Chase Griswold

ECE 6780-003

TA: Bailey Martin

Postlab Questions 03

- 3.2 Postlab 3. Please answer the following questions and hand in as your postlab for Lab 3.
 - 1. Using a timer clock source of 8 MHz, calculate PSC and ARR values to get a $60~\mathrm{Hz}$ interrupt.
 - This is tricky because precisely 60 Hz is impossible with our system; instead, think about the process and minimize the error. Many combinations of PSC and ARR values work—not just one!

ARR =
$$\frac{5 \text{ LUS}}{(PSCT)} + f_{TARGET}$$

ARR = $\frac{8E6}{800 \times 60} = 166.6C$

ERROL

ENTRODUS

WE LAN USE A PSC = $\frac{799}{ARR} = \frac{300 \times 60}{1600} = \frac{500 \times 60}{1000} = \frac{500 \times 60}{1000}$

ARR = $\frac{8E6}{800 \times 60} = 166.6C$

ENTRODUS

ARR = $\frac{8E6}{800 \times 60} = 166.6C$

ENTRODUS

ENTROPIS

- 2. Look through the Table 13 "STM32F072x8/xB pin definitions" in the chip datasheet and list all pins that can have the timer 3 capture/compare channel 1 alternate function.
- If the pin is included on the LQFP64 package that we are using, list the alternate function number that you would use to select it.

Pin numbers										Pin functions		
UFBGA100	LQFP100	UFBGA64	LQFP64	LQFP48/UFQFPN48	WLCSP49	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions	
B2	1	-	-	-	-	PE2	NO	FT		TSC_G7_IO1, TIM3_ETR	-	
A1	2	-	-	-	-	PE3	I/O	FT		TSC_G7_IO2, TIM3_CH1		
В1	3	-				PE4	ΙO	FT		TSC_G7_IO3, TIM3_CH2		

_										.00_02_102	D.10_0012
L4	31	G4	22	16	F4	PA6	NO	тта		SPI1_MISO, I2S1_MCK, TIM3_CH1, TIM1_BKIN, TIM16_CH1, COMP1_OUT, TSC_G2_IO3, EVENTOUT, USART3_CTS	ADC_IN6
				ı						CK9_91NU	ı
E12	63	F6	37			PC6	I/O	FT	(3)	TIM3_CH1	
A7	90	A4	56	40	A4	PB4	٧O	FT	-	SPI1_MISO, I2S1_MCK, TIM17_BKIN, TIM3_CH1. TSC_G5_IO2, EVENTOUT	-

PA6 – LQFP64 AF number 22

PB4 - LQFP64 AF number 56

PC6 - LQFP64 AF number 37

PE3 - N/A

3. List your measured value of the timer UEV interrupt period from first experiment.

251ms ---- Approximately ~3.98 Hz

4. Describe what happened to the measured duty-cycle as the CCRx value increased in PWM mode 1.

As the CCR value increases, the rate of the duty-cycle increases. Mode 1 stretches.

5. Describe what happened to the measured duty-cycle as the CCRx value increased in PWM mode 2.

Same as above, but it appears to increase even faster based on looking at my analyzer. Mode 2 compresses.

6. Include at least one logic analyzer screenshot of a PWM capture.

Screenshot of the working lab submission for 800 Hz.

7. What PWM mode is shown in figure 3.6 of the lab manual (PWM mode 1 or 2)?

It's PWM mode 2.