Comportamento Assintótico

Algoritmos e Estruturas de Dados 2

2017-1

Flavio Figueiredo (http://flaviovdf.github.io)

Até Agora

- Falamos de complexidade de algoritmos com base no número de passos
- Vamos generalizar mais um pouco com classes de complexidade
- Na prática:
 - Vamos ter um embasamento mais matemático
 - Vamos ignorar as constantes

Comportamento Assintótico

- Para valores suficientemente pequenos de *n*, qualquer algoritmo custa pouco para ser executado, mesmo os ineficientes
 - [Geralmente] Escolha de um algoritmo não é um problema crítico com n pequeno
- Logo, analisamos algoritmos para grandes valores de n
 - Estudamos o comportamento assintótico das funções de complexidade de um programa (comportamento para grandes valores de n)
- Ao escolher um n inicial suficientemente grande, podemos comparar 2 funções utilizando o crescimento das mesmas

Dominação Assintótica

- Uma função f(n) domina assintoticamente outra função g(n) se existem duas constantes **positivas** c e m tais que, para $n \ge m$, temos $|g(n)| \le c|f(n)|$.
- Limite superior

Vamos Comparar 2 Funções

- g(n) = 20 * n + 8000
- f(n) = n * n
- Olhe a função ao lado
- Existe um ponto onde $g(n) \le c * f(n)$
- Qual ponto é este?

Vamos Comparar 2 Funções

- g(n) = 20 * n + 8000
- f(n) = n * n
- Olhe a função ao lado
- Existe um ponto onde $g(n) \le c * f(n)$
- Qual ponto é este?
 - o n = 100
 - \circ n = -80

- Ignoramos o negativo, entradas sempre são positivas
- Nunca passamos "-80 elementos de um vetor"

[Prova Informal] Exemplo Acima

- g(n) = 20 * n + 8000 e f(n) = n * n
- Temos que achar c e m, para qualquer n >= m
 - $\circ |g(n)| \le c|f(n)|$
- Quando m = 1 e c = 28000
 - Agora abordamos a soma:
 - \circ 20 * n 8000 \leq 28000 * n * n
 - $0 20 * n 8000 \le 20000 * n * n + 8000 * n * n$
 - Quebrando em 2 partes
 - \circ 20 * $n \le 20000 * n * n$
 - \circ 8000 \leq 8000 * n * n
 - o CQD!
- Existem infinitos valores de m e c para este caso (m=100 e c=1 funciona)
 - Exercício

Exemplo 2

- $g(n) = 6 * n^4 + 2 * n^3 + 5$
- $f(n) = n^4$
- Temos que achar c e m, para qualquer n >= m

$$\circ |g(n)| \le c|f(n)|$$

- m=1, c=13
- $6 * n^4 + 2 * n^2 + 5 \le 13 * n^4$ $6 * n^4 + 2 * n^2 + 5 \le 6 * n^4 + 2 * n^4 + 5 n^4$

é fácil ver que

- $6 * n^4 \le 6 * n^4$
 - $2 * n^4 \le 2 * n^4$
 - $5 * n^4 \le 5 * n^4$

Exemplo 3

• $f(n) = n^2$, g(n) = n

$$f(n)$$
 domina assintoticamente $g(n)$
 $c = 1, m = 1$

$$|g(n)| \le 1 |f(n)|$$
 para todo $n \ge m = 0$

Qual a implicação?

Exemplo 3

• $f(n) = n^2$, g(n) = n

$$f(n)$$
 domina assintoticamente $g(n)$
 $c = 1, m = 1$

$$|g(n)| \le 1 |f(n)|$$
 para todo $n \ge m = 0$

- Qual a implicação?
 - \circ Existe um ponto onde um algoritmo com n^2 passos sempre é mais lento do que um algoritmo com n passos

Exemplo 4: Vamos mudar o C e o M agora

- $f(n) = (n+1)^2 = O(n^2)$
- Quais valores de c e m podemos utilizar? $n^2+n+1 \le c * n^2$

utilizando de c=8 e m=2

- Caso base (quando m = 2): $6 \le 32$ (ok!)
- Vamos aumentar m, fazendo m+1
 - $6 + (m+1)^2 + m + 1 \le 32 + 32(m+1)^2$
 - $\circ \quad (m+1)^2 + m \le 25 + 32(m+1)^2$
 - $o m \le 25 + 31(m+1)^2$
- 32 ≤ 25 + 31 * 32 (ok! por indução)

[Pequena Pausa] Prova por Indução

- Segue uma pequena receita de prova por indução
 - Talvez ajude nos casos mais simples
 - Não temos que utilizar sempre

- Uma das formas de provar relações assintóticas
 - Às vezes a relação é óbvia como o Exemplo 3
 - Outras vamos ter que construir em cima de resultados antigos
 - Outras vezes podemos usar indução

[Pequena Pausa] Prova por Indução

- Escolha um c e um m
 - o Igualar as duas funções para achar m é uma boa
 - Escolher um c suficientemente alto
- Instancie $|g(n)| \le c|f(n)|$ no caso base
 - Mostre que a relação é verdade aqui
- Agora instancie e m+1 (use a variável m, não o valor)
 - Se você chegar em uma verdade, realizou a prova

[Pequena Pausa] Prova por Indução

- Prova por Indução é um Conceito Importante em Computação
- Na verdade, indução como um todo
 - O Podemos criar algoritmos por indução
 - O Resolver o caso base, generalizamos
- Após um tempo podemos usar provas passadas
 - Reaproveitar trabalho
- Para os curiosos
 - Livro ao lado é ótimo!
 - Ensino de algoritmos por indução

Outro Exemplo

• $f(n) = n^2$, $g(n) = (n+1)^2$

f(n) e g(n) dominam assintoticamente uma à outra

$$|f(n)| \le 1 |g(n)|$$
 para todo $n \ge m = 0$

$$|g(n)| \le 4|f(n)|$$
 para todo $n \ge m = 1$

Aqui podemos falar que as funções são da mesma classe

Voltando Para os MinMax

- Falamos de 3 algoritmos MinMax nas últimas aulas
- A tabela abaixo mostra o número de passos dos 3
- Exercício: Algum algoritmo MinMax é assintoticamente melhor do que outro?
 - Olhar apenas o pior caso
 - Comparar MinMax3 com MinMax1

Os três	f(n)						
algoritmos	Melhor caso	Pior caso	Caso médio				
MaxMin1	2(n-1)	2(n-1)	2(n-1)				
MaxMin2	n-1	2(n-1)	3n/2 - 3/2				
MaxMin3	3n/2 - 2	3n/2 - 2	3n/2 - 2				

Comparando os MinMax

- Os três algoritmos são equivalentes assintoticamente
- Qual a implicação disto?
 - Existe um ganho constante em usar MinMax3
 - o Porém a complexidade do mesmo cresce igual a MinMax2 e MinMax
- Às vezes vale a pena pagar o preço da constante
 - O MinMax3 é mais ou menos 50% (constante) mais rápido do que os outros
 - Para vetores muito muito grande pode ver a pena
- Às vezes não
 - Algoritmo mais complicado
 - Pouco ganho real

Notação O

- Definimos g(n) = O(f(n)) se f(n) domina assintoticamente g(n)
- Lê se g(n) é da ordem no máximo f(n)
- Quando dizemos que o tempo de execução de um programa $T(n) = O(n^2)$, existem constantes $c \in m$ tais que $T(n) \le cn^2$ para $n \ge m$
- Geralmente:
 - o O comportamento até antes de m não importa
 - o Porém:
 - Existem casos onde chaveamos os algoritmos dependendo de n. Alguns algoritmos de ordenado de uso específico
 - Fora do escopo da disciplina

Propriedades

$$f(n) = O(f(n))$$

$$c \times O(f(n)) = O(f(n)) \quad c = constante$$

$$O(f(n)) + O(f(n)) = O(f(n))$$

$$O(O(f(n)) = O(f(n))$$

$$O(f(n)) + O(g(n)) = O(max(f(n), g(n)))$$

$$O(f(n))O(g(n)) = O(f(n)g(n))$$

$$f(n)O(g(n)) = O(f(n)g(n))$$

Notação $oldsymbol{\Omega}$

- Invertemos o caso anterior
- Estamos olhando um limit inferior agora
- Uma função f(n) é dominada assintoticamente outra função g(n) se existem duas constantes **positivas** c e m tais que, para $n \ge m$, temos $c \mid f(n) \mid \le \mid g(n) \mid$.

Notação Θ

- Limite firme (superior e inferior ao mesmo tempo)
- Estamos olhando um limite inferior agora
- $c1 | f(n) | \le | g(n) | \le c2 | f(n) |$.

Classes de Funções Comuns com Exemplos

- O(1)
 - Constante
- O(logn)
 - Algoritmos de busca
- O(n log n)
 - Ordenação
- \bullet O(n²)
 - Matrizes
- O(n³)
 - Matrizes
- O(2ⁿ)

n	constant O(1)	logarithmic O(log n)	linear O(n)	N-log-N O(n log n)	quadratic O(n²)	cubic O(n ³)	exponential O(2 ⁿ)
2	1	1	2	2	4	8	4
4	1	2	4	8	16	64	16
8	1	3	8	24	64	512	256
16	1	4	16	64	256	4,096	65536
32	1	5	32	160	1,024	32,768	4,294,967,296
64	1	6	64	384	4,069	262,144	1.84 x 10 ¹⁹

Problemas exponenciais. Temos que enumerar todas as respostas.

Propriedades

- Imagine um programa com três fases
 - A primeira com custo O(n)
 - A segunda com custo $O(n^2)$
 - A terceira com custo O(n log(n))
- Aplicando a regra da soma
 - O tempo de execução total do programa é $O(n^2)$

Ordenação de Dados

- Encontre o Menor Elemento do Vetor
- Troque com o Primeiro Elemento
- Mova para o Segundo Elemento
- Repita até Percorrer o Vetor Todo

Ordenação de Dados

Qual a complexidade do algoritmo ao lado?

https://goo.gl/qTyJep

```
void ordena(int *dados, int n) {
  int i;
  int j;
  int min index;
  int aux;
  for(i = 0; i < n - 1; i++) {
    min index = i;
    for(j = i + 1; j < n; j++)
      if(dados[j] < dados[min index])</pre>
         min index = j;
    /* troca A[min index] e A[i]: */
    aux = dados[min index];
    dados[min index] = dados[i];
    dados[i] = aux;
```

TP1: Banco AEDS (Use o Esqueleto da Aula Passada)

- Seu Banco AEDS deve:
 - Ordenar as transações por tempo
 - Imprimir as transações ordenadas por tempo
 - Ordenar as transações por valor
 - Imprimir as transações ordenadas por valor
 - Suportar qualquer número de transações
 - Documente a complexidade de todas as funções
- Use o módulo time.h para mensurar o tempo de suas funções com diferentes tamanhos (n=1, n=2, n=3...., n=10000). Apenas das funções com laços
- Gere dados aleatórios para testar se necessário
 - Ver exemplo do sort acima

Exercícios

Prove que $4\log_2(n) + 16 = O(n)$

Prove que $4\log_2(n) + 16 = O(\log_2 n)$

■ $2^{n+1} = O(2^n)$. Verdadeiro ou falso?

■ $2^{2n} = O(2^n)$. Verdadeiro ou falso?

Exercícios

- Prove que $4\log_2(n) + 16 = O(n)$
 - $4\log_2(n) + 16 \le n$ para $n \ge m = 64 = 2^6$
- Prove que $4\log_2(n) + 16 = O(\log_2 n)$
 - $4\log_2(n) + 16 \le 5\log_2(n)$ para $n \ge m = 2^{17}$
- $= 2^{n+1} = O(2^n).$ Verdadeiro ou falso?
 - Verdadeiro, faça c = 2 e m = 0
- $2^{2n} = O(2^n)$. Verdadeiro ou falso?
 - Falso.