Chapter 4 - Basic Principles of Integrals.

Companison Property:

If
$$f(x) \ge g(x)$$
 $\forall x \in [a,b]$ then $\int_a^b f(x) dx \ge \int_a^b g(x) dx$

Proof: assume $f(x) \ge g(x) \iff f(x) - g(x) \ge 0$. From signed properly: $\int_{0}^{b} [f(x) - g(x)] dx \ge 0$

$$\int_{a}^{b} f(x)dx - \int_{a}^{b} g(x)dx \quad \text{or} \quad \int_{a}^{b} f(x)dx \ge \int_{a}^{b} g(x)dx.$$

Example:

Given that
$$\frac{\sin x}{\alpha} > \cos x$$
 for $(0, \pi/2)$, show that $\int_{\pi/6}^{\pi/2} \frac{\sin x}{\alpha} dx > 1/2$.

Let $f(x) = \frac{\sin x}{x}$ and $g(x) = \cos x$. Since $\frac{\sin x}{x} > \cos x$ for $0 < \infty < \frac{\pi}{2}$ from comparison property for definite integrals:

$$\int_{\pi/6}^{\pi/2} \frac{\sin \alpha}{\cos \alpha} d\alpha > \int_{\pi/6}^{\pi/2} \cos \alpha d\alpha = \frac{\pi}{2} = \frac{1}{2}.$$

Compension

If
$$g(x) \le f(x) \le h(x) \forall x \in [a,b]$$
, $\int_{a}^{b} g(x)dx \le \int_{a}^{b} f(x)dx \le \int_{a}^{b} h(x)dx$

Property 2:

Proof: as
$$f(x) \ge g(x)$$
, $\int_{a}^{b} f(x)dx \ge \int_{a}^{b} g(x)dx$
also from 1st property, $\int_{a}^{b} h(x)dx \ge \int_{a}^{b} f(x)dx$