Question 2:

- a) We have target: $\theta_0 + \theta_1 X_1 + \theta_2 X_2 + \theta_3 X_3 + \theta_4 X_1 X_2 + \theta_5 X_1 X_3$ with: $X_1 = GPA$; $X_2 = Age$; $X_3 = Type$ of position $X_1 = Technical$ 0: Non-Technical
- > To compare the salary between Technical and Non-Technical position, we only need to compare $\theta_3 \times_3 + \theta_5 \times_1 \times_3$ (fixed GPA and Age)
- >> We have $\theta_3 = -30$ and $\theta_5 = 10 => -30 \times_3 + 10 \times_4 \times_3$.
- * For Non-Technical position => X3=0=> -30X3 + POX, X3 = 0 (salary)
- * For Technical position => X3=1 => -30 + 10×1 (salary)
 - 6 50, the salary of Technical is higher or lower than Non-Technical (0) depends on X1 which is GPA.
 - -> We can see that if CIPA () we have 3 a cases:
 - 1. if GPA=3 => Technical and Non-Technical secon the same (0)
 - 2. if GAA (3 =) Technical earns less than Non-Technical
 - 3. if GPA > 3 => Technical earns more than Non-Technical.
- => The answer iii is correct >> For a fixed value of Age and GPA, Technical positions earn more on average than Non-Technical positions when GPA is high enough (GPA>3)
- b) Prediction the salary of a Technical and Non-Technical positions with Age = 25, GPA = 4.0

 Technical: $\theta_0 + \theta_1 \times_1 + \theta_2 \times_2 + \theta_3 \times_3 + \theta_4 \times_1 \times_2 + \theta_5 \times_4 \times_3 = 40 + 20 \times 4 + 0.1 \times 25 + (-30) \times 0.1 + 0.01 \times 25 \times 4 + 10 \times 4 \times 1 = 133.5$

Non-Technical: 40 + 20x4 + 0.1x25-30x0+0.01x4x25+10x4x0=123.5.

> 4 mappers > correspond to 4 cols or mapper j processes row i of the matrix at a time.

= output: (i, j), mij 4] < i: row - output: i, mij x v; } < i: col (mapper)

		1			
1///	Input		Output.		
mappers.	In-Keyes(i,j)	In-value (mij)	out-key (i)	o intermediate values	
Mapper 1 (j=1)	つうこれ、シェイーへ (イ・イ)	5	1	15	
	->i=2, j=1->(2,1)	4	2	12	
Mapper2 (j=2)	ラにユーリースラー(1、2) コにスリラニスラ (2、2)	-3	1	-21	
	Pi=2, j=2-> (2,2)	2	2	14	
Mapper 3 (j=3)	ランニイ, j=3 → (1.3)	3		-27	
	つ(=2, j=3-) (713)	-8	2	72	
Mapper 4 (j=4)	-> i=1, j=4 => (1,4)	7	1	14	
	=> i=2, j=4 => (2,4)	6	2	12	
		out-key List of all is	all intermediate values from mappers (all)		

> 2 reducers => reducer i receives (i, [minv, ..., minv,])

> sum all values -> Ri = \(\int_i \) x v; = out_value.

1	Input		Output	
Reducers	out-key (i)	list of all [migva, mizvz,, min vn]	out-key(i)	out value (sum of all element inters
Reducer 1 (i=4)	1	[15, -21, -27, 14]	1	-19
Reductor 2 (i=2)	2	[12,14,72,12]	2	110

$$\Rightarrow R = \begin{bmatrix} -197 \\ 110 \end{bmatrix}$$
 with $R_1 = -19$; $R_2 = 110$