If you find our supplementary experiments acceptable, we would be pleased to include them in the appendix.

1 Different Dataset

Figure 1: The figure shows the Fundamental Performance on collab and yelp

Model	Clean	Feature Interference			Structure Interference			Temporal Interference		
		10%	20%	50%	5%	10%	20%	n = 1	n = 2	n = 5
										$59.46{\pm}0.5$
TeaRGIB	93.41 ± 0.3	90.26 ± 0.3	85.06 ± 0.3	74.92 ± 0.3	$91.19 {\pm} 0.4$	$85.07{\pm}0.2$	$78.72 {\pm} 0.4$	$84.42{\pm}0.3$	$82.31 {\pm} 0.2$	73.11 ± 0.3
DGIB TeaRGIB										
	DGIB FeaRGIB	DGIB 92.17±0.2 TeaRGIB 93.41±0.3 DGIB 76.88±0.2	Clean 100 10	Model Clean 10% 20%		Model Clean 10% 20% 50% 5%	Model Clean 10% 20% 50% 5% 10%	Note Clean 10% 20% 50% 5% 10% 20% 20%	Model Clean 10% 20% 50% 5% 10% 20% $n = 1$ DGIB 92.17+0.2 78.95±0.3 73.72±0.3 64.18±0.6 87.47±0.1 80.73±0.2 74.43±0.3 83.32±0.2 FearGIB 93.41±0.3 90.26±0.3 85.06±0.3 74.92±0.3 91.19±0.4 85.07±0.2 78.72±0.4 84.42±0.3 PGIB 76.88±0.2 71.54±0.4 67.34±0.5 62.98±0.4 75.27±0.4 74.51±0.2 73.43±0.3 75.39±0.3	Note Clean 10% 20% 50% 5% 10% 20% n=1 n=2

Table 1: Robustness $\operatorname{results}(\operatorname{AUC})$ on collab and yelp datasets with data perturbation at different levels.

2 Advanced Ablation on Von Neumann entropy

Figure 2: The figure shows the Fundamental Performance on datasets

Figure 3: The figure shows ablation the Robust Performance on Bitcoin trading

Figure 4: The figure shows ablation the Robust Performance on MathOverflow

Figure 5: The figure shows ablation the Robust Performance on act-mooc