Определение моментов инерции твердых тел с помощью трифилярного подвеса

Панферов Андрей 2019-11-11

1 Аннотация

В работе проверяются теоретические расчеты моментов инерции некоторых тел и проверка теоремы Гюйгенса-Штейнера с помощью трифилярного подвеса. полить воды

2 Теоретические сведения

Платформа P укреплена на кронштейне и снабжена рычагом, при помощи которого в системе можно создать крутильные колебания путем небольшого поворота верхней платформы. После того, как нижняя платформа P' оказывается повернутой на угол фотносительноверхнейплатформыP, возникаетмоментсил, стремящийся вернутьниж нюг

$$\frac{I\dot{\phi}^2}{2} + mg(z_0 - z) = E$$

Расстояние между точками С и С" равно длине нити L.

$$(R\cos\phi - r)^2 R^2 \sin^2\phi + z^2 = L^2$$

Учитывая малость угла поворота и пользуясь первым приближением корня получим:

$$z \approx z_0 - \frac{Rr\phi^2}{2z_0}$$

Подставляем это выражение в закон сохранения энергии, дифференцируем уравнение сохранения по времени и сокращаем на . Находим уравнение крутильных колебаний:

$$I\ddot{\phi} + mg\frac{Rr}{z_0}\phi = 0$$

Откуда

$$T = 2\pi \sqrt{\frac{Iz_0}{mgRr}} \qquad \qquad I = \frac{mgRrT^2}{4\pi^2 z_0} \qquad \qquad k = \frac{grR}{4\pi^2 z_0} \qquad \qquad I = kmT^2$$

3 Оборудование и инструментальные погрешности

Трифилярный подвес, секундомер, счетчик числа колебаний, набор тел, момент инерции которых надлежит измерить – используются в качестве оборудования. Формулы для расчета погрешностей:

$$\begin{split} \frac{\Delta z_0}{z_0} &= \sqrt{4(\frac{\Delta R}{R})^2 + 4(\frac{\Delta r}{r})^2 + 4(\frac{\Delta h}{h})^2} \\ \frac{\Delta k}{k} &= \sqrt{5(\frac{\Delta R}{R})^2 + 5(\frac{\Delta r}{r})^2 + 4(\frac{\Delta h}{h})^2} \\ \frac{\Delta I_i}{I_i} &= \sqrt{(\frac{\Delta k}{k})^2 + 4(\frac{\Delta T}{T})^2 + (\frac{\Delta m_i}{m_i})^2} \\ \frac{\Delta m}{m} &= \sqrt{4(\frac{\Delta k}{k})^2 + 4(\frac{\Delta \lambda}{\lambda})^2 + (\frac{\Delta m_0}{m_0})^2} \end{split}$$

$$\frac{\Delta I_{\rm диска}}{I_{\rm диска}} = \sqrt{4(\frac{\Delta k}{k})^2 + 4(\frac{\Delta \lambda}{\lambda})^2 + (\frac{\Delta m_0}{m_0})^2 + (\frac{\Delta \sigma}{\sigma})^2 + (\frac{\Delta I_0}{I_0})^2}$$

4 Измерение параметров установки

5 Колебания пустой платформы

$$I_0 = (7.63 \pm 0.11) \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$

6 Измерение моментов инерции тел

6.1 Диск

$$m = 584.4r$$
 ; $r = 85.4mm$

I	7 ₁₀ , c	39.292	39.292	39.277	39.225	39.286	39.238	39.212	$T_{10cp} = 3.9260c$	$\delta T_{10\mathrm{cp}} = 0.0013c$

$$I_{\text{диск}} = (2.11 \pm 0.20) \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$

6.2 Брусок

$$m=~1273.0$$
г ; $l=209.2$ мм ; $b=28.5$ мм

	T_{10} , c	36.998	36.975	36.926	36.971	36.994	36.919	36.958	$T_{10cp} = 3.6963c$	$\delta T_{10\mathrm{cp}} = 0.0012c$
- 1	-10,	00.000	00.010	00.020	30.012	30.001	30.010	00.000	1 - 10ch 3.0000	0 - 10ch 0.00 0

$$I_{\rm 6pycok} = (4.79 \pm 0.22) \cdot 10^{-3} {\rm kg \cdot m}^2$$

6.3 Кольцо

$$m = 776.9r$$
 ; $r = 154.3mm$

$$I_{\text{диск}} = (4.65 \pm 0.13) \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$

6.4 Кольцо+Диск

$$m = 1361.3r$$

- 1	T a	20.119	20 121	20 120	20.050	20.045	20.105	20 102	T = 2.0005a	$\delta T_{10cp} = 0.0009c$
	I_{10} , c	03.114	09.141	33.120	33.003	33.040	33.100	09.100	1 _{10cp} — 5.3033c	$ 01_{10cp} - 0.0003c $

$$I_{\rm диск} = (6.81 \pm 0.15) \cdot 10^{-3} {\rm kf \cdot m}^2$$

6.5 Кольцо+Диск+Брусок

$$m = 2634.3$$
г

T_{10} , c 36.343 36.292 36.285 36.272 36.347 36.360 36.350 $T_{10cp} = 3.6321c$ $\delta T_{10cp} = 0.001c$	T_{10}, c	36.343	36.292	36.285	36.272	36.347	36.360	36.350	$T_{10cp} = 3.6321c$	$\delta T_{10 \text{cp}} = 0.0014 \epsilon$
--	-------------	--------	--------	--------	--------	--------	--------	--------	----------------------	---

$$I_{\text{диск}} = (11.60 \pm 0.21) \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$

6.6 Сравнение теории с результатами эксперимента

Образец	Диск	Брусок	Кольцо	Диск+Кольцо	Диск+Кольцо+Брусок
$I_{\text{эксп}}, \text{ кг} \cdot \text{м}^2 \cdot 10^{-3}$	2.11 ± 0.20	4.79 ± 0.22	4.65 ± 0.13	6.81 ± 0.15	11.60 ± 0.21
$I_{\text{Teop}}, \text{ K}\Gamma \cdot \text{M}^2 \cdot 10^{-3}$	2.13	4.73	4.62	6.75	11.48

7 Проверка закона Гюгенса-Штейнера

Параметрыобразца : r = 90.0мм ; $\delta x = 5$ мм

n	T_{10} , c
0	30.799
1	30.830
2	30.923
3	31.267
4	31.722
5	32.233
6	32.871
7	33.536
8	34.388
9	35.308
10	36.134

8 Обсуждение результатов и выводы

Мы выяснили, что теоретические выводы моментов инерции верны и совпадают с экспериментальными данными. Так же мы выяснили, что момент инерции аддитивен, а закон Гюйгенса-Штейнера выполняется, так как линеаризованная зависимость получилась прямой. Погрешности величин не превышают 10%