Manual Runge-Kutta.

Below is a table solving the differential equation

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -1.2x + 7e^{-0.3t}$$

for
$$t = [0, 1.5]$$
s, $h = 0.5$ s, $x(t = 0) = 3$.

t	k_1	k_2	k_3	k_4	x	Analytic Difference
0	1.7	0.9371	1.166	0.5129	3	0
0.5	0.4541	0.1001	-0.08934	4.4614	4.264	0.1917
1	-0.08374	-0.2460	-0.1973	-0.3265	4.461	0.1381
1.5	-0.2955	-0.3681	-0.3463	-0.3986	4.212	0.04243
2					3.8	-0.0351