Problems

1. Collision with a particle at rest, Jackson, 11.23: In a collision process a particle of mass m_2 , at rest in the laboratory, is struck by a particle of mass m_1 , momentum \mathbf{p}_{LAB} and total energy E_{LAB} . In the collision the two initial particles are transformed into two others of mass m_3 and m_4 . The configurations of the momentum vectors in the center of momentum (cm) frame (traditionally called the center-of-mass frame) and the laboratory frame are shown in the figure.

(a) (10 pts) Use invariant scalar products to show that the total energy W in the cm frame has its square given by

$$W^2 = m_1^2 + m_2^2 + 2m_2 E_{LAB} (1)$$

and that the cms 3-momentum \mathbf{p}' is

$$\mathbf{p}' = \frac{m_2 \mathbf{p}_{LAB}}{W} \tag{2}$$

(b) (8 pts) Show that the Lorentz transformation parameters β_{cm} and γ_{cm} describing the velocity of the cm frame in the laboratory are

$$\beta_{cm} = \frac{\mathbf{p}_{LAB}}{m_2 + E_{LAB}}, \quad \gamma_{cm} = \frac{m_2 + E_{LAB}}{W}$$
(3)

(c) (8 pts) Show that the results of parts (a) and (b) reduce in the nonrelativistic limit to the familiar expressions,

$$W \simeq m_1 + m_2 + \left(\frac{m_2}{m_1 + m_2}\right) \frac{p_{LAB}^2}{2m_1} \tag{4}$$

$$\mathbf{p}' \simeq \left(\frac{m_2}{m_1 + m_2}\right) \mathbf{p}_{LAB}, \quad \boldsymbol{\beta}_{cm} \simeq \frac{\mathbf{p}_{LAB}}{m_1 + m_2}$$
 (5)

- 2. Converting photons to electron and positron: Consider two photons with different energies that annihilate (in the vacuum) and produce an electron-positron pair. (I.e. a reaction with two photons in, and electron and positron out.)
 - (a) (8 pts) For what ranges of initial photon energies and angles between their directions of propagation can this reaction take place? (In other words, give a relation, perhaps an inequality, that may contain photon energies, the angle, electron mass, speed of light, etc.)

- (b) (6 pts) Consider now a head-on collision (the angle is π radians) and the photons of the same energy. Calculate the numerical value of the minimal photon energy required for the reaction to take place. Express the answer in SI units (Joules).
- 3. **Field tensor:** Consider the electromagnetic field tensor $F^{\mu\nu} = \partial^{\mu}A^{\nu} \partial^{\nu}A^{\mu}$ in the conventions of our course (SI units, (+, -, -, -) metric tensor).
 - (a) (15 pts) Starting from the definition in terms of the potential A^{μ} , derive the matrix $(F^{\mu\nu})$ in terms of the components of the electric and magnetic fields, E_x , E_y , E_z , B_x , B_y , B_z .
 - (b) (15 pts) Consider a Lorentz boost with relativistic velocity β in the positive x direction. Derive the components of the electric and magnetic fields in the moving frame in terms of the corresponding quantities in the original frame by transforming $F^{\mu\nu}$.
 - (c) (10 pts) *Derive* the transformation properties of the electric and magnetic fields under parity (space inversion) and time reversal.
- 4. To $\vec{B}\vec{E}$ or not to $\vec{B}\vec{E}$: In a reference frame K there are a constant electric \vec{E} and a magnetic \vec{B} fields such that $\vec{E}\perp\vec{B}$.
 - (a) (10 pts) With what velocity a reference frame K' should be moving with respect to K so that in K' there is only electric or only magnetic field? Derive the value of the corresponding field in the K' frame as function of the original fields.
 - (b) (10 pts) Does the solution always exist? Is it unique?