1	2	3	4	5	6	7	8	9

APELLIDO Y NOMBRE:

Condición: Libre Regular

Algebra II - Final 13 de febrero de 2020

Calif.

Justificar todas las respuestas. No se permite el uso de dispositivos electrónicos. Todos los resultados teóricos utilizados deben ser enunciados apropiadamente; en caso de utilizar resultados teóricos no dados en clase, los mismos deben demostrarse. Para aprobar se debe tener como mínimo 15 pts. en la parte teórica y 30 pts. en la parte práctica.

Parte Teórica (30 pts.)

- 1. (10 pts) Probar que si \mathbbm{k} es un cuerpo, y V es un \mathbbm{k} -espacio vectorial finitamente generado, entonces V admite una base.
- 2. (10 pts) Sea \mathbbm{k} un cuerpo y sean V, W dos \mathbbm{k} -espacios vectoriales de la misma dimensión. Sea $f: V \to W$ una transformación lineal. Probar que las siguientes tres condiciones son equivalentes:
 - f es biyectiva.
 - \bullet f es inyectiva.
 - El núcleo de f es $\{0\}$.
- 3. (10 pts) Sea (V, \langle , \rangle) un \mathbb{R} -espacio vectorial de dimensión finita con producto interno. Definimos una función $\Phi: V \to V^*$ (el espacio dual de V) por

$$\Phi(v)(w) = \langle v, w \rangle.$$

Probar que Φ es un isomorfismo (o sea probar que es una transformación lineal y que es biyectiva).

- 4. Determinar si cada una de las siguientes afirmaciones son verdaderas o falsas, justificando en cada caso la respuesta dada.
 - (a) (3 pts) Si $A \in M_{n \times n}(\mathbb{R})$, entonces la matriz A y la matriz A^t tienen igual conjunto de autovalores.
 - (b) (3 pts) Sea $f: V \to W$ una transformación lineal. Sean $v_1, \ldots, v_n \in V$ tales que el conjunto $\{f(v_1), \ldots, f(v_n)\}$ es linealmente independiente. Entonces $\{v_1, \ldots, v_n\}$ es linealmente independiente.

Parte Práctica (70 pts.)

5. (15 pts) Sea $A = \begin{pmatrix} a & 0 & b \\ -4 & 2 & 1 \\ 2 & 0 & 4 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$. Hallar $a, b \in \mathbb{R}$ tales que 2 y 3 sean autovalores de A y 2 tenga multiplicidad 2. Para tales a y b encontrar bases de los autoespacios asociados y decidir si A es diagonalizable.

6. (15 pts) Sea \mathbb{K} un cuerpo, y sean a_1, \ldots, a_n elementos de \mathbb{K} . Calcular el determinante de la matriz

$$\begin{pmatrix} 0 & 0 & \cdots & 0 & a_1 \\ 0 & 0 & \cdots & a_2 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & a_{n-1} & \cdots & 0 & 0 \\ a_n & 0 & \cdots & 0 & 0 \end{pmatrix}.$$

7. Sea $V = \{f : \{1,2,3\} \to \mathbb{R}\}$, el \mathbb{R} -espacio vectorial de funciones del conjunto $\{1,2,3\}$ a valores reales. Definimos $\Phi : V \times V \to \mathbb{R}$ por

$$\Phi(f,g) = 9f(1)g(1) + 3f(2)g(1) + 3f(1)g(2) + 2f(2)g(2) + 3f(3)g(3).$$

- (a) (10 pts) Probar que Φ define un producto interno en V.
- (b) (5 pts) Dar una base ortogonal de V para el producto interno anterior, cuyo primer elemento sea la función $f \in V$ con valores f(1) = 1, f(2) = 1, f(3) = 1.
- 8. Sean V un \Bbbk -espacio vectorial de dimensión n y $T:V\to V$ una transformación lineal. Supongamos que $T^2=T$ (es decir, T(T(v))=T(v) para todo $v\in V$).
 - (a) (7 pts) Probar que $V = \text{Nu}T \oplus \text{Im}T$.
 - (b) (3 pts) Probar que $\text{Im}T = \{v \in V : T(v) = v\}.$
 - (c) (5 pts) Decidir si T es diagonalizable.
 - (d) (5 pts) Sea $s = \dim \operatorname{Nu} T$ (puede ser s = 0). Calcular la traza y el determinante de T en función de s (recordar que si $T: V \to V$ es una transoformación lineal, definimos la traza (resp. el determinante) de T como la traza de $[T]_B$ (resp. el determinante de $[T]_B$) para cualquier base B de V).
- 9. Si V es un k-espacio vectorial de dimensión finita, y $S \subset V$ es un subespacio, definimos S^0 como el subconjunto de V^* dado por las funciones que en S valen 0.
 - \bullet (10 pts) Probar que S^0 es un subespacio de $V^*.$ ¿Cómo se relacionan las dimensiones de S, S^0 v V?
 - (10 pts) Probar que si S, T son subespacios de V tales que $V = S \oplus T$ entonces $V^* = S^0 \oplus T^0$.

EJERCICIO PARA LIBRES El puntaje entre paréntesis es lo que se le resta al puntaje de la parte práctica en caso de no ser resuelto correctamente

Consideremos la transformación lineal $T: \mathbb{R}[x]_3 \to \mathbb{R}[x]_3$ dada por T(P(x)) = P'(x) + 2P(x).

- \bullet (-9 pts) Calcular bases del núcleo y de la imagen de T.
- (-6 pts) Decidir si T es diagonalizable.