Theory of Computing:

7. Pushdown Automata

Professor Imed Bouchrika

National School of Artificial Intelligence imed.bouchrika@ensia.edu.dz

Revision:

Outline:

- Context-Free Languages
- Chomsky normal form
- Pushdown Automata

- Notations and Formalism
- Examples
- Converting CFG <---> PDA

- Context-free languages are those that can be generated by context-free grammar.
- Example : Language L = $\{ 0^n 1^n \mid n >= 0 \}$

- Context-free languages are those that can be generated by context-free grammar.
- Example : Language L = $\{ 0^n 1^n \mid n >= 0 \}$
 - \circ S \rightarrow 0S1 | e

- Context-free languages are those that can be generated by context-free grammar.
- Example : Language L = { palindromes }

- Context-free languages are those that can be generated by context-free grammar.
- Example : Language L = { palindromes }
 - \circ S \rightarrow aSa | bSb | a | b | ϵ

- Context-free languages are those that can be generated by context-free grammar.
- Example : Language L = { even-length palindromes }

- Context-free languages are those that can be generated by context-free grammar.
- Example : Language L = { even-length palindromes }
 - \circ S \rightarrow aSa | bSb | ϵ

- Context-free languages are those that can be generated by context-free grammar.
- Example : Language L = { odd-length palindromes }

- Context-free languages are those that can be generated by context-free grammar.
- Example : Language L = { odd-length palindromes }
 - \circ S \rightarrow aSa | bSb | a | b

- Context-free languages are those that can be generated by context-free grammar.
- Example : Language L = $\{ 0^n 1^n \mid n >= 0 \}$
 - \circ S \rightarrow 0S1 | e

- \circ A \rightarrow BAB | B | ϵ
- \circ B \rightarrow 00 $\mid \epsilon$

$$\circ$$
 A \rightarrow BAB | B | ϵ

$$\circ$$
 B \rightarrow 00 | ϵ

$$\circ$$
 A \rightarrow BAB | B | ϵ

$$\circ$$
 B \rightarrow 00 | ϵ

Converting the following to Chomsky normal form:

- \circ S \rightarrow A
- \circ A \rightarrow BAB | B | ϵ
- \circ B \rightarrow 00 | ϵ

- \circ S \rightarrow A
- \circ A \rightarrow BAB | B | ε
- \circ B \rightarrow 00 $\mid \epsilon$

- \circ S \rightarrow A
- \circ A \rightarrow BAB | B | ϵ | BA | AB | A
- \circ B \rightarrow 00

- \circ S \rightarrow A
- \circ A \rightarrow BAB | B | ϵ | BA | AB | A
- \circ B \rightarrow 00

- \circ S \rightarrow A | ϵ
- \circ A \rightarrow BAB | B | BA | AB | A | **BB**
- \circ B \rightarrow 00

$$\circ$$
 S \rightarrow A | ϵ

$$\circ$$
 S \rightarrow A | ϵ

$$\circ$$
 A \rightarrow BAB | B | BA | AB | **A** | BB

$$A \rightarrow BAB \mid B \mid BA \mid AB \mid BB$$

$$\circ$$
 B \rightarrow 00

$$\circ$$
 B \rightarrow 00

- \circ S \rightarrow A | ϵ
- \circ A \rightarrow BAB | **B** | BA | AB | BB
- \circ B \rightarrow 00

- \circ S \rightarrow A | ϵ
- \circ A \rightarrow BAB | **00** | BA | AB | BB
- \circ B \rightarrow 00

- S→A | ε
- \circ A \rightarrow BAB | 00 | BA | AB | BB
- \circ B \rightarrow 00

- \circ S \rightarrow BAB | oo | BA | AB | BB | ε
- \circ A \rightarrow BAB | 00 | BA | AB | BB
- \circ B \rightarrow 00

- \circ S \rightarrow A | ϵ
- \circ A \rightarrow BAB | 00 | BA | AB | BB
- \circ **B** \rightarrow **00**

- \circ S \rightarrow BAB | **UU** | BA | AB | BB | ϵ
- \circ A \rightarrow BAB | **UU** | BA | AB | BB
- \circ B \rightarrow UU
- \circ $U \rightarrow 0$

Converting the following to Chomsky normal form:

- \circ S \rightarrow **BAB** | 00 | BA | AB | BB | ϵ
- \circ A \rightarrow BAB | 00 | BA | AB | BB
- \circ B \rightarrow UU
- \circ $U \rightarrow 0$

- \circ S \rightarrow **BA**_h | UU | BA | AB | BB | ε
- \circ A \rightarrow BAB | UU | BA | AB | BB
- \circ B \rightarrow UU
- \circ $U \rightarrow 0$
- \circ $A_h \rightarrow AB$

- As with regular languages, there are various approaches to describe the language :
 - Build Automata that accepts or recognizes a string from the language
 - Design Regular expressions that describe the language
 - Write the regular grammar to generate the language

- For context-free languages :
 - Context-free grammar: to generate language.
 - Can we design an automaton to recognize a word from the language?

- Can NFA represent a context-free language : ?
- No: We need a machine with some extra memory

- Can NFA represent a context-free language : ?
- No: We need a machine with some extra memory: Stack

- Pushdown Automata (PDA): can be considered as NFA with a stack
- The stack stores information on the last-in first-out principle.
 - Items are added on top by pushing;
 - items are removed from the top by popping
- Only the top of the stack is visible at any point in time.

- A pushdown automaton (PDA) has a fixed set of states (like FA), but it also has one stack with (theoretically) infinite storage.
- When symbol is read, depending on :
 - 1. State of automaton
 - 2. Symbol on top of stack
 - 3. Symbol read,

- A pushdown automaton (PDA) has a fixed set of states (like FA), but it also has one stack with (theoretically) infinite storage.
- When symbol is read, depending on :
 - 1. State of automaton
 - 2. Symbol on top of stack
 - Symbol read,

The automaton would:

- Updates its state
- (optionally) pops or pushes a symbol.

- A pushdown automaton (PDA) has a fixed set of states (like FA), but it also has one stack with (theoretically) infinite storage.
- When symbol is read, depending on :
 - 1. State of automaton
 - 2. Symbol on top of stack
 - 3. Symbol read,

The automaton would:

- Updates its state
- o (optionally) **pop**s or **push**es a symbol.

The automaton may also pop or push without reading input.

Important notes:

- The stack is recommended to be initialized with a special symbol or marker either the \$ or Z_n symbols
- The special symbol is used to indicate the bottom of the stack.
- There are different notations and definitions used for PDA depending on the textbook being used :
 - Sipser's Book :
 - does not have a start stack symbol
 - does not allow transitions to push multiple symbols onto the stack.

- Let's Construct a PDA that accepts all strings from the language L = {aⁿ bⁿ }
- Informal English Description:

Read symbols from the input. As each **a** is read, push it onto the stack.

As soon as **b**s are seen, pop an **a** off the stack for each **b** read.

If reading the input is finished exactly when the stack becomes empty of **a**s, accept the input.

If the stack becomes empty while **b**s remain or if the **b**s are finished while the stack still contains **a**s or if any **a**s appear in the input following **b**s, **reject the** input

- Let's Construct a PDA that accepts all strings from the language L = {aⁿ bⁿ }
- Design the informal algorithm
 - 1. Initialize the Stack with a special marker
 - 2. while next input character is **a** do
 - push a
 - 3. while next input character is **b** do
 - pop a
 - 4. The special marker is on top of the stack.

- Let's Construct a PDA that accepts all strings from the language L = {aⁿ bⁿ }
- Flowchart can be used to simplify the concept

- Let's Construct a PDA that accepts all strings from the language L = {aⁿ bⁿ }
- State Diagram

- Let's Construct a PDA that accepts all strings from the language L = {aⁿ bⁿ }
- State Diagram
 - States: q0, q1, q2, q3

- Let's Construct a PDA that accepts all strings from the language L = {aⁿ bⁿ }
- State Diagram
 - Start State : qo

- Let's Construct a PDA that accepts all strings from the language L = {aⁿ bⁿ }
- State Diagram
 - Accepting States: qo, q3

- Let's Construct a PDA that accepts all strings from the language L = {aⁿ bⁿ }
- State Diagram
 - Transitions:

$$A, B \rightarrow C$$

- Means that when
 - You read symbol **A**,
 - Pop **B**
 - Push **C**

- Let's Construct a PDA that accepts all strings from the language L = {aⁿ bⁿ }
- State Diagram
 - o Transitions:

$$A , B \rightarrow C$$

- Special Cases
 - \blacksquare A, $\epsilon \rightarrow B$
 - Push B
 - \blacksquare A, B \rightarrow ϵ
 - Pop B

- Let's Construct a PDA that accepts all strings from the language L = {aⁿ bⁿ }
- State Diagram
 - First Transition ε, ε → \$:
 - When nothing, place \$ into
 The top the of stack.
 - \$ is used to serve as a special marker

- Let's Construct a PDA that accepts all strings from the language L = {aⁿ bⁿ }
- State Diagram
 - First Transition ε, ε → \$:

- Let's Construct a PDA that accepts all strings from the language L = {aⁿ bⁿ }
- Simulation: aaabbb

- Let's Construct a PDA that accepts all strings from the language L = {aⁿ bⁿ }
- Simulation: aaabbb

Step	State	Stack	Input	Action
1	q_0		aaabbb	push \$

- Let's Construct a PDA that accepts all strings from the language L = {aⁿ bⁿ }
- Simulation: aaabbb

Step	State	Stack	Input	Action
1	q_0		aaabbb	push \$
2	q_1	\$	aaabbb	$push\ a$

- Let's Construct a PDA that accepts all strings from the language L = {aⁿ bⁿ }
- Simulation : aaabbb

Step	State	Stack	Input	Action
1	q_0		aaabbb	push \$
2	q_1	\$	aaabbb	$push\ a$
3	q_1	\$a	aabbb	$push\ a$
4	q_1	\$aa	abbb	push \boldsymbol{a}
5	q_1	\$aaa	bbb	pop a

- Let's Construct a PDA that accepts all strings from the language L = {aⁿ bⁿ }
- Simulation: aaabbb

Step	State	Stack	Input	Action
1	q_0		aaabbb	push \$
2	q_1	\$	aaabbb	$push\ a$
3	q_1	\$a	aabbb	$push\ a$
4	q_1	\$aa	abbb	$push\ a$
5	q_1	\$aaa	bbb	$pop\ a$
6	q_2	\$aa	bb	$pop\ a$
7	q_2	\$a	b	$pop\ a$
8	q_2	\$		pop \$
9	g_3			accept

- Let's Construct a PDA that accepts all strings from the language L = {aⁿ bⁿ }
- Simulation: aababb

Step	State	Stack	Input	Action
1	q_0		aababb	push \$
2	q_1	\$	aababb	$push\ a$
3	q_1	\$a	ababb	$push\ a$
4	q_1	\$aa	babb	$pop\ a$
5	q_2	\$a	abb	crash
6	q_ϕ	\$a	bb	
7	q_ϕ	\$a	b	
8	q_{ϕ}	\$a		reject

Constructing Pushdown Automaton A Simple Pushdown Automaton

- Let's Construct a PDA that
- Lecture notes from the
 University of Stanford

- Let's Construct a PDA that accepts all strings from the language L = {an bn }
- Lecture notes from UNC

$$M = (\{q_0, q_1, q_2\}, \{0, 1\}, \{Z_0, Z_1\}, \delta, q_0, Z_0, \{q_2\})$$

$$\delta(q_0, 0, Z_0) = \{ (q_0, Z_1 Z_0) \}$$

$$\delta(q_0, \varepsilon, Z_0) = \{ (q_2, \varepsilon), (q_1, Z_0) \}$$

$$\triangleright \delta(q_0, \varepsilon, Z_1) = \{(q_1, Z_1)\}\$$

$$\triangleright \delta(q_1, 1, Z_1) = \{(q_1, \varepsilon)\}\$$

Let's Construct a PDA that accepts all strings from the language L = {aⁿ bⁿ }

 $\vdash (q_2, \varepsilon, \varepsilon)$

- Lecture notes from UNC
- The symbol : $\qquad \qquad (q_0,0011,Z_0) \ \ \, \vdash (q_0,011,Z_1Z_0) \ \ \, \vdash (q_0,11,Z_1Z_1Z_0) \ \ \, \vdash (q_1,11,Z_1Z_1Z_0) \ \ \, \vdash (q_1,1,Z_1Z_0) \ \ \, \vdash (q_1,1,Z_1Z_0) \ \ \, \vdash (q_1,\varepsilon,Z_0) \ \ \, \vdash (q_1,\varepsilon,Z_0)$

- Let's Construct a PDA that accepts all strings from the language L = {aⁿ bⁿ }
- When to accept or reject?

Formalism for Pushdown Automata

- A pushdown automaton is a 6-tuple (Q, Σ , Γ , δ , q_o , F), where Q, Σ , Γ , and F are all finite sets such that:
 - 1. Q is the set of states,
 - 2. Σ is the input alphabet,
 - 3. Γ is the stack alphabet,
 - 4. $\delta: Q \times \Sigma \epsilon \times \Gamma \epsilon \rightarrow P(Q \times \Gamma \epsilon)$ is the transition function,

- 5. $q_0 \in Q$ is the start state
- 6. $F \subseteq Q$ is the set of accept states.

- Let's Construct a PDA that accepts all strings from the language
- $L = \{ww^R \mid w \in \{0,1\} * \}$

- Let's Construct a PDA that accepts all strings from the language

- Let's Construct a PDA that accepts all strings from the language
- $L = \{ww^R \mid w \in \{0,1\} * \}$

- Let's Construct a PDA that accepts all strings from the language
- $L = \{ww^R \mid w \in \{0,1\} * \}$

- Let's Construct a PDA that accepts all strings from the language
- L = $\{a^i b^j c^k | i, j, k \ge 0 \text{ and } i = j \text{ or } i = k\}$

- Let's Construct a PDA that accepts all strings from the language
- L = $\{a^i b^j c^k \mid i, j, k \ge 0 \text{ and } i = j \text{ or } i = k\}$

Algorithm:

- 1. While next input character is a do push a
- 2. Nondeterministically, guess whether a's =b's or a's =c's

Case 1: a's=b's

- While next input is b do pop a
- While next input character is c do nothing

Case 2 : a's=c's

- While next input is b do nothing
- While next input character is c do pop a

- Let's Construct a PDA that accepts all strings from the language
- L = $\{a^i b^j c^k \mid i, j, k \ge 0 \text{ and } i = j \text{ or } i = k\}$

- Let's Construct a PDA that accepts all strings from the language
- $\bullet \quad \bot = \{ ww \mid w \in \{0,1\} * \}$

- Let's Construct a PDA that accepts all strings from the language
- L = {w such that w = w^R and w has an even length}

- Let's Construct a PDA that accepts all strings from the language
- L = {w such that w = w^R and w has an even length}

- Let's Construct a PDA that accepts all strings from the language
- L = $\{w \text{ such that } w = w^R \text{ and } w \text{ has an even length}\}$

- Let's Construct a PDA that accepts all strings from the language
- L = $\{w \text{ such that } w = w^R \text{ and } w \text{ has an even length}\}$

- Let's Construct a PDA that accepts all strings from the language
- L = $\{w \text{ such that } w = w^R \}$
- Let's simulate: abba

- Let's Construct a PDA that accepts all strings from the language
- L = $\{w \text{ such that } w = w^R \}$
- Let's simulate : abba

$$\begin{array}{c} \Sigma, \mathbf{E} \longrightarrow \Sigma \\ \Sigma, \Sigma \longrightarrow \mathbf{E} \end{array}$$

Nondeterminism is extremely important where the machine would try all possible derivations until it gets the correct one.

Deterministic PDA

- For each state in the PDA, and for any combination of a **current input symbol** and a **current stack symbol**, there is at most one transition defined
- In other words, there is precisely at most one legal sequence of transitions that can be followed for any input
- What about the e-transitions?

Deterministic PDA

- For each state in the PDA.
- In other words, there is **pre** followed for any input
- What about the e-transitid

- For each state in the P current stack symbol,
- In other words, there is followed for any input
- What about the e-trar

For each state in the

current stack symb

- In other words, there followed for any input
- What about the e-tr

- For each state in the PDA, and for any current stack symbol, there is at mos
- In other words, there is precisely at m followed for any input
- What about the e-transitions?

- If we can find a DPDA for a CFL, then we can recognize strings in that language efficiently.
- Can we guarantee that we can always find a DPDA for a CFL?

- If we can find a DPDA for a CFL, then we can recognize strings in that language efficiently.
- Can we guarantee that we can always find a DPDA for a CFL?
 - As DFA and NFA are equivalent and each NFA has its DFA equivalent
 - Do PDA and DPDA have the same power?
 - Does any CFL represented by a DPA, has an DPDA equivalent?

- Simple example: **The language of palindromes.**
- Design the algorithm for the DPDA
- How do you know when you've read half the string?
 - It is deterministic, the machine does not have the power for guessing or branching ...

Equivalence

- A language is context free if and only if some pushdown automaton recognizes it.
 - 1. If a language is context free, then some pushdown automaton recognizes it.
 - 2. If a pushdown automaton recognizes some language, then it is context free.

Equivalence: CFG → PDA

- Simple Idea :
 - Push Variables into the stack
 - Replace Top Variable by its Production rules into the stack

Given the following grammar:

$$\circ$$
 S \rightarrow aS | ϵ

- For simplification, we derive the following word:
 - o aaa

Given the following grammar:

$$\circ$$
 S \rightarrow aS | ϵ

S

Initialize the stack with the marker symbol \$

\$

■ Place the start variable at the top of the Stack

Given the following grammar:

_

■ We replace the variable with its production rule $S \rightarrow aS$

S

a

Within the stack

Given the following grammar:

$$\circ$$
 S \rightarrow aS | ϵ

■ Terminal Symbol "a" must be POPPED from the stack

Given the following grammar:

$$\circ$$
 S \rightarrow aS | ϵ

S

■ The transition should be made as : $a, a \rightarrow \epsilon$

Given the following grammar:

$$\circ$$
 S \rightarrow aS | ϵ

S

■ For Variable S? how can we do its transition?

Given the following grammar:

$$\circ$$
 S \rightarrow aS | ϵ

S

■ For Variable S? how can we do its transition?

•
$$\epsilon, S \rightarrow aS$$

Given the following grammar:

Equivalence: CFG → PDA

Given the following grammar:

■ For Variable S? how can we do its transition?

• ϵ , $S \rightarrow a S \Rightarrow$ two transitions: ϵ , $S \rightarrow S + \epsilon$, $\epsilon \rightarrow a$

а

S

Given the following grammar:

$$\circ$$
 S \rightarrow aS | ϵ

■ For Variable S? how can we do its transition?

• ϵ , $S \rightarrow a$ $S \Rightarrow$ two transitions: ϵ , $S \rightarrow S + \epsilon$, $\epsilon \rightarrow a$

а

S

Given the following grammar:

a S

Equivalence: CFG → PDA

- Given the following grammar:
 - \circ S \rightarrow X | ϵ
 - \circ X \rightarrow aXb | ϵ

- Given the following grammar:
 - \circ S \rightarrow X | ϵ
 - \circ X \rightarrow aXb | ε

- Given the following grammar:
 - \circ S \rightarrow X | ϵ
 - \circ X \rightarrow aXb | ε

- Given the following grammar:
 - \circ S \rightarrow X | ϵ
 - \circ X \rightarrow aXb | ε

• Given the following grammar:

$$\circ \quad S \to X \mid \; \epsilon$$

$$\circ$$
 X \rightarrow aXb | ϵ

$$a,a \rightarrow \mathbf{E}$$

 $b,b \rightarrow \mathbf{E}$

$$\epsilon, S \rightarrow X$$

$$\epsilon$$
, $X \rightarrow aXb$

- Given the following grammar:
 - \circ S \rightarrow X | ϵ
 - \circ X \rightarrow aXb | ϵ

Equivalence: CFG → PDA

- Given the following grammar:
 - \circ S \rightarrow a T b | b
 - \circ T \rightarrow Ta | ϵ

Given the following grammar:

$$\circ$$
 S \rightarrow a T b | b

$$\circ$$
 T \rightarrow Ta | ε

Equivalence : PDA \rightarrow CFG

- A language is context free if and only if some pushdown automaton recognizes it.
 - If a language is context free, then some pushdown automaton recognizes it.
 - 2. If a pushdown automaton recognizes some language, then it is context free.

- The Algorithm:
 - Simplify the PDA:
 - Create a new Start State and initialize the stack with \$

- The Algorithm:
 - Simplify the PDA:
 - Should have only one accept state newly created

- The Algorithm:
 - 1. Simplify the PDA:
 - The stack needs to be **emptied** just after passing the newly created final state

Equivalence : PDA \rightarrow CFG

- The Algorithm:
 - 1. Simplify the PDA:
 - Transform all transitions so that each transition would do at a time either:
 - push a symbol or
 - Pop a symbol

Equivalence : PDA \rightarrow CFG

- The Algorithm:
 - 1. Simplify the PDA:
 - Transform all transitions so that each transition would do at a time either:
 - push a symbol or
 - Pop a symbol

105

- The Algorithm:
 - 2. Construct the Context Free Grammar
 - For each **reachable/traversable** pair of states (A, B), create a variable (non-terminal symbol) V_{AB}
 - The start variable is V_{SF} such that S is the start state and F is the final state
 - Create Production Rules based on the following cases
 - •
 - ...

- The Algorithm:
 - Construct the Context Free Grammar
 - The start variable is V_{SF} such that S is the start state and F is the final stat

Equivalence : PDA \rightarrow CFG

- The Algorithm:
 - 2. Construct the Context Free Grammar
 - Create Production Rules based on the following cases
 - if $\delta(p, a, \epsilon) \rightarrow (r, u)$ and $\delta(s, b, u) \rightarrow (q, \epsilon)$, add the following rule : G: $A_{pq} \rightarrow aA_{rs}b$
 - For each p, q, r, s \in Q, add the following rule to G: $A_{pq} \rightarrow A_{pr}A_{rq}$
 - For each $p \in Q$, add the following rule to $G: A_{pp} \to \varepsilon$

- 1. For any string $w = w_1 w_2 \cdots w_n$, the reverse of w, written w^R , is the string w in reverse order, $w_n \cdots w_2 w_1$. For any language A, let $A^R = \{w^R \mid w \in A\}$. Show that if A is regular, so is A^R .
 - Done by transforming the NFA for this language to as follows:
 - Invert the direction of all transitions
 - Create a new start state qo' and link them to the accepting states
 - Invert all accepting states into non-accepting states
 - Set the original start state as an accepting state.

Exercise 1

2. Let Σ = {0,1} and let D = {w| w contains an equal number of occurrences of the substrings 01 and 10}. Thus 101 ∈ D because 101 contains a single 01 and a single 10, but 1010 not in D because 1010 contains two 10s and one 01. Show that D is a regular language.

- Prove that the following languages are non-regular
 - 1. $A_1 = \{0^n 1^n 2^n \mid n \ge 0\}$
 - 2. $A_2 = \{www | w \in \{a, b\} * \}$
 - 3. A₃ = {a2n | n ≥ 0} (Here, a2n means a string of 2ⁿ a's.)
 4. {w| w ∈ {0,1}* is not a palindrome} is not a regular

- o Prove that the following languages are non-regular
 - 1. $A_1 = \{0^n 1^n 2^n \mid n \ge 0\}$
 - $_{a.}$ We consider that the language $A_{_{\downarrow}}$ is regular
 - b. Therefore, there must be a pumping mechanism.
 - c. We assume the pumping constant is P
 - d. We take the string 0^p1^p2^p which is in the language,
 - e. There are infinitely many words, and words with larger sizes that can be generated even from this word: $0^p1^p2^p \rightarrow (0^{2p}1^{2p}2^{2p}....)$
 - f. The word can be written in the form s=xyz such that |xy|<=P and |y|=k>0
 - i. xy must be in the part of op
 - ii. Y must be only in the zero part.
 - iii. If we pump Y, the new word will be in the form $0^P 0^K 1^P 2^P = 0^{P+K} 1^P 2^P$ We will **always have words not** in the language, as zeros will be more than 1 and 2.
 - g. Therefore, we cannot pump more words from S to have new words in the language.
 - h. ⇒ No pumping mechanism.
 - . The language is not regular

- Prove that the following languages are non-regular
 - 1. $A_1 = \{0^n 1^n 2^n \mid n \ge 0\}$
 - 2. $A_2 = \{www | w \in \{a, b\} *\} \Rightarrow a^pba^pba^pb$
 - 3. $A_3^2 = \{a^2 \cap | n \ge 0\}$ (Here, a2n means a string of 2^n a's.) $\Rightarrow a^2 \cap A_3$ 4. $\{w | w \in \{0,1\} \text{ is not a palindrome}\}$ is not a regular $\Rightarrow 0^p 10^p$

- Prove that the following languages are non-regular
 - 1. $A_3 = \{a^2 \mid n \mid n \ge 0\}$ (Here, a2n means a string of 2^n a's.) \Rightarrow a^2^P a. a^2
 - i. Example for simplification only not to fix P at a given number :
 - 1. $P=4 \Rightarrow aaaa ...aaa (2x2x2x2 \Rightarrow 16 times)$
 - 2. Next word is P+1=5 \Rightarrow aaa ...aaa (2x2x2x2x2 \Rightarrow 32 times)
 - 3.
 - ii. The word can be written as s=xyz such that |xy| <=P and |y|=K>0
 - iii. Regardless of the value of y if we would like to generate the next word by pumping.
 - 1. We need to have the next word which must be in the language,
 - 2. $|XYZ|=2^{P}$
 - 3. The next word is of course : xy^2z such that $|xy^2z|=2^{P+1}$
 - 4. But as $|xy| \le P$ even x is empty, and y is all the **a**s (by considering even |Y| = P at max)
 - a. $|xy^2z| <= 2^{p+p}$ but
 - b. $2^{p+p} < 2^{p+1}$ which is true always by induction
 - c. Therefore, the new word will never be in the language.

- Prove that the following languages are non-regular
 - 1. $A_3 = \{a^2 \mid n \mid n \ge 0\}$ (Here, a2n means a string of 2^n a's.) $\Rightarrow a^2 \mid P$
 - a. $2^{p+p} < 2^{p+1}$
 - We assume that $2^{p+p} < 2^{p+1}$ is true
 - We multiply by both sides by 2
 - $= 2(2^p+p) < 2^*2^{p+1}$
 - $= 2^{p+1}+2p < 2^{(p+1)+1}$
 - For P >= 1, it is always, p+1<p+p<2p,
 - Therefore, we can replace 2p with a lesser number inside the smaller side of the inequality.

 - $= 2^{p+1} + p+1 < 2^{(p+1)+1}$
 - Therefore, always true by induction

• Exercise 3

```
O Let B = {a^k | k is a multiple of n}. Show that for each n \ge 1, the language B_n is regular.

B<sub>1</sub> = a, we can write regular expressions = a

B<sub>2</sub> = (aa)*

B<sub>3</sub> = (aaa)*

...

B<sub>n</sub> = (aa...aa)* (a is repeated n times)

B is the union of B<sub>1</sub>, B<sub>2</sub>,...B<sub>n</sub> is regular as the union of regular languages is regular.
```

- For languages A and B, let the perfect shuffle of A and B be the language $\{w \mid w = a_1 \ b_1 \ \cdots \ a_k \ b_k \ ,$ where $a_1 \ \cdots \ a_k \in A$ and $b_1 \ \cdots \ b_k \in B$, each $a_i \ , \ b_i \in \Sigma\}$. Show that the class of regular languages is closed under a perfect shuffle. Example : $abc \in A$, $123 \in B$, by perfectly shuffling $\rightarrow a1b2c3$
- The new language S will be constructed from A and B by taking words of the same size and taking a letter from each word in an alternating fashion.
 - If the states of the DFA for A is X={x0, x1, x2,x3...xn}
 - If the states of the DFA for B is Y={y0, y1, y2,y3...yn}
 - The DFA Machine can be constructed for the language S with the following states
 - $X * Y * \{A,B\}$
 - Examples
 - \circ (x0,y1,A) (I am now at machine A, at state x0 whilst i was at state of y1 of B)
 - Start state would be: (x0,y0, A)
 - Accepting States would be:
 - \circ (x_{accept} , y_{accept} , A)
 - Transitions would be:
 - $\circ \quad \delta((xn, yn, A) , a) \rightarrow (\delta(xn, a) , yn , \mathbf{B})$
 - δ (xn, yn, B), a) \rightarrow (xn, δ (yn, a), A)

In each case below, say what language is generated by the context-free grammar:

```
1. S \rightarrow aS \mid bS \mid \epsilon \{a,b\}*
2. S \rightarrow SS \mid bS \mid a \{a,b\}*a
3. S \rightarrow SaS \mid b starts with b and ends with b + a and b are alternating
4. S \rightarrow SaS | b | \epsilon does not contain bb
5. S \rightarrow T T contains exactly two bs
    T \rightarrow aT \mid T a \mid b
6. S → aSa | bSb | aAb | bAa not palindromes
    A \rightarrow aAa \mid bAb \mid a \mid b \mid \epsilon \mid S
7. S \rightarrow aT \mid bT \mid \epsilon Even number of letters
    T \rightarrow aS \mid bS
8. S \rightarrow aT \mid bT odd number of letters
    T \rightarrow aS \mid bS \mid \epsilon
```

Give the context-free grammars that generate the following languages. Alphabet Σ is $\{0,1\}$.

```
    {w| w contains at least three 1s}
    S→P1P1P1P
    P → 0P | 1P | e
    {w| w starts and ends with the same symbol}
    S → 0 P 0 | 1 P 1 | 1 | 0
    P → 0P | 1 P | e
    {w| the length of w is odd}
    S → 0 | 1 | 00S | 10S | 10S | 11S
    Or
    S → 0 | 1 | 0S0 | 0S1 | 1S0 | 1S1
    Or
    See previous exercise
```

4. {w| the length of w is odd and its middle symbol is a 0}
 S → 0 | 0S0 | 0S1 | 1S0 | 1S1

```
Give the context-free grammars that generate the following languages. Alphabet \Sigma is \{0,1\}.
 1. \{w \mid w = w^R, \text{ that is, } w \text{ is a palindrome}\}
         S \rightarrow 0S0 \mid 1S1 \mid 1 \mid 0 \mid \epsilon
 2. \{w \mid w \text{ is not equal to } w^R \text{, that is, } w \text{ is not a palindrome}\}
         S \rightarrow 0S0 \mid 1S1 \mid 0A1 \mid 1A0
         A \rightarrow 0A0 \mid 1A1 \mid 0 \mid 1 \mid \epsilon \mid S
 3. {number of 0 is the same as 1}
         S \rightarrow \epsilon | SOS1S | S1SOS
         OR
         S \rightarrow 0S1 \mid 1S0 \mid SS \mid \epsilon
        All strings with more a's than b's
         S \rightarrow S_1aS_1
         S_1 \rightarrow bS_1a|aS_1b|S_1S_1|aS_1| \epsilon
         Test String: aabbaa:
                           S-> S_1aS_1 \rightarrow aS_1b aS_1 \rightarrow aaS_1bb aS_1 \rightarrow aaS_1bb aS_1 \rightarrow aabbaaS_1 \rightarrow aabbaa
```