### Universidad Nacional de Río Negro Física III B - 2020

Unidad 02

Clase U02 C06 / 11

Fecha 23 Abr 2020

Cont Máquinas térmicas

Cátedra Asorey

Web http://gitlab.com/asoreyh/unrn-f3b



### Contenidos: Termodinámica, alias F3B, alias F4A





# Las puertas del templo



H. Asorey - F3B 2020

## Otra: máquina de Newcomen



Abr , H. Asorey - F3B 2020

# James Watt (1736-1819) matemático e ingeniero escocés.

- Ayudó al desarrollo de la máquina de vapor convirtiéndola en una forma viable y económica de producir energía.
- Desarrolló una cámara de condensación que incrementó significativamente la eficiencia.



# Regulador de Watt

7/23



H. Asorey - F3B 2020



# El condensador (y válvulas) mejora de rendimiento al no enfriar el pistón



### Mecanismo de Watt, 2



# Indicador de evolución de Richard ¡diagrama PV real!





# La máquina de vapor





# El pistón de doble acción



H. Asorey - F3B 2020

### El pistón de doble acción



Abr , H. Asorey - F3B 2020

### Un ciclo que funciona El inicio de la revolución industrial



#### Admisión:

el vapor de alta presión ingresa (ingreso de energía desde la fuente caliente)

#### • Expansión:

comienza la expansión del vapor desplazando al pistón y produciendo trabajo mecánico

#### Escape:

Rápida salida de vapor de baja presión hacia la fuente fría

#### Compresión:

La admisión de vapor del otro lado del cilindro comprime el remanente y ecualiza las presiones para la nueva admisión

### Máquinas térmicas

 Máquina térmica: obtengo trabajo mecánico a partir de la transferencia de calor de la fuente caliente a la fuente fría...



### Muerte térmica

- Fuente caliente: cede calor, se enfría
- Fuente fría: absorbe calor, se calienta
- La máquina térmica "aprovecha" ese flujo para liberar energía en forma de trabajo mecánico "útil"
- Cuando T<sub>c</sub> = T<sub>f</sub> → no hay flujo de calor → muerte térmica



### Ciclo combinado

Mejora de la eficiencia global



H. Asorey - F3B 2020

### Ciclo inverso → Maguina frigorifica

- Si entrego trabajo, es posible transferir calor de la fuente fría a la caliente
- Heladera:



### Ciclo inverso → Máquina frigorifica

- Si entrego trabajo, es posible transferir calor de la fuente fría a la caliente
- Heladera: es una "bomba de calor" que extrae calor de una fuente fría para cederlo a otro a una temperatura mayor, impulsada por un motor externo, usualmente



### Máquina reversible e irreversible



Si la máquina térmica no es reversible, Q<sub>c</sub> < Q

### Funcionamiento: refrigeración por compresión:

Líquido refrigerante: bajo punto de vaporización (típicamente -40°C)

- 1) Compresor: el gas se comprime (W<sub>NETO</sub>) en forma adiabática y, en principio, reversible. Alta Presión (AP)
- 2) Condensador: se licúa e intercambia calor con la fuente caliente (Aire, Q<sub>ENT</sub>).
  Cambio de estado: calor latente, proceso isotérmico (AP)
- 3) Válvula de expansión: descompresión adiabática → enfriamiento del líquido a baja presión (BP)
- 4) Evaporador: el líquido frío absorbe calor de la fuente fría (heladera, Q<sub>ABS</sub>) y se vaporiza: calor latente, proceso isotérmico (BP)
- Se reinicia el ciclo en el compresor



Abr ,