$\begin{array}{c} Effect\\ of\\ Glass\ Transition\ Temperature\ (T_g) \end{array}$

Contents

- \checkmark What is Glass Transition temperature, T_g ?
- ✓ Experimental methods to determine T_g
- ✓ Factors affecting T_g

Glass Transition Temperature (Tg)

- ✓ <u>Definition</u>: The temperature at which the polymer experiences the **transition** from rubbery to rigid states.
- ✓ Below T_g, it becomes hard and brittle like glass, due to reduction in the motion of large segments of molecular chains with decreasing temperature.
- ✓ Different for each polymer.
- ✓ Glass transition happens only to polymers in the amorphous state.

Material	Glass Transition Temperature [°C (°F)]	Melting Temperature [°C (°F)]
Polyethylene (low density)	-110 (-165)	115 (240)
Polytetrafluoroethylene	-97 (-140)	327 (620)
Polyethylene (high density)	-90 (-130)	137 (279)
Polypropylene	-18(0)	175 (347)
Nylon 6,6	57 (135)	265 (510)
Polyester (PET)	69 (155)	265 (510)
Poly(vinyl chloride)	87 (190)	212 (415)
Polystyrene	100 (212)	240 (465)
Polycarbonate	150 (300)	265 (510)

- Hard plastics like polystyrene and poly(methyl methacrylate), are used below their glass transition temperatures (glassy state) as their $T_{\rm g}$'s are well above room temperature (around 100°C).
- Rubber elastomers like polyisoprene and polyisobutylene, are used above their T_g 's, (rubbery state), where they are soft and flexible.

Curve A: Amorphous polymer

Curve B: Semi – crystalline solid

Curve C: 100% Crystalline polymers - (hypothetical case)

Five Regions of Viscoelastic behavior

Viscoelasticity = (Viscous + Elastic) behavior

Phase I: Glassy region

- ✓ Relatively high modulus
- ✓ Very hard
- ✓ High resistance to flow

Phase II: Leathery/Glass-transition region

- ✓ Sharp decrease in the elastic modulus
- ✓ Deformation not totally recoverable

Phase III: Rubbery region

- ✓ Both elastic and viscous components present
- ✓ Modulus falling rate stabilizes
- ✓ Elastic high strain rate
- ✓ Viscous low strain rate

Phase IV: Rubbery flow region

- ✓ Viscosity starts dominating
- ✓ Modulus starts falling

Phase V: Viscous flow region

✓ Modulus drops steeply

Finally - decomposition!

Effect of Temperature

Reference: Kalpakjian, Schmid - Manufacturing Processes for Engineering Materials, 5th ed.

$\begin{array}{c} Measurement \\ of \\ Glass \ Transition \ Temperature \ (T_g) \end{array}$

1. Measuring T_{α} - Differential Scanning Calorimetry (DSC)

- Two separate pans separate heaters same heating rate.
- The thermal properties of a sample are compared against a standard reference material which has no transition in the temperature range of interest, such as powdered alumina.

$$\frac{\text{heat}}{\text{time}} = \frac{q}{t} = \text{heat flow}$$

$$\frac{\text{temperature increase}}{\text{time}} = \frac{\Delta T}{t} = \text{heating rate}$$

$$\frac{\frac{q}{t}}{\frac{\Delta T}{t}} = \frac{q}{\Delta T} = C_{\mathbf{p}} = \text{heat capacity}$$

- \checkmark Since the **heat capacity** of a polymeric material **changes** at the T_g .
- ✓ The glass transition is detected as a shift in the heat flow versus temperature curve.

The amount of heat required to raise the temperature of one gram of the polymer one degree Celsius is called the **heat capacity**.

- Change doesn't occur suddenly, but takes place over a temperature range.
- We usually just take the middle of the incline to be the $T_{\rm g}$
- Graph shows polymers have a higher heat capacity above the glass transition temperature

Higher the T_g – Higher is the cross-linking density & vice versa

2. Measuring T_q – Thermomechanical Analysis

- Thermomechanical analysis techniques such as expansion, flexure, or penetration may also be used to determine the $T_{\rm g}$.
- In expansion TMA, the coefficient of **thermal expansion** is measured as a **function of temperature**.
- The T_g in a polymer corresponds to the point in the expansion curve where the free volume begins to allow for greater chain mobility.
- As the temperature rises past the T_g , the adhesive will begin to soften, loses some tensile strength and also experiences a rise in its CTE (Coefficient of thermal expansion)

Reference: Menard K. et al., Basics of thermomechanical analysis

Reference: Engineering Materials : Ashby & Jones, 4th Ed.

Reference: http://pslc.ws/macrog/dsc.htm

3. Measuring T_a – Dynamic Mechanical Analysis (DMA)

- Most useful for studying the viscoelastic behavior of polymers.
- A **sinusoidal stress** is applied and the **strain** in the material is measured to determine the **modulus**.
- The **temperature** of the sample or the **frequency of the stress** are often varied, leading to variations in the modulus.
- This approach can be used to locate the glass transition temperature of the material
- Because sinusoidal stress is applied, complex elastic modulus can be expresesed as E* = E' + jE";
 - ✓ **Storage modulus (E')** Measure of **elastic response** & the stored energy.
 - ✓ Loss modulus (E") Measure of viscous response & the energy dissipated as heat.

Stress,
$$\sigma(t) = \sigma_0 \sin(\omega t + \delta)$$

Strain, $\epsilon(t) = \epsilon_0 \sin\omega t$

• **Pure elastic case**, stress is proportional to strain, we have

$$\sigma(t) = E \epsilon(t)$$
 Therefore, $\sigma_0 \sin(\omega t + \delta) = E\epsilon_0 \sin\omega t$ Hence , $\delta = 0$

• **Pure Viscous case,** stress is proportional to strain rate, we have

$$\sigma(t) = E \frac{d\epsilon}{dt} \Longrightarrow \sigma_0 \sin(\omega t + \delta) = E\epsilon_0 \cos\omega t \Longrightarrow \delta = \pi/2$$

Experiment set-up

Image: Wikipedia

$$\tan \delta = \frac{E''}{E'}$$

where, E" = Loss modulus (measure of heat dissipated, viscous behavior) E' = Storage modulus (measure of stored energy, elastic behavior)

 $an \delta$ signifies how good a material will be at absorbing energy.

Loss modulus,
$$E'' = \frac{\sigma_o}{\epsilon_o} sin\delta$$

Storage modulus, $E' = \frac{\sigma_o}{\epsilon_o} cos\delta$

- δ ranges between 0° 90°.
- As δ approaches 0° (Purely elastic behavior).
- As δ approaches 90° (Purely viscous behavior).
- At the glass transition, the storage modulus decreases dramatically and the loss modulus reaches a maximum.

Factors affecting T_q

- Chain Length
- Chain stiffness
- Plasticizers
- Crosslinking
- Co-polymers

Effect of Chain Length

- As molecular weight increases, T_g also increases.
 - ✓ High density of branches reduces chain mobility.
 - ✓ Crosslinking restricts the molecular motion.
- As molecular weight decreases, T_g also decreases
 - ✓ Easier movement of molecules.
 - ✓ More inherent free volume in the polymer.

$$T_g = T_{g\infty} - \frac{C}{M_w}$$

 $\textbf{T}_{\!\mathbf{g}^{\infty}}:$ Glass transition temp. at infinite chain length

C: Polymeric constant

Average molecular weight, $M_w = \frac{\sum M_i N_i}{\sum N_i}$

Material	$T_{g^{\infty}}$	С
PVC	351	81000
PMMA	387	210000
PS	373	120000

Where, M_i = molecular weight of i_{th} polymer chain; N_i = number of chains of that molecular weight.

Effect of Chain stiffness

Chain stiffness - Controlled by the **ease of rotation** about the **chemical bonds** along the chain.

- ✓ Presence of double bonds and aromatic groups lowers chain flexibility and thus increases $T_{\rm g}$.
- \checkmark Bulky or large side groups restricts chain rotational freedom and flexibility and thus increases $T_{\rm g}$.

Example

Effect of Plasticizers

- Plasticizers are the additives that increase the plasticity or fluidity of a material and reduces the hardness and stiffness.
- Example: Phthalate esters in PVC applications imparting improved flexibility and durability.
- Thus, addition of plasticizers reduces T_g

Effect of Crosslinking

Cross-linking reduces chain mobility, so T_g will be increased.

T_{q} for Co-polymers

- Made from two different monomers.
- T_g will be some kind of average between the two monomeric materials.
 - ✓ Assuming they were converted into polymer.
 - ✓ Will be based roughly on the weight fraction (%)of each material present in the copolymer.

$$\frac{1}{T_g} = \frac{W_{f_1}}{T_{g_1}} + \frac{W_{f_2}}{T_{g_2}}$$

 T_g = Glass transition temperature of copolymer $W_{f1} \& T_{g1}$ = Weight fraction & T_g of first monomer $W_{f2} \& T_{g2}$ = Weight fraction & T_g of second monomer

In the **next lecture**, we will learn about

- ✓ Polymer mechanical properties
- ✓ Factors affecting these properties

