Cross-Validation (CV)

Generalizes the case of splitting data into training, validation, and test data.

Useful when data is scarce

Provides an estimate of the expected generalization error $\operatorname{Err} = \mathbf{E}[L(Y,\hat{f}(X))]$

We consider K- fold cross validation

K-Fold Cross Validation

Idea:

- 1. split data into $\,K\,$ parts of (more or less) the same size;
- 2. Repeat K times:
 - 1. train on $\,K-1\,{
 m parts}$, leaving the $\it i$ -th part out
 - 2. estimate prediction error on *i*-th part
- 3. Combine the K estimates of prediction error

K-Fold Cross Validation

Example K=5

1

2

3

4

5

Leave first part out:

Validation	Train	Train	Train	Train

Leave second part out...

Leave third part out:

1	2	3	4	5
Train	Train	Validation	Train	Train

Leave fourth part out...

Leave fifth part out...

In General

Let
$$\kappa:\{1,\ldots,N\} \to \{1,\ldots,K\}$$
 be indexing function

partitions data points, assigning each to one part

Let models be $h(x, \alpha)$ (α = tuning parameter)

Let $\hat{h}^{-k}(x,\alpha)$ fit for the model with α and k-th part of data removed.

Cross-validation estimate of prediction error:

$$CV(\hat{h}, \alpha) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, \hat{h}^{-\kappa(i)}(x_i, \alpha))$$

Choose model minimizing $\mathrm{CV}(\hat{h}, lpha)$ and fit it using all data

How to choose *K*?

Typical choice: K=5 or K=10

Leave-one-out cross-validation: K=N

- nice theoretical properties: approximately unbiased estimator for expected prediction error
- high variance! [WHY?]
- computationally expensive

K=5 or K=10 may give a biased estimate of expected prediction error, but smaller variance: good compromise in practice.