

Arquiteturas de Integração

AULA 2.1. INTRODUÇÃO AOS PADRÕES DE INTEGRAÇÃO

PROF. DIOVANI LUIZ MERLO

Nesta aula

- ☐ Introdução aos padrões de integração.
- □ EDI Electronic Data Interchange.
- ☐ EAI Patterns.

Introdução

A escalada da economia (globalização) e a evolução das soluções de tecnologia da informação (TI) e das redes de comunicação, permitiram que a necessidade de integração se estabelecesse entre as aplicações corporativas.

Atualmente existem vários padrões, princípios e estilos arquiteturais que podem ser utilizados para realizar a integração entre diversas soluções de software, plataformas e produtos.

Eletronic Data Interchange

1

2

Eletronic Data Interchange (EDI) ou
Troca de Informações Eletrônicas, é
um conceito estabelecido para os
mecanismos de troca eletrônica de
informação estruturada e a
realização de transações entre
empresas (B2B) com mínima ou
nenhuma intervenção humana.

O conceito parece simples, contudo, quando documentos são trocados utilizando o formato EDI, as soluções provêm mais rapidez nas integrações, mais assertividade e mecanismos mais baratos quando se comparado a outros mecanismos de integração (STULTZ, 2001).

Eletronic Data Interchange

Os exemplos mais conhecidos de padrões de EDI são:

- ANSI X12: American National Standards Institute foi o responsável pela criação deste formato. É o formato EDI mais popular e utilizado quando comparado aos demais, tendo em vista sua utilização em áreas como saúde, comércio varejista e até o setor automobilístico.
- EDIFACT: Stands For Electronic Data Interchange for Administration, Commerce and Transport. Foi desenvolvido pelas nações unidas, mas é adotado em vários países com objetivos de realizar transações.

Fonte: NAIR (2018)

Exemplo EDI ANSI X12/EDIFACT

Paper Purchase Order

	1	Purchase	Order	
Sold To: XYZ Company 123 Main Street Fairview, CA 94168			PO Number: 4768 PO Date: 9/30/2012	
Item No.	Quantity	Unit of Measu		Product ID
1	100	EA	27.65	331896-42
otal Item	к 1		Total Qua	lity: 100

ANSI EDI Purchase Order

ST*850*540001■ BEG*00*SA*4768*65*20120930■ N1*SO*XYZ Company■ N3*123 Main Street■ N4*Fairview*CA*94168■ PO1*1*100*EA*27.65**VN*331896-42■ CTT*1*100■ SE*8*54001■

EAI Patterns

Na visão de FOWLER (2011), as aplicações que têm valor raramente funcionam isoladamente. Ou seja, é impossível não falar em interações entre soluções corporativas atualmente.

Ou seja, é impossível não falar em interações entre soluções corporativas atualmente.

Exemplo EAI Patterns

Semântica de integrações

As integrações entre aplicações acontecem de forma síncrona e/ou assíncrona.

A maioria das aplicações corporativas atualmente exigem padrões de integração assíncrono para aumentar a qualidade da experiência do usuário e enfrentar desafios de otimização.

Padrões de mensageria

Exemplos de construção de mensagens

Requisição/Resposta

Baseado em eventos

Exemplos de roteamento de mensagens

Filtro de mensagens

Agregação de mensagens

Conclusão

✓ Conhecer os padrões de integração é fundamental para a implementação de integrações baseadas em serviços, utilizando o padrão correto.

Próxima aula

01.

Enterprise Service BUS (ESB).

Arquiteturas de Integração

AULA 2.2. ENTERPRISE SERVICE BUS

PROF. DIOVANI LUIZ MERLO

Nesta aula

- ☐ Introdução a ESB.
- ☐ Benefícios para a arquitetura de um ESB.
- ☐ Funcionalidades de um ESB.

Conceito de um ESB

O conceito de ESB surgiu na indústria de TI por volta 2002. Foi derivado de conceitos como Middleware de mensagens, roteamento e transformação de mensagens. Posteriormente o conceito foi evoluído pelos fornecedores TIBCO, IBM e Oracle.

Fonte: CHAPPELL (2004)

Evolução de um ESB

Conceito de um ESB

Em resumo, representa um ambiente desenhado para prover um sofisticado mecanismo de interconectividade entre os serviços. Implementa uma camada intermediária em SOA, a qual prove soluções para problemas como confiabilidade, escalabilidade e heterogeneidade de comunicação entre soluções

Fonte: oracle.com

Benefícios de um ESB

Promove o reúso de serviços.

Segurança e Monitoramento dos serviços (SLA) em reúso.

Baixo acoplamento entre aplicações.

Padronização de API para integrações.

Boa prática de EAI.

Simplificação das integrações entre diferentes plataformas.

ESB e SOA

Fonte: CAVALCANTI (2007).

Responsabilidade de um ESB

Integração de serviços.

Transformação de mensagens.

Eliminar contato entre cliente e provedor do serviço.

Adaptadores para aplicações legadas.

Integração de processos de negócio.

Gerar, rotear e tratar eventos de serviços.

Roteamento e entrega de mensagens.

Prover mecanismos de segurança.

Funcionalidades mínimas para um ESB

Category	Capabilities	Reason	
Communication	 Routing Addressing At least one messaging style (request / response, pub/sub) At least one transport protocol that is or can be made widely available 	 Provide location transparency and support service substitution 	
Integration	 Several integration styles or adapters Protocol transformation 	 Support integration in heterogeneous environments and support service substitution 	
Service interaction	 Service interface definition Service messaging model Substitution of service implementation 	 Support SOA principles, separating application code from specific service protocols and implementations 	
Management and autonomic	► Administration capability	 A point of control over service addressing and naming 	

Fonte: www.ibm.com

Conclusão

✓ Um barramento de serviços corporativos (ESB) é uma solução robusta, que permite agilidade no desenvolvimento de arquiteturas de integração entre diversos estilos arquiteturais existentes no mercado.

Próxima aula

01.

Web Service.

Arquiteturas de Integração

AULA 2.3. WEB SERVICES

PROF. DIOVANI LUIZ MERLO

Nesta aula

- ☐ Introdução aos conceitos de Web Services.
- ☐ Formatos de mensagem para Web Services.
- Protocolos utilizados para Web Services.

Introdução

O conceito de Web Service é um dos mais importantes atualmente, pois é uma das implementações mais utilizadas para materializar serviços em uma arquitetura orientada a serviços (SOA).

Segundo W3C (2020), Web Service é uma solução de software projetado para suportar uma interação/interoperabilidade entre máquinas sobre uma determinada rede.

Processo Geral uso em Web Service

gerai uso em vveb service

Fonte: W3C (2020)

iGT

Vantagens no uso de Web Service

Favorece o uso de aplicações em nuvem (Cloud).

Permite o uso por diferentes plataformas tecnológicas.

Mecanismo de implementação fácil e de baixo custo.

Componentes Web Service

Componentes Web Service

Fonte: ERL (2015)

Formato JSON


```
whitespace string

whitespace : value
```

```
"id": "00000234567894",
"name": "Jane Doe",
"birthday": "04/18/1978",
"gender": "female",
"type": "user",
"work": [{
   "employer": {
      "id": "106119876543210",
      "name": "Doe Inc."
   "start date": "2007 - 08"
 "start date": "2004",
  "end date": "2007"
```

Fonte: ECMA (2017)

O formato XML é o mais rico em detalhes sobre sua estrutura, a partir do uso de *tags* para declaração dos atributos/campos, contudo trata-se de um formato mais pesado para ser trafegado e processado pelos serviços em uma implementação de Web

REST

REST é uma implementação de serviços sem necessidade de protocolos adicionais ao HTTP. É um estilo arquitetural.

RESTFul é apenas uma nomenclatura para definir a capacidade de aplicar conceitos estabelecidos no estilo arquitetural REST.

SOAP

SOAP é um protocolo para troca de mensagens estruturadas em um ambiente distribuído, baseado na linguagem XML para seu formato.

Estrutura Lógica

SOAP-ENV: Envelope SOAP-ENV: Header SOAP-ENV: Body

Exemplo

Fonte: W3C (2020)

WSDL

Outro conceito muito importante para o entendimento das soluções que são suportadas por Web Services é o *Web Service Definition Language* (WSDL), uma linguagem para definição de Web Services baseado em XML.

WSDL

Um arquivo WSDL contém os seguintes objetos:

- Type: são os tipos de dados.
- Message: parâmetros de entrada/saída.
- PortType: conjunto de operações.
- Binding: mapeia as operações para um protocolo específico.


```
<?xml version="1.0" encoding="ISO-8859-1" ?>
 <definitions xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsd="http://www.w3.org/2001/XMLSchema"</pre>
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:tns="urn:server.hello" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
mlns="http://schemas.xmlsoap.org/wsdl/" targetNamespace="urn:server.hello">
</xsd:schema targetNamespace="urn:server.hello">
                                                                         Tipos de Dados
   <xsd:import namespace="http://schemas.xmlsoap.org/soap/encoding/" />
   <xsd:import namespace="http://schemas.xmlsoap.org/wsdl/" />
 </xsd:schema>
<message name="helloRequest">
   <part name="name" type="xsd:string" />
                                                                              Parâmetros
 </message>
<message name="helloResponse">
   <part name="return" type="xsd:string" />
G<portType name="server.helloPortType">
<coperation name="hello">
                                                                              Operações
   <documentation>Retorna o nome</documentation>
   <input message="tns:helloRequest" />
   <output message="tns:helloResponse" />
 </operation>
Goinding hame="server.helloBinding" type="ths:server.helloPortType">
   <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http" />
                                                                                Protocolo
coperation name="hello">
   <soap:operation soapAction="urn:server.hello#hello" style="rpc" />
=<input>
   <soap:body use="encoded" namespace="urn:server.hello" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
   </input>
coutput>
   <soap:body use="encoded" namespace="urn:server.hello" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
   </output>
   </operation>
 </binding>
<soap:address location="http://localhost/imasters2/nuSQAP/server2.php" /> </port>
 </service>
 </definitions>
```

Conclusão

✓ Atualmente, com o advento de soluções em nuvem e também pelo uso em grande maioria da própria internet, o uso de Web Service tornou-se uma das opções mais viáveis para uma arquitetura de integração de aplicações de tecnologia da informação.

Próxima aula

01.

Introdução aos princípios de design de serviços.

