A Book of Abstract Algebra (2nd Edition)

Chapter 23, Problem 5EH

Bookmark

Show all steps: (

ON

Problem

An integer a is called a *quadratic residue* modulo m if there is an integer x such that $x^2 \equiv a \pmod{m}$. This is the same as saying that \bar{a} is a square in m. If a is not a quadratic residue modulo m, then a is called a *quadratic nonresidue* modulo m. Quadratic residues are important for solving quadratic congruences, for studying sums of squares, etc. Here, we will examine quadratic residues modulo an arbitrary prime p > 2.

Let
$$h: \mathbb{Z}_p^* \to \mathbb{Z}_p^*$$
 be defined by $h(\bar{a}) = \bar{a}^2$.

Prove: if
$$a \equiv b \pmod{p}$$
, then $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$. In particular, $\left(\frac{a+kp}{p}\right) = \left(\frac{a}{p}\right)$

Step-by-step solution

Step 1 of 4

Here, objective is to prove that $\left(\frac{a}{P}\right) = \left(\frac{b}{P}\right)$, if $a = b \pmod{p}$ and $\left(\frac{a + kp}{P}\right) = \left(\frac{a}{P}\right)$.

Comment

Step 2 of 4

Consider the congruence $x^2 = a \pmod{p}$ where p is odd prime, is solvable, if and only if the Legendre symbol $\left(\frac{a}{P}\right) = 1$. Where, $\left(\frac{a}{P}\right) = a^{(p-1)/2} \pmod{p}$

Comment

Step 3 of 4

If
$$a = b \pmod{p}$$
, then $x^2 = a \pmod{p}$ if and only if $x^2 = b \pmod{p}$

That means one of the above equations is not solvable or solvable if and only if same is true for the other.

For
$$x^2 = a \pmod{p}$$

The Legendre symbol is $\left(\frac{a}{P}\right)$

For
$$x^2 = b \pmod{p}$$

The Legendre symbol is $\left(\frac{b}{P}\right)$

Therefore, the above equations are solvable or not solvable if and only if $\left(\frac{a}{P}\right) = \left(\frac{b}{P}\right)$

Comment

Step 4 of 4

$$x^2 = a \pmod{p},$$

$$x^2 = b \pmod{p}.$$

Then, we can write as

$$b = a \pmod{p}$$

b = a + pk; k is an integer

$$\left(\frac{b}{P}\right) = \left(\frac{a}{P}\right)$$
$$\left(\frac{a+kp}{P}\right) = \left(\frac{a}{P}\right)$$

Therefore,

$$\left(\frac{a}{P}\right) = \left(\frac{b}{P}\right) \text{, if } a = b \pmod{p} \text{, and also } \left(\frac{a + kp}{P}\right) = \left(\frac{a}{P}\right).$$

Hence, proved

Comment