Blatt 11 28. Juni 2005

Übungen zur Vorlesung

Mathematik für Biologen 2 Dr. Maria Neuss-Radu

1. Wir betrachten das Differentialgleichungssystem

$$\frac{dy_1}{dt} = y_2$$

$$\frac{dy_2}{dt} = -0, 5y_1 + ay_2$$

mit a einem reellen Parameter.

- (a) Schreiben Sie das System in Matrix-Vektor Form.
- (b) Für welche Parameterwerte a haben die Lösungen des Systems Oszillationen?
- (c) Für welche Parameterwerte a explodieren die Lösungen, für welche gegen sie gegen Null?
- 2. Lösen Sie das Differentialgleichungssystem von Aufgabe 1. in dem Fall a = 1 zu der Anfangsbedingung $(y_1(0), y_2(0))^T = (1, 2)^T$.
- 3. Gegeben sei das nichtlineare Räuber-Beute-Modell

$$\frac{dy_1}{dt} = y_1(1 - y_1 - ay_2) \frac{dy_2}{dt} = y_2(1 - y_2 - by_1)$$

Wir sagen, dass Koexistenz der zwei Arten möglich ist, falls Gleichgewichtslösungen $(\bar{y}_1, \bar{y}_2), \bar{y}_1 > 0, \bar{y}_2 > 0$ des Differentialgleichungssystems existieren. Bestimmen Sie für welche Werte der Parameter $a, b \in \mathbb{R}$ Koexistenz möglich ist.

4. Betrachten Sie folgende Differentialgleichung zweiter Ordnung:

$$\frac{d^2y}{dt^2} - \frac{1}{2}\frac{dy}{dt} + y = 0$$

Schreiben Sie die Gleichung in Form eines Systems von Differentialgleichungen erster Ordnung. Welches ist das qualitative Verhalten der Lösungen?

Für diejenigen die noch Punkte brauchen oder als Wiederholung für die Klausur

1. Lösen Sie folgende Differentialgleichungen durch Separation der Variablen:

(a)
$$\frac{dy}{dt} = y^2 t$$

(b)
$$\frac{dy}{dt} = \frac{y}{t}$$

2. Berechnen Sie die Determinante folgender Matrix:

$$A = \left(\begin{array}{ccc} 3 & -1 & 0 \\ 0 & 4 & 2 \\ 3 & 0 & 1 \end{array}\right)$$

3. Berechnen Sie die Eigenwerte und die entsprechenden Eigenvektoren der Matrix:

$$A = \left(\begin{array}{cc} 2 & -11 \\ -2 & -3 \end{array}\right)$$

Abgabetermin: Montag, 27. 06. 2005, 16 Uhr, in den Fächern im Flur des Instituts für Angewandte Mathematik, INF 294.