Cálculo Diferencial e Integral en Varias Variables

Mauro Polenta Mora

CLASE 14 - 22/09/2025

Series de términos positivos

Criterio de la raíz enésima (de Cauchy)

Sea $\sum a_n$ una serie de términos positivos, tal que existe $\lim_{n\to\infty} \sqrt[n]{a_n} = L$. Entonces:

- Si L < 1, entonces a_n converge.
- Si L > 1, entonces a_n diverge.

Demostración

CASO 1 (L < 1):

Observemos que por definición de límite, podemos llegar a la siguiente desigualdad a partir de un cierto $n_0 \in \mathbb{N}$:

$$\sqrt[n]{a_n} < k < 1$$

Observación: Esto lo hacemos tomando $\varepsilon := \frac{1-L}{2} > 0$ por ejemplo.

Despejando, llegamos a:

• $a_n < k^n$

Observando que k^n converge pues es una serie geométrica y k < 1, por el criterio de comparación tenemos que:

• a_n converge.

CASO 2 (L > 1):

Observemos que por definición de límite, podemos llegar a la siguiente desigualdad a partir de un cierto $n_0 \in \mathbb{N}$:

$$\sqrt[n]{a_n} > k > 1$$

Observación: Esto lo hacemos tomando $\varepsilon := \frac{L-1}{2} > 0$ por ejemplo.

Despejando, llegamos a:

•
$$a_n > k^n$$

Observando que k^n diverge pues es una serie geométrica y k>1, por el criterio de comparación tenemos que:

• a_n diverge.

Ejemplos 3.45

Ejemplo 1

•
$$\sum (\frac{\log(n)}{n})^n$$
 es convergente pues:
 $-\lim \sqrt[n]{a_n} = (\frac{\log(n)}{n})^n = \lim \frac{\log(n)}{n} = 0$

Ejemplo 2

•
$$\sum \frac{n^5}{2^n}$$
 es convergente pues:
- $\lim \sqrt[n]{a_n} = \lim \sqrt[n]{\frac{n^5}{2^n}} = \frac{1}{2}$

Observación: Podemos expandir sobre este último límite:

$$\lim_{n} \sqrt[n]{\frac{n^{5}}{2^{n}}} = \lim_{n} \frac{n^{\frac{5}{n}}}{2} = \lim_{n} \frac{n^{\frac{5}{n}}}{2} = \lim_{n} e^{\log(n^{\frac{5}{n}})} = \lim_{n} e^{\frac{5}{n}\log(n)} = \lim_{n} e^{\frac{5\log(n)}{n}} = \lim_{n} e^{\frac{1}{2}} = \lim_{n} e$$

Series alternadas

En esta breve sección estudiaremos funciones que no necesariamente son de signos constantes.

Definición 3.46

Decimos que una serie $\sum a_n$ es absolutamente convergente sii $\sum |a_n|$ es convergente.

Intuitivamente, si una serie es absolutamente convergente, debería ser convergente también $\sum a_n$, pues sumar el valor absoluto de los términos es de alguna forma el "peor caso". Veamos de formalizar este resultado.

Teorema 3.47

Toda serie absolutamente convergente es convergente.

Demostración

Sea $\sum a_n$ la serie absolutamente convergente, y separemos los términos a_n en los positivos y negativos, formando así dos nuevas sucesiones:

$$a_n^+ = \begin{cases} a_n & \text{si } a_n \geq 0 \\ 0 & \text{si } a_n < 0 \end{cases} \quad \text{y } a_n^- \begin{cases} 0 & \text{si } a_n \geq 0 \\ -a_n & \text{si } a_n < 0 \end{cases}$$

Es decir, en a_n^+ ponemos los términos positivos de a_n , y los negativos los cambiamos por 0. Mientras que en a_n^- cambiamos los términos positivos por 0, y ponemos los términos negativos de a_n cambiados de signo. De esta forma ambas las nuevas sucesiones son de términos positivos.

Observemos que:

- $\begin{array}{ll} \bullet & a_n = a_n^+ a_n^- \\ \bullet & |a_n| = a_n^+ + a_n^- \end{array}$
- $\bullet \quad 0 \leq a_n^+ \leq |a_n|$
- $0 \le a_n^- \le |a_n|$

Por hipótesis, tenemos que $\sum |a_n|$ converge, y por lo tanto usando el criterio de comparación:

- ∑ a_n⁺ es convergente.
 ∑ a_n⁻ es convergente.

Con esto podemos concluir que:

• $\sum (a_n^+ - a_n^-) = \sum a_n$ es convergente

Ejemplo 3.48

• $\sum \frac{\sin(n)}{n^2}$

Queremos estudiar si es absolutamente convergente, por lo tanto queremos estudiar:

•
$$\sum \left| \frac{\sin(n)}{n^2} \right|$$

Veamos lo siguiente:

$$\bullet \quad \frac{|\sin(n)|}{n^2} \le \frac{1}{n^2}$$

Y como $\sum \frac{1}{n^2}$ es convergente, por criterio de comparación también lo es $\sum \frac{|\sin(n)|}{n^2}$.

Veremos a continuación el único criterio de convergencia para series alternadas, el cual no vamos a demostrar.

Proposición 3.49 (criterio de Leibnitz)

Si a_n es una sucesión monótona decreciente que tiende a 0, entonces la serie alternada $\sum (-1)^n a_n$ es convergente.

Ejemplo 3.50

Ejemplo 1

•
$$\sum (-1)^n \frac{1}{n}$$

Es convergente por el criterio de Leibnitz, pero no es absolutamente convergente, pues:

•
$$\sum |(-1)^n \frac{1}{n}| = \sum \frac{1}{n}$$

Que ya vemos que es divergente.

Ejemplo 2

•
$$\sum (-1)^n \log(1 + \frac{1}{n})$$

Es convergente por el criterio de Leibnitz.