COMP 543: Tools & Models for Data Science Introduction to Relational Databases

Chris Jermaine & Risa Myers

Rice University

What is a Database?

- A collection of data
- Plus, a set of programs for managing that data

Back in the Day...

- The dominant data model was the network or navigational model (60's and 70's)
- Data were a set of records with pointers between them
- Much DB code was written in COBOL
- Big problem was lack of physical data independence
 - Code was written for specific storage model
 - Want to change storage? Modify your code
 - Want to index your data? Modify your code
 - Led to very little flexibility
 - Your code locked you into a physical database design!

Some People Realized This Was a Problem

- By 1970, EF Codd (IBM) was looking at the so-called relational model
 - Landmark 1970 paper, "A relational model of data for large shared data banks"
 - Led to the 1981 Turing Award
 - Highest honor a computer scientist receives
 - Analogous to a Nobel Prize
- Idea: data stored in "relations"
 - A relation is a table of tuples or records
 - Attributes of a tuple have no sub-structure (are atomic)
- No pointers!

Querying in the Relational Model

- Querying is done via a "relational calculus"
- Declarative
 - You give a mathematical description of the tuples you want
 - System figures out how to get those for you
- ? Why is this good?

Querying in the Relational Model

- Querying is done via a "relational calculus"
- Declarative
 - You give a mathematical description of the tuples you want
 - System figures out how to get those for you
- ? Why is this good?
 - Data independence!
 - Your code has no data access specifications
 - You can change the physical organization with no code re-writes

Relational Schema

- All data are stored in tables, or relations
- A relation schema consists of:
 - A relation name (e.g., LIKES)
 - A set of (attribute_name, attribute_type) pairs
 - Each pair is referred to as an "attribute"
 - Or sometimes as a "column"
 - Usually denoted using LIKES (DRINKER string, COFFEE string)
 - Or simply LIKES (DRINKER, COFFEE)

A Relation

- A relation schema defines a set of sets
 - Specifically, if $T_1, T_2, ..., T_n$ are the n attribute types
 - Where each T_i is a set of possible values
 - Ex: string is all finite-length character strings
 - Ex: integer is all numbers from -2^{31} to $2^{31}-1$
 - Then a realization of the schema (aka a "relation") is a subset of
 - \blacksquare $T_1 \times T_2 \times ... \times T_n$
 - lacktriangle where imes is the Cartesian product operator

A Relation (continued)

- So for the relation schema LIKES (DRINKER string, COFFEE string)
- A corresponding relation might be

```
{('Chris', 'Espresso'),('Risa', 'Cold Brew')}
```

- This is also referred to as a "table"
- The entries in the relation are referred to as
 - "rows"
 - "tuples"
 - "records"

Relational Terminology

Keys

- In the relational model, given $R(A_1, A_2, ..., A_n)$
- A set of attributes $K = \{K_1, ..., K_m\}$ is a KEY of R if:
 - For any valid realization R' of R...
 - For all t_1, t_2 in R'...
 - If $t_1[K_1] = t_2[K_1]$ and $t_1[K_2] = t_2[K_2]$ and ... $t_1[K_m] = t_2[K_m]$...
 - Then it must be the case that $t_1 = t_2$
- ? Note: every relation schema SHOULD have a key... why?

Keys: Exercise

? What is a key for STUDENT (NETID, FNAME, LNAME, AGE, COLLEGE)?

Keys: Exercise

? What is a key for LIKES (DRINKER, COFFEE)?

Keys: Exercise

What is a key for LIKES (DRINKER, COFFEE)? What is the relation about? Is it about a drinker's favorite style of coffee? Or about the first person to drink a coffee? Or about what styles of coffee does each drinker like? Context matters!

Keys (continued)

- A relation schema can have many keys
- Those that are minimal are CANDIDATE KEYs
 - "Minimal" means no subset is a key
- One is typically designated as the PRIMARY KEY
- Denoted with an underline
 - STUDENT (<u>NETID</u>, FNAME, LNAME, AGE, COLLEGE)

Connecting Relations

The relational model does not have pointers that connect different relations

Why not?

- Not nice mathematically
 - Mathematical elegance key goal in model design
- 2 Difficult implementation
 - Move an object? All pointers are invalid!
 - Solution: Use a centralized look-up table
 - Expensive
 - Complicated
 - Problem still exists

Solution: Foreign Keys

- But we still need some notion of between-tuple references
 - LIKES (DRINKER, COFFEE)
 - DRINKER (DRINKER, FNAME, LNAME)
 - Clearly, LIKES.DRINKER refers to DRINKER.DRINKER
- Accomplished via the idea of a FOREIGN KEY

Foreign Keys (continued)

- Given a relation schema: R_1 , R_2
 - We say a set of attributes K_1 from R_1 is a foreign key to a set of attributes K_2 from R_2 if...
 - \blacksquare (1) K_2 is a candidate key for R_2 , and...
 - (2) For any valid realizations R'_1 , R'_2 of R_1 , R_2 ...
 - For each tuple $t_1 \in R'_1$, it MUST be the case that there exists $t_2 \in R'_2$ s.t...
 - \bullet $t_1[K_{1,1}] = t_2[K_{2,1}]$ and $t_1[K_{1,2}] = t_2[K_{2,2}]$ and ... $t_1[K_{1,m}] = t_2[K_{2,m}]$
- ? Intuitively, what does this mean?

Foreign Key Interpretation

Intuitively, what does this mean?

- The foreign key must be an attribute or set of attributes that uniquely identify a record in another table
- AND that combination of attribute values must be present in the other table
- The foreign key may consist of
 - More than one attribute
 - Attributes with different names in each table

? Which way is the foreign key?

PERSON

FERSON		
NETID	FIRSTNAME	LASTNAME
cmj4	Chris	Jermaine
rbm2	Risa	Myers

LIKES

DRINKER	COFFEE	
cmj4	Espresso	
rbm2	Cold Brew	
cmj4	Chai Latte	

Foreign Key Interpretation

- In other words
 - The target must be a candidate key
 - There are no dangling pointers
- Why is this a requirement?
 - To prevent inconsistencies
 - To match to a single target
- The database enforces these requirements via
 - Cascading deletes
 - To match to a single target
 - Failed inserts

Queries/Computations in the Relational Model

- The original query language was the RELATIONAL CALCULUS
 - Fully declarative programming language
 - Mostly theoretical/math not actually implemented
 - Helps you understand how to write SQL
- next was the RELATIONAL ALGEBRA
 - Imperative
 - Define a set of operations over relations
 - An RA program is then a sequence of those operations
 - This is the "abstract machine" of RDBs
 - Helps you understand query performance

Queries/Computations in the Relational Model

- Today we use SQL
 - Heavily influenced by RC
 - Has aspects of RA
 - More complex than either of them!

Overview of Relational Calculus

- RC is a variant on first order logic
- You say: "Give me all tuples t where P(t) holds"
- \blacksquare P(t) is a predicate in first order logic

Predicates

- First order logic allows predicates
 - Predicate: A function that evals to true/false
 - "It's raining on day X" or Raining(X)
 - "It's cloudy on day X" or *Cloudy*(X)
- Build more complicated predicates using logical operations over them
 - and (∧) (both)
 - \blacksquare or (\lor) (either or both)
 - \blacksquare not (\neg) (flip truth value)
 - \blacksquare implies (\rightarrow)
 - \blacksquare if and only if (\leftrightarrow)

Predicates: And

 $Raining(X) \wedge Cloudy(X)$ Evaluates to TRUE if both:

- It is raining on day X and
- It is cloudy on day X

AND Truth Table

AND HUILI IADI		
р	q	$\mathbf{p} \wedge \mathbf{q}$
Т	Т	Т
Т	F	F
F	T	F
F	F	F

Predicates: Or

 $Raining(X) \wedge Cloudy(X)$ Evaluates to TRUE if either:

- It is raining on day X or
- It is cloudy on day X

OR Truth Table

OIT HUIH HADIC		
р	q	$p \lor q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Predicates: Implies

 $Raining(X) \rightarrow Cloudy(X)$

Evaluates to TRUE if either:

- It is not raining on day X or
- It is raining and cloudy on day X
- $lue{}$ ightarrow is like a logical "if-then"
- State is FALSE if it is raining and not cloudy
- If it's not raining, we don't care about whether or not it's cloudy

IMPLICATION

Truth Table

iruth lable		
р	q	$\mathbf{p} ightarrow \mathbf{q}$
Т	Т	Т
Т	F	F
F	T	Т
F	F	Т

Predicates: If and Only If

Raining(X) \leftrightarrow Cloudy(X) Evaluates to TRUE if both:

- $\begin{array}{c} \blacksquare \ \, \mathsf{Raining}(\mathsf{X}) \to \mathsf{Cloudy}(\mathsf{X}) \\ \mathsf{AND} \end{array}$
- \blacksquare Cloudy(X) \rightarrow Raining(X)

IFF Truth Table

р	q	p o q	$\mathbf{q} o \mathbf{p}$	$p \leftrightarrow q$
Т	Т	Т	Т	Т
Т	F	F	Т	F
F	Т	Т	F	F
F	F	Т	Т	Т

First Order Logic

- Just predicates and logical ops?
 - You've got predicate logic
- But when you add quantification
 - **■** ∀, ∃
 - You've got first order logic

Universal Quantification

- Asserts that a predicate is true all of the time
- Example:
 - \blacksquare $\forall (X)(Raining(X) \rightarrow Cloudy(X))$
 - Zero-argument predicate (takes no params)
 - Asserts that it only rains when it is cloudy
 - Note: idea of universe of discourse is key!
 - X is a variable. It ranges over the entire universe of discourse
 - Plug the value of that variable into the predicate. If it is always true, then the predicate is true

Universal Quantification Example 1

- \blacksquare $\forall (X)(Raining(X) \rightarrow Cloudy(X))$
- Given the following Universe of Discourse, is our predicate T or F?

Day	Rainy	Cloudy	$\begin{array}{c} Raining(X) \\ \rightarrow Cloudy(X) \end{array}$
\forall			

Universal Quantification Example 2

- $\blacksquare \forall (X)(Friends(X,Y))$
- \blacksquare This is a predicate over Y
- Asserts that person Y is friends with everyone
- Can be T or F, depending on what's in the U of D

Existential Quantification

- Asserts that a predicate can be satisfied
- Example:
 - \blacksquare $\exists (X)(Raining(X) \land \neg Cloudy(X))$
 - Asserts that it is possible for it to rain when it is not cloudy
 - aka a "sun shower"

Important Equivalence

- \blacksquare $\forall (X)(P(X))$ is equivalent to...
- $\neg \exists (X)(\neg P(X))$
 - Ex: $\neg \exists (X,Y)(Friends(X,Y) \land Friends(X,Z) \land Friends(Y,Z))$
 - Can be changed to:
 - $\forall (X,Y)(\neg(Friends(X,Y) \land Friends(X,Z) \land Friends(Y,Z)))$
 - Or $\forall (X,Y)(\neg Friends(X,Y) \lor \neg Friends(X,Z) \lor \neg Friends(Y,Z))$
- Which is easier?
 - lacktriangle Often easier to reason about \exists compared to \forall
 - Can be hard to conceptualize an assertion that something is true over every item in the entire universe!
 - In fact, SQL does not even have ∀
- ? What is the name of rule applied to distribute the negation?

Questions?