Investing.com Project - Feature Importance

I have also created a web application built on this model with interactive UI.

Web App Link: https://naturalgas-prediction.herokuapp.com/ (https://naturalgas-prediction.herokuapp.com/)

Importing Libraries

```
In [2]:
```

```
!pip install fastdtw
Collecting fastdtw
  Downloading fastdtw-0.3.4.tar.gz (133 kB)
     ----- 133.4/133.4 kB 1.3 MB/s eta 0:0
0:00
  Preparing metadata (setup.py): started
  Preparing metadata (setup.py): finished with status 'done'
Requirement already satisfied: numpy in c:\users\abc\anaconda3\lib\site-pack
ages (from fastdtw) (1.22.4)
Building wheels for collected packages: fastdtw
  Building wheel for fastdtw (setup.py): started
  Building wheel for fastdtw (setup.py): finished with status 'done'
 Created wheel for fastdtw: filename=fastdtw-0.3.4-py3-none-any.whl size=35
94 sha256=a6fd36aaffd70094d326ac9c14e351b38e73fe4d425984377f947e6746f8c98e
  Stored in directory: c:\users\abc\appdata\local\pip\cache\wheels\e9\ac\30
\c962f9d759dd68cb5482727c44441fdfb48040fdbe983857e8
Successfully built fastdtw
Installing collected packages: fastdtw
Successfully installed fastdtw-0.3.4
WARNING: There was an error checking the latest version of pip.
```

In [3]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import mean_absolute_error,mean_squared_error,accuracy_score
from sklearn.metrics import accuracy_score
from scipy.spatial import distance
import tensorflow as tf
from sklearn.neighbors import KNeighborsClassifier
from xgboost import XGBRegressor
from scipy.spatial.distance import euclidean
from fastdtw import fastdtw
from sklearn.model_selection import GridSearchCV
```

```
In [4]:
```

```
df = pd.read_csv("Time Series Dataset.csv")
df = df.drop(['Unnamed: 0'],axis=1)
df = df.rename(columns = {'Target Price':'Natural Gas Price'})
df['DATE'] = pd.to_datetime(df['DATE'])
df = df.set_index(df['DATE'])
df = df.drop(['DATE'],axis=1)
```

In [5]:

df

Out[5]:

	Natural Gas Price	Crude Oil Price	US Dollar Index	Texas Temperature	California Temperature	Natural Gas Production	GDP	U.S. total natural gas proved reserves (trillion cubic feet)	Con
DATE									
1995- 01-01	1.614	17.56	89.94	48.1	49.9	18.599	7522.289	173.5	
1995- 01-02	1.748	17.84	91.87	52.5	51.9	18.599	7522.289	173.5	
1995- 01-03	1.750	17.54	94.04	56.9	55.4	18.599	7522.289	173.5	
1995- 01-04	1.866	17.64	93.89	64.2	59.7	18.599	7580.997	173.5	
1995- 01-05	2.018	18.18	92.14	73.2	66.0	18.599	7580.997	173.5	
2020- 01-02	2.630	42.61	85.26	41.1	48.7	33.485	20492.492	473.3	
2020- 01-03	2.527	40.22	83.66	61.4	54.2	33.485	20659.102	473.3	
2020- 01-04	3.354	35.79	84.29	64.6	62.0	33.485	20813.325	473.3	
2020- 01-05	2.882	45.34	85.57	71.8	73.2	33.485	21001.591	473.3	
2020- 01-06	2.539	48.52	81.57	82.1	81.2	33.485	21289.268	473.3	
306 rov	ws × 10 c	columns					_		
									•

Now that we have the dataset ready, lets do some exploratory data analysis to perceive correlations.

In [6]:

df.describe()

Out[6]:

	Natural Gas Price	Crude Oil Price	US Dollar Index	Texas Temperature	California Temperature	Natural Gas Production	GDF
count	306.000000	306.000000	306.000000	306.000000	306.000000	306.000000	306.000000
mean	4.149007	53.597386	91.502484	67.094771	63.793137	22.233588	14074.636768
std	2.250768	28.729438	10.891089	14.451787	12.704175	4.510383	4039.019850
min	1.614000	11.220000	71.800000	39.400000	41.200000	18.051000	7522.289000
25%	2.587500	27.315000	82.352500	53.550000	51.950000	18.902000	10598.020000
50%	3.353000	49.690000	90.545000	66.950000	63.400000	19.616000	14416.491500
75%	4.938500	73.760000	98.355000	80.375000	76.075000	25.890000	17144.281000
max	13.921000	140.000000	120.240000	93.400000	84.600000	33.899000	21694.458000
4							>

In [7]:

df.corr()

Out[7]:

	Natural Gas Price	Crude Oil Price	US Dollar Index	Texas Temperature	California Temperature	Natural Gas Production	GDP
Natural Gas Price	1.000000	0.395076	-0.524989	0.043268	-0.020157	-0.408806	0.374945
Crude Oil Price	0.395076	1.000000	-0.052496	-0.014904	-0.036911	0.197745	0.707418
US Dollar Index	-0.524989	-0.052496	1.000000	0.017181	0.071638	0.371129	-0.127551
Texas Temperature	0.043268	-0.014904	0.017181	1.000000	0.950942	-0.006972	0.010778
California Temperature	-0.020157	-0.036911	0.071638	0.950942	1.000000	0.061758	0.020903
Natural Gas Production	-0.408806	0.197745	0.371129	-0.006972	0.061758	1.000000	0.459057
GDP	0.374945	0.707418	-0.127551	0.010778	0.020903	0.459057	1.000000
U.S. total natural gas proved reserves (trillion cubic feet)	-0.265638	0.435557	0.305299	0.001843	0.054377	0.938066	0.586085
Consumption	-0.385927	0.207132	0.401102	-0.006806	0.065332	0.989933	0.456017
Net Imports	0.464354	-0.132602	-0.380360	0.017634	-0.055338	-0.977301	-0.397916

• ·

In [9]:

```
percent_nan = 100* df.isnull().sum() / len(df)
percent_nan.sort_values()
```

Out[9]:

Natural Gas Price	0.0
Crude Oil Price	0.0
US Dollar Index	0.0
Texas Temperature	0.0
California Temperature	0.0
Natural Gas Production	0.0
GDP	0.0
U.S. total natural gas proved reserves (trillion cubic feet)	0.0
Consumption	0.0
Net Imports	0.0
dtype: float64	

Hence, the data is free of any nan values.

Also, there appears to be a substantial correlation between Natural Gas Prices and Crude Oil Price, US Dollar Index, GDP, Net Imports of Natural Gas, etc.

plotting a pairplot to perceive them further:

In [10]:

```
fig = plt.figure(figsize=(8,6),dpi=200)
sns.pairplot(df[['Natural Gas Price','Crude Oil Price','US Dollar Index']])
```

Out[10]:

<seaborn.axisgrid.PairGrid at 0x16b7223da90>

<Figure size 1600x1200 with 0 Axes>

There seems to be practically functional relation between the target label and the features. Hence, the choice of feature selection seems statistically viable.

In [11]:

```
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure(figsize=(10,8), dpi=100)
ax = fig.add_subplot(111, projection='3d')
colors = df['Texas Temperature']
ax.scatter(df['Natural Gas Price'],df['Crude Oil Price'],df['US Dollar Index'],c=colors);
```


A more graphial approach to showcase correlations between features and label:

In [12]:

```
plt.figure(figsize=(12,8))
sns.heatmap(df.corr(), cmap='viridis',annot=True)
```

Out[12]:

<matplotlib.axes._subplots.AxesSubplot at 0x16b758efd30>

In [13]:

```
sns.scatterplot(x='Natural Gas Price',y='Crude Oil Price',data=df, alpha=0.8,hue='Natural G
```

Out[13]:

<matplotlib.axes._subplots.AxesSubplot at 0x16b75e8e610>

Now, moving towards maching learning.

Train | Test Split

```
In [14]:
```

```
X = df.drop('Natural Gas Price', axis=1)
y = df['Natural Gas Price']
```

Performing a train test split on the data, with the test size of 30% and a random_state of 101.

In [15]:

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=101)
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaled_X_train = scaler.fit_transform(X_train)
scaled_X_test = scaler.transform(X_test)
```

1. XGBoost Algorithm

```
In [16]:
```

```
XGBoost model = XGBRegressor(n estimators=800, learning rate=0.02, n jobs=4)
XGBoost_model.fit(X_train, y_train,
             early_stopping_rounds=5,
             eval_set=[(X_test, y_test)],
             verbose=False)
C:\Users\abc\anaconda3\lib\site-packages\xgboost\sklearn.py:793: UserWarnin
g: `early_stopping_rounds` in `fit` method is deprecated for better compatib
ility with scikit-learn, use `early_stopping_rounds` in constructor or`set_p
arams` instead.
  warnings.warn(
Out[16]:
XGBRegressor(base_score=0.5, booster='gbtree', callbacks=None,
             colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1,
             early_stopping_rounds=None, enable_categorical=False,
             eval_metric=None, gamma=0, gpu_id=-1, grow_policy='depthwise',
             importance_type=None, interaction_constraints='',
             learning_rate=0.02, max_bin=256, max_cat_to_onehot=4,
             max_delta_step=0, max_depth=6, max_leaves=0, min_child_weight=
1,
             missing=nan, monotone_constraints='()', n_estimators=800, n_job
s=4,
             num_parallel_tree=1, predictor='auto', random_state=0, reg_alph
a=0.
             reg_lambda=1, ...)
In [17]:
from sklearn.metrics import mean_absolute_error,mean_squared_error,accuracy_score
predictions = XGBoost_model.predict(X_test)
print("Mean Absolute Error: " + str(mean_absolute_error(predictions, y_test)))
print("Mean Squared Error: " + str(mean_squared_error(predictions, y_test)))
print("Root Mean Squared Error: " + str(np.sqrt((mean_squared_error(predictions, y_test))))
#print("Accuracy Score: " + str(accuracy_score(predictions, y_test)))
```

Mean Absolute Error: 0.5886013703449913 Mean Squared Error: 0.9311707534875076 Root Mean Squared Error: 0.9649718925893684

2. Grid Search CV + XGBoost

```
In [18]:
```

```
def algorithm_pipeline(X_train_data, X_test_data, y_train_data, y_test_data,
                       model, param_grid, cv=10, scoring_fit='neg_mean_squared_error',
                       do_probabilities = False):
    gs = GridSearchCV(
        estimator=model,
        param_grid=param_grid,
        cv=cv,
        n_{jobs}=-1,
        scoring=scoring_fit,
        verbose=2
    fitted_model = gs.fit(X_train_data, y_train_data)
    if do_probabilities:
        pred = fitted_model.predict_proba(X_test_data)
    else:
        pred = fitted_model.predict(X_test_data)
    return fitted_model, pred
```

In [19]:

```
Fitting 5 folds for each of 1 candidates, totalling 5 fits

[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.

[Parallel(n_jobs=-1)]: Done 2 out of 5 | elapsed: 5.7s remaining:
8.7s

[Parallel(n_jobs=-1)]: Done 5 out of 5 | elapsed: 5.9s remaining:
0.0s

[Parallel(n_jobs=-1)]: Done 5 out of 5 | elapsed: 5.9s finished

0.8967116850310519

{'learning_rate': 0.02, 'n_estimators': 800, 'n_jobs': 4}
```

In [20]:

```
predictions = XGBoost_model_CV.predict(X_test)
print("Mean Absolute Error: " + str(mean_absolute_error(predictions, y_test)))
print("Mean Squared Error: " + str(mean_squared_error(predictions, y_test)))
print("Root Mean Squared Error: " + str(np.sqrt((mean_squared_error(predictions, y_test))))
```

Mean Absolute Error: 0.6143258155947147 Mean Squared Error: 0.9550471013934001 Root Mean Squared Error: 0.9772651131568139

performing, let's have a look at the feature importance!

In [21]:

```
feat_import = XGBoost_model_CV.best_estimator_.feature_importances_
imp_feats = pd.DataFrame(index=X.columns,data=feat_import,columns=['Importance'])
imp_feats = imp_feats.sort_values("Importance",ascending=False)
plt.figure(figsize=(14,6),dpi=200)
sns.barplot(data=imp_feats.sort_values('Importance'),x=imp_feats.sort_values('Importance').
plt.xticks(rotation=90);
```


Semi-inference: For feature selection, as the the above bar plot and the 'featureimportances' method call suggests, we can go for:

- 1.Net Imports of the Natural Gas
- 2.Natural Gas Production
- 3.US Dollar Index
- 4. Crude Oil Prices
- 5.USA's GDP
- 6.Natural Gas Consumption
- 7. Texas Temperatures
- 8. California Temperatures

in this respective order. The way they quantitatively affect the target label is given below:

In [22]:

Out[22]:

Features	Effect on	Target
----------	-----------	--------

0	Net Imports	Positive (+)
1	Natural Gas Production	Negative (-)
2	US Dollar Index	Negative (-)
3	Crude Oil Prices	Positive (+)
4	USA's GDP	Positive (+)
5	Natural Gas Consumption	Negative (-)
6	Texas Temperatures	Positive (+)
7	California Temperatures	Negative (-)

Explaination:

Positive --> With an increase in feature's value, the target value will also increase.

Negative --> With an increase in feature's value, the target value will decrease.