INORGANIC CHEMISTRY

TIME:30 Min

Single Correct

- 1. Find the pair of species having the same shape but different hybridization of the central atom?
 - (A) $[SnCl_3]^{\odot}$, XeO_3
- (B) XeO₂F₂, SF₄
- (C) XeF_2 , NO_2^{\oplus}
- (D) BrF_3 , $XeOF_9$

- 2. Select the CORRECT order of bond angle?
 - (A) $NH_3 < NH_2^{\odot} < CH_4$

(B) $CO_9 = NO_9^{\oplus} < NO_9^{\ominus}$

(C) $SO_3^{-2} < SO_4^{-2} < SO_9$

- (D) $BF_3 < BCl_3 < BBr_3$
- 3. Borazine shows a close similarity with benzene and therefore also named as inorganic benzene. Which of the following statement(s) is/are INCORRECT for benzene and borazine?
 - (A) Both are planar
 - (B) Both are aromatic
 - (C) Both are isoelectronic species
 - (D) Both have $2p\pi 2p\pi$ type of coordinate bond.
- Identify the chemical specie(s), which is/are polar as well as planar. 4.
 - (A) SnCl₂
- (B) XeF_c
- (C) BF_3
- (D) XeF_a
- With respect to valence bond theory, the CORRECT statement is **5**.
 - (A) Bond energy order is $H_2 > F_2$
 - (B) Number of lone pair of electron order is $I_3^{\oplus} > I_3^{\ominus}$
 - (C) s % character order in lone pair of electron(s) is $OCl_2 > OF_2$
 - (D) Bond angle order is $SCl_2 > OCl_2$
- Which of the following set of order is **INCORRECT** for their indicated properties? 6.
 - (A) Bond length of O-F; $O_9F_9 > OF_9$
 - (B) Lewis acidic strength; $BCl_3 > BF_3$
 - (C) Basic strength; $N(CH_3)_3 < N(SiH_3)_3$
 - (D) $p_{\pi} p_{\pi}$ back bond strength; $BF_3 > BCl_3$
- **7**. Observe the following conversion and structure of B_oH₆ (Diborane)

$$2BH_{3(g)} \longrightarrow B_2H_{6(g)}$$

The correct statement is:

- (A) $\ell_1 > \ell_2$
- (B) $\theta_1 > \theta_2$
- (C) B₂H₆ consists 3c–2e bond and is a planar species
- (D) The hybridisation state of Boron atom in B₂H₆ is not changed as compared to monomeric form of BH₃
- Which of the following acid/base reaction is most difficult to proceed in forward direction? 8.
 - (A) $BCl_3 + NMe_3 \longrightarrow Cl_3B \leftarrow NMe_3$
- (B) $BF_3 + NH_3 \longrightarrow F_3B \leftarrow NH_3$
- (C) $NH_3 + H_2O \longrightarrow NH_4^+ + OH^-$ (D) $PH_3 + H_2O \longrightarrow PH_4^+ + OH^-$
- Which of the following species is having highest p% character in the orbital occupied by bond 9. pair as compared to orbital occupied by lone pair?
 - (A) NH₃
- (B) PH₂
- (C) AsH₃
- (D) CH₃

- Which of the following species has bond angle ≥ 120°, w.r.t. underlined atom?
 - (A) $O(CH_2)_2$
- (B) $\underline{N}(CH_3)_3$
- (C) $\underline{N}(SiH_2)_2$
- (D) $\underline{P}(SiH_2)_2$
- The CORRECT order of indicated bond length is :-11.
 - (A) $\frac{d_{C-Cl}}{d_{C-Cl}}$; $CF_3-Cl > CH_3-Cl$
- (B) d_{C-H} ; $CF_3-H < Cl_3C-H$
- (C) d_{N-N} ; $H_2N-NH_2 < F_2N-NF_2$
- (D) d_{0-0} ; $O_2F_2 > H_2O_2$

One or more than one Correct

- Which of the following statement is/are **CORRECT**?
 - (A) In NSF₃ both π -bonds are $p\pi$ -d π type.
 - (B) The ratio of σ -bonds to π -bond in SO_3 and SO_2 are identical.
 - (C) [ICl₄][©] & [XeF₅][©] are planar.
 - (D) $\text{Cl}_2\text{O}_{6(s)}$ exist as ClO_2^{\oplus} & ClO_4^{\ominus}
- 13. Select the **CORRECT** order of bond energy?
 - (A) H-F < H-Cl < H-Br

(B) $3p_{\pi} - 3p_{\pi} < 3d_{\pi} - 3d_{\pi}$

(C) $Cl_2 > Br_2 > F_2$

- (D) $O_2 < O_3 (O-O)$
- Which of the following option is/are CORRECT about

- (A) $\theta_2 > \theta_1 > \theta_3$
- (B) $d_{v^2-v^2}$ orbital involved in hybridization
- (C) maximum number of atoms in plane are 4.
- (D) $S-F_{\text{(axial)}}$ bond length $\leq S-F_{\text{(eq.)}}$ bond length
- **15.** Consider the following reaction and choose CORRECT statements

 $3B_2H_6 + 6NH_3 \xrightarrow{room temperature} 3 \text{ mole ionic product (A)}$

Product (B) + Flammable gas (C)

- (A) Product (B) contain aromatic character.
- (B) Boiling point of product (C) is less than Helium.
- (C) All Boron in product (A) are sp³ hybridised.
- (D) In product (B), $2p_{\pi}-3p_{\pi}$ type back bond present.
- Which of the following is example of cyclic silicate? **16.**
 - (A) dioptase Cu₆Si₆O₁₈.6H₉O
- (B) Crocidolite $Na_9Fe_5(OH)_2[(Si_4O_{11})]_2$
- (C) Serpentine Al₂(OH)₂Si₄O₁₀
- (D) Catapleite Na₂ZrSi₃O₀.H₂O
- In which of the following odd electron species single electron is present in hybrid orbital. **17.**
 - (A) NO₂
- (B) ĊF₉
- (C) ClO₃
- (D) ClO_o
- 18. Identify the pair(s) in which first chemical species has greater % s-character on lone pair of central atom than second one.
 - (A) (NH₃, NF₃)
- (B) (PF_3, PH_3)
- (C) $(\operatorname{SnCl}_2, \operatorname{SnCl}_3^-)$ (D) $(\operatorname{SbH}_3, \operatorname{PH}_3)$

Matrix Match Type

1. Column-I

(Treatment of reactant with excess water at room temperature)

(A)
$$XeF_4 \xrightarrow{H_2O}$$

(B)
$$XeF_6 \xrightarrow{H_2O}$$

(C)
$$SF_6 \xrightarrow{H_2O}$$

(D)
$$N_2O_4 \xrightarrow{H_2O}$$

Column-II

(Reaction Characteristics)

Numb Type

1. Identify the pair in which the specified bond length of first is greater than second.

$$PCl_3F_2$$
, PF_3Cl_2

: B
$$\mathcal{L}_{\text{P-Cleq}}$$

$$SO_2Cl_2$$
, SO_2F_2
 BF_3 , BCl_3

$$\begin{array}{l} : B \ L_{S=0} \\ : B \ L_{B-X} \ X = F/Cl \end{array}$$

$$\begin{array}{lll} {\rm NO_3^-} \; , {\rm NO_2^-} & & : {\rm B} \; {\rm L_{N\!-\!0}} \\ {\rm O_3} \; , \; {\rm O_2} & & : {\rm B} \; {\rm L_{0\!-\!0}} \\ {\rm CO} \; , \; {\rm CO_2} & & : {\rm B} \; {\rm L_{C\!-\!0}} \end{array}$$

2. Find the total number of chemical specie(s) in which effective $p\pi - d\pi$ type of back bonding is observed.

 $N(SiH_{3})_{3}$, $O(SiH_{3})_{2}$, $:CCl_{2}$, $P(CH_{3})_{3}$, $N(GeH_{3})_{3}$, $B(OMe)_{3}$, $B(OEt)_{3}$, SiF_{4} , $P(SiH_{3})_{3}$

3. Write sum of basicity of oxy acid formed by hydrolysis of

$$PCl_{3} \xrightarrow{\quad Hydrolysis \quad} oxy \underset{(I)}{acid} + hydra \ acid$$

$$SF_4 \xrightarrow{Hydrolysis} oxyacid + hydra acid$$

$$BrF_5 \xrightarrow{Hydrolysis} oxyacid + hydra acid$$