$.

Definition: Preimage resistance: A hash function such that given s and y, an adversary cannot find x such that $H^s(x) = y$.

Construction: Merkle-Damgård: Let (Gen, h) be a fixed-length hash function for inputs of length 2n and with output length n. Construct (Gen, H) as follows: Gen = Gen, H: given s and $x \in \{0,1\}^*$ of length $L < 2^n$, let $B = \left\lceil \frac{L}{n} \right\rceil$, pad x so its length is a multiple of n. Consider the padded result as n-bit blocks x_1, \ldots, x_B . Set $x_{B+1} = L$. Set $z_0 = 0^n$, as the IV. For $i = 1, \ldots, B+1$,

let $z_i = h^s(z_{i-1}||x_i)$. Output z_{B+1} .

Theorem: If (Gen, h) is collision resistant, then so is (Gen, H).

Construction: <u>Hash-and-MAC</u>: Let $\Pi = (\mathsf{Mac}, \mathsf{Vrfy})$ be a MAC for length $\ell(n)$, let $\Pi_H(\mathsf{Gen}_H, H)$ be a hash function, with output length $\ell(n)$. Construct MAC $\Pi' = (\mathsf{Gen}', \mathsf{Mac}', \mathsf{Vrfy}')$ as follows: Gen' : Takes 1^n , choses uniform $k \in \{0,1\}^n$, $s \leftarrow \mathsf{Gen}_H(1^n)$, outputs key $k' = \langle k, s \rangle$. Mac' : Given $\langle k, s \rangle$, $m \in \{0,1\}^*$, output $t \leftarrow \mathsf{Mac}_k(H^s(m))$. Vrfy': Given $\langle k, s \rangle$, $m \in \{0,1\}^*$, tag t, output 1 iff $\mathsf{Vrfy}_k(H^s(m),t)=1$.

Theorem: : If Π is a secure MAC and Π_H is collision resistant, the above construction is a secure MAC for arbitrary-length messages.

Construction: <u>HMAC</u>: Let (Gen_H, H) be a Merkle-Damgård-generated hash function on (Gen_H, h) taking inputs of length n + n'. Let opadand ipadbe fixed constants of length n'. Define a MAC as follows: Gen: Given

 $1^n, s \leftarrow \mathsf{Gen}_H(1^n)$, uniform random $k \in \{0, 1\}^{n'}$. Output key $\langle s, k \rangle$. Mac: Given $\langle s, k \rangle$ and $m \in \{0, 1\}^*$, output $t := H^s\left((k \oplus \mathsf{opad})||H^s((k \oplus \mathsf{ipad})||m)\right)$. Vrfy: Given $\langle s, k \rangle$, $m \in \{0, 1\}^*$, tag t, output 1 iff t recomputes correctly.

Definition: Weakly collision resistant: A Hash function (Gen_H, H) defined as a Merkle-Damgård transform, except with k = IV being uniformly chosen from $\{0, 1\}^n$, such that every PPT adversary \mathcal{A} has at most negligible success finding a collision (without knowing k.).

Theorem: : Let $k_{out} = h^s(IV||(k \oplus \text{opad}))$, \hat{y} be the length-padded y, including anything before it, $\mathsf{Mac}_k(y) = h^s(k||\hat{y})$, and $G^s(k) = h^s(IV||(k \oplus \text{opad}))$ $||h^s(IV||(k \oplus \text{ipad})) = k_{out}||k_{in}$. If G^s is a PRG for any s, $\mathsf{Mac}_k(y)$ is a secure fixed-length mac for messages of length n, and (Gen_H, H) is weakly collision resistant, then HMAC is a secure MAC for arbitrary-length messages.