PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(21) International Application Number: PCT/US95/00912 (22) International Filing Date: 23 January 1995 (23.01.95) Published With international search report. 86/184,605 21 January 1994 (21.01.94) With international search report. 86/184,605 Performed States: CA, JP, European patent (AT, BE, CH, DDK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). Published With international search report. 86/184,605 Piper the expiration of the time limit for amending to	(51) International Patent Classification ⁶ :		(11) International Publication Number: WO 95/19988
DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). (22) International Filing Date: 23 January 1995 (23.01.95) (30) Priority Data: 08/184,605 21 January 1994 (21.01.94) US ### Published With international search report. Before the expiration of the time limit for amending to claims and to be republished in the event of the receipt amendments. (71) Applicant: ICOS CORPORATION [US/US]; 22021 20th Avenue, S.E., Bothell, WA 98021 (US). (72) Inventors: DeMAGGIO, Anthony, J.; 1204 126th Court, N.E., Kirkland, WA (US). HOEKSTRA, Merl, F.; 10321 216th Street, S.E., Snohomish, WA (US). (74) Agent: NOLAND, Greta, E.; Marshall, O'Toole, Gerstein, Murray & Borun, 6300 Sears Tower, 233 South Wacker		A1	(43) International Publication Date: 27 July 1995 (27.07.95)
(30) Priority Data: 08/184,605 21 January 1994 (21.01.94) US (71) Applicant: ICOS CORPORATION [US/US]; 22021 20th Avenue, S.E., Bothell, WA 98021 (US). (72) Inventors: DeMAGGIO, Anthony, J.; 1204 126th Court, N.E., Kirkland, WA (US). HOEKSTRA, Merl, F.; 10321 216th Street, S.E., Snohomish, WA (US). (74) Agent: NOLAND, Greta, E.; Marshall, O'Toole, Gerstein, Murray & Borun, 6300 Sears Tower, 233 South Wacker			DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
Avenue, S.E., Bothell, WA 98021 (US). (72) Inventors: DeMAGGIO, Anthony, J.; 1204 126th Court, N.E., Kirkland, WA (US). HOEKSTRA, Merl, F.; 10321 216th Street, S.E., Snohomish, WA (US). (74) Agent: NOLAND, Greta, E.; Marshall, O'Toole, Gerstein, Murray & Borun, 6300 Sears Tower, 233 South Wacker	08/184,605 21 January 1994 (21.01.94)		With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.
Kirkland, WA (US). HOEKSTRA, Merl, F.; 10321 216th Street, S.E., Snohomish, WA (US). (74) Agent: NOLAND, Greta, E.; Marshall, O'Toole, Gerstein, Murray & Borun, 6300 Sears Tower, 233 South Wacker)21 20	th
Murray & Borun, 6300 Sears Tower, 233 South Wacker	Kirkland, WA (US). HOEKSTRA, Merl, F.; 103		
	Murray & Borun, 6300 Sears Tower, 233 South		

(54) Title: MATERIALS AND METHODS RELATING TO PROTEINS THAT INTERACT WITH CASEIN KINASE I

(57) Abstract

The present invention relates generally to identification of proteins, designated TIH proteins, that interact with casein kinase I isoforms and to isolation of polynucleotides encoding the same.

BD 177

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
ΑU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain `	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon		-		

Materials and Methods Relating To Proteins That Interact With Casein Kinase I

This application is a continuation-in-part of U.S. Patent Application Serial No.08/184,605, filed January 21, 1994.

FIELD OF THE INVENTION

The present invention relates generally to identification of proteins, herein designated TIH proteins, that interact with casein kinase I isoforms and to isolation of polynucleotides encoding the same.

BACKGROUND

10

5

Protein kinases are post-translational, enzymatic regulators of cellular metabolism. Once activated, these enzymes transfer phosphate from ATP onto substrate proteins and in doing so affect the properties of substrate molecules. There are four broad classes of protein kinases including serine/threonine kinases, tyrosine kinases, multi-specific or dual-specific kinases, and histidine kinases [Hunter, et al., Meth.Enzymol. 200:3-37 (1991)]. In addition to the amino acid residue(s) of the substrate preferentially phosphorylated by the kinase, assignment of an enzyme to a particular class is based on its primary structure, its requirement for regulatory subunits, its requirement for second messengers, and its specific biochemical activity. See Hunter et al., supra, and Hanks and Quinn, Meth. Enzymol., 200: 38-62 (1991).

20

25

15

Serine/threonine protein kinases have been further divided into families of enzymes based on the mode of regulation of the enzymes and the quaternary structure of the active enzymes [Edelman, et al., Ann. Rev. Biochem. 56:567-613 (1987)]. Enzymes within the serine/threonine protein kinase family can differ in the substrates they phosphorylate, the specific phosphorylation sites they recognize, their mode of regulation and their subcellular distribution. Protein kinase A (PKA), for example, phosphorylates target substrates with the recognition/phosphorylation sequence R-R-X-S(P)-Y (SEQ ID NO: 1) [Pearson

10

15

20

25

and Lemp, Meth. Enzymol. 200:62-81 (1991)], where S(P) represents the phosphorylated residue. The activity of PKA is localized by targeting subunits (called anchoring proteins or AKAPs, reviewed in Hubbard and Cohen, T.I.B.S. 18:172-177, 1993). Members of the casein kinase I (CKI) family, on the other hand, recognize and phosphorylate serines and threonines near acidic residues in substrate proteins. The genes which encode yeast, rat, bovine and human isoforms of casein kinase I activity are structurally similar and the isoforms exhibit greater than 35%, and frequently greater than 50%, homology (identity) over their catalytic domains when compared to the prototypical S. cerevisiae CKI protein, HRR25, and are referred to herein as "HRR25-like" proteins. This degree of identity is significantly greater than the expected 25% found for comparing two randomly chosen protein kinases [Hanks and Quinn, supra]. The HRR25 DNA sequence is disclosed in Hoekstra, et al., Science 253:1031-1034 (1991); yeast CKI1 and CKI2 DNA sequences in Wang et al., J. Mol. Biol. Cell, 3:275-286 (1992) corresponding respectively to yeast sequences YCK2 and YCK1 in Robinson et al., Proc. Natl. Acad. Sci. (USA) 89:28-32 (1992); partial bovine $CKI\alpha$, $CKI\beta$, $CKI\gamma$ and $CKI\delta$ DNA sequences and a full length homolog $CKI\alpha$ DNA sequence in Rowles, et al., Proc. Natl. Acad. Sci. (USA) 88:9548-9552 (1991); a full length rat CKIô DNA sequence in Graves, et al., J. Biol. Chem., 268: 6394-6401 (1993); and a partial human erythroid CKIα DNA sequence in Brockman et al., Proc. Natl. Acad. Sci. (USA) 89:9454-9458 (1992).

The S. cerevisiae protein kinase HRR25 is one of the more extensively characterized isoforms of the CKI family [Hoekstra, supra]. Mutations in the HRR25 gene result in a variety of defects that include cell cycle delays, the inability to properly repair DNA strand breaks and characteristic morphological changes. The nature of these defects implies that HRR25 and other CKI isoforms play a significant role in cellular growth.

The importance of protein phosphorylation and protein kinases in health and disease states is evident in cases where expression of a particular

1

5

10

15

20

25

- 3 -

kinase has gone awry; for example, chronic myelogenous leukemia arises from a translocation that places the breakpoint cluster region (BCR) gene next to the ABL tyrosine kinase gene, resulting in a fusion protein comprising the activated protein kinase [see review, Bishop, et al., Cell 64:235-288 (1991)]. In addition, many oncogenes, such as Mos [Watson, et al., Proc.Natl.Acad.Sci. (USA) 79:4078-4082 (1982)], Src [Anderson, et al., Mol. Cell.Biol. 5:1122-1129 (1985)] and Raf [Bonner, et al., Nucl.Acids Res. 14:1009-1015 (1986)] are protein kinases.

Most protein kinases phosphorylate a variety of substrates in vivo allowing diversity in responses to physiological stimuli [reviewed in Edelman, et al., supra]. However, the broader substrate specificity seen for many protein kinases in vitro, including activity towards non-physiological substrates, indicates that cellular mechanisms to control the specificity of these enzymes must exist in vivo. Understanding the regulatory mechanisms that govern these kinases and the specific role of the kinases in health and disease states requires the identification of substrates, regulatory proteins, and localizing/targeting proteins that interact with the kinases.

There thus exists a need in the art to identify proteins which interact with members of the casein kinase I family of enzymes and to characterize the interacting proteins in terms of their amino acid and encoding DNA sequences. Such information would provide for the large scale production of the proteins, allow for identification of cells which produce the kinases naturally and permit production of antibodies specifically reactive with the kinases. Moreover, elucidation of the substrates, regulation, and localization of these protein kinases would contribute to an understanding of the control of normal and malignant cell growth and provide information essential for the development of therapeutic agents useful for intervention in abnormal and/or malignant cell growth.

5

10

15

20

25

- 4 -

SUMMARY OF THE INVENTION

In one of its aspects, the present invention provides methods for identifying proteins, designated TIH proteins, that interact with CKI isoforms [i.e., S. cerevisiae HRR25 casein kinase I and HRR25-like protein kinases having at least 35% amino acid homology to HRR25 within the catalytic domain] and for isolating polynucleotides encoding the TIH proteins. A presently preferred method comprises the steps of: a) transforming or transfecting appropriate host cells with a DNA construct comprising a reporter gene under the control of a promoter regulated by a transcription factor having a DNA-binding domain and an activating domain; b) expressing in the host cells a first hybrid DNA sequence encoding a first fusion of part or all of a CKI isoform and either the DNA-binding domain or the activating domain of the transcription factor; c) expressing in the host cells a library of second hybrid DNA sequences encoding second fusions of part or all of putative CKI isoform-binding proteins and either the DNA-binding domain or DNA activating domain of the transcription factor which is not incorporated in the first fusion; d) detecting binding of CKI isoform-binding proteins to the CKI isoform in a particular host cell by detecting the production of reporter gene product in the host cell; and e) isolating second hybrid DNA sequences encoding CKI isoform-binding protein from the particular host cell. Variations of the method altering the order in which the CKI isoforms and putative CKI isoform-binding proteins are fused to transcription factor domains, i.e., at the amino terminal or carboxy terminal ends of the transcription factor domains, are contemplated. In a preferred version of the method, the promoter is the lexA promoter, the DNA-binding domain is the lexA DNA-binding domain, the activating domain is the GAL4 transactivation domain, the reporter gene is the lacZ gene and the host cell is a yeast host cell.

Variations of the method permit identification of either small molecules which inhibit the interaction between a CKI isoform and a CKI-interacting protein. A preferred method to identify small molecule inhibitors

5

10

15

20

25

- 5 - .

comprises the steps of: a) transforming or transfecting appropriate host cells with a DNA construct comprising a reporter gene under the control of a promoter regulated by a transcription factor having a DNA-binding domain and an activating domain; b) expressing in the host cells a first hybrid DNA sequence encoding a first fusion of part or all of a CKI isoform and either the DNA-binding domain or the activating domain of the transcription factor; c) expressing in the host cells a second hybrid DNA sequence encoding second fusion of part or all of a known CKI isoform-binding protein and either the DNA-binding domain or DNA activating domain of the transcription factor which is not incorporated in the first fusion; d) contacting the cells with a putative inhibitor compound; and e) identifying modulating compounds as those compounds altering production of the reporter gene product in comparison to production of the reporter gene product in the absence of the modulating compound.

An alternative identification method contemplated by the invention for detecting proteins which bind to a CKI isoform comprises the steps of: a) transforming or transfecting appropriate host cells with a hybrid DNA sequence encoding a fusion between a putative CKI isoform-binding protein and a ligand capable of high affinity binding to a specific counterreceptor; b) expressing the hybrid DNA sequence in the host cells under appropriate conditions; c) immobilizing fusion protein expressed by the host cells by exposing the fusion protein to the specific counterreceptor in immobilized form; d) contacting a CKI isoform with the immobilized fusion protein; and e) detecting the CKI isoform bound to the fusion protein using a reagent specific for the CKI isoform. Presently preferred ligands/counterreceptor combinations for practice of the method are glutathione-S-transferase/glutathione, hemagglutinin/hemagglutinin-specific antibody, polyhistidine/nickel and maltose-binding protein/amylose.

The present invention also provides novel, purified and isolated polynucleotides (e.g., DNA sequences and RNA transcripts, both sense and antisense strands) encoding the TIH proteins and variants thereof (i.e., deletion,

10

15

20

25

addition or substitution analogs) which possess CKI and/or HRR25-binding properties inherent to the TIH proteins. Preferred DNA molecules of the invention include cDNA, genomic DNA and wholly or partially chemically synthesized DNA molecules. Presently preferred polynucleotides are the DNA molecules set forth in SEQ ID NOS: 2 (TIH1), 4 (TIH2), and 6 (TIH3), encoding the polypeptides of SEQ ID NOS: 3 (TIH1), 5 (TIH2), and 7 (TIH3), respectively. Also provided are recombinant plasmid and viral DNA constructs (expression constructs) which comprise TIH polypeptide-encoding sequences operatively linked to a homologous or heterologous transcriptional regulatory element or elements.

As another aspect of the invention, prokaryotic or eukaryotic host cells transformed or transfected with DNA sequences of the invention are provided which express TIH polypeptides or variants thereof. Host cells of the invention are particularly useful for large scale production of TIH polypeptides, which can be isolated from the host cells or the medium in which the host cells are grown.

Also provided by the present invention are purified and isolated TIH polypeptides, fragments and variants thereof. Preferred TIH polypeptides are as set forth in SEQ ID NOS: 3 (TIH1), 5 (TIH2), and 7 (TIH3). Novel TIH and TIH variant products of the invention may be obtained as isolates from natural sources, but are preferably produced by recombinant procedures involving host cells of the invention. Post-translational processing variants of TIH polypeptides may be generated by varying the host cell selected for recombinant production and/or post-isolation processing. Variant TIH polypeptides of the invention may comprise analogs wherein one or more of the amino acids are deleted or replaced: (1) without loss, and preferably with enhancement, of biological properties or biochemical characteristics specific for TIH polypeptides or (2) with specific disablement of a characteristic protein/protein interaction.

- 7 -

Also comprehended by the invention are antibody substances (e.g., monoclonal and polyclonal antibodies, single chain antibodies, chimeric antibodies, CDR-grafted antibodies and the like) which are specifically immunoreactive with TIH polypeptides. Antibody substances are useful, for example, for purification of TIH polypeptides and for isolation, via immunological expression screening, of homologous and heterologous species polynucleotides encoding TIH polypeptides. Hybridoma cell lines which produce antibodies specific for TIH polypeptides are also comprehended by the invention. Techniques for producing hybridomas which secrete monoclonal antibodies are well known in the art. Hybridoma cell lines may be generated after immunizing an animal with purified TIH polypeptides or variants thereof.

5

10

15

20

25

The scientific value of the information contributed through the disclosure of DNA and amino acids sequences of the present invention is manifest. As one series of examples, knowledge of the genomic DNA sequences which encode yeast TIH polypeptides permits the screening of a cDNA or genomic DNA of other species to detect homologs of the yeast polypeptides. Screening procedures, including DNA/DNA and/or DNA/RNA hybridization and PCR amplification are standard in the art and may be utilized to isolate heterologous species counterparts of the yeast TIH polypeptides, as well as to determine cell types which express these homologs.

DNA and amino acid sequences of the invention also make possible the analysis of TIH epitopes which actively participate in kinase/protein interactions as well as epitopes which may regulate such interactions. Development of agents specific for these epitopes (e.g., antibodies, peptides or small molecules) which prevent, inhibit, or mimic protein kinase-protein substrate interaction, protein kinase-regulatory subunit interaction, and/or protein kinase-protein localization molecule interaction are contemplated by the invention. Therapeutic compositions comprising the agents are expected to be useful in

10

15

20

25

modulating the CKI/TIH protein interactions involved in cell growth in health and disease states, for example, cancer and virus-related pathologies.

BRIEF DESCRIPTION OF THE DRAWING

Numerous other aspects and advantages of the present invention will be apparent upon consideration of the following detailed description thereof, reference being made to the drawing wherein:

Figure 1 is a Western blot demonstrating the association of S. cerevisiae HRR25 casein kinase I with affinity-purified TIH2.

Figure 2 is an amino acid sequence comparison between TIH1 and enzymes known to participate in removal of aberrant nucleotides.

DETAILED DESCRIPTION

The present invention generally relates to methods for identifying proteins that interact with CKI isoforms and is illustrated by the following examples relating to the isolation and characterization of genes encoding TIH More particularly, Example 1 addresses isolation of DNA polypeptides. sequences encoding TIH polypeptides from a yeast genomic library utilizing a dihybrid screening technique. Example 2 relates to analysis of the interaction between TIH polypeptides and various yeast CKI isoforms. Example 3 addresses interaction between a yeast CKI isoform, including mutants and fragments thereof, and kinesins. Example 4 describes analysis of the interaction between TIH polypeptides and human CKI isoforms. Example 5 addresses isolation of full length genomic DNA sequences which encode TIH polypeptides of the invention. Example 6 describes construction of a TIH knock-out mutant in yeast. Example 7 addresses analysis of S. cerevisiae HRR25/TIH polypeptides interactions utilizing affinity purification and Western blotting techniques. provides a comparison at the amino acid level between TIH1 and enzymes

- 9 -

identified as participating in degradation of oxidatively damaged nucleotides, thus enhancing fidelity of replication.

Example 1

.5

10

15

20

25

Cellular components that interact with CKI isoforms were identified by a dihybrid screening method that reconstitutes a transcriptional transactivator in yeast. [A similar "two-hybrid" assay was originally described in Fields and Song, Nature, 340: 245-246 (1989) and more recently in Yang et al., Science 257:681-682 (1992) and Vojtek et al., Cell, 74: 205-214 (1993).] In the assay, "bait" components (i.e., CKI isoforms) are fused to the DNA binding domain of a transcription factor (e.g., the lexA protein) and "prey" components (i.e., putative CKI interacting proteins) are fused to the transactivation domain of the transcription factor (e.g., GAL4). Recombinant DNA constructs encoding the fusion proteins are expressed in a host cell that contains a reporter gene fused to promoter regulatory elements (e.g. a lexA DNA binding site) recognized by the transcription factor. Binding of a prey fusion protein to a bait fusion protein brings together the GAL4 transactivation domain and the lexA DNA binding domain allowing interaction of the complex with the lexA DNA binding site that is located next to the β -galactosidase reporter gene, thus reconstituting transcriptional transactivation and producing β -galactosidase activity. variations of the method, the "prey" component can be fused to the DNA binding domain of GAL4 and the "bait" components detected and analyzed by fusion to the transactivation domain of GAL4. Likewise, variations of this method could alter the order in which "bait" and "prey" components are fused to transcription factor domains, i.e., "bait" and "prey" components can be fused at the amino terminal or carboxy terminal ends of the transcription factor domains.

To identify genes encoding proteins that interact with *S. cerevisiae* HRR25 CKI protein kinase, a plasmid library encoding fusions between the yeast GAL4 activation domain and *S. cerevisiae* genomic fragments ("prey"

10

15

20

25

components) was screened for interaction with a DNA binding domain hybrid that contained the E. coli lexA gene fused to HRR25 ("bait" component). The fusions were constructed in plasmid pBTM116 (gift from Bartell and Fields, SUNY) which contains the yeast TRP1 gene, a 2μ origin of replication, and a yeast ADHI promoter driving expression of the E. coli lexA DNA binding domain (amino acids 1 to 202).

Plasmid pBTM116::HRR25, which contains the *lexA*::HRR25 fusion gene, was constructed in several steps. The DNA sequence encoding the initiating methionine and second amino acid of HRR25 was changed to a *SmaI* restriction site by site-directed mutagenesis using a MutaGene mutagenesis kit from BioRad (Richmond, California). The DNA sequence of HRR25 is set out in SEQ ID NO: 8. The oligonucleotide used for the mutagenesis is set forth below, wherein the *SmaI* site is underlined.

5'-CCT ACT CTT AGG CCC GGG TCT TTT TAA TGT ATC C-3' (SEQ ID NO. 9)

After digestion with SmaI, the resulting altered HRR25 gene was ligated into plasmid pBTM116 at the SmaI site to create the lexA::HRR25 fusion construct.

Interactions between bait and prey fusion proteins were detected in yeast reporter strain CTY10-5d (genotype=MATa ade2 trp1-901 leu2-3,112 his 3-200 gal4 gal80 URA3::lexA op-lacZ.) [Luban, et al., Cell 73:1067-1078 (1993)] carrying a lexA binding site that directs transcription of lacZ. Strain CTY10-5d was first transformed with plasmid pBTM116::HRR25 by lithium acetate-mediated transformation [Ito, et al., J.Bacteriol. 153:163-168 (1983)]. The resulting transformants were then transformed with a prey yeast genomic library prepared as GAL4 fusions in the plasmid pGAD [Chien, et al., Proc.Natl.Acad.Sci (USA) 21:9578-9582 (1991)] in order to screen the expressed proteins from the library for interaction with HRR25. A total of 500,000 double transformants were assayed for β -galactosidase expression by replica plating onto nitrocellulose

- 11 -

filters, lysing the replicated colonies by quick-freezing the filters in liquid nitrogen, and incubating the lysed colonies with the blue chromogenic substrate 5-bromo-4-chloro-3-indolyl- β -D-galactoside (X-gal). β -galactosidase activity was measured using Z buffer (0.06 M Na₂HPO₄, 0.04 M NaH₂PO₄, 0.01 M KCl, 0.001 M MgSO₄, 0.05 M β -mercaptoethanol) containing X-gal at a concentration of 0.002% [Guarente, *Meth. Enzymol. 101*:181-191 (1983)]. Reactions were terminated by floating the filters on 1M Na₂CO₃ and positive colonies were identified by their dark blue color.

5

10

20

25

Library fusion plasmids (prey constructs) that conferred blue color to the reporter strain co-dependent upon the presence of the HRR25/DNA binding domain fusion protein partner (bait construct) were identified. The sequence adjacent to the fusion site in each library plasmid was determined by extending DNA sequence from the GAL4 region. The sequencing primer utilized is set forth below.

5'-GGA ATC ACT ACA GGG ATG-3' (SEQ ID NO. 10)

DNA sequence was obtained using a Sequenase version II kit (US Biochemicals,
Cleveland, Ohio) or by automated DNA sequencing with an ABI373A sequencer
(Applied Biosystems, Foster City, California).

Four library clones were identified and the proteins they encoded are designated herein as TIH proteins 1 through 4 for Targets Interacting with HRR25-like protein kinase isoforms. The TIH1 portion of the TIH1 clone insert corresponds to nucleotides 1528 to 2580 of SEQ ID NO: 2; the TIH2 portion of the TIH2 clone insert corresponds to nucleotides 2611 to 4053 of SEQ ID NO: 4; the TIH3 portion of the TIH3 clone insert corresponds to nucleotides 248 to 696 of SEQ ID NO: 6; and the TIH4 portion of the TIH4 clone insert is set out in SEQ ID NO: 11 and corresponds to nucleotides 1763 to 2305 of SEQ ID NO: 28. Based on DNA sequence analysis of the TIH genes, it was determined that TIH1 and TIH3 were novel sequences that were not representative of any protein motif present in the GenBank database (July 8, 1993). TIH2 sequences were

- 12 -

identified in the database as similar to a yeast open reading frame having no identified function. (GenBank Accession No. Z23261, open reading frame YBL0506) TIH4 represented a fusion protein between GAL4 and the carboxy-terminal portion of the kinesin-like protein KIP2. KIP2 has a highly conserved region which contains a kinesin-like microtubule-based motor domain [Roof et al., J. Cell. Biol. 118(1):95-108 (1992)]. The isolation of corresponding full length genomic clones for TIH1 through TIH3 is described in Example 5.

Example 2

To investigate the specificity of interaction and regions of interaction between CKI isoforms and the TIH proteins, bait constructs comprising mutant or fragment HRR25 isoforms or other yeast (NUF1 and Hhp1) CKI isoforms fused to the lexA DNA binding domain were examined for transcription transactivation potential in the dihybrid assay.

Plasmid Constructions

15

20

25

10

5

To construct a plasmid containing a catalytically-inactive HRR25 protein kinase, HRR25 DNA encoding a lysine to arginine mutation at residue 38 (the ATP binding site) of HRR25 [DeMaggio et al., Proc. Natl. *Acad. Sci. (USA) 89(15): 7008-7012 (1992)] was generated by standard site-directed mutagenesis techniques. The resulting DNA was then amplified by a PCR reaction which inserted a Smal restriction site (underlined in SEQ ID NO. 12) before the HRR25 ATG using a mutagenic oligonucleotide:

5'-CCT TCC TAC TCT TAA G<u>CC CGG G</u>CC GCA GGA ATT CG-3' (SEQ ID NO 12),

and the downstream oligonucleotide which inserted a *Bam*HI site (underlined): 5'-AGC AAT ATA <u>GGA TCC</u> TTA CAA CCA AAT TGA-3' (SEQ ID NO: 13).

- 13 -

Reactions included 200mM Tris-Hcl (pH 8.2), 100mM KCl, 60 mM (NH₄)₂SO₄, 15mM MgCl₂, 1% Triton X-100, 0.5 μM primer, 100 ng template, 200 μM dNTP and 2.5 units polymerase. The reactions were performed for 30 cycles. Reactions were started with a 4 minute treatment at 94°C and all cycles were 1 minute at 94°C for denaturing, 2 minutes at 50°C for annealing, and 4 minutes at 72°C for extension. The resulting amplification product was digested with SmaI and ligated at the SmaI site of pBTM116 to produce the plasmid designated pBTM116::HRR25K→R encoding lexA sequences fused 5′ to HRR25 sequences.

To construct a pBTM116 plasmid encoding a catalytic domain fragment of HRR25, two rounds of site-directed mutagenesis were performed to introduce a *SmaI* site in place of the initiating ATG and second codon of HRR25 DNA and a *BamHI* site at nucleotide 1161 (refer to SEQ ID NO. 8) or amino acid 397 of HRR25. The mutagenic oligonucleotide used to introduce the 5' *SmaI* restriction site (underlined) was:

5'-CCT ACT CTT AAG <u>CCC GGG</u> TCT TTT TAA TGT ATC C-3' (SEQ ID NO. 14),

and the oligonucleotide used to create the 3', or downstream, BamHI site (underlined) at residue 397 was:

5'-GTC TCA AGT TTT GGG ATC CTT AAT CTA GTG CG-3'

20 (SEQ ID NO. 15).

5

10

25

The resulting product was digested with *SmaI-BamHI* and the fragment encoding the HRR25 catalytic domain (corresponding to nucleotides 2 to 1168 of SEQ ID NO: 8) was subcloned into plasmid pBTM116 linearized with the same enzymes to produce the plasmid designated pBTM116::Kinase domain encoding *lexA* sequences fused 5' to HRR25 sequences.

To construct a pBTM116 plasmid containing the non-catalytic domain fragment of HRR25, a *SmaI* site (underlined) was introduced at nucleotide 885 (amino acid 295) using site-directed mutagenesis with the following oligonucleotide:

- 14 -

5'-CAC CAT CGC C<u>CC CGG G</u>TA ACG CAA CAT TGT CC-3' (SEQ ID NO: 16).

5

10

15

20

25

The resulting product was digested with *SmaI* and *BamHI* and the fragment encoding the HRR25 non-catalytic domain (corresponding to nucleotides 885 to 1485 of SEQ ID NO: 8) was subcloned into plasmid pBTM116 linearized with the same enzymes to produce the plasmid designated pBTM116::Non-catalytic encoding *lexA* sequences fused 5' to HRR25 sequences.

To construct a fusion with the S. cerevisiae NUF1 isoform of CKI in plasmid pBTM116, a Smal site (underlined) was introduced by site-directed mutagenesis in place of the initiating ATG and second codon of NUF1 DNA (SEQ ID NO: 17) using the oligonucleotide:

5'-TGA AGA TCG TTG G<u>CC CGG G</u>TT TCC TTA TCG TCC-3' (SEQ ID NO. 18).

The resulting product was digested with *SmaI* and *BamHI* and the NUF1 fragment was ligated into pBTM116 linearized with the same enzymes sites to produce the plasmid designated pBTM116::NUF1 encoding *lexA* sequences fused 5' to NUF1 sequences.

To construct a fusion with the S. pombe Hhp1 isoform of CKI in plasmid pBTM116, a SmaI site (underlined) was introduced by site-directed mutagenesis in place of the initiating ATG and second codon of Hhp1 DNA (SEQ ID NO: 19) using the oligonucleotide:

5'-GGG TTA TAA TAT TAT <u>CCC GGG</u> TTT GGA CCT CCG G-3' (SEQ ID NO. 20).

The resulting product was digested with SmaI and BamHI and the HhpI fragment was ligated into pBTM116 linearized with the same enzymes to produce plasmid pBTM116::Hhp1 encoding lexA sequences fused 5' to Hhp1 sequences.

W_iO 95/19988 PCT/US95/00912

- 15 -

<u>Assays</u>

5

10

15

20

25

To measure protein/protein interaction levels between wild-type and mutant CKI isoforms and TIH proteins of the invention, standard yeast mating techniques were used to generate yeast strains containing all pairwise combinations of the isoforms and TIH proteins. All CKI isoform-encoding pBTM116-based plasmids were transformed into yeast by lithium acetate-mediated transformation methods and transformants were selected on SD-tryptophan medium (Bio101, La Jolla, CA). The yeast strain CTY10-5d used for pBTM116based transformations was mating type α . All TIH protein-encoding pGAD-based plasmids described in Example 1 were transformed using the lithium acetate method into yeast and transformants were selected on SD-leucine medium. The yeast strain used for pGAD-based transformations was mating type a. This MATa strain is isogeneic to CTY10-5d and was constructed by introducing the HO gene using plasmid pGALHO [Jenson and Herskowitz, Meth. Enzymol. 194:132-146 (1991)] in lithium acetate-mediated transformation, inducing the HO gene with galactose to cause a mating-type interconversion, and growing the strain nonselectively to isolate a derivative that had switched mating type.

To construct pairwise combinations between pBTM116-based plasmids and pGAD-based plasmids, yeast strains of opposite mating types were replica plated in a crossed pattern on YEPD medium (Bio101) and were allowed to mate for 18 hours. Diploid cells were selected by a second replica plating onto SD-leucine, -tryptophan medium to select for cells that contained both pBTM116-type and pGAD-type plasmids. The isolated diploids were grown in liquid SD-leucine, -tryptophan medium to a cell density of 2 x 10^7 cells/ml and the level of interaction of the kinase and interacting protein, as determined by beta-galactosidase activity, was determined from cells that were lysed by adding 3 drops of chloroform and 50 μ l of 0.1% SDS to 2 x 10^6 cells suspended in 0.1 ml of Z buffer and subsequently adding 0.2 ml of the chromogenic substrate onitrophenyl- β -D-galactoside. β -galactosidase assays were terminated by adding

- 16 -

0.5 ml of 1M Na₂CO₃ and activity was measured by reading absorbance at 420 nm using a Milton Roy spectrophotometer (Rochester, New York). In this assay, the degree of protein/protein interaction is directly proportional to the level of β -galactosidase activity. The relative β -galactosidase activity measurements obtained are given in Table 1, wherein a value of <5 indicates that the level of β -galactosidase activity was not greater than background and a value of 10 indicates a easily detectable level of activity. Values were normalized to vector alone controls.

5

10

20

Table 1
Yeast CKI/TIH Protein Interactions

	PLASMID CONSTRUCTS ASSAYED	pGAD ::TIH1	pGAD ::TIH2	pGAD :::TIH3
	pBTM116	<5	<5	<5
	pBTM116:HRR25	850	650	100
	pBTM116::HRR25 K→R	100	150	30
15	pBTM116::Kinase Domain	820	160	130
	pBTM116::Non-catalytic	<5	<5	<5
	pBTM116::NUF1	<5	<5	10
	pBTM116::Hhp1	<5	20	450

The results show significant interaction between HRR25 protein kinase and the TIH genes. Furthermore, the interaction appeared to require an active protein kinase; the region of HRR25 that interacted with the TIH proteins is localized to the protein kinase domain of HRR25. TIH proteins of the invention also interacted with other CKI isoforms. For example, TIH3 interacted with NUF1, and TIH2 and TIH3 interacted with HhpI.

- 17 -

Example 3

Because HRR25 mutants (hrr25) show chromosome segregation defects and because kinesins are involved in chromosome segregation, the interaction of several different kinesins with the CKI bait fusions described in Example 2 was examined. To date, the kinesin gene family in yeast includes proteins designated KIP1 (Roof et al. supra), KIP2 (Roof et al., supra), CIN8 [Hoyt et al., J. Cell. Biol. 11(1): 109-120 (1992)] and KAR3 [Meluh et al., Cell 60(6): 1029-1041 (1990)]. To construct the prey kinesin fusion plasmids, genomic clones of KIP1, KIP2, CIN8, and KAR3 were first isolated and then subcloned into plasmid pGAD which contains the transactivating domain of GAL4. Interactions of the CKI bait fusions with the TIH4 prey fusion (pGAD::TIH4) described in Example 1 were examined concurrently.

Plasmid Construction

5

10

15

20

25

KIP1 sequences were amplified from *S. cerevisiae* genomic DNA using the following two primers:
5'-TCC CTC TCT AGA TAT GGC GAG ATA GTT A-3' (SEQ ID NO: 21) and 5'-GTT TAC ACT CGA GGC ATA TAG TGA TAC A-3' (SEQ ID NO: 22).
The amplified fragment was labelled with ³²P by random primed labelling (Boehringer Mannheim, Indianapolis, Indiana) and used to screen a yeast genomic library constructed in the plasmid pRS200 (ATCC 77165) by colony hybridization. Hybridizations were performed at 65°C for 18 hours in 6X SSPE (20X SSPE is 175.3 g/l NaCl, 27.6 g/l NaH2PO4.H2), 7.4 g.l EDTA, pH7.4, 100 μg/ml salmon sperm carrier DNA, 5X Denhardts Reagent (50X Denhardts is 5% ficoll, 5% polyvinyl pyrolidone, 5% bovine serum albumin), 0.1% SDS, and 5% sodium dextran sulfate. Filters were washed four times in 0.1X SSPE, 1% SDS. Each wash was at 65°C for 30 minutes. Two rounds of site-directed mutagenesis were then performed as described in Example 2 to introduce *Bam*HI sites at the start and end of KIP1 coding sequences (SEQ ID NO: 23).

Mutagenesis was performed using a Muta-gene Mutagenesis Kit, Version 2

- 18 -

(BioRad). The oligonucleotide for introducing a *BamHI* site (underlined) in place of the KIP1 ATG and second codon was:

- 5'-GAT AGT TAA <u>GGA TCC</u> ATG GCT CGT TCT TCC TTG CCC AAC CGC-3' (SEQ ID NO: 24),
- and the oligonucleotide encoding a stop codon (double underlined) and *BamHI* site (underlined) was:
 - 5'-AAA CTT CAT CAA TGC GGC CGC TAA GG<u>G GAT CC</u>A GCC <u>ATT</u> GTA AAT-3' (SEQ ID NO: 25).
- The resulting KIP1 product was digested with *Bam*HI and cloned into pGAD immediately downstream of GAL4 sequences and the plasmid was called pGAD::KIP1.

KIP2 sequences were amplified from S. cerevisiae genomic DNA using the following two primers:

- 5'-TTT CCT TGT TTA TCC TTT TCC AA-3' (SEQ ID NO: 26) and
- 5'-GAT CAC TTC GGA TCC GTC ACA CCC AGT TAG-3' (SEQ ID NO: 27). The amplified fragment was labelled with ³²P by random primed labelling and used to screen a yeast genomic library constructed in the plasmid YCp50 (ATCC 37415) by colony hybridization. Hybridizations and washes were as described above for KIP1. Two rounds of site-directed mutagenesis were performed to introduce *Bam*HI sites at the start and end of KIP2 coding sequences (SEQ ID NO: 28). The oligonucleotide for introducing a *Bam*HI site (underlined) in place of the KIP2 ATG and second codon was:
 - 5'-ACC ATA ATA CCA <u>GGA TCC</u> ATG ATT CAA AAA-3' (SEQ ID NO: 29) and the oligonucleotide encoding a *BamHI* site (underlined) was:
- 25 5'-CCT GTC GTG GAT AGC GGC CGC TAG GAT CCT GAG GGT CCC AGA-3' (SEQ ID NO: 30).

The resulting KIP2 product was digested with *Bam*HI and cloned into pGAD immediately downstream of GAL4 sequences and the plasmid was called pGAD::KIP2.

- 19 -

CIN8 sequences were amplified from S. cerevisiae genomic DNA using the following two primers:

5'-ACA TCA TCT AGA GAC TTC CTT TGT GAC C-3' (SEQ ID NO: 31) and 5'-TAT ATA ATC GAT TGA AAG GCA ATA TC-3' (SEQ ID NO: 32).

The amplified fragment was labelled with ³²P by random primed labelling and used to screen a yeast genomic library constructed in the plasmid pRS200 (ATCC 77165) by colony hybridization. Hybridizations and washes were as described above for KIP1. Two rounds of site-directed mutagenesis were performed to introduce *Bam*HI sites at the start and end of CIN8 coding sequences (SEQ ID NO: 33). The oligonucleotide utilized for introducing a *Bam*HI site (underlined) in place of the CIN8 ATG and second codon was:

5'-CGG GTG TA<u>G GAT CC</u>A TGG TAT GGC CAG AAA GTA ACG-3' (SEQ ID NO: 34)

5

10

15

20

25

and the downstream oligonucleotide encoding a *BamHI* site (underlined) and a stop codon (double underlined) was:

5'-GTG GAC AAT GGC GGC CGC AGA AAA A<u>GG ATC C</u>AG <u>ATT</u> GAA TAG TTG ATA TTG CC-3' (SEQ ID NO: 35).

The resulting CIN8 product was digested with *Bam*HI and cloned into pGAD immediately downstream of GAL4 sequences and the plasmid was called pGAD::CIN8.

KAR3 was amplified from S. cerevisiae genomic DNA using the following two primers:

5'-GAA TAT TCT AGA ACA ACT ATC AGG AGT C-3' (SEQ ID NO: 36) and 5'-TTG TCA CTC GAG TGA AAA AGA CCA G-3' (SEQ ID NO: 37).

The amplified fragment was labelled with ³²P by random primed labelling and used to screen a yeast genomic library constructed in the plasmid pRS200 (ATCC 77165) by colony hybridization. Hybridizations and washes were as described above for KIP1. Two rounds of site-directed mutagenesis were performed to introduce *Bam*HI sites at the start and end of KAR3 coding sequences (SEQ ID

10

15

20

NO: 38). The oligonucleotide for introducing a *BamHI* site (underlined) in place of the KAR3 ATG and second codon was:

5'-GAT AGT TAA <u>GGA TCC</u> ATG GCT CGT TCT TCC TTG CCC AAC CGC-3' (SEQ ID NO: 39)

and the oligonucleotide encoding a BamHI site (underlined) and a stop codon (double underlined) was:

5'-AAA CTT CAT CAA TGC GGC CGC TAA GG<u>G GAT CC</u>A GCC <u>ATT</u> GTA AAT-3' (SEQ ID NO: 40).

The resulting KAR3 product was digested with *Bam*HI and cloned into pGAD immediately downstream of GAL4 sequences and the plasmid was called pGAD::KAR3.

The prey plasmids were transformed into yeast by lithium acetate-mediated transformation and the transformants were mated to CKI isoform-encoding yeast strains as described in Example 2. β -galactosidase activity of CKI isoform/TIH-containing strains was determined from cells that were lysed by adding 3 drops of chloroform and 50 μ l of 0.1% SDS to 2 x 10 $^{\circ}$ cells suspended in 0.1 ml of Z buffer and subsequently adding 0.2 ml of the chromogenic substrate o-nitrophenyl- β -D-galactoside. β -galactosidase assays were terminated by adding 0.5 ml of 1M Na₂CO₃ and activity was measured by reading absorbance at 420 nm using a Milton Roy spectrophotometer (Rochester, New York). In this assay, the degree of protein/protein interaction is directly proportional to the level of β -galactosidase activity. The results of the assay are presented as units of β -galactosidase activity in Table 2.

Table 2
β-Galactosidase Activity Resulting From CKI Isoform/Kinesin Interaction

- 21 -

		pGAD:: KIP1	pGAD:: KIP2	pGAD:: TIH4	pGAD:: KAR3	pGAD:: CIN8
	pBTM116 ::HRR25	16	10	70	15	5
5	pBTM116: :HRR25 K→R	55	16	66	75	28
	pBTM116 ::Non-	70	< 0.1	< 0.1	60	< 0.1
10	Catalytic				•	

15

20

The results indicate that HRR25 can interact with all four yeast kinesins and TIH4. Kinesins KIP2 and CIN8 interact with the catalytic domain of HRR25 while kinesins KIP1 and KAR3 interact with kinase-inactive HRR25 and with the non-catalytic domain of HRR25, suggesting that kinase/substrate interaction progresses through strong binding to enzymatic activity. In addition, the results show that HRR25 interacts with the carboxy-terminal portion of TIH4 or, because TIH4 corresponds to KIP2, KIP2.

Example 4

Assays were also performed to determine whether human CKI isoforms would interact with the TIH proteins of the invention. Two human CKI isoforms, CKIα3 (CKIα3Hu) and CKIδ (CKIδHu), were selected for this analysis. The human CKI genes were fused to the GAL4 DNA binding domain previously inserted into plasmid pAS [Durfee, et al., Genes and Development 7:555-569 (1993)] to produce pAS::CKIα3 and pAS::CKIδ.

- 22 -

Specifically, the CKIα3Hu isoform-encoding DNA (SEQ ID NO:

- 41) was subjected to site-directed mutagenesis using the mutagenic oligonucleotide:
- 5'-CTT CGT CTC TCA <u>CAT ATG</u> GGC GAG TAG CAG CGG C-3' (SEQ ID NO. 42)

5

25

to create NdeI site (underlined) in the place of the CKIα 3Hu initiating methionine and second codon, and the resulting DNA was digested with NdeI and ligated into plasmid pAS at a NdeI site located immediately downstream of GAL4 sequences.

CKIδHu DNA (SEQ ID NO: 43) was introduced into pAS by amplifying the CKIδ cDNA with mutagenic oligonucleotide primers that contained BamHI sites. The oligonucleotides, with BamHI sites underlined, used were: 5'-CGC GGA TCC TAA TGG AGG TGA GAG TCG GG-3' (SEQ ID NO. 44), replacing the initiating methionine and second codon, and

5'-CGC GGA TCC GCT CAT CGG TGC ACG ACA GA-3' (SEQ ID NO. 45).

Reactions included 200mM Tris HCl (pH 8.2), 100mM KCl, 60mM (NH₄)₂SO₄,
15 mM MgCl₂, 1% Triton X-100, 0.5 μM primer, 100 ng template, 200 μM
dNTP and 2.5 units polymerase. The reactions were performed for 30 cycles.

Reactions were started at 94°C for 4 minutes and all subsequent cycles were 1
minute at 94°C for denaturing, 2 minutes at 50°C for annealing, and 4 minutes at 72°C for extension. The amplified product was digested with BamHI and ligated into BamHI-digested pAS immediately downstream of GALA sequences to create plasmid pAS:CKIδ.

The resulting bait plasmids were transformed into yeast by lithium acetate-mediated transformation and the transformants were mated to TIH-encoding yeast strains as described in Example 2. β -galactosidase activity of CKI α 3Hu- or CKI δ Hu-containing/TIH-containing strains was detected by replica plating cells onto Hybond-N^{0.45 μ} filters (Amersham, Arlington Heights, IL), growing cells on the filters at 30°C for 18 hours, lysing the colonies by freezing

- 23 -

the filters in liquid nitrogen, and incubating the filters on Whatman filter paper soaked in Z buffer containing 0.002% X-gal. Reactions were terminated by soaking the filters in $1M \text{ Na}_2\text{CO}_3$ and protein/protein interaction was evaluated by examining for a chromogenic conversion of X-gal to blue by β -galactosidase activity. The results of the assay, as determined by visual screening for development of blue color are presented below in Table 3.

Table 3 β -Galactosidase Activity Resulting From Human CKI/TIH Interaction

	PLASMID CONSTRUCTS USED	TIH1	TIH2	<u>TIH3</u>
10	pAS::CKIα3	-	-	-
	pAS::CKIδ		+	-

5

15

20

These results indicate that interaction between TIH proteins of the invention and CKI isoforms is not limited to yeast isoforms. CKIôHu interacted with TIH2. Thus, CKI/TIH interactions can be expected to occur between human CKIs and their cognate TIH proteins.

Example 5

Full length genomic clones encoding the yeast TIH1, TIH2, and TIH3 proteins were isolated from a yeast genomic library. To identify genomic clones, radiolabelled PCR fragments were prepared from the pGAD plasmids containing TIH1, TIH2, and TIH3 fusion genes described in Example 1. The sequence of the unidirectional oligonucleotide used to amplify the clones was: 5'-GGA ATC ACT ACA GGG ATG-3' (SEQ ID NO. 46).
PCR reactions included 200mM Tris HCl (pH 8.2), 100mM KCl, 60mM (NH₄)₂SO₄, 15mM MgCl₂, 1% Triton X-100, 0.5 μM primer, 100 ng template,

10

15

20

25

200 μ M dNTP and 2.5 units polymerase. The reactions were performed for 30 cycles. The first five cycles contained 50 μ Ci each 32 P-dCTP and 32 P-TTP. At the start of the sixth cycle, non-radiolabeled dCTP and dTTP were each added to 200μ M final concentration. Reactions were started at 94 °C for 4 minutes and all subsequent cycles were performed for 1 minute at 94 °C for denaturation, 2 minutes at 50 °C for annealing, and 4 minutes at 72 °C for extension. The resulting PCR products were then used as probes in colony hybridization screening.

The full length TIH1 genomic clone was isolated from a YCp50 plasmid library (ATCC 37415). The full length TIH2 and TIH3 genomic clones were isolated from a λ genomic library [Riles, et al., Genetics 134:81-150 (1993)]. Hybridization for YCp50 library screening were performed at 65°C for 18 hours in 6X SSPE (20X SSPE is 175.3 g/l NaCl, 27.6 g/l NaH₂PO₄.H2), 7.4 g.l EDTA, pH7.4, 100 μg/ml salmon sperm carrier DNA, 5X Denhardts Reagent (50X Denhardts is 5% ficoll, 5% polyvinyl pyrolidone, 5% bovine serum albumin), 0.1% SDS, and 5% sodium dextran sulfate. Filters were washed four times in 0.1X SSPE, 1% SDS. Each wash was at 65°C for 30 minutes. Hybridization conditions for λ library screening were 18 hours at 64°C in 1X HPB (0.5M NaCl, 100mM Na₂HPO₄, 5mM Na₂EDTA), 1% sodium sarkosyl, 100 μ g/ml calf thymus DNA. Filters were washed two times for 15 seconds, one time for 15 minutes, and one time for 15 seconds, all at room temperature in 1mM Tris-HCl (pH 8.0). The sequences of TIH1, TIH2, and TIH3 genomic clones were determined by automated DNA sequencing with an ABI 373A sequencer (Applied Biosystems). Nucleotide sequences determined for the full length TIH1. TIH2 and TIH3 genomic clones are set out in SEQ ID NOS: 2, 4, and 6, respectively; the deduced amino acid sequences for TIH1, TIH2, and TIH3 are set out in SEQ ID NOS: 3, 5, and 7, respectively. Database searches confirmed the results from Example 1 that the TIH1 and TIH3 genes encoded novel proteins showing no significant homology to any protein in the GenBank database.

Example 6

To characterize activity of the TIH proteins and to determine if the TIH proteins participate in a HRR25 signalling pathway, a chromosomal TIH1 deletion mutant was constructed by homologous recombination.

5

10

15

Specifically, the TIH1 mutation was constructed by subcloning a 1.7 kb Sall-BamHI fragment that encompasses the genomic TIH1 gene into plasmid pBluescript II SK (Stratagene, La Jolla, CA). The resulting subclone was digested with EcoRV and PstI to delete 0.5 kb of the TIH1 gene (nucleotides 1202 to 1635 of SEQ ID NO: 2) and into this region was ligated a 2.2 kb SmaI-PstI fragment that contained the S. cerevisiae LEU2 gene. Isolated DNA from the resulting plasmid construct was digested with BamHI to linearize the plasmid and 10 μ g of this sample were used to transform a diploid yeast strain that is heterozygous for HRR25 (MAT a/MAT α ade2/ade2 can1/can1 his3-11.15/his3-11,15 leu2-3,112/leu2-3,112 trp1-1/trp1-1 ura3-1/ura3-1 HRR25/hrr25::URA3) Transformation was carried out using lithium acetate-mediated to Leu+. procedures and transformants were selected on SD-Leucine medium (Bio101). Yeast transformation with linearized DNA results in homologous recombination and gene replacement [Rothstein, Meth. Enzymol. 194:281-301 (1991)]. Stable Leu+ colonies were replica plated onto sporulation medium (Bio101) and grown at 30°C for five days. Spores were microdissected on YEPD medium (Bio101) using a tetrad dissection apparatus [Sherman and Hicks, Meth. Enzymol. 194:21-37 (1991)] and isolated single spores were allowed to germinate and grow into colonies for three days.

25

20

Four colony types were detected due to random meiotic segregation of the heterozygous TIH1 and HRR25 mutations present in the strain. The hrr25 deletion mutation in the parent strain was due to a replacement of the HRR25 gene with the yeast URA3 gene and the TIH1 mutation is due to a replacement with LEU2. URA3 and LEU2 confer uracil and leucine prototropy, respectively. The colony types are represented by segregation of the mutations into following

10

15

20

25

genotypic configurations: (i) wild type cells are HRR25 TIH1; (ii) HRR25 mutants are hrr25::URA3 TIH1; (iii) TIH1 mutants are HRR25 tih1::LEU2; and (iv) HRR25 TIH1 double mutants are hrr25::URA3 tih1::LEU2. Standard physiological analyses of yeast mutant defects were performed [Hoekstra et al., supra].

TIH1 deletion mutants exhibited phenotypes identical to mutations in HRR25 including slow growth rate, DNA repair defects, and aberrant cellular morphology, indicating that the TIH proteins participate in the same pathway as HRR25 or in pathways having similar effects. Furthermore, tih1 hrr25 double mutants were inviable.

Example 7

To confirm the dihybrid screen analysis of interaction between CKI protein kinases and TIH proteins, a biochemical method was developed to detect the interaction. This method was based on affinity purification of one component in the interaction, followed by Western blotting to detect the presence of the interacting component in the affinity purified mixture. The TIH2 gene was used to construct a TIH2/glutathione-S-transferase (GST) fusion protein which could be affinity purified with glutathione agarose (Pharmacia, Uppsala, Sweden) Other useful ligand/counterreceptor combinations include, for example, influence virus [Field hemagglutinin ei al.. Mol. Cell Biol. 8(5): 2159-2165 (1988)]/hemagglutinin-specificantibody (Berkeley Antibody Company, Richmond, CA), polyhistidine/nickel affinity chromatography (Novagen, Madison, WI), and maltose-binding protein/amylose chromatography (New England Biolabs, Beverly, Massachusetts).

To construct the GST::TIH2 fusion protein, the 5' and 3' termini of the TIH2 gene were modified by DNA amplification-based mutagenesis procedures. The amplifying oligonucleotides introduced XbaI and HindIII sites

15

20

25

for ease in subcloning. The oligonucleotides, with restriction sites underlined, used for amplification were:

5'-ATT CTA GAC ATG GAG ACC AGT TCT TTT GAG-3' (SEQ ID NO. 47) and,

5 5'-TGG AAG CTT ATA TTA CCA TAG ATT CTT CTT G-3' (SEQ ID NO. 48).

Reactions included 200mM Tris-HCl (pH 8.2), 100mM KCl, 60 mM (NH₄)₂SO₄, 15mM MgCl₂, 1% Triton-X-100, 0.5 μ M primer, 100 ng template, 200 μ M dNTP and 2.5 units polymerase. The reactions were performed for 30 cycles. Reactions were started at 94°C for 4 minutes and all subsequent cycles were 1 minute at 94°C for denaturation, 2 minutes at 50°C for annealing, and 4 minutes at 72°C for extension.

The resulting amplified product was digested with XbaI and HindIII and the fragment was subcloned into the GST-containing plasmid pGEXKG, which contained a galactose-inducible GST gene, to create pGEXKG::TIH2. This plasmid contains, in addition to the GST sequences fused immediately upstream of TIH2 sequences, URA3 and LEU2 selectable markers for yeast transformation. Plasmid pGEXKG::TIH2 was then transformed by lithium acetate-mediated transformation into yeast strain W303 [Wallis, et al., Cell 58:409-419 (1989)] and Ura+ transformants were selected on SD-URA medium (Bio101). To isolate the GST::TIH2 fusion protein, 100 ml SD-URA broth was inoculated with the transformed yeast and grown to a density of 1 x 107 cells/ml in the presence of galactose. The cells were then pelleted by centrifugation, washed in lysis buffer [10mM sodium phosphate pH 7.2, 150mM NaCl, 1% Nonidet P-40, 1% Trasylol (Miles), 1mM dithiothreitol, 1mM benzamidine, 1mM phenylmethyl sulphonyl fluoride, 5mM EDTA, 1 μ g/ml pepstatin, 2 μ g/ml pepstatin A, 1 μ g/ml leupeptin, 100mM sodium vanadate, and 50mM NaF], resuspended in 1 ml lysis buffer, and lysed by vortexing for 5 minutes with 10 g of glass beads. The crude lysate was clarified by centrifugation at 100,000 x g for 30 minutes. Fifty μ l of 50% slurry

5

10

15

20

25

- 28 -

glutathione agarose (Pharmacia) was added to the extract and the mixture incubated for 1 hour. The agarose was pelleted by a 10 second spin in an Eppendorf microcentrifuge, the supernate removed, and the agarose-containing pellet washed with phosphate-buffered saline (PBS). The pellet was resuspended in 50 μ l of 2X protein gel sample buffer, boiled for 2 minutes, and 12.5 μ l was electrophoresed through a 10% polyacrylamide gel. Gel fractionated proteins were transferred by electroblotting to Immobilon-P membranes (Millipore, Bedord, MA) and HRR25 was detected by probing the membrane with a rabbit antibody [DeMaggio et al., Proc. Natl. Acad. Sci. (USA) 89: 7008-7012 (1992)] raised to HRR25. The Western blot was developed for immunoreactivity using an alkaline phosphatase-conjugated secondary antibody and colorimetric development (BioRad).

A photograph of the gel is presented in Figure 1, wherein the approximately 58 kD HRR25 protein was detected in association with TIH2 protein.

Example 8

In order to confirm the novelty of the identified TIH1 protein, a data base search of previously reported protein sequences was performed. As shown in Figure 2, wherein portions of the amino acids sequence of TIH1 (amino acids 128 to 161 in SEQ ID NO: 3), human Hum80DP (amino acids 31 to 63) [Sakumi, et al., J.Biol.Chem. 268:23524-23530 (1993)], E.coli MutT (amino acids 32- to 64) [Akiyama, et al., Mol.Gen.Genet. 206:9-16 (1989)], viral C11 (amino acids 122 to 154) [Strayer, et al., Virol. 185:585-595 (1991)] and viral VD10 (amino acids 122 to 154) [Strayer, et al., (1991), supra)] are respectively set out, sequence comparison indicated that TIH1 contains a signature sequence motif associated with enzymes which actively participate in removal of oxidatively damaged nucleotides from the nucleus, thus increasing the fidelity of DNA replication. Enzymes with this activity have been identified in a wide range of

- 29 -

organisms, including prokaryotes, eukaryotes and viruses [Koonin, Nucl. Acids Res. 21:4847 (1993)].

5

10

15

HRR25 enzyme activity has been shown to participate in repair of DNA damaged by radiation, however the role of HRR25 in the repair process has not been determined. The fact that TIH1 has an amino acid sequence similar to that of enzymes capable of degrading damaged indicates that TIH1 is likely to interact with HRR25 in the DNA repair process. Inhibitor compounds which are capable of interfering, or abolishing, the interaction between HRR25 and TIH1 would thus be particularly useful in targeted cancer and antiviral therapy. Delivery of an inhibitor to cancerous or virus-infected cells would increase the rate of replicative mutation in the cells, thus increasing the likelihood of induced cell suicide. In addition, targeted delivery of an inhibitor would selectively confer enhanced sensitivity of cancerous or virus-infected cells to treatment with conventional chemotherapy and/or radiation therapy, thus enhancing the chemotherapy and/or radiotherapy therapeutic index.

While the present invention has been described in terms of specific methods and compositions, it is understood that variations and modifications will occur to those skilled in the art. Therefore, only such limitations as appear in the claims should be placed on the invention.

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: DeMaggio, Anthony J. Hoekstra, Merl F.
 - (ii) TITLE OF INVENTION: Materials and Methods Relating to Proteins that Interact with Casein Kinase I
 - (iii) NUMBER OF SEQUENCES: 53
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Marshall, O'Toole, Gerstein, Murray & Borun
 - (B) STREET: 6300 Sears Tower, 233 South Wacker Drive
 - (C) CITY: Chicago (D) STATE: Illinois

 - (E) COUNTRY: United States of America
 - (F) ZIP: 60606-6402
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk

 - (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/184,605 (B) FILING DATE: 21-JAN-1994
 - (viii) ATTORNEY/AGENT INFORMATION:

 - (A) NAME: Noland, Greta E. (B) REGISTRATION NUMBER: 35,302
 - (C) REFERENCE/DOCKET NUMBER: 27866/32437
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 312/474-6300
 - (B) TELEFAX: 312/474-0448 (C) TELEX: 25-3856
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5 amino acids (B) TYPE: amino acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

Arg Arg Xaa Ser Tyr

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2625 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 796..2580

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

(12) 5255115	
CATTTCTTA ATTCTTTAT GTGCTTTTAC TACTTTGTTT AGTTCAAAAC AATAGTCGTT	60
ATTCTTAGGT ACTATAGCAT AAGACAAGAA AAGAAAAAATA AGGGACAAAT AACATTAGCA	120
GAAGTACGGT ATATTTTACT GTTACTTATA TACTTTCAAG AAGATGAGTT AAATCGGTAG	. 180
CCAGTGTAGA AAAATAATAA TAAGGGTCAT CGATCCTTCG CATTTTATTA TCCAATTAAA	240
GATACGAATC ACGGCAAACT ATATTCAAAG CTCATAGATA ATCGTCGTAA GGCTGACACT	300
GCAGAAGAAA AGTCATAATT TGAATACTAG CCGGTATGAA ACTGTGATTG ATTAACCTGG	360
GGTTACCTAA AGAGAACATA AGTAATACTC ATGACAGAAT CAAAACACAA TACAAAATTT	420
ATCCGAACCT CGGCCCGACT GCGGCTCGCC GGGAAAGGGG ACAACCGCTT CTATCCGTCG	480
ACTAACTTCA TCGGCCCAAT GGAAGCTATG ATATGGGGAT TTCCATTGAG CCGATAGCAA	540
TGTAGGGTAA TACTGTTGCG TATATAGTGA TAGTTATTGA ATTTTATTAC CCTGCGGGAA	600
TATTGAGACA TCACTAAGCA CGAATTTTAC GTCTGAGGAA AGTTGAATGA TGGCCAAATA	660
ACCAGGAAAA ACAAATATTG AATCCTTGTG AAGGATTCCA CAGTTGTTTA ATCCTCCTTA	720
AGCTCACTTA GTATCAATTG TCTAAATAAT ATTGCTTTGA ATCTGAAAAA AATAAAAGTA	780
CCTTCGCATT AGACA ATG TCA CTG CCG CTA CGA CAC GCA TTG GAG AAC GTT Met Ser Leu Pro Leu Arg His Ala Leu Glu Asn Val 1 5 10	831
ACT TCT GTT GAT AGA ATT TTA GAG GAC TTA TTA GTA CGT TTT ATT ATA Thr Ser Val Asp Arg Ile Leu Glu Asp Leu Leu Val Arg Phe Ile Ile 15 20 25	879
AAT TGT CCG AAT GAA GAT TTA TCG AGT GTC GAG AGA GAG TTA TTT CAT Asn Cys Pro Asn Glu Asp Leu Ser Ser Val Glu Arg Glu Leu Phe His 30 35 40	927
TTT GAA GAA GCC TCA TGG TTT TAC ACG GAT TTC ATC AAA TTG ATG AAT Phe Glu Glu Ala Ser Trp Phe Tyr Thr Asp Phe Ile Lys Leu Met Asn 50 55 60	975
CCA ACT TTA CCC TCC CTA AAG ATT AAA TCA TTT GCT CAA TTG ATC ATA Pro Thr Leu Pro Ser Leu Lys Ile Lys Ser Phe Ala Gln Leu Ile Ile 65 70 75	1023
AAA CTA TGT CCT CTG GTT TGG AAA TGG GAC ATA AGA GTG GAT GAG GCA Lys Leu Cys Pro Leu Val Trp Lys Trp Asp Ile Arg Val Asp Glu Ala 80 85 90	1071

CTC Leu				TCC Ser													1119
GCC Ala	ATA Ile 110	TTT Phe	AAC Asn	GAG Glu	AAC Asn	CTG Leu 115	AGT Ser	AAA Lys	ATT Ile	TTA Leu	TTG Leu 120	GTA Val	CAG Gln	GGT Gly	ACT Thr		1167
				TTG Leu													1215
				TGT Cys 145													1263
				TAT Tyr													1311
				TAC Tyr											GTC Val		1359
				CCT Pro													1407
				AAA Lys													1455
				AAT Asn 225													1503
				ATA Ile												·	1551
				TTG Leu													1599
				TTG Leu													1647
				GCG Ala													1695
				AAA Lys 305													1743
				TTT Phe													1791
				TTT Phe				Lys									1839
		Ala		GTA Val													1887

					GCA Ala 370	Pro											1935
AAT Asn	AGT Ser	AAT Asn	AGC Ser	GCT Ala 385	AAC Asn	CCT Pro	ATT Ile	CCA Pro	ACT Thr 390	CCG Pro	GTC Val	CCC Pro	CCT Pro	AAT Asn 395	TTT Phe		1983
					CCG Pro												2031
CTT Leu	TCT Ser	GGA Gly 415	CCA Pro	GCA Ala	GTA Val	TCT Ser	CAA Gln 420	CCG Pro	TTT Phe	TCC Ser	TTG Leu	CCT Pro 425	CCT Pro	GCT Ala	CCT Pro		2079
TTA Leu	CCG Pro 430	Arg	GAC Asp	TCT Ser	GGT Gly	TAC Tyr 435	AGC Ser	AGC Ser	TCC Ser	TCC Ser	CCT Pro 440	GGG Gly	CAG Gln	TTG Leu	TTA Leu		2127
GAT Asp 445	ATA Ile	CTA Leu	AAT Asn	TCG Ser	AAA Lys 450	AAG Lys	CCT Pro	GAC Asp	AGC Ser	AAC Asn 455	GTG Val	CAA Gln	TCA Ser	AGC Ser	AAA Lys 460	-	2175
					ATC Ile												2223
					GAT Asp												2271
					AAA Lys												2319
					TTT Phe												2367
					GAT Asp 530												2415
					AGA Arg												2463
					AAA Lys												2511
					AAA Lys												2559
					GCT Ala			atct	TCA (CCCT	CCGA	CT T	CAGA	GTAA	c		2610
ACA	GAAT	CCA (CAGT	A													2625

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 595 amino acids
 - (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Met Ser Leu Pro Leu Arg His Ala Leu Glu Asn Val Thr Ser Val Asp Arg Ile Leu Glu Asp Leu Leu Val Arg Phe Ile Ile Asn Cys Pro Asn 20 25 30 Glu Asp Leu Ser Ser Val Glu Arg Glu Leu Phe His Phe Glu Glu Ala Ser Trp Phe Tyr Thr Asp Phe Ile Lys Leu Met Asn Pro Thr Leu Pro Ser Leu Lys Ile Lys Ser Phe Ala Gln Leu Ile Ile Lys Leu Cys Pro Leu Val Trp Lys Trp Asp Ile Arg Val Asp Glu Ala Leu Gln Gln Phe Ser Lys Tyr Lys Lys Ser Ile Pro Val Arg Gly Ala Ala Ile Phe Asn Glu Asn Leu Ser Lys Ile Leu Leu Val Gln Gly Thr Glu Ser Asp Ser Leu Ser Phe Pro Arg Gly Lys Ile Ser Lys Asp Glu Asn Asp Ile Asp Cys Cys Ile Arg Glu Val Lys Glu Glu Ile Gly Phe Asp Leu Thr Asp Tyr Ile Asp Asp Asn Gln Phe Ile Glu Arg Asn Ile Gln Gly Lys Asn Tyr Lys Ile Phe Leu Ile Ser Gly Val Ser Glu Val Phe Asn Phe Lys Pro Gln Val Arg Asn Glu Ile Asp Lys Ile Glu Trp Phe Asp Phe Lys Lys Ile Ser Lys Thr Met Tyr Lys Ser Asn Ile Lys Tyr Tyr Leu Ile Asn Ser Met Met Arg Pro Leu Ser Met Trp Leu Arg His Gln Arg Gln Ile Lys Asn Glu Asp Gln Leu Lys Ser Tyr Ala Glu Glu Gln Leu Lys Leu Leu Gly Ile Thr Lys Glu Glu Gln Ile Asp Pro Gly Arg Glu Leu Leu Asn Met Leu His Thr Ala Val Gln Ala Asn Ser Asn Asn Asn Ala Val Ser Asn Gly Gln Val Pro Ser Ser Gln Glu Leu Gln His Leu

295

Lys Glu Gln Ser Gly Glu His Asn Gln Gln Lys Asp Gln Gln Ser Ser 305 310 Phe Ser Ser Gln Gln Gln Pro Ser Ile Phe Pro Ser Leu Ser Glu Pro 330 Phe Ala Asn Asn Lys Asn Val Ile Pro Pro Thr Met Pro Met Ala Asn Val Phe Met Ser Asn Pro Gln Leu Phe Ala Thr Met Asn Gly Gln Pro Phe Ala Pro Phe Pro Phe Met Leu Pro Leu Thr Asn Asn Ser Asn Ser 375 Ala Asn Pro Ile Pro Thr Pro Val Pro Pro Asn Phe Asn Ala Pro Pro 395 Asn Pro Met Ala Phe Gly Val Pro Asn Met His Asn Leu Ser Gly Pro Ala Val Ser Gln Pro Phe Ser Leu Pro Pro Ala Pro Leu Pro Arg Asp 425 Ser Gly Tyr Ser Ser Ser Pro Gly Gln Leu Leu Asp Ile Leu Asn Ser Lys Lys Pro Asp Ser Asn Val Gln Ser Ser Lys Lys Pro Lys Leu Lys Ile Leu Gln Arg Gly Thr Asp Leu Asn Ser Leu Lys Gln Asn Asn Asn Asp Glu Thr Ala His Ser Asn Ser Gln Ala Leu Leu Asp Leu Leu Lys Lys Pro Thr Ser Ser Gln Lys Ile His Ala Ser Lys Pro Asp Thr Ser Phe Leu Pro Asn Asp Ser Val Ser Gly Ile Gln Asp Ala Glu Tyr Glu Asp Phe Glu Ser Ser Asp Glu Glu Val Glu Thr Ala Arg Asp Glu Arg Asn Ser Leu Asn Val Asp Ile Gly Val Asn Val Met Pro Ser Glu Lys Asp Ser Arg Arg Ser Gln Lys Glu Lys Pro Arg Asn Asp Ala Ser Lys Thr Asn Leu Asn Ala Ser Ala Glu Ser Asn Ser Val Glu Trp Gly Ala Gly 595

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6854 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:
(A) NAME/KEY: CDS
(B) LOCATION: 2050..4053

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

(xi) SEQ	DENCE DESC	RIPITON: 3E	Q 15 110.11.			
AGCTTCTCCC I	TTTCCTTCA	GTGCTGCTAC	TCTCTGCTCT	CCACTTAAGT	GTTACAATTA	60
ATTTGCAGCT A	GTTTGCAGT	TCGTACAACC	TCGCCTATTC	TTGTAACGAA	GAAGAACGTA	120
TTTATAATAT 1	CGGCTGTAA	TGTGTTGAGT	TTAGTAATAG	ATAAAGTAGG	ACAGAGTTCT	180
GTCTTTGTTT ?	ATCTATGGGG	TTCAGAGTGA	TAAGGGGCAG	GATAAGGAAG	TTAAAAAAAA	240
AAAGGTTACG 1	TATATAACG	AAAGAAAAGA	AACGAGCGAA	GTGCCAACTA	TAGCCCAATA	300
TCAAGAATGC A	AAGTCAGCAA	AGTACAGTAA	TCGTATGAAG	ATACGCGATG	CGTAATATCC	360
CTCAAGGGCT (CCGGATCAGA	AAAGCTAAGG	GAAGATCCTT	ACATTACACG	GCGTGCGACA	420
GACTCGAACC	ACAGCTAACT	TCTCGTGAAA	AGATGGCTTC	AACTTCGCTC	TTGCAATAAC	480
TTTGAAACAC	ACGAACAAAG	GTTTATTGCG	CTTGATTAAC	GTTGGAAGTA	TATGATACTA	540
ATACTACTTT (GTTCTCTAAG	TCATCGCTAT	ATGTTTATCT	CGAGGAAAAG	GTGCACGGCG	600
GTACACAATT	ACTTCGCCGT	TTCGGGTAAA	ACAAGTGTTA	CATTTATAAT	ATATATGTAT	660
ATATGTATGT	GCGCGTAAGT	ATATGCCGTT	CATAACAAAT	CATCTTCTTG	TTGCTGGATG	720
GACTCCTTAA	TTTTATTCAA	AATGGTAATT	TTCCATTTAT	CTAGTCTCAT	AAAATTGTCA	780
AACTCCTTAC	AGTGTTCGCT	TAGCTGCTCG	CTATCACCTT	CATTAACAGC	ATCGATTAAA	840
CTTTTCAAGA	AATTTGACTC	CCTTGAATCC	GCAAAATTCG	GATCTTCACT	TTGACCCTCT	900
TGTAAAGTTC	TTGCAGCAGC	GACTGCATCA	GTAGCAGCTA	GCTGACAAAG	CCCTTTTTTT	960
AGGAAGTAAT	CCTTCAAACT	CCATTGGCTC	: AATCTATTGC	CCATGCTGCT	CTTGATCAAC	1020
TTCGAATATA	TATCACTTGC	TTCAATATAT	TGACCGTCAP	GAGCCTTTAG	ATCTGCGCAT	1080
TTGATAAAAC	ACTTATTCGA	TAATGCTACO	GACTGGTCTT	GGGCATACCA	CTCACCAGCG	1140
AGCTCATAGC	AATCTATAGC	TTTTGCATAC	TCATGCAAA	CATTTTCTAC	AATTTCTCCA	1200
AGCTCAAACT	TGAAATTAGC	ACCTCTCCGC	AACTGCCCC	TATGAGTAA	A AATTTGAATA	1260
GCATTTTCTA	ATGAATCCAC	GGCGTTCAC	A GAGTTTCCA	C CGCTTTTAA	A GCATTTATAA	1320
GCCTCTACGT	AGGTATTTCC	TGCTTCGTC	TCATTACCA	G CCTTTTTCT	G ATAGTCAGCA	1380
GCTTTCAAAA	ACGAGTCTCC	TGCCAAGTT	r aactetttt	C TTAGACGGT	A AATGGTGGCT	1440
GCTTGGACAC	AAAGATCAGO	AGCCTCCTC	A AACTTGTAT	G AATCAGAAC	C GCTAAACAAT	1500
TTCATGAAAC	CCGATGAAGG	AACACCCTT	C TTCTCAGCC	TAACACAAC	G GGAAATATCA	1560
ATTCCCGTAT	TTCAATGTTA	GTAATTTGC	C TTCGTAAAT	T ACGGAATCA	C ATAGCTTTCA	1620
TTTTGTTCCT	TTGATATAT	TCCCTACTA	C ATACTCTTT	T CAATAACTC	T ACAGGGTCTG	1680
ACATTTTAA	CTTTCAGGT	AATGATGGT	G TTCTTACTA	T ATTCTCGAG	T CGTACAGAAG	1740
TTAGTTCAGA	TAAACTGCT	CGGTGCTGC	C CACTTCTTA	T CATTACTTC	A ACTTTACCTT	1800

CCCTATACCT GTGTGT	CCTT ATTAATTC	AA GTTAATCCGA	GGTAATAGAT TAGGGTA	ACC 1860
TTCAATGATG TCACGA	AACA CGGATGCT	GC AACTTTGCGA	TTTTTTCCTG GAAAAGA	ATA 1920
ACAATTAAAG GCAGCC	TTTC AGCTGAGA	TT ACCAGCAGGT	CTTTGGAGAT TAGCGCA	AGA 1980
AGAAGTGTGA TATAGT	ACTC ATAGAGGC	AG GCTACAGACT	AGGGAAAGCG TGTTCAAC	CAA 2040
			CT CCT:CCT GCA GCC la Pro Pro Ala Ala 10	2088
ATC AAT GAT GCT C Ile Asn Asp Ala G 15	AG GAT AAT AA ln Asp Asn As 20	T ATA AAT ACG n Ile Asn Thr	GAG ACT AAT GAC CAC Glu Thr Asn Asp Glr 25	2136
GAA ACA AAT CAG C Glu Thr Asn Gln G 30	AA TCT ATC GA ln Ser Ile Gl 35	A ACT AGA GAT u Thr Arg Asp 40	GCA ATT GAC AAA GAA Ala Ile Asp Lys Glu 45	1
Asn Gly Val Gln T	CG GAA ACT GG hr Glu Thr Gl 50	T GAG AAC TCT y Glu Asn Ser 55	GCA AAA AAT GCC GAA Ala Lys Asn Ala Glv 60	2232
CAA AAC GTT TCT T Gln Asn Val Ser S 65	CT ACA AAT TT er Thr Asn Le	G AAT AAT GCC u Asn Asn Ala 70	CCC ACC AAT GGT GCT Pro Thr Asn Gly Ala 75	2280
		n Ala Ile Val	ATT AAA AAC ATT CCC Ile Lys Asn Ile Pro 90	
			ATT GAA GAA ATG GAT Ile Glu Glu Met Asy 105	
			GAT AAC GGT ATT TTO Asp Asn Gly Ile Pho	•
Arg Gly Leu Ala P			GAA GAA ACT ACT CAA Glu Glu Thr Thr Gli 140	
			GGG AGG AAA TTG AAA Gly Arg Lys Leu Lys 155	
		o Gln Ala Glu	AGA GAA AGA ATC GAG Arg Glu Arg Ile Glu 170	•
AGG GAG AAG AGA G Arg Glu Lys Arg G 175	AG AAA AGA GG lu Lys Arg Gl 180	A CAA TTA GAA y Gln Leu Glu	GAA CAA CAC AGA TCC Glu Gln His Arg Sec 185	G 2616
			ATG AGT GGA AGC GGI Met Ser Gly Ser Gly 20	Y
Asn Asn Asn Thr S			ACT CTA ATG AAC GGC Thr Leu Met Asn Gly 220	2712
			AAT AAT ACC ATT AAG Asn Asn Thr Ile Ass 235	

AAT Asn	AAC Asn	AGT Ser 240	TCT Ser	AAT Asn	AAC Asn	AAC Asn	AAT Asn 245	AGT Ser	GGT Gly	AAC Asn	ATC Ile	ATT Ile 250	CTG Leu	AAC Asn	CAA Gln	2808
CCT Pro	TCA Ser 255	CTT Leu	TCT Ser	GCC Ala	CAA Gln	CAT His 260	ACT Thr	TCT Ser	TCA Ser	TCG Ser	TTG Leu 265	TAC Tyr	CAA Gln	ACA Thr	AAC Asn	2856
GTT Val 270	TAA Asn	TAA neA	CAA Gln	GCC Ala	CAG Gln 275	ATG Met	TCC Ser	ACT Thr	GAG Glu	AGA Arg 280	TTT Phe	TAT Tyr	GCG Ala	CCT Pro	TTA Leu 285	2904
CCA Pro	TCA Ser	ACT Thr	TCC Ser	ACT Thr 290	TTG Leu	CCT Pro	CTC Leu	CCA Pro	CCC Pro 295	CAA Gln	CAA Gln	CTG Leu	GAC Asp	TTC Phe 300	AAT Asn	2952
GAC Asp	CCT Pro	GAC Asp	ACT Thr 305	TTG Leu	GAA Glu	ATT Ile	TAT Tyr	TCC Ser 310	CAA Gln	TTA Leu	TTG Leu	TTA Leu	TTT Phe 315	AAG Lys	GAT Asp	3000
AGA Arg	GAA Glu	AAG Lys 320	TAT	TAT	TAC Tyr	GAG Gļu	TTG Leu 325	GCT Ala	TAT Tyr	CCC Pro	ATG Met	GGT Gly 330	ATA Ile	TCC Ser	GCT Ala	3048
TCC Ser	CAC His 335	AAG Lys	AGA Arg	ATT	ATC Ile	AAT Asn 340	GTT Val	TTG Leu	TGC Cys	TCG Ser	TAC Tyr 345	TTA Leu	GGG Gly	CTA Leu	GTA Val	3096
GAA Glu 350	GTA Val	TAT Tyr	GAT Asp	CCA Pro	AGA Arg 355	TTT Phe	ATT Ile	ATT Ile	ATC Ile	AGA Arg 360	AGA Arg	AAG Lys	ATT Ile	CTG Leu	GAT Asp 365	3144
CAT His	GCT Ala	AAT Asn	TTA Leu	CAA Gln 370	TCT Ser	CAT His	TTG Leu	CAA Gln	CAA Gln 375	CAA Gln	GGT Gly	CAA Gln	ATG Met	ACA Thr 380	TCT Ser	3192
GCT Ala	CAT His	CCT Pro	TTG Leu 385	CAG Gln	CCA Pro	AAC Asn	TCC Ser	ACT Thr 390	GGC Gly	GGC Gly	TCC Ser	ATG Met	AAT Asn 395	AGG Arg	TCA Ser	3240
CAA Gln	TCT Ser	TAT Tyr 400	ACA Thr	AGT Ser	TTG Leu	TTA Leu	CAG Gln 405	GCC Ala	CAT His	GCA Ala	GCA Ala	GCT Ala 410	GCA Ala	GCG Ala	AAT Asn	3288
AGT Ser	ATT Ile 415	AGC Ser	AAT Asn	CAG Gln	GCC Ala	GTT Val 420	AAC Asn	AAT Asn	TCT Ser	TCC Ser	AAC Asn 425	AGC Ser	AAT Asn	ACT Thr	ATT Ile	3336
AAC Asn 430	AGT Ser	AAT Asn	AAC Asn	GGT Gly	AAC Asn 435	GGT Gly	AAC Asn	AAT Asn	GTC Val	ATC Ile 440	ATT Ile	TAA Asn	AAC Asn	AAT Asn	AGC Ser T 445	3384
GCC Ala	AGC Ser	TCA Ser	ACA Thr	CCA Pro 450	AAA Lys	ATT Ile	TCT Ser	TCA Ser	CAG Gln 455	GGA Gly	CAA Gln	TTC Phe	TCC Ser	ATG Met 460	CAA Gln	3432
CCA Pro	ACA Thr	CTA Leu	ACC Thr 465	TCA Ser	CCT Pro	AAA Lys	ATG Met	AAC Asn 470	ATA Ile	CAC His	CAT His	AGT Ser	TCT Ser 475	CAA Gln	TAC Tyr	3480
TAA neA	TCC Ser	GCA Ala 480	GAC Asp	CAA Gln	CCG Pro	CAA Gln	CAA Gln 485	CCT Pro	CAA Gln	CCA Pro	CAA Gln	ACA Thr 490	CAG Gln	CAA Gln	AAT Asn	3528
GTT Val	CAG Gln 495	TCA Ser	GCT Ala	GCG Ala	CAA Gln	CAA Gln 500	CAA Gln	CAA Gln	TCT Ser	TTT Phe	TTA Leu 505	AGA Arg	CAA Gln	CAA Gln	GCT Ala	3576

ACT TTA ACA CCA TCC TCA AGA ATT C Thr Leu Thr Pro Ser Ser Arg Ile F 510 515	Pro Ser Gly 520	TAT TCT GCC AAC CAT Tyr Ser Ala Asn His 525	3624
TAT CAA ATC AAT TCC GTT AAT CCC T Tyr Gln Ile Asn Ser Val Asn Pro I 530	TTA CTG AGA Leu Leu Arg 535	AAT TCT CAA ATT TCA Asn Ser Gln Ile Ser 540	3672
CCT CCA AAT TCA CAA ATC CCA ATC A Pro Pro Asn Ser Gln Ile Pro Ile A 545	AAC AGC CAA Asn Ser Gln 550	ACC CTA TCC CAA GCG Thr Leu Ser Gln Ala 555	3720
CAA CCA CCA GCA CAG TCC CAA ACT CGIn Pro Pro Ala Gln Ser Gln Thr G			3768
CAA AAT GCT TCA TTG TCT TCC CAG C Gln Asn Ala Ser Leu Ser Ser Gln G 575	Gln Leu Tyr	AAC CTT AAC GGC CCA Asn Leu Asn Gly Pro 585	3816
TCT TCA GCA AAC TCA CAG TCC CAA C Ser Ser Ala Asn Ser Gln Ser Gln I 590 595	CTG CTT CCA Leu Leu Pro 600	CAG CAC ACA AAT GGC Gln His Thr Asn Gly 605	3864
TCA GTA CAT TCT AAT TTC TCA TAT C Ser Val His Ser Asn Phe Ser Tyr G 610	CAG TCT TAT Gln Ser Tyr 615	CAC GAT GAG TCC ATG His Asp Glu Ser Met 620	3912
TTG TCC GCA CAC AAT TTG AAT AGT G Leu Ser Ala His Asn Leu Asn Ser A 625	GCC GAC TTG Ala Asp Leu 630	ATC TAT AAA TCT TTG Ile Tyr Lys Ser Leu 635	3960
AGT CAC TCT GGA CTA GAT GAT GGC T Ser His Ser Gly Leu Asp Asp Gly I 640	TTG GAA CAG Leu Glu Gln	GGC TTG AAT CGT TCT Gly Leu Asn Arg Ser 650	4008
TTA AGC GGA CTG GAT TTA CAA AAC C Leu Ser Gly Leu Asp Leu Gln Asn G 655 660	Gln Asn Lys	AAG AAT CTA TGG Lys Asn Leu Trp 665	4053
TAATATATAC TTCCATTATT CTATGATTAT	AGAGTTTGTT	TGGTATTTGT ATATCGCACG	4113
ATACAAGTAA TGAGGGGTGC TTACACAAGA	TAAAAGATAA	AAAATATAT ATATATAATA	4173
AAAACCATCA AAAACACCAT TGAAAAAAA	TATAAAAAAA	AAAAAAAATA ACCGAATATG	4233
AATATGAAAT TAATGATCAT GATGAAGTTA	ATTTTTACTG	AGAAACGTCA CCTAATGTCG	4293
ATGAAACGAT GATAATGAAT GAATGATGAG	GCTACTTTAA	GTAACGCAAT GTAATCAAGC	4353
CAAAATTATC CCTCTTTTT TTTTTTCCCT	CTTTTGAGAT	TTTATTTTTA ACCTACTACT	4413
TACTTTTTT TTTTGAACGT TCTTTTCCCA	CATACTTTTA	TATATGGTAT TTATATGTAC	4473
GATGTTTAAT CACAGAGATG TTTCTACCTT	ACTCGATATT	GTTTTTGCAT TAATTGATAT	4533
CTTGCTCACT GCATCATTGG CGGTATTTGT	AGTATATAGA	AAGTCGGGTA ACAATAATTT	4593
ATTGACATTT CTTTGTTTAC AATGATCAGA	GAAGAGCAGA	AAGTTTCATA GTCAAACGTT	4653
CAGGCCAATT GAACAAGAAA TTATTCGTTT	TTTTAGTCGT	TGAGTGTTCA ACTGACATGC	4713
TATTTTGGTG GTTCTTGATT AATTGGGGGC	TTCATTGTTT	GAAATAAAGA GTCGGGAAAA	4773
TAGCACAGAA ACAAAGCATA TTAAAAGAGG	CAAAAGAAGA	AAGAACGAAT ATAAAAGGTA	4833
AAAAAGGAAA AGCATTGCTA TTCTTTTCTC	ATAGGTGTTA	TTCATACCGC CCTCTCTTT	4893

PCT/US95/00912

CTTCCTTCTT	CATTAATTAG	TCTCCGTATA	ATTTGCAGAT	AATGTCATTA	ACAGCAAACG	4953
ACGAATCGCC	ААААСССААА	AAAAATGCAT	TATTGAAAAA	CTTAGAGATC	GATGATCTGA	5013
TACATTCTCA	ATTTGTCAGA	AGCGATACAA	ATGGACATAG	AACTACAAGA	CGACTATTCA	5073
ACTCCGATGC	CAGTATATCA	CATCGAATAA	GAGGAAGTGT	TCGGTCTGAT	AAAGGCCTTA	5133
ATAAAATAA	AAAAGGGTTG	ATTTCCCAGC	AGTCCAAACT	TGCGTCAGAA	AATTCTTCTC	5193
AAAATATCGT	TAATAGGGAC	AATAAGATGG	GAGCAGTAAG	TTTCCCCATT	ATTGAACCTA .	5253
ATATTGAAGT	CAGCGAGGAG	TTGAAGGTTA	GAATTAAGTA	TGATTCTATC	AAATTTTTCA	5313
ATTTTGAAAG	ACTAATATCT	AAATCTTCAG	TCATAGCACC	TTTAGTTAAC	АААААТАТАА	5373
CATCATCCGG	TCCTCTAATC	GGGTTTCAAA	GAAGAGTTAA	CAGGTTAAAG	CAAACATGGG	5433
ATCTAGCAAC	CGAAAACATG	GAGTACCCAT	ATTCTTCTGA	TAATACGCCA	TTCAGGGATA	5493
ACGATTCTTG	GCAATGGTAC	GTACCATACG	GCGGAACAAT	AAAAAAAATG	AAAGATTTCA	5553
GTACAAAAAG	AACTTTACCC	ACCTGGGAAG	ATAAAATAAA	GTTTCTTACA	TTTTTAGAAA	5613
ACTCTAAGTC	TGCAACGTAC	ATTAATGGTA	ACGTATCACT	TTGCAATCAT	AATGAAACCG	5673
ATCAAGAAAA	CGAAGATAGG	AAAAAAAGGA	AAGGGAAAGT	ACCAAGAATC	AAAAATAAAG	5733
TGTGGTTTTC	CCAGATAGAA	TACATTGTTC	TTCGAAATTA	TGAAATTAAA	CCTTGGTATA	5793
CATCTCCTTT	TCCGGAACAC	ATCAACCAAA	ATAAAATGGT	TTTTATATGT	GAGTTCTGCC	5853
TAAAATATAT	GACTTCTCGA	TATACTTTTT	ATAGACACCA	ACTAAAGTGT	CTAACTTTTA	5913
AGCCCCCCGG	AAATGAAATT	TATCGCGACG	GTAAGCTGTC	TGTTTGGGAA	ATTGATGGGC	5973
GGGAGAATGT	CTTGTATTGT	CAAAATCTTT	GCCTGTTGGC	AAAATGTTTT	ATCAATTCTA	6033
AGACTTTGTA	TTACGATGTT	GAACCGTTTA	TATTCTATAT	TCTAACGGAG	AGAGAGGATA	6093
CAGAGAACCA	TCCCTATCAA	AACGCAGCCA	AATTCCATTT	CGTAGGCTAT	TTCTCCAAGG	6153
AAAAATTCAA	CTCCAATGAC	TATAACCTAA	GTTGTATTTT	AACTCTACCC	ATATACCAGA	6213
GGAAAGGATA	TGGTCAGTTT	TTGATGGAAT	TTTCATATTT	ATTATCCAGA	AAGGAGTCAA	6273
AATTTGGAAC	TCCTGAAAAA	CCATTGTCGG	ATTTAGGATT.	ATTGACTTAC	AGAACGTTTT	6333
GGAAGATAAA	ATGTGCTGAA	GTGCTATTAA	AATTAAGAGA	CAGTGCTAGA	CGTCGATCAA	6393
ATAATAAAA	TGAAGATACT	TTTCAGCAGG	TTAGCCTAAA	CGATATCGCT	AAACTAACAG	6453
GAATGATACC	AACAGACGTT	GTGTTTGGAT	TGGAACAACT	TCAAGTTTTG	TATCGCCATA	6513
AAACACGCTC	ATTATCCAGT	TTGGATGATT	TCAACTATAT	TATTAAAATC	GATTCTTGGA	6573
ACAGGATTGA	AAATATTTAC	AAAACTTGGA	GCTCAAAAAA	CTATCCTCGC	GTCAAATATG	6633
ACAAACTATT	GTGGGAACCT	ATTATATTAG	GGCCGTCATT	TGGTATAAAT	GGGATGATGA	6693
ACTTAGAACC	CACCGCATTA	GCGGACGAAG	CTCTTACAAA	TGAAACTATG	GCTCCGGTAA	6753
TTTCGAATAA	CACACATATA	GAAAACTATA	ACAACAGTAG	AGCACATAAT	AAACGCAGAA	6813
GAAGAAGAAG	AAGAAGTAGT	GAGCACAAAA	CATCCAAGCT	T		6854

-41-

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 668 amino acids
 - (B) TYPE: amino acid (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Met Glu Thr Ser Ser Phe Glu Asn Ala Pro Pro Ala Ala Ile Asn Asp Ala Gln Asp Asn Asn Ile Asn Thr Glu Thr Asn Asp Gln Glu Thr Asn Gln Gln Ser Ile Glu Thr Arg Asp Ala Ile Asp Lys Glu Asn Gly Val Gln Thr Glu Thr Gly Glu Asn Ser Ala Lys Asn Ala Glu Gln Asn Val Ser Ser Thr Asn Leu Asn Asn Ala Pro Thr Asn Gly Ala Leu Asp Asp Asp Val Ile Pro Asn Ala Ile Val Ile Lys Asn Ile Pro Phe Ala Ile Lys Lys Glu Gln Leu Leu Asp Ile Ile Glu Glu Met Asp Leu Pro Leu 100 Pro Tyr Ala Phe Asn Tyr His Phe Asp Asn Gly Ile Phe Arg Gly Leu Ala Phe Ala Asn Phe Thr Thr Pro Glu Glu Thr Thr Gln Val Ile Thr Ser Leu Asn Gly Lys Glu Ile Ser Gly Arg Lys Leu Lys Val Glu Tyr Lys Lys Met Leu Pro Gln Ala Glu Arg Glu Arg Ile Glu Arg Glu Lys Arg Glu Lys Arg Gly Gln Leu Glu Glu Gln His Arg Ser Ser Ser Asn Leu Ser Leu Asp Ser Leu Ser Lys Met Ser Gly Ser Gly Asn Asn Asn 200 Thr Ser Asn Asn Gln Leu Phe Ser Thr Leu Met Asn Gly Ile Asn Ala 215 Asn Ser Met Met Asn Ser Pro Met Asn Asn Thr Ile Asn Asn Asn Ser Ser Asn Asn Asn Ser Gly Asn Ile Ile Leu Asn Gln Pro Ser Leu Ser Ala Gln His Thr Ser Ser Ser Leu Tyr Gln Thr Asn Val Asn Asn Gln Ala Gln Met Ser Thr Glu Arg Phe Tyr Ala Pro Leu Pro Ser Thr

Ser Thr Leu Pro Leu Pro Pro Gln Gln Leu Asp Phe Asn Asp Pro Asp

Thr Leu Glu Ile Tyr Ser Gln Leu Leu Phe Lys Asp Arg Glu Lys Tyr Tyr Tyr Glu Leu Ala Tyr Pro Met Gly Ile Ser Ala Ser His Lys Arg Ile Ile Asn Val Leu Cys Ser Tyr Leu Gly Leu Val Glu Val Tyr 345 Asp Pro Arg Phe Ile Ile Ile Arg Arg Lys Ile Leu Asp His Ala Asn Leu Gln Ser His Leu Gln Gln Gln Gly Gln Met Thr Ser Ala His Pro Leu Gln Pro Asn Ser Thr Gly Gly Ser Met Asn Arg Ser Gln Ser Tyr 390 395 Thr Sér Leu Leu Gln Ala His Ala Ala Ala Ala Asn Ser Ile Ser Asn Gln Ala Val Asn Asn Ser Ser Asn Ser Asn Thr Ile Asn Ser Asn 420 425 Asn Gly Asn Gly Asn Asn Val Ile Ile Asn Asn Asn Ser Ala Ser Ser 440 Thr Pro Lys Ile Ser Ser Gln Gly Gln Phe Ser Met Gln Pro Thr Leu Thr Ser Pro Lys Met Asn Ile His His Ser Ser Gln Tyr Asn Ser Ala Asp Gln Pro Gln Gln Pro Gln Thr Gln Gln Asn Val Gln Ser Ala Ala Gln Gln Gln Ser Phe Leu Arg Gln Gln Ala Thr Leu Thr Pro Ser Ser Arg Ile Pro Ser Gly Tyr Ser Ala Asn His Tyr Gln Ile Asn Ser Val Asn Pro Leu Leu Arg Asn Ser Gln Ile Ser Pro Pro Asn Ser Gln Ile Pro Ile Asn Ser Gln Thr Leu Ser Gln Ala Gln Pro Pro Ala Gln Ser Gln Thr Gln Gln Arg Val Pro Val Ala Tyr Gln Asn Ala Ser Leu Ser Ser Gln Gln Leu Tyr Asn Leu Asn Gly Pro Ser Ser Ala 585 Asn Ser Gln Ser Gln Leu Leu Pro Gln His Thr Asn Gly Ser Val His Ser Asn Phe Ser Tyr Gln Ser Tyr His Asp Glu Ser Met Leu Ser Ala 615 His Asn Leu Asn Ser Ala Asp Leu Ile Tyr Lys Ser Leu Ser His Ser Gly Leu Asp Asp Gly Leu Glu Gln Gly Leu Asn Arg Ser Leu Ser Gly 645 650

-43-

Leu Asp Leu Gln Asn Gln Asn Lys Lys Asn Leu Trp 660

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 2814 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

- (A) NAME/KEY: CDS (B) LOCATION: 1..696

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

	Phe				AAA Lys											48
ACA Thr	AAC Asn	TGT Cys	GAG Glu 20	GTA Val	GCG Ala	GAA Glu	ATT Ile	CTT Leu 25	TTA Leu	CAC His	TGC Cys	GAC Asp	TGG Trp 30	GAA Glu	AGG Arg	96
					AGT Ser											144
					AGA Arg											192
					TTA Leu 70											240
					CCA Pro											288
					GAC Asp											336
					AGC Ser											384
		Val			TTT Phe											432
					CCG Pro 150											480
					GAC Asp								Asn			528

Ile Leu Val Leu Leu Val Leu Asn Leu Leu Tyr 180 185	Leu Met Lys Leu Asn 190	' 6
AAG AAG ATG GAT AAG CTG ACG AAC CTC ATG ACC Lys Lys Met Asp Lys Leu Thr Asn Leu Met Thr 195 200	CAC AAG GAC GAA GTT 62 His Lys Asp Glu Val 205	? 4
GTA GCG CAC GCG ACT CTA TTG GAC ATA CCA GCC Val Ala His Ala Thr Leu Leu Asp Ile Pro Ala 210 215		12
AGA CCA AGA AGG GGA GAC GTG TTG TAACAGAGTA Arg Pro Arg Arg Gly Asp Val Leu 225 230	ATCATGTAAT ATTGTATGTA 72	?€
AGGTTATGTA TGTTCGTATG GTATGGAAAA AAAAAAAAAA	AAAGGATGCT ATGTGGAGAA 78	iε
TGTAAGGCGT GGTAGCTCCG GATAATTCAG TCTGTAGGCT	TCATCACGGG CAGTGGCCTG 84	ŀ€
ACTCTGAGAG CTTGCTCCGG TATTAAGTTG TGCGTTTGAA	ATTTTCTGGA AAAAAGAAAT 90)€
TGATTGGTTG AAGCTATACT CGTCGAAAGA TTTCTTCGGC	AGTGGTTGTT GCTCCACCTG 96	; E
CACGGGAGTT GTGTTTGCGT TTATGTTCGG CTTGGCTATA	TTATTAGCGA GTGATGTTTG 102	!€
CAATTTGCTG TATTGAGAAT CAATTTGGGT GCGTAAGCTT	TCAATAATTT TGCAGACCGC 108	3€
AGGCACTTCC AACTTTATGA GTTGCAGGTA TTCTCTTTTA	TGAATATACG ATGACGACGA 114	ŀ
TGACGACGAC GCATCCATGC GCAAAAGCTC AGGGTGTCTA	GATAGTTTGT TAGTCAATAA 120)€
ATCCACATAT CTAAAATAAT AAATAAACGA CAGCGACAAG	TCGTTGGCCT GGAACGCACA 126	3 E
CTGTGCCTTT TCCAATATGC CGATGCATGT TTTCAGGTAA	ATTCTCAATG GTATCGCCGG 132	? €
ATTGAAGCGA TAATCCTTAG CGTCCTGAAC CAATTGCTTA	CTAGACTTCA TGACCTACCG 138	3 6
GGGCCAGATA AAGATGCGGA AGGAAGAGAA AAAATGTATA	GTGGTTGGTG AACCGCAACA 144	l e
ATAATTCGTG CCAACACTTT AATCGAAGCA AAAATTGTCT	TGTATGTTAT TAATATTATC 150) (
TATCTAACCA TTGATTTACG TATAAAACTG TCGATGCTCA	TCGCCTAGCA ATGAAAAAAT 156	3 E
TTTTTCTTTT TTTTTTCATT ATTTCTCTTT GTTGCGTACT	TTTTTTCATT GCGTTTCGCG 162	2 6
GCAAAAGCGA TTCGAGTTGA CTGGAAGTGT GTTATACTAT	AAAAAGTGTA TATGCCTATT 168	3€
TTTGGTTCTG ATCTTTACTT TACTGTTAAG TACTGGCTGA	GGCAGTAGAC TCTGCCTCTG 174	16
TTACGGCAGC GGTATTCGCC TCGGCATCAG CAGCCGCCCA	CGGTAGAGTA GGTTCTGTTG 180) (
TTTTGACGTT TGCCAAGGTA CTGTCCAAAT GCTCCTTCAG	CAAGGCCTCA TTACTTTCCT 186	56
TCTCCGGACC CACCGATTGC GTGATCTCCT GTACACGGTT	CAAGAACTTG TTCAAATTGT 192	2 6
AGCCCGCAGC AGCATCAGAG ACTTCTTGTG TGTAAGGGAC	ACCCCTCAAC TCCTTGACTC 198	3 6
TTCTTTTGTG CACTTTGCCC TTTAAATGCG TTTTTAACGC	TATAGCAGTC TCCATGTATT 204	16
TGGCACAGTG TATGCAATAG TGCTGACCAA GGCCCGGTTT	GGTTTCATCC AATGGCTGGT 210	26
TCAGAAGCTT CTGTACTGAT TCCTTGGTGG ACAAATCGTT	T ATAGATCAGG TCCAAGTCTC 216	56
GTGTTCTTCT TTTAGTCTTG TATCTCTTCA CCGAATATCT	ACCCATGATG CGCTATTGTT 222	2 6
TTATCTTCAC TTGTCTGTGT GTTTAACTGC CTTTCAATTC	ACCTCATCTC ATCTCCCGCT 228	36

ACTTTCCATA	TATAAAAGCA	AAATTAATTT	GCTTTTTCCC	CTGTCAGTAT	AAAAAATTT	2346
TCCGCAGGAT	ATAGAAAAA	AAGAAATGAA	ATTATAGTAG	CGGTTATTTC	CGTGGGGTGC	2406
TTTTTTACAC	CTGTACATCT	TTTCCCTCCG	TACATTTTTT	TTATTTTTT	TTTGGGTTTT	2466
TTTTTTCGA	TATTTTTCCC	TCCGAAACTA	GTTAGCACAA	TAATGCTGAC	TAAGGAAACT	2526
TTTCATCTCA	GAATTGATGG	TCAGTTTGGT	TTCTCTAGAG	AATAGTTTAT	AAAAAGATGT	2586
TGATGTGGAG	CAACCATTTA	TACATCCTTT	CCGCAAGTGC	TTTTGGAGTG	GGACTTTCAA	2646
ACTTTAAAGT	ACAGTATATC	AAATAACTAA	TTCAAGATGG	CTAGAAGACC	AGCTAGATGT	2706
TACAGATACC	AAAAGAACAA	GCCTTACCCA	AAGTCTAGAT	ACAACAGAGC	TGTTCCAGAC	2766
TCCAAGATCA	GAATCTACGA	TTTGGGTAAG	AAGAAGGCTA	CCGTCGAT		2814

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 232 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

 Glu
 Phe
 Gln
 Tyr
 Thr
 Lys
 Gln
 Leu
 His
 Phe
 Pro
 Val
 Gly
 Pro
 Lys
 Ser

 Thr
 Asn
 Cys
 Glu
 Val
 Ala
 Glu
 Ile
 Leu
 Leu
 His
 Cys
 Asp
 Trp
 Glu
 Arg

 Tyr
 Ile
 Asn
 Val
 Leu
 Ser
 Ile
 Thr
 Arg
 Thr
 Pro
 Asn
 Val
 Pro
 Ser
 Gly

 Tyr
 Ile
 Asn
 Val
 Leu
 Leu
 Lys
 Ile
 Ser
 Phe
 Arg
 Trp
 Asp
 Asp
 Glu

 Gly
 Gln
 Gly
 Cys
 Ile
 Leu
 Lys
 Ile
 Ser
 Phe
 Trp
 Val
 Asp
 Asp
 Ile
 Ser
 Phe
 Trp
 Val
 Asp
 Asp
 Ile
 Val
 Glu
 Ser
 Ile
 Ile
 Ile
 Ile
 Ile

WO 95/19988 PCT/US95/00912

-46-

Lys Lys Met Asp Lys Leu Thr Asn Leu Met Thr His Lys Asp Glu Val 200

Val Ala His Ala Thr Leu Leu Asp Ile Pro Ala Gln Val Gln Trp Ser

Arg Pro Arg Arg Gly Asp Val Leu 225 230

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1485 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

60	TGGTTCCTTT	AGATTGGGAG	ATTGGCAGGA	GAAATTTCGT	GAGTAGGAAG	ATGGACTTAA
120	CAAGCTGGAA	AAGTAGCCAT	AGTGGTGAAG	GAACTTAATT	ACCACGGCAC	GGTGACATTT
180	ATACTTAAGC	GCGTCTACAG	TATGAGTCCC	TCAATTGGAC	CCAGACATCC	TCGATCAGGT
240	TAATGCTATG	AGGGTGAATA	TTTGGCAGAG	CATCAGATGG	GAATCCCGTT	GGTGGTGTGG
300	CAGAAGGTTC	ACTACTGTCA	GATTTATTCA	ATCTTTGGAA	TTCTAGGCCC	GTCATCGATC
360	GTATATACAT	GCCGTATTCA	CAAATGTTTT	GCTGGCTTTG	CGGTTATCAT	TCCTTTAAGA
420	GGTAGGACGC	TTTTAATGGG	CCAGACAACT	AGATATCAAA	TCATTCATAG	GGAAGGTCGT
480	AGATTTCAAC	AGAAATACCG	GGTCTATCAA	TATTGATTTC	CCGTTCATGT	CGTGGTAGCA
540	TCGTTATGCA	CAGGTACAGC	AAGTCCTTGA	CAGGGAGAAC	ATATTCCTTA	ACACATCGTC
600	ATCACTAGGT	ATGACTTAGA	AGTAGAAGAG	AATAGAGCAA	CGCATCTTGG	AGTGTCAATA
660	AGCAACCACC	AGGGTTTGAA	TTGCCATGGC	TAAGGGTTCT	TCTATTTTTG	TATGTCTTGA
720	GGAAACTCTA	ACGTTAGCGT	AAGAAATTAA	TATCATGGAA	AGTATGATCG	AAGAAACAAA
780	TTTGAAATTC	ACTGTAAGAA	TATATGGCTT	GTTTCAAGAA	TACCATTAGA	TGTTCAGGTT
840	TATTAAACTA	AAGATCTGAG	AGGCTGTTTA	GTTCTTGGCA	CAGATTATTT	GATGAGAAGC
900	GGCGATGGTG	GTTACACAAA	ACAATGTTGC	GTTCGATTGG	ACGACCACTT	GAGTATCACA
960	CAATGCAGCA	ACGCAAATAG	GGTGATTTGA	CATCGAAAAA	GGGACCTCCT	GAGAAGCAAA
1020	ACTGTTAGCC	ACAAGATTAA	GAAACTTTCA	CAACAAGTCT	ACAGCACAGA	AGTGCAAGTA
1080	TAATCCTTCA	AAGACAAACA	TACAAGAATG	TTTCCACTAT	TCCCCACCCA	ATGAAGAAAT
1140	TTTACCAGAG	CAGCCTCTTC	AATAATAATG	AACTATCTTG	TCAAACAACA	CCAGAAGAGA
1200	GCCGCAGCAG	GACAACAGCA	GAAAACTTGA	TAAAGGTATG	ACGCACTAGA	GAATTATTGA
1260	ACCAAATGGC	TACAGCAGCA	CCCCAACAGC	ACAACCACAG	GTTCGCAGCC	CAGGTCCAAA
1320	TTCTCAGGAG	AACAAAGAGA	CTACAGCAGC	TGAACCGTTA	ATTATTATCC	CAAAGACCAA

PCT/US95/00912

	-4

	1		-47-							
CAACAGCAGC	AAGTTCCGAT	GGCTACAACC	AGGGCTACTC	AGTATCCCCC	ACAAATAAAC	1380				
AGCAATAATT	TTAATACTAA	TCAAGCATCT	GTACCTCCAC	AAATGAGATC	TAATCCACAA	1440				
CAGCCGCCTC	AAGATAAACC	AGCTGGCCAG	TCAATTTGGT	TGTAA		1485				
(2) INFORM	(2) INFORMATION FOR SEQ ID NO:9:									
(EQUENCE CHAP (A) LENGTH: (B) TYPE: nu (C) STRANDER (D) TOPOLOGY	34 base pai cleic acid NESS: singl	irs							

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9: CCTACTCTTA GGCCCGGGTC TTTTTAATGT ATCC 34

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10: GGAATCACTA CAGGGATG 18

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 543 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11: GATCTCTGAA TTGAAGAACC GTTCAAACAT TGGCGAGCCC TTAACCAAAT CTTCCAATGA 60 AAGTACTTAT AAAGACATTA AAGCCACCGG CAATGATGGT GATCCGAATT TGGCTCTAAT 120 GAGAGCGGAG AATCGAGTAT TAAAATATAA ACTAGAGAAT TGTGAAAAAC TACTAGATAA 180 AGATGTGGTT GATTTGCAAG ATTCTGAGAT TATGGAAATT GTAGAAATGC TTCCCTTTGA 240 GGTCGCCACC CTTTTGGAAA CAAAGTTCCA AGGTTTGGAA TCACAAATAA GGCAATATAG 300 GAAATACACT CAAAAACTTG AAGACAAGAT CATGGCGCTA GAAAAAAGTG GTCATACTGC 360 AATGTCGCTA ACTGGGTGTG ACGGCACTGA AGTGATCGAA TTACAGAAGA TGCTCGAGAG 420 GAAGGATAAA ATGATTGAGG CCCTGCAGAG TGCCAAACGA CTGCGGGATA GGGCTTTGAA 480

ACCACTCATT AATACACAGC AATCACCGCA CCCTGTCGTG GATAACGATA AATGATTAGG	540
TGA	543
(2) INFORMATION FOR SEQ ID NO:12:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
CCTTCCTACT CTTAAGCCCG GGCCGCAGGA ATTCG	35
(2) INFORMATION FOR SEQ ID NO:13:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
AGCAATATAG GATCCTTACA ACCAAATTGA	30
(2) INFORMATION FOR SEQ ID NO:14:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	
CCTACTCTTA AGCCCGGGTC TTTTTAATGT ATCC	34
(2) INFORMATION FOR SEQ ID NO:15:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
CTCTCAACTT TTCCCCATCCT TAATCTACTC CC	22

1)

(2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

CACCATCGCC CCCGGGTAAC GCAACATTGT CC

- (2) INFORMATION FOR SEQ ID NO:17:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3628 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

60	GTATATCTTG	GATTCTGCCC	ACCTTTCCGC	TGTGTGCCGT	TATAGCTTTT	GATCAGATGA
120	GCGTCATTCA	CAAATCATTG	GTTGCTTTGC	GATTCTTTTT	TATTTTCTGA	GTCCCTGAGC
180	TGTTCTTTTC	AGTATCTTGC	TGGGTGTTAA	TTGGCAAACT	AAATCCCAAT	TGGTCATACC
240	TCAGGCTGGG	ATTGAATTCA	TTAAAAAATC	GAAGTGTCAT	GAAGCTGTTT	TAGTTGTGTC
300	AATTGGGAAT	GTTATTCATA	TGCCTTTACT	TTATTATTGT	ATCTATACTG	TATTAATATC
360	CCTCCTTTTC	GTGAACTCGT	AGACGAATTA	TGGTGCTAGA	TGTCTAATTT	CGTAATCATT
420	TGTCGACTTT	GCCTGTGATT	CAAGTCTTCT	ATTGATCAAA	TCTTTTTAA	TTGTTGAGCC
480	TCTTTTTATC	ATTGAATGTT	CGAAGACAAA	GCTTTCTTGA	AGTCTAGTGG	CTTTGCGGTT
540	TCGTTTTAGT	ATGGAACTTC	TGCCGTTAAG	TCTTTCTGCA	AATACCGGTT	TTGCGAGTTT
600	AGCCTGTATT	GGGGCGAGAG	GTTGTTTTT	TGCCTGTGGT	TTGGGTGTGC	GACAGTGGTC
660	AAAAATCGTC	CAATTAGAGA	TGGTTTTTGC	AATTGGAGCT	TTAGAACTGG	TACATTGAGT
720	ACGGTGAGTC	TCGGTGTCCA	AGCGTCTGAA	TCGACCTGGA	TCTTTGGAAG	AACACTATTT
780	CCTTTTGAAC	AACTCCATAT	TGATGGGTAT	AGACTAATTC	TGACCGTTCA	CGAAGAATCT
840	TTGTTTTCGC	CTCGTATATT	AGCAACAGGG	TATATTTCTT	AGATGTATCT	CTTCTTGTCG
900	AATCACGAGC	TTTAAGAAAA	CCCATTGTTC	GTAGCTGTTT	GCTGTATTTA	GTCAACATTT
960	TATCTAATGT	ATTGTCCATT	TAAATTGTTA	TAAACCTTCT	CCACCCAACT	CTTATGGTTC
1020	AGCATTGAAT	TGCACAGCAG	CATGTTTCTA	TATGAACACC	ACAAAGGTGA	AGAAGACTTT
1080	ACAATCAAAA	TCTTGTTACC	CCAGTAGGAT	GTACCGAAGT	ACACCAAAAG	ACACAGCATC
1140	AGTCTGTTCC	CTTGTTGAGT	TTCTGAAAAA	GCTACCTAGC	TTTCCATGTT	CAAACTCGAT

GTGGCAAATG TTTCTCCTTC ATCGTTACTC ATTGTCGCTA TGTGTATACT AAATTGCTCA 1200 AGAAGACCGG ATCAACAAGT ACTTAACAAA TACCCTTTCT TTGCTATCGC CTTGATCTCC 1260 TTTTATAAAA TGCCAGCTAA ATCGTGTTTA CGAAGAATAG TTGTTTTCTT TTTTTTTT 1320 TTTTTCGAA ACTTTACCGT GTCGTCGAAA ATGACCAAAC GATGTTACTT TTCCTTTTGT 1380 GTCATAGATA ATACCAATAT TGAAAGTAAA ATTTTAAACA TTCTATAGGT GAATTGAAAA 1440 GGGCAGCTTA GAGAGTAACA GGGGAACAGC ATTCGTAACA TCTAGGTACT GGTATTATTT 1500 . GCTGTTTTTT AAAAAAGAAG GAAATCCGTT TTGCAAGAAT TGTCTGCTAT TTAAGGGTAT 1560 ACGTGCTACG GTCCACTAAT CAAAAGTGGT ATCTCATTCT GAAGAAAAAG TGTAAAAAGG 1620 ACGATAAGGA AAGATGTCCC AACGATCTTC ACAACACTT GTAGGTATTC ATTATGCTGT 1680 AGGACCTAAG ATTGGCGAAG GGTCTTTCGG AGTAATATTT GAGGGAGAGA ACATTCTTCA 1740 TTCTTGTCAA GCGCAGACCG GTAGCAAGAG GGACTCTAGT ATAATAATGG CGAACGAGCC. 1800 AGTCGCAATT AAATTCGAAC CGCGACATTC GGACGCACCC CAGTTGCGTG ACGAATTTAG 1860 AGCCTATAGG ATATTGAATG GCTGCGTTGG AATTCCCCAT GCTTATTATT TTGGTCAAGA 1920 AGGTATGCAC AACATCTTGA TTATCGATTT ACTAGGGCCA TCATTGGAAG ATCTCTTTGA 1980 GTGGTGTGGT AGAAAATTTT CAGTGAAAAC AACCTGTATG GTTGCCAAGC AAATGATTGA 2040 TAGAGTTAGA GCAATTCATG ATCACGACTT AATCTATCGC GATATTAAAC CCGATAACTT 2100 TTTAATTTCT CAATATCAAA GAATTTCACC TGAAGGAAAA GTCATTAAAT CATGTGCCTC 2160 CTCTTCTAAT AATGATCCCA ATTTAATATA CATGGTTGAC TTTGGTATGG CAAAACAATA 2220 TAGAGATCCA AGAACGAAAC AACATATACC ATACCGTGAA CGAAAATCAT TGAGCGGTAC 2280 CGCCAGATAT ATGTCTATTA ATACTCATTT TGGAAGAGAA CAGTCACGTA GGGATGATTT 2340 AGAATCGCTA GGTCACGTTT TTTTTTATTT CTTGAGGGGA TCCTTGCCAT GGCAAGGTTT 2400 GAAAGCACCA AACAACAAAC TGAAGTATGA AAAGATTGGT ATGACTAAAC AGAAATTGAA 2460 TCCTGATGAT CTTTTATTGA ATAATGCTAT TCCTTATCAG TTTGCCACAT ATTTAAAATA 2520 TGCACGTTCC TTGAAGTTCG ACGAAGATCC GGATTATGAC TATTTAATCT CGTTAATGGA 2580 TGACGCTTTG AGATTAAACG ACTTAAAGGA TGATGGACAC TATGACTGGA TGGATTTGAA 2640 TGGTGGTAAA GGCTGGAATA TCAAGATTAA TAGAAGAGCT AACTTGCATG GTTACGGAAA 2700 TCCAAATCCA AGAGTCAATG GCAATACTGC AAGAAACAAT GTGAATACGA ATTCAAAGAC 2760 ACGAAATACA ACGCCAGTTG GGACACCTAA GCAACAAGCT CAAAACAGTT ATAACAAGGA 2820 CAATTCGAAA TCCAGAATTT CTTCGAACCC GCAGAGCTTT ACTAAACAAC AACACGTCTT 2880 GAAAAAATC GAACCCAATA GTAAATATAT TCCTGAAACA CATTCAAATC TTCAACGGCC 2940 AATTAAAAGT CAAAGTCAAA CGTACGACTC CATCAGTCAT ACACAAAATT CACCATTTGT 3000 ACCATATTCA AGTTCTAAAG CTAACCCTAA AAGAAGTAAT AATGAGCACA ACTTACCAAA 3060 CCACTACACA AACCTTGCAA ATAAGAATAT CAATTATCAA AGTCAACGAA ATTACGAACA 3120 AGAAAATGAT GCTTATTCTG ATGACGAGAA TGATACATTT TGTTCTAAAA TATACAAATA 3180

WO 95/19988 PCT/US95/00912

-51-

TTGTTGTTGC	TGTTTTTGTT	GCTGTTGATA	AAGCGATTTT	TATACTTTTC	TCTTTTTCCT	3240
TTTTTTTTT	GATTGGCTGT	TTCCTTATGC	CGCTCTTTCC	CAATTTATGA	CTTTCCAATA	3300
ATGTATTATT	TTGTTTCTCT	TTCTCTCTGT	TACCCTTTAT	TTTATCATCT	ACAATAATTG	3360
AATTCCGGAG	AGGGTAAAGA	AACAGGAAAA	AGAAGAAAAT	GAGACATAGT	CAGCATCGTA	3420
ATCGTTTTCC	TTCTGTATAT	TCCTTTATCA	AAAGACTACA	CGCACATATA	TATTAATCCC	3480
GGTATGTTTT	TGGTGTGCTA	AATCTATCTT	CAAGCACTAT	TATAGCATTT	TTTTAAGAAT	3540
ATCCAAAATA	ATATGTAATT	TATGATTAAT	CAAGGTTCAA	GAATTGGAGA	AACCGTGAGC	3600
GACTTCTTTG	ATACTTGGAT	GTAAGCTT				3628

(2) INFORMATION FOR SEQ ID NO:18:

3)

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 33 base pairs.

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

TGAAGATCGT TGGCCCGGGT TTCCTTATCG TCC

- (2) INFORMATION FOR SEQ ID NO:19:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2468 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single

 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

AATATTTCAA	GCTATACCAA	GCATACAATC	AACTCCAAGC	TTCGAGCGGC	CGCCAGTGTG	. 60
CTCTAAAGGA	AAAAGCGAGT	GCCTTTAGCC	TTAAAAGCGT	TATAATATTA	TTATGGCTTT	120
GGACCTCCGG	ATTGGGAACA	AGTATCGCAT	TGGTCGTAAA	ATTGGCAGTG	GATCTTTCGG	180
AGACATTTAT	CTTGGGACTA	ATGTCGTTTC	TGGTGAAGAG	GTCGCTATCA	AGCTAGAATC	240
AACTCGTGCT	AAACACCCTC	AATTGGAGTA	TGAATACAGA	GTTTATCGCA	TTTTGTCAGG	300
AGGGGTCGGA	ATCCCGTTTG	TTCGTTGGTT	CGGTGTAGAA	TGTGATTACA	ACGCTATGGT	360
GATGGATTTA	TTGGGTCCTT	CGTTGGAAGA	CTTGTTTAAT	TTTTGCAATC	GAAAGTTTTC	420
TTTGAAAACA	GTTCTTCTCC	TTGCGGACCA	GCTCATTTCT	CGAATTGAAT	TCATTCATTC	480
AAAATCTTTT	CTTCATCGTG	ATATTAAGCC	TGATAACTTT	TTAATGGGAA	TAGGTAAAAG	540
AGGAAATCAA	GTTAACATAA	TTGATTTCGG	ATTGGCTAAG	AAGTATCGTG	ATCACAAAAC	600
TCACCTGCAC	ATTCCTTATC	GCGAGAACAA	GAATCTTACA	GGTACTGCAC	GCTATGCTAG	660

CATCAATACT	CATTTAGGTA	TTGAACAATC	CCGCCGTGAT	GACCTCGAAT	CTTTAGGTTA	720
TGTGCTCGTC	TACTTTTGTC	GTGGTAGCCT	GCCTTGGCAG	GGATTGAAGG	CTACCACGAA	780
AAAGCAAAAG	TATGAAAAGA	TTATGGAGAA	GAAGATCTCT	ACGCCTACAG	AGGTCTTATG	840
TCGGGGATTC	CCTCAGGAGT	TCTCAATTTA	TCTCAATTAC	ACGAGATCTT	TACGTTTCGA	900
TGACAAACCT	GATTACGCCT	ACCTTCGCAA	GCTTTTCCGA	GATCTTTTTT	GTCGGCAATC	,960
TTATGAGTTT	GACTATATGT	TTGATTGGAC	CTTGAAGAGA	AAGACTCAAC	AAGACCAACA	1020
ACATCAGCAG	CAATTACAGC	AACAACTGTC	TGCAACTCCT	CAAGCTATTA	ATCCGCCGCC	1080
AGAGAGGTCT	TCATTTAGAA	ATTATCAAAA	ACAAAACTTT	GATGAAAAAG	GCGGAGACAT	1140
TAATACAACC	GTTCCTGTTA	TAAATGATCC	ATCTGCAACC	GGAGCTCAAT	ATATCAACAG	1200
ACCTAATTGA	TTAGCCTTTC	ATATTATTAT	TATATAGCAT	GGGCACATTA	TTTTTATATT	1260
TTCTTCTCAT	CTGGAGTCTT	CCAATACTTG	CCTTTTATCC	TCCAGACGTC	CTTTAATTTT	1320
GTTGATAGCG	CAGGGCTTTT	TCCTTGGGAT	GGCGAAAGTT	ACTTTGCTTA	TAGTTTATTG	1380
AGGGTTCATA	GCTTATTTGG	CTGAAGATCT	TGTGTTGACT	TAAATTCTAT	GCTAACCTCA	1440
TGATCATATC	CTCATTATGG	CAAGTTTTGG	TGAAAAATTT	TTTAATATTA	GTACATTTGC	1500
TAATAATACA	TTTGGTATTT	GTTTTTACTA	CCTGTGAATC	TATTCATACA	TTATCATATA	1560
TGTTTCGAGC	CAGGAACAGA	AAAAAGTGAG	AGAATTTTCT	GCAGAAATGA	TCATAATTTT	1620
ATCTTCGCTT	AACACGAATC	CTGGTGACAG	ATTATCGTGG	TTTAAAGCCT	TTTTTTTACG	1680
ACGCCATAAG	CAAATTGGTT	ACTTTTTAT	GTGTGATGAG	CCTTGGGGTT	TAATCTAATT	1740
AGAAGGCATT	GCATTCATAT	ACTTTTAATA	ATATATTATC	AGCTATTTGC	TGCTTTTCTT	1800
TATAGATACC	GTCTTTTCCA	AGCTGAACTC	ATTTAATCAG	CGTCGTTTAA	CCTTAGGATG	1860
CTTAAGATGC	GTTTAAATTC	AATGACTTAA	TGCTCGAGGG	ATGAATGGTT	TGTTTTAGTT	1920
CGTGTTCTGG	GTGCATGATC	TCGTGCTTGA	CTGTTTTATT	GAAGCGTTCA	TTTCATGAAG	1980
TGTCTTTCGA	TGTTGTTCAC	ACTTCTGTTT	GCTAAATATA	ATAAATATTT	TGCTTTTCAC	2040
TTTAGAGCAC	ACTGGCGGCC	GCTCGAAGCT	TTGGACTTCT	TCGCCATTGG	TCAAGTCTCC	2100
AATCAAGGTT	GTCGGCTTGT	CTACCTTGCC	AGAAATTTAC	GAAAAGATGG	AAAAGGGATC	2160
CAAATCGTTG	GTAGATACTT	GTTGACACTT	CTAAATAAGC	GAATTTCTTA	TGATTTATGA	2220
TTTTTATTAT	TAAATAAGTT	ATAAAAAAA	TAAGGTATAC	AAATTTTAAA	GTGACTCTTA	2280
GGTTTTAAAA	CGAAAATTCT	TATTCTTGAG	TAACTCTTTC	CTGTAGGTCA	GGTTGCTTTC	2340
TCAGGTATAG	CATGAGGTCG	CTCTTATTGA	CCACACCTCT	ACCGGCATGC	CGAGCAAATG	2400
CCTGCAAATC	GCTCCCCATT	TCACCCAATT	GTAGATATGC	TAACTCCAGC	AATGAGCCGA	2460
TGAATCTC						2468

(2) INFORMATION FOR SEQ ID NO:20:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:	
GGGTTATAAT ATTATCCCGG GTTTGGACCT CCGG	34
(2) INFORMATION FOR SEQ ID NO:21:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
TCCCTCTCTA GATATGGCGA GATAGTTA	28
(2) INFORMATION FOR SEQ ID NO:22:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
GTTTACACTC GAGGCATATA GTGATACA	28
(2) INFORMATION FOR SEQ ID NO:23:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5093 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
GCTAGCTTTT GCCGGGGAAC CCATCCCGAA AAAATTGCAA AAAAAAAAAT AGCCGCCGAC	60
CCTTCCTCCC TATTCACCCA ATCATACAA AATACCCCCC CTCCTCCTCC TCCCTCACCT	120

						•
TTTGTATATT	GTATAAAGAT	AAACATAGTG	CTATCAGGAA	TATCTTTATA	TACACACGCA	180
TACTGAATGT	GGTTGAAGTT	CAAAAAATAT	CACAAACGTT	AAGAAGTTTT	ACTGGTAAAC	240
ATATAGACAT	AGTGGAGCGC	TTGCTCGAGG	TCAAATGCAG	ACGGATACGA	GAGCGCGGGA	300
GGGAAACCGG	AGAAGGTCAA	TATGCCCATA	ATTCTTCTTC	TTTGAGGTTG	GCAATTATAT	360
ATTGTATCTG	AATTAGGCAA	ATAGAAAAGA	GACCTTACCA	TTAGCGCCAT	CGTAGAGTCC	420
CATTÍCACCT	TTTCTTAGTT	CTTTATATAT	GTCTGCGTAT	GGCCCACATA	TGCGCGCACA	480
GTGCGCGCCA	CCCTCTAAGA	ACGATAAACA	TAAAATAAAC	ACATAAACAA	TCAACGACAG	540
TTCGCGCTTC	CCTCACTAAA	TATGGCGAGA	TAGTTAAACA	ATCATGGCTC	GTTCTTCCTT	600
GCCCAACCGC	CGCACCGCCC	AGTTCGAAGC	GAACAAGAGG	AGGACCATTG	CACATGCTCC	660
ATCTCCAAGT	CTTTCAAATG	GGATGCACAC	TCTAACGCCG	CCCACCTGTA	ACAATGGTGC	720
TGCCACTTCA	GACTCCAATA	TACATGTATA	TGTAAGGTGC	AGATCGCGTA	ATAAGCGAGA	780
AATAGAGGAA	AAAAGTAGTG	TAGTTATATC	TACACTAGGC	CCACAAGGGA	AAGAAATCAT	840
TCTGTCCAAC	GGTTCTCACC	AATCGTATTC	GTCCTCGAAG	AAAACTTACC	AATTTGATCA	900
GGTGTTCGGC	GCAGAATCTG	ACCAGGAAAC	AGTGTTTAAT	GCCACTGCAA	AAAACTACAT	960
TAAGGAAATG	TTGCACGGGT	ACAATTGTAC	AATATTTGCA	TACGGTCAAA	CGGGAACAGG	1020
TAAAACCTAC	ACTATGTCTG	GCGATATAAA	TATTCTCGGT	GATGTGCAAT	CTACCGATAA	1080
TCTATTATTA	GGAGAGCATG	CAGGTATCAT	ACCACGGGTT	CTGGTCGATT	TGTTTAAAGA	1140
ATTGAGCTCC	TTAAATAAAG	AGTACTCCGT	AAAAATATCC	TTTTTAGAGT	TGTACAATGA	1200
AAATTTGAAA	GATCTGCTCT	CTGATAGTGA	GGACGATGAT	CCTGCAGTCA	ACGATCCCAA	1260
GAGGCAGATT	CGTATTTTTG	ACAATAACAA	CAATAATTCA	TCCATCATGG	TCAAGGGGAT	1320
GCAGGAAATC	TTTATTAACT	CTGCACACGA	AGGCTTGAAT	TTGCTAATGC	AGGGTTCGTT	1380
AAAAAGGAAA	GTGGCCGCTA	CTAAATGCAA	CGATCTTTCA	TCAAGGTCTC	ACACCGTCTT	1440
TACAATCACA	ACAAACATAG	TTGAGCAAGA	TAGCAAAGAC	CATGGACAAA	ACAAAAATTT	1500
TGTTAAAATT	GGCAAATTGA	ATTTGGTGGA	TTTGGCAGGC	AGTGAAAACA	TCAACAGATC	1560
GGGTGCGGAG	AATAAAAGGG	CTCAAGAAGC	TGGCCTAATA	AACAAATCGC	TGCTAACACT	1620
AGGCCGTGTT	ATCAACGCAC	TCGTTGATCA	TTCTAACCAT	ATACCTTACA	GAGAATCTAA	1680
GCTAACAAGA	TTGCTACAAG	ACTCTTTAGG	TGGTATGACG	AAAACATGCA	TTATCGCAAC	1740
TATATCACCT	GCGAAAATAT	CCATGGAAGA	GACTGCAAGT	ACGCTAGAAT	ATGCAACGAG	1800
AGCCAAATCA	ATTAAGAATA	CTCCACAAGT	AAATCAGTCT	TTATCGAAGG	ATACATGTCT	1860
CAAAGACTAC	ATTCAAGAGA	TTGAAAAATT	AAGAAATGAT	TTGAAAAATT	CAAGAAACAA	1920
ACAAGGTATA	TTTATAACTC	AAGATCAGTT	GGACCTTTAC	GAGAGCAATT	CTATCTTGAT	1980
TGATGAGCAA	AATCTAAAAA	TACATAACCT	GCGAGAACAA	ATTAAAAAAT	TCAAAGAAAA	2040
CTACCTGAAC	CAATTAGATA	TCAATAATCT	TTTACAGTCT	GAAAAGGAAA	AACTAATTGC	2100
CATAATACAG	AATTTTAATG	TCGATTTTTC	TAACTTTTAC	TCGGAAATCC	AAAAAATTCA	2160

	CCATACTAAT	CTCGAACTAA	TGAATGAAGT	CATACAACAG	AGAGATTTTT	CACTAGAAAA	2220
	TTCTCAAAAA	CAGTATAATA	CGAACCAGAA	CATGCAATTA	AAAATCTCTC	AACAAGTTTT	2280
	ACAGACTTTG	AACACTTTAC	AGGGCTCTTT	AAATAATTAT	AACTCTAAAT	GTTCCGAAGT	2340
	TATCAAAGGC	GTCACCGAAG	AACTAACCAG	GAACGTAAAT	ACCCATAAGG	CGAAACACGA	2400
	TTCTACTCTC	AAATCGTTAT	TAAACATTAC	TACTAACTTA	TTGATGAATC	AGATGAACGA	2460
·	ACTGGTGCGT	AGTATTTCGA	CTTCATTGGA	AATATTTCAG	AGTGATTCTA	CTTCTCACTA	2520
	TCGTAAAGAT	TTGAATGAAA	TCTACCAATC	ACATCAACAA	TTTCTAAAAA	ATTTACAAAA	. 2580
	CGATATTAAA	AGCTGTCTTG	ATTCGATAGG	CAGTTCAATT	CTAACTTCCA	TAAACGAAAT	2640
	ATCGCAAAAT	TGCACCACTA	ACTTGAATAG	TATGAATGTT	TTAATAGAAA	ACCAGCAGTC	2700
	AGGATCATCG	AAATTAATTA	AAGAGCAAGA	TTTAGAÄATA	AAAAAACTGA	AAAACGATCT	2760
	GATCAATGAG	CGCAGGATTT	CTAACCAATT	CAACCAACAG	TTGGCTGAAA	TGAAGCGATA	2820
	TTTTCAGGAT	CACGTTTCCA	GGACGCGTAG	TGAATTCCAC	GACGAACTTA	ACAAATGTAT	2880
	CGATAACCTA	AAAGATAAAC	AATCTAAGTT	GGATCAAGAT	ATCTGGCAGA	AGACGGCCTC	2940
	TATTTTCAAC	GAAACAGATA	TCGTAGTTAA	TAAAATTCAT	TCCGACTCAA	TAGCATCCCT	3000
	CGCTCATAAT	GCTGAAAACA	CTTTGAAAAC	GGTTTCTCAG	AACAATGAAA	GCTTTACTAA	3060
	CGATTTAATC	AGTCTATCAC	GCGGAATGAA	CATGGACATA	TCCTCCAAAC	TGAGAAGTTT	3120
	GCCCATCAAT	GAATTTTTAA	ACAAGATATC	ACAAACCATT	TGTGAAACCT	GTGGCGATGA	3180
	TAACACAATC	GCATCAAATC	CAGTATTGAC	CTCTATTAAA	AAATTTCAAA	ATATAATTTG	3240
	TTCAGACATT	GCCCTAACAA	ATGAGAAGAT	CATGTCATTA	ATAGATGAAA	TACAATCACA	3300
	AATTGAAACC	ATATCTAATG	AAAACAATAT	CAATTTGATT	GCAATAAATG	AAAATTTTAA	3360
	TTCTTTGTGC	AATTTTATAT	TAACTGATTA	CGATGAGAAT	ATTATGCAAA	TCTCAAAAAC	3420
	ACAAGATGAG	GTGCTTTCTG	AACATTGCGA	GAAGCTACAA	TCACTGAAAA	TACTGGGTAT	3480
	GGACATTTTC	ACTGCTCACA	GCATAGAAAA	ACCCCTTCAT	GAGCATACAA	GACCTGAAGC	3540
	GTCAGTAATC	AAGGCTTTAC	CCTTATTGGA	TTATCCAAAA	CAATTTCAGA	TTTATAGGGA	3600
	TGCTGAAAAT	AAGAGCAAAG	ACGACACATC	TAATTCTCGT	ACTTGTATAC	CAAACTTGTC	3660
	AACTAATGAA	AATTTTCCTC	TTTCACAATT	CAGTCCAAAA	ACCCCAGTGC	CAGTGCCTGA	3720
	TCAACCTCTA	CCAAAAGTTC	TTATACCGAA	AAGCATAAAC	TCGGCCAAGT	CCAATAGATC	3780
	AAAGACCTTA	CCAAATACAG	AGGGTACTGG	ACGAGAATCG	CAGAACAATT	TGAAGAGAAG	3840
	ATTTACCACC	GAGCCAATAT	TGAAGGGAGA	AGAAACTGAA	AATAATGACA	TACTGCAAAA	3900
	TAAAAAACTT	CATCAATAAG	GGGATATAGC	CATTGTAAAA	TATTTGTATC	ACTATATGCA	3960
	TTGAGTGTAA	ACTGTTGCAC	CTATAAAGAA	TGAAAACAAT	CTAGTATGTG	TACTTACATA	4020
	ATTACACAGT	CTTTTTTTT	TTTACCTTGT	TTATCCTTCT	TGTTCTTCAA	GCTTGTAGGT	4080
	TTTTTTGACT	CAGTTTTTAC	TGCAGGAAAA	TCTTTACGAA	TCATGTTTGA	ACTGCCCATA	4140
	TTTGATAAAC	TAACTTCTTG	CTTTGCTGCC	ATCGACTGCT	CAGCAACTTC	CCTTGACATT	4200

CCCTTTGCTG	AGGAAGAACT	TTTCCTGATG	CTTGTATCAG	AACCCGTTTT	AATACCATTT	4260
CTATTCGTGT	TTGAATTCAT	GTTAATTTGC	AAACCTTGTG	GCTCACGATC	ACGTTTTGGA	4320
TTTCCAGTAA	AGAATGTTTC	AGATTTTGAA	GAAACTCTTG	AATTTGACCC	TACGTTACTT	4380
GTTTGACTGT	CCACAGTAGA	GAATAAATTC	AAAGTACTGA	TACTTTTATT	TTTTTTATGC	4440
TGTTTTTTAC	CAATGCTGGC	TAGTCCACCG	TCCCTTGAGC	GTAGCTTATT	AATCGCCCTC	4500
TTGTCCTCGT	TCCCTGCAGC	TTTCTCGTAC	CATTTCCATG	CGTATTCCAT	GTTACGATCA	4560
CAGCCCTTGC	CATGCTCATA	GAAGTAGCCC	AGAGTGAATT	GGGCCTTTGG	CAAACCAGCA	4620
TTAGCTGCAC	GCAAGGCCCA	TTGAAAAGCC	TCATTTTCAT	CTTTTTCAAA	AGCAGGTTCT	4680
GCTCCCAGTA	AGTACCATGC	ACATAAACCT	AACATTGCCA	CAGAATCGCC	TTTTAACGCT	4740
GCCTGCGTAT	AATAGTGTAC	AGAAAGTGAT	GTATCCTGCC	CTACTGTATC	ATTACCTGTT	4800
TCATAAATCT	GTGCCAACAA	AGTTGCTGAA	GGAACATGCC	CTAAACTTGC	TGCTTGAATA	4860
TATAGTTCCA	TTGCATACTT	TTCATCCGGA	ATGACAACAT	CTAAGAACCC	TTCATGATAA	4920
ATCTTAGCCA	ATTCGTATGG	TGCTGCGGCC	GTCAACTCAT	TAGCTCTTGC	TGCAGCCCTT	4980
GATAACCATT	TTACCCCATT	TAATTTAGTA	TTAACGTCGG	TTGGAAGACC	CATTCTGCCG	5040
TAGAATGAAT	AAAGTCCCAA	TTTATACATT	GCTGAGGGAT	GATTCCTGCT	AGC	5093

- (2) INFORMATION FOR SEQ ID NO:24:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 42 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24: GATAGTTAAG GATCCATGGC TCGTTCTTCC TTGCCCAACC GC

42

- (2) INFORMATION FOR SEQ ID NO:25:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 45 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25: AAACTTCATC AATGCGGCCG CTAAGGGGAT CCAGCCATTG TAAAT

(2)	INFO	RMATION FOR SEQ ID NO:26:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: DNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:26:	
TTT	CCTTG	TATCCTTTC CAA	23
(2)	INFO	DRMATION FOR SEQ ID NO:27:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: DNA	-
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:27:	
GAT	CACTT	TCG GATCCGTCAC ACCCAGTTAG	30
(2)	INFO	ORMATION FOR SEQ ID NO:28:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 2870 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)) MOLECULE TYPE: protein	
	(xi)) SEQUENCE DESCRIPTION: SEQ ID NO:28:	
AAT	TTCCI	TTG TTTATCCTTT TCCAATAGCG GAACAATTGA TAATAAAGCA ATGTAAGCAG	60
AAG	CGAAA	AAA TAAAAAGAAA TAGGCTGCAG AGATTCACAG GCTGCGCTCT AGAAACATTT	120
GAA	ATCAF	AGG CAAACATAGA ACACTTGATA AAATTCTTAC CATAATACCA CCATTGATGA	180
TTC	AAAA.	AAT GAGCCCAAGC TTAAGGAGGC CATCAACGAG GTCTAGTTCT GGTTCAAGTA	240
ATA	TCCC	ACA ATCGCCCTCT GTACGATCAA CTTCATCGTT TTCTAATCTG ACAAGAAACT	300
CCA	TACGO	GAG CACCTCTAAT TCGGGTTCTC AGTCGATTTC TGCATCTTCC ACTAGAAGTA	360
ACT	cccci	ACT AAGATCCGTA TCAGCCAAAT CCGATCCCTT CCTTCACCCA GGTAGGATAA	420
GGA	TCAGO	GCG GAGCGACAGT ATTAACAACA ACTCGAGAAA AAACGATACA TATACTGGGT	480
CAA	TCACT	TGT GACCATCCGG CCGAAACCAC GGAGCGTTGG AACTTCCCGT GACCATGTGG	540
GGC	TAAAT	ATC GCCCAGGTAC TCTCAACCAA GATCCAACTC ACATCACGGT AGCAATACAT	600

TTGTTAGAGA CCCCTGGTTT ATTACTAATG ACAAAACAAT AGTGCATGAA GAAATTGGAG

AGTTCAAGTT	CGATCATGTT	TTTGCTTCCC	ATTGCACTAA	TTTGGAAGTT	TATGAAAGAA	720
CCAGTAAACC	AATGATTGAT	AAGTTATTGA	TGGGGTTTAA	TGCCACCATA	TTTGCGTACG	780
GTATGACCGG	GTCAGGTAAA	ACGTTTACAA	TGAGCGGAAA	TGAACAAGAG	CTAGGCCTAA	840
TTCCTTTATC	TGTGTCGTAT	TTATTTACCA	ATATCATGGA	ACAATCAATG	AATGGCGATA	900
AAAAGTTCGA	CGTTATAATA	TCGTACCTCG	AAATTTACAA	TGAAAGGATT	TACGACCTGT	9,60
TAGAAAGCGG	ATTAGAAGAA	TCCGGTAGTA	GAATCAGTAC	TCCTTCAAGG	TTATATATGA	1020
GCAAGAGCAA	CAGCAATGGA	TTGGGCGTAG	AATTAAAAAT	CAGAGATGAC	TCTCAGTATG	1080
GGGTCAAAGT	TATCGGTCTC	ACCGAAAGAA	GATGTGAAAG	TAGTGAAGAA	TTATTGAGGT	1140
GGATTGCAGT	TGGTGACAAA	AGTAGGAAAA	TTGGCGAAAC	TGACTACAAT	GCAAGAAGCT	1200
CACGATCTCA	TGCCATTGTA	CTGATTCGTT	TAACAAGTAC	TAACGTAAAG	AACGGCACCT	1260
CAAGATCGAG	TACATTGTCG	TTGTGTGACC	TAGCAGGTTC	GGAAAGGGCT	ACGGGGCAAC	1320
AAGAGAGGAG	AAAGGAAGGT	TCATTCATCA	ACAAATCCTT	ACTTGCTTTG	GGGACTGTGA	1380
TATCCAAACT	CAGTGCCGAC	AAGATGAACT	CAGTAGGCTC	AAACATTCCC	TCGCCATCTG	1440
CAAGTGGCAG	TAGCAGCAGT	AGTGGAAATG	CTACCAATAA	CGGCACTAGC	CCAAGCAACC	1500
ACATTCCATA	TCGTGATTCT	AAATTGACTA	GATTATTGCA	GCCGGCACTA	AGCGGTGACA	1560
GCATAGTGAC	AACGATATGT	ACAGTCGACA	CCAGAAATGA	TGCGGCAGCG	GAAACTATGA	1620
ATACGCTGAG	GTTTGCATCA	AGAGCGAAAA	ACGTCGCACT	TCATGTATCC	AAAAAATCCA	1680
TCATCAGTAA	CGGGAATAAC	GATGGAGATA	AAGATCGCAC	CATTGAGCTA	CTGAGACGCC	1740
AATTGGAAGA	ACAACGTAGG	ATGATCTCTG	AATTGAAGAA	CCGTTCAAAC	ATTGGCGAGC	1800
CCTTAACCAA	ATCTTCCAAT	GAAAGTACTT	ATAAAGACAT	TAAAGCCACC	GGCAATGATG	1860
GTGATCCGAA	TTTGGCTCTA	ATGAGAGCGG	AGAATCGAGT	ATTAAAATAT	AAACTAGAGA	1920
ATTGTGAAAA	ACTACTAGAT	AAAGATGTGG	TTGATTTGCA	AGATTCTGAG	ATTATGGAAA	1980
TTGTAGAAAT	GCTTCCCTTT	GAGGTCGGCA	CCCTTTTGGA	AACAAAGTTC	CAAGGTTTGG	2040
AATCACAAAT	AAGGCAATAT	AGGAAATACA	CTCAAAAACT	TGAAGACAAG	ATCATGGCGC	2100
TAGAAAAAAG	ŢĢĠŦĊĂŦĂĊŦ	GCAATGTCGC	TAACTGGGTG	TGACGGCACT	GAAGTGATCG	2160
AATTACAGAA	GATGCTCGAG	AGGAAGGATA	AAATGATTGA	GGCCCTGCAG	AGTGCCAAAC	2220
GACTGCGGGA	TAGGGCTTTG	AAACCACTCA	TTAATACACA	GCAATCACCG	CACCCTGTCG	2280
TGGATAACGA	TAAATGATTA	GGTGAGGGTC	CCAGATCTCG	GGTGCTTTTT	TCCTTGTGCG	2340
GATTGTTCTG	TAGACTGCGC	CTCCGCTTCC	CGGCCTTGCT	TGAACGGGAT	CTATTCTCAG	2400
AAGACAGCGC	ATAAAAGGCA	GTTTTTAGGC	ACTTCTCGTT	AAGAAAATAC	ACAAATAATG	2460
GATTTACAGT	TCGTTTCAGT	GTGGTACCAA	AAAATTTCAT	CAGCTAATAA	AGATCAAGAA	2520
GTTTTGGGGT	TGTTTCGAGT	CTGTCTCGGC	CTTAATTGTG	CAGGTACTAA	AGGAATTAAT	2580
ATATAAAGAT	TGTTAAGGCC	AAGTGACTGA	AACTTGCAAA	CGTCTTTGAA	TCAGGCTTAT	2640
CTCTTAAATA	CTTATATATA	TGTTCTTTTA	TAGACTTCAT	AATCTCTTGT	TCCAAGAACA	2700

-59-

GTAAA	AGAGCA ATTAAAAAAA GGAAAATAAC AGTTAAAGAT GATAGCGGAT TCATCAGTTT	2760
TGAAA	AAAGCA CACAGCAATC AAGAGAAGTA CGAGAATAAT ATCGCTAACA CTCGTTTTGC	2820
TTGGC	CGTATT TAGCTTCTTA CTACTTACAT GGAATGACTC CTTGGAATTC	2870
(2) I	INFORMATION FOR SEQ ID NO:29:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
((ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
	TAATAC CAGGATCCAT GATTCAAAAA	30
noch.	· ·	
(2)	INFORMATION FOR SEQ ID NO:30:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 42 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
,	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:	
CCTG	TCGTGG ATAGCGGCCG CTAGGATCCT GAGGGTCCCA GA	42
(2)	INFORMATION FOR SEQ ID NO:31:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:	
ACAT	CATCTA GAGACTTCCT TTGTGACC	28
(2)	INFORMATION FOR SEQ ID NO:32:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

TATATAATCG ATTGAAAGGC AATATC

26

(2) INFORMATION FOR SEQ ID NO:33:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3883 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single

 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

60	AAAGATCAAG	CGATTTAATC	GATCAAAGAC	GAATTCATTG	GAACATGGAT	AGCAAGAATT
120	AATTTCAGCT	CATTTAGAAA	TTTAATTCTT	TTGAATATTA	TCTTGATAAA	TGAGAGATAT
180	AGTCCCTCTT	TACAAGTCGG	GTCTCGAGGT	TTCCTTAGGC	TTCTTTTTCT	GCTTTTTTT
240	TTCATTTTTT	CAATCTGAAT	CCATTATTTT	TTTTATATCC	TGTCCACTTT	CACTATCGTT
300	TTTTTAATTA	CATATTTGCG	CGTATTACTA	ATATGTCCCA	CATGAAATTT	TTTTTTAATT
360	ATCAAATGTT	CACTTATCTG	ATTTGCAGAT	ATTATATCTT	TGTTACTTTT	AATAAATAAC
420	CAAACAAACA	ATAAACAAAA	GGTACGCGAA	CGATGTATTA	TGTGTGGTGA	TTCGTTTTCG
480	AACAGCGGGT	CCCGCTTCTC	TCCTTTGTGA	TCTAAAGACT	AATAACATCA	AGGCCGCAAC
540	CAAGCAATTC	GATACAGAAG	GTTGAGTATA	AGAAAGTAAC	TGGTATGGCC	GTAGAACTTA
600	AAGAATTTGT	TACAACAAGA	GCGCAAAAAA	GTATATAAAA	GTAATAAAAA	AAAGGAAAA
660	CATCAGTAAA	GCTCCAACAG	CAAGATAGAA	AAATACGGGT	CGGAAAACCA	TTGATGCCAG
720	CATCACTGTA	AGGAACTGAA	GTTCCTAATG	ATGTCACACT	CTCAGGTTGG	AATGGCAACT
780	CGTTGTGGTA	TGAAAAGCTC	GAAATTAGTA	GAATGAAAGG	GCAGAGGAAG	GCTGTGCGAT
840	AGATACCGGT	ACACGACGGG	ATTTCCATTA	TTCTAAAGAA	ATATTACAGG	AATGTTCCAG
900	TCCCGGCGCT	AAGTCTTCGG	ACAGTGGACA	CAAGAGATAC	AAATGAATGC	ATAACTGCTC
960	CATTAAAGGT	TCCAGGATTT	GGCCCATTAT	TGAAGTGGCG	TAATTTTTGA	TCCCAGGATC
1020	TACAATGACG	GTAAAACATA	ACGTCAACAG	ATATGGTATG	CCGTACTGGT	TACAATTGCA
1080	ACCGAGGGTT	CAGGAATTAT	AGCGATGCAG	TGGTGAATTG	AGTTATATAA	GGCGACGAAA
1140	AAAATGTTCG	ATTACGTAGT	CAACAGAACG	ATTGGAACTA	TGTTTGACAC	CTTTTGAAGT
1200	CAACGGCTCT	ACAGCAATAG	GACCTCTTGG	AGAATTGAAG	TCTACAACGA	TTCATTGAAC
1260	TTCAAGCACA	GGATTTTTGC	AAAAAATTGA	CCAATTTATG	GCTTTGACGG	AGTAATACTG
1320	GAACAGTTCT	GTAATTCTAG	AGTTCCAGGA	CAGTGCTAGT	CCACTAGCAA	GCAAATAATA
1380	GTTAAGGACA	TAAGAAAAAG	GCTGCTCTAT	AACACCTAAA	TAAATGATCT	CCGAGGTCAT
1440	GAATTCCAGG	AACAGGCAGT	TATCAACAAC	CAAGCAACAG	CGAATACCAT	AAATCACTGC
1500	CACCAACACA	CTTCTAGTAA	ACTAATAATG	TGGCTCTACC	CCTCTAACTC	AACAACTCTT

AATAACGGTC	AAAGAAGTTC	GATGGCTCCA	AATGACCAAA	CTAATGGTAT	ATACATCCAG	1560
AATTTGCAAG	AATTTCACAT	AACAAATGCT	ATGGAGGGC	TAAACCTATT	ACAAAAAGGC	1620
TTAAAGCATA	GGCAAGTAGC	GTCCACTAAA	ATGAACGATT	TTTCCAGTAG	ATCTCATACC	1680
ATTTTTACAA	TCACTTTGTA	TAAGAAGCAT	CAGGATGAAC	TATTTAGAAT	TTCCAAAATG	1740
AATCTTGTGG	ATTTAGCTGG	TTCAGAAAAC	ATCAACAGAT	CCGGAGCATT	AAATCAACGT	1800
GCCAAAGAAG	CTGGTTCAAT	CAACCAAAGT	CTATTGACGC	TGGGCAGGGT	CATAAACGCA	1860
CTCGTAGATA	AAAGCGGCCA	TATACCTTTC	CGTGAATCGA	AATTGACCCG	CCTGCTTCAA	1920
GATTCCCTGG	GTGGTAATAC	GAAAACCGCA	CTAATTGCTA	CTATATCGCC	TGCAAAGGTA	1980
ACTTCTGAAG	AAACCTGCAG	TACATTAGAG	TATGCTTCGA	AGGCTAAAAA	CATTAAGAAC	2040
AAGCCGCAAC	TGGGTTCATT	TATAATGAAG	GATATTTTGG	TTAAAAATAT	AACTATGGAA	2100
TTAGCAAAGA	TTAAATCCGA	TTTACTCTCT	ACAAAGTCCA	AAGAAGGAAT	ATATATGAGC	2160
CAAGATCACT	ACAAAAATTT	GAACAGTGAT	TTAGAAAGTT	ATAAAAATGA	AGTTCAAGAA	2220
TGTAAAAGAG	AAATTGAAAG	TTTGACATCG	AAAAATGCAT	TGCTAGTAAA	AGATAAATTG	2280
AAGTCAAAAG	AAACTATTCA	ĀTCTCAAAAT	TGCCAAATAG	AATCATTGAA	AACTACCATA	2340
GATCATTTAA	GGGCACAACT	AGATAAACAG	CATAAAACTG	AAATTGAAAT	ATCCGATTTT	2400
AATAACAAAC	TACAGAAGTT	GACTGAGGTA	ATGCAAATGG	CCCTACATGA	TTACAAAAAA	2460
AGAGAACTTG	ACCTTAATCA	AAAGTTTGAA	ATGCATATTA	CTAAAGAAAT	TAAAAAATTG	2520
AAATCTACAC	TGTTTTTACA	ATTAAACACT	ATGCAACAGG	AAAGTATTCT	TCAAGAGACT	2580
AATATCCAAC	CAAATCTTGA	TATGATCAAA	AATGAAGTAC	TGACTCTTAT	GAGAACCATG	2640
CAAGAAAAAG	CTGAACTAAT	GTACAAAGAC	TGTGTGAAGA	AAATTTTAAA	CGAATCTCCT	2700
AAATTCTTCA	ATGTTGTTAT	TGAGAAAATC	GACATAATAA	GAGTAGATTT	CCAAAAATTT	2760
TATAAAAATA	TAGCCGAGAA	TCTTTCTGAT	ATTAGCGAAG	AAAATAACAA	CATGAAACAG	2820
TACTTAAAAA	ACCATTTTTT	CAAGAATAAC	CATCAAGAAT	TACTGAATCG	TCATGTGGAT	2880
TCTACTTATG	AAAATATTGA	GAAGAGAACA	AACGAGTTTG	TTGAGAACTT	TAAAAAGGTC	2940
CTAAATGACC	ACCTTGACGA	AAATAAAA	CTAATAATGC	ACAATCTGAC	AACTGCAACC	3000
AGCGCGGTTA	TTGATCAAGA	AATGGATCTG	TTTGAACCCA	AGCGCGTTAA	ATGGGAAAAT	3060
TCATTTGATC	TGATAAATGA	TTGTGACTCC	ATGAATAACG	AATTCTATAA	TAGCATGGCA	3120
GCGACGCTAT	CGCAAATCAA	GAGTACTGTT	GATACATCAT	CAAATTCGAT	GAATGAGTCT	3180
ATTTCAGTCA	TGAAAGGACA	AGTGGAAGAA	TCGGAGAACG	CTATATCCCT	TTTGAAGAAC	3240
AATACCAAAT	TTAATGATCA	ATTTGAGCAG	CTTATTAACA	AGCATAACAT	GTTGAAAGAT	3300
AACATTAAAA	ATTCGATAAC	ATCAACACAC	TCTCATATAA	CTAATGTGGA	TGATATCTAT	3360
AATACGATTG	AAAACATAAT	GAAAAACTAT	GGTAACAAGG	AAAACGCTAC	CAAAGACGAA	3420
ATGATCGAGA	ACATATTGAA	GGAAATACCA	AATCTAAGTA	AGAAAATGCC	GTTAAGGTTA	3480
TCAAACATAA	ATAGCAATTC	AGTGCAAAGT	GTAATATCGC	CCAAAAAGCA	TGCAATTGAA	3540

GATGAAAAC	AATCCAGTGA	AAATGTGGAC	AATGAGGGCT	CGAGAAAAAT	GTTAAAGATT	3600
GAATAGTTG	A TATTGCCTTT	CAGTCGAATA	TATATTCAAA	CTAGTGGTTA	ATAAAAACAA	3660
AGTATGTAA	A GAATACTCAG	TTATTCATTA	GAAGGCAAGA	CAGAAGAGAA	GGGTGTGAAA	3720
CCACCTCTAC	CAAACACACC	AAGAGATGAA	CCTAAATCAA	ATTTTCACAG	AGCTAACTAT	3780
ATAAACGTT:	GGATTCGTGT	GTACTATCTT	TATTTACGGA	AATAAGTTGT	AATATTAAAA	3840
AAAAAAAA	A ACATTTTGAT	GGACAATGAA	TTTCTCTAAT	TTT		3883
(2) INFOR	MATION FOR SE	Q ID NO:34	•			
(i) :	SEQUENCE CHAF (A) LENGTH: (B) TYPE: nu (C) STRANDER (D) TOPOLOGY	36 base pa: cleic acid NESS: sing	irs			
(ii) 1	MOLECULE TYPE	E: DNA				
(x i)	SEQUENCE DESC	CRIPTION: SI	EQ ID NO:34	·		
CGGGTGTAG	G ATCCATGGTA	TGGCCAGAAA	GTAACG			36
(2) INFOR	MATION FOR SE	EQ ID NO:35	:			
(i)	SEQUENCE CHAR (A) LENGTH: (B) TYPE: nu (C) STRANDER (D) TOPOLOGY	53 base par scleic acid ONESS: sing	irs			
(ii)]	MOLECULE TYPE	E: DNA		शसूर		
(xi)	SEQUENCE DESC	CRIPTION: SI	EQ ID NO:35	:		
GTGGACAAT	G GCGGCCGCAG	AAAAAGGATC	CAGATTGAAT	AGTTGATATT	GCC	53
(2) INFOR	MATION FOR SI	EQ ID NO:36	:			
(i)	SEQUENCE CHAI (A) LENGTH: (B) TYPE: no (C) STRANDER (D) TOPOLOGY	28 base pa. ucleic acid DNESS: sing.	irs			
(ii)	MOLECULE TYPI	E: DNA (gen	omic)			
(xi)	SEQUENCE DES	CRIPTION: S	EQ ID NO:36	:	-	
GAATATTCT	A GAACAACTAT	CAGGAGTC				28
(2) INFOR	MATION FOR SI	EQ ID NO:37	:			
(i)	SEQUENCE CHAI (A) LENGTH: (B) TYPE: no (C) STRANDEI (D) TOPOLOG	25 base pa ucleic acid DNESS: sing	irs			

-63-

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

TTGTCACTCG AGTGAAAAAG ACCAG

- (2) INFORMATION FOR SEQ ID NO:38:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3466 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

60	TTTTTCTTTC	GTTTTTCGAT	CATGTTTGCT	GAACCATCAT	AAATCCAGTA	CTGCAGCAGA
120	CTTTGTTCGT	TTCAGCATCA	CATCATCTTC	TCTTCTTCAT	GTCGTCCTCT	TTGGGAAGTC
180	TCGGCTTCAT	CTCGTCTTCT	AGCTATTCTG	TCATCGCTAG	TTTAGATGAT	TATCTATAAT
240	CCACTATTCC	CTCTTGGTTG	CATTACTTAA	TTTTCCGGCT	TATTGTATCT	CACCTTCCAT
300	GTGTCTACTC	CTTATCCTTA	TGGTTCTTTT	GCATTCTTTC	CCCAAATTCT	TTTTTTCACG
360	TATCGCTTTA	TCGGCTTCTC	TGATTTTCCT	AATTATGTAC	GCCCATGATC	TGTGCTTGGA
420	CTAGATTTTT	GCATCGAATC	TATCTTATGG	CCTTTCCTTA	CTGTTTATTA	TTCATAGCAT
480	TCTCAAACAA	CCAAAATGAA	TGGAGATACA	AAGAGGGTAA	ATTTTCCAAT	TTCTTTCAAA
540	ATGATGAGTA	TCAAAATATG	GCGCCTCGAA	ACAATTTGAT	AACACTGTTT	AATCAAAACA
600	TTTTCCGCTC	AGCTATCAAT	TAAGCATTAA	GAATATTATA	AAAAATTATC	TTACAGCTAA
660	TCTTTGTTTA	CTATCCGGAG	ACCAGAACAA	ATTTGAATAT	TTATTATTCT	TTTGTGTTTC
720	AAAGTATGGA	GGCAACTATT	GAGAAATTCT	AAAGGACTTA	ATTTTGAAAT	AAAAAGGTAG
780	CACCATCGCC	CATCTCTCGA	ATCTACGCAG	CAAAAGGCAG	CGTACTCCCA	ATCACTTCCA
840	CTCCACCGCC	AATACAACAA	CAAAAGAAGA	TGAATGGCCA	ATTTTAGCTA	GAAGAATGAT
900	TAGCTAGTCA	AGACACTCAT	GGATATTCAT	CGCAACGTAC	CTTCTGAAGC	TAAGCACACT
960	GTACAGCAAA	AATTATAAAG	GCTTTTAAAG	CTAATCGCGA	TCCATGTCAC	GAGTCGCATA
1020	AAGAAAATGT	TCCTTTTATA	CGGTGTAACT	AAAGCAACTC	GGAAACCAGA	TTTGATTTAT
1080	TAGATTTACT	AAGGCAACAC	ATTTGAGAAA	AAGCAATCTT	AATAGAACAC	TAATGAACTC
1140	AATTTGAAAC	GTTAATCTCA	AATCAATGCC	CGAAAGAGAA	CTAACAGAAA	CAAAGATGAA
1200	ATGAACTTAT	TTGAAAAACA	GCAACTGAAT	AAATTGAACA	GAAAAGATAA	CCTTCGTGAA
1260	ATGAAATACA	AATGAAGGAC	GCAGTTCATG	TGTCAAAGAA	GAAGAATTTT	CTCGATTAAA
1320	ATGAATACAA	CAAATGGAAA	AGAGCTGAAA	СТААТАААА	CTAGCGGCAT	TTTAAAGCAG
1380	AAAGAGCGTC	TTTGAAAATG	GATTAAACAG	AATTTATGAA	GAGAAATTGA	AACAAAAATT

GCTTTTAGAT	AAAATAGAAG	AGGTAAGAAA	TAAAATCACC	ATGAACCCTT	CCACTTTACA	1440
GGAAATGTTG	AACGATGTTG	AACAAAAGCA	TATGCTTGAA	AAAGAAGAAT	GGCTTACAGA	1500
GTACCAATCG	CAGTGGAAAA	AGGATATAGA	GCTGAATAAT	AAACATATGC	AAGAAATCGA	1560
AAGCATAAAA	AAGGAAATCG	AAAATACATT	AAAACCTGAG	TTGGCAGAAA	AAAAGAAGCT	1620
CTTAACAGAA	AAGCGTAACG	CGTATGAAGC	TATCAAAGTA	AAAGTTAAAG	AAAAGGAAGA	1680
GGAAACTACA	AGGCTGAGAG	ATGAGGTGGC	ATTAAAACAG	AAAACTAATT	TAGAAACTTT	1740
GGAAAAGATC	AAAGAACTTG	AGGAATATAT	AAAAGACACT	GAACTGGGTA	TGAAGGAGTT	1800
GAATGAAATT	CTGATTAAAG	AGGAAACGGT	TAGACGCACA	TTGCATAATG	AGTTACAAGA	1860
GTTAAGAGGA	AATATACGAG	TTTATTGTAG	GATTCGTCCA	GCTCTAAAAA	ATTTGGAAAA	1920
TTCTGATACT	AGCCTTATTA	ATGTTAATGA	ATTTGATGAC	AATAGTGGTG	TTCAATCTAT	1980
GGAAGTGACG	AAAATACAAA	ACACAGCGCA	AGTGCATGAA	TTCAAATTTG	ATAAAATATT	2040
TGATCAACAG	GATACAAATG	TGGATGTTTT	TAAAGAAGTT	GGTCAGTTAG	TGCAAAGTTC	2100
ATTAGATGGA	TATAATGTTT	GTATCTTCGC	ATACGGACAA	ACAGGATCTG	GGAAAACTTT	2160
CACGATGTTA	AATCCAGGTG	ATGGTATCAT	TCCGTCCACA	ATATCTCATA	TATTTAACTG	2220
GATCAATAAA	TTAAAGACAA	AAGGATGGGA	TTATAAAGTT	AACTGCGAAT	TCATTGAGAT	2280
CTACAACGAG	AACATCGTAG	ACTTATTGAG	AAGTGATAAT	AATAATAAAG	AAGACACAAG	2340
CATTGGCTTA	AAGCACGAAA	TACGTCATGA	TCAGGAAACT	AAGACTACCA	CGATAACGAA	2400
TGTTACGAGT	TGCAAGCTTG	AGTCGGAAGA	AATGGTGGAA	ATAATCCTGA	AAAAAGCAAA	2460
TAAATTAAGA	TCCACCGCTA	GCACAGCATC	AAATGAGCAT	TCCTCCCGTT	CACACAGTAT	2520
TTTCATAATT	CATTTGTCTG	GATCAAATGC	AAAAACTGGA	GCACACTCGT	ATGGCACACT	2580
AAATCTTGTT	GATTTGGCCG	GTTCCGAAAG	AATAAATGTC	TCTCAAGTTG	TAGGGGATAG	2640
ATTAAGAGAA	ACACAAAATA	TAAATAAATC	TTTAAGTTGC	TTAGGTGACG	TTATTCATGC	2700
TTTAGGTCAG	CCTGATAGTA	CCAAAAGACA	TATACCGTTC	AGGAACTCAA	AACTGACATA	2760
CCTACTGCAA	TATTCACTCA	CTGGGGATTC	GAAAACATTA	ATGTTTGTAA	ACATTTCACC	2820
AAGCTCCTCT	CATATTAATG.	AGACTCTCAA	TTCGTTAAGA	TTTGCGTCTA	AAGTGAATTC	2880
TACCAGATTG	GTTAGTAGAA	AATGAGGTCA	AGGCCTTTTC	TGGTCTTTTT	CACTCCTTTG	2940
ACAAATGACA	GAGACTGTCC	ATACATTCAT	CACATGTAAC	TATATTATAT	ATGAAACTCA	3000
TTTTAATGCG	CACAGATAAA	AAGCAAAGTA	AGTAATGAAT	ATTTGTTATG	TAAAAATGAC	3060
CTCATACATG	CTAGTATTTA	CACGAATTTA	ATTGCTTAAA	TTTCAATCAT	CCTTACCCTT	3120
TGGTTTACCC	TCTGGAGGCA	GAAACTTTTG	CATCCTCCTT	ATTGCCCAAT	TTTCGCCAAT	3180
GACTTTAACA	TCTGGGTCCG	ATTTACCTTC	CGTGGTGTTG	AACCGCTTCC	ACCATGAGGG	3240
GGATTTGAAC	CTAGGGTCTT	CGCGTGGTAA	TTTGCGAACT	TCATTTCTAA	TTTCAGCAAC	3300
ATGGGCTCTC	AGTTCAGCGG	CTAATCTGCT	TCTTAAATCT	TGCGCCTCTT	TACCATATTT	3360
CAATTCGTCA	GAGAGGTCGT	TAGGATTTTT	GGGATCATAG	TATTTTTCAA	CCAAATGTGT	3420

CCATTCTTTT CTATACCTGT CGATTAAATC ATCATTTAAA GGATCC	3466
(2) INFORMATION FOR SEQ ID NO:39:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 42 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:	
GATAGTTAAG GATCCATGGC TCGTTCTTCC TTGCCCAACC GC	42
(2) INFORMATION FOR SEQ ID NO:40:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:	
AAACTTCATC AATGCGGCCG CTAAGGGGAT CCAGCCATTG TAAAT	45
(2) INFORMATION FOR SEQ ID NO:41:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2385 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:	
GAATTCCGAT AGTATTATGT GGAGTTCCAT TTTTATGTAT TTTTTGTATG AAATATTCTA	60
GTATAAGTAA ATATTTTATC AGAAGTATTT ACATATCTTT TTTTTTTTTA GTTTGAGAGC	120
GGCGGTGATC AGGTTCCCCT CTGCTGATTC TGGGCCCCGA ACCCCGGTAA AGGCCTCCGT	180
GTTCCGTTTC CTGCCGCCCT CCTCCGTAGC CTTGCCTAGT GTAGGAGCCC CGAGGCCTCC	240
GTCCTCTTCC CAGAGGTGTC GGGGCTTGGC CCCAGCCTCC ATCTTCGTCT CTCAGGATGG	300
CGAGTAGCAG CGGCTCCAAG GCTGAATTCA TTGTCGGAGG GAAATATAAA CTGGTACGGA	360
AGATCGGGTC TGGCTCCTTC GGGGACATCT ATTTGGCGAT CAACATCACC AACGGCGAGG	420
AAGTGGCAGT GAAGCTAGAA TCTCAGAAGG CCAGGCATCC CCAGTTGCTG TACGAGAGCA	480
AGCTCTATAA GATTCTTCAA GGTGGGGTTG GCATCCCCCA CATACGGTGG TATGGTCAGG	540

AAAAAGACTA	CAATGTACTA	GTCATGGATC	TTCTGGGACC	TAGCCTCGAA	GACCTCTTCA	600
ATTTCTGTTC	AAGAAGGTTC	ACAATGAAAA	CTGTACTTAT	GTTAGCTGAC	CAGATGATCA	660
GTAGAATTGA	ATATGTGCAT	ACAAAGAATT	TTATACACAG	AGACATTAAA	CCAGATAACT	720
TCCTAATGGG	TATTGGGCGT	CACTGTAATA	AGTGTTTAGA	ATCTCCAGTG	GGGAAGAGGA	780
AAAGAAGCAT	GACTGTTAGT	ACTTCTCAGG	ACCCATCTTT	CTCAGGATTA	AACCAGTTAT	84Ò
TCCTTATTGA	TTTTGGTTTG	GCCAAAAAGT	ACAGAGACAA	CAGGACAAGG	CAACACATAC	900
CATACAGAGA	AGATAAAAAC	CTCACTGGCA	CTGCCCGATA	TGCTAGCATC	AATGCACATC	960
TTGGTATTGA	GCAGAGTCGC	CGAGATGACA	TGGAATCATT	AGGATATGTT	TTGATGTATT	1020
TTAATAGAAC	CAGCCTGCCA	TGGCAAGGGC	TAAAGGCTGC	AACAAAGAAA	CAAAAATATG	1080
AAAAGATTAG	TGAAAAGAAG	ATGTCCACGC	CTGTTGAAGT	TTTATGTAAG	GGGTTTCCTG	1140
CAGAATTTGC	GATGTACTTA	AACTATTGTC	GTGGGCTACG	CTTTGAGGAA	GCCCCAGATT	1200
ACATGTATCT	GAGGCAGCTA	TTCCGCATTC	TTTTCAGGAC	CCTGAACCAT	CAATATGACT	1260
ACACATTTGA	TTGGACAATG	TTAAAGCAGA	AAGCAGCACA	GCAGGCAGCC	TCTTCCAGTG	1320
GGCAGGGTCA	GCAGGCCCAA	ACCCCACAG	GCAAGCAAAC	TGACAAAACC	AAGAGTAACA	1380
TGAAAGGTTA	GTAGCCAAGA	ACCAAGTGAC	GTTACAGGGA	AAAAATTGAA	TACAAAATTG	1440
GGTAATTCAT	TTCTAACAGT	GTTAGATCAA	GGAGGTGGTT	TTAAAATACA	TAAAAATTTG	1500
GCTCTGCGTT	АААААААА	AAGACGTCCT	TGGAAAATTT	GACTACTAAC	TTTAAACCCA	1560
AATGTCCTTG	TTCATATATA	TGTATATGTA	TTTGTATATA	CATATATGTG	TGTATATTTA	1620
TATCATTTCT	CTTGGGATTT	TGGGTCATTT	TTTTAACAAC	TGCATCTTTT	TTACTCATTC	1680
ATTAACCCCC	TTTCCAAAAA	TTTGGTGTTG	GGAATATAAT	ATAATCAATC	AATCCAAAAT	1740
CCTAGACCTA	ACACTTGTTG	ATTTCTAATA	ATGAATTTGG	TTAGCCATAT	TTTGACTTTA	1800
TTTCAGACTA	ACAATGTTAA	GATTTTTAT	TTTGCATGTT	AATGCTTTAG	CATTTAAAAT	1860
GGAAAATTGT	GAACATGTTG	TAATTTCAAG	AGGTGAGTTT	GGCATTACCC	CCAAAGTGTC	1920
TATCTTCTCA	GTTGCAGAGC	ATCTCATTTT	CTCTCTTAAA	TGCTCAAATA	AATGCAAAGC	1980
TCAGCACATC	TTTTCTAGTC	ACAAAAATAA	TTCTTTTATT	TGCAGTTTAC	GTATGATCTT	2040
AATTTCAAAA	CGATTTCTTT	GTTTTTGGCT	TGATTTTTCA	CAATGTTGCA	AATATCAGGC	2100
TCCCAGGGTT	TAATGTGGAA	TTGAAGTCTG	CAGCCAGGCC	TTGCAAATTG	AAGGTAACTG	2160
GGGCAAATGC	CATTGAAACC	GCTAGTCTTA	TTTCCTTTCT	ACTTTTCTTT	GGCACTCTTA	2220
CTGCCTGTAA	GGAGTAGAAC	TGTTAAGGCA	CACTGTTGCT	ATACAGTTAA	CTCCCATTTT	2280
CATGTTTTGT	CTTTCTTTTC	CCATTTCTGG	GGCTTACCTC	CTGATACCTG	CTTACTTTCT	2340
GGAAGTAGTG	GGCAAGTAAG	ATTTGGCTCT	TGGTTTCTGG	AATTC	•	2385

(2) INFORMATION FOR SEQ ID NO:42:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

CTTCGTCTCT CACATATGGG CGAGTAGCAG CGGC

34

(2) INFORMATION FOR SEQ ID NO:43:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3505 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

GAATTCCGAC	AGGAAAGCGA	TGGTGAAAGC	GGGGCCGTGA	GGGGGGCGGA	GCCGGGAGCC	60
GGACCCGCAG	TAGCGGCAGC	AGCGGCGCCG	CCTCCCGGAG	TTCAGACCCA	GGAAGCGGCC	120
GGGAGGGCAG	GAGCGAATCG	GGCGCCGCC	GCCATGGAGC	TGAGAGTCGG	GAACAGGTAC	180
CGGCTGGGÇC	GGAAGATCGG	CAGCGGCTCC	TTCGGAGACA	TCTATCTCGG	TACGGACATT	240
GCTGCAGGAG	AAGAGGTTGC	CATCAAGCTT	GAATGTGTCA	AAACCAAACA	CCCTCAGCTC	300
CACATTGAGA	GCAAAATCTA	CAAGATGATG	CAGGGAGGAG	TGGGCATCCC	CACCATCAGA	360
TGGTGCGGG	CAGAGGGGGA	CTACAACGTC	ATGGTGATGG	AGCTGCTGGG	GCCAAGCCTG	420
GAGGACCTCT	TCAACTTCTG	CTCCAGGAAA	TTCAGCCTCA	AAACCGTCCT	GCTGCTTGCT	480
GACCAAATGA	TCAGTCGCAT	CGAATACATT	CATTCAAAGA	ACTTCATCCA	CCGGGATGTG	540
AAGCCAGACA	ACTTCCTCAT	GGGCCTGGGG	AAGAAGGGCA	ACCTGGTGTA	CATCATCGAC	600
TTCGGGCTGG	CCAAGAAGTA	CCGGGATGCA	CGCACCCACC	AGCACATCCC	CTATCGTGAG	660
AACAAGAACC	TCACGGGGAC	GGCGCGGTAC	GCCTCCATCA	ACACGCACCT	TGGAATTGAA	720
CAATCCCGAA	GAGATGACTT	GGAGTCTCTG	GGCTACGTGC	TAATGTACTT	CAACCTGGGC	780
TCTCTCCCCT	GGCAGGGGCT	GAAGGCTGCC	ACCAAGAGAC	AGAAATACGA	AAGGATTAGC	840
GAGAAGAAAA	TGTCCACCCC	CATCGAAGTG	TTGTGTAAAG	GCTACCCTTC	CGAATTTGCC	900
ACATACCTGA	ATTTCTGCCG	TTCCTTGCGT	TTTGACGACA	AGCCTGACTA	CTCGTACCTG	960
CGGCAGCTTT	TCCGGAATCT	GTTCCATCGC	CAGGGCTTCT	CCTATGACTA	CGTGTTCGAC	1020
TGGAACATGC	TCAAATTTGG	TGCCAGCCGG	GCCGCCGATG	ACGCCGAGCG	GGAGCGCAGG	1080
GACCGAGAGG	AGCGGCTGAG	ACACTCGCGG	AACCCGGCTA	CCCGCGGCCT	CCCTTCCACA	1140

GCCTCCGGCC	GCCTGCGGGG	GACGCAGGAA	GTGGCTCCCC	CCACACCCCT	CACCCCTACC	1200
TCACACACGG	CTAACACCTC	ccccccccc	GTCTCCGGCA	TGGAGAGAGA	GCGGAAAGTG	1260
AGTATGCGGC	TGCACCGCGG	GGCCCCCGTC	AACATCTCCT	CGTCCGACCT	CACAGGCCGA	1320
CAAGATACCT	CTCGCATGTC	CACCTCACAG	ATTCCTGGTC	GGGTGGCTTC	CAGTGGTCTT	1380
CAGTCTGTCG	TGCACCGATG	AGAACTCTCC	TTATTGCTGT	GAAGGGCAGA	CAATGCATGG	1440
CTGATCTACT	CTGTTACCAA	TGGCTTTACT	AGTGACACGT	CCCCCGGTCT	AGGATCGAAA	1500
TGTTAACACC	GGGAGCTCTC	CAGGCCACTC	ACCCAGCGAC	GCTCGTGGGG	GAAACATACT	1560
AAACGGACAG	ACTCCAAGAG	CTGCCACCGC	TGGGGCTGCA	CTGCGGCCCC	CCACGTGAAC	1620
TCGGTTGTAA	CGGGGCTGGG	AAGAAAAGCA	GAGAGAGAAT	TGCAGAGAAT	CAGACTCCTT	1680
TTCCAGGGCC	TCAGCTCCCT	CCAGTGGTGG	CCGCCCTGTA	CTCCCTGACG	ATTCCACTGT	1740
AACTACCAAT	CTTCTACTTG	GTTAAGACAG	TTTTGTATCA	TTTTGCTAAA	AATTATTGGC	1800
TTAAATCTGT	GTAAAGAAAA	TCTGTCTTTT	TATTGTTTCT	TGTCTGTTTT	TGCGGTCTTA	1860
CAAAAAAAAT	GTTGACTAAG	GAATTCTGAG	ACAGGCTGGC	TTGGAGTTAG	TGTATGAGGT	1920
GGAGTCGGGC	AGGGAGAAGG	TGCAGGTGGA	TCTCAAGGGT	GTGTGCTGTG	TTTGTTTTGC	1980
AGTGTTTTAT	TGTCCGCTTT	GGAGAGGAGA	TTTCTCATCA	AAAGTCCGTG	GTGTGTGT	2040
GTGCCCGTGT	GTGGTGGGAC	CTCTTCAACC	TGATTTTGGC	GTCTCACCCT	CCCTCCTCCC	2100
GTAATTGACA	TGCCTGCTGT	CAGGAACTCT	TGAGGCCCTC	GGAGAGCAGT	TAGGGACCGC	2160
AGGCTGCCGC	GGGGCAGGGG	TGCAGTGGGT	GTTACCAGGC	AAAGCACTGC	GCGCTTCTTC	2220
CCCAGGAGGT	GGGCAGGCAG	CTGAGAGCTT	GGAAGCAGAG	GCTTTGAGAC	CCTAGCAGGA	2280
CAATTGGGAG	TCCCAGGATT	CAAGGTGGAA	GATGCGTTTC	TGGTCCCTTG	GGAGAGGACT	2340
GTGAACCGAG	AGGTGGTTAC	TGTAGTGTTT	GTTGCCTTGC	TGCCTTTGCA	CTCAGTCCAT	2400
TTTCTCAGCA	CTCAATGCTC	CTGTGCGGAT	TGGCACTCCG	TCTGTATGAA	TGCCTGTGGT	2460
TAAAACCAGG	AGCGGGGCTG	TCCTTGCCAC	GTGCCAAGAC	TAGCTCAGAA	AAGCCGGCAG	2520
GCCAGAAGGA	CCCACCCTGA	GGTGCCAAGG	AGCAGGTGAC	TCTCCCAACC	GGACCCAGAA	2580
CCTTCACGGC	CAGAAAGTAG	AGTCTGCGCT	GTGACCTTCT	GTTGGGCGCG	TGTCTGTTGG	2640
TCAGAAGTGA	AGCAGCGTGC	GTGGGGCCGA	GTCCCACCAG	AAGGCAGGTG	GCCTCCGTGA	2700
GCTGGTGCTG	CCCCAGGCTC	CATGCTGCTG	TGCCCTGAGG	TTCCCAGGAT	GCCTTCTCGC	2760
CTCTCACTCC	GCAGCACTTG	GGCGGTAGCC	AGTGGCCATG	TGCTCCCAAC	CCCAATGCGC	2820
AGGGCAGTCT	GTGTTCGTGG	GCACTTCGGC	TGGACCCCAT	CACGATGGAC	GATGTTCCCT	2880
TTGGACTCTA	GGGCTTCGAA	GGTGTGCACC	TTGGTTCTCC	CTTCTCCTCC	CCAGAGTTCC	2940
CCCGGATGCC	ATAACTGGCT	GGCGTCCCAG	AACACAGTTG	TCAACCCCCC	CACCAGCTGG	3000
CTGGCCGTCT	GTCTGAGCCC	ATGGATGCTT	TCTCAATCCT	AGGCTGGTTA	CTGTGTAAGC	3060
GTGTTGGAGT	ACGGCGCCTT	GAGCGGGTGG	GAGCTGTGTG	TTGAAGTACA	GAGGGAGGTT	3120
GGGGTGGGTC	AGAGCCGAGT	TAAGAGATTT	TCTTTGTTGC	TGGACCCCTT	CTTGAAGGTA	3180

WO 95/19988

GACGTCCCCC ACCCGGAGAG ACGTCGCGCT GTGGCCTGAA GTGGCGCAAG CTTGCTTTGT	3240
AAATATCTGT GGTCCCGATG TAGTGCCCAG AACGTTTGTG CGAGGCAGCT CTGCGCCCGG	3300
GTTCCAGCCC GAGCCTCGCC GGGTCGCGTC TTCGGAGTGC TTGTGACAGT CCTTGCCCAG	3360
TATCTAGTCC CCGTCGCCCC GTGCAGGAGA CGTAGGTAGG ACGTCGTGTC AGCTGTGCAC	3420
TGACGGCCAG TCTCCGAGCT GTGCGTTTGT ATCGCCACTG TATTTGTGTA CTTTAACAAT	3480
CGTGTAAATA ATAAATTCGG AATTC	3505
(2) INFORMATION FOR SEQ ID NO:44:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:	
CGCGGATCCT AATGGAGGTG AGAGTCGGG	29
(2) INFORMATION FOR SEQ ID NO:45:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:	
CGCGGATCCG CTCATCGGTG CACGACAGA	29
(2) INFORMATION FOR SEQ ID NO:46:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:	
GGAATCACTA CAGGGATG	18
2) INFORMATION FOR SEQ ID NO:47:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	

-70-

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:

ATTCTAGACA TGGAGACCAG TTCTTTTGAG

30

- (2) INFORMATION FOR SEQ ID NO:48:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 31 base pairs

 - (B) TYPE: nucleic acid(C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:

TGGAAGCTTA TATTACCATA GATTCTTCTT G

31

- (2) INFORMATION FOR SEQ ID NO:49:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 33 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:

Ser Leu Ser Phe Pro Arg Gly Lys Ile Ser Lys Asp Glu Asn Asp Ile

Asp Cys Cys Ile Arg Glu Val Lys Glu Glu Ile Gly Phe Asp Leu Thr 20

Asp

- (2) INFORMATION FOR SEQ ID NO:50:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 33 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

Arg Trp Asn Gly Phe Gly Gly Tyr Val Gln Glu Gly Glu Thr Ile Glu

Asp Gly Ala Arg Arg Glu Leu Gln Glu Glu Ser Gly Leu Thr Val Asp

Ala

-71-

- (2) INFORMATION FOR SEQ ID NO:51:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 33 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

Lys Leu Glu Phe Pro Gly Gly Lys Ile Glu Met Gly Glu Thr Arg Glu
1 5 10 15

Gln Ala Val Val Arg Glu Leu Gln Glu Glu Val Gly Ile Thr Pro Gln 20 30

His

- (2) INFORMATION FOR SEQ ID NO:52:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 33 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

Asp Ile Ile Phe Pro Gly Gly Leu Pro Lys Asn Glu Glu Asp Pro Ile 1 5 10 15

Met Cys Leu Ser Arg Glu Ile Lys Glu Glu Ile Asn Ile Asp Ser Lys 20 25 30

Asp

- (2) INFORMATION FOR SEQ ID NO:53:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 33 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

Asp Ile Ile Phe Pro Gly Gly Leu Pro Lys Asn Glu Glu Asp Pro Ile 1 5 10 15

Met Cys Leu Ser Arg Glu Ile Lys Glu Glu Ile Asn Ile Asp Ser Lys 20 25 30

Asp

WHAT IS CLAIMED IS:

- 1. A method for isolating a polynucleotide encoding a protein that binds to a CKI isoform comprising the steps of:
- a) transforming or transfecting appropriate host cells with a DNA construct comprising a reporter gene under the control of a promoter regulated by a transcription factor having a DNA-binding domain and an activating domain;
- b) expressing in said host cells a first hybrid DNA sequence encoding a first fusion of part or all of a CKI isoform and either the DNA-binding domain or the activating domain of said transcription factor:
- c) expressing in said host cells a library of second hybrid DNA sequences encoding second fusions of part or all of putative CKI isoform-binding proteins and either the DNA-binding domain or activating domain of said transcription factor which is not incorporated in said first fusion;
- d) detecting binding of CKI isoform-binding proteins to said CKI isoform in a particular host cell by detecting the production of reporter gene product in said host cell; and
- e) isolating second hybrid DNA sequences encoding CKI isoformbinding protein from said particular host cell.
- 2. The method of claim 1 wherein said CKI isoform is S. cerevisiae HRR25.
- 3. The method of claim 1 or 2 wherein said promoter is the ADHI promoter, said DNA-binding domain is the *lexA* DNA-binding domain, said activating domain is the GALA transactivation domain, said reporter gene is the *lacZ* gene and said host cell is a yeast host cell.

- 4. A method for detecting proteins which bind to a CKI isoform comprising the steps of:
- a) transforming or transfecting appropriate host cells with a hybrid DNA sequence encoding a fusion between a putative CKI isoform-binding protein and a ligand capable of high affinity binding to a specific counterreceptor;
- b) expressing said hybrid DNA sequence in said host cells under appropriate conditions;
- c) immobilizing fusion protein from said host cells by exposing the fusion protein to said specific counterreceptor in immobilized form;
- d) contacting a CKI isoform with said immobilized fusion protein;
 and
- e) detecting said CKI isoform bound to said fusion protein using a reagent specific for said CKI isoform.
- 5. The method of claim 4 wherein the CKI isoform is S. cerevisiae HRR25.
- 6. The method of claim 4 or 5 wherein said ligand is glutathione-S-transferase and said counterreceptor is glutathione.
- 7. The method of claim 4 or 5 wherein said ligand is hemagglutinin and said counterreceptor is a hemagglutinin-specific antibody.
- 8. The method of claim 4 or 5 wherein said ligand is polyhistidine and said counterreceptor is nickel.
- 9. The method of claim 4 or 5 wherein said ligand is maltosebinding protein and said counterreceptor is amylose.

PCT/US95/00912

- 10. A purified and isolated polynucleotide encoding the TIH1 amino acid sequence set out in SEQ ID NO: 3.
 - 11. The polynucleotide of claim 10 which is a DNA.
 - 12. The DNA of claim 10 which is a cDNA.
 - 13. The DNA of claim 10 which is a genomic DNA.
- 14. The DNA of claim 10 which is a chemically synthesized DNA.
- 15. A full length purified and isolated TIH1-encoding polynucleotide selected from the group consisting of:
 - a) the DNA set out in SEQ ID NO: 2, and
- b) a DNA which hybridizes under stringent conditions to the protein coding portion of the DNA of a).
- 16. A purified and isolated TIH1 polynucleotide comprising the TIH1 DNA sequence set out in SEQ ID NO: 2.
- 17. A DNA expression construct comprising a DNA according to claim 11, 15 or 16.
- 18. A host cell transformed with a DNA according to claim 11, 15 or 16.

- 19. A method for producing an TIH1 polypeptide comprising growing a host cell according to claim 18 in a suitable medium and isolating TIH1 polypeptide from said host cell or the medium of its growth.
- 20. Purified and isolated TIH1 polypeptide consisting essentially of the TIH1 amino acid sequence set out in SEQ ID NO: 3.
 - 21. An antibody capable of specifically binding to TIH1.
- 22. An antibody according to claim 21 which is a monoclonal antibody.
- 23. A hybridoma cell line producing a monoclonal antibody according to claim 22.
- 24. A purified and isolated polynucleotide encoding the TIH2 amino acid sequence set out in SEQ ID NO: 5.
 - 25. The polynucleotide of claim 24 which is a DNA.
 - 26. The DNA of claim 24 which is a cDNA.
 - 27. The DNA of claim 24 which is a genomic DNA.
- 28. The DNA of claim 24 which is a chemically synthesized DNA.

- 29. A full length purified and isolated TIH2-encoding polynucleotide selected from the group consisting of:
 - a) the DNA set out in SEQ ID NO: 4, and
- b) a DNA which hybridizes under stringent conditions to the protein coding portion of the DNA of a).
- 30. A purified and isolated TIH2 polynucleotide consisting essentially of TIH2 DNA sequence set out in SEQ ID NO: 4.
- 31. A DNA expression construct comprising a DNA according to claim 25.
 - 32. A host cell transformed with a DNA according to claim 25.
- 33. A method for producing an TIH2 polypeptide comprising growing a host cell according to claim 32 in a suitable medium and isolating TIH2 polypeptide from said host cell or the medium of its growth.
- 34. Purified and isolated TIH2 polypeptide consisting essentially of the TIH2 amino acid sequence set out in SEQ ID NO: 5.
 - 35. An antibody capable of specifically binding to TIH2.
- 36. An antibody according to claim 35 which is a monoclonal antibody.
- 37. A hybridoma cell line producing the monoclonal antibody according to claim 36.

. ViiO 95/19988 PCT/US95/00912

- 77 -

- 38. A purified and isolated polynucleotide encoding the TIH3 amino acid sequence set out in SEQ ID NO: 7.
 - 39. The polynucleotide of claim 38 which is a DNA.
 - 40. The DNA of claim 38 which is a cDNA.
 - 41. The DNA of claim 38 which is a genomic DNA.
- 42. The DNA of claim 38 which is a wholly or partially chemically synthesized DNA.
- 43. A full length purified and isolated TIH3 encoding polynucleotide selected from the group consisting of:
 - a) the DNA set out in SEQ ID NO: 6, and
- b) a DNA which hybridizes under stringent conditions to the protein coding portion of the DNA of a).
- 44. A purified and isolated TIH3 polynucleotide consisting essentially of TIH3 protein coding sequence set out in SEQ ID NO: 6.
- 45. A DNA expression construct comprising a DNA according to claim 39.
 - 46. A host cell transformed with a DNA according to claim 39.
- 47. A method for producing an TIH3 polypeptide comprising growing a host cell according to claim 46 in a suitable medium and isolating TIH3 polypeptide from said host cell or the medium of its growth.

- 48. Purified and isolated TIH3 polypeptide consisting essentially of the TIH3 amino acid sequence set out in SEQ ID NO: 7.
 - 49. An antibody capable of specifically binding to TIH3.
- 50. An antibody according to claim 49 which is a monoclonal antibody.
- 51. A hybridoma cell line producing the monoclonal antibody according to claim 50.

FIGURE 1

SUBSTITUTE SHEET (RULE 26)

2/2

FIGURE 2

TLD (SEQ	DA (SEQ	баs) нба	SKD (SEQ	SKD (SEO
SISFPRGKISKDENDIDCCIKEVKEEIGFDLID	RWNGFGGKVQEGETIEDGARRELQEESGLTVDA	KLEFPGGKIEMGETREQAVVRELQEEVGITPQH	DIIFPGGLPKNEEDPIMCLSREIKEEINIDSKD	DITEPGGLPKNEEDPIMCLSREIKEEINIDSKD
SLSFPRGKISKU	RWNGFGGKVQEG	KLEFPGGKIEMG	DIIFPGGLPKNE	DITEDAGE DKNE

SUBSTITUTE SHEET (RULE 26)

yeast TIH1
human Hum80DP
E.coli MutT
viral C11
viral VD10

Int onal Application No

• *		PCT/US 95/00912		
A. CLASS IPC 6	CO7K14/395 C12N9/12 C12N15/	10 G01N33/68	. •	
B. FIELD:	S SEARCHED	·		
IPC 6	CO7K C12N G01N	ation symbols)	,	
Documenta	tion searched other than minimum documentation to the extent tha	such documents are included	in the fields searched	
•				
Electronic o	tata base consulted during the international search (name of data b	ise and, where practical, searc	th terms used)	
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT	SUBJECT MATTER 395 C12N9/12 C12N15/10 G01N33/68 sternt Classification (IPC) or to both nanonal classification and IPC rehed (classification system followed by classification symbols) 12N G01N rehan murumum documentation to the extent that such documents are included in the fields searched a during the international search (name of data base and, where practical, search terms used) ERED TO BE RELEVANT ment, with indication, where appropriate, of the referant passages Relevant to claim No. 1993 1355-1371, 1S, B. ET AL. 'Yeast sequencing 1363, sequence YBL0506 * 133, 1991 1031-1034, AA, M.F. ET AL. 'HRR25, a putative 1 kinase from budding yeast: 21 at in with repair of damaged DNA' in the application 2 claim of the international search (search continuation or after the international in not continuation or after the international in the continuation or after the international with the continuation or after the international in the continuation of the claim of the continuation or after the international in the continuation or after the international in the continuation of the continuation or after the international in the continuation of the continuation or after the international in the continuation of the continuation or after the international in the continuation of particular relevance to the claim of invention or advertise and the continuation of particula		
Category *	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.	
X	YEAST,		24-37	
	vol. 9, 1993 pages 1355-1371, SCHERENS, B. ET AL. 'Yeast sequ reports' * page 1363, sequence YBL0506 *	encing		
Y	<pre>protein kinase from budding yeas Association with repair of damag cited in the application * whole disclosure *</pre>	1-9		
	ther documents are listed in the continuation of hour C			
	regories of cited documents:	L Facent lamily memb	ers are listed in annex.	
"A" docume conside "E" earlier of filing d	ent defining the general state of the art which is not cred to be of particular relevance document but published on or after the international	or priority date and not cited to understand the invention "X" document of particular cannot be considered to	in conflict with the application but principle or theory underlying the relevance; the claimed invention ovel or cannot be considered to	
other n	is cited to establish the publication date of another n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	"Y" document of particular a cannot be considered to document is combined ments, such combinatio in the art.	relevance; the claimed invention involve an inventive step when the with one or more other such docu- n being obvious to a person skilled	
	actual completion of the international search	· · · · · · · · · · · · · · · · · · ·		
6	June 1995		27.06.95	
Name and m	nailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk	Authorized officer		
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Hermann, R		

Form PCT/ISA/210 (second sheet) (July 1992)

1.

Inu onal Application No
PCT/US 95/00912

		PC1/03 3	7 00512	
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.	
	SCIENCE, vol. 257, 1992 pages 680-682, YANG, X. ET AL. 'A protein kinase substrate identified by the two hybrid system' cited in the application * whole disclosure *		1-3	
•	CHEMICAL ABSTRACTS, vol. 109, no. 1, 4 July 1988 Columbus, Ohio, US; abstract no. 2855a, FIELD, J. ET AL. 'Purification of a RAS-responsive adenylyl cyclase complex' page 275; cited in the application see abstract & MOL. CELL. BIOL., vol. 8, no. 5, 1988 pages 2159-2165,		4-9	
	pages 2159-2165,			
		•		

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

1.