### Structure Detection of Nonlinear Aeroelastic Systems with Application to Aeroelastic Flight Test Data: Part I

## Sunil L. Kukreja and Martin J. Brenner

NASA Dryden Flight Research Center, Structural Dynamics Group, Edwards, California, USA



Ans. A Dyolen Igan (Nesattor, Contextual MASA Photo By. Contextual NASA Photo: ECR3-(4089-1 Date: February 7, 2003 Photo By. Alan Brown NASA Dyoto: Eclipse, Joudifed Active Aerodestic Wing FfA-18A shows off its form durine a '46D-denre alterna roll durine a research floht.



NASA Dryden flight Research Center Photo Collection http://www.dfrc.nass.gov/gallery/photo/index.html NASA Photo: EC03-0039-14 Date: February. 7, 2003 Photo By. Alan Brown NASA's Active Aeroclastic Wing F/A-18A research aircraft rolls upside down



#### Outline

- Introduction Objectives
- The NARMAX Structure
- NARMAX Identification Problem
- Order, parameter estimation & structure detection
- Structure Detection: Current Methods
- Results
- Application to simulated pitch-plunge model
- Conclusions



#### Objectives

- Investigate applicability of NARMAX structure detection to aeroelastic sys-
- Simulated model of aircraft freeplay
- Evaluate performance
- Experimental aeroelastic flight test data



### **NARMAX Model Description**

• Input-output relationship:

$$y(n) = F^{l}[y(n-1), \dots, y(n-n_y), u(n), \dots, u(n-n_u), e(n-1), \dots, e(n-n_e)] + e(n)$$

• Variety of nonlinear terms:

$$u^2(n-3)$$
  $u(n)u(n-1)$   $y(n-1)y(n-2)$   $u^2(n-1)y(n-2)$ 

-  $F^l$ , can also be described by hard nonlinearities such as a half-wave rectifier

Linear-in-the-parameters

- Linear regression techniques

### **Full Identification Procedure**

- Model order selection
- Determine number of input, output and error lags and nonlinearity order
- Parameter estimation
- Determine values of unknown parameters
- Structure detection
- Select parameters to include in model



#### **System Order**

$$y(n) = F^{l}[y(n-1), \dots, y(n-n_y), u(n), \dots, u(n-n_u), e(n-1), \dots, e(n-n_e)] + e(n)$$

• System order represented as:

$$O = [n_u n_y n_e l]$$

ullet Output additive noise:  $n_y=n_e$ 

$$\Longrightarrow O = [n_u \, n_y \, l]$$



### Parameter Estimation

• Need an estimate of  $\theta$ :

$$\min_{\boldsymbol{\theta}} \frac{1}{2} \left| (\mathbf{Z} - \boldsymbol{\Psi} \boldsymbol{\theta}) \right|_2^2$$

and statistics

- NARMAX models provide concise system representation
- noise on the output enters the model as product terms with the system input and output
- "Ordinary" least-squares → biased: does not account for noise
- Solution extended least-squares:

$$\hat{\boldsymbol{\theta}} = (\mathbf{\Psi}^T \mathbf{\Psi})^{-1} \mathbf{\Psi}^T \mathbf{Z}; \quad \text{where} \quad \mathbf{\Psi} = [\mathbf{\Psi}_{zu} \mathbf{\Psi}_{zu\hat{\epsilon}} \mathbf{\Psi}_{\hat{\epsilon}}].$$

- Bias addressed by modelling lagged errors
- NARMAX formulation redefined into prediction error model,  $\epsilon$  replacing e and z replacing y
- Deterministic



NARMAX models described by few terms

• Maximum number of candidate terms:

$$p = \sum_{i=1}^{l} p_i + 1;$$
 $p_i = \frac{p_{i-1}(n_y + n_u + n_e + i)}{i}, \quad p_0 = 1$ 

– Example: model of order:  $O = [4\ 4\ 4\ 2] \Rightarrow p = 105$  candidate terms.



• Model example:

$$y(n) = y(n-1) + u(n-1) + u^2(n-1) + e(n-1) + e(n)$$

• Described by:  $O = [n_u = 1 \ n_y = 1 \ l = 2] \Rightarrow p = 15$ 

• Candidate terms:

$$y(n) = \theta_0 + \theta_1 u(n) + \theta_2 u(n-1) + \theta_3 u^2(n) + \theta_4 u(n) u(n-1) + \theta_5 u^2(n-1) + \theta_6 y(n-1)$$

$$+ \theta_7 u(n) y(n-1) + \theta_8 u(n-1) y(n-1) + \theta_9 y^2(n-1) + \theta_{10} u(n) e(n-1)$$

$$+ \theta_{11} u(n-1) e(n-1) + \theta_{12} y(n-1) e(n-1) + \theta_{13} e(n-1) + \theta_{14} e^2(n-1) + e(n)$$



#### **Structure Detection**

Select a subset of candidate terms

Best describes output



# Traditional Approaches to Structure Detection

• Covariance matrix,  $P_{\theta}$ 

• Stepwise Regression

Bootstrap method



### Covariance matrix, $P_{\theta}$

• T-test with regression analysis referred to as hypothesis testing: computing differences between means

• Suppose  $E(\mathbf{Z}) = \hat{\theta}_1 + \hat{\theta}_2 \psi_2 + \hat{\theta}_3 \psi_3 + \cdots + \hat{\theta}_p \psi_p$  was fit

-  $\hat{\boldsymbol{\theta}}$ 's tested against null hypothesis,  $\hat{\theta}_i = 0, i = 1, 2, \dots, p$ 

• Confidence interval for  $\hat{\theta}_i$ :

$$\hat{\theta}_i \pm t(\alpha/2, N-p) \hat{P}_{ii}$$

where  ${f P}=\sigma^2({f \Psi}^T{f \Psi})^{-1}$  and  $\hat{P}_{ii}$  ith diagonal element

– t tabulated t ratio at  $\alpha/2$  level of significance  $(0 \le \alpha \le 1)$  with N-p d.o.f.

ullet Significance assessed with  $(1-\alpha)\%$  confidence that the parameter lies within this range • Interval includes zero, indicates  $\hat{\theta}_i$  is not significantly different from zero at the  $\alpha$  level and can be removed from the model



### **Stepwise Regression**

- Relies on the incremental change in RSS from adding or removing a parameter
- Two F distribution levels,  $F_{\rm out}$  and  $F_{\rm in}$ , formed to determine whether parameter(s) should be removed from the model ( $F_{\text{out}}$ ) or included in the model
- F-levels are based on N-p d.o.f. for predetermined  $\alpha$ th level of significance
- Statistics  $F_{\rm in}$  and  $F_{\rm out}$  estimated from RSS for model with p parameters as:

$$F_{\mathrm{in}} = rac{\mathrm{RSS}_p - \mathrm{RSS}_{p+1}}{\mathrm{RSS}_{p+1}/(N-p-1)} \quad ext{and} \quad F_{\mathrm{out}} = rac{\mathrm{RSS}_{p-1} - \mathrm{RSS}_p}{\mathrm{RSS}_p/(N-p)}$$

ullet For good model parameterisations,  $F_{
m out}$  must not be greater than  $F_{
m in}$ 

#### **Bootstrap Method**

- Numerical Procedure for Estimating Parameter Statistics
- Mild Conditions on Sample Errors
- Errors independent and identically distributed (i.i.d.)
- Zero-mean
- Application of  $\ell_2$  minimisation:  $\to \hat{Z}, \hat{\epsilon}$  and  $\hat{\theta}$
- Assume:  $\hat{\boldsymbol{\epsilon}} = [\hat{\epsilon}_1, \hat{\epsilon}_2, \dots, \hat{\epsilon}_N]$ , from Unknown Distribution,  $\mathcal{F}$
- Random resampling with replacement:  $\hat{\boldsymbol{\epsilon}}^* = [\hat{\epsilon}_1^*, \hat{\epsilon}_2^*, \dots, \hat{\epsilon}_N^*]$ : estimates distribution  $\mathcal{F}$ ;  $\Longrightarrow$  Example:  $N=8,\ \hat{\boldsymbol{\epsilon}}^*=\left[\hat{\epsilon}_6,\hat{\epsilon}_8,\hat{\epsilon}_7,\hat{\epsilon}_3,\hat{\epsilon}_4,\hat{\epsilon}_7,\hat{\epsilon}_5,\hat{\epsilon}_1\right]$
- $ullet \mathbf{Z}^* = ar{oldsymbol{\Psi}} \hat{oldsymbol{ heta}} + \hat{oldsymbol{\epsilon}}^*$
- Bootstrap  $\ell_2$  minimisation estimate  $\hat{\boldsymbol{\theta}}^*$  computed from  $\mathbf{Z}^*$
- Repeated B Times:  $\hat{\boldsymbol{\Theta}}^* = \left[\hat{\boldsymbol{\theta}}_1^*, \dots, \hat{\boldsymbol{\theta}}_B^*\right]$
- Statistics Computed from  $\hat{\Theta}^*$  at a Chosen Level of Significance,  $\alpha$



#### Rationale

Structure detection provide useful process insights that can be used in subsequent development or refinement of physical models

sion and bootstrap method on a simulated NARMAX model of aeroelastic • Investigate performance of the covariance matrix (t-test), stepwise regresstructural stiffness  Assess performance of these techniques for applicability to experimental aircraft data.



# Aeroelastic Structural Stiffness Model



- Simulated in continuous-time
- NARMAX representation aeroelastic structural stiffness model:

$$z(n) = \theta_1 z(n-1) + \theta_2 z(n-2) + \theta_3 z(n-3) + \theta_4 z(n-4) + \theta_5 u(n-1)$$

$$+ \theta_6 u(n-2) + \theta_7 u(n-3) + \theta_8 u(n-4) + \theta_9 \tanh(u(n-1))$$

$$+ \theta_{10} \tanh(u(n-2)) + \theta_{11} \tanh(u(n-3)) + \theta_{12} \tanh(u(n-4))$$

$$+ \theta_{13} e(n-1) + \theta_{14} e(n-2) + \theta_{15} e(n-3) + \theta_{16} e(n-4) + e(n).$$



# **Continuous-Time System Coefficients**

Continuous-time values correspond to those found in experiments

| Value          | 18.0 m/s | $-0.600 \mathrm{m}$ | $0.135 \mathrm{m}$ | $0.065 \mathrm{m}^2\mathrm{Kg}$ | 2844 N/m | 2.82 Nm/rad | 0.247 m | 27.4 Kg/s | $0.180 \text{ m}^2\text{Kg/s}$                                                | $1.23 \text{ kg/m}^3$ | 3.28        | 3.36       | -0.628         | -0.635        | 2 |
|----------------|----------|---------------------|--------------------|---------------------------------|----------|-------------|---------|-----------|-------------------------------------------------------------------------------|-----------------------|-------------|------------|----------------|---------------|---|
| CT Coefficient | $\Omega$ | a                   | q                  | $I_{lpha}$                      | $k_h$    | $k_{lpha}$  | $x_a$   | Ch        | $C_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | θ                     | $Cl_{lpha}$ | $Cl_{eta}$ | $C_{m_{lpha}}$ | $C_{m_{eta}}$ | k |



#### **Simulation Protocol**

- One hundred Monte-Carlo simulations
- Each input/output realization unique
- Inputs uniform, white, zero-mean, with variances of 8 rad<sup>2</sup>
- Unique Gaussian, white, zero-mean, noise sequence added to output
- Output additive noise amplitude increased in increments of 5 dB, from 20 to 5 dB SNR
- Identification data length: N = [10,000~80,000] points increased in increments of 10,000
- ullet Bootstrap method B=100 bootstrap replications generated to assess distribution of each parameter



### ....Simulation Protocol Cont.

• All three techniques parameters tested for significance at 95% confidence level

• Model posed for structure computation, additive nonlinear model:

$$z(n) = \sum_{v=1}^{q} \theta_v \psi(n) + \sum_{w=1}^{r} \theta_w f(\psi(n)) + e(n); \ q + r = p.$$

- Model order:  $O = [4 \ 4 \ 4 \ \text{tanh}]$
- tanh selected as basis because a wing section response limited due to structural stiffness and appears to saturate smoothly
- Full model description 27 candidate terms

# Results Classified into Three Categories

1. Exact Model: A model which contains only true system terms,

2. Over-modelled: A model with all its true system terms plus spurious parameters and 3. Under-modelled: A model without all its true system terms. An undermodelled model may contain spurious terms as well



#### Simulation Results





### Summary of Simulation Findings

• For this over-parameterised model describing aeroelastic dynamics the bootstrap method clearly outperformed the t-test and stepwise regression

• For analysis of flight test data only implemented bootstrap structure detection method



### **Experimental Aircraft Data**

- System identified applying bootstrap approach: model form additive nonlinear &  $O = [4 \ 4 \ 4 \ \text{tanh}]$
- Scaled hyperbolic tangent functions used because the input amplitude is less than  $\pm 1$
- Scale factors used for the input, output and error signals in the range of  $\nu = [0.1 \ 1.0]$ and increased in increments of 0.1
- A scaled hyperbolic tangent is denoted as  $\tanh(\cdot, \nu)$
- Models with every possible combination of scale factors were considered (i.e. structure computation performed on 1,000 models)
- Full model description 27 candidate terms
- Model which yielded highest cross-validation percent fit deemed the best-fit model
- Estimation  $N_e = 5,200$ : right wing & cross-validation  $N_v = 5,200$ : left wing



#### Identification Data









#### • Contains 14 terms

$$\begin{split} z(n) &= \hat{\theta}_0 + \theta_1 z(n-1) + \hat{\theta}_2 z(n-3) + \hat{\theta}_3 z(n-4) + \hat{\theta}_4 u(n) + \hat{\theta}_5 u(n-2) \\ &+ \hat{\theta}_6 u(n-4) + \hat{\theta}_7 \tanh(u(n), 0.3) + \hat{\theta}_8 \tanh(u(n-1), 0.3) \\ &+ \hat{\theta}_9 \tanh(u(n-3), 0.3) + \hat{\theta}_{10} \tanh(u(n-4), 0.3) + \hat{\theta}_{11} e(n-1) \\ &+ \hat{\theta}_{12} e(n-3) + \hat{\theta}_{13} e(n-4) + e(n). \end{split}$$



### **Cross-Validation Data**





### Summary of Findings

# Simulated model of aeroelastic structural stiffness dynamics showed:

- rate of selecting an under-modelled model (2–0%) and a high rate of selecting the exact - Given sufficient data length ( $N_e = 60,000 - 80,000$ ), the bootstrap method had a low model (60–95%) for all SNR levels
- selection range of 3–70% and 2–85% respectively, for equivalent data lengths and SNR Both t-test and stepwise regression had difficulty computing the correct structure, with

### • Experimental results demonstrate:

- Bootstrap successfully reduced number of regressors posed to aircraft aeroelastic data yielding a parsimonious model structure
- The computed parsimonious structure capable of predicting a large portion of the crossvalidation data, collected on adjacent wing with different sensor
- Suggests identified structure and parameters explain the data well



#### Conclusions

- Simulation results demonstrate bootstrap approach for structure computation of aircraft structural stiffness provided a high rate of true model selec-
- T-test and stepwise regression methods had difficulty providing accurate
- Work contributes to understanding of the use of structure detection for modelling and identification of aerospace systems.
- Limitation of model complexity that can be studied with these structure computation techniques
- Result of the large number of candidate terms, for a given model order, and the data length required to guarantee convergence
- Another approach to structure computation problem uses a least absolute shrinkage and selection operator (LASSO)



#### Acknowledgments

Supported by the National Academy of Sciences and the National Aeronautics and Space Administration (NASA), Dryden Flight Research Center, Aerostructures Branch (Grant Number: NASA-NASW-99027).

