Algoritmos y Estructuras de Datos I

Primer Cuatrimestre 2020

Guía Práctica 3 Especificación De Problemas Resuelto

Comentarios:

Hola, este no es un resuelto oficial, tiene el logo del DC porque me parecio divertido copiar el formato de la guia.

Ejercicio 1. \bigstar Las siguientes especificaciones no son correctas. Indicar por qué, y corregirlas para que describan correctamente el problema.

a) **buscar:** Dada una secuencia y un elemento, devuelve en *result* la posición de la secuencia en la cual se encuentra el elemento.

```
 \begin{array}{l} \mathbf{proc\ buscar}\ (\mathrm{in}\ l:\ seq\langle\mathbb{R}\rangle, \mathrm{in\ elem:}\ \mathbb{R}, \mathrm{out\ result:}\ \mathbb{Z})\ \{\\ \mathbf{Pre}\ \{elem\in l\}\\ \mathbf{Post}\ \{l[result]=elem\}\\ \} \end{array}
```

b) **progresionGeometricaFactor2:** Indica si la secuencia l representa una progresión geométrica factor 2. Es decir, si cada elemento de la secuencia es el doble del elemento anterior.

```
proc progresionGeometricaFactor2 (in l: seq\langle \mathbb{R} \rangle,out result: Bool { Pre \{True\} Post \{result = True \leftrightarrow ((\forall i : \mathbb{Z})(0 \le i < |l| \rightarrow_L l[i] = 2 * l[i-1]))\} }
```

c) **minimo:** Devuelce en result el menor elemento de l.

```
 \begin{array}{l} \mathbf{proc\ minimo}\ (\mathrm{in}\ l:\ seq\langle\mathbb{R}\rangle, \mathrm{out\ result:}\ \mathbb{Z})\ \{ \\ \mathbf{Pre}\ \{True\} \\ \mathbf{Post}\ \{(\forall y:\mathbb{Z})((y\in l \land y\neq x)\rightarrow y>result)\} \\ \} \end{array}
```

Respuesta

a) La **Pre** no aclara que pasa cuando hay mas de una aparición de elem en l, y hace falta pedir que result este en el rango de l.

```
 \begin{array}{l} \mathbf{proc\ buscar}\ (\mathrm{in}\ l: seq\langle\mathbb{R}\rangle, \mathrm{in\ elem:}\ \mathbb{R}, \mathrm{out\ result:}\ \mathbb{Z})\ \{\\ \mathbf{Pre}\ \{elem\in l \land cantAparciones(elem,l)=1\}\\ \mathbf{Post}\ \{0\leq result<|l|\land_L l[result]=elem\}\\ \} \end{array}
```

b) Este es más facil de ver que el anterior, cuando i = 0, va a tratar de acceder a la posicion l[0 - 1], que es cualquier cosa. Y creo que crashearia con una lista vacia o de un elemento.

```
proc progresionGeometricaFactor2 (in l: seq\langle \mathbb{R} \rangle,out result: Bool { Pre \{True\} Post \{result = True \leftrightarrow ((\forall i : \mathbb{Z})(0 \le i < |l| - 1 \rightarrow_L 2 * l[i] = l[i+1]))\} }
```

c) No se para que esta ese $y \neq x$, y tendria que haber pedido en la **Pre** que result pertenezca a l.

```
proc minimo (in l: seq\langle \mathbb{R} \rangle,out result: \mathbb{Z}) {
Pre \{result \in l\}
Post \{(\forall y : \mathbb{Z})(y \in l \rightarrow y > result)\}
}
```

Ejercicio 2. La siguiente no es una especificación válida, ya que para ciertos valores de entrada que cumplen la precondición, no existe una salida que cumpla con la postcondición.

```
proc elementosQueSumen (in l:seq\langle\mathbb{Z}\rangle, in suma: \mathbb{Z}, out result : seq\langle\mathbb{Z}\rangle) { Pre \{True\}
Post \{

/* La secuencia result está incluída en la secuencia l*/

(\forall x:\mathbb{Z})(x\in \text{result}\rightarrow\#\text{apariciones}(x,result)\leq\#\text{apariciones}(x,l))

/* La suma de la result coincide con el valor de la suma */

\land suma = \sum_{i=0}^{|result|-1} result[i]
}
```

- a) Mostrar valores para l y suma que hagan verdadera la precondición, pero tales que no exista result que cumpla la postcondición.
- b) Supongamos que agregamos a la especificación la siguiente cláusula:

```
Pre: min\_suma(l) \le suma \le max\_suma(l)

fun min\_suma(l) : \mathbb{Z} = \sum_{i=0}^{|l|-1} \text{if } l[i] < 0 \text{ then } l[i] \text{ else } 0 \text{ fi}

fun max\_suma(l) : \mathbb{Z} = \sum_{i=0}^{|l|-1} \text{if } l[i] > 0 \text{ then } l[i] \text{ else } 0 \text{ fi}

¿Ahora es una especificación válida? Si no lo es, justificarlo con un ejemplo como en el punto anterior.
```

c) Dar una precondición que haga correcta la especificación

Respuesta

- a) $l = \langle 9, 9, 9 \rangle$, suma = 1, si l contiene a result, entonces necesariamente va a sumar por lo menos 9, por lo que no puede valer 1 su suma.
- b) $l = \langle 9, 9, 9 \rangle$, suma = 1, si l contiene a result, entonces necesariamente va a sumar por lo menos 9, por lo que no puede valer 1 su suma, y ademas suma cumple la desigualdad $0 \le suma \le 27$

```
c) proc elementosQueSumen (in l: seq\langle \mathbb{Z} \rangle, in suma: \mathbb{Z}, out result : seq\langle \mathbb{Z} \rangle) { Pre \{cantSubSeqCumplenSuma(l, suma) > 0\} Post \{ /* La secuencia result está incluída en la secuencia l */ (\forall x: \mathbb{Z})(x \in \text{result} \rightarrow \#\text{apariciones}(x, result) \leq \#\text{apariciones}(x, l)) /* La suma de la result coincide con el valor de la suma */ \land suma = \sum_{i=0}^{|result|-1} result[i] } aux cantSubSeqCumplenSuma(l: seq\langle \mathbb{Z} \rangle, suma: \mathbb{Z}): \mathbb{Z} = \sum_{j=1}^{|l|} \sum_{i=0}^{|l|-1} \text{ if } (|subseq(l,i,j)| > 0 \land sumaSeq(subseq(l,i,j)) = suma) then 1 else 0 fi aux <math>sumaSeq(l: seq\langle \mathbb{Z} \rangle): \mathbb{Z} = \sum_{k=0}^{|l|-1} l[k]
```

Ejercicio 3. ★ Para los siguientes problemas, dar todas las soluciones posibles a las entradas dadas.

```
a) proc raizCuadrada (in x: \mathbb{R},out result: \mathbb{R}) {

Pre \{x \geq 0\}
Post \{result^2 = x\}
}

I) x = 0
II) x = 1
III) x = 27

b) \bigstar

proc indiceDelMaximo (in l: seq\langle\mathbb{R}\rangle,out result: \mathbb{Z}) {

Pre \{|l| > 0\}
Post \{
0 \leq result < |l|
\land_L((\forall i : \mathbb{Z})(0 \leq i < |l| \rightarrow_L l[i] \leq l[result]))
}
}
```

```
I) l = \langle 1, 2, 3, 4 \rangle

II) l = \langle 15, 5, -18, 4, 215, 15, 5, -1 \rangle

III) l = \langle 0, 0, 0, 0, 0, 0 \rangle

\bigstar

proc indiceDelPrimerMaximo (in l: seq\langle \mathbb{R} \rangle,out result: \mathbb{Z}) {

Pre \{|l| > 0\}

Post \{

0 \le result < |l|

\land ((\forall i : \mathbb{Z})(0 \le i < |l| \rightarrow_L (l[i] < l[result] \lor (l[i] = l[result] \land i \ge result))))

\}

I) l = \langle 1, 2, 3, 4 \rangle

II) l = \langle 15, 5, -18, 4, 215, 15, 5, -1 \rangle

III) l = \langle 0, 0, 0, 0, 0, 0, 0 \rangle
```

d) ¿Para qué valores de entrada indiceDelPrimerMaximo y indiceDelMaximo tienen necesariamente la misma salida?

Respuesta

- a) I) result = 0
 - II) result = 1; -1
 - III) $result = 3\sqrt{3}; -3\sqrt{3}$
- b) I) result = 3
 - II) Cualquier cosa, no dice nada cuando hay más de una aparición del maximo.
 - III) Idem
- c) I) result = 3
 - II) result = 0,
 - III) result = 0
- d) Van a tener la misma salida cuando no haya más de una aparición del maximo en la lista (ya que en caso contrario **indiceDelMaximo** crashearia).

Ejercicio 4. \bigstar Sea $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ definida como:

$$f(a,b) = \begin{cases} 2b & \text{si } a < 0 \\ b - 1 & \text{en otro caso} \end{cases}$$

¿Cuáles de las siguientes especificaciones son correctas para el problema de calcular f(x, y)? Para las que no lo son, indicar por qué.

```
a) proc f (in a, b: \mathbb{R},out result: \mathbb{R}) {

Pre {True}

Post {

(a < 0 \land result = 2 * b)

\land

(a \ge 0 \land result = b - 1)

}

b) proc f (in a, b: \mathbb{R},out result: \mathbb{R}) {

Pre {True}

Post {(a < 0 \land result = 2 * b) \lor (a > 0 \land result = b - 1)}
```

```
c) proc f (in a, b: \mathbb{R},out result: \mathbb{R}) {
           Pre \{True\}
           Post \{(a < 0 \land result = 2 * b) \lor (a \ge 0 \land result = b - 1)\}
d) proc f (in a, b: \mathbb{R},out result: \mathbb{R}) {
           \mathbf{Pre}\ \{True\}
           Post {
           (a < 0 \rightarrow result = 2 * b)
           (a \geq 0 \rightarrow result = b-1)
     }
e) proc f (in a, b: \mathbb{R},out result: \mathbb{R}) {
           Pre \{True\}
           Post \{(a < 0 \rightarrow result = 2 * b) \lor (a \ge 0 \rightarrow result = b - 1)\}
f) proc f (in a, b: \mathbb{R},out result: \mathbb{R}) {
           Pre \{True\}
           Post \{result = (if \ a < 0 \ then \ 2 * b \ else \ b - 1 \ fi \ )\}
     }
```

- a) Mal, por muchas razones que no tengo ganas de aclarar.
- b) Mal, tendria que ser $a \ge 0$ despues de la conjunción.
- c) Correcta
- d) Correcta
- e) Mmmmmmm.... creo que no, si alguna implicación falla no puedo devolver true.
- f) Correcta

Ejercicio 5. \star Considerar la siguiente especificación, junto con un algoritmo que dado x devuelve x^2 .

```
 \begin{array}{l} \textbf{proc unoMasGrande} \text{ (in x: } \mathbb{R}, \textbf{out result: } \mathbb{R}) \text{ } \\ \textbf{Pre } \{True\} \\ \textbf{Post } \{result > x\} \\ \} \end{array}
```

- a) ¿Qué devuelve el algoritmo si recibe x = 3? ¿El resultado hace verdadera la postcondición de **unoMasGrande**?
- b) ¿Qué sucede para las entradas x = 0.5, x = 1, x = 0.2 y x = -7?
- c) Teniendo en cuenta lo respondido en los puntos anteriores, escribir una precondición para **unoMasGrande**, de manera tal que el algoritmo sea una implementación correcta.

Respuesta

- a) Segun lo que interpreto, el algoritmo esta tratando de cumplir la **Post**, entonces, al pasarle 3 devuelve un 9 que efectivamente cumple la **Post** ya que 9 > 3.
- b) $\begin{array}{l} \cdot \ x=0.5; result=0.25, \ \text{no cumple la Post.} \\ \cdot \ x=1; result=1 \ , \ \text{no cumple la Post.} \\ \cdot \ x=0.2; result=0.04, \ \text{no cumple la Post.} \\ \cdot \ x=-7; result=49, \ \text{cumple la Post.} \end{array}$
- c) **Pre** $\{abs(x) > 1\}$

Ejercicio 6. \bigstar Sean x y r variables de tipo \mathbb{R} . Considerar los siguientes predicados:

$$P1: \{x \le 0\} \qquad Q1: \{r \ge x^2\}$$

$$P2: \{x \le 10\} \qquad Q2: \{r \ge 0\}$$

$$P3: \{x \le -10\} \qquad Q3: \{r = x^2\}$$

- a) Indicar la relación de fuerza entre P1, P2 y P3.
- b) Indicar la relación de fuerza entre Q1, Q2 y Q3.
- c) Sea E1 la siguiente especificación. Escribir 2 programas que cumplan con E1.

```
 \begin{array}{c} \mathbf{proc\ hagoAlgo}\ (\text{in x: }\mathbb{R}, \text{out r: }\mathbb{R})\ \{\\ \mathbf{Pre}\ \{x \leq 0\}\\ \mathbf{Post}\ \{r \geq x^2\}\\ \}\\ \end{array}
```

- d) Sea A un algoritmo que cumple con E1. Decidir si necesariamente cumple las siguientes especificaciones:
 - a) **Pre:** $\{x \le -10\}$, **Post:** $\{r \ge x^2\}$
 - b) **Pre:** $\{x \le 10\}$, **Post:** $\{r \ge x^2\}$
 - c) **Pre:** $\{x \le 0\}$, **Post:** $\{r \ge 0\}$
 - d) **Pre:** $\{x \le 0\}$, **Post:** $\{r = x^2\}$
 - e) **Pre:** $\{x \le -10\}$, **Post:** $\{r \ge 0\}$
 - f) **Pre:** $\{x \le 10\}$, **Post:** $\{r \ge 0\}$
 - g) **Pre:** $\{x \le -10\}$, **Post:** $\{r = x^2\}$
 - h) **Pre:** $\{x \le 10\}$, **Post:** $\{r = x^2\}$
- e) ¿Qué conclusión pueden sacar? ¿Qué debe cumplirse con respecto a las precondiciones y postcondiciones para que sea seguro reemplazar la especificación?

- a) $\cdot P1 \rightarrow P2$ es contingencia.
 - · $P1 \rightarrow P3$ es tautologia.
 - · $P2 \rightarrow P1$ es tautologia.
 - · $P2 \rightarrow P3$ es tautologia.
 - · $P3 \rightarrow P1$ es contingencia.
 - · $P3 \rightarrow P2$ es contingencia.
- b) $\cdot Q1 \rightarrow Q2$ es tautologia.
 - · $Q1 \rightarrow Q3$ es contingencia.
 - · $Q2 \rightarrow Q1$ es contingencia.
 - · $Q2 \rightarrow Q3$ es contingencia.
 - · $Q3 \rightarrow Q1$ es tautologia.
 - · $Q3 \rightarrow Q2$ es tautologia.
- c) 1) Programa en lenguaje de especificación:

```
aux programa1(x : \mathbb{R})res : \mathbb{R} = x * x + 3
```

2) Programa en Perl:

```
\# !/usr/bin/perl
use \ v5.26;
my \ \ x;
my \ \ res;
chomp(\$x=< STDIN >);
if(\$x <= 0)\{
\$res=x * x + 1;
\}
say \ \$res;
```

- d) a) Cumple.
 - b) No cumple.
 - c) Cumple.
 - d) No Cumple.
 - e) Cumple.
 - f) No cumple.
 - g) No cumple.
 - h) No cumple.
- e) La nueva **Pre** Tiene que estar incluido en el rango de la **Pre** original, y ademas tiene que pasar lo mismo con las **Post**.

Ejercicio 7. \bigstar Considerar las siguientes dos especificaciones, junto con un algoritmo a que satisface la especificación de $\mathbf{p2}$.

```
\begin{array}{l} \mathbf{proc}\ \mathbf{p1}\ (\mathrm{in}\ \mathbf{x}\colon\mathbb{R},\mathrm{in}\ \mathbf{n}\colon\mathbb{Z}\mathrm{out}\ \mathrm{result}\colon\mathbb{Z})\ \{\\ \mathbf{Pre}\ \{x\neq 0\}\\ \mathbf{Post}\ \{x^n-1< result\leq x^n\}\\ \}\\ \\ \mathbf{proc}\ \mathbf{p2}\ (\mathrm{in}\ \mathbf{x}\colon\mathbb{R},\mathrm{in}\ \mathbf{n}\colon\mathbb{Z}\mathrm{out}\ \mathrm{result}\colon\mathbb{Z})\ \{\\ \mathbf{Pre}\ \{n\leq 0\to x\neq 0\}\\ \mathbf{Post}\ \{result=\lfloor x^n\rfloor\}\\ \}\\ \end{array}
```

- a) Dados valores de x y n que hacen verdadera la precondición de $\mathbf{p1}$, demostrar que hacen también verdadera la precondición de $\mathbf{p2}$.
- b) Ahora, dados estos valores de x y n, supongamos que se ejecuta a: llegamos a un valor de res que hace veradadera la postcondición de ${\bf p2}$. ¿Será también verdadera la postcondición de ${\bf p1}$?
- c) ¿Podemos concluior que a satisface la especificación de $\mathbf{p1}$?

Respuesta

- a)
- b)
- c)

Ejercicio 8. Considerar las siguientes especificaciones:

```
proc n-esimo1 (in l: seq\langle\mathbb{R}\rangle, in n: \mathbb{Z}, out result: \mathbb{Z}) {

Pre {

/*Los elementos están ordenados */

(\forall i: \mathbb{Z})(0 \leq i < |l| - 1 \rightarrow_L l[i] < l[i+1])

\land 0 \leq n < |l|

}

Post {result = l[n]}
}

proc n-esimo1 (in l: seq\langle\mathbb{R}\rangle, in n: \mathbb{Z}, out result: \mathbb{Z}) {

Pre {

/*Los elementos son distintos entre si */

(\forall i: \mathbb{Z})(0 \leq i < |l| \rightarrow_L ((\forall j: \mathbb{Z})(0 \leq j < |l| \land i \neq j) \rightarrow_L l[i] \neq l[j])

\land 0 \leq n < |l|

}

Post {

resultl \in l

\land

n = \sum_{i=0}^{|l|-1} (\text{if } l[i] < result \text{ then 1 else 0 fi)}
}
```

¿Es cierto que todo algorimo que cumple con **n-esimo1** cumple también con **n-esimo2**? ¿Y al revéz? **Sugerencia:** Razonar de manera análogoa a la del ejercicio anterior.

Respuesta

Ejercicio 9. ★ Especificar los siguientes problemas:

- a) Dado un número entero, decidir si es par.
- b) Dado un entero n y uno m, decidir si n es un múltiplo de m.
- c) Dadu un número real, devolver su inverso multiplicativo.
- d) Dada una secuencia de caracteres, obtener de ella sólo los que son numéricos (con todas sus apariciones sun umportar el orden de aparición).
- e) Dada una secuencia de reales, devolver la secuencia que resulta de duplicar sus valores en las posiciones impares.
- f) Dado un número entero, listar todos sus divisores positivos (sin duplicados).

Respuesta

```
a)
```

b)

c)

d)

```
e) proc DuplicaValoresEnImpares (in s: seq\langle \mathbb{R} \rangle, out m: seq\langle \mathbb{R} \rangle) {

Pre \{|s| > 0\}

Post \{

|s| = |m| \land_L

(\forall i: \mathbb{Z})(0 \le i < |s| \land_L \text{ i mod } 2 = 1) \rightarrow_L (m[i] = s[i] * 2)

\land (\forall j: \mathbb{Z})(0 \le j < |s| \land_L \text{ j mod } 2 = 0) \rightarrow_L (m[i] = s[i])
}

f)
```

Ejercicio 10. Considerar el problema de decidir, dados n y m enteros, si n es múltiplo de m, y la siguiente especificación.

```
proc esMultiplo (in n,m: \mathbb{Z},out result: Bool) {
    Pre \{m \neq 0\}
    Post \{result = (n \mod m = 0)\}
}
```

- a) Segun la definición matemática de múltiplo, ¿tiene sentido preguntarse si 4 es múltiplo de 0? ¿Cúal es la respuesta?
- b) ¿Debería ser n=4, m=0 una entrada válida para el problema? ¿Lo es en esta especificación?
- c) Corregir la especificación de manera tal que n = 4, m = 0 satisfaga la precondición (¡cuidado con las indefiniciones!).
- d) ¿Qué relación de fuerza hay entre la precondición nueva y la original?

Respuesta

- a)
- b)
- c)
- d)

Ejercicio 11. Considerar el problema de, dada una secuencia de números reales, devolver la que resulta de duplicar su valores en las posiciones impares.
$\mathbf{a})$
b)
c)
d)
Respuesta
a)
b)
$^{\mathrm{c})}$
d)
Ejercicio 12. ★ Especificar el problema de dado un entero positivo retornar una secuencia de 0s y 1s que represente enúmero en base 2 (es decir, en binario).
Respuesta
Ejercicio 13. Con lo visto en los ejercicios 9 a 12 ¿Encuentra casos de sub y sobreespecificación en las especificaciones de ejercicio 8?
Respuesta
Ejercicio 14. Especificar los siguientes problemas:
a) \bigstar Dado un número entero positivo, obtener la suma de sus factores primos.
b) Dado un número entero positivo, decidir si es perfecto. Se dice que un número es perfecto cuando es igual a la sum de sus divisores (excluyéndose a sí mismo).
c) Dado un número entero positivo n , obtener el menor entero positivo $m>1$ tal que m sea coprimo con n .
d) \bigstar Dado un entero positivo, obtener su descomposición en factores primos. Devolver una secuencia de tuplas (p,c) donde p es un factor primo y e es su exponente, ordenada en forma creciente con respecto a p .
e) Dada una secuencia de números reales, obtener la diferencia máxima entre dos de sus elementos.
f) ★ Dada una secuencia de números enteros, devolver aquel que divida a más elementos de dicha secuencia. El element tiene que pertenecer a la secuencia original. Si existe más de un elemento que cumple esta propiedad, devolver algun de ellos.
Respuesta
a)
b)
c)
$\mathrm{d})$
Ejercicio 15. Especificar los siguientes problemas sobre secuencias:
a)
b)
c)
d)

- a)
- b)
- c)
- d)

Ejercicio 16. Especificar los siguientes problemas:

- a) **proc cantApariciones**(in l: **String**,out result: $seq(\mathbf{Char} \times \mathbb{Z})$ que devuelve la secuencia con todos los elementos de l, sin duplicados con su cantidad de apariciones (en un orden cualquiera). Ejemplos:
 - cantApariciones $(\langle 'a' \rangle) = \langle \langle 'a' \rangle \rangle$
 - cantApariciones $(\langle 'a' \rangle) = \langle \langle 'a' \rangle \rangle$
 - $cantApariciones\ (\langle 'a' \rangle) = \langle \langle 'a' \rangle \rangle$
 - cantApariciones $(\langle 'a' \rangle) = \langle \langle 'a' \rangle \rangle$
- b)
- c)
- d)

Respuesta

- a)
- b)
- c)
- d)

Especificación de problemas usando inout

Ejercicio 17. \bigstar Dados dos enteros a y b, se necesita calcular su suma y retornarla en un entero c. ¿Cúales de las siguientes especificaciones son correctas para este problema? Para las que no lo son, indicar por qué.

```
a) proc raizCuadrada (in x: \mathbb{R},out result: \mathbb{R}) {
    Pre \{x \geq 0\}
    Post \{result^2 = x\}
}

b) proc raizCuadrada (in x: \mathbb{R},out result: \mathbb{R}) {
    Pre \{x \geq 0\}
    Post \{result^2 = x\}
}

c) proc raizCuadrada (in x: \mathbb{R},out result: \mathbb{R}) {
    Pre \{x \geq 0\}
    Post \{result^2 = x\}
}

d) proc raizCuadrada (in x: \mathbb{R},out result: \mathbb{R}) {
    Pre \{x \geq 0\}
    Post \{result^2 = x\}
}

Post \{result^2 = x\}
}
```


- a)
- b)
- c)
- d)

Ejercicio 18. \bigstar Dada una secuencia l, se deas sacar su primer elemento y devolverlo. Decidir cúales de estas especificaciones son correctas. Para las que no lo son, indicar por qué y justificar con ejemplos.

```
a) proc raizCuadrada (in x: \mathbb{R}, out result: \mathbb{R}) {
    Pre \{x \geq 0\}
    Post \{result^2 = x\}
}

b) proc raizCuadrada (in x: \mathbb{R}, out result: \mathbb{R}) {
    Pre \{x \geq 0\}
    Post \{result^2 = x\}
}

c) proc raizCuadrada (in x: \mathbb{R}, out result: \mathbb{R}) {
    Pre \{x \geq 0\}
    Post \{result^2 = x\}
}

d) proc raizCuadrada (in x: \mathbb{R}, out result: \mathbb{R}) {
    Pre \{x \geq 0\}
    Post \{result^2 = x\}
}

e) proc raizCuadrada (in x: \mathbb{R}, out result: \mathbb{R}) {
    Pre \{x \geq 0\}
    Post \{result^2 = x\}
}

Post \{result^2 = x\}
}
```

Respuesta

- a)
- b)
- c)
- d)

}

Ejercicio 19. Considerar la siguiente especificación:

```
proc raizCuadrada (in x: \mathbb{R},out result: \mathbb{R}) {
Pre \{x \geq 0\}
Post \{result^2 = x\}
```

- a) ¿Esta especificación es válida? Si lo es ¿qué problema describe?
- b) Mostrar con un ejemplo que la postcondicion está sub-especificada (es decir, que hay valores que la hacen verdadera aunque no son deseables como solución).
- c) Corregir la especificación agregando a la postcondición una o más cláusulas Post: .

- a)
- b)
- c)

Ejercicio 20. Explicar coloquialmente la siguiente especificación:

```
 \begin{array}{l} \mathbf{proc\ raizCuadrada}\ (\text{in x: }\mathbb{R}, \text{out result: }\mathbb{R})\ \{\\ \mathbf{Pre}\ \{x\geq 0\}\\ \mathbf{Post}\ \{result^2=x\}\\ \} \end{array}
```

Respuesta

Ejercicio 21. Dada una secuencia de enteros, se requiere multiplicar por 2 aquéllos valores que se encuentran en posicions pares. Indicar por qué son incorrectas las siguientes especificaciones, y proponer una alternativa correcta

```
a) proc duplicarPares (inout l: seq\langle \mathbb{Z}\rangle) {
            Pre \{l = L_0\}
            Post {
            |l| = |L_0|
            (\forall i : \mathbb{Z})(0 \le i < |l| \land i \bmod 2 = 0) \rightarrow_L l[i] = 2 * L_0[i]
     }
b) proc duplicarPares (inout l: seq\langle \mathbb{Z} \rangle) {
             Pre \{l = L_0\}
            Post \{(\forall i : \mathbb{Z})(0 \le i < |l| \land i \mod 2 \ne 0) \rightarrow_L l[i] = L_0[i]\}
            (\forall i : \mathbb{Z})(0 \le i < |l| \land i \mod 2 = 0) \rightarrow_L l[i] = 2 * L_0[i]
c) proc duplicarPares (inout l: seq\langle \mathbb{Z} \rangle, out result: seq\langle \mathbb{Z} \rangle) {
            Pre \{True\}
            Post \{|l| = |result|
            (\forall i: \mathbb{Z})(0 \leq i < |l| \land i \text{ mod } 2 \neq 0) \rightarrow_L result[i] = l[i]
            (\forall i : \mathbb{Z})(0 \le i < |l| \land i \mod 2 = 0) \rightarrow_L result[i] = 2 * l[i]
     }
```

Respuesta

- a)
- b)
- c)

Ejercicio 22. Especificar los siguientes problemas de modificación de secuencias:

- a) \bigstar proc primosHermanos(inout $l:seq(\mathbb{Z})$), que dada una secuencia de enteros mayores a dos, reemplaza dichos valores por el número primo menor más cercano. Por ejemplo, si $l = \langle 6, 5, 9, 14 \rangle$, luego de aplicar primosHermanos(l), $l = \langle 5, 5, 7, 13 \rangle$
- b) \bigstar proc reemplazar(inout l:String, in a, b:Char), que reemplaza todas las apariciones de a en l por b.
- c) **proc recortar**(inout $l: seq(\mathbb{Z})$, in $a: \mathbb{Z}$), que saca de l todas las apariciones de a consecutivas que aparezcan al principio. Por ejemplo **recortar**($\langle 2, 2, 3, 2, 4 \rangle, 2$) = $\langle 3, 2, 4 \rangle$, mientras que **recortar**($\langle 2, 2, 3, 2, 4 \rangle, 3$) = $\langle 2, 2, 3, 2, 4 \rangle$.

- d) **proc intercambiarParesConImpares**(inout l:**String**), que toma una secuencia de longitud par y la modifica de modo tal que todas las posiciones de la forma 2k quedan intercambiadas con las posiciones 2k + 1. Por ejemplo, **intercambiarParesConImpares**("adinle") modifica de la siguiente manera: "daniel".
- e) \bigstar proc limpiar Duplicados (inout $l:seq\langle \mathbf{Char}\rangle$, out $dup:seq\langle \mathbf{Char}\rangle$), que elimina los elementos duplicados de l dejando sólo su primera aparición (en el orden original). Devuelve además, dup una secuencia con todas las apariciones eliminadas (en cualquier orden).

- a)
- b)
- c)
- d)

FIN.