

# PROJECT REPORT

Using ST-GCN technology to supplement the meteorological data of power plants

\_\_\_\_\_\_

# 目前進度與成果

| Task                 | Status               | Notes |
|----------------------|----------------------|-------|
| 整理目前所有進度             | <b>✓</b> Completed ~ |       |
| 重新理解跟檢查ST-GCN部分的運作邏輯 | <b>✓</b> Completed ∨ |       |
| 整合CODIS與ERA5         | In progress ~        |       |
|                      | <b>▼</b> Not start ∨ |       |

#### Framework



### ST-GCN程式碼運作邏輯



### 鄰接矩陣

| Labeled graph                 | Degree matrix                                                | Adjacency matrix                                                               | Laplacian matrix                                                                 |
|-------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 6                             | $\begin{pmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$ | $\begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}$ | $\begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}$ |
| $\binom{6}{4}$ $\binom{5}{5}$ | $\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$   | $\begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \end{bmatrix}$ | $\left[ \begin{array}{cccccccccccccccccccccccccccccccccccc$                      |
| Y TU                          | 0 0 0 3 0 0                                                  | $\begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$ | $\left[ \begin{array}{cccccccccccccccccccccccccccccccccccc$                      |
| (3)-(2)                       | 0 0 0 0 3 0                                                  | 1 1 0 1 0 0                                                                    | $\begin{bmatrix} -1 & -1 & 0 & -1 & 3 & 0 \end{bmatrix}$                         |
|                               | (0 0 0 0 0 1)                                                | (0 0 0 1 0 0)                                                                  |                                                                                  |

⚠傳統GCN鄰接矩陣(edge關係只有O/1)

☑根據距離建立的鄰接矩陣(edge關係根據距離遠近建立O~1的高斯權重)

- 1. 距離高斯權重 → **A\_raw**
- 2.**加自環(與自己建立關係) → I + A\_raw**
- 3. Degree matrix 度數向量 → deg = (I+A\_raw).sum(1)
- 4.對稱正規化 → A\_hat = (I + A\_raw) \* (1/√deg)[:,None] \* (1/√deg)[None,:]

$$\hat{A} = D^{-rac{1}{2}} (I+A) D^{-rac{1}{2}}$$

#### ST-GCN model

輸入:過去 W=24 步、4 個特徵、N 個節點

輸出:base(距離插值) + delta,即預測值



「時間 CNN 濾波讀趨勢」 + 「圖卷積讀鄰居」 ×(堆疊層數) → 透過調整delta提升預測精度

先在「時間軸」上滑一顆 1-D 濾波器(Conv2d)。 然後把得到的特徵圖,每一格都跟鄰居互相「摻平均」(Â 乘)。 最後再過一次小全連接層 W (1×1 conv) 做特徵重配。

#### Loss

$$\mathcal{L} = l_{\text{known}} + \lambda_s l_{\text{smooth}} + \lambda_m l_{\text{mask}}$$

- (1) 已知節點誤差 l\_known:把「看得見」的已知節點預測好
- (2) 新節點平滑 l\_smooth:讓新節點預測值不要太脫離「群體走勢」,類似正則化
- (3) Mask 復原 l\_mask:把部分已知節點整段24時間步的歷史「蓋起來」;這裡要求預測值要貼近遮蓋前的真值。

## 遇到的問題或困難

1.目前還算順利

## 想要討論的內容

- 1. 台電數據是否要再處理
- 2.**SVMD**順序

### 下週預計的工作進度與預期成果

| Task         | Status        | Notes                    |
|--------------|---------------|--------------------------|
| 整合CODIS與ERA5 | In progress ~ | 由於邏輯跟數據結構相同,整合起來較簡潔      |
| 調整BiLSTM     | Not started ~ | 確保後續運作邏輯一切正常             |
| 稍微擴大數據集      | Not started ~ | 以CODIS為主,加入其他台中氣象測站      |
| 評估ST-GCN內插成效 | Not started ~ | 比較不同內插方法 ex:Kriging, IDW |