1	1-0, k 1-1, k 2 k-1 2 k+1 k+1 k+1 - 3
	$\Delta S_j^{0,k} = \Delta S L_j^{i+,k} \cdot C_j^{k-i} \beta_j + \mathcal{I}_j^{k-i} \beta_j - \mathcal{I}_j^{k-i} \left[C_j^{k-i} \beta_j - C_0^{k-i} \beta_0 \right]$
	$\Delta SL = \Delta G - \Delta R + \frac{\Delta Q}{9}, (R, i.e. U. Vertical disp)$
	$\Delta SL = \Delta U - \Delta R + \frac{1}{9}, (R, i.e. U. Vertical disp)$
	j: Time step
	$i: inner loop (\Delta S \rightleftharpoons \Delta SL and AF)$
	K: outer loop (instal topo, ocean functions)
1	C. outer loop (initial topo, olean functions)
	$T_{s}^{k} = T(t_{p}) + \Delta SL^{k}(t_{p})$
	10 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
	ΔS is the ocean load change relative to initial stage.
[>	ΔSL is the sea level change (in ocean and ocean), $\Delta SL(t_p) = -T(t_p) - (-T_o)$
12	"-T" is bathymetry.
[>	<i>y J</i>
1>	For stage j, total surface load is $(\Delta l_j + \Delta S_j) = \Delta l_j$
<u> </u>	$\Delta I_j + \Delta S_j = f_i \Delta I_j - f_j T_0 [O_j - O_0] + f_w \Delta S L_j \cdot O_j \qquad (O_j = C_j \beta_j)$
	C 16 17 To 77 07 643 0
	If we define $\Delta IT_j = [\Delta I_j - T_o I O_j - O_o] \frac{f_w}{f_i}$, or use ice height for load.
	Then we will find
	= 10 me will find
1:	$c = \Delta i / = - \frac{1}{A_j} \cdot \frac{1}{A_j} \int \Delta I I_j d\Omega - \frac{1}{A_j} \int (\Delta G - \Delta R)_j O_j d\Omega$
	$\Delta SL = \Delta G - \Delta R + C$ (this is water height)
	Which is same as our old code assume ocean area does not change with time
	(D.Q. Da. 150 Pag V)
	(eg. Paulson Eq.8)
	(leg. faulson Eq.8)

	So, we define surface that and an armony
	input surface load as $\Delta I - T_0 IO_j - O_0]$
	which has two parts, ite load change and water load change related to ocean/land transition. (topo correction)
L	Note the topo com water toad change
	topo correction should be expressed as "ice equilant height", not just water height.
	S Assume the we have done one outer loop with initial topo Tok, Ojk,
Į.	, , , , , , , , , , , , , , , , , , ,
L-	How to perform new outer iteration, based on the perprevious iteration's solution ΔG^{K} , ΔR^{K} ?
	Quebot in mad is ATKHI TOKHI - OCT
	O what we need is $\Delta I^{k+1} - T_o^{k+1} [O_j^{k+1} - O_o]$, So ΔI^{k+1} , T_o^{k+1} , O_j^{k+1}
- L	30 21 , 10 , 05
	© To get O_j^{kH} , we just need know T_j^{kH} , and $O_j^{kH} = 1$ when $T_j^{kH} < 0$.
	Since $\triangle SL(t_p) = -T(t_p) - (-T_0)$
	$\Delta SL(t_i) = -T(t_i) - (-T_0)$
	$T(t_j) = T(t_p) + \Delta SL(t_p) - \Delta SL(t_j)$
	or, $T(t_j) = T(t_p) + \Delta SL^k(t_p) - \Delta SL^k(t_j)$
	When $j=0$, we also got T_0^{K+1} , and $\Delta S_L^K(t_0)=0$.
	(2) A7/k+1
	$\Im \Delta Z^{k+1}$, we want to do flooting ice check, based on ite height and T_j^{k+1} (topography)
	(b) with that, we only need to know how to get $\Delta SL^{k}(t_{j})$
L	

	3
i	§ calculate $\Delta SL^{k}(t_{j})$, with ΔG_{j}^{k} , ΔR_{j}^{k} , $\Delta I_{j}^{-} - T_{0}[0_{j} - 0_{0}]_{k}^{k}$.
	$\Delta SL^{k}(t_{j}) = \Delta G_{j}^{k} - \Delta R_{j}^{k} + C_{j}^{k}$
	$C_{j}^{k} = -\frac{1}{A_{j}^{k}} \left[\iint_{R_{i}}^{R_{i}} \Delta IT_{j}^{k} d\Omega + \iint_{R_{i}}^{R_{i}} (\Delta G - \Delta R)_{j}^{k} O_{j}^{k} d\Omega \right]$
[(here sI is grounding ice)
	Done.
	So, why not directly use T_0^{k+1} for $\Delta I_j^{k+1} - T_0 [0_j^{k+1} - 0_0]$. I think this is better, in but kendall use $\Delta I_j^{k+1} - T_0 [0_j^{k} - 0_0^{k}]$.
	PS 2 In the term $\Delta I_j - T_0[O_j - O_0]$, note it is actually $l_i \Delta I_j - l_w T_0[O_j - O_0]$
レレレ	
じ	
D D	
77	$lpha_{ij}$