Mathematische Grundlagen/Grundlagen der Mathematik

Bitte lesen Sie die folgenden Hinweise sorgfältig durch:

- 1. Prüfen Sie Ihre Klausur auf Vollständigkeit.
- Bearbeiten Sie jede Aufgabe auf dem zur Aufgabe gehörigen Blatt. Wenn nötig, dürfen Sie auch die Rückseite verwenden. Dies ist dann auf dem entsprechenden Aufgabenblatt deutlich kenntlich zu machen.
- 3. Geben Sie numerische Ergebnisse stets ganzzahlig beziehungsweise durch Brüche an (keine Dezimalzahlen). Eventuell auftretende Wurzeln sollen nur aufgelöst werden, wenn dies ganzzahlig möglich ist.
- 4. Die Klausur ist geheftet, in geordneter Reihenfolge wie bei der Ausgabe und vollständig (samt Deckblatt) abzugeben.
- 5. Die Klausur ist mit einem dokumentenechten Stift zu bearbeiten.
- 6. Es sind keine Hilfsmittel zugelassen.
- 7. Lösungen, die nicht lesbar sind können nicht gewertet werden.
- 8. Tragen Sie Ihren Namen und die Matrikelnummer leserlich in der folgenden Tabelle ein:

Name	
Vorname	
Matrikelnummer	

Dies ist eine Beispielklausur, es entstehen hieraus keine Ansprüche bezüglich des Stoffs und der Art der Aufgaben in der eigentlichen Klausur.

Aufgabe 1 Mengen:

Es seien $M = \{-1, 0\}, N = \{2, 3\}.$

a) Schreiben Sie folgende Menge durch Aufzählen all ihrer Elemente

$$M \times N = \{$$

b) Schreiben Sie folgende Menge durch Aufzählen all ihrer Elemente

$$M^2 \cup N^2 = \{$$

c) Bestimmen Sie $|\mathcal{P}(M) \times \mathcal{P}(M)|$.

d) Schreiben Sie folgende Menge in der Mengenschreibweise (d.h. Mengenklammern, etc.): Die Menge aller komplexen Zahlen, deren Realteil eine rationale Zahl ist, und deren Imaginärteil keine rationale Zahl ist

Aufgabe 2 Abbildungen:

Es seien a,b reelle Zahlen, und $f_{a,b}:\{-3,-2,-1,0,1,2,3\}\to\mathbb{R}$ definiert durch

$$f_{a,b}(x) := \begin{cases} ax , & \text{falls } x \le 0 \\ bx , & \text{falls } x > 0 \end{cases}$$

a) Skizzieren Sie den Graph von $f_{-1,-2}$ (d.h. $a=-1,\,b=-2$).

b) Bestimmen Sie das Urbild $f_{-1,1}^{-1}(\{3\})$.

c) Bestimmen Sie den Zielbereich $X \subset \mathbb{R}$ so, dass $f_{3,4}: \{-3, -2, -1, 0, 1, 2, 3\} \to X$ bijektiv ist.

Aufgabe 3 Aussagenlogik

a) Zeigen Sie, dass $F_1(A, B, C) := A \Rightarrow (B \vee C)$ und $F_2(A, B, C) := \neg (A \wedge \neg (B \vee C))$ gleichwertig sind, indem Sie folgende Wahrheitstabelle ausfüllen:

A	В	C	$B \vee C$	F_1	$\neg (B \lor C)$	$A \land \neg (B \lor C)$	F_2	$F_1 \Leftrightarrow F_2$
W	W	W						
W	W	f						
W	f	W						
W	f	f						
f	W	W						
f	W	f						
f	f	W						
f	f	f						

Die zweite Tabelle nur verwenden, falls Ihre obere Lösung nicht mehr lesbar ist !!!

A	B	C	$B \vee C$	F_1	$\neg (B \lor C)$	$A \land \neg (B \lor C)$	F_2	$F_1 \Leftrightarrow F_2$
W	W	W						
W	W	f						
W	f	W						
W	f	f						
f	W	W						
f	W	f						
f	f	W						
f	f	f						

b) Nehmen Sie an, sie möchten das Folgende mittels Beweis durch Widerspruch beweisen: Zu jeder konvergenten Folge $(a_n)_{n\in\mathbb{N}}$ gibt es ein M>0 so, dass $|a_n|< M$ für alle $n\in\mathbb{N}$ gilt. Formulieren Sie die Annahme, die dazu zu widerlegen ist.

Aufgabe 4 Rechnen mit Restklassen

Berechnen Sie folgende Aufgaben und geben Sie das Ergebnis jeweils in Standardrepräsentanten an (Zwischenergebnisse müssen nicht angegeben werden).

a)
$$[7]_3 + [-4]_3 =$$

b)
$$[10]_{13} \cdot [3]_{13} \cdot [2]_{13} =$$

c)
$$[5]_{11} + ([7]_{11} + [2]_{11})^{-1} =$$

d)
$$([-6]_7 \cdot [6]_7^{-1}) + ([13]_7 \cdot [13]_7^{-1}) =$$

Aufgabe 5 Induktion:

Zeigen Sie durch vollständige Induktion, dass für $n \in \mathbb{N}$ folgendes gilt:

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}.$$

Aufgabe 6 Komplexe Zahlen

a) Es seien u = 3 - 6i und w = 1 + i. Berechnen Sie das Folgende:

$$|\overline{u \cdot w}| =$$

$$\frac{w}{\overline{u}+u} =$$

b) Skizzieren Sie die Menge

$$M := \{ z \in \mathbb{C} : |\text{Re}(z)| \le 1 \text{ und } |\text{Im}(z)| \ge 4 \}$$

in der komplexen Ebene.

c) Es seien $z_1,...,z_n\in\mathbb{C}\setminus\{0\}.$ Lösen Sie die folgende Gleichung nach z_1 auf

$$\sum_{k=1}^{n} i(n-k)z_k^{-1} = 9$$

Aufgabe 7 Folgen

a) Es sei $(a_n)_{n\in\mathbb{N}}$ mit $a_n:=\frac{n!\,5+2^n\,3}{n!\,3}$. Bestimmen Sie den Grenzwert der Folge $(a_n)_{n\in\mathbb{N}}$

b) Es sei $(a_n)_{n\in\mathbb{N}}$ definiert durch $a_{n+1} = \frac{1}{3}a_n + 4$. mit $a_1 := 0$. Die Folge $(a_n)_{n\in\mathbb{N}}$ ist konvergent. Berechnen Sie den Grenzwert.

c) Es sei $a_n := \frac{i^n}{n} + \frac{n^2}{3n^2 + (-1)^n}$, $n \in \mathbb{N}$. Bestimmen Sie den Grenzwert der Folge $(a_n)_{n \in \mathbb{N}}$

Aufgabe 8 Wissen:

Vervollständigen Sie die Aussagen, so dass ein korrekte (sinnvolle) mathematische Aussage entsteht.

- 1. Zu einer Menge A ist die Potenzmenge definiert als
- 2. Eine Abbildung $f: X \to Y$ (mit X, Y zwei Mengen) ist injektiv, wenn gilt:
- 3. Es sei (G,*) eine Gruppe. Dann ist $e \in G$ das neutrale Element, wenn gilt:
- 4. Für $q \in \mathbb{R}$, |q| < 1, gilt (geometrische Reihe):

$$\sum_{k=0}^{\infty} q^k =$$

- 5. Eine Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert gegen den Grenzwert g, wenn gilt:
- 6. Es sei M eine Menge und $R \subset M \times M$ eine Äquivalenzrelation. Dann gilt
 - für alle $x \in M$ ist ...
 - für alle $(x,y) \in R$ gilt ...
 - falls $(x,y) \in R$ und $(y,z) \in R$, dann ist auch ...