

MCMaster HIV virulence evolution in structured epidemic models

Ben Bolker and Sang Woo Park

McMaster University, Hamilton, Ontario, Canada

Summary

Pathogens can evolve rapidly in response to changing conditions (e.g., epidemic stage or public health interventions). Models of **eco-evolutionary dynamics** often neglect important epidemiological processes, such as the dynamics of sexual partnerships. We compared **models with a range of complexity** of partnership dynamics and extra-partnership contact.

- virulence evolution mediated by transmission-vs-clearance tradeoff
- ▶ still debated [1, 2]
- ► HIV [3]: **set-point viral load** (\approx "virulence") correlated with transmission probability, rate of progression to AIDS (data from Rakai, Uganda)
- eco-evolutionary virulence dynamics: [4]

random pairform+epc foliation pairform pairform pairform pairform instswitch+epc instswitch implicit o foliation foliation

▶ least (random) and most (pairform+epc) models most similar: single individuals and extra-pair contact wash out effects of structure

time (years)

- implicit model is **most different**
- random-mixing model underestimates variability

peak time

- ▶ peak timing: epc > finite pair-formation effects
- equilibrium virulence: interaction
- low-equilibrium outcomes for intermediate-complexity models

Champredon et al. 2013 [5]

infection from (1) infected partner (SI couples);(2) other coupled inf.; (3) uncoupled inf.

- **pair formation**: instantaneous or delayed?
- extra-pair contact (epc): present or absent?
- ▶ implicit model: no explicit partnerships, force of infection expression derived from \mathcal{R}_0 of pair-formation model (without epc)
- ► random-mixing model: standard SIR model Simplified disease model (single stage only)

Sensitivity $\beta_{\rm P}$ β_{D} D_D c_e/c_w D_{P} $c_{\rm u}/c_{\rm w}$ 300 200 -100 -5.0 model =random =pairform+epc =pairform 4.0 instswitch+epc instswitch implicit 3.5 -3.0 -1.0 0.1 0.2 0.5 0.20.02 1.0 0.500.1 0.4 0.5 5.0

Parameter uncertainty/exploration

- ► Latin hypercube sampling: parameters from [5]
- parameters calibrated across models to the same initial epidemic growth rate (r)

Conclusions and open questions

- ► Random-mixing models best matched the most realistic models; extra-pair and uncoupled individuals washed out the effects of epidemiological structure
- ► Implicit models did worst
- ightharpoonup Variation among models (model structure) pprox variation within models (parameter uncertainty)
- ▶ Large differences in evolutionary dynamics among different epidemiological models → caution in predicting evolutionary responses
- ► neglected: disease life history details, sex workers, age-structured mixing . . . agent-based models?

References

- [1] Ebert D, Bull JJ. Challenging the trade-off model for the evolution of virulence: is virulence management feasible? Trends Microbiol. 2003;11(1):15–20.
- [2] Alizon S, Michalakis Y. Adaptive virulence evolution: the good old fitness-based approach. Trends in Ecology & Evolution. 2015 Jan;30(5):248–254.
- [3] Fraser C, Lythgoe K, Leventhal GE, Shirreff G, Hollingsworth TD, Alizon S, et al. Virulence and Pathogenesis of HIV-1 Infection: An Evolutionary Perspective. Science. 2014 Mar;343(6177):1243727.
- [4] Shirreff G, Pellis L, Laeyendecker O, Fraser C. Transmission Selects for HIV-1 Strains of Intermediate Virulence: A Modelling Approach. PLoS Computational Biology. 2011 Oct;7(10):e1002185. WOS:000297262700019.
- [5] Champredon D, Bellan S, Dushoff J. HIV Sexual Transmission Is Predominantly Driven by Single Individuals Rather than Discordant Couples: A Model-Based Approach. PLoS ONE. 2013 12;8(12):e82906.

Acknowledgements

We thank C. Fraser and D. Champredon for code access and the Natural Sciences and Engineering Research Council of Canada (NSERC) for funding.