Due: 2022/04/24

Question 1. First, use the R command

> source("demo\_simple\_regression\_rsq.R")

then, call the function

> interactive\_regression\_rsq()

four times to generate four scenarios.

Scenario 1:



## Scenario 2:



Scenario 3:



Scenario 4:



- (a) Scenario 1 has a stronger  $\mathbb{R}^2$ .
- (b) Scenario 3 has a stronger  $\mathbb{R}^2$ .
- (c) SSE: Scenario 2 > Scenario 1. SSR: Scenario 1 > Scenario 2. SST: Scenario 1 > Scenario 2.
- (d) SSE: Scenario 4 > Scenario 4. SSR: Scenario 4 > Scenario 4. SST: Scenario 4 > Scenario 4.

Question 2. (a) First, read the dataset and directly do the linear regression via lm() function...

```
# Question 2 (a)
salary <- read.csv("programmer_salaries.txt", sep="\t")
salary_regression <- lm(salary$Salary ~
salary$Experience +
salary$Score +
salary$Degree) # do linear regression
summary(salary_regression, data=salary)
```

Here's partial results. One can obtain  $R^2$  and the first 5 values of  $\hat{y}$  and  $\epsilon$  here.

```
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
                                7.3808 1.076
0.2976 3.856
                    7.9448
1.1476
(Intercept)
                                                  0.2977
salary$Experience
                                                  0.0014 **
salary$score
                     0.1969
                                0.0899
                                          2.191
                                                  0.0436
                     2.2804
                                1.9866
                                        1.148
                                                  0.2679
salary$Degree
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' '1
Residual standard error: 2.396 on 16 degrees of freedom
Multiple R-squared: 0.8468, Adjusted R-squared: 0
F-statistic: 29.48 on 3 and 16 DF, p-value: 9.417e-07
> head(salary_regression$fitted.values)
27.89626 37.95204 26.02901 32.11201 36.34251 38.24380
```

-3.8962605 5.0479568 -2.3290112 2.1879860 -0.5425072 -0.2437966

(b) The hand-craft linear regression code:

```
# Question 2 (b)
ones <- replicate(length(salary$Salary), 1) # create ones column vector
# Combine column vectors to a matrix
X <- cbind(ones, salary$Experience, salary$Score, salary$Degree)
y <- salary$Salary
beta_hat <- solve(t(X) %*% X) %*% t(X) %*% y # some linear algebra
y_hat <- X %*% beta_hat # predicted values
res <- y - y_hat # residuals
SSR <- sum((y_hat-mean(y))^2)
SSE <- sum((y - y_hat)^2)
SST <- SSR + SSE</pre>
```

- (iii)  $beta = (7.944849, 1.147582, 0.196937, 2.280424)^T$ .
- (iv) Use the command
- > head(y\_hat) and > head(y\_hat)

Here's the result:

```
> head(y_hat) > head(res)

[,1] [1,] 27.89626 [1,] -3.8962605

[2,] 37.95204 [2,] 5.0479568

[3,] 26.02901 [3,] -2.3290112

[4,] 32.11201 [4,] 2.1879860

[5,] 36.34251 [5,] -0.5425072

[6,] 38.24380 [6,] -0.2437966
```

- (v) SSR = 507.896, SSE = 91.88949, and SST = 599.7855.
- (c) I generate another plot of scenario 2.

```
source("demo_simple_regression_rsq.R")
points <- interactive_regression_rsq()</pre>
```



Reuse the code from (b):

```
ones_c <- replicate(length(points[,1]), 1) # create ones

X_c <- cbind(ones_c, points[,1])

y_c <- points[,2]

beta_hat_c <- solve(t(X_c) %*% X_c) %*% t(X_c) %*% y_c

y_hat_c <- X_c %*% beta_hat_c

res_c <- y_c - y_hat_c

SSR_c <- sum((y_hat_c-mean(y_c))^2)

SSE_c <- sum((y_c - y_hat_c)^2)

SST_c <- SSR_c + SSE_c

R2_c_i <- SSR_c/SST_c

R2_c_i <- cor(y_c, y_hat_c)^2</pre>
```

Both the two methods, say R2\_c\_i and R2\_c\_ii returns  $R^2 = 0.6144897$ . This meets the conclusion from the plot.

Question 3. Load the data.

```
# Question 3

auto <- read.table("auto-data.txt", header=FALSE, na.strings = "?")

names(auto) <- c("mpg", "cylinders", "displacement", "horsepower", "weight",

"acceleration", "model_year", "origin", "car_name")
```

(a)(i) Plot the regression plot to all the other variables expect car\_name.

```
xlab="displacement",
11
               ylab="mpg",
12
                pch=19)
   ho <- plot(auto$horsepower, auto$mpg,
               main="horsepower v.s. mpg",
               xlab="horsepower",
16
                ylab="mpg",
17
               pch=19)
   we <- plot(auto$weight, auto$mpg,</pre>
19
               main="weight v.s. mpg",
20
               xlab="weight",
21
               ylab="mpg",
22
                pch=19)
23
   ac <- plot(auto$acceleration, auto$mpg,</pre>
24
               main="acceleration v.s. mpg",
25
               xlab="acceleration",
26
                ylab="mpg",
27
               pch=19)
28
   my <- plot(auto$model_year, auto$mpg,</pre>
29
               main="model_year v.s. mpg",
30
                xlab="model_year",
31
               ylab="mpg",
32
               pch=19)
33
   or <- plot(auto$origin, auto$mpg,
34
                main="origin v.s. mpg",
35
                xlab="origin",
36
                ylab="mpg",
37
               pch=19)
38
   dev.off()
```



(ii) Write the correlation matrix to a .csv file:

```
# Question 3 (a-ii)
cor_matrix <- cor(auto[,colnames(auto)!="car_name"], # drop column car_name
use="pairwise.complete.obs") # omit NA's
```

|               | mpg   | cylinders | displacement | horsepower | weight | acceleration | $model\_year$ | origin |
|---------------|-------|-----------|--------------|------------|--------|--------------|---------------|--------|
| mpg           | 1     | -0.78     | -0.8         | -0.78      | -0.83  | 0.42         | 0.58          | 0.56   |
| cylinders     | -0.78 | 1         | 0.95         | 0.84       | 0.9    | -0.51        | -0.35         | -0.56  |
| displacement  | -0.8  | 0.95      | 1            | 0.9        | 0.93   | -0.54        | -0.37         | -0.61  |
| horsepower    | -0.78 | 0.84      | 0.9          | 1          | 0.86   | -0.69        | -0.42         | -0.46  |
| weight        | -0.83 | 0.9       | 0.93         | 0.86       | 1      | -0.42        | -0.31         | -0.58  |
| acceleration  | 0.42  | -0.51     | -0.54        | -0.69      | -0.42  | 1            | 0.29          | 0.21   |
| $model\_year$ | 0.58  | -0.35     | -0.37        | -0.42      | -0.31  | 0.29         | 1             | 0.18   |
| origin        | 0.56  | -0.56     | -0.61        | -0.46      | -0.58  | 0.21         | 0.18          | 1      |

- cor\_matrix <- round(cor\_matrix, digits=2)</pre>
- 5 write.table(cor\_matrix, file="3a.csv")

Then by some magic,

I'll answer (iii)-(v) at the same time. First, by (i) and (ii), I found that displacement, horsepower and weight seem to (highly) related to mpg. However these relations seems not linear. Also the variable cylinder has a high correlation (r = -0.78) to mpg. However based on the scatter plot, I think it should be viewed as a discrete type data. It is not suit for a linear regression model.

(b) Though some of the variable are not suit for linear regression, I still create a model.

```
# Question 3 (b)
auto_lr_model <- lm(mpg ~ cylinders+displacement+horsepower+
weight+acceleration+model_year+factor(origin), auto)
summary(auto_lr_model)
```

Here's the partial results:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                   -1.795e+01
                                4.677e+00
3.212e-01
                                             -3.839 0.000145 ***
-1.524 0.128215
                   -4.897e-01
cylinders
displacement
                   2.398e-02
                                 7.653e-03
                                              3.133 0.001863
                                 1.371e-02
                   -1.818e-02
                                              -1.326 0.185488
hors epower
weight
acceleration
                   -6.710e-03
                                 6.551e-04
                                            -10.243
                                                         2e-16
                                 9.822e-02
                                              0.805 0.421101
model_year
factor(origin)2
                    7.770e-01
                                 5.178e-02
                                             15.005
                                                      < 2e-16
factor(origin)3 2.853e+00
                                5.527e-01
                                              5.162 3.93e-07 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.307 on 383 degrees of freedom
   (因為不存在,6 個觀察量被刪除了)
Multiple R-squared: 0.8242, Adjusted R-squared: 0.
F-statistic: 224.5 on 8 and 383 DF, p-value: < 2.2e-16
                                     Adjusted R-squared: 0.8205
```

- (i) The variables displacement, weight, model\_year, factor(origin)2 and factor(origin)3.
- (ii) By (i), based on the plot and the p-values, I believe weight are the most effective at increasing mpg.
- (c)(i) Drop the column car\_name of the dataset and standardize.

```
# Question 3 (c-i,ii)
auto_std <- data.frame(scale(auto[,colnames(auto)!="car_name"])) # Standardize
auto_lr_model_std <- lm(mpg ~ cylinders+displacement+horsepower+
weight+acceleration+
model_year, data=auto_std)
summary(auto_lr_model_std)
```

```
coefficients:
                    Estimate Std. Error t
0.0004236 0.0222112
-0.0717877 0.0722763 -
0.1024348 0.0981565
                                                      t value Pr(>|t|)
0.019 0.985
-0.993 0.321
(Intercept)
cvlinders
displacement
horsepower
weight
                                                        1.044
                                                                      0.297
                    -0.0019273
-0.7361794
0.0300867
                                     0.0681403
0.0725952
                                                     -0.028
-10.141
                                                                     0.977
<2e-16 ***
acceleration
                                      0.0360009
                                                                      0.404
                                                                    <2e-16 ***
model_year
                    0.3564069 0.0248929 14.318
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

- (ii) Based on the result, it's still weight.
- (iii) Plot the density of the residuals.

## Residuals of Regression



## Residuals of Standardized Regression



It looks like in both cases, the residuals are normally distributed and centered around zero, intuitively.