SE 4367 Homework #7, BRO

Generate a BRO-adequate test set T_{BRO} for p_r : (a<0) \lor (b=1) \land (c>2) \lor (D \land !E)

Show all the steps in generating T_{BRO} .

Draw the abstract syntax tree (AST) and label the nodes N_1 to N_m .

Explicitly list the true and false constraint sets for <u>each</u> node in the AST.

Remember to generate a test set T_{BRO} corresponding to the root node in the AST.

Grading Rubric

Setting up the AST wrong, -10 points

- common problem: doing OR before AND in this tree
- try to use their AST for the rest of the problem

Using the wrong BRO formulas for a node, -5 points

- common problem: getting ONTO product or {t_x} wrong

Not explicitly listing the true and false constraint sets for a node, -5 points

- for N1-N5, 5 points total

Getting the wrong (true or false) constraint set for a node, -5 points each

- try to use their set for the rest of the problem

Not generating the T_{BRO} test set, -5 points

- don't care what specific values are used for a,b,c

2

There are legitimate alternatives for ONTO product and for $\{t_x\}$ or $\{f_x\}$ in this problem (highlighted in red in this solution).

Using one of the alternatives is legitimate. I have suggested conventions that make it easier to grade, but if you went a different (legal) way, that's acceptable.

Conventions

- order <, =, > in initial sets
- match corresponding ONTO terms until reaching the end of the shorter set; then continue matching with the last item in the shorter set
- pick the first item for a {t_x} or {f_x}

Formatting Submissions

In the file name, include:

- class
- assignment identifier
- your name (or team's name)
 - e.g., SE4367a01jdoe

In the file (or hardcopy) submitted, include the class, assignment, and name information at the top.

Minus 5 points per violation. Potentially 30 points off for formatting mistakes!

AST of $(\alpha < 0) \ V[(b=1) \land (c>2)] \ V(D \land !E)$

$$S_{N1} = \{(x)\}$$
 $S_{N2} = \{(x)\}$
 $S_{N2} = \{(x)\}$
 $S_{N3} = \{(x)\}$
 $S_{N4} = \{(x)\}$
 $S_{N4} = \{(x)\}$
 $S_{N5} = \{(x)\}$

$$S_{N6}^{t} = S_{N5}^{f} = \{(f)\}$$

$$S_{N1} = \{ (=), (>) \}$$
 $S_{N2} = \{ (4), (>) \}$
 $S_{N3} = \{ (4), (=) \}$
 $S_{N4} = \{ (f) \}$
 $S_{N5} = \{ (f) \}$

SN7 AND Node f (b,c)

$$S_{N7} = S_{N2} \otimes S_{N3}$$

$$= \{(=) \} \otimes \{(>) \}$$

$$= \{(=, >) \}$$

$$S_{N7} = (S_{N2} \times \{+_{N2} \}) \cup (\{+_{N2} \} \times S_{N3})$$

$$= (\{(, >) \} \times \{(>) \}) \cup (\{(=) \} \times \{(4), (=) \})$$

$$= (\{(, >), (>, >) \}) \cup (\{(=, <), (=, =) \})$$

$$= \{(4, >), (>, >), (=, <), (=, =) \}$$

SNB AND Node
$$F(D,E)$$

SNB = SN4 \otimes SNC
= $\{(t)^{\frac{1}{2}} \otimes \{(f)^{\frac{1}{2}}\}$
= $\{(t,F)^{\frac{1}{2}} \times \{(f)^{\frac{1}{2}}\} \cup (f(t)^{\frac{1}{2}} \times \{(f)^{\frac{1}{2}}\}) \cup (f(t)^{\frac{1}{2}} \times \{(f)^{\frac{1}{2}} \times \{(f)^{\frac{1}{2}}\}) \cup (f(t)^{\frac{1}{2}} \times \{(f)^{\frac{1}{2}} \times \{(f)^{\frac{1}{2}} \times \{(f)^{$

SN9 OR Node

F(a,b,c)

Sng = (Sn1 x & Fn7 }) v (} Fn1 } x Sn7) $= (\{(<,>)\} \times \{(<,>)\}) \cup (\{(<,>)\})$ = (\{ (<,<,>) \} \) \(\{ \{ =,=,>) \} \) = \{ \(\lambda , \lambda , \rangle \), \(\(= \rangle = \rangle \) \} SNg = SNI & SN7 = { (=,4,>), (>,>,>), (>,=,4), (>,=,=)}

OR Node F(a,b,c,D,E) SNIO SHID = (SH9 X { FHB}) U ({ FH9} X SHB) = (\{ \(\langle \(\langle \langle \langle \(\langle \langle \langle \langle \langle \(\flangle \langle \rangle \langle \langle \langle \(\flangle \langle \rangle \rangle \langle \langl ({ (=, <, >) } x { (t, f) } = { (4,4,>,f,F), (=,=,>,f,F), (=,4,>,t,F)} SHIO = SHO & SHE = \(\left(= \lambda \, \rangle \rangle \), \(\rangle \, \rangle \) { (f, F), (t, t) } = {(=, <, >, f, f,), (>, >, >, t, t), (>, =, 4, t, t), (>,=,=,t,t) }

Many possible correct answers that satisfy the constraints.

$$t_1 = (-1, 0, 3, \text{False}, \text{False})$$
 $t_2 = (0, 1, 3, \text{False}, \text{False})$
 $t_3 = (0, 0, 3, \text{true}, \text{False})$
 $t_4 = (0, 0, 3, \text{False}, \text{false})$
 $t_4 = (1, 2, 3, \text{true}, \text{true})$
 $t_6 = (1, 1, 1, 1, \text{true}, \text{true})$
 $t_7 = (1, 1, 2, \text{true}, \text{true})$