Mật mã đối xứng Giải thuật DES

Phạm Nguyên Khang BM. Khoa học máy tính pnkhang@cit.ctu.edu.vn

Data Encryption Standard

- DES được công nhận vào năm 1977 bởi Viện nghiên cứu quốc gia về chuẩn của Mỹ (NIST – National Institut of Standards and Technology)
- Nguyên lý:
 - Sử dụng một khóa K tạo ra n khóa con K₁, K₂, ..., K_n
 - Hoán vị dữ liệu (Initial Permutation)
 - Thực hiện n vòng lặp, ở mỗi vòng lặp
 - Dữ liệu được chia thành hai phần
 - Áp dụng phép toán thay thế lên một phần, phần còn lại giữ nguyên
 - Hoán vị 2 phần cho nhau (trái ⇔ phái)
 - Hoán vị dữ liệu (Final Permutation)

Simplified DES – Giới thiệu

- Giải thuật DES đơn giản hóa (S-DES) được phát triển bởi GS. Edwward Schaefer tại Đại học Santa Clara vào năm 1996.
- Giải thuật S-DES với ít tham số hơn DES, chỉ mang tính hàn lâm, giúp sinh viên có một khung nhìn tổng quát trước khi tìm hiểu giải thuật DES.
- Mật mã hóa: dùng khối bảng rõ 8-bit và khóa 10bit, sản sinh khối bảng mã 8-bit.
- Giải mật mã: dùng khối bảng mã 8-bit và khóa 10-bit, sản sinh khối bảng rõ 8-bit.

S-DES – Quy trình chính

Mật mã hóa:
 Ciphertext = IP⁻¹(f_{k2}(SW(f_{k1}(IP(Plaintext)))))
 Trong đó
 K₁ = P8(Shift(P10(key)))
 K₂ = P8(Shift(Shift(P10(key))))

Giải mật mã:
 Plaintext = IP⁻¹(f_{k1}(SW(f_{k2}(IP(Ciphertext)))))

S-DES – Sinh khóa

- Một khóa 10-bit được chia sẻ giữa người gởi và người nhận
- Từ khóa này, 2 khóa con được sinh ra để cung cấp cho các bước riêng biệt của quá trình mã hóa và giải mã.
- P10 có dạng:

3 5 2 7 4 10 1 9 8 6

P8 có dạng:

6 3 7 4 8 5 10 9

Ví dụ: khóa 1010000010

P10: 10000 01100

LS-1: 00001 11000

P8 (K₁): 1010 0100

LS-2: 00100 00011

P8 (K₂): 0100 0011

Figure 3.2 Key Generation for Simplified DES

8-bit plaintext SW $\boldsymbol{f}_{\boldsymbol{K}}$ IP-1 8-bit ciphertext

S-DES – Mật mã hóa

- IP: 2 6 3 1 4 8 5 7
- IP-1: 4 1 3 5 7 2 8 6
- $f_K(L, R) = (L \oplus F(R, S_K), R)$ S_K là khóa con $(K_1 \text{ hoặc } K_2)$
- E/P: 4 1 2 3 2 3 4 1
- P4: 2 3 4 1
- Hộp thay thế S-Box:
 - S₀
 - S₁
- SW: hoán vị hai nửa khối 4-bit

Figure 3.3 Simplified DES Encryption Detail

S-DES – Mật mã hóa

- Ghép bit 1, bit 4 làm hàng
- Ghép bit 2, bit 3 làm cột
- Tra bảng, đổi giá trị ra số nhị phân (2 bit)

	0	1	2	3
0	1	0	3	2
1	3	2	1	0
2	0	2	1	3
3	3	1	3	2

- Ví dụ:
 - Đầu vào của S₀ là 0111
 - Bit 0 & 4: 01 → hàng 1
 - Bit 2 & 3: 11 → cột 3
 - Tra bảng được 0 → 00

	0	1	2	3
0	0	1	2	3
1	2	0	1	3
2	3	0	1	0
3	2	1	0	3

• S₁

DES

- Khóa
 - Lý thuyết: 56 bits = 7 bytes
 - Thực tế (trên Java) sử dụng 8 bytes (1 byte không sử dụng)
 - Sinh ra 16 khóa con K₁, K₂, ..., K₁₆
- Khối:
 - 64 bits
- Số vòng lặp:
 - 16

DES – Tóm tắt giải thuật

```
    Tạo 16 khóa con

  C[0]D[0] = PC-1(KEY)
  for i = 1 to 16
    C[i] = LeftShift[i](C[i-1])
    D[i] = LeftShift[i](D[i-1])
    K[i] = PC-2(C[i]D[i])
  end for
  Mã hóa khối dữ liệu
  L[0]R[0] = IP(plain block)
  for i=1 to 16
    L[i] = R[i-1]
    R[i] = L[i-1] XOR F(R[i-1], K[i])
  end for
  cipher block = FP(R[16]L[16])
```

DES – Tóm tắt giải thuật

```
Giải mã khối dữ liệu
R[16]L[16] = IP(cipher block)
for i=1 to 16
R[i-1] = L[i]
L[i-1] = R[i] xor f(L[i], K[i])
end for
plain block = FP(L[0]R[0])
```

DES – Đánh giá hiệu năng

- Khóa 56 bits \rightarrow có $2^{56} = 7.2 * 10^{16}$ khóa
- Tấn công kiểu brute-force với 1 encryption/us mất 1142 năm
- Trên thực tế, với những thiết bị chuyên dụng và phần cứng đắt tiền (20 triệu USD vào năm 1977) có thể 'bẻ khóa' DES trong 10 giờ

An toàn hơn nữa với DES: 3-DES (TripleDES)

Giải thuật mã hóa khác

- Blowfish
 - Có thể hoạt động với bộ nhớ < 5KB
 - Kích thước khóa thay đổi, có thể đến 448 bit
- AES: Advanced Encryption Standard
- RC2 và RC4
 - Do Ron Rivest(Ron's code) đề nghị
 - Kích thước khóa từ 1 đến 2048 bit
- RC5
 - Kích thước khóa là một tham số đầu vào
- IDEA: International Data Encryption Algorithm
 - Khóa 128 bit, được sử dụng bởi PGP

Phương pháp mã hóa khối - ECB

- ECB Electronic Codebook
- Chia thông điệp thành các khối 64 bits, nhồi thêm dữ liệu vào khối cuối (nếu cần thiết)
- Mã hóa: C_i = E_k(P_i)

Electronic Codebook (ECB) mode encryption

Phương pháp mã hóa khối - ECB

- Giải mã: $P_j = D_k(C_j)$
- Chỉ thích hợp cho việc mã hóa các thông điệp ngắn. Bảng mã của thông điệp dài có tính an toàn không cao.

Electronic Codebook (ECB) mode decryption

Phương pháp mã hóa khối - CBC

- CBC Cipher Block Chaining
- Mã hóa: $C_j = E_k(C_{j-1} XOR P_j)$
- Cả hai phía mã hóa và giải mã đều dùng chung vector
 IV (initialization vector) để thao tác trên khối dữ liệu đầu

Cipher Block Chaining (CBC) mode encryption

Phương pháp mã hóa khối - CBC

- Giải mã: $P_j = C_{j-1} XOR D_k(C_j)$
- Chú ý khối đầu tiên:
 - $C_0 = E_k(IV XOR P_i)$
 - $P_0 = IV XOR D_k(C_1)$

Cipher Block Chaining (CBC) mode decryption

Phương pháp mã hóa khối - CFB

- CFB Cipher FeedBack
- Mã hóa: $C_j = P_j XOR E_k(C_{j-1})$

Cipher Feedback (CFB) mode encryption

Phương pháp mã hóa khối - CFB

• Giải mã: $P_j = C_j XOR D_k(C_{j-1})$

Cipher Feedback (CFB) mode decryption

Phương pháp mã hóa khối - OFB

- OFB Output FeedBack
- Mã hóa

Output Feedback (OFB) mode encryption

Phương pháp mã hóa khối - OFB

Giải mã

Output Feedback (OFB) mode decryption