Robot Motion

- Robot motion is inherently uncertain.
- How can we model this uncertainty?

Reasons for Motion Errors of Wheeled Robots

and many more ...

different wheel diameters

Probabilistic Motion Models

- To implement the Bayes Filter, we need the transition model $p(x_t \mid x_{t-1}, u_t)$.
- The term $p(x_t \mid x_{t-1}, u_t)$ specifies a posterior probability, that action u_t carries the robot from x_{t-1} to x_t .
- In this section we will discuss, how $p(x_t \mid x_{t-1}, u_t)$ can be modeled based on the motion equations and the uncertain outcome of the movements.
- We will consider odometry-based models that are used when systems are equipped with wheel encoders.

Example Wheel Encoders

These modules provide +5V output when they "see" white, and a 0V output when they "see" black.

These disks are manufactured out of high quality laminated color plastic to offer a very crisp black to white transition. This enables a wheel encoder sensor to easily see the transitions.

Source: http://www.active-robots.com/

Coordinate Systems

- The configuration of a typical wheeled robot in 3D can be described by six parameters.
- This are the three-dimensional Cartesian coordinates plus the three Euler angles for roll, pitch, and yaw.
- For simplicity, throughout this section we consider robots operating on a planar surface.
- The state space of such systems is three-dimensional (x,y,θ) .

Odometry Model

- Robot moves from $\langle x, y, \theta \rangle$ to $\langle \bar{x}, \bar{y}, \bar{\theta} \rangle$.
- Odometry information $u = \langle \delta_{rot1}, \delta_{rot2}, \delta_{trans} \rangle$.

$$\delta_{trans} = \sqrt{(\bar{x} - x)^2 + (\bar{y} - y)^2}$$

$$\delta_{rot1} = \operatorname{atan2}(\bar{y} - y, \bar{x} - x) - \theta$$

$$\delta_{rot2} = \bar{\theta} - \theta - \delta_{rot1}$$

Example Noise Model for Odometry

- The measured motion is given by the true motion corrupted with noise.
- The example noise functions ε depend on δ_{rot1} , δ_{rot2} , and δ_{trans}
- The parameters $\alpha_1, ..., \alpha_4$ need to be estimated from data for every individual robot

$$\begin{split} \hat{\delta}_{rot1} &= \delta_{rot1} + \varepsilon_{\alpha_1 |\delta_{rot1}| + \alpha_2 |\delta_{trans}|} \\ \hat{\delta}_{trans} &= \delta_{trans} + \varepsilon_{\alpha_3 |\delta_{trans}| + \alpha_4 (|\delta_{rot1}| + |\delta_{rot2}|)} \\ \hat{\delta}_{rot2} &= \delta_{rot2} + \varepsilon_{\alpha_1 |\delta_{rot2}| + \alpha_2 |\delta_{trans}|} \end{split}$$

Calculating the Probability Density of a (zero-centered) Normal Distribution

query point

1. Algorithm **prob_normal_distribution**(
$$a,b$$
):

1. $(1,a^2)$ std. deviation

2. return
$$\frac{1}{\sqrt{2\pi b^2}} \exp\left\{-\frac{1}{2}\frac{a^2}{b^2}\right\}$$
 std. deviat

Calculating the Posterior $p(x' \mid x, u)$

Algorithm $motion_model_odometry(x', x, u)$

$$\mathbf{x} = \langle x, y, \theta \rangle, \mathbf{x}' = \langle x', y', \theta' \rangle, \mathbf{u} = \langle \delta_{rot1}, \delta_{rot2}, \delta_{trans} \rangle$$

1.
$$\hat{\delta}_{trans} = \sqrt{(x'-x)^2 + (y'-y)^2}$$

2.
$$\hat{\delta}_{rot1} = atan2(y' - y, x' - x) - \theta$$

3.
$$\hat{\delta}_{rot2} = \theta' - \theta - \hat{\delta}_{rot1}$$

4.
$$p_1 = \text{prob}(\delta_{rot1} - \hat{\delta}_{rot1}, \alpha_1 |\delta_{rot1}| + \alpha_2 \delta_{trans})$$

5.
$$p_2 = \text{prob}(\delta_{trans} - \hat{\delta}_{trans}, \alpha_3 \delta_{trans} + \alpha_4(|\delta_{rot1}| + |\delta_{rot2}|))$$

6.
$$p_3 = \text{prob}(\delta_{rot2} - \hat{\delta}_{rot2}, \alpha_1 |\delta_{rot2}| + \alpha_2 \delta_{trans})$$

7. return
$$p_1 \cdot p_2 \cdot p_3$$

Here, prob() is prob_normal_distribution()

Application

- Repeated application of the motion model for short movements.
- Typical banana-shaped distributions obtained for the 2dprojection of the 3d posterior.

Sampling

- Certain implementations of the Bayes filter require to sample from the motion model
- Sampling means generating random numbers that follow a specific distribution
- We model the noise functions ε as normal distributions with zero mean
- One algorithm to sample from the normal distribution is:
 - 1. Algorithm **sample_normal_distribution**(*b*):
 - 2. return $\frac{1}{2} \sum_{i=1}^{12} rand(-b, b)$

Normally Distributed Samples

10⁶ samples

Sample Odometry Motion Model

Algorithm **sample_motion_model**(u, x):

$$u = \langle \delta_{rot1}, \delta_{rot2}, \delta_{trans} \rangle, x = \langle x, y, \theta \rangle$$

- 1. $\hat{\delta}_{rot1} = \delta_{rot1} + \text{sample}(\alpha_1 | \delta_{rot1} | + \alpha_2 \delta_{trans})$
- 2. $\hat{\delta}_{trans} = \delta_{trans} + \text{sample}(\alpha_3 \delta_{trans} + \alpha_4 (|\delta_{rot1}| + |\delta_{rot2}|))$
- 3. $\hat{\delta}_{rot2} = \delta_{rot2} + \text{sample}(\alpha_1 | \delta_{rot2} | + \alpha_2 \delta_{trans})$
- 4. $x' = x + \hat{\delta}_{trans} \cos(\theta + \hat{\delta}_{rot1})$
- 5. $y' = y + \hat{\delta}_{trans} \sin(\theta + \hat{\delta}_{rot1})$
- $\mathbf{6.} \quad \theta' = \theta + \hat{\delta}_{rot1} + \hat{\delta}_{rot2}$
- 7. return $\langle x', y', \theta' \rangle$

Here, sample() is sample_normal_distribution()

Examples (Odometry-Based)

samples generated from the motion model