

Iran University of Science & Technology
School of Computer Engineering

Assignment #6

Natural language processing

BY:

DR. Behrouz Minaei, Fall 2024

Teaching Assistants:

Nafiseh Ahmadi

Reza Alidoost

Due: 1403/11/15

Contents

Notes	3
Problem 1	
Problem 2	
Problem 3	
Problem 4	<i>6</i>
Problem 5	<i>6</i>
1. Positional Encoding	6
2. Masking	
3. Self-Attention	7
4. Encoder	7
5. Decoder	8
6. Transformer	8

Notes

- 1. There is no option to submit this assignment after the deadline.
- 2. Submit the answers in a complete PDF file and the code for the questions in the .ipynb format (including the notebook cell outputs) in a compressed file named HW6_StudentID.zip by the specified deadline.
- 3. If a student submits the project earlier than the deadline and achieves 75% of the score, up to 24 hours will be added to their allowable delay time.
- 4. It is important to note that the explanation of the code and the obtained results must be included in the PDF file. Code without a report will result in a score deduction.
- 5. The evaluation of the assignment will be based on the correctness of the solution and the completeness and accuracy of the report.
- 6. Assignments must be completed individually, and group work on assignments is not allowed.
- 7. Please allocate sufficient time for the assignment and avoid leaving it until the last days.
- 8. You can ask your questions in the relevant group.

good luck.

Problem 1

a) A sentence can easily have more than one parse tree that is consistent with a given CFG. How do PCFGs and non-probability-based CFGs differ in terms of handling parsing ambiguity? (5 points)

Consider the following PCFG for problems (b)-(e).

production rule	probability
$S \rightarrow VP$	1.0
$VP \rightarrow Verb NP$	0.7
$VP \rightarrow Verb NP PP$	0.3
$NP \rightarrow NP PP$	0.3
$NP \rightarrow Det Noun$	0.7
$PP \rightarrow Prep Noun$	1.0
•	
$Det \rightarrow the$	0.1
$Verb \rightarrow Cut \mid Ask \mid Find \mid$	0.1
$Prep \to with \mid in \mid$	0.1
Noun → envelope grandma scissors men suits summer	0.1

- b) Draw the top-ranked parse tree for the sentence below by applying the given PCFG. Does the result seem reasonable to you? Why or why not? (5 points) Cut the envelope with scissors.
- c) Draw the top-ranked parse tree for the sentence below by applying the given PCFG. Does the result seem reasonable to you? Why or why not? (5 points) Ask the grandma with scissors.
 - d) Describe how you would lexicalize the given PCFG in order to address the problem you hopefully noticed in (b) and/or (c). Then show specifically how the production rules below should be modified according to your lexicalization scheme. (5 points)

production rule	probability
$VP \rightarrow Verb NP$	0.7
$VP \rightarrow Verb \ NP \ PP$	0.3

e) The following two sentences exhibit parsing ambiguities. How would your lexicalized PCFG from (d) handle these ambiguities? (5 points)

Find the men in suits.

Find the men in summer

Problem 2

Given the sentence The cat that John saw chased the mouse, with the following parse tree: (20 points)

And the following grammar rules (where the superscript + indicates the head):

$$S \rightarrow NP \ VP^+$$
 $NP \rightarrow N$
 $NP \rightarrow D \ N^+$
 $NP \rightarrow D \ N^+ \ SBAR$
 $VP \rightarrow V^+ \ NP$
 $VP \rightarrow V$
 $SBAR \rightarrow REL^+ \ S$

- a) List the headwords of the following non-terminals:
 - the SBAR
 - the NP "The cat that John saw"
 - the topmost S
 - the VP "chased the mouse"
- b) Draw the dependency tree resulting from the conversion using the given head rules.

Problem 3

Complete the dependency analysis of the sentence:

Use the Universal Dependency (UD) annotation scheme. Each word should have a part-of-speech tag and an incoming edge from its head, labeled with a basic dependency relation (e.g., nsubj, obj, . . .). (20 point)

Problem 4

Give an example of an ambiguous sentence and explain the ambiguity in terms of dependency relations.

For example: John sees Mary with a telescope.

Ambiguity: the prepositional phrase 'with a telescope' is a dependent of either 'sees' or 'Mary'.

Other ideas for difficult sentences: headlines, informal language, questions, etc. Try giving the sentence to an online parser. ²

Show the analysis given by the parser. Is it the correct analysis? If not, show the expected analysis. If it is, repeat with a more difficult sentence. (15 points)

Problem 5

You have been provided with the Transformer.ipynb notebook, which contains a complete implementation of a Transformer model. Your task is to write a comprehensive report on the provided code. This report should include: (30 points)

- 1. Positional Encoding
 - 1.1 Sine and Cosine Angles
 - 1. What is the purpose of calculating angles using sine and cosine for positional encodings?

¹ Useful links:UD annotation guidelines: http://universaldependencies.org/u/pos/index.html, UD relations: http://universaldependencies.org/u/pos/index.html, UD relations: http://universaldependencies.org/u/dep/index.html, http:/

 $^{^2\} For\ example: \underline{https://demos.explosion.ai/displacy/,}\ \underline{https://lindat.mff.cuni.cz/services/udpipe/run.php}, \underline{http://corenlp.run/}$

2. Why is it important to represent positional information in this way for the Transformer?

1.2 Sine and Cosine Positional Encodings

- 1. How does the positional_encoding function utilize the computed angles to generate positional encodings?
- 2. What is the shape of the positional encoding matrix, and how does it integrate with input embeddings?
- 3. Why is it beneficial to use sinusoidal positional encodings instead of learned embeddings?

2. Masking

2.1 Padding Mask

- 1. What role does the padding mask play in the Transformer architecture?
- 2. How is the padding mask constructed, and which parts of the input sequence does it affect?

2.2 Look-ahead Mask

- 1. How does the look-ahead mask prevent information leakage in the decoder during training?
- 2. Describe the structure of the look-ahead mask. How is it applied during self-attention computations?

3. Self-Attention

- 1. What is the purpose of the scaled_dot_product_attention function?
- 2. How does scaling the dot product in self-attention improve stability?
- 3. In the exercise, what are the key outputs of the scaled_dot_product_attention function, and how are they used in the Transformer?

4. Encoder

4.1 Encoder Layer

- 1. What are the components of an encoder layer in the Transformer?
- 2. How is the multi-head attention mechanism implemented in the EncoderLayer?
- 3. What is the role of the feedforward network in the encoder layer?

5. Decoder

5.1 Decoder Layer

- 1. What are the key differences between the encoder layer and the decoder layer?
- 2. How does the decoder layer utilize the look-ahead mask and padding mask?
- 3. In the DecoderLayer exercise, how are the outputs of the multi-head attention layers processed?

5.2 Full Decoder

- 1. How does the full decoder assemble the layers to process the input sequence?
- 2. How does the decoder interact with the encoder outputs during training?

6. Transformer

- 1. How does the Transformer class integrate the encoder and decoder components?
- 2. What role does the shared embedding layer play in the overall architecture?
- 3. In the final exercise, how is the forward pass implemented for the Transformer?