Vnořování stromů

Václav Rozhoň

22. 6. 2018

Supervizorka: Tereza Klimošová

Konzultantka: Diana Piguet

• Extremální teorie grafů: kolik hran v grafu vynutí určitou strukturu?

- Extremální teorie grafů: kolik hran v grafu vynutí určitou strukturu?
- Mantelova věta: obsahuje-li graf na n vrcholech více než $n^2/4$ hran, nalezneme v něm trojúhelník.

- Extremální teorie grafů: kolik hran v grafu vynutí určitou strukturu?
- Mantelova věta: obsahuje-li graf na n vrcholech více než $n^2/4$ hran, nalezneme v něm trojúhelník.
- Ukazuje se, že problematické je vnořování bipartitních grafů.

- Extremální teorie grafů: kolik hran v grafu vynutí určitou strukturu?
- Mantelova věta: obsahuje-li graf na n vrcholech více než $n^2/4$ hran, nalezneme v něm trojúhelník.
- Ukazuje se, že problematické je vnořování bipartitních grafů.
- Vnořování stromů je důležitým speciálním případem.

- Extremální teorie grafů: kolik hran v grafu vynutí určitou strukturu?
- Mantelova věta: obsahuje-li graf na n vrcholech více než $n^2/4$ hran, nalezneme v něm trojúhelník.
- Ukazuje se, že problematické je vnořování bipartitních grafů.
- Vnořování stromů je důležitým speciálním případem.

Hypotéza (Erdős, Sósová, 1963)

Každý graf s průměrným stupněm větším než k-1 obsahuje libovolný strom na k+1 vrcholech jako podgraf.

Částečné výsledky:

pro speciální stromy (cesty – Erdős, Gallai, 1959)

Částečné výsledky:

- pro speciální stromy (cesty Erdős, Gallai, 1959)
- pro grafy neobsahující daný podgraf (C₄ Saclé, Wozniak 1997)

Částečné výsledky:

- pro speciální stromy (cesty Erdős, Gallai, 1959)
- pro grafy neobsahující daný podgraf (C₄ Saclé, Wozniak 1997)
- liší-li se velikost grafu a stromu pouze o konstantu (Görlich, Zak 2016)

 Václav Rozhoň
 Vnořování stromů
 22. 6. 2018
 3 / 11

Částečné výsledky:

- pro speciální stromy (cesty Erdős, Gallai, 1959)
- pro grafy neobsahující daný podgraf (C₄ Saclé, Wozniak 1997)
- liší-li se velikost grafu a stromu pouze o konstantu (Görlich, Žak 2016)

Věta (Ajtai, Komlós, Simonovits, Szemerédi, 2018+)

Existuje k_0 takové, že hypotéza Erdős-Sósové platí pro všechna $k > k_0$.

Částečné výsledky:

- pro speciální stromy (cesty Erdős, Gallai, 1959)
- pro grafy neobsahující daný podgraf (C₄ Saclé, Wozniak 1997)
- liší-li se velikost grafu a stromu pouze o konstantu (Görlich, Žak 2016)

Věta (Ajtai, Komlós, Simonovits, Szemerédi, 2018+)

Existuje k_0 takové, že hypotéza Erdős-Sósové platí pro všechna $k>k_0$.

Věta (Rozhoň, 2018+)

Hypotéza platí asymptoticky pro husté grafy a stromy se sublineárním maximálním stupněm.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ りへ○

Věta (Rozhoň, 2018+)

Hypotéza platí asymptoticky pro husté grafy a stromy se sublineárním maximálním stupněm.

Věta (Rozhoň, 2018+)

Hypotéza platí asymptoticky pro husté grafy a stromy se sublineárním maximálním stupněm.

Věta (Rozhoň, 2018+)

Nechť \mathcal{T} je třída stromů splňující $\forall T \in \mathcal{T} : \Delta(T) \in o(|T|)$. Pak každý graf G splňující $\overline{\deg}(G) = |T| + o(|G|)$ obsahuje libovolný strom z \mathcal{T} .

Věta (Rozhoň, 2018+)

Hypotéza platí asymptoticky pro husté grafy a stromy se sublineárním maximálním stupněm.

Věta (Rozhoň, 2018+)

Nechť $\mathcal T$ je třída stromů splňující $\forall T \in \mathcal T: \Delta(T) \in o(|T|)$. Pak každý graf G splňující $\overline{\deg}(G) = |T| + o(|G|)$ obsahuje libovolný strom z $\mathcal T$.

Věta (Besomi, Pavez-Signé, Stein, 2018+)

Nechť \mathcal{T} je třída stromů splňující $\forall T \in \mathcal{T} : \Delta(T) \in o(\sqrt[6T]{|T|})$. Pak každý graf G splňující $\overline{\deg}(G) = |T| + o(|G|)$ obsahuje libovolný strom z \mathcal{T} .

4□ > 4₫ > 4분 > 4분 > € *)٩(*

Zjemnění hypotézy Erdős-Sósové

Obecnější výsledek zohledňující, že některé stromy lze vnořit snáze.

Zjemnění hypotézy Erdős-Sósové

Obecnější výsledek zohledňující, že některé stromy lze vnořit snáze.

Věta (Rozhoň, 2018+)

Nechť $0 \le r \le 1/2$. Pro husté grafy platí asymptoticky následující. Je-li jejich minimální stupeň alespoň přibližně rk a obsahují-li alespoň konstantní proporci vrcholů stupně alespoň k, vnoříme libovolný strom na k vrcholech se sublineárním maximálním stupněm a jednou partitou velikosti maximálně rk.

Zjemnění hypotézy Erdős-Sósové

Obecnější výsledek zohledňující, že některé stromy lze vnořit snáze.

Věta (Rozhoň, 2018+)

Nechť $0 \le r \le 1/2$. Pro husté grafy platí asymptoticky následující. Je-li jejich minimální stupeň alespoň přibližně rk a obsahují-li alespoň konstantní proporci vrcholů stupně alespoň k, vnoříme libovolný strom na k vrcholech se sublineárním maximálním stupněm a jednou partitou velikosti maximálně rk.

Předchozí tvrzení je důsledkem pro r = 1/2.

 Václav Rozhoň
 Vnořování stromů
 22. 6. 2018
 5 / 11

Hypotéza Loebl-Komlós-Sósové

Hypotéza (Loebl, Komlós, Sósová, 1995)

Jestliže graf G obsahuje alespoň polovinu vrcholů stupně alespoň k, pak obsahuje libovolný strom na k+1 vrcholech jako podgraf.

Hypotéza Loebl-Komlós-Sósové

Hypotéza (Loebl, Komlós, Sósová, 1995)

Jestliže graf G obsahuje alespoň polovinu vrcholů stupně alespoň k, pak obsahuje libovolný strom na k+1 vrcholech jako podgraf.

Věta (Hladký, Komlós, Piguet, Simonovits, Stein, Szemerédi, 2017)

Pro každé $\eta>0$ existuje k_0 takové, že pro každé $k>k_0$ platí, že libovolný graf G na n vrcholech s alespoň $(\frac{1}{2}+\eta)n$ vrcholy stupně alespoň $(1+\eta)k$ obsahuje libovolný strom na k vrcholech.

Hypotéza (Loebl, Komlós, Sósová, 1995)

Jestliže graf G obsahuje alespoň polovinu vrcholů stupně alespoň k, pak obsahuje libovolný strom na k+1 vrcholech jako podgraf.

Hypotéza (Loebl, Komlós, Sósová, 1995)

Jestliže graf G obsahuje alespoň polovinu vrcholů stupně alespoň k, pak obsahuje libovolný strom na k+1 vrcholech jako podgraf.

Hypotéza (Simonovits, personal communication)

Nechť $0 \le r \le 1/2$. Jestliže graf G obsahuje alespoň rn vrcholů stupně alespoň k, pak obsahuje libovolný strom na k+1 vrcholech s jednou partitou velikosti nejvýše rk jako podgraf.

Hypotéza (Loebl, Komlós, Sósová, 1995)

Jestliže graf G obsahuje alespoň polovinu vrcholů stupně alespoň k, pak obsahuje libovolný strom na k+1 vrcholech jako podgraf.

Hypotéza (Simonovits, personal communication)

Nechť $0 \le r \le 1/2$. Jestliže graf G obsahuje alespoň rn vrcholů stupně alespoň k, pak obsahuje libovolný strom na k+1 vrcholech s jednou partitou velikosti nejvýše rk jako podgraf.

Věta (Klimošová, Piguet, Rozhoň, 2018+)

Hypotéza Simonovitse platí asymptoticky pro husté grafy.

 Václav Rozhoň
 Vnořování stromů
 22. 6. 2018
 7 / 11

Hypotéza (Simonovits, personal communication)

Nechť $0 \le r \le 1/2$. Jestliže graf G obsahuje alespoň rn vrcholů stupně alespoň k, pak obsahuje libovolný strom na k+1 vrcholech s jednou partitou velikosti nejvýše rk jako podgraf.

Věta (Klimošová, Piguet, Rozhoň, 2018+)

Nechť $0 \le r \le 1/2$. Jestliže graf G obsahuje alespoň rn vrcholů stupně alespoň k+o(n), pak obsahuje libovolný strom na k+1 vrcholech s jednou partitou velikosti nejvýše rk jako podgraf.

Myšlenky důkazů

2) Clusterizace na mikrostromy

9 / 11

Poznámky oponenta

... Lemma 2.7 tak jak je zformulované neplatí ...

Lemma 2.7

Let $\{V_0,V_1,\ldots,V_m\}$ be an ε -regular partition of V(G) and let $X=V_j$ for some $1\leq j\leq m$. Then all but at most $\sqrt{\varepsilon}|X|$ vertices of a cluster X are typical w. r. t. all but at most $\sqrt{\varepsilon}m$ sets $V_i,\ i\in\{1,\ldots,m\}\setminus j$. In Chapter 4 we call such vertices of X ultratypical.

Poznámky oponenta

• ... Lemma 2.7 tak jak je zformulované neplatí ...

Lemma 2.7

Let $\{V_0,V_1,\ldots,V_m\}$ be an ε -regular partition of V(G) and let $X=V_j$ for some $1\leq j\leq m$. Then all but at most $\sqrt{\varepsilon}|X|$ vertices of a cluster X are typical w. r. t. all but at most $\sqrt{\varepsilon}m$ sets $V_i,\ i\in\{1,\ldots,m\}\setminus j$. In Chapter 4 we call such vertices of X ultratypical.

Lemma 2.7 – správná verze

Let $\{V_0,V_1,\ldots,V_m\}$ be an ε -regular partition of V(G) such that all pairs of clusters form regular pairs and let $X=V_j$ for some $1\leq j\leq m$. Then all but at most $\sqrt{\varepsilon}|X|$ vertices of a cluster X are typical w. r. t. all but at most $\sqrt{\varepsilon}m$ sets V_i , $i\in\{1,\ldots,m\}\setminus j$. In Chapter 4 we call such vertices of X ultratypical.

Poznámky oponenta

- Ve znění Lemmatu 2.7 je také zaveden termín "ultratypický vrchol".
 Bylo by vhodnější termín definovat před tímto Lemmatem.
- Před Proposition 2.13 je zopakován (v mírně odlišných verzích) odstavec.
- V angličtině se nepoužívá pro partitu bipartitního grafu termín "partite".
- Drobné chyby vzniklé použitím textu z připravovaných článků s jiným stylem formátování . . .