NOTES	energy Comme
11 100	Logistics K

*This curved line is obtained by sigmoid function. $\sigma(x) = 1$

maths

relsion

*we apply sigmoid on a straight line to fit the datapoints inorder to get the classification correct

 $\sigma(y) = \sigma(mx+c)$

+ y = w, x, + w, x, +... + w, x, + b - we apply sigmoid on this whole egrabore. + Mere w is weights and x are features.

 $y = w \cdot x + b$ $\hat{y} = \sigma(\omega x + b)$

NOTES

Date

* 1055 for i.e Log-Loss

 $cost f = -1 \sum_{j=1}^{m} [ylog(j) + (1-y)log(1-j)]$

where y = ypredicted

 $\hat{y} = \sigma(w^{T}x+b) = \sigma(z)$

* Now we calculate derivative of cost of with regard to w & b.

cost for with regard to web.

* Loss/Error for Single observation

can be given by Here $\hat{y} = a$.

 $L = - \left[y \log_a + (1-y) \log_{(1-a)} \right]$ Q = o(z) = 1 $(1+e^{-z})$

 $Z = \omega^T x + b$

.. By wing chain rule;

 $\frac{\partial L}{\partial \omega} = \frac{\partial L}{\partial a} \times \frac{\partial a}{\partial z} \times \frac{\partial z}{\partial \omega}$

dL = -y + (1-y)

da a (1-a)

 $\partial a = (1 + e^{-2})^{-1} = e^{-2}$

Now we know,

 $q^2 = 1$ $|1+e^{-2}|^2$

So, $e^{-2} = |1-a| \times a^2 = a(1-a)$

2-

02 = X+0 = X

 $\frac{\partial L}{\partial \omega} = \left[\frac{-y}{a} + \frac{(1-y)}{(1-a)} \right] \times (a) (1-a) \times x$ $= \left[\frac{(1-a)}{a} \right] \times (a) (1-a) \times x$

in Now remeber this is w.r. + only one observation so to calculate for all observations we take into

NOTES

Date

consideration matrix multiplication dost = (A-Y).x.

DW

. Now to calculate for b

 $\frac{\partial L}{\partial b} = \frac{\partial L}{\partial a} \times \frac{\partial a}{\partial z} \times \frac{\partial z}{\partial b}$

dz = 1

 $\frac{\partial L}{\partial b} = \frac{(\alpha - y)}{\alpha (+ \alpha)} \times \alpha (+ \alpha) \times 1 = (\alpha - y)$

 $\frac{\partial \cos t - (A-y)}{\partial b} = \frac{1}{m} (A-y) \cdot X^{T}$ $\frac{\partial \cos t}{\partial b} = \frac{1}{m} (A-y) \cdot X^{T}$

New When = Word & . DWT M B=B-X. DB

or is the learning rate.