

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»	
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»_	

Лабораторная работа № 3 По курсу «Моделирование»

Тема Марковские цепи

Студент Громова В.П.

Группа ИУ7-71Б

Преподаватель Рудаков И.В.

Москва. 2020 г.

Задание лабораторной работы

Реализовать программу для вычисления среднего времени нахождения сложной системы S, имеющей не более десяти состояний, при установившемся режиме работы.

Теоретическая часть

Случайный процесс, протекающий в системе S, называется марковским, если он обладает следующим свойством: для каждого момента времени t_0 вероятность любого состояния системы в будущем (при $t > t_0$) зависит только от ее состояния в настоящем (при $t = t_0$) и не зависит от того, когда и каким образом система пришла в это состояние. Вероятностью і-го состояния называется вероятность $p_i(t)$ того, что в момент t система будет находиться в состоянии S_i . Для любого момента t сумма вероятностей всех состояний равна единице.

Для решения поставленной задачи, необходимо составить систему уравнений Колмогорова по следующим принципам: в левой части каждого из уравнений стоит производная вероятности і-го состояния; в правой части — сумма произведений вероятностей всех состояний (из которых идут стрелки в данное состояние), умноженная на интенсивности соответствующих потоков событий, минус суммарная интенсивность всех потоков, выводящих систему из данного состояния, умноженная на вероятность данного (і-го состояния). Пример для системы, имеющей 3 состояния и матрицу интенсивностей вида

$$\begin{array}{cccc} 0 & \lambda_{01} & \lambda_{02} \\ \lambda_{10} & 0 & \lambda_{12} \\ \lambda_{20} & \lambda_{21} & 0 \end{array}$$

$$\begin{cases} p'_0 = -(\lambda_{01} + \lambda_{02})p_0 + \lambda_{10}p_1 + \lambda_{20}p_2 \\ p'_1 = -(\lambda_{10} + \lambda_{12})p_1 + \lambda_{01}p_0 + \lambda_{21}p_2 \\ p'_2 = -(\lambda_{20} + \lambda_{21})p_2 + \lambda_{02}p_0 + \lambda_{12}p_1 \end{cases}$$

Для получения предельных вероятностей, то есть вероятностей в стационарном режиме работы при $t \to \infty$, необходимо приравнять левые части уравнений к нулю. Таким образом получается система линейных уравнений. Для решения полученной системы необходимо добавить условие нормировки $(p_0 + p_1 + p_2 = 1)$.

После того, как предельные вероятности будут найдены, необходимо найти время. Для этого необходимо с интервалом Δ t находить каждую вероятность в момент времени $\Delta t + t$. Когда найденная вероятность будет равна соответствующей финальной с точностью до заданной погрешности, тогда можно завершить вычисления. На каждом шаге необходимо вычислять приращения для каждой вероятности (как функции): $dp_0 = \frac{-(\lambda_{01} + \lambda_{02})p_0 + \lambda_{10}p_1 + \lambda_{20}p_2}{\Delta t}$. При этом на первом шаге стоит взять начальные значения для dp. В данной работе все изначальные значения для каждого состояния равны $\frac{1}{n}$, где n — количество состояний системы. Точность вычислений 1e-3.

Результаты работы

На рисунках 1, 2 и 3 представлены результаты работы программы для систем с количеством состояний 3, 5, и 7 соответственно.

	ерность системы: 3	
	++ 0.0 0.696 0.6721	
	0.3799 0.0 0.8983	
	0.8151 0.7895 0.0	
	Предельные вероятности Вр	
	+ 0.2999 1.	
	0.3683 1.	477
	0.3318 0.	143
+	·	+

Рисунок 1. Размерность системы S равна 3.

Рисунок 2. Размерность системы S равна 5.

Введите разм	ерность системы: 7
Состояния	1 1 1 2 1 3 1 4 1 5 1 6 1 7 1
	++
	0.0 0.9827 0.6272 0.6182 0.2461 0.5551 0.7821
2	0.2979 0.0 0.4745 0.5648 0.0995 0.0374 0.6273
	0.8833 0.2477 0.0 0.904 0.0409 0.2187 0.1536
4	0.8538 0.375 0.2569 0.0 0.2201 0.6219 0.6821
5	0.3689 0.8282 0.1709 0.3835 0.0 0.2702 0.3917
	0.7367 0.5363 0.436 0.9261 0.3957 0.0 0.044
1 7	0.2107 0.81 0.8798 0.9692 0.9502 0.6405 0.0
+	+
+	++
Состояния	Предельные вероятности Время
+	++
	0.1317 1.085
2	0.2178 2.164
3	0.157 1.626
4	0.1916 1.732
5	0.0985 4.617
	0.1054 2.455
1 7	0.0981 1.217
+	++

Рисунок 3. Размерность системы S равна 7.