

E-Commerce Customer Churn Prediction

Final Project

Oleh:

- 1. M Aldi
- 2. Elka Mustika
- 3. Fauzan Ihza Fajar
- 4. Saprina Hani Haqyah

Follow our social media on:

Data Bangalore Id

Table of Contents

01 Business Understanding

Saat ini, perkembangan e-commerce di Indonesia memang terus meningkat.

Kondisi customer churn adalah hal yang mempengaruhi perkembangan bisnis. Salah satu mekanisme terbaik untuk mempertahankan pelanggan saat ini adalah mengidentifikasi potensi churn dan merespons dengan cepat untuk mencegahnya.

How ? Teknik data mining dapat diterapkan Untuk menganalisis perilaku pelanggan Dan untuk memprediksi pengurangan Pelanggan potensial sehingga strategi Pemasaran khusus dapat diadopsi untuk mempertahankannya.

01 Business Understanding

Business Question

- 1. Bagaimana persentase customer yang memilih churn?
- 2. Keadaan apa saja yang mempengaruhi churn rate?

Goal

- 1.Menjelaskan penyebab potensi terjadinya churn rate berdasarkan keadaan customer.
- 2. Membangun machine learning untuk mendeteksi customer yang akan churn.

Variable	Discerption
CustomerID	Unique customer ID
Churn	Churn Flag
Tenure	Tenure of customer in organization
PreferredLoginDevice	Preferred login device of customer
CityTier	City tier
WarehouseToHome	Distance in between warehouse to home of customer
PreferredPaymentMode	Preferred payment method of customer
Gender	Gender of customer
HourSpendOnApp	Number of hours spend on mobile application or website
NumberOfDeviceRegistered	Total number of deceives is registered on particular customer
PreferedOrderCat	Preferred order category of customer in last month
SatisfactionScore	Satisfactory score of customer on service
MaritalStatus	Marital status of customer
NumberOfAddress	Total number of added added on particular customer
Complain	Any complaint has been raised in last month
Order Amount Hike From last Year	Percentage increases in order from last year
CouponUsed	Total number of coupon has been used in last month
OrderCount	Total number of orders has been places in last month
DaySinceLastOrder	Day Since last order by customer
CashbackAmount	Average cashback in last month

Handling Missing Values

CustomerID	0		Churn	0
Churn	0		Tenure	0
Tenure	264		PreferredLoginDevice	0
PreferredLoginDevice	0		CityTier	0
CityTier	0		WarehouseToHome	0
WarehouseToHome	251		PreferredPaymentMode	0
PreferredPaymentMode	0		Gender	0
Gender	0	df = df.fillna(df.median())	HourSpendOnApp	0
HourSpendOnApp	255	ar arimina(arimealari())	NumberOfDeviceRegistered	0
NumberOfDeviceRegistered	0		PreferedOrderCat	0
PreferedOrderCat	0		SatisfactionScore	0
SatisfactionScore	0		MaritalStatus	0
MaritalStatus	0		NumberOfAddress	0
NumberOfAddress	0		Complain	0
Complain	0		OrderAmountHikeFromlastYear	0
OrderAmountHikeFromlastYear	265		CouponUsed	0
CouponUsed	256		OrderCount	0
OrderCount	258		DaySinceLastOrder	0
DaySinceLastOrder	307		CashbackAmount	0
CashbackAmount	0		dtype: int64	
dtype: int64				

before After

Karena terdapat nilai ekstrem pada data(outliers), maka untuk menangani missing values tersebut Kita akan menggunakan nilai median. Median merupakan nilai terbaik untuk nilai imputasi karena robust terhadap outliers.

Handling Inconsistent Data

```
for col in df.columns:
    print("=="*10)
    print(f" {col}", df[col].unique())

PreferredLoginDevice ['Mobile Phone' 'Phone' 'Computer']

PreferredPaymentMode ['Debit Card' 'UPI' 'CC' 'Cash on Delivery' 'E wallet' 'COD' 'Credit Card']

PreferedOrderCat ['Laptop & Accessory' 'Mobile' 'Mobile Phone' 'Others' 'Fashion' 'Grocery']
```

Karena terdapat inconsistent data pada beberapa feature Maka perlu ada perubahan sehingga merujuk pada kategori yang sama.

```
Mobile = Mobile phone
Phone = Mobile Phone
CC = Credit Card
COD = Cash on Delivery
```

```
df= df.replace(['Mobile','Phone','CC','COD'],['Mobile Phone','Mobile Phone','Credit Card','Cash on Delivery'])
```


Handling Handling Outliers : MetodeZ-Score

Pada kasus ini, untuk menangani data outliers menggunakan metode Z-Score. Setelah data outliers dihilangkan,dimensi data berkurang. Metode Z-Score cocok digunakan karena data outliers yang dihilangkan tidak terlalu banyak.

Handling Handling Outliers : MetodeZ-Score

Data shape sebelum di hilangkan outliers (5630, 20)
Data shape setelah handling outliers (4588, 20)
Threshold pada metode zscore sebesar 3 dan 1.2 untuk kolom "cashbackamount"

Heat Map

Menggunakan Data Heat Map untuk menentukan feature mana yang memiliki korelasi yang tinggi dan analisa dari tim kami

Feature Engineering

•Remove Feature : CustomerID, Tenure, Hour Spend App, Number of device registered, Number of address, order amount hike from last year, Coupon used, order Count, Day since last order, cashback amount

Feature Encoding : Label EncodingFeature Scaling : Robust Scaling

Resampling Dataset

Perbandingan Churn dan Tidak Churn

Separate train and test set with 82.60% train set and 18.40% test set

Target imbalanced, Oversampling using SMOTE to make target to be balanced

Perbandingan Churn dan Tidak Churn

Sekitar 18.40% dari total 4588 customer yang tercatat memilih untuk churn sedangkan 81.60% memilih tidak churn.

INSIGHT

City tier atau tingkatan kota semakin tinggi tingkatan kota semakin tinggi pula potensi unutk churn. Namun khusus untuk kasus ini tingkatan kota 3 lebih rendah dikarenakan populasi di city tier 3 jauh lebih banyak ketimbang city tier 2.

INSIGHT

City tier atau tingkatan kota berdasarkan data churn City Tier 1 adalah tingkatan kota tertinggi/ metropolitan menunjukkan tingkat churn tertinggi yaitu 56.75%

INSIGHT

preferred login device menunjukkan bahwa penggunaan login device computer memiliki tingkat churn yang tinggi

INSIGHT

khusus berdasarkan data churn saja preferred login device menunjukkan bahwa penggunaan login device phone memiliki tingkat churn yang tinggi yaitu 66.11%.

INSIGHT

Dari data di atas terlihat bahwa semakin jauh jarak rumah customer semakin tinggi persentasi untuk churn. Bisa dikarenakan oleh ongkos kirim makin mahal dengan semakin jauh lokasi tempat tinggal dari warehouse

INSIGHT

Dari data khusus churn ini menunjukkan lebih dari 40% lebih banyak churn adalah yang jarak 10-20.

INSIGHT

Preferred Payment Mode menunjukkan bahwa motode cash on delivery yang berpotensi churn karena bisa disebabkan karena ketidakpuasan pelanggan saat melihat paket yang sampai tidak sesuai atau terjadi kerusakan.

Preferred Payment Mode (Count Churn %)

INSIGHT

Preferred Payment Mode khusus untuk data churn menunjukkan debit card paling tinggi yaitu 36,37%

INSIGHT

Complain customer mempengaruhi terhadap churn. Untuk kasus complain customer harus segera ditanggapi dengan baik agar bisa mencegah churn di kemudian hari.

INSIGHT

Terlihat pada data bahwa customer berjenis kelamin laki-laki lebih berpotensi untuk churn sedangkan pada customer berjenis kelamin perempuan tingkat churn lebih rendah

INSIGHT

Customer dengan status single memiliki tingkat churn yang tinggi dibandingkan customer dengan status married dan divorce.

INSIGHT

Data SatisfactionScore dipengaruhi oleh beberapa faktor salah satunya pelayanan ke customer atau kondisi produknya atau kecepatan pengiriman.

04 Model and Evaluation

- Model machine learning yang dibuat dengan membandingkan beberapa model machine learning yaitu ExtraTrees, Random Forest, Decision Tree, XGBoost, KNN, Logistic Regresion, SVM, Naïve Bayer, MLP, AdaBoost, Bagging, GradientBoosting.
- 2. Metode Evaluasi machine learning yang digunakan yaitu cross validation
- 3. Metric evaluasi yang digunakan adalah accuracy, precision, recall dan f-1 score.

Oversampling

Modelling (Cross Validation)

	score_mean	score_std
Extra Trees Classifier	0.953575	0.002709
RandomForestClassifier	0.949653	0.005727
DecisionTreeClassifier	0.945511	0.004862
BaggingClassifier	0.942241	0.006642
XGBClassifier	0.934610	0.004748
KNeighborsClassifier	0.912163	0.008829
GradientBoostingClassifier	0.852442	0.001438
MLPClassifier	0.848084	0.004929
GaussianNB	0.836749	0.002285
AdaBoostClassifier	0.835442	0.006607
LogisticRegression	0.834134	0.002966
svc	0.816042	0.000384

Modelling (Cross Validation)

	Model	fit_time	score_time	test_accuracy	test_precision	test_recall	test_f1
0	ExtraTreesClassifier	0.357341	0.040867	0.953140	0.926318	0.810425	0.864254
1	RandomForestClassifier	0.409632	0.027683	0.948127	0.905407	0.802141	0.850365
2	DecisionTreeClassifier	0.012497	0.009374	0.944422	0.895240	0.791448	0.839569
3	BaggingClassifier	0.069154	0.006248	0.943331	0.886929	0.794992	0.837937
4	XGBClassifier	0.627420	0.018831	0.934610	0.891560	0.734545	0.804672
5	KNeighborsClassifier	0.018827	0.047203	0.912163	0.878370	0.606629	0.717560
6	GradientBoostingClassifier	0.310543	0.009373	0.852442	0.792332	0.270132	0.402062
7	MLPClassifier	12.247384	0.018123	0.845901	0.785455	0.232213	0.355559
8	GaussianNB	0.009374	0.006249	0.836749	0.710906	0.190786	0.300303
9	AdaBoostClassifier	0.165532	0.024994	0.835442	0.662874	0.214490	0.324057
10	LogisticRegression	0.041030	0.003126	0.834134	0.724811	0.158798	0.260132
11	SVC	0.370300	0.046866	0.816042	0.000000	0.000000	0.000000

04 Modelling (Uji Nilai Akurasi)

	train score	test score	difference
ExtraTreesClassifier	0.984973	0.935484	0.049489
RandomForestClassifier	0.984973	0.931997	0.052977
DecisionTreeClassifier	0.984973	0.915432	0.069542
BaggingClassifier	0.982469	0.913688	0.068781
XGBClassifier	0.973703	0.907585	0.066118
KNeighborsClassifier	0.944723	0.863121	0.081602
MLPClassifier	0.874597	0.804708	0.069890
GradientBoostingClassifier	0.839356	0.787271	0.052085
svc	0.801431	0.750654	0.050777
AdaBoostClassifier	0.741145	0.723627	0.017518
LogisticRegression	0.672987	0.696600	0.023612
GaussianNB	0.667442	0.707934	0.040492

Berdasarkan proses crosvalidasi dan uji akurasi diperoleh model terbaik yaitu ExtraTreesClassifier dengan tingkat akurasi:

1. Trainingg Accuracy: 98.5 %

2. Test Accuracy: 93.2 %

Model Evaluation (Confusion Matrix)

900		precision	recall	f1-score	support
800	0 1	0.95 0.83	0.97 0.76	0.96 0.79	949 198
700	accuracy macro avg	0.89	0.86	0.93 0.88	1147 1147
600	weighted avg	0.93	0.93	0.93	1147
500					
400	True Positives(TP) = 919				
300	True Negatives(TN) = 150				
200	False Positives(FP) = 30				
200	False Negatives(FN) = 48				
100					

04 Model Evaluation (ROC & Feature Importance)

05 Summary and Recomendation

SUMMARY

- 1. Persentase pelanggan yang memilih churn sebanyak 18,4% dari total 4588 customer
- Ada beberapa keadaan customer yang menyebabkan terjadinya churn seperti, tingkatan CityTier customer, Login Device,
 WarehouseToHome, PaymentMode, Complain, Gender, Marital Status dan SatisfactionScore
- 3. Pada data CityTier semakin tinggi tingkatan kota semakin tinggi pula potensi untuk churn. Namun khusus untuk kasus ini tingkatan kota 3 lebih rendah dikarenakan populasi di city tier 3 jauh lebih banyak ketimbang city tier 2
- Customer yang login menggunakan computer memiliki tingkat churn yang tinggi
- Jarak dari rumah customer menjadi salah satu penyebab terjadinya churn, semakin jauh jarak rumah customer semakin tinggi persentasi untuk churn. Bisa dikarenakan oleh ongkos kirim makin mahal dengan semakin jauh lokasi tempat tinggal dari warehouse
- 6. PaymentMode menjadi salah satu faktor penyebab churn, customer yang menggunakan cod lebih berpotensi untuk churn
- 7. Rating pada SatisfactionScore tidak mempengaruhi tingkat churn, karena Data SatisfactionScore dipengaruhi oleh beberapa faktor yang ada.
- 8. Model Machine learning yang digunakan untuk memprediksi Churn adalah ExtraTreesClassifier

RECOMENDATION

- 1. memberikan voucher gratis ongkir kepada customer
- 2. menambahkan diskon kepada customer yang metode bayar nya menggunakan cod
- 3. meningkatkan kualitas pelayanan untuk customer
- 4. menanggapi complain dengan cepat dan melakukan perbaikan

Thanks For Your Attention.

Follow our social media on :

@data_bangalore (in) Data Bangalore (D) Data Bangalore Id