Дифференциальная геометрия. Типовой расчет

ЗАДАНИЕ 1.

- а) Найти репер Френе и кривизну кривой $\alpha(t)$.
- b) Найти угол между кривой $\alpha(t)$ и кривой, заданной уравнением F(x,y)=0, в т. M_0 .
- в) Для обеих кривых написать уравнения соприкасающихся окружностей в т. M_0 , сделать чертеж.

N	$\alpha(t)$	F(x,y)	M_0	N	$\alpha(t)$	F(x,y)	M_0
1	$(t^2+2,t+1)^T$	$x^2 + 2y^2 - 6$	(2,1)	2	$(t,t^2-2t+3)^T$	$2x^2 + y^2 - 6$	(1,2)
3	$(t^2 - 1, t)^T$	$4x^2 + 4x + y^2$	(-1,0)	4	$(t, -t^2 - 1)^T$	$x^2 + 2y^2 + 2y$	(0,-1)
5	$(t^2-t+2,t+1)^T$	$x^2 + 2y^2 - 6$	(2,1)	6	$(-t^2 - 1, t)^T$	$x^2 + x + y^2$	(-1,0)
7	$(t, t^2 - 1)^T$	$x^2 + y^2 + y$	(0,-1)	8	$(-t^2 - 1, 2t)^T$	$4x^2 + 4x + y^2$	(-1,0)
9	$(t+1, t^2+2)^T$	$y^2 + 2x^2 - 6$	(1,2)	10	$(t^2 - 2t + 3, t)^T$	$2y^2 + x^2 - 6$	(2,1)
11	$(t, t^2 - 1)^T$	$4y^2 + 4y + x^2$	(0,-1)	12	$(-t^2 - 1, t)^T$	$y^2 + 2x^2 + 2x$	(-1,0)
13	$(t^2+2,t+1)^T$	$x^2 - 2y^2 - 2$	(2,1)	14	$(t, t^2 - 2t + 3)^T$	$2x^2 - y^2 + 2$	(1,2)
15	$(t^2 - 1, t)^T$	$4x^2 + 4x - y^2$	(-1,0)	16	$(t, -t^2 - 1)^T$	$x^2 - 2y^2 - 2y$	(0, -1)
17	$(t^2-t+2,t+1)^T$	$x^2 - 2y^2 - 2$	(2,1)	18	$(-t^2 - 1, t)^T$	$x^2 + x - y^2$	(-1,0)
19	$(t, t^2 - 1)^T$	$x^2 - y^2 - y$	(0,-1)	20	$(-t^2 - 1, 2t)^T$	$4x^2 + 4x - y^2$	(-1,0)
21	$(t+1,t^2+2)^T$	$y^2 - 2x^2 - 2$	(1,2)	22	$(t^2 - 2t + 3, t)^T$	$2y^2 - x^2 + 2$	(2,1)
23	$(t, t^2 - 1)^T$	$4y^2 + 4y - x^2$	(0,-1)	24	$(-t^2 - 1, t)^T$	$y^2 - 2x^2 - 2x$	(-1,0)

ЗАДАНИЕ 2. Определить тип особых точек, написать уравнения касательных в этих точках (если они есть), построить образ кривой.

1	$\alpha(t) = (t^2, -t^3 - t^2)^T$	2	$\alpha(t) = (\sin^3 t, \cos^3 t)^T$
3	$\alpha(t) = (-t^2 + 1, t^3 - t^2)^T$	4	$x^5 - (y - x^2)^2 = 0$
5	$y^2 = x^2 - x^4$	6	$\alpha(t) = (\operatorname{sh} t - t, \operatorname{ch} t - 1)^T$
7	$\alpha(t) = (t^2, -t^4 + t^5)^T$	8	$x^2 = y^2 - 4y^4$
9	$\alpha(t) = (t^2, -2t^4 + t^5)^T$	10	$\alpha(t) = (t^2/(1+t^2), t^3/(1+t^2))^T$
11	$\alpha(t) = (t - \sin t, 1 - \cos t)^T$	12	$y^2(2-x) = x^2(2+x)$
13	$\alpha(t) = (-t^4 + t^5, t^2)^T$	14	$\alpha(t) = (2t^3/(1+t^2), 2t^2/(1+t^2))^T$
15	$\alpha(t) = (-t^3 - t^2, t^2)^T$	16	$\alpha(t) = (t^3 - t^2, -t^2 + 1)^T$
17	$y^5 - (x - y^2)^2 = 0$	18	$\alpha(t) = (t^3 - 2t^2, t^2)^T$
19	$x^2 = y^2 - y^4$	20	$\alpha(t) = (-2t^4 + t^5, t^2)^T$
21	$\alpha(t) = (t^2, t^3 - 2t^2)^T$	22	$y^2(3-x) = x^2(3+x)$
23	$\alpha(t) = (1 - \cos t, t - \sin t)^T$	24	$\alpha(t) = (t^2, t^3 + t^2 - t^4)^T$

ЗАДАНИЕ 3.

В вариантах 1-6, 13-18 найти кривизну и кручение кривой в точке, написать уравнение соприкасающейся плоскости в этой точке. В вариантах 7-12, 19-24 доказать, что кривая целиком лежит в некоторой гиперплоскости. Найти последний вектор репера Френе, написать уравнение этой гиперплоскости.

N	$\alpha(t)$	N	$\alpha(t)$
1	$(t, 1-t, t^2/2)^T, t=2$	2	$(2\operatorname{ch} t, 2\operatorname{sh} t, 2t)^T, t = 0$
3	$(e^t \cos t, e^t \sin t, e^t)^T, t = 0$	4	$(\operatorname{ch} t, -\operatorname{sh} t, -t)^T, t = 1$
5	$(t, t^2/2, t^3/6)^T, t = 0$	6	$(1-t, t+t^2/2, t^2/2)^T, t=1$
7	$(2t, t^2, t^3 - t, t - 11)^T$	8	$(t^2+t+1,t,t^3,t^2-t-2)^T$
9	$(t^4 + t^2 + 1, t^2, t^4, t^3 + 2)^T$	10	$(t^3 + 7, t - 5, t^4 + t, t^4 - t)^T$
11	$(t^5, t^2 + t^5, t^2 + 1, t^3)^T$	12	$(t^3, t-4, t^3+t^2+t, t^2+1)^T$
13	$(e^t, e^t \cos t, e^t \sin t)^T, t = 0$	14	$(1+t, -t+t^2/2, t^2/2)^T, t = -1$
15	$(1-t, t, t^2/2)^T, t=2$	16	$(2t, 2\operatorname{ch} t, 2\operatorname{sh} t)^T, t = 0$
17	$(-t, \operatorname{ch} t, -\operatorname{sh} t)^T, t = 1$	18	$(t^2/2, -t^3/6, -t)^T, t = 0$
19	$(2t, 2t^2 - t, t^3 - t, t - 11)^T$	20	$(t^5, t^2 + 1, t^3, 5t^2 + t^5)^T$
21	$(t^3/3+t^2+1,t^2+1,t^3/3,t+3)^T$	22	$(t-3, t^4+t, t^3+5, t^4-t)^T$
23	$(t, t^2 + t + 2, t^3, t^2 - t - 2)^T$	24	$(t^4, t^2 + 2t + 2, t - 4, t^2 - t + 1)^T$

ЗАДАНИЕ 4.

- 1,24. Найти длину кривой u = 3v, 0 < v < 2, и угол между кривыми u = 3v и u = v вдоль катеноида $f(u,v) = (a \operatorname{ch} \frac{u}{a} \cos v, a \operatorname{ch} \frac{u}{a} \sin v, u)^T$.
- 2,23. Найти длину кривой $u = \pi/4$, $-\pi < v < \pi$, и угол между кривыми u = v и u = -v на эллипсоиде $f(u,v) = (a\cos u\cos v, a\cos u\sin v, c\sin u)^T$.
- 3,22. Найти длину кривой u = 2v, 0 < u < 1, вдоль эллиптического параболоида $f(u, v) = (u\cos v, u\sin v, u^2)^T$.
- 4,21. Найти угол между векторами стандартного базиса касательного пространства в т.
- (2,0) и (2,1) зонтика Уитни $f(u,v) = (u,uv,v^2)^T$. Найти длину кривой $u=3,\,0 < v < 2$.
- 5,20. Найти длину кривой $u=-2v,\,0< v<1,$ и угол между кривыми u=-2v и u=v вдоль катеноида $f(u,v)=(a\operatorname{ch}\frac{u}{a}\cos v,a\operatorname{ch}\frac{u}{a}\sin v,u)^T.$
- 6,19. Найти длину кривой $u = \pi/3$, $-\pi < v < \pi$, и угол между кривыми u = v и u = -v на эллипсоиде $f(u,v) = (a\cos u\cos v, a\cos u\sin v, c\sin u)^T$.
- 7,18. Найти угол между векторами стандартного базиса касательного пространства в т. (2,0) и (2,1) обезьянего седла $f(u,v)=(u,v,u^3-3uv^2)^T$. Найти длину кривой u=1, 0< v<1.
- 8,17. Найти длину кривой 2u = v, 0 < u < 1, вдоль эллиптического параболоида $f(u, v) = (2u\cos v, 2u\sin v, u^2)^T$.
- 9,16. Найти длину кривой u = 2v, 0 < u < 1, вдоль конуса $f(u,v) = (au\cos v, au\sin v, u)^T$, и угол между кривыми $u 2 = \pm v$.
- 10,15. Найти длину кривой $u=av,\ 0< u<1$, вдоль гиперболического параболоида $f(u,v)=(u,v,uv)^T$, и угол между векторами стандартного базиса касательного пространства в т. (1,1)
- 11,14. Найти длину кривой 2u = v, 0 < u < 1, вдоль конуса $f(u,v) = (au\cos v, au\sin v, u)^T$, и угол между кривыми $u 1 = \pm v$.
- 12,13. Найти длину кривой $v=au,\ 0< u<1,$ вдоль гиперболического параболоида $f(u,v)=(u,v,uv)^T,$ и угол между векторами стандартного базиса в т. (1,-1).

ЗАДАНИЕ 5.

1,13. Найти площадь "внутренней" (т.е. заключенной внутри цилиндра $x^2+y^2=a^2$) части поверхности тора

 $f(u,v) = ((a+b\cos u)\cos v, (a+b\cos u)\sin v, b\sin u)^T, 0 < u < 2\pi, 0 < v < 2\pi.$

2,14. Найти площадь полосы -1 < u < 1 на поверхности катеноида

 $f(u,v) = \left(a \operatorname{ch} \frac{u}{a} \cos v, a \operatorname{ch} \frac{u}{a} \sin v, u\right)^{T}, -\infty < u < +\infty, \ 0 < v < 2\pi.$

3,15. Найти площадь "внешней" (т.е. находящейся вне цилиндра $x^2+y^2=a^2$) части поверхности тора

 $f(u,v) = ((a+b\cos u)\cos v, (a+b\cos u)\sin v, b\sin u)^T, \ 0 < u < 2\pi, \ 0 < v < 2\pi.$

4,16. Найти объем области

 $f(u, v, w) = (w \cos u \cos v, w \cos u \sin v, w \sin u)^T, \pi/4 < u < \pi/2, -\pi < v < \pi, 0 < w < R.$

5,17. Найти объем части тора

 $f(u,v,w) = ((a+w\cos u)\cos v, (a+w\cos u)\sin v, w\sin u)^T, 0 < u < 2\pi, 0 < v < 2\pi, 0 < w < b,$ заключенной внутри цилиндра $x^2 + y^2 = a^2$.

6,18. Найти объем части тора

 $f(u,v,w) = ((a+w\cos u)\cos v, (a+w\cos u)\sin v, w\sin u)^T, 0 < u < 2\pi, 0 < v < 2\pi, 0 < w < b,$ находящейся вне цилиндра $x^2 + y^2 = a^2$.

7,19. Найти площадь полосы шириной 30 градусов вдоль экватора сферы

 $f(u,v) = (R\cos u\cos v, R\cos u\sin v, R\sin u)^T, -\pi/2 < u < \pi/2, -\pi < v < \pi.$

8,20. Найти объем тора

 $f(u, v, w) = ((a + w \cos u) \cos v, (a + w \cos u) \sin v, w \sin u)^T, 0 < u < 2\pi, 0 < v < 2\pi, 0 < w < b.$

9,21. Найти площадь области шириной 30 градусов вокруг полюса сферы

 $f(u,v) = (R\cos u\cos v, R\cos u\sin v, R\sin u)^T, -\pi/2 < u < \pi/2, -\pi < v < \pi.$

10,22. Найти площадь области 0 < u < 1 на эллиптическом параболоиде

 $f(u,v) = (u\cos v, u\sin v, u^2)^T, \ 0 < u < \infty, \ -\pi < v < \pi.$

11,23. Найти площадь области, ограниченной кривой $u^2+v^2=1$, на гиперболическом параболоиде $f(u,v)=(u,v,uv)^T$.

12,24. Найти площадь поверхности конуса, ограниченной вершиной конуса и кривой u=1, $f(u,v)=(au\cos v,au\sin v,u)^T,\,-\infty< u<\infty,\,-\pi< v<\pi,.$

ЗАДАНИЕ 6.

- 1. Найти главные кривизны, полную и среднюю кривизны, а также главные направления, определить тип точек на эллипсоиде $f(u,v) = (a\cos u\cos v, a\cos u\sin v, c\sin u)^T$.
- 2. Найти главные кривизны, полную и среднюю кривизны, а также главные направления, определить тип точек на эллиптическом параболоиде $f(u,v) = (u\cos v, u\sin v, u^2)^T$.
- 3. Найти главные кривизны, полную и среднюю кривизны, а также главные направления, определить тип точек на эллиптическом цилиндре $f(u,v) = (a\cos v, b\sin v, u)^T$.
- 4. Найти главные кривизны, полную и среднюю кривизны, а также главные направления, определить тип точек на торе $f(u, v) = ((a + b \cos u) \cos v, (a + b \cos u) \sin v, b \sin u)^T, a > b.$
- 5. Найти главные кривизны, полную и среднюю кривизны, а также главные направления, определить тип точек на параболическом цилиндре $f(u, v) = (v, av^2, u)^T$.
- 6. Найти полную и среднюю кривизны, определить тип точек на гиперболическом параболоиде $f(u,v) = (u \operatorname{ch} v, u \operatorname{sh} v, u^2)^T$, а также главные направления в точках, лежащих на кривой v = 0.
- 7. Найти матрицу основного оператора, полную и среднюю кривизны в произвольной точке катеноида $f(u, v) = (a \operatorname{ch}(u/a) \cos v, a \operatorname{ch}(u/a) \sin v, u)^T$. Определить тип точек.

- 8. Найти матрицу основного оператора, полную и среднюю кривизны в произвольной точке геликоида $f(u, v) = (u \cos v, u \sin v, v)^T$. Определить тип точек.
- 9. Найти матрицу основного оператора, полную и среднюю кривизны в произвольной точке гиперболического параболоида $f(u,v) = (u,v,uv)^T$. Определить тип точек.
- 10. Найти главные кривизны, полную и среднюю кривизны, а также главные направления, определить тип точек на гиперболическом цилиндре $f(u, v) = (a \operatorname{ch} v, b \operatorname{sh} v, u)^T$.
- 11. Найти главные кривизны, полную и среднюю кривизны, а также главные направления, определить тип точек на гиперболоиде $f(u,v) = (a \operatorname{ch} u \cos v, a \operatorname{ch} u \sin v, c \operatorname{sh} u)^T$.
- 12. Найти главные кривизны, полную и среднюю кривизны, а также главные направления, определить тип точек на гиперболоиде $f(u, v) = (a \operatorname{sh} u \cos v, a \operatorname{sh} u \sin v, c \operatorname{ch} u)^T$.
- 13. Найти главные кривизны, полную и среднюю кривизны, а также главные и асимптотические направления в вершинах гиперболоида $x^2/a^2 + y^2/4a^2 z^2/c^2 = -1$.
- 14. Найти главные кривизны, полную и среднюю кривизны, а также главные направления в вершине параболоида $x^2 + y^2/4 z + 2 = 0$. Существуют ли направления, в которых нормальная кривизна равна 0? 1/2?
- 15. Найти главные кривизны, полную и среднюю кривизны, а также главные и асимптотические направления в вершине параболоида $x^2/4a^2 y^2/a^2 + z = 0$.
- 16. Найти главные кривизны, полную и среднюю кривизны, а также главные и асимптотические направления, определить тип точек на конусе $f(u,v) = (u\cos v, u\sin v, u)^T$.
- 17. Найти матрицу основного оператора, полную и среднюю кривизны, главные и асимптотические направления в т. u = v = 0 катеноида $f(u, v) = (a \operatorname{ch}(u/a) \cos v, a \operatorname{ch}(u/a) \sin v, u)^T$.
- 18. Найти главные кривизны, полную и среднюю кривизны, а также главные и асимптотические направления в вершинах гиперболоида $x^2/4a^2 + y^2/a^2 z^2/c^2 = -1$.
- 19. Найти главные кривизны, полную и среднюю кривизны, а также главные направления в вершине параболоида $x^2/4 + y^2 + z 2 = 0$. Существуют ли в вершине направления, в которых нормальная кривизна равна 0? 1/2?
- 20. Найти главные кривизны, полную и среднюю кривизны, а также главные и асимптотические направления в вершине параболоида $x^2/a^2 y^2/4a^2 + z = 0$.
- 21. Найти главные кривизны, полную и среднюю кривизны, а также главные и асимптотические направления, определить тип точек на конусе $f(u, v) = (3u \cos v, 3u \sin v, u)^T$.
- 22. Найти матрицу основного оператора, полную и среднюю кривизны, главные и асимптотические направления в т. $u=0, v=\pi/2$ катеноида $f(u,v)=(a\operatorname{ch}(u/a)\cos v, a\operatorname{ch}(u/a)\sin v, u)^T$.