Chapitre 14

Fonctions trigonométriques

I. Parité et périodicité : généralités

1) <u>Définition et interprétations graphiques</u>

Définition:

Un ensemble de \mathbb{R} (par exemple un intervalle) est dit **centré en 0** (ou symétrique par rapport à 0) si, pour tout nombre de l'ensemble, son opposé appartient à l'ensemble.

Définitions:

- Une fonction f, définie sur un ensemble de définition \mathcal{D}_f centré en 0, est **paire** si pour tout réel x de \mathcal{D}_f , on a f(-x) = f(x).
- Une fonction f, définie sur un ensemble de définition \mathcal{D}_f centré en 0, est **impaire** si pour tout réel x de \mathcal{D}_f , on a f(-x) = -f(x).
- Soit f une fonction définie sur un intervalle \mathcal{D}_f .

La fonction f est périodique de période T s'il existe un nombre réel strictement positif T tel que, pour tout nombre réel x de \mathscr{D}_f , le nombre x+T appartient à \mathscr{D}_f et f(x+T)=f(x)

Propriété:

La courbe représentative d'une fonction paire est symétrique par rapport à l'axe des ordonnées.

Propriété:

La courbe représentative d'une fonction **impaire** est **symétrique** par rapport à l'**origine** du repère.

Propriété:

La courbe représentative d'une fonction périodique de période T est **invariante par translation** de vecteur T_i .

2) Restriction du domaine d'étude

Propriétés:

- Si f est une fonction paire ou impaire, alors il suffit de l'étudier sur $\mathbb{R}^+ \cap \mathcal{D}_f$ ou $\mathbb{R}^- \cap \mathcal{D}_f$.
- Si f est une fonction périodique de période T, alors il suffit de l'étudier sur n'importe quel intervalle d'amplitude T inclus dans \mathcal{D}_f .

Corollaire:

Si une fonction f définie sur \mathbb{R} est paire (ou impaire) et périodique de période T alors il suffit de l'étudier sur $\left[0, \frac{T}{2}\right]$.

II. Fonctions sinus et cosinus

1) <u>Définitions</u>

Définitions:

Soit M le point image d'un réel x sur le cercle trigonométrique dans un repère orthonormé direct $(O; \vec{i}, \vec{j})$.

On a ainsi $M(\cos(x); \sin(x))$

- La fonction $x \mapsto \sin(x)$ définie sur \mathbb{R} est appelée fonction sinus et notée sin.
- La fonction $x \mapsto \cos(x)$ définie sur \mathbb{R} est appelée fonction cosinus et notée cos.

Remarque:

Pour tout x réel:

- $-1 \leq \cos x \leq 1$
- $-1 \le \sin x \le 1$
- $\cos^2 x + \sin^2 x = 1$

2) Propriétés

Propriétés:

- La fonction sinus est impaire et 2π -périodique.
- La **fonction cosinus** est paire et 2π -périodique.

III. Dérivabilité

1) Dérivabilité de la fonction sinus

Propriété:

La fonction sinus est dérivable en 0.

Lemmes:

• Montrons que la fonction sinus est continue en x=0.

Pour $0 < x < \frac{\pi}{2}$ on a:

 $\sin x \le x \le \tan x$ soit

$$0 \le \sin x \le x \le \frac{\sin x}{\cos x}$$

soit $0 \le \sin x \le x$.

Par le théorème des gendarmes,

$$\lim_{x\to 0^+}\sin x=0$$

La fonction sinus étant impaire, on a également :

$$\lim_{x \to 0} \sin x = 0$$

$$\mathcal{A}_{\text{OAM}} \leq \mathcal{A}_{\text{secteurOAM}} \leq \mathcal{A}_{\text{OAT}}$$

Justification:

•
$$\mathcal{A}_{OHM} = \frac{1 \times \sin x}{2}$$

•
$$\mathcal{A}_{\text{secteurOAM}} = \frac{x}{2}$$

•
$$\mathcal{A}_{OAT} = \frac{1 \times \tan x}{2}$$

Ainsi on obtient:

$$\frac{1 \times \sin x}{2} \le \frac{x}{2} \le \frac{1 \times \tan x}{2}$$

4

D'où $\lim_{x\to 0} \sin x = 0$. De plus $\sin 0 = 0$.

On en déduit que la fonction sinus est continue en x=0.

• Montrons maintenant que la fonction sinus est dérivable en x=0, de nombre dérivé 1.

Pour $0 < x < \frac{\pi}{2}$ on a $\sin x \le x \le \tan x$ soit

$$0 \le \sin x \le x \le \frac{\sin x}{\cos x} \iff 0 < \frac{\cos x}{\sin x} \le \frac{1}{x} \le \frac{1}{\sin x} \iff 0 < \cos x \le \frac{\sin x}{x} \le 1$$

Pour tout
$$x \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$$
, $\cos x = \sqrt{1 - \sin^2 x}$.

Comme
$$\lim_{x\to 0} \sin x = 0$$
, on a donc $\lim_{x\to 0} \cos x = 1$.

Par le théorème des gendarmes, on obtient $\lim_{x\to 0^+} \frac{\sin x}{x} = 1$.

La fonction sinus est impaire, on a donc $\lim_{x\to 0^-} \frac{\sin x}{x} = 1$.

Ainsi
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Démonstration :

Pour tout nombre réel $h \neq 0$, $\frac{\sin h - \sin 0}{h} = \frac{\sin h}{h}$.

Or $\lim_{h\to 0} \frac{\sin h}{h} = 1$ donc la fonction sinus est dérivable en 0 et $\sin'(0) = 1$.

Propriété:

La fonction sinus est dérivable sur \mathbb{R} et pour tout nombre réel x,

$$\sin'(x) = \cos(x)$$

Démonstration:

a désigne un nombre réel. Étudier la dérivabilité en a de la fonction sinus, c'est étudier la limite en a de la fonction a b $\frac{\sin(a+h)-\sin a}{h}$.

Or pour tout nombre réel $h \neq 0$,

$$\frac{\sin{(a+h)} - \sin{a}}{h} = \frac{\sin{a}\cos{h} + \sin{h}\cos{a} - \sin{a}}{h} = \frac{\sin{h}\cos{a} - (1-\cos{h})\sin{a}}{h}.$$

Or $\cos(2x) = 1 - 2\sin^2 x$, donc $1 - \cos(2x) = 2\sin^2 x$ donc avec 2x = h: $1 - \cos h = 2\sin^2 \frac{h}{2}$.

 $\sin(2x) = 2\sin x \cos x$, donc avec 2x = h: $\sin h = 2\sin\frac{h}{2}\cos\frac{h}{2}$

D'où
$$\frac{\sin(a+h)-\sin a}{h} = \frac{2\sin\frac{h}{2}\cos\frac{h}{2}\cos a - 2\sin^2\frac{h}{2}\sin a}{h} = \frac{2\sin\frac{h}{2}\left[\cos\frac{h}{2}\cos a - \sin\frac{h}{2}\sin a\right]}{h}$$

soit
$$\frac{\sin(a+h) - \sin a}{h} = \frac{\sin\frac{h}{2}}{\frac{h}{2}}\cos\left(a + \frac{h}{2}\right)$$
.

Or
$$\lim_{h \to 0} \cos\left(a + \frac{h}{2}\right) = \cos a$$
 et $\lim_{h \to 0} \frac{\sin\frac{h}{2}}{\frac{h}{2}} = 1$ donc $\lim_{h \to 0} \frac{\sin(a+h) - \sin a}{h} = \cos a$.

Ainsi la fonction sinus est dérivable sur $\mathbb R$ et pour tout nombre réel x , $\sin'(x) = \cos x$.

2) <u>Dérivabilité de la fonction cosinus</u>

Propriété:

La fonction cosinus est dérivable sur \mathbb{R} et pour tout nombre réel x,

$$\cos'(x) = -\sin x$$

<u>Démonstration:</u>

On sait que, pour tout nombre réel x, $\cos x = \sin\left(x + \frac{\pi}{2}\right)$.

La fonction sin est dérivable sur \mathbb{R} , donc la fonction $f: x \mapsto \sin\left(x + \frac{\pi}{2}\right)$ est dérivable sur \mathbb{R} et : pour tout nombre réel x, $f'(x) = 1 \times \sin'\left(x + \frac{\pi}{2}\right) = \cos\left(x + \frac{\pi}{2}\right) = -\sin x$ donc $\cos'(x) = -\sin x$.

IV. Étude de la fonction sinus

1) Étude sur l'intervalle $[0;\pi]$

Pour tout nombre réel x, $\sin'(x) = \cos x$.

Or $\cos(x) \ge 0$ sur $\left[0; \frac{\pi}{2}\right]$ et $\cos x \le 0$ sur $\left[\frac{\pi}{2}; \pi\right]$.

Donc, la fonction sinus est croissante sur $\left[0;\frac{\pi}{2}\right]$ et décroissante sur $\left[\frac{\pi}{2};\pi\right]$.

Tableau de variation sur $[0;\pi]$

X	0		$\frac{\pi}{2}$		π
$\sin'(x)$	1	+	0	_	-1
$\sin(x)$	0	1	1		0

2) Courbe représentative sur $[-\pi;\pi]$

Propriété:

La courbe représentative $\mathscr C$ de la fonction sinus est **symétrique par rapport à l'origine** O du repère.

<u>Démonstration</u>:

Pour tout nombre réel x, on note $M(x; \sin x)$ et $M'(-x; \sin(-x))$ deux points de \mathscr{C} .

Or:

$$\frac{x + (-x)}{2} = 0$$
 et $\frac{\sin x + \sin(-x)}{2} = \frac{\sin x - \sin x}{2} = 0$

Donc, le milieu de [MM'] est l'origine O du repère et M' est le symétrique de M par rapport à O.

3) Courbe représentative de la fonction sinus

Propriété:

Dans un repère $(O; \vec{i}, \vec{j})$, la courbe représentative \mathscr{C} de la fonction sinus est **invariante par toute** translation de vecteur $k \, 2\pi \, \vec{i}$ où $k \in \mathbb{Z}$.

<u>Démonstration</u>:

Pour tout x de \mathbb{R} et tout k de \mathbb{Z} , on note $M(x;\sin x)$ et $M'(x+2k\pi,\sin(x+2k\pi))$ deux points de \mathscr{C} .

Alors $\overrightarrow{MM}' \begin{pmatrix} k \times 2\pi \\ 0 \end{pmatrix}$, donc $\overrightarrow{MM}' = k \, 2\pi \, \vec{i}$ et M' est l'image de M par la translation de vecteur $k \, 2\pi \, \vec{i}$.

La courbe de la fonction sinus est appelée **une sinusoïde**.

V. Étude de la fonction cosinus

1) Étude sur l'intervalle $[0;\pi]$

Pour tout nombre réel x, $\cos'(x) = -\sin x$.

Or $\sin(x) \ge 0$ sur $[0;\pi]$ donc $\cos'(x) \le 0$ sur $[0;\pi]$.

Donc, la fonction cosinus est décroissante sur $\left[0\,;\pi\right]$.

Tableau de variation sur $[0;\pi]$

x	0		$\frac{\pi}{2}$		π
$\cos'(x)$	0	_	-1	_	0
$\cos(x)$	1		0		-1

2) Courbe représentative sur $[-\pi;\pi]$

Propriété:

La courbe représentative Γ de la fonction cosinus est symétrique par rapport à l'axe des ordonnées du repère.

<u>Démonstration</u>:

Pour tout nombre réel x, on note M et M' les points de Γ d'abscisses respectives x et -x.

L'ordonnée de M est $\cos x$ et l'ordonnée de M ' est $\cos(-x) = \cos x$.

Donc M et M' sont symétriques par rapport à l'axe des ordonnées.

3) Courbe représentative de la fonction cosinus

On sait que, pour tout nombre réel x, $\cos(x+2\pi)=\cos(x)$.

La fonction cosinus est périodique de période 2π .

On en déduit alors que $\cos(x+k 2\pi) = \cos x$ pour tout $k \in \mathbb{Z}$.

Propriété:

Dans un repère $(0; \vec{i}, \vec{j})$, la courbe représentative \mathscr{C} de la fonction cosinus est **invariante par** toute translation de vecteur $k \, 2\pi \, \vec{i}$ où $k \in \mathbb{Z}$.

Remarques:

- Pour tout $x \in \mathbb{R}$, $\sin\left(x + \frac{\pi}{2}\right) = \cos(x)$ donc la courbe représentative \mathscr{C} de la fonction sinus est l'image de la courbe représentative Γ de la fonction cosinus par la translation de vecteur $\frac{\pi}{2}\vec{i}$.
- La courbe de la fonction cosinus est aussi appelée une sinusoïde.

VI. Résolution d'équations et d'inéquations

1) <u>Valeurs remarquables</u>

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

2) Résolution d'équations

Propriétés:

Soient a et x deux nombres réels.

- $\cos(x) = \cos(a) \Leftrightarrow x = a + 2k\pi \text{ ou } x = -a + 2k\pi, k \in \mathbb{Z}.$
- $\sin(x) = \sin(a) \Leftrightarrow x = a + 2k\pi \text{ ou } x = \pi a + 2k\pi, k \in \mathbb{Z}.$

Remarques:

• En s'appuyant sur le cercle trigonométrique :

- En s'appuyant sur la courbe
 - \circ $\cos(x) = \cos(a)$

Exemple:

Soit l'équation $\cos(x) = \frac{\sqrt{2}}{2}$ que l'on veut résoudre dans \mathbb{R} .

$$\cos(x) = \frac{\sqrt{2}}{2} \Leftrightarrow \cos(x) = \cos\left(\frac{\pi}{4}\right) \Leftrightarrow x = \frac{\pi}{4} + 2k\pi \text{ ou } x = -\frac{\pi}{4} + 2k\pi, k \in \mathbb{Z}.$$

Cette équation a pour solution l'ensemble $S = \left\{ -\frac{\pi}{4} + 2k\pi, k \in \mathbb{Z} \right\} \cup \left\{ \frac{\pi}{4} + 2k\pi, k \in \mathbb{Z} \right\}.$

3) Résolution d'inéquations

Propriétés:

Soient a et x deux nombres réels.

- $\cos(x) \le \cos(a) \Leftrightarrow a + 2k\pi \le x \le 2\pi a + 2k\pi, k \in \mathbb{Z}$.
- $\sin(x) \le \sin(a) \Leftrightarrow -\pi a + 2k\pi \le x \le a + 2k\pi, k \in \mathbb{Z}$.

Remarques:

• En s'appuyant sur le cercle trigonométrique :

- En s'appuyant sur la courbe
 - \circ $\cos(x) \leq \cos(a)$

