VECM_TxPropria

December 11, 2019

1 TODO

☐ Checar importância da significância estatística dos coeficientes da regressão
 ☐ Checar quebra estrutural em 1991

2 Setup

```
[1]: !rm *.csv # Removendo dados anteriores
!rm -R figs # Removendo pasta de figuras
!rm -R tabs # Removendo pasta de tabelas
!mkdir figs # Criando pasta para salvar figuras
!mkdir tabs # Criando pasta para salvar tabelas
!ls
```

Benchmark.html SeriesTemporais.Rproj VECM_Infla.pdf Benchmark.ipynb tabs VECM_Infla.py Benchmark.pdf tese_Lucas.xls VECM_TxPropria.html Benchmark.Rmd Teste.ipynb VECM_TxPropria.ipynb Clean-checkpoint.ipynb VECM_Infla.html VECM_TxPropria_media.ipynb Clean.ipynb VECM_Infla.ipynb VECM_TxPropria.pdf VECM_Infla_media.ipynb VECM_TxPropria.py figs

3 Introdução

Esta rotina ajusta um modelo de séries temporais. Será testado se o investimento residencial (I_h) depende da taxa própria de juros dos imóveis, ou seja,

$$I_h = f(r_{mo}, p_h)$$

em que

- *I_h* Investimento residencial
 - **Série:** PRFI
 - Com ajuste sazonal
 - Trimestral

- *r*_{mo} taxa de juros das hipotecas
 - Série: MORTGAGE30US
 - Sem ajuste sazonal
 - Semanal (encerrado às quintas feiras)
- p_h Inflação de imóveis: Índice Case-Shiller
 - Série: CSUSHPISA
 - Com ajuste sazonal, Jan 2000 = 100
 - Mensal

Nota: Uma vez que pretende-se utilizar os resultados obtidos deste modelo em um trabalho futuro, os resultados serão checados tanto em python quanto em gretl, ambos softwares livres.

4 Carregando pacotes

```
[2]: | %config InlineBackend.figure_format = 'retina'
   %load_ext rpy2.ipython
   # Pacotes gerais
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   import datetime
   import warnings
   warnings.filterwarnings('ignore')
   # Pacotes estatísticos
   from statsmodels.tsa.vector_ar.var_model import VAR
   from statsmodels.tsa.api import SVAR
   from statsmodels.tsa.vector_ar.vecm import coint_johansen, CointRankResults, u
    →VECM, select_coint_rank
   from statsmodels.stats.diagnostic import acorr_breusch_godfrey, acorr_ljungbox,u
    →het_arch, het_breuschpagan, het_white
   from statsmodels.tsa.stattools import adfuller, kpss, grangercausalitytests, u
    →q_stat, coint
   from arch.unitroot import PhillipsPerron, ZivotAndrews, DFGLS, KPSS, ADF
   from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
   # Pacotes para importação de dados
   import pandas_datareader.data as web
```

```
from scipy.stats import yeojohnson

# Configurações do notebook

plt.style.use('seaborn-white')
start = datetime.datetime(1987, 1, 1)
#start = datetime.datetime(1992, 1, 1)
end = datetime.datetime(2019, 7, 1)
```

5 Importando dados

```
[3]: df = web.DataReader(
        Γ
            "PRFI",
            "CSUSHPISA",
            "MORTGAGE30US",
        ],
        'fred',
        start,
        end
    df.columns = [
        "Investimento residencial",
        "Preço dos imóveis",
        "Taxa de juros",
    df.index.name = ""
    df['Taxa de juros'] = df['Taxa de juros'].divide(100)
    df = df.resample('M').last()
    df['Preço dos imóveis'] = df['Preço dos imóveis']/df['Preço dos imóveis'][0]
    df = df.resample('Q').last()
    df["Inflação"] = df["Preço dos imóveis"].pct_change() # Warning: 4
    df['gZ'] = df["Investimento residencial"].pct_change() # Warning: 4
    df["Taxa Própria"] = ((1+df["Taxa de juros"])/(1+df["Inflação"])) -1
    df['Taxa Própria'], *_ = yeojohnson(df['Taxa Própria'])
    #df['Inflação'], *_ = yeojohnson(df['Inflação'])
    df['gZ'], *_ = yeojohnson(df['gZ'])
    df["Crise"] = [0 for i in range(len(df["gZ"]))]
    for i in range(len(df["Crise"])):
        if df.index[i] > datetime.datetime(2007,12,1) and df.index[i] < datetime.
     \rightarrowdatetime(2009,7,1):
```

```
df["Crise"][i] = 1

df = df[["Taxa de juros", "Inflação", "gZ", "Crise", "Taxa Própria"]]
df.plot()
sns.despine()
plt.show()

df["d_Taxa Própria"] = df["Taxa Própria"].diff()
df["d_gZ"] = df["gZ"].diff()
df["d_Inflação"] = df["Inflação"].diff()
df["d_Taxa de juros"] = df['Taxa de juros'].diff()
df = df.dropna()
df.head()
```


[3]:		Taxa de juros	Inflação	gZ C	rise T	Taxa Própria	\
	1987-09-30	0.1102	0.018975	0.001110	0	0.126023	
	1987-12-31	0.1061	0.017537	0.011925	0	0.121337	
	1988-03-31	0.0999	0.016549	-0.010302	0	0.112091	
	1988-06-30	0.1040	0.017773	0.023392	0	0.117053	
	1988-09-30	0.1042	0.019099	0.007998	0	0.114831	
		d_Taxa Própria	d_gZ	d_Inflação	d_Tax	a de juros	
	1987-09-30	0.015103	-0.011713	-0.001516	;	0.0067	
	1987-12-31	-0.004686	0.010815	-0.001437	•	-0.0041	

```
      1988-03-31
      -0.009246 -0.022228
      -0.000988
      -0.0062

      1988-06-30
      0.004961 0.033694
      0.001224
      0.0041

      1988-09-30
      -0.002222 -0.015394
      0.001326
      0.0002
```

6 Funções

6.1 Teste de raíz unitária

```
[4]: def testes_raiz(df=df["gZ"], original_trend='c', diff_trend='c'):
        serie: Nome da coluna do df
        orignal_trend: 'c', 'ct', 'ctt'
        diff_trend: 'c', 'ct', 'ctt'
       Plota série o original e em diferenta e retorna testes de raíz unitária
       fig, ax = plt.subplots(1,2)
       df.plot(ax=ax[0], title='série original')
       df.diff().plot(ax=ax[1], title='série em diferença')
       plt.tight_layout()
       sns.despine()
       plt.show()
       fig, ax = plt.subplots(2,2)
       plot_acf(df, ax=ax[0,0], title='ACF: serie original')
       plot_pacf(df, ax=ax[0,1], title='PACF: serie original')
       plot_acf(df.diff().dropna(), ax=ax[1,0], title='ACF: serie em diferença')
       plot_pacf(df.diff().dropna(), ax=ax[1,1], title='PACF: serie em diferença')
       plt.tight_layout()
       sns.despine()
       plt.show()
        # Zivot Andrews
       print('\nZIVOT ANDREWS série em nível')
       print(ZivotAndrews(df, trend = original_trend).summary(),"\n")
       print('\nZIVOT ANDREWS série em primeira difenrença')
       print(ZivotAndrews(df.diff().dropna(), trend = diff_trend).summary(),"\n")
       print('\nADF série em nível')
       print(ADF(df, trend=original_trend).summary(),"\n")
```

```
print('\nADF série em primeira diferença')
print(ADF(df.diff().dropna(), trend=diff_trend).summary(),"\n")

print('\nDFGLS série em nível')
print(DFGLS(df, trend=original_trend).summary(),"\n")
print('\nDFGLS série em primeira diferença')
print(DFGLS(df.diff().dropna(), trend=diff_trend).summary(),"\n")

print('\nKPSS em nível')
print(KPSS(df, trend = original_trend).summary(),"\n")
print('\nKPSS em primeira diferença')
print(KPSS(df.diff().dropna(), trend = diff_trend).summary(),"\n")

print('\nPhillips Perron em nível')
print(PhillipsPerron(df, trend=original_trend).summary(),"\n")
print('\nPhillips Perron em primeira diferença')
print(PhillipsPerron(df.diff().dropna(), trend=diff_trend).summary(),"\n")
```

6.2 Teste de Cointegração Engel-Granger e de Johansen

```
[5]: # Teste de cointegração
   def cointegracao(ts0, ts1, signif = 0.05, lag=1):
     trends = ['nc', 'c', 'ct', 'ctt']
     for trend in trends:
        print(f"\nTestando para lag = {lag} e trend = {trend}")
        result = coint(ts0, ts1, trend = trend, maxlag=lag)
        print('Null Hypothesis: there is NO cointegration')
        print('Alternative Hypothesis: there IS cointegration')
        print('t Statistic: %f' % result[0])
        print('p-value: %f' % result[1])
        if result[1] < signif:</pre>
          print('CONCLUSION: REJECT null Hypothesis: there IS cointegration\n')
        else:
          print('CONCLUSION: FAIL to reject Null Hypothesis: there is NO_{\sqcup}
     ⇔cointegration\n')
   def testes_coint(series, maxlag=6, signif = 0.05,):
        for i in range(1, maxlag):
            print(50*'=')
            cointegracao(
                ts0=series.iloc[:, 0],
                ts1=series.iloc[:, 1:],
                signif=signif,
                lag=i
            )
```

```
print("\nTESTE DE JOHANSEN\n")
      print("Teste SEM constante")
      result = select_coint_rank(endog=series, k_ar_diff=i, det_order=-1,_
⇒signif=signif) ## Warning: 1
      print(result.summary())
      print(f'Para lag = {i} e significância = {signif*100}%, Rank = {result.
→rank}')
      print("\nTeste COM constante\n")
      result = select_coint_rank(endog=series, k_ar_diff=i, det_order=0,_u
⇒signif=signif) ## Warning: 1
      print(result.summary())
      print(f'Para lag = {i} e significância = {signif*100}%, Rank = {result.
→rank}')
      print("\nTeste COM constante E tendência\n")
      result = select_coint_rank(endog=series, k_ar_diff=i, det_order=1,__
⇒signif=signif) ## Warning: 1
      print(result.summary())
      print(f'Para lag = {i} e significância = {signif*100}%, Rank = {result.
→rank}')
      print(10*'=')
```

6.3 Análise de resíduos: Ljung-Box e Box-Pierce

```
[6]: ### Residuos
    def LjungBox_Pierce(resid, signif = 0.05, boxpierce = False, k = 4):
      11 11 11
      resid = residuals df
      signif = signif. level
      var = len(resid.columns)
      print("HO: autocorrelations up to lag k equal zero")
      print('H1: autocorrelations up to lag k not zero')
      print("Box-Pierce: ", boxpierce)
      for i in range(var):
        print("Testing for ", resid.columns[i].upper(), ". Considering a<sub>□</sub>
     →significance level of", signif*100,"%")
        result = acorr_ljungbox(x = resid.iloc[:,i-1], lags = k, boxpierce = __
     →boxpierce)[i-1]
        conclusion = result < signif</pre>
        for j in range(k):
          print(f'p-value = {result[j]}')
          print("Reject HO on lag " ,j+1,"? ", conclusion[j], "\n")
        print("\n")
```

```
def ARCH_LM(resid, signif = 0.05, autolag = 'bic'):
  df = residuals df
  signif = signif. level
  var = len(resid.columns)
  print("HO: Residuals are homoscedastic")
  print('H1: Residuals are heteroskedastic')
  for i in range(var):
    print("Testing for ", resid.columns[i].upper())
    result = het_arch(resid = resid.iloc[:,i], autolag = autolag)
    print('LM p-value: ', result[1])
    print("Reject HO? ", result[1] < signif)</pre>
    print('F p-value: ', result[3])
    print("Reject HO? ", result[3] < signif)</pre>
    print('\n')
def analise_residuos(results, nmax=15):
    residuals = pd.DataFrame(results.resid, columns = results.names)
    residuals.plot()
    sns.despine()
    plt.show()
    for serie in residuals.columns:
        sns.set_context('paper')
        fig, ax = plt.subplots(1,2, figsize=(10,8))
        plot_acf(residuals[serie], ax=ax[0], title=f'ACF Residuo de {serie}',__
 →zero=False)
        plot pacf(residuals[serie], ax=ax[1], title=f'PACF Residuo de {serie}',
 →zero=False)
        plt.tight_layout()
        sns.despine()
        plt.show()
    print('AUTOCORRELAÇÃO RESIDUAL: PORTMANTEAU\n')
    print(results.test_whiteness(nlags=nmax).summary())
    print('\nAUTOCORRELAÇÃO RESIDUAL: PORTMANTEAU AJUSTADO\n')
    print(results.test_whiteness(nlags=nmax, adjusted=True).summary())
    print('\nLJUNGBOX\n')
    LjungBox_Pierce(residuals, k = 12, boxpierce=False)
    print('\nBOXPIERCE\n')
```

```
LjungBox_Pierce(residuals, k = 12, boxpierce=True)
        print('\nNORMALIDADE\n')
        print(results.test_normality().summary())
        print('\nHOMOCEDASTICIDADE\n')
        ARCH_LM(residuals)
        return residuals
[7]: results = []
   def plot_lags(results = results, trimestres=[2, 5]):
        series = results.names
        fig, ax = plt.subplots(len(trimestres),2, figsize = (16,10))
        for i in range(len(trimestres)):
            sns.regplot(y = df[series[0]], x = df[series[1]].shift(-trimestres[i]),
     \rightarrowcolor = 'black', ax = ax[i,0], order = 2)
            ax[i,0].set_xlabel(f'{series[1]} defasada em {trimestres[i]}_
     →trimestres')
            sns.regplot(x = df[series[0]].shift(-trimestres[i]), y = df[series[1]],__
     \rightarrowcolor = 'black', ax = ax[i,1], order = 2)
            ax[i,1].set_xlabel(f'{series[0]} defasada em {trimestres[i]}_L
     →trimestres')
```

7 Teste de quebra estrutural

```
[8]: \%\R -i df
   library(strucchange)
   library(urca)
   df \leftarrow df[,c(4:7)]
   names(df) <- c("Juros", "Infla", "TaxaP", "gZ")</pre>
   df \leftarrow ts(data = df, start = c(1987,01), frequency = 4)
   bp_ts <- breakpoints(Juros ~ 1, data=df)</pre>
   print("Testando quebra estrutural para Taxa de juros das hipotecas")
   print(summary(bp_ts))
   bp_ts <- breakpoints(gZ ~ 1, data=df)</pre>
   print("======="")
   print("Testando quebra estrutural para Taxa de crescimento dos imóveis")
   print(summary(bp_ts))
   bp_ts <- breakpoints(TaxaP ~ 1, data=df)</pre>
   print("======"")
   print("Testando quebra estrutural para Taxa Própria")
   print(summary(bp_ts))
```

```
bp_ts <- breakpoints(Infla ~ 1, data=df)</pre>
print("======"")
print("Testando quebra estrutural para Inflação")
print(summary(bp_ts))
R[write to console]: Carregando pacotes exigidos: zoo
R[write to console]:
Attaching package: zoo
R[write to console]: The following objects are masked from package:base:
    as.Date, as.Date.numeric
R[write to console]: Carregando pacotes exigidos: sandwich
[1] "Testando quebra estrutural para Taxa de juros das hipotecas"
         Optimal (m+1)-segment partition:
Call:
breakpoints.formula(formula = Juros ~ 1, data = df)
Breakpoints at observation number:
m = 1
                 81
m = 2
             70 89
m = 3
       19
             70 89
m = 4
       19 38 70 89
m = 5
       19 38 70 89 108
Corresponding to breakdates:
                               2007(1)
m = 1
                       2004(2) 2009(1)
m = 2
m = 3
       1991(3)
                       2004(2) 2009(1)
       1991(3) 1996(2) 2004(2) 2009(1)
m = 4
       1991(3) 1996(2) 2004(2) 2009(1) 2013(4)
m = 5
Fit:
RSS
    6.617 5.957
                     4.421 4.421
                                     4.421
                                             4.421
```

BIC -6.230 -9.969 -38.443 -28.739 -19.035 -9.331

```
[1] "======="
```

[1] "Testando quebra estrutural para Taxa de crescimento dos imÃşveis"

Optimal (m+1)-segment partition:

Call:

breakpoints.formula(formula = gZ ~ 1, data = df)

Breakpoints at observation number:

```
m = 1 102
m = 2 65 86
m = 3 65 86 105
m = 4 32 65 86 105
m = 5 19 38 65 86 105
```

Corresponding to breakdates:

```
m = 1 2012(2)

m = 2 2003(1) 2008(2)

m = 3 2003(1) 2008(2) 2013(1)

m = 4 1994(4) 2003(1) 2008(2) 2013(1)

m = 5 1991(3) 1996(2) 2003(1) 2008(2) 2013(1)
```

Fit:

[1] "========"

[1] "Testando quebra estrutural para Taxa PrÃşpria"

Optimal (m+1)-segment partition:

Call:

breakpoints.formula(formula = TaxaP ~ 1, data = df)

Breakpoints at observation number:

```
m = 1 86

m = 2 67 86

m = 3 67 86 105

m = 4 30 67 86 105

m = 5 19 39 67 86 105
```

Corresponding to breakdates:

$$m = 1$$
 2008(2)

```
m = 4
                   1994(2) 2003(3) 2008(2) 2013(1)
          1991(3) 1996(3) 2003(3) 2008(2) 2013(1)
   m = 5
   Fit:
                                        3
                    0.01892
                                0.01804
                                           0.01751
                                                      0.01736
         0.01915
   BIC -754.39978 -746.24362 -742.60616 -736.76070 -728.18661 -718.13874
   [1] "========"
   [1] "Testando quebra estrutural para InflaÃgÃčo"
            Optimal (m+1)-segment partition:
   Call:
   breakpoints.formula(formula = Infla ~ 1, data = df)
   Breakpoints at observation number:
   m = 1
              40
   m = 2
              39
                       98
   m = 3
              40
                    75 95
   m = 4
                    75 95
          20 41
   m = 5
          19 38 57 76 95
   Corresponding to breakdates:
   m = 1
                   1996(4)
   m = 2
                   1996(3)
                                           2011(2)
   m = 3
                   1996(4)
                                   2005(3) 2010(3)
   m = 4
          1991(4) 1997(1)
                                   2005(3) 2010(3)
          1991(3) 1996(2) 2001(1) 2005(4) 2010(3)
   m = 5
   Fit:
          0.19495
                     0.09831
                                0.06831
                                           0.04851
                                                      0.03657
   BIC -457.39087 -535.31386 -572.20645 -606.32884 -632.76612 -632.98710
      Selecionando série para depois de 1991
[9]: df = df["1992-01-01":]
   df[["Inflação", "gZ", "Taxa Própria", "Taxa de juros"]].
    →to_csv("Dados_yeojohnson.csv")
   df[["Inflação", "gZ", "Taxa Própria", "Taxa de juros"]].to_csv(
```

2003(3) 2008(2)

2003(3) 2008(2) 2013(1)

m = 2

m = 3

```
"Dados_yeojohnson_ascii.csv",
encoding='ascii',
header = [
    'infla',
    'gz',
    'taxap',
    'juros',
    ],
   )
```

8 Teste de raíz unitária

8.1 Investimento residencial (g_Z)

```
[10]: testes_raiz(df=df['gZ'])
```


ZIVOT ANDREWS série em nível Zivot-Andrews Results

Test Statistic -4.439
P-value 0.139
Lags 11

Trend: Constant

Critical Values: -5.28 (1%), -4.81 (5%), -4.57 (10%)

Null Hypothesis: The process contains a unit root with a single structural

break.

Alternative Hypothesis: The process is trend and break stationary.

ZIVOT ANDREWS série em primeira difenrença Zivot-Andrews Results

=======================================	
Test Statistic	-7.739
P-value	0.000
Lags	3

Trend: Constant

Critical Values: -5.28 (1%), -4.81 (5%), -4.57 (10%)

Null Hypothesis: The process contains a unit root with a single structural

break.

Alternative Hypothesis: The process is trend and break stationary.

ADF série em nível

Augmented Dickey-Fuller Results

	========
Test Statistic	-3.333
P-value	0.013
Lags	11

Trend: Constant

Critical Values: -3.50 (1%), -2.89 (5%), -2.58 (10%) Null Hypothesis: The process contains a unit root.

Alternative Hypothesis: The process is weakly stationary.

ADF série em primeira diferença

Augmented Dickey-Fuller Results

	========
Test Statistic	-7.155
P-value	0.000
Lags	3

Trend: Constant

Critical Values: -3.49 (1%), -2.89 (5%), -2.58 (10%) Null Hypothesis: The process contains a unit root.

Alternative Hypothesis: The process is weakly stationary.

DFGLS série em nível

Dickey-Fuller GLS Results

Test Statistic	-1.323
P-value	0.178
Lags	4

Trend: Constant

Critical Values: -2.75 (1%), -2.13 (5%), -1.82 (10%) Null Hypothesis: The process contains a unit root.

Alternative Hypothesis: The process is weakly stationary.

DFGLS série em primeira diferença Dickey-Fuller GLS Results

Test Statistic	-0.948
P-value	0.315
Lags	10

Trend: Constant

Critical Values: -2.76 (1%), -2.14 (5%), -1.83 (10%) Null Hypothesis: The process contains a unit root.

Alternative Hypothesis: The process is weakly stationary.

KPSS em nível

KPSS Stationarity Test Results

Test Statistic	0.181	
P-value	0.309	
Lags	5	

Trend: Constant

Critical Values: 0.74 (1%), 0.46 (5%), 0.35 (10%) Null Hypothesis: The process is weakly stationary.

Alternative Hypothesis: The process contains a unit root.

KPSS em primeira diferença

KPSS Stationarity Test Results

Test Statistic	0.106
P-value	0.558
Lags	22

Trend: Constant

Critical Values: 0.74 (1%), 0.46 (5%), 0.35 (10%) Null Hypothesis: The process is weakly stationary.

Alternative Hypothesis: The process contains a unit root.

Phillips Perron em nível

Phillips-Perron Test (Z-tau)

	=========
Test Statistic	-6.165
P-value	0.000

Lags 13

Trend: Constant

Critical Values: -3.49 (1%), -2.89 (5%), -2.58 (10%) Null Hypothesis: The process contains a unit root.

Alternative Hypothesis: The process is weakly stationary.

Phillips Perron em primeira diferença Phillips-Perron Test (Z-tau)

Test Statistic -20.346
P-value 0.000
Lags 13

Trend: Constant

Critical Values: -3.49 (1%), -2.89 (5%), -2.58 (10%) Null Hypothesis: The process contains a unit root.

Alternative Hypothesis: The process is weakly stationary.

Conclusão: Série não é fracamente estacionária.

8.2 Taxa própria

[11]: testes_raiz(df['Taxa Própria'])

ZIVOT ANDREWS série em nível

Zivot-Andrews Results

Test Statistic -4.203
P-value 0.237
Lags 0

Trend: Constant

Critical Values: -5.28 (1%), -4.81 (5%), -4.57 (10%)

Null Hypothesis: The process contains a unit root with a single structural

break.

Alternative Hypothesis: The process is trend and break stationary.

ZIVOT ANDREWS série em primeira difenrença

Zivot-Andrews Results

Test Statistic -6.340
P-value 0.000
Lags 4

Trend: Constant

Critical Values: -5.28 (1%), -4.81 (5%), -4.57 (10%)

Null Hypothesis: The process contains a unit root with a single structural

break.

Alternative Hypothesis: The process is trend and break stationary.

ADF série em nível

Augmented Dickey-Fuller Results

Test Statistic -2.330
P-value 0.162
Lags 0

Trend: Constant

Critical Values: -3.49 (1%), -2.89 (5%), -2.58 (10%) Null Hypothesis: The process contains a unit root.

Alternative Hypothesis: The process is weakly stationary.

ADF série em primeira diferença
Augmented Dickey-Fuller Results

Test Statistic	-5.087
P-value	0.000
Lags	4

Trend: Constant

Critical Values: -3.49 (1%), -2.89 (5%), -2.58 (10%) Null Hypothesis: The process contains a unit root.

Alternative Hypothesis: The process is weakly stationary.

DFGLS série em nível

Dickey-Fuller GLS Results

=======================================	
Test Statistic	-1.056
P-value	0.270
Lags	0

Trend: Constant

Critical Values: -2.74 (1%), -2.12 (5%), -1.81 (10%) Null Hypothesis: The process contains a unit root.

Alternative Hypothesis: The process is weakly stationary.

DFGLS série em primeira diferença Dickey-Fuller GLS Results

Test Statistic -3.829
P-value 0.000
Lags 3

Trend: Constant

Critical Values: -2.75 (1%), -2.13 (5%), -1.82 (10%) Null Hypothesis: The process contains a unit root.

Alternative Hypothesis: The process is weakly stationary.

KPSS em nível

KPSS Stationarity Test Results

Test Statistic 0.690
P-value 0.014
Lags 6

Trend: Constant

Critical Values: 0.74 (1%), 0.46 (5%), 0.35 (10%) Null Hypothesis: The process is weakly stationary.

Alternative Hypothesis: The process contains a unit root.

KPSS em primeira diferença

KPSS Stationarity Test Results

Test Statistic 0.062
P-value 0.804
Lags 3

Trend: Constant

Critical Values: 0.74 (1%), 0.46 (5%), 0.35 (10%) Null Hypothesis: The process is weakly stationary.

Alternative Hypothesis: The process contains a unit root.

Phillips Perron em nível

Phillips-Perron Test (Z-tau)

Test Statistic -2.425
P-value 0.135
Lags 13

Trend: Constant

Critical Values: -3.49 (1%), -2.89 (5%), -2.58 (10%) Null Hypothesis: The process contains a unit root.

Alternative Hypothesis: The process is weakly stationary.

Phillips Perron em primeira diferença

Phillips-Perron Test (Z-tau)

Test Statistic -10.408
P-value 0.000
Lags 13

Trend: Constant

Critical Values: -3.49 (1%), -2.89 (5%), -2.58 (10%) Null Hypothesis: The process contains a unit root.

Alternative Hypothesis: The process is weakly stationary.

Conclusão: Será tomada em primeira diferença.

8.3 Inflação

[12]: testes_raiz(df['Inflação'])

ZIVOT ANDREWS série em nível

Zivot-Andrews Results

Test Statistic -4.871
P-value 0.043
Lags 4

Trend: Constant

Critical Values: -5.28 (1%), -4.81 (5%), -4.57 (10%)

Null Hypothesis: The process contains a unit root with a single structural

break.

Alternative Hypothesis: The process is trend and break stationary.

ZIVOT ANDREWS série em primeira difenrença

Zivot-Andrews Results

Test Statistic -6.122
P-value 0.001
Lags 4

Trend: Constant

Critical Values: -5.28 (1%), -4.81 (5%), -4.57 (10%)

Null Hypothesis: The process contains a unit root with a single structural

break.

Alternative Hypothesis: The process is trend and break stationary.

ADF série em nível

Augmented Dickey-Fuller Results

Test Statistic -2.671
P-value 0.079
Lags 4

Trend: Constant

Critical Values: -3.49 (1%), -2.89 (5%), -2.58 (10%) Null Hypothesis: The process contains a unit root.

Alternative Hypothesis: The process is weakly stationary.

ADF série em primeira diferença Augmented Dickey-Fuller Results

_____ Test Statistic -4.680P-value 0.000 Lags

Trend: Constant

Critical Values: -3.49 (1%), -2.89 (5%), -2.58 (10%) Null Hypothesis: The process contains a unit root.

Alternative Hypothesis: The process is weakly stationary.

DFGLS série em nível

Dickey-Fuller GLS Results

Test Statistic -2.534P-value 0.011 Lags _____

Trend: Constant

Critical Values: -2.75 (1%), -2.13 (5%), -1.82 (10%) Null Hypothesis: The process contains a unit root.

Alternative Hypothesis: The process is weakly stationary.

DFGLS série em primeira diferença Dickey-Fuller GLS Results

_____ Test Statistic -3.8810.000 P-value Lags

Trend: Constant

Critical Values: -2.75 (1%), -2.13 (5%), -1.82 (10%) Null Hypothesis: The process contains a unit root.

Alternative Hypothesis: The process is weakly stationary.

KPSS em nível

KPSS Stationarity Test Results

Test Statistic 0.148 P-value 0.395

5 Lags

Trend: Constant

Critical Values: 0.74 (1%), 0.46 (5%), 0.35 (10%) Null Hypothesis: The process is weakly stationary.

Alternative Hypothesis: The process contains a unit root.

KPSS em primeira diferença

KPSS Stationarity Test Results

Test Statistic 0.059
P-value 0.819
Lags 6

Trend: Constant

Critical Values: 0.74 (1%), 0.46 (5%), 0.35 (10%) Null Hypothesis: The process is weakly stationary.

Alternative Hypothesis: The process contains a unit root.

Phillips Perron em nível

Phillips-Perron Test (Z-tau)

Test Statistic -2.704
P-value 0.073
Lags 13

Trend: Constant

Critical Values: -3.49 (1%), -2.89 (5%), -2.58 (10%) Null Hypothesis: The process contains a unit root.

Alternative Hypothesis: The process is weakly stationary.

Phillips Perron em primeira diferença Phillips-Perron Test (Z-tau)

Test Statistic -11.340
P-value 0.000

Trend: Constant

Critical Values: -3.49 (1%), -2.89 (5%), -2.58 (10%) Null Hypothesis: The process contains a unit root.

Alternative Hypothesis: The process is weakly stationary.

8.4 Taxa de juros das hipotecas

[13]: testes_raiz(df['Taxa de juros'], original_trend='ct')

ZIVOT ANDREWS série em nível Zivot-Andrews Results

Test Statistic -4.494
P-value 0.215
Lags 0

 ${\tt Trend: \ Constant \ and \ Linear \ Time \ Trend}$

Critical Values: -5.58 (1%), -5.07 (5%), -4.83 (10%)

Null Hypothesis: The process contains a unit root with a single structural

break.

Alternative Hypothesis: The process is trend and break stationary.

ZIVOT ANDREWS série em primeira difenrença Zivot-Andrews Results

Test Statistic	-8.144
P-value	0.000
Lags	1

Trend: Constant

Critical Values: -5.28 (1%), -4.81 (5%), -4.57 (10%)

Null Hypothesis: The process contains a unit root with a single structural

break.

Alternative Hypothesis: The process is trend and break stationary.

ADF série em nível

Augmented Dickey-Fuller Results

Test Statistic -3.638
P-value 0.027
Lags 0

Trend: Constant and Linear Time Trend

Critical Values: -4.04 (1%), -3.45 (5%), -3.15 (10%) Null Hypothesis: The process contains a unit root.

Alternative Hypothesis: The process is weakly stationary.

ADF série em primeira diferença Augmented Dickey-Fuller Results

Test Statistic -8.050 P-value 0.000

Lags 1

Trend: Constant

Critical Values: -3.49 (1%), -2.89 (5%), -2.58 (10%) Null Hypothesis: The process contains a unit root.

Alternative Hypothesis: The process is weakly stationary.

DFGLS série em nível

Dickey-Fuller GLS Results

Test Statistic -3.445
P-value 0.009
Lags 0

Trend: Constant and Linear Time Trend

Critical Values: -3.60 (1%), -3.02 (5%), -2.73 (10%) Null Hypothesis: The process contains a unit root.

Alternative Hypothesis: The process is weakly stationary.

DFGLS série em primeira diferença Dickey-Fuller GLS Results

Test Statistic -1.074
P-value 0.264
Lags 9

Trend: Constant

Critical Values: -2.76 (1%), -2.14 (5%), -1.83 (10%) Null Hypothesis: The process contains a unit root.

Alternative Hypothesis: The process is weakly stationary.

KPSS em nível

KPSS Stationarity Test Results

Test Statistic 0.081
P-value 0.264
Lags 5

Trend: Constant and Linear Time Trend

Critical Values: 0.22 (1%), 0.15 (5%), 0.12 (10%) Null Hypothesis: The process is weakly stationary.

Alternative Hypothesis: The process contains a unit root.

KPSS em primeira diferença

KPSS Stationarity Test Results

Test Statistic 0.034
P-value 0.962
Lags 3

Trend: Constant

Critical Values: 0.74 (1%), 0.46 (5%), 0.35 (10%) Null Hypothesis: The process is weakly stationary.

Alternative Hypothesis: The process contains a unit root.

Phillips Perron em nível

Phillips-Perron Test (Z-tau)

Test Statistic -3.604 P-value 0.030

```
Lags 13
```

Trend: Constant and Linear Time Trend

Critical Values: -4.04 (1%), -3.45 (5%), -3.15 (10%) Null Hypothesis: The process contains a unit root.

Alternative Hypothesis: The process is weakly stationary.

Phillips Perron em primeira diferença Phillips-Perron Test (Z-tau)

	========
Test Statistic	-11.127
P-value	0.000
Lags	13

Trend: Constant

Critical Values: -3.49 (1%), -2.89 (5%), -2.58 (10%) Null Hypothesis: The process contains a unit root.

Alternative Hypothesis: The process is weakly stationary.

9 Cointegração

9.1 g_Z e Taxa Própria

```
[14]: print("Ordem do VAR\n")

model = VAR(
    df[["gZ", 'Taxa Própria']],
)
print(model.select_order(maxlags=15, trend='ct').summary())

testes_coint(series=df[['gZ', 'Taxa Própria']], maxlag=9)
```

Ordem do VAR

VAR Order Selection (* highlights the minimums)

	AIC	BIC	FPE	HQIC
0	-14.83	-14.72	3.643e-07	-14.78
1	-16.33	-16.11*	8.126e-08	-16.24
2	-16.30	-15.97	8.361e-08	-16.17
3	-16.42	-15.99	7.392e-08	-16.25
4	-16.46	-15.92	7.097e-08	-16.25

5	-16.56*	-15.91	6.450e-08*	-16.30*
6	-16.49	-15.74	6.898e-08	-16.19
7	-16.45	-15.59	7.200e-08	-16.11
8	-16.39	-15.42	7.687e-08	-16.00
9	-16.39	-15.31	7.722e-08	-15.95
10	-16.32	-15.14	8.274e-08	-15.85
11	-16.31	-15.02	8.419e-08	-15.79
12	-16.53	-15.13	6.810e-08	-15.97
13	-16.47	-14.96	7.303e-08	-15.86
14	-16.45	-14.84	7.510e-08	-15.80
15	-16.40	-14.68	7.955e-08	-15.71

Testando para lag = 1 e trend = nc

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -3.173200 p-value: 0.016646

CONCLUSION: REJECT null Hypothesis: there IS cointegration

Testando para lag = 1 e trend = c

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -4.347271

p-value: 0.002158

CONCLUSION: REJECT null Hypothesis: there IS cointegration

Testando para lag = 1 e trend = ct

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -9.155974

p-value: 0.000000

CONCLUSION: REJECT null Hypothesis: there IS cointegration

Testando para lag = 1 e trend = ctt

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -9.988712

p-value: 0.000000

CONCLUSION: REJECT null Hypothesis: there IS cointegration

TESTE DE JOHANSEN

Teste SEM constante

Johansen cointegration test using trace test statistic with 5% significance level

r_0	r_1	test	statistic	critical	value
0	2		13.18		12.32
1	2		2.992		4.130

Para lag = 1 e significância = 5.0%, Rank = 1

Teste COM constante

Johansen cointegration test using trace test statistic with 5% significance level

r_0 r_	_1 test	statistic	critical	value
Ŭ	2	23.48 5.161		15.49 3.841

Para lag = 1 e significância = 5.0%, Rank = 2

Teste COM constante E tendência

Johansen cointegration test using trace test statistic with 5% significance level

====					
r_0	r_1	test	statistic	critical	value
0	2 2		48.63 6.006		18.40 3.841

Para lag = 1 e significância = 5.0%, Rank = 2

========

Testando para lag = 2 e trend = nc

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -2.420720 p-value: 0.108507

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

Testando para lag = 2 e trend = c

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -2.800615 p-value: 0.165489

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

Testando para lag = 2 e trend = ct

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -4.396205 p-value: 0.007987

CONCLUSION: REJECT null Hypothesis: there IS cointegration

Testando para lag = 2 e trend = ctt

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -9.988712 p-value: 0.000000

CONCLUSION: REJECT null Hypothesis: there IS cointegration

TESTE DE JOHANSEN

Teste SEM constante

Johansen cointegration test using trace test statistic with 5% significance level

r_0	r_1	test	statistic	critical	value
0	2 2		12.58 2.988		12.32 4.130

Para lag = 2 e significância = 5.0%, Rank = 1

Teste COM constante

Johansen cointegration test using trace test statistic with 5% significance level

r_0	r_1	test	statistic	critical	value
0	2 2		15.52 4.590		15.49 3.841

Para lag = 2 e significância = 5.0%, Rank = 2

Teste COM constante E tendência

Johansen cointegration test using trace test statistic with 5% significance level

r_0 r_1 test statistic critical value

0 2 26.13 18.40 1 2 6.674 3.841

Para lag = 2 e significância = 5.0%, Rank = 2

========

Testando para lag = 3 e trend = nc

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -2.824973 p-value: 0.042736

CONCLUSION: REJECT null Hypothesis: there IS cointegration

Testando para lag = 3 e trend = c

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -2.800615 p-value: 0.165489

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

Testando para lag = 3 e trend = ct

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -4.396205 p-value: 0.007987

CONCLUSION: REJECT null Hypothesis: there IS cointegration

Testando para lag = 3 e trend = ctt

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -9.988712

p-value: 0.000000

CONCLUSION: REJECT null Hypothesis: there IS cointegration

TESTE DE JOHANSEN

Teste SEM constante

Johansen cointegration test using trace test statistic with 5% significance

level

r_0 r_1 test statistic critical value

0 2 17.12 12.32

1 2 2.470

Para lag = 3 e significância = 5.0%, Rank = 1

Teste COM constante

Johansen cointegration test using trace test statistic with 5% significance level

4.130

 $r_0 r_1$ test statistic critical value

0 2 20.78 15.49 1 2 4.006 3.841

Para lag = 3 e significância = 5.0%, Rank = 2

Teste COM constante E tendência

Johansen cointegration test using trace test statistic with 5% significance level

 $r_0 r_1$ test statistic critical value

0 2 33.43 18.40 1 2 7.562 3.841

Para lag = 3 e significância = 5.0%, Rank = 2

========

Testando para lag = 4 e trend = nc

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -2.255263

p-value: 0.150904

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

Testando para lag = 4 e trend = c

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -2.161915

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

Testando para lag = 4 e trend = ct

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -3.142748

p-value: 0.206301

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

Testando para lag = 4 e trend = ctt

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -3.499544 p-value: 0.216038

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

TESTE DE JOHANSEN

Teste SEM constante

Johansen cointegration test using trace test statistic with 5% significance level

r_0 r_1 test statistic critical value

0	2	18.65	12.32
1	2	2.362	4.130

Para lag = 4 e significância = 5.0%, Rank = 1

Teste COM constante

Johansen cointegration test using trace test statistic with 5% significance level

r_0	r_1	test	statistic	critical	value
0	2		19.02		15.49
1	2		3.774		3.841

Para lag = 4 e significância = 5.0%, Rank = 1

Teste COM constante E tendência

Johansen cointegration test using trace test statistic with 5% significance level

$r_0 r_1$ test statistic critical value

0 2 28.08 18.40 1 2 13.33 3.841

Para lag = 4 e significância = 5.0%, Rank = 2

========

Testando para lag = 5 e trend = nc

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -2.255263 p-value: 0.150904

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

Testando para lag = 5 e trend = c

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -2.161915 p-value: 0.444081

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

Testando para lag = 5 e trend = ct

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -3.142748

p-value: 0.206301

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

Testando para lag = 5 e trend = ctt

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -3.499544 p-value: 0.216038

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

TESTE DE JOHANSEN

Teste SEM constante

Johansen cointegration test using trace test statistic with 5% significance level

r_0 r_1 test statistic critical value

0 2 15.56 12.32 1 2 2.636 4.130

Para lag = 5 e significância = 5.0%, Rank = 1

Teste COM constante

Johansen cointegration test using trace test statistic with 5% significance level

 $r_0 r_1$ test statistic critical value

0 2 14.77 15.49

Para lag = 5 e significância = 5.0%, Rank = 0

Teste COM constante E tendência

Johansen cointegration test using trace test statistic with 5% significance level

r_0 r_1 test statistic critical value

 0
 2
 21.37
 18.40

 1
 2
 9.604
 3.841

Para lag = 5 e significância = 5.0%, Rank = 2

========

Testando para lag = 6 e trend = nc

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -2.255263

p-value: 0.150904

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

Testando para lag = 6 e trend = c

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -2.161915

p-value: 0.444081

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

Testando para lag = 6 e trend = ct

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -2.209932 p-value: 0.675199

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

Testando para lag = 6 e trend = ctt

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -9.988712 p-value: 0.000000

CONCLUSION: REJECT null Hypothesis: there IS cointegration

TESTE DE JOHANSEN

Teste SEM constante

Johansen cointegration test using trace test statistic with 5% significance level

 $r_0 r_1$ test statistic critical value

0 2 13.75 12.32 1 2 2.434 4.130

Para lag = 6 e significância = 5.0%, Rank = 1

Teste COM constante

Johansen cointegration test using trace test statistic with 5% significance level

 $r_0 r_1$ test statistic critical value

0 2 11.96 15.49

Para lag = 6 e significância = 5.0%, Rank = 0

Teste COM constante E tendência

Johansen cointegration test using trace test statistic with 5% significance level

r_0 r_1 test statistic critical value

0 2 17.55 18.40

Para lag = 6 e significância = 5.0%, Rank = 0

========

Testando para lag = 7 e trend = nc

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -2.255263 p-value: 0.150904

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

Testando para lag = 7 e trend = c

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -2.161915

p-value: 0.444081

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

Testando para lag = 7 e trend = ct

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -3.142748 p-value: 0.206301

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

Testando para lag = 7 e trend = ctt

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -3.499544

p-value: 0.216038

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

TESTE DE JOHANSEN

Teste SEM constante

Johansen cointegration test using trace test statistic with 5% significance level

r_0	r_1	test	statistic	critical	value
0	2		15.45		12.32
1	2		3.322		4.130

Para lag = 7 e significância = 5.0%, Rank = 1

Teste COM constante

Johansen cointegration test using trace test statistic with 5% significance level

 $r_0 r_1$ test statistic critical value

0 2 13.82 15.49

Para lag = 7 e significância = 5.0%, Rank = 0

Teste COM constante E tendência

Johansen cointegration test using trace test statistic with 5% significance level

 $r_0 r_1$ test statistic critical value

0 2 17.63 18.40

Para lag = 7 e significância = 5.0%, Rank = 0

========

Testando para lag = 8 e trend = nc

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -2.255263

p-value: 0.150904

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

Testando para lag = 8 e trend = c

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -2.161915 p-value: 0.444081

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

Testando para lag = 8 e trend = ct

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -3.142748

p-value: 0.206301

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

Testando para lag = 8 e trend = ctt

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -3.499544

p-value: 0.216038

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

TESTE DE JOHANSEN

Teste SEM constante

Johansen cointegration test using trace test statistic with 5% significance level

r_0 r_1 test statistic critical value

0 2 18.33 12.32 1 2 4.187 4.130

Para lag = 8 e significância = 5.0%, Rank = 2

Teste COM constante

Johansen cointegration test using trace test statistic with 5% significance level

 $r_0 r_1$ test statistic critical value

0 2 14.29 15.49

Para lag = 8 e significância = 5.0%, Rank = 0

Teste COM constante E tendência

Johansen cointegration test using trace test statistic with 5% significance level

 $r_0 r_1$ test statistic critical value

0 2 15.82 18.40

Para lag = 8 e significância = 5.0%, Rank = 0

=======

9.2 g_Z , Inflação e taxa de juros

1

3

10.46

[15]: testes_coint(series=df[['gZ', 'Inflação', 'Taxa de juros']]) Testando para lag = 1 e trend = nc Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration t Statistic: -5.040755 p-value: 0.000118 CONCLUSION: REJECT null Hypothesis: there IS cointegration Testando para lag = 1 e trend = c Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration t Statistic: -5.097520 p-value: 0.000518 CONCLUSION: REJECT null Hypothesis: there IS cointegration Testando para lag = 1 e trend = ct Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration t Statistic: -9.710937 p-value: 0.000000 CONCLUSION: REJECT null Hypothesis: there IS cointegration Testando para lag = 1 e trend = ctt Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration t Statistic: -10.817112 p-value: 0.000000 CONCLUSION: REJECT null Hypothesis: there IS cointegration TESTE DE JOHANSEN Teste SEM constante Johansen cointegration test using trace test statistic with 5% significance _____ $r_0 r_1$ test statistic critical value -----0 39.49 24.28

12.32

Para lag = 1 e significância = 5.0%, Rank = 1

Teste COM constante

Johansen cointegration test using trace test statistic with 5% significance level

r_0 r	_1	test	statistic	critical	value
0	3 3		41.00 11.49		29.80 15.49

Para lag = 1 e significância = 5.0%, Rank = 1

Teste COM constante E tendência

Johansen cointegration test using trace test statistic with 5% significance level

r_0	r_1	test	statistic	critical	value
0	3		93.11		35.01
1	3		27.45		18.40
2	3		8.180		3.841

Para lag = 1 e significância = 5.0%, Rank = 3

========

Testando para lag = 2 e trend = nc

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -3.379085

p-value: 0.040475

CONCLUSION: REJECT null Hypothesis: there IS cointegration

Testando para lag = 2 e trend = c

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -3.395760 p-value: 0.113140

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

Testando para lag = 2 e trend = ct

Null Hypothesis: there is NO cointegration

Alternative Hypothesis: there IS cointegration

t Statistic: -4.692874 p-value: 0.009045

CONCLUSION: REJECT null Hypothesis: there IS cointegration

Testando para lag = 2 e trend = ctt

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -10.817112

p-value: 0.000000

CONCLUSION: REJECT null Hypothesis: there IS cointegration

TESTE DE JOHANSEN

Teste SEM constante

Johansen cointegration test using trace test statistic with 5% significance level

r_0	r_1	test	statistic	critical	value
0	3 3		33.07 10.25		24.28 12.32

Para lag = 2 e significância = 5.0%, Rank = 1

Teste COM constante

Johansen cointegration test using trace test statistic with 5% significance level

r_0	r_1	test	statistic	critical	value
0	3		31.65		29.80
1	3		8.898		15.49

Para lag = 2 e significância = 5.0%, Rank = 1

Teste COM constante E tendência

Johansen cointegration test using trace test statistic with 5% significance level

 2 3 6.827 3.841

Para lag = 2 e significância = 5.0%, Rank = 3

========

Testando para lag = 3 e trend = nc

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -3.379085

p-value: 0.040475

CONCLUSION: REJECT null Hypothesis: there IS cointegration

Testando para lag = 3 e trend = c

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -3.395760 p-value: 0.113140

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

Testando para lag = 3 e trend = ct

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -4.692874

p-value: 0.009045

CONCLUSION: REJECT null Hypothesis: there IS cointegration

Testando para lag = 3 e trend = ctt

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -10.817112

p-value: 0.000000

CONCLUSION: REJECT null Hypothesis: there IS cointegration

TESTE DE JOHANSEN

Teste SEM constante

Johansen cointegration test using trace test statistic with 5% significance level

r_0 r_1 test statistic critical value
----0 3 38.59 24.28
1 3 10.48 12.32

Para lag = 3 e significância = 5.0%, Rank = 1

Teste COM constante

Johansen cointegration test using trace test statistic with 5% significance level

r_0 r_1	test	statistic	critical	value
0 3		35.12 7.795		29.80 15.49

Para lag = 3 e significância = 5.0%, Rank = 1

Teste COM constante E tendência

Johansen cointegration test using trace test statistic with 5% significance level

r_0	r_1	test	statistic	critical	value
0	3		52.24		35.01
1	3		24.77		18.40
2	3		5.107		3.841

Para lag = 3 e significância = 5.0%, Rank = 3

========

Testando para lag = 4 e trend = nc

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -2.851233

p-value: 0.137385

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

Testando para lag = 4 e trend = c

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -2.841576 p-value: 0.310365

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

Testando para lag = 4 e trend = ct

Null Hypothesis: there is NO cointegration

Alternative Hypothesis: there IS cointegration

t Statistic: -3.342995 p-value: 0.261732

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

Testando para lag = 4 e trend = ctt

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -10.817112

p-value: 0.000000

CONCLUSION: REJECT null Hypothesis: there IS cointegration

TESTE DE JOHANSEN

Teste SEM constante

Johansen cointegration test using trace test statistic with 5% significance level

r_0	r_1	test	statistic	critical	value
0	3		35.11		24.28
1	3		19.18		12.32
2	3		6.746		4.130

Para lag = 4 e significância = 5.0%, Rank = 3

Teste COM constante

Johansen cointegration test using trace test statistic with 5% significance level

r_0 r_1 test statistic critical value 0 3 29.46 29.80

Para lag = 4 e significância = 5.0%, Rank = 0

Teste COM constante E tendência

Johansen cointegration test using trace test statistic with 5% significance level

r_0	r_1	test	statistic	critical	value
0	3		39.61		35.01
1	.3		22.20		18.40

2 3 7.966 3.841

Para lag = 4 e significância = 5.0%, Rank = 3

========

Testando para lag = 5 e trend = nc

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -2.851233

p-value: 0.137385

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

Testando para lag = 5 e trend = c

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -2.841576 p-value: 0.310365

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

Testando para lag = 5 e trend = ct

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -3.342995

p-value: 0.261732

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

Testando para lag = 5 e trend = ctt

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration ${\bf R}$

t Statistic: -10.817112

p-value: 0.000000

CONCLUSION: REJECT null Hypothesis: there IS cointegration

TESTE DE JOHANSEN

Teste SEM constante

Johansen cointegration test using trace test statistic with 5% significance level

r_0 r_1 test statistic critical value
----0 3 30.81 24.28
1 3 15.99 12.32

2 3 7.402 4.130

Para lag = 5 e significância = 5.0%, Rank = 3

Teste COM constante

Johansen cointegration test using trace test statistic with 5% significance level

 $r_0 r_1$ test statistic critical value

0 3 24.15 29.80

Para lag = 5 e significância = 5.0%, Rank = 0

Teste COM constante E tendência

Johansen cointegration test using trace test statistic with 5% significance level

r_0 r_1 test statistic critical value

0 3 32.18 35.01

Para lag = 5 e significância = 5.0%, Rank = 0

9.3 g_Z e Inflação

[16]: testes_coint(series=df[['gZ', 'Inflação']])

Testando para lag = 1 e trend = nc

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -5.107785

p-value: 0.000011

CONCLUSION: REJECT null Hypothesis: there IS cointegration

Testando para lag = 1 e trend = c

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -5.064438

p-value: 0.000125

CONCLUSION: REJECT null Hypothesis: there IS cointegration

Testando para lag = 1 e trend = ct

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -5.034058

p-value: 0.000752

CONCLUSION: REJECT null Hypothesis: there IS cointegration

Testando para lag = 1 e trend = ctt

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration ${\bf R}$

t Statistic: -5.186070

p-value: 0.001684

CONCLUSION: REJECT null Hypothesis: there IS cointegration

TESTE DE JOHANSEN

Teste SEM constante

Johansen cointegration test using trace test statistic with 5% significance level

r_0	r_1	test	statistic	critical	value
0	2		32.26		12.32
1	2		4.441		4.130

Para lag = 1 e significância = 5.0%, Rank = 2

Teste COM constante

Johansen cointegration test using trace test statistic with 5% significance level

r_0 r_1	test	statistic	critical	value
0 2 1 2		33.71 6.015		15.49 3.841

Para lag = 1 e significância = 5.0%, Rank = 2

Teste COM constante E tendência

Johansen cointegration test using trace test statistic with 5% significance level

$r_0 r_1$ test statistic critical value

0	2	33.38	18.40
1	2	6.072	3.841

Para lag = 1 e significância = 5.0%, Rank = 2

========

Testando para lag = 2 e trend = nc

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -3.423940

p-value: 0.007812

CONCLUSION: REJECT null Hypothesis: there IS cointegration

Testando para lag = 2 e trend = c

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -3.383623 p-value: 0.044202

CONCLUSION: REJECT null Hypothesis: there IS cointegration

Testando para lag = 2 e trend = ct

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -3.359461 p-value: 0.134796

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

Testando para lag = 2 e trend = ctt

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -3.419919 p-value: 0.248270

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

TESTE DE JOHANSEN

Teste SEM constante

Johansen cointegration test using trace test statistic with 5% significance level

 $r_0 r_1$ test statistic critical value

0	2	24.99	12.32
1	2	5.231	4.130

Para lag = 2 e significância = 5.0%, Rank = 2

Teste COM constante

Johansen cointegration test using trace test statistic with 5% significance level

r_0 r_1	test	statistic	critical	value
0 2 1 2		26.75 7.084		15.49 3.841

Para lag = 2 e significância = 5.0%, Rank = 2

Teste COM constante E tendência

Johansen cointegration test using trace test statistic with 5% significance level

r_0 r_1 test		
0 2	26.25	 18.40
1 2	7.143	3.841

Para lag = 2 e significância = 5.0%, Rank = 2

Testando para lag = 3 e trend = nc

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -3.423940

p-value: 0.007812

CONCLUSION: REJECT null Hypothesis: there IS cointegration

Testando para lag = 3 e trend = c

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -3.383623

p-value: 0.044202

CONCLUSION: REJECT null Hypothesis: there IS cointegration

Testando para lag = 3 e trend = ct

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -3.359461 p-value: 0.134796

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

Testando para lag = 3 e trend = ctt

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -3.419919 p-value: 0.248270

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

TESTE DE JOHANSEN

Teste SEM constante

Johansen cointegration test using trace test statistic with 5% significance level

r_0 r_1 test statistic critical value

0	2	29.94	12.32
1	2	4.831	4.130

Para lag = 3 e significância = 5.0%, Rank = 2

Teste COM constante

Johansen cointegration test using trace test statistic with 5% significance level

$r_0 r_1$ test statistic critical value

0	2	31.62	15.49
1	2	6.479	3.841

Para lag = 3 e significância = 5.0%, Rank = 2

Teste COM constante E tendência

Johansen cointegration test using trace test statistic with 5% significance level

r_0 r_1 test statistic critical value

0 2 30.63 18.40 1 2 6.509 3.841

Para lag = 3 e significância = 5.0%, Rank = 2

========

Testando para lag = 4 e trend = nc

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -2.893667 p-value: 0.035844

CONCLUSION: REJECT null Hypothesis: there IS cointegration

Testando para lag = 4 e trend = c

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -2.842193 p-value: 0.152628

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

Testando para lag = 4 e trend = ct

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -2.794435 p-value: 0.361320

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

Testando para lag = 4 e trend = ctt

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -2.820552 p-value: 0.560025

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

TESTE DE JOHANSEN

Teste SEM constante

Johansen cointegration test using trace test statistic with 5% significance level

 $r_0 r_1$ test statistic critical value

0 2 24.89 12.32

1 2 8.454 4.130

Para lag = 4 e significância = 5.0%, Rank = 2

Teste COM constante

Johansen cointegration test using trace test statistic with 5% significance level

r_0 r_1 test statistic critical value
----0 2 27.65 15.49
1 2 11.32 3.841

Para lag = 4 e significância = 5.0%, Rank = 2

Teste COM constante E tendência

Johansen cointegration test using trace test statistic with 5% significance level

r_0 r_1 test statistic critical value

0 2 26.81 18.40
1 2 11.38 3.841

Para lag = 4 e significância = 5.0%, Rank = 2

========

Testando para lag = 5 e trend = nc

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -2.893667

p-value: 0.035844

CONCLUSION: REJECT null Hypothesis: there IS cointegration

Testando para lag = 5 e trend = c

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -2.842193

p-value: 0.152628

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

Testando para lag = 5 e trend = ct

Null Hypothesis: there is NO cointegration

Alternative Hypothesis: there IS cointegration

t Statistic: -2.794435 p-value: 0.361320

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

Testando para lag = 5 e trend = ctt

Null Hypothesis: there is NO cointegration Alternative Hypothesis: there IS cointegration

t Statistic: -2.820552

p-value: 0.560025

CONCLUSION: FAIL to reject Null Hypothesis: there is NO cointegration

TESTE DE JOHANSEN

Teste SEM constante

Johansen cointegration test using trace test statistic with 5% significance level

r_0	r_1	test	statistic	critical	value
0	2		19.03		12.32
1	2		5.190		4.130

Para lag = 5 e significância = 5.0%, Rank = 2

Teste COM constante

Johansen cointegration test using trace test statistic with 5% significance level

r_0	r_1	test	statistic	critical	value
0	2		20.93 7.246		15.49 3.841

Para lag = 5 e significância = 5.0%, Rank = 2

Teste COM constante E tendência

Johansen cointegration test using trace test statistic with 5% significance

r_0 r_1 test statistic critical value

0	2	19.93	18.40
1	2	7.277	3.841

```
Para lag = 5 e significância = 5.0%, Rank = 2
```

10 VECM

VECM: gz, Inflação e Juros exógeno

10.1 Ordem do modelo

```
[17]: from statsmodels.tsa.vector_ar.vecm import select_order
     det = 'cili'
     #det = 'coli'
     #det = 'colo'
     #det = 'cilo'
     #det = 'ci'
     \#det = 'nc'
     #det= 'co'
     order_vec = select_order(
         df[[
             #"Inflação",
             "Taxa Própria",
             "gZ"
         ]],
         #exog=df[["Taxa de juros"]],
         #seasons=4,
         maxlags=15, deterministic=det)
     with open('./tabs/VECM_lag_order.tex','w') as fh:
         fh.write(order_vec.summary().as_latex_tabular(tile = "Selação ordem do"
      →VECM"))
     order_vec.summary()
```

[17]: <class 'statsmodels.iolib.table.SimpleTable'>

10.2 Estimação

```
\#k_ar_diff=0,
    \#k_ar_diff=1,
    \#k_ar_diff=2,
    \#k_ar_diff=3,
   k_ar_diff=4,
   \#k_ar_diff=5,
   \#k_ar_diff=6,
   \#k_ar_diff=7,
    \#k_ar_diff=8,
    deterministic=det,
    #seasons=4,
results = model.fit()
with open('./tabs/VECM_ajuste.tex','w') as fh:
    fh.write(results.summary().as_latex())
print(results.summary())
print(60*"=")
print("\nPOS ESTIMAÇÂO\n")
residuals = analise_residuos(results=results)
print(60*"=")
```

Det. terms outside the coint. relation & lagged endog. parameters for equation Taxa Própria

===========						====
0.975]	coef	std err	z	P> z	[0.025	
0.975]						
L1.Taxa Própria	0.0416	0.110	0.377	0.706	-0.175	
0.258						
L1.gZ	0.0784	0.081	0.967	0.333	-0.080	
0.237						
L2.Taxa Própria	-0.0004	0.109	-0.003	0.997	-0.214	
0.213						
L2.gZ	0.1149	0.080	1.437	0.151	-0.042	
0.272						
L3.Taxa Própria	0.0763	0.118	0.648	0.517	-0.154	
0.307						
L3.gZ	0.1101	0.068	1.616	0.106	-0.023	
0.244						
L4.Taxa Própria	0.2644	0.119	2.229	0.026	0.032	
0.497						
L4.gZ	0.0595	0.053	1.120	0.263	-0.045	
S						

0.164 $$\operatorname{\textsc{Det}}$$ Det. terms outside the coint. relation & lagged endog. parameters for equation gZ

0.170 L1.gZ -0.4209 0.128 -3.277 00.169 L2.Taxa Própria -0.9973 0.173 -5.779 00.659 L2.gZ -0.4596 0.127 -3.627 00.211 L3.Taxa Própria -0.5835 0.187 -3.127 00.218 L3.gZ -0.1992 0.108 -1.844 0. 0.013 L4.Taxa Própria -0.5321 0.188 -2.830 00.164	=======	
L1.Taxa Própria	> z	[0.025
L1.Taxa Própria -0.1727 0.175 -0.987 0. 0.170 L1.gZ -0.4209 0.128 -3.277 00.169 L2.Taxa Própria -0.9973 0.173 -5.779 00.659 L2.gZ -0.4596 0.127 -3.627 00.211 L3.Taxa Própria -0.5835 0.187 -3.127 00.218 L3.gZ -0.1992 0.108 -1.844 0. 0.013 L4.Taxa Própria -0.5321 0.188 -2.830 00.164 L4.gZ -0.2446 0.084 -2.904 00.080 Loading coefficients (alpha) for equation Ta		
0.170 L1.gZ		
-0.169 L2.Taxa Própria -0.9973	. 323	-0.515
L2.Taxa Própria -0.9973	.001	-0.673
L2.gZ	.000	-1.336
L3.Taxa Própria -0.5835	.000	-0.708
L3.gZ	.002	-0.949
L4.Taxa Própria -0.5321 0.188 -2.830 00.164 L4.gZ -0.2446 0.084 -2.904 00.080 Loading coefficients (alpha) for equation Tage	.065	-0.411
L4.gZ -0.2446 0.084 -2.904 0.000 Loading coefficients (alpha) for equation Tages coef std err z P> z ec1 -0.0286 0.070 -0.412 0.681 Loading coefficients (alpha) for equation to coef std err z P> z ec1 -0.4278 0.110 -3.882 0.000 Cointegration relations for loading-coefficients	.005	-0.901
Loading coefficients (alpha) for equation Ta coef std err z P> z ec1 -0.0286 0.070 -0.412 0.681 Loading coefficients (alpha) for equati coef std err z P> z ec1 -0.4278 0.110 -3.882 0.000 Cointegration relations for loading-coefficient	.004	-0.410
coef std err z P> z ec1 -0.0286 0.070 -0.412 0.681 Loading coefficients (alpha) for equati coef std err z P> z ec1 -0.4278 0.110 -3.882 0.000 Cointegration relations for loading-coefficients	axa Própr	ia
Loading coefficients (alpha) for equation Loading coefficients (alpha) Loading coefficients Loading coeffi		
coef std err z P> z ec1 -0.4278 0.110 -3.882 0.000 Cointegration relations for loading-coefficien		65 0.108
ec1 -0.4278 0.110 -3.882 0.000 Cointegration relations for loading-coefficien	[0.0	25 0.975]
	-0.6	44 -0.212
coef std err z P> z	nts-colum ======	n 1 =======
	[0.0	25 0.975]
beta.1 1.0000 0 0.000	1.0	00 1.000
beta.2 1.2694 0.147 8.652 0.000	0.98	82 1.557
const -0.1124 0.009 -12.824 0.000	-0.13	30 -0.095
lin_trend 0.0006 0.000 5.014 0.000	0.0	
	======	========

PÓS ESTIMAÇÃO

AUTOCORRELAÇÃO RESIDUAL: PORTMANTEAU

Portmanteau-test for residual autocorrelation. H_O: residual autocorrelation up to lag 15 is zero. Conclusion: fail to reject H_O at 5% significance level.

AUTOCORRELAÇÃO RESIDUAL: PORTMANTEAU AJUSTADO

Adjusted Portmanteau-test for residual autocorrelation. H_0 : residual autocorrelation up to lag 15 is zero. Conclusion: fail to reject H_0 at 5% significance level.

Test statistic Critical value p-value df

54.42 58.12 0.095 42

LJUNGBOX

HO: autocorrelations up to lag k equal zero H1: autocorrelations up to lag k not zero

Box-Pierce: False

Testing for TAXA PRÓPRIA . Considering a significance level of 5.0 %

p-value = 0.9108621230490326
Reject HO on lag 1 ? False

p-value = 0.9883918763097149 Reject HO on lag 2 ? False

p-value = 0.9308058487923343 Reject HO on lag 3 ? False

p-value = 0.903318881269298
Reject HO on lag 4 ? False

p-value = 0.9590509584600702 Reject HO on lag 5 ? False

p-value = 0.9387725176342155
Reject HO on lag 6 ? False

p-value = 0.8931982365444867
Reject HO on lag 7 ? False

p-value = 0.7017393626104657 Reject HO on lag 8 ? False

p-value = 0.6159678050559062 Reject HO on lag 9 ? False

p-value = 0.5228632038947401 Reject HO on lag 10 ? False

p-value = 0.5553928742851937 Reject HO on lag 11 ? False

p-value = 0.6323301403932835 Reject HO on lag 12 ? False Testing for GZ . Considering a significance level of 5.0 % p-value = 0.291641080616544 Reject HO on lag 1 ? False

p-value = 0.32186457575852456
Reject HO on lag 2 ? False

p-value = 0.34906177535797317 Reject HO on lag 3 ? False

p-value = 0.7019209542757862 Reject HO on lag 4 ? False

p-value = 2.7414947965852505 Reject HO on lag 5 ? False

p-value = 2.772896011411245 Reject HO on lag 6 ? False

p-value = 2.814710900243284 Reject HO on lag 7 ? False

p-value = 4.210870650689688 Reject HO on lag 8 ? False

p-value = 4.36096113475612
Reject HO on lag 9 ? False

p-value = 4.477963593985376
Reject HO on lag 10 ? False

p-value = 8.491163028329355 Reject HO on lag 11 ? False

p-value = 10.153450558578296 Reject HO on lag 12 ? False

BOXPIERCE

HO: autocorrelations up to lag k equal zero H1: autocorrelations up to lag k not zero Box-Pierce: True

Testing for TAXA PRÓPRIA . Considering a significance level of 5.0 %

p-value = 0.9121154648950444 Reject HO on lag 1 ? False p-value = 0.9887654810995691 Reject HO on lag 2 ? False

p-value = 0.9351354573578504 Reject HO on lag 3 ? False

p-value = 0.9115608537908553 Reject HO on lag 4 ? False

p-value = 0.9634723629547096 Reject HO on lag 5 ? False

p-value = 0.947339927230437
Reject HO on lag 6 ? False

p-value = 0.9108134222209635
Reject HO on lag 7 ? False

p-value = 0.7506677624912002 Reject HO on lag 8 ? False

p-value = 0.6805432917504961 Reject HO on lag 9 ? False

p-value = 0.6030683177019144
Reject HO on lag 10 ? False

p-value = 0.6390526906871496
Reject HO on lag 11 ? False

p-value = 0.7121333927113775 Reject HO on lag 12 ? False

Testing for GZ . Considering a significance level of 5.0 % p-value = 0.291641080616544 Reject HO on lag 1 ? False

p-value = 0.32186457575852456 Reject HO on lag 2 ? False

p-value = 0.34906177535797317 Reject HO on lag 3 ? False

p-value = 0.7019209542757862 Reject HO on lag 4 ? False p-value = 2.7414947965852505
Reject HO on lag 5 ? False

p-value = 2.772896011411245 Reject HO on lag 6 ? False

p-value = 2.814710900243284 Reject HO on lag 7 ? False

p-value = 4.210870650689688
Reject HO on lag 8 ? False

p-value = 4.36096113475612 Reject HO on lag 9 ? False

p-value = 4.477963593985376 Reject HO on lag 10 ? False

p-value = 8.491163028329355 Reject HO on lag 11 ? False

p-value = 10.153450558578296 Reject HO on lag 12 ? False

NORMALIDADE

normality (skew and kurtosis) test. H_0: data generated by normally-distributed process. Conclusion: reject H_0 at 5% significance level.

Test statistic Critical value p-value df

46.69 9.488 0.000 4

HOMOCEDASTICIDADE

HO: Residuals are homoscedastic
H1: Residuals are heteroskedastic

Testing for TAXA PRÓPRIA

LM p-value: 0.16299984459675676

Reject HO? False

F p-value: 0.1661408241092586

Reject HO? False

```
Testing for GZ
LM p-value: 0.0827931621339786
Reject HO? False
```

F p-value: 0.08428565465553892

Reject HO? False

10.3 Função impulso resposta ortogonalizada

10.4 Função impulso resposta não-ortogonalizada

```
[20]: p = results.irf(20).plot(orth=False)
    p.suptitle("")
    sns.despine()
    plt.show()
    p.savefig("./figs/Impulso_VECM.png", dpi = 300, bbox_inches = 'tight',
        pad_inches = 0.2, transparent = True,)
```


10.5 Teste de causalidade de granger

Granger causality F-test. H_0 : Taxa Própria does not Granger-cause gZ. Conclusion: reject H_0 at 5% significance level.

Instantaneous causality Wald-test. H_0 : Taxa Própria does not instantaneously cause gZ. Conclusion: reject H_0 at 5% significance level.

10.6 Inspeção gráfica dos resíduos

```
[22]: series = results.names
for serie in series:
    sns.scatterplot(x = residuals[serie], y = residuals[serie]**2)
    plt.ylabel(f"{serie}^2")
    sns.despine()
    plt.show()

    sns.scatterplot(
    y = residuals[serie],
    x = residuals[serie] .shift(-1),
    color = 'darkred'
    )
    sns.despine()
    plt.xlabel(f"{serie}(-1)")
    plt.show()
```



```
[24]: series = results.names
sns.set_context('talk')
ax = sns.jointplot(
    x = series[0],
    y = series[1],
    data = residuals, color = 'darkred', kind="reg",
)
plt.show()
```


10.7 FEVD

```
[25]: %%R -o fevd_gz
library(tsDyn)
library(readr)
df <- read.csv("./Dados_yeojohnson.csv", encoding="UTF-8")
#df <- df[,c(4:7)]
names(df) <- c("Infla", "gZ", "TaxaP", "Juros")
df <- na.omit(df[,c("Infla", "gZ", "TaxaP", "Juros")])
df <- ts(data = df, start = c(1992,03), frequency = 4)
model <- tsDyn::VECM(data = df[,c("TaxaP","gZ")], lag = 4, r = 1, estim = "ML",
LRinclude="both", include="none")
fevd_gz = data.frame(tsDyn::fevd(model, 20)$gZ)</pre>
```

```
R[write to console]: Registered S3 method overwritten by 'xts':
      method
                 from
      as.zoo.xts zoo
    R[write to console]: Registered S3 method overwritten by 'quantmod':
      method
                        from
      as.zoo.data.frame zoo
    R[write to console]: Registered S3 methods overwritten by 'forecast':
      method
                         from
      fitted.fracdiff
                         fracdiff
      residuals.fracdiff fracdiff
[26]: \%\R -o fevd_tx
     fevd_tx = data.frame(tsDyn::fevd(model, 20)$TaxaP)
[27]: sns.set_context('talk')
     fig, ax = plt.subplots(2,1, figsize = (16,10))
     fevd_gz.plot(
         ax=ax[0],
         title = "Decomposição da variância para $g_Z$",
         color = ("black", "lightgray"),
         kind = 'bar', stacked = True
     ax[0].set_xlabel('Trimestres')
     ax[0].set_ylabel('Porcentagem')
     ax[0].axhline(y=0.5, color = 'red', ls = '--')
     ax[0].legend(loc='center left', bbox_to_anchor=(1, 0.5), labels = ("50%", "Taxa_
      →Própria", "gZ"))
     ax[0].set_xticklabels(ax[0].get_xticklabels(), rotation=0)
     fevd_tx.plot(
         ax=ax[1],
         title = "Decomposição da variância para Taxa Própria",
         color = ("black", "lightgray"),
         kind = 'bar', stacked = True,
     ax[1].axhline(y=0.5, color = 'red', ls = '--')
     ax[1].legend(loc='center left', bbox_to_anchor=(1, 0.5), labels = ("50%", "Taxau
     →Própria", "gZ"))
     ax[1].set_xlabel('Trimestres')
     ax[1].set_ylabel('Porcentagem')
     ax[1].set_xticklabels(ax[1].get_xticklabels(), rotation=0)
     sns.despine()
```


11 VAR

Dúvida: Variável exógena do VAR deve ser estacionária também?

11.1 Ordem do modelo

```
[28]: model = VAR(
         df[["d_Taxa Própria", 'd_gZ']],
)
print(model.select_order(maxlags=15, trend='ct').summary())
```

VAR Order Selection (* highlights the minimums)

	AIC	BIC	FPE	HQIC
0	-15.74	-15.63	1.462e-07	-15.69
1	-15.90	-15.69	1.243e-07	-15.81
2	-16.24	-15.92*	8.869e-08	-16.11

3	-16.20	-15.77	9.223e-08	-16.03
4	-16.33	-15.80	8.070e-08*	-16.12*
5	-16.33	-15.68	8.128e-08	-16.07
6	-16.30	-15.55	8.337e-08	-16.00
7	-16.24	-15.38	8.896e-08	-15.89
8	-16.27	-15.31	8.646e-08	-15.88
9	-16.23	-15.16	9.025e-08	-15.80
10	-16.24	-15.06	9.018e-08	-15.76
11	-16.35*	-15.06	8.133e-08	-15.83
12	-16.32	-14.92	8.410e-08	-15.75
13	-16.30	-14.79	8.646e-08	-15.69
14	-16.22	-14.61	9.409e-08	-15.57
15	-16.16	-14.44	1.016e-07	-15.46

Adotando o BIC como critério de seleção dada a parciomônia, estima-se uma VAR de ordem 5.

11.2 Estimação

```
[29]: results = model.fit(maxlags=4)
print(results.summary())
```

Summary of Regression Results Model: VAR OLS Method: Date: qua, 11, dez, 2019 11:24:38 2.00000 BIC: No. of Equations: -15.9206106.000 HQIC: Nobs: -16.1896 Log likelihood: 584.948 FPE: 7.75719e-08 AIC: -16.3729 Det(Omega_mle): 6.59053e-08 Results for equation d_Taxa Própria ______ coefficient std. error t-stat prob -0.000225 0.001274 -0.177const 0.860 L1.d_Taxa Própria 0.026791 0.108015 0.248 0.804 L1.d_gZ 0.053280 0.060755 0.877 0.381

L2.d_Taxa Própria 0.920	-0.011045	0.110349	-0.100	
L2.d_gZ	0.100475	0.074389	1.351	
0.177 L3.d_Taxa Própria	0.078140	0.123519	0.633	
0.527 L3.d_gZ	0.100932	0.067956	1.485	
0.137	0.100932	0.007930	1.405	
L4.d_Taxa Própria 0.028	0.270819	0.122912	2.203	
L4.d_gZ 0.335	0.051875	0.053754	0.965	
	=======================================	=======================================		=====

====

Results for equation d_gZ

==== prob	coefficient	std. error	t-stat	
const	-0.003123	0.002167	-1.441	
0.150 L1.d_Taxa Própria 0.025	-0.411515	0.183729	-2.240	
L1.d_gZ 0.000	-0.791883	0.103341	-7.663	
L2.d_Taxa Própria 0.000	-1.174157	0.187698	-6.256	
L2.d_gZ 0.000	-0.692852	0.126532	-5.476	
L3.d_Taxa Própria 0.007	-0.567872	0.210101	-2.703	
L3.d_gZ 0.003	-0.345006	0.115590	-2.985	
L4.d_Taxa Própria 0.036	-0.439555	0.209067	-2.102	
L4.d_gZ 0.000	-0.348317	0.091434	-3.810	

====

Correlation matrix of residuals

d_Taxa Própria d_gZ d_Taxa Própria 1.000000 -0.396595 d_gZ -0.396595 1.000000

11.3 Pós-estimação

11.3.1 Autocorrelação dos resíduos

OBS: série consigo mesma na diagonal principal.

```
[30]: results.plot_acorr(nlags = 20)
sns.despine()
plt.show()
```


Conclusão: Pela inspeção gráfica, o modelo não apresenta autocorrelação serial dos resíduos.

11.3.2 Estabilidade

[31]: print("Estável:", results.is_stable(verbose=True))

Eigenvalues of VAR(1) rep

- 0.6028981520089486
- 0.7019925401767092
- 0.7019925401767092
- 0.7432362599067193
- 0.7432362599067193
- 0.6605408378835657
- 0.8122883049550694
- 0.8122883049550694

Estável: True

OBS: Apesar de estar escrito VAR(1), os resultados acima correspondem ao VAR(p)

11.4 Inspeção dos resíduos

[32]: residuals = analise_residuos(results=results)

AUTOCORRELAÇÃO RESIDUAL: PORTMANTEAU

Portmanteau-test for residual autocorrelation. H_0: residual autocorrelation up to lag 15 is zero. Conclusion: fail to reject H_0 at 5% significance level.

Test statistic Critical value p-value df
50.83 60.48 0.222 44

AUTOCORRELAÇÃO RESIDUAL: PORTMANTEAU AJUSTADO

Adjusted Portmanteau-test for residual autocorrelation. H_0 : residual autocorrelation up to lag 15 is zero. Conclusion: fail to reject H_0 at 5% significance level.

Test statistic Critical value p-value df
-----55.42 60.48 0.116 44

LJUNGBOX

HO: autocorrelations up to lag k equal zero H1: autocorrelations up to lag k not zero

Box-Pierce: False

Testing for D_TAXA PRÓPRIA . Considering a significance level of 5.0 %

p-value = 0.996228493554174
Reject HO on lag 1 ? False

p-value = 0.9406298040776545 Reject HO on lag 2 ? False

p-value = 0.9370067805887892
Reject HO on lag 3 ? False

p-value = 0.9469791896038633 Reject HO on lag 4 ? False

p-value = 0.9261744701048196 Reject HO on lag 5 ? False

p-value = 0.9436822568459015
Reject HO on lag 6 ? False

p-value = 0.7387979774955189
Reject HO on lag 7 ? False

p-value = 0.6740446150554438 Reject HO on lag 8 ? False

p-value = 0.6390067042150279 Reject HO on lag 9 ? False

p-value = 0.6025561072846164 Reject HO on lag 10 ? False

p-value = 0.6793866476512512
Reject HO on lag 11 ? False

p-value = 0.6405995235159032 Reject HO on lag 12 ? False

Testing for D_GZ . Considering a significance level of 5.0 % p-value = 0.25680182993795736

Reject HO on lag 1 ? False

p-value = 0.2889199224614687
Reject HO on lag 2 ? False

p-value = 0.3453002484818514 Reject HO on lag 3 ? False

p-value = 0.6316045110497377 Reject HO on lag 4 ? False

p-value = 2.6126619132928375 Reject HO on lag 5 ? False

p-value = 2.6543149495452156
Reject HO on lag 6 ? False

p-value = 2.678535751106577
Reject HO on lag 7 ? False

p-value = 4.092231668343421 Reject HO on lag 8 ? False

p-value = 4.2266275487084055
Reject HO on lag 9 ? False

p-value = 4.338354449221555 Reject HO on lag 10 ? False

p-value = 8.446974813432979 Reject HO on lag 11 ? False

p-value = 10.042215402605208 Reject HO on lag 12 ? False

BOXPIERCE

HO: autocorrelations up to lag k equal zero

 $\mbox{H1:}$ autocorrelations up to lag k not zero

Box-Pierce: True

Testing for D_TAXA PRÓPRIA . Considering a significance level of 5.0 %

p-value = 0.9962812441093268
Reject HO on lag 1 ? False

p-value = 0.9427644153435034

Reject HO on lag 2 ? False

p-value = 0.9407649989900082 Reject HO on lag 3 ? False

p-value = 0.9514664730870009 Reject HO on lag 4 ? False

p-value = 0.9344108021350422 Reject HO on lag 5 ? False

p-value = 0.9514336966350602 Reject HO on lag 6 ? False

p-value = 0.7766369229471246
Reject HO on lag 7 ? False

p-value = 0.7242231213618654 Reject HO on lag 8 ? False

p-value = 0.6988127568441576 Reject HO on lag 9 ? False

p-value = 0.6727776485755902
Reject HO on lag 10 ? False

p-value = 0.7449632651011944 Reject HO on lag 11 ? False

p-value = 0.7189007905800859 Reject HO on lag 12 ? False

Testing for D_GZ . Considering a significance level of 5.0 % p-value = 0.25680182993795736 Reject HO on lag 1 ? False

p-value = 0.2889199224614687 Reject HO on lag 2 ? False

p-value = 0.3453002484818514 Reject HO on lag 3 ? False

p-value = 0.6316045110497377
Reject HO on lag 4 ? False

p-value = 2.6126619132928375

Reject HO on lag 5 ? False

p-value = 2.6543149495452156 Reject HO on lag 6 ? False

p-value = 2.678535751106577 Reject HO on lag 7 ? False

p-value = 4.092231668343421 Reject HO on lag 8 ? False

p-value = 4.2266275487084055 Reject HO on lag 9 ? False

p-value = 4.338354449221555 Reject HO on lag 10 ? False

p-value = 8.446974813432979
Reject HO on lag 11 ? False

p-value = 10.042215402605208 Reject HO on lag 12 ? False

NORMALIDADE

normality (skew and kurtosis) test. H_0: data generated by normally-distributed process. Conclusion: reject H_0 at 5% significance level.

Test statistic Critical value p-value df

49.47 9.488 0.000 4

HOMOCEDASTICIDADE

HO: Residuals are homoscedastic
H1: Residuals are heteroskedastic

Testing for D_TAXA PRÓPRIA

LM p-value: 0.18615610271075678

Reject HO? False

F p-value: 0.18962127829043593

Reject HO? False

Testing for D_GZ

LM p-value: 0.3580339529225405

Reject HO? False

F p-value: 0.36284810006830603

Reject HO? False

11.5 Inspeção gráfica dos resíduos

```
[33]: series = results.names
    sns.set_context('talk')
    ax = sns.jointplot(
        x = series[0],
        y = series[1],
        data = residuals, color = 'darkred', kind="reg",
)
    plt.show()
```



```
[34]: sns.set_context('paper')
g = sns.PairGrid(residuals, diag_sharey=False)
g.map_lower(sns.kdeplot, color = 'darkred')
g.map_upper(sns.scatterplot, color = 'darkred')
g.map_diag(sns.kdeplot, lw=3, color = 'darkred')
plt.show()
g.savefig("./figs/Residuos_4.png", dpi=300)
```



```
[35]: series = results.names
for serie in series:
    sns.scatterplot(x = residuals[serie], y = residuals[serie]**2)
    sns.despine()
    plt.show()

    sns.scatterplot(
    y = residuals[serie],
    x = residuals[serie].shift(-1),
```

```
color = 'darkred'
)
sns.despine()
plt.xlabel(f"{serie}(-1)")
plt.show()
```


[36]: plot_lags(results=results)

11.6 Função resposta ao impulso ortogonalizada

```
[37]: p = results.irf(20).plot(orth=True)
p.suptitle("")
sns.despine()
plt.show()
p.savefig("./figs/Impulso_Orth.png", dpi = 300)
```


11.7 Função resposta ao impulso não-ortogonalizada

```
[38]: p = results.irf(20).plot(orth=False)
p.suptitle("")
sns.despine()
plt.show()
p.savefig("./figs/Impulso.png", dpi = 300)
```


11.8 Efeito cumulativo

```
[39]: p = results.irf(20).plot_cum_effects(orth=True)
    sns.despine()
    plt.show()
    p.savefig("./figs/Impulso_Cum.png", dpi = 300)
```


11.9 Decomposição da variância

```
[40]: p = results.fevd(20).plot()
sns.despine()
plt.show()
p.savefig("./figs/DecompVar.png", dpi = 300)
```

