CMPE 200 Computer Architecture & Design

Lecture 4. Memory Hierarchy (1)

Haonan Wang

Computer Architecture Overview

Example: a C program that reads two integer values from "file.txt" file and prints the sum of them.

```
#include <stdio.h>
#include <string.h>
int numbers[2];
void myfunction(void)
   FILE *fp;
   int size = 2;
   int sum = 0;
   /* Open file for reading */
   fp = fopen("mynumbers.txt", "r");
   /* Read and display data */
   fread(numbers, sizeof(int), size, fp);
   fclose(fp);
   sum = numbers[0] + numbers[1];
   printf("Sum = %d\n'', sum);
int main (void) {
   myfunction();
   return(0);
```

Processor (CPU)

Understands and executes each line of the code.

Uses fast onchip memories

Memory (DRAM)

Provides operands to CPU

(*fp, size, sum, numbers[2])

Storage (HDD)

Provides file inputs and program code

(file.txt)

- On-chip Memories
 (Memories inside of CPU)
 - Register file, Caches
 - Small but Fast

- Off-chip Memories (Memories outside CPU)
 - System Memory, Storage
 - Large but Slow

Memories in Your PC

Windows

- This PC → Properties
- cmd window → wmic
- 3rd party tool like CPU-Z

Linux

- Iscpu
- cat /proc/cpuinfo
- etc.

Discussion

How would you design the memory system?

Single piece of memory that does everything Vs.

Multiple levels of memories

Why should we use this hierarchy design?

Two Types of Locality:

- Temporal Locality (Locality in Time): If an address is referenced, it tends to be referenced again (e.g., loops, variable reuse)
- Spatial Locality (Locality in Space): If an address is referenced, neighboring addresses tend to be referenced (e.g., array, stack, etc.)

The "Memory Wall"

The Memory Hierarchy Goal

- How do we create a memory system that gives the illusion of being large, cheap and fast (most of the time)?
 - With hierarchy
 - try the fast parts first -- most of the time, this works well
 - if not, move the data so it works well the next time
 - With parallelism
 - use multiple identical parts operating simultaneously
 - for large quantities of data, this works well
- Example keep a subset of the data in fast memory
- Example 1-byte-wide memory → 4 × 1-byte-wide memory → 4byte-wide memory
 - load word takes 4 memory cycles vs. 1 memory cycle

Let us Conclude

What is cache?

Fast memory

What are the two types of data localities?

Temporal & Spatial

What are the two memory design directions inspired by the principle of locality?

Hierarchy & parallelism

SAN JOSÉ STATE UNIVERSITY powering SILICON VALLEY