project Report: Waste Classification Using Transfer Learning

Pro	ie	ct	T	itl	е
-----	----	----	---	-----	---

CleanTech: Transforming Waste Management Using Transfer Learning

Internship Platform

SmartInternz

Domain

Artificial Intelligence & machine learning

Objective

The main goal of this project is to build a smart waste classification system using deep learning and transfer learning techniques. The system classifies uploaded waste images into five categories — **Cardboard**, **Glass**, **Paper**, **Plastic**, and **Trash** — to support automated waste segregation and promote clean and sustainable waste management practices.

Tools & Technologies Used

- Python Programming language
- TensorFlow / Keras Deep learning framework
- MobileNetV2 Transfer learning model
- Flask Web framework for backend

- HTML / CSS Frontend web interface
- VS Code Code editor
- Kaggle Waste image dataset source

Dataset Description

- Source: Kaggle
- Classes: Plastic, Trash, Glass, Paper, Cardboard
- **Type**: Image dataset
- Structure: Each class is stored in a separate folder
- Preprocessing:
 - Image resizing to 224x224
 - Normalization (rescale to [0, 1])
 - Data augmentation (horizontal flip, zoom)

Model Architecture

- Base Model: MobileNetV2 (pretrained on ImageNet)
- Modifications:
 - Frozen base layers
 - Added Global Average Pooling layer
 - Dense layer with 128 units (ReLU)
 - Output layer with 5 units (Softmax)

• Loss Function: Categorical Crossentropy

• Optimizer: Adam

• **Epochs**: 5

• **Metrics**: Accuracy

Web Application Workflow

- 1. User uploads an image using a simple HTML form.
- 2. Flask receives the image and preprocesses it.
- 3. The trained deep learning model predicts the waste category.
- 4. The result is returned to the browser and displayed on the page.

Project Structure

Output Example

Input Image Predicted Class

plastic_bottle.jpg Plastic

brown_box.jpg Cardboard

Results & Accuracy

• Training Accuracy: ~90%

• Validation Accuracy: ~85%

• Inference Time: < 1 second per image

Future Scope

- Integration with IoT smart bins for real-time classification
- Cloud deployment using services like AWS or Heroku
- Real-time dashboards to monitor waste segregation
- Support for more waste categories (e-waste, metal, food waste, etc.)

Conclusion

This project demonstrates how transfer learning can be effectively used to solve real-world problems like waste management. The use of MobileNetV2 allows the model to perform well even with limited resources, and the Flask-based web interface makes the solution easy to use. Overall, the system can play a valuable role in promoting smart and sustainable waste handling.

Submitted By

Farida Mohammad Intern, SmartInternz Dhanekula institute of engineering and technology.