CWRU DSCI353-353M-453: 02b Intro to LinRegr-ISLR2

Profs: R. H. French, L. S. Bruckman, P. Leu, K. Davis, S. Cirlos

TAs: W. Oltjen, K. Hernandez, M. Li, M. Li, D. Colvin

26 January, 2023

Contents

2.2.2.1 Class R	eadings, Assignments, Syllabus Topics				
2.2.2.1.1	Reading, Lab Exercises, SemProjects				
2.2.2.1.2	Textbooks				
2.2.2.2 Syllabu	s 2				
2.2.2.2.1	Tidyverse Cheatsheets, Functions and Reading Your Code 2				
2.2.2.3 ISLR C	hapter 2 Regression and IntroR Lab Excerise				
2.2.2.3.1	Regression is the case of supervised learning				
2.2.2.4 Functio	n Notation for a Predictive model				
2.2.2.4.1	Variables				
2.2.2.4.2	Expected Values of a Predictive Model				
2.2.2.4.3	The ideal or optimal predictor of Y				
2.2.2.4.4	An estimate (one version) of $f(X)$ 6				
2.2.2.4.5	And then we are left with the irreducible error				
2.2.2.4.6	So by better model building				
2.2.2.5 Overview of the Regression Function and its nature					
2.2.2.5.1	How do we estimate the function $f(X)$? 6				
2.2.2.6 The Cu	rse of Dimensionality				
2.2.2.7 Parame	tric and Structured Models				
2.2.2.7.1	Some tradeoffs in regression modeling				
2.2.2.7.2	Interpretability vs Flexibility				
2.2.2.8 Assessin	ng Model Accuracy				
	Have to use training (Tr) and testing (Te) datasets				
	as vs. Variance Trade-off				
	How does all this play out in Classification Problems				
	ns				

License: CC-BY-SA 4.0

2.2.2.1 Class Readings, Assignments, Syllabus Topics

2.2.2.1.1 Reading, Lab Exercises, SemProjects

- Readings:
 - For today: DL01, DL02, (R4DS7-8)
 - For next class: DL03, ISLR3
- Laboratory Exercises:
 - LE1 Given out today
 - LE1 is due on Thursday Feb. 2nd
- Office Hours: (Class Canvas Calendar for Zoom Link)

- Wednesdays @ 4:00 PM to 5:00 PM
- Saturdays @ 3:00 PM to 4:00 PM
- Office Hours are on Zoom, and recorded
- Semester Projects
 - DSCI 453 Students Biweekly Updates Due
 - * Update #1 is Due ** This Friday **
 - DSCI 453 Students
 - * Next Report Out #1 is Due ** Feb. '17th **
 - All DSCI 353/353M/453, E1453/2453 Students:
 - * Peer Grading of Report Out #1 is Due ** **
 - Exams
 - * MidTerm: Thursday March 9th, in class or remote, 11:30 12:45 PM
 - * Final: Thursday May 4th, 2023, 12:00PM 3:00PM, Nord 356 or remote

2.2.2.1.2 Textbooks

- Introduction to R and Data Science
 - For R, Coding, Inferential Statistics
 - * Peng: R Programming for Data Science
 - * Peng: Exploratory Data Analysis with R

Textbooks for this class

- OIS = Diez, Barr, Çetinkaya-Runde: Open Intro Stat v4
- R4DS = Wickham, Grolemund: R for Data Science

Textbooks for DSCI353/353M/453, And in your Repo now

- ISLR = James, Witten, Hastie, Tibshirani: Intro to Statistical Learning with R
- ESL = Trevor Hastie, Tibshirani, Friedman: Elements of Statistical Learning
- DLwR = Chollet, Allaire: Deep Learning with R

Magazine Articles about Deep Learning

• DL1 to DL6 are "Deep Learning" articles in 3-readings/2-articles/

2.2.2.2 Syllabus

2.2.2.2.1 Tidyverse Cheatsheets, Functions and Reading Your Code

- Look at the Tidyverse Cheatsheet
 - Tidyverse For Beginners Cheatsheet
 - * In the Git/20s-dsci353-353m-453-prof/3-readings/3-CheatSheets/ folder
 - Data Wrangling with dplyr and tidyr Cheatsheet

Tidyverse Functions & Conventions

- The pipe operator $\mbox{\ensuremath{\%}}\mbox{\ensuremath{\%}}$
- Use dplyr::filter() to subset data row-wise.
- Use dplyr::arrange() to sort the observations in a data frame
- Use dplyr::mutate() to update or create new columns of a data frame
- Use ${\tt dplyr::summarize()}$ to turn many observations into a single data point
- Use dplyr::arrange() to change the ordering of the rows of a data frame
- Use dplyr::select() to choose variables from a tibble,
 - * keeps only variables you mention
- Use dplyr::rename() keeps all the variables and renames variables

Day:Date	Foundation	Practicum	Readings(optional)	Due(optional)
w01a:Tu:1/17/23	Markov Cluster	R, Rstudio IDE, Git		(LE0)
w01b:Th:1/19/23	Stat. Learning, Ap-	Bash, Git, Class Repo	ISLR1,2 (R4DS-1-3)	
	proach			
w02a:Tu:1/24/23	Lin. Regr. Bias-Var.	SemProjs; Regr. Ovrvw	ISLR3,(R4DS-4-6)	(LE0:Due) LE1
w02b:Th:1/26/23	Train/Test, Bias vs. Vari.	Tidyverse Review	DL01 DL02 (R4DS-7,8)	
w02Pr:Fr:1/27/23	ADD DROP	DEADLINE		453 Update 1
w03a:Tu:1/31/23	Logistic Regr. Classif	Tidy Wrangling	DL03,ISLR4	
w03b:Th:2/2/23	LDA	Multi-level Mod.	DL04, DL05	LE1:Due, LE2
w04a:Tu:2/7/23	Resample Cross-Valid.	Multilevel Mod.	ISLR5	
w04b:Th:2/9/23	Bootstrap	Mixed Effects		
w04Pr:Fr:2/10/23				453 Update 2
w05a:Tu:2/14/23	Subset Selec., Shrink.	Bootstrap	ISLR6 (R4DS9-16)	LE2:Due, LE3
w05b:Th:2/16/23	Mod. Selec. Dim. Red.	Clustering, ggplot2	DL06	
w05Pr:Fr:2/17/23				453 Rep. Out 1
w06a:Tu:2/21/23	Beyond Linear Modls	Feature Select., Caret	ISLR7, DL07	
w06b:Th:2/23/23	PCA, PCR, FA	Tidy Modeling	ISLR10(R4DS22-25)	LE3:Due, LE4
w06Pr:Fr:2/24/23				453 Update 3
w07a:Tu:2/28/23	Dec. Trees, Rand. For-	Machine Learning	ISLR8, DL08,09	
, ,	est.			
w07b:Th:3/2/23	MidTerm Review, SVM	SVM, SVR, ROC	ISLR9 (R4DS26-30)	Peer Review 1
w08a:Tu:3/7/23	R-Keras/TensorFlow2	Perceptron, Neural Nets	ISLR10	
w08b:Th:3/9/23	MIDTERM EXAM		DL10,11	$\mathbf{LE4:Due}\ \mathrm{LE5}$
w08Pr:Fr:3/10/23				453 Update 4
Tu:3/14/23	SPRING	BREAK	ISLR10	
Th:3/16/23	SPRING	BREAK	DL12,13	
w09a:Tu:3/21/23	Deep Learning	TF2 Keras Intro	Pocket Perceptron	ISLR10, DLR3
w09b:Th:3/23/23	Computer Vision, CNN	CNN w/TF2, Overfit	DLR4	
w09Pr:Fr:3/24/23		, ,		453 Rep. Out 2
w10a:Tu:3/28/23	Deep Learn Intro	NN Types	DLR5	
w10b:Th:3/30/23	DL CNN,RNN ImageNet	NN Types, CNN wTF2	Hinton ImageNet	
w10Pr:Fr:3/31/23				453 Upd.5 &
				PrRev 2
Sa:4/1/23				$\mathbf{LE5:}\mathbf{Due}\;\mathrm{LE6}$
w11a:Tu:4/4/23	Fitting NNs	AUC,Prec,Recall Fruit		
w11b:Th:4/6/23	NLP, Graphs & ML		LeCun DL Rev. 2015	
w12a:Tu:4/11/23	Graphs & ML	NLP with sequences	DLR6	
w12b:Th:4/13/23	NLP w attention	Graph Repr Proc Wrk-		$\mathbf{LE6:Due}\;\mathrm{LE7}$
. ,		Пw		
w13a:Tu:4/18/23	DL Frameworks	Explaining DL w Lime		
w13b:Th:4/20/23	Linux Distros XGBoost	Explain Preds	Deep Dream	
w13Pr:Fr:4/21/23		-	-	453 Rep. Out 3
				Due
w14a:Tu:4/25/23	Tranformers			
w14b:Th:4/27/23	Final Exam Review	Torch NN & DeepLearn		LE7:Due
w14Pr:Fr:4/28/23				Peer Rev 3 Due
	FINAL EXAM	Th. 5/4/23, 12-3pm	Nord 356 & Zoom	
	1		i I	
	453 Final PDF Report	Fr. 4/29, 11:59pm		

 $Table\ 1:\ DSCI353-353M-453\ Weekly\ Syllabus.\ R4DS-x.y,\ OISx.y,\ ISLRx.y,\ DLGBx.y\ refers\ to\ chapters\ and\ sections\ assigned\ as\ reading\ in\ our\ textbooks.\ DLx\ are\ deep\ learning\ articles.$

Figure 1: Modeling, Prediction and Machine Learning Syllabus

- * rename(iris, petal length = Petal.Length)
- These can be combined using dplyr::group_by()
 - * which lets you perform operations "by group".
- The %in% matches conditions provided by a vector using the c() function
- The **forcats** package has tidyverse functions
 - * for factors (categorical variables)
- The **readr** package has tidyverse functions
 - * to read_..., melt_... col_..., parse_... data and objects

Reading Your Code: Whenever you see

- The assignment operator <-, think "gets"
- The pipe operator, %>%, think "then"

2.2.2.3 ISLR Chapter 2 Regression and IntroR Lab Excerise

- From Hastie and Tibshirani
 - They have good notation
 - And a good intro to R

2.2.2.3.1 Regression is the case of supervised learning

- Where we have a quantitative response
 - that is associated with the predictors
 - And we want to develop a predictive model
 - * that relates predictors with response

2.2.2.4 Function Notation for a Predictive model

- Some notation for predictive models
 - Response Y which we want to predict
 - And the Predictors we will use are $\mathbf{X} = X_1 + X_2 + X_3$
 - * when we have P number of predictors,
 - · and P = 3 in this example
 - * where the predictors X is a vector
 - * And **X** is a column vector containing (X_1, X_2, X_3)
 - * Which has 3 components $X_1 + X_2 + X_3$
 - * We also have to have an error term ϵ
 - Our predictive model will then be
 - $* Y = f(\mathbf{X}) + \epsilon$
 - $-\epsilon$ error term is a catch all
 - * captures measurement error, and other discrepancies
 - * we can never model something perfectly
 - And for the predictor X
 - * A single instance of X is x
 - * i.e. (x_1, x_2, x_3)
 - * three specific values of the 3 components
 - * of 1 individual observation, i.e. x
 - * of the predictor X

2.2.2.4.1 Variables

- Independent Variables X are called
 - independent variables
 - predictors

- exogenous variables
- features (this is general CS term)
- \bullet Dependent Variables \mathbf{Y} are called
 - dependent variables
 - responses
 - endogenous variables

In some cases, such as network models

- Some variables may be both.
 - independent, predictors
 - and also dependent response
- Such as in our group's netSEM structural equation models
 - take a look at SEM package

```
# install.packages("sem")
library(sem)
help(sem)
# install.packages("lavaan")
library(lavaan)
## This is lavaan 0.6-13
## lavaan is FREE software! Please report any bugs.
##
## Attaching package: 'lavaan'
## The following objects are masked from 'package:sem':
##
##
       cfa, sem
help(lavaan)
# install.packages("netSEM")
library(netSEM)
help(netSEM)
```

2.2.2.4.2 Expected Values of a Predictive Model

• Now, once you have a predictive model

How well does it do, fitting your actual response?

- Remember a function is by definition single-valued
 - for a given value x_1 of the independent variable X
 - there is only dependent value y_1 for the dependent variable Y
- Therefore it can never actually predict
 - the exact observed value of the response
- this is why we keep the error term ϵ explicit

The Expected Value of a Regression Function

- Our regression function is $Y = f(\mathbf{X}) + \epsilon$
- Gives the Expected value of the response for X=4

Notation for this is:

$$f(4) = E(Y|X=4)$$

Or for our vector \mathbf{X}

$$f(x) = f(x_1, x_2, x_3) = E(Y|X_1 = x_1, X_2 = x_2, X_3 = x_3)$$

2.2.2.4.3 The ideal or optimal predictor of Y

- Minimizes the loss function
 - between the function and the data
- For example minimizing the sum of squared errors

2.2.2.4.4 An estimate (one version) of f(X)

- is called $\hat{f}(X)$
- since we could determine many versions of f(X)

And then we'll determine the best one of these $\hat{f}(X)$ functions

• That reduces the loss function

2.2.2.4.5 And then we are left with the irreducible error

• Which is just the variance of the errors.

2.2.2.4.6 So by better model building

- we can reduce the reducible error
- and we're left with the irreducible error.
 - Which I think of as the true "noise" in the data

2.2.2.5 Overview of the Regression Function and its nature

2.2.2.5.1 How do we estimate the function f(X)?

- We can perform the loss function minimization, at each specific value x of X.
 - Or at least in the neighborhood of x,
 - * which is denoted by $\mathcal{N}(x)$
 - * and called Nearest Neighbor Averaging

Note that the regression function f(X) is not an algebraic function

- We didn't guesstimate it should be quadratic or some such.
- It is a numerical function defined for each value x of X

2.2.2.6 The Curse of Dimensionality

- When we are doing our nearest neighborhood averaging
 - in high dimensional datasets
 - we are hit by the curse of dimensionality
 - * We can't define who are nearest neighbors
 - * Because they tend to be far away in high dimensions

This hits us in many places of Prediction, Modeling and Statistical Learning

• The Curse of Dimensionality

The regression function f(x)

- Is also defined for vector X; e.g. $f(x) = f(x_1, x_2, x_3) = E(Y|X_1 = x_1, X_2 = x_2, X_3 = x_3)$
- Is the *ideal* or *optimal* predictor of Y with regard to mean-squared prediction error: f(x) = E(Y|X=x) is the function that minimizes $E[(Y-g(X))^2|X=x]$ over all functions g at all points X=x.
- $\epsilon = Y f(x)$ is the *irreducible* error i.e. even if we knew f(x), we would still make errors in prediction, since at each X = x there is typically a distribution of possible Y values.
- For any estimate $\hat{f}(x)$ of f(x), we have

$$E[(Y - \hat{f}(X))^{2} | X = x] = \underbrace{[f(x) - \hat{f}(x)]^{2}}_{Reducible} + \underbrace{\underbrace{\operatorname{Var}(\epsilon)}_{Irreducible}}_{Irreducible}$$

Figure 2: the regression function and its nature

How to estimate f

- Typically we have few if any data points with X = 4 exactly.
- So we cannot compute E(Y|X=x)!
- Relax the definition and let

$$\hat{f}(x) = \text{Ave}(Y|X \in \mathcal{N}(x))$$

where $\mathcal{N}(x)$ is some neighborhood of x.

Figure 3: how to determine the regression function f(X)

2.2.2.7 Parametric and Structured Models

- One way to get around the curse of dimensionality,
 - Use Parametric Models

$$f_l(X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$

Where there are p+1 parameters in the model

• Which are estimated by fitting the model to the data

Estimated values of a parameter β

• are denoted as $\hat{\beta}$

A linear model $\hat{f}_L(X) = \hat{\beta}_0 + \hat{\beta}_1 X$ gives a reasonable fit here

A quadratic model $\hat{f}_Q(X) = \hat{\beta}_0 + \hat{\beta}_1 X + \hat{\beta}_2 X^2$ fits slightly better.

Figure 4: Examples of Parametric Models

2.2.2.7.1 Some tradeoffs in regression modeling

- Prediction accuracy versus interpretability.
 - Linear models are easy to interpret;
 - thin-plate splines are not.

- Good fit versus over-fit or under-fit.
 - How do we know when the fit is just right?
- Parsimony versus black-box.
 - We often prefer a simpler model
 - * involving fewer variables
 - Over a black-box predictor
 - * involving them all.

2.2.2.7.2 Interpretability vs Flexibility

- Here are some of the approaches we'll look at this semester
 - Simpler models could be more interpretable
 - * Or could be too naive
 - Flexibility makes for good fits
 - * But can lead to overfitting

Figure 5: Interpretability vs Flexibility

2.2.2.8 Assessing Model Accuracy

2.2.2.8.1 Have to use training (Tr) and testing (Te) datasets

• To determine the best predictive model

2.2.2.9 The Bias vs. Variance Trade-off

• The hat is the estimated value of something. $\hat{f}(X)$

Assessing Model Accuracy

Suppose we fit a model $\hat{f}(x)$ to some training data $Tr = \{x_i, y_i\}_1^N$, and we wish to see how well it performs.

 We could compute the average squared prediction error over Tr:

$$MSE_{\mathsf{Tr}} = Ave_{i \in \mathsf{Tr}} [y_i - \hat{f}(x_i)]^2$$

This may be biased toward more overfit models.

• Instead we should, if possible, compute it using fresh test data $Te = \{x_i, y_i\}_1^M$:

$$MSE_{Te} = Ave_{i \in Te}[y_i - \hat{f}(x_i)]^2$$

Figure 6: Assessing Model Accuracy

Bias-Variance Trade-off

Suppose we have fit a model $\hat{f}(x)$ to some training data Tr, and let (x_0, y_0) be a test observation drawn from the population. If the true model is $Y = f(X) + \epsilon$ (with f(x) = E(Y|X = x)), then

$$E\left(y_0 - \hat{f}(x_0)\right)^2 = \operatorname{Var}(\hat{f}(x_0)) + \left[\operatorname{Bias}(\hat{f}(x_0))\right]^2 + \operatorname{Var}(\epsilon).$$

The expectation averages over the variability of y_0 as well as the variability in Tr. Note that $\operatorname{Bias}(\hat{f}(x_0)) = E[\hat{f}(x_0)] - f(x_0)$.

Typically as the *flexibility* of \hat{f} increases, its variance increases, and its bias decreases. So choosing the flexibility based on average test error amounts to a *bias-variance trade-off*.

Figure 7: Bias vs. Variance Trade-off

- We can see the variance of $\hat{f}(X)$
- And the bias in $\hat{f}(X)$

Choosing the flexibility of your fitting function

- (i.e the number of predictors, or coefficients, in your model function)
- based on average test error
- amounts to what we call a bias-variance trade-off

And we use training datasets and testing datasets

- which we apply our model to
- to determine the optimal tradeoff we should use
- for a specific problem and model

Bias-Variance Trade-off

Suppose we have fit a model $\hat{f}(x)$ to some training data Tr, and let (x_0, y_0) be a test observation drawn from the population. If the true model is $Y = f(X) + \epsilon$ (with f(x) = E(Y|X = x)), then

$$E(y_0 - \hat{f}(x_0))^2 = Var(\hat{f}(x_0)) + [Bias(\hat{f}(x_0))]^2 + Var(\epsilon).$$

The expectation averages over the variability of y_0 as well as the variability in Tr. Note that $\operatorname{Bias}(\hat{f}(x_0)) = E[\hat{f}(x_0)] - f(x_0)$.

Typically as the *flexibility* of \hat{f} increases, its variance increases, and its bias decreases. So choosing the flexibility based on average test error amounts to a *bias-variance trade-off*.

Figure 8: Bias vs. Variance in a Training & Testing Framework

2.2.2.9.1 How does all this play out in Classification Problems

• As opposed to Regression Problems, which we just discussed

2.2.2.10 Citations

- R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, 2014..
- G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning: 2nd Ed., with Applications in R, 2nd ed. 2021 edition. New York: Springer, 2021.
- Abbass Al Sharif. "Applied Modern Statistical Learning Techniques." [Abbass-Al-Sharif. Accessed January 17, 2016.(http://www.alsharif.info/).

- Diez, David M., Christopher D. Barr, and Mine Çetinkaya-Rundel. OpenIntro Statistics: Third Edition. 3 edition. S.l.: OpenIntro, Inc., 2015.
- Mayor, Eric. Learning Predictive Analytics with R. Packt Publishing ebooks, 2015.