Surprising Negative Results for Generative Adversarial Tree Search

Kamyar Azizzadenesheli^{1,2,5}, Brandon Yang², Weitang Liu³, Emma Brunskill², Zachary C Lipton⁴, Animashree Anandkumar⁵

¹UC Irvine, ²Stanford University, ³UC Davis, ⁴Carnegie Mellon University, ⁵Caltech

Introduction: Deep Q-Network (DQN)

Introduction: DQN

$$Q - \hat{Q} = bias + variance$$

The DQN estimation of the Q-function can be arbitrarily biased (Thrun & Schwartz 1993, Antos et al. 2008)

We empirically observe this phenomenon in DQN for Pong

Action space

Steps	stay	up	down
\overline{t}	4.3918	4.3220	4.3933
t+1	2.7985	2.8371	2.7921
t+2	2.8089	2.8382	2.8137
t+3	3.8725	3.8795	3.8690

Generative Adversarial Tree Search

Given a model of the environment:

- Do Monte-Carlo Tree Search (MCTS) for a limited horizon
- Bootstrap with the Q function at the leaves

Generative Adversarial Tree Search

Given a model of the environment:

- Do Monte-Carlo Tree Search (MCTS) for a limited horizon
- Bootstrap with the Q function at the leaves

[Prop. 1] Let e_Q be the upper bound on the error in estimation of the Q-function. In GATS with roll-out horizon H, it contributes to the error in estimation of the return as $\gamma^H e_\alpha$.

Generative Dynamics Model

Generates next frames conditioned on the current frames and actions

Negative Results

The Goldfish and the Gold Bucket

The Goldfish and the Gold Bucket

Conclusions

We develop a sample-efficient generative model for RL using GANs

Given a fixed Q-function, GATS reduces the worst-case error in estimation from the Q-function exponentially in roll-out depth as $\gamma^{\rm H}\,{\rm e}_{\rm a}$.

Even with perfect modeling, GATS can impede learning of the Q-function.

This study of GATS highlights important considerations for combining model-based and model-free reinforcement learning.