ROBEM I Assume $A = \{a \in P \mid a \mid m\} = \{q_i \mid i = 1, \dots, s\}$, where $P \subset \mathbb{N}, \forall p \in P, p$ is prime, s = |A|. Prove: g is the primative root mod $m \iff g$ is q_i -tic non-residue mod $m, \forall i = 1, \dots, s$.

SOLTION. On one hand, assume g is q_i -th power residue of m, then $g \equiv h^{q_i} \mod m$. So $g^{\frac{\phi(m)}{q_i}} \equiv h^{\phi(m)} \equiv 1 \mod m$, contradiction!

On the other hand, assume $o(g) < \phi(m)$. Easily $o(g) \mid \phi(m)$, so $\frac{\phi(m)}{o(g)} \in \mathbb{Z}$. So $\exists i, q_i \mid \frac{\phi(m)}{o(g)}$. Then $g \stackrel{\phi(m)}{=} \equiv 1 \mod m$. Then g is q_i -th power residue of m.

BOBEM II Prove:

- 1. 10 is the primative root mod 17, 257.
- 2. The length of repetend of $\frac{1}{17}$ is 16, the length of repetend of $\frac{1}{257}$ is 256.

SOUTON. Easily $\phi(17) = 16 = 2^4$. So we only need to check $10^8 \not\equiv 1 \mod 17$. Easily $10^8 \equiv 100^4 \equiv (-2)^4 \equiv 2^4 \equiv -1 \mod 17$. So 10 is primative root of 17.

Easily $\phi(257) = 256 = 2^8$, so we only need to check $10^{128} \not\equiv 1 \mod 257$. By calculation easily to get that $10^{128} \equiv -1 \mod 257$. So 10 is primative root of 17.

Since 10 is primative root of 17, 257, we know the length of loop-body of $\frac{1}{17}$, $\frac{1}{257}$ are 16, 256.

ROBEM III Apply index table to solve the equation

$$x^{15} \equiv 14 \pmod{41}.$$

SOUTHON. Use 6 as primative root of 41, we have this table of index:

ROBEM IV Assume m > 2 has primative root, prove $\forall g$ is the primative root mod m, $\operatorname{ind}_g - 1 = \frac{1}{2}\phi(m)$.

 \mathbb{R}^{OBEM} V Assume g_1, g_2 are two primative root mod m, prove:

- 1. $\operatorname{ind}_{g_1} g \cdot \operatorname{ind}_g g_1 \equiv 1 \pmod{\phi(m)}$;
- 2. $\operatorname{ind}_g a \equiv \operatorname{ind}_g g_1 \cdot \operatorname{ind}_{g_1} a \pmod{\phi(m)}$
- SOLTON. 1. Let $a = \operatorname{ind}_{g_1} g, b = \operatorname{ind}_g g_1$. By the defination, we can get that $g_1^a \equiv g \pmod{\phi(m)}, g^b \equiv g_1 \pmod{\phi(m)}$. Then $(g_1^a)^b = g_1^{ab} \equiv g^b \equiv g_1 \pmod{\phi(m)}$. Since g_1 is the primative root of m, then $ab \equiv 1 \pmod{\phi(m)}$.
 - $2. \text{ Let } x_1 = \operatorname{ind}_g a$

	0	
0		
1	8	
2	34	
3	23	
4	20	