Activity 17

Setup

```
In [1]: import numpy as np
import matplotlib.pyplot as plt

In [2]: def prxgraddescent_l2(X,y,tau,lam,w_init,it):

## compute it iterations of L2 proximal gradient descent starting at v
## w_{k+1} = (w_k - tau*X'*(X*w_k - y)/(1+lam*tau))
## step size tau

W = np.zeros((w_init.shape[0], it+1))
Z = np.zeros((w_init.shape[0], it+1))
W[:,[0]] = w_init
for k in range(it):
        Z[:,[k+1]] = W[:,[k]] - tau * X.T @ (X @ W[:,[k]] - y);
        W[:,[k+1]] = Z[:,[k+1]]/(1+lam*tau)

return W,Z
```

```
In [3]: | ## Proximal gradient descent trajectories
        ## Least Squares Problem
        U = np.array([[1, 0], [0, 1], [0, 0], [0, 0]])
        S = np.array([[1, 0], [0, 0.5]])
        Sinv = np.linalg.inv(S)
        V = 1/np.sqrt(2)*np.array([[1, 1], [1, -1]])
        y = np.array([[np.sqrt(2)], [0], [1], [0]])
        X = U @ S @ V.T
        ### Find Least Squares Solution
        w_ls = V @ Sinv @ U_T @ y
        c = y.T @ y - y.T @ X @ w_ls
        ### Find values of f(w), the contour plot surface for
        w1 = np.arange(-1,3,.1)
        w2 = np.arange(-1,3,.1)
        fw = np.zeros((len(w1), len(w2)))
        for i in range(len(w2)):
            for j in range(len(w1)):
                w = np.array([ [w1[j]], [w2[i]] ])
                fw[i,j] = (w-w_ls).T @ X.T @ X @ (w-w_ls) + c
```

Question 3a)

```
max t = 1 / ||A||op = 1 / first singular value = 1 / 1 = 1
```

```
In [4]:
## Find and display weights generated by gradient descent

w_init = np.array([[-1],[1]])
lam = 0.5;
it = 20
tau = 0.5
W,Z = prxgraddescent_l2(X,y,tau,lam,w_init,it)

# Concatenate gradient and regularization steps to display trajectory
G = np.zeros((2,0))
for i in range(it):
    G = np.hstack((G,np.hstack((W[:,[i]],Z[:,[i+1]]))))

nlt.figure(figsize=(9.9))
```

```
plt.contour(w1,w2,fw,20)
plt.plot(w_ls[0],w_ls[1],"s", label="LS Solution")
plt.plot(Z[0,1::],Z[1,1:],'bx',linewidth=2, label="Gradient Descent St
plt.plot(W[0,:],W[1,:],'ro',linewidth=2, label="Regularization Descent
plt.plot(G[0,:],G[1,:],'-c',linewidth=2)
plt.legend()
plt.xlabel('w_1')
plt.ylabel('w_2')
plt.title('$\\tau = $'+str(.5)+', $\lambda = $'+str(lam));
```


Question 3b)

Becuase for each iteration, the regularizer pulls w towards the origin with regularization term $||w||^2$ hence some distance away for the minimum.

```
In [5]: | ## Find and display weights generated by gradient descent
        w_{init} = np.array([[-1],[1]])
        lam = 0.5;
        it = 20
        tau = 0.1
        W,Z = prxgraddescent_l2(X,y,tau,lam,w_init,it)
        # Concatenate gradient and regularization steps to display trajectory
        G = np.zeros((2,0))
        for i in range(it):
            G = np.hstack((G,np.hstack((W[:,[i]],Z[:,[i+1]]))))
        plt.figure(figsize=(9,9))
        plt.contour(w1,w2,fw,20)
        plt.plot(w_ls[0],w_ls[1],"s", label="LS Solution")
        plt.plot(Z[0,1::],Z[1,1:],'bx',linewidth=2, label="Gradient Descent St
        plt.plot(W[0,:],W[1,:],'ro',linewidth=2, label="Regularization Descent
        plt.plot(G[0,:],G[1,:],'-c',linewidth=2)
        plt.legend()
        plt.xlabel('w 1')
        plt.ylabel('w 2')
        plt.title('$\\tau = $'+str(.5)+', $\lambda = $'+str(lam));
```


W now is not able to make progress towards the minimum for each iteration. With lamda getting smaller, the regularization strength is smaller, now gradient descent dominantes the direction, not regularization.

In []:
