Customer Churn Prediction - Final Report

Project Overview

The objective of this project was to develop a predictive model to identify potential customer churn in the telecommunications sector. By analyzing customer data, the goal was to provide actionable insights to reduce churn and improve customer retention strategies.

Data Overview

- **Dataset:** Telco Customer Churn Dataset from Kaggle
- **Size:** 7,043 entries, 21 columns
- **Target Variable:** Churn (Yes/No)
- **Key Features: ** Tenure, Monthly Charges, Total Charges, Contract Type, Payment Method

Data Preprocessing

- 1. **Data Cleaning:**
- Removed null values in the 'TotalCharges' column by converting to numeric and imputing the median.
 - Dropped irrelevant columns such as 'customerID'.
- 2. **Feature Engineering:**
 - One-hot encoding for categorical variables (e.g., gender, contract type).
 - Standardization of numeric features (e.g., MonthlyCharges, TotalCharges).
- 3. **Data Splitting:**
 - 70% training set, 30% testing set

Exploratory Data Analysis

- The distribution of tenure shows a significant spike at both low and high tenures, indicating potential contract completion or early termination.

![Tenure Distribution](attachment:file-UJtQeDBkKcPf58yom3baGF)

- MonthlyCharges exhibit a bimodal distribution, suggesting distinct pricing strategies or service packages.

![Monthly Charges Distribution](attachment:file-ECXMxg4Eb6kUG7UFgS3AZ1)

- Pairwise analysis highlights the relationship between tenure, MonthlyCharges, and TotalCharges, showing a clear separation between churn and non-churn customers.

![Pairwise Analysis](attachment:file-Nq1i1yCr9N4g53ySqgFEKh)

Model Development

Three models were developed and evaluated using the following metrics:

- Accuracy
- Precision
- Recall
- F1 Score
- ROC AUC

Model Performance Summary:

Best Model

- **XGBoost** was identified as the best model with the highest ROC AUC score of 0.857.
- The model effectively balanced precision and recall, indicating its robustness in identifying churners without generating excessive false positives.

![Model ROC AUC Comparison](attachment:file-JE3fHFfBnAvPKicaspWSx1)

Recommendations

- 1. **Target High-Risk Customers:** Focus marketing efforts on customers with high monthly charges and short tenure, as they are more likely to churn.
- 2. **Contract Optimization:** Promote long-term contracts to mitigate churn, as customers with longer tenures show lower churn rates.
- 3. **Billing Support Programs:** Implement targeted billing support for customers with high MonthlyCharges to prevent churn driven by financial strain.

Further Research

- Explore time series analysis to detect churn patterns over time.
- Integrate additional customer touchpoints (e.g., customer support calls) to enhance model accuracy.
- Implement A/B testing to assess the effectiveness of targeted retention strategies.

Conclusion

The project successfully developed a churn prediction model with actionable insights for retention strategies. The XGBoost model was the top-performing model, achieving an ROC AUC of 0.857, demonstrating its effectiveness in identifying potential churners. Future work will focus on refining the model through time-series analysis and integrating more granular customer data.