

Introduzione ai metodi statistici per le applicazioni industriali parte 3

Antonio Panico

Department of Engineering for Industrial Systems and Technologies
University of Parma

18 giugno 2025

La Correlazione tra Variabili

Cos'è la correlazione?

La correlazione misura la relazione lineare tra due variabili. Il coefficiente di correlazione r assume valori tra -1 e +1:

- r > 0: correlazione positiva
- r < 0: correlazione negativa
- $r \approx 0$: nessuna correlazione lineare

Formula del coefficiente di correlazione di Pearson

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \cdot \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

DI PARMA

Esempi di correlazione

Correlazione: un' altra definizione

Un'altra interpretazione della correlazione

Oltre alla formula, il coefficiente di correlazione di Pearson r può essere interpretato come un valore che misura quanto due variabili si muovono insieme, rispetto alla loro variabilità individuale

Formula del coefficiente di correlazione di Pearson:

$$r = \frac{\mathsf{Cov}(X, Y)}{\sigma_X \cdot \sigma_Y}$$

- Cov(X, Y): covarianza tra X e Y
- σ_X , σ_Y : deviazioni standard di X e Y

Esempio: calcolo del coefficiente di correlazione r UNIVERSITÀ DI PARMA

Dati osservati:

Osservazione	X	Y
1	1	2
2	2	4
3	3	6
4	4	8

Esempio: calcolo del coefficiente di correlazione r università

Passaggi:

- Media di X: $\bar{X}=2.5$, Media di Y: $\bar{Y}=5$
- Deviazione standard:

$$\sigma_X = \sqrt{\frac{(1-2.5)^2 + \dots + (4-2.5)^2}{4}} = 1.118$$
 $\sigma_Y = 2.236$

Covarianza:

$$Cov(X, Y) = \frac{1}{4} \sum_{i} (X_i - \bar{X})(Y_i - \bar{Y}) = 2.5$$

Coefficiente di correlazione:

$$r = \frac{\text{Cov}(X, Y)}{\sigma_X \cdot \sigma_Y} = \frac{2.5}{1.118 \cdot 2.236} = 1.00$$

Correlazione: confronto con l'esempio precedente UNIVE

Dati già visti

X Y	1 2	2 4	3 6	4 8
W	10	20	30	40
Z	10 20	40	60	80

Correlazioni:

$$Corr(X, Y) = 1.00$$
 $Corr(W, Z) = 1.00$

Anche se le covarianze erano diverse, la correlazione standardizzata mostra che la relazione lineare tra le variabili è perfetta in entrambi i casi. 6

Correlazione \neq Causalità

Correlazione indica che due variabili si muovono insieme.

Causalità implica che una variabile influenza direttamente l'altra.

Attenzione: Correlazione non implica causalità!

Esempio ironico

"Aumentano le vendite di cravatte, aumenta il PIL." \rightarrow Non è che le cravatte fanno crescere l'economia! C'è una **terza variabile nascosta**: il miglioramento dell'economia stessa.

Messaggio chiave

Una buona visualizzazione può far intuire una relazione; ma servono studi ben progettati per dimostrare un legame causale.

Outlier e Correlazione di Pearson

Cosa sono gli outlier?

Gli outlier sono valori estremi che si distaccano in modo marcato dagli altri dati. Possono essere errori, anomalie oppure variazioni naturali.

Outlier e Correlazione di Pearson

Cosa sono gli outlier?

Gli outlier sono valori estremi che si distaccano in modo marcato dagli altri dati. Possono essere errori, anomalie oppure variazioni naturali.

Outlier

Outlier e Correlazione di Pearson

Problema con Pearson

Il coefficiente di Pearson è **sensibile agli outlier**, perché usa direttamente i valori. Un solo punto molto distante può **falsare** il risultato e dare una correlazione ingannevole.

Calcolo del rango: esempio completo

Definizione

Il **rango** (o rank) è la **posizione di un valore** quando i dati sono ordinati in modo crescente.

Ordinati (per calcolo del rango):

Calcolo del coefficiente di Spearman

1. Cos'è il coefficiente di Spearman?

È una misura di correlazione non parametrica che valuta quanto due variabili siano monotonicamente associate, usando i ranghi invece dei valori originali.

2. Passaggi del calcolo

- ① Assegna un **rango** a ciascun valore di X e Y
- 2 Calcola la differenza tra i ranghi: $d_i = R(x_i) R(y_i)$
- 3 Calcola d_i^2 per ogni coppia
- 4 Applica la formula:

$$\rho = 1 - \frac{6 \sum d_i^2}{n(n^2 - 1)}$$

Nota bene

- I valori devono essere ordinabili
- Se ci sono pareggi, si usano i ranghi medi
- Spearman è robusto agli outlier e non richiede relazione lineare

Nota bene

- I valori devono essere ordinabili
- Se ci sono pareggi, si usano i ranghi medi
- Spearman è robusto agli outlier e non richiede relazione lineare

- I valori devono essere ordinabili
- Se ci sono pareggi, si usano i ranghi medi
- Spearman è robusto agli outlier e non richiede relazione lineare

Cosa sono le Heatmap?

Definizione

Una heatmap (mappa di calore) è una rappresentazione visiva dei dati dove i valori vengono mostrati attraverso variazioni di colore.

Cosa sono le Heatmap?

Definizione

Una **heatmap** (mappa di calore) è una rappresentazione visiva dei dati dove i valori vengono mostrati attraverso variazioni di colore.

- Ogni cella rappresenta un valore numerico, come una matrice o una tabella.
- I colori permettono di identificare facilmente zone con valori più alti o più bassi.
- Spesso usata per visualizzare:
 - Matrici di correlazione
 - Frequenze o intensità
 - Andamenti su due variabili categoriali o continue

Esempio di Dataset Finanziario

Periodo	Stock A	Stock B	Bond	Risk-Free	Inflation
1	0.12	0.10	0.03	0.01	0.02
2	0.15	0.12	0.04	0.02	0.03
3	0.08	0.07	0.02	0.01	0.02
4	0.10	0.08	0.05	0.01	0.04
5	0.09	0.14	0.04	0.01	0.03
6	0.16	0.09	0.03	0.02	0.02
7	0.11	0.13	0.06	0.01	0.03
8	0.13	0.16	0.05	0.02	0.04
9	0.07	0.11	0.02	0.01	0.03
10	0.18	0.15	0.07	0.02	0.04

- Stock A / B: Rendimenti di due azioni diverse.
- **Bond:** Rendimento obbligazionario.
- Risk-Free: Tasso privo di rischio (es. titoli Stato).
- Inflation: Tasso d'inflazione nel periodo.

Heatmap Esempio Finanziario

Strategia di Ottimizzazione del Portafoglio

Objettivo

Massimizzare il rendimento atteso mantenendo il rischio sotto controllo tramite una buona diversificazione.

Analisi della heatmap di correlazione:

- Stock A e Risk-Free Rate: correlazione molto alta $(r = 0.86) \rightarrow$ attenzione alla ridondanza.
- Stock B e Bond: correlazione significativa $(r = 0.63) \rightarrow$ possibile sovrapposizione nei movimenti.
- **Bond e Inflazione:** correlazione forte $(r = 0.74) \rightarrow$ rischio inflazione presente.
- Stock A e B: correlazione moderata $(r = 0.36) \rightarrow$ buona combinazione per diversificare.

una buona diversificazione si ottiene evitando asset altamente correlati tra loro.

Hai seguito tutta la spiegazione? Ora puoi testare la tua comprensione!

Partecipa al quiz online:

Apri il quiz su Google Moduli

