

The SMORPHI² TransfoBot

A transforming a robot was made in collaboration with **Wefaa Robotics** and **Singapore University of Technology and Design**, for showcasing the *blooming environments* in the field of *advance locomotion* and the *vast spectrum of Internet Of Things* [IoT & Automation].

Our Prestigious Mentors:

- Dr. Gyanaranjan Panigrahi
- Mr. Pritam Nanda
- Mr. Biswajeeban Mishra

The Mighty Team:

- Sahil Kumar Chaudhury
- > Tejaswinee Nayak
- Tanushree Lenka
- Choudhary Abisant Jena
- Rudra Narayan Behera
- Lokesh Patra
- Pallav Palai

Step#1: Unpacking the smorphi² box, all the components were taken out of the box and spread on the floor, and the components were:

- 16 x Mecanum Wheels (Right + Left)
- 4 x Aluminum Base Plates
- 8 x Acrylic Base Plates
- 16 x Mecanum Motors w/ Mounts
- 6 x Solenoids w/ Latch Mount, Guide & Catch
- 6 x Hinge Mounts
- 3 x Hinge Mechanisms
- 1 x LiON Battery
- 2 x Battery Bracket
- 1 x Masterboard [Espressif32]
- 4 x Slaveboard
- Multiple Sensors [Sound, Temperature, InfraRed] + HuskyCamera
- Multiple Size Screws [3 * 5 (x200) + 3 * 10 (x45) + 3 * 25 (x50) + 4 * 8 (x15), 45 * M3 Nuts]
- 32 x Hex MF M3 Nylon 45mm
- 28 x Hex FF M3 Nylon 10mm
- 8 x 4-pin Connectors + 4 x 8-pin Connectors
- 1 x USB Type C + 1 x Battery Charger
- 2 x Wing Screws [M3 * 5] + 1 x Ceramic Screwdriver + 1 Hex Key 1.5mm

[&]quot;Every step and procedure was performed in alignment with the guidance of all the mentors and the esteemed panel from Wefaa Robotics, Singapore"

Step#2: Through the video conferencing session, we were given a link:

['https://smorphi-documentation.readthedocs.io/en/latest/']

In that documentation website, there was a **Smorphi Assembly Manual**, of different versions, as w/o and w/ Voltage Regulator with multiple purchase periods as from:

➤ There, we chose the 3rd one, i.e. Smorphi² w/o Voltage Regulator [May '23 ~ August '24], and downloaded that manual.

Step#3: Motor Sub-Assembly [A1; Pg. 7]

➤ Left & Right Mecanum Wheels are attached with their respective DC Motors, using Motor mounts, shaft sleeve and screws [M3 * 22].

Step#4: Base Module Assembly [A2; Pg. 8]

- ➤ On an Aluminum Base Plate, there are 4 grooves numbered [1, 2, 3, 4].
- Inside those grooves, the wheels are inserted according to odd-even layout as Right Wheels are Even Grooves [2 & 4], and Left Wheels are Odd Grooves [1 & 3].
- After fitting the wheels, Skirt Panels [A & B] are placed on the sides.
- Then, 4 x Hex M-F M3 Nylon 45mm Screws were tightened on the 4 corners of that Al Base Plate.

Step#5: Solenoid Latch Sub-Assembly [A3; Pg. 11]

➤ On both sides of the Solenoid Latch, a latch mount and latch guide were attached with [M3 * 5] screws, similarly 6 latches were joined.

Step#6: Mechanical Sub-Assembly [A4-7; Pg. 12-19]

- After assembling the parts respectively, now we got to assemble each module separately, according to the manual, in a very specific way of assembly of the 4 modules.
- ➤ Module 1:
 - \circ 2 Solenoid Latches are fitted, between 1 2, and 4 3.
 - 1 Solenoid Catch is fitted between 1 4
 - o 1 Hinge Mount is fitted near 4th Corner of the Al Plate.
- ➤ Module 2:
 - \circ 1 Latch is fitted between 1 4.
 - \circ 2 Catches are fitted between 1 2, and 4 3.
 - o 2 Mounts are fitted near 2 corners, 1 & 4.
 - Battery Brackets are installed, in the middled, tightened with a Wing Screw, along w/ the battery.

➤ Module 3:

- \circ 2 Latches are fitted between 1 2, and 4 3.
- \circ 2 Catches are fitted between 1 4 and 2 3.
- 2 Mounts are fitted near diagonal /odd corners, 1 & 3.

➤ Module 4:

- \circ 1 Latch is fitted between 1 4.
- \circ 1 Catch is fitted between 4 3.
- 1 Mount is fitted near the 4th Corner.

Step#7: Full Mechanical Assembly [A8; Pg. 20]

 \rightarrow All 4 modules are aligned together as [1-M1-4] > [1-M2-4] > [3-M3-2] > [3-M4-2], i.e. M3 & M4 are rotated 180° from M1 & M2.

After this alignment, the 4 modules are locked to each other, and the 3 hinges were attached to the hinge mounts.

Step#8: E-Tray Sub-Assembly [B1; Pg. 24]

- Hex F-F M3 10mm holes were attached to the acrylic base plates with [M3 x 5] screws.
- > Then, the slaveboards were attached onto those holes using more screws.

Step#9: E-Tray onto Mechanical Assembly [B2; Pg. 25]

➤ The Motor Connectors on the Slaveboards are oriented with the Al base plate numbers, i.e. Motor 1 > 1, Motor 2 > 2, etc.

Step#10: Motor Cable Connections [B3; Pg. 29]

> All DC Motors of the tires are connected to their respective Motor Connectors [M1 > MC1, etc.]

Step#11: Solenoid Cable Connection [B4-7; Pg. 30]

- ➤ Module 1:
 - Latch [1-2] connected to Solenoid 1 Connector.
 - Latch [4-3] connected to Solenoid 2 Connector.
- ➤ Module 2:
 - \circ Latch [1-4] connected to Solenoid 1 Connector.
- ➤ Module 3:
 - Latch [1-2] connected to Solenoid 2 Connector.
 - Latch [4-3] connected to Solenoid 1 Connector.
- ➤ Module 4:
 - Latch [1-4] connected to Solenoid 1 Connector.

Step#12: InterModule Cable Connection [B8; Pg. 34]

- > 3 * 8-Pin Wires are connected from Head to Tail Connectors of all the boards, as
 - \circ M1 M2, & M2 M3 are wired via 1 4 sides.
 - M3 M4 is wired via inverse 1 4 side [180°]

Step#13: Address Selection [B9 ; Pg. 35]

- > The Ceramic Screwdriver was used to adjust the rotary switch for respective address of each module as:
 - o Module 1: Address 0
 - o Module 2: Address 1
 - Module 3: Address 2
 - o Module 4: Address 3

Step#14: Masterboard E-Tray Sub-Assembly [B10; Pg. 36]

Exactly as the Slaveboard attachment, the Masterboard is attached to an acrylic base plate, on Module 2.

Step#15: Masterboard E-Tray onto Main Assembly [B11; Pg. 37]

- ➤ The header to slaveboard connector on the Masterboard is aligned to face the 1 4 side of the slaveboard.
- ➤ Post-alignment, the an 8-Pin wire is connected from [Header to Masterboard] to [Header to Slaveboard] connectors in both the boards, respectively.

Step#16: Acrylic Covers [B12; Pg. 39]

> Rest of the modules [M1, M3, & M4] are attached with Acrylic Covers, using M3 x 5 screws.

Step#17: Battery Connection [B13; Pg. 40]

- Ensuring the battery is fully charged, it was already placed in the Battery Bracket, and now its wire is connected to the Battery Connector on the Mainboard.
- Finally, the toggle switch is turned on, and if all the LEDs in all modules lit up, it was assured that all connections were properly made!
- After that, the ENABLE button is held for 1second to activate the robot.

_ smorphi² Assembly Complete _

Step#18: Application Connection

- **Smorphi** application was installed on our smartphones, from PlayStore.
- After installing, we scanned the room through the app, using BLE (<u>Bluetooth Low Energy</u>) technology.
- Once, Smorphi is detected in the list, we connect to it and launch the controller.
- Then, we were introduced with various buttons as a JoyStick, several shape transforming controls [O, I, L, T, J, S, Z], and 2 Pivot Turning buttons, which when held, pivoted the robot in clockwise and anti-clockwise directions.

Step#19: Sensor Configuration [Sound Sensor]

- A sound sensor was connected w/ a 4-pin cable to the Module 1, GPIO0 port.
- > Then, it was coded through Arduino IDE.
- For the programming purpose, the USB A to C cable was connected from the <u>Masterboard</u> to our laptop.
- The laptop was previously <u>set-up with the necessary drivers</u> [**CP210x USB to UART Driver**], and necessary libraries in the IDE.
- After the connection, <u>a sound sensor code</u> was uploaded onto the laptop and then our robot was ready to perform the Sound Sensory Acts.

_ Disassembly _