

WSPOMAGANIE ZARZĄDZANIA PROJEKTAMI INFORMATYCZNYMI

Sprawozdania [od 1 do 3]

ALEKSANDER STEPANIUK

NR INDEKSU: 272644 Politechnika Wrocławska, Informatyka Stosowana

Spis treści:

Laboratoria 1 - TCO	3
Narzędzia	3
Zadania	4
Podsumowanie	12
Laboratoria 2 - BPMN	12
Narzędzia	12
Zadania	13
Podsumowanie	15
Laboratoria 3 – zarządzanie wymaganiami	16
Narzędzia	16
Zadania	16
Podsumowanie	17
Laboratoria 4	18
Narzędzia	18
Zadania	18
Podsumowanie	18
Laboratoria 5	18
Narzędzia	18
Zadania	18
Podsumowanie	18
Laboratoria 6	18
Narzędzia	18
Zadania	18
Podsumowanie	18
Laboratoria 7	18
Narzędzia	18
Zadania	18
Podsumowanie	18
Laboratoria 8	18
Narzędzia	18
7adania	10

Podsumowanie	18
Laboratoria 9	19
Narzędzia	19
Zadania	19
Podsumowanie	19
Laboratoria 10	19
Narzędzia	19
Zadania	19
Podsumowanie	19
Laboratoria 11	19
Narzędzia	19
Zadania	19
Podsumowanie	19
Laboratoria 12	19
Narzędzia	19
Zadania	19
Podsumowanie	19

Laboratoria 1 - TCO

Narzędzia

Kalkulatory TCO:

Nazwa	Microsoft Azure TCO Calculator	Google Cloud's pricing calculator	AWS Pricing Calculator
Cel	Szacowanie kosztów migracji do chmur od	Obliczanie kosztów korzystania z Google	Kalkulacja kosztów wdrożenia w Amazon
	Azure	Cloud Platform	Web Services
Funkcjonalność	Porównywanie	Wycena usług	Generowanie
	prognozowanych	chmurowych od firmy	raportów kosztowych i
	kosztów rozwiązań on-	Google z podziałem na	scenariuszy
	premises z Azure	regiony	oszczędności

Arkusze kalkulacyjne:

Nazwa	Microsoft Excel	Google Sheets	Libre Office Calc
Cel	Obliczenia, analiza danych, tworzenie	Kolaboracja online dla arkusza	Darmowa alternatywa arkusza
Funkcjonalność	raportów Obsługuje duże zbiory danych	kalkulacyjnego Współpraca w czasie rzeczywistym nad wspólnym arkuszem	kalkulacyjnego Rozbudowane funkcje arkusza kalkulacyjnego

Zadania

Zadanie1:

Korzystając z kalkulatorów wyceny TCO usług chmurowych Azure, Google Cloud i AWS porównaj owe narzędzia oraz ceny oferowanych usług.

Region Polska, plan usługi na 3 lata potrzebujemy 10 TB pamięci dyskowej oraz 10 serwerów każdy mający 4 rdzenie CPU, oraz 16GB pamięci RAM

1. Azure:

	wery								
oda	j szczegoły infrastruktury se	rwera lokalnego. Po dodaniu d	obciążenia wybierz typ c	bciąze	enia i okresi pozostałe s	szczegoł	ry.		
\Diamond	Obciążenie 1							1	
	Obciążenie 🛈	Środowisko 🚯	System operacyjny 📵		Licencja systemu operacyjnego		Serwery 6	Liczba proc	ba procesorów dla serwera
	System Windows/Linux Se 💙	Serwery fizyczne	Windows	~	0		10	0	
					Centrum danych	~	(1 - 9999)		1
	Liczba rdzeni dla procesora 🛈	esora 🗣 Pamięć RAM (GB) 🐧 Optymalizuj według 🐧			Procesor GPU 1		Windows Server 2008/2008 R2 10		(1 - 4
	4	16	Procesor CPU	~	Brak	~	•		
	(1 - 8)	(1 - 448)							

Wybieramy rozmiar 10TB oraz pozostałe parametry

Łączny koszt w ciągu 3 lat:

Wyświetl raport

W ciągu 3 lat korzystania z platformy Microsoft Azure Twoje szacowane oszczędności kosztów mogą wynieść $126\ 765\ USD$

2. Google Cloud:

Wybieramy 16GB ramu oraz 4vCPUs

Region: Polska, Warszawa

10TB pamięci:

Łączny koszt:

3. AWS

3 – letni plan (wychodzi taniej niż 3 razy roczny plan)

10

Raport podsumowujący:

Zadanie2:

Korzystając z wybranego arkusza kalkulacyjnego dla obu ofert oblicz: Koszty początkowe inwestycji, koszty roczne, TCO dla okresu 3, 5, 10 lat Pytanie: Czy to, która z ofert jest bardziej opłacalna zależy od czasu użytkowania, jeżeli tak to po ilu latach sytuacja się zmienia? Co to oznacza?

Założenia:

- 1. Obie oferty przynoszą te same zyski, porównujemy jedynie koszty
- 2. Pomijamy kwestię inflacji i spadku wartości pieniądza

Oferta 1:

Licencja wieczysta: **140 000 zł** Zakup serwerów i infrastruktury:

175 000 zł

Koszt wdrożenia: 10 000 zł

Szkolenie pracowników: 10 000 zł

Migracja danych: 8 000 zł

Wynagrodzenie administratora:

7 000 zł miesięcznie

Koszt aktualizacji i patchowania:

5000 zł co 3 miesiące

Konserwacja sprzętu:

30 000 zł co dwa lata

Koszt energii elektrycznej:

1300 zł miesięcznie

Koszty backupów:

800 zł miesięcznie

Oferta 2:

Licencja miesięczna:

60 zł x 300 pracowników

Koszt wdrożenia: 4 000 zł

Szkolenie pracowników: 6 000 zł

Migracja danych: 8 000 zł

Wsparcie techniczne: 10 000 zł rocznie

	А	В	C
1	Element	Oferta 1	Oferta 2
2	Licencja wieczysta	140 000 zł	-
3	Zakup serwerów i infrastruktury	175 000 zł	-
4	Koszt wdrożenia	10 000 zł	4 000 zł
5	Szkolenie pracowników	10 000 zł	6 000 zł
6	Migracja danych	8 000 zł	8 000 zł
7	Koszty początkowe	343 000 zł	18 000 zł
8	Wynagrodzenie administratora (miesięcznie)	7 000 zł	-
9	Koszt energii elektrycznej (miesięcznie)	1 300 zł	-
10	Koszt backupów (miesięcznie)	800 zł	-
11	Koszt aktualizacji (co 3 miesiące)	5 000 zł	-
12	Konserwacja sprzętu (co 2 lata)	30 000 zł	-
13	Licencja miesięczna (60 zł × 300 pracowników)	-	18 000 zł
14	Wsparcie techniczne (rocznie)	-	10 000 zł
15			
16	Koszty roczne - Oferta 1	144 200 zł	
17	Koszty roczne - Oferta 2	226 000 zł	
18	 	775.000	202.000
19	Po 3 latach	775 600 zł	
	Po 5 latach	1 064 000 zł	
21	Po 10 latach	1 785 000 zł	2 278 000 zł
22	Managet amiano anto actuadat	2.07211	lot
23	Moment zmiany opłacalności	3,97311	tat

Wniosek: opłacalność zależy od planowanego czasu użytkowania. **Oferta 2** jest tańsza przez pierwsze ~prawie 4 lata, natomiast po tym okresie **Oferta 1** staje się bardziej opłacalna. Oznacza to, że wybór zależy od planowanego czasu korzystania z rozwiązania.

Podsumowanie

Microsoft Azure TCO Calculator, Google Cloud's Pricing Calculator oraz AWS Pricing Calculator to narzędzia przeznaczone do szacowania kosztów usług chmurowych. Wszystkie trzy oferują szeroką funkcjonalność i umożliwiają precyzyjne obliczenia z uwzględnieniem bardzo wielu zmiennych. Wszystkie ich interfejsy są czytelne, choć wymagają pewnej znajomości ekosystemów chmurowych. Azure TCO wyróżnia się możliwością analizy całkowitego kosztu posiadania (TCO), podczas gdy kalkulatory Google i AWS skupiają się bardziej na elastycznych konfiguracjach usług.

Microsoft Excel, Google Sheets i LibreOffice Calc to wszechstronne arkusze kalkulacyjne o szerokim zastosowaniu. Excel oferuje najbardziej zaawansowane funkcje analityczne i integrację z ekosystemem Microsoftu. Google Sheets wyróżnia się współpracą w czasie rzeczywistym i łatwą integracją z innymi narzędziami Google. LibreOffice Calc to darmowe rozwiązanie o dużych możliwościach, choć czasami mniej intuicyjne niż konkurencyjne programy.

Pod względem interfejsu Excel zapewnia najbardziej rozbudowane opcje personalizacji, Google Sheets stawia na prostotę i szybkość działania online, a LibreOffice Calc koncentruje się na zgodności z formatami plików i dostępności w środowiskach offline.

Laboratoria 2 - BPMN

Narzędzia

- 1. Microsoft Visio popularne narzędzie do tworzenia diagramów (wtym BPMN). Jest w pakiecie Microsoft 365, więc łatwo jest za jego pomocą pracować w ramach pakietu Microsoft i kolaborować z innymi uczestnikami organizacji
- 2. LucidChart aplikacja oparta na chmurze, umożliwiająca współpracę zespołową przy tworzeniu diagramów BPMN w czasie rzeczywistym. Charakteryzuje się prostym interfejsem, dużą liczbą szablonów i możliwością integracji z popularnymi narzędziami biurowymi.
- 3. SmartDraw narzędzie do tworzenia schematów BPMN, charakteryzujące się automatycznym wyrównywaniem elementów oraz bogatą biblioteką gotowych symboli. Umożliwia eksport diagramów do różnych formatów oraz współpracę w chmurze.
- 4. Visual Paradigm narzędzie wspierające modelowanie BPMN oraz inne techniki projektowania oprogramowania. Posiada zaawansowane funkcje inżynierii odwrotnej, generowania kodu oraz szerokie możliwości współpracy zespołowej.
- 5. jBPM Otwarta platforma BPMN zaprojektowana do automatyzacji procesów biznesowych, szczególnie w środowiskach Java. Umożliwia modelowanie, wykonywanie i monitorowanie procesów, wspierając integrację z systemami zewnętrznymi.

6. diagram.net (draw.io) - Darmowe, intuicyjne narzędzie online do tworzenia diagramów BPMN z możliwością lokalnego zapisywania plików. Idealne dla użytkowników szukających prostego i funkcjonalnego rozwiązania bez konieczności rejestracji.

7. bpmn.io - Lekka aplikacja webowa skupiona na modelowaniu BPMN z prostym interfejsem i możliwością eksportu diagramów w formacie XML. Skierowana głównie do programistów i osób technicznych, umożliwia łatwą integrację z projektami.

Zadania

Zadanie 1

Zamodeluj za pomocą narzędzia bpmn.io proces składania i rozpatrywania wniosku o urlop dziekański.

Proces rozpoczyna się od złożenia wniosku przez studenta (elektronicznie lub w formie papierowej) do dziekanatu. Następnie wniosek jest weryfikowany pod kątem formalnym (czy zawiera wszystkie wymagane dokumenty). Jeśli wniosek jest kompletny, przekazywany jest do dziekana w celu podjęcia decyzji. W przeciwnym wypadku student jest informowany o konieczności uzupełnienia dokumentów. Po rozpatrzeniu wniosku student otrzymuje decyzję (zatwierdzenie lub odmowa) oraz ewentualne uzasadnienie. Jeśli wniosek jest rozpatrzony pomyślnie, status studenta jest aktualizowany.

Zadanie 2

Zamodeluj za pomocą narzędzia bpmn.io proces rekrutacji pracownika na stanowisko programisty.

Proces ten rozpoczyna się od otrzymania zgłoszenia zapotrzebowania na nowego pracownika od działu IT. Dział HR weryfikuje zgłoszenie, jeśli uzna je za niekompletne, zwraca je do działu IT z prośbą o uzupełnienie informacji. Po zatwierdzeniu zgłoszenia dział HR publikuje ogłoszenie o pracę oraz oczekuje na CV od kandydatów. Wybrani w ramach wstępnej selekcji kandydaci są zapraszani na rozmowę kwalifikacyjną, a po jej zakończeniu dział HR podejmuje decyzję o zatrudnieniu. Jeśli kandydat zostanie zaakceptowany, przygotowywana jest umowa o pracę i po jej podpisaniu przeprowadzane są formalności związane z onboardingiem. W przeciwnym wypadku wysyłana jest wiadomość o odrzuceniu kandydatury.

Zadanie 1

Zadanie 2

Podsumowanie

Wszystkie programy działają bardzo podobnie ze względu na ścisły standard BPMN. Niektóre programy mają ładniejszy i czytelniejszy interfejs użytkownika o wiele lepszy dla początkujących (Microsoft Visio lub bpmn.io), natomiast inne (Visual Paradigm lub jBPM) są o wiele mniej czytelne i do sprawnego użytkowania wymaga dokładnej znajomości struktury i działania danego oprogramowania, nawet żeby wykonać banalne i podstawowe diagramy.

Laboratoria 3 – zarządzanie wymaganiami

Narzędzia

- 1. ClickUp wszechstronne narzędzie do zarządzania projektami i zadaniami, oferujące elastyczne widoki (listy, tablice, wykresy Gantta). Umożliwia integrację z wieloma aplikacjami oraz dostosowanie przepływów pracy do potrzeb zespołu.
- 2. Jira popularne narzędzie do zarządzania projektami IT, szczególnie w metodykach Agile (Scrum, Kanban). Umożliwia śledzenie zgłoszeń, planowanie sprintów i automatyzację procesów. Integruje się z wieloma narzędziami deweloperskimi.
- 3. Aha! platforma do zarządzania produktami, koncentrująca się na roadmapach, strategii i priorytetyzacji funkcji. Umożliwia współpracę między zespołami i synchronizację z narzędziami deweloperskimi, takimi jak Jira.
- 4. OpenProject open-source'owe narzędzie do zarządzania projektami, wspierające klasyczne i Agile'owe podejście. Oferuje wykresy Gantta, zarządzanie wymaganiami i budżetem oraz możliwość samodzielnego hostowania.
- 5. Taiga lekkie i intuicyjne narzędzie do zarządzania projektami Agile, szczególnie przyjazne dla małych zespołów. Obsługuje Scrum i Kanban, oferując tablice zadań, backlogi i raporty dotyczące postępu prac.

Zadania

Utwórz projekt z wykorzystaniem szablonu Scrum w Jira. Projekt ma opisywać system rezerwacji biletów na wydarzenia. Powinien on posiadać jeden Epik, w którym zawartych jest 5 zadań (child issues). Przynajmniej jedno z zadań powinno mieć podzadanie. Ustaw różne priorytety dla zadań, przypisz jedno z zadań do siebie, ustaw różne statusy wykonania zadań, dodaj komentarz do dwóch zadań.

Podsumowanie

Wszystkie wymienione narzędzia służą do zarządzania projektami, jednak różnią się zakresem funkcji i przeznaczeniem. ClickUp i Jira to wszechstronne platformy z bogatymi możliwościami dostosowania, przy czym Jira jest szczególnie popularna w zespołach programistycznych pracujących w metodykach Agile. Aha! skupia się na zarządzaniu produktami i roadmapami, co czyni je idealnym dla menedżerów produktu. OpenProject oferuje szerokie możliwości, a jako open-source daje większą kontrolę nad danymi. Taiga natomiast wyróżnia się prostotą i przejrzystym interfejsem, co sprawia, że jest świetnym wyborem dla mniejszych zespołów Agile. Osobiście uważam że interfejs graficzny Jiry jest najprostszy do korzystania, intuicyjny i prosty w obsłudze.

Laboratoria 4 Narzędzia Zadania

Podsumowanie

Laboratoria 5

Narzędzia

Zadania

Podsumowanie

Laboratoria 6

Narzędzia

Zadania

Podsumowanie

Laboratoria 7

Narzędzia

Zadania

Podsumowanie

Laboratoria 8

Narzędzia

Zadania

Podsumowanie

Laboratoria 9

Narzędzia

Zadania

Podsumowanie

Laboratoria 10

Narzędzia

Zadania

Podsumowanie

Laboratoria 11

Narzędzia

Zadania

Podsumowanie

Laboratoria 12

Narzędzia

Zadania

Podsumowanie