CS2020 Data Structures and Algorithms (Recitation)

Welcome!

Today

Proving an algorithm correct:

- Simple examples
- Loop invariants
- Assertions

Divide-and-Conquer Examples

- Integer multiplication
- Matrix multiplication

Getting it right...

How do you show an algorithm correct?

- 1. What do you mean by correct?
- 2. What does the algorithm do?

Getting it right...

Example:

calculate(a, b)

```
1. x = a;
```

2.
$$i = a$$
;

- 3. while (i < b)
- 4. x += 0.5;
- 5. i++;
- 6. return x;

Getting it right...

```
calculate(a, b): a < b
  1. x = a;
 2. i = a;
  3. while (i < b)
 4. x += 0.5;
 5. i++;
  6. return x;
average(a, b)
  1. return (a+b)/2
```

Loop Invariants

Invariant:

relationship between variables that is always true.

Loop Invariant:

 relationship between variables that is true at the beginning (or end) of each iteration of a loop.

Loop Invariants

- 1. PREcondition: holds before the loop
- 2. POSTcondition: holds after the loop
- 3. Choose loop invariant L.
- 4. Prove L using induction.
- 5. Prove that (L + "loop terminates") => POST
- 6. Prove that loop terminates

Loop Invariants

calculate(a, b)

```
1. x = a;
```

2.
$$i = a$$
;

3. while
$$(i < b)$$

4.
$$x += 0.5$$
;

5.
$$i++;$$

```
PRE: x = i = a
POST: x = (a+b)/2
L: x = (a+i)/2
   Base: x = (a+a)/2 = a
  Inductive step:
     Before: x = (a+i)/2
     After: x = (a+i)/2 + 0.5
              = (a+i+1)/2
On exit: i=b => x = (a+b)/2
```

Termination: i++ in every iter

Binary Search (review)

Sorted array: A[1..n]

```
2 4 4 5 6 7 8 9 11 17 23 28
```

```
Search(A, key, n)
    begin = 1
    end = n
    while begin != end do:
          if A[(begin+end)/2] > key then
                end = (begin+end)/2 - 1
          else begin = (begin+end)/2
    return A[begin]
```

Specification:

- Finds element if it is in the array.
- Returns "NO" if it is not in the array

Sorted array: A[1..n]

```
2 4 4 5 6 7 8 9 11 17 23 28
```

```
Search(A, key, n)
    begin = 1
    end = n
    while begin != end do:
          if A[(begin+end)/2] > key then
                end = (begin+end)/2 - 1
          else begin = (begin+end)/2
    return A[begin]
```

Sorted array: A[1..n]

```
2 4 4 5 6 7 8 9 11 17 23 28
```

```
Search(A, key, n)
    begin = 1
    end = n
    while begin != end do:
         if A[(begin+end)/2] > key then
              end = (begin+end)/2 - 1
         else begin = (begin+end)/2
    return A[begin] ← A[begin] == key?
```

Prove:

If element is in the array, return it.

Preconditions:

- begin = 1
- end = n

Postcondition:

- A[begin] = key

Sorted array: A[1..n]

```
2 4 4 5 6 7 8 9 11 17 23 28
```

```
Search(A, key, n)
    begin = 1
    end = n
    while begin != end do:
          if A[(begin+end)/2] > key then
                end = (begin+end)/2 - 1
          else begin = (begin+end)/2
    return A[begin]
```

Loop invariant:

- $A[begin] \le key \le A[end]$

Base case:

- A[begin] = A[1]
- $A[1]] \leq key \leq A[n]$
- -A[n] = A[end]

Loop invariant:

- $A[begin] \le key \le A[end]$

Inductive step:

```
- end = (begin+end)/2 - 1
```

if: A[(begin+end)/2] > key

thus: $key \le A[(begin+end)/2 - 1] = A[end]$

- begin = (begin+end)/2

if: $A[(begin+end)/2] \le key$

thus: $A[(begin+end)/2] = A[begin] \le key$

Loop invariant:

- $A[begin] \le key \le A[end]$

Conclusion:

- Loop exits when (begin==end)
- By invariant: A[begin] ≤ key ≤ A[begin]
- key == A[begin]

Done

Sorted array: A[1..n]

```
2 4 4 5 6 7 8 9 11 17 23 28
```

```
Search(A, key, n)
    begin = 1
    end = n
    while begin != end do:
          if A[(begin+end)/2] > key then
                end = (begin+end)/2 - 1
          else begin = (begin+end)/2
    return A[begin]
```

Sorted array: A[1..n]

```
2 4 4 5 6 7 8 9 11 17 23 28
```

```
Search(A, key, n)
    begin = 1
                              Does not terminate!
    end = n
                                    Round down?
    while begin != end do:
         if A[(begin+end)/2] > key then
               end = (begin+end)/2 - 1
         else begin = (begin+end)/2
    return A[begin]
```

Assertions

- Imagine you prove a good loop invariant.
 - Yay!
- You implement your algorithm.
 - It works!

- Someone else changes the code.
 - It breaks.
 - Boo!

Assertions

Include the loop invariant in your code!

```
Example:
   A[begin] \le key \le A[end]
Code:
   if (A[begin] > key)
        throw new Exception("Bad search");
   if (A[end] < key)
        throw new Exception("Bad search");
```

Divide-and-Conquer Examples

		3	2	5
X		6	9	3

			3	2	5
X			6	9	3
			9	7	5
	2	9	2	5	
1	9	5	0		
2	2	5	2	2	5

	0	0	1	1	0	0	0	1
X	1	1	0	0	1	1	1	0
?	?	?	?	?	?	?	?	?

Given: two n bit binary integers x and y

Compute: xy

Standard strategy: O(n²)

Other operations:

- Addition: O(n)
- Bitwise shift: O(n)

Example:

```
left-shift(011101) = 111010
right-shift(11101) = 001110
left-shift(x) = 2x
right-shift(x) = x/2
```

Divide and Conquer

Divide and Conquer

$$xy = (xL*2^{n/2} + xR)(yL*2^{n/2} + yR)$$

Divide and Conquer

$$xy = (x_L * 2^{n/2} + x_R)(y_L * 2^{n/2} + y_R)$$

$$- (a + b)(c + d) = ac + ad + bc + bd$$

$$xy = (x_L^* 2^{n/2} + x_R)(y_L^* 2^{n/2} + y_R)$$

$$xy = x_L y_L 2^n + x_L y_R 2^{n/2} + x_R y_L 2^{n/2} + x_R y_R$$

$$- (a + b)(c + d) = ac + ad + bc + bd$$

$$xy = (x_L^* 2^{n/2} + x_R)(y_L^* 2^{n/2} + y_R)$$

$$xy = x_L y_L 2^n + x_L y_R 2^{n/2} + x_R y_L 2^{n/2} + x_R y_R$$

$$T(n) = 4T(n/2) + O(n)$$

$$- (a + b)(c + d) = ac + ad + bc + bd$$

$$xy = (x_L^* 2^{n/2} + x_R)(y_L^* 2^{n/2} + y_R)$$

$$xy = x_L y_L 2^n + x_L y_R 2^{n/2} + x_R y_L 2^{n/2} + x_R y_R$$

$$T(n) = 4T(n/2) + O(n)$$

= $O(n^2)$

$$xy = (x_L * 2^{n/2} + x_R)(y_L * 2^{n/2} + y_R)$$

$$xy = x_L y_L 2^n + x_L y_R 2^{n/2} + x_R y_L 2^{n/2} + x_R y_R$$

$$T(n) = 4T(n/2) + O(n)$$

= $O(n^2)$

Magic: ab + cd = (a+c)(b+d) - ad - bc

$$xy = x_L y_L 2^n + (x_L y_R + x_R y_L) 2^{n/2} + x_R y_R$$

$$(x_L y_R + x_R y_L) = (x_L + x_R)(y_R + y_L) - x_L y_L - x_R y_R$$

$$xy = x_L y_L 2^n + (x_L y_R + x_R y_L) 2^{n/2} + x_L y_R 2^{n/2} + x_R y_R$$

 $(x_L y_R + x_R y_L) = (x_L + x_R)(y_R + y_L) - x_L y_L - x_R y_R$

Three recursive multiplications + additions + shifts:

- 1. $x_L y_L$
- $2. x_R y_R$
- 3. $(x_L + x_R)(y_R + y_L)$

Algorithm:

```
multiply(x, y, n)
    xL,xR = split(x)
    yL,yR = split(y)
    a = multiply(xL, yL, n/2)
    b = multiply(xR, yR, n/2)
    c = multiply(xL+xR, yL+yR, n/2)
    return shift(a,n) + b + shift(c-a-b,n/2)
```

Integer Multiplication

Analysis:

```
T(n) = 3T(n/2) + O(n)
= O(n^{log3})
= O(n^{1.58})
```

Integer Multiplication

$$xy = x_L y_L 2^n + (x_L y_R + x_R y_L) 2^{n/2} + x_L y_R 2^{n/2} + x_R y_R$$

 $(x_L y_R + x_R y_L) = (x_L + x_R)(y_R + y_L) - x_L y_L - x_R y_R$

Three recursive multiplications + additions + shifts:

- 1. $x_L y_L$
- $2. x_R y_R$
- 3. $(x_L + x_R)(y_R + y_L)$

Given: two matrices A[n,n] and B[n,n]

Calculate: matrix C = AB

Given: two matrices A[n,n] and B[n,n]

Calculate: matrix C = AB

$$C_{i,j} = \sum_{k=1}^{n} A_{i,k} B_{k,j}$$

```
\begin{aligned} & \text{Multiply(A,B)} \\ & \text{for } i = 1 \text{ to n do} \\ & \text{for } j = 1 \text{ to n do} \\ & C_{ij} = 0 \\ & \text{for } k = 1 \text{ to n do } C_{ij} += A_{ik} * B_{kj} \end{aligned}
```



```
Multiply(A,B)

for i = 1 to n do

for j = 1 to n do

C_{ij} = 0

for k = 1 to n do C_{ij} + A_{ik} B_{kj}
```


Ideas for improvement?

Divide-and-Conquer

$$C_{11} = A_{11}B_{11} + A_{12}B_{21}$$

 $C_{12} = A_{11}B_{12} + A_{12}B_{22}$
 $C_{21} = A_{21}B_{11} + A_{22}B_{21}$
 $C_{22} = A_{21}B_{12} + A_{22}B_{22}$

Example: 6x6 matrix

$$c_{22} = a_{21}b_{12} + a_{22}b_{22} + ... + a_{26}b_{62}$$

 $C(1,1)_{22} = A(1,1)B(1,1)_{22} + A(1,2)_{12}B(2,1)_{22}$

=
$$A(1,1)_{21}B(1,1)_{12} + ... + A(1,1)_{23}B(1,1)_{32}$$

+ $A(1,2)_{21}B(2,1)_{12} + ... + A(1,2)_{23}B(2,1)_{32}$

$$= A_{21}B_{12} + ... + A_{23}B_{32} + A_{24}B_{42} + ... + A_{24}B_{62}$$

Divide-and-Conquer

$$C_{11} = A_{11}B_{11} + A_{12}B_{21}$$
 $C_{12} = A_{11}B_{12} + A_{12}B_{22}$
 $C_{21} = A_{21}B_{11} + A_{22}B_{21}$
 $C_{22} = A_{21}B_{12} + A_{22}B_{22}$

$$T(n) = 8T(n/2) + O(n^2)$$

Substitution Method

Solve:

$$T(n) = 8T(n/2) + kn^2$$

Guess:

$$T(n) = n^3 - kn^2$$

Substitution Method

Solve:

$$T(n) = 8T(n/2) + kn^2$$

Guess:

$$T(n) = n^3 - kn^2$$

Test:
$$8T(n/2) + kn^2$$

$$T(n/2) = (n/2)^3 - k(n/2)^2$$

= $n^3/8 - kn^2/4$

Substitution Method

Solve:

$$T(n) = 8T(n/2) + kn^2$$

Guess:

$$T(n) = n^3 - kn^2$$

Test:
$$8T(n/2) + kn^2$$

$$T(n/2) = (n/2)^3 - k(n/2)^2$$

= $n^3/8 - kn^2/4$

$$8T(n/2)+kn^2 = 8(n^3/8 - kn^2/4)+kn^2$$

= $n^3 - 2kn^2+kn^2 = T(n)$

Divide-and-Conquer

$$C_{11} = A_{11}B_{11} + A_{12}B_{21}$$

 $C_{12} = A_{11}B_{12} + A_{12}B_{22}$
 $C_{21} = A_{21}B_{11} + A_{22}B_{21}$
 $C_{22} = A_{21}B_{12} + A_{22}B_{22}$

Matrix Magic

Define:

$$M_{1} = (A_{11} + A_{22})(B_{11} + B_{22})$$

$$M_{2} = (A_{21} + A_{22})B_{11}$$

$$M_{3} = A_{11}(B_{12} - B_{22})$$

$$M_{4} = A_{22}(B_{21} - B_{11})$$

$$M_{5} = (A_{11} + A_{12})B_{22}$$

$$M_{6} = (A_{21} - A_{11})(B_{11} + B_{12})$$

$$M_{7} = (A_{12} - A_{22})(B_{21} + B_{22})$$

Notice: 7 multiplications!!

Matrix Magic

Calculate:

$$C_{11} = M_1 + M_4 - M_5 + M_7$$
 $C_{12} = M_3 + M_5$
 $C_{21} = M_2 + M_4$
 $C_{22} = M_1 - M_2 + M_3 + M_6$

Really!!

Magic!!

Strassen's Method:

Strassen's Method:

$$T(n) = 7T(n/2) + \theta(n^2)$$

$$T(n) \cong n^{\log(7)} \cong n^{2.81}$$

(Faster when N > 32, approximately)

Best known to date:

$$T(n) \cong O(n^{2.376})$$

(Theoretical use only.)

Most important algorithm?

Most important divide-and-conquer algorithm

Fast Fourier Transform

Signal processing (DSP)

- Linear filtering
- Correlation analysis
- Spectrum analysis