Une introduction à l'analyse de séquences et quelques-unes de ses utilisations en sciences sociales

Matthias Studer

Gilbert Ritschard

LIVES NCCR, Université de Genève Institut de Démographie et Socioéconomie, Université de Genève http://mephisto.unige.ch/traminer

Déjeuner R, Université de Genève, 6 décembre 2016

1/47

Sequence analysis Introduction

Question sur des processus

- Centré sur un événement ou état.
 - Événement : Trouver un emploi...
 - État : Être employé...
- Questions :
 - Occurrence (récurrence?)
 - Ordonnancement.
 - Temporalité.
 - Fréquence.
- Méthodes :
 - Analyse de biographie.
 - Analyse de données de panel.
 - ...

Sequence analysis Introduction

Analyse de séquences

- Cadre méthodologique pour l'analyse de trajectoires et processus (Abbott and Tsay, 2000) :
 - Carrières (criminelle, professionnelle...)
 - Développement d'organisation, entreprise, nations.
 - Transitions de l'école à l'emploi...
 - Utilisation journalière (ou hebdomadaire) du temps...
 - ٥..
- But : analyser les processus dans leur globalité, développement entre plusieurs statuts.

LIVE^s

3/47

Sequence analysis Introduction

Question sur les processus II

- Vue holistique sur les processus :
 - Développement entre plusieurs états.
 - Transition qui prend du temps.
 - Synthétiser une période de vie.
 - Transition de l'école à l'emploi.
 - Réinsertion professionnelle.
- Dimensions clefs :
 - Ordonnancement.
 - Temporalités.
 - Durées.
- Méthodes : Analyse de séquences.

Questions de l'analyse de séquences

- Description de trajectoires.
- Identification de trajectoires typiques :
 - Existe-t-il des trajectoires typiques (fréquentes)?
 - Quelles sont ces trajectoires?
 - Quelle dispersion autour de ces trajectoires types?
- Expliquer les trajectoires :
 - Quels facteurs influent sur la trajectoire suivie par un individu?
- Impact d'une trajectoire passée.
 - Comment un résultat est-il influencé par une trajectoire passée ?

6/47

Sequence analysis
Introduction
Définition d'une séquence

Exemple

- Trajectoires de taux d'occupation en Suisse.
- Étude de Levy et al. (2006).
- But:
 - Identifier les changements de trajectoires au 20e siècle.
 - Parcours de vie genré.
 - Identifier les patterns d'aller-retour des femmes sur le marché du travail en Suisse.
- Données :
 - 1560 individus entre 26 et 40 ans.

Sequence analysis Introduction

Méthodes de l'analyse de séquences

- Analyse descriptive de trajectoires.
 - Visualisation.
 - Statistiques descriptives.
- Typologie de trajectoires (Abbott and Forrest, 1986).
 - Utilisation de la typologie dans d'autres analyses.
- Analyse de dispersion pour séquences d'états (Studer et al., 2011).
 - Analyse des relations entre facteurs explicatifs et trajectoires.

LIVES

7/47

Sequence analysis
Introduction
Définition d'une séquence

Les trajectoires comme séquences

- Analyse de séquence : Trajectoires codées comme séquences d'états.
 - Séquence : liste ordonnée des états tirés de l'alphabet.
 - Alphabet : plein temps, temps partiel, inactifs (ou chômeur), éducation.

Séquences d'états ou d'événements

- Séquences chronologiques :
 - La position dans la séquences indique le temps.
 - Et la précédence.
- Distinction importante

séquences d'états et séquences d'événements

- Un état dure pour toute la durée de l'unité de temps.
- Un événement, tel que "enménager" ou "terminer les études", ne dure pas, mais provoque un changement d'état, potentiellement en interaction avec d'autres événements.

11/47

Sequence analysis

Introduction

Définition d'une séquence

Considérations pratiques

- Comment coder un processus?
- Points clefs :
 - Définition du début du processus.
 - Un événement particulier (terminer les études, ...).
 - Un âge (15 ans).
 - Une année précise (2000).
 - Définition de l'alphabet :
 - Basé sur la question de recherche.
 - Uniquement les distinctions les plus importantes.
 - Grand versus petit alphabet.

Sequence analysis
Introduction
Définition d'une séquence

Séquences d'états ou d'événements : exemple

Time stamped events (TSE)

Sandra	Ending education in 1980	Start working in 1980
Jack	Ending education in 1981	Start working in 1982

- Les événements peuvent être simultanés (cf. Sandra).
- Eléments à la position ne se produise pas nécessairement au même moment.

State sequence view

year	1979	1980	1981	1982	1983
Sandra	Education	Education	Employed	Employed	Employed
Jack	Education	Education	Education	Unemployed	Employed

- Un état observé uniquement pour chaque unité de temps.
- La position indique la temporalité: tous les états à la position 2 indique l'état en 1980.

LIVES

12/47

Sequence analysis
Analyse descriptive
Visualisation
Visualisation basée sur les séquences

■ Fulltime ■ Parttime ■ Education ■ OLF

Visualisation de l'ordonnancement

- Parallel coordinates plot (Bürgin and Ritschard, 2014).
- Patterns fréquents (75% des cas).

LIVES

16/47

Sequence analysis
Analyse descriptive
Exemple d'utilisation

Évaluation d'une politique publique

- Réforme de la politique de réinsertion à Genève.
- Trajectoires des chômeurs en fin de droits.
 - Transfert entre institutions.
 - Emplois discontinus.
 - État «Aucun».

LIVE

Sequence analysis
Analyse descriptive
Statistiques descriptives

Chronogramme

• Distribution entre état à chaque position.

LIVE^s

18/47

Sequence analysis Typologie

Typologie de séquences

Typologie de séquences en sciences sociales

- Analyse de séquences :
 - Existe-t-il des séquences typiques (ou récurrentes)?
 - Quelles sont ces trajectoires?
- Analyse exploratoire
- Analyse en cluster.
 - But : regrouper les séquences similaires dans des types en ignorant les petites différences.
 - Etapes :
 - Calcul des dissimilarités entre séquences.
 - Clustering.

Sequence analysis
Typologie
Typologie de séquences

Dissimilarité entre séquences

• Quantification des différences entre deux objets.

- Optimal Matching.
- Mais beaucoup d'autres qui diffèrent selon (Studer and Ritschard, 2016):
 - Ordonnancement des états et transitions.
 - Temporalité des états et transitions.
 - Temps passé dans chaque état.

23/47

Sequence analysis
Typologie
Typologie de séquences

Interprétation de la typologie

- Identifications de patterns liés à :
 - Logiques de développement différentes.
 - Interdépendances entre moments de la trajectoire.
 - Contraintes légales, économiques ou sociales.
 - Norme sociale sur les parcours de vie.
- Modèles pour les acteurs?
- Trajectoires attendues?

Sequence analysis Typologie

Typologie de séquences

Analyse en cluster

• Six types de séquences.

LIVES

24/47

Sequence analysis Typologie Typologie de séquences

Expliquer les trajectoires

- La typologie est une variable catégorielle.
- Peut être utilisé comme variable dépendante.
- But : Comprendre les facteurs qui influencent les chances de suivre un type de trajectoires.
- Modèle multinomial (référence : plein-temps).

	Full-OLF	Part	OLF-Part	Full-Part	OLF			
Constante	-6.61***	-4.82***	-7.01***	-4.81***	-6.31***			
	(1.01)	(0.36)	(1.03)	(0.38)	(1.01)			
Femme	5.84***	2.96***	5.39***	2.50***	6.09***			
	(1.01)	(0.29)	(1.01)	(0.28)	(1.01)			
Né après 1945	0.11	1.29***	0.67*	1.42***	_0.39 [*]			
·	(0.23)	(0.29)	(0.29)	(0.34)	(0.20)			
*** $p < 0.001$, ** $p < 0.01$, * $p < 0.05$								

Effet d'une trajectoire passée

- La typologie comme variable indépendante.
- But : Comprendre l'effet d'un type de trajectoire passée sur la situation présente ou future.
- Exemple :
 - Effet de la trajectoire professionnelle sur la pauvreté chez les personnes âgées (Gabriel et al., 2015).
 - Condition de travail passée et réussite au doctorat chez les assistants-doctorants à Genève (Studer, 2012).

LIVE^s

LIVE^s

27/47

Sequence analysis
Typologie
Typologie de séquences

Limites

- Simplification des séquences.
- Hypothèse : dispersion intra cluster peut être ignorée.
- Si non vérifiées, risque de fausses conclusions.
- Comment confirmer les liens observés?

Sequence analysis
Typologie

Typologie de séquences

Trajectoires de doctorants

- Trajectoire de conditions de travail.
- Analyse des liens avec la réussite au doctorat.
- Basé sur les archives de l'Université de Genève (Studer, 2012).

LIVES

28/47

Sequence analysis
Dispersion
Analyse de dispersion

Analyse de dispersion des séquences

Analyse de dispersion (Studer et al., 2011) :

- Étude des liens entre séquences d'états et variables explicatives.
- Extension du cadre méthodologique de l'ANOVA.
- Mesure de la force du lien à l'aide de la part «expliquée» de la dispersion des séquences.
- Estimation de la significativité ("p-value") à l'aide de tests de permutation.

Problématique exemple

- Carrière professionnelle suite au Master en Suisse (Studer, 2012).
- But : mesure des inégalités hommes-femmes dans le monde académique.
- Données.
 - 3043 individus suivis pendant 5 ans après le Master.
 - Alphabet: Outside Academia, Academia, Internship, Jobless, Further Education.

32/47

Sequence analysis
Dispersion
Analyse de dispersion

Arbre de régression

- Choix récursif de la «meilleure» variable explicative.
- Uniquement des séparations significatives.

LIVES **4**

Sequence analysis
Dispersion
Analyse de dispersion

Comparaison de groupes de séquences

- Est-ce que les trajectoires diffèrent selon le sexe?
- Pseudo- $R^2 = 0.002$ et \hat{p} -value = 0.001.

LIVES

33/47

Sequence analysis
Conclusion
Conclusion
Analyse de séquences

- Vue d'ensemble sur les trajectoires et les processus.
 - Analyse descriptive.
 - Identification de typologie.
 - Mesure des liens avec des co-variables.
- Vue globale en prenant en compte.
 - Ordonnancement.
 - Temporalité.
 - Temps passé dans chaque état.
- Approche complémentaire à d'autres.

Débuter : bibliographie choisie

- Introduction à l'analyse de séquences avec TraMineR :
 - Gabadinho, A., G. Ritschard, N. S. Müller and M. Studer (2011). Analyzing and Visualizing State Sequences in R with TraMineR. *Journal of Statistical Software* 40(4), 1–37.
- Création de typologie de séquences :
 - Studer, M. (2013). Weighted Cluster library manual: A practical guide to creating typologies of trajectories in the social sciences with R. LIVES Working Papers 24, NCCR LIVES, Switzerland.
- Analyse de dispersion des séquences :
 - Studer, M., G. Ritschard, A. Gabadinho and N. S. Müller (2011). Discrepancy Analysis of State Sequences. Sociological Methods and Research 40(3), 471–510.

37/47

Sequence analysis
TraMineR
TraMineR

Possibilités offertes par TraMineR

- Toutes les analyses présentées ici.
- Autre visualisation (librairie TraMineRextras).
- Prise en charge et conversion entre différents format de données longitudinal.
- Prise en charge des pondérations et données manquantes.
- Extraction et visualisation de séquences représentatives d'un ensemble de séquences.
- Autre statistiques descriptives (taux de transitions, ...).
- Calcul de caractéristiques longitudinal des séquences (indice de complexité, entropie longitudinale, turbulence, temps passé dans chaque état, ...)
- Test d'Homogénéité des dispersions
- Analyse de séquences d'événements.
 - Extraction de sous-séquences fréquentes.
 - Identification de sous-séquences discriminantes.

TraMineR

- TraMineR est une librairie R pour l'analyse de séquences.
- Destiné aux sciences sociales (mais utilisé au-delà).
- TraMineR: Trajectory Miner in R (Aucun rapport avec le Gewürztraminer)
- Installation : install.packages("TraMineR")
- Pourquoi une librairie R?
 - Importation de données (SPSS, Stata, ...).
 - Analyse des résultats produit par TraMineR à l'aide d'autres packages (Clustering, MDS, multi-level models, ...).
 - Utilisation des résultats d'autres packages dans TraMineR (régression, etc.).

LIVES

39/47

Sequence analysis TraMineR TraMineR

References I

Abbott, A. and J. Forrest (1986). Optimal matching methods for historical sequences. *Journal of Interdisciplinary History* 16, 471–494.

Abbott, A. and A. Tsay (2000). Sequence analysis and optimal matching methods in sociology, Review and prospect. *Sociological Methods and Research 29*(1), 3–33. (With discussion, pp 34-76).

Brzinsky-Fay, C., U. Kohler, and M. Luniak (2006). Sequence analysis with Stata. *The Stata Journal* 6(4), 435–460.

Bürgin, R. and G. Ritschard (2014). A decorated parallel coordinate plot for categorical longitudinal data. *The American Statistician 68*(2), 98–103.

Elzinga, C. H. (2009). *CHESA 3.1 User Manual*. Amsterdam : Vrije Universiteit.

References II

- Gabadinho, A., G. Ritschard, N. S. Müller, and M. Studer (2011). Analyzing and visualizing state sequences in R with TraMineR. *Journal of Statistical Software 40*(4), 1–37.
- Gabriel, R., M. Oris, M. Studer, and M. Baeriswyl (2015). The persistence of social stratification? a life course perspective on poverty in old-age in switzerland. *Swiss Journal of Sociology*.
- Halpin, B. (2014). SADI: Sequence analysis tools for Stata.Department of Sociology Working Paper Series WP2014-03, University of Limerick.
- Levy, R., J.-A. Gauthier, and E. Widmer (2006). Entre contraintes institutionnelle et domestique : les parcours de vie masculins et féminins en suisse. *Cahiers canadiens de sociologie 31*(4), 461–489.

42/47

Sequence analysis

Softwares

- R :
 - TraMineR (Gabadinho et al., 2011)
 - WeightedCluster (Studer, 2012)
- Stata :
 - SADI : Sequence Analysis Distance Measures (Halpin, 2014)
 - SQ (Brzinsky-Fay et al., 2006)
- Chesa (Elzinga, 2009)

Sequence analysis
TraMineR
TraMineR

References III

- Studer, M. (2012). Étude des inégalités de genre en début de carrière académique à l'aide de méthodes innovatrices d'analyse de données séquentielles. Thèse de doctorat n° 777, Faculté des sciences économiques et sociales, Université de Genève.
- Studer, M. and G. Ritschard (2016). What matters in differences between life trajectories: A comparative review of sequence dissimilarity measures. *Journal of the Royal Statistical Society:* Serie A 179(2), 481–511.
- Studer, M., G. Ritschard, A. Gabadinho, and N. S. Müller (2011). Discrepancy analysis of state sequences. *Sociological Methods and Research* 40(3), 471–510.

LIVES

43/47

Sequence analysis

Longitudinal data formats

Code	Example	е										
	ld	a18	a19 .	a20	a21	a22	a23	a24	a25	a26	a27	
STS	101	S	S	S	M	M	MC	MC	MC	MC	D	
	102	S	S	S	MC	MC	MC	MC	MC	MC	MC	
	Id	<i>s</i> 1		3	<i>s</i> 4							
DSS	101	S		C	D							
	102	S	MC									
SPS	ld	<i>s</i> 1	<i>s</i> 2		<i>s</i> 3	<i>s</i> 4						
	101	(S,3)	(M,2)	(MC,4)	(D,1)						
	102	(S,3)	(MC,7)									
	ld	Index		То								
	101	1	18	20		le (S)						
	101	2	21	22		ried (M)						
SPELL	101	3	23	26		ried w Cl		(MC)				
	101	4	27	27		rced (D)	1					
	102	1	18	20		le (S)						
	102	2	21	27	Mar	ried w Cl	hildren	(MC)				
	ld	Time	Event									
	101	21	M (Ma									
	101	23	C (Chil									
TSE	101	26	C (Chil		1)							
	101	27	D (Div									
	102	21	M (Ma									
	102	21	C (Chil	dbirtl	1)							

Other methods in Sequence Analysis

- Extraction and visualization of representative sequences of a set of sequence.
- Analyze complexity/turbulance of sequences.
- Homogeneity of discrepancy
- Analysis of event sequences.
 - Extraction of frequent event subsequences.
 - Identification of discriminant subsequences.

