12

13

said side walls and a third portion formed over at least a portion of said top surface of said floating gate and being separated from said floating gate by said second insulation layer, said second portion having a surface substantially parallel to and opposing said first side wall;

an erase gate formed over a second one of said side walls and over at least a portion of said top surface of said floating gate and being separated from said second one of said side walls by said second insulation layer;

a drain region formed in a portion of said substrate proximate said control gate; and a source region formed in a portion of said substrate proximate said erase gate.

8. (Once Amended) A memory array disposed on a substrate comprising a plurality of memory cells each having a floating gate separated from said substrate by a first insulating layer, an erase gate, a control gate separated from said floating gate by a second insulating layer, a source region, and a drain region, comprising:

a plurality of rows and columns of interconnected memory cells wherein the control gates of memory cells in the same row are connected by a common word-line, the erase gates of the memory cells in the same rows are connected by a common erase line, the source regions of the memory cells in the same rows are connected by a common source line, and the drain regions of memory cells in the same columns are commonly connected via a common drain line, wherein at least a portion of each said control gate is disposed over a portion of said substrate and separated therefrom by said second insulating layer, and wherein a portion of said control gate is not disposed over said floating gate; and

control circuit connecting to said word-lines, erase lines, source lines and drain lines for operating one or more memory cells of said memory array.

- 16. (Once Amended) A semiconductor device having at least one transistor, the device comprising:
 - a substrate having a channel region;
- a first insulating layer disposed over said channel region and over at least a portion of said substrate;
- a floating gate generally disposed over said channel region and separated therefrom by said first insulating layer, said floating gate having at least two side walls and a top surface;

•		
	8	a second insulating layer disposed over said side walls and over said top surface of said
	9	floating gate;
	10	a control gate having a first portion disposed over a portion of said substrate and being
do	11	separated therefrom by said second insulating layer, a second portion formed over a first one of
19	12	said side walls and a third portion formed over at least a portion of said top surface of said
	13	floating gate and being separated from said floating gate by said second insulation layer, said
hi	14	second portion having a surface substantially parallel to and opposing said first side wall;
JW	15	an erase gate formed over a second one of said side walls and over at least a portion of
3	16	said top surface of said floating gate and being separated from said second one of said side walls
V	17	by said second insulation layer;
	18	a source region formed in a portion of said substrate proximate said erase gate; and
	19	a drain region formed in a portion of said substrate proximate said control gate.
<i>t</i>		