Appendix 1. Hand Calculation

I. Data Set

$$f_1 \coloneqq 160 \; \textit{Hz}$$
 $f_2 \coloneqq 237 \; \textit{Hz}$ $f_3 \coloneqq 240 \; \textit{Hz}$ Analog frequency components of the signal

$$A_1 = 100$$
 $A_2 = 10$ Linear amplitude for each analog frequency component

$$f_s = 1000 \; Hz$$
 Sampling frequency

NFFT = 256

$$BinWidth := \frac{f_s}{NEFT} = 3.906 \; Hz$$
 Analog frequency bin width of the FFT

$$Bin_{f_1} = \text{round}\left(\frac{f_1}{BinWidth}\right) = 41$$
 Frequency bin index of analog frequency component f_1

$$Bin_{f_2} = \text{round}\left(\frac{f_2}{BinWidth}\right) = 61$$
 Frequency bin index of analog frequency component f_2

$$Bin_{f_3} = \text{round}\left(\frac{f_3}{BinWidth}\right) = 61$$
 Frequency bin index of analog frequency component f_3

Given the sampling frequency of 1000 Hz and NFFT = 256, the frequency bin indices for f_2 and f_3 are always 61, which is not affected by the window applied to the signal. Therefore, rectangular windowed FFT will not indicate distinct spectral peaks for f_2 and f_3 .

$$20 \cdot \log (A_1) = 40$$
 Magnitude of the peak corresponding to $\pm f_1$

$$20 \cdot \log (A_2) + 20 \cdot \log (A_3) = 20$$
 Magnitude of the peak corresponding to $+/-f_2$ and $+/-f_3$ (same frequency bin)

Therefore, after the normalization, the magnitude of the peak corresponding to $\pm f$ is 0 dB and the magnitude of the peak corresponding to $\pm f$ (same frequency bin) is -20 dB.

III. Complex Basebanding and Desampling

1. Complex basebanding:

$$f_0 = 250 \; Hz$$
 Center frequency

Frequency components after complex basebanding:

$$f_1' := f_1 - f_0 = -90 \; \textbf{\textit{Hz}}$$
 $f_2' := f_2 - f_0 = -13 \; \textbf{\textit{Hz}}$ $f_3' := f_3 - f_0 = -10 \; \textbf{\textit{Hz}}$

$$f_1{''} \coloneqq -f_1 - f_0 = -410 \; \textbf{\textit{Hz}} \qquad \qquad f_2{''} \coloneqq -f_2 - f_0 = -487 \; \textbf{\textit{Hz}} \qquad \qquad f_3{''} \coloneqq -f_3 - f_0 = -490 \; \textbf{\textit{Hz}}$$

Complex basebanding does not change the magnitude of the signal. Therefore, the magnitude of peaks corresponding to each frequency component remain the same as previous.

2. Low-pass filtering:

Low-pass filtering does not shift the frequency of the signal. Therefore, frequency values of the signal remain the same as previous.

$$20 \cdot \log (A_1) - 40 = 0$$
 Magnitude of the peak corresponding to f_1
$$20 \cdot \log (A_2) + 20 \cdot \log (A_3) = 20$$
 Magnitude of the peak corresponding to f_2 and f_3 (same frequency bin)

$$20 \cdot \log (A_1) - 40 = 0$$
 Magnitude of the peak corresponding to -fi

$$20 \cdot \log(A_2) + 20 \cdot \log(A_3) - 40 = -20$$
 Magnitude of the peak corresponding to $-f_2$ and $-f_3$ (same frequency bin)

Therefore, after the normalization, the magnitude of the peak corresponding to f_1 is -20 dB; the magnitude of the peak corresponding to f_2 and f_3 (same frequency bin) is 0 dB; the magnitude of the peak corresponding to f_3 is -20 dB; the magnitude of the peak corresponding to f_3 (same frequency bin) is -40 dB;

IV. High Resolution Spectral Analysis

$$f_s' \coloneqq \frac{f_s}{8} = 125 \; \textit{Hz}$$
 Sampling frequency after decimation
$$BinWidth \coloneqq \frac{f_s'}{NFFT} = 0.488 \; \textit{Hz}$$
 Analog frequency bin width of the FFT after desampling

Frequency components after desampling:

$$f_1' \coloneqq f_1 - f_0 + f_s' = 35$$
 Hz $f_2' \coloneqq f_2 - f_0 = -13$ Hz $f_3' \coloneqq f_3 - f_0 = -10$ Hz $f_1'' \coloneqq -f_1 - f_0 + 3$ $f_s' = -35$ Hz $f_2'' \coloneqq -f_2 - f_0 + 4$ $f_s' = 13$ Hz $f_3'' \coloneqq -f_3 - f_0 + 4$ $f_s' = 10$ Hz $20 \cdot \log (A_1) - 40 = 0$ Magnitude of the peak corresponding to f_1 (-20 dB after normalization) $20 \cdot \log (A_2) = 20$ Magnitude of the peak corresponding to f_2 (0 dB after normalization) $20 \cdot \log (A_3) = 0$ Magnitude of the peak corresponding to f_3 (-20 dB after normalization) $20 \cdot \log (A_1) - 40 = 0$ Magnitude of the peak corresponding to f_3 (-20 dB after normalization) $20 \cdot \log (A_2) - 40 = -20$ Magnitude of the peak corresponding to f_3 (-40 dB after normalization) $20 \cdot \log (A_3) - 40 = -40$ Magnitude of the peak corresponding to f_3 (-60 dB after normalization)