CSOR W4246 9-28 HW1 Ian Johnson 1. a. f, (2n) is O(f, (n)) => (f(x)=x) $f_i(n) = n$ $f_i(2n) = 2n$ $f_1(2n)$ is $O(f_1(n))$ $f_i(zn) \leq c f_i(n)$ $C = 3 \implies f_1(2n) < 3f_1(n)$ 2n < 3n1.6. $f(x) = 2^{x}$ f (n) = 2" $f(2n)=2^{2n}$ 22n = C 2n? => no 2. a. a = 4 = 2 = 6 = 100 = 1000 $a = 6^{k} \rightarrow \Theta(n^{2} \log n)$ O (h lays a) if Q (utlogn) if 6. a=8 b=2 K=3 a=6 x - 20(N3logn) $\Theta(u^k)$ if C. a=11 6=4 K=Z alsk -> O(n2) d. a=7 6=3 k=1 a>6" → O(nlog37) ≈ O(n1.77)

3. T(n) = T(3n) + T(2n) + T(3n) + (3n) + (3n) + (3n) + (a=3 6=3 k=0 a76k > O(n log 3/23) = O(42.7) Mergesort is Θ (ulog u), which is faster. No, I would not use this algorithm, unless thre use space constants, and two absortum was afte to sort in-place. (5) operations return u return fix(n-1) + fix (n-2) to get in firms of t(0): $= 2^{n/2} + (2^{n/2} - 1) \subset$

4. (30 points) In the table below, indicate the relationship between functions f and g for each pair (f,g) by writing yes or no in each box. For example, if f=O(g) then write yes in the first box.

		.) .							
	f	g	0	o	Ω	ω	? •		
	$10\log n$	$\log^3 n$	Yes Ao	Yes No	NO Yes	cN	No		
n (log Zalogn) an log n nlog Zanlogn	$n\log{(2n)}$	$n \log n$	yes Ao	ио	Yes	ИО	425 40	KO = Z nolog	(zn) = Zt(0jn)
logN, N2 Nlogn >0	$\sqrt{\log n}$	$> \log \log n$	10	NO	Yes	Yes	No	*	
109 M > 0/*	$10n^2 + \log n$	$n^2 + 1 \log^3 n$	no	NO	Yes	no	ИО		
	$\sqrt{n} + \log n$		Y25	Yes	No	ИО	10		
	$n^2 2^n$	3^n	Yes	Yes	NO	no	NO		
	$n^{1/3}$	$(\log n)^2$	no	10	rus	Yes	NO		
	$n\log n$	$\frac{n^2}{\log n}$	Yes	Yes	no	no	ho		
*	n! <	$<$ n^n	yes	723	no	no	10		
	$\log n!$	$\log n^n$	yes	no	Yes	no	yes		
	og (n!) ? log (n!) ?								
	100 (4.1)								

$$\log(n!) = \log(n) + \log(n-1) + ... + \log(2) + \log(1)$$

$$\log(n) = \log(n) + \log(n) + ... + \log(n) + \log(n)$$