How to Draw Langout to Mochanical On a description of any Mechanical line what going there may be found the which notions were company to make up of mation of y point describing it, when we will be sing by them found, let between court he in a bangest to y weed with the If one body more from a to b in a same how in with worker moves from a to e & a 3 only were from a who maken comparated of those true it shall comparing y grandskogram adid) more to I my same lines for the wolon would reversity in if y' to for a fore of clair from a to I see Example of the first of the state of the sta sacre of a many set of free many to granted and a set of the second of t the point & logards a to it motion towards of as ab, to Trible therefore make stanfords nogreated mis. of the or among you bragonal by shall bouch you national 8. Or hale be= jg = ab. to bj = eg = 2 mb. We Disposell by that buce of his (y bringle of of may be the found in asid as: Ind : Ind : 3mb = 3mb = 3mb = of.) Example 4' 2. It is exaleta of a globs amoves uniformly in a stright ting generalise to sky polished y' Globe uniformally givenly . Each good give y' Globe will Describe a Following to will at y point of this was a languat. Down of an at is be perpendicular to it you by circular notion of the point & determined in is line be in its progresion is by. If Wirefore of make heafa to 8f = 19 of 9 circular motion of 4's point & to its grayrisein of Diagonal 1994 Simon 1 84 the Long louch y' Trockerdes in b. Ols if y' Glove reals upon y' plikes the first make benjanal is by egans , of the of Digorall of touch of margine to a o puring brough ye point in only year to plains todals it a propendientar to ye that Energyle 30, If yo line with I as moves uniformity of length of all southest about organis from at to the about of sales as the point of the determine of and Sight of a get the grant of the sales of a sales of the grant of the gran notice of 4) to for motion of 16) to est has shtitancal. Therefore making abishtis ancabis of = eq: be=fq. (or making of = on = eq. & be= ba=fq) y' Diagrad in

Announcements, Goals, and Reading

Announcements:

- HW02 due Tuesday Feb 15th, 11:59 pm on Mastering Physics
- Help Resources: See next page

Goals for Today:

- Instantaneous velocity v(t)
- Finding position x(t) from velocity vs time v(t)
- Motion w/ constant acceleration a

Reading (Physics for Scientists and Engineers 4/e by Knight)

Chapter 2: Kinematics in One Dimension

Help Resources: Now on Moodle

Drop in help in the Physics Help Room in Hasbrouck 115

Physics F	Help Room				
Help available fo	or any of the following cou	rses from ANY GRADUA	TE TA: Physics 100, 115,	118, 131, 132, 151, 152,	281, Astro 105
However, if you	are looking for specific he	lp, the course for which e	ach TA is affiliated is liste	ed	
UTA - Undergrad	duate TA				
	Monday	Tuesday	Wednesday	Thursday	Friday
9am - 10am	Eric Lyons 131 UTA	Matthew Maroun 131	Jhih-Ying Su 132 Lab	Matthew Maroun 131	
		Chengzhi Wu Li 131	Eric Lyons 131 UTA	Matthew Harris 131	
10am - 11am	Kripa Anand 132 UTA	Chengzhi Wu Li 131	Nate Hall 131	Chetan Yadav 132 Lab	Kripa Anand 132 UTA
	Dyson Kennedy 131, Astro 105	Jay Sandesara 132, 286	Dyson Kennedy 131, Astro 105	Meghana Vishwanath 152	Y Qiu 131
11am - Noon	Justin Fagoni 132 Lecture	Steven Zhang 131	Justin Fagoni 132 Lecture	Ed van Bruggen 152	Kaifei Ning 132 Lecture
Tram - Noon	Kaifei Ning 132 Lecture	Vahini Nareddy 152	Meridth Stone 131	Sanil Raut 131	Y Qiu 131
Noon - 1pm	Justin Fagoni 132 Lecture	Steven Zhang 131	Justin Fagoni 132 Lecture	Nadav Benhamou Goldfajn 131	Kaifei Ning 132 Lecture
	Kaifei Ning 132 Lecture	Chenan Wei 132 Lab	Mingyuan Wang 152	Shrohan Mohapatra 151	Y Qiu 131
1pm - 2pm	Isobel Smith 132 UTA	Baji Jadhav Astro 105	Isobel Smith 132 UTA	Nadav Benhamou Goldfajn 131	Leyna Bajaj 131
	Chetan Yadav 132 Lab	Chenan Wei 132 Lab	Emily Knowlton 132 UTA	Hannah Peltz Smalley 131	Chetan Yadav 132 Lab

ī.		J. 0 0.01. I.			
		Monday	Tuesday	Wednesday	Thursday
2	pm - 3pm	Sili Wu 151	Baji Jadhav Astro 105	Meridth Stone 131	Makayla Vessella 131 Lab, 281
_	piii - Spiii	Zhiyu Yang 151	Bart Szymanowski 131	Ajit Kumar 131	
•	pm - 4pm	Sili Wu 151	Sierra Gomez 132 UTA		Sierra Gomez 132
3	pm - 4pm	Jay Sandesara 132 Lab, 286	Roshan Trivedi 131		Liam Yanulis 131
	n	Sierra Gomez 132 UTA	Emily Knowlton 132 UTA	CLOSED FOR DEPARTMENTAL	Ed van Bruggen 152
4	4pm - 5pm	Mingyuan Wang 152	Isobel Smith 132 UTA	COLLOQUIUM	Shani Perera 131
_	6	Sierra Gomez 132 UTA	Isobel Smith 132 UTA		Roshan Trivedi 131
5	5pm - 6pm	Ishan Rana 131	Shane Keiser 131		Vivek Chakrabhavi 131
	7	Sofia Corba 131	Shane Keiser 131	Aditya Kulkarni 131	Vivek Chakrabhavi 131
0	pm - 7pm	Abhishek Kumar 132 Lab	Harith Rathnayaka 151	Abhishek Kumar 132	Harith Rathnayaka 151
7	nm	Aidan Morehouse 132 UTA	Nicholas Pittman 131, 132 Lab	Nicholas Yazbek 131	Zhiyu Yang 151
7pm - 8pm		Xiansheng Cai 132 Lab	Mayank Vaghela 132 Lab	Kerry O'Brian 115, 131	Tejas Patwardhan 152
0		Aidan Morehouse 132 UTA	Nicholas Pittman 131, 132 Lab	Kerry O'Brian 115, 131	Jhih-Ying Su 115
ŏ	8pm - 9pm	Likhitha Marlapati 152	Kerry O'Brian 115, 131		Yating Zhang 131

Position vs. time plots (not every plot is legitimate!)

Which of these graphs might represent the motion of a real object (e.g. a bike)?

1D motion non-constant velocity **>** Instantaneous

velocity

Constant velocity motion

- Straight line motion diagram
- Velocity equals slope of line

More generally

- Velocity changes with time
- Instantaneous velocity is slope of line tangent to curve
- Can compute this slope by taking limit of average velocity over shorter and shorter time intervals
- Velocity is the **derivative** of the position curve

1D motion with non-constant velocity

Before "instantaneous velocity" return to... Average velocity vs. Average speed

The relationship becomes more important when you can back up...

Cover more distance, without necessarily getting anywhere

Is the velocity zero anywhere? How can you tell?

Where is the velocity the greatest? How can you tell?

Average Velocity: based on...

Displacement = **Net distance** traveled

Position of the Car at Various Times				
Position	t(s)	$x(\mathbf{m})$		
A	0	30		
B	10	52		
©	20	38		
(D)	30	0		
E	40	-37		
F	50	-53		

$$v_{avg} = \frac{\Delta x}{\Delta t} = \frac{x(t_f) - x(t_i)}{t_f - t_i} = \frac{-53m - 30\frac{\Delta t}{m}}{50s - 0s} = -1.7m/s$$

Magnitude is 1.7 m/s; direction is -x

Average Speed:

Based on total distance travelled

Position of the Car at Various Times			
Position	$t(\mathbf{s})$	<i>x</i> (m)	
A	0	30	
B	10	52	
©	20	38	
(D)	30	0	
E	40	-37	
(F)	50	-53	

$$s_{avg} = \frac{\text{total distance}}{\text{total time}} = \frac{22m + 105m}{50s} = \frac{\Delta t}{2.5m/s}$$

No direction and no sign associated with speed. Never negative, or smaller than |v|.

Dealing with complex 1D motion without calculus

Specify trip with large number N of locations at different times

Object is at positions

 $x_0, x_1, x_2, ... x_N$ $t_0, t_1, t_2, ... t_N$ at times

 Δx_{ν} = **Displacement** on kth part of trip Can be positive or negative

$$\Delta x_k = x_k - x_{k-1}$$

$$|\Delta x_k|$$
 = Distance traveled on kth part of trip

Average speed
$$s_{avg} = \frac{\sum_{k=1}^{N} |\Delta x_k|}{t_N - t_0}$$

Total **distance** over total time

 (x_1,t_1)

Average velocity
$$v_{avg} = \frac{\sum_{k=1}^{N} \Delta x_k}{t_N - t_0}$$

Total displacement over total time

Example

Jane Austen travels

80 miles east in one hour
70 miles west in ½ hour
50 miles east in ½ hour

$$t_0 = 0$$
 $x_0 = 0$
 $t_1 = 1$ $x_1 = +80$
 $t_2 = 1.5$ $x_2 = +10$

$$t_3 = 2.0$$
 $x_3 = +60$

Remember:

Distance: always positive

Displacement: can be positive or

negative

$$s_{avg} = \frac{80 + 70 + 50}{2} = 100 \, mph$$

$$v_{avg} = \frac{80 - 70 + 50}{2} = 30 \, mph$$

sum of **distances** over total time

sum of displacements over total time

Instantaneous Velocity

- What if we want to precisely know the velocity at some point in time, not the average over a finite time interval?
- Compute the instantaneous velocity v(t) at time t by taking the limit of average velocity over shorter and shorter time intervals
- Instantaneous velocity is slope of tangent line to curve
- Equals **first derivative** of curve- its rate of change vs t.

Compute v_{avg} from t_0 to t_0 +T

Take limit as T goes to 0

$$v(t_0) = \lim_{T \to 0} \frac{x(t_0 + T) - x(t_0)}{T}$$

Graph \rightarrow Gives slope of tangent to curve at t_0

Calculus → This is definition of derivative of curve at t₀

$$v(t_0) = \left. \frac{dx}{dt} \right|_{t_0}$$

A note on Calculus in this course

- Math 131 (Calculus I) is a co-requisite for this course.
 - However, we will be using some concepts in 151 before they are introduced in 131.
- I will teach a few basics on how to work with derivatives and integrals without going deeply into the details.
 - Think of these as "Tools" or "Special Moves" you can use to solve Physics problems.
 - Some problems will appear on the exam that require you to use these tools. I will keep their number, and their complexity, limited.
- Please make use of office hours and tutoring resources if you need help with this material.

Calculus 'Special Move' #1: The Derivative

The derivative of a polynomial function $f(x) = cx^n$ is given by...

$$\frac{d}{dx}f(x) = \frac{d}{dx}(cx^n) = ncx^{n-1}$$

Example: Suppose we have a position s=2t²

What is the velocity $v_s = ds/dt$?

Per above,

$$\frac{d}{dt}(2t^2)=4t$$

This works for any polynomial function.
Why is this the answer? You'll find out in Math 131.
As far as we're concerned...

Some Rules for Using Derivatives

Derivative of a constant function c is 0.

$$\frac{d}{dx}c = \frac{d}{dx}(cx^0) = 0$$

Derivative of a sum is the sum of derivatives.

$$\frac{d}{dx}(f(x) + g(x)) = \frac{df}{dx} + \frac{dg}{dx}$$

Example: What is the derivative of $x(t)=t^2+4t+16$?

$$\frac{dx}{dt} = \frac{d}{dt}(t^2) + \frac{d}{dt}(4t) + \frac{d}{dt}(16)$$

$$= 2t + 4$$

Position versus time

- 1) Which plots show constant velocity motion?
- 2) How do you tell?
- 3) How would you compute average velocity?
- 4) Which plot shows the largest magnitude of average velocity?

Make plot of velocity vs time

Finding Position from Velocity

We can find velocity from x(t) by taking a derivative. Can we infer x(t) from v(t)? The answer is yes, but we will again need to use calculus.

In equations...

$$v(t) = \frac{dx}{dt} \quad \longleftarrow \quad x(t) = x_0 + \int_0^t v(t')dt'$$

What does this mean?

Displacement (change in position) is area under velocity curve

Finding Position from Velocity

$$v(t) = \frac{dx}{dt} \quad \longleftrightarrow \quad x(t) = x_0 + \int_0^t v(t')dt'$$

Easy to see for constant velocity

Velocity curve is horizontal line

"Area" under velocity curve between 0 and t

Area under curve is simply (height)(length) = v t

$$x(t) = x_0 + \int_0^t v(t')dt' = x_0 + vt$$

What are the units of "height"? What are the units of "length"? What are the units of the product call here "area"?

Example

Start with graph of velocity vs time

Object accelerates from rest to velocity 4 m/s in 4 s, then moves with constant velocity

Assuming object starts at x=0, what are positions at t =3s and t=7s?

Change in position is area under velocity graph

t = 3s area of triangle = $\frac{1}{2}$ (base)(height) slope 1 height = base = 3

$$x (3s) = (1/2) x (3 s) x (3 m/s) = 4.5 m$$

If you are not familiar or comfortable yet with integrals

$$\int_{0}^{t} v(t)dt = \int_{0}^{t} at \ dt = \frac{at^{2}}{2}$$

Example

Start with graph of velocity vs time

Object accelerates from rest to velocity 4 m/s, then moves with constant velocity

Assuming object starts at x=0, what are positions at t =3s and t=7s?

Change in position is area under velocity graph

$$t = 7s$$
 area of triangle + area of rectangle

$$x (7s) = (1/2) x (4s) x (4 m/s) + 3(s) x (4 m/s) = 8 +12 = 20 m$$
triangle

rectangle

What if I want to find the area of a curve that doesn't have simple geometry?

- Integral (area under curve) is approximated by by adding up area of rectangles
- Each rectangle acts like constant velocity motion over short time interval
- Exact integral is sum of infinite number of rectangles in limit $\Delta t \to 0$

Width of rectangle

Height of rectangle

Calculus 'Special Move' #2: The Integral

The integral of a polynomial function $f(x) = cx^n$ is given by...

$$\int_{x_{i}}^{x_{f}} f(x)dx = \int_{x_{i}}^{x_{f}} cx^{n} dx = \frac{cx^{n+1}}{n+1} \begin{vmatrix} x_{f} \\ x_{i} \end{vmatrix}$$

$$= \frac{cx_{f}^{n+1}}{n+1} - \frac{cx_{i}^{n+1}}{n+1}$$
(For $n \neq -1$)

Example: Suppose we have a velocity $v(t)=2t^2$

Starting at t=0, what is the displacement Δx traveled in 3 seconds?

$$\Delta x = \int_0^3 f(t)dt = \int_0^3 2t^2dt = \frac{2t^3}{3} \left| \frac{3s}{0} \right| = \frac{2(3)^3}{3}m - 0m = 18m$$

We now know how to relate position and velocity using calculus.

...how does acceleration fit into this?

Instantaneous Acceleration

Recall...
$$v(t) = \lim_{T \to 0} \frac{x(t+T) - x(t)}{T}$$

Velocity is rate of change of position with time $\qquad \qquad v = \frac{dx}{dt}$

Acceleration is defined the same way in terms of velocity

$$a(t) = \lim_{T \to 0} \frac{v(t+T) - v(t)}{T}$$

Acceleration is rate of change of velocity with time $a = \frac{dv}{dt} \qquad (=\frac{d^2x}{dt^2})$

Acceleration gives **slope of tangent to v(t) curve** at time t i.e. acceleration is the **derivative** of velocity (which is, in turn the **derivative** of position) In other words, acceleration is the **second derivative** of position.

25

More practice with Instantaneous velocity and acceleration:

You won't usually use limits to calculate derivatives outside of math class

Use known results for derivatives of functions:

Use known results for derivatives of functions:
$$\frac{d}{dt}t^0 = 0$$
 "Calculus Special Move #1"
$$\frac{d}{dt}t^n = nt^{n-1}$$

$$\frac{d}{dt}t^2 = 2t$$

$$x(t) = x_0 + v_0 t$$
 $\longrightarrow v = \frac{dx}{dt} = v_0$ Constant velocity motion

$$x(t) = x_0 + v_0 t + \frac{1}{2} a t^2$$
 \longrightarrow $v = \frac{dx}{dt} = v_0 + a t$

$$a(t) = \frac{dv}{dt} = a$$

Motion with constant acceleration

Acceleration

Recall...

Constant velocity

$$x = x_0 + vt$$

Position at t=0

Similarly...

Constant acceleration

Velocity at t=0

Check...

$$a = \frac{dv}{dt} = \frac{d}{dt}(v_0 + at) = a \quad \checkmark$$

Constant acceleration basics...

Slope **a** positive

Velocity v increasing with time

Slope a negative

- When v>0, it is slowing down.
- When v<0, it is actually speeding up, but in the opposite direction

Motion with constant acceleration

$$x(t) = x_0 + v_0 t + \frac{1}{2} a t^2$$
 $\qquad \qquad v = \frac{dx}{dt} = v_0 + a t$

Example

Object starts at position $x_0 = 3$ m, moving with initial velocity $v_0 = -20$ m/s and accelerates at $a = 8 \text{ m/s}^2$

What are its position and velocity at t = 4s?

$$x(t) = 3 - 20t + 4t^2$$

$$x(t) = 3 - 20t + 4t^2$$

$$v(t) = -20 + 8t$$

$$v(4) = -20 + 8 \cdot 4 = 12 \, m/s$$

80

slope of tangent line is instantaneous velocity at t=4s

Summary

Position x(t)	Velocity v(t)	Acceleration a(t)	Description
$x(t) = x_0$	v(t) = 0	a(t) = 0	Constant position
$x(t) = x_0 + v_0 t$	$v(t) = v_0$	a(t) = 0	Constant velocity
$x(t) = x_0 + v_0 t + (1/2) a_0 t^2$	$v(t) = v_0 + a_0 t$	$a(t) = a_0$	Constant acceleration

$$a(t) = \frac{dv}{dt} \qquad v(t) = v_0 + \int_{t_0}^t a(t') dt'$$

$$v(t) = v_0 + a(t - t_0)$$

$$v(t) = \frac{dx}{dt} \qquad (t) = x_0 + \int_{t_0}^t v(t') \ dt'$$

$$x(t) = x_0 + v_0(t - t_0) + a(t - t_0)^2 / 2$$