Homework #3 - CS6823 - Network Security

Part 1: SSL/TLS Traffic Inspection in Wireshark:

0. Make sure you are viewing the correct connection!

1. Proof:

- Had a browser window with only one HTTPS connection to the host
- NS lookup IP matches with the TCP SYN packet Destination IP
 - → Nslookup www.usaa.com

Non-authoritative answer:

Name: e6784.b.akamaiedge.net **Address: 104.101.202.113** Aliases: www.usaa.com wsan1.usaa.com.edgekey.net

 Packet Capture – Server Name Field in Client Hello and Destination IP = 104.101.202.113

 What's the maximum SSL/TLS version that your browser supports according to the ClientHello? Hint: Make sure you look in the ClientHello message, not the Handshake message

Client Version - TLS 1.0

3. Find the "Server Hello". What version did USAA choose?

Server Hello – Version – TLS 1.2

4. What Ciphersuite did USAA choose?
USAA Chosen Cipher Suite = TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (0xc030)

How many certificates did USAA send over during handshake?
 Number Of Certificate – 2

- 6. What's the Subject Common Name for each certificate(s)?
 - Certificate 1 Common Name: www.usaa.com
 - Certificate 2 Common Name: Symantec Class 3 EV SSL CA

7. Why is the "Finished" message missing?

The Finished message is missing because the Encryption starts after the Change Cipher Spec message, thus not allowing Wireshark to view the packets contents.

->Reference:

A Finished message is always sent immediately after a change cipher spec message to verify that the key exchange and authentication processes were successful.

Reference: https://tools.ietf.org/html/rfc5246#section-7.4.9

Part 2: [30 pts] SSL/TLS Inspection from web browser

	https://newclasses.nyu.edu/	https://vital.poly.edu/
What browser and OS	Mozilla Firefox	Mozilla Firefox
are you using?		
a. Root CA CN	USERTrust RSA Certification Authority	Let's Encrypt Authority X3
b. Subject Common Name (CN)	newclasses.nyu.edu	vital.poly.edu
c. Certificate "Valid from" date	09 April 2015	19 March 2017
d. Size of Modulus (in bits)	2048 Bits	2048 Bits

HW3 – Network Security

Srinivas Piskala Ganesh Babu – spg349 and N13138339

e. Value of e	65537	65537
f. Basic Constraints	Critical	Critical
	Is not a Certificate Authority	Is not a Certificate Authority

Screenshots:

→ Newclasses.nyu.edu

→ Vital.poly.edu

Part 3: [4 pts each, total 40 pts] General Questions. All answers should be relatively short and direct.

1. What's the difference between HMAC and a Digital Signature? HMAC:

- Hmac Function works similar to symmetric key method same key is used by both the sender and receiver.
- Helps in Verification of Integrity, Authenticity but does not help to verify Non-Repudiation unless key information is bound to the MAC key so that one posses the key to encrypt and other to just verify
- o Vulnerable to chosen plaintext attack and forgery attack
- o Depends on the Hashing Algorithm used like MD5 or SHA

Digital Signature:

- Digital Signature work using public key crypto or Asymmetric Key method different keys are used to encrypt and decrypt.
- Helps in Verification of Integrity, Authenticity and Non-Repudiation as well by default
- Vulnerable to forgery attack but complex to make the attack possible

2. How is an HMAC different than a hash?

Hash:

- Used to maintain Confidentiality of the message
- The Plaintext is hashed to some value which cannot be reverted back
- Vulnerable to Chosen Plain text attack

HMAC:

- Used to maintain Authenticity and Integrity of the message.
- The hashes are matched with the key and the message at both the sender and receiver end to verify the authenticity of the message
- Vulnerable to Chosen Plain text attack but adds more complexity with the usage of the key – symmetric key

3. a. Which field of an X.509v3 certificate binds the certificate to the website's name? Be specific. (Hint: Inspect the certificate on a web browser as described in Part B.)

- The Subject Common Name (CN)
- Example:
 - o Newclasses.nyu.edu Certificate SUBJECT Field
 - CN = newclasses.nyu.edu
 - OU = ITS eServices
 - O = New York University
 - STREET = 10 Astor Place
 - L = New York
 - S = NY
 - PostalCode = 10003
 - C = US

- b. Which field of an X.509v3 certificate specifies that this certificate is a CA or an End Entity? Be specific.
- Basic Constraints Subject Type (CA or End Entity)
- c. Which field of an X.509v3 certificate specifies where the Certificate Revocation List (CRL) for the CA is found at? Be specific.
- **CRL Distribution Point Distribution Point Name** contains the Full Name and URL for the Certificate Revocation List.

4. What is a Certificate Revocation List (CRL)?

Certificate Revocation List contains a **list of certificates** that have been put to a **revoked state** by the **certificate authority (CA)** who issued the Certificate and should **no longer be trusted.**

A Certificate will be placed in a Certificate a Revocation List when:

- Private Key has been compromised (Most Common Reason)
- Improperly Issued Certificate
- Violation of any policy

The Certificate is placed in the Revocation list before its expiration date.

Reference: https://en.wikipedia.org/wiki/Certificate_revocation_list
Basically it contains the list of certificates that have been blacklisted

5. In the X.509v3 server certificate, the Issuer CN is the same as what field in the Intermediary CA's certificate?

Subject CN of the Intermediate Certificate

6. Which messages are hashed in the finished message?

All the **Handshake messages** completed till the Change Cipher Spec (Change Cipher Spec - not included) are hashed in the Finished message

8. How is amazon.com authenticated to the user's browser?

- Verification of Server Certificate:
 - o Certificate Parameters and Validity
 - Validity of the Certificate
 - The Common Name match with the Connected Channel
 - Basic Constraints for the End-Point or CA validation
- Matches the Root CA with the trusted CA list present in the browser
- Traverses the Issuer Field from the Endpoint to the Root CA
- Performs Signature Verification from the Root CA Public Key to the End-Entity
 - Intermediary CA Public Key- Verify the Signature of Server (End-Entity)
 Certificate
 - o Root CA Public Key Verify the Signature of Intermediary Certificate
- Intermediary CA and Root CA
 - Root CA is the certificate authority that issues the certificate Trusted by the browser
 - Intermediate CA is the one which verifies, signs the certificate uses (n,e) and tries to verify the signature of the Server Certificate

9. How is the user's browser authenticated to amazon.com?

• Users Browser is **not authenticated** to the amazon.com

HW3 – Network Security

Srinivas Piskala Ganesh Babu – spg349 and N13138339

- Amazon.com has no idea of who the client is.
- Client identification is **not verified unless Login** is performed
- The Communication to the Server is Secure, that is the requirement.