

Estimação de Dados

Prof. Guilherme Palermo Coelho

Roteiro

- Estimação de Dados:
 - ► Introdução;
 - Avaliação de Desempenho;
 - Métodos Paramétricos:
 - ▶ Regressão Linear;
 - ▶ Regressão Polinomial;
 - Métodos não-paramétricos;
 - ▶ Ensembles.

- Como vimos nas aulas anteriores, em aprendizado supervisionado a tarefa de predição pode ser dividida em duas categorias:
 - Classificação de dados;
 - Estimação (ou Regressão) de dados;

Classificação:

- Consiste em predizer uma <u>classe</u> para uma amostra;
- Classe: conjunto finito de possibilidades.

ID	ldade	Nível da substância A no sangue	Nível da substância B no sangue	Histórico na Família	Está doente
1	Jovem	Alto	Baixo	Não	Não
2	Jovem	Alto	Alto	Não	Sim
3	Adulto	Alto	Baixo	Não	Não
4	Idoso	Médio	Baixo	Não	Não
5	Idoso	Baixo	Baixo	Sim	Sim
6	Idoso	Baixo	Alto	Sim	Não

- Como vimos nas aulas anteriores, em aprendizado supervisionado a tarefa de predição pode ser dividida em duas categorias:
 - Classificação de dados;
 - Estimação (ou Regressão) de dados

Estimação/Regressão:

- Consiste em predizer uma saída para uma amostra;
- Saída: valor contínuo pertencente a um conjunto possivelmente infinito.

gender	age	education	occupation	income
female	23	college	teacher	\$85,000
female	40	college	programmer	\$50,000
female	31	college	programmer	\$52,000
female	50	graduate	teacher	\$90,000
female	62	graduate	CEO	\$500,000
male	25	high school	programmer	\$50,000
male	28	high school	CEO	\$250,000
male	40	college	teacher	\$80,000
male	50	college	programmer	\$45,000
male	57	graduate	programmer	\$80,000

- **Ex.:** estimação de dados
 - ► Relação entre anos de experiência e salário

Anos de Experiência	Salário
2	21.000,00
4	30.000,00
10	60.000,00
15	70.000,00
•••	•••

- **Ex.:** estimação de dados
 - ► Relação entre anos de experiência e salário

Anos de Experiência	Salário
2	21.000,00
4	30.000,00
10	60.000,00
15	70.000,00
•••	•••

$$g(x) = ?$$

 $g(x) = 87.000,00$

Atenção: nem sempre a relação entre as variáveis e a saída é linear!

- A modelagem de um problema de estimação é similar à vista anteriormente para classificação de dados:
 - Apenas a saída que passa a ser um valor contínuo e não um rótulo.
- Ou seja, pode-se supor que o **mapeamento** entre os vetores de entrada x_i e as saídas esperadas y_i seja feito por uma função $g(\cdot)$ desconhecida, tal que:

$$y_i = g(\mathbf{x}_i) + \varepsilon_i$$

onde ε_i é o erro intrínseco do processo de amostragem.

- Deseja-se então ajustar os parâmetros $\theta \in \mathbb{R}^p$ de um modelo, de forma a aproximar, da melhor maneira possível, uma função $\hat{g}(x_i, \theta)$ de $g(x_i)$;
 - lsto é feito a partir de um conjunto de dados $\{(x_i, y_i)\}_{i=1,\dots,n}$ com n amostras.

Exemplo: estimar o salário,y, em função dos anos de

estudo x.

$$y = g(x) + \varepsilon$$

- Em geral, a função envolve mais de uma variável;
- **Exemplo:** estimar o salário, y, em função dos anos de estudo x_1 e nível hierárquico na empresa x_2 .

$$y = g(x_1, x_2) + \varepsilon$$

- ▶ Como estimar $\hat{g}(x_i, \theta)$ a partir de um conjunto de dados $\{(x_i, y_i)\}_{i=1,\dots,n}$?
 - Métodos Paramétricos: envolvem uma abordagem em duas etapas
 - 1. Faz-se uma suposição a respeito da **forma** de $g(\cdot)$;

Exemplo: $g(\cdot)$ é linear

$$g(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \dots + \theta_p x_p$$

2. Adota-se um procedimento de ajuste dos parâmetros θ_i :

$$\hat{g}(x) \cong g(x)$$

- Desvantagem dos métodos paramétricos:
 - ▶ Geralmente não conhecemos a **forma** exata de $g(\cdot)$;
 - ▶ Uma escolha errada pode levar a erros de estimação (efeito bias).

- ▶ Como estimar $\hat{g}(x_i, \theta)$ a partir de um conjunto de dados $\{(x_i, y_i)\}_{i=1,\dots,n}$?
 - **Métodos Não-Paramétricos:** não exigem suposições a respeito da **forma** de $g(\cdot)$;
 - ▶ Procuram uma estimativa que represente bem os dados de treinamento;
 - **Ex.**:redes neurais do tipo MLP.

- **Vantagem:** ao evitar a suposição inicial de forma, têm o potencial de realizarem um ajuste de uma gama maior de formas possíveis para $g(\cdot)$.
- **Desvantagem:** exigem um número maior de amostras para conseguir estimar $\hat{g}(\cdot)$.
 - A suposição de forma reduz (simplifica) o problema.

- A saída do estimador é um valor contínuo que deve ser o mais próximo possível do valor desejado.
 - A diferença entre os valores estimado e desejado fornece uma avaliação do erro de estimação;
 - ▶ Para uma amostra i dos dados:

$$e_i = \hat{g}(\mathbf{x}_i, \boldsymbol{\theta}) - y_i$$

- ightharpoonup O processo de treinamento busca corrigir este erro, minimizando uma **função objetivo** baseada em e_i .
- Existem várias medidas que podem ser usadas para avaliar o erro de estimação:
 - ► Elas avaliam aspectos diferentes dos resultados de estimação;
 - Qual é a mais indicada depende de um estudo da aplicação.

- Exemplos de medidas de desempenho (onde n é o número de amostras de treinamento):
 - Erro quadrático médio (EQM):

$$EQM = \frac{1}{n} \sum_{j=1}^{n} e_j^2$$

Raiz do erro quadrático médio (REQM):

$$REQM = \sqrt{\frac{1}{n} \sum_{j=1}^{n} e_j^2}$$

Estas duas medidas tendem a amplificar grandes discrepâncias entre a saída e o valor esperado.

- Exemplos de medidas de desempenho (onde n é o número de amostras de treinamento e y_i a saída esperada para a amostra j):
 - Erro quadrático relativo (EQR):

$$EQR = \frac{1}{n} \sum_{j=1}^{n} \frac{e_j^2}{(y_j - \bar{y})^2}, \qquad \bar{y} = \frac{1}{n} \sum_{j=1}^{n} y_j$$

Raiz do erro quadrático relativo (REQR):

$$REQR = \sqrt{\frac{1}{n} \sum_{j=1}^{n} \frac{e_j^2}{(y_j - \bar{y})^2}}, \qquad \bar{y} = \frac{1}{n} \sum_{j=1}^{n} y_j$$

- Normalizam o erro pelo erro de um estimador simples (que retorna a média).
 - Menor impacto de "erros grandes".

Métodos Paramétricos

- Regressão pode ser definida como o problema de estimar uma função a partir de pares entrada-saída:
 - Saída: variável dependente;
 - Entrada: variáveis independentes (os atributos dos dados, no caso desta disciplina);
- Na Regressão Linear, supõe-se que a relação entre entradas e saídas é linear (pode ser representada por uma reta, caso tenhamos uma única entrada);
 - Supondo que existem p atributos:

$$g(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \dots + \theta_p x_p + \varepsilon$$

- ightharpoonup A partir dos dados, devemos estimar os parâmetros θ .
 - Método paramétrico!

- Supondo que nosso conjunto de dados seja formado por um conjunto de n amostras rotuladas, tal que $\{(x_i, y_i)\}_{i=1,\dots,n}$:
 - \triangleright x_i é o vetor de p atributos da i-ésima amostra dos dados;
 - y_i é a saída rotulada da *i*-ésima amostra dos dados;
 - A relação entre entradas e saídas será:

$$g(\mathbf{x}_i) = y_i = \theta_0 + \theta_1 x_{i1} + \dots + \theta_p x_{ip} + \varepsilon_i$$

onde ε_i é o erro de amostragem da amostra i

Nosso objetivo é obter $\hat{g}(x_i, \beta)$ que melhor se aproxime de $g(x_i)$:

$$\widehat{g}(\boldsymbol{x}_i, \boldsymbol{\beta}) = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} = \boldsymbol{v}_i^T \boldsymbol{\beta}$$

- Uma das formas mais conhecidas de se obter o conjunto de parâmetros β é através do método dos mínimos quadrados (least squares);
 - Busca minimizar a soma dos erros quadráticos (SEQ) entre as saídas estimadas e esperadas:

$$SEQ(\boldsymbol{\beta}) = \sum_{j=1}^{n} (y_j - \boldsymbol{v}_j^T \boldsymbol{\beta})^2$$

Em notação matricial:

$$SEQ(\boldsymbol{\beta}) = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$

onde X é a matriz de dados, acrescida de uma primeira coluna com valores 1, e y é o vetor com as saídas esperadas para cada uma das n amostras.

$$\mathbf{X} = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1p} \\ 1 & x_{21} & \cdots & x_{2p} \\ \vdots & \cdots & \cdots & \vdots \\ 1 & x_{n1} & \cdots & x_{np} \end{bmatrix}$$

Exemplo: prever o valor de fechamento de uma ação na bolsa, em um dia t, a partir dos valores de fechamento em dois dias anteriores (t-1 e t-2);

Valor em <i>t</i> -2	Valor em <i>t</i> -1	Valor em <i>t</i>
8,33	8,75	8,22
8,41	8,33	8,75
8,43	8,41	8,33
8,51	8,43	8,41

Vetor y

Modelo linear a ser ajustado:

$$\widehat{g}(\boldsymbol{x}_i, \boldsymbol{\beta}) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2}$$

 x_{i1} = valor da ação em t-2 (amostra i)

 x_{i2} = valor da ação em t-1 (amostra i)

Matriz X

1	8,33	8,75
1	8,41	8,33
1	8,43	8,41
1	8,51	8,43

- O objetivo do método dos mínimos quadrados é encontrar β* que minimize a SEQ;
 - ightharpoonup Para isso, basta derivar a equação abaixo, em relação a $oldsymbol{eta}$ e igualar a 0:

$$SEQ(\boldsymbol{\beta}) = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$

Derivando:

$$\mathbf{X}^T(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}^*) = \mathbf{0}$$

Resolvendo para β^* e supondo que as matrizes são não-singulares (inversíveis):

$$\boldsymbol{\beta}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

 \triangleright Tendo β^* pode-se obter a saída do regressor para qualquer amostra x de dados:

$$s = v^T \beta^*$$
 (veja como obter v no Slide 19)

- Apesar da regressão linear ser simples, nem sempre a relação entre as variáveis independentes (atributos dos dados) e a variável dependente é linear;
- ► É preciso supor uma relação mais "complexa" entre as variáveis:
 - Possibilidade simples: supor que esta relação tem a forma de um polinômio
 - **Exemplo:** uma única variável independente x e um polinômio de grau k:

$$g(x_j) = \alpha_0 + \alpha_1 x_j + \alpha_2 x_j^2 + \alpha_3 x_j^3 + \dots + \alpha_k x_j^k + \varepsilon$$

- Grau do polinômio: maior expoente da variável independente;
- **Coeficientes do polinômio:** termos que multiplicam a variável independente (α_i) .

Quanto maior o grau do polinômio, maior a "flexibilidade" da curva para se ajustar aos dados;

Quanto maior o grau do polinômio, maior a "flexibilidade" da curva para se ajustar aos dados;

Para obter os parâmetros α_i do modelo polinomial, podemos fazer a seguinte substituição de variáveis:

$$x_{j} = z_{1}$$

$$x_{j}^{2} = z_{2}$$

$$x_{j}^{3} = z_{3}$$

$$\dots$$

$$x_{j}^{k} = z_{k}$$

Dessa forma, a equação do modelo polinomial se torna:

$$g(x_j) = \alpha_0 + \alpha_1 x_j + \alpha_2 x_j^2 + \alpha_3 x_j^3 + \dots + \alpha_k x_j^k + \varepsilon$$

- Mesma equação do Modelo Linear!
- Pode ser resolvido da mesma forma.

- Embora a relação entre as variáveis independentes e dependente do problema seja não-linear, o problema de estimação dos parâmetros do modelo é linear;
 - ► A mesma estratégia de regressão linear (*mínimos quadrados*) pode ser utilizada;
- Na discussão anterior, a modelagem para regressão polinomial foi feita considerando apenas uma variável independente:

$$g(x_j) = \alpha_0 + \alpha_1 x_j + \alpha_2 x_j^2 + \alpha_3 x_j^3 + \dots + \alpha_k x_j^k + \varepsilon$$

No entanto, a ampliação para múltiplas variáveis independentes é análoga, inclusive com a etapa de substituição de variáveis.

- Como visto antes, **métodos não-paramétricos** não exigem suposições a respeito da forma de $g(\cdot)$;
 - Ou seja, não exigem muito conhecimento prévio sobre o problema;
 - Necessário que a suposição em um método paramétrico seja feita corretamente;
- Vantagem: maior flexibilidade para ajustar a função aos dados;
- Desvantagem: exigem mais dados para um bom ajuste do modelo.
- Exemplos de métodos não paramétricos:
 - Redes Neurais MLP (já vistas);
 - Árvores de Regressão (Classification and Regression Trees CART não serão tratadas aqui);
 - Máquinas de Vetores Suporte (SVM não serão tratadas aqui);
 - • •

Perceptrons multicamadas como estimadores:

Cada "bolinha" corresponde a um perceptron.

A saída é um valor *contínuo* → estimação!

Perceptrons multicamadas como estimadores:

Cada neurônio, ao ter seus pesos ajustados, contribui para a saída da MLP com uma função de expansão ortogonal

Saída da MLP:

Perceptrons multicamadas como estimadores:

Em nenhum momento fizemos suposições a respeito do *formato* da função a ser aproximada.

Existem decisões que podem afetar significativamente a qualidade da aproximação (num. neurônios e camadas).

O número de parâmetros do modelo, a serem ajustados durante o treinamento, pode ser significativo.

Ensembles

Ensembles

- Não se esqueçam que *ensembles* também podem ser utilizados para estimação:
 - Basta apenas ajustar a forma de combinação das saídas.

É possível ter componentes paramétricos e nãoparamétricos em um *ensemble*!

Referências Bibliográficas

Referências Bibliográficas

- de Castro, L. N. & Ferrari, D. G. *Introdução à Mineração de Dados Conceitos Básicos, Algoritmos e Aplicações*. Ed. Saraiva, 2016.
- Han, J. & Kamber, M. Data Mining: Concepts and Techniques, Elsevier, 2006.
- Haykin, S. *Neural Networks: A Comprehensive Foundation*, 2nd Ed., Prentice-Hall, 1999.
- Witten, I. H., Frank E. & Hall, M. A. Data Mining: Practical Machine Learning Tools and Techniques, Elsevier, 2011.
- Coelho, G. P. Geração, Seleção e Combinação de Componentes para Ensembles de Redes Neurais Aplicadas a Problemas de Classificação. Dissertação de Mestrado, Faculdade de Engenharia Elétrica e de Computação (FEEC), Unicamp, 2006.