

Universidade Federal do Rio Grande do Norte Instituto Metrópole Digital

Fundamentos Matemáticos da Computação II Período 2024.2

Trabalho 1ª Unidade

Lista de Alunos	
Alesandro Alex Mendes da Silva	
Francisco Matheus Fonseca de Farias	
Ryan David dos Santos Silvestre	
Sávio Emanuel Mariano Fonseca	
Sebastião Fellipe Pinto Lopes	
Weuller dos Santos Barbosa	

Seção Múltipla Escolha

Nesta seção, descreva o processo usado para marcação da alternativa. Contudo, a nota de cada questão levará em conta apenas a marcação da alternativa correta, sendo atribuído 0 pontos para a marcação da alternativa errada e 1 ponto para a marcação da alternativa correta.

Questão M1 (1 ponto)

Sejam os conjuntos $A=\{1,3,4\}$ e $B=\{x\in\mathbb{R}\mid x^2-7x+12=0\}$, qual das alternativas é verdade?

- $\begin{pmatrix} A \end{pmatrix} A = B$
- $\left(\begin{array}{c} \mathbf{B} \end{array}\right) A \subset B$
- $C B \subset A$
- (E) |A B| = 0

Explicação:

Resolvendo o polinomio de segundo grau, podemos achar para quais valores de x a equação é válida.

Realizando os cálculos, temos que:

$$B = \{3, 4\}$$

Sabendo que $A = \{1, 3, 4\}$ e que $B = \{3, 4\}$, podemos estabelecer a seguinte relação:

 $\mathsf{B} \subset \mathsf{A}$

Dado que os elementos de B também pertencem a A, mas os elementos de A não pertencem todos ao conjunto B, não podemos dizer que $A \subset B$ e nem mencionar igualdade entre os conjuntos.

1

Logo, $B \subset A$.

Questão M2 (1 ponto)

Seja as proposições abaixo

- $0 \in \emptyset$
- $\emptyset \in \{0\}$
- $\{0\} \subset \emptyset$
- $\emptyset \subset \{0\}$
- $\{0\} \in \{0\}$
- $\{0\} \subset \{0\}$
- $\{\emptyset\} \subseteq \{\emptyset\}$

Os valores lógicos das proposições (${\bf V}$ ou ${\bf F}$) de cima para baixo são:

- AVVFVFFV
- BVVFVFFF
- C FFFVFVV
- D FFFVFFV
- EVFVVFFF

Explicação:

- I. O conjunto vazio não pode conter nada, do contrário, não e um conjunto vazio. Portanto, não é possível que um elemento pertença a ele. (F)
- II. A relação entre dois conjuntos não é referenciada por pertencimento, e sim, pela relação de continência entre os conjuntos. (F)
- III. O conjunto vazio nao pode conter nada, do contrário, não seria um conjunto vazio. Portanto, não seria possível que ele contivesse um conjunto. (F)
- IV. Correto. (V)
- V. Um conjunto não pode pertencer a outro conjunto. A relação entre dois conjuntos é definido pela continência ou não continência de um dos dois em relação a outro. (F)
- VI. Correto. (V)
- VII. Correto. (VI)

Portanto, a alternativa correta é a C.

Questão M3 (1 ponto)

Sejam os conjuntos A e B definidos por:

$$A = \{x \mid x = 6n, \text{ onde } n \in \mathbb{N}^* \text{ e } n \le 8\}$$

$$B = \{x \mid x = 8n, \text{ onde } n \in \mathbb{N}^* \text{ e } n \le 10\}$$

O resultado da operação A - B é dado por:

- B \ \{24,48\}

Explicação: Operação trivial de diferença de conjuntos.

Questão M4 (1 ponto)

Sejam os conjuntos $A=\{x\in\mathbb{R}\mid 3< x<2\}$ e $B=\{x\in\mathbb{Z}\mid 2< x<3\}$. A soma das cardinalidades de A e B é igual à:

- |A| + |B| = 0

- D |A| + |B| = 2

Explicação:

O conjunto A, de descrição de números reais que são maiores que 3 e menores que 2 não existe. Sendo um conjunto vazio. Podemos ver, que por transitividade, teriamos que 3 < 2, o que é um absurdo.

Já no conjunto B, temos que achar números inteiros que sejam maiores que 2 e menores que 3. Isso também é um absurdo, quando levamos em conta o conjunto dos inteiros, o que também nos dá um conjunto vazio. Logo, a soma da cardinalidade dos dois conjuntos seria 0.

3

Questão M5 (1 ponto)

Um conjunto A tem cardinalidade igual a 8. A cardinalidade de seu conjunto potência é igual à:

Explicação:

A cardinalidade do conjunto "Partição" ou simplesmente conjunto das partes de um conjunto é dado por 2 elevado à cardinalidade do conjunto do qual se quer descobrir a cardinalidade do conjunto das partes.

Logo, temos que que o conjunto partição P possui a cardinalidade de 28, ou seja: 256.

Seção Discursiva

Nesta seção, descreva de forma detalhada sua resposta. A nota de cada questão levará em conta tanto o procedimento utilizado quanto a resposta final.

Obs: Os processos desta seção estão em LaTeX.

Questão D1 (1 ponto)

Sejam os conjuntos não vazios

$$A = \{ x \in \mathbb{N}^* \mid x \le 10 \}$$

$$P = \{\{1, 2, 5, 6, 7\}, \{3\}, \{4, 8, 10\}, \{9\}\}$$

O conjunto P é uma partição do conjunto A? Explique.

Questão D2 (2 pontos)

Seja $\mathbb{P}(A)$ definido como o conjunto potência de um conjunto A e \emptyset o conjunto vazio, encontre:

(0.5 pontos)

 $\mathbb{P}(\mathbb{P}(\emptyset)) \qquad (0.5 \text{ pontos})$

Questão D3 (2 pontos)

Sejam $A_1, A_2, ..., A_n$ subconjuntos de um conjunto universo U, demonstre pelo princípio da indução matemática que:

$$\overline{\bigcup_{i=1}^{n} A_i} = \bigcap_{i=1}^{n} \overline{A_i} \quad \text{para } n \ge 1$$

Boa Sorte!