A) Amplificador de tensión o multiplicador por una constante

1. a)
$$R_1 = 1K\Omega \text{ y } R_2 = 10K\Omega$$

$$\hat{V}_o =$$

{sacar foto de la forma de onda}

Reemplazar R_L por una resistencia de 10Ω *{sacar foto de la forma de onda}

b)
$$R_1 = 1M\Omega \text{ y } R_2 = 10M\Omega$$

$$\hat{V}_o =$$

{sacar foto de la forma de onda}

 $\{sacar\ foto\ de\ la\ forma\ de\ onda\ con\ la\ fuente\ de\ ruido\ y\ explicar\ qu'ees\}$

c)
$$R_1 = 1K\Omega \text{ y } R_2 = 1M\Omega$$

$$\hat{V}_o =$$

{sacar foto de la forma de onda}

2. $R_1 = 1K\Omega, R_2 = 10K\Omega, y punta 10X$

f(Hz)	\hat{V}_{ϵ}
0	
10	
10k	
100k	
1M	
10Meg	

f(Hz) \hat{V}_O

recordar que una caida de 3db se da cuando estás en el %70,7 del valor inicial

 $V_c =$

 $con V_i = 0, 4V$

{sacar foto de la forma de onda distorcionada}

B) Circuito Integrador

señal de entrada cuadrada de f=1/10RC=1kHz de A=0,2V, con $R_1=1K\Omega$ y $C_1=100nF$

sacar foto con y sin la resistencia $R_2=10K\Omega$ en paralelo al capacitor con punta 10x y 1x

F) Circuitos Rectificadores

 $\{sacar foto de v_o(t)\}$

 $\hat{V}_o =$

 $\bar{V}_o =$

Con un capacitor de 47uF en paralelo y una señal de f=50Hz y A=5V

$R_L(\Omega)$	$V_{ripple(ef)}$	$\bar{V}_o =$	<i>z</i> % =
$\overline{10K}$			
4,7K			
1K			