

Disciplina: Laboratório de Redes de Sensores

Prof. Guilherme L. Moritz Prof. Ohara K. Rayel

PPGSE - UTFPR

RPL

IPv6 Routing Protocol for Low-power and Lossy Networks

Hermano Pereira

Curitiba, 25 de outubro de 2016

Agenda

Introdução

RPL - Funcionamento

RPL – Métricas e Restrições

RPL – MRHOF com ETX+Rank

Considerações Finais

Introdução

Routing Protocol for Low-power and Lossy Networks

- Grupo ROLL (IETF)
- RFC 6550 Março de 2012
- Configuração rápida de roteamento em uma rede restrita
- 802.15.4 (6LowPAN) 802.15.4e (6tsch)
- Ideal para a Internet das Coisas

Convergência do Protocolo RPL:

- Formar um DAG (grafo)

Directed Acyclic Graph

Convergência do Protocolo RPL:

- Formar um DAG (grafo)
- Formar DODAG (um nó sink)

Destination Oriented DAG

Convergência do Protocolo RPL:

- Formar um DAG (grafo)
- Formar DODAG (um nó sink)
- Nó busca por topologia (DIS)

DODAG Information **S**olicitation

Convergência do Protocolo RPL:

- Formar um DAG (grafo)
- Formar DODAG (um nó sink)
- Nó busca por topologia (DIS)

DODAG Information **S**olicitation

Convergência do Protocolo RPL:

- Formar um DAG (grafo)
- Formar DODAG (um nó sink)
- Nó busca por topologia (DIS)
- Nó pai fornece informação (DIO)

DODAG Information **O**bject

Convergência do Protocolo RPL:

- Formar um DAG (grafo)
- Formar DODAG (um nó sink)
- Nó busca por topologia (DIS)
- Nó pai fornece informação (DIO)

DODAG Information **O**bject

Convergência do Protocolo RPL:

- Formar um DAG (grafo)
- Formar DODAG (um nó sink)
- Nó busca por topologia (DIS)
- Nó pai fornece informação (DIO)
- Nó confirma upward (DAO)

Destination**A**dvertisement**O**bject

Convergência do Protocolo RPL:

- Formar um DAG (grafo)
- Formar DODAG (um nó sink)
- Nó busca por topologia (DIS)
- Nó pai fornece informação (DIO)
- Nó confirma upward (DAO)

Destination**A**dvertisement**O**bject

Convergência do Protocolo RPL:

- Formar um DAG (grafo)
- Formar DODAG (um nó sink)
- Nó busca por topologia (DIS)
- Nó pai fornece informação (DIO)
- Nó confirma upward (DAO)
- Sink confirma downward (DAO-Ack)

DAO-Ack

Convergência do Protocolo RPL:

- Formar um DAG (grafo)
- Formar DODAG (um nó sink)
- Nó busca por topologia (DIS)
- Nó pai fornece informação (DIO)
- Nó confirma upward (DAO)
- Sink confirma downward (DAO-Ack)

DAO-Ack

- Formar um DAG (grafo)
- Formar DODAG (um nó sink)
- Nó busca por topologia (DIS)
- Nó pai fornece informação (DIO)
- Nó confirma upward (DAO)
- Sink confirma downward (DAO-Ack)

- Formar um DAG (grafo)
- Formar DODAG (um nó sink)
- Nó busca por topologia (DIS)
- Nó pai fornece informação (DIO)
- Nó confirma upward (DAO)
- Sink confirma downward (DAO-Ack)

- Formar um DAG (grafo)
- Formar DODAG (um nó sink)
- Nó busca por topologia (DIS)
- Nó pai fornece informação (DIO)
- Nó confirma upward (DAO)
- Sink confirma downward (DAO-Ack)

- Formar um DAG (grafo)
- Formar DODAG (um nó sink)
- Nó busca por topologia (DIS)
- Nó pai fornece informação (DIO)
- Nó confirma upward (DAO)
- Sink confirma downward (DAO-Ack)

- Formar um DAG (grafo)
- Formar DODAG (um nó sink)
- Nó busca por topologia (DIS)
- Nó pai fornece informação (DIO)
- Nó confirma upward (DAO)
- Sink confirma downward (DAO-Ack)

- Formar um DAG (grafo)
- Formar DODAG (um nó sink)
- Nó busca por topologia (DIS)
- Nó pai fornece informação (DIO)
- Nó confirma upward (DAO)
- Sink confirma downward (DAO-Ack)

- Formar um DAG (grafo)
- Formar DODAG (um nó sink)
- Nó busca por topologia (DIS)
- Nó pai fornece informação (DIO)
- Nó confirma upward (DAO)
- Sink confirma downward (DAO-Ack)

- Formar um DAG (grafo)
- Formar DODAG (um nó sink)
- Nó busca por topologia (DIS)
- Nó pai fornece informação (DIO)
- Nó confirma upward (DAO)
- Sink confirma downward (DAO-Ack)

- Formar um DAG (grafo)
- Formar DODAG (um nó sink)
- Nó busca por topologia (DIS)
- Nó pai fornece informação (DIO)
- Nó confirma upward (DAO)
- Sink confirma downward (DAO-Ack)

- Formar um DAG (grafo)
- Formar DODAG (um nó sink)
- Nó busca por topologia (DIS)
- Nó pai fornece informação (DIO)
- Nó confirma upward (DAO)
- Sink confirma downward (DAO-Ack)

- Formar um DAG (grafo)
- Formar DODAG (um nó sink)
- Nó busca por topologia (DIS)
- Nó pai fornece informação (DIO)
- Nó confirma upward (DAO)
- Sink confirma downward (DAO-Ack)
- Mensagens de Controle (Trickle timer)

- Formar um DAG (grafo)
- Formar DODAG (um nó sink)
- Nó busca por topologia (DIS)
- Nó pai fornece informação (DIO)
- Nó confirma upward (DAO)
- Sink confirma downward (DAO-Ack)
- Mensagens de Controle (Trickle timer)

- Formar um DAG (grafo)
- Formar DODAG (um nó sink)
- Nó busca por topologia (DIS)
- Nó pai fornece informação (DIO)
- Nó confirma upward (DAO)
- Sink confirma downward (DAO-Ack)
- Mensagens de Controle (Trickle timer)

- Formar um DAG (grafo)
- Formar DODAG (um nó sink)
- Nó busca por topologia (DIS)
- Nó pai fornece informação (DIO)
- Nó confirma upward (DAO)
- Sink confirma downward (DAO-Ack)
- Mensagens de Controle (Trickle timer)

- RFC 6551 Routing Metrics Used for Path Calculation in LLNs
 - → Métrica (melhor caminho)
 - → Restrição (evitar caminho)
- DAG Metric Container
 - → Mensagens DIO e DAO podem carregar métricas/restrições.
- Objetos de informação (8 objetos)
 - → Estado do Nó, Energia do Nó, Contagem de Saltos, Taxa de Transferência, Latência, Qualidade do Enlace, Transmissão Esperada e Customizado.
- Cálculo do caminho:
 - → com base em atributos do Nó ou do Enlace
 - → quantitativas ou qualitativas
 - → gravadas ou agregadas

a) Objeto de Atributo e Estado do Nó

(NSA – Node State and Attribute Object)

- → dados: um bit para informação
- → exemplo: informar se o Nó está sobrecarregado

b) Objeto de Energia do Nó

(NE – Node Energy Object)

- → alimentação: principal, colheita ou bateria
- → dados: 8 bits para estimar em %

$$E_E = \frac{E_bat}{E_0(T-t)/T}$$

E_E (estimar energia disponível %); E_bat (energia restante); E_0 (energia inicial); T (tempo de vida esperado) e t (tempo de vida em que a bateria foi utilizada).

c) Objeto de Contagem de Saltos

(HC – Hop Count Object)

- → dados: 8 bits para contagem de saltos1 bit = 1 salto (hop)
- **b) Taxa de Transferência do Enlace** (*Throughput*)
 - → dados: 32 bits para taxa de transferência
 1 bit = 1 byte por segundo

e) Latência do Enlace

(Latency)

→ dados: 32 bits para representar um valor de atraso
 1 bit = 1 microssegundo

f) Nível de Qualidade do Enlace

(LQL – Link Quality Level)

→ dados: 3 bits para representar níveis Nível 0X0 = qualidade desconhecida Nível próximo de 0x1 = excelente Nível próximo de 0x7 = péssima

g) Transmissão Esperada do Enlace

(ETX – Expected Transmission)

→ dados: 16 bits para a métrica ETX ETX=0x80 equivale ETX=1

$$ETX = \frac{1}{Df \times Dr}$$

Df (delivered – forwarded): probabilidade de um pacote ser recebido com sucesso pelo nó vizinho.

Dr (delivered – received): probabilidade de um pacote ACK ser recebido com sucesso pelo próprio nó.

h) Enlace Colorido

(LC – Link Color)

→ dados: 10 bits para representar cores

Pode ser customizado, exemplo:

- Enlace Vermelho: texto puro (deve ser evitado)
- Enlace Verde: criptografado (preferencial)

RPL – Funções Objetivas

Funções Objetivas:

Responsáveis por tratar dos Objetos (métricas/restrições) que são recebidos por um um nó e tomar a decisão de qual o melhor roteamento até o nó raiz.

- → Selecionar o nó pai preferido
- → Calcular o próprio valor de rank

Função Objetiva Zero

(OF0 - Objective Function Zero)

- → RFC 6552
- → Não faz uso dos objetos, ou seja, sem métricas
- → Valor de *rank* é incrementado para decidir melhor caminho

RPL – Funções Objetivas

Função Objetiva de Posicionamento Mínimo com Histerese

(MRHOF – Minimum Rank Hysteresis Objective Function)

- → RFC 6719
- → Carregar uma das três métricas em mensagens DIO: Transmissão esperada (ETX), Latência ou Contagem de Saltos (HC).
- → Opcionalmente a métrica ETX pode ser combinada com o valor de rank. (soma simples)
- → Histerese:

Possui um limiar (*threshold*) para evitar que os nós façam trocas constantes de nós pais; mantendo, assim, a estabilidade da topologia de roteamento.

Convergência do Protocolo RPL com a MRHOF (ETX combinada com o Rank):

A

- Padrão do SO Contiki

Convergência do Protocolo RPL com a MRHOF (ETX combinada com o Rank):

- Comunicação é estimada

Convergência do Protocolo RPL com a MRHOF (ETX combinada com o Rank):

- Comunicação é estimada
- Nós se comunicam e ETX modifica

SINK

RANK 128

Convergência do Protocolo RPL com a MRHOF (ETX combinada com o Rank):

- Comunicação é estimada
- Nós se comunicam e ETX modifica
- MinHopRankIncrease = 128

Convergência do Protocolo RPL com a MRHOF (ETX combinada com o Rank):

- Comunicação é estimada
- Nós se comunicam e ETX modifica
- MinHopRankIncrease = 128

Nó B calcula Rank:

Nó pai A Rank 128 ETX = $2,2 \rightarrow 282$

Rank = 128 + 282 = 410

Convergência do Protocolo RPL com a MRHOF (ETX combinada com o Rank):

- Comunicação é estimada
- Nós se comunicam e ETX modifica
- MinHopRankIncrease = 128

Nó B calcula Rank:

Nó pai A Rank 128 ETX = $2,2 \rightarrow 282$

Rank = 128 + 282 = 410

Convergência do Protocolo RPL com a MRHOF (ETX combinada com o Rank):

- Comunicação é estimada
- Nós se comunicam e ETX modifica
- MinHopRankIncrease = 128

Nó C calcula Rank:

Nó pai A Rank 128 ETX = $1,1 \rightarrow 141$

Rank = 128+141 = 269

Convergência do Protocolo RPL com a MRHOF (ETX combinada com o Rank):

- Comunicação é estimada
- Nós se comunicam e ETX modifica
- MinHopRankIncrease = 128

Nó B recalcula Rank:

Nó pai C Rank 269 ETX = $1 \rightarrow 128$

Rank = 269+128 = 397

Convergência do Protocolo RPL com a MRHOF (ETX combinada com o Rank):

- Comunicação é estimada
- Nós se comunicam e ETX modifica
- MinHopRankIncrease = 128

Nó E calcula Rank:

Nó pai B Rank 397 ETX = $2 \rightarrow 256$ Rank = 397+256 = 653 (via B)

Nó pai C Rank 269 ETX = $1,3 \rightarrow 167$ Rank = 269+167 = 436 (via C)

Convergência do Protocolo RPL com a MRHOF (ETX combinada com o Rank):

- Comunicação é estimada
- Nós se comunicam e ETX modifica
- MinHopRankIncrease = 128

Nó D calcula Rank:

Nó pai B Rank 397 ETX = $1,2 \rightarrow 154$ Rank = 397+154 = 551 (via B)

Nó pai E Rank 436 ETX = $1,4 \rightarrow 180$ Rank = 436+180 = 616 (via E)

Convergência do Protocolo RPL com a MRHOF (ETX combinada com o Rank):

- Comunicação é estimada
- Nós se comunicam e ETX modifica
- MinHopRankIncrease = 128

Nó F calcula Rank:

Nó pai C Rank 269 ETX = $1,1 \rightarrow 141$ Rank = 269+141 = 410 (via C)

Nó pai E Rank 436 ETX = $1 \rightarrow 128$ Rank = 436+128 = **564** (via E)

Convergência do Protocolo RPL com a MRHOF (ETX combinada com o Rank):

- Comunicação é estimada
- Nós se comunicam e ETX modifica
- MinHopRankIncrease = 128

Nó H calcula Rank:

Nó pai F Rank 410 ETX = $1 \rightarrow 128$ Rank = 410+128 = 538

Convergência do Protocolo RPL com a MRHOF (ETX combinada com o Rank):

- Comunicação é estimada
- Nós se comunicam e ETX modifica
- MinHopRankIncrease = 128

Nó G calcula Rank:

Rank =
$$551+154 = 705$$
 (via D)

Rank =
$$436+244 = 680$$
 (via E)

Rank =
$$410+244 = 794$$
 (via F)

Rank = 538+141 = 679 (via H)

Convergência do Protocolo RPL com a MRHOF (ETX combinada com o Rank):

- Comunicação é estimada
- Nós se comunicam e ETX modifica
- MinHopRankIncrease = 128

Topologia de Roteamento Dinâmica

Depende de ETX

Convergência do Protocolo RPL com a MRHOF (ETX combinada com o Rank):

- Comunicação é estimada
- Nós se comunicam e ETX modifica
- MinHopRankIncrease = 128

Topologia de Roteamento Dinâmica

Depende de ETX

Considerações Finais

Referências

RFC 6550 - IPv6 Routing Protocol for LLNs

RFC 6551 – Routing Metrics Used for Path Calculation in LLNs

RFC 6552 – Objective Function Zero for the RPL

RFC 6719 - The Minimum Rank with Hysteresis Objective Function