Analysis Comprehensive Examination

Examiners: Andriy Prymak, Eric Schippers, and Varvara Shepelska

Department of Mathematics, University of Manitoba

January 21st, 2021 9am - 3pm

Instructions:

This examination consists of 3 parts, A, B, and C:

- Part A covers the Core Material. It consists of 7 questions worth 10 marks each for a total of 70 marks. All questions must be answered for full marks.
- Part B covers the Advanced Material on Basic Functional Analysis. This section consists of 3 questions of which you must attempt 2. Each question is worth 15 marks for a total of 30 marks.
- Part C covers the Advanced Material on Abstract Measure and Integration Theory. This section consists of 3 questions of which you must attempt 2. Each question is worth 15 marks for a total of 30 marks.

Please take note of the following:

- 1. In Parts B and C, if you attempt more than 2 questions, you must clearly indicate which two questions you would like marked. Otherwise only the first 2 answers in the order they appear in your solutions will be graded.
- 2. The examination is worth a total of 130 marks. A total grade of 75% or 97.5 marks is required to pass the exam. Complete, detailed justifications are required for full marks.
- 3. The examination length is 6 hours. No texts, reference books, calculators, cell phones, or other aids are permitted in the examination.

A. Core material

- 1. (a) (6 points) Suppose $f:[0,1] \to [1,\infty)$ is a function of bounded variation on [0,1]. Show that $g(x) = \frac{1}{f(x)}$ is of bounded variation on [0,1].
 - (b) (4 points) Suppose $f:[0,1] \to (0,1)$ is a function of bounded variation on [0,1]. Does it follow that $g(x) = \frac{1}{f(x)}$ is of bounded variation on [0,1]? If so, prove it. If not, give a counterexample, with an explanation.
- 2. (a) (6 points) Suppose $\{\phi_n\}_{n=1}^{\infty}$ is an orthonormal system of complex-valued functions on [0,1]. Show that for any interval $I \subset [0,1]$ we have

$$\lim_{n \to \infty} \int_{I} \phi_n(x) \, dx = 0.$$

(b) (4 points) Give an example of a complex-valued orthogonal system of functions $\{\phi_n\}_{n=1}^{\infty}$ on [0, 1] such that

$$\lim_{n \to \infty} \int_{I} \phi_n(x) \, dx = 1.$$

- 3. (a) (4 points) Find all values of $z \in \mathbb{C}$ such that $e^{iz^2} = 1$.
 - (b) (6 points) Let γ be the unit circle $\{z:|z|=1\}$ traced once counter-clockwise. Evaluate

$$\frac{1}{2\pi i} \int_{\gamma} \frac{z}{e^{iz^2} - 1} \, dz.$$

4. Let

$$f(z) = \frac{z^2}{z - 5}.$$

- (a) (5 points) Find the power series of f around z = 0 on $\{z \in \mathbb{C} : |z| < 5\}$.
- (b) (5 points) Find the Laurent series of f around z = 0 on $\{z \in \mathbb{C} : 5 < |z|\}$.

2

5. (10 points) Let H be a real Hilbert space with inner product (\cdot, \cdot) . Let Y be a subspace of H and let $x \in H$. Suppose that the distance from x to Y is equal to d, i.e. $d = \inf_{y \in Y} \|x - y\|$. Prove the following refinement of Cauchy-Schwarz inequality:

$$(x,y) \le \sqrt{\|x\|^2 - d^2} \cdot \|y\|, \quad y \in Y.$$

(Hint: consider $||x - \lambda y||^2$ for $\lambda \in \mathbb{R}$.)

6. (10 points) Let A be the set of those real numbers in [0,1] which have at least one decimal representation containing only the digits 0 and 9 (for example, $1 = 0.\overline{9}$ belongs to A). Prove that A is Lebesgue measurable, and compute its Lebesgue measure.

(Hint: Consider $[0,1] \setminus A$. Start by removing the set whose first digit is different from 0 and 9, then consider the second digit, etc.)

7. For real numbers a, b such that $0 \le a < b \le 1$ define the function $S_{[a,b]}$ on [0,1] as follows:

$$S_{[a,b]}(x) = \begin{cases} \frac{x-a}{b-a}, & \text{if } x \in [a,b] \\ 0, & \text{if } x \in [0,1] \setminus [a,b] \end{cases}.$$

- (a) (3 points) Prove that the series $\sum_{n=1}^{\infty} (-1)^n S_{\left[\frac{1}{2^{n+1}}, \frac{1}{2^{n-1}}\right]}$ converges pointwise to some function f on [0,1].
- (b) (7 points) Use the dominated convergence theorem to compute $\int_{0}^{1} f \, dm$, where m is the Lebesgue measure on [0,1].

B. Functional Analysis

- 1. (a) (9 points) Prove that the identity operator $I: f \mapsto f$ is continuous from $L^2[0,1]$ into $L^1[0,1]$ and compute the norm of this map. (Hint: use Hölder's inequality).
 - (b) (6 points) Give an example of a measurable function f that belongs to $L^1[0,1]$ but not to $L^2[0,1]$. (Hint: f should be unbounded.)
- 2. For any Banach space Y let S_Y be its unit sphere, i.e. $S_Y = \{y \in Y : ||y|| = 1\}$.
 - (a) (9 points) Let X be a Banach space and X^* its dual. Use the Hahn-Banach theorem to prove that for any $x \in S_X$ there is a linear functional $f \in S_{X^*}$ such that f(x) = 1.
 - (b) (6 points) Let X be a reflexive Banach space. Prove that for any linear functional $f \in S_{X^*}$ there is an element $x \in S_X$ such that f(x) = 1.
- 3. Let X and Y be Banach spaces. A sequence of operators $\{T_n: X \to Y\}_{n=1}^{\infty}$ converges pointwise to an operator $T: X \to Y$ if $\lim_{n \to \infty} T_n(x) = T(x)$ for every $x \in X$. Denote by L(X,Y) the space of all bounded linear operators from X to Y and let Z be another Banach space.
 - (a) (5 points) Suppose that $\{T_n\}_{n=1}^{\infty} \subset L(X,Y)$ converges pointwise to $T \in L(X,Y)$ and $S \in L(Y,Z)$.
 - Prove that $\{S \circ T_n\}_{n=1}^{\infty}$ converges pointwise to $S \circ T$.
 - (b) (10 points) Suppose that $\{T_n\}_{n=1}^{\infty} \subset L(X,Y)$ converges pointwise to $T \in L(X,Y)$ and $\{S_n\}_{n=1}^{\infty} \subset L(Y,Z)$ converges pointwise to $S \in L(Y,Z)$. Show that $\{S_n \circ T_n\}_{n=1}^{\infty}$ converges pointwise to $S \circ T$. (Hint: use the uniform

C. Measure and Integration Theory

- 1. (a) (3 points) State the definition of mutually singular measures.
 - (b) (5 points) Suppose ν_1, ν_2 and μ are measures on a measure space (X, \mathfrak{B}) . If $\nu_1 + \nu_2$ and μ are mutually singular, show that ν_1 and μ are mutually singular and that ν_2 and μ are mutually singular.
 - (c) (7 points) Suppose ν_1, ν_2 and μ are measures on a measure space (X, \mathfrak{B}) . Assume that ν_1 and μ are mutually singular, and that ν_2 and μ are mutually singular. Does it follow that $\nu_1 + \nu_2$ and μ are mutually singular?
- 2. Suppose ν and μ are measures on a σ -finite measure space (X,\mathfrak{B}) such that ν is absolutely continuous with respect to μ ($\nu \ll \mu$), and let $\left[\frac{d\nu}{d\mu}\right]$ be the Radon-Nikodym derivative of ν with respect to μ .
 - (a) (6 points) Show that for any simple function f on X

$$\int f \, d\nu = \int f \left[\frac{d\nu}{d\mu} \right] \, d\mu.$$

(b) (9 points) Show that for any nonnegative measurable function f on X

$$\int f \, d\nu = \int f \left[\frac{d\nu}{d\mu} \right] \, d\mu.$$

3. (15 points) Suppose 0 < h < 1 and m is the one-dimensional Lebesgue measure on [0,1]. For any real-valued Lebesgue-integrable function f on [0,1], define

$$\phi(x) := \frac{1}{2h} \int_{[0,1] \cap [x-h,x+h]} f \, dm, \quad x \in [0,1].$$

Use Tonelli's theorem to prove that

$$\int_{[0,1]} |\phi| \, dm \le \int_{[0,1]} |f| \, dm.$$

You can use without a proof that the set $D = \{(x,y) \in [0,1]^2 : |x-y| \le h\}$ is measurable as a subset of $[0,1]^2$ equipped with the product measure $m \times m$.