Q2. [10 marks] Treasure Collector.

Let $A = [(v_1, f_1), (v_2, f_2), ..., (v_n, f_n)]$ denotes the input array.

Subproblem:

 $M_i[j+1,k]$ is the maximum value of collection of size at most j , on floor at most k at the end of i^{th} round.

For all $i\in[1,n], j\in[0,m], k\in[1,h-1],$

Base case: $M_0[j+1,k] = 0$.

At i-th round, we can either collect the treasure or not. Thus, we have

 $M_i[j+1,k] = \max(M_{i-1}[j+1,k], M_{i-1}[j,k] + v_i).$

Also, $M_i[j+1,k] \geq M_i[j,k]$ and $M_i[j+1,k+1] \geq M_i[j+1,k]$. We will prove that these two invariants hold below.

 $M_n[m+1][h]$ has the desired result.

Description of Algorithm:

1. [For better efficiency] If h >> n, we can create a temporary array A' from A, where $A' = [(f_1, 1), (f_2, 2), ..., (f_n, n)]$.

Then we sort A' based on the value of f. We should use merge sort algorithm, which is stable. Denote the result array as $[(f'_1,i_1),(f'_2,i_2),...,(f'_n,i_n)]$. The resulting array should satisfy $f'_1 \leq f'_2 \leq ... \leq f'_n$.

At last, we assign a new index j for each (f'_j, i_j) , and modify A such that $A[i_j] = (v_{i_j}, j)$ for all $j \in [1, n]$. This allows us to bound the value of h and set h to be n.

- 2. Initialize the (m+1) imes h 2D-array M and set all of its entries to be zero.
- 3. We have to start checking the treasure appeared in the first round, and update the maximum value for M[j][k] for all $j \in [1, m], k \in [1, h]$, until we have iterated through all the rounds.
- 4. At each round i, the treasure appeared in this round might affect all M[j+1][k] where $j\in [1,m], k\in [f_i,h]$.

Since $M_i[j+1,k]=\max(M_{i-1}[j+1,k],M_{i-1}[j,k]+v_i)$, we need to update M[j+1,k] before M[j,k].

Hence, the nested loop should start from j=m, and end at j=1, with stepping to be -1. Inside this loop,

- 1. we first check $M[j+1,k] = \max(M[j+1,k],M[j,k]+v_i)$.
- 2. Then, we need to update the maximum value that can be collected on at most $f_i+1,...,h$ floor. If the i-th round does not change M[j+1,k] for some $k\in [f_i+1,h]$, we can then stop checking because the invariant ensures that $M_i[j+1,k+1]\geq M_i[j+1,k]$.

We do not need to care about $M[j+1][1], \dots, M[j+1][f_i-1]$ because we cannot go back to the lower floors if we collect the treasure on f_i -th floor.

5. After we iterate over all the rounds, we can then return M[m+1][h].

Proof of Correctness:

The invariants always hold:

For all $i \in [1,n], j \in [0,m], k \in [1,h-1],$

- 1. $M_i[j+1,k] \geq M_{i-1}[j+1,k]$
- 2. $M_i[j+1,k] \geq M_i[j,k]$
- 3. $M_i[j+1,k+1] \geq M_i[j+1,k]$

The base case, which is $M_0[j+1][k]$ for all $j \in [0,m], k \in [1,h-1]$ is 0 since all entries of the 2D-array are initialized to zero. The three invariants definitely hold.

Assume we are checking the i-th round.

Line 5 of the pseudocode will update $M[j+1][f_i]$.

$$\text{If } M_{i-1}[j+1][f_i] < M_{i-1}[j][f_i], \text{ then } M_i[j+1][f_i] = M[j+1][f_i] \leftarrow M_{i-1}[j][f_i] + v_i.$$

So after line 5 we have $M_i[j+1,k] \geq M_{i-1}[j+1,k]$ and $M_i[j+1,k] \geq M_{i-1}[j,k]$.

Since
$$M_i[j+1,k] = \max(M_{i-1}[j+1,k],M_{i-1}[j,k]+v_i)$$
 and $M_i[j,k] =$

$$\max(M_{i-1}[j,k],M_{i-1}[j-1,k]+v_i)$$
 or 0 if $j=0$, we also have $M_i[j+1,k]\geq M_i[j,k]$.

Hence, the invariant (1), (2) hold.

From line 6 to 8, we are updating M[j+1][l] for all $l \in [\min(f_i+1,h),h]$ such that $M_i[j+1][h] \geq M_i[j+1][h-1] \geq \cdots \geq M_i[j+1][f_i+1] \geq M_i[j+1][f_i]$.

Thus the invariant (3) holds.

Therefore, at the end of each rounds, the three invariants always hold.

Thus, according to the definition of M[j+1][k], we have that $M[m+1][h] = M_n[m+1][h]$ contains the correct result, which is the maximum total value of treasure of at most m collections, on or beneath h-th floor.

Pseudocode:

Algorithm collect Treasure(n, m, h, A)

$$A = \left[(v_1, f_1), (v_2, f_2), ..., (v_n, f_n)
ight]$$

- 1. Optional: $A \leftarrow \mathtt{re}\mathtt{-assign}(A)$ if h > 1.5n
- 2. Initialize the (m+1) imes h 2D-array M and set all of its entries to be zero
- 3. for i from 1 to n do
- 4. **for** j **from** m **to** 1 **do** // stepping = -1
- 5. $M[j+1][f_i] \leftarrow \max(M[j+1][f_i], M[j][f_i] + v_i)$
- 6. **for** l **from** $f_i + 1$ **to** h **do**
- 7. $M[j+1][l] \leftarrow \max(M[j+1][l], M[j+1][l-1])$
- 8. // if M[j+1][l] is not changed, we can break this loop
- 9. **return** M[m+1][h]

Algorithm re-assign(A)

$$A = [(v_1, f_1), (v_2, f_2), ..., (v_n, f_n)]$$
1. $A' \leftarrow [(f_1, 1), (f_2, 2), ..., (f_n, n)]$
2. $A'' \leftarrow \texttt{MergeSort}(A')$ // stable sort based on the value of f
3. // $A'' = [(f'_1, i_1), (f'_2, i_2), ..., (f'_n, i_n)]$ where $f'_1 \leq f'_2 \leq ... \leq f'_n$
4. for j from 1 to n do
5. $A[i_j] \leftarrow (v_{i_j}, j)$
6. return A

Run-time Analysis:

Without calling re-assign, the runtime is O(nmh) because

- 1. The initialization of the 2D-array takes O(mh) time.
- 2. The innermost for-loop takes O(h) time.
- 3. The second innermost for-loop iterates m time.
- 4. The outermost for-loop iterates n time.

Hence, the overall run-time is O(nmh+mh)=O(nmh). The space complexity is O(mh).

If re-assign is called, the runtime is $O(n^2m)$ because h is bound to be n, creating A' takes O(n) time, sorting A' using MergeSort takes $O(n \log n)$ time, modifying A takes O(n) time. The rest is the same. Thus, the total run-time is $O(n \log n + n + n + n^2m) = O(n^2m)$. The space complexity is O(mh + n).