Expectation of the Largest Betting Size in Labouchère System

Guanyang Wang

Stanford University Department of Mathematics guanyang@stanford.edu

June 10, 2021 Joint work with Yanjun Han

Overview

- Stories and Introduction
 - Thirteen Against the Bank
 - Description of Labouchère system
 - History of Henry Labouchère
- Some Mathematical Analysis of Labouchère System
 - An asymmetric random walk
 - Total amount of betting has infinite expectation
- The Largest Betting Size of Labouchère System
 - A useful result for $p = \frac{1}{2}$
 - Solving the case $p < \frac{1}{2}$ and $p > \frac{1}{2}$
 - Solving the case $p = \frac{1}{2}$
- 4 Reference

Thirteen Against the Bank

- In 1966 a team of 13
 Englishmen and women set out to beat a French casino at roulette using a betting system known as the reverse Labouchère system.
- They won 800,000 francs (\$160,000) in 8 days and were banned from further play.
- Their story is documented in a 1976 nonfiction book by Norman Leigh.

ALL TRUE! How a team of amateurs developed the perfect system and beat the great casino at Nice.

Description of Labouchère system

- Assumes one wants to win \$10 at the end of the game. Labouchère system gives a strategy to determine the betting size in each bet.
- To initialize, the bettor writes a list of positive integers on his scoresheet (e.g., 1; 2; 3; 4).
- The next bet size is always the sum of the first and last terms on the current list. (Exception if only one term.)
- After each trial, the list is updated:
 - After a win, the first and last terms are cancelled.
 - After a loss, the amount just lost is appended to the list as a new last term.
- Betting is stopped once the list is empty.
- Then you win \$10:)

Illustration of the Labouchère system

Table: An illustration of the Labouchère system. Here the initial list is (1, 2, 3, 4).

trial	bet	result	list	cumulative profit
			1, 2, 3, 4	
1	5	Win	2, 3	5
2	5	Lost	2, 3, 5	0
3	7	Lost	2, 3, 5, 7	-7
4	9	Lost	2, 3, 5, 7, 9	-16
5	11	Win	3, 5, 7	-5
6	10	Lost	3, 5, 7, 10	-15
7	13	Win	5, 7	-2
8	12	Win	Ø	10

History of Henry Labouchère

- Member of British Parliament, journalist, editor/publisher of Truth.
- Infamous for the Labouchère Amendment of 1885, outlawing "gross indecency" - led to Oscar Wilde's incarceration for two years; Alan Turing also convicted under the law. (Repealed in 1967.)
- Popularized the system, but credited it to Condorcet (1743-1794).

Notations

Let:

- l_0 be the length of initial list, $L_0 \in \mathbb{R}^{l_0}$ be the initial list. (e.g., in previous example, $l_0 = 4$, $L_0 = (1, 2, 3, 4)$)
- $I_n \in \mathbb{Z}$ be the length of the list after n-th betting,
- $L_n \in (\mathbb{R}^+)^{I_n}$ be the list after n-th betting,
- ξ_1, ξ_2, \cdots be i.i.d. random variables with

$$\mathbb{P}(\xi_1=1)=p$$
 and $\mathbb{P}(\xi_1=-1)=q$

where p denotes the probability of winning in each betting,

- B_n be the betting size at n-th betting, S_n be the sum of the list after n-th betting, T_n be the bettor's cumulative profit after n-th betting,
- *N* be the first time such that $L_N = \emptyset$ or equivalently $I_N = 0$,
- B^* be the largest betting size, i.e., $B^* \doteq \max_{1 \le i \le N} B_i$.

An asymmetric random walk on $\mathbb Z$

- The length of the Labouchère bettors list I_n is a random walk on the set of nonnegative integers that takes two steps to the left with probability p and one step to the right with probability q. The initial state is the length of the initial list I_0 .
- Easy analysis shows when $p \ge \frac{1}{3}$, then absorption at 0 occurs eventually with probability 1.
- Let *N* be the first absorption time, then distribution of *N* can be derived using an extension of ballot theorem.

Lemma (Ethier, 2008)

$$\mathbb{P}_{l_0}(N \geq n) \sim D_{l_0}(n) n^{-\frac{3}{2}} \rho^{\frac{n}{3}},$$

where l_0 is the length of the initial list, $D_{l_0}(n)$ is a constant only depending on l_0 and $n \pmod 3$, and $\rho \doteq \frac{27}{4}p(1-p)^2 \le 1$.

Total amount of betting $B_1 + \cdots + B_N$

Why this betting strategy still fails? Martingale analysis shows the total amount of betting has infinite expectation.

Theorem (Grimmett & Stirzaker, 2001, One Thousand Exercises in Probability, 12.9.15)

When $\frac{1}{3} \leq p \leq \frac{1}{2}$, $\mathbb{E}(B_1 + B_2 + \cdots B_N) = \infty$.

Proof

If not, since $T_n=T_{n-1}+\xi_nB_n$ forms a supermartingale. Since $T_{n\wedge N}\leq B_1+B_2+\cdots B_N$ and $T_{n\wedge N}\to S_0$ a.s., by dominated convergence theorem, $\mathbb{E}\,T_{n\wedge N}\to S_0$, however $\mathbb{E}\,T_{n\wedge N}\leq \mathbb{E}\,T_0=0$, contradiction.

The largest betting size

Recall $B^* = \max_{1 \le i \le N} B_i$, a natural question is, does B^* have infinite expectation?

- The list evolves in a complicated history dependent manner, it is hard to analyze it using combinatoric tools directly.
- When $p = \frac{1}{2}$, martingale maximal inequality will not give useful bounds.

A useful result for $p = \frac{1}{2}$

Theorem (Han & W., 2018.)

When $p=\frac{1}{2}$, for any initial list L_0 , we have $\mathbb{E}((B^\star)^{1+\epsilon})=\infty$ and $\mathbb{E}((B^\star)^{1-\epsilon})<\infty$ for any $\epsilon>0$.

Proof

- $\infty = \mathbb{E}(B_1 + \dots + B_N) \le \mathbb{E}(NB^*) \le [\mathbb{E}(N^p)]^{\frac{1}{p}} [\mathbb{E}((B^*)^q)]^{\frac{1}{q}}$ for any $\frac{1}{p} + \frac{1}{q} = 1$, taking $q = 1 + \epsilon$ gives $\mathbb{E}((B^*)^{1+\epsilon}) = \infty$.
- S_n forms a martingale and $B_n \leq S_{n-1}$ and therefore

$$\mathbb{P}((B^\star)^{1-\epsilon} > \lambda) = \mathbb{P}(B^\star > \lambda^{\frac{1}{1-\epsilon}}) \leq \mathbb{P}(\max_{1 \leq i \leq N} S_i > \lambda^{\frac{1}{1-\epsilon}}) \leq \frac{S_0}{\lambda^{\frac{1}{1-\epsilon}}}$$

The last step uses Doob's maximal inequality, therefore

$$\mathbb{E}((B^\star)^{1-\epsilon}) = \int_0^\infty \mathbb{P}((B^\star)^{1-\epsilon} > \lambda) d\lambda < \infty.$$

Solving the case $p<rac{1}{2}$ and $p>rac{1}{2}$

With the above result, we are ready to solve the case where $p<\frac{1}{2}$ and $p>\frac{1}{2}$, the idea is change of measure.

Theorem (Han & W., 2018.)

For any initial list L_0 , we have:

- When $p>\frac{1}{2}$, $\mathbb{E}(B^{\star})<\infty$,
- When $p > \frac{1}{2}$, $\mathbb{E}(B^*) = \infty$.

Proof for $p > \frac{1}{2}$

Fix any $p>\frac{1}{2}$, let P be the probability measure over the betting process under winning probability p, and Q be the counterpart under winning probability $\frac{1}{2}$. Note that for any sample path ω with stopping time N=n, there must be $\frac{n}{3}+c$ wins and $\frac{n}{3}-c$ losses, where c is a constant depending only on the initial length l_0 .

Proof for $p > \frac{1}{2}$

As a result, the likelihood ratio is

$$\frac{dP}{dQ}(\omega) = \frac{p^{\frac{n}{3}+c}(1-p)^{\frac{2n}{3}-c}}{2^{-n}} = \left(\frac{p}{1-p}\right)^{c} \cdot \left(\frac{p(1-p)^{2}}{\frac{1}{2}(1-\frac{1}{2})^{2}}\right)^{\frac{n}{3}} \leq Cr^{n}$$

where C is a constant only depending on I_0 , r is a constant less than 1. As a result,

$$\mathbb{E}_{P}[B^{\star}] = \mathbb{E}_{Q}\left[B^{\star} \cdot \frac{dP}{dQ}\right] \leq C \cdot \mathbb{E}_{Q}[r^{N}B^{\star}].$$

Since $B^* \leq 2^N S_0$, therefore

$$\mathbb{E}_{Q}[r^{N}B^{\star}] \leq S_{0}^{\epsilon} \cdot \mathbb{E}_{Q}[(r2^{\epsilon})^{N} \cdot (B^{\star})^{1-\epsilon}].$$

Choosing $\epsilon>0$ small enough such that $r2^{\epsilon}<1$ gives us

$$\mathbb{E}_P[B^*] < \infty$$
.

Solving the case $p = \frac{1}{2}$

Theorem (Han & W., 2018.)

When $p = \frac{1}{2}$, for any initial list L_0 , we have:

$$\mathbb{E}(B^{\star}) = \infty.$$

Solving the case $p = \frac{1}{2}$

Sketch of Proof:

Assuming that the expectation is finite. Notice that for a fixed target t (say t=1), a fixed initial length d, all the possible initial lists forms a simplex on \mathbb{R}^d , i.e.

$$L_0 \in \Delta_d(t) = \{(x_1, \dots, x_d) | \sum_{i=1}^d x_i = S_0, x_i \ge 0, \forall i \}.$$

Each L_0 corresponds to a (finite) expectation of largest betting size

$$\mathbb{E}_{L_0}(B^*)$$
.

We define the 'optimal' list with length d be the initial list which attains the minimum of the expectation above, and define

$$f(t,d) \doteq \min_{L_0 \in \Delta_d(t)} \mathbb{E}_{L_0}(B^*).$$

Solving the case $p = \frac{1}{2}$

Sketch of Proof:

Then we have the following properties of f(t, d)

- For any general list system, $f(t, d) = ta_d$, here $a_d = f(1, d)$,
- \bullet For any general list system, the sequence a_d is strictly decreasing, i.e.:

$$a_1 > a_2 > a_3 > \cdots$$

ullet For Labouchère System, there exists u>1 such that

$$a_{l} - a_{l+2} > \nu(a_{l-2} - a_{l})$$

Therefore we have $a_d \to -\infty$ as d goes to ∞ , contradiction.

References

Yanjun Han, Guanyang Wang (2018)

Expectation of the Largest Betting Size in Labouchère System arXiv:1807.11729

Stewart Ethier (2008)

Absorption time distribution for an asymmetric random walk

Markov Processes and Related Topics: A Festschrift for Thomas G. Kurtz. 31–40

Geoffrey Grimmett, David Stirzaker (2001)

One thousand exercises in probability.

Oxford University Press

Thanks!