```
import pandas as pd
data=pd.read csv("Downloads/emails.csv")
data
       Email No.
                   the to ect and for of
                                                    a you
                                                             hou
connevey
          Email 1
                      0
                          0
                               1
                                     0
                                          0
                                               0
                                                    2
                                                          0
                                                               0
0
1
          Email 2
                      8
                         13
                              24
                                     6
                                          6
                                               2
                                                  102
                                                          1
                                                              27
0
2
          Email 3
                               1
                      0
                          0
                                     0
                                          0
                                               0
                                                    8
0
3
          Email 4
                      0
                          5
                              22
                                     0
                                          5
                                                   51
                                               1
                                                          2
                                                              10
0
4
          Email 5
                  7
                        6
                              17
                                     1
                                        5
                                               2
                                                   57
0
5167
      Email 5168
                          2
                               2
                                                   32
5168
      Email 5169
                    35
                         27
                              11
                                     2
                                          6
                                               5
                                                  151
                                                          4
                                                               3
      Email 5170
                          0
                               1
                                     1
5169
                      0
                                          0
                                               0
                                                   11
5170
      Email 5171
                      2
                               1
                                               1
                                                   28
                          7
                                                          2
5171 Email 5172
                               5
                    22 24
                                     1
                                          6
                                               5 148
                                                          8
                                                               2
                          infrastructure military
                                                                      dry
            valued
                     lay
                                                      allowing
                                                                  ff
                                                                           \
      jay
0
        0
                 0
                       0
                                                                   0
                                                                        0
1
                 0
                       0
                                        0
                                                   0
                                                                   1
        0
                                                              0
                                                                        0
2
                       0
                                        0
                                                   0
        0
                 0
                                                              0
                                                                   0
                                                                        0
3
        0
                 0
                       0
                                        0
                                                   0
                                                              0
                                                                   0
                                                                        0
4
        0
                 0
                       0
                                        0
                                                   0
                                                              0
                                                                   1
                                                                        0
5167
        0
                 0
                       0
                                        0
                                                   0
                                                              0
                                                                   0
                                                                        0
5168
                 0
                       0
                                        0
                                                   0
                                                                   1
        0
                                                              0
                                                                        0
5169
                 0
                       0
        0
                                        0
                                                   0
                                                              0
                                                                   0
                                                                        0
5170
                       0
                                        0
                                                   0
                                                                   1
                                                                        0
        0
                 0
                                                                        0
5171
        0
                 0
                       0
                                                                   0
      Prediction
0
                0
1
2
                0
3
                0
4
```

```
5167
               0
5168
               0
5169
               1
5170
               1
5171
               0
[5172 rows x 3002 columns]
data.head()
  Email No. the to ect and for of a you hou ... connevey
jay
    Email 1
                   0
                         1
                              0
                                            2
                                                                       0
               0
                                   0
                                       0
                                                  0
                                                       0
0
0
1
    Email 2
                  13
                              6
                                       2
                                                                       0
               8
                        24
                                   6
                                          102
                                                  1
                                                      27
0
2
    Email 3
               0
                   0
                         1
                              0
                                   0
                                       0
                                            8
                                                                       0
                                                  0
                                                       0
0
3
                        22
                                                                       0
    Email 4
               0
                   5
                              0
                                   5
                                       1
                                           51
                                                  2
                                                      10
0
4
    Email 5 7
                   6
                        17
                              1
                                   5
                                       2
                                           57
                                                 0
                                                    9
                                                                       0
0
   valued lay infrastructure military allowing ff dry
Prediction
0
        0
             0
                              0
                                        0
                                                   0
                                                       0
                                                            0
0
1
        0
             0
                              0
                                        0
                                                   0
                                                       1
                                                            0
0
2
        0
                                                       0
                                                            0
0
3
        0
             0
                                                   0
                                                       0
                                                            0
0
4
        0
             0
                              0
                                                       1
                                                            0
[5 rows x 3002 columns]
from sklearn.model_selection import train_test_split
X=data.drop('Email No.',axis=1)
y=data['Prediction']
Χ
      the to ect and for of a you how in ... connevey
jay ∖
        0
          0
               1
                      0
                            0
                                0
                                     2
                                          0
                                                0
                                                    0
                                                                   0
0
0
1
        8
          13
                24
                      6
                            6
                                2
                                   102
                                          1
                                              27
                                                 18
                                                                   0
```

0														
2	0	0	1	0	0	0	8	0	0	4			0	
0	•	_	22	•	_	-	F 1	_	1.0				•	
3	0	5	22	0	5	1	51	2	10	1	• • •		0	
0 4	7	6	17	1	5	2	57	0	9	3			0	
0	,	U	1/	Т	5	2	57	U	9	3	• • •		U	
	• • •	• •				• •		• • •		• •	• • •			• •
5167	2	2	2	3	0	0	32	0	0	5			0	
0														
5168	35	27	11	2	6	5	151	4	3	23			0	
0														
5169	0	0	1	1	0	0	11	0	0	1			0	
0	_	_	_	_		_		_		_				
5170	2	7	1	0	2	1	28	2	0	8			0	
0	22	2.4	-	-	•	-	1.40	0	_	2.2			•	
5171	22	24	5	1	6	5	148	8	2	23	• • •		0	
0														
	valu	ed	lav	infras	truct	ure	mil:	itarv	all	owina	ff	dry		
Predi		Cu	cay	1111143	cruc	·u·c		Lcary	acc	OWING		u i y		
0		0	0			0		0		0	0	0		
0														
1		0	0			0		0		0	1	0		
0 2														
2		0	0			0		0		0	0	0		
0						_					_			
3		0	0			0		Θ		0	0	0		
0		0	^			0		^		^	1	0		
4 0		0	0			0		0		0	1	0		
U														
	•	• •								• • • •	• • •			
5167		0	0			0		0		0	0	0		
0			Ū			Ū		Ū		Ū	· ·	Ū		
5168		0	0			0		0		0	1	0		
0														
5169		0	0			0		0		0	0	0		
1		_	_					_		_				
5170		0	0			0		0		0	1	0		
1		^	•			^		•		^	0	0		
5171		0	0			0		0		0	0	0		
0														
[5172	rows	хЗ	3001	columns	1									
[31/2	. 0113	, ,		. J caming										

У

```
0
        0
1
        0
2
        0
3
        0
4
        0
5167
        0
5168
        0
5169
        1
5170
        1
5171
Name: Prediction, Length: 5172, dtype: int64
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size =
0.25, random state = 0)
x train
     the to ect and for of a you hou in ... connevey
jay ∖
2382
       32 25
                14
                     16
                          15
                               2
                                  193
                                                 41
                                                                  0
                                       7
3848
       42
           19
              1
                      8
                        7
                               7
                                  213
                                         1
                                              3
                                                 51
                                                                  0
                                                                  0
667
      1
          3
                 1
                      0
                           1
                               0
                                   10
                                         1
                                              0
                                                  4
4641 14 11
                      5
                                   72
                                         8
                 1
                        4
                               6
                                              3
                                                 17
                                                                  0
                           2
3650 6
            5
                 1
                      3
                               3
                                   38
                                         3
                                              0
                                                  6
                                                                  0
4931
       17
           26
                      5
                           4
                               5
                                  100
                                        18
                                              1
                                                 17
                                                                  0
                 1
3264
            3
                 1
                      1
                           1
                               0
                                   9
                                         2
                                              0
                                                  5
                                                                  0
                                              2
1653
       12
           18
                 8
                     11
                          12
                               5
                                  146
                                         9
                                                 29
                                                                  0
2607
            6
                96
                      8
                           5
                               2
                                  123
                                             49
                                                 22
                                                                  0
       10
                                         0
2732 1
          8 2
                   1 1 0
                                   71
                                         5
                                                                  0
                                              0
                                                 16
      valued lay infrastructure military allowing ff dry
Prediction
           0
2382
              0
                                          0
                                                    0
                                                        1
3848
                1
                                                        3
                                                             0
1
                                0
                                          0
667
           0
                0
                                                        0
                                                             0
```

1 4641		0	0			0		0			0 3	3 0
0		U	U			U		U			0 .	, 0
3650 1		0	0			0		0			0 1	L 0
4931		0	0			0		0			0 (0
0 3264		0	0			0		0			0 (0
1 1653 1		0	0			0		0			0 2	2 0
2607		0	0			0		0			0 1	L 0
0												
2732 1		0	0			0		0			0 (0
[3879	rows	x 3	001 c	olumn	s]							
y_tra:	in											
2382												
3848 667	0 1 1											
4641 3650	0											
4931 3264	0 1											
1653	1											
2607 2732	0 1											
Name:	_	icti	on, L	.ength	: 387	9, d	type:	int6	4			
x_tes			•	J		ĺ	,,					
_	the	to	ect	and	for	of	a	vou	hou	in		connevey
jay `	\											
3324 0	14	7	2	2	2	4	37	0	1	9		0
15	6	2	1	0	2	0	36	3	1	8		0
0	40	-	4	•	_	11	120	2	0	21		0
4950 0	40	6	4	6	5	11	130	3	0	31		0
3964	42	19	1	8	7	7	214	1	3	52		0
0 2315	8	14	8	3	3	0	87	0	4	10		0
0												

3551	0	0	1	0	1	0	3	0	0	0			0
0													
1118 0	2	3	4	3	2	0	41	2	0	4			0
2239	3	1	1	1	2	0	22	2	0	0			0
0													
1511 0	8	3	12	4	2	1	47	0	7	9			0
1240	1	6	2	4	6	3	53	9	4	6			0
0													
	value	-d	lav	infrast	ruc	ture	mili	tarv	allo	wina	ff	dry	
Predic		Ju	cuy	1111145	. r u c	curc	1112 63	. car y	acce	wing	• • •	u i y	
3324		0	0			0		0		0	0	0	
0 15		0	0			0		0		0	0	0	
0		U	U			U		U		U	U	U	
4950		0	0			0		0		0	1	0	
0 3964		0	1			0		4		0	3	0	
1		U				U		4		U	5	U	
2315		0	0			0		0		0	5	0	
0													
	• 1	• •				• • •					• •		
3551		0	0			0		0		0	0	0	
0 1118		0	0			0		0		0	0	0	
1		U	U			U		U		U	U	U	
2239		0	0			0		0		0	0	0	
0 1511		0	0			0		0		0	0	0	
0		U	U			U		U		U	U	U	
1240		0	0			0		0		0	2	0	
1													
[1293	rows	x 3	8001 c	olumns]									
у													
0	0												
2	0 0												
1 2 3 4	0												
4	0												
5167	0												
5168	0												
5169	1												

```
5170
        1
5171
        0
Name: Prediction, Length: 5172, dtype: int64
y_test
3324
        0
15
        0
4950
        0
3964
        1
2315
        0
3551
        0
1118
        1
2239
        0
1511
        0
        1
1240
Name: Prediction, Length: 1293, dtype: int64
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import
confusion matrix, accuracy score, precision score, recall score
knn=KNeighborsClassifier(n neighbors=10)
knn.fit(x_train,y_train)
KNeighborsClassifier(n neighbors=10)
y pred=knn.predict(x test)
y pred
array([0, 0, 0, ..., 0, 0, 1])
from sklearn import metrics
acc=metrics.accuracy_score(y_pred,y_test)
acc
0.8646558391337974
err=(1-acc)
err
0.1353441608662026
def knn(x_train,y_train,x_test,y_test,n):
    n range=range(1,n)
    results=[]
    for n in n range:
        knn=KNeighborsClassifier(n neighbors=n)
        knn.fit(x_train,y_train)
```

```
y_pred=knn.predict(x_test)
    acc=metrics.accuracy_score(y_pred,y_test)
    results.append(acc)
    return results

import matplotlib.pyplot as plt
n=400
output=knn(x_train,y_train,x_test,y_test,n)
n_range=range(1,n)
plt.plot(n_range,output)

[<matplotlib.lines.Line2D at 0x70ea875b5570>]
```



```
#email classification using SVC

from sklearn.svm import LinearSVC
from sklearn.metrics import accuracy_score
import math
import time

start=time.time()
model=SVC(kernel='poly',C=2)
model.fit(x_train,y_train)
pred=model.predict(x_test)
```

```
acc=accuracy_score(y_test,pred)
print(round(acc*100,1),'%')
end=time.time()
print(f"{end-start:.5f}sec")
75.6 %
21,91650sec
start=time.time()
model=LinearSVC(C=3)
model.fit(x train,y train)
pred=model.predict(x_test)
acc=accuracy_score(y_test,pred)
print(round(acc*100,1),'%')
end=time.time()
print(f"{end-start:.5f}sec")
/home/student/.local/lib/python3.10/site-packages/sklearn/svm/
classes.py:31: FutureWarning: The default value of `dual` will change
from `True` to `'auto'` in 1.5. Set the value of `dual` explicitly to
suppress the warning.
 warnings.warn(
99.6 %
1.67155sec
/home/student/.local/lib/python3.10/site-packages/sklearn/svm/
base.py:1237: ConvergenceWarning: Liblinear failed to converge,
increase the number of iterations.
 warnings.warn(
start=time.time()
model=SVC(kernel='sigmoid',C=2)
model.fit(x train,y train)
pred=model.predict(x test)
acc=accuracy_score(y_test,pred)
print(round(acc*100,1),'%')
end=time.time()
print(f"{end-start:.5f}sec")
59.6 %
16.24308sec
start=time.time()
model=SVC(kernel='rbf',C=2)
model.fit(x train,y train)
pred=model.predict(x test)
acc=accuracy_score(y_test,pred)
```

```
print(round(acc*100,1),'%')
end=time.time()

print(f"{end-start:.5f}sec")

83.7 %
22.57503sec
```