AIFA Searching With Costs

09/01/2024

Koustav Rudra

Search and Optimization

• Given: [S, s, O, G]

- To find:
 - A minimum cost sequence of transitions to a goal state
 - A sequence of transitions to the minimum cost goal
 - A minimum cost sequence of transitions to a minimum cost goal

• Initialize: Set OPEN={s}, CLOSED = {}, Set C(s)=0

- Fail:
 - If OPEN={}, Terminate with failure
- Select: Select the minimum cost state, n, from OPEN and
 - Save n is CLOSED
- Terminate:
 - If n∈G, terminate with success

- Expand:
 - Generate successors of n using O
 - For each successor, m:
 - If m∉[OPEN∪CLOSED]
 - Set C(m) = C(n) + C(n, m)
 - Insert m in OPEN
 - If m∈[OPEN∪CLOSED]

• Set C(m) =
$$min\begin{cases} C(m) \\ C(n) + C(n,m) \end{cases}$$

- If C(m) has decreased and $m \in CLOSED$
 - Move m to OPEN

- Loop:
 - Go to step 2

	OPEN SET	SELECT	GOAL	EXPANDED	CLOSED
1	[1(0)]	1(0)	N	[2(2),5(1)]	[1(0)]
	[2(2),5(1)]	5(1)	N	[2(2),9(2)]	[1(0),5(1)]
	[2(2),9(2)]	2(2)	N	[9(2),3(3),6(5)]	[1(0),5(1),2(2)]
	[9(2),3(3),6(5)]	9(2)	N	[3(3),6(5),10(10)]	[1(0),5(1),2(2),9(2)]
	[3(3),6(5),10(10)]	3(3)	N	[6(5),10(10),4(5)]	[1(0),5(1),2(2),9(2),3(3)]

OPEN SET	SELECT	GOAL	EXPANDED	CLOSED
[3(3),6(5),10(10)]	3(3)	N	[6(5),10(10),4(5)]	[1(0),5(1),2(2),9(2),3(3)]
[6(5),10(10),4(5)]	6(5)	N	[10(9),4(5),7(6)]	[1(0),5(1),2(2),9(2),3(3),6(5)]

•

•

[12(13)] 12(13) Y

- What are advantages of having positive cost?
- What will happen if operators have unit cost?
- What will happen if we have negative edge cost?

OPEN SET	SELECT	GOAL	EXPANDED	CLOSED	
[1(0)]	1(0)	N	[2(10),3(20)]	[1(0)]	
[2(10),3(20)]	2(10)	N	[3(20),4(12)]	[1(0),2(10)]	
[3(20),4(12)]	4(12)	N	[3(20),5(27)]	[1(0),2(10),4(12)]	
[3(20),5(27)]	3(20)	N	[4(5),5(27)]	[1(0),2(10), 4(12) ,3(20)]	
[4(5),5(27)]	4(5)	N	[5(20)]	[1(0),2(10), 4(12) ,3(20),4(5)]	
[5(20)]	5(20)	Υ			

AIFA Branch and Bound

09/01/2024

Koustav Rudra

Branch and Bound

• We know an upper bound on solution cost

- We can do BFS/DFS to find out a goal and its associated cost
 - But it is not guaranteed that it is least cost goal
 - However, it works as an upper bound

Branch and Bound

- Initialize: Set OPEN= $\{s\}$, CLOSED = $\{\}$, Set C(s)= $\{0\}$, $\{C^* = \infty\}$
- Fail:
 - If OPEN={}, then return C*
- Select: Select a state, n, from OPEN and save in CLOSED
- Terminate:
 - If $n \in G$, and $C(n) < C^*$, then
 - $C^*=C(n)$ and Go To Step 2

Branch and Bound

- Expand:
 - If $C(n) < C^*$, Generate successors of n using O
 - For each successor, m:
 - If m∉[OPEN∪CLOSED]
 - Set C(m) = C(n) + C(n, m)
 - Insert m in OPEN

• If
$$m \in [OPENUCLOSED]$$

• Set $C(m) = min \begin{cases} C(m) \\ C(n) + C(n, m) \end{cases}$

- If C(m) has decreased and $m \in CLOSED$
 - Move m to OPEN

- Loop:
 - Go to step 2

AIFA Informed State Space Search

09/01/2024

Koustav Rudra

The notion of heuristics

• Heuristics use domain specific knowledge to estimate the quality or potential of partial solutions

The notion of heuristics

- Examples:
 - Manhattan distance heuristic for 8 puzzle

5	6	7
4	1	8
3	9	

1	2	3
4	5	6
7	8	

$$2 + 0 + 4$$

The informed search problem

- Given: [S,s,O,G,h] where
 - S is the (implicitly specified) set of states
 - s is the start state
 - O is the set of state transition operators each having some cost
 - G is the set of Goal states
 - h() is a heuristic function estimating the distance to a goal
- To find:
 - A minimum cost sequence of transitions to a goal state

Algorithm A*

• Initialize: Set OPEN= $\{s\}$, CLOSED = $\{\}$, g(s)=0, f(s)=h(s)

- Fail:
 - If OPEN={}, Terminate with failure

• Select: Select the minimum cost state, n, from OPEN and save in CLOSED

- Terminate:
 - If n∈G, terminate with success

Algorithm A*

- Expand:
 - For each successor, m, of n:
 - If m∉[OPEN∪CLOSED]
 - Set g(m) = g(n) + C(n, m)
 - Set f(m) = g(m) + h(m)
 - Insert m in OPEN

 - If $m \in [OPENUCLOSED]$ Set $g(m) = min \begin{cases} g(m) \\ g(n) + C(n, m) \end{cases}$
 - Set f(m) = g(m) + h(m)
 - If f(m) has decreased and $m \in CLOSED$
 - Move m to OPEN

- Loop:
 - Go to step 2

Algorithm A*

	OPEN SET	SELECT	GOAL	EXPANDED	CLOSED
1	[1(12)]	1(12)	N	[2(12),5(13)]	[1(12)]
15	[2(12),5(13)]	2(12)	N	[5(13),3(19),6(12)]	[1(12),2(12)]
	[5(13),3(19),6(12)]	6(12)	N	[5(13),3(19),7(17),10(13)]	[1(12),2(12),6(12)]
	[5(13),3(19),7(17),10(1 3)]	5(13)	N	[3(19),7(17),10(13),9(14)]	[1(12),2(12),6(12),5(13)]
	[3(19),7(17),10(13),9(1 4)]	10(13)	N	[3(19),7(17),9(14),11(13)]	[1(12),2(12),6(12),5(13), 10(13)]

•

Thank You