# 应用回归分析

#### 上海财经大学 统计与管理学院



# 第三章 多元回归

#### ❖章节概括:

- 多元线性回归模型
- ●最小二乘法
- 方差分析与假设检验
- 最大似然估计和多元正态分布

# 多元线性回归模型

• 均值函数

$$E(Y|X_1 = x_1) = \beta_0 + \beta_1 x_1$$

$$E(Y|X_1 = x_1, X_2 = x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

$$E(Y|X = \mathbf{x}) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

• 方差函数  $Var(Y|X=x) = \sigma^2$ 

● 多元线性模型

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + e$$

# 几何图



FIG. 3.2 A linear regression surface with p = 2 predictors.

# 多元线性回归模型

• n 组 独立同分布 观测数据

$$(x_{i1}, x_{i2},...,x_{ip}; y_i), i=1,2,...,n,$$

● 回归方程组

$$\begin{cases} y_1 = \beta_0 + \beta_1 x_{11} + \beta_2 x_{12} + \dots + \beta_p x_{1p} + e_1 \\ y_2 = \beta_0 + \beta_1 x_{21} + \beta_2 x_{22} + \dots + \beta_p x_{2p} + e_2 \\ \dots \\ y_n = \beta_0 + \beta_1 x_{n1} + \beta_2 x_{n2} + \dots + \beta_p x_{np} + e_n \end{cases}$$

• 线性含义:参数

### 矩阵表达

$$\mathbf{Y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \qquad \mathbf{X} = \begin{pmatrix} 1 & x_{11} & \cdots & x_{1p} \\ 1 & x_{21} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n1} & \cdots & x_{np} \end{pmatrix}$$

$$\boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_n \end{pmatrix} \quad \text{and} \quad \mathbf{e} = \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix}$$

$$Y = X\beta + e$$

$$E(Y|X = \mathbf{x}_i) = \mathbf{x}_i' \boldsymbol{\beta}$$
$$= \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}$$

# 标准误差

● 假设1:独立、均值零,等方差

$$E(\mathbf{e}) = \mathbf{0}$$
  $Var(\mathbf{e}) = \sigma^2 \mathbf{I}_n$ 

● 假设2: 独立正态同分布

$$\mathbf{e} \sim N(\mathbf{0}, \sigma^2 \mathbf{I}_n)$$

$$Y \sim N(X\beta, \sigma^2 I_n)$$

### 最小二乘法

● 最小二乘函数

$$RSS(\beta) = \sum (y_i - \mathbf{x}_i' \beta)^2 = (\mathbf{Y} - \mathbf{X}\beta)'(\mathbf{Y} - \mathbf{X}\beta)$$

● 最小二乘估计

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

● 设计矩阵X中的自变量列之间不相关, X是一满秩 矩阵

#### 最小二乘估计

· 求解  $(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2, \dots, \hat{\beta}_p)$ 最小化

$$RSS(\hat{\beta}_{0}, \hat{\beta}_{1}, \hat{\beta}_{2}, \dots, \hat{\beta}_{p}) = \sum_{i=1}^{n} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i1} - \hat{\beta}_{2}x_{i2} - \dots - \hat{\beta}_{p}x_{ip})^{2}$$

$$= \min_{\beta_{0}, \beta_{1}, \beta_{2}, \dots, \beta_{p}} \sum_{i=1}^{n} (y_{i} - \beta_{0} - \beta_{1}x_{i1} - \beta_{2}x_{i2} - \dots - \beta_{p}x_{ip})^{2}$$

#### 最小二乘估计

$$\begin{cases}
\frac{\partial RSS}{\partial \beta_{0}} \middle|_{\beta_{0}} = \hat{\beta}_{0} = -2\sum_{i=1}^{n} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i1} - \hat{\beta}_{2}x_{i2} - \dots - \hat{\beta}_{p}x_{ip}) = 0 \\
\frac{\partial RSS}{\partial \beta_{1}} \middle|_{\beta_{1}} = \hat{\beta}_{1} = -2\sum_{i=1}^{n} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i1} - \hat{\beta}_{2}x_{i2} - \dots - \hat{\beta}_{p}x_{ip})x_{i1} = 0 \\
\dots \\
\frac{\partial Q}{\partial \beta_{p}} \middle|_{\beta_{p}} = \hat{\beta}_{p} = -2\sum_{i=1}^{n} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i1} - \hat{\beta}_{2}x_{i2} - \dots - \hat{\beta}_{p}x_{ip})x_{ip} = 0
\end{cases}$$

#### 精确计算

• 中心化

$$\mathcal{X} = \begin{pmatrix} (x_{11} - \overline{x}_1) & \cdots & (x_{1p} - \overline{x}_p) \\ (x_{21} - \overline{x}_1) & \cdots & (x_{2p} - \overline{x}_p) \\ \vdots & \vdots & \vdots \\ (x_{n1} - \overline{x}_1) & \cdots & (x_{np} - \overline{x}_p) \end{pmatrix}$$

样本协方差阵 
$$C = \frac{1}{n-1} \begin{pmatrix} \chi' \chi & \chi' y \\ y' \chi & y' y \end{pmatrix}$$

估计

$$\hat{\boldsymbol{\beta}}^* = (\mathcal{X}'\mathcal{X})^{-1}\mathcal{X}'\mathcal{Y}$$
$$\hat{\beta}_0 = \overline{\mathbf{y}} - \hat{\boldsymbol{\beta}}^{*'}\overline{\mathbf{x}}$$

### 回归值

• 回归值:  $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} + \dots + \hat{\beta}_p x_{ip}$ 

$$\widehat{\mathbf{Y}} = \mathbf{X}\widehat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

ullet 帽子矩阵,对称,主对角线元素记为 $h_{ii}$ 

$$H = X(X'X)^{-1}X'$$
  $tr(H) = \sum_{i=1}^{n} h_{ii} = p+1$ 

### 残差与方差估计

• 残差:  $\hat{e} = Y - \hat{Y} = Y - HY = (I - H)Y$   $cov(\hat{e}, \hat{e}) = cov((I - H)Y, (I - H)Y)$  $= (I - H)cov(Y, Y)(I - H) = \sigma^2(I - H)$ 

- 参差平方和:  $RSS = \hat{\mathbf{e}}'\hat{\mathbf{e}} = (\mathbf{Y} \mathbf{X}\hat{\boldsymbol{\beta}})'(\mathbf{Y} \mathbf{X}\hat{\boldsymbol{\beta}})$
- 方差估计:  $\hat{\sigma}^2 = \frac{RSS}{n (p+1)}$



#### 估计量的统计特性

• 线性:

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

• 不相关性:

$$cov(\hat{\beta}, \hat{e}) = 0$$

在正态假定下等价于独立性

#### 估计量的统计特性

$$E(\hat{\beta}) = E((X'X)^{-1} X'Y)$$

$$= (X'X)^{-1} X'E(Y)$$

$$= (X'X)^{-1} X'E(X\beta + e)$$

$$= (X'X)^{-1} X' X\beta = \beta$$

● 估计的方差:

$$Var(\hat{\boldsymbol{\beta}}) = \sigma^2 (\mathbf{X}'\mathbf{X})^{-1}$$

$$\widehat{\text{Var}}(\hat{\boldsymbol{\beta}}) = \hat{\sigma}^2 (\mathbf{X}'\mathbf{X})^{-1}$$

● 正态分布:

$$\hat{\beta} \sim N(\beta, (X'X)^{-1} \sigma^2)$$

# 估计量的统计特性

无偏性:

$$E(\hat{\sigma}^2) = \sigma^2$$

● 卡方分布:

$$(n - (p+1))\hat{\sigma}^2/\sigma^2 \sim \chi^2(n - (p+1))$$

#### **BLUE**

● 高斯-马尔科夫Gauss-Markov定理

最小二乘估计量是具有最小方差的线性无偏估计量

Best Linear Unbiased Estimator

#### P=1

$$\mathbf{X} = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix} \qquad \mathbf{Y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

$$(\mathbf{X}'\mathbf{X}) = \begin{pmatrix} n & \sum x_i \\ \sum x_i & \sum x_i^2 \end{pmatrix} \qquad \mathbf{X}'\mathbf{Y} = \begin{pmatrix} \sum y_i \\ \sum y_i^2 \end{pmatrix}$$

$$(\mathbf{X}'\mathbf{X})^{-1} = \frac{1}{SXX} \begin{pmatrix} \sum x_i^2/n & -\overline{x} \\ -\overline{x} & 1 \end{pmatrix}$$

$$\hat{\boldsymbol{\beta}} = \begin{pmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{pmatrix} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} = \frac{1}{SXX} \begin{pmatrix} \sum x_i^2/n & -\overline{x} \\ -\overline{x} & \sum x_i y_i \end{pmatrix} \begin{pmatrix} \sum y_i \\ \sum y_i^2 \end{pmatrix}$$
$$= \begin{pmatrix} \overline{y} - \hat{\beta}_1 \overline{x} \\ SXY/SXX \end{pmatrix}$$

$$\mathcal{X}'\mathcal{X} = SXX \qquad \qquad \mathcal{X}'\mathcal{Y} = SXY$$
$$\hat{\beta}_1 = (\mathcal{X}'\mathcal{X})^{-1}\mathcal{X}'\mathcal{Y} = \frac{SXY}{SXX}$$
$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

# 方差分析(F检验)

● 模型的显著性检验

NH: 
$$E(Y|X = \mathbf{x}) = \beta_0$$
  $H_0:\beta_1 = \beta_2 = ... = \beta_p = 0$   
AH:  $E(Y|X = \mathbf{x}) = \mathbf{x}'\boldsymbol{\beta}$ 

• 方差分解  $\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ 

$$SSreg = SYY - RSS$$

total variation = explained + unexplained

# 方差分析 (F检验)

TABLE 3.4 The Overall Analysis of Variance Table

| Source                 | df          | SS           | MS                                     | F                      | <i>p</i> -value |
|------------------------|-------------|--------------|----------------------------------------|------------------------|-----------------|
| Regression<br>Residual | p $n-(p+1)$ | SSreg<br>RSS | $SSreg/1$ $\hat{\sigma}^2 = RSS/(n-2)$ | $MSreg/\hat{\sigma}^2$ |                 |
| Total                  | n - 1       | SYY          |                                        |                        |                 |

| 方差来源           | 自由度               | 平方和                 | 均方                     | F值                                        | P值             |
|----------------|-------------------|---------------------|------------------------|-------------------------------------------|----------------|
| 回归<br>残差<br>总和 | p<br>n-p-1<br>n-1 | SSreg<br>RSS<br>SYY | SSreg/p<br>RSS/(n-p-1) | $F = \frac{SSreg / p}{RSS / (n - p - 1)}$ | P(F>F值)<br>=P值 |

$$F = \frac{SSreg / p}{RSS / (n - p - 1)}$$

当
$$H_0$$
成立时服从  $F(p, n-p-1)$ 

# 拟合优度

• 决定系数

$$R^2 = \frac{SSreg}{SYY} = 1 - \frac{RSS}{SYY}$$



# 单个系数检验

● 回归系数的显著性检验

NH:  $\beta_1 = 0$ ,  $\beta_0$ ,  $\beta_2$ ,  $\beta_3$ ,  $\beta_4$  arbitrary

AH:  $\beta_1 \neq 0$ ,  $\beta_0, \beta_2, \beta_3, \beta_4$  arbitrary

• 正态分布

$$\hat{\beta} \sim N(\beta, (X'X)^{-1} \sigma^2)$$

$$\hat{\beta}_i \sim N(\beta_i, c_{ii}\sigma^2)$$

#### T-F检验

● T检验

● F检验

$$\Delta SSreg_{(-j)} = SSreg(x_1, \dots, -x_j, \dots, x_p) - SSreg(x_1, \dots, x_p)$$

$$F_{j} = \frac{\Delta SSreg_{(-j)}/1}{RSS/(n-p-1)}$$
 当 $H_{0}$ 成立时服从  $F(1, n-p-1)$ 

#### 置信区间

● T-F分布

$$t_j^2 = F_j$$

●置信区间

β<sub>i</sub>的置信度为1-α的置信区间为

$$(\hat{\beta}_{j} - t_{\alpha/2}(n-p-1)\sqrt{c_{jj}} \hat{\sigma}, \hat{\beta}_{j} + t_{\alpha/2}(n-p-1)\sqrt{c_{jj}} \hat{\sigma})$$

#### 预测

● 原观测值

$$\hat{E}(Y|X = \mathbf{x}) = \hat{y} = \mathbf{x}'\hat{\boldsymbol{\beta}}$$
  
sefit( $\hat{y}|\mathbf{x}$ ) =  $\hat{\sigma}\sqrt{\mathbf{x}'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}}$ 

● 新观测值

$$\tilde{y}_* = \mathbf{x}'_* \hat{\boldsymbol{\beta}}$$

sepred
$$(\tilde{y}_*|\mathbf{x}_*) = \hat{\sigma}\sqrt{1 + \mathbf{x}'_*(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}_*}$$

对比

sepred(
$$\tilde{y}_*|\mathbf{x}_*$$
) =  $\sqrt{\hat{\sigma}^2 + \text{sefit}(\tilde{y}_*|\mathbf{x}_*)^2}$ 

# 逐步方差分析

TABLE 3.5 Two Analysis of Variance Tables with Different Orders of Fitting

| (a) First analysis |    |        |         | (b) Second | (b) Second analysis |        |         |  |  |
|--------------------|----|--------|---------|------------|---------------------|--------|---------|--|--|
|                    | Df | Sum Sq | Mean Sq |            | Df                  | Sum Sq | Mean Sq |  |  |
| Dlic               | 1  | 86854  | 86854   | logMiles   | 1                   | 70478  | 70478   |  |  |
| Tax                | 1  | 19159  | 19159   | Income     | 1                   | 49996  | 49996   |  |  |
| Income             | 1  | 61408  | 61408   | Dlic       | 1                   | 63256  | 63256   |  |  |
| logMiles           | 1  | 34573  | 34573   | Tax        | 1                   | 18264  | 18264   |  |  |
| Residuals          | 46 | 193700 | 4211    | Residuals  | 46                  | 193700 | 4211    |  |  |

# 最大似然估计

- Maximum Likelihood Estimation (MLE)
- 假设2:独立正态同分布

$$\mathbf{e} \sim N(\mathbf{0}, \sigma^2 \mathbf{I}_n)$$

$$Y \sim N(X\beta, \sigma^2 I_n)$$

● 一元回归

$$y_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$$

#### 最大似然估计

● 似然函数

$$L(\beta_0, \beta_1, \sigma^2) = \prod_{i=1}^{n} f_i(y_i)$$

$$= (2\pi\sigma^2)^{-\frac{n}{2}} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} [y_i - (\beta_0 + \beta_1 x_i)]^2\right\}$$

● 对数似然函数

$$\ln(L) = -\frac{n}{2}\ln(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^n [y_i - (\beta_0 + \beta_1 x_i)]^2$$

• 对比最小二乘估计

### 参数估计

● 估计

$$\hat{\beta}_1 = \sum \left(\frac{x_i - \overline{x}}{SXX}\right) y_i = \sum c_i y_i$$

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

• 期望与方差

$$E(\hat{\beta}_0) = \beta_0 \qquad \text{Var}(\hat{\beta}_1) = \sigma^2 \frac{1}{SXX}$$

$$E(\hat{\beta}_1) = \beta_1 \qquad \text{Var}(\hat{\beta}_0) = \sigma^2 \left(\frac{1}{n} + \frac{\overline{x}^2}{SXX}\right)$$

### 正态分布

#### ● 正态分布

$$\hat{\beta}_0 \sim N(\beta_0, (\frac{1}{n} + \frac{\bar{x}^2}{SXX})\sigma^2)$$

$$\hat{\beta}_1 \sim N(\beta_1, \frac{\sigma^2}{SXX})$$

$$Cov(\hat{\beta}_0, \hat{\beta}_1) = -\sigma^2 \frac{\overline{x}}{SXX}$$

# 方差估计

●最小二乘法

$$\hat{\sigma}^2 = \frac{RSS}{n-2}$$

●最大似然法

$$\hat{\sigma}^2 = \frac{RSS}{n}$$

#### 最大似然估计

#### ● 多元正态

$$\mathbf{y} \sim N(\mathbf{X}\mathbf{\beta}, \sigma^2 \mathbf{I}_n)$$

$$L = (2\pi)^{-n/2} \left(\sigma^2\right)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{X} \boldsymbol{\beta})'(\mathbf{y} - \mathbf{X} \boldsymbol{\beta})\right)$$

$$\ln L = -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln(\sigma^2) - \frac{1}{2\sigma^2}(y - X \beta)'(y - X \beta)$$

最大似然函数,等价于最小化(y-Xβ)′(y-Xβ), 即最小二乘法

#### 二元正态分布

● n 组 独立同分布 观测数据

$$(x_i, y_i), i=1,2,...,n,$$

二维正态分布

$$\begin{pmatrix} x_i \\ y_i \end{pmatrix} \sim N \left( \begin{pmatrix} \mu_x \\ \mu_y \end{pmatrix}, \begin{pmatrix} \sigma_x^2 & \rho_{xy}\sigma_x\sigma_y \\ \rho_{xy}\sigma_x\sigma_y & \sigma_y^2 \end{pmatrix} \right)$$

### 条件分布

● 给定x, y的条件分布

$$y_i | x_i \sim N\left(\mu_y + \rho_{xy} \frac{\sigma_y}{\sigma_x} (x_i - \mu_x), \sigma_y^2 (1 - \rho_{xy}^2)\right)$$

定义

$$\beta_0 = \mu_y - \beta_1 \mu_x$$
  $\beta_1 = \rho_{xy} \frac{\sigma_y}{\sigma_x}$ 

$$\sigma^2 = \sigma_y^2 (1 - \rho_{xy}^2)$$

• 则

$$y_i|x_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$$

#### 参数估计

● 二维正态参数估计

$$\hat{\mu}_x = \overline{x}$$
  $\hat{\sigma}_x^2 = SD_x^2$   $\hat{\rho}_{xy} = r_{xy}$   
 $\hat{\mu}_y = \overline{y}$   $\hat{\sigma}_y^2 = SD_y^2$ 

● 一元回归参数估计

$$\hat{\beta}_1 = r_{xy} SD_y / SD_x$$

$$\hat{\sigma}^2 = [(n-1)/(n-2)]SD_y^2(1-r_{xy}^2)$$

#### 多元正态分布

● 多元正态分布

$$\begin{pmatrix} \mathbf{x}_i \\ y_i \end{pmatrix} \sim \mathbf{N} \left( \begin{pmatrix} \boldsymbol{\mu}_x \\ \boldsymbol{\mu}_y \end{pmatrix}, \begin{pmatrix} \boldsymbol{\Sigma}_{xx} & \boldsymbol{\Sigma}_{xy} \\ \boldsymbol{\Sigma}_{xy} & \sigma_y^2 \end{pmatrix} \right)$$

● 条件分布

$$y_i | \mathbf{x}_i \sim N\left((\mu_y - \boldsymbol{\beta}^{*\prime}\boldsymbol{\mu}_x) + \boldsymbol{\beta}^{*\prime}\mathbf{x}_i, \sigma^2\right)$$

### 参数估计

● 参数估计

$$\boldsymbol{\beta}^* = \boldsymbol{\Sigma}_{xx}^{-1} \boldsymbol{\Sigma}_{xy}$$

$$\sigma^2 = \sigma_y^2 \mathbf{\Sigma}_{xy}' \mathbf{\Sigma}_{xx}^{-1} \mathbf{\Sigma}_{xy} = \sigma_y^2 (1 - \mathcal{R}^2)$$

# Thank You !

