

# ECE 105: Introduction to Electrical Engineering

Lecture 8
Optoelectronics
Yasser Khan
Rehan Kapadia

### The seven-segment display



### **LED Displays**





# Light-based devices





### Artificially generating light



### Electromagnetic Spectrum



### LED emission spectra





### Direct vs indirect semiconductors





2 Energy band diagrams and major carrier transition processes in indium phosphide (direct bandgap) and silicon (indirect bandgap) crystals. Silicon, Germanium and some III/V compounds like GaP and AlAs are indirect bandgap semiconductors. InP, GaAs, GaN and other ternary (AlGaAs, InGaAs) and quaternary (InGaAsP, InAlAsP) compounds are direct bandgap semiconductors commonly used for photonic devices fabrication.

### LEDs are made out of non-silicon semiconductors



| Color       | Wavelength [nm]     | Semiconductor material                                                                                                                                                                                   |  |  |
|-------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Infrared    | λ > 760             | Gallium arsenide (GaAs)<br>Aluminium gallium arsenide (AlGaAs)                                                                                                                                           |  |  |
| Red         | 610 < A < 760       | Aluminium gallium arsenide (AlGaAs) Gallium arsenide phosphide (GaAsP) Aluminium gallium indium phosphide (AlGaInP) Gallium(III) phosphide (GaP)                                                         |  |  |
| Orange      | 590 < λ < 610       | Gallium arsenide phosphide (GaAsP) Aluminium gallium indium phosphide (AlGaInP) Gallium(III) phosphide (GaP)                                                                                             |  |  |
| Yellow      | 570 < λ < 590       | Gallium arsenide phosphide (GaAsP) Aluminium gallium indium phosphide (AlGalnP) Gallium(III) phosphide (GaP)                                                                                             |  |  |
| Green       | 500 < λ < 570       | Traditional green: Gallium(III) phosphide (GaP) Aluminium gallium indium phosphide (AlGalnP) Aluminium gallium phosphide (AlGaP) Pure green: Indium gallium nitride (InGaN) / Gallium(III) nitride (GaN) |  |  |
| Blue        | 450 < \lambda < 500 | Zinc selenide (ZnSe) Indium gallium nitride (InGaN) Silicon carbide (SiC) as substrate Silicon (Si) as substrate—under development                                                                       |  |  |
| Violet      | 400 < λ < 450       | Indium gallium nitride (InGaN)                                                                                                                                                                           |  |  |
| Purple      | multiple types      | Dual blue/red LEDs,<br>blue with red phosphor,<br>or white with purple plastic                                                                                                                           |  |  |
| Ultraviolet | λ < 400             | Diamond (235 nm) Boron nitride (215 nm) Aluminium nitride (AIN) (210 nm) Aluminium gallium nitride (AIGaN) Aluminium gallium indium nitride (AIGalnN)—down to 210                                        |  |  |
| Pink        | multiple types      | Blue with one or two phosphor layers:<br>yellow with red, orange or pink phosphor added afterwards,<br>or white with pink pigment or dye.                                                                |  |  |
| White       | Broad spectrum      | Blue/UV diode with yellow phosphor                                                                                                                                                                       |  |  |

| Color | Name<br>Color | Wavelength<br>nm=1x10 <sup>-9</sup> | Voltage Drop<br>(Forward Voltage) |
|-------|---------------|-------------------------------------|-----------------------------------|
| 0     | White         | 395 - 530 nm                        | 3-5 V                             |
| •     | Ultraviolet   | < 400 nm                            | 3.1 - 4.4 V                       |
| •     | Violet        | 400 - 450 nm                        | 2.8 - 4.0 V                       |
| 0     | Blue          | 450 - 500 nm                        | 2.5 - 3.7 V                       |
| •     | Green         | 500 - 570 nm                        | 1.9 - 4.0 V                       |
| 0     | Yellow        | 570 - 590 nm                        | 2.1 - 2.2 V                       |
| 0     | Orange        | 590 - 610 nm                        | 2.0 - 2.1 V                       |
| 0     | Red           | 610 - 760 nm                        | 1.6 - 2.0 V                       |
| 0     | Infrared      | > 760 nm                            | <1.9 V                            |

### LED symbols





### LED driver circuit





### LED is a diode







### LED packages







### IV characteristics for LEDs





### Blue LED won the 2014 Nobel in Physics





### Steps to get the Blue LED





### InGaN LEDs





### LED colors – single color from on LED





### Changing emission colors – can you change color?





### How to get white light



One LED can only produce one color (red, orange, yellow, green, blue, or violet)

To achieve white light, need to combine colors:



Blue + Yellow (Easiest)



Blue + Green + Red (Highest Quality)

### The LED in our demo board



#### RELATIVE LUMINOUS INTENSITY - FORWARD CURRENT

#### SPECTRUM



https://fscdn.rohm.com/en/products/databook/datasheet/opt o/led/chip\_mono/csl0416wbcw1-e.pdf



#### FORWARD CURRENT - FORWARD VOLTAGE



### How does a photodiode work





### How does a photodiode work





### How does a photodiode work





### Photodiode







## IV of photodiode





### The PD in our demo board

https://www.vishay.co m/docs/83493/vemd2 023slx01.pdf



#### VEMD2023SLX01

### Vishay Semiconductors

RoHS

HALOGEN

FREE

GREEN

#### Silicon PIN Photodiode



#### DESCRIPTION

VEMD2023SLX01 is a high speed and high sensitive PIN photodiode in a miniature side looking, surface mount package (SMD) with dome lens and daylight blocking filter. Filter is matched with IR emitters operating at wavelength of 830 nm to 950 nm. The photo sensitive area of the chip is 0.23 mm<sup>2</sup>.

#### **FEATURES**

- · Package type: surface mount
- · Package form: side view
- Dimensions (L x W x H in mm): 2.3 x 2.55 x 2.3
- · AEC-Q101 qualified
- · High radiant sensitivity
- · Daylight blocking filter matched with 830 nm to 950 nm IR emitters
- · Fast response times
- Angle of half sensitivity: φ = ± 35°
- · Package matched with IR emitter series VSMB2943SLX01
- . Floor life: 4 weeks, MSL 2a, acc. J-STD-020
- · Lead (Pb)-free reflow soldering
- · Material categorization: For definitions of compliance please see www.vishav.com/doc?99912

#### **APPLICATIONS**

- · High speed photo detector
- · Infrared remote control
- · Infrared data transmission
- · Photo interrupters
- · IR touch panels

| PRODUCT SUMMARY |                      |         |                       |
|-----------------|----------------------|---------|-----------------------|
| COMPONENT       | I <sub>ra</sub> (μA) | φ (deg) | λ <sub>0.5</sub> (nm) |
| VEMD2023SLX01   | 10                   | ± 35    | 750 to 1060           |

· Test conditions see table "Basic Characteristics"

| ORDERING INFORMATI | DERING INFORMATION |                              |              |
|--------------------|--------------------|------------------------------|--------------|
| ORDERING CODE      | PACKAGING          | REMARKS                      | PACKAGE FORM |
| VEMD2023SLX01      | Tape and reel      | MOQ: 3000 pcs, 3000 pcs/reel | Side view    |

· MOQ: minimum order quantity

| PARAMETER                           | TEST CONDITION                    | SYMBOL             | VALUE         | UNIT |
|-------------------------------------|-----------------------------------|--------------------|---------------|------|
| Reverse voltage                     |                                   | V <sub>R</sub>     | 60            | ٧    |
| Power dissipation                   | T <sub>amb</sub> ≤ 25 °C          | Pv                 | 215           | mW   |
| Junction temperature                |                                   | T <sub>j</sub>     | 100           | °C   |
| Operating temperature range         |                                   | T <sub>amb</sub>   | - 40 to + 100 | ŝ    |
| Storage temperature range           |                                   | T <sub>stg</sub>   | - 40 to + 100 | °C   |
| Soldering temperature               | Acc. reflow solder profile fig. 7 | T <sub>sd</sub>    | 260           | °c   |
| Thermal resistance junction/ambient | Acc. J-STD-061                    | R <sub>th.IA</sub> | 250           | K/W  |



### PD characteristics





Fig. 5 - Relative Spectral Sensitivity vs. Wavelength

#### **BASIC CHARACTERISTICS** (T<sub>amb</sub> = 25 °C, unless otherwise specified)



Fig. 1 - Reverse Dark Current vs. Ambient Temperature



Fig. 3 - Reverse Light Current vs. Irradiance

### LED-PD combo



