- Les calculatrices ne sont pas autorisées.
- Il est rappelé qu'il sera tenu compte dans l'évaluation, de la présentation et la rédaction des copies.
- Le sujet est constitué de deux problèmes indépendants.

Problème I: Espaces préhilbertiens réels

Ce problème est extrait du sujet CentraleSupélec-1999-PSI-Maths2. Dans tout le problème, E désigne un espace vectoriel réel muni d'un produit scalaire. Le produit scalaire de deux vecteurs u et v est noté $u \cdot v$, la norme ||u||. De plus, dans les parties l et ll, l désigne un espace eudidien de dimension l l0.

Partie I -

I.A - Soient u et v deux vecteurs quelconques de E. On note Gram(u, v) la matrice définie par :

Gram
$$(u, v) = \begin{bmatrix} u \cdot u & u \cdot v \\ v \cdot u & v \cdot v \end{bmatrix}$$
 et $G(u, v) = det[Gram(u, v)]$

- I.A.1) Montrer que : $G(u, v) \ge 0$.
- I.A.2) On note P un sous-espace vectoriel de dimension 2 de E contenant u et v et B une base orthonormale de P. Vérifier que : $G(u, v) = [\det_B(u, v)]^2$
- I.A.3) À quelle condition a-t-on G(u, v) = 0?
- **I.B** Dans toute la suite de la partie l, n est égal à 3. Si u, v, w sont trois vecteurs quelconques de E , on note Gram(u, v, w) la matrice définie par :

$$Gram(u, v, w) = \begin{bmatrix} u \cdot u & u \cdot v & u \cdot w \\ v \cdot u & v \cdot v & v \cdot w \\ w \cdot u & w \cdot v & w \cdot w \end{bmatrix} \quad \text{et} \quad G(u, v, w) = \text{det}[Gram(u, v, w)]$$

- I.B.l) Calculer G(u, v, w) si u, v, w sont trois vecteurs deux à deux orthogonaux.
- I.B.2) On suppose w orthogonal à u et v. Exprimer G(u, v, w) en fonction de G(u, v).

I.C -

I.C.1) u, v, w sont trois vecteurs quelconques de E. Montrer qu'il existe t et n, vecteurs de E, vérifiant : w = t + n, $u \cdot n = v \cdot n = 0$, (u, v, t) liée.

Montrer que, dans ces conditions, on a : G(u, v, w) = G(u, v, t) + G(u, v, n)

- I.C.2) Montrer que les deux propositions suivantes sont équivalentes :
 - a) Il existe un triplet (x, y, z) de réels différent de (0,0,0) tel que xu + yv + zw soit orthogonal à u, v et w.
 - b) G(u, v, w) = 0
- I.C.3) En déduire que : $G(u, v, w) = 0 \iff (u, v, w)$ liée
- I.C.4) Montrer que G(u, v, w) est un réel positif.

I.D -

I.D.1) u, v, w sont trois vecteurs de E et B une base orthonormale de E. Montrer que le réel $|\det_B(u, v, w)|$ ne dépend pas du choix de B.

I.D.2) Soit P un plan de E contenant u et v et n_1 un vecteur unitaire orthogonal à P. On désigne par B_1 une base orthonormée de P et on note $B = B_1 \cup \{n_1\}$. En utilisant ces deux bases, montrer que $G(u, v, w) = [\det_B(u, v, w)]^2$

Partie II -

Soient $u, ..., u_n$ n vecteurs de E. Pour tout i, tout j, entiers de [1, n], on note $g_{i,j} = u_i \cdot u_j$ On note $Gram(u_1, ..., u_n)$ la matrice d'élément général $g_{i,j}$ et le déterminant de cette matrice est noté $G(u_1, ..., u_n) = \det[Gram(u_1, ..., u_n)]$

- **II.A** Soit B = $(e_1, ..., e_n)$ une base orthonormée de E. On pose, pour tout entier j de [1, n] $u_j = \sum_{k=1}^n u_{k,j} e_k$
- II.A. 1) Exprimer, pour tout i, tout j, $g_{i,j}$ en fonction des coordonnées des vecteurs u_1, \ldots, u_n dans la base R
- II.A.2) Soit $A = (u_{i,j})$, A élément de $M_n(\mathbb{R})$. Montrer que $Gram(u_1, \dots, u_n) = A^T A$
- II.A.3) En déduire que $G(u_1,...,u_n)$ est un réel positif. Montrer que $G(u_1,...,u_n) \neq 0 \iff (u_1,...,u_n)$ libre

Partie III -

Dans toute la suite, E n'est plus forcément de dimension finie. Si u_1, \ldots, u_r sont r vecteurs de E, on note, comme dans la Partie II, $G(u_1, \ldots, u_r)$ le déterminant de la matrice de $M_r(\mathbb{R})$ de terme général $u_i \cdot u_j$ (G est un déterminant de Gram).

- III.A Soit $(e_1, ..., e_p)$ une famille libre de p vecteurs de E et $F = Vect(e_1, ..., e_p)$. Pour tout x élément de E, on note x_F le projeté orthogonal de x sur F et x^{\perp} le vecteur tel que : $x = x_F + x^{\perp}$.
- III.A.1) Exprimer x_F en fonction des vecteurs $e_1, ..., e_p$.
- III.A.2) Exprimer simplement le réel d(x, F) défini par $d(x, F) = \inf\{||x f||; f \in F\}$
- III.A.3) Montrer que

$$d(x,F) = \sqrt{\frac{G(x, e_1, ..., e_p)}{G(e_1, ..., e_p)}}$$

III.B - Dans toute la suite du problème, E désigne l'ensemble des applications continues de [0,1] dans \mathbb{R} , muni du produit scalaire

$$\forall (f,g) \in E^2$$
, $f.g = \int_0^1 f(t)g(t) dt$.

Pour λ réel strictement positif, on note p_{λ} l'élément de E défini par :

$$\forall t \in [0,1], p_{\lambda}(t) = t^{\lambda}, p_{\lambda}(0) = 0.$$

Soit $(\lambda_j)_{j \geq 1}$ une suite strictement croissante de réels strictement positifs

- III.B.1) Pour n entier non nul, on note $E_n = \text{Vect}(p_{\lambda_1}, \dots, p_{\lambda_n})$. Vérifier que E_n est un sous-espace vectoriel de E de dimension n.
- III.B.2) Soit *k* un entier fixé pour toute la suite du problème.

Pour *n* entier non nul, on note:

$$u_n^k = \inf \left\{ \int_0^1 \left(t^k - \sum_{i=1}^n a_i t^{\lambda_i} \right)^2 dt \; ; \; (a_1, \dots, a_n) \in \mathbb{R}^n \right\}$$

En interprétant u_n^k comme le carré d'une distance d'un vecteur à un sous-espace vectoriel de E, exprimer u_n^k en fonction de déterminants de *Gram*.

Problème II: Probabilités

Ce problème est extrait d'un problème des CCINP 2020 PSI. Soit $n \in \mathbb{N}^*$ un entier naturel fixé. On note A_n la matrice tridiagonale suivante :

$$A_{n} = \begin{pmatrix} 0 & 1 & 0 & \dots & \dots & 0 \\ n & 0 & 2 & \ddots & & \vdots \\ 0 & n-1 & 0 & 3 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & 2 & 0 & n \\ 0 & \dots & \dots & 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_{n+1}(\mathbb{R}).$$

Le terme général $a_{k,l}$ de la matrice A_n vérifie donc :

- $-a_{k,k+1}=k$ si $1\leqslant k\leqslant n$,
- $-a_{k,k-1} = n k + 2 \text{ si } 2 \leqslant k \leqslant n + 1,$
- $-a_{k,l}=0$ pour tous les couples $(k,l) \in [[1,n+1]]^2$ non couverts par les formules précédentes.

On étudie une application probabiliste de l'étude de la matrice A_n . On admet le résultat suivant sur la matrice A_n : il existe une matrice inversible P_n telle que $P_n^{-1}A_nP_n$ est diagonale, dont les termes diagonaux valent $(2k-n)_{k\in [\![0,n]\!]}$ et telle que la n+1-ième colonne de P_n vaut $(p_0,p_1,\ldots,p_n)^T$ en notant pour tout k dans $[\![0,n]\!]$, $p_k=\binom{n}{k}$. Ce résultat n'est utilisé qu'en avant-dernière question.

Étant donné un entier $n \in \mathbb{N}^*$, on dispose de deux urnes U_1 et U_2 contenant à elles deux n boules numérotées de 1 à n. On note N_0 la variable aléatoire égale au nombre de boules initialement contenues dans l'urne U_1 .

À chaque instant entier $k \in \mathbb{N}^*$, on choisit un des n numéros de façon équiprobable puis on change d'urne la boule portant ce numéro. les choix successifs sont supposés indépendants.

Pour $k \in \mathbb{N}^*$, on note N_k la variable aléatoire égale au nombre de boules dans l'urne U_1 après l'échange effectué à l'instant k.

Exemple: supposons n = 4 et qu'à l'instant 0, l'urne U_1 contient les boules numérotées 1, 3, 4 et l'urne U_2 la boule 2. On a dans ce cas $N_0 = 3$.

- Si le numéro 3 est choisi à l'instant 1, on retire la boule 3 de U_1 et on la place dans U_2 . On a alors $N_1 = 2$.
- Si le numéro 2 est choisi à l'instant 1, on retire la boule 2 de U_2 et on la place dans U_1 . On a alors $N_1 = 4$.

Pour $l \in [[0, n]]$, on note $E_{k,l}$ l'événement $(N_k = l)$ et $p_{k,l} = P(E_{k,l})$ sa probabilité.

On note enfin $Z_k = \begin{pmatrix} p_{k,0} \\ p_{k,1} \\ \vdots \\ p_{k,n} \end{pmatrix}$ le vecteur qui code la loi de la variable aléatoire N_k .

- **Q1.** Pour $k \in \mathbb{N}$, que peut-on dire de la famille $(E_{k,0}, E_{k,1}, \dots, E_{k,n})$?
- **Q2.** Si l'urne U_1 contient j boules à l'instant k, combien peut-elle en contenir à l'instant k+1?
- **Q3.** Pour $k \in \mathbb{N}$ et $j, l \in [0, n]$, déterminer :

$$\mathsf{P}_{\mathsf{E}_{k,l}}(\mathsf{E}_{k+1,j}).$$

On traitera séparément les cas j = 0 et j = n.

Q4. Démontrer que pour tout $k \in \mathbb{N}$,

$$P(E_{k+1,0}) = \frac{1}{n}P(E_{k,1})$$
 et $P(E_{k+1,n}) = \frac{1}{n}P(E_{k,n-1})$

et que:

$$\forall j \in [[1, n-1]], \ \mathsf{P}(\mathsf{E}_{k+1,j}) = \frac{n-j+1}{n} \mathsf{P}(\mathsf{E}_{k,j-1}) + \frac{j+1}{n} \mathsf{P}(\mathsf{E}_{k,j+1}).$$

Q5. En déduire que pour tout $k \in \mathbb{N}$,

$$Z_k = \frac{1}{n^k} A_n^k Z_0$$

où A_n est la matrice introduite en préambule.

On suppose jusqu'à la fin du problème qu'à l'instant 0, on a disposé de façon équiprobable et indépendamment les unes des autres les n boules dans l'une des urnes U_1 ou U_2 .

- **Q6.** Déterminer la loi π de N_0 .
- **Q7.** Montrer que pour tout $k \in \mathbb{N}$, N_k a la même loi que N_0 . On pourra utiliser le résultat admis en préambule.
- **Q8.** Démontrer que π est l'unique loi de probabilité ayant la propriété suivante : si N_0 suit la loi π , alors toutes les variables N_k suivent la loi π .