Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the

application. Claims 2, 6, 11, 15, 20, 24, 29, 30, and 34 have been amended and claims 1, 10, 19,

and 28 have been canceled herein.

Listing of Claims:

1. (Canceled)

2. (Currently Amended) A method, comprising: zooming into or out of an

image having at least one object, wherein at least some elements of the at least one object are

scaled up and/or down in a way that is non-physically proportional to one or more zoom levels

associated with the zooming, The method of claim 1, wherein the non-physically proportional

scaling may be expressed by the following formula: $\mathbf{p} = \mathbf{d'} \cdot \mathbf{z}^{a}$, where \mathbf{p} is a linear size in pixels

of one or more elements of the object at the zoom level, d' is an imputed linear size of the one or

more elements of the object in physical units, z is the zoom level in units of physical linear

size/pixel, and **a** is a power law where $\mathbf{a} \neq -1$.

3. (Original) The method of claim 2, wherein at least one of d' and a may vary

for one or more elements of the object.

4. (Original) The method of claim 2, wherein the power law is -1 < a < 0 within

a range of zoom levels **z0** and **z1**, where **z0** is of a lower physical linear size/pixel than **z1**.

5. (Original) The method of claim 4, wherein at least one of **z0**, **z1**, **d'** and **a** may

vary for one or more elements of the object.

Page 2 of 20

Filed: 3/17/2004

Reply to Office Action dated 6/28/2006

Response Dated 8/16/2006

6. (Currently Amended) The method of claim [[1]]2, wherein at least some

elements of the at least one object are also scaled up and/or down in a way that is physically

proportional to one or more zoom levels associated with the zooming.

7. (Original) The method of claim 6, wherein the physically proportional scaling

may be expressed by the following formula: $\mathbf{p} = \mathbf{c} \cdot \mathbf{d/z}$, where \mathbf{p} is a linear size in pixels of one

or more elements of the object, c is a constant, d is a real or imputed linear size in physical units

of the one or more elements of the object, and z is the zoom level in physical linear size/pixel.

8. (Original) The method of claim 6, wherein:

the elements of the object are of varying degrees of coarseness; and

the scaling of the elements at a given zoom level are physically

proportional or non-physically proportional based on at least one of: (I) a degree of

coarseness of such elements; and (ii) the zoom level.

9. (Original) The method of claim 8, wherein:

the object is a roadmap, the elements of the object are roads, and the

varying degrees of coarseness are road hierarchies; and

the scaling of a given road at a given zoom level is physically proportional

or non-physically proportional based on: (I) the road hierarchy of the given road; and (ii)

the zoom level.

10. (Canceled)

Page 3 of 20

Filed: 3/17/2004

Reply to Office Action dated 6/28/2006

Response Dated 8/16/2006

11. (Currently Amended) A storage medium containing one or more software

programs that are operable to cause a processing unit to execute actions, comprising: zooming

into or out of an image having at least one object, wherein at least some elements of the at least

one object are scaled up and/or down in a way that is non-physically proportional to one or more

zoom levels associated with the zooming, The storage medium of claim 10, wherein the non-

physically proportional scaling may be expressed by the following formula: $\mathbf{p} = \mathbf{d'} \cdot \mathbf{z}^{\mathbf{a}}$, where \mathbf{p}

is a linear size in pixels of one or more elements of the object at the zoom level, **d'** is an imputed

linear size of the one or more elements of the object in physical units, **z** is the zoom level in units

of physical linear size/pixel, and a is a power law where $\mathbf{a} \neq -1$.

12. (Original) The method of claim 11, wherein at least one of **d'** and **a** may vary

for one or more elements of the object.

13. (Original) The storage medium of claim 11, wherein the scale power is -1 <

 $\mathbf{a} < 0$ within a range of zoom levels between $\mathbf{z0}$ and $\mathbf{z1}$, where $\mathbf{z0}$ is of a lower physical linear

size/pixel than z1.

14. (Original) The storage medium of claim 13, wherein at least one of **z0** and **z1**

may vary for one or more elements of the object.

15. (Currently Amended) The storage medium of claim [[10]]11, wherein at

least some elements of the at least one object are also scaled up and/or down in a way that is

physically proportional to one or more zoom levels associated with the zooming.

Page 4 of 20

Filed: 3/17/2004

Reply to Office Action dated 6/28/2006

Response Dated 8/16/2006

16. (Original) The storage medium of claim 15, wherein the physically

proportional scaling may be expressed by the following formula: $\mathbf{p} = \mathbf{c} \cdot \mathbf{d/z}$, where \mathbf{p} is a linear

size in pixels of one or more elements of the object, c is a constant, d is a real or imputed linear

size in physical units of the one or more elements of the object, and z is the zoom level in

physical linear size/pixel.

17. (Original) The storage medium of claim 15, wherein:

the elements of the object are of varying degrees of coarseness; and

the scaling of the elements at a given zoom level are physically

proportional or non-physically proportional based on at least one of: (I) a degree of

coarseness of such elements; and (ii) the zoom level.

18. (Original) The storage medium of claim 17, wherein:

the object is a roadmap, the elements of the object are roads, and the

varying degrees of coarseness are road hierarchies; and

the scaling of a given road at a given zoom level is physically proportional

or non-physically proportional based on: (I) the road hierarchy of the given road; and (ii)

the zoom level.

19. (Canceled)

Page 5 of 20

Filed: 3/17/2004

Reply to Office Action dated 6/28/2006

Response Dated 8/16/2006

20. (Currently Amended) An apparatus including a processing unit operating

under the control of one or more software programs that are operable to cause the processing unit

to execute actions, comprising: zooming into or out of an image having at least one object,

wherein at least some elements of the at least one object are scaled up and/or down in a way that

is non-physically proportional to one or more zoom levels associated with the zooming, The

apparatus of claim 19, wherein the non-physically proportional scaling may be expressed by the

following formula: $\mathbf{p} = \mathbf{d'} \cdot \mathbf{z}^{a}$, where \mathbf{p} is a linear size in pixels of one or more elements of the

object at the zoom level, d' is an imputed linear size of the one or more elements of the object in

physical units, z is the zoom level in units of physical linear size/pixel, and a is a power law

where $\mathbf{a} \neq 1$.

21. (Previously Presented) The apparatus of claim 20, wherein at least one of **d'**

and a may vary for one or more elements of the object.

22. (Original) The apparatus of claim 20, wherein the power law is $-1 < \mathbf{a} < 0$

within a range of zoom levels **z0** and **z1**, where **z0** is of a lower physical linear size/pixel than **z1**.

23. (Original) The apparatus of claim 22, wherein at least one of **z0** and **z1** may

vary for one or more elements of the object.

24. (Currently Amended) The apparatus of claim [[19]]20, wherein at least some

elements of the at least one object are also scaled up and/or down in a way that is physically

proportional to one or more zoom levels associated with the zooming.

Page 6 of 20

Filed: 3/17/2004

Reply to Office Action dated 6/28/2006

Response Dated 8/16/2006

25. (Original) The apparatus of claim 24, wherein the physically proportional

scaling may be expressed by the following formula: $\mathbf{p} = \mathbf{c} \cdot \mathbf{d/z}$, where \mathbf{p} is a linear size in pixels

of one or more elements of the object, c is a constant, d is a real or imputed linear size in

physical units of the one or more elements of the object, and z is the zoom level in physical

linear size/pixel.

26. (Original) The apparatus of claim 24, wherein:

the elements of the object are of varying degrees of coarseness; and

the scaling of the elements at a given zoom level are physically

proportional or non-physically proportional based on at least one of: (I) a degree of

coarseness of such elements; and (ii) the zoom level.

27. (Original) The apparatus of claim 26, wherein:

the object is a roadmap, the elements of the object are roads, and the

varying degrees of coarseness are road hierarchies; and

the scaling of a given road at a given zoom level is physically proportional

or non-physically proportional based on: (I) the road hierarchy of the given road; and (ii)

the zoom level.

28. (Canceled)

29. (Currently Amended) The method of claim [[28]]30, wherein the images are

pre-rendered at a source terminal for delivery to a client terminal.

Page 7 of 20

Filed: 3/17/2004

Reply to Office Action dated 6/28/2006

Response Dated 8/16/2006

30. (Currently Amended) A method, comprising: preparing a plurality of images

of different zoom levels of at least one object, wherein at least some elements of the at least one

object are scaled up and/or down in a way that is non-physically proportional to one or more

zoom levels, The method of claim 28, wherein scaling may be expressed by the following

formula: $\mathbf{p} = \mathbf{d'} \cdot \mathbf{z}^{a}$, where \mathbf{p} is a linear size in pixels of one or more elements of the object at the

zoom level, d' is an imputed linear size of the one or more elements of the object in physical

units, z is the zoom level in units of physical linear size/pixel, and a is a power law where $a \neq -1$.

31. (Original) The method of claim 30, wherein at least one of **d'** and **a** may vary

for one or more elements of the object.

32. (Original) The method of claim 30, wherein the power law is -1 < a < 0

within a range of zoom levels between **z0** and **z1**, where **z0** is of a lower physical linear

size/pixel than z1.

33. (Original) The method of claim 32, wherein at least one of **z0** and **z1** may

vary for one or more elements of the object.

34. (Currently Amended) The method of claim [[28]]30, wherein at least some

elements of the at least one object are also scaled up and/or down in a way that is physically

proportional to one or more zoom levels associated with the zooming.

Page 8 of 20

Filed: 3/17/2004

Reply to Office Action dated 6/28/2006

Response Dated 8/16/2006

35. (Original) The method of claim 34, wherein the physically proportional

scaling may be expressed by the following formula: $\mathbf{p} = \mathbf{c} \cdot \mathbf{d/z}$, where \mathbf{p} is a linear size in pixels

of one or more elements of the object, c is a constant, d is a real or imputed linear size in

physical units of the one or more elements of the object, and z is the zoom level in physical

linear size/pixel.

36. (Original) The method of claim 34, wherein:

the elements of the object are of varying degrees of coarseness; and

the scaling of the elements at a given zoom level are physically

proportional or non-physically proportional based on at least one of: (I) a degree of

coarseness of such elements; and (ii) the zoom level.

37. (Original) The method of claim 36, wherein:

the object is a roadmap, the elements of the object are roads, and the

varying degrees of coarseness are road hierarchies; and

the scaling of a given road at a given zoom level is physically proportional

or non-physically proportional based on: (I) the road hierarchy of the given road; and (ii)

the zoom level.

38-39. (Canceled)

40. (Withdrawn) A method, comprising:

receiving at a client terminal a plurality of pre-rendered images of varying

zoom levels of a roadmap;

Page 9 of 20

Filed: 3/17/2004

Reply to Office Action dated 6/28/2006

Response Dated 8/16/2006

receiving one or more user navigation commands including zooming

information at the client terminal; and

blending two or more of the pre-rendered images to obtain an intermediate

image of an intermediate zoom level that corresponds with the zooming information of

the navigation commands such that a display of the intermediate image on the client

terminal provides the appearance of smooth navigation.

41. (Withdrawn) The method of claim 40, wherein at least some roads of the

roadmap are scaled up and/or down in order to produce the plurality of pre-determined images,

and the scaling is at least one of: (I) physically proportional to the zoom level; and (ii) non-

physically proportional to the zoom level.

42. (Withdrawn) The method of claim 41, wherein the physically proportional

scaling may be expressed by the following formula: $\mathbf{p} = \mathbf{c} \cdot \mathbf{d}/\mathbf{z}$, where \mathbf{p} is a linear size in pixels

of one or more elements of the object at the zoom level, c is a constant, d is a real or imputed

linear size of the one or more elements of the object in physical units, and z is the zoom level in

units of physical linear size/pixel.

43. (Withdrawn) The method of claim 41, wherein the non-physically

proportional scaling may be expressed by the following formula: $\mathbf{p} = \mathbf{d'} \cdot \mathbf{z}^{\mathbf{a}}$, where \mathbf{p} is a linear

size in pixels of one or more elements of the object at the zoom level, d' is an imputed linear size

of the one or more elements of the object in physical units, z is the zoom level in units of

physical linear size/pixel, and **a** is a power law where $\mathbf{a} \neq -1$.

Page 10 of 20

44. (Withdrawn) The method of claim 43, wherein at least one of **d'** and **a** may

vary for one or more elements of the object.

45. (Withdrawn) The method of claim 43, wherein the power law is -1 < a < 0

within a range of zoom levels between **z0** and **z1**, where **z0** is of a lower physical linear

size/pixel than z1.

46. (Withdrawn) The method of claim 45, wherein at least one of **z0** and **z1** may

vary for one or more roads of the roadmap.

47. (Withdrawn) The method of claim 40, wherein:

the roads of the roadmap are of varying degrees of coarseness; and

the scaling of the roads in a given pre-rendered image are physically

proportional or non-physically proportional based on at least one of: (I) a degree of

coarseness of such roads; and (ii) the zoom level of the given pre-rendered image.

48. (Withdrawn) A method, comprising:

receiving at a client terminal a plurality of pre-rendered images of varying

zoom levels of at least one object, at least some elements of the at least one object being

scaled up and/or down in order to produce the plurality of pre-determined images, and the

scaling being at least one of: (I) physically proportional to the zoom level; and (ii) non-

physically proportional to the zoom level;

receiving one or more user navigation commands including zooming

information at the client terminal;

Page 11 of 20

Filed: 3/17/2004

Reply to Office Action dated 6/28/2006

Response Dated 8/16/2006

blending two or more of the pre-rendered images to obtain an intermediate

image of an intermediate zoom level that corresponds with the zooming information of

the navigation commands; and displaying the intermediate image on the client terminal.

49. (Withdrawn) The method of claim 48, wherein the blending step includes

performing at least one of alpha-blending, trainer interpolation, and bucolic-linear interpolation.

50. (Withdrawn) The method of claim 48, wherein the number of pre-rendered

images are such that blending there between provides the appearance of smooth navigation.

51. (Withdrawn) The method of claim 48, wherein the zoom levels and the

scaling of the pre-rendered images are selected such that respective linear sizes in pixels **p** of a

given one or more of the elements of the object do not vary by more than a predetermined

number of pixels as between one pre-rendered image and another pre-rendered image of higher

resolution.

52. (Withdrawn) The method of claim 51, wherein the predetermined number of

pixels is about two.

53. (Withdrawn) The method of claim 50, further comprising down sampling a

lowest resolution one of the pre-rendered images to facilitate navigation to zoom levels beyond a

zoom level of the lowest resolution one of the pre-rendered images.

Page 12 of 20

Filed: 3/17/2004

Reply to Office Action dated 6/28/2006

Response Dated 8/16/2006

54. (Withdrawn) The method of claim 48, wherein the physically proportional

scaling may be expressed by the following formula: $\mathbf{p} = \mathbf{c} \cdot \mathbf{d/z}$, where \mathbf{p} is a linear size in pixels

of one or more elements of the object at the zoom level, c is a constant, d is a real or imputed

linear size of the one or more elements of the object in physical units, and z is the zoom level in

units of physical linear size/pixel.

55. The method of claim 48, wherein the non-physically (Withdrawn)

proportional scaling may be expressed by the following formula: $\mathbf{p} = \mathbf{d'} \cdot \mathbf{z}^{\mathbf{a}}$, where \mathbf{p} is a linear

size in pixels of one or more elements of the object at the zoom level, d' is an imputed linear size

of the one or more elements of the object in physical units, z is the zoom level in units of

physical linear size/pixel, and a is a power law where $\mathbf{a} \neq -1$.

56. (Withdrawn) The method of claim 55, wherein at least one of d' and a may

vary for one or more elements of the object.

57. (Withdrawn) The method of claim 55, wherein the power law is -1 < a < 0

within a range of zoom levels between z0 and z1, where z0 is of a lower physical linear

size/pixel than **z1**.

58. (Withdrawn) The method of claim 57, wherein at least one of **z0** and **z1** may

vary for one or more elements of the object.

59. (Withdrawn) The method of claim 48 wherein the plurality of pre-rendered

images are received by the client terminal over a packet zed network.

Page 13 of 20

Filed: 3/17/2004

Reply to Office Action dated 6/28/2006

Response Dated 8/16/2006

60. (Withdrawn) The method of claim 59, wherein the packet zed network is the

Internet.

61. (Withdrawn) The method of claim 48, wherein:

the elements of the object are of varying degrees of coarseness; and

the scaling of the elements in a given pre-rendered image are physically

proportional or non-physically proportional based on at least one of: (I) a degree of

coarseness of such elements; and (ii) the zoom level of the given pre-rendered image.

62. (Withdrawn) The method of claim 61, wherein:

the object is a roadmap, the elements of the object are roads, and the

varying degrees of coarseness are road hierarchies; and

the scaling of a given road in a given pre-rendered image is physically

proportional or non-physically proportional based on: (I) the road hierarchy of the given

road; and (ii) the zoom level of the given pre-rendered image.

63. The method of claim 62, wherein the non-physically (Withdrawn)

proportional scaling may be expressed by the following formula: $\mathbf{p} = \mathbf{d'} \cdot \mathbf{z}^a$, where \mathbf{p} is a linear

size in pixels of one or more elements of the object at the zoom level, d' is an imputed linear size

of the one or more elements of the object in physical units, and z is the zoom level in units of

physical linear size/pixel.

64. (Withdrawn) The method of claim 63, wherein at least one of d' and a may

vary for one or more elements of the object.

Page 14 of 20

65. (Withdrawn) The method of claim 63, wherein the power law is $-1 < \mathbf{a} < 0$

within a range of zoom levels between **z0** and **z1**, where **z0** is of a lower physical linear

size/pixel than **z1**.

66. (Withdrawn) The method of claim 65, wherein at least one of **z0** and **z1** may

vary for one or more of the roads of the roadmap.

67. (Withdrawn) A method, comprising:

transmitting a plurality of images of varying zoom levels of at least one

object to a terminal over a communications channel, at least some elements of the at least

one object being scaled up and/or down in order to produce the plurality of images, and

the scaling being at least one of: (I) physically proportional to the zoom level; and (ii)

non-physically proportional to the zoom level;

receiving the plurality of images at the terminal;

issuing one or more user navigation commands including zooming

information using the terminal;

blending at least two of the images to obtain an intermediate image of an

intermediate zoom level that corresponds with the zooming information of the navigation

commands; and

displaying the intermediate image on the terminal.

68. (Withdrawn) The method of claim 67, wherein the blending step includes

performing at least one of alpha-blending, trainer interpolation, and bucolic-linear interpolation.

Page 15 of 20

Filed: 3/17/2004

Reply to Office Action dated 6/28/2006

Response Dated 8/16/2006

69. (Withdrawn) The method of claim 67, wherein the number of images is such

that blending there between provides the appearance of smooth navigation.

70. (Withdrawn) The method of claim 67, wherein the zoom levels and the

scaling of the pre-rendered images are selected such that respective linear sizes in pixels **p** of a

given one or more of the elements of the object do not vary by more than a predetermined

number of pixels between one pre-rendered image and another pre-rendered image of higher

resolution.

71. (Withdrawn) The method of claim 70, wherein the predetermined number of

pixels is about two.

72. (Withdrawn) The method of claim 69, further comprising down sampling a

lowest resolution one of the images to facilitate navigation to zoom levels beyond a zoom level

of the lowest resolution one of the images.

73. (Withdrawn) The method of claim 69, wherein the physically proportional

scaling may be expressed by the following formula: $\mathbf{p} = \mathbf{c} \cdot \mathbf{d}/\mathbf{z}$, where \mathbf{p} is a linear size in pixels

of one or more elements of the object at the zoom level, c is a constant, d is a real or imputed

linear size of the one or more elements of the object in physical units, and z is the zoom level in-

units of physical linear size/pixel.

Page 16 of 20

Filed: 3/17/2004

Reply to Office Action dated 6/28/2006

Response Dated 8/16/2006

74. (Withdrawn) The method of claim 69, wherein the non-physically

proportional scaling may be expressed by the following formula: $\mathbf{p} = \mathbf{d'} \cdot \mathbf{z}^{\mathbf{a}}$, where \mathbf{p} is a linear

size in pixels of one or more elements of the object at the zoom level, d' is an imputed linear size

of the one or more elements of the object in physical units, z is the zoom level in units of

physical linear size/pixel, and **a** is a power law where $\mathbf{a} \neq -1$.

75. (Withdrawn) The method of claim 74, wherein at least one of **d'** and a may

vary for one or more elements of the object.

76. (Withdrawn) The method of claim 74, wherein the power law is -1 < a < 0

within a range of zoom levels **z0** and **z1**, where **z0** is of a lower physical linear size/pixel than **z1**.

77. (Withdrawn) The method of claim 76, wherein at least one of **z0** and **z1** may

vary for one or more elements of the object.

78. (Withdrawn) The method of claim 69, wherein the plurality of images are

received by the terminal over a packet zed network.

79. (Withdrawn) The method of claim 78, wherein the packet zed network is the

Internet.

80. (Withdrawn) The method of claim 69, wherein:

the elements of the object are of varying degrees of coarseness; and

the scaling of the elements in a given image are physically proportional or

non-physically proportional based on at least one of: (I) a degree of coarseness of such

elements; and (ii) the zoom level of the given pre-rendered image.

Page 17 of 20

Filed: 3/17/2004

Reply to Office Action dated 6/28/2006

Response Dated 8/16/2006

81. (Withdrawn) The method of claim 80, wherein:

the object is a roadmap, the elements of the object are roads, and the

varying degrees of coarseness are road hierarchies; and

the scaling of a given road in a given is physically proportional or non-

physically proportional based on: (I) the road hierarchy of the given road; and (ii) the

zoom level of the given pre-rendered image.

82. (Withdrawn) The method of claim 81, wherein the non-physically

proportional scaling may be expressed by the following formula: $\mathbf{p} = \mathbf{d'} \cdot \mathbf{z}^{a}$, where \mathbf{p} is a linear

size in pixels of one or more elements of the object at the zoom level, d' is an imputed linear size

of the one or more elements of the object in physical units, z is the zoom level in units of

physical linear size/pixel, and \mathbf{a} is a power law where $\mathbf{a} \# -1$.

83. (Withdrawn) The method of claim 82, wherein at least one of d' and a may

vary for one or more elements of the object.

84. (Withdrawn) The method of claim 82, wherein the scale power is -1 < a < 0

within a range of zoom levels between **z0** and **z1**, where **z0** is of a lower physical linear

size/pixel than **z1**.

85. (Withdrawn) The method of claim 84, wherein at least one of **z0** and **z1** may

vary for one or more of the roads of the roadmap.

Page 18 of 20