

CE803 – Human-Machine Interaction

Part II - Lecture 2

Brain-Computer Interfaces

Francisco Sepulveda E-mail: fsepulv

BCIs

Supplementary reading:

- F. Sepulveda (2011) 'Brain-actuated control of robot navigation'. Chp. 9, in A. Barrera (Ed.), Advances in Robot Navigation, Intech Open Access, ISBN 979-953-307-007-9.
- J-R. Wolpaw, N. Birbaumer, D.-J. McFarland, G. Pfurtscheller and T.-M. Vaughan, "Brain-computer interfaces for communication and control", *Clin. Neurophysiol.* vol. 113(6), pp. 767-91, Jun 2002.

(pdf files available in the CE803 web page)

F. Sepulveda - CSEE - Essex University

Part II - Lec. 2 - Slide 2

CE 803 - HMI - Spring 2012

Overview

Brain-Computer Interfaces

Overview

Electroencephalography (EEG):

First Hans Berger

First EEG recorded - H. Berger, c. 1928

F. Sepulveda - CSEE - Essex University

W. Gray Walter (1910-1977)

(1873-1941)

-02 (ha --- - la --la (halaba --la --la --la --

Walter's Toposcope 1936-57

Part II - Lec. 2 - Slide 4

CE 803 - HMI - Spring 2012

Overview

Into the Brain

Wilder Penfield (1891-1976)

Penfield's experiments on living humans

Pictures from: http://www.pbs.org/wgbh/aso/tryit/brain/cortexhistory2.html

F. Sepulveda - CSEE - Essex University

Part II - Lec. 2 - Slide 5

CE 803 - HMI - Spring 2012

Overview

Cortical Organization

Overview Cortical Organization

Overview Cortical Organization

F. Sepulveda - CSEE - Essex University Part II - Lec. 2 - Slide 7 CE 803 - HMI - Spring 2012 F. Sepulveda - CSEE - Essex University Part II - Lec. 2 - Slide 8 CE 803 - HMI - Spring 2012

Overview

• Donoghue's group (Nature 442, 164-171, 2006)

F. Sepulveda - CSEE - Essex University

Part II - Lec. 2 - Slide 9

CE 803 - HMI - Spring 2012

CE 803 - HMI - Spring 2012

Measuring Brain Activity

Invasive:

- Implanted systems → risk, cost, durability problems
- Positron emission, PET-Scan → radiation, cost, slow response

Non-invasive:

- Magneto-encephalography, MEG → large equipment, cost
- Functional MRI → large equipment, cost, slow response
- Near-Infrared → slow response, long term effects unknown
- Electroencephalogram, EEG → limited resolution, but
 - low cost
 - fast response (i.e., short latency events can be seen)
 - portable

F. Sepulveda - CSEE - Essex University

Part II - Lec. 2 - Slide 10

CE 803 - HMI - Spring 2012

Electroencephalography (EEG) motor imagery example

Sources of Electrical Activity in the EEG Signal

- EEG measures the current flow during synaptic excitation of the dendrites of pyramidal neurons in the cerebral cortex
- EEG is a result of joint activity of millions of underlying neurons activated together
- The amplitude of the EEG signal is proportional to the number of synchronously activated neurons
- The EEG signal is "blurred" version of a real activity, as signal passes through several layers of nonneural tissue (meninges, fluid, skull, skin)

also, see last week's lecture on the generation of electrical signals in humans

Basic EEG Rhythms

- Gama (30-80 Hz)
 - Perception and consciousness, REM sleep
- Beta, two types I and II (14-30 Hz)
 - Normal less regular activity present in awake when eyes are opened or closed; Type 1 disappears during intense mental activity; Type 2 is elicited by mental activity
- Alpha (8-13 Hz)
 - Very rhythmic; normal activity in quiet and restful state; larger when eyes are closed then when opened
- Theta (4-7 Hz)
 - Infrequent, mostly in adolescents, in adults during stress
- Delta (< 4 Hz)
 - Deep sleep, infancy, brain disorders

and the second second second second second second

F. Sepulveda - CSEE - Essex University

Part II - Lec. 2 - Slide 13

CE 803 - HMI - Spring 2012

500 ms 600 ms 700 ms 800 ms

Time-Space Visualisation of ERP (event related potentials)

300 ms

400 ms

200 ms

ERP of imaginary right hand movement

F. Sepulveda - CSEE - Essex University

100 ms

Part II - Lec. 2 - Slide 14

CE 803 - HMI - Spring 2012

EEG Recording 1/3

- Electrodes placed according to 10-20 electrode placement system
- Based on the relationship between the location of an electrode and the underlying brain area
- Frontal F, Parietal P, Occipital O, Temporal T, Central C
- Left-odd numbers, right-even numbers, z midline
- Smaller numbers closer to the midline position

CE 803 - HMI - Spring 2012

EEG Recording 2/3

- Small voltage fluctuation (few tens of μV) between selected pair of electrodes
- Reference: common reference average reference, bipolar
- Distance measured between
 - Nasion and inion
 - Left and right ear
- Typical sampling frequency 128 or 256 samples/s

Common reference in this case is electrode Cz

EEG Recording 3/3

- EEG recording: from 1-2 to 256 electrodes
- High resolution EEG
 - > 64 electrodes:
 - distance between electrodes < 2.5 cm
- Electrode material Ag-AgCl
- Additional recordings
 - Electro-oculogram EOC
 - Electromyogram EMG
 - Electrocardiogram ECG

F. Sepulveda - CSEE - Essex University

Part II - Lec. 2 - Slide 17

CE 803 - HMI - Spring 2012

CE 803 - HMI - Spring 2012

Biosemi System for EEG Recording

Amplifier-A/D converter-PC

F. Sepulveda - CSEE - Essex University

F. Sepulveda - CSEE - Essex University

Part II - Lec. 2 - Slide 18

Sources of Noise in EEG Recordings

- Transient activity
 - High-frequency instrumentation activity
 - Muscle activity (mainly frontal and temporal)
 - Movements of head and body
 - Electrocardiographic activity (main cardiac dipole producing R wave is oriented right-left; posterioranterior)
 - Pulse-wave artefacts from blood pulse waves
- Instrumentation artefacts
 - 50 or 60 Hz background noise
 - Low frequency drift (electrode polarisation and motion)

EEG Pre-Processing

Note: the 'signal' below is often subtracted from another common reference location

Part II - Lec. 2 - Slide 19

Part II - Lec. 2 - Slide 20

CE 803 - HMI - Spring 2012

64-Channel Biosemi EEG Set Up

Further EEG Processing:

Laplacean:

- surrounding it.
- control areas are near each other in the cortex.

Overall referencing effects:

- removal of common noise
- removal of 50Hz intereference
- BUT, may lose wanted information (e.g., the P300 wave may disappear) if the wrong type is used.

Further EEG Processing: 'Referencing'

- Removal of common environmental noise:
 - subtraction done sample by sample in time domain
- Reference outside the scalp (ear or mastoid):
 - one of the ear lobes or mastoid locations (or the average between the left and right ones) is used the reference.
 - most popular approach.
 - useful to study waves that are over several, but not all, channels (e.g., the P300 wave).
- Scalp average reference:
 - used to investigate the difference between one channel and the rest of the scalp.
 - useful for rough localization of function (e.g., movement imagination vs. other tasks)

F. Sepulveda - CSEE - Essex University

Part II - Lec. 2 - Slide 22

Statistical FFG Problems

CE 803 - HMI - Spring 2012

'Referencing'

F. Sepulveda - CSEE - Essex University

CMS and

referencing

F. Sepulveda - CSEE - Essex University

DRL:

circuit

• subtraction of a channel from the average of the ones

 very useful for maximizing spatial differences, e.g., to distinguish between imagination of movement for different limbs if their

• EEG distributions shift very quickly Non-stationary

Stochastic signals

shifting frequency components

• Single values are not reliable

Need statistical distributions

Very large class overlap:

Need classification with <1s of data

Part II - Lec. 2 - Slide 23 CE 803 - HMI - Spring 2012

CE 803 - HMI - Spring 2012

Statistical EEG Problems

• Often need multi-feature classification

- Solutions:
 - Better intelligent classification algorithms
 - Better/more visual/auditory/etc. stimuli design
 - Try other mental states

F. Sepulveda - CSEE - Essex University

Part II - Lec. 2 - Slide 25

CE 803 - HMI - Spring 2012

Estimating Class Separation

- Davies-Boulding Index or similar
 - class overlap
 - smaller is better
- Statistical significance

F. Sepulveda - CSEE - Essex University Part II - Lec. 2 - Slide 26

CF 803 - HMI - Spring 2012

Traditional BCI Approaches

- 9 P300
- Mu rhythm control
- Steady state visual evoked potentials (SSVEP)
- Error potential
- Slow cortical potentials
- Motor Imagery
- Various other tasks

P300

F. Sepulveda - CSEE - Essex University

Part II - Lec. 2 - Slide 27

CE 803 - HMI - Spring 2012

F. Sepulveda - CSEE - Essex University

Part II - Lec. 2 - Slide 28

CE 803 - HMI - Spring 2012

P300

Recorded in many areas, but predominantly in Cz and just behind it

Salvaris & Sepulveda, IEEE-EMBC 2007.

F. Sepulveda - CSEE - Essex University

Part II - Lec. 2 - Slide 29

CE 803 - HMI - Spring 2012

Mu Rhythm

- Alpha (8-12Hz) over the motor areas
- Participants trained to control Mu rhythm level
- Left-right control of scenery

Pineda et al. (2002). IEEE-TNSRE, 11(2): 181-184

F. Sepulveda - CSEE - Essex University

Part II - Lec. 2 - Slide 30

CE 803 - HMI - Spring 2012

CE 803 - HMI - Spring 2012

SSVEP steady state visual evoked potential

Cheng et al. (2002), IEEE-TBME 49(10):1181-1186.

Motor Imagery

- Mental rehearsal of movement
- Different limbs easier to distinguish: location
- Band power (0.5Hz to 75Hz)

VIDEO

F. Sepulveda - CSEE - Essex University

Part II - Lec. 2 - Slide 31

CE 803 - HMI - Spring 2012

F. Sepulveda - CSEE - Essex University

Part II - Lec. 2 - Slide 32

Motor Imagery Same Limb

- Right hand
- Stimulus sequence:
 - Visual clue (wrist movement type):
 - Pronation
 - Supination
 - Flexion
 - Extension
 - Sound clue
- Gabor transform features
- Up to 90% correct, 70% average

Sepulveda et al. 2004, 2005, 2006

F. Sepulveda - CSEE - Essex University

F. Sepulveda - CSEE - Essex University

Part II - Lec. 2 - Slide 33

CE 803 - HMI - Spring 2012

Mental Tasks

TASK	DESCRIPTION
1	Auditory Recall
2	Navigation
3	Sensorimotor Attention, Left hand
4	Sensorimotor Attention, Right hand
5	Calculation
6	Imaginary Movement, Left hand
7	Imaginary Movement, Right hand

Sepulveda, Dyson, Gan (2007). IEEE-EMBC07.

The Asynchronous Problem

- (Pseudo) spontaneous
- Onset detection done separately?
- Or, continuous classification
- Our choices:
 - mental task repetition during allowed period
 - aiming at continuous classification

F. Sepulveda - CSEE - Essex University

Part II - Lec. 2 - Slide 34

CE 803 - HMI - Spring 2012

Various Mental Tasks

Auditory recall:

 'Select a familiar tune and listen to it in your mind. Do not mouth lyrics or make movements related to the tune'

Navigation:

 'Select a place familiar to you. When prompted, imagine yourself in this location. Try to visualize the objects around yourself and move slowly within the environment'

Sensorimotor attention:

- `Focus your attention on your left thumb. Attempt to concentrate on the physical feelings you receive from it without actually attempting to move it'.
- Done for left and for right thumbs

Part II - Lec. 2 - Slide 35 CE 803 - HMI - Spring 2012 F. Sepulveda - CSEE - Essex University Part II - Lec. 2 - Slide 36 CE 803 - HMI - Spring 2012

Various Mental Tasks

Calculation:

• 'Select either addition or subtraction, and an integer between 1 and 10. When prompted, pick a random number and perform the operation selected using the integer. Repeat this with the result of the operation'

Imaginary movement:

- 'Imagine extending your left wrist. Rather than visualizing the hand moving, try to concentrate on the perceptions associated without actually performing the movement'
- Done for left and for right hands

F. Sepulveda - CSEE - Essex University

Part II - Lec. 2 - Slide 37

CE 803 - HMI - Spring 2012

Study Guide

- Know and understand the various stages of EEG
- Know the various filter types and order used
- Understand why signal referencing is used
- Know the basic statistical properties of EEG signal
- Know about the most common BCI approaches

Mental Tasks

Class Separation

Classification

Task Combination	Incidence
1 5	4
1 3	3
1 7	2
2 7	2
2 6	2
3 5	2
2 3	2

Task Combination	Incidence
1 5	4
3 5	4
2 3	3
5 6	3
2 5	2
2 6	2
4 5	2

TASK	DESCRIPTION
1	Auditory Recall
2	Navigation
3	Sensorimotor Attention, Left hand
4	Sensorimotor Attention, Right hand
5	Calculation
6	Imaginary Movement, Left hand
7	Imaginary Movement, Right hand

F. Sepulveda - CSEE - Essex University

Part II - Lec. 2 - Slide 38

CE 803 - HMI - Spring 2012

From this week's material, you should:

- signal processing and why there are necessary.
- Understand the three main types of referencing
- that lead to the need for intelligent algorithms