模拟与数字电路

Analog and Digital Circuits

课程主页 扫一扫

第三讲: 布尔逻辑的化简

Lecture 8: Boolean Logic and Simplification

主 讲: 陈迟晓

Instructor: Chixiao Chen

提纲

- 复习
 - 右上图是两个补码编码的整数相加,请完成计算,并写出其对应的十进制表达?
 - 右下图是一个CMOS反向器,当A点输入为Vin波形 VDD=5V, VSS=0V, 试画出Q点波形

- 基本逻辑门及其CMOS实现
- 初识布尔代数

基本逻辑门——非门

• 开关电路模型

如果A闭合,灯F灭。

• 功能描述: 输出与输入波形相反,产生反 向输出波形。 • 真值表

输入的所有可能取值按 二进制数大小排列在左; 对应的输出列在右。

\boldsymbol{A}	F
0	1
1	0

• 符号标达

$$F = \overline{A}$$

基本逻辑门 —— 与门

• 开关电路模型

只有当 A 和 B 都闭合 (逻辑 1), 灯 (F) 才亮(逻辑 1)。

• 功能描述: 输入只要有低,输出为低; 输入都为高时,输出为高。 真值表
ABF
00
10
1
1

• 符号标达

$$\begin{array}{c|c} A & F \\ \hline & F = A \cdot B = AB \end{array}$$

基本逻辑门——或门

• 开关电路模型

AB任何一个开关闭合,灯F亮。

• 功能描述: 输入只要有高,输出为高; 输入都为低时,输出为低。 • 真值表

\boldsymbol{A}	B	F
0	0	0
0	1	1
1	0	1
1	1	1

• 符号标达

$$A \longrightarrow F = A + B$$

逻辑关系的组和

• 通过"与"、"或"、"非"的组 和,形成一些新的逻辑

• 或非门

AND	_a	b	У
	0	0	0
&)— у	0	1	0
	1	0	0
	1	1	1

• 异或门?

NOR	а	b	У
a —	0	0	1
) +)O- y	0	1	0
b —	1	0	0
W	1	1	0

从开关的角度 理解 CMOS

• NMOS 开关

• PMOS 开关

 $Y = X \text{ if } \overline{A} \text{ OR } \overline{B} = A\overline{B}$

从开关的角度构建与非门

A	В	Out
0	0	1
0	1	1
1	0	1
1	1	0

Truth Table of a 2 input NAND gate

从开关的角度构建或非门

	A	В	Out	
	0	0	1	
	0	1	0	
	1	0	0	
	1	1	0	
Truth Table of a 2 input NOR gate				

逻辑关系的组和

• 通过"与"、"或"、"非"的组 和,形成一些新的逻辑

• 或非门

AND	_a	b	У
	0	0	0
&)— у	0	1	0
	1	0	0
	1	1	1

• 异或门?

NOR	а	b	У
a —	0	0	1
) +)O- y	0	1	0
b —	1	0	0
W	1	1	0

逻辑门的波形图

• 下图是一个或非门,当输入波形A与B如图所示,求输出X的波形

$$A = \overline{A + B}$$

逻辑门的用处

If the temperature is above 20°C then the Central Heating is switched off.

If the temperature is below 20 ℃ then the Central Heating is switched on.

If either the Front Doorbell Switch OR the Back Doorbell Switch is pressed then the Doorbell rings.

生活中的大实际部分逻辑是多输入,多输出,且难以用语言简单描述的。

布尔代数表达式与逻辑电路

- 布尔代数:逻辑的符号化
 - True/False --> 1/0
 - 逻辑推理的数学表达
 - 复杂逻辑的数学运算与自动化实现
- 数字逻辑门的书写规则
 - 从左到右,括号优先

乔治·布尔(George Boole, 1815.11.2~ 1864),1815年11月2 日生于英格兰的林肯。 生前没有人认为他是的 生前没有人数学家辑的 学家的伟大数学逻辑的 数学分析》和1854年 数学分析》和1854年 究》奠定了符号逻辑的 究》奠定了符号逻辑的 交》。 基础,创建了以他的

布尔代数表达式与逻辑电路

- 逻辑电路的真值表
- A(B + CD)

INPUTS		OUTPUT		
A	В	C	D	A(B+CD)
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

布朗代数基本定律

• 交換律: A + B = B + AAB = BA

• 结合律:
$$A + B + C = (A + B) + C = A + (B + C)$$

 $ABC = (AB)C = A(BC)$

• 分配律: A(B+C) = AB + ACA + BC = (A+B)(A+C)

分配律证明

• 求证分配律: A + BC = (A + B)(A + C)

• 证明:

A	B	C	BC	A+BC	A+B	A+C	(A+B)(A+C)
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

布朗代数基本定律

• 0 1律:
$$A \cdot 1 = A$$
 $A \cdot 0 = 0$

$$A + 1 = 1$$
 $A + 0 = A$

$$A + \bar{A} = 1$$

• 重叠律: A + A = A $A \cdot A = A$

• 还原律: $\bar{A} = A$

• Demorgan定理:
$$\overline{A \cdot B} = \overline{A} + \overline{B}$$
 $\overline{A + B} = \overline{A} \cdot \overline{B}$

Demorgan定律及其证明

• 求证Demorgan定律: $\overline{A \cdot B} = \overline{A} + \overline{B}$ $\overline{A + B} = \overline{A} \cdot \overline{B}$

• 证明:

A	B	A•B	$\overline{A}+\overline{B}$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

A	B	A+B	A • B
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

布朗代数定律汇总

01 律	(1) A • 1 = A	(2) A + 0 = A
	$(3) A \cdot 0 = 0$	(4) A+1=1
交换律	$(5) A \cdot B = B \cdot A$	(6) $A + B = B + A$
结合律	$(7) A \cdot (B \cdot C) = (A \cdot B) \cdot C$	(8) $A + (B+C) = (A+B) + C$
分配律	(9) $\mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C}$	(10) A+ (BC) = (A+B) (A+C)
互补律	$(11) \mathbf{A} \cdot \overline{A} = 0$	$(12) A + \overline{A} = 1$
重叠律	$(13) A \cdot A = A$	(14) A + A = A
反演律	$(15) \ \overline{AB} = \overline{A} + \overline{B}$	$(16) \ \overline{A+B} = \overline{A} \cdot \overline{B}$
还原律	$(17) \stackrel{=}{A} = A$	

布朗代数常用公式及证明

常用公式	证明
	$AB + A\overline{B} = A(B + \overline{B}) = A \cdot 1 = A$
	$A + AB = A(1 + B) = A \cdot 1 = A$
$3 A + \overline{A}B = A + B$	$A + \overline{A}B = (A + \overline{A})(A + B)$
	$=1 \cdot (A+B)=A+B$
$4) AB + \overline{A}C + BC = AB + \overline{A}C$	原式 $=AB+AC+BC(A+A)$
推论:	$=AB + \overline{A}C + ABC + \overline{A}BC$
$AB + \overline{A}C + BCDE = AB + \overline{A}C$	$=AB(1+C)+\overline{A}C(1+B)$
	$=AB + \overline{A}C$

写出下列电路的表达式并化简

