Convex Functions

Goran Banjac

Large-Scale Convex Optimization ETH Zurich

March 10, 2020

Extended-valued functions and domain

- we consider extended-valued functions $f: \mathbb{R}^n \mapsto \mathbb{R} \cup \{+\infty\} =: \overline{\mathbb{R}}$
- example: indicator function of a set C

$$\mathcal{I}_{\mathcal{C}}(x) \coloneqq egin{cases} 0 & x \in \mathcal{C} \\ +\infty & ext{otherwise} \end{cases}$$

• the (effective) domain of $f \colon \mathbb{R}^n \mapsto \overline{\mathbb{R}}$ is the set

$$\operatorname{dom} f = \{ x \in \mathbb{R}^n \mid f(x) < +\infty \}$$

• we will always assume $\operatorname{dom} f \neq \emptyset$; such f is called *proper*

Convex function

• function $f \colon \mathbb{R}^n \mapsto \overline{\mathbb{R}}$ is **convex** if for all $x,y \in \mathbb{R}^n$ and $\theta \in [0,1]$:

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

(in extended value arithmetics)

• line connecting (x,f(x)) and (y,f(y)) is above the graph

convex function

nonconvex function

• f is concave if -f is convex

Examples of convex functions

- examples on R:
 - quadratics: ax^2 for $a \ge 0$
 - exponential: e^{ax} for any $a \in \mathbb{R}$
 - negative logarithm: $-\log x$ on \mathbb{R}_{++}
 - negative entropy: $x \log x$ on \mathbb{R}_{++}
- examples on \mathbb{R}^n :
 - indicator function of a convex set \mathcal{C} : $\mathcal{I}_{\mathcal{C}}(x)$
 - norms: ||x||
 - affine function: $f(x) = a^T x + b$

Jensen's inequality

- assume that $f \colon \mathbb{R}^n \mapsto \overline{\mathbb{R}}$ is convex
- then for all collections $\{x_1,\ldots,x_k\}$ of points

$$f\left(\sum_{i=1}^{k} \theta_i x_i\right) \le \sum_{i=1}^{k} \theta_i f(x_i)$$

where $\theta_i \geq 0$ and $\sum_{i=1}^k \theta_i = 1$

ullet for k=2 this reduces to the convexity definition

Epigraph

- the graph of f is the set of pairs $(x, f(x)) \in \mathbb{R}^n \times \overline{\mathbb{R}}$
- the **epigraph** of f is the set:

$$epi f = \{(x, t) \in \mathbb{R}^n \times \mathbb{R} \mid f(x) \le t\}$$

• function $f : \mathbb{R}^n \mapsto \overline{\mathbb{R}}$ is convex if and only if $\operatorname{epi} f$ is a convex set

- ullet f is called closed (lower semi-continuous) if $\operatorname{epi} f$ is closed set
- example: norm cone

$$\{(x,t) \in \mathbb{R}^{n+1} \mid ||x|| \le t\}$$

Convex envelope

- convex envelope of f is its largest convex minorizer, that is,
 - $-\operatorname{env} f$ is convex
 - $-\operatorname{env} f \leq f$
 - $\operatorname{env} f \geq g$ for all convex $g \leq f$

ullet epigraph of convex envelope of f is convex hull of $\operatorname{epi} f$

Sublevel set

• a sublevel set $S_r(f)$ of function $f\colon \mathbb{R}^n \mapsto \overline{\mathbb{R}}$ is defined as:

$$S_r(f) = \{ x \in \mathbb{R}^n \mid f(x) \le r \}$$

- sublevel sets of convex functions are convex
- example: norm ball

$$\{x \in \mathbb{R}^n \mid ||x|| \le r\}$$

$$0 < r_1 < r_2 < r_3$$

Affine function

• affine function $f(x) = s^T x + r$ cuts $\mathbb{R}^n \times \mathbb{R}$ in two halves

- s defines slope of function
- for any fixed $x \in \mathbb{R}^n$, $f(y) = s^T y + r$ can be written as

$$f(y) = f(x) + s^{T}(y - x)$$

ullet upper halfspace is epigraph with normal vector (s,-1):

epi
$$f = \{(x,t) \mid s^T x + r \le t\} = \{(x,t) \mid (s,-1)^T (x,t) \le -r\}$$

First-order condition for convexity

• a differentiable function $f \colon \mathbb{R}^n \mapsto \mathbb{R}$ is convex if and only if

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

for all $x, y \in \mathbb{R}^n$

- for all $x \in \mathbb{R}^n$ function f has an affine minorizer that:
 - has slope s given by $\nabla f(x)$
 - coincides with f at x
 - is supporting hyperplane to $\operatorname{epi} f$ with normal $(\nabla f(x), -1)$

Subdifferential

• subdifferential of $f\colon \mathbb{R}^n\mapsto \overline{\mathbb{R}}$ at $x\in \mathbb{R}^n$ is the set of vectors $s\in \mathbb{R}^n$ satisfying

$$f(y) \ge f(x) + s^T(y - x)$$

for all $y \in \mathbb{R}^n$

- notation:
 - subdifferential ∂f
 - any element $s \in \partial f(x)$ is called *subgradient* of f at x

- ullet subgradients define affine minorizers that coincide with f at x
- $s \in \partial f(x)$ if and only if $(s,-1) \in N_{\operatorname{epi} f}(x,f(x))$

Second-order condition for convexity

• a twice differentiable function $f\colon \mathbb{R}^n\mapsto \mathbb{R}$ is convex if and only if

$$\nabla^2 f(x) \succeq 0$$

for all $x \in \mathbb{R}^n$ (i.e., Hessian is positive semidefinite)

- "the function has nonnegative curvature"
- example: $f(x) = x^T P x$

$$P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$P = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

How to conclude convexity

- use convexity definition
- show that epigraph is convex set
- use first or second order condition for convexity
- use convexity preserving operations
 - positive sum
 - composition with affine mapping
 - pointwise supremum
 - partial minimization
 - composition rule

Positive sum and composition with affine mapping

- assume that f_j is convex for $j = \{1, \dots, m\}$
- assume that there exists x such that $f_j(x) < \infty$ for all j
- then positive sum

$$f = \sum_{j=1}^{m} t_j f_j$$

with $t_i > 0$ is convex

- if f is convex, then f(Ax + b) is convex
- example: log barrier for linear inequalities

$$f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x), \quad \text{dom } f = \{x \mid a_i^T x < b_i, \ i = 1, \dots, m\}$$

Pointwise supremum

• pointwise supremum of convex functions from family $\{f_j\}_{j\in J}$:

$$f(x) = \sup_{j \in J} f_j(x)$$

- convex since intersection of convex epigraphs
- **example:** maximum eigenvalue of symmetric matrix: for $X \in \mathbb{S}^n$,

$$\lambda_{\max}(X) = \sup_{\|y\|_2 = 1} y^T X y$$

Partial minimization

ullet if f is convex in (x,y) and $\mathcal C$ is a nonempty convex set, then

$$g(x) = \inf_{y \in \mathcal{C}} f(x, y)$$

is convex provided $g(x) > -\infty$ for all x

- examples:
 - distance to a convex set $\mathcal C$

$$dist(x, C) = \inf_{y \in C} ||x - y||$$

- image of a convex function under linear mapping

$$(Lf)(x) := \inf_{y} \{ f(y) \mid Ly = x \}$$
$$= \inf_{y} \{ f(y) + \mathcal{I}_{\mathcal{S}}(x, y) \}$$

where
$$S = \{(x, y) \mid Ly = x\}$$

Composition rule

• consider the function $f \colon \mathbb{R}^n \mapsto \overline{\mathbb{R}}$ defined as:

$$f(x) = h(g(x))$$

where $h \colon \mathbb{R} \mapsto \overline{\mathbb{R}}$ is convex and $g \colon \mathbb{R}^n \mapsto \mathbb{R}$

- suppose that one of the following holds:
 - h is nondecreasing and g is convex
 - h is nonincreasing and g is concave
 - g is affine
- then f is convex
- examples:
 - $\exp g$ is convex if g is convex
 - 1/g is convex if g is concave and positive
 - norm-squared: $||x||^2$

Vector composition rule

• consider the function $f: \mathbb{R}^n \mapsto \overline{\mathbb{R}}$ defined as:

$$f(x) = h(g_1(x), g_2(x), \dots, g_k(x))$$

where $h \colon \mathbb{R}^k \mapsto \overline{\mathbb{R}}$ is convex and $g_i \colon \mathbb{R}^n \mapsto \mathbb{R}$

- suppose that for each $i \in \{1, ..., k\}$ one of the following holds:
 - h is nondecreasing in the ith argument and g_i is convex
 - h is nonincreasing in the *i*th argument and g_i is concave
 - $-g_i$ is affine
- then f is convex

Conjugate function

• the **conjugate** of a function f is

$$f^*(y) = \sup_{x} \left\{ y^T x - f(x) \right\}$$

- f^* is convex (even if f is not) since pointwise supremum of affine functions
- f^* is closed since its epigraph is intersection of closed halfspaces
- examples:
 - negative logarithm $f(x) = -\log(x)$

$$f^*(y) = \sup_{x>0} \{yx + \log x\} = \begin{cases} -1 - \log(-y) & y < 0 \\ +\infty & \text{otherwise} \end{cases}$$

- indicator function of a convex cone \mathcal{K}

$$\mathcal{I}_{\mathcal{K}}^{*}(y) = \sup_{x \in \mathcal{K}} \{ \boldsymbol{y}^{T} \boldsymbol{x} \} = \mathcal{I}_{\mathcal{K}^{\circ}}(y)$$

Conjugate function – graphical interpretation

$$f^*(y) = \sup_{x} \left\{ y^T x - f(x) \right\} = -\inf_{x} \left\{ f(x) - y^T x \right\}$$

• example: $f^*(\frac{1}{2})$

- conjugates of f and $\operatorname{env} f$ are the same, i.e., $f^* = (\operatorname{env} f)^*$
- biconjugate $f^{**}=(f^*)^*$ is the closed convex envelope of f, that is, $f^{**}\leq f$ and $f^{**}=f$ if and only if f is closed and convex

Support function

• the **support function** of a set $\mathcal{C} \subseteq \mathbb{R}^n$ is defined as:

$$S_{\mathcal{C}}(y) \coloneqq \sup_{x \in \mathcal{C}} \{y^T x\}$$

- some properties of support function:
 - positively homogeneous, i.e., $S_{\mathcal{C}}(\theta y) = \theta S_{\mathcal{C}}(y)$ if $\theta > 0$
 - $S_{\mathcal{C}}(y) = \mathcal{I}_{\mathcal{C}}^*(y)$
 - $-\operatorname{dom} S_{\mathcal{C}} = (\mathcal{C}^{\infty})^{\circ}$

References

- these lecture notes are based to a large extent on the following material:
 - Stanford EE364a class developed by Stephen Boyd
 - Lund course on Large-Scale Convex Optimization developed by Pontus Giselsson
- the original slides can be downloaded from

https://web.stanford.edu/class/ee364a/lectures.html https://archive.control.lth.se/ls-convex-2015/