#### IND-CPA

intuition: advorsary can query encryption oracle

### Gane

1. b = coin flip c= Ex(Mb)

## CBC mode

### Recall:



Theorem: CBC with incremental IV is not CPA secure.

#### Proof sketch:

- · Adv. gets C= Ex(Mo +1) or C= Ex(M +1)
- · Adv. queries M=m00102
- · Adv gets G== E(m2@2)= EK(m0@1 @2-@2) · b= G== C == EK(m0@1)
- · b= 6===C

# Integrity:

## Recall: CBC-MAC



Theorem: CBC-MAC with randomized IV

Proof sketch:

- · CI = EK (M, OIV)
- · G' = EK (M' & IV')
- · want c, = c,
- · solve for IV: M'OIV = M, OIV =7 IV'= M' & M, OIV

# Padding oracle attacks

Padding scheme n timesn bytes of padding:  $n, n, n, n, \dots$   $0 \times 04, 0 \times 04, 0 \times 04, 0 \times 04$   $0 \times 01$   $0 \times 04, 0 \times 02$ 

# Padding oracle

Given ciphertext, return "ok" if decrypted message has valid padding or "lerror" otherwise.

# Recall: CBC decryption



## Padding oracle attack

 $M_{2}[15] = X[15] \oplus C_{1}[15]$   $C_{1}^{1}[15] = C_{1}[15] \oplus g \oplus O_{0}O_{1}$   $M_{2}^{1}[15] = \bigoplus_{i=1}^{m} X[15] \oplus C_{1}^{1}[15]$   $= X[15] \oplus C_{1}[15] \oplus g \oplus O_{0}O_{1}$   $= O_{0}O_{1} \text{ if } g = M_{2}[15]$ 

Same for 2nd to last byte:

0x02, 0x02

... 16 x 256 queries to decrypt

whole block!