Дискретные структуры

осень 2013

Александр Дайняк

www.dainiak.com

Гиперграфы

 Γ ипеграф — это пара (V, E), где

- V конечное множество вершин,
- E набор непустых подмножеств V (гипер-)рёбра.

Т.е. гиперграф в общем случае — это просто набор/семейство/совокупность непустых подмножеств конечного множества.

Гиперграфы

Гиперграф h-однородный, если $\forall e \in E \ |e| = h$. Так что граф — это 2-однородный гиперграф.

Пример 3-однородного гиперграфа:

Аналоги теоретико-графовых понятий

Полный гиперграф — тот, в котором есть все возможные (в данном контексте) рёбра.

Например, полный h-однородный гиперграф — тот, в котором $E = \{V' \subseteq V \mid |V'| = h\}$

Независимое множество — это такое $A \subseteq V$, что $∄e \in E$: $e \subseteq A$.

Правильная вершинная раскраска— такая, при которой совокупности вершин одного цвета образуют независимые множества.

Аналоги теоретико-графовых понятий

Цепь в гиперграфе (V,E) — это последовательность вершин и рёбер

$$v_1 e_1 v_2 e_2 \dots e_s v_{s+1}$$

такая, что

- $\forall i(v_i, v_{i+1} \in e_i)$,
- ullet все v_i различны,
- все e_i различны (не как множества, а как элементы E).

Цикл определяется аналогично, с той разницей, что v_1 и v_{s+1} совпадают.

Аналоги теоретико-графовых понятий

Подгиперграф гиперграфа (V, E), порождённый множеством вершин V' — это пара (V', E'), где $E' \coloneqq \{e \cap V' \mid e \in E \text{ и } e \cap V' \neq \emptyset\}$

Аналоги теоретико-графовых понятий

Область связности гиперграфа (V, E) — это такое множество $V' \subseteq V$, что

- $\forall u, v \in V'$ найдётся цепь из u в v,
- к V' нельзя добавить ни одной вершины, так, чтобы предыдущее свойство сохранилось.

Компонента связности— это подгиперграф, порождённый областью связности.

Матрица инцидентности

Матрица инцидентности гиперграфа (V,E) — это матрица $(a_{v,e})_{v\in V,e\in E}\in\{0,1\}^{|V|\times |E|}$, где

$$a_{v,e}\coloneqq egin{cases} 1$$
, если v и e инцидентны 0 , иначе

Пример:

Покрытия

Если вершина v гиперграфа входит в ребро e, то говорим, что v покрывает e или протыкает e.

Вершинное покрытие гиперграфа — это такое множество вершин $A \subseteq V$, что

$$\forall e \in E \ e \cap A \neq \emptyset$$

Вершинное покрытие называется ещё

- протыкающим множеством,
- трансверсалью,
- системой общих представителей (с.о.п.)

для семейства множеств E.

Покрытия в терминах матриц

На языке матриц инцидентности, строка покрывает/протыкает столбец, если у них на пересечении стоит 1.

Покрытие матрицы — это такое подмножество строк, что каждый столбец покрывается одной из этих строк.

Пример:

Покрытия в терминах матриц

Число трансверсальности гиперграфа — это минимальный размер покрытия.

Формально, если
$$H=(V,E)$$
, то $\tau(H)\coloneqq\min\{|A|\ |\ \forall e\in E\ A\cap e\neq\emptyset\}$

Будем также писать $\tau(E)$.

Аналогично, для любой булевой матрицы M без нулевых столбцов через $\tau(M)$ будем обозначать мощность минимального покрытия (называемую также *глубиной* матрицы).

Системы общих представителей

Пример прикладной задачи.

Есть набор экспертов $V \coloneqq \{v_1, \dots, v_n\}$. Каждый эксперт, может быть, разбирается не только в одной области.

Пусть $e_1, ..., e_m \subseteq V$ — множества экспертов, разбирающихся в 1-й, ..., m-й области знания.

Как набрать команду экспертов для решения задачи, требующей владения всеми указанными областями знания?

Жадный алгоритм построения с.о.п.

Для гиперграфа $H \coloneqq (V, E)$ рассмотрим алгоритм:

- 1. $S := \emptyset$
- 2. $E_{\text{notCovered}} := \{e \in E \mid e \cap S = \emptyset\}$
- 3. if $|E_{\text{notCovered}}| > 0$:
- 4. $v^* \coloneqq \underset{v \in V}{\operatorname{argmax}} \# \{ e \in E_{\operatorname{notCovered}} \mid e \ni v \}$
- 5. $S \coloneqq S \cup \{v^*\}$
- 6. goto 2.
- 7. *S* искомая с.о.п.

То есть на каждом шаге добавляем в S любую из вершин, покрывающих наибольшее число из ещё не покрытых рёбер.

Жадный алгоритм построения покрытия матрицы

Для матрицы M рассмотрим алгоритм:

- 1. $S := \emptyset$
- 2. C := столбцы, непокрытые строками из S
- 3. if |C| > 0:
- 4. $r^* \coloneqq \operatorname*{argmax} \#\{ \operatorname{столбцы} \operatorname{из} \mathit{C}, \operatorname{покрываемыe} r \}$ $r \operatorname{строка} \mathit{M}$
- 5. $S \coloneqq S \cup \{r^*\}$
- 6. goto 2.
- 7. S искомое покрытие матрицы

То есть на каждом шаге добавляем в S любую из строк, покрывающих наибольшее число из ещё не покрытых столбцов.

Теорема о мощности жадного покрытия

Теорема.

Пусть в каждом столбце матрицы $M \in \{0,1\}^{n \times m}$ не менее h единиц, и при этом mh > n.

Тогда мощность покрытия, построенного ж.а.,

$$\leq 1 + \frac{n}{h} + \frac{n}{h} \ln \frac{mh}{n}$$

Следствие.

Для таких матриц $\tau(M) \leq 1 + \frac{n}{h} + \frac{n}{h} \ln \frac{mh}{n}$.

Пусть уже сделано k шагов алгоритма, в результате чего |S|=k и остаются непокрытыми $c_k m$ столбцов, где $0 < c_k \le 1$.

Рассмотрим матрицу M_k , образованную строками из \bar{S} и непокрытыми столбцами.

Имеем $M_k \in \{0,1\}^{(n-k)\times (c_k m)}$.

В каждом столбце M_k не менее h единиц, а значит, всего в M_k не менее $c_k m h$ единиц.

Значит, в M_k есть строка, в которой $\geq \frac{c_k mh}{n-k}$ единиц.

Пусть уже сделано k шагов алгоритма, в результате чего |S|=k и остаются непокрытыми $c_k m$ столбцов, где $0 < c_k \le 1$.

Есть строка, в которой $\geq \frac{c_k mh}{n-k}$ единиц.

Следовательно, ж.а. выберет строку, покрывающую не менее $\frac{c_k mh}{n-k}$ новых столбцов.

После (k+1)-го шага непокрытыми останутся

$$\leq c_k m - \frac{c_k mh}{n-k} = c_k \left(1 - \frac{h}{n-k}\right) \cdot m$$

столбцов, то есть

$$c_{k+1} \le c_k \left(1 - \frac{h}{n-k}\right) \le c_k \left(1 - \frac{h}{n}\right)$$

Пусть после k шагов алгоритма остаются непокрытыми $c_k m$ столбцов.

Имеем
$$c_{k+1} \le c_k (1 - \frac{h}{n})$$
 и $c_0 = 1$.

Отсюда
$$c_k \leq \left(1 - \frac{h}{n}\right)^k$$
.

Пусть ж.а. выполнил $k'\coloneqq\left\lceil\frac{n}{h}\ln\frac{mh}{n}\right\rceil$ шагов.

Имеем

$$c_{k'} \le \left(1 - \frac{h}{n}\right)^{\frac{n}{h}\ln\frac{mh}{n}} = e^{\frac{n}{h}\cdot\ln\frac{mh}{n}\cdot\ln\left(1 - \frac{h}{n}\right)}$$

После
$$k'\coloneqq \left\lceil\frac{n}{h}\ln\frac{mh}{n}\right\rceil$$
 шагов, с учётом неравенства $\ln(1-x)<-x$, имеем
$$c_{k'}\le e^{\frac{n}{h}\cdot\ln\frac{mh}{n}\cdot\ln\left(1-\frac{h}{n}\right)}< e^{-\ln\frac{mh}{n}}=\frac{n}{mh}$$

После k^\prime -го шага остаются непокрытыми

$$c_{k'} \cdot m < \frac{n}{h}$$

столбцов. Даже если на покрытие каждого из них потребуется по одному шагу, общее число шагов алгоритма будет

$$\leq k' + \frac{n}{h} \leq 1 + \frac{n}{h} + \frac{n}{h} \ln \frac{mh}{n}$$

Труднопокрываемые матрицы

Теорема о мощности «жадного» покрытия.

Пусть в каждом столбце матрицы $M \in \{0,1\}^{n \times m}$ не менее h единиц, и при этом mh > n. Тогда у M мощность «жадного» покрытия $\leq 1 + \frac{n}{h} + \frac{n}{h} \ln \frac{mh}{n}$.

Теорема о существовании «труднопокрываемых» матриц (явная конструкция).

Пусть $m, n, h \in \mathbb{N}$ таковы, что $2 \le \ln \frac{mh}{n} \le h \le \frac{n}{8}$.

Тогда найдётся матрица $M \in \{0,1\}^{n \times m}$, каждый столбец которой содержит $\geq h$ единиц, и мощность минимального покрытия которой $\geq \frac{1}{16} \cdot \frac{n}{h} \ln \frac{mh}{n}$.

Рассмотрим матрицу $M' \in \{0,1\}^{2a \times \binom{2a}{a}}$, состоящую из всех столбцов высоты 2a, в каждом из которых ровно a единиц.

Имеем $\tau(M') = a + 1$.

Положим

$$M'' \coloneqq \begin{pmatrix} M' \\ \vdots \\ M' \end{pmatrix} \in \{0,1\}^{2ab \times \binom{2a}{a}}$$

Получаем $\tau(M'') = \tau(M') = (a+1)$, в каждом столбце M'' ровно ab единиц.

Для матрицы
$$M'' \in \{0,1\}^{2ab imes \binom{2a}{a}}$$
 имеем $\tau(M'') = a+1$

Рассмотрим матрицу

$$M''' := \begin{pmatrix} M'' & 0 & \dots & 0 \\ 0 & M'' & \dots & 0 \\ \vdots & & \ddots & \\ 0 & \dots & 0 & M'' \end{pmatrix} \in \{0,1\}^{2abc \times \binom{2a}{a}c}$$

Имеем $\tau(M''') = c \cdot \tau(M'') = (a+1)c$, и в каждом столбце M''' ровно ab единиц.

Итак, для любых $a,b,c \in \mathbb{N}$ существует матрица $M''' \in \{0,1\}^{2abc \times \binom{2a}{a}c}$, в каждом столбце которой ab единиц, и для которой $\tau(M''') = (a+1)c$.

По условию, $2 \le \ln \frac{mh}{n} \le h \le \frac{n}{8}$.

Пусть
$$a\coloneqq \left\lfloor\frac{1}{2}\ln\frac{mh}{n}\right\rfloor$$
, $b\coloneqq \left\lfloor\frac{2h}{a}\right\rfloor$ и $c\coloneqq \left\lfloor\frac{n}{2ab}\right\rfloor$. Тогда в M'''

- $\#\text{строк} = 2ab \cdot \left\lfloor \frac{n}{2ab} \right\rfloor \leq n$
- #столбцов $< 4^a \cdot c \le 2^{\ln \frac{mh}{n}} \cdot \frac{n}{2a \cdot \lfloor 2h/a \rfloor} < \frac{mh}{n} \cdot \frac{n}{2a \cdot h/a} < m$
- #"1" в столбце = $a \cdot \left\lfloor \frac{2h}{a} \right\rfloor \ge a \cdot \frac{h}{a} \ge h$
- $\tau(M''') \ge \frac{1}{2} \ln \frac{mh}{n} \cdot \left\lfloor \frac{n}{2ab} \right\rfloor \ge \frac{1}{2} \ln \frac{mh}{n} \cdot \left\lfloor \frac{n}{4h} \right\rfloor \ge \frac{1}{16} \cdot \frac{n}{h} \ln \frac{mh}{n}$

Итак, при $2 \le \ln \frac{mh}{n} \le h \le \frac{n}{8}$ найдётся матрица M''', такая, что

- #строк $\leq n$, #столбцов $\leq m$
- #"1" в столбце ≥ *h*
- $\tau(M''') \ge \frac{1}{16} \cdot \frac{n}{h} \ln \frac{mh}{n}$

Дополним M''' нулевыми строками, а затем единичными столбцами, до матрицы размера $n \times m$.

В каждом столбце полученной матрицы M не менее h единиц, и $\tau(M) = \tau(M''') \ge \frac{1}{16} \cdot \frac{n}{h} \ln \frac{mh}{n}$, что и требовалось.

Соотношение мощностей жадного и оптимального покрытий

Теорема (без д-ва).

Пусть M — произвольная матрица, в каждой строке которой не более k единиц. Тогда покрытие, построенное ж.а., имеет размер не более $(1 + \ln k) \cdot \tau(M)$.

Теорема (без д-ва).

Для любого $k \geq 2$ существует матрица M, в каждой строке которой не более k единиц, а покрытие, построенное для M с помощью ж.а., имеет размер не менее $\frac{(\log_2 k)-1}{2} \cdot \tau(M)$.