Holiday Problem Solutions-ish

Tom Yan

April 2023

Solutions

- 3. Since $2^{2^n} + 5 > 3$ and is also 0 mod 3, it is never prime.
- 4. Since $\angle POQ = \angle QOR = \frac{360^{\circ}}{9} = 40^{\circ}$, and C is halfway in between on the circumcircle, so $\angle POC = 60^{\circ}$ and hence $\triangle OPC$ is equilateral.

Quadrilateral PABO is cyclic since $\angle PAO = \angle PBO = 90^{\circ}$. Then $\angle OPB$ and $\angle OAB$ are subtended by the same arc so $\angle OAB = \angle OPB = \frac{60^{\circ}}{2} = 30^{\circ}$.

- 5. Taking \log_a on both sides gives us $a^x \log_a x = x^a$. Since $f(x) = a^x$ and $g(x) = \log_a x$ are decreasing and $h(x) = x^a$ is increasing for 0 < a < 1, they have one unique solution.
- It follows that x = a is the only solution.
- 8. Since arithmetic sequences are of the form $a, a+d, \ldots, a+9d$, we can find the number of 10 element arithmetic sequences by counting the pairs (a, d) such that $a+9d \leq 2007$. This is equivalent to

$$d \leq \frac{2007 - a}{9}$$

If $1 \le a \le 9$, then $d \le 222$, if $10 \le a \le 18$, then $d \le 221$. Similarly every time a increases by 9, d has one less possible value since we are the expression 2007 - a is being divided by 9.

Continuing until $1990 \le a \le 1998$, then $d \le 1$, we have $9(222 + 221 + ... + 1) = 9(\frac{222(1+222)}{2}) = 222777$ total 10 element arithmetic sequences.

Now the probability of a subset of 10 random elements in a random colouring being one colour is $1 \times (\frac{1}{4})^9 = \frac{1}{262144}$. Meaning the expected number of monochromatic arithmetic sequences of length 10 is $\frac{222777}{262144}$. Since the expected number of monochromatic arithmetic sequences of length 10 is less than 1, there must be at least 1 sequence that is not all one colour.

9. Extend the segment AK to the circumcircle of BKLC and call the intersection K', define L' similarly.

Since $\angle AL'B = \angle ACB = \angle ALD$ and $\angle AK'B = \angle BCK = \angle AKD$, we have $\triangle ALD \sim \triangle AL'B(AA)$ and $\triangle ADK \sim ABK'(AA)$.

Now considering the ratio AK : AL, we have

$$(AK : AD) : (AL : AD)$$
$$= (KK' : DB) : (LL' : DB)$$
$$= KK' : LL'$$

Since KLL'L is a trapzium (KL is parallel to K'L' by similar triangles), and is cyclic, it is isosceles and hence KK' = LL'. So AK : Al = KK' : LL' = 1 and thus AK = AL.

