Physics 4310 Homework #8

3 problems Due by March 28

> 1.

Using the recursion relation for c_i , work out R_{30} and R_{31} for the hydrogen atom.

> 2.

For the following problems, feel free to use the tables in Griffiths; you don't need to work out ψ_{nlm} . If you want to use Eq. 4.89 and are using Mathematica, note that Mathematica uses a different normalization convention, so

$$L_a^b(x) = (a+b)!$$
 LaGuerreL(a, b, x)

- (a) Find $\langle r \rangle$ and $\langle r^2 \rangle$ for an electron in the ground state of hydrogen. Express your answers in terms of the Bohr radius.
- (b) Find $\langle z \rangle$ and $\langle z^2 \rangle$ for an electron in the ground state of hydrogen. Hint: This requires no new integration—note that $r^2 = x^2 + y^2 + z^2$, and exploit the fact that the ground state is spherically symmetric.
- (c) Find $\langle z^2 \rangle$ for an electron in the state n=2, l=1, and m=0. Note that this state is not spherically symmetric, so we do need to integrate. Use $z=r\cos\theta$.

> 3.

Consider the equation

$$x^{2}v'''(x) + x^{2}v''(x) + v'(x) + \lambda v(x) = 0$$

- (a) Using the power-law method we used for the hydrogen atom, write $v(x) = \sum_{j=0}^{\infty} c_j x^j$, and find a recursion relation for the coefficients c_j .
- (b) What is the recursion relation when $j \gg 1$? Prove that $v(x) \approx e^x$ unless the series terminates.
- (c) What has to be true about λ if the series terminates?