BAMIII

Professor Oh, Jun Ho TA Kim, Young Woo TA Kim, Woo Ram 20120131 Jeon, Hae Koo 20140331 An, Seung Hyun 20140344 Yang, Ye Jun 20140870 Lee, Bo Mi 20150629 Lee, Hae Woo 20150957 Wit, Sirawit 20160259 Park, Jeong Soo

TABLE OF CONTENT

CHIKORITA

KEY FEATURES

CHALLENGES

SOFTWARE SYSTEM

CHIKORITA

CHIKORITA

Dimension: 500 x 420 x 350 (mm) Weight: 12 kg

Compact size

Proper height for the rplidar

CONFIGURATION

<Front view>

CONFIGURATION

CONSTRUCTION STRATEGY

Position of the other components < Position of the rplidar < Wall height (= 0.5 m)

CONSTRUCTION STRATEGY

Heatsink

Give maximum contact area with the air to prevent over-heating

Fan

Give efficient cooling of the Jetson board

KEY FEATURES

PICKING MECHANISM

PROBLEM

NAMSAENG-2 (CAPSTONE DESIGN 1)

- Need high accuracy in position of the ball
- Pickup box was vulnerable
- Take longer time to pick up

AIM & HYPOTHESIS

AIM: To have wide range of effective area to reduce accuracy problem

EXPERIMENT

Rubber glove Rubber tape Foamex

EXPERIMENT

EVALUATION

IMPLEMENTATION

GEARBOX

AIM & HYPOTHESIS

AIM: To increase the speed of the robot

Increase in speed

More accurate and smooth control of wheel motor

Helical gear

GEARBOX DESIGN

GEARBOX

Steel

Steel (heat-treated)

Aluminum

IMPLEMETATION

CHALLENGE

CONTRADICTION

BUT....

CONTRADICTION

Sudden stop from high speed requires large torque to be applied from the motor

When we checked the torque applied using LabVIEW, it goes over the limit and error occurs

HYPOTHESIS

Angular velocity

Angular acceleration

Set maximum value

$$T = I \times \alpha$$

IMPLEMENTATION

Before control

After control

SUSPENSION

	Α	В	C	D
control group	2676	2842	3787	3601
A +3mm	3713	1815	2802	4573
B +3mm	1830	3731	4582	2763
C +3mm	1533	4085	4982	2308
D +3mm	3231	2294	3191	4195
A -3mm	1328	4252	5000<	2321
B -3mm	3177	2394	3278	4140
C -3mm	3005	2558	3404	4017
D -3mm	1384	4121	5000<	2356

SOFTWARE SYSTEM

DQN

SIMULATION

- Sorting plate position
- Roller

SIMULATION

MAP STRATEGY

3 types of map will be appear randomly

<Actual structure>

iii) Walls with obstacles

ACTION

SUPER FORWARD MOTION

LEARNING STRATEGY #1

SUPER Forward motion: Move 3 pixels in forward-direction

When the robot tries this motion, they got reward -=4 to prevent simulator from abusing super forward motion

If the bots do SUPER Forward motion when picks-up the ball

	-5	5	10	5	-5	
	-5	10	20	10	-5	
	-5	5	10	5	-5	
-5						-5
-5						-5
-5						-5
-5						-5
-5						-5
	-5	-5	-5	-5	-5	

LEARNING STRATEGY #2

Blind Area

LEARNING STRATEGY #3

Vibrating problem

Move only one pixel after 3 steps reward-=0.3

DQN

SENSOR & MOTOR CONTROL MACHINE LEARNING

COMPARISON BETWEEN 1&2

Sensor & Motor Control | Machine Learning

- Control can be continuous and precise
 - Take less computing time
 - We precisely know our model
 - We have to consider all the situation

- The number of action is finite and limited which can be less precise.
- Take longer time for learning and computing
- It is hard to evaluate as the model created is black box
- It reacts even to the unexpected situation

For simple system, there is no merits using machine learning especially when all the environment and conditions are set clearly

Thank you for listening

Q&A