### Universidade Federal do Rio Grande

Algoritmos e Estruturas de Dados II Calculadora de Duas Operações

Bruno Agoston de Assis 126714

Rio Grande/2022

### Introdução

Durante o desenvolvimento dos algoritmos foi desenvolvido duas versões, a primeira versão do algoritmo é o de adição, onde é feita a adição de uma sequência de números onde o usuário decide a quantidade de algarismos os operadores vão ter (fixo para os dois operadores) e depois decide qual algarismo será o algarismo sequencial. Abaixo segue o pseudocódigo do algoritmo de adição

#### Pseudocódigo do algoritmo de adição:

```
#Pseudo Codigo
#Adição
sum_operation(size_of_operators):

    vectors vector_operator1[size_of_operators], vector_operator2[size_of_operators], vector_result[size_of_operators+1];

int aux_sum, aux_result;
string operator_of_sequence1 , operator_of_sequence2;
read(operator of sequence1);
read(operator_of_sequence2);
5. vector_operator1 <- fill_vector(size_of_operators, operator_of_sequence1);</pre>
vector_operator2 <- fill_vector(size_of_operators,operator_of_sequence2);</li>
7. for i<-size of operators until 0 do:
          aux_result <- vector_operator1[i] + vector_operator2[i] + aux_sum;</pre>
          vector_result[i+1] <- aux_result mod 10;</pre>
10.
          aux_sum <- aux_sum div 10;</pre>
11. end for;
12. vector_result[0] <- aux_div;</pre>
13. show(vector_result);
14. end
```

O segundo algoritmo que é o de multiplicação , utiliza a multiplicação no modelo americano e tem o mesmo funcionamento, inicialmente se lê o tamanho dos operadores e depois qual será o algarismo sequencial.

#### Pseudocódigo do algoritmo de multiplicação:

```
multiplicationPseudocode(size_of_operators)

    vector vector_operator1[size_of_operators], vector_operator2[size_of_operators], vector_result[size_of_operators*2];

   int aux_multiplication, aux_sum, aux_result, vector_result_aux[size_of_operators+1];
2.
   string operator_of_sequence1 , operator_of_sequence2;
read(operator_of_sequence1);
read(operator_of_sequence2);
vector_operator1 <- fill_vector(size_of_operators, operator_of_sequence1);</li>
vector_operator2 <- fill_vector(size_of_operators,operator_of_sequence2);</li>
7. for i <- 0 until (size_of_operators*2) do:</pre>
8.
        vector_result[i] <- 0</pre>
   for i <- size_of_operators until 0 do:
9.
10.
           aux_multiplication <- 0
11.
           for j <- size_of_operators until 0 do:</pre>
                aux_result <- vector_operator1[j] * vector_operator2[i] + aux_multiplication</pre>
               vector_result_aux[j+1] <- aux_result mod 10</pre>
13.
14.
               aux_multiplication <- aux_result div 10
           end for;
16.
           vector_result_aux[0] <- aux_multiplication</pre>
17.
           aux_multiplication <- 0;</pre>
           for j <- size_of_operators until 0 do:</pre>
18.
19.
               aux\_sum \ \leftarrow \ vector\_result\_aux[j+1] \ + \ vector\_result[i+j] \ + \ aux\_multiplication
20.
               vector_result[i+j] <- aux_sum mod 10;</pre>
21.
                aux_multiplication <- aux_sum div 10;</pre>
           end for;
22.
       end for;
23.
24.
       show(vector_result)
end;
```

# Especificação dos computadores

Foi escolhido um computador desktop e um notebook para a execução dos algoritmos, a configuração deles são:

|                | Configuração Maquinas            |                             |  |
|----------------|----------------------------------|-----------------------------|--|
|                | Desktop                          | Notebook (Macbook Pro 16')  |  |
| OS:            | Windows 10 Pro 21H2              | macOS Monterey 12.3.1       |  |
| Processador    | AMD Ryzen 5 2600 6-Core 3.40 GHz | Intel Core i7 6-Core 2,6Ghz |  |
| RAM            | 16 GB 2666Mhz DDR4               | 16 GB 2667MHz DDR4          |  |
| Placa de Video | Radeon RX 580 OC 8GB             | AMD Radeon Pro 5300M 4GB    |  |
| Disco Rigido   | SSD NVMe 512GB WDBlack           | SSD NVMe 512GB Apple        |  |

# Gráficos

# Gráfico de tempo de execução no algoritmo de adição



### **Valores**

| Adição                     |                       |  |                            |                  |  |  |
|----------------------------|-----------------------|--|----------------------------|------------------|--|--|
| Desktop                    |                       |  | Notebook Apple             |                  |  |  |
| Sequencias de algarismos 9 | Tempo de execução (s) |  | Sequencias de algarismos 9 | Tempo de execuçã |  |  |
| 10000                      | 0.008001327514648438  |  | 10000                      | 0.00266313552856 |  |  |
| 100000                     | 0.0780181884765625    |  | 100000                     | 0.02690100669860 |  |  |
| 1000000                    | 0.7891800403594971    |  | 1000000                    | 0.23131394386291 |  |  |
| 2500000                    | 1.9403460025787354    |  | 2500000                    | 0.56057310104370 |  |  |
| 5000000                    | 3.959404468536377     |  | 5000000                    | 1.11553001403808 |  |  |
| 8000000                    | 6.226407051086426     |  | 8000000                    | 1.78515315055847 |  |  |
| 10000000                   | 7.7153449058532715    |  | 10000000                   | 2.13881993293762 |  |  |
| 20000000                   | 15.397742509841919    |  | 20000000                   | 4.30334806442260 |  |  |
| 30000000                   | 23.055995225906372    |  | 30000000                   | 6.40942478179931 |  |  |
| 35000000                   | 26.82895255088806     |  | 35000000                   | 7.46048998832702 |  |  |
|                            |                       |  |                            |                  |  |  |

### Análise dos resultados

Podemos verificar que há um crescimento linear no tempo de processamento nos dois casos. Porém comparando os tempos de execução do Desktop com o Notebook vemos que em todas as comparações o Notebook ganha em tempo de execução tanto nas sequências menores , quanto nas sequências mais longas.

### Gráfico de tempo de execução no algoritmo de Multiplicação



### **Valores**

| Multiplicação              |                       |                          |                         |  |  |  |  |
|----------------------------|-----------------------|--------------------------|-------------------------|--|--|--|--|
| Desktop                    |                       | Notebo                   | Notebook Apple          |  |  |  |  |
| Sequencias de algarismos 9 | Tempo de execução (s) | Sequencias de algarismos | 9 Tempo de execução (s) |  |  |  |  |
| 100                        | 0.01600337028503418   | 1                        | 0 0.004748106002807617  |  |  |  |  |
| 200                        | 0.07101631164550781   | 2                        | 0 0.01922893524169922   |  |  |  |  |
| 400                        | 0.27506160736083984   | 4                        | 0 0.07963705062866211   |  |  |  |  |
| 800                        | 1.1302568912506104    | 8                        | 0 0.30522799491882324   |  |  |  |  |
| 1600                       | 4.428040981292725     | 16                       | 0 1.1992499828338623    |  |  |  |  |
| 3200                       | 17.72210144996643     | 32                       | 0 4.707338094711304     |  |  |  |  |
| 6400                       | 70.1795301437378      | 64                       | 0 18.837880849838257    |  |  |  |  |
| 12800                      | 282.53581976890564    | 128                      | 0 75.92170190811157     |  |  |  |  |
| 17000                      | 498.57708048820496    | 170                      | 0 131.6718327999115     |  |  |  |  |
| 25600                      | 1131.444151878357     | 256                      | 0 300.06819891929626    |  |  |  |  |

### Análise dos resultados

Podemos analisar que assim como no gráfico demonstrado de adição, há uma diferença notável nos tempos de execução por quantidade de algarismo que temos entre o Desktop e o notebook. Nos valores finais , vemos uma diferença significativa de 3x tempo de execução no desktop , comparado ao Macbook.

### Conclusões finais

Vemos que notavelmente o Macbook Pro da Apple tem um desempenho extremamente superior comparado ao Desktop. Mesmo que os hardware sejam próximos, vemos que a diferença das execução acaba não sendo.

Acredito que uma das diferenças para causar tanta diferença no tempo de execução, se dá pelo sistema operacional utilizado. Enquanto o notebook utiliza o macOS da apple, o desktop utiliza o Windows 10 Pro, o que pode haver diferenças na forma que os códigos são interpretados para execução.