DIALOG(R)File 351:Derwent WPI

(c) 2006 The Thomson Corporation. All rts. reserv.

0002822834

WPI ACC NO: 1983-C5117K/

Re-structural integrated circuit with high gate density - has multiprocessor operated as lock-step or pipelined unit, and multilevel interrupt management system

Patent Assignee: TEXAS INSTR INC (TEXI)

Inventor: BUDZINSKI R L

Patent Family (4 patents, 5 countries)

Patent

Application

Number Kind Date Number

mber Kind Date Update

EP 71727 A 19830216 E

A 19830216 EP 1982105491 A 19820623 198308 B

JP 58058672 A 19830407

198320 E

EP 71727 B 19861001 EP

B 19861001 EP 1982105491 A 19820623 198640 E

DE 3273549 G 19861106

198646 E

Priority Applications (no., kind, date): US 1981286426 A 19810724; US 1981286425 A 19810724; US 1981286424 A 19810724

Patent Details

Number Kind Lan Pg Dwg Filing Notes

EP 71727

A EN 28

Regional Designated States, Original: DE FR GB NL

EP 71727 B EN

Regional Designated States, Original: DE FR GB NL

Alerting Abstract EP A

The circuit has a monolithic substrate, having a number of 16-bit processors all accessing a common memory, busses including a status bus with synchronisation and arithmetic linkage lines. Each processor comprises a respective status bus multiplexer connected to the respective processor status bus. A bus control unit selectively connects the processor to the data bus or directly to a corresponding RAM memory module.

Each processor also contains interrupt manager which tests each successive interrupt signals to determine whether the respective processor which includes the interrupt manager is designated by the successive interrupt signal as an interrupter. The interrupt manager stores the priority of the one of the interrupt signals which initiated respective sequence of commands is currently being executed by the processor. The processors may be reconfigured programmably to operate independently in lock step or as pipelined processors.

Title Terms /Index Terms/Additional Words: STRUCTURE; INTEGRATE; CIRCUIT; HIGH; GATE; DENSITY; MULTIPROCESSOR; OPERATE; LOCK; STEP; PIPE; UNIT; MULTILEVEL; INTERRUPT; MANAGEMENT; SYSTEM

Class Codes

(Additional/Secondary): G06F-013/00, G06F-015/06, H01L-027/04

File Segment: EPI; DWPI Class: T01

Manual Codes (EPI/S-X): T01-F01; T01-F02; T01-J02

Original Publication Data by Authority

Germany

Publication No. DE 3273549 G (Update 198646 E)

Publication Date: 19861106

Language: DE

Priority: US 1981286424 A 19810724

US 1981286425 A 19810724 US 1981286426 A 19810724

EPO

Publication No. EP 71727 A (Update 198308 B)

Publication Date: 19830216

**Integrierte Schaltung mit aenderbarer Struktur

Restructurable integrated circuit Circuit integre restructurable**

Assignee: TEXAS INSTRUMENTS INCORPORATED, 13500 North Central Expressway,

Dallas Texas 75265, US (TEXI)

Inventor: Budzinski, Robert L., 1106 Edgewood Drive, Richardson Texas

75081, US

Agent: Leiser, Gottfried, Dipl.-Ing., et al, Patentanwaelte Prinz, Bunke

Partner Ernsberger Strasse 19, D-8000 Muenchen 60, DE

Language: EN (28 pages)

Application: EP 1982105491 A 19820623 (Local application)

Priority: US 1981286424 A 19810724

US 1981286425 A 19810724 US 1981286426 A 19810724

Designated States: (Regional Original) DE FR GB NL Original IPC: G06F-13/00 G06F-15/06 H01L-27/04 Current IPC: G06F-13/00 G06F-15/06 H01L-27/04

Original Abstract: Restructurable integrated circuit. A restructurable integrated circuit, including four 16-bit processors PR0, PR1, PR2, PR3, data and control memories 66 and 78, and external interfaces 72, 73, 74, 75, 76 all mounted on a chip. The processors include reconfigurable connections through a status bus 52, microprogramming capability with dynamic logic array interpretation, and a multi-level flexible interrupt management system, so that the processors PR0-PR3 may be reconfigured programmably to operate independently, in lockstep, or as pipelined processors. All processors PR0-PR3 are connected to data, control, and status busses 56, 14, and 52, in addition, external control, data, and status interfaces 72-76 are also provided, connected through the respective corresponding busses 56, 14, and 52 to each of the processors PR0-PR3. These external interfaces are connected to all of the interconnections which permit reconfigurability among the processors on a chip, and these external interfaces permit coordination of the processors on more than one RIC chip.

Publication No. EP 71727 B (Update 198640 E)

Publication Date: 19861001

**Integrierte Schaltung mit aenderbarer Struktur

Restructurable integrated circuit Circuit integre restructurable**

Assignee: TEXAS INSTRUMENTS INCORPORATED, 13500 North Central Expressway.

Dallas Texas 75265, US

Inventor: Budzinski, Robert L., 1106 Edgewood Drive, Richardson Texas

75081, US

Thatte, Satish M., 1304 Elk Grove, Richardson Texas 75081, US Agent: Leiser, Gottfried, Dipl.-Ing., et al, Patentanwaelte Prinz, Bunke Partner Ernsberger Strasse 19, D-8000 Muenchen 60, DE

Language: EN

Application: EP 1982105491 A 19820623 (Local application)

Priority: US 1981286424 A 19810724

US 1981286425 A 19810724 US 1981286426 A 19810724

Designated States: (Regional Original) DE FR GB NL

Claim: The circuit has a monolithic substrate, having a number of 16-bit processors all accessing a common memory, busses including a status bus with synchronisation and arithmetic linkage lines. Each processor comprises a respective status bus multiplexer connected to the respective processor status bus. A bus control unit selectively connects the processor to the data bus or directly to a corresponding RAM memory module.

Each processor also contains interrupt manager which tests each successive interrupt signals to determine whether the respective processor which includes the interrupt manager is designated by the successive interrupt signal as an interrupter. The interrupt manager stores the priority of the one of the interrupt signals which initiated respective sequence of commands is currently being executed by the processor. The processors may be reconfigured programmably to operate independently in lock step or as pipelined processors. (28pp)

Japan

Publication No. JP 58058672 A (Update 198320 E)

Publication Date: 19830407

Language: JA

Priority: US 1981286426 A 19810724

(19) 日本国特許庁 (JP)

10 特許出願公開

[®] 公開特許公報 (A)

昭58—58672

⑤Int. Cl.³G 06 F 15/16

識別記号

庁内整理番号 6619-5B ❸公開 昭和58年(1983)4月7日

13/00 15/06

7361—5B 7343—5B

発明の数 3 審査請求 未請求

H 01 L 27/04

8122-5F

(全 58 頁)

每再構成可能集積回路

创特

頭 昭57—128805

@出

頁 昭57(1982)7月23日

優先権主張

ூ1981年7月24日③米国(US)

3)286425

301981年7月24日30米国(US)

30286424

❸1981年7月24日❸米国(US)

3)286426

⑫発 明 者

者 ロバート・エル・バドジンスキ アメリカ合衆国テキサス州7508 1リチヤードソン・エッジウッ ド・ドライブ1106

70発 明 #

サテイツシユ・エム・ザット アメリカ合衆国テキサス州7508 1リチヤードソン・エルク・グ

ラーヴ1304

⑪出 願

人 テキサス・インストルメンツ・ インコーポレーテッド

アメリカ合衆国テキサス州ダラ ス・ノース・セントラル・エク

スプレスウエイ13500

個代 理 人 弁理士 中村稔

外4名

明細書

1. 発明の名称 再構成可能集積回路

2. 特許請求の範囲

(i) 複数のプロセッサと、

上記のプロセッサの全てに各々が接続される 複数のパスと、

各々の上記プロセッサに接続されて上記プロセッサの構成を選択的に変更しこれによつて上記プロセッサをロックステップでまたは独立に作動可能とする手段

を有するモノリンツク基板を有する集積回路。

(2) 上記パスが複数の線を有する状況パスを有し 上記状況パスの上記線が同期線及び演算連結線 を有しており、

各々の上記プロセッサが上記プロセッサの各 各及び上記状況パスに接続される状況パスマル チプレクサを有し、上記それぞれの状況パスマ ルチプレクサが選択的且つプログラムに沿つて 上記状況パスの選択された線に接続又は割込み を行い、さらに上記それぞれのプロセッサを選 択的に上記状況パスに接続し、これによつて上記それぞれのプロセッサが上記状況パスを通して上記プロセッサのうちの隣接するものに接続されるようになつた特許請求の範囲第1項の集積回路。

上記区画は所望の論理機能を行うように配置 された選ばれた数の能動業子を含むように選択 的に配列されており;

さらに複数の制御線が設けられ、各々の上記制御線が選択的に1つ又は2つ以上の上記区画に存在する上記能動案子を作動させたり作動を切つたりする為に接続されることで上記 D L A が上記制御線の状況に応じて選択された論理機能を行うようになつており、

これによつて上記 D L A が制御線の状況に従って上記それぞれのプロセッサに選択的に与えられた命令を通訳するようになる。

特許請求の範囲第1項の集積回路。

示されているかを判断し、上記割込み管理が上記プロセッサによつて現在実行中のそれぞれの命令シーケンスのいずれかを開始した上記割込み信号のうちの1つの優先順位を記憶し、対応するコンテクストスイッチ出力を与えており、

上記各々のプロセッサは上記割込み管理回路 の上記コンテクストスイッチ線に接続されるスケデュラーを含み、

上記コンテクストスインチが新しく受取つた 割込み信号がより高い優先性レベルを有してい ることを示す時はいつでも上記スケデュラーが 上記対応するプロセンサによつて現在実行され る上記命令のシーケンスのとりかえを行うよう になつた。

特許請求の範囲第1項の集積回路。

(7) 上記パスは制御パスを含み、さらに上記制御パスに接続され外部ピンを有する外部割込み管理回路は、上記外にする割込み信号のフォーマットを特定する長さに関する情報及び型に関する情報をそ

の範囲第1項の集積回路。

- (5) 各々のプロセッサの構造を変更する上記手段は、その作動によつて各々の上記プロセッサが同一の再構成可能集積回路上又は他の同様な再構成可能集積回路上の1つ又は2つ以上の上記プロセッサとロックステップ状態でまたはこれらから独立して選択的且つプログラムに沿つて作動可能である特許請求の範囲第1項の集積回路。

れぞれ含む割込み信号を受信及び送信する為の 手段を有し上記長さの情報は、各々の割込み信 号の長さを特定するようになつた特許請求の範 囲第1項の集積回路。

(8) 上記パスが複数の線を含む状況パスを有し、 上記状況パスの上記線が同期及びアース連結線 を有し、

各々の上記プロセンサは、ダイナミンク論理 配列(DLA)を持ち、上記DLAがANDマトリクス、ORマトリクス、上記ANDマトリ クスをORマトリクスに接続する中間線とからなり、

上記ANO及びORマトリクスのうちの第1 のものに接続される複数の入力線と、

上記ANO及びORマトリクスのうちの他のものに接続される複数の出力線とが設けられ、 上記OLAの上記AND及びORマトリクス の少くとも1つが行列に配列されて上記それぞ れのマトリクス内の区画を規定しており、

各々の上記区画が所望の論理機能を行わせる 為配置された選択された数の能動衆子を含むよ うに配列されており、

複数の制御線が、その各々が1つ又は2つ以上の上配区面に存在する上記能動素子を選択的に作動させたり又は作動を切つたりすることができるように接続され、上記DLAが上記制御線の状況に応じて選択された論理機能を行うようになつており、

上記 D L A が上記状況マルチプレクサに接続され、これによつて上記それぞれの状況マルチ

数のパスとを有するモノリンック基板からなり、 上記複数のパスが複数の状況線を含み、

各々の上記プロセンサがデータパスハードウエアを有しさらにプログラム可能な論理配列(PLA)を有していて、上記複数のパスの上記状況級が上記PLAの入力及び出力、また上記PLAの上記出力及び入力線に接続されている集積回路。

プレクサから、上記それぞれのプロセンサに与 えられた入力及び出力が上記 D L A によつてプ ログラムに沿つて接続されるようになつた特許 請求の範囲第1項の集積回路。

(9) 複数のプロセツサと:

各々1つ又は2以上の上記プロセッサに接続された割込み管理回路とを有し、上記プロセッサの全てが上記割込み管理回路のそれぞれ1つに接続されており、

それぞれの上記外部割込み管理回路間で信号 を伝達するパス手段が設けられ、

上記各々の外部割込み管理回路は、それぞれ 長さに関する情報及び型に関する情報を含む割 込み信号の受信及び送信を行う手段を有し、各 各の上記型に関する情報が対応する割込み信号 のフォーマットを特定し、各々の上記長さに関 する情報が上記対応する割込み信号の長さを特 定している多重プロセッサンステム。

(10) 複数のプロセツサと。

各々が上記プロセッサの全てに接続される複

3. 発明の詳細な説明

本発明はソフトウェアで変更が可能なプロセッサ間の接続を行う内部接続を持ち、共通メモリの全てにアクセスする多重ピットプロセッサを有し、様々な計算構成の改変も可能である再構成可能な! Cに関する。

VLSI技術によって得ることのできる経済的利点をいかす場合の主な問題点は、将来的な VLSI 部品で満足のゆくレベルまで価格を低減できるほど充分な量産が可能なものはわずかしかないということである。特に、応用例の多くの場合、プロセッサの機能にそれぞれ独自の構造を要求するので、各々の応用例に用いられるプロセッサはその目的に特に設計されることになり、必然的に高価格になる。

本発明の特に目的とすることは、1種の一般的 1 C チップの設計を用いて多数の種々の応用例に おけるプロセス上の要求を満たし、それに伴なつ て! C を非常に経済的に製造できるようにするこ とである。 主要プロセッサに加えー/O機能制御(CRT アイスプレイのような)、メモリ管理、又は、特定の演算処理の為の専用プロセッサを使用することは好都合である事が多い。しかしながら、上記で示した様に、個々の目的のために特別に設計されたVLSIは高価であるので、このような専用プロセッサによつて得られる利益は十分には活かし得ていない。

本発明の他の目的は、特別製ではない一般的 ICを用いて特別な目的専用のプロセッサを容易 に構成する手段を提供することである。

このような専用プロセンサを用いるにあたつては、これらを一般的な目的のプロセンサと共に単一チップ上に集積すれば、特に好都合であることが多い。しかしながら、このような構造は更に特別な設計を必要とし、前述のように価格的な不都合の問題が生じることになる。

本発明の他の目的は、容易に量産可能な一般的な目的の再構成可能 I C を用いて、一般的な目的のプロセッサと 1 つ以上の特定目的のプロセッサ

そこで、本発明の他の目的は、ゲートの高楽積を保持しながらカスタムメイドの楽積回路の必要を充たすことのできる集積回路を提供することである。

ゲートアレイは、非常に触通性の高いしSIV はVLSI部品を提供することができ、さらにゲートアレイは、ある種の特定な機能たとえば高速 乗算器又はクロスパースイッチのような機能を有 効に行うことができる。しかしながら、ゲートアレイは、プログラム可能なシステムの補助にはあ まり適さないし、ゲートアレイの集積度は通常プロセッサほど高くない。

したがつて、本発明の他の目的は、ゲートアレイより高いゲートの集積度を持ち、プログラム可能なンステムの補助に一層通した再構成可能集積 回路を提供することである。

比較的大規模で複雑なシステムを数学的にモデル設計したい場合、各々のプロセンサのデータ処理能力は比較的低くとも、高次の並列資算処理によつて全体的なデータ処理は非常に高くなるよう

とを単一チップ上に集積可能にすることである。

特定目的のために設計されたVLSIの他の問題点は、部品製造の歴史が長くなるほど完成部品の価格と歩留まりおよび信頼性が、「ラーニングカープ(智熱曲線)」に沿つて良くなるという頃向があるのに対し、カスタムメイドによる特定目的の設計では、価格や信頼性に顕著な改善があらわれる程充分に長期の期間にわたり大量生産が行われることは通常はないということである。

したがつて、本発明の他の目的は、価格、歩留 まりおよび信頼性がラーニングカープに浴つて顕 著に改善されるよう長期にわたり大量生産が可能 な一般的目的を有する部品を提供することである。

カスタムメイドすなわち特定目的のために設計されたVLSIは高価であるとともに、ゲートの 集積度が比較的低いという問題点をさらに有する 場合が多い。これは、少量で生産される部品であ る為にパンキングの集積度を最適とする為に多く の時間及び多くの費用を費すことは、経済的でな くなるという理由からである。

に大規模配列でプロセンサを使用することが望ま しい場合が多い。しかし、このような配列でプロセンサを使用することは、通常は特定の目的の為のシステムとして構成されるので今のところ比較 的高価なものとならさるえない。

同様にして、非常に広い多重精密ワード(ことで複雑な軌道的システムが非常に長期にわたつてモデルされなくてはならない)を用いて長い連続する計算を実行することがしばしば望まれる。この場合に於ても、既製のシステムを適合させると、通常高価格又は低速となるか、又はこの両方の問題が生じることになる。

故に、本発明の他の目的は、特別なハードウエアを設計することなく、多数のこのような集機回路を結合して、安価に配列処理及び/又は多重精密処理を行うようにプロセッサを集機回路中に設けることである。

カスタムメイドVLS」のこの他の重大な問題 点は、ハードウエアの設計の変更及びテストが必 要とされるので設計のサイクルタイムがどうして も長くなることである。

そこで、本発明の他の目的は、単にソフトウエア及び/又はファームウェアを変化することによって特定の応用例にあわせて再構成可能な楽績回略を提供することである。

多重処理システム、ダイナミック構造及びマイクロプロセッサ構造の背景を一般的に理解する為の参考文献としては以下のものがある。

「多重プロセッサ及び並列処理」(ed P. エンスロウ ジュニア 1974) : A.アプトアラ&A.メルッア、「テジタルコンピュータ設計の目的」(1976) : C.ミード&L.コンウエイ、「VLS!システム入門」(1980) : R.クルツ、「マイクロプロセッサ及び論理設計」(1980) : G.メイヤー、「コンピュータ構造の発展」(1978) : ペアー、「多重処理システム」 25 IEEEトランズアクションズ・オン・コンピューターズ 1271頁(1976) : サーベー&カルド、「協働並列プロセッサ」、7コンピュータサーベイ215頁

のアプリケーション首語の磁訳にも適合するVLSI プロセンサを経済的に与える手段を提供すること である。

多重プロセッサンステムの持つ多くの利点は、の利点は、の利点に有効に利用されていなり多重プロセッサシステムとりの重要である。 はいかっとなって、本発明の目がである。 したがつて、本発明の目がである。 したがつて、本発明の目がである。 したがつて、本発明の目がである。 したがつて、本発明の目がである。 したがつて、本発明の目がである。 したがつきになって、アムを提供し、アロセがある。 したとである。

多重処理システムの利用に関してのこの他の問題点は、ハードウエア構造に融通性がないという問題である。多重処理システムの動作の大部分は、ハードウエアの構造によつて決定されるので、また現在のところ提案されている全てのハードウエア構造はある別の問題に対し最適でも他には最適

使用者があまり知識を持たないような場合、特定の仕事にあわせた非常に高度なアプリケーション目冊を設計することは、特に好都合である場合が多い。しかしながら、このようなアプリケーション目語がソフトウエアの形で実施される場合、速度が落ちることになるのが普通であるし、ハードゥエアで実施されれば、通常、非常に高価なものとなる。

故に、本発明のとの他の目的は、あらゆる所望

ではないと思われるので、真に一般的な目的を果たすシステム(汎用システム)を実現する多重プロセッサハードウェブ構造はまだ 1 つもできていないと思われる。

そこで、本発明の他の目的は、再構成可能であってこの為に真に汎用多重プロセンサハードウェ て構造となり得る多重プロセンサハードウェア構造を提供することである。

多くの多重プロセッサシステムに発生するこの 他の問題点としては、2つ以上のプロセッサに まついては、2つ以上のプロセッサに まついてからいますれたが、1 のプロセッサによってきるようが、2 ののではないである。いずれが1 ののではないである。いずれが1 である。いずれが1 である。いずれが1 である。いずれが1 である。いずれが1 である。いずれが1 であるが、2 これによってもの問題は避ける によってもの利益を犠牲にすることになる。

したがつて、本発明の他の目的は、どのプロセンサもメモリのいずれの頑竦にもアクセス可能でありながら、アータの完全性も保持できる多重プ

ロセンサンステムを提供することである。

マイクロプロセッサ言語と構造(アーキテクチャ)の間の、またマイクロコンピュータとミニコンピュータンステムの間のエミュレーションには、現在、比較的高額な費用がかかる。もしてきれば、ユレーションをもつと安価にすることができれば、より安価な開発及び試験が可能となり、たれば、より安価な開発及び試験が可能となり、これによつて特定目的に設計された応用シスの使用範囲が広がり、新しい技術に一層早く適合できるようになる。

本発明の他の目的は、融通性があつて効率的な エミュレーションを行うことができる単一チップ プロセンサを提供することである。

故障のあつた場合をでも性能低下をおだやかに することができるマイクロプロセンサンステムを 提供することも選ましい。こうすることによつて、 ハードウエアに最初に生じた重要な誤動作は、チ ップの機能に影響を与えなくなり、単にチップの 機能をわずかに低下させるだけになるので、信頼

けとり循環させる I / O 通信機能及び外部プロセッサと接続するプロセッサ間の通信機能を選成するには、 これらのためにハードウエアを別々に備えるとすれば非常に多くのハードウエアを必要とする。

本発明の他の目的は、 I / O 通信及び中間にあるプロセッサ間通信の両方を操作できる外部インタフェースを提供することである。

本発明の他の目的は、各々のプロセッサ内でプロセッサ間通信を管理する為また外部で発生した割込みを転送する為の両方に割込みを使用できるように作られた割込み管理構造を提供することである。

プロセンサンステムの動作機能又は構造を変更 する必要がある時に論理を再設計すると費用がか かり困難であるばかりでなく時間もかかる。

したがつて、本発明の他の目的は、論理を再設 計するのではなくプログラミングを変更する事に よつていかなるレベルにおいてもプロセンサのオ ペレーションを容易に変更できるようにすること 性及び歩留まりの両方が大巾に攻響される。

本発明の他の目的は、ハードウエアに與りがあ つた場合、 壊滅的な誤りとするよりむしろかだや かな機能低下をおこすマイクロプロセンサンステ ムを提供することである。

非常に多数のプロセッサを持つ多重プロセッサンステムは、多重プロセッサが高価であること、これらの内部接続が困難であること及び大規模なンステム内のプロセッサ間のインタフェースの為に適当なプロトコールを特定することが非常に困難であること、などのために、今までのところその利点をわずかに利用できるのみである。

本発明の他の目的は、所要数のプロセンサを内 成している多重プロセンサンステムの中に容易に 組み込み得るプロセンサを提供することである。

ICプロセンサを多重プロセンサンステムの中 に組み込み得るようにする場合、さらに生ずる問題点は、外部プロセンサとのインターフェースの 為にチップ上に別のハードウェアを準備する必要 があることである。外部で発生された割込みを受

である。

プロセッサのハードウエアンステムにアーキテクチャコンパイラー (architecture compiler)を提供できるようにすることは、非常に頷きしいことである。このようなコンパイラは、プログラムである。しかしながらこのようなコンパイラーを補助する為には、機能的な内部接続の再構成を選択的且ですると使がある。

そこで、本発明の他の目的は、アーキテクチャコンパイラを使用する為に必要な機能の変更が可能な構造を持つプロセッサンステムを提供することである。

本発明は、単一チップ上に4つのマイクロプログラム可能な16ピットマイクロコンピュータを備えるものである。マイクロプログラミング機能は、個々のプロセッサを含む大規模PLAにより与えられるものである。各々のプロセッサは状況

(status) パス、アータパス、及び制御パスと呼ぶるつの各々の主要パスに接続される。 それで おのプロセッサは、 プログラム可能な内部 接続 介でして 状況 パスマルチ プレクサを それぞれ の 機成が可能となることで、 プロセッサーとして ツロックステップ

(lockstap)で作動させることも、パイプラインで動作させることもできる。このように、プログラムの融通性を与える2つの主要なソースが得られる。即ち、PLA翻訳によるマイクロプログラミングの融通性であり、プログラム可能状況パス接続を使用し、各々のプロセンサによつて翻訳された命令の流れを制御することによるプロセンサ再構成の融通性である。

プロセッサ側御に於てこの融通性を利用する為、 各々のチップレベルの命令は、1つまたは2つ以 上の特定のプロセンサへと送られる。故に、プロ

用される。(1つの外部割込み管理及び2つの外部状況ボート及び2つの外部データボートを含む外部インターフェース制御によつても、2個以上のRICチップ上のプロセッサを一緒に前に示したような様々なモードで連結することが可能である。更に、外部インターフェース制御もまた外部メモリ、1/0装置その他へのアクセスを制御している。

どのプロセンサによつてもアクセス可能な RAMを充分量チップ上に用意する。しかしながら、各々のプロセッサもまたチップ上の RAMの主要な区域に直接アクセスしている。全てのが、他のセッサは、 RAM内のそのプロセッサ 用のば先 ではない ではない ではない ないない はい でしない ない はい でいない ない はい ない ない かっかい はい ない から ない グアップ (hangup) 及び 計手段 が 存在 けん の 後 先 段 ば が 使 用 され、 故に 後 先

セッサが(個々のプロセッサが同一のデータの流 れの中で次々と異るオペレーションを実行する)パ イプラインモードで動作することが望ましい時、 各々のプロセッサはそれぞれ命令を受け、ペイプ ラインシーケンス内のその位置に適当なオペレー ションを奥行する。ロックステップ処理の場合、 1つのプロセッサは、(シーケンスその他の制御 する)マスタープロセッサとして指定され、他の ロックステップ型プロセッサは全て同時に制御さ れる。これらの再構成の種々のモードもまた組合 せ得るので例えば、1つのチップは4つの独立な 16ピットプロセッサ、2つのペイプライン型 32ピットプロセッサ、1つの48ピットプロセ ッサ (3 つのロックステップ型 1 6 ピットプロセ ツサ)及び1つの独立16ピットプロセツサ等を 含むように再構成される。制御パスが複数の関連 のない命令シーケンスを運搬する為に区分され得 るので、単一の創御記憶管理を用い仲裁(arbitrate され制御パスへの仲裁が行われる多重割込み階級 組織 (muitilevel Interrupt hierarchy) が使

性の一致が起こらないようにする。第2に、全ての制込み(Interrupts)が並列に送られて、確認が行われる。第3に、実行を進めるねに必要とされる資源を全部は手に入れることができなかつたプロセンサはいずれも、予め入手してあつた資源を全て放棄し、必要な資源が入手できるようになるまで待機する。

このような重要な構成要素に加えて、設計の仕様を完全に満たす為には多数の従来の部品も使用される。例えば各々のプロセッサは、ALU、ペレルシフター、メモリマッパー、マイクロシーケッサ等を有している。

本発明による利点は、前述した本発明の目的を全て解決するものであり、他の利点も当分野に通常の知識を有するものであれば明らがであると考える。例えば、構造の大部分(例えば全部で4つのプロセッサ)は同じものを複製して使えばよいので、ほとんど4のファクターでRICチップのハードウエアの配置を考える時間が低減される。

もちろん、プロセッサは16ピットプロセッサ

である必要はなく、変わりに32ピット、8ピットその他であつてもよい。同様にして、チップ上のプロセッサの数は、4である必要はなく3でも数に、製造技術によって単に拘束されるのであるが、より微細な加工が実用化すればたくさは非常にのプロセッサをワンチップ上に作ることは非常に変化さるのようない。もろん、プロセッサが16ピット以外の場合には、それぞれのパスの規模は、それ相当に変化させならない。

本発明は、複数のプロセッサ、それぞれが上記プロセッサの全てに接続される複数のベス及び上記のプロセッサの各々に接続され、上記プロセッサを選択的に再構成することによつて、上記プロセッサがロックステップ又は独立して動作することを可能にする手段とを有する、モノリシック基板からなる再構成可能集積回路を提供するものである。

上記プロセンサは、上記それぞれのプロセンサに 与えられる命令を受けとる為に接続されるダイナ ミック論理配列(DLA)を有し、上記 DLAは、 ANDマトリクスと、ORマトリクスと、上記 ANDマトリルスを上記ORマトリクスに接続す る中間線と、AND及びORマトリクスの最初の 1 つ に 接続 される 複数 の入力線 と、 上記 AND及 びORマトリクスの他の1つに接続される複数の 出力級とを有し、上記DLA内の上記AND及び ORマトリクスの少くとも1つは、上配のそれぞ、 れのマトリクス内の区画を規定する為に行列で配 列され、各々の上記区画は所定数の能動衆子が含 まれるように選択的に配列され所望の論理機能が 行われるようになつており、さらに、複数の制御 線が設けられ、各々の上配制御線は、1つ又はそ れ以上の上記区画内に配置される上記能動素子に 接続され選択的に作動可能にしたり作動不可能に したりして、上記DLAが、上記制御線の状況に 応じて選択された論理機能を行なうようにし、と れによつて上記DLAは上記それぞれのプロセッ

また、本発明は、複数のプロセンサと、それぞれが全てのプロセンサに接続された複数のパスとを有するモノリシンク基板からなり、前記パスは複数の線を持つ状況パスを含み、上記状況パスの上記線は、同期及び資算集合線(arithmetic

Tinkage Ilnas)を含む複数のパスとを有し、各名の上記プロセンサは、それぞれの上記ポ況パスに接続される別々の状況パストンサなった。 サ及び上記状況パスに接続される別々の状況パストンサなった。 エルテプレクサを有し、上記別々の状況パストンサは、上記状況パスの選択された現状に対していた。 サステアレクサは、上記状況パスの選択された現に対した。 サステアレクサは、上記状況パスの選択された現状に対した。 サステアレクサは、上記状況パスに選択的に担心では、これに取り、これに担いでは、これに選択的に接続していた。 で上記名々のプロセンサを上記状況パスを通した。 でよれていた。 でよった。 である。

さらに、本発明は、複数のプロセンサと、それ ぞれが全部の上記プロセンサに接続される複数の ペスを有するモノリンンク基板からなり、各々の

サに与えられた命令を上記制御線の状況に応じて 選択的に翻訳するように構成された再構成可能な 集積回路を提供するものである。

本発明はまた、複数のプロセッサと、それぞれ が上記プロセツサの全てに接続される複数のパス と、RAMメモリとを有するモノリシック芸板か らなり、上記 R A M メモリは複数の R A M メモリ モジュールを有し、上記パスは複数の線を持つデ ータパスを有し、さらに複数のパス制御ユニット が設けられ、各々の上記パス制御ユニットは、上 記プロセンサの1つ、上配RAMメモリモジュー ルの1つ、および上記アータパスに接続され、上 記パス制御ユニントは選択的に上記プロセンサを 上記テータパスに接続するか又は上記の対応する。 RAMメモリモシュールに直接接続するようになり つた再構成可能な集積回路を提供するものである。 本発明はまた、複数のプロセッサと、それぞれ が上記プロセツサの全てに接続される複数のパス とを有するモノリシック基板からなり、それぞれ の上記プロセッサを再構成する手段が設けられ、

これによって各々のプロセッサは同一の再構成可能集積回路上の1つ又は2つ以上の他のプロセッサといっしょにロックステップ形式で又は独立して、選択的且つプログラムに沿つて作動できるようになった再構成可能な集積回路を提供するものである。

それぞれのプロセッサが上記連続する割込み信号 によつて割合て先として指定されたか否かを決定 するようになつており、上記割込み管理回路は、 現在、上記プロセッサで実行される別々の命令シ ーケンスのいずれかを開始させた上記割込み倡号 の1つの優先性を記憶し、上記割込み管理回路は、 各々の上記プロセッサにアドレスされた上記割込 み信号の各々連続する1つの優先性と、現在、と 記プロセッサで実行されている別々の命令シーケ ンスのいずれかを開始させた上記それぞれの割込 み信号の優先性を比較し、それに相当するコンテ クストスイッチ出力(context switch output) を与えるようになつており、各々の上配別々のプ・ ロセッサは上記割込み管理回路の上記コンテクス トスイッチ線に接続されるスケアユーラ (scheduler)を有し、上記 スケデューラは、上記コン テクストスイッチが新しく受取つた割込み信号が より高い優先レベルであると示す時にいつでも、 現在上配対応するプロセッサで実行されている上 記命令シーケンスの交換を行たりようになつた再

構成可能を集積回路を提供するものである。

以下、本発明に関し実施例を用い図を参照しながら詳細に説明する。

銀1図は、再構成可能IC(以下はRICと略 す)のプロック図を示す。PROからPR3まで の4つのプロセッサは単一チップ上に形成されて おり、全てのプロセッサ間を接続する為、ろうの **パス14、52及び56が設けられている。各々** のペスに対応して外部インターフェース76、 74と75、及び72と73が設けられ、またオ ンチップ R A M メモリ 6 6 及び制御記憶回路 3 8 (第2図)も形成される。より詳細を配置図は、 第2図で示されている。第2図は、1つのプロセ ツサPR3の全体と、それぞれの型の外部インタ ーフエースのうち1つ及び パス線とオンチンプメ モリの一部を含む再構成可能ICの部分的フロア プランを示す。各々のプロセッサの割込み管理回 略12は、制御ペス14上に現われる割込みを常 に監視している。プロセッサ P R 3 にアドレスさ れた割込みだけが、PR3内の割込み管理回路

12によつて認識される。とのような割込み信号 は P R 3 内のスケアユーラ 1 6 によつて連続して 比較され、これらの信号の優先レベルがプロセッ サPR3で現在実行中の命令シーケンスの優先性 より高いかを調べる。これが高い場合であれば、 新しい割込みが導入した命令の流れ(このような 命令の流れは「プロセス」と呼ばれる)の実行の 開始が必要である。スケデューラ16は、対応す る出力を制御DLA22に与え、これはROM命 令レシスタ18又はRAM命令レシスタ20を作 動させるので制御DLA22が「プロセス」の中 に含まれる命令のシーケンスを受けとり始める。 制御DLA22は、以下に示すようにその構造上 の改良によつてペッキング集積度が非常に向上さ れている点を除けばPLAと同様に機能する。し たがつて、制御 D L A 2 2 は、その内部の A N D マトリクスにミンターム (minterms) を発生し、 次にORマトリクスがこれらのミンタームを次に 選択された論理和出力に変換する。制御DLA 22と隣接するのは、フィードパックプロック

24である。とれを通つていくつかの制御DLA 22の出力はフィードバックされ、DLA22の 入力へと接続される。との意味で一定の状況によ る機械機能がDLA22に与えられるので、DLA 22は例えばある高レベルの命令を低レベルの命 今のシーケンスに翻訳することが可能である。 D L A 2 2 は、デコーダ区域 2 5 及び 2 6 に接続 され、これによつてDLA22の出力はALU 28. // レルシフタ30、レジスタファイル32、 メモリマッパー34等に対するハードウエア命令 として選択される。DLA22の出力は、またマ イクロシーケンサ36に接続され、これによつて 制御 イス14及び制御記憶回路3.8 に対するアク セスの制御を行う。マイクロシーケンサ36は制 御パス14上に適当な信号を送ることが可能で制 御記憶アドレスレジスタ40を通つて制御記憶回 略38亿アクセスしている。制御記憶回路38か ら呼び出されたデータは、制御記憶アータレジス タ42を介し制御パス14に出力され、更に、も レレジスタ18が割込み管理回路12によつて作

動されている場合には、ROM命令レジスタ18 内に入力され、制御DLA22のAND区域に対する入力として接続される。メモリマッパー34、レジスタフアイル32、パレルシフター30、ALU28、シフトレジスタ44及びフラクレジスタ46のオペレーションは、マイクロプロセッサ技術としては既知の従来の主要オペレーションに従い行われる。

エンド・アラウンド・ループ 5 4 を含む状況 パス 5 2 も チップ上に形成される。状況 パス れん の で かん し 4 5 及び 5 0 を介してれれれの プロセッサに接続される。各々の 2 0 で れれれれて の 状況 マルチプレクサ は プロクラム 可能 な 相互 様 は で かんして 作動する。状況 パス 5 2 及び 5 4 の 時間 に の は な イプラインモード中の 隣接 する プロセッサの間に 完全 な 直 結 に で の け で の は で の は で の な で で は な で で は な で な で な が で の な で が で な で な で な で が で か な で な で が で か か な で が で が で か す 4 5 及び 5 0 は プログラム されて、新しいモー

ドが入つてくるタイミングどとに適当な状況パス の相互接続が行われる。

プロセンサPR3は、メモリマッパー34を介 してRAMメモリ66にアクセスしている。メモ リマツパー34からの線は、状況パス52を54 と交叉しており、イス制御ユニット58でデータ オス56とインターフェースしている。オス制御 ユニット 5 8 は選択的にプログラムに沿つて作動 するので、メモリマッパー34からの出力は、プ ロセツサPR3が好ましくはアクセスするRAM メモリモジュール60に、データレジスタ62及 びアドレスレジスタ64を通つて直接接続するか 又はデータイス56を通つてチップ上又はチップ 外のメモリのどこか他の領域に接続される。RAM メモリ66の他の3つのモデュール(図示せず) のうちの1つにアクセスする必要がある場合、と のアクセスはデータパス56を介し、他の3つの メモリスケデュラーユニット 6 8 のうち適当な 1 つと接続される。各々のメモリスケデューラユニ ット68は、先に来たものから先にサービスを行

う方法に従つてメモリアクセスの要求をスケデューリングし、制御レジスタ70を通つて相当するメモリモデュールへアクセスするよう制御する。 更に、データバス56は外部データポート72及び73(第1図参照)に接続され、これを通して 各々のプロセッサは、チップ外メモリにアクセス 可能となつている。

同様にして、状況パス52及び54は、外部状況ポート74及び75に接続されるので、チップ外プロセッサは、多重チップ間のロックステップ及びパイプラインのオペレーションで同期するようになり、制御パス14が外部割込み管理回路76に接続されるので、チップ外プロセッサとの間で命令の送信受信を行うことができる。

制御記憶回路38は、それぞれの制御記憶モデュール制御器96によつて制御されるモデュール78に分割されている。RAMメモリ66も同様にしてモデュール60に分割されている。最後に複数のパッド接続領域80が外部との接続の為にチップ周辺に設けられている。また84ピンパッケージ

を使用することが好ましい。

前述した内容は、再構成可能集積回路の機能及び構造を示す概略的説明である。チップに関する さらに詳しい説明はいくつかの実施可能を応用例 としての扱案を行いながらこれから説明する。

量的に多い用途には、マスクプログラムによる DLAを用いることが好ましいが、初期の開発段 階ではフィールドプログラム可能な(又は電気的 に変更可能でさえある) DLAを使用すると、 需 要に対する融通性を拡げることができる。集積度 に関する厳格を最高の限界は所望のミンターム又 はマクスターム(minterm 又はmaxterm)の結果 にかかつているが典型的なPLAはトランシスタ 集積度の10多を有しているので、DLAの使用 により4倍の改良がミンタームを「折りたたむ」 ことによつて容易に可能となる。メイナミック論 理配列DLAは、領域をもつと有効に利用する為 に改良された P L A として簡単に考えることがで きる。そのかわりにDLAを回路レベルで再構成 可能にしたPLAとして考えることもできる。 DLAによつて多重機能をPLAで実施できるよ りになるが、一度に1つの機能しか利用できなく たるという拘束が与えられてしまう。 D L A は 2 から5倍の率で領域の有効利用が改善される。(マルチプレクサと共働する)DLAはまた単一の

第3図に示すよりに、NMOS技術を用いてのPLAのNORゲート仕様においては、ORマトリクス内にゲートを形成するトランジスタと共にANOマトリクス内にゲートを作るトランジスタは、共通して接地されるソースを全て有している。特定の機能を作りだすトランジスタのソースがフロートされている場合、回路は、これらのトラン

ジスタが取り除かれたかのように働くのでその機 能は働かをくなる。NORゲートDLAの背景に ある基本的思想は、機能を行う為の全てのトラン シスタを制御額に接続し、機能を働かせる時に制 御線は接地され、機能を働かせない時にフロート にするといりことである。 D L A で多重機能を作 りだす為には、各々の機能を作りだすトランジス タのソースを、その機能に対応する別々の制御線 に接続する。第3図は、典型的なNORゲート DLAを示している。通常のPLA回路は、実線 で示され、DLAを作る為の追加的回路は、点線 で示されている。DLAは破線によつて示されて 区分されている。種々の区分は、P1からR8ま での表示が付されている。制御線C1が論理 1 で ある場合、区分P1及びP5に於る回路が作動さ れ、出力E及びFは、入力A、B及びBの関数と たる。 制御額 C 1 が O レベルである場合、 E 及び Fの出力は、いずれの入力の関数としても制御さ れることもない。追加の回路もまた出力E及びF を入力A、B及びBの関数として制御される他の

機能を作り出す為にP3及びP7の区域に追加することができる。

同様にして、第3図の制御線C2は区分P4及びP8に於る回路を作動又は非作動状態にすることができ、追加の出力機能を与える追加の回路を区分P2及びP6内に追加することができる。

この回路は、あらゆる数の区分に対しても一般 化することが可能であつて、この区分は様々なサイズが可能である。またANDマトリクスは、 ORマトリクスからは分離して制御可能である。

第3図は、スタテインクケートPLAに基づいて改良が行われたDLAを示しているが、明らかなように、上記の説明はダイナミンクケートPLAに基づくDLAにも応用することはできる。ダイナミンクケートDLAを作る為に必要な追加の問辺制御回路は、特にPLAが大規模である場合でも非常にわずかなチンプ領域を増加するだけで足りる。

第4回はNANDゲートDLAを示す。多重化された機能の選択された(つを作り出す為にPLA

翻訳の為にDLAを使用することによつて、各各のプロセンサの翻訳システムは、DLAのオペレーションのモードを選択することによつて容易に再構成可能となる。より高価であるフィールドプログラム可能構造も使用者の開発にとり有用で

あるが、D L A 2 2 はマスクプログラムによるものを使用することが好ましい。

このように、制御DLA22を使用することで、各々のプロセンサ内で必要とされる複雑なマイクロプログラミング機能を得ることができる。マクロ命令を入力としてDLAに与えているパスについて以下に説明する。

DLA22は、また単にリアルタイム入力を DLAの入力線の1つに接続し、その入力とDLA の適当な出力をAND接続することによつてリア ルタイム機能を提供する為に使用されている。

制御記憶回路及び制御パスの構造及び使用する 割込み制御システムにつき以下説明する。

ある実施例に於ては、中央制御記憶回路は、 4 つの全てのプロセンサにアクセス可能で共用が可 能である。とこで示す好ましい選択例では、制御 記憶回路 3 8 のどの部分にも各々のプロセンサが アクセス可能なままにしておきながら、プロセン サの中の制御記憶回路 3 8 は、プロセンサの中の データ記憶部と同様の配置で、配置されている。

4つのマイクロシーケンサ36は、並列アクセス が可能でないが、単に低い平均アクセスタイムは 可能である。もちろん、マイクロシーケンサ36 は(パス制御ユニット38と同様に)並列アクセ スが可能なようにも構成されるが、これにみあり だけの利点は得られずに、迫加の回路によって複 雑性は増すことになる。中央共有可能制御回路は、 以下のような利点を与えている。多重プロセッサ で使用されるコードは複製されないので、メモリ 領域をより有効に利用することができる。各々の プロセンサに与えられる制御記憶量を要求に対し て、より良い具合に合わせることが可能になる。 メモリを中央に集中できるのでフィールドプログ ラミングが実用的である。もちろん、中央制御記 億回路にアクセスする単一のチャンネルがシステ ムの障害となるのを避ける為に、制御記憶回路に 記憶される命令のレベルを充分に高くして、各々 のプロセンサが制御配憶回路から受けとつた各々 の単一命令を、実行する為に平均して4又はそれ 以上の完全クロックサイクルを要するようにした

くてはならない。現在のマイクロプロセッサのソフトウェア構造に於ては、1つのアッセンプリ言語命令には典型的に平均して5ないし10サイクルを要するので、命令のレベルに関する上記の拘束は、容易に満たされる。

マイクロシーケンサ36は、ROMメモリ内に 記憶されるマイクロ命令を実行するシーケンを 割かたアクレスシーケンサである。シーケン のアドレスシーケンサである。イクロトの がカステクセスが加まり、1000 のアドルののでは、1000 のアクセスが加まり、1000 のでは、1000 のでで、1000 のでで、1000 のでで、1000 のでで、1000 のでで、1000 のでで、1000 のでで、1000 ので、1000 図に示すにとどめる。

本実施例に従つた制御パス14の構造が第5図 に示される。制御パス14は制御アータパス82、 アドレスペス84、割あてパス (destination bus) 8 6 、割込み イス 8 8 及びデータルーチン **パス90を有している。側御データパス82は、** 制御記憶回路38からとつてきたマイクロ命令を プロセンサPROからPR3までに転送している。 とのパスは40本分の線の広さである。アドレス **パス81は、マイクロシーケンサ36によつてそ** れぞれのプロセッサ内で発生されたアドレスを制 御配憶回路38に送り、マイクロ命令をとりだし ている。以下に説明するように、アアレスパス 84もまた割込み期間中は優先性の情報を選んで いる。とのパスは14本分の線の広さであつて、 制御配憶回路38に16Kワードのアドレス領域 を確保している。割合てイス86はプロセツサが 制御記憶回路38にアクセスする時にいつでも使 用され、1つまたそれ以上のプロセンサPRo-PR 3及び外部割込み管理回路 7 6 のいずれかで 現在アクセスされている制御記憶回路38内のア

ドレスに記憶されるデータを受けとるかを知らせ る。割合てパス86は、割込み期間中に使用され プロセッサPRO-PR3及び割込み管理76の りちのいずれが現在の割込みを受け取るか(即ち 割込み先 Interruptee)を確定している。割当て パス86は線5本分の広さである。 割込みパス 88は割込みのソースを転送するのに使用される。 とのイスは、割込み先プロセンサに対し割込みが 手元にある中で最も高い優先性のタスクであるか どうかを知らせる為にも(即ち割込み先プロセッ サが割込みを受入れるかを知らせる為に)使用さ れる。との型の応答では、パイプライン型又はロ ックステップ型オペレーションを必要としてプロ セスを迅速に設定(又は延期)する必要がある。 割込みパス88は5本分の線の広さである。デー タルーチンパス90は制御配憶回路92によつて 制御され、PROからPR3のうちの1つ又は2 つ以上のどのプロセツサが現在制御パス82で転 送中のマイクロ命令を受けとるのを示す為に使用 される。データルーチンパス90は5本分の額の

広さである。緑 D R o - D R 3 は、R O Mからとり出されたワードの割当て通りに又は割込みに応じてP R o から P R 3 のうちの対応するプロセッサを指定する為に使用される。線 D R 4 は R O Mからとり出されたワードの割当て又は割込みに応じて外部割込み管理回路を指定するために使用される。

最後に、制御パス14は、花輪状に連結する、割込み準備線104も有している。花輪のように連結することによつて割込みを送ろうとしているプロセッサ間でラウンドロピン型の仲裁を行つている。プロセッサが制御パス14を支配して、た

によつて実行され、残る機能は、適当をモアユール制御回路96によつて実行される。モアユール制御96はここで要求されたアクセスの為のアドレス及び割当て先を待ち行列にしてFIFOのオーダーで要求された制御ワードを読み出す。

だちに割込みを発生する時、プロセッサは、花輪 状に連結する割込み準備線104にゼロまで引き 下げる信号を送る。割込みを送るプロセッサは制 御アドレスパス84を支配する前に割込みパス 88を引き継ぐことができる。割込み元プロセッサ (Interrupting processor)が割当てパス。 86を支配する時、発生した割込みの割当てパス。 86を支配する時、発生した割込みの割当てパス。 多る外部割込み管理回路76上のプロセッサに対 応する割当てパス86内の線の電位を上げる。割 込みを発生した後、発生元のプロセッサは、自分 が割込みの発生元であることを割込みパス88上 に示し知らせる。

割込みが開始された後、他の割込みは少くとも 2 パスサイクルの間禁止されるこ 1 サイクルは割 込みを送る為で 1 サイクルは、受け取り側プロセ ッサ(割込み先 interruptee)からの応答を発生 元プロセッサ(割込み元 interruptor)が受けと る為である。割込みをパッファすることだけが必 要な場合、割込み先の割込み管理回路は割込みの プロセスは可能で 1 から 4 の 追加パスサイクルが 過ぎるまで他の割込みを受けとる用意ができてい る。割込みの受け取り側がロックステップ又はパ イプラインモードで連結するようになつた場合、 即ちコンテクストスイツチが必要とされる場合、 割込みパス88は、必要をコンテクストスイッチ を実行する為に使われるタイミングの間プロック される。コンテクストスイツチの長さは、割込ま れたプロセッサ内にどれほどのコンテクストが(即ちレジスタの内容、ALU状況等)保持されて いるかに左右される。以下で説明する通り、いく つかのコンテクストスイッチはプロセッサのコン テクストを本質的に完全に変更することが必要で ある一方、他のスイッチは最小の変更のみを要す る。最も短いコンテクストスイツチでも通常る又 はそれ以上のパスサイクルを必要とする。この選 延が割込み信号の帯域幅を限定するが、割こみが フルに有効な帯域幅を占めるとは予想されないの でこの方法は適していると思える。この選妬は長 い実行を通しての割込み信号の選行の平均したレ ートを落とさずに突然の割込みの発生をスムーズ

にする目的を果たしている。

割込みは、それぞれの命令のシーケンス(即ち 各々の「プロセス」を開始する為に使用される。 上記で示した様に、割込みは優先レベルを特定し、 アータルーチンパス90内を移動しどのプロセツ サがアドレスされるかを特定する4ピットコード を有している。もし割込みによつてアドレスされ る全てのプロセッサが有効を状態にあるならば、 (即ち、これより高い優先性のタスクは手元にな い場合)プロセス内の命令シーケンスの実行が開 始される。もし、実行すべき命令が制御記憶回路 38に存在している場合、この命令は適当なマイ クロシーケンサ36によつて次々と飲出される。 実行すべき命令がRAMメモリ 66内にある場合、 この命令は、適当をメモリスケヂユーラユニット 6 8 及び イス 制御 ユニット 5 8 によつて R A M メ モリから次々と読出される。各々の影響をりける プロセッサ内のメモリマッパー34はこれらの命 今をRAM命令レジスタ20を通しDLA22亿 転送する。DLA22はこれらのRAM命令を

ROMアドレスにする翻訳を行つていて更にこれ らのROMアドレスはマイクロシーケンサを介し てアクセスされている。また、RAM命令は、 DLA22にょつて直接アコードすることができ る。ROM内に記憶される制御ワードはプロセッ サ仕様フィールドを有していたい。しかし、制御 ワードは、唯一固定された定型部分がオプコード (op code) である短いピットのストリング (好 ましくは32ビット)である。ROMから呼びだ された制御ワードがプロセッサのDLA22に回 帰され、制御ワードと共にRAMから受取つた命 今によつて特定されるあらゆる定数及びオペラン PがD LA 2 2によつて通訳される。D L A は、 OPコードと同時に例えばオペランドフィールド、 定数フィールド、マイクロシーケンサ命令、メモ リインターフエース命令、状況パス命令、(命令 が割込みである場合の)割合て及び優先性データ、 割込み管理回路の制御の為の命令、スケデューラ、 パレルシフタ等であるオプコード及び制御ワード に従つて残りの制御ワードフィールドを通訳する。 命令ワードの適当な部分が更にデコードされ、デ コーダ 2 5 及び 2 6 に制御される D L A によつて 適当なハードウエアに直接接続される。

もちろん、このマイクロプログラミング通訳構 造では、ハードウェアでの実行以前にこれ以上の ステージを持つ通訳機構を用いることも可能であ る。例えば、制御記憶回路38から読出された命 令は通訳され、 制御配憶回路 3 8 又は R A M 6 6 から眺みだされた他の連続する命令の実行を要求 するようになる。更に、チップ外メモりも命令の 実行に使用される。例えば、アプリケーション質 ンを示している場合、制御記憶回路38内の相当 する制御ワードは、通訳されて、RAMメモリー 66の特定プロックにあるサブルーチンをロード し、引き続きそのサブルーチンの命令を実行せよう という命令が出る。もちろん、チップ外の記憶容 量に記憶される命令はとりだされ以下にさらに詳 しくのべるように割込み管理回路76及び/又は 外部アータポート72及び73を通つで実行され

Z .

割込みプロトコールに関するこれ以上の説明は以下で示す。以下で示すRICを異るモードのオペレーションに変更する再構成機構は制御パスのオペレーションに関連づけて説明する。この点に於て、プロセンサPROーPR3の各々の構造についてもさらに詳しく説明する。

第2図からわかる通り、各々のプロセンサは、 DLA22及び共働デコーダ25及び26に加え て、フィードパンク線24及び命令レジスタ18 及び20、割込み管理回路12、メケデーレジスタ 16、メモリマンパー34、スタンク/レンスタ ファイル32、パレル(barrel) シファタ スタメクノレルののはないファクの を有している。役半のにするとに でいるののでは、第9図は、ALU28なびに でいるののでは、第9図は、ALU28なびに でいるののではないないのの に呼細にテレックの他のアロック例えばいる。 ファイの30からの入力として提供されている。

供している。(DLA22内の)フラグ発生論理134は、フラグレジスタ46に接続され、出力ラッチ136はシフトレジスタ44に接続される。次にシフトレジスタ44はパスA及びB(108及び110)を通つてレジスタフアイル32に接続されるか又はメモリマツパー32を通してパス制御ユニット58に接続されるので、ALUの出力は、データパス56内を転送されるか又は、将来のオペレーションで使用する為にプロセッサ内に記憶される。

第10 図は、A L U 28 内の機能プロック116、 118 又は122の1つの一部分の部品レベルの 構造を示す。第11図は、A L U 28 内の桁上げ 連鎖プロック120の一部分の構造を示す。マイ クロプロセッサの構造に関するこれ以上の参考は 例えばオズボーンアンドアソシェートに示され、 これは参考としてことにいつしよに示す。

第 1 2 図は、テータパスの妖略図である。入力信号は、パス 1 0 8 及び 1 1 0 から入力され、とれらのパスにはそれぞれ入力ラッチ 1 3 0 及び

パスはそれぞれの入力ラッチ112及び114を 介して、P(伝播)機能プロック116、K(速 断)機能プロック118 、C(桁上げ連鎖)プ ロック120及びR(結果)機能プロック122 に連続して接続される。伝播機能プロック116 は、P制御線124によつて制御され、連断プロ ツク(kili block) はK制御線126によつて 制御され、結果プロックはR制御線128によつ て制御される。これらの制御額はDLA22から A L U 2 B までを接続している。更に、桁上げ入 力 (carry in) 線130及び桁上げ出力 (carry out) 線 1 3 2 が提供されていて、C プロック 120を状況マルチプレクサ48及び50に接続 する。(状況マルチプレクサ48及び50のオペ レーションは、状況パスプロトコールに関連して 以下でさらに詳しく説明する。)Rプロック122 の出力はデュアルパスであつて、フラク発生論理 134を通つて出力ラッチ136に接続されてい る。フラグ発生論理134は状況とエラーの情報 を計算しDLAを介しプログラム状況ワードを提

140が接続されている。とれらのラッチはパレ ルシフタ30の入力と接続する。パレルシフォ 3 0 は、制御線1 4 4 及びパラメータ入力1 4 6 によつて制御されている。これらはまた両方とも D L A 2 2から提供されている。パラメータ入力 146は、例えばシフトカウントの為、及び抽出 の限界(extraction boundaries)の為の値を与 えている。パレルシフタ30はパスA及びパスB に出力を与えている。 A L U は、桁上げ、オーパ ーフロー、負数及び/又はゼロといつたよりな液 算状況信号を発生している。 A L U は、整数のオ ーパーフロー、十進数の桁上げ等といつたとの他 の割とみ信号も発生している。とのような信号は、 D L A に送られて D L A は、これらの信号に従っ て論理オペレーションを実行し信号を発生してい る。この信号は、フラグレジスタ内でピットをセ ットする。との機構によつて状況セット信号を発 生させ、例えばコンピュータ構造の中を循環させ

第13図は、パレルシフタ30によつて形成さ

れるシフトオペレーションで使用する用語を示している。従来、左シフトは、最上位ピットに向かってなってから、大口に対してはないのではない。即はたかったではない。同様にして最下位ピットは、左シリトである。明はにして最下位では、たり、には、シフトはないのの他のは、シフトはないのは、最後尾ピットが欠けているためでは、シフトはない。第148図は、最後尾ジフトを示している。第148図は、いる。

第 1 4 b 図は左循環オペレーションを示してわり、入力ラッチA1 3 8 の最上位ピットは、入力ラッチBの最下位ピットにマッピングされ、入力ラッチB1 4 0 の最上位ピットは入力ラッチB1 4 0 の最上位ピットは入力ラッチの間は、1 ピットの循環オペレーションを示しているが、循環オペレーションは、パレルシフタ内の1 クロッタサイクル期間中に16ビットまで石又

して示したミード及びコンウェイの「VISIシステム入門」に示されている。

メモリマツパー34はプロセッサ構造としては よく知られる機能を形成する単たるありふれた構 造である。メモリマッパー34によつて受けとら れる仮想的(ヴアーチャル)アドレスは共働する メモリオペレーションによつて16の記憶されい た仮想アドレスと並列に比較が行われ、もし受取 つた仮想的アドレスが記憶されていた仮想的アド レスの一つと整合する場合、これに相当する地域 的アドレスが使用され所望のワードが地域メモリ ーから呼び出される。整合するものがない場合、 仮想的アドレスは(ページテーブル索引のような) テーブル索引によつて翻訳され実際のアドレスを 決定し、レジスタフアイルの 1 つに随意にロード 可能となる。この意味で、メモリマッパー34は 内部的に記憶されるメモリュニットと外部的に記っ 偉されるメモリユニットを区別しているといえる。 故にメモリマツパー34はテープル検索をこま切 れにする(hoshing)ととができるように構成さ

は左に動きりる。

第14c図は、シフト及び連結オペレーションを示しており、ここで入力ラッチ138は右にシフトし、連結入力線(IInk-in line)152が最後尾ピットの新しい内容を与えている。先頭ピットの内容は、連結出力線(IInk-out IIne)154を通り出力される。本実施例に於て、連結入力152及び連結出力線154は、入力ラッチB140から接続されているので多重ピットシフト及び連結のオペレーションが実行されるが個別の連結入力及び連結出力線を代わるがわるに用いることもできる。

第 1 5 図は、パレルシック 3 0 によつて実行される抽出(extraction) オペレーションを示している。 ここに示すオペレーションでは、パレルシッタ 3 0 は命令を受けて入力の 3 - 1 1 ピットを抽出している。 これらのピットは出力ラッチ 1 5 0 に先頭ピットとして接続される。 このような機能をパレルシッター 3 0 に実行させる為に必要とされる回路は既知のように例えば先に参照と

れ、ハッシュテーブル内の位置を選択する為に使 用されたハッシュ機能はファームゥエアによるプ ロクラムが可能 である。ハツシユテーナルはマル チウェイセット共働メモリとして作られている。 ハッシュ機能の出力は並行して検索が行われる多 重位置を指示する。所望のアドレスがハッシュテ ープルで多重位置に於て行われた比較と整合しな い場合所望のアドレスは(設計上)テープルに存 在しないということなのでこれ以上の検索は必要 なくなる。故にこのマッピング機能は様々なサイ スのメモリのマッピングを行う。ハッシュ機能が 記憶容量を補助する為に使用される場合、ハッシ ユテーブルエントリーが数10ペイトのメモリユ ニットを指示する。 ハッシュ機能が仮想的メモリ 翻訳ルックアサイドペッフアを補助する場合、メ モリユニットは典型的に 5 1 2 パイトから2.048 パイトまでになる。メモリマツパーに適当な構造 をもつ物としては、ナショナルセミコンメクタ社 のチップ番号16082がある。

割込み管理回路12は制御パス14を通つて転

スケアユー 9 1 6 は 2 5 6 ピットンフトレシスク内の優先性によって割込みをパッファナる。プロセスが有効に行われている時、スケアユーウーは優先性を持つプロセスを見つける。現在のプロセスが完了 又は時間切れの場合、スケアユーラー1 6 は で で クストを示す で と クテーナルにアクセスしている。適当なコンテ

クストは、スタック/レジスタフアイル 3 2 から、R A M メモリ 6 6 から又は外部メモリから再び呼び出される。

第18回は、上記で示したデータパスの総体的 た全体図を示す。 ペス A 及び B (1 0 8 及び 110) は、主要な構成部であるアータパス、即ちスタッ クノレ クスタプアイル 3 2 、 パ レル シフタ 3 0 、 A L U 2 8 及びフラグ及び シフトレジスタ セット 4 4 及び 4 6 の 側面に 設けられる。 更に左 側 ポー ト170はデータペスの入力及び出力の末端に設 けられている。好ましい実施例ではないが、右側 ポートを用意する選択も可能である。とのあるプ ロセッサの右ポートは、隣接するプロセッサの左 ポートに接続する為に使用される。例えば、プロ セッサPR3の右側ポートは、プロセッサPR2 の左側ポートに接続される。リテラルレジスタ 174もまた定数を発生させる為に提供される。 入力はメモリマツパー34から接続する左ポート 170に接続され、右側ポート172からの出力 もメモリマツパー34を通つて接続される。

スタック/レジスタフアイル32は、2本のパス108及び110を十分に利用できるようにする為にテュアルポートのレジスタフアイルでなくてはならない。さもなければレジスタフアイル32は従来と全く同じである。

アータパス 5 6 の組織は、R A M メモリ 6 6、パス制御ユニット 5 8 及びメモリスケテューラユニット 6 8 のオペレーション及び構造といつしよん以下で説明する。

第16図は、データバス58の構造を示している。データバス58は16本のアドレス線158、 16本のデータ線158、ラウンドロピン仲裁線 160、4本のソース線162、モデュールピリー線160、4本のソース線162、モデュールピリー線167を有している。別々のアドレス線156 及びデータ線158によつてデータアクセスのオペレーションが単一パスサイクルで実行可能となっている。との場合チップ上のRAMメモリ66がアクセスされるので少くともメモリアクセス速度はこれを可能にしている。こうする代わりに、

アドレス線及びデータ線156及び158を多重 構造にし領域を節約することができる。ラウンド . ロピン仲敷線160は4つのプロセッザPR0-PR3、4つのメモリモデュール60、及び外部 アータポート 7 2 及び 7 3 の間を花輪のようを形 で連結しているので、アータパス56へのアクセ スは有効に仲数が行われる。4本のソース線162 は、現在転送中のメモリアクセス要求のソースで あるプロセツサ又はモテユール又はデータポート を特定している。その代わりに制御線184の状 況に従つて、ソース線163を使つて、どのメモ リモテユール60がメモリモデュールによつて次 にサービスを受けるのかを示している。 1 D本の 割あて粮168は、どのプロセツサ、モテュール 又はポートがアータを受けるかを示す。ソース状 況線166は(もし低論理であれば)ソース線。 162は更にプロセッサ、モデュール又はデータ ポートのどのメモリの要求が次にサービスを受け るのかを示す。ソース状況線166が高電位状態

にあるということは、ソース 額が現在のソースを

示していることを扱わしている。また、メモリの 読み出しに使用されるか又はメモリの書込みに使 用される為ペスが停止状況(Idle) にあること を示す2本のペス状況線165も提供されている。

第17図の流れ図はさらにデータパス5 8内の 鎌の利用をさらに明らかにしている。一度、いず れかのソース(プロセツサPR 0 - PR3、RAM メモリモアユール60、又はアータポート72又 は13)がデータパスへのアクセスを受けとると (即ち、一度、そのソースが花輪状連結線160 から高電位信号を受けとると)ソースは額162 上に4ピットロードを示す。ソースがRAMメモ リモデュール80であつて、対応するメモリスケ アユーラユット 6 8 が未解決のメモリ 要求を有し ている場合、ソーヌ線162はぞのプロセツサ又 はメモリモアユールが次にサーヒスを受けるかを 示すようになり、蘇188は電位が引き上げられ る。との後で、また未解決のメモリ要求を持つメ モリモアユールがソースで力い場合でも、メモリ アクセス割当て線168の電位が引き上げられて 脱出されるべきデータに関する 1 0 個の割当てから成るいずれかの組合せを示す。連動回路(interlock)は、データの完全性を保つ為に提供されている。もし割当て先に未解決のメモリ要求を持つメモリモアユール 6 0 を 1 つまたは 2 つ以上が含まれる場合、ワイヤー A N D E D 線であるピソー線 1 6 4 の電位が引き上げられ、同一のメモリスペースに対し同時に読みこみ及び普込みが行われることがないようにしている。

第19図は、RIC内のRAMシステムの組織を総体的に示す概略図である。各々のプロセッサPR3は、メモリマッパー34を介して、アータパス56へのインターフェースとして働くパス制御ユュットBCU58に接続される。各々のBCU58は対応するメモリスケアユーラユニットMSU68の各々は両方とも対応するRAMメモリモアユール60に接続される。

プロセンサが自分のメモリモアユール 8 0 KT クセスする時、プロセンサは自分のB C U 5 Bを

通つて自分のM S U 6 8 に 袋貌される。 M S U 68 仕未解決のメモリ要求があるか否かを決定す る。未解決のメモリ要求が存在しない場合、アク セスがただちに発生する。アクセスが決定されて いたい場合、MSU68はメモリのサービスを最 初に要求したかを示すメグ(tag)を待ち行列に する。MSU68は先に来たものから先にサービ スを行うスケデュール方針に従つて要求を待ち行 列にする。特定の要求が列の先頭まで達した時 MSU68がこのことをプロセッサ又はアータポ - トに信号で知らせる。このプロセッサ又はアー タポートは再び要求を発生し、メモリアクセスが ただちに行われる。プロセッサがそのプロセッサ 以外のメモリモアユールにアクセスする時、パス 制御ユニット58はアータパス56を介して造信 が可能になるよう構成されなくてはならない。故 に例えばプロセッサPR8がプロセッサPR1K 相当するメモリモアユール60亿アクセスする場 合、PR8に対応するペス制御ユニツト58は、 プロセツサPR3をアータパス56に接続するよ

うに構成され、PR2に対応するBCU58は、 信号をアータバス58によつて転送できるように 構成され、プロセッサ P R 1 に対応する B C U 5 8 は (プロセッサ P R 3 に向かう方向で)アー メパス 5 6 をプロセッサPR1に対応するRAM メモリモアユール60に接続するよう構成された くてはたらたい。上記のように、プロセッサはま **ポラウンドロビンのオーターでスケジュールされ** た共有のアータバス5 8 にアクセスできるまで待 校している。プロセッサはパスにアクセスした役 で、プロセッサはメモリ情報及び割当て先メモリ モアユールを示す割当てタクを連送する。各々の プロセッサ又はデータオートは、一度に 1 つだけ 未解決のメモリ要求を持つことができるので、ど のメモリモアユールも最大でもつまで未解決の要 水を持つことができる。各々のプロセツサのメモ リインターフェースは、アータパス58を通つて 送られてくるメモリ制御信号を鑑視する回路を有 している。との機能はメモリマツパー34によつ て実行される。

R I C の内部 R A M メモリは、好ましくは最小の散細加工特徴が 1 ミクロン (ラムダ= 0 ・5 ミクロン) である (パスドライバーのようた C M O S 技術を実現する高出力構成素子を用いた) N M O S R I C の中に作られた 1 6 K パイトのダイナミック R A M である。

故に、BCU58は全でしたりでするとです。 BCU58は全でしたのでしたです。 BCUでは、

パスの両方に接続され、パイデイレクショナルス イッチはある位置で単にメモリマッパ34をレジ スタ62及び64に直接接続するサービスを行つ ているので各々のプロセッサはそれに対応するメ モリモアユール60亿並列にアクセスすることが できる。他の位置のパイテイレクショナルスイツ チ 1 7 8 は、 M S U 6 8 を (短いパス 1 8 6 を介 し)アータパス56に接続するサービスを行つて いる。同様に、スイッチ182は、(対応するプ ロセッサがその対応するメモリモアユールにアク セスしている時)アータの流れをプロックするか 又は、単に短いパス184をアータパス156に 直接接続するか又は、短いパス184をパイティ レクショナルスイッチ180が封鎖モードである 時に絶縁されている2つのデータパス56の組に 方向を指定して接続するか、これらのいずれかを 行つている。とのオペレーションモードは第21 図に示されていて、パイプラインモードでのRIC のオペレーションが可能にしてある。この場合、 各々のプロセッサはオペレーションの前段階から

アータを受けとり、同時にオペレーションの次に続く取階にアータ出力の流れを与える。故に、パイプラインモードは、隣接するプロセッサの個別な組の間を異るアータの流れを並列に転送せてゆくことを必要とし、この機能は、パイテイレクショナルスイッチ180をプロックモードにすることによつてまたペイアイレクショナルスイッチ182を方向を指定して接続することによつて実現される。

プロセッサが離れたメモリモアユールにアクセスする時、 異る 3 つの構造から成る B C U が必要とされる。 例えば、 プロセアユール 6 0 に対応する B C U 5 8 は で アータ パス 5 6 に 接続した ければ なっちん C U 5 8 は アータ パス 5 6 に 接続した ければ なっちん C U 5 8 は アータ パス 5 6 2 及び 6 4 に アータ がらず中間の B C U 5 8 は ビアータ がある C U 5 8 に 必要な関整はアータ 施例に於て、 B C U 5 8 に 必要な 関整はアース を M で の C U 5 8 に 必要な 関整はアータ を M で で C U 5 8 に 必要な 関整はアー

メパス56内のBCUモード制御粮167によつ て行われる。いずれかのプロセッサがテーメイス を制御する時、そのプロセッサは更にBCUモー ド報167を使つて全てのBCUを制御するとと ができる。仲徽額160がプロセンサがデータバ ス56を制御していることを示す時、全てのBCU 58に於て満たさなくてはならない、唯一の必要 条件は、パイテイレクショナルスイッチ180が アータパス56をプロックしていないということ である。更に、各々のBCU58内のパイティレ クショナルスイッチ178は、アータパス56を レンスタ62及び64に接続するように作動して いる。故に各々のアドレスレジスタ64は、要求 されたアドレスを受取り更に適当たMSU68が. その中のメモリモアユール60内の制御レジスタ 70を作動させて必要なアータを供給させている。

BCUSSを制御する上記のシステムはできりる範囲で最も有効な例といりわけではないが、追加の制御線の必要性を最小にしてプロセッサ間におこる干渉を防止している。好ましくは、各々の

M 8 U 6 8 は 直接データイスのパス状況線1 6 5 に接続され、R A M 制御レジスタ 7 0 が必要とする読出し/書込み及び作動ピットを受取つている。各々のM 8 U 6 8 は対応するプロセッサに対し直接接続する 2 本の線を持つて構成され、R A M 制御データを与えてデータイス 5 6 を使用せずに地域的カアクセスを行つている。

メモリスケアユーリングユニット(MSU) 68では、第22図で示すようたオペレーション が行われる。データパス56がアクティブであっ て、BCUモード制御粮167がアクティブであっ れた時はいつでも、MSUはアドレス線156の た時はいつでも、MSUはアドレス線156の たけいつでも、MSUはアドレス線156の たけいつでも、MSUはアドレス線156の たけいつでも、MSUはアドレス線156の たりままります。もしたの対するものであった を決するものであれば、大きの母の が未解決を出したののか が未解決を出したものが先に処理されるデロセッ される。最大でも個のソース(4つの でも、MSUに、MSUにである。 を使けるものであれば、大きの母、 が未解決を出したものが先に処理されるアロセッ される。最大でも個のソース(4つの

及び2つのデータポート)を待ち行列に並べられ る必要があるので、小さたシフトレジスタがこれ を実行する。同様にしてもし他のメモリの要求が 既に未解決のままである場合、地域的なプロセッ サによつて要求されるメモリアクセスは延期され、 ピソー信号がもどつてくる。メモリ酰出しが実行 される時は、アータパスが使用可能になるのを待 つてから、データワードを割合て粮168を通つ て指示された割合て先に転送したくてはならない。 巻込みが実行される場合には、回帰 信号は必要を い。どちらの場合でも、MSU68はただ待ち行 列レジスタから次の未解決のメモリの要求を引き だし、そのソースに信号を送つてメモリアタセス が現在可能であるととを知らせる。MSU68は 次のソースが要求を再び発生するまで待機し、そ れから上記のように適当なメモリのアクセスを行 わせる。

当分野に通常の知識を持つ者には明らかなように、アドレスレシスタ 6 4 、アータレシスタ 6 2 及び制御レシスタ 7 0 は M S U 6 8 とそれに対応

するメモリモデュール 6 0 の間のインターフェースとして使用される。

本実施例において、各々のメモリモデュールは、 16ピットアドレスでアドレス指定される。とれ によつて、4つのプロセッサの各々に対し直接ア ドレス可能な領域を場合によつて64Kパイトま で増やすことが可能である。しかしながら、プロ セッサは2種類の型のアドレス、即ち16及び 32ピットを維持している。プロセッサ自身のメ モリモデユールに直接アクセスする為には16ピ ツトのアドレスが使用される。32ピットアドレ スは外部メモリへのアクセスの為使用される。他 のメモリモデユールにアクセスする場合は、プロ セッサは16ピットのアドレスを送り、所留の内 部メモリモデユールと結合する割合で信号を与え ることでメモリモシュールを指定する。 3×2×2× トのアドレスは、プロセッサの制御に従つて外部 アドレス又はマッピングアドレスのうちいずれか となる。外部アドレスとなるようアドレスが指示 される場合、アトレスは外部メモリインターフェ - スに送られてプロセスが実行される。さもなけ れはアトレスはメモリマッパーに送られる。メモ

リマッパーはアドレスが内部のものか外部のものかを決定する為連合して探索を行う。 内部のものであれば、関連した内部アドレスは外部メモリインターフェースに送られる。

(状況パスのエンド・アラウンド・ループ54 を含む)状況パス52は4つのプロセッサPRO PR3及び外部状況ポート74及び75を相互 接続している。状況ペス52は桁上げ状況線190 桁上げ入力出力線191、オーペーフロー線192 負数級1944日級196プロセツサ同期級198. 及びシフト循環線199から成る1本の線のみを 有している。故に、エンド・アラウンド・ループ 5 4を含めても状況パスは、たつた14本の広さ しかない。各々のプロセッサは、プログラム可能 なスイッチである対応する一対の状況マルチプレ クサ48又は50を有している。これらのスイツ チは、選択的に且つプログラムに沿つて各々の ALU28の状況出力又は入力線を状況パス52 及びエンド・アラウンド・ループ54の両方を含 む状況パス線に、いずれかの方向を指定して接続

している。第23から第25図は、状況マルチプ レクサ48及び50で選択された状況パス接続の いくつかの例を示している。プロセッサが独立し て動作する時、第23図で示すよりに状況線の接 統は必要とされず、状況マルチプレクサ48及び 50は状況ペス52及び54に開路を作りだす。 隣接するプロセッサがパイプライン構造で作動す る時、(例えばPR3の)アータ出力がPR2の 人力として与えられている場合、プロセッサ同期 線198のみが接続される必要がある。最後に、 プロセンサPR3及びPR2が32ピット又はそ れ以上の規模のプロセッサの一部としてロックス テップ 構成で作動される場合、プロセッサ PR2 の状况出力は、全てプロセンサPR3に対する状 況入力として接続される。プロセッサ同期級は、 ロックステップモードで使用され現在のオペレー ションが完了する前には確実に新しいオペレーシ ヨンが開始されないようにしている。例えばロッ クステップ構成のプロセッサがアクセスしている 全てのメモリモアユールに対し、他のソースから

本発明である再構成可能な多重プロセンサ機能を提供する為共働する上配で示したような構造的 特徴はこれからさらに詳しく説明する。

第26、27及び28図は、本発明である再構成可能な集積回路のオペレーションの3つの主要なモードを示している。第26図は、全体的に独立するモードの組織を示している。このオペレー

ションではプロセッサPRO-PR3は単一チップ上に配置された実質的に4つの独立するプロセッサとして働いている。4つ別々の命令の流れか別個のプロセッサPRO-PR3に与えられ、独立するプロセッサ間に必要とされる唯一のインターフェースは、制御パス及びデータパスプロトコールによつてアクセスされるものである。

同じ構造はまた配列処理オペレーションを行えるようになつている。配列処理に於て、プロセッサ間の相互接続は独立モードの場合と同じである。配列処理と異る点は、各々のプロセッサが、同じ命令の流れを受けとつているということである。もちろん配列処理はまたプロセッサのロックステップで接続されるプロセッサの2次的な組(例えば2つの32ピットプロセッサ)に基づき構成される。

第27回は内部的なロックステップモードで作動されるRICの例を示す。この例では、4つ全部のプロセッサが再構成されて単一の64ピットプロセッサとして作動するようになつている。こ

の構成では、制御イス14が単一の共通を命令の 流れを運んでいて、との命令の流れを全てのプロ セッサが受け取る。上配のように必要な同期桁上 げ及び状況ピットは状況ペス52及び54によつ て通信が行われる。更にシフト及び循環連結が設 けられているので望みのピット又は循環オペレー ションをどれても64ピットワードでデータパス 5 6 を介し実行するととができる。(この連結に 関しては、アータパス56は、上記で示したよう にパイプラインモードで構成される。)1ピツトー シフト及び循環がシフト/循環線199によつて 実行される。RICをこのモードに正確にプログ ラムするととによつて、各々のプロセツサが64 ピットワードの16ピットセグメントの統出し又 仕事込みを行い全てのプロセツサが 4 つのR A M メモリモデュールの対応する位置でこの読出し又 は書込みを同時に行うので、単一クロックサイク ル内においてRAMメモリ66に対する64ピツ トでのアクセスが可能となる。

第28図は、パイプラインモードで作動するよ

再構成を行う為には、3つの主要な型の割込みが使用される。第1の型の割込みは、他のプロセッサ(即ち、割込み先(Interruptee))の優別にロックステップモードのオペレーションを設定するように要求する。このモードでは、1つのプロ

う構成された R I C の例を示す。との構成におい て、4つのプロセツサは、もともとは単一のテー タの流れであつた連続するオペレーションを実行 している。即ち、全体的な命令の組は、(プログ ラマーによつて) 4 つのオペレーションの組に分 割される。との4つのオペレーションの組はそれ ぞれほぼ同じ時間を必要とする。そこで4つのプ ロセッサは各部分が連続するデータの流れのうち、 分割された命令プロセスの一部分のみを各々で実 行する。故に、とのよりにして小分けされた命令 の組を用いてデータの流れを操作しなければなら たい場合、スループットは 4 倍にたる。命令の組 はプログラマーによつて4つの命令のサフセット に分割されるので、チップレベルでは、命令の流 れは単に1つ1つがパイプラインモード内の各々 のプロセス段階に向けられた4つの別々で個別の 命令の流れとして現われる。上記で示した通り、 BCU58はデータペス56を小分けして、ペイ プラインモードで連続するステージの間(即ち、 隣接するプロセッサの間)をデータが直接の転送

セッサが共働単位の中の他のプロセッサのオペレ ーションを支配していて、故にこのプロセッサは ロックステップでの共働単位内のマスタプロセッ サと呼ばれる。との型の割込みのプロセスを(プ ロセッサがコンテクストスイッチを実行した後で) すぐに実行することを全てのプロセッサが受理す る場合以外は、割込みはこれ以上の動作をおとす ことはなく、マスタープロセッサによつて後で改 めて発生される。との場合、自分の割込みが拒絶 されたマスタプロセツサは、そのプロセスをパツ ファの中に入力しておいて、さらにスケノユール を変更し、次のスケジュールによるプロセスの実 行を開始する。その後再度割込みを送るとともマ スタープロセツサの役割である。故にロックステ ップでの割込みは、すぐにプロセスが実行可能な 時のみ受け入れられる。「どこそこのプロセッサ が必要とされている」「自分のプロセッサは、今 は使用可能である」「自分のプロセツサを解除せ よ」及び「どこそこのプロセッサーが解除される」 等といつたオペレーションを意味するプロセッサ

間での割込みの必要性を最小限にして、このプロトコールはプロセッサ間の通信を最小にしている。 とれによつて割込みに使用されるパスサイクルの 数が被つてプロセス及び割込みのスケデューリン かが複雑でなくなつている。単に拒絶された割込 みをパッファしたり、延期したりすることは、上 記で示した選択しりる例に比べて複雑なプロセス ではない。

ロックステップアロセスでの割込みの為に要するコンテクストスイッチは他の型の割込みコンかロクストスイッチは他の型の割込みで、フロセッかのクストスイッチより少くてすむ。アロセッかのクステップに構成される場合の全期間である。故に、この場合シーケンサは働かなくなイッので、マイクロシーケンサのコンテクストスのチはそのよって、マイクロシーケンサのコンテクストスのチはそのようで、マイクロシーケンサのコンテクストスのチはそのみが許可される場合のみ問題となる。即

ちば来装置におけるマクロ命令に相当するものを 実行する間に割込みが発生可能である。本実施例 では、マイクロ命令を省略すれば複雑さを減少で きるが、これを使うことも可能である。マイクロ 命令を使用する意義には、2つの要素が存在する。 第1は、大規模CPUに多重チップを使用する場 合のような応用例では、その性能を最大限に利用 する為にマクロ命令が使用されないことである。 第2は、あるマイクロ命令はストリング操作のよ うに非常に長くなるということである。

ロックステップ構造の中の従属プロセッサ (slave processor)の割込み管理回路は自分を 指示する割込みの存在を知る為に制御パス14の 鑑視を続けている。しかしながら、もっかった。 ステップで構成される共働単位内ので現在実行している。 ロセッサがその共働単位内で現在みを登視している。 ロセスよりではいる割込みを鑑視しいる はマスタープロセッサは、ロックステットに される共働単位内の全てのプロセッサにおける される共働単位内の全てのプロセッサにおける

ロックステップの共働単位内で作動している従属プロセッサがロックステッププロセスより低い優先顧位を持つ割りとみを受けとる場合、従属プロセッサは、低い優先性のプロセスをベッフロセッサが、共働単位内の他のプロセッサのいずれかに向けた割込みを確認する必要のある間は、ロックステップより低い優先順位を持つているいかな

る従属プロセッサの割込みに対し、マスタプロセッサの割込み管理回路はいかなる機能も実行する必要がない。それぞれの従属プロセッサ内の割込み管理回路12は低い優先順位の割込みをパッファする。

第2の型の割込みは割込み先プロセッサが実行する、いくつかの計算を特定するととを要求する。(即ち、とれはよく知られる。古典的。な割込みである。)との型の割込みの次には、実行すべきプロセスを特定する命令の流れが与えられる。との型の割込みがサービスの為にスケアユールされた時には、割込みの後で与えられた第1番目の命令に従つてコンテクトスイッチを行っている。

第3の型の割込みは、パイプラインプロセスを 開始させる。パイプラインでの割込みの管理は、 ロックステップ型での割込み管理と同様である。 マスタープロセッサがパイプラインの割込みを送 り出すと、これを受けとつた全てのプロセッサは、

自分がパイプラインプロセスに参加できるかを信 号で知らせる。受取つたプロセッサが全てそろつ て参加できない場合、劇込みは無効となつて後で 再び統行される。同様にパイプラインプロセスに おけるマスタープロセツサは、共働単位内のいず れかのプロセッサに向けられる割込みを鑑視して **パイプラインプロセスより高い優先順位を持つ割** 込を実行している。従属プロセツサは低い優先性 の創込みのみをパッファする。パイプラインでの 割込みの制御とロックステップでの割込みの制御 との間の主な違いは、パイプライン割込みプロセ スでの従属プロセッサがそのそれぞれの持つマイ **タロシーケンサ 3 6 を使用し独自のマイクロ命令** の流れを実行していることである。故にそれぞれ の従属プロセッサのマイクロシーケンサ 3 6 内に 含まれるコンテクストは保持されたままである必 要がある。

受源が共用されている場合、前に述べたように アッドロックの発生は、非常に危険であつて必ず 避けなければならない。例えばプロセッサPR1

の8本の低いオーダーの線に示される256の優先順位がシステム内に存在できる。割込みが認められパッファされる時はいつでも、優先順位に関する情報もパッファされる。パッファされた割込みがサービスの為にスケシュールされる時、8ピットの優先性に関する情報を含む割込み制御ワードがとりだされプロセスを開始させる。

及びPROがそれぞれプロセッサPR2及びPR3、 両方の質測を使いたい場合、またプロセッサ PRO がプロセッサPR3を支配しようとしている一方 てプロセッサPR1ができ続きプロセッサPR2 を支配している場合、もしもプロセツサPR1及 びPROがそれぞれの可動できないプロセッサ PR2 Z Z L PR3 が可動できるようになるのをた だ待つよりにだけプログラムされているとすると、 アッドロックが起とりうる。本発明においては、 いくつかの手段を講じてアッドロックを防いてい る。第1に各々の実行中のプロセス及び各々の割 とみには、プログラマによつて独得な優先順位が 与えられる。概念的には、各々のプロセスにその プロセスの優先順位及びプロセスを開始させる割 込みの優先順位と同一の名前をつけると考えると とができる。システム内で実行中の全てのプロセ スは、異る優先順位をそれぞれ持つ為、より高い 優先順位を持つ割込みが割合てプロセッサを先取 するので行き詰まりは起とり得ない。本実施例に 於ては、1回の割込み期間中には、アドレスパス

存否といつたロックステップ内の相対位置によつ て時々わずかな違いはある。)ロックステップで 接続するプロセッサ間における違いは、これらプ ロセンサの位置がプロセッサ間のハードウエアの 相互接続を決定していて、マスタプロセッサが共 働単位内の全てのプロセッサに対しより高い優先 順位の割込みを実行していることである。 パイプ ラインプロセスでは、各々のプロセッサは、同じ 割込みで割込みが行われ、もともとは各々のプロ セッサは同じ命令の流れを処理しパイプラインプ ロセスを行つている。引き続きパイプラインプロ セス内の各々のプロセッサは、異るマイクロ命令 の流れを実行するととができる。次に、プロセツ サは元の共通なマイクロ命令の流れをそれぞれの 持つ場所の数によつて分岐し、それに対応する適 当な分岐を選択し各々のプロセッサに対する別々 のマイクロ命令の流れを作る。ペイプラインモー ド内の各々のプロセツサは別々のマイクロ命令が ーチンを行りことができても、全てのプロセッサ は、チップを管理するという目的では同じプロセ

スを実行していると考えられる。パイプラインでの共働単位内のマスタープロセッサは、ロックステッププロセスと同様に単位全体に対しより高い優先性を持つ割込みが処理される。 1 つのプロセッサのみを必要とするプロセスは、多重プロセッサでのプロセスを管理する為に必要としたプロトコールは必要としない。

2 5 6 のみの有効なプロセスが存在することを意 味する。有効でないプロセスは数に制限なく存在 可能である。

例をば本発明による再構成可能な I Cを用いて 3 2 ピット C P U に対抗することを仮定する。再構成可能な I C におけるプロセスは以下のようなタスクが与えられている。即ち命令とり出し、コンテクストスイッチ、命令間の対抗、外部割込みレベルごとに 1 つのプロセス、自己テスト、リセント等である。この場合 2 5 6 のプロセスで適しているように思える。

各々のプロセッサ内の割込み管理回路12の主
カタスクは、割込み信号プロトコールに従って信
号を受取りまた発生することである。割込み管理回路12は割込み信号を送信及び受信していて、
新しい割込みが受けとつた時はいつもスケアユー
ラ16に信号を送り、現在実行中のプロセを知りた は、スケアユーラ16及び割込み管理回路12 は両方とも現在実行中のタスクの優先履位を記憶

256の優先性レベルを用意すればたいていの応用例には充分である。故に本実施例ではこれを採用している。しかし、もつとたくさんの優先性レベルを用意することが望ましい場合、例えば8ピットによる優先順位の特定より10ピットを使うことはもちろんとるにたらない問題である。 256の優先性レベルを用意することは1度に

している必要がある。新しい割込みが現在実行中 のプロセスを統行させる時、スケテユーラー16 はただちに新しいプロセスがシーケンサ36の内 容を含めた全体的コンテクストを記憶することを 必要とするか否か又は、部分的なコンテクストス イッチのみを必要とするかを確認しなくてはなら ない。必要なコンテクストスイッチについての情 報は、高いオーダのアドレスピット84でコード 化される。優先順位の特定には8ピットしか必要 としないので必要なコンテクストスイッチの程度 といつたような割込みに関する追加情報をコード 化する為に6ピットが使用される。受取つた割込 みの優先順位がより低いものであつてその為パッ ファされる場合、とのようカプロセスは必然的に ロックステッププロセスでないので、ペッファさ れた優先順位が最終的にスケアユールされる時に は、全部のコンテクストスイッチが必要となる。 ロックステップのプロセスだけは、全部のコンテ クストスイッチを必要としない。このような場合、

スケデューラは適当なコンテクストを記憶し、現

在のタスクをパッファし、プロセッサが新しいプロセスを開始する用意ができたことを割込み管理 回路12に知らせる。

スケデューラ16の構造及びオペレーションは、 第29図を参照してとれからさらに詳しく説明を 行う。スケデューラ16は優先順位によつて有効 たプロセスのリストを作つておかたくてはたらな い。有効プロセスとは、スケアユールすることの できる最も高い優先順位を持つ時、実行を開始す るプロセスである。ハードウエアを節約する為に 本実施例では、1ピット毎の256のリスト即ち、 有効なタスクを記憶する為の有効プロセスパップ ア200を保持している。特定のプロセツサがし と名づける有効プロセス(即ちしの優先性を持ち 実行を待つプロセス)を有している時はいつでも、 スケアユーラ16の中のとのプロセッサに対応す る有効プロセスパッフア200の1番目の位置に 1 含まれている。有効プロセスパッファ200内 のプロセスは実行の為のスケアユールが行われる 時には、パッファ200内に於るこの位置(これ

スケアユー 9 1 6 のオペレーションは第 3 0 図 の流れ図で示される。スケアユー 9 1 6 は、割込みの発生、有効なプロセスのプロック、又は、プロセスの完成の 3 つの起こり 9 る原因 (誘発要素) の 1 つによつて作動されるようになる。プロックされるプロセスとは、必要な要源が使用できない為実行の統行を中止させられるものである。例

えば要求された登標を全部は受けとらたかつたり クステップ型プロセスは、他のプロセスからので できるかったり情報を必要とするプロロック されるとしてプロックでは、ではではないで されるとと、プロセスののではではないでで 会ででロックストが記憶でもスパッファ 金でで、アコーラー16は、オイカロセスのででででない。 スケアユーラー16はれたのででででででいる。 なったアコークではれたなファにでロックを かりるれたででないないでででいる。 かりたアロックを がりたいて、大ににロックなれたなファンのでででいる。 を生まるとででは、トにでいるのでないででいる。 のといるがでは、トにでアンクないでは、 のといて、アロートでは、トにでアンクないでは、 のたけいるはででは、 のたいて、 のたいて、 のたいで、 のたいで、 のたいで、 のたいで、 のののでは、 ののでは、

プロックされたプロセスは、もし必要であれば メイマー 2 0 6 を使つてプログラムすることがで まる。このようなプロセスがプロックされる時、 プロセスは命令でタイマーをプログラムする。タ イマー 2 0 6 がゼロまでカウントダウンする時、

スケデューラ16を作動させる膀発要素が生じる。 この要素によつてスケテューラ16は通常のスケ アユールサイクルを実行するようにたる。タイマ -206をセットしたプロックされたプロセスが 最も高い優先顧位を持つていれば、スケヂューリ ングが行われる。しかしたがら制御パス14から 割込みを受けとる場合、又は他のプロセスがプロ ツクされる場合又はプロセスが完了した場合には タイマー206は作動したくたる。このようた場 合には通常のスケテユールサイクルが開始され、 故にタイマー機能が不要になる為タイマー206 は作動しなくなる。このプロックされたプロセヌ に対するスケアユーリング法は、一方ではプロツ クされたプロセスに引き続き、チップの資源を使 用させいつ必要を登録の用意ができるが判断させ ていて、また他方ではより高い優先順位を持つア ロセスを必要を時間より長くプロックさせている。 間を調整するものである。との調整は低価格のハ ードウエアですみ、良好たスケテユーリング動作 を得ることが期待される。しかし、現在のプロセ

スの実行を統行しつつ、現在のプロセスより高い 優先順位を次のプロセスが持つようにすることは、 スケアユーラ16のオペレーションをいくらか複 雑にすることになる。

スケアユーラ16が割込みによつて呼び出され る時、(レジスタ202から入力された)現在の プロセスの優先順位及び(レジスタ204から入 力された)次のプロセスの優先顧位の高さと共化 受取つた割込みの優先順位がコンパレータ212 によつて比較される。 新しく受取つた割込みがる つの中で一番高い優先順位を持つ場合のみ先取が 起とる。先取する必要がある場合、現在のプロセ スを停止させコンテクストスイッチが実行された 後でだけ新しく受けとつた割込みが開始される。 スケデューラは次に次のプロセス及び現在のプロ セスの優先厭位の高さを次の優先厭位の為のレジ スタ204に入力する。有効プロセスパッファ 200内の対応する優先性レベルに1を書きてむ ことによつて現在のプロセスがパッファされる。 先取する必要がない場合、新しく受けとつた割込

れ、パッファされた割込みに関する情報はこれ以 後受けとり個のプロセッサに記憶される必要はな い。次の優先先順位と割込みの優先順位のりち高 い方が次の優先順位の為のレジスタ204に入力 される。故にある場合では次の優先順位の為のレ ジスタ 2 0 4 が有効な情報を内容として持たない よりにすることができる。これは、有効プロセス パッファ200によつてリニアな検索を行い次に 最も高い優先順位を持つプロセスを発見すること が時として必要になるからである。必要とされる 時に次の優先履位の為のレジスタ204の内容が 有効でをかつた場合、スケデュー516のオペレ ーションは他に有効なプロセスが発見できない場 合も含めて有効なデータが見つかるまで停止する。 最終的にプロセスを完了することによる作動をお とす原因が受けとられると、(とれはプロセス状 況ピットを通してスケアユーラ16に知らされる) 次のプロセスが開始し、次に高い優先履位を持つ プロセスの検索が開始される。

みは、有効プロセスペッファ200にペッファさ

ICWのタイプフイールドは命令オプコードに 類似する。タイプフイールドは 4 ピットであるが、 3 つの型の ICWが規定されている。タイプ 0 は 単一プロセッサによるプロセスの為であり、タイ プ1 はロックステッププロセスの為、またタイプ 2 はパイプラインプロセスの為のものである。タイプフィールドは割込み管理回路に対する命令と しても使用され以後の割込みの発生を命じている。

位置フィールドは、予定された割込みを受けと つたかを確認している。このフィールドには各々 のプロセッサに対し1ピットが含まれていて各々 のピット位置における内容を使用して、それに対 応するプロセッサが割込みを受けとるべきである ことを示している。

優先性マスクフィールドはプロセスの名前又は 優先順位とは異る実行の優先順位を特定する為に 使用される。首いかえれば、優先性マスクロ位、 の優先順位というよりむしろ)を別位からない。 の優先順位というよりむしろ)を考える。 の優先順位というよりなしる。 の優先順位というよりなしる。 の優先順位というよりなしる。 の優先順位というよりなしる。 の優先順位というよりなしる。 の優先順位というよりなしる。 の優先順位というよりなしる。 のの優先順位というよりない。 のの優先順位というよりない。 のの優先順位というよりない。 のの優先順位というよりない。 のの優先順位というよりない。 のの優先できる。 ののできる。 のので。 えられていない 優先値を使うように限定されている。 さもなければ、 2 つのプロセスが同じ優先順位で費碌をとりあう時、 アッドロックが起こりうるからである。

次の優先性フィールドは同一プロセスに多重質 先レベルを与えることができる。このフィールド はNTピットが1である場合のみ有効となる。と の機能によつて、ランタイムで規定される優先順 位をプロセスに与えられる。との機能は、プロセ スの非常事態がやがて変化する時に有効となる。 例えばプロセスは、特定の優先性レベルを持つ割 込みを、必要なサービスを予期して発生すること ができる。割込みが直ちに動作を開始させない場 合でも、割込みのイニシェータが後にプロセスを 開始させる。しかしながら、時間的な遅れによつ て(本実施例に於て)割込みのサービスを受ける 必要性がさらに急を要するようになるのでイニシ エータは次に乗も高い優先順位を持つ割込みが発 生可能になる。次に高い優先順位についての情報 は次に高い優先厭位の為のフィールド内に含まれ

ている。この機能を利用する別の方法としては同一プロセスの多重処理を開始する方法がある。このモードのオペレーションでは、ある優先性レベルへと位置フィールドが変わる場合に、並列処理が可能となる。同じ位置フィールドが使用される場合には回帰的ルーテンを使用することができる。

最後に、制御記憶アドレスフィールドは現在の 割込みによつて呼び出されたプロセスマイクロル ーヂンのマイクロ命令のアドレスを指示している。

がに述べたように、割込みが送られた時には、 14本の制御記憶アドレス線84のうちの8本の 線のみが使用されて優先性がコード化されるを に、残る利用可能な6ピットのうち1ピットを ンテクストスイッチを全部統行するか又はことができる。 でされ以外のもう1ピットは割込みがただちにプロセスを実行しない場合に関いる。 かどうかの判断の為に使用される。故に第32図 は割込みが送られる時の制御記憶アドレス線84

のフォーマットを示す。.

劉込みシステムのオペレーションをさらに明ら かにする為に、第33図は、プロセッサPR3が プロセッサPR1に対し割込みを発生した場合の サンプル割込みに相当するタイミング表を示して いる。タイムのにおいてプロセッサPR3が制御 ペス14を支配していて、(線13上に)自分が 割込みのソースであるという信号を与えていて(鎖DR1上には)割込み先がプロセッサPR1で あるという信号を与えている。同じとのタイムに 於ては現在の翻込みが確認されるまでは他の割込 みが制御額14を通つて転送されるととはないの でプロセッサPR3は、割込み準備級104の電 位を引き下げる。次のクロツク間隔では、プロセ ッサPR1は、割込みパス11の適当な線の電位 を上げることで劉込みの確認を行い、コンテクス トスイッチを実行した後でプロセッサPR1が割 込みのプロセスを開始させたことを知らせている。 次にプロセッサPR3は、劉込みによつて知らさ れたプロセスを開始させる為のマイクロ命令のア

ドレスを転送するアドレスパス84を操作する。 プロセッサPR1がそのコンテクストスイッチの 実行を完了すると、プロセッサPR1がこのマイ クロ命令のアドレスをロードし、割込みパス13 及び割込み準備線104の電位を引き上げて(又 は引き下げを止めて)割込みが再び受けとれる状態となつたことを知らせる。

ことまでは再構成可能な機能及び多重プロセッサ機能を提供する割込みプロトコールの組織を説明してきた。再構成可能機能を提供する為に必要な命令構造に使用するとの他の構成要素は、DLA 22及びDLAアコーダ26によつて過訳される時に、状況パスマルチプレクサ48及び50の再構成を特定するか又は、BCU58の内の1つに含まれるパイアイレクショナルスインチ178、180及び182のオペレーションを特定する命令を有している。

本発明の再構成可能 カ I C の実施例は、 8 4 ピンパッケージの中に含まれる。 (6 4 ピンでデータ及びアドレスをまかなり 1 1 2 ピンパッケージ

も選択できるがあまり経済的でない。)

ある種の構成に関しては、84ピンパッケージをフルに必要としない。故に、このような応用例の為に設計されたRICを中間的な量で製造する為には、もつと安価なパッケージを使用することができる。

本発明のRICの為に好ましいパッケージは、例えばここに参照として示すエレクトロニクスマガジン1981年6月30日号の39から40頁で記載されるような84ピンプラスチック・リード・チップキャリアである。しかし第34図ではRICが超大規模DIPパッケージの中に含まれる場合のピン配置を便宜上示す。

本実施例の I R C は 2 つの 1 6 ピットアータ/ アドレスポートを有している。各々のポートはア ータ及びアドレスを連搬する為の 1 6 本のパイテ イレクショナル線を有している。ポート 1 にかけ るアータ/アドレスピンは、1 から 1 6 まで、ポ ート 2 のピンは 2 6 から 4 1 までの番号がふつて ある。アータポート 2 の対応するアータポート 1

ることができる。外部データポートには主として 2 つの機能がある。 第 1 の機能は、外部データオ ート72及び78としての役目である。アータボ ートの主要機能の一つは、内部データパス56と 外部アータポートピンの間のインターフェースと しての役目である。実際上これの意味することは、 **データポートが内部命令を受けとつてデータ及び** アドレスを外部に送る機能を持つということであ つて、データポートはこの機能を果たし、それを 適当な信号にして外部ピンに送ることができる。 第2にデータポートは、外部ピンから情報を受け とり、次に適当に変換して、適当にその信号を内 部RAMパス5 6 に送つている。 第2 の主要機能 は、プロック転送モードである。これは、例えば 1 つのアドレス及びデータワードを外部に送る命 今を送るかわりに、内部的に制御及び命令を受け る多重アドレス及びデータワードを送り出してい る比較的一般的な命令を送つている点で上記に説 明した他のオペレーションとはわずかに異つてい **3** .

のピンは、機能的に等しいのでポート1 で働くピ ンのみに関し示す。第1及び第2図で示す外部テ ータポートF2及びF3にデータポート1及び2 が対応する。簡単なピンの配線に加えて、外部デ ータポート72及び73は、1個以上のRIC、 外部メモリ、1/0装置及びアドレス装置の間を 結ぶ共有外部パスの制御に対し仲裁を行り和職信 号 (handshake signals) (ピン17及び18) を有している。各々のポートは、パスでのテータ 及びアドレスの送信及び受信の同期を行う為の追 加のピン(22及び23)を有している。各々の ポートは、パスの状況、及びパイデイレクショナ ルカー対のプロセッサックアイテンテイファイヤ — (・2 4 及び 2 5) に 信号を送る パイデイレクシ ヨナルなる本の様の組(ピン19ー21)も有し ている。アータポート1と2は独立している。し かしながら内部的には、両方のポートに同じオペ レーションを回帰的に実行させ、外部的には2つ のポートを1つのポートのように扱うことでこれ らのポートを単一の大きなポートとして作動させ

従来において、データ又はアドレスの内の最上位の固まり(chunk)は第1のサイクルで送られ、それに連続するサイクルにおいて次次とより下位の固まりが送り出される。全てのアドレス又はデータの固まりは最初の(最上位の)固まりが送られた同じポートから送られる。

これらの2つのアータポートはチップ上の全てのプロセッサに共通する。2つ以上のプロセッサを持ついかなるプロセッサ又はいかなる内部構成も、いずれかのアータポートを使用可能である。ポートは、プロセッサ内のメモリマッパー34によつて選択される。

以下で述べる外部通信プロトコールに関する機能に加えて、外部データポート72及び78もプロセッサによるデータパスプロトコールの使用に関し、上記で説明したものと全く同じ回路を有しているので、外部プロセッサもまたチップ上のメモリにアクセス可能である。

特開昭58-58672(31)

アータイスの仲敬 共有のデータイスを仲裁す る機能が備えられている。各々のRICは、外部 仲載回路、マスタースレープ機構、又はラウンド ロピン仲敦機構で動作する。RICの動作が開始 すると、仲裁モードが指示される。仲裁信号はア ータパス可動(DPAV)及びデータパス容認 . (DPGR)信号と呼ばれる。信号はポート1に 対してはDPAV1及びDPGR1(ピシ17と18)、 ポート 2 に対しては DPAV2及び DPGR2(ピン 42と43)と表示がつけられる。以後とれらの 信号の表示は2つの同一なポートの間を区別する 為に参照番号を使わずに参照する。外部仲裁回路 モードが使用される時RICがプロセスを開始し、 外部回路に接続するDPAV出力信号の電位を上 けるととによつてパスを支配する。

仲裳機構がプロセッサの要求に対しアータパスが使用可能であるか判断し、要求元のDPGR信号の電位がひき上げられる。マスタースレープモードでは、マスターRICが常にパスを制御している。従属RICがパスを使用したい場合には要

状況を示するつのピン(19-21及び44-46)を有する。アータパスを制御している使用中のプロセッサはパイデイレクショナルピンに出力してアータパスの状況を知らせる。状況ピンの配置は、ポート1に関しテーブル1にリストしてある。(ポート2はピン44-46が第34図のピン19-12に相当することを除けば同一である。)

·	アー :	アルI	データパスピン配置
e v			
1.9.	2 0	2 1	機 館
0	0	0.	隣接するRICへの書込み
0	0	1	隣接するRICからの読出し
0	1	0 '	割合てアドレスへの書込み
0	1	1	割合でアドレスからの統出し
1	0	0	メモリへの書込み
1	0 '	1	メモリからの読出し
1	1	0	I/O 装置への客込み
1	1	1	1/0 装骨からの競出!

求を D.P AV信号でマスターに送つている。マス ターは、 D P G R 信号の電位を上げることでパス が使用可能であることを知らせる。この他のモー ドの仲戦機構としてはラウンドロビン機構がある。 この機構では、論理1がデータパスを使用するプ ロセツサの間を循環している。RICがアータパ スのオペレーションを完了しているか又は、統行 中のものがない場合、RICはそのDPARの電 位を引きあげる。これは、隣接するRICの DPGR信号に接続される。 テータパスオペレー ションが統行中である場合、DPGR信号が1に なると、R I Cがテータパスを支配するようにな る。さもなければRICはそのDPGR信号の包 位を上げる。パスを使用できなかつたRICは他 の資源がいずれもパスの使用を必要としていない と判断した場合にこのRICは循環している1を トラップする。そとで(もし存在すれば)同期を 維持する為にとのRICはそのDPGRを引きる げて1を再び循環させる。

アータパス状況: 各々のポートがアータパスの

アータパスの状況はアータパスオペレーション の型式を示している。アータパスオペレーション に関しては4つの割当て先が存在しりる。即ち、 割当てられたRIC、アータ転送の最初の部分に よつて特定されたアドレスによる割当て、システ ムメモリ又はシステム 1/0 ユニットの 4 つである。 読出し又は書込みオペレーションはこれら4つの 割合てのいずれでも実行可能である。いずれかの 割合て先に転送される16ピットアドレスユニッ ト及び16ピットデータユニットの実際の数は、 RICのプログラムによつて叉は、割合てのハー ドウェアによつて決定される。直接的な通信は瞬 接する1つのRICに対してのみ有効である。割 当てアドレスモードはテータパスオペレーション に対し1つ又は複数のソースを特定する一般的な 方法である。テータ転送の第1の部分は1つ以上 の割合てを決定するアドレスを特定している。割 合てアドレスを含む16ピットユニットの数は、 使用者によつて特定される。とのモードでは、ア ドレスは、データパス上の全ての受信プロセッサ

に送られる。受信側は、アドレスが自分の持つアドレスの1つであるかを判断する。全てのアドレスを受取つたプロセッサは、データパスオペレーションの残り部分を分担し続行する。メモリ及びレーションに関してのアドレスの長さ及びデータの長さのフォーマットも使用者によつて特定される。

アータ転送同期: これら2つのピンは、ソースと割あて先の間のデータパス上をデータが正確に 転送されていることを確実にする為に必要とされる。これらのピンは、情報転送可能(IA)と情報受信(IR)である。情報転送に関するプロト

コールは、以下の通りである。データ代スの間位を下げる。ソースはただちにIA信号の電位を下げる。ソースはデータグアドレスで電位が上げる。IA信号は、1・まで電位が上げるととに信報をでした。IAに信仰を上げるととなりませる。IR信号のでは、通常である。を信仰がデータのでは、一名の時代ののでは、1R信仰がデースが信号のでは、1R信仰が多いでは、1R信仰が多いでは、1R信仰が多いでは、1R信仰が多いでは、1R信仰がある。なにの受信プロセッサが情報をベッファイム。ない電位のまま維持される。

要約すると、 データパスが特定されるととで融通のきく仲裁プロセスを持つ仲裁データパス回路網が構成される。情報転送の割当では、 割当てをアレスする機能を持つので一般的なものである。情報のフォーマットは R I C をプログラムし、メモリ及び 1/0 システムを構成することで特定されるので一般的なものである。最後に、情報の転送

は、ある点からある点の間でも又は間にいくつか の分骸を含むもの(マルチドロップ)であつても よい。

割込みポート(ピン51-58)はこの目的を 果たしている。第1の目的は、従来のマイクロコ ンピュータ及びマイクロプロセッサが行つていた のと同様に外部からの割込みを受けとりプロセス を行りことである。割込みの概念は、他の受信側 プロセッサに割込みを送信する機能とともにこの 従来的な目的も達成できるよう一般化される。と の一般化によつてチップ内部の通信が可能となる。 チップ内部の通信を可能にするという目的は、 RICにタスクをコーディオイトし情報を転送す る役目である。チップ内部の通信システムはチッ プ間通信の命令 (communique)の部分を転送する 為に使用される。情報転送のデータ部分はメモリ 間で通信される。例えば、デイスク読出しオペレ ーションは、RICの割込みポートを使つてテイ スク制御器に命令を送ることによつて開始される。 アータ転送は、アイスクシステム及びメモリシス^^

特開昭 58-58672 (33)

テムの間の個別なデータパスにおいて行われる。 <u>劉込みパス仲載</u>: RICの割込みポートは8本 のピン51-58を有している。ピン57-58 は割込みを送信中に使用される共有資源の要求を 仲載する為提供される3つのモードの仲銀が維持 されている。第10モードは、ラウンドロピン機 構で仲載される共通の割込みパスを維持している。 との機構の中で「1」の信号がチップの間を循環 して上記で示したように割込み資源を配分してい る。あるテップに於る割込み可能(IA)出力 (ピン58)が勝僚するチップの割込み許可(IG) 入力(ピン57)に接続される。IG信号がある ナップで「1」になる時とのチップは割込みを発 生するととができる。送信すべき割込みがそのテ ンプに存在しない場合、 IA 信号の電位が上昇す る。第2のモードはデータポート仲敦の方針で説 明したのと同じマスタースレープモードである。 通常は、マスターRICがパスを制御している。 従属RICがマスターのIG入力信号を上昇させ Tアクセスを要求している場合、マスターR I C

は、好きを時にマスターの!G倌母の電位を上げ て選択的に従属RICに対するバスの支配を得る。 もう1つの仲裁モードは各々のチップの割込み可 能及び割込み許可信号を外部仲裁ハードウェアに 接続して行う。RICが送借すべき割込みを有す る時、 R I C は I A 信号の電位を上げる。割込み ポートが割込みの要求側によつて使用可能な状態 にある時、外部ハードウェアがI G 信号の電位を 上げる。3つの仲裁機構を用意する理由は応用に 対する一般性を与える為である。ラウンドーロビ ン仲載機構では、少数のRICを接続して内部通 倌を可能にする経済的な方法を提供している。 マ スタースレープ機構では、多重な情報処理機能を 持つ装置をコーテイネイトする為の一般的を方法 の使用を可能にする。RICを外部割込み管理回 路に付加できる機能性を有することで、チップ内 部通信に用いる回路網を思いのままに構成すると とが可能となつている。

割込み情報: ポートの4本のピン53-56は、 外部網込み情報専用のものである。外部網込み情

報プロトコールは、最大限に使用者が規定できる よりに特定される部分は最小にしてある。また情 報プロトコールはアドレスとテータとの区別に関 して示している。また、プロトコールはメッセー ソの長さも示している。ととに示すものに関する 特徴を以下に説明する。情報プロトコールは、あ らゆる情報の第1番めの部分が割込みの受取り手 を限定するアドレスであることを示している。ア ドレスの長さは使用者によつて指定される。 割込 みが送られる時は、共通な割込みパストの全ての チップがアドレスを受けとり、それを記憶する。 以下で規定されるように、割込み状況信号は情報 線がアドレスを選んでいるのかアータを選んでい るのかを知らせる。状況がアドレスピットが送信 されているととを示す限り、受信側のRICはア **ドレス部分をパツフアしておく。割当てアドレス** が送信された後、各々の受信倒RICはそのアド レスを使つてチップ上のRAMメモリ66内のピ ットにアクセスする。N個のアドレスピットが送 られる場合、高いオーダーのN-3個のピットを

使用して内部メモリのテーブル内のハイトにできる。 このハイトはRICの外部 別ののからいるののハイトにできるののハイトにできるののハイトにできるのからいるのでは、 このののでは、 こののののでは、 こののののでは、 このののでは、 というのでは、 というのでは、

通信ポートの残る2本のピン51及び52は、 割込みパスの状況を示す為に使用される。ピンの 配置はテーブル2に示される。

テーブル2

通信状況ピンの配置・

味する。もしラウンドロピン仲裁機構が使用される場合、送信例が割込み可能信号の電位を上げて次の割込みを送信するRICの選択を開始させる。マスタースレーアオペレーションが使用され、送信仰が従属RICである場合、マスターが割込み資源の制御を行う。マスターが送信側である場合、従属RICに対し割込み資源をせりあうことができることを知らせる。

IS1個号の電位をゼロに引き下げる。チップが 受取つた情報を処理した後でとのチップはIS1 信号をフロートの状態にする。全ての受取り側 RICが情報のプロセスを完了すると、ISI信 号は「1」を示すよりになる。そして状況は11 となる。送信側は送信可能な状態の次のニアルが もしあればそれを調査する。次のアータの形式は **状況線によつて決定される。状況 0 1 は、アドレ** ス情報に対応し、状況10はデータ情報に対応す る。データ情報が送られると、送信側は、アドレ ス情報の転送に使用したのと同じプロトコールを 使用する。唯一の相違点は、情報が送られる後に、 送信側がIS1及びIS2両方の信号をフロート の状態にすることである。最後のニアルが送られ た後で、送信個RICが状況OOを出力し、割込 み情報プロックの終了したことを知らせる。選碼 の後に送信側は状況信号をフロートの状態にする。 このことが受信側に割込みが終了したことを知ら せる。外部仲職機構が使用される場合は、割込み の終了は次の割込みの開始が可能であることも意

メッセージプロック内の第2のパイトがメッセージ内のパイト数を有している。第2のパイトが(ランタイム情報と同時に)10進法のゼロである場合、次の2パイトがメッセージプロック等の中のパイト数を有している。

况ピットによつて共定される。 これらのピットが 1 1 であればラウントロピン仲載機構を使用しこれらのピットが 0 0 を示せば外部仲載機構を使用 する。マスタースレープ仲載機構は 1 0 を示す場合に使用される。

上記で示したように、共通割込みパス上の全てのRICは割当てアドレスを受けとり、これをそれぞれの持つ外部割込み管理回路76内にパッファする。アドレスを受取つた後で、各々の外部割込み管理回路76がひとつのピットにアクセスし、それのあるそれぞれのチップが割込みの割当て先である物を判断する。あるRICが割込みの割当て先である物合、外部割込み管理回路76は残るメッセージをそのチップの内部RAM内にパッフ

部及び内部に対し回帰的に送信される割込みを示 す為に使用される。との型の割込みは以下で示す ようた、外部ロックステップに対する割込みに必 要とされる。このパイトの一番左のニナルは全て 「1」である。右のニアルは、内部のどのプロセ ッサに翻込みを行うかを示す為に使用される。ニ プルの最上位ピットが、PR3に対応し、次の最 上位ピットは、PR2に対応し、以下との通り対 応する。もし、右側ニアルのいずれかのピットに 「1」が含まれる場合、それに対応するプロセッ サは、そのプロセツサに対する割込みを受けとつ ている。割あてアドレスの最後はゼロのパイトで 位置を示される。外部割込み管理76かゼロのパ イトの存在を検索する時、もしゼロが存在すれば 割込みメッセージのデータ部分を送る。データ部 分の終了は、またゼロのパイトで知らされる。次 に割込み管理回路76はゼロを検知した場合、ア ドレスのソースを送る。内部網込みデータ構造は、 第35図に示される。外部割込み管理回路に知ら されたメッセーソプロックの長さによつて決定さ

アする。メッセージプロックのデータ部分の終了 までくると、割込み管理回路はゼロのパイトを書 きとみアータ部分の終了を示す。割込み管理回路 は「1」が送られてきた場合割込みのソースアド レスもパッフアする。メッセーソアロックを送り おえた後、割当て先 R I C の外部割込み管理回路 7 6 は、割当でアドレスを使用して内部R A M 66 内の外部割込みマップテーブルにアクセスし、こ れによつてRIC上のどのプロセッサが割込みを 受けとるのか又は割込みは内部的にどの程度の優 先性を持つのかを判断している。内部割込みの侵 先性は、メッセークプロックの開始位置及びメッ セージの長さが書きとまれる外部割込みメッセー ソテーブル内の位置を指定する為に使用される。 さらに、外部割込み管理回路は割込みをチップ上 のプロセッサに送る。割込み管理回路は外部割込 みメッセーシテーナル内の情報を使つてメッセー ソプロックにアクセスしこれのプロセスを行う。

セッサーにより行われる。プロセッサが外部割込 みを送る時、翻込みはポインタをメツセージプロ ックにわたしている。外部劉込み管理回路76が 割込みを送つた後に、送信したプロセッサには送 つた劉込みの状況が知らされる。劉込みが誤りな く送られた場合、プロセッサは改めてメッセージ プロックのメモリ領域の使用を請求できる。外部 割込み管理回路 7 6 は、プロセツサ P R D ~ PR 5 に自分自身のメモリの管理を行わせる機能はない。 故に外部割込み管理回路76は、外部から受けと つたメッセーシナロックを書きとむ為の領域を確 保する為にメモリの管理を必要とする。外部割込 み管理回路はメッセージプロックを記憶しておく 為に2つのメモリポインタ:現在のメツセージプ ロックポインタ(CMB)及び次のメンセージプ ロックォイタ (N M B)を有している。 C M B が 有効であれば外部割込み管理回路76はこのポイ ンタをメッセージナロックの開始として使用し、 受取つたメッセージプロックの各々のペイトが普 自己まれた後でアドレスポインタをインクレメン

外部割込み管理 7 6 は開始時点で初期化される 最長プロックパラメータを有している。最大の長 さより長いメッセージプロックが送信される場合 外部割込み管理回路は「受け取り準備ができてい ない」という信号を割込みの送信側に送る。また 外部割込み管理回路はソースプロセッサを判断し

との割込みインターフェースを提供する目的は、 使用者が割込み機構を規定できるようにスペクト ルを提供する為である。最も簡単を割込み機構は 従来のマイクロプロセッサで使用される割込み機 構と類似している。このより簡単を根構より更に 融通性を拡大する為には内部的にプログラム構造 を形成する必要がある。

状況ポート1 (ピン59-67)及び状況ポー ト2(ピン68-76)である2つの状況ポート が提供される。状況ポートの信号は同一である。 故に状況ポート1のみに関し説明を行う。状況ポ ートの主要を機能の1つは、異るRIC上のロッ クステップモードの2つのプロセッサに信号を提 供することである。状況ポート1は、PRO叉は PR1、又はロツクステップで接続されるPR0 及びPR1を外部プロセッサにロックステップで 接続する為に使用することができる。状況ポート 2は、PR2又はPR3に関し、あるいは、PR2 又はPR3がロックステップ内で最も重要なマス タープロセッサである内部のロックステップに関 し外部的にロックステップを形成する為に使用す ることができる。各々の状況ポートには、4つの 型のピン機能がある:即ち、ALUの結果状況、 桁上け連結、シフト/循環連結及びチップ内部の 同期である。状況ポート1(ピン59ー67)は、 内部状況ペス52及び54に外部状況ポート75

(第1図を参照せよ)を通して接続される。同様にして状況ポート2は、外部状況ポート74(第1及び第2図で示す)を通して接続する。

ステップからはずれることができる。故にマイク 口命令をとりだす時間は、ロックステップで接続 されるプロセッサを有するRICの間で様々であ る。チップ間の同期ピンはフラクとしての役めを し、各々のプロセッサが先のマイクロ命令を完了 し次のマイクロ命令を取り出したことを知らせて おり次のマイクロ命令を実行する用意ができてい ることを示す。チップ間の同期ピンはワイヤー AND接続される。全ての外部的にロックステッ プで接続されるプロセッサの次のマイクロ命令を 実行する用意ができた時、チップ間の同期級の電 位が上がる。もし1つ以上のPRの用意ができて ない場合、線の電位は低くたる。同期線の電位が 高い時、次のクロックサイクルで実行が開始する。 (共通な外部ロックステップ内のPRを持つ全て のR I Cは同じシステムクロックを使用しなくて はならない。)実行が始まつた少し後で、チップ 内部阿期線の電位は全てのPRが次のマイクロ命 今を実行する用意のできた状態にたるまで低くた つている。 P R が外部的にロックステップで接続

あるRICで発了した演算が使用される場合、最上位プロセッサは最下位プロセッサの桁上げ信号 に接続される。

シフトノ循環連結: シフトノ循環連結(shift / rotate linkage)は、外部的にロックステップで接結するプロセッサ間のシフトオペレーションを実行する為に使用される。RICのシフトノ循環高電位信号(ピン65)は、次に最上位のRICのシフトノ循環低電位信号(ピン66)に接続される。最上位RICのシフトノ循環低電位信号に接続されて循環連結が形成されている。

チップ間の同期: チップ間の同期(ピン76)を行う為には、外部的にロックステップで接続するプロセッサが確実にフェイズ内で同じ命令を実行するようにしなくてはならない。外部ロックステップ内のプロセッサは、同じRICの中の1つのRICの上に形成される他のプロセッサが外部のロックステップで接続するプロセッサとは独立して作動されることから、同期を行わずにロック

される時、マイクロ命令の実行中はPRに対する 割込みはおとつてはならない。との割込みの制限 によつて、マイクロ命令の実行が開始した後も外 部でロックステップ接続するプロセッサ間の同期 は確実に保たれる。との制限で得る利点は、状況 ポートのピンの為に他の同期手段を設ける必要が ないという点である。外部でロックステップで接 統ナるプロセッサに関してはもり1つの事項があ る。外部のロックステップ内のプロセッサに対す る割込みは、プロセッサの同期を妨害することに カるので、 割込みによる効果を考慮しなくてはな ちない。追加のピンあるいは追加のオーバーヘッ ドを使わずに外部的をロックステップ接続の同期: を維持する為には、外部ロックステンプに対する 割込みは、外部ロックステップ内の全てのMSP に対して行われるよう制限されなくではならない。 割込みのサプセットに割込みを実行することは可 能なのでとれはあまり厳格な制限ではない。外部 ロックスチップ全体に対し割込みを送ることを必 要とするとの制限によつて、外部ロックステップ

内のちょうどプロセスを開始しょうとしているプロセンサに割込みの名前を知らせる必要性を省れたができる。外部ロックステップ全体に送みが行われる外部ロックステップを有する全てのRICが同じ割込みを管理回路は、受取つたオークを関いるのプロセッサは同じオーチーで割込みを受取る。RICの自己に対する割込み(self

Interrupt)に関しての特徴は、外部ロックステップに対する割込みが割込み先である外部ロックステップ内のプロセッサを有するRIC内で発生される場合に必要となる。前に述べたように、自己に対する割込みは、割込みの送信仰にとつてそ、の送信仰自身が受信も行つているものとして取り扱われる。

上記で説明した通り、外部ロックステップ内の プロセッサはマイクロ命令の実行中は割込みが行 われることはない。マイクロ命令が終了すると割

号を発生することができる。例名ば、RICに使用されるCRT制御回路の場合、N信号は内部的に制御されて水平同期信号を発生する。また、テップ間同期信号は内部制御システム(即ちDLA22等)に対する直接の割込みの時に使用される。例えば、テップ間同期信号は、内部的には、外部クロックとして通訳される。この外部クロックは、各クロックサイクルの期間に所定のオペレーションを発生させる。

外部ロックステップの全てのプロセスは、割込みによつて開始される。RICのリセットによつて外部ロックステップ内のマスタープロセッサが自己に対する割込みを発生し、外部ロックステップを開始させる。プロセスの完成時点で、マスタープロセッサは自己に対する割込みを発生し、最も高い優先順位を持つ別々のプロセスを開始する。

リセットイン R I (ピン 7 7) 及びリセットアウトR O (ピン 7 8) の 2 本のチップ 制御線が提供されている。全ての R I C から接続する R I 及び R O 信号は別々に接続される。 R I 信号はアク

状況ポートにはもり1つ重要を機能がある。外部ALU状況ピンNZCVは、制御DLA22への入力として実際の内部ALU状況ピンを配置することによつて決定される値を持つ。制御DLA22への入力は外部ピンに送られた値を発生する。故に上記で示したような機能によつて、リアルタイム信号を発生する為に使用される実際の外部信

テイプで高い電位である。RI信号が「1」を示すまで電位を上昇されるとRICは自分自身を初期化を開始しオペレーションに億える。RO信号は、有効にワイヤーANDで接続されている。RICが初期化オペレーションを完了した時、電位を低くしてあるRO信号はフロートの状態にえる。全てのRICが初期化を完了したる。に配位となりシステムが初期化を完了したことを示す。

チップが初期化されると、プロセッサPR3はただちに最も高い優先順位255を持つプロセスを開始させる。 この場合プロセッサPR3がマスターである。プロセッサPR3は次にチップ上のRAM66の位置「0」に固定アドレスをロードし、プロセッサPR3はそこで他のプロセッサに対する割込みを行いこれに必要なプロセスを開始する。

好ましい実施例において、この中のRICは、 高出力部分に使用されるCMOSを持つ1マイク ロメーターの復細加工によるNMOSに実施され ている。 2 つの出力ピン 8 1 及び 8 2 が 3 ポルト と接地電位で使用される。

更に、本実施例はRIC上にクロック発生器を 設置し、2つのクロック入力(ピン79及び80) の間にのみ結晶を設置する必要がある。その代わ りに、所認の通り例えば多重RICを使つたシス テムに実施する場合では、外部クロック回路をと れらのピンと接続することができる。

第37図から第41図は、1つ又は2つ以上のRICチップを使つて与えられたある特定な様とです。第37図は、16ピットパイプラインRIC様成を示す。パイプラインプロセスは4段のプロセスにのみ限られるわけではなく、追加のRICをいつしょに連結することで選むだけい。

第 5 8 図は、 3 2 ピットパイプラインを示している。プロセッサ P R 1 及び P R 2 は、プロセッサ P R 1 及び P R 2 は、プロセッサ P R 1 及び P R 0 と同様ロックステップで接続される ことに注意して欲しい。また、 2 段のペイプラインのみが示されているが、単に充分な数の

桁上げ/桁下げ信号及びシフト/循環高/低信号を除き状況ポートの全てのピンを接続して特定のステーツを作り出すことによつてつけ加えられる。(桁及びシフト/循環信号以外の)これらの信号は、ワイヤーANDでいつしよに接続される。桁下げ信号はピンの中の次に最高でピンは次に最高位ピント/循環高電位ピンに接続する。)

第40図は、64ピットの規模のステージのパイプラインを示す。このステージは、最初に再構成可能な1C上の4つ全てのプロセッサをロックステップで接続することによつて形成される。第40図では、別々の16ピットの入力及び出力ポートとして示されているので、4つのフェイでの多重なアータ転送が必要となる。各々の1Cの2つのアータポートを統合することも可能でのるので32ピットの並列ポートが形成される。これによつて第40図の64ピットパイプラインのス

R I C チップを連結するだけでパイプラインの段 をいくつでも留みの数にすることができることも 注意していなくてはならない。

第39図は、64ピットの外部ロックステップ パイプライン構成を示している。R I C A のプロ セッサPR3及びPR2及びRICBのプロセッ サPR3及びPR2は、全てのプロセッサーPR1 及びPROと同様にロックステップで接続される。 第39図にかいて、両方の R I C から接続する 32ピット出力は、それぞれの単一な16ピット テータポートにおいて、多重化されているものと して示している。とれはパイプライン構成の中の 1つのテータポートは、前の段から与えられたア 一々を受けとる為に必要とされるからである。 異 るチップ上のプロセッサPR 3 及びPR2を含む ように外部ロックステップ構造の大きさを拡大す るととによつて、より大きたパイプラインを作る ことさえ可能である。故にパイプラインワードの 規模は、32ピットインクレメントまで拡大する ことができる。32セットのインクレメントは、

テーソ構成は、4クロックサイクルよりむしろ2 クロックサイクルでデータ転送を実行している。 しかしながらこれによつて、32ピットの転送を 可能にし多度ステージパイプラインのステージの 他のペアとの間を並列にする別々の絶縁されたス イッチの組が必要になる。故に、多重16ピット ポートを使用した方がはるかに簡単であり、一般 的に好ましい。

第41 図は128ピットの大規模ハイブリッドロックステッププロセス実行累子を形成するように接続された2つのRICテップを示している。内部的には各々のチップの上の4つのプロセッサーはロックステップで接続されている。各々のチップ上に1つだけの状況ポートが使用されて図で示す通り2つのチップ間にロックステップを形成しているので、いずれかの多重化といて64にソトの規模にした同様のハイブリッドプロセス実行案子を構成するととが可能である。

多重RIC 構成において、割込み操作通信網を使り樹系図を用いることでのその融通性及び複雑

性をさらに増加することができる。

以下の 5 種の割込みは、一定の集積形式で取り 扱われる。 (1) チップ内部割込み 2 これらの割込みに のソース及び割当てプロセッサは同一RICチャ 存在するのでこれらの割込みが 1 つの R I C C チップ上で発生し完全に同一チップ上で処理・ストーンで (2) チップ間割込み 3 これらの割込みのソースに存 セッサ及び割当てプロセッサが異るチップに存 モレている。 (3) I / O 割込み:これらの割込みに エッサ及び割当にで発生し、1 つ又は 2 つ以上のR C C チップ上に存在するプロセッサに対し行われる。

チップ内部割込みは通常チップ上でダイナミックな再構成を行う為に使用される。例えば、内部的ロックステップモード又はパイプラインモードのオペレーションを実行させる為に使用される。内部的な割込みは、同じRICチップ上の他のプロセッサからサービスを受ける為にも使用される。テップ内部割込みは多重チップ構成に於て重大を役目を果たしており、チップ外又はチップ内のロックステップパイプラインモードのような様々な

多重モードを開始させる為に使用している。チップ間割込みも、異るチップ上に異るではたいますのかけに、多重ででは、のではないがある。チップロセッサ間の通信を行う為に使用される。中央プロセッサを含むのでは、異るチップ上に形成された中央プロセッサ及び I / O プロセッサ及び I / O プロセッサ及び I / O である。中央プロセッサ及び I / O である。中央プロセッサと共通 I / O を で で の メモリと 中央プロセッサのメモリと I / O を で で の ス で の ス で の る。

故に、チップ上のどのプロセッサも3種類のソースから割込みを受けとる可能性がある。: 同一チップ上の他のプロセッサ、又は異るテップ上のでれかのプロセッサスは I / 2 は対応するスケテューラ16 に指示して割込みの優先順位及び現在実行中のプロセスの優先順

位に従って適当なプロセスのスケヤユールを行う。 上記で示した様に、各々のRICは外部割込み 管理回路76を有し、との割込み管理回路が外部 ソースから受取つた割込みの受け取り、記憶及び 内部プロセッサへの通知を管理していて、内部プロセッサによつて発生された外部割当て先に対する割込みの送信も管理している。

るチップ間割込み、即ちクラスター内部割込みを 容易に操作することができる。このようなパスは 「クラスター割込みパス」と呼ばれ、第42図に 示されている。とのバスはまたクラスター内部で 発生し、クラスタ外部に割当て先を持つクラスタ ー即ちクラスォー間割込みを選搬している。同様 にパスはクラスォー外部で発生し、クラスォー内 のチップの内の1つに於るあるプロセッサに割当 てる!/O及びクラスォー間割込みの運搬に使用 されている。この階級的機構をもつと有効に利用 する為には、割込み管理回路218が加えられる。 との割込み管理は外部割込み管理回路 7 6 がRIC チップに対し行つていたと同じ役めをクラスォート に対し行つている。故に各々のチップ216の外 部割込み管理回路76は、クラスター割込みパス 2 1 4 及びクラスター割込み管理回路 2 1 8 とイ ンターフエースしていたくてはたらたい。

クラスォー割込み管理回路 2 1 8 0 第 1 0 機能は、クラスォー割込み 4 ス 2 1 4 と クラスォー間及び 1 / 0 の割込みの間のインターフェースとし

て働くことである。故にクラスォー内で発生した クラスォー間割込みは、クラスォー割込みパス 214及びクラスター割込み管理回路218を介 し外部クラスターに送られる。同様に、クラスタ ー外部で発生したがクラスター内にあるチップを 割合て先にするクラスォー間及び1/0の割込み は、クラスター割込み管理回路218及びクラス ター割込みパス214を介し割当てチップに送ら れる。クラスター割込み管理回路218及びクラ スォー内にある(例えば)4つのチップはクラス **ォー割込みパス214を共用している。クラスォ** - 割込みパス214に関する仲敷方針は、ラウン Pロピンに限られたい。RIC割込みインターフ エース 7 6 によつて外部的な制御方法によつて仲 歌を行うことが可能である。故に違う仲裁機構を 必要とするクラスターは、それぞれの持つ各々の タラスォー割込み管理回路 2 1 8 内にその機構を 設けている。クラスォー割込み管理回路218は 優先順位又は位置に基づくような仲裁方法を使用 することもできる。優先順位に基づく仲裁方針を

とつた場合、クラスター割込みパスを共用する全 ての競争者(即ち、チップ216及びクラスォー 割込み管理回路218は、チップ外部に存在する パス仲裁論理に(他のチップに送る為の)割込み の優先順位の判断をゆだねている。そとで仲裁論 理が最も高い優先順位を持つ競争中の割込みソー スを決定しパスの制御をまかせる。位置に基づく 仲設方針が使用される場合、ペスの使用権につき 粉争が起きた場合、クラスダー内部の競争者の位 置が誰にパスの支配を与えるかを決定する。例え ば第42図では、位置に基づく方針を使つて決定 する場合、争いが起つたならばクラスター 割込み 管理218が常に第1の優先順位を持つとすると とができ、それぞれチップ0、1、2、3が続く。 設計者は、考想中の応用に適合するようにもつと 複雑な仲裁方針を自由に選択することができる。 しかし、優先順位に基づくようなより複雑を方針 にはチップ外部にかなりの論理を必要とするが、 ラウンドロピン又は位置に基づくようを簡単を方 針はチップ外部に非常にわずかな論理を用意する

だけで使用できる。

クラスター割込み管理回路 2 1 8 の第 2 の後能は、クラスター外部に出て内に、クラスターのでは、クラスターのでは、クラスターのでは、クラスターのでは、クラスターのでは、クラスターのでは、クラスターのでは、クラスのでは、クラスのでは、クラスのでは、クラスのでは、クラスのでは、クラスのでは、クラスのでは、クラスのでは、クラスのでは、クラスのでは、クラスのでは、クラスのでは、クラスのでは、クラスのでは、クラスのでは、クラスのできる。

この点で生まれる明らかな疑問点としては、 2 つ以上のクラスターを持つシステムでいかにして 管理を行うかということである。これらのクラス ターは、自分のクラスター割込みパス及びクラス ター 割込み管理回路を介しクラスター間割込みを 送つている。さらに階級的組織による管理機構を 発展させて、一組の(例えば4つの)クラスター

ロクラスター222内のクラスター220は、 「マクロクラスター割込み管理回路 | 226 に接 娩する「マクロクラスター割込みパス」224を 共有している。マクロクラスター割込みパス 224 及びマクロクラスター割込み管理回路226はマ クロクラスター222内に於て、クラスター削入 みパス214及びクラスター割込み管理回路218 がクラスター内部で行つていたのと同じ役目を果 たしている。我々は、この考え方をさらに発展さ せることができる。故に(例えば)4つのマクロ クラスター222で次に高いレベルになるような 実在を作りだすと考えることができさらにそれ以 上発展させることも可能である。枝後に、好きな 数だけレベルを設けた後で割込みを転送するパス を共有する(例えば)4つのサプシステム234 まで拡張し、これらから成るシステムの段階まで 選けるととができる。とのパスはシステム割込み

を「マクロクラスター」と呼ぶことにする。マク

第43図は、サプシステム0及び1である2つ

ペス232と呼ぶ。

特開昭58-58672 (42)

のサプシステム234から成るシステムを示して いる。サブシステム1は、マクロクラスター0及 び1を含んでいてサアシステム0は、ただ1つの マクロクラスター即ちマクロクラスター0を含ん ている。サプシステム1のマクロクラスダー0は 4つのクラスターから成り、サアシステム1のマ クロクラスター1は2つのクラスターから成りサ プンステム 0 のマクロクラスターは 2 つのクラス ターから成る。各々のクラスターは4つのチップ を有している。この例ではサアシステム1は1つ だけのマクロクラスターを有している。故にとの マクロクラスターの割込み管理機能はサアシステ 40の割込み管理に委託することができる。とれ によつてサアシステム 0 ではマクロクラスター割 込み管理回路及びマクロクラスター割込みパスを 徐くことができる。ことでは、劉込みの階級的構 造の考え方を示している。

第44図では、割込みの階級的構造の考え方を示す樹系図を用いて第43図のシステムが示されている。RICチップ216内のプロセッサ PRO

ップ 7 8 、 クラスター 2 1 8 、 マクロクラスター 2 2 6 … … サプシステム 2 3 0 の割込み管理回路 は次々とより高くなる各々のレベルに存在する。 これらに1、2……nと番号がついている。プロ センサーは、その完全な「アドレス」を与えると とによつて即ちシアシステム……、マクロクラス ター、クラスター、チップ及びプロセッサを規定す るととによつてプロセッサーを完全に規定すると とができる。故に各々のアドレスは、サブシステ ム……マクロクラスター、クラスター、チップ及 びプロセッサを区別する為の構成部を有している。 我々は、このアドレス構成部に同様に階級的組織 のレベルを与えることができる。プロセッサ PRO - PR 3 を規定するアドレス構成部は、最下位階 級即ちレベル 0 とする。チップ、クラスター、マ クロクラスター、……サフシステムを特定するア アレス構成部が次々と高くなるレベルにそれぞれ 異する。これらはレベル1、2……nと名づけら れている。

チップ内のプロセッサ間割込みは、最も頻繁に

- PR 3 は樹系図の最下位階級に存在し、木にたとえるなら「葉」の部分にあたる。次に高い段階にはRICチップ216を示す節がある。その次の2つの段階にある節はクラスター220、その上はマクロクラスター222を示す。最後に樹系図の根元では完全なシステム全体を示している。

樹系図にはレベルに番号をつけるとより高い プロセッサはレベルのとする、引き焼きより高い レベルに存在するチップ216、クラスター 220 マクロクラスター 2 2 2 は、それぞれレベル1、 2、 3 …… n で示すことができる。同様におけるレベルにををサンプにもないにしていた。の 対ることができる。例とおけるレベルにををサープが、大概ののでは、大概ののでは、大概ののでは、大概ののでは、大概ののでは、大概ののでは、大概のでは、クラスター 2 1 4 、マークラスター 2 2 4、…… サアンステム 2 2 8 及びに存在する。これらはそれぞれ1、2 …… 質別ので存在する。これらはそれぞれ1、2 …… 質別ので存在する。プロセッサーのに存在する。チ

起こる側込みであると予想されるのでこれらの割 込みの通信及び処理は一般的にできるだけ迅速に 完了しなくてはならない。上記に示した通り、1 つの割込みについてのソース、割当て、優先順位 及び関連ランタイムに関する情報は、一度ソース プロセッサがチップ割込みパス88の支配を握る とちようど1ペスサイクル内で通信される。クラ スタ内でのチップ間割込みは2番目に一般的た割 込みであると予想される。本発明の割込み組織で は、クラスター割込みパス214を使つてソース プロセンサからのソースチップ 21 6 及びプロセ ッサPROIPR3、割合でチップ及びプロセッ サ優先性及びランタイムを確定する情報をクタス **ター 割込み管理回路 2 1 8 亿 8 パスサイクルで通** 信することが可能となつている。マクロクラスタ 一内のクラスター間割込みはその次に最も一般的 な削込みであると予想される。本発明の割込み組 厳では、ソースプロセッサからの割込みに関して のソースクラスター、チップ、プロセッサ、およ び割合てクラスターチップ、プロセッ サ むよび

優先性及びランタイムを確定する情報は、マクロクラスター割込みパスを用いて10パスサイクルでマクロクラスター割込み管理回路226に通信可能となつている。次々と高くなつてゆく各段階における割込み期間での同僚の情報の通信には、レベルの高くなるごとに2パスサイクルのみ追加した期間が必要となる。

スを介しレベル(I - 1)の他の割込み管理回路に移動するかのいずれかである。例えば、第44 図の割込み3は割込み情報がサプシステム1内を移動している間は上昇フェイズである。割込み情報がサプシステム1の割込み管理回路からシステム割込みパスでサプシステム0の割込み管理銀がける。情報がサプシステム0内を移動する間、情報が割当で先プロセッサに到達するまで非上昇フェイズが継続する。

上記の割込み3のように、ソース及び割当て先 プロセツサが異るサアシステム内に存在する場合、 割込み情報は最長距離を移動し、最長の時間を要 する。一方、割込み1のようにソース及び割当を アロセッサが同一チップ上に存在する場合、距離 及び時間は最短になる。故に、一番もまり発生し ない割込みが通信又はプロセスに存在する割込み は最短時間で通信及びプロセスが行われる。この 望ましい利点が割込みの階級的組織から直接的に 割込み 3 は、サアンステム 0 のマタロクラスター 内のクラスター 0 に属するチップ 1 、 2 、 及び 3 上の P R 0 で発生する。 割込み情報は一番下の 「葉」から開始し、必要な限り上まで移動してゆ く。 即ちレベルを上に上つてゆき、 次に系図を下 まで下つて割あて先プロセッサを示す「葉」のお 分まで達する。 割込み情報が歯系図内を移動する 時間内における割込みの移動を我々は、 2 つのフェイズに区別している。 これらのフェイズは、

「上昇」フェイズ及び「非上昇」フェイズ及び「非上昇」フェイズの期間中、割込み情報はちんと樹系図を上つてゆく、即ち、情報がレベルの割込み管理回路からレベルの割込みでは、割込みではののではあからレベルにののではからしてゆくの割込みで理回路からレベル(1-1)の割込みで理回路からレベル(1-1)の割込みで

生じる。

割込みの上昇フェイズの間、割込みはレベルーの割込み管理回路から送られる。割込みは、レベルーの割込みバスを介し割込みの階級的組織の樹 系図を上に上つてゆきレベル(1+1)の割込み 管理回路に達する。上昇フェイズ期間中の割込み の移動は、第45図に示されている。

ペスサイクル 1 から(2 n + 4)まで; これらのサイクルは、制込みの割当てアドレス、割込みの優先順位、及び割込みのソースアドレスを指定する情報を転送する為に使用される。割当てアドレスは、以下の順で送られる。; サプシステム、…… マクロクラスター、クラスター、チップ及び

割込みの上昇フェイズ中に使用するプロトコールが第46図に示される。特に、レベルーの劉込みで理回路2は、劉込みをレベルーの劉込みパスを介しレベル(1+1)の劉込み管理回路に送りだしている。この劉込みの期間中以下の動作が行われる。まずレベルーの管理回路2がレベルーの劉込みパスを制御する。

ペスサイクル O について: レベル I のソース 割込み 管理が 製込み情報 線に全てゼロを送つてレベル (I + 1) の割込み管理回路を この割込みの割

PR即ち、関連するアドレス構成要素の最高のも のから開始して、減少オーダーで階級組織内を下 に向つてプロセスが進行し、PRの認定まで至つ ている。第46図では、サプシステム0、マクロ クラスター1、クラスター3、チップ1及び2、 プロセツサPR 2及びPR 3が割当て先として特 定されている。割込みの優先順位は127であつ てランタイム情報は34である。劉込みのソース アドレスはサブシステム 2、マクロクラスター 1、 クラスター2、チップ3 PROである。ととで関 連する最高レベルのアドレスがサプシステムアド レスであると仮定すると、最悪の場合でもソース 及び割当て先を認定する情報を転送する為には 2 n サイクルが必要とされる。割込みの優先履位 及びその他関連情報を送信する為には、あと4サ イクルが必要とされる。例えば、最高レベルの間 連アドレスがマクロクラスターまでだけである場 合、マクロクラスター、クラスター、チップ及び プロセツサだけのシーケンスがパスサイクル1か ら5までで特定される必要がある。 パスサイクル

- 特開昭58-58672 (45)

6 及び 7 は、割込みの優先順位を転送する為に使用され、パスサイクル 8 及び 9 は、割込みについてのランタイム情報を転送する為に使用される。 ソースアドレスはパスサイクル 1 0 から 1 4 で送 られる。

以下の例でとれらのプロトコールをより具体的 に説明する。サブンステム、マクロクラスター、 チンプ及びプロセンサPRから成る階級的組織を

<u>テーナル 3</u> 外部からチップへの割込み通信

使用中の割込み パス ソース及び割当て先を確定する 情報を転送するシーケンス

上昇フェイズ

クラスターパス サナンステム、マクロクラスタ ー、クラスター、チップ、プロ セツサ

マクロクラスターバス サプシステム、マクロクラスター、クラスター、チップ、プロセッサ

サプシステムパス サプシステム、マクロクラスタ ー、クラスター、チップ、プロ セツサ

システムバス サブシステム、マクロクラスタ ー、クラスター、チップ、プロ セッサ 持つシステムを考えてみる。あるサプシステムで発生しどれか他のサプシステムに移動するよう制当てられた割込みは、テーブル3で示すように階級的組織の中で移動する。テーブルは各々のレベルでの(我々はチップ外の割込みプロトコールについて説明を行つているのでレベル1から始まつている)割込みテータパス上の割込みの運行を示している。

テーブル3は、以下の点につき示している。割込み非上昇フェイズが開始することは、割びとなるの中で登る必要のあるーサルに示されるル型をで達したことを意位レベルはシステムのレベルのでは、その最高位レベルは、アトレスの第1の構成で示すレベルは、ファムの第1の第2で示すでは、サナシステム割びであるでは、サナシスターを確定するアトレス構成部もレベル3である。

非上昇フェイス

サプシステムパス マクロクラスター、クラスター、 チンプ、PR、サプシステム※

マクロクラスターパス クラスター、チップ、PR、サ プシステム igotimes 、マクロクラスタ

クラスターパス チップ、PR、サプシステム[※]、 マクロクラスター[※]、クラスタ 一[※]

※ とのアドレスは割込みの割当てを決めるのには必要ない。故に割当てパス上を送信されない。

割込みの移動が非上昇フェイズの期間中、割当て先を認定する情報のシーケンスは、割当てナドレスにある簡単な「アドレス構成部を左にシフトせよ」というオペレーションの実行によつて容易に導き出される。とのことは、割込み管理回路が手渡された割込みの割当てを認定する情報のシーケンスを構成する為の簡単なアルゴリズムを構成

する為に利用される。 割込み管理回路がバスを制御するようになると、 第1のサイクルで割合て先の割込み管理回路が決定されることを思いだて しい。テーブル 3 で示す通り、 割込み管理回路は 第1 フェイズ期間は、 割当てた 部込み管理回路は 第1 のアドレス構成部によって容易に決定する ととに まって 決定する。

割込み管理回路によつて実行されるオーパーオール機能は以下の通りである。我々は、レベル! の割込み管理回路を最初念頭において説明を行う。

一方でレベル!の割込み管理回路がレベル!の割込みパスとインターフェースし、また一方ではレベル(i-1)の割込みパスともインターフェースしている事を思いだしてほしい。これらのパスは様々な方針によつて仲載が行われる。これらの方針の典型的な例はラウンドロピン、優先性の腰によるもの、位置順によるもの等である。チップ割込みパス88はラウンドロピンの順序で仲裁

の維持の方が簡単であるが、好ましい削込み管理 回路は、優先順位に基づく方針で待ち行列を維持 している。優先順位に基づき待ち行列の管理を行 り場合、行列の中での到着時間の順にかかわらず、 行列の最前列にある割込みがその列の中で最も高 い優先性を持つ。

情報状況信号は、いつアドレス情報が送信されるかを示している。上記で示した通り、削当てアドレスが最初に送られ次に割込みデータ及び判回路は、かのソースアドレスが送られる。割込み管理回路は受取力に割当てアドレスの数を計数していいるの数を計数してアドレスの数を計数してアドレスの数を計数したがあるとにあることに基づいて、制込み管理のオーダで送るか(上昇フェイズ)又は「アリンス構成形を左に循環せよ」というオペレーションを実行するか(非上昇フェイズ)のいずれにするかを決定している。

階級的組織情報網は、RIC制込みポート機能 に対する応用の一例として示されている。この割 が行われる。いかなる割込み管理回路も内外両側からの割込みを同時にうまく処理することが可能でなければならない。割込み管理回路と割込み パスの間のインターフェースを示すプロック図が第45図に示される。

込みポートは、割込みトポロジー及び割込みプロ トコールによつてまつたく一般的なものである。 階級的組織割込み情報網は、情報網のある形態 にすぎない。この情報網の中では、トポロギーに 関しては変化させることが可能でこのことがRIC の外部割込み管理回路に影響し、 2 種類の変化を 生む。第1の変化はレベルの数が変わると、情報 網の中のアドレスの長さが変化することである。 アドレスの長さが変化すると割込み管理回路内の パツフアスペースも変化する。パッフアスペース の変化は、RIC内に含まれていたい例込み管理 回路のハードウェアの設計を適当に変えることに よつて操作することができる。トポロソーの変化 によるもう1つの変化は、有効アドレスの組に関 して起とる。との変化も、RICの外部割込み管 理回路を使つてプログラムすることによつて又は 他の割込み管理のハードウェアの仕様を変えると とによつて操作される。

上記説明はRICのみを有する副込み情報網に 限定されて示してある。しかしながら、チャンオ ル、テイスク、プリンター及び通信網インターフェースといつたようたあらゆる 1/0 装置を含む情報網にも同じ様に応用することができる。 この応用性を保持する為に唯一必要とされることは、1/0 装置がRIC割込みポートと接続可能なインターフェースを有しているということだけである。

以上のように当初の目的を達成し、一般的な構造を持つICを再構成可能にして使用者のニーズにあわせたカスタムなICを安価に提供することができる。このような再構成可能な機能を持つことで本発明はICにより新しい大きな応用の可能性を持たせることができると確信する。

4. 図面の簡単な説明

第1図は、本発明の再構成可能ICの概略的全体図である。

第 2 図は、 1 つのプロセッサを全体的に含み各 各の種類の外部インターフェースの内の 1 つを含 む R I C の部分的な平面図である。

第 3 図は N O R ゲート仕様として実施された
D L A の A N D 及び O R マトリクス部分を示す部

第 1 3 図、第 1 4 (a)、 1 4 (b)、及び 1 4 (c)図は、各々のプロセッサ内のペレルシフタで実行されるシフト及び/又は循環オペレーションの例を示す

図であり、第 / 5 図はパレルシフ A/示す図である。 第 1 6 図はアータパスの 構造を示す図である。

第17図は、アータパスのプロトコールを示す 図である。

第18図は、各々のプロセッサ内のデータパス のプロック図である。

第19図はRICの内部RAMシステムを概略的に示す図である。

第20及び21図はそれぞれのパス制御ユニットの構造及びオペレーションを示す図である。

第22回は、メモリスケデューリングユニット のオペレーションを示すファーチャートである。

第23図~第25図は隣接するプロセッサの再 構成された異るモードに対応して状況マルチプレ クサが操作を行う状況パスの内部接続を示す図で ある。

第26図、第27図及び第28図は、それぞれ

分図である。

第4図は、ゲート仕様と名前のついた実施例であるDLAのAND及びORマトリクスの部分を示す図である。

第5図は制御パスの構成を示す図である。

第6図は、中央制御記憶制御回路と4つのモデュール制御回路の間の関係を示す図である。

第7図は、中央制御記憶回路がアクセスされた場合の中央制御記憶回路及びそれぞれのモデュール制御回路のオペレーションを示すフローチャートである。

第8図は、花輪状に連結されたペス使用可能線の接続を示す図である。

第9図は各々のプロセッサ内のALUの主要部分を示す概略図である。

第10図及び第11図は、それぞれ各々のプロセッサ内の機能プロック及び桁上げ連結プロック 部分の回路図である。

第12図は各々のプロセッサ内のパレルシフタ 一の構造を示すフローチャートである。

独立モードロックステップモード、パイプライン モードにおけるRIC内のアータ及びコマンド命 令の流れを観略的に示す図である。

第29図は、各々のプロセッサ内のスケアユー ラ及び割込み管理回路のプロック図である。

第30図は、各々のプロセッサ内のスケアユーラのオペレーションのフローチャートである。

第31図は、割込み管理ワードのフォーマット を示す図である。

第 3 2 図は、 割込み が送られる時の制御配像ア ドレス線のフォーマットを示す。

第33図は、プロセッサPR3がプロセッサPR1に対し割込みを送る時の割込みのタイミンクの例を示す図である。

第34図は、RICのピンの配置図である。

第35回は、概略的に内部割込みデータ構造を 示す図である。

第36因は、割込みが送られている間の外部割 込み管理回路のオペレーションを示す図である。

第37図~第41図は、2つ以上のRICチッ

特開昭58-58672 (48)

ア上のプロセッサを連結することで可能となる構成 の例を示す図である。

第42回は、4つのチップからクラスタまでの 組織を示す図である。 (a及び43b)

第4 3V図は、多数のRiCチップが結合された 階級的組織を持つシステムを示す図である。

階級的組織を持つシステムを示す図である。 <u>a及びb</u> 第44図は、第43^V図で示した多重チップ組織 に相当する樹系図である。

第45図は、第45V図及び第44図で示したよ りに階級的組織内の不特定をレベルにかける網込 みレベル管理回路及びパスのオペレーションを概 略的に示す図である。 (a及びb)

第44回は、第43回及び第44回と同様の多 重テップ階級的組織において割込みが上昇フェイ メである時の情報プロトコールを示すタイミング 図である。

第47図は、各々のプロセッサ内に含まれるマ イクロシーケンサのプロック図である。

符号の説明

PR0~PR3…プロセッサ、12… 劉込み管

理回路、14…制御パス、52,54…状況パス、 56…データパス、16…スケアユーラ、22… 制御DLA、28…ALU、36…マイクロシー ケンサ、38…制御記憶回路、45。50…状況 マルチプレクサ、60…RAMメモリモシュール、 68…メモリスケテユーラユニント、72~76 …外部インターフエース。

図面の浄欝(内容に変更なし)

PRS

手 続 補 正 書 (方式) 57.10 - 7

特許庁 長官 殿

圖

- 1. 事件の表示 昭和 57 年 特許 顧 第 / 28805 号
- 2. 発明の名称 再構成可能集積回路
- 3. 補正をする者

事件との関係 出願人

名 称 テキサス インストルメンツ

4. 代理人

住 所 東京福子代田区元の内 8 丁目 8 巻 1 号 (電話 代表 211-6741巻) 「小子糸 氏 名 (5995) 弁理士 中 村 ね これば

此名(3993)升座工中 1

5. 補正命令の日付 自 発

6. 補正の対象 全図面

7. 補正の内容 別紙の通り

図面の浄售(内容に変更なし)。

- (1) 明細書第 / / 3 頁第 / 行に [®] 示す。 [®] とあるを「示す。ことでピット 1 3 にかける C S が / のときは金部のコンテクストスイッチを、 C S が O のときは部分的なコンテクストスイッチを、 またピット 1 2 にかける B U が / のときはすぐ にプロセスされない場合の割込みをペッファナるととを。 B U が O のときは割込みをペッファしないことをそれぞれ表わしている。 Jと訂正する。
- (2) 同番第/85頁第/9行に。ある。。とあるを「あり、第23図は独立モード内部接続を、第24回はパイプラインモード内部接続を。第25回はロックステップモード内部接続をそれぞれ示している。」と訂正する。
- (3) 阿書解/86頁第7行に『チャートである。』 とあるのを次の通り訂正する。

「チャートであり、との図に用いられる、

P(INT)は割込みの優先駆位を。

P(NEXT)は次に高い優先性をもつプロ

セスの優先順位を。P(CUR)は現在実行

手 続 補 正 **書** 57.10.-7

昭和 年 月 日

特許庁長官 若 杉 和 央 股

1. 本件の表示 昭和 57 年特許顯第(7位8805) 号

2. 発明の名称 再構成可能集積回路

3. 補正をする者

事件との関係 出願人

名 称 テキナス インストルメンツ インコーポレーテッド

4. 代 理 人

住 所 東京都千代田区九の内3丁目3番1号(電話 代表 211—8741番)

氏名(5995) 弁理士中 村

5. 補正命令の日付 自 発

7. 補正の対象 明細書の発明の詳細な説明の無 および関面の簡単な説明の概

8. 補正の内容

中のプロセスの優先順位を。NEXTは次に スケデュールしたプロセスの優先順位を持つ レジスタを、CURRENTは現在実行中のプロ セスの優先順位を持つレジスタを。TEMP は一時的なレジスタを示している。」

(4) 明細書中、下配各個所の誤記を失々訂正する。

	15	. 解配	T E
109	18	タイプロ	#170(0000)
# ,	20	#171	9171(0001)
110	1	2	2(0010)
184	1	である。	であり、通常の区域を持つメ イナミック論理配列を示して いる。
•	10	フロー	制御記憶メモリ管理のフロー
•	17	极能	ALUの機能
185	10	RIC	再構成可能IC(RIC)
186	1	独立 モードロックステ ップモード	独立モード、ロックステップ・モ ード