Zadania z meczu 2024

Bity z kosmosu (BIT)

- Dawid Kot
- Adam Szymaszkiewicz
 - Maciej Mokrzycki
- Adam Paraszkiewicz

Zadania

Zadanie 1: Ukryta permutacja

Dana jest ukryta permutacja p długości n ($1 \le n \le 10^3$). W jednym zapytaniu możesz podać ciag a długości n spełniajacy $1 \le a_i \le n$ (a nie musi być permutacja). W odpowiedzi dostaniesz $|\{i \in \{1, ..., n\} : p_i = a_i\}|$, czyli liczbe pozycji, na których a ma taka sama wartość jak p. Znajdź permutacje p zadajac co najwyżej 6666 zapytań. Permutacja p jest wybierana przed uruchomieniem programu i nie zmienia sie w zależności od zadawanych pytań.

Zadanie 2: Graf ważony

Dany jest nieskierowany graf ważony o n wierzchołkach i m pokolorowanych krawedziach ($1 \le n, m \le 5 \cdot 10^5$), gdzie i-ta krawedź ma kolor c_i i długość l_i ($1 \le c_i \le m; 1 \le l_i \le 10^9$). Teraz możesz wykonać k ($1 \le k \le 10^5$) kroków, przy czym w i-tym kroku możesz przejść przez dowolna liczbe krawedzi tak długo, jak wszystkie sa koloru a_i oraz ich łaczna waga nie przekracza b_i ($1 \le a_i \le m; 1 \le b_i \le 10^9$). Dla każdego wierzchołka powiedz, czy da sie do niego dotrzeć wykonując co najwyżej k kroków zaczynając z wierzchołka 1.

Zadanie 3: Permutacje

Dane sa dwie permutacje a, b długości n ($1 \le n \le 10^6$). Powiedz ile jest permutacji c długości n, że dla każdego $1 \le i \le n$ $c_i = a_i$, lub $c_i = b_i$.

Zadanie 4: Szeregi Potegowe

Ile jest n-elementowych ($1 \le n \le 10^6$) ciagów liczb całkowitych a_1, a_2, \ldots, a_n takich, że dla każdego $1 \le i \le n, \ 1 \le a_i \le M$ oraz $\sum_{i=1}^n a_i \le K$ ($1 \le M \le 10^6$; $n \le K \le n \cdot M$)? Jako odpowiedź podaj reszte z dzielenia liczby takich ciagów przez $10^9 + 7$. Podzadanie za 5 punktów: $1 \le n, M \le 1000$.

Zadanie 5: Ciag rosnacy

Dany jest n-elementowy ciag a_1, a_2, \ldots, a_n ($1 \le n \le 10^6$; $1 \le a_i \le 10^9$). Możemy wykonywać na nim operacje, gdzie jedna operacja polega na wzieciu pary dwóch sasiednich elementów (a_k, a_{k+1}) i zastapieniu ich przez jeden element o wartości $a_k + a_{k+1}$. Ile minimalnie operacji trzeba wykonać, aby elementy ciagu były w porzadku niemalejacym?

Zadanie 6: Bijekcja

Dany jest ciag n liczb całkowitych $(1 \le n \le 10^6)$ a_1, a_2, \ldots, a_n $(1 \le a_i \le 10^9)$. Stwierdzić, czy istnieje bijekcja $\phi: \{1, 2, \ldots, n\} \to \{1, 2, \ldots, n\}$, że $a_{\phi(1)}$ mod $a_{\phi(2)}$ mod \cdots mod $a_{\phi(n)} \ne 0$.

Zadanie 7: Plansza

Dana jest plansza $n \times m$ ($1 \le n, m \le 1000$). Na każdym polu znajduje sie strzałka w lewo, prawo, góre, lub dół. Z każdego pola można przeskoczyć na dowolne inne pole odległe o co najwyżej k ($1 \le k \le 1000$) zgodnie z kierunkiem strzałki. Dla każdego pola stwierdź, czy zaczynajac na nim można wyskoczyć poza plansze.

Zadanie 8: Graf dwudzielny

Dany jest graf prosty o wierzchołkach $1, 2, \ldots, n$ $(1 \le n \le 600)$, jednak nie znamy jego krawedzi. Dostepne sa zapytania. Zapytanie odpowiada na pytanie Dla $X \subseteq \{1, 2, \ldots, n\}$, ile jest krawedzi o obu końcach w X". Stwierdzić w co najwyżej 20 000 zapytań, czy graf jest dwudzielny i podać dowód swojej tezy. Jeśli graf jest dwudzielny, zaprezentować podział jego wierzchołków na dwa niezależne zbiory, a jeśli nie jest, wskazać cykl nieparzystej długości.

Zadanie 9: Najwieksza suma podciagu

Dany jest *n*-elementowy ($1 \le n \le 10^6$) ciag liczb całkowitych a_1, a_2, \ldots, a_n ($|a_i| \le 10^9$). Jaka jest najwieksza możliwa suma spójnego podciagu a o nieparzystej długości?

Zadanie 10: Fajne słowo

Rozważmy słowo s składające sie z liter A lub B. Słowo jest fajne, gdy dla każdego jego podsłowa $t |\#t(A) - \#t(B)| \le 2$, gdzie #w(x) oznacza liczbe wystapień litery x w słowie w. Ile jest fajnych słów długości n $(1 \le n \le 10^6)$?

Zadanie 11: Klawiatura

Mamy klawiature z 26 literami a,b,\ldots,z . Klawiatura jest zepsuta i czasami po wciśnieciu klawisza z literka α , zamiast tego jest pisana literka $\operatorname{next}(\alpha)$, gdzie $\operatorname{next}(a) = b, \operatorname{next}(b) = c,\ldots,\operatorname{next}(z) = a$. Monitor też nie działa, wiec podczas pisania wiadomości nie widać, jaka literka zostanie zapisana. W jaki sposób dysponujac taka klawiatura przesłać dowolna wiadomość tak, by dało sie ja jednoznacznie odkodować. Wysłana wiadomość powinna być tak krótka jak to możliwe.