

展步大學

数字逻辑 课程设计报告

题目	名称:	电子	一视力表	
学院	(部):	信息	見工程学 院	<u> </u>
专	<u>\lambda</u> :	计算	机科学与	技术
学号	2021902610		姓名_刘文	[越
学号	2021901374		姓名 王子	产卓
学号	2021902141		姓名_孙_	翔
学号	2021904571		姓名_康	旭

指导教师:马峻岩

2023年06月

目录

1,	课程设计要求概述	2
2、	成员及分工	2
3、	系统功能列表与模块划分	2
	3.1 主要功能划分及对应模块	2
	3.2 确定系统输入输出信号	3
4、	硬件模块及原理介绍	3
	4.1 VGA 原理及色彩原理	3
	4.2 VGA 显示原理	3
	4.3 VGA 时序标准	4
5、	关键模块设计与验证	4
	5.1 Data2VGA 模块设计与验证	4
	5.2 EyeChart_Control 模块设计验证	6
6、	开发板测试验证	7
7、	遇到的问题及解决方法	.10
8、	源码	.10

1、课程设计要求概述

课程设计内容为掌握数字系统设计的基本内容和设计方法,基于 Basys3 开发板进行电子视力表功能的设计及开发,拓展功能的设计及开发。

课程设计要求主要功能为:

- 通过 VGA 接口在显示屏显示视力表图像;
- 通过四个按键输入,判断视力表的方向:
- 将判断结果显示;

设计实现的拓展功能为:

- 正常视力表、红绿视力表、红绿对比视力表的切换
- 视力表判断结果转化为汉字显示
- 调整 "E"图像的大小,并给出相应的视力值
- 实现不同规范视力值的切换(国际 2.0 规范和国内 5.3 规范)
- 调整 "E" 图像为 RGB 渐变效果

课程设计中我们应用所学数字逻辑与 Verilog 知识,独立完成了问题分析,原理设计,掌握编写 Verilog 程序求解指定问题的能力。学习掌握 FPGA 器件的开发,熟练使用开发环境,掌握 Verilog 语言的编程,掌握数字电路和系统的设计,可运用 Verilog 设计并实现组合逻辑与时序逻辑数字电路。在理解开发 板各接口的工作原理基础上,可以熟练使用 FPGA 进行 LED、按键、7 段数码管、VGA 等常见硬件接口的设计和开发。

2、成员及分工

刘文越(组长): 实现 Data2VGA、Pic_E/Correct/Wrong、EyeChart_Control、RGB_Trans、项层模块的设计,协助小组成员进行模块设计,撰写报告

王子卓(组员): 实现 Pic E Compare 模块的设计, 撰写报告

孙 翔(组员): 实现 Vision2Seg 模块的设计, 撰写报告

康 旭(组员): 实现 pix data 选择的设计, 撰写报告

3、系统功能列表与模块划分

3.1 主要功能划分及对应模块

表 3-1 功能划分与对应模块表

系统功能	对应 Verilog 模块
顶层模块,连接各模块和引脚信号	EyeChart_Top.v
将像素数据转化为 VGA 时序信号	Data2VGA.v
实现视力表控制,判断结果和信号选择	EyeChart_Control.v
将视力值数据转化为数码管信号	Vision2Seg.v
E 图标的像素数据	Pic_E.v
红绿视力表的像素数据	Pic_E_Compare.v
"正确"图像的像素数据	Pic_Correct.v
"错误"图像的像素数据	Pic_Wrong.v
RGB 渐变效果的像素数据	RGB_Trans.v

3.2 确定系统输入输出信号

名称	类型	说明
clk	input	板载时钟信号
btnU/L/R/D/C	input	按钮开关信号
sw[6:0]	input	拨码开关信号
an[3:0]	output	数码管使能信号
seg[6:0]	output	数码管七段信号
dp	output	小数点使能信号
vgaRed/Green/Blue	output	VGA 色彩信号
Hsync/Vsync	output	VGA 行/场同步信号
pix_data	reg	像素点的色彩数据

表 3-2 系统输入、输出及寄存器

4、硬件模块及原理介绍

课程设计使用的硬件部分有 Basys3 开发板、Dell 型号 VGA 接口显示器、若 干数据连接线。这里我们重点介绍 Basys3 开发板中 VGA 数据输出接口。

4.1 VGA 原理及色彩原理

VGA (Video Graphics Array)视频图形阵列是 IBM 于 1987 年随 PS/2 机一起 推出的一种使用模拟信号的视频传输标准,具有分辨率高、显示速率快、颜色丰 富等优点,在彩色显示器领域得到了广泛的应用。但不支持热插拔,不支持音频 传输。

由于人的肉眼仅可以感知到红绿蓝三种颜色,因此色彩空间通常可以由三种 基本色来表达。红绿蓝是三基色,这三种颜色合成的颜色范围最为广泛。而 RGB 信号就是三基色的运用,对这三个信号赋予不同的数值,可以构成广泛的色彩域。

4.2 VGA 显示原理

VGA 显示图像使用扫描的方式,从第一行的第一个像素开始,逐渐填充, 第一行第一个、第一行第二个、、、、第二行第一个、第二行第二个、、、、最后行最 后一个。通过这种方式构成一帧完整的图像, 当频率足够快, 由于人眼的视觉暂 留特性,我们会看到一幅完整的图片。

图 4-1 VGA 显示原理图

4.3 VGA 时序标准

VGA 显示器扫描方式从屏幕左上角一点开始,从左像右逐点扫描,每扫描 完一行,电子束回到屏幕的左边下一行的起始位置,在这期间,CRT 对电子束 进行消隐,每行结束时,用行同步信号进行同步;当扫描完所有的行,形成一帧,用场同步信号进行场同步,并使扫描回到屏幕左上方,同时进行场消隐,开始下一帧。完成一行扫描的时间称为水平扫描时间,对应频率称为行频率;完成一帧扫描的时间称为垂直扫描时间,对应频率称为场频率,即刷新一帧的频率。

图 4-2 VGA 行时序图

图 4-3 VGA 场时序图

本课程设计采用 640x480@59.94Hz(60Hz), 行时序和场时序相关参数如下表所示。

	•			
	同步脉冲	显示后沿	显示时序段	显示前沿
行时序	96	48	640	16
场时序	2	33	480	10

表 3-2 系统输入、输出及寄存器

5、关键模块设计与验证

5.1 Data2VGA 模块设计与验证

1. Data2VGA 模块状态机及设计:

图 5-1 Data2VGA 模块 ASM 图

2. 模块输入输出信号:

表 5-1 系统输入、输出及寄存器

名称	类型	说明	
clk	input	VGA 时钟信号	
pix_data[11:0]	input	预置位像素点色彩信号	
pix_x[9:0]	output	预置位像素行坐标信号	
pix_y[9:0]	output	预置位像素列坐标信号	
vga_data[11:0]	output	VGA 色彩信号	
Hsync/Vsync	output	VGA 行/场同步信号	
x/y_cnt[9:0]	reg	当前像素点坐标	

3. 模块设计思路:

模块采用时序逻辑设计,敏感信号为输入的时钟信号上升沿,模块中定义 vga_valid 信号判断 x_cnt 和 y_cnt 是否位于有效显示区域,若在 vga_data 输出 pix_data 中预置位像素的信号,若不在输出黑色信号。同时,模块输出预置位

的坐标信号,用于传输给其他模块准备下一像素点的色彩信息。

4. Data2VGA 仿真验证

仿真验证了一部分画面的帧数据,像素点坐标、行同步信号、场同步信号均输出正常。

图 5-2 Data2VGA 模块仿真图

5.2 EyeChart_Control 模块设计验证

1. EyeChart_Control 模块状态机及设计:

图 5-3 EyeChart_Control 模块 ASM 图

2. 模块输入输出信号:

表 5-2 模块输入、输出及寄存器

名称	类型	说明
clk	input	VGA 时钟信号
btn[3:0]	input	按钮信号
sel[1:0]	output	"E" 图标方向信号
rst[1:0]	output	判断方向结果信号
sel_reg[1:0]	reg	当前 "E"方向信号寄存器
sel_cnt[1:0]	reg	"E"方向生成计数器寄存器
reg_cnt[25:0]	reg	延迟计数器寄存器

3. 模块设计思路:

模块采用时序逻辑设计,敏感信号为输入的时钟信号上升沿,模块主要分为两部分,"E"方向的生成部分,结果判断部分。方向生成部分是一个随着时钟信号不断计数的模 4 循环计数器,在 0,1,2,3 之中不断切换状态,代表"E"的四个方向。结果判断部分在按键触发时,判断按键是否和当前寄存器内"E"方向是否相同,若相同,则将结果信号置 1,若不同,将结果信号置 2。当结果信号不为 0 时,则启动另一个延迟计数器,在 50000000 次时钟上升沿后,当前寄存器被"E"方向生成部分的状态赋值,结果信号和延迟计数器重新置 0。

4. EyeChart Control 仿真验证:

从仿真模块中可以看出,根据不同的按钮信号,rst 结果信号可以随时钟上 升沿正确置数,并且维持一段时间。

图 5-4 EyeChart Control 模块仿真图

6、开发板测试验证

表 6-1 功能测试

功能点	测试方法步骤描述	预期测试结果	测试是否通过
图像的显示	写入开发板后开机验证	出现正常图形	通过
"E"方向判断	依据 "E" 的方向触发按键	根据结果显示"正确"、"错	通过
		误"字样	
红绿背景切换	通过拨码开关控制背景色彩	正确切换红绿背景	通过
红绿视力表	通过拨码开关切换为红绿视力表	正确切换为红绿视力表	通过
"E"的大小和对	通过拨码开关控制 "E" 的大	正确切换"E"大小,数码	通过
应视力值的显示	小,观察数码管上显示的视力值	管上正常显示对应视力值	
切换视力值规范	通过拨码开关切换视力值规范	正确显示不同规范下视力值	通过
RGB 渐变效果	通过按键控制 "E"的颜色	按下按键 "E" 变为彩色渐	通过
		变效果	

1. 图像显示:

图 5-1 图像显示测试图

2. "E"方向判断:

图 5-2 "E"方向测试图

3. 红绿背景切换:

图 5-3 红绿背景切换测试图

4. 红绿视力表:

图 5-4 红绿视力表测试图

5. "E"的大下和对应视力值的显示:

图 5-5 "E"的大小和视力值测试图 1

图 5-6 "E"的大小和视力值测试图 2

图 5-7 "E"的大小和视力值测试图 3

6. 切换视力值规范:

图 5-8 切换视力值测试图

7. RGB 渐变效果:

图 5-9 RGB 渐变测试图

7、遇到的问题及解决方法

- 1. 通过转接器无法将 VGA 信号输入至显示屏 更换老式显示器,采用 VGA 接口直接接入。
- 2. VGA 显示出现大面积黑屏,无法正常显示图案 原因是向非有效像素位置输出了白色信号,将代码逻辑更换为在非有效像素 位置输出黑色色彩信号即可正常显示。
- **3. 屏幕上出现某颜色条纹** 连接不良或者是线路老化,提高时钟频率可以一定程度上缓解该现象。

8、源码

源代码已全部开源至 GitHub: verilog coursedesign/Eye Chart