Lab 02

Basic Image Processing Fall 2020

In practice both the kernel and the image have finite size.

Let h and \hat{h} be $(2r_1 + 1) \times (2r_2 + 1)$ sized kernels, where \hat{h} is the 180° rotated version of h:

$$h = \begin{bmatrix} a_{-r_1, -r_2} & \cdots & a_{-r_1, r_2} \\ \vdots & \ddots & \vdots \\ a_{r_1, -r_2} & \cdots & a_{r_1, r_2} \end{bmatrix} \text{ and } \hat{h} = \begin{bmatrix} a_{r_1, r_2} & \cdots & a_{r_1, -r_2} \\ \vdots & \ddots & \vdots \\ a_{-r_1, r_2} & \cdots & a_{-r_1, -r_2} \end{bmatrix}$$

$$g(x,y) = \sum_{l=-r_1}^{r_1} \sum_{l=-r_2}^{r_2} f(k,l) \cdot h(x-k,y-l) =$$

$$= \sum_{k=-r_1}^{r_1} \sum_{l=-r_2}^{r_2} h(k,l) \cdot f(x-k,y-l) =$$

$$= \sum_{k=-r_1}^{r_1} \sum_{l=-r_2}^{r_2} h(k,l) \cdot f(x-k,y-l) =$$

$$= \sum_{k=-r_1}^{r_1} \sum_{l=-r_2}^{r_2} \hat{h}(k,l) \cdot f(x+k,y+l)$$

I =

.8	.9	.3	.4	.3	.8
.0	.2	.3	.4	.2	.1
.2	.8	.2	.1	.2	.3
.5	.3	.2	.1	.3	.2

K_rot =	1	0	1
	0	-4	0

The inputs of the 2D convolution function are the image and the kernel.

O =

The output is an image which has the same size as the input.

I =	.8	.9	.3	.4	.3	.8
	.0	.2	.3	.4	.2	.1
	.2	.8	.2	.1	.2	.3
	.5	.3	.2	.1	.3	.2

$$\sum \begin{pmatrix} .9 \times 1 + .3 \times 0 + .4 \times 1 \\ .2 \times 0 + .3 \times -4 + .4 \times 0 \\ .8 \times 1 + .2 \times 0 + .1 \times 1 \end{pmatrix} = 1.0$$

O = 1.0

The matrices are multiplied elementwise and the values are summed.

In the output a pixel

value is computed

using the values in

the corresponding

neighborhood and

the rotated kernel

matrix.

_	
	_

.8	.9	.3	.4	.3	.8
.0	.2	.3	.4	.2	.1
.2	.8	.2	.1	.2	.3
.5	.3	.2	.1	.3	.2

1	0	1
0	-4	0
1	0	1

With this method almost every pixel of the output can be calculated.

	1.0		

		?	?	?		
I =	.8	.9	.3	.4	.3	.8
	.0	.2	.3	.4	.2	.1
	.2	.8	.2	.1	.2	.3
	.5	.3	.2	.1	.3	.2

K_rot =	1	0	1
	0	-4	0
	1	0	1

Using this method almost every pixel of the output can be calculated.

O =				
		1.0		

The problem is that on the edges of the output the neighborhood includes non-existing pixels.

	0	0	0	0	0	0	0	0
:	0	.8	.9	.3	.4	.3	.8	0
	0	.0	.2	.3	.4	.2	.1	0
	0	.2	.8	.2	.1	.2	.3	0
	0	.5	.3	.2	.1	.3	.2	0
	0	0	0	0	0	0	0	0

1	0	1
0	-4	0
1	0	1

K rot =

Solution: extend the image; create a zero-padded version (add some rows and columns to the matrix to make its size 'OK').

O =				
		1.0		

	0	0	0	0	0	0	0	0
I =	0	.8	.9	.3	.4	.3	.8	0
	0	.0	.2	.3	.4	.2	.1	0
	0	.2	.8	.2	.1	.2	ფ.	0
	0	.5	.3	.2	.1	.3	.2	0
	0	0	0	0	0	0	0	0

K_rot =	1	0	1
	0	-4	0
	1	0	1

With this 'trick' the non-existing pixels can be treated as zeros and the computation can be done just like in the previous case.

	-0.6		
	1.0		

$$\sum \begin{pmatrix} 0 \times 1 + 0 \times 0 + 0 \times 1 \\ .9 \times 0 + .3 \times -4 + .4 \times 0 \\ .2 \times 1 + .3 \times 0 + .4 \times 1 \end{pmatrix} = -0.6$$

0	0	0	0	0	0	0	0
0	.8	.9	.3	.4	.3	.8	0
0	.0	.2	.3	.4	.2	.1	0
0	.2	.8	.2	.1	.2	.3	0
0	.5	.3	.2	.1	.3	.2	0
0	0	0	0	0	0	0	0

K_rot =	1	0	1
	0	-4	0
	1	0	1

0 =		-0.6		
		1.0		

Í	0	0	0	0	0	0	0	0
I =	0	.8	.9	.3	.4	.3	.8	0
	0	.0	.2	.3	.4	.2	.1	0
	0	.2	.8	.2	.1	.2	.3	0
	0	.5	.3	.2	.1	.3	.2	0
	0	0	0	0	0	0	0	0

K rot =	1	0	1
K_10t =	4	0	4
	0	-4	0
	1	0	1

With the appropriate padding even the corner pixels can be computed.

-3.0	-0.6		
	1.0		

$$\begin{pmatrix} 0 \times 1 + 0 \times 0 + 0 \times 1 \\ 0 \times 0 + .8 \times -4 + .9 \times 0 \\ 0 \times 1 + .0 \times 0 + .2 \times 1 \end{pmatrix} = -3.0$$

Now please

download the 'Lab 02' code package

from the

moodle system

Exercise 1

Implement the function myconv in which:

- Extend your input image (input_img) with zero-valued boundary cells. Use padarray().
- Rotate your kernel (kernel) with 180 degrees, (to ensure the right order of elements for element-wise multiplication – see the boxed formula on bottom of Slide 2). Use rot90().
- Iterate through your extended image with two (nested) **for** loops, multiplying every portion of your extended image with the rotated kernel (even include the corner regions as shown in Slide 10).
- The resulting image (output_img) should have the same size as the input image (input_img).

Exercise 1 – continued

You can assume that the input of the function is a double type grayscale image with values in the [0,1] range. You can also know that the **size of the kernel is 3 × 3.**

You should return the result of the convolution "as is", without any scaling or type conversion.

Run script1.m to check your implementation, and please examine the result.

- Numerical check:
 - the calculated difference value should be smaller than 10 ⁻⁹
 - the dynamics range of the convolved image is moved from [0, 1] to approx. [-2.5, 2.5]
- Visual check: the left side of the trees should be black, the right should be white.

Input image

0.9 0.8 0.7 0.6 0.5 0.4

0.2

Kernel vertical Prewitt, 1st order derivative (3×3)

1.0000	0.0000	-1.0000		0.5
1.0000	0.0000	-1.0000		- 0
1.0000	0.0000	-1.0000	a.	-0.5
				- 1

Output of myconv difference to GT: 1.9231e-12

Output of built-in conv2

Exercise 2

Modify your function myconv in order to:

- Be able to compute with kernels of size $(2k+1) \times (2k+1)$ where k = 1, 2, 3, ... (it means: your padding should depend on the size of the incoming kernel)
- Furthermore, all of the previous conditions should be satisfied.

Run script2.m to check your implementation, and please examine the result.

Input image

0.9

0.8 0.7 0.6

0.5 0.4 0.3 0.2 0.1

Kernel Laplacian of Gaussian (7×7)

0.0228	0.0228	0.0228	0.0229	0.0228	0.0228	0.0228
0.0228	0.0229	0.0249	0.0345	0.0249	0.0229	0.0228
0.0228	0.0249	0.2948	0.6927	0.2948	0.0249	0.0228
0.0229	0.0345	0.6927	-4.9267	0.6927	0.0345	0.0229
0.0228	0.0249	0.2948	0.6927	0.2948	0.0249	0.0228
0.0228	0.0229	0.0249	0.0345	0.0249	0.0229	0.0228
0.0228	0.0228	0.0228	0.0229	0.0228	0.0228	0.0228

Output of myconv difference to GT: 3.2336e-12

Output of built-in conv2

Exercise 3

Modify your function myconv in order to:

• Be able to compute with kernels of size $(2a+1) \times (2b+1)$ where

$$a = 1, 2, 3, ...$$

 $b = 1, 2, 3, ...$ $a \neq b$

(it means: your padding should depend on the size of the incoming kernel in both dimensions as the kernel is not a square anymore)

Furthermore, all of the previous conditions should be satisfied.

Run script3.m to check your implementation, and please examine the result.

Input image

0.8

0.7

0.6

0.5

0.4

0.3 0.2

0.1

ernel	el		
blur	(9×5)		

0.0000	0.0000	0.0000	0.0000	0.0000
0.0931	0.0456	0.0000	0.0000	0.0000
0.0334	0.1078	0.0000	0.0000	0.0000
0.0000	0.0709	0.0623	0.0000	0.0006
0.0000	0.0167	0.1245	0.0167	0,0000
0.0000	0.0000	0.0623	0.0789	0.0000
0.0000	0.0000	0.0000	0.1078	0.0334
0.0000	0.0000	0.0000	0.0456	0.0931
0.0000	0.0000	0.0000	0.0000	0.0000

Output of myconv difference to GT: 9.9776e-13

Second part: Color spaces

You should remember...

Thresholding, segmentation

Thresholding / binarization with a single number:
 If the pixel intensity in the original image is higher than the threshold value then the pixel becomes white in the output image; otherwise it will be black.

$$R = \text{squeeze}(I(:, :, 1));$$
 selecting the red-channel bonus: if the singleton is the sin

selecting the red-channel
honus: if the singleton is the last dim. squeeze is not

bonus: if the singleton is the last dim, squeeze is not necessary

Segmentation:

The process of partitioning an image into multiple segments (sets of pixels, also

known as image objects).

binarization at mid-gray

Exercise 4

Implement the function find_the_duck() in which:

- Segment the input image based on color channels. You can use color space transformations and thresholding only.
- The function should return a logical matrix where true values indicate 'duck'.
- It is required to have an error value less than 1.5%

Implement the function find_the_pine() in which:

- Segment the input image based on color channels. You can use color space transformations and thresholding only.
- The function should return a logical matrix where true values indicate 'pine'.
- It is required to have an error value less than 3.0%

Run script4.m and examine the results.

Original image

THE END