Hamiltonian dynamics on Poisson manifolds

Generalities on Poisson structures

Hamiltonian systems

A first approach to the numerical analysis on Poisson manifolds

Symplectic groupoids

Basic notions on groupoids

Basics on symplectic groupoids

Lagrangian bisections
Birealisations

Hamilton-Jacobi equation

Hamiltonian Poisson integrators

Butcher series

Explicit construction through birealisations

Numerical tests around a singularity: a Lotka-Volterra system Numerical tests of symmetry preservation: the rigid body

Perspectives

Poisson integrators in solid mechanics (with L. Le Marrec and V. Carlier)

Deformation theory of symplectic groupoids and plasma physics

Rooted trees

Definition

Let T be the set of non-planar trees defined as follows. A non-planar Butcher tree is a rooted tree defined recursively by

$$\bullet \in T$$
, $(\tau_n, \ldots, \tau_1)_{\bullet} \in T$, $\tau_1, \ldots, \tau_n \in T$,

where the root is graphically represented at the bottom. $(\tau_n, \ldots, \tau_1)_{\bullet}$ denotes the tree with the root $_{\bullet}$ and the n trees τ_n, \ldots, τ_1 plugged to the root.

Remark

By non-planar, we mean that the order of the branches does not matter: for instance, $\mathbf{v} = \mathbf{v}$.

Grafting

The grafting of trees \curvearrowright is defined as a product on T returning the sum of all possibilities (counted with multiplicity) of grafting the root of one tree on the nodes of another tree.

Example

$$\mathbf{I} \curvearrowright \mathbf{I} = \mathbf{V} + \mathbf{I}, \quad \mathbf{A} = \mathbf{V} + 2\mathbf{V}, \quad \mathbf{V} \curvearrowright \mathbf{A} = \mathbf{V}.$$

By extending \curvearrowright linearly on $\mathcal{T} = \mathsf{Span}_{\mathbb{R}}(\mathcal{T})$, this defines the pre-Lie algebra $(\mathcal{T}, \curvearrowright)$ of Butcher trees.

Remark

A natural grading on \mathcal{T} is given by the number of nodes: $|\mathbf{\hat{Y}}| = 3$.

$$\forall \tau_1, \tau_2 \in T, \quad |\tau_1 \curvearrowright \tau_2| = |\tau_1| + |\tau_2|.$$

The elementary differential map

 $\begin{array}{ccc} \mathfrak{p} & : \mathbb{G} \twoheadrightarrow M \text{ the cotangent projection} \\ 0 & : M \to \mathbb{G} \text{ the zero section of } \mathbb{G} \end{array}$ Let $H \in \mathcal{C}^{\infty}(M)$.

Definition (Elementary differential map)

The elementary differential map $\mathbb{F}^H \colon \mathcal{T} \to \mathcal{C}^{\infty}(M)$ associated to H is defined by

$$\mathbb{F}^H(\bullet) = H$$
 and

$$\mathbb{F}^{H}\Big((\tau_{n},\ldots,\tau_{1})_{\bullet}\Big)=0^{*}\{\{\ldots\{\alpha^{*}H,\mathfrak{p}^{*}\mathbb{F}^{H}(\tau_{1})\}_{\omega},\ldots\}_{\omega},\mathfrak{p}^{*}\mathbb{F}^{H}(\tau_{n})\}_{\omega}.$$

Example

$$\mathbb{F}^{H}(\mathbf{1}) = 0^* \{\alpha^* H, \mathfrak{p}^* H\}_{\omega}.$$

Idea

Compute the terms of the Taylor series of the Hamilton-Jacobi equation by grafting trees and apply \mathbb{F}^H .

Butcher series

Definition (Butcher series)

The B-series associated to $H \in \mathcal{C}^{\infty}(M)$ is the following formal series indexed by a coefficient map $a \in \mathcal{T}^*$:

$$B^{H} \colon \begin{array}{ccc} \mathcal{T}^{*} & \to & \mathcal{C}^{\infty}(M)[[t]] \\ a & \mapsto & \sum_{\tau \in \mathcal{T}} \frac{a(\tau)}{\sigma(\tau)} \mathbb{F}^{tH}(\tau) \end{array}$$

where $\sigma(\tau)$ is the number of graph automorphisms of τ , also called the symmetry coefficient.²

Remark

For any
$$\tau \in \mathcal{T}$$
, $\mathbb{F}^{tH}(\tau) \in \mathcal{C}^{\infty}(M)[t]$. Actually, $deg(\mathbb{F}^{tH}(\tau)) = |\tau|$.

²See Geometric Numerical Integration, Hairer et al., 2006, sec. III.1, for an explicit formula of the symmetry coefficient.

Formal solution of HJ equation

Lemma

For any $(S_t)_{t\in I} \in \mathcal{C}^{\infty}(M \times I)$ and any $(f_t)_{t\in I} \in \mathcal{C}^{\infty}(T^*M \times I)$,

$$\frac{\partial}{\partial t} \left((dS_t)^* f_t \right) = (dS_t)^* \left(\{ f_t, \mathfrak{p}^* \frac{\partial S_t}{\partial t} \}_{\omega} + \frac{\partial f_t}{\partial t} \right). \tag{4}$$

Theorem (Busnot Laurent, O.C., 2025)

Let $(S_t)_{t\in I} \in \mathcal{C}^{\infty}(M \times I)$ be the solution of the Hamilton-Jacobi equation (2), then its Taylor expansion is given by

$$B^{H}(e) \in \mathcal{C}^{\infty}(M)[[t]],$$
 (5)

where $e \in \mathcal{T}^*$ is given by

$$e(\bullet) = 1, \quad e(\tau) = \frac{1}{|\tau|} e(\tau_1) \dots e(\tau_n), \quad \tau = (\tau_n, \dots, \tau_1)_{\bullet}.$$

Explicit construction through birealisations

Let π a Poisson structure on \mathbb{R}^d . Assume that a birealisation (α,β) is constructed for π . Let $H\in\mathcal{C}^\infty(\mathbb{R}^n)$, $k\in\mathbb{N}$ and $\Delta t>0$ a time-step.

- 1. Solve the Hamilton-Jacobi equation up to order k using Butcher series of Equation (5). Obtain $S_{\Delta t}^k \in \mathcal{C}^{\infty}(M)$.
- 2. Let $x_n \in \mathbb{R}^d$. Solve the nonlinear equation

$$\alpha(\overline{x}_n, \nabla_{\overline{x}_n} S_{\Delta t}^k) = x_n$$

by a fixed point method, e.g., Newton descent.

3. One step of the obtained Hamiltonian Poisson integrator of order k and time-step Δt is then given by

$$x_{n+1} = \beta(\bar{x}_n, \nabla_{\bar{x}_n} S_{\Delta t}^k).$$

Expected numerical behaviour

stay on a leaf because the numerical methods are induced by bisections

stability near a singularity because these bisections are Lagrangian

 oscillate around first integrals as symplectic numerical methods do

Poisson structure and foliation of a cluster Poisson structure on \mathbb{R}^3

the Poisson bracket

$$\{f,g\}(x) = (\nabla_x f)^T \cdot \begin{pmatrix} 0 & x_1 x_2 & x_1 x_3 \\ -x_1 x_2 & 0 & x_2 x_3 \\ -x_1 x_3 & -x_2 x_3 & 0 \end{pmatrix} \cdot \nabla_x g$$

a symplectic leaf

A Hamiltonian vector field with an exploding trajectory

$$H(x) = \sum_{i=1}^{3} x_i \Rightarrow \begin{cases} \dot{x_1} = x_1(x_2 + x_3) \\ \dot{x_2} = x_2(-x_1 + x_3) \\ \dot{x_3} = -x_3(x_1 + x_2) \end{cases}$$

Exploding for
$$\begin{pmatrix} x_1(0) \\ x_2(0) \\ x_3(0) \end{pmatrix} = \begin{pmatrix} -3 \\ 5 \\ 10^{-3} \end{pmatrix}$$
 (Vanhaecke et al. 2016)

$$\begin{cases} \lim_{t \to \infty} x_1(t) = -\infty \\ \lim_{t \to \infty} x_2(t) = \infty \\ \lim_{t \to \infty} x_3(t) = 0 \end{cases}.$$

Numerical simulation: comparison of numerical errors

Error with respect to the analytical solution

with initial point
$$\begin{pmatrix} -3 \\ 5 \\ 10^{-3} \end{pmatrix}$$
 and $\Delta t = 10^{-3}$.

Poisson structure and foliation of $so(3)^*$

► the Poisson bracket

$$\{f,g\}(x) = (\nabla_x f)^T \cdot \begin{pmatrix} 0 & -x_3 & x_2 \\ x_3 & 0 & -x_1 \\ -x_2 & x_1 & 0 \end{pmatrix} \cdot \nabla_x g$$

- ▶ a bi-realisation $\mathbb{R}^3 \simeq so(3)$ $\begin{cases} \alpha \colon (x,p) \mapsto (I + \frac{p}{2}).x.(I \frac{p}{2}) \\ \beta \colon (x,p) \mapsto \alpha(x,-p) \end{cases}$
- a symplectic leaf

The Hamiltonian vector field of angular velocity of a rigid body in $\ensuremath{\mathbb{R}}^3$

$$H(x) = \frac{1}{2} \left(i_1 (x_2^2 + x_3^2) + i_2 (x_1^2 + x_3^2) + i_3 (x_1^2 + x_2^2) \right)$$

$$\Rightarrow \dot{x} = -x \wedge I.x$$

Preservation of Casimir levels

Error on Casimir values for HPI-2 and RK-4

Controlled oscillations around Hamiltonian levels

Errors on Hamiltonian values for RK-4

Errors on Hamiltonian values for HPI-2

Exercises

- 1. Use the lemma of Equation (4) to compute the terms of order 1 and 2 of the solution of the Hamilton-Jacobi equation (2).
- 2. Verify that the Butcher series of the equation (5) solves the Hamilton-Jacobi equation at order 2.

Bibliography for the third lecture

- Numerical Methods in Poisson Geometry and Applications to Mechanics, O. C., C. Laurent-Gengoux, V. Salnikov, Mathematics and Mechanics of Solids, 2024
- Butcher series for Hamiltonian Poisson integrators through symplectic groupoids, A. Busnot Laurent, O. C., arXiv, 2025

Poisson integrators for the Timoshenko model (w. L. Le Marrec, V. Carlier)

Two beam configurations

fig: Le Marrec

Hamiltonian structure of Timoshenko model³

- compute a birealisation
- construct Hamiltonian Poisson integrators
- expect these numerical methods to track periodic orbits efficiently, detect instabilities...

³ Timoshenko beam under finite and dynamic transformations: Lagrangian coordinates and Hamiltonian structures, O.C. & Le Marrec, 2025

Construction of birealisations by perturbative techniques

- Construct birealisations by studying deformation theory of symplectic groupoids
 - \rightarrow several ongoing discussions with D. Calaque, A. Busnot Laurent, V. Dotsenko
- ▶ Poisson integrators in plasma physics with É. Sonnendrucker

Landau damping: energy error⁴

⁴GEMPIC, Sonnendrucker et al., 2017