Homework 3

Juliette Franqueville

October 20, 2022

(1) (a) Show that $E(y|\theta) = \xi(\theta) = \partial \psi(\theta)/\partial \theta$

Find the MGF of y:

$$E(e^{ty}) = \int e^{ty} P(y|\theta) dy$$

$$= \int h(y) e^{ty+\theta^T y - \psi(\theta)} dy$$

$$= \int h(y) e^{(t+\theta)^T y - \psi(\theta) + \psi(t+\theta) - \psi(\theta)} dy$$

$$= e^{\psi(t+\theta) - \psi(\theta)} \int h(y) e^{(t+\theta)^T y - \psi(t+\theta)} dy$$

$$= e^{\psi(t+\theta) - \psi(\theta)}$$

$$\frac{\partial M_y(t)}{\partial t}|_{t=0} = \psi'(\theta)$$

(1) (b) Show that $E(\xi(\theta)) = y_0/\lambda + c$ and $E(\xi(\theta)|y) = (y_0 + n\bar{y})/(\lambda + n) + c$

$$E(\psi'(\theta)) = \int P(\theta)\psi'(\theta)d\theta$$

$$= \int h(y_0, \lambda) \exp[\theta^T y_0 - \lambda \psi(\theta)] \psi'(\theta)d\theta$$

$$= \int h(y_0, \lambda) \exp[\theta^T y_0 - \lambda \psi(\theta)] \frac{1}{\lambda} [y_0 - (y_0 - \lambda \psi'(\theta))] d\theta$$

$$= 1/\lambda \int y_0 h(y_0, \lambda) \exp[\theta^T y_0 - \lambda \psi(\theta)] - [y_0 - \lambda \psi'(\theta)] \exp[\theta^T y_0 - \lambda \psi(\theta)] d\theta$$

$$= y_0/\lambda - 1/\lambda \int h(y_0, \lambda) [y_0 - \lambda \psi'(\theta)] \exp[\theta^T y_0 - \lambda \psi(\theta)] d\theta$$

$$= y_0/\lambda - 1/\lambda \int h(y_0, \lambda) \frac{\partial}{\partial \theta} \exp[\theta^T y_0 - \lambda \psi(\theta)] d\theta$$

$$= y_0/\lambda - 1/\lambda \frac{\partial}{\partial \theta} \int h(y_0, \lambda) \exp[\theta^T y_0 - \lambda \psi(\theta)] d\theta$$

$$= y_0/\lambda$$

We've shown that for the prior $P(\theta) = h(y_0, \lambda) \exp(\theta^T y_0 - \lambda \psi(\theta))$, $E(\xi(\theta)) = \frac{y_0}{\lambda}$. We know that the posterior for θ has form $P(\theta|y, \lambda, y_0) = h(y_0, \lambda) \exp(\theta^T (y_0 + n\bar{y}) - (\lambda + n)\psi(\theta))$. So as

before, $E(\xi(\theta)|y)$ will be the ratio of the two coefficients, $\frac{y_0+n\bar{y}}{\lambda+n}$. Also, I could not find where that c integration constant came from since we are integrating from $-\infty$ to $+\infty$. I spoke to Dr Sarkar about it and he was not sure either, so I did not include it.

(2) Show that binomial and negative binomial distributions belong to exponential families

For the binomial distribution:

$$P(y) = \binom{n}{y} p^y (1-p)^{n-y}$$

$$= \binom{n}{y} \exp\{\log[p^y (1-p)^{n-y}]\}$$

$$= \binom{n}{y} \exp\{y \log p + (n-y) \log(1-p)\}$$

$$= \binom{n}{y} \exp\{y \log \frac{p}{1-p} + n \log(1-p)\}$$

We have

$$\theta = \log \frac{p}{1-p}$$

$$\exp \theta = \frac{p}{1-p}$$

$$\exp \theta (1-p) = p$$

$$\exp \theta (1-p) = p$$

$$\exp \theta - p \exp \theta = p$$

$$\exp p = p(1 + \exp \theta)$$

$$p = \exp \frac{\theta}{1 + \exp \theta}$$

$$1 - p = 1 - \exp \frac{\theta}{1 + \exp \theta}$$

$$= \frac{1}{1 + \exp \theta}$$

So:

$$P(y) = \binom{n}{y} \exp\left\{y \log \frac{p}{1-p} + n \log(1-p)\right\}$$
$$= \binom{n}{y} \exp\left\{y \log \frac{p}{1-p} - n \log[1 + \exp\theta]\right\}$$

So we have $h(y) = \binom{n}{y}$, $\theta = \log \frac{p}{1-p}$ and $\psi(\theta) = n\log[1 + \exp\theta]$ For the negative binomial distribution:

$$P(y) = {y+r-1 \choose y} (1-p)^r p^y$$

$$= {y+r-1 \choose y} \exp\{\log(1-p)^r p^y\}$$

$$= {y+r-1 \choose y} \exp\{r\log(1-p) + y\log p\}$$

We have:

$$\theta = \log p$$
$$p = \exp \theta$$
$$1 - p = 1 - \exp \theta$$

So we have
$$h(y) = {y+r-1 \choose y}, \ \theta = \log p \text{ and } \psi(\theta) = -r\log(1-\exp\theta)$$

- (3) Let $y \sim Bin(10, \theta)$. Also, let the observed value of y = 3. The prior is a mixture of Betas
- (a) Find the posterior

Dropping constants, we have:

$$P(\theta|) \propto P(y|\theta)P(\theta)$$

$$\propto \theta^{3}(1-\theta)^{7} \left[\frac{\theta^{9}(1-\theta)^{19}}{B(10,20)} + \frac{\theta^{19}(1-\theta)^{9}}{B(20,10)} \right]$$

$$\propto \left[\frac{\theta^{12}(1-\theta)^{26}}{B(10,20)} + \frac{\theta^{22}(1-\theta)^{16}}{B(20,10)} \right]$$

$$\propto \left[\frac{B(13,27)}{B(13,27)} \frac{\theta^{12}(1-\theta)^{26}}{B(10,20)} + \frac{B(23,17)}{B(23,17)} \frac{\theta^{22}(1-\theta)^{16}}{B(20,10)} \right]$$

$$\propto \left[B(13,27) \frac{Beta(13,27)}{B(10,20)} + B(23, \frac{Beta(23,17)}{B(20,10)} \right]$$

$$\propto \pi_{1}Beta(13,27) + \pi_{2}Beta(23,17)$$

With
$$\pi_1 = \frac{\frac{B(13,27)}{B(10,20)}}{\frac{B(13,27)}{B(10,20)} + \frac{B(23,17)}{B(20,10)}}$$
 and $\pi_2 = \frac{\frac{B(23,17)}{B(20,10)}}{\frac{B(13,27)}{B(10,20)} + \frac{B(23,17)}{B(20,10)}}$ since we need $\pi_1 + \pi_2 = 1$.

- (b) Plot the posterior superimposed on the prior
- (c) Compute a 90% posterior credible interval for θ

To obtain the prior and posteriors, we sum the pdfs of the relevant betas. To find the 90% posterior credible interval, we find the value of θ corresponding to the location where the area under the pdf curve for the posterior is .05 and .95.

Figure 1: Prior / Posterior and CI

(4) Prove that Jeffreys' priors satisfy the invariance principle: starting with $p(\theta) \propto [\det I(\theta)]^{1/2}$, show that the induced prior on $\psi = g(\theta)$, where g is one-one, is $p(\psi) \propto [\det I(\psi)]^{1/2}$

Using the chain rule:

$$I(\psi) = -E \left(\frac{\partial^2 \mathcal{L}(\psi)}{\partial \psi \partial \psi^T} \right)$$

$$= -E \left(\frac{\partial^2 \mathcal{L}(\psi)}{\partial \theta \partial \theta^T} \left[\frac{\partial \theta}{\partial \psi} \right]^2 + \frac{\partial \mathcal{L}(\psi)}{\partial \theta} \frac{\partial^2 \theta}{\partial \psi \psi \theta^T} \right)$$

$$= -E \left(\frac{\partial^2 \mathcal{L}(\psi)}{\partial \theta \partial \theta^T} \right) \left[\frac{\partial \theta}{\partial \psi} \right]^2 - E \left(\frac{\partial \mathcal{L}(\psi)}{\partial \theta} \right) \frac{\partial^2 \psi}{\partial \theta \partial \theta^T}$$

 $E\left(\frac{\partial \mathcal{L}(\psi)}{\partial \theta}\right)$ is the score and its expectation is 0:

$$E\left(\frac{\partial \mathcal{L}(\psi)}{\partial \theta}\right) = \int_{-\infty}^{\infty} f(y|\psi) \frac{\partial \mathcal{L}(\psi)}{\partial \theta} dy$$

$$= \int_{-\infty}^{\infty} f(y|\psi) \frac{\partial \log f(y|\psi)}{\partial \theta} dy$$

$$= \int_{-\infty}^{\infty} f(y|\psi) \frac{1}{f(y|\psi)} \frac{\partial f(y|\psi)}{\partial \theta} dy$$

$$= \frac{\partial}{\partial \theta} \int_{-\infty}^{\infty} f(y|\psi) dy$$

$$= \frac{\partial}{\partial \theta} (1) = 0$$

So we have:

$$I(\psi) = -E \left(\frac{\partial^2 \mathcal{L}(\psi)}{\partial \theta \partial \theta^T} \right) \left[\frac{\partial \theta}{\partial \psi} \right]^2$$
$$= I(\theta) \left[\frac{\partial \theta}{\partial \psi} \right]^2$$

Then,

$$P(\psi) \propto P(\theta) \left| \det \frac{\partial \psi}{\partial \theta} \right|^{-1}$$

$$\propto \det[I(\theta)]^{1/2} \left| \det \frac{\partial \psi}{\partial \theta} \right|^{-1}$$

$$\propto \det \left[I(\psi) \left[\frac{\partial \psi}{\partial \theta} \right]^{2} \right]^{1/2} \left| \det \frac{\partial \psi}{\partial \theta} \right|^{-1}$$

$$\propto \det[I(\psi)]^{1/2}$$

(5) For the Poisson likelihood model $y_1 \dots y_n \sim Poisson(\lambda)$, Jeffrey's (improper) prior was derived in class. Compute the corresponding posterior. Is it proper?

Jeffreys' prior for the Poisson distribution is $\lambda \propto \lambda^{-1/2}$ We have:

$$P(\lambda|y) \propto P(y|\lambda)P(\lambda)$$

$$\propto \prod \lambda^{y} \exp\{-\lambda\}\lambda^{-1/2}$$

$$\propto \lambda^{1/2+\sum y_{i}-1} \exp\{-\lambda n\}$$

$$= Ga\left(1/2 + \sum y_{i}, n\right)$$

Since the posterior is a Gamma distribution, it is proper (integrates to 1) as long as n > 0.

(6) Consider the likelihood model $y_1, \ldots, y_n \sim N(\mu, \sigma)$, μ known. (a) Compute the Jeffreys' prior for σ^2

Note that we already derived the Fisher information matrix for the normal distribution in the previous homework.

$$P(\sigma^2) \propto |I(\sigma^2)|^{1/2}$$
$$\propto [n/(2\sigma^4)]^{1/2}$$
$$\propto 1/\sigma^2$$

(b) Compute also the corresponding posterior

$$P(\sigma^{2}|\mu, y) \propto P(\mu, y|\sigma^{2})P(\sigma^{2})$$

$$\propto \sigma^{-n} \exp\left\{\frac{\sum (x - \mu)^{2}}{\sigma^{2}}\right\} \frac{1}{\sigma^{2}}$$

$$\propto \sigma^{-n-2} \exp\left\{\frac{\sum (x - \mu)^{2}}{\sigma^{2}}\right\}$$

$$\propto \sigma^{2\frac{1}{2}(-n-2)} \exp\left\{\frac{\sum (x - \mu)^{2}}{\sigma^{2}}\right\}$$

$$= IG\left(n/2, \frac{1}{2}\sum (x - \mu)^{2}\right)$$

(c) Draw a random sample of size 20 from a Normal(0, 1) distribution. Using these sampled values as data points and assuming the variance to now be unknown, plot the posterior superimposed on the general shape of the prior. (d) Compute a 90% centered quantile based credible interval for σ^2 . (e) Compute also a 90% HPD interval for σ^2 .

The plot below shows the prior and posterior and the CIs. Note that the HPD interval was found by iteratively looking for the shortest 90% interval.

Figure 2: Prior / Posterior and CIs