Announcements

First part of HWIO posted (due Wed. 5/7) Rest will be posted next week

Recall! A variety V is irreducible if whenever $V = V_1 U V_2$ for varieties V_1 and V_2 , $V = V_1$ or $V = V_2$.

Prop: Virned (I:= I(v) prime

Pf: =>) Let f, f2 & I

Let $V_i = \bigvee \land \bigvee (f_i) = \bigvee (I + (f_i))$

= { a e V s.t. f; (a) = 0}

a reducible variety

(i=1,2)

Let a & V. Then f, (a) · f, (a) = f, f2(a) = 0, so

fi(a) = 0 or fz(a) = 0, and so V = V, UVz.

Since Virned, V=V; for j=lor2, so

f; (a) = 0 for all a eV, which means that fift,

so I is prine.

 \iff Let $V = V_1 \cup V_2$, and assume $V_1 \subsetneq V$.

This means that $I(v) \subsetneq I(v_i)$ since otherwise $V = V(I(v)) = V(I(v_i)) = V_i$.

Let f, et(v,)\ T(v), f, et(v2).

Then fifze I(V) since one of fifz is 0 on every point in V.

Since I(V) is prime, must have $f_{2} \in I$ (can't have $f_{1} \in I$), so $I(V_{2}) \subseteq I(V)$, so $V_{2} \subseteq V \subseteq V_{2}$, so $V=V_{2}$ and V inch.

Prop: Any variety $V \subseteq k^n$ is a finite union of irred. varieties.

Def: A ring R is N-etherian if every strictly increasing chain of ideals is finite in if $T_1 \subseteq T_2 \subseteq T_3 \subseteq \cdots$

then 3m s.t. Ik=Im Yk=m

(sometimes called the ascending chain condition)

Hilbert's Basis Thm: k[x1,..,xn] is Noetherian

(Pf: DRF Section 9.6, Cor 9.22, uses "leading coeffs.")

Pf of prop: Suppose otherwise. Since V red.,

V=V,UW, Vorieties V,W,ÇV

One of V_1 , W_1 must be reducible, say $V_1 = V_2 \cup W_2$, V_2 , $W_2 \subseteq V_1$. Continuing in this manner, we have

ハニパラハッカ ・・・

and letting $I_i = I(v_i)$, we set

 $T_0 \subseteq T_1 \subseteq T_2 \subseteq \cdots$ Since $V(T_i) = V_i \ge V_{i+1} = V(T_{i+1})$

Since k[x1,--, xn] is Noetherian, this is impossible.

What about maximal ideals?

max'l ideals = prime ideals => irred. varieties

 \Box

For ack", let I(a) = { fek[x,,..,xh] | f(a) = 0} = I({a})

Lemma:

 α) $\pm(\alpha) = (x_1 - \alpha_1, \dots, x_n - \alpha_n)$

b) I(a) is maximal

be trans. / k. Now,

Pf: J:=(x,-a,,--, xn-an) SI(a), so well prove that

Jis max'l. J= ker (f > f(a)), so

 $k[x_{1,-1},x_{n}]/J \approx i_{m}(t \mapsto f(a)) = k$, a field, so J = I(a)

is maxil.

Prop: Every max'l ideal is of the form I(a) for some ackn Pf when k is uncountable (e.g. C, not \$\overline{R}\$ or \$\overline{F_p}\$):

Let I = k[x1,-,xn] be a max'l ideal, and let $F = k[x_{11}-yx_{11}]/T$. $k \in F$ since $k \cap T = 0$, so either F=k or F is a transcendental ext'n of R. In the former case, $I = I(a) = I((a_{1,-7}a_{1}))$ where $x_{i} \mapsto a_{i}$. In the latter case, dimpF is at most countable rince dimak[x1,-,xn] is countable, and the quotient may is a vector space homom. On the other hand, let tEF

{ \frac{1}{t-a} | ack \frac{1}{ack} is an uncountable linearly indep. set, a contradiction.

Pf: If $\frac{c_1}{t-a_1} + \cdots + \frac{c_n}{t-a_n} = 0$, then $c_1(t-a_2)\cdots(t-a_n) + \cdots + c_n(t-a_1)\cdots(t-a_{n-1}) = 0$,

and setting $t=a_i$ shows that each $c_i=0$

Pf of weak Nullstellensatz: Every proper ideal I is contained in a max'l ideal I(a) (don't need form's lemma since ring is Noetherian). If $V(I) = \phi$, then V(I(a)) = \$\phi\$, but this contradicts the fact that V(I(a)) = \{a\}.