Grading updates

- Starting today, you need your i>clicker
 - If your quiz grade isn't appearing in Canvas, send me an email
- Sample questions are due at midnight <u>after every lecture</u>

Graded Quiz Question #1

- Which macromolecule has the highest Atwater factor
 - A. Carbohydrate
 - B. Protein
 - C. Fat
 - D. They are all the same

Graded Quiz Question #2

- Basal metabolic rate decreases with age
 - A. Due to increases in fat mass
 - B. Largely explained by reductions in fat free mass
 - C. Due to decreases in physical activity
 - D. Because of increased thermic effect of food

Graded Quiz Question #3

- Which <u>is not</u> an example of how a gene could be controlelled at the mRNA level by a nutrient.
 - A. Changes in DNA methylation affect the ability of transcription factors to bind a promotor sequence
 - B. A nutrient-dependent receptor such as the Vitamin D receptor binds to promotor sequences in a gene
 - C. A microRNA causes degradation of a transcript
 - D. A nutrient causes changes in the activity of an enzyme

Metabolic Control Systems

Learning Objectives

- Understand what a rate limiting enzyme is, what a committed enzyme step is and what a reversible reaction is.
- Explain the differences in speed and persistence of allosteric, post-translational and transcriptional regulation of metabolism.
- Describe the role of cellular transport in macromolecular regulation. Understand the differences between active and passive transport.
- Describe how hormones alter macronutrient metabolism after a meal.
- Explain the roles of hormones that maintain glucose levels in the fasting state.
- Understand how metabolic rates are changed in response to diets and overfeeding.

Nutrient Regulation is About Two Things

- Metabolism
 - Catabolism
 - Anabolism
- Transport

What statement about enzymes is **untrue**?

- A. Enzymes stabilize a transition state intermediate
- B. Enzymes change the equilibrium levels of products and substrates
- C. Enzymes can accelerate a chemical reaction
- D. Enzymes can be proteins or mRNA

(Very) Quick Review of Enzymes

Thermodynamics and kinetics

Thermodynamics of Metabolic Pathways

Figure 1: irreversible reaction

Figure 2: reversible reaction

These chemicals are at nearly equal levels at equilibrium?

Glucose – 6 – Phosphate

Fructose – 6 – Phosphate

- A. True
- B. False

At equilibrium are these at the same levels?

- A. True
- B. False

Gibbs Free Energy in a Metabolic Pathway

substrate	cofactors, enzymes	$\Delta \mathbf{G}^{o}{}'$	ΔG
glucose, 5 mM;	ATP as donor		
	hexokinase, glucokinase	-16.5 kJ/mol	-33 kJ/mol
glucose-6-P, $83 \mu M$;			
	glucose-6-P isomerase	+2.0 kJ/mol	-2 kJ/mol
fructose-6-P, $14 \mu M$;	ATP as donor		
	phosphofructokinase	-13.7 kJ/mol	-26 kJ/mol
fructose-1,6-bisP, 35 μ M;			
•	aldolase*	+22.0 kJ/mol	-1 kJ/mol
dihydroxyacetone-3-P, 150 μ M;			
	triose phosphate isomerase	+5.6 kJ/mol	+0.7 kJ/mol
glyceraldehyde-3-P, $20 \mu M$;	NAD ⁺ as e ⁻ acceptor Pi as phosphate donor		
	glyceraldehyde-3-P dehydrogenase	+6.3 kJ/mol	+0.6 kJ/mol
1,3-bisphosphoglycerate , <1 μ M			
, , ,	phosphoglycerate kinase	-18.8 kJ/mol	-1 kJ/mol
3-phosphoglycerate , 118 μM;	FreeEnder		
,, ., ., ., ., ., ., ., ., ., ., .,	phosphoglyceromutase	+4.8 kJ/mol	+0.8 kJ/mol
2-phosphoglycerate , 30 μM;	Freezenses		
- FF	enolase	+3.2 kJ/mol	+1 kJ/mol
phosphoenolpyruvate, 23 μ M;	ADP as acceptor		. 1 110/11101
P 1105 P 11001101 P J1 u 1 u 100, 20 <i>p</i> 1112,	pyruvate kinase	-31.6 kJ/mol	-17 kJ/mol
pyruvate, 51 μ M;	NADH as e⁻ donor		
FU , , , , , , ,	lactate dehydrogenase	-26.2 kJ/mol	-0.8 kI/mol
lactate, 2.9 mM;	iaciaie aenyarogenase	-20.2 KJ/11101	-0.0 KJ/IIIOI
140400, 2.7 111111,			

After adjusting for Concentrations of reactants

Kinetics of Enzyme Reactions

- Generally depends on amount of substrate/product
- Stabilization of transition state

Rate Limiting Enzyme and Committed Steps

Recap committed or rate limiting steps?

- Reversible step:
 - Substrates and products can quickly move back and forth
- Committed step:
 - An effectively irreversible step along a metabolic pathway
- Rate limiting step:
 - The slowest enzymatic reaction in a pathway
- These steps are often the ones that regulate the flow of metabolites through the pathway

Substrate Concentration

If an enzyme is catalytically activated...

- A. It reduces ΔG of the reaction, but <u>does not</u> change the rate
- B. It reduces ΔG of the reaction, and <u>does</u> changes the rate
- C. It doesn't change the ΔG of the reaction, and <u>does not</u> change the rate
- D. It doesn't change the ΔG of the reaction, but <u>does</u> not change the rate

Enzymes are Regulated by Several Mechanisms

- Substrate/Product Concentrations
- Allosteric Control
- Catalytic Activation
- Enzyme Location
- Enzyme Levels
 - Protein Level -> Translation/Degradation
- Transcriptional Regulation

Permanence

Which is an example of allosteric control of glycogen synthase?

- A. Increasing the intracellular level of the substrate UDP-glucose makes GS add UDP-glucose to glycogen more rapidly
- B. The transcription factor SREBP1c increases the amount of glycogen synthase in the cell
- C. The non-substrate glucose-6-phosphate increases of GS activity
- D. Both A and C

Cellular Transport Mechanisms

Cellular transport

- Cells are impermeable to many nutrients
- Transport can:
 - Follow concentration gradient
 - Passive transport
 - Push against concentration gradient
 - Active transport
- Same concepts are true for mitochondrial transport

The Energy from Active Transport Can Come from Several Sources

Altering Cellular Transport

• With the folks nearby think of as many ways as you can by which you could increase cellular transport of a nutrient (I can think of 5)

Several Levels of Metabolic Control

- Intracellular
 - Substrate and products
 - Allosteric activators/inhibitors
 - Metabolites that activate post-translational modifications
 - Transcription factors that respond to metabolite levels
- Integrated metabolic control
 - Endocrine signaling
 - Neural synapses

Example Post-Translational Metabolic Control

System

 AMP activated protein kinase (AMPK)

- Activated when AMP/ATP level is high
- What sorts of things would you expect this kinase may regulate?

Example Transcriptional Control System

Basic endocrine regulation of nutrition

Hormones

- Postprandial
 - Insulin
- Fasting:
 - Glucagon short term glucose
 - Adrenaline glucose for muscle
 - Cortisol glucose for brain

Metabolic Processes

- Glucose
 - Gluconeogenesis
 - Glucose Oxidation
 - Glycogen Storage
 - Glucose Transport (into Tissues)
- Lipids
 - Fatty Acid Release and Export (Lipolysis)
 - Fatty Acid Import
 - Triglyceride Synthesis
 - Fatty Acid Oxidation
- Proteins and Amino Acids
 - Protein Synthesis or Breakdown
 - Amino Acid Synthesis or Catabolism
 - Amino Acid Import or Export

What should these hormones do?

Tissue	Carbohydrate Metabolism	Protein Metabolism	Lipid Metabolism
Muscle			
Liver			
Fat			

Metabolic Control Gone Awry, the Case of Type 2 Diabetes

How do we measure metabolic rates

Parts of the Metabolic Rate Metabolic Rate

Maclean PS, Bergouignan A, Cornier M-A, Jackman MR. Biology's response to dieting: the impetus for weight regain. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* 2011;301(3):R581–R600. http://dx.doi.org/10.1152/ajpregu.00755.2010

How do you think over-eating alters the basal metabolic rate?

- I think metabolic rate would be lower after over-eating
- I think metabolic rate would be higher after over-eating
- What do you think fasting or caloric restriction would do to the metabolic rate?

Over/underfeeding and metabolic rates

Leibel R, Osenbaum MIR, Leibel RL, Rosenbaum M, Hirsch J. Changes in energy expenditure resulting from altered body weight. *N. Engl. J. Med.* 1995;332(10):621–8. http://dx.doi.org/10.1056/NEJM199503093321001

The Biggest Loser Follow-Up Study

Learning Objectives

- Understand what a rate limiting enzyme is, what a committed enzyme step is and what a reversible reaction is.
- Explain the differences in speed and persistence of allosteric, post-translational and transcriptional regulation of metabolism.
- Describe the role of cellular transport in macromolecular regulation. Understand the differences between active and passive transport.
- Describe how hormones alter macronutrient metabolism after a meal.
- Explain the roles of hormones that maintain glucose levels in the fasting state.
- Understand how metabolic rates are changed in response to diets and overfeeding.