Modelos de efectos mixtos

Análisis estadístico utilizando R

UNQ UNTreF CONICET

Pablo Etchemendy

Ignacio Spiousas

Agosto 2021

PARTE 1

Datos jerárquicos

Medidas repetidas

Cada "unidad de análisis" se mide en más de una condición

También conocido como diseño "within-subject"

Medidas longitudinales

Medidas repetidas a lo largo del tiempo

Datos agrupados

Cada "unidad de análisis" se puede agrupar en una categoría más amplia

Datos jerárquicos

Las unidades de análisis pueden agruparse en una o varias de las formas vistas

Factores fijos y aleatorios

Sujeto	A	В
01 02 03	9 8.5 11	19 20 15
10	 12	 18

Factor fijo: Los valores "A" y "B" fueron elegidos deliberadamente.
Se incluyeron todos los valores
de interés para el estudio.

Factor aleatorio: Los sujetos no fueron elegidos deliberadamente; fueron tomados aleatoriamente de una población

Modelos lineales

Nos permiten trabajar con datos jerárquicos siempre que se cumpla independencia (solo factores fijos)

Modelos lineales de efectos mixtos

Nos permiten modelar la aleatoriedad en los datos debida a efectos aleatorios

PARTE 2

Efectos mixtos

$$y_i = ax_i + b + \epsilon_i$$

Tres parámetros:

- La pendiente a
- La ordenada b
- El desvío σ

 $\epsilon_i \sim N(0,\sigma)$

$$N(0,\sigma_{
m pendiente})$$
 $N(0,\sigma_{
m ordenada})$ $y_{ij}=(a+ ilde{a}_j)x_i+(b+ ilde{b}_j)+\epsilon_{ij}$ Observación i para la unidad de análisis j $N(0,\sigma_j^{
m error})$

$$y_{ij} = (a+ ilde{a}_j)x_i + (b+ ilde{b}_j) + \epsilon_{ij}$$

Unidad de análisis

$$y_{i1}=(a+ ilde{a}_1)x_i+(b+ ilde{b}_1)+\epsilon_{i1}$$

$$y_{i2}=(a+ ilde{a}_2)x_i+(b+ ilde{b}_2)+\epsilon_{i2}$$

. . .

etc.

¿Cuántos parámetros?

Dos para los efectos fijos:

- La pendiente a
- La ordenada b

Dos para efectos aleatorios:

- Variabilidad en las pendientes: $\sigma^{\text{pendiente}}$
- Variabilidad en las ordenadas: σ^{ordenada}

Asumiendo que todas las unidades tienen el mismo error:

- Variabilidad de los residuos: σ^{error}

¿Por qué es útil?

 Me permiten caracterizar la variabilidad entre mis unidades de análisis mediante un único parámetro por cada efecto aleatorio.

	Pendiente	Ordenada
·		
C		
·		

¿Qué pasa con los residuos?

Muchas cosas más...

- Heterogeneidad de varianza
- Estructura de correlación para los errores (residuos)
- Estructuras complejas de efectos mixtos: cruzados y anidados

Tutoriales

- Bodo Winter: https://bodo-winter.net/tutorials.html
- <u>David Howell:</u>
 <u>https://www.uvm.edu/~statdhtx/StatPages/Mixed-Models-Repeated/</u>
 /Mixed-Models-for-Repeated-Measures1.html