UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA

DISCIPLINA: CIRCUITOS ELETRICOS I	Data:
Aluno(a):	Matrícula:

Avaliação 1º Estágio

- 1) Dado que a condutância G=1/R, deduza a expressão geral da associação paralela de resistores em termos da condutância. (1.5)
- 2) Considere que lhe são dadas duas caixas pretas, que você só tem acesso aos termianis (a) e (b), e que as mesmas contém os circuitos equivalentes Norton e Thévenin de um circuito qualquer, como apresentado na figura 1. Indique se é possível identificar o circuito equivalente Norton e Thévenin, em cada caixa, utilizando apenas um fio condutor. Justifique. (1.5)

Figura 1

3) Determine os valores das tensões de nó do circuito da figura 2. Os valores dos resistores estão dados em Ohms (Ω) (3.0)

Figura 2

- 4) O circuito da figura 3 contém um resistor ajustável, que pode assumir qualquer valor na faixa de 0 a $100\text{K}\Omega$ ($0 \le R \le 100\text{K}\Omega$).
- a) Determine o valor máximo da corrente i_a que pode ser obtida ajustando o valor de R. Determine o valor correspondente de R. (1.0)
- b) Determine o valor máximo da tensão v_a que pode ser obtida ajustando o valor de R. Determine o valor correspondente de R. (1.0)

c) Determine o valor máximo da potência fornecida ao resistor ajustável que pode ser obtida ajustando o mesmo. Determine o valor correspondente de R. (2.0)

Figura 3

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA

DISCIPLINA: CIRCUITOS ELETRICOS I	Data:
Aluno(a):	Matrícula:

Avaliação 1º Estágio

- 1) Dado que a condutância G=1/R, deduza a expressão geral da associação paralela de resistores em termos da condutância. (1.5)
- 2) Considere que lhe são dadas duas caixas pretas, que você só tem acesso aos termianis (a) e (b), e que as mesmas contém os circuitos equivalentes Norton e Thévenin de um circuito qualquer, como apresentado na figura 1. Indique se é possível identificar o circuito equivalente Norton e Thévenin, em cada caixa, utilizando apenas um fio condutor. Justifique. (1.5)

Figura 1

3) Determine os valores das tensões de nó do circuito da figura 2. Os valores dos resistores estão dados em Ohms (Ω) (3.0)

Figura 2

- 4) O circuito da figura 3 contém um resistor ajustável, que pode assumir qualquer valor na faixa de 0 a $100 \text{K}\Omega$ ($0 \le R \le 100 \text{K}\Omega$).
- a) Determine o valor máximo da tensão v_a que pode ser obtida ajustando o valor de R. Determine o valor correspondente de R. (1.0)
- b) Determine o valor máximo da corrente i_a que pode ser obtida ajustando o valor de R. Determine o valor correspondente de R. (1.0)

c) Determine o valor máximo da potência fornecida ao resistor ajustável que pode ser obtida ajustando o mesmo. Determine o valor correspondente de $R.\ (2.0)$

Figura 3