Bevezetés a számítástechnikába

Előzetes segédlet az első nagy zárthelyi dolgozatra való felkészülésben

Naszlady Márton Bese, Siklósi Bálint

2023. október 4.

Az alábbiak olyan jellemző feladatok, melyek a NagyZH-ban is előfordulhatnak. Esetleg lehetnek olyan feladatok is a ZH-ban, amik ebben a dokumentumban nem olvashatók.

1. Várható feladattípusok

- Fogalmak (lásd 2. szekció)
- Igaz-Hamis (± 1 pontért)
 - Az SSD egy RAM típusú tároló, mert a blokkokat címtől függetlenül azonos idő alatt lehet elérni.
 - Az ASCII egy karakterek tárolására használt formátum, ahol az "ő" karakter kódja 111.
 - Neumann János tranzisztorokat javasolt használni számítógépekben, mert a Subway Surfers nem futott elég gyorsan a gépén.
- Ábrák felrajzolása; pl.: Neumann-architektúra, logikai áramkörök vázlata (NOT, AND, OR kapuk), CPU felépítése, töredezettség, LBA-CHS címzés, RAID, ...
- Logikai áramkör kiértékelése
- Kódolás különféle kódtáblák használatával
- Számrendszerek közti átváltás
- Egész és törtszámok ábrázolása és értelmezése
- Little Man Computer kód értelmezése (mi a kimenete, milyen memóriaállapotok vannak)

2. Fogalmak

Témakörök szerinti bontásban (ezeken kívűl is használni kell tudni mindazt, ami az órákon elhangzott):

- ullet Generációk, operációs rendszerek: Számítógép fejlődése nagyobb lépések ismerete (pl. relé ightarrowelektroncső \rightarrow tranzisztor \rightarrow integrált áramkör), Neumann elvek (memória, CU, ALU), Turing elvek (szalag, fej, állapot, szabályok), lyukkártya, monitor, Moore's law
- Reprezentáció: logikai igazságtáblázat, számrendszer értelmezése, kettes/nyolcas/tizenhatos számrendszer, helyiérték, mértékegységek, előjelbites ábrázolás, kettes komplemens ábrázolás, eltolt (Excess) ábrázolás, fix- és lebegőpontos számábrázolás, túlcsordulás, alulcsordulás, karakterkódolás
- Hardver: tranzisztor, NOT, AND, OR, XOR* kapuk, összeadók*, ALU*, regiszter*, CPU, FDE-ciklus, Little Man Computer, címbusz, adatbusz, vezérlőbusz, szinkron/aszinkron kommunikáció, órajel, dinamikus/statikus memória, RAM, ROM, PROM, EPROM, EEPROM, SSD, HDD, merevlemez elérési ideje, háttértárak jellemzői, volatile memória, memória-hierarchia
 - *:elég csak a felismerésük és a működési elvük ismerete
- Fájlrendszerek: háttértár jellemzői, optikai tároló, merevlemez, CHS/LBA címzés, flash, wear levelling, partíció, RAID, RAID0/1/5/10, fájlrendszer, metaadat, töredezettség (külső/belső)
- Adatkommunikáció: párhuzamos/soros átvitel, szinkron/aszinkron átvitel, busz

3. Példák

1. Egészítsd ki az alábbi táblázatot!

Dec	Bin	Okt	Hex
42			
		042	
			0×42

- 2. Ábrázold a -42 és a +42 számokat fix 1 byte-on előjeles egész, kettes komplemens, excess-64 és excess-10 módokon.
- 3. Ábrázold a következő számokat lebegőpontos számábrázolással 2 byteon, ahol 1 bit előjelbit, 5 biten tároljuk a karakterisztikát 15-ös eltolással (Excess-15) és 10 biten a mantisszát.
 - -11
 - **27,3125**
- 4. Hogyan változnak az alábbi Little Man Computer kód végrehajtása esetén a memóriák, a Program Counter és az ACC tartalma, ha a bemenet 5 (Elég csak a változó értékeket felírni, az egyes végrehajtott utasítások után.)

Cím	Tartalom	Cím	Tartalom
0	INPUT	15	STORE 99
1	BRANCH IF ZERO 17	16	BRANCH 5
2	BRANCH IF ONE 20	17	LOAD 95
3	SUBSTRACT 97	18	OUTPUT
4	STORE 99	19	COFFEE BREAK
5	LOAD 96	20	LOAD 96
6	ADD 95	21	BRANCH 18
7	STORE 97	22	LOAD 96
8	LOAD 96	23	BRANCH 18
9	STORE 95	95	DAT 0
10	LOAD 97	96	DAT 1
11	STORE 96	97	DAT 2
12	LOAD 99	98	DAT 1
13	SUBSTRACT 98	99	DAT 0
14	BRANCH IF ZERO 22		

5. Mi lesz a kimenete az alábbi logikai áramkörnek, ha a bemenetek: A=1, B=0, C=1.

