FORMULARIO TRIGONOMETRÍA

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

RAZONES TRIGONOMÉTRICAS DE LOS ÁNGULOS NOTABLES

		Seno	Coseno	Tangente
30°	π	1	√3	$\sqrt{3}$
30	6	2	2	3
45°	π	$\sqrt{2}$	$\sqrt{2}$	1
40	4	2	2	31
60°	π	√3	1	5
60	3	2	2	V3

CÍRCULO TRIGONOMÉTRICO

RELACIONES ENTRE LAS FUNCIONES TRIGONOMÉTRICAS

$sen^2\alpha + cos^2\alpha = 1$	$tg\alpha = \frac{sen\alpha}{}$	sec $\alpha = \frac{1}{\alpha}$		
$1 + tq^2 \alpha = sec^2 \alpha$	cosa	COSα		
	$cta\alpha = \frac{\cos\alpha}{}$	1		
$1 + \operatorname{ctg}^2 \alpha = \operatorname{csc}^2 \alpha$	sena	$csc\alpha = \frac{1}{con\alpha}$		
	$tg\alpha = \frac{1}{1}$	sena		
	ctaa.			

SIGNO DE LAS FUNCIONES EN CADA CUADRANTE

	1	II	III	IV
sen	+	+	-	-
cos	+	_	-	+
tg	+	-	+	-

IDENTIDADES DE SUMA Y DIFERENCIA DE ÁNGULOS

 $sen(\alpha + \beta) = sen \alpha..os \beta + os \alpha.sen \beta$ $sen(\alpha - \beta) = sen \alpha..os \beta - os \alpha.sen \beta$ $os (\alpha + \beta) = os \alpha.os \beta - sen \alpha.sen \beta$ $os (\alpha - \beta) = os \alpha.os \beta + sen \alpha.sen \beta$

$$tg(\alpha + \beta) = \frac{tg\alpha + tg\beta}{1 - t\alpha\alpha ta\beta} \quad tg(\alpha - \beta) = \frac{tg\alpha - tg\beta}{1 + t\alpha\alpha ta\beta}$$

IDENTIDADES DEL ÁNGULO DOBLE

$$sen2\alpha = 2sen\alpha cos\alpha$$

$$cos 2\alpha = cos^{2} \alpha - sen^{2}\alpha$$

$$tg(2\alpha) = \frac{2tg\alpha}{1 - tg^{2}\alpha}$$

IDENTIDADES DEL ÁNGULO MEDIO

$$\operatorname{sen}\left(\frac{\alpha}{2}\right) = \pm \sqrt{\frac{1 - \cos \alpha}{2}} \quad \cos\left(\frac{\alpha}{2}\right) = \pm \sqrt{\frac{1 + \cos \alpha}{2}}$$
$$\operatorname{tg}\left(\frac{\alpha}{2}\right) = \pm \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}}$$

FUNCIONES TRIGONOMÉTRICAS DE ÁNGULOS OPUESTOS

 $\cos(-\alpha) = \cos \alpha$ $\sec(-\alpha) = \sec \alpha$ $\sec(-\alpha) = -\sec \alpha$ $\csc(-\alpha) = -\csc \alpha$ $\sec(-\alpha) = -\csc \alpha$ $\cot(-\alpha) = -\cot \alpha$

FÓRMULAS DE REDUCCIÓN AL PRIMER CUADRANTE (β ∈ Ic)

TRANSFORMACIÓN EN PRODUCTO DE LA SUMA O DIFERENCIA DE COSENOS Y SENOS

$$senA + senB = 2sen\left(\frac{A+B}{2}\right)cos\left(\frac{A-B}{2}\right)$$

$$senA - senB = 2cos\left(\frac{A+B}{2}\right)sen\left(\frac{A-B}{2}\right)$$

$$cos A + cos B = 2cos\left(\frac{A+B}{2}\right)cos\left(\frac{A-B}{2}\right)$$

$$cos A - cos B = -2sen\left(\frac{A+B}{2}\right)sen\left(\frac{A-B}{2}\right)$$

TEOREMAS DEL SENO Y COSENO

TEOREMA DEL SENO

$$\frac{\mathsf{a}}{\mathsf{sen}\alpha} = \frac{\mathsf{b}}{\mathsf{sen}\beta} = \frac{\mathsf{c}}{\mathsf{sen}\gamma}$$

TEOREMA DEL COSENO

$$\begin{aligned} &a^2=b^2+c^2-2\cdot b\cdot c\cdot \cos\alpha\\ &b^2=a^2+c^2-2\cdot a\cdot c\cdot \cos\beta\\ &c^2=a^2+b^2-2\cdot a\cdot c\cdot \cos\alpha \end{aligned}$$