

CA3140, CA3140A

4.5MHz, BiMOS Operational Amplifier with MOSFET Input/Bipolar Output

November 1996

Features

- MOSFET Input Stage
 - Very High Input Impedance (Z_{IN}) -1.5TΩ (Typ)
 - Very Low Input Current (I_I) -10pA (Typ) at ±15V
 - Wide Common Mode Input Voltage Range (V_{ICR}) Can be Swung 0.5V Below Negative Supply Voltage Rail
 - Output Swing Complements Input Common Mode Range
- Directly Replaces Industry Type 741 in Most Applications

Applications

- Ground-Referenced Single Supply Amplifiers in Automobile and Portable Instrumentation
- Sample and Hold Amplifiers
- Long Duration Timers/Multivibrators (μseconds-Minutes-Hours)
- Photocurrent Instrumentation
- Peak Detectors
- Active Filters
- Comparators
- Interface in 5V TTL Systems and Other Low Supply Voltage Systems
- All Standard Operational Amplifier Applications
- Function Generators
- Tone Controls
- Power Supplies
- Portable Instruments
- Intrusion Alarm Systems

Description

The CA3140A and CA3140 are integrated circuit operational amplifiers that combine the advantages of high voltage PMOS transistors with high voltage bipolar transistors on a single monolithic chip.

The CA3140A and CA3140 BiMOS operational amplifiers feature gate protected MOSFET (PMOS) transistors in the input circuit to provide very high input impedance, very low input current, and high speed performance. The CA3140A and CA3140 operate at supply voltage from 4V to 36V (either single or dual supply). These operational amplifiers are internally phase compensated to achieve stable operation in unity gain follower operation, and additionally, have access terminal for a supplementary external capacitor if additional frequency roll-off is desired. Terminals are also provided for use in applications requiring input offset voltage nulling. The use of PMOS field effect transistors in the input stage results in common mode input voltage capability down to 0.5V below the negative supply terminal, an important attribute for single supply applications. The output stage uses bipolar transistors and includes built-in protection against damage from load terminal short circuiting to either supply rail or to ground.

The CA3140 Series has the same 8-lead pinout used for the "741" and other industry standard op amps. The CA3140A and CA3140 are intended for operation at supply voltages up to $36V \pm 18V$).

Ordering Information

PART NUMBER (BRAND)	TEMP. RANGE (°C)	PACKAGE	PKG. NO.
CA3140AE	-55 to 125	8 Ld PDIP	E8.3
CA3140AM (3140A)	-55 to 125	8 Ld SOIC	M8.15
CA3140AS	-55 to 125	8 Pin Metal Can	T8.C
CA3140AT	-55 to 125	8 Pin Metal Can	T8.C
CA3140E	-55 to 125	8 Ld PDIP	E8.3
CA3140M (3140)	-55 to 125	8 Ld SOIC	M8.15
CA3140M96 (3140)	-55 to 125	8 Ld SOIC Tape and Reel	
CA3140T	-55 to 125	8 Pin Metal Can	T8.C

Pinouts

CA3140 (METAL CAN) TOP VIEW

CA3140 (PDIP, SOIC) TOP VIEW

CA3140, CA3140A

Absolute Maximum Ratings

DC Supply Voltage (Between V+ and V- Terminals)........... 36V Differential Mode Input Voltage. 8V DC Input Voltage $\dots (V++8V)$ To (V--0.5V)Output Short Circuit Duration° (Note 2). Indefinite

Operating Conditions

Temperature Range	-55°C to 125°C
-------------------	----------------

Thermal Information

Thermal Resistance (Typical, Note 1)	θ_{JA} (oC/W)	θ _{JC} (oC/W)
PDIP Package	100	N/A
SOIC Package	160	N/A
Metal Can Package	170	85
Maximum Junction Temperature (Metal Car	Package)	175 ^o C
Maximum Junction Temperature (Plastic F	Package)	150 ^o C
Maximum Storage Temperature Range	65	5°C to 150°C
Maximum Lead Temperature (Soldering 1	0s)	300°C
(SOIC - Lead Tips Only)		

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

- 1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.
- 2. Short circuit may be applied to ground or to either supply.

Electrical Specifications $V_{SUPPLY} = \pm 15V$, $T_A = 25^{\circ}C$

			TYPICAL VALUES			
PARAMETER	SYMBOL	TEST CONI	DITIONS	CA3140	CA3140A	UNITS
Input Offset Voltage Adjustment Resistor		Typical Value of Resistor Between Terminals 4 and 5 or 4 and 1 to Adjust Max V _{IO}		4.7	18	kΩ
Input Resistance	R _I			1.5	1.5	TΩ
Input Capacitance	Cl			4	4	pF
Output Resistance	R _O			60	60	Ω
Equivalent Wideband Input Noise Voltage, (See Figure 27)	e _N	BW = 140kHz, R	: 140kHz, R _S = 1MΩ		48	μV
Equivalent Input Noise Voltage (See Figure 35)	e _N	$R_S = 100\Omega$	f = 1kHz	40	40	nV/√ Hz
			f = 10kHz	12	12	nV/√ Hz
Short Circuit Current to Opposite Supply	I _{OM} +		Source	40	40	mA
	I _{OM} -	1	Sink	18	18	mA
Gain-Bandwidth Product, (See Figures 6, 30)	f _T			4.5	4.5	MHz
Slew Rate, (See Figure 31)	SR			9	9	V/μs
Sink Current From Terminal 8 To Terminal 4 to Swing Output Low				220	220	μΑ
Transient Response (See Figure 28)	t _r	$R_L = 2k\Omega$	Rise Time	0.08	0.08	μs
	os	$C_L = 100pF$	Overshoot	10	10	%
Settling Time at 10V _{P-P} , (See Figure 5)	tS	$R_L = 2k\Omega$	To 1mV	4.5	4.5	μs
		C _L = 100pF Voltage Follower	To 10mV	1.4	1.4	μs

Electrical Specifications For Equipment Design, at $V_{SUPPLY} = \pm 15V$, $T_A = 25^{\circ}C$, Unless Otherwise Specified

		CA3140						
PARAMETER	SYMBOL	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	V _{IO}	-	5	15	-	2	5	mV
Input Offset Current	I _{IO}	-	0.5	30	-	0.5	20	pA
Input Current	lį	-	10	50	-	10	40	pA
Large Signal Voltage Gain (Note 3)	A _{OL}	20	100	-	20	100	-	kV/V
(See Figures 6, 29)		86	100	-	86	100	-	dB
Common Mode Rejection Ratio	CMRR	-	32	320	-	32	320	μV/V
(See Figure 34)		70	90	-	70	90	-	dB
Common Mode Input Voltage Range (See Figure 8)	V _{ICR}	-15	-15.5 to +12.5	11	-15	-15.5 to +12.5	12	V

CA3140, CA3140A

Electrical Specifications For Equipment Design, at $V_{SUPPLY} = \pm 15V$, $T_A = 25^{\circ}C$, Unless Otherwise Specified (Continued)

		CA3140 CA3140A						
PARAMETER	SYMBOL	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Power-Supply Rejection Ratio,	PSRR	-	100	150	-	100	150	μV/V
$\Delta V_{IO}/\Delta V_{S}$ (See Figure 36)		76	80	-	76	80	-	dB
Max Output Voltage (Note 4)	V _{OM} +	+12	13	-	+12	13	-	V
(See Figures 2, 8)	V _{OM} -	-14	-14.4	-	-14	-14.4	-	V
Supply Current (See Figure 32)	l+	-	4	6	-	4	6	mA
Device Dissipation	P_{D}	-	120	180	-	120	180	mW
Input Offset Voltage Temperature Drift	ΔV _{IO} /ΔΤ	-	8	-	-	6	-	μV/ ^o C

NOTES:

- 3. At $V_O = 26V_{P-P}$, +12V, -14V and $R_L = 2k\Omega$.
- 4. At $R_L = 2k\Omega$.

Electrical Specifications For Design Guidance At V+ = 5V, V- = 0V, $T_A = 25^{\circ}C$

			TYPICAL VALUES			
PARAMETER		SYMBOL	CA3140	CA3140A	UNITS	
Input Offset Voltage		V _{IO}	5	2	mV	
Input Offset Current		I _{IO}	0.1	0.1	pА	
Input Current		Ι _Ι	2	2	pА	
Input Resistance		R _I	1	1	ΤΩ	
Large Signal Voltage Gain (See Figures 6, 29)		A _{OL}	100	100	kV/V	
			100	100	dB	
Common Mode Rejection Ratio		CMRR	32	32	μV/V	
			90	90	dB	
Common Mode Input Voltage Range (See Figure 8)		V _{ICR}	-0.5	-0.5	V	
			2.6	2.6	V	
Power Supply Rejection Ratio		PSRR ΔV _{I0} /ΔV _S	100	100	μV/V	
			80	80	dB	
Maximum Output Voltage (See Figures 2, 8)		V _{OM} +	3	3	V	
		V _{OM} -	0.13	0.13	V	
Maximum Output Current:	Source	I _{OM} +	10	10	mA	
	Sink	I _{OM} -	1	1	mA	
Slew Rate (See Figure 31)		SR	7	7	V/μs	
Gain-Bandwidth Product (See Figure 30)		f _T	3.7	3.7	MHz	
Supply Current (See Figure 32)		l+	1.6	1.6	mA	
Device Dissipation		P_{D}	8	8	mW	
Sink Current from Terminal 8 to Terminal 4 to Swing Output Low			200	200	μΑ	

Block Diagram

Schematic Diagram

NOTE: All resistance values are in ohms.

Typical Performance Curves

FIGURE 31. SLEW RATE vs SUPPLY VOLTAGE AND TEMPERATURE

FIGURE 33. MAXIMUM OUTPUT VOLTAGE SWING vs FREQUENCY

FIGURE 30. GAIN BANDWIDTH PRODUCT vs SUPPLY VOLTAGE AND TEMPERATURE

FIGURE 32. QUIESCENT SUPPLY CURRENT vs SUPPLY VOLTAGE AND TEMPERATURE

FIGURE 34. COMMON MODE REJECTION RATIO vs FREQUENCY

Typical Performance Curves (Continued)

FIGURE 35. EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY

FIGURE 36. POWER SUPPLY REJECTION RATIO vs FREQUENCY

Metallization Mask Layout

Dimensions in parenthesis are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch) .

The photographs and dimensions represent a chip when it is part of the wafer. When the wafer is cut into chips, the cleavage angles are 57° instead of 90° with respect to the face of the chip. Therefore, the isolated chip is actually 7 mils (0.17mm) larger in both dimensions.