Good Program

In computing, the collection of **four bits** is called a **nibble**.

Chef defines a program as:

- Good, if it takes exactly X nibbles of memory, where X is a positive integer.
- Not Good, otherwise.

Given a program which takes N bits of memory, determine whether it is Good or Not Good.

Input Format

- First line will contain T, number of test cases. Then the test cases follow.
- The first and only line of each test case contains a single integer N, the number of bits taken by the program.

Output Format

For each test case, output Good or Not Good in a single line. You may print each character of Good or Not Good in uppercase or lowercase (for example, GoOd, GOOD, good will be considered identical).

Constraints

- $1 \le T \le 1000$
- $1 \le N \le 1000$

Subtasks

Subtask #1 (100 points): original constraints

Sample 1:

Input	
Output	
4 8 17 52 3	Good Not Good Good Not Good

Explanation:

Test case 1: The program requires 8 bits of memory. This is equivalent to $\frac{8}{4} = 2$ nibbles. Since 2 is an integer, this program is good.

Test case 2: The program requires 17 bits of memory. This is equivalent to $\frac{17}{4} = 4.25$ nibbles. Since 4.25 is not an integer, this program is not good.

Test case 3: The program requires 52 bits of memory. This is equivalent to $\frac{52}{4} = 13$ nibbles. Since 13 is an integer, this program is good.

Test case 4: The program requires 3 bits of memory. This is equivalent to $\frac{3}{4} = 0.75$ nibbles. Since 0.75 is not an integer, this program is not good.