第一章 数学基础

1.1 标量、向量、张量之间的联系

张量 (tensor)

在某些情况下,我们会讨论坐标超过两维的数组。一般地,一个数组中的元素分布在若干维坐标的规则网格中,我们将其称之为张量。使用粗体 \mathbf{A} 来表示张量 " \mathbf{A} "。张量 \mathbf{A} 中坐标为 (i,j,k)的元素记作 $\mathbf{A}_{(i,j,k)}$ 。

关系

标量是0阶张量,向量是一阶张量。举例:

标量就是知道棍子的长度,但是你不会知道棍子指向哪儿。

向量就是不但知道棍子的长度,还知道棍子指向前面还是后面。

张量就是不但知道棍子的长度,也知道棍子指向前面还是后面,还能知道这棍子又向上/ 下和左/右偏转了多少。

1.2 张量与矩阵的区别?

- 1 从代数角度讲,矩阵它是向量的推广。向量可以看成一维的"表格"(即分量按照顺序排成一排),矩阵是二维的"表格"(分量按照纵横位置排列),那么n阶张量就是所谓的n维的"表格"。张量的严格定义是利用线性映射来描述的。
- 2 从几何角度讲, 矩阵是一个真正的几何量,也就是说,它是一个不随参照系的坐标变换而变化的东西。向量也具有这种特性。
 - 3 张量可以用 3×3 矩阵形式来表达。
- 4 表示标量的数和表示矢量的三维数组也可分别看作 1×1, 1×3 的矩阵。

1.3 矩阵和向量相乘结果

一个m行n列的矩阵和n行向量相乘,最后得到就是一个m行的向量。运算法则就是矩阵中的每一行的数据与向量中的数据相乘。

1.4 向量和矩阵的范数归纳

向量的范数

定义一个向量为: a=[-5, 6, 8, -10]。

向量的1范数:向量的各个元素的绝对值之和,上述向量 a 的 1 范数结果就是: 29。

向量的 2 范数: 向量的每个元素的平方和再开平方根,上述 a 的 2 范数结果就是: 15。

向量的负无穷范数: 向量的所有元素的绝对值中最小的: 上述向量 a 的负无穷范数结果就是: 5。

向量的正无穷范数: 向量的所有元素的绝对值中最大的: 上述向量 a 的负无穷范数结果就是: 10。

矩阵的范数

定义一个矩阵 A=[-1 2 -3; 4 -6 6]。

矩阵的 1 范数: 矩阵的每一列上的元素绝对值先求和,再从中取个最大的,(列和最大),上述矩阵 A 的 1 范数先得到[5,8,9],再取最大的最终结果就是: 9。

矩阵的 2 范数: 矩阵 A^TA 的最大特征值开平方根,上述矩阵 A 的 2 范数得到的最终结果是: 10.0623。

矩阵的无穷范数:矩阵的每一行上的元素绝对值先求和,再从中取个最大的,(行和最大),上述矩阵 A 的 1 范数先得到[6; 16],再取最大的最终结果就是: 16。

矩阵的核范数:矩阵的奇异值(将矩阵 svd 分解)之和,这个范数可以用来低秩表示(因为最小化核范数,相当于最小化矩阵的秩——低秩),上述矩阵 A 最终结果就是: 10.9287。

矩阵的 L0 范数: 矩阵的非 0 元素的个数,通常用它来表示稀疏, L0 范数越小 0 元素越多, 也就越稀疏,上述矩阵 A 最终结果就是: 6。

矩阵的 L1 范数:矩阵中的每个元素绝对值之和,它是 L0 范数的最优凸近似,因此它也可以表示稀疏,上述矩阵 A 最终结果就是:22。

矩阵的 F 范数:矩阵的各个元素平方之和再开平方根,它通常也叫做矩阵的 L2 范数,它的有点在它是一个凸函数,可以求导求解,易于计算,上述矩阵 A 最终结果就是:10.0995。

矩阵的 L21 范数: 矩阵先以每一列为单位,求每一列的 F 范数(也可认为是向量的 2 范数),然后再将得到的结果求 L1 范数(也可认为是向量的 1 范数),很容易看出它是介于 L1和 L2 之间的一种范数,上述矩阵 A 最终结果就是:17.1559。

1.5 如何判断一个矩阵为正定?

- 1.顺序主子式全大于 0;
- 2.存在可逆矩阵 \mathbf{C} 使 $\mathbf{C}^{\mathsf{T}}\mathbf{C}$ 等于该矩阵(^指转置);
- 3.正惯性指数等于n:
- 4.合同于单位矩阵 E (即:规范形为 E)
- 5.标准形中主对角元素全为正:
- 6.特征值全为正:

7.是某基的度量矩阵

1.6 导数偏导计算

1.7 导数和偏导数有什么区别?

导数和偏导没有本质区别,都是当自变量的变化量趋于 0 时,函数值的变化量与自变量变化量比值的极限(如果极限存在的话)。

- 一元函数,一个y对应一个x,导数只有一个。
- 二元函数,一个 z 对应一个 x 和一个 y,有两个导数:一个是 z 对 x 的导数,一个是 z 对 y 的导数,称之为偏导。

求偏导时要注意,对一个变量求导,则视另一个变量为常数,只对改变量求导,从而将偏导的求解转化成了一元函数的求导了。

http://blog.sina.com.cn/s/blog 5b014d510100axmt.html

1.8 特征值分解与特征向量

特征值分解可以得到特征值与特征向量,特征值表示的是这个特征到底有多重要,而特征向量表示这个特征是什么。

如果说一个向量v是方阵A的特征向量,将一定可以表示成下面的形式:

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$$

λ 为特征向量 v 对应的特征值。特征值分解是将一个矩阵分解为如下形式:

$$\mathbf{A} = \mathbf{O}\Sigma\mathbf{O}^{-1}$$

其中, \mathbf{Q} 是这个矩阵 \mathbf{A} 的特征向量组成的矩阵, Σ 是一个对角矩阵,每一个对角线元素就是一个特征值,里面的特征值是由大到小排列的,这些特征值所对应的特征向量就是描述这个矩阵变化方向(从主要的变化到次要的变化排列)。也就是说矩阵 \mathbf{A} 的信息可以由其特征值和特征向量表示。

对于矩阵为高维的情况下,那么这个矩阵就是高维空间下的一个线性变换。可以想象,这个变换也同样有很多的变换方向,我们通过特征值分解得到的前 N 个特征向量,那么就对应了这个矩阵最主要的 N 个变化方向。我们利用这前 N 个变化方向,就可以近似这个矩阵(变换)。

http://blog.csdn.net/jinshengtao/article/details/18448355

1.9 奇异值与特征值有什么关系?

那么奇异值和特征值是怎么对应起来的呢?我们将一个矩阵 \mathbf{A} 的转置乘以 \mathbf{A} ,并对 $\mathbf{A}\mathbf{A}^T$ 求特征值,则有下面的形式:

$$(\mathbf{A}^T \mathbf{A})V = \lambda V$$

这里V就是上面的右奇异向量,另外还有:

$$\sigma_i = \sqrt{\lambda_i}$$
, $u_i = \frac{1}{\sigma_i} A v_i$

这里的 σ 就是奇异值, u 就是上面说的左奇异向量。【证明那个哥们也没给】

奇异值 σ 跟特征值类似,在矩阵 Σ 中也是从大到小排列,而且 σ 的减少特别的快,在很多情况下,前 10%甚至 1%的奇异值的和就占了全部的奇异值之和的 99%以上了。也就是说,我们也可以用前 r (r 远小于 m、n) 个的奇异值来近似描述矩阵,即部分奇异值分解:

$$A_{m \times n} \approx U_{m \times r} \Sigma_{r \times r} V_{r \times n}^T$$

右边的三个矩阵相乘的结果将会是一个接近于 A 的矩阵,在这儿,r 越接近于 n,则相乘的结果越接近于 A。

1.10 机器学习为什么要使用概率?

事件的概率是衡量该时间发生的可能性的量度。虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。

机器学习除了处理不确定量,也需处理随机量。不确定性和随机性可能来自多个方面,使用概率论来量化不确定性。

概率论在机器学习中扮演着一个核心角色,因为机器学习算法的设计通常依赖于对数据的概率假设。

例如在机器学习(Andrew Ng)的课中,会有一个朴素贝叶斯假设就是条件独立的一个例子。该学习算法对内容做出假设,用来分辨电子邮件是否为垃圾邮件。假设无论邮件是否为垃圾邮件,单词 x 出现在邮件中的概率条件独立于单词 y。很明显这个假设不是不失一般性的,因为某些单词几乎总是同时出现。然而,最终结果是,这个简单的假设对结果的影响并不大,且无论如何都可以让我们快速判别垃圾邮件。

1.11 变量与随机变量有什么区别?

随机变量(random variable)表示随机现象(在一定条件下,并不总是出现相同结果的现

象称为随机现象)中各种结果的实值函数(一切可能的样本点)。例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数等,都是随机变量的实例。

随机变量与模糊变量的不确定性的本质差别在于,后者的测定结果仍具有不确定性,即模糊性。

变量与随机变量的区别:

当变量的取值的概率不是1时,变量就变成了随机变量;当随机变量取值的概率为1时,随机变量就变成了变量.

比如:

当变量 x 的值为 100 的概率为 1 的话,那么 x=100 就是确定了的,不会再有变化,除非有进一步运算.

当变量 x 的值为 100 的概率不为 1,比如为 50 的概率是 0.5,为 100 的概率是 0.5,那么这个变量就是会随不同条件而变化的,是随机变量,取到 50 或者 100 的概率都是 0.5,即 50%。

1.12 常见概率分布?

https://wenku.baidu.com/view/6418b0206d85ec3a87c24028915f804d2b168707

分布名称	单点分布(退化分布)	两点分布(伯努利分布)	对数分布
分布列或 密度函数	p _o =1, c 为常数	$p_k = \begin{cases} q, & k=0, & 0$	$p_k = c \frac{q^k}{k}$, $0 < q < 1$, $c = -\frac{1}{\ln(1-q)}$ $k = 1, 2, \cdots$
密度函数 图 形	略	略	略
数学期望	с	P	$\frac{cq}{1-q}$
方 差	0	pq	$\frac{cq(1-cq)}{(1-q)^2}$
特征函数	eios	$q + pe^{it}$	$\frac{\ln(1-qe^{it})}{\ln(1-q)} = -c\ln(1-e^{it})$
附 注			

分布名称	二项分布 $B(n, p)$	几何分布	负二项分布(帕斯卡分布)
分布列或 密度函数	$b(k;n,p) = \binom{n}{k} p^k q^{n-k},$ 0 <p<1, k="0,1,,n</td" q="1-p,"><td>$p_k = pq^k, k = 0, 1, \cdots$ 0<p<1, q="1-p</td"><td>$p_k = {r \choose k} p^{\tau} (-q)^k = {r+k-1 \choose k} p^{\tau} q^k,$ r 为正整数,<math>0 ,$q = 1-p$, $k = 0, 1, \cdots$</math></td></p<1,></td></p<1,>	$p_k = pq^k, k = 0, 1, \cdots$ 0 <p<1, q="1-p</td"><td>$p_k = {r \choose k} p^{\tau} (-q)^k = {r+k-1 \choose k} p^{\tau} q^k,$ r 为正整数,<math>0 ,$q = 1-p$, $k = 0, 1, \cdots$</math></td></p<1,>	$p_k = {r \choose k} p^{\tau} (-q)^k = {r+k-1 \choose k} p^{\tau} q^k,$ r 为正整数, $0 ,q = 1-p,k = 0, 1, \cdots$
密度函数 图 形	略	略	略
数学期望	пр	qp^{-1}	rq p
方 差	npq	<i>qp</i> ^{−2}	$\frac{rq}{\dot{p}^2}$
特征函数	$(q+pe^{it})^n$	$p(1-q\mathrm{e}^{\mathrm{i}z})^{-1}$	$\left(\frac{p}{1-q\mathbf{e}^{it}}\right)^r$
附注	 若 X₁, i=1,···,n,独立且有相同的两点分布,则 ∑ X₁ 服从二项分布 若 X₁, X₂ 分别服从B(n₁, p),B(n₂, p)且独立,则 X₁+X₂ 服从B(n₁+n₂, p) 	在负二项分布中, $r=1$ 即为此分布。 有的书中称 $p_k=pq^{k-1}$, $k=1,2,\cdots$ 为 几何分布	 若 X_i, i=1,···, r,独立且服从相同的几何分布,则 ∑ X_i 服从负二项分布 有的书中称 p̄_n ≥ p_k, n=r+k, k=0,1,···为帕斯卡分布

分布名称	超几何分布	泊松分布 P(λ)	逆高斯分布
分布列或密度函数	$p_k = \binom{M}{k} \binom{N-M}{n-k} / \binom{N}{n},$ $N, M, n 为正整数, M N, n N,$ $\max(0, n+M-N) $	$p(k; \lambda) = \frac{\lambda^k}{k!} e^{-\lambda},$ $\lambda > 0, k = 0, 1, \dots$	$p(x) = \begin{cases} \sqrt{\frac{\lambda}{2\pi x^3}} \exp\left\{-\frac{\lambda(x-a)^2}{2a^2x}\right\} \\ (x>0), \\ (x\leq 0), \\ \lambda>0, a>0 \end{cases}$
密度函数 形	略	略	明各
数学期望	$\frac{nM}{N}$	λ	а
方 差	$\frac{nM}{N}\left(1-\frac{M}{N}\right)\frac{N-n}{N-1}$	λ	a³ λ
特征函数	$\frac{\binom{N-M}{n}}{\binom{N}{n}}F(-n,-M;$ $N-M-n+1;e^{it})$	$\exp\{\lambda(e^{it}-1)\}$	$\exp\left\{\frac{\lambda}{a}\left[1-\binom{1+a^2it}{\lambda}^{3/2}\right]\right\}$
附 注	$F\left(lpha,eta;\gamma;x ight)$ 为超几何函数	若 X_i , i =1,2, 服从 $P(\lambda_i)$ 且独立,则 X_1+X_2 服从 $P(\lambda_1+\lambda_2)$	
分布名称	均匀分布 U[a,b]	正态分布(高斯分布) $N(a,\sigma^2)$	柯西分布 C(λ, μ)
分布列或 密度函数	$p(x) = \begin{cases} 1/(b-a) & (a \le x \le b), \\ 0 & (其他), \end{cases}$ a < b 为常数	$p(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left\{-\frac{(x-a)^2}{2\sigma^2}\right\},$ $-\infty < x < \infty, \sigma > 0, a 为实数$	$p(x) = \frac{1}{\pi} \frac{\lambda}{\lambda^2 + (x - \mu)^2},$ x 为实数, $\lambda > 0$, μ 为常数
密度函数 图 形	$\frac{1}{b-a}$	$\frac{1}{\sigma\sqrt{2}\pi}$	$\int_{\mu}^{1/\pi\lambda}$
数学期望	<u>a+b</u> 2	а	不存在
5 差	(b-a)* 12	σ²	不存在
持征函数	$\frac{e^{itb}-e^{ita}}{(b-a)it}$	$\exp\left\{ita-\frac{1}{2}t^2\sigma^2\right\}$	$\exp\{i\mu t - \lambda \mathbf{t} \}$
付 注	若 X 的分布函数 $F(x)$ 连续,则 $Y=F(X)$ 服 从 $U[0,1]$,即 在 $[0,1]$ 中均匀分布		若 X_4 , $i=1,2$, 服从 $C(\lambda_4, \mu_4)$ 且独立, 则 X_1+X_2 服从 $C(\lambda_1+\lambda_2, \mu_1+\mu_2)$

分布名称	对数正态分布	伽玛 (Γ) 分布 Γ(λ, r)	贝塔(B) 分布
分布列或密度函数	$p(x) = \begin{cases} \frac{1}{\sigma x \sqrt{2\pi}} \exp\left\{-\frac{(\ln x - a)^2}{2\sigma^2}\right\} \\ (x > 0), \\ 0 & (x \le 0), \\ \sigma > 0, a 为实数 \end{cases}$	$p(x) = \begin{cases} \frac{\lambda^r}{\Gamma(r)} x^{r-1} e^{-\lambda x} & (x > 0), \\ 0 & (x \leq 0), \end{cases}$ $r > 0, \ \lambda > 0 \ \text{hff} \ \text{m}$	$p(x) = \begin{cases} \frac{\Gamma(p+q)}{\Gamma(p)\Gamma(q)} x^{p-1} (1-x)^{q-1} \\ 0 (0 < x < 1), \\ 0 (4 < x < 1), \\ 0 > 0, q > 0 5 $
密度函数 图 形	$\sigma = 0.1$ $\sigma = 0.3$ $\sigma = 0.5$	r = 1 $r = 1$ $r = 2$ $r = 4$ $r = 4$ $r = 4$ $r = 4$	p = q = 2 Bf
数学期望	$\exp\left(a+\frac{\sigma^2}{2}\right)$	<u>r</u>	$\frac{p}{p+q}$
方 差	$\exp(2a+\sigma^2)(\exp\sigma^2-1)$	<u>r</u> λ ²	$\frac{pq}{(p+q)^2(p+q+1)}$
特征函数		$\left(1-\frac{it}{\lambda}\right)^{-r}$	$\frac{\Gamma(p+q)}{\Gamma(p)} \sum_{j=0}^{\infty} \frac{\Gamma(p+j)(it)^{j}}{\Gamma(p+q+j)\Gamma(j+1)}$
附注	设 X 服从正态分布 N(a, σ²),则 Y = e ^x 服从对数正态分布	1. r=1 时化为指数分布 2. r 为整数时,设 X ₄ , i=1,2,···, r,独立且服从相同的指数分布,则	1. 若 X_i , $i=1,2$, 服从 $\Gamma(1,r_i)$ 且独立,则 $Y=X_1/(X_1+X_2)$ 服 从以 $p=r_1,q=r_2$ 为参数的 B 分布。 2. 当 $p=q=1/2$ 时,化为反正弦分布,其密度为 $1/\pi\sqrt{x(1-x)}$, $(0 < x < 1)$; 分布函数为 2 arc $\sin\sqrt{x}/\pi$

续表(2)

	trade it		D # L # 7 4
分布名称	指数分布	威布尔分布 $W(\lambda, \alpha)$	拉普拉斯分布
分布列或 密度函数	$p(x) = \begin{cases} \lambda e^{-\lambda_x} (x > 0), \\ 0 (x < 0), \end{cases}$	$p(x) = \begin{cases} a\lambda x^{\alpha-1} \exp(-\lambda x^{\alpha}) & (x > 0), \\ 0 & (x \le 0), \end{cases}$ $\lambda > 0, \ \alpha > 0 \ \text{hrg}$	$p(x) = \frac{1}{2\lambda} \exp\left\{-\frac{ x-\mu }{\lambda}\right\}, x$ 为实数 $\lambda > 0, \mu$ 为常数
密度函数 图 形	À = 0.5	a = 3 $a = 3$ $a = 2$	1/21
数学期望	λ ⁻¹	$\lambda^{-\frac{1}{2}}\Gamma\left(1+\frac{1}{\alpha}\right)$	μ
方 差	λ-2	$\lambda^{-\frac{1}{\alpha}} \left\{ \Gamma \left(1 + \frac{2}{\alpha} \right) - \left[\Gamma \left(1 + \frac{1}{\alpha} \right) \right]^2 \right\}$	2λ²
特征函数	$\left(1-\frac{it}{\lambda}\right)^{-1}$		$\frac{\mathrm{e}^{i\mu t}}{1+\lambda^2 t^2}$
附 注	指数分布是 Γ 分布的特殊情形	α =1 时为指数分布, α =2 时称为瑞利分布。当 X 服从指数分布时, Y = $X^{1/\alpha}$ 服从威布尔分布	
分布名称	X ² 分布	学生分布 t(n)	F 分布 F(n ₁ , n ₂)
分布列或 密度函数	$p(x) = \begin{cases} \frac{x^{(n-2)/2}e^{-x/2}}{2^{n/2}\Gamma(\frac{n}{2})} & (x>0), \\ 0 & (x \le 0), \end{cases}$ $n \to \mathbb{R}$	$p(x) = \frac{1}{\sqrt{n\pi}} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}}$	$p(x) = \begin{cases} \frac{\frac{n_1}{x^2-1}}{B(n_1, n_2)} \frac{n_1}{n_1^{\frac{n_2}{2}} \frac{n_2}{1}} \\ \times (n_2 + n_1 x)^{-\frac{n_1 + n_2}{1}} (x > 0), \\ 0 (x < 0), \\ n_1, n_2 \not \supset \text{Error} \end{cases}$
密度函数图形	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.4 - 4 - 2 O 2 4 n=3 时	$0.9 \\ 0.6 \\ 0 \\ 1 \\ 2$ $n_1 = 10 n_2 = 50$ $0 \\ 1 \\ 2$
数学期望	п	0 (n>1)	$\frac{n_2}{n_2-2}$ $(n_2>2)$
方 差	2n	$\frac{n}{n-2} (n>2)$	$\frac{2 n_2^2 (n_1 + n_2 - 2)}{n_1 (n_2 - 2)^2 (n_2 - 4)} (n_2 > 4)$
特征函数	(1−2it) ^{-т/2}	$\frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n}\Gamma\left(\frac{n}{2}\right)}\int_{-\infty}^{\infty}\frac{\exp(itx\sqrt{n})}{(1+x^2)^{(n+1)/2}}\mathrm{d}x$	_
附注	1. 若 X ₁ , i=1,2, 服从 X ² (n ₁)分布 且独立,则 X ₁ +X ₂ 服从 X ² (n ₁ +n ₂) 分布 2. 若 X ₁ ,, X _n 独立且都服从N (0,1),则 x ₁ =1 X ₁ 服从 X ² (n)分布	 设 X₁,, X_n 独立,且都服从 N(0,σ²),则 X √ 1/n ∑_{i=1}ⁿ X_i² 服从t(n) 分布 n=1 时,化为柯西分布 C(1,0) 	若 X_i , $i=1,2$,独立且服从 X^i (n_i)分布,则 $\frac{X_1/n_1}{X_2/n_2}$ 服从 $F(n_i,n_2)$ 分布

			续表(3)
分布名称	帕雷托分布	极值分布 $E(\alpha, \beta)$	逻辑斯蒂分布
分布列或 密度函数	1	$p(x) = \frac{1}{\beta} \exp\left\{ \exp\left(-\frac{x-\alpha}{\beta}\right) - \frac{x-\alpha}{\beta} \right\},$ x, α 均为实数, $\beta > 0$ 为常数	$p(x) = \frac{\exp\left(-\frac{x-\alpha}{\beta}\right)}{\beta\left[1 + \exp\left(-\frac{x-\alpha}{\beta}\right)\right]^2},$ $x, \alpha 为实数, \beta > 0 为常数$
密度函数 图 形	略	略	略
数学期望	$\frac{ra}{r-1}$ $(r>1)$	α+γβ (γ是欧拉常数)	α
方 差	$\frac{ra^2}{(r-1)^2(r-2)} (r>2)$	$\frac{\pi^2\beta^2}{6}$	$\frac{\pi^2\beta^2}{3}$
特征函数		$e^{ilpha t}\Gamma(1-ieta t)$	$\frac{\pi \beta i t}{\sin \pi \beta i t} e^{i \alpha t}$
附 注	若 X 服从帕雷托分布,参数为 r , a ,则 $Y = \frac{r}{\lambda} \ln \frac{X}{a}$ 服从指数分布	若 X 服从威布尔分布 $W(\lambda, \alpha)$,则 $Y = -\beta \ln X^{\alpha} \lambda + \mu$ 服 从 极 值 分 布 $E(\mu, \beta)$	
分布名称	非中心 X² 分布 X²(n, λ)	非中心 t 分布 t(n,δ)	非中心F分布 F(m,n; λ)
分布列或 密度函数	$p(x) = \begin{cases} \frac{\exp{-\left(\frac{x+\lambda}{2}\right)}}{2^{n/2}} \\ \times \sum_{j=0}^{\infty} \frac{x^{\frac{n}{2}+j-1} \lambda^{j}}{\Gamma\left(\frac{n}{2}+j\right) 2^{2j} j!} \\ (x>0), \\ 0 & (x \le 0), \\ \pi \to \theta \to \theta \in \lambda > 0 \to \theta \\ + \psi \to \delta \end{cases}$	$p(x) = \frac{n^{n/2} \exp(-\delta^2/2)}{\sqrt{\pi} \Gamma(\frac{n}{2})(n+x^2)^{(n+1)/2}}$ $\times \sum_{m=0}^{\infty} \Gamma(\frac{n+m-1}{2})(\frac{\delta^m}{m!})$ $\times (\frac{2x^2}{2+x^2})^{n/2}$ n 为自由度,δ 为实数,是非中心参数	$\begin{split} p(x) &= \frac{m^{m/2} n^{n/2}}{\Gamma\left(\frac{n}{2}\right)} e^{-\frac{\lambda}{2} x^{\frac{m}{2}-1}} \\ &\times \sum_{k=0}^{\infty} \frac{(\lambda m x/2)^k \Gamma\left(\frac{m+n}{2}+k\right)}{\Gamma\left(\frac{m}{2}+k\right) k! \left(mx+n\right)^{\frac{m+n}{2}+k}} \\ p(x) &= 0 & (x \leqslant 0), \\ m, n 为二自由度, \lambda 为非中心参数 \end{split}$
密度函数 图 形	略	略	略
数学期望	n+A	$\frac{\delta\Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}\sqrt{\frac{n}{2}} (n>1)$	$\frac{n(m+\lambda)}{m(n-2)} (n>2)$
方 差	2(n+2λ)	$\frac{n(1+\delta^2)}{n-2} - \frac{\delta^2 n}{2} \left(\frac{\Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \right)^2$ (n>2)	$\frac{2n^2}{m^2(n-2)^2(n-4)} \cdot [(m+\lambda)^2 + (n-2)\cdot (m+2\lambda)] \qquad (n>4)$
特征函数	$(1-2 it)^{-\frac{n}{2}} \exp\left(\frac{i\lambda t}{1-2it}\right)$		
附 注	1. 若 X_i , $i=1,\dots,n$, 独立且服从 $X^2(n_i,\lambda_i)$, 则 $\sum_{i=1}^n X_i$ 服从 $X^2(\sum_{i=1}^n n_i,\sum_{i=1}^n \lambda_i)$ 2. 若 X_i , $i=1,\dots,n$, 独立且服从 $N(\delta_i,1)$, 则 $\sum_{i=1}^n X_i$ 服从 $X^2(n,\lambda)$, $\lambda = \sum_{i=1}^n \delta_i^2$	着 X 服从 $N(\delta,1)$, Y 服从 $X^2(n)$, X , Y 独立,则 X $\sqrt{\frac{Y}{n}}$ 服 从 $t(n,\delta)$	若 X 服从 $X^2(m,\lambda)$, Y 服从 $X^2(n)$,则 $\frac{X/m}{Y/n}$ 服从 $F(m,n;\lambda)$
19	(-) -(- 1) (- 1·1)		Batter Williams

注: $\binom{r}{k} = \frac{r(r-1)\cdots(r-k+1)}{k!}$, r 为实数, k 为正整数。 $\Gamma(x) = \int_0^\infty e^{-u}u^{s-1}du$, x > 0 为伽玛 (Γ) 函数。 $B(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$ 为贝塔(B)函数。

1.13 举例理解条件概率

条件概率公式如下:

$$P(A/B) = P(A \cap B)/P(B)$$

说明:在同一个样本空间 Ω 中的事件或者子集 A 与 B,如果随机从 Ω 中选出的一个元素属于 B,那么下一个随机选择的元素属于 A 的概率就定义为在 B 的前提下 A 的条件概率。

根据文氏图,可以很清楚地看到在事件 B 发生的情况下,事件 A 发生的概率就是 $P(A \cap B)$ 除以 P(B)。

举例:一对夫妻有两个小孩,已知其中一个是女孩,则另一个是女孩子的概率是多少?(面试、笔试都碰到过)

穷举法: 已知其中一个是女孩,那么样本空间为男女,女女,女男,则另外一个仍然是女生的概率就是 1/3:

条件概率法: $P(\pm|\pm)=P(\pm\pm)/P(\pm)$,夫妻有两个小孩,那么它的样本空间为女女,男女,女男,男男,则 $P(\pm\pm)$ 为 1/4, $P(\pm)=1$ - $P(\pm)=3/4$,所以最后 1/3。

这里大家可能会误解,男女和女男是同一种情况,但实际上类似姐弟和兄妹是不同情况。

1.14 联合概率与边缘概率联系区别?

区别:

联合概率: 联合概率指类似于 P(X=a,Y=b)这样,包含多个条件,且所有条件同时成立的概率。联合概率是指在多元的概率分布中多个随机变量分别满足各自条件的概率。

边缘概率:边缘概率 是某个事件发生的概率,而与其它事件无关。边缘概率指类似于 P(X=a), P(Y=b)这样,仅与单个随机变量有关的概率

联系:

联合分布可求边缘分布,但若只知道边缘分布,无法求得联合分布。

1.15 条件概率的链式法则

由条件概率的定义,可直接得出下面的乘法公式: 乘法公式 设A,B是两个事件,并且P(A)>0,则有 $P(AB)=P(B\mid A)P(A)$ 推广 $P(ABC) = P(C \mid AB)P(B \mid A)P(A)$ 。

一般地,用归纳法可证: 若 $P(A_1A_2 \cdots A_{n-1}) > 0$,则有

$$P(A_1 A_2 \cdots A_n) = P(A_n \mid A_1 A_2 \cdots A_{n-1}) P(A_{n-1} \mid A_1 A_2 \cdots A_{n-2}) \cdots P(A_2 \mid A_1) P(A_1)$$

任何多维随机变量联合概率分布,都可以分解成只有一个变量的条件概率相乘形式。

1.16 独立性和条件独立性

独立性

两个随机变量 x 和 y,概率分布表示成两个因子乘积形式,一个因子只包含 x,另一个因子只包含 y,两个随机变量相互独立(independent)。

条件有时为不独立的事件之间带来独立,有时也会把本来独立的事件,因为此条件的存在,而失去独立性。

举例: P(XY) = P(X)P(Y), 事件 X 和事件 Y 独立。此时给定 Z,

$$P(X, Y \mid Z) \neq P(X \mid Z)P(Y \mid Z)$$

事件独立时,联合概率等于概率的乘积。这是一个非常好的数学性质,然而不幸的是,无 条件的独立是十分稀少的,因为大部分情况下,事件之间都是互相影响的。

条件独立性

给定Z的情况下,X和Y条件独立,当且仅当

$$X \perp Y \mid Z \Leftrightarrow P(X, Y \mid Z) = P(X \mid Z)P(Y \mid Z)$$

X和Y的关系依赖于Z,而不是直接产生。

举例 定义如下事件:

X: 明天下雨;

Y: 今天的地面是湿的:

Z: 今天是否下雨:

Z事件的成立,对 X和 Y均有影响,然而,在 Z事件成立的前提下,今天的地面情况对明天是否下雨没有影响。

1.17 期望、方差、协方差、相关系数总结

http://www.360doc.com/content/13/1124/03/9482 331690142.shtml

期望

在概率论和统计学中, 数学期望(或均值, 亦简称期望)是试验中每次可能结果的概率乘

以其结果的总和。它反映随机变量平均取值的大小。

线性运算: E(ax+by+c)=aE(x)+bE(y)+c

推广形式:
$$E\left(\sum_{k=1}^{n} a_i x_i + c\right) = \sum_{k=1}^{n} a_i E(x_i) x_i + c$$

函数期望:设f(x)为x的函数,则f(x)的期望

离散函数:
$$E(f(x)) = \sum_{k=1}^{n} f(x_k)P(x_k)$$
,

连续函数: $E(f(x)) = \int_{-\infty}^{+\infty} f(x)p(x)dx$.

注意: 函数的期望不等于期望的函数, 即E(f(x)) = f(E(x))。

一般情况下, 乘积的期望不等于期望的乘积。

如果 X 和 Y 相互独立,则 E(xy) = E(x)E(y)。

方差

概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。方差是一种特殊的期望。定义为:

$$Var(x) = E((x - E(x))^2)$$

方差性质:

- 1) $Var(x) = E(x^2) (E(x))^2$.
- 2) 常数的方差为0。
- 3) 方差不满足线性性质。

 $Var(ax + by) = a^{2}Var(x) + b^{2}Var(y) + 2Cov(x, y)^{2}$

4) 如果 X 和 Y 相互独立, Var(ax+by)=Var(x)+Var(y)

协方差

协方差是衡量两个变量线性相关性强度及变量尺度。 两个随机变量的协方差定义为:

$$Cov(x, y) = E((x - E(x))(y - E(y)))$$

方差是一种特殊的协方差。当X = Y时,Cov(x, y) = Var(x) = Var(y)。协方差性质:

1) 独立变量的协方差为 0。

2) 协方差计算公式:

$$Cov\left(\sum_{i=1}^{m} a_{i}x_{i}, \sum_{j=1}^{m} b_{j}y_{j}\right) = \sum_{j=1}^{m} \sum_{j=1}^{m} a_{i}b_{j}Cov(x_{i}, y_{j})$$

3) 特殊情况 Cov(a+bx,c+dy) = bdCov(x,y)

相关系数

相关系数是研究变量之间线性相关程度的量。两个随机变量的相关系数定义为:

$$Corr(x, y) = \frac{Cov(x, y)}{\sqrt{Var(x)Var(y)}}$$

性质:

- 1) 有界性。相关系数的取值范围是[-1,1],可以看成无量纲的协方差。
- 2) 值越接近1,说明两个变量正相关性(线性)越强。越接近-1,说明负相关性越强,当为0时,表示两个变量没有相关性。