CS 457, Fall 2019

Drexel University, Department of Computer Science Lecture 18

Minimum Spanning Tree of a Weighted Graph

- Let G=(V,E) be a graph on n vertices, m edges, and a weight w on edges in E.
- Sub-graph T=(V,E') with $E'\subseteq E$ with no cycles is a spanning tree
- The weight of T is the sum of the weights of its edges: $w(T) = \sum_{(u,v) \in E'} w(u,v)$

BFS Algorithm

BFS (G, s)

```
for each u \in G.V - \{s\}
1.
            u.color = WHITE
            u.d = \infty
           u.\pi = NIL
4.
      s.color = GRAY
      s.d = 0
      s.\pi = NIL
8.
      Q = \emptyset
      ENQUEUE(Q, s)
      while Q \neq \emptyset
10
            u = \mathsf{DEQUEUE}(Q)
11.
           for each v \in G. Adj[u]
12.
                 if v.color == WHITE
13.
                        v.color = GRAY
14.
                        v.d = u.d + 1
15.
16.
                        v.\pi = u
                        ENQUEUE(Q, v)
17.
18.
            u.color = BLACK
```


DFS Algorithm

```
DFS (G)
    for each vertex u \in G.V
          u.color = WHITE
2.
          u.\pi = NIL
    time = 0
    for each vertex u \in G.V
6.
          if u.color = WHITE
                    DFS-Visit(G,u)
7.
DFS-Visit(G,u)
    time = time + 1
    u.d = time
    u.color = GRAY
    for each vertex v \in G. Adj[u]
          if v.color == WHITE
5.
              v.\pi = u
              \mathsf{DFS}\text{-Visit}(G,v)
7.
    u.color = BLACK
    time = time + 1
10. u.f = time
```


Figure 22.4 The progress of the depth-first-search algorithm DFS on a directed graph. As edges are explored by the algorithm, they are shown as either shaded (if they are tree edges) or dashed (otherwise). Nontree edges are labeled B, C, or F according to whether they are back, cross, or forward edges. Timestamps within vertices indicate discovery time/finishing times.

Example

Topological Sort Algorithm

TopologicalSort(*G*)

- 1. call DFS(G) to compute finishing times v.f for each vertex v
- 2. as each vertex is finished, insert it onto the front of a linked list
- 3. return the linked list of vertices

Running time

- DFS: $\Theta(n+m)$
- Insertion to linked list: $\Theta(n)$

Strongly Connected Components

Strongly Connected Componenets(G)

- 1. call DFS(G) to compute finishing times v.f for each vertex v
- 2. compute G^T
- 3. call DFS(G^T), but in the main loop of DFS, use decreasing order w.r.t. v.f
- 4. return the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component

Strongly Connected Components

Strongly Connected Componenets(G)

- 1. call DFS(G) to compute finishing times v.f for each vertex v
- 2. compute G^T
- 3. call DFS(G^T), but in the main loop of DFS, use decreasing order w.r.t. v.f
- 4. return the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component

Practice Problems

 A root of a DAG is a vertex r such that every other vertex of the DAG can be reached from r using a directed path. Give an algorithm that determines whether a given DAG has a root.

• Provide an algorithm that, given a directed acyclic graph G = (V, E) and two vertices $s, t \in V$, returns the number of simple paths from s to t in G.

Activity-Selection problem

- You are given a set of n activities $S = \{a_1, a_2, ..., a_n\}$, with each activity a_i associated with a start time $s_i > 0$ and a finish time $f_i > s_i$
- Two activities a_i and a_j are compatible if the intervals $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap, i.e., $s_i \ge f_j$ or $s_j \ge f_i$
- Assume that these activities are sorted so that $f_1 \leq f_2 \leq \cdots \leq f_n$
- Select a maximum-size subset of mutually compatible activities

i	1	2	3	4	5	6	7	8	9	10	11
s_i	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	9	9	10	11	9 8 12	14	16

- Dynamic programming solution:
 - Let S_{ij} be the set of activities that start after activity a_i ends and end before activity a_j starts
 - Let A_{ij} be a maximum set of mutually compatible activities in S_{ij} and c[i,j] be its size

$$c[i,j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset ,\\ \max_{a_k \in S_{ij}} \left\{ c[i,k] + c[k,j] + 1 \right\} & \text{if } S_{ij} \neq \emptyset . \end{cases}$$

Activity-Selection problem

- You are given a set of n activities $S = \{a_1, a_2, ..., a_n\}$, with each activity a_i associated with a start time $s_i > 0$ and a finish time $f_i > s_i$
- Two activities a_i and a_j are compatible if the intervals $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap, i.e., $s_i \ge f_j$ or $s_j \ge f_i$
- Assume that these activities are sorted so that $f_1 \leq f_2 \leq \cdots \leq f_n$
- Select a maximum-size subset of mutually compatible activities

i	1	2	3	4	5	6	7	8	9	10	11
s_i	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	9	9	10	11	9 8 12	14	16

- Greedy solution:
 - Intuition: we should choose an activity that leaves the resource as available as possible
 - Choose the first activity to finish and repeat

Single-Source Shortest Paths

- Given a weighted, directed graph G = (V, E)
- Weight function $w: E \to \mathbb{R}$ mapping edges to real-valued weights
- The weight w(p) of a path $p=\langle v_0,v_1,\ldots,v_k\rangle$ is $\sum_{i=1}^k w(v_{i-1},v_i)$
- The shortest-path weight $\delta(u, v)$ from u to v is

$$\delta(u, v) = \begin{cases} \min\{w(p) : u \stackrel{p}{\leadsto} v\} & \text{if there is a path from } u \text{ to } v, \\ \infty & \text{otherwise}. \end{cases}$$

- A shortest-path from u to v is any path p with weight $w(p) = \delta(u, v)$
- Problem: find a shortest path from a given source vertex $s \in V$ to each $v \in V$

Single-Source Shortest Paths

 This problem exhibits optimal substructure, which is an indicator that the dynamic programming and the greedy methods may apply

Lemma 24.1 (Subpaths of shortest paths are shortest paths)

Given a weighted, directed graph G = (V, E) with weight function $w : E \to \mathbb{R}$, let $p = \langle v_0, v_1, \dots, v_k \rangle$ be a shortest path from vertex v_0 to vertex v_k and, for any i and j such that $0 \le i \le j \le k$, let $p_{ij} = \langle v_i, v_{i+1}, \dots, v_j \rangle$ be the subpath of p from vertex v_i to vertex v_j . Then, p_{ij} is a shortest path from v_i to v_j .

- Negative-weight edges:
 - Do there exist negative-weight edges?
 - Do there exist negative-weight cycles?
 - Are these cycles reachable from the source?

Bellman-Ford Algorithm: time O(nm)

INITIALIZE-SINGLE-SOURCE (G, s)

```
1 for each vertex v \in G.V
```

$$v.d = \infty$$

$$\nu.\pi = NIL$$

$$4 \quad s.d = 0$$

BELLMAN-FORD(G, w, s)

```
1 INITIALIZE-SINGLE-SOURCE (G, s)
```

2 for
$$i = 1$$
 to $|G.V| - 1$

for each edge
$$(u, v) \in G.E$$

4 RELAX
$$(u, v, w)$$

5 for each edge
$$(u, v) \in G.E$$

6 if
$$v.d > u.d + w(u, v)$$

7 return FALSE

8 return TRUE

Relax(u, v, w)

1 **if**
$$v.d > u.d + w(u, v)$$

$$2 v.d = u.d + w(u, v)$$

$$v.\pi = u$$

SSSP in Directed Acyclic Graphs

Solve the problem of single-source shortest paths for DAGs:

DAG-SHORTEST-PATHS (G, w, s)

- 1 topologically sort the vertices of G
- 2 INITIALIZE-SINGLE-SOURCE (G, s)
- 3 for each vertex u, taken in topologically sorted order
- 4 for each vertex $v \in G.Adj[u]$
- 5 RELAX(u, v, w)

- Running time?
 - O(n+m)

Dijkstra's Algorithm

Dijkstra's algorithm assumes nonnegative weights!

```
DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 S = \emptyset

3 Q = G.V

4 while Q \neq \emptyset

5 u = \text{EXTRACT-MIN}(Q)

6 S = S \cup \{u\}

7 for each vertex v \in G.Adj[u]

8 RELAX(u, v, w)
```

- Min-priority queue matters
- Time: $O(n^2 + m) = O(n^2)$
- This is a greedy algorithm

Dijkstra's Algorithm

Dijkstra's algorithm assumes nonnegative weights!

- Min-priority queue matters
- Time: $O(n^2 + m) = O(n^2)$
- This is a greedy algorithm

Dijkstra's Algorithm

Dijkstra's algorithm assumes nonnegative weights!

```
DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 S = \emptyset

3 Q = G.V

4 while Q \neq \emptyset

5 u = \text{EXTRACT-MIN}(Q)

6 S = S \cup \{u\}

7 for each vertex v \in G.Adj[u]

8 RELAX(u, v, w)
```

- Min-priority queue matters
- Time: $O(n^2 + m) = O(n^2)$
- This is a greedy algorithm

Practice Problem

24-3 Arbitrage

Arbitrage is the use of discrepancies in currency exchange rates to transform one unit of a currency into more than one unit of the same currency. For example, suppose that 1 U.S. dollar buys 49 Indian rupees, 1 Indian rupee buys 2 Japanese yen, and 1 Japanese yen buys 0.0107 U.S. dollars. Then, by converting currencies, a trader can start with 1 U.S. dollar and buy $49 \times 2 \times 0.0107 = 1.0486$ U.S. dollars, thus turning a profit of 4.86 percent.

Suppose that we are given n currencies c_1, c_2, \ldots, c_n and an $n \times n$ table R of exchange rates, such that one unit of currency c_i buys R[i, j] units of currency c_j .

a. Give an efficient algorithm to determine whether or not there exists a sequence of currencies $\langle c_{i_1}, c_{i_2}, \dots, c_{i_k} \rangle$ such that

$$R[i_1, i_2] \cdot R[i_2, i_3] \cdots R[i_{k-1}, i_k] \cdot R[i_k, i_1] > 1$$
.

Analyze the running time of your algorithm.

b. Give an efficient algorithm to print out such a sequence if one exists. Analyze the running time of your algorithm.