

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ _	«Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

Отчёт по лабораторной работе № 6

Название:	Муравьиный алгоритм		
Дисциплина:	Анализ алгоритмов		
Студент		(Подпись, дата)	М.А. Козлов (И.О. Фамилия)
Преподователь		(Подпись, дата)	

Содержание

Вве	едение		
1	Анали	тический раздел	
2	Консту	Констукторский раздел	
	2.1	Разработка алгоритмов	
	2.2	Требования к функциональности ПО	
	2.3	Тестирование	
3 Технологический раздел			
	3.1	Средства реализации	
	3.2	Листинг программы	
	3.3	Тестирование	
4	Экспер	иментальный раздел	
	4.1	Сравнительный анализ на основе замеров времени работы алгоритмов 8	
	4.2	Вывод	
Зак	лючени	re	
Спі	исок ис	пользованных источников	

Введение

Муравьиный алгоритм – один из эффективных полиномиальных алгоритмов для нахождения приближённых решений задачи коммивояжёра, а также решения аналогичных задач поиска маршрутов на графах.

Целью данной лабораторной работы является изучение муравьиных алгоритмов и приобретение навыков параметризации методов на примере муравьиного алгоритма, примененного к задаче коммивояжера.

Задачи данной лабораторной работы:

- 1) рассмотренть муравьиный алгоритм и алгоритм полного перебора в задаче коммивояжера;
 - 2) реализовать эти алгоритмы;
 - 3) сравнить время работы этих алгоритмов.

1 Аналитический раздел

В данном разделе будут рассмотрены алгоритмы.

2 Констукторский раздел

В данном разделе будут рассмотрены схемы алгоритмов, требования к функциональности ΠO , и опредены способы тестирования.

2.1 Разработка алгоритмов

Ниже будут представлены схемы алгоритмов:

- 1) алгоритм 1 (рисунок ??);
- 2) алгоритм 2 (рисунок ??);
- 3) алгоритм 3 (рисунок ??).

2.2 Требования к функциональности ПО

В данной работе требуется обеспечить следующую минимальную функциональность консольного приложения:

- 1);
- 2) .

2.3 Тестирование

Тестирование Π О будет проводиться методом чёрного ящика. Необходимо проверить работу системы на случаях, когда .

3 Технологический раздел

В данном разделе будут выбраны средства реализации ПО и представлен листинг кода.

3.1 Средства реализации

В данной работе используется язык программирования python [1], так как он позволяет написать программу в относительно малый срок. В качестве среды разработки использовалась Visual Studio Code [2].

Для замера процессорного времени была использована функция process_time модуля time [3]. Она возвращает значение в долях секунды суммы системного и пользовательского процессорного времени текущего процесса и не включает время, прошедшее во время сна.

3.2 Листинг программы

Ниже представлены листинги кода алгоритмов:

- 1) полным перебором (листинг 3.1);
- 2) бинарным поиском (листинг 3.2);
- 3) поиском по сегментам (листинг 3.3).

Листинг 3.1 — Реализация алгоритма поиска слов в словаре полным перебором

Листинг 3.2 — Реализация алгоритма двоичного поиска слова в словаре

Листинг 3.3 — Реализация алгоритма поиска слова в словаре по сегментам

3.3 Тестирование

В таблице ?? отображён возможный набор тестов для тестирования методом чёрного ящика, результаты которого, представленные на рисунке 3.1, подтверждают прохождение программы перечисленных тестов.

```
bruteForceDictionary = { } word: 1 value: Не найдено binarySearchDictionary = { } word: 1 value: Не найдено segmentSearchDictionary = { } word: 1 value: Не найдено bruteForceDictionary = {'1': 2 } word: 1 value: 2 binarySearchDictionary = {'1': 2 } word: 1 value: 2 segmentSearchDictionary = {'1': 2 } word: 1 value: 2 bruteForceDictionary = {'2':1, '1': 2 } word: 1 value: 2 binarySearchDictionary = {'2':1, '1': 2 } word: 1 value: 2 segmentSearchDictionary = {'2':1, '1': 2 } word: 1 value: 2 bruteForceDictionary = {'2':1, '1': 2 } word: 1 value: 2 bruteForceDictionary = {'2':1, '1': 2 } word: 3 value: Не найдено binarySearchDictionary = {'2':1, '1': 2 } word: 3 value: Не найдено segmentSearchDictionary = {'2':1, '1': 2 } word: 3 value: Не найдено segmentSearchDictionary = {'2':1, '1': 2 } word: 3 value: Не найдено
```

Рисунок 3.1 — Результаты тестирования алгоритмов.

4 Экспериментальный раздел

В данном разделе будут проведены эксперименты для проведения сравнительного анализа трёх алгоритмов по затрачиваемому процессорному времени в зависимости от индекса слова в словаре. Тестирование проводилось на ноутбуке с процессором Intel(R) Core(TM) i5-7200U CPU 2.50 GHz [4] под управлением Windows 10 с 8 Гб оперативной памяти.

4.1 Сравнительный анализ на основе замеров времени работы алгоритмов

В рамках данного проекта были проведёны эксперименты по замеру времени работы алгоритмов :

- 1) 1 (график ??);
- 2) 2 (график ??);
- 3) 3 (график ??).

4.2 Вывод

В ходе экспериментов по замеру времени работы было установлено, что

Заключение

В ходе выполнения данной лабораторной работы были изучены

Список использованных источников

- 1. Python. // [Электронный ресурс]. Режим доступа: https://www.python.org/, (дата обращения: 01.10.2020).
- 2. Visual Studio Code Code Editing. // [Электронный ресурс]. Режим доступа: https://code.visualstudio.com, (дата обращения: 01.10.2020).
- 3. Process time. // [Электронный ресурс]. Режим доступа: https://docs-python.ru/standart-library/modul-time-python/funktsija-process-time-modulja-time, (дата обращения: 01.10.2020).
- 4. Intel® Core™ i5-7200U Processor. // [Электронный ресурс]. Режим доступа: https://www.intel.com/content/www/us/en/products/processors/core/i5-processors/i5-7200u.html, (дата обращения: 26.09.2020).