Functions of Two Variables

Functions of Several Variables

The temperature *T* at a point on the surface of the earth at any given time depends on the longitude x and latitude y of the point.

We can think of *T* as being a function of the two variables *x* and y, or as a function of the pair (x, y). We indicate this functional dependence by writing T = f(x, y).

The volume *V* of a circular cylinder depends on its radius *r* and its height h. In fact, we know that $V = \pi r^2 h$. We say

that *V* is a function of *r* and *h*, and we write $V(r, h) = \pi r^2 h$.

Functions of Several Variables

Definition A **function** *f* **of two variables** is a rule that assigns to each ordered pair of real numbers (x, y) in a set D a unique real number denoted by f(x, y). The set D is the **domain** of f and its **range** is the set of values that f takes on, that is, $\{f(x, y) \mid (x, y) \in D\}.$

We often write z = f(x, y) to make explicit the value taken on by f at the general point (x, y).

The variables x and y are **independent variables** and z is the dependent variable.

[Compare this with the notation y = f(x) for functions of a single variable.]

Graphs

16

Graphs

Another way of visualizing the behavior of a function of two variables is to consider its graph.

Definition If f is a function of two variables with domain D, then the **graph** of fis the set of all points (x, y, z) in \mathbb{R}^3 such that z = f(x, y) and (x, y) is in D.

Just as the graph of a function f of one variable is a curve C with equation y = f(x), so the graph of a function f of two variables is a surface S with equation z = f(x, y).

Graphs

6

17

We can visualize the graph S of f as lying directly above or below its domain *D* in the *xy*-plane (see Figure 5).

Figure 5

18

Graphs

The function f(x, y) = ax + by + c is called as a **linear** function.

The graph of such a function has the equation

$$z = ax + by + c$$
 or $ax + by - z + c = 0$

so it is a plane. In much the same way that linear functions of one variable are important in single-variable calculus, we will see that linear functions of two variables play a central role in multivariable calculus.

19

Example 6

Sketch the graph of $g(x, y) = \sqrt{9 - x^2 - y^2}$.

Solution:

The graph has equation $z = \sqrt{9 - x^2 - y^2}$. We square both sides of this equation to obtain $z^2 = 9 - x^2 - y^2$, or $x^2 + y^2 + z^2 = 9$, which we recognize as an equation of the sphere with center the origin and radius 3.

But, since $z \ge 0$, the graph of g is just the top half of this sphere (see Figure 7).

Figure 7

Level Curves

21

23

Level Curves

So far we have two methods for visualizing functions: arrow diagrams and graphs. A third method, borrowed from mapmakers, is a contour map on which points of constant elevation are joined to form contour lines, or level curves.

Definition The **level curves** of a function f of two variables are the curves with equations f(x, y) = k, where k is a constant (in the range of f).

A level curve f(x, y) = k is the set of all points in the domain of f at which f takes on a given value k.

In other words, it shows where the graph of *f* has height *k*.

22

Level Curves

You can see from Figure 11 the relation between level curves and horizontal traces.

Level Curves

The level curves f(x, y) = k are just the traces of the graph of f in the horizontal plane z = k projected down to the xy-plane.

So if you draw the level curves of a function and visualize them being lifted up to the surface at the indicated height. then you can mentally piece together a picture of the graph.

The surface is steep where the level curves are close together. It is somewhat flatter where they are farther apart.

Functions of Three or More Variables

Functions of Three or More Variables

A **function of three variables**, f, is a rule that assigns to each ordered triple (x, y, z) in a domain $D \subset \mathbb{R}^3$ a unique real number denoted by f(x, y, z).

For instance, the temperature T at a point on the surface of the earth depends on the longitude x and latitude y of the point and on the time t, so we could write T = f(x, y, t).

30

Example 14

Find the domain of f if

$$f(x, y, z) = \ln(z - y) + xy \sin z$$

Solution:

The expression for f(x, y, z) is defined as long as z - y > 0, so the domain of f is

$$D = \{(x, y, z) \in \mathbb{R}^3 | z > y\}$$

This is a **half-space** consisting of all points that lie above the plane z = y.

Functions of Three or More Variables

It's very difficult to visualize a function *f* of three variables by its graph, since that would lie in a four-dimensional space.

However, we do gain some insight into f by examining its **level surfaces**, which are the surfaces with equations f(x, y, z) = k, where k is a constant. If the point (x, y, z) moves along a level surface, the value of f(x, y, z) remains fixed.

Functions of any number of variables can be considered. A **function of** *n* **variables** is a rule that assigns a number $z = f(x_1, x_2, ..., x_n)$ to an *n*-tuple $(x_1, x_2, ..., x_n)$ of real numbers. We denote by \mathbb{R}^n the set of all such *n*-tuples.

33

Functions of Three or More Variables

For example, if a company uses n different ingredients in making a food product, c_i is the cost per unit of the ith ingredient, and x_i units of the ith ingredient are used, then the total cost C of the ingredients is a function of the n variables x_1, x_2, \ldots, x_n :

3
$$C = f(x_1, x_2, \dots, x_n) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

The function f is a real-valued function whose domain is a subset of \mathbb{R}^n .

Functions of Three or More Variables

Sometimes we will use vector notation to write such functions more compactly: If $\mathbf{x} = \langle x_1, x_2, \dots, x_n \rangle$, we often write $f(\mathbf{x})$ in place of $f(x_1, x_2, \dots, x_n)$.

With this notation we can rewrite the function defined in Equation 3 as

$$f(\mathbf{x}) = \mathbf{c} \cdot \mathbf{x}$$

where $\mathbf{c} = \langle c_1, c_2, \dots, c_n \rangle$ and $\mathbf{c} \cdot \mathbf{x}$ denotes the dot product of the vectors \mathbf{c} and \mathbf{x} in V_n .

34

32

Functions of Three or More Variables

In view of the one-to-one correspondence between points (x_1, x_2, \ldots, x_n) in \mathbb{R}^n and their position vectors

 $\mathbf{x} = \langle x_1, x_2, \dots, x_n \rangle$ in V_n , we have three ways of looking at a function f defined on a subset of \mathbb{R}^n :

- **1.** As a function of *n* real variables x_1, x_2, \ldots, x_n
- **2.** As a function of a single point variable (x_1, x_2, \ldots, x_n)
- **3.** As a function of a single vector variable $\mathbf{x} = \langle x_1, x_2, \dots, x_n \rangle$