1.

- a. For deterministic, an action leads to a new state. For stochastic, an action leads to a probability distribution of next states.
- b. Discount factor is used to decrease reward, which can depend on current state and uncertainty. Using it avoids infinite reward in cyclic processes.
- c. Optimal policy is the policy that maximizes sum of rewards.
- d. Movement cost is another method of decaying the reward value.
- e. V(s) is value iteration; Q(s, a) is Q-learning an improvement to value iteration. For both, s is state and a is action. Q(s, a) takes action into account while V(s) does not.
- 2. $\gamma = 0.9$; R = -0.1

	1		2		3	}	4	5
a	0.0	06	-1				0.8	+1
	3							
b	0.	18	0.31		(.45	0.6	0.8
	1		2		8	3	2	
c	0.0	06	0.18	}			-1	+1
	13	2	p	4				
a	\downarrow	-I		Ξ	>	+1		
b	\rightarrow	\rightarrow	\rightarrow	1		↑		
c	\uparrow	1		-1		+1		

Optimal policy:

	1	2	3	4	5
a	-0.165	-1		0.35	+1
b	-0.146	-0.101	-0.003	0.21	0.35
				5	
c	-0.165	-0.146		-1	+1

b.

Optimal policy:

	1	2	3	4	5
a	\rightarrow	-1		\rightarrow	+1
b	\uparrow	\uparrow	\uparrow	\uparrow	\
c	\rightarrow	\uparrow		-1	+1
1 - 0					

b5 after convergence: 0.35

c.

	1	2	3	4	5
a		-1			+1
b	S				
c				-1	+1

3. a. I set up my learning algorithm so that for different mindsets, different types of blocks would have different values. e.g. in the explore mindset, unexplored blocks are most attractive; in the gather mindset, blocks with balls are most attractive; and in the deposit mindset, the block with the deposit bin is most attractive. My agent explores before gathering balls.