BEPC 2021

Epreuve de Mathématiques Durée: 2 heures Coefficient: 5

Exercice 1: (3 points)

Cet exercice est un questionnaire à choix multiples, constitué de 4 questions : chacune comporte trois réponses, dont une et une seule est exacte. Préciser la bonne réponse.

N°	Question	Réponse A	Réponse B	Réponse C]
1	Soit x un réel diffèrent de 0 et de 4, alors $3+2\div\left(1-\frac{4}{x}\right)=\cdots$	$\frac{5x-4}{3x-4}$	$\frac{x-4}{x}$	$\frac{5x-12}{x-4}$	0,75pt
2	$\frac{6^4 \times 3^2 \times 15^2}{\left(4^2 \times 3^4\right)^2} = \dots$	$\frac{15^2}{2^2}$	$\frac{5^2}{2^4}$	$\frac{15^2}{4^2}$	0,75pt
3	Si $\overrightarrow{AC} = \frac{2}{3}\overrightarrow{AB}$ alors:	$\overrightarrow{BC} = -\frac{3}{2}\overrightarrow{AC}$	$\overrightarrow{BC} = -\frac{1}{2}\overrightarrow{AC}$	$\overrightarrow{BC} = -\frac{2}{3}\overrightarrow{AC}$	0,75pt
4	Si $2 \le 2x - 4 \le 4$ alors:	6 ≤ x ≤ 8	$-2 \le x \le 0$	$3 \le x \le 4$	0,75pt

Exercice 2: (3 points)

- 1) Ecrire le nombre $\sqrt{12}$ sous la forme $a\sqrt{3}$ 0.75 pt
- 2) Excripe sous la forme $a+b\sqrt{3}$ chacun des deux nombres $(\sqrt{12}-6)^2$ et $(\sqrt{12}+6)^2$
- 3) Justifier que $\sqrt{48-24\sqrt{3}} = 6-2\sqrt{3}$

Exercice 3: (4 points)

On considère l'expression $A(x) = 4x^2 - 9 + (x-5)(2x-3)$

- 1) Développer, réduire et ordonner l'expression A(x).

 1.5 pt
- 2) Calculer et simplifier la valeur de A(2).
- 3) Factoriser l'expression A(x) puis résoudre dans l'ensemble des nombres réels l'équation A(x) = 0 1.5 pt

Exercice 4: (5 points)

Dans un repère orthonormé, on donne les points A(0;3), B(-2;-1) et C(4;1)

- 1. a) Placer les points A, B et C
- b) Calculer les distances AB, BC et AC puis en déduire la nature du triangle ABC 2 pt
- 2) Montrer qu'une équation de (AC) est x+2y-6=0.
- 3. a) Résoudre le système $\begin{cases} x + 2y = 6 \\ 2x y = -8 \end{cases}$.
- b) Déterminer les coordonnées du point P, intersection de (AC) avec la droite (Δ) d'équation 0.5pt 2x-y+8=0

Exercice 5: (5 points)

Sur la figure ci-contre, AIB est un triangle rectangle isocèle en I, tel que AI = 5 cm. Le point C est situé sur la demi-droite [BI], extérieurement au segment [BI], tel que

 $\widehat{IAC} = 30^{\circ}$. Le cercle de diamètre [AI] recoupe [AC] en E et [AB] en F.

- 1. a) Reproduire soigneusement la figure sur la feuille de réponse.
- b) Calculer \widehat{ACI} 0.5 pt
- c) Vérifier que AC = $\frac{10}{\sqrt{3}}$ puis donner son arrondi au dixième près.
- 2. a) Montrer que $\widehat{AIE} = 60^{\circ}$ et en déduire \widehat{AFE}
- b) La parallèle à (IE) passant par C coupe (AI) en D. Sachant que $AE = \frac{3}{4}AC$, calculer AD

Fin.