Semaine du 24/02 au 28/02

1 Cours

Espaces vectoriels de dimension finie

- Famille de vecteurs Familles génératrices. Familles libres/liées. Bases. Base adaptée à une décomposition en somme directe. Cas particulier des familles de \mathbb{K}^n (pivot de Gauss).
- **Dimension d'un espace vectoriel** Théorème de la base incomplète/extraite. Existence de bases. Définition de la dimension. Dans un espace de dimension n une famille génératrice/libre possède au moins/au plus n éléments. Si \mathcal{B} est une famille de n vecteurs d'un espace vectoriel de dimension n, alors \mathcal{B} est une base ssi \mathcal{B} est libre ssi \mathcal{B} est génératrice.
- **Dimension et sous-espaces vectoriels** Si F sous-espace vectoriel de E, alors dim F ≤ dim E avec égalité **si et seulement si** F = E. Hyperplans. Dimension d'une somme directe. Existence de supplémentaire en dimension finie. Formule de Grassmann. Caractérisation de la supplémentarité par la dimension. Une somme est directe **si et seulement si** la somme des dimensions est égale à la dimension de la somme
- Rang d'une famille de vecteurs Définition. Si \mathscr{F} est une famille de p vecteurs d'un espace vectoriel E de dimension n, alors \mathscr{F} est libre si et seulement si rg $\mathscr{F} = p$ et \mathscr{F} est génératrice si et seulement si rg $\mathscr{F} = n$. Le rang est invariant par opérations de pivot de Gauss.

Applications linéaires

- **Définition et premières propriétés** Définition d'une application linéaire, d'un endomorphisme, d'une forme linéaire. Exemples dans les espaces de fonctions, dans les espaces de suites et dans les \mathbb{K}^n . Structure de \mathbb{K} -espace vectoriel de $\mathscr{L}(E,F)$. Structure d'anneau de $\mathscr{L}(E)$.
- **Isomorphismes** Définition d'un isomorphisme. La réciproque d'un isomorphisme est un isomorphisme. La composée de deux isomorphismes est un isomorphisme. Définition d'un automorphisme et groupe linéaire GL(E).
- Images directe et réciproque par une application linéaire L'image directe ou réciproque d'un sous-espace vectoriel par une application linéaire est un sous-espace vectoriel. Noyau et image d'une application linéaire. Caractérisation de l'injectivité et de la surjectivité par le noyau et l'image.

2 Méthodes à maîtriser

- ► Montrer qu'une famille est libre.
- ightharpoonup Montrer qu'une famille de vecteurs de \mathbb{K}^n est libre, liée ou génératrice par pivot de Gauss.
- ▶ Déterminer la dimension d'un espace vectoriel en exhibant une base.
- ▶ Utiliser la dimension pour montrer qu'une famille libre/génératrice est une base.
- ▶ Utiliser la dimension pour prouver que deux sous-espaces vectoriels sont égaux.
- ▶ Utiliser la dimension pour prouver que deux sous-espaces vectoriels sont supplémentaires.
- ightharpoonup Calculer le rang d'une famille de vecteurs de \mathbb{K}^n par pivot de Gauss.
- ▶ Utiliser le rang pour montrer qu'une famille est libre ou génératrice.
- ► Montrer qu'une application est linéaire.
- ► Calculer avec des endomorphismes comme dans tout anneau non commutatif et non intègre.
- ▶ Utiliser le noyau ou l'image d'une application linéaire pour prouver son injectivité ou sa surjectivité.
- ▶ Les équivalences $x \in \text{Ker } f \iff f(x) = 0$ et $y \in \text{Im } f \iff \exists x, y = f(x)$ doivent être automatiques.

3 Questions de cours

Formule de Grassmann

Soient F et G deux sous-espaces vectoriels de dimensions finies d'un espace vectoriel E. Montrer que

$$\dim(F+G) = \dim F + \dim G - \dim(F \cap G)$$

Image directe et réciproque d'un sous-espace vectoriel par une application linéaire

Soient $f \in \mathcal{L}(E,F)$ ainsi que G et H des sous-espaces vectoriels respectifs de E et F. Montrer que f(G) et $f^{-1}(H)$ sont des sous-espaces vectoriels respectifs de F et E.

Hyperplans

Soient E un espace vectoriel de dimension $n \in \mathbb{N}^*$, H un hyperplan de E et D une droite non incluse dans H. Montrer que $E = H \oplus D$.

Banque CCP 01

- 1. On considère deux suites (u_n) et (v_n) telles que $(v_n)_{n\in\mathbb{N}}$ est non nulle à partir d'un certain rang et $u_n \sim v_n$. Montrer que u_n et v_n sont de même signe à partir d'un certain rang.
- 2. Déterminer le signe, au voisinage de l'infini de $u_n = \operatorname{sh}\left(\frac{1}{n}\right) \tan\left(\frac{1}{n}\right)$.

Banque CCP 42

- 1. Résoudre l'équation différentielle (H): 2xy'-3y=0 sur \mathbb{R}_{+}^{*} .
- 2. Résoudre l'équation différentielle (E): $2xy'-3y=\sqrt{x}$ sur \mathbb{R}_+^* .
- 3. L'équation (E) admet-elle des solutions sur \mathbb{R}_+ ?

Banque CCP 56

On considère la fonction H définie sur $]1,+\infty[$ par

$$H(x) = \int_{x}^{x^2} \frac{\mathrm{d}t}{\ln(t)}$$

- 1. Montrer que H est de classe \mathscr{C}^1 sur $]1,+\infty[$ et calculer sa dérivée.
- 2. Montrer que la fonction u définie par $u(x) = \frac{1}{\ln(x)} \frac{1}{x-1}$ admet une limite finie en 1.
- 3. En utilisant la fonction u de la question 2, calculer la limite en 1^+ de la fonction H.

Banque CCP 84

Déterminer, pour $n \in \mathbb{N}^*$, les solutions dans \mathbb{C} de l'équation $(z+i)^n = (z-i)^n$.

Banque CCP 89

Soit $n \in \mathbb{N}$ tel que $n \ge 2$. On pose $z = e^{\frac{2i\pi}{n}}$.

- 1. Soit $k \in [1, n-1]$. Déterminer le module et un argument du complexe $z^k 1$.
- 2. On pose $S = \sum_{k=0}^{n-1} |z^k 1|$. Montrer que $S = \frac{2}{\tan \frac{\pi}{2n}}$.

Banque CCP 94

- 1. Enoncer le théorème de Bézout dans \mathbb{Z} .
- 2. Soient a et b deux entiers naturels premiers entre eux. Soit $c \in \mathbb{N}$. Montrer que $(a \mid c \in b \mid c) \iff ab \mid c)$.
- 3. On considère le système (\mathscr{S}): $\begin{cases} x \equiv 6[17] \\ x \equiv 4[15] \end{cases}$ d'inconnue $x \in \mathbb{Z}$.
 - (a) Déterminer une solution particulière x_0 de (\mathcal{S}) dans \mathbb{Z} .
 - (b) Déduire des questions précédentes la résolution dans $\mathbb Z$ du système ($\mathscr S$).

Trigonométrie réciproque

Montrer que pour tout
$$x \in \mathbb{R}^*$$
, $\arctan x + \arctan \frac{1}{x} = \begin{cases} \frac{\pi}{2} & \text{si } x > 0 \\ -\frac{\pi}{2} & \text{si } x < 0 \end{cases}$

Trigonométrie réciproque

Montrer que pour tout $x \in [-1,1]$, $\cos(\arcsin x) = \sin(\arccos x) = \sqrt{1-x^2}$.

Equation intégrale

Déterminer les fonctions f continues sur $\mathbb R$ telles que

$$\forall x \in \mathbb{R}, f(x) + \int_0^x f(t) dt = 1$$

Densité de $\mathbb Q$ dans $\mathbb R$

Montrer que \mathbb{Q} est dense dans \mathbb{R} à l'aide de la caractérisation séquentielle de la densité.