Identifying Pneumonia with Deep Learning

Author: Andre Layton

Summary

Objectives:

- → To build a classification algorithm that correctly classifies chest X-ray images between two groups ("NORMAL" and "PNEUMONIA").
- → To determine what model accurately identifies pneumonia-ridden patients.

Results:

→ The Convolutional Neural Network (CNN) model serves as the best algorithm for image classification, yielding 40.3% accuracy.

Outline

- Business Problem
- Data
- Methods
- Results
- Conclusions

Business Problem

→ A hospital has approved an initiative to build an in-house radiology unit that incorporates A.I.

- → Use deep learning to create algorithms that will analyze and classify X-ray images.
 - Accuracy and false negatives are the important metrics to monitor!

Data

- → The initial dataset was gathered from Kaggle, and contains:
 - 5,216 training images
 - ♦ 58 validation images
 - 624 testing images

→ I added more images to the validation dataset by moving 100 images from the testing data.

NORMAL

PNEUMONIA

Data (cont.)

→ The two groups ("NORMAL" and "PNEUMONIA") are initially distributed as shown to the left.

→ Data was balanced, reshaped, and augmented to prepare for the modeling process.

Modeling

→ The CNN model was determined to be the best classifier.

The model is 40.3% accurate when analyzing unseen images.

Modeling Results (cont.)

→ Out of 524 predictions, the model predicted 176 false negatives (predicting "NORMAL" when the patient actually has pneumonia!).

Conclusions

→ The CNN model is the best determined model for classifying chest X-ray images, and is 40.3% accurate on unseen data.

- → Further work could include:
 - Adding more images and balanced data to train the model on.
 - Analyzing the dataset with a stronger computer.
 - Experimenting with various parameters for model tuning.

Thank You!

Email: alaygt6@gmail.com

GitHub: @therookiescientist-andre

LinkedIn: linkedin.com/in/ak-layton/