Кремпольская Екатерина (Р3220, Теор.Вероятн. 5.1)

ИДЗ 19.1 (вариант 7)

Дано:

В результате эксперимента получены данные, записанные в виде статистического ряда:

| 57 | 46 | 33 | 49 | 29 | 50 | 38 | 41 | 27 | 34 |
|----|----|----|----|----|----|----|----|----|----|
| 37 | 49 | 51 | 26 | 55 | 42 | 59 | 43 | 46 | 30 |
| 31 | 43 | 58 | 41 | 35 | 47 | 33 | 45 | 49 | 37 |
| 47 | 34 | 54 | 39 | 60 | 49 | 25 | 50 | 31 | 53 |
| 38 | 41 | 30 | 51 | 37 | 55 | 47 | 43 | 35 | 42 |
| 35 | 46 | 27 | 45 | 41 | 34 | 50 | 29 | 51 | 39 |
| 42 | 59 | 43 | 31 | 38 | 58 | 54 | 37 | 26 | 43 |
| 29 | 42 | 33 | 41 | 24 | 39 | 53 | 45 | 33 | 51 |
| 45 | 25 | 54 | 50 | 37 | 30 | 41 | 60 | 42 | 46 |
| 38 | 53 | 34 | 47 | 35 | 49 | 57 | 39 | 55 | 31 |

## Решение:

а) Располагаем значения результатов эксперимента в порядке возрастания, т.е. записываем вариационный ряд:

| 24 | 25 | 25 | 26 | 26 | 27 | 27 | 29 | 29 | 29 |
|----|----|----|----|----|----|----|----|----|----|
| 30 | 30 | 30 | 31 | 31 | 31 | 31 | 33 | 33 | 33 |
| 33 | 34 | 34 | 34 | 34 | 35 | 35 | 35 | 35 | 37 |
| 37 | 37 | 37 | 37 | 38 | 38 | 38 | 38 | 39 | 39 |
| 39 | 39 | 41 | 41 | 41 | 41 | 41 | 41 | 42 | 42 |
| 42 | 42 | 42 | 43 | 43 | 43 | 43 | 43 | 45 | 45 |
| 45 | 45 | 46 | 46 | 46 | 46 | 47 | 47 | 47 | 47 |
| 49 | 49 | 49 | 49 | 49 | 50 | 50 | 50 | 50 | 51 |
| 51 | 51 | 51 | 53 | 53 | 53 | 54 | 54 | 54 | 55 |
| 55 | 55 | 57 | 57 | 58 | 58 | 59 | 59 | 60 | 60 |

б) Находим размах варьирования:  $\omega = x_{max} - x_{min} = 60 - 24 = 36$ 

Величина отдельного интервала:  $h = \frac{\omega}{9} = \frac{36}{9} = 4$ 

| Номер частичного интервала $l_i$ | Границы интервала $x_i - x_i + 1$ | Середина интервала $x_i' = \frac{x_i + x_i + 1}{2}$ | Частота интервала $n_i$ | Относительная частота $W_i = \frac{n_i}{n}$ | Плотность относительной частоты $\frac{W_i}{h}$ |
|----------------------------------|-----------------------------------|-----------------------------------------------------|-------------------------|---------------------------------------------|-------------------------------------------------|
| 1                                | 24 - 28                           | 26                                                  | 7                       | 0,07                                        | 0,0175                                          |
| 2                                | 28 - 32                           | 30                                                  | 10                      | 0,10                                        | 0,025                                           |
| 3                                | 32 - 36                           | 34                                                  | 12                      | 0,12                                        | 0,03                                            |
| 4                                | 36 - 40                           | 38                                                  | 13                      | 0,13                                        | 0,0325                                          |
| 5                                | 40 - 44                           | 42                                                  | 16                      | 0,16                                        | 0,04                                            |
| 6                                | 44 - 48                           | 46                                                  | 12                      | 0,12                                        | 0,03                                            |
| 7                                | 48 - 52                           | 50                                                  | 13                      | 0,13                                        | 0,0325                                          |
| 8                                | 52 - 56                           | 54                                                  | 9                       | 0,09                                        | 0,0225                                          |
| 9                                | 56 - 60                           | 58                                                  | 8                       | 0,08                                        | 0,02                                            |
| $\sum_{i}$                       | _                                 | _                                                   | 100                     | _                                           | _                                               |

в) Строим полигон частот и гистограмму относительных частот и график эмпирической функции распределения.

Находим значения эмпирической функции распределения  $F^*(x) = \frac{n_x}{n}$ :  $F^*(24) = 0$ ;

$$F^*(28) = 0.07; F^*(32) = 0.17; F^*(36) = 0.29; F^*(40) = 0.42; F^*(44) = 0.58;$$

$$F^*(48) = 0.70; F^*(52) = 0.83; F^*(56) = 0.92; F^*(60) = 1.$$







г) Находим выборочное среднее и выборочную дисперсию:

$$\bar{x} = \frac{1}{n} \sum_{i=0}^{k} x_i' n_i = 42,08$$

$$D_{\text{B}} = \frac{1}{n} \sum_{i=1}^{k} (x_i' - \bar{x})^2 n_i = \frac{1}{n} \sum_{i=1}^{k} (x_i')^2 n_i - \bar{x}^2 = 85,7536$$

$$\sigma_{\text{B}} = \sqrt{D_{\text{B}}} = 9,26032$$

Расчетная таблица:

|                | Границы        | Середина  | Частота   |            |            |               |
|----------------|----------------|-----------|-----------|------------|------------|---------------|
| $m_i$          | интервала      | интервала | интервала | $n_i x_i'$ | $(x_i')^2$ | $n_i(x_i')^2$ |
|                | $x_i; x_{i+1}$ | $x_i'$    | $n_i$     |            |            |               |
| 1              | 24 - 28        | 26        | 7         | 182        | 676        | 4732          |
| 2              | 28 - 32        | 30        | 10        | 300        | 900        | 9000          |
| 3              | 32 - 36        | 34        | 12        | 408        | 1156       | 13872         |
| 4              | 36 - 40        | 38        | 13        | 494        | 1444       | 18772         |
| 5              | 40 - 44        | 42        | 16        | 672        | 1764       | 28224         |
| 6              | 44 - 48        | 46        | 12        | 552        | 2116       | 25392         |
| 7              | 48 - 52        | 50        | 13        | 650        | 2500       | 32500         |
| 8              | 52 - 56        | 54        | 9         | 486        | 2916       | 26244         |
| 9              | 56 - 60        | 58        | 8         | 464        | 3364       | 26912         |
|                |                |           |           |            |            |               |
| $\sum$         | _              | _         | 100       | 4208       | _          | 185648        |
| $-\frac{2}{i}$ |                |           |           |            |            |               |

Выборочная дисперсия является смещенно оценкой генеральной дисперсии, а исправленная дисперсия – несмещенной оценкой:

$$\widetilde{D}_{\text{B}} = \frac{n}{(n-1)} D_{\text{B}} = \frac{100}{99} * 85,7536 = 86,6198$$

$$\widetilde{\sigma}_{\text{B}} = \sqrt{\widetilde{D}_{\text{B}}} = 9,30698$$

Согласно критерию Пирсона необходимо сравнить эмпирические и теоретические частоты. Эмпирические частоты даны. Найдем теоретические частоты. Для этого пронумеруем X, т. е. перейдем к CB  $z=(x-\bar{x})/\sigma_{\rm B}$  и вычислим концы интервалов  $z_i$  и  $z_{i+1}$ , причем наименьшее значение z, т.е.  $z_1$ , положим стремящимся к  $-\infty$ , а наибольшее, т. е.  $z_{m+1}$  к  $+\infty$ . Результаты занесем в таблицу.

|   | Границы интервала $x_i; x_{i+1}$ |           |                 |                     | Границы интервала $z_i; z_{i+1}$                            |                                                                     |  |
|---|----------------------------------|-----------|-----------------|---------------------|-------------------------------------------------------------|---------------------------------------------------------------------|--|
| i | $x_i$                            | $x_{i+1}$ | $x_i - \bar{x}$ | $x_{i+1} - \bar{x}$ | $z_i = \frac{x_i - \bar{x}}{\sigma_{\scriptscriptstyle B}}$ | $z_{i+1} = \frac{x_{i+1} - \bar{x}}{\sigma_{\scriptscriptstyle B}}$ |  |
| 1 | 24                               | 28        | _               | -12,26              | _                                                           | -1,3239283                                                          |  |
| 2 | 28                               | 32        | -12,26          | -8,26               | -1,3239283                                                  | -0,8919778                                                          |  |
| 3 | 32                               | 36        | -8,26           | -4,26               | -0,8919778                                                  | -0,4600273                                                          |  |
| 4 | 36                               | 40        | -4,26           | -0,26               | -0,4600273                                                  | -0,0280768                                                          |  |
| 5 | 40                               | 44        | -0,26           | 3,74                | -0,0280768                                                  | 0,40387373                                                          |  |
| 6 | 44                               | 48        | 3,74            | 7,74                | 0,40387373                                                  | 0,83582425                                                          |  |
| 7 | 48                               | 52        | 7,74            | 11,74               | 0,83582425                                                  | 1,26777476                                                          |  |
| 8 | 52                               | 56        | 11,74           | 15,74               | 1,26777476                                                  | 1,69972528                                                          |  |
| 9 | 56                               | 60        | 15,74           | _                   | 1,69972528                                                  | _                                                                   |  |

Находим теоретические вероятности  $P_i$  и теоретические частоты  $n'_i = nP_i = 100P_i$ . Составляем расчетную таблицу.

| i          | Границы инте | ервала $z_i$ ; $z_{i+1}$ | $\Phi(z_i)$ | $\Phi(z_{i+1})$ | $P_i = \Phi(z_{i+1}) - \Phi(z_i)$ | $n_i' = 100P_i$ |  |
|------------|--------------|--------------------------|-------------|-----------------|-----------------------------------|-----------------|--|
|            | $z_i$        | $z_{i+1}$                |             |                 |                                   |                 |  |
| 1          | _            | -1,3239283               | -0,5000     | -0,4066         | 0,0934                            | 9,34            |  |
| 2          | -1,3239283   | -0,8919778               | -0,4066     | -0,3133         | 0,0933                            | 9,33            |  |
| 3          | -0,8919778   | -0,4600273               | -0,3133     | -0,1772         | 0,1361                            | 13,61           |  |
| 4          | -0,4600273   | -0,0280768               | -0,1772     | -0,0120         | 0,1652                            | 16,52           |  |
| 5          | -0,0280768   | 0,40387373               | -0,0120     | 0,1554          | 0,1674                            | 16,74           |  |
| 6          | 0,40387373   | 0,83582425               | 0,1554      | 0,2967          | 0,1413                            | 14,13           |  |
| 7          | 0,83582425   | 1,26777476               | 0,2967      | 0,3962          | 0,0995                            | 9,95            |  |
| 8          | 1,26777476   | 1,69972528               | 0,3962      | 0,4554          | 0,0592                            | 5,92            |  |
| 9          | 1,69972528   | ı                        | 0,4554      | 0,5000          | 0,0446                            | 4,46            |  |
| $\sum_{i}$ | _            | -                        | -           | _               | 1                                 | 100             |  |

Вычислим наблюдаемое значение критерия Пирсона. Для этого составим расчетную таблицу. Последние два столбца служат для контроля вычисления по формуле:

$$x_{\text{набл}}^2 = \frac{1}{n} \sum_{i=1}^{k} n_i^2 - n$$

| i          | $n_i$ | $n_i'$ | $n_i - n'_i$ | $(n_i - n_i')^2$ | $(n_i - n_i')^2/n_i'$         | $n_i^2$  | $n_i^2/n_i'$ |
|------------|-------|--------|--------------|------------------|-------------------------------|----------|--------------|
| 1          | 9,34  | -2,34  | 5,4756       | 0,58625268       | 49                            | 5,246253 | 9,34         |
| 2          | 9,33  | 0,67   | 0,4489       | 0,04811361       | 100                           | 10,71811 | 9,33         |
| 3          | 13,61 | -1,61  | 2,5921       | 0,19045555       | 144                           | 10,58046 | 13,61        |
| 4          | 16,52 | -3,52  | 12,3904      | 0,75002421       | 169                           | 10,23002 | 16,52        |
| 5          | 16,74 | -0,74  | 0,5476       | 0,03271207       | 256                           | 15,29271 | 16,74        |
| 6          | 14,13 | -2,13  | 4,5369       | 0,3210828        | 144                           | 10,19108 | 14,13        |
| 7          | 9,95  | 3,05   | 9,3025       | 0,93492462       | 169                           | 16,98492 | 9,95         |
| 8          | 5,92  | 3,08   | 9,4864       | 1,60243243       | 81                            | 13,68243 | 5,92         |
| 9          | 4,46  | 3,54   | 12,5316      | 2,80977578       | 64                            | 14,34978 | 4,46         |
| $\sum_{i}$ | 100   | 100    | -            | -                | $x_{\text{набл}}^2 = 7,27577$ | _        | 107,2758     |

Контроль: 
$$\frac{\sum n_i^2}{n_i'} - n = \frac{\sum (n_i - n_i')^2}{n} = 107,2758 - 100 = 7,2758$$

По таблице критических точек распределения  $\chi^2$ , уровню значимости  $\alpha=0.0025$  и числу степеней свободы k=l-3=9-3=6 находим:  $\chi^2_{\rm kp}=14.4$ 

Так как  $\chi^2_{\text{набл}} < \chi^2_{\text{кр}}$ , то гипотеза  $H_0$  о нормальном распределении генеральной совокупности принимается.

е) Если CB X генеральной совокупности распределена нормально, то с надежность  $\gamma = 0.95$  можно утверждать, что математическое ожидание  $\alpha$  CB X покрывается доверительным интервалом

$$\left(ar{x}-rac{\widetilde{\sigma}_{ ext{B}}}{\sqrt{n}}t_{\gamma};ar{x}+rac{\widetilde{\sigma}_{ ext{B}}}{\sqrt{n}}t_{\gamma}
ight)$$
, где  $\delta=rac{\widetilde{\sigma}_{ ext{B}}}{\sqrt{n}}t_{\gamma}$  — точность оценки.

В нашем случае  $\bar{x}=42,08$ ,  $\tilde{\sigma}_{\rm B}=9,30698$ , n=100.  $t_{\gamma}=1,984$ ,  $\delta=0,549$ . Доверительным интервалом для  $\alpha$  будет (40,232; 43,926). Доверительный интервал, покрывающий среднее квадратичное отклонение  $\sigma$  с заданной надежностью  $\gamma$ , ( $\tilde{\sigma}_{\rm B}(1-q)$ ;  $\tilde{\sigma}_{\rm B}(1+q)$ ). При  $\gamma=0,95$  и n=100 имеем: q=0,143. Доверительным интервалом для  $\sigma$  будет (7,976; 10,638)