特性多項式と特性方程式

 λ が n 次正方行列 A の固有値であることは、

$$A\boldsymbol{x} = \lambda \boldsymbol{x} \quad (\boldsymbol{x} \neq \boldsymbol{0})$$

となるような $\boldsymbol{x} \in K^n$ が存在することである

ここで、 $Ax = \lambda x$ を次のように変形することができる

$$A\boldsymbol{x} - \lambda \boldsymbol{x} = \mathbf{0}$$

$$A\boldsymbol{x} - \lambda E\boldsymbol{x} = \mathbf{0}$$

$$(A - \lambda E)\boldsymbol{x} = \mathbf{0}$$

 $oldsymbol{x}
eq oldsymbol{0}$ という条件により、 $(A - \lambda E)oldsymbol{x} = oldsymbol{0}$ は非自明な解を持つ必要がある

・ 固有ベクトルの斉次形方程式による定義 固有値 λ の固有ベクトルとは、斉次形方程式

$$(A - \lambda E)\boldsymbol{x} = \boldsymbol{0}$$

の非自明な解のことである

固有値を求める上で重要となるこの定理は、行列式を使って言い換えることができる

 $oldsymbol{\$}$ 固有値の方程式による定義 行列 A の固有値 λ は、x についての n 次方程式

$$\det(A - xE) = 0$$

の K に含まれる解である

ref: 行列と行列式の基 礎 p184、p188~191 ref: 長岡亮介 線形代数

入門講義 p258~260

証明 証明

 λ が A の固有値であることは、斉次形方程式 $(A-\lambda E)x=0$ が 非自明解を持つことと言い換えられる

そして、斉次形方程式が非自明解を持つことは、行列式が 0 になる ことと同値である

すなわち、

$$\det(A - \lambda E) = 0$$

が成り立ち、つまり $x=\lambda$ は方程式 $\det(A-xE)=0$ の解である

 $A=(a_{ij})$ とおいて、

$$\det(A-xE) = egin{bmatrix} a_{11}-x & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22}-x & \cdots & a_{2n} \ dots & dots & \ddots & dots \ a_{n1} & a_{n2} & \cdots & a_{nn}-x \end{bmatrix}$$

を展開すると、x についての n 次式になる

特に、すべての列 (あるいはすべての行) から、x を含む成分をとった場合 の積は、

$$(a_{11}-x)(a_{22}-x)\cdots(a_{nn}-x)$$

であるので、これを展開して現れる項を中心に考察する

れ 次の項

 $(a_{11}-x)(a_{22}-x)\cdots(a_{nn}-x)$ の各因子から、-x だけを選んでかけ合わせたものが

$$(-1)^{n}x^{n}$$

であり、これが最高次の項となる

n-1 次の項

 $(a_{11}-x)(a_{22}-x)\cdots(a_{nn}-x)$ のうち、1 つだけ a_{ii} を選び、残りの因子からは -x を選んでかけ合わせたものが

$$(-1)^{n-1}(a_{11}+a_{22}+\cdots+a_{nn})x^{n-1}$$

である

これは、トレースの定義より、

$$(-1)^{n-1} \operatorname{tr}(A) x^{n-1}$$

とも書き換えられる

n-2 次以下の項

行列式では、各列から 1 つずつ、行に重複がないように成分を選ぶ必要がある

そして、今取り上げている行列式ではxを含む成分が対角線上にあるので、n-1次の場合は、対角成分以外を選ぶことができなかった(対角成分以外からxでない数 a_{ij} を得ようとすると、同じ行もしくは列からxつ成分を選ぶことになってしまう)

しかし、n-2 次以下の項では、x を含まない成分を 2 個以上選ぶことができるので、対角成分以外からも成分を選ぶことができる

そのため、n-2 次以下の項は、上の展開式以外からも現れることになり、 単純に計算はできない

定数項

定数項は、多項式において x=0 とおくことで得られるので、 $\det(A-xE)$ に x=0 を代入した

det(A)

が定数項となる

多項式の最高次の係数に $(-1)^n$ がつくのは面倒なので、 $\det(A-xE)$ の代わりに、その $(-1)^n$ 倍である

$$det(xE - A)$$

を考えることが多い

実際、det(xE - A) を展開すると、

$$\det(xE-A) = egin{array}{ccccc} x-a_{11} & -a_{12} & \cdots & -a_{1n} \ -a_{21} & x-a_{22} & \cdots & -a_{2n} \ dots & dots & \ddots & dots \ -a_{n1} & -a_{n2} & \cdots & x-a_{nn} \ \end{array}$$

となり、x の前に (-1) がつかずに済む

⇒ 特性多項式 A を正方行列、x を変数として、

$$\Phi_A(x) = \det(xE - A)$$

とおく

これを特性多項式あるいは固有多項式と呼ぶ

特性多項式の構造 A を n 次正方行列とすると、特性多項式は、次のような n 次多項式である

$$\Phi_A(x) = x^n - \text{tr}(A)x^{n-1} + \dots + (-1)^n \det(A)$$

⇒ 特性方程式 特性多項式 Φ_A(x) の根を求める方程式

$$\Phi_A(x) = 0$$

を、特性方程式あるいは固有方程式と呼ぶ