Open in app

Neha Patel

15 Followers

About

Recommendation system in python using ALS algorithm and Apache Spark

🌠 Neha Patel Apr 7, 2019 · 4 min read

Recommendation system has become integral part of many online platforms given it's use in increasing sales and customer retention. Amazon, Netflix, Facebook, Linkedin and many more make use of recommendation system on their platform to recommend products, movies, people, posts respectively to users. Ever wondered how these companies provides recommendations.

RECOMMENDATION SYSTEM

Given it's popularity there are three main techniques used for providing recommendations online-Collaborative filtering, Content-based and Hybrid technique. Here we will be making use of Alternating least square matrix factorization method, a collaborative filtering algorithm.

Open in app

Jupyter Notebook. You can make this simple recommendation model as a mini project in college or as a personal project.

Requirements:

Your machine should have latest version of Python, Apache Spark and Jupyter Notebook installed. You also need to connect pyspark with Jupyter Notebook and many tutorials are available out there to do the same.

Dataset used is downloaded from the link given below:

Amazon review data

This dataset contains product reviews and metadata from Amazon, including 142.8 million reviews spanning May 1996 ...

jmcauley.ucsd.edu

The data used here is of Musical Instruments for training the model.

Terminologies:

There are certain terminologies which needs to be understood before moving forward.

- 1. **Apache Spark:** Apache Spark is an open-source distributed general-purpose cluster-computing framework.It can be used with Hadoop too.
- 2. **Collaborative filtering:** Collaborative filtering is a method of making automatic predictions (filtering) about the interests of a user by collecting preferences or taste information from many users. Consider example if a person A likes item 1, 2, 3 and B like 2,3,4 then they have similar interests and A should like item 4 and B should like item 1.
- 3. Alternating least square(ALS) matrix factorization: The idea is basically to take a large (or potentially huge) matrix and factor it into some smaller representation of the original matrix through alternating least squares. We end up with two or more lower dimensional matrices whose product equals the original one.ALS comes inbuilt in Apache Spark.

Get started Open in app

So let's start making our recommendation model in jupyter notebook.

1.Initialize spark session:

```
from pyspark.sql import SparkSession
spark = SparkSession.builder.appName('Recommendation_system')
.getOrCreate()
```

2. Load Dataset in Apache Spark

```
df = spark.read.json("Musical_Instruments_5.json")
df.show(100,truncate=True)
```

Your dataframe will look like following:

asin iewTime	help	ful ove	rall	reviewText	revie	wTime	reviewerID) rev	iewerName	S	ummary un	ixRev
++- +		+	+			+		+				
1384719342 3545600	[0,	0]	5.0 Not much	to write 8	2 28,	2014 A2	IBPI20UZIR0U	J cassandra t	u "Yea		good	139
1384719342 [3392000	13,	14]	5.0 The produ	ct does 8	3 16,	2013 A1	4VAT5EAX3D95	5	Jake		Jake	136
1384719342 7648000	[1,	1]	5.0 The prima	ry job o 0	8 28,	2013 A1	95EZSQDW3E21	Rick Bennet	te "Ri It	Does The Jo	b Well	137
1384719342 2336000	[0,	9]	5.0 Nice wind	screen p 0	2 14,	2014 A2	C00NNG1ZQQG2	RustyBill "	Sunday GO	OD WINDSCREE	N F	139
1384719342	[0,	9]	5.0 This pop	filter i 0	2 21,	2014	94QU4C90B1AX	(SEAN	MASLANKA No	more pops w	hen	139
B00004Y2UT 5048000	[0,	9]	5.0 So good t	hat I bo 1	2 21,	2012 A2	A039TZMZHH9Y	/ Bill Lewey	"blewey"	The Best	Cable	135
B08864Y2UT B089660	[0,	9]	5.0 I have us	ed monst 0	1 19,	2014 A1	UPZM995ZAH96)	Brian Mo	nster Standa	rd	139
B00004Y2UT 3024000	[0,	9]	3.0 I now use	this ca 1	1 16,	2012 A	JNFQI3YR6XJ5	Fender G	uy "Rick" Di	dn't fit my	199	135

Original dataframe

3. Select appropriate columns

```
nd=df.select(df['asin'],df['overall'],df['reviewerID'])
nd.show()
```

We do not need all the columns present in the dataframe .Only asin which is

Open in app


```
+----+
                                                                            asin|overall| reviewerID|
 +----+
   |1384719342| 5.0|A2IBPI20UZIR0U|
|1384719342| 5.0|A14VAT5EAX3D9S|
| 1384719342 | 5.0 | A195EZSQDW3E21 | 1384719342 | 5.0 | A2C00NNG1ZQQG2 | 1384719342 | 5.0 | A94QU4C90B1AX | B00004Y2UT | 5.0 | A2A039TZMZHH9Y | B00004Y2UT | 5.0 | A1UPZM995ZAH90 | B00004Y2UT | 3.0 | AJNFQI3YR6XJ5 | B00004Y2UT | 5.0 | A3M1PLEYNDEY08 | B00004Y2UT | 5.0 | AMNTZU1YQN1TH | 5
| B00004Y2UT | 5.0 | AMNTZUTYQNTTH | B00004Y2UT | 5.0 | A2NYK9KWFMJV4Y | B00005ML71 | 4.0 | A35QFQI0M46LWO | B00005ML71 | 5.0 | A1C0009LOLVI39 | B00005ML71 | 5.0 | A17SLR18TUMULM | B00005ML71 | 2.0 | A2PD27UKAD3Q00 | B000068NSX | 4.0 | AKSFZ4G1AXYFC | B000068NSX | 4.0 | AKSFZ4G1AXYFC | B000068NSX | 4.0 | A67017LMBRU00 | B000068NSX | 4.0 | B
| B000068NSX | 5.0 | A670JZLHBBUQ9 |
| B000068NSX | 5.0 | A2EZWZ8MBEDOLN |
| B000068NSX | 5.0 | A1CL807EOUPVP1 |
 +----+
only showing top 20 rows
```

4. Importing important modules

from pyspark.ml.evaluation import RegressionEvaluator from pyspark.ml.recommendation import ALS

5. Converting String to index

Before making an ALS model it needs to be clear that ALS only accepts integer value as parameters. Hence we need to convert asin and reviewerID column in index form.

```
from pyspark.ml.feature import StringIndexer
from pyspark.ml import Pipeline
from pyspark.sql.functions import col
indexer = [StringIndexer(inputCol=column,
outputCol=column+" index") for column in list(set(nd.columns)-
set(['overall'])) ]
```

Get started) Open in app

transformed.show()

asin o	verall	reviewerID	reviewerID_index	asin_index
1384719342	5.0	A2IBPI20UZIR0U	72.0	781.0
1384719342	5.0	A14VAT5EAX3D9S	359.0	781.0
1384719342	5.0	A195EZSQDW3E21	436.0	781.0
1384719342	5.0	A2C00NNG1ZQQG2	1216.0	781.0
1384719342	5.0	A94QU4C90B1AX	1137.0	781.0
B00004Y2UT	5.0	A2A039TZMZHH9Y	54.0	629.0
B00004Y2UT	5.0	A1UPZM995ZAH90	348.0	629.0
B00004Y2UT	3.0	AJNFQI3YR6XJ5	324.0	629.0
B00004Y2UT	5.0	A3M1PLEYNDEY08	12.0	629.0
B00004Y2UT	5.0	AMNTZU1YQN1TH	185.0	629.0
B00004Y2UT	5.0	A2NYK9KWFMJV4Y	4.0	629.0
B00005ML71	4.0	A35QFQI0M46LWO	425.0	870.0
B00005ML71	3.0	A2NIT6BKW11XJQ	652.0	870.0
B00005ML71	5.0	A1C0009LOLVI39	55.0	870.0
B00005ML71	5.0	A17SLR18TUMULM	651.0	870.0
B00005ML71	2.0	A2PD27UKAD3Q00	290.0	870.0
B000068NSX	4.0	AKSFZ4G1AXYFC	93.0	538.0
B000068NSX	5.0	A670JZLHBBUQ9	258.0	538.0
B000068NSX	5.0	A2EZWZ8MBEDOLN	3.0	538.6
B000068NSX	5.0	A1CL807EOUPVP1	31.0	538.0

String to index conversion

6. Creating training and test data

(training,test)=transformed.randomSplit([0.8, 0.2])

7. Creating ALS model and fitting data

```
als=ALS(maxIter=5, regParam=0.09, rank=25, userCol="reviewerID_index
",itemCol="asin_index", ratingCol="overall", coldStartStrategy="dro
p",nonnegative=True)
model=als.fit(training)
```

8. Generate predictions and evaluate rmse

Open in app

evaluator=RegressionEvaluator(metricName="rmse",labelCol="overall
",predictionCol="prediction")

```
predictions=model.transform(test)
rmse=evaluator.evaluate(predictions)
print("RMSE="+str(rmse))
predictions.show()
```

RMSE=1.168435412679992

asin ov	erall	reviewerID re	viewerID_index	asin_index	prediction
+		· -			
B000CCJP4I	5.0	AWYXB9L41T825	858.0	148.0	3.0042644
B000CCJP4I	5.0	A3J8U952XAL34Z	502.0	148.0	3.715278
B000CCJP4I	3.0	A1YR3RVSBZK8CW	30.0	148.0	4.1241045
B000KIPTE4	4.0	A3F49ZMUC1GSRP	1165.0	463.0	3.7388468
B000KIPTE4	5.0	A2EZWZ8MBEDOLN	3.0	463.0	4.2314043
B000KIPTE4	5.0	A2AH7HRHDTQENH	399.0	463.0	4.4930964
B0010LZYUU	3.0	AXXYMIJBD0J9G	530.0	471.0	3.5948217
B0010LZYUU	5.0	A2IBPI20UZIR0U	72.0	471.0	5.033518
B0002GZ052	5.0	A26HM2R5529NYY	822.0	496.0	4.2211905
B0002GZ052	5.0	A1T4U9CAQ25IBR	750.0	496.0	4.59568
B000BKY8CU	4.0	A3PGQWCSJPCYDH	64.0	243.0	3.317696
B000RPUMII	5.0	A223S6NØDBQBHP	236.0	392.0	3.5661318
B000RPUMII	1.0	ANAKK5KNUAP17	663.0	392.0	4.1016426
B000RPUMII	5.0	A30JØRGAECAGH8	381.0	392.0	2.6469836
B000KUCQXY	4.0	A2Q6KC2KU2T00L	1315.0	540.0	3.1362884
B000KUCQXY	5.0	A208BAXJPDSV0M	365.0	540.0	4.13888
B001GGYF4E	4.0	A3S737ZGWE1GKY	1346.0	623.0	3.714615
B001GGYF4E	3.0	A8DCZN408QYKC	953.0	623.0	3.6110063
B009EOKTCM	5.0	A1SD1C8XK3Z3V1	6.0	858.0	4.6142297
B0002GLCRC	5.0	A24VCDADYAIHAM	481.0	31.0	4.6885085

Predictions for test data

9. Providing Recommendations

user_recs=model.recommendForAllUsers(20).show(10)

Open in app


```
recommendations
reviewerID index
             471 [[746, 5.981454],...
            1342 [[412, 6.348332],...
             463 [[898, 6.0316505]...
             833 [[426, 6.379773],...
             496 [[426, 5.978744],...
             148 [[898, 6.291563],...
            1088 [[426, 4.7776713]...
            1238 [[579, 5.840673],...
             540 [[898, 4.944048],...
             392 [[710, 5.531966],...
only showing top 10 rows
```

Recommendations

10. Converting back to string form

As seen in above image the results are in integer form we need to convert it back to its original name. The code is little bit longer given so many conversions.

```
import pandas as pd
recs=model.recommendForAllUsers(10).toPandas()
nrecs=recs.recommendations.apply(pd.Series) \
            .merge(recs, right index = True, left index = True) \
            .drop(["recommendations"], axis = 1) \
            .melt(id vars = ['reviewerID index'], value name =
"recommendation") \
            .drop("variable", axis = 1) \
            .dropna()
nrecs=nrecs.sort values('reviewerID index')
nrecs=pd.concat([nrecs['recommendation'].apply(pd.Series),
nrecs['reviewerID index']], axis = 1)
nrecs.columns = [
        'ProductID index',
        'Rating',
        'UserID index'
md=transformed.select(transformed['reviewerID'],transformed['revi
ewerID index'],transformed['asin'],transformed['asin index'])
md=md.toPandas()
dict1 =dict(zip(md['reviewerID index'],md['reviewerID']))
dict2=dict(zip(md['asin index'],md['asin']))
nrecs['reviewerID']=nrecs['UserID index'].map(dict1)
nrecs['asin']=nrecs['ProductID index'].map(dict2)
```

Open in app


```
new['recommendations'] = list(zip(new.asin, new.Rating))
res=new[['reviewerID','recommendations']]
res new=res['recommendations'].groupby([res.reviewerID]).apply(li
st).reset index()
print(res new)
```

```
reviewerID
                                                               recommendations
0
     A00625243BI8W1SSZNLMD [(B002MWKOAA, 6.359242916107178), (B0002GWXKC,...
1
            A10044ECXDUVKS [(B000T9PE9E, 5.138420104980469), (B002MWKOAA,...
                            [(B009E3EWPI, 5.896670818328857), (B0009RLE5Y,...
2
            A102MU6ZC9H1N6
                            [(B001C9R5P6, 5.873091697692871), (B0009RLE5Y,...
3
            A109JTUZX061UY
4
            A109ME7C09HM2M [(B003LZ2IT2, 5.653217315673828), (B000RY68PA,...
5
            A10APIDAZISWQF [(B0002GIRP2, 5.017032146453857), (B0002E4Z8M,...
            A10B2J2IRQXBWA [(B000RWJQRE, 5.008950233459473), (B000RKAFIU,...
6
7
            A10E3QH2FQUBLF
                            [(B000W00X1Y, 4.837876319885254), (B000SZVYLQ,...
                            [(B0009IEB0I, 5.778720378875732), (B001V5K2S8,...
8
            A10FM4ILBIMJJ7
9
            A10H2F00Z0T8S2
                            [(B009E3EWPI, 6.008238792419434), (B0009RLE5Y,...
10
            A10HYGDU2NITYQ [(B00095VIMU, 4.6403045654296875), (B0002DV7ZM...
            A10KH8EN77ZKWH [(B0002GWXKC, 5.347064018249512), (B0002GIRP2,...
11
                            [(B000SZVYLQ, 5.4041852951049805), (B00063678K...
12
            A10N243R7A5ZW3
13
            A10NJEIG56RHN5
                            [(B0009IEB0I, 5.517179489135742), (B0002GIRP2,...
            A10VG94SAKVSC0 [(B0002CZVHI, 4.81657075881958), (B000GUR8V8, ...
14
15
            A10ZSXTQA264C7 [(B0000AQRST, 5.012159824371338), (B0040K1G64,...
16
            A110ZEDSNASVCO [(B0002GZQ1U, 5.608520030975342), (B001V5K2S8,...
17
            A118PM0B1PGWDA [(B0001FTVD6, 3.4961419105529785), (B001RMFSDE...
            A11E4FWMN9BXJD
                            [(B0002E107M, 4.04860258102417), (B0006H92QK, ...
18
19
            A11INIL2YFJ137
                            [(B001C9R5P6, 5.950793743133545), (B0009RLE5Y,...
20
            A120FZ2ESIMA63
                            [(B0002GZQ1U, 5.798271656036377), (B001C9R5P6,...
21
            A121QRWXZI06UP
                            [(B0009RLE5Y, 5.578435897827148), (B000SZVYLQ,...
                            [(B001C9R5P6, 5.322956085205078), (B00CK2FOZM,...
22
            A126XEMCLHPBNZ
23
            A127K5WGHNUUH3
                            [(B001V5K2S8, 5.666537284851074), (B00CK2F0ZM,...
24
            A12ABV9NU02029 [(B0006H92QK, 5.467516899108887), (B002MWKOAA,...
25
             A12DQZKRKTNF5E
                             [(B0009RLE5Y, 5.362525939941406), (B000EPVXWU,...
```

Final Decult

Data Science Recommendation System Apache Spark Python

Voila!!

You just made an recommendation application.

Get started Open in app

About Write Help Legal

Get the Medium app

