Analysis of Algorithms CS 477/677

Instructor: Monica Nicolescu Lecture 16

Dynamic Programming

- An algorithm design technique used for optimization problems
 - Find a solution with the optimal value (minimum or maximum)
 - A set of choices must be made to get an optimal solution
 - There may be multiple solutions that return the optimal value: we want to find one of them

Dynamic Programming Algorithm

- 1. Characterize the structure of an optimal solution
 - Top down: how can an optimal value for a problem be obtained from combinations of optimal solutions to similar, smaller problems of the same type
- 2. Recursively define the value of an optimal solution
 - Top down: write a recursive formula based on the step above
- 3. Compute the value of an optimal solution
 - Bottom up: compute "smaller subproblems" first, store values
 and choices made at each step
- 4. Construct an optimal solution
 - Top down: start with last choice made and backtrack, finding all choices made

Assembly Line Scheduling

Problem:

What stations should be chosen from line 1 and what from line 2 in order to minimize the total time through the factory for one car?

Dynamic Programming Algorithm

- 1. Characterize the structure of an optimal solution
 - Fastest time through a station depends on the fastest time on previous stations
- 2. Recursively define the value of an optimal solution
 - $f_1[j] = \min(f_1[j-1] + a_{1,j}, f_2[j-1] + t_{2,j-1} + a_{1,j})$
- Compute the value of an optimal solution in a bottomup fashion
 - Fill in the fastest time table in increasing order of j (station #)
- Construct an optimal solution from computed information
 - Use an additional table to help reconstruct the optimal solution
 CS 477/677 Lecture 16

Matrix-Chain Multiplication

Problem: given a sequence $(A_1, A_2, ..., A_n)$ of matrices, compute the product:

$$A_1 \cdot A_2 \cdots A_n$$

Matrix compatibility:

$$C = A \cdot B$$

$$col_{A} = row_{B}$$

$$row_{C} = row_{A}$$

$$col_{C} = col_{B}$$

$$A_{1} \cdot A_{2} \cdot A_{i} \cdot A_{i+1} \cdots A_{n}$$

$$cs_{A_{i}}^{77} = lecture_{i+1}^{16}$$

Matrix-Chain Multiplication

In what order should we multiply the matrices?

$$A_1 \cdot A_2 \cdots A_n$$

- Matrix multiplication is associative:
- E.g.: $A_1 \cdot A_2 \cdot A_3 = ((A_1 \cdot A_2) \cdot A_3)$ = $(A_1 \cdot (A_2 \cdot A_3))$
- Which one of these orderings should we choose?
 - The order in which we multiply the matrices has a significant impact on the overall cost of executing the entire chain of multiplications

MATRIX-MULTIPLY (A, B)

if columns[A] ≠ rows[B] then error "incompatible dimensions" else for $i \leftarrow 1$ to rows[A] do for $j \leftarrow 1$ to columns[B] rows[A] · cols[A] · cols[B] **do** *C*[i, j] = 0 multiplications for $k \leftarrow 1$ to columns[A] do $C[i, j] \leftarrow C[i, j] + A[i, k] B[k, k]$ k cols[B] cols[B] * k rows[A] CS 477/677 - Lecture 16 rows[A]

Example

$$A_1 \cdot A_2 \cdot A_3$$

- A₁: 10 x 100
- A_2 : 100 x 5
- A_3 : 5 x 50
- 1. $((A_1 \cdot A_2) \cdot A_3)$: $A_1 \cdot A_2$ takes $10 \times 100 \times 5 = 5,000$

(its size is 10×5)

 $((A_1 \cdot A_2) \cdot A_3)$ takes $10 \times 5 \times 50 = 2,500$

Total: 7,500 scalar multiplications

2. $(A_1 \cdot (A_2 \cdot A_3))$: $A_2 \cdot A_3$ takes $100 \times 5 \times 50 = 25,000$

(its size is 100 x 50)

 $(A_1 \cdot (A_2 \cdot A_3))$ takes 10 x 100 x 50 =

50,000

Total: 75,000 scalar multiplications CS 477/677 - Lecture 16

Matrix-Chain Multiplication

Given a chain of matrices (A₁, A₂, ..., A_n),
 where for i = 1, 2, ..., n matrix A_i has
 dimensions p_{i-1}x p_i, fully parenthesize the
 product A₁·A₂···A_n in a way that minimizes
 the number of scalar multiplications.

$$A_1 \cdot A_2 \cdot \cdots A_i \cdot A_{i+1} \cdot \cdots A_n$$

 $p_0 x p_1 \cdot p_1 x p_2 \cdot p_{i-1} x p_i \cdot p_i x p_{i+1} \cdot p_{n-1} x p_n$

The Structure of an Optimal Parenthesization

Notation:

$$A_{i...j} = A_i A_{i+1} \cdots A_j, i \leq j$$

• For i < j:

$$A_{i...j} = A_i A_{i+1} \cdots A_j$$

$$= A_i A_{i+1} \cdots A_k A_{k+1} \cdots A_j$$

$$= A_{i...k} A_{k+1...j}$$

• Suppose that an optimal parenthesization of $A_{i...j}$ splits the product between A_k and A_{k+1} , where $i \le k < j$

Optimal Substructure

$$A_{i...j} = A_{i...k} A_{k+1...j}$$

- The parenthesization of the "prefix" $A_{i...k}$ must be an optimal parentesization
- If there were a less costly way to parenthesize A_{i...k'} we could substitute that one in the parenthesization of A_{i...j} and produce a parenthesization with a lower cost than the optimum ⇒ contradiction!
- An optimal solution to an instance of the matrix-chain multiplication contains within it optimal solutions to subproblems

2. A Recursive Solution

Subproblem:

determine the minimum cost of parenthesizing

$$A_{i...j} = A_i A_{i+1} \cdots A_j$$
 for $1 \le i \le j \le n$

- Let m[i, j] = the**minimum** $number of multiplications needed to compute <math>A_{i...j}$
 - Full problem $(A_{1..n})$: m[1, n]

$$-i = j: A_{i...i} = A_i \Rightarrow m[i, i] = 0, \text{ for } i = 1, 2, ..., n$$

2. A Recursive Solution

Consider the subproblem of parenthesizing

$$A_{i...j} = A_i A_{i+1} \cdots A_j \text{ for } 1 \le i \le j \le n$$

$$p_{i-1}p_kp_j$$

$$m[i, k] \qquad \text{for } i \le k < j$$

Assume that the optimal parenthesization

splits the product A_i A_{i+1} \cdots A_i at k ($i \le k < j$)

$$m[i,j] = \underbrace{m[i,k]}_{m[i,j]} + \underbrace{m[k+1,j]}_{m[i,j]} + \underbrace{m[i,j]}_{m[i,j]} + \underbrace{m[k+1,j]}_{m[i,j]} + \underbrace{m[i,k]}_{m[i,j]} + \underbrace{m[k+1,j]}_{m[i,j]} + \underbrace{m[k+1,j]}_{m[i,k]} + \underbrace{m[k+1,j]}_{m[k+1,j]} + \underbrace{m[k+1,j]}_{m[k+1,j$$

min # of multiplications # of multiplications to compute A_{k+1...i}

to compute $A_{i...k}A_{k...i}$

 $p_{i-1}p_kp_j$

CS 477/677 - Lecture 16

2. A Recursive Solution

```
m[i, j] = m[i, k] + m[k+1, j] + p_{i-1}p_kp_j
```

- We do not know the value of k
 - There are j i possible values for k: k = i, i+1, ..., j-1
- Minimizing the cost of parenthesizing the product $A_i A_{i+1} \cdots A_i$ becomes:

3. Computing the Optimal Costs

$$m[i, j] = \begin{cases} 0 & \text{if } i = j \\ m[i, j] = \begin{cases} min \{m[i, k] + m[k+1, j] + p_{i-1}p_kp_j\} & \text{if } i < j \end{cases} \end{cases}$$

- How many subproblems do we have?
 - Parenthesize $A_{i...j}$ for $1 \le i \le j \le n \Rightarrow \Theta(n^2)$
 - One subproblem for each choice of i and j

CS 477/677 - Lecture 16

3. Computing the Optimal Costs

$$m[i, j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{m[i, k] + m[k+1, j] + p_{i-1}p_kp_j\} & \text{if } i < j \end{cases}$$

- How do we fill in table m[1..n, 1..n]?
 - Determine which entries of the table are used in computingm[i, j]

$$A_{i...j} = A_{i...k} A_{k+1...j}$$

 Fill in m such that it corresponds to solving problems of increasing length

3. Computing the Optimal Costs

$$m[i, j] = \begin{cases} 0 & \text{if } i = j \\ \min \{m[i, k] + m[k+1, j] + p_{i-1}p_kp_j\} & \text{if } i < j \end{cases}$$

- Length = 1: i = j, i = 1, 2, ..., n
- Length = 2: j = i + 1, i = 1, 2, ..., n-1

m[1, n] gives the optimal solution to the problem

Compute elements on each diagonal, starting with the longest diagonal.

In a similar matrix **s** we keep the optimal values of **k**. CS 477/677 - Lecture 16

3

Example: min $\{m[i, k] + m[k+1, j] + p_{i-1}p_kp_j\}$

$$m[2, 2] + m[3, 5] + p_1p_2p_5 |_{k=2}$$

$$m[2, 3] + m[4, 5] + p_1p_3p_5 |_{k=3}$$

$$m[2, 4] + m[5, 5] + p_1p_4p_5 |_{k=4}$$

 Values m[i, j] depend only on values that have been previously computed

CS 477/677 - Lecture 16

Example min $\{m[i, k] + m[k+1, j] + p_{i-1}p_kp_j\}$

Compute $A_1 \cdot A_2 \cdot A_3$

- $A_1: 10 \times 100 (p_0 \times p_1)$
- A_2 : 100 x 5 $(p_1 x p_2)$

• A ₃ : 5 x 50	$(p_2 \times p_3)$	1	0	
m[i, i] = 0 for $i = 0$. 2 . 0,			
m[1, 2] = m[1,	(A_1A_2)			
= 0 +	0 + 10 *100* 5	= 5,000	0	

$$m[2, 3] = m[2, 2] + m[3, 3] + p_1p_2p_3$$
 (A_2A_3)
= 0 + 0 + 100 * 5 * 50 = 25,000

m[1, 3] = min m[1, 1] + m[2, 3] + p₀p₁p₃ = 75,000 (A₁(A₂A₃)) m[1, 2] + m[3, 3] + p₀p₂p₃ = 7,500 ((A₁A₂)A₃) ((A₁A₂)A₃)

2 7500 25000

3

0

- Top-down approach
- Store the optimal choice made at each subproblem
- s[i, j] = a value of k such that an optimal parenthesization of A_{i...j} splits the product between A_k and A_{k+1}

- s[1, n] is associated with the entire product $A_{1,n}$
 - The final matrix multiplication will be split at k = s[1, n]

$$A_{1..n} = A_{1..k} \cdot A_{k+1..n}$$

$$A_{1..n} = A_{1..s[1, n]} \cdot A_{s[1, n]+1..n}$$

 For each subproduct recursively find the corresponding value of k that results in an optimal parenthesization

• s[i, j] = value of k such that the optimal parenthesization of A_i A_{i+1} ··· A_j splits the product between A_k and A_{k+1}

•
$$s[1, n] = 3 \Rightarrow A_{1..6} = A_{1..3} A_{4..6}$$

•
$$s[1, 3] = 1 \Rightarrow A_{1..3} = A_{1..1} A_{2..3}$$

•
$$s[4, 6] = 5 \Rightarrow A_{4..6} = A_{4..5} A_{6..6}$$

```
PRINT-OPT-PARENS(s, i, j)
if i = j
 then print "A",
  else
       print "("
       PRINT-OPT-PARENS(s, i, s[i, j])
       PRINT-OPT-PARENS(s, s[i, i] + 1, j)
       print ")"
```

_	1	2	3	4	5	6	
6	3	3	3	5	5	1	
5	3	3	3	4	-		
4	3	3	3	-			
3	1	2	-				j
2	1	_					
1	1						
•				i			-

Example: $A_1 \cdots A_6$ (($A_1 (A_2 A_3)$)(($A_4 A_5$) A_6))

```
3
                                                                               5
                                                                                     6
PRINT-OPT-PARENS(s, i, j)
                                         s[1..6, 1..6]
                                                              3
                                                         3
                                                                    3
                                                                          5
                                                                                5
if i = j
  then print "A",
                                                         3
                                                              3
                                                                    3
                                                                          4
                                                    5
  else print "("
                                                         3
                                                              3
                                                                    3
                                                    4
       PRINT-OPT-PARENS(s, i, s[i, j])
                                                              2
                                                    3
       PRINT-OPT-PARENS(s, s[i, j] + 1, j)
       print ")"
                                                    2
P-O-P(s, 1, 6) s[1, 6] = 3
i = 1, j = 6 "("
                   P-O-P (s, 1, 3) s[1, 3] = 1
                       i = 1, j = 3 "(" P-O-P(s, 1, 1) \Rightarrow "A<sub>1</sub>"
                                          P-O-P(s, 2, 3) s[2, 3] = 2
                                          i = 2, i = 3 "(" P-O-P (s, 2, 2) \Rightarrow
    "A<sub>2</sub>"
                                                                   P-O-P(s, 3, 3) \Rightarrow
```

"A₃"

66 \ 11

25

Readings

For this lecture

- Sections 6.3, 6,5
- Chapter 13

Coming next

- Chapter 17