

Napredni algoritmi i strukture podataka

Nasumični algoritmi

- Osnove
- PRNG
- Nasumični quicksort
- Skip-liste

Predavanje bazirano na:

[MB95] R. Motwani, P.Raghavan, "Randomized algorithms", 1995; predgovor i poglavlje 1

Slučajnost?

- Potreba?
 - Otvoreno pitanje!
 - Suparničke igre (Nash,...)

- Resurs?
 - Može sačuvati druge resurse (vrijeme, memorija)

Motivacija

- Suparničke igre
 - Denial-of-service napadi
 - Napadi temeljeni na računalnoj složenosti
 - Suparničko strojno učenje
 - Krađa povjerljivih podataka
 - Kriptografija

- Lakše do boljih algoritama!
 - Jednostavnost i/ili brzina

Motivacija – suparničke igre

- Napadi temeljeni na računalnoj složenosti
 - Npr. quicksort

- Suparničko strojno učenje
 - Randomization matters: How to defend against strong adversarial attacks, ICML 2020.
 - On the robustness of randomized classifiers to adversarial examples, Arxiv 2021.

Motivacija – bolji algoritmi

Testiranje primalnosti

• Najbrži deterministički algoritam – $O(n^5)$

• Najbrži probabilistički algoritam - $O(n^3)$

Motivacija – paradigma dizajna algoritama

- 1. Izrada efikasnog probabilističkog algoritma
- 2. Derandomizacija (složeno!)
- 3. Dobiven efikasni deterministički algoritam

Primjeri

- Test primalnosti u polinomijalnom vremenu
 - probabilistički algoritam (2003) -> deterministički algoritam (2004)
- Test povezanosti neusmjerenog grafa u logaritamskom prostoru
 - <u>probabilistički algoritam</u> (1979) -> <u>deterministički algoritam</u> (2008)

Nasumični algoritmi

- Algoritmi sa pristupom izvoru nezavisnih, nepristranih slučajnih bitova
 - Slučajni bitovi utječu na izračune
- Algoritmi sa teorijskim jamstvima!

- Stohastički algoritmi nisu tema ovog predavanja
 - Nemaju čvrstih teorijskih jamstava, "samo" empirijski rezultati
 - Optimizacijski algoritmi: poput evolucijskih, tabu-pretraživanja, simuliranog kaljenja...

Nasumični algoritmi

- Algoritmi sa pristupom izvoru nezavisnih, nepristranih slučajnih bitova
 - Slučajni bitovi utječu na izračune
- Pseudo-slučajni brojevi

"Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin.,, John von Neumann

Nasumični algoritmi - paradigme

- 1. Prevara protivnika
- 2. Slučajno uzorkovanje -> npr. iz populacije
- 3. Pronalazak "svjedoka"-> npr. testovi za dokaze
- 4. Fingerprinting i hashing
- 5. Slučajno preraspoređivanje
- 6. Balansiranje opterećenja -> raspodijeljeno računarstvo
- 7. Brzo-miješajući Markovljevi lanci -> približna brojanja
- 8. Izolacija i razbijanje simetrija -> koordinacija
- 9. Probabilističke metode i dokazi postojanja -> p>0

Generatori pseudo-slučajnih brojeva

Bogat razvoj

• Linearni kongruentni generatori (LCG) – 1951.

• Pravilo 30 – 1983.

• Generator srednjeg kvadrata i Weylovog slijeda – 2017.

Linearni kongruentni generator

- Jedan od najjednostavnijih
- Široko korišten (C, Java)

$$X_{n+1} = (aX_n + c) \bmod m$$

- Konstante: a,c,m
- "Seed": *X*₀

Nasumični algoritmi - vrste

- Las Vegas
 - Uvijek daje točan odgovor ili info o neuspjehu
 - Vrijeme izvođenja varira

- Monte Carlo
 - Vrijeme izvođenja ograničeno
 - Nekad ne vraća točan odgovor
 - Neuspjeh
 - Netočan odgovor
 - Nezavisna uzastopna pokretanja -> proizvoljno smanjenje šanse neuspjeha

Klase složenosti za probleme odlučivanja

- P svi koji mogu biti riješeni u polinomijalnom vremenu
- NP svi za koje verifikacija rješenja može biti obavljena u polinomijalnom vremenu
- **ZPP** (zero-error probabilistic polynomial) svi koji imaju Las Vegas algoritam sa očekivanim polinomijalnim trajanjem
- RP (randomized polynomial)— svi koji imaju Monte Carlo algoritam sa jednostranom greškom i polinomijalno trajanje u najgorem slučaju
- **PP** (probabilistic polynomial)— svi koji imaju Monte Carlo algoritam sa dvostranom greškom (ne gore od 50%) i polinomijalno trajanje u najgorem slučaju
- BPP (bounded-error probabilistic polynomial) PP, ali greška ne gora od 25%

Nasumični quicksort

- Quicksort
 - najbolji slučaj $O(n \cdot \log n)$
 - najgori slučaj $O(n^2)$

```
Quicksort(lo,hi,A):
1. if lo >= 0 && hi >= 0 && lo < hi then
2.    p := partition(A, lo, hi) // pivot selection, splitting
3.    quicksort(A, lo, p) // Note: the pivot is now included
4.    quicksort(A, p + 1, hi)</pre>
```

- deterministička fja partition
 - najgori slučaj $O(n^2)$ otvoreno za napade bazirane na složenosti

Nasumični quicksort

- nasumična fja partition
 - Uniformno slučajan odabir pivota iz danog raspona
 - najgori slučaj $O(n^2)$ iščezavajuća vjerojatnost
 - U očekivanju $O(n \cdot \log n)$ *
 - za svaki ulaz
 - čak i protiv "neprijatelja"
 - Vrijeme izvođenja slučajno, <u>čak i za ponovljeni ulaz</u>
 - Odvajanje (decoupling) strukture ulaza od funkcioniranja algoritma

* dokaz u [MB95]

- <u>Pugh, William: "Skip lists: a probabilistic alternative to balanced trees", Communications of the ACM 33, June 1990, pp. 668-676</u>
- Osnovni nedostatak lista: O(n) pretraživanje
- Ograničavajuće svojstvo stabala: po prirodi hijerarhijske strukture, logički neprikladne za sve primjene.
- Skip liste:
 - ključne operacije O(log₂n)...O(n)
 - nema hijerarhije
 - relativno jednostavno programiranje
 - Paralelni pristup!!!

Preskočne liste – izvod ideje iz stabala

- Stupanj (level) čvora = broj pokazivača
 - U primjeru niže, stupanj glave = 4
- Održavanje ovakve savršene strukture
 - Komplicirano i neučinkovito "glumi" stablo
 - Restrukturiranje svih čvorova iza promjene

 Odustajanje od zahtjeva za <u>pravilnim hijerarhijskim rasporedom</u> <u>čvorova</u>

- nastoji se vjerojatnosno postići <u>pravilna razdioba</u> njihovih stupnjeva.
 - Histogram broja čvorova po stupnjevima bi trebao težiti histogramu idealnog slučaja

- Brzina pristupa podatcima je u prosjeku sumjerljiva brzini u AVL ili RB stablu
- Lošija jamstva za najgori slučaj
- Odnos između stabala i preskočne liste

- Uporabna struktura skip liste ovisi o dva čimbenika:
 - 1. predviđenom kapacitetu *n*
 - pretpostavljeni najveći broj elemenata u listi
 - 2. vjerojatnosti pojedinih stupnjeva čvora
 - određuje razdiobu
 - najčešće se odabire samo vjerojatnost p prijelaska čvora u višu razinu
 - definira geometrijsku razdiobu
 - prijelasci u višu razinu ponavljaju se sve do prvog neuspjeha

 Kapacitet n i vjerojatnost p određuju sve teorijske značajke preskočne liste

• Vjerojatnost P(k) da novi čvor u konačnici postigne k-ti stupanj

•
$$P(k) = [P(\text{prijelaz})]^{k-1} \cdot P(\text{ostanak}) = p^{k-1} \cdot (1-p)$$

Geometrijska razdioba

• k-1 uspješnih preskoka u višu razinu i jedan, konačni, neuspjeh

 Očekivani ("srednji") stupanj čvorova u listi ("srednja visina" liste) predviđenom kapacitetu n

$$E(k) = \sum_{k=1}^{\infty} k \cdot P(k) = (1-p) \sum_{k=1}^{\infty} k \cdot p^{k-1}$$

$$\sum_{k=1}^{n} k \cdot p^{k-1} = \frac{1}{(1-p)^2}$$

$$=> E(k) = \sum_{k=1}^{\infty} k \cdot P(k) = \frac{1}{1-p}$$

• Točan broj n_k čvorova k-tog stupnja je <u>slučajna varijabla</u> pa se može izračunati **očekivanje** $E(n_k)$

• n_k s n ukupno ubačenih brojeva u skip listu ima binomnu razdiobu $n_k \sim B(n_k; n, P(k))$

Prema tome, očekivanje E(n_k) je

$$E(n_k) = n \cdot P(k) = n \cdot p^{k-1} \cdot (1-p)$$

Preskočne liste – konstruiranje – broj razina

 U savršeno konstruiranoj skip-listi bit će samo jedan čvor najvišeg stupnja h

$$n \cdot p^{h-1} \ge 1$$

$$h \le 1 + \log_p \frac{1}{n} = 1 + \log_{\frac{1}{p}} n$$

Uzimamo

$$h = floor(1 + log_{\frac{1}{p}}n)$$

Primjer: p=0.5, n=12 $h = floor(1 + log_2 12) = floor(4.6) = 4$

- 1. Uzastopno uzorkovanje uspona sa prekidom na h
 - "Višak" se rasporedi na najvišoj razini
- Direktno uzorkovanje koristi samo jedan sluč.broj po umetanju
 - 2. Iz odrezane kumulativne distribucije F(k) -> prekid na h
 - "Višak" se rasporedi na najvišoj razini
 - 3. Iz kvantizirane kumulativne distribucije H(k)
 - Kvantizacija zaokruživanje
 - "višak" se rasporedi po histogramu

- Uzastopno uzorkovanje uspona sa prekidom na h
 - "Višak" se rasporedi na najvišoj razini

```
randomLevel()
|v| := 1
|-- random() that returns a random value in [0...1)
| while random() < p and |v| < MaxLevel do
|v| := |v| + 1
|return |v|
```


- Direktno uzorkovanje iz "odrezane" kumulativne distribucije F(k) (prekid na h)
 - "Višak" se rasporedi na najvišoj razini
 - $F(k) = P(x \le k); F(h) = 1$ randomLevelDirect()
 - 1. |v| =1
 - 2. r=random()
 - 3. while r>F(|v|):
 - 1. |v| := |v| + 1
 - 4. return |v|

Preskočne liste – konstruiranje – histogram

• Složimo kumulativni histogram prema očekivanju (prethodni slideovi)

$$\mathbb{E}(n_{x \le k}) = n \cdot (1 - P(x > k)) = n \cdot (1 - p^{k})$$

Broj čvorova razine manje ili jednake k u kumulativnom histogramu:

$$H(k) = ceil(\mathbb{E}(n_{x \le k})) = ceil(n \cdot (1 - p^k))$$

Preskočne liste – konstruiranje – histogram

• p=0.5, n=12 , h=4
$$H(k) = ceil(n \cdot (1-p^k))$$

$$H(1) = ceil(12 \cdot (1 - 0.5^{1})) = 6$$

 $H(2) = ceil(12 \cdot (1 - 0.5^{2})) = 9$
 $H(3) = ceil(12 \cdot (1 - 0.5^{3})) = ceil(10.5) = 11$
 $H(4) = ceil(12 \cdot (1 - 0.5^{3})) = ceil(11.25) = 12$

• Pokušaj izračuna za sve više razine daje H(k)=12

Napravimo polje H duljine h+1 za kum.histogram

randomLevelDirectHist()

- 1. |v| = 1
- 2. r=randint(1,n) // cijeli broj iz [1,n]
- 3. while r>H[|v|]:
 - 1. |v|:=|v|+1
- 4. return |v|

Napredne teme

Brisanje?

Preskočne liste - primjena

- Alternativa stablima za primjene sa velikim paralelizmom
 - Jednostavnije implementacije za lock-free operacije
 - Veće zauzeće memorije za brži pristup
 - Jednostavnije operacije umetanja i brisanja
- Inspiracija za algoritme
 - približni najbliži susjedi(2016)
 - najkraći putevi u cestovnoj mreži(2015)
 - dinamička polja u kvantnim algoritmima (2021)

Nasumični algoritmi – napredne teme

- Otvoreno pitanje BPP=P?
 - Nasumičnost pomaže, ALI...
 - PRNG
 - Derandomizacija
- Kriptografija, teorija računalnog učenja, raspodijeljeno računarstvo
 - blockchain
- Proširenje i definiranje pojmova
 - Znanje, tajnost, učenje, dokaz, slučajnost
- Interaktivni sustavi dokaza, vjerojatnosno provjerljivi dokazi

