Probability using python.

Iván Andrés Trujillo Abella

Facultad de Ingenieria Pontificia Universidad Javeriana

Expected

is defined as the mean of a random variable

Variance

$$\sigma^2 = E(x^2) - \mu^2 \tag{1}$$

remember that $\sum_{x} f(x)x = \mu$ and $\sum_{x} f(x) = 1$

$$\sigma^{2} = \sum_{x} (x - \mu)^{2} f(x)$$

$$= \sum_{x} (x^{2} f(x) - 2x\mu f(x) + \mu^{2} f(x))$$
(2)

Applying the algebra we find $\sum x^2 f(x) - \mu^2$.

Theorem 1

X is a random variable with a pdf f(x) then μ of g(x) is

$$\mu_{g(x)} = E(g(x)) = \sum g(x)f(x) \tag{3}$$

Example of income and the probability of sell a product.

Theorem

X is a random variable with pdf f(x) then then variance of g(x) will be:

$$\sigma_{g(x)}^2 = E((g(x) - \mu_{g(x)})^2 \tag{4}$$

this is equation is derived of the definition of variance of a random variable, remember that g(x) is a random variable with mean $\mu_{g(x)}$.

Join distribution

until now we try Ω in \mathbf{R}^1 and we can be interested in find the probability of occurrence of two simultaneous random variables.

$$f(x,y) = P(X = x, Y = y)$$
(5)

Some intuitive properties are:

- $f(x, y) \ge 0$
 - $\bullet \sum_{x} \sum_{y} f(x,y) = 1$

Excercise

Suppose the bag model with n balls and there there are r balls and w balls where r + w = n find the probability of get x, y balls respectively.

Marginal distribution

$$g(x) = \sum_{y} f(x, y) \tag{6}$$

$$h(y) = \sum_{x} = f(x, y) \tag{7}$$

Expected value of two random variables

let be X, Y two random variables with joint probability function distribution f(x, y) the mean of g(X, Y) is:

$$\mu_{g(X,Y)} = E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) f(x,y)$$
 (8)

Covariance

Insights

$$\sigma_{X,Y} = E[(X - \mu_x)(Y - \mu_y)] = \sum_{x} \sum_{y} (x - \mu_x)(y - \mu_y) f(x, y)$$
 (9)

is a measure of association between two variables

Variance

From here we refer we refer to the population mean as μ and estimated mean as $\hat{\mu}$.

Shapiro wilk

P -values

Hypothesis testing

Hypothesis as idea or believe about a issue.

Null hypothesis

 H_0 describe the current believe, and H_1 is a option if there is enough evidence to reject H_0 .

One tailed test

Two tailed test

 $H_1 \neq value$

Test statistic

test statistics is a value that allow us reject the null hypothesis, this uses the sampling statistics (proportion, mean, or standard deviation) in a value of z, t or $\chi^2.3$

ANOVA test

t-test

χ^2 test

Person

Spearman

Table one

It is a useful algorithm to present working papers or give us insights about the problem.