February 28, 2023

17.1 Permutations

 S_{Ω} is the set of all bijections $\Omega \to \Omega$, S_{Ω} is a symmetric group S_{Ω} is denoted as S_n if $|\Omega| = n$

A subgroup of S_n is called a permutation group

18:00

If
$$\sigma \in S_n$$
, then $\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$

+ Theorems

- S_{Ω} with the operation composition is a group
- $|S_n| = n!$

17.2 Cycles and Cycle Notation in S_n

$$\sigma \in S_n$$
 is a cycle if $\exists a_1, ..., a_k$ such that
$$\begin{cases} \sigma(a_j) = a_{j+1} \\ \sigma(a_k) = a_1 \\ \sigma(x) = x, \quad x \neq a_j \end{cases}$$

17.3 Cycle Order

- A k-cycle has $a_1, ..., a_k$ terms based on the above defition
- All 1-cycles can be omitted
- 2-cycles are called transpositions

17.4 Cycle Notations

▶ Two-line notation:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 5 & 1 & 4 & 6 \end{pmatrix}$$

▶ One-Line Notation:

$$σ = (1 3 5 4)(2)(6) = (1 3 5 4)$$
 $σ^{-1} = (1 4 5 3) = (4 5 3 1), just σ inverted$

17.5 Multiplying Cycles

For $\alpha = (1 \ 3 \ 4 \ 7)$ and $\beta = (2 \ 3 \ 5 \ 7)$, we perform multiplication:

- $\beta(x)$ $\alpha(\beta(x))$
- 1 $\beta(1) = 1$ $\alpha(1) = 3$
- 2 $\beta(2) = 3$ $\alpha(3) = 4$
- 3 $\beta(3) = 5$ $\alpha(5) = 5$ $\rightarrow \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & \beta(4) = 4 & \alpha(4) = 7 \end{pmatrix}$ 4 $\beta(4) = 4$ $\alpha(4) = 7$
- 5 $\beta(5) = 7$ $\alpha(7) = 1$
- 6 $\beta(6) = 6$ $\alpha(6) = 6$
- 7 $\beta(7) = 2$ $\alpha(2) = 2$
- $= (1 \ 3 \ 5)(2 \ 4 \ 7)(6) = (1 \ 3 \ 5)(2 \ 4 \ 7)$

18.1 Supports

The support of a permutation π is $\{x: \pi(x) \neq x\}$ Two permutations are disjoint if their supports are disjoint Example:

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 3 & 1 & 4 \end{pmatrix}$$
, support $(\alpha) = \{1,4,5\}$

18.2 Cycle Types

The cycle type of a permutation π is the list (with repetition) of the length of its disjoint cycles

Theorems

- Disjoint permutations commute: $\alpha(\beta(x)) = \beta(\alpha(x))$
- $x \in \text{support}(\pi) \to \pi(x)$, $\pi(\pi(x)), ... \in \text{support}(\pi)$
- Order of a permutation π is the LCM of the lengths of its disjoint cycles, so the LCM of its cycle type
- Every permutation π can be written as a product of disjoint cycles
- S_n is generated by the set of all cycles
- k-cycles can be written as product of k-1 transpositions

$$\begin{array}{cccc} \bullet & (a_1 & a_2 & \dots & a_k) = (a_1 & a_k) (a_1 & a_{k-1}) \dots (a_1 & a_2) \\ & = (a_1 & a_2) (a_2 & a_3) \dots (a_{k-1} & a_k) \end{array}$$

- The set of all transpositions generates S_n , so $S_n = \langle \{ (a \quad b) : 1 \le a < b \le n \} \rangle$
- The following are minimal generating sets for S_n :
 - $\{(1 \ a): 2 \le a \le n\}$
 - $\{(a \ a+1): 1 \le a \le n-1\}$
 - \circ {(1 2), (1 2 ... n)}

18.3 Dihedral Group

It's the symmetries of a regular n-gon with the following:

- $-\rho = \text{rotation by } \frac{1}{n} \text{ circle} = (1 \ 2 \ \dots \ n)$
- $-\mu$ = reflection through corner 1

$$=\begin{cases} (1) (2 & 2m) (3 & 2m-1) \dots (m & m+2) (m+1), n = 2m \\ (1) (2 & 2m+1) (3 & 2m) \dots (m+1 & m+2), n = 2m+1 \end{cases}$$

+ Theorems

 D_n is a subgroup of S_n