5-laboratoriya jumısı Izbe-iz terbelis konturların izertlew

Jumistiń maqseti: izbe-iz terbelis konturi chastotaliq xarakteristikaları qásiyetlerin eksperimental tekseriw.

1. Qısqa teoriyalıq túsinikler

Izbe-iz jalgangan rezistiv qarsılıq R, induktivlik L ham sıyımlılıq C ameldegi bolgan elektr shınjırının sxeması 1- suwretde keltirilgen. Bunday elektr shınjırın izbe-iz RLC-konturı, yamasa, izbe-iz terbelis (rezonans) konturı dep ataladı.

Eger konturdiń kirisiw klemmasina u= U_m cos ω t kernew jalgangan bolsa, sol konturdagi garmonik turaqlı (garmonik kernew tásiri jalgangannan keyin jetkilikli waqıt ótkennen keyin) toktı i i= I_m cos $(\omega t$ + $\varphi)$ yagnıy, tok amplitudasi I_m hám tok baslangısh fazası φ ni anıqlaw zárúr bolsın.

Kontur elementleri kernewleri oń baźdarların tuwrı tańlap, 3-laboratoriya jumısında keltirilgen shınjır elementlerindegi tok hám kernewler baylanısıwların itibaráa alıp, tómendegilerdi jazıw múmkin:

$$RI_{m}Cos(\omega t + \varphi) + (\omega L - \frac{1}{\omega C})I_{m}Cos(\omega t + \varphi + \frac{\pi}{2}) = U_{m}Cos\omega t$$
(5.1)

Birdey chastotalı garmonik funktsiyalardı qosıw qağıydalarınan paydalanıp, tómendegilerdi payda etiw múmkin

$$z \cdot I_m Cos(\omega t + \Psi) = U_m Cos\omega t,_{q}$$
(5.2)

bunda $z=R+j(X_L-X_C$ - shinjirdiń kirisiw toliq kompleks qarsılıgı,

$$Z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$
 - oniń moduli ; bunda R-rezistor aktiv qarsılıgı ; $X_L = j\omega L$ - kompleks

induktiv qarsılıgı; $X_C = \frac{1}{i\omega C}$ - kompleks sıyımlılıq qarsılıgı.

Teńlik (5. 1) diń oń hám shep tárepleri amplitudalari hám fazaların salıstırıwlaw nátiyjesinde ızlenip atırgan konturdiń garmonik tokı amplitudasin hám baslangısh fazasın anıqlaw múmkin.

$$I_{m} = \frac{U_{m}}{\sqrt{R^{2} + (\omega L - \frac{1}{\omega C})^{2}}} \quad (5.3) \quad \omega L - \frac{1}{\omega C}$$

Shinjir konturiniń elementlerindegi kernewler vektor diagrammalari 2- suwretde keltirilgen.

2-súwret. Vektor diagramması

Reaktiv qarsılıqlar $\omega L < 1/\omega C$ bolganlığı ushın, vektor diagrammada tok vektorı támiyinleytuğın kernew vektorına salıstırganda $\varphi > 0$ müyeshke jıljığan. Sıyımlılıqtağı U_{mC} hám induktivlikdagi U_{mL} kernewler vektorları bolsa tok I_m vektorına salıstırganda, uyqas türde,- $\pi/2$ hám + $\pi/2$ jıljığanlar, sebebi ağıp atırgan tokka salıstırganda sıyımlılıq klemmalarındağı kernew fazası boyınsha $\pi/2$ müyeshke kesisedi, induktivliktegi kernew fazası boyınsha $\pi/2$ müyeshke ilgerilep ketedi.

Reaktiv qarsılıqlar $\omega L < 1/\omega C$ bolganda sol elementler kernewleri modulları teń $U_{mL}=U_{mC}$ boladı, ol jağdayda fazalar jılısıwı $\phi=0$. Bunday rejim RLC-konturdıń *rezonans rejimi* dep ataladı hám támiyinleytuğın kernew chastotası $\omega=\omega_0=1$ / \sqrt{LC} erkin terbelisler chastotasına (geyde bul chastotanı rezonans chastotası yamasa jeke terbelisler chastotası dep ataladı) teń boladı. Bul $\omega=\omega_0$ chastotada konturdıń tolıq qarsılıgı sap aktiv Z₀=R hám minimal boladı, kontur tokı bolsa óziniń maksimal ma`nisine shekem artadı. Toktin` $I(\omega)$ baylanısıwı ω =const hám U= const bolganda ω dıń ózgeriwi menen ekstremal xarakterge iye boladı. Rezonans chastotada sıyımlılıq hám induktivliktin` garmonik kernewleri bir-birin kompensatsiyalaydı. Usınıń sebepinen, konturda kernew rezonansi ámeldegi, dep qabıl etilgen.

Terbeliwshi RLC-kontur tómendegi «ekilemshi» parametrler menen xarakterlenedi:

$$R_{C} = \sqrt{\frac{L}{C}} = \omega_{0}L = \frac{1}{\omega_{0}C}$$

$$Q = \frac{R_{C}}{R} = \frac{U_{L0}}{U} = \frac{U_{C0}}{U}$$
konturdin` haqiyqiylig`ı
$$S_{A} = \frac{f_{0}}{Q}$$
absolyut o`tkeriw aralig`i.
$$(5.5a)$$

Izbe-iz RLC-kontur ushın rezonans chastotada tómendegi baylanısıwlar orınlı bolıp tabıladı:

$$I_0 = \frac{U}{R}; U_{R0} = U; U_{C0} = U_{L0} = I_0 \cdot R_C = Q \cdot U$$
 (5.5)

 $I(\omega)$, $U_R(\omega)$, $U_L(\omega)$, $U_C(\omega)$ baylanısıwlar amplituda-chastotalıq yamasa rezonans xarakteristikası (ACHX), $\varphi(\omega)$) baylanısıw bolsa faza -chastotalıq xarakteristika (FCHX) dep ataladı. Olar tómendegi ańlatpalar járdeminde esaplanadı:

$$I(\omega) = \frac{U}{Z} = \frac{U}{\sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}}$$

$$U_R(\omega) = I(\omega) \cdot R;$$

$$U_L(\omega) = I(\omega) \cdot \omega L;$$

$$U_{C}(\omega) = I(\omega) \cdot \frac{1}{\omega C};$$

$$\varphi(\omega) = \arctan \frac{\omega L - \frac{1}{\omega C}}{R}.$$
(5.6)

3- súwret. Amplituda- hám faza -chastotalıq xarakteristikalar.

Shegaralarında konturdağı tok öziniń rezonans processindegi I₀ ma`nisinen √2 ret paseyetuğın chastotalar aralıqı izbe-iz terbelis konturınıń ótkeriw aralıqı dep ataladı (3- súwret). Absolyut ótkeriw aralıqı tómendegi ańlatpa menen anıqlanadı:

2. Dáslepki esaplawlar

2. 1. 5- suwretdegi sxema ushın berilgen stendga tiyisli kontur elementleri mánislerin 1- kesteden alıp, U=1 V., R_d=100Ω. bolgandagi tómendegi chastotalar ushin $f_0 \pm \Delta f$, $f_0 \pm 2\Delta f$, $f_0 \pm 3\Delta f_0 \pm \Delta f$, bunda

$$f_0 = \frac{1}{2\pi \sqrt{IC}}$$

 $f_0 = \frac{1}{2\pi\sqrt{LC}}$ ACH hám FCH $U_{Rd}(f)$, $U_L(f)$, $U_C(f)$, ϕ ni esaplań hám quriń. Esaplawlardı (5. 6) ańlatpalar járdeminde, R=R_k+R_d qabıl etip atqarıń. Esaplawlar nátiyjelerin 5. 2kestege kiritiń.

2. 2. Absolyut ótkeriw aralıqı SA hám kontur haqıyqıylığın (5. 4) hám (5. 4, a) anlatpalar járdeminde esaplań.

Esaplawlar hám tájiriybe ushin berilgen mánisler

1- keste

Stend	L	С	Stend	L	С	Stend	L	C
№	мНп	nF	$N_{\underline{0}}$	мНп	nF	№	мНп	nF
1	45	100	5	65	55	9	85	30
2	50	80	6	70	50	10	90	25
3	55	70	7	75	40	11	95	20
4	60	60	8	80	35	12	100	15

3. Jumisti orinlaw

3. 1. Izbe-iz terbelis koturinin $U_{Rd}(f)$ va $\varphi(f)$ chastotalıq xarakteristikaların tekseriw. Stend nomerine kóre 1- kesteden alıngan variant boyınsha 5- suwretdegi sxema jıynalsin.

 R_k - induktivlik katushkanin` ishki (O_{mik}) qarsılıgı bolıp, ol tútediń ózinde sáwlelengenlengen, sol sebepli sırtqı elementlerde jıynalmaydı.

Generator shığıwında R_d =100 Ω hám kernew U=1 V ornatilsin. Generator chastotasın ózgertirip, konturdı rezonans chastotası f_0 ga retleń. Chastota f_0 ni belgilew ushın V2 voltmetrdiń maksimal kórsetkishi yamasa rezonans rejimindegi kórsetkishi nolga teń bolgan fazometr járdeminde ámelge asırıw műmkin. Voltmetr kórsetkishleri 2-kestege kiritilsin.

Shığıw kernewiniń U=1 V ózgermeytuğın bolıwın támiyinlep, hám de $f_0 \pm \Delta f$, $f_0 \pm 2\Delta f$, $f_0 \pm 3\Delta f$, bunda Δ f = 200 Hz chastotalarda U_{Rd} kernew hám ϕ fazalar ayırmashılığın ólsheń. Ólshewler nátiyjelerin 2- kestege kiritiń

5-su`wret.

3. 2. Induktivlik chastotalıq xarakteristikasın tekseriń, 6 - súwret sxemasın jıynań. Elementler parametrleri hám $U_L(f)$ ólshenetuğın chastotalar 3. 1- bólimdegi sıyaqlı alınsın. Ólshewler nátiyjelerin 2-kestege kiritiń.

6-su`wret.

4. Dáslepki esaplawlar hám tájiriybe nátiyjeleri

2- keste

	O`lshew na`tiyjeleri						Da`lepki esaplaw na`tiyjeleri				
N	F	f,	$U_{R_{\mathcal{A}}}$	U_L ,	U_C ,	φ,	$U_{R_{\mathcal{A}}}$	U_L ,	U_C ,	φ,	
	_	kHz	V	V	V	grad	V	V	V	grad	

1	$f_0 - 3\Delta g$	f				
2	$f_0 - 2\Delta$	f				
3	$f_0 - 3\Delta g$ $f_0 - 2\Delta g$ $f_0 - \Delta f$					
4	$f_{ m o}$					
5	$f_0 + 3\Delta y$	f				
6	$f_0 + 2\Delta$ $f_0 + \Delta f$	f				
7	$f_0 + \Delta f$					

4. 1. Sıyımlılıq chastotalıq xarakteristikaların tekseriń. 6 - súwret sxemasın jıynan'.

7- súwret

Kernew u_C (f) ni ólshew 3. 2- bolimdegi sıyaqlı alinsin.

5. Esabat quramı

- 5. 1. Jumistiń ati hám magseti.
- 5. 2. Chastotalıq xarakteristikalardı ólshew sxemaları.
- 5. 3. Dáslepki esaplaw hám eksperiment nátiyjeleri boyınsha qurılgan chastotalıq xarakteristikalardın $U_{Rd}(f)$, $U_{L}(f)$, $U_{C}(f)$, $\varphi(f)$ grafikları.
- 5. 4. Grafik U_{Rd}(f) járdeminde absolyut ótkeriw aralıqın anıqlaw jáne onı dáslepki esaplaw nátiyjeleri menen salıstırıwlaw.
 - 5. 5. $S_A(R_{juk})$ va $Q_E(R_{juk})$ baylanısıwlar grafikları qurilsin (qosimsha wazıypa).
 - 5. 6. Izertlewler nátiyjeleri boyınsha juwmaqlar.

6. Qadagalaw sorawları

- 6. 1. Kernewler rezonansi shártini jazıń.
- 6. 2. Ne ushin izbe-iz terbelis konturındağı rezonansni kernewler rezonansi dep ataladı?
- 6. 3. Konturdiń haqıyqıylığı dep nege aytıladı hám ol neni ańlatadı?
- 6. 4. Terbelis konturınıń uzatıw aralıqı dep nege aytıladı?
- 6. 5. Uzatıw aralıqınıń shegaralarında terbelis konturınıń qásiyetleri qanday boladı?
- 6. 6. Rezonans rejiminde terbelis konturı qanday ayrıqshalıqlarga iye
- 6. 7. Eger L hám C mánislen 4 ret ortsa, xarakteristikalıq qarsılıq qanday ózgeredi
- 6. 8. Konturdıń ámeldegi rejiminde $X_L > X_C$ bolsa, kernew rezonansin payda etiw ushın kernew chastotasın qanday ózgertiw zárúr?
 - 6. 9. Eger terbelis konturı aktiv qarsılıgı 2 ret artsa, ótkeriw aralığı qanday ózgeredi?
- 6. 10. Eger U=10 V, R=10 Ω , XL0=20 Ω bolsa, rezonans rejimindegi (5. 1-súwret) sıyımlılıqtağı kernewdi anıqlań.
 - 6. 11. Eger U=200 V, R=100Ω, XL=XC=100Ω bolsa, terbelis konturındağı toktı anıqlań.
- 6. 12. Sıyımlılıqqa parallel jalgangan júk qarsılıgı R_{juk}tin` ma`nisi konturdıń tańlaw ayrıqshalıgına qanday tásir kórsetedi?
 - 6. 13. Terbelis konturınıń rezonansdagi hám X_L < X_C rejimindegi vektor diagrammasın sızıń.