Linear Regression: What do these numbers mean?

Dep. Variable:		DomesticTotalGross			R	-squared:	0.2	86
Model:		OLS			A	dj. R-squared:	0.2	78
Method	•	Least Squ	ıares		F-	statistic:	34.	82
Date:		Sun, 14 Sep 2014			Pr	ob (F-statistic):	6.8	0e-08
Time:		21:59:46			Log-Likelihood:		-17	38.1
No. Obs	ervations:	89			AIC:		348	30.
Df Resid	duals:	87			BIC:		3485.	
Df Model:		1						
	coef	std err	t	P >	> t [95.0% Conf. Int.]		t.]	
Rudget 0.78/6		ი 133	5 901 0 0		00 0 520 1 049			

	coef	std err	t	P> t	[95.0% Conf. Int.]
Budget	0.7846	0.133	5.901	0.000	0.520 1.049
Ones	4.44e+07	1.27e+07	3.504	0.001	1.92e+07 6.96e+07

Ones	4.44e+0	7 1.27	+07	+07 3.504 0.001 1		1.92e+07 6.9	
			1				
Omnibus:		39.749	Dur	bin-Wa	0.674		
Prob(Omnibus):		0.000	Jar	que-Be	99.441		
Skew:		1.587	Pro	b(JB):		2.55e-22	
Kurtosis:		7.091	Cond. No.			1.54e+08	

ø				i
١	١		1	/
	۱		1	
	7	7		

Dep. Variable:	DomesticTotalGross	R-squared:	0.286
Model:	OLS	Adj. R-squared:	0.278
Method:	Least Squares	F-statistic:	34.82
Date:	Sun, 14 Sep 2014	Prob (F-statistic):	6.80e-08
Time:	21:59:46	Log-Likelihood:	-1738.1
No. Observations:	89	AIC:	3480.
Df Residuals:	87	BIC:	3485.
Df Model:	1		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Budget	0.7846	0.133	5.901	0.000	0.520 1.049
Ones	4.44e+07	1.27e+07	3.504	0.001	1.92e+07 6.96e+07

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

Ordinary Least Squares

O LO TROGROSSION TROGRAS						
Dep. Variable:	DomesticTotalGross	R-squared:	0.286			
Model:	OLS	Adj. R-squared:	0.278			
Method:	Least Squares	F-statistic:	34.82			
Date:	Sun, 14 Sep 2014	Prob (F-statistic):	6.80e-08			
Time:	21:59:46	Log-Likelihood:	-1738.1			
No. Observations:	89	AIC:	3480.			
Df Residuals:	87	BIC:	3485.			
Df Model:	1					

	coef	std err	t	P> t	[95.0% Conf. Int.]
Budget	0.7846	0.133	5.901	0.000	0.520 1.049
Ones	4.44e+07	1.27e+07	3.504	0.001	1.92e+07 6.96e+07

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

DomesticTotalGross	R-squared:	0.286
OLS	Adj. R-squared:	0.278
Least Squares	F-statistic:	34.82
Sun, 14 Sep 2014	Prob (F-statistic):	6.80e-08
21:59:46	Log-Likelihood:	-1738.1
89	AIC:	3480.
87	BIC:	3485.
1		
	OLS Least Squares Sun, 14 Sep 2014 21:59:46 89	Least Squares F-statistic: Sun, 14 Sep 2014 Prob (F-statistic): 21:59:46 Log-Likelihood: 89 AIC:

	coef	std err	t	P> t	[95.0% Conf. Int.]
Budget	0.7846	0.133	5.901	0.000	0.520 1.049
Ones	4.44e+07	1.27e+07	3.504	0.001	1.92e+07 6.96e+07

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

OLS Regression Results

Dep. Variable:	DomesticTotalGross	R-squared:	0.286
Model:	OLS	Adj. R-squared:	0.278
Method:	Least Squares	F-statistic:	34.82
Date:	Sun, 14 Sep 2014	Prob (F-statistic):	6.80e-08
Time:	21:59:46	Log-Likelihood:	-1738.1
No. Observations:	89	AIC:	3480.
Df Residuals:	87	BIC:	3485.
Df Model:	1		

Residual degrees of freedom

number of observations

number of parameters (including intercept)

OLS Regression Results

Dep. Variable:	DomesticTotalGross	R-squared:	0.286
Model:	OLS	Adj. R-squared:	0.278
Method:	Least Squares	F-statistic:	34.82
Date:	Sun, 14 Sep 2014	Prob (F-statistic):	6.80e-08
Time:	21:59:46	Log-Likelihood:	-1738.1
No. Observations:	89	AIC:	3480.
Df Residuals:	87	BIC:	3485.
Df Model:	1		

Model degrees of freedom

number of parameters - 1
(or # of features not including intercept)

	_		
Dep. Variable:	DomesticTotalGross	R-squared:	0.286
Model:	OLS	Adj. R-squared:	0.278
Method:	Least Squares	F-statistic:	34.82
Date:	Sun, 14 Sep 2014	Prob (F-statistic):	6.80e-08
Time:	21:59:46	Log-Likelihood:	-1738.1
No. Observations:	89	AIC:	3480.
Df Residuals:	87	BIC:	3485.
Df Model:	1		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Budget	0.7846	0.133	5.901	0.000	0.520 1.049
Ones	4.44e+07	1.27e+07	3.504	0.001	1.92e+07 6.96e+07

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

Best model minimizes

$$\sum_{i=1}^{m} (y_{\beta}(x^{(i)}) - y_{obs}^{(i)})^{2}$$
 Sum of Squared Error SSE

Variance of observed points (times m) is

$$\sum_{i=1}^{m} \left(\overline{y}_{obs} - y_{obs}^{(i)} \right)^2$$
 Total Sum of Squares

Susses 55T

R²= | - SSE SST

R2?

$$R^2 = 1 - \frac{SSE}{SST}$$

Randomness left in the model

Variation in the data

$$R^2 = 1 - \frac{SSE}{SST}$$

Randomness left in the model

Variation in the data

SSE/SST is the portion of variation left unexplained by the model (handled by ε)

$$R^2 = 1 - \frac{SSE}{SST}$$

Randomness left in the model

Variation in the data

R² is the portion of variation explained by the model (R² is between 0 and 1)

as long as the model has smaller residuals than the mean-only model

Dep. Variable:	DomesticTotalGross	R-squared:	0.286
Model:	OLS	Adj. R-squared:	0.278
Method:	Least Squares	F-statistic:	34.82
Date:	Sun, 14 Sep 2014	Prob (F-statistic):	6.80e-08
Time:	21:59:46	Log-Likelihood:	-1738.1
No. Observations:	89	AIC:	3480.
Df Residuals:	87	BIC:	3485.
Df Model:	1		

F-test

Null hypothesis:

This data can be modeled by setting all β values to zero (and the linear relationship we've found is purely due to chance)

Prob (F-statistic):

Is the p-value for this test. ie: it is the probability of finding the observed (or more extreme) results when the above null hypothesis (Ho) is true. If p-value <0.05, we can reject the null hypothesis. (Data is too extreme to fit this model just by chance.) It doesn't mean the model is "true"

10 Ho: B1=10= B2=0 Ha: Bi!=0 Determine critical val (d=.05) 3) CMC. Folat (SSP-SSE)/P 55E/N-P-1

Dep. Variable:	DomesticTotalGross	R-squared:	0.286
Model:	OLS	Adj. R-squared:	0.278
Method:	Least Squares	F-statistic:	34.82
Date:	Sun, 14 Sep 2014	Prob (F-statistic):	6.80e-08
Time:	21:59:46	Log-Likelihood:	-1738.1
No. Observations:	89	AIC:	3480.
Df Residuals:	87	BIC:	3485.
Df Model:	1		

Log L

Likelihood is just a different cost function

$$L(\beta_0, \beta_1) = p(y_{obs} | \beta_0, \beta_1)$$

For a given model (pair of $\beta 0$ And $\beta 1$ values), Likelihood is the prob. Of getting exactly this set of observed values

The model with maximum likelihood is the best fit.

DomesticTotalGross	R-squared:	0.286
OLS	Adj. R-squared:	0.278
Least Squares	F-statistic:	34.82
Sun, 14 Sep 2014	Prob (F-statistic):	6.80e-08
21:59:46	Log-Likelihood:	-1738.1
89	AIC:	3480.
87	BIC:	3485.
1		
	OLS Least Squares Sun, 14 Sep 2014 21:59:46 89	Least Squares F-statistic: Sun, 14 Sep 2014 Prob (F-statistic): 21:59:46 Log-Likelihood: 89 AIC:

	coef	std err	t	P> t	[95.0% Conf. Int.]
Budget	0.7846	0.133	5.901	0.000	0.520 1.049
Ones	4.44e+07	1.27e+07	3.504	0.001	1.92e+07 6.96e+07

t-test

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-2
Kurtosis:	7.091	Cond. No.	1.54e+0

O Ho: B=0 Ha: B, !=0 two sider @ Determine critical value: d2.05 3) Rala test state B1-0 Std cere & feet NUM S(1) 7 B1

Ha is True is True FALSE Negative NERALNE TUPE I ERROR ME POSTANE positive TypE I ERROR a = mob of Type I error

		coef	std err	t	P> t	[95.0% Conf. Int.]
$\beta_{\scriptscriptstyle 1}$	Budget	0.7846	0.133	5.901	0.000	0.520 1.049
1	Ones	4.44e+07	1.27e+07	3.504	0.001	1.92e+07 6.96e+07
U						_

t-test

Null hypothesis:

This specific β value is zero (and the data can be created by such a model (with the other β values intact)

P > |t|:

P-value for this test. Again if p-value < 0.05, we can reject the null hypothesis: This variable does contribute to this model (DOES or DOESN'T. Not how much)

Normality test

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus)	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

Null hypothesis:

ε is normally distributed. (no skew, no excess kurtosis)

Prob(Omnibus):

The p-value for this test. If p-value < 0.05, we reject the null hypothesis: ϵ does not exactly follow the normal distribution that we assumed.

We develop the normality test statistic:

 $T = s^{**}2 + k^{**}2$

Pval ~ 2-sided chi-squared probability

Skew & Kurtosis

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

Mern > MED

Kurtosis (peakness)

PERKSONS Stew

3 (Medon-Med)

den

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

Another normality test

Null hypothesis:

Again, ϵ is normally distributed. Idea is : we are looking for a skewness coeff. \sim 0, and Kurtosis \sim 3. JB tests if those conditions are held against alternatives.

Prob(Omnibus):

The p-value for this test.

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

Autocorrelation test

DUND CON

Null hypothesis:

Errors are uncorrelated

Prob(JB):

The p-value for this test

~ 2 ideal

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

Sensitivity of prediction to small errors in input

Condition Number:

Given Mx=b, we can calculate the condition number:

$$CN = \frac{|\lambda max(M)|}{|\lambda min(M)|}$$

Note that is the condition number becomes quite large, then this implies that the matrix is ill-posed (does not have a unique, well-defined solution). This may be due to multicollinear relationships between independent variables.

4 -

Model Selection I

For models with the same amount of parameters, easy:

For models with the same amount of parameters, easy:

Take the one with the better cost function

	Log-Likelihood:	-1753.0
_		

For models of different complexity: Beware under/overfitting

For models of different complexity: Beware under/overfitting

In machine learning, this is also called Bias/variance tradeoff

First and third will do poorly in the test set

Challenge: Fit a training set, calculate mean squared error on your test set (scikit learn)

There are a few metrics that try to measure this (without even looking at a test set yet)

OLS Regression Results

Dep. Variable:	DomesticTotalGross	R-squared:	0.286	Adjusted
Model:	OLS	Adj. R-squared:	0.278	R^2
Method:	Least Squares	F-statistic:	34.82	
Date:	Sun, 14 Sep 2014	Prob (F-statistic):	6.80e-08	
Time:	21:59:46	Log-Likelihood:	-1738.1	
No. Observations:	89	AIC:	3480.	
Df Residuals:	87	BIC:	3485.	
Df Model:	1			

		coef	std err	t	P> t	[95.0% Conf. Int.]
	Budget	0.7846	0.133	5.901	0.000	0.520 1.049
ĺ	Ones	4.44e+07	1.27e+07	3.504	0.001	1.92e+07 6.96e+07

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

$$\overline{R}^{2} = 1 - \frac{SSE / df_{e}}{SST / df_{t}}$$

$$\overline{R}^{2} = 1 - \frac{SSE / df_{e}}{SST / df_{t}} \longrightarrow m - k - 1$$

$$m = \# \text{ points}$$

$$k = \# \text{ parameters}$$

Low R²

Higher R²

Highest R²

$$\overline{R}^{2} = 1 - \frac{SSE/df_{e}}{SST/df_{t}} \longrightarrow m - k - 1$$

$$m = \# points$$

$$k = \# parameters$$

Low adj. R²

х

Max. adj R²

Low adj. R²

OLS Regression Results

Dep. Variable:	DomesticTotalGross	R-squared:	0.286	
Model:	OLS	Adj. R-squared:	0.278	
Method:	Least Squares	F-statistic:	34.82	
Date:	Sun, 14 Sep 2014	Prob (F-statistic):	6.80e-08	
Time:	21:59:46	Log-Likelihood:	-1738.1	Akaike
No. Observations:	89	AIC:	3480.	Information
Df Residuals:	87	BIC:	3485.	Criterion
Df Model:	1			

	coef	std err	t	P> t	[95.0% Conf. Int.]
Budget	0.7846	0.133	5.901	0.000	0.520 1.049
Ones	4.44e+07	1.27e+07	3.504	0.001	1.92e+07 6.96e+07

Omnibus:	39.749	Durbin-Watson:	0.674
Prob(Omnibus):	0.000	Jarque-Bera (JB):	99.441
Skew:	1.587	Prob(JB):	2.55e-22
Kurtosis:	7.091	Cond. No.	1.54e+08

$$AIC = 2k - 2\ln(L)$$
parameters Log likelihood

$$AIC = 2k - 2\ln(L)$$
parameters Log likelihood

Higher AIC

Min. AIC

Higher AIC

My model is not awesome enough.

What do I do?

Use statsmodels metrics to Gain intuition and guide our next move