#### **ESERCIZIO 1**

Si vuole tramettere una PDU di livello 2 avente i seguenti H bit intestazione, un campo utile U costituito dai bit **1101** e un campo CRC alla fine della PDU:



Si considerino i seguenti due casi:

- a) CRC calcolato attraverso uso di codice polinomiale G(x)
- b) CRC calcolato attraverso meccanismo di Internet Checksum modulo 15

#### Sia:

| M=0, 1, 2, 3   | M=4, 5, 6    | 7, 8, 9        |
|----------------|--------------|----------------|
| H=1101         | H=1001       | H=1011         |
| $G(x)=x^3+x+1$ | $G(x)=x^2+1$ | $G(x)=x^4+x+1$ |

Si riportino nei due casi a) e b) i valori dei tre campi della trama nel disegno di cui sopra e l'efficienza (bit utili su bit totali, due cifre decimali) per trasmettere la SDU.

### **SOLUZIONE** punto a)

Il polinomio  $P(x)^*x^z$  andra' diviso per il polinomio generatore G(x) e trovato il resto da inserire come CRC negli ultimi z bit della (2)-PDU.

Nei tra casi si ha:

#### Caso M=0, 1, 2, 3



## Quindi:



Con efficienza E=4/11=0,36

## Caso M=4, 5, 6

| 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 0 | 1 |   |   |   |   |   |   |   |   |   |   |
| 0 | 0 | 1 | 1 | 1 |   |   |   |   |   |   |   |   |
|   |   | 1 | 0 | 1 |   |   |   |   |   |   |   |   |
|   |   | 0 | 1 | 0 | 1 |   |   |   |   |   |   |   |
|   |   |   | 1 | 0 | 1 |   |   |   |   |   |   |   |
|   |   |   | 0 | 0 | 0 | 0 | 1 | 0 | 0 |   |   |   |
|   |   |   |   |   |   |   | 1 | 0 | 1 |   |   |   |
|   |   |   |   |   |   |   | 0 | 0 | 1 |   |   |   |

## Quindi:



Con efficienza E=4/10=0,40

## Caso M=7, 8, 9



Quindi:



Con efficienza E=4/12=0,33

## **SOLUZIONE** punto b)

In questo caso si dovranno sommare modulo 15 le prime due parole di 4 bit della (2)-PDU e ricavare una terza parola di 4 bit da inserire nel CRC come complemento a 1 della somma di cui sopra.

Caso M=0, 1, 2, 3

| 15 |   |   |   |    |     |
|----|---|---|---|----|-----|
| 1  | 1 | 0 | 1 | 13 | +   |
| 1  | 1 | 0 | 1 | 13 | =   |
|    |   |   |   | 26 | 11  |
|    |   |   |   | 4  | -11 |
| 0  | 1 | 0 | 0 |    |     |

## Quindi:



Con efficienza E=4/11=0,33

Caso M=4, 5, 6

| 1 | 0 | 0 | 1 | 9  |    |
|---|---|---|---|----|----|
| 1 | 1 | 0 | 1 | 13 |    |
|   |   |   |   | 22 | 7  |
| 1 | 0 | 0 | 0 | 8  | -7 |

### Quindi:



Con efficienza E=4/10=0,33

# Caso M=7, 8, 9

| 1 | 0 | 1 | 1 | 11 |    |   |
|---|---|---|---|----|----|---|
| 1 | 1 | 0 | 1 | 13 |    |   |
|   |   |   |   | 24 |    | 9 |
| 0 | 1 | 1 | 0 | 6  | -9 |   |

# Quindi:





Con efficienza E=4/12=0,33

#### **ESERCIZIO 2**

Si consideri un protocollo di controllo d'errore di tipo Go-BACK-N, in cui un terminale A opera con finestra in emissione  $W_S$  trasmettendo X trame (PDU) verso un terminale B.

Si consideri che una trama viene trasmessa in un tempo  $t_f=M^*T$ , che il ritardo di propagazione sull'interfaccia sia  $t_p=M^*T$  e che i riscontri emessi da B impieghino un tempo di trasmissione uguale a  $t_r=M^*T/2$ .

Si assuma che B inoltri riscontri verso A ad ogni trama ricevuta da A.

Si assuma inoltre che i temporizzatori per ogni trama siano abbastanza lunghi da non scadere mai durante la trasmissione delle X trame e che siano trascurabili tutti i tempi di elaborazione in A e B.

Assumendo che il secondo riscontro (quello che chiede la trama #3) arrivi in A **errato** e che T= 10 ms si chiede:

- a) di identificare il mimino valore di W<sub>S</sub> tale per cui non si ha interruzione nella trasmissione delle X trame (senza soluzione di continuita')
- b) calcolare il tempo necessario per la trasmissione delle X trame (fino all'arrivo del riscontro della trama X) nel caso in cui si adotti la dimensione di finestra calcolata nel punto a);

Calcolare infine il tempo di trasmissione delle X trame nel caso STOP&WAIT in **assenza** di errori sulle trame e sui riscontri-

| M=0, 1, 2, 3 | M=4, 5, 6 | 7, 8, 9 |
|--------------|-----------|---------|
| X=8          | X=9       | X=10    |

### **SOLUZIONE** punto a)

Il tempo di ciclo in questo caso e':

ma a causa dell'errore sulla seconda trama la finestra Ws deve essere tale per cui non si interrompa la trasmissione a seguito di questo risconto mancante.

E' necessario quindi aver una dimensione di finestra tale per cui arrivi il riscontro cumulativo per le trame 2 e 3 (cioè il riscontro con Rnext=4) quindi

$$Ws \ge [(MT+MT+3,5*MT)/MT] = 6$$

In realtà, arrivando correttamente il primo riscontro, la finestra si aggiorna come da disegno (linee tratteggiate) e quindi anche un valore di W<sub>s</sub>\*=5 e' sufficiente ad avere una trasmissione senza soluzione di continuità.



### **SOLUZIONE** punto b)

Il tempo necessario per la trasmissione delle X trame (fino all'arrivo del riscontro della trama X) nel caso in cui si adotti la dimensione di finestra calcolata nel punto precedente sara' quindi dato dal:

- tempo per la trasmissione delle X trame= X\*M\*T
- tempo di arrivo dell'ultimo riscontro=2\*M\*T+M\*T/2

Quindi nel caso Go-Back-N= X\*(MT)+5/2MT

## **SOLUZIONE** punto c)

Il tempo necessario per la trasmissione delle X trame (fino all'arrivo del riscontro della trama X) nel caso in cui si adotti un meccanismo STOP&WAIT e pari a X volte il tempo di ciclo nello S\$W, Tcs&W = MT+2MT+MT/2

$$S&W=X*(MT+2MT+MT/2)$$

I tempi riportati in *ms* nei due casi sono riportati nella seguente tabella:

|                  | 0   | 1   | 2   | 3   | 4    | 5    | 6    | 7    | 8    | 9    |
|------------------|-----|-----|-----|-----|------|------|------|------|------|------|
| GBN=X*(MT)+5/2MT | 105 | 105 | 210 | 315 | 460  | 575  | 690  | 875  | 1000 | 1125 |
| S&W=X*(MT+5/2MT) | 280 | 280 | 560 | 840 | 1260 | 1575 | 1890 | 2450 | 2800 | 3150 |