Survival Analysis for the VQI FBVAR Dataset

Jennifer Ci, Thu Vu, Lily Hanyi Wang

Cox proportional hazards model for survival analysis

Unadjusted survival curves. Time scale changed from calendar days to calendar years. Used log rank test to produce p-value. Median survival never reached.

Any changes needed? (e.g, time scale, colors, change to at risk table, add number of censored and/or uncensored events, etc.)

Univariate (unadjusted) and Multivariate (adjusted) Cox Proportional Hazards Models. Reference group is asymptomatic patients.

Variables to adjust for:

- cluster on CENTERID
- AGECAT, GENDER, PREOP_SMOKING, PRIOR_AORSURG, PRIOR_CHF, PREOP_DIALYSIS

• PATHOLOGY, extent

In the model, we merge groups for the extent: merge "Juxtarenal AAA" with "Type 4 TAAA"; "Type 1 TAAA", "Type 2 TAAA", "Type 3 TAAA", with "Type 5 TAAA". Now extent is a binary variable, Juxtarenal or not.

Characteristic	HR^1	95% CI ¹	p-value
PRESENTATION			
Asymptomatic		_	
Symptomatic	1.99	1.53, 2.59	< 0.001

 $[\]overline{^{1}}$ HR = Hazard Ratio, CI = Confidence Interval

Characteristic	HR^1	95% CI ¹	p-value
PRESENTATION			
Asymptomatic	_	_	
Symptomatic	1.82	1.30, 2.54	< 0.001
AGECAT			
< 50	_	_	
>79	1.60	0.36, 7.02	0.5
50-59	1.51	0.37, 6.14	0.6
60-69	0.92	0.22,3.93	>0.9
70-79	1.48	0.34,6.51	0.6
GENDER			
female		_	
male	0.85	0.66, 1.10	0.2
PREOP_SMOKING			
No		_	
Yes	1.16	0.83, 1.63	0.4
PRIOR_AORSURG			
Both		_	
Endo	0.90	$0.44,\ 1.85$	0.8
None	0.53	0.28, 0.99	0.045
Open	0.50	0.26, 0.98	0.044
PRIOR_CHF			
No	_	_	
Yes	1.55	1.30, 1.83	< 0.001
PREOP_DIALYSIS			

 $^{^{1}\}mathrm{HR}=\mathrm{Hazard}$ Ratio, $\mathrm{CI}=\mathrm{Confidence}$ Interval

Characteristic	${ m HR}^1$	$95\%~\mathrm{CI}^1$	p-value
No	_	_	
Yes	1.84	1.07, 3.16	0.028
PATHOLOGY			
Aneurysm		_	
Aneurysm from dissection	0.47	0.23,0.97	0.041
Dissection	0.60	0.23,1.55	0.3
PAU/IMH	1.02	0.32, 3.29	>0.9
extent			
Juxtarenal	_	_	
No	1.38	1.05, 1.80	0.019

 $[\]overline{^{1}}$ HR = Hazard Ratio, CI = Confidence Interval

Code Appendix

```
knitr::opts_chunk$set(echo = FALSE,message = FALSE,warning = FALSE)
knitr::opts_chunk$set(fig.width=20, fig.height=20)
library(tidyverse)
library(table1)
library(survival)
library(Hmisc)
library(ggplot2)
library(ggpubr)
library(corrplot)
library(caret)
library(survminer)
library(knitr)
library(kableExtra)
library(gtsummary)
library(flextable)
## ----- working directories for Lily -----
wd_lily = '/Users/hanyiwang/Desktop/Comparative-analysis-of-treatments-of-CAA'
path_lily = c("../data/FBVAR.csv")
## ----- working directories for Jenn -----
# wd_jenn =
# path_jenn =
## ----- working directories for Thu -----
wd_thu = '/Users/thuvu/Desktop/Comparative-analysis-of-treatments-of-CAA'
path_thu = c("TEVAR_PROC.csv")
## ----- read data -----
# setwd(wd lily)
# FBVAR = read.csv(path_lily)
# setwd(wd_jenn)
# FBVAR = read.csv(path_jenn)
setwd(wd_thu)
TEVAR_PROC = read.csv(path_thu)
## Survival analysis
tte <- TEVAR_PROC %>% with(Surv(PROC_SURVIVALDAYS/365, DEAD))
# compute survival curves
fit <- survfit(tte ~ PRESENTATION, data=TEVAR_PROC)</pre>
ggsurvplot(fit,
          pval = TRUE,
          risk.table = TRUE,
          linetype = "strata",
          surv.median.line = "hv",
```

```
ggtheme = theme_bw(),
           xlab = "Time (Year)",
           legend.labs = c("Asymptomatic", "Symptomatic"),
           break.time.by=1)
TEVAR_PROC = TEVAR_PROC %>%
  mutate(extent = factor(extent,levels = c("Juxtarenal AAA","Type 1 TAAA","Type 2 TAAA",
                                           "Type 3 TAAA", "Type 4 TAAA", "Type 5 TAAA"),
                         labels = c('Juxtarenal','No','No','No','Juxtarenal','No')))
# Unadjusted survival model
mod.cox1 <- coxph(tte ~ PRESENTATION, data=TEVAR_PROC)</pre>
# Adjusted survival model
mod.cox2 <- coxph(tte ~ PRESENTATION + cluster(CENTERID) + AGECAT + GENDER +
                    PREOP_SMOKING + PRIOR_AORSURG + PRIOR_CHF +
                    PREOP_DIALYSIS + PATHOLOGY + extent ,
                  data=TEVAR_PROC)
t1 <- mod.cox1 %>% tbl_regression(exponentiate = TRUE)
t2 <- mod.cox2 %>% tbl_regression(exponentiate = TRUE)
t1 %>% as_flex_table()
t2 %>% as_flex_table()
```