BlurNet: Defense by Filtering the Feature Maps

Affliates Meeting '19

Ravi Raju and Mikko Lipasti 10 October 2019

UW Madison ECE Dept.

Outline

Introduction

Background

Low-pass filtering the feature maps

Learning the Filter Parameters

Concluding Remarks

Introduction

FFT Spectrum of Input Channels

 Log-shifted and normalized frequency spectrum of RGB channels of a natural and perturbed stop sign image

FFT Spectrum of Input Channels

- Log-shifted and normalized frequency spectrum of RGB channels of a natural and perturbed stop sign image
- Lower frequencies correspond to the center and higher ones to the edge.

FFT of First Layer Feature Maps

 Each row corresponds to a unique feature map from L1 layer of network.

FFT of First Layer Feature Maps

- Each row corresponds to a unique feature map from L1 layer of network.
- Difference image suggests that the perturbations induce high frequency components not found in natural stop signs

Background

Let x be an image and a neural network, F(x) = y, such that $F : \mathbb{R}^{w \times h \times c} \to \mathbb{R}^n$ where y is the correct label.

• Main goal of an attacker - generating an image, x_{adv} such that $F(x_{adv}) \neq y$ by perturbing the input pixels.

Let x be an image and a neural network, F(x) = y, such that $F : \mathbb{R}^{w \times h \times c} \to \mathbb{R}^n$ where y is the correct label.

- Main goal of an attacker generating an image, x_{adv} such that F(x_{adv}) ≠ y by perturbing the input pixels.
- Main goal of a defense algorithm classify the perturbed image with the correct label

Let x be an image and a neural network, F(x) = y, such that $F : \mathbb{R}^{w \times h \times c} \to \mathbb{R}^n$ where y is the correct label.

- Main goal of an attacker generating an image, x_{adv} such that F(x_{adv}) ≠ y by perturbing the input pixels.
- Main goal of a defense algorithm classify the perturbed image with the correct label
- Threat Model rules which dictate what kind of information an attacker
 - White-box attacks attacker has access to the model, architecture gradients, etc.

Let x be an image and a neural network, F(x) = y, such that $F : \mathbb{R}^{w \times h \times c} \to \mathbb{R}^n$ where y is the correct label.

- Main goal of an attacker generating an image, x_{adv} such that F(x_{adv}) ≠ y by perturbing the input pixels.
- Main goal of a defense algorithm classify the perturbed image with the correct label
- Threat Model rules which dictate what kind of information an attacker
 - 1. White-box attacks attacker has access to the model, architecture gradients, etc.
 - 2. Black-box attacks (Transfer Attacks) attacker has knowledge of model architecture but not parameters, etc.

Metrics

1. Attack Success Rate - number of predictions altered by an attack, $\frac{1}{N} \sum_{n=1}^{N} \mathbb{1}[F(x_n) \neq F(x_{nadv})]$.

Metrics

- 1. Attack Success Rate number of predictions altered by an attack, $\frac{1}{N} \sum_{n=1}^{N} \mathbb{1}[F(x_n) \neq F(x_{nadv})]$.
- 2. L_2 Disimilarity Distance how different is the adverserial image from the original, $\frac{1}{N} \sum_{n=1}^{N} \frac{||x-x_{adv}||_p}{||x_{adv}||_p}$.

Metrics

- 1. Attack Success Rate number of predictions altered by an attack, $\frac{1}{N} \sum_{n=1}^{N} \mathbb{1}[F(x_n) \neq F(x_{nadv})].$
- 2. L_2 Disimilarity Distance how different is the adverserial image from the original, $\frac{1}{N} \sum_{n=1}^{N} \frac{||x-x_{adv}||_p}{||x_{adv}||_p}$.
- 3. An attacker is considered strong if its attack success rate is high while having a low dissimilarity metric.

Attacker: Robust Physical Perturbation (RP₂) Attack

Attacker: Robust Physical Perturbation (RP₂) Attack

$$\arg\min_{\delta} \quad \lambda \|M_{x} \cdot \delta\|_{p} + \mathbb{E}_{x_{i} \sim X^{V}} J(f_{\theta}(x_{i} + T_{i}(M_{x} \cdot \delta)), y^{*})$$

Dataset and Model

- Victim model 4-layer CNN
- LISA traffic sign dataset consider the top 18 classes only
- Attacks focused on victim set of 40 stop signs

Low-pass filtering the feature maps

Low-pass filtering

• Induce low-pass filtering with standard blur kernels by inserting a depthwise convolution after the first convolution layer.

Filtering input vs. Filtering Feature Maps

Table 1: Results from black box evaluation

	Accuracy	Attack Success Rate
Baseline	100%	90%
Input filter 3x3	100%	87.5%
Input filter 5x5	100%	67.5%
3x3 filter on L1 feature maps	100%	65%
5x5 filter on L1 feature maps	87.5%	17.5%

Filtering in the higher layers

1. The FFT Spectrum of a subsampling of feature maps from the second layer of the network.

Filtering in the higher layers

- 1. The FFT Spectrum of a subsampling of feature maps from the second layer of the network.
- 2. High frequency information is relevant to maintain decent classification.

Learning the Filter Parameters

Minimizing accuracy loss

• Can we learn the filter parameters so that we gain low-pass filtering without a significant degradation in accuracy?

Minimizing accuracy loss

- Can we learn the filter parameters so that we gain low-pass filtering without a significant degradation in accuracy?
- Regularization
 - 1. L_{∞} regularization of the depthwise convolution layer

Minimizing accuracy loss

- Can we learn the filter parameters so that we gain low-pass filtering without a significant degradation in accuracy?
- Regularization
 - 1. L_{∞} regularization of the depthwise convolution layer
 - 2. Total Variation (TV) regularization of the Layer 1 convolution weights

L_{∞} Regularization

$$\min \quad \frac{\alpha}{K} \sum_{j=1}^{K} \|W_{depthwise}[:,:,j]\|_{\infty} + J(f_{\theta}(x,y))$$

L_{∞} Regularization

$$\min \quad \frac{\alpha}{K} \sum_{i=1}^{K} \|W_{depthwise}[:,:,j]\|_{\infty} + J(f_{\theta}(x,y))$$

 L_{∞} norm is an ideal choice for the depthwise weights. This will ensure that the weights in the kernel take similar values to each much like a low pass filter.

Total Variation Regularization

$$TV(x) = \sum_{i,j} |x_{i+1,j} - x_{i,j}| + |x_{i,j+1} - x_{i,j}|.$$

Total Variation Regularization

$$TV(x) = \sum_{i,j} |x_{i+1,j} - x_{i,j}| + |x_{i,j+1} - x_{i,j}|.$$

$$\alpha_{TV} \frac{1}{N \cdot K} \sum_{i=1}^{N} \sum_{i=1}^{K} TV(\mathcal{F}[i,:,:,k]) + J(f_{\theta}(x,y)),$$

Total Variation Regularization

$$TV(x) = \sum_{i,j} |x_{i+1,j} - x_{i,j}| + |x_{i,j+1} - x_{i,j}|.$$

$$\alpha_{TV} \frac{1}{N \cdot K} \sum_{i=1}^{N} \sum_{j=1}^{K} TV(\mathcal{F}[i,:,:,k]) + J(f_{\theta}(x,y)),$$

TV encourages the neighboring values in the feature maps to be similar so the high spike introduced by RP_2 would be diminished.

Whitebox Evaluation

Whitebox Evaluation

Table 2: Results from white box evaluation

	α	Legitimate Acc.	Average Success Rate	Worst Success Rate	L ₂ Distortion
Baseline	0	91%	49.18%	90%	0.207
3x3 conv	10^{-5}	86.3%	30%	55%	0.201
5x5 conv	0.1	86.3%	24.11%	47.5%	0.189
7x7 conv	0.1	87%	11.61%	30%	0.203
TV	10^{-4}	85.6%	7.92%	17.5%	0.224
TV	10^{-5}	82.3%	8.47%	30%	0.199

Concluding Remarks

Conclusion

 Performed spectral analysis of the feature maps and saw that attacks introduce high-frequency components, which are amenable to low-pass filtering.

Conclusion

- Performed spectral analysis of the feature maps and saw that attacks introduce high-frequency components, which are amenable to low-pass filtering.
- Adding low-pass filters after the first layers confers some robustness benefits

Conclusion

- Performed spectral analysis of the feature maps and saw that attacks introduce high-frequency components, which are amenable to low-pass filtering.
- Adding low-pass filters after the first layers confers some robustness benefits
- Introduced two loss penalties to induce low pass filtering in the network.

