

Predicción de quiebra de empresas mediante técnicas de machine learning

Autor:

Ing. Gaspar Acevedo Zain

Director:

Título y Nombre del director (pertenencia)

${\rm \acute{I}ndice}$

1. Descripción técnica-conceptual del proyecto a realizar	5
2. Identificación y análisis de los interesados	6
3. Propósito del proyecto	6
4. Alcance del proyecto	6
5. Supuestos del proyecto	7
6. Product Backlog	7
7. Criterios de aceptación de historias de usuario	11
8. Fases de CRISP-DM	12
9. Desglose del trabajo en tareas	13
10. Planificación de Sprints	19
11. Diagrama de Gantt (sprints)	32
12. Normativa y cumplimiento de datos (gobernanza)	37
13. Gestión de riesgos	37
14. Sprint Review	3 9
15. Sprint Retrospective	41

Registros de cambios

Revisión	Detalles de los cambios realizados	Fecha
0	Creación del documento	24 de junio de 2025
1	Se completa hasta el punto 5 inclusive	6 de Julio de 2025
2	Se completa hasta el punto 9 inclusive	15 de Julio de 2025
3	Se completa hasta el punto 12 inclusive	29 de Julio de 2025
4	Se completa hasta el punto 15 inclusive	5 de Agosto de 2025

Acta de constitución del proyecto

Buenos Aires, 24 de junio de 2025

Por medio de la presente se acuerda con el Ing. Gaspar Acevedo Zain que su Trabajo Final de la Carrera de Especialización en Inteligencia Artificial se titulará "Predicción de quiebra de empresas mediante técnicas de machine learning" y consistirá en el desarrollo de una herramienta basada en machine learning que permitirá predecir si una empresa puede entrar en quiebra o no. El trabajo tendrá un presupuesto preliminar estimado de 604 horas y un costo estimado de \$XXX, con fecha de inicio el 24 de junio de 2025 y fecha de presentación pública a definir.

Se adjunta a esta acta la planificación inicial.

Dr. Ing. Ariel Lutenberg Director posgrado FIUBA Nombre del cliente Empresa del cliente

Título y Nombre del director Director del Trabajo Final

1. Descripción técnica-conceptual del proyecto a realizar

Este proyecto consiste en un emprendimiento personal cuyo objetivo es utilizar técnicas de aprendizaje de máquina para detectar si una empresa puede entrar en quiebra o no. Este tipo de análisis puede resultar de gran interés y utilidad para distintos actores del mercado financiero, tales como bancos, compañías aseguradoras, fondos de inversión o consultoras especializadas en riesgo crediticio. Por ello, estos se considerarán como potenciales clientes.

Para llevarlo a cabo, se utilizará un dataset publicado por el Taiwan Economic Journal, que contiene información financiera de empresas del mercado de Taiwán entre los años 1999 y 2009. Al ser estos datos públicos, hoy en día existen soluciones que exploran esta temática. Algunas de ellas hacen uso de modelos de machine learning tales como SVM y XGBoost, junto con algunas técnicas de preprocesamiento de datos como Smote y de búsqueda de hiperparámetros como Random Search.

Con el fin de diferenciarse de estas soluciones, se propone implementar el marco de trabajo basado en MLFlow definido en la figura 1. Se detalla una serie de etapas cuyas salidas se refinarán durante distintas iteraciones. Esto permitirá a los usuarios finales trabajar en un entorno seguro, robusto, y reproducible.

El proyecto se encuentra en la etapa de planificación. El desarrollo e implementación se realizará en distintas etapas. Se comenzará con un análisis exploratorio de datos, que nos permitirá conocer mejor al dataset en cuestión. Luego, se realizarán iteraciones sobre las siguientes etapas:

- Preprocesamiento de datos: en la primer iteración se implementarán técnicas de tratamiento de nulos y desbalance de clases. En las siguientes iteraciones, se estudiarán técnicas de extracción e ingeniería de features.
- Entrenamiento de modelos: se implementará un modelo distinto en cada iteración. Los modelos a explorar son regresión logística, SVM y XGBoost. También, se explorará la optimización de hiperparámetros mediante búsqueda bayesiana.
- Evaluación y refinamiento: en esta etapa se evaluará al modelo entrenado en la etapa anterior. Se generarán métricas que permitirán compararlo con resultados obtenidos en otras iteraciones.

La innovación de este proyecto radica en el uso del marco de trabajo definido en la figura 1. Éste proporciona un ambiente productivo, reproducible y escalable, en donde se podrán analizar diversas técnicas de aprendizaje de máquina para detectar si una empresa puede entrar en quiebra o no.

Figura 1. Diagrama en bloques del sistema.

2. Identificación y análisis de los interesados

Rol	Nombre y Apellido	Organización	Puesto
Responsable	Ing. Gaspar Acevedo	FIUBA	Alumno
	Zain		
Orientador	Título y Nombre del	pertenencia	Director del Trabajo Final
	director		
Cliente	Actores del mercado	-	-
	financiero		
Usuario final	Trabajadores de clien-	-	-
	tes		

- Orientador: podrán ayudar en la recomendación y evaluación de técnicas a explorar en las diferentes etapas del proyecto.
- Cliente: si bien es un proyecto personal, se considerarán como potenciales clientes a distintos actores del mercado financiero, tales como bancos, compañías aseguradoras, fondos de inversión o consultoras especializadas en riesgo crediticio.
- Usuario final: analistas de riesgos, ejecutivo de créditos, entre otros integrantes que trabajan para los potenciales clientes.

3. Propósito del proyecto

Predecir si una empresa puede entrar en quiebra o no, al explorar técnicas de *machine learning* en un marco de trabajo productivo, reproducible y escalable.

4. Alcance del proyecto

El alcance del proyecto incluye:

- Análisis exploratorio de datos: se analizarán las distintas variables presentes en el dataset de estudio, con el fin de conocer sus características y poder tomar decisiones con base en ellas.
- Preprocesamiento de datos: se realizarán técnicas de tratamiento de datos faltantes, selección y/o extracción de variables, como así también de ingeniería de features.
- Implementación de modelos de machine learning: se estudiarán diversos modelos de aprendizaje de máquina sobre los datos procesados, tales como *logistic regression*, *SVM* y *XGBoost*. Además, se optimizarán los hiperparámetros de estos modelos mediante búsqueda bayesiana.
- Evaluación y comparación de modelos: se obtendrán métricas relacionadas a los modelos explorados, con el fin de poder determinar cuál de ellos realiza una mejor predicción.
- Implementación de un entorno basado en MLFlow: este entornó facilitará la realización, la reproducibilidad y la escalabilidad de las distintas etapas de trabajo que se realizarán en este proyecto. Este será de caracter local, es decir, no se implementará en una plataforma de cloud computing.

No se incluye:

- El despliegue del entorno de trabajo en una plataforma de *cloud computing*, tales como *Azure*, *AWS*, entre otros.
- El análisis de otros datasets distintos al propuesto.

5. Supuestos del proyecto

Para el desarrollo del presente proyecto se supone que:

- Supuesto 1: el dataset de estudio presenta datos fiables, y no tiene restricciones en cuanto a licencias de uso.
- Supuesto 2: una laptop como equipo de trabajo es más que suficiente para realizar el preprocesamiento y entrenamiento de los modelos de aprendizaje automático.
- Supuesto 3: el entorno de MLFlow podrá desarrollarse en etapas futuras del proyecto, posteriores a la exploración de los modelos de aprendizaje automático.
- Supuesto 4: el entorno de MLFlow podrá desplegarse de manera local, sin necesidad de recurrir a plataforma de *cloud computing*, tales como *Azure*, *AWS*, entre otros.
- Supuesto 5: se disponen de al menos 15 horas semanales para realizar el proyecto.

6. Product Backlog

Roles

 Ingeniero del proyecto: es quien se encarga del análisis, diseño, desarrollo y despliegue del proyecto.

 Usuario final: es quien consulta y analiza las predicciones de los modelos explorados en el proyecto.

Criterios de ponderación de historias de usuario

Esto son los criterios que se utilizan para ponderar a las historias de usuario mediante *Story Points*:

- Dificultad: representa la cantidad de trabajo estimado que requiere la historia de usuario para realizarse.
- Complejidad: representa la dificultad de realizar la historia de usuario a nivel técnico.
- Incertidumbre: representa el riesgo asociado a la historia de usuario.

Cada criterio tiene asociado las ponderaciones baja, media y alta, que se detallan en el cuadro 1. Los *Story Points* de una historia de usuario quedan definidos por la suma de los valores de estas ponderaciones redondeada hacia el número superior más próximo en la serie de *Fibonacci*.

Criterio\Ponderación	Baja	Media	Alta
Dificultad	1	3	5
Complejidad	1	3	5
Incertidumbre	1	5	8

Cuadro 1. Tabla de ponderaciones de historia de usuario.

Épicas

• Épica 1 - Análisis y procesamiento de datos

- HU1 Análisis exploratorio
 - Como ingeniero del proyecto, quiero realizar un análisis exploratorio de datos para conocer las distribuciones, formas y otras particularidades de las variables del dataset con el que se trabajará.
 - Ponderación
 - ♦ Dificultad: media 3 Story Points
 - ♦ Complejidad: baja 1 Story Points
 - ♦ Incertidumbre: baja 1 Story Points
 - ♦ Suma: 5
 - ♦ Total: 5 Story Points
- HU2 Procesamiento de datos faltantes y datos atípicos
 - o Como ingeniero del proyecto, quiero realizar un procesamiento de datos faltantes y de datos atípicos con el fin de asegurar la calidad del dataset.
 - Ponderación
 - ♦ Dificultad: media 3 Story Points
 - \diamond Complejidad: media 3 Story Points
 - ♦ Incertidumbre: baja 1 Story Points
 - ♦ Suma: 7
 - ♦ Total: 8 Story Points

• HU3 - Feature Engineering

- o Como ingeniero del proyecto, quiero implementar *Feature Engineering* con el fin de crear nuevos atributos en el dataset.
- Ponderación
 - \diamond Dificultad: media 3 Story Points
 - ♦ Complejidad: media 3 Story Points
 - ♦ Incertidumbre: baja 1 Story Points
 - ♦ Suma: 7
 - ♦ Total: 8 Story Points

• Épica 2 - Implementación y comparación de modelos

- HU4 Implementación de modelos de machine learning
 - o Como ingeniero del proyecto, quiero implementar los modelos de *machine* learning de Logistic Regression, SVM y XGBoost que permitan predecir si una empresa entra en quiebra o no.
 - Ponderación
 - ♦ Dificultad: media 3 Story Points
 - ♦ Complejidad: media 3 Story Points
 - \diamond Incertidumbre: media 5 Story Points
 - ♦ Suma: 11
 - ♦ Total: 13 Story Points
- HU5 Optimización de hiperparámetros
 - o Como ingeniero del proyecto, quiero implementar técnicas de optimización de hiperparámetros y aplicarlas a los modelos de *machine learning* implementados.
 - Ponderación
 - ♦ Dificultad: media 3 Story Points
 - ♦ Complejidad: media 3 Story Points
 - \diamond Incertidumbre: media 5 Story Points
 - ♦ Suma: 11
 - ♦ Total: 13 Story Points
- HU6 Métricas de modelos
 - \circ Como ingeniero del proyecto, quiero calcular las métricas de AUC-ROC y F1-score en cada modelo de machine learning implementado y comparar sus resultados.
 - Ponderación
 - $\diamond\,$ Dificultad: media 3 $Story\,Points$
 - ♦ Complejidad: media 3 Story Points
 - \diamond Incertidumbre: baja 1 Story Points
 - ♦ Suma: 7
 - ♦ Total: 8 Story Points

• Épica 3 - Despliegue en entorno MLFlow

- HU7 Despliegue en MLFlow
 - Como ingeniero del proyecto, quiero desplegar un entorno local de MLFlow en donde se repliquen los pasos de procesamiento de datos e implementación y comparación de modelos.
 - o Ponderación
 - \diamond Dificultad: alta 5 Story Points
 - ♦ Complejidad: media 3 Story Points
 - ♦ Incertidumbre: media 5 Story Points
 - ♦ Suma: 13
 - ♦ Total: 13 Story Points
- HU8 API para entorno MLFlow
 - o Como ingeniero del proyecto, quiero exponer el entorno de MLFlow mediante una API para facilitar el acceso y su utilización.
 - Ponderación
 - \diamond Dificultad: baja 1 Story Points
 - ♦ Complejidad: media 3 Story Points
 - ♦ Incertidumbre: baja 1 Story Points
 - ♦ Suma: 5
 - \diamond Total: 5 Story Points

• Épica 4 - Gestión de calidad del código fuente

- HU9 Implementación de buenas prácticas
 - Como ingeniero del proyecto, quiero asegurar que el código siga las buenas prácticas y estándares de la industria.
 - Ponderación
 - \diamond Dificultad: media 3 Story Points
 - ♦ Complejidad: baja 1 Story Points
 - ♦ Incertidumbre: baja 1 Story Points
 - ♦ Suma: 5
 - ♦ Total: 5 Story Points
- HU10 Documentación
 - Como ingeniero del proyecto, quiero documentar todos los pasos realizados durante el proyecto.
 - Ponderación
 - ♦ Dificultad: baja 1 Story Points
 - ♦ Complejidad: baja 1 Story Points
 - ♦ Incertidumbre: baja 1 Story Points
 - ♦ Suma: 3
 - ♦ Total: 3 Story Points

• HU11 - Validación de API de MLFlow

- Como usuario final, quiero consultar los resultados y comparaciones de los modelos mediante la API del entorno de MLFlow, para poder analizarlos.
- o Ponderación
 - \diamond Dificultad: media 3 Story Points
 - ♦ Complejidad: baja 1 Story Points
 - ♦ Incertidumbre: baja 1 Story Points
 - ♦ Suma: 5
 - ♦ Total: 5 Story Points

7. Criterios de aceptación de historias de usuario

• Épica 1 - Análisis y procesamiento de datos

- Criterios de aceptación HU1 Análisis exploratorio
 - o Se estudia la presencia de datos atípicos y de datos faltantes para cada variable.
 - o Se grafican las distribuciones de las variables del dataset.
 - o Se realiza un estudio de correlaciones entre variables numéricas.
 - o Se documentan los hallazgos del análisis de cada variable.
- Criterios de aceptación HU2 Procesamiento de datos faltantes y datos atípicos
 - o Se realiza una imputación de datos faltantes a las variables del dataset.
 - o Se justifican los métodos de imputación utilizados.
 - o Se ajustan los datos atípicos de las variables del dataset.
 - $\circ\,$ Se justifican los métodos de ajuste utilizados.
 - Se justifican los casos en donde se decide no imputar ni ajustar.
- Criterios de aceptación HU3 Feature Engineering
 - o Se crean nuevas variables en el dataset a partir de las existentes.
 - Se estudia el impacto por separado de estas variables en los modelos generados, a partir de sus métricas.
 - o Se justifica la inclusión o no en el modelo de cada variable generada.

• Épica 2 - Implementación y comparación de modelos

- Criterios de aceptación HU4 Implementación de modelos de machine learning
 - Se implementan distintos modelos de machine learning.
 - o Se justifica el uso de cada uno de los modelos implementados.
 - Se persisten los modelos generados en GitHub, para futuros análisis y comparaciones.
- Criterios de aceptación HU5 Optimización de hiperparámetros
 - o Se seleccionan los hiperparámetros de cada modelo a optimizar.
 - o Se define el rango sobre el que se optimizará cada hiperparámetro.
 - Se realiza una búsqueda del valor óptimo de los hiperparámetros en los rangos definidos.
 - o Se justifican las decisiones tomadas en cada paso.

- Criterios de aceptación HU6 Métricas de modelos
 - o Se definen las métricas de análisis para cada modelo.
 - Se justifica la selección de cada métrica para cada modelo.
 - o Se obtienen las métricas de análisis de cada modelo.
 - Se comparan los distintos modelos mediante las métricas definidas.

• Épica 3 - Despliegue en entorno MLFlow

- Criterios de aceptación HU7 Despliegue en MLFlow
 - o Se crea un entorno MLFlow local desde cero
 - o Se configura el paso correspondiente al análisis de datos en el entorno.
 - Se replican las técnicas exploradas de análisis de datos en el paso correspondiente.
 - o Se configura el paso de entrenamiento de modelos en el entorno.
 - Se replican las técnicas exploradas de entrenamiento de modelos en el paso correspondiente.
 - o Se configura el paso de evaluación de modelos en el entorno.
 - Se replican las técnicas exploradas de evaluación de modelos en el paso correspondiente.
- Criterios de aceptación HU8 API para entorno MLFlow
 - Se exponen los resultados de los modelos explorados en el entorno de MLFlow mediante una API.
 - Se exponen las comparaciones de los modelos explorados en el entorno de MLFlow mediante una API.

• Épica 4 - Gestión de calidad del código fuente

- Criterios de aceptación HU9 Implementación de buenas prácticas
 - o Se implementan buenas prácticas de código Python en el proyecto.
- Criterios de aceptación HU10 Documentación
 - o Se documentan todos los pasos realizados durante el desarrollo del proyecto.
 - o Se valida que cada paso realizado esté correctamente justificado.
- Criterios de aceptación HU11 Validación de API de MLFlow
 - Se valida el acceso a los resultados de los modelos mediante la API del entorno MLFlow.
 - Se valida el acceso a la comparación de los modelos mediante la API del entorno MLFlow.

8. Fases de CRISP-DM

1. Comprensión del negocio:

- Objetivo: predecir si una empresa va a entrar en quiebra o no.
- Impacto: ayudar en la toma de decisiones a empresas especializadas en finanzas, en inversiones, en prestación de seguros, entre otras, permitiéndoles saber si una empresa sobre la que se quiere invertir o a la que se le quiere otorgar un préstamo puede entrar en quiebra o no.
- Métricas: se predice correctamente si la empresa quiebra o no.

2. Comprensión de los datos

- Tipos de datos: datos tabulares.
- Fuente de datos: datos publicados por el Taiwan Economic Journal.
- Cantidad de datos: 6819 registros con 96 columnas.

3. Preparación de los datos

- Transformaciones
 - Análisis y ajuste de datos atípicos.
 - Análisis y ajuste de datos faltantes.
 - Creación de nuevas variables al combinar las variables existentes.
 - Normalización de datos.
- Características clave
 - Indicador de si la empresa entró en quiebra o variable target.
 - Distintas métricas del desempeño de la empresa a nivel económico y contable.

4. Modelado

- Tipo de problema: clasificación.
- Arquitecturas posibles: modelos de clasificación como *Logistic Regression*, *Support Vector Machines* y *XGBoost*.

5. Evaluación del modelo

■ F1-score y AUC-ROC.

6. Despliegue del modelo

• Despliegue local usando MLFlow.

9. Desglose del trabajo en tareas

Historia de usuario	Tarea técnica	Estimación	Prioridad
HU1 - Análisis exploratorio	Identificar variables categóricas	4 h	Media
HU1 - Análisis exploratorio	Identificar variables numéricas	4 h	Media
HU1 - Análisis exploratorio	Graficar la distribución de las	6 h	Media
	variables numéricas		
HU1 - Análisis exploratorio	Realizar análisis de correlacio-	4 h	Media
	nes entre variables numéricas		
HU1 - Análisis exploratorio	Documentar pasos y decisiones	4 h	Media
	tomadas		
HU2 - Procesamiento de datos	Investigar técnicas de balanceo	6 h	Media
faltantes y datos atípicos	de clases para algoritmos de		
	clasificación		
HU2 - Procesamiento de datos	Implementar técnicas de balan-	5 h	Media
faltantes y datos atípicos	ceo de clases para algoritmos de		
	clasificación		
HU2 - Procesamiento de datos	Separar dataset en train y test	3 h	Media
faltantes y datos atípicos			

Historia de usuario	Tarea técnica	Estimación	Prioridad
HU2 - Procesamiento de datos	Identificar variables con datos	4 h	Alta
faltantes y datos atípicos	faltantes		
HU2 - Procesamiento de datos	Analizar causas de datos faltan-	6 h	Alta
faltantes y datos atípicos	tes		
HU2 - Procesamiento de datos	Corregir datos faltantes	8 h	Alta
faltantes y datos atípicos			
HU2 - Procesamiento de datos	Identificar datos con valores	6 h	Alta
faltantes y datos atípicos	atípicos		
HU2 - Procesamiento de datos	Analizar causas de datos atípi-	8 h	Alta
faltantes y datos atípicos	cos		
HU2 - Procesamiento de datos	Graficar variables que presentan	5 h	Media
faltantes y datos atípicos	de datos atípicos		
HU2 - Procesamiento de datos	Corregir datos atípicos	8 h	Alta
faltantes y datos atípicos			
HU2 - Procesamiento de datos	Documentar pasos y decisiones	5 h	Media
faltantes y datos atípicos	tomadas		
HU3 - Feature Engineering	Identificar variables menos im-	5 h	Alta
	portantes para eliminarlas		
HU3 - Feature Engineering	Implementar técnicas de elimi-	5 h	Media
	nación de features		
HU3 - Feature Engineering	Crear nuevas variables mediante	7 h	Alta
	combinaciones lineales de varia-		
	bles existentes		
HU3 - Feature Engineering	Investigar otras técnicas de	5 h	Media
	creación de variables		
HU3 - Feature Engineering	Aplicar otras técnicas de crea-	8 h	Alta
	ción de variables		
HU3 - Feature Engineering	Evaluar nuevas variables en	5 h	Alta
	modelos		
HU3 - Feature Engineering	Documentar pasos y decisiones	3 h	Baja
	tomadas		
HU4 - Implementación de mo-	Implementar código de vali-	4 h	Media
delos de machine learning	dación cruzada para <i>Logistic</i>		
	Regression		
HU4 - Implementación de mo-	Implementar modelo <i>Logistic</i>	6 h	Alta
delos de machine learning	Regression, sin considerar featu-		
	re engineering		
HU4 - Implementación de mo-	Evaluar modelo <i>Logistic Re-</i>	4 h	Media
delos de machine learning	gression, sin considerar feature		
	engineering		
HU4 - Implementación de mo-	Implementar modelo Logistic	6 h	Alta
delos de machine learning	Regression, con feature enginee-		
	ring		
HU4 - Implementación de mo-	Evaluar modelo Logistic Regres-	4 h	Media
delos de machine learning	sion, con feature engineering		
HU4 - Implementación de mo-	Implementar código de valida-	4 h	Media
delos de machine learning	ción cruzada para SVM		
HU4 - Implementación de mo-	Implementar modelo SVM, sin	6 h	Alta
delos de machine learning	considerar feature engineering		

Historia de usuario	Tarea técnica	Estimación	Prioridad
HU4 - Implementación de mo-	Evaluar modelo SVM, sin consi-	4 h	Media
delos de machine learning	derar feature engineering		
HU4 - Implementación de mo-	Implementar modelo SVM, con	6 h	Alta
delos de machine learning	feature engineering		
HU4 - Implementación de mo-	Evaluar modelo SVM , con fea -	4 h	Media
delos de machine learning	ture engineering		
HU4 - Implementación de mo-	Implementar código de valida-	4 h	Media
delos de machine learning	ción cruzada para XGBoost		
HU4 - Implementación de mo-	Implementar modelo XGBoost,	8 h	Alta
delos de machine learning	sin considerar feature enginee-		
	ring	0.1	2.5.11
HU4 - Implementación de mo-	Evaluar modelo XGBoost, sin	6 h	Media
delos de machine learning	considerar feature engineering		4.1
HU4 - Implementación de mo-	Implementar modelo XGBoost,	8 h	Alta
delos de machine learning	con feature engineering	0.1	3.6.11
HU4 - Implementación de mo-	Evaluar modelo XGBoost, con	6 h	Media
delos de machine learning	feature engineering	4.1	N. 1.
HU4 - Implementación de mo-	Persistir modelos en GitHub	4 h	Media
delos de machine learning	D	5 h	Media
HU4 - Implementación de mo-	Documentar pasos y decisiones tomadas	оп	Media
delos de machine learning HU5 - Optimización de hiper-	Identificar hiperparámetros y	5 h	Media
parámetros	rangos de Logistic Regression	9 11	Media
HU5 - Optimización de hiper-	Optimizar hiperparámetros de	6 h	Media
parámetros	Logistic Regression, sin conside-	0 11	Media
parametros	rar feature engineering		
HU5 - Optimización de hiper-	Implementar hiperparámetros	4 h	Media
parámetros	más óptimos en <i>Logistic</i>	4 11	Media
parametros	Regression, sin considerar		
	feature engineering		
HU5 - Optimización de hiper-	Evaluar modelo de <i>Logistic Re</i> -	4 h	Media
parámetros	gression con hiperparámetros		- TVICGIG
parametros	óptimos, sin considerar feature		
	engineering		
HU5 - Optimización de hiper-	Optimizar hiperparámetros de	6 h	Media
parámetros	Logistic Regression, con feature		
	engineering		
HU5 - Optimización de hiper-	Implementar hiperparámetros	4 h	Media
parámetros	más óptimos en <i>Logistic</i>		
	Regression, con feature		
	engineering		
HU5 - Optimización de hiper-	Evaluar modelo de <i>Logistic Re</i> -	4 h	Media
parámetros	gression con hiperparámetros		
	óptimos, con feature enginee-		
	$\mid ring \mid$		
HU5 - Optimización de hiper-	Identificar hiperparámetros y	5 h	Media
parámetros	rangos de SVM		

Historia de usuario	Tarea técnica	Estimación	Prioridad
HU5 - Optimización de hiper- parámetros	Optimizar hiperparámetros de SVM, sin considerar feature engineering	6 h	Media
HU5 - Optimización de hiper- parámetros	Implementar hiperparámetros más óptimos en SVM , sin considerar feature engineering	4 h	Media
HU5 - Optimización de hiper- parámetros	Evaluar modelo de <i>SVM</i> con hiperparámetros óptimos, sin considerar <i>feature engineering</i>	4 h	Media
HU5 - Optimización de hiper- parámetros	Optimizar hiperparámetros de SVM, con feature engineering	6 h	Media
HU5 - Optimización de hiper- parámetros	Implementar hiperparámetros más óptimos en SVM , con feature engineering	4 h	Media
HU5 - Optimización de hiper- parámetros	Evaluar modelo de <i>SVM</i> con hiperparámetros óptimos, con feature engineering	4 h	Media
HU5 - Optimización de hiper- parámetros	Identificar hiperparámetros y rangos de $XGBoost$	7 h	Media
HU5 - Optimización de hiper- parámetros	Optimizar hiperparámetros de XGBoost, sin considerar feature engineering	8 h	Alta
HU5 - Optimización de hiper- parámetros	Implementar hiperparámetros más óptimos en XGBoost, sin considerar feature engineering	5 h	Media
HU5 - Optimización de hiper- parámetros	Evaluar modelo de XGBoost con hiperparámetros óptimos, sin considerar feature enginee- ring	7 h	Media
HU5 - Optimización de hiper- parámetros	Optimizar hiperparámetros de XGBoost, con feature enginee- ring	8 h	Alta
HU5 - Optimización de hiper- parámetros	Implementar hiperparámetros más óptimos en XGBoost, con feature engineering	5 h	Media
HU5 - Optimización de hiper- parámetros	Evaluar modelo de XGBoost con hiperparámetros óptimos, con feature engineering	7 h	Media
HU5 - Optimización de hiper- parámetros	Documentar pasos y decisiones tomadas	5 h	Media
HU6 - Métricas de modelos	Obtener métricas de F1-score para Logistic Regression, sin considerar feature engineering	3 h	Media
HU6 - Métricas de modelos	Obtener métricas de AUC-ROC para Logistic Regression, sin considerar feature engineering, y graficar	5 h	Media

Historia de usuario	Tarea técnica	Estimación	Prioridad
HU6 - Métricas de modelos	Obtener métricas de F1-score	3 h	Media
	para Logistic Regression, con		
	feature engineering		
HU6 - Métricas de modelos	Obtener métricas de AUC-ROC	5 h	Media
	para Logistic Regression, con		
	feature engineering, y graficar		
HU6 - Métricas de modelos	Obtener métricas de F1-score	3 h	Media
	para SVM , sin considerar $featu$ -		
	re engineering		
HU6 - Métricas de modelos	Obtener métricas de AUC-ROC	5 h	Media
	para SVM, sin considerar featu-		
	re engineering, y graficar		
HU6 - Métricas de modelos	Obtener métricas de F1-score	3 h	Media
	para SVM, con feature enginee-		
	ring		
HU6 - Métricas de modelos	Obtener métricas de AUC-ROC	5 h	Media
	para SVM, con feature enginee-		
	ring, y graficar		
HU6 - Métricas de modelos	Obtener métricas de F1-score	3 h	Media
	para XGBoost, sin considerar		
	feature engineering		
HU6 - Métricas de modelos	Obtener métricas de AUC-ROC	6 h	Media
	para XGBoost, sin considerar		
	feature engineering, y graficar		
HU6 - Métricas de modelos	Obtener métricas de F1-score	4 h	Media
	para XGBoost, con feature en-		
	gineering		
HU6 - Métricas de modelos	Obtener métricas de AUC-ROC	6 h	Media
	para XGBoost, con feature engi-		
	neering, y graficar		
HU6 - Métricas de modelos	Comparar métricas de distintos	3 h	Media
	modelos		
HU6 - Métricas de modelos	Documentar pasos y decisiones	5 h	Media
	tomadas		
HU7 - Despliegue en MLFlow	Investigar buenas prácticas para	5 h	Alta
	despliegues de MLFlow		
HU7 - Despliegue en MLFlow	Crear entorno local para des-	7 h	Alta
	pliegue MLFlow		
HU7 - Despliegue en MLFlow	Replicar técnicas de análisis de	8 h	Alta
	datos en entorno MLFlow		
HU7 - Despliegue en MLFlow	Replicar técnicas de entrena-	8 h	Alta
	miento de modelos de <i>Logistic</i>		
	Regression en entorno MLFlow		
HU7 - Despliegue en MLFlow	Replicar técnicas de entrena-	8 h	Alta
	miento de modelos de SVM en		
	entorno MLFlow		
HU7 - Despliegue en MLFlow	Replicar técnicas de entrena-	8 h	Alta
	miento de modelos de XGBoost		
	en entorno MLFlow		

Historia de usuario	Tarea técnica	Estimación	Prioridad
HU7 - Despliegue en MLFlow	Replicar técnicas de evaluación	8 h	Alta
	de modelos en entorno MLFlow		
HU7 - Despliegue en MLFlow	Ejecutar localmente el entorno	4 h	Media
	MLFlow		
HU7 - Despliegue en MLFlow	Validar ejecución local del en-	4 h	Media
	torno MLFlow		
HU7 - Despliegue en MLFlow	Documentar pasos y decisiones	6 h	Media
	tomadas MLFlow		
HU8 - API para entorno ML-	Investigar como exponer un	6 h	Media
Flow	entorno MLFlow mediante API		
HU8 - API para entorno ML-	Exponer resultados de modelos	8 h	Alta
Flow	explorados en entorno MLFlow		
	mediante API		
HU8 - API para entorno ML-	Exponer comparación de mode-	8 h	Alta
Flow	los en entorno MLFlow median-		
	te API		
HU8 - API para entorno ML-	Documentar pasos y decisiones	4 h	Baja
Flow	tomadas		
HU9 - Implementación de bue-	Investigar buenas prácticas en	4 h	Baja
nas prácticas	código Python		
HU9 - Implementación de bue-	Aplicar buenas prácticas en	8 h	Media
nas prácticas	código Python		
HU10 - Documentación	Asegurar que cada decisión to-	6 h	Media
	mada haya sido justificada y		
	documentada		
HU10 - Documentación	Asegurar ortografía y formato	8 h	Media
	en documentación		
HU11 - Validación de API de	Validar acceso a modelos explo-	8 h	Media
MLFlow	rados mediante API de entorno		
	MLFlow		
HU11 - Validación de API de	Validar acceso a comparación	8 h	Media
MLFlow	de modelos mediante API de		
TITI44 TV 11 1/ 1 1 1 1	entorno MLFlow	- 1	3.5.11
HU11 - Validación de API de	Crear documentación sobre el	5 h	Media
MLFlow	uso de API de entorno MLFlow	0.1	A 1:
Planificación del proyecto y con-	Planificación del proyecto	8 h	Alta
fección de informes de avance			
(opcional)		0.1) I
Planificación del proyecto y con-	Informe de avance - Secciones 1	6 h	Media
fección de informes de avance	a 5 inclusive		
(opcional)	Information C : C	F 1	Ут 1.
Planificación del proyecto y con-	Informe de avance - Secciones 6	5 h	Media
fección de informes de avance	a 9 inclusive		
(opcional)		4 1) /r 1·
Planificación del proyecto y con-	Informe de avance - Secciones 10	4 h	Media
fección de informes de avance	a 12 inclusive		
(opcional)			

Historia de usuario	Tarea técnica	Estimación	Prioridad
Planificación del proyecto y con-	Informe de avance - Secciones 13	4 h	Media
fección de informes de avance	a 15 inclusive		
(opcional)			
Planificación del proyecto y con-	Informe de avance - Correciones	5 h	Media
fección de informes de avance	generales		
(opcional)			
Redacción de memoria (opcio-	Redacción de sección sobre pro-	6 h	Media
nal)	cesamiento de datos		
Redacción de memoria (opcio-	Redacción de sección sobre Fea-	3 h	Media
nal)	ture Engineering		
Redacción de memoria (opcio-	Redacción de sección sobre im-	7 h	Media
nal)	plementación de modelos		
Redacción de memoria (opcio-	Redacción de sección sobre op-	6 h	Media
nal)	timización de hiperparámetros		
Redacción de memoria (opcio-	Redacción de sección sobre ML-	5 h	Media
nal)	Flow		
Redacción de memoria (opcio-	Correcciones generales	8 h	Media
nal)			
Preparación de presentación fi-	Confección de presentación Po-	6 h	Alta
nal (opcional)	werPoint		
Preparación de presentación fi-	Confección de video demostra-	8 h	Alta
nal (opcional)	ción		

$10.\ Planificación de Sprints$

Sprint	HU o fase	Tarea	Horas/SP	Responsable	% Completado
Sprint 0	Planificación	Planificación	8 h / 5 SP	Alumno	80 %
	del proyecto	del proyecto			
	y confección				
	de informes de				
	avance				
Sprint 0	Planificación	Informe de	6 h / 3 SP	Alumno	100%
	del proyecto	avance -			
	y confección	Secciones 1			
	de informes de	a 5 inclusive			
	avance				
Sprint 0	Planificación	Informe de	5 h / 3 SP	Alumno	100%
	del proyecto	avance -			
	y confección	Secciones 6			
	de informes de	a 9 inclusive			
	avance				
Sprint 0	Planificación	Informe de	4 h / 2 SP	Alumno	100%
	del proyecto	avance -			
	y confección	Secciones 10 a			
	de informes de	12 inclusive			
	avance				

Sprint	HU o fase	Tarea	Horas/SP	Responsable	% Completado
Sprint 0	Planificación	Informe de	4 h / 2 SP	Alumno	0 %
	del proyecto	avance -			
	y confección	Secciones 13 a			
	de informes de	15 inclusive			
	avance				
Sprint 0	Planificación	Informe de	5 h / 3 SP	Alumno	0 %
	del proyecto	avance -			
	y confección	Correciones			
	de informes de	generales			
Sprint 1	avance HU1 - Análisis	Identificar	4 h / 2 SP	Alumno	0 %
Sprint 1		variables	411/251	Alumno	0 70
	exploratorio	categóricas			
Sprint 1	HU1 - Análisis	Identificar	4 h / 2 SP	Alumno	0 %
Sprint	exploratorio	variables	4 11 / 2 51	Alumno	0 70
	exploratorio	numéricas			
Sprint 1	HU1 - Análisis	Graficar la	6 h / 3 SP	Alumno	0 %
Sprine	exploratorio	distribución de			0 70
		las variables			
		$num\'ericas$			
Sprint 1	HU1 - Análisis	Realizar análi-	4 h / 2 SP	Alumno	0 %
	exploratorio	sis de correla-	,		
	_	ciones entre va-			
		riables numéri-			
		cas			
Sprint 1	HU1 - Análisis	Documentar	4 h / 2 SP	Alumno	0 %
	exploratorio	pasos y			
		decisiones			
		tomadas			0.4
Sprint 1	HU2 - Procesa-	Investigar	6 h / 3 SP	Alumno	0 %
	miento de datos	técnicas de			
	faltantes y da-	balanceo de			
	tos atípicos	clases para			
		algoritmos de clasificación			
Sprint 1	HU2 - Procesa-	Implementar	5 h / 3 SP	Alumno	0 %
Sprint	miento de datos	técnicas de	3 11 / 3 31	Aluiiiio	0 70
	faltantes y da-	balanceo de			
	tos atípicos	clases para			
	tos atipicos	algoritmos de			
		clasificación			
Sprint 1	HU2 - Procesa-	Separar dataset	3 h / 2 SP	Alumno	0 %
	miento de datos	en train y test	,	_	, ,
	faltantes y da-				
	tos atípicos				
Sprint 1	HU2 - Procesa-	Identificar	4 h / 2 SP	Alumno	0 %
	miento de datos	variables con			
	faltantes y da-	datos faltantes			
	tos atípicos				

Sprint	HU o fase	Tarea	Horas/SP	Responsable	% Completado
Sprint 1	HU2 - Procesa-	Analizar causas	6 h / 3 SP	Alumno	0 %
	miento de datos	de datos faltan-			
	faltantes y da-	tes			
G : 1 1	tos atípicos	0 1 1	0.1 / 5 0D	A 1	0.04
Sprint 1	HU2 - Procesa-	Corregir datos	8 h / 5 SP	Alumno	0 %
	miento de datos	faltantes			
	faltantes y da- tos atípicos				
Sprint 1	HU2 - Procesa-	Identificar	6 h / 3 SP	Alumno	0 %
Sprint	miento de datos	datos con		Alumno	0 70
	faltantes y da-	valores atípicos			
	tos atípicos	valores aupicos			
Sprint 2	HU2 - Procesa-	Analizar causas	8 h / 5 SP	Alumno	0 %
Spriii 2	miento de datos	de datos atípi-		111411111	3,0
	faltantes y da-	cos			
	tos atípicos				
Sprint 2	HU2 - Procesa-	Graficar varia-	5 h / 3 SP	Alumno	0 %
	miento de datos	bles que pre-	,		
	faltantes y da-	sentan de datos			
	tos atípicos	atípicos			
Sprint 2	HU2 - Procesa-	Corregir datos	8 h / 5 SP	Alumno	0 %
	miento de datos	atípicos	·		
	faltantes y da-				
	tos atípicos				
Sprint 2	HU2 - Procesa-	Documentar	5 h / 3 SP	Alumno	0 %
	miento de datos	pasos y			
	faltantes y da-	decisiones			
G	tos atípicos	tomadas	7 1 / 0 CD		0.04
Sprint 2	HU3 - Feature	Identificar	5 h / 3 SP	Alumno	0 %
	Engineering	variables menos			
		importantes			
Sprint 2	HU3 - Feature	para eliminarlas Implementar	5 h / 3 SP	Alumno	0 %
Sprint 2	Engineering	técnicas de	3 11 / 3 31	Alumno	0 70
	Engineering	eliminación de			
		features			
Sprint 2	HU3 - Feature	Crear nuevas	7 h / 5 SP	Alumno	0 %
~Piiii 2	Engineering	variables	11 / 0 01	1114111110	
		mediante			
		combinaciones			
		lineales de			
		variables			
		existentes			
Sprint 2	HU3 - Feature	Investigar otras	5 h / 3 SP	Alumno	0 %
	Engineering	técnicas de			
		creación de			
		variables			

Sprint	HU o fase	Tarea	Horas/SP	Responsable	% Completado
Sprint 2	HU3 - Feature	Aplicar otras	8 h / 5 SP	Alumno	0 %
	Engineering	técnicas de			
		creación de			
		variables			
Sprint 2	HU3 - Feature	Evaluar nuevas	5 h / 3 SP	Alumno	0 %
	Engineering	variables en mo-			
		delos			
Sprint 2	HU3 - Feature	Documentar	3 h / 2 SP	Alumno	0 %
	Engineering	pasos y			
		decisiones			
		tomadas	4.1. / 2. GD	A 1	0.04
Sprint 3	HU4 - Im-	Implementar	4 h / 2 SP	Alumno	0 %
	plementación	código de			
	de modelos	validación			
	de machine	cruzada			
	learning	para Logistic			
C	IIII4 I	Regression	6 h / 3 SP	A 1	0.07
Sprint 3	HU4 - Im-	Implementar	on/3SP	Alumno	0 %
	plementación de modelos	modelo Logistic Regression, sin			
	de machine	considerar			
	$egin{array}{ccc} de & \textit{machine} \\ learning \end{array}$	feature			
	learning	$\mid engineering \mid$			
Sprint 3	HU4 - Im-	Evaluar	4 h / 2 SP	Alumno	0 %
Sprine 3	plementación	modelo Logistic	411/251	Alumno	0 70
	de modelos	$Regression, \sin$			
	de modelles machine	considerar			
	learning	feature			
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
Sprint 3	HU4 - Im-	Implementar	6 h / 3 SP	Alumno	0 %
	plementación	modelo Logistic	,		
	de modelos	Regression,			
	de machine	con feature			
	learning	engineering			
Sprint 3	HU4 - Im-	Evaluar modelo	4 h / 2 SP	Alumno	0 %
	plementación	Logistic Regres-			
	de modelos	sion, con feature			
	de machine	engineering			
	learning				
Sprint 3	HU4 - Im-	Implementar	4 h / 2 SP	Alumno	0 %
	plementación	código de			
	de modelos	validación			
	de machine	cruzada para			
G : + 0	learning	SVM	6 h / 9 CD	A 1	0.07
Sprint 3	HU4 - Im-	Implementar	6 h / 3 SP	Alumno	0 %
	plementación de modelos	modelo SVM,			
	$\begin{array}{ccc} \operatorname{de} & \operatorname{modelos} \\ \operatorname{de} & \mathit{machine} \end{array}$	sin considerar feature			
		feature engineering			
	learning	енутнееттиу			

Sprint	HU o fase	Tarea	Horas/SP	Responsable	% Completado
Sprint 3	HU4 - Im-	Evaluar modelo	4 h / 3 SP	Alumno	0 %
	plementación	SVM , \sin			
	$\begin{array}{ccc} \mathrm{de} & \mathrm{modelos} \\ \mathrm{de} & \mathit{machine} \end{array}$	considerar			
	$egin{array}{ll} ext{de} & \textit{machine} \ & \textit{learning} \end{array}$	$ig \ feature\ engineering$			
Sprint 3	HU4 - Im-	Implementar	6 h / 3 SP	Alumno	0 %
Spring 3	plementación	modelo SVM,		111411111	0 70
	de modelos	con feature			
	de machine	engineering			
	learning				
Sprint 3	HU4 - Im-	Evaluar modelo	4 h / 2 SP	Alumno	0 %
	plementación de modelos	SVM, con featu-			
	de modelos de machine	re engineering			
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
Sprint 3	HU4 - Im-	Implementar	4 h / 2 SP	Alumno	0 %
	plementación	código de	,		
	de modelos	validación			
	de machine	cruzada para			
G : + 0	learning	XGBoost	0.1 / F.CD	A 1	0.04
Sprint 3	HU4 - Implementación	Implementar modelo	8 h / 5 SP	Alumno	0 %
	de modelos	XGBoost, sin			
	$\begin{array}{ccc} \operatorname{de} & \operatorname{modelos} \\ \operatorname{de} & machine \end{array}$	considerar			
	learning	feature			
		engineering			
Sprint 4	HU4 - Im-	Evaluar modelo	6 h / 3 SP	Alumno	0 %
	plementación	XGBoost, sin			
	de modelos	considerar			
	$egin{array}{ll} ext{de} & \textit{machine} \ & \textit{learning} \end{array}$	$ig \ feature\ engineering$			
Sprint 4	HU4 - Im-	Implementar	8 h / 5 SP	Alumno	0 %
~P	plementación	modelo	3 , 3		
	de modelos	XGBoost,			
	de machine	con feature			
	learning	engineering			
Sprint 4	HU4 - Im-	Evaluar mode-	6 h / 3 SP	Alumno	0 %
	plementación	lo XGBoost, con			
	de modelos de machine	$\left \begin{array}{c} feature \ enginee- \\ ring \end{array} \right $			
	learning	1 1119			
Sprint 4	HU4 - Im-	Persistir mode-	4 h / 2 SP	Alumno	0 %
	plementación	los en GitHub	, ,		
	de modelos				
	de machine				
	learning				

Sprint	HU o fase	Tarea	Horas/SP	Responsable	% Completado
Sprint 4	HU4 - Im-	Documentar	5 h / 3 SP	Alumno	0 %
	plementación	pasos y			
	de modelos de machine	decisiones tomadas			
	learning	tomadas			
Sprint 4	HU5 - Optimi-	Identificar	5 h / 3 SP	Alumno	0 %
	zación de hiper-	hiperparáme-			
	parámetros	tros y rangos			
		de Logistic			
Sprint 4	HU5 - Optimi-	Regression Optimizar hi-	6 h / 3 SP	Alumno	0 %
Sprine	zación de hiper-	perparámetros		THUIIIIO	0 70
	parámetros	de Logistic			
		Regression, sin			
		considerar			
		feature			
Sprint 4	HU5 - Optimi-	engineering Implementar	4 h / 2 SP	Alumno	0 %
, op	zación de hiper-	hiperparáme-	/ _ %_		0,0
	parámetros	tros más			
		óptimos			
		en Logistic			
		Regression, sin considerar			
		feature			
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
Sprint 4	HU5 - Optimi-	Evaluar modelo	4 h / 2 SP	Alumno	0 %
	zación de hiper-	de Logistic			
	parámetros	Regression con			
		hiperparáme- tros óptimos,			
		sin considerar			
		feature			
~		engineering			
Sprint 4	HU5 - Optimi-	Optimizar hi-	6 h / 3 SP	Alumno	0%
	zación de hiper- parámetros	perparámetros de <i>Logistic</i>			
	Parametros	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
		engineering			
Sprint 4	HU5 - Optimi-	Implementar	4 h / 2 SP	Alumno	0 %
	zación de hiper- parámetros	hiperparáme- tros más			
	parametros	óptimos mas			
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
		Regression,			
		con feature			
		engineering			

Sprint	HU o fase	Tarea	Horas/SP	Responsable	% Completado
Sprint 4	HU5 - Optimi-	Evaluar modelo	4 h / 2 SP	Alumno	0 %
	zación de hiper-	$de \qquad Logistic$			
	parámetros	Regression con			
		hiperparáme-			
		tros óptimos,			
		con feature			
		engineering	7.1. / 0. GD		0.04
Sprint 5	HU5 - Optimi-	Identificar hi-	5 h / 3 SP	Alumno	0 %
	zación de hiper-	perparámetros			
	parámetros	y rangos de SVM			
Sprint 5	HU5 - Optimi-	Optimizar hi-	6 h / 3 SP	Alumno	0 %
Sprint 5	zación de hiper-	perparámetros		Aluiiiio	0 70
	parámetros	de SVM, sin			
	parametros	considerar			
		feature			
		engineering			
Sprint 5	HU5 - Optimi-	Implementar	4 h / 2 SP	Alumno	0 %
	zación de hiper-	hiperparáme-	,		
	parámetros	tros más			
		óptimos en			
		SVM , \sin			
		considerar			
		feature			
G	TILLE O .: :	engineering	4.1. / 9.CD	A 1	0.07
Sprint 5	HU5 - Optimización de hiper-	Evaluar modelo de <i>SVM</i> con hi-	4 h / 2 SP	Alumno	0 %
	parámetros	perparámetros			
	parametros	óptimos, sin			
		considerar			
		feature			
		engineering			
Sprint 5	HU5 - Optimi-	Optimizar	6 h / 3 SP	Alumno	0 %
	zación de hiper-	hiperparáme-			
	parámetros	tros de SVM ,			
		con feature			
		engineering			
Sprint 5	HU5 - Optimi-	Implementar	4 h / 2 SP	Alumno	0 %
	zación de hiper-	hiperparáme-			
	parámetros	tros más			
		óptimos			
		$\begin{array}{ccc} \text{en} & SVM, \\ \text{con} & feature \end{array}$			
		engineering			
Sprint 5	HU5 - Optimi-	Evaluar modelo	4 h / 2 SP	Alumno	0 %
Spriii 0	zación de hiper-	de SVM con	1.11 / 2.51		
	parámetros	hiperparáme-			
	1	tros óptimos,			
		con feature			
		engineering			

Sprint	HU o fase	Tarea	Horas/SP	Responsable	% Completado
Sprint 5	HU5 - Optimi-	Identificar hi-	7 h / 5 SP	Alumno	0 %
	zación de hiper- parámetros	perparámetros y rangos de			
	parametros	y rangos de $XGBoost$			
Sprint 5	HU5 - Optimi-	Optimizar hi-	8 h / 5 SP	Alumno	0 %
	zación de hiper-	perparámetros	,		
	parámetros	de XGBoost,			
		sin considerar			
		feature			
Sprint 5	HU5 - Optimi-	engineering Implementar	5 h / 3 SP	Alumno	0 %
Sprine	zación de hiper-	hiperparáme-	011 / 0 01	Truiiiio	0 70
	parámetros	tros más			
		óptimos en			
		XGBoost, sin			
		considerar			
		$feature \ engineering$			
Sprint 5	HU5 - Optimi-	Evaluar modelo	7 h / 5 SP	Alumno	0 %
	zación de hiper-	de XGBoost	, , , , ,		
	parámetros	con hiper-			
		parámetros			
		óptimos, sin			
		considerar $feature$			
		engineering			
Sprint 6	HU5 - Optimi-	Optimizar hi-	8 h / 5 SP	Alumno	0 %
	zación de hiper-	perparámetros			
	parámetros	de XGBoost,			
		$egin{array}{ll} { m con} & {\it feature} \ {\it engineering} \end{array}$			
Sprint 6	HU5 - Optimi-	Implementar	5 h / 3 SP	Alumno	0 %
Spring	zación de hiper-	hiperparáme-	0 11 / 0 21	111411111	0 ,0
	parámetros	tros más			
		óptimos en			
		XGBoost,			
		$egin{array}{ll} { m con} & {\it feature} \ {\it engineering} \end{array}$			
Sprint 6	HU5 - Optimi-	Evaluar modelo	7 h / 5 SP	Alumno	0 %
1 10	zación de hiper-	de XGBoost	, - ~-		
	parámetros	con hiper-			
		parámetros			
		óptimos,			
		$egin{array}{ll} { m con} & {\it feature} \ {\it engineering} \end{array}$			
Sprint 6	HU5 - Optimi-	Documentar	5 h / 3 SP	Alumno	0 %
	zación de hiper-	pasos y	, - ~-		
	parámetros	decisiones			
		tomadas			

Sprint	HU o fase	Tarea	Horas/SP	Responsable	% Completado
Sprint 6	HU6 - Métricas	Obtener	3 h / 2 SP	Alumno	0 %
	de modelos	métricas			
		$de extit{F1-score}$			
		para Logistic			
		$Regression, \sin \frac{1}{2}$			
		considerar			
		feature			
Comint 6	HU6 - Métricas	engineering Obtener	5 h / 3 SP	Alumno	0 %
Sprint 6	de modelos	métricas de	3 H / 3 SF	Alumno	0 70
	de modelos	AUC-ROC			
		para Logistic			
		$Regression, \sin$			
		considerar			
		$\int_{\cdot}^{\cdot} feature$			
		engineering,			
Sprint 6	HU6 - Métricas	y graficar Obtener	3 h / 2 SP	Alumno	0 %
Sprine 0	de modelos	métricas		Alumno	0 70
	do modelos	$\frac{1}{\text{de}}$ $F1$ -score			
		para Logistic			
		Regression,			
		con feature			
		engineering			
Sprint 6	HU6 - Métricas	Obtener	5 h / 3 SP	Alumno	0 %
	de modelos	$\begin{array}{ccc} \text{métricas} & \text{de} \\ AUC\text{-}ROC \end{array}$			
		para Logistic			
		Regression,			
		con feature			
		engineering, y			
		graficar			
Sprint 6	HU6 - Métricas	Obtener	3 h / 2 SP	Alumno	0 %
	de modelos	métricas de			
		F1-score para			
		SVM , \sin			
		considerar feature			
		jeature engineering			
Sprint 6	HU6 - Métricas	Obtener	5 h / 3 SP	Alumno	0 %
~P11110 0	de modelos	métricas de	3 / 3		0 /0
		AUC-ROC			
		para SVM, sin			
		considerar			
		feature			
		engineering,			
		y graficar			

Sprint	HU o fase	Tarea	Horas/SP	Responsable	% Completado
Sprint 6	HU6 - Métricas	Obtener métri-	3 h / 2 SP	Alumno	0 %
	de modelos	cas de F1-score para SVM, con feature enginee- ring			
Sprint 6	HU6 - Métricas de modelos	Obtener métricas de AUC-ROC para SVM, con feature engineering, y graficar	5 h / 3 SP	Alumno	0 %
Sprint 6	HU6 - Métricas de modelos	Obtener métricas de F1-score para XGBoost, sin considerar feature engineering	3 h / 2 SP	Alumno	0 %
Sprint 7	HU6 - Métricas de modelos	Obtener métricas de AUC-ROC para XGBoost, sin considerar feature engineering, y graficar	6 h / 3 SP	Alumno	0 %
Sprint 7	HU6 - Métricas de modelos	Obtener métricas de F1-score para XGBoost, con feature engineering	4 h / 2 SP	Alumno	0 %
Sprint 7	HU6 - Métricas de modelos	Obtener métricas de AUC-ROC para XGBoost, con feature engineering, y graficar	6 h / 3 SP	Alumno	0 %
Sprint 7	HU6 - Métricas de modelos	Comparar métricas de distintos modelos	3 h / 2 SP	Alumno	0 %
Sprint 7	HU6 - Métricas de modelos	Documentar pasos y decisiones tomadas	5 h / 3 SP	Alumno	0 %

Sprint	HU o fase	Tarea	Horas/SP	Responsable	% Completado
Sprint 7	HU7 - Desplie-	Investigar	5 h / 3 SP	Alumno	0 %
	gue en MLFlow	buenas			
		prácticas para			
		despliegues de MLFlow			
Sprint 7	HU7 - Desplie-	Crear entorno	7 h / 5 SP	Alumno	0 %
1	gue en MLFlow	local para	,		
		despliegue			
		MLFlow			. ~
Sprint 7	HU7 - Desplie-	Replicar técni-	8 h / 5 SP	Alumno	0 %
	gue en MLFlow	cas de análisis de datos en en-			
		torno MLFlow			
Sprint 7	HU7 - Desplie-	Replicar	8 h / 5 SP	Alumno	0 %
	gue en MLFlow	técnicas de	·		
		entrenamiento			
		de modelos			
		$\begin{array}{ccc} \operatorname{de} & Logistic \\ Regression \end{array}$			
		en entorno			
		MLFlow			
Sprint 7	HU7 - Desplie-	Replicar técni-	8 h / 5 SP	Alumno	0 %
	gue en MLFlow	cas de entrena-			
		miento de mo-			
		delos de SVM en entorno ML-			
		Flow			
Sprint 8	HU7 - Desplie-	Replicar técni-	8 h / 5 SP	Alumno	0 %
	gue en MLFlow	cas de entrena-			
		miento de mo-			
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
		torno MLFlow			
Sprint 8	HU7 - Desplie-	Replicar técni-	8 h / 5 SP	Alumno	0 %
	gue en MLFlow	cas de evalua-	,		
		ción de modelos			
		en entorno ML-			
Sprint 8	HU7 - Desplie-	Flow Ejecutar	4 h / 2 SP	Alumno	0 %
Spring	gue en MLFlow	localmente	1 11 / 2 01	Alumno	0 70
	0.55 555 5.55	el entorno			
		MLFlow			
Sprint 8	HU7 - Desplie-	Validar	4 h / 2 SP	Alumno	0 %
	gue en MLFlow	ejecución local			
		del entorno MLFlow			
		MILFIOW			

Sprint	HU o fase	Tarea	Horas/SP	Responsable	% Completado
Sprint 8	HU7 - Desplie-	Documentar	6 h / 3 SP	Alumno	0 %
	gue en MLFlow	pasos y decisiones			
		tomadas			
		MLFlow			
Sprint 8	HU8 - API pa-	Investigar como	6 h / 3 SP	Alumno	0 %
	ra entorno ML-	exponer un en-			
	Flow	torno MLFlow			
Sprint 8	HU8 - API pa-	mediante API Exponer	8 h / 5 SP	Alumno	0 %
Sprine	ra entorno ML-	resultados		THUIIIIO	0 70
	Flow	de modelos			
		explorados			
		en entorno			
		MLFlow mediante API			
Sprint 8	HU8 - API pa-	Exponer	8 h / 5 SP	Alumno	0 %
~P	ra entorno ML-	comparación	3 / 3	11111110	
	Flow	de modelos			
		en entorno			
		MLFlow			
Sprint 8	HU8 - API pa-	mediante API Documentar	4 h / 2 SP	Alumno	0 %
Sprint o	ra entorno ML-	pasos y	411/201	Alumno	0 70
	Flow	decisiones			
		tomadas			
Sprint 8	HU9 - Im-	Investigar bue-	4 h / 2 SP	Alumno	0 %
	plementación de buenas	nas prácticas en código Python			
	prácticas	codigo i ytiloli			
Sprint 9	HU9 - Im-	Aplicar buenas	8 h / 5 SP	Alumno	0 %
	plementación	prácticas en	·		
	de buenas	código Python			
Sprint 9	prácticas HU10 - Docu-	Agoguran	6 h / 2 CD	Alumno	0 %
Sprint 9	mentación	Asegurar que cada decisión	6 h / 3 SP	Alumno	U 70
	memodelon	tomada haya			
		sido justificada			
		y documentada			
Sprint 9	HU10 - Docu-	Asegurar orto-	8 h / 5 SP	Alumno	0 %
	mentación	grafía y formato en documenta-			
		ción			
Sprint 9	HU11 - Valida-	Validar acceso a	8 h / 5 SP	Alumno	0 %
	ción de API de	modelos explo-	,		
	MLFlow	rados mediante			
		API de entorno			
		MLFlow			

Sprint	HU o fase	Tarea	Horas/SP	Responsable	% Completado
Sprint 9	HU11 - Valida-	Validar acceso	8 h / 5 SP	Alumno	0 %
	ción de API de	a comparación			
	MLFlow	de modelos			
		mediante API			
		de entorno			
Sprint 9	HU11 - Valida-	MLFlow Crear	5 h / 3 SP	Alumno	0 %
Sprint 9	ción de API de	documentación	3 H / 3 SF	Alumno	0 70
	MLFlow	sobre el uso de			
	WIEI IOW	API de entorno			
		MLFlow			
Sprint 9	Redacción de	Redacción de	6 h / 3 SP	Alumno	0 %
	memoria	sección sobre	,		
		procesamiento			
		de datos			
Sprint 9	Redacción de	Redacción	4 h / 2 SP	Alumno	0%
	memoria	de sección			
		sobre Feature			
Sprint 9	Redacción de	Engineering Redacción de	7 h / 5 SP	Alumno	0 %
Sprint 9	Redacción de memoria	sección sobre	/ II / 3 SP	Alumno	U 70
		$implementaci\'on$			
		$de \ modelos$			
Sprint 10	Redacción de	Redacción de	6 h / 3 SP	Alumno	0 %
1	memoria	sección sobre	,		
		optimización de			
		hiperparáme-			
		tros			
Sprint 10	Redacción de	Redacción de	5 h / 3 SP	Alumno	0%
	memoria	sección sobre			
0 : + 10	D 1 '/ 1	MLFlow	01 / F CD	A 1	0.07
Sprint 10	Redacción de	Correcciones	8 h / 5 SP	Alumno	0 %
Sprint 10	memoria Preparación de	generales Confección de	6 h / 3 SP	Alumno	0 %
Sprint 10	presentación fi-	presentación		Alumno	0 70
	nal	PowerPoint			
Sprint 10	Preparación de	Confección	8 h / 5 SP	Alumno	0 %
	presentación fi-	de video	,		
	nal	demostración			
Sprint 10	Ajustes finales	Realizar correc-	6 h / 3 SP	Alumno	0 %
		ciones a código			
		de análisis de			
G		datos	0.1 / 2 27		. ~
Sprint 10	Ajustes finales	Realizar correc-	6 h / 3 SP	Alumno	0%
		ciones a código			
		de entrenamien-			
		to de modelos			

Sprint	HU o fase	Tarea	Horas/SP	Responsable	% Completado
Sprint 10	Ajustes finales	Realizar correc-	6 h / 3 SP	Alumno	0 %
		ciones a códi-			
		go de evalua-			
		ción de modelos			
Sprint 10	Ajustes finales	Realizar	6 h / 3 SP	Alumno	0 %
		pruebas finales			
Sprint 10	Ajustes finales	Realizar ajustes	6 h / 3 SP	Alumno	0 %
		en memoria fi-			
		nal			

11. Diagrama de Gantt (sprints)

En el cuadro 4 se muestra el resumen de los sprints del diagrama Gantt.

En el cuadro 5 se especifíca qué referencia cada color utilizado en el diagrama Gantt.

El diagrama Gantt se puede observar en las figuras 2, 3, 4 y 5.

Sprint	Cantidad de Horas	Fecha Inicio	Fecha Fin
0	32 h	24 de junio de 2025	4 de julio de 2025
1	60 h	7 de julio de 2025	25 de julio de 2025
2	64 h	28 de julio de 2025	15 de agosto de 2025
3	60 h	18 de agosto de 2025	5 de septiembre de 2025
4	62 h	8 de septiembre de 2025	26 de septiembre de 2025
5	60 h	29 de septiembre de 2025	17 de octubre de 2025
6	60 h	20 de octubre de 2025	7 de noviembre de 2025
7	60 h	10 de noviembre de 2025	28 de noviembre de 2025
8	60 h	1 de diciembre de 2025	19 de diciembre de 2025
9	61 h	2 de marzo de 2026	20 de marzo de 2026
10	63 h	23 de marzo de 2026	10 de abril de 2026

Cuadro 4. Resumen de sprints del diagrama Gantt.

Color	Descripción
Azul	Sprint
Violeta	Tarea técnica
Verde	Tarea no técnica
Amarillo	Hito

Cuadro 5. Referencias de colores utilizados en el diagrama Gantt.

Inteligencia Artificial

Figura 2. Diagrama de Gantt - Sprints 0, 1 y 2.

Figura 3. Diagrama de Gantt - Sprints 3, 4 y 5.

Figura 4. Diagrama de Gantt - Sprints 6, 7 y 8.

Figura 5. Diagrama de Gantt - Sprints 9 y 10.

12. Normativa y cumplimiento de datos (gobernanza)

El proyecto utilizará el dataset de Taiwanese Bankruptcy Prediction.

El dataset está publicado bajo la licencia *Creative Commons Attribution 4.0 International*, que permite la copia, distribución, exhibición y ejecución de los datos siempre y cuando se dé crédito al autor y/o publicador, en este caso el repositorio de *machine learning* de *UC Irvine*.

La información que presenta el dataset fue recolectada y publicada por el Taiwan Economic Journal. Tal como se menciona en la sección de *financial data* de su sitio web, todos los datos financieros que ellos presentan se obtienen de:

- Informes auditados por contadores públicos certificados.
- Datos mensuales sobre ingresos proporcionados por empresas que cotizan en la bolsa de Taiwán.

Como dato adicional, en el dataset no se mencionan los nombres de las empresas ni datos similares, solo presenta información financiera.

Por todo lo mencionado se puede garantizar que no existirán inconvenientes con el dataset de *Taiwanese Bankruptcy Prediction* durante el desarrollo y publicación del proyecto. Solamente hay que dar crédito a su publicador (repositorio de *machine learning* de *UC Irvine*).

13. Gestión de riesgos

Riesgo 1: datos no fiables.

- Severidad (7): este riesgo es de severidad alta ya que si los datos no son fiables, los resultados obtenidos serán de mala calidad.
- Probabilidad de ocurrencia (2): se considera que la propobabilidad de ocurrencia es baja, ya que se realizó un relevamiento sobre otros proyectos que utilizan estos datos, y los mismos presentan resultados con buena calidad.

Riesgo 2: falla o ruptura del equipo de trabajo (laptop).

- Severidad (10): este riesgo es de severidad alta ya que si el equipo con el que se realiza el proyecto sufre una falla o una ruptura, tanto el código como los tiempos del mismo tamién se verán afectados.
- Probabilidad de ocurrencia (5): se considera que la propobabilidad de ocurrencia es media, ya que hasta el momento de realizar la planificación el equipo no sufrió inconvenientes, pero eso no implica que no pueda haberlos en un futuro.

Riesgo 3: los modelos explorados no son suficientes para explicar el problema.

• Severidad (6): se considera como un riesgo de severidad media, ya que si ocurre sería necesario explorar otros modelos, lo que afectaría los tiempos del proyecto.

 Ocurrencia (2): se considera una probabilidad de ocurrencia baja, ya que en general, los modelos que se utilizarán (SVM, Logistic Regression y XGBoost) suelen tener buenos resultados en análisis similares.

Riesgo 4: falta de experiencia en uso de MLOps.

- Severidad (8): es un riesgo alto ya que al no tener experiencia de trabajo con dicha herramienta, su estimación podría ser errónea, lo que implicaría modificar los tiempos necesarios para desarrollarla.
- Ocurrencia (7): ya que al momento de realizar la planificación se cuenta con poca experiencia de trabajo con MLOps.

Riesgo 5: se requiere utilizar computación en la nube para trabajar con MLOps.

- Severidad (6): es un riesgo medio ya que implicaría un costo adicional en el desarrollo del proyecto.
- Ocurrencia (3): al momento de realizar la planificación, se hizo un breve análisis sobre esta herramienta, y en el mismo se relevó que no es necesario el uso de computación en la nube para implementar MLOps.
- b) Tabla de gestión de riesgos: (El RPN se calcula como RPN=SxO)

Riesgo	S	О	RPN	S*	O*	RPN*
Datos no fiables	7	2	14	-	-	-
Falla o ruptura del equipo de trabajo (laptop)	10	5	50	5*	5*	25*
Los modelos explorados no son suficientes para explicar	6	2	12	-	-	-
el problema						
Falta de experiencia en uso de MLOps	8	7	56	4*	5*	20*
Se requiere utilizar computación en la nube para trabajar	6	3	18	-	-	-
con MLOps						

Criterio adoptado:

Se tomarán medidas de mitigación en los riesgos cuyos números de RPN sean mayores a 20.

Nota: los valores marcados con (*) en la tabla corresponden luego de haber aplicado la mitigación.

c) Plan de mitigación de los riesgos que originalmente excedían el RPN máximo establecido:

Riesgo 2 (falla o ruptura del equipo de trabajo): el plan de mitigación de este riesgo consiste en buscar alternativas para el desarrollo del proyecto, como así también para el almacenamiento del código fuente. Se utilizará GitHub para almacenar el código, el que será subido frecuentemente para evitar pérdidas (mínimo, una vez por semana). Como alternativa de desarrollo, se utilizará Google Colab, el que permitirá ejecutar el código en la nube mientras se repara el equipo original o se busca uno nuevo.

• Severidad (4*): el impacto será menor que el original. Si ocurriese, solamente se tendrá que adaptar al uso de Google Colab mientras se busca un equipo alternativo.

■ Probabilidad de ocurrencia (5*): la probabilidad que ocurra será la misma.

Riesgo 4 (Falta de experiencia en uso de MLOps): para mitigar este riesgo se buscarán ejemplos prácticos de implementación de MLOps en ambientes locales durante las etapas tempranas del proyecto. Se hará énfasis en que dicho ejemplos tengan buenas prácticas de codificación y de despliegue. Si bien esto no satisface la falta de experiencia, por lo menos se tendrán ejemplos útiles en los que basarse al momento de trabajar con MLOps.

- Severidad (5*): al tener ejemplos prácticos útiles en los que basarse, el impacto de este riesgo se verá disminuído.
- Probabilidad de ocurrencia (5*): al buscar ejemplos prácticos útiles desde etapas tempranas, se puede disminuir la probabilidad de ocurrencia.

14. Sprint Review

HU seleccionada	Tareas asociadas	Entregable esperado	¿Cómo sabrás que está cum- plida?	Observaciones o riesgos
HU1 - Análisis exploratorio	Graficar la distribución de las variables Realizar análisis de correlaciones entre variables	Gráficos de distribución de variables + Documentación pertinente	Cumple criterios de aceptación definidos	-
HU4 - Implementación de modelos de machine learning	Implementar modelo XGBoost, sin considerar feature engineering Implementar modelo XGBoost, con feature engineering	Implementación de modelo XGBoost, con y sin feature engineering	Modelo XGBoost realiza predicciones sobre dataset de test	Dependencia con resultados de HU1 - Análisis exploratorio y HU3 - Feature Engineering

HU seleccionada	Tareas asociadas	Entregable esperado	¿Cómo sabrás que está cum- plida?	Observaciones o riesgos
HU6 - Métricas de modelos	Obtener métricas de F1-score para XGBoost, sin considerar feature engineering Obtener métricas de AUC-ROC para XGBoost, sin considerar feature engineering, y graficar Obtener métricas de F1-score para XGBoost, con feature engineering Obtener métricas de AUC-ROC para XGBoost, con feature engineering Obtener métricas de AUC-ROC para XGBoost, con feature engineering, y graficar	Métricas para XGBoost, con y son feature engineering	Valores numéricas para F1-score y AUC-ROC + gráfico de AUC-ROC	Dependencia con resultados de HU4 - Implementación de modelos de machine learning
HU7 - Despliegue en MLFlow	Replicar técnicas de análisis de datos en entorno MLFlow Replicar técnicas de entrenamiento de modelos de XGBoost en entorno MLFlow Replicar técnicas de evaluación de modelos en entorno	Entorno MLFlow desplegado localmente	Se puede acceder al entorno MLFlow de manera local	Dependencia con resultados de HU1 - Análisis exploratorio, HU3 - Feature Engineering y HU4 - Implementación de modelos de machine learning

15. Sprint Retrospective

Sprint tipo y N°	¿Qué hacer más?	¿Qué hacer menos?	¿Qué mantener?	¿Qué empezar a hacer?	¿Qué dejar de hacer?
Sprint técnico - 3	Implementar modelos de machine learning	Optimización de hiper- parámetros	Buenas prácticas de código y do- cumentación de decisiones tomadas	Identificar hiperparámetros para optimizar en futuros sprints técnicos	Correción de datos atípicos e implementación de feature engineering.
Sprint técnico - 6	Obtener métricas f1-score y AUC-ROC para SVM y Logistic Regression	Explorar distintos modelos con y sin feature engineering	Buenas prácticas de código y guardado de modelos en GitHub	Gráficos para comparar métricas entre modelos	Identificar y optimizar hiperparáme- tros.
Sprint técnico - 7	Replicar etapas de análisis de datos en entorno MLFlow	Comparación de modelos mediante métricas y gráficos	Persistir código en GitHub y documentar decisiones tomadas	Prepar entorno MLFlow para implementar modelos y sus compara- ciones	Identificar, explorar y optimizar hiperparáme- tros de modelos.
Sprint técnico - 8	Replicar implementación de modelos en entorno MLFlow	Replicar técnicas de Análisis de datos en entorno MLFlow	Persistir código en GitHub y documentar decisiones tomadas	Preparar entorno de MLFlow para pruebas de <i>APIs</i> necesarias	Identificar, explorar y optimizar hiperparáme- tros de modelos.
Sprint no técnico - 10	Confeccionar presentacio- nes para defensa final	Modificar contenido de memoria técnica	Pruebas para validar al entorno MLFlow	Ensayos orales para la defensa	Modificar el código fuente.