

K-Means Clustering

 K-Means clustering groups observations based on numeric features Assumes clusters are roughly the same sized hyperspheres • Minimize Euclidean distance between observations and cluster centers Number of methods for choosing the number of clusters, k Choose several and evaluate performance Use business rules

H20 K-Means Clustering

```
from h2o.estimators.kmeans import H2OKMeansEstimator
clusters = H2OKMeansEstimator(...)
clusters.train(x = x, training frame = data)
```


K-Means Clustering

- K-Means clustering groups observations based on numeric features
 - Assumes clusters are roughly the same sized hyperspheres
 - Minimize Euclidean distance between observations and cluster centers
- Number of methods for choosing the number of clusters, k
 - Choose several and evaluate performance
 - Use business rules

