Studio Worksheets Math 1554

Worksheet 1.9, Linear Transforms

Worksheet Exercises

- 1. Indicate whether the statements are true or false.
 - (a) If A is a 3×2 matrix then the map $x \mapsto Ax$ cannot be one-to-one.
 - (b) If A is a 2×3 matrix then the map $x \mapsto Ax$ cannot be onto.
 - (c) The transformation made by performing one linear transformation and then another is not necessarily a linear transform.
 - (d) $T_A: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if and only if $A\vec{x} = \vec{0}$ only has the trivial solution.
- 2. Construct the standard matrix of the linear transformation *T*.

(a)
$$T: \mathbb{R}^2 \to \mathbb{R}^4$$
, where $T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}3\\1\\4\\1\end{bmatrix}$ and $T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}1\\6\\1\\8\end{bmatrix}$

- (b) T is a vertical shear given by $T(\vec{e}_2) = 2\vec{e}_2$ and $T(\vec{e}_1) = \vec{e}_1 2\vec{e}_2$.
- (c) A matrix $A \in \mathbb{R}^{2\times 2}$ such that $T(\vec{x}) = A\vec{x}$. T is a linear transformation that first reflects vectors across the line $x_1 = x_2$, then rotates them counterclockwise by π radians about the origin, then reflects them across the line $x_2 = 0$.
- (d) T rotates points around the origin by the angle $-\pi/4$ radians.

(e)
$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 5x_2 + x_3 \\ x_2 - 6x_3 \end{bmatrix}$$
.