Интерпретируемость нейронных сетей

Чёлушкин Максим БПМИ172

Что такое интерпретируемость?

Интерпретируемость — возможность объяснить или показать на понятном для человека языке.

Зачем объяснять предсказания?

- Необходимость доверия пользователя к результатам модели Целевой метрики не хватает
- Получение рекомендаций относительно того, как улучшить работу модели

Почему модель ошибается?

Зачем объяснять предсказания?

• Наличие состязательных примеров

Зачем объяснять предсказания?

• Исследование модели, получение новых знаний из модели

Что человек может узнать нового из модели?

• Этические и правовые причины

Чёрная коробка

LIME-Local Interpretable Model-Agnostic

- Метод LIME может быть применен к любой модели
- Рассматривает только один пример
- Аппроксимирует модель

Пример LIME

Feature	Value
odor=foul	True
gill-size=broad	True
stalk-surface-above-ring=silky	True
spore-print-color=chocolate	True
stalk-surface-below-ring=silky	True

Пример LIME

SHAP-Shapley Additive exPlanations

• Для оценки важности признаков рассчитывается значение Шэпли:

$$f_i(x) = \sum_{S \subseteq N/\{i\}} \frac{|S|! (n - |S| - 1)!}{n!} (p(S \cup \{i\}) - p(S))$$

Здесь:

 $p(S \cup \{i\})$ - Предсказание модели с і-ым признаком p(S) - Предсказание модели без і-го признака n — Кол-во признаков S — произвольный набор признаков без і-го

Примеры SHAP

Как читать график важности признаков:

- 1. значения слева от центральной вертикальной линии это negative класс, справа positive
- 2. чем толще линия на графике, тем больше таких точек наблюдения
- 3. чем краснее точки на графике, тем выше значения фичи в ней

CAM: Class Activation Maps

GRAD-CAM

global average pooling

$$\alpha_k^c = \underbrace{\frac{1}{Z} \sum_i \sum_j}_{\text{gradients via backprop}} \underbrace{\frac{\partial y^c}{\partial A_{ij}^k}}_{\text{gradients via backprop}}$$

α – Веса, показывающие важность фильтра k для таргет-класса с

$$L_{\text{Grad-CAM}}^{c} = ReLU \underbrace{\left(\sum_{k} \alpha_{k}^{c} A^{k}\right)}_{\text{linear combination}}$$

GRAD-CAM Пример

A bedroom with a bed and a desk

Плюсы и минусы методов:

LIME

Плюсы:

- Подходит для любой модели
- Высокая точность

Минусы:

 Медленно работает – надо сделать много сэмплингов

SHAP

Плюсы:

- Подходит для любой модели
- Хорошая визуализация

Минусы:

• Вычисления значений Шэпли очень затратны

GRAD-CAM

Плюсы:

- Быстро работает
- Достоверный
- Подходит для большинства моделей

Вопросы:

- Как происходит оценка важности отдельного признака с помощью метода SHAP?
- Какие плюсы и минусы метода LIME?
- С помощью какого метода интерпретируется классификация объектов на картинке

Источники

- https://arxiv.org/abs/1610.02391
- https://arxiv.org/abs/1602.04938
- https://habr.com/ru/post/428213/
- https://towardsdatascience.com/understanding-model-predictions-with-lime-a582fdff3a3b