# Systems programming

2 – System

MEEC LEEC MEAer LEAer MEIC-A João Nuno Silva



## Bibliography

- A Unified Formalism for Complex Systems Architecture
  - Section 1.3
    - http://www.lix.polytechnique.fr/~golden/systems\_archite cture.html
    - http://www.lix.polytechnique.fr/~golden/research/ phd.pdf

#### System

### System

- From Wikipedia
  - A system is a set of interacting or interdependent components forming an integrated whole
  - Delineated by its spatial and temporal boundaries
  - Surrounded and influenced by its environment
  - Described by its structure and purpose
  - Expressed in its functioning

### Ecosystem

- Ecosystem is an ecological systems.
  - includes all the living things in a given area,
  - interacting with each other, and with their non-living environments
- Each organism has its own niche or role to play.
- Community of organisms and their physical environment
  - interacting together.
- The living and physical components are linked together through nutrient cycles and energy flows.

### Social system

- Interdependent set of cultural and structural elements
  - that can be thought of as a unit.
- Embodies one of the most important sociological principles:
  - that the whole is more than the sum of its parts.
- A social system refers to a complex network of interrelated social entities,
  - that interact and influence one another within a shared environment or society.
- Interactions are guided by norms, values, roles and patterns of behavior
- Exhibit patterns of organization, stability, and adaptation
  - serving various functions and purposes within society.

### Systems architecture

- Generic discipline to handle systems
  - To support reasoning about its properties
- Systems Architecture can refer to
  - the actual architecture of a system
    - i.e. a model to describe/analyze a system
  - architecting (designing) a system
    - i.e. a method to define the architecture of a system
  - body of knowledge for "architecting" systems to meet business needs
    - i.e. a discipline to master systems design.

### Systems architecture

- architecture of a system is
  - a global model of a real system
- Consists of:
  - Structure
  - Properties of various elements involved
  - Relationships between various elements
  - Behaviors and dynamics
  - Multiple views of elements

#### System principles

- The objects of the reality are modeled as systems
  - objects perform function defined by its perimeter, inputs, outputs and an internal state
- Systems can be broken down into a set of smaller subsystems,
  - Which are less than the whole system
  - Composition emerges new behaviors □□□□



Q

- Systems must be considered interacting with other systems
  - Its environment
  - Other systems



- Systems must be considered through its whole life-cycle
  - From the moment it starts being designed, produced, operated, disposed → 1 → 2 → 3 → 4

- Systems can be linked to another through an interface,
  - Which models the properties of the link
    - **□**

interface

- Systems can be considered at various abstraction levels,
  - Allowing only relevant properties/behaviorsto be considered

abstraction

 Systems can be viewed according to various layers



- Sense
  - Why is it being produced / offered functionality
- Functions
  - Operations to fulfill offered functionality
- Composition
  - Definition of components necessary to implement the functions

- Systems can be described through interrelated models with given semantics
  - Properties that the system should provide / requirements
  - Structure of the various
    components and how they interact
  - States of the system
  - Behaviors of the system
  - Manipulated data, etc

Described with SysML



- Systems can be described through different viewpoints
  - corresponding to various actors concerned by the system.
- All visions are important
  - define the system in complementary ways.
- Different stakeholders
  - commercials, designers, software engineers, electronic enginners, usability, users, repairers ...









### Next on PSIS

- Systems' requirements
  - IEEE Guide for Developing System Requirements
    Specifications IEEE 1233
  - IEEE Recommended Practice for Software Requirements Specifications – IEEE 830