

planetmath.org

Math for the people, by the people.

cumulative hierarchy

Canonical name CumulativeHierarchy
Date of creation 2013-03-22 16:18:43
Last modified on 2013-03-22 16:18:43

Owner yark (2760) Last modified by yark (2760)

Numerical id 8

Author yark (2760) Entry type Definition Classification msc 03E99

Synonym iterative hierarchy Synonym Zermelo hierarchy

Related topic CriterionForASetToBeTransitive

Related topic ExampleOfUniverse

Defines rank

Defines rank of a set

The *cumulative hierarchy* of sets is defined by transfinite recursion as follows: we define $V_0 = \emptyset$ and for each ordinal α we define $V_{\alpha+1} = \mathcal{P}(V_{\alpha})$ and for each limit ordinal δ we define $V_{\delta} = \bigcup_{\alpha \in \delta} V_{\alpha}$.

Every set is a subset of V_{α} for some ordinal α , and the least such α is called the rank of the set. It can be shown that the rank of an ordinal is itself, and in general the rank of a set X is the least ordinal greater than the rank of every element of X. For each ordinal α , the set V_{α} is the set of all sets of rank less than α , and $V_{\alpha+1} \setminus V_{\alpha}$ is the set of all sets of rank α .

Note that the previous paragraph makes use of the Axiom of Foundation: if this axiom fails, then there are sets that are not subsets of any V_{α} and therefore have no rank. The previous paragraph also assumes that we are using a set theory such as ZF, in which elements of sets are themselves sets.

Each V_{α} is a transitive set. Note that $V_0 = 0$, $V_1 = 1$ and $V_2 = 2$, but for $\alpha > 2$ the set V_{α} is never an ordinal, because it has the element $\{1\}$, which is not an ordinal.