Statistics Café

A seminar series on machine learning

Objectives

- To predict or to explain?
- What is machine learning?
- Popular/powerful approaches
 - Classification and decision trees
 - Artificial neural networks
 - Understanding the architecture/theory
 - Strengths and weaknesses → choosing a method
 - Applications in ecological research

Disclaimer

- We're no experts in this field!
- Interactive seminar series with the objective to teach ourselves
- External experts to extend the self-taught basics

Schedule

24.10. (SH)	Statistical modeling: the two cultures Interpretation vs Prediction and the role of algorithmic models
07.11. (SH?)	Tree-based methods: Regression and classification trees
21.11. (CFD)	Tree-based ensemble methods: bagging, random forests, boosting
05.12. (CS)	Introduction to artifical neural networks (ANNs): theory, application, examples
19.12.	From linear regression to ANNs without hidden layers: feed-forward and backpropagation
16.01.	Convolutional neural networks: theory, application, examples
01.02. (Friday!)	Deep learning (external: Dr Pan Kessel, machine learning group, TU Berlin)
13.02.	Wrap-up: What have we learned? The role of predictive modelling/machine learning/algorithmic models in ecology and evolution.

Statistical modelling

The two cultures

Goals in Science

Goals in Science

Describing

Estimating population size, occupancy probability, etc.

Describing

Estimating population size, occupancy probability, etc.

Understanding

Causal relationships: drivers of species distribution, mechanisms of diversification, etc.

Describing

Estimating population size, occupancy probability, etc.

Understanding

Causal relationships: drivers of species distribution, mechanisms of diversification, etc.

• Predicting

Population size in 10 years from now, predict species distribution in inaccessible area

Goals in Science

- Which goal do you pursue?
 Describing, Understanding, Predicting
- What's your experimental design? Experiment, Observation
- Which analysis tools do you use? t-test, ANOVA, GLM, GLMM, GAM, random forest, neural networks, ...?

To explain

- As Breiman puts it: "The data modelling culture"
- Nature = stochastic model
 - Linear regression
 - Logistic regression
 - •
- Assumption: We know Nature's structure
- Used to test hypotheses
- Simple, interpretable picture of the relationship between x and y

To explain

- 'explaining'
 - Following the 'gold standard' of science: highly controlled experimental designs
 - Likely to know Nature
 - Inferring causality: drivers of changes in y
- 'explanatory modelling'
 - Field observations of y and x
 - Unlikely to know Nature \rightarrow assumptions
 - Inferring correlates of y

Limitations of interpretation

- 'explaining'
 - Learning about small, contained parts of Nature
 - Predictions might still be bad
- 'explanatory modelling'
 - Infer correlation rather than causality
 - Moderate predictive power
 - Hypothesis testing can be flawed due to unjustified assumptions
 - Problems arise mostly when modelling complex systems (i.e. many predictor, interactions) → multiplicity of good models
 - (Block-) cross-validated predictive accuracy as 'new' standard measure of fit (Stone, 1974; Roberts et al. 2017)

The Rashomon Effect

• Japanese movie

Four people, from different vantage points, witness the death of another person. All report the same facts, but their story of what happened differ.

- Translation:
 - Different realisations of Nature (story of what happens, i.e. f(x))
 - Similar error rates/goodness of fit (same facts)

The Rashomon Effect

• Example:

Subset selection in linear regression: 30 variables 140,000 five-variable subsets in competition Many five-variable subsets with RSS within 1.0% of the lowest RSS

Conclusion 1:
$$y = 2.1 + 3.8x_1 - 0.6x_8 + 83.2x_{12} - 2.1x_{17} + 3.2x_{22}$$

Conclusion 2:
$$y = -8.9 + 4.6x_5 + 0.01x_6 + 12.0x_{15} + 17.5x_{21} + 0.2x_{22}$$

Conclusion 3:
$$y = -76.7 + 9.3x_2 + 22.0x_7 - 13.2x_8 + 3.4x_{11} + 7.2x_{28}$$

• See Breiman, 1996 for 'instability' in algorithmic models

To predict

- As Breiman puts it: "The algorithmic modelling culture"
- Algorithmic models, (machine learning,) artificial intelligence
- Nature = complex and unknown (black box)
- Goal: finding f(x) (e.g Vapnik 1998; Breiman, 2000)

Breiman, 2001

. . .

Predictive modelling in science

- Often considered 'unscientific' (see Berk, 2008)
- Not really part of the scientific method
- Rather used in applications (Shmueli, 2010)
- But:
 - Akaike: "The predictive point of view is a prototypical point of view to explain the basic activity of statistical analysis" (in Findley & Parzen, 1998)
 - Deming: "The only useful function of a statistician is to make predictions" (in Wallis, 1980)
- With new large datasets (e.g. ICARUS): Is it possible to 'control' the data?
 - More and more problems stop 'looking like nails' (Breiman, 2001)

Discussion

To explain vs to predict?

Can we use predictions to increase our understanding of a system?

- How useful is explanatory modelling?
- Interpretability of simple stochastic models
- What about model averaging?
- Simplicity vs accuracy
 - It seems that: the more complex the more accurate
 - Should we change our goal from 'interpretability' to 'accurate information'?
- Applications/strengths of algorithmic models in ecology

References

Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123-140.

Breiman, L. (2000). Some infinity theory for predictor ensembles. Technical Report 579, Statistics Dept. UCB.

Breiman, L. (2001). Statistical modeling: The two cultures. Statistical science, 16(3), 199-231.

Findley, D. F., & Parzen, E. (1998). A conversation with Hirotugu Akaike. In *Selected Papers of Hirotugu Akaike* (pp. 3-16). Springer, New York, NY.

Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera-Arroita, G., ... & Warton, D. I. (2017). Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. *Ecography*, 40(8), 913-929.

Stone, M. (1977). An asymptotic equivalence of choice of model by cross-validation and Akaike's criterion. *Journal of the Royal Statistical Society. Series B (Methodological)*, 44-47.

Shmueli, G. (2010). To explain or to predict? Statistical science, 25(3), 289-310.

Vapnik, V. (1998). Statistical learning theory. 1998 (Vol. 3). Wiley, New York.

Wallis, W. A. (1980). The statistical research group, 1942–1945. Journal of the American Statistical Association, 75(370), 320-330.

McGill, B. (2014). Are you in science to understand, describe or predict? *Dynamic Ecology Blog*, https://dynamicecology.wordpress.com/2018/03/14/are-you-in-science-to-understand-describe-or-predict/