

COMELEC department

UE COM105

Exercise 7

Exam of Year 2015/2016

Duration: 1h30 - 3 problems - Open book exam, no electronic devices allowed

Problem 1 : Error correcting codes (5 points)

Consider the linear code defined by the following generator matrix

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}.$$

Questions:

- 1. (1 pt) Find a parity check matrix for this code. Find the values of n and k.
- 2. (1 pt) The minimum distance d_{\min} of this code is 3. How many errors can it correct? And how many errors can it detect?
- 3. (1 pt) The code is used on a BSC. If the channel changes only the bit at position 4, what is the syndrome of the received word?
- 4. (1 pt) We build a new code by removing one of the columns of H. Find n and k of the new code. Is the minimum distance of the new code « greater or equal » or « smaller or equal » to the minimum distance of the original code?
- 5. (1 pt) We build a new code by removing one of the rows of H. Is the minimum distance of the new code « greater or equal » or « smaller or equal » to the minimum distance of the original code?

Problem 2 : Information theory (5 points)

We consider a DMC with the following channel diagram: where p is a real constant taking value in the interval [0, 1].

Questions:

- 1. (1 pt) Let p = 0. For this special case, redraw the diagram of the channel and find its capacity.
- 2. (1 pt) Let p = 1. For this special case, redraw the diagram of the channel and find its capacity.
- 3. (1 pt) For an arbitrary $p \in (0,1)$ and for X following a Bernoulli-1/2 distribution, find H(Y|X=0), H(Y|X=1) and H(Y|X).
- 4. (1 pt) Note that for an arbitrary $p \in (0,1)$ and for X following a Bernoulli-1/2 distribution, $H(Y) = 1 + H_b(\frac{1-p}{2})$. Show that, for any $p \in (0,1)$, the channel capacity satisfies the inequality

$$C \geq H_{\mathsf{b}}\left(\frac{1-p}{2}\right) - \frac{1}{2}H_{\mathsf{b}}\left(1-p\right).$$

5. (1 pt) Find a finite upper bound on the channel capacity.

Problem 3: Modulations (6 points)

We consider a system with **two transmit antennas** and **one receive antenna**, where we study two different ways of assigning the transmitted symbols $s(1), s(2), \ldots, s(N)$ (supposed i.i.d., uniform over $\{-A, A\}$ and N even) to the transmit antennas.

1) Naive communication system: The two transmit antennas send the same symbol. Consequently, the sequence $z(1), \ldots, z(N)$ observed at the receiver is given by

$$z(n) = h_1 s(n) + h_2 s(n) + w(n), \qquad n = 1, \dots, N,$$
 (1)

where

- h_1 and h_2 are constant non-zero coefficients 1 ,
- w(n) is a sequence of i.i.d. Gaussian noise of mean zero and variance $N_0/2$.

Questions:

- 1. (1 pt) Find the optimal detector, that is, the one that minimizes the symbol error probability.
- 2. (1 pt) Find the minimum error probability expressed in terms of h_1 , h_2 , E_b and N_0 .
- **2)** Alamouti communication system: The two transmit antennas send at odd time slots the two different symbols s (from antenna 1) and \tilde{s} (from antenna 2) and at even time slots the two symbols \tilde{s} (from antenna 1) and -s (from antenna 2). Consequently, the receiver observes $z(1), \ldots, z(N)$ where for $k = 1, \ldots, N/2$:

$$z(2k-1) = h_1 s(2k-1) + h_2 s(2k) + w(2k-1),$$

and

$$z(2k) = h_1 s(2k) - h_2 s(2k-1) + w(2k).$$

Each symbol s(n) contributes thus to two consecutive symbols of the sequence $z(1), \ldots, z(N)$.

Questions:

3. (1 pt) Show that for each k, from z(2k-1) and z(2k) it is possible to compute

$$\tilde{z}(2k-1) = (h_1^2 + h_2^2)s(2k-1) + \tilde{w}(2k-1)$$

and

$$\tilde{z}(2k) = (h_1^2 + h_2^2)s(2k) + \tilde{w}(2k),$$

where $\tilde{w}(n)$ is a noise sequence that needs to be described.

^{1.} In practice, h_1 represents the channel between the receiver and the first transmit antenna, while h_2 represents the channel between the receiver and the second transmit antenna

- 4. $(1 \ pt)$ From the sequence $\tilde{z}(1), \ldots, \tilde{z}(N)$, find the optimal detector that minimizes the symbol error probability. To do that, start by showing that the sequence $\tilde{w}(n)$ is an i.i.d. Gaussian sequence of mean zero and variance equal to $(h_1^2 + h_2^2)N_0/2$.
- 5. (1 pt) Find E_b . Find the minimum error probability that should be expressed in terms of h_1 , h_2 , E_b and N_0 .
- 6. (1 pt) Which one of the two systems would you use? What is the difference in RSB between the Alamouti system and the Naive system?