北京市平谷区 2018 年中考统一练习(一) 数学试卷

2018.4

- 老 1. 试卷分为试题和答题卡两部分,所有试题均在答题卡上作答.
- 生 2. 答题前,在答题卡上考生务必将学校、班级、准考证号、姓名填写清楚.
- 须 │3. 把选择题的所选选项填涂在答题卡上;作图题用 2B 铅笔.
- 知 4. 修改时,用塑料橡皮擦干净,不得使用涂改液.请保持卡面清洁,不要折叠.
- 一、选择题(本题共 16 分,每小题 2 分)
 - 第 1-8 题均有四个选项,符合题意的选项只有一个.
- 1. 风和日丽春光好,又是一年舞筝时。放风筝是我国人民非常喜爱的一项户外娱乐活动.下列风筝剪纸作品中,不是轴对称图形的是

2. 下面四幅图中,用量角器测得 ∠AOB 度数是 40°的图是

- 3. 如图,数轴上每相邻两点距离表示 1 个单位,点 A , B 互为相反数,则点 C 表示的数可能是
 - A. 0 B. 1 C. 3 D. 5
- 4. 下图可以折叠成的几何体是
 - A. 三棱柱 B. 圆柱 C. 四棱柱 D. 圆锥

5. 中国有个名句"运筹帷幄之中,决胜千里之 外". 其中的"筹"原意是指《孙子算经》中记 载的"算筹". 算筹是古代用来进行计算的工具, $-=\equiv\equiv\perp\perp\perp\equiv$ 横式 它是将几寸长的小竹棍摆在平面上进行运算,算

筹的摆放形式有纵横两种形式(如右图). 当表示一个多位数时,像阿拉伯计数一样,把各 个数位的数码从左到右排列,但各位数码的筹式需要纵横相间:个位、百位、万位数用纵式 表示; 十位, 千位, 十万位数用横式表示; "0"用空位来代替, 以此类推. 例如 3306 用算筹

Α. В. C. D.

- 6. 一个正多边形的每个内角的度数都等于相邻外角的度数,则该正多边形的边数是
 - B. 4 C. 6 D. 12
- 7. "龟兔赛跑"是同学们熟悉的寓言故事. 如图所示,表示了寓言中的龟、兔的路程S和 时间t的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是
- A. 赛跑中, 兔子共休息了 50 分钟
- B. 乌龟在这次比赛中的平均速度是 0.1 米/分钟
- C. 兔子比乌龟早到达终点 10 分钟
- D. 乌龟追上兔子用了 20 分钟
- 8. 中小学时期是学生身心变化最为明显的时期,这个 时期孩子们的身高变化呈现一定的趋势,7~15岁期间

生子们会经历一个身高发育较迅速的阶段,我们把这个年龄阶段叫做生长速度峰值段,小明 通过上网查阅《2016 年某市儿童体格发育调查表》,了解某市男女生 7~15 岁身高平均值记 录情况,并绘制了如下统计图,并

得出以下结论:

①10 岁之前,同龄的女生的平均身 高一般会略高于男生的平均身高; ②10~12 岁之间,女生达到生长速 度峰值段,身高可能超过同龄男生; ③7~15 岁期间, 男生的平均身高始 终高于女生的平均身高:

④13~15 岁男生身高出现生长速度 峰值段, 男女生身高差距可能逐渐 加大.

以上结论正确的是

- A. (1)(3) B. (2)(3) C. (2)(4)
- D. (3)(4)

二、填空题(本题共16分,每小题2分)

- 9. 二次根式 $\sqrt{x-2}$ 有意义,则 x 的取值范围是______.
- 10. 林业部门要考察某种幼树在一定条件下的移植成活率,下图是这种幼树在移植过程中幼树成活率的统计图:

估计该种幼树在此条件下移植成活的概率为_____(结果精确到 0.01).

- 11. 计算: 2+2+L +2+3×3×L ×3=_____
- 12. 如图,测量小玻璃管口径的量具 ABC 上,AB 长为 10 毫米,AC 被分为 60 等份,如果小管口中 正好对着量具上 20 份处(DE//AB),那么小管口 DE 的长是 毫米.

- 13. 已知: $a^2 + a = 4$,则代数式a(2a+1) (a+2)(a-2)的值是_____.
- 14. 如图, *AB* 是⊙*O* 的直径, *AB* ⊥ 弦 *CD* 于点 *E*, 若 *AB*=10, *CD*=8,则 *BE*=______

15. 如图,在平面直角坐标系 xOy 中, $\triangle OCD$ 可以看作是 $\triangle ABO$ 经过若干次图形的变化 (平移、轴对称、旋转)得到的,写出一种由 $\triangle ABO$ 得到 $\triangle OCD$ 的过程:_____.

16. 下面是"作已知角的角平分线"的尺规作图过程.

已知:如图1,∠*MON*.

求作:射线 OP,使它平分 $\angle MON$.

作法:如图 2,

- (1) 以点 O 为圆心,任意长为半径作弧,交 OM 于点 A,交 ON 于点 B;
- (2) 连结 AB;
- (3) 分别以点 A, B 为圆心,大于 $\frac{1}{2}AB$ 的长为半径作弧,两弧相交于点 P;
- (4) 作射线 OP.

所以,射线 OP 即为所求作的射线.

请回答:该尺规作图的依据是

- 三、解答题(本题共 68 分, 第 17~22 题, 每小题 5 分, 第 23 题 7 分, 第 24 题 6 分, 第 25 题 5 分, 第 26 题 6 分, 第 27 题 7 分, 第 28 题 7 分) 解答应写出文字说明、演算步骤或证明过程.
- 17. 计算: $\left(\frac{1}{3}\right)^{-1} \left(\pi \sqrt{3}\right)^0 + \left|1 \sqrt{3}\right| 2\sin 60^\circ$.

18. 解不等式组 $\begin{cases} 3(x-1) \ge 4x-5, \\ x-1 > \frac{x-5}{3} \end{cases}$,并写出它的所有整数解.

19. 如图, 在 $\triangle ABC$ 中, AB=AC, 点 D 是 BC 边上一点, EF 垂直平分 CD, 交 AC 于点 E, 交 BC 于点 F, 连结 DE, 求证: $DE/\!\!/AB$.

- 20. 关于 x 的一元二次方程 $x^2 + 2x + k 1 = 0$ 有两个不相等的实数根.
 - (1) 求k的取值范围;
 - (2) 当 k 为正整数时,求此时方程的根.
- 21. 如图,在平面直角坐标系 xOy 中,函数 $y = \frac{k}{x} (k \neq 0)$ 的图象与直线 y=x+1 交于点 A(1, a).

- 22. 如图,在 $\Box ABCD$ 中,BF 平分 $\angle ABC$ 交 AD 于点 F, $AE \bot BF$ 于点 O,交 BC 于点 E,连接 EF.
 - (1) 求证: 四边形 ABEF 是菱形;
 - (2) 连接 CF, 若∠ABC=60°, AB=4, AF=2DF, 求 CF 的长.

23. 为了解某区初二年级数学学科期末质量监控情况,进行了抽样调查,过程如下,请将有关问题补充完整.

收集数据

随机抽取甲乙两所学校的20名学生的数学成绩进行分析:

甲	91 81	89	77	86	71	31	97	93	72	91
Y	81	92	85	85	95	88	88	90	44	91
Z	84	93	66	69	76	87	77	82	85	88
	90	88	67	88	91	96	68	97	59	88

整理、描述数据

按如下数据段整理、描述这两组数据

分段 学校	30≤ <i>x</i> ≤39	40≤ <i>x</i> ≤49	50≤ <i>x</i> ≤59	60≤ <i>x</i> ≤69	70≤ <i>x</i> ≤79	80≤ <i>x</i> ≤89	90≤ <i>x</i> ≤100
甲	1	1	0	0	3	7	8
乙							

分析数据

两组数据的平均数、中位数、众数、方差如下表:

统计量 学校	平均数	中位数	众数	方差
甲	81.85	88	91	268.43
乙	81.95	86	m	115.25

经统计,表格中m的值是_

得出结论

- a 若甲学校有 400 名初二学生,估计这次考试成绩 80 分以上人数为__
- b可以推断出_____学校学生的数学水平较高,理由为_

(至少从两个不同的角度说明推断的合理性)

- 24. 如图,以 AB 为直径作 \odot O ,过点 A 作 \odot O 的切线 AC ,连结 BC ,交 \odot O 于点 D ,点 E 是 BC 边的中点,连结 AE .
- (1) 求证: ∠*AEB*=2∠*C*;
- (2) 若 AB=6, $\cos B = \frac{3}{5}$, 求 DE 的长.

25. 如图,在 $\triangle ABC$ 中, $\angle C=60^\circ$,BC=3 厘米,AC=4 厘米,点 P 从点 B 出发,沿 $B\to C\to A$ 以每秒 1 厘米的速度匀速运动到点 A. 设点 P 的运动时间为 x 秒,B、P 两点间的距离为 y 厘米.

小新根据学习函数的经验,对函数 y 随自变量 x 的变化而变化的规律进行了探究.下面是小新的探究过程,请补充完整:

(1) 通过取点、画图、测量,得到了x与y的几组值,如下表:

х	· (s)	0	1	2	3	4	5	6	7
у	(cm)	0	1.0	2.0	3.0	2.7	2.7	m	3.6

经测量 m 的值是___

(保留一位小数).

(2) 建立平面直角坐标系, 描出表格中所有各对对应值为坐标的点, 画出该函数的图象;

- (3) 结合画出的函数图象,解决问题: 在曲线部分的最低点时,在 $\triangle ABC$ 中画出点 P 所在的位置.
- 26. 在平面直角坐标系 xOy 中,抛物线 $y = -x^2 + 2bx 3$ 的对称轴为直线 x = 2.
 - (1) 求 *b* 的值;
 - (2) 在y 轴上有一动点P(0, m),过点P 作垂直y 轴的直线交抛物线于点 $A(x_1, y_1)$, $B(x_2, y_2)$,其中 $x_1 < x_2$.
 - ①当 $x_3 x_1 = 3$ 时,结合函数图象,求出m的值;
 - ②把直线 PB 下方的函数图象,沿直线 PB 向上翻折,图象的其余部分保持不变,得到一个新的图象 W,新图象 W 在 $0 \le x \le 5$ 时, $-4 \le y \le 4$,求 m 的取值范围.

- 27. 在 $\triangle ABC$ 中,AB=AC, $CD \perp BC$ 于点 C,交 $\angle ABC$ 的平分线于点 D,AE 平分 $\angle BAC$ 交 BD 于点 E,过点 E 作 EF // BC 交 AC 于点 F,连接 DF.
- (1) 补全图 1;
- (2) 如图 1, 当∠*BAC*=90° 时,
 - ①求证: BE=DE;
 - ②写出判断 DF与 AB 的位置关系的思路(不用写出证明过程);
- (3) 如图 2, 当 $\angle BAC = \alpha$ 时,直接写出 α , DF, AE 的关系.

28. 在平面直角坐标系 xOy 中,点 M 的坐标为 $\left(x_1,y_1\right)$,点 N 的坐标为 $\left(x_2,y_2\right)$,且 $x_1\neq x_2$, $y_1\neq y_2$,以 MN 为边构造菱形,若该菱形的两条对角线分别平行于 x 轴,y 轴,则称该菱形为边的"坐标菱形".

- (1) 已知点 A (2,0), B (0,2 $\sqrt{3}$), 则以 AB 为边的"坐标菱形"的最小内角为_____;
- (2)若点 C (1,2),点 D 在直线 y=5 上,以 CD 为边的"坐标菱形"为正方形,求直线 CD 表达式;
- (3) $\odot O$ 的半径为 $\sqrt{2}$,点 P 的坐标为(3,m) .若在 $\odot O$ 上存在一点 Q ,使得以 QP 为边的 "坐标菱形"为正方形,求 m 的取值范围.

北京市平谷区 2018 年中考统一练习(一) 数学试卷参考答案及评分标准

2018.04

一、选择题(本题共16分,每小题2分)

题号	1	2	3	4	5	6	7	8
答案	В	A	С	A	С	В	D	C

二、填空题(本题共16分,每小题2分)

9.
$$x \ge 2$$
; 10. 0.88; 11. $2m+3^n$; 12. $\frac{10}{3}$; 13. 8; 14. 2;

- 15. 答案不唯一,如:将 $\triangle ABO$ 沿x轴向下翻折,在沿x轴向左平移 2 个单位长度得到 $\triangle OCD$.
- 16. 答案不唯一: 到线段两端点距离相等的点在线段的垂直平分线上; 等腰三角形三线合一.
- 三、解答题(本题共 68 分, 第 17-22 题, 每小题 5 分, 第 23 题 7 分, 第 24 题 6 分, 第 25 题 5 分, 第 26 题 6 分, 第 27 题 7 分, 第 28 题 7 分) 解答应写出文字说明、演算步骤或证明过程.

18.
$$\text{M}: \begin{cases} 3(x-1) \ge 4x - 5 \text{ } \\ x - 1 > \frac{x - 5}{3} \end{cases} \text{ } 2$$

∴原不等式组的解集为
$$-1 < x \le 2$$
.4

$$\therefore \angle EDC = \angle B.$$
 4

20.	解:	(1)	:关于 x 的一元二次方程有两个不相等的实数根.
			$\therefore \Delta = 2^2 - 4(k-1) > 0 \dots 1$
			=8-4k>0.
		(2)	∵ k 为正整数,
			· k / 5 L 正 3
			解方程 $x^2 + 2x = 0$,得 $x_1 = 0$, $x_2 = -2$.
	ATI		
21.	辩:		∵ 直线 <i>y=x</i> +1 经过点 <i>A</i> (1, <i>a</i>),
			∴ a=2
			A (1,2).
			\therefore 函数 $y = \frac{k}{x} (k \neq 0)$ 的图象经过点 $A(1, 2)$,
		(2)	··· // 2:
		(2)	点 <i>P</i> 的坐标(2,1),(-1,-2),(-2,-1)5
22	(1)	证明	: ∵BF 平分∠ABC,
22.	(1)	ит. 91	$\therefore \angle ABF = \angle CBF. \dots \dots$
			ABCD,
			$\therefore AD /\!\!/ BC$.
			$\therefore \angle AFB = \angle CBF.$
			$\therefore \angle ABF = \angle AFB$.
			$\therefore AB=AF$.
			$AE \perp BF$,
			$\therefore \angle ABF + \angle BAO = \angle CBF + \angle BEO = 90^{\circ}$.
			$\therefore \angle BAO = \angle BEO.$ $B \qquad G \qquad E \qquad C$
			$\therefore AB=BE$.
			:AF=BE.
			∴四边形 ABEF 是平行四边形.
		•	∴ □ABEF 是菱形 2
	()	2) 解	: : AD = BC, AF = BE,
			∴DF=CE.
		-	$\therefore BE=2CE$. $\therefore AB=4$,
			∴ BE=4.
			∴CE=2.
,		7	过点 <i>A</i> 作 <i>AG</i> ⊥ <i>BC</i> 于点 <i>G</i>
	>>		$\therefore \angle ABC = 60^{\circ}, AB = BE,$
	Y		$\therefore \triangle ABE$ 是等边三角形.
			$\therefore BG = GE = 2.$
			$\therefore AF = CG = 4.$ 4
			∴四边形 AGCF 是平行四边形.
			∴ □AGCF 是矩形.
			$\therefore AG = CF$.
			在 $\triangle ABG$ 中, $\angle ABC$ = 60° , AB = 4 ,
			$\therefore AG = 2\sqrt{3}$.
			$\therefore CF = 2\sqrt{3} . \qquad \qquad \qquad \qquad \qquad \qquad \qquad$
			··CI – 2 Ŋ J · · · · · · · · · · · · · · · · · ·

23. 整理、描述数据

分段 学校	30≤ <i>x</i> ≤39	40≤ <i>x</i> ≤49	50≤ <i>x</i> ≤59	60≤ <i>x</i> ≤69	70≤ <i>x</i> ≤79	80≤ <i>x</i> ≤89	90≤ <i>x</i> ≤100
甲	1	1	0	0	3	7	8
乙	0	0	1	4	2	8	5

分析数据

得出结论

- a 若甲学校有400名初二学生,估计这次考试成绩80分以上人数为_300_.....4
- *b* 答案不唯一,理由须支撑推断结论......7
- 24. (1) 证明: : AC 是⊙O 的切线,

 - :点 $E \neq BC$ 边的中点,
 - AE=EC.

 - $\therefore \angle AEB = \angle C + \angle EAC$,
 - ∴ ∠AEB=2∠C.3
 - (2) 解: 连结 AD.
 - ∵*AB* 为直径作⊙*O*,
 - ∴∠*ABD*=90°.

$$\therefore AB = 6, \quad \cos B = \frac{3}{5}$$

$$\therefore BD = \frac{18}{5} . \dots 4$$

在 Rt $\triangle ABC$ 中, AB=6, $\cos B = \frac{3}{5}$,

- :点 $E \neq BC$ 边的中点,
- ∴*BE*=5.5

$$\therefore DE = \frac{7}{5} . \dots$$

- - (2) ① : 抛物线的表达式为 $y = -x^2 + 4x 3$.
 - $A(x_1, y), B(x_2, y),$
 - \therefore 直线 AB 平行 x 轴.
 - $\therefore x_2 x_1 = 3,$
 - ∴*AB*=3.
 - ∵对称轴为x=2,

$$\therefore AC = \frac{1}{2} . \dots 2$$

$$\therefore \stackrel{\triangle}{=} x = \frac{1}{2} \text{ iff}, \quad y = m = -\frac{5}{4}. \quad \cdots \qquad 3$$

- ②当 y=m=-4 时, $0 \le x \le 5$ 时, $-4 \le y \le 1$; …… 4 当 y=m=-2 时, $0 \le x \le 5$ 时, $-2 \le y \le 4$; …… 5
 - ∴ m 的取值范围为 $-4 \le m \le -2$. ·············6

27. 解: (1) 补全图 1;1

- (2) ①延长 AE, 交 BC 于点 H. ······2
 - ∵AB=AC, AE 平分∠BAC,
 - ∴ $AH \bot BC ∓ H$, BH=HC.
 - $:: CD \perp BC$ 于点 C,
 - ∴EH // CD.
 - ∴BE=DE.3
 - ②延长 FE, 交 AB 于点 G.
 - 由 AB=AC,得 $\angle ABC=\angle ACB$.
 - 由 EF // BC, 得 ∠AGF=∠AFG.
 - 得 AG=AF.
 - 由等腰三角形三线合一得 GE=EF. ······4
 - 由 $\angle GEB$ = $\angle FED$,可证 $\triangle BEG$ $\cong \triangle DEF$.
 - 可得 ∠ABE= ∠FDE. ······5
 - 从而可证得 DF // AB. ······6
- (3) $\frac{DF}{AE} = \tan \frac{\alpha}{2} . \dots 7$

- - (2) ∵以 *CD* 为边的"坐标菱形"为正方形, ∴直线 *CD* 与直线 *y*=5 的夹角是 45°. 过点 *C* 作 *CE* ⊥ *DE* 于 *E*.

- ∴D (4,5) 或(-2,5).3
- ∴直线 *CD* 的表达式为 y = x + 1或 y = -x + 3.5

