

ABERDEEN 2040

Relationships In Data

Data Mining & Visualisation Lecture 5

Recap...

- Categorical vs. Quantitative data
- Levels of measurement

Today...

- Relationships in data
- Pearson Correlation Coefficient

Understanding Relationships in Data

Often, there will be relationships between variables in data.

E.g. as X increases, what typically happens to the value of Y?

Data mining can help us to uncover and understand these relationships, and provide us with ways to visualise them.

Understanding Relationships in Data

Example: Do larger bills result in larger tips?

As the total bill increases, what *typically* happens to the value of tips?

Understanding Relationships in Data

Example: Do larger bills result in larger tips?

As the total bill increases, what *typically* happens to the value of tips?

Correlation

In statistics, 'correlation' is a measurement of the strength of relationship between two variables.

When people talk about a correlation coefficient, they're often referring to the Pearson Correlation Coefficient (PCC).

Strength and Direction

It is a numerical value between -1 and 1, representing the strength of association.

Correlations can be described as positive (>0) or negative (<0).

They can also be described as strong or weak, referring to the strength of the correlation (either positive or negative).

Strength and Direction

A correlation of **0** indicates no correlation between the variables.

As the correlation coefficient reaches **1**, it represents the strongest possible correlation.

A correlation coefficient of -1 represents an inverse relationship.

Strong Positive Correlation

Let's look at the Taxis dataset.

Is there a correlation between a taxi's fare and the distance travelled?

There is a strong positive correlation (p=.92) between these two variables.

Weak Correlation

Let's look at the Taxis dataset.

Is there a correlation between the number of passengers and the amount tipped?

There is a very weak correlation (p=.02) between these two variables.

Negative Correlation

Let's look at the MPG dataset.

Is there a correlation between a car's horsepower and its miles per gallon?

There is a reasonably strong negative correlation (p = -.78) between these two variables.

Calculating the Pearson Correlation Coefficient of Two Variables

Note that there is a Pearson Correlation Coefficient for both populations and samples.

There are slight differences in how you calculate these, but for simplicity, we will just focus on samples.

$$\rho_{X,Y} = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y}$$

(Population correlation coefficient)

$$r_{xy} = \frac{\operatorname{cov}(x,y)}{s_X s_Y}$$

(Sample correlation coefficient)

Calculating the Pearson Correlation Coefficient of Two Variables (Sample)

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}} = \frac{14}{\sqrt{14*14}} = \frac{14}{14} = 1$$

	X	у	$x_i - \bar{x}$	$y_i - \bar{y}$	$(x_i - \bar{x})(y_i - \bar{y})$	$(x_i - \bar{x})^2$	$(y_i - \bar{y})^2$	
$\bar{x} = 6$	3	5	-3	-3	9	9	9	
$\bar{y} = 8$	7	9	1	1	1	1	1	ill.
g	8	10	2	2	4	4	4	
\sum	18	24			14	14	14	

Calculating the Pearson Correlation Coefficient of Two Variables (Sample)

X	У		
3	5		
7	9		
8	10		

You may have heard the phrase 'correlation does not imply causation'.

But what does that actually mean?

Let's look at the definitions of these...

Correlation is a measure of the strength of an association between two variables.

As variable x changes, to what extent does variable y change?

Causation is the process of one event causing or producing another event.

Does changing variable x cause variable y to change (or vice versa)?

ABERDEEN 2040

Source: Spurious Correlations - www.tylervigen.com

Note:

- Different y axes
- Y axes don't start at 0
- Different rate of change of y axes

Found via 'dredging' lots of variables, looking for a high correlation coefficients.

Source: Spurious Correlations - www.tylervigen.com

Naturally, there is probably little connection between cat scratches and the popularity of a soft drink.

BUT the saying *correlation does not imply causation* is not simply limited to these spurious correlations.

Let's take another (this time, made up) example.

Let's say we notice a strong positive correlation between **temperature data** and **ice cream sales** – i.e. as the temperature rises, more ice cream is sold.

'But correlation does not imply causation.'

Does that mean that we don't know whether [warmer weather leads to more ice cream sales] or whether [ice cream sales leads to warmer weather]?

Naturally, we know ice cream sales don't cause warmer weather, but 'correlation != causation' still applies.

It *could* be the case that there is a *direct* connection between temperature and ice cream sales.

but it also *could* mean that there is an *indirect* connection between these variables.

Direct correlation is where two or more variables are directly connected:

[Temperature] > [Ice cream sales]

Indirect correlation is where two variables are not directly connected, but there is one or more variable that is directly connecting them:

[Temperature] > [Number of people going to the beach] > [Number of beach-side ice cream stalls open for business] > [Ice cream sales]

In other words, when variables [A] and [B] are correlated, it could be that:

- [A] and [B] are completely unconnected (spurious)
- [A] causes [B] (directly)
- [B] causes [A] (directly)
- [A] causes [D], which causes [C], which causes [B] (indirectly)
- [E] causes [A] and [B] (confounding factor)
- Etc...

The point is that we can't say for sure. Correlation can only tell us so much.

ABERDEEN 2040

Source: https://xkcd.com/552/

Limitations of Descriptive Statistics

As a data scientist, descriptive statistics are invaluable.

But they are only a subset of the tools you have at your disposal!

Imagine We Have a Dataset With...

Imagine we have a dataset with:

$$ar{x}=9$$
 $s_x=3.32$
 $ar{y}=7.5$
 $s_y=2.03$
 $r_{xy}=0.816$

What does that look like?

Imagine We Have a Dataset With...

Take a minute to guess which one it is:

$$\bar{x} = 9$$

$$s_x = 3.32$$

$$\bar{y} = 7.5$$

$$s_{y} = 2.03$$

$$s_y = 2.03$$
$$r_{xy} = 0.816$$

Anscombe's Quartet

Answer: All of the above!

All four of these datasets have:

$$\bar{x}=9$$

$$s_x = 3.32$$

$$\bar{y} = 7.5$$

$$s_{u} = 2.03$$

$$s_y = 2.03$$
$$r_{xy} = 0.816$$

Descriptive Statistics vs Visualisations

Descriptive statistics give a 'partial picture' about your datasets.

Data visualisations can also play a vital role in helping you to gain more information and understanding about your data!