Question#1 3-bit gray code counter

a) I) State Assignment

STATE	GRAY CODE		
S ₀	000		
S ₁	001		
S ₂	011		
S ₃	010		
S ₄	110		
S ₅	111		
S ₆	101		
S ₇	100		

II) State diagram

III) State table

Present state	(Next state, output)	
S ₀	(S _{1,} 0)	
S ₁	(S ₂ , 0)	
S ₂	(S _{3,} 0)	
S ₃	(S ₄ ,0)	
S ₄	(S _{5,} 0)	
S ₅	(S ₆ , 0)	
S ₆	(S _{7,} 0)	
S ₇	(S _{0,} 1)	

IV) Transition and output table

Present state	Next state	Output
S ₀	S ₁	0
S ₁	S ₂	0
S ₂	S ₃	0
S ₃	S ₄	0
54	S ₅	0
S ₅	S ₆	0
S ₆	S ₇	0
S ₇	S ₀	1

V) Excitation table

Pre	sent st	ate	Next state		D F/F inputs			Output	
Q(2)	Q(1)	Q(0)	Q(2)	Q(1)	Q(1)	D(2)	D(1)	D(0)	Out
0	0	0	0	0	1	0	0	1	0
0	0	1	0	1	1	0	1	1	0
0	1	1	0	1	0	0	1	0	0
0	1	0	1	1	0	1	1	0	0
1	1	0	1	1	1	1	1	1	0
1	1	1	1	0	1	1	0	1	0
1	0	1	1	0	0	1	0	0	0
1	0	0	0	0	0	0	0	0	1

b) Kmap:

0201	Q ₀	0)	1	10
	0	0	0	1
1	0	1	1	1

$$D(2) = Q_2Q_0 + Q_1 \sim Q_0$$

02	Q, 60	0)) [10
	0	1	1	1
1	0	0	0	1

$$D(1) = \sim Q_2Q_0 + Q_1 \sim Q_0$$

Q2 00	0)	1	10
	1	0	0
1 0	0	1	1

$$D(0) = Q_2Q_1 + \sim Q_2 \sim Q_1$$

Circuit Diagram:

