Vu Xuan Kim Cuong (Stephen) 1000646 – ESD Class of 2016

Question 2(d).

 Since the covariance matrix is just a diagonal matrix, it means that there is no correlation between the dimensions, and thus we can easily generate the vector such that each dimension follows univariate normal with mean 0 and variance

$$\sigma^2 = \frac{1.0}{i + 1.0}$$
 for i from 0 to 47

Question 3(d).

- Similarly, the covariance matrix is an identity matrix, which means we can generate the vector by generating 48 univariate normal random variable, with mean 0 and variance

$$\sigma^2 = 1.0$$

Question 6.

(c)

Average $MSE_{\lambda=e^{-30},n=100} = 31.2287495998$, Average $MSE_{\lambda=5,n=100} = 18.9139455322$

(d). There is a trade-off between $\lambda=e^{-30}$ and $\lambda=5$: for $\lambda=5$ the mean square error is smaller, but there is a bias. However, at low sample number, it is better to choose $\lambda=5$

(†). Average $MSE_{\lambda=e^{-30}}$ $_{n=500} = 16.1942046138$, Average $MSE_{\lambda=5}$ $_{n=500} = 15.6105976969$

Now, the average MSE is comparable to each other, in this case it is better to choose $\lambda=e^{-30}$ since it has lower bias and reasonably low average.

Question 7.

(b). $A_1 = 30.2268800861$, $V_1 = 17.9145200882$

(f). $A_2 = 30.1838397052$, $V_2 = 3.05221508022$

Therefore, doing a 10-repetition, 5-fold cross-validation is better since it gives smaller variance.