α)

i. Όλες οι φωτεινές ακτίνες που παριστάνει η εξίσωση ε_λ διέρχονται από το φάρο Φ . Επομένως οι συντεταγμένες του φάρου $\Phi(x_\Phi,y_\Phi)$ επαληθεύουν την εξίσωση της ε_λ για κάθε $\lambda \in \mathbb{R}$.

Δηλαδή είναι

$$\lambda x_{\Phi} + (1 - \lambda)y_{\Phi} + 2 = 0 \Leftrightarrow$$

$$\lambda x_{\Phi} + y_{\Phi} - \lambda y_{\Phi} + 2 = 0 \Leftrightarrow$$

$$(x_{\Phi} - y_{\Phi})\lambda + y_{\Phi} + 2 = 0 \Leftrightarrow$$

$$\begin{cases} x_{\Phi} - y_{\Phi} = 0 \\ \kappa \alpha \iota & \Leftrightarrow \end{cases} \begin{cases} x_{\Phi} = y_{\Phi} \\ \kappa \alpha \iota & \Leftrightarrow \end{cases} \begin{cases} x_{\Phi} = -2 \\ \kappa \alpha \iota & \Leftrightarrow \end{cases}$$

Οπότε οι συντεταγμένες του φάρου είναι $\Phi(-2,-2)$.

Δεύτερος τρόπος

Γνωρίζουμε ότι όλες οι ευθείες διέρχονται από το ίδιο σημείο Φ . Για τον προσδιορισμό των συντεταγμένων του φάρου αρκεί να βρούμε το σημείο τομής δυο ευθειών της οικογένειας \mathcal{E}_{λ} .

Μια ευθεία της οικογένειας ε_{λ} προκύπτει για $\lambda=1$ με εξίσωση $1x+(1-1)y+2=0 \Leftrightarrow x+2=0$ και μια άλλη προκύπτει για $\lambda=0$ με εξίσωση $0x+(1-0)y+2=0 \Leftrightarrow y+2=0$.

Για την εύρεση του κοινού σημείου Φ , των ευθειών με εξισώσεις x+2=0 και y+2=0, επιλύουμε το σύστημα Σ : $\begin{cases} y+2=0 \\ x+2=0 \end{cases}$

Είναι

$$\begin{cases} y+2=0 \\ x+2=0 \end{cases} \Leftrightarrow \begin{cases} y=-2 \\ x=-2 \end{cases}$$

άρα οι συντεταγμένες του φάρου είναι $\Phi(-2,-2)$.

ii. Έστω ότι υπάρχει φωτεινή ακτίνα που εκπέμπεται από το φάρο προς το αγκυροβολημένο πλοίο. Άρα υπάρχει πραγματικός αριθμός λ ώστε η ε_{λ} να

διέρχεται από το $\mathrm{O}(0,0)$. Τότε οι συντεταγμένες του $\mathrm{O}(0,0)$ επαληθεύουν την εξίσωση της ε_{i} .

Έχουμε $\lambda \cdot 0 + (1 - \lambda) \cdot 0 + 2 = 0 \Leftrightarrow 2 = 0$, άτοπο.

Οπότε δεν υπάρχει φωτεινή ακτίνα που εκπέμπεται από το φάρο προς το αγκυροβολημένο πλοίο.

β) Αν είναι $P(x_p,y_p)$ τότε ισχύει $y_p>y_\Phi \Leftrightarrow y_p>-2$ αφού το ρυμουλκό πλοίο P βρίσκεται βόρεια του φάρου Φ .

Επειδή το σημείο P ανήκει στην ευθεία με εξίσωση x+y+4=0 ισχύει $x_P+y_P+4=0 \Leftrightarrow x_P=-4-y_P$. Οπότε είναι $P\left(-4-y_P,y_P\right)$ με $y_P>-2$.

Η συντομότερη διαδρομή που πρέπει να διανύσει το ρυμουλκό πλοίο για να πάει προς το αγκυροβολημένο φορτηγό πλοίο είναι το ευθύγραμμο τμήμα PO με μήκος 4 μονάδες. Είναι

PO =
$$4 \Leftrightarrow \sqrt{(x_O - x_P)^2 + (y_O - y_P)^2} = 4$$

 $\Leftrightarrow \sqrt{(0 - (-4 - y_P))^2 + (0 - y_P)^2} = 4$
 $\Leftrightarrow \sqrt{(4 + y_P)^2 + y_P^2} = 4$
 $\Leftrightarrow \sqrt{2y_P^2 + 8y_P + 16} = 4$
 $\Leftrightarrow (\sqrt{2y_P^2 + 8y_P + 16})^2 = 4^2$
 $\Leftrightarrow 2y_P^2 + 8y_P + 16 = 16$
 $\Leftrightarrow 2y_P^2 + 8y_P = 0$
 $\Leftrightarrow 2y_P(y_P + 4) = 0$
 $\Leftrightarrow 2y_P = 0 \ \dot{\eta} \ y_P = -4$

Δεκτή είναι μόνο η $y_{\mathrm{P}}=0>-2$ αφού -4<-2 . Ακόμη είναι $x_{\mathrm{P}}=-4-y_{\mathrm{P}}=-4-0=-4$.

Τελικά, οι συντεταγμένες του ρυμουλκού πλοίου είναι P(-4,0).

