David J. Spiegelhalter

Probabilistic Networks

and Expert Systems

Wendt RA

> 76,76 E95

P755

1999

With 45 Illustrations

Robert G. Cowell

Steffen L. Lauritzen

A. Philip Dawid

Springer

Contents

Preface

2.4

2.5

2.6

2.7

2.8

2.9

3.1

3.1.1

3.1.2

Introduction

	1.1	What is this book about?	1
	1.2	What is in this book?	2
	1.3	What is not in this book?	3
	1.4	How should this be book be used?	4
2 Logic, Uncertainty, and Probability			
4			5
4		ic, Uncertainty, and Probability What is an expert system?	-
4	2.1		5

Graphical modelling of the domain

2.10 A broader context for probabilistic expert systems

Building and Using Probabilistic Networks

1

8

10

11

13

14

17

21

25

26

27

28

vii	i	Contents
		3.1.3 Quantitative modelling
		3.1.4 Further background to the elicitation process 29
	3.2	From specification to inference engine
	J	3.2.1 Moralization
		3.2.2 From moral graph to junction tree
	3.3	The inference process
	0.0	3.3.1 The clique-marginal representation
		3.3.2 Incorporation of evidence
	3.4	Bayesian networks as expert systems
	3.5	Background references and further reading 40
		3.5.1 Structuring the graph
		3.5.2 Specifying the probability distribution 40
4		aph Theory 43
	4.1	Basic concepts
	4.2	Chordal and decomposable graphs
	4.3	Junction trees
	4.4	From chain graph to junction tree
		4.4.1 Triangulation
		4.4.2 Elimination tree
	4.5	Background references and further reading 61
5	Ma	rkov Properties on Graphs 63
	5.1	Conditional independence 63
	5.2	Markov fields over undirected graphs 66
	5.3	Markov properties on directed acyclic graphs 70
	5.4	Markov properties on chain graphs
	5.5	Current research directions
		5.5.1 Markov equivalence
		5.5.2 Other graphical representations 80
	5.6	Background references and further reading 80
6	Die	crete Networks 83
Ü	6.1	An illustration of local computation
	6.2	Definitions
	0.2	6.2.1 Basic operations
	6.3	Local computation on the junction tree
	0.0	6.3.1 Graphical specification
		6.3.2 Numerical specification and initialization 87
		6.3.3 Charges
		6.3.4 Flow of information between adjacent cliques 88
		6.3.5 Active flows
		6.3.6 Reaching equilibrium
		6.3.7 Scheduling of flows
		6.3.8 Two-phase propagation
		2.3.5 - Zwo primos propugation

			Contents	ix
		6.3.9	Entering and propagating evidence	. 93
		6.3.10	A propagation example	. 95
	6.4	Gener	alized marginalization operations	
		6.4.1	Maximization	
		6.4.2	Degeneracy of the most probable configuration	
		6.4.3	Simulation	
		6.4.4	Finding the M most probable configurations	
		6.4.5	Sampling without replacement	
		6.4.6	Fast retraction	
		6.4.7	Moments of functions	
	6.5	•	ple: Ch-Asia	
		6.5.1	Description	
		6.5.2	Graphical specification	
		6.5.3	Numerical specification	
		6.5.4	Initialization	
		6.5.5	Propagation without evidence	
		6.5.6	Propagation with evidence	
		6.5.7	Max-propagation	
	6.6		g with large cliques	
		6.6.1	Truncating small numbers	
		6.6.2	Splitting cliques	
	6.7	Currer	nt research directions and further reading	. 123
7			and Mixed Discrete-Gaussian Networks	125
	7.1		stributions	
	7.2		operations on CG potentials	
	7.3	Marke	d graphs and their junction trees	
		7.3.1		
		7.3.2	Junction trees with strong roots	
	7.4		specification	
	7.5		ting in the junction tree	
		7.5.1	Initializing the junction tree	
		7.5.2	Charges	
		7.5.3	Entering evidence	. 139
			Flow of information between adjacent cliques	
	7.0	7.5.5	Two-phase propagation	
	7.6		ple Gaussian example	
	7.7		ble: Waste	
		7.7.1	Structural specification	
		7.7.2 7.7.3	Numerical specification	
		7.7.4	Strong triangulation	
		7.7.5	Forming the junction tree	
		7.7.6	Initializing the junction tree	
	7.8		Entering evidence	
	1.0	Combi	exity considerations	100

x	Contents		
	7.9	Numerical instability oroniems	51
	1.9	701 Exact marginal densities	52
	7 10	Current research directions	52
	7.11	Background references and further reading	53
		_	55
8		rete Willtistage Decision Networks	56
	8.1	The nature of inditistage decision problems	57
	8.2	Solving the decision problem	59
	8.3	Decision potentials	63
	8.4	Network specification and solution	.63
		8.4.1 Structural and numerical specification	.65
		8.4.2 Causal consistency lemma	.66
		8.4.3 Making the eminiation tree	.67
		X 4.4 Initializing the elimination arec	
		8.4.5 Message passing in the eminiation troo	.68
		8.4.6 Proof of elimination tree solution	69
	8.5	Example: OIL WILDCALLER	72
		8.5.1 Specification	72
		8.5.2 Making the elimination tree	175
		8.5.3 Initializing the elimination tree	176
		8.5.4 Collecting evidence	177
	8.6	Example: Dec-Asia	177
	8.7	Triangulation issues	183
	8.8	Asymmetric problems	184
	8.9	Background references and further reading	187
9	Lea	rning Anniii, Prodadiiilles	.89
J	9.1	Statistical modelling and parameter learning	189
	9.2	Parametrizing a directed Markov model	190
	9.3	Maximum likelihood with complete data	192
	9.4	Rayesian undating with complete data	193
	0.1	9.4.1 Priors for DAG models	193
		9.4.2 Specifying priors: An example	197
		9.4.3 Updating priors with complete data:	
		An example	199
	9.5	Incomplete data	200
	0.0	9.5.1 Sequential and batch methods	201
	9.6	Maximum likelihood with incomplete data	202
	0.0	9.6.1 The EM algorithm	202
		9.6.2 Penalized EM algorithm	204
	9.7	Bayesian updating with incomplete data	204
	<i>3</i> .1	9.7.1 Exact theory	206
		9.7.2 Retaining global independence	207
		9.1.2 Relating global independence	209
		9.7.5 Retaining local independence	211
		9.7.4 Reducing the mixtures	

	Contents	xi
n cu		213
9.7.5 Simulation results: full mixture reduction		$\frac{210}{214}$
9.7.6 Simulation results: partial mixture reducti	OII	216
9.8 Using Gibbs sampling for learning		221
9.9 Hyper Markov laws for undirected models		222
9.10 Current research directions and further reading .		222
10 Checking Models Against Data		225
10.1 Scoring rules		226
10.1.1 Standardization		227
10.2 Parent-child monitors		229
10.2.1 Batch monitors		232
10.2.2 Missing data		233
10.3 Node monitors		234
10.4 Global monitors		235
10.4.1 Example: CHILD		236
10.5 Simulation experiments		238
10.6 Further reading		241
0		0.40
11 Structural Learning		243
11.1 Purposes of modelling		244
11.2 Inference about models		244
11.3 Criteria for comparing models		245
11.3.1 Maximized likelihood		246
11.3.2 Predictive assessment		247
11.3.3 Marginal likelihood		248
11.3.4 Model probabilities		249
11.3.5 Model selection and model averaging		250
11.4 Graphical models and conditional independence		251
11.5 Classes of models		253
11.5.1 Models containing only observed quantities	es	253
11.5.2 Models with latent or hidden variables.		254
11.5.3 Missing data		255
11.6 Handling multiple models		256
11.6.1 Search strategies		250
11.6.2 Probability specification		258
11.6.3 Prior information on parameters		260
11.6.4 Variable precision		261
		265
Epilogue		200
A Conjugate Analysis for Discrete Data		267
A.1 Bernoulli process		267
A.2 Multinomial process		269
B Gibbs Sampling		271

xii	C	Contents		
	B.1 B.2 B.3 B.4	Gibbs sampling	273 274	
C	Info C.1 C.2 C.3	Information and Software on the World Wide Web Information about probabilistic networks	279	
	Bibliography			
	Author Index			
	Subject Index			

ILLUSTRATION SAMPLE

under the re-representation of P as factorizing over \mathcal{D}^m , some of the conditional independence properties displayed in the original DAG \mathcal{D} , such as the one between n5 and n6 given n2 in Figure 3.1, may lose their representation in graphical form. They still hold, but are now effectively buried in the quantitative component of the model. Only those conditional independence properties that retain a representation in the graph \mathcal{D}^m are exploited in the further analysis.

3.2.2 From moral graph to junction tree

The passage from moral graph to junction tree proceeds in the same way, regardless of the type of the initial graph. The first stage is to add sufficient edges to the moral graph, to make the resulting graph $(\mathcal{K}^m)'$ triangulated or chordal. Algorithms to do this are discussed in Section 4.4 below. The result is shown in Figure 3.4. The joint distribution, which factorizes on the

FIGURE 3.4. A triangulation of the moral graph of Figure 3.2, showing a perfect ordering of the nodes arising from maximum cardinality search (Algorithm 4.9).

moral graph \mathcal{K}^m , will also factorize on the larger triangulated graph $(\mathcal{K}^m)'$, since each clique in the moral graph will be either a clique or a subset of a clique in the triangulated graph. Hence, by a simple rearrangement of terms, we can transform the joint density into a product of factors on the