

飞行力学 Flight Mechanics

Chen, Song (陈松)

School of General Engineering (SGE)

chensong@buaa.edu.cn; Office: D-1109

Chapter 2

Static performance

```
Horizontal flight,
climbing and descending flight,
Range and endurance.
```

Dynamic performance

```
Takeoff,
Landing,
```

.

Contents

- Horizontal steady symmetric flight
- Equations of motion
- Maximum flight speed
- Minimum flight speed
- Flight envelop

Questions

Aircraft performance

- How high can an aircraft fly?
- How long can an aircraft stay in air?
- How far can an aircraft reach?

"Dragon lady"

U-2 reconnaissance aircraft built by Lockheed

Some definitions

Straight flight: flight in which the center of gravity of the aircraft travels along a straight line $(d\gamma/dt = 0)$

Steady flight: Flight in which the forces and moments acting on the aircraft do not vary in time, neither in magnitude, nor in direction (dV/dt = 0)

Horizontal flight: The aircraft remains at a constant altitude ($\gamma = 0$)

Symmetric flight: flight in which both the angle of sideslip is zero and the plane of symmetry of the aircraft is perpendicular to the earth ($\beta = 0$ and the aircraft is not turning)

Review of frames

Review of frames

 (O_K, x_K, y_K, z_K) Pointing to ground $\mathbf{X}_{\mathbf{k}}$ speed direction $\mathbf{Z}_{\mathbf{k}}$ Flight path The vertical plane

$$\parallel V \colon T \cos \alpha_T - D - W \sin \gamma = m \frac{dV}{dt}$$

$$\perp V: L - W\cos\gamma + T\sin\alpha_T = mV\frac{d\gamma}{dt}$$

General equation for symmetric flight

- Equation of motion in two directions
- The aircraft aerodynamics can be represented by the drag polar

$$C_D = C_{D0} + \frac{C_L^2}{\pi \lambda_e}$$

$$\parallel V \colon T \cos \alpha_T - D - W \sin \gamma = \frac{W}{g} \frac{dV}{dt}$$

$$\perp V: L - W\cos\gamma + T\sin\alpha_T = \frac{W}{g}V\frac{d\gamma}{dt}$$

effective span ratio (textbook page 4):

$$\lambda_e = \lambda \frac{1}{1 + S_b/S} = \lambda e, \quad e = \frac{1}{1 + S_b/S} \in [0, 1]$$

Steady, horizontal, symmetric flight

$$= 1 \qquad = 0$$

$$\parallel V: T \cos \alpha_T - D - W \sin \gamma = \frac{W}{g} \frac{dV}{dt}$$

$$= 1 \qquad = 0$$

$$\perp V: L - W \cos \gamma + T \sin \alpha_T = \frac{W}{g} V \frac{dV}{dt}$$

$$\parallel V \colon T = D$$

$$\perp V \colon L = W$$

Calculation of Thrust Required T_R

$$T_R = D = C_D \frac{1}{2} \rho V^2 S$$

$$W = L = C_L \frac{1}{2} \rho V^2 S$$

$$T_R = D = \frac{W}{K}$$

Calculation of Thrust Required T_R

$$T_R = D = \left(C_{D0} + \frac{c_L^2}{\pi \lambda_e}\right) \frac{1}{2} \rho V^2 S$$

$$= C_{D0} \frac{1}{2} \rho V^2 S + \frac{2W^2}{\pi \lambda_e \rho V^2 S}$$

$$= D_0 + D_i$$

Figure 6.9 Comparison of lift-induced and zero-lift thrust required.

Figure 6.8 Thrust-required curve with associated angle-of-attack variation.

$$T_R = C_{D0} \, \frac{1}{2} \rho V^2 S + \frac{2W^2}{\pi \lambda_e \rho V^2 S}$$

Question:

What are the impact factors for T_R ?

The impact of A and C_{D0}

The impact of H

$$T_R = C_{D0} \, \frac{1}{2} \rho V^2 S + \frac{2W^2}{\pi \lambda_e \rho V^2 S}$$

The basic relationship

$$L = W$$

change of $V \Leftrightarrow$ change of $C_L \Leftrightarrow$ change of α

$$T = D$$

change of $V \Leftrightarrow$ change of $D \Leftrightarrow$ change of T

Flight envelop: V_{max} (M_{max}) , V_{min} , H_{max}

Simple thrust method

- $T_R = T_a$
- The V_{min} and V_{max} equal to the positions where two lines intersect.

Simple thrust method

- For $M < M_{max}$, set $T=T_R$ by changing engine throttle.
- If $M > M_{\text{max}}$, airplane cannot maintain steady flight

T_R-M diagram at a given altitude

The impact of H

How to calculate V_{max} ?

The following data is known of the Cessna Citation II (subsonic jet)

Aircraft Weight : W = 60 kN,

Wing area : $S = 30 \text{ m}^2$,

(Parabolic) Lift-Drag polar : $C_D = C_{Do} + kCL^2$; $C_{Do} = 0.022$, k = 0.047, $C_{Lmax} = 1.35$,

Maximum Thrust at 0 m ISA: T0 = 12 kN.

The aircraft is flying at an altitude of H = 0 m in the International Standard

Atmosphere ($\rho_0 = 1.225 \text{ kg/m}^3$)

Thrust is assumed to be independent of the airspeed

Calculate (1) the V_{max} of this aircraft when flying at H = 0 m and (2) the corresponding Ma

How to calculate V_{min} ?

$$L = W$$

$$C_{L} \frac{1}{2} \rho V^{2} S = W$$

$$V = \sqrt{\frac{W}{S} \frac{2}{\rho} \frac{1}{C_{L}}}$$

$$V_{\min} = \sqrt{\frac{W}{S} \frac{2}{\rho} \frac{1}{C_{L_{\max}}}}$$

From the 1st lecture

$$f(\boldsymbol{\alpha_c}) \rightarrow C_{Lmax}$$

$$f(\boldsymbol{\alpha_s}) \to C_{Ls}$$

$$f(\boldsymbol{\alpha_a}) \to C_{La}$$

$$f(\boldsymbol{\alpha_{sh}}) \rightarrow C_{Lsh}$$

Example

An aircraft has a wing loading (W/S) 2400 N/m2 and $C_{Lmax} = 1.4$. Find the airspeed at which stall occurs (minimum airspeed) at

(1) sea level ($\rho = 1.225 \text{ kg/m3}$) and (2) at 5000m ($\rho = 0.737 \text{ kg/m3}$)

From the 1st lecture

$$\delta_{e,max} \longrightarrow \alpha_{max} \longrightarrow C_{L\delta,max}$$

$$C_{La} = \min\{C_{Ls} - \Delta, C_{L\delta,max}\}$$

Graphical method

$$L = W$$

$$C_{L} \frac{1}{2} \rho V^{2} S = W$$

$$V = \sqrt{\frac{W}{S} \frac{2}{\rho} \frac{1}{C_{L}}}$$

$$V_{\min} = \sqrt{\frac{W}{S} \frac{2}{\rho} \frac{1}{C_{l_{\max}}}}$$

$$\Rightarrow C_L = \frac{2W}{\rho c^2 S} \frac{1}{M^2}$$

- 1) Calculate $C_{L,R}$ curve based on a series of M
- 2) Plot the $C_{L,R}$ curve on the $C_{L,a} \sim M$ map, marked the intersection point as $M_{min,a}$

Graphical method

- 1) Calculate $C_{L,R}$ curve based on a series of M
- 2) Plot the $C_{L,R}$ curve on the $C_{L,a} \sim M$ map, marked the intersection point as $M_{min,a}$
- 3) Find the left intersection point of $T_R \sim M$ map, marked as $M_{min,T}$

$$M_{min} = \max\{M_{min,a}, M_{min,T}\}$$

Discussion

As H increases, density ρ decreases.

1) V_{min,a} increase

2) As H increases, $M_{\text{min},T}$ increases

At low altitude, the minimum speed is limited by $V_{\text{min,a}}$ At high altitude, the minimum speed is limited by $V_{\text{min,T}}$

Flight envelop

Flight envelop

Flight envelop of Bird? A good research topic.

