2. Events and Probabilities - Algebra and measurable

Lai Hui Shan m5281022

Let us consider that Omega is construct two different elements like Head or Tail:

$$\Omega = \{H, T\}$$

If you consider a collection of subsets, say \mathcal{F}_0 .

1. What is \mathcal{F}_0 ?

Ans:

The collection \mathcal{F}_0 refers to the set of all possible subsets of Ω . This collection is also called the **power set** of Ω , often denoted as $\mathcal{P}(\Omega)$. For your set $\Omega = \{H, T\}$, the power set \mathcal{F}_0 will consist of all possible subsets of Ω , including the empty set \emptyset and the set Ω itself. So,

$$\mathcal{F}_0 = \{\emptyset, \{H\}, \{T\}, \{H, T\}\}$$

2. What is the number of elements in \mathcal{F}_0 ?

Ans:

The number of elements in \mathcal{F}_0 is the number of all possible subsets of Ω . For any set with n elements, the number of subsets (or elements of the power set) is 2^n . In this case, $\Omega = \{H, T\}$ has 2 elements, so the number of subsets in \mathcal{F}_0 is:

$$2^2 = 4$$

Thus, there are 4 elements in \mathcal{F}_0 : \emptyset , $\{H\}$, $\{T\}$, $\{H,T\}$.

3. If Ω is a finite n-element set, what is the number of elements in a collection of all subsets, and why?

Ans:

If Ω is a finite set with n elements, the collection of all subsets of Ω (i.e., the power set of Ω) will contain 2^n elements. This is because for each element in the set, you have two choices when forming a subset: either include the element or exclude it. Therefore, for n elements, there are 2^n possible subsets.

For example:

- If n=1 (e.g., $\Omega=\{H\}$), the power set contains $2^1=2$ subsets: \emptyset and $\{H\}$.
- If n=2 (as in the original case $\Omega=\{H,T\}$), the power set contains $2^2=4$ subsets.

In general, 2^n .	for any	finite set	Ω with n	elements,	the number	of elements	in the power set is	}