알튜비튜 정수론

오늘은 각종 수의 성질을 다루는 정수론에 대해 배웁니다. 특히, 최대공약수를 효율적으로 구하는 유클리드 호제법과 소수를 빠른 시간 내에 판별하는 에라토스테네스의 체에 대해 알아봅시다.

도전 문제 1

/<> 9421번 : 소수상근수 – Silver 1

문제

● 입력으로 주어진 양의 정수 n보다 작거나 같은 수들 중, 소수이면서 각 자리수의 제곱의 합을 반복적으로 계산했을 때 1이 되는 상근수인지 판단하는 문제

제한 사항

입력으로 주어지는 n: 10 ≤ n ≤ 1000000

예제 입력1

20

예제 출력1

소수상근수란?

소수상근수

- 소수이면서 상근수인 수
- 1부터 n 사이의 모든 정수들에 대해 소수이면서 상근수인지 판단 -> 반복문 이용!
- n개의 숫자들에 대해 각각 에라토스테네스의 체를 적용하는 것은 비효율적
 - -> 1부터 n 사이의 소수부터 먼저 찾고
 - -> 여기서 찾은 소수들에 대해서만 상근수인지 판단

소수 찾는 방법을 복습해볼까요?

에라토스테네스의 체

- 각 수가 소수인지 판단한 여부를 저장하는 배열 사용
- ullet 2부터 시작해서 해당 숫자의 배수에 해당하는 숫자들을 지워나감 $(\sim \sqrt{n})$
 - -> 약수가 존재하면 소수가 아니므로
 - -> 해당 숫자는 소수
- 여기서 구한 숫자들에 대해서만 상근수 여부 판단해주기

상근수

● 각 자리수의 제곱의 합을 반복적으로 구했을 때 1이 될 수 있는 수

$$700 \rightarrow 7^2 + 0^2 + 0^2 = 49$$

$$\bullet$$
 49 \rightarrow 4² + 9² = 97

$$97 \rightarrow 9^2 + 7^2 = 130$$

$$130 \rightarrow 1^3 + 3^2 + 0^2 = 10$$

$$10 \rightarrow 1^2 + 0^2 = 1$$

$$700 \rightarrow 7^2 + 0^2 + 0^2 = 49$$

$$\bullet$$
 49 \rightarrow 4² + 9² = 97

$$97 \rightarrow 9^2 + 7^2 = 130$$

$$130 \rightarrow 1^3 + 3^2 + 0^2 = 10$$

$$\bullet$$
 10 \rightarrow 1² + 0² = 1

$$\bullet$$
 700 \rightarrow 7² + 0² + 0² = 49

$$\bullet$$
 49 \rightarrow 4² + 9² = 97

$$97 \rightarrow 9^2 + 7^2 = 130$$

$$130 \rightarrow 1^3 + 3^2 + 0^2 = 10$$

$$\bullet$$
 10 \rightarrow 1² + 0² = 1

∴ 700은 상근수

$$2 \rightarrow 2^2 = 4$$

$$\bullet$$
 4 \rightarrow 4² = 16

$$\bullet$$
 16 \rightarrow 1² + 6² = 37

$$37 \rightarrow 3^2 + 7^2 = 58$$

$$\bullet$$
 58 \rightarrow 5² + 8² = 89

$$\bullet$$
 89 \rightarrow 8² + 9² = 145

$$145 \rightarrow 1^2 + 4^2 + 5^2 = 42$$

$$\bullet$$
 42 \rightarrow 4² + 2² = 20

$$\bullet$$
 20 \rightarrow 2² + 0² = 4

$$\bullet$$
 4 \rightarrow 4² = 16

•

$$2 \rightarrow 2^2 = 4$$

$$\bullet$$
 4 \rightarrow 4² = 16

$$16 \rightarrow 1^2 + 6^2 = 37$$

$$\bullet$$
 37 \rightarrow 3² + 7² = 58

$$\bullet$$
 58 \rightarrow 5² + 8² = 89

$$\bullet$$
 89 \rightarrow 8² + 9² = 145

$$145 \rightarrow 1^2 + 4^2 + 5^2 = 42$$

$$\bullet$$
 42 \rightarrow 4² + 2² = 20

$$\bullet$$
 20 \rightarrow 2² + 0² = 4

•
$$4 \rightarrow 4^2 = 16$$

•

$$2 \rightarrow 2^2 = 4$$

$$\bullet$$
 4 \rightarrow 4² = 16

$$16 \rightarrow 1^2 + 6^2 = 37$$

$$37 \rightarrow 3^2 + 7^2 = 58$$

$$\bullet$$
 58 \rightarrow 5² + 8² = 89

$$\bullet$$
 89 \rightarrow 8² + 9² = 145

$$145 \rightarrow 1^2 + 4^2 + 5^2 = 42$$

$$\bullet$$
 42 \rightarrow 4² + 2² = 20

$$\bullet$$
 20 \rightarrow 2² + 0² = 4

•
$$4 \rightarrow 4^2 = 16$$

• • • •

∴ 2는 상근수가 아님!

- 상근수인지 아닌지 어떻게 판단할까?
- 상근수<u>가 아닌 경우 무한대로 계산이 반복딤</u>
 - -> 앞의 연산에서 나았던 수가 반복적으로 나타남
- 이미 한 번 나왔던 결과가 다시 나온다면 해당 수는 상근수가 아님!
 - -> 상근수를 판단하는 연산 과정에서 나왔던 수를 set에 저장
 - -> 이번 연산 결과가 이미 set에 있다면 상근수가 아니라고 판단하기

도전 문제 2

/<> 2981번 : 검문 - Gold 4

문제

● N개의 숫자들을 각각 나눴을 때의 나머지들이 모두 같게 되는 M을 찾는 문제

제한 사항

- 종이에 적은 수의 개수 N: 2 ≤ N ≤ 100
- 종이에 적은 수는 모두 1보다 크거나 같고, 1,000,000,000보다 작거나 같은 자연수

예제 입력1

6

예제 출력1

예제 입력1

5

예제 출력1

- N개의 수를 1부터 1,000,000,000 각각 나누면서 판단해줄까요…?
 - -> O(N) = O(100 * 1,000,000,000)
 - -> 너무 비효율적
- M이 가지는 특징을 살펴봅시다!

• A, B, C를 M으로 나눴을 때의 나머지가 모두 R이라면?

- B A = (M * b + R) (M * a + R) = M * (b a)
- $A C = (M * a + R) \overline{(M * c + R)} = M * (a c)$

● A, B, C를 M으로 나눴을 때의 나머지가 모두 R이라면?

- B A = (M * b + R) (M * a + R) = M * (b a)
- A C = (M * a + R) (M * c + R) = M * (a c)-> 각 수의 차가 모두 M에 대해 나누어 떨어짐!

● A, B, C를 M으로 나눴을 때의 나머지가 모두 R이라면?

- B A = (M * b + R) (M * a + R) = M * (b a)
- A C = (M * a + R) (M * c + R) = M * (a c)
 -> 각 수의 차가 모두 M에 대해 나누어 떨어짐!

-> M = 이웃한 수들(B - A, C - B) 간의 차의 모든 공약수

모든 M은 어떻게 찾을까요?

- M = 이웃한 수들(B A, C B) 간의 차의 모든 공약수
- 이웃한 수들 간의 차에 대해 먼저 최대공약수(GCD)를 구해주고
- 이 최대공약수(GCD)의 모든 약수를 구해주면
- 모든 M을 구할 수 있음!

최대공약수 구하는 법을 복습해볼까요?

유클리드 호제법

- $A = a \cdot G$
- B = b · G (a와 b는 서로소)
- A = q · B + r (q = A/B 의 몫, r = A%B)
- $r(A\%B) = a \cdot G q \cdot b \cdot G = (a q \cdot b) \cdot G$
- -> (a q · b) 와 b 또한 서로소 이므로 A%B 와 B 의 최대공약수도 G
- GCD(A, B) = GCD(A-B, B) = GCD(A-2B, B) = ··· = GCD(A%B, B)

구현 문제

문제

- 바퀴의 회전 수와, 회전이 끝난 후 가리키는 글자가 주어졌을 때, 행운의 바퀴를 구하자.
- 빈 칸에 어떤 글자가 들어갈 지 알 수 없으면 ?로 출력
- 행운의 바퀴를 만들 수 없으면! 출력하고 끝내기

제한 사항

- 바퀴의 칸 수 N: 2 <= N <= 25
- 바퀴를 돌리는 횟수 K: 1 <= K <= 100
- 바퀴에 같은 글자는 두 번 이상 등장 X
- 바퀴는 시계 방향으로 돌아감
- +) 원판의 한 칸에 글자 2개 이상 못 들어감

예제 입력1

예제 입력2

56 1A 2B 5B 1C시계방향으로 돌리면 화살표는 2A 음수가 되지 않으려면 시계 2B

예제 입력3

88 4V 3I 7T 7A 6R 5N 10 9H

예제 출력1

!

예제 출력2

B?A?C

예제 출력3

HONITAVR

바퀴를 배열로??

예제1

예제 입력

예제 출력

START

S = 화살표가 가리키는 글자가 몇 번 바뀌었는지 = 몇 칸 이동했는지 (모든 알파벳은 한 번만 쓰임)

START

예제1

예제 입력

3 3 1 A 2 B 3 C

예제 출력

START

START

1

예제1

예제 입력

3 3 1 A 2 B 3 C

예제 출력

!

В

В

A

A

В

A

Α

START

1

2

화살표가 바퀴가 돌아가는 횟수만큼 우측으로 이동 **나머지 연산**으로 인덱스를 범위 안으로 만들기

index = (index + s) % n

시뮬레이션

?

- k번 바퀴를 돌려도 정체를 알 수 없는 칸 ?
- → k번 돌려가면서 적절한 알파벳으로 칸을 채우고, 남는 칸은 ?로 출력

- K번 바퀴를 돌리다 예외에 걸려 맞는 바퀴를 찾을 수 없다면 -!
- → 이미 다른 칸에 사용한 알파벳을 또 넣어야 하는 경우
- → 이미 다른 알파벳이 들어있던 칸에 다른 알파벳을 넣어야 하는 경우

구현하기

- 한 알파벳이 여러 번 쓰이는지 중복 체크
- → 알파벳 사용 여부 관리 배열: is_available

- 원판의 한 칸에 문자가 2개 이상 들어갈 수 없음
- → 원판의 해당 위치가 알파벳이 없이, 애초부터 비어 있었다면 OK
- → 원판의 해당 위치에 알파벳이 있는데, 그게 자기 자신과 동일해도 OK
- → 원판의 해당 위치에 알파벳이 있는데, 그게 다른 글자이면 원판 만들기 불가능

마무리

추가로 풀어보면 좋은 문제!

- /<> 14490번 : 백대열 Silver 5
- /<> 9613번 : GCD 합 Silver 4
- /<> 2168번 : 타일 위의 대각선 Silver 1
- **/**<> 20302번 : 민트 초코 Gold 4