Distributional smoothing with virtual adversarial training

Fukuta Keisuke the University of Tokyo Harada Ushiku Lab

Basic Information

- 京大のM2
- ICLR 2016 Accept (唯一の日本人?)
- 正則化としてモデルの予測分布のなめらかさを考える手法
- MNIST Semi-supervisedでSOTA(一瞬だけ)

Adversarial example

高次元になると線形識別器でも起こる問題

Adversarial Training [Goodfellow et al. 2015]

最も間違えやすくなるようなノイズ

$$r_{adv} = argmin_r \{ p(y|x + r, \theta, |r|_p \le \epsilon) \}$$
$$= -\epsilon \overline{\nabla_x p(y|x, \theta)} \qquad (\bar{x} \to \frac{x}{\|x\|})$$

各データサンプルに上記のノイズを加えたもの(adversarial example) も同時に学習

$$J(\theta) = \frac{1}{N} \sum_{n=1}^{N} \log p(y|x, \theta) + \lambda \frac{1}{N} \sum_{n=1}^{N} \log p(y|x + r_{adv}, \theta)$$

元データの対数尤度 Adversarial exampleの対数尤度

Introduction

- サンプル数少なくても過学習を回避したい
 - なんらかの正則化
- モデル分布はなめらかである方がよい
 - Adversarial Example の存在は望ましくない
 - しかしAdversarial Trainingはラベルデータが必要

そこで、、

最も間違える方向ではなく、 予測分布が最も大きく変わる方向にノイズ r_{v-adv} を加える

ノイズを加えられた場合の予測分布 $p(y \mid x + r_{v-adv}, \theta)$ と元の予測分布 $p(y \mid x, \theta)$ が変わらないように学習

- → Unlabeled Dataも使える
- → 正則化の役割、semi-supervisedな文脈に有効

Virtual Adversarial Training

ノイズを加えても分布が変わらないように学習

→ 2つの分布のKL-Divergenceを最小化

$$\Delta_{KL}(r, x, \theta) \equiv KL[p(y \mid x, \theta) \mid\mid p(y \mid x + r, \theta)]$$

 r_{v-adv} はKL-Divergenceを最大化するノイズ

$$r_{v-adv} = \arg\max_{r} (\Delta_{KL}(r, x, \theta); |r|_2 \le \epsilon)$$

モデルのなめらかさを図る指標としてLocal Distributional Smoothnessを導入

$$LDS(x, \theta) \equiv -\Delta_{KL}(r_{v-adv}, x, \theta)$$

Objective function

$$J(\theta) = \frac{1}{N} \sum_{n=1}^{N} \log p(y|x,\theta) + \lambda \frac{1}{N} \sum_{n=1}^{N} LDS(x,\theta)$$
 元データの対数尤度 LDSによる正則化項

イメージ

Evaluation of r_{v-adv}

- Assumption
 - $p(y|x,\theta)$ can be differentiable $wrt \theta$, x
 - $\Delta_{KL}(r, x, \theta)|_{r=0} = 0, \nabla_r \Delta_{KL}(r, x, \theta)|_{r=0} = 0$
 - $H(x,\theta) \equiv \nabla \nabla_r \Delta_{KL}(r,x,\theta)|_{r=0}$

KL情報量のr=0付近での二次までのTayler展開

$$\Delta_{KL}(r,x,\theta) \cong \frac{1}{2} r^T H(x,\theta) r \leftarrow これを最大にするrを求めたい。$$

一般に|x|=1 のとき、 x^TAx の最大値はA の最大固有値 λ_n となる。 それは λ_n に属する固有ベクトルによって与えられる.

$$r_{v-adv} = \epsilon \cdot \overline{u(x,\theta)}$$

$$H(x,\theta)$$
の最大固有ベクトル

Evaluation of r_{v-adv}

 $H(x,\theta)$ の最大固有ベクトルを求めたい

- →べき乗法(power method)
 - 1. d を適当に初期化
 - 2. $d \leftarrow \overline{H(x,\theta) \cdot d}$ を繰り返す
 - $3. \quad d$ は $H(x, \theta)$ の最大固有ベクトル $u(x, \theta)$ に漸近する

Hの計算自体にも計算コスト

- →有限差分法(finite difference method)
 - $\frac{df}{dx} \cong \frac{f(x+h) f(x)}{h}$ として近似すること

適当な ξ を導入して ξd によって近似すると $H(x,\theta) \equiv \nabla \nabla_r \Delta_{KL}(r,x,\theta)|_{r=0}$ より

$$H(x,\theta)\cdot d \cong \frac{\nabla_r \Delta_{KL}(r,x,\theta)|_{r=\xi d} - \nabla_r \Delta_{KL}(r,x,\theta)|_{r=0}}{\xi d} \cdot d = \frac{\nabla_r \Delta_{KL}(r,x,\theta)|_{r=\xi d}}{\xi}$$

$$\overline{H(x,\theta)\cdot d} \cong \overline{\nabla_r \Delta_{KL}(r,x,\theta)|_{r=\xi d}}$$

Evaluation of r_{v-adv}

結局、、

- 1. dを適当に初期化
- 2. $d \leftarrow \overline{V_r \Delta_{KL}(r, x, \theta)}|_{r=\xi d}$ を I_p 回繰り返す Back propで計算できる!!
- 3. $r_{v-adv} = \epsilon d$
- 何が言いたいかというと、KL-Divergenceを最も大きく変化させるノイズが一度のforward, back propで計算できる!!

Derivative of LDS wrt θ

Objective function

$$J(\theta) = \frac{1}{N} \sum_{n=1}^{N} \log p(y|x,\theta) + \lambda \frac{1}{N} \sum_{n=1}^{N} LDS(x,\theta)$$
 元データの対数尤度 LDSによる正則化項

ここまでで求めた r_{v-adv} を使ってLDSをパラメータ θ で微分

$$\frac{\partial}{\partial \theta} LDS(x,\theta) = -\frac{\partial}{\partial \theta} \Delta_{KL}(r_{v-adv}, x, \theta)$$

$$\frac{\partial}{\partial \theta} LDS(x,\theta) = -\frac{\partial}{\partial \theta} KL[p(y|x,\theta')|| p(y|x + r_{v-adv}, \theta)]$$

- $V_{\theta}r_{v-adv}$ は無視 (そのほうがよかったらしい)
- 最初のθも固定

Experimental setting

- $I_p = 1$ で固定, $\lambda = 1$ で固定
- 自分で作ってみたデータセットで過学習しないかどうか。
- MNISTOsupervised, semi-supervised
- Semi-supervisedにおいてラベルが無いデータについては 正則化項のみを学習

Experiments

Experiments

Supervised MNIST

Method

VAT (ours)

Random perturbation training

Adversarial training (with L_{∞} norm constraint)

Adversarial training (with L_2 norm constraint)

SVM (gaussian kernel) 1.40 Gaussian dropout (Srivastava et al., 2014) 0.95 Maxout Networks (Goodfellow et al., 2013) 0.94 0.81 *MTC (Rifai et al., 2011) *DBM (Srivastava et al., 2014) 0.79 Adversarial training (Goodfellow et al., 2015) 0.782 0.57 ± 0.02 *Ladder network (Rasmus et al., 2015) Plain NN (MLE) 1.11

Semi-Supervised MNIST

(a) MNIST											
Method	Test error(%)										
- Wieliou		100	600	1000	3000						
SVM (Weston et al., 2012)		23.44	8.85	7.77	4.21						
TSVM (Weston et al., 2012)		16.81	6.16	5.38	3.45						
EmbedNN (Weston et al., 2012)		16.9	5.97	5.73	3.59						
*MTC (Rifai et al., 2011)		12.0	5.13	3.64	2.57						
PEA (Bachman et al., 2014)		10.79	2.44	2.23	1.91						
*PEA (Bachman et al., 2014)		5.21	2.87	2.64	2.30						
*DG (Kingma et al., 2014)		3.33	2.59	2.40	2.18						
*Ladder network (Rasmus et al., 2015)		1.06		0.84							
Plain NN (MLE)		21.98	9.16	7.25	4.32						
VAT (ours)		2.33	1.39	1.36	1.25						

どちらも Ladder Network 以外には勝利!!

Test error (%)

0.843

0.788

0.708

 0.637 ± 0.046

Discussion

筆者のまとめ

- Random noise よりも性能良かったので $H(x, \theta)$ 利用したのは正しかった
- パラメータの取り方によらず、モデルの分布自体に制限
- 実用上使いやすい
 - ハイパラ λ と ϵ だけで良い! I_p は1でよく、 ξ もある程度小さければよい
 - r_{v-adv} , $\frac{\partial}{\partial \theta} LDS$ にそれぞれforward, backward一回ずつ追加で必要なだけ
- 多様体学習取り入れたらさらに良いことがあるのでは

VAT for semi-supervised Text Classification

[Miyato, GoodFellow+, 2016]

- Text classifierに正則化項
 - drop out より性能いいらしい
- Word-embedding空間でperturbation
 - 正規化したあとノイズ
- VATとAT組み合わせたりしてたけど基本的にVAT強い
- ちゃんとbadとgoodが遠くなる
 - 少しの変化で意味が変わらないよう学習するから

	'good'				'bad'			
	Baseline	Random	Adversarial	Virtual Adversarial	Baseline	Random	Adversarial	Virtual Adversarial
1	great	great	decent	decent	terrible	terrible	terrible	terrible
2	decent	decent	great	great	awful	awful	awful	awful
3	\times bad	excellent	nice	nice	horrible	horrible	horrible	horrible
4	excellent	nice	fine	fine	\times good	\times good	poor	poor
5	Good	Good	entertaining	entertaining	Bad	poor	BAD	BAD
6	fine	\times bad	interesting	interesting	BAD	BAD	stupid	stupid
7	nice	fine	Good	Good	poor	Bad	Bad	Bad
8	interesting	interesting	excellent	cool	stupid	stupid	laughable	laughable
9	solid	entertaining	solid	enjoyable	Horrible	Horrible	lame	lame
10	entertaining	solid	cool	excellent	horrendous	horrendous	Horrible	Horrible

Conclusion

- 発想と r_{v-adv} の導出手法が良い
- ImageNetまでやってほしかった。
- 発展的には
 - フィッシャー情報行列の最大固有値の最小化問題
 - フィッシャー情報行列の行列式が小さくなる
 - ガウス曲率が小さくなるので、モデルはなめらかで凹凸が少なくなる

References

論文

- Distributional smoothing by virtual adversarial examples. [2016, Miyato et al.]
- Explaining and Harnessing Adversarial Examples [Goodfellow et al]
- Virtual Adversarial Training for Semi-Supervised Text Classification [Miyato et al]

参考にした資料

- Goodfellowのスライド
 http://www.iro.umontreal.ca/~memisevr/dlss2015/goodfellow_adv.pdf
- PFNの松元さんのスライド
 http://www.slideshare.net/eiichimatsumoto106/nips2015-ladder-network