

SIMULATION OF TDC-12 ON IBM-7044

A thesis submitted

**In Partial Fulfilment of the requirements
for the Degree of**

Master of TECHNOLOGY

by

RAJJAN SHINGHAL

TO THE

Department of Electrical Engineering

Indian Institute of Technology, Kanpur

JUNE 1968.

**Thesis
510.7834
Sh 63 1**

EE-1968-M-SHI-SIM

This is to certify that this simulation of TDC-12 on IBM-7044
has been carried out under my supervision and has not been
submitted elsewhere for a degree.

H.N.Mahabala, Ph.D.
Asst. Professor,
Department of Electrical Engineering,
Indian Institute of Technology, Kanpur.

This thesis has been approved for the award of the Degree
of Master of Technology in accordance with the regulations of
the Indian Institute of Technology, Kanpur.

H.N.Mahabala, Ph.D.,
Asst. Professor,
Department of Electrical Engineering,
IIT-Kanpur.

A C K N O W L E D G E M E N T S

I wish to thank Dr.H.N.Mahabala for his guidance and helpful criticism throughout the course of this endeavour.

Thanks are also due to Dr.V.Rajaraman for his keen interest and suggestions.

The assistance given by the Staff, Computer Centre , IIT-Kanpur, is gratefully acknowledged.

RAJJAN SHINGHAL

LIST OF CONTENTS

	Page
Synopsis	1
1. Introduction	2
2. The TDC-12	4
2.1 Machine Features	4
2.2 The Central Processor	6
2.2.1 Accumulator	6
2.2.2 Carry Register	6
2.2.3 Program Address Counter	6
2.2.4 Memory Address Register	7
2.2.5 Switch Register	7
2.2.6 Memory Data Register	7
2.2.7 Instruction Register	7
2.2.8 Auto-Indexing	7
2.3 Input/Output	7
2.4 Program Interrupt	8
2.5 Data Interrupt	9
3. Simulation Techniques	10
4. The TDC-12 Simulator	13
4.1 The Central Processor	13
4.2 Input/Output	14
4.2.1 Use of Input Devices	14
4.2.2 Use of Output Devices	15

	Page
4.3 Program Interrupt	16
4.4 Additional Features	17
4.4.1 Input-BCD or Binary	17
4.4.2 Output Memory Dump	18
4.4.3 Trace Feature	19
4.4.4 Clock	19
5. Conclusions	20
List of References	21
<u>Appendices</u>	22
1. (A) Storage Reference Instructions	23
(B) Non-Storage Reference Instructions	26
(C) Register Set-1	27
(D) Register Set-2	30
(E) Input Output Instructions	32
2. The Simulator Subroutines	37
3. The Major State Generator	39
4. Using the Simulator	41

LIST OF FIGURES

	Page
1. Format Data Word Storage	5
2. Format Instruction Word Storage	5
3. Format Storage Reference Instructions	24
4. Format RS-1 Instruction Set	27
5. Format RS-2 Instruction Set	30
6. Input/Output Instruction Set	32
7. Logical Design of TDC-12	42
8. Flow Chart for the simulator of TDC-12 on IBM-7044	43

LIST OF TABLES

	Page
1. Octal Codes for I/O Units of IBM-7044 and TDC-12	47
2. Sample Result and Listing of Simulator	49

LIST OF ABBREVIATIONS

ACCM	..	ACCUMULATOR
BCD	..	BINARY CODED DECIMAL
Cols	..	COLUMNS
CRYRG	..	CARRY REGISTER
DDL	..	DEVICE DERAILMENT LOCATION
MAP	..	MACRO-ASSEMBLY PROGRAM
MAR	..	MEMORY ADDRESS REGISTER
MDR	..	MEMORY DATA REGISTER
MSG	..	MAJOR STATE GENERATOR
PAC	..	PROGRAM ADDRESS COUNTER
RM	..	RECORD MARK
RS-1	..	REGISTER SET-1
RS-2	..	REGISTER SET-2
SWRG	..	SWITCH REGISTER
I/O	..	INPUT/OUTPUT

SYNOPSIS

1

SIMULATION OF TDC-12 ON IBM-7044

A thesis submitted in partial fulfilment of the requirements for
the Degree of Master of Technology
by

RAJJAN SHINGHAL
to the Department of Electrical Engineering,
Indian Institute of Technology, Kanpur.

JUNE 1968.

A simulator for a small on-line stored-program computer (similar to TDC-12 being developed by the Bhabha Atomic Energy Commission) on IBM-7044 has been written in the MAP language. It is mainly an aid to write the assembler, compiler and Utility Library Programs for the on-line computer.

This report discusses in the beginning, why a simulator is necessary. The features of the on-line computer have been given. The simulator was written at the Hardware level. The simulator includes in it the Program Interrupt feature, which enables the computer to attend I/O interrupt on a priority basis. For I/O two teletypes are simulated. To ensure real time compatibility between the actual computer and its simulator, a Pseudo-Clock which keeps record of time taken for execution of program in number of machine cycles, has been included.

A Pseudo-Load Routine ensures fast storing of program. Debugging aids in form of trace feature and the facility of dumping out memory of the simulated computer are also included.

1. INTRODUCTION

2

A computer system cannot be thought of as only the hardware unit; the software is an integral part of it. To facilitate the use of higher level languages, it is essential to develop a powerful software for the computer system. The development of software is time-consuming and expensive. For most of the modern systems about sixty percent of the development cost goes to develop software. The first step in writing the software is to write an assembler. The minimal software provides a take-off stage for the improvement and development of further software.

An early method to write the assembler for a proposed computer system employs a bootstrap technique. After the computer system is ready, a minimum assembler is written in machine language. Using this minimum assembler language another assembler is written to accept higher-level-assembly-language programs. The second assembler is then compiled into machine language by the first assembler, thus producing an Updated Assembler-II which can accept Assembly Language-II programs. Successive utilization of this technique provides a maximum assembler. This method requires considerable amount of machine-language programming, which is very tedious and time consuming.

It is desirable to have the software of the proposed computer system operational, by the time the hardware circuitry is ready. For this an existing computer can be used. As a computer system is developed it is essential to have means for evaluating different hardware configurations from point of view of efficiency of software. This can be done by digital computer simulation of the

proposed computer system. The constraints under which the simulated system will operate have to be clearly defined.

In simulation of a system a model is to be realised whose behaviour in the specified environment is the same as that of the original system. Then the response of the model to a specified stimulus condition is utilized in deducing corresponding conclusions about the system under simulation. Once the simulator for the proposed computer system is ready, the Assembler, Compiler and Utility Library Programs for it can be written. Moreover while working on the simulator one may come across areas, specially in choice of machine operation codes, in which improvements may be suggested to the hardware designer.

Thus by the time the hardware circuitry of the proposed computer is ready, its completely debugged software is also ready. This saves time and also ensures ease in developing the software. Simulator studies are an essential part of developing a computer system and its software.

The Bhabha Atomic Energy Commission is developing a small on-line, stored-program computer----- TDC-12. It is a general purpose computer meant for,

1. System and Control Application (i.e. Real Time Application)
2. On-Line data collection and Reduction
3. Limited Computation

2.1 MACHINE FEATURES

Word Format	Binary
Word Length	12 bits
Memory Capacity	4096 words
Arithmetic Used	Twos complementary
Mode of Operation	Parallel Synchronous
Time for one machine cycle	1.5 microseconds
Memory Organization	

Since the system has a 4096 word core-memory 12 bits are required to address all the locations. To reduce the number of bits required for addressing, the memory is divided into sectors of 64 words each. The sectors are numbered 0 through 63 and the locations in each sector are also numbered 0 through 63.

The hardware does not provide for multiplication, Division and Floating-Point Computation. Only Integer Arithmetic can be done. Anyhow by writing suitable software routines multiplication, division and Floating-point computation can be carried out. Similarly software routines could be written to perform the operations of square root, sine, cosine, Arctangent, natural logarithm and exponential.

Information in the memory core may be stored either as Data word or as an Instruction. The data word in two's complementary form is stored as in Figure-1.

The instruction set consists of 12 Storage Reference and 3 Non-Storage Reference instructions. Storage-Reference instructions

Figure-1 Format- Data Word Storage

Figure-2 Format- Instruction Word Storage

store or retrieve data from the core memory while others do not. Bits 0 through 3 specify operation code in all instructions. The non-storage reference instructions could be microprogrammed to perform several operations in one instruction. For more detailed explanation see Appendix I. The format for an instruction word storage in core memory is shown in Figure-2.

2.2 THE CENTRAL PROCESSOR The logical arithmetic, data processing and control functions and storing and retrieving information for core memory are performed in the central processor.

2.2.1 ACCUMULATOR(ACCM) It is a 12 bit register where all arithmetic and logical operations are performed. It can be cleared or complemented, its contents can be circulated right or left with Carry Register under program control. The contents of MDR can be added to ACCM and results left in the ACCM. The contents of both these registers can be combined by logical operations AND or EXCLUSIVELY OR, the result being left in the ACCM. The INCLUSIVELY OR can be performed between ACCM and SWRG. The result remains in the ACCM. In I/O transfers information is transferred between core memory and the peripheral device through the ACCM.

2.2.2 CARRY REGISTER(CRYRG) This one bit register extends the arithmetic facilities of the ACCM. In two's complement arithmetic the CRYRG acts as an overflow indicator which can be checked by the program, to greatly simplify and speed up multi-precision arithmetic routines. The CRYRG can be cleared, complemented and its state sensed independent of the accumulator. It is included with the ACCM in circulate operations.

2.2.3 PROGRAM ADDRESS COUNTER(PAC) It is a 12 bit register and contains the address of the memory location which contains the next instruction to be executed. Information enters into the PAC from the core memory via the MDR, MAR or SWRG. Information in the PAC is transferred to MAR to determine the core memory address from which the next instruction is to be taken. Incrementation of PAC provides skipping of one instruction or two based upon a programmed test of information or conditions.

2.2.4 MEMORY ADDRESS REGISTER(MAR) It is a 12 bit register containing address of the memory location currently selected for reading or writing. All 4096 words of core-memory are directly addressable by this register. Data from PAC can be set into it.

2.2.5 SWITCH REGISTER(SWRG) Information can be placed in this 12 bit register by switches on the console of TDC-12.

2.2.6 MEMORY DATA REGISTER(MDR) It is a 12 bit register. All information transferred into or out of the core-memory passes through MDR. Information is read from a memory cell into MDR and rewritten in the cell. The contents of MDR can be incremented by 1.

2.2.7 INSTRUCTION REGISTER(IR) This 4 bit register contains the operation code of the instruction currently being executed by the computer. The four most significant bits of the current instruction are loaded into the IR from MDR during Instruction Fetch Cycle. The operation code bits are then decoded to produce fifteen basic instructions and affect the cycles and states entered at each step in the program.

2.2.8 Auto Indexing When a location between 10(octal) and 17(octal) in sector zero of core memory is addressed indirectly the contents of the location are read, incremented by one, rewritten in the same location and then taken as the effective address of the instruction. This provides the facility normally given in other computers by index registers. If location 14(octal) contains 2132 and if this is indirectly addressed the number 2133 is stored in location 14(octal) and the effective address is taken as 2133.

2.3 INPUT/OUTPUT

The Teletype is the unit for both input and output of information. On the user side, the information appears as type print and on the computer side it appears as 8 bit binary number. Table 1 in Appendix-5 gives the characters and their equivalent octal codes eg. letter C when typed on keyboard goes into ACCM as 303 (octal), after suitable instruction to read keyboard is given. Octal combinations for Line Feed and Carriage Return are also listed in Table-1. The teletype is slow as compared to the computer execution

speed. The computer must temporarily suspend execution of the current program or execute another program while the Teletype (rate 10 characters per second) is again in synchronism with it. When the Teletype is ready it sets a flag which is watched for by the computer. After the execution of the current instruction the next character is transferred and the flag is reset. An instruction is required for the transfer of each character.

2.4 PROGRAM INTERRUPT By this, the program control can be suspended from the current program and transferred to another routine of higher priority. The TDC-12 provides the interrupt feature with multi-level priority. When an interrupt occurs the contents of the PAC are stored in location 0000 and control is transferred to location 0001. A software subroutine stored from there should then sort the source of interrupt and transfer control to the proper subroutine. Each service subroutine enables only those interrupts which have higher priority. This solves the problem of interconnecting slow I/O devices to the fast computer. Facility is provided where one or more peripheral units may be disabled from interrupting.

A computer may transmit a word to the printer which may require many milliseconds to be output. Rather than waiting and wasting time the computer can move to another program, and return to the printing program when the printer sends signals that it is ready to accept another character. This improves the efficiency of I/O operation.

Any interrupt can be enabled only if the Interrupt feature has been turned ON. After interrupt takes place it is turned OFF, and for future interrupts of higher order to occur, it should be turned

ON again, by the software subroutine stored from location 0001.

2.5 DATA INTERRUPT

This facility provides fast data transfers from and to core memory directly, with fast I/O devices like magnetic tapes. This has all the facilities of a Data Channel except that at the time of I/O computations cannot go on. The Interrupt is indicated by a request from the peripheral device (not by programmed instruction) and are interlaced with the program in progress. Thus the device may transfer a word with memory, whenever it is ready, without waiting for an instruction in the program.

The break or interrupt may be of two types:

1. registers in the device specify the core memory address of each transfer and count the number of transfers to determine the end of data blocks.
2. two computer memory locations perform these functions, simplifying the device interface by omitting hardware registers.

A simulator of the proposed computer system could be written at the Instruction Level. In this technique each instruction of the proposed computer is taken and decoded to achieve the end objective. This technique requires the simulation of the entire core memory but does not require the simulation of all the electronic registers. Only those electronic registers to which the user has direct access e.g. the accumulator, need be simulated. The information flow does not follow the path and pattern of the proposed computer. It is like building the model of a system where only the end-product is the same but the internal operation may be different. The simulator is independent of the hardware logical design. Instruction level simulator may be efficient in terms of machine time but it may not be useful in examining modifications to hardware.

A better technique is the Hardware Level simulation. Here the entire core-memory and all the allied electronic registers are simulated. The instruction is decoded to achieve the end-objective, but at the same time the, the information flow follows very nearly the same path and pattern as in the proposed computer. Here not only the end-product is the same but all the interconnecting parts together with their mutual relationship are essentially the same as in the actual computer. This technique can be used to evaluate proposed changes in the system without actually incorporating the changes in the hardware. If a small change in the hardware is contemplated, a corresponding change in the simulator is first done and evaluated before fabrication. The utilization of the

various functional units can be studied. This technique thus provides reliability and flexibility. The simulator of TDC-12 on IBM-7044 was written on the Hardware Level.

An on-line computer is controlled by its environment and it is possible to interrupt the normal working of the computer and communicate with it through a peripheral device, at any required time. As compared to the speed of the Central Processing Unit, the peripheral devices are very slow, and while I/O occurs the computer may have to wait or execute another program. It becomes necessary for the simulator to follow the same pattern. The Hardware-Level simulator makes this possible as there is one-to-one correspondence between the simulator and the hardware of the system. This provides for a well organized and clearly defined simulator on which improvements are easy to implement.

For widest applications, a computer system simulator should be a dynamic simulator, that is it should have a clock whose advances correspond to real time advances in the simulated computer. The simulator should be able to output snap-shots of the state of the computer system. A memory-dump routine in the simulator provides the status of the core of the simulated computer, and the electronic registers. A ^aTrace feature is incorporated in the simulator to determine the actual sequence of instructions executed (only jumps need be indicated). A Pseudo-Clock is provided which is incremented suitably at the end of each machine cycle. This provides the time in object machine cycles which a program will take for execution. Since the simulated computer is meant for real time

application it is imperative to take time factors into account. Especially the Clock feature is indispensable. Whenever any of the I/O devices are operating there is considerable delay between successive I/O of characters. The Clock is then used to time the simulator.

With the languages available at the Computer Centre at Indian Institute of Technology, Kanpur the simulator could have been written in Fortran-IV, Algol or MAP. In MAP it is easy to handle individual characters and also individual bits of a word. Hence the simulator was written in MAP language.

4. THE TDC-12 SIMULATOR

4.1 THE CENTRAL PROCESSOR Locations 20000_8 through 27777_8 in IBM-7044 have been reserved as the 4096 word core-memory of TDC-12. These locations were chosen as the last four digits of these locations represent the address of the location as in TDC-12. Thus this ensures an easy correspondence in addresses of IBM-7044 and TDC-12. The 12 bit information pertaining to TDC-12 is always stored and interacted in the lower 12 bits of these locations. The electronic registers----- ACCM, CRYRG, PAC, MAR, SWRG, MDR and IR ----- are simulated by reserving one memory location for each of these. Their working conforms to that described earlier in the description of TDC-12.

For execution of any instruction the contents of PAC are placed in MAR. The contents of location in MAR are placed in MDR, and contents of PAC are incremented by 1. The instruction in MDR is decoded by a Decode routine. If the contents of MDR form an illegal instruction, a suitable message is printed. Further the contents of TDC-12 memory and allied electronic registers are dumped out and program is terminated. If it is a legal instruction it is decoded further, to find out whether it is a Storage Reference type or not. If it is a Non-Storage Reference type of instruction, microprogramming is tested for and suitable subroutines are called for execution. In the Storage Reference type of instruction, the effective address of the operand is determined after checking for sector bit, indirect addressing and auto-indexing. This may need an extra Read cycle. Suitable subroutines are then called for execution.

For each instruction that is executed the contents of the

CLOCK ARE INCREMENTED by the number of machine cycles the instruction takes for execution. If the TRACE feature has been turned ON, then whenever there is a skip or jump in program-execution-control as distinct from the sequential execution of a program, a message is given indicating the jump. At the successful completion of a program the contents of core-memory, electronic registers and the CLOCK are dumped out if Memory Dump Feature has been turned ON earlier.

If the Interrupt is turned ON then at the end of each instruction test is made if any of the peripheral devices are interrupting. If so, the contents of the PAC are stored in location 0000 and program control is transferred to location 0001. If none of the peripheral devices are interrupting, the execution of the same program goes on.

4.2 INPUT/OUTPUT Two teletypes are simulated for I/O. The break-up of the devices is into four units which have been sequentially numbered.

<u>UNIT</u>	<u>NUMBER</u>	
Keyboard Reader	01	Input Units
Paper Tape Reader	02	
Teleprinter	03	Output Units
Paper Tape Punch	04	

A nominal modification in the simulator will ensure the addition of more I/O devices.

4.2.1 USE OF INPUT DEVICES For input the teletype handles character by character at the rate of 10 characters per second. The input is serial as an input instruction is to be executed for the transfer of every character from the input device to the ACCM. On IBM-7044 input is parallel as all the characters on a card can be read simultaneously. So that the input on IBM-7044 card reader corresponds to that of the teletype on TDC-12, the contents of the card are placed

in an input buffer. On an input instruction, the contents of the buffer are shifted to ACCM character by character. The rate of transfer of characters from buffer to ACCM in IBM-7044 is controlled by a program which uses the Clock, and it corresponds to that of the Teletype in TDC-12. When the buffer is exhausted and still more data is required a suitable message appears on the IBM typewriter. The data is read in parallel from a card which is then supplied internally serially. On every card the end of data is shown by a Record Mark (punch in rows 0-2-8 using the multiple punch). Data can utmost extend upto 72 columnswith RM in column 73. Columns 77 and 78 should have 01 or 02 punched to signify which unit is supposed to be used.

4.2.2 USE OF OUTPUT DEVICES For output, the teletype handles character by character at the rate of 10 characters per second. Output is thus serial as an output instruction is required for each character. IBM-1403 the on-line printer connected to IBM-7044 is a parallel printer as an entire line upto 132 characters can be printed simultaneously. The teletype features had to be simulated on the on-line printer. On execution of an output instruction, one character is transferred at a time from ACCM to a buffer. The buffer can utmost hold 72 characters. When the buffer is full, the entire contents of the buffer are printed out automatically. If fewer than 72 characters are required to be printed in one line, instructions for Line Feed and Carriage Return are to be given. See Table-1 in Appendix-5 for their octal codes. After any printing the buffer is automatically cleared and is prepared to receive more information. The rate of

transfer of characters from ACCM to buffer corresponds to the output rate in teletype in TDC-12. After printing a line an indication is given signifying which unit is supposed to output. A typical output from Unit 03 will look like:

1234567890QERTYUIOPASDFGHJKLZXCVBNM--- -

UNIT 03

4.3 PROGRAM INTERRUPT The execution of a program can be suspended at any point and control can be transferred to another routine of higher priority by the interrupt feature. After execution of the service routine, control may be returned to the original program. Any one or more of the I/O devices may cause interrupt. Each one of the devices has a memory location called the Device Derailment Location (DDL) which is used to indicate the interrupt by that device. The allotment of the DDLs is as follows,

UNIT	TDC-12 Location in Octal Notation	IBM-7044 Location in Octal Notation
01	7777	27777
02	7776	27776
03	7775	27775
04	7774	27774 DEVICE

Presence of a 1 in the lowest bit of a DDL indicates that the corresponding device is interrupting. Thus if during the execution of a program an interrupt is to be caused put IBM-7044 in manual mode. Enter through keys a 1 in the lowest bit of the corresponding DDL. Put into automatic mode and press START. If the Interrupt had been turned ON earlier, then after the execution of the current instruction interrupt shall occur. The contents of PAC are stored in location 0000 and control is transferred to location 0001.

Presence of a 1 in bit 5 of any DDL (viewed as in TDC-12) disables the corresponding device from interrupting. Thus the routine for

sorting out source of interrupt which is stored from location 0001 must check for this.

4.4 ADDITIONAL FEATURES As mentioned earlier the I/O devices connected to TDC-12 are slow. If the program to be run is fed by these devices, then it takes a long time to be stored in the TDC-12 memory. Also to output a character will be very slow. Hence as an additional feature facility exists for fast input and output.

4.4.1 INPUT-----BCD OR BINARY A Pseudo-Load routine takes care of this. Input is punched on cards. The first card is a HEADER card and the program to be stored is punched on subsequent cards either in Binary Coded Decimal (BCD) or Binary form.

BCD MODE On Header card punch BCDM in Columns 3 through 6. The program to be stored is punched as follows,

Columns 1,2	Cols. 3 through 6	Cols. 7,8	Cols. 9 through 12	Cols. 14 onwards
-------------	----------------------	-----------	-----------------------	---------------------

Blank	AAAA	Blank	BBBB	Remarks
-------	------	-------	------	---------

AAAA specifies where the information BBBB is to be stored. Both are in Octal Form. On the last card at the end of the program, field AAAA has DEND punched in it and field BBBB has the starting location counter where program control will be transferred for execution.

BINARY MODE On the Header card punch BNRY in Columns 3 through 6. For the main program each card has a 7-9 punch in Column 1. Column 2 has the number of TDC-12 instructions punched on that card. Column 3 has the location where the first instruction (appearing from Cols. 4) will be loaded. The rest of the instructions on the card are loaded in sequential order after that. Each instruction occupies one

column on the input card. All input is in octal form. The entire card upto 80 columns can be used. At the end of a program the last card is indicated by a 12-7-9 punch in Column 1. The address of the location where program control is to be transferred for execution is in Column 2. Rest of the card may be blank as it is ignored.

If on the Header card Columns 3 through 6 have neither BCDM nor BNRY punched in, then a message appears:

ILLEGAL INPUT, UNABLE TO READ

After dumping out the entire memory of TDC-12, ^{the} job is terminated.

4.4.2 OUTPUT---MEMORY DUMP This provides the Dump of the entire core-memory of TDC-12 together with all the simulated electronic registers including the CLOCK. This is a powerful debugging aid.

In the memory dump all output is in octal. The contents of PAC, MAR, CRYRG, SWRG and CLOCK are dumped without the neccessary sign bit. For ACCM and MDR the sign bit is added. Contents of sixteen (20 octal) memory locations are printed in one line with the address of the first location in the line being printed out extreme left. If it is a valid operation code, the equivalent mnemonic is printed underneath the numerical contents. In the Storage Reference instructions the presence of a star(*) after the mnemonic represents indirect addressing. Similarly the presence of a 1 means the sector bit was 1, the absence of it means the sector bit was zero. If the contents of a location do not tally to a valid operation code then the contents are printed out with the proper sign. It may happen that consecutive blocks of sixteen locations have the same contents. In this case rather than print out the same contents over and over again, a message is given:

LOCATION XXXX THRU YYY ALL CONTAIN ZZZZ

QQQQ

In case ZZZZ forms a legal instruction, QQQQ is the equivalent operation code, otherwise it is left blank.

Whenever during the execution of a program an illegal instruction is encountered, a message is given out:

ILLEGAL TDC INSTRUCTION. JOB TERMINATED.

The memory of TDC-12 is dumped out and execution halts.

It may happen that a program is completed successfully yet further improvements are to be made. For this the status of the core-memory and the electronic registers may be required. In that case on the Header card punch MMRY in Columns 15 through 18. Before terminating, the memory is dumped out. In case this facility is not required, the corresponding columns on the Header card may be left blank.

4.4.3 TRACE FEATURE This is also a debugging aid. On the Header card punch TRAS in columns 9 through 12. Whenever there is an abrupt change in the instruction location counter--as distinct from the normal sequential progress of the program---a message is printed out,

LOCATION COUNTER JUMP XXXX THRU YYY

meaning thereby, that program control changed from location XXXX to YYY. Thus this message is given on a JUMP, SKIP or on the successful outcome of a conditional skip. If this facility is not required leave the corresponding columns on the Header card blank.

4.4.4 CLOCK In IBM-7044 a location is reserved which increments during the execution of an instruction by as many cycles as the instruction takes on TDC-12. This helps in:

1. keeping track of time taken on TDC-12
2. Synchronizing the slow I/O devices with the main program execution.

This location is referred to as a clock.

5. CONCLUSIONS

In general, computer simulation provides a means for studying Systems. It can be applied to a wide variety of systems, both real and hypothetical. It is a very powerful research technique. The simulation provides a tool which could quickly and efficiently assist in the investigation and study of the performance of the proposed system.

The simulation of the small on-line computer consisted in writing a simulator in MAP language for IBM-7044. The simulator will be used in writing the software for the proposed computer. It is expected that the software may dictate eliminating some machine operation codes in favour of some others. The changes can be incorporated very easily in the simulator. Since the organization of the memory of the on-line computer is of the sector-type valuable experience in writing programs for such a machine (even before writing the software) can be obtained by the use of the simulator. The Clock and the trace feature will assist in optimizing programs from point of view of time and memory required.

LIST OF REFERENCES

1. S.N.Verma, System Design of Trombay Digital Computer TDC-12, Govt.of India,Atomic Energy Commission.
2. T.N.Reddy, Assembly System, Govt. of India,Atomic Energy Commission.
3. Digital Equipment Corporation, Small Computer Handbook, New PDP-8/I
4. J.Martin, Programming Real Time Computer Systems, Prentice Hall Inc.
5. Ivan Flores, The Logic of Computer Arithmetic, Prentice Hall Inc.
6. Ivan Flores, Computer Software, Prentice Hall Inc.
7. L.Rowell Huesmann and Rober P.Goldberg, Evaluating Computer Systems through Simulation, The Computer Journal, August 1967, Page 150.
8. N.R.Nielson, Simulation of Time Sharing Systems, Communications of A.C.M., Volume 10, Number 7, July 1967. Page 397.
9. G.W.Evans, Graham F.Wallace, G.Wallace, G.L.Sutherland, Simulation Using Digital Computers, Prentice Hall Inc.

A P P E N D I C E S

INSTRUCTION WORDS

The instruction(command)word specifies the instruction to be executed. Instruction words are of the following types:

(a)..Storage Reference Instructions

(b)..Non-Storage Reference Instructions

- (i) Input-Output Instructions
- (ii) Register Instructions

Storage reference Instructions store or retrieve data from the core memory, while others do not. Bits 0 through 3 are used to specify operation code in all instructions.

(A) STORAGE REFERENCE INSTRUCTIONS

There are 12 of these instructions. Each instruction consists of two parts:

(a)..bits 0 through 3 forming operation code.

(b)..bits 6 through 11 forming address field.

The word format for these instructions is shown in Figure 3.

A 1 in bit 4 means indirect addressing, thereby specifying that the correct operand address is to be obtained from the location whose address is given in the address field. If bit 5 in the instruction word contains a 1, the six address bits(6 through 11) can address any location in the sector in which the current instruction is located.

If bit 5 contains a zero, any location in sector zero can be addressed directly from any sector of core-memory. All other locations can be addressed indirectly by placing a 1 in bit 4 and placing six bit address in the instruction to specify the location in current

Figure-3 Format Storage Reference Instructions

sector or sector zero which contains the 12 bit effective address of the operand.

A list of Storage Reference Instructions is given. For all instructions except the JMP instruction time taken is 2 machine cycles for directly addressed and 3 machine cycles for indirectly addressed instructions. In JMP instruction the corresponding time is 1 and 2 machine cycles.

LOGICAL AND

Octal Code 04

Mnemonic

AND

Y

The logical operation AND is performed between the contents of location Y and that of ACCM. The result is left in the ACCM, the original contents of the ACCM being lost. The contents of memory location Y are unchanged.

Exclusive Or

Octal Code 10

Mnemonic

XOR

Y

The logical operation Exclusive OR is performed between the contents of memory location Y and that of ACCM. The result is left

in the ACCM and original contents of ACCM are lost. Contents of memory location Y are unchanged. Corresponding bits while ORing are compared independently.

LOAD ACCUMULATOR

Octal Code 14

Mnemonic LAC Y

The contents of memory location Y are loaded into the accumulator. The previous contents of the accumulator are lost. The contents of memory location Y are unchanged.

STORE ACCUMULATOR

OCTAL CODE 20

Mnemonic SAC Y

The contents of ACCM are stored in location Y. The previous contents of Y are lost. The contents of the ACCM are unchanged.

ADD

Octal Code 24

Mnemonic ADD Y

The contents of memory location Y are added to the ACCM in two's complement arithmetic. The result is left in the ACCM and the original contents of the ACCM are lost. The contents of location Y are unchanged. The CRYRG is set to 1 to indicate an overflow.

SUBTRACT

Octal Code 30

Mnemonic SUB Y

The contents of memory location Y are subtracted from the contents of the ACCM in two's complement arithmetic. The result is left in the ACCM and the original contents of the ACCM are lost. Contents of location Y are unchanged. The CRYRG is set to 1 to indicate an overflow.

REPLACE ADD MEMORY

Octal Code 34

Mnemonic RAD Y

The contents of location Y are added to the ACCM in two's complement arithmetic. The result is placed back in location Y, whose original contents are lost. The ACCM will also contain the sum and its original contents are lost too.

INCREMENT AND SKIP IF ZERO

Octal Code 40

Mnemonic ISZ Y

The contents of location Y are incremented by 1 in two's complement arithmetic. If the resultant contents of Y equal zero, the next sequential instruction is skipped. If the resultant contents of location Y are not equal to zero, the program proceeds to the next sequential instruction.

JUMP

Octal Code 44

Mnemonic JMP Y

The address Y is set into PAC so that the next instruction is taken from core memory location Y. Original contents of PAC are lost. Contents of ACCM are unaffected.

JUMP TO SUBROUTINE

Octal Code 50

Mnemonic JMS Y

The contents of the PAC are deposited in memory location Y and the next instruction is taken from location Y+1. Contents of ACCM are unaffected.

Compare Accumulator and Skip

Octal Code 54

Mnemonic CAS Y

The contents of ACCM are algebraically compared with the content of location Y. If the contents of ACCM ^{are} greater than contents of location Y, the next sequential instruction is executed. If the contents of ACCM are equal to the contents of location Y, the next sequential instruction is skipped. If the contents of the ACCM are less than contents of location Y, the next two sequential instructions are skipped. Contents of ACCM and contents of location Y are unchanged.

EXECUTE

Octal Code 60

Mnemonic XCT Y

The instruction in memory location Y is executed without changing program control (unless the instruction in location Y is a JMP or JMS instruction). When the instruction in location Y ^{is JMS} the next address stored is the address of the Execute instruction plus one. Effectively this is a one instruction subroutine.

(B) NON-STORAGE REFERENCE INSTRUCTIONS

There are two types of instructions which do not refer to any memory location. These are the Input/Output instructions and the Register Set instructions. Bits 0 through 3 represent operation code. Bits 4 through 11 serve as an extension of operation code and could be micro-programmed to perform several operations within one instruction. Each instruction is discussed separately.

All these instructions are executed in one machine cycle.

There are two Register-Instruction sets, RS-1 and RS-2. RS-1 (operation Codes 70) is principally for clear, complement, rotate and increment operations. RS-2 (Operation Codes 74) is used principally in checking the contents of the ACCM and Carry Register and continuing to, or skipping the next instruction based on the check.

(c) REGISTER SET -1

The micro-instruction format is shown in Figure-4. Subsequently all the instructions are explained.

Figure-4 Format. RS-1 Instruction Set

Any logical combination of bits within the group can be combined into one micro-instruction eg. bits 4,5 and 10 can be combined but bits 7 and 8 cannot be combined as they represent conflicting operations. When micro-programmed the logical sequence in which instructions are executed are:

1. CLA, CLC
2. CMA, CMC
3. IAC
4. CAR, CAL, CTR, CTL

NO OPERATION

Octal Code 7000

Mnemonic NOP

This causes a one cycle delay in the program and the next instruction is initiated. It is used to add execution time to a program, such as to synchronize subroutine or loop timing with peripheral equipment timing.

CLEAR ACCUMULATOR

Octal Code 7001

Mnemonic CLA

The content of each bit of the ACCM is cleared to obtain a binary zero.

CLEAR CARRY REGISTER

Octal Code 7002

Mnemonic CLC

The Carry Register is cleared to contain a zero.

CIRCULATE ACCUMULATOR RIGHT

Octal Code 7010

Mnemonic CAR

The contents of ACCM and CRYRG together are circulated right by 1 bit position. The content of least significant bit is transferred to CRYRG and the content of CRYRG goes to the most significant bit of ACCM.

CIRCULATE ACCUMULATOR LEFT

Octal Code 7020

Mnemonic CAL

The contents of ACCM and CRYRG together are circulated left by one bit position. The content of most significant bit of ACCM goes to CRYRG and the content of CRYRG goes to least significant bit of ACCM.

CIRCULATE TWO RIGHT

Octal Code 7014

Mnemonic CTR

The contents of ACCM and CRYRG together are circulated right by two bit positions.

CIRCULATE TWO LEFT

Octal Code 7024

Mnemonic CTL

The contents of ACCM and CRYRG together are circulated left by two bit positions.

COMPLEMENT CARRY REGISTER

Octal Code 7040

Mnemonic CMC

The content of CRYRG is complemented.

COMPLEMENT ACCUMULATOR

Octal Code 7100

Mnemonic CMA

The contents of ACCM are set to one's complement of the current contents of the ACCM. Each bit of the ACCM is complemented.

INCREMENT ACCUMULATOR

Octal Code 7200

Mnemonic IAC

The content of the ACCM is incremented by one in twos complement arithmetic.

COMBINED INSTRUCTIONSCOMPLEMENT AND INCREMENT ACCUMULATOR

Octal Code 7300

Mnemonic CIA

The contents of the ACCM are converted into the twos complement number. (It is combination of CMA and IAC)

SET CARRY REGISTER

Octal Code 7042

Mnemonic STC

The CRYRG is set to contain a binary one. (It is combination of CLC and CMC).

SET ACCUMULATOR

Octal Code 7101

Mnemonic STA

Each bit of the ACCM is set to contain a binary 1. (It is combination of CLA and CMA).

(D) REGISTER SET-2

The micro-instruction format is shown in Figure-5. The primary micro-instructions are explained subsequently. Any logical combination of bits within this group can be combined into one micro-instruction.

If skips are combined in a single instruction, the inclusive OR of the conditions determines the skip when bit 9 is a zero; and the AND of the inverse of the conditions determines the skip when bit 9 is a one. If bit 9 is a zero and bits 6 and 8 are one, the next instruction is skipped if either the contents of the ACCM are minus or if the content of CRYRG are non-zero. If bit 9 is a one and bits 6 and 8 are one too, the next instruction is skipped if the contents of ACCM are positive and the CRYRG is zero,

Figure-5 Format RS-2 Instruction Set

When micro-programmed the Logical Sequence in which the instructions are executed are:

1. (When bit 9 is a zero) Either SMA or SZA or SNC
2. (When bit 9 is a one) SPA and SNA and SZC
3. CLA
4. ORS, STP

CLEAR ACCUMULATOR

Octal Code 7401

Mnemonic CLA

Each bit of the ACCM is cleared to contain a binary zero.

OR WITH SWITCH REGISTER

Octal Code 7402

Mnemonic ORS

Inclusive OR function is performed between Switch Register and ACCM. When combined with CLA, the ORS performs a transfer of the contents of SWRG into the ACCM.

UNCONDITIONAL SKIP

Octal Code 7404

Mnemonic SKP

Next sequential instruction is skipped.

SKIP ON NON-ZERO CARRY REGISTER

Octal Code 7410

Mnemonic SNC

The contents of CRYRG are checked. If there is a 1 the next sequential instruction is skipped.

SKIP ON ZERO-CARRY REGISTER

Octal Code 7414

Mnemonic SZC

The content of CRYRG is checked, and if it contains a :0 , the next sequential instruction is skipped.

SKIP ON ZERO-ACCUMULATOR

Octal Code 7420

Mnemonic SZA

Each bit of the ACCM is checked, and if each bit of ACCM contains a zero, the next instruction is skipped.

SKIP ON NON-ZERO ACCUMULATOR

Octal Code 7424

Mnemonic SNA

Each bit of the ACCM is checked, and if any bit or bits contain a 1, the next sequential instruction is skipped.

SKIP ON MINUS ACCUMULATOR

Octal Code 7440

Mnemonic SMA

The content of the most significant bit of the ACCM is checked, and if it contains a 1, indicating that the ACCM has a negative number, the next sequential instruction is skipped.

SKIP ON POSITIVE ACCUMULATOR

OCTAL CODE 7444

Mnemonic SPA

The content of the most significant bit of the ACCM is checked and if it contains a zero, indicating a positive number, the next sequential instruction is skipped.

STOP

Octal Code 7500

Mnemonic STP

This terminates the program. This command can be combined with other instructions of the RS-2 group, which are executed before program stops.

(E) INPUT OUTPUT INSTRUCTIONS

The operation code for input/output instructions is 64(octal).

The instruction format is given in Figure-6.

Figure-6 Format Input/Output Instruction Set

Bits 0 through 3 form the operation code; bits 4 through 8 form the Address field and bits 9 through 11 form the Action field.

The four types of I/O instructions may be divided as:

<u>ADDRESS FIELD</u>	<u>ACTION FIELD</u>	<u>TYPE OF INSTRUCTION</u>
Zero	Zero	Illegal
Zero	Non-Zero	Interrupt Status
Non-zero	Zero	Interrupt Sense
Non-Sense	Non-Zero	Device Attention

The Interrupt Sense Instruction occurs when one or more I/O devices are caused to interrupt.

INTERRUPT STATUS INSTRUCTIONS

These instructions are used for turning the Interrupt ON or OFF, and also for enabling only some of the devices to cause interrupt.

SET MASK FLIP FLOP

Octal Code 6401

Mnemonic SMK

By this only some of the I/O devices are enabled to interrupt. When this instruction occurs, then if bit 11 of the ACCM has a 1 then a 1 is put in bit 5 of the DDL of Unit 01. This prevents Unit 01 from interrupting and the status can be changed by giving another SMK instruction. Similarly if say bit 10 of ACCM has a zero then a zero is put in bit 5 of the DDL of Unit 02. This unit can then interrupt, after an Turn Interrupt ON instruction has been given.

TURN INTERRUPT ON

Octal Code 6402

Mnemonic ION

It enables the computer to respond to an interrupt request. After this instruction is given the computer constantly checks for any interrupts after every instruction.

TURN INTERRUPT OFF

Octal Code 6404

Mnemonic IOF

It disables interrupt.

Octal Codes 6405, 6406 and 6407 are illegal instructions as they

represent conflicting operations. Octal Code 6403 is micro-programmed to give SMK and ION.

DEVICE ATTENTION INSTRUCTIONS

The address field contains the code of the selected device. The "device flag has 1" means that the device is ready. If the device flag has zero then the device is not ready.

UNIT 01

INPUT KEYBOARD READER

SENSE KEYBOARD

Octal Code 6414

Mnemonic KSF

Skip one instruction if device flag has 1.

CLEAR DEVICE

Octal Code 6412

Mnemonic KCC

Set zero in device flag and in accumulator.

OR ACCUMULATOR WITH BUFFER

OCTAL CODE 6411

Mnemonic KRS

Read one character from Keyboard. The contents of the device buffer are Inclusively ORed with bits 4 through 11 of ACCM and the result is placed in the ACCM. Bits 0 through 3 of ACCM are unchanged.

CLEAR AND OR

Octal Code 6413

Mnemonic KRB

The instructions KCC and KRS are performed in sequence.

Octal Codes 6415, 6416 and 6417 are illegal instructions as they represent conflicting operations.

UNIT 02

INPUT PAPER TAPE READER

SENSE TAPE READER

Octal Code 6424

Mnemonic KSP

Skip one instruction if device flag has one,

CLEAR DEVICE

Octal Code 6422

Mnemonic KCS

Set zero in device flag and in ACCM.

OR ACCUMULATOR WITH BUFFER

Octal Code 6421

Mnemonic KRC

Read one character from paper tape. The contents of the device buffer are Inclusively ORed with bits 4 through 11 of ACCM and the result is placed in the ACCM. Bits 0 through 3 are unchanged, in the ACCM.

CLEAR AND OR

Octal Code 6423

Mnemonic KRP

The instructions KCS and KRC are performed in sequence.

Octal Codes 6425, 6426 and 6427 are illegal instructions as they represent conflicting operations.

UNIT 03OUTPUT TELEPRINTERSENSE TELEPRINTER

Octal Code 6434

Mnemonic TSF

Skip one instruction if device flag has 1.

CLEAR DEVICE

Octal Code 6432

Mnemonic TCF

Set zero in device flag.

OR BUFFER WITH ACCUMULATOR

Octal Code 6431

Mnemonic TPC

Bits 4 through 11 of ACCM are placed in the device buffer and one character is printed out. Contents of ACCM are unchanged.

CLEAR AND OR

Octal Code 6433

Mnemonic TLS

The instructions TCF and TPC are performed in sequence.

Octal Codes 6435, 6436 and 6437 are illegal instructions as they represent conflicting operations.

UNIT 04OUTPUT PAPER TAPESENSE TAPE PUNCH

Octal Code 6444

Mnemonic TSP

Skip one instruction if device flag has 1.

CLEAR DEVICE

Octal Code 6442

Mnemonic TCP

Set zero in device flag.

OR BUFFER WITH ACCUMULATOR

Octal Code 6441

Mnemonic TPS

Bits 4 through 11 of ACCM are placed in the device buffer and one character is punched out. The contents of ACCM are unchanged.

CLEAR AND OR

Octal Code 6443

Mnemonic TLC

The instructions TCP and TPS are performed in sequence.

Octal Codes 6445, 6446 and 6447 are illegal instructions as they represent conflicting operations.

APPENDIX 2THE SIMULATOR SUBROUTINES

A brief description of how the various subroutines are used and called in the Simulator, is given.

CALL STRF

This includes the subprograms for all the storage-reference instructions. Depending on the particular instruction suitable entry is made into the subroutine, for execution of the instruction.

CALL RS1

This includes the subprograms for all the Register Set-1 instructions. Depending on how the instruction is microprogrammed suitable entry or entries are made in the subroutine for execution of the instruction.

CALL TCMPL(X,Y)

The contents of location X in two's complement notation are converted to the sign and magnitude notation and stored in location Y. Contents of location X are unchanged unless Y is same as X.

CALL PACK(X,n)

The contents of location X are incremented by the amount n, and stored back in X in two's complement notation.

CALL READ(MAR,MDR)

The contents of location given in location MAR are copied into location MDR.

CALL

WRITE(MAR,MDR)

The contents of MDR are copied into the location given by the contents of MAR.

CALL

MMRY

This prints out the contents of the entire core-memory of TDC-12 together with all the electronic registers and the CLOCK.

CALL

DAMP

This is called from the MMRY subroutine when one or more than one blocks of 16 locations each, have the same contents. It prints out a brief message indicating the range of locations in TDC-12 which have the same contents.

CALL

CDRDER

This is called only when the redundancy check indicator is turned ON while reading. The computer pauses after giving a message of reading error on the IBM typewriter of IBM-7044. In that case the input information is to be read again.

APPENDIX 3THE MAJOR STATE GENERATOR

The TDC-12 computer operates in one of the four major control states during each machine cycle. One or more states are entered to execute an instruction, which are determined by the Major State Generator. Only one state exists at a time and all states except Interrupt, are determined by the programmed instruction being executed. The various states are described.

FETCH A new instruction is obtained when this instruction is entered. The contents of memory cell specified by the PAC are placed in MDR and the operation code (bits 0 through 3) of this instruction word are placed in IR. The contents of PAC are then incremented by one. If a single cycle instruction is fetched, the operations specified are performed in the last part of the Fetch cycle, and then the next state is Fetch for the next instruction. If a multiple cycle instruction is fetched, the succeeding control state is either DEFER or EXECUTE.

DEFER When bit 4 of a Storage Reference Instruction is 1, the defer state is entered to obtain 12 bit address of the operand from the address specified by bits 5 through 11 of the instruction. The state is called defer because access to the operand is deferred to the next memory cycle.

EXECUTE This state is established only when a storage reference instruction is executed. The content of memory location addressed is transferred to MDR and the operation, specified by the

contents of the IR is performed. During a JUMP instruction this state is not entered. During JUMP TO SUBROUTINE instruction this state occurs to write the contents of PAC into the Core Memory Address designated by the instruction and to transfer this address into the PAC to change program control.

INTERRUPT This state is established for a DATA Interrupt or Program Interrupt. The interrupt occurs only at the completion of the current instruction. The Data Interrupt allows information to be transferred between core memory and external device via MDR. When this transfer is complete, the program sequence is resumed, from the point of interrupt. The program interrupt causes the sequence to be altered. The contents of PAC are stored in location 0000, and program control is transferred to location 0001.

APPENDIX : 4USING THE SIMULATOR

The TDC-12 simulator has been run and tested. A listing of the simulator (with explanatory comment cards) together with a set of sample results is included with this report. The simulator was originally on cards but has now been put on Tape No: 808 in the Computer Centre at IIT, Kanpur. To store and execute a program the order of the control cards required is given.

\$JOB ,TIME ,PAGES ,NAME \$TDC-12 SIMULATOR.

* PLEASE MOUNT PAPER TAPE ON PRINTER.

\$PAUSE MOUNT TAPE NO: 808 ON UNIT 04.

\$IBJOB

\$IEDIT 16
U04,SRCH

\$IBMAP 8

SIM NODECK

\$ENTRY

The Header Card for program to be stored.

The program to be stored and executed.

It is punched on cards in either
BCD or Binary Form

} DATA SET

If at any time during the execution of a program, information is to be placed in the SWRG of TDC-12, put IBM-7044 in manual mode. Enter the desired information through keys into location 30007₈ which is the simulated Switch Register. Put IBM-7044 in Automatic Mode and press START on the console.

FIGURE-7 LOGICAL DESIGN OF TDC-12

Figure-8 Flow-Chart for the Simulator of TDC-12
On IBM-7044

Figure-8 (Continued)

Figure-8 (Continued)

Figure-8 (Continued)

46

TABLE 1
 OCTAL CODES FOR I/O UNITS OF
 IBM-7044 and TDC-12

For TDC-12.....Model 33 ASR/KSR Teletype... as I/O Unit

For IBM-7044.....IBM-1402 and IBM-1403.....as I/O Unit

Character	6 bit code for IBM-7044	8 bit code for TDC-12
A	.. 21	301
B	.. 22	302
C	.. 23	303
D	.. 24	304
E	.. 25	305
F	.. 26	306
G	.. 27	307
H	.. 30	310
I	.. 31	311
J	.. 41	312
K	.. 42	313
L	.. 43	314
M	.. 44	315
N	.. 45	316
O	.. 46	317
P	.. 47	320
Q	.. 50	321
R	.. 51	322
S	.. 62	323
T	.. 63	324
U	.. 64	325
V	.. 65	326
W	.. 66	327
X	.. 67	330
Y	.. 70	331
Z	.. 71	332
0	.. 00	260
1	.. 01	261
2	.. 02	262
3	.. 03	263
4	.. 04	264
5	.. 05	265
6	.. 06	266
7	.. 07	267

TABLE 1 (Continued)

Character	6 bit code for IBM-7044	8 bit code for TDC-12
8	..	10
9	..	11
\$..	53
'(delimiter)	..	14
{	..	74
}	..	34
*(Asterisk)	..	54
+(Plus)	..	20
,(Comma)	..	73
-(Minus)	..	40
.(Period)	..	33
/(Slash)	..	61
=(Equal to)	..	13
(Blank)	..	60
Line Feed	..	76
Carriage Return	..	77

LISTING .

SIBMAP SIM ABSMOD'

TTL SIMULATOR OF TDC-12 ON IBM-7044
ORG 13000

*** MACROS FOR INTERRUPT*****

**** FOR 6404 TURN OFF INTERRUPT*****

IOF MACRO IOFQ

IOFQ MSP INTR

TRA BODG

ENDM IOF

**** FOR 6402 TURN ON INTERRUPT***

ION MACRO IONQ

IONQ MSM INTR

TRA BODH

ENDM ION

**** FOR 6401 SMK SET MASK FLIP FLOPS***

****BIT 11 IN ACCUMULATOR IF HAS 1 MASKS OUT UNIT 01 THAT IS

** IT PUTS MINUS IN LOCATION DEVICE+3.BIT 10 SIMILARLY HANDLES UNIT

*** 02 AND SO ON.

SMK MACRO SMKB,SMKA,SMKQ

SMKQ AXT 4,2

CLA ACCM

LGR 4

SMKB EGL 1

LBT

TRA SMKA

CLA =1

SAC DEVICE+4,2,4 MASKED OUT

TIX SMKB,2,1

TRA BEGIN

SMKA ZAC

SAC DEVICE+4,2,4

TIX SMKB,2,1

TRA BEGIN

ENDM SMK

***** MACROS FOR INPUT*****

***** X COULD BE UNIT 1 OR 2**

*** FOR 64X4 KSF SKIP IF READY**

KSF MACRO I,KSFQ

KSFQ CLA DEVIK+I

LBT

TRA BODG

CALL PACK(PAC,1)

TRA BODG

ENDM KSF

***** 64X2 KCC CLEAR DEVIK AND ACCMULATOR**

KCC MACRO I,KCCQ

KCCQ STZ DEVIK+I

STZ ACCM

EEGO18

UPDATE SUMMARY

CLA CLOCK SIM00500
 STO KLOK+I SIM00510
 TRA BUDH SIM00520
 ENDM KCC SIM00530
 *** 64X1 KRS MOVE CHARACTER FROM BUFFER TO ACCUMULATOR SIM00540
 ** IN DATA CARD RECORD MARK SHOWS END OF DATA, LATEST IT SHOULD BE IN SIM00550
 ** COLUMN 73. COL 77 AND 78 SPECIFY UNIT NO. BY PUTTING 01 OR 02 SIM00560
 KRS MACRO Y,SETA,SETD,KRSQ,YY,REDCRD,ENDFIL,REDCHK,SETZ SIM00570
 KRSQ ZAC SIM00580
 PCS BUFF&Y,,0 SIM00590
 SUB RCMRK SIM00600
 TNZ SETA SIM00610
 ** MESSAGE FOR DATA WANTED TO OPERATOR** SIM00620
 ENB =0 SIM00630
 SETD CLA YY SIM00640
 STO SETB+4 SIM00650
 REDCRD SEN 664,,3 SIM00660
 RCHA *+1 SIM00670
 IORD SENSE,,1 SIM00680
 CAL =002000000000 SIM00690
 ANA SENSE END OF FILE TEST SIM00700
 TNZ ENDFIL SIM00710
 PLT SENSE IS READER READY SIM00720
 TRA ENDFIL SIM00730
 TRCA *+1 SWITCH OFF REDUNDANCY INDICATOR IF ON SIM00740
 RDS 648,,3 SIM00750
 RCHA *+1 SIM00760
 IORD BUFF&Y,,13 SIM00770
 TRCA REDCHK SIM00780
 TRA SETZ SIM00790
 ENDFIL TSX CDRDER,1 SIM00800
 IORD SETB,,6 SIM00810
 HPR SIM00820
 TRA REDCRD SIM00830
 REDCHK TSX CDRDER,1 SIM00840
 IORD RDREDR,,3 MESSAGE FOR CARD READ ERROR SIM00850
 HPR SIM00860
 TRA REDCRD SIM00870
 ***** FIND IF DATA FED IS FOR DESIRED UNIT***** SIM00880
 SETZ ENB =000000300003 SIM00890
 CAL BUFF&Y+12 SIM00900
 LGR 3 SIM00910
 ARS 3 SIM00920
 LGR 3 SIM00930
 ZAC SIM00940
 LGL 6 SIM00950
 SUB =Y SIM00960
 TNZ REDCRD SIM00970
 TRA KRSQ SIM00980
 ** TRANSFER DATA FROM BUFFER TO ACCUMULATOR AFTER TABLE MATCH** SIM00990
 SETA AXT 50,2 SIM01000
 ZAC SIM01010
 PCS BUFF&Y,,0 SIM01020
 CAS IBM+50,2 SIM01030
 TIX *-1,2,1 SIM01040

EEGO18

UPDATE SUMMARY

TRA	**+2	SIM01050	
TIX	**-3,2,1	SIM01060	
CAL	TEL TYP+50,2	SIM01070	
DRA	ACCM	SIM01080	
SLW	ACCM	SIM01090	
*** TO SHIFT	CONTENT OF BUFFER BY 1 BYTE*(*	SIM01100	
AXT	12,2	SIM01110	
CAL	BUFF&Y+12,2	SIM01120	
LDQ	BUFF&Y+13,2	SIM01130	
LGL	6	SIM01140	
SLW	BUFF&Y+12,2	SIM01150	
TIX	**-4,2,1	SIM01160	
TRA	BEGIN	SIM01170	
ENDM	KRS	SIM01180	
*****	*****	SIM01190	
*** MACROS FOR OUTPUT*****		SIM01200	
** Y STANDS FOR 3 OR 4 AS UNIT IS SELECTED**		SIM01210	
** FOR 64Y4 TSF SKIP IF UNIT READY		SIM01220	
TSF MACRO	I,TSFQ	SIM01230	
TSFQ CLA	DEVIK+I	SIM01240	
LBT		SIM01250	
TRA	BODG	SIM01260	
CALL	PACK(PAC,1)	SIM01270	
TRA	BODG	SIM01280	
ENDM	TSF	SIM01290	
*** FOR 64Y2 TCF CLEAR DEVIK**		SIM01300	
TCF MACRO	J,TCFQ	SIM01310	
TCFQ STZ	DEVIK+J	SIM01320	
CLA	CLOCK	SIM01330	
STO	KLOK+J	SIM01340	
TRA	BODH	SIM01350	
ENDM	TCF	SIM01360	
** FOR 64Y1 TPC MOVE CHARACTER FROM ACCUMULATOR TO BUFFER		SIM01370	
****AND OUTPUT AT MOST 72 CHARACTERS PER LINE*****		SIM01380	
TPC MACRO	Y,TESZ,TESM,TESC,TESO,TESH,TESG,TESF,TESY,TESJ,TESX,TPCQ,TPCQ	SIM01390	
ETC	TESL,TESK,TESN,TESV	SIM01400	
TPCQ CLA	ACCM	SIM01410	
LGR	8	SIM01420	
ZAC		SIM01430	
LGL	8	SIM01440	
STO	SAVED	SIM01450	
CAS	=0212	LINE FEED TEST	SIM01460
TRA	*+2	SIM01470	
TRA	TESM	SIM01480	
CAS	=0215	CARRIAGE RETURN TEST**	SIM01490
TRA	TESC	SIM01500	
TRA	TESO	SIM01510	
TRA	TESC	SIM01520	
TESM	STO LINFID	SIM01530	
TESO	TRA *+2	SIM01540	
TESO	STO CARRET	SIM01550	
CLA	LINFID	SIM01560	
SUB	=0212	SIM01570	
TNZ	TESC	SIM01580	
CLA	CARRET	SIM01590	

```

SUB      =0215          SIM01600
TZE      TESL          SIM01610
*** TO MATCH THE TWO CODES*** SIM01620
TESC    AXT 48,1        SIM01630
      CLA SAVED         SIM01640
      CAS TELTYP+48,1   SIM01650
      TIX *-1,1,1       SIM01660
      TRA *+2           SIM01670
      TIX **-3,1,1      SIM01680
** TO STORE THE CODE** / SIM01690
      CLA IBM+48,1     SIM01700
      STO HARSHA       SIM01710
** TO FIND WHICH BYTE HAS RM** SIM01720
      AXT 12,1          SIM01730
TESH    AXT 6,2          SIM01740
      LDQ BUFF&Y+12,1   SIM01750
TESG    LGL 6            SIM01760
      CCS RCMRK,,5     SIM01770
      TRA *+2           SIM01780
      TRA TESF          SIM01790
      TIX TESG,2,1      SIM01800
      TIX TESH,1,1      SIM01810
*** MATCH FO RM FOUND***** SIM01820
TESF    PCS HARSHA,,5   SIM01830
      TNX TESJ,2,1      SIM01840
      LGL 6              SIM01850
      PCS RCMRK,,5     SIM01860
      TNX TESY,2,1      SIM01870
      LGL 6              SIM01880
      TRA *-2           SIM01890
TESY    SLW BUFF&Y+12,1  SIM01900
      TRA TESX          SIM01910
** WHEN RM FOUND WAS IN LAST BYTE OF ONE WORD TO STORE IN Q BYTE SIM01920
** OF NEXT WORD** SIM01930
TESJ    SLW BUFF&Y+12,1  SIM01940
      LDQ BUFF&Y+13,1   SIM01950
      LGL 6              SIM01960
      PCS RCMRK,,5     SIM01970
      LGR 6              SIM01980
      STQ BUFF&Y+13,1   SIM01990
** TEST IF BUFFER IS FULL. IF SO PRINT** SIM02000
TESX    PCS BUFF&Y+12,,0  SIM02010
      CCS RCMRK,,5     SIM02020
      TRA BEGIN          SIM02030
      TRA TESZ          SIM02040
      TRA BEGIN          SIM02050
TESL    AXT 12,1          SIM02060
TESK    AXT 6,2          SIM02070
      LDQ BUFF&Y+12,1   SIM02080
TESN    LGL 6              SIM02090
      CCS RCMRK,,5     SIM02100
      TRA *+2           SIM02110
      TRA *+3           SIM02120
      TIX TESN,2,1      SIM02130
      TIX TESK,1,1      SIM02140

```

EEC018

UPDATE SUMMARY

PCS	BLANK,,5	SIM02150
TNX	TESV,2,1	SIM02160
LGL	6	SIM02170
TRA	*-2	SIM02180

TESV SLW BUFF&Y+12,1

*** PRINT STATEMENT*****

TESZ STZ	LINFID	SIM02200
STZ	CARRET	SIM02210
CLA	BLANK	SIM02220
SAC	BUFF&Y+12,,0	SIM02230
WRS	650,,3	SIM02240
RCHA	*+1	SIM02250
IORD	BUFF&Y,,15	SIM02260

*** INITIALIZE BUFFER TO BLANKS AND A RM IN 0 BYTE OF

** FIRST BUFFER WORD*****

AXT	13,1	SIM02280
CLA	BLANK	SIM02290
STO	BUFF&Y+13,1	SIM02300
TIX	*-1,1,1	SIM02310
PCS	RCMRK,,5	SIM02320
SAC	BUFF&Y,,0	SIM02330
TRA	BEGIN	SIM02340
ENDM	TPC	SIM02350
EJECT		SIM02360

*** TO INITIALIZE TDC MEMORY*****

AARMBH AXT	4096,4	SIM02400
STZ	12288,4	SIM02410
TIX	*-1,4,1	SIM02420

***** TO CHOOSE BCD OR BINARY FORM OF READING*****

** THE FIRST CARD HAS COL 3 THRU 6 BCDM OR BNRY FOR FORM OF READ

** COL 9 THRU 12 TRAS FOR TRACE FEATURE

**** COL 15 THRU 18 FOR MEMORY DUMP MMRY ON FULL COMPLETION

RDS	648,,3	SIM02430
RCHA	*+1	SIM02440
IORD	BAFF,,3	SIM02450
ENB	=0	SIM02460
TRCA	*+1 SWITCH OFF REDUNDANCY CHECK	SIM02470
CLA	BAFF	SIM02480
SUB	=H BNRY	SIM02490
TZE	PARHO	SIM02500
CLA	BAFF	SIM02510
SUB	=H BCDM	SIM02520
TZE	START	SIM02530
TRA	CHAPEL	SIM02540

***** READ IN TEST PROGRAM *****

**** TO READ IN BINARY CARDS COLUMN 1 HAS 7-9 PUNCH,COLUMN 2 HAS

* NUMBER OF TDC INSTRUCTIONS, COLUMN 3 HAS STARTING LOCATION

** FROM WHERE INSTRUCTIONS ARE LOADED IN TDC MEMORY

PARHO RDS	664,,3	SIM02550
-----------	--------	----------

RCHA	*+1	SIM02560
------	-----	----------

IORD	BUFF,,27	SIM02570
------	----------	----------

TRCA	BNRYER	SIM02580
------	--------	----------

* TO SPLIT AND STORE AS TDC WORDS

AXT	82,2	SIM02590
-----	------	----------

EEC018

UPDATE SUMMARY

BINC	AXT	28,1	SIM02700
	AXT	3,4	SIM02710
	TXI	*+1,1,-1	SIM02720
	TXI	*+1,2,-1	SIM02730
BINB	LDQ	BUFF+27,1	SIM02740
	ZAC		SIM02750
	LGL	12	SIM02760
	STO	ETONE+81,2	SIM02770
	TNX	BINC,4,1	SIM02780
	TIX	BINB,2,1	SIM02790
***	THE BREAK IS OVER.CHECK FOR LEGALITY OF INPUT		
	CLA	ETONE	SIM02800
	SUB	=05	SIM02810
	TNZ	BIND	SIM02820
*	TO PARK	INTO TDC MEMORY	SIM02830
	CLA	ETONE+2	SIM02840
	DRA	BAAM	SIM02850
	STO	CUFF	SIM02860
	LXA	ETONE+1,1	SIM02870
	CLA	DRAKE	SIM02880
	ADD	ETONE+1	SIM02890
	STA	*+1	SIM02900
BINE	CLA	**,1	SIM02910
	STO*	CUFF	SIM02920
	CLA	CUFF	SIM02930
	ADD	=1	SIM02940
	STO	CUFF	SIM02950
	TIX	BINE,1,1	SIM02960
	TRA	PARHO	SIM02970
***	TEST	FOR END CARD WHICH HAS A 12 7 9 PUNCH**	SIM02980
BIND	CLA	ETONE	SIM02990
	SUB	=04005	SIM03000
	TZE	BINF	SIM03010
CHAPEL	WRS	650,,3	SIM03020
	RCHA	*+1	SIM03030
	IORD	BING,,5	SIM03040
	TRA	BOBJJ	SIM03050
BNRYER	TSX	CDRDER,1	SIM03060
	IORD	RDREDR,,3	SIM03070
	HPR		SIM03080
	TRA	PARHO	SIM03090
***	IN END CARD COLUMN 2 HAS PROGRAM STARTING LOCATOION		SIM03100
BINF	CLA	ETONE+1	SIM03110
	TRA	BEG+1	SIM03120
***	IN BCD MODE COL 9 THRU 12 HAVE DATA		SIM03130
***	AND COL 3 THRU 6 HAVE LOCATION		SIM03140
START	RDS	648,,3	SIM03150
	RCHA	*+1	SIM03160
	IORD	BUFF,,13	SIM03170
	TRCA	BCDMER	SIM03180
	WRS	650,,3	SIM03190
	RCHA	*+1	SIM03200
	IORD	BUFF,,13	SIM03210
	AXT	2,4	SIM03220
HOBB	AXT	4,2	SIM03230
			SIM03240

EEG018

UPDATE SUMMARY

55

HOB	CLA	BUFF+2,4	SIM03250
	LGR	3	SIM03260
	ARS	3	SIM03270
	TIX	HOB,2,1	SIM03280
	ZAC		SIM03290
	LGL	12	SIM03300
	STO	CUFF+2,4	SIM03310
	TIX	HOBB,4,1	SIM03320
	CLA	BUFF	SIM03330
	SUB	=H DEND	SIM03340
	TZE	BEG	SIM03350
	CLA	CUFF	SIM03360
	ORA	BAAM	SIM03370
	STO	CUFF	SIM03380
	CLA	CUFF+1	SIM03390
	STO*	CUFF	SIM03400
	TRA	START	SIM03410
BCDMER	TSX	CDRDER,1	SIM03420
	IORD	RDREDR,,3	SIM03430
	HPR		SIM03440
	TRA	START	SIM03450
BEG	CLA	CUFF+1	SIM03460
	STO	SWRG	SIM03470
	STO	PACA	SIM03480
	STO	PAC	SIM03490
	ENB	=0000003000003	SIM03500
	EJECT		SIM03510
*****SIM03520			
	REM	TDC 12 SIMULATOR	SIM03530
*****SIM03540			
*****SIM03550			
*** TEST FOR JUMP IN PROGRAM*****SIM03560			
**** IN CASE OF JUMP IN TDC MESSAGE IS GIVEN AS TRACE FEATURE SIM03570			
BEGINN	CLA	BAFF+1	SIM03580
	SUB	=H TRAS	SIM03590
	TNZ	PEN	SIM03600
	CLA	PAC	SIM03610
	SUB	PACA	SIM03620
	TZE	PEN	SIM03630
	CLA	PACA	SIM03640
	SUB	=1	SIM03650
	STO	PACA	SIM03660
	AXT	4,2	SIM03670
NEEF	AXT	4,4	SIM03680
	LDQ	PACA+4,2	SIM03690
	LGL	24	SIM03700
	ZAC		SIM03710
NIFF	ALS	3	SIM03720
	LGL	3	SIM03730
	TIX	NIFF,4,1	SIM03740
	ALS	6	SIM03750
	PCS	BLANK,,5	SIM03760
	ALS	6	SIM03770
	PCS	BLANK,,5	SIM03780
	SLW	GUMP+8,2	SIM03790

TIX	NEEF,2,2	SIM03800
WRS	650,,3	SIM03810
RCHA	*+1	SIM03820
IORD	GUMP,,7	SIM03830
* SET MAJOR STATE GENERATOR TO FETCH MODE		SIM03840
PEN	STZ MSG	SIM03850
***** PSEUDO CLOCK FEATURE*****		SIM03860
CLA	CLOCK	SIM03870
ADD	=1 ONE CYCLE	SIM03880
STO	CLOCK	SIM03890
* LOCATION OF INSTRUCTION TO BE EXECUTED IS IN PAC		SIM03900
UTHANT	EQU PAC	SIM03910
CLA	PAC	SIM03920
ORA	BAAM	SIM03930
STO	MAR	SIM03940
CALL	READ(MAR,MDR)	SIM03950
* INSTRUCTION TO BE EXECUTED IS NOW IN MDR. TO DECODE IT.		SIM03960
* ALSO INCREMENT PAC		SIM03970
CALL	PACK(PAC,1)	SIM03980
***** FACILITY FOR USING TRACE FEATURE*****		SIM03990
CLA	PAC	SIM04000
STO	PACA	SIM04010
* PLACE OP CODE IN INSTRUCTION REGISTER IR		SIM04020
BOAR	CLA MDR	SIM04030
LGR	8	SIM04040
STO	IR	SIM04050
* * TO SEE IF IT IS STORAGE REFERENCE TYPE OR NOT		SIM04060
CLA	=13	SIM04070
CCS	IR,,5	SIM04080
TRA	DCSR	TO HANDLE STORAGE REFERENCE
TRA	DCIO	INPUT OUTPUT TYPE HANDLE HERE
CLA	=15	SIM04110
CCS	IR,,5	SIM04120
TRA	DCRS1	HANDLE RS 1 INSTRUCTIONS
TRA	DCRS2	HANDLE RS 2 INSTRUCTIONS THERE
*****		SIM04150
EJECT		SIM04160
*** FOR I/O INSTRUCTIONS ENTER HERE**		SIM04170
** ARE BITS 9,10 11 ZERO		SIM04180
DCIO	LDQ MDR	SIM04190
LGL	28	SIM04200
ZAC		SIM04210
LGL	5	SIM04220
STO	UNIT BITS 4 THRU 8 STORED**	SIM04230
ZAC		SIM04240
LGL	3	SIM04250
STO	FLIP BITS 9 THRU 11 STORED	SIM04260
TNZ	BODB	SIM04270
** WHEN BITS 9,10 11 ARE ZERO ARE BITS 4 THRU 8 ZERO*		SIM04280
BODA	CLA UNIT	SIM04290
TZE	ERROR	SIM04300
MIT	INTR	IS INTERRUPT ON
TRA	BEGIN	SIM04310
***** SET MSG TO INTERRUPT MODE**		SIM04320
CLA	=03	SIM04330
		SIM04340

EEG018

UPDATE SUMMARY

STO MSG SIM04350
 CLA PAC SIM04360
 STO 8192 SIM04370
 CLA =1 SIM04380
 STO PAC SIM04390
 MSP INTR TURN OF INTERRUPT SIM04400
 TRA BEGIN SIM04410
**** FLIP DOES NOT HAVE ZERO. IS DEVICE ADDRESSED MORE THAN 4*****
 BODB CLA =4 SIM04420
 CAS FLIP SIM04430
 TRA BODC SIM04440
 TRA BODC SIM04450
 TRA ERROR ILLEGAL IMSTRUCTION SIM04460
 BODC CAS UNIT SIM04470
 TRA BODD SIM04480
 TRA BODD SIM04490
 TRA ERROR PRESENTLY THERE ARE ONLY 4 I/O UNITS SIM04500
**** STORE CONTENTS OF UNIT IN XR4**
 BODD LXA UNIT,4 SIM04510
**** TEST FOR BITS 9,10 11 FOR DECODING INSTRUCTION*******
 CLA FLIP SIM04520
 LGR 2 SIM04530
 LBT TEST FOR 9 BIT SIM04540
 TRA BODG SIM04550
 TRA* CHAR+4,4 SIM04560
 BODG CLA FLIP SIM04570
 LGR 1 SIM04580
 LBT TEST FOR 10 BIT SIM04590
 TRA BODH SIM04600
 TRA* DO+4,4 SIM04610
 BODH CLA FLIP SIM04620
 LBT TEST FOR 1 BIT SIM04630
 TRA BEGIN SIM04640
 TRA* EK+4,4 SIM04650
 EJECT *****SIM04700
******* CALLING OF MACROS FOR I/O******
***** FOR INTERRUPT**
 PMC ON SIM04710
 IOF IOFQ SIM04720
 ION IONQ SIM04730
 SMK SMKB,SMKA,SMKQ SIM04740
***** FOR UNIT 1 KEYBOARD READER*****
 KSF 3,KSFQ SIM04750
 KCC 3,KCCQ SIM04760
 KRS 01,SETA,SETD,KRSQ(=H 01)REDCRD,ENDFIL,REDCHK,SETZ SIM04770
***** FOR UNIT 2 PAPER TAPE READER*******
 KSF 2,KSFQA SIM04780
 KCC 2,KCCQA SIM04790
 KRS 02,SETAA,SETDA,KRSQA(=H 02)REDCR,ENDFI,REDCH,SETZA SIM04800
****** FOR UNIT 3 TELETYPE PRINTER*******
 TSF 1,TSFQ SIM04810
 TCF 1,TCFQ SIM04820
 TPC 03,TESZ,TESM,TESC,TESO,TESH,TESG,TESF,TESY,TESJ,TESX, SIM04830
 ETC TPCQ,TESL,TESK,TESN,TESV SIM04840
 TPCQ,TESL,TESK,TESN,TESV SIM04850
 TPCQ,TESL,TESK,TESN,TESV SIM04860
 TPCQ,TESL,TESK,TESN,TESV SIM04870
 TPCQ,TESL,TESK,TESN,TESV SIM04880
 TPCQ,TESL,TESK,TESN,TESV SIM04890

EEG018

UPDATE SUMMARY

*** FOR UNIT 4 PAPER TAPE PUNCH*****
TSF 0,TSFQA SIM04900
TCF 0,TCFQA SIM04910
TPC 04,TESZA,TESMA,TESCA,TESOA,TESHA,TESGA,TESFA, SIM04920
ETC TESYA,TESJA,TESXA,TPCQA,TESLA,TESKA,TESNA,TESVA SIM04930
PMC OFF SIM04940
*****SIM04950
*****SIM04960
EJECT SIM04970
*****SIM04980
**** ROUTINE MESSAGES ON IBM TYPEWRITER FOR OPERATOR ACTION SIM04990
*** LIKE CARD ERROR WHILE READING SIM05000
***** CALLED BY TSX CDRDER,1 SIM05010
CDRDER WRS 512,,4 SIM05020
RCHA 1,1 SIM05030
TRA 2,1 SIM05040
EJECT SIM05050
*****SIM05060
* FOR RS 1 INSTRUCTIONS ENTER HERE SIM05070
DCRS1 CLA MDR SIM05080
***** TEST FOR NOP***** SIM05090
SUB =07000 SIM05100
TNZ CDZ SIM05110
AXT 8,1 SIM05120
CALL RS1 SIM05130
TRA BEGIN SIM05140
CDZ CLA MDR SIM05150
** TEST FOR CLA 7001 SIM05160
LBT SIM05170
TRA CDA SIM05180
AXT 7,1 SIM05190
CALL RS1 SIM05200
** TEST FOR CLC 7002 SIM05210
CDA LGR 1 SIM05220
LBT SIM05230
TRA CDB SIM05240
AXT 6,1 SIM05250
CALL RS1 SIM05260
** TEST FOR CMA 7100 SIM05270
CDB LGR 5 SIM05280
LBT SIM05290
TRA CDC SIM05300
AXT 2,1 SIM05310
CALL RS1 SIM05320
SIM05330
**** TEST FOR CMC 7040 SIM05340
CDC LGL 1 SIM05350
LBT SIM05360
TRA CDD SIM05370
AXT 3,1 SIM05380
CALL RS1 SIM05390
*** TEST FOR IAC 7200 SIM05400
CDD LGR 2 SIM05410
LBT SIM05420
TRA CDE SIM05430
LGL 2 SIM05440
ZAC WITH IAC NO ROTATE

EEG018

UPDATE SUMMARY

59

LGL 3 INSTRUCTIONS ALLOWED
 TNZ ERROR
 AXT 1,1
 CALL RS1
 TRA BEGIN

SIM05450

SIM05460

SIM05470

SIM05480

SIM05490

SIM05500

*** TEST FOR CAR 7010***

SIM05510

CDE LGL 4
 LBT
 TRA CDF NO CAR
 LGR 1
 LBT
 TRA *+2 WITH CAR NO CAL ALLOWED
 TRA ERROR
 AXT 5,1
 CALL RS1

SIM05520

SIM05530

SIM05540

SIM05550

SIM05560

SIM05570

SIM05580

SIM05590

SIM05600

*** TEST FOR CTR 7014

SIM05610

LGL 2
 LBT
 TRA BEGIN
 CALL RS1
 TRA BEGIN

SIM05620

SIM05630

SIM05640

SIM05650

SIM05660

**** TEST FOR CAL 7020

SIM05670

CDF LGR 1
 LBT
 TRA CDG NO CAL HERE
 AXT 4,1
 CALL RS1

SIM05680

SIM05690

SIM05700

SIM05710

SIM05720

**** TEST FOR CTL 7024

SIM05730

LGL 2
 LBT
 TRA BEGIN
 CALL RS1
 TRA BEGIN

SIM05740

SIM05750

SIM05760

SIM05770

SIM05780

** TEST FOR 9 BIT PRESENT***

SIM05790

CDG LGL 2
 LBT
 TRA BEGIN

SIM05800

TRA ERROR ONLY 9 BIT PRESENT

SIM05810

* THIS BLOCK CONTAINS THE SUBPROGRAMS FOR REGISTER SET 1 INSTRUCTIONS

SIM05830

RS1 SAVE 1,2,4

SIM05840

SLW VAS

SIM05850

STQ VAS+1 ACCM AND MQ SAVED

SIM05860

TRA* STALIN+8,1

SIM05870

STALIN PZE SUBA

SIM05880

PZE SUBB

SIM05890

PZE SUBC

SIM05900

PZE SUBD

SIM05910

PZE SUBE

SIM05920

PZE SUBH

SIM05930

PZE SUBI

SIM05940

PZE SUBK

SIM05950

* 7000 NOP NO OPERATION

SIM05960

SUBA TRA LENIN

SIM05970

* 7001 CLA CLEAR ACCUMULATOR

SIM05980

SUBB STZ UTHANT+3

SIM05990

EEG018

UPDATE SUMMARY

	TRA	LENIN	SIM06000
*	7002	CLC CLEAR CARRY REGISTER	SIM06010
SUBC	STZ	UTHANT+4	SIM06020
	TRA	LENIN	SIM06030
*	7010	CAR CIRCULATE ACCUMULATOR RIGHT	SIM06040
SUBD	LDQ	ACCM	SIM06050
	LGL	24	SIM06060
	CLA	CRYRG	SIM06070
	LGR	1	SIM06080
	ZAC		SIM06090
	LGL	12	SIM06100
	STO	ACCM	SIM06110
	RQL	1	SIM06120
	STQ	CRYRG	SIM06130
	TRA	LENIN	SIM06140
*	7020	CAL CIRCULATE ACCUMULATOR LEFT	SIM06150
SUBE	CAL	ACCM	SIM06160
	LDQ	CRYRG	SIM06170
	RQL	35	SIM06180
	LGR	12	SIM06190
	ZAC		SIM06200
	LGL	1	SIM06210
	STO	CRYRG	SIM06220
	ZAC		SIM06230
	LGL	12	SIM06240
	STO	ACCM	SIM06250
	TRA	LENIN	SIM06260
*	7040	GMC COMPLEMENT CARRY REGISTER	SIM06270
SUBH	CAL	UTHANT+4	SIM06280
	COM		SIM06290
	LGR	1	SIM06300
	ZAC		SIM06310
	LGL	1	SIM06320
	SLW	UTHANT+4	SIM06330
	TRA	LENIN	SIM06340
*	7100	CMA COMPLEMENT ACCUMULATOR	SIM06350
SUBI	CAL	UTHANT+3	SIM06360
	COM		SIM06370
	LGR	12	SIM06380
	ZAC		SIM06390
	LGL	12	SIM06400
	SLW	UTHANT+3	SIM06410
	TRA	LENIN	SIM06420
*	7200	IAC INCREMENT ACCUMULATOR	SIM06430
SUBK	CAL	UTHANT+3	SIM06440
	ADD	=1	SIM06450
	LGR	13	SIM06460
	ZAC		SIM06470
	LGL	1	SIM06480
	STO	UTHANT+4	SIM06490
	ZAC		SIM06500
	LGL	12	SIM06510
	SLW	UTHANT+3	SIM06520
	TRA	LENIN	SIM06530
LENIN	CAL	VAS	SIM06540

EEG018

UPDATE SUMMARY

61

LDQ VAS+1 ACCM AND MQ RESTORED
RETURN RSI
EJECT

SIM06550

SIM06560

SIM06570

***** SIM06580

* FOR RS 2 INSTRUCTION ENTER HERE

SIM06590

** BEGIN DECODING AND EXECUTION OF RS 2 SET OF INSTRUCTIONS HERE**

SIM06600

DCRS2 CAL MDR
SUB =07400
TZE ERROR
CAL MDR
ARS 2

SIM06610

LBT TEST FOR 9 BIT

SIM06660

TRA NRA

SIM06670

TRA NRI

SIM06680

NRA ARS 1
LBT TEST FOR 8 BIT

SIM06690

TRA NRC

SIM06700

*** DOES SNC 7410 CONDITION HOLD**

SIM06720

NRB CAL CRYRG

SIM06730

LBT

SIM06740

TRA NRC

SIM06750

TRA NRD

SIM06760

NRC CAL MDR

SIM06770

ARS 4

SIM06780

LBT TEST FOR 7 BIT

SIM06790

TRA NRF

SIM06800

** DOES SZA 7420 CONDITION HOLD**

SIM06810

NRE CAL ACCM

SIM06820

LGR 12

SIM06830

ZAC

SIM06840

LGL 12

SIM06850

TZE NRD

SIM06860

NRF CAL MDR

SIM06870

ARS 5

SIM06880

LBT TEST FOR 6 BIT

SIM06890

TRA NRH

SIM06900

TEST FOR SMA 7440 CONDITION HOLDING

SIM06910

NRG CAL ACCM

SIM06920

LGR 11

SIM06930

LBT

SIM06940

TRA NRH

SIM06950

TRA NRD

SIM06960

*** WHEN 9 BIT IS A 1 COME HERE**

SIM06970

NRI ARS 1

SIM06980

LBT TEST FOR 8 BIT

SIM06990

TRA NRK

SIM07000

*** DOES SZC 7414 CONDITION HOLD***

SIM07010

NRJ CAL CRYRG

SIM07020

LBT

SIM07030

TRA NRK

SIM07040

TRA NRH

SIM07050

NRK CAL MDR

SIM07060

ARS 4

SIM07070

LBT TEST FOR 7 BIT**

SIM07080

TRA NRM

SIM07090

EEG018

UPDATE SUMMARY

*** DOES SNA 7424 CONDITION HOLD*** SIM07100
 NRL CAL ACCM SIM07110
 LGR 12 SIM07120
 ZAC SIM07130
 LGL 12 SIM07140
 TZE NRH SIM07150
 NRM CAL MDR SIM07160
 ARS 5 SIM07170
 LBT TEST FOR 6 BIT SIM07180
 TRA NRD SIM07190
 *** DOES SPA 7444 CONDITION HOLD***** SIM07200
 CAL ACCM SIM07210
 LGR 11 SIM07220
 LBT SIM07230
 TRA NRD SIM07240
 TRA NRH SIM07250
 NRD CALL PACK(PAC,1) — SIM07260
 **** TEST FOR CLA 7401 SIM07270
 NRH CAL MDR SIM07280
 LBT TEST FOR 11 BIT HERE*** SIM07290
 TRA NRP SIM07300
 NRO STZ ACCM SIM07310
 ** TEST FOR ORS 7402***** SIM07320
 NRP CAL MDR SIM07330
 ARS 1 SIM07340
 LBT TEST FOR 10 BIT SIM07350
 TRA NRR SIM07360
 NRQ CAL ACCM SIM07370
 ORA SWRG SIM07380
 LGR 12 SIM07390
 ZAC SIM07400
 LGL 12 SIM07410
 *** TEST FOR STP 7500***** SIM07420
 NRR CAL MDR SIM07430
 ARS 6 SIM07440
 LBT SIM07450
 TRA BEGIN SIM07460
 CLA BAFF+2 SIM07470
 SUB =H MMRY SIM07480
 TNZ EXIT SIM07490
 BOBJJ CALL MMRY SIM07500
 EXIT TRA S.JXIT SIM07510
 ***** END OF RS 2 INSTRUCTIONS***** SIM07520
 EJECT SIM07530
 ***** SIM07540
 * FOR STORAGE REFERENCE INSTRUCTIONS ENTER HERE
 * TEST FOR SECTOR BIT SIM07550
 DCSR CLA IR SIM07560
 | TZE ERROR SIM07570
 | CLA MDR SIM07580
 | LGR 6 SIM07590
 | LBT SIM07600
 | TRA NOSBT SIM07610
 | ZAC SIM07620
 | PCS PAC,,4 SIM07630
 | PCS PAC,,4 SIM07640

EEC018

UPDATE SUMMARY

	LGL	6	SIM07650
NOSBT	TRA	ORINS	SIM07660
	ZAC	'	SIM07670
	LGL	6	SIM07680
ORINS	ORA	BAAM	SIM07690
	SLW	MAR	SIM07700
* TEST FOR INDIRECT ADDRESSING			
	CLA	MDR	SIM07710
	ARS	7	SIM07720
	LBT		SIM07730
	TRA	NINDR	SIM07740
* IF INDIRECTLY ADDRESSED MSG GOES INTO DEFER STATE			
	CLA	=01	SIM07750
	STO	MSG	SIM07760
***** THE CLOCK STRIKES AGAIN*****			
	CLA	CLOCK	SIM07770
	ADD	=1	SIM07780
	STO	CLOCK	SIM07790
	CALL	READ(MAR,MDR)	SIM07800
***** TEST FOR AUTO INDEXING*****			
	CLA	=020010	SIM07810
	CAS	MAR	SIM07820
	TRA	NOAUTO	SIM07830
	TRA	AUTO	SIM07840
	CLA	=020017 C(MAR).GE.20010	SIM07850
	CAS	MAR	SIM07860
	TRA	AUTO	SIM07870
	TRA	AUTO	SIM07880
	TRA	NOAUTO	SIM07890
AUTO.	CLA	MDR	SIM07900
	ADD	=1	SIM07910
	STO	MDR	SIM07920
	CALL	WRITE(MAR,MDR)	SIM07930
NOAUTO	CLA	MDR	SIM07940
	ORA	BAAM	SIM07950
	STO	MAR	SIM07960
* MAR CONTAINS LOCATION OF OPERAND			
* TO TEST IF IT IS JUMP INSTRUCTION			
NINDR	CLA	IR	SIM07970
	SUB	=9	SIM07980
	TNZ	INDR	SIM07990
	CLA	MAR	SIM08000
	EGR	12	SIM08010
	ZAC		SIM08020
	LGL	12	SIM08030
	STO	PAC	SIM08040
	TRA	BEGIN	SIM08050
* SET MSG TO EXECUTE			
INDR	CLA	=02	SIM08060
	STO	MSG	SIM08070
* BRING CONTENTS OF OPERAND TO MDR			
	CALL	READ(MAR,MDR)	SIM08080
	LXA	IR,1	SIM08090
* CONTENTS OF IR ARE IN XR-1			
	CALL	STRF	SIM08100
			SIM08110
			SIM08120
			SIM08130
			SIM08140
			SIM08150
			SIM08160
			SIM08170
			SIM08180
			SIM08190

	TRA	BEGIN	SIM08200
*THIS	BLOCK	CUNTAINS THE SUBPROGRAMS FOR THE STORAGE REFERENCE TYPE	SIM08210
STRF	SAVE	1,2,4	SIM08220
*****		ALAS THE CLOCK AGAIN****	SIM08230
	CLA	CLOCK	SIM08240
	ADD	=1	SIM08250
	STO	CLOCK	SIM08260
	TRA*	BABA+12,1	SIM08270
BABA	PZE	RATA	SIM08280
	PZE	RATB	SIM08290
	PZE	RATC	SIM08300
	PZE	RATD	SIM08310
	PZE	RATE	SIM08320
	PZE	RATF	SIM08330
	PZE	RATG	SIM08340
	PZE	RATH	SIM08350
	PZE	RATI	SIM08360
	PZE	RATJ	SIM08370
	PZE	RATK	SIM08380
	PZE	RATL	SIM08390
*	60	XCT EXECUTE	SIM08400
RATA	STZ	UTHANT+6	SIM08410
	TRA	BOAR	SIM08420
*	54	CAS COMPARE ACCUMULATOR AND SKIP	SIM08430
RATB	CALL	TCMPL(UTHANT+3,CASA)	SIM08440
	CALL	TCMPL(UTHANT+2,CASA+1)	SIM08450
	CLA	CASA	SIM08460
	CAS	CASA+1	SIM08470
	TRA	HAZRAT	SIM08480
	TRA	CASD	SIM08490
	TRA	CASE	SIM08500
CASD	CALL	PACK(UTHANT,1)	SIM08510
	TRA	HAZRAT	SIM08520
CASE	CALL	PACK(UTHANT,2)	SIM08530
	TRA	HAZRAT	SIM08540
*	50	JMS JUMP TO SUBROUTINE	SIM08550
RATC	CLA	UTHANT	SIM08560
	STO	UTHANT+2	SIM08570
	CALL	WRITE(UTHANT+1,UTHANT+2)	SIM08580
	CLA	UTHANT+1	SIM08590
	ADD	=1	SIM08600
	LGR	12	SIM08610
	ZAC		SIM08620
	LGL	12	SIM08630
	STO	UTHANT	SIM08640
RATD	TRA	HAZRAT	SIM08650
*	40	ISZ INCREMENT AND SKIP IF ZERO	SIM08660
RATE	CALL	PACK(UTHANT+2,1)	SIM08670
	CALL	WRITE(UTHANT+1,UTHANT+2)	SIM08680
	CAL	UTHANT+2	SIM08690
	TNZ	HAZRAT	SIM08700
	CALL	PACK(UTHANT,1)	SIM08710
	TRA	HAZRAT	SIM08720
*	34	RAD REPLACE ADD MEMORY	SIM08730
RATF	CAL	UTHANT+3	SIM08740

EEG018

UPDATE SUMMARY

LGL	12	SIM09300
STO	UTHANT+3	SIM09310
TRA	HAZRAT	SIM09320
* 04	AND LOGICAL AND	SIM09330
RATL	CAL UTHANT+3	SIM09340
	ANA UTHANT+2	SIM09350
	SLW UTHANT+3	SIM09360
HAZRAT	RETURN STRF	SIM09370
EJECT		SIM09380
*****SIM09390		
*** GIVE ERROR MESSAGE ON ILLEGAL INSTRUCTION AND QUIT AFTER		SIM09400
*** GIVING A MEMORY DUMP***		SIM09410
ERROR	WRS 650,,3	SIM09420
	RCHA *+1	SIM09430
	IORD GALTI,,8	SIM09440
	TRA BOBJJ	SIM09450
EJECT		SIM09460
*****SIM09470		
** WHAT TO DO AT END OF EACH INSTRUCTION***		SIM09480
** AFTER END OF EXECUTION TEST FOR PROGRAM INTERRUPT**		SIM09490
BEGIN	AXT 4,1	SIM09500
INTB	CLA CLOCK	SIM09510
	SUB KLDK+4,1	SIM09520
	CAS =66667	SIM09530
	TRA INTA	SIM09540
	TRA INTA	SIM09550
	TRA INTC	SIM09560
INTA	CLA =1	SIM09570
	STO DEVIK+4,1	SIM09580
INTC	TIX INTB,1,1	SIM09590
*** WHEN UNIT IS READY CORRESPONDING DEVIK HAS 1 IN LAST BIT*		SIM09600
	MIT INTR	SIM09610
	TRA BEGINN WHEN INTERRUPT NOT ON	SIM09620
	AXT 4,1	SIM09630
INTE	ZAC INTERRUPT ON	SIM09640
	PCS DEVICE+4,1,4	SIM09650
	TNZ INTD UNIT MASKED OUT	SIM09660
	CLA DEVICE+4,1	SIM09670
	LBT	SIM09680
	TRA INTD UNIT IS NOT INTERRUPTING	SIM09690
** SET MSG TO INTERRUPT MODE**		SIM09700
	CLA =03	SIM09710
	STO MSG	SIM09720
	CLA PAC	SIM09730
	STO 8192	SIM09740
	CLA =1	SIM09750
	STO PAC	SIM09760
	ZAC	SIM09770
	SAC DEVICE+4,1,5	SIM09780
	MSP INTR TURN OFF INTERRUPT	SIM09790
	TRA BEGINN	SIM09800
INTD	TIX INTE,1,1	SIM09810
	TRA BEGINN	SIM09820
EJECT		SIM09830
*****SIM09840		

EEG018

UPDATE SUMMARY

***** TO CONVERT FROM TWOS COMPLEMENTARY TO BINARY***** SIM09850
TCMPL SAVE 1,2,4 SIM09860
CAL* 3,4 SIM09870
LGR 11 SIM09880
LBT SIM09890
TRA **+2 SIM09900
TRA CASF SIM09910
LGL 11 SIM09920
STO* 4,4 SIM09930
TRA CASG SIM09940
CASE LGL 11 SIM09950
COM SIM09960
ADD =1 SIM09970
LGR 11 SIM09980
ZAC SIM09990
LGL 11 SIM10000
STO* 4,4 SIM10010
MSM* 4,4 SIM10020
CASG RETURN TCMPL SIM10030
EJECT SIM10040
*****SIM10050
*** FOR INCREMENTING PAC WHEN DESIRED CALL THIS*** SIM10060
PACK SAVE 1,2,4 SIM10070
CAL* 3,4 SIM10080
ADD 4,4 SIM10090
LGR 12 SIM10100
ZAC SIM10110
LGL 12 SIM10120
STO* 3,4 SIM10130
RETURN PACK SIM10140
EJECT SIM10150
*****SIM10160
** TO WRITE ON TDC MEMORY*** SIM10170
WRITE SAVE 1,2,4 SIM10180
* TO SAVE ACM AND MQ SIM10190
STO SAVED SIM10200
STQ SAVEE MQ SAVED SIM10210
CLA 3,4 SIM10220
STA MARA SIM10230
CLA* 4,4 SIM10240
MARA STO* ** SIM10250
CLA SAVED SIM10260
LDQ SAVEE MQ RESTORED SIM10270
RETURN WRITE SIM10280
EJECT SIM10290
*****SIM10300
**** TO READ FROM TDC 12 MEMORY*** SIM10310
READ SAVE 1,2,4 SIM10320
STO SAVEDX ACCUMULATOR SAVED SIM10330
STQ SAVEEX MQ SAVED SIM10340
CLA 3,4 SIM10350
STA MARAX SIM10360
MARAX CLA* ** SIM10370
STO* 4,4 SIM10380
CLA SAVEDX ACCUMULATOR RESTORED SIM10390

EEG018

UPDATE SUMMARY

LDQ	SAVEEX	MQ RESTORED	SIM10400
RETURN	READ		SIM10410
EJECT			SIM10420
***** BEGIN DUMP OF TDC -12 MEMORY*****			SIM10430
***** NUMBER CONTAINS LOCATION COUNTER			SIM10440
** OPWD CONTAINS CORRESPONDING OP CODE			SIM10450
MMRY	SAVE	1,2,4	SIM10460
	CLA	BLANK	SIM10470
	STO	OPWD	SIM10480
	WRS	650,,3	SIM10490
	RCHA	*+1	SIM10500
	IORD	LOCK,,3	SIM10510
**** FOR ELECTRONIC REGISTERS			SIM10520
*** FOR PAC MAR CRYRG SWRG***			SIM10530
	AXT	6,2	SIM10540
RUBBER	CLA	UTHANT+6,2	SIM10550
	AXT	4,1	SIM10560
	LDQ	UTHANT+6,2	SIM10570
	LGL	24	SIM10580
	ZAC		SIM10590
PENCIL	ALS	3	SIM10600
	LGL	3	SIM10610
	TIX	PENCIL,1,1	SIM10620
	ALS	6	SIM10630
	PCS	BLANK,,5	SIM10640
	ALS	6	SIM10650
	PCS	BLANK,,5	SIM10660
	STO	NUMBR+6,2	SIM10670
	TIX	RUBBER,2,1	SIM10680
***** FOR ACCM AND MDR*****			SIM10690
	AXT	2,2	SIM10700
PNCH	CAL	UTHANT+4,2	SIM10710
	STO	GLIDER	SIM10720
	CALL	TCMPL(GLIDER,GLIDER)	SIM10730
	AXT	4,1	SIM10740
	LDQ	GLIDER	SIM10750
	LGL	24	SIM10760
	ZAC		SIM10770
LAMP	ALS	3	SIM10780
	LGL	3	SIM10790
	TIX	LAMP,1,1	SIM10800
	ALS	6	SIM10810
	PCS	BLANK,,5	SIM10820
	STO	NUMBR+4,2	SIM10830
	CAL	GLIDER	SIM10840
	PBT		SIM10850
	TRA	ONE	SIM10860
	CLA	MINUS	SIM10870
	SAC	NUMBR+4,2,0	SIM10880
	TRA	KEY	SIM10890
ONE	CLA	BLANK	SIM10900
	SAC	NUMBR+4,2,0	SIM10910
KEY	TIX	PNCH,2,1	SIM10920
			SIM10930
			SIM10940

EEG018

UPDATE SUMMARY

***** FOR CLOCK***** SIM10950
 AXT 2,2 SIM10960
 LDQ CLOCK SIM10970
 KEYX AXT 6,1 SIM10980
 ZAC SIM10990
 SCREW ALS 3 SIM11000
 LGL 3 SIM11010
 TIX SCREW,1,1 SIM11020
 STO NUMBR+9,2 SIM11030
 TIX KEYX,2,1 SIM11040
 CLA BLANK SIM11050
 STO NUMBR+6 SIM11060
 WRS 650,,3 SIM11070
 RCHA *+1 SIM11080
 IORD TITLE,,9 SIM11090
 WRS 650,,3 SIM11100
 RCHA *+1 SIM11110
 IORD NUMBR,,9 SIM11120
 *** FOR CORE MEMORY 0000 THRU 7777 OCTAL SIM11130
 AXT 4096,4 SIM11140
 CAMEL AXT 16,2 SIM11150
 TXI *+1,4,1 SIM11160
 CLA ZERO SIM11170
 ADD =020 SIM11180
 STO ZERO SIM11190
 LGR 12 SIM11200
 AXT 4,1 SIM11210
 ZAC SIM11220
 ANT ALS 3 SIM11230
 LGL 3 SIM11240
 TIX ANT,1,1 SIM11250
 ALS 6 SIM11260
 PCS BLANK,,5 SIM11270
 ALS 6 SIM11280
 PCS BLANK,,5 SIM11290
 SLW NUMBR SIM11300
 BACK TXI *+1,4,-1 SIM11310
 AXT 42,1 SIM11320
 CAL 12288,4 SIM11330
 COMPR CAS IOCS+42,1 SIM11340
 TIX COMPR,1,1 SIM11350
 TRA *+2 SIM11360
 TIX COMPR,1,1 SIM11370
 PXA ,1 SIM11380
 SUB =1 SIM11390
 TNZ REGSTR GO FOR REGISTER SET SIM11400
 CLA =07500 SIM11410
 SUB 12288,4 SIM11420
 TNZ MEMREF SIM11430
 *** HANDLE NON STOREAGE REFERENCE HERE**** SIM11440
 REGSTR CAL REGSET+42,1 SIM11450
 SLW OPWD+17,2 SIM11460
 TRA BABAR SIM11470
 *** HANDLE STORAGE REFERENCE HERE SIM11480
 MEMREF CLA 12288,4 SIM11490

EEG018

UPDATE SUMMARY

LGR	8	SIM11500
TZE	ORDNY GO FOR ORDINARY NUMBERS	SIM11510
CAS	TRTEEN	SIM11520
TRA	ORDNY	SIM11530
TRA	ORDNY	SIM11540
PAX	,1	SIM11550
CLA	STGREF+12,1	SIM11560
STO	OPWD+17,2	SIM11570
**** TEST	FOR SECTOR BIT	SIM11580
CLA	12288,4	SIM11590
LGR	6	SIM11600
LBT		SIM11610
TRA	NOSKTR	SIM11620
CLA	RECTOR	SIM11630
SAC	OPWD+17,2,4	SIM11640
TRA	KOBALAI	SIM11650
NOSKTR CLA	BLANK	SIM11660
SAC	OPWD+17,2,4	SIM11670
*** TEST	FOR INDIRECT ADDRESSING	SIM11680
KOBALAI CLA	12288,4	SIM11690
ARS	7	SIM11700
LBT		SIM11710
TRA	NOIMDR	SIM11720
CLA	STAR	SIM11730
SAC	OPWD+17,2,3	SIM11740
TRA	KHAN	SIM11750
NOIMDR CLA	BLANK	SIM11760
SAC	OPWD+17,2,3	SIM11770
KHAN CLA	BLANK	SIM11780
SAC	OPWD+17,2,5	SIM11790
**** THE CORRECT OP CODE HAS BEEN SELECTED AND PUT		SIM11800
*** TO GET THREE LEADING ZEROES		SIM11810
BABAR AXT	4,1	SIM11820
LDQ	12288,4	SIM11830
LGL	24	SIM11840
ZAC		SIM11850
SHIFT ALS	3	SIM11860
LGL	3	SIM11870
TIX	SHIFT,1,1	SIM11880
ALS	6	SIM11890
PCS	BLANK,,5	SIM11900
ALS	6	SIM11910
PCS	BLANK,,5	SIM11920
SLW	NUMBR+17,2	SIM11930
TRA	TATA	SIM11940
** ENTER HERE FOR SIMPLE NUMBERS		SIM11950
ORDNY CLA	BLANK	SIM11960
STO	OPWD+17,2	SIM11970
CLA	12288,4	SIM11980
STO	GLIDER	SIM11990
CALL	TCMPL(GLIDER,GLIDER)	SIM12000
AXT	4,1	SIM12010
LDQ	GLIDER	SIM12020
LGL	24	SIM12030
ZAC		SIM12040

EEC018

UPDATE SUMMARY

VARIAC	ALS	3	SIM12050
	LGL	3	SIM12060
	TIX	VARIAC,1,1	SIM12070
	ALS	6	SIM12080
	PCS	BLANK,,5	SIM12090
	STO	NUMBR+17,2	SIM12100
	CAL	GLIDER	SIM12110
	PBT		SIM12120
	TRA	PLS	SIM12130
	CLA	MINUS	SIM12140
	SAC	NUMBR+17,2,0	SIM12150
	TRA	TATA	SIM12160
PLS	CLA	BLANK	SIM12170
	SAC	NUMBR+17,2,0	SIM12180
*****	TEST	FOR LOOPING	SIM12190
TATA	TIX	BACK,2,1	SIM12200
	CALL	DAMP	SIM12210
	TIX	CAMEL,4,1	SIM12220
	RETURN	MMRY	SIM12230
***	GIVE	SUITABLE MESSAGE IF MANY LICATIONS HAVE SAME	SIM12240
*****	CONTENTS	STORED IN THEM*****	SIM12250
***	DAMP	SUBROUTINE TAKES CARE OF THAT***	SIM12260
DAMP	SAVE	1,2,4	SIM12270
	AXT	16,1	SIM12280
BOOK	CLA	NUMBR+1	SIM12290
	SUB	NUMBR+17,1	SIM12300
	TNZ	DAMPB CONTENTS OF NUMBER+1 THRU +16 ARE NOT SAME	SIM12310
	TIX	BOOK+1,1	SIM12320
*****	IN	CASE CONTENTS ARE SAME	SIM12330
	PLT	TEA	SIM12340
	TRA	DAMPD	SIM12350
***	WHEN	TEA IS PLUS	SIM12360
	CLA	NUMBR	SIM12370
	STO	SPARE	SIM12380
	CLA	ZERO	SIM12390
	ADD	=017	SIM12400
	STO	SPARE+4	SIM12410
	CLA	NUMBR+1	SIM12420
	STO	SPARE+2	SIM12430
	CLA	OPWD+1	SIM12440
	STO	SPARE+3	SIM12450
	MSM	TEA	SIM12460
	CLA	SPARE+4	SIM12470
	SUB	=07777	SIM12480
	TZE	DAMPF	SIM12490
	TRA	CLIVE	SIM12500
****	WHEN	TEA IS MINUS	SIM12510
DAMPD	CLA	NUMBR+1	SIM12520
	SUB	SPARE+2	SIM12530
	TNZ	DAMPF	SIM12540
****	WHEN	NUMBR+1 AND SPARE+2 ARE SAME***	SIM12550
	CLA	SPARE+4	SIM12560
	ADD	=020	SIM12570
	STO	SPARE+4	SIM12580
	CLA	SPARE+4	SIM12590

EEG018

UPDATE SUMMARY

SUB	=07777	SIM12600
TZE	DAMPF	SIM12610
TRA	CLIVE	SIM12620
*** WHEN NUMBR+1 THRU +16 ARE SAME BUT DIFFERENT FROM		SIM12630
***** SPARE+2 ENTER HERE***		SIM12640
DAMPF	AXT 4,1	SIM12650
	LDD SPARE+4	SIM12660
	LGL 24	SIM12670
ZAC		SIM12680
BOOKA	ALS 3	SIM12690
	LGL 3	SIM12700
	TIX BOOKA,1,1	SIM12710
	ALS 6	SIM12720
	PCS BLANK,,5	SIM12730
	ALS 6	SIM12740
	PCS BLANK,,5	SIM12750
	SLW SPARE+1	SIM12760
	CLA SPARE	SIM12770
	STO MSSGE+2	SIM12780
	CLA SPARE+1	SIM12790
	STO MSSGE+4	SIM12800
	CLA SPARE+2	SIM12810
	STO MSSGE+7	SIM12820
	CLA SPARE+3	SIM12830
	STO MSSGE+9	SIM12840
	WRS 650,,3	SIM12850
	RCHA *+1	SIM12860
	IORD MSSGE,,10	SIM12870
	CLA SPARE+4	SIM12880
	SUB =07777	SIM12890
	TZE CLIVE	SIM12900
*** TO SAVE IN SPARE BLOCK*****		SIM12910
	CLA NUMBR	SIM12920
	STO SPARE	SIM12930
	CLA ZERO	SIM12940
	ADD =017	SIM12950
	STO SPARE+4	SIM12960
	CLA NUMBR+1	SIM12970
	STO SPARE+2	SIM12980
	CLA UPWD+1	SIM12990
	STO SPARE+3	SIM13000
	CLA SPARE+4	SIM13010
	SUB =07777	SIM13020
	TZE DAMPF	SIM13030
	TRA CLIVE	SIM13040
***** WHEN NUMBR+1 THRU +16 ARE DIFFERENT		SIM13050
DAMPB	MIT TEA	SIM13070
	TRA DAMPG	SIM13080
	AXT 4,1	SIM13090
	LDD SPARE+4	SIM13100
	LGL 24	SIM13110
ZAC		SIM13120
BOOKC	ALS 3	SIM13130
	LGL 3	SIM13140
	TIX BOOKC,1,1	

EEG018

UPDATE SUMMARY

ALS	6	SIM13150
PCS	BLANK,,5	SIM13160
ALS	6	SIM13170
PCS	BLANK,,5	SIM13180
SLW	SPARE+1	SIM13190
CLA	SPARE	SIM13200
STO	MSSGE+2	SIM13210
CLA	SPARE+1	SIM13220
STO	MSSGE+4	SIM13230
CLA	SPARE+2	SIM13240
STO	MSSGE+7	SIM13250
CLA	SPARE+3	SIM13260
STO	MSSGE+9	SIM13270
WRS	650,,3	SIM13280
RCHA	**1	SIM13290
IORD	MSSGE,,10	SIM13300
*****	MAKE TEA - PLUS*****	SIM13310
MSP	TEA	SIM13320
*****	WRITE OUT *****	SIM13330
DAMPG	WRS 650,,3	SIM13340
	RCHA **1	SIM13350
	IORD NUMBR,,17	SIM13360
	WRS 650,,3	SIM13370
	RCHA **1	SIM13380
	IORD OPWD,,17	SIM13390
CLIVE	RETURN DAMP	SIM13400
	EJECT.	SIM13410
	*****	SIM13420
CHAR	PZE TSFQA	SIM13430
	PZE TSFQ	SIM13440
	PZE KSFQA	SIM13450
	PZE KSFQ	SIM13460
	PZE IOFQ	SIM13470
DO	PZE TCFQA	SIM13480
	PZE TCFQ	SIM13490
	PZE KCCQA	SIM13500
	PZE KCCQ	SIM13510
	PZE IONQ	SIM13520
EK	PZE TPCQA	SIM13530
	PZE TPCQ	SIM13540
	PZE KRSQA	SIM13550
	PZE KRSQ	SIM13560
	PZE SMKQ	SIM13570
BUFF01	OCT 726060606060	SIM13580
	BCI 8,	SIM13590
	BCI 4,	SIM13600
BUFF02	OCT 726060606060.	SIM13610
	BCI 8,	SIM13620
	BCI 4,	SIM13630
BUFF03	OCT 726060606060	SIM13640
	BCI 8,	SIM13650
	BCI 6,	SIM13660
BUFF04	OCT 726060606060	SIM13670
	BCI 8,	SIM13680
	BCI 6,	SIM13690
	UNIT 03	
	UNIT 04	

INTR	OCT	0		SIM13700	
KLOK	OCT	0,0,0,0		SIM13710	
DEVIK	OCT	1,1,1,1		SIM13720	
UNIT	BSS	1		SIM13730	
FLIP	BSS	1		SIM13740	
RCMRK	OCT	72		SIM13750	
LINFID	BCI	1,		SIM13760	
CARRET	BCI	1,		SIM13770	
TELTYP	OCT	301,302,303,304,305,306,307,310,311,312, ETC 313,314,315,316,317,320,321,322,323,324, ETC 325,326,327,330,331,332,260,261,262,263, ETC 264,265,266,267,270,271,244,247,250, ETC 251,252,253,254,255,256,257,275,000, ETC 212,215		SIM13780	
IBM	OCT	21,22,23,24,25,26,27,30,31,41, ETC 42,43,44,45,46,47,50,51,62,63, ETC 64,65,66,67,70,71,00,01,02,03, ETC 04,05,06,07,10,11,53,14,74, ETC 34,54,20,73,40,33,61,13,60, ETC 76,77		SIM13850	
SETB	BCI	6, INPUT WANTED ON UNIT	.PAUSE	SIM13900	
HARSHA	BSS	1		SIM13910	
BAFF	BSS	3		SIM13920	
MSSGE	BCI	9, LOCATION	THRU	ALL CONTAIN	SIM13930
SPARE	BCI	.5,		SIM13940	
TEA	BSS	1		SIM13950	
CLOCK	OCT	0		SIM13960	
LOCK	BCI	3, DUMP OF TDC MEMORY		SIM13970	
TITLE	BCI	9, PAC MAR MDR	ACCM CRYRG SWRG	CLOCK	SIM13980
BLANK	BCI	1,		SIM13990	
REGSET	BCI	1, SMK	6401	SIM14000	
	BCI	1, ION	6402	SIM14010	
	BCI	1, IOF	6404	SIM14020	
	BCI	1, KRS	6411	SIM14030	
	BCI	1, KCC	6412	SIM14040	
	BCI	1, KRB	6413	SIM14050	
	BCI	1, KSF	6414	SIM14060	
	BCI	1, KRC	6421	SIM14070	
	BCI	1, KCS	6422	SIM14080	
	BCI	1, KRP	6423	SIM14090	
	BCI	1, KSP	6424	SIM14100	
	BCI	1, TPC	6431	SIM14110	
	BCI	1, TCF	6432	SIM14120	
	BCI	1, TLS	6433	SIM14130	
	BCI	1, TSF	6434	SIM14140	
	BCI	1, TPS	6441	SIM14150	
	BCI	1, TCP	6442	SIM14160	
	BCI	1, TLC	6443	SIM14170	
	BCI	1, TSP	6444	SIM14180	
	BCI	1, NOP	7000	SIM14190	
	BCI	1, CLA	7001	SIM14200	
	BCI	1, CLC	7002	SIM14210	
	BCI	1, CAR	7010	SIM14220	
	BCI	1, CAL	7020	SIM14230	
	BCI	1, CTR	7014	SIM14240	

EEG018

UPDATE SUMMARY

BCI	1,CTL	7024	SIM14250	
BCI	1,CMC	7040	SIM14260	
BCI	1,CMA	7100	SIM14270	
BCI	1,IAC	7200	SIM14280	
BCI	1,CIA	7300	SIM14290	
BCI	1,STC	7042	SIM14300	
BCI	1,STA	7101	SIM14310	
BCI	1,CLA	7401	SIM14320	
BCI	1,ORS	7402	SIM14330	
BCI	1,SKP	7404	SIM14340	
BCI	1,SNC	7410	SIM14350	
BCI	1,SZC	7414	SIM14360	
BCI	1,SZA	7420	SIM14370	
BCI	1,SNA	7424	SIM14380	
BCI	1,SMA	7440	SIM14390	
BCI	1,SPA	7444	SIM14400	
BCI	1,STP	7500	SIM14410	
STGREF	BCI	1,XCT	60	SIM14420
	BCI	1,CAS	54	SIM14430
	BCI	1,JMS	50	SIM14440
	BCI	1,JMP	44	SIM14450
	BCI	1,ISZ	40	SIM14460
	BCI	1,RAD	34	SIM14470
	BCI	1,SUB	30	SIM14480
	BCI	1,ADD	24	SIM14490
	BCI	1,SAC	20	SIM14500
	BCI	1,LAC	14	SIM14510
	BCI	1,XOR	10	SIM14520
	BCI	1,AND	04	SIM14530
OPWD	BSS	17	SIM14540	
NUMBR	BSS	17	SIM14550	
ZERO	OCT	-20	SIM14560	
GLIDER	BSS	1	SIM14570	
STAR	BCI	1,*****	SIM14580	
RECTOR	BCI	1,111111	SIM14590	
MINUS	BCI	1,-----	SIM14600	
TRTEEN	DEC	13	SIM14610	
SAVEEX	BSS	1	SIM14620	
SAVEDX	BSS	1	SIM14630	
SAVEE	BSS	1	SIM14640	
SAVED	BSS	1	SIM14650	
GALTI	BCI	8, ILLEGAL TDC INSTRUCTION. JOB TERMINATED	SIM14660	
CASA	BSS	2	SIM14680	
ETONE	BSS	81	SIM14690	
GUMP	BCI	7, LOCATION COUNTER JUMP	THRU	SIM14700
VAS	BSS	2	SIM14710	
BUFF	BSS	27	SIM14720	
DRAKE	PZE	ETONE+3	SIM14730	
BING	BCI	5, ILLEGAL INPUT. UNABLE TO READ.	SIM14740	
CUFF	BSS	2	SIM14750	
IR	BSS	1	SIM14760	
SENSE	BSS	1	SIM14770	
RDREDR	BCI	3,21556 CD RD ERR	SIM14780	
IOCS	OCT	6401,6402,6404,6411,6412,6413,6414,	SIM14790	
ETC		6421,6422,6423,6424,6431,6432,6433,6434,		