OYO Rooms Goa

Objective: To perform exploratory data analysis on OYOs in Goa, and predict the rating new & unrated OYOs in Goa

Code For Scraping the Data

```
from selenium import webdriver
from bs4 import BeautifulSoup
import pandas as pd
import os
os.remove("hotel3.csv")
driver = webdriver.Chrome(executable_path=r"C:\Users\dayne\chromedriver.exe") #Set the path to
chromedriver
headers = {'User-Agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:77.0) Gecko/20100101
Firefox/77.0'}
driver.get("https://www.oyorooms.com/111193/")
driver.find_element_by_css_selector('.c-1vevh8c').click()
a=[]
content = driver.page_source
soup = BeautifulSoup(content)
name1=soup.find('h1', attrs={'itemprop':'name'})
a.append(name1.text.strip())
name2=soup.find('div', attrs={'class':'c-1qcdse5'})
a.append(name2.text.strip())
name3=soup.find('div', attrs={'class':'c-v9oteh'})
a.append(name3.text.strip())
name4=soup.find('span', attrs={'itemprop':'streetAddress'})
a.append(name4.text.strip())
name5=soup.find('span', attrs={'class':'listingPrice__finalPrice listingPrice__finalPrice--black'})
a.append(name5.text.strip())
xyz = soup.findAll('div',href=False, attrs={'itemprop':'amenityFeature'})
хуz
for lap in xyz:
  name=lap.find('div', attrs={'itemprop':'name'})
  a.append(name)
df = pd.DataFrame({'Product Name':a})
df.to csv('hotel3.csv', index=False, encoding='utf-8')
```

Scraping for hotels was done individually on each hotel website, to obtain data such as Address, Amenities, Price, Name, Category

Code For Regression

#Importing The Libraries import pandas as pd import numpy as np

#Importing the datasets

df=pd.read_csv("OYO-Training.csv")
df1=pd.read_csv("OYO-Testing.csv")

#Splitting the datasets

X = df.iloc[:, 1:-1].values y = df.iloc[:, -1].values X1=df1.iloc[:,1:-1].values

from sklearn.model_selection import train_test_split

X train, X test, y train, y test = train test split(X, y, test size = 0.2, random state = 0)

#Multiple Linear Regression

from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)
y_pred = regressor.predict(X_test)
np.set_printoptions(precision=2)
print("Multiple Linear Regression MSE")
mean_squared_error(y_test,y_pred)

Multiple Linear Regression MSE Out[<mark>820]</mark>: 3.303322686579006

#Support Vector Regression from sklearn.svm import SVR regressor = SVR(kernel = 'rbf') regressor.fit(X_train, y_train) y_pred = regressor.predict(X_test) print("SVR MSE")

mean_squared_error(y_test,y_pred)

SVR MSE Out[**821**]: 1.2098364477027768

#Decision Tree

from sklearn.tree import DecisionTreeRegressor regressor = DecisionTreeRegressor(random_state = 0) regressor.fit(X_train, y_train) y_pred = regressor.predict(X_test) print("Decision Tree MSE") mean_squared_error(y_test,y_pred)

#Random Forest

 $from \ sklearn.ensemble \ import \ RandomForestRegressor \\ regressor = RandomForestRegressor(n_estimators = 10, random_state = 0) \\ regressor.fit(X_train, y_train) \\ y_pred = regressor.predict(X_test)$

```
np.set_printoptions(precision=2)
print("Random Forest MSE")
mean_squared_error(y_test,y_pred)
Random Forest MSE
```

```
Random Forest MSE
Out[823]: 0.845174999999999
```

#Best output obtained for Decision Tree Hence we will use it for predicting the ratings of new OYO hotels

```
from sklearn.tree import DecisionTreeRegressor regressor = DecisionTreeRegressor(random_state = 0) regressor.fit(X_train, y_train) y_pred2=regressor.predict(X1) a=pd.DataFrame(y_pred2)
```

a.to_csv("oyo-output1.csv")

Exploratory Data Analysis After Combining The Results

#Importing The Libraries

import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt

#Adding the combined dataset

df=pd.read_csv("OYO-EDA.csv")

#Exploratory Data Analysis

df['Price'].describe()
df['Rating'].describe()

```
[751]: df['Rating'].describe()
                                   In [750]: df['Price'].describe()
count
        69.000000
                                  count
                                                69.000000
mean
         4.156087
                                             5537.043478
                                  mean
std
         0.316233
                                             2654.742712
                                  std
min
         3.500000
                                  min
                                              827.000000
25%
         3.920000
                                  25%
                                             3825.000000
50%
                                  50%
         4.200000
                                             5110.000000
                                  75%
                                             6827.000000
75%
         4.400000
                                            13541.000000
         4.800000
                                  max
max
                                  Name: Price, dtype: float64
Name: Rating, dtype: float64
```

#Generating the correlations

```
df_num_corr = df.corr()['Price'][1:]
```

 $golden_features_list = df_num_corr[abs(df_num_corr) > 0.2].sort_values(ascending=False) \\ print("There is {} strongly correlated values with SalePrice:\n{}".format(len(golden_features_list), golden_features_list)) \\ \end{cases}$

```
There is 11 strongly correlated values with SalePrice:
Price
                     1.000000
Modern Wardrobe
                     0.362651
Balcony
                     0.303867
Shower Head
                     0.300436
Geyser
                     0.266937
Garden/Backyard
                     0.231740
Private Entrance
                    0.225538
SPOT ON
                    -0.215098
Taxi Service
                    -0.220191
Car Rentals
                    -0.222147
Rating
                    -0.223718
Name: Price, dtype: float64
```

#Heat Map Of Correlations

#Creating Box-Plots with Y axis as Rating

```
df_categ2=df.drop(['Name'],axis=1)
df_categ2=df_categ.replace(0,"No")
df_categ2=df_categ.replace(1,"Yes")
for i in range(72):
    plt.figure(figsize = (10, 6))
    ax = sns.boxplot(x=df_categ2.iloc[:,i], y='Rating', data=df_categ2)
    plt.setp(ax.artists, alpha=.5, linewidth=2, edgecolor="k")
    plt.xticks(rotation=45)
```


for i in range(72): plt.figure(figsize = (10, 6)) ax = sns.boxplot(x=df_categ2.iloc[:,i], y=df['Price'], data=df_categ2) plt.setp(ax.artists, alpha=.5, linewidth=2, edgecolor="k") plt.xticks(rotation=45) 24/7 Checkin Price Doctor on Call CCTV Cameras

Top Categories: HOME, HOTEL, FLAGSHIP

Distribution Of Amenities Offered By Various OYOs

Almost all OYOs offer AC,TV and Wi-Fi More than half offer CCTV cameras, Free Wi-Fi, Power backup, Geyser Very few OYOs offer Bath Tubs, Banquet Halls, Living Rooms, Conference Rooms

Insights

Rank	Top Locations To Obtain A Higher Rating
1	CALANGUTE
2	SALIGAO
3	CANDOLIM

Rank		OYO Types To Obtain The Highest Rating
1	1	Collection O
2	2	Flagship
3	3	Townhouse

Rank	Top Amenities To Obtain A Higher Rating	
1	Daily Housekeeping	
2	Caretaker	
3	3 Fire-Extinguisher	
4	Luggage Assistance	
5	Swimming Pool	

Rank	Top Locations To Obtain A Higher Price
1	CALANGUTE
2	SALIGAO

3 CANDOLIM

Rank	OYO Types To Obtain The Highest Price
1	Townhouse

Rank	Top Amenities To Obtain A Higher Price
1	Modern Wardrobe
2	Balcony
3	Geyser
4	Garden/Backyard
5	Private Entrance
6	Sofa Beds
7	Living Room
8	King Sized Bed
9	Luggage Assistance
10	24/7 Checkin

Using the above insights, we can make a good combination of basic amenities to obtain a rating & price which is higher than the average

Calangute	
Collection O	
Daily Housekeeping	
Caretaker	
Fire-Extinguisher	
Luggage Assistance	
Swimming Pool	
24/7 Checkin	
Sofa Beds	
Living Room	
King Sized Bed	
Private Entrance	
Garden/Backyard	
Balcony	

We can obtain a rating of 4.3 and a price of Rs 6157/Night, which is higher than the average rating of an OYO which is just 4.16 & higher than the average price which is just 5537/Night.

Results from SVM Prediction of rating of new & unrated OYOs

	Predicted
OYO Name	Rating
POP 85139 Kabir Guest House	4.5
Townhouse OAK 7 Spices	4.5
OYO 83865 Baba Guest House	4.3

OYO 85326 Corinthia Boutique Rooms	4.3
OYO 85229 Trivikram Krupa Guest House	4.2
OYO 85106 Hotel Elvin,s Place	4.2
OYO 84752 Hotel Joy Guest House	4.2
OYO 84895 Hotel Maples Calangute Pristne	4.2
OYO 83955 Hotel Log Inn	3.5
OYO 84393 David Holiday Home	2.9