

Mecánica del Continuo - (2022) Práctico Nº 6:

Ejercicio Nº 1. Demuestre la condición de isotropía del estado de esfuerzo de un fluido en reposo o en movimiento de cuerpo rígido.

Ejercicio N^o **2.** Derive la expresión que da el valor de la presión p dentro de un contenedor que contiene un fluido que se encuentra en campo gravitatorio terrestre ($b = -ge_3$) y está acelerado con una aceleración $a = a_1e_1 + a_2e_2$.

Ejercicio N^o **3.** Considere un fluido dentro de un cilíndro que contiene un fluido y se encuentra girando con velocidad angular ω . Derive la expresión que especifica el valor de la presión p en el fluido.

Ejercicio N^o **4.** Un contenedor de 120 cm de largo y 60 cm de ancho es acelerado con $a = 10m/s^2$ en la dirección e_1 . El contenedor contiene 80 cm de agua y 20 cm de aire sobre el agua, mantenido a 60 kPa. Encuentre la fuerza que actua sobre el fondo del contenedor, una vez que el estado estacionario se ha establecido.

Ejercicio \mathbb{N}^o **5.** Considere el tubo en U representado en la figura 1. Siendo que el tubo se encuentra en el campo gravitatorio terrestre, ¿cuanto debería valer la aceleración a para que h=2l?

Ejercicio \mathbb{N}^o **6.** Demuestre la condición que debe cumplir el campo de velocidad de un flujo incompresible $\nabla .v = 0$, a) partiendo de la ecuación de continuidad, b) a partir de una condición integral utilizando el teorma de Gauss.

Ejercicio \mathbb{N}^o **7.** Calcular el exceso de presión para una superficie ubicada según los planos a) e_1 , b) e_2 ; para el flujo especificado por:

$$v_1 = -c(x_2 + x_1), \quad v_2 = c(x_2 - x_1), \quad v_3 = 0$$

siendo c = 0.51/s

Ejercicio Nº 8. ¿Qué velocidad debe tener el agua en la cañería de un domicilio para superar la condición de un flujo laminar? ¿A que caudal (en litros/minuto) corresponde el valor calculado?

Ejercicio N^o **9.** Calcule el valor la velocidad promedio máxima de un flujo laminar en un tubo, considere que el número de Reynolds crítico es $Re_c = 2000$ y el fluido es: a) agua a 20° , b) agua a 80° , c) aceite con SAE - 30 y d) aire a 20° .

Ejercicio N° **10.** Se utiliza aceite SAE-30 como lubricante en el espacio entre dos cilindros concentricos que rotan, de 2cm y 2.2cm de diámetro. El cilindro externo se encuentra en reposo y el interior rota a 100 rpm. ¿El aceite se encuentra en un flujo tipo laminar o turbulento? Considere el $Re_c = 1700$.

