北京邮电大学

《通信原理》

一. 选择填空(每空1分,最高得22分)

空格号	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
答案	A	В	D	A	D	В	C	A	В	A	C	C	A
空格号	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	(25)	(26)
答案	С	A	С	С	С	D	A	В	A	В	C	A	D

1. 若 8PSK 的误符号率为 0.0024, 采用格雷码映射时, 误比特率近似是(1)

(1) A. 0.0008 B. 0.0024 C. 0.0003 D. 0.0004

2. 与 QPSK 相比, OQPSK 的(2)更小。

(2) A. 接收机复杂度 B. 包络起伏 C. 频带利用率 D. 误比特率

3. $E_{\rm b}/N_0$ 较大时,DPSK 相干解调的误比特率近似是 BPSK 误比特率的(3)倍。

(3) A. 1/4 B. 1/2 C. 1 D. 2

4. 在 MQAM 调制中,给定数据速率 $R_{\rm b}$,进制数 M 增大时, $(\underline{4})$ 减小。给定比特能量 $E_{\rm b}$,进制数 M 增大时, $(\underline{5})$ 减小。在 MFSK 中,给定数据速率 $R_{\rm b}$,进制数 M 增大时, $(\underline{6})$ 减小。给定比特能量 $E_{\rm b}$,进制数 M 增大时, $(\underline{7})$ 减小。

(4) (5) (6) (7) A. 带宽 B. 频带利用率 C. 判决错误率 D. 判决正确率

5. 在 M 进制信号的最佳检测中, 若发送信号的(8)相同, 则 MAP 准则与 ML 准则等价。

 (8)
 A. 先验概率
 B. 后验概率
 C. 似然概率
 D. 能量

6. 若 $f_1(t)$, $f_2(t)$, …, $f_N(t)$ 是N维信号空间的归一化正交基函数,则对于任意 $i,j \in \{1,2,,\dots,N\}$, $f_i(t)$ 与 $f_i(t)$ 的内积当i=j时(9),当 $i\neq j$ 时(10)。

 (9)(10)
 A. 是 0
 B. 是 1
 C. 是常数
 D. 是i,j的函数

7.若带通信号x(t)的频带范围是 11kHz~15kHz、带宽为 5kHz 的带通信号,能使理想采样后频谱不交叠的最低采样频率是(11)kHz。

(11) A. 4 B. 8 C. 15-10 D. 20

8. A 律十三折线 PCM 编码器中的量化属于(12)。若其设计输入范围是[-256,+256]mV,那 么当译码器输入的码组是 11111111 时,解码器输出的量化电平的极性是(13),绝对值是(14)。

(12)	A. 均匀	B. Lloyd-Max	C. 对数	D. 指数
(13)	A . 正	B. 负	C. 可能正也可能负	
(14)	A. 244	B. 248	C. 252	D. 256

9. 设数据速率是 6kb/s, 采用正交 8FSK 传输时, 载频间隔最小应为(15)kHz。

(15)	A. 1	B. 2	C. 3	D. 6

10. 当量化器的输入服从<u>(16)</u>分布时,能使量化信噪比最大的量化是<u>(17)</u>量化器,其量化信噪比 $\left(\frac{s}{N_0}\right)$ 与量化比特数k的关系是 $\left(\frac{s}{N_0}\right)$ =<u>(18)</u>。

(16) (17)	A. 指数	B. 高斯	C. 均匀	D. 对数
(18)	A. k^2	B. 2^{k}	C. 4 ^k	D. k^4

11. 为了实现 BPSK 的相干解调,需要在接收端建立同步载波。载波同步的方法之一是采用 (19)法,该法所提取的载波可能存在(20)问题,解决此问题的方法之一是采用(21)调制,该 调制还能摆脱相干解调,借助(22)来实现解调。

(19)	A. 锁相环	B. 超前-滞后门	C. 立方环	D. 平方环
(20)	A. 相位模糊	B. 相位抖动	C. 相位调制	D. 相位失步
(21)	A. OQPSK	B. DPSK	C. QPSK	D. 8PSK
(22)	A. 差分相干解调	B. 包络检波	C. 锁相环	D. 鉴频器

12. 下列是四个不同数字传输系统的基带眼图,其中使用了第一类部分响应技术的是(23),需要采用时域均衡的是(24),频谱利用率最高的是(25),存在非线性畸变的是(26)。

B①卷第2页 共8页

二.某 2FSK 系统在[0, T_b]内等概发送 $s_1(t) = \cos 2\pi f_1 t$ 和 $s_2(t) = \cos 2\pi f_2 t$ 之一,已知 $T_b = 1$ ms, $f_1 - f_2 = 1$ kHz, $f_1 + f_2 = 13$ kHz。发送信号通过 AWGN 信道传输,接收框图如下所示,图中的a, b是两个实数,分别是模块③、⑤的输出,模块④的输出 $\hat{c} \in \{0,1\}$ 是判决结果。

- (1) 画出此 2FSK 的单边功率谱密度示意图 (标出频率坐标), 写出主瓣带宽;
- (2) 写出①、②处的信号表达式;
- (3) 写出模块③、④的输入输出关系式。

解: $(1)f_1 = 7$, $f_2 = 6$, 主瓣带宽是 3kHz。功率谱图如下(形状要点是体现两个 OOK 的和)

- $(2)\cos 2\pi f_1t;\ \cos 2\pi f_2t$
- (3) $a = \int_0^T u(t) dt$, $\hat{c} = \begin{cases} 1, & a > b \\ 0 & b > a \end{cases}$

三. 某系统在 $[0,T_b]$ 内等概发送 $s_1(t)=A_1\cos\frac{20\pi t}{T_b}$ 和 $s_2(t)=A_2\cos\frac{20\pi t}{T_b}$ 之一,其中 $A_1\geq |A_2|$ 。发送信号 $s_i(t),i=1$,2到接收端成为 $r(t)=s_i(t)+n_{\rm w}(t)$,其中 $n_{\rm w}(t)$ 是双边功率谱密度为 $N_0/2$ 的白高斯噪声,解调框图如下。

- (1) 求发送 $s_1(t)$ 条件下,y的均值、方差;
- (2) 求发送 $s_2(t)$ 条件下, y 的均值;
- (3) 给出判决门限的最佳值;
- (4) 求该系统的平均误比特率;
- (5) 当A₂取何值时,系统的误比特率最小?

解:

- (1) A_1T_b , N_0T_b ;
- (2) A_2T_b ;
- $(3)^{\frac{A_1+A_2}{2}}T_b$;
- (4) $Q\left(\sqrt{\frac{(A_1-A_2)^2T_b}{4N_0}}\right)$;
- $(5)A_2 = -A_1$

四. 某系统在 $[0,T_s]$ 内发送 $s(t)=a\cdot A_1\cos\omega_c t-b\cdot A_2\sin\omega_c t$,其中 A_1,A_2 是两个幅度值,a,b携带发送的独立等概数据信息。分别就以下情况,写出调制方式名称,并求符号能量 E_s 。

- $(1)\ A_1=1, A_2=0,\ \alpha\in\{\pm 1\};$
- $(2)\ A_1=1, A_2=0,\ a\in \{\pm 1, \pm 3\};$
- (3) $A_1 = A_2 = 1$, $a, b \in \{\pm 1\}$;
- (4) $A_1 = A_2 = 1$, $a, b \in \{\pm 1, \pm 3\}$.

解:

$$E_s = \int_0^{T_s} s^2(t) dt$$
, $\int_0^{T_s} \cos^2(\omega_c t) dt = \int_0^{T_s} \sin^2(\omega_c t) dt = T_s/2$

- (1)BPSK, $\frac{T_s}{2}$;
- (2)4ASK, $\frac{5T_s}{2}$;
- (3)QPSK, T_s ;
- (4)16QAM, $5T_s$

五. 某 8 进制调制的星座图如图(a)所示,图(b)是相应的归一化正交基函数。假设各星座点等概出现,信道噪声是加性白高斯噪声。

- (1) 求平均符号能量 $E_{\rm s}$ 、最小星座点距离 $d_{\rm min}$;
- (2) 在图(a)中标出 s_1, s_2, s_3 的最佳判决域;
- (3) 画出星座点 s_1 对应的发送信号波形。解:

(1)
$$E_s = \frac{11}{8}$$
, $d_{min} = 1$

六. 设有四电平量化器,其输入X的概率密度函数为 $f_X(x) = \begin{cases} 1/6, & |x| \leq 2 \\ \frac{4-|x|}{12}, & 2 < |x| < 4, 量化输出为<math>Y = 0, & \text{else} \end{cases}$

 $\left\{ egin{array}{lll} 3, & 2 < X < 4 \\ 1, & 0 < X \leq 2 \\ -1, & -2 < X \leq 0 \end{array}
ight.$ 试求量化输入信号X的功率 $S = E[X^2]$,量化输出Y各种可能取值的出现概率,量化输 $-3, -4 \leq X \leq -2$

出的功率 $S_q = E[Y^2]$,量化噪声功率 $N_q = E[(Y - X)^2]$ 。

解:

$$S = E[X^2] = \int_{-4}^4 x^2 f_X(x) dx = 2 \int_0^2 x^2 \cdot \frac{1}{6} dx + 2 \int_2^4 x^2 \cdot \frac{4-x}{12} dx = \frac{8}{9} + \frac{22}{9} = \frac{10}{3}$$

Y各种可能取值的出现概率: ±1 出现的概率都是 $\int_0^2 \frac{1}{6} dx = \frac{1}{3}$, ±3出现的概率都是 $\frac{1}{2} \left(1 - 2 \times \frac{1}{3} \right) = \frac{1}{6}$ 。

$$S_{\rm q} = {\rm E}[Y^2] = 2 \times 1^2 \times \frac{1}{3} + 2 \times 3^2 \times \frac{1}{6} = \frac{11}{3}$$

$$\begin{split} N_{\mathbf{q}} &= \mathbf{E}[(Y-X)^2] = \int_{-4}^4 (y-x)^2 f_X(x) \mathrm{d}x = 2 \int_0^2 \frac{(1-x)^2}{6} \, \mathrm{d}x + 2 \int_2^4 (3-x)^2 \frac{4-x}{12} \, \mathrm{d}x \\ &= 2 \int_{-1}^{+1} \frac{t^2}{6} \, \mathrm{d}t + 2 \int_{-1}^{+1} t^2 \frac{1-t}{12} \, \mathrm{d}t = \frac{2}{6} \int_{-1}^{+1} t^2 \left(1 + \frac{1-t}{2}\right) \mathrm{d}t = \frac{1}{3} \times \frac{3}{2} \int_{-1}^{+1} t^2 \mathrm{d}t - \frac{1}{6} \int_{-1}^{+1} t^3 \, \mathrm{d}t \\ &= \int_0^{+1} t^2 \, \mathrm{d}t = \frac{1}{3} \end{split}$$

或者:
$$N_q = E[(Y - X)^2] = E[Y^2] + E[X^2] - 2E[XY] = \frac{11}{3} + \frac{10}{3} - 2E[XY]$$
,

$$E[XY] = \int xy f_{XY}(x, y) dx dy = 2 \int_0^2 x \cdot 1 \cdot \frac{1}{6} dx + 2 \int_2^4 x \cdot 3 \cdot \frac{4-x}{12} dx = \frac{2}{3} + \left(3 - \frac{1}{3}\right) = \frac{10}{3},$$

因此
$$N_q = \frac{1}{3}$$

七. 设有 10 路话音信号,对每路话音按 8kHz 速率采样并按 A 律十三折线 PCM 编码进行数字化,再将 10 路数字话音通过时分复用合为一路速率为R的二进制数据,然后通过通频带为 20MHz~20.2MHz 的带通信道传输。试设计相应的调制器和解调器,要求给出符号速率、调制阶数、滚降系数,画出调制及解调框图,画出发送功率谱密度图。

解: 每路数据速率为 64kb/s【1 分】,总数据速率为 640kb/s【1 分】。带宽为 200kHz【1 分】,符号速率为 $\frac{200}{1+\alpha}$,范围是 $100\text{k}\sim 200\text{kBaud}$ 。比特速率范围是 $100\log M\sim 200\log M$ kb/s。按M尽量小考虑,可取M=16【2 分】。此时符号速率为 $\frac{640}{4}=160\text{kBaud}$ 【1 分】,滚降系数为 $\frac{200-160}{160}=\frac{1}{4}$ 【2 分】。

【功率谱密度2分】

