Université Sultane Moulay Sliman Faculté Polydisciplinaire Khouribga

A. U. 2020-2021 Filière: SMA/SMI Module: Analyse 1 Responsable: N. Mrhardy

TD $n^{\circ}1$: Les nombres réels

Exercice 1.

- (1) Démontrer que: $\forall x \in]-1, +\infty[, \forall n \in \mathbb{N}$ $(1+x)^n \ge 1 + nx$ (inégalité de Bernoulli).
- (2) Montrer que:
 - (a) $\forall (x,y) \in \mathbb{R}^2_+, \sqrt{x+y} \leq \sqrt{x} + \sqrt{y}$. Étudier dans quel cas on a égalité
- (b) $\forall (x,y) \in \mathbb{R}^2$, $\left| \sqrt{|x|} \sqrt{|y|} \right| \leq \sqrt{|x-y|}$. (3) Soient $n \in \mathbb{N}^*$ et $a_1; a_2...; a_n$ $b_1; b_2...; b_n$ 2n nombres réels. Etablir les inégalités suivantes:
 - (a) L'inégalité de Cauchy-Schwarz

$$\left(\sum_{i=1}^{n} a_i b_i\right)^2 \le \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right) \quad \text{(considérer : } f(x) = \sum_{i=1}^{n} (a_i x + b_i)^2\text{)}$$

(b) L'inégalité de Minkowski:

$$\sqrt{\sum_{i=1}^{n} (a_i + b_i)^2} \le \sqrt{\sum_{i=1}^{n} a_i^2} + \sqrt{\sum_{i=1}^{n} b_i^2}$$

Exercice 2.

- (1) Montrer qu'un entier q tel q^2 soit un multiple de 3 est un multiple de 3. En déduire que $\sqrt{3} \notin \mathbb{Q}$.
- (2) Montrer que $\frac{\ln(3)}{\ln(2)}$ est irrationnel.

Exercice 3.

- (1) Soient $x, y \in \mathbb{Q}$ tels que $\sqrt{x} \notin \mathbb{Q}$ et $\sqrt{y} \notin \mathbb{Q}$. Montrer que $\sqrt{x} + \sqrt{y} \notin \mathbb{Q}$.
- (2) Montrer que si $r \in \mathbb{Q}$ et $x \notin \mathbb{Q}$ alors $r + x \notin \mathbb{Q}$ et si $r \neq 0$ alors $rx \notin \mathbb{Q}$.
- (3) En déduire : entre deux nombres rationnels il v a toujours un nombre irrationnel.

Exercice 4.

- (1) Soient A et B deux parties non vides et bornées de \mathbb{R} . Montrer que
 - (a) $A \subset B \Longrightarrow \inf(B) < \inf(A)$
 - (b) $A \cup B$ admet une borne inférieure et que $\inf(A \cup B) = \min(\inf A, \inf B)$
- (2) Etant donné A et B deux ensembles de réels strictement positifs,
 - (a) Montrer que $\sup(A.B) = \sup A \times \sup B$.

 - (b) Montrer que si inf A > 0, alors $\sup \left(\frac{1}{A}\right) = \frac{1}{\inf A}$ (c) Montrer que si inf A = 0, alors $\sup \left(\frac{1}{A}\right) = +\infty$.

(3) Si A et B deux ensembles de réels, que peut-on dire de $\sup(A.B)$?

Exercice 5.

Trouver inf A, sup A, max A et min A quand ils existent dans chacun des cas suivants:

$$(1) A = \{0\} \cup]1; 2[, \qquad (4) A = \left\{\frac{n}{mn+1}, (n,m) \in \mathbb{N}^{*2}\right\}$$

$$(2) A = \{2^{-n}, n \in \mathbb{N}\}, \qquad (5) A = \left\{\frac{n}{mn+1}, (n,m) \in \mathbb{N}^{2}\right\}$$

$$(3) A = \left\{(-1)^{n} + \frac{1}{n}, n \in \mathbb{N}^{*}\right\}$$

Exercice 6.

Soit A une partie non vide et bornée de \mathbb{R} . Montrer que

$$\sup\{|x - y|, (x, y) \in A^2\} = \sup A - \inf A$$

Exercice 7.

Soient X une parties non vide et majorée de \mathbb{R} . Montrer que si $M = \sup X \notin X$, il existe alors pour tout réel $\varepsilon > 0$ une infinité d'éléments de X dans l'intervalle $|M - \varepsilon, M|$.

Exercice 8.

- (1) Montrer que $\forall x \in \mathbb{R}$ et $\forall n \in \mathbb{N}^*$, E(x+n) = E(x) + n,
- (2) Montrer que $\forall x \in \mathbb{R}$ et $\forall n \in \mathbb{N}^*$, $E\left(\frac{E(nx)}{n}\right) = E(x)$
- (3) Montrer que $\forall (x,y) \in \mathbb{R}^2$, $E(x) + E(y) \leq E(x+y)$

Exercice 9.

Soit I une partie de \mathbb{R} . Montrer que I est un intervalle de \mathbb{R} ssi

$$\forall x, y \in I, \forall t \in [0, 1], (1 - t)x + ty \in I$$

Exercice 10.

Soient A et B deux parties de \mathbb{R} telles que A est dense dans B et B est dense dans \mathbb{R} . Montrer que A est dense dans \mathbb{R} .

Exercice 11.

Montrer que A est dense dans \mathbb{R} dans les cas suivants

- $(1) A = \mathbb{R} \backslash \mathbb{Q}.$
- (2) $A = \mathbb{Q}$.