Отчет по лабораторной работе "Атака на алгоритм шифрования RSA посредством метода Ферма" по дисциплине "Информационная безопасность" Вариант 4

Выполнил: студент группы Р34131 Бусыгин Дмитрий Алексеевич Преподаватель: Маркина Татьяна Анатольевна

Цель работы	3
Вариант	3
Выполнение в программе BCalc.exe	3
Результат работы программы BCalc.exe	4

Цель работы

Изучить атаку на алгоритм шифрования RSA посредством метода Ферма.

Вариант

No	Модуль, N	Экспонента, е	Блок зашифрованного текста, С
4	89318473363897	2227661	3403106899606 26746900101177 67769260919924 77873792354218 15782947730235 15100267747684 28877721728826 62898555111378 4989704651236 55293402838380 4108112294245 8492269964172

Выполнение в программе BCalc.exe

- 1. Вычисляем n = [sqrt(N)] + 1. Получаем число **9450846**, но в первой строке таблицы видим сообщение «[error]». Это свидетельствует о том, что N не является квадратом целого числа.
- 2. t1 = n + 1. Возводим число t1 в квадрат: $t1^2 = 89318509017409$. Вычисляем $w1 = t1^2 N = 35653512$. Проверяем, является ли w1 квадратом целого числа: A:=w1, B:=2, нажимаем $w2 = A^1/2$ » => 8 первой строке таблицы появляется сообщение $ext{"[error]}$ », следовательно проделываем $ext{"" n}$. 2 заново $ext{"" n}$ с $ext{"" n}$ ч так далее, пока не найдем, что некое $ext{"" w}$ извляется квадратом целого числа.
- 3. При вычислении квадратного корня w5 первая строка таблицы остается пустой, а D = sqrt(w5) = 10548, что свидетельствует об успехе факторизации. t5 = 9450851.
- 4. Вычисляем p = t5 + sqrt(w5) = 9461399 и q = t5 sqrt(w5) = 9440303. Вычисляем Phi(N) = (p-1)(q-1) = 89318454462196. Вычисляем d, как обратный к e: A:= e, B:= -1, C:= Phi(N), нажимаем «D = A^B mod C» => D = d = 15910526683025.
- 5. Производим дешифрацию шифрблока, полученное из 12 блоков сообщение: *одномаршрутный (single route) и всемаршрутный (а*

Результат работы программы BCalc.exe

Исходные данные и расчет

Дешифрация сообщения

