Experimental and Theoretical Probability

Today I Can

1. Calculate experimental and theoretical probability.

Outcome

The possible result of a situation or experiment.

Event

A single outcome or a group of outcomes.

Sample Space

The set of all possible outcomes.

Probability

The **probability** of an event, denoted P(event), is a numerical value from 0 to 1 that measures the likelihood of the event.

•
$$P(\text{event}) = \frac{\text{number of favorable outcomes}}{\text{number of possible outcomes}}$$

$$\begin{array}{ccc} \text{impossible} & \text{equally likely} & \text{certain} \\ \hline 0 & \longleftarrow \text{less likely} & 0.5 & \text{more likely} \longrightarrow & 1 \\ \end{array}$$

Experimental Probability

The measure of the likelihood that the event occurs based on the actual results of an experiment.

•
$$P(\text{event}) = \frac{\text{number of times the event occurs}}{\text{number of times the experiment is done}} = \frac{\text{number of favorable outcomes}}{\text{number of possible outcomes}}$$

Example 1. A quality control inspector samples 500 LCD monitors and finds defects in three of them.

- (a) What is the experimental probability that a monitor selected at random will have a defect?
- (b) If the company manufactures 15,240 monitors in a month, how many are likely to have a defect based on the quality inspector's results?

Theoretical Probability

The likelihood of an event based on mathematical reasoning.

Example 2. You roll two standard six-sided dice. The outcomes of which are shown in the table below.

Dice	1	2	3	4	5	6
1	1,1	1,2	1,3	1,4	1,5	1,6
2	2,1	2,2	2,3	2,4	2,5	2,6
3	3,1	3,2	3,3	3,4	3,5	3,6
4	4,1	4,2	4,3	4,4	4,5	4,6
5	5,1	5,2	5,3	5,4	5,5	5,6
6	6,1	6,2	6,3	6,4	6,5	6,6

What is the probability of getting each sum when rolling two standard dice?

(a) 7

(b) 9

- (c) 2
- (d) 13

Complement of an Event

All possible outcomes of the sample space that are **not** part of the event.

- The sum of the probability of an event and the probability of its complement is 1.
- P(event) + P(not event) = 1
- P(not event) = 1 P(event)

Example 3. A jar contains 10 red marbles, 8 green marbles, 5 blue marbles, and 6 white marbles. A marble is chosen at random. Find each probability.

- (a) Probability the marble is not green.
- (b) Probability the marble is not red.