

# Berkeley Data Analytics Stack (BDAS)

Ion Stoica UC Berkeley / Databricks / Conviva











































### Data is Everywhere

Easier and cheaper than ever to collect

Data grows faster than Moore's law



(IDC report\*)

#### The New Gold Rush

Everyone wants to extract value from data

» Big companies & startups alike



#### Huge potential

» Already demonstrated by Google, Facebook, ...

But, untapped by most companies

» "We have lots of data but no one is looking at it!"

## Extracting Value from Data Hard

Data is massive, unstructured, and dirty

Question are complex

Processing, analysis tools still in their "infancy"

Need tools that are

- » Faster
- » More sophisticated
- » Easier to use

## Turning Data into Value

Insights, diagnosis, e.g.,

- » Why is user engagement dropping?
- » Why is the system slow?
- » Detect spam, DDoS attacks

#### Decisions, e.g.,

- » Decide what feature to add to a product
- » Personalized medical treatment
- » Decide when to change an aircraft engine part
- » Decide what ads to show

Data only as useful as the decisions it enables

#### What do We Need?



Interactive queries: enable faster decisions » E.g., identify why a site is slow and fix it



Queries on streaming data: enable decisions on real-time data

» E.g., fraud detection, detect DDoS attacks



Sophisticated data processing: enable

"better" decisions

» E.g., anomaly detection, trend analysis

#### Our Goal



Support batch, streaming, and interactive computations...

... in a unified framework

Easy to develop sophisticated algorithms (e.g., graph, ML algos)

### The Berkeley AMPLab

#### January 2011 - 2017

- »8 faculty
- » > 40 students and postdocs
- » 3 software engineer team

#### Organized for collaboration





3 day retreats (twice a year)



AMPCamp3 (August, 2013)



220 campers (100+ companies)

# The Berkeley AMPLab

#### Governmental and industrial funding:







































Goal: Next generation of open source data analytics stack for industry & academia: Berkeley Data Analytics Stack (BDAS)

#### RDACCIO (Folomora)

Enable multiple frameworks to share same cluster resources (e.g., Hadoop, Storm, Spark) (2009)

Scale to thousands of servers (e.g., Twitter)

Third party schedulers, e.g., Chronos, Aurora

#### Mesos

HDFS, S3, ...







# Data Processing Layer Spark Distributed Execution Engine (2009) » Fault-tolerant, in-memory storage » Powerful APIs (Scala, Python, Java) Fast: up to 100x faster than HadoopMR Easy to use: 2-5x less code than HadoopMR General: support interactive & iterative apps party







Research Projects







Research Projects



Spark
Streaming
Shark SQL
Spark
Spark
Spark

Make ML accessible to non-experts

Declarative API: allow users to say what they want

Automatically pick best algorithm for given data, time

Allow developers to easily add new algorithms



Research Projects











## Unification: One Size Fits Many!

Using Spark & Tachyon BDAS unifies

- » Batch
- » Streaming
- » Interactive
- » Iterative (e.g., graph and ML algorithms)



### Unification Examples

Real-time and historical data analysis

Streaming and machine-learning

Graph processing and ETLs

### Unify Real-time and Historical Analytics

#### Today: separate stacks

- » Historical analysis (Hadoop, Hive)
- » Streaming (Storm)
- » Interactive queries (Impala)

#### Disadvantages:

- » Hard to maintain and operate
- » Hard to integrate: cannot support interactive ad-hoc queries on streaming data



#### Unify Real-time and Historical Analytics

Spark (+ Streaming, Shark): single stack

- » Easier to build and maintain
- » Cheaper to operate
- » Interactive queries on streaming data: faster decisions
- » Simplify development



### Unify Real-time and Historical Analytics

Batch and streaming codes virtually the same » Easy to develop and maintain consistency

// count words from a file (batch)

```
val file = sc.textFile("hdfs://.../pagecounts-*.gz")
val words = file.flatMap(line => line.split(" "))
val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)
wordCounts.print()

// count words from a network stream, every 10s (streaming)
val ssc = new StreamingContext(args(0), "NetCount", Seconds(10), ..)
val lines = ssc.socketTextStream("loca/nost", 3456)
val words = lines.flatMap(_.split(" "))
val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)
wordCounts.print()
ssc.start()
```

# Unify Streaming and ML

Today: ML done mostly off-line

Spark (+ Streaming, MLbase): Real-time diagnosis & decisions

- » Fraud detection
- » Early notification of service degradation and failures



# Unify Graph Processing and ETL

Today: Graph-parallel systems (Pregel, GraphLab)

- » Fast and scalable, but...
- » ... inefficient for graph creation, post-processing

Spark (+ GraphX): unifies graph processing & ETL » Faster to get social network insights



# Not Only General, but Fast!







# Gaining Rapid Traction

1,500+ Spark meetup users

30+ companies and over 100+ users contributing code







### Cloudera Partnership

Integrate Spark (including SparkStreaming, MLlib) with Cloudera Manager

Spark will become part of CDH

Enterprise class support and professional services available for Spark





# Summary

BDAS: address next Big Data challenges

Unify batch, interactive, and streaming computations

Easy to develop sophisticate applications

» Support graph & ML algorithms, approximate queries

Batch

Spark

Streaming

Interactive

Witnessed significant adoption

» 30+ companies, 100+ individuals contributing code

Exciting ongoing work

» MLbase, GraphX, BlinkDB, ...