Spectral Clustering and Cheeger's Inequality

Kaicheng Guo & Zhengyu Zou

How do you find "good" clusters in an extremely large and messy graph?

Which Cut Gives "Good" Clusters?

- A good cluster has the following properties:
 - Only need to move a small number of edges
 - The two subgraphs have similar number of vertices / edges. I.e.,
 they are "balanced in sizes"

Examples of clusters :(

Examples of Clusters :D

Spectral Approach of a "Good" Cluster

Volume of a Subgraph

- Volume = sum of the degrees of all vertices in the subgraph
- A "larger" graph has more vertices -> larger volume
- A "denser" graph has more edges -> larger volume
- This is a very good classifier of good clusters: BOTH sides needs to be large and dense ("balanced")

Conductance of a Cut

- The conductance is computed by the "edge flux" divided by the minimum volume of the cut and its "complement cut"
- Measures whether a cut is a "good" cut in the following sense:
 - Deleting a small number of edges Minimizing edge flux
 - "Balanced in size" maximizing the smaller one of the two volumes

Conductance of a Graph

- The conductance of a graph is simply given by the minimum conductance of any possible cuts of a graph.
- A "good" cluster yields the minimum conductance

How to Find "Good" Clusters?

Naive Way: Consider All Possible Clusters

- Consider every nonempty subset S of V as potential candidates of our "good" cluster
- Calculate the conductance of each candidate
- Return the candidate with the smallest conductance
- Runtime: O(2^{|V|}) :=(

A Better Way: Spectral Clustering

- Our good old friend: Laplacian Matrix L
- Laplacian matrix gives information about edge flux. Very useful
- Want to find a vector x such that x^TLx/x^Tx is minimized
- Fact: the smallest non-zero eigenvector x gives min(x^TLx/x^Tx)
 - Be careful! L has a 0 eigenvector.

Algorithm (Spectral Clustering)

- Find a good approximation of the eigenvector x of the second smallest eigenvalue of L (can use the power iteration method)
- Sort the vertices of V according to x: x(v_1)\leq x(v_2)\leq ...\leq x(v_n)
- Iterate over the cuts S_i with each time adding v_i to the cut. For each iteration calculate the conductance of S_i
- Return minimum of conductance

Demonstration of the Algorithm

```
graph.py X
RER
PROJECT
                               graph.py > ...
ph.py
                                              if conductance < min_conductance:</pre>
                                                  min_conductance = conductance
                                                  cluster = S
                                              update_graph(graph, pos, set(vertices[:i])
                                              print("Minimum conductance:", min_conducta
                                              print("Cluster:", cluster)
                                              update_graph(graph, pos, cluster, conducta
                                          plt.ioff()
                                          plt.show()
                                          plt.close()
                                          return min_conductance, cluster
                                      n = 20
                                      p = 0.1
                                      while True:
                                          graph = nx.erdos_renyi_graph(n, p)
                                          if is_connected(graph):
                                      pos = nx.spring_layout(graph)
                                      min_conductance, cluster = spectral_partitioning_a
                                PROBLEMS OUTPUT DEBUG CONSOLE TERMINA
```

Applications

- PageRank: classification of websites in to topics
- Community detection: detect communities or groups of nodes with similar connectivity patterns in social networks, biological networks, and other complex networks.
- Recommendation Systems: Spectral clustering can be used in recommendation systems to group similar items or users based on their preferences, ratings, or behavior.

References

GPT4 (for the algorithm implementation in python)

Chang, K. C., et al. "THE 1-LAPLACIAN CHEEGER CUT: THEORY AND ALGORITHMS." Journal of Computational Mathematics, vol. 33, no. 5, 2015, pp. 443–67. JSTOR, http://www.jstor.org/stable/43693873. Accessed 7 Apr. 2023.

Arsić, Branko, et al. "GRAPH SPECTRAL TECHNIQUES IN COMPUTER SCIENCES." Applicable Analysis and Discrete Mathematics, vol. 6, no. 1, 2012, pp. 1–30. JSTOR, http://www.jstor.org/stable/43666153. Accessed 7 Apr. 2023.

Cvetković, Dragoš, and Slobodan K. Simić. "TOWARDS A SPECTRAL THEORY OF GRAPHS BASED ON THE SIGNLESS LAPLACIAN, III." Applicable Analysis and Discrete Mathematics, vol. 4, no. 1, 2010, pp. 156–66. JSTOR, http://www.jstor.org/stable/43671298. Accessed 7 Apr. 2023.