IA012 - Tarefa 5

Rodrigo Seiji Piubeli Hirao (186837)

16 de dezembro de 2021

$$\mathbf{01)} \quad \gcd(a, b) = \gcd(b, a \bmod b)$$

 $\gcd(973, 301) = 7$

Dividendo	Divisor	Resto
973	301	70
301	70	21
70	21	7
21	7	0

$\gcd(787, 301) = 1 \text{ (coprimos)}$

Dividendo	Divisor	Resto
787	301	185
301	185	116
185	116	69
116	69	47
69	47	22
47	22	3
22	3	1
3	1	0

$\gcd(973,\,301)=1\ (ext{coprimos})$

Dividendo	Divisor	Resto
973	787	186
787	186	43
186	43	14
43	14	1
14	1	0

02) Temos a seguinte tabela

Dividendo	Divisor	Quociente	Resto
a_4	a_3	2	a_2
a_3	a_2	1	a_1
a_2	a_1	3	20
a_1	20	2	0

Que pode ser resolvida a seguir

$$\begin{cases} a_1 = 20 \times 2 + 0 = 40 \\ a_2 = a_1 \times 3 + 20 = 140 \\ a_3 = a_2 \times 1 + a_1 = 180 \\ a_3 = a_2 \times 1 + a_1 = 180 = y \\ a_4 = a_3 \times 2 + a_2 = 500 = x \end{cases}$$
 (1)

Dividendo	Divisor	Quociente	Resto
x = 500	y = 180	2	140
180	140	1	40
140	40	3	20
40	20	2	0

- **03)** 5000mod7 = 6, $\log segunda feira + 6 = domingo$
- **04)** Prove que $(2^{20} 1) mod 41 = 0$

$$(2^{20}-1)mod41 = r, 0 \le r < 41$$

$$2^{20}-1 \equiv r(mod41) \rightarrow 41 | (2^{20}-1-r)$$

$$2^{20} \equiv r+1(mod41)$$

$$2^{10}mod41 \times 2^{10}mod41 \equiv r+1(mod41)$$

$$(2^{4}mod41 \times 2^{6}mod41)mod41 \times (2^{4}mod41 \times 2^{6}mod41)mod41 \equiv r+1(mod41)$$

$$(16 \times 23)mod41 \times (16 \times 23)mod41 \equiv r+1(mod41)$$

$$368mod41 \times 368mod41 \equiv r+1(mod41)$$

$$40 \times 40 \equiv r+1(mod41)$$

$$40 \times 40 \equiv r+1(mod41)$$

$$410+410+410+370 \equiv r+1(mod41)$$

$$370 \equiv r+1(mod41)$$

$$370 \equiv r+1(mod41)$$

$$1 \equiv r+1(mod41)$$

$$1 \equiv r+1(mod41)$$

05) Podemos considerar que gcd(a,b) = xa + yb, logo que o máximo divisor comum entre a e b é uma combinação linear de a e b, e os coeficientes da combinação linear pode ser calculado usando o AEE. Sendo o AEE uma extensão do algoritmo de Euclides com o cálculo iterativo de x_n e y_n da forma do sistema 02, onde k_n é o quoeficiente da divisão, de forma que $gcd(a,b) = x_{n-1}a + y_{n-1}b$

$$\begin{cases} x_{-2} = 1 \\ x_{-1} = 0 \\ y_{-2} = 0 \\ y_{-1} = 1 \\ x_n = x_{n-2} - k_n x_{n-1} \\ y_n = y_{n-2} - k_n y_{n-1} \end{cases}$$
(2)

a	b	k_1	r_i	x_i	y_{i}	Bezóut
				1	0	
				0	1	
a_1	a_2	k_1	r_1	$1-k_1\times 0$	$0 - k_1 \times 1$	r_i
:	:	:	:	:	:	:
a_{n-1}	b_{n-1}	k_{n-1}	gcd(a,b)	\mathbf{x}_{n-1}	\mathbf{y}_{n-1}	gcd(a,b)
a_{n-1} a_n	b_n	k_n	0	x_n	y_n	0

06) Se gcd(a,b)=1 então temos que os coeficientes também são inversos multiplicativos $(bb^{-1}\equiv 1(moda))$, que pode ser provado da forma a seguir

$$xa + yb = 1 \rightarrow yb = 1 - xa$$

$$yb \equiv 1 moda \rightarrow b^{-1} = y$$

Por conseguência $a^{-1} = x$

- 07) Todo elemento w do corpo Z_p , exceto 0, possui um inverso multiplicativo w^{-1} , tal que $ww^{-1} \equiv 1 mod p$
- 08) A partir do AEE temos que o inverso multiplicativo de 6762 é 1582 no corpo Z_{10007}

	a	b	k_1	r_i	x_i	y_i	Bezóut
					1	0	
					0	1	
1	.0007	6762	1	3245	1	-1	3245
	6762	3245	2	272	-2	3	272
	3245	272	11	253	23	-34	253
	272	253	1	19	-25	37	19
	253	19	13	6	338	-515	6
	19	6	3	1	-413	$\bf 1582$	1

- **09)** Devemos provar que $a \cdot b = b \cdot a$, ou, no caso, a b + 3 = b a + 3, mas temos que essa identidade é verdadeira apenas quando a = b, ou seja, G não é um grupo abeliano.
- 10) Todos os conjuntos respeitam as regras A1 à A3 e A5, sendo 0 o elemento identidade aditivo.

A partir do conjunto dos inteiros A4 é satisfeito com números negativos, que também respeitam as regras M1 à M6, tendo 1 como o elemento de identidade multiplicativa.

A partir dos conjuntos racionais M7 também é satisfeita, com $a^{-1} = \frac{1}{a}, a \neq 0$ Então temos que nos escalares:

- Naturais (nada)
- Inteiros Anel de Integridade
- Racionais Corpo

Enquanto nas matrizes quadradas temos que $A \times B \neq B \times A$, logo não satisfas M4, assim sendo grupos

- Matriz quadrada com números inteiros Grupo
- Matriz quadrada com números reais Grupo