

## FACULTY OF COMPUTING DISCRETE STRUCTURE (SECI1013) ASSIGNMENT 1

## *SEMESTER I 2024/25*

STUDENT 1 : CHUN YAO TING (A24CS0239)

STUDENT 2 : HONG JIA BAO (A24CS0251)

STUDENT 3 : <u>NIVEETHITA A/P PANDIA RAJAN (A24CS0148)</u>

STUDENT 4 : <u>AHMED ISLAM KASSEM (A23CS0007)</u>

SECTION : <u>SECTION 3</u>

LECTURER NAME : <u>DR. MUHAMMAD ALIIF BIN AHMAD</u>

- b) Is a proposition. True.
- () Is a proposition. True.
- d) Is a proposition. False.
- e) Is a proposion. True.

| P | 9 | P→q | 7p ←> 7q | (P->q) A (7P4>79) |
|---|---|-----|----------|-------------------|
| T | 7 | T   | 7        | T                 |
| 7 | F | F   | F        | F                 |
| F | 7 | T   | F        | F                 |
| F | F | T   | 7        | T                 |

| P | 9 | P ←>q | 77->72 | (p ↔ q) v (¬p → ¬q) |
|---|---|-------|--------|---------------------|
| T | 7 | 7     | T      | 7                   |
| 7 | F | F     | 7      | T                   |
| F | 7 | F     | F      | -                   |
| F | F | T     | T      | . —                 |

| 5) |   |   |   |    |         | A             |   |      | B       |
|----|---|---|---|----|---------|---------------|---|------|---------|
|    | ٩ | 9 | ٢ | 70 | 79 v 7r | 77 N (79 V7r) | P | 2 Ar | pv(qar) |
|    | Т | Т | 7 | F  | F       | F             | Т | Т    | T       |
|    | 7 | 7 | F | F  | T       | Ŀ             | T | F    | 7       |
|    | 7 | F | 7 | F  | 7       | F             | T | F    | T       |
|    | 7 | F | F | F  | 7       | F             | T | F    | Ī       |
|    | F | Т | T | T  | F       | F             | ۴ | Τ    | 7       |
|    | F | Ŧ | F | 7  | T       | T             | F | F    | F       |
|    | F | F | 7 | T  | 7       | 7             | F | F    | [-      |
|    | F | F | F | Т  | 1       | T             | F | F    | F       |

A and B are not logically equivalent. (A \$ 13)

| 6) |    |   | -   |     | A       | B       |
|----|----|---|-----|-----|---------|---------|
|    | P  | ٤ | rva | PAq | PA(PVQ) | PV(PAQ) |
|    | 7  | 7 | 7   | T   | T       | T       |
|    | 7  | F | т   | F   | 7       | T       |
|    | F  | 7 | T   | F   | F       | . F     |
|    | 1= | F | F   | F   | F       | F       |

8. P(x): x is a negative number.;  $Q(x): x^2$  is a positive number. Let x = b - a, which a > b, a and b are both positive number,  $x^2 = (b - a)^2$   $= b^2 - 2ab + a^2$ 

 $= b^{2} - 2ab + a^{2}$   $= a^{2} - ab + b^{2} - ab$  = a(a-b) + b(b-a) = a(a-b) - b(a-b)

= (a-b)(a-b) = (a-b)<sup>2</sup>

Given that  $a \ge b$ ; therefore  $a - b \ge 0$   $\Rightarrow$  This shows that a - b is positive number. As all square of positive number is a positive number, and  $x^2 = (a - b)^2$ ; therefore we show that a square of any negative number is a positive number.  $\forall x (P(x) \rightarrow Q(x))$  shown.

10. R is irreflexive as there is no pair of (a,b) where a=b. This is shown by if a=b, |a-b|= |a-a|=0 #2.

R is not reflexive as it is irreflexive

R is symmetric as all pairs of Ca, b) ER and all pairs of Cb, a) ER, when a \$b.

This is shown by la-bl = la-bl or lb-al, there fore if (a, b) EP, (b, a) EP.

R is not antisymmetric and not asymmetric because it is symmetric.

R is not transitive because it is irreflexad

Therefore R is not an equivalence relation.

As x,=x, and y,=y, f is an one-to-one function.

12 b) 
$$f(x,y) = (2x-y, x-2y)$$
  
 $f^{-1}(x,y) = (u,v)$   
Let  $u = 2x-y$ ;  $v = x-2y$   
Let  $x = u$  and  $y = v$ .

$$u = \frac{2x-y}{3} - (x)$$

$$\lambda: \frac{x-5\lambda}{3}$$

$$f^{-1}(x,y):\left(\frac{1}{2\pi c-y}, \frac{x-2y}{x}\right)$$

(3)



Therefore fg(r) \$ gf(r), as they are not equivalent for all real number of x.

Let an = number of sanings that do not contain o). when n=1, an= 2 => (0, 1) when n=2, an = } => (00,10,11) when 9=3, an = 4 => (000, 111, 110, 100) In order to get strongs that do not contain of, 2 cases is discussed; Case 1: End with zero -) either string consists of all zero -> 1 way → or string consists of all one before all 0 ->(n-1) ways eg ( 1110, 1100, 1000) Case 2 : End with one -) only when string counter of 911 one -> 1 way  $a_n = n+1$  $h = a_n + 1 - c1$ an -1+1 9n-1= h -(2) 9-1 = 9001 an = an -1 +1 , n>2 , a1 = 2 Input : h 16. Output = Ch Co & if (n=1) refure 0 ele if (n=2 or n=3) return return Cn-2 + Cn-3