

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

#### Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

#### **About Google Book Search**

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/











### Books Printed for R. MANBY on Ludgate-Hill.

- 2. METHODUS Differentialis, five Tractatus de Summatione et interpolatione Seriarum infinitarum. Autore Jacobo Stirling, R. S. S. 4to.
- 2. Compleat Tables for measuring round or square Timber, in two Parts. Part 1. Containing the Description of the Tables of Solids and Superficies; and also, the Method of measuring Round Timber, whether regular or irregular, acording to a more true and accurate Method than has been used. Part 2. A definitive Method of measuring Timber that is grown, or standing by the same Tables; also, the Method of measuring Timber that is hewed square, shewing the Errors of the common Way. By T. Rowland of New-Windsor. 12mo.

London, Nov. 20. We have perused this Work, and do approve thereof, as being useful to the Publick, and to all Measurers and Dealers in Timber.

Tho. Ripley, Henry Mill. H. Flitcroft.

- 3. A new English Grammar; or, Guide to the English Tongue, with Notes: Wherein a particular Method is laid down to render the English Pronunciation both more fixed among ourselves, and less difficult to Foreigners: And a sufficient Number of suitable Examples are inserted to every Figure of Speech, both Grammatical and Rhetorical, with an Explanation of all the Terms. The whole being the Result of many Years careful Observation, as well upon the Peculiarities of our own, as it's Conformity with other Languages, especially the Latin. It's Agreement with which being all here particularly distinguished; to anticipate, as much as possible, the Labour of such as are designed for that Study. To which is added, a brief Latin Grammar upon the same Foundation. By John Kirkby, M. A. 12mo.
- 4. Differtatio de Conservatione virium vivarum. Autore Phileleuthere Lipsiensi. 4to.
- 5. Geometry no Friend to Infidelity; or, a Defence of Sir Isaac Newton, and the British Mathematicians. In a Letter to the Author of the Analyst. Wherein is examined, how far the Conduct of such Divines, as intermix the Interest of Religion with their private Disputes and Passions, and allow neither Learning nor Reason to those they differ from, is of Honour or Service to Christianity, or agreeable to the Example of our blessed Saviour and his Apostles. By Philalethes Cantabrigiensis.
- 6. The Minute Mathematician; or, the Free-thinker no just Thinker. Set forth in a second Letter to the Author of the Analyst; containing a Desence of Sir Isaac Newton and the British Mathematicians, against a late Pamphlet, entitled, a Desence of Free-thinking in Mathematics. By Philaleth. Cantab.



# Intire SYSTEM

# ARITHMETIC:

#### CONTAINING

I. Vulgar.
II. Decimal.
III. Duodecimal.
VI. Sexagefimal.
VII. Lineal.
VIII. Instrumental.
VII. Logarithmical.
VIII. Algebraical.

With the Arithmetic of Negatives, and Approximation or Converging Series.

The Whole intermix'd with Rules New, Curious, and U/eful, mostly Accounted for in the PREFACE.

The Algebraic Part is rendered more Plain and Easy, than hath been done, by Instructive Rules and Examples Literally and Numerally, in a Method New: Solving Equations, Simple, Quadratic, Cubic, &c. several ways.

And in the proper Places of this Work are An Accurate Table of Logarithms to 10000, and Rules to find those to 100000000, and Natural Numbers to such Logarithms; with the full Use of the Table in Multiplication, Division, Involution, Evolution, and in the Solution of all Cases of Compound Interest, of which there are 24 Large and Exquisite Tables, (and one for the Valuation of Church or College-Leases of their Land) as also those of Simple Interest and Discount, with a new Method of finding the later and the present Worth of Money for Days.

Also Ample Definitions and Explanations of Numbers, Quantities and Terms used in all Parts of Arithmetic, in Alphabetical Order; rendring the Whole more Intelligible, and Easier-Learned.

With an APPENDIX, shewing the Mensuration of more Superficies and Solids than any Book wrote purposely on that Subject has exhibited.

Necessary for all who who would in a short Time, and with little Study, acquire a competent Knowledge of Numbers and Species, or would make any considerable Progress in the Mathematicks.

### By EDWARD HATTON, Gent,

The Third Edicion.

LONDON:

Printed for RICHARD MANBY on Ludgate-Hill. MDCCLIH.





To the LEARNED

# Dr JOHN KEILL, M.D.

Fellow of the Royal Society, and Professor of Astronomy in the University of Oxford.



REATNESS and Goodness (you know, Sir) complete the Rational Specie: By Greatness I mean true Magnanimity embellished with Learning and Science; by Goodness I suppose such an one as above, finished with an humble condescending

communicative Temper or Disposition: And by how much any one excels in the former, by so much he is to be admired for the later Endowments. I need not tell the World how much the Qualifications and Acquirements of the first kind are your's, Sir: Your Learned Treatises of Philosophy, Astronomy, &c. in another Language, are sufficient Indications of that: And for the other, I have experienced your Condescending, Generous, and Dissuste Goodness, not only in your giving me an Opportunity of being known to you; but by the many Favours in so short a time received from you: Which propitious Providence having so ordered as to be the Consequence of my writing the following Book, I could neither justly nor naturally think of Dedicating it to any but Yourself.

AND altho' I am far from having intended this Treatise for the few of your Superior and Universal Genius; yet I

### DEDICATION.

am not without Hopes, but that upon an impartial and particular Perusal, even such as You may find some things. Novel and Acceptable. And as for those who have not, but are desirous to acquire, the Knowledge of Arts Mathematical, (a Study so exceeding Pleasant and Useful) I have endeavoured to guide them at least to the Entrance of that large and unfrequented Path, in which you and some others of your most Illustriously Learned Royal Society have made so vast a Progress.

THE Preface enumerates some of those many Things which I take to be New, and not contained in any other Treatise of Arithmetic in our own Language: And for what is in others, I know you are a much better Judge than,

SIR,

Tour Obliged and most Humble Servant,

hadis I to regree T evil is he.

for the first land tomorphic control with the first

Edw. Hatton.



### TO THE

# READER.



this Art. But to be a little more particular, I have, by way of Introduction, inserted very Useful and Copious Definitions of Numbers, and Explications of Terms Arithmetical, which will admit of the Whole being easier understood and sooner learnt. I have next given the most large and plain Numeration-Table; and Tables and Rules to assist the less knowing in Addition without Pricking and Carrying; and how to add Money, Weight, Measure, &c. by one Rule: also Tables of Weight, Measure, &c. in a more accurate Method, and more various than others: The Reason of the Way of Working in Substraction and Multiplication; and in Multiplying by several Digits, I have given the Reason why the Products of all from the first are put one place more towards the lest hand: Also a large Table for Beginners, and a new brief one of my own Contrivance for the more Skilled. In Division I have shewed four several

Ways, with the Reason of the Method of Operation, and how to find all the even Parts of any Numbers, which is applied in finding the Aliquot Parts of a Pound Sterling, &c. And besides the plain and best Way of Extracting the Square and Cube Roots of Numbers, I have given Rules how to do that of the Biquadrate by an Example altogether New, and must be estecmed Curious, especially to those who are not acquainted with Algebraic Canons. In Progression you have several things not to be found in other Books of this Subject; as Rules to find the Total of a Series produced by different Factors, and of the Changes to be rung on any Number of Bells, &c. with the Reason of the Abstruse Rules for finding the Totals of Series's whether the Ratio be Arithmetical or Geometrical: And bave recommended this Part of Arithmetic to the Learner's Perusal, and not to be passed over, as is too common both in Books and Schools. And whereas others on this Subjett give but four, or at most five kinds of Rules of Proportion, I have in this Treatise exhibited Twelve. The Rules of Practice are far more Numerous, Brief, and Methodical, than any done by another Hand: And here are many things more than common in Fellowship, as three several Ways of answering Questions, &c. as also in Alligation, Barter, and Equation of Payments.

In Decimal Arithmetic (besides the Hint given of a New Specie thereof) you have so many things truly Novel and Curious, especially in
Reduction and Multiplication, as would be too prolix to enumerate; where
you will find some Answers exhibited by short and accurate Methods quite
contrary to the General Rules given for Addition and Substraction; i. e. By
Adding and Substracting one and the same Number, as Units to Tens place,

&c. and the contrary.

And in the Use of Decimals, besides the Way of Answering any Question by Decimals as exactly as by Vulgar Fractions (which to me is wholly new) you have the only Genuine Tables of Discount that I know extant, with a New as well as more Brief and Easy Methodof Computing both Discount and Present Worth of any Sum for Days, (so much practised by Traders) the Foundation of which you will find in Algebra, Chap. 10. I have next shewed the Arithmetic of Duodecimals and Sexagesimals; the former used in Mensuration of Superficies and Solids, the later (chiefly) in Astronomy, whence called by some Astronomicals: and these I have done in a new plain Method, and for the more difficult Cases. As to Political Arithmetic, I have said enough to shew its Nature and Manner of Process to discover what is required, illustrating the same by Examples, and have referred to others who have purposely and wholly treated thereon. In Logarithms I have omitted nothing that I could find necessary or desicient in other Authors; and believe I may with Veracity assirm, That no Book

of Arithmetic affords so ample and plenary Instructions on that Head: And bave endeavoured to render that part which has put many to a Ne plus ultra (as being somewhat less Intelligible, and not easily retained in Memory) I mean the Addition and Substraction of the Logarithms of Decimals, plain to any of a moderate Capacity; and have enlarged in a familiar way on the Use of Logarithms in Multiplication, Division, Involution, Evolution or the Extraction of the Roots of all Powers; and in the Solution of all the Cases of Compound Interest: As also how Operations in Vulgar Fractions are performed by Logarithms, whereof I have given you a large Table actually and by Inspection to 10000 and made it subservient for Natural Numbers, the' so great as 10000000, by belp of a Table of Proportional Parts (there also inserted) or without it; and have taken the elaborate Pains to write both Tables all over with my own Hand, that I might the better answer for their Accuracy: In doing whereof, I have corrected 33 Errors in one of our last published Tables to 10000; and comparing the same also with Mr Norwood's 3d Edition of bis Trigonometry, I have restified his in 182 several places: so that I hope mine will be found very Correst. In Lineal Arithmetic I have performed my Operations three several ways, and have shewed how to make the Lines of Chords for the Mensuration of Arcs of Circles; the Line of half Tangents for Diameters, or those Great Circles represented thereby in Projections of the Sphere; and the making the Line of Numbers, commonly called Gunter's Line, to any Radius from a Table of Logarithms; and this both on a right Line and on the Ambit of a Circle: which I would not omit, in regard I found many of the Instrument-Makers that I discoursed on this matter, to be ignorant of it. What I have advanced in Instrumental Arithmetic, will be found not only New and Pleasant, but very Useful, particularly the new and plain Way of Working by Neper's Bones; but especially the Use of my New Circular Instrument contrived by me. whereby the Reduction of Coin, Weight, and Measure to Decimals, and the contrary, are speedily, easily, and accurately performed; not by guess, (as some Scales only have them) but actually and explicitly, as I have shewn by various Examples. And Multiplication, Division, and Extraction of Roots, &c. may be done by the two Lines of Numbers made to turn round one within the other, and are placed next the Limb or Edge of the Instrument, the Dimension whereof being so large as 33 Inches, I doubt not but it will be allow'd as the best and most compleat extant for all Arithmetical Uses. In Algebra I have previously given many more Numerous and Useful Definitions relating to this Analytical Art, than any Treatise of Arithmetic affords; and have throughout that profound Science illustrated the Nature and demonstrated the Truth of the Symbolical Operations

tions by Numeral Examples, intermixing several things New, and my own Invention: particularly the Way of finding the Unciæ of Powers to the 15th, and the Powers of a Binomial to the 10th, as also the Uncia of any Term or Member of any Power without the Knowledge of those of any previous Power. I have also shewed the Reason of the Process in Extracting the Roots from the respective Powers of a Binomial; and have likewise made the Algorithm of Surds very perspicuous by Examples in Numbers as well as Species, and have done the like in all the Rules of Algebra; and I have shewed not only the Solution of Simple Equations and those by various Positions, but Quadratical, and Cubical; each three different ways: In all which, as well as in Approximation or Converging Series, I have purposely designed to render the Manner of Solution intelligible to a mean Capacity, that being the principal thing in which the Learned Authors on this Subject have been deficient. The Arithmetic of Negatives I have fully accounted for, as will appear if to what is said under Negative Arithmetic, in the Alphabetical Explanation at the beginning of Algebra, you add what is in Sect. 3. of Chap. 7. in Sect. 2, 3, 4, 5. of Chap. 10. and under the last of my Examples of Converging Series, near the Close of this Treatise.

But notwithstanding the particular Regard of my former Labours, and especially of this, to promote a sort of Learning so Useful to the Public; yet so numerous are the capacious and prejudiced Readers of this our envious Age. that it would be Vanity in me to hope to escape their Censures. But if my Endeavours prove acceptable to the two Classes of Readers for whom they were chiefly intended, i. e. the Candid and Industrious Teacher and the Diligent and Studious Learner; I shall esteem it a good Step towards an ample Compensation for the uncommon Care and Trouble of this Performance, thus dedicated to the Service of the Public; and shall the less regard the Carps and rash Judications of pragmatical and ungrateful Dispositions, who fancy there is nothing in Arithmetic beyond what they have acquired the Knowledge of: or if they learn any thing from a Book of this kind, will be the last in paying their Acknowledgment, and probably the first in decrying the Work, because it will instruct some to know more than they would have them, or (as we say) make others as wise as themselves. However, I would not be discouraged by the ill Conduct of such from imitating the most Perfect and Benign Pattern, who is kind to the Unthankful and the Evil: for whatever some Authors may have proposed in being so,. I have disclosed my Thoughts this way, much more to promote the Proficiency of the Reader, than to indicate the Science of the Author.

And for the Encouragement of the Impartial and Ingenuous Student, who laying afide Pride and Prejudice, designs only Improvement in the Knowledge



of what is con tained in the subsequent Pages, I can assure him, that I have faithfully adapted this Work to the Capacity of the less Acute, and have offered to his Perusal many things which he will not find elsewhere; of which I have given some Instances, as above, though you have many more mentioned in the Index, which will be found Exuperations.

I have not in this Treatise (as is common where there are many Parts of Mathematics, &c. in one Volume) only touched on each kind; for you will find Vulgar Arithmetic, Decimals, Logarithms, and Algebra, as copiously insisted on, as in almost any Treatise wrote only upon some one of those Species: Nor can any thing be expetted to make the whole more truly agreeable to the Title, which is a piece of Justice that all Authors owe to the Public, and cannot be denied but to have been fully observed by me, as I am not without Vouchers from good Hands, to consirm the Truth of, especially in my Merchant's Magazine, and my Indexto Interest.

And for the Satisfaction of such as are cautious of buying the first Impression of a Book, because, say they, there may be Additions to suture Impressions; I do hereby promise, that as I know of no Necessity for it, so I have no Thoughts of doing any thing farther on this Subject.

I have, besides what I promised in my Proposal to Subscribers, added an Appendix, which contains the hest Way of measuring a greater Variety of Superficies and Solids, than any Book, the wrote purposely on that Subject, exhibits.

In fine, I am so sensible of the Care and Assiduity used to finish this Body of Arithmetic, so as to render it in some degree Compleat, that I hope I need not doubt of its being acceptable to the World; which hath already favoured me, by a kind Reception of my former Endeavours in this Way, altho' I had not bestowed near that Thought, which (in Gratitude) I have done on this Work, in order to present it, as near as I could, in Persection.

For besides all that is abovesaid, I have not only comprised in this Treatise, the most material Tables, and other things in my Index to Interest (which shall never be but here re-printed) but have added Tables of Simple Interest at 4 per Cent. of Discount at 4 and 5 per Cent. and 16 Tables of Compound Interest at 3, 4, 5, and 8 per Cent. And the said Index (before the making these considerable Additions to it) was approved of, and recommended as the most copious, easy, and useful, Book that bath been written on that Subject, by the judicious Persons following; besides many others, as I have their own Hands by me to demonstrate.

S. Shepherd

### The PREFACE.

S. Shepherd E/a; Deputy-Governour, Sir W. Chapman Bart. 7 then Diof the South-Sea Sir Samuel Clarke. Company. rectors Sir John Blunt Bart. Sir G. Cook, first Prothonotary of the Court of Common-Pleas. The Reverend Mr Whiston, sometime Professor of Mathematics in the University of Cambridge. Nath. Pigot, of the Middle Temple E/q; P. Lacy, of the Inner Temple E/q; Mr Is. Jackson, of the Middle Temple, Sub-Treasurer. Mr J. Frewen, of Lincolns-Inn. Mr Humphry Ditton, Master of the Mathematical School at Christ's-Hospital. Mr S. Waters, Accomptant General Mr P. Sergeant, Accomptants to the East-India Comp. Mr J. Fletcher,



# An INDEX,

Referring to the Pages, Chapters, and Sections, which are placed on each Folio.

| On Cach 10ho.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ω        | •    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|
| Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . Chap.  | _    |
| Ddition of Intire Numbers. — — 17, &c.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I        | 2    |
| ——Of Vulgar Fractions. ——— 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2        | I    |
| I A Of Decimals. 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 3    |
| Of Duodecimals. 238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4        | •    |
| Of Algebra 376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10       | 2    |
| Of Surd Quantities, Simple and \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 6    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10       | 6    |
| Algebraical Arithmetic. — 361 Algebraic Fractions. — 406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10       | I    |
| Algebraic Fractions. 406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FO       | 8    |
| Algebra, a short History and Definition thereof261,362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10       | 1    |
| How to read it                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10       | 11 2 |
| Algebra, a short History and Definition thereof. 361,362  How to read it. 364, &c.  Terms therein explained. 366,&c.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10       | 1    |
| Alligation, more curious and various than usual.—121, &c.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 2      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 10   |
| Alababatical Explanation of Number and Turns 31, 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1        | 5    |
| Alphabetical Explanation of Numbers and Terms \ in Arithmetic.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,        |      |
| A all and a factor |          | ,    |
| Application, of the Fundamentals of Arithmetic. — 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2        | I    |
| Of Valgar Fractions 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2        | 1    |
| Amount of any Sum of Money, or Annuities.  At Compound Interest, bow to find  By Decimals.  By Logarithms.  210,212  271, &c.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | ,    |
| At Compound Interest, bow to find                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |      |
| By Decimals 210,212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3        | 8    |
| By Logarithms 271,&c.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7        | . 5  |
| By the Diagonal Instrument. — — 361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·<br>9·- | 6    |
| Apothecaries Weight, a Table thereof 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | í        | 2    |
| Arithmetical Complement, what and how found - 26c.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7 -      | 4    |
| Arithmetical Complement, what and how found. — 265.  Barter or Commutation. — — — — 115, &c.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2        | 8    |
| Beer Measure, an accurate Table thereof — — 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ī        | 2    |
| Binomials, the Powers thereof to the 10th. — — 388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 6    |
| Rinomial and Residual Posts of Patienal and Sund ?-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10       | U    |
| Binomial and Residual Roots of Rational and Surd 388,396 Quantities, Simple and Compound, how extracted 388,396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10       | 6    |
| Diamines, simple and Compound, now extracted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •        | ·    |
| Biquadrate Root, a new way of extracting it 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1        | 6    |
| Biquadrate, &c. Roots, by Logarithms. — — 262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · 7      | 3    |
| By Algebra. — —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10       |      |
| Bricklayers, a short and easy Way to measure, &c. }  their Work. ————————————————————————————————————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |      |
| their Work \ 475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |      |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | arpent   | ters |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •        |      |

| 1446                                                                                                            | Ch    | 4.5        |
|-----------------------------------------------------------------------------------------------------------------|-------|------------|
|                                                                                                                 | Chap. | Sect       |
| Carpenters, the best Way to measure, &c. their Work.—475 Canon for Discount &c. how found by Algebra. — 425     | 10    | 11         |
| Change how many can be rung on any Number ?                                                                     | 10    | • •        |
| Changes, how many can be rung on any Number }                                                                   | 2     | 2          |
| Characters, or Signs, Algebraical, a Table thereof. — 363                                                       | 10    | 1          |
| Church or College Leases, Fines payable for them. — 231                                                         | 3     | 8          |
| Circular Instrument described, and its Use. — — 358                                                             | 9     | 6          |
| Circle and its Dante to find their Artes 166                                                                    | Í     | 5          |
| Cone. to find its Area and Solidity, (see.also) \$ 466                                                          | I     | 4          |
| Cone, to find its Area and Solidity, (see also)  Frustum.) — — — — — — — — — — — 466 473                        | 2     | 4          |
| Its Frustam, to find the Solidity. — — — 473                                                                    | 2     | 4.         |
| Conic Sections, to find their Area — — — — 461                                                                  | I     | 2          |
| Complement Arithmetical, what and how found. — 265                                                              | 7     | 4          |
| Contract Numbers, (or more properly Concrete.) —— 3                                                             |       |            |
| Converging Series, bow performed several Ways. 444, &c.                                                         | 10    | 13         |
| Cossic Powers what and how to multiply and di-                                                                  |       |            |
| vide them. — — — — — — — >369, 384                                                                              | 10    | <b>5</b> . |
| Cube Root, the whole Reason of the Process.                                                                     |       | ÷          |
| of Extraction from the Algebraic Canon. — 394                                                                   | 10    | 6          |
| Cube Root, see Extraction. — — —                                                                                |       |            |
| Cubical Equations explained and solved several Ways. 434, &c.                                                   | 10    | 12         |
| Colondar to find its Area                                                                                       | · I   | 4.         |
| to find its Solidity. — — — — — — — — — — 468                                                                   | .2    | I.         |
| Cylindroid, to find its Solidity. ————————————————————————————————————                                          | 2     | 3          |
| Days between any two in the Year found, by a Table, 184 and also by two Circles 186                             | 3     | 8          |
| and also by two Circles                                                                                         |       |            |
| Decimal Arithmetic, Page 131. &c. (see Value) — 3                                                               |       |            |
| To Answer a Question by them as accurately as \ 164                                                             | 3     | 2          |
| by Vulgar Fractions 104  A bint of a new Kind of Decimal 136                                                    | 3     | 2          |
| I've of Decimals in finding the Simple and Com- 1 167                                                           | 3     |            |
| Use of Decimals in finding the Simple and Com- 167 pound Interest and Discount — 186                            | 3     | 8          |
| Operations by Decimals, compared with Vulgar \ 146                                                              |       |            |
| Fractions —                                                                                                     | •     |            |
| Decimals, &c. To multiply any Number under 121, 3                                                               |       |            |
| I see dogue only the Product of all by any Num-1                                                                |       |            |
| The of Conthans hatsergen any tree Digits: allo hy a                                                            | 3     | 5          |
| repeated Integer, and save the making 77 Figures                                                                |       |            |
| in one Operation                                                                                                |       |            |
| and the same of | Deci  | mals       |

| AM IN DEAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |         | IX     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------|--------|
| The in the China Maritaness and the China                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Page                | Chap.   | Sect.  |
| Decimals, mixt Numbers, &c. five Cases of a brief \ Way of multiplying by inverting the Multiplier, &c. }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 148                 | 3.      | 5      |
| To reduce Weight, Measure, &c. thereto, two                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |         | •      |
| Ways, pages 137, 138, 139, &c.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     | . 3     | 2      |
| To find their Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 137               | 3       | 2      |
| -To find the Value of those of Money, Weight,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 140                 | •       |        |
| and Measure, by Inspection—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 142<br>143          |         | . 2    |
| Differences and proportional Parts of Logarithms —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 265               | 7       | 4      |
| Diagonal Instrument, with its Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 258                 | ġ.      | 6      |
| 01.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , 91                | 2       | 3      |
| Divinon of intire Numbers, four Ways, 42, 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6,48                | I       | 5      |
| — Its Use and Proof, — 49  Of Vulgar Fractions — 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 70                  | I<br>2  | 5<br>1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |         |        |
| cient in any Quote)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 161                 | 3       | 6      |
| Of Duodecimals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 240                 | 4       |        |
| Of Sexagesimals  By Logarithms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 243                 | 5       | _      |
| By Lines, three Ways                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <sup>2</sup> 59 347 | 8       | 3<br>3 |
| -By Neper's Bones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 354.                | 9       | 3      |
| By Algebra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 381                 | TÓ      | 5 6    |
| Of Surd Quantities; Simple and Compound 399,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 405                 | 10      | _      |
| Discount, the true Way to find it  —Proof of the Rule, two Ways  A many and haif Way & France Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 187<br>187          | . 3     | 8<br>8 |
| -A new and brief Way of finding Discount or }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                   | . 3     | _      |
| prejent World                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 188                 | 3       | 8      |
| - An erroneous Way, published by a conside-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 189                 |         | . 8    |
| rable Author, detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 109                 | 3 -     | J      |
| Tables of Discount  Use of the Tables thereof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 191                 |         | 0      |
| Dry Measure, a Table thereof —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 209<br>23           | (3<br>I | 8<br>2 |
| Duodecimal Arithmelic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 238                 | 4       | 2      |
| Duplicate Proportion (see also Proportion)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 92                  | 2       | 3      |
| Equation of Payments, with the Proof of the Rule 113,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <i>€c.</i>          | 2       | 7      |
| Evolution, or the Extraction of Roots of whole Numbers  Of the Biquadrate Root, a new Way                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ٠.                  | 1       | · 6    |
| Of the Roots of Vulgar Fractions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 59<br>71            | 1<br>2  | .I.    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 236                 | - 3     | 9      |
| By Lines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 349                 | 8       | 4      |
| The state of the s |                     | • • •   | By     |
| - / · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |         |        |

|                                                                                                                 | Page   | Chap. S            | Sect.        |
|-----------------------------------------------------------------------------------------------------------------|--------|--------------------|--------------|
| By Neper's Rods or Bones 354.                                                                                   | 356    | 9                  | #15          |
| By Logarithms 254,                                                                                              | 262    | 7                  | <b>3</b> .   |
| By Logarithms 254,  By Algebra 393, 394, 415,  By Converging Series 444,  Explanation of Algebraical Terms 366, | 416    | 10,6               | 10           |
| By Conversing Series 444                                                                                        | ₩c.    | 10                 | 13.          |
| Explanation of Algebraical Terms 366,                                                                           | Sc.    | ે ક્રજ             | I            |
| False Position, in a better Method than the common-                                                             | 128    | 2                  | 11           |
| Fellowship done three several Ways, and more plain?                                                             |        | 37                 |              |
| and adapted to the prefent Practice of Merchants,                                                               | 109    | 2                  | 6            |
| &c. than the Method in other Arithmetic, &c.                                                                    | ., ,   | 4 ST               |              |
| Figurate Numbers, with universal Series's to exhi-                                                              | وأصرطو |                    | i            |
| bit and give all the Figurate Numbers of any Order .                                                            | 455°   | GDO(1)             | 1 114        |
| Fines payable for Church or College Leafes, with a Table                                                        | 231    | 3.                 | . 8          |
| Fine off Rent, or the contrary, bow done                                                                        | 280    | 7                  | <b>5</b>     |
| Fractions, Vulgar                                                                                               | 62     | . 2                | 1            |
| ——Decimal                                                                                                       | 131    | 3                  | · ·          |
| Duodecimal-                                                                                                     | 228    | 4                  |              |
| Sexagesimal -                                                                                                   | 242    | .∼ <b>5</b>        |              |
| Algebraical                                                                                                     | 408    | 10                 | 8            |
| Frustums of a Cone, Sphere and Spheroid, bow to                                                                 |        | 1,1                |              |
| find the Solidity                                                                                               | 473    | ∴2~                | 4            |
| Gain and Loss in Buying and Selling                                                                             | -108   | 2                  | 5            |
| Geometrical Square, to find its Area                                                                            | 460    | ·I                 | 1            |
| Geometrical mean Proportionals, to find 1, 2, or 3, &c.                                                         | 81     | 2                  | 2            |
| Glasier's Work, the best way to measure it                                                                      | 476    | •                  | 111          |
| Gunter's Line, the easy and true Rule to make it de                                                             |        | 0                  |              |
| Novo to any Radius                                                                                              | 350    |                    | 7            |
| To multiply thereby                                                                                             | 346    |                    | 2            |
| To divide by that Line -                                                                                        | 348    | . 8                | 3            |
| To extract Roots thereby                                                                                        | 349    | 8                  | 4            |
| Harmonical Proportion                                                                                           | 94     | -2                 | 3            |
| Heavy Bodies, the time they fall any Length                                                                     | 75     | ę                  | 2            |
| Hererogeneal                                                                                                    |        |                    | f            |
| Homogeneal > Numbers or Quantities 370                                                                          | . 37 I | 10                 | 1            |
| Homologous )                                                                                                    |        | al de la<br>Angles | <br>         |
| Hyperbolic Conoid, to find the Solidity                                                                         | 472    | . 2                | 3            |
| Income of England, from Land, Trade, Art and Labour                                                             | 245    | 6                  |              |
| Of France and Holland                                                                                           | ibid.  | 6                  | •            |
| Indices of Logarithms, a Table thereof                                                                          | 250    | 7                  | I            |
| Negative Indices, how to add, &c.                                                                               | 255    | 7                  | 3            |
| Instrumental Arithmetic; by Neper's Rods, and a new                                                             | 352    |                    | ī,           |
| Circle                                                                                                          | &c.    | - 25               | ~2,3,<br>&c. |
| •                                                                                                               | -      | _                  | rest         |
|                                                                                                                 |        | 711C               |              |

| ಿ ಚಿ. (೨ ಕ್ರೂಪಿ) - ೧ ಕ್ರೂಪಿ | Parce | Chap.        | Sect.                                 |
|-----------------------------------------------------------------------------------------------------------------|-------|--------------|---------------------------------------|
| Interest, bow by the Tables of 4 and 5 per Cent. the ?                                                          |       | ()           | · [. · ]                              |
| Interest at the Rates from 1 to 10 per Cent. is ea-                                                             | 186   | 3            | 8                                     |
| fily found                                                                                                      |       |              |                                       |
| Simple Interest, Tables at 4 and 5 per Cent. 170.                                                               |       |              |                                       |
| —Uje of those Tables —                                                                                          | 185   | -            | . ~                                   |
| Cent. i. e. 24 Tables to 61 Tears                                                                               | 210   | . •          | · • · · · ·                           |
| Use of Compound Interest Tables                                                                                 | &c.   |              | ·· ē                                  |
| Host to compate Simple Interest                                                                                 | 167   | 3            | · ·                                   |
| — How to compute Simple Interest——————————————————————————————————                                              |       |              | • •                                   |
| All kind of Questions therein done by Logarithms 271                                                            |       | 7            | 5                                     |
| Involution, what, and how performed 253.                                                                        |       | 7            |                                       |
| - Of Decimals by Logarithms                                                                                     | 260   | 7            | 3                                     |
| Joiner's Work the best way to measure it                                                                        | -476  |              | . •                                   |
| Land, the best Chain to measure it with, and why                                                                | ibid. |              |                                       |
| Lineal Arithmetic                                                                                               | 345   | 8            | I.,                                   |
| -Multiplication &c. by Lines see M. and D.                                                                      |       |              |                                       |
| Line of Numbers, its making and use 346, 348,                                                                   | 350   | €`: <b>8</b> | $\int_{-\infty}^{\infty} \frac{2}{3}$ |
| Of Chords, its making and ule                                                                                   | 349   |              | - 64                                  |
| Lines of equal Parts, and balf Tangents, their making                                                           |       | ٠.٠          | · · · · • • · · · · · · · · · · · ·   |
| and use                                                                                                         | 35 I  | 7            | 4                                     |
| To divide any right one into extream and mean                                                                   | ٧.    | •            |                                       |
| Proportionals———                                                                                                | 0.1   | ·            | - 2                                   |
| Literal Numbers, Numeration, and Addition thereof-                                                              |       | I            |                                       |
| Lives, To find the Value of Estates for them 228.                                                               | _     | · 3          | 8                                     |
|                                                                                                                 | - 248 |              | I.                                    |
| Logarithms of Decimals, &c. bow to find them                                                                    | 250   | . 7          | 3                                     |
| Two forts of Tables, Examples thereof 264,                                                                      | 205   | - 7          | . 4                                   |
| To prove the Truth of, or enlarge Tables - 267,<br>To find those to very large Numbers, (as ]                   | occ.  | .7.          | 4                                     |
| 2966820514, &c.) and the contrary                                                                               |       | -7           | 4                                     |
| -Tables thereof eafy and correct                                                                                | 281   | 7            | س                                     |
| Long Measure, a compleat Table thereof                                                                          | - 23  | . 7.<br>I    | - 5<br>2                              |
| Lune or Crescent; to find the Area thereof                                                                      |       | I            | 5                                     |
| Mensuration of Superficies and Solids                                                                           | 459   | •            | 3                                     |
| Mixt Numbers, a new way to multiply by any Num-                                                                 |       | ,            |                                       |
| ber of repeated Digits, and make but one Line be-                                                               | 154   | . 3          | 5                                     |
| fides the Product                                                                                               | 158   | ,            |                                       |
| Multiplication of entire Numbers                                                                                | 32    | I            | · 4                                   |
|                                                                                                                 | 3, 34 | I            | 4                                     |
| b 2                                                                                                             | Mult  | iplica       | tion                                  |
|                                                                                                                 |       |              |                                       |

## An INDEX

| 73.14 32.75 4 1114                                                                                                                                                                                                                                                                                   | Page Chap. Sect.                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Multiplication. The Kealon of the good of Domestice.                                                                                                                                                                                                                                                 |                                           |
| Of Vulgar Fractions                                                                                                                                                                                                                                                                                  |                                           |
| Of Vulgar Fractions Of Decimals (with many new Ways) — 150 Of Duodecimals Of Sexagefimals By Logarithms                                                                                                                                                                                              | 0. 8C 2 5                                 |
| Of Duodecimals                                                                                                                                                                                                                                                                                       | - 228                                     |
| Of Sexagesimals                                                                                                                                                                                                                                                                                      | - 243 5                                   |
| By Logarithms                                                                                                                                                                                                                                                                                        | - 252 7 0                                 |
| By I they Wave                                                                                                                                                                                                                                                                                       |                                           |
| By Neper's Bones                                                                                                                                                                                                                                                                                     | 262 0 2                                   |
| By the new Circular Instrument                                                                                                                                                                                                                                                                       | 258 0 6                                   |
| By Algebra                                                                                                                                                                                                                                                                                           | = 270 IO 4                                |
| Of Surds, Simple and Compound 208                                                                                                                                                                                                                                                                    | 402 10 6                                  |
| Musical Proportion                                                                                                                                                                                                                                                                                   | 04 2 2                                    |
| Natural Numbers, to find thole to Logarithms that ?                                                                                                                                                                                                                                                  | En Amourions                              |
| have very large Indices, &c.                                                                                                                                                                                                                                                                         | · · · · · · · · · · · · · · · · · · ·     |
| By Nepel's Bones  By the new Circular Instrument  By Algebra  Of Surds, Simple and Compound  Musical Proportion  Natural Numbers, to find those to Logarithms that have very large Indices, &c.  Neper's Rods or Bones  Numeration of intire Numbers, with most compleat Tables  Of Vulgar Fractions | - 252 0                                   |
| Numeration of intire Numbers, with most compleat Tables                                                                                                                                                                                                                                              | T 0341 9511 1                             |
| Of Vulgar Fractions —                                                                                                                                                                                                                                                                                | - 62 · 8 · T                              |
| Of Decimals, with two Tables thereof                                                                                                                                                                                                                                                                 | 121 2 1                                   |
| Of Duodecimals                                                                                                                                                                                                                                                                                       | + 228 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |
| Of Sexagesimals —                                                                                                                                                                                                                                                                                    | - 248 · E                                 |
| Numeration of intire Numbers, with most compleat Tables  Of Vulgar Frattions  Of Decimals, with two Tables thereof  Of Duodecimals  Of Sexagesimals  Of Logarithms (as to the Characteristics)  Of Neper's Bones  Of the diagonal or circular Instrument (Plate B.)  On the Line of Numbers          | - 250 7 T                                 |
| Of Neper's Bones —                                                                                                                                                                                                                                                                                   | - 252 O I                                 |
| Of the diagonal or circular Instrument (Plate B.)                                                                                                                                                                                                                                                    | 358 0 6                                   |
| On the Line of Numbers                                                                                                                                                                                                                                                                               | - 245 8 T                                 |
| On the Line of Numbers Of Algebra                                                                                                                                                                                                                                                                    | - 364 101                                 |
| Number anhat "and that a ITuis IT I'm                                                                                                                                                                                                                                                                | right to the contract of the              |
| Intire Number in the Introduction                                                                                                                                                                                                                                                                    | 5                                         |
| Of Houses in London                                                                                                                                                                                                                                                                                  | ),                                        |
| Of People in London                                                                                                                                                                                                                                                                                  | 24476                                     |
| Intire Number in the Introduction  Of Houses in London  Of People in London  In England                                                                                                                                                                                                              | &c. }                                     |
| In the VV orta                                                                                                                                                                                                                                                                                       | ,                                         |
| In Cities and Market Towns of Engl.                                                                                                                                                                                                                                                                  | 248 6                                     |
| In the Villages and Hamlets thereof                                                                                                                                                                                                                                                                  | -248 6                                    |
| Of Males, Females, and fighting Men                                                                                                                                                                                                                                                                  | -015 6                                    |
| of Acres in England, Scotland, Ireland, Edu                                                                                                                                                                                                                                                          | 246 6                                     |
| Of the Earth and Sea                                                                                                                                                                                                                                                                                 | - 246 6                                   |
| Of Tons of Shipping in England, in France, ?                                                                                                                                                                                                                                                         | 248 6                                     |
| nolland, Spain, Portugal, and Italy— C                                                                                                                                                                                                                                                               | 240 U                                     |
| Of Pounds Sterling per Annum, which are the                                                                                                                                                                                                                                                          | 248 6                                     |
| Value of Butter and Cheese, produced—                                                                                                                                                                                                                                                                | 240 U                                     |
|                                                                                                                                                                                                                                                                                                      | Number                                    |

| Set 3. 9 :03                                                             | Page Cl          | nap. S | Sect. |
|--------------------------------------------------------------------------|------------------|--------|-------|
| Number of People per Cent. born, who live to several                     | 245              | 6      |       |
| Or the Lines of Numbers, or Gunter's Line                                | 350              | 8      | 4     |
| Observations concerning the most proper Instruments to measure with      | 475              | -      | •     |
| Oil, bow to reduce Weight into Measure, &c. with the Reason of the Rules | 107              | 2      | . 4   |
| Painters and Plaisterers Work, with what to measure -                    | 475              |        |       |
| Parabolic Conoid and Spindle defined and measured-                       | <del>-</del> 471 | 2      | 3     |
| Parallelogram and Parallelaplueron, to find their Area                   | 464              | 1      | 4     |
| Parallelopiped and Prism, to find their Solidity                         | - 468            | 2      | i     |
| Persons Born, bow many of 100 live to several Ages -                     | 245              | 6      |       |
| Platonic Bodies, to find their Solidity                                  | - 470            | 2      | 2     |
| Places in a Quote of Decimals, how many sufficient;  a Table thereof     | 161              | . 3    | 6     |
| Political Arithmetic                                                     | - 044            | 6      |       |
| Polygons, eight Kinds, to find their Area                                | - 244<br>- 463   | . 1    | 2     |
| Powers of Numbers and Quantities, bow to raise the ?                     | 385              | •      | 3     |
| fame, with a large Table thereof                                         | 386              | 10     | 6     |
| Practice, with 149 Rules thereof, for short working in                   | 300              |        |       |
| a new and most brief Method                                              | 95               | 2      | 4     |
| Present Worth of any Sum of Money or Annuity at com-                     | •                |        |       |
| pound Interest, due any Number of Years bence to 61;                     | 010              | •      | 8     |
| to find the same by Decimals                                             | 210              | 3      | u     |
|                                                                          | . 050            | -      | _     |
| Proof tong Wans of the Touth of the Pules for calcula                    | 272              | 7      | 5     |
| Proof two Ways, of the Truth of the Rules for calcula-                   |                  | 3      | 8     |
| ting Discount, and that Matter set in a clear Light S                    |                  |        |       |
| Progression Arithmetical ————————————————————————————————————            | _                | 2      | 2     |
| Reasons of the Rule                                                      | 76               | 2      | 2     |
| Geometrical, and Reasons for its Rules — 77, 7                           |                  | 2      | . 2   |
| A new Kind of Ratio, and a new Way of working                            | .80              | 2      | 2     |
| Proportion, fingle, direct, and reverse; double, direct,                 | <i>)</i>         | :      | _     |
| and reverse; by five Numbers, three Varieties; du-                       | <b>8</b> 3       | 2      | 3     |
| plicate, direct, and reverse; triplicate, barmonical, and                | ( to g           | )5 ·   |       |
| sefquiplicate Proportions                                                | ې                |        |       |
| Quadratic Equations, Examples and Rules for their So-                    | 413              | 10     | ŦO    |
| lation, by compleating the Square, two Ways-                             | 419              |        |       |
|                                                                          | , 419            |        |       |
| Questions resolved, which compose or form simple Equations               |                  |        |       |
| Wbich form Quadratic Equations-                                          |                  |        |       |
|                                                                          | Qı               | ıesti  | ons   |

| The state of the s | ) Ol             | 4      | ۰.۵        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------|------------|
| Our Aine miliali hoged marriage Baltings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Page Ch          | ıap. ₹ | ect        |
| Deligions white Dave various Follows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 444              | 보다     | <b>非</b> 属 |
| Questions which have various Positions  Reduction of intire Numbers, descending  — A general Rule for it  — Ascending  — Of Vulgar Fractions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | — - 30<br>       | 1      | 4          |
| A general Rule for u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 40             |        | • <b>4</b> |
| Ajcending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 49             | 1.     | 5          |
| Of Vulgar Fractions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 04             | 2      | ς <b>Ι</b> |
| Value)  By the new circular Instrument                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ( 134)<br>( 8cc. | 3      | 2          |
| Ry the wan circular Instrument                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 250            | . 0    | 6          |
| Of Surd Quantities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 207              | 10     | 7          |
| Reverse Proportion 86, 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.02             | 2      | 3          |
| Reversions have to find the Value of Money or Annui-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 278              | _      | _          |
| Reversions, bow to find the Value of Money or Annui-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 279              | 7      | 5          |
| Rhombus and Rhomboids, to find their Area 460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , 46 i           | . 1    | I          |
| Roots, and their Powers to the 10th-8, 386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 388              | 10     |            |
| Rules of Proportion, twelve Kinds 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$0.05           |        | _          |
| Rules of Proportion, twelve Kinds, 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 166            | 3      | 7          |
| By Logarithms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 264            | 7      | 6          |
| By Logarithms By Lines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 240              | 8      | 4          |
| Of Practice 140 tabularly placed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <del></del> 00   | 2      | 4          |
| Sefaviolicate Proportion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 05             | 2      |            |
| Sesquiplicate Proportion Sexagesimal Arithmetic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 242            | 5      | •          |
| Signs or Characters ased in Algebra, a Table thereof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 262            | FO.    |            |
| Simple Faustinn : Examples and eight general Rules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.000            |        |            |
| Simple Equation: Examples, and eight general Rules.  thereupon  Simple Interest, bow computed by Decimals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | &c.              | 10     | 9          |
| Simple Interest, bow computed by Decimals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 167            | 3-     | - 8        |
| Solids, the Mensuration thereof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 468            | 2      |            |
| Sphere, and its Frustums: to find their Solidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 46a            | 2      | I          |
| Spheroid, to find its Solidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 472            | . 2    |            |
| Spheroid, to find its Solidity  The Frustums thereof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 474            | 2      | . 4        |
| Sphere or Globe, to find its Conven Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 465            | · I    | - 4        |
| Squaring Decimals by Logarithms, bow done                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |        | . 3        |
| Square Root, several ways to extract it; see Extraction-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | •      | •          |
| The Reason from the Algebraical Cannon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | 10     | 6          |
| Squaring a Number by the Algebraical Canon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |        |            |
| Square and Solid Measure, two Tables thereof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 24             | . 1    | 2          |
| Subduble Proportion, submultiple, &c.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \ · 0            | ٠,٠    |            |
| Substraction of intire Numbers, and the Reason2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |        | 9          |
| Of Vulgar Frations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 68             | 2      | )<br>I     |
| Of Decimals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 146            | : 0    | 4          |
| Of Vulgar Fractions Of Decimals Of Logarithms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 2.C.O          | 5      | 2          |
| a) angui mama                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Subst            | raAi   |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sanı             | . act  | 011        |

|                                                                    | Page C              | hap. S     | ect. |
|--------------------------------------------------------------------|---------------------|------------|------|
| Substraction of Algebra                                            | <del>-</del> 377    | 7 10.      | 3    |
| Substraction of Algebra Surd Quantities, the Arithmetic thereof 39 | 7, &c.              | . 10       | 7    |
| whiteaction thereof                                                | 401                 | 10         | 7    |
| Tables of Weight, Measure, &c.                                     | -                   | 1          | 2    |
| Of Nameration                                                      | 12, 14              | ļ. I       | £    |
| Of Literal Numbers                                                 | - 17                | 7 <b>i</b> | ī    |
| -Of Pence for Addition                                             | <sub>18</sub>       | I-         | 2    |
| Of Pence Ounces, and Pounds for Addition                           | 21                  | 1          | 2    |
| For Munipacation                                                   | 3 <b>3</b> , 34     | I          | 4    |
| Of all the Aliquet Parts of a Pound Sterling, and                  | £ 53                | 1          | 5    |
| of a Tan Avardinois Weight                                         | 3                   |            | J    |
| Of simple and compound Fractions                                   | 63, 64              | 2          | I    |
| Of the Velocity of the Descent of beavy Bodies                     | 75                  | 2          | 2    |
| Of 140 Rules of Practice (done by no other)                        | 99 <b>,&amp;</b> c. | . 2        | 4    |
| Of the Value of Remainders in those Rules                          | <del>-</del> 90     |            |      |
| For the Writing and Reading Decimals 13                            | 2, &c.              | • 3        | 1    |
| OC A sadium Dinita                                                 |                     | 2          | 2    |
| Of Places sufficient in Decimal Quotients — 170  Of Discount — 170 | - 101               | .3         | 6    |
| Of Simple Interest 170                                             | to 183              | 3          | 8    |
|                                                                    |                     |            |      |
| Of Compound Interest, twenty four Tables to finty                  | S 216               | <u>'</u> ? | _    |
| one lears, for the Amount and prejent worth of                     | < 10                | <b>C</b> 3 | 8    |
| any Sum or Annuity                                                 |                     |            |      |
| Of the Value of a Life at feveral Ages thereof                     | 228                 | 3          | 8    |
| Of hines pavable to renew Church or College Leafes                 | 231                 |            | ,    |
| Of Indices of Logarithms ————————————————————————————————————      | <b>— 250</b>        | 7          | 1    |
| Of Logarithms and Parts Proportional                               | 281                 | .7         | ٠    |
| Of Time and Motion                                                 | <b>—</b> 25         | I          | 2    |
| 220,000 00000                                                      | 9 9                 | IO.        | I    |
| Of the several ways of expressing Powers of Num-                   | 7                   |            | ,    |
| bers and Species; whether the Exponents be In-                     | >380                | 10         | 6    |
| tegral or Fractional, Numeral or Literal ——                        | ٠, ۲                |            |      |
| Of the Powers of a Binomial to the 10th                            | 388                 | 10         | •    |
| For finding the Unciae of Powers, a new Way -                      | <del></del> 390     | 10         |      |
| Dirto, a second new Way of my own                                  | — 391               | 10         |      |
| Of Roots of Simple and Compound Surds                              | <del></del> 390     | 10         | _    |
| Of Tran and Anotheraries Weight                                    | 24                  | LI         | 2    |
| Of Square and Solid Measure. &c.                                   | — 161d.             | •          | _    |
| Terms in Algebra explained                                         | o, ac               |            | I    |
| Trapezium, to find its Area                                        | 7-                  | T          | 7    |
|                                                                    | 1                   | riplic     | alc  |

| (T) 11 (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Page Chap. Sect.     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Triplicate Proportion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>-</b> 93 2 3      |
| Value of Decimals of Money                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 140 }                |
| Of Averdupois Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 143 } 3 2            |
| Of Troy Weight> All by Inspection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ibid.                |
| Of Liquid Measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 142 7                |
| Of a Foot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 140 \ 3 2            |
| -And Number of Diamonds - that will cover the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |
| Earth and Sea, inserted to shew the Power of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | } 40 I 4             |
| Numbers —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                    |
| Various Positions, Algebraical Questions done thereby                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 429 10 II          |
| Unciæ of Powers, the most eminently learned Sir Isaac.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                    |
| Newton's excellent Rule to find it.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 375 10 I           |
| -A Rule for finding the Unciæ (of my own) with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | )                    |
| a Table thereof to the 15th Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ξ 390 IO 6           |
| -A second Way (of my own Invention) to find the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | }                    |
| Unciæ of any Term, or Member of any Power,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 391 10 6             |
| without those of the previous Powers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ( 391 10 0           |
| Unit, that it is a Number proved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                    |
| Use of Logarithms (subich is very great) in finding the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 -                  |
| Amount and prejent Worth of any Sum of Money                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                    |
| Annuities, or Reversions thereof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7 5                  |
| Utaince, woat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,                    |
| Use of Tables of Discount and Interest vid Discount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del>- 119 2 9</del> |
| and Interest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
| and Interest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )                    |
| Vulgar Fractions wrought, &c. by Logarithms -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2, &c.               |
| Weight of Oil reduced to Measure with the Descon S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 -3                 |
| Weight of Oil reduced to Measure, with the Reasons of the Rule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 107 2 4              |
| Wine Measure, a compleat Table thereof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |
| The state of the s | - 22 L2.             |

THE

### THE

# INTRODUCTION:

Containing an Alphabetical Definition of all kind of Numbers, and the Terms of Art used in Common Arithmetic explained; which the Reader may have recourse to, as he finds occasion.

· Note, That the like for Algebra is inserted immediately before that Species of Arithmetic. Vid. Sect. 1. of Chap. X.

Bundant Numbers, Are such as having their Aliquot Parts added together, the Sum exceeds the Numbers of which they are Parts: as 36 is an abundant Number. because its Aliquot Parts, 1, 2, 3, 4, 6, 9, 12, 18, added, makes 55, which is more than the 36.

Abstract Numbers.] Such Numbers in general, as have no Denomi-

nation annexed to them.

Absolute Numbers.] Such in reality as they appear to be, as 2, &c. is 2 Units contrary to 2 less than nothing (as in Algebra is explained) and to negative Indices of Logarithms: also it is that known Number in an Equation, which folely possesseth one side. See Algebra.

Aliquot Parts, Are the even Parts of any Number, when there is no Remainer in the Division. See at the End of Division.

Aliquant Parts.] Such as will not divide another Number affigned without a Surplus or Rest: as 7 is an aliquant Part of 18 or 23, &c.

Amiable Numbers, Are 2 fuch, as that the Sum of the Aliquot Parts

of one, will make up the other Number alternately.

Arithmetic In all its Parts (or in the most comprehensive Sense) is the Art of folving Questions by Figures, Lines, Instruments, or Symbals, as by the leveral kinds following doth appear.

Arithmetical Complement.] See Sect. 4. of Chap. VII. and Complement

under C.

Arithmetical Progression.] See Progression, Chap. II. Sect. 2.

Articles, In this Science, are Numbers divisible by 10 without Remainer; as 10, 20, 30, 100, 120, 130, &c. 2000, 4000, &c. the fame with round Numbers or Decades.

Artificial Numbers, Are Logarithms. See Chap. VII.

Antecedent

Antecedent Numbers.] The first named of two that are compared together: As if it be said that some Numbers are in proportion as 3 is to 7; here 3 is the Antecedent, and 7 the Consequent.

Binarys.] Two Places of any Number, (as pointed for the Square Root.)

Biquadrate.] See Powers under P.

Broken Numbers.] Such as are commonly called Fractions, which fee.

Cardinal Numbers, The 9 Digits.

Central Numbers.] Such as have a Digit placed in the middle between a like Number of Reverse, Circulating, &c. Numbers, as 3457345, 12521, 78678, &c.

Characteristic] Of any Logarithm, is the Index, See Chap. VII.

Circular Numbers,] Are such as being squared, cubed, &c. the Figure in Units place of the Power, is the same with that of the Root, as 6 times 6 is 36, 5 times 5 is 25, &c. which are some-

times called Spherical Numbers.

Circulating Numbers,] According to some, are those Digits which are regularly repeated, whether the Number be of one and the same Digit repeated, as 222, 7777, &c. or of many as 494949, 372372, &c. And when these fall out in reducing Money, Weight, Measure, &c. to Decimals, you gain many Decimal Places with the less trouble.

Commensurate Numbers.] Such as one Number will justly measure; as 6 and 15 are measured by 3, &c. And the Fraction \(\frac{1}{2}\) is of like Value with \(\frac{1}{2}\), because the Terms are commensurate by 3.

Compleat Numbers.] See Perfett Numbers.

Complement-Arithmetical,] Is the Remainer when any Logarithm is deducted from 10.

Composed Numbers.] The same as Composit Numbers; which see. Compound Fractions.] Fractions of Fractions, as \( \frac{1}{2} \) of \( \frac{1}{2} \), &c. See Chap. II. Sett. 1.

Composit Numbers.] Such as are measured by some other besides an Unit; as 297 is composed of 99 by 3, either of which measures 297.

Common Multiples.] See Multiples following.

Consequent Numbers.] The second of any two in a Proportion. See Antecedent.

Contract Numbers.] The same as Concrete Numbers, (but is no proper Term.)

Concrete Numbers.] Such as have a Denomination annexed, as 5 Lib. 7 Yards, &c.

Cube Numbers.] The Product of Square Numbers by their Roots; as 8 is the Cube of 2, 27 of 3, being Products of 4 by 2, and of 9 by 3.

Cubed Square and Cubed Cube Numbers.] See Powers under P.

Cube Root. | See Roots under R.

Decimal Fractions.] Those whose Denominators are 10, or some Power of 10.

Decades.] The same with Articles, as above.

Deficient Numbers.] Those whose Aliquot Parts (added together) are less than the Numbers of which they are Parts; as 26 is a deficient Number, because its Parts 1, 2, and 13, make but 16.

Differences, or Common Differences, as relating to Logarithms.] See the 3d and 4th general Heads under Sett. 4. of Chap. VII.

Digits,] In Arithmetic, are Numbers of 1 Place, as 1 to 9 inclusive. Direct Proportion,] Is when the 4th No. (fought) is the Quote arising by dividing the Product of the 2d and 3d Number by the 1st. Dividends.] Numbers which are to be divided. See Division, Sect. 5.

Chap. L. ivilors. Numbers of Parts

Divisors.] Numbers of Parts into which another Number is to be divided. See Chap. I. Sett. 5.

Dividual.] Separable or Divisible. Also that Part of a Dividend which is immediately under your Operation.

Diminutive Numbers,] Are the same as Desicient Numbers, which

are explained above.

D.] From Denarius (a Penny): The Mark put over a Column of Pence in Books of Accounts.

Feet. Inch. 12ths

Duodecimals.] Fractions whose Denominators are 12, as 7: 9: 7 is 7 foot, 9 inches, (or 9 twelfths of a foot) and 7 twelfths of an inch, &c. Which are often marked by Measurers thus; F. 1. 11. 11.

7:9:7; and 48:11:3:10; and read the first, 7 foot, 9 primes, and 7 seconds; the second is, 48 foot, 11 primes, 3 seconds, and 10 thirds. See Operations thereby, Chap. IV.

Duplicate, Triplicate, Sesquiplicate, &c. Proportion.] See Sett. 3. of Chap. II.

Equinultiples.] See Multiples.

Evenly even Numbers, Are those which even Numbers will measure by other even ones; as 48 is measured by 8, 6 times.

Evenly odd Numbers, Are those which even Numbers measure by odd ones; as 40, which 8 doth measure by 5.

Ra

Evolution

Evolution] The Extraction of Roots of Numbers, &c.

Exponents,] Are Numbers (smaller Characters than those they stand next) which are placed near the upper part of a Root toward the right-hand, and shew what Power of that Root is expressed; as 3° is the Square of 3 or 9; 3° is the Biquadrate of 3 or 81. Also 4° is the third Power or Cube of 4, which is 64; the Exponents being 2, 4, and 3, standing higher than the others or Roots. So likewise 15° is the Sursolid or fifth Power of 15; 7° is the squared Cube or sixth Power of 7; 20° is the second Sursolid or seventh Power of 20, which is 1280000000. See Powers here and in Algebra.

Exclusions.] Such Numbers in a Question, as being excluded, renders it less perplexed and the easier resolved; as might be shown by

several Examples.

Factors.] Both the Numbers, which for the most part in Multiplication are called the Multiplicand and Multiplicator, (or Multiplier.)

Figurate Numbers.] Such as do represent some Geometrical Figure, either Superficial or Solid. See those Numbers and Linear.

Fractions.] Any Part or Number of Parts of an Unit ad infinitum: as \(\frac{1}{2}\) is Vulgar; \(\frac{1}{6}\), &c. Decimal; and \(\frac{1}{2}\), &c. Duodecimal. See Chap. II, III. and Sect. 10. of Chap. III.

Geometrical Progression.] See Progression.

Harmonical Proportionals.] See Musical, and Chap. II. Sect. 3. Head. 11. Homogeneal Numbers,] Or Homogeneous, are those of the same nature; as the Indices of 2 Logarithms, if they are both affirmative, (without a Mark under) are Homogeneous; or they are so, if they are both negative, or have a Mark under thus, 3 and 2, &c.

Homologous.] Numbers or Terms in a proportion are faid to be Homologous, when there is a Similitude between the Antecedents and Consequents; for as 3 to 9, so 7.21: here 3 is homologous

to 7, as 9 to 21.

Heterogeneal Numbers.] Those which are not of the same kind; as when one is negative, the other affirmative, as 3 and 2, contrary to homogeneal. Also mix'd Numbers, composed of a Whole and a Fraction, as 23: and in Surds, they are such as have different Radical Signs, as  $\sqrt{3}$  and  $\sqrt{+}$ . Vid. Algebra, Chap. X.

Improper Fractions.] Such whose Numerator is equal to or exceeds the Denominator. See Chap. II.

Incommen-



Incommensurate Numbers.] Two such, as no one Number (except an Unit) will measure, contrary to commensurate; as 7 and 23, &c. cannot be measured by any one Number.

Indices.] Numbers which shew the Power of a Root; and in Logarithms they shew the Number of Places which the natural Numbers belonging to any Logarithm consists of, being the same with Characteristicks. See Exponents, and also Chap. IV.

Ineffable Numbers,] Are Surds, or irrational Numbers; which last fee: Or (according to the Import of the Word) Numbers not to

be expressed.

Incomposits.] Numbers which no other but an Unit will measure, being contrary to Composit, and are the same with prime Numbers,

as 7, 11, 23, 29, 31, and hundreds more.

Intire or whole Numbers.] Any Number of Units or Ones; (but: Fractions are one or more Parts of an Unit) fo that one is the middle between infinite Units and infinite Parts: and tho' it is by some not allowed to be a Number, yet fince it is the Foundation of all. Numbers, whether whole or broken, (for 2, 3, 4, &c. are so many ones, and  $\frac{1}{7}$ ,  $\frac{1}{7}$ , properly half the Number of things which are but 2 in all, as 2 is. half the Number which are four in all; it follows, that fince I is not a Fraction, (or Part of 1, which would be a Contradiction. to affirm) it must be a Whole, i. e. a whole Unit, or the Number 1, as properly as 2 is 2 Units, or the Number 2, 3 the Number 3, 4 the Number 4, &c. For Unity is as properly an Individual (or inseparable from Number) as these or any other. And if we take a Series of Numbers, as 1, 2, 3, 4, 5, here 1 in all respects is a Number according to its Nature, as any of the other Digits are agreeable to the same common Nature of Number, and I is one Term or Place in that Rank as well as the others: 'Tis true, r does not divide nor multiply, because it would be absurd to say that a Man had I Pound, Yard, Ounce, or the like, divided between himself; or that because I say, 1 Horse, 1 Field, &c. I should exclude the Number 1, because it does not make more or less than that Horse or Field, and so be contrary to the common Nature of all other Numbers. And as it multiplies and divides as much as it ought to do, making every thing once itself, and giving the Whole to one Person where no one is to have a share with him; so in Addition, &c. it does as all other Numbers do, i. e. augments or diminishes any other Number so much as itself amounts to: For

if

if I add t to 5, it makes 6; that is, so much more than 5, as is the Number 1 added; as 2 added to 5, makes 7, which is itself (or N° 2.) more than the 5, &c. Besides, one in all Merchantile Assairs, as well as in the Eye of our Laws, and in common Conversation, is a N°. And 'tis far from being a parallel to a Point in Geometry, 10000 of which make no Magnitude, but twice one is what all allow to be a Number. And whereas some great Men, as Euclid, &c. have defined Number to be a Multitude of Units; it is highly probable they meant no more than this, That as Unity is but 1, and there are Millions of Millions, nay, infinite other Numbers; therefore, say they, that Number (in the general way of speaking, or for the most part without comparison) is a Multitude or Aggregate of Units.

Integers,] Are whole Numbers, compared with their Parts; as a Penny is an Integer composed of 4 Farthings, its Parts into which it is divided; 1 Shilling is an Integer compared to Pence or Farthings, of which it is composed. But an absolute Integer is an Unit of the highest Denomination of any Specie of Matter or Thing: as 1 Pound Sterling, &c. 1 Ton, 1 Circle, &c. and 2, 3, &c. of the like, are so many absolute Integers.

Inverse Proportion. See Reverse.

Irrational Numbers, or Surds,] Are such whose Roots cannot be accurately extracted, as being no Figurate Numbers: But then they are to be considered as Surds or otherways, when compared with the Power they are of. Thus 16 is a Surd, or irrational Number, if supposed the 3d Power of some other; but if you suppose it only the 2d Power, it is not Surd, but compleatly the Square of 4: and the like may be observed of others. And when we meet with Surd Numbers, (or those that are Rational, which are

to be wrought with Surds) we mark them thus,  $\sqrt[3]{7}$ ,  $\sqrt[3]{7}$  is the way of expressing the Square Root of 7;  $\sqrt[3]{27}$  is the Expression of the Cube Root of 27, which is equal to 3, &c. But more of this under *Powers*, &c. in the Algebraic Part.

Lib. or L. (from Libra a Pound-weight, or 20 s.) The Mark put over a Column of Pounds.

Lineal (or Linear) Numbers.] Such as represent or are the Dimensions of a Line, Root, or Side of a Geometrical Figure. Thus if a Figure be an exact (or Geometrical) Square, containing 100 Foot, 100 is the Superficial Number, and the Side or Linear Number

if 10: If it be a long Square (or Parallelogram) of the Content of 40 Yards, the Linear Numbers (or Sides) are 4 and 10, or 8 and 5.

Lineal Arithmetic,] Is that Science performed by Lines.

Logarithms, Are Artificial Numbers, of great use in Mathematicks; the Invention of Lord Neper, Baron of Merchiston. See Chap. VII.

Mixt Numbers.] Whole Numbers and Fractions, (Vulgar or Decimal) which are placed together: as 13%, 29.75, &c. Or any Number composed of Digits, or Digits and Cyphers that are not next the right-hand.

Multiples,] Are Numbers produced by the Multiplication of some known or assign'd Number: as 40 is a Multiple of 8 or 5, because either of those will divide 40 without Remainer, and

20 is a Multiple of 4 and 5.

Multiples, or Equimultiples,] Are Numbers multiplied by one and the fame Number: as 12 and 28 are Equimultiples of 3 and 7, for

12.28:: 3.7.

Multiples, or Common Multiples,] Are when one and the same Number is produced by different aliquot Parts: as 40 is a common Multiple of 2, 4, and 5, because any of these divide it without Remainer, and because these multiplied one in another produce 40. Multiplicator.] The same as Multiplier. See Chap. I. Sect. 4.

Musical Proportionals.] The same as Harmonical. See Chap. II.

Sect. 3. Head. 11.

Negative Arithmetic.] See (N) near the beginning of Algebra, in

which this kind is chiefly used.

Number, or whole Number, Is one or more Units, expressible by the 9 Digits and 0, ad Infinitum; of which there are near 50 several Kinds mentioned in this Introduction. See Intire, &c. or a broken Number, is one or more Parts of an Unit.

Numerator of a Fraction.] The Number of Parts contained in it.

See Chap. II.

Ob. (from Obolus a Halfpenny) The Mark put for two Farthings in old Writings.

Parts; as 28 is equal to the Sum of their aliquot which is 28; and 1, 2, and 3, are 6.

Parts Proportional.] See 3d and 4th General Heads, §. 4. of Chap. VII. Plain Numbers, Are those which may be produced by multiplying fome Number in another, as 6 the Product of 3 by 2, 8 the Product.

Digitized by Google

### The INTRODUCTION.

duct of 4 by 2, &c. (but 7, 11, 13, &c. are no fuch.) These are the same with superficial Numbers, because the Content of a plain superficial Figure is produced by multiplying two Numbers, which are supposed its Length and Breadth together.

Positive Numbers.] The same with Affirmative. See Absolute Num-

bers, above.

Powers of Numbers, Are the Root or first Power; the Square or fecond Power, produced by multiplying the Root in itself, &r. as follows.

|               | are, or 2d Fower.  Se, or 3d Power.  uadrate, or 4th Power. | Cub e                        | The fecond Surfolid, or 7th Power.<br>The Squared Biquadrate, or 8th Power. | Cubed Cube, or 9th Power. | Squared Surfolid, or 10th Power. |
|---------------|-------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------|---------------------------|----------------------------------|
| Roots, or     | Square, or 2<br>Cube, or 3<br>Biquadrate,                   | Surfolid, or<br>Squared Cubo | The fecon<br>The Squar                                                      | Cubed Cu                  | Squared S                        |
| 1st Example 2 | 4 8 1                                                       |                              | 128. 256                                                                    | 512                       | 1024                             |
| 2d Example 3  | 9 27 8                                                      | 1 243 729                    | 2187 6561                                                                   | 19683                     | 59049                            |

Each Power being produced by multiplying the next before it

towards the left-hand by the Root.

And that these Terms of the Powers are really what they are called; if the 5th Power or Sursolid (in the 1st Example 32, in the 2d 243) be squared or multiplied in itself, it produces the squared Sursolid or 10th Power, for 32 by 32 gives 1024; or 243 by itself makes 59049. And the like may be observed of the rest: for a more full Account of which, see the Word Powers in the beginning of Algebra, Chap. VII.

Promiscuous Numbers.] Composed of Digits without any limited Order, as 7291, 3924, and thousands of others, as under Mint Num-Proper

bers.

ġ

Proper Fractions. | See Chap. II. Sect. 1.

Proportion.] The same with Ratio; its various kinds. See the beginning of Sect. 3. of Chap. II. of which some are Subduple, Subtriple, Submultiple; which Words see: It is marked with Points thus, 3.4::6.8. if direct.

Prime Numbers.] Such as no other but Unity will justly divide. See

Incomposits.

Proportional Parts.] See Parts Proportional.

Progression.] Numbers in Arithmetical and Geometrical Progression. See Chap. II. Sest. 2.

Q. (from Quadrans a Farthing) the Mark put over a Column of Farthings.

Quotient.] See Division, Seet. 5. Chap. I.

Roots of Numbers.] The first Powers. See Powers above, and Linear No Ratio,] Is the Reason or Proportion that one Number bears to another. Or more particularly it is direct, Simple Ratio, Duplicate Ratio, Triplicate, &c. See Chap. II. See 3. Or Ratio in Progression is the Rate by which the Terms increase or decrease.

Restangle.] The same as Product, which is the Sum produced by multiplying 2 together; as 2 Times 4 is 8 = the Product or Rectangle.

Reverse Proportion, Is when the 4th No. (fought) is the Quotient arising from the Division of the Product of the 1st, and 2d, by the 3d Number.

Reverting Numbers.] Such as are composed of a like Number of successive Digits ascending and descending, as 345543, 7887, &c. Round Numbers.] The same with Articles and Decads, which see.

Sesquiplicate Proportion.] See Head 12. of Sest. 3. of Chap. II. Similar Numbers, Are either 1st, Plain, which are such as form like or similar plain Figures; as a Plain of 21 formed by the Rectangle of 7 by 3, is similar to another of 84 formed by the Sides or linear Numbers 14 and 6; for as 6 to 14, so 3 to 7. Or, 2dly, Similar solid Numbers are such as form like or similar Solids (as Parallelopipedons, or 2 or 3 Dice joined to the end of each other) of different, but proportional Dimensions.

S. (i. e. Solidus) the Mark placed over Shillings in a Column of Money. Spheric Numbers. The fame with Circular Numbers, which fee.

Subduple Proportion.] Numbers are in subduple Ratio, when the Antecedent contains the Consequent (or the contrary) twice; as 5 to 10, or 40 to 20, and the like.

Subtriphe,

Subtriple.] Numbers are in a subtriple Proportion, when the Consequent is 3 times the Antecedent, or the contrary; as 9 to 27, or 90 to 30, &c.

Submultiple.] Numbers are in a submultiple Ratio, when the Confequent contains the Antecedent, or the contrary, above three

times without Remainer.

Square Numbers.] All such as are produced by multiplying any Number by itself, because that Product represents a Figure of sour equal Sides.

Surd Numbers.] The same with Irrational, which see.

Sexagefimal Numbers,] Are such Fractions as have 60 for their Denominator, used in measuring Time, and the Motion of the Celestial Spheres, Geography, and Navigation: But they put not down the Denominator in these, no more than in Duodecimals, because it never alters, being always 60, as those are 12. Thus

51:30:45:17:21:59 are read 51 Degrees, 30 Minutes, (or 60th Parts of a Degree) 45 Seconds, (or 60th Parts of a Minute) 17 Thirds, (or 60th Parts of a Second) 21 Fourths, (or 60th Parts of a Third) and 59 Fifths, or 60th Parts of a Fourth, &c.

Of Operations in this kind of Fraction, the Work of Addition is easy: Adding up a Column of Minutes, Seconds, &c. and dividing by 60, putting the Remainer under the Line, and carrying the Quote to the next Column toward the left hand, &c. borrowing 60 always in Substraction. And for multiplying Degrees, Minutes, Seconds, Thirds, &c. these may be done decimally, by reducing the lower Denominations into the Decimal of the highest, and then working as is shewed in Decimals, Chap. III. And by the same Rule and Division of Decimals, is the best way to divide these. But see Chap. V.

Successive Numbers.] Such as are composed of Digits which stand in a natural Succession ascending and Descending, as 34567, or 9876.

Tabular Numbers.] Such as are found in Tables, as of Logarithms, Interest, &c.

Tarif Numbers.] The fame as Tabular Numbers. But the Term is most used in Tables of Customs, and Series of a Divisor by the 9 Digits.

Terms.] The two Parts of a Vulgar Fraction are called its Terms; and so are the several distinct Numbers in an Arithmetical and

Geometrical Progression.

Ternary



Number are so many Ternarys, as used in extracting the Cube Root. Triplicate Proportion.] See Proportion, or Seet. 3. of Chap. II. Head. 10. Unit, or Unity.] The Number 1. See Intire Numbers, above. Unevenly odd Numbers.] Those odd Numbers produced by the Multiplication of 2 odd Numbers together; as 63, which is 7 times 9; 45, which is 9 times 5, &c.

# CHAP. I.

Treateth of the several Parts of single Arithmetic (called Common Arithmetic in whole Numbers) containing Numeration, Addition, Substration, Multiplication, Division, and the Extraction of Roots, which are called Simple or Single Rules of Arithmetic, as being Fundamental Parts or Principles, by one or more of which, all Operations by Numbers are performed.

## SECT. 1. Of Numeration of Intire Numbers.

Y this first Part we are taught how to read or write down any Number proposed, by assigning a proper and natural Denomination for the Place of each Digit in any Line, (tho' composed of never so many of those Digits) and then by observing what Digit is there placed.

By a Digit we understand any single Figure possessing but one

place, as 1 to 9 inclusive.

There is also a Cypher, (or o) which standing alone, or next the left hand of any single Figure or Number of Figures in whole Numbers is of no value; it only serving to fill up places, in order to augment the value of the simple Figure or Figures, which are placed to the left hand thereof; which places might as well be supplied by a Point (.) or Hyphen (-) thus, if that had obtained a Custom, as the (o) hath.

By what is faid it appears, that after we know the Character of the 9 Digits, (which almost every Child learneth so soon as it can read) there is nothing remaining to make one able to read any Number.

ber, but to consider by what Name the several Places in any Number or Rank of Digits is called: and that will appear, by what follows, very obvious.

| The Denomination of each particular Place of any Number not exceeding 9 Places, or that of Hundreds of Millions.  Examples bow the How each of the Numbers are to read in one Line Number.  The Denomination of Examples bow the How each of the Numbers are to read in one Line Number.  The Denomination of Examples bow the How each of the Numbers are to read in one Line Number.  The Denomination of Examples bow the How each of the Numbers are to read in one Line Number.  The Denomination of Course or order of the Numbers are to read in one Line Number.  The Denomination of Course or order of the Numbers are to read in one Line Number.  The Denomination of Course or order of the Numbers are to read in one Line Number.  The Denomination of Course or order of the Places augments toward the left band infinitely.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| of any Number not exceeding 9 Places, toward the left hand number. or that of Hundreds infinitely.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| exceeding 9 Places, toward the left hand Number. or that of Hundreds infinitely.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| or that of Hundreds infinitely.  of Millions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| of Millions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| place.  place.  place.  place.  place.  place.  place.  d 11 Mi  d 12 Hou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| place place place place place place place place d 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| aaraaaaaaa g _ g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| क्षेत्र के के किया है |
| One Hundred Millions 1 0000000 Fig. H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| One Million 1000000   # 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| One Hundr. Thousand 100000 Common                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ten Thousand 10000 TIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| One Thousand 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| An Hundred 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ten 10 = 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Two Hundred Millions 20000000 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Twenty Millions 2000000 g g g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Two Millions 2000000 The High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1 Wo Flundr. 1 nouland 20000   n n n n n n n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Twenty Thousand 20000 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Two Thousand - 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Two Hundred 200 g g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Twenty 20 iii iii iii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Three Hundr. Millions 300000000 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Thirty Millions 3000000 g g g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Three Millions 3000000 用。量。量。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Three Hundr. Thous. 300000 mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Thirty Thousand 30000 3333333333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Three Thousand 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Three Hundred 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Thirty 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Three 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

From the Scheme above it may be observed, viz. 1st. From the middle Column it is plain that every place towards the left hand in any Number is 10 times the Value or Number of the place next it towards to right hand; as 1, 2, or 3, in the 2d, 3d, or 4th places becomes 10, 100, 1000; 20, 200, 2000; and 30, 300, 3000, &c.

2dly. The Column next the left hand gives you the Name that any Number in any place (not exceeding the 9th) is to be called by: As the first or uppermost in each of the three Examples above, is the Hundreds of Millions place; and consequently the Numbers are in Value 1, 2, and 3 hundred Millions, because the Digits there placed are 1, 2, and 3. But instead thereof, if 4, 5, 6, &c. were put in those places, the Numbers must be 4 hundred Millions, 5 hundred Millions, or 6 hundred Millions, &c. the Value or Name depending on the place that any Digit possesses in any Number.

3dy. From the third Column it is evident, that in reading a Number there is a Contraction or Abbreviation of the Words in the first Column to be used. Thus (in the third Example) we do not read the three first Lines 3 hundred Millions, 30 Millions, and 3 Millions; but do only name the word Millions after the last of the three Figures. Thus 3 hundred thirty three Millions, and so of the Thousands, we say 3 hundred thirty three Thousand, &c. 333.

By these Rules, any Number, the never so great, may be read, as is farther exemplified by the following Table of this Art of Numbering; which is much more copious and ample, than any Arithmetic that I know of exhibits.

1. It may not be improper to inform the Reader, that we make use of the words Billions, Trillions, &c. to prevent the Confusion that would arise by the often repeating Millions of Millions, &c. And if it be enquired how much a Trillion (or the like) is; I look for the Units of Trillions at the top of the Table, and casting my Eve downward in that Line till I come to the lower end of it. I then look directly toward the left hand, and find it a Number confifting of 19 places, viz. 18 Cyphers and (1) next the left hand in the 10th place, and is found by involving (or multiplying) a Million in itself, and that Product by a Million. So that a Trillion is as much as to fay, one Million of Millions of Millions. So likewise a Quartillion is 1000000 multiplied three times in itself, (called) its Biquadrate) and confifts of 25 places: A Quinquillion is 1000000 multiplied 4 times in itself, and consists of 31 places, (called the Surfolid or fifth Power of 1000000, of which Powers I shall speak in a proper place.) All which appears plain by the foregoing Table: for Units of Quinquillions, casting your Eye downward to the end of that Column or Series, and thence directly towards your left hand, you find the Figure 31, which shews it consists of 31 places. viz. 30 Cyphers and (1) next the left hand. And thus may you find what number of places any Number in the whole Table confifts of.

2. Or if you would know the Value of a Number confifting of any number of places, it is but looking for the places in the Column of places, and casting your Eye directly to the right hand, till you come to a Figure, which tracing upward in the same Series or Row, you have the Name or Value of the Number, consisting of

any of the places given:

3. By the Table it appears also, that there is no more difficulty in reading a Number of 36, &c. places of Figures, than in a Number consisting of 6 Places. For when any large Number is required to be read, begin at Tens place, and tell 6 towards the left hand, ever which make a 1: then continue to tell 6 more the same way, and over that make a 2: and so forward 6 more, and make a 3, (which will fall over the 19th place): So that having marked thus your whole Number given as in the Table above, I read, for example, the 34 Number in the Table thus.

tog Thousand.

```
Thousand, 456 Quinquillions,
789 Thousand, 876 Quartillions,
543 Thousand, 234 Trillions,
567 Thousand, 898 Billions,
765 Thousand, 432 Millions,
345 Thousand, 678.

And the 33 in the Table thus;—290760 Quinquillions,
1325 Trillions,
732100 Billions,
73 Millions,
212437
```

In short, the Digit being known, and the place it possesset, we have nothing to do but first to mention the Digit, and then the Place. As 9 in Units place is 9 Units, 8 is 8 Units, &c. 9 in Tens place is 9 Tens or Ninety; 9 in Hundreds place is 9 Hundred, &c. So 365 is 3 in Hundreds place; 6 in Tens place, and 5 in Units place; or 3 Hundred, 60, and 5: And the like of any other Numbers.

The narrow Column toward the right hand of the rest, may serve to refer to the Table upon occasion. As the Minutes since the Creation to Anno 1716 inclusive, are 3006387360, which consisting of ten places, is numbered as the 7th Line in the Table, with respect to the Names of the places: So likewise it being computed (in the Use of Multiplication) that the Number of Diamonds of a quarter of an Inch square that would pave our Globe, supposing it even and all Earth, are 12813844858011648000; which consisting of 20 places, is numbered or read as the 17th in the Table. And the Value of those Diamonds being 1.1281384485801164800000, which consists of 22 places, it must be read as the 19th in the Table above.

Thus it appears, that the Table is abundantly large enough to afford an Example how the greatest Number that can arise from almost any Subject, may be numbered: and, in truth, I have made it so large to oblige some curious Persons by way of Speculation, more than for any absolute Necessity there is for it.

There is likewise another Way of expressing Numbers by Letters, used by the *Roman* Numerists, and in Accounts in our antient Records, &c. and may be termed Literal Numbers, or the Numeral

Letters; which are these:

| I            | 1   | XXV 25   | - CC         | 200         |
|--------------|-----|----------|--------------|-------------|
| II .         | ` 2 | XXX 30   | . CCC        | 300 '       |
| III          | 3°  | XXXV 35  | cccc s       | 400         |
| IV           | . 4 | XL, 40   | or CD \      | 400         |
| V            | 5 6 | XLV 45   | CDXC         | 490         |
| · VI         | 6   | L 50     | $\mathbf{D}$ | 500         |
| VII          | 7   | LV 55    | DC -         | <b>6</b> 00 |
| VIII         | . 8 | LX 60    | DCC          | 700         |
| IX           | 9   | LXX 70   | DCCC         | 800         |
| $\mathbf{X}$ | 10  | LXXX 80  | CM, or $\{$  | 900         |
| XI           | 11  | · XC 90  | DCCCC 5      | 900         |
| XII          | 12  | C 100    | M, or $\$    | 1000        |
| XV           | 15  | CX 110   | CID S        | 1000        |
| XX           | 20  | CXLV 145 | CIOD         | 1500        |

CIODCCXX = 1720.

## SECT. II. Of Addition of Intire Numbers.

Land Broken to the Committee of the Comm

DDITION is a Rule whereby several (even the never so many) Sums are aggregated and contracted into one Sum, called the Total.

2. If the Numbers to be added be of one Denomination, or be abstract Numbers, it is properly called Single Addition; and in this case let the Name of the thing you add be what it will, you must for every 10 in Units place carry 1 to the Tens place, and for every 10 in that place, carry 1 to the Hundreds; for every 10 in the Hundreds place, 1 to the Thousands place, and so forward, if you have never so many places; because in Numeration it has been shewn, that 10 in Units is 1 in Tens place, &c.

D

EXAMPLES.

431:10:10<sup>2</sup>

|                                                     | E                                  | $\mathbf{X} \mathbf{A} \mathbf{M}$  | PLES              |                                      | · <b>I.</b>                        | 5.                                  | d.                                                                                                                                                       |
|-----------------------------------------------------|------------------------------------|-------------------------------------|-------------------|--------------------------------------|------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| L.<br>Sterling.                                     | <i>l</i> b.<br>Weight.             | Ells:                               | Hundr.<br>Weight. | Barrels.                             | 7463 :<br>421 :<br>833 :<br>1008 : | - :<br>4:                           | 63                                                                                                                                                       |
| 17642<br>3769<br>8458<br>4764<br>13<br>327<br>97864 | 9367<br>14239<br>4763<br>8324<br>8 | 9762<br>2997<br>3862<br>8764<br>329 | 26                | 1764<br>86<br>9<br>732<br>876<br>384 | 94;                                | 12:<br>8:<br>10:<br>—:<br>13:<br>—: | 11 <sup>1</sup> / <sub>4</sub> 10 <sup>1</sup> / <sub>2</sub> - <sup>1</sup> / <sub>4</sub> 11 <sup>1</sup> / <sub>4</sub> 9 <sup>1</sup> / <sub>4</sub> |
| 132837                                              | 37635                              | 25714                               | 20930             | 3851 Sums                            | 721:                               |                                     | 8                                                                                                                                                        |

3. If the Numbers to be added are 210:11:6 Contract, or have feveral Denominations, 182:11:11 which depend on the Value of the fame 32:16: 81 thing, or on the same Sum received and 1003:-: 7 paid, &c. as the Column of Pounds, 100 47: 1 /11. Shillings, Pence, and Fatthings in the 82:-: ro Margin; you must begin with the Far-312:15: 95 things, and for every 4 of them carry 1 1714: 2:11 to the Pence, for every 12 Pence carry 1 to the Sillings, for every 20 Shillings Total 27168:17: 82

carry a to the Pounds, &c. But because I would not have you point at every 12 in the Pence place, which sullies and souls Books that are kept clean; I have therefore inserted the following short Table, that you may see how many

Shillings is in any Column of Pence that can well be supposed to come to hand; which may serve till you have learned how to divide by 12: for then you need not the Table.

| The TABLE used in Addition of Pence. |           |       |    |      |    |     |      |
|--------------------------------------|-----------|-------|----|------|----|-----|------|
| d. s. 12=1 24=2 36=3 48=4            | $7^2 = 6$ | 120=  | 10 | 180= | 14 | 210 | = 10 |
| 40=4                                 | 190=0     | 1144- |    | 192  |    |     | Note |

Digitized by Google

Note, That \(\frac{1}{4}\) is a Farthing, or one 4th part of a Penny (or other thing) \(\frac{1}{2}\) is one half of a Penny, &c. and \(\frac{1}{4}\) is 3 fourth parts of a Penny or other thing that is placed before it.

And in consequence you find the Sum of the Farthings in the last Example to be 19 (or 4 Pence 3 Farthings): Put down the 4 (as you fee in the Sum) and carry the 4 d. to the Units place of Pence, faying 4 and 1 is 5, and 9 is 14, and 1 is 15, and fo on, you'll find when you come to the top of the Series 78 Pence. Put down the 8 on a piece of (by or) waste Paper, and carry the 7 to the Tens place of Pence, faying 7 and 1 is 8, &c. till you come to 18, (at the top of the Column) which put down to the 8, and it makes 188 Pence; which by the little Table is 15 s. and 8 over: Therefore put down the 8 Pence, and carry the 15 s. to the Units place of Shillings, faying 15 and 3 is 18, and 5 is 23, &c. to the top of the Column, when the Sum is 77. Put down the 7, and carry 7 to the Tens place, faying 7 and 1 is 8, and 1 is 9, &c. which at the top you find 19. Put down the odd 1, (which makes the 7 17 s.) and carry half of 18 or 9 to the Pounds, which sum up as by the Example of 1 Denomination, and you find the Sum total 27168 l. 17 s. 8 d. 4.

4. Hence it may be inferred, that any Numbers may be added, tho' of divers Denominations, as tho' they were of one Denomination or Name. So the Sum of the several Columns of Money foregoing, is 27159 l. 182 s. 184 d. 19 qrs. or l. 27168 17:81. for the 19 Farthings any one knows is 4d. 1, 184 Pence by the little Table is 15 s. 4d. and 4d. in the Farthings is 15 s. 8 d. 182 s. is l. 9:2:— and the 15 s. in the Pence is l. 9:17:— Put down the 17, and add the 9l. to 27159, makes the Total l. 27168:17:8\frac{1}{2}.

This is much the best way; done without pricking and carrying from one Denomination to another, which one is apt to forget when he has a mind to run a Sum over a second time.

And by one and the same Method you add all kind of Denominations of Weight, Measure, Money, &c. And for reducing the Sums properly, (as

that above is done) you will eafily fee how to do that by the little Table following of the Quarters of Hundreds, &c. in the Sum of the Pounds, &c.

D 3

Digitized by Google

TABLE

| Ton                                          | Hund.              | gr.C.      | 'Pounds     | ois Weight. Ounces                    | Drams             |
|----------------------------------------------|--------------------|------------|-------------|---------------------------------------|-------------------|
| 1-                                           | I                  | 4          | 112-<br>28- | —35840—<br>— 1792—<br>— 448—<br>— 16— | - 28672<br>- 7168 |
|                                              | TAE                | B L E 2.   | Of English  | Coin.                                 | <del></del> ; 16  |
| Farth. 4———————————————————————————————————— | Penny I Groa 4—— I | t          |             |                                       |                   |
| 48 1                                         | 2 3-<br>0 00-20-   | 1          | NI-1-1-     |                                       | 1                 |
| 480                                          | 0 <del>3</del> 0-  | -10-<br>d. | I ½         | —ı<br>Mar                             | k                 |
| 640——16<br>960——24                           | 060-               |            |             | -2 I ½-                               | PoundI            |

These Tables are put into the most easy and useful Method that I could think of, and are more especially adapted for reducing Averdupcis Weight (by the first Table) and English Coin (by the second Table) from any one Denomination to another, with one Multiplication or Division.

For the more easy adding this or any other Example of Averdupois greater Weight, I have inserted the following little Table; which shows the Quarters of Hundreds in a Column of Pounds.

A Table

|    | A Table of Quarters of Hundreds in a Column of Pounds. |     |      |       |     |       |  |  |
|----|--------------------------------------------------------|-----|------|-------|-----|-------|--|--|
| Ħ  |                                                        | r.C | . 15 | qr.C. | .tb | qr.C. |  |  |
| 2  | 8                                                      | 1   | 140  | 5     | 252 | 9     |  |  |
| 5  | 6                                                      | 2   | 168  | 6 -   | 280 | 10    |  |  |
| 8. | 4                                                      | 3   | 196  | 7     | 308 | II    |  |  |
| 11 | 2                                                      | 4.  | 224  | 8     | 336 | 12    |  |  |

In the Example last above, having added each fingle Series or Row of Figures (as by the Rules for one Denomination foregoing) I find the Sum 2054 Ton, 176 Hundred, 24 Quarters, and 230 Pounds.

Then (as in the Example before) I must reduce this Sum properly, which is done thus: By the little Table last inserted, 'tis plain that in Sum 2054:176: 24: 230 230 th there are 8 qrs. and 6 th Tp the 24 Quarters are 6 Hundred; and in the 176 Hundred (by taking half except Units place, and adding the odd 10 to the Units) are 8 Ton, 16 C. the Sum of which is Ton 2063: 4:0:6, done without pricking, or any Charge to the Memory. But for such as can do Di-

An Example of adding Averdupois greater Weight.

| Ton.  | C.         | qr.            | tь          |
|-------|------------|----------------|-------------|
| 47:   |            | 2:             | 27          |
| 192 : | 19:        | <del>-</del> : | 12          |
| 43:   | 18:        | 3:             | 24          |
| 973:  | , <b>:</b> | 2:             | 14          |
| 9:    |            | I:             | 15          |
| 47:   | 18:        | <b>3</b> · :   |             |
| 55:   | 9:         | 2:             | 23          |
| 34:   | 16:        | 2:             | 25          |
| 84:   |            | 3:             | 17          |
| 179:  |            | . 2:           | 12          |
| 84:   | 8:         | I:             | 25          |
| 73:   | 18:        | 3:             | 2.4         |
| 234:  | 17:        | :              | 12:         |
|       | ·          |                | <del></del> |

2063: 4:

vision, the last little Table will not be of such necessary Use as it.

A Table shewing the Ounces in ... a Column of Drams; or the in that of Ounces.

is to others.

| 16=1 | 80=5  | 144= 9   |
|------|-------|----------|
| 32=2 | 96=6  |          |
| 48=3 | 112=7 | 176=11   |
| 64=4 | 128=8 | . 192=12 |

S. of B 1 1 1 P

The next Example is done thus:

Having summed up the Units, and then the Tens place of Drams, I find the Sum 191; the Ounces in like manner 177, and the Pounds

And by the little Table above (which any one may make or enlarge by adding 16 to itself, &c.) I find that the next Number to and lefs.

less than 191, is 176, against which stands 11 Ounces; and 191 is 15 Drams more, therefore I put 11 Oun. 15 dr. down as you see. And the Sum of the Ounces being 177, I look for that in the Table, and find the next and less Number thereto to be 176; against which is 11. So that I put down the 11: 1 Oun. as you see in the Margin, and as in the foregoing Examples; which 11 added to the Pounds, and the 1 to the 11 Ounces, &c. the Sum reduced by the little Table is 153245: 12:15.

And thus I have given you fundry Examples and Rules, altogether new, for adding large Numbers of feveral Denominations, as the they were but one Denomination, without carrying any thing from one Name or Denomination to another: which new Method I take to be every way preferable to the common, especially where there are large Examples to be added of several Denominations. I shall give you farther Tables, whereby little

| <b>15</b> 3 | 3245:              | 12:      | 15                                   | Sum.          |
|-------------|--------------------|----------|--------------------------------------|---------------|
|             | 11:                | 1:       | ···································· | J Add.        |
|             |                    | ľī:      | 15                                   | LAAA          |
| tto 3       | 234:               | 177:     | 191                                  |               |
| _           | 176:               | 4:       | 7                                    | y ali Jipa    |
|             | 53:                | II:      | . 14,                                | 1             |
|             | 124:               | 4:       | 3                                    | 100           |
|             | 32:                | 10:      | 8                                    |               |
|             | 75                 | 13:      | 14                                   | · · · ·       |
|             | 37:                | 7 :      | 10                                   |               |
|             | 86:                | . 11:    | 13                                   | •             |
|             | 74 -               | 14;      | <b>. 9</b> ,                         | · · · · · ( ) |
|             | 732:               | 4 :      | 14                                   |               |
| ,           | 99:                | II:      | 11                                   |               |
|             | 39:                | 15:      | 12                                   |               |
|             | 475                | 9:       | 8                                    |               |
|             | 91:                | 12:      | 10                                   |               |
|             | 39:                | 14:      | 11                                   | ··            |
|             | 173:               | :        | 7                                    | •             |
| -           | 92:                | 10:      | 13                                   |               |
|             | 73:                | 15:      | 12                                   |               |
|             | <b>1</b> Б<br>764: | Oun.     | 15                                   | :             |
|             | Weigh              | /.<br>   | dr.                                  | •             |
|             | Avero              | tupois i | ejjer                                |               |
| 116         | Examp              | le of ac | , m                                  |               |

Tables may be made for Addition; or where from Substraction and Reduction of any thing may be performed.

| Ton      |       | Hogsh. | ILE 3.<br>Tiertian | Gallons         | Quarts |     |                |
|----------|-------|--------|--------------------|-----------------|--------|-----|----------------|
|          | I     | 2      | 3                  | <del></del> 126 | - 504- | 291 | 06             |
|          | 2. 2. | 1      |                    | 63<br>42        |        |     |                |
| 1        | •     |        | :                  | 1               | - 4-   |     | 31             |
| <u> </u> |       |        | · .                | ·               | 1      |     | 5 <b>7</b> ‡ . |

TABLEA

```
TABLE 4. Beer-Measure.
Pints
         Quart
                 Pottle
                        Gallon
                              Firkin
                                     Kilderkin
                                              Barrel
      Note. Ale-Measure hath 32 Gallons to the Barrel.
```

```
TABLE 5. Dry Measure. (36 Bushels to the Chaldron of Coals.)
Last Weys Quarters Bushels Pecks Gallons Pottles Quarts
          <u>__10____80___320____640__1280__2560__5120</u>
                <u>     64----128----256-</u>
             TABLE 6. Long-Measure.
Barley-Corns. Inch
                  Foot
                         Yard
190080-63360-5280-1760-320-8-1
```

|                   | <del></del> |                            |          | Square-Me  |            | ••                          |
|-------------------|-------------|----------------------------|----------|------------|------------|-----------------------------|
| Square            | Square      | Square                     | Square   | Square     | Square     | Square                      |
| Mile              | Acres       | Rods                       | Poles    | Yards      | Feet,      | Inches                      |
| 1                 | 640<br>1    | -4                         |          |            |            | 6272640<br>1568160<br>39204 |
| Solid 1           | [nches]     | Feet Soli                  |          | of Solid M | easure.    |                             |
|                   | 1728        | ···                        | Soli     | d Yard     |            |                             |
|                   | 46656       | 27                         |          |            | lid Pole   | •                           |
| 7                 | 762329      | -4492 <del>8</del>         | 16       | 61000      | —ı<br>Ro   | .a .                        |
| 19638             | 85176—1     | 136507 188                 | b4209    | 2 1 000    |            | Acre                        |
|                   |             | <b>-</b> 909 <b>2</b> 061- |          |            | 2024———8·  | Mile                        |
| <b>25435806</b> I | 056000      | 14719795200                | 305451// | 0000-327/  | 0584125528 |                             |

 TABLE 9. Of Troy-Weight.

 Pounds Ounces Pennywt. Grains

 Ib
 3
 dw. gr.

 I---12---240--5760
 1---24

 I---24
 TABLE 10. Apothecaries Weight.

 Grains Scruple
 gr. 3

 20----I
 Dram

 60---3---I
 Ounce

 480----24----8----I

TABLE

| TABLE 11. Of Time.                                                                         |       |
|--------------------------------------------------------------------------------------------|-------|
| Year Weeks Days Hours Minutes Se                                                           |       |
| $1 - 52^{\frac{1}{1}} - 365^{\frac{1}{1}} - 8766 - 525960 - 315$ $1 - 7 - 168 - 10080 - 6$ |       |
| •                                                                                          | 86400 |
| ı 60 <u></u>                                                                               | 3600  |
| 1—                                                                                         | 60    |
| ### TABLE 12. Of Motion.  Seconds Minute 60————————————————————————————————————            |       |
| 324000—5400—90—3—1<br>Circle<br>1296000—21600—360—12—4——1                                  |       |

The Tables foregoing are so easy, as to need little Explanation: I have put them in two Methods, a small matter differing. Table 1. which is of Averdupois Weight, is to be thus read; 1 Ton is 20 Hundred, 80 Quarters of C. 2240 Pounds, 35840 Ounces or 573440 Drams: Also 1 C. is 4 Quarters, 112 lb. 1792 Ounces, &c. reading from the right towards the left hand, all which is useful in Reduction.

And the same is to be observed in the second sort of Table, only here you read the contrary Way, from the right hand toward the left: As I Pound Sterling is 1½ Marks, 2 Angels, 3 Nobles, 20 Shillings, 60 Groats, 240 Pence, 960 Farthings. One Mark is 13 (or I Angel and I Third) 2 Nobles 13 s. 4d. 40 Groats, 160 Pence, &c. And the Numbers above shew that 4 Farthings is I Penny, 4 Pence I Groat, 3 Groats 1 s. 6 s 8 d. = I Noble, &c.

As to the Proof of Addition, it is either performed by Addition or Substraction.

E

Thus



|                                                   | O 12 22 2 1 2 1                                            |  |  |  |
|---------------------------------------------------|------------------------------------------------------------|--|--|--|
| upper Lines added to the                          |                                                            |  |  |  |
| Sum of the 2 lower, is equal to the Sum Total:    |                                                            |  |  |  |
| For the Sum of any Parts added to the rest of the |                                                            |  |  |  |
| n Total of all the Parts                          | 5432<br>1234                                               |  |  |  |
|                                                   | 567                                                        |  |  |  |
| lowermost deducted from                           | 89                                                         |  |  |  |
| Sum of the                                        |                                                            |  |  |  |
| uppermost Sum Total=                              | = 17198                                                    |  |  |  |
|                                                   |                                                            |  |  |  |
| Sum of the 3 uppermost                            | 16542                                                      |  |  |  |
| Sum of the 2 lower Lines =                        | = 656                                                      |  |  |  |
|                                                   |                                                            |  |  |  |
| Sum Total, or Sum of ?                            | TTTO DECOS                                                 |  |  |  |
|                                                   | 17198 Proof.                                               |  |  |  |
| The leffer deduct                                 | 6 <b>56</b> .                                              |  |  |  |
|                                                   |                                                            |  |  |  |
| Leaves the greater =                              | 16542 Proof.                                               |  |  |  |
| · ·                                               |                                                            |  |  |  |
|                                                   | lowermost deducted from e Sum of the uppermost Sum Total = |  |  |  |

When large Sums of Money are (in Records, &c.) required to be expressed Literally, or in Numeral Letters, they may be wrote, &c.

```
or thus, more easy for Addi-
            thus;
                                 tion thereof.
          i.
                         d.
                    g.
                                                  g.
                                                        D.
                                M.
                                      C. X.
                                     VII, III, VI : IX ob
  MDCCXXXVI:
                    VI: IX ob
M'°DCCCCXXIX:
                    X: II
                                    IX, II, IX : X
                                                      : II
M°CCXCIX
                    XI: IX
                                                  XI : IX
                                 VIII, II, IX, IX:
                    X: IX ob
M<sup>2</sup>°DLXXXVII
                                 XX,V,VIII,VII:
                                                  \mathbf{X}
                    VI: VIII
                                 DX, I, V, II : VI : VIII
M', 1°CLII
                  XIX: VI ob
                                XIX, VII, IV, V: XIX: VI ob
M<sup>19</sup>DCCXLV
M6°CCXXXI
                                 LX, II, III, I : XI : IV
                    XI:IV
M<sup>63</sup> DCLXXXII
                 :XVII:—ob DCXXXI,VI,VIII,II: XVII:—ob
      viz. 631682: 17:--- 1
                                       or 631682: 17:-
          Sums Total
                                          Sums Total
```

To add the first Column tis easy till you come to the Pounds, and there add together 1st all under 10, to each Ten there add all Tens

Tens under 100; to those add what is under 1000, and the Thousands carry'd to the rest.

Note, The M, C, and X are Thousands, Hundreds, and Tens, the Titles of the Columns they stand over, as to place.

## SECT. III. Substraction of Intire Numbers.

HIS is a Rule whereby the Excess or Difference between two Numbers is discovered; that is, we find out by this part of Arithmetic how much one of two Numbers given, is greater or less than the other. Thus if 15 be compared with 20, we find it lesser by 5.

Hence it appears, that in Substraction there are always 2 Num-

bers given, from whence a third is discovered.

Of the 2 Numbers given, the greater I call the Compound Number, (as being composed of the lesser Number and the Difference between those given.) The lesser I call the Subtrabend, it being that which is to be taken from or drawn out of the greater. And when that is done, there ariseth the third Number, which may be termed the Remainer, Excess, or Difference between the Numbers given, and is the Number sought for in this Part of the Art of Numbering.

As in Addition, so in Substraction the Numbers given are either of one simple Denomination, or else they are one or both of several Denominations or Names; for the Numbers given are Abstract or

Concrete.

I shall next illustrate what is said, by examples of one and more Denominations in the common Way of Working; and 2dly, in another.

### Examples of one Denomination, or of Abstract Numbers.

| <i>Example</i> 1.<br>Lent <i>l</i> . 71032 | Example 2. Borrowed l. 19721 | Example 3.<br>Received l. 9211 |
|--------------------------------------------|------------------------------|--------------------------------|
| Received l. 9735                           | Paid L 8957                  | Disbursed l. 1973              |
| Remainer 1. 61297                          | Rémainer l. 10764            | $Rem. = \overline{l.7238}$     |

### Examples of several Denominations, (or of Contrast Numbers,)

| Example 4.          | Example 5.                    |  |  |  |
|---------------------|-------------------------------|--|--|--|
| Gained 1. 1192:12:3 | Debtor 1. 10132: 10:44        |  |  |  |
| Lost 1. 287:14:7    | Creditor <i>l.</i> 975: 15: ‡ |  |  |  |

Remaineth gain'd l. 904: 17: 8 Remaineth Dr l. 9156: 15: 3\frac{1}{2} Example

```
Example 6.
Received as an Agent or Factor, to be applied \ 1. 9000: -:-
  and disbursed as per Order of my Employer-
Paid A. B. for Goods bought —— 1. 2072: 13:4

For a Ship with Rigging —— 936: 19:2
  For Infurance —
  For Freight -
                                  - 100:11:9<del>1</del>
                            In all -
                                               —3280: 3: x
Which Sum of the Payments being deducted
  from the l. 9000, the Remainer (in the Factor's > l. 5719: 16: 11
  hands) is ---
                          Example 7.
                                      Weight
                                                    Value
                                 C. qr. tb
         Bought of A. B. Sugars 193:3:25
                                                 386:19:
                 of C. D. more 323:3:17
                                                 532:18:
                   Bought in all 517:3:14 6919:17:104
         Weight
                       Value
        C. qr. tb
Sold E.F. 25:1:14 for 59:17:6
 to G. H. 126:3:25 at 315:12:10
 to J. K. 94:2:14 at 235:17: 64 to L. M. 87:3:20 at 180:13: 4
Sold in all.
                               334:3:17
             Remains unfold C. 182:3:25
    Which unfold Goods cost me —
                                             --- 364 : 18 : 10<del>1</del>
  From which last Sum deducting the next above > -
    it, the Remainer is gained (already) by this > 237: 2: 21
    Account -
```

### Directions for performing the foregoing Operations.

I N the first Example you are to take the lower Line from the upper, or the lesser Number 9735 from 71032. Begin at Units place, and say 5 from 2 cannot be, but 5 from 10, which you must borrow, and add to 2; that is, 5 from 12, and there remains 7. Then having put the 7 under the Line, say 1 borrowed and 3, (the Figure in Tens place of the Subtrahend) is 4, from 3 (in the compound

pound Number) cannot be; but from 13 (borrowing 10 as before) leaves 9. Which put down, as you see, and say 1 borrowed and 7 (the Figure in Hundreds place of the Subtrahend) is 8 from 10 borrowed (because you cannot take 8 from 0) and there rests 2. One borrowed and 9 is 10 from 1 (in the Thousands place of the compound Number) cannot be, but 10 from 11 leaves 1, which put under, as you see. And lastly, 1 borrowed from 7 in the upper Line, and the Remainer is 6. So the whole Sum remaining is 61297. And thus any Operation of one Denomination is performed.

Then for several Denominations I shall instance, 1st, in the fifth Example. You must always begin with the least Name, here Farthings; and say 3 Farthings from 1 cannot be, but borrowing 1 Penny or 4 Farthings, add to the 1 Farthing makes 5; so 3 from 5, and there rests 2 Farthings: put under as in the Example, and say 1 Penny borrowed from 4 Pence in the upper Line, and there rests 3 d. Then say 15s. from 10s. cannot be; but 15 from 20s. which you borrow, and the 10, viz. from 30, and there resteth 15. Then say 1 borrowed and 5 is 6, from 12, rests 6 Pounds, &c. as in the former Examples.

The fixth Example is performed by first adding together the Sums laid out, and then deducting that Sum, which is l.3280:3:1 from the 9000. Thus 1 d. from 12 you borrow, leaves 11 d. 1 you borrowed and 3 s. is 4 from 20 s. which borrow, and the rest is 16; which put under and deduct the 1 borrowed from 10, &c. as

before.

Lastly, in the seventh Example, you are to deduct the Hundreds, Quarters, and Pounds fold from those bought: to perform which, you must say 17 Pounds from 14 lb. cannot be, but 17 from 28 lb. which you borrow (that being a Quarter of a Hundred, which is the next Denomination) leaves 11; which added to the 14 lb, makes the 25 which you fee. Then 1 Quarter of a Hundred borrowed and 3 is 4, from 7 (that is, 4 Quarters or 1 Hundred borrowed and added to the 3 Quarters standing in the upper Line) and the rest is a Quarters; which put in the Remainer, saying I (that is, 1 Hundred weight) borrowed and 4 (in the Sum of the Sales) is 5, from 7 in the Hundreds bought, leaves 2; which put down, and so proceed, as in substracting one Denomination: and the quantity of Sugar remaining unfold you find to be C. 182:3:25. And the Value of what is fold deducted from the whole Value bought, the Remainer is 1. 127: 16: 7½ (which is the Sum only wanting

wanting to make up the Cost of all that was bought.) Which Sum remaining deducted from the prime Value of what Sugar remains unfold, viz. 182 C. 3 qr. 25 lb. which costs 1.364: 18: 10; the remaining Cash is 1.237: 2: 2; which is got by this Trading, thus far.

Note, Tho' the Subtrahend, as here  $l.127:16:7\frac{1}{2}$  stands over the Compound Number  $l.364:18:10\frac{1}{4}$ , it is as easily deducted as if the lesser Number stood under the greater, as is most usual.

By the Rules and Examples above, I suppose any one may perform Substraction after the common way.

But the Work may be effected without faying fuch a Figure from such a one cannot be, and 1 borrowed, &c. as in the Margin.

For where any Digit in the compound Number is less than that standing under it in the Subtrahend, mark the next toward the lest-hand with a From 1  $\frac{10101010}{46}$  1 2 3 10

From 1  $\frac{5}{7}$  7 2 3 4 2

Take  $\frac{8}{9}$   $\frac{5}{5}$   $\frac{6}{5}$   $\frac{5}{7}$ Refts =  $\frac{6}{7}$   $\frac{6}{6}$   $\frac{6}{8}$   $\frac{8}{5}$ 

Point, and put over it a Digit, which is 1 less, as here over 4 in the Number given put 3; over 3, 2, &c.

Then where the Figures put over the pricked ones (or those given) are still less than those respectively in the Subtrahend, place 10 partly over, but a little toward the lest hand; then you have the very Numbers at large, from whence Substraction is to be made. Thus 7 from 12 rests 5; 5 from 13 rests 8; 6 from 12 rests 6; 5 from 11 leaves 6; 9 from 16 leaves 7; and 8 from 14 leaves 6.

Now I have only inferted the Figures over those pointed, and the Tens to explain the Rule; but 'tis certain, the Work may be as easily performed mentally, by supposing every Figure as aforefaid less by the I (supposed 10) which is borrowed from the next towards the left hand of the Number given to make Substraction from. For whenever you borrow 10, that 10 is presumed to be taken from the next Figure towards the left hand; and of confequence therefore that is I less, (I in any Series being 10 in another next it toward the right hand.) Thus in the Example, 7 from 12 rests 5; where the one Ten borrowed makes the Figure in Tens place a Unit less, i. e. the 4 is but 3. And when you say 5 from 13 rests 8; this I borrowed is actually taken from the next Digit 3, and leaves it but a 2, and so 2 becomes but a 1, 7 a 6, and 5 a 4, which is all supposed as you perform the Work, without putting down any thing but the Remainer. Sa

So also in divers Denominations, the Unit borrowed being supposed one of the next superior Denomination, must leave that a Unit less, as is explained in the Margin. Where 2 s. 6 d. 10,10 20 12 1 gr. in the upper of the 6,0, 2 I two Lines given, being less Acquired or earned 7 1 3: 2:64 Expended =  $3.9 7:17:9^{\frac{1}{4}}$ than 17s. 9  $d. \pm in$  the lower Line; therefore 4 Farthings taken from the 6 d. makes Saved, or put in Bank 3 1 5: 4:8∄ the  $\frac{1}{4}$ , and 5 d. resteth; or ½ 12 d. borrowed from the 2 s. and put over the 5 d. makes 17 d. and 1 s. resteth; 20 s. taken from the 3 l. makes the faid 1 s. to be 21 s. and 2 l. resteth, &c. as in one Denomination; then I have it plain to my fight, that 1 from \(\frac{1}{4}\) leaves \(\frac{1}{4}\) or \(\frac{1}{2}\); 9 d. from 12 and 5 or 17 d. leaves 8; 17 s. from 21 leaves 45; 7l. from 12l. leaves 5; 9l. from 10 leaves 1l. and 31. from 61. leaves 3, without borrowing and paying. Which Method with Use will make the Work easier and shorter than the common Way; I mean, when only the two Sums given are wrote down, and the rest performed in the Mind, as Example.

This is done without the least mentioning, borrowing or paying, and with more

Ease and Expedition; Repairs, Taxes, &c. deduct. 279:15:9
and may serve also to
shew the Nature and
Reason of the common
Way of Working.

The Proof of Substraction is either by Addition or Substraction: For in the last foregoing Example, the Remainer l. 1485: 16: 6 being added to the Subtrahend, l. 279: 15: 9, the Sum is the compound Number given, or l. 1765: 12: 3; which proves the Operation to be right.

Or by Substraction. If from the l. 1765: 12:3 you take the Remainer l. 1485: 16:6, there will then remain l. 279: 15:9=the Subtrahend given.

SECT.

# SECT. IV. Multiplication of Intire Numbers.

MULTIPLICATION is a Rule which shews the Number of Units produced by making one assigned Number any

Multiplicity of times itself.

Or tis that Part of Arithmetic of such admirable Extent, that no Number or Quantity can be so great, but another greater may be discovered: For by it not only the Number of single Sands that would compose an Heap as big as our Earth, but even one to extend to the starry Firmament are within the limits of this part of the Numeric Art to compute.

It is an Abridgment of the Work of Addition, performing that in a Minute, that Addition would require fome Hours to do.

Thus if 8766 were to be multiplied by 20000, (or to know how many Hours are in 20000 Years) 'tis only to double 8766, which is 17532, and to that place the four Cyphers toward the right hand will make it 175320000 the Answer, (which is done in less than half a Minute.) But how long it would require to put down 8766, 20000 times; or 20000, 8766 times; and then add all those Numbers together; I leave the Reader to judge, and consequently of the Excellency of this Rule, which is justly called Multiplication.

As in the last Section, so in this Part there are two Numbers given to find a third: To instance, as above, 8766 and 20000 are given, and 175320000 is the Number produced by or resulting

from the Multiplication.

Of these 3 Numbers 1 (commonly the greater of the 2 given) is called the Multiplicand, the other of those given is the Multiplier, and both together they are called Factors; and the Number arising therefrom after Multiplication, is called the Product, or (in Geometrical Operations) the Rectangle.

The Relation these three Numbers have to each other, is, That the Product containeth either of the Factors so often as the other

Factor contains a Unit: and consequently

As 175320000. to 8766:: so 20000. to 1. Or

As 175320000. to 20000:: 8766. 1. &c. But this by the by, till we arrive at the Rules of Proportion.

The whole Business of Multiplication consists in these three

things.

1. In knowing mentally and readily what any two Digits multiplied together produce.

2. In

2. In the right placing those Products. And,

3. In collecting those particular Products into one general Product.

Hence it follows, that a Table of the Products of one Digit by another be composed, which, before you can proceed farther in this most pleasant and useful Science, must be learned by heart: thus

The first Column is what is absolutely necessary to get by heart.

The second Column for the most part, that is, in multiplying by 10 and 11, does not charge the Memory: for to multiply any Number by 10, is only to place a Cypher to the right hand of the Multiplicand, (for 1, tho' a Number, as augmenting and diminishing another by Addition and Substraction, yet it neither multiplies nor divides.)

And to multiply any Digit by 11, is only to repeat the Digit as in the Example. And I have added the Multiplication of the Digits by 12, because that being got by heart, faves the trouble of making a whole Line, and of adding two Lines together: for when you have that by heart, you can multiply or divide by 12 (a Number much used, as being the Pence in a Shilling, the Inches in a Foot, &c.) as by one fingle Digit.

| The Muliin        | lication Table.         |
|-------------------|-------------------------|
| - 1 DE TVIMIT     |                         |
| 3 times 3 is=9    | 10 times 2= 20          |
| 4=12              | 3= 30                   |
| 5=15<br>6=18      | 4= 40                   |
|                   | 5= 50<br>6= 60          |
| 7=21              |                         |
| 8=24              | 7= 70                   |
| 9=27              | 8= 80                   |
| 4 times 4=16      | 9= 90<br>11 times 2= 22 |
| 5=20<br>6=24      |                         |
| 7=28              | 3= 33<br>4= 44          |
| 8=32              |                         |
| 9 <del>=3</del> 6 | 5= 55<br>6= 66          |
| 5 times 5=25      | 7= 77                   |
| 6=30              | 8= 88                   |
| 7=35              | 9= 99                   |
| 8=40              | 12 times 2= 24          |
| 9=45              | 3= 36                   |
| 6 times 6=36      | 4= 48                   |
| 7=42              | 5= 60<br>6= 72          |
| 8=48              | 6= 72                   |
| 9=54              | 7= 84                   |
| 7 times 7=49      | 8= 96                   |
| 8= <sub>5</sub> 6 | 9=108                   |
| 9=63              | 10=120                  |
| 8 times 8=64      | . 11=132                |
| 9=72              | 12=144                  |
| 9 times 9=81      |                         |

F The

The wonderful Productions arising from the placing Numbers, are many and surprizing: I shall here insert an Instance, where, by placing only 9 Figures to the best advantage about 5 Digits given, constitutes all the Parts of the common Table that are absolutely nucessary to be inserted for the more apprehensive part of Readers.

A most brief Multiplication Table, viz.

|                                                            | Two of these given to | be multiplied, or one to be fquared. |                      |                                                               |
|------------------------------------------------------------|-----------------------|--------------------------------------|----------------------|---------------------------------------------------------------|
|                                                            | <b>V</b>              |                                      |                      | ·                                                             |
| Two of these multiply, standing against the Numbers given. | 1<br>2<br>3<br>4<br>5 | 9<br>8<br>7<br>6<br>5                | 40<br>30<br>20<br>10 | Two of these add, respecting the given Numbers in the middle. |

The large Table is so plain, that it needs no Explanation, as shewing that 8 times 8 is 64, 8 times 9 is 72, and the like of the rest.

And this Table is very near as easy; for you must always look for the Digits to be multiplied, in the middle Column: As suppose I would know what 8 times 6 makes; against 8 in the middle Column is 30 towards the right hand, and against 6 in the middle is 10 in the right-hand Column, the Sum of which is 40; and those standing against the others, in the lest-hand Column, are 2 and 4, which multiplied together, make 8: so that 8 times 6 is 48.

And to square any of the middle Numbers, as suppose 7, double 20, which stands against it on one side, and multiply that by itself, which stands against 7 on the lest-hand side; so 20 doubled is 40, and a squared makes on so that 7 times 7 is 40.

and 3 squared makes 9: so that 7 times 7 is 49, &c.

So much for the Tables: I shall now proceed to shew how the

Operation of Multiplication is performed. And,

2. The Application of the Rules in folving Questions, which may ferve, instead of Reduction descending, to shew the Use of Multiplication.

Proposition



Proposition 1. To multiply a Number by another, which consists but of one place.

Example 1. Example 2.

Multiplicand 79533 Multiply— 175945

Multiplier . . . . 8 by . . . . . . 9

Product 636264 Answer = 1583505

Prop. 2. To multiply any Number by another confifting of two, three, or more places. A shorter way for Example 1. See Multiplication of Decimals.

Example 2. Example 3. : Example 1. Multiply 74963 47625 76472 by . . . 75 357 2475 382360 374815 3**33**375 238125 535304 524741 142875 305888 Product = 5622225 152944 Product = 17002125

Product = 189268200

Prop. 3. To multiply when one or more Cyphers are in the Multiplier, but not at the end.

Example 1. Example 2. Multiply.... 57234 97532 92004

171702 390128 114468 195064 286170 292596

297788502

Prop. 4. How to do when one or more Cyphers are sent the right hand of one or both of the Factors.

Example 1. Example 2. Example 3.

9769 Factors. 7399 Factors, 34000 Factors.

400 Factors.

F 2

9769000= Product = 2959600= Product = 102 68

Product= 78200000

Rules

Rules for performing the Operations above.

In Example 1.] Say 8 times 3 (the Units place of the Multiplicand) is 24; put the 4 under the Line, and carry the 2 Tens to the next Product, faying 8 times 3 is 24, and 2 carried is 26; put 6 in Tens Place of the Product, and carry 2 as before, faying 8 times 5 is 40, and 2 carried is 42; put the 2 under the Line as you fee, and carry 4 (Tens) faying 8 times 9 is 72, and 4 carried is 76: put the 6 under, and carry the 7, faying 8 times 7 is 56, and 7 carried is 63, which (being the Produce of the last Figure) put all down, and you fee that 8 times 79533 is 636264. And so much for Directions to multiply and carry the Tens from one particular Product to another; the Reason of which, and of placing the several Products a degree towards the left-hand, I shall shew by and by.

In Example 2. of Prop. 2.] You find by the Rules above, that 7 times 47625 is 333375; and then you multiply 47625 by 5 (the next Figure in the multiplier) faying 5 times 5 is 25: place that 5 under Tens place of the former Product, and proceed as before; and when you come to the 3, put 5 of the Product 3 times 5, under the Tens place of the last Line or Product; and so continue, if you had never so many Figures in the Multiplier, as you see in the other Examples.

In Proposition 3.] You have Examples, that when one or more Cyphers are in the middle of the Multiplier, you must (in beginning to multiply by the Digit next the Cyphers towards the lest-hand thereof) place the first Figure of the Product not under Tens place of the former Product, as before; but put it so many places extraordinary towards the lest-hand as there are Cyphers: the Ex-

amples thorowly explain the Meaning.

In Prop. 4.] It is shewn, that whenever Cyphers are to the right-hand of either or both Factors, you need only to multiply by the significant Figures or Digits, and then place all the Cyphers in one or both the Factors towards the right-hand of that Product; and when 10, 100, 1000, &c. is the Multiplier, you need only to put the Cyphers towards the right hand of the Multiplicand, and that is your Product; as by the sirst Example of this Proposition.

Enemals - Enemals a

The Reason of the Method in the Process of the Work of Multiplication, by several Digits in the Multiplier.

I shall give an Instance in the Work of the second Example of the second Proposition foregoing; and shall explain this by three Examples depending on each other, the second of which, supposing the Cyphers left out, is an Abbreviation of the first; and the third Example shews how much the Number of Figures in the second Example is lessened by carrying the Tens from the Product of every two Digits to that of the next, &c. and not putting the whole down, which reduceth 15 Numbers into 3.

|                  | Example 1.      | Example 2.  | Example 3.                       |
|------------------|-----------------|-------------|----------------------------------|
|                  | 47625           | 47625       | 47625                            |
| · ·              | 357             | 357         | 357                              |
|                  | 35              | 35          |                                  |
|                  | 140             | 14   0      | •                                |
| •                | 4200            | 42 00       |                                  |
|                  | 49000           | 49   000    | •                                |
|                  | 280000          | 28 1 0000   |                                  |
|                  |                 |             | -333375=Sam                      |
|                  | . 250           | 25   0      |                                  |
|                  | 1000            | 10   00     |                                  |
|                  | 30000           | 30   000    | ·                                |
|                  | 350000          | 35   0000   |                                  |
|                  | 2000000         | 20   00000  | ·                                |
|                  |                 |             | -238125=Sum                      |
|                  | 1500            | 15 00       |                                  |
|                  | 6000            | 6   000     |                                  |
| _                | 180000          | 18 0000     |                                  |
|                  | 2100000         | 21   00000  | •                                |
| •                | 12000000        | 12   000000 |                                  |
|                  |                 |             | 142875=Sum                       |
| Sum:<br>or Produ | =17002125<br>et | 17002125    | 17002125 Sum Total<br>or Product |

In the first of these Examples you have the whole Work of the Multiplication as the Figures stand, the whole being put down without Carrying or Abridgment; as 7 times 5 is 35, 7 times 20 is 140,

140. 7 times 600 is 4200, &c. Then 50 times 5, 20, 600, 7000. and 40000 make the next 5 Lines: And 300 (the third Figure in the Multiplier) times 5, 20, 600, 7000, and 40000 make the last 5 Lines or Numbers in the Operation.

In the second Example you see how the Work stands when the unnecessary Cyphers are cut off, and thrown out of the Account. And

In the third Example you fee that the Sum of the Numbers feparated from the Cyphers do respectively make the Numbers, and fall in the same order as in the second Example of Prop. 2. So that here you see not only the Reasons why the Tens are carried from one fingle Product to another, when I Line or Number is only made instead of 5: but you also see plainly the Reason why the Units place of every Line stands under Tens place of the Product or Line of Figures preceeding.

Thus much for the Theory of Multiplication, I shall next shew,

II. The Use and Application of Multiplication.

1. Of Money.] Pounds are reduced immediately into Shillings, Pence, or Farthings, by multiplying the given Pounds by 20, 240, or 960, as per Table 2. in Addition.

Example. in 7873 l. how many Shillings? &c.

| 7873 Pounds 7 Multi-<br>20 Shill, in <i>l</i> . 1. 5 ply. | Example 2.     | Example 3. 7873 l. 960 qr. in l. 1. |
|-----------------------------------------------------------|----------------|-------------------------------------|
| Sb.157460 = the Answer.                                   | 31492<br>15746 | 47238<br>70857                      |

Pence for Answer 1889520 Farth. 7558080 Answer. Note, These Shillings may be reduced into the Pence by multiplying them by 12; and these Pence into the Farthings by multiplying by 4. And the like of any other Pounds, Shillings and Pence.

Quest. 2. In 1. 7873: 18: 111 . 17872:18:114 how many Farthings?

Multiply 7873 by 960, as in the third Example; to the Pro-duct whereof add 911 = the 70857 Farthings in 18 s. 11 d. 1 and the Sum is the Answer, as per 7558080 Mangin.

Add . . . 911 gr. in 181. 11 4.

Sum = 755899Y = Answer: Willey

2. Of

2. Of Averdupois Weight.] By the first Table in Addition it apbears that Tons are reduced into Hundreds by multiplying them by 20; into Quarters of Hundreds by 80; into Pounds by 2240; into Ounces by 35840, &c. Example, In 85 Ton how Ounces in 1 Ton = 35840many Ounces? Tons given 3. Of Liquid Measures.] In 157 Ton of Wine, how 179200 many Quarts? By the third 28672 Table in Addition, you see that in 1 Ton are 1008 157 Ton. | Answ. Oun. 3046400 Quarts: therefore the Tons 1008 = Quarts in 1 Ton.being multiplied by 1008, gives the Product 158256 1256 Quarts. 157 158256 Quarts, Answer. 4. To reduce Time.] How many Minutes may we say it is since the Creation, supposing the Years, according to Sacred Chronology, to be 5716? By the eleventh Table in Ad- \ 525960 Minutes \ 5716 Years dition, there are in 1 Year — \_ 5 315576 52596 5. To reduce Square or Super-268172 ficial Measure. How many Dia-262980 monds, of 16 in a square Inch, 3006387360 Minutes for Answer. will pave the Globe we live on, fuppoling it a compleat Sphere or Globe all of Earth? The Ambit (or Circumference) of the Earth, ac-7 cording to Mr Norwood's measured Degree of near 70-English Miles in a Degree, is Miles 6260 A fourth of which is Miles Which multiplied by the Earth's Diameter = 7967 4382 3756 5634

The Product is the fuperficial Content of a Circle, 1

whose Circumference is that of the Earth, viz.

49873420

and the Product shews how many of the later are contained in all

the former.

For

For Proof of Multiplication, see at the end of Division.

Note, That many new and very brief Rules and Examples for Multiplication may be seen in Decimals.

SECT. V. Division of Intire Numbers four several Ways.

DIVISION is that Part of Arithmetic by which a Number given is divided, separated, or distributed into any Number of Parts assigned.

Hence 'tis plain, that it is the Reverse of Multiplication; for as that produceth an Increase, so this produceth a proportionable Decrease: And consequently the Truth of any Product of Multiplication, is proved by dividing it by one of the Factors, of which more hereafter.

Division performeth the Work of many Substractions (as Multiplication does that of many Additions) by a few Figures and in a small Time; which Substraction would require an incredible deal of Time, Figures and Paper, to effect. To instance in the former Numbers: If it were proposed to find out how many Years are in 175320000 Hours, there being 8766 Hours in 1 Year, therefore to do this by Substraction, would re-

quire that you deduct 8766 so often from 175320000, till nothing remain, which would be after 20000 Deductions. But the Work of Division

8766) 175320000 (20000

0

shews the Answer with that Brevity which you see in the Margin. It appears from hence, That in Division there are always 2 Numbers given, and a third sought for. The Numbers given, are, 1st, That which is required to be divided, which we call the Dividend. 2dly, The Number of Shares, Parts, or Portions, into which the said Dividend is assigned to be parted or divided, which we call the Divisor. 3dly, The Part or Share arising from the Work of Division (being the Number sought for) we call the Quotient, (from quotiens, i. e. how many times) which shews how often the Divisor is contained in the Dividend.

And if the Dividend contain somewhat more than the Quotient expresseth, (but not so much more as the Divisor amounts to) that Surplusage is called the Remainer or Remainder.

So that the Relation which the two Numbers given and that fought (supposing no Remainer) have to each other, is, That the Dividend contains either the Divisor or Quotient so often as the

other doth a Unit: For as a Unit to the Divisor: : so the Quotient to the Dividend.

Or as a Unit to the Quotient:: so the Divisor to the Dividend;

and consequently,

The Product of the Divisor and Quotient is equal to the Dividend by 1; any of which Confiderations proves the Truth of the Work of Division.

#### The Operation of Diviston consisteth in these five things.

- 1. In considering how many places toward the left hand of the Dividend the Divisor can be taken from: If from the like Number of Places that are in the Divisor, then,
- 2. To consider how often the first Figure in the Divisor can be had in the first of the Dividend towards the left hand. But if the Divisor cannot be taken from the like Number of Places with itself from the Dividend; then to ask how often the first Figure in the Divisor (as before) can be had in the two first places towards the left hand of the Dividend; in ei-

ther of which Cases,
3. We put the Answer in the
Quotient, (as you see in the Ex-

ample.)

- 4. By that Figure fo put in the Quotient, we multiply the Divisor, and put the Product under that part marked out in the Dividend.
- 5. We deduct that Product from the faid marked Part or Dividual, and put the Remainer under a Line, as in the Examples.

Proposition 1. To divide by any single Figure or Digit.

| ECT. V. Drugun eg       | America Alminoces.                          |
|-------------------------|---------------------------------------------|
| Example 2.              | Example 3.                                  |
| 8) 1743219 (217902      | 9) 90123456 (10013717                       |
| • • • • •               | • • • • • • • • • • • • • • • • • • •       |
| 16                      | 9                                           |
| 14                      | 0012                                        |
| 8                       | 9                                           |
| 63                      | 33                                          |
| 56                      | $\frac{27}{64}$                             |
| . 72                    | 63                                          |
| 72                      |                                             |
| 019                     | 15                                          |
| 16                      | 9                                           |
|                         |                                             |
| 3 remains.              | 66                                          |
|                         | 63                                          |
| Dura a Ta Part I have a | 3 remains                                   |
| Example 1.              | or more Figures in the Divisor.  Example 2. |
| 21) 7334565 (349265     | 136) 1234567 (9077                          |
| 21) /334505 (349205     | 230) 223450/ (90//                          |
| 63                      | 1224                                        |
| 700                     | 1056                                        |
| 103<br>84               | 952                                         |
|                         |                                             |
| 194                     | 1047                                        |
| 189.                    | 95 <sup>2</sup>                             |
| -                       |                                             |
| 55                      | 95 rests.                                   |
| 42                      | Example 3.                                  |
| 136                     | 9876) 1234567 (125                          |
| 126                     | • • •                                       |
| *                       | 9876                                        |
| 105                     | 24696                                       |
| 105                     | 19752                                       |
| 0                       | 49447                                       |
| •                       | 49380                                       |
| <b>~</b> -              | 67 rests.                                   |
| . G 2                   | Prop                                        |

Prop. 3. To divide by a Divisor having Cyphers in the first, second. &c. places thereof.

| cond, Or. places  |                      |                     |
|-------------------|----------------------|---------------------|
| Example 1.        | Example 2.           | Example 3.          |
| 350) 987654 (282) | 1   12000)987654(820 | 1000)976432 = Answ. |
|                   | ا <u></u>            | <del> </del>        |
| <del></del>       | . J.                 | Quote = 976         |
| 287               | 27                   | Remains 432         |
| 280               | 24                   |                     |
| 76                | Rests 3654 to divid  | de by 12000         |
| 70                |                      | , ,                 |
| 65                |                      |                     |
| 3 <b>5</b>        |                      |                     |
|                   |                      |                     |
| Rests 304         | •                    |                     |
|                   |                      |                     |

## Rules for performing the Work of the three last Propositions:

Those by I Figure under Prop. 1. are so easy, that any one may divide, observing the five general Rules for proceeding. To instance in Example 2. I ask how often 8, the Divisor, can be had in 17, the two first Figures to the left hand of the Dividend, (because I cannot have 8 in one place of the Dividend) the Answer is 2 times; which 2 I put in the Quotient, and fay 2 times 8 (the Divisor) is 16; which placing under the 17, and taking the 16 from 17 the Remainer is 1. To which bring down the next Figure 4 in the Dividend, (and as you bring down any Figure to a Remainer, mark it with a Point under, lest you bring it down twice) and then fay how often 8, the Divisor, can be had in 14, the Answer is 1; which put in the Quotient, and say 1 time 8 is 8, which put under the Deduct from 14, and the Remainer is 6; to which bring down 3, (the next Figure in the Dividend) and ask how often 8 in 63, the Answer is 7, which put in the Quotient; and so go on to the end of the Work, observing this Rule, That if after you have brought any Figure down to a Remainer, you cannot have the Divisor in it; you must put a (0) in the Quotient, and bring down the next Figure, as in the last Figure but one of the Example we are upon.  $I_{13}$ 

In the Examples to Prop. 2. It is almost as easy to divide by 2, 3, or 4 Figures as 1, observing chiefly this Rule; as in Example 2. of this Prop. I ask how often I (the first Figure in the Divisor) may be had in 12, (the two first Figures in the Dividend) the Answer would be 12 times; but you must never take it above 9, that is, you must never put above 9 in the Quotient at one time. And also observe, that you do not put that 9 in the Quotient till you have tried on a piece of waste Paper whether 9 times 136 do not exceed 1234, (the first part of your Dividend) which finding it less, may consequently be taken from it: So 9 times 136 is 1224, from 1234, ... and there rests 10; to which bring down the next Figure (5) in the Dividend, and consider how often 136 (the Divisor) can be had in 105, the Answer is (0) which put in the Quotient, and then bring down the next Figure 6 makes 1056. Then fay how often 1 (the first of the Divisor) can you have in 10, (the two first of that part of the Dividend, because that has one place more in it than is in the Divisor:) If you should say, I may be had 9 times or 8 times in 10. you will find that the Divisor multiplied by either of those Figures will exceed \$056, and so cannot be taken from that Number. Wherefore finding that 7 times 136 will be less than 1056, I put 7 in the Quotient, and multiplying 136 by 7, it produceth 952; which take from 1056, and the Remainer is 104: To which bring down the 7 (the last in the Dividend) makes 1047, and say how often 1 (the first of the Divisor) can be had in 10 (the two first of the faid 1047) the Answer is 7 times, (for it will bear no more, without making the Product of the Divisor thereby to exceed the 1047) so 7 times 136, which is 952, deducted from 1047, the Remainer is 95: So that I find I can have 136 in 1234567, 9077 times, and 95 rests. By observing these Rules you'll easily see how to perfrom the Work of this Example, and by this any other; and I have been particular in giving Rules for that end.

In the Examples under Prop. 3. When Cyphers are in the first, second, sec. places of the Divisor, cut off the Cyphers, and as many Figures towards the right hand of the Dividend, and divide those remaining towards the left hand of the Dividend, by those that remain towards the same hand in the Divisor: and when the Work is ended, put the Figures cut off the Dividend to the right hand of the Remainer.

And for the third Example, to divide any Number by 10, 100, 1000 10000, &c. You have nothing to do but only cut from the right hand of the Dividend so many places as there are Cyphers at the end of the Divisor: so those remaining towards the left hand of the Dividend.

Dividend are the Quotient, and those cut off towards the right hand are the Remainer.

But there is

## A Second Way of Division:

Where by omitting to put down the feveral Products, and deducting gradually as you multiply each Digit, you do it with near

half the Figures.

Thus the third Example under *Prop.* 2. is done as in the Margin. For I say how often 9 in 12, the Answer is 1; then instead of saying once 9876 is so much, and putting it under 12345, I say 1 time 6 from 15, (where 10 is added to the 5 in Units place of 12345) and there rests 9, which put under, and saying 1 time 7 and

9876)1234567 (125 ... 24696 49447 67 refts.

I borrowed is 8 from 14 rests 6; I time 8 (in the Divisor) is 8, and 1 borrowed is 9, from 13 (borrowing 10 as before) and there rests 4, which put under, and say I time 9 (in the Divisor) is 9, and I borrowed is 10 from 14, and there rests 2. Then to the Remainer 2469 bring the next Figure in the Dividend, viz. 6, and say how often 9 in 24, the Answer is 2; then proceed as before, 2 times 6 is 12 from 16 rests 4, 2 times 7 is 14, and I is 15, from 19, rests 4; 2 times 8 is 16, and I borrowed is 17, from 26, and there rests 9, (you borrowing 2 to add to the 6 is 26) 2 times 9 is 18, and 2 borrowed is 20, from 24, leaves 4, or 4944; to which bring down the 7 in the Dividend, and proceed as before.

I defire this Method last mention'd may be well understood, for that the subsequent Examples will be performed by it, as being the shortest and easiest Way, tho' some prefer this

## Third Way of Division.

Divide 1234567 by 136.

In this kind of dividing, the Divisor is put under so much of the the Dividend as it can be taken from; for 136 can't be taken from 123, therefore I put it under 1234, the first part of the Dividend, and then ask (as in the second Example

of Prop. 2) how often 1 in the Divisor can be had in 12 in the Dividend, the Answer is 9 times; which 9 put in the Quotient as usual,

usual, and say 9 times 6 in the Divisor is 54, from 54, (borrowing 5 to add to the 4 standing over the 6, and as you mention 6 and 4, dash them out with your Pen) there rests 0; 9 times 3 in the Divifor is 27, and 5 borrowed is 32, from 33 (borrowing 3 Tens to add to the 3 standing over the 3 in the Divisor) and there rests 1. which put over the 3, as you fee. Then remove your Divisor a degree towards the right hand, as in the Example, and confider how often 136 you can have in 105, (which is 10 that remained, and 5 next the 4 in the Dividend) the Answer is 0, which put in the Quotient, and taking the next Figure, viz. 6, into the 105, makes 1056; say how often 136 in 1056, or 1 in 10, the Answer is but 7 times; then 7 times 6 is 42, from 46, and there remains 4, which put over the 6, (dashing it out, and also the 6 in the Divisor) faying 7 times 3 is 21, and 4 borrowed is 25, from 25, (borrowing two Tens) and there rests o, which put down over the 5, saying 7 times 1 is 7, and 2 is 9, from 10 leaves 1, which put over the Cypher as you see, dashing out the Figures in the Divisor as you multiply them, and of the Dividend as you deduct therefrom. Then remove the Divisor, and proceed as before, and as you see in the Example.

But there are two things which render this way of Division inferior in Estimation to the second, i.e. the repeating the Divisor for every Figure put in the Quotient; and also the cancelling the Figures, makes it very difficult to examine your Work in case of a

Mistake.

The Illustration and Rationale of the Work of Division.

I shall instance in admitting that 9876543210 were to be divided by 45678.

A Fourth

A Fourth Way of Division; or, The Operation of Division illustrated.

| Products of the Divisor Divisor. repeated |                                              |
|-------------------------------------------|----------------------------------------------|
|                                           | (9876543210 (200000 = first Quotient.        |
| 2 = 91356                                 | 9135600000                                   |
| 3 = 137034                                | 740943210—10000 = fecond Quote.<br>456780000 |
| 4 = 182712 45678                          | 284163210—6000 = third Quote.                |
| 5 = 228390                                | 274068000                                    |
| 6 = 274068   45678                        | 10095210 = fourth Quote.                     |
| 7 = 319746                                | 9135600                                      |
| 8 = 365424                                | 95961020 = fifth Quote.<br>913560            |
| 9 = 411102 45678                          |                                              |
| The Tarif.                                | 45678                                        |
|                                           | resteth 372 ral Quotient.                    |

In the beginning of this Part or Section, Division is said to be the Work of many Substractions, and so it is plain: But then we are taught here how to go a nearer way to work than to deduct the Divisor singly; for in the first Operation above, we deduct 200000 times the Divisor at one time, (which are all the 100000's of the Divisor that are contained in the Divisor, (which is all the 10000's of the Divisor that is in the Divisor, (which is all the 10000's of the Divisor that is in the Dividend.) The third time we take 6000 times the Divisor from the Divisord, then 200 times, then 20 times, and then 1 time the Divisor from the Dividend: So that by this Art of Division you deduct at 6 times what by Substraction would require 216221 times to perform.

Now to know how many times the Divisor to deduct the first time, I consider what part or places of the Dividend I can take the Divisor from, and find it the five first towards the left hand; therefore I mark that, by putting a Point under it, and I consider how

often the Divifor can be had in those five places, or how often 4 (the first of one) in 9 (the first of the other) and find it 2 times. Now to know what Denomination to give this (2) I consider what place that Figure which I made the Point under possesset, which being the Hundred thousands, therefore this 2 is 200000: so that multiplying the Divisor by 200000, and deducting the Product from the Dividend, the Remainer is 740943210, which is an absolute new Dividend, to be divided by 45678 the Divisor. So having repeated the Work by the same Rules, at last a Number less than the Divisor remains, so the Work is ended.

And thus by dividing the whole into 6 distinct Dividends, there arifeth 6 Quotients; the Sum of which is the general or true Quotient.

But because Brevity is most commendable in this Art, therefore all superfluous Figures being omitted, as the repeating of the Divisor, the Cyphers at the ends of the Quotients and Subtrahends, the Work is then the same as in the two first Propositions: And if the whole Subtrahends be omitted to be put down, deducting as you gradually multiply the Divisor by the Figure put in the Quotient, the Work is then contracted as much as may be, and will stand as in the Example under the second Way of Division.

The Tarif shews you by Inspection how often the Divisor can be had in each Dividend (without trial or guessing) and the Digits towards the left hand shew what must be put in the Quotient.

The Use of Division.

Farthings, Pence, or Shillings, are immediately reduced into Pounds, by dividing the given Number by 960, 240, or by 20, (as by the second Table in Addition.)

In 157460 Shillings how many Pounds? Cut off Units place, and take half the remaining Figures toward the left hand; and where the Number to be halfed is odd, take the less half, and put 10 to the next Figure, &c. Thus \(\frac{1}{2}\) of 157460 is \(l. 7873\).

| In 1889520 Pence how many Pounds? | In 7558080 Farthings how many Pounds? |
|-----------------------------------|---------------------------------------|
| 240) 1889520 (7873 Answer.        | 960) 7558080 (7873 Answer.            |
| 175<br>072<br>0                   | 700<br>288<br>0                       |

Note, Farthings are reduced into Pence by dividing by 4, and Pence into Shillings by dividing by 12.

In 7558991 Farthings, how many Pounds, Shillings, Pence, and

Farthings?

d. s. l. s. d. 4) 7558991 (1889747 (157478 (7873:18:11 ‡ Answer.

| 35 35 | 2) 20) 68 | Shillings are made Pounds by the above Rule of halving. |
|-------|-----------|---------------------------------------------------------|
| 38    | 57        | •                                                       |
| 29    | 94        |                                                         |
| 19    | 107       |                                                         |
| 31    | 11 Pen    | ce rest.                                                |

3 Farthings rest.

Example 5. In 3046400 Ounces, how many Ton?

Ounces in a Ton

per Table 1. in
Addition,

35840) 3046400 (85 = Ton Answer.

17920

Example 6. In 158256 Quarts, how many Ton of Wine?

Quarts in a Ton
per Table 3.

1008) 158256 (157 = Tons of Wine, Answer.

5745 7056

These six Examples are the Reverse, and prove the Truth of the

fix first in the Use of Multiplication.

And as a seventh Example, I shall give the Use of Multiplication and Division, in shewing how to find all the aliquot Parts into which any Number is capable of being divided: and the Use thereof.

Example

Example 1.] To find how many even Parts into which 360 is divisible. See the whole Operation.

1. I divide the given Number by 2, 3, 5, 7, or other that will divide without a Remainer, and then place the Divisors and last Quote as in the Example.

2. I multiply the 2 next the left hand by the next 2, which produceth 4, placed under the 2, and that Product by the first 2

gives 8.

3. I multiply the 3d (2) the 4, 8, and 2d (3) by the 1st 3, which produceth 6, 12, 24, and 9 placed under the respective Multiplicands, (as I do all the rest following.)

4. In like manner I multiply 6, 12, and 24, by the 3, (because that Digit is repeated, otherwise I should have multiplied the 2, 2, 2, 3, and the 4, 8, also by it) and the Products are 18, 36, and 72.

5. I multiply all that is before by 5, (except where the Products would be the same) as 2, 4, 8, and 2d (3) in the first and second Lines, which produceth 10, 20, 40, 15, in the fifth Line. Also by the same 5 (next the right hand) I multiply 6, 12, 24, and 9, which produceth 30, 60, 120, and 45 in the sixth Line; and 18, 36, and 72 in the sourch Line (of the Numbers above) by the same 5 produceth 90, 180, and 360.

And if there were any more different Digits in the first Line towards the right hand, I should multiply all the above 7 Lines thereby (where the Products would not be the same, for I omit repeating one and the same Product). But because the last Number is 360, and cannot therefore be properly said to be a part of the Number given, I therefore omit that, and put I always instead of the

Number given.

And tho' you change the places in the Figure in the first Line, the Answer will be true; as in the subsequent Example will appear, as H 2

by the above Rules the aliquot Parts in the last Example of 360 are, found 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, and 180.

Example 2.] To find all the aliquot Parts into which-10350 may

be divided.

10350 divided by 2=5175; that by 3=1725; that by 3=575; that by 5=115; that by 5=23.

| Which Divisors and the last Quote are | 3,   |        |       |       | 5, 23 (the 2 being trans-<br>posed)                    |
|---------------------------------------|------|--------|-------|-------|--------------------------------------------------------|
|                                       |      | 9,     |       | • • • | = 3 by the 3.                                          |
|                                       | . 6, | 18,    |       |       | = 3, and 9 by the 2 in the upper Line.                 |
|                                       | 15,  | 45,    |       |       | = 3, 9 and 2 by 5 in the                               |
| 1                                     | 30,  | 90,    |       | •     | = 6  and  18  by  5.                                   |
|                                       | 75,  | 225,   | 50,   | 25,   | = alfothe 15, 45, and 10 by faid 5; it being repeated. |
|                                       | 150, | 450,   |       | -     | = 30 and 90 by 5, for the fame reason.                 |
|                                       | 69,  |        | 46,   | 115,  | = 3, 2 and 5 in 23, the first<br>in the upper Line.    |
|                                       |      | 207,   |       |       | = 9 in 2d Line by faid 23.                             |
|                                       | 138, | 414,   |       |       | = 6 and 18 in the 3d Line<br>by faid 23.               |
|                                       | 345, | 1035,  | 230,  |       | = 15, 45, and 10 in the 4th Line by 23.                |
|                                       | 690, | 2070,  |       |       | = 30 and 90 in the 5th Line<br>by the 23.              |
| 1                                     | 725, | 5175,  | 1150, | 575,  |                                                        |
| 3                                     | 450, | 10350. |       |       | = 150 and 450 in the 7th<br>Line by faid 23.           |

So the even Parts of 10350 are 1, 2, 3, 5, 6, 9, 10, 15, 18, 23, 25, 30, 45, 46, 50, 69, 75, 90, 115, 138, 150, 207, 225, 230, 345, 414, 450, 575, 690, 1035, 1150, 1725, 2070, 3450, and 5175.

The

The Use of the Rules for finding the Aliquot Parts of a Number.

This will appear thus: Suppose I would find all the aliquot Parts of a Pound Sterling, I reduce it to its least Denomination, as 960 Farthings; the aliquot Parts of which are found 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 32, 40, 48, 60, 64, 80, 96, 120, 160, 192, 240, 320, 480, and 960.

Which Numbers being made Denominators, and I the Numerator, there will arise the Parts of Coin following; which being supposed the Price of any Integer,

| _   | 4   | 2,<br>8<br>24, | 16  | 32   | 3, 5    |  |
|-----|-----|----------------|-----|------|---------|--|
| 10, | 20, | 40,            | 80, | 160, | <br>15, |  |

the Value of any Number of them is found by dividing the Number of Integers by the respective Denominators at once.

Example 1. What doth 7358 amount to, at 1 d. 1 q. each? 192) 7358 (38 l. 6 s. 5 d.  $\ddagger$  = Answer.

1598
62 rest so many 5 Farth. or 6 s. 5 d. k.

Example 2. What doth 31987 come to at 3 d. 3 q. each?

64) 31987 (499 l. 15 s. 11 d.  $\frac{1}{4}$ . = Answer.

638 627

rests 51 so many 3 d. 3 q. or 15 s. 11 d. \frac{1}{4}.

Note, 1 d. 1 q. in the first is 192; and 3 d. 3 q. in the second Example, is 64 of a Pound.

Also by the same Rule, what follows are the even Parts of a Ton in Averdupois greater Weight.

The

#### The Proof of Multiplication.

This can only be done by Division: as in any of the 6 Examples foregoing, the Products of those in the Use of Multiplication are proved to be true by dividing those Products by the Multiplier, the Quotient is the Multiplicand; or if you divide the Product by either of the Factors, the Quotient will be the other. But to pretend to prove Multiplication by casting out the Nines, is a Mistake, as I have elsewhere demonstrated; for why divide by 9 more than 2, or any other Digit, which would prove the Work as well? But the easiest way is to divide the Factors by 10, and the Product of the Remainers by 10, which will leave a Remainer equal to that of the Product divided by 10. But the mischief is, that if there be a Mistake in the Product of just your Divisor, or any Power thereof, this Way of proving will not shew it.

#### The Proof of Division.

This is either performed by Multiplication or Division, as ap-

pears in the 357) 17002125 (47625) 17002125 (357 = Quotient Margin. For Example, have divided 17002125 by 357, and find the Quotient 47625. And if 17002125 be divided by that Quotient, the later Quotient will be 357 =the for-

| • • • • • | • •    |  |
|-----------|--------|--|
| 2722      | 271462 |  |
| 2231      | 333375 |  |
| 892       | . 0 ,  |  |
| 1785      |        |  |
| 0         |        |  |
|           |        |  |

This is proved by Multiplication of the Quotient mer Divisor. 47625 by 357 the Divisor. See Example 2. Prop. 2. of Sett. 4.

SECT. VI. Of Extracting the Roots of Numbers, called Evolution.

N this Section I shall shew.

I. The Extraction of the Square Root.

II. The Extraction of the Cube Root.

III. The Extraction of the Biquadrate Roots of Numbers.

I. The

or former

Divisor.

I. The Square Root of a Number is such a one, as being multiplied in itself, produceth the Number given (for to square any Number, is to multiply it by itself) Thus the square Numbers, whose Roots are the o Digits, are as follows in the Margin.

This may be illustrated by any square Superficies, as Glass, Board, &c. for if the superficial Content of a Square thereof (whose 4 Sides are equal) be 81, then one of the 4 Sides is 9; if the square Superficies be 64, then 1 of the 4 equal Sides is 8, &c. as appears by the Table. And the square Figure whose Surface is 64 square Inches, Feet, or other thing; each Side is therefore 8, which is called the Root of that Superficies, as you see. So that when the square Root of any Number is demanded, it is as much as to require what the Side of a Geometrical Square is, whose Area (or superficial, or outside Content) is any Number given. Hence it follows, that by extracting the Square

| Squares.                         | Their<br>Roots.                      |
|----------------------------------|--------------------------------------|
| 81<br>64<br>49<br>36<br>25<br>16 | 9                                    |
| 64                               | 8                                    |
| 49                               | 7                                    |
| 36                               | 6                                    |
| 25                               | 5                                    |
| 16                               | 4                                    |
| 9                                | 9<br>8<br>7<br>6<br>5<br>4<br>3<br>2 |
| 9<br>4<br>1                      | 2                                    |
| I                                | 1                                    |
| l                                |                                      |

Root of any Superficies, you reduce it to a compleat (or Geometrical) Square. Thus the long Quadratick Figure being 16 in length, and 4 in breadth, the Superficies is upon the flat 64, (or 4 times 16) and the square Root of 64 by the Table above is 8. Therefore a Geometrical Square, one of whose four equal Sides is 8, (as that above) is equal to the long



Square, or any other Figure whose flat Surface is 64.

Such Numbers as the above, when the Root may be extracted without



a Remainer, may be called compleat or perfect square Numbers; but there are abundantly more Numbers, whose Roots cannot be precisely extracted: and these are called imperfect Squares, or Surd Numbers, of which more in Decimals, Logarithms, and especially in Algebra, hereafter treated on.

Question

Question 1. What is the Square Root of 10274589?

Place the Number fo that you may conveniently perform the Work, and point over the first and every second afterward; which Points shew how many places the Roots will confift of.

Root 10|27|4589|16|(32054 6) 127 640) 6410) o remains.

Then confider what square Num-

ber in the foregoing little Table is next to and can be taken from the first branch towards the left hand of the square Number given, (as here 10;) 9 I find is the next, whose Root (3) I put down (like a Quotient) as you see, and substracting the Square of 3 (or o) from 10, there remains 1.

To which Remainer 1 I bring down the two next Figures (27) and divide that 127 (except the Figure next the right hand) by 6, which is double the Root (3) faying the 6's in 12 is 2; put that in the Root, makes it 32. Then square 2, and deduct from 7, (in the 127) and the rest is 3; then multiply 6, the double Root, by 2, and deduct the Product from 12 (in the 127) and there rests o the rest is only Repetition.

Then double the Root 32 makes 64, and that is your next Divisor. Then to the 3 bring down the next Branch 45, marking it

as you do in Division, and you have 345 for a Dividend.

But because (if Units place, here 5, be excluded) you cannot have 64 in the rest, which is 34; therefore put (0) in the Root, and also in the Divisor, (to 64, as you see) and bring down the next Branch 89, makes a Dividend 34589 to divide by 640. And finding I can have 6 in 34, 5 times, I put 5 in the Root; and squaring 5 (as was taught for the other Figures of the Root) I say 25 from 29, (of the 34589) and there rests 4, and carry 2; 5 times 0 is 0, but 2 from 8 rests 6, and so 5 times 4, proceed as in Divifion, and the whole Remainer is 2564.

Lastly, To this bring down the last Branch (16) and divide the 256416 by double the Root 3205, viz. 6410, and the Quote being 4, I put it in the Root, and substracting the square thereof from 16, (in the 256416) and also the Product of the Divisor thereby, as.

before flewn, there remains (0) and 32054 is the Answer.

A second

| A second Example.                                   | A third Example.         |
|-----------------------------------------------------|--------------------------|
| Square                                              | Square                   |
| Root.                                               | Root.                    |
| 1 1473 25 96 43 (107113                             | 97 65 43 21 0123 (988202 |
| <del></del> ' · · · · · · · · · · · · · · · · · · · |                          |
| 20) 1473                                            | 18) 1665                 |
| 214) 2425                                           | 196) 16143               |
| 2142) 28496                                         | 1976) 39921              |
| 21422) 707543                                       | 197640) 3970123          |
| 64874 rests.                                        | 17319 rests.             |

II. The Extraction of the Cube Root.

The Cube Root of any Number is that whose Square multiplied by the Root, produceth the Cube Number given. Thus the Cube Numbers, whose Roots are the 9 Digits, are as follows.

A Cube is a folid Body bounded by fix Geometrical square Superficies's, as a Dye, whose Length, Breadth, and Depth, (or Thickness) are all equal: And to extract the Cube Root of any Number, is to suppose that Number the Content of a Cube in Feet, Inches, &c. given, to find the Side of one of the fix Squares that bounds it. So that as the Extraction of the Square Root is chiefly used in measuring and proportioning of Surfaces; so is the Cube Root in doing that of Solids. And as there are Surd Numbers, whose Square Roots cannot be extracted without a Remainer, so it is in Cube, and other Roots.

I shall give but one Example, but 'tis so plainly demonstrated, as may be sufficient to enable any one to extract the Root of any whole Number: And where there are Remainers, I shall shew how to proceed, when I shew the Use of Decimals in extracting the Cube Root.

What is the Cube Root of 32934168093464?

The whole Operation follows, with the Name of each Line or how it arifeth.

| 32 934 168 093 464(32054 = Cube Root fought.     |
|--------------------------------------------------|
| The Cube of 3 (1st in the Root) deduct.          |
| 279) 5934 The first Resolvend or Dividend.       |
| The treble Root (3).                             |
| Treble the Square of that 3.                     |
| Sum, or the first Divisor.                       |
| Cube of 2, the second put in the Root.           |
| 36 Squ. of that 2, multip. in last treb. Root.   |
| The treble Square of the Root in 2.              |
| The Sum of the 3 last Lines = a Subtrah.         |
| The 2d Resolvend, being 166, the Rem.            |
| and 168 carried down to that.                    |
| 7 Treble the Root 32.                            |
| Treble the Square of that Root.                  |
| 30816 Sum, or the 2d Divisor.                    |
| 3072960) 166168093 — The 3d Resolvend.           |
| 960—Treble the Root 320.                         |
| 307200 Treble the Square of that Root.           |
| 3072960 Sum, (or the 3d Divisor)                 |
| Cube of 5 (last put in the Root.)                |
| 24000 Square of that 5, in the last treble Root. |
| Last treble Square of the Root in that 5.        |
| 153840125 The Sum, or a Subtrahend.              |
| 308170365) 12327968464 The 4th Resolvend.        |
| 9615 Treble the Root 3205.                       |
| 30816075 Treble the Square of that Root.         |
| 308170365 Sum, (or the 4th Divisor.)             |
| 64 The Cube of 4, last put in the Root.          |
| 153840 Square of that 4 in the last treble Root. |
| Last Treble Square of the Root in that 4.        |
| 12327968464 \ The Sum (or Subtrahend) which de-  |
| (0) rests. \ ducted from the last Resolvend,     |
| (O) Tells. C                                     |

The Steps in the Performance of the Work of Extraction of the Cube Root are very evident in this last Example: For,

1. You

1. You point over the Figure in Units place, and then over every third Figure, which divides the whole Cube Number into 5 Parts;

which shews that the Root will consist of 5 places.

2. I find that 3 being cubed, produceth 27, (as appears by the little Table foregoing) which is the next less Cube Number to 32, (the first part towards the lest hand) I therefore put the Root 3, in the Cube Root sought as you see, and deducting the 27 from 32, the Remainer is 5.

3. To the Remainer we always bring down the next part, (as here 934) and that makes the Resolvend, which is always the Di-

vidend, in order to find the next Figure in the Root.

4. And to find the Divisor whereby to divide that Dividend, you may observe that it is always composed of the treble Root, i. e. 9, and of the treble Square of the Root, viz. 27.

5. I find I can have 279 the Sum, in 593 (for the 4 in Units place of the Resolvend 5934, you are in this case to take no notice

of) 2 times, which put in the Root makes it 32.

6. The next thing is to frame your Subtrahend, which is always composed, 1st, Of the Cube of the Figure last put in the Root: 2dly, The Square of that Figure multiplied in the last treble Root: And, 3dly, The last treble Square of the Root multiplied in the said Figure last put in the Root: The Sum of which three Num-

bers, as the Example plainly shews, is the Subtrahend.

7. The Subtrahend must always be deducted from the last Refolvend, as here 5768 from 5934, and the Remainer is 166; to which bring down (as before) the next three Figures (168) and you have a new Dividend (or Resolvend): all the rest is Repetition of the same Method of working; except here, that you cannot have 30816 in 16616, therefore you put a (0) in the Root, and from that 320 (the Root) you make a new Divisor, which is 3072960; and for the Dividend, you bring down the 3 next Figures (093) to the last Resolvend, and that makes your Dividend 166168093, &c. which is all very obvious in the Example.

## III. The Extraction of the Biquadrate Root.

The Biquadrate Root is the Root of the 4th Power, as the Cube is that of the 3d, and the Square Root that of the 2d Power, according to the following Table.

Whence it appears, that the second Power of any Number is the Square of it, or Product of any Number by itself; the Cube

Digitized by Google

or 3d Power is produced by multiplying the Square of any Number by its Root; the Biquadrate or 4th Power is discovered by multiplying the Cube by the Root, as appears in these nine Examples.

But of the Powers of Numbers to the 10th inclusive, and the proper Name of each, you have a full Account in the Extraction of Roots in Algebra; where the Reason of that abstruse Method of extracting the Square, Cube, Biquadrate, Sursolid, &c. Roots, is fully explained from the Algebraical Canons for each, both by Numbers and Symbols.

| ATable of Powers and their Roots. |                            |                                            |                                                                       |  |  |  |
|-----------------------------------|----------------------------|--------------------------------------------|-----------------------------------------------------------------------|--|--|--|
| TheBiquadrates or 4th Powers.     | The Cubes or 3d<br>Powers. | The Squares or 2d<br>Powers.               | The Root or first<br>Power, viz. of<br>the 2d, 3d, and<br>4th Powers. |  |  |  |
| $\sim$                            | $\sim$                     | $\sim$                                     | $\sim$                                                                |  |  |  |
| 16                                | I                          | I                                          | 1                                                                     |  |  |  |
| 16                                | - 8                        | 4                                          | 2                                                                     |  |  |  |
| 18                                | 27                         | 9                                          | 3                                                                     |  |  |  |
| 256                               | 27<br>64                   | 16                                         | 4                                                                     |  |  |  |
| 81<br>256<br>625                  | 125                        | 25                                         | 5                                                                     |  |  |  |
| 11200                             | 216                        | 36                                         | 6                                                                     |  |  |  |
| 2401                              | 343                        | 4<br>9<br>16<br>25<br>36<br>49<br>64<br>81 | 7                                                                     |  |  |  |
| 4096                              | 512                        | 64                                         | 8                                                                     |  |  |  |
| 4096<br>6561                      | 216<br>343<br>512<br>729   | 81                                         | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                  |  |  |  |

What is the Biquadrate Root of 2998219536?

The Example, with Rules how each Line is produced, follows.

1. You see that having pointed over Units place, and every 4th place afterwards, the Root will consist of 3 places, as there are 3 points.

2. You must consider what 4th Power in the little Table above is next to and less than the first Part or Branch 29: you see 16 is, whose Root you have there (2); then substracting the Biquadrate 16 from 29, there rests 13.

3. To that 13 bring down the next branch or Part 9821, and you have 139821 for a Dividend, of which the Units place must not be considered, in asking how often the Divisor can be had therein.

4. To find the Divisor, you see it is composed, 1st, Of 4 times the Figures then in the Root (as here 2). 2dly, Of 6 times the Square of that: And, 3dly, 4 times the Cube thereof: the Sum of which being a Divisor,

5. There ariseth from the Division, 3 in the Root.

6. You must find a Subtrahend, by adding together as the Directions against the 4 Numbers 81, 216, 216, and 96, do express; and substracting the Sum from the last Resolvend, there rests 19980: to which bringing down 9536, you have 199809536. The rest is only Repetition of the three last Steps, as to Method.



I know that the Biquadrate Root is the Square Root of the Square Root, and consequently may be performed by extracting the Square Root twice. But this seems a more natural way to perform it, as the Extraction of the Cube, Sursolid Root, C. may be done from Algebraic Canons, and I have inserted the Method here, because to me it is new; for I never saw, nor heard of its being done thus before: and I was pleased when I considered it from the 4th Power of C in Algebra, which wonderfully, tho' plainly, points out all these Rules above, which seem so intricate, as to be impossible first to discover. This Extraction of the Biquadrate Root is useful in some

some Computations of Compound Interest; finding 3 mean Proportionals between 2 Extremes, as in the 5th Head of Geometrical

Progression, &c.

The Proof of the Square Root (as appears from the little Table to it) is to multiply the Root in itself; the Proof of the Cube is to multiply that Square in the Root; and of the Biquadrate to multiply the Cube in the Root; for they respectively produce the Number given to have the Root extracted, provided that nothing remain; and if any thing do, add such Remainer.



## CHAP. II.

Contains the Application of the Fundamental Parts of Arithmetic, to Vulgar Fractions, Progression, the Rules of Proportion, Practice, Loss and Gain, Fellowship, Barter, Exchange, Equation of Payments, Alligation, and Rules of False Position, in eleven Sections.

## SECT. I. Of Vulgar Fractions.

I. TO TATION and Numeration, Teacheth what a Fraction is, and how to read or write down any one.

By a Fraction here is meant a broken Number, that is to fay, one or more Parts of a Unit; for as there is Infinity or Units, so a Unit may be, or be supposed to be, divided into

any Number of Parts.

A Fraction consists of two Parts, a Denominator, and a Numerator: The former shews how many Parts the Unit is divided into, which is wrote below the Line; the later shews how many of those Parts are contained in the Fraction, which is wrote above the Line; a

 $\frac{3}{8}$  of



 $\frac{3}{8}$  of a Pound Sterling, or 7 s. 6 d. here  $\frac{3}{8}$  is the Numerator.

And these 2 Parts are called the Terms of a Fraction.

Or, to be more plain yet; the Line (ab) represents 1 or a Unit divided into 8 parts, and doth represent the said Denominator of the Fraction given;

1 2 3 4 5 6 7 8 a c m n o p b

and the Line (ac) is 3 of those 8 Parts; (am) = 4 Eights or  $\frac{4}{8}$ ;

 $(a0) = \frac{5}{8}$ ;  $(ap) = \frac{7}{8}$ , e.

Having thus shewn what a Fraction is, you are next to know how to read it; and that is, by first mentioning the Numerator, and then the Denominator. As by this Example you see where 1 | 12th of the Unit (or Line m n) is wrote thus \( \frac{1}{2} \), and read One Twelfth, \( \frac{1}{2} \)c. \( \frac{1}{2} \) = 2 Twelfths, \( \frac{1}{2} \)c. But the Line

| A Table of Simple Fractions.            |                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| m  1——————————————————————————————————— | Read thus,  wrote thus \( \frac{1}{2} \) Ouc Twelfth.  \[ \frac{1}{2} - \frac{1}{2} \] Two Twelfths.  \[ \frac{1}{2} - \frac{1}{2} \] Four Twelfths.  \[ \frac{1}{2} - \frac{1}{2} \] Five Twelfths.  \[ \frac{1}{2} - \frac{1}{2} \] Seven Twelfths. |  |  |  |
| 9——12ths,<br>10——12ths,<br>11——12ths,   | - 12 Nine Twelfths 12 Ten Twelfths 12 Eleven Twelfths, - 12 or 1 Twelve Twelfths.                                                                                                                                                                                                                                                                                                                        |  |  |  |

might more commodiously be made downright, and then Fractions would stand as in the Examples next the left hand, whereby a Line in Printing might often be gained, if h were wrote 1/12; h, 2/12, &c. But let Custom have its own way; and then Fractions are wrote and read as in the foregoing Tabulet, and by the same Rule \(\frac{1}{2}\) is seventeen 25th Parts; \(\frac{1}{2}\) is 365, seventeen hundred and 28 Parts; that is, if a Unit were divided into 1728 Parts, this Fraction does contain 365 of those Parts.

But there are various kinds of Fractions, as Proper, Improper, Simple, and Compound.

A Proper Fraction is one whose Numerator is less than the Denominator, as those above.

An Improper Fraction is when the Numerator is greater or equal to the Denominator, as  $\frac{7}{2}$ ,  $\frac{7}{2}$ ,  $\mathcal{C}_c$ .

A Simple

A Simple or Single Fraction, as any of those foregoing is imme-

diately the Fraction of a whole Unit. But

A Compound Fraction, is a Fraction of a Fraction, or Part of another Part of a Unit, as  $\frac{2}{3}$  of  $\frac{1}{4}$ , or  $\frac{1}{3}$  of  $\frac{2}{14}$ , CC. and is illustrated in the following Examples.

Where the whole Line (ln) is divided into 10 equal Parts, and each of those are subdivided into two Parts: fo that supposing the Unit (ln) to be 1 l. each 10th is 2 s. and every half of a 10th is 1 s. fo that  $\frac{13}{14}$  of  $\frac{1}{15}$  is a Fraction of a Fraction, whose Value is 13 s. But the Value here is not intended to be so observable as the Nature of the Compound Fraction; for here is is of the Line In, and if of is 13s. for is 2s. and confequently is is 14 s. and 14 of 14 s. must needs be 13 s. Sometimes you have a Fraction of a Fraction of a Fraction, &c. of a Unit, as 1 Farthing is ‡ of to of a Pound, *ઉત*.

Having thus shewn what a Fraction is, and how to read the same, I proceed to

| A Table of Compound<br>Frattions.                     |
|-------------------------------------------------------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| 70 20                                                 |

#### II. Reduction of Vulgar Fractions.

This Rule must necessarily be taught before Addition and Sub-straction, because they cannot be performed till the Fractions given to be added or substracted, are fitted by Reduction for that purpose.

Case 1. To reduce a mix'd Number to an Improper Fraction. As for

Example 12  $\frac{1}{2}$ .

Rule.] Multiply the intire Part by the Denominator of the Fraction, and to the Product add the Numerator (3), and the Sum placed



placed over the Denominator (7) is the Answer, and will stand thus  $\frac{1}{2}$ .

Case 2. To reduce an improper Fraction to a whole or mix'd Number.

Example, reduce 3.

Rule.] Divide the Numerator (87) by (7) the Denominator, and the Quotient is the intire Number, and the Remainer (3) is the Numerator to place over the Denominator (7); so the Answer is 12<sup>1</sup>, and proves the first Case true. And by the same rule  $\frac{1}{5}$  is  $= 7\frac{1}{5}$ ;  $\frac{1}{1}$  is = 12;  $\frac{1}{5}$  is 9;  $\frac{11}{5}$  is 4.  $\mathfrak{S}c$ .

Case 3. To reduce Compound Fractions to Simple.

Example. Reduce \(\frac{1}{4}\) of \(\frac{1}{3}\) of \(\frac{1}{8}\) into one simple Fraction.

Rule.] Multiply the Numerators together for a new Numerator, and also the Denominators together for a new Denominator, and it stands thus \$\frac{1}{6}\$; or this is \$\frac{1}{2}\$ of \$\frac{1}{6}\$ or \$\frac{1}{6}\$, by changing the Parts of the first and second Fractions, and omitting those which are the same;

(as 3 in each) and  $\frac{1}{24}$  of  $\frac{1}{2}$  of  $\frac{1}{4}$  is  $\frac{612}{2880}$ .

The Truth of this Rule is easily proved from any self-evident Instance, as \( \frac{1}{2} \) of \( \frac{1}{2} \) of a Pound Sterling is \( 6 \) s. 8 \( d \). So by the Rule it is \( \frac{1}{6} \). Now \( \frac{1}{6} \) being 3 \( s \). 4 \( d \). The must be 6 \( s \). 8 \( d \). Or \( \frac{1}{2} \) of \( \frac{1}{3} \) is \( \frac{1}{3} \): And if the Parts be changed, and the two of a fort be omitted, it proves the same; and the Reason is plain, for the Terms of a Fraction multiplied by the same Number, does not increase or alter the Value of such Fraction.

Case 4. To reduce a Fraction to its lowest Terms.

Example. Reduce 45 to its lowest Terms.

Rule 1.] Divide the Parts of the Fraction by any Number that will divide both without a Remainer: fo this # is reduced to 3, for Answer.

Rule 2.] Divide the greater by the lesser Part of the Fraction, and if any thing remain, divide the last Divisor by that; and if any thing yet remain, divide the last Divisor by that, till nothing remain; and then the last Divisor divideth both Parts of your Fraction, so as to reduce it to its

for \frac{17}{17} divided by 3 is \frac{17}{17}, and \frac{1}{17} divided by 3 is \frac{7}{1}

lowest Term. See the Work in the Margin, where 9 the last Divisor reduces 4% to \$\frac{4}{3}\$; so \$\frac{1}{2}\frac{1}{2}\frac{4}{3}\$ is \$\frac{1}{4}\$; \$\frac{1}{2}\frac{1}{2}\$ is \$\frac{1}{4}\$; and \$\frac{1}{2}\frac{1}{2}\$ is \$\frac{1}{4}\$, and \$\frac{1}{2}\frac{1}{2}\$ is \$\frac{1}{4}\$, and \$\frac{1}{2}\frac{1}{2}\$ is \$\frac{1}{4}\$, and \$\frac{1}{2}\frac{1}{2}\$ is \$\frac{1}{4}\$, and \$\frac{1}{2}\frac{1}{2}\$ is \$\frac{1}{4}\$.

The

31 Pounds wt.

That a Fraction reduced to its lowest Terms is of the same Value with that given, is thus proved; A of a Pound in its lowest Terms is \(\frac{1}{2}\) of a Pound, or 13 s. 4 d. And \(\frac{1}{2}\) of a Pound being 20 d. 8 times that is 13 s. 4 d.

Case 5. To find the Value of any Fraction of Weight, &c.

Example. What is the Value of 12 of a Pound Averdupois?

Rule.] Multiply the Numerator of the Fraction by fuch a Number of Units of the next less Denomination, as is equal to a Unit of that name which the Fraction is of, and divide the Product continually by the Denominator, and the Quotient or Quotients answer

your Question. See the Work of the following Examples.

Example 2. What is the Value of \(\frac{1}{2}\text{of}\) Example 1. to Case 5.

Example 2. What is the Value of  $\frac{1}{2}$  of a Pound Sterling?

| 17 Numerator 3                          | 16 Ounces in 1 18                                                                 |
|-----------------------------------------|-----------------------------------------------------------------------------------|
| 17 Numerator 20 Shill, in 1 $L$ . Mult. | 186                                                                               |
|                                         | 31                                                                                |
| 26)340 (13 5.                           | 42)496 (11 Qunces.                                                                |
| 80                                      | · ·                                                                               |
|                                         | 76                                                                                |
| 2 remains Sh. Mult.                     | 34 remains.<br>16 Drams in 1 Ounce                                                |
| 26)24 (0 d.                             | - multiply,                                                                       |
| 4 Farth, in 1 d. Mult.                  | 204<br>34                                                                         |
| 26) 96 (3 3 Farthings.                  | 42) 544 (12 Drams.                                                                |
| 18                                      |                                                                                   |
| So the Answer is                        | 40 remains to place<br>over the 42.                                               |
| s. d. qr.                               | So the Answer is<br>Oun. Dram.<br>11: 12 \frac{40}{42} \text{ or } \frac{10}{21}. |
|                                         | 44 3 41                                                                           |

And by the same Rule any other Fraction of Money, Weight, Measure, &c. hath its Value sound.

The Truth of this Rule is manifest; for suppose  $\frac{7}{8}$  of a Pound Sterling we know is 17 s. 6 d. or 7 Half Crowns; and it will appear to be so by the Rule, if work'd as the two Examples above are.

Case 6. To reduce Fractions of different Denominators to those of the same Value, which have a Common (or one and the same) Denominator.

Example. Reduce  $\frac{3}{7}$ ,  $\frac{3}{7}$ , and  $\frac{4}{7}$  to a common Denominator.

Rule.] Multiply the Denominators one in another for the common Denominator, as 9 times 7 is 63, and 5 times 63 is 315 = the common Denominator.

Then for the 3 new Numerators, multiply every Numerator into all the Denominators except its own, and the Product is a Numerator answering to the Fraction whose Numerator you multiplied: as the Numerator 2 in 7 and 5 produceth 70, so is  $\frac{7}{3}$ , equal to  $\frac{1}{7}$ . Then 3 multiplied in 9 and 5 gives 135, so is  $\frac{13}{3}$ , equal to  $\frac{1}{7}$ . And lastly, 4 multiplied in 7 and 9 is = 252, so is  $\frac{1}{3}$ , equal to  $\frac{1}{7}$ . So the 3 new Fractions have each the same Denominator, and are in value the same as those given. So also  $\frac{1}{7}$  and  $\frac{1}{7}$  are =  $\frac{1}{7}$ , and  $\frac{1}{7}$ ,  $\frac{1}{7}$ .

The Truth of this Rule will be evident by reducing any of the Fractions which have the same Denominator to its lowest Term, and that you'll find the primitive Fraction given: as  $\frac{7}{3}$  in its lowest Term is  $\frac{3}{2}$  = the Fraction given, and so of all the rest.

This Rule ought to be well minded, it being of principal Use in

Addition and Substraction of Fractions.

Case 7. To reduce Fractions of a smaller Denomination to Fractions of

a greater.

Example. What Fraction of a Pound Sterling is  $\frac{1}{7}$  of a Farthing? Rule.] Consider that  $\frac{1}{7}$  of a qr. is  $\frac{1}{7}$  of  $\frac{1}{12}$  of  $\frac{1}{12}$  of a Pound: then reduce this compound Fraction to a simple, by Case 3. and you'll find it  $\frac{3}{67.20}$  of a Pound. And by the same Rule  $\frac{1}{12}$  of an Ounce is  $\frac{3}{104}$  of a Pound, &c.

The Truth of this appears by the next Case.

Case 8. To reduce Fractions of a greater to a smaller Denomination. Example. What Fraction of a Farthing is  $\frac{3}{6739}$  of a Pound Ster-

ling?

Rule.] Multiply the Numerator of the Fraction by such a Number of Units of the lesser, as make one of the greater Denomination: So here 960 Farthings making 1 l. I multiply the Numerator 3 in 960, and place the Product for a Numerator to the Denominator of the Fraction given, which makes the Answer 18 of a Farthing; which Fraction in its lowest Terms is 1, and proves the last Case 7.

K 2

٤.

to be right. And  $\frac{15}{3.04}$  the Averdupois is  $\frac{340}{3.04}$  of an Ounce, which in its lowest Term is  $\frac{15}{3}$ , as above. So that these two Cases 7 and 8, prove the Truth of each other.

## III. Addition of Vulgar Fractions.

Example 1. What is the Sum of  $\frac{1}{12}$  and  $\frac{3}{8}$ ?

Rule.] Reduce the Fractions to the same Denominator by Case 6. of Reduction, (which you'll find \$\frac{1}{2}\text{t}\$ and \$\frac{1}{2}\text{t}\$.) Then add the Numerators 56 and 36 make 92, which placed over the common De-

nominator of is  $\frac{2}{2}$ , the Answer, or  $\frac{2}{2}$ .

The Truth of this, &c. is thus proved: Suppose the given Fractions be of a Pound Sterling; 7 12ths (or 7 times 20 d.) is 11 s. 8 d. and  $\frac{1}{8}$  of a Pound is 7 s. 6 d. the Sum of which is 19 s. 2 d. which you'll find to be the Value of the Answer  $\frac{2}{5}$ , by the fifth Case of Reduction of Fractions.

Example 2. What is the Sum of  $\frac{1}{2}$ , and  $\frac{1}{8}$  of  $\frac{1}{7}$  of  $\frac{1}{9}$ ?

Rule.] First reduce the compound Fraction  $\frac{1}{8}$  of  $\frac{1}{7}$  or  $\frac{1}{4}$  of  $\frac{1}{5}$  to a fingle Fraction, which you'll find  $\frac{1}{100}$  or  $\frac{1}{100}$ ; to which add the  $\frac{3}{100}$ , as per Example 1. and you'll find the Sum  $\frac{1}{2}\frac{3}{100}\frac{1}{2}$ , or  $\frac{1}{100}$ , (the Answer by Case 3. of Reduction.)

Example 3. What is the Sum of 174 and 3 of 4?

Rule.] The compound Fraction in a simple is  $\frac{1}{12}$ , which added to the Fraction part of the mixt Number, maketh  $\frac{4}{12}$ , which by the second Case of Reduction is  $1\frac{1}{12}$  or  $1\frac{1}{12}$ ; which added to 17, gives the Sum  $18\frac{1}{4}$ . The Truth of which is proved by supposing  $17\frac{1}{4}$  to be 17 s. 9 d. and  $\frac{1}{2}$  of  $\frac{1}{4}$  to be so of a Shilling, which is 6 d. the Sum of which is 18 s. 3 d. or  $18\frac{1}{4}$ , as above.

#### IV. Substraction of Vulgar Fractions.

Example 1. From 3 take 1.

Rule.] The Fractions in a common Denominator are  $\frac{715}{768}$  (equal to  $\frac{92}{76}$ ) and  $\frac{788}{768}$  (equal to  $\frac{1}{8}$ ) therefore 288 deducted from 736, the other Numerator, the Remainer is 448; so the Answer is  $\frac{448}{768}$  (which in its lowest Term is  $\frac{1}{12}$ , and proves the first Example in Addition of Vulgar Fractions). And this Remainer (as in Whole Numbers) add to the Subtrahend  $\frac{1}{8}$ , gives the Sum  $\frac{92}{76}$ , which proves (that way also) this and the first in Addition of Vulgar Fractions to be truly performed.

Example 2. From 1320 take 8 of 7 of 5.

Rule.]



Rule.] 1st, Reduce the compound Fractions to a fingle, which

you'll find by the third Case in Reduction to be 184.

2dly, Reduce \$\frac{1}{2}\frac{1}{2}\frac{1}{2}\$ and \$\frac{1}{2}\$ to one and the fame Denominator by the fixth Case of Reduction, which are \$\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\$ (equal to \$\frac{1}{2}\frac{1}{2}\frac{1}{2}\$) and

1276685 (equal to 554.)

3dly, Deduct the Numerator 176400 from the other Numerator 938448, and the Remainer is 762048: so the Answer is 124-3650. And that in its lowest Terms (by the fourth Case of Reduction) you shall find \$\frac{1}{2}\$, by dividing each part of the Fraction by the common Measurer or Divisor 254016. And this proves not only the Truth of the second Example in Addition, but also that this Example is rightly performed.

Example 3. From 18# take # of #.

Rule.] 1st, Reduce \(\frac{1}{2}\) of \(\frac{1}{4}\) to 1 Fraction as before, which is \(\frac{1}{2}\).

2dly, Reduce \(\frac{1}{2}\) and \(\frac{1}{4}\) (the Fraction-part of the mixt Number given) to a common Denominator, which are \(\frac{1}{4}\) (equal to \(\frac{1}{4}\)) and

차 (equal to A.)

3dly, Now you should take  $\frac{24}{48}$  from  $\frac{12}{48}$ , but you cannot, as being less; therefore borrow 1 or  $\frac{48}{48}$  from the 18, will leave 17. Then add  $\frac{48}{48}$  to the  $\frac{14}{48}$  makes  $\frac{69}{48}$ , from which take the  $\frac{24}{48}$ , and there remains  $\frac{16}{48}$ , which in its lowest Term is  $\frac{1}{4}$ ; so the Remainer or Answer is  $17\frac{1}{4}$ , and proves the third Example in Addition. But this is done shorter by omitting the Numerators and Denominators which are the same Digits as  $\frac{1}{3}$  of  $\frac{1}{4}$  is  $\frac{1}{4}$  or  $\frac{1}{2}$ , &c. as under Case 3. of Reduction.

Which 3 Examples in Substraction, and those 3 in Addition, do

mutually prove each other.

And thus I have given as many Examples as are necessary, in order to the perfect understanding of Addition and Substraction, which will prove very easy, (as they are so plainly expressed) especially to such as have a due knowledge of Reduction of Vulgar Fractions. I shall therefore proceed to

# V. Multiplication of Vulgar Fractions.

Example 1. Multiply 13 by 13.

Rule.] Multiply the Numerators together for a new Numerator, as here 7 by 9 is 63; and the Denominators together for a new Denominator, as 15 by 10 is 150: fo that 13% is the Answer.

Example 2. Multiply 7 of 3 by 8 of 9.

Rule.]



Rule.] Work as before; for the Product of 5 in 2 in 7 and in 8, is 560 the Numerator; and 7, 3, 8, and 9 together, gives 1512: so is  $\frac{1502}{1502}$  the Answer, or  $\frac{1}{27}$  in its lowest Terms,

Example 3. Multiply 25 by 1.

Rule.] The whole Number wrote Fraction-ways is  $\frac{27}{7}$ , which multiply as by the Rule 1. and the Product is 175, (of the Numerators) and that of the Denominators is 12: so the Answer is  $\frac{172}{7}$ , or

by the second Case of Reduction 1413.

Thus you see in Multiplication of Fractions the Product is less than one of the Factors; and 'tis so much less, as the Numerator of the Multiplier is less than the Denominator, (in this Example) or so much as 7 is less than 12 its Denominator: for if the Numerator 7 were 12, it is plain that  $\frac{12}{12}$  (as is said before) is 1, and 1 time 25 would be 25, which would make the Product equal to the Multiplicand; and therefore as 7 is less than 12, so must the Product 14½ be less than 25.

Example 4. Multiply 348 by 1311.

Rule.] Reduce both the mixt Numbers to improper Fractions, and then proceed as by the first Rule in Multiplication of Fractions.

Thus  $34\frac{2}{8}$  is  $^{2}7^{9}$ , and  $13\frac{11}{8}$  is  $^{162}$ , and the Product of the Numerators 279 and 167 is 46593, and of the Denominators (96) for the Answer is  $^{46}7^{62}$ , or  $485\frac{11}{26}$ .

#### VI. Division of Vulgar Fractions.

Example 1. Divide 3 by 3.

Rule.] Place the Fractions as in the Margin; then multiply the Numerator of the Divisor 13, 150 (1945) by the Denominator of the Dividend, and the Product is 1050, the Denominator of the Quotient. And the Denominator of the Divisor in the Numerator of the Dividend produceth 945, the Numerator of the Quotient; which is therefore 1250, in its least Terms 13: And proves the Truth of the first Example in Multiplication of Vulgar Fractions.

Example 2. Divide 1412 by 25.

Rule.] Reduce the mixt Number to an improper Fraction, and put a Unit under the 25, then work as per the last Rule, and as in the Divis. Dividend Quot. Margin. Where you see the Quotient is \$\frac{1}{3}\delta \delta\$, or in its least Terms is
\$\frac{1}{12}\$. And this proves the Truth of Example 3. in Multiplication, as that proves this true.

Example

Example 3. Divide 48533 by 1311.

Rule.] Reduce the mixt Numbers to Fractions, and you'll have easily equal to  $485\frac{1}{96}$  = the Dividend,  $\frac{107}{12}$  =  $13\frac{1}{12}$  = the Divident, and  $\frac{116}{16}\frac{1}{9}\frac{1}{12}$  = the Divident; which being reduced to a mixt Number, is  $\frac{107}{12}$  ( $\frac{116}{9}\frac{1}{9}\frac{1}{9}$ ), or  $34\frac{1}{8}$ , the Fraction being in its lowest Terms, (dividing each part by the common Measurer 2004).

And this manifestly proves the Truth of the 4th Example in Multi-

plication of Fractions.

I have in the Merchant's Magazine shewn the Reason of all the Rules abovementioned, for Reducing, Adding, &c. Vulgar Fractions; and have not room to repeat that here: but have fully shew'd how one Rule proves the Truth of another, which is a good Demonstration of the Genuineness of all.

## VII. To Extract the Roots of Vulgar Fractions.

Rule 1.] You must always reduce your Fraction into its least Terms: for if the Root can be justly extracted in any Terms, it can be so in its lowest. Tho' when you can see, as sometimes it happens, that the Roots may be immediately extracted of the Fraction in the Terms given, then you need not reduce it to its lowest. Thus for

Example, The Square Root of the Fraction  $\frac{120}{144}$  is  $=\frac{12}{12}$ , the Answer  $=\frac{1}{6}$ . And if the  $\frac{120}{144}$  had been reduced to its least Terms, they would have been  $=\frac{1}{12}$ , whose Square Roots are  $\frac{1}{6}$ , as before.

Example 2. When the Square Root of a mixt Number is required, as suppose of  $56\frac{1}{4}$ ; reduce the mixt Number to a Fraction, and extract the Root of both Terms as before: so  $56\frac{1}{4}$  is  $=\frac{3\frac{1}{4}}{4}$ , whose Square Root is  $\frac{1}{4}$  =  $7\frac{1}{2}$  the Answer, (for the  $\frac{32}{4}$  is given in its least Terms) and if you multiply  $7\frac{1}{2}$  by  $7\frac{1}{2}$ , the Product is  $56\frac{1}{4}$  for **Proof.** But

Note, That when a Fraction is given, whose Root cannot be extracted without Remainer, you must reduce it to a Decimal, and proceed to get the Root thereof, as per the Rules and Examples at the End of Decimals; or it may in most Cases be done near enough by Logarithms, as at the end of Sect. 3. of Chap. VI.

II. To extract the Cube Root of Vulgar Fractions. Reduce the Fraction to its least Terms, and then extract the Cube Root of each for those of the Root, unless you can see that the Roots may be

immediately

immediately extracted of the Terms given. For Example, to get the Cube Root of 3377, this Fraction in its least Terms is 127, whose Cube Root is \{\frac{1}{3}\). Or if you had done it without reducing to its lowest Terms, the Roots of the Terms given would be 9 and 15, or \(\frac{1}{3}\), which is equal to \{\frac{1}{3}\}, as before.

For the Root of a mixt Number, reduce it to an improper Fraction, and proceed as by the last Example. But when the Root cannot be accurately enough extracted without trouble, you may

proceed by Decimals, or Logarithms, as is faid above.

Note, That the Use of the Square and Cube Roots you have partly in the two next Sections.

## VIII. The Application or Use of Vulgar Fractions.

Quest. 1. Two Bags contain 470 Dollars, but the greater ex-

ceeds the lesser 32 3 Dollars: how much is in each Bag?

Rule.] Substract the Difference from the Sum, and there rests 438 124 Dollars; half of which is 219288, the Content of the lesser Bag; to which add the Difference 3213, and the Sum is 251128 Dollars in the greater Bag: The Sum of which for Proof is 4703.

Quest. 2. A Brick-Wall contains 17927 square Feet on the Su-

perficies, how many Rod is that of 2721 Feet to the Rod?

Rule.] Divide  $1792\frac{11}{77}$  by  $272\frac{1}{4}$ , and the Quotient is  $\frac{598989}{77319}$ , or  $6\frac{1}{77319}$  Rod for Answer.

Quest. 3. In 846 Pole, how many Yards of  $5\frac{1}{2}$  Yards to the Pole? Rule.] Multiply the one by the other gives the Answer  $4655\frac{1}{16}$  Yards.

Quest 4. What is the Value of 87 C. -q. 13 th at 1 l. 9 s. per C? Rule.] The Weight is  $87 \, {}_{11}^{11}$  C. or  ${}_{21}^{21}$   ${}_{2}^{22}$  C. the Money is  ${}_{2}^{23}$  l. multiply the Fractions together gives  ${}_{2}^{23}$   ${}_{2}^{24}$   ${}_{3}^{25}$  l. which by the fifth Case of Reduction of Fractions is = 126 l. 6 s. 4 d. 1 q.  ${}_{3}^{4}$ .

Quest. 5. If I give 1. 126:6:4:1 for 87 C. 0 q. 13 th of Sugar,

what is that per Hundred weight of 112 per C?

Rule.] Divide the Money (as  $126\frac{1}{6}\frac{1}{7}\frac{1}{2}\frac{2}{5}$ ) by the Weight  $87\frac{1}{12}$ . C. and the Quotient is exactly l. 1:9:—, the Answer.

And this proves the Truth of the last Question.

Quest. 6. What is the Product of 5 s. 7 d. by 7 s. 5 d?

Rule.] Multiply 5 ½ s. by 7 ½ s. (the Pence being so many 12ths of a Shilling) and the Product is 41 ½ Shillings, or l. 2:1:4:3½.

Quest. 7 Divide 1. 2: 1: 4: 3\(\frac{1}{2}\) by 7\(\frac{1}{2}\) Shillings, (or 7 s. 5 d.) The first, in a mixt Number is 41 \(\frac{1}{24}\) s. which divided by \(\frac{1}{2}\) (41 \(\frac{1}{24}\) being

being first reduced to an improper Fraction) the Quotient is 71/416

or 5% s. This proves the last Question to be truely wrought.

Quest, 8. What is the Product of 1.5:7:10 multiplied in itself? Rule.] Reduce the 7 s. 10 d. 4 into Farthings, and those Farthings into the Fraction of a Pound by the feventh Case of Reduction of Fractions: then you have 1. 5 to square, (or multiply by itself) which produceth l. 29: 1:7:2 52765, the An-

I should not have inserted this and the fixth Question above, but that there is much noise (tho' little real Use) of them; some Perfons being deceived by thinking to answer them (for example) by reducing in the 6th Question the 5s. 7d. into Pence, and multiplying them by the Pence in 7 s. 5 d. and then reducing the Pence of the Product into Shillings or Pounds by dividing by 12, &c. But this way gives 12 times the Answer; because, as appears, the Pence should be divided by 144, or 12 times 12 = the Product of the Denominators of the Fraction. And so in the last Example they will divide the Farthings in the Product of those in the Number given multiplied in itself by 960; whereas it ought to be divided by the Square of that, viz. 921600.

On the contrary, others think to perform the Work of the fixth Ouestion by reducing the 67 and 89 Pence to the Fraction of a Pound, multiplying 270 by 270. But here 'tis plain the Answer will be so much too little, as 17600 l. is less than 1260 l. i. e. it will be

but h of the true Answer.

Hence it appears, that fuch Questions are only naturally and accurately resolved by Fractions, as in the said Examples; for which reason I have given those two above in this part of the Use of Fractions, but hope the ingenious Reader will excuse this Digression on so trivial an Instance.

## SECT. II. PROGRESSION.

HIS Part of Arithmetic, tho' neglected both by many Authors of Arithmetical Tracts, and Teachers of the Science, is however of excellent Use, as shewing in a great Variety of Instances the wonderful Power and Harmony of Numbers, and their Relation one to another.

This Relation of Numbers is either Arithmetical or Geometrical.

L

I. Arithmetical

I. Arithmetical Progression, or Relation of Numbers, is when a Series thereof differ by the Addition of some Number to the first, tecond, &c. So these Numbers,

Each of those in the first Series or Row differ by 1, each of those in the fecond Series by 2, and in the third by the common Addition of 3. And a Series of abundant Numbers are 30, 42, 54, 66, &c. which differ by 12. Now,

1. To find the Sum of any of the Series's, you must multiply half the Sum of the first and last Terms by the Number of Terms; or half the Number of Terms by the Sum of the first and last, and

the Product gives the Sum required.

Thus I and 12 is 13 by 6 (half the Terms) gives 78 the Sum.

2 and 24 is 26 by 6, gives 156=the Sum of the 2d Series. 3 and 36 is 39 by 6, gives 234=the Sum of the 3d Series. And the like is to be observed in summing up any other Rows of Numbers, the never so large, or however differing, if Arithmeti-

cally continued.

2. It may be observed, that the several Sums of the three Lines above, or any other of equal Numbers of Terms, beginning with fuccessive Digits continued, do differ also in Arithmetical Proportion; the common Difference being the Sum of the first Series, as 78, 156, 234, &c.

Question 1. How many Strokes does the Hammer of a Clock Arike in the 12 Hours? This is done as the first Example above. the Answer being 78, and would have been the same had you multiplied half the first and last, viz. 61 by 12, the whole Number of

Terms.

Quest. 2. Admit a Boy is to collect 100 Apples, which lie a Yard distant from each other, and to put each of them singly into a Basket placed one Yard from the first; how many Yards does he pass?

Here the first Term is 2 Yards, the last 200, (to the last Apple, and back to the Basket) Sum 202, which multiplied by 50, (half the Number of Terms) produceth the Sum of the Yards passed by

the Boy, which is 10100, or upwards of five Miles.

Quest.



| Quest. 3. How many Feet does                |             |            | •             |
|---------------------------------------------|-------------|------------|---------------|
| an heavy Body fall in 11 Se-                | The Seconds | Multi-     | Feet an beavy |
| conds of Time, supposing it to              | · a Body    | Niulli-    | Body falls in |
| fall 16 Foot the first Second, 3            | falls.      | puers.     | each Second.  |
| times that the next Second, 5               | Ι,          | 1.         | · 16          |
| times that the 3d Second, &c.               | 2           | <i>3</i> · | 48            |
| as in the Example, (or by con-              | 3           | 5          | - 80          |
| tinually adding 32 to the first             | 4           | 7          | 112           |
| Term) the 11th Term is 336                  | 5 6         | 9          | 144           |
| Feet, which the Body falls in               | . 6         | 11         | : 176 .       |
| the 11th Second, (so prodigious             | 7           | 13,        | 208           |
| is the Increase of the Velocity)            | 8           | 15         | 240           |
| and if \frac{1}{2} the last and first toge- | 9           | 17         | 272           |
| ther be multiplied by the 11,               | 10          | 19         | 304           |
| the Sum of all the Feet that it             | 11          | 21         | 336           |
| falls is 1936.                              |             |            | -             |

Thus if you would take the Depth of a Well, or the like, suppose by a Watch that vibrates Quarter Seconds, I find a Stone 44 Quarters or 11 Seconds in falling as above, the Depth of such a

Well, &c. is found 1936 Feet.

And in this Progression 'tis plain that any of the Terms are found without the intermediate, by multiplying 16 by double the number of Seconds less 1. Thus I find that it falls in the 8th Second, 240 Feet, by multiplying 16 by 15.

3. To find a mean Arithmetical Proportional between any two Numbers. Take half the Sum of the 2 Numbers or Extremes for Answer, as in the Examples above; or add half the Difference to the lesser.

A Mean between 9 and 11 in the first Line is 10.

20 and 24 in the 2d Series is 22. 27 and 33 in the 3d .....30, &c.

4. The common Difference and Number of Terms given to find the last Term. Thus in the 2d Series the Number of Terms (12) being multiplied by the common Difference 2, gives 24, the last Term, &c. or in any Series multiply the Number of Terms less 1 by the common Difference, and add the first Term.

5. Any 2 Numbers standing together given to find a third, &c. Take their Difference, and add to the greater, gives the 3d, &c. Or substracted from the lesser, gives the lesser Terms, as in the third Series 21 and 24 are given to find the 3d Term; the Difference is 3, which added to 24 gives 27, the next Term higher; or substracted from 21 gives 18, the next Term lower.

 $L_2$ 

6. If



6. If any four Numbers are in Arithmetical Proportion, whether continued or interrupted, the Sum of the two middle Numbers are equal to the Sum of the two Extremes. Thus,

In the first Line 7, 8, 9, 10; 7 and 10 are equal to 8 and 9.

Also in 7, 8, 14, 15; 7 and 15 are equal to 14 and 8. And in the 3d Line 12, 15, 18, 21; 12 and 21 are equal to 15 and 18.

7. If three Numbers are in Arithmetical Proportion continued, the Double of the Mean is equal to the Sum of the two Extremes, as

12, 15, 18; 2 times 15 is equal to 18 and 12.

8. If three Numbers are given, a fourth may be found by adding together the 2d and 3d, and from that Sum substracting the first, as in 14, 15, 16, the Sum of 15 and 16 is 31, from which take 14, and the Remainer is 17, the 4th in Arithmetical Proportion; and this also holds, tho' the Progression be interrupted, as 14, 15, 25, 26.

9. The Total of the Progression, and the first and last Terms given, to find the Number of Places; divide the Total by half the Sum of the first and last Terms, and the Quotient is the Number of Terms or

Places.

- 10. The last Number and common Difference given, to find the Number of Terms; divide the last Number by the Excess or common Difference.
- 11. The Sum of the Progression, and the first and last Terms given, to find the common Difference. Divide the Total of the Progression by half the Sum of the first and last Terms, and the Quotient is the Number of Terms. Then from the last Term take the first, and the Remainer divide by the Number of Terms less 1, and the Quotient is the Excess or Difference sought, as will appear by any of the three Series's above.

The Reason of the Rule for summing up an Arithmetical Progression. According to the 3d Proposition last above, half the Sum of the two Extremes is an Arithmetical Mean; and a Mean between the first and last Terms of a Progression, according to the same Rule, is found by the first Proposition; and since that is a Mean between the extreme Terms, therefore that being multiplied by the Number of Terms, must necessarily give the Total of them all.

Or more plainly: Take any odd Number of Terms in the three Series's above, and you'll find that Term standing in the middle to be the Mean, according to the said 3d Prop. Thus in the seven first Terms in the second Series, the Mean (or middle Number) is 8, there being three on each side; so that one with another, each

Term.

Term is 8, as you'll find it: for 6 (the next towards the left hand) is 2 less than 8, but then 10 (the next towards the right hand) is 2 more than 8; and 4 (the 2d towards the lest hand from the 8) is 4 less than 8, but then 12 (the 2d toward the right hand from 8) is 4 more than 8: so lastly, 2 (the 3d toward the lest hand from the 8) is 6 less than 8; but then 14 (the 3d toward the right hand) is 6 more than 8. So that nothing is more plain, than that each Term (one with another) being 8, that multiplied by the Number of Terms must give the Sum of all the Terms (or Eights): so the Sum of 7 of the Numbers of the 2d Series aforesaid is 56 (or 7 times 8). And so of any other Series, grounded on the first *Prop.* above.

## Geometrical Progression.

This is when a Series of Numbers are increased by a continual Multiplication of the first Term, and the Products arising, by some certain Number called the Ratio or common Factor: as

1, 2, 4,8,,16, 32, 64, 128, 256, 512, 1024, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, &c. 4, 16, 64, 256, 1024, 4096, 16384, 65536, &c.

Prop. 1. To sum up any Series of Numbers, whose Relation is in a Geometrical Progression.

# The first Way to find the Total of a Geometrical Progression.

Rule.] Multiply the last Number by the common Multiplier. 2dly, From that Product deduct the first Number.

adly, Divide the Remainer by the faid Multiplier less one; and

the Quotient is the Sum fought.

The Example shall be in the finding the Aggregate of the middle Series above, the last Number whereof is 19683; which multiplied by the common Multiplier is 59049, from which take the first Term of the Progression (3) rests 59046, which divide by the said Multiplier less (1) viz. by 2, and the Quotient is 29523 = the Sum required.

The second and much briefer Way to find the Total of a Geometrical Progression, without many of the intermediate Terms, or the last Term being given.

Confider that in the Series of the last Example or middle Series there are 9 Terms; therefore if you multiply the 5th (or 243) by it-felf,

felf, it will at once produce the 59049 as before, (which would be the 10th Term, if the Progression had run so far) whence the Sum is sound as above. For,

Note 1. That when the Number of Terms are odd, and the first is above a Unit, the Square of the middle Term gives that next

above the last Term, as in the last Example.

Note 2. If the Number of Terms be odd, and the first Term be but a Unit, then the Square of the middle Term gives the last Term of the Progression, as in the first Series the Square of 32 is the last Term = 1024.

Note 3. If the Terms be an even Number, and the first Term be One or Unity; then the Square of the Sum in the place of half the Number of Terms gives the last Term save one: as in the 10 first Terms of the first Series, the Square of the fifth Term (16) gives 256 = the last of the 10 Terms but one.

Note 4. If the Number of Terms be even, and the first Term be more than a Unit, then the Square of the Sum in the place of half the Number of Terms, gives the last Term of the Progression, as in the third Series the Square of 256 is the last Term 65536.

These Rules are more particular and useful in the summing up all kinds of Geometrical Progressions than I have any where observed to be exhibited, and therefore worth nothing, for they always hold, as in the two Series's above; and where the Nature of the Progression is as in the first Rank or Line; as is thus farther demonstrated:

The upper Series being Arithmetical, the Addition of any two, or Double of any one, shews respectively what is produced by multiplying or squaring those under them in the lower Line. Thus 4 doubled gives 8 in the upper Line, under which stands 256, or the Square of the Number under the 4, &c. So any 2 added in the upper Line, as 3 and 6, give 9; which stands over the Product of the 2 Numbers 64 and 8, which is 512.

The Reason of the Rule for summing up a Geometrical Progression.

It will be the more easily understood by a Series of a few Terms. Thus if I would know the Sum of 4 and 8, it is 4 (or the first Term) less than the last Term 8 multiplied by the common Factor (2)



(2) which plainly shews why you deduct the first Term (here 4). So also in 2, 4, 8, the Double of 8 is 2 (or the first Term) more than the Sum 14, and therefore from the 16 must be deducted the first Term (2). Lastly, in 1, 2, 4, 8, twice 8 (the last Term) is 16, which is the first Term (1) more than the Sum (15). And this is sufficient to shew the Reason why we multiply the last Term by the common Factor, and why from the Product the first Term is deducted.

Now, as when the Ratio or common Factor is (2) the Sum of the Progression is † the last Number after the first is deducted from the Product; so when the common Factor is 3, the Answer is ½; if the common Factor be 4, the Answer is ‡ of the last Number (or Term) having before Division the first Term deducted from the Product. Thus in 3 and 9, the Sum is 4 three's or 12, which is thrice the last Term (9) less the first Term (3) divided by 2. So also in 4 and 16, the Sum is 4 times 16, less the first Term (4) dividing the Remainer by 3; as might easily (from so few Terms) at first be discovered. But see more at the end of this Section.

Quest. 1. A King of much Virtue and Valour, admirably esteem'd by his Subjects, returning from the Wars with Victory and Peace, very much Emulation appear'd who should exceed in Demonstrations of Joy. Among the rest, the Governour of the Fortress intending to signalize himself, orders his Sub-Officers to make so many Discharges of Cannon; viz. 3 for the first Year of the King's Age, (which was 25 Years) 9 for the second Year, 27 for the third Year, &c. (not considering the Impossibility of the Performance) the Question is, how many Discharges were to be made, and how much Powder consumed, supposing the Guns to be each a Culverin, whose Requisite of Powder is the 10?

The

| The 13th Term 1594323 } M Ditto 1594323 } M                                                  | Years. Dischar.  Ist                                                 |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 4782969<br>3188646<br>4782969<br>6377292<br>14348907<br>7971615                              | 3d — 27<br>4th — 81<br>5th — 243<br>6th — 729<br>729<br>6561<br>1458 |
| This is the 6th Term (or the next above the last) per. Note 1. foregoing. The first Deduct 3 | 12th Term } 531441 by Note 4. } 531441                               |
| Rests = $2541865828326$<br>Half of which is = $1270932914163$ ,                              | 13th Term 1594323                                                    |

Half of which is = 1270932914163, the Sum of the Progression, or the Number of Discharges order'd.

Which, at 10 Pound of Powder at each Discharge, gives 12709329141630 15. at 100 15. each Barrel, is 12709329141636 Barrels; which would lade 14184965 Ships, at 400 Ton each Ship.

Quest 2. On the same Occasion all the Bells in the King's Metropolis were directed to ring as many Changes as they were capable of. Now there being 9 Churches, 1 of which had 2 Bells, another, 3, &c. the last 10 Bells; how many Changes could be rung on all the Bells at each Church, and what the Sum Total of all that Progression?

The Number of Bells multipliplied (any way) one in another, gives the last Term, or Changes

that can be rung thereon. Then for the Sum, multiply the last Term by the correspondent Number of Bells, and divide the Product

duct by the Number of Terms, and the Quote is the Answer for four Bells: For 5 Bells add 2 to the Rule, for 6 add 8, for 7 add 32, for 8 Bells add 152, for 9 add 872, and for 10 add 5912, gives the Sum of the Progressions, here 4037912.

Note, The 2 is the first Term, the 8 the Sum of the 2 first, the 32 = the 3 first, the 152 = the 4 first, the 872 = the 5 first, and

the 5912 = the Sum of the 6 first Terms.

Quest. 3. Any Line or Number given, to divide the same into extreme and mean Proportionals. To the Square of the whole Line or Number given, add ‡ of that Square; extract the Square Root of the Sum, from which Root deduct half the Line or Number given, and the Remainer is the greater part. And for a Proof, the Rectangle or Product of the whole Line by the lesser part, is equal to the Square of the greater part, by Euclid 11.2.

4thly, If three Numbers be given in Geometrical Proportion continued, the Product of the two Extremes is equal to the Square of

the Mean, as 5, 20, 80, equal to 400.

5thly, If two Numbers be given, it follows from the last, that a mean Proportional may be found by multiplying them together, and extracting the Square Root of the Product. Thus in the last Example 5 times 80 is 400; the Square Root of which is 20 = the

Mean fought.

6thly, If you would find two Geometrical mean Proportionals between two Numbers given, as suppose between 5 and 320, you must divide the greater by the less; then extract the Cube Root of the Quotient; lastly, by that Root multiply the first Term, gives the first Mean, which multiply by the said Root gives the second, so is 5, 20, 80, 320, the Numbers in order, 20 and 80 being the Means required.

7thly, Or three mean Proportionals may be found thus: Suppose between 5 and 1280. Divide the greater Extreme by the lesser, extract the Biquadrate Root of the Quotient, and by that Root multiply the lesser Extreme continually 3 times; so will the Answer

be found 5. 20. 80. 320. 1280.

8thly, If 4 Numbers be given in Geometrical Proportion, the Product of the two Extremes is equal to that of the two Means: so in the last Example 5 times 320 is equal to 20 times 80, viz. 1600.

9thly, If two Numbers be given, a third in Geometrical Proportion may be found by dividing the greater by the lesser, and multiplying such greater by the Quotient. As per the 5th, 80 is found in

in proportion as 5 to 20; for as 5 to 20, so is 20 to 80, as may be

proved by the 3d or 6th Cases above.

10thly, Three Numbers given in Geometrical Proportion, a fourth may be found by multiplying the second and third together, and dividing the Product by the first: as in the 5th 20 times 80 is 1600, which divided by 5, gives the 4th Proportional 320. This 1 as it is the Foundation of the Rule of Three Direct, which is the next thing to be taught after I have shewed

The Process for finding out the Canon whereby to discover the Sum of a Geometrical Progression.

```
But first note that

I shows a Geometrical Proportion.

I sportion.

I sportion.

I sportion.

I sportion.

I sportion.

I the sum of the Progression.

I the sum of the Progression.

Which is unknown.

I the last Term of the Progressions.
```

The Sum of the Progression to be found is this Example, 1, 2, 4, 8, 16, 32.

| Literally performed.                                                              | Numerally performed.                                      |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------|
| f. fr : : u—l. u—f                                                                | that is 1. 2×1:: u—32. u—1                                |
| fu—ff=r fu—rfl.                                                                   | that is u—1×1—2×1 ×u—32×2×1                               |
| u—f=ru—rl                                                                         | that is $u=1=2\times u=2\times 32$                        |
| ru—u=rl—f                                                                         | that is 2u—u=2x32—1                                       |
| $\mathbf{u} = \frac{\mathbf{r} \mathbf{l} - \mathbf{f}}{\mathbf{r} - \mathbf{I}}$ | that is $u = \frac{2 \times 32 - 1}{2 - 1}$ = the Answer. |

So that 'tis plain the Answer is (2) the Ratio multiplied in (32) the last Term, made less by (1) the first Term, and that Remainer divided by (2) the Ratio, less 1, the Quotient is (63) the Sum of the Progression (or u): And this Canon (or Rule) holds in all Geometrical Progressions continued. Which the Reader will more easily apprehend, when he comes to the Algebraic Part, and till then he may pass this, if he finds it difficult to understand; but I could not well omit it in this place, to which it most properly belongs.

Digitized by Google

## SECT. III. Rules of Proportion.

N this Section I shall shew the Operation, 1. Of the single Rule of Direct Proportion. 2. The single Rule of Reverse Proportion. 3. The double Rule of Direct Proportion. 4. The double Rule of Reverse Proportion. 5. The Rule of Proportion by 5 Numbers Direct. 6. The double Rule by 5 Numbers Reverse. 7. A third Variety thereof. 8. Duplicate Proportion Direct. 9. Duplicate Proportion Reverse. 10. Triplicate Proportion. 11. Harmonical Proportion. And, 12. Sesquiplicate Proportion.

## I. The Single Rule of Direct Proportion.

This Rule has its Foundation from the 8th and 10th Propositions

last foregoing, and is demonstrated by Euclid in the 16.6.

The main difficulty is to state the 3 Numbers given right; for there are always 3 given to find a 4th, and hence some call this the Rule of 3; others, because of its great Use, have termed it the Golden Rule: and 'tis called the Rule of Proportion, because the Number sought bears such Proportion to the 3d, as the 2d does to the first of the Numbers given.

## For the right disposing or placing the 3 Numbers given.

Rule.] There being always 2 of one Denomination, and 1 of another, put the last mentioned down first: 2dly, Put that towards the lest hand thereof which has dependance on it: and, 3dly, Put the other next the right hand. Thus if the Interest of 1.750 were

fought for a Year at the Rate of 5 per Cent. it appears by the State in the Margin, that only 1 of the 3 given Numbers is Interest, therefore I place that in the middle. And be cause 100 has dependence on it (as being its Principal) therefore I put 100 towards the left hand, and the 3d toward the right hand (in course) Then

l. Princ. l. Inter. l. Princ.
100. 5: 750

5

37.50

Answer.

To find the 4th Proportional, or Answer to the Question.

Rule.] Multiply the 2d and 3d (or those towards the right hand) together, and divide the Product by the first (or that next the less hand) and the Quotient is the Answer, or the 4th Proportional sought for. So in the M 2

Example above, the 4th Proportional is 37 to for 100. 5::750. 37 to, that is, as 100 is in proportion to 5, so is 750 to 37 to 37 to that you may prove this Rule by comparing the Product of the 1st and 4th with the Product of the 2d and 3d, as by the sixth last mention'd Prop. in Geometrical Progression.

Case 2.] When the first Number is a Unit only, the Work is

done by Multiplication alone.

Thus if I Piece of Broad-Cloth cost 17 l. what will 71 cost? Here the 4th Number is found 1207 l. which is the 4th Proportional fought.

| Pc. | l. | Pc.   | l,   |
|-----|----|-------|------|
| I   | 17 | ::71. | 1207 |
|     |    | 17    | •    |
|     |    | 497   |      |
|     |    | 71    |      |
|     |    | 1207  |      |

2dly, If I give 3 s. 9 d. for an Ell of Holland, what will 1371 cost at that rate?

By the Rule above the Question is stated as in the Margin, and you may multiply 1371½ by 3 s. A, as in the 4th Example of Multiplication of Fractions, and the Answer is 49362½ Shillings; which, by the 5th Case of Reduction of Vulg. Fractions, is l. 257:2:7:3½, as per Margin. But these Questions are sooner solved by Practice, as per the next Section.

Case 3.] When the 3d Number is only a Unit, the Question is answered by Division. Thus if I give 1. 257:2:7:32 for 13712 Ells of Holland, what is that per Ell?

The Question is Ells Shill. Ell thus stated: and being divided (as per the first Example of Division of Vulgar Fractions) the 2d by the 1st, the Quotient is \frac{1949150}{16732565} \frac{1}{2} \f

Note, That where the first, or third

Ell s. d. Ells
1 3:9::1371\$

96) 493695 (51425.

409

63 s. Rem. 12 Mult.

96) 756 (7 d.

84 d. Rem. 4 Mult.

96) 336 (3 q. \$\frac{3}{8}

Number, or both, are of diverse Denominations, you must reduce both such 1st and 3d into the least Name mentioned in either, and then then multiply by the fecond Number in the lowest Denomination that is in it when given. And then having divided by the first,

Note, 2dly, That your first Quotient will always be of the same Denomination with the lowest mention'd and given in your second Number. To illustrate these three Cases,

Case 4.] If I give 1. 7 for the Interest of l. 100 : 10 : --: whatmust I give for the Interest of 1. 30 for the same time; See the Work in the Margin, where tho? the 1st and 3d be reduced to Shillings (that being the least Term in the 1st Number) yet the Answer retains the same Denomination with the 2d Number. and is  $l. 2\frac{1}{2}$ ; or by the 5th Case of Reduction of Vulgar Fractions l. 2: 1: 91 prope.

Case 5.] If I give 7 1. for 30 Ounces of Silver, what will 7 Ounces and 10 Penny-Weight

cost at that rate?

Here it is plain that because the 7 3 10 dw. are reduced into Penny-Weight, the 30 ₹ must be so too: Also that the Quote is of the same Denomination with the 2d Number, viz. l. 14; or, being reduced as aforefaid, L 1:15.

| Prin.  1. 5. 1. In  100: 10 7:  20  2010 Shil.   |                                   |
|--------------------------------------------------|-----------------------------------|
|                                                  | 7<br>0) 4200 (2 <i>l</i> . Inter. |
| 3. 1. 3. 30. 7:: 7 20 20 600 dw. 150 7 600) 1050 | Penny-Weight.                     |

600) 9000 (15 1. 30

450 20

Case 6.] If 25 Ounces of Ambergreace cost 1. 52:6:8, what will 2 Ounces cost 2

See

See the Operation, where the 2d Number in its least Denomination being 12560 Pence; therefore the Quote 1004 is Pence.

25) 25120 (1004 27 Pence.

or l. 4:3:8‡ the Answer.

20

## II. The Single Rule of Propartion Reverse.

This teaches, upon a due stating of the 3 Numbers, to find a 4th; which shall bear such a Ratio to the 2d, as the 1st does to the 2d Number.

Quest. 1. How much Matting of 2 Foot broad will line a Gar-

lery which is 7 Foot broad and 40 Foot long?

To state a Question in this Rule,

1. Put down the Number which has the fame Denomination as that required.

2. Towards the left hand put down that Number which is joined in the Sense of the Question to the last.

broad. long. broad long. 7. 40. 2. 140. 7

2) 280(140 = the Answer.

And as 140. 40:: 7. 2.

3. Put down the other which has the same Denomination as that towards the left hand.

Then to find the Answer by this,

Rule.] Multiply the 2 next the left hand one in the other, and divide the Product by the 3d, or that next the right hand, and the Quotient is the Answer.

Hence the Reason is evident why this Rule is said to be Reverse: because the lesser the 3d Number is, the greater is the 4th; but in

Digitized by Google

Direct Proportion the greater the 3d is, the greater is the 4th Number.

So that by this Rule it is easy to know when a Question is to be solved as Direct, and when it is Reverse: For when the 3d Number is less than the first, and yet requires more than it does, or being more, requires less than the first requires; in these Cases your Proportion is Reverse, and so you are to work by the last Rule.

Example 2.] How much Ground in length, being 12 Perches broad, will make an Acre?

To do this, consider that 4 Perches in breadth requires 40 in length to make an Acre; therefore state and work as per Margin.

But altho' Writers have prefcribed the foregoing Method for stating a Question, as being very broad. long. broad.

4

12) 160(13) Perch. long, for Answer.

40

natural, and thereby have made it necessary to make this a different kind of Operation and Proportion; yet I shall shew

How to reduce Questions commonly said to be in Reverse Proportion into Direct.

And this is only to consider (to instance in the last Example) That as (12) the Breadth on which the Answer depends,

Is to (4) the Breadth belonging to the Length given:

Breadth. Bread. Length. Len. 12, 4:: 40. 12\frac{1}{2}

So is (40) the Length given, To (13\frac{1}{3}) the Length required.

Here the 4 Numbers are in Direct Proportion, because the Product of the 2 Means is equal to that of the 2 Extremes; which, by the by, serves for Proof of this Direct Proportion. But in the Reverse the Product of the 1st and 2d is equal to that of the 3d and 4th Numbers; which proves the Reverse Proportion.

## III. The Double Rule of Direct Proportion.

This is when a Question requires to be twice stated, and has two such Operations, as under the single Rule. For Example,

If I give 5 l. for the Interest of l. 100 for one Year, what Interest will l. 700 gain at that rate in seven Months?

1*f* 

| Ist say, If l. 100 require l. 5, what   |   |
|-----------------------------------------|---|
| will l. 700 require in the same time?   | 1 |
| You find as per the Margin that it will |   |
| gain 1. 35.                             |   |

2dly say, If 12 Months require 1 35, what will 7 Months require? Work and you find the Answer 1. 2013, or 1. 20:8:4.

Mon. l. Mon.
12. 35::7

7

12) 245 (20.5)

And by the same Rule you may find the Interest of any Sum for any Number of Days; as suppose l. 700 for 119 Days.

Days. l. Days. 365. 35::119

For a Year, by the first Operation, the Interest is 1.35: then in the second Working say, if 365 Days requires 1.25, what will 110 Days require?

1. 35, what will 119 Days require? You'll find the answer to be L 11:8:2:2 $\frac{128}{368}$ .

# IV. The Double Rule of Reverse Proportion.

This is also performed at two Operations, the first Direct, the later Reverse. For instance,

What Principal will gain 1. 20 1/2 in 7 Months, as the Rate of

5 per Cent?

The 1st Answer l. Int. *l*. Princ. l. Int. Princ. is, that 24188 l. ist say 5. 100:: 2013. <del>24</del>2% /2 Principal will raise Mon. the 20 % in a Year. Mon. The 2d, or An-2dly say 12. 700

fwer to the Question, is, That 1. 700 is the Principal that will raise the Interest 1. 20% in 7 Months: by multiplying the 2d Number by 12, and dividing by 7. Note, This proves the first Question in the third Head above.

# V. The Rule of Proportion by 5 Numbers Direct.

This Rule hath 5 Numbers given to find a 6th. It is the same with the double Rule of Proportion Direct; only whereas that was done

done by twice stating the Question, this is done by one stating: the Rule for which is to place the 5 Numbers as followeth. Where tis obvious, That the 3d must be of the same Denomination with that sought; the 1st and 2d are the 2 on which the 3d depends: so

that the 4th must be of the same Denomination with the 1st, and the 5th the same with the 2d.

Example.] What is the Interest of 1. 700 for 7 Months at the Rate of 5 per Cent. per Ann.? By the Work in the Margin, you see

l. Prin. Time. l. Int. l. Prin. Time.

100. 12. 5. 700. 7

12 7 multiply.

1200 = the Divisor. 4900 multiply.

1200)24500 (201) = the Answer

The Rule for the Operation is, Multiply the 3 Numbers next the right in each other for a Dividend, and the 2 next the left hand for a Divifor, and the Quotient is the 6th Proportional fought; as appears in the Method, by double stating under Head III.

And to prove this; The Product of the 1st, 2d, and 6th, is equal

to that of the 3d, 4th, and 5th.

Quest. 2.] If 1000 Men in 24 Hours can dig a Trench 18 foot broad, 9 deep, and 500 long; what length of the like Trench can 9800 Men dig in 10 Hours? The Answer as per Margin, is 20413 Feet.

Whence it appears, That as the Product of the 1st and 2dNumbers is to the 3d: so is the Product of the 4th and 5th to the 6th Men. Hours. Feet. Men. Hours. 1000. 24. 500. 9800. 10. 24 10 multiply.

98000 multiply.

24000) 49000000 (2041<sup>‡</sup> foot Answer.

40

Number. Which also serves to prove the Rule;

For as 24000. 500:: 98000. 20413.

And 24000 multiplied in 2041<sup>‡</sup> is equal to 98000 multiplied by 500, viz. 49000000, as per Prop. 6, of Geom. Progression.

N

VI.

Digitized by Google

VI. The second Variety of the Rule of Proportion by 5 Numbers.

This is commonly called the Rule by 5 Numbers Reverse.

Example.] How many Men can dig 24013 feet in 10 Hours, at the rate of 1000 digging 500 feet in 24 Hours. State your Question tbus:

> Hours. Feet. Feet. Men. Hours. 10. 2041 1000: 24: 500.

i. e. If 1000 Men in 24 Hours dig a Trench of 500 Feet in length, how many Men can dig a Trench of 2041 feet long in 10 Hours? To answer this, multiply the 1st, 2d, and 4th Numbers together

for a Dividend, which divide by 5000, the Product of the 3d and 5th Numbers, and the Quotient is 9800 Men for Answer.

# VII. A third Variety of the Rule of Proportion by 5 Numbers.

This (altho' omitted by Authors) is as likely to be used as the last: for (to put the same Question again, that the varying may the better appear)

Men. Hours. Feet. Men. Feet. If 1000 Men in 24 Hours can dig 500 1000: 24: 500. 9800. 20413.

foot of a Trench, (as

mention'd under the 5th Head above;) in how many Hours can

9800 Men dig 20413 feet (of the like Trench)?

Rule.] Multiply the 1st, 2d, and 5th together, produceth 49000000 for a Dividend: Then multiply the 3d and 4th together for a Divisor, which is 4900000. So the Quote is 10 Hours, as in the two Cases above.

Ist Case the Feet to be digged was sought, \ 20413 Feet. In the 22d — the Number of Men to dig the lar-ger Trench in the leffer Time, and found 39800 Men. 3d — the Time in which the larger Number could dig the larger Trench, and found } 10 Hours.

For Proof of the 2d Variety or Kind of Proportion by 5 Numbers: The Product made of the 1st, 2d, and 4th, is equal to that of the 3d, 5th, and 6th.

And for Proof of the 3d Variety: The Product under the 3d, 4th, and 6th, is equal to that of the 1st, 2d, and 5th. VIII. Of

## VIII. Of Duplicate Proportion Direct.

This differs from the fingle Rule of Proportion Direct, in this: 2 of the 3 (the 1st and 3d) requiring to be squared, when that sought (or the 4th Number) is not a Square, and 1, viz. the middle or 2d Number, when that sought is a square Number (or one whose Root must be extracted to give the specifick Answer):

Or else it is when the Ratio is as the Square of one thing is to

that of another,  $\mathcal{C}_c$ .

#### Examples.

The Diameter of a Circle being 2, the Area is 3 15456: therefore What is the Area or superficial Content of a The Sqr. of The The Sqr. of The Circle, whose Diamethe Diam. Area. the Diam. Area. ter is 8?

4. 3 15556 :: 64. 50 15556

Euclid has demonstrated, that Circles are in proportion as the Squares of their Diameters; and accordingly, by this Proportion above we find the Area of a Circle 50.2650, whose Diameter is 8.

Example 2.] What is the Diameter of a Circle, whose Area is 501 100 ? supposing the Diameter of Circle, whose Area is 31000, be 2, (as it really is.)

This is stated as per

Margin, and the Ope- The The Sqr. of The The Sqr. of ration done as be- Area. the Diam. Area. the Diam. fore. For 31416. 4:: 501666. 64

As 3 1446 (the Area of a Circle)

Is to 4 (the Square of that Circle's Diameter:)

So is 50.646 (or the Area of any other Circle)

To (64) the Square of the Diameter of that Circle.

Now extract the Square Root of 64, and you have the Answer, viz. 8.

This and the last Example prove each other.

IX.

## IX. Duplicate Proportion Reverse.

Example.] Admit the Pendulum of our common Clocks is 39 Inches, (as it is very little more) we know that such a Clock vibrateth Seconds (or 60 times in a Minute). Now what is the Length of a Pendulum that vibrateth Half-Seconds (or 120 times in a Minute)?

Questions under this Rule are most naturally stated as in single Reverse Proportion above; and being so stated, must be so wrought

after the Vibrations are squa-

red. By this State it appears Vibrations. Inches. Vibrat. Inches. that the Proportion is Re-60. 39.

verse: for if 60 Vibrations

require a Pendulum 39 Inches long, 'tis plain that a Clock, whose Vibrations are 120 in a Minute, must have its Pendulum shorter (for the longer the Pendulum, the fewer the Vibrations in a Minute; and the contrary): therefore more requiring less, shews the greater Extreme (or 120) must be your Divisor, as appears by what is said under the first Example of single Reverse Proportion. So that multiplying the Square of 60 = 3600 by 39, and dividing the Product by the Square of 120 = 14400, the Quotient or Answer is 9 Inches.

Example 2.] A Pendulum of 39 Inches vibrating 60 times in a Minute; how many times does that Pendulum vibrate in a Minute.

whose Length is 91?

The Sqr. of Inches. Here, by multiplying The Sar. of Inches. the Vibrat. the two first towards the the Vibrat. 360**0.** left hand together, viz. 39. 9‡ 14400 30 and 3600 = ( the)

Square of 60) and dividing the Product by 94 (as taught in Divifion of Vulgar Fractions) the Quotient is 14400, the Square of the Answer: therefore extract the Square Root of 14400, and you'll find it 120 = the Number of Vibrations in a Minute of a Pendulum whose Length is 9\frac{1}{4} Inches.

Example 3.] Admit a Body on the Surface of the Earth (or 4000 Miles distant from the Center thereof) weigh 20 Hundred weight. what will that Body weigh if it were 12000 miles above the Surface, or 16000 from the Center of it? State your Question thus;

> Miles. C. wt. Miles. 16000 4000 20

> > Multiply



Multiply the Square of the 1st by the 2d, and divide the Product by the Square of the 3d, and the Quote is 1½ C. Which shews, that a Ton weight, if 12000 miles high, will weigh but 1½ C. and if 189314 miles high, 'twill weigh but a Pound, by the same Rule.' So likewise the Velocity of Swiftness of Descent is also in proportion to a heavy Body's distance from the Center of the Earth in a duplicate Ratio: for the Celerity of the Fall on the Earth (or 4000 miles from the Center) being 16 foot in a Second; if the same Body be 16000 miles from the Center, it will sall but 1 foot in a Second, as you may easily prove by this present Rule, as abovesaid.

I have given an Example under the single Rule of Proportion Reverse, how these last, &c. may be performed as in Direct Proportion, by saying (in the 2d Example)

As  $9^{\frac{3}{4}}$  to 39: : so 3600, to 14400, whose Root is 120.

But then this neither agrees, as to stating the Question, with the Rules given for that purpose under the single Rules Direct nor Reverse, and consequently these Questions are most properly and naturally to be performed as directed above, as agreeing with the Rules given for stating and working such Questions.

## X. Triplicate Proportion.

As in Duplicate Proportion the Ratio is as the Square of one Number is to another Number, or the contrary; so this kind, the Ratio is as one Number is to the Cube of another, or as the Cube of one Number is to some other Number.

Example 1.] If a Sphere (or Ball) which is 8 Inches Diameter, weighs 48 Pounds; what will another Sphere of the same Specie of Matter weigh, whose Diameter is 4 Inches?

This is a fingle direct Proportion, (working with the The Cube of the Its The Cube of Cubes of the Diameters) the Diam. 8. Weight. the Diam. 4. where the 4th Proportional is 512. 48:: 64. found the 6. For

As 512 = (the Cube of the Diameter 8) is to 48 Pounds weight, So is 64 (the Cube of the Diameter 4) to 6 Pounds, the Weight required.

Example 2.] If a Sphere weighing 48 lb. be 8 Inches Diameter, what is the Diameter of another Sphere of the same Matter, whose Weight is 6 lb?

Herc

Here by multiplying the 2d the the and 3d Numbers together, and Weight. dividing the Product by the 1st; 48. 512:: 6. the 4th Proportional is 64, the

· Cube Root whereof is 4 = the Answer. For

As 48 Pounds weight is to 512 (the Cube of the Diameter 8)
So is 6 Pounds weight to 64 (the Cube of the Diameter fought)
whose Root is 4.

And as the Weight, so the Solidity of Spheres is found by the fame Ratio.

The Cube of Example 3.] Ad-The Cube of The Soli-The SolitheDiam.4. mit the folid Conthe Diam. 2. ditv. ditv. 410000 :: tent of a Sphere 8 64 23 15005 be 41655, whose

Diameter is 2; what is the Solidity of another Sphere, whose Diameter is 4?

Here you see that As the Cube of the Diameter 2, viz. 8.

Is to the Solidity of that Sphere 4.1888 :

So is the Cube of the Diameter 4, viz. 64.

To the solid Content of that Sphere, viz.

33.10000.

Example 4.] The Diameter of a Sphere being 2, whose Solidity is 4,1886; what is the Diameter of another Sphere, whose Solidity is 33,1866. Answer 4; the Cube Root of 64: for as 4,1886. 8:: 33,1866. 64.

#### XI. Harmonical Proportion.

In this kind of Proportion there are 3 Numbers given to find a: 4th, which shall bear such direct Proportion to the first, as the Difference between the 3d and 4th bears to the Difference between the 1st and 2d.

It is called Harmonical (or Musical Proportion) probably by reason of the double Ratio of the Numbers among themselves.

The Rule to find the 4th Proportional, is, Multiply the 1st and 3d together, and divide the Product by double the 1st, less the 2d; and the Quotient is the 4th Number required.

Example.] What is the 4th Proportional Harmonical to these 3

Numbers 7: 10:12? Answer 21.

See



See the Work in the Margin.

For Proof of this, as abovefaid:

21. 7:: 9. 3

That is, as 21, the 4th Number (or that required in the Question)
is to 7 (the 1st Number) so is the Difference between 12 and 21, viz. 9. to the Difference between the 1st and 2d, or 7 and 10, viz. 3.

7:10:12:21  $\frac{2}{7}$ Product  $\frac{14}{10} = 4$ ) 84 (21)
Refts 4  $\frac{4}{0}$ 

Hence as a Corollary it will appear, that double the 1st Number must exceed the 2d Number, otherways you'll want a Divisor, and cannot find the requisite Number without the Arithmetic of Negatives.

## XII. Sesquiplicate Proportion.

In this kind of Ratio the Square of one Number is in proportion to the Cube of another, and the contrary.

It is used in finding the Distance of the Planets in the Solar System from the Sun their Center, about which they revolve: For

As the Square of the Time in which any Planet finisheth its Periodical Revolution,

Is to the Cube of its Distance from the Sun:: So is the Square of any other Planet's Time To the Cube of its Distance. Thus

## SECT. IV. Rules of Practice.

HIS is a briefer Method of casting up any Quantity of Merchandize than the Rule (commonly used) of Proportion or Multiplication. And 'tis done by considering what even Parts of a Pound the given Price is, or is reducible to, and then framing a Rule accordingly.

It is called the Rule of Practice because of its excellent Use in the Practice of Merchandize, for dispatching many Computations with much ease and in a short time.

I shall not trouble the Reader with shewing him a Table of the even Parts of a Shilling or a Pound, by reason I have given an intire Table, with the Fabrick thereof, at the end of Division, and have reduced the whole Business of Practice into Rules arising gradually in the Value of the Integer in so regular and copious a Method, that any one may easily find his Rate or Value of the Yard, Ell, Pound, Ounce, &c. and right against it a Rule how to perform the Operation after the best and most concise manner. And he will generally know which are the even Parts of a Pound by the Shortness of the Rule, being only one Division required to bring the given Number into Pounds respectively. I have marked the Aliquot Parts of a Pound with A. P. L. in the Table: And I think I may affirm, that this most copious, regular, and short Way of Practice, was first (and only) shewn by myself, where I take no notice of the Parts of a Shilling, but of a Pound only.

The main thing that makes the Rules of Practice preferable, is the performing the Operation mentally, without putting down any Figures but the Quotients or Answers for the most part: And this is done by chusing proper Divisors, few or none of which exceed 12; to which Number inclusive my Multiplication-Table foregoing extends, and is supposed to be perfectly in the Reader's memory. But before I proceed to the Tables, it will be necessary to give

these previous Cases.

Case 1.] When the Value of the Integer is 2 s. you have the Answer by only cutting off the Units place (or dividing by 10) 2 s. being the 10th part of a Pound; and the Figure in Units place is so many two Shillings. Thus 34765 Ells at 2 s. each is l. 3476: 10; those

to the left hand Units place being so many Pounds. So also 9734 at 2 s. is l. 973:8:—; and 875 is l. 87:10:—

Case 2.] From the last Case it will follow, that if the Price is any even Number of Shillings for the Unit; the whole Parcel will be half so many Shillings as the Value of the Unit is, multiplied in what such Parcel would amount to at 2 s. Thus 7876 at 18 s. is 1. 7876 at

2 s, therefore it is 9 times that at 18 s. So multiply 7876 by 9 thus,

9 times



9 times 6 (cut off) is 54 two Shillings, put down 8 s. and carry l.5; then 9 times 7 l. is 63, and 5 carried is 68; and 60 proceed to multiply the 78, and you will find the Answer to be l. 7088:8:0. And by the same Rule 19468 at 16s. is l. 15574:8:0. I say 8 times 8 is 64, twice the 4 is 8 s. and carry l. 6, Gc. Likewise 97357 at 14s. is l. 68149:18:00, Gc.

Case 3.] When the Value of the Integer or Unit is 1 s. what is the Value of

135694?

You must take a 20th part, cutting off Units place, and taking half what

16.0

Answer 1.6784:14:00

rests to the left hand, as half 13 is 6,  $\frac{1}{2}$  of 15 is 7,  $\frac{1}{4}$  of 16 is 8, and  $\frac{1}{2}$  of 9 is 4, and the 10 s. remaining, and the 4 cut off is 14 s. because the Value at 1 s. per Unit is half as much as at 2 s.

Case 4.] When the Price of the Unit is 6 d. take a 4th of the given Number, which suppose 17372, cut off the 2 from 17372, and

take a 4th of the rest: So the Answer at one Work is l.434:6s. for 12 Sixpences remains. For 4 in 17 is 4, 4 in 13 is 3, and 4 in 17 is 4, the 434 l.

Case 4.] When the Price of the Unit is 4 d. and you are directed to

take a 60th part of the given Number, which

Here the Units place being cut off, I take a 6th of what is to the left hand the dash, thus 6 in 55 is 9 and rests 1; 6 in 16 is 2, and there rests 4, which with the 7 is 47 Groats, or 15 s. 8 d. the Answer.

के is l. 92 : 15 : 8

Groats, or 15 s. 8 d. the Aniwer.

Case 6.] When the Value of the Unit is 3 d. and you are directed in the subsequent Rules to take  $\frac{1}{5}$  of the given Number, which sup-

pose 7539; cut off the Units place, and take \$\frac{1}{8}\$ of the remaining Figures, as 8 in 75 is 9, 8 in 33 is 4, and 19 Three-pences

(or 4s. 9 d.) over.

Case 7.] When the Price of the Unit is 2 d. and you are directed to take 120 of the given Number, which suppose 19739; cut off the 9 in Units place, and take 150 of the rest: so 12 in 19 is 1, 12 in 77 is 6, 12 in 53 is 4, and 59 Two-pences rests, or 95. 10 d. And that the Remainers in these

four

four last Cases may not, when large, seem difficult to cast up, I shall subjoin this little Table of Remainers in Shillings and Pence.

| 10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90 | Two-pences. 1 s. 8 d. 3 | Tbree-pences.  2 s. 6 d.  5 0  7 6  10 0  12 6  15 0  17 6 | Four-pences. 3 s. 4 d. 6 8 10 0 13 4 16 8 | Six-pences.<br>5 s. o d.<br>10 o<br>15 o |
|----------------------------------------------------|-------------------------|------------------------------------------------------------|-------------------------------------------|------------------------------------------|
| 110                                                | 18 4                    |                                                            |                                           |                                          |

Thus by this Table the 47 Groats which remained in the 5th Case above, is 15s. 8d. for 40 under Four-pences is 13s. 4d. and 7 Groats (or 2s. 4d.) is 15s. 8d.

Note 1. That the Remainers are of the same Denomination with the Dividends: As in the Example to the 5th Rule I suppose in the first Operation the Dividend Two-pences, and therefore dividing by 120, I find 47 Two-pences remaining, or 75. 10 d. And what remains after in taking any part of the Quotients, are Pounds, Shillings, or Pence, as those Quotients are. The Cases above, and the Rules and Examples following, make this very evident.

| 020      |            |                                                                                         | 79     |
|----------|------------|-----------------------------------------------------------------------------------------|--------|
|          | TheValue o | f Here followeth 149 Rules (with Examples for such                                      |        |
|          | the Pound  | as scem the most difficult) for the brief working                                       | Number |
|          | Ell, Yard, | by Practice to give the Answer in Pounds, &cc.                                          | of     |
| •        | &c.        | the like not extant by any other Hand.                                                  | Rules. |
|          | s. d.gr.   |                                                                                         |        |
| A.P.L.   | T.         | Take $\frac{1}{80}$ of $\frac{1}{12}$ of the given Number (or $\frac{1}{960}$ thereof.) | 1      |
| A. P. L. | . 2        | Take an 80th of a 6th of the given Number — — —                                         | - 2    |
| A. P. L. | 3          | Take \$\frac{1}{4}\$ of the given Number (or \$\frac{1}{2}\$0 thereof)                  | - 3    |
| A. P. L. | 00:1:0     | Take a 20th of a 12th of the given Number, or take an ?                                 |        |
|          |            | 1 20th and deduct $\frac{1}{2}$ thereof $-$ 5                                           | 4      |
| A. P. L. | 1:1        | To ½ of 120 of the given Number add a 4th of that ½ —                                   | • 5    |
| A. P. L. | 1:2        | Take a 20th of an 8th of the given Number, or 160 -                                     |        |
|          | 1:3        | From 120th of the given Number take an 8th of that ?                                    | 7      |
| 407      |            | The man and solve the Number                                                            |        |
| A.P.L.   | 2:0        | Take an 120th of the given Number                                                       | - 8    |
|          | 2:1        | To an 120th of the given Number add an 8th of that ?                                    | 9      |
| A. P. L. | 2:2        | To an 120th of the given Number add 4 of that 120th, ?                                  |        |
| 21.1.10  |            | or take $\frac{1}{2}$                                                                   | 10     |
|          | 2:3        | From an 80th of the given Number take a 12th of ?                                       |        |
|          | - ; •      | that 80th — — — — — —                                                                   | 11     |
| A.P.L.   | 3:0        | Take an 80th of the given Number, as per Case 6                                         | . 12   |
| _        | 3:1        | To an Both of the given Number add a 12th of that 80-                                   |        |
|          | 3:2        | To an 80th of the given Number add a 6th of that 80 -                                   | • 14   |
| A.P.L.   | 3:3        | To an 80th of the given Number add a 4th of that ?                                      | •      |
| ·        |            | 80th, (or take a 64th) — — — — 5                                                        | 15     |
| A.P.L.   | 4:0        | Take a 60th of the given Number, as per previous Case 5.                                | 16     |
| _        | 4:1        | To an 120th of the given Number twice put down, ?                                       | 17     |
|          | 4.5        | add an 8th of 120th                                                                     |        |
|          | 4:2        | To a both of the given Number add an 8th of that 60                                     | 18     |
| •        | 4:3        | To a 60th of the given Number add an 8th of that                                        | 19     |
| A.P.L.   | ξ:0        | Take an 8th of a 6th of the given Number or take $\frac{1}{48}$                         | _      |
| A.F.L.   | 5:1        | From a 40th of the given Numb. take an 8th of that 40                                   | 20     |
|          | 5:2        | From a 40th of the given Number take a 12th of that ?                                   | 21     |
|          | 3.4        | 40th                                                                                    | 22     |
|          | 5:3        | From an 80th of the given Number twice put down, ?                                      |        |
|          | 3.3        | take a 12th of an 80th                                                                  | 23     |
| A. P.L.  | 6:0        | Take a 40th of the given Number, as per previous Case 4.                                | . 24   |
|          |            |                                                                                         |        |

| Example to Rule 5.<br>19727 at 1 d. 1 q.                                                                 | Example to Rule 17. 9376 at 4d. 1 gr.                                         | Example to Rule 23.<br>8935 at 5 d. 3 qr.                       |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------|
| 120 = 1.164: 7:10<br>12 of that 1.82: 3:11<br>14 of that 1/2 10:10:11 ad<br>Sum, 7.102:14:10 the Answer. | ditto 1. 78: 2:8 ad<br>\$ of 1\frac{1}{2}0 \cdot 1. 9:15:4 \cdot 1. 00:8 Ani. | Sum, 1.223: 7:6<br>1.205 so 6:14 ded.<br>Refts = 214: 1:44 Ani. |

| 100               |              |           |                 | _ / = 0,,,,,    | •                                | On.            | A F. 11.      |
|-------------------|--------------|-----------|-----------------|-----------------|----------------------------------|----------------|---------------|
|                   | The Value    | ,         | •               |                 |                                  |                |               |
| •                 | of the       | · 9he (   | Continuation    | of the Tabl     | e of Rules for                   | r the          | Number        |
|                   | Pound, Ell,  | a a       | art Wark of     | Deastice 8      | C. as before                     |                | of            |
|                   | Yard, &c.    | JD        | ors work of     | I raune,        | ec. as bejure                    | •              | Rules.        |
|                   | d. gr.       |           |                 | 1               |                                  |                |               |
|                   | 6:1          |           |                 | en Number tv    | wice put down,                   | . add <b>/</b> | 25            |
|                   | _            |           | of an 80th      |                 |                                  | <u> </u>       | 25            |
|                   | 6:2          | To a 40   | th of the give  | n Number ad     | d a 12th of the                  | it 40th        | 26            |
|                   | 6:3          |           |                 |                 | d an 8th of the                  |                |               |
|                   | 7:0          |           |                 |                 | la 6th of th<br>la 6th of that 4 |                | 28            |
|                   | 7 : 1        |           | 4th of that 6t  |                 |                                  | <u> </u>       | 29            |
| A.P. L.           | 7:2          |           |                 |                 | d a 4th of that                  | ₄oth ⊋         |               |
| <i>31.1 · M</i> · | ,            |           | ke 1/2) —       |                 |                                  | {              | 30            |
| •                 | 7:3          | To a 40   | th of the giver | n Number add    | a 4th of that                    | Loth, 7        |               |
|                   | • •          |           | 6th of that 4t  |                 |                                  | <u> </u>       | 31            |
| A.P. L.           | 8:0          |           | oth of the give |                 |                                  |                | - 32          |
|                   | 8:1          |           |                 |                 | er put down                      | tpree S        | 33            |
|                   |              |           | , take the 4th  |                 |                                  | —; Ş           | 33            |
|                   | 8:2          |           |                 | n Number, p     | ut down twice                    | , add Z        | 34            |
|                   | 0            |           | h of a 60th -   | circa Numbe     | r thrice put de                  | }              | ••            |
|                   | 8:3          |           | 12th of an 8    |                 | i timice put di                  | ,€             | 35            |
|                   | 9:0          |           |                 |                 | dd half of the                   | at 40th        | 36            |
|                   | 9:1          | To an 8   | th of the giver | Number thri     | ce put down,                     | dd a 7         | - 50          |
|                   | 4            |           | of an 80th      |                 |                                  | <u> </u>       | <b>37</b>     |
|                   | 9:2          | To an     | 80th of the g   | given Number    | r thrice put de                  | own, Z         |               |
|                   | •            |           | 6th of an 80    |                 | <u> </u>                         | S              | 38            |
|                   | 9 ÷ 3        |           |                 | n Number th     | rice put down,                   | add 3          | 39            |
|                   |              | ma 4th    | of an Soth      | <u> </u>        |                                  | 5              | 37            |
| A.P.L.            | 10:0         |           |                 | of the given r  | Number, (or a                    | 24th 5         | 40            |
| •                 |              | part.)    |                 | Number ed       | la de la                         | · }            |               |
| • •               | 10:1         |           | 18th of that 4  |                 | la 4th of tha                    | 30,            | 41            |
|                   | 10:2         |           |                 |                 | ake an 8th of                    | that ac        | 42            |
|                   | 10:3         | To 2 40   | th and a 60th   | of the given N  | Tumber add an                    | 8th 2          |               |
|                   | ,            |           | at 40th -       |                 |                                  | {              | 43            |
| • •               | 11:0         |           |                 | ven Number t    | ake a 12th of                    | the 20         | 44            |
| _                 | 11:1         | From a    | 40th of the g   | iven Number     | twice put de                     | wn, 2          | AF            |
| • • •             |              |           | n 8th of a 40t  |                 |                                  | —- Ž           | 45            |
|                   | 11: 2        |           |                 |                 | twice put do                     | wn, Z          | 46            |
|                   |              | take a    | 12th of a 40t   | n Number e      | ده طحه چه اداد                   | <u></u> }      | •             |
|                   | 13:3         |           |                 | en temmoer s    | dd an 80th, ar                   | 14_2 E         | 47            |
|                   |              | 410 01    | that 80th.      |                 |                                  |                |               |
| Exa               | mple to Rule |           |                 | to Rule 35.     | Example 1                        |                |               |
| ł                 | 7238 at      | 7 d. 3 q. | 39 <sup>2</sup> | 9 at 9 d. 1 qr. | 1895                             | at 114         | 1. 1 qr.      |
| l                 |              |           | ٠. —            | l               | 1011                             |                | <del>  </del> |
|                   | = 1.180:1    |           | an 80th $= 7.4$ | 9:2: 3 7        | a 40th = 7.47                    | 7:             | & Sad         |
| of the 4          | oth 1.45:    | 4:9.      | ditto —— 4      |                 | $ditto = \frac{47}{700}$         | . /            | 2             |
|                   | th 1. 7:1    |           |                 | 9:2:3           | 1 of 4 = 5                       | : 15:          | s‡ ded        |
| Aniwe             | er, /. 233:1 | 4:02      | A of &          |                 | refts /. 88                      |                |               |
|                   |              |           | Sum, Anf. 15    | 1:0:72          | reits /. 88                      | . 10:1         | 1 1 min.      |

|            | The Value of             | ė ·      |                                                                                                            |                          |          |
|------------|--------------------------|----------|------------------------------------------------------------------------------------------------------------|--------------------------|----------|
|            | the Pound,               |          | Continuation of the Table                                                                                  | e of Rules for the       | Number   |
| •          | Ell, Yard,               |          | . Short Work of Pr                                                                                         |                          | 05       |
|            | &c.                      |          | J20.777 01 1c 0j 2.                                                                                        |                          | Rules.   |
|            | s. d. qr.                |          |                                                                                                            | lan dan merenjara Cala a | ١٠.٥     |
| A. P. L.   | 1:0:0                    | Takea    | oth of the given Number, on the given Number, and                                                          | d a half of that woth 3  | ) 48     |
|            | 1:0:1                    | 10240    | put down, add a 12th of o                                                                                  | ne of the $\frac{1}{2}$  | 49       |
|            |                          | To a 40  | th of the given Number two                                                                                 | ice put down: add a 2    |          |
| _          | 1:0:2                    |          | of a 40th —                                                                                                |                          | 50       |
|            | 1:0:3                    | To 2 40  | th of the given Number twi                                                                                 | ce put down, add an 🏅    |          |
|            |                          | 8th o    | fa 40th                                                                                                    |                          | 51       |
| •          | 1:1:0                    | To a 20  | th of the given Number ac                                                                                  | ld a 12th of that 20th   | n 52     |
|            | 1:1:1                    | To a 201 | th of the given Number add                                                                                 | a 12th of that 20th, ?   | 53       |
| -          |                          | _ and a  | 4th of the 12th                                                                                            | <u> </u>                 |          |
| 4 <u>1</u> | 1:1:2                    | To a 20  | th of the given Number ac                                                                                  | id an sin of that 20th   | 1 54     |
|            | 1:1:3                    | 10 2 20  | oth of the given Number                                                                                    | AUG AIL OU OF THAT       | . 55     |
|            |                          | Zotn,    | and a 6th of the 8th<br>th of the given Number ac                                                          | ld a 6th of that 20th    |          |
| <b>4</b> 5 | 1:2:0                    | To 2 20  | th of the given Number add                                                                                 | a 6th of that 20th 7     | - 50     |
|            | 1 . 2 . 1                | and ar   | a 8th of that 6th ——                                                                                       |                          | 57       |
|            | 1:2:2                    | To 2 2   | oth of the given Number                                                                                    | add a 6th of that 5      | -0       |
|            |                          | 20th     | and a 4th of that 6th                                                                                      | }                        | . 58     |
|            | 1:2:3                    | To 2 30  | th of the given Number ad                                                                                  | d a 40th of it, and      | ro       |
|            |                          | an 8t    | h of the 40th                                                                                              |                          | 59       |
| A. P.L.    | 1:3:0                    | Take ha  | lf of an 8th of the given N                                                                                | umber, (or a 10th)       | 60       |
|            | 1:3:1                    |          | th of the given Number add                                                                                 | 2 4th of the zoth        | 6r       |
|            |                          | To a c   | 12th of the 4th —<br>oth of the given Number                                                               | add a 4th of that        |          |
|            | 1:3:2                    | 20th.    | and a 6th of the 4th                                                                                       |                          | 62       |
|            | 1:3:3                    | To 2 20  | oth of the given Number add                                                                                | da 4th of that 20th, 3   |          |
|            |                          | and a    | 4th of that 4th —                                                                                          | · (                      | 63       |
| A. P. L.   | 1:4:0                    | Take a   | noth of the given Number                                                                                   | , and double it (or 2    | 64       |
|            | •                        | nut de   | own twice) or take a 15th of                                                                               | the given Number         | -        |
|            | 1:4:1                    | To 1 of  | an 8th of the given Numb                                                                                   | er add a rath of that    | § 65     |
|            | 1:4:2                    | To 2 20  | th of the given Number add                                                                                 | a 3d of that 20th,       | 66       |
|            |                          | and a    | n 8th of the 3d ——<br>th of the given Number to                                                            | vice put down add        |          |
|            | 1:4:3                    | 10 2 40  | h of the given Number and                                                                                  | an 8th of a 40th         | 67       |
|            |                          | From 2   | 12th take an 8th of the giv                                                                                | en Number                | 68       |
|            | 1:5:0                    | From 2   | 20th of the given Number                                                                                   | added to 1 the 20th, 7   |          |
| -          |                          | take a   | in 8th of that half —                                                                                      | · —   — — S              | 69       |
|            | 1:5:2                    | From a   | 20th of the given Number                                                                                   | added to half that ?     | 70       |
|            |                          | 20. t    | ake a 12th of that half                                                                                    | <b></b> - 5              | 70       |
| ,          | 1:5:3                    | From a   | 20th of the given Number 2                                                                                 | dded to a 4th of that 7  | 71       |
|            |                          | 20 tv    | vice put down, take a 12th                                                                                 |                          |          |
|            |                          |          | Example to Rule 67.                                                                                        | Example to Rule 7        |          |
| Exa        | mple to Rule             |          | 1239 at 16d. \$                                                                                            | 952 at 17 d.             | <u> </u> |
|            | 893 it 16                |          | a 40th /. 30:19:6                                                                                          | 2 20th /. 47:12:00       |          |
|            | =/.111:1:                |          | ditto 30:19:6                                                                                              | ditto 1.11:18:00         |          |
| an 81      | h, 1.55: 16              | :3,2     | 2 60th = 20:13:0                                                                                           | Sum, 71: 8:00            |          |
|            | $e^{\frac{1}{2}} = 4:13$ |          | \frac{1}{8} \text{ of a 40th 3: 17: 5\frac{1}{4} \delta\$<br>Sum, \( \lambda \text{ 86: 9: 5\frac{1}{4} \) | 2120f 24-: 19:10         |          |
| Aniw       | er, 1.60: 9              | :3∓      | Juni, 1. 80 . 9 . 54                                                                                       | refts 1.70: 8:           |          |
| •          |                          |          |                                                                                                            | 1010 8. / 0 . 0 . /      | - 44444  |

|          | the        | Palue of    |                                                       |                         |       |
|----------|------------|-------------|-------------------------------------------------------|-------------------------|-------|
|          | * be       |             |                                                       |                         |       |
|          |            |             | A Continuation of the Table                           | e of Rules for the      | Numbe |
|          |            | Yard,       | short Work of Pr                                      |                         | of    |
|          | &c.        |             | JEGIT FF OF K OJ 1                                    | worke.                  | Rules |
|          | 5.         | d.          |                                                       |                         |       |
| . •      | . 1        | : 6·        | To a 20th add half that 20th -                        |                         | 72    |
|          | - <b>1</b> | . 7         | From a 12th of the given Numbe                        | r take a 20th of that ? | •     |
| •• ,     |            | . •         | 12th                                                  | <u> </u>                | 73    |
| A. P. L. | . 1        | : 8         | Take a 12th of the given Number                       |                         | 74    |
|          | 1          | : 9         | To a 12th of the given Number a                       | dd a 20th of that 12th  | 75    |
|          |            | : 10        | To a 12th of the given Number                         |                         |       |
|          |            |             | 12th                                                  |                         | 76    |
| •        |            | : 11        | Add an 80th to a 12th of the given                    | Number —                | 77    |
| 1. P.·L. | 2          |             | Take a 10th of the given Number                       |                         | · 77  |
| 404 0.50 |            | . 50        | Case 1.                                               | ~1, as per picatous &   | 78    |
| •        |            |             | To a 12th of the given Number a                       | dd a erb of they sail   |       |
|          | 2          | :1          |                                                       |                         |       |
|          |            |             | To a 10th of the given Number a                       |                         | 80    |
|          | 2-         | ·÷ · 3      | To a 10th of the given Number                         | add an stn or that      | . 8 t |
| • '      | .2         | • . 4       | To a 10th of the given Numb                           | er add a 6th of that 2  | 82    |
|          |            |             | 10th                                                  | -,,3                    |       |
|          | 2          |             | To a 12th of the given Number                         |                         |       |
| 4. P. L. |            |             | Take an 8th of the given Number                       |                         | 84    |
|          | 2,         | <b>.∵.8</b> | To a 10th of the given Number:                        | add a 3d of that 10th   | . 85  |
| <i>'</i> | <b>.2</b>  | : 9         | To an 8th of the given Number                         | add a 10th of that ?    | 86    |
|          | 1          |             | 8th:                                                  | · {                     | 80    |
|          | 3          | : 0         | To 10th of the given Number, ad                       | d half that 10th        | 87    |
|          | . 3        | : 3         | From a 6th of the given Number                        | r take a 40th of that ? |       |
|          |            |             | 6th                                                   | _ <u> </u>              | 88    |
| A. P. L. | . 3        | : 4         | Take a 6th of the given Number                        |                         | 89    |
|          | 3          | : 6         | To a 6th of the given Number                          | add a 20th of that ?    | -7    |
|          |            |             | 6th — —                                               |                         | 90    |
|          | ø          | . 8         | To a 6th of the given Number add                      | la 10th of that 6th     | . 01  |
| •        | 3          | -           | To a 6th of the given Number add                      |                         | 91    |
| LP.L.    | 3          | : 9         | Take a 5th of the given Number,                       |                         | 92    |
| . F . U. | • •        | : 0         | Tenths of the given Number                            | (or morety take 2       | 93    |
| ,        | ٠,         | :           |                                                       | mice mus down cdd 2     | . , , |
| •        | -4         | · 3 ··      | To a 10th of the given Number t                       | wice put down, add \$   | 94    |
| •        |            |             | an 8th of a 10th ———————————————————————————————————— | <u> </u>                |       |
|          | 4          | • 4         | To a 10th twice put down, add a                       | oth of a loth ——        | 95    |

|   | Example to Rule 73.                        | Example to Rule 88.                                               | Example to Rule 94.                                            |
|---|--------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------|
|   | 1047 at 1 s. 7 d                           | 895 at 3 s. 3 d.                                                  | 739 at 4s. 3 d.                                                |
| - | a 12th = 1.87: 5:0<br>a 20 of a 12, 4: 7:3 | 2 6th = 1. 149: 3:4<br>a 40th of \( \frac{1}{6} \), 3: 14: 7 ded. | a 10th = 1.73:18:00 Ad.                                        |
|   | Refleth 1.82: 17:9 The Answer.             | Resteth 1.145: 8:9<br>the Answer.                                 | $\frac{1}{8} \text{ of a 10th, 9: 4:,9} $ Sum = 157:00: 9 Anf. |

|          | The Value   |                                                                                  | Number   |
|----------|-------------|----------------------------------------------------------------------------------|----------|
|          | of the      | A Continuation of Rules for the short Work                                       | ANIOMOGY |
| . ,      | Pound, Ell. | of Pratice.                                                                      | Rules.   |
|          | s. d.       | To a resh ald an Osh of she riven Nomber                                         |          |
| ٠.٩      | 4:0         | To a 10th add an 8th of the given Number ————————————————————————————————————    | - 96.    |
|          | 4 : 8       | To a roth of the given Number twice put down, add?                               | - 97     |
|          | 4:9         | From a 4th of the given Number take a 20th of that 4th-                          | . 98     |
| A.P.L.   | 5:0         | Take a 4th of the given Number — — —                                             | 99       |
|          | 5:6         | To a 4th of the given Number add a 10th of that 4th -                            | 100      |
|          | 6:0         | Take 3 Tenths of the given Number, as per previous Cafe 2.                       | 101      |
| A.P.L.   | 6:8         | Take a 3d of the given Number                                                    | 102      |
|          | 7:0         | Work for 6s. and 1s. as per previous Case 2, and 3 -                             | 103      |
|          | 7:6         | Take an 8th of the given Number, and put it down?                                | 104      |
|          | 8:0         | Take 4 Tenths of the given Number, as per previous                               | 105      |
|          | 8:6         | To 4 Tenths add a 40th of the given Number —                                     | 106      |
|          | 9:0         | To 4 Tenths of the given Number add a 20th thereof-                              | 107      |
|          | 9:6         |                                                                                  | 108      |
| A. P. L. | 10:0        | Take half the given Number                                                       | 100      |
| 22.2.0   | 10:6        | To half the given Number add a 20th of that half -                               | 110      |
|          | 11:0.       | To half the given Number add a 10th of that half -                               | 111      |
|          | 11:6        | From 6 Tenths take a 40th of the given Number                                    | 112      |
|          | 12:0        | Take 6 10ths of the given Number, as per previous?                               | 113      |
|          | 12:6        | To half the given Number add a 4th of that half                                  | 114      |
|          |             | Take 6 Tenths of the given Number, and add to a 20th ?                           | 175      |
|          |             | thereof                                                                          | 6        |
|          | 13:4        | To half add a 6th of the given Number                                            | 116      |
|          | 14:0        | Take 7 Tenths of the given Number, as per previous Case 2.                       | 117      |
|          | 14 : 6      | To 7 Tenths add a 40th of the given Number                                       | 118      |
|          | 15:0        | To 1 the given Number add half of that half, (or from 3 the given Number take 4) | 119      |
|          |             |                                                                                  |          |

| Example to Rule 104.                | Example to Rule 112.                                 | Example to Rule 115.                     |
|-------------------------------------|------------------------------------------------------|------------------------------------------|
| 559 at 7 s. 6 d.                    | 365 at 11 s. 6d.                                     | 169 at 13 s.                             |
| an 8th = 1.69:17:6<br>Multiply by 3 | 6,10ths=219: as p. Cas. 2.<br>a 40th = 1.9: 2:6 ded. | 6, 10ths ro1: 8:00<br>a 20th = 1.8: 9:00 |
| Prod. = 1.209: 12:6 or Answer.      | rests = 1.209: 17:6 Ans.                             | Sum, 1.109:17:00Anf.                     |

Note, That A. P. L. fignifies the Aliquot Parts of a Pound

| 104                                                            | Rules of Practice.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CHAP. II.,                                                                                                                                                                                                                |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The Value of the Pound, Ell, Yard, &c. s. d.                   | A Continuation of Rules for the short Work of Prastice.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of Number<br>of<br>Rules.                                                                                                                                                                                                 |
| 15:6                                                           | From 8 Tenths (as per previous Case 2.) take a 40th of given Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the rzo                                                                                                                                                                                                                   |
| 16:6<br>17:0<br>17:6<br>18:0                                   | Take 8 Tenths of the given Number  Take 8 Tenths add a 40th of the given Number  To 8 Tenths add a 20th of the given Number  From the given Number take an 8th thereof  Take 9 Tenths of the given Number  To 9 Tenths add a 40th of the given Number  From the given Number take a 20th thereof  From the given Number take a 40th thereof                                                                                                                                                                                                                                                                                                                    | 121<br>122<br>123<br>124<br>125<br>126<br>127<br>128                                                                                                                                                                      |
|                                                                | Note, That where Pounds, Shillings, &c. are the Price Unit; you must multiply the Units given by the Pound work for the Shillings, &c. as before directed. See a Case of the next Section.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ls, and                                                                                                                                                                                                                   |
| per Cent. 01                                                   | The following shew how Interest, Commission to Fastors, Cuj<br>&cc. is cast up by the short Rules of Prastice.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | toms,                                                                                                                                                                                                                     |
| 2 2 ½ 3 4 4 ½ 5 6 7 8 9                                        | Take the 100th part of the given Number, (as per Ru Prop. 3. in Division.)  Take a 50th of the given Number  Take a 40th of the given Number add half that 50th  Put down a 50th of the given Number twice  To a 50th add a 40th of the given Number  Take a 20th of the given Number  Take a 50th of the given Number, and put it down thric multiply it by 3.)  Add a 20th to a 50th of the given Number  Multiply a 50th of the given Number by 4.  From a 10th of the given Number, take a 10th of the 10th Take a 10th of the given Number                                                                                                                | 130<br>131<br>132<br>133<br>134<br>135<br>e (or \{ 136<br>137<br>138                                                                                                                                                      |
| 1911                                                           | Eight Examples to the Rules for finding Interest, &c, by Pra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                           |
| too part is What is 1. 1.50th = 1. Multiply b Produceth W a 10 | 1341: 16: 3 at 1 per C. What $l.2132: 12: 6 \frac{1}{2}$ at $2 \frac{1}{2}$ p. C. What $l.33: 8: 4 \frac{1}{4}$ Answ. a 40th is $l.53: 6: 3 \frac{1}{4}$ Answer. a 20. 879: 10: 7 at 6 per C. What $l.933: 8: 10$ at 7 per C. What $l.7: 11: 9 \frac{1}{4}$ a 20th $l.46: 13: 5 \frac{1}{4}$ Add. which $l.7: 11: 9 \frac{1}{4}$ a 20th $l.18: 13: 4 \frac{1}{2}$ Add. which $l.7: 11: 9 \frac{1}{4}$ a 50th $l.18: 13: 4 \frac{1}{2}$ Answer. Sum, $l.65: 6: 9 \frac{1}{4}$ Answer. Product that is $l.472: 14: 5 \frac{1}{2}$ at 9 per Cent. a 10th is $l.197: 19$ that 10th $l.4: 14: 6 \frac{1}{2}$ deduct. Set the $l.42: 10: 10 \frac{1}{4}$ the Answer. | th is 1.161; 15: 10 \(\frac{1}{4}\) Answ.  at 671:00: 2 \(\frac{1}{4}\) at 8 per Cent.  th 1.13: 8: 43 \(\frac{1}{5}\)  th multiply by -4  d. 1.53: 13: 7 \(\frac{1}{4}\) Answer.  19: 11 \(\frac{1}{4}\) at 10 per Cent. |

see more of computing Interest, in the Use of Decimals, Chap. III.

Goods.

I shall next very briefly shew the Use of Rules of Practice in making Allowance for Tare; which is an Allowance for the Bag, or whatsoever a Commodity is pack'd up in, for some things more, some less. The Weight of the Goods, and what contains them, is together called the Gross Weight, and the Weight of the Goods alone is the nett Weight.

| Currans — — — † 16 Almonds, Steel, Hemp— 14 Allum, Salt-petre, Tallow, 12                         |            |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------|------------|--|--|--|--|--|
| Brimstone, Copperas, Copper, ————————————————————————————————————                                 | 144<br>145 |  |  |  |  |  |
| Cotton - Wool, Lambs-<br>Wool, and Polish-Wool,<br>Feathers, Hops — — 5                           |            |  |  |  |  |  |
| Cotton-Yarn 5 to at 100 weight.                                                                   | 147        |  |  |  |  |  |
| Example to Rule 143.                                                                              |            |  |  |  |  |  |
| C. qr. 情.<br>Gross 29:3:24 at 12 p                                                                | er C.      |  |  |  |  |  |
| \$ is 3:2:27\frac{1}{2} a7\tau^{th}\text{ of that 8,0:2: 3\frac{1}{2} \text{ ded. from}} the 8th. |            |  |  |  |  |  |
| Resteth Tare 3:0: 23 = Answ. or the                                                               |            |  |  |  |  |  |
| Nett Wt. 26:3: of; the G                                                                          |            |  |  |  |  |  |

Allowance per No. of Rules for the short Working.

Take a 7th of the gross Weight. Take an 8th of the gross Wt. From an 8th take a 7th of that 8th.

Take half of a 7th of the gross Weight.

Take half of what it comes to at 12, as above.

Take a 4th of a 7th of the gross Weight.

Take a 20th, or half a 10th of the gross Weight.

A General Rule (especially for such Rates of Tare as are most remote from being Aliquot Parts of 112 th; such as 3, 5, 9, 11, &c.) is this.

Multiply the gross Hundreds by the Pounds to be allowed for 1 C. and for the Quarters of Hundreds and Pounds take a Part proportionable of the Allowance per Hundred, and the Sum is an easy way of giving the Answer.

Example

| Example to Rule 145.  C. qr. tb.  Gross 37:2:12 at 12 tb per C. | The Example to Rule 143. done<br>according to this General Rule<br>148. |
|-----------------------------------------------------------------|-------------------------------------------------------------------------|
|                                                                 | Prod. = 348tb. >                                                        |
| i of that is 2:0:11 the Tareat 6                                | the #5 24, 2‡ 5                                                         |
| And if ded. 35:2:10\frac{1}{2} NettWeight                       |                                                                         |

For Oil imported there is allowed 18 per Cent. (or 112 lb.) Tare: Now suppose I import 180 Hund. wt. how many Nett Tons and Gallons is there?

Rule 149.] Take a 20th of the Gross Hundreds, (is here 9 Ton.) For every Ton deduct 13 Gallon; so 9 and 3 of 9 is 12, and the Remainer is the Answer, as is proved above.

Now 18 per Cent. is 12½ Gallon per Nett C. therefore what Hundreds are in Units place must be multiplied by 12½; and for the Quarters of C. and Pounds, take a proportionable part of 12½: from the Sum of all which, take the 1½ Gallon per Ton.

Another Example makes this plain; which I am minded to do, because it has not been before.

What Nett Tons and Gallons are in 189 C. 3 q. 21 lb. Gross? See the Operation.

And

C. 189:3:21 Ton. Gall. 9:112½ for the 189 C. 7  $9\frac{1}{8}$  for 3 qrs. Gross. 23 for the 21 lb. 9:124 Sum, Gross. 12 = 9 and  $\frac{1}{2}$  of 9 deduct. 9:112 rests Nett Answer.

And for Proof of this Work by the longer way, do thus: C. 189:3:21 the in a Nett C. 94 multiply.

> 750 1701 88 th ad.

17766 th in 189 C. And in 3 95.21 lb. or 105. lb. gross, there are Nett 指 7½ per) 17854 Sum 88 1b. thus Gall. 112. 94:: 105. 88.

252)2380(9Ton. Anf.

and 112 th rest. as in the shorter way.

The Reason of the short Rule.

There are two things that feem to some as Difficulties in the shorter Way, viz.

Gall.

1. Why the Hundreds in Units place, the Quarters and Pounds, are cast up at the Rate of 12½ per Cent.

2. Why 11 is deducted for every Ton.

As to the 1st, you see in the Margin that in a Nett Hundred there are 12½ Gallons, and somewhat more. And

As to the 2d, you may observe from the Work in the Example above,

that the Units place of C. the Quarters and Pounds given, are work'd

112 = the Gross C. deduct 18 per C. the Tare.

 $15_{94} = the Nett C.$ 15 72) (12 3 Gal. per C. Multiply by = 20 =the

Hund. in a Ton, and it gives 2503, which taken from the Ton gross 252, there

Remains -1 Gal.

according to the Nett Measure of 121 Gall. per Nett C. But in taking a 20th of the Hundreds Gross, (or half the Figures to the left hand the Units place of Hundreds) that half makes more than Nett Tons by 13 Gallon in every Ton, as per Margin above; and that is the reason you deduct 11 in each Ton.

Note.

Note that Tret is an Allowance in Merchandize of 1.4 at 104 for the Dust or Refuse of the Commodity; and this is deducted out of the Suttle (which is the Remainer when the Tare is deducted).

# SECT. V. Concerning GAIN and LOSS.

THIS is a Rule whereby Merchants or other Traders know (when they have bought any Commodity by wholefale) how they may retale the same out, to make any certain Gain by the whole Parcel, or at any Rate per Cent. &c.

Or when any Goods are damaged, they know hereby what they shall lose per Cent. or by the whole, in selling the Pound, Ell, Yard,

Ounce, &c. at any Rate less than it cost.

I shall place this and the following Sections relating to the Business of Trade, &c. in that Order which I judge most proper for them to be learnt; not regarding what Method others have observed in treating thereof.

Case 1.] When a Merchant buyeth Goods for a certain Sum, to find how the same may be retaled to gain a required Sum by the whole.

Examp. A Merchant buys to 3780 Nett of Cotton-Wool, for 1261. what may he fell the same for per to to gain 1.15:15: by the Sale?

Rule. Add l. 15: 15: — to the Cost, and the Sum is 1. 141: 15 —. Then fay, If the 3780 3780:142:15::1 cost me 1. 141: 15: —, what will 1 to cost? Divide the Pence in 141 l. 15 s. by 3780, and the Quotient is 9 d. which it must be fold for per Pound, to gain l. 15: 15: in all.

Case 2.] Admit I bought 15 Bales of Linnen at l. 17: 15: per Bale, how much must I sell it for per Bale, to gain 10 per Cent. by the Sale?

The Value of the Linnen, and 10 per > l. 292:17:6Cent. — -

You see, by Practice, the Value of the Bales is 1. 266: 5: —

Then as 100 to 10:: fo l. 266: 5 to 1.26: 12:6; which is the Advance at 10 per Cent. which added as above, makes 1.292:17:6.

Add  $\begin{cases} l.\ 266: 5:0 \\ l.\ 26:12:6 \end{cases}$  Bales 15 at 17  $l.\ 15$  s. each.

105 15 l. 255 at 17 l. 7: 10 at 10. 3:15 at 5. l. 266: 5 Val. of the Bales. l, 5. 100. 10.:: 266:5. 26:56 Bales. 1. s. d. Bale. l. s. d. 15. 292: 17:6:: 1, 19:10:6 Then Then as 15 Bales to l. 292:17:6:: so is 1 Bale to l. 19:10:6; which is the Answer: for 15 Bales at l. 19:10:6, is l. 292:17:6,

the Cost and Interest proposed.

Case 3.] A Merchant bought Broad-Cloth at l. 20 per Piece ready Money, and fold it again for l.25:10:—per Piece, to be paid at the end of six Months: What does he gain per Cent. in 12 Months? Answer, l. 55 per Cent.

First say, As 20 the Cost to 1. 5: 10: — the Gain::

So is l. 100 to l. 27: 10: — the Gain in fix Months.

Secondly say, As six Months to l. 27: 10:—

So is 12 Months to l. 55 the Gain per Cent. per Ann.

Case 4.] In Case of Loss you must deduct instead of adding. Thus a Merchant bought 20 Bags, containing 6020 th Nett of Cotton for 1. 301; but being demaged by Sea, he is willing to lose 10 per Cent. What must he sell it for per Pound, to lose that Sum?

1st, You see by the first Proportion, that the Loss by the whole will be l. 30:2:—; which deducted from the Cost, there remains l. 270:18. therefore as 6020 lb Cotton is to l. 270:18: fo is 1 lb of Cotton to

l. l. l. l. Lofs.

100. 10.:: 301. 30:2:—

Deduct 30:2:—

Remains l. 270 : 18: -

Cotton is to l. 270: 18:: 15 6020. l. 270: 18:-:: 15 1. 10:3413

10 is 1 lb of Cotton to 10 d.  $3\frac{44}{15}$ , the Answer.

This is sufficient to shew the Arithmetical Work of Loss and Gain: How the Account thereof (or of Profit and Loss) is kept in Books of Accounts, is shewn in my *Merchant's Magazine*. But this Book is not intended to be a Treatise of Merchandize, but to teach all kind of Arithmetic.

## SECT. VI. FELLOWSHIP.

ELLOWSHIP is the Application of the Rule of Proportion, shewing what share of Gain or Loss every Merchant of those who trade in company shall have, or bear in proportion to his share of the general Stock; and consequently by this Rule also those who have underwritten Policies know how to settle their Averages, in case part of what is insured be lost, proportionably to what each has subscribed.

Digitized by Google

So that this may be called the Rule of Distribution, or (in case of Loss) of Contribution, (of the Profits obtained, or of Loss sustained.)

Quest. i.] Two Men let to freight a Ship, wherein the first hath  $\frac{2}{10}$ , the other 7; and when the Voyage was performed, and all Charges deducted, the Nett Profits are found l. 480: What must each have?

Rule.] In this Case divide the whole Gain by the Number of Shares, and multiply the Quotient by each Man's particular Share, and the Products are the Answers, thus:

Or thus, 16. 480::9. 270  $\}$  2d way. 16) 480 (30 by 9 is = l. 270 = 1ft. 16. 480::7. 210  $\}$  2d way. 480 Sum. Proof l. 480 Sum.

Quest. 2.] Five Merchants trade in Company; A. put in 1173 l. B. 800, C. 977, D. 562, and E. 1000 l. and having each continued his Share first put in Stock till the Profits were computed and a Dividend made, they find they had gained by Trading 25312 l. What must each have?

This is best done by the Rule of Proportion, as you see: For as the whole Stock is to the whole Gain: so is every one's Share in the Stock to his Share in the Gain.

The Sum of the Fractions is 4, as per Addition of Vulgar FraSum or The Each Each Man's Share of the Stock. Gain. Stock. Gain. 4512. 25312:: 1173.  $A.6580\frac{2016}{1512}$ 4512. 25312:: 800.  $B.4487\frac{216}{1512}$ 4512. 25312:: 977.  $C.5480\frac{2016}{1512}$ 4512. 25312:: 562.  $D.3152\frac{21520}{1512}$ 4512. 25312:: 1000.  $E.5609\frac{4152}{1512}$ 

The Sum for Proof, 25312

ctions, Chap. II. Seel. 2. Head. 3. And the Aggregate of each Man's Profit makes the whole Gain; which proves the Truth of the Rule and Operations.

Quest. 3.] Three Men underwrite a Policy of Insurance, viz.

A. is contented with the Insurance to pay in case of Loss, l. 1000

B. is contented with the Insurance for

C. for

Now it happen'd, that being closely pursued by

Pirates, they were obliged to lighten the Ship, by

Sum l. 2300

throwing

throwing over-board Goods to the Value of 1. 450; what must each Subscriber bear of that Loss, in proportion to what he has insured?

The Proportion is as the whole Sum infured l. l. Loss. l. is to the whole Loss 450:: 1000.  $195^{\frac{1}{23}} = A$ 's Loss. 2300. 2300. 450:: 750.  $146\frac{17}{13} = B$ 's Loss. 1. 450: so is the Sum 450:: 550.  $107\frac{14}{23} = C$ 's Loss. each Infurer fubscribed 2300. to his Proportion of the Sum for Proof, 1. 450 Loss, as appears by the Operation in the Margin.

Or if you would know what the Loss is per Cent. to make the Average; this is only done by one single direct Proportion thus, 2300. 450:: 100. 1911, which is the Rate per Cent. to be paid, as is proved.

red by the Rate per Cent. as in the Margin.

Quest. 4.] Three Men bought 120 Acres of Land for 1. 2400; for which A. was to pay ½, B. a 3d, and C. a 4th of the Charge, and were to have the like Proportion of the Land: how much must each pay, and have of the Land, according to the true Intent and Meaning of their Contract? For to think that ½, ½, and ¼, will make but one, is absurd, because a 3d is more than a 4th, and ½ and ¼ makes 1. The Answer is found as follows.

```
2 of Acres 120 is 60; and of l. 2400 = 1200

2 is ______ 40; and ______ l. 800

4 is ______ 30; and ______ l. 600

Acres 130 Sums l. 2600
```

Too much by 10 and -l. 200

Therefore I say, If 130 abate 10, and l. 2600 must abate l. 200; what must each abate, to answer the intended Contract? Thus;

Acres. Acres. l.

130. 10::60. 4\frac{1}{3} and if l. 2600. 200:: 1200.  $92\frac{1}{10} = A^2$ s Ded.

130. 10::40.  $3\frac{1}{13} = l. 2600. 200:: 800. 61\frac{1}{20} = B^2$ s

130. 10::30.  $2\frac{1}{3} = l. 2600. 200:: 600. 46\frac{1}{10} = C^2$ s

Acres 10 Sums l. 200

So

So that the Deductions of the respective Acres and Pounds being made (as per the Rules in Substraction of Fractions) from their apparent Shares, above,

The Anfwer is,  $\begin{cases} A. \text{ must have Acres } 55\frac{1}{13}, \text{ and pay } l. & 1107\frac{18}{26}. \\ B. \text{ must have Acres } 36\frac{13}{13}, \text{ and pay } l. & 738\frac{18}{26}. \\ C. \text{ must have Acres } 27\frac{2}{13}, \text{ and pay } l. & 553\frac{12}{26}. \end{cases}$ 

Acres 120 Sums l. 2400 Proof.

Or the Analogies (or Proportions) above, may be done from the Parts each is to have, by reducing the Fractions  $\frac{1}{2}$ ,  $\frac{1}{3}$ , and  $\frac{1}{4}$ , into a common Denominator; as  $\frac{1}{12}$ ,  $\frac{1}{12}$ , and  $\frac{1}{12}$ : For

As the Sum of the Numerators 13, is to 10, and to 200: So is each Numerator 6, 4, and 3, to the Proportion that each is to deduct.

Acres.

Thus as 13. 10:: 6. 4 h And as 13. 200:: 6. 92 h.

13. 10:: 4. 3 h And as 13. 200:: 4. 61 h.

13. 10:: 3. 2 h And as 13. 200:: 3. 46 h.

When Time is considered in Partnership, You must multiply the Money in Stock by the Time it continued therein, and work with the Products as by the Rules above, and as in the Example sol-

lowing.

Quest. 5.] A. and B. trade in Partnership for one Year. A. put into Stock l. 200, and at 4 Months end he withdrew l. 40, and at 9 Months end put in l. 170. B. put in at first l. 150, and at 7 Months end l. 200 more, and at the end of 10 Months he takes out l. 160: they gain 700, what must each have of it?

```
A's l. 200: 4 Months is 800
l. 160: 5 Months = 800
l. 330: 3 Months = 990

B's l. 150: 7 Months = 1050
l. 350: 3 Months = 1050
l. 190: 2 Months = 380

Sum of these
Products
Products

Sum Total = 5070
```

Then 5070. 700:: 2590.  $357\frac{301}{507} = A$ 's Profit. 5070. 700:: 2480.  $342\frac{2}{507}$  B's. Sum l. 700 = the Proof.

Quest. 6.] A Ship's Company take a Prize worth 6000 l. Now the Captor having on board the following Officers, Midshipmen, and

and Sailors, who are each to participate of the Prize-Money according to his Pay and Time entred on board; which was thus.

8 Officers entered on board 10 Mon. at 50 s. per Mo. What must 10 Midshipmen — — 9 Mon. at 35 s. per Mo. Seach have of 150 Sailors — — 8 Mon. at 25 s. per Mo. Sthe Prize?

Mon.

8 multip. by 10, and that Prod. by l. 2:10, produceth l. 200:00:00
10 mult. by 9, and that — by 1:15, gives — 157:10:00
150 — by 8, and that — by 1:5, is — 1500:00:00

Sum-1857:10:00

Then I say,

As  $1857\frac{1}{2}$ . 6000:: 200.  $l.646\frac{110}{3773}$  { To be divided equally among the Officers. 1857\frac{1}{2}\$. 6000:: 157: 10.  $508\frac{17}{37}\frac{1}{15}$ ; Among the Midshipmen. 1857\frac{1}{2}\$. 6000:: 1500.  $4845\frac{17}{37}\frac{1}{15}$ ; Among the Sailors.

Sum for Proof = l.6000

## SECT. VII. Equation of Payments.

BY this Rule or Part of the Application of Arithmetic, Men discover, when several Payments are due at different Times, how to fix upon one certain Time when the whole may be paid at once, without Loss to the Debtor or Creditor.

The General and true Rule is,

As the Total of the Sums payable: is to a Unit (or 1 Month)
So is the Sum of the Products made of each Sum in its respective
Time,

To the true Time when the whole ought to be paid.

There is a certain Gentleman, who makes some Figure in these kind of Sciences, and he denies the Truth of this Rule; which I shall prove under my second Question to be just, notwithstanding his Pretence of its being erroneous.

Quest. 1.] A. is indebted to B. l. 100, to be paid at the end of three Months, also l. 200 to be paid at the end of 4 Months, and l. 300 to be paid at the end of 5 Months: Now to prevent the trouble of many Meetings, they agree to have but one Payment of the three Sums at one time; the Question is, when that must be, without loss to either A. or B.

According

```
According to the foregoing Rule,
     1. 100 multiplied by 3 Months, produceth 3007 Sum 2600 of
      200 — by 4 —
                                          - 800 Sthe Products.
      300 ---- by 5 -
     1. 600 Sum
                             Mon. l.
           Then I say, 600. 1:: 2600.
  The Time fought is 43 Months; at the end of which time, if
the 1.600 be paid, neither Party will sustain Loss, as I shall prove
by and by.
  Quest. 2.] A. oweth B. 5 Sums of Money to be paid at 5 Pay-
ments, viz.
 1. 100 ready Money
                                          At what time must
  200 at the end of ½ a Month, or ¼ of a Year, / the whole be paid
                                            without Loss to A.
  300 at 1 Month's end,
  400 at 3 Months end,
                                            Answ. 25 Months.
  500 at 6 Month's end,
         1. 100 ready Money.
           200 multiplied by \frac{1}{2} a Month = l. 100
           300 by 1 Month - -
           400 by 3 Months —
           500 by 6 Months -
          1500 = Sum.
         Then as 1500. 1 :: 4600. 3\frac{1}{13} = the Answer.
  Now that this is the true equated Time, will appear thus: For
```

if the Interest of the respective Sums for their Times be equal to that of the whole for the equated Time, I think the Truth of the Answer cannot be denied.

```
Now you'll find l. 100 ready Money Interest to be l. 0: 0: 0
    Interest of l. 200 for \frac{1}{2} a Month at 5 per Cent. is 00: 8: 4
                300 for 1 Month is — — 1: 5:00
                400 for 3 Months is ---5:00:00
                500 for 6 Mon. (all at 5 per Cent.) is 12:10:00
```

the Sum = 19: 3: 4.

Note, The In- And whoever will take the small pains to examine, will find, ter. for Months That the Interest of l. 1500 for 3 th Months is the very same Sum. that of a Year But no wonder he denies it, who denies the common Way of computing propertionably.

puting simple Interest, tho' always practised by his Betters; and he may as well pretend that it ought to be computed by way of Compound Interest for every 2d in the Year, as object what he has advanced against the general Ways and Rules given by every body but himself, for working Questions both in Interest and Equation of Payments, which I have in the last example sufficiently proved to agree, tho' I never did see the Truth of Equation proved this way before; which I hope will be a Satisfaction to the Ingenious, as well also the Novelty of the last Question, &c.

And as a farther Proof to shew the Agreement of other Rules to the first, (or common one above) and that it is universally true for any Sum; I will find the equated time under the first Question, without taking notice of the Sums of Money, only the Parts

of any Sum, and of the Time when payable. As,

| Parts of | Payable at | Products of | Being        |               |
|----------|------------|-------------|--------------|---------------|
| any Sum  | these Mon. | tbese two.  | Months       |               |
| 🔓 at     |            | <del></del> | ½)           |               |
|          |            |             | 1 ⅓ >The:    | se three add. |
| ½ at     | 5          | 1           | 2 <u>1</u> 3 |               |

Sum = the equated Time above = 41 as before. And thus might the Equation of Time be reduced into Tables.

Quest. 3.] I lent my Friend l. 500 for 5 Months; for what time must he lend me l. 750, to recompence my Kindness to him? This is done as in the Margin.

If 500. 5. 750

l. Mcn.

75) 2500 (3<sup>†</sup> Months for Answ.

And for Proof of this,

Interest at 5 per Cent. of 1. 500: 5 Months is 1. 10: 8: 4

of l. 750: 3 Months l. 10:8:4

## SECT. VIFI. BARTER.

Arter or Commutation is a Rule among Traders, whereby they do, by confidering the Price of their Goods, whether as for ready Money, or advanced in Barter, so proportion the Rates and Quantities, as to know how much of one Specie may be exchanged for any quantity of another kind of Commodity. And all this is Q 2

discovered by that Golden Rule of Single Direct Proportion, as appears by the following Examples.

Quest. 1.] A. hath 1752 Ells of Linnen at 2 s. 9 d. per Ell; B. has Cheese at 31 s. per C. How much Cheese must B. give A. for his Linnen? See the Operation.

In this Case it will be necessary to know the Value of A's Linnen

only in Shillings thus,

2dly, Then fay, If 315. buy 1 C. of 1ft,  $175^{2}$  Mult. Cheefe, what will 48181. buy? Answer, 15531. s. C.Cheese. 3504 at 25. 31. 1:: 4818 31) --- (155)}  $\frac{1}{4}$  that = 876 at 6 d. 171  $\frac{1}{2}$  that = 438 at 3 d. So that B, must give A. Shill. =4818 Sum. 155 t C. of Cheese 168 for his Linnen. 13

Quest. 2.] A. has 52 Dozen of Hats (or 624) which he values at 2 s. 6 d. ready Money, But in Barter expects 2 s. 9 d. per Hat. B. has Cotton at 10 d. per Pound ready Money. How much Cotton must he give for the Hats, at a Price advanced in Barter proportionably to A's Advance in Barter?

ist say, If A's 25. 6 d. advances 3 d. what does B's 10 d. advance?

d. d. d. d.

30. 3:: 10. 1 = B's advance on a Pound of Cotton; so it is 11 d. per Pound in Barter.

2dly, The Value of 624 Hats at 2 s 9 d. is d. 20592.

d. #6 Cott. d. #6 Cott.

3dly fay, If 11. 1:: 20592. 1872 for Answer.

And for Proof of this, 624 Hats at 25.9 d. each is 1.85:16:00 and so is 1872 th of Cotton at 11 d. per th 1.85:16:00

Quest. 3] Two Merchants have various kinds of Goods to Barter: A. has Indian Silk 735 Yards at 8 s. 6 d. but in Barter will have 10 s.

Canes 532 at 3 s. but will in Barter have 3 s. 4 d. Muslin 16 Pieces at l. 4, but will have in Barter 4 l. 10 s.

B. has Scarlet Cloath at l. 1 per Yard — Glass Manusacture at l. 0: 1:8 per Pound, Ready Money. Ditto finer at 2:4 per Pound,

How

How many Yards of Cloth, and Pounds of each kind of Glass, (of each a like Number) must B. give A. advancing his Goods proportionably also in Barter? To answer this Question,

1st, See what A's Goods amount to at his bartering Price thus:

735 Yards at 10 s. each, is 1.367: 10:007
532 Canes at 3 s. 4 d. —— 1. 88: 13: 4 Sum 1.528: 3:4

Muslin 16 Pieces at l.4: 10:00 l. 72:00:00

adly, The Difference between the Sums of A's ready Money and bartering Price, is 11 s. 10 d. therefore what B. must advance in proportion is thus:

As the Sum of the Ready-Money Rate of one of each of A's

Goods, 1.4:11:6

Is to 11 s. 10 d. the Sum advanced upon one of each in Barter: So is B's l. 1:4:00 the Sum of one of each of his Goods,

To 3 s. 1 d. 1098 B's Advance in Barter; which must therefore be 27 s. 1 d. 1378 for the Price of 1 of each of his Goods.

adly say, If 27 s. 1 d. 1098 buy one of each of B's Commodities, what will l. 528:3:4, the Value of A's Goods, buy of each of B? It will stand thus:

27:1 於98. 1:: 528:3:4. 389發発 So that the Price of A's Goods will buy 3893552 Yards of B's

Cloth, and as many Pounds, of each fort of his Glass.

And for Proof of this you'll find that 3893333 at 27 s. 1338 d. each, (being a Set of B's Goods, or 1 of each) will amount to 1. 528: 3: 4, the Value of A's Goods, according to his advanced Price in Barter.

Or you may find the Price in Barter that B. ought to rate each B's Advance in Barter. fort of his Goods: for,

> l. s. d. d. S. s. . d.

As A's 4:11:6. 11:10::20. to 2:7:838 on Cloth.

4:11:6. 11:10::1:8. to 0:2 10 on Glass.

4:11:6. 11:10::2:4. to 0:31898 on ditto.

And by these particular Prices of B's Goods, you may not only prove the Truth of the foregoing Operation, by seeing what

But if you were not to deliver an equal Number of each, but ac-

cording to any Proportion, you may now easily do the same.

And

And thus I have given the Reader a farther Account of the Usefulness and Extent of this Rule of Barter, &c. than has been done by any Author before, to make it agreeable to the other parts of the Book foregoing; all which I doubt not but will be gratefully accepted by the Ingenious Reader.

#### SECT. IX. EXCHANGE.

As the former or last Section exhibits Rules for the Bartering of one Commodity for another; so this shews how to exchange Money for Money, or, in the way of Negotiation, Money for Bills, &c. And therefore this is the proper place where Rules for Exchange ought to be inserted, as being another kind of Barter.

I shall not here trouble the Reader with an unnecessary and uncertain Account of the Value of foreign Coin of all Countries, (about which most differ) because they who have Money to remit, must be governed by the Course of Exchange, and it is notorious that does rise and fall according as foreign Trade is influenced by several Circumstances relating to this or that Country; only I shall give the Weight and Value of the four several forts of Pieces of Eight, because they are current in most places.

|                         | Weight. | True Value,      |
|-------------------------|---------|------------------|
|                         | dw. gr. | s. d.            |
| The Piece of 8 Pillar — | -17:12  | $4:6\frac{3}{4}$ |
| Piece of 8 Seville ———  | -17:12  | 4:6              |
| Piece of 8 Mexico       |         |                  |
| Piece of 8 Peru         |         |                  |

And for the other Denomination of foreign Coin at Places which have Exchange with England, they are,

1. The Pound Flemish 33 s. 4 d. in Value 1 Pound Sterling; in which Denomination London exchanges with Amsterdam, Rotterdam, Antwerp, and Hamburgh.

2. In Pieces of 8 Mexico for English Pence, London exchanges with Madrid, Cadiz, Genoa, Leghern.

3. For Ducats (one being in real Value 45. 4. d.\frac{1}{2} Sterling) London exchanges with Venice.

4. For the French Crown (in Value 4 s. 6 d. Sterling.) London

exchanges with Paris.

5. For the Mill-rea of 6 s. 8 d. 2 Sterling, London exchanges with Oporto in Spain, and Lisbon in Portugal.

But

But the Course of Exchange is sometimes higher and lower than the Rates above, which are called the Par of Exchange.

6. I shall next shew the Nature of Exchanging by Bill; and 2dly,

how to cast up Bills.

The first I cannot do more effectually than by giving the Form of a Foreign Bill, and that is thus:

Rotterdam, April 10: 1716. for l. 1272:13:4 Flemish at 33 s. 4 d. per Pound Sterl.

AT Usance pay this my first of Exchange unto Mr Edward Jones, or his Order, Twelve Hundred Seventy-two Pounds Thirteen Shillings and Four Pence Flemish; Exchange at Thirty-three Shillings and Four Pence per Pound Sterl for the Value received of Mr John Hall, and account it to

To Messieurs Andrea and Jean Varelst Merchants in London.

Your Humble Servant, Herman Vanderstagen.

Hence 'tis plain, that Hall pays the Money in Holland, (and is called the Remitter) to Vanderstagen (who is the Drawer) drawing his Bill on the Varelsts (his Correspondents at London) to pay the Value to Jones at London, who is Hall's Correspondent.

And thus there are, you see, four Persons concerned in a Bill of Exchange, viz. the Remitter, the Drawer, he that pays the Bill, and he to whom it is paid. Note, Usance is the Time between any Day

of one Month to the same Day of the next.

7. The next thing is to shew how this Bill, &c. is converted into Pounds, &c. Sterling Money, which is the principal thing intended by the Rule of Exchange as 'tis here placed; i.e. to shew how to reduce one Country's Coin to another.



So that in l. 1272: 13: 4 Flemish, there are l. 763: 12: 00 Sterl. And thus Dutch Money may be reduced to English at any Rate per-Pound Sterling; but in the above, of 33s. 4d. Flemish per Pound, the Work is performed much shorter, as above toward the Right-Hand Margin.

8. And if a Bill is drawn from Lisbon of Mill-Reas 1432 at 6s. 10 d. & Sterling per Mill-Rea; how much English Money is that Bill?

Mill-rea. s. d. Mill-reas. 1.  $6:10\frac{5}{5}::1432$  1432 at 6 s. 10 d.  $\frac{5}{8}$ 

By Practice,  $\frac{1}{3} = 477 : 6 : 8$ and  $1\frac{1}{2} = 11 : 18 : 8$ And 1432 multiplied by 5, and divided by 8 = 3 : 14 : 7

Answer, Sterling = l.492:19:11

9. Now suppose the Dutch Bill above be endorsed and sent to Leghorn, at 56 d. Sterling per Piece of Eight; and if it be again endorsed at Leghorn, and remitted to Amsterdam, the Exchange at 93? Pence Flemish per Piece of Eight: How many Pieces of Eight must be paid for the Bill at Leghorn, and how many Pounds Flemish at Amsterdam, according to this Course of Exchange?

1st, In 1.763: 12 in the Bill, there are 183264 Pence Sterling;

which divided by 56, gives 3272\$ Pieces of Eight.

2dly, 32727 being multiplied by 933 Pence Flemish for each Piece of Eight, or 22908 by 283 produceth 6414221 Pence Flemish; and being divided by 12, and then by 20, gives Pounds Flemish 1. 1272:13:4 as above, which proves the Truth of the whole Work.

10. But these Questions will be so easy to those who have proceeded gradually to learn thus far, that I need not enlarge much farther on this Rule of Exchange; what has been observed being sufficient to shew how either the Coins, or Weights and Measures of one Country, are reduced to those of any other.

For in 32755 Flemish Ells there are 19653 English; 32755 for a Flemish Ell is † of an English, or to rather, because it saves the Work of Division

11. A Dutchman sells 29380 Flemish Ells of Holland 196530 Duck, to an Englishman, a Spaniard, an Italian, and a Portuguese, who are to have each a like quantity in their own Country Measure; how much must each have therein?

The

32 Sum.

The Dutch in English Ells are 17628, and 17628 Ells divided by 4, gives 4407 Ells English each, and Answer. Ells. 4407 is for the Briton — — 4407 Ells. 4407 for the Spaniard at & Canes per Ell English 3084 % Canes. ► 4407 for the *Italian* at 2 Braces per Ell English. 8814 Braces. 4407 for the Portuguese at 1 Vare per Ell is — 4407 Vares. This may be proved several ways, which I leave to the Reader's Judgment. SECT. X. ALLIGATION. ▲ LLIGATION may be called The Rule of Mixture, or of compounding Ingredients, because it teaches how to mix several Species of Simples according to any Intent or Design proposed. It is either Medial or Alternate. Alligation Medial shews what the mean Price of a Pound, Ounce, &c. is worth, when feveral Quantities of feveral Values are mix'd together, &c. as per the Cases following. Alligation Alternate shews how much of various kinds of Simples may be taken to make up any affigned Quantity of a Compound, which shall be worth a Price proposed. Of Medial Alligation. Case 1.] A Goldsmith hath Gold 12 3 at 41. per 3; 83 at 1.4:5; 3 3 at 1.4:6:8; and 9 3 at 1.4:13:4 per Ounce: what is an Ounce worth, suppose these be all melted down together? Anfwer,  $l. 4:7:5^{\frac{1}{2}}$ . Rule.] Multiply each Quantity given by the Price; then by direct Proportion, As the Sum of the Quantities given Is to the Sum of the faid Products; So is one Ounce of the Mixture To its Value. See the Work following. Cunces Gold The Price of 1 3. 12 multiplied by l. 4: 00: 0 the Product is l. 48 8 ——— by 4: 5:0 produceth ——— 34 —— by 4: 6:8 produceth —— 13 - by 4:13:4 produceth ----- 42

R

137 Sum.

Then

#### 3. l. 3. l.

Then fay, 32. 137:: 1. 43, or to 1. 4:5:71.

And by the same Rule the Value of any other Quantity of that Composition is found: as suppose 7 in the last Example is worth 2932, for as 3. 1. 3. 1.

32. 137::7. 2932.

Case 2.] To increase or diminish a Compound proportionably, by knowing the several Quantities of the Simples in the Composition. Rule. As the Sum of the particular Quantities of the Compound given

Is to the whole Quantity proposed to be augmented or lessened;

So is each particular Quantity in the given Compound To the due proportion required of that Specie, Fineness, &c.

Example. I would augment the Compound in the last Case to 48 3, that is, I would add 16 to the 32; how much must I take of each simple Ingredient? See the Operation.

| -   | 12     |             |      | Λ   | nswer. |  |
|-----|--------|-------------|------|-----|--------|--|
|     | 8      | Then as 32. | 16:: | 12. | § 6    |  |
|     | 3      | 32.         | 16:: | 8.  | 4      |  |
|     | 9      |             | 16:: |     |        |  |
|     | -      | 32.         | 16:: | 9.  | 41/2   |  |
| Sur | n = 22 | •           |      |     |        |  |

Sum = 16 Proof to add.

So that I must have 183 of 1.4 per 3.

12  $\frac{3}{5}$  of l.4:5:-  $4^{\frac{1}{2}}$  of l.4:6:8, and 13  $\frac{1}{5}$  of l.4:13:4.

48 Sum for Proof, in the whole.

Case 3.] Having the Simples of any Compound given, to find how much of each kind of simple Ingredient is in any part of that Composition.

Rule. As the Total of the Composition

Is to the Quantity of any Simple in that Composition:

So is the Total Quantity proposed to be proportionably compounded,

To the Quantity of each Simple to be in that proposed Quantity.

Example

| Example. I would know how     | Answer.  |                                |  |  |  |
|-------------------------------|----------|--------------------------------|--|--|--|
| much of each Ingredient (or   | 32. 12:: | 12 3 42 of l. 4. per 3.        |  |  |  |
| Price of Gold mentioned in    |          | 8. 3 of 4:5:—                  |  |  |  |
| the first Case) is in a Pound |          | 3. 14 of 4:6:8                 |  |  |  |
| or 12 3 of the 32, being the  | 32. 12:: | 9. $3^{\frac{1}{8}}$ of 4:13:4 |  |  |  |
| Compound given? See the       |          | portion dead                   |  |  |  |
| Operation in the Margin.      | -        | 3 12 Sum Proof.                |  |  |  |

Case 4.] The Total of the

Compound of two Simples, with the Total Value of that Composition, and the Value of a Unit of each simple being given; to find the Quantity of each simple Ingredient in the Composition.

Rule. Multiply the Total Quantity of the Composition, (here 20) by the leffer Price of the Unit (here 4), then deduct the Product from Gold at l.4 per 3.

Gold at l.4 per 3.

Ditto at l.4 : 5Composition = 203. Total Value l.8280 = 203. Total Value l.8280 = 203. Total Value l.82

the Total Value of the Composition (here 82), and divide the Remainer by the Difference in Value of a Unit of the two Simples given (as here 55, or ‡ of a Pound) and the Quotient is the Quantity of the higher-prized Simple (here 8) whose Complement to 20 is 12: so that the Answer is 12 \$ of \$l\$, 4 per Ounce, and 8 \$ of \$l\$, 4: 5 per Ounce. This Canon I discover'd by Algebra, as appears in the Solution of Questions by various Positions.

Case 5.] To find the Quantities of each simple Ingredient (when those Simples are more than 2 in Number) contained in a Composition, by having the Totals of the Quantity compounded, and of the Value; and also the Value of a Unit of each simple Ingredient

given, as

.  $\frac{3}{5}$  of Gold at l.  $\frac{4}{1}$  per  $\frac{3}{5}$  =  $\frac{3}{5}$  ditto at l.  $\frac{4}{1}$  =  $\frac{3}{5}$  ditto at l.  $\frac{4}{1}$  =  $\frac{3}{5}$  ditto at l.  $\frac{4}{1}$  =

Total of the Composition = 323. Total Value 1. 137

Rule. To these kind of Questions, as in those of Alligation Alternate, various Answers may be given, and yet all true. You may R 2 best



best do them by 2 at a time, as in the last Case. I suppose the 2 first 15 of the total Mixture, and 63 of the total Value, and so I find 3 at 1.4, and 12 at 4½. Then the rest of the total Compound is 17, and of the Value 74; which, according to the 2 later Prices, gives 16 at 4½, and 1 at 4½.

But note, That you must so discreetly divide the total Quantity, and Value, that when the Product of the 1st in 1 of the 2 Prices is taken from the later, the Remainer may not be so

| $ \begin{array}{c c} \mathbf{1ft} & 2 = 15 \\  & 4 \\  & \hline \mathbf{Product} = 60 \end{array} $ | and = 63<br>lefs - 60 deduct.<br>$\frac{1}{4}$ ) 3 (12 at $4\frac{1}{4}$ .                                                                                          |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $2dly 15$ $4^{\frac{1}{4}}$ Product = $63^{\frac{1}{4}}$                                            | 63 deduct.<br>63 <sup>1</sup> / <sub>4</sub><br>$\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ = 3 at 4.                                                                 |
| the 2d 2 = 17                                                                                       | and 74 73 <sup>2</sup> deduct.  3) 3 (1 at 4 <sup>2</sup> .                                                                                                         |
| laftly — 17  4 <sup>3</sup> 79 <sup>3</sup>                                                         | 74 deduct.<br>79 <sup>1</sup> / <sub>3</sub><br>1/ <sub>3</sub> ) 5 <sup>1</sup> / <sub>3</sub> ( <sup>4</sup> / <sub>3</sub> or 16at 4 <sup>1</sup> / <sub>3</sub> |

much as (when divided by the Difference of the Prices) will give a Quotient so great as that part of the total Quantity of the Ingredient which you fix'd upon, or supposed. See the Operation above,

## H. Alligation Alternate.

Quest. 1. A Farmer hath 4 forts of Wheat, viz. 5 s. 6 s. 7 s. and 7 s. 6 d. per Bushel; and he is minded to mix so much of each fort, as will make 64 Bushels worth 6 s. 6 d. per Bushel: how much of each fort must he take?

Having placed the Price's as you fee, and the mean Price; take the Difference between the mean Price 6 s. 6 d. and 5 s. (the 1st Price) which is 1 s. 6 d. this you must put down

(in the 1st Way) against 7 s. 6 d. (because bigger than the mean Price.)

Price.) Then go on, and put the Difference between 6 s. 6 d. the mean Price, and 6 s. (the 2d Price) which is 6 d. against the Price (7 s.) because biggerthan the mean Price. Then put the

| A Second | Way.       |
|----------|------------|
| s.       | s. d.      |
| 5        | o : 6      |
| s: d. 6  | 1:0        |
| 6:6      | 1          |
| 7        | 1:6<br>0:6 |
| 7:6      | 0:6        |
|          |            |
| Sum =    | 3 : 6      |
| •        |            |

| 1             | hird     |         | •   |    |     | S    |     |    |
|---------------|----------|---------|-----|----|-----|------|-----|----|
| · ·           | S.       | 5.      | d.  |    |     | J.   |     | d. |
| 1             | 5        | 0       | : 6 | ;  | 1.  | 5. 1 | :   | 6  |
| s. d.<br>6:6- | 5        | s.<br>0 | : 6 | ;  | I   | I    | :   | 6  |
| 6:6-          |          | 1       |     |    |     | 1    | •   |    |
| 1             | 7        | I.      | : 6 | ;  | 60  | 1.2  | :   | 0  |
|               | 7<br>7:6 | I       | : 6 | ;  | 6 a | 1.2  | :   | 0  |
|               |          |         |     |    |     |      |     |    |
| 1             | S        | um      | T   | ot | al: | = ;  | 7 : | 0  |
| 1             |          |         |     |    |     | ·    |     |    |
| <u> </u>      |          |         |     | _  |     |      |     |    |

Difference between 6 s. 6 d. and 7 s. (the 3d Price) against 6 s. because that is less than the mean Price. Lastly, the Difference between 6 s. 6 d. and 7 s. 6 d. is 1 s. which put against 5, the first Price. And thus having put the Differences between the mean Price and those less than it against the Prices bigger than the mean Price; and the Differences between the mean Price and those greater than it, right against those that are lesser alternately;

2dly, Sum up the Differences, which you see is 3 s. 6 d. 3dly, Say by the single Rule of Proportion Direct,

| The Sum of<br>the Diffe-<br>rences. | Bushels the whole Mix-<br>ture. | The Dif-<br>ferences. | Bushels required.                             |
|-------------------------------------|---------------------------------|-----------------------|-----------------------------------------------|
| s. d.                               |                                 | d.                    | • •                                           |
| As $3:6$ .                          | 64::                            | 12.                   | $18\frac{12}{42}$ of that of 5 s. per Bushel. |
| 3:6.                                | 64 : :                          | 6.                    | 9A of that of 6 s. per Bushel.                |
| 3:6.                                | 64 : :                          | 6.                    | 9.3 of that of 7 s. per Bushel.               |
| <u>3</u> :6.                        | 64::                            | 18.                   | 27# of that of 7 s. 6d. per Bush.             |

Sum (or Proof) 64 being the whole Mixture.

The Proportions by the second Way of placing the Differences are thus: s. d. d.

3:6. 64:: 6. 9. Bushels of 5 s. per Bushel.

3:6. 64:: 12.  $18\frac{12}{12}$  Bushels of 6s. 3:6. 64:: 18.  $27\frac{12}{12}$  Bushels of 7s.

3:6. 64:: 6. 9\text{3 Bushels of 7 s. 6 d.

54 Sum for Proof.

And

And the Proportions by the third Way of placing the Differences are still various. Thus,

s. d. d.

As 7 or 84. 64:: 18. 13 % Bushels at 5 s. per Bushel.

84. 64:: 18. 13 % Bushels at 6 s.

84. 64:: 24. 18 % Bushels at 7 s.

84. 64:: 24. 18 % Bushels at 7 s. 6 d.

64 Sum as before.

In the 2d Way you see that the Difference between the mean Price and 5 s. is placed against the Price 7 s. and 6 s. against 7 s. 6 d. 7 s. against 5 s. and between the 6 s. 6 d. and 7 s. 6 d. against 6 s. And in the 3d Variety,

The Difference 
$$\begin{cases} s. d. \\ 6:6 \text{ and } \end{cases}$$
 is placed against  $\begin{cases} 7 \text{ and } 7:6 \\ 7 \text{ and } 7:6 \end{cases}$  the Prices  $\begin{cases} 5. d. \\ 7 \text{ and } 7:6 \\ 5 \text{ and } 6 \end{cases}$ 

So that the Difference between the mean Price and those less than it are placed against all those greater than it; and the Difference between the mean Price and those greater are placed against all those that are lesser than it. Then the Sum of the Differences in each Line are added together in the Column next the right hand; as 6 d. and 1 s. in the middle Column is 1 s. 6 d. in the third Column; and 1 s. 6 d. and 6 d. is 2 s. So the Sum of that third Column is 7 s. and thus ariseth the Numbers in porportion, in the third Way or Variety.

Hence you see, that there are three different Answers to one Question, and yet they are all true, as fully giving what is required in the Demand; whence (as well as from placing the Differences in each) it may justly be called Alternate Alligation. And for a thorow and intire Proof of this, I shall shew that 64 Bushels at the mean Price 6 s. 6 d. per Bushel, is (in the last or most abstruste, tho best Way of the three Varities) the same Amount as each of the Quantities exhibited for Answers, being cast up at the Prices given, and added together, amount to. Thus,

64 Bushels

```
the whole to be mix'd at the mean \ 1.20:16:0
                  Price 6 s. 6 d. amount to—
    So also 13 to Bush. of 5 s. per Bush. comes to l. 3:8 $ $
           13\frac{69}{81} of 6s. ______ l. 4:2 \frac{14}{81}
  Proof of the 188+ of 75.
  Operation. 1824 — of 7 s. 6 d. -
           64 Sum of the Sorts.
                                      Sum = 1.20: 16 = Total
                                                Value ut supra.
  I shall give one other Example, where there is only one Price
lesser than the mean Price;
and this I shall do accord-
ing to the Method of the
third Variety foregoing, that
being the best, as making
the equallest Mixture: where
it is required to know much
of 2, 5, 9, and 17 must be
taken to make 100 of, or
worth 4. See the Operation
                                              ·I,5,13,
                                                            19
in the Margin.
                            =the mean 5-
                              Price.
  And this is proved as before,
thus:
                                          Sum of all the ?
```

76 at 2 = 152 Differences 
$$\int_{8}^{25}$$
 8 at 5 = 40  $\int_{8}^{8}$  at 9 = 72 Answer.  
8 at 17 = 136 Now 25. 100:: 19. 76 at 2 s.  
Sum = 400 = 100 at 4. 25. 100:: 2. 8 at 5 25. 100:: 2. 8 at 17

Note, That if the Prices given were ever so many, the Method is the same.

SECT.

# SECT. XI. The Rule of False.

THIS is so called not because it requires any more Conjuration, or is more difficult to comprehend or perform than some of the Rules preceeding; but it is properly called The Rule of False Supposition, because by supposing Numbers to be the Answers to Questions which are not really so, but are seigned or supposed at pleasure, we do by such false or sictitious ones discover the true. Numbers required.

An Example or two will illustrate this, and I shall not insist farther, because the Solution of an easy simple Equation in Algebra answers not only any Question in this Rule, but also gives at the same time a Canon whereby any Question of the like kind is much

more easily and speedily resolved.

Quest. 1.] Three Merchants built a Ship, which cost 1. 1600.

A. paid a Sum not known, B. paid double to A. within 1. 50. C. paid as much as A. and B. wanting 1. 100: What did each pay of the Operat. Suppo-Errors. Colum. litions. ·Coft? 1st, Suppose A. paid —— - 200 200 Then, according to the Question, B. paid 350 And C. paid — 450 Sum 1000 But it should have been l. 1600, therefore the ? 600 Error is — 2d, Suppose A. paid ——— Then it follows that B. paid ——— And C. paid, (according to the Question) 600 Sum 1300 Which is therefore still too little by-300 Then multiplying the 1st Position by ? the 2d Error gives ----And the 2d suppose in the 1st Error, gives 150000 The Difference of the Product is = 90000 Which divided by the Differ. of the Errors (300) The Answer is, that A. put in - 300 Then B. put in —— - 550 And C. ———

Sum for Proof 1600

Here



Here you see, that the Suppositions and Errors being multiplied, you divide the Difference of the Products by the Difference of the Errors, which you must always do when the Errors are both Surplusages, or both Deficiencies of the supposed Numbers.

But if the one Error is caused by supposing too much, the other by supposing too little; then you must divide the Sum of the said Products by the Sum of the Errors, and the Quotient is the Answer, as in the next Example appears: which Rule you may retain in mind by this Distich;

> When Errors are not both of the same kind, To add the Products, as the Errors, mind: But if they're both too small, or both too much, Substraction must be us'd in Cases such.

Quest. 2.] Admit a Church hath a Choir (or Chancel) 40 foot long; and that the Ground taken up by the Belfrey is ‡ of the Chancel, and ½ of the Nave, or Body; the Nave (or Body of the Church) is 3 times the Length of the Belfrey, and ‡ the Chancel: how long is the whole Church within the Walls, and every Part of it?

| <b></b> , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | <b></b>  |         |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|---|
| First find the Length of the Nave or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Suppo-   | 1       | l |
| main Body of the Church, for then the The Ope-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | sitions. | Errors. |   |
| rest are discovered, thus: ration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |         |   |
| 1. Suppose the Nave be — — — —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 150      |         | l |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |         |   |
| ‡ of the Chancel — — 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -        |         |   |
| Sum, is the Belfrey — 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |         |   |
| Then the Nave (according to the Que-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |         |   |
| filtion) is 3 times that $\frac{1}{2} = \frac{105}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |         | ĺ |
| And ‡ of the Chancel, viz. — 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -        | 1       | • |
| Sum is but — — 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 1      |         |   |
| Which being less than 150 supposed, the Error is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 15      |   |
| 2. Suppose the Nave be — — — —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 102      | ^3      |   |
| $\frac{1}{6}$ of that is $  -$ 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -02      | ŧ       |   |
| 4 of the Chancel is — — — 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i        | - 1     |   |
| The Sum or Belfrey is $-\frac{1}{27}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1        | - 1     |   |
| 3 times that Belfrey is — — 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 1       |   |
| i ( 1 ( ) 1 ' ' '   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I        | 1       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I        | 1       |   |
| Sum is — — III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l        | 1       |   |
| Which being more than the 102 supposed, the Error is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 9       |   |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | Now     |   |

Now the Product of 150 by 9 is — — 1350 And of the 102 by the Error 15, gives 1530

Which 2 Products I am to add according to the Rule, because the 1st Error was the effect of supposing too much, the 2d of supposing too little; and the Sum is — — — —

That divided by the Sum of the Errors = 24 } = 120 gives the Length of the Nave of the Church } = 120 And the Chancel being = 40 And the Belfrey & of 120 and \$\frac{1}{2}\$ of 40 is = 30

The Length of the whole Church is = 190

And you'll find these 3 Dimensions (120, 40, and 30) to answer in all respects what is proposed in the Question, which is a Proof of the Work.

And thus you have a clear and perspicuous Method of solving Questions in this Rule of False Position; which may suffice till we come to Algebra, where the Reader will find a great Variety of Problems answered the best and shortest way, consistent with demonstrative Plainness.

The Canon for answering Questions of like nature with the 1st, is this: Divide the whole Value of the Ship, more twice what B. abateth of paying double to A. more what C, abateth of paying as much as A, and B, by 6, and the Quotient is what A, paid. And this Canon holds, vary the Numbers as you please, keeping to the Words.

The Canon answering Questions of like nature with the 2d, is, Whatsoever Length the Chancel of the Church is, if that be multiplied by 3, it gives the length of the Body of the Church proportioned as in the Question, as 3 times 40 is 120. But if you suppose the Chancel 60, then is the Nave 180, and the Belfrey 45, in all 285. For Proof \$\frac{1}{6}\$ of the Nave, and \$\frac{1}{4}\$ of the Chancel 60, is 45 = the Belfrey; and 3 times that (or 135) added to \$\frac{1}{4}\$ of the Chancel, is 180.

## Single Position.

But there are some Questions answered by one single Supposition, with the help of the Rule of Proportion. As for

Example.]



Example.] Three Men build a House, which cost 1.300. A. paid a Sum unknown, B. paid twice as much, and C. paid 3 times so much; what did each pay of the 1.300?

I suppose A. l. 40, then B. must pay 80, and C = 120; the Sum

of which is but l. 240, instead of l. 300. Then I say,

If 240 doth arise from supposing 40,

What Number will 300 be the Result of?

The Answer is 50; for

240. 40 :: 300. 50

Now that 50 is the Sum that A. paid, may be proved thus:

A. = 50B. paid = 100 Sum = 300 for Proof.
C. paid = 150

Here ends VULGAR ARITHMETIC.

# CHAP. III.

# DECIMAL ARITHMETIC.

SECT. I. Notation and Numeration.

HIS kind of Arithmetic takes its Name from the Nature of the Denominator, which is always 10, or some Power of 10; in which only it differs from a Vulgar Fraction: for as that has any promiscuous Number for its Denominator, so a Decimal Fraction hath always 10, 100, 1000, 10000, &c. for its Denominator.

2. Hence 'tis easy (the Denominators of Decimals being so few in comparison of Vulgar, and so certain) to express a Decimal Fraction without its Denominator, by separating so many places of the Numerator, as the Denominator hath of Cyphers, by a Point: Thus is wrote .5; 156 is .25; 186 is .075, &c. And if (as in the last) there be not so many places in the Numerator as there are Cyphers in its Denominator, you must make up that Number by placing a Cypher or Cyphers towards the left hand of the Numerator.

S 2

3. The



3. The Nature of a Decimal Fraction will farther appear by what follows:



The uppermost Line (uu) is a Unit; the Line (e20) is of Vulgar Fractions of that Unit, whose common Denominator is 20; and the Line (a, 100) is of Decimal Fractions of the Line (uu) whose Denominator is 100.

And here the Decimal Fraction 15 or .15 is equal to the Vulgar Fraction 25; .35 is equal to 25; .85 equal to 25, &c.

4. But that you may be the better able to read or write down any Decimal Fraction properly, take the following Table; the Words at the head of which shew how to read the Numerator, and those toward the right hand, to read the Denominator.



5. There is not, nor can be, any Fraction invented, so easy to work, because so like to an intire Number, as the Decimal; for there is the same Increase of the Places Values in these as in Integers, as appears by the following Table, from the One Hundred Millionth Part of a Unit to 100000000 of Units, as 111111111111111111; and thus every place towards the left hand is ten times that towards the right.

```
Parts; 10 times that, is
 TCCCOOO Parts; 10 times that, is
  TOOOOO Parts; 10 times that, is
   TODAGO Parts; 10 times that, is
    Parts; 10 times that, is
      Parts; 10 times that, is
      Parts; 10 times that, is
        1 Parts; 10 times that, is
         1 or 2 Unit; 10 times that, is
        10 or 10 Units; 10 times that, is
      100; 10 times that, is
     1000; or 10 times that, is
    10000; 10 times that, is
   100000; to times that, is
  1000000; 10 times that, is
 10000000; 10 times that, is
100000000; &c.
```

- 6. Decimals are produced from Vulgar Fractions, they being the Quotients arifing by dividing the Numerator, (with Cyphers annexed toward the right hand) by the Denominator. Hence it follows, that some Decimals are Compleat, and others Infinite.
- 7. I call that a Compleat Decimal, when nothing remains of the faid Division by which the Decimal is made. And to distinguish a

Compleat Decimal, you may put a Period after the last Figure towards the right hand thus .0125. and .00375.; and those not having such Mark, are supposed to be Infinite.

The more Places an Infinite Decimal confisteth of, the more it

expresseth the Truth.

I call that an Infinite Decimal, which is no Aliquot Part of the Dividend by the Divifor that produceth such Decimal, but some-

thing will always remain in dividing.

Infinite Decimals are composed either of uncertain Digits, as .146129, &c. or of those certain and known, as .333, &c. .44444, &c. The former of these ought to have places more or less, according to the Use that is to be made of them, (for which I have given a Table to direct at the beginning of Division, Sect. 6. following.) But Infinite Decimals composed of certain Digits, may for shortness

fhortness be wrote thus: The Decimal of  $\frac{1}{3}$  which is .333333333, &c. may be .3r that is 3 repeated infinitely; or if a Digit repeat after others are in the Quotient, they will stand thus:

.83 r 1 which shews that 1 (or the 3) is only repeated.

.285714285714, &c. hath 6 repeating, wrote thus .285714 r 6
And shews that 6 of the Digits next the left hand would be repeated by carrying on the Division ad infinitum. And these by some are called circulating Numbers, all which kinds of Decimals are produced by Division thus:

| Divi-<br>fors. | Digits<br>divided.                       | Decimals arifing.                             | Divi-<br>fors. | Digits<br>divided.                            | Decimals ariling.                             |
|----------------|------------------------------------------|-----------------------------------------------|----------------|-----------------------------------------------|-----------------------------------------------|
| 9              | 8.0<br>7.0<br>6.0<br>5.0<br>1.0<br>7.000 | .8 r<br>.7 r<br>.6 r<br>.5 r<br>.1 r<br>.875. | 7              | 6.000000<br>5.00000<br>4.000000<br>5.00<br>4. | .571428 r 6<br>.142857 r 6<br>.83 r 1<br>.6 r |
|                | 5.000<br>3.000<br>1.000                  | .625.<br>·375·<br>.125.                       | 5              | 1.00<br>4.0<br>3.0                            | .16 r1<br>.8.<br>.6.                          |

A mixt Number (or one composed of a whole Number and Decimal) is thus written 365.125.; 1728.34617, and 252.6r, &c. And this shall suffice to shew the Nature of Decimals, and how

And this shall sumce to shew the Nature of Decimals, and how to read and write any. I shall next pass on to Reduction, and the rest of the Rules, inserting only such Examples as are likely to accrue in Practice; and avoiding all those that are impertinent, and tend to perplex the Reader, and make this Part of Arithmetic abstructe and tedious, which in reality is most easy and obvious.

# SECT. II. Reduction of Decimals.

T is almost as improper to treat of Addition and the other Rules before this of Reduction in Fractions, as to teach Reduction before the Parts of single Arithmetic in Integers: for what can be more irregular, than to shew how to add, substract, &c. those Numbers, which you neither know the Production of, nor how to discover

discover what Parts of Coin, Weight, &c. they represent or include? Therefore

I shall, as is usual, as well as justly and methodically done, in the next place shew, how to reduce Vulgar Fractions of inferior Denominations to Decimals of superior, considered as Integers of those Fractions; and, by way of Proof thereof, give Rules and Examples to find the Values of those Decimals or any other.

# I. To reduce Vulgar Fractions into Decimals.

A Decimal of 4 places, nay generally of 3, is sufficient, when that Decimal is not to be multiplied by any Number: Therefore the Denominator of a Decimal of 4 places being (as shewed before) 10000, the Proportion will be for any Fraction in general, to find the Numerator of such a Decimal;

As the Denominator of the Fraction given Is to the Numerator of that Vulgar Fraction::
So is the Denominator of the Decimal (admit 10000)

To its Numerator or the Decimal required.

Example.] What is the Decimal of  $\frac{1}{29}$ ? Here it may be ob-

ferved, Rule = As 39. 27::10000. .6923 = the Answer.

Ift, That a Cypher next the right hand of my Decimal may be omitted, because the same place in the Denominator is a Cypher also: Thus المُعْمَانُةُ is المُعْمَانُةُ and المُعْمَانُةُ is المُعْمَانُةُ is equal to المُعْمَانُةُ , and

39) 2700000 (.6923

188 to 1888, in their lowest Terms.

2dly, Note for a General Rule, That you must always set off with a Point so many places of the Quotient for your Decimal, as the Number of Cyphers in the proposed Denominator (according to the beginning of the last Sect). And if there he not so many Figures in the Quotient, as there are Cyphers in the Denominator given, then that Number must be made up by putting Cyphers towards the lest hand next the Point in the Quotient or Decimal.

3. Hence it follows, That to reduce Coin, Weight, Measure, &c. to the Decimals of an higher Denomination, may easily be done, by

first representing them in Vulgar Fractions, and then reducing

those Vulgar to Decimal, as above.

So to reduce  $3\frac{1}{4}d$ . to the Decimal of a Pound, I confider that this is 13 Farthings, and that a Farthing is  $9\frac{1}{6}$  of a Pound: therefore 13 qrs. is  $9\frac{1}{6}$  of a Pound. So that

960. 13:: 10000. .0135 = the Decimal fought.

Hereupon multiplying and dividing, I find the Quotient 135; but because there are 4 Cyphers in the Denominator (or 10000) given, therefore I must have 4 places towards the right hand of the Point for the Decimal, which 4th place I make up with a Cypher, as you see; and the Converse of this Proportion reduceth any Decimal to a Vulgar Fraction; or one Vulgar Fraction may be reduced to any other, whose Numerator or Denominator is given. For

135, &c. 10000:: 13. 960 or 10000. 135, &c.:: 960. 13

Or if you would reduce the given Vulgar Fraction to another whose Denominator is 12372, the Proportion holds thus:

960. 13:: 12372.  $167_1\frac{21}{23}^{6}_{2}$ So that  $1\frac{1}{23}^{6}_{72}$  is near equal to  $\frac{1}{26}$  or .0135

Which may fuffice to shew how to reduce any one Fraction to another and consequently a Vulgar to another whose Denominator is

10, 100, &c. i. e. any Vulgar to a Decimal.

And this puts me in mind of a new kind of Decimal that might be contrived, which would not only admit of being expressed in one Line as the common Decimal; but whereas that Decimal saves much of Division (which is its Excellency) so this new one would save much trouble of Multiplication: and that is, by reducing all Vulgar Fractions to one whose Numerator is 10, 100, 1000, &c. And the Numerator might be shewn, by pointing over the Figure in the Denominator, where the 1 or place next the left hand of the Numerator would fall: thus 1472 is wrote 1472: 1272 is 1472; and 12472 i 1472. But I shall leave this Notion to be improved by the Ingenious, if thought worth their while; and beg the Reader's pardon for this small Digression, which there is not room in this Book to inlarge on.

# II. To reduce Weight, &c. to Decimals, as per Rules Parag. 2, 3, &c. above.

qrs. lb. required.

1. In Averdupois 3: 20, is  $\frac{104}{112}$  C. And 112. 104:: 10000. .9285
18, is  $\frac{118}{12}$  C. And 112. 18:: 10000. .1607

22. dw. gr.

2. In Troy Weight 11: 12: 10, is \$\frac{5178}{7760}\$. And 5760. 5578:: 10000. .9684

Gall. Pint.

3. In Liquid Measure 1: 3: is  $\frac{1}{88}$ . And 288. 11:: 10000. .0382 this Vulgar Fraction of a Beer-Barrel  $\frac{1}{88}$ . And 288.

4. In Dry Measure 1 Pint is 31 of a Qr. And 512. 1:: 10000. .0019
5. In Long Meas. 1 Yard is 1760 of a Mile. And 1760. 1:: 10000. .00056

And thus I have fully shewed the Fundamentals of making Decimals. I shall proceed in the third place,

## III. To find the Values of Decimals.

Note, That .9 of any lowest Denomination, or .999 of an highest, may be taken for a Unit, as in the last of the 3 first Examples sollowing, &c.

| To.    | To find the Values (as in these Examples) you must multiply as in the 2d, 4th, 6th, and 8th Columns. |        |                  |         |               |         |                   |  |  |  |
|--------|------------------------------------------------------------------------------------------------------|--------|------------------|---------|---------------|---------|-------------------|--|--|--|
| Value. | Value. Decimals Value. Decimals Value. Decimals Value. Decimals of a                                 |        |                  |         |               |         |                   |  |  |  |
|        | of a L.                                                                                              |        | of I C.          | 1       | of 1 th       | 1       | Barrel of         |  |  |  |
| 1      | Sterl.a.                                                                                             | 1      | wt. as           | İ       | Troy, as      | 1       | Beer, as          |  |  |  |
| 1      | .0135                                                                                                |        | .9285            | l       | .9684         | l       | .0382             |  |  |  |
| 1      | by 20 s.                                                                                             |        | by 4 grs.        |         | by 12         | l       | by 4              |  |  |  |
|        | .2700                                                                                                | 2rs. 3 | .7140            | 311     | .6208         |         | .1528 Firk.       |  |  |  |
| l      | by 12 d.                                                                                             |        | by 7 l.          |         | by 20         |         | by 9 Gal.         |  |  |  |
| Pen.3  | .2400<br>by 4 <i>97</i> 5                                                                            |        | .9980<br>by 4 l. | dw. 12  | .4160<br>by 6 | Gal. 1  | .3752<br>8 Pints, |  |  |  |
| }      |                                                                                                      |        |                  |         |               |         |                   |  |  |  |
|        | .9600                                                                                                | tb 19  | .9920            | 2       | .4960         | Pints 3 | .0016             |  |  |  |
| or 1   |                                                                                                      | or 20  |                  |         | by 4          |         |                   |  |  |  |
| Farth. |                                                                                                      | Pound. |                  |         |               |         |                   |  |  |  |
|        |                                                                                                      |        |                  | grs. 9  | -             |         | ł                 |  |  |  |
|        |                                                                                                      |        |                  | or 10   | _             |         |                   |  |  |  |
| 7      | 2                                                                                                    | 3      | . 4              | 5_      | 6             | 7       | 8                 |  |  |  |
| And cu | t off as m                                                                                           | any Pl | aces from        | the ria | ht hand       | of each | Produst as        |  |  |  |

And cut off as many Places from the right hand of each Product, as there are in the Decimal given. These prove the Examples above of the same Denominations.

Note,

Note, That in the 2d Example I multiply .7140 by 7, and that Product by 4, instead of multiplying .7140 by 28, the Pounds in a Quarter of an Hundred. And in the 3d Example, because I cannot multiply .4160 by 24, as by 1 Figure, therefore I first multiply it by 6, and that Product by 4; which Methods produce the same thing as multiplying .7140 by 28, and .4160 by 24, only there is Addition saved in each Example.

# IV. A second Way to find the Decimal of any thing, deduced from the four last Examples.

From a due Consideration of the last Examples, you may, by a direct contrary way of Operation, find the Decimals of any Denomination, here dividing, whereas there you multiplied. For instance,

|  | a Pound.<br>l. o<br>s. o | Answers. | Divide by | qrs 3 | Quotients or<br>Answers.<br>.92857=3dqu.<br>.71428=2dqu.<br>.=1st quote. | Divide by | dw. 12 | Quotients or<br>Answers.<br>.9684=4 quo.<br>.62083 r 1 = 3q.<br>.416 r 1 = 2d q.<br>.5=1st quote. |
|--|--------------------------|----------|-----------|-------|--------------------------------------------------------------------------|-----------|--------|---------------------------------------------------------------------------------------------------|
|--|--------------------------|----------|-----------|-------|--------------------------------------------------------------------------|-----------|--------|---------------------------------------------------------------------------------------------------|

r. Having put down your Denominations that you would reduce into the Decimal of an higher, as you see in these Examples, begin at the lowest to divide by the proper Divisor for reducing into the next superior Denomination, putting, or imagining, Cyphers to stand in the Decimal places toward the right hand. But,

2. You will observe from these Examples, that the mixt Numbers, as 3.25 Pence, 3.7428 Quarters of a C. are the Dividends, and that the Decimals are the Quotients: Thus I first divide 1 Farthing or 1.00 by 4, and put the Quote to the right hand of the 3 Pence for the Decimal of a Penny; then I divide 3.25 by 12, &c. But,

3. In the second Example, instead of dividing \$\frac{1}{15}\$ 20 by 28, I divide it at twice by 4, and that Quote by 7; and also in the third Example, instead of dividing by 24 Grains, I (in this Case putting down only the Quotient, and doing the rest mentally) divide by the Digits 4 and 6, which amounts to the same thing.

V. Some



# V. Some brief Ways of Reduction of Decimals.

There are in many Instances much shorter Ways both of making Decimals and of finding their Value.

I. As to the first, any even Number of Shillings under 20 are reduced to the Decimal of a Pound, by taking half thereof; and thus you fee in the Margin.

2. Any odd Number of Shillings under 20 are made Decimals of a Pound by putting a Cypher towards the right, and then taking the half,

as in the Margin.

The Decimal of 6 s. is .2. l.

14---.7.

l. 3.0 = .159.0 = .4513.0 = .6517.0 = .85

3. From hence it is plain, that any Number of Shillings may have their Decimals put down as foon as named, by taking half the even Number; and for the 1s. (in an odd Number) you see that it is always 5 in the 2d place from the Point.

4. To put any Pence and Farthings down in the Decimal of a Pound, consider what Farthings they make, and put them down in the 2d and 2d places from the Point: But after the Farthings are 24 or more, add 1 to the third place in the Decimal. And thus 19 s. 7 d. 1 is put down in a Decimal immediately .982; for the 19 s. is .95, and the 7\frac{1}{4} is 31 Farthings, more I because I must be added at every 24, is 32; which added to the 2d and 3d places from the Point in .95, the Sum is .982. And,

s. If you defire to be so exact to have a 4th place from the Point, you may make the Figure in the 4th place I more than a 3d of what

Farthings are in the Farthings given, when they do not exceed 23. As in the 3d Example of the 4 in the Margin, for 16 s. I put 8; for 9 d. \(\frac{1}{2}\) or 38 Farthings I put 39 in the 2d and 3d places, because 38 is 13 above 25. Then for the 3d Place I take \(\frac{1}{2}\) of 13, which is 4; to which I add 1, and the Sum is 5 for the 4th place from the Point.

So also in the 4th Example for the 19 s. I put .95, for the 6 d. of the  $11\frac{1}{4}$ , I put 25, (that is, 1 added at 6d.) lastly, for the 5d.  $\frac{1}{4}$ (the rest of the 111, or 23 qrs.) I put 1 of 24, more 1.

8:

13:

16:

41--

91-

19: 113---

For

May be put

d. in Decimals.

2 --- .6594

---.4187

---.8395

For note, That when the Farthings given are under, or so much as they are more than 24, you must take a third part of that Sum they are next to, which can be divided without a Remainer; as in the last, I take 1 of 24, because 23 is nearer 24 than it is to 21.

And thus the Decimal of a Pound may be wrote to 4 places at once, or mentally computed, in a fifth part of the time it can be found by the nearer of the Ways above, and that near enough the Truth, unless it be required to be multiplied, as is before men-

tioned, and as in the Table at the beginning of Division.

6. The Value also of any Decimal of a Pound may be found by Inspection: For if the place next the Point be doubled, it gives the Shillings, to which add 1 s. so often as the 2d place is 5 or more, for the reason under the 2d Rule above; then call what is under 5 (or more than 5) in the 2d place

1. s. d. q. 
912 = 18: 2:  $3^{\frac{1}{2}}$ 1.  $3^{\frac{1}{2}}$ 2.  $3^{\frac{1}{2}}$ 2.  $3^{\frac{1}{2}}$ 3.  $3^{\frac{1}{2}}$ 4.  $3^{$ 

so many Tens of Farthings, and the Digit in the 3d place so many Units;

and as often as they are 25, make them less by 1.

Or more accurately thus; tho' the Rule above may be thought

near enough, as not erring a Farthing:

And so often as the 4th place is 6 or more, you may add half a

Farthing.

And after this manner you may read Decimals in Shillings, Pence, &c. as fast as if they were wrote so; as I have examined many a thousand, having the Species read to me looking on the Decimals, which if continued to ever so many places, they alter not the Rules above.

Note, That these Allowances or Deductions are made because the Rule supposeth 1000 Farthings in a Pound Sterling, whereas there are but 960; therefore if 1000 Farthings is 40 more than the Truth, 500 is 20 more, 250 is 10, or 25 is 1 too much. And it is sufficient if done to a Farthing, which Decimals may be valued without regarding the 4th place,

7. To find the Value of the Decimal of a Foot in Length by Inspession. Rule. For every 10th of a Foot reckon as many Inches and as many Quarters, under .5, (which is known 6 Inches.) 2dly, For every 2 in the 2ds place add 1 quarter of an Inch. And this will not err a quarter

quarter of an Inch in the generality of Decimals, if in any.

Here in the 2d Example In. qr. Feet. Incb. qr. .2 according to the Rule is 
$$2:2$$
 and .08 is half fo many qrs. =  $1: 28=3:2$   $28=3:2$   $28=3:2$   $28=3:2$   $28=3:2$   $28=3:2$   $28=3:2$   $28=3:2$   $28=3:2$   $29:2=11:1$  And in the 4th Example, .9; .5 I fay is  $29:2=11:1$  Sum =  $11:1$  Sum =  $11:1$ 

Note, That in adding half, in the 2ds place, if odd, you may omit the odd, and take half the next lesser even Number, as in .07 and .03 I take only 3 qrs. and 1.

The immediate writing down any Inches and Quarters in the Decimal of a Foot is done so easily by the Rule above inverted, that

there is no occasion for Examples.

8. To find the Value of the Decimal of a Gallon by Inspettion.

Rule.] Multiply the Digit in the Primes place of the Decimal by 8, and the Digit next the left hand of the 2 Digits in the Product is so many Pints; then add the Di-

| Gall. Pints. qrs.         | Gall. Pints. qrs.       | Gall. Pints. qrs.         |
|---------------------------|-------------------------|---------------------------|
| .19 = 1 : 2               | .64 = 5 :—              | .34 = 2 1 3               |
| .28 = 2 : 1               | .73 = 5 :3              | .71 = 5 : 2               |
| .37 = 3 : —               | .82 = 6 :2              | .66 = 5 : 1               |
| .46 = 3 : 3 $.55 = 4 : 2$ | .91 = 7 :1<br>.11 = -:3 | .88 = 7 : - $.99 = 8 : -$ |

git next the right hand of the Product to that in the 2ds place of the Decimal given, and multiply that Sum by 4, and the place next the left hand of the Product are Quarters of Pints. Which is done with about a third of the trouble in the common Way; and gives the Answer accurately enough.

Thus in .66, 8 times 6 is 48, the 4 are Pints, and the 8 of the Product added to 6 in the 2ds place is 14; 4 times 14 is 56; the 5 are Quarters of Pints or 14 Pints, which with the 4 is 54 Pints, &c.

9. To

9. To find the Value of the Decimal of a Barrel of Beer very briefly,

and accurately.

Rule.] Multiply the given Decimal by 4, cut off from the Product 1 less than the Decimal places given; then substract every Digit in the Product from its right hand Digit, and the Remainer is the Value sought in Gallons

and Parts. Thus in the 3d Example, the Product of .9876 by 4 is 39.504 (cutting but 3 off, according to the Rule): Then I begin with 4, and

| Exa      | mples.    | Answers. | Exa     | mples.              | Answ.    |
|----------|-----------|----------|---------|---------------------|----------|
| Barrels. | Products. | Gallons. | Barrels | .'Produ <i>E</i> ts | Gallons. |
|          | 4.936     |          |         |                     | 8.       |
| .5678    | 22.712    | 20.4408  | .5 r    | 22.2 r              | 20.      |
| .9876    | 39.504    | 35.5536  | .7 r    | 31.1 r              | 28.      |
| .5432    | 21.728    | 19.5552  | 1.9 r   | 39.9 <b>r</b>       | 36.      |

take that from (0) which I suppose next it towards the right hand, that is, from 10, rests 6; I borrow'd and 0 (in Tens place) is I from 4 (in Units place) there rests 3; 5 from 10 rests 5; I borrow'd and 9 is 10 from 15 rests 5; I borrow'd and 3 (next the lest hand, Column 2.) is 4, from 9 rests 5, and 0 from the said 3 rests 3; which said Rests are the Answers in Column 3, viz. 35.5536.

10. The 2 fhort Rules above being observed, the Decimal of a Barrel is found in Gallons, Pints, and Quarters of a Pint, very con-

cifely thus:

Example 1.

Barrels Beer .19765

7.9060

Rests Gallons 7.11540

Pints 0: 3.6 Squarters of a Pints = 4:2 quarters Pints.

I have contrived these 2 last for the Use of his Majesty's Officers of Excise, where they may almost by Inspection see the Value of the Decimal of a Barrel, to the 10th part of a Pint.

11. A most concise and easy Way to find the Value of the Decimal of a

Pound Averdupois Weight exactly.

Rule 1.] This may be done by this Rule: Multiply the Decimal given by 3, and cut off the Product 2 places fewer than are in the Decimal given; from that Product substract a 7th of itself; then take a 16 of the Remainer, (which you may do, only putting down

down the Quotient, which are Ounces; and the Remainer (less 1) are Drams, per this Example.

2. But the Rule to be infifted upon as more brief and accurate, is this: Multiply the given Number by 8, and double the Product of every 2 Digits as you go on, and the Product is Ounces and Parts. Then multiply in like manner the Parts of an Ounce, and the Product is Drams and Parts.

| .924          |    |
|---------------|----|
| 277.2<br>39.6 |    |
| 237.6         |    |
| 3 14:12       | 3. |

| •                                     | Example 1.                                                    | Example 2.     | Example 3.     |
|---------------------------------------|---------------------------------------------------------------|----------------|----------------|
|                                       | Given $= 15.924$                                              | tb .567        | tb .234        |
| Answer                                | $\int Ounces = 14.784$                                        | Oun. = $9.072$ | Oun. $= 3.744$ |
| A A A A A A A A A A A A A A A A A A A | $\begin{cases} Ounces = 14.784 \\ Drams = 12.544 \end{cases}$ | Dr. = 1.152    | Dr. = 11.904   |

Or if it be thought burthensome to the Memory to multiply by 8, &c .as per the Rule above, it will be more easily done thus:

Rule 3.] Multiply the Decimal given by 6, and after you have added the Tens carried (as usual) add thereto the Digits next towards the right hand of that which you last multiplied, and put down what is above 10 (as commonly): But when you have multiplied the Digit next the lest hand, add the Tens carried to that Digit. For instance, in the first Example above say 6 times 4 is 24, put down 4, and carry 2; 6 times 2 (the next Digit) is 12, and 2 carry'd is 14, and the 4 in Units place is 18, put down the 8, and carry 1; 6 times 9 is 54, and 1 carry'd is 55, and 2 (the middle Digit) is 57; put down 7, and add the 5 carry'd to the 9 last multiplied, and that makes 14: which I take to be the most concise and easy Method that this thing is capable of, unless as by the following

Rule 4.] Take the Primes place for so many Ounces, Halfs and Tenths of an Ounce; Seconds place for so many 2.5 Drams; and

Thirds place for so many Quarters of a Dram.

Example. In .924 th .9 is 9  $\frac{3}{3}$ , 9 Halfs, and .9= $\frac{3}{3}$  14: 6  $\frac{3}{3}$ . 2 in Seconds place is 2 times 2.5 or 5  $\frac{3}{3}$ ; and 4 in Thirds place is 1  $\frac{3}{3}$  = 14  $\frac{3}{3}$  12  $\frac{3}{3}$ .

12. The most easy and short Way of finding the Value of a Decimal of

1 th Troy Weight in 3, dw. and grs.

1st, Multiply the Decimal given by 2, and add what is carry'd, and the Digit next the right hand (as in the third Rule) gives the Ounces.

2dly, Twice Primes place in the next Decimal of Ounces is so many Penny-Weight, and every 5 in the Seconds place is 1 more.

3dly,

3dly, What the Seconds place is under or above 5, and the Thirds place; take half thereof for Grains. But if they are 25 or upward, deduct 1; if 38 or upward, deduct 2. And if the Digit in Thirds place be an odd one, you may deduct only the odd one

Examples. 3. dw. gr.

tb .5642 or 6: 15: 10

3 6.7704 do this by Inspection.

tb .9782 or 11: 14: 18 | dw. gr.

3 11.7384 by Inspection is 14: 18

at 25, and 1 and the odd one at 38, &c.

# SECT. III. Addition of Decimals.

HIS Rule has no more difficulty than that of one Denomination in whole Numbers: observing,

1. To place the Decimal Places next the Point, or the several Places next the left hand, and the Points themselves, &c. one un-

der another, as in the Examples.

2. If the Decimals to be added exceed not 5 in number, it is fufficient if they consist of 5 places where the Sum is not to be multiplied by any thing; but where it is to be multiplied, you must observe the Rules given in the beginning of Division, Sect. 6. of this Chapter. And if Decimals of a Pound Troy are to be added, the Decimals to be added ought to consist of at least 6 places: But if the Decimals be compleat, it is no matter how few the places be.

| Example 1.  | Example 2.         |                    |  |
|-------------|--------------------|--------------------|--|
| .925.       | Decimals of a      | Value in           |  |
| •0775•      | Pound Sterl.       | Specie.            |  |
| •5•         | .9.                | -18 sd.            |  |
| .25.        | .05.               | I: ~_              |  |
| .75.        | .125. —            | <u> </u>           |  |
| .05.        | •75•               | — I5: —            |  |
| .125.       |                    | <b>— 15:6</b>      |  |
|             | •                  | <del>- 13:</del>   |  |
| Sum 2.6775. | .825. ——           | <u> </u>           |  |
|             | .15                | 3: <del></del>     |  |
|             | Sum 4.225. = $l$ . | 4: 4: 6 Sum Proof. |  |

3. But



3. But because the Decimals that occur in Practice are generally, if not always promiscuous, that is, neither all compleat Decimals, nor infinite, (certain or uncertain) therefore Examples of such mixt will be the most useful.

| Example 3.        | Example 4. Promiscuons Decimals.                                       | Example 5. Promiscuous Decimals, |
|-------------------|------------------------------------------------------------------------|----------------------------------|
| 198765.           | .17565                                                                 | &c.                              |
| 19876.5.          | .6r                                                                    | .9666666                         |
| 1987.65.          | ·72 <b>9</b> 39                                                        | .i 2345                          |
| 198.765.          | •5•                                                                    | 7.6777777                        |
| 19.8765.          | .17234                                                                 | 4.00276                          |
| 1.98765.          | .97548                                                                 | .9879879                         |
|                   | .9 r                                                                   | .12729                           |
| Sum 220849.77915. | .87654 ·                                                               | .9.                              |
|                   | .09842                                                                 | 14.78593 Sum.                    |
| •                 | $\begin{cases} Sum = 5.44447 \\ or = 5.444486 r \text{ i} \end{cases}$ | or 14.7859324 r 3                |

By the 3 first Examples you see how easy the Addition of Decimals is, when placed as they ought to be, and so many are cut off for Decimals in the Sum, as are the greatest Number of places of those given; which is sufficient for the understanding of this Rule.

But because some have made a difficulty where there was none, by talking much of repeating Numbers; I have given the two last Examples, to shew that the common Method is accurate enough, without taking Notice of repeating Digits as differing from others.

In Example 4, there being 2 Decimals confisting of repeating Digits, I put down only those next the Point, and sum up them, 1st saying 9 and 6 is 15, and 1 carry'd (supposing the 9 and 6 which repeat were placed 2 places more to the right hand than 5 places, the greatest Number given) is 6: which I put down as you see in the lowest Line, and say 1 and 2 is 3, and 4 is 7, and 8 is 15, and 4 is 19, and 9 is 28, and 5 is 33, and (coming downward again at every Series you add upward, with the repeating Digits) 6 is 39, and 9 is 48; put down 8 and carry 4 to the next Series, which makes it 29, and the 6 and 9 repeating is 44; put down 4, and carry 4 to the third Series, which makes it 39, and the 6 and 9 Repeaters is 54; put down 4, and so proceed in like manner to the Digits next the Points, where the 6 and 9 are added in Course, as being there placed; so the Sum

is 5.444486 r 1. And if you had filled only 5 places each with the 2 Digits that repeat, and had added them as the 3 former Examples, the Sum would have been the same, wanting only .000016, which supposing even the Decimal of a Pound Troy, is less than a 10th of a Grain. And in the 5th Example the Difference between the Sums having regard to the repeated Digits, and the Sum the common way is so inconsiderable, as appears by the 2 Sums; not worth notice, if the 2d Rule of this Section be observed.

I have demonstrated in the 2d Example, by the Addition of the Specie answering the Decimals, that the Rules for adding Decimals are right: I shall here shew that the Rule for adding these is agreeable to that for Vulgar Fractions. For example, in adding 1865 to 1865, the common Denominator is 100000, the Numerators 36500 and 96000, the Sum of which is 132500; so the Answer, cutting off the Cyphers as useles, is 1865: and dividing the Numerator by the Denominator, that is, cutting off 3 Figures, the Answer is 1.325: But the superstuous trouble of .365

Answer is 1.325: But the superstuous trouble of putting down the Cyphers being omitted, the Work of Addition of Decimals is as above, and as per Margin.

.96

1.325

#### SECT. IV. Substraction of Decimals.

THERE is no difference between the Method of this and Intire Numbers, observing to place the Point of the Subtrahend exactly under that of the greater Decimal. Two or three Examples will suffice to shew it.

| From .9876                      |             | From                                |          |             | om 9     |         |
|---------------------------------|-------------|-------------------------------------|----------|-------------|----------|---------|
| Take .876543                    | 321         |                                     | .08765   |             | ke       | .1234   |
| Remains = .111050               | 679         | Remains =                           | 98.67235 | Rem.        | = 98     | 75.8766 |
| Example 4. From 123.45 Take 97. | Froi<br>Tak | Example 5<br>m l. 1.0976<br>se .987 |          | tb<br>om 1: | _3<br>ĭ: |         |
| Rests = $26.45$                 | Diffe       | rence .1106                         | 01       | =0:         | 1:       | 12.3136 |

The



The Reason of the Work of Substraction of Decimals is the same as is said of Addition, only substracting instead of adding the Numerators; agreeing exactly with the Deduction of Vulgar Fractions, in which Method if the Cyphers be neglected in the Results, the Method salls just into that of Substraction of Decimals, where the cutting off from the Sums, Remainers, Products, &c. is the same as dividing by a Unit with Cyphers (which is the Nature of the Denominators of Decimals) as is shewed in Division of Intire Numbers.

## SECT. V. Multiplication of Decimals.

HERE is no Difference between the Operations here and by Integers, but observe this Rule:

After the Work is over, you must set off so many Figures towards the right hand of the Product, as you have Decimals in both the Factors.

But if so many places are not in the Product (as it will happen when you multiply Decimals of small Value) then you must make up that Number by placing Cyphers towards the left hand of the Product next the Point.

| Example 1.  A Decimal by an Integer.                                   | Example 2. A mint by a mixt Number. | Example 3. A mixt Number by a Decimal. |
|------------------------------------------------------------------------|-------------------------------------|----------------------------------------|
| .012345.                                                               | 9.37241.<br>25.324.                 | 36.252.                                |
| 24690<br>37 <b>035</b><br>111105                                       | 3748964<br>1874482<br>2811723       | 72504<br>108756                        |
| 11.505540                                                              | 4686205<br>1874482                  | .01160064.<br>Example 4.               |
| •                                                                      | 237.34691084                        | A Decimal by a Decimal.                |
| Note, That in the for cause the 4 is repeated fore I say, 9 times 4 is | admfinitum, there-                  | .00009                                 |

would be carried if you actually put down

another 4) is 39; put down 9 and carry 3.

Now

.0000113079 r 1

Now if you had put down and multiplied 100 Fours of those repeated, so many Nines would also be repeated in the Product; but for brevity sake I only put down one of each with an r.

To multiply mixt Numbers, Decimals, &c. and to have only so many Decimals in the Product as you assign: And how to avoid all unnecessary Figures in such Operations.

Case 1. A mixt Number by a mixt, as 1.234504 by 9.2123, and to have only 4 Decimals in the Product.

1.234504 3212.9. = the Multiplier inverted.

2469 123 25

11.3726 =the Product.

Case 2. A Decimal by a whole Number, as .1234504 by 92123, and to have 3 places in the Product Decimals.

.1234504 32129 = the multiplier inverted.

11372.621 = the Product.

Case 3. A Decimal by a Decimal, and to have only 4 Decimal: places in the Product; as .12345 by .92123

.12345
.32129. = the Multiplier inverted.

1111 25 1

a137 = Product require di

L To

1. To perform these Operations, it is plain that the Multiplier is inverted, and Units place put next the left hand, &c. when you

place it down to multiply.

2. The due placing of it is the next thing, which is to put Units place of the intire part under that place in the Decimals of the Multiplicand, which answers that place next the right hand of the Decimals you would have in the Product: As in the first Example, because I would have 4 places Decimal in the Product, therefore I put 9 (the Units given) under the 4th place from the Point in the Multiplicand. And in the 2d Example, I put 3 (the Units place of the Multiplier given) under the 3d Decimal of the Multiplicand; and in the 3d Example, because I would have 4 Decimals in the Product, I put the Digit next the Point in the Multiplier under the 3d place of the Multiplicand, because there is no intire Number to put under the 4th place; and place all the other Figures of the Multipliers in a reverse Order, as per the Example.

3. Begin to multiply the Figure next the right hand of the Multiplier, when placed as per Rules above, into the Figure standing over it, &c. as in the common Way; observing at the same time what Tens would be carry'd if you multiplied the next Figure or two toward the right hand, and adding such Tens and half Tens or upward as Ten, and so proceed with each Figure in the Multiplier that hath another standing over it, (omitting the rest) and place the 1st Product of each Figure, viz. what the same is above ten or tens Units, under the Units of the first Line, &c. and not as in common Multiplication; which Lines add up, and the Aggregate is the Product required. The 3 Examples above make it plain, and that much Trouble and many superstuous Fi-

gures are prevented.

Case 4. But it may sometimes bappen, That, as in the following Example, so many places are not in the Sum as you proposed for De-

cimals: in which case add 1 or more Cyphers.

Thus to multiply .12345 by .234, see the Work in the Margin, to have 4 Decimal places in the Product; where the making of 13 Digits are saved.

Case 5. Also it may bappen, That there are not so many Decimal places in the Multiplicand as you propose shall be in the Multiplier; so that you cannot proceed as per Rule 2. above: in this Case you may sup-

| .12345.        | •    |
|----------------|------|
| 247<br>37<br>5 |      |
| 289 = Prod     | uct. |

ply



8. To

152

8. To multiply by a Factor confifting of 2, &c. Cyphers between two Digits.

| Example 34567 6005  | The common Way 34567 6005    |
|---------------------|------------------------------|
| Product = 207574835 | 172835<br>207402             |
|                     | $Prob_{\bullet} = 207574835$ |

9. To multiply by a Factor confifting of fo many Cyphers between two Digits, as there are Places in the Multiplicand.

 $\frac{34567}{6000005}$ Product =  $\frac{207402172835}{207402172835}$ 

10. To multiply by any Factor between 100 and 200; only putting down the Product.

| Example     | 23456<br>154 | The common Way | 23456<br>154   |
|-------------|--------------|----------------|----------------|
| Product = 3 | 612224       | ]<br>          | 93824<br>17280 |
|             |              | Prob. =        |                |

11. To multiply by a Factor confifting of a Umt between any 2 Digits.

| Example 23456<br>416 |         | The common V | Vay = 23456 416 |
|----------------------|---------|--------------|-----------------|
| Product = 9757696    |         | · ·          | 140736          |
|                      | •       |              | 23456<br>93824  |
|                      | , †<br> | Prob         | ·= 9757696      |

Thus far by only putting down the Figures of the Product.

12. From

Example 1.

12. From what is above, it is plain that any Number may be multiplied by a Factor, being the Square of any in the Propositions above, or the Rectangle of any two of them, by only making I Line besides the Product. For knowing that 1235 is the Product of 65 by 19, multiply for example 34567 by 19 (as per Case 1.) produceth 656773; and that by 65 (as per Case 6.) produceth 42690245, the same as 34567. by 1235.

| 34567             | 34567             |
|-------------------|-------------------|
| 19                | 11116             |
| 656773            | <b>3</b> 84246772 |
| 65                | 6005              |
| 42690245   Prod.: | = 2307401865860   |

|                      | or 34567<br>by 66751580 |
|----------------------|-------------------------|
|                      | 276536<br>172835        |
|                      | 34567<br>172835         |
| Examp. 2.<br>proved. | 241969<br>207402        |
| prootu.              | 207402                  |
|                      |                         |

Proof = 2307401865860

The Factor 66751580 being the Rectangle of the 2 towards the left hand; therefore 34567 is multiplied by 66751580, by only making 9 Figures besides the Product; which is 32 fewer than must be put down and added in the common way.

of the former Digits, &c. put down in course; the same may be performed as follows:

12.3456732. The con

Example 2.

The common Way 12.3456732.

123456732

123456732

123456732

741357675660 = the multiple by 6005.

1372345032912 = the multiplied by 11116.

740740392

740740392

1372419168.6795660 = Product. | 123456732

By this Method there are put down and added 38 Figures fewer than in the common way.

See also the Proof of the last | Proof = 1372419168.6795660 Example in the Book save one,

where 9 Places are multiplied by, and only 5 Lines made.

14. To

14. To multiply by a whole Number confisting of any Digit repeated any number of times, as suppose by 7 repeated 8 times.

> 12345678932 7777777 86419752524

Common Way 1234.5678932. 7777777

> 86419752524 86419752524

86419752524 86419752524

86419752524 86419752524

86419752524 86419752524

960219462886694164 Product.

Note, This Invention is so much shorter than the common Way, that in this Example there are 77 Figures fewer.

Proof = 960219462886694164

15. To multiply by a Decimal confisting of any Digit repeated ad infinitum, very easily, briefly, and accurately.

Note, This is done with 84 Figures fewer than the common Way, and is about 100 nearer the Truth.

12345678932 ·77777777, &c.

86419752524

In this Case cut one place more from the Product than the Decimal Places in the Multiplicand, for

Product 9602194724.8 r 1

Decimals of the Product; or so many more than one as there are Cyphers before the repeated Digit of the Multiplier.

16. To multiply by a mixt Number, confifting of any Number of Digits repeated.

Example. as 12345678932 by = 7777.7777, &c.by  $7 = 86_{419752524}$ 

= 96012345054164 and by .7, &c .= 9602194724.8

Sum = 96021947248888.8r1

 $Prod. = 96021947248888.8 r_1$ 

Directions

Directions concerning the 16 Compendiums above.

As to Compend. 1.] It is performed as in common Multiplication by 9, only adding the Digit toward the right hand of every one that you multiply by the 9; and when you have multiplied the last in order, add what you carry to that Digit next the lest hand, and that gives the 2 last in the Product.

Compend. 2.] Work as in the last, only with this difference, that you must add the 7 in Units place to the Product of 8 by 5, and the 6 to the Product of 8 and 4, &c. Lastly, add what you carry

to the 4, is 7, and then put down the 3 next the left hand.

Compend 3.] When there is 1 in Units and 1 in Tens place, befides a place Decimal, or 114, 116, 117, &c. you must add to each Product of every Digit multiplied by 7, the 2 next Digits standing towards the right hand, when there are so many. As to the Product of 6 by 7, I add the 7 next the 6; and then say, 7 times 5 is 35, and 5 carried is 40, and 6 is 46, and 7 is 53; put down 3, and carry 5, &c. Lastly, when you have multiplied the 3 by 7, and added the 4 and 5, add the 3 carried to the 3 and 4 is 10, and 1 carried and 3 is 4.

Compend 4.] This is performed as the last, only adding 3 Figures (when you have so many) standing toward the right hand of every Digit which you multiply by the 4. And at last the 3 carried is added to 3, 4 and 5 is 15, and the 1 carried (the 5 being put in the Product) added to the 3 and 4 make 8, which put down, and

the 3, as you fee in the Example.

Compend. 5.] Whereas here you have 4 Units towards the left hand, you must add 4 Figures (when you have so many) standing towards the right hand of every Digit you multiply by 6. And what is carried must be added to the 4 places next the left hand of the Multiplicand at last, and then 3 and then 2, and then put the

3 in the Multiplicand down.

Compend 6.] Say 5 times 7 is 35, 5 and carry 3; 5 times 6 is 30, and 3 is 33, and 6 times 7 makes 75; put down 5, and carry 7, and fay 5 times 5 is 25, and 7 is 32, and 6 times 6 makes 68; put down 8, and carry 6, and fay 5 times 4 is 20, and 6 is 26, and 6 times 5 makes 56; put down the 6 and carry 5, and fay 5 times 3 is 15, and 5 carried is 20, and 6 times 4 makes 44; put down 4, and fay 6 times 3 is 18, and 4 is 22.

Compend. 7.] In this Example, because there is a Cypher between, you must multiply the two first as usual, and to the Product of the 5 in the 3d add what is carried, and the Product of the 6 in the X 2

Digitized by Google

first or Units place of the Multiplicand. Then to the Product of 5 in the 4th add what is carried, and the Product of 6 in the 2d or 6, &c. and lastly multiply 4, then 3 by the 6, and put the Product down.

Compend 8. Multiply as usual to multiply the 4, then say 5 times 4 is 20, and 2 is 22, and 6 times the 7 is 64, 4 and carry 6; 5 times 3 is 15, and 6 is 21, and 6 times the 6 (or 36) makes 57; put down the 7, and multiply the 5, 4 and 3 by the 6, adding the 5 carried.

Compend. 9.] In this and the like Cases there is no more difficulty than in multiplying by a single Digit; for the Number of Cyphers being equal to the places in the Multiplicand, the Product by the 6 falls just to the left hand of the Product by the 5. But if the Product of the Digit next the left hand by that in Units place, and what is carried be less than 10, then a Cypher must be put down between the two Products.

Compend. 10.] This is performed by confidering the Nature of the Operations of the first and 6th Compendiums. For 4 times 6 is 24, 4 and carry 2; 4 times 5 is 20, and 2 carried and 5 times 6 makes 52, 2 and carry 5; 4 times 4 is 16, and 5 is 21, and 5 times 5 is 46, and 6 in Units place makes 52, 2 and carry 5; 4 times 3 is 12, and 5 is 17, and 5 times 4 makes 37, and 5 (in Tens place of the Multiplicand) is 42, 2 and earry 4: 4 times 2 is 8, and 4 is 12, and 5 times 3 makes 27, and 4 (in Hundreds place) is 31; put down 1 and carry 3. Then (having multiplied all by the first Figure) I say 5 times 2 is 10, and 3 carried is 13, and 3 in Thousands place is 16; 1 time 2 is 2, and 1 carried is 3.

Compend. 11.] This is performed as the last, only instead of adding the Digit next the right hand, &c. to the Product of the second Figure in the Multiplier, you must here add it to the Product of the first Figure, because the 1 stands next that Digit; and then you

keep to the 1st and 6th Compendiums, as in the last.

Compend 12.] By this Compendium is shewn how to multiply by 66751580, or other large Number produced by the Multiplication of 2 or Square of one known Number, by only making 1 Line besides the Product. The Example is that of the 5th and 8th.

Compend. 13.] This is likewise an Example shewing how the Work of Multiplication by large Numbers may be shorten'd, by dividing such large Number into 2, 3, &c. such Numbers as fall within some of the abovesaid Rules: as 111166005 I divide into two Multipliers, 11116 and 6005, &c. done at twice.

Compend.



Compend. 14.] This Compendium is performed, first, by multiplying the given Number by one of the repeated Digits, as in the Example above the Product is 86419752524, from which the general Product is found thus; Add that Product from the right hand toward the lest, and say 4 and 2 is 6, and 5 is 11, (put down the 4, 6 and 1, and for every 10 you arrive at, put 1 to the Sum more than what is wrote down) and 1 is 12, and 2 is 14, and 5 is 19, and 7 is 26, put down the 4, 9 and 6; then adding 1 more for the 2d 10, I say, and 1 is 27, and 9 is 36, and 1 (for that 3d 10)

is 37, and 1 next the 9 is 38; so I put down the 6 and 8.

Then because I have added as many places as are in the Multiplier, I leave out Units place (4) and add from 2 in Tens place to 4. the 3d Figure from the left hand inclusive, which with the 3 carried (part of the faid 38) makes another 38; put down that 8. and carry 3, so adding that to 5, &c. to 6, the 2d Figure from the left hand (leaving out the 2 first Figures next the right hand) that Sum is 42; I put down the 2, and carry 4, adding that to 2, (the 4th from the right hand, leaving out the 524) and so forward to 8. next the left hand inclusive, the Sum is 46: I put down the 6, and add the 4 to the Figures between 5 and 8 inclusive, (leaving out the 2524) and the Sum is 44, I put down 4, and add 4 to the Figures between 7 and 8 inclusive, (leaving out the 52524, and so every time I leave out 1 more) as 4 and 7 is 11, and 9 is 20, &c. to 8 makes 39; put down the 9, and add 3 to 86419, as they stand from the right to left, as before, and the Sum is 31: put down 1. and add 3 to 8641, as taught before, and the Sum is 22; put down the 2, and add 2 to the 864 as aforesaid, and the Sum is 20; 0, and carry 2 and 6 is 8, and 8 is 16; put down 6, and fay 1 and 8 is q: fo have you the Answer only by easy Additions.

Compend. 15.] If the repeated Figure be a Decimal for the Multiplier, I multiply as before to gain the 86419752524; whence the Product is found, first by adding that whole Line from the right to the lest hand, which makes 53: I add the 5 to the 3 is 8, which I put down for the repeating Digit of the Product. Then add the 5 carried to 2 (in Tens place) and that to the rest of the Line towards the lest hand makes 54; put down the 4, and carry 5 to the 5, (in Hundreds place) &c. adding all toward the lest hand as before, leaving out 1 toward the right for every Digit put in the Sum: which is a most easy and brief Way of answering all Que-

stions of that kind.

Compend.

Compend, 16.] If the Multiplier be a repeated Digit and a mixt Number, and the Multiplicand an intire Number, you have nothing to do more than in the last Compendium: only to put so many of the repeated Digits toward the right hand of the integral part of the Product, as there are places in the integral part of the Multiplier, as in the Example 16. above.

A second Example of the 16th Compendium, to multiply 1234

by 333.3333333, &c. or 333.3 r. See the Operation.

Sum = Proof = 411333.3 r

In this (as the last) having multiplied the 1234 by 3, it produces 3702, which I add from the right hand towards the lest, and the Sum is 12; so 2 and the t is 3 = the repeating Digit, and 1 carried added to 0, 7 and 3 is 11: I put 1 down, and carry 1 and 7 is 8, and 3 is 11; put 1 down, and carry 1 to 3 makes 411.3 r; and because there are 3 places Integers of the Multiplier, I therefore put 3 places of the repeating Figure towards the right hand of the 411, makes 411333.3 r the true Answer, as by the first Example and Rules for working the same under the last mentioned Compendium.

Or if there be Decimal places in the Multiplicand: you may omit fo many of the repeating Integers in the Product: as in the above Supposition 1.234, then the Product will be 411.3 r as per the

Rule under the 15th Compendium.

17. Or if it should be supposed (tho' such a thing does not often happen) that the Decimal Digits repeat in both the Factors: then work as under the 15th Compendium, and to that Result add the Product by the next, &c. Digits, putting down what would be carried if the Decimal Digit were really repeated.

Example 3.6 r Proof 
$$3\frac{1}{3} = \frac{13}{3}$$

Product = 110

Sum = 1.22 r Product = 14.6 r

Sum = Answer = 15.8 r 1

18. But

Digitized by Google

18. But if the repeating Digits in both Factors begin after the Primes place, (altho' the Case may rarely happen) you may proceed as in the following Example.

To multiply 27.16 r 1 by 5.23 r 1.

27.16666666, &c. 5.233333333, &c.

.8150 =Product by .03 in .27.16 r 1

.905r1 = Sum of the last Line, as per 15th, &c. Compend. 5.433r1 = 27.16r1 in .2 135.833r1 = 27.16r1 in 5

142.172 r 1 = the true Product, or Sum of the three last Lines.

But if the Product of 3 by 6 and what is carried had not amounted to even Tens (as here 20) then the Digit in Units place of the 1st Product will repeat, and must be so considered in adding them thus

by 5.23 r

.8153 r I

.90592 r 3
5.435 r I

135.8 r I

142.23037 r 3

In this Case I suppose 3 repeated so often in .8153 (as .81533) till by adding, it brings out the .90592, and shews the repeating of the 592.

I need say no more to illustrate the last Example; and having now finished what I thought might be of real use in Operations of Multiplication, whether by Decimals or Integers; I shall not trouble my Reader with useless as well as troublesome and tedious Speculations. But for the Solution of all Questions in Practice, as of Concrete Numbers, I refer to the third Rule in the next Sect. (6.) for making your Decimal longer or shorter, as occasion requires, according to the Greatness of the Number by which such Decimal is to be multiplied: for which purpose a Table is there inserted, to direct on almost all Occasions.

These

These 18 Compendiums, as well as the 3 or 4 Cases preceeding them, are new to me; tho' I am since my writing them informed, that one or two of the first and most easy of these Compendiums are in Mr Leyburn's Arithmetic; however that be, I have no reason

to omit any, as being my own Contrivance.

These Operations, altho' at first they may seem difficult, and to burthen the Memory; yet I can assure the Reader, that by Use they will become as easy as common Multiplication, (as I know by Experience) and that they very much abbreviate the Operations, cannot be deny'd: nay, many of these new Compendiums are not only shorter, but easier and more accurate than the common Way. And I doubt not but these, and those many in Reduction of Decimals, being new and great Improvements, will be accordingly received by the Ingenious.

That Multiplication of Decimals is done by the same Rule as Vulgar Fractions.

To instance in multiplying .126 by .74: According to the Rule of Vulgar Fractions, the Product of the Numerators is 9324, of the Denominators 100000, the new Fraction 1888 as a Vulgar; or as a Decimal, by the Rule in Notation, .09324, that is, 9324 being divided by 100000, quotes .09324.

Hence appears wherein the Preference of the Decimal Fraction confifts: As, Denominators  $\begin{cases} 1000 \\ 100 \end{cases}$ Product = 100000

9324 Product.

that is 1838 as Vulgar. or .09324 as Decimal.

1. In the easy Multiplication of the Denominators, which is only putting the Cyphers of the one toward the right hand of the other.

2. In that the Decimal can be expressed without its Denomina-

tor. And,

3. In Case of finding the Value of the Decimal Fraction, the dividing by the Denominator is done by Inspection, which in Vulgar Fractions often requires a tedious Operation, &c.

SECT. VI.

#### SECT. VI. Division of Decimals.

THIS Rule is the same, as to the Operation, with Division of Intire Numbers; but it must be observed,

1. To know bow many Cyphers to add to the Dividend, that so the Quotient may have a competent Number of Decimal Places, take this

Rule. Consider how many Decimals will suffice to be in your Quotient, (upon the Foundation of the Rule of Decimals, as per the little Table following the next Rule) and add that Number to the Decimal places in the Divisor, and then make the Decimal places in the Dividend equal to that Sum, by putting Cyphers toward the right hand, if need be.

2. To know (when the Work of Division is ended) how many Places of

the Quotient are Decimal.

Rule. The difference between the Decimal places in the Dividend and Divifor, are the Decimal places toward the right hand of the Quotient.

But if so many Places be not in the Quote as the said difference is, you must make up that Number by prefixing Cyphers towards

the left hand, as per the Rule in Reduction.

I could here give another Rule for this purpose, but it not being so intelligible and useful in all Cases, the inserting of it may only serve to hinder the Learner in his Progress: I therefore omit it.

A few Examples will enable the Reader to apply the Rules above, and fully to understand Division of Decimals; as in the 9 Cases

following. But first observe,

3. The Number of Places in a Decimal sufficient, when to be multiplied as followeth.

|        | Decimal of Sterling.     |                  | be Decimal<br>Shilling.  |                  | lb. Troy. |        | e Decimal<br>. Averdu. |                  | Decimal of<br>errel Beer |                                            |
|--------|--------------------------|------------------|--------------------------|------------------|-----------|--------|------------------------|------------------|--------------------------|--------------------------------------------|
|        | When to be<br>multiplied | Pla-             | When to be<br>multiplied | Pla-             |           | Pla-   | When to be multiplied  | Pla-<br>ces      | When to be<br>multiplied |                                            |
| suffi- | by these or<br>under.    | suffi-<br>cient. | by these or<br>under.    | suffi-<br>cient. |           | suffi- |                        | suffi-<br>cient, | <i>i</i> .               | > 777' 1 74 7.                             |
| 9      | 100000                   | 8                | 20000000<br>2000000      | 9                | 190000    | 9<br>8 | 4000000<br>400000      | 9<br>8           | 3800000<br>380000        | Without lo-<br>fing a Unit<br>of the least |
| 6      | 1000                     | 6                | 200000                   | 6                | 1900      | 6      | 40000<br>4000          | 6                | 38000<br>3800<br>380     | Denomina-                                  |
| 4      | 100<br>10<br>1.0         | 5<br>4           | 2000<br>200<br>20        | 4                | 1.9       | 4      | 400<br>40<br>4.0       | 4                | 38<br>3.8                | Vid. aljo<br>Cuje 5.                       |
| ,      |                          | 2                | 2.0                      | 1                |           | 1.     |                        |                  | ]                        | above.                                     |

I have

I have inferted this Table, that you may not run your Decimal to more places than are absolutely necessary.

To apply the first and second Rules above.

Example 1. To divide a mist Number by a mixt, as 237.34691084 by 25.324.

Example 2. To divide 11.50554 by by 932, so that six places Decimal may be in the Product.

932)11.505540 (.012345 = Quotient as per the two Rules above, adding one Cypher to the Dividend.

4660

25.324)237.34691084(9.37241-

| 9 4309 |
|--------|
| 183371 |
| 61030  |
| 103828 |
| 25324  |
| 0      |

Example 3. To divide .1234567 by .321, a Decimal by a Decimal, and to have seven Decimal Places in the Quote.

Here according to the first Rule above, to have 7 places in the Quotient, I must have 10 in the Dividend, which I make the other places up by adding 3 Cyphers.

2. According to the 2d Rule, I point off 7 Decimal places in the Quote, because that is the difference between those places in the Dividend and Divisor.

Example 4. To divide a Decimal by a whole Number, as .463 by 3214, and to have 8 Decimal places in the Quotient.

Example 5. To divide a whole by a mixt Number, so as to have 9 places in the Decimal Part of the Quote; as 9 by 3.214.

3.214) 9.000000000000 (2.800248911 .... = the Quote:

.321) .1234567000 (.3846003,

14160 13040 18400

2130

Example

Example 6. To divide a whole Number by a whole, and to have 10 Decimal Places in the Quotient; as 5 by 365.

I 350

2550

3600

3150 2300

0500

135

365) 5.0000000000 (.0136986301

Example 7. To divide a mixt Number by a Decimal; as 1.25999 by .002: and to to have 4 Decimal Places in the Quotient.

.002) 1.2599900 (629.9950

Half the Dividend gives the Figures of the Quote.

Example 8. To divide a whole Number by a Decimal,

as 999 by .00013; and to have only 3 Decimal places in the Quote.

Example 9. To divide a Decimal by a mixt Number, as .5 by 7.5; and to have 2 places Decimal in the Quotient: which are sufficient in case of Decimals of a Gallon, and the Quotient not required to be multiplied by any thing; as follows.

.00013) 999.00000000 (7684615.384

| 89  |   |
|-----|---|
| 110 | ٠ |
| 60  |   |
| 80  |   |
| 20  |   |
| 70  |   |
| 50  |   |
| 110 |   |
| 60  |   |
| 8   | R |

These are all the Varieties that can happen in Division of Decimals: And the Exemplification of the two Rules sirst above, appear at one View thus.

The

| The 9 Caf. | Divisors. | Dividends<br>given. | as per Rule<br>1. above. | Quotients, baving Deci-<br>mals, as per Rule 2. |
|------------|-----------|---------------------|--------------------------|-------------------------------------------------|
| 1          | 25.324    | 237.346910          | 84                       | 9.37241.                                        |
| 2          | 932.      | 11.50554            | . 0                      | 012345.                                         |
| 3          | .321      | .123456             | 7 <b>00</b> 0            | .3846003                                        |
| 4          | 3214.     | .463                | <b>0</b> 0000            | .00014405                                       |
| 5          | 3.214     | 9-                  | 00000000000              | 2.800248911                                     |
| 6          | 365.      | 5.                  | 000000000                | .0136986301                                     |
| 17         | .002      | 1.25999             | . 00                     | 629.9950                                        |
| 8          | .00013    | 999.                | 0000000                  | 7684615.384                                     |
| 9          | 7.5       | .5                  | 00                       | .06 <i>r</i> I                                  |

Of Decimals by way of Vulgar Fractions.

To work any Question so as to give the Answer exquisitely (without omitting any thing) by Decimals as well as by Vulgar Fractions. [Note, This is my own Thought, as the rest of what is new in Decimals is.]

It has been one great Objection against Decimals, that where the Decimals in Quotients happen not to be compleat, but infinite, the Answer cannot be exhibited so accurately, as to be truly said to be the whole Truth! But this is easily solved, by considering the Nature of the Remainers in the dividing and making a Fraction of that and the Divisor.

So that the Proof of this depends both upon Vulgar and Decimal Fractions worked promiscuously, or of Decimal worked by way of Vulgar Fractions.

To instance in Example 3. foregoing, the true Quote (as in the Margin below is proved) is = .3846003. For the 37 is what remained in dividing the last part of the Dividend; and besides the 2 places next the right hand thereof, there being 8 more Decimal places towards the lest hand, therefore so many Cyphers are in the Numerator of that part expressed by way of Vulgar Fractions, which must always be observed.

The Truth of this appears by reducing this mixt Number to one Fraction: for the Product of .3846003 multiplied by the Denominator .321, produceth .1234566963; to which adding the Numerator, the Sum is .1234567: which placed over the Denomina-

Digitized by Google

.3846003

add { .1 234566963 .000000037

Sum .1234567000

or  $\frac{1234367}{321}$  for Proof.

.321

tor .321, gives the Fraction answerable to the first proposed Question in Example 3.

And by the same Rules the Quote or Answer in the 4th Example is to be expressed thus .00014405 .2.3211. Which if reduced into a single Fraction, as before, is 3211.

So likewise the accurate Answer

or Quotient in Example 5. is .2800248911.

In Example 6. the exact Quote is consequently = .0136986301

\*\*\*\*Description of the Proof.

10 Example 6. the exact Quote is consequently = .0136986301

\*\*\*\*Proof.\*\*

10 Example 6. the exact Quote is consequently = .0136986301

\*\*\*Proof.\*\*

10 Example 6. the exact Quote is consequently = .0136986301

\*\*\*Proof.\*\*

11 Example 6. the exact Quote is consequently = .0136986301

\*\*\*Proof.\*\*

12 Example 6. the exact Quote is consequently = .0136986301

In Example 8. The precise Quotient is 7684615.384. Or by reducing the 2 forts of Fractions to one Fraction, the whole will stand thus 7684615:833313 without any loss; which (for Proof) is reducible to ... 323.

Lastly, In Example 9. The true Quote is .0666 r1, or rather .06' . ; whose Value (if the Fraction of a Pound) is known to be 16 d. We will try if it will prove so by the Method shew'd above.

The 50 remaining (by the Rule relating to the third Example) is .050, there being 1 more place Decimal towards the left hand

besides the 2 places in the Remainer: so that the .06° .1 includes the whole Answer without any Loss, as per the Work in the Margin; and is reduced to .12, whose Value, as per Vulgar Fractions, having respect to the Points, as in Multiplication and Division of Decimals, is 1 s. 4 d.

3. Note, That to divide any Decimal, Whole, or Mixt Number by a Unit with Cyphers, is only to remove the Point so many places towards the left hand, as there are Cyphers. Thus,

The new Fract. = 
$$\frac{.5}{7.5}$$
 l.  $\frac{7.5}{.06}$  mult.

The Value is thus found, as of Vulgar;  $\frac{.450}{.05}$  add.

 $\frac{.5}{20}$  .500 Sum.

7.5) 10.0 (1 s.

 $\frac{2.5}{1.2}$ 
1.2

7.5) 30.0 (4 Pence

| If 10                             | divide<br>divide | 9876<br>it, – | 5.4 th   | e Quo  | ote is 9876.52<br>— 987.654 |   |
|-----------------------------------|------------------|---------------|----------|--------|-----------------------------|---|
| 1000                              | -                |               |          |        | <b>—</b> 98.7652            | 1 |
| . 10000                           | -                |               |          | •      | <b>—</b> 9.87654            | Ļ |
| 100000                            |                  |               | <u> </u> |        | <b>—</b> .987654            | Ļ |
| 1000000                           |                  |               |          |        | <b>—.</b> 098765            | 4 |
| 4. Or if 60 divide 6000 — 60000 — | de 987           | 65.4 t        | the Qu   | ote is | 164.609<br>16.4609          |   |
| 600000                            |                  |               |          |        | 1.64609<br>.164609          |   |

dividing only by the 6, and cutting of fo many from the Quote (besides the Decimal Places in the Dividend) as there are Cyphers in the Divisor.

5. That Division of Decimals is performed as that of Vulgar Fractions.

As if 1888 be divided by 1836, the Quote will be 33136888888888888 equal to the Decimal Quote 3846003, by dividing the Numerator by 321,

321) 1234567000 (.3846003

and cutting as many from the Quotient as there are Cyphers to the right of 321, as per Margin.

#### SECT. VII. The Rule of Proportion by Decimals.

THIS being the same as in whole Numbers, observing Multiplication and Division of Decimals for the proper Rules of pointing out the Products and Quotients; I need only give one Example.

What is the Interest of l. 325: 15: 0 for a Year at 4l. 10 s. per

Cent. per Annum?

The Answer is 1. 14.65775, as per 100. 4.5 :: 325.75 Compend. 6, &c. or 1. 14: 13: 11, by the 6th Rule of the Valuation of Decimals.

L 14.65775 Answer.

And this puts me in mind of

SICT.

SECT. VIII. The Use of Decimals in the calculating Interest Simple and Compound.

I.CIMPLE Interest is the Interest of the Principal only, for the

Time proposed.

II. The true Discount of Money is in proportion to its Principal: As 5 is to 105 (at 5 per Cent.) or as 6 to 106 at 6 per Cent. &c. So that the Discount of any Sum for any time is less than the Interest for that time, and consequently the Discount of any Sum at any rate is found for a Year by this Proportion:

As 100 and the Rate: is to the Rate: fo any Sum to the Dif-

count for the fame time.

III. Compound Interest is the Interest of the Principal and of the Interest put together, (the later not being paid when due, but be-

comes Principal.)

1. As to Simple Interest, there are Laws in most Countries to ascertain it, that no one shall take more, under the penalty of forseiting the Principal, &c. as now ours in 5 per Cent. for what is lent for the future.

To find the Simple Interest of any Sum for a Year.

(1.) What is the Interest of 1.364: 17:54 at 5 per Cent?

(2.) But if the Shillings, &c. are easily by Inspection reducible to a Compleat Decimal, the best way is to do such Questions decimally.

Example.

Example. What is the Interest of 1.364:18:0 for a Year, at 5 per Cent?

See the Operation in the Margin, 100. 5:: 364.9 the Answer being  $l. 18:4:10\frac{1}{4}$ .

(2.) If the Interest of any Sum be required for any Number of Days (or part of a Year) 'tis best done by Decimals. 18.245 Answer.

Example. Suppose the Interest of the Principal in the last Case is required only for 145 Days:

ist say, 100. 5:; 364.9

the Interest = 18.245 for 1 Year. l. Days. 2dly, 365. 18.245 :: 145  $365)2645.525(7.248 \cdot \frac{3}{3} = \frac{3}{3}$  Answer.

> 905 1752 2925

2. And consequently the Interest of the said 1. 364: 17: 114 for 314 Days is found, reducing the odd Money to Decimals, as per the fecond Rule in Reduction, which is 1.871875: Therefore

100. 5:364.871875. 18.2435937 = Interest for a Year.Days. Days. 365. 18.2435937 :: 314. 15.694 = the Answer.

3. By the same Rule with the two last, the Interest of l. 1 for one Day at any rate is found, and they are Multipliers for finding the Simple Interest of any Number of Pounds for any Days:

> **For 100.** 5 :: 1. .05 ] And as 365. .05 :: 1. .000136, &c.

Thus

These Numbers may be thus used: Suppose I would know the Interest of 1. 400 for 297 Days at 5 per Cent. I multiply .0001369863 by 297, and the Product is the Interest of 1, 1 for 297 Days; which Product multiplied by 1. 400, gives the Interest of 1. 400 for 297 Days = the Answer, l. 16:5:5.

4. If you divide 100 by the Rate of Interest, it gives the Years Purchase in Fee of Lands Value in many places. And consequently if 100 be divided by the Years Purchase that the generality of Lands are valued at, the Quote gives the proportionable Rate of Interest. Which is a Rule that many go by, to know whether Interest is too high or low, by observing how Lands sell: It happens right with us at present, for 5 per Cent. agrees with 20 Years Purchase of Land.

5. It is easy to find the Simple Interest of any Sum for any Number of Years, as suppose l. 100: 15, for 7 Years at 5 per Cent. say

25.2625 =Answer, or l.35:5:3

6. And consequently for the Interest of a Sum under l. 1, as 15s.

100. 5:: .75. .0375 for 1 Year; or .2625 l. for 7 Years.

7. Finding the Interest of l. 732 for 5 Years to be l. 183, what is that per Cent. per Ann.? I first divide 1.183 by 5 Years, and the Quote is 1.36.6. Then say, As 732. 36.6. :: 100. 5 per Cent. Answer.

Here followeth Tables of Interest, Simple, Compound, and Discount, with their Calculation and Use.

Z A TABLE

# ATABLE of SIMPLE INTEREST at 4 per Cent.

| •                                                                                     |                                     |                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                        |                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Day.                                                                                  | 2 Days.                             | 3 Days. 4 I                                                                                        | Days. 5 Days.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6 Days. 7                                                                                                                | Days. 8 Days.                                                                                                                                                                                                                  |
|                                                                                       | s. d. q.                            | s. d. q. s.                                                                                        | d. q.s. d. q.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s. d. q s.                                                                                                               | d. q. s. d. q.                                                                                                                                                                                                                 |
| cipal. 5. d. 4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.                                | 1 1 1 1 1 2 2 1 2 2 1 0 3 1 2 0 2 0 | d. q. s.                                                                                           | 1 1 1 1 2 2 3 3 3 4 1 C 1 1 1 2 2 3 1 4 1 5 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1<br>2<br>3<br>3<br>1<br>1<br>1<br>1<br>2<br>1<br>2<br>3<br>1<br>2                                                       | d. q. s. d. q.  1                                                                                                                                                                                                              |
| 50 1 1 70 1 80 2 2 200 5 300 7 400 1 0 500 1 1 3 700 1 6 800 1 9 900 1 1 1 1 1000 2 2 |                                     | 1 3 3 1<br>1 11 3 2<br>2 7 2 3<br>3 3 2 4<br>3 11 2 5<br>4 7 1 6<br>5 3 1 7<br>5 11 C 7<br>6 7 C 8 | 5 1 6 2<br>6 1 7 3<br>7 1 9 1<br>8 2 100 0<br>10 2 1 1 0<br>9 0 2 2 1<br>7 2 3 3 2<br>6 0 4 4 2<br>4 3 5 5 3<br>3 1 6 7 0<br>1 2 7 8 0<br>1 2 9 1 0 1 1 2<br>9 1 1 2<br>9 1 1 2<br>9 1 7 8 0<br>1 9 1 8 0<br>1 9 1 7 8 0<br>1 9 1 8 | 1 00 2<br>1 2 1<br>1 3 3<br>2 7 2<br>3 11 2<br>5 3 1<br>6 7 c<br>7 10 2<br>9 2 2 10<br>10 6 1 13<br>11 10 0 13<br>13 1 3 | 2 1 10 2<br>11 0 1 00 2<br>1 00 3 1 2 3<br>1 2 3 1 5 0<br>1 4 2 1 7 0<br>1 6 2 1 9 0<br>3 00 3 3 6 0<br>4 7 1 5 3 1<br>5 1 2 7 00 0<br>7 8 0 8 9 1<br>9 2 2 10 6 1<br>0 8 3 12 3 1<br>0 8 3 12 3 1<br>1 4 00 1<br>3 9 3 15 9 2 |

|                  |            |                 |     |          |         |     | _            |               |            | _           |          |     |        |        | _       |                  |                 | _   |               |         |        |
|------------------|------------|-----------------|-----|----------|---------|-----|--------------|---------------|------------|-------------|----------|-----|--------|--------|---------|------------------|-----------------|-----|---------------|---------|--------|
| Prin             | 9 <b>1</b> | Da <sub>j</sub> | ys. | 10       | Day     | 15. | 20           | Day           | 15.        | 30          | Day      | 5.  | 40 .   | Days   | r.      | 50               | Day             | ·s. | 60°           | $D_{I}$ | ۶.     |
| cipal. s.        | a          | 7.              | q.  | ļ. s.    | d,      | q.  | l. s.        | d.            | <b>q</b> . | /. 's.      | d.       | q.  | l. s.  | d.     | q.      | . s.             | d.              | q.  | ł. <b>s</b> . | d.      | q.     |
| 4.               |            |                 |     |          |         |     |              |               |            | l           |          | _   |        |        |         |                  | _               |     |               |         |        |
| 1                |            |                 | "   |          |         | J   | i            | _             | .2         |             |          | 3   |        | I      | 0       |                  | I               | 1   | İ             | • 1     | 2      |
| 2                |            |                 | 2   |          |         | 2   |              | 1             | 2          |             | 1        | 2   |        | 2      | 0       |                  | 2               | _   |               | 3       | I      |
| 3                |            | I               | 3   |          | 1       | 0   |              | 2             | 1          |             | 2        | 1   |        | 3      | I       |                  | 4<br>5          | 1   | Í             | 4       | 3<br>T |
| 4                |            | 1               | ĭ   |          | 1       | 1   |              | 2             | 3          |             | 3        | d   |        | 4      |         |                  | 6               | 2   |               | 7       | -      |
| 6                |            | ī               | 2   |          | J       | 2   |              | 3             | í          |             | 4        | 3   |        | 5<br>6 | 1       |                  | 7               | 3   | İ             | . 1     | 3      |
| 5<br>6<br>7<br>8 |            | I               | 3   |          | I       | 3   | ·            | 3             | 3          |             | 5        | 2   |        | 7      | il      |                  | ġ               | F   |               | 11      | ī      |
| 8                |            | .2              | 0   |          | 2       | . 1 |              | 4             | I          |             | 6        | 1   |        | 8      | 2       |                  | 10              | 2   | I             | co      | 2      |
| 9<br>10          |            | 2               | 1   |          | 2       | 2   |              | 4             | 3          |             | 7        | 9   |        | 9      | 2       | Ţ                | <b>Q</b> O      | o   | 1             | 2       | I      |
|                  |            | 2               | 2   |          | 2       | -1  |              | 5             | I          |             | 7        | 3   | •      | 10     | 2       | 1                | 1               | d   | I             | 3       | 3      |
| 20               |            | 4               | 3   |          | 2       | I   |              | 10            | 2          | 1           |          | 3   | 1      | 9      | 0       | 2                | 2               | 4   | 2             | 7       | 2      |
| 30               |            | 7               |     |          | 7       | 3   | , I          | 3             | 3          | 1           |          | 3   | 2      | 7      | 2       | 3                | 3               | 2   | 3             | II      | 2      |
| 40               |            | 9               | 2   | 1        | 10<br>I | 2   | J<br>2       | 9             | 1          | 2           |          | 2 2 | 3      | 6      | 9       | 4                | 4               | 3   | 5             | 3       | I      |
| 50 I             |            | 2               |     | I        |         | 3   | 2            | 7             | 2          | 3           |          | 2   | • 4    | 4      | 3       | . 2              | 5               | 3   | 6             | 7       | 0      |
| 70 ]             | _          |                 | 2   | 1        |         | 2   | 3            | •             | 3          | 4           |          | 1   | 5<br>6 | 3<br>I | 2       | 7                | 7<br>8          | d   | 7<br>9        | 10      | 3      |
| 80               |            | 4<br>7          | d   | · 1      | _       | d   | 3            | б             | 0          | 5           |          | 1   | 7      | 00     | d       | 5<br>6<br>7<br>8 | 9               | ,   | ر<br>10       | 6       | 2      |
| 90               |            | 9               | 1   | I        |         | 3   | 3            | II            | 2          | 5           |          | 0   | Ź      | Io     | 3       | 9                | 10              | 2   | 11            | 10      | à      |
| 100              | ı          | I               | 3   | 2        | . 2     | 1   | 4            | 4             | 3          | 6           |          | 0   | 8      | 9      | i       | 10               | ΙI              | 2   | 13            | I       | 3      |
| 200              | 3. I       | I               | 2   | 4        | 4       | 3   | 8            | 9             | I          | 13          |          | 3   | 17     | 6      | 2 I     | I                | 11              | o   | 1 6           | 3       | 3      |
| 300              |            | Ţ               | q   | 6        | •       | 9   | 13           | I             | 3          | 19          |          | 3   | •      | 3      | 3 [     | 12               | 10              | 2   | 1 19          | 5       | 2      |
| 400              |            | .0              | 3   | 8        | -       | 1   | 17           | 6             | 2          | 1 6         | _3       | 3   | 115    | 00     | 3 2     | 3                | 10              | _1  | 2 12          | 7       | I      |
| 500              |            | 0               | 2   | 10       | 11      | 2   | [ [          | . I I         | 9          | I 12        | 10       | 2   |        | 10     | C 2     | . 9              | 9               | 2   |               | 9       | 0      |
| 7031             | _          | 0               | 2   | 13<br>15 | I       | 3   | 1 6<br>1 10  | <b>3</b><br>8 | 3          | 1 19<br>2 6 | <b>5</b> | _1  | 2 I2   | 7      | 1 3 2 3 | 5<br>16          | . <b>9</b><br>8 | 2 4 | 3 18          | 11      | 0      |
| 800              | •          | 9<br>9          | 2   | 17       | 4 6     | 9   | 1 15<br>1 15 | 00            | - 1        | 2 I 2       | 7        |     | , . ·  | 4      | 23      | 7                | . 8             | 05  |               | 00      | 2      |
| 900 17           |            | 9               | 1   | 19       | · 8     | 2   | 1 19         | 5             | 21         | 2 19        | 2        | c : | ,      |        | 04      | 18               | 7               | 2   | · 3           | 4       | 2<br>I |
| 10001            | •          | 8               | 210 | _        | II      | 0   | 2 3          | 10            | -1         | 3 5         | 9        | c,  | ,      | 8      | 0.5     | 9                | 7               | 0.6 | ·.            | - 1     | Ō      |
| ditto 1.5        | 986        | 30              | i]  | 1.0      | 958     |     | 2.19         | -             | - 4        | 3.28        | 3767     | 1   | 4.38   |        |         | 5.479            | •               | 1   | 6.579         | 342     |        |
| 1                |            |                 | J   |          | -       | ł   | •            | •             | ı          |             |          | .   | '      | •      | l       | •                | • •             | ١   | -,,           | - •     |        |

| •                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                     | _                                                                                                                                                             |                                                                                                                        |                                                                             |                                                                                         | •                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Prin-                                                                                                                                                                                                                                                                                                                                                                                              | 70 Days                                                                                             | . 80 Days.                                                                                                                                                    | 90 Days.                                                                                                               | 100 Days.                                                                   | 110 Days.                                                                               | 120 Days.                                                                                                                                                   |
| cipal.<br>l.                                                                                                                                                                                                                                                                                                                                                                                       | l. s. d.                                                                                            | q.l. s. $d.$ $q.$                                                                                                                                             | l. s. d. q.                                                                                                            | i. s. d. q.                                                                 | l. s. d. q.                                                                             | l. s. d. q.                                                                                                                                                 |
| 1. 1 2 3 4 5 6 7 8 9 10 20 3 4 0 0 0 0 3 4 0 0 0 3 6 0 0 4 5 0 0 0 4 5 0 0 4 5 0 0 4 5 0 0 4 5 0 0 4 5 0 0 4 5 0 0 4 5 0 0 4 5 0 0 4 5 0 0 4 5 0 0 4 5 0 0 4 5 0 0 4 5 0 0 4 5 0 0 4 5 0 0 4 5 0 0 4 5 0 0 4 5 0 0 4 5 0 0 4 5 0 0 4 5 0 0 4 5 0 0 4 5 0 0 4 5 0 0 4 5 0 0 4 5 0 0 4 5 0 0 4 5 0 0 4 5 0 0 4 5 0 0 4 5 0 0 4 5 0 0 0 4 5 0 0 0 4 5 0 0 0 4 5 0 0 0 4 5 0 0 0 4 5 0 0 0 4 5 0 0 0 0 | 1 3 5 7 9 11 100 1 2 1 4 6 3 7 9 8 12 3 9 15 8 16 00 1 16 8 1 16 16 16 16 16 16 16 16 16 16 16 16 1 | 2 0 4 1 8 2 1 0 2 3 1 0 0 2 3 1 5 0 0 0 1 1 1 5 0 0 1 1 1 1 5 1 7 0 0 0 1 1 1 1 5 1 7 0 0 1 1 1 1 5 1 7 0 0 1 1 1 1 5 1 7 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2 1<br>4 3<br>7 9 0<br>1 2 1<br>1 7 9 1<br>1 1 1 1 3<br>1 1 1 0 0<br>1 1 1 9 9 0 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2 2 5 7 7 0 1 1 3 2 0 3 0 3 0 4 7 9 1 1 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 3 3 3 3 3 3 1 1 2 2 1 5 3 1 1 2 2 5 0 4 10 2 2 14 5 2 2 15 1 2 2 3 12 4 16 5 1 6 00 6 2 | 1. s. d. q.  3 I 6 3 1 00 3 1 7 00 1 2 4 2 2 7 2 5 10 1 3 15 9 2 18 1 0 8 3 1 1 0 8 3 1 1 0 8 3 1 1 0 8 3 1 1 0 8 3 1 1 0 8 3 1 1 0 8 3 1 1 0 8 3 1 1 0 9 3 |
| 700 5                                                                                                                                                                                                                                                                                                                                                                                              | ,                                                                                                   | 6 2 8 3 6                                                                                                                                                     |                                                                                                                        | 7 13 50                                                                     | 8 8 9 1                                                                                 | 9 4 1 1                                                                                                                                                     |
| 9006                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                     | 7 17 9 38                                                                                                                                                     |                                                                                                                        |                                                                             | 9 12 10 2 10                                                                            |                                                                                                                                                             |
| 1000/                                                                                                                                                                                                                                                                                                                                                                                              | ,                                                                                                   | 8 15 4 19                                                                                                                                                     |                                                                                                                        | 1 3 4-                                                                      |                                                                                         | 1 16 8 2                                                                                                                                                    |
| ditto //.                                                                                                                                                                                                                                                                                                                                                                                          | 7.671233                                                                                            |                                                                                                                                                               | 2.863014                                                                                                               | / !-!-                                                                      |                                                                                         | 3 3 00 0<br>13·150684                                                                                                                                       |
| I                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                     | • 1                                                                                                                                                           |                                                                                                                        |                                                                             | - 一・ファインサ                                                                               | · 5·4 J > 0 0 4                                                                                                                                             |

| 7                                                                                                                                                                                                         | 13           | ;o.                       | Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,s.                          | ı              | 40 .                                                            | Day.                                  | s                        | 1                                  | 50 J                                                          | Day.                           | s                                                                                                                           | ı               | 6a 1                                                      | Day.                                         | s.                           | 1                | 70, J                                  | Day                           | s                            | 1                                           | 80 J                                                          | Day                                 | ,<br>S.                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------|-----------------------------------------------------------------|---------------------------------------|--------------------------|------------------------------------|---------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------|----------------------------------------------|------------------------------|------------------|----------------------------------------|-------------------------------|------------------------------|---------------------------------------------|---------------------------------------------------------------|-------------------------------------|------------------------------|
| Prin-                                                                                                                                                                                                     | l.           | s.                        | d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | q.                           | 7.             | 5.                                                              | d.                                    | q.                       | l;                                 | 5                                                             | d.                             | q.                                                                                                                          | l.              | <b>s.</b> ,                                               | d.                                           | q.                           | 1.               | 3.                                     | d.                            | q.                           | l.                                          | s.                                                            | d.                                  | q.                           |
| 1.<br>1.<br>2.<br>3.<br>4.<br>5.<br>6.<br>7.<br>8.<br>9.<br>10.<br>20.<br>30.<br>40.<br>50.<br>60.<br>70.<br>80.<br>90.<br>20.<br>30.<br>40.<br>50.<br>60.<br>60.<br>60.<br>60.<br>60.<br>60.<br>60.<br>6 | 111245789124 | 1112222581479258753209764 | a. 36 10 1 5 8 0 3 6 10 8 6 4 3 1 1 9 7 6 0 5 1 1 5 1 1 5 1 1 5 1 5 1 1 5 1 5 1 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 | 2313120131123002230033222211 | 11113467902135 | 1 1 1 2 2 2 2 3 6 9 1 2 5 1 8 1 4 7 0 1 1 2 2 1 3 4 4 4 5 1 6 6 | a. 3711260159012345556784085195210246 | 310321321103211223012301 | I I I I I 3 4 6 8 9 I I 13 I 4 I 6 | 1 1 1 1 2 2 2 2 3 6 9 13 16 19 3 6 9 12 5 8 11 4 17 10 3 15 8 | 470471137113701580370976431009 | C M C O M M M C C C C M M C C C C C M M C C C C C M M C C C C C M M C C C C C C M M C C C C C C C C C C C C C C C C C C C C | 111135780121457 | 1 1 1 2 2 2 3 3 7 10 14 17 1 4 8 11 15 10 5 0 15 10 15 10 | 48 0 5 9 1 5 0 6 0 6 0 6 0 1 2 3 4 5 5 6 7 8 | 1220012330011221333221103211 | 1111357911314618 | 5.<br>11122233714182693374196308512363 | 49150271485211741963690360147 | 2023131313200210321122330611 | 1 1 1 1 3 5 7 9 1 1 3 5 7 9 1 1 3 5 1 7 1 9 | 1 1 1 2 2 3 3 3 7 1 1 5 9 3 7 1 1 5 9 1 8 1 7 1 6 6 1 5 5 1 4 | 492 711 49161100 988766511 49382606 | 3210321322302301302013120331 |
| 1                                                                                                                                                                                                         | 14           |                           | r <u>`</u> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | / 🕇                          |                | )'5 <del>4</del>                                                | -40                                   | *                        | "                                  | ·43                                                           | ~ <b>&gt;</b> > >              | +                                                                                                                           | - /             | .,,                                                       | 424                                          | 7                            |                  |                                        | 7                             | 7                            | •>                                          | 9.7 2                                                         | 602                                 | 4                            |

| Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19                          | 190 Days. 200 Day          |                                                       |                                         |                        |                                            |                               | r.                                                  | 21                              | o 1                                                | Days                                               |                            | 22                          | eo 1                                          | Days                                             | ŗ.                                      | 23                              | o 1                                                | Days                                             | ·.                          | 24                              | μο 1                                                       | Day                         | s.                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------|-------------------------------------------------------|-----------------------------------------|------------------------|--------------------------------------------|-------------------------------|-----------------------------------------------------|---------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------|-----------------------------|-----------------------------------------------|--------------------------------------------------|-----------------------------------------|---------------------------------|----------------------------------------------------|--------------------------------------------------|-----------------------------|---------------------------------|------------------------------------------------------------|-----------------------------|-----------------------------------------------|
| cipal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <i>l</i>                    | s.                         | d.                                                    | q.                                      | 1.                     | s.·                                        | d.                            | q.                                                  | <i>l</i>                        | s.                                                 | d.                                                 | q.                         | <i>I</i>                    | s.                                            | ď.                                               | q.                                      | 1.                              | 5.                                                 | d.                                               | q.                          | l.                              | s.                                                         | d.                          | q.                                            |
| 1.<br>1 2 3 4 5 5 6 7 8 9 1 C 20 30 4 0 50 0 60 0 70 60 0 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 70 60 70 70 60 70 70 60 70 70 70 70 70 70 70 70 70 70 70 70 70 | I I I I 2 4 6 8 10 12 14 16 | 11222334816059137134689113 | 50 38 I 6 II 4 9 2 4 6 7 10 0 I 4 5 7 3 II 6 2 10 6 I | 000000000000000000000000000000000000000 | 11111246801357         | 1 1 2 2 3 3 3 4 8 13 7 1 6 10 15 19 3 6 10 | 50392706114916113805086420138 | 1 2 3 0 1 2 3 0 2 3 H 3 2 0 3 1 3 2 0 0 0 0 0 0 1 1 | I I I I 2 2 4 6 9 I I 3 I 6 I 8 | 1 1 2 2 3 3 4 4 9 3 8 3 7 12 6 1 6 1 8 4 1 1 6 2 8 | 511 40 39 28 1 72 9 5 0 7 2 10 5 0 0 1 1 1 2 2 2 2 | 20303131312200120012012012 | 1 1 1 2 2 4 7 9 12 14 16 19 | ·II 2 2 3 3 4 4 9 4 9 4 8 3 8 8 6 4 2 I 9 7 5 | 5 11 5 10 4 10 7 5 3 1 11 9 7 4 2 5 7 10 1 3 6 9 | 3 3 3 3 5 6 5 5 6 5 6 5 6 6 6 6 6 6 6 6 | 1 1 1 1 2 2 2 5 7 10 2 15 17 20 | 1 1 2 2 3 3 4 4 5 10 5 10 5 10 0 1 T 1 1 2 2 1 2 3 | 6 c 6 o 6 o 6 o 1 1 2 2 3 3 4 4 5 0 2 7 o 5 10 3 | 000011112200202020202023222 | I I I I 2 2 2 5 7 0 13 5 18 2 I | . I I 2 2 3 3 4 4 5 10 15 1 6 1 16 2 7 12 5 17 10 3 15 8 0 | 607171828369036014729507210 | 1 2 0 1 2 3 1 1 1 2 3 3 0 0 I I 2 3 0 0 I 2 0 |
| 90c<br>10c0<br>ditto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                          | 14<br>16<br>0.8            | 9<br>5<br>219                                         | 1                                       | 1 <i>9</i><br>21<br>21 | 14<br>18                                   | 6<br>4<br>780                 |                                                     | 20<br>23                        | 14<br>0<br>.01                                     | 3<br>3<br>3 <b>6</b> 9                             | 3                          | 21<br>24<br>24              | 13<br>2                                       | 11<br>2<br>958                                   |                                         | 25<br>25                        | 13                                                 | . 8<br>. 1<br>547                                | 1                           | 23<br>26<br>- 26                | 13<br>6<br>• <b>3</b> 0                                    | 5<br>0<br>126               | 0<br>1<br>6                                   |

|             | 1           | •           |           |        |          |      |        |     | 1          |          |        |        | 1  |             |                      |     | 1    |        |         |    | ı  |      |        |             |
|-------------|-------------|-------------|-----------|--------|----------|------|--------|-----|------------|----------|--------|--------|----|-------------|----------------------|-----|------|--------|---------|----|----|------|--------|-------------|
|             | 2           | 50 I        | Days      |        | 2 (      | 60 I | Day.   | s.  | 2          | 70 ]     | Day    | 5.     | 2  | 80 I        | Days                 | ۶.  | 29   | 90 I   | Day!    | ١. | 30 | oo I | Days   | !• <u> </u> |
| Prin-       | ١.          |             |           |        |          |      |        |     | ١.         |          | •      |        | ١. |             | •                    |     | ١. ً |        | •       |    | ١. |      | ,      |             |
| cipal.      | Ι.          | <b>s.</b> . | <b>d.</b> | 9.     | 7.       | s.   | d.     | q.  | <i>l</i> . | 5.       | d.     | q.     | 1. | <b>5.</b> . | d.                   | q.  | l.   | 5,     | d.      | q. | 1. | s.   | d.     | q.          |
| 1.          |             |             | _         |        |          |      | _      |     |            |          | _      | _      |    |             | _                    |     |      | ٠      |         |    | i  |      | _      | •           |
| 1           |             |             | 6         | 2      |          |      | 6      | 3   |            |          | 7      | O<br>I | •  |             | 7                    | 1   |      |        | 7       | 2  |    | I    | 7      | 3           |
| 2           |             | I           | ·I        | C      |          | I    | 1<br>8 | 2   |            | I        | 2      | 1      | ľ  | I           | 7                    | 3   |      | I      | 3       | ı  |    | ī    | 11     | 3           |
| 3           |             | I<br>2      | 7 2       | 3      |          | 2    | 3      | 1   |            | 2        | 9<br>4 | 2      |    | 1<br>2      | 10                   | 2   |      | I<br>2 | 11<br>6 | 2  |    | 2    | 7      | 3 2         |
| 4           |             | 2           | 8         | -      |          | 2    | 10     | 1   |            | 2        | 1 I    | 2      | •  | 3           | 5                    | 3   |      |        | 2       | _  | ł  | 3    | . 3    | 2           |
| 5           |             | 3           | 3         | 3      |          | 3    | 5      | 0   |            | 3        | 6      | 2      |    | 3           | 8                    | 1   |      | 3      | 9       | 3  |    | 3    |        | 2           |
|             |             | 3           | 10        | c      |          | ,4   | ٥      | 0   |            | 4        | 1      | 3      | 1  | 4           | 3                    | 2   | }    | 4      | 5       | 3  |    | 4    | 7      | I           |
| 7<br>8      |             | 4           | 4         | 2      |          | 4    | 6      | 3   |            | 4        | 8      | 3      | 1  | 4           | 11                   | C   |      | 5      | I       | c  | 1  | 5    | 2      | ī           |
| 9           |             | 4           | II        | 1      |          | 5    | 1      | 2   |            | ż        | 4      | 0      |    | 5           | 6                    | 1   |      | Ś      | 8       | 3  |    | 5    | II     | 0           |
| 10          | ١.          | 5           | 3         | 1      |          | 5    | 8      | 1   |            | 5        | Ιİ     | 0      |    | 6           | I                    | 2   |      | 6      | 4       | 1  |    | 6    | 7      | 0           |
| <b>2</b> C  |             | 10          | ΙΙ        | 2      |          | ΙI   | 4      | 3   |            | 11       | 10     | 0      |    | 12          | 3                    | 1   |      | 12     | 8       | 2  | l  | 13   | I      | 3           |
| 30          |             | 16          | 5         | 1      |          | 17   | I      | 0   |            | 17       | 9      | 0      | l  | 18          | 5                    | 0   |      | IJ     | 0       | 3  | ŀ  | 19   | 8      | 3           |
| 40          | I           | I           | II        | 0      | Ţ        | 2    | 9      | 2   | I          | 3        | 8      | 0      | ŀ  | 4           | б                    | 2   | I    | 5      | 5       | C  | ı  | 6    | 3      | 3           |
| <b>5</b> c  | 1           | 7           | 4         | 3      | I        | 8    | б      | 0   | I          | 9        | 7      | 0      | _  | 10          | 8                    | 1   | I    | II     | 9       | 2  | I  | 12   | 10     | _           |
| <b>6</b> c  | I           | 12          | 10        | 3      | 1        | 14   | 2      | 1   | I          | 15       | б      | 0      | -  | 16          | 10                   | 0   | I    | 18     | 1       | 2  | 1  | 19   | 5      | 2           |
| <b>7</b> c  | I           | 18          | 4         | I      | I        | 19   | 10     | 3   | 2          | I        | 5      | 0      | _  | 2           | II                   | 2   | 2    | _4     | б       | C  | 2  | 6    | 0      | _           |
| 8¢          | 2           | 3           | 10        | 0      | 2        | 5    | 7      | 0   | 2          | 7        | 4      | 0      | _  | 9           | . [                  | 1   | 2    | 10     | 10      | 1  | 2  | 12   | 7      | I           |
| 90          | 2           | 9           | 3         | 3      | 2        | 11   | 3      | 2   | 2          | 13       | 3      | 1      | -  | 15          | 2                    | 3   | 2    | 17     | 2       | 2  | 2  | 19   | 2      | 0           |
| loc         | 2           | 14          | 9         | 2<br>C | 2        | 17   | 0      | 0   | 2          | 19<br>18 |        | ī      | 3  | I<br>2      | <b>4</b><br><b>8</b> | 3   | 3    | 3      | 6       | 3  | 3  | 11   | 9<br>6 |             |
| 200<br>300  |             | 9           | 7         | 2      | <b>5</b> | I3   | 11     | 3   | <b>5</b>   | 17       | 4      | 2      | وا | 4           | I                    | 3   | 9    | 7      | 1<br>8  | 2  | وا | 17   | 3      | 0           |
| 400         | -           | 4<br>19     | 4         | 0      |          | 7    | II     | 2   | 11         | 16       | 8      | 2      | 12 | 5           | 5                    | . 1 | _    | 14     | 3       | C  |    | 3    | 0      | _           |
| <b>5</b> 00 |             | 13          | 11        | 3      |          | 4    | 11     | -   | 14         | 15       | 10     | 3      | 15 | . 6         | ID                   |     | 15   | 17     | 9       | 3  | 16 | 8    | 9      |             |
| 600         |             | 8           | 9         | 1      | -        | Ŧ    | 11     | -1  | 17         | 15       | 0      | 3      | 18 | 8           | 2                    | 2   | 19   | I      | 4       | 2  |    | 14   | 6      |             |
| 70c         | K .         | 3           | 6         | 3      | 19       | 18   | 11     | - 1 | 20         | 14       | 3      | 0      |    | 9           | 7                    | C   | 22   | 4      | H       | 1  | 23 | - 0  | 3      | Ī           |
| <b>8</b> 0c | 21          | 18          | 4         | _      | 22       | 15   | 10     | 3   | 23         | 13       | 5      | O      | 24 | Io          | II                   | 2   | 25   | 8      | 6       | c  | 26 | 6    | ó      | I           |
| <b>90</b> 0 | 24          | 13          | ī         | 3      |          | 12   | 10     | 2   | 26         | 12       | 7      | 1      | 27 | 12          | 4                    | G   | 28   | 12     | o       | 3  | 29 | II   | . 9    | 2           |
| 1000        |             | 7           | II        |        | 28       | ġ    | Io     | 1   | 29         | 11       | 9      |        | 30 | 13          | 8                    | I   | 3 I  | 15     | 7       | 1  | 32 | 17   | 6      | 2           |
| ditto       | <i>l</i> .2 | 7.3         | 9725      | 56     | 28       | 3.49 | 315    |     | 25         | 7.58     | 904    |        | 39 | .68         | 493                  |     | 31   | .78    | 082     |    | 32 | .870 | 571    |             |
|             |             |             |           |        |          |      |        |     | l          |          |        |        | 1  |             |                      |     |      |        |         |    | •  |      |        |             |

| <b>-</b> .  |       |               |       |                |             |            |      |            |      |       |          |     |       |       |             |      |     |               |      |     |           |
|-------------|-------|---------------|-------|----------------|-------------|------------|------|------------|------|-------|----------|-----|-------|-------|-------------|------|-----|---------------|------|-----|-----------|
|             |       | _             | (     |                | ı           |            | •    | 1          |      | •     | 1        |     |       | ı.    |             | •    | 1   | 36            | 5 D  | ay. | s,        |
| Prin-       | 310   | Days.         | 320   | Days.          | 33          | o I        | Days | . 34       | to I | Days. | 35       | 0 1 | Days  | .30   | 60 I        | Day: | s   | or            | 1 2  | ea! | r.        |
|             | ,     |               | ı     | _              | 1           | •          |      | 1.         |      |       |          |     |       | i     |             |      | - 1 |               |      |     |           |
| cipal.      | l. s. | d. q.         | γ. s. | d. q           | . <i>l.</i> | 5.         | d. q | <i>l</i> . | 5.   | d. q. | 1.       | 5.  | d. q. | 1.    | <b>5.</b> · | d.   | 9.  | <i>l</i>      | s. a | 1.  | <b>7.</b> |
| ι.          |       | _             |       |                | ı           |            |      |            |      | _     |          |     | _     |       |             |      | 1   |               |      | -   | -         |
| 1           |       | 8 1           | l.    | 8 2            |             |            | 8 :  | 3          |      | 9     | <b>\</b> |     | 9     | 1     |             | 9    | 2   |               |      | 9   | 3         |
| 2.          |       | 1 41          | i     | 1 50           |             | 1          | 5 :  | 2          | I    | 6     | 4        | I   | 6     | 2     | 1           | 7    | C   | . '           | I    | 7   | I         |
| 3           | 1     | 2 0 2         | 1     | 2 ] ]          |             | 2          | 2    | )          | 2    | 2 3   | 3        | 2   | 3     | 3     | 2           | 4    | 2   |               | 2    | 5   | 0         |
| 4           | 1     | 2 8 2         |       | 2 9 3          |             | 2          | 10   | 3          | 2    |       | 3        | 3   |       | 3     | 3           | 1    | 3   |               | 3    | 2   | 2         |
| 5           |       | 3 4 3         |       | 3 60           | 1           | 3          | 7    | 4          | 3    |       | 3        | 3   | 10    |       | 3           |      | 2   |               | 4    | 0   |           |
| 6           |       | 4 0 3         |       | 4 2 2          |             | 4          | 4 (  | 1          | 4    | 5 3   |          | 4   | 7     | r)    | 4           |      | 3   |               | 4    | 9   |           |
| 7<br>8      |       | 4 90          | I     | 4 11 0         |             | 5          | 0    |            | 5    | 2 2   |          | 5   | •     | 2     | 5           | 6    | 1   | :             | 5    | 7   |           |
|             |       | 5 5 1         |       | 5 7 1<br>6 3 3 |             | 5          | 9 :  | 1          | 5    |       |          | 6   |       | 2     | 6           | 3    | 3   |               | 6    | 5   |           |
| 9<br>IC     |       | 6 II<br>6 9 2 | I     | - ,            |             | 6          | 6    |            | 6    | 8 2   |          |     |       | 7     | 7           | Ţ    | 1   |               | 7    | 2   | 2         |
| 20          | ,     | _             | 1     | 7 00           |             | 7          |      | 3          | 7    | 5 2   |          | 7   |       | 7     | 7           |      | 3   |               | 8    |     |           |
| 30          | 1     | o 43          | 1     | 1 0 2          |             | 14<br>1    |      | 2  <br>[ ] | 14   |       | . I      | 15  | •     | 기     | 15          | 9    | 2   |               | 16   |     |           |
| 4C          | I     | 7 20          | •     | 8 0 3          | 1 -         |            | II   | . 1 ~      | _    | 4 1   | 1 -      | )   |       | 1     | 3           | 8    | 9   | I             | 4    |     |           |
| 50          | II    | /             | 11    |                |             | 'nó        | _    | 1 -        | 5    | 9 3   |          | 10  |       | I     | 11          | 6    | 3   | · I           | 12   |     |           |
| 60          | 1     | 9 1           | I     | 2 1 0          |             | 3          |      |            | 17   | 3 1   | 1 .      | 18  | 4     | - 1   | 19          |      | 2   | 2             | 0    |     |           |
| <b>7</b> 0  | _     | 7 63          | 1     | 9 1 1          | , -         |            |      | 2 2        | •    | 8 2   |          | _   | 8     | 1 -   | ,           | 4    | 1   | 2             | 8    |     |           |
| 8c          | 2 1   | , -           | 2 1   |                |             |            | 10   |            |      | 2 (   | 1        | _   |       | 1 -   | •           | 2    | 3   | 2             | 16   |     |           |
| 90          |       | T i 3         |       | 3 12           |             | 3          | 1    | 1          | 7    | , -   | 1        |     | 4 :   | 2 3   | 3<br>1 I    | I    | 2   | 3             | 4    |     |           |
| 100         |       | 7 11 2        | 1     | •              |             | 12         | 4 (  | 1 -        |      | 61    |          |     | 8 :   | 1 -   | 18          |      |     | _             | I 2  |     |           |
| 200         | 61    | -             | 7     | 0 3 1          |             | 4          | 7    |            |      | 0 2   |          | 13  |       | 7     | 17          | 9    | 3   | <b>4</b><br>8 |      |     |           |
| 300         |       | 3 10 c        | 101   |                | Ιά          | 16         | 11   |            | · 3  |       | 3 1 1    |     | •     | 2 1 1 | 16          | 8    |     | 12            |      |     |           |
| 400         | 131   | í 92          | 14    | 0 62           | 14          | 9          | 4    |            | _    |       | 15       |     |       | 1115  | 15          | 7    |     | 16            |      |     |           |
| <b>5</b> 00 | 161   | 9 8 3         | 17 1  | o 8 1          | 81          | . <b>I</b> | 7 3  |            |      |       | 19       | _   | 6::   | 1     | 14          | 6    | 1   | 20            |      |     |           |
| 60c         |       |               |       | 0 10 0         | 21          | 13         | Ii a |            |      | •     | 2 2 3    | ,   | _     | 1 23  | 13          | 5    |     | 24            |      |     |           |
| 70c         | 23 1  | 7 7 1         |       | 0112           | 25          | 6          |      | 26         | 4    |       | 26       |     | -     | 27    | 12          | 4    | - 1 | 28            |      |     |           |
| <b>8</b> 00 |       |               |       |                | 28          | 18         | 7 2  | 2 29       | 16   | • -   | 30       |     | 8     | 1 3 1 | ΙI          | 2    |     | 32            |      |     |           |
| 900         | 30 I  |               | •     |                | 32          | 10,        |      |            |      | _     | 34       | -   |       | 35    | 10          | 1    | - 1 | 36            |      |     |           |
| 300C        | 3,3 1 | 9 5 2         |       | 1 4 2          | 36          | 3          |      | 237        |      |       | 38       |     | -     | 2 3 9 | 9           | 0    | 1   | 40            | ٠    |     |           |
| ditto       | 4 33  | ·9726         | 35.9  | 0684 <b>9</b>  | 36          | .16        | 438  | 1          | 7.26 | io 27 |          |     |       |       |             | 720  |     | •             | 0.0  |     |           |
| •           | ı     |               | >     |                | ł           |            |      | 1          |      |       | )        | _   |       | 1     | - •         |      | ı   | ١.            |      |     |           |

# A TABLE of SIMPLE INTEREST at 5 per Cent.

|             | r                                       | 1     |            | 1        | 1                                             | 1                                | :<br>• .        |                | ľ.          |
|-------------|-----------------------------------------|-------|------------|----------|-----------------------------------------------|----------------------------------|-----------------|----------------|-------------|
|             | 1 Day                                   | , 2   | Days.      | 3 Days.  | 4 Days.                                       | 5 Days.                          | 6 Days.         | 7 Days.        | 8 Days.     |
| Frin-       |                                         |       | , ,        | s. d. g. | i. d. g.                                      |                                  |                 |                | , , , , , , |
| cipal.      | s. d.                                   | q. s. | d. q.      | s. d. q. | f. $d$ . $q$ .                                | $\boldsymbol{a}, \boldsymbol{q}$ | s. · d. q.      | s. $d$ . $q$ . | l. s. d. q. |
| 1.          | 4000136                                 | 00    |            |          |                                               |                                  | i.              | . 1            | L           |
| 2           | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | "     |            |          | 1                                             | 1                                | ,               | 2              | 2           |
| 3           |                                         | - [   |            | 1        | 3                                             | 2                                | 2               | 5              | 3           |
| 4           |                                         |       | Ţ          | ,        | 2                                             | 2                                | 1 0             | 1 C            | 10          |
| 5           |                                         |       | I          | 2        | 3                                             | - 1 6                            | 1 1             | 1 c            | 11          |
| 6           |                                         | 1     | 2          | 2        | •                                             | 10                               | 11              | 1 2            |             |
| 7 8         | * * ·                                   | 1     | 2          | ı        | 1 (                                           | 7 1                              | I 2             | 1 3            |             |
| 9           |                                         | ľ     | . 2        | 1 3      |                                               | I 2                              | I 3             |                | 2 1         |
| 10          |                                         | 1     | 2<br>I I   |          |                                               | 1· 2<br>· · 3· 1                 | 2 c<br>4 c      | 2 I            | ·           |
| 20          | 1                                       | 2     | 2 0        |          | 1                                             | 50                               | 1 -             | 4 2<br>6 3     | L -         |
| 30<br>40    | 1                                       | 1     | 2 2        | 4 0      | 5 1                                           | . 6 c                            | 7 3             | 9 1            | 10 2        |
| 50          | 1                                       | 2     | 3 1        |          | 1                                             | 8 1                              | 10 C            |                | •           |
| 60          | 2 2                                     | 0     | 4 0        |          | 7 3 9 1                                       | 10 c                             | Ĭ.              | 1              |             |
| 70          | 2                                       | 1 2   | 4 2<br>5 1 |          | 1                                             | 1 1 0                            | _               | I 4 0          | 1 90        |
| 80<br>90    | 1                                       |       | 5 3        |          | 11 3                                          | 1 2 3                            | 1 5 3           | I : 8,3        | 1 11 2      |
| 100         | 3                                       | 1     | 6 2        | 10 0     | IIO                                           | 1 4:2                            | 7 3             |                | 2 2 1       |
| 200         | 6                                       | 2 1   |            | 2 5      | 2 2 1                                         |                                  | 3 3 2<br>4 II 0 | , -            | 6 6 3       |
| 300         | I I                                     | 0 2   | 7 3<br>2 1 | 1 -      | 3 3 2<br>4 4 2<br>5 5 2<br>6 6 3              | 4 I 1<br>5 5 2                   |                 | · 5 9 c        | • ~ -       |
| 400<br>500  | _                                       | 2 2   | 8 3        | 14 I     | 4 4 <sup>2</sup><br>5 5 <sup>2</sup><br>6 6 3 | 6 10 0                           | 10 -            | 9 7 0          |             |
| 800         |                                         | 3 3   | _          | 4 11 0   | 1                                             | 8 2 2                            |                 | 11 6 o         |             |
| 700         | I4 I                                    | 0 3   |            | 5 9 6    | 1 /                                           | , , ,                            |                 | 13 5 0         | 1 ' '       |
| 800         | 2 2                                     |       |            | 1        | 1                                             | 10 11 2                          | 1.2             | 17 30          | ,           |
| <i>9</i> 00 |                                         | 2 4   | 5          |          | 10 11 2                                       | 1 <u>:</u>                       | · ·             | 19 20          | 1 1110      |
| ditto       |                                         |       | ·273       |          | 15479                                         | 16849                            |                 | l9589          | l. 1.0956   |
|             |                                         | 1     |            | }        | 1                                             | 1                                | }               | 1              | 3           |

|              |      |      |      |      |         |       |              |         |        | ,          |          |            |     |            |                | t           |      | •            | 1     |      |        |
|--------------|------|------|------|------|---------|-------|--------------|---------|--------|------------|----------|------------|-----|------------|----------------|-------------|------|--------------|-------|------|--------|
| ]            | g D  | AN F |      | 10   | Days.   |       | 20 I         | Jane    | ١      | 20         | ת        | ays.       |     | $\sim T$   | Dave.          | 1           | ת    | ave.         | 60 I  | 74   | r.`    |
| Prin-        | 9.00 | ys.  |      | 10 1 | Juj     | 1     | 20 1         | ·       | .      | <b>5</b> ~ |          | -,         | ſ   |            | ٠.,٠.          | 1           |      | ٠٠,٥٠        |       | ٠.,. | •      |
| cipal. l.    | s.   | d.   | 9.1. | · 5. | d. 4    | z.¦ł. | 5.           | d.      | q.     | l.         | s.       | d. 4       | 7.7 | . 5.       | d. q           | <i>`l</i> . | s. a | l. q.        | l. s. | d. 9 | 1.     |
| 1.           | ,    |      | 1    |      |         |       |              |         | 1      |            |          |            | 1   |            | •              |             |      | -            |       | _    | •      |
| 1            |      |      | 1    | į    |         | 1     |              |         | 2      |            |          | 1          | 이   |            | 1 1            | 4           |      | I 2          | 1     | 2    | 0      |
| 2            |      |      | 2    |      |         | 2     |              | I       | I      |            |          |            | 이   |            | 2 3            | 2           |      | 31           | ١     | ·    | 0      |
| 3            |      | :    | 3    |      |         | 9     |              | 2       | 9      |            |          | ,          | 9   |            | •              | 9           |      | 50           |       |      | 3      |
| 4 5 6        |      | I    | 1    |      | I       | 1     |              | 2       | 2      |            |          | 7          | 9   |            | ٠,             | I           |      | 6 2<br>8 1   | l     |      | 3      |
| 5            |      | 1    | 2    |      | -       | 2     |              | 3       | I      | :          |          | •          | 0   |            |                | 2           |      | 100<br>100   |       | 9    | -      |
|              |      | I    | 3    |      | ·2<br>2 | 9     |              | 4       | 3      |            |          | 5.<br>6    | 3   |            |                | 3           |      | ] [ 2        | 4 _   | _    | 3      |
| 7            |      | 2    | ĭ    |      | _       | 2     |              | 4       | 3      |            |          | 7          | 3   |            | -              | 2           | 1    | 10           | •     | _    | 3      |
| 9            |      | 2    | 3    |      |         | a     |              | 5       | 3      |            |          | 8          | 3   | ×          | -              | 3           | I    | 2 3          | 1 -   |      | 2<br>3 |
| 10           |      | 3    |      |      | · 3     | 1     |              | 6       | 2      |            |          | _          | ó   | £          | _              | d           | ı    | 4 2          | 1     | · -  | 3      |
| 20           |      | . 5  | 3    |      | 6       | 2     | 1            | 1       | 0      |            | I        | 7          | 3   | 2          | 2              | 1           | 2    | 8 3          |       |      | 2      |
| 30           |      | 8    | 3    | •    |         | o     | I            | 7       | 3      | ١.         | 2        | 5          | 2   | 3          | 3              | 2           | 4    | I            | 4     |      | _      |
| 40           |      | ŢŢ   | 3    | I    |         | o     | 2            | 2       | I      |            | 3        | 3          | 2   | 4          | 4              | 3           | 5    | 5 2          |       |      |        |
| 50           | I    | 2    | 3    | I    | ٦,      | 2     | 2            | 8       | 3      |            | 4        | I          | I   | 5          | 5              | 3           | 6    |              | 1     |      | _      |
| 60           | I    | ,    |      | 1    | 7       | 3     | 3            | 3       | 2      | ł          | 4        | 11         | 1   | 6          |                | 3           | . 8  | 2 2          | 1     |      | -      |
| 70           | 1    |      | -1   | 1    |         | 9     | 3            | 10      | 0      | l          | 5        | 9          | 9   | 7          | _              | 9           | 10   | 7¢<br>112    | -     | _    |        |
| 80           | 1    | _    |      | 2    |         | 1     | 4            | 4       | 3      |            | 6        | 6          | 3   | 9          | -              | 2           | 12   | 40           | 1 -   | _    | -      |
| 90           | 2    |      |      | 2    | -       | 2     | · 4          | 11<br>5 | 3      |            | <b>7</b> | 4          | 2   | 10         |                | 2           | 13   | 80           |       |      |        |
| 100<br>200   | 4    | -    |      | 5    |         | 3 2   | ر<br>10      | ر<br>11 | 2      |            | 16       | 5          | 1   | 1 1        | 11             | di          | 7    | 43           | 1     |      |        |
| 300          | 7    | -    |      |      | 3 2     | 2     | 16           | 5       | 1      | I          | 4        | 7          | 3   | 1 12       | 10             | 2 2         | 1    | ić           | 1 -   |      | 3      |
| 400          | Š    |      |      | 10   | II      | 2     |              | 11      | Ò      | ī          | 12       | 10         | 2   | 2 3        | 10             | 0 2         | •    | 92           |       |      | S      |
| 500          | 12   |      |      | 13   | 3 `8    | 1     | ı 7          | 4       | 3      | 2          | I        | 1          | 0   | 2 14       |                | 2 3         |      | 5 3          | 4 3   |      | I      |
| 600          | 1.4  | 1 9  | 2    | 10   |         | 0     | I 12         | 10      | 2      | 2          | 9        | 3          | 3   | 3 5        | _              | 0'4         | _    | 2 ]          | 4 18  | . •  | 2      |
| 700          | 17   | 7    | 3 0  | . 19 | 2       | 0     | 1 18         | •       | I      | 2          | 17       | 6          | I   | 3 10       | _              | 2,4         | _    | 10           | 3 5 1 |      | 3      |
| 8 <b>0</b> 0 | 19   |      |      | I    | 1 11    | ٦,    | 2 3          |         |        | 1-         | 5        | 9          |     | 4 7        |                | 0 5         | 9    | 79           |       |      | 0      |
| <b>9</b> 00  |      |      | 2 1  | I    |         | 21    | 2 9          | _       | 3      | 3          | 13       | 11         | 3   | 4 18       | •              | 2,5<br>c.6  | -    | 33           | 38 4  |      | 2      |
| 7000         |      |      | 7,3  |      | 7 4     | 7     | 2 14<br>l. 2 |         | 2<br>2 | 4          | 2        | 2<br>1 ¢9. | 1   |            | .479           |             |      |              | , p.: | •    | 8      |
| ditto        | ₹. 1 | .23  | 20   | /. 1 | .369    | °     | Z            | 739     | U      | 1          | · 4·     | . U.Y      | 4   | <b>"</b> " | · <b>-</b> 7/2 |             | J.(  | <b>'</b> †7' | 1     |      | •      |

| 70. *              |     | 70       | Day           | ys. | 8        | 30 I   | Days   | ·.  | 1        | 90 I          | Days    | ·.  | 1         | :00      | Day.                 | s.  | 1        | 10 .    | Day    | 5. | 1        | 20 ]     | Day      | s.     |
|--------------------|-----|----------|---------------|-----|----------|--------|--------|-----|----------|---------------|---------|-----|-----------|----------|----------------------|-----|----------|---------|--------|----|----------|----------|----------|--------|
| Prin-<br>cipal.    | 1.  | . S.     | d.            | q   | 1.       | s.     | d.     | _   | 1.       | s.            | d.      | •   | 1.        | s.       | d.                   | _   | 1.       | 5.      | d.     | a  | ] 1.     | s.       | d.       | a      |
| i.                 | Ι"  | ٠,       | ω,            | 4   | 1"       | ٠.     | u.     | q.  | "        | ٠,            | u.      | q.  | "         | ٥.       | u.                   | 9   | 1"       | ٦.      | u.     | 9  | } "      | ٥.       | ω.       | 4.     |
| 1                  |     |          | 2             | I   | 1        | •      | 2      | 3   |          |               | 3       | C   |           | 4        | 3                    | 1   | 1        | -       | 3      | 2  |          |          | 4        | . 0    |
| 2                  |     | ,,       | 4             |     | ı        |        | 5      | Ī   | 1        |               | 5       | 3   | ĺ         | •        | •6                   | 2   | 2        |         | 7      | 1  |          |          | 7        | 3      |
| 3                  |     |          | 6             | _   |          |        | 7      | 3   |          |               | 8       | 3   | 1         | r        | 9                    | -   |          | ,       | IS     | 3  | 1        |          | ľ        | ,      |
| 4                  |     |          | 9             |     |          |        | 10     | 2   | 1        |               | 11      | 3   | ,         | I        |                      | C   | I        | I       | 2      | 2  | ł        | I        | 3        | _      |
| 5                  |     | 1        | II<br>I       | 2   |          | I<br>I |        | 3   |          | I             | 2<br>5  | 3   |           | I        | 4                    | 3   |          | I       | 6<br>9 | 2  | '}       | I        | 7        | -      |
| 6                  |     | Ī        | 4             |     | ١ .      | I      | 3<br>6 | J   |          | ī             | 8       | 3   |           | I        | . 7                  | 0   | 4        | 2       | 1      | 1  | ı        | 2        | 3        | _      |
| 7<br>8             | 1   | 1        | 6             |     |          | ī      | 9      | 0   |          | I             | 11      | . 2 |           | 2        | 2                    | 1   |          | 2       | 5      | 0  |          | 2        | 7        | 2      |
| 9                  |     | I        | 8             | _   |          | 1      | 11     | 2   |          | 2             | 2       | 2   |           | 2        | <b>5</b>             | 2   | ,        | 2       | 8      | 2  |          | 2        | 11       | 2      |
| 10                 |     | I        | 11            |     |          | 2      | 2      | I   |          | 2             | 5       | 2   | Ì         | 2        |                      | 3   |          | 3       | 0      | 0  |          | 3        | 3        |        |
| 20                 |     | 3        | IO            | 0 0 |          | 4      | 4 6    | 2   |          | 4             | II      | 3   |           | 5<br>8   | 5                    | 3   |          |         | 0      | 2  |          | 6        | 6        | -      |
| . 30               |     | 5<br>7   | <i>9</i><br>8 |     | ļ        | б<br>8 | . o    | 3   | ١.       | 7             | 4<br>10 | 7   |           | 10       | 2<br>11              | 2   |          | 3<br>I2 | 0      | 2  | •        | 9<br>13  | I)       | 1<br>3 |
| 40<br>50           |     | ģ        | 7             |     |          | 10     | 11     | 2   |          | 12            | 4       | 0   | Ì         | 13       | 8                    | 1   | l        | 15      | Ö      | 3  | ı        | 16       | 5.       | _      |
| 60                 |     | ΙI       | 6             |     |          | 13     | I      | 3   |          | 14            | ġ       | 2   |           | 16       | \$                   | I   |          | 18      | 1      | 0  | I        | 19       | 8        | 2      |
| 70                 |     | 13       | 5             | 0   |          | 15     | 4      | 0   |          | 17            | 3       | 1   |           | 19       | 2                    | 0   | 1        | I       | I      | 0  | 1        | 3.       | 0        | 0      |
| 80                 |     | 15       | 4             | 0   |          | 17     | δ      | I   | _        | 19            | 8       | 2   | I         | I        | 11                   | 0   | _        | 4       | I      | I  | τ        | 6.       | 3        | 2      |
| . 90               |     | 17<br>19 | 3             | 0   |          | 19     | 8      | 3   | I        | 2             | 2       | 3   | I         | 4        | 7                    | 3   | I        | 7       | I      | 2  | I        | 9.       | 7        | 0      |
| 100<br>200         | 1   | 18       | 4             | I   | 2        | 3      | 10     | 0   | 1<br>2   | <b>4</b><br>9 | 7<br>3  | 3   | I<br>2    | 7<br>14  | <b>4</b><br><b>9</b> | 3   | 3        | 10      | . 3    | 1  | 1        | 12<br>5. | 1.0<br>9 | 2      |
| 300                | 1 - | 17       | 6             | 1   | 3        | 5      |        | d   | 3        | 13            | 11      | 2   | 4         | <b>2</b> | 2                    | 1   | 4        | 10      | . 5,   | C  | 3        | 18       | 7        | 2      |
| 400                |     | 16       | ۰8            | 2   | 4        | 7      | 9      | d   | 4        | 18            | 7       | 2   | 5         | . 9      | 7                    | 0   |          | 0       | 6.     | 2  | 6.       | 11       | 6        | 0      |
| 500                | •   | 15       | 10            | 3   | 5        | 9      | 7      | 9   | 6        | 3             | 3       | 2   | 6         | 16       | 11                   | 3   | 7        | QI      | 8,     | 1  | 8        | 4        | 4        | 2      |
| 600                |     | 15       | 0             | 3   | б        | 11     | 6      | 9   | 7        | 7             | .11,    | 1   | 8         | 4        | 4                    | 2   | 9        | 0       | 9      | 3  | 9        | 17       | 3        | Q      |
| 700<br><b>80</b> 0 |     | 14<br>12 | 3<br>5        | 0   | <b>7</b> | 13     | 5      | 0   | 8        | 12            | 7       |     | 9<br>10   | II<br>IQ | 9                    | 1   | 10       | 10      | 11     | 2  | II       | 10       | I        | 2      |
| 900                | •   | 13<br>12 | 7             | 1   | 9        | 17     | 4      |     | ۷<br>11  | I/            | 3<br>11 |     | 12        | б        | 6                    | - 1 | 12<br>13 | I<br>II | I<br>2 | 3  | 13<br>14 | 3<br>15  | 0        | 2      |
| 1000               |     | li       | 9             | _   | 10       | 19     | 2      | - 1 | 12       | б             | 6       | 3   | 13        | 13       | 11                   | - 1 | 15       | Ī       | 4      | 1  | 16       | 8        | 9        | 0      |
| ditto              | l.  | 9.       | 588           |     |          | 10.    |        | 7   | l.       | 12.           | 3286    |     | <b>7.</b> | 13.6     | 5984                 |     |          | 15.0    |        | :  |          | 16.4     | 379      | •      |
| ļ                  |     | ,        |               |     |          |        |        | ı   | !<br>. , |               |         | ı   |           |          |                      |     | •        | -       |        | į  | }        | •        | . •      |        |

|                                                            | 130 Days.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 140 Days.                                                                                               | 150 Days.                                                                            | 160 Days.                                                               | 170 Days.  | 180 Days.                                                            |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------|----------------------------------------------------------------------|
|                                                            | l. s. d. q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                         | 1 .                                                                                  | l. s. d. q                                                              |            | l. s. d. q.                                                          |
| 1. 1 2 3 4 5 6 7 8 9 L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4 1 2 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 2 3 3 0 | 4 9 3 1 6 1 2 2 3 3 1 8 6 4 2 0 0 3 1 1 1 1 2 2 3 3 3 1 8 6 4 2 0 0 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 4 3 3 3 3 4 9 2 2 2 3 3 8 1 1 2 2 3 3 4 5 6 8 9 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 3 3 3 3 3 1 1 3 3 3 3 1 1 4 2 9 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 5 2 II 1   | \$ 3 3 3 1 1 3 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 1 4 1 1 1 1 |
| ditto.                                                     | 1. 17.8078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19.1776                                                                                                 | 1. 20.5479                                                                           | l. 21.9177                                                              | 1. 23.2875 | l. 24.6573                                                           |

|                          |      | 90      | Day    | is. | 2          | .00        | Day     | ıs.      | 2    | 10          | Day | ıs. | 2    | 220        | Da  | ys.        | 1   | 230 .      | Day. | s.  | 2     | 40 ]       | Day     | ;s.    |
|--------------------------|------|---------|--------|-----|------------|------------|---------|----------|------|-------------|-----|-----|------|------------|-----|------------|-----|------------|------|-----|-------|------------|---------|--------|
| Prin                     |      |         | _      |     | ۱.         |            |         |          | ١.   |             |     |     | ١.   |            |     |            | ١.  |            |      |     | ١.    |            | ,       |        |
| cipal                    | 1.   | s.      | d.     | q.  | 1.         | 5.         | d.      | q.       | l.   | 5.          | d.  | 9   | . 1. | . S.       | d.  | 9          | . 6 | · S.       | d.   | q.  | l.    | 5.         | d.      | q.     |
| I.                       | ·I   |         | _      |     | 1          |            |         | . 1      |      |             |     |     |      |            |     |            | 1   |            |      |     |       |            | •       |        |
| 1                        |      |         | 6      |     | 1          |            | 6       |          |      | _           | 7   |     | . 1  |            | •   | 7 1        |     |            | 7    | 2   | ł     |            | 7       | 3      |
| 2                        |      | I       | 0      |     |            | I          | I       |          |      | I           | I   | _   | - 8  | 1          |     | 2 2        | 1   | I          | 3    | G   | 1     | I          | 3       | . 3    |
| 3                        |      | I       | 6      | -,  |            | 1          | 7       | . 3      | _    | I           | 8   | _   |      | 1          | -   | 9 2        |     | I          | 10   | 3   | ľ     | I          | II      | 3      |
| 4                        |      | 2       | I      | 0   |            | 2          |         | I        |      | 2           | 3   |     |      | 2          |     | 5 0        | ı   | 2          | · 6  | 1   |       | 2          | 7       | 2      |
| 3                        |      | 2       | 7      | I   | 1          | 2          | 2       | -        |      | 2           | IO  |     | •    | <b>'</b> 3 |     | ) <u> </u> | 1   | 3          | 1,   | 3   |       | 3          | 3       | _      |
| 6                        |      | 3       | I      | 2   | l          | 3          | 3       | 2        |      | 3           | 5   | 2   |      | 3          |     | 7 2        |     | 3          | 9    | 1   |       | 3          | 11      | I      |
| 7                        |      | 3       | 7      | 3   |            | 3          | ,IO     | - 1      |      | 4           | 0   |     | 1 .  | 4          |     | 2 2        | 1   | 4          | . 5  | 2   |       | 4          | 7       | 1      |
|                          |      | 4       | 2<br>8 | 1   |            | 4          | 4       | 2        |      | 4.          | 7   | ·I  |      | 4          |     | 9 3        |     | 5          | 8    |     |       | 5          | 3       | 9      |
| 9                        |      | 4       | 2      | 2   |            | 4          |         | -        |      | •5          |     | 0   |      | <b>5</b>   |     |            | 1   | <b>5</b>   | 3    | 2   |       | 5          | I I     | 0      |
| . 10                     |      | 5<br>10 | 5      | c   |            | ر<br>10    | 5<br>11 | 3        |      | II          | 9   | 0   | 1    | 12         |     |            | ١.  | 12         | 7    | 1   |       | б          | 7       | ٥      |
| 20                       | 4    | 15      | ,<br>7 | 1   |            | 16         | 5       | 1        |      | 17          | . 3 | 0   | 1    | 18         | I   | _          | 1   | 18         | 10   | 3   |       | 13         | I       | 3      |
| 30                       | r    | • 0     | 9      | 3   | Т          | T          | l I     |          | I    | 3           | 0   | .0  | I    | 4          | I   | _          | ١,  |            | 2    | 2   | 1     | 19<br>6    | 8       | 2      |
| 40                       | ī    | 6       | :0     | il  | I          | 7          | 4       | 3        | I    | 8           | 9   | 0   | 7    | 7<br>0 I   | 1   | .3         | ;   | . TT       | 6    | d   | ī     | 12         | 3<br>10 | 2      |
| <b>5</b> 0<br><b>6</b> 0 |      | II      | 2      | 3   | Ŧ          | 7 <b>2</b> | Io      | 2        | Ī    | 14          | 6   | I   | ī    | Ισ         | 2   | _          | 1   | 17         | 9    | 2   | ī     | 19         | -       | 2      |
|                          | ī    | 16      | 5      | 1   | 1          | 18         | 4       | 1        | 2    | 0           | 3   | 1   | 2    | 2          | 2   |            | _   | 4          | ·I   | 1   | 2     | 6          | 5       | 2      |
| 7°<br>8;                 | 2    | 1       | 7      | 3   | 2          | 3          | Io      | d        | 2    | 6           | 0   | 1   | 2    | 8          | 2   |            | -   | 10         | 5    |     | 2     | 12         | 7       | I<br>I |
| <i>9</i> c               | 2    | 6       | 10     | 1   | 2          | 9          | 3       | 3        | 2    | 11          | 9   | 1   | 2    | 14         | 3   | ·C         | 2   |            | 8    | 2   | 2     | 19         | . /     | 0      |
| Ioc                      | 1 2  | 12      | 0      | 2   | 2          | 14         | 9       | 2        | 2    | 17          | 6   | 2   | 3    | ō          | 3   | 3          | 3   | 3          |      | a   | 3     | ^y<br>5    | ٠ و     | 0      |
| 200                      | 5    | 4       | I      | . 1 | - 5        | 9          | 7       |          | 5    | 15          | Ö   | 3   | 6    | o          | 6   | -2         | 6   | 6          | 0    | ı   | 6     | 11         | 6       | 9      |
| 300                      | 1 7. | -       | 2      | 0   | 8          | . 4        | 4       | 3        | 8    | 12          | . 7 | 1   | 9    | ø          | 9   | -3         | و   | · 9        |      | 2   | 9     | 17         | 3       | 0      |
| 400                      | ιό   | 8       | 2      | 2   | _          | 19         | 2       |          | 1    | 10.         | Ï   | 1   | 12   | . 1        | , I | 1          | 12  | 12         | _    |     | 13    | <b>3</b> . | · O     | 0      |
| 500                      |      | 0       | 3      |     | 13         | 13         | ΙI      | 3 1      | 4    | 7           | 8   | o   | 15   | 1          | . 4 | 2          | 15  | 15         |      | - 1 | 6     | 8          | 9       | ī      |
| боо                      | _    | 12      | 4      | - 1 | 16         | Ś          | 9       |          | 7    | 5           | 2   | 2   | 18   | 1          | 7   | 3          | ı Ś | 1 <b>8</b> |      | - 1 | 9     | 14         | 6       | Ī      |
| 700                      | -    | 4       | 4      | 2   | 19         | 3          | 6       | 3 2      | 0.   | 2           | 8   | 3   | 2 I  | I          | 11  | -          | 22  | I          | 1    |     | 23    | ö          | 3       | Ī      |
| 80c                      | 20   | 16      | 5      |     | 21         | 18         | 4       | -,       | 23   | O           | 3   |     | 24   | . 2        | 2   | 1          | 25  | 4          | I    | •   | 26    | 6          | -       | I      |
| 900                      |      | 8       | 5      | 3   | 24         | 13         | i       | 3 2      | 5    | <b>17</b> . | 9   | 2   | 27   | 2          | 5   | 2          | 28  | Ż          | 1    | 2 2 | 29    | ΙI         | 9       | I      |
| 1000                     | 26   | ø       | б      | · • | 2 <b>7</b> | ブ          | TT      | 1 2      | 8    | 15          |     | ď   | 30   | 2          | 8   | 3          | 3 T | 10         | 1 :  | 2 3 | 2     | 17         | •       | ľ      |
| ditto                    | l.   | 26.0    | 271    | 1   | l.         | 27:3       | 969     | <b>)</b> | l. : | 28-70       | 571 | 1   | l.   | 30.I       | 368 | 3          | l.  | 31.5       | 067  | 1   | :l. ş | 32.8       | 765     | •      |
|                          |      |         | :      | 1   |            |            |         | ı        |      |             |     | I   |      |            |     | ١          |     |            |      | ŧ   |       |            |         |        |

|             | 2   | 50 I        | Days | , · | 2( | 50 I         | Day:   | آ- ، آ | 2        | 70 l    | Day:   | ۶. | 2           | 80 <b>1</b> | Days    | 5.     | 29       | 90 1     | Days       | . 1 | 30               | o 1      | Day    | s.         |
|-------------|-----|-------------|------|-----|----|--------------|--------|--------|----------|---------|--------|----|-------------|-------------|---------|--------|----------|----------|------------|-----|------------------|----------|--------|------------|
| Prin-       |     |             |      |     |    |              |        |        | 1        |         |        |    |             |             | _       |        | ١.       |          | _          |     |                  |          |        |            |
| cipal.      | l.  | 5.          | d.   | q.  | l. | s.           | d.     | q.     | l.       | s.      | d.     | q. | <i>l</i> .  | 5.          | d.      | q.     | 14.      | 5.       | d.         | q.  | 1.               | 5.       | d.     | q.         |
| l.          |     |             |      |     |    |              |        |        |          |         |        |    |             |             |         |        | 1        |          |            |     |                  |          |        |            |
| 1           |     |             | 8    | 1   |    |              | 8      | 2      |          |         | 8      | 3  |             |             | 9       | I      |          |          | 9          | 2   |                  |          | · 9    | 3          |
| 2           |     | 1           | 4    | 2   |    | 1            | 5      | 0      | l        | 1       | 5      | 3  |             | 1           | 6       | 2      |          | I        | 7          | 0   |                  | I        | 7      | -          |
| 3           |     | 2           | 0    | 3   |    | 2            | I      | 3      |          | 2       | 2      | 2  | 1           | 2           | 3       | 2      | i i      | 2        | 4          | 2   | '                | 2        | . 5    |            |
| 4           |     | 2           | 8    | 3   |    | 2            | 10     | 1      | l        | 2       | II     | 2  |             | 3           | 0       | 3      |          | 3        | 2          | 1   |                  | 3        | 3      | 2          |
| 5           |     | 3           | 5    | 1   |    | 3            | 6      | 3      | l        | 3       | 8      | 1  |             | 3           | 10      | 0      |          | 3        | II         | 3   | l                | · 4      | ,' I   | I          |
| 6           |     | 4           | 1    | I   |    | 4            | 3      | Ţ      | l        | 4       | 5      | I  | Ì           | 4           | 7       | 1      | l        | 4        | 9          | С   |                  | 4        | II     | I          |
| 7           |     | 4           | 9    | 2   |    | 4            | II     | 3      |          | 5       | 2      | 1  |             | 5           | 4       | · 2    |          | 5        | <u> </u> 6 | 3   | ļ                | 5        | 9      |            |
| 8           |     | 5           | 5    | 3   |    | 5            | 8      | 2      | ĺ        | 5       | ΙI     | 0  |             | 6           | I       | 2      | l        | 6        | 4          | . 1 |                  | 6        | 7      | _          |
| ۶           |     | 6           | 2    | 9   |    | 6            | 5      | 0      | 1        | 6       | 7      | 3  | l           | 6           | 11      | 0      | l        | 7        | I          | 3   |                  | 7        | 4      |            |
| 10          |     | 6           | 10   | 9   |    | 7            | I.     | 2      | ŀ        | 7       | 4      | 3  | l           | 7           | 8       | C      | l        | 7        | 11         | 1   |                  | 8        | 2      |            |
| 2C          | _   | 13          | 8    | 2   | _  | 14           | 3      | 0      | ۱ ـ      | 14      | 9      | 2  | _           | 15          | 4       | 0      |          | 15       | 10         | 3   | ŀ                | 16       | 5      |            |
| 3ં          | I   | 0           | 6    | 2   | I  | I            | 4      | 2      | I        | 2.      | 2      | 1  | I           | 3           | 0       | 0      | ľ        | _3       | 10         | 0   | t -              | 4        | _8     |            |
| 4¢          | I   | 7           | 4    | 3   | I  | 8            | 5      | 3      | I        | 9       | 7      | 0  | I           | IO          | 8       | I      | Ī        | II       | 9          | I   | ı -              | 12       | IO     | . 2        |
| <b>5</b> c  | I   | 14          | 3    | 0   | I  | 15           | 7      | 1      | I        | 16      | IJ     | 3  | I           | 18          | 4       | 1      | I        | 19       | 8          | 3   | 2                | I        | I      | 0          |
| <b>6</b> 0  | 2   | 1           | I    | 0   | 2  | 2            | 8      | 3      | 2        | 4       | 4      | 2  | 2           | 6           | 0       | I      | 2        | 7        | 8          | 0   | _                | 9        | 3      | -          |
| 7c          | 2   | 7           | II   | 1   | 2  | 9            | 10     | ŀ      | 2        | 11      | 9      | I  | 2           | 13          | 8       | 2      | 2        | 15       | 7          | 1   | 2                | 17       | 6      | <b>`</b> 2 |
| 8c          | 2   | 14          | 9    | 2   | 2  | 16           | I £    | 3<br>1 | ı        | 19      | 2      | 0  | 3           | ı           | 4       | 1      | 3        | 3        | 6          | 3   | 3                | 5        | 9      | 0          |
| <b>.9</b> 0 | 3   | 8<br>8      | 7    | 3   | 3  | 4            | I      | _      | 3        | 6       | 7      | 9  | 3           | 9           | 0       | 2      | 3        | 11       | 6          | 0   | -                | 13       | 11     | 3          |
| 100         | 3   | 16          | 5    | 3   | 3  | 11           | . 2    | 3      | 1 =      | 13      | 11     | 3  | 3           | 16          | 8       | 2      | 3        | 19       | 5          | 2   | 4                | 2        | 2      | -          |
| 200         | 6   | _           | II   | 3   | 7  | 2            | 5      | 2      | · .      | 7       | 11     | I  | 7           | 13          | 5       | 0      | 7        | 18<br>18 | Io         | 3   |                  | 4        | 4      |            |
| 300         | 10  | 5           | 5    | 3   | 10 | 13           | 8      | 2      | II       | I       | 11     | 0  | _           | 10          | I       | 1      | II       |          | 4          | J   | 12               | 6        | 6      | 3          |
| ,           | 13  | 13          | ΙΙ   | 2   | 14 | 4            | II     |        | 14       | 15      | IO     | 2  | 15          | 6           | 10      | 2      | 15       | 17<br>17 | 9          |     | 16               | 8        | 9      | 0          |
| 500         | 17  | 10          | 5    | 2   | 17 | 16           | 2      | 0      | 18       | 9       | 10     | 0  | 19          | 3           |         | )<br>I | 16<br>23 | 16       | 8          |     | 20               | 10       | ΙΙ     | Z          |
|             | 20  | 19          |      |     | 21 | 7<br>18      | 4      | 3      | 22       | 3       | 10     | 1  | 23<br>26    | 16          | 3<br>11 | - 1    | 23<br>27 | 16       | 2          | 2   | 24<br>28         | 13       | I      | 3          |
|             | 23  | -           | 5    | ,   | 24 |              | 7      | _      | 25       | 17      | 9      |    | _           |             | 8       | 3      | 2 I      | 15       |            | 1   |                  | -        | 4      | 0          |
| <b>9</b> 00 | 27  | 7<br>16     | · ·  |     | 28 | 9            | 10     | 0      | 29       | 11      | 9      | 1  | 30          | 13          |         | 0      | 35       | 15       | 7          | -1  | 3 <b>2</b><br>36 | 17<br>19 | б<br>8 | 1<br>3     |
| 1000        | -   |             | . 5  | ,   | 32 | 12           | 1<br>4 |        | 33<br>36 | 5<br>19 | 8<br>8 |    | 34<br>38    | 7           | 5       |        | -        | 14       | 6          | 3   | 4I               | 17       | 77     | <b>5</b>   |
| ditto       | 13# | 24          | 246( |     | 35 |              | 5162   |        |          | 36.9    |        |    | $\tilde{i}$ | 38·2        | _       |        | . ,      | •        | 7259       | , 1 | ٠,               | 41.G     | 295°   | -          |
|             | "   | <b>フサ</b> い | 240  |     | "  | 5 <b>)</b> " |        | Ť      | "        | 2~.2    | , 40.  | _  | ] "         | 2014        | 707     | 1      |          | フノ・/     | ~ <u>_</u> |     | <b>"</b>         | T * ''   | ・マン    | •          |

| (          |             |               |         |     |              |            | •     |       |      |             |                  |        |               |       |          |                     |       |        |            | 126      | 5 D            | 411 C |
|------------|-------------|---------------|---------|-----|--------------|------------|-------|-------|------|-------------|------------------|--------|---------------|-------|----------|---------------------|-------|--------|------------|----------|----------------|-------|
|            | ۱.,         | _ 1           | ٦       | .   |              | _ T        | ١     | ١.,   | 1    | D 44        |                  | ~ T    |               | J     | - 7      | <b>)</b>            | 106   | ~ T    | ane        | 30:      | , <i>D</i> , γ | onr   |
| Prin-      | 31          | 0 1           | Jay     | ۱., | 32           | O L        | rays. | 33    | (U 1 | Jays        | •  34            | O D    | ays.          | 35    | ) L      | Jays                | . 30  | U L    | ays.       | <b>"</b> |                |       |
|            | ,           |               | , ·     |     | , ,          |            | i. q  | ١,    |      | , ,         | ٠,               | •      | , ,           | ١,    |          | . L                 | ١,    |        | d. q       | l.       | S.             |       |
| cipal.     | <b>"·</b>   | S.            | d.      | q   | <i>l</i> . s |            | 1. q  | 1"    | ٥.   | <i>a. q</i> |                  | 3. 4   | <i>i. q</i> . | 1"    | 3. (     | <i>u</i> . <i>q</i> | 1"    | 3. (   | u. 9       | "        | ٠.             |       |
| - 4        |             |               |         |     |              |            | 1     |       |      | <b>TO</b> ( |                  |        |               |       |          |                     |       |        |            | l        |                |       |
| 1          |             |               | 10<br>8 |     |              |            | 10 2  | 1     |      | 10          | - 1              |        | 11            | 1     |          | II                  |       |        | 113        | ł        | 2              |       |
| 2          |             | 1             | 6       |     |              | I<br>2     | 90    | 1     | I    |             | 3                | _      | 101           |       | _        | II                  | 1     | _      | II 3       |          |                |       |
| 3          |             | 2             |         | _   |              |            | 7 2   |       | 2    |             | _1               | 2      | -             | 2     | _        | 10                  | -1    | 2      | 11 1       | 1        | 3              |       |
| 4          |             | 3             | 4       | - 1 |              | 3          |       |       | 3    | •           | I                | 3      |               | 3     | _        | 10                  |       | 3      | 11 1       | 1        | 4              |       |
| 5          |             | <b>4</b><br>5 | 3       | 0   |              | <b>4 5</b> | 3 (   |       | 4    | -5          | -1               | 4<br>5 | •             | 3     | • 4      | 9                   |       | 4      | 11         | 1        | <b>5</b>       |       |
| 6          |             | 5             | ΙI      | ī   |              | ر<br>6     | 1 2   |       | 5    |             |                  | 6      | •             |       | <b>5</b> | 8                   |       | )<br>6 | 10         | 1        | 7              |       |
| 7<br>8     |             | <i>ა</i>      | 9       | -   |              | 7          | 0     | 1     | 7    | •           | 3                | 7      |               | 2     | 7        | 8                   |       | _      | 10         | 1        | 8              |       |
|            |             | 7             | 7       | 1   |              | 7          | 10    |       | 8    |             | 2                | 8      | -             | 2     | 8        | 7                   |       | 8      | -          |          | 9              |       |
| 9<br>.a.c  |             | 8             | 6       |     |              | 8          | 9     |       | 9    |             | 2 .              | 9      | 7             | 3     | 9        | -                   | a     |        | 10         |          | 10             |       |
| 20         |             | 16            | 11      |     | l            | 17         | _     | ıl    | 18   |             | ol .             | 18     | _             | 2     | 19       |                     | d     | 19     | ^          | •        | 0              |       |
| 30         | ,           | ٠,            | 5       | -   | 1            | 6          |       | 2 )   | _    | _           | 2 [              |        |               | 1 .   | _        |                     | 0 1   | 9      |            |          | 10             |       |
| 4C         | ī           | 13            |         | 3   | ı            | 15         |       | 3 .1  |      |             | o ī              |        |               | ol 1  | -        | •                   | ılı   | 19     | <u>.</u> . | 2 2      | 0              |       |
| 50         | 2           | 2             | 5       | 2   | 2            | 3          |       | 3     |      |             | 2 2              |        |               | 3 2   |          | 7                   | 1 2   | _      | _          | 2        | IO             |       |
| 60         | _           | 10            |         | 2   | 2            | 12         | 7     | .1 `  | 14   |             | 0 2              | 15     |               |       | 17       | 6                   | 1 2   | 19     | 2          | 3        | ٥              |       |
| <b>7</b> 0 | 2           | 19            | 5       | 2   | 3            | . 1        |       | 1     |      |             | 2 3              |        |               | 2 3   | •        |                     | 2 3   | 9      | 0:         |          | 10             |       |
| 80         | 3           | 7             | 11      | 1   | 3            | 10         |       | 2     |      |             | $0 \overline{3}$ |        |               | ıl 3  | -        | _                   | 2 3   | 18     | 10         | 3 4      | 0              |       |
| 90         |             | 16            | 5       | 1   | 3            | 0          | 10    | 3 2   |      |             | 2 4              | _      | 10            | 0 4   | 6        |                     | 2 4   | 8      | 9 0        |          | 10             |       |
| 100        |             | 4             | 11      | ]   | 4            | . 7        | 8     | 기 4   |      | 5           | ol 4             | . 13   | I             | 1 .   | . 15     |                     | 2 4   | 18     |            | 2 5      |                |       |
| 200        | خ ا         | ġ             | 10      | I   | 8            | 15         | 4     | 9     | ·    | 9           | 3 9              | 6      | 3             |       | II       | 9                   | 1 9   | 17     | 3          | 01       |                |       |
| 30C        | 12          | 14            | 9       | 2   | 13           | 3          |       | 7     | H    |             | 3 1 3            | 19     | 5             | 1 1 4 | · 7      | 8                   | 14    | 15     | 10         | 3 1 5    |                |       |
| 400        | 16          | 19            | 8       | 3   | 17           |            | _     | 1 1 8 | 3 1  | 7           | 3 1 8            | 12     | 7             | 0 19  | 3        | 6                   | 3 19  | 14     | 6          | 1 20     |                |       |
| 500        | 2 I         | 4             | 7       |     | 21           | 18         | 4     | 22    | 12   | . 0         | 2 2 2            |        | _             | o¦2 3 | 19       | 5                   | 1 24  | 13     | 1          | 2 2 5    |                |       |
| 600        | 25          | 9             | 7       | С   | 26           |            | •     | 1 27  | 7 2  | 5           | 2 2 7            | 18     | 10            | 3 28  | 15       | 4                   | 029   | 11     | 9          | 130      |                |       |
| 700        | 29          | 14            | 6       | I   | 30           | _          | 8     | 131   | 12   | 10          | 2,32             | 12     | 0             | 2 3 3 | 11       | 2                   | 3 34  | . 10   | 5          | 35       |                |       |
| 800        | 1 -         | 19            | ,       | 1   | 35           | I          | . T   | 13    | -    | 3           | 237              | 1 5    |               | 2¦38  | 3 7      | 1                   | 2 34  | _      |            | 170      |                |       |
| 900        |             | 4             | . 4     |     | -            |            |       | 1 40  | 13   | 8           | 141              | 18     |               | 143   |          |                     | 044   | •      |            | 45       |                |       |
| 1000       |             | _             | -       |     | 4,3          | 16         | 8     | 2 4   | 5 4  | <b>, 1</b>  | 1 46             | 11     | 6             | 0 47  | 18       | 10                  | 3 4,9 |        | -          | 150      |                |       |
| ditto      | <i>\\</i> . | 42.           | 46 S    | 5   | <i>!</i> ·   | 43.        | 835   | 3   1 | 45   | .205        | 1 /.             | 46     | 574           | 9¦ l. | 47       | .944                | 7 4   | 49.    | 3150       | 7/.      | 50             | •     |
|            | J           |               |         |     | •            |            |       | ł     |      |             | 1                |        |               | 1     |          |                     | 1     |        |            | 1        |                |       |

A TABLE shewing the Number of Days between any Day of one Month, and the same Day of any other.

| Febr. 31. M<br>Marc. 59. A<br>April 90. M                                                                                               |                                                                                                                 | .,                                                                                                                   |                                                                                                           |                                                                                                            |                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| May 120. Ji<br>June 151. Ji<br>July 181. A<br>Aug. 212. Se<br>Sept. 243. O<br>Oct. 273. N<br>Nov. 304. D<br>Dec. 334. Ji<br>Jan. 365. F | May 89.<br>une 120.<br>uly 150.<br>lug. 181.<br>ept. 212.<br>et. 242.<br>lov. 273.<br>lec. 303.<br>an. 334.     | May 61.  June 92.  July 122.  Aug. 153.  Sept. 184.  Oct. 214.  Nov. 245.  Dec. 275.  Jan. 306.  Feb. 337.           | June 61.<br>July 91.<br>Aug. 122.<br>Sept. 153.                                                           | July 61. Aug. 92. Sept. 123. Ott. 153. Nov. 184. Dec. 214. Jan. 245. Feb. 276. Mar. 304. Apr. 335.         | Nov. 153.<br>Dec. 183.<br>Jan. 214.<br>Feb. 245.<br>Mar. 273.<br>Apr. 304.<br>May 334.                  |
| July.  Aug. 31. Se Sept. 62. O. O.t. 92. N Nov. 123. D Dec. 153. Je Jan. 184. F                                                         | August.  2pt. 31.  2tob. 61.  1ov. 92.  2ec. 122.  an. 153.  eb. 184.  Mar. 212.  1pr. 243.  May 273.  une 304. | Septemb.  Octob. 30.  Nov. 61.  Dec. 91.  Jan. 122.  Feb. 153.  Mar. 181.  Apr. 212.  May 242.  June 273.  July 303. | October.  Nov. 31. Dec. 61. Jan. 92. Feb. 123. Mar. 151. Apr. 182. May 212. June 243. July 273. Aug. 304. | Novemb.  Dec. 30. Jan. 61. Febr. 92. Mar. 120. Apr. 151. May 181. June 212. July 242. Aug. 273. Sept. 304. | Decemb.  Jan. 31. Febr. 62.  Mar. 90.  Apr. 121.  May 151.  June 182.  July 212.  Aug. 243.  Sept. 274. |

The Use of the foregoing Tables.

1. This Table last above I shall first shew the Use of, because it is naturally in Use before that of Simple Interest.

Example.] How many Days is contained between the 19th of No-

vember and the 28th of March following?

Rule.] This Table shews, that from November 19, &c. to the fame day of March, it is 120 Days. To which adding the Days that 28 exceeds 19, viz. 9, gives 129 Days for Answer. But in case the Days you reckon to, are not so many as those you reckon from; then substract the difference. As, to find the Days between the 28th of November and the 19th of March; November 28, &c. to the same Day of March is 120 Days (as before) from which deducting what 28 exceeds the 19th of November, and the Remainer is 111 Days the Answer.

The Use of the Table of Simple Interest, at 5 per Cent. Example 1.] What is the Interest of 1.700 from the 5th of July to the 13th of April following, at 5 per Cent?

The Time is 282 Days, and against l. 700 under \ l. 26: 16: 11 \cdot 280 Days, is

And under 2 Days is 00: 3:10

Example 2.] To find the Interest of 1.470 from the 18th of December to the 5th of April, at 5 per Cent. The Time is 108 Days; and l.400, under 100 = l.5:9:

Answer, 1.27:00: 9: Days.

3. Or any more odd or larger Sums in Questions of this kind may be mul-

l.70, under 100 = 00:19: 1.400, under 8 = 00: 1.70, under 8 = 00:

tiplied one in another, and the Product of the Days and Pounds by the .00013699 at the beginning of the Table of 5 per Cent. for Answer.

Sum or Answer = l.6:19:00 ‡

4. If you would find the Interest of 1. 4700 (or other Sum above 1000) for 108, &c. Days; under 100 Days and 8 Days against ditto you find the marginal Numbers, whose Sum being multiplied by 4.7 = 4700) gives the

Answer 1.69: 10:71.

Against ditto under 100 is 13.6984 under 8 is 1.0956

> Sum 1. 14.7940 Multiply by 4.7

Product Answer = 69.5318Such

Such Persons as are minded to have an Instrument whereby to find the Number of Days between any two in the Year, may see the Form of one, Plate A. Fig. 25, and 26. which being done in Brass, and of a six-inch Radius, will most easily and accurately answer their End.

The Description and Use of the Circles of Days and Months. (Fig. 25, 26. Plate A.)

This consists of a Circle (as Fig. 26.) divided into 365 Days. which is to turn round concentrically in a Circle, (Fig. 25.) divided into the Months in the Year, and each Month into its respective Days: fo that the inner Circle naturally measures the Days between any two in any of the Months, in order to find the Interest or Discount for those Days.

Example.] How many Days are contained between the 15th of

November and the 2d of May following?

For Answer, turn the Hand in the inner Circle to the 15th of November in the outer Circle, and against the 2d of May in that outer, you will find in the inner Circle 168 Days, including the Day you reckon from, and excluding that which you reckon to.

Rules bow by the two Tables of 4 and 5 per Cent. above, to find the Interest at any Rate from 1 to 10 per Cent. inclusive, very easily and briefly.

For Instance, 1. 500 for 170 Days.

```
Examples.
               Rules.
For 1 per Cent. take a fourth \ \( l.9 : 6 : 3 : 3 \)
    of the Int. at 4 per Cent. of which \( \frac{1}{2} \) is \( \lambda l. 2 : \( 6 : 6 \) Answer.
    2 per Cent. take half the \\ 1.9:6:3:3; \frac{1}{2} is 4:13:1 \frac{1}{2} Answer.
    3 per Cent. is the Inter.
       at 4 per Cen. lessa 4th $1.2:6:6:3 = 6:19:9 Answer.
       thereof, as lefs ——
       per Cent. 18 the 1016-
rest at 4 per Cent. \( 9: 6:3:3 \) or 13: 19: 5\frac{1}{4} Answ.
    6 per Cent. is the Inte-
                           more 4:13:1:3. S
   7 per C. take?
from the Int. of 1 p.C. less= 2: 6:6:3 gives \ 16:6:0 \ Answ.
the Int. of 1 p. C. ( as 8 p.C. is=18:12:7:2
8 p.C. found thus )
```

Rules

Rules.

Rules.

Examples.

For 8 per Cent. add the Int. | 18:12:7:2 = 18:12:7! Anf. | 4 per Cent. is 9:6:3:3 | 5 per Cent. add the Int. at | 4 and 5 per C. together | 5 per Cent. is 11:12:10:2 | 5 per Cent. to itself | 11:12:10:2 | 5 per Cent. to itself | 11:12:10:2 | 5 Sum 23:5:9 Answ.

#### II. The Use of Decimals in calculating Discount.

This matter wants very much to be set in a clear Light, for I have not yet seen it done; tho' I have not perhaps seen all that has been wrote upon it: But I know that a learned Author in Folio has intirely mistaken it.

1. The Discount of Money is the Allowance made by the Creditor out of a Sum of Money due to him at the end of some number of Days, in consideration of the prompt Payment of the Re-

mainer by the Debtor.

2. That Sum paid down instead of the Principal due hereaster, may properly be called the present Worth; in regard that if it were put out to Interest for the Days that the Discount is computed, it would amount to the Principal due at the end of those Days.

3. The Interest for any time is more than the Discount for that time; because (suppose of l. 1 for 1 Day at 6 per Cent.) the Quotient must be more when .016438 (= the Interest of l. 100 for one Day) is divided only by 100, than when it is divided by l. 100.016438.

4. To find the present Worth of l. 1. due 1 Day hence at 6 per Cent.

Days. l. Int. Day. l. Int.

1st, As 365. 6:: 1. .016438

l. l. l. l. Answer.

2dly, As 100.016438. 100:: 1 .99983565

5. For the Discount of l. 1 for 1 Day.

1st, As 365. 6:: 1. .016438

2dly, As 100.016438. .016438 :: 1 to .00016435

Here the Sum of the present Worth
and Discount makes up the Principal Sum Proof, l. 1.00000000
payable at time, as a Proof of the
Truth of both.

B b 2

6. Ano-

6. Another way to prove this, is to try whether the Amount of the present Worth for the time, will make up the Principal due at that time thus:

Whence I find, that if l. 100 in 1 Day amount to 100.016438; then the faid present Worth of 1 l. due at the end of 1 Day, will amount to l. 1: which is a second Proof of the true Computation of the present Worth and Discount above.

7. To illustrate this matter farther, I shall give another Example at large; which shall be to find the Discount of l. 1000 payable at

the end of 90 Days at 6 per Cent.

Days. 1. See the Operation. Days. 1ft, 365. 6 :: 90 2dly, As 101.47945. 1.47945:: 1000. 14.57882 365) 540. (1.47945 175.0 (= 100,101.47945) 1479.45000 (14.57882 Ans. | 290.0 (for 90 464 65550 345.0 58 7377**0.**0 165.0 7 99777 5.0 19 0.0 89421 3 5.0 8237790.0 2194340

And for Proof 101,47945. 100:: 1000. 985.42118 = pref. Worth.
Which added to the Discount = - - - 14.57882 = 1000
Or for Proof fay, 100. 101,47945:: 985.42118. 1000

#### 8. A New Way of Calculating Discount and Present Worth.

But because there are two Divisions, and one of them very operose, I have 'Algebraically (as you may see in the Use of Algebra) contrived this Rule or Canon, which has but one, and that a shorter Division.

1. For the present Worth; Multiply the Days in a Year, the Principal given, and 100, in each other, for the Dividend. And add the Product of 365 by 100 to that of the Days multiplied in the Rate given, and the Sum is the Divisor: so the Quote arising is the Answer.

Digitized by Google:

In the last Example, 365 in 100 is 36500, that in 1000 makes 36500000, without farther trouble; then 365 by 100 = 36500; more 90 Days in 6 (the Rate) is 540; and that Sum is = 37040, the Divisor. See the Work.

```
3704.0) 3650000.0 (985.42117 = the Answer,
                           31640
                                              or present Worth.
  2.] For Discount; Multi-
                             2008,0
ply the Rate in the Princl-
                              156 0.0
pal given, and that in the
                                 784.0
Days given is your Divi-
                                  432.0
dend. And the Product of
                                    6 1 6.0
365 Days by 100 added to
                                    2 4 5 6.0
that of the Days, in the
Rate given, is the Divisor.
Thus the Principal in the
Rate is
                   By the Days =
And 365 in 100=36500 | 3704.0) 54000.0 = Dividend (14.57883 =
  More 90 in 6 = 540
                                16960
                                                     Discount, as
                                                       before.
                                 2144.0
       Divisor = 37040 Sum. [
                                  292 0.0
                                   32 7 2.0
                                    3088.0
                                      1 2 4 8.0
```

Note, By this last Method you use fewer Figures by above 40, and have not a third of the trouble.

9. In Dr Harris's Lexicon the Discount for one Day is afferted to be the 365th part of that for a Year: However this Mistake came, I know not; but his two Folio Pages of Table of Discount being made upon the same Principle, are likewise erroneous. And to prove this, it is sufficient from the foregoing due Calculation, That the Discount of l. 1 for 1 Day, at 6 per Cent. is .00016435, and not .0001550788, as the Lexicon makes it. And to pretend that multiplying the Discount of l. 1 for 1 Day, gives the Discount of one Pound for other Days by which you multiply, is a wrong Notion; because every Day's Discount of l. 1 disfers, being less according as that Day is distant from 1, as appears plain from what follows.

This



| This is a full Indication            |
|--------------------------------------|
| that one Day's Discount at           |
| the beginning of the Year is         |
| much more than at the mid-           |
| dle or end: and therefore            |
| were the last Example above          |
| of the Discount of l. 1000           |
| for 90 Days to be done by            |
| the Tables in the Lexi-              |
| con, it would be but — — } 13:19:14  |
| but $\int_{-3}^{3}$                  |
| vy nereas tis in                     |
| truth by the Calculationa- (14:11:64 |
|                                      |
| bove $3$                             |
| So that the faid Lexicon-            |
| Tables err in this Instance          |
| 12 s. 5 d. And were the              |
| Days fewer, for which the            |
| Discount is required, the            |

| Days.                                                                    | Discount of L 1. for those Days at 6 per Cent.                                                                                                     | Differences or<br>each Day's<br>Discount.                                                        |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>180<br>181<br>182<br>183<br>362<br>363<br>364<br>365 | .00016435<br>.00032865<br>.0004929<br>.0006571<br>.0287386<br>.0288937<br>.0290487<br>.0292036<br>.05616466<br>.05631106<br>.05645744<br>.05660377 | .00016430<br>.00016425<br>.0001642<br>.0001551<br>.0001550<br>.0001549<br>.00014642<br>.00014638 |

Error would be proportionably greater.

Hence it may be inferred, That no Tables of Discount can be used with Accuracy, but such as have the Discount for every Day in the Year, because every Day's Discount differeth. And had I time, and room in this Book, I would oblige the Publick with a Table of Discount for every Day, because I know not of any true Table of Discount extant. But in the mean time, the following will be better than any yet published, and will be found accurate enough in Practice.

A TABLE

### A TABLE of DISCOUNT at 4 per Cent. per Ann. more accurate than any extant.

|                                                                               |                                                                           |                                                                                                               | •                                      |                                         |                                                           |                                                        |                                                                                                                                                                                     |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------|-----------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dain                                                                          | I Day.                                                                    | 2 Days. 3 I                                                                                                   | Days. 4 Day.                           | . 5 Days.                               | 6 Days.                                                   | 7 Days                                                 | 8 Days.                                                                                                                                                                             |
| sipal.                                                                        | s. d. q.                                                                  | s. d. q. s.                                                                                                   | d. q. s. d.                            | q. s. d. q                              | s. d. q.                                                  | s. d. q.                                               | s. d. q.                                                                                                                                                                            |
| 2 3 4 5 6 7 8 9 10 20 80 90 100 200 600 700 800 700 800 700 800 800 800 800 8 | 1 1 1 1 1 1 1 1 2 3 1 0 1 1 1 2 2 2 1 2 2 1 7 3 2 1 1 1 1 3 3 1 6 1 1 9 0 | 1 1 1 1 2 2 2 2 2 2 2 3 3 4 4 5 1 2 2 2 3 3 4 5 5 1 3 9 2 1 2 3 3 3 3 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 11111111111111111111111111111111111111 | 1 1 1 1 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 | 1 2 2 3 C C I 2 2 3 C C I I I I I I I I I I I I I I I I I | 1123CC1233321<br>111133791033222312C131<br>11134679012 | I I 2 3 0 I I 2 3 3 0 I I 2 3 5 7 9 6 3 0 9 6 3 I I I I 3 5 7 8 0 2 1 4 6 8 1 1 1 1 3 5 7 8 0 2 1 4 6 8 1 1 1 1 3 5 7 8 0 2 1 1 1 1 3 5 7 8 0 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| 900<br>1000                                                                   | 1 II 3<br>2 2 I                                                           | 4 4 3 6                                                                                                       | 11 °C 7 10 6 3 8 9                     | 3 9 IO 1<br>1 IO 11 2                   | 11 10 G                                                   | 13 9 2<br>15 4 0                                       | 15 9 1<br>17 6 1                                                                                                                                                                    |
| ditto                                                                         | 110957                                                                    | 121913 13                                                                                                     | 2865/4381                              | 6454764                                 | 16571                                                     | 1. 76653                                               | 1. 87594                                                                                                                                                                            |
| 1                                                                             | ,                                                                         | , ,                                                                                                           | ,                                      |                                         | -                                                         |                                                        | •                                                                                                                                                                                   |

### A TABLE of Discount at 4 per Cent.

|               | 9     | Day     | 5.  |    | o 1 | Days    |    | 2  | o 1                  | Days       |    | 9  | o 1 | Days   | ۲. | 1  | 10 <i>1</i> | Days |      | 50    | Day                                    |     | ۱,     | 60 I | ) au  | •          |
|---------------|-------|---------|-----|----|-----|---------|----|----|----------------------|------------|----|----|-----|--------|----|----|-------------|------|------|-------|----------------------------------------|-----|--------|------|-------|------------|
| Prin-         |       | •       |     |    | _   |         | •  | •  | -                    | ٠,٠,٠      |    | 3  |     | .,     | •  | 7  | <b>-</b>    | ) •  | `    | 50    |                                        | •   | ľ      |      | - 47. | •          |
| cipal.        | s.    | d.      | 9.  | ł. | s.  | d.      | 9. | l. | 5.                   | d.         | 9. | l. | s.  | d.     | a. | Z. | s.          | d.   | 9.   | . s.  | d.                                     | q.  | Z.     | s.   | d.    | <b>q</b> : |
| I.            |       |         | -   |    |     |         | 1  |    |                      |            | -  |    |     |        | 1  |    |             |      | 1    |       |                                        | - 1 |        | -•   |       | 7.         |
| 1             |       |         | 1   |    |     |         | 1  |    |                      | ٥          | 2  |    | •   |        | 3  |    |             | 1    | 0    |       | 1                                      | ٠,  |        |      | 7     | 2          |
| 2             |       |         | 2   |    |     |         | 2  |    |                      | I          | 0  |    |     | I      | 2  |    |             | 2    | 0    |       | 2                                      | . 2 |        |      | 3     | Ī          |
| 3             |       |         | 3   |    | •   |         | 3  |    | •                    | 1          | 2  |    | •   | 2      | 1  |    |             | 3    | 1    |       | 4                                      | C   |        |      | 4     | 3          |
|               |       | 1       | 0   |    |     | . 1     | Ó  |    |                      | 2          | 1  |    |     | 3      | 1  | ı  |             | 4    | 3    |       | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 1   |        |      | 6     | I          |
| 4<br>5<br>6   |       | I       | 1   |    |     | 1       | 1  |    |                      | 2          | 3  |    |     | 4      | c  | o  |             | 5    | n    |       | 6                                      | 2   |        |      | 7     | 3          |
|               | 1     | I       | 2   |    |     | 1       | 2  |    |                      | . 3        | 1  |    |     | . 4    | 3  |    | •           | 6    | 1    |       | 7                                      | ŝ   | Γ      |      | á     | 2          |
| 7<br>8        | 1     | I       | 3   |    |     | I       | 3  |    |                      | 3          | 3  |    |     | 5      | 2  | l  |             | 7    | 1    |       | ģ                                      | 1   |        |      | ii    | -<br>0     |
|               |       | 2       | 9   |    |     | 2       | 1  |    | •                    | 4          | 1  |    |     | 6      | 1  |    |             | 8    | 1    |       | ΙO                                     | 2   |        | I    | ·o    | 2          |
| 9             |       | . 2     | 1   |    |     | 2       | 2  |    |                      | 4          | 3  | ĺ  |     | 7      | C  |    |             | 9    | 2    |       | II                                     | 3   | l      | I    | 2     | 0          |
| 10            | ٠     | 2       | 2   |    |     | 2       | 3  |    |                      | 5          | 1  |    |     | 7      | 3  | ŀ  |             | IO   | 2    | I     | Ī                                      | ó   |        | I    | 3     | 3          |
| 20            |       | 4       | 3   |    |     | 5       | 1  |    | _                    | 10         | 2  |    | 1   | 3      | 3  | ŀ  | I           | 9    | 0    | 2     | _                                      | 1   | ı      | 2    | 7     | í          |
| 30            |       | 7       | C   |    |     | 7       | 3  |    | Ι                    | 3          | 3  |    | 1   | 11     | 3  |    | 2           | 7    | 2    | 3     | 3                                      | 3   | ı      | 3    | ıİ    | 0          |
| 40            |       | 9       | 2   |    | _   | 10      | 2  |    | I                    | 9          | O  |    | 2   | 7      | 2  |    | 3           | б    | 0    | 4     | 4                                      | ]   | ļ      | 5    | 2     | 3          |
| 50            | I     | 0       | 0   |    | I   | I       | 0  |    | 2                    | : <b>2</b> | I  | l  | 3   | 3      | 1  |    | 4           | 4    | 2    | 5     |                                        | . 1 |        | 6    | 6     | 2          |
| 60            | I     | 2       | I   |    | I   | 3       | 3  |    | 2                    | 7          | 2  |    | 3   | 11     | 1  |    | 5           | 2    | 3    | 6     |                                        | 2   |        | 7    | 10    | 0          |
| 7°<br>8°      | 1     | 4<br>7  | 2   |    | I   |         | 1  |    | 3                    | 0          | 3  |    | 4   | 7      | 0  |    | 6           | I    | 1    | 7     | 7 8                                    | 2   |        | 9    | I     | 3          |
|               | ī     | 9       | ٦   |    | I   | 9<br>11 | C  |    | 3                    | 6          | 0  |    | 5   | _3     | C  |    | 7           | 0    | c    | 8     |                                        | 2   |        | 10   | 5     | 2          |
| 90            | ī     | 7<br>II | 3   |    | 2   | 2       | 3  |    | .3                   | ĮI         | 2  |    | 2   | IO     | 3  |    | 7           | 10   | 1    | 9     | _                                      | 1   |        | II   | 9     | 0          |
| 20C           | 3     | 11      | 2   |    | 4   | 4       | 2  |    | <b>4</b><br><b>8</b> | 4<br>9     | 0  |    | 6   | 6      | 2  |    | 8           | 8    | 3    | Ic    |                                        |     | ,<br>i | 13   | 0     | 3          |
| 300           | 5     | 11      | 0   |    | 6   | б       | 3  |    | 13                   | ı          | 2  |    | 13  | 8<br>1 | J  | ,  | 17          | 5 2  | 2    | •     | _                                      |     | I      | 6    | I     | 2          |
| 400           | 7     | 10      | 3   |    | 8   | 9       | ó  |    | 17                   | 6          | 0  | T  | 6   | 2      | 2  | ,  | 14          | 11   | c    | 1. 12 |                                        |     | Ĭ      | 19   | 2     | I          |
| 500           | 9     | 10      | 1   |    | 10  | 11      | 2  |    | Ī                    | Io         | 2  | ī  | 12  | 9      | .1 | 2  | 3           | 7    | 3    | ,     |                                        |     | 2      | 12   | 3     | 0          |
| .600          | ΙI    | 10      | 0   |    | 13  | I       | 2  | Į  | б                    | 3          | 0  | ī  | 19  | 4      | 0  | 2  | 12          | •4   | 2    |       |                                        |     | 3      | 18   | 4     | 0          |
| 700           | 13    | 9       | 2   |    | 15  | 4       | 0  | I  | 10                   | 7          | I  | 2  | 5   | Io     | 2  | 3. | ī           | ī    | 1    |       | 4                                      | 3   | 5<br>1 | 11   | 4     | 3          |
| 800           |       | 9       | 1   |    | 17  | 6       | c  | I  | 15                   | 0          | 0  | 2  | I2  | 5      | 0  |    | 9           | 10   |      |       | •                                      | 1   | ተ<br>ና | 4    | 5     | 2          |
| , <b>9</b> 00 |       | 8       | 3   |    | 19  | 8       | 2  | I  | 19                   | 4          | 2  | 2  | 18  | ΙΊ     | 3  | 3  | 18          | 6    | 3    | . 18  |                                        | -1  | ,<br>5 | 17   | 7     | 0          |
| 1000          |       | 8       | 2   | I, | 1   | IO      | -  | 2, | 3                    | 8          | 3  | 3  | • 5 | 6      | 2  | 4  | 7           | 3    | 2    | ٠.    | ō                                      | ı   | -      | 10   | 7     | 3          |
| ditto         | و. ۱۰ | 985     | 32  | ٤. | 1.0 | 946     | 59 | l. | 2.                   | 186        | 99 | l. | 3.  | 276    | 89 | l. | _ `         | 3644 | F3 ^ | ,     | 449                                    | - 1 | l.     |      | 222   |            |
|               | 1     |         | - 1 |    |     |         |    |    |                      |            |    | 1  |     |        |    | 1  | •           | •    | 7    |       |                                        | 1   |        | ,    | J-3   |            |

# A TABLE of Discount at 4 per Cent... per Ann.

|                                                                      |                          |                        |                                              |                                                      | ı                                            |                                           | _               |                                   |                                        | ,                  |                                       |                                | .1                    |              |             | :                                    |  |
|----------------------------------------------------------------------|--------------------------|------------------------|----------------------------------------------|------------------------------------------------------|----------------------------------------------|-------------------------------------------|-----------------|-----------------------------------|----------------------------------------|--------------------|---------------------------------------|--------------------------------|-----------------------|--------------|-------------|--------------------------------------|--|
| Deis                                                                 | 70 D                     | ays.                   | 80                                           | Days.                                                | 90                                           | Days                                      |                 | 100                               | Days                                   |                    | 110                                   | Day                            | s.                    | 120          | Day         | s.                                   |  |
| ipal                                                                 | . Z s                    | d. q.                  | l. s.                                        | d. q.                                                | l. s.                                        | d.                                        | q.  l           | . s.                              | d.                                     | 9.                 | ls.                                   | d.                             | <i>q</i> .            | l. s.        | d.          | <b>q</b> .                           |  |
| 7<br>3<br>6<br>7<br>8<br>9<br>10<br>20<br>30<br>40<br>50<br>60<br>70 | 1 1 1 3 4 6 7 9 10 12 13 | d. 1347910322123012312 | 1. s.  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | d. 2 4 1 1 1 2 2 2 3 3 3 3 3 3 1 1 9 5 2 0 0 1 1 7 3 | l. s.  I I I I I I I I I I I I I I I I I I I | d. 2 4 7 9 11 2 4 6 9 11 10 9 9 8 8 7 7 7 | 9. 130230201888 | . s. III II 2 46 8 10 13 15 17 19 | d. 2 5 7 10 1 3 6 8 11 2 4 6 1 6 1 6 1 | 9. 31 32 0 31 32 0 | l. s.  I 1  I 2  4  7  I 1  16  19  I | d. 358 11258 1149 166 1138 055 | 9. 032211003313102022 | /. s.        | d. 3691 472 | 1. I I 2 2 3 3 0 0 I I 2 3 3 0 0 I 2 |  |
| 200                                                                  | 15                       | 2 3<br>5 2 I           | 17<br>14                                     | 4 3<br>9 1 I                                         | 19<br>19                                     | 6 2                                       | Į.              | . I                               | 8 I<br>4 2                             | 2                  | · 3                                   | 7 3                            |                       | I 5<br>2 I I | IL          | 2<br>1                               |  |
| 300                                                                  | 2 5                      | 8 0 2                  | 12                                           | 1 3 2                                                | 18                                           | 7 1                                       | 3               | 5                                 | o 2                                    | 3                  |                                       | 7 5                            | 3   3                 | 3 17         | 10          | 3                                    |  |
| 40°<br>500                                                           |                          | 17                     | _                                            | 6 1 3                                                |                                              | I 2<br>8 i                                |                 | 6<br>8                            | 8 3                                    | 4                  | 15                                    | 3 2                            | 1 7                   |              |             | I                                    |  |
| 600                                                                  | -                        | I 24<br>4 I5           | 4                                            | 11 04<br>3 25                                        | 17                                           | 8 i<br>2 2                                | 1 %             | 10                                | 50                                     | 5                  | 19                                    | I ]                            | 1                     | •            |             | 3<br>I                               |  |
| 700                                                                  |                          | 7 0.0                  |                                              | 8 0 6                                                |                                              | 8 3                                       | !               | II                                | 9 1                                    | 8                  | 6                                     | 9 0                            |                       | -            | ~           | 3                                    |  |
| 80c                                                                  | 5 г                      | 9 36                   | 19                                           | 0.37                                                 | 16                                           | 3 1                                       |                 | 13                                | 5.2                                    | 9                  | Io                                    | 7 0                            | 1                     |              | _ ^ '       | )<br>I                               |  |
| <b>9</b> 00                                                          |                          | 0 17                   | 16                                           | 5 18                                                 | 15                                           | 9 2                                       | 9               | 15                                | _                                      | ľ                  | 14                                    | ,<br>5 e                       | II                    | 13           | 7           | 3                                    |  |
| 1000                                                                 |                          | } o 8                  | ,13                                          | 9 3/9                                                |                                              |                                           |                 | 16                                | 9 3                                    | I I                | 18                                    | .2 3                           |                       | . /          | ,           | Į.                                   |  |
| ditto                                                                | 4. 761                   | 283                    | ı. 8.6                                       | 9992                                                 | l. 9.7                                       | 6668                                      | 4.              | 10.8                              | 40I I                                  | l.                 | 11.9                                  | 112                            |                       | l. 12.       | <i>9</i> 8  |                                      |  |
|                                                                      |                          | ı                      |                                              | ı                                                    |                                              | C                                         | c               |                                   | 1                                      | ١                  |                                       |                                | 1                     |              |             |                                      |  |

# A TABLE of Discount at 4 per Cent. per Ann.

|          |                                         |       | _            |         |            |            |          |          |                |     |              |               |      |      |               |     |            |             |         |           |
|----------|-----------------------------------------|-------|--------------|---------|------------|------------|----------|----------|----------------|-----|--------------|---------------|------|------|---------------|-----|------------|-------------|---------|-----------|
| Prin-    | 30 I                                    | Days. | 1,           | ю 1     | Days.      | 1.4        | 50 I     | Jays.    | .              | 16  | o D          | ays.          | 1    | 70 I | Days.         | .   | 18         | o D         | ays.    |           |
| cipal.   | s.                                      | d. q  | . <i>I</i> . | 5.      | dq.        | <i>i</i> . | S.       | d.       | q.             | l.  | <b>5.</b> .  | d. q          | 1.   | s.   | d.            | q.  | l.         | <b>5.</b> / | d. 9    | <b>!-</b> |
|          |                                         |       | 2            |         | 3 3        |            |          | 4        | 9              |     |              | 4 3           |      |      | <b>4</b><br>8 | 2   |            |             |         | 3         |
| 3        |                                         | 6 3   | 3            | •       | 11 0       | 1          |          | 11       | 3              |     |              | -             | ì    | 1    | 1             | 3   |            | 1           | -       | I<br>O    |
| 4        | 1                                       |       |              | 1       | 11 0       | 1          | I        | 2        | 3              | •   | Į<br>Į       | -             | 2    | 1    | 5             | 2   |            | Ī           |         | 2         |
| 5        | I.                                      | 5     |              | í       | 6 0        | ı.         | Ī.       | _        | 2              |     | / <b>I</b>   | 8             | 3    | I    | Io            | 0   |            | I           |         | ŀ         |
| 6        | Ī                                       | _     |              | I       | 9 3        | 1          | I        | ΙÍ       | 1              | .:  | 2            | 0             | 3    | 2    | 2             | 2   |            | 2           | 4       | 0         |
| 7<br>8   | . 1                                     | 11 3  | 3            | 2       | I 2        |            | 2        | 3        | I              | .•  | <b>. 2</b> . | •             | 9    | 2    | 6             | 3   |            | 2           | 8       | 2         |
| 3        | 2                                       | ,     | . [          | . 2     | <b>5</b> C | 1          | 2        | 7        | 9              |     | 2            | •             | 9    | 2    | 11            | 3   | •          | 3           |         | 0         |
| 9        | 2                                       | •     | ']           | 2       | 8 3        | 1          | . 2      | II       | 9              |     | 3            | _             | 1    | 3    | 3             | 2   |            | 3           | 5       | 3         |
| 10       | 2                                       | -     | 3            | 3       | 0 ]        | l          | 3        | 2        | 3              | •   | 3            | 5             | 2    | 3    | 7             | 3   |            | 3           |         | 2         |
| 20       | <b>5</b>                                | ,     | ı            | . 6     | 0 2        | 1          | 6        | 5        | 2              |     | 6            | 10            | 3    | 7    | . 3           | 3   |            | 7           | 8       | 3         |
| 30<br>40 | l:                                      | -     |              | . 9     | 0 3        |            | 9        | 8        | 2              |     | 10           | 4             | 2    | 10   | 11            | 3 2 |            | II          | 7       | I         |
| 50       | 14                                      |       | 3            | 12      | IC         |            | 12<br>16 | ] I I    | 1              |     | 17           |               | 3    | 18   | 7             | 2   |            | 15          | 5       | 3         |
| 60       | 16                                      |       |              | 15      | . I I      | •          | 19       | . 5      | 0              | 1   | .0           | ^ ^           | 0 1  |      | ΙI            | 2   | : <b>T</b> | 3           | 4 2     | I<br>2    |
| 70       | 19                                      | _ `   | 1            | 1       | 2 0        |            | 2        | 7        | 3              | I   | 4            |               | 2 1  | _    | 7             | ī   | î          | 7           | _       | õ         |
| 80       | -                                       |       | 3 1          | 4       | 2 1        | 4          | . 5      | 10       | 2              | I   | ż            | 6             | 3 1  | _    | 3             | 1   | 1          | 10          | II      | 2:        |
| 90 1     | 5                                       |       | 2 1          | 7       | 2 2        |            | ģ        | I        | 1              | I   | ıi           | 0             | 1 1  | 12   | ΙI            | 1   | 1          | 14          | 9       | 3         |
| 100      | r . 8                                   | -     |              | 10      | 2 3        | I          | 12       | 4        | 1              | 1   | 14           | 5             | 3 1  | 16   | 7             | 0   | I          | 18          | 8       | Í         |
| 200      | 2 16                                    | 2     | 1 3          | 0       | 5 2        | 1 3        | 4        | 8        | 3              | 3   | 8            | 11            | 1 3  |      | Į.            | 3   | 3          | 17          | 4       | 2         |
| -        | 4 . 4                                   | •     | 1 4          | 10      | 8 1        |            | 17       | 0        | 2              | 5   | 3            | 4             | 3 5  |      | 8             | ŝ   | - 5        | 16          | 0       | 3         |
|          | 5 12                                    | •     | 2 6          | 0       | 11 0       |            | 9        | 4        | 3              | 6   | 17           | 10            | 1 7  |      | 3             | 3   | 7          | 14          | -       | 0         |
|          | 7 0                                     |       | 2 .7         | 11      |            | 2 8        | I        | 8        | 3              | 8   | 12           | •             | 9 9  |      |               | 3   | 9          | 13          | 5       | 2         |
| •        | 8 8                                     |       | 3 9          | 1       | 4          | T          | 14       |          | ر              |     | 6<br>I       | <i>9</i><br>3 | 2 10 | -    | 5             | 3   | 11         | 12          | I       | 2         |
| 2 1.     | 9 16                                    | ,     | 2 10<br>C 12 |         | ,          | 11         | 6<br>18  | 5<br>9   | 0              | 12  | 15           |               | 2 14 |      | 0             | 2   | 13         | Io          | 10<br>6 | 0         |
| 9001     | - 4                                     | _     | C 12<br>C 13 | 1<br>12 |            | יין?       | II       | 9<br>1   | ľ              | 15  | 10           |               | 010  |      | 7 2           | 2   | 15         | <i>9</i>    | 2       | 2         |
| 10001    |                                         |       | 115          | 2       |            | 116        | 3        | 5        | 2              | 17  | 4            | 7             | 318  | _    |               | 2   | 19         | 6           | 10      | 3         |
| ditto    |                                         | 0464  |              | -       | 1133       | 'l i       |          | ر<br>172 | <u>ر</u><br>۲۱ | 1/. | -            | 2 <b>3</b> 20 | 1 1  |      | <b>2</b> 89   | _   | 7          | 19.3        | 444     | 1         |
|          | • • • • • • • • • • • • • • • • • • • • | -7-7  | 1."          | 1)      | - 1 7 3    | 각 `        |          | - , -    | •              | ]   | - <b>1</b> • |               | 1    |      | 7             | 7   | l          | - 9 - 3     | 177     | 7         |

|              | ł  |          |        |     | ı  |        | ٠.            |             | ļ  |         | •               |     | ı         |         |         |        | ı   |            |         |     | l          |             |        |       |
|--------------|----|----------|--------|-----|----|--------|---------------|-------------|----|---------|-----------------|-----|-----------|---------|---------|--------|-----|------------|---------|-----|------------|-------------|--------|-------|
|              | 1  | 90.      | Day    | s.  | 2  | 00     | Day           | s.          | 2  | 10      | Da <sub>i</sub> | ys. | 2         | 220     | Day     | ys.    | 2   | 30 J       | Day     | 5.  | 2          | 40 <i>l</i> | Day.   | s., . |
| Prin-        |    |          | ,      |     | ١. |        |               | ,           | ١, |         | •               |     | ١,        |         | ,       |        | ١,  |            | ,       |     | ١,         | ٠.          | ,      |       |
| cipal.       | 1. | s.       | d.     | 1.  | 1. | 5.     | d.            | q.          | 1. | 5.      | d.              | 9   | . 7.      | 5.      | d.      | q.     | l.  | 5.         | d.      | q.  | 14.        | · 5.        | d.     | q.    |
| <i>l</i> .   |    |          | _      |     | ı  |        | _             | _           |    |         | _               |     |           |         | _       |        |     |            | 6       | _   |            |             | 6      | I     |
| 1            | l  |          | 5      | 0   | l  |        | 5             | 1           | l  |         | 10              |     |           |         | 5<br>11 | 3<br>2 |     | 1          | 0       | 0   | 1          |             | 0      | I     |
| 2            |    | I        | 9      | 3   |    | I      | 10<br>3       | 1           | 1  | I       | . –             |     |           | I       | -       | 0      | Ĺ   | 1          | 5       |     |            | ·           | 6      | 2     |
| 3            |    | 1        | 7      | 2   |    | 1      | 8             | 2           |    | I       | 4               |     | •         | l       |         |        | ]   | ī          | ,<br>!! | 3   |            | 2           | 0      |       |
| <b>4 5</b> 6 |    | 2        | ó      | 2   | Ì  | 2      | 1             | 3           |    | 2       | 3               |     |           | 2       |         | , I    | 1   | 2          | 5       | 2   |            | . 2         | - 6    | 3     |
| 6            |    | 2        | 5      | 2   | ŀ  | 2      | 6             | 3           |    | 2       | 8               | J   |           | 2       |         |        | 1   | 2          | ΙÍ      | 2   | 9          | 3           | 1      | o     |
|              |    | 2        | Ió     | 1   |    | 3      | ō             | 0           |    | . 3     | 1               | 3   |           | 3       | 3       | 2      | ł   | 3          | 5       | 2   | l          | 3           | 7      | 0     |
| 7<br>8       |    | 3        | 3      | 1   |    | 3      | 5             | 1           |    | 3       | 7               | 1   |           | 3       | ´ 9     | I      | ١.  | 3          | 11      | . 1 | 1          | 4           | Ā      | I     |
| 9            |    | 3        | 8      | 0   |    | 3      | 10            | 2           |    | 4       | Ó               | 2   |           | 4       | 2       | 3      | l   | 4          | 5       | Į   | 1          | 4           | 7      | I     |
| 10           |    | 4        | ·I     | 0   |    | 4      | 3             | 2           | ŀ  | 4       | · 6             | 0   | 1         | 4       | 8       | 2      | ;   | 4          | 11      | C   | i          | 5           | Į.     | 2     |
| , 2C         |    | 8        | 2      | 0   | •  | 8      | 7             | 0           |    | 9       | 0               | 0   | į         | ġ       | :5      | 0      | ٠.  | . <b>9</b> | 10      | 0   |            | To          | 3      | 0     |
| 30           | :  | 12       | 2      | 3   |    | 12     | 10            | 2           |    | 13      | 6               | 0   |           | 14      | į       | 2      |     | 14         | 9       | .0  | 1          | 15          | 4      | 2     |
| 40           |    | 16       | 3      | 3   | ٠. | 17     | 2             | 9           |    | 18      | 0               | 0   | İ         | 18      | 10      | 0      |     | 19         | 8       | 0   |            | ď           | 6      | 0     |
| 50           |    | 0        | 4      | 3   | I  | , I    | 5.            | 1           | I  | 2       | 6               | 0   | I         | 3       | 6       | 2      | I   | 4          | 7       | 0   | I          | 5           | 7      | 2     |
| 60           | I  | 4        | 5      | 3   | I  | 5      | 8             | 3           | I  | 7       | 0               | 0   | Į.        | 8       | 3       | 9      | I   | 9          | 6       | 0   | I          | 10          | 9      | 0     |
| 70           | I  | 8        | 6      | 3   | I  | 10     | 0             | I           | I  | II      | 6               | 0   |           | 12      | II      | 2      | 1   | 14         | 5       | 0   | 1          | 15          | 10     | 2     |
| 80           | ı  | 12<br>16 | 7      | 2   | 1  | 14     | 3             | 3           | I  | 16      | _               | 0   | 1         | 17      | .8      | 9      | 2   | 19         | 4       | 0   | 2          | 1<br>6      | 0      | 2     |
| <i>9</i> c   | 1  | 0        | 8      | 2   | I  | 18     | 7             | 1           | 2  | 0       | 6               | 0   | 2 2       | 2       | 4       | 2      | 2   | 4          | 2       | 0   | 2          | 11          | 1      | 0     |
| 100<br>200   | •  | 1        | 9      | 2   | 2  | 2<br>5 | 10            | 3           | 2  | 5       | 0               | 0   | 4         | 7       | 1 2     |        | 4   | 18         | 4       | 1   | 5          | 2           | 3<br>6 | 0     |
| 300          |    | 2        | 7<br>4 | 9   | 4  | 8      | <i>9</i><br>8 | ī           | 4  | 9<br>14 | II.             | 3   | 7         | 14<br>1 | 3       |        | 7   | 7          | 6       | ī   | 7          | 13          |        | ī     |
| 400          | _  | 3        | 2      | 3   | 8  | 11     | 7             |             | 8  | 19      | 11              | 3   | 9         | 8       | 4       |        | 9   | 16         | 8       |     | 10         | 5           | 9      | 0     |
| 500          | -  | 3        | 11     |     | 10 | 14     | 5             | 3           | 11 | 4       | 11              | 2   | ΙĪ        | 15      | 5       | 0      | 12  | - 5        | 10      | - 1 | 12         | 16          | 3      | F     |
| 600          |    | 4        | 9      | -1  | 12 | 17     | 4             | 2           | 12 | . 9     | 11              | 2   | , .<br>14 | 2       | Ó       |        | 14  | 15         | 0       |     | 15         | 7           | 6      | Ī     |
| 700          |    | 5        | , 6    | •   | 15 | - 0    | 3             | 1           | こう | 14      | 1 I             |     | 16        | 9       | 7       | 0      | 17  | 4          | 2       |     | 17         | 18          | 9      | 2     |
| <b>80</b> c  | 16 | 6        | 4      | - 1 | 17 | 3      | 2             | $^{\prime}$ | 17 | 19      | 11              | ,   | 8 1       | 16      | 8       | 0      | 19  | 13         | 4       | 2   | 20         | 10          |        | 2     |
| 900          | 18 | 7        | i      |     | ιģ | 6      | 0             | - 1         | 20 | 4       | 11              | 1   | 2 I       | 3       | 9       | 0      | 22  | 2          | 6       | 2   | 23         | I           | 3      | 2     |
| 1COC         |    | 7        | 11     | ٠,  | 21 | 8      | 11            | - 1         | 22 | و .     | ΙI              | 0   | 23        | 10      | Io      |        | 24  | II         | 8       |     | 25         | 12          |        | 2     |
| ditto        | l. | 20.      | 397    | 2   | l. | 21.4   | 147           | 72          | l. | 22.4    | 195             | 98  | l.        | 23.     | 542     | - 1    | ·1. | 24.5       | 857     | 8   | <i>l</i> . | 25.6        | 273    | 3     |
| ì            |    |          | ,      |     |    |        |               | -           |    |         |                 |     |           |         | -       | 1      |     |            |         | ١   |            |             |        |       |
|              |    |          |        |     |    |        |               |             |    |         | C               | С   | 2         |         |         |        |     |            |         |     |            |             |        |       |

| i               |             | 1          |       |                   | 1              |          |          |        | i  |           |          |      | ١            |            |             |           | 1          |          |          |      |        |
|-----------------|-------------|------------|-------|-------------------|----------------|----------|----------|--------|----|-----------|----------|------|--------------|------------|-------------|-----------|------------|----------|----------|------|--------|
| 1 2             | 250 L       | ays.       | 260   | Da                | zys.           | 270      | D        | ays.   | Ì  | 280       | o D      | ays. | Ì            | 29         | o $D$       | ays.      | -          | 300      | D        | ays. |        |
| Prin-           |             |            |       |                   |                |          |          |        |    |           |          |      | 1.           | ,          |             | ,         |            | ,        | ,        | 7    | _      |
| cipal. l.       | s. e        | d. q.      | l. s. | . d               | · 9.1          | . 5      | •        | d.     | 7- | <i>l.</i> | 5.       | d. 9 | ?-  <i>'</i> | <i>!</i> . | <b>5.</b> . | d:        | <i>q</i> . | l.       | 5.       | d. 9 | F      |
| 1.              |             |            |       |                   |                |          |          | _      | 1  |           |          | _    |              |            |             | ~         | 1          |          |          |      | 2      |
| 1               |             | 6 2        |       |                   | 6 3            |          |          |        | 9  |           |          | •    |              |            | ī           | 7 2       | 3          |          | I        | •    | I      |
| 2               | I           | 03         |       | -                 | 1 1<br>8 0     |          | I<br>I   |        | 3  |           | I<br>I   | _    | 2            | :          | -           | 10        | 1          |          | 1        |      | 0      |
| 3               | ١ 2         | 7 1<br>I 2 |       |                   | 2 2            |          | 2        |        | 2  |           | 2        |      | 3            |            | 2           | 5         | 2          |          | 2        | 6    | 2      |
| 5               | 2           | 8 0        |       | _                 | 9 1            |          |          | _      | 2  |           | _        |      | 3            |            | 3           | 1         | 0          |          | 3        | 2    | I      |
| 6               | 3           | 2 2        |       | 3                 | 4 0            |          | 3        | 5      | 2  |           | 3        | 7    | 9            |            | 3           | 8         | 1          |          | 3        |      | 3      |
| 7               | 3           | 8 3        |       | 3 I               | 0 2            |          | 4        | 0      | I  |           | 4        | _    |              | •          | 4           | 3         | 3          |          | 4        | -    | 2      |
|                 | 4           | 3 I        |       | 4                 | 5 1            |          | 4        | 7      | I  |           | 4        | 9    | 1            |            | 4           | ΙΙ        | 1          |          | 5        |      | 3      |
| 9               | 4           | 9 2        |       | 5                 | 00             |          | 5        | 2      | 9  |           | 5        | 4    | 2            |            | 5           | 6<br>2    | 3          |          | 5<br>6   |      | 2      |
| 20              | 5<br>10     | 4 º 8 º    | 1     | 5<br>1 I          | 6 2            |          | 5<br>11  | 9<br>6 | d  |           | 5<br>11  | 11   | d            |            | 12          | 4         |            |          | 12       | 4 8  | 3      |
| 30              | 16          | 0 0        |       | 16                | 7 2            |          | 17       | .3     | d  |           | 17       | 10   | 2            |            | 18          | 5         | 3          |          | 19       | I    | í      |
| 1               | 1 1         | 4 0        | 1 -   | 2                 | 2 0            | I        | 3        | ó      | d  | ī         | 3        | 9    | 3            | I.         | 4           | 7         | 3          | 1        | 5        | 5    | 2      |
| - 1             | 1 . 6       | 8 6        | 1     | 7                 | 8 2            | I        | 8        | 8      | 3  | I         | 9:       | 9    | 4            | 1          | Ιō          | 9         | 2          | I        | 11       | 10   | 0      |
| - 1             | I 12        | <b>0</b> c |       | 13                | 3 0            | I        | 14       | 5      | 3  | 1         | 15       | 8    | 3            | I          | 16          | II        | 3          | I.       | 18       | 2    | I)     |
| - h             | 1 17        | 4 0        | 7     | ı 8               | 9.2            | 2        | 0        | 2      | 3  | 3         | 1        | 8    | 2            | 2          | 3           | 1         | 2          | 2        | 4        | 6    | 3      |
|                 | 2 2         | 8 0        | 1 -   | 4                 | 4 <sup>0</sup> | 2        | 5<br>11  | 8      | 3  | 2 2       | 7<br>13  | 7    | 0            | 2 2        | 9<br>15     | 3<br>5    | 2          | 2 2      | 10<br>17 | II   | 1<br>2 |
|                 | 2 8         | 0 0        |       | 9 1<br>1 <b>5</b> | 10 2           | 2        | 17       | 5      | 3  |           | 19       | 7    | 2            |            | נו          | . 7       | . 1        | 3        | 3        | 8    | 0      |
| 200             | 2 13<br>5 6 | 4 6<br>8 6 | 1 -   | 10                | 93             | 5        | 14       | 11     | 2  |           | 19       | I    | 0            | 3          | 3           | 2         | 2          | 6        | 7        | 4    | 0      |
| _               | 8 0         | 0 0        | 10    | 6                 | 23             | 8        | 12       | 5      | I  |           | 18       | 7    | 2            | 9          | 4           | 9         | 3          | 9.       | İ        | 11   | 3      |
| 4001            | 0 13        |            | 11    | I                 | 7 2            | 11       | 9        | 1 1    | 0  | 1 F       | 18       | 2    |              | I 2        | 6           | 5         | 0          | 12       | 14       | 7    | 3      |
| - 1             | 3 6         |            | 13    | 1.7               | 0 2            | 14       | 7        | 4      | 3  | 14        | 17       | 8    |              | 15         | 8           | 0         | 1          | 15       | 18       | 3    | 3      |
| 6001            | _           |            | 516   | I 2               | 5 2            | 17       | 4        | IO     |    | 17        | 17       |      |              | 18         | 9           | 7         | 2          | 19       | I        | 11   | 3      |
| • 1             | 8 13        |            | 919   | •                 | 1 01           | ı        | 2        | 4      |    | 20        | 16<br>16 | -    |              | 2 I        | 11          | · 2<br>10 | 3          | 22       | 5<br>9   | 7    | 2 2    |
| 80c 2           |             |            | 22    | 3<br>18           | 3 I<br>8 o     |          | 19       | -      | -  | 23<br>26  | 15       | 4    |              | 24<br>27   | 12<br>14    | 5         | _          | 25<br>28 | 12       | 11   | 2      |
| 900 2<br>1000 2 |             |            | 024   | 14                |                | 25<br>28 | 17<br>14 | _      |    | 29        | 15       | 10   |              | 30         | 16          | 0         |            | 31       | 16       | 7    | ī      |
| ditto           | l. 26       |            |       |                   | 70378          |          |          | 738    |    |           |          | 771  |              |            |             |           |            |          |          | 830: |        |
| I               |             | -          | 1     | , ,               |                | 1        |          |        | •  | İ         | •        | • •  |              | 1          | -           |           | -          | ł        |          |      |        |

### A TABLE of Discount at 4 per Cent. per Ann.

|                 | ١. | 10 ]    | Dan       | ا ، | ٠.     | <b>20</b> 3 | Dan          |   |        | 20 1         | D            |    | ١.         |             | D          | .   |          | 1            | n             |     |        | 60 7        | n      |           |
|-----------------|----|---------|-----------|-----|--------|-------------|--------------|---|--------|--------------|--------------|----|------------|-------------|------------|-----|----------|--------------|---------------|-----|--------|-------------|--------|-----------|
| Davia           | 3  | 10, 1   | Day.      | ٠.  | 3      | 20.         | Jay.         | • | 3      | 30 <i>1</i>  | Jays         |    | 3          | 40 <i>l</i> | Day.       | ٠.  | 35       | 50, <i>1</i> | Jaş           | J.  | 3      | 60 <i>I</i> | Jay.   | ١.        |
| Prin-<br>cipal. | l. | s.      | đ.        |     | ı.     | s.          | <b>d.</b>    | 9 | l.     | s.           | d.           |    | 1.         | s.          | d.         |     | l.       | 5.           | d.            | ~   | 1.     | s.          | d.     | 0         |
| tipai.          | •  | ٠.      | <b>66</b> | 1.  | •      | ٠.          |              | 4 | "      | ٥.           | 4,           | A. | "          | ٥.          | u.         | 9   | "        | ٥.           | u.            | q.  | 1      | J.          | 4.     | <b>q.</b> |
| · ']            |    |         | 7         | 3   |        |             | 8            | c | 1      |              | 8            | 2  | ,          |             | 8          | 3   |          |              | . 9           | 0   | J      |             | 9      | I         |
| 2               |    | 1       | 3         | 3   |        | I           | 4.           | 2 |        | I            | 4            | 3  |            | I           | 5          | 1   |          | 1            | 5             | 3   | i      | 1           | 9<br>6 | Ī         |
| 2               |    | I       | ΙÌ        | 3   |        | 2           | ပ            | 1 |        | 2            | I            | I  |            | 2           | I          | 3   |          | 2            | 2             | 2   |        | 2           | 3      | _         |
| 4               |    | Ž       | 7         | 2   | :      | 2           | 8            | 2 |        | 2            | 9            | 2  | } ~        | 2           | 10         | 2   |          | <b>2</b>     | 11            | 2   | 1      | 3           | 0      | _         |
| 5               |    | 3       | 3         | 2   | :      | 3           | 4            | 3 |        | 3            | 6            | 0  | ,          | 3           | .7         | С   |          | 3            | 8             | I   | 1      | 3           | 9      |           |
| 6               |    | 3       | II        | 2   |        | 4           | 0            | 3 |        | 4            | 2            | 1  |            | 4           | 3          | 3   |          | 4            | 5             | 1   | '      | 4           | 6      |           |
|                 |    | 4       | 7         | I   |        | 4           | 9            | C | 1      | 4            | 10           | 3  | 1          | 5           | 0          | 1   |          | 5            | 2             | 0   |        | · 5         | 3      | 3         |
| 7<br>8          |    | 5       | 3         | I   |        | 5           | 5            | 1 |        | 5            | 7            | 0  |            | 5           | 9          | C   |          | 5            | II            | 0   |        | 6           | 0      | 3         |
| 9               |    | 2       | 11        | 9   |        | 6           | I            | 1 |        | 6            | 3            | 2  | 1          | 6           | 5          | 2   |          | 6            | 7.            | 3   | l      | 6           | 10     | 0         |
| 1.0             |    | 6       | б         | 3   |        | 6           | 9            | I |        | б            | II           | 3  |            | 7           | 2          | 1   |          | _7           | 4             | 3   | l      | 7           | 7      | 0         |
| 20              |    | 13      | I         | 3   |        | 13          | 6            | 3 | ١.     | 13           | II           | 2  | 1 .        | 14          | 4          | 2   | _        | 14           | 9.            | 1   |        | 15          | 2      | Ī         |
| 30              | _  | 19      | . 8       | 2   | I      | 0           | 4            | 0 | Ţ      | 0            | II           | 1  | I          | 8           | 6<br>8     | 3   | I        | 2            | 2             | 0   |        | 2           | 9      | I         |
| 40              | I  | б<br>12 | 3         | 2   | I      | 7           | 10           | } | I      | 7            | II           | 1  |            | 15          | 11         | ć   | I        | 16           | б<br>11       | 2   | I      | 10.         | 4      | 2         |
| 50              | I  | 19      | 10        | 2   | 1<br>2 | 13          | 7            | 3 | 1<br>2 | 14<br>1      | II           | 3  | ı          | 3           | 1          | 1   | I        | 4            |               | 0   | 1<br>2 | 17          | 6      | 2<br>2    |
| <b>6</b> 0      | I. | 6       | 5         |     | 2      | 7           | 5            | 1 | 2      | 8            | 10           | 2  |            | 10          | 3          | 2   | 2        | 11           | <b>4</b><br>8 | 2   | 2      | 5           | 0      | 3         |
| 7°<br>8°        | 2  | I 2     | 7.        | 0   | 2      | 14          | 2            | 2 | 2      | 15           | 10           | ĩ  | 2          | 17          | 5          | 3   | 2        | 19           | I             | 1   | 3      | 13          | 8      | 3         |
| 90              | 2  | 19      | /.        | 3   | 3      | 0           | 11           | 3 | 3      | . 2          | 10           | 0  |            | 4           | ś          | 0   | 3        | 6            | 6             | C   |        | 8           | 4      | 0         |
| 1 <b>0</b> 0    | 3  | 5       | 8         | 3   | 3      | 7           | 9            | I | 3      | 9            | 9            | 3  | 3          | 11          | 10         | 1   | 3        | 134          | ľo            | 2   | 3      | 15          | 11     | Ō         |
| 200             | 6  | 1 I     | 5         | 2   | 6      | 15          | 6            | 1 | 6      | 19           | 7            | I  | 7          | 3           | 8          | 1   | 7        | 7            | 9             | 0   | 7      | ΙΙ          | 9      | 3         |
| 300             | 9  | 17      | 2         | 0   | 10     | 3           | 3            | 2 | 10     | 9            | 5            | 0  | 10         | 15          | 6          | 1   | 11       | I            | 7             | 2   | IĘ     | 7           | 8      | 3         |
|                 | 13 | 2       | 11        | 0   | 13     | II          | 0            | 2 | 13     | 19           | 2            | 2  | 14         | 7           | 4          |     | •        | 15           | 6             | 1   | 15     | 3           | 7      | 2         |
| 500             | 16 | 8       | 7         | 2   | 16     | 18          | 9            | 3 | 17     | 9            | 0            | 1  | 17         | 19          | 2          |     |          | 9            | 4             | 3   | 18     | 19          | 6      | 2         |
| 600             |    | 14      | 4         |     | 20     | б           | б            | 3 | 20     | 18           | 10           | 0  | 2 I        | 11          | 0          | 71  | 22       | 3            | 3.            |     | 22     | 15          | 5      | 2         |
| 700             |    | 0       | 1         | 0   | -      | 14          | 4            | 0 | 24     | 8            | 7            | 2  | 25         | 2           | 11         | ~(  | 25       | 17           | I             | ٠,  | 26     | II          | 4      | 2         |
| 800             |    | 5       | 9         | 7   | 27     | 2           | I            | 0 | 27     | 18           | 5            | 1  | 28         | 14          | 9          | - 1 | 29       | II           | 0             | _ 1 | 30     | 7.          | 3      | I         |
| 900             | •  | 11      | 6         | I   | -      | 9           | 10           | 1 | 31     | .8<br>18.    | 2            | 3  | 32         | 6           | 7          | 0   | 33       | 4<br>18      | 11            | 1   | 34     | 3           | 2      | I         |
| 1000            |    | 17      | 3         |     | 33     | 17          | 7            | 1 | 34     | 34.9         |              | 2  | 35         | 18<br>35.9  | 5<br>22 15 |     | 36<br>1. | 10<br>36.9   | 20            |     | 37     | 19          | 1      | O .       |
| ditto           | ٠. | 32.8    | 027       | 15  | i.     | 33.8        | 380 <u>3</u> | Ø | 1.     | <b>34·</b> 2 | <b>,</b> UZ1 | ١٥ | <b>'</b> ' | 3).5        | y 4 1 (    | ٠ ١ |          | 50.5         | 39            | 5 1 | ι.     | 37.9        | )4°    | 0         |
|                 |    |         |           | •   |        |             |              |   |        |              |              |    | ı          |             |            | ,   |          |              |               | 1   | j      |             |        |           |

# Discount at 4 per Cent.

Part II. For Days under to in a Medium, to add at above 90 Days.

| Prin-                                                    | 30            | 65 .<br>r 1 .                                                | Day<br>Year                                 | 5.<br>r.  |  |
|----------------------------------------------------------|---------------|--------------------------------------------------------------|---------------------------------------------|-----------|--|
| cipal.                                                   | 1.            | 5.                                                           | d.                                          | q.        |  |
| 1. 1 2 3 4 5 6 78 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | I I I 2 2 3 3 | 3 4 5 6 6 7 15 3 10 8 6 13 1 9                               | d. 96 6 3 1 10 7 4 1 1 1 8 4 1 9 5 1 10 6 2 |           |  |
| 200<br>300<br>400<br>500<br>700<br>800<br>900            | 37159236048   | 16<br>13<br>10<br>7<br>4<br>1<br>18<br>15<br>12<br>9<br>38.4 | 11 10 98 76 5 4 3 2                         | 111122333 |  |

| ا ا     | <b>D</b>                                      | -                         | 2       | Da                                             |                                             | 3                     | Da                                      | •                   | 4                    | Da                                            | ys.                        |
|---------|-----------------------------------------------|---------------------------|---------|------------------------------------------------|---------------------------------------------|-----------------------|-----------------------------------------|---------------------|----------------------|-----------------------------------------------|----------------------------|
| 5.      | d.                                            | 9                         | . s.    | d.                                             | <b>. q</b> .                                | s.                    | d.                                      | <b>q</b> .          | 's.                  | d.                                            | <b>q</b> .                 |
| 11112.1 | 1 1 1 1 1 2 2 2 2 5 7 1 0 0 3 5 8 1 0 1 0 4 0 | I 2 3 0 I 2 0 2 0 2 0 3 I | I I 2 2 | 1 1 2 2 3 3 4 4 5 10 3 8 1 6 1 1 4 9 2 2 9 3 5 | 1 1 1 2 2 2 0 2 0 2 0 2 0 1 0 0 0 0 1 1 1 1 | I I 2 3 3 4 5 5 6 · 3 | 1 2 3 3 4 5 6 6 7 3 0 6 1 9 4 0 7 3 140 | 2 0 3 0 3 1 3 1 3 2 | 1 2 3 4 5 5 6 7 8 .4 | 1 1 2 3 4 5 6 7 8 9 10 8 6 4 2 0 10 8 6 4 186 | 11122330000000000001111228 |

Part II. For Days under 10 in a Medium, to add at above 90 Days.

| Prin                       | 5   | Da            | ys.      | 6        | Da          | ys. | 7        | Da           | ys.         | 8       | Da          | ys.    | 9      | Da       | y <b>s.</b> |
|----------------------------|-----|---------------|----------|----------|-------------|-----|----------|--------------|-------------|---------|-------------|--------|--------|----------|-------------|
| cipal.                     |     | d.            | q.       | s.       | d.          | 9   | s.       | d.           | q.          | s.      | d.          | q.     | s.     | d.       | q.          |
| 1                          |     | •             | ` .<br>1 |          |             | I   |          |              | , I         |         |             | 1<br>1 | ,      |          | I<br>2      |
|                            |     | 1;            | ]        |          |             | 2   |          |              | 2           |         | ì           | 2      |        |          | 3           |
| 4<br>5<br>6                |     |               | 2        |          |             |     |          |              | 3<br>3      |         | 1           | 3      |        | I        | 0           |
| , <del>1</del> 6           |     |               | 3        |          | I<br>.I     |     |          | I<br>J       |             | 1       | 1           | 1      |        | , 1<br>1 | 1 2         |
|                            |     | Ţ             | 0        |          | I           | I   |          | Ţ            | 2           |         | I           | 2      |        | . I      | 3           |
| :9<br>IC                   |     | I             | I<br>I   |          | I<br>I      | 1 2 |          | I            | 2<br>3      |         | 1<br>2      | 3      |        | 2        | 0           |
| 20                         | 1   | 3             | 2        |          | 3           | 0   |          | 3            | 2           |         | · 6<br>8    | 0      |        | 4        | 2           |
| 30<br>40                   |     | 5<br>6        | 1        |          | 4<br>6      | 0   |          | 5<br>7<br>8  | α           |         |             |        |        | گ<br>و   | 3           |
| 5°                         |     |               | ]<br>2   |          | 7<br>9      | 2   |          | 10           | 3           | 1       | 10          | 0      | I      | I I      | 2           |
| 70                         |     | <b>7</b><br>8 | 3        | _        | 10          | 2   | I        | 0            | 1           | I       | 2           | 0      | I      | 3        | 3           |
| <b>8</b> c                 |     | 10<br>11      | 0        | I        | 0           | 0 2 | I        |              | 9           | I       | 4<br>6<br>8 | 0      | ·I     | 6<br>8   | 0           |
| 100<br>200                 | 1 2 | 0<br>I        | 0        | I<br>2   | 3<br>6      | 0   | I<br>2   | 3<br>5<br>11 | 3<br>2<br>1 | 1<br>3  | 8<br>4      | 0      | í<br>3 | 10<br>9  | 3           |
| <b>3</b> 00                | 3   | I             | 3        | 3        | 9           | 1   | 4        | 4            | 3           | 5       | 0           | 1      | 5      | 7        | 3           |
| <b>4</b> 00<br><b>5</b> 00 | 4 5 | 2             | 3        | <b>5</b> | o<br>3      | 1 2 | 5<br>7   | 10           | 2           | 6<br>8  | 8<br>4      | 1 2    | 79     | 6<br>5   | 2           |
| 600<br>706                 | 6   | 3             | 2        | 7<br>8   | 3<br>6<br>9 | 2   | 8<br>01  | 9            |             | 0<br>[] | 8           |        | 11     | 3        | 3           |
| <b>8</b> 00                | 8   | 4<br>4        | 2        | 10       | 0           | 2   | I        | 8            | 3 1         | 3       | 4           | 3 1    | 5      | 0        | 3           |
| 900<br>1000                | 9   | <b>5</b>      | - 1      | 11       | 3<br>6      | - 1 | [3<br>[4 | 2<br>7       | 31          | •       | o<br>9      | - 1    | 8      | 11       | 2<br>Q      |
| ditto                      | l5  | 1233          | 5        | 6        |             | 4   | 7        |              | أو          | 8       | 373         | 7/1.   | 9      | 420      |             |
| •                          |     |               | •        |          |             | •   |          |              | •           |         |             | 7      |        |          |             |

| 1           |    |             |    | ſ  | •                | 1          |          |                  | ;           | 1      |                       | ١     | ٠.          |                  |          | 1           |            |           | j-  |          |    |
|-------------|----|-------------|----|----|------------------|------------|----------|------------------|-------------|--------|-----------------------|-------|-------------|------------------|----------|-------------|------------|-----------|-----|----------|----|
|             | 1  | Da          | y. | 2  | Day              | 5.         | 3        | Da               | ys.         | 4      | Day                   | ys.   | 5           | Day              | 5.       | 6.          | Day        | 5.        | 7.  | Day      | 5. |
| Prin        |    | ٠,          |    | ١. | ,                |            |          | ,                |             |        | ,                     |       | ١.          |                  | .        |             | ,          |           |     | ,        |    |
| 4           | s. | d.          | q. | 5. | d.               | <b>q</b> . | s.       | d.               | q.          | 's.    | d.                    | q.    | ۲.          | d.               | q.       | 5.          | d.         | q.        | s.  | d.       | q. |
| l.          |    | ~           |    | İ  | •                |            |          | :                |             |        |                       |       |             |                  | <b>'</b> |             | ;          |           |     |          |    |
| 1           |    |             |    | l  | •                |            |          |                  | _           |        | •                     |       |             |                  |          | ł           | •          | ]         |     |          | I  |
| 2.          |    | ·           |    |    | ٠.               |            |          | _                | 1           | l      |                       | 1     |             |                  | 1        |             |            | 1         |     |          | 2  |
| 3           |    |             |    |    |                  | I          |          |                  | I           | ŀ      | •                     | 1     |             | -                | 2        | ļ           |            | 2         |     |          | 3  |
| 4           |    |             |    |    |                  | 1          |          |                  | 1           |        |                       | 2     |             |                  | 2        |             | _          | . 3       | •   | _        | 3  |
| 5           |    | ī           | '_ |    | : .              | 1          |          |                  | 2           |        | -                     | 2     |             | _                | 3        |             | I          | С<br>1    |     | I        | 0  |
| - 1         |    | /-          | I  |    | • ~              |            |          |                  | .0          |        |                       | 3     |             | I                | C.       |             | I          |           | 1   | I        | I  |
| 7<br>8      |    |             | 1  |    | ;                | 2          |          |                  | 3           |        | . 7                   | 3     | ı           | 1                |          |             | I          | ]         |     |          | 2  |
|             |    |             |    |    | ,                | 2          |          |                  | 3           |        | I                     | 'I    |             | I                | 1 2      |             | 1          | 2         |     | I        | 3  |
| 9           |    |             | I  |    |                  |            |          |                  | 3           |        | Ī                     | i     |             | I                |          |             | 1<br>2     | 3         | l   | 2<br>2   | I  |
| 10          |    |             | I  |    | 1                | 3          |          | I                | 0           |        | 2                     | 3     |             | I                | 3        |             |            | 0         |     |          | 2  |
| 20          |    |             | 3  |    | 2                | 0          |          | 2                |             |        |                       | 0     |             | 3                | 1        |             | 4          | 3         | 1   | 4        |    |
| 30          |    | I           | 0  |    | 2                | 2          |          | 3<br>4<br>5<br>6 | 0           |        | 4                     |       |             | 3<br>5<br>6<br>8 | C        |             | 5<br>7     |           |     | б        | 3, |
| 4°          |    | 1           | I  |    | 3                | 1          |          | - 4              | .0          |        | 5<br>6                | 2     |             | 0                | 2        |             | . <b>9</b> | .3        |     | 9        | I  |
| 5°          |    | 1 2         | 3  |    |                  | 0          |          | <b>)</b>         | Õ           |        | 7                     | 3     |             | , -              | 1        |             | 1 I        |           | _   | II       | 2  |
| •           |    | 2           | 1  |    | 4                | 3          |          | 6                | 3           |        | 7<br>9                | 1     |             | 10<br>11         | С        | I.          | 11         | 2         | I   | I        | 3  |
| 70<br>80    |    |             |    |    | 4<br>4<br>5<br>6 | 1          |          |                  |             |        | Io                    | 2     |             |                  | 2        | I           |            | د         | I   | 4        | I  |
| 90          |    | 2           | 3  |    | 6                | o          |          | .7<br>8          | 3           |        | 11                    | 3     | I           | I                | C        | I           | 3<br>5     | 2         | 1   | 8        | L  |
| 100         | •  | 3<br>3<br>6 | 1  |    | 6                | 2          |          | 9                | 3 3 3 3 3 4 | I      | I                     | 0     | 1           | 2                | 3 2 3 3  | ı           |            | w w w w w | I   | i i      | 3  |
| 200         |    | 5           | 2  | I  |                  | 0          | 1        |                  | 3           | 7      | 2                     | ĭ     |             |                  | 2        | 3           | 7          | 2         |     | 10       | 0  |
| 30C         |    | 13          | 0  | I  | 7                | 3          | 2        |                  | 3           | 3      |                       | - 1   | 2           | 1                | 3        | ر<br>4`     | I I        | 0         | 3 5 | 9        | 0  |
| 40c         | I  | I           | 1  | 2  | 1<br>7<br>2      | 3          | 3        | 7<br>5<br>3      | 3           | 4      | Δ                     | 3     | 4<br>5<br>6 | 5                | ۱,       | 4<br>6<br>8 | б          | 3         | 7   | 8        | 0  |
| <b>5</b> 00 | I  | 4           | 2  | 2  | 8                | 3          | 4        | ı                | 1           | 5      | 5                     | 2     | 6           | 10               | 3,0      | 8           | .2         | 2         | 9   | 7        | 0  |
| 600         | I  | 7           | 3  |    | 3                | 2          | 4        | 11               | ī           | 5      | 6                     | 3 3 3 | 8           | 2                | 2        | 9           | ΙD         | 1         | ιI  | .6       | ŏ  |
| 70c         | 1  | Ιί          | 0  | 3  | 10               | o          | 5        | 0                | d           |        | 3<br>4<br>5<br>6<br>8 | 0     | 9           | 17               | d        | []          | 6          | c         | 13  |          | 0  |
| <b>8</b> 00 | 2  | 2           | I  | 4  | 4                | 3          | 6        | . 6              | 3           | 7<br>8 | 9                     | 1     | 9<br>10     | フロエ              | ત        | 12          | . 1        | 2         | 15  | <u>5</u> | 0  |
| 90C         | 2  |             | 3  | 4  | 11               | 7          | 7        | 4                | 3           | 9      | 10                    | 1     | l 2         | 2                | 2        | 14          | 9          | ٦         | 17  |          | 0  |
| 1000        | 2  | <b>5</b>    | 3  | 5  | 5                | 3          | <b>7</b> | 4 2              | 2           | 10     | 11                    | 2     | ŧ 3·        | 8                |          | 16.         | 5          | 1         | 19  | 3        | 0  |
| ditto       | Ī. | .130        |    | ĺ. | .273             |            | Ĭ.       | .41              | -8l         | l.     | .547                  | 76    | ĺ.          | .684             | اق       | l.          | .821       |           | •   | ·957     |    |
| ł           |    | ٠.          | 1  |    | - , ,            | 1          |          | •                | ١           |        | •                     | ı     |             | 7                | '        | -           |            |           |     | - , 1    |    |

| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |      |          | _     |          |    |                                         |                                           |                     |    |            |           |        |     |                 |              |                          | •         |           |                           |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|----------|-------|----------|----|-----------------------------------------|-------------------------------------------|---------------------|----|------------|-----------|--------|-----|-----------------|--------------|--------------------------|-----------|-----------|---------------------------|----------|
| Duia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8 <i>I</i> | ays. |          | 91    | Days     | •  | 10                                      | Day                                       | 5.                  | 2  | io i       | Day       | s.     | 30  | D               | ays          |                          | 40        | o I       | days.                     | ı        |
| cipal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | l. s.      | d.   | q.       | l. s. | d.       | q. | l. s.                                   | d.                                        | q.                  | 1. | <b>s.</b>  | d.        | q.     | 1.  | <b>s.</b>       | d.           | 9.                       | l.        | s.        | <b>d.</b> 9               | 7.       |
| Principal. 1. 1. 2. 3. 4. 5. 6. 7. 8. 9. 1. 0. 2. 0. 2. 0. 2. 0. 2. 0. 3. 0. 2. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 3 | ,          |      |          |       | •        |    | ,                                       | d.  1 1 1 2 2 2 2 3 3 6 10 1 4 7 11 2 5 8 | 7.<br>1 2 0 1 3 0 1 | l. |            | •         | 310310 |     | s.<br>123445678 | • •          | 4. 000000333332210032212 | <i>I.</i> | 123456789 | d. 1245679011123456789090 |          |
| 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8          | 9    | o        | 9     | TO       | ī  | 10                                      |                                           | 2                   | I  | 1          | 10        | -1     | [ ] |                 | 9            | 71                       | 2         | 3         |                           | 2        |
| 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Io         | 11   | 2        | 12    | 3        | 3  | 13                                      | 8                                         | -                   | I  | 7          | 4         | 0      |     |                 | ΙI           | 0                        |           | 4         |                           | <b>o</b> |
| 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13         | I    | 2        | 14    |          | 1  | 16                                      | 5                                         | 0                   | I  | 12         | 9         | 2      |     | 9               | I            | I                        | 3         | 5         | 5                         |          |
| 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15         | 4    | d        | 17    | 9.28.2   | 3  | 19                                      | I                                         | 3                   | I  | 18         | 3<br>8    | 9      |     | -               | 3            | 2                        |           | 6         | 3 3                       | 3        |
| <b>80</b> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17         | 6    | 9        | 19    | 8        | 2  |                                         | 10                                        | -1                  | 2  | <i>;</i> 3 |           |        |     | 5               | <b>5</b>     | 34                       |           | 7         | 2 1                       | Ĭ.       |
| 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19         | 8    | -1       | I 2   |          | 7  | I 4                                     |                                           | 2                   | 2  | 9          | 2         |        | 3 1 |                 |              | 04                       | •         | 8         | IC                        |          |
| ditto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •          | 10   | 7        | l, 4, | 7<br>231 | -1 | · , /                                   | 4`<br>3679                                | - 1                 | 2, | 14<br>2.7  | 7<br>1322 | - 1    | ٦,  |                 | 10<br>925    | 10                       | _ '       | 9         | ი დ<br>ქ <i>9</i> ნ       | •        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · 1.(      | 947  | <b>'</b> | 1.4   | · > - :  | '  | • • • • • • • • • • • • • • • • • • • • | د/ ∨ر                                     | 1                   | •• | .2./       | 32        | ۱ ٔ    | 4   | وں،             | / <b>/</b> ) | 1                        | * }       | 7.4       | 170                       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |          |       |          |    |                                         | . 1                                       | ์<br>מ              | a  |            |           | •      |     |                 |              | •                        |           |           |                           |          |

| ,          |       |      |            |     |        | ,    | 1   | ı            |          |     | 1  | ſ  | •          |        | •  | ı  |     |                | 4  |    | :      |                |
|------------|-------|------|------------|-----|--------|------|-----|--------------|----------|-----|----|----|------------|--------|----|----|-----|----------------|----|----|--------|----------------|
|            | 50    | Da   | ys.        | 1   | 60 I   | Days | .   | 70           | o I      | Day | ,  | 80 | D          | ays.   |    | وا | o I | ays)           |    | 10 | 10 I   | Days.          |
| Prin-      |       |      | •          | 1   |        | •    |     |              |          | •   |    |    |            | -      |    |    |     |                |    |    |        | •              |
| cipal.     | l. s. | d.   | 9          | .l. | 5.     | d.   | q.  | <i>l</i> . s | 5.       | d.  | q. | l. | s.         | d.     | q. | I. | 5.  | d.             | q. | l. | s.     | d. q.          |
| l.         | '     |      |            | 1   |        |      |     |              |          |     |    |    |            | _      |    |    |     | _              |    | İ  |        |                |
| 1          | l     |      | 1          | 3   |        | 2    | ٥.  | l            |          | 2   | 1  |    |            | 2      | 2  |    |     | 3              | 0  | İ  |        | 3 I<br>6 2     |
| 2          | l     |      | 3 1        |     |        | 4    | 0   |              |          | 4   | 3  |    |            | 5      | 1  |    |     | 5              | 3  | l  |        |                |
| 3          | l     |      | 5 9        |     |        | 6    | 0   |              |          | 6   | 3  |    |            | 7      | 3  |    |     | 9<br>11        | 3  | į  | 1      | 93             |
| 4          |       |      | б 2<br>8 1 |     |        | 7    | 3   |              |          | 9   | 0  |    |            | 10     | 0  |    | 1   | 2              | 2  | l  | ī      | 4 I            |
| . 5        |       |      | -          | 1   |        | 9    | 3   |              |          | 11  | 2  |    | I          | 3      | 3  |    | Ī   | 5              | 2  |    | Ī      | 7 2            |
|            | l     | 1    | 9 3<br>1 3 |     | 1      | I    | 3   |              | I        |     | 3  |    | I          | 6      | I  |    | ī   | 8              | 2  | l  | Ī      | 10 3           |
| · 7        | İ     | 1    | 1 (        |     | 1      | 3    | 3   |              | ī        | 4   | 1  |    | ī          | 8      | 3  |    | 1   | 11             | 2  | l  | 2      | 20             |
| 9          | 1     | _    | 2          |     | ī      | 5    | 2   |              | ï        | 8   | 2  |    | 1          | ŢĪ     | 2  | }  | 2   | 2              | I  | l  | 2      | 5 I,           |
| 10         | 1     |      | 4          |     | 1      | 7    | 2   | •            | I        | Io  | 3  |    | 2          | 2      | 0  |    | 2   | 5              | 1  | 1  | 2      | 8 2            |
| 20         | •     | 2    | 8 3        |     | 3      | 3    | 1   |              | 3        | 9   | 2  |    | 4          | 4      | 0  |    | 4   | 10             | 2  | l  | 5      | <b>5</b> 0     |
| 30         | į.    |      | 1 (        |     | 4      | 10   | 3   |              | 5        | 8   | ľ  |    | 6          | 6      | 0  |    | 7   | <sup>'</sup> 3 | 3  |    | 8      | 12             |
| 40         |       | 5    | 5 1        | 1   | 6      | 6    | J   |              | 7        | 7   | 1  | '  | 8          | 8      | 0  |    | 9   | 9              | 0  | l  | 10     | IO I           |
| 50         |       | 6    | 9 3        | 3   | 8      | I    | 3   |              | 9        | б   | 0  |    | 10         | 10     | 0  |    | 12  | 2              | I  | l  | 13     | 62             |
| 60         |       | -    | 2 (        | 1   | 9      | 9    | 2   |              | I.       | 5   | 0  | ٠. | 13         | 0      | 0  |    | 14  | 7              | I  | 1  | 16     | 3 I            |
| 70         |       | 9    | б          | 1   | 11     | 5    | 0   | I            | 3        | 3   | 2  |    | 15         | 2      | 0  |    | 17  | 0              | 2  | l  | 18     | 11.3           |
| 80         | Ł     |      | 0 3        | 3   | 13     | 0    | 2   |              | 5        | 2   | I  |    | 17         | 4      | I  |    | 19  | 5              | 3  | Ι  | I      | 8 1            |
| 90         |       |      | 3 (        | 7   | 14     | 8    | 0   | i .          | 7        | 1   | I  |    | 19         | 6      | 1  | 1  | I   | II             | 0  | 1  | 4      | 50             |
| 100        |       |      | •          | 1   | 16     | 3    | 3   |              | 9        | 0   | 0  | I  | I.         | 8      | J  | I  | 4   | 4              | I  | I  | 7.     | II             |
| 200        | •     | ,    |            |     | 12     | . 7  | 1   |              | 8        | 0   | 0  | 2  | 3          | 4      | 2  | 2  | 8   | 8              | 2  | 2  | 14     | 2 3            |
| 300        | 1     |      |            | 3 2 |        | 2    | 2   | 2 1          | 6        | II  | 3  | 3  | <b>5</b>   | 8      | 2  | 3  | 13  | 0              | 3  | 4  | 8<br>1 | 4 0<br>5 2     |
| 400<br>500 |       | ė.   | 5          | 13  | 5<br>I | 6    | 1   | 3 . I        | 5        | 11  | 3  | 4  | 8          | 4      | 3  | 4  | 17  | 5<br>9         | 2  | 5  | 15     | 6 2            |
| 600        |       |      |            | 24  | 17     | 10   | 0   | 5            | 7        | 11  | 3  | 5  | 10         | T<br>I | 3  | 7  | 6   | 7              | 3  | 8  | 2      | 8 0            |
| 700        |       |      | -          | 3 5 | 14     | 1    |     | 6 1          | 2        | TT  | 3  | 7  | 11         | 9      | I  | 8  | 10  | 6              | 0  | 9  | 9      | 91             |
| 800        |       | -    |            | 6   | Io     | 5    | 7   | 7 1          | _<br>! I | II  | 2  | 8  | 13         | 5      | 1  | 9  | 14  | 10             | I  | 10 | 16     | 10 3           |
| 900        | -     |      |            | 2/7 | 6      | 8    | 3   | 8 1          | 0        | 11  | 2  | 9  | 15         | í      | 2  | 10 | 19  | 2              | 2  | 12 | 4      | 0 0            |
| 1000       |       |      | ó :        | 1:  | 3      | 0    | -   |              | ġ        | II  | 2  | EO | 1 <i>6</i> | 9      | 3  | 12 | 3   | 7              | _  | 13 | Io     | 1 1            |
| ditto      | 1. 6  | 5.8c | 27         | 1   |        | 521  |     | 1.           | 9.4      | 976 | 5  | l. | 10.8       | _      |    | l. | 12. |                | 6  | ĺ. | 13.5   | ; <b>r</b> , ' |
|            |       |      | •          | J   |        | •    | . ! |              |          | . • | Į  |    |            | •      |    |    | ,   | •              | į  | l  | , - •  |                |

| 77 min     |     | 10.  | Day  | <b>s.</b> , | 1   | <b>20</b>    | Day | 5.  | ·I | <b>30</b> . | Day | s.  | 1.  | 40 I | Day: | s.  | 1  | 50 I  | Days | ۲.  | 1:         | 60 I          | Dayı | s <b>.</b>  |
|------------|-----|------|------|-------------|-----|--------------|-----|-----|----|-------------|-----|-----|-----|------|------|-----|----|-------|------|-----|------------|---------------|------|-------------|
| Prin-      |     |      |      |             | ١,  |              |     |     | ,  |             |     |     | ١.  |      |      |     |    |       |      |     | Ι.         |               |      |             |
| cipal.     | 1.  | s.   | d.   | q.          | 7.  | s.           | d.  | q.  | l. | s.          | d.  | q.  | 1.  | s.   | d.   | q.  | l. | s.    | d.   | q.  | <i>l</i> . | s.            | d.   | <b>q.</b> . |
| 1.         | ł   |      |      |             | l   |              |     |     |    |             |     |     |     |      |      |     |    |       |      |     |            |               | •    | •           |
| 1          | 1   | •    | 3    | 2           | ı   |              | 4   | 0   |    |             | 4   | I   | 1   |      | 4    | 2   |    |       | 5    | 0   |            |               | 5    | I           |
| 2          | 1   |      | 7    | 0           | l   |              | 7   | 3   |    |             | 8   | 2   |     |      | 9    | 0   |    |       | 9    | 3   | 1          |               | 10   | I           |
| 3          | l   |      | 10   | 3           |     |              | II  | 3   |    | I           | 0   | 2   | 1   | I    | I    | 2   |    | I     | 2    | 2   | 1          | I             | 3    | 2           |
| 4          | •   | I    | 2    | I           | ta. | I            | 2   | 2   |    | 1           | 4   | 3   |     | I    | 6    | 0   |    | I     | 7    | 1   | 1          | 1             | 8    | 2           |
| 5          |     | I    | 5    | 3           |     | 1            | 7   | 2   |    | I           | 9   | 0   |     | I    | IO   | 2   |    | 2     | 0    | 0   | •          | 2             | 1    | 3           |
| . 6        |     | I    | 9    | 1           |     | 1            | ΙI  | 2   |    | 2           | I   | 1   | l   | . 2  | 3    | I   |    | 2     | 5    | 0   |            | 2             | 6    | 3           |
| 7          |     | 2    | 0    | 3           |     | 2            | 3   | 1   |    | 2           | 5   | 2   | l   | 2    | 7    | 2   |    | 2     | 9    | 3   | 1          | 3             | 0    | Ó           |
| 8          |     | 2    | 4    | 2           |     | 2            | 7   | 0   |    | 2           | 9   | 2   | ŀ   | 3    | Ó    | 0   |    | 3     | 2    | 3   |            | 3             | 5    | r           |
| 9          |     | 2    | 8    | 0           |     | 2            | 11  | 0   |    | 3           | I   | 3   |     | 3    | 4    | 2   | ŀ  | 3     | .7   | 2   |            | 3             | 10   | I           |
| 10         |     | 2    | II   | 3           |     | 3            | 2   | 3   |    | 3           | 6   | 0   |     | 3    | ۏ    | 1   |    | 4     | ·o   | I   | 1          | 4             | 3    | 2           |
| . 20       |     | Ś    | I 1  | 1           | l   | 6            | 5   | 2   |    | 7           | Ó   | 0   | l   | 7    | 6    | 1   |    | 8     | O    | . 2 | 1          | 8             | 7    | 0           |
| 30         | 1   | 8    | II   | 0           |     | 9            | 8   | 2   |    | 10          | - 6 | 0   |     | ΪΪ   | 3    | 2   |    | 12    | 1    | 0   |            | I 2           | ΙÓ   | 2           |
| 40         |     | II:  | 10   | 2           |     | 12           | 11  | 1   |    | 14          | 0   | 0   |     | 15   | o    | 2   | ŀ  | 16    | I    | 1   | •          | 17            | 2    | 0           |
| 50         |     | 14   | 10   | 1           | ŀ   | 16,          | 2   | 0   |    | 17          | 6   | 0   | -   | 18   | 9    | 3   | 1  | 0     | I    | 2   | 1          | Í             | 5    | 2           |
| 60         |     | 17   | 9    | 3           |     | 19           | 5   | o   | I  | 1           | 0   | 0   | I   | 2    | 7    | 0   | I  | 4     | 2    | o   | I          | 5             | 8    | 3           |
| · 7U       | 1   | O    | 9    | 2           | I   | 2            | 7   | 3   | I  | 4           | 6   | 0   | 1   | . 6  | 4    | 1   | 1  | 8     | 2    | 1   | 1          | ΙÓ            | ō    | Í           |
| · 80       | I   | 3    | 9    | 0           | I   | 5            | 10  | 2   | 1  | 8           | 0   | 0   | I   | 10   | Ī    | 1   | 1  | 12    | 2    | 2   | 1          | 14            | 3    | 3           |
| <i>9</i> 0 | I   | 6    | 8    | 3           | I   | 9            | 1   | 1   | 1  | ıı          | 6   | 0   | 1   | 13   | 10   | 2   | 1  | 16    | 3    | 0   | ı          | 18            | 7    | Ī           |
| 400        | 1   | 9    | 8    | 1           | 1   | 12           | 4   | 1   | I  | 15          | 0   | 0   | I   | 17   | 7    | 2   | 2  | 0     | 3    | 1   | 2          | 2             | 10   | 3           |
| 200        | 2   | 19   | 4    | 3           | 3   | : 4          | 8   | 1   | 3  | 9           | IJ  | 3   | 3   | 19   | 3    | 1   | 4  | 0     | 6    | 2   | 4          | 5             | 9    | 2           |
| 30c        | 4   | 9    | 0    | 3           | 4   | 17.          | 0   | 1   | 5  | 4           | ΙĮ  | 3   | 5   | 12   | 11   | 0   | б  | 0     | 9    | 3   | 6          | 8             | 8    | I           |
| 400        | 5   | 18   | 9    | 0           | 6   | 9            | 4   | 3   | 6  | 19          | ΙI  | 3   | 7   | 10   | б    | 2   | 8  | I     | 0    | 3   | .8         | 11            | .7   | Q           |
| 50c        | 7   | 8    | 5    | 1           | 8   | I            | 8   | 3   | 8  | 14          | 11  | 2   | 9   | 8    | 2    | 0   | 10 | 1     | 4    | 1   | 10         | 14            | 5    | 3           |
| €00        | 8   | 18   | I    | 2           | 9   | 14           | . 0 | 3   | 0  | 9           | 11  | 2 ' | ĮĮ. | 5    | 9    | 3   | 12 | 1     | 7    | I   | I 2        | 17            | 4    | 2           |
| 700        | 01  | 7    | 10   | 0           | L.  | : <b>6</b> , | . 5 | Q,  | 2  | 4           | 11  | 2   | I 3 | 3    | 5    | 1   | 14 | 1     | Io   | 2   | 15         | 0             | 3    | T           |
| 800        | I ŀ | 17   | 6    | 1           | 12  | 18           | 9   | I,  | 13 | 19          | II. | 2   | 15  | 1    | . I  | - 1 | 16 | 2     | ı    | 3   | 17         | 3             | ź    | a           |
| -900       | 13  | 7    | 2    | 2           | 14  | I r          | I   | I   | 5  | 14          | 11  | I   | 16  | 18   | 8    | 2   | 18 | 2     | 5    | 0   | 19         | 6             | 0    | 3           |
| 1000       | ,   | 16   | 10   | - 1         | 16  | 3            | 5   | 2 1 | 17 | 9           | II  | I,  | 18  | 16   | 4    |     | 20 | 2     | 8    |     | 2 I        | 8             | 11   | 2           |
| ditto      | l.  | 14,8 | 3448 | 3           | l.  | 16.1         | 725 | :   | l. | 174         | 966 | 5   | l.  | 18.8 | 3172 | 2   | l. | 20. J | 342  | :   | <i>l</i> . | <b>2</b> I •4 | 477  | 7           |
|            |     |      |      | ı           |     |              |     | ļ   |    | _           |     |     |     |      |      |     |    |       |      | ŀ   |            |               | •••  |             |
|            |     |      |      |             |     |              |     |     |    | - 1)        | ∙d  | )   |     |      |      |     |    |       |      |     |            |               |      |             |

|            | ا .        |            | <br>انت    |    | ا . ه      | 2 - 1    | D       |    |    | 1    | <b>.</b>   | .  |     | 7          |               | 1  |     | 7           | <b>.</b> | 1  | ١          | 7         |          |           |
|------------|------------|------------|------------|----|------------|----------|---------|----|----|------|------------|----|-----|------------|---------------|----|-----|-------------|----------|----|------------|-----------|----------|-----------|
| Prin-      | 1          | 70 .       | Day.       | J. | 1.0        | 30 I     | Jays    | •  | 19 | 90 1 | Jay.       | 5. | 20  | $\infty I$ | ays           | •  | 2   | 10.1        | Jays.    | •  | 22         | o I       | Jays     | <b>F.</b> |
| cipal.     | ı.         | <i>s</i> . | d.         | q. | l.         |          | d.      |    | l. | s.   | d.         | _  | l.  |            | d.            |    | l.  | . <b>5.</b> | ı        |    | l.         |           | d.       | _         |
| d.         | Ι"         | •••        | <b>u</b> . | 4. |            | ٠,,      | <b></b> | q. | ٠. | ٥,   | 4.         | q. | *•  | <b>S.</b>  | <b>u</b> .    | q. | *   | . 3.        | 4.       | q. | <i>"</i> . | <b>5.</b> | 664      | <b>q.</b> |
| 7          | i          |            | •          | 2  |            |          | 5       | 2  |    |      | 6          | 0  |     |            | 6             | 2  | l   |             | 6        | 3  |            |           | -        | _         |
| . 3        | l          |            | 11         | o  |            |          | ן<br>וו | 2  |    | I    | 0          | 0  | ŀ   | . <b>I</b> | ٥             | 3  |     | I           | I        | 2  |            | 1         | 7        | 0         |
| 3          |            | I          | 4          | 2  |            | 1        | 5       | 1  |    | ī    | 6          | I  | ł   | Ī          | 7             | 1  | l   | 1           | 8        | I  |            | 1         | 9        | 0         |
| 4          |            | I          | 10         | 0  |            | 1        | ΙÏ      | C  |    | 2    | ٥          | 1  |     | 2          | í             | 2  |     | 1           | 2        | 3  | Ì          | 2         | A        | ī         |
| 5          |            | 2          | 3          | 1  |            | 2        | 5       | 0  |    | 2    | 6          | 2  |     | 2          | 8             | 1  |     | I,          | 9        | 2  |            | 2         | II       | ō         |
| . 6        |            | 2          | 8          | 3  |            | 2        | 10      | 3  |    | 3    | 0          | 2  | ľ   | 3          | 2             | 2  |     | 3           | 4        | 2  | 1          | 3         | 6        | I         |
| 7          |            | 3          | 2          | 1  |            | 3        | 4       | 2  |    | 3    | 6          | 3  | l   | 3          | 8             | 3  |     | 3           | II       | 0  | 1          | 4         | I        | I         |
| 8          |            | 3          | 7          | 3  |            | 3        | 10      | 1  |    | 4    | 0          | 3  | ŀ   | 4          | 3             | 1  |     | 4           | 5        | 3  | 1          | 4         | 8        | I,        |
| 9          | ł          | 4          | 1          | q  |            | 4        | 4       | 0  |    | 4    | 6          | 3  |     | 4          | 9             | 3  | į   | 5           | 0        | 1  | •          | 5         | 3        | I.        |
| 10         | l          | 4          | 6          | 3  |            | 4        | 9       | 3  |    | 5    | I          | 0  |     | 5          | 4             | 0  | ľ   | 5           | 7        | C  | ı          | 5         | IQ       |           |
| 2C         | ١.         | 9<br>13    | I          | 1  |            | 9        | 7       | 1  |    | Io   | 1          | 3  |     | 10         | 8             | 0  | i . | 11          | 2        | I  | ŀ          | 11        | 8        |           |
| 30         | i          | 18         | 7          | 3  |            | 14<br>19 | 5       |    |    | 15   | 2          | 3  | _   | 16         | 0             | 0  |     | 16          | 9        | 1  | l          | 17        | б        | _         |
| 4C         | <b>.</b>   | 2          | 2<br>9     | á  | ı          | 4        | 3       | 0  | I  | 5    | 3          | 2  | I   | б          | <b>4</b><br>8 | 0  | 1   | 2           | 4        | 2  |            | 3         | 5        | 0         |
| <b>5</b> 0 | ī          | 7          | 3          | 3  | I          | 8        | 10      | 3  | I  | 10   | <b>4 5</b> | 2  | -   | 12         |               | 0  |     | 7           | II       | 3  |            | 9         | 3        | 0         |
| 70         | ī          | ΙÍ         | 10         | 3  | I          | 13       | 8       | 1  | ī  | 15   | .6         | 1  | I   | 17         | 0             | 0  |     | 13          | 6        | 3  |            | 15        | I        | I         |
| - 8c       | I          | 16         | 5          | d  | ï          | 18       | 6       | 0  | 2  | ó    | 7          | 0  | 2   | 2          | <b>4</b><br>8 | 0  | _   | 19          | 1<br>9   | 3  | L          | 0         | 11       | 2         |
| 90         | 2          | 0          | 11         | 2  | 2          | 3        | 3       |    | 2  | 5    | 8          | 0  | 2   | 8          | o             | 0  | _   | 4           | 4        | 0  | 2          | 6<br>12   | 9        | 3         |
| 100        | 2          | 5          | 6          | ٦  | 2          | Ś.       | I       | 3  | 2  | Ιά   | 8          | 3  | 2   | 13.        | 4             | 0  |     | 15          | 11       | 1  | 2 2        | 18        | .8<br>.6 | 0         |
| 200        | 4          | ΙI         | Ö          | 1  | 4          | 16       | 3       | Ò  | 5  | I    | 5          | 2  | 5   |            | 8             | 0  | 5   | 11          | 10       | 1  | 5          | 17.       | ં૦       | I         |
| 300        | Ó          | 16         | 6          | 2  | 7          | 4        | 4       | 3  | 7  | I 2  | 2          | 2  | 8   | ٥          | 0             | 0  | 8   | 7           | 9        | }  | 8          | 15        | 6        | 2         |
| 400        | 9          | 2          | · 0        | 3  | 9          | 12       | 6       | 1  | ΙÓ | 2    | 1 1        | 1  | 10  | 13         | 4             | 0  | ΙI  | 3           | 8        | 2  | 11         | 14        | o        | 2         |
| 500        | ΙI         | 7          | 7          | ဂ  | 12         | 0        | 7       | 3  | 12 | 13   | 8          | 0  | 13  | 6          | 8             | 0  | 13  | 19          | 7        | _  | 14         | 12        | 6        | 2         |
| ୍ତେ        | 13         | 13         | I          | 0  | 14         | 8        | 9       | 1  | 15 | 4    | . 5        | 0  | 16  | 0          | 0             | 0  | 16  | 15          | 6        | 3  | 17         | 11        | 0        | 3         |
| 700        | 15         | 18         | 7          | 1  | 16         | 16       | 10      | 3  | 17 | 15   | . I.       | 3  | 18  | 13         | 4             | 0  | 19  | 11          | 5        | 3  | 20         | 9         | 7        | ó         |
| 8oc        | 18         | 4          | 1          | 2  | 1 <b>9</b> | 5        | 0       | 1  | 20 | 5    | .10        | 1  | 2 I | б          | 8             |    | 22  | 7           | 2        | 2  | 23         | 8         | I        | ٥         |
| 900        |            | 9          | 7          | 3  | 21         | 13       | I       | 3  | 22 | 16   | . 7        |    | 24  | 0          | 0             |    | 25  | 3           | 4        | C  | 26         | 6         | 7        | 0         |
| 1000       |            | 15         | ·          | _3 | 24         | I        | 3       | 2  | 25 | 7    | 4          |    | 26  | 13         | 4             |    | 27  | 19          | 3        | 1  | 29         | 5         | 1        | I         |
| ditto      | <b>'</b> ' | 22.        | 757        | 7  | ι.         | 24.0     | 004     | 20 | ١. | 25.  | 307        | 10 | ι.  | 26.6       | rı            |    | l.  | 27.5        | 627      | 7  | l.         | 29.2      | 55       | 3         |
|            | ı          |            |            | ,  |            |          |         | ı  |    |      |            |    | 1   |            |               | 1  | 1   |             | •        | 1  | i          |           | •        |           |

|             | ı   |             | _   |     | 1          |      | •    |     | ١   |             | ,   |    | 1          |           | _      | •   | 1            |              |                      |     | 1   |             |       |    |
|-------------|-----|-------------|-----|-----|------------|------|------|-----|-----|-------------|-----|----|------------|-----------|--------|-----|--------------|--------------|----------------------|-----|-----|-------------|-------|----|
|             | ] 2 | 30.         | Day | 5.  | 2          | 40   | Day. | 5.  | 2   | <b>50</b> . | Day | 5. | 2          | 60        | Day    | S.  | 2            | 70 .         | Day                  | J.  | 2   | 80          | Day   | 5. |
| Prin-       | 1   | •           | _   |     | ١.         |      | •    |     |     |             | _   |    |            |           |        |     | 1            |              | _                    |     | ١.  |             |       |    |
| cipal.      | ĮI. | · <b>5.</b> | d.  | q.  | <i>l</i> . | S.   | d.   | q.  | 1.  | s.          | d.  | q  | 1.         | 5.        | d.     | 9   | . <i>l</i> . | · <b>S</b> . | d.                   | 9   | 4.  | . <b>5.</b> | d.    | q. |
| l.          |     |             |     |     |            |      |      |     | 1   |             | •   |    |            |           |        |     | 1            |              | _                    |     | 1   |             | _     |    |
| · I         | 1   |             | 7   | 1   |            |      | 7    | 2   |     |             | 8   | C  | k          |           | 8      | 1   |              |              | 8                    | 2   | ł   |             | 8     | 3  |
| 2           | }   | I           | 2   | 3   |            | I    | 3    | 1   |     | 1           | 4   | C  | 4          | I         | 4      |     |              | I            | 5                    | 1   |     | I           | 5     |    |
| 3,          | 1   | 1           | 10  | С   | 1          | I    | II   | 0   |     | ı           | II  | 3  |            | 2         | 0      | 3   | 1            | 2            | 1                    | 3   |     | 2           | 2     |    |
| 4           |     | 2           | 5   | 1   | l          | 2    | б    | 2   | 1   | 2           | 7   | 3  |            | 2         |        | 0   |              | 2            | 10                   | I   | 1   | 2           | II    |    |
| 5           | 1   | 3           | 0   | 3   | 1          | 3    | 2    | ī   |     | 3           | 3   | 3  |            | 3         | 5      | 1   | F .          | 3            | 6                    | 3   |     | 3           | . 8   |    |
| 6           | 1   | 3           | 8   | 0   | l          | 3    | 9    | 3   | 1   | 3           | II  | 3  |            | 4         | I      | 2   |              | 4            | 3                    | 2   | 1   | 4           | 5     |    |
|             |     | 4           | 3   | 1   |            | 4    | 5    | 2   | ]   | 4           | 7   | 2  | •          | 4         | 9      | 3   |              | 5            | 0                    | 0   | İ   | 5           | 2     |    |
| 7<br>8      | ,   | 4           | 10  |     |            | 5    | 1    | 0   |     | 5           | 3   | 2  | •          | 5         | 6.     | 0   |              | <b>5</b>     | 8                    | 2   | l   | 5           | 11    |    |
| 9           | l   | 5           | 6   | 0   |            | 5    | 8    | 3   | 1   | 5           | 11  | 2  | 1          | 6         | 2      | 1   |              |              | 5                    | 0   | l   | 6           | 7     |    |
| IC          |     | 6           | I   | I   |            | 6    | 4    | 2   | 1   | 6           | 7   | 2  |            | 6         | 10     | 2   |              | 7            | I                    | 2   | •   | 7           | 4     |    |
| 20          | }   | 12          | 2   | 2   |            | I 2  | 8    | 3   | ł   | 13          | 3   | O  |            | <b>I3</b> | 9      | 0   | ı            | 14           | 3                    | 1   | ł   | 14          | 9     |    |
| 30          |     | 18          | 4   | 0   |            | 19   | I    | 1   | _   | 19          | 10  | 2  |            | 0         | 7      | 2   | I            | I            | 5                    | 0   |     | 2           | 2     | 0  |
| <b>4</b> C  | I   | 4           | 5   | 1   | I          | 5    | 5    | 2   | I   | 6           | 6   | 0  | ı          | .7        | 6      | 0   | l.           | 8            | 6                    | 2   | i i | 9           | 6     |    |
| 50          | 1   | 10          | б   | 2   | I          | 11.  | 10   | 0   | I   | 13          | I   | I  | 1          | 14        | 4      | 3   | I            | 15           | 8                    | .0  |     | 16          | 11    | I  |
| 60          | I   | 16          | 7   | 3   | I          | 18   | 2    | 1   | I   | 19          | 8   | 3  | 2          | I         | 3      | I   | 2            | 2            | 9                    | 2   | 2   | 4           | 4     | 9  |
| 70          | 2   | 2           | 9   | 1   | 2          | 4    | б    | 3   | 2   | 6           | 4   | 1  | 2          | 8         | 1      | 3   | 2            | .9           | II                   | I   | 2   | II          | 8     |    |
| <b>8</b> c  | 2   | . 8         | 10  | 2   | 2          | 10   | İI   | I   | 2   | 12          | II  | 3  | 2          | 15        | 0      | 1   | 2            | 17           | 0                    | 3   | 2   | 19          | I.    | Ţ  |
| <b>9</b> 0  | 2   | 14          | 11  | 3   | 2          | 17   | 3    | 2   | 2   | 19          | 7   | I  | 3          | 1         | II     | 0   | 3            | 4            | 2                    | 2   | 3   | 6           |       | 0  |
| 100         | 3   | I           | I   | 0   | 3          | . 3  | 8    | 0   | 3   | 6           | 2   | 3  |            | 8         | 9      | 2   | 3            | II           | 4                    | 0   | 3   | 13          | 10,   | _  |
| <b>2</b> 00 | 6   | . 2         | 2   | 0   | 6          | 7    | 4    | 0   | 6   | I 2         | 5   | 2  |            | 17        | 6      | 3   | 7            | 2            | 8                    | 0   | 7   | . 7         | 9     | 0  |
| <b>30</b> ° | 9   | 3           | 3   | 1   | 9          | 10   | II   | 3   | 9.  | 18          | 8   | 0  |            | 6         | 4      | I   | 10           | 14           | 0                    | 9   | II  | 1           | 7     | 2  |
| <b>4</b> C0 |     | 4           | 4   | - 1 | 12         | 14   | 7    | 3   | 13  | _4          | 10  | 3  |            | 15        | I      | _   | 14           | 5            | <b>4</b><br><b>8</b> | 0   | خ ا | 15          | б     | 0  |
| 500         | _   | 5           | 5   |     | 15         | 18   | 3    | -1  | 16  | II          | I   | 2  | ١. '       | 3         | б<br>8 | -   | 17           | 16           |                      | 9   | 22  | 9           | 4     | 3  |
| <b>60</b> 0 |     | 6           | 6   |     | 19         | I    | 11   | -1  | 19  | 17          | 4   | -  | 20         | 12        |        |     | 2 I          | 8            | 0                    | 9   | 1   | 3           | 3     | I  |
| 70c         |     | 7           | 7   |     | 22         | 5    | 7    | - 1 | 23  | 3.          | 7   | 0  |            | 1         | 5      |     | 24           | 19           | 4                    | 0   |     | 17          | 1     | 3  |
| <b>8</b> 00 |     | 8           | 8   |     | 25         | 2    | 3    | -1  | 26` | 9           | 9   | 2  | 27         | 10        | 3      | - 1 | 28           | 10           | 8                    | 0   | _   | 'II         | 0     | I  |
| 9cc         |     | 9           | 9   |     | 28         | 12   | 11   | - 1 |     | 16          | 0   | I  | 30         | 19        | 0      |     | 32           | 2<br>13      | 0                    | - 1 | - 5 | 4<br>18     | 11    | 2  |
| Tooc        | - 7 | 10          | 10  | -   | 3,         | 16   | 7    |     | 33  | 2           | 3   | ٥  | 177        | 7         | 10     |     | 35<br>l.     | 35.6         |                      | ٩   |     | 36.9        | 9     |    |
| ditto       | 1.  | 30.5        | 444 | }   | l.         | 31.6 | 3302 | ٠   | l.  | 33.1        | 12  | •  | <i>'</i> . | 341:      | 3915   | '   | **           | 37,0         | ,U / I               | •   | ••  | 50.5        | '37'S | )  |
| •           | ,   |             |     | 1   | ŀ          | ,    |      | ı   |     |             |     |    | ı          |           |        | 1   | ı            | •            | •                    | •   |     |             |       |    |

|              | 20 | o 1 | Days | .   | 30         | o 1 | Days |     | 31  | o I | ays |    | 32           | o I | Days |     | 33  | o D | ays. |     | 349   | o D  | ajs | •  |
|--------------|----|-----|------|-----|------------|-----|------|-----|-----|-----|-----|----|--------------|-----|------|-----|-----|-----|------|-----|-------|------|-----|----|
| Prin-        | •  |     |      | - 1 |            |     | •    | ١   | •   |     |     |    |              | •   | •    | 1   | -   |     | •    | ١   |       |      | •   |    |
| cipal.       | l. | s.  | d.   | 9.  | <i>l</i> . | s.  | d.   | 9.  | l.  | s.  | d.  | q. | l.           | s.  | d.   | 9.  | l.  | 5.  | d. 9 | 7-1 | l. °. | s. ( | d.  | ſ. |
| - 1,         |    |     |      | 1   |            |     |      |     |     |     |     | •  |              |     |      |     |     |     |      | 1   |       |      |     | _  |
| 1            |    |     | 9    | 1   |            |     | 9    | 2   |     |     | 9   | 3  |              |     | 10   | 0   |     |     |      | 2   |       |      | Io  | 3  |
| . 2          |    | I   | 6    | 1   |            | .1  | 7    | 0   |     | I   | 7   | 2  | ١.           | I   | 8    | 0   |     | 1   | 8    | 3   |       | I    | 9   | Ľ  |
| 3            |    | 2   | 3    | 2   |            | 2   | 4    | 2   |     | 2   | 5   | 1  |              | 2   | 6    | 1   | i   | 2   | 7    | ıļ  |       | 2    | 8   | 0  |
| 4            |    | 3   | ó    | 3   |            | 3   | Í    | 3   |     | 3   | 3   | 0  |              | 3   | 4    | 2   |     | 3   | 5    | 2   |       | 3    | б   | 3  |
| Ś            | •  | 3   | 10   | 0   |            | 3   | II   | 2   |     | 4   | ō   | 3  |              | 4   | 2    | 2   |     | 4   | 4    | c   |       | 4    | 5   | 2  |
| . 6          | •  | 4   | 7    | 0   | ١.         | 4   | 8    | 3   |     | 4   | 10  | 3  |              | ż   | 0    | 2   | ŀ   | 5   | 2    | 1   |       | 5    | 4   | I. |
| 7            |    | 5   | 4    | 1   |            | 5   | 6    | 1   |     | 5   | 8   | 2  |              | 5   | 10   | 2   |     | 6   | 0    | 3   |       | 6    | 2   | 3  |
| 8            |    | 6   | İ    | 1   |            | б   | 3    | 3   |     | 6   | 6   | I  |              | 6   | 8    | 2   | l   | б   | II   | c   |       | 7    | 1   | 2  |
| 9            | ٠. | 6   | 10   | 2   |            | 7   | 1    | 1   |     | 7   | 4   | 0  | Ì            | 7   | 6    | 3   | i i | 7   | 9    | 2   |       | 8    | 0   | 0  |
| 10           |    | · 7 | 7    | 3   |            | 7   | 10   | 3   |     | 8   | Ī   | 3  | l            | 8   | 5    | O   | •   | 8   | 7    | 3   |       | 8    | 11  | 0  |
| 20           |    | 15  | 3    | 2   |            | 15  | و .  | 2   |     | ıρ  | 3   | 2  |              | 16  | 9    | 2   | 1   | 17  | 3    | 3   |       | 17   | 9   | 3  |
| 3c           | I  | 2   | 11   | 0   | I          | 3:  |      | 1   | 1   | 4   | 5   | 1  | I            | 5   | 2    | I   | 1   | 5   | II   | 2   | I     | 6    | 8   | 2  |
| 4c           | I  | 10  | 6    | 3   | I          | 11  | 7    | ` o | ī   | 12. |     | 0  | 1            | 13  | 7    | 0   | I   | 14  | 7    | 1   | 1     | 15   | 7   | I  |
| 5c           | 1  | 18  | 2    | 2   | I.         | 19  | 5    | 3   | 2   | 0   | · 8 | 3  |              | 2   | 0    | 0   | 2   | 3.  | 3    | 0   | 2     | 4    | 6   | 0  |
| 60           | 2  | 5   | 10   | 1   | 2          | 7   | 4    | 2   | 2   | 8   | 10  | 3  |              | 10  | 4    | 3   | 2   | 11  | `Io  | 3   | 2     | 13   | 4   | 3  |
| . <b>7</b> 0 | 2  | 13  | б    | 0   | 2          | 15  | 3    | 1   | 2   | 17  | 0   | i  |              | 18  | 9    | 2   | 3   | 0   | 6    | 2   | 3     | 2    | 3   |    |
| 8c           | 3  | I   | I    | 2   | 3          | • 3 | 2    | 0   | 3   | 5   | 2   | 0  | 3            | 7   | 2    | 1   | 3   | 9   | 2    | 2   | 3     | II   | 2   | 2  |
| <i>€9</i> c  | 3  | 8   | 9    | I   | 3          | II  | 0    | 2   |     | 13  | . 4 | 0  | 3            | 15  | 7    | 0   | 3   | 17  | 10   | 1   | 4     | 0    | I   | I  |
| 100          | 3  | 16  | 5    | 0   | 3          | 18  | 11   | 2   | -   | ī   | 5   | 3  | 4            | . 3 | 11   | 3   | 4   | 6   | 6    | c   | 4.    | 9    | 0   | 0  |
| 200          | 7  | 12  | 10   | 0   | 7          | 17  | 10   | 3   |     | 2   | 11  | 2  |              | 7   | II   | 3   | 8   | 13  | 0    | 9   | 8     | 18   | 0   | 0  |
| 300          | ΙI | 9   |      | ۵   | ĮΙ         | 16  | 10   | 1   | ī 2 | 4   | 5   | C  | 12           | 11  | II   | 3   | 12  | 19  | .6   | c   | 13    | 7    | 0   | 0  |
| 400          | 15 | 5   | 8    | 0   | 15         | 15  | 9    | 2   | 16  | 5   | 10  | 3  | 16           | 15  | 11   | . 2 | 17  | 6   | 0    | c   | 17    | 16   | 0   | I  |
| <b>5</b> 00  | 19 | 2   |      | ٥   | 19         | 14  | 8    | 3   | 20  | 7   | 4   | 1  | 20           | 19  | 11   | 2   | 2 I | 12  | 6    | C   | 22    | 5    | 0   | I  |
| <b>6</b> 00  | 22 | 18  | 6    | 0   | 23         | 13  | 8    |     | 24  | 8   | 10  | C  | 25           | 3   | 11   | 1   | 25  | 19  | 0    | c   | 25.   | 14   | 0   | I  |
| 700          | 26 | 14  | 11   | 0   | 27         | 12  | 7    | 2   | 28  | 10  | 3   | 3  | 29           | . 7 | ΙI   | 0   | 30  | 5   | 6    | c   | 3 I   | 3    | 0   | 2  |
| 80c          | 30 | 1 I | 4    | 0   | 31         | ĮĮ  | 7    | O   | 32  | 11  | 9   | 1  | 33           | 11  | 1 1  | Ç   | 34  | 12  | ્∶૦  | c   | 35.   | 12   | O   | 2  |
| <i>9</i> 00  |    | 7   | 9    | 0   |            | Io  | 6    |     | 36  | 13  | 3   |    | 37           | 15  | 11   | 0   | 38  | 18  | 6    | ć   | 40    | I    | Q   | 2  |
| 1000         |    | 4   |      | 0   | 39         | 9   | 5    |     | 40  | 14  | 8   | 2  | 41           | 19  | 10   | 3   | 43  | . 5 | ୍ଦ   | C   | 14    | 10   | o'  |    |
| ditto        | 1. | 38. | 208  | I   | 1.         |     | 473  | 6   | 1.  | 40. | 735 | 8  | \ <i>l</i> . | 41. | 9947 | 7   | 1.  | 43. | 2503 | : 1 | l.    | 44.  | 502 | 6  |
|              | l  |     |      |     | l          |     |      |     | ļ   |     |     |    | 1            |     |      |     | 1   |     |      |     | l     |      |     |    |

### Discount at 5 per Cent.

|                                                     |                               |                                                      |                                        | 4                                       | 1                           |                          |                                                                     |                          |                |                                                 |                                                        |                          |
|-----------------------------------------------------|-------------------------------|------------------------------------------------------|----------------------------------------|-----------------------------------------|-----------------------------|--------------------------|---------------------------------------------------------------------|--------------------------|----------------|-------------------------------------------------|--------------------------------------------------------|--------------------------|
| Dair                                                | 3                             | ,<br>50 I                                            | Day                                    | s.                                      | 3                           | <b>6</b> 0 2             | Day.                                                                | s:                       | 3              | 65                                              | Day                                                    | s.                       |
| cipal.                                              | 1.                            | s.                                                   | <b>d.</b> .                            | q.                                      | l.                          | s,                       | d.                                                                  | q.                       | I.             | <i>s</i> .                                      | d.                                                     | q.                       |
| 2 3 4 5 6 78 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | I I 2 2 3 3 4 4 9 3 1 8 2 2 7 | 1 2 3 4 5 6 7 8 9 18 7 16 5 14 4 13 2 11 3 14 6 17 9 | 11 10 98 76 5432 3579 10 02 46 06 06 0 | 000000000000000000000000000000000000000 | I I 2 2 3 3 4 4 9 4 8 2 3 8 | 123456789881776554471593 | 11 10 9 9 8 7 7 6 5 4 9 2 7 0 11 11 11 11 11 11 11 11 11 11 11 11 1 | 123123012322103221033332 | 11223344949238 | 1 2 3 4 5 6 7 8 9 9 8 18 7 17 6 16 5 15 0 16 11 | d. III 10 9 9 8 8 7 6 6 0 6 1 7 1 8 2 8 2 5 8 II 2 5 8 | 101202023123123012332211 |
| 700                                                 |                               | 0<br>12                                              | 6                                      |                                         | 32                          | 17                       | II                                                                  | 2                        | 33<br>38       | 6                                               | 8<br>11                                                | c                        |
| 900                                                 |                               | 3                                                    | 6                                      | 1.                                      | 37<br>12                    | 5                        | 11                                                                  | 2                        | 4 <b>2</b>     | 17                                              | 1                                                      | 3                        |
| 1000                                                |                               | 15                                                   | 0                                      | - 1                                     | 46                          | 19                       | 11                                                                  |                          | 47             | 12                                              | 4                                                      | 3                        |
| dixto                                               | , ,                           | 45.7                                                 | 516                                    |                                         |                             |                          | 973                                                                 |                          | <i>l</i> .     | 47.6                                            | 19                                                     |                          |

Part II. For Days under 10 in a Medium, to add at above 90 Days.

| 1 Day.                                                                  | 2 Days.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 Days.                                                                                                                   |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| s. d. q.                                                                | s. d. q.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s. d. q.                                                                                                                  |
| 1 1 1 2 1 3 2 1 2 2 3 3 1 6 9 2 2 1 6 3 3 1 1 0 0 0 2 4 1 2 1 2 1 3 0 4 | 1 1 1 2 2 2 2 2 1 1 2 3 3 4 5 5 5 6 0 6 1 7 1 7 2 8 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 7 1 7 2 8 2 6 0 6 1 | 1 1 1 2 2 3 3 3 0 0 3 3 3 2 2 2 2 1 3 1 2 0 1 3 1 2 3 2 1 2 3 3 4 5 6 7 7 7 0 3 9 1 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 |

Part II. For Days under 10 in a Medium, to add at above 90 Days.

|            |      |             |     |     |      |     |      |        | ,   | _   | •        |    |    |     |                  | ,   |     | ,   |      |     |
|------------|------|-------------|-----|-----|------|-----|------|--------|-----|-----|----------|----|----|-----|------------------|-----|-----|-----|------|-----|
| Prin-      | 4    | Day         | ys. | 5   | Dag  | ys. | 6    | Dag    | ys. | 7.  | Day      | s. | 8  | 3 I | ays              | •   | 9   | D   | ays. | •   |
| cipal.     | 5.   | d.          | q.  | 5.  | d.   | q.  | s.   | d.     | q.  | s.  | d.       | q. | 1. | s.  | d.               | q.  | I.  | s.  | d.   | q.  |
| l.         |      |             | 1   |     |      | -   |      | •      | 1   |     |          | -  | l  |     |                  | 1   |     | •   |      | 1.  |
|            |      |             |     |     |      | o   |      |        | 1   |     |          | 1  |    |     |                  | 1   |     |     |      | I   |
| 2          |      |             | 1   |     |      | I   |      |        | I   |     |          | 2  |    |     |                  | 2   |     |     |      | 2   |
| 3          |      |             | 3   |     |      | 2   | į    |        | 2   | İ   |          | 3  |    |     |                  | 3   |     |     |      | 3 * |
| 4          |      | •           | 2   |     |      | 2   |      |        | 3   | 1   |          | 3  |    |     | I                | 0   | l   |     | 1    | 0   |
| 5          |      |             | 2   | l   |      | 3   |      | I      | 0   | 1   | 1        | 0  |    |     | 1                | 1   |     |     | 1    | 2   |
| 5<br>6     |      |             | 3   |     | 1    | o   |      | I      | 0   | 1   | 1        | 1  |    |     | I                | 2   |     | 0   | I    | 3   |
| 7          |      |             |     | ١.  | I    | 0   |      | 1      | I   | l   | I        | 2  | ł  |     | I                | 3   |     |     | 2    | ō   |
| 7<br>8     |      | 1           | 3   |     | I    | 1   | Ì    | I      | 2   |     | Ţ        | 3  |    |     | 2                | 0   |     |     | 2    | I   |
| 9          |      | I           | 0   |     | 1    | 2   |      | I      | 3   | 1   | 2        | 0  |    |     | 2                | I   |     |     | 2    | 2   |
| 9<br>10    |      | ı           | 1   |     | I    | 2   | 7    | 2      | 0   |     | 2        | 1  |    |     | 2                | 2   |     |     | 3    | 0   |
| 20         |      | 2           | 2   | į   | 3    | 1   |      | 3<br>5 | 3   |     | 4        | 2  |    |     | 5                | 0   | ŀ   |     | 5    | 3   |
| 30         |      | 3           | 3   |     | 4    | 3   |      |        | 3   | l   |          |    |    |     | 7                | 2   |     |     | 8    | 2   |
| 40         | į    | 3<br>5<br>6 |     | Ì   | 6    | 1   |      | 7      | 2   |     | 8        | 3  | 1  |     | 10               | 0   | ŀ   |     | 11   | 0   |
| 50         |      |             | 1   |     | 7    | 3   | _    | 9      | 2   |     | ıĬ       | 0  | 1  | 1   | 0                | 2   |     | I   | 2    | I   |
| 60         |      | 7<br>8      | 2   |     | 9    | 2   | •    | 11     | 1   | I   | I        | 1  |    | I   | . 3              | 0   | ĺ   | I   | 5    | 0   |
| 70         |      |             |     | •   | II   | 0   | I    | 1      | I   | I   | 3        | 1  | ľ  | I   | <b>5</b>         | 2   |     | I   | 7    | 3   |
| <b>8</b> 0 |      | . Io        | С   | I   | 0    | 2   | I    | 3      | 0   | I   | 5        | 2  | ŀ  | I   |                  | 0   |     | 1   | 10   | 2   |
| 90         |      | 11          | 1   | I   | 2    | 0   | I    | 5      | 0   | I   | 7        | 3  |    | 1   | 10               | 2   | l   | 2   | 1    | I   |
| 100        | 1    | 0           | 2   | 1   | 3    | 3   | I    |        | 3   | I   |          | С  | ŀ  | 2   | ı                | C   |     | 2   | 4    | I   |
| 200        | 2    | I           | С   | 2   | 7    | 1   | 3    | I      | 2   | 3   | 7        | 3  |    | 4   | 2                | 0   |     | 4   | 8    | I   |
| 300        | 3    | I           | 2   | . 3 | II   | 0   | 4    | 8      | 1   | 5   | <b>3</b> | 3  |    | 6   | 3<br>4<br>5<br>6 | C   |     | 7   | 9    | 2   |
| 400        | 4    | 2           | 0   | 5   | 2    | 2   | 6    | 3      | 1   | 7   | 3        | 3  |    | 8   | 4                | 0   |     | 9   | 4    | 3   |
| 500        | 5    | 2           | 2   | 6   | б    | 1   | 7    | 10     | .0  | 9   | I        | 2  |    | I C | 5                | 1   |     | Į   |      | 3   |
| 600        |      | 3           | 1   | 7   | 10   | 0   | 9    | 4      | 3   | 10  | II       | 2  |    | 12  |                  | ]   |     | [4  | I    | 0   |
| 700        | 7    | 3           | 3   | 9   | I    | 2   | 10   | 11     | 2   | 12  | 9        | 1  |    | 14  | 7<br>8           | I   | •   | i 6 | 5    | E   |
| 800        | 8    |             |     | 10  | 5    | 1   | I 2  | 6      | I   | 14  | 7        | 1  |    | 16  |                  | 1   | . ! | 18  | 9    | I   |
| 900        | 9    | •           |     | II  | 8    | 3   | 14   | Ţ      | 0   | 16  | 5        | ]  |    | 18  | 9                | 1   | I   | I   | I    | 2   |
| 1000       | 1,0  | 5           | I   | 1,3 | 0    | 0   | ;5   | .7     | 2   | 1,8 | 3        | C  | I, | 0   | 10               | 1   | 1   | 3   | 5    | 3   |
| ditto      | 1. ( | 7.52        | 16  | 14  | 0.65 | 2   | ۴. و | .78    | 24  | 4.0 | .91      | 28 | I. | 1.0 | 43:              | 2   | l.  | 1.1 | 736  | 5   |
|            | J    |             |     | I   |      |     | ı    |        |     | ı   |          | 1  | •  |     |                  | - 1 | l   |     |      |     |

The Use of the Tables of Discount foregoing.

Quest. 1. What is the Discount of 1.700 (if paid 137 days before due) at 4 per Cent?

In the 1st Table against 1.700, under 130 days is 1.9:16:7\frac{1}{2}

700 under 7 days (part the 2d,
at the end of the Table)

300:10:3

Sum, or Answer =  $l. 10: 6:10\frac{1}{4}$ 

Quest. 2. What is the Discount of l. 1500 for 57 Days at 5 per Cent?

By the Method in the Margin, the Answer is found

l. 11:12:4½.

I shall give another Example, which takes in all the Varieties of the Use of the Table.

Example 2.] What Discount at 5 per Cent. is to be allowed, to satisfy a Debt of 1. 5000, 91 Days before the same is due?

l. Days. 1000 for  $50 = l.6 : 16 : 0\frac{1}{4}$ 500 — 3: 8: 0\frac{1}{4} 1000 for 7 = 0 : 19 : 2500 — 0: 9: 1\frac{1}{2} l. 11: 12:  $4\frac{1}{4} = Sum$ 

Note, That for 1, 2, 3, 4, 5, 6,7, 8, and 9 Days, from and above 90, &c. to 360; I take those Tabular Mumbers against 1, 2, &c. to 9, at the end of the Table of Discount.

l. Days.

Against 1000 (or ditto) under 90 stands 12.1786

And under 1 (part 2.) = 0.1304

Sum = 12.3090 Which multiply by the Thousands = 5

The Answer or Product = 61.545 = 1.61 : 10 : 11

But had this Question been done by the Tables in Dr Harris's Lexicon, which he says are accurate; it will be found  $l. 2:3:8\frac{1}{2}$  too little. For 91 Days multiplied in l. 5000 gives 455000. And by those Tables you have against 400000 = 52.1853

50000 = 6.5232 5000 = 0.6523

Sum =  $59.3608 = l.59 : 7 : 2\frac{1}{2}$ . E e Which Which taken from my Discount above, is too little by  $l. 2:3:8\frac{1}{2}$  as I have fully proved before the Tables above.

#### III. Of Compound Interest: The Use of Decimals.

I have shewed above, what Compound Interest is, and now proceed to give the Reader the Use of Decimals in computing thereof.

Case 1. To find the Amount of any Sum of Money for any Number of Years, as of 1.650, for 5 Years at 5 per Cent. per Ann. Compound Interest.

Rule.] First find the Amount of 1.1 for 5 Years, and multiply

the 5th Year by 1.650, the Principal given, thus:

Example.] 1st, 100. 105 :: 1. 1.05 = at the end of 1 Year.

2dly, 100. 105 :: 1.05 1 05

3dly, 100. 105:: 1.1025 = of the 2d Year.

4thly, 100. 105:: 1.157625 = of the 3d Year. 105

5thly, 100. 105:: 1.21550625 = the 4th Year.

Answer = 1.2762815625 = 5th Year. 650 multiply.

The Amount of l.650 for 5 Years. — = 829.5830156 = Answer.

Or it will be the same thing to multiply the 3d Number by 1.05

continually; i. e. to multiply the Surfolid of 1.05 by 650.

In this Example you see that every Year requires a Multiplication performed as per Compend. 2. of Multiplication of Decimals, and the last by the 650, as per Compend. 6. whereby 'tis found, that if 1.650 be put out and forborn 5 Years, the Interest of that Principal, and of the Interest accruing, will amount to 1.829:11:8.

Case 2. To find the present Worth of any Sum due any Number of Years hence, as of l. 829: 11:8 (or l. 829.583015625) due at the end of 5 Years. See the Operation at 5 per Cent. Compound Interest, or divide the Number given, &c. by 1.05. continually.

1.05.

```
1.05. 100 :: 829.5, &c.
                  1.05) 82958.3015625 (790.076200595 = 1 Year
                                                           bence.
                         945
                             800
                              65 I
                               210
                                  625
                                  1000
                                    550
                                     25
105) 79007.620059500 (752.453524376
                       Worth 2 Years bence.
      550
       257
        476
         562
           370
            550
             255
              459
               395
                 800
                  650
  3dly, 105. 100:: 752.453524376. 716.622423 = 3 Years bence.
  4tbly, 105. 100:: 716.622423. 682.497164 = present Worth 4
                                                    · (Years hence.
  5thly, 105. 100:: 682.497164. 650. = the present Worth of the
         Sum given, viz. l. 829: 11:8 due at the ead of 5 Years.
  Here you may observe, that the 4th Proportional is always the
3d Number in the Proportion the next stating: And having for
every Year multiplied by 100, and divided by 105, and the pro-
posed Rate of Interest, (directly contrary to what you did in the last
```

Cafe)

Use of Decimals in Compound Interest. CHAP.III.

Case) the 4th Proportional in the 5th Operation is 1.650, which is the present Worth of 1.829: 11:8, due at the end of 5 Years; which proves the Truth of the last Case.

And after the fame manner, had you defired to have found the present Worth of l. 1 due 5 Years hence, the several Years Decrease would be as in the following Table, Column 2. from that of Years.

| Years. | The Amount of 1.1. |           | The Amount of l. 1. An-nuity. | The present<br>Worth of 1.1.<br>Annuity. |
|--------|--------------------|-----------|-------------------------------|------------------------------------------|
| 1      | 1.05               | .95238095 | I:                            | .95238095                                |
| 2      | 1.1025             | .90702947 |                               | 1.85941042                               |
| 3      | 1.157625           | .86383759 | 3.1525                        | 2.72324801                               |
| 4      | 1.21550625         |           |                               | 3.54595048                               |
| 5      | 1.27628156         | .78352616 | 5.52563125                    | 4.32947664                               |

Case 3. To find the Amount of Annuities forborn any Number of Years, you will eafily consider, that at the end of I Year there is 1 Year's Income due without any Interest; for the 2d Year, at the end of that there is 2 Years Income due, and the Interest of 1 Year; at the end of the 3d Year, there is due 3 Years Income; 2 Years Interest of the 1st Year's Income, 1 Year's Interest of the 2d Year's Income, and I Year's Interest of the Interest of the 1st Year's Income, &c.

Thus suppose the Rent 1 l. per Ann. the 3 Years income is l. 3

2 Years Interest of the 1st Years Income = 0.1

1 Years Interest of the 2d Years Income = 0.05

And I Year's Interest of the Interest of the 1st Year's \ = 0.0025

The Sum is the utmost Improvement of this Annuity for 3 Years, viz. — — = 3.1525

Hence it follows, that a Table of the Amount of 1 l. Annuity, as the 3d Column above, is made from the Column of the Amount of l. 1, by making the Tabular Number for the 1st Year 1; for the 2d in the 3d Column the Sum of the 2 first Numbers in the 1st and gd Columns; the 3d Number in the 3d Column is the Sum of the ad Number in the 1st and 3d Columns, &c.

Case 4. To find the present Worth of an Annuity due any Number of Years to come, it must be considered that the present Worth of 1 l. Annuity to continue 1 Year is the same with the present Worth of l. 1 due a Year hence. So that the present Worth of an Annuity to continue 2 Years, is the Sum of the present Worth thereof for 1 Year, and the present Worth of the like Sum with the Annuity to continue 2 Years; and thus the 4th Column in the above Table is made: For

Case 5. To find what Annuity, to continue any Number of Years, any Sum will purchase. Divide a Unit by any of the Numbers which are the present Worth of l. I Annuity for any Years, and the Quotient shews the Annuity that l. I will purchase to continue those Years. Thus if I would know what l. I will purchase per Ann. to continue 5 Years.

As 4.32947664. 1:: 1. .23097480 = Answ. = 4s. 7 d. ½ per Ann.

#### Farther Rules concerning the five Cases above.

1. To enlarge the Numbers tabulated above, and what is under the 5th Case, to any Number of Years, two ways.

2. How to use them for any other Sum, above 1.1.

1. You may augment the first and second Columns by several Operations, as taught above, from 5 Years to 50, &c. and from them may make the third and sourth Columns, and another shewing

what l. 1 will purchase to continue those Years.

Or, Because the Numbers in the 1st Column of Compound Interest are in proportion as 100 to 105, or as 1 to 1.05, therefore that Column is a Series in Geometrical Proportion, whose Ratio is 1.05, so that (as in *Progression*; Sect. 2. Chap. II.) if you have no occasion for the intermediate Numbers, but would know the Amount, present Worth of any Sum or Annuity, &c. for 41 Years; for the Amount of l. 1. multiply the 1.27628156 by itself, and it produceth the Amount for 10 Years; which if you multiply by itself, produceth the Amount for 20 Years; and that multiplied by itself, produceth the Amount for 40 Years. And having done the like with

with the 2d Column (of the present Worth of l. 1) and found the present Worth for 40 Years; you may easily by the Rules under the first and second Case find the Amount or present Worth for one Year more. And having those two for 40 and 41 Years, you may easily from thence calculate the Amount, present Worth, or Purchase of Annuities, as is shewed under the 3d, 4th and 5th Cases.

For Sums of Money or Annuities above l. 1, you have nothing to do but to multiply respectively by such Pounds: Thus for l. 500

5 Years.

If you multiply 1.27628156 by 500 you have the Amount of
(l. 500, 5 Years.
.78352616 by 500, you have the present
(Worth of l. 500 due 5 Years hence.
5.52563125 by 500, you have the Amount
(of l. 500 per Ann. for 5 Years.
4.32947664 by 500, you have the present
Worth of l. 500 per Ann.
to continue 5 Years.
And as in Case 5. .2309748 by 500, you have the Annuity
that l. 500 will purchase
to continue 5 Years.

And the like for any other Sums or Term of Years.

But all these things (if you are without Tables of Interest) are most easily and concisely done by the Logarithms, as appears in that Part of Arithmetic hereaster following.

Compound



#### COMPOUND INTEREST at 3 per Cent.

| ı            | TABLE I.   | TABLE II.  | TABLE III.             | TABLE IV.      |
|--------------|------------|------------|------------------------|----------------|
|              | GT . 1     | The pre-   | The Amount             | The present    |
| 22           | The Amount | sent Worth | of 1. 1 An-            | Worth of l. 1. |
| Years.       | of 1. 1.   | of 1. 1.   | nuity.                 | Annuity.       |
| 1            | 1.03       | .9708738   | a                      | .9708738       |
| 2            | 1.0609     | .9425959   | 2.03                   | 1.9134697      |
| 3            | 1.092727   | .9151417   | <b>3.</b> 09 <b>09</b> | 2.8286114      |
| 4            | 1.1255088  | .8884870   | 4.183627               | 3.7170984      |
|              | 1.1592741  | .8626088   | 5.3091358              | 4.5797072      |
| 5<br>6       | 1.1940523  | .8374843   | 6.4684099              | 5.4171914      |
| 7<br>8       | 1.2298739  | .8130915   | 7.6624622              | 6.2302829      |
| 8            | 1.2667701  | .7894092   | 8.8923360              | 7.0196922      |
| 9            | 1.3047732  | .7664167   | 10.1591061             | 7.7861089      |
| 10           | 1.3439164  | .7440939   | 11.4638793             | 8.5302028      |
| 11           | 1.3842339  | .7224213   | 12.8077957             | 9.2526241      |
| I 2          | 1.4257609  | .7013799   | 14.1920296             | 9.9540040      |
| 113          | 1.4685337  | .6809513   | 15.6177904             | 10.6349553     |
| 14           | 1.5125897  | .6611178   | 17.0863242             | 11.2960731     |
| 15           | 1.5579674  | .6418619   | 18.5989139             | 11.9379351     |
| 16           | 1.6047064  | .6231669   | 20.1568813             | 12.5611020     |
| . <b>3</b> 7 | 1.6528476  | .60501.64  | 21.7615877             | 13.1661185     |
| 18           | 1.7024331  | .5873946   | 23.4144354             | 13.7535131     |
| 19           | 1.7535061  | .5702860   | 25.1168684             | 14.3237991     |
| 20           | 1.8061112  | .5536758   | 26.8703745             | 14.8774748     |
| 21           | 1.8602946  | .5375493   | 28.6764857             | 15.4150241     |
| 22           | 1.9161034  | .5218925   | 30.5367803             | 15.9369166     |
| 23           | 1.9735865  | .5066917   | 32.4528837             | 16.4436084     |
| 24           | 2.0327941  | .4919337   | 34.4264702             | 16.9355421     |
| 25           | 2.0937779  | .4776056   | 36.4592643             | 17.4131477     |
| 26           | 2.1565913  | .4636947   | 38.5530422             | 17.8768420     |
| 27           | 2.2212890  | .4501891   | 40.7096335             | 18.3270315     |
| 28           | 2.2879277  | .4370768   | 42.9309225             | 18.7641082     |
| 29           | 2.3565655  | .4243464   | 45.2188502             | 19.1884546     |
| 30           | 2.4272625  | .4119868   | 47.5754157             | 19.6004413     |
| 31           | 2.5000803  | .3999871   | 50.0026782             | 20.0004285     |

#### Compound Interest at 3 per Cent.

|           | TABLE I.           | TABLE II.        | TABLE III.          | TABLE IV.                   |
|-----------|--------------------|------------------|---------------------|-----------------------------|
|           | Continu'd.         | Continu'd.       | · Continu'd.        | Continu'd.                  |
| •         |                    | The present      |                     | The present                 |
| Years.    | The Amount         | Worth of         | The Amount of       | Worth of 1. 1.              |
| -         | of l. 1.           | l. 1.            | 1. 1. Annuity.      | Annuity.                    |
|           | •                  | •                | ·                   |                             |
| 32        | 2.5750828          | .3883370         | 52.5027585          | 20.3887655                  |
| 33        | 2.6523352          | .3770262         | 55.0778413          | 20.7657918                  |
| 34        | 2.731 <i>9</i> 053 | .3660449         | 57.7301765          | 21.1318367                  |
| 35 .      | 2.8138624          | .3553834         | 60.4620818          | 21.4872200                  |
| .36       | 2.8982783          | .3450324         | 63. <b>2</b> 759443 | 21.8322525                  |
| 37        | 2.9852267          | .3349829         | 66-1742226          | 22.1672354                  |
| 38        | 3.0747835          | .3252262         | 69.1594493          | 22.4924616                  |
| <b>39</b> | 3.1670270          | 3157535          | 72.2342327          | 22.8582151                  |
| 40        | 3.2620378          | .3065568         | 75.4012597          | 23.1147719                  |
| 41        | <b>3.</b> 3598989  | <b>.29</b> 76280 | 78.6632975          | 23.4123999                  |
| 42        | 3.46c6 <i>9</i> 59 | .2889592         | 82.0231 <i>964</i>  | 23.7013592                  |
| 43        | 3.5645168          | .2805429         | 85.4838923          | 23.9819021                  |
| 44        | 3.6714523          | .2723718         | 89.0484191          | 24.2542739                  |
| 45        | 3.7815959          | .2644386         | 92.7198614          | 24.5187125                  |
| 46        | 3.8950437          | .2567365         | 96.5014572          | <b>24.7754</b> 4 <i>9</i> 0 |
| 47        | 4.0118950          | .2492588         | 100.3965009         | 25.0247078                  |
| 48        | 4.1322519          | .2419988         | 104.4083960         | <b>25.2</b> 667c <i>6</i> 6 |
| 49        | 4.2562194          | .2349503         | 108.5406479         | 25.5016569                  |
| 50        | 4.3839060          | .2281071         | 112.7968673         | 25.7297640                  |
| 51        | 4.5154232          | .2214632         | 117.1807733         | 25.9512271                  |
| 52        | 4.6508859          | .21'50128        | 121.6961966         | 26.1662399                  |
| 53        | 4.7904125          | .2087503         | 126.3470825         | 26.3749902                  |
| 54        | 4.9341249          | 2026702          | 131.1374949         | 26.5776040                  |
| 55        | 5.0821486          | .1967672         | 136.0716198         | 26.7744276                  |
| 56        | 5.2346131          | .1910361         | 141.1537684         | 26.9654637                  |
| 57        | 5.3916515          | .1854719         | 146.3883815         | <b>27.1509356</b>           |
| 58        | 5.5534010          | .1800698         | 151.7800329         | 27.3310054                  |
| 59        | 5.7200030          | .1748251         | 157-3334339         | 27.5058305                  |
| .60       | 5.8916031          | .1697331         | 163.0534369         | 27.6755636                  |
| 61        | 6.0683512          | .1647894         | 168.9450400         | 27.8403530                  |
| Ff        |                    |                  |                     |                             |

#### COMPOUND INTEREST at 4 per Cent.

| •                    | Table V.   | TAB. VI.         | TABLE VII.    | TAB. VIII.     |
|----------------------|------------|------------------|---------------|----------------|
|                      | A .        | The present      | م محم         | The present    |
|                      | The Amount | Worth of         | The Amount of | Worth of l. 1. |
| Years.               | of l. 1.   | l. 1.            | l. 1 Annuity. | Annuity.       |
| I.                   | 1.04       | .9615385         | 1.0           | .9615385       |
| 2                    | 1.0816     | .9245562         | 2.04          | 1.8860947      |
| 3                    | 1.124864   | .8889964         | 3.1216        | 2.7750910      |
| 4                    | 1.1698586  | 8548042          | 4.246464      | 3.6298952      |
| 5                    | 1,2166529  | .8219271         | 5.4163226     | 4.4518223      |
| 6                    | 1,2653190  | .7903145         | 6.6329755     | 5.2421369      |
| 7                    | 1.3159318  | .7599178         | 7.8982945     | 6.0020547      |
| <b>7</b><br><b>8</b> | 1,3685691  | ·7306901         | 9.2142263     | 6.7327448      |
| 9                    | 1.4233118  | .7025866         | 10.5827953    | 7.4353314      |
| 10                   | 1.4802443  | ·675564I         | 12.0061071    | 8.1108955      |
| 1.1                  | 1.5394541  | 6495808          | 13.4863514    | 8.7604763      |
| 1.2                  | 1.5010322  | 6245970          | 15.0258055    | 9.3850733      |
| 13                   | 1.6650735  | ·6°05740         | 16.6268377    | 9.9856473      |
| 14                   | 1.7316764  | ·5774750         | 18.2919112    | 10.5631223     |
| 15                   | 1.8009435  | •5552644         | 20.0235876    | 11.1183868     |
| 16                   | 1.8729812  | 533 <i>9</i> 081 | 21.8245311    | 11.6522949     |
| 17                   | 1.9479005  | 9133732          | 23.6975124    | 12.1656680     |
| 18                   | 2.0258165  | ·493628I         | 25.6454129    | 12.6592961     |
| 19                   | 2.1068492  | .4746424         | 27.6712294    | 13.1339385     |
| 20                   | 2.1911231  | 4563869          | 29.7780786    | 13.5903253     |
| 21                   | 2.2787681  | 4388335          | 31.9592017    | 14.0291589     |
| 22                   | 2.3699188  | 4219553          | 34.2479698    | 14.4511142     |
| 2.3                  | 2.4647155  | 4057263          | 36.6178886    | 14.8568405     |
| 24                   | 2.5633042  | 3901214          | 39.0826041    | 15.2469619     |
| 25                   | 2.6658363  | 3751168          | 41.6459083    | 15.6220787     |
| 26                   | 2.7724698  | -3606892         | 44.3117446    | 15.9827678     |
| 27                   | 2.8833686  | -3468165         | 47.0842144    | 16.3295844     |
| 28                   | 2.9987033  | 3334774          | 49.9675830    | 16.6630618     |
| 29                   | 3.1186515  | -3206514         | 52.9662863    | 16.9837132     |
| 30                   | 3.2433975  | .3083186         | 56.0849377    | 17.2920318     |
| ğΙ                   | 3.3731334  | .2964602         | 59.3283352    | 17.5884921     |

### COMPOUND INTEREST at 4 per Cent.

| 3            | TARLE V.           | TABLE VI.   | TABLE VII.          | TABLE VIII.                            |
|--------------|--------------------|-------------|---------------------|----------------------------------------|
|              | Continu'd.         | Continu'd.  | Continu'd.          | Continu'd.                             |
| -            |                    | The present |                     | The present                            |
| Years.       | The Amount         | Worth of    | The Amount of       | Worth of 1. 1.                         |
| 200.00       | of 1. 1.           | l. 1.       | l. 1. Annuity.      | Annuity.                               |
|              | <b>y</b>           |             |                     | •                                      |
| 32           | 3.5080587          | .2850579    | 62.7014687          | 17.8735500                             |
| 93           | 3.648381 I         | .2740941    | 66.2095274          | 18.1476441                             |
| 34           | 3.7943163          | .2635521    | 69.8579045          | 18.4111962                             |
| 35           | 3.9460890          | .2534154    | 73.6522248          | 18.6646116                             |
| 36           | 4.1039326          | .2436687    | 77.5983138          | 18 <b>.9</b> 082803                    |
| 37           | 4.2680899          | .2342968    | 8.1.7022454         | 19.1425771                             |
| 38           | 4.4388134          | .2252854    | 85 <b>-9</b> 703362 | 19:3678625                             |
| 39           | 4.6163660          | ,2166206    | 90.4091497          | 19.5844831                             |
| 40           | 4.8010206          | .2082890    | 95.0255157          | <b>1</b> 9.7 <b>9</b> 2 <b>7</b> 721 · |
| 41           | 4.9930615          | .2002779    | 99.8265363          | 19.9930500                             |
| 42           | 5·1 <i>9</i> 27839 | .1925749    | 104.8195978         | 20.1856250                             |
| 43           | 5.4004953          | .1851682    | 110.0123817         | 20.3707931                             |
| 44           | 5.6165151          | .1780463    | 115.4128769         | <b>2</b> 0.54883 <i>95</i>             |
| 45           | 5.8411757          | .1711984    | 121.0293920         | 20.7200378                             |
| 46           | 6.0748227          | .1646138    | 126-8705677         | 20.8846517                             |
| 47           | 6.3178156          | .1582825    | 132.9453904         | 21.0429342                             |
| 48           | 6.5705282          | .1521947    | 139.2632060         | 21.1951289                             |
| 49           | 6.8333494          | .1463411    | 145.8337342         | 21.3414700 .                           |
| 50           | 7.1066833          | 1407126     | 152.6670836         | 21.4821826                             |
| 51           | 7.3909507          | 1353006     | 159.7737670         | 21.6174832                             |
| 52           | 7.6865887          | .1300967    | 167.1647176         | 21.7475800                             |
| · <b>5</b> 3 | 7.9940522          | .1250930    | 174.8513063         | 21.8726729                             |
| 54           | 8.3138143          | 1202817     | 182.8453586         | 21.9929546                             |
| 55           | 8.6463669          | .1156555    | 191.1591729         | 22.1086100                             |
| 56           | 8.9922216          | 1112072     | 199.8055398         | 22.2198172                             |
| 57           | 9.3519105          | .1069300    | 208.7977614         | 22.3267472                             |
| 58           | 9.7259869          | .1028173    | 218-1496719         | 22.4295645                             |
| 59           | 10-1150263         | .0988628    | 227.8756588         | 22.5284273                             |
| 60           | 19-5196274         | .0950604    | 237.9906851         | 22.6234877                             |
| 6 i          | 10.9404125         | .0914042    | 248.5103125         | 22.7148919                             |
|              |                    | F           | f 2                 |                                        |

### COMPOUND INTEREST at 5 per Cent.

|             | TABLEIX.            | TAB. X.           | TABLE XI.              | TAB. XII.      |
|-------------|---------------------|-------------------|------------------------|----------------|
|             |                     | The present       |                        | . The present  |
|             | The Amount          | Worth of          | The Amount of          | Worth of l. I. |
| Years.      | of l. I.            | l. 1.             | 1. 1. Annuity.         | Annuity.       |
| 1           | 1.05                | .952380 <i>9</i>  | 1.0                    | .9523809       |
| 2           | 1.1025              | .9070294          | 2.05                   | 1.8594103      |
| 3           | 1.157625            | .8638376          | 3.1525                 | 2.7232480      |
| 4           | 1.2155063           | .8227025          | 4.310125               | 3.5459505      |
| 5.          | 1.2762816           | .7835262          | 5.5256312              | 4.3294767      |
| 6           | 1.3400956           | .7462154          | 6.8019128              | 5.0756921      |
| 7           | 1.4071064           | .7106813          | 8.1420084              | 5.7863734      |
| 8           | 1.4774554           | .6768394          | 9.5491089              | 6.4632128      |
| 9           | 1.5513282           | -6446089          | 11.0265643             | 7.1078217      |
| 10          | 1.6288946           | .6139133          | 12.5778925             | 7.7217349      |
| FI          | 1.7103393           | • 5846929         | 14.2067871             | 8.3064142      |
| 12          | 1.7958563           | .5568374          | 15.9171265             | 8.8632516      |
| 13          | 1.8856491           | •5303213          | 17.7129828             | 9.3935730      |
| 14          | 1.9799316           | ·5050680          | 19.5986920             | 9.8986409      |
| 15          | 2.0789282           | ·4810171          | 21.5785636             | 10.3796580     |
| 16          | 2.1828746           | -4581115          | <sup>2</sup> 3·6574918 | 10.8377695     |
| 17          | 2.2920183           | ·4362967          | 25.8403664             | 11.2740662     |
| 18          | 2.4066192           | 4155207           | 28.1323847             | 11.6895869     |
| 19          | 2.5269502           | ·39 <b>5</b> 7340 | 30.5390039             | 12.0853208     |
| 20          | 2.6532977           | ·3768895          | 33.0659541             | 12.4622103     |
| 21          | 2.785 <i>9</i> 626  | -3589424          | 35.7192518             | 12.8211527     |
| 22          | 2.9252607           | ·34184 <i>99</i>  | 38.5052144             | 13.1630026     |
| 23          | 3.0715238           | ·3255713          | 41.4304751 .           | 13.4885739     |
| 24          | 3.2251000           | ·3100679          | 44.5019989             | 13.7986418     |
| 25          | 3.3863549           | ·2953028          | 47.7270988             | 14.0939445     |
| 26          | 3.5556727           | ·2812407          | 51.1134537             | 14.3751853     |
| 27          | 3.7334563           | • <b>267</b> 8483 | 54.6691264             | 14.6430336     |
| · 28        | 3.92012 <i>9</i> 1  | .2550936          | 58.4025827             | 14.8981272     |
| · 29        | 4.1161356           | -2429463          | 62.3227119             | 15.1410735     |
| 30          | 4.3219424           | .2313774          | 66.4388474             | 15.3724510     |
| <b>3.</b> I | 4.538039 <b>5</b> . | .2203595          | 70.7607898             | 15.5928104     |

#### COMPOUND INTEREST at 5 per Cent.

|              | TABLE IX.   | TABLE X.          | TABLE XI.            | TAB. XII.      |
|--------------|-------------|-------------------|----------------------|----------------|
| •            | Continu'd.  | Continu'd.        | Continu'd.           | Continu'd.     |
|              | 1           | The present       | 1                    | The present    |
| Years.       | The Amount  | Worth of          | The Amount of        | Worth of 1. 1. |
| -            | of 1. 1.    | l. 1.             | 1. 1. Annuity.       | Annuity.       |
|              | 1           |                   | 1                    |                |
| 32           | 4.7649415   | -2098562          | 75.2988293           | 15.8026766     |
| 33           | 5.0031885   | .1998725          | 80.0637708           | 16.0025491     |
| 34           | 5.2533480   | 1903548           | 85.0669593           | 16.1929039     |
| 35           | 5.5160154   | .1812903          | 90.3203073           | 16.3741942     |
| 36           | 5.7918161   | -1726574          | 95.8363226           | 16.5468516     |
| 37           | 6.0814069   | .1644356          | 101.6281387          | 16.7112872     |
| 38           | 6.3854773   | 1566054           | 107.7095457          | 16.8678926     |
| 3 <i>9</i>   | 6.7047511   | 1491480           | 114.0950229          | 17.0170406     |
| 40           | 7.0399887   | .1420457          | 120.7997741          | 17.1590862     |
| 41           | 7.3919881   | ·1352816          | 127.8397628          | 17.2943678     |
| 42           | 7.7615875   | ·1288396          | 135.2317509          | 17.4232074     |
| 43           | · 8.1496669 | ·1227044          | 142.9933385          | 17.5459118     |
| 44           | 8.5571503   | ·1168613          | 151-1430054          | 17.6627732     |
| 45 ·         | 8.9850078   | ·1112 <i>9</i> 65 | 159.7001556          | 17.7740697     |
| <b>4</b> 6   | 9.4342582   | 1059967           | 168.6851634          | 17.8800663     |
| 47           | 9.9059711   | 1009492           | 178.1194216          | 17.9810155     |
| 48           | 10.4012696  | .0961421          | 188.0253927          | 18.0771576     |
| 49           | 10.9213331  | .0915639          | 198.4266623          | 18,1687215     |
| 50           | 11.4674000  | .0872037          | 209.3479954          | 18.2559253     |
| 51           | 12.0407698  | .0830512          | 220.8153952          | 18.3389764     |
| 52           | 12.6428082  | .0790963          | 232.8561649          | 18.4180728     |
| <b>5</b> 3   | 13.2749486  | .0753298          | 245·498 <i>9</i> 731 | 18.4934026     |
| <b>54</b> .  | 13.9386961  | .0717427          | 258.7739218          | 18.5651453     |
| 55           | 14.6356309  | .c683264          | 272.7126179          | 18.6334720     |
| 5,6          | 15.3674124  | .0650727          | 287·3482488          | 18.6985444     |
| 57           | 16.1357831  | .0619740          | 302.7156612          | 18.7605185     |
| 58           | 16.9425722  | .0590229          | 318-8514442          | 18.8195414     |
| 59           | 17.7897008  | .0562123          | 335.7940164          | 18.8757536     |
| 60           | 18.6791858  | .0535355          | 353.5837172          | 18.9292882     |
| . <b>6</b> I | 19.6131451  | .0509862          | 372.2629031          | 18.9802743     |

# COMPOUND INTEREST at 6 per Cent.

|        | TAB.XIII.                          | TAB. XIV.                  | TABLE XV.       | TABLEXVI.          |
|--------|------------------------------------|----------------------------|-----------------|--------------------|
|        |                                    | The present                |                 | The present        |
|        | The Amount                         | Worth of                   | . The Amount of | Worth of l. 1.     |
| Years. | of l. 1.                           | l. 1.                      | l. 1. Annuity.  | Annuity.           |
|        |                                    | • .                        |                 | •                  |
| 1      | 1.06                               | .9433962                   | 1.0             | .9433962           |
| 2      | 1.1236                             | .8899 <b>9</b> 64          | <b>2.</b> 06 ·  | 1.8333926          |
| . 3    | 1.191016                           | .8396193                   | 3.1836          | 2.6730119          |
| 4      | 1.2624769                          | .7920937                   | 4.3746016       | 3.46 <b>5</b> 1056 |
| 5      | 1.3382256                          | .7472582                   | 5.6370930       | 4.2123638          |
| 6      | 1.4185191                          | .7049605                   | 6,9753187       | 4.9173244          |
| 7      | 1.5036303                          | .6650571                   | 8.3938378       | 5.5823815          |
| 8      | 1.5938481                          | .6274124                   | 9.8974681       | 6.2c97939          |
| و      | 1.6894790                          | .5918985                   | 11.4913162      | 6.8016923          |
| 10     | 1.7908477                          | .5 <b>5</b> 83 <i>9</i> 48 | 13.1807958      | 7.3600871          |
| 11     | 1.8982980                          | .526787 <b>5</b>           | 14.9716435      | 7.8868747          |
| 12     | 2.0121965                          | .4969694                   | 16.8699420      | 8-3838440          |
| 13     | 2.1329283                          | 4688390                    | 18.8821385      | 8.8526831          |
| 14     | 2.2609039                          | 4423010                    | 21:0150667      | 9.2949840          |
| 15     | 2.3965582                          | ·4172651                   | 23.2759707      | 9-7122491          |
| 16     | 2.5402517                          | .3936463                   | 25:6725189      | 10-1058953         |
| 17     | 2.6927728                          | .3713644                   | 28:2128806      | 10.4772597         |
| 18     | 2.8543 <i>39</i> 2                 | .3503438                   | 30:9056534      | 10.8276035         |
| . 19   | 3.0255995                          | <b>•3305130</b>            | 33.7599925      | 11.1581165         |
| 20     | 3.2071355                          | -3118047                   | 36.7855920      | 11.4699213         |
| 21     | 3.3 <i>99</i> <b>5</b> 63 <b>6</b> | .2941554                   | 39.9927275      | 11.7640767         |
| 22     | 3.6035374                          | .2775051                   | 43-3922911      | 12.0415818         |
| 23     | 3.81 <i>9</i> 7497                 | <b>,2</b> 61 <b>79</b> 73  | 46.9958285      | 12.3033790         |
| 24     | 4.0489346                          | ·246 <i>9</i> 786          | 50.8155782      | 12.5503576         |
| 25     | 4.2918707                          | •2329986                   | 54.8645128      | 12.7833562         |
| 26     | 4.5493829                          | .2198100                   | 59-1563835      | 13.0031663         |
| 27     | 4.8223459                          | -2073 <b>6</b> 80          | 63.7057664      | 13.2105342         |
| 28     | 5.1116866                          | .1956301                   | 68.5281123      | 13.4061644         |
| 29     | <b>5.4</b> 183878                  | 1845567                    | 73.6397990      | 13.5907211         |
| 30     | 6.7434911                          | .1741101                   | 79.0581868      | 13.7648312         |
| žI     | 6.0881006                          | .1642548                   | 84.8016779      | 13.9790861         |

# COMPOUND INTEREST at 6 per Cent.

|           | TAB. XIII. | TAB. XIV.                    | TAB. XV.                 | [ TAB. XVI.    |
|-----------|------------|------------------------------|--------------------------|----------------|
|           | Continu'd. | Continu'd.                   | Continu'd.               | Continu'd.     |
|           |            | The present                  |                          | The present    |
| Years.    | The Amount | . Worth of                   | The Amount of            | Worth of 1. 1. |
| •         | of 1. 1.   | l. 1.                        | l. 1. Annuity.           | Annuity.       |
|           | 1          | 1                            | 1                        | 1 .            |
| 32        | 6.4533866  | .1549574                     | 90.8897785               | 14.0840435     |
| 33        | 6.8405898  | 1461862                      | 97.3431652               | 14.2302297     |
| 34        | 7.2510252  | .1379115                     | 104.1837550              | 14.3681412     |
| 35        | 7.6860867  | .1301052                     | 111.4347802              | 14.4982465     |
| 36        | 8.1472519  | .1227407                     | 119.1208669              | 14.6209872     |
| 37        | 8.6360870  | .1157932                     | 127.2681188.             | 14.7367804     |
| 38        | 9.1542523  | 1092388                      | 135.9042059              | 14.8460192     |
| 39        | 9.7035074  | 1030555                      | 145.0584581              | 14.9490747     |
| 40        | 10.2857178 | 10972222                     | 154.7619655              | 15.0462969     |
| 41        | 10.9028609 | .0917190                     | 165.0476833              | 15.1380160     |
| 42        | 11.5570326 | .0865274                     | 175.9505442              | 15.2245434     |
| 43        | 12.2504545 | ·0816296                     | 187.5075769              | 15.3061730     |
| 44        | 12.9854818 | ·0770091                     | 199.7580314              | 15.3831821     |
| 45        | 13.7646107 | 0726500                      | 212.7435132              | 15.4558321     |
| 46        | 14.5904873 | 0685378                      | 226.5081239              | 15.5243699     |
| . 47      | 15.4659166 | .0646583                     | 241.0986112              | 15.5890282     |
| <b>48</b> | 16.3938716 | ·0609984                     | 256.5645278              | 15.6500266     |
| 49        | 173775039  | • <b>95754<del>5</del>7.</b> | 272.9583994              | 15.7075723     |
| 50        | 18.4201541 | .0542884                     | 290.3359032              | 15.7618610     |
| 51        | 19.5253634 | .0512154                     | 308.7560573              | 15.8130761     |
| 52        | 26.6968852 | .0483164                     | 328.2814207              | 15.8613925     |
| 53        | 21.9386983 | .0455816                     | 348.97 <del>8</del> 3059 | 15.9069741     |
| 54        | 23.2550202 | .0430015                     | 370.9170041              | 15.9499760     |
| 55        | 24.6503214 | .0405674                     | 394-1720243              | 15.9905430     |
| 56        | 26.1293406 | .0382712                     | 418.8223+56              | 16.0288141     |
| 57        | 27.6971011 | .0361049                     | 444.9516863              | 16.0649190     |
| 58        | 29.3589272 | .0340612                     | 472.6487874              | 16.0989802     |
| 59        | 31.1204628 | .0321332                     | 502.0077145              | 16.1311134     |
| 60        | 32.9876905 | .0303143                     | 533.1281773              | 16.1614277     |
| 61        | 34.9669520 | .0285984                     | 566.1158679              | 16.1900261     |

# COMPOUND INTEREST at 8 per Cent.

| . 1    | Tab. XVII.        | TAB.XVIII. The present        | TABLE XIX.     | Table XX. The present |
|--------|-------------------|-------------------------------|----------------|-----------------------|
|        | The Amount        | Worth of                      | The Amount of  | Worth of l. 1.        |
| Years. | of ]. 1.          | l. 1.                         | l. 1. Annuity. | Annuity.              |
| I      | 1.08              | .9259159                      | 1.0            | .9259259              |
| 2      | 1.1664            | -8573388                      | 2.08           | 1.7832648             |
| 3      | 1.259712          | 7938224                       | 3.2464         | 2.5770979             |
| 4      | 1.3604890         | 7350299                       | 4.506112       | 3.3121268             |
| 5      | 1.4693281         | .6805832                      | 5.866010       | 3.9927100             |
| 6      | 1.5868743         | .6301696                      | 7.3359290      | 4.6228797             |
| 7      | 1.7138243         | .5834904                      | 8.9228034      | 5.2063701             |
| 8      | 1.8509302         | .5402689                      | 10.6366276     | 5.7466389             |
| 9      | 1.9990046         | .5002490                      | 12.4875579     | 6.2468879             |
| 10     | 2.1589250         | .4631935                      | 14.4865626     | 6.7100814             |
| 11     | 2.3316390         | .4288829                      | 16.6454876     | 7.1389643             |
| 12     | 2.5181701         | .3971138                      | 18.9771266     | 7·5360780             |
| 13     | 2.7196237         | ·3676 <i>9</i> 79             | 21.4952967     | 7.9037759             |
| 14     | 2.9371936         | .3404610                      | 24.2149204     | 8-2442370             |
| K      | <b>3.</b> 172169! | .3152417                      | 27.1521140     | 8.5594790             |
| 16     | 3.4259426         | .2918905                      | 30.3242831     | 8.8513691             |
| 17     | 3.7000181         | .270 <del>2</del> 68 <i>9</i> | 33.7502258     | 9.1216381             |
| .18    | 3.99601.95        | .2502490                      | 37.4502438     | <i>9</i> .3718871     |
| 19     | 4.3157011         | .2317,121                     | 41.4462633     | <i>. 9</i> .6035992   |
| 20     | 4.6609571         | .2145482                      | 45.7619644     | 9.8181474             |
| 21     | 5.0338337         | .1986557                      | 50.4229215     | 10.0168031            |
| 22     | 5.4365404         | .1839405                      | 55.4567552     | 10.2007436            |
| 23     | 5.8714636         | .1703153                      | 60.8932956     | 10.3710589            |
| 24     | 6.3411807         | .1576993                      | 66.7647593     | 10.5287582            |
| 25     | 6.8484752         | .1460179                      | 73.1059400     | 10.6747761            |
| 26     | 7.3963532         | .1352018                      | 79.9544152     | 10.8099779            |
| 27     | 7.9880615         | .1251868                      | 87.3507684     | 10.9351647            |
| 28     | 8.6271064         | .1159137                      | 95.3388299     | 11.0510784            |
| 29     | 9.3172749         | .1073275                      | 103.9659363    | 11.1584059            |
| 30     | 10.0626569        | .0993773                      | 113.2832112    | 11.2577833            |
| . 31   | 10.8676694        | JO920160                      | 123.3458680    | 11.3497993            |

# COMPOUND INTEREST at 8 per Cent.

|            | I TAB. XVII. | TAB. XVIII        | TAB. XIX.          | TAB. XX.       |
|------------|--------------|-------------------|--------------------|----------------|
|            | Continu'd.   | Continu'd.        | Continu'd.         | Continu'd.     |
|            |              | The present       | •                  | The present    |
| Years.     | The Amount   | Worth of          | The Amount of      | Worth of 1. 1. |
|            | of 1. 1.     | l. 1.             | 1. 1. Annuity.     | Annuity.       |
|            | 1            |                   |                    |                |
| 32         | 11.7370830   | .0852000          | 134.2135375        | 11.4349993     |
| 33         | 12.6760496   | 0788889           | 145.9506205        | 11.5138883     |
| . 34       | 13.6901336   | .0730453          | 158.6266701        | 11.5869336     |
| 35         | 14.7853443   | .0676345          | 172.3168037        | 11.6545681     |
| 36         | 15.9681718   | .0626246          | 187.1021480        | 11.7171927     |
| 37         | 17.2456255   | .0579857          | 203.0703198        | 11.7751784     |
| 38         | 18.6252756   | 0536905           | 220.3159454        | 11.8288689     |
| 3 <i>9</i> | 20.1152976   | .0497134          | 238.9412209        | 11.8785823     |
| 40         | 21.7245214   | .0460309          | 259.0565186        | 11.9246132     |
| 41         | 23.4624832   | .0426212          | 280.7810400        | 11.9672344     |
| 42         | 25.3394818   | ·03 <i>9</i> 4641 | 304.2435232        | 12.0066985     |
| 43         | 27.3666404   | ·0365408          | <b>329.5830050</b> | 12.0432394     |
| 44         | 29.5559716   | •0338341          | 356.9496454        | 12.0770735     |
| 45         | 31.9204493   | .0313279          | 386.5056169        | 12. 084014     |
| 46         | 34.4740853   | •0290073          | 418.4260663        | 12.1374087     |
| 47         | 37.2320121   | .0268586          | 452.9001515        | 12.1642673     |
| 48         | 40.2105730   | ·0248691          | 490.1321636        | 12.1891363     |
| 49         | 43.4274189   | <b>.0</b> 230269  | 530.3427367        | 12.2121633     |
| 50         | 46.9016124   | .0213212          | 573.7701556        | 12.2334845     |
| 51         | 50.6537414   | .0197419          | 620.6717680        | 12.2532264     |
| 52         | 54.7060407   | .0182795          | 671.3255094        | 12.2715059     |
| 53         | 59.0825240   | .0169255          | 726.0315501        | 12.2884314     |
| 54         | 63 8091259   | .0156717          | 785.1140741        | 12.3041031     |
| 55         | 68.9138560   | .0145109          | 848.9232000        | 12.3186140     |
| 56         | 74.4269644   | .0134360          | 917.8370559        | 12.3320500     |
| 57         | 80.3811216   | .0124408          | 992.2640203        | 12.3444908     |
| 58         | 86.8116113   |                   | 1072.6451419       | 12.3560100     |
| 59         | 93.7565402   |                   | (159.4567532       | 12.3666760     |
|            | 101.2570634  |                   | 1253.2132934       | 12.3765518     |
| 6I         | 109.3576285  | .0091443          | 1354.4703569       | 12.3856962     |
|            |              | Gσ                |                    |                |

# COMPOUND INTEREST at 10 per Cent.

|             | TAB. XXI.          | TAB.XXII.         | TAB. XXIII.    | TAB. XXIV.               |
|-------------|--------------------|-------------------|----------------|--------------------------|
|             |                    | The present       | Z AD, ALZEIII. |                          |
|             | The Amount         | Worth of          | The Amount of  | The present              |
| Years.      | of 1. 1.           | l. 1.             | l. I Annuity.  | Worth of 1. 1.  Annuity. |
|             | 9 1. 1.            | 1. 1.             | 1. 1 24nnauy.  | Annuny.                  |
| ī           | 1.1                | .9090909          | ı.             | .9090 <b>909</b>         |
| 2           | 1.21               | .8264463          | 2.1            | 1.7355372                |
| . 3         | 1.331              | .7513148          | 3.31           | 2.4868520                |
| 4           | 1.4641             | ·6830135          | 4.641          | 3.1698654                |
| 5           | 1.61051            | .6209213          | 6.1051         | 3.7907868                |
| 6           | 1.771561           | .5644739          | 7.71561        | 4.3552607                |
| 7           | 1.9487171          | .5131581          | 9.487171       | 4.8684188                |
| 8           | 2.1435888          | 4665074           | 11.4358881     | 5.3349262                |
| 9           | 2.3579477          | .4240976          | 13.5794769     | 5.7590238                |
| 10          | 2.5937425          | -3855433          | 15.9374246     | 6.1445671                |
| 11          | 2.8531167          | .3504939          | 18.5311671     | 6.4950610                |
| 12          | 3.1384294          | •3186308          | 21.3842838     | 6.8136918                |
| 13          | 3.4522712          | .2896644          | 24.5227121     | 7.1033562                |
| 14          | 3.7974 <i>9</i> 83 | .2633313          | 27.9749834     | 7.3666875                |
| 15          | 4.1772482          | .2393920          | 31.7724817     | 7.6060795                |
| 16          | 4.5949730          | .2176291          | 35.9497299     | 7.8237086                |
| 17          | 5.0544703          | .1978446          | 40.5447028     | 8.0215533                |
| 18          | 5.5599173          | .1798588          | 45.5991731     | 8.2014121                |
| 19          | 6.1159090          | .1635080          | 51.1590904     | 8.3649201                |
| 20          | 6.7274999          | .1486436          | 57-2749995     | 8.5135637                |
| 21          | 7.4002499          | .1351306          | 64.0024994     | 8.6486943                |
| 22          | 8.1402749          | .1228460          | 71.4027494     | 8.7715403                |
| 23          | 8.9543024          | 1116782           | 79.5430243     | 8.8832184                |
| ` 24        | 9.8497327          | 1015256           | 88-4973268     | 8.9847440                |
| 25          | 10.8347059         | 0922960           | 98.3470594     | 9.0770400                |
| 26          | 11.9181765         | -083 <i>9</i> 055 | 109.1817654    | 9.1609455                |
| 27          | 13.1099942         | .0762777          | 121.0999419    | 9.2372232                |
| 28          | 14.4209936         | .0693433          | 134-2099361    | 9.3065665                |
| 29          | 15.8630930         | .0636394          | 148.6409297    | 9.3696059                |
| 30          | 17-4494023         | .0573086          | 164.4940227    | 9.4269145                |
| <b>i3</b> I | 19.1943425         | .0520987          | 181.9434250    | 9.4790132                |

# COMPOUND INTEREST at 10 per Cent.

|       | TABLE XXI.                          | TABXXII.                  | TAB. XXIII.            | TAB. XXIV.                         |
|-------|-------------------------------------|---------------------------|------------------------|------------------------------------|
|       | Continu'd.                          | Continu'd.                | Continu'd.             | Continu'd                          |
|       |                                     | The present               |                        | The present                        |
| Years | The Amount                          | Worth of                  | The Amount of          | Worlb of 1. 1.                     |
|       | of 1. 1.                            | l. 1.                     | 1. 1. Annuity.         | Annuity.                           |
|       | 1                                   |                           |                        |                                    |
| 32    | 21.1137767                          | .0473624                  | 201.1377674            | 9.5263756                          |
| 33    | 23.2251544                          | .0430568                  | 222.2515442            | 9.5694324                          |
| 34~   | 25.5476699                          | .0391425                  | 245.4766986            | 9.6085749                          |
| 35    | 28.1024368                          | .0355841                  | 271.0243685            | 9.6441590                          |
| 36    | 30.9126805                          | ,0323492                  | 299.1268053            | . 9.6765082                        |
| 37    | 34.0039486                          | .02 <i>9</i> 4083         | 330.0 <i>39</i> 4858   | 9.7059165                          |
| 38    | 37.4043434                          | ·0 <b>26</b> 734 <i>9</i> | 364.0434344            | 9.7326514                          |
| 39    | 41.1447778                          | .0243044                  | 401.4477779            | 9.7569558                          |
| 40    | 45.2592556                          | .0220949                  | 442.5925557            | 9.7790507                          |
| 41    | 49.7851811                          | .0200863                  | 487.8518112            | 9.7991370                          |
| 42    | <del>54</del> .7636 <del>9</del> 92 | 0182603                   | 537.6369924            | 9.8 <del>1</del> 73973             |
| 43    | 60.2400692                          | .0166002                  | 592.4006916            | <i>9</i> .833 <i>99</i> 7 <i>5</i> |
| 44    | 66.2640761                          | ·0150911                  | 652.6407608            | 9.8490887                          |
| 45    | 72.8904837                          | .0137192                  | 718.9048368            | 9.8628079                          |
| 46    | 80-1795321                          | 0124720                   | 791.7953205            | 9 8752799                          |
| 47    | 88-1 <i>9</i> 74853                 | .0113382                  | 871.9748526            | 9.8866181                          |
| 48    | 97.0172338                          | •0103074                  | 960.1723378            | 9.8969255                          |
| 49    | 106.7189572                         | .0093704                  | 1057.1895716           | 9.9062959                          |
| 50    | 117.3908529                         | .0085186                  | 1163.9085288           | 9.9148145                          |
| 51    | 129.1299382                         | .0077441                  | 1281.2993810           | 9.9225586                          |
| 52    | 142.0429320                         | .0070401                  | 14104293198            | 9.9295987                          |
| 53    | 156.2472252                         | .0064001                  | 1552.4722518           | 9.9359989                          |
| 54    | 171.8719477                         | .0058183                  | 1708.7194769           | 9.9418171                          |
| 55    | 189.0591425                         | .0052893                  | 1880.5914247           | 9.947106 <b>5</b>                  |
| 56    | 207.9650567                         | .0048085 .                | 2069.6505671           | 9.9519150                          |
| 57    | 228.7615624                         | .0043714                  | 2277.6156238           | <i>9</i> .9562864                  |
| 58    | 251.6377186                         | 0039740                   | 2506.3771862           | 9.9602603                          |
| 59    | 276.8014905                         | .0036127                  | 2758.0149048           | 9.9638730                          |
| 60    | 304.4816395                         | .0032843                  | 3034-8163953           | 9.9671573                          |
| δI    | 334.9298035                         | .0029857                  | :333 <b>9.29</b> 80349 | <i>9.9</i> 701430                  |
|       |                                     | Gg 2                      |                        |                                    |

## Use of the Tables of Comp. Interest. CHAP. III.

I have designed these Rates thus: The Columns of 3, 4 or 5 per Cent. for Incomes of Lands, &c. that are certain; That Table at 6 per Cent. for Houses new or in good Repair, Brick; That of 8 per Cent. for the Purchase, &c. of Houses that are pretty old; That of 10 per Cent. for very old Houses, or not in very good Repair. And they may be used as every one's Discretion directs, according to the foregoing Rules. And as to this Table of Lives, if the Years Purchase be multiplied by the Annuity, the Product shews the Value of such Estate for such Life. Examples follow.

|      | The Value          | of a Life | at the several     | Ages the  | reof.              |
|------|--------------------|-----------|--------------------|-----------|--------------------|
| Age. | Years<br>Purchase. | Age.      | Years<br>Purchase. | Age.      | Years<br>Purchase. |
| 1    | 10.28              | 25        | 12.27              | 50        | 9.21               |
| 5    | 13.4               | 30        | 11.72              | <b>55</b> | 8.51               |
| 10   | 13.44              | 35        | 11,12              | .60       | 7.60               |
| 15   | 13.33              | 40        | 10,57              | 65        | 6.54               |
| 20   | 12.78              | 45        | 9.91               | 70        | 5.32               |

#### The Use of these Tables of Compound Interest.

Prop. 1.] To find the Amount of any Sum of Money for any Number of Years. This is done by the first Column towards the left hand; so the Amount of 1. 50 in 50 Years

Compound Interest allow'd at 5 per Cent. is 1.573:7:5; found by multiplying the Tabular Number against 50 Years by 1.50 thus.

Prop. 2.] An Office is worth 1. 500: What may be paid in present Money to enter upon it 15 Years hence? This is done by the 2d Column at 5 per Cent. by multiplying the present Worth of 1. 1. due 15 Years hence by 500, as in the Margin, where the Answer is 1. 240: 10: 2.

Prop. 3.] Annuity of 70 l. per Ann. is forborn 33 Years, what is the Improvement, Compound Interest

11.4674091 50 1. 573.3704550 .4810171 500 1. 240.5085500

Compound Interest being

being allow'd the Owner at 5 per Cent? By multiplying the Amount of l. 1 per Ann. in 33 Years by the Annuity l. 70, you have the Answer l. 5604:9:4 $\frac{1}{2}$ .

Years.
1. 1. per Ann. 33=80.0638328
70
1. 5604.4682960

Prop. 4.] There are 13 Years to come in the Lease of an House that is pretty old, but in good Repair, and is 1. 50 per Ann. clear; what is a farther Lease for 31 Years worth in present Money, at the Rate of 8 per Cent?

I add the 31 Years Reversion to the 13 in effe makes 44.

The present Worth of l. 1 due 44 Years hence, is 12.0770735; from which deduct the present Worth for 13 Years, and the Rest is multiplied by 50 for Answer: All by the Table of 8 per Cent.

l. 1 per Ann. 44 = l. 12.0770735 l. 1 — 13 = l. 7.9037759 Refts = l. 4.1732976 50 Answ. l. 208.66488

And if you multiply any of the Numbers in the 4th Column (according as the Estate is in Land or Houses, as abovesaid) by the Annuity you would know the present Worth of, the Product shews the present Value of such Annuity for any Years required under 62.

#### To find the Present Worth of Estates for Lives.

Prop. 5.] To find the Value of an Estate of l. 35 per Ann. in Land for a Life of 45 Years. By the little Table above, as computed by the Learned Dr Halley, that Life is Years Purchase—9.91 Which being multiplied by the Annuity 35, the

Product is l. 346: 17: 00 = the Answer.

Prop. 6.] It many times happens, that a Life Prod. 1-346.85 and so many Years certain to come, are proposed in the same Question; therefore it becomes necessary, as in Computations for two Lives also, to reduce the Years Purchase of any Life into Years certain to come, or Years in a Lease: which is done thus.

I find a Life of 50 worth 9.21 Years Purchase. Now if you turn to any of the four Columns in the Tables above, which shew the present Worth of Annuities according to the several Rates, you will find at 5 per Cent. the next to the said 9.21 is 9.393573, against which in the Column under Years is 13 Years to come. At 6 per Cent. the next to 9.21 is 9.294984, against which under Years are 14 Years. At 8 per Cent. are 9.1216381, against which under Years

Digitized by Google

are 17 Years Lease. And at 10 per Cent. stands 9.2372232, (as next to the said 9.21) and against that are 27 Years Lease.

Example. What is the Value of an House of l. 96 per Ann. clear Rent for 23 Years after the Death of a Person 60 Yearsold?

The Age being found = 12 Years to. come; therefore by the Table of 8 per Cent. Column 4. the Answer, as under Prop. 4. is found to be as per Margin, 1. 395.37504 = .1. 395:7:6.

Years to
Years. Years Purch. Col. 4. 8 per C. come.
60 — 7.60 — or 7.536078 or = 12

The pref. Worth of
1. 1 per Ann. — }

of l. 1 Reversion = 4.11849
96

Answ. = 395.37504

Prop. 7.] In Computations of the Value of Estates for two Lives; as suppose 50 and 55. First, find by the little Table of the Value of Lives the Years Purchase that the elder Life is worth; then find in the fourth Column at 5 per Cent. (supposing the Purchase to be a clear certain Income) the 8.51 found in the said little Table, or the next to it, which is = 8.3064142; right against which, in the Column of Years, is 11 Years: to which add the Difference in the Ages (5) and the Sum is 16 Years; against which, in the 4th Column from the Years, is 10.8377695, the Value of l. 1 per Ann. for the said two Lives: which multiplied by the Annuity, gives the Answer or Value thereof for the said two Lives, near enough the Truth. Farther Directions might be given on this head; but I have not room to enlarge on things so uncertain, and which at best depend on many casual Circumstances.

ATABLE

ATABLE shewing by Inspection the Fines payable for any Number of Years lapsed or expired in a Church or College Lease of their Lands, to make up such Lease 21 Years.

| Annual<br>Rent<br>of Lands                      |                         | eari<br>Fin<br>Paya | ies                                                 |     | Fine                                          | •                               |                                          | Fin                                                                                                                                                                                                       |                |                                                        | Fin           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    | ear.<br>Fin<br>Paya                         | es                                                         |                                           | ears<br>Fin<br>aya                            |                                                                                              |
|-------------------------------------------------|-------------------------|---------------------|-----------------------------------------------------|-----|-----------------------------------------------|---------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------|------------------------------------------------------------|-------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------|
| L                                               | 1.                      | s.                  | d. q.                                               | 1.  | s.                                            | d. q.                           | 1.                                       | <b>s.</b>                                                                                                                                                                                                 | d. q.          | 1.                                                     | s.            | d. q.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | l.                                                 | s.                                          | d. q.                                                      | 1.                                        | s.                                            | d. q.                                                                                        |
| 1 2 3 4 5 6 7 8 9 10 20 60 70 80 90 100 200 200 | 1 2 3 4 5 6 7 8 9 10 20 |                     | 0 1 0 0 2 2 3 0 0 1 1 1 2 2 3 0 1 2 2 3 0 1 1 C 0 1 | III | 4 8 12 17 1 5 9 14 8 2 5 7 10 12 15 10 2 5 10 | 6 0<br>9 0<br>3 I<br>6 1<br>9 I | 1 1 1 2 2 2 2 3 3 6 10 13 16 20 27 30 33 | 6<br>13<br>0<br>7<br>13<br>0<br>7<br>14<br>0<br>7<br>15<br>2<br>10<br>17<br>5<br>12<br>0<br>7<br>15<br>15<br>15<br>16<br>16<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17 | 96319617283133 | 1<br>1<br>2<br>2<br>3<br>4<br>4<br>9<br>14<br>19<br>23 | 14            | 6 1 7 2 0 3 3 3 4 3 1 1 2 0 1 2 3 1 6 3 3 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 .2 3 3 4 5 5 6 1 2 5 3 1 7 4 4 5 6 6 3 6 1 2 6 | 12 5 17 10 3 15 8 1 13 6 12 19 5 12 19 5 11 | 7332<br>7311<br>7311<br>7306<br>1839<br>4116<br>730<br>730 | 1 2 3 4 4 5 6 7 8 6 2 4 3 2 4 8 5 6 4 7 2 | 16 12 8 4 0 16 12 9 5 F 2 3 5 6 7 8 0 11 12 5 | 12<br>30<br>42<br>60<br>72<br>91<br>10<br>31<br>63<br>10<br>11<br>43<br>81<br>26<br>91<br>70 |
| 300                                             | 30<br>40<br>50          | 3<br>4<br>5         | 1 2<br>2 0                                          | ·   | .15<br>1<br>6                                 | 1 2                             | 135<br>168                               | 6<br>1<br>17                                                                                                                                                                                              | 72             | 143<br>1 <i>9</i> 0<br>238                             | 3<br>17<br>12 | 3 1<br>8 2<br>I J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    | 16<br>2<br>8                                | 10 2<br>6 0<br>1 1                                         | •                                         | 18<br>11<br>3                                 | 4 I<br>I 2<br>II 0                                                                           |

# ATABLE shewing by Inspection the Fines payable for any Number of Years lapsed or expired in a Church or College Lease, &c.

| Annual<br>Rent<br>of Lands. | Fines        | 8 Year<br>Fin<br>Payo                          | ies   |     | ears<br>Fine<br>Paya | es    | 10 Year<br>Fin<br>Paya | es    | 11 Years laps.<br>Fines<br>Payable. |  |  |
|-----------------------------|--------------|------------------------------------------------|-------|-----|----------------------|-------|------------------------|-------|-------------------------------------|--|--|
| l.                          | l. s. d. q.  | l. s.                                          | d. q. | l.  | s.                   | d. q. | l. s.                  | d. q. | !. s. d. q.                         |  |  |
| I<br>2                      | Ĭ .          | I 4                                            |       | 1 2 | <i>9</i><br>18       | 13    | 1 14<br>3 9            |       | 2 0 60<br>4 I o I                   |  |  |
| 3                           |              | 3 12                                           |       |     |                      | 50    |                        |       |                                     |  |  |
| 4                           | 3<br>4       | 4 17                                           |       | 1 7 | 16                   | 62    | 6 18                   |       | 8 2 0 2                             |  |  |
| . 5                         | 5            | $\begin{bmatrix} 7 & 7 \\ 6 & 1 \end{bmatrix}$ | •     | 1 7 | 5                    | _     | 8 12                   |       | 10 2 63                             |  |  |
| ó                           | 6            | 7 5                                            | ,     |     | •                    | 100   | 10 7                   | -     | 12 3 0 3                            |  |  |
|                             | 7            | 8 10                                           | 30    | 10  | •                    | 112   | 12 1                   | 7 I   | 14 3 70                             |  |  |
| 7<br>8                      | · 8 ·        | 9 14                                           | 70.   | 11  | 13                   | II    | 13 16                  | I 2   | 16 4 11                             |  |  |
| 9                           | 9            | 10 18                                          | IO 2  | 13  | 2                    | 23    |                        |       | l                                   |  |  |
| 10                          | 10           | 12 3                                           | 2 2   | 14  | II                   | 4 2   | 17 5                   | I 3   |                                     |  |  |
| 20                          | 20           | 24 6                                           | 50    | 29  | 2                    | 90    | 34 10                  | 3 2   | 40 10 2 3                           |  |  |
| ġo                          | 30           | 36 5                                           | 71    | 43  | 14                   | 12    | 51 15                  | 51    | 60 15 41                            |  |  |
| 40                          | 40           | 48 12                                          | 93    | 58  | 5.                   | 60    | 69 0                   | 70    | 81 0 53                             |  |  |
| 50                          | 50           | 60 16                                          | 00    | 72  | 16                   | 10 2  | 86 5                   | 8 3   | 101 5 70                            |  |  |
| 60                          | . <b>6</b> 0 | 72 19                                          |       | 87  | 8                    | 30    |                        | 102   | 121 10 82                           |  |  |
| 70                          | 70           | 85 2                                           | ,     | IOI | 19                   | 7 2   | 120 16                 | 01    | 1 - 7 7 0                           |  |  |
| <b>8</b> 0                  | <b>8</b> 0 . | 97 5                                           |       | 116 | 11                   | 00    |                        | 20    |                                     |  |  |
| 90                          | 90           | 109 8                                          | 93    | 131 | 2                    | 43    | 155 6                  | 3 3   | 182 6 0 g                           |  |  |
| 100                         | 100          | 12I 12                                         | 0.0   | 77  | 13                   |       | 172 11                 | 5 2   | 202 II 2 I                          |  |  |
| 200                         | 200          | 243 4                                          |       | 291 | 7                    | 6 2   | 345 2                  | 11 1  | 405 2 4 2                           |  |  |
| 300                         | 300          | 364 16                                         |       | 437 | 1                    | 3 2   | 517 14                 | 4 3   | 607 13 6 3                          |  |  |
| 400                         | 400          | 486 8                                          | - 1   |     | 15                   |       | 690 <b>5</b>           | 101   | 810 4 ·90                           |  |  |
| 500                         | 500.         | 60.8 <b>c</b>                                  | 00    | 728 | 8                    | 100   | 862 17                 | .3 3  | 1012 15 11 1                        |  |  |

# A TABLE shewing by Inspection the Fines payable for any Number of Years lapsed or expired in a Church or College Lease, &c.

| Annual<br>Rent of | 12 Te | ars     | lapj | ed. | 13 2   | ears    | lapj | ed. | 14 Ye | ars    | lapse | d.     | 15 Ye | ars .    | lapse  | ed. | 16 Te       | ars.   | la <sub>?</sub> fe | d.  |
|-------------------|-------|---------|------|-----|--------|---------|------|-----|-------|--------|-------|--------|-------|----------|--------|-----|-------------|--------|--------------------|-----|
| •                 | Fines | Pa      | yabi | le. | Fines  | Pa      | zyab | le. | Fine  | Pa     | yabl  | e.     | Fines | Pa       | yabl   | e.  | Fines       | Pa     | yabla              | e.  |
| L                 | l.    | s.      | d.   | q.  | l.     | s.      | d.   | q.  | i.    | 5.     | d.    | q.     | 1.    | s.       | d.     | q.  | . l.        | s.     | d.                 | q.  |
| 1<br>2            | 2     | 7<br>14 | . 2  |     | 2<br>5 | 14<br>9 | 8    | _   | 7     | 3<br>5 | 0     | o<br>3 | 9     | I 2<br>4 | 3<br>6 | 2   |             | 2<br>5 | 7                  | 3 2 |
| 3                 | 7     | I       | 7    | I   | 8      | 4       | 0    |     |       | 8      | 11    | 3      | IO    | 16       | 10     | J   | 1           | 7      | 11                 | I   |
| 4                 | 9     | 8       | ģ    | 3   | 10     | 18      | 8    | O   | -     | 11     | 11    | 3      | 14    | 9        | I      | 3   |             | 10     | 7                  | I   |
| 5                 | 11    | 16      | ó    | 0   | 13     | 13      | 4    | 0   | 15    | 14     | II    | 2      | 18    | I        | 5      | o   | I           | 13     | 3                  | 0   |
| 6                 | 14    | 3       | 2    | 2   | 16     | 8       | ġ.   | 0   | 18    | 17     | ΙI    | 2      | 21    | 13       | 8      | 2   | 24          | 15     | 10                 | 3   |
| 7                 | 16    | 10      | . 5  | 0   | 19     | 2       | 8    | 0   | 22    | o      | 11    | 2      | 25    | 5        | ΙI     | 3   |             | 18     | 6                  | 2   |
| 8                 | 18    | 17      | 7    | 1   | 21     | 17      | 4    | С   | 25    | 3      | 11    | 1      | 28    | 18       | 0      | 3   |             | 1      | 2                  | I   |
| 9                 | 21    | 4       | 9    | 3   | 24     | 1.2     | 0    | 0   | 28    | 6      | II    | 1      | 32    | 10       | 4      | I   | 37          | 3      | 10                 | 0   |
| 1.0               | 23    | 12      | 0    | I   | 27     | 6       | 8    | 0   | 31    | 9      | 11    | I      | 36    | 2        | 10     | 0   | 7 -         | 6      | 5                  | 3   |
| 20                | ` 47  | 4       | 0    | 2   | 54     | 13      | 4    | 0   | 62    | 19     | 10    | 1      | 72    | 5        | 8      | 0   | 82          | I 2    | 11                 | 3   |
| 30                | 70    | 16      | 0    | 3   | 82     | O       | 0    | 9   | 94    | 9      | 9     | 2      | 108   | 8        | 6      | 1   | J           | 19     | 5                  | 3   |
| 40                | 94    | 8       | I    | 9   | 109    | 6       | 8    | 9   | 125   | 19     | 8     | 3      | 144   | II       | 4      | 1   | 165         | 5      | 11                 | 2   |
| 50                | 118   | 0       | 1    | 1   | 136    | 13      | 4    | 9   | 157   | 9      | 8     | 0      |       | 14       | 2      | 1   | 206         | I 2    | 5                  | 2   |
| 60                | 141   | I 2     | I    | 2   | 164    | 0       | 0    | 9   | 188   | 19     | 7     | 1      | 216   | 17       | 0      | I   | -47         | 18     | 11                 | I   |
| 70                | 165   | 4       | I    | 3   |        | . 6     | 8    | 9   | 220   | • 9    | 6     | 2      | 252   | 19       | 10     | 1   | 289         | 5      | 5                  | I   |
| 80                | 1 § § | 16      | 2    | 9   | 218    | 13      | 4    | 이   | 251   | 19     | 5     | 3      | 289   | 0        | 8      | 2   | <b>3</b> 30 | 11     | 11                 | 0   |
| 90                | 212   | 8       | 2    | 1   | 246    | Ó       | 0    | 9   | 283   | 9      | 4     | 3      | 325   | 3        | 6      | 2   | 371         | 18     | 5                  | 0   |
| 100               | 236   | 0       | 2    | 3   | 273    | 6       | 8    | 9   | 314   | 19     | 4     | 1      | 361   | 8        | 4      | 2   | 413         | 4      | 10                 | 3   |
| 200               | 472   | 0       | 5    | 2   | 546    | 13      | 3    | 9   | 629   | 18     | 8     | 1      | 722   | 16       | 9      | 1   | 826         | 9      | _                  | 0   |
| 30 <b>0</b>       | 708   | 0       | 8    | 1   | 819    | 19      | 10   | 2   | 944   | 18     | 0     | I      | 1084  | 5        |        |     | 1239        | 14     | 8                  | 2   |
| 400               | 944   | 0       | 11   |     | 1093   | 6       | 6    | - 1 | 1259  | 17     | 4     |        | 1445  | 13       | 6      |     | 1652        | 19     | 7                  | I   |
| 5 <b>00</b>       | 1180  | I       | 1    | I   | 1366   | 13      | I    | 1   | 1574  | 16     | 8     | 2      | 1807  | I.       | II     | 0   | 2066        | 4      | 6                  | I.  |

H h

A TABLE

# A TABLE shewing by Inspection the Fines payable for any Number of Years lapsed or expired in a Church or College Lease, &c.

| Annual               |      | ars        | laps | ed. | 18 <i>Ye</i> | ars        | lapse | d. | 19 Ye | ars | lapse | d.  | 20 Ye            | ars i | lapse  | d. | 21 Ye | ars l | apsed. |
|----------------------|------|------------|------|-----|--------------|------------|-------|----|-------|-----|-------|-----|------------------|-------|--------|----|-------|-------|--------|
| Rent of Lands.       |      | Pa         | yabl | e.  | Fines        | Pa         | yabl  | e. | Fines | Pa  | yablı | ٠.  | Fines            | Pa    | yabl   | e. | Fines | Pa    | gable. |
| l.                   |      | ·5.        | d.   |     |              | <b>s.</b>  | •     |    |       |     | d.    |     | ľ                | s.    | •      |    |       | s.    |        |
| I                    | 4    | 14         | 2    | 2   | 5            | 7          | ' I   | 2  | 6     | I   | 6     | 1   | 6                | 17    | 6      | 0  | 7     | 15    | 6 o    |
| 2                    | 9    | 8          | 5    | 0   | _            | 14         | 2     | 3  | 12    | 3   | 0.    | . 1 | 13               | 14    | 11     | 3  | 15    | II    | 0 0    |
| 3                    | 14   | 2          | 7    | 3   | 16           | i          | 4     | I  | 18    | 4   | 6     | 2   | 20               | 12    | 5      | 3  | . –   | 6     | 6 o    |
| 4                    | 18   | 16         | 10   | I   | 21           | 8          | 5     | 2  | 24    | 6   | 0     | 3   | 27               | ġ     | ΙI     | 3  | _     | 2     | 0 0    |
|                      | 23   | 11         | 0    | 3   | 26           | 15         | 7.    | 0  | 30    | 7   | 6     | 3   |                  | 7     | 5      | 3  |       | 17    | 6 o    |
| <b>5</b><br><b>6</b> | 2Š   | 5          | 3    | 2   | 32           | 2          | 8     | 2  | 36    | 9   | I     | 0   |                  | 4     | 11     | 2  |       | 13    | 0 0    |
| 7                    | 32   | 19         | 6    | 0   | 37           | 9.         | 9     | 3  |       | 10  | 7     | I   | 48               | 2     | 5      | 2  |       | 8     | 6 a    |
| 8                    | 37   | 13         | 8    | 2   | 42           |            | 11    | 1  | 48    | 12  | Ī     | 1   | 54               | 19    | 11     | 2  | -     | 4     | 00     |
| 9                    | 42   | 7          | ΙΊ   | 0   | 48           | 4          | 0     | 2  | 54    | 13  | 7     | 2   | 61               | 17    | 5      | 2  | 69    | 19    | 6 o    |
| 10                   | 47   | 2          | 1    | 3   | 53           | 11         | 2     | 0  | 60    | 15  | I     | 3   | 68               | 14    | ĽI     | 1  |       | 15    | 00     |
| 20                   | 94   | 4          | 3    | I   | 107          | 2:         | 4     | С  |       | 10  | 3     | I   | 137              | 9     | 10     | 3  | 155   | 10    | O I    |
| 30                   | 141  | 6          | 5    | 0   | 160          | 13         | 6     | 0  | 182   | 5   | 5     | 0   | 206              | 4     | 10     | 0  | 233   | 5     | 0 2    |
| 40                   | 188  | <b>8</b> : | 6    | 3   |              | 4          | 8     | 1  | 243   | 0   | 6     | 3   | 274              | 19    | 9<br>8 | 2  |       | 0     | 03     |
| 50                   | 235  | 10         | 8    | I   | 267          | I 5        | _     | 1  | J - J | 15  | 8     | I   | 343              | 14    |        | 3  | 388   | 15    | 0 3    |
| 60                   | 282  | 12         | 10   | 0   | 321          | 7          | 0     | J  | 364   | 10  | 10    | 0   |                  | · 9   | 8      | 0  | 466   | 10    | 10     |
| 70                   | 329  | 14         | 1 L  | 2   | 27.          | <b>r</b> 8 | 2     | 1  |       | 5   | 11    | 2   | 481              | 4     | 7      | 2  | 7 1 1 | 5     | 1 1    |
| 80                   | 376  | 17         | I    | 1   |              | 9          | 4     | 1  |       | I   | I.    | I   |                  | 19    | 6      | 3  |       | 0     | 1 1    |
| 90                   | 423  | 19         | 3    | 0   | 482          | 0          |       | 1  |       | 16  | 3     | 0   |                  | 14    | 6      | 1  | 699   | 15    | I 2    |
| 100                  | 471  | 1.         | 4    | 2   | 535          | 11         | 8     | 2  | ,     | I·I | 4     | 2   | ,                | 9     | 5      | 2  | 777   | 10    | 1 3    |
| 200                  | 942  | 2          | 9    |     | 1071         | 3          | 5     |    | 1215  | 2   | 9     | I   | <sup>1</sup> 374 | 18    | ľ      | I  | I 555 | 0     | 3 2    |
|                      | 1413 | 4          | I    |     | 1606         | 15         | I     |    | 1822  | 14  | I     |     | 2062             | 8     | 4      | 3  | 2332  | 10    | 5 I    |
| , -                  | 1884 | 5          | 6    |     | 2142         | 6          |       |    | 2430  | 5   |       | 2   | <sup>2</sup> 749 | 17    | 10     |    | 3110  | 0     | 70     |
| `5 <b>0</b> 0        | 2355 | 9          | 11   | 0   | 2677         | 18         | 6     | 1  | 3037  | 16  | 11    | O,  | 3437             | 7     | 3.     | 3  | 3887  | 10    | 83     |
|                      |      |            |      |     |              |            |       |    |       |     |       |     |                  |       |        |    |       |       |        |

### The Use of this Table.

Example 1.] What Fine is to be paid, to make up a Lease 21 Years, when 9 Years of 21 are lapsed (or let slip) supposing the Rent l. 147 per Annum?

```
In the Table under 9 Years lapsed against 1. 100 is 1. 145 : 13 : 9

against 40 — 58 : 5 : 6

7 — 10 : 3 : 11½
```

There are two Books that Sums, Rent 147 Fine 214: 3: 25 afford us a Table of this

kind: The first was written by the Reverend John Newton, D. D. one of the King's Chaplains, Anno 1668. which contains only Fines, or Value of 1 l. per Ann. Rent, all in Decimals. The other is said to be approved of by a very great Author, (who perhaps never saw it) which is very tedious in its Use; as I shall shew by the Example above, which is performed by my Table: To find the Fine payable to make up 9 Years lapsed 21 Years; Rent 147 l. per Ann. his An-Year. 2r. Mon. Tenths.

fwer is 1:1:2:5 Purchase, taken out of one Table; which he values by another thus:

```
per Ann.
 1.147 for 1 Year =
                      147:00:00
  100 for 1 Quarter =
                       25:00:00
                                           Sums.
         2 Months =
                        16:13: 4
         5 Tenths of a Mon. 4: 3: 4
                                   l.per. Ann. Fine.
  1. 40 for 1 Quarter — 10:00:00
                                            1.214:7:6
                                   > 147.
         2 Months — 6:13: 4
                                    But 'tis plain the Use
         5 Tenths of a Mon. 1:13: 4 of my Table (as above)
 17 for 1 Quarter — 1:15:00 is much more brief,
         2 Months — — 1: 3: 4
                                   and will be allowed
        5 Tenths of a Mon. 00: 5: 10 | more accurate.
```

Example 2.] To make up a Lease of 14 Years any Number of Years less than 21: As suppose I would add 5 Years to 14 in a Lease of l. 40 per Ann. take 5 from 7 there rests 2; then take the Fine payable for 2 Years lapsed = l. 8: 10: 1: 1 from the Annual Rent, (here 40) and the Remainer is = l. 31: 9: 10: 3 = the Sum to be paid to add 5 Years.

Hh 2 Example.

## 236 To Extract the Square and Cube Roots. CHAP. III.

Example 3.] To find the Value of a Church or College full Lease of Lands of 21 Years: as suppose l. 80 per Ann. The last Column in the Table against l. 80 gives you l. 622:00:1:1, the Answer.

I need not tell the Reader, That in case of Improvement by the Seller, he may advance the Rent to the Buyers in proportion.

# SECT. IX. To Extract the Square and Cube Roots of Decimals and Mixt Numbers.

1. For the Square Root. What is the Square Root of .000976541?

To what is faid under the Extraction of the Square Root for Intire Numbers, it is only necessary to add for Decimals, that you begin to point over Seconds place of the Decimal given, and so proceed over every other

.0009765410 (.03124 = Root.

6) 76 62) 1554 624) 31010

6034 refts.

towards the right hand: and if the Decimal Places given are not an even Number, you must make them so, by adding a Cypher towards the right hand.

2. That for every Decimal Place you would have in the Root, you must (by adding Cyphers towards the right hand, if need be) make twice so many Decimal Places in that given to have its Root extracted.

There are feveral Ways of extracting the Roots, but I chuse that natural one, according to the Algebraic Canon, as in whole Numbers foregoing.

## Secondly, For the Cube Root.

Example 1.] Of a Mixt Number. What is the Cube Root of

32.934168093464? Answer 3.2054.

In these Cases you must point over the Thirds place of the Decimal, &c. over every Third toward the right hand adding Cyphers, if the Point sall not over the place next the right hand.

Example 2.] What is the Cube Root of 91? See the Work.

In Examples of this kind, where the whole Number is not a compleat Cube, you must add so many times 3 Cyphers towards the right hand, as you intend to have Decimal Places in the Root:

Digitized by Google

as here are 6 Cyphers for the 2 Decimal Places in the Root. And if you defire more, it is but putting 3 Cyphers towards the right hand of the Remainer 481151, and proceed to make that Root as exact as you please.

3. If you have the Square or Cube Roots of a Vulgar Fraction to extract, you may reduce it to a Decimal, and then proceed

as in the Example above.

4. And if the Decimals have Cyphers before next the Point, keep to the Rule under the last Example of the Cube Root above for the Points over: as .014672, point thus .014672; .0014672, point thus, .001467200; and .00014672 point thus, .000146720, &c. and extract as in Whole Numbers: For in this Case of the Cube of Decimals, their Places must always be, or be made, 3, 6, or 9, &c. by putting Cyphers toward the right hand of the Decimal whose Root is required.

Having already shewn how to extract the Square, Cube, &c. Roots of Intire Numbers, and Fractions Vulgar and Decimal, I shall in the Use of Logarithms give a much more easy and short Way of Extraction, and also shew the Use of Logarithms in resolving Questions of Interest: on both which accounts, Logarithms (among many other of their Uses) are extremely to be valued.

| 91.000000 (4.49       |
|-----------------------|
| 27000                 |
| 1 2<br>48             |
| 492                   |
| 64<br>192<br>192      |
| 21184                 |
| 5816000               |
| 132<br>5808           |
| 58212                 |
| 729<br>10692<br>52272 |
| 5334849               |
| 481151 rests.         |

Here ends DECIMAL ARITHMETIC.

CHAP.

# મકે કેમ મકે કેમ <del>મકે કેમ મકે કેમ મકે કેમ મકે કેમ મકે કેમ મકે કેમ મકે કેમ મકે કેમ મકે કેમ મકે કેમ મકે કેમ</del>

# CHAP. IV.

# DUODECIMAL ARITHMETIC.

UMERATION.] I have shew'd under Duodecimals, in the Definition of Numbers, Chap. I. what these Fra-

ctions are; as in 1:1:1:1:1. This is read 1 Foot, 1 Prime (or 12th of a Foot) 1 Second (or 12th of a Prime) 1 Third (or 12th of a Second) 1 Fourth (or 12 of a Third) &c. which is sufficient to know how to read or write Duodecimals. I shall proceed to

II. Addition. This is no more of consequence to what is above, but to divide the Sum of each Series by 12, putting down the Remainer, and carrying the Quotes to the next. But that next the left hand is done as all other things that have but one Denomination. The Example makes it clear.

III. Substraction of Duodecimals.] A Joiner having lined feveral Rooms with Cedar, as above; finds the Deductions for the Apertures, as Chimnies, Windows, Beauvets, Arches, Vistoes, &c. to be -

How many Feet must he be paid

for? Substracting the lesser from the greater, adding 12 where the upper ( is too little, or 10 in that to the left the Remainer is the Answer -

IV. Multiplication.] This is the principal Rule to be infifted on in this kind of Arithmetic, as being much the oftenest in use, and con-Tequently the most to be observed.

321:11:10:9:8:7 210:10: 9:8:7:6 109: 9: 8:7:6:5 98: 8: 7:6:5:4 87: 7: 6:5:4:3 76: 6: 5:4:3:2. 65: 5: 4:3:2:1

Sum 971: 0: 4:9:1:4

89: 9: 8:7:6:5

Example

Example 1.] Multiply 9 F. 10' by 8:8' Feet. See the Work in the Margin: Where I fay 8 times 10 Primes is 80 or 6' to carry, and 8'' to be put down; then 8 times 9 is 72, and 6 is 78 Primes, which divided mentally by 12 is 6 F. 6' which I put down as you fee. Then I multiply 9:10' by the 8 F, faying 8

Feet. 1
9:10
8:8
6:6:8
78:8

Foot 85: 2:8 = Anfw.

times 10 is 80 Primes, which is 81 and 6 Foot to carry; then 8 times 9 is 72, and 6 carried is 78: the Sum of which 2 Lines or Products is 85: 21: 811 = the Answer.

By which Example you may perceive the Necessity of having in your mind the Product of any 2 Numbers under 13, or not exceeding 12 by 12 as in the Multiplication Table

ing 12, by 12, as in the Multiplication Table.

Example 2.] Multiply 16:10:6 by 9:3. Here 'tis plain I multiply, 1st, the Seconds, then the Primes, and then the Integers by the 3, carrying the Quote of each Product divided by 12 to that towards the left hand; placing the Remainer in each Division under the Degrees of the Factors, as the Example indicateth.

F. , "
16:10:6
9:3:0
4:2:7:6
151:10:6

Prod. 156: 1:1:6

See the Operation,

Example 3.] Multiply . 372 : 11/ : 4<sup>11</sup> by 25 : 6': 2". I have inserted the whole Work. As. ift, I multiply 4" by 3 produceth 12, so I carry 1; 11' by 3 is 33, and i is 34, I put down 10 and carry 2; then I multiply 372 by the 3, adding the 2 makes 1118", all which I put down as you see. Then I multiply 372:11:4 by 61, and it produceth  $2\overline{237}':8'':0^{11}$ , as you fee.

|                 | f    | , ,  | "          | !!! | 1111 |
|-----------------|------|------|------------|-----|------|
|                 | 372  | 11   | 4          |     |      |
|                 | 25   | 6    | 3          | .   | ŀ    |
| 1st Product     |      |      | 1118       | 10  |      |
| 2d Produst      |      | 2237 | 8          |     | ٠,   |
| 3d Product      |      | 283  | 4          |     |      |
| Sum             |      | 2520 | 1130       | 710 |      |
| Quote           |      | 94   | <b>7</b> 2 |     |      |
| Sum             |      | 2614 |            |     | _    |
| Quot e          |      | 710  |            |     |      |
| Prod.372 by 25= | 9300 |      |            |     |      |
| Add.            |      |      |            |     |      |
| Prod. or Anjw.= | 9517 | 10   | 2          | ìo  | _    |
|                 |      |      |            |     |      |

And this I take to be the most easy and natural Way of working, when the Integers are large Numbers.

3dly, I multiply 372: 11:4 by 25: as 4 times 25 is 100, or 81:411; put 4 down, and carry 8; 11 times 5 is 55, and 8 is 631, put 3 down, and carry 6; 11 times 2 is 221, and 6 is 28, or 2831:411.

4thly, I sum up those 3 Lines makes 2520': 1130": 101".
5thly, I divide the 1130 Seconds mentally by 12, produceth 94',
which makes 2614': 2".

6thly, I divide, as before, 2614' by 12, produceth 217 Integers,

and 101 remains.

7thly, I multiply the 372 by the 25 at once, as taught in Decimals, and the Product is 9300: So the Sum or Answer is 9517 Integers 10!: 2!!: 10!!!: 0!!!!.

## Notes to be observed as appears by the abovesaid Examples.

If you multiply 2ds by 2ds, the Product is 4ths; Primes by 2ds place gives 3ds, Primes by Primes gives Seconds, and Integers by Primes gives Primes, and by 2ds gives 2ds, &c. And accordingly it is proper to place them Degrees towards the right hand, that so the Degrees of each part of the Operation may fall under the like in the given Duodecimals.

So also 2 Places given in order, as Integers and Primes, to be multiplied by 2 Places or Denominations, produce 3 Places; 3 Places by 2 produce 4 Places; and 3 Places by 3 produce 5 Denominations, or Degrees, in the Product; i.e. 1 less than the Sum of the Exponents or Places, or Names in both the Factors given.

V. Division of Duodecimals.] Divide 156 F. I': I": 6": 9"" by 9. See the Operation: Where the rest is always reduced into the next Denomination or Degree, and the respective Figures of each Degree added.

F. 9 (156:1:1:6:9 (17:4:1:6:1=Quote.)
$$\frac{66}{37}$$

$$\frac{13}{54}$$

There is rarely occasion ('tis to be supposed) to divide by a Number of more than I Degree or Name: yet in case there should,

should, it may be done as in the Margin, where 85:2':8'' is divided by 8:8'. Where I say, the Eights in 85 are 9 times, which put in the Quote, and say 9 times 8' is 72, (which is 6 to carry, and put down 0) 9 times 8 Integers is 72, and 6 is 78,

F. / / // / 8:8)85:2:8(9:10 = the Quote. 78:0 7:2 86:8 86:8

o rests.

which put down, and deducted, the Remainer is 7:2' or 86'; to which bring down the 8", and fay 8 in 86 is 10 times; 10 times 8' is 80, or 6': 8, put the 8 down, and carry the 6, faying 10 times 8 is 80, and 6 is 86, which deducted, 0 remains: which proves the Truth of the first Example in Multiplication.

And by the same Rules the Example in the Margin, or any other, is performed. But it may be observed, that in this Division more than one Place of Figures may, and often must, be put in the Quote at once.

9:3)156:1:1:6(16:10:6 148:0  $\Rightarrow$  Quote. 8:1 97:1 92:6 4:7 55:6 55:6

o rests.

## CHAP. V.

## SEXAGESIMAL ARITHMETIC.

Addition is only to fum up each Column, and divide them by 60, carrying the Quotes, &c. And Subfraction is so easy, that neither of them need an Example. But

In Multiplication
I think the best way is to
work as per Margin; as
being a methodical and
easy Way, which does
not charge the Memory:
and I am sure 'tis more

57: 29: 52 6: 12: 10 Multiply. 570: 290: 520 684: 348: 624 342: 174: 312

342:858:1230:914:520 14:20: 15: 8

Answer = 356: 38: 45: 22: 40

brief than any Way I have seen. The Rule is plain; for having multiplied the Denominations one in another, and placed the whole Products as you see, I add them; and find the Sum as under the second black Line.

Then I begin at the right hand to divide by 60, and find 520!!!! to be 8!!!: 40!!!!, placed as you fee; and fo I proceed with the rest, not making a Digit more than what is down.

Example

Example 2.] 75b:33':52'':27''! by 32:35':24'':42'''. See the Operation just in the same Method with the last Example above-

| •                 |      |      |          |      |      |      |        |         |
|-------------------|------|------|----------|------|------|------|--------|---------|
| 2                 | b.   | 1    | <u>"</u> | 877  | 1111 | 1111 | 111111 | 1       |
| Multiply.         | 75   | 33   | 52       | 27   | 1    | l    | l      | 1       |
|                   | 32   | 35   | 24       | 42   |      | }    |        | 1       |
| Multiplication of |      |      | 1        | 3150 | 1386 | 2184 | 1134   |         |
| Sexagesimals.     |      |      | 1800     | 792  | 1248 | 648  |        | l       |
|                   |      | 2625 | 1155     | 1820 | 945  |      |        | i       |
|                   | 2400 | 1056 | 1664     | 864  |      |      |        | 1       |
| Sums Totals       | 2400 | 3681 | 4619     | 6626 | 3579 | 2832 | 1124   |         |
| Quotes            | =62  | 78   |          | 60   | • 47 | 18   | 3.1    | ,       |
| Product =         | 2462 | 39   | 50       | 26   | 26   | 30   | 54     | Answer. |

Here it may be noted, that I multiply 2711, 5211, &c. by 42111, without making 2 Lines (as is taught in Multiplication of Decimals). 2dly, I begin at 1134"" to divide the Line of Totals by 60. (or all except Units place by 6) so the Quote is 18, and Remainer

54; then I divide 21 1 by 60, and 47 is the Quotient, and 30 the Remainer, &c.

I shall give the Reader the Proof of this by Division, for a Conclulion, viz.

```
32:35:24:42) 2462:39:50:26:26:30:54 (75:33:52:27 = Quote.
              2444: 15:52:30 = the Divisor multiplied in the 75 in the Quote.
                                                         (and divide by 60.
```

18:23:57:56 the Difference between the 4 first places in the (two last Lines.

1103:57:56:26 ditto with the Integ. reduc'd to Primes, &c.

1075: 28: 35: 6 the Divisor multiplied in 33%.

Division Sex agefimals.

29: 29: 21: 20 the Difference between the two last. 1709: 21: 20: 30 ditto with the 28' reduced to ", & a 1694: 41: 24: 24 the Divisor multip. in 5211 in the Quote.

14:39:56: 6 the Difference between the two last. 879:56: 6:54 ditto with the 14" reduced to 1". 879:56: 6:54 the Divisor multip. in 27 in Quote.

o Remains.

Ii 2

CHAP.

## 

## CHAP. VI.

## POLITICAL ARITHMETIC.

HIS Specie of Arithmetic has nothing new in it, as to the Nature of the Numbers themselves, nor as to the Manner of Operation; but only in the Application or Subject about which the Numbers are employ'd, which is Political (or relating to Polity or Government): As to discover the Riches and Strength of a Nation, by estimating its Income from Land, Trade, Commerce, Art and Labour, Exports, Imports, its Num-

ber of People, Males, Females, Fighting-Men, &c.

And there have been several Pieces written on this Subject, as Mr Grant's Observations on the Bills of Mortality of London in 1676, done at the request of the Royal Society; Sir William Petty's Political Arithmetic in 1687, and his Book of the Use of Duplicate Proportion; the Learned Dr Halley's Observations on the Bills of Mortality of Breslaw in 1692, whereby he computes the Value of Annuities for Lives at different Ages thereof, &c. as mentioned a little farther; and Dr Davenant and Gregory King Esq; on Revenues and Trade, &c. I shall give some Examples of this Way of Computing: As

Prop. 1. To find the Number of People in England, and how

many are Males, Females, and Fighting-Men.

First, I find the Number of Houses within the Weekly Bills of London, by considering the Number of those Families who pay to the Poor in each Parish, and of the Poor themselves; or by the Poll-Books, King's-Tax-Books, &c. Which suppose I find 108000 (as they are thereabout) these at 5 in each Family, one with another, makes 540000 People in the said Compass. Now admit that by a Poll-Tax, &c. it has been found that the Heads in London are to those in all the rest of England as 1 to 9; there must at this rate be 4860000 Souls in England. And it having been found by many

Years Observation upon the Weekly Bills, that there are 14 Males to 13 Females; so that of the said 4860000 Persons, there must be 2520000 Males, and 2340000 Females: for

27. 14:: 4860000. 2520000. Or 27. 13:: 4860000. 2340000 And hence to find the Fighting-Men, it has been computed, That. 37.4 of 100 Souls are above 16, and under 60; therefore

100. 37.4:: 2520000. 942480 = the Fighting-Men.

Prop. 2. To find the Number of People by the Coals imported: I find, suppose, by the Coal-Meeters Books 404200 Chaldron imported in one Year, comm. Ann. It may easily, by considering the Medium of the several Classes of Housekeepers, be found that each House, one with another, burneth about 3‡ Chaldron per Ann. So that by Division I find 107786 Houses, which is but 214 short of the Number of Houses in the Weekly Bills, found as in the last Proportion.

Prop. 3. To find the Number of Houses within the Bills, by the Yards Square of the Ground. I find (suppose, as per Mr Grant) 54 Houses in every hundred Yards Square, and 2000 such Squares built upon within the Bills of Mortality; which multiplied together in the Square House as a way to find Market

ther gives 108000 Houses, as per the first Method.

From these and such-like Reasonings by Political Arithmetic, the Vitality per Cent. of several Ages of Persons is found.

As that 64 of 100 born are alive at 6 Years old.

40 of 100 — at 16

25 of 100 — at 26

16 of 100 — at 46

6 of 100 — at 56

3 of 100 — at 60

1 of 100 — at 76

And that the Income of England per An. is, from Trade 1. 9000000 Land \_\_\_\_\_ 14000000

Art and Labour 20000000

So that the whole Annual Income is 43000000 l. Sterl. per Ann. The Income of France l. 81000000

Of Holland L 18000000

Also that the Exports of England in English Commodities are about 1. 5000000 per Ann.

The Current Coin of England is about 1. 7000000.

The

The Expence for the abovesaid Number of People at 8 l. per Head per Ann. is l. 38,880000 per Ann. So that England increaseth in Riches at that rate, l. 4120000 per Ann.

The Number of Acres of the Land of England has been by the very Judicious esteemed (of the several forts of Land) as follows:

viz.

| UIZ.                                      |                                        |
|-------------------------------------------|----------------------------------------|
| · No of Acres.                            | No of Acres.                           |
| Of Arable Land —— 9,000000                | In the last Column — 28,00000          |
| Pasture and Meadow 12,000000              | Heaths and Barren \ Lands \ 10,000000  |
| Wood and Coppice — 3,000000               |                                        |
| Forrests, Parks, and Commons — 3,000000   | Rivers, Lakes and 500000               |
| Commons 3                                 | 1 011ds                                |
| Houses, Orchards, and Church-yards        | Roads and Waste-Land 500000            |
| and Church-yards 3                        | Commenda Acassia 2                     |
| So that by the above said Esti-           | Sum = the Acres in England } 39,000000 |
|                                           | Englana — j                            |
| mate there is $8\frac{12}{486}$ Acres for | in Scotland 24,000000                  |
| each Head in England, and about           | Ireland 29,000000                      |
| 1. T: 8: To each in Cash.                 |                                        |

No of Acres. Acres in Great Bri-92,000000 There is computain and Ireland 117,000000 ted to be in France In last Column — 2652,000000 The 17 Provinces — 13,000000 Mogul's Empire - 741,000000 Spain and Portugal — 78,000000 China and Tonquin 702,00000 Italy, Venice, and ? Tartary \_\_\_\_\_ 2730,000000 66,000000 Georgia -Isles thereabouts ( **—** 117,0000**00** Madayascar — Germany -120,000000 **-** 78,000000 Sumatra, and Isles \ 80,000000 Sweden, Norway, 7 156,000000 and Denmark - 5 thereabout -Poland about --- 116,000000 Tapan -117,000000 Mascovy \_\_\_\_\_ 468,000000 All Africa ---- 4680,000000 Turkey in Europe — 192,00000 3510,000000 America ---Turkey in Afia ---- 234,000000 Isles Wight, Man, Arabia ---- 585,000000 Guernsey, Jersey, and >50,000000 Persia — 507,000000 in the West-Indies

Area of the Earth and Sea, as the Superficies

15549,000000

Area of the Earth and Sea, as the Superficies

127675,955000

But the People in the World, in proportion as the Acres of England is to the People of England, would be 1937,600000. For

39,000000. 4,860000 :: 15549,000000. 1937,600000

This Difference above 300,000000 (which is about  $\frac{1}{6}$  of the whole 1937, Sc.) is caused by the vast Quantities of Barren Ground, as  $\frac{1}{6}$  of Africa,  $\frac{1}{6}$  America,  $\frac{1}{6}$  Tartary,  $\frac{1}{6}$  Russia, &c. which are

probably defert and unpeopled.

The very Ingenious and Accurate Dr Halley, in his faid judicious Remarks upon the Breslaw Bills of Mortality, (wherein both the Ages and Sexes of all that died were monthly delivered and compared with the Number of Births, for the Years 1687, 1688, 1689, 1690, and 1691) hath calculated a Table, (published in the Philosophical Transactions in 1692, and in Miscellanea Curiosa, Vol. I.) and hath shew'd these Uses thereof; as, 1/2, In finding the Proportion of Men able to bear Arms in any Multitude, from 18 to 56 Years of Age. 2dly, The different Degrees of Vitality in all Ages; as at what Number of Years it is an even Lay, that a Person of any Age shall die: for instance, that a Man of 30 Years of Age liveth between 27 and 28 Years; That 'tis 80 to 1, that a Person of 25 Years does not die in a Year; That 'tis 5½ to 1, that one of 40 lives 7 Years. 2dly, He computes the Value of Annuities for Lives. (as in the curious little Table after the Tables of Compound Interest foregoing) and the Price of Insurances; and that one half of those who are born, do not live above 17 Years, &c.

Mr Grant (besides what he computeth, as above, of the Vitality per Cent.) saith, That the People of London are about one 14th of

the People of England. And

Sir William Petty saith, That there are more People living between the Ages of 16 and 26 than any other Ages; and thence infers, That the Square Root of every Person's Age under 16 (whose Square Root is 4) sheweth the Proportion of Probability of such Person's living to 70 Years: i. e. It is 4 times more likely that one of 16 Years of Age lives to be 70, than a Child of 1 Year; 'Tis thrice as probable that one of 9 Years lives to 70, than that a newborn Child does; That the odds is 5 to 4, that one of 25 dieth before 1 of 16 Years old; That 'tis 6 to 5, that one of 36 dieth before 1 of 25 Years: These Proportions being the Roots of 25,

16, and 36 = the Ages, as is above faid. He also says, That the Shipping of Europe is about 2000000 Tons, of which England hath 500000, the Dutch 900000, the French 100000, Spain, Portugal, and

Italy 250000, &c.

And besides what is said above of the Number of Acres of each kind of Land in England, Messieurs King and Davenant say farther, That the Increase of the People of England is 9000 per Annum, Allowances being made for War, Plague, Shipping, and the Plantations. They reckon the Souls of London 530000, in the Cities and Market-Towns in England 870000, the Villages and Hamlets 4100000. The Annual Produce by Cattel in Butter, Cheese, and Milk, about 1.2500000; the Value of the Wool yearly shorn, about 1.2000000: of Horses bred yearly 1.250000; Value of Flesh yearly spent as Food 1.3350000; of the Tallow and Hides about 1.600000; Hay yearly consumed by Horses 1.1300000; by other Cattel 1.1000000, &c.



# CHAP. VII.

## LOGARITHMICAL ARITHMETIC.

N this kind of Arithmetic the Work of Multiplication, Divifion, and Extraction of Roots, are performed not by the Numbers themselves, but by Artificial Numbers adapted to those given; so that their Addition performs Multiplication; Substraction does the business of Division; and Dividing by 2, 3, 4, &c. of these Artificial Numbers, gives the Square, Cube, Biquadrate, &c. Roots of the respective Natural Numbers.

2. There are to every Natural or Common Number, an Artificial one proportioned; which being formed into a Table, where each Natural Number has its own Artificial standing right against it, 'tis called a Table of Artificial Numbers or Logarithms.

3. Of these Tables some have the Logarithms of all Natural Numbers from 1 to 1000, some to 10000, and some to 10000.

And

And again, these Logarithms consist of Places from 5 to 14; but one and the same Table has always but one Number of Places: and the more extensive any Table is, the more it is universally useful: and therefore I shall by and by give Rules for enlarging a Table.

4. There may be several kinds of Logarithms contrived; for any Series of Numbers in Arithmetical Progression are the Logarithms

of those right against them in Geometrical Proportion: As

And the aforesaid Uses of Logarithms will appear even in this small

Example of a Table: As,

1. In Multiplication. As 32 by 16. Against these in the upper Series, you have 5 and 4 in the lower (or that of Logarithms); therefore add 5 to 4 maketh 9, which see in the Logarithms, and over it is 512 = the Product of 32 by 16, done by only adding their respective Logarithms 5 and 4. So 32 by 32 is 1024; 8 by 16 = 128, 30.

2. In Division. To divide 1024 by 64: Under 1024 stands the Logarithm 10; and under 64 stands the Log. = 6, therefore take 6 from 10, and the Remainer is the Log. = 4, over which stands the Quotient 16. And so 512 divided by 16, quotes 32, and

proves the first Example in Multiplication, &c.

3. In the Extraction of the Square Root. Admit you would have the Square Root of 1024: Under that you have the Logar. 10. the half of which is 5, over which Log. is 32 = the Square Root of 1024, by only taking half its Logarithm; so the Root of 256 is 16, &c.

4. In Extracting the Cube Root: If you would have the Cube Root of 512, under that is the Log. 9. a 3d of which is 3; over which Log. stands the Answer 8 = the Cube-Root fought, &c.

5. By this very small Specimen it may be observed how necessary (because exceeding useful) a Table of Artificial Numbers must needs be, when they are made such a universal Series, as to be fitted for all Numbers from 1 to 100000; and this was the happy Contrivance or Thought of the Famous Lord Neper, a Scotch Baron, Anno 1614. whose Memory will always be precious, especially to all Trigonometrical Calculators. But the first Table, as abovesaid, was made K k

by that Learned Mathematician of our own Country, Mr Henry Briggs, sometime Savilian Professor of Geometry in the University of Oxford, for Natural Numbers to 100000, and the Log. to 14 places; which new Invention was extremely approved of and promoted by Kepler, and other Foreigners.

6. These Logarithms being a Series of Numbers in Arithmetical Proportion to answer 1, 2, 3, 4, &c. to 10 or 100 Thousand, must need be Decimals, except the Index or first Figure towards the lest hand, separated from the Logarithm by a Point: for these show many Places the Natural Number consists of, if it be not a

Decimal; but if a Decimal, the Index is marked with a Note of Negation, as—, put commonly under the Index or Characteristic: which Index, in case of Logarithms of Decimals, does shew how many Places from

| The Index of the Log. of all Intire Numbers. from                                                     | In Decimals the<br>Index of                                                                   |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| 1, to 10 excl. is 0 10, to 100 — is 1 100, to 1000 is 2 1000, to 10000 is 3 10000, to 100000 = 4 83c. | .1, .2, .3, &c. is 1 .01, .02, .03, &c. 2 .001, .002, &c. 3 .0001, .0002, &c. 4 .00001, &c. 5 |

the Point the first significant Figure stands.

And 'tis plain, that the Indexes of Logarithms of intire Numbers are always 1 less in Value, than the Number of Places in those of whole Numbers.

Note, That for taking the Logarithm out of my Table, &c. you

may see Seat. 2, and 4. of this Chapter.

7. Indefatigable must the Trouble and Pains be supposed, which Mr Briggs had in his first Table; as must be granted, when the Method is understood of making but one commonly used, consisting of half the Number of Places. Which is this: They first found so many Mean Proportionals between 10 and 1, by the continual adding Cyphers, about 28, and half so many afterwards towards the right hand of the 10, and then extracting the Roots, till at last the Root was so small, as to have as many Cyphers next the Point in the Decimal, as they intended the Log. should consist of Places; which could not be done under 27 very long Extractions: these several

veral Means they put down in order, from the extreme 10 downward.

putting down against the Extreme 10.000, &c. the Log. 1.000, &c. (as is beforesaid) and proceeding to take half that Log. continually. half of that half, &c. and placing them orderly against their respective Mean Proportionals found as before.

3dly, Then when they had a mind to make the Log. of any Number, they, by extracting the Square Root, found so many continual Means between the Number given and 1, that the last Mean was the least Root that had so many Cyphers next the Point, as the

Logarithm was to have Places.

Atbly, Then to find Logarithms to these Means; the Proportion is As the significant Figures of the Mean Proportional found between 10 and 1 (of the like place with the last continual Mean in these you are upon)

Is to its respective Logarithm (omitting the Cyphers)
So is the last Mean in the Series you are now a working,

To its Logarithm.

5tbly, This Logarithm of the last continual Mean between the Number you are investigating the Log. of, and 1, being sound, is to be doubled, and that, &c. Products doubled continually; putting the several Products against the respective Means last sound, till at last the Product falling against the Number whose Log. is sought, gives you that Logarithm, by which several others are easily sound: for the Log. of 4 multiplied by 2, gives the Log of 16; ½ Log. of 4 is that of 2: so have you the Logarithms of all the Powers of 2; and the Log. of 10 (or 1.0) less the Log. of 2. leaveth the Log. of 5. So you have the Log. of all the Powers of 5, and Product by 2 and 5.

I did intend to have inserted here the Whole of finding the Log. of any Number between 1 and 10; but there being lately so many briefer Ways of finding the Logarithms, published by Mr Mercator, Mr Gregory, Mr Speidal, and especially by Dr Halley, in Philosophical Transactions, N° 216, that I thought it not worth while to give an

Example of the old tedious Way above-mentioned.

It could hardly be expected, that in one Treatise handling so many different Parts of Arithmetic, I should insert a Table of Logarithms; which alone, with its Use, makes a considerable Volume: And especially considering there are so many Tables already publish'd; for besides Mr Briggs's Original, there are Transcripts by K k 2

Norwood, Gunter, Wingate, Moor, Newbouse, Leyburn, Sturmy, Taylor, Harris, Ward, &c. Englishmen; besides those of Kepler, Vlacq, Ursin, &c. Foreigners. But I have however (the better to make this Book answer to the Title) inserted a Table to 10000, and Rules to make it to 100000000.

SECT. II. To Add, Substract, Multiply, and Divide Logarithms; or to perform the Work of Multiplication, Division, to Square and Cube, and Extraction of Roots of Intire Numbers by the Logarithms.

# RUT it must first be observed, That

I. To take any Logarithm in my Table belonging to any Natural Number:

If the Natural Number confift of three Places only, you have them in the Column under Natural Numbers; and in the next Column toward the right hand are their respective Logarithms under

**(**0**)**.

But if the Number given consist of four Places, look for all but Units place under Natural Numbers as before, right against which, and under the Digit in Units place, is your Logarithm required. And in like manner for any Logarithm under 100, see for that in Tens place under Natural Numbers; and for that in Units at the head of the Column, and in the common Angle of meeting stands the Logarithm sought.

### H. To find the Natural Number to a Logarithm.

This you will eafily do by the help of your Index, and especially by considering the Nature of the Numbers which increase from the less thand towards the right; as the Digits at the head of the Columns, and those in the less thand Columns respectively increase where four Places is in the Natural Number. But downwards the Logarithms are to such Natural Numbers as increase by Ten: Thus the Logarithm 8123785 I find under 2, and against 649; so that it is the Logarithm of 6492: but if it were the Logarithm 8122447, I find that under (0) and against 649; so that 6490 is the Natural Number sought. And the same Logarithm is also for 649: As all are Logarithms for the Natural Number expressed in the Table, or for that Number multiplied by 1 or more Tens; but you are to be guided by your Index what places your Number is.

Digitized by Google

So much for the Logarithm of Integers: And for those of Fractions and Mixt Numbers, see Seet. 3. following, and more of the above, Seet. 4.

...I. Multiplication of Intire Numbers by the Logarithms.

Example 1.] Multiply 91 by 93.

Rule. To the Logarithm of 91, which is = 1.9590414

Add the Logarithm of 93 — = 1.9684829

Product = 8463; the Nat. Numb. to the Log. 3.9275243 Sum. Example 2. Multiply 4 by 177.

Rule. To the Log. of 177, which is = 2.2479733 Add the Log. of 4, which is = 0.6020600 Add.

Product 708; its Logarithm = 2.8500333 Sum.

These two Examples are sufficient to shew how to multiply any intire Number by another; by the Logarithms, where I need not give many words to shew that against the Natural Numbers given stand their Logarithms; and against the Sum of those Logarithms stand the respective Natural Numbers 8463 and 708: i. e. In my Table you have the Log. 9275243 under 3, and against 846 (the Units place, where there are 4) being always over the Logarithm. See Sect. 4. and the Rules above for finding the Logarithms, and their Natural Numbers.

### II. Division by Logarithms.

Example 1.] Divide 8463 by 93.

Rule. From the Logarithm of 8463, which is = 3.9275243 Deduct the Log. of 93, which is = 1.9684829

Rests the Log. of the Quote 91, which is = 1.9590414 Example 2.] Divide 708 by 177.

From the Logarithm of 708, which is = 2.8500333Deduct the Log. of 177, which is = 2.2479733

Rests the Log. of the Quote 4; which is = 0.6020600

III. To Square any Intire Number, and Extract the Square Root by the Logarithms.

1. To square (or involve in itself) any whole Number.

Example.]

Example. What is the Square of 99? Rule. Multiply the Logarithm of 99, which is = 1.9956352 by .

9801, the Square fought; being the Natural ? Number to the Product —

2. To evolve, or extract the Square Root of any Intire Number,

Example. What is the Square Root of 9801?

Rule. Take half of the Logarithm of 9801. Log. is 3.9912704 Half that Log. of 9801 is = 1.9956352

Which half is the Log. of 99 = the Root fought. And this proves the last Question.

IV. To Cube, or Extract the Cube Root of any Intire Number, by the Logarithms.

1. To Cube any Whole Number. Example. What is the Cube of 21? Rule. Multiply the Log. of 21, which is by -----

And the Cube required is 9261 = the Natural ? Number of the Log. -

2. To extract the Cube Root of any Intire Number.

Example. What is the Root of 9261?

The Log. of 9261 is as before = 3.9666579f of that Logarithm is = 1.3222193 Whose Natural Number is 21 = the Cube Root required.

g. If you defire the Biquadrate of any Number, multiply its Log. by 4, gives the Log. of the Answer: And if you would have the Biquadrate or Sursolid Roots, &c. of a Number, divide its Logarithm by 4 or 5, &c. Examples are needless; but note, that if the Index is less than the Divisor, take so often as the Divisor can be had in 2 places.

SECT. III. To perform the Work of Multiplication, Division, Square or Cube, &c. or Extract the Roots of Fractions and mixt Numbers, by the Logarithms.

DEFORE I give Examples of Logarithms, it will be necessary to give a Rule for Adding or Substracting Negative Indices or Characteristics. Note.

Note, That when the Index is mark'd under thus (—) it is so much less than nothing as those beforegoing, or 2, 3, 1, &c.

1. The Rules for adding and fubstracting the Indices of Logarithms are numerous, and not easy to retain in mind: I have therefore suppofed (which taking the Reason of the thing along with it, easiv solves all, without charging the Memory) when the Index is negative, that it is a Perfon owing many l. 100 more than he is worth, as the Index-Digit expresseth.

| Addition of Indices.                 | Substraction.                                |
|--------------------------------------|----------------------------------------------|
| Exam. 1. Add the Index $\frac{3}{1}$ | From ————————————————————————————————————    |
| Sum = 2                              | Rests 3                                      |
| Exam. 2. Add — — 3<br>to — — 1       | 2dly, From                                   |
| Sum = 2                              | Rests                                        |
| Exam. 3. Add — 2                     | 3dly, From                                   |
| to — <u>3</u>                        | Take ——                                      |
| $Sum = \underline{5}$                | · -                                          |
|                                      | These prove the Trut<br>of those in Addition |

This being done, the adding to or taking from the upper Index acording to the Nature of each, makes the Sum or Remainer plainly

appear.

I. So in the first Example of Addition above, I consider that if I add 1. 100 to a Person who is 3 worse than nothing, the Sum must be 2; that is, I then make him worth but 2 less than nothing.

2. In the second Example, if I add 1 less than (0) to; that is, if I take 1 from a Person who hath 3, the Sum is but 2; for that is all that is lest. And if I add 3 less than nothing to him who before was 2 worse than (0) I leave him 5 less than (0), as in Example 3.

So in Substraction of Indices:

3. If (as in the first Example) I take 1 from him who already is 2 worse, or less than (0), I leave him 3 less than nothing; and so 3 is the Remainer.

4. If

4. If (as in the 2d Example) I take I (or I less than nothing) from him that hath 2 in possession already, I then leave him worth 3, because I take I less than nothing from him: therefore I add I to him, that is, I make 2 into 3, which is therefore the Remainer. (See the words Negative Arithmetic in Algebra.) And all this consider'd right, is but one single, short, and easy Rule.

# II. To find the Logarithm of a mixt Number, or of a Decimal, by the Table.

Prob. 1. To find the Logarithm of a mixt Number, as of 9.177.

Rule. Take the Log. of 9177, except the Index; and to that Logarithm prefix an Index according to the Number of Places in the integral Part of the Number given, as by the little Table under the 6th Head of the first Sect. of this Chapter, and you have the Answer.

Examp. Thus the Log. of 9177 (without the Index) is 9627007; and the proper Index for 1 Place being 0, therefore the Answer is 0.9627007.

So also the Log. of 91.77 is = 1.9627007, and of 917.7 'tis =

2.9627007.

Prob. 2. To find the Logarithm of a Decimal, as of .5

Rule. Take the Log. of 5, except the Index, and prefix to that Log. an Index agreeable to the Decimal, as per the faid little Table

under the 6th Head of the 1st Sect. of this Chapter.

Examples. The Log. of 5 is = 6989700, without its Index: to which Log. if you put its proper Index 1, (there being no Cyphers between the Point and the 5) the Answer is 1.6989700. And by the same Rule the Log. of .05 is 2.6989700; of .005 = 3.6989700; and of .000579 the Log. is 4.7626785; being the Log. of 759, with the Index of .000579 put before it.

III. To find Mixt Numbers or Decimals to Logarithms by the Table.

Prob. 1. To find a Mixt Number to a Logarithm.

Rule. Regard not the Index; but look for the Logarithm among those which would have the greatest Indexes, which having found, take the Natural Number standing against it, and point off for Integers according to the Index given.

Example. What is the Natural Number to the Log. 1.9627007? My Table extending to 10000, the greatest Index is 3; among which I find my Logarithm given, and right against it I find

9177.



9177. Now the Index given being 1, requires that 2 of the 4 Places be Integers, so that the Answer is 91.77: And also the Natural Number to 2.9627007 must be 917.7, &c. as per the Rule for Indexes above.

Prop. 2. To find the Decimal to a Logarithm.

Rule. Look for your Logarithm in that part of the Table where 'tis to be found, as before in the last, and put down the Natural Number that stands right against it: then according to the Greatness of the Index given, make the Point of the Decimal.

Example. What is the Natural Number to 4.7626785?

Against this Logarithm I find 5790. Now because my Index given is 4, I place 5 in the 4th place from the Point, and say therefore that .000579 is the true Decimal sought.

IV. To Multiply Mixt Numbers and Decimals, by adding their Logarithms.

I have so fully prepared the Reader for this, that I only need to give Examples.

Example 1. A Mixt Number by a Mixt, as 9.336 by 12.09
To the Logarithm of 9.336, which is 0.9701608
Add the Log. of 12.09, which is —— 1.0824263

The Sum is the Log. of 112.9 the Product, viz. 2.0525871

Example 2. A Decimal by a Decimal, as .09 by .123
To the Log. of .09, which is — 2.9542425
Add the Log. of 123, which is — 1.0899051

The Sum is the Log. of the Product .01107, which is 2.0441476

Example 3. A Whole Number by a Decimal, as 765 by .00345 To the Log. of 765, which is 2.8836614 Add the Log. of .00345, which is 3.5378191

The Sum is the Log. of the Product 2.639, viz. 0.4214805

LI

Example

## Multiplication by the Logarithms. CHAP. VII.

Example 4. A Mixt Number by a Decimal, as 1.23 by .00009

To the Log. of 1.23, which is \_\_\_\_\_ 0.0899051

Add the Log. of .00009, which is \_5.9542425

The Sum is the Log. of the Product .0001107 = 4.0441476

Note, That When sever 1 is carried to the Index, that 1 is affirmative, and must be added to the lower Index, and that Sum to the upper, as per the Rules and Examples of adding Indices at the beginning of this Section; and more particularly in the three last Examples.

V. To divide Mixt Numbers, Decimals, &c. by Substratting their Logarithms.

In the following Scheme you have all the Cases that can happen under this Head: which will be easily performed, only observing the first and second Examples of substracting Indices, and the Rule at the beginning of this Section.

The

| The        | 9 Cases of Division, don                                                 | e by Logarithms.                                      |
|------------|--------------------------------------------------------------------------|-------------------------------------------------------|
| Cases.     | Numbers given, or Dividends and Divifors, &c.                            | Their Logarithms; Sub-<br>firact that of the Divisor. |
| 1.         | Divide 237.3<br>by 25.32                                                 | 2.375 <sup>2</sup> 977<br>1.4034637                   |
|            | Quote $= 9.376$                                                          | Rests 0.9718340                                       |
| 2.         | Divide 11.5<br>by 932                                                    | 1.0606978<br>2.9694159                                |
|            | Quote .01234                                                             | Rests 2.0912819                                       |
| 3.         | Divide .1234                                                             | 1.0913151                                             |
|            | by .321<br>Quote .3846                                                   |                                                       |
| 4.         | Divide .463                                                              | 1.6655810                                             |
| •          | $\begin{array}{c} \text{by } 3214 \\ \text{Quote} = .000144 \end{array}$ | Rests 4.1585351                                       |
| <b>5</b> • | Divide 2 by 3.214 Quote .6222                                            |                                                       |
| <b>6.</b>  | Divide 5 by $365$ Quote = .0137                                          | 0.6989700<br>2.5622929<br>Rests 2.1366771             |
| 7.         | Divide 1.26 by .002  Quote = $630$                                       |                                                       |
| 8.         | Divide .5 $\frac{\text{by } 7.5}{\text{Quote} = .06 r \text{ I}}$        |                                                       |
| 9.         | Divide 999<br>by .00013                                                  | 2.9995655<br>4.1139433                                |
| ·          | Quo. 7684615.384                                                         | Rests 6.8856222                                       |

## VI. To Square any Mixt Number or Decimal, or to Extract the Square Root thereof.

1. To square such Numbers.

- Rule. Multiply the Logarithm of the Root given by 2; but if the Index be negative, out of the Product of that by the 2 deduct what Tens are carried from the place next toward the right hand, and put down the Remainer for the Index of the Product (or Log. of the Square).

Examples.

## I. For Squaring Decimals, &c. by Logarithms.

| ģiven.                | s The Logarithms of those Roots. | Double the last<br>Col. or the Log.<br>of the Squares. |                         |
|-----------------------|----------------------------------|--------------------------------------------------------|-------------------------|
| 987.6.                | 2.9945811                        | 5.9891622                                              | 975353.76               |
| 98.76.                | 1.9945811                        | 3.9891622                                              | 9753.5376               |
| 9.876.                | 0.9945811                        | 1.9891622                                              | 97.5353                 |
| .9876.                | 1.9945811                        | 1.9891622                                              | •9753                   |
| <b>.0</b> 9876.       | 2.9945811                        | <u>3.</u> 9891622                                      | <b>.0</b> 0975 <b>3</b> |
| . <del>00</del> 9876. | 3.9945811                        | 5.9891622                                              | .000097 <i>5</i> 3      |
| <b>.000</b> 9876.     | 4.9945811                        | 7.9891622                                              | .0000009753             |
| . <b>000</b> 09876.   | 5.9945811                        | 9.9891622                                              | ·,0000000097 <i>5</i>   |

## Or, II. For the Square Roots; these Titles observe.

| Squ. Roots fought<br>(or the Natural<br>No to the half<br>Logarithms.) | the Logarithms of the Squares; or those of the Roots. | Logarithms of<br>the Squares<br>given. | Squares given, whose<br>Roots are required. |
|------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------|---------------------------------------------|
|------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------|---------------------------------------------|

2. Observe in Extracting the Square Root, that is to say, in taking half of the Log. of the Square; if the Index be an odd Number, add 1 to it in your mind, and so proceed: As in taking half 3.989, &c. 1 say half of 4 is 2; of 19, = 9: of 18, = 9, &c.

VII. To



VII. To Cube, or Extrast the Cube Root of Decimals, &c.

## Examples.

| I. For the Cubing of Decimals by Logarithms. |                                                                |                                         |                                                        |  |  |  |
|----------------------------------------------|----------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------|--|--|--|
| The Cube<br>Roots<br>given.                  | Logarithms<br>of those<br>Roots.                               | Three times the Logarithms.             | The Cuhe Numbers fought.                               |  |  |  |
| 3.1                                          | 0.4913617                                                      | 1.4740851                               | 29.791                                                 |  |  |  |
| .31                                          | 1.4913617                                                      | 2.4740851                               | .029791                                                |  |  |  |
| .031                                         | 2.4913617                                                      | 5.4740851                               | .000029791                                             |  |  |  |
| .0031                                        | 3.4913617                                                      | 8.4740851                               | .000000029791                                          |  |  |  |
| .00031                                       | 4.4913617                                                      | 11.4740851                              | .00000000029791                                        |  |  |  |
| .000031                                      | 5.4913617                                                      | 14.4740851                              | .0000000000029791                                      |  |  |  |
| Or, II. Fo                                   | Or, II. For the Cube Root observe these Titles of the Columns. |                                         |                                                        |  |  |  |
| Cube<br>Roots<br>Sought.                     | 3 of those Lo-<br>garith. be-<br>ing those of<br>the Roots.    | Logarithms<br>of those Cube<br>Numbers. | Gube Numbers given ;<br>wbose Roots are re-<br>quired. |  |  |  |

1. You see by the Examples, that to Cube any Number (as those next the left hand) is to multiply their Logarithms (as those in the 2d Column) by 3; and the Products are those in the 3d Column, whose Natural Numbers required are those in the 4th Column. And here note, That what Tens you carry, you must abate out of 3 times the Index; as taught for the Square Root.

2. For the Examples of Extracting the Cube Root: The Number in the Column next the right hand are Examples of Cube Numbers given, the next Column are their Logarithms, and the third Column are third parts of those Logarithms. Where note, That if your Index cannot be divided by 3 without a Remainer, you must add so many Units to it, as is necessary for that end: And so many Units as you borrow'd there, you must pay Tens to the

Whose Nat. No

the next Figure, and then take a 3d of the whole Log. The Examples make all plain.

Or for finding the Biquadrate, Sursolid, or Squared Cube Powers.

Rule 1. Multiply the Log. of the Root given by 4, 5, or 6; obferving the Rules given before, abating what you carry, out of the Product of the Index respectively.

Or for finding the Biquadrate, Sursolid, or Squared Cube Roots.

Rule 2. Divide the Log. of the Power by 4, 5, or 6; observing the Rule of adding so many to the Index, that you can divide it without a Remainer, and paying so many Tens as you added or borrow'd Units, to the next Figure.

| Examples to Rule 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Logarithm of                    | are the Ans. or<br>Powers required |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------|
| Thus the Biquadrate of .3; its Log. being = 1.4771212; 4 times that —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | } = <u>3</u> .90848.            | 1800.=84                           |
| The Surfolid Power of .3; its Log. being 1.4771212; 5 times that —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ = \underline{3.385606} $      | 60=.00243                          |
| The Squared Cube of .3; its Log. being 1.4771212; 6 times that —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = 4.862727                      | 72 = .000729                       |
| And according to the last Rule.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Log. of the<br>Roots.           |                                    |
| The Biquadrate Root of .0081, its Log. being 3.9084848; ‡ of that is ——                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\bigg\} = \underline{1.47712}$ |                                    |
| The Surfelid Root of .00243, its Log. being 3,3856060; 3 of that is —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\bigg\} = \underline{1.47712}$ | 12 = .3.                           |
| The Squared Cube Root of .000729, its<br>Log. being 4.8627272; & of that is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = $1.47712$                     | 12 = .3.                           |
| Transit to the Toronto and Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transit to Transi | h of the form                   |                                    |

Which later Examples prove the Truth of the former.

VIII. To find the Logarithms of Vulgar Fractions, and of the Operations thereby.

Prop. To find the Log. of 1419.

Rule. From the Log. of the Numerator deduct the Log. of the Denominator, and the Remainer is the Log. for the Answer.

Example.

Example. From the Log. of 3456, which is = 3.5385737 Take the Log. of 4567, which is = 3.6596310

Remains the Log. of  $\frac{1459}{4769}$ , which is = 1.8789427

Prop. 2. To find the Log. of a compound Fraction.

Rule. Reduce the Compound to a Simple, and work as above Example. To find the Log. of 416th of 122th.

The Compound in a Simple being 4569, the Log. is as before;

Or Log. of  $416^{\frac{1}{7}}$  of  $\frac{116}{1} = 1.8789427$ .

Prop. 3. To find the Logarithm of a Mixt Number.

Rule. Reduce it to an Improper Fraction, and find the Logarithm as per the first Proposition. This needs no Example.

Prop. 4. To reduce a Vulgar Fraction to a Decimal.

Rule. Find the Log. of the Vulgar Fraction as per the first: then

against that Log. in the Table you have the Decimal.

Example. To Reduce  $\frac{1}{12}$  to a Decimal. The Log. of this Vulgar Fraction, as before, is = 1.8789427; and the Natural Number to that, per the Table, is  $.75\overline{67}$  = the Answer.

And for reducing such Fractions as this given, whose Terms have so many places, I take this to be the most easy and speedy Way of reducing them to Decimals: and if your Table of Logarithms were to 100000, or where the Numerator is a place less than the Denominator, the Rule would in most Cases be exact enough.

Prop. 5. What is the Product of one Vulgar Fraction by another,

giving the Answer in a Decimal Fraction?

Rule. Add the Log. of the one Fraction to the Log. of the other found as per the 1st Prop. and look for the total Log. in the Table, against which stands the Decimal required.

Example. What is the Product of 345 by 93%?

 $\frac{4 + \frac{1}{10}}{98 + \frac{1}{10}}$  its Log. as before = 1.8789427  $\frac{2}{10} + \frac{1}{10}$  its Log. — = 2.8890803

The Product for Answer is .05862, whose Log. is 2.7680230

And thus 'tis plain, that knowing by the Rules delivered how to find the Logarithms of Vulgar and Decimal Fractions, they may be multiplied or divided simply or promiscuously. For,

6. Suppose it were required to divide .05862 by , 1918:

If from the Log. of .05862, which is = 2.7680230You take the Log. 9876, which is = 2.8890803

The Remainer is the Log. of .7567, or = 1.8789427

Which proves the Operation above.

7. By what is abovefaid, it will follow that the Powers or Roots of Vulgar Fractions are easily found by multiplying the Log. of the Vulgar Fraction assigned as a Root, by 2, 3, 4, 5, 6, &c. to obtain the Power, or by dividing the Log. of the Vulgar Fraction assigned as a Power, by 2, 3, &c. to obtain the respective Roots. And this I take also to be the easiest and briefest Way of sinding the Powers or Roots of Vulgar Fractions; especially where the Terms consist of 3, 4, or 5 places, and your Table of Logarithms is large enough.

SECT. IV. The Explanation of my Table of Logarithms, whose Method fomewhat differs from Briggs, Norwood, and some others. 2dly, Of the Arithmetical Complements of Logarithms. 3dly, Of Parts Proportional and Differences: And, 4thly, How to enlarge the Tables of Logarithms several Ways.

THE easiest Tables for a Learner to use, are those that have the Indices put down, and Logarithms to the Natural Numbers which are intirely placed successively. But I would here explain to him another kind of Table placed without the Indices, and which have not the Units place of the Natural Number with the rest, but over the respective Logarithm (this is the best Method, and which I have therefore observed in my following Table of Logarithms) thus

| N°.        | 0       | I                                        | 2                  | 3 | 4       | <i>&amp;c.</i><br>to 9 |
|------------|---------|------------------------------------------|--------------------|---|---------|------------------------|
| 523<br>524 | 7185017 | 7177537<br>7185847<br>7194142<br>7202420 | 7186677<br>7194970 | 1 | 7196627 | ,                      |

Ьn

In Case such a Table as this is to be used; you must, for example to find the Logarithm of 5244, put down, 1st, 3 for your Index, as per the Rules in the fixth Paragraph of the first Sect.

of this Chapter.

2dly, Having found 524, (the three first Figures of your Natural Number given toward the left hand) cast your eye in the line toward the right hand, till you come under the Figure in Units place of the Number given, (here 4) where against 524, and under 4, you have the Log. required: for the Log. of 5244 is 3.7196627.

So the Log. of 5223 is 3.7179200; and that of 523 = 2.7185017: the Log. of the last Natural Number having all its places found together under Number; the Log. against 523, and under o, is that

fought,  $G_{\ell}$ .

These Logarithms in Mr Brigg's first and large Table, also in Norwood and some others, stand thus; (tho' they take up much room.)

| Nº         | Log.                   | N°           | Log.                   | Nº           | Log.                   |
|------------|------------------------|--------------|------------------------|--------------|------------------------|
| 522        | 2.7176705              |              | 3.7177537              |              | 3.7185847              |
| 523<br>524 | 2.7185017<br>2.7193313 | 5222<br>5223 | 3.7178369<br>3.7179200 | 5232<br>5233 | 3.7186677<br>3.7187507 |
| 525        | 2.7201593              | 5224         | 3.7180032              | 5234         | 3.7188337, &c.         |

II. The Arithmetical Complement of a Logarithm, is that which will make it 10.0000000; so that to find the Complement, the Logarithm given must be deducted from the 10.0,  $\mathcal{C}_{c}$ .

Now the best way to substract this (not according to the common way, but) to take every Digit of the Subtrahend from 9, except that in Units Its Compl. Arith. = 6.2795099

10.000000

Log. given = 3.7204901

place, which take from 10: And to do this, you may begin at either end to substract.

The Complement Arith, is often used in Analogies wrought by Artificial Numbers, to prevent Trouble and Confusion: For instead of substracting a Logarithm from the Sum of two others, it is usual to add the Complement Arithmetical, and from the Sum of the three Logarithms to abate Radius or 10.0 from the Index of that Sum; which gives the same Answer as the you had deducted the Logarithm of the first Number.

To instance in a common Question in the Rule of Proportion: If I give 1. 25: 10: — for 48 Yards of Cloth; what will 15 cost

at that rate?

M<sub>m</sub>

Yards.

Yards 48, its Logarithm = 1.6812412

l. 25.5, its Logarithm = 1.4065402 } Add. Yards 15, its Logarithm = 1.1760912 }

Sum 2.5826314

From which deducting the furst Log. the Remainer is that of l. 7.968, viz. - \} = 0.9013902

This by the Complement Arithmetical is done thus:

48. Compl. Arith. = 8.3187588 25.5: its Log. — = 1.4065402 15, its Log. — = 1.1760912

Sum abating 10 in the Index, the Log. of 3.968 the Answer as before \_\_\_\_\_\_ = 0.9013902

These kinds of Operations are much used in Trigonometry, with the Logarithms of Natural Sines, Tangents, &c.

## III. Of Differences and Proportional Parts.

r. By the Differences is meant the Differences of the Logarithms of 2 Numbers immediately and numerically succeeding one another, or the Differences of the Products of such Numbers multiplied by 10.

2. By Proportional Parts you are to understand, one or more tenth. Part of those Differences. And these are apply'd in Practice thus:

IV. When you would find the Logarithm of any Number that is greater than what is contained in the subsequent Table of Logarithms, and you would do this by the help of the Table of Differences and Parts Proportional.

Suppose you were to find the Logarithm of 51716: see the Operation

The Difference of these Logarithms is = 840 Diff.
Which found in the Table of Differences (following that of the Logarithms) right against that 840 and under 6 (the Digit in Units place 7136249 Sum.

of

of the Number given) you find the Proportional Part 504; which added to the Logarithm of 5171, the Sum is that of 51716, which with its proper Index is 4.7136249. You may prove the Truth of this by dividing 51716 by 7, the Quote is = 7388; to the Log. of which if you add that of 7, the Sum is the Log. of 51716, as above.

2. To prove the Truth of any Logarithms in the Table, without the Table of Proportional Parts: as those of 7000 to 7010 exclusive.

The Difference between the Logarithms of 700 and 701, or 7000 and 7010, is 6200.

| Tenths of the<br>Difference | Are these<br>Propor-<br>tional<br>Parts. | Log. of<br>7000<br>repeated. | Sums of the last Logarithms and Proport. Parts respectively. | The Natural<br>Numbers to<br>the last Lo-<br>garithms. |
|-----------------------------|------------------------------------------|------------------------------|--------------------------------------------------------------|--------------------------------------------------------|
| <b>6</b>                    | 620                                      | 8450981                      | 8451601                                                      | 7001                                                   |
| 21                          | 1240                                     | 8450981                      | 8452221                                                      | 7002                                                   |
| 3                           | 1860                                     | 8450981                      | 845284 <b>r</b>                                              | 7003                                                   |
| 4                           | 2480                                     | 8450981                      | 8453451                                                      | 7004                                                   |
| -                           | 3100                                     | 8450981                      | 8454081                                                      | 7. <b>0</b> 05                                         |
| 5<br>6                      | 3720                                     | 8450981                      | 8454701                                                      | 70 <b>0</b> 6                                          |
| 7                           | 4340                                     | 8450981                      | 8455321                                                      | 7007                                                   |
| 8                           | 4960                                     | 8430981                      | 8455941                                                      | 7008                                                   |
| 9:                          | 5580                                     | 8450981                      | 8456561                                                      | 7009                                                   |

By this it appears, that the Difference between the Logarithms of 7000 and 7010 being divided into 10 parts, 1 Tenth is 620, the Part to add to the Logarithm of 7000, to give the Logarithm of 7001 2 Tenths added to the Logarithm of 7000, gives the Logarithm of 7002; 3 Tenths of the Difference 6200, which is 1860. added to 8450981 (the Log. of 7000) giveth 8452841 = the Logarithm of 7003, &c.

And if you would have the Proportional Part immediately to make the Log. of 7000 that of 7008, it is only multiplying a Tenth of the Difference (which here is 620) by 8, and the Product is the Proportional Part 4960; which added to 8450981 = the Log. of 7000, the Sum is 8455941 = the Log. of 7008 required. And thus the 9 Logarithms between 7000 and 7010 exclusive, are examined and proved: And so may any other without a Table of Differences and Proportional Parts, or by even calculating or examining those at the same time.

M m 2

3. To

3. To augment the Table of Logarithms, so as to make that which extends only to shew the Log. of any Natural Number under 10000, subservient to give that of any Number under 100000, &c. without the Table of Parts Proportional. For Example;

1. To find the Log. of 64736.

| 1. 10 ma mc 110g. 01 04/30.                                                                                       |     |
|-------------------------------------------------------------------------------------------------------------------|-----|
| The Log. of $6473$ or $64730$ is = $811105$                                                                       | ;6  |
| Of $6474$ or $64740$ is $= 811172$                                                                                | 7_  |
| The Difference $=$ 67                                                                                             | 1   |
| A Tenth of that Difference (being the Proportional \) 67.                                                         | . I |
| Part for 1, that is to make the Log. of 64731)—}                                                                  | 6.  |
| Which multiply by 6 (the Place of Units in the given Number)-produceth ————————————————————————————————————       | .6  |
| Or because the 5 is above one half, you may make the Proportional Part for 6 (in Units place of the Number given) | -   |
| Which added to the Log. above of 64730, viz. — 811105                                                             | ;6  |
| The Sum is the Log. of 64736 or Answer = $\frac{1.811145}{4.811145}$ For as 10. 671 :: 6. 403 ferè.               |     |
|                                                                                                                   |     |

i. e. As the Number of Cyphers added to the Natural Number in your Table with a 1 before such (0) towards the left hand; Is to the Proportional Part, or Difference of the two Logarithms: So is the Figures towards the right hand exceeding the Places for

which your Table is calculated,

To the Proportional Part to be added to the Log. to answer those Figures.

2. To find (by a Table which has only the Logarithms to Numbers under 10000) what the Logarithms are for all Numbers under 1000000: For instance what is the Log. of 647365?

Log. of 
$$647300$$
 is  $= 8111056$ 
of  $647400$  is  $= 8111727$ 
Difference  $= 671$ 
Nat. N° of which these are Logarithms ——
This multiplied by  $65$  (the 2 places toward the right hand exceeding the Compass of the Table) —

Produceth  $= \frac{1}{436.15}$ 
Which added to  $= \frac{1}{1000}$ 

Which added to Log. 647300  $\frac{8111056}{8111492}$  = the Log. of 647365

For 100. 671:: 65. 436. 15 the .15 may be omitted.

3. To

3. To find (by a Table which has only the Logarithms to Natural Numbers not exceeding 10000) what the Logarithms are for all Numbers not exceeding 1000000000. For example, I would know the Logarithm of 2966820514. As before, the Log of the most places to-) Nat. No. Logarithms. wards the left hand of the Number 2966000000 = 4721711 2966, which is also of — The Log. of the next Number is of 2967 2967000000 = 4723175 The Difference of these Logarithms is = Which Difference divided by 1000000 that each Unit? may have its Proportional Part of that Difference,  $\geq = .001464$ that for 1 is -But because the Numb. given requires 820514 of those Parts for its Part Proportional, therefore I multi-> = 820514 ply the Difference (as per the former Rules) by— ) -And the Product is the Part Proport. for 820514 = 1201.232496 Which (omitting the Decimal as useles) added to ? the  $L_{0g}$ , of 2966000000 as above, which is— $\int$ The Sum is the Logarithm fought, viz. 4722912 Which having a proper Index put before it, according to the Number given, as per the 5th Rule

I have in this last Example made this matter so very plain that I

The Log. of 2966820514 is found = 9.4722912

need add nothing for that end; only to observe,

of the first Section of this Chapter:

1st, That the Log. of any Number is the same, tho' that Number have never so many Cyphers added to its right hand. And therefore in

Example 1. Of this Head, I call the Log. of 6473, which is 8111056, the Log. of 64730.

In Example 2. I call the fame Logarithm that of 647300. And In Example 2. I call the Log of 3066 (which is 4721711) the

In Example 3. I call the Log. of 2966 (which is 4721711) the Log. of 2966000000, making up the rest of the Places toward the right hand (for which I have no Logarithms in my Table) with Cyphers.

2dly, (As in the last Example) whatever Number of Cyphers those are, I cut off so many Places of the Difference of the Loga-

rithms, &c.

And

## 270 Complements, Propertional Parts, &c. CHAP. VII.

And thus I have endeavoured to make this Part (which has been omitted by most others) very intelligible, by shewing how to prove the Truth of Logarithms, or find those to Numbers that are large by the Difference and Parts Proportional, as they are found in Tables for that purpose: And have also most easily and plainly shew'd how Logarithms of large Numbers are found without such Tables of Differences and Proportional Parts. It remains next to shew,

1. How to find Natural Numbers to large Logarithms by the Tables of Differences and Parts Proportional.

2. How to do the same without such Tables of Differences and Parts Proportional.

4. To find the Natural Numbers to Logarithms beyond the Compass of your Table, by the Difference and Parts Proportional.

I would know the Natural Number to the Logarithm 4.8111459:

See the Operation.

The Logarithm given = 8111459.

The next Log. in the Table less than that given is the Log. of 6473, (which are the four first Places towards the less hand of the Number required) viz.

The next Log. in the Table greater than the last (being that of 6474) is = 8111727.

The Difference of the 2 first Logarithms = 403.

Difference of the 2 last Logarithms = 671.

Now to find the 5th Figure of the Number fought, or that in Units place, (the Index of the Log. given shewing that it hath but 5 places) look for the 2d Difference under [Differences] in the Table of Proportional Parts, and you'll find the next it (greater) to be 672. Then look in the same Line toward the right hand, and you'll find the 1st Difference 403; and at the head of that Columnstands (6) which put in Units place, gives 64736 for the Number sought. This proves the Truth of the 1st Example, last above-said.

5. To find the Natural Numbers (tho' very large) to any Log. given, without the Tables of Parts Proportional.

What is the Natural Number to the Logarithm 9,4722912? I find the Logarithms, and take the Differences as above thus:

The

The Log. given (without the Index) is 4722912 = 1st Differ, 1201 The next less in the Table (which \ 4721711 is the Log. of 2966) is — -The next  $\overline{Log}$ . (greater than the last) is  $\underline{\qquad}$  = 2d Differ. 1464 last) is —

Now whereas the Index shews the Natural Number required to have 10 places, and there being only the first 4 found, there wants 6 places, which with a Unit towards the left hand is = 1000000: therefore I say, As the 2d Difference is to 1000000::

So is the 1st Difference to the rest of the Nat. No required, i.e. 1464. 1000000 :: 1201. 820514.

Which 820514 placed towards the right hand of the 2966 found in the Table as above, is together 2966820514 = the Answer.

But the Logarithms of 7 places being too few to find fo large a Natural Number by, makes the Differences of too few places; and consequently the 4th Proportional in the last Analogy will fall fomewhat short, if done by a Table having only 7 places. However, the Example shews the true Method of proceeding in this Cafe, which is all here intended.

This last Example was designed to prove the Truth of the third; where .232496 being omitted, if that Decimal be annexed to the 1201, the third in the last Analogy, it will then be divided by the 1464, and produce the true Quotient 820514 exactly.

#### SECT. V. The Use of Logarithms in solving Questions of Compound Interest.

#### Quest. 1. TATHAT is the Amount of 1. 10 in 130 Years, at 5 per Cent?

Rule.] Multiply the Log. of 1.05 (which is 1 l. and its Interest for a Year, which in the subsequent Questions I call the Ratio) by 130, (the No. the Log. of the Amount of in 130 Years. 7 its Log. 1. 1 in 130 Years.

To this Log, add that of 1. 10 = the Principal; and the Sum is the Log. of the Answer, viz. of l. 5684.409 =the Amount required.

1.05, its Log. is = 0.0211893 Multiply by Years of Years) and the Product is Amount of 1/. \ = 568.4, \ 2.7546090 To which add the Log. ] 1.0 of the Princip. 101. Sum or Log. of 3.7546090

Example.

Quest.

Quest. 2. What is the present Worth of 1. 5684:8:2 \(\frac{1}{2}\) (or of 1. 5684.409) due at the End of 130 Years?

Rule.] Find the Logarithm of the Amount of l. 1 for 130 Years, as before.

Substract the Log. of that Amount from the Log. of the Sum whose present Worth is required, and the Remainer is the Logarithm of the present Worth, as per Margin.

So I find 1. 5684.409 to be received 130 Years hence, is worth 1. 10. in present Money; which proves the 1st.

Example.

Ratio = 1.05, its Log. = 0.0211833

Multiply by — 130

Product, or Amount of

l. 1 in 130 Years = 568.4; its Log. — 2.7546090

which last, deduct from the Log. of l. 5684.409

And the remaining Log. is that of l. 10, the Answer. — 1.0000000

Quest. 3. What is the Amount of the Lease or Annuity of 1.25 per Ann. in 21 Years, according to its utmost Improvement at 5 per Cent?

Rule.] Find the Amount of l. 1 for 21 Years, as above.

- 2. Then from the Log. of the Amount less 1, deduct the Log. of the Ratio less 1; and the Remainer is the Amount of l. 1 Annuity in 21 Years.
- 3. Add to the last Log. that of 25 the Annuity, and the Sum is the Answer, or 1.893, the Amount of 25 per Ann. in 21 Years.

#### Example.

Ratio 1.05, its Log. = 0.0211893Multiply by Years — 21 Product, or Amount of l. 1 in 21 Years 2.786; >0.4449753 its Log. — \_\_\_ 1.786 = the Amount 0.2518815 less 1 its Log. — — 1.05 = Ratio, less 1 =.05; its  $L_{0g}$ . Which last deducted, there rests the  $L_{0g}$ . of  $\begin{bmatrix} 1.55^{2}9115 \\ 1.35.72, \text{the Amount of} \end{bmatrix}$ l. 1 per An. in 21 Years. To which adding the ? 1.3979400  $L_{0g}$  of 25 the Annu. The Sum is the Log. of l. 893 the Amount of 2.9508515 the Annuity for Answ.

Quest.

Quest. 4. What is the present Worth of a Lease, or Annuity of l. 25 per Annum, to continue 21 Years at 5 per Cent. Interest?

Rule.] Find the Amount of 1.1 in 21 Years, as in the last Question.

2dly, To the Log. of that Amount add the Log. of the

Ratio, less 1.

3dly, Substract that Sum from the Log. of the Amount, less 1; and the Remainer is the Log. of the present Worth of l. 1 Annuity to continue 21 Years.

4thly, To the last Log. add that of the Annuity given, and the Sum is the Log. of the present Worth required.

Example. 2.786 = the Amount of l. 1 in 1 Years (as >0.4449753 above) its Log. — -.05 = Katio less 1, its Sum = -- .I.143945**3** 1.786 = Amount, less } 0.2518815 1, its Log. — — -Rests the Log. of 12.821 which is the present 1.1079362 Worth of l. 1 per Ann. to continue 21 Years) To which add the Log. ? 1.3979400 of 1.25 the Annuity \( \) And the Sum is the  $L_{0g}$ . of the Answer >2.5058762 1. 320.527, which is )

Quest. 5. What Annuity or Lease will the Sum of 1. 320.527, or 1. 320: 10: 6½ purchase, to continue 21 Years, allowing the Purchaser 5 per Cent.

Rule.] Find the Amount of l. 1 in 21 Years, as in the 1st; &c. Questions.

2dly, To the Log of that Amount add the Log of the Ratio less 1, as in the last.

3dly, From that Sum deduct the Logarithm of the Amount less 1, and the Remainer is the Log. of the Annuity that l. 1 will purchase for 21 Years

4thly, To the Log. of the Annuity of l. 1 add the Log. of the Purchase-Money, and the Sum is the Log. of the Annuity sought here l. 25 per Ann. as per the Work in the Margin.

Example.

2.786 the Amount of l.1 \ 0.4449753 in 21 Years, its Log. .05 = Ratio, less 1,its Log. -Sum - - = 1.14394531.786 = Amount, less 70.2518815 1, deduct its Log. Rests the Log. of the Annuity that l. 1 will purchase for 21 Years, >2.8920638 viz. of .078, which Log. is -320.527 the Purchase-Mo- {2.5058762 ney, its  $L_{eg}$  add = 1. 25. per Ann. the Annuity required, whose Log. is the \$1.3979400 Sum of the 2 last Log. N nQuest.

Qu**e**ff.

Quest. 7. What Annuity payable Quarterly, will l. 320.527 purchase, to continue 21 Years at 5 per Cent.?

Rule.] First take a fourth of

the Log. of the Ratio. 2dly, Multiply that 4th by the Quarters in the Years giwen, and that gives the Log. of the Amount of l. 1 for those Quarters.

3dly, To the Log. of that Amount add that of the Rate per Quarter less 1.

4tbly, From that Sum deduct the Log. of the Amount for the Quarters, less 1; and the Remainer is the Log. of the Annuity that I. 1 will purchafe for 21 Years payable quarterly.

5tbly, To the last Log. add that of the Purchase-Money. and the Sum is the Log. of the Answer.

By this Example it is obvious, that the 1. 320.527 will purchase but 61. per Quarter, at the Rate of 241. per Ann. Whereas by the 5th Question it appears, that Sum will pur-. chase 1.25 per Ann. if payable yearly. So that there is 1. 1

Rents.

Example.

1.05 the Ratio, its Log. 0.0211893 A 4th of that Log. web? is the Log. of 1.012.>0.0052974 the Rate per Quarter. Which Log. multip. by \{ the Quarters in 21 Y'' And that produceth the Log. of 2.786 = the(0.4449816)Amount of L 1 for 84( Quarters, viz. -To which Log. add that 7 of .012 = Rate per  $5^{2.0791812}$ . Quarter, less 1———5 Sum — — 2.5241628 1.786  $\rightleftharpoons$  the Amount,  $\left. \begin{array}{l} -1.786 \rightleftharpoons \text{the Amount}, \\ \text{lefs 1, its } Log. \text{ deduct} \end{array} \right\} 0.2518815$ Rests the Log. of .01872 17 = the Annuity that l. 1 -2.2722813 will purchase, payable quarterly, viz. To which Log. add that of 1.320.527 the Pur->2.5058762 chase Money, which is ) And the Sum is the Log. 7 of 1.6, the Quarterly >0.7781575 payment required. per Ann. difference in that Purchase between receiving the Rent quar-

Quest.

terly and yearly, the Purchaser having the Use of the Quarters

Quest. 8. What is the present Worth of 1.24 per Ann. payable by equal Quarterly Payments, to continue 21 Years?

Rule.] First find the Aas above.

2dly, To that Log. add the Log. of the Rate per Quarter (found as above) less 1.

3dly, Deduct that Sum from the Log. of the Amount less 1, and the Remainer is the Log. of the present Worth of L. per Quarter, to continue 84 Quarters.

4tbly, To that Log. add that of 1.6 per Quarter, (as the 4th of 24 per Ann.) and the Sum is the Log. of the present Worth of the Annuity given, payable quarterly.

This proves the truth of the

last Question.

Example. mount of l. 1 for 84 Quarters, Rate per Quarter found \ 1.012 as above, is —— 2.786 =the Amount of l. 1 for 84 Qrs. (found >0.4449816 as above) its Log. -.012 = the Rate per Quarter less 1, its >2.0791812 Log. Add-Sum of those 2 Logs. 2.5241628 1.786 = the Amount 7above, less 1, deduct >0.2518815 its Logarithm -Reststhe Log. of 1. 53.42 = present Worth of l. 1 per Quarter, continue 21 Years-61. per Quarter (as per the Annuity given) >0.7781575 its Log. Add-And the Sum is the Log. of 320.527 the Answ. (

Quest. 9. In an Account of Consequence 'tis found that: 1. 5684.409 is the Amount of 10 L Compound Interest at 5. per Cent. what Time was required for that Increase?

Rule.] From the Log. of the Amount deduct that of the

Principal put out.

2dly, Divide the remaining Log. by the Log. of the Ratio, and the Quotient is the Years required. See the Operation.

## Example.

1. 5684.409 its Log. — 3.7546090 10 /. the Principal, its Log. 7 Deduct -

1.05, its Log. .0211893 }) 2.7546090 (130 So the Answer is 635670 130 Years.

Quest.

Quest. 10. In a certain Account 1. 5684.409 is charged as the Amout of 10 l. in 130 Years Compound Interest: But upon a Trial the Simple Interest being only allowed according to the Rate agreed on, whence the faid Amount is computed; now it not appearing by any Bond, or Entry, what Rate or Interest was reckoned, the Question is how that may be found out?

Rule.] From the Log. of the Amount deduct that of the Principal put forth.

2dly, Divide that remaining Log. by the Number of Years, and the Quote is the Log. of l. 1 and its Interest for a Year. Therefore fay,

3dly, As l. 1 is to l. 1 and its Interest found:: So is 100 to 100 and its Interest. Whence taking 100, the rest must be the Rate of Interest required.

Example. 5684.409 the Amount, 3.7546090 its Log. — ro = the Principal, } 1. deduct its Log. — \ \frac{1}{2.7546090} Quoteth the Log. of . 0.0211893 Therefore As 1. 1.05:: 100. 105. And 105 less 100 = 5 the Interest

required per Cent.

Quest. 11. A Gentleman bought a Lease of l. 25 per Ann. to continue 21 Years for l. 320.527: At what Rate was Interest allowed him per Cent?

And the Remainer is the Log. of 12.821 (or the pre-) fent Worth of l. 1 per Ann. to continue 21 Years; >1,1079362 wbich note. -

Now to find what Interest this is reckon'd at, I make trial (as per Quest. 4.) and find at 6 per Cent. that the prefent Worth of l. 1 per Ann. to continue 21 Years is 11.764: which being less than the 12.821 (the present Worth of l. 1 per Ann. as above) I know that 6 per Cent. is too much, (for the more the present Worth is, the less is the Rate of Interest, and the contrary.)

Therefore I make trial at 4 per Cent. and (by the Rules under the 4th Question) I find the present Worth of l. 1.

Or thus to find the Rate:

Having found the present Worth at 4 and 6 per Cent. as above, proceed thus.

And the Years Purchase at 4 per Cent. found \_\_\_\_ 14.031

Which Difference is \_\_\_\_ = 1,210

2. The Years Purchase at 4 per Cent. are sound = 14.031
Ditto at 6 per Cent. as above are = 11.764

2d Difference = 2.267

3. Say 2.267. 1.210::2.1

i. e. As the 2d Difference is to the first: so is 2 the Difference between the Rates per Cent. (supposed) as before, to 1 = the Proportion to be added to the lesser Rate 4 to give the Rate sought for in which case the 1st place in the 4th Proportional is sufficient, where (o) is next the Point in the Decimal, if the Division were carry'd on farther.

Quest. 12. What is the present Value of the Reversion of an Amusty or Lease of 1. 50 per Ann. to continue 21 Years, to commence after the Expiration of 7 Years, at 5 per Cent. per Ann. allowed to the Purchaser.

Rule.] First add the Years (the 7 to the 21) make 28.

2dly, Find the present Worth of the Annuity to 7 continue 28 Years by the 4th Question, which 31.745:00:00 you'll find

4tbly,

Athly, Deduct the later from the former, and the ): Remainer is the present Worth of the Reversion re- \$1.461:14:0 auired -Example the 2d shall be to find the Values of the Reversions of Church or College Leafes of Houses; or the Fines payable for any Number of Years lapsed: As suppose 17 Years lapsed of 40, what Fine must be paid to make up the Lease again 40 Years: supposing the clear annual Rent 40 Pounds. Rule.] Since this is the same thing as to find the Value of the Reversion of 17 Years after the Expiration of 23 in effe; and the Rate of Interest in these Cases is 1.116: 1st, Therefore find the present Worth of l. 40 per Ann. to continue 40 Years by the Rules above and as follows. 2dly, From that deduct the present Worth of l. 40 per Ann. to continue 23 Years, and the Remainer is the Fine or Value of the Reversion: See the whole Operation as follows. 1.116 the Rate, its Logarithm = 0.0476642 multiply by Years — The Amount of l. 1 in 40 Years or 80.64; its Log. 1.9065680 .116 the Rate less 1, add its  $Log_1 = 1.0644580$ Sum of the 2 last 0.9710260 Which deduct from the Log. of the Amount = 1.9011313lefs t = 79.64, its Log. -And the Remainer is the Log. of the present ? 0.9301053 Worth of l. 1 per Ann. to continue 40 Years J. = 1.6020600 To which add the Log. of the Annuity 1. 40 The Sum is the Log. of 340.5 the present Worth ? 2.5321653 of l. 40 per Ann. to continue 40 Years — 2dly for the present Worth of 1. 40 to continue 23 Years. 1.116 the Rate or *Ratio*, its Log. = 0.0476642multiply by Years —— -The Amount of l. 1 in 23 Years 12.48 its Log. = 1.0962766 .116 the Ratio less 1 add its Log. = 1.0644586Sum of the 2 last ——— - 0.1607346 Which deduct from the Amount less 1, ? = 1.0599419viz. 11.48, its Log. —— -The Remainer is the Log. of the present \ = 0.8992073 Worth of A 1 to continue 23 Years -- 1 To which add the Log. of the Annuity 40 = 1.6020600

And

And the Sum is the Log. of the present Worth of l. 40 per Ann. to continue 23 Years, \_\_\_\_\_ } 2.5012673 Viz. of 317.1, which deducted from the above 1.340.5, the Remainer is l. 23:8:0 the Fine required.

13. When it is required to purchase an Estate either in Fee or for Years mentioned, with Money due at any time to come: as suppose I would purchase an Annuity to continue 14 Years, with 1. 1000 due to me at the end of 5 Years; the Annuity to commence presently at 5 per Cent.

Rule.] First, by the 2d Question find the present \\
North of \( l. 1000 \) due at the End of 5 Years, which is \\
\begin{align\*}
l. 783: 10: 0

2dly, By the 5th Question find what Annuity to continue 14 Years l. 783: 10 will purchase; which for Answer you'll find at 5 per Cent. \_\_\_\_\_\_\_ 14 Years.

I need not tell the Reader, that in case the Purchase had been required in Fee, to divide the present Worth of 1. 1000 = 1.783.5 by the Number of Years Purchase agreed on; as at 20 it will be

per Ann. for ever.

14. When you would Fine off Rent: As suppose a Lease is l. 90 per Ann. and the Tenant is willing to Fine off l. 40 per Ann. for his Lease of 21 Years at 5 per Cent. in this Case there is nothing to be done but by the 4th Quest, find the present Worth of l. 40 per Ann. to continue 21 Years; which present Worth l. 512: 16:11 must be given the Landlord as a Fine, and l. 50 per Ann. must be paid Annual Rent. On the contrary:

15. When you would Rent off a Fine: As suppose a Lease for 21 Years is to be let at l. 50 per Ann. with a Fine of l. 512.846; but the Leasee not having so much ready Money to spare, he is willing to pay an Equivalent Rent, and no Fine. To answer this, you need only to consider by the Rules under the 5th Question, what Annuity to continue 21 Years at 5 per Cent. the said Fine = 1.512.846 will purchase; which you'll find l. 40 per Ann. which added to the l. 50, shews that he must pay l. 90 per Ann. if he pays no Fine.

These 15 Questions and Proportions contain the Fundamental Rules for solving all Questions of Compound Interest whatever; and whosever doth thoroughly understand them, may be able to give a true Answer to any Question relating to Selling or Purchasing Estates, &c. without the help of Tables for that purpose; provided he has well learnt the Logarithms.

The End of Logarithmical Arithmetic, and its Use.

ATABLE

# T A B L E

OF THE

## LOGARITHMS

TO ALL

# NUMBERS,

Not exceeding 10000, or 4 Places, whether they be Intire, Broken, or Mixt Numbers.

And the Differences of Logarithms, and the Parts proportional, whereby the Logarithm of any Number is produced to 100000.

Particularly useful in Extracting the Square, Cube, &c. Roots, and solving Questions in Compound Interest, &c.

Artificial Numbers: Or,

|                    | Artificial Numbers: Or, |         |         |          |         |  |  |
|--------------------|-------------------------|---------|---------|----------|---------|--|--|
| Natural<br>Numbers |                         | 1       | 2       | 3        | 4       |  |  |
| 1                  | 0000000                 | 0413927 | 0791812 | 1139433  | 1461280 |  |  |
| 2                  | 3010300                 | 3222193 | 3424227 | 3617278  | 3802112 |  |  |
| . 3                | 4771212                 | 4913617 | 5051500 | 5185139  | 5314789 |  |  |
| 4                  | 6020600                 | 6127838 | 6232493 | 6334684  | 6434527 |  |  |
| 5                  | 6989700                 | 7075702 | 7160033 | 7242759  | 7323937 |  |  |
| 6                  | 7781512                 | 7853298 | 7923917 | 7993405  | 8261800 |  |  |
| 7                  | 8450980                 | 8512583 | 8573325 | 8633229  | 8692317 |  |  |
| 8                  | 9030900                 | 9084850 | 9138138 | 9190781  | 9242793 |  |  |
| 9                  | 9542425                 | 9590414 | 9637878 | 9684829  | 9731278 |  |  |
| 100                | 000000                  | 0004341 | 0008677 | 0013009  | 0017337 |  |  |
| 101                | 0043214                 | 0047511 | 0051805 | 0056094  | c060379 |  |  |
| 102                | 0086002                 | 0090257 | 00945c9 | 0098756  | 0102999 |  |  |
| 103                | 0128372                 | 0132587 | 0136794 | 0141003  | 0145205 |  |  |
| 104                | 0170333                 | 0174507 | 0178677 | 0182843  | 0187005 |  |  |
| 105                | 0211893                 | 0216027 | 0220157 | 0224284  | 0228406 |  |  |
| 106                | C253059                 | 0257154 | 0261245 | 0265333  | 0269416 |  |  |
| 107                | 0293838                 | 0297895 | 0301948 | 0305997  | 0310043 |  |  |
| 108                | 0334237                 | 0338257 | 0342273 | 0346284  | 0350293 |  |  |
| 109                | 0374265                 | 0378247 | 0382226 | 0385202  | 0390173 |  |  |
| 110                | 0413927                 | 0417873 | 0421816 | 0425755  | 0429691 |  |  |
| 111                | 0453230                 | 0457140 | 0461048 | 0464952  | 0468852 |  |  |
| 112                | 0492180                 | 0496056 | 0499928 | 0503797  | 0507663 |  |  |
| 113                | 0530784                 | 0534626 | 0538464 | 0542299  | 0546130 |  |  |
| 114                | 0569048                 | 0572856 | 0576661 | 0580462  | 0584260 |  |  |
| 115                | o6c6978                 | 0610753 | 0614525 | 0618293  | 0622058 |  |  |
| 116                | 0544580                 | 0648322 | 0552061 | 0655797  | c659530 |  |  |
| 117                | 0681859                 | 0585569 | 0689276 | 069298c  | 0696681 |  |  |
| 118                | 0718820                 | 0722499 | 0726175 | 0729847  | 0733517 |  |  |
| 119                | 0755470                 | 0759118 | 0762762 | 0766404  | 0770043 |  |  |
| 120                | 0791812                 | 0795430 | 0799045 | 0802656  | 0806265 |  |  |
| 121                | C827854                 | 0831441 | 0835026 | 0838608  | 0842187 |  |  |
| 122                | 0863598                 | 0867157 | 0870712 | 0874264  | 0877814 |  |  |
| 123                | 0899051                 | 0902580 | 0906107 | 0909631  | 0913151 |  |  |
| 124                | 0934217                 | 0937718 | 0941216 | 0944711  | 0948204 |  |  |
| 125                | 0969100                 | 0972573 | 0976043 | 0979511  | 0982975 |  |  |
| 1 26               | 1003705                 | 1007151 | 1010593 | 1014033  | 1017471 |  |  |
| 127                | 1038037                 | 1041455 | 1044871 | 1048284  | 1051694 |  |  |
| 128                | 1072100                 | 1075491 | 1078880 | 1082266  | 1085650 |  |  |
| 129                | 1105897                 | 1109262 | 1112625 | 1115985  | 1119343 |  |  |
| 130                | 1139433                 | 1142773 | 1146110 | 1149444  | 1152776 |  |  |
| 131                | 1172713                 | 1176027 | 1179338 | 1182647  | 1185954 |  |  |
| 132                | 1205739                 | 1209028 | 1212314 | 1215598  | 1218880 |  |  |
| 133                | 1238516                 | 1241780 | 1245042 | 1248301  | 1251558 |  |  |
| 134                | 1271048                 | 1274288 | 1277525 | 1280760  |         |  |  |
| J. OT              | 1 == 7 70               | 1/7200  | // 5~)  | - 200/00 |         |  |  |

Logarithms (to 1349.)

| Logarithms (to 1349.) |                          |                    |                  |                 |                                        |  |
|-----------------------|--------------------------|--------------------|------------------|-----------------|----------------------------------------|--|
| Natural<br>Numbers.   | . 5 %                    | · 6                | 7 •              | 8.              | · 9                                    |  |
| I                     | 1760912                  | 2041200            | 2304489          | 2552725         | <b>27875</b> 36                        |  |
| 2                     | 3979400                  | 4149733            | 4313637          | 4471580         | 4623980                                |  |
| 3                     | 5440680                  | 5563025            | 5682017          | 5797836         | 5910646                                |  |
| 4                     | 6532125                  | 6627578            | 6720978          | 6812412         | <i>69</i> 01 <i>9</i> 61               |  |
| 5                     | 7403627                  | 7481880            | 7558748          | 7634280         | 7708520                                |  |
| 6                     | 8129133                  | 8195439            | 8260748          | 832508 <i>9</i> | 8388491                                |  |
| 7                     | 8750613                  | 8808136            | 8864907          | 8920946         | 8976271                                |  |
| 8                     | 9294189                  | 9344984            | 9395192          | 9+44827         | 9493900                                |  |
| 9                     | 9777236                  | 9822712            | 9867717          | 991226I         | 9956352                                |  |
| 100                   | 0021661                  | 0025980            | 0030295          | 0034625         | 0038912                                |  |
| 101                   | cc64660                  | o068937            | oc73209          | 0077478         | 0081742                                |  |
| 102                   | 0167239                  | 0111473            | 0115704          | 0119931         | 0124154                                |  |
| 103                   | 0149403                  | 0153597            | 0157787          | 0161973         | 0166155                                |  |
| 104                   | 0191163                  | 0195317            | 01 <i>99</i> 467 | 0203613         | 0207755                                |  |
| 105                   | 0232524                  | c 236639           | <b>e</b> 240750  | c244857         | 0248960                                |  |
| 106                   | 0273496                  | 0277572            | 0281644          | 0285712         | 0289777                                |  |
| 107                   | 0314085                  | 0318123            | 0322157          | 0326188         | 0330214                                |  |
| 108                   | °3 <b>5</b> 42 <b>97</b> | 0358298            | 0362295          | 0366289         | 0370279                                |  |
| 109.                  | 0394141                  | 0398105            | 0402066          | 0406023         | 0409977                                |  |
| 110                   | 0433623                  | 0437551            | C441476          | 0445398         | 0449315                                |  |
| III                   | °4727 <b>4</b> 9         | 0476642            | 0480532          | c484418         | 0488301                                |  |
| 112                   | 0511525                  | 0515384            | 0519239          | 0523091         | 0526939                                |  |
| 113                   | 0549958                  | 0553783            | 0557605          | 0561423         | 0565237                                |  |
| 114                   | 0588055                  | 0591846            | 0595634          | 0599419         | 0603200                                |  |
| 115                   | 0625820                  | 0629578            | c6333334         | 0637085         | 0678145                                |  |
| 116                   | 0663259                  | 0666985            | 0670708          | 0674428         | 0715138                                |  |
| 117                   | 0700379                  | 0704073<br>0740847 | 0707765          | 0748164         | 0751818                                |  |
| 118                   | 0737183                  | 0777312            | 0744507          | 0784568         | 0733192                                |  |
| 119                   | 9773679                  | 0813473            | 0817073          | 0820669         | 0824263                                |  |
| 120                   | 0869870                  | 0849336            | 0852906          | 0856473         | 086c <b>0</b> 37                       |  |
| 121<br>122            | 0845763<br>0881361       | 0884905            | 0888446          | 0891984         | 0895519                                |  |
| 123                   | 0916669                  | 0920185            | 0923696          | 0927206         | 0930712                                |  |
| 124                   | 0951693                  | 0955180            | 0958664          | 0962146         | 0965624                                |  |
| -125                  | 0986437                  | 0989896            | 0993353          | 0996806         | 1000257                                |  |
| 126                   | 1020905                  | 1024337            | 1C27766          | 1031192         | 1034616                                |  |
| 127                   | JC55102                  | 1058506            | 1061909          | 1065308         | 1008705                                |  |
| 128                   | 1089031                  | 1092410            | 1095785          | 1099159         | 1102529                                |  |
| 129                   | 1122698                  | 1126050            | 1129400          | 1132746         | 1136091                                |  |
| 130                   | 1156105                  | 1159432            | 1162756          | 1166077         | 1169396                                |  |
| 131                   | 1189257                  | 1192559            | 1195858          | 1199154         | 1202448                                |  |
| 132                   | 1222159                  | 1225435            | 1228709          | 1231981         | 1235250                                |  |
| 133                   | 1254813                  | 1258064            | 1261314          | 1264561         | 1267806                                |  |
| 134                   | 1287223                  | 1290450            | 1293676          | 1296890         | 1300110                                |  |
|                       |                          |                    | 0 2              |                 | ······································ |  |

Artificial Numbers: Or,

|                     | Artificial Numbers: Or,     |                    |                             |                                      |                             |  |  |  |
|---------------------|-----------------------------|--------------------|-----------------------------|--------------------------------------|-----------------------------|--|--|--|
| Natural<br>Numbers. | 0                           | 1                  | 2                           | 3                                    | 4                           |  |  |  |
| 135                 | 1303338                     | 1306553            | 1309767                     | 1312978                              | 1316187                     |  |  |  |
| 136                 | 1335389                     | 1338581            | 1341771                     | 1344958                              | 1348144                     |  |  |  |
| 137                 | 1367206                     | 1370374            | 1373541                     | 1376705                              | 1379867                     |  |  |  |
| 138                 | 1398791                     | 1401937            | 1405080                     | 1408222                              | 1411361                     |  |  |  |
| 139                 | 1430148                     | 1433271            | 1436392                     | 1439511                              | 1442628                     |  |  |  |
| 140                 | 1461280                     | 1464381            | 1467480                     | 1470577                              | 1473671                     |  |  |  |
| 141                 | 1492191                     | 1495270            | 1498347                     | 1501422                              | 1504494                     |  |  |  |
| 142                 | 1522883                     | 1525941            | 1528996                     | 1532049                              | 1535100                     |  |  |  |
| 143                 | 1553360                     | 1556396            | 1559430                     | 1562462                              | 1565491                     |  |  |  |
| 144                 | 1583625                     | 1586640            | 1589653                     | 1592663                              | 1595672                     |  |  |  |
| 145                 | 1613680                     | 1616674            | 1619666                     | 1622656                              | 1625644                     |  |  |  |
| 146                 | 1643528                     | 1646502            | 1649474                     | 1652443                              | 1655411                     |  |  |  |
| 147                 | 1673173                     | 1676127            | 1679978                     | 1682027                              | 1684975                     |  |  |  |
| 148                 | 1702617                     | 1705550            | 1708482                     | 1711411                              | 1714339                     |  |  |  |
| 149                 | 1731863                     | 1734776            | 1737688                     | 1740598                              | 1743506                     |  |  |  |
| 150                 | 1760913                     | 1763807            | 1766699                     | 1769590                              | 1772478                     |  |  |  |
| 151                 | 1789769                     | 1792645            | 1795518                     | 1798389                              | 1801259                     |  |  |  |
| 152                 | 1818436                     | 1821292            | 1824146                     | 1826999                              | 182 <i>9</i> 850<br>1858253 |  |  |  |
| 153                 | 1846941                     | 1849752            | 1852588                     | 1855421                              | 1886473                     |  |  |  |
| 154                 | 1875207                     | 1878026<br>1906118 | 1880844                     | 1883659                              | 1914510                     |  |  |  |
| 155                 | 1903317                     | 1934029            | 1908917                     | 1911714                              | 1942367                     |  |  |  |
| 156                 | 1931246                     | 1934029            | 1936810<br>19 <b>6</b> 4525 | 1 <i>9</i> 39590<br>1 <i>9</i> 67287 | 1970047                     |  |  |  |
| 157<br>158          | 1958996<br>1986 <b>57</b> 1 | 1989319            | 1992065                     | 1994809                              | 1997552                     |  |  |  |
| 159                 | 2013971                     | 2016702            | 2019431                     | 2022158                              | 2024883                     |  |  |  |
| 160                 | 2041200                     | 2043913            | 2046625                     | 2049335                              | 2052044                     |  |  |  |
| 161                 | 2068259                     | 2070955            | 2073650                     | 2076344                              | 2079035                     |  |  |  |
| 162                 | 2095150                     | 2097830            | 2100508                     | 2103185                              | 2105860                     |  |  |  |
| 163                 | 2121876                     | 2124540            | 2127201                     | 2129862                              | 2132521                     |  |  |  |
| 164                 | 2148438                     | 2151086            | 2153732                     | 2156376                              | 2159018                     |  |  |  |
| 165                 | 2174839                     | 2177471            | 2180100                     | 2182727                              | 2185355                     |  |  |  |
| 166                 | 2201081                     | 2203696            | 2206310                     | 2208922                              | 2211533                     |  |  |  |
| 167                 | 2227165                     | 2229764            | 2232363                     | 2234959                              | 2237554                     |  |  |  |
| 168                 | 2253093                     | 2259677            | 2258260                     | 2260841                              | 2263421                     |  |  |  |
| 169                 | 2278867                     | 2281436            | 2284003                     | 2286570                              | 2289134                     |  |  |  |
| 170                 | 2304489                     | 2307043            | 2309596                     | 2312146                              | 2314696                     |  |  |  |
| 171                 | 2329961                     | 2332500            | 2335038                     | 2337574                              | 2340108                     |  |  |  |
| 172                 | 2355284                     | 2357809            | 2360331                     | 2362853                              | 2365373                     |  |  |  |
| 173                 | 2380461                     | 2382 <i>9</i> 71   | 2385479                     | 2387986                              | 2390491                     |  |  |  |
| 174                 | 2405492                     | 2407988            | 2410481                     | 2412974                              | 2415465                     |  |  |  |
| <del>-1</del> 75    | 2430380                     | 2432861            | 2435341                     | 2437819                              | 2440296                     |  |  |  |
| 176                 | 2455127                     | 2457593            | 2460059                     | 2462523                              | 2464986                     |  |  |  |
| 177                 | 247 <i>9</i> 733            | 2482186            | 2484637                     | 2487085                              | 2489536                     |  |  |  |
| 178                 | 2504200                     | 2506639            | 25c9077                     | 2511513                              | 2513948                     |  |  |  |
|                     |                             | <del></del>        |                             |                                      |                             |  |  |  |

Logarithms (to 1789.)

| Logarithms (to 1789.) |                            |                                 |                                               |                             |                    |  |
|-----------------------|----------------------------|---------------------------------|-----------------------------------------------|-----------------------------|--------------------|--|
| Natural<br>Numbers.   | 5                          | 6                               | 7                                             | <b>8</b> ·                  | 9                  |  |
| 135                   | 1319393                    | 1322597                         | 1325798                                       | 1328998                     | 1332194            |  |
| 136                   | 1351326                    | 1354507                         | 1357685                                       | 1360861                     | 1364034            |  |
| 137                   | 1383027                    | 1386184                         | 1389339                                       | 1392492                     | 1395643            |  |
| 138                   | 1414498                    | 1417632                         | 1420765                                       | 1423895                     | 1427022            |  |
| 139                   | 1445742                    | 1448854                         | 1451964                                       | 1455072                     | 1458177            |  |
| 140                   | 1476763                    | 1479853                         | 1482941                                       | 1486026                     | 1489110            |  |
| 141                   | 1507564                    | 1510632                         | 1513698                                       | 1516762                     | 1519824            |  |
| 142                   | 1538149                    | 1541195                         | 1544240                                       | 1547282                     | 1550322            |  |
| 143                   | 1568519                    | 1571544                         | 1574568                                       | 1577589                     | 1580608            |  |
| 144                   | 1598678                    | 1601683                         | 1604685                                       | 1607686                     | 1610684            |  |
| 145                   | 1628630                    | 1631614                         | 1634595                                       | 1637575                     | 1640553            |  |
| 146                   | 1658376                    | 1661340                         | 1664301                                       | 1667260                     | 1670218            |  |
| 147                   | 1687920                    | 1690863                         | 1693805                                       | 1696744                     | 1699682            |  |
| 148                   | 1717264                    | 1720188                         | 1723110                                       | 1726029                     | 1728947            |  |
| 149                   | 1746412                    | 1749316                         | 1752218                                       | 1755118                     | 1758016            |  |
| 150                   | 1775365                    | 1778250                         | 1781132                                       | 1784013                     | 1786892            |  |
| 151                   | 1804126                    | 1806992                         | 1809856                                       | 1812718                     | 1815578            |  |
| 152                   | 1832 <i>69</i> 8           | 1835545                         | 1838390                                       | 1841233                     | 1844075            |  |
| 153                   | 1861084                    | 1863912                         | 1866739                                       | 1869563                     | 1872386            |  |
| 154                   | 1889285                    | 1892095                         | 1894903                                       | 1897709                     | 1900514            |  |
| 155                   | 1917304                    | 1920096                         | 1922886                                       | 1925674                     | 1928461            |  |
| 156                   | 1945143                    | 1947917                         | 1950690                                       | 1953460                     | 1956229            |  |
| 157                   | 1972806                    | 1975562                         | 1978317                                       | 1981070                     | 1983821            |  |
| 158                   | 2000293                    | 2003032                         | 2005769                                       | 2008505                     | 2011239            |  |
| 159                   | 2027607                    | 2030329                         | 2033C49                                       | 2035768                     | 2038485            |  |
| 160                   | 2054750                    | 2057455                         | 2060159                                       | 2062869                     | 2065560            |  |
| 161                   | 2081725                    | 2084413                         | 2087100                                       | 2089785                     | 2092468            |  |
| 162                   | 2108534                    | 2111203                         | 2113876                                       | 2116544                     | 2119211            |  |
| 163                   | 2135178                    | 21 37833                        | 2140487                                       | 2143139                     | 2145789            |  |
| 164                   | 2161659                    | 2164298                         | 2166936                                       | 2169572                     | 2172206            |  |
| 165                   | 2187980                    | 2190603                         | 2193225                                       | 2195845                     | 2198464            |  |
| 166                   | 2214142                    | 2216750                         | 2219356                                       | 2221960                     | 2224563            |  |
| 167                   | 2240148                    | 2242740                         | 2245331                                       | 2247920                     | 2250507            |  |
| 168                   | 2265999                    | 2268576                         | 2271151<br>2296818                            | 2273724                     | 2276296            |  |
| 169                   | 2291697                    | 2294258                         | 2322335                                       | 2299377                     | 2301934            |  |
| 170                   | 2317244                    | 2319790                         |                                               | 2324879                     | 2327421            |  |
| 171                   | 2342641                    | 2345173                         | 2347703                                       | 2350232                     | 2352759            |  |
| 172                   | 2367891<br>239299 <b>5</b> | 2370408<br>239 <b>5</b> 497     | 2372 <i>9</i> 23<br>23 <i>9</i> 7 <i>99</i> 8 | 2375437<br>24co4 <i>9</i> 8 | 2377950<br>2402996 |  |
| 173                   |                            | 2420442                         | 2422929                                       | 2425414                     | 2402996<br>2427898 |  |
| 174<br>175            | 2417954<br>2442771         | 24452 <b>4</b> 5                | 2447718                                       | 2450189                     | 2452658            |  |
| 176                   | 2442//1                    | 24432 <del>4</del> 3<br>2469907 | 2472365                                       | 2474823                     | 2477278            |  |
| 177                   | 2491984                    | 2494430                         | 2496874                                       | 2499317                     | 2501759            |  |
| 178                   | 2516382                    | 2518814                         | 2521246                                       | 2523675                     | 2526103            |  |
| -/-                   | 2710502                    | -7-0014                         | -,                                            | ~,~,0/)                     | -,-0.03            |  |

Artificial Numbers: Or,

| _ | Artificial Numbers: Or, |         |         |         |                 |         |  |
|---|-------------------------|---------|---------|---------|-----------------|---------|--|
|   | Natural  <br>Numbers.   | 0       | 1       | 2       | 3               | 4       |  |
|   | 179                     | 2528530 | 2530956 | 2533380 | 2535803         | 2538224 |  |
|   | 180                     | 2552725 | 2555137 | 2557548 | 2559957         | 2562365 |  |
|   | 181                     | 2576786 | 2579184 | 2581582 | 2583978         | 2586373 |  |
| - | 182                     | 2600714 | 2603099 | 2605484 | 2607867         | 2610248 |  |
|   | 183                     | 2624511 | 2626883 | 2629255 | 2631625         | 2633993 |  |
|   | 184                     | 2648178 | 2650538 | 2652896 | 2655253         | 2657609 |  |
|   | 185                     | 2671717 | 2674064 | 2676410 | 2678 <b>752</b> | 2681097 |  |
|   | 186                     | 2695129 | 2697464 | 2599797 | 2702128         | 2704459 |  |
|   | 187                     | 2718416 | 2720738 | 2723058 | 2725378         | 2727095 |  |
|   | 188                     | 2741578 | 2743888 | 2746196 | 2748503         | 2750809 |  |
|   | 189                     | 2764618 | 2766915 | 2769211 | 2771506         | 2773800 |  |
|   | 190                     | 2787536 | 2789821 | 2792105 | 2794388         | 2796669 |  |
|   | 191                     | 2810334 | 2812607 | 28148-9 | 2817150         | 2819419 |  |
|   | 192                     | 2833012 | 2835274 | 2837534 | 2839793         | 2842051 |  |
|   | 193                     | 2855573 | 2857823 | 2860071 | 2862318         | 2864565 |  |
|   | 194                     | 2878017 | 2880255 | 2882492 | 2884728         | 2886963 |  |
|   | 195                     | 2900346 | 2902573 | 2504798 | 2907022         | 2909246 |  |
|   | 196                     | 2922561 | 2924776 | 2926993 | 2929203         | 2931415 |  |
|   | 197                     | 2944662 | 2946866 | 2949069 | 2951271         | 2953471 |  |
|   | 198                     | 2966652 | 2968845 | 2971035 | 2973227         | 2975417 |  |
|   | 199                     | 2988531 | 2990713 | 2992893 | 2995073         | 2997251 |  |
|   | 200                     | 3010300 | 3012471 | 3014641 | 3016809         | 3018977 |  |
|   | 201                     | 3031961 | 3034121 | 3036280 | 3038438         | 3040595 |  |
|   | 202                     | 3053514 | 3055663 | 3057811 | 3059959         | 3062105 |  |
|   | 203                     | 3074960 | 3077099 | 3079237 | 3081374         | 3083509 |  |
|   | 204                     | 3096302 | 3098430 | 3100557 | 3102684         | 3104809 |  |
|   | 205                     | 3117539 | 3119657 | 3121774 | 3123889         | 3126004 |  |
|   | 206                     | 3138672 | 3140780 | 3142887 | 3144992         | 3147097 |  |
|   | 207                     | 3159703 | 3161801 | 3163897 | 3165993         | 3168087 |  |
|   | 208                     | 3180633 | 3182721 | 3184807 | 3186893         | 3188977 |  |
|   | 209                     | 3201463 | 3203540 | 3205617 | 3207692         | 3209767 |  |
|   | 210                     | 3222193 | 3224260 | 3226327 | 3228393         | 3230457 |  |
|   | 211                     | 3242825 | 3244882 | 3246939 | 3248995         | 3251050 |  |
|   | 212                     | 3263359 | 3265407 | 3267454 | 3269500         | 3271545 |  |
|   | 213                     | 3283796 | 3285834 | 3287872 | 3289909         | -291944 |  |
|   | 214                     | 3304138 | 3306167 | 3308195 | 3310222         | 3317248 |  |
|   | 215                     | 3324385 | 3326404 | 3328423 | 3330440         | 3332457 |  |
|   | 216                     | 3344537 | 3346548 | 3348557 | 3350565         | 3352572 |  |
|   | 217                     | 3364597 | 3366598 | 3368598 | 3370597         | 3372595 |  |
|   | 218                     | 3384565 | 3386557 | 3388547 | 3390537         | 3392526 |  |
|   | 219                     | 3404441 | 3406424 | 3408405 | 3410386         | 3412366 |  |
|   | 22C                     | 3424227 | 3426200 | 3428173 | 3430145         | 3432116 |  |
|   | : 221                   | 3443923 | 3445887 | 3447851 | 3449814         | 3451776 |  |
|   | 222                     | 3463530 | 3465486 | 3467441 | 3469395         | 3471348 |  |
|   |                         |         |         |         |                 |         |  |

Logarithms (to 2229.)

| Logarithms (to 2229.) |                           |                                      |                    |                                    |                    |  |
|-----------------------|---------------------------|--------------------------------------|--------------------|------------------------------------|--------------------|--|
| Natural<br>Numbers    | 5                         | 6                                    | 7                  | 8                                  | 9                  |  |
| 179                   | 2540645                   | 25+3063                              | 2545481            | 2547897                            | 2550312            |  |
| 186                   | 2564772                   | 2567177                              | 2569581            | 2571984                            | 2574386            |  |
| 181                   | 2588765                   | 2591158                              | 2593549            | 2595939                            | 2598327            |  |
| 182                   | 2612629                   | 2615008                              | 2617385            | 2619762                            | 2622137            |  |
| 183                   | 2636361                   | 2638727                              | 2641092            | 26+3455                            | 2645817            |  |
| 184                   | 2659964                   | 2662317                              | 2664569            | 2667020                            | 2669369            |  |
| 185                   | 2683439                   | 2685780                              | 2688119            | 2690457                            | 2692794            |  |
| 186                   | 2706788                   | 2709116                              | 27114+3            | 2713769                            | 2716093            |  |
| 187                   | 2730013                   | 273 <b>23</b> 28                     | 2734643            | 2736956                            | 2739268            |  |
| 188                   | 2753113                   | 2755417                              | 2757719            | 2760020                            | 2752320            |  |
| 189                   | 2776092                   | <b>2</b> 778383                      | 278:673            | 2782952                            | 2785250            |  |
| 190                   | 2798950                   | 2801229                              | 2803507            | 2805784                            | 2808059            |  |
| 191                   | 2821688                   | 2823955                              | 2826221            | 2828486                            | 2830750            |  |
| 192                   | 2844307                   | 2846563                              | 2848817            | 2851070                            | 2853322            |  |
| 193                   | 2866310<br>2889196        | 286 <i>9</i> 054<br>28 <i>9</i> 1428 | 2871296            | 2873538                            | 2875778            |  |
| 194                   | 2911468                   | 2913688                              | 2893659<br>2915908 | 2895889<br>2918127                 | 2898118<br>2920344 |  |
| 196                   | 2933626                   | 2935835                              | 2938044            | 2940251                            | 2942457            |  |
| 197                   | 2955671                   | 2957869                              | 2960067            | 2962253                            | 2964458            |  |
| 198                   | 2977605                   | 2979792                              | 2981979            | 2984164                            | <b>29</b> 86348    |  |
| 199                   | 2999420                   | 3001605                              | 3003781            | 3005955                            | 3008128            |  |
| 200                   | 3021144                   | 3023309                              | 3025474            | 3027637                            | 3019799            |  |
| 201                   | 3042751                   | 3044905                              | 3047059            | 3049212                            | 3051363            |  |
| 202                   | 3064250                   | 3066394                              | 3068537            | 3070679                            | 3072820            |  |
| 203                   | 3085644                   | 3087778                              | 3089910            | 3092042                            | 3094172            |  |
| 204                   | 3105933                   | 3109056                              | 3111178            | 3113299                            | 3115420            |  |
| 205                   | 3128118                   | 3130231                              | 3132343            | 3134454                            | 3136563            |  |
| 206                   | 3149200                   | 3151303                              | 3153405            | 3155505                            | 3.157605           |  |
| 207                   | 3170181                   | 3172273                              | 3174365            | 3176455                            | 3178545            |  |
| 208                   | 3191061                   | 3193143                              | 3195224            | 3197305                            | 3199384            |  |
| 209                   | 3211840                   | 3213913                              | 3215984            | 3218055                            | 3220124            |  |
| 210                   | 3232521                   | 3234584                              | 3236645            | 3238706                            | 3240766            |  |
| 211                   | 3253104                   | 3255157                              | 3257209            | 3259260                            | 3,261310           |  |
| 212                   | 3273589                   | 3275633                              | 3277675            | 3279716                            | 3281757            |  |
| 213                   | 32 <i>93979</i>   3314273 | 3296012<br>3316297                   | 3298045            | 3300077                            | 3302108            |  |
| 214                   | 3334473                   | 3336488                              | 3318320            | 3320343                            | 3322364            |  |
| 216                   | 3354579                   | 3356585                              | 3338501            | 3340514                            | 3342526            |  |
| 217                   | 3374593                   | 3376589                              | 3358589<br>3378584 | 33605 <b>93</b><br>3380 <b>579</b> | 3362596<br>3382572 |  |
| 218                   | 3394514                   | 3366501                              | 33/8384            | 3400473                            | 3402458            |  |
| . 219                 | 3414345                   | 3416323                              | 3418301            | 3420277                            | 3422252            |  |
| 220                   | 3434086                   | 3436055                              | 3438023            | 3439991                            | 3441957            |  |
| 221                   | 3453737                   | 3455698                              | 3+57657            | 3459615                            | 3461573            |  |
| 222                   | 3473300                   | 3475252                              | 3477202            | 2479152                            | 3481101            |  |
| <u> </u>              |                           | - 1, / /                             | 717723             | -111-1                             |                    |  |

Artificial Numbers: Or

| Artificial Numbers: Or, |                 |                          |                  |                  |         |  |
|-------------------------|-----------------|--------------------------|------------------|------------------|---------|--|
| Natural<br>Numbers.     | 0               | T .                      | 2                | 3                | 4       |  |
| 223                     | 3483049         | 3 <b>4</b> 84 <i>996</i> | 3486942          | 3488 <b>88</b> 7 | 3490832 |  |
| 224                     | 3502480         | 3504419                  | 3506356          | 3508293          | 3510228 |  |
| 225                     | 3521825         | 3523755                  | 3525684          | 3527612          | 3529539 |  |
| 226                     | 3541084         | 3543006                  | 3544926          | 3546845          | 3548764 |  |
| 227                     | 3560259         | 3562171                  | 3564983          | 3565994          | 3567905 |  |
| 228                     | 3579348         | 3581253                  | 3583156          | 3585059          | 3586961 |  |
| 229                     | 3598355         | 3600251                  | 3602146          | 3604040          | 3605934 |  |
| 230                     | 3617278         | 3619166                  | 3621053          | 3622939          | 3624825 |  |
| 231                     | 3636120         | 3638000                  | 3639878          | 3641756          | 3643633 |  |
| 232                     | 3654880         | 365 <b>6751</b>          | 3658622          | 3660492          | 3662361 |  |
| 233                     | 3673559         | 3675423                  | 3677285          | 3679147          | 3681008 |  |
| 234                     | 3692159         | 3694014                  | 3695869          | 3697723          | 3699576 |  |
| 235                     | 3710679         | 3712526                  | 3714373          | 3716219          | 3718065 |  |
| 236                     | 3729120         | 3730960                  | 3732799          | 3734637          | 3736475 |  |
| 237                     | 3747483         | 3749316                  | 3751147          | 3752977          | 3754807 |  |
| 238                     | 376 <b>5769</b> | 3767594                  | 3769418          | 3771240          | 3773062 |  |
| 239                     | 3783979         | 3785796                  | 3787612          | 3789427          | 3791241 |  |
| 240                     | 3802112         | 3803922                  | 3805730          | 3807538          | 3809345 |  |
| 241                     | 3820170         | 3821972                  | 3823773          | 3825573          | 3827373 |  |
| 242                     | 3838154         | 3839948                  | 3841741          | 3843534          | 3845326 |  |
| 243                     | 3856063         | 3857850                  | 3859636          | 3861421          | 3863206 |  |
| 244                     | 3873898         | 3875678                  | 3877457          | 3879235          | 3881012 |  |
| 245                     | 3891661         | 3893433                  | 3895205          | 3896975          | 3898746 |  |
| 246                     | 3909351         | 3911116                  | 3912880          | 3914644          | 3916407 |  |
| 247                     | 3926969         | 3928727                  | 3930485          | 3932241          | 3933997 |  |
| 248                     | 3944517         | 3946268                  | 3948018          | 3949767          | 3951516 |  |
| 249                     | 3961993         | 3963734                  | 3965480          | 3967223          | 3968964 |  |
| 250                     | <i>3979</i> 400 | 3981137                  | 3 <i>9</i> 82873 | 3984608          | 3986343 |  |
| 251                     | 3996737         | 3998467                  | 40001 <i>96</i>  | 4001925          | 4003653 |  |
| 252                     | 4014005         | 4015728                  | 4017451          | 4019172          | 4020893 |  |
| 253                     | 4031205         | 403292I                  | 4034637          | 4036352          | 4038066 |  |
| 254                     | 4048337         | 4050047                  | 4051755          | 4053464          | 4055171 |  |
| 255                     | 4065402         | 4067105                  | 4068807          | 4070508          | 4072209 |  |
| 256                     | 4082400         | 4084096                  | 4085791          | 4087486          | 4089180 |  |
| 257                     | 4099331         | 4101021                  | 4102710          | 4104398          | 4106c85 |  |
| 258                     | 4116197         | 4117880                  | 4119562          | 4121244          | 4122925 |  |
| 259                     | 4132998         | 4134674                  | 4136350          | 4138025          | 4139700 |  |
| 260                     | 4149733         | 4151404                  | 4153073          | 4154742          | 4156410 |  |
| 261                     | 4166405         | 4168669                  | 4169732          | 4171394          | 4173056 |  |
| 262                     | 4183013         | 4184670                  | 4186327          | 4187983          | 4189638 |  |
| 263                     | 4199557         | 4201208                  | 4202859          | 42045c9          | 42:6158 |  |
| 264                     | 4216039         | 4217684                  | 4219328          | 4220972          | 4222614 |  |
| 265                     | 4232459         | 4234c97                  | 4235735          | 4237372          | 4239009 |  |
| 266                     | 4248816         | 4250449                  | 4252080          | 4253712          | 4255342 |  |
|                         |                 |                          |                  |                  |         |  |

Logarithms (to 2669.)

| Logarithms (to 2009,) |                                     |                    |                                     |                            |                             |  |
|-----------------------|-------------------------------------|--------------------|-------------------------------------|----------------------------|-----------------------------|--|
| Natural               | 5                                   | 6                  | 7                                   | 8                          | 9                           |  |
| Numbers.<br>223       | 3492775                             | 3494718            | 3495660                             | 3498601                    | 3500541                     |  |
| 224                   | 3512163                             | 3514098            | 3516031                             | 3517963                    | 3519895                     |  |
| 225                   | 3531465                             | 3 <b>53</b> 339I   | 3535316                             | 3537239                    | 3539162                     |  |
| 226                   | 3550682                             | 3552599            | 3554515                             | 3556430                    | 3558345                     |  |
| 227                   | 3569813                             | 3571723            | 3573630                             | 3575537                    | 3577443                     |  |
| 228                   | 3588862                             | 3590762            | 3592662                             | 3594560                    | 3596458                     |  |
| 229                   | 3607827                             | 3609719            | 3611610                             | 3613500                    | 361 <b>539</b> 0            |  |
| 230                   | 3626709                             | 3628593            | 3630476                             | 3632358                    | 363423 <i>9</i>             |  |
| 231                   | 3645510                             | 3647386            | 3649260                             | 3651134                    | 3553007                     |  |
| 232                   | 3664230                             | 3666097            | 3667964                             | 3669830                    | 3671695                     |  |
| 233                   | 3682869                             | 3684728            | 3686587                             | 3688445                    | 3690302                     |  |
| 234                   | 3701428                             | 3703280            | 3705131                             | 3706981                    | 3708830                     |  |
| 235                   | 371 <i>99</i> 09                    | 3721753            | 3723596                             | 3725438                    | 3727279                     |  |
| 236                   | 3738311                             | 3740147            | 37+1 <i>9</i> 83                    | 3743817                    | 3745651                     |  |
| 237                   | 3756636                             | 3758464            | 3760292                             | 3762118                    | 3763944                     |  |
| 238                   | 3774884                             | 3776704            | 3778524                             | 3780343                    | 3782161                     |  |
| 239                   | 3793055                             | 3794868            | 3796685                             | 3798492                    | 3800302                     |  |
| 240                   | 3811151                             | 3812956            | 3814761                             | 3816565                    | 3818368                     |  |
| 241                   | 3829171                             | 3830969            | 3832766                             | 3834563                    | 3836359                     |  |
| 242                   | 3847117                             | 3848908            | 3850698                             | 3852487                    | 3854275                     |  |
| 243                   | <b>386499</b> 0                     | 3866773            | 3868555                             | 3870337                    | 3872118                     |  |
| 244                   | 388278 <i>9</i>                     | 3884565            | 3886340                             | 3888114                    | 3889888                     |  |
| 245                   | 3900515                             | 3902284            | 3904052                             | 3905819                    | 3907585                     |  |
| 246                   | 3918169                             | 3919931            | 3921691                             | 3923452                    | 3925211                     |  |
| 247                   | 3935752                             | 3937506            | 3939260                             | 3941013                    | 3942765                     |  |
| 248                   | 3953264                             | 3955011            | 3956758                             | 3958504                    | 3960249                     |  |
| 249                   | 3970705                             | 3972446            | 3974185                             | 3975924                    | 3977662                     |  |
| 250                   | 3988077                             | 3989811            | 3991543                             | 3993275                    | 3 <i>99</i> 5007<br>4012282 |  |
| 251                   | 4005380                             | 4007106            | 4008832<br>40 <b>2</b> 60 <b>52</b> | 4010557                    | 4029488                     |  |
| 252                   | 4022614                             | 4024333            |                                     | 4027771                    | 4046627                     |  |
| 253                   | 4039780                             | 4041492            | 4°43205<br>4°6028 <i>9</i>          | 4044916                    | 4063698                     |  |
| 254                   | 4056878                             | 4058584            | 4077307                             | 4061994<br>407900 <b>5</b> | 4080703                     |  |
| 255                   | 4073909                             | 40756c8<br>4092567 | 4094259                             | 4095950                    | 4097641                     |  |
| 256<br>257            | 40 <b>9</b> c874                    | 4109459            | 4 <sup>1</sup> 11144                | 4112829                    | 4114513                     |  |
| 258                   | 4107772<br>41 <b>2</b> 460 <b>5</b> | 4126285            | 4127964                             | 4129643                    | 4131320                     |  |
| 259                   |                                     | 4143047            | 4144719                             | 4146391                    | 4148063                     |  |
| 260                   | 4141374                             | 4196744            | 4161410                             | 4163076                    | 4164741                     |  |
| 261                   | 4174717                             | 4176377            | 4178037                             | 4179696                    | 4181355                     |  |
| 262                   | 4191293                             | 4192947            | 4194601                             | 4196254                    | 4197906                     |  |
| 263                   | 4207806                             | 4209454            | 4211101                             | 4212748                    | 4214394                     |  |
| 264                   | 4224257                             | 4225898            | 4227539                             | 4229180                    | 4230820                     |  |
| 265                   | 4240645                             | 4242281            | 4243915                             | 4245550                    | 4247183                     |  |
| 266                   | 4256972                             | 4258601            | 4260230                             | 4261858                    | 4263486                     |  |
| 1                     | オーノックノー                             |                    | D =                                 | 1 -1                       | 1                           |  |

Artificial Numbers: Or,

|   | Artificial Numbers: Or, |                  |                  |         |                                  |         |  |
|---|-------------------------|------------------|------------------|---------|----------------------------------|---------|--|
|   | Natural<br>Numbers.     | 0                | I                | 2       | 3                                | 4       |  |
| ١ | 267                     | 4265113          | 4266739          | 4268365 | 4269990                          | 4271614 |  |
| ı | 268                     | 4281348          | 4282968          | 4284588 | 4286207                          | 4287825 |  |
| 1 | 269                     | 4297523          | 4299137          | 4300751 | 4302364                          | 4303976 |  |
| 1 | 270                     | 4313638          | 4315246          | 4316853 | 4318460                          | 4320067 |  |
| ı | 271                     | 4329693          | 4331295          | 4332897 | 4334498                          | 4336098 |  |
| ١ | 272                     | 4345689          | 4347285          | 4348881 | 4350476                          | 4352071 |  |
| ١ | 2 <b>7</b> 3            | 4361626          | 4363217          | 4364807 | 4366396                          | 4367985 |  |
| 1 | 274                     | 4377506          | 4379090          | 4380674 | 4382258                          | 4383841 |  |
| ١ | 275                     | 4393327          | 4394906          | 4396484 | 4398062                          | 4399639 |  |
| ı | 276                     | 4409091          | 4410664          | 4412237 | 4413809                          | 4415380 |  |
| ١ | 277                     | 4424798          | 4426365          | 4427932 | 4429499                          | 4431065 |  |
| ı | 278                     | 4440448          | 4442010          | 4443571 | 4445132                          | 4446692 |  |
| ı | 279                     | 4456042          | 4457598          | 4459154 | 4460709                          | 4462264 |  |
| 1 | 280                     | 4471580          | 4473131          | 447468  | 4476231                          | 4477780 |  |
| ı | 281                     | 4487963          | 4488608          | 4490153 | 4491697                          | 4493241 |  |
| ı | 282                     | 4502491          | 4504031          | 4505570 | 4507109                          | 4508647 |  |
| 1 | 283                     | 4517864          | 4519399          | 4520932 | 4522466                          | 4523998 |  |
| ı | 284                     | 4533183          | 4534712          | 4536241 | 4537769                          | 4539296 |  |
| 1 | 285                     | 4548449          | 4549972          | 4551495 | 4553018                          | 4554540 |  |
| I | 286                     | 4563660          | 4565179          | 4566696 | 4568213                          | 4569731 |  |
| I | 287                     | 4578819          | 4580332          | 4581844 | 4583356                          | 4584868 |  |
| ı | 288                     | 4593925          | 4595433          | 4596940 | 4598446                          | 4599953 |  |
| İ | 289                     | 4608978          | 4610481          | 4611983 | 4613484                          | 4614985 |  |
| ı | 290                     | 4623980          | 4625477          | 4626974 | 4628470                          | 4629966 |  |
| ı | 291                     | 4638930          | 4640422          | 4641914 | 4643405                          | 4644895 |  |
| ١ | 292                     | 4653828          | 4655316          | 4656802 | 4658288                          | 4659774 |  |
| 1 | 293                     | 4668676          | 4670158          | 4671640 | 4673120                          | 4674601 |  |
| ſ | 294                     | 4683473          | 4684950          | 4686427 | 4687903                          | 4689378 |  |
| 1 | 295                     | 4 <i>69</i> 8220 | 4699692          | 4701163 | 4702634                          | 4704105 |  |
| 1 | <b>2</b> 96             | 4712917          | 4714384          | 4715850 | 4717317                          | 4718782 |  |
| ı | <sup>2</sup> 97         | 4727564          | 4 <b>7</b> 29027 | 4730488 | 4731949                          | 4733410 |  |
| 1 | 298                     | 4742163          | 4743620          | 4745076 | <b>4</b> 746 <b>5</b> 3 <b>3</b> | 4747988 |  |
| ı | 299                     | 4756712          | 4758164          | 4759616 | 4761067                          | 4762518 |  |
| 1 | 300                     | 4771212          | 4772660          | 4774107 | 4775553                          | 4776999 |  |
| 1 | 301                     | 4785665          | 4787108          | 4788550 | 478 <i>999</i> 1                 | 4791432 |  |
| 1 | 302                     | 4800069          | 4801507          | 4802945 | 4804381                          | 4805818 |  |
| - | 303                     | 4814426          | 4815859          | 4817292 | 4818724                          | 4820156 |  |
| ı | 304                     | 4828736          | 4830164          | 4831592 | 4833019                          | 4834446 |  |
| 1 | 302                     | 4842998          | 4844422          | 4845845 | 4847268                          | 4848690 |  |
|   | 30 <b>6</b>             | 4857214          | 4858633          | 4860052 | 4861470                          | 4862888 |  |
| 1 | 307                     | 4871384          | 4872798          | 4874212 | 4875626                          | 4877039 |  |
| I | 308                     | 4885507          | 4886917          | 4888326 | 4889735                          | 4891144 |  |
| 1 | 30 <i>9</i>             | 4899585          | 4900990          | 4902395 | 4903799                          | 4905203 |  |
| 1 | 310                     | 4913617          | 4915018          | 4916418 | 4917818                          | 4919217 |  |
|   |                         |                  |                  |         |                                  |         |  |

Logarithms (to 3109.).

| Natural    | 3                          | <i>Lugar n n n</i>         | ns (10 3109.)      | 8                  | 9                  |
|------------|----------------------------|----------------------------|--------------------|--------------------|--------------------|
| Numbers.   | _                          | , and the second           | /                  | _                  |                    |
| 267        | 4273238                    | 4274861                    | 4276484            | 4278106            | 4279727            |
| 268        | 4289443                    | 4291060                    | 4292677            | 4294293            | 4295908            |
| 269        | 4305588                    | 4307199                    | 4308809            | 4310419            | 4312029            |
| 270        | 4321673                    | 4323278                    | 4324883            | 4326487            | 4328090            |
| 271        | 4337698                    | 4339298                    | 4340896            | 4342494            | 4344092            |
| 272        | 4353665                    | 4355258                    | 4356851            | 4358444            | 4360035            |
| 273        | 4369573                    | 4371161                    | 4372748            | 4374334            | 4375920            |
| 274        | 4385423                    | 4387005                    | 4388587            | 4390167            | 4.391747           |
| 275        | 4401216                    | 4402792                    | 4404368            | 4405943            | 4407517            |
| 276        | 4416951                    | 4418522                    | 4420092            | 4421661            | 4423229            |
| 277        | 4432630                    | 4434195                    | 4435759            | 4437322            | 4438885            |
| 278        | 4448252                    | 4449811                    | 4451370            | 4452928            | 4454485            |
| 279        | 4463818                    | 4465372                    | 4466925            | 4468477            | 447co29            |
| 280        | 4479329                    | 4480877                    | 4482424            | 4483971            | 4485517            |
| 281        | 4494784                    | 4496326                    | 4497868            | 4499410            | 4500951<br>4516329 |
| 282        | 4510184                    | 4511721                    | 4513258<br>4528593 | 4514794<br>4530124 | 4531654            |
| 283        | 4525531                    | 4527062                    | 454387 <b>5</b>    | 4545400            | 4546924            |
| 284        | 4540823                    | 4542349                    | 4559102            | 4560622            | 4562142            |
| 285        | 4556c61                    | 4557582                    | 4574277            | 4575791            | 4577305            |
| 286        | 4571246<br>4586378         | 4572762<br>458783 <i>9</i> | 4589399            | 4590908            | 4592417            |
| 287        |                            | 4602963                    | 4604468            | 4605972            | 4607475            |
| 288        | 4601458<br>461648 <b>6</b> | 4617986                    | 4619485            | 4620984            | 4622482            |
| 289        | 4631461                    | 4632956                    | 4634450            | 4635944            | 4637437            |
| 290        | 4646386                    | 4647875                    | 4649364            | 4650853            | 4652341            |
| 291        | 4661259                    | 4662743                    | 4664227            | 4665711            | 4667194            |
| 292        | 467 <b>6</b> 081           | 4677560                    | 4679039            | 4680518            | 4681996            |
| 293<br>294 | 4690853                    | 4692327                    | 4693801            | 4695275            | 4696748            |
| 295        | 4795575                    | 4707044                    | 4708513            | 4709982            | 4711450            |
| 296        | 4720247                    | 4721711                    | 4723175            | 4724639            | 4726102            |
| 297        | 4734870                    | 4736329                    | 4737788            | 4739247            | 4740705            |
| 298        | 4749443                    | 4750898                    | 4752352            | 4753806            | 4755259            |
| 299        | 4763968                    | 4765418                    | 4766867            | 4768316            | 4769765            |
| 300        | 4778445                    | 477989ი                    | 4781334            | 4782778            | 4784222            |
| 301        | 4792873                    | 4794313                    | 4795754            | 4797192            | 4798631            |
| 302        | 4807254                    | 4808689                    | 4810124            | 4811559            | 481 2993           |
| 303        | 4821587                    | 4823018                    | 4824448            | 4825878            | 4827307            |
| 304        | 4835873                    | 4837299                    | .4838725           | 4840150            | 4841574            |
| 305        | 4850112                    | 4851533                    | 4852954            | 4854375            | 4855795            |
| 306        | 4864305                    | (4865721                   | 4867138            | 4868554            | 4869969            |
| 307        | 4878451                    | ,487 <i>9</i> 86 <b>3</b>  | :4881275           | 4882686            | 4884097            |
| 368        | 4892552                    | 4893959                    | (48 <b>953</b> 66  | 4896773            | 4898179            |
| 309        | 49066.07                   | 4908009                    | 4909412            | 4910814            | 4912216            |
| 310        | 4920616                    | 4922014                    | 4923413            | 4924810            | 4926207            |
|            |                            | D                          | D 2                |                    |                    |

Artificial Numbers: Or,

| 1                   | Artificial Numbers: Ur,  |                  |                          |                         |                  |  |  |
|---------------------|--------------------------|------------------|--------------------------|-------------------------|------------------|--|--|
| Natural<br>Numbers. | . 0                      | I                | 2                        | 3                       | 4 1              |  |  |
| 311                 | 4927604                  | 4929000          | 4930396                  | 4931791                 | 4933186          |  |  |
| 312                 | 4941 546                 | 4942938          | 4944329                  | 4945720                 | 4947110          |  |  |
| 313                 | 4955443                  | 4956831          | 4958218                  | 4959604                 | 4960990          |  |  |
| 314                 | 4959295                  | 4970679          | 4972062                  | 4973444                 | 4974825          |  |  |
| 315                 | 4983106                  | 4984484          | 4985862                  | 4987240                 | 4988617          |  |  |
| 316                 | 4 <i>99</i> 6871         | 4998245          | 4999619                  | 5000992                 | 5002365          |  |  |
| 317                 | 5010593                  | 5011962          | 5013332                  | 5014701                 | 5016069          |  |  |
| 318                 | 5024271                  | 5025637          | 5027002                  | 5028366                 | 5029731          |  |  |
| 319                 | <b>5</b> 03 <b>79</b> 07 | 5039268          | 5040629                  | 5041989                 | 5043349          |  |  |
| 320                 | 5051500                  | 5052857          | 5054213                  | 5055569                 | 5056925          |  |  |
| 321                 | 5055050                  | 5066403          | 5067755                  | 5069107                 | 507C459          |  |  |
| 322                 | 5078559                  | 5079 <b>9</b> 07 | 5081255                  | 5082603                 | 5083 <i>9</i> 50 |  |  |
| 323                 | 5092025                  | 5093370          | 5094713                  | 5096057                 | 5097400          |  |  |
| 324                 | 5105450                  | 5106790          | 5108130                  | 5109469                 | 5110808          |  |  |
| 325                 | 5118834                  | 5120170          | 5121505                  | 5122841                 | 5124175          |  |  |
| 326                 | 5132176                  | 5133508          | 5134840                  | 5136171                 | 5137501          |  |  |
| 327                 | 5145478                  | 5146805          | 5148133                  | 5149460                 | 5150787          |  |  |
| 328                 | 5158738                  | 5160062          | 5161386                  | 5162709                 | 5164031          |  |  |
| 329                 | 5171959                  | 5173279          | 5174598                  | 5175917                 | 5177236          |  |  |
| 330                 | 5185139                  | 5186455          | 5187771                  | 5189086                 | 5190400          |  |  |
| 331                 | 5198280                  | 5199592          | <b>5</b> 20 <b>09</b> 03 | 5202214                 | 5203525          |  |  |
| 332                 | 5.211381                 | 5212689          | <b>5</b> 213 <i>996</i>  | 5215303                 | 5216610          |  |  |
| 333                 | 5224442                  | 5225746          | 5227050                  | 5228353                 | 5229656          |  |  |
| 334                 | 5237465                  | 5238765          | 5240064                  | 5241364                 | 5242663          |  |  |
| 335                 | 5250448                  | 5251744          | 5253040                  | 5254335                 | 5255631          |  |  |
| 336                 | 5263393                  | 5264685          | 5265977                  | 5267269                 | 5268560          |  |  |
| 337                 | 5276299                  | 527.7588         | 5278876                  | 5280163                 | 5281451          |  |  |
| 338                 | 5289167                  | 5290452          | 5291736                  | 5293020                 | 5294303          |  |  |
| 339                 | 5.301 <i>99</i> 7        | 5303278          | 53045 <u>5</u> 8         | <b>5</b> 30583 <i>9</i> | 5307118          |  |  |
| 340                 | 5314789                  | 5316066          | 5317343                  | 5318619                 | 53 19895         |  |  |
| 34I ·               | 5327544                  | 5328817          | 5330090                  | 5331363                 | 5332635          |  |  |
| 342                 | 5340261                  | 5341531          | 5342800                  | <b>5</b> 34406 <i>9</i> | 5345338          |  |  |
| 343                 | 5352941                  | 5354207          | 5355473                  | 5356738                 | 5358003          |  |  |
| 344                 | 5365584                  | 5366847          | 5368109                  | 5369370                 | 5370631          |  |  |
| 345                 | 5378191                  | 5379450          | 5380708                  | 5381966                 | 5383223          |  |  |
| 346                 | 5390761                  | 5392016          | 5393271                  | 5394525                 | 5395779          |  |  |
| 347                 | 5403295                  | 5404546          | 5405797                  | 5407048                 | 54082 <i>9</i> 8 |  |  |
| 348                 | 5415792                  | 5417040          | 5418288                  | 5419535                 | 5420781          |  |  |
| 349                 | 5428254                  | 5429498          | 5430742                  | 5431 <i>9</i> 86        | 5433229          |  |  |
| 350                 | 5440680                  | 5441921          | 5443161                  | 5444401                 | 5445641          |  |  |
| 351                 | 5453071                  | 5454308          | 5455545                  | 5456781                 | 5458017          |  |  |
| 352                 | 5465427                  | 5466660          | 5467894                  | 5469126                 | 5470359          |  |  |
| 353                 | 5477747                  | 5478977          | 5480207                  | 5481436                 | 5+82665          |  |  |
| 354                 | 5490033                  | 5491259          | 5492486                  | 5493712                 | 5494937          |  |  |

Logarithms (to 3549.)

| : Managanal (       |                             | _ Lugarinn                 | ns (10 3)49.       | 8                  | ا و ا              |
|---------------------|-----------------------------|----------------------------|--------------------|--------------------|--------------------|
| Natural<br>Numbers. | 5                           | 0                          | 7                  | _                  |                    |
| 311                 | 4934580                     | 4935974                    | 4937368            | 4938761            | 4940154            |
| 312                 | 4948500                     | 4949890                    | 4951279            | 4952667            | 49540 <b>5</b> 6   |
| 313                 | 4962375                     | 4963761                    | 4965145            | 4966529            | 4967913            |
| 314                 | 4976206                     | 4977587                    | 4978967            | 4980347            | 4981727            |
| 315                 | 4989994                     | 4991370                    | 4992745            | 4994121            | 4995496            |
| 316                 | 5003737                     | 5005109                    | 500648t            | 5007852            | 5009222            |
| 317                 | 5017437                     | 5018805                    | 5020172            | 5021539            | 5022905            |
| 318                 | 5031094                     | 5032458                    | 5033821            | 5035183            | 5036545            |
| 319                 | 5044709                     | 5046068                    | 5047426            | 5048785            | 5050142            |
| 320                 | 5058280                     | 5059635                    | 5060990            | 5062344            | 5063697            |
| 321                 | 5071810                     | 5073160                    | 5074511            | 5075860            | 5077210            |
| 322                 | 5085297                     | 5085644                    | 5087990            | 5089335            | 5090680            |
| 323                 | 5098743                     | 5100085                    | 5101427            | 5102768            | 5104109            |
| 324                 | 5112147                     | 5113485                    | 5114823            | 5116160            | 5117497            |
| 325                 | 5125510                     | 5126844                    | 5128178            | 5129511<br>5142820 | 5130844            |
| 326                 | 5138332                     | 5140162                    | 5141491            | 5156089            | 5144149            |
| 327                 | 5152113                     | 5153439                    | 5154764            | 5169318            | 5157414            |
| 328                 | 5165354                     | 5166676                    | 5167997            | 5182506            | 5170639<br>5183823 |
| 329                 | 5178554                     | 5179872                    | 5181189            | 5195655            | 5196968            |
| 330                 | 5191715                     | 5193028                    | 5194342            | 5208764            | 5210073            |
| 331                 | 5204835                     | 5206145                    | 5207455            | 5221833            | 5223138            |
| 332                 | 5217916                     | 5219222                    | 5220528            | 5234863            | 5236164            |
| 333                 | 5230958                     | 5232260                    | 5233562            | 5247854            | 524915I            |
| 334                 | 5243961                     | 5245259                    | 5246557            | 5260807            | 5262100            |
| 335                 | 5256925                     | 525821 <i>9</i><br>5271141 | 5259513<br>5272431 | 5273721            | 5275010            |
| 336                 | 5269851                     | 5284024                    | 5285311            | 5286596            | 5287882            |
| 337                 | 5282738                     | 5296869                    | 5298152            | 5299434            | 5300716            |
| 338                 | 5295587                     | 5309677                    | 5310955            | 5312234            | 5313512            |
| 339                 | 5308398                     | 5322446                    | 5323721            | 5324996            | 5326270            |
| 340                 | 5321171<br>5333 <i>9</i> 07 | 5335179                    | 5336450            | 5337721            | 5338991            |
| 341                 | 5346606                     | 5347874                    | 5349141            | 5350408            | 5351675            |
| 342<br>343          | 5359267                     | 5360532                    | 5361795            | 5363059            | 5364322            |
| 344                 | 5371892                     | 5373153                    | 5374413            | 5375672            | 5376932            |
| 345                 | 5384481                     | 5385737                    | 5386994            | 5388250            | 5389506            |
| 346                 | 5397032                     | 5398286                    | 5399538            | 5400791            | 5402043            |
| 347                 | 5409548                     | 5410798                    | 5412047            | 5413296            | 5414544            |
| 348                 | 5422028                     | 5423274                    | 5424519            | 5425765            | 5427010            |
| 349                 | 5434472                     | 5435714                    | 5436956            | 5438198            | 5439439            |
| 350                 | 5446880                     | 5448119                    | 5449358            | 5450596            | 5451834            |
| 351                 | 5459253                     | 5460489                    | 5461724            | 5462958            | 5464193            |
| 352                 | 5471591                     | 5472823                    | 5474055            | 5475286            | 5476517            |
| 353                 | 5483894                     | 5485123                    | 5486351            | 5487578            | 5488806            |
| 354                 | 5406162                     |                            | 5498612            | 5499836            | 5501060            |
| -                   |                             |                            | <del></del>        |                    | ·                  |

| Artificial Numbers: Or, |                          |          |          |                  |                  |
|-------------------------|--------------------------|----------|----------|------------------|------------------|
| Natural<br>Numbers.     | 0                        | I        | 2        | 3                | 4                |
| 355                     | 5502283                  | 5503507  | 5504730  | 5505952          | 5507174          |
| 356                     | 5514500                  | 5515720  | 5516939  | 5518158          | 5519377          |
| 357                     | 5526682                  | 5527898  | 5529114  | 5530330          | 5531545          |
| 358                     | 5538830                  | 5540043  | 5541256  | 5542468          | 5543680          |
| 359                     | 5550944                  | 5552154  | 5553362  | 55\$4572         | 5555781          |
| 360                     | 5563025                  | 5564231  | 5565437  | 5566643          | 5567848          |
| 36 I                    | 5575072                  | 5576275  | 5577477  | 5578580          | 5579881          |
| 352                     | 5587086                  | 5588285  | 5589484  | 5590683          | 5591882          |
| 363                     | 5599066                  | 5600262  | 5601458  | 5602654          | 5603849          |
| 364                     | 5611014                  | 5612207  | 5613399  | 5614592          | 5615784          |
| 365                     | 5622929                  | 5624118  | 5625308  | 5626497          | 5627685          |
| 36 <i>6</i>             | 5634811                  | 5635997  | 5637183  | 5638369          | 5639555          |
| 367                     | 5646661                  | 5647844  | 5649027  | 5650209          | 5651392          |
| 368                     | 5658478                  | 5659658  | 5660838  | 5662017          | 5663196          |
| 369                     | 5670264                  | 5671440  | 5672617  | 5673793          | 5674969          |
| 370                     | 5682017                  | 5683191  | 5684364  | 5685537          | 5686710          |
| 371                     | 5693739                  | 5694910  | 5696080  | 5697249          | 5698419          |
| 372                     | 5705429                  | 5706597  | 5707764  | 5798930          | 5710097          |
| 373                     | 5717088                  | 5718252  | 5719416  | 5720580          | 5721743          |
| 374                     | 5728716                  | 5729877  | 5731038  | 5732198          | 5733358          |
| 375                     | 5740313                  | 5741471  | 5742628  | 5743786          | 5744943          |
| 376                     | 5751878                  | 5753033  | 5754188  | 5755342          | 5756496          |
| 377                     | 5763413                  | 5764565  |          | 5766868          | 5768019          |
| 378                     | 5774917                  | 5776067  | 5777215  | 5778363          | 5779511          |
| 379                     | 5786392                  | 5787538  | 5788683  | 5789828          | 5790973          |
| 380                     | <b>5797</b> 836          | 5798979  | 5800121  | 5801263          | 5802405          |
| 381                     | 5809250                  | 5810389  | 5811529  | 5812668          | 5813807          |
| 382                     | 5820634                  | 5821770  | 5822907  | 5824043          | 5825179          |
| 383                     | 5831988                  | 5833122  | 5834255  | 5835388          | 5836521          |
| 384                     | 5843312                  | 5844443  | 5845574  | 5846704          | 5847834          |
| 385                     | 5854617                  | 5855735  | 5856863  | 5857 <i>99</i> 0 | 5859117          |
| 386                     | <b>5</b> 86 <b>5</b> 873 | 5866998  | 5868123  | 5869247          | 58 <b>7</b> 0371 |
| 387                     | 5877110                  | 5878232  | 5879353  | 5880475          | 15881 596        |
| 388                     | 5888317                  | 5889436  | 5890555  | 5891674          | 5892792          |
| 389                     | 5899496                  | 5900612  | 5901728  | 5902844          | 5903959          |
| 3 <i>9</i> 0            | 5910646                  | 5911759  | 591 2873 | 5913985          | 5915098          |
| 391                     | 5921768                  | 5922878  | 5923988  | 5925098          | 5926298          |
| 392                     | 5932861                  | 5933968  | 5935076  | 5936183          | 5937290          |
| 393                     | 5943925                  | 5945030. | 5946135  | 5947239          | 5548344          |
| 394                     | 5954962                  | 5956064  | 5957166  | 5958268          | 5959369          |
| 395                     | 5965971                  | 5967070. |          | 5969268          | 5970367          |
| 396                     | 5976952                  | 5978048  | 5979145  | 5980241          | 5981336          |
| 397                     | 5987905                  | 5988999  | 5990092  | 5991186          | 5992279          |
| 398                     | 5998831                  | 5999922  | 6001013  | 6002103          | 60031.03         |
|                         |                          |          | ·        |                  |                  |

Logarithms (to 3989.)

| Logarithms (10 3989.) |                          |                    |                                     |                                              |                          |
|-----------------------|--------------------------|--------------------|-------------------------------------|----------------------------------------------|--------------------------|
| Natural               | 5                        | 6                  | 7                                   | 8                                            | 9                        |
| Numbers.              | 5508396                  | 5509618            | 5510839                             | 5512059                                      | 5513280                  |
| 356                   | 5520595                  | 5521813            | 5523031                             | 5524248                                      | 5525465                  |
| 357                   | 5532760                  | 5533975            | 5535189                             | 5536403                                      | 5537617                  |
| 358                   | 5544892                  | 5546103            | 5547314                             | 9548524                                      | 554 <i>9</i> 73 <b>5</b> |
| 359                   | 5556989                  | 5558197            | 5559404                             | 5560612                                      | 5561818                  |
| 360                   | 5569053                  | 5570257            | 5571461                             | 5572665                                      | 5573869                  |
| 361                   | 5\$81C83                 | 5582284            | 5583485                             | 5584686                                      | 5585880                  |
| 362                   | \$\$93080                | 5594278            | 5595476                             | 5596673                                      | <b>55</b> 97870          |
| 363                   | 5605044                  | 5606239            | 5607433                             | 5608627                                      | 5609820                  |
| 364                   | 5616975                  | 5618167            | 5619358                             | 5620548                                      | 5621739                  |
| 365                   | 5628875                  | 5630062            | 5631250                             | 5632437                                      | 5633624                  |
| . 366                 | 5640740                  | 5641925            | 5643109                             | 5644293                                      | 5645477                  |
| 367                   | 5652573                  | 5653755            | 5654936                             | 5656117                                      | 5657298                  |
| 368                   | 5664375                  | 5665553            | 5666731                             | 5667909                                      | 5669087                  |
| 369                   | 5676144                  | 5677320            | 5678494                             | 5679669                                      | 5080843                  |
| 370                   | 5687882                  | 568 <i>9</i> 054   | 5690226                             | 5691397                                      | 5692568                  |
| 371                   | <b>5</b> 699588          | 5700757            | 5701926                             | 5703094                                      | 5704262                  |
| .372                  | <b>5</b> 711263          | 5712428            | 5713594                             | 5714759                                      | 5715924                  |
| 373                   | <b>5</b> 722 <i>9</i> 06 | 5724069            | 572523I                             | 5726393                                      | 5727555                  |
| 374                   | 5734518                  | 5735678            | 5736837                             | 5737996                                      | 57391 <b>5</b> 4         |
| 375                   | <b>5</b> 746099          | 5747256            | 5748412                             | 5749568                                      | 5750723                  |
| 376                   | 5757650                  | 5758803            | 5759956                             | 5761109                                      | 5762261                  |
| 377                   | 5769169                  | 5770320            | 5771470                             | 5772620                                      | 5773769<br>5785246       |
| 378                   | 5780659                  | 5781806            | 5782953                             | 5784100                                      | 5796693                  |
| 379                   | 5792118                  | 5793262            | 5794406                             | 5795550                                      | 2808110                  |
| 380                   | 5803547                  | 5804688            | 5805829                             | 5806969<br>5818250                           | 5819497                  |
| 381                   | 5814945                  | 5816084            | 5817222                             | 5 <sup>8</sup> 18359<br>5 <sup>8</sup> 29719 | 5830854                  |
| 382                   | 5826314                  | 5827450            | 5828585                             | 5847040                                      | 5842181                  |
| 383                   | 5837654                  | 5838786            | 5839918                             | 5841050<br>5852351                           | 5853479                  |
| 384                   | 5848963                  | 5850093            | 585122 <b>2</b><br>58624 <i>9</i> 6 | 5863622                                      | 5864748                  |
| 385<br>386            | 5860244                  | 5861370<br>5872618 | 5873742                             | 5874865                                      | 5875987                  |
| 387                   | 5871495                  | 5883838            | 5884958                             | 5886078                                      | 5887198                  |
| 388                   | 5882717<br>5893910       | 5895028            | 5896145                             | 5897262                                      | 5898379                  |
| 389                   | 5905075                  | 5906189            | 5907304                             | 5908418                                      | 5909532                  |
| 390                   | 5916210                  | 5917322            | 5918434                             | 5919546                                      | 5920657                  |
| 391                   | 5927318                  | 5928427            | 5929536                             | 5930644                                      | 5931753                  |
| 392                   | <b>5</b> 938397          | .5939503           | 5940609                             | 5941715                                      | 5942820                  |
| 393                   | 5949447                  | 5950 <b>55</b> I   | 5951654                             | 5952757                                      | 5953860                  |
| 394                   | 5960470                  | 5961571            | 5962671                             | 5963771                                      | 5964871                  |
| 395                   | 5971465                  | 5972563            | 5973660                             | 5974758                                      | 5975855                  |
| 396                   | 5982432                  | 5983527            | 5984622                             | 5985717                                      | 5986811                  |
| 397                   | 5993371                  | 5994464            | 5995556                             | 5996648                                      | 5997739                  |
| 398                   | 6004283                  | 6005373            | 6006462                             | 607551                                       | 6008640                  |
|                       |                          | 3717               | ·                                   |                                              |                          |

|                       | Artificial Numbers: Or; |                            |                                     |                            |                    |   |  |  |
|-----------------------|-------------------------|----------------------------|-------------------------------------|----------------------------|--------------------|---|--|--|
| Natural  <br>Numbers. | 0                       |                            | 2                                   | 3 1                        | 4                  |   |  |  |
| 399                   | 6009729                 | 6010817                    | 6011905                             | 6012993                    | 6014081            |   |  |  |
| 400                   | 6020600                 | 6021685                    | 6022771                             | 6023856                    | 6024941            |   |  |  |
| 401                   | 6031444                 | 6032527                    | 6033609                             | 6034692                    | 6035774            |   |  |  |
| 402                   | 6042261                 | 6043341                    | 6044421                             | 6045500                    | 6046580            |   |  |  |
| 403                   | 6053050                 | 6054128                    | 6055205                             | 6056282                    | 6057359            |   |  |  |
| 404                   | 6063814                 | 6064888                    | 6065963                             | 6067037                    | 6068111            |   |  |  |
| 405                   | 6074550                 | 6075622                    | 6076694                             | 6077766                    | 6078837            |   |  |  |
| 406                   | 6085260                 | 6086330                    | 60873 <i>99</i><br>60 <i>9</i> 8078 | 6088468                    | 6089537            | l |  |  |
| 407                   | 6095944                 | 6097011                    | 6108730                             | 6099144                    | 6100210            |   |  |  |
| 408                   | 6106602                 | 6107666<br>611829 <b>5</b> | 6119356                             | 6120417                    | 6121478            |   |  |  |
| 409                   | 6117233                 | 6128898                    | 6129957                             | 6131015                    | 6132073            |   |  |  |
| 411                   | 6138418                 | 6139475                    | 6140531                             | 6141587                    | 6142643            | l |  |  |
| 412                   | 6148972                 | 6150026                    | 6151080                             | 6152133                    | 6153187            |   |  |  |
| 413                   | 6159501                 | 6160552                    | 6161603                             | 6162654                    | 6163705            |   |  |  |
| 414                   | 6170003                 | 6171052                    | 6172101                             | 6173149                    | 6174197            | l |  |  |
| 415                   | 6180481                 | 6181527                    | 6182573                             | 0183619                    | 6184665            | ŀ |  |  |
| 416                   | 6190933                 | 6191977                    | 6193021                             | 6194064                    | 6195107            | ł |  |  |
| 417                   | 6201360                 | 6202402                    | 6203443                             | 6204484                    | 0205524            | l |  |  |
| 418                   | 6211763                 | 6212802                    | 6213840                             | 0214879                    | 6215917            | ١ |  |  |
| 419                   | 6222140                 | 6223177                    | 6224213                             | 0225149                    | 6226284            | I |  |  |
| 420                   | 6232493                 | 6233527                    | 6234560                             |                            | 6236627            | l |  |  |
| 421                   | 6242821                 | 6243852                    | 6244884                             |                            | 6246945            | l |  |  |
| 422                   | 6253124                 | 6254153                    | 6255182                             | 6256211                    | 6257239            | I |  |  |
| 423                   | 6263404                 | 6264430                    |                                     |                            | 6267509            | ı |  |  |
| 424                   | 6273659                 |                            | 6275707                             |                            | 6277754<br>6287975 | l |  |  |
| 425                   | 6283889                 | 1                          | 1                                   | 6297153                    | 6298172            | ١ |  |  |
| 426                   | 6294096                 |                            | 1                                   | 6307329                    | 6308345            | ı |  |  |
| 427<br>428            | 6314438                 |                            | 1                                   | 6317481                    | 6318495            | I |  |  |
| 429                   | 6324573                 |                            |                                     | 6327609                    | 6328620            | 1 |  |  |
| 430                   | 6334685                 |                            |                                     | 6337713                    | 6338723            | ١ |  |  |
| 431                   | 6344773                 |                            |                                     | 6347795                    | 6348801            | ı |  |  |
| 432                   | 6354837                 | 6355843                    | 6356848                             | 6357852                    | 6358857            | ı |  |  |
| 433                   | 6364879                 | 6365882                    | , <b>  63</b> 66884                 | .   <i>636</i> 7887        | 0368889            | I |  |  |
| 434                   | 6374897                 | 6375898                    | 63768 <i>9</i> 8                    | 3   63778 <i>9</i> 8       | 63788 <i>9</i> 8   | ١ |  |  |
| 435                   | 6384893                 | 6385891                    | 638 <i>6</i> 88 <i>9</i>            |                            | 6388884            | - |  |  |
| 436                   | 6394869                 | 6 6395861                  | 6396857                             |                            |                    |   |  |  |
| 437                   |                         |                            | 6406802                             |                            |                    |   |  |  |
| 438                   |                         |                            |                                     |                            |                    | 1 |  |  |
| 439                   |                         |                            | 6426623                             |                            |                    |   |  |  |
| 440                   |                         |                            |                                     |                            | 6438473<br>6448323 | Í |  |  |
| 441                   |                         |                            |                                     | 5   6447339<br>7   6457169 |                    |   |  |  |
| 442                   | 645422                  | 104))20                    | , 1 - 4 ) 0 10                      | 1 04 ) / 109               | 1 4701),           | 1 |  |  |

Logarithms (to 4429.)

| Natural    |                            | Logaini)<br>L    | ns (ro 4429. |                    | 1 .                |
|------------|----------------------------|------------------|--------------|--------------------|--------------------|
| Numbers.   | 5                          | •                | 7            | 8                  | 9                  |
| 399        | 6015168                    | 601 <i>6</i> 255 | 6017341      | 6018428            | 6019514            |
| 400        | 6026025                    | 6027109          | 6028193      | 6029277            | 6030361            |
| 401        | 6036855                    | 6037937          | 6039018      | 6040099            | 6041180            |
| 402        | 6047659                    | 6048738          | 6049816      | 6050895            | 6051973            |
| 403        | 6058435                    | 6059512          | 6060587      | 6061663            | 6062738            |
| 404        | 6069185                    | 6070259          | 6071332      | 6072405            | 6073478            |
| 405        | 6079909                    | 6080979          | 6082050      | 6083120            | 6084190            |
| 406        | 6090605                    | 6091674          | 6092742      | 6093809            | 6094877            |
| 407        | 6101276                    | 6102342          | 6103407      | 6104472            | 6105537            |
| 408        | 6111921                    | 6112948          | 6114046      | 6115109            | 6116171            |
| 409        | 6122539                    | 6123599          | 6124660      | 6125720            | 6126779            |
| 410        | 6133132                    | 6134189          | 6135247      | 6136304            | 6137361            |
| 411        | 6143698                    | 6144754          | 6145809      | 6146863            | 6147918            |
| 412        | 6154240                    | 6155292          | 6156345      | 6157397            | 6158449            |
| 413        | 6164755                    | 6165805          | 6166855      | 6167905            | 6168954            |
| 414        | 6175245                    | 6176293          | 6177340      | 6178387            | 6179434            |
| 415        | 6185710                    | 6186755          | 6187800      | 6188845            | 6189889            |
| 416        | 6196150                    | 6197193          | 6198235      | 6199277            | 6200319            |
| 417        | 6206565                    | 6207605          | 6208645      | 6209684            | 6210724            |
| 418        | 6216955                    | 6217992          | 6219030      | 6220067            | 6221104            |
| 419        | 6227320                    | 6228355          | 6229300      | 6230424            | 6231459            |
| 420        | 6237660                    | 6238693          | 6239725      | 6240757            | 6241789            |
| 42I        | 6247976                    | 6249006          | 6250036      | 6251066<br>6261350 | 6252095<br>6262377 |
| 422        | 6258267<br><b>6</b> 268534 | 6259295          | 6270585      | 6271610            | 6272634            |
| 423        | 6278777                    | 6279800          | 6280823      | 6281845            | 6282867            |
| 424        | 6288996                    | 6290016          | 6291036      | 6292057            | 6293076            |
| 425        | 6299190                    | 6300208          | 6301226      | 6302244            | 6303262            |
| 426<br>427 | 6309361                    | 6310377          | 6311392      | 6312408            | 6313423            |
| 428        | 6319508                    | 6320522          | 6321535      | 6322548            | 6323560            |
| 429        | 6329632                    | 6330643          | 6331653      | 6332664            | 6333674            |
| 430        | 6339732                    | 6340740          | 6341749      | 6342757            | 6343765            |
| 431        | 6349808                    | 6350814          | 6351825      | 6352826            | 6353832            |
| 432        | 6359861                    | 6360865          | 6361869      | 6362872            | 6363876            |
| 433        | 6369891                    | 6370893          | 6371894      | 6372895            | 6373896            |
| 434        | 6379898                    | 6380897          | 6381896      | 6382895            | 6383894            |
| 435        | 6389882                    | 6390879          | 6391876      | 6392872            | 6393869            |
| 436        | 6399842                    | 64co837          | 6401832      | 6402826            | 640382C            |
| 437        | 6409781                    | 6410773          | 6411765      | 6412758            | 6413749            |
| 438        | 6419696                    | 6420686          | 6421676      | 6422666            | 6423656            |
| 439        | 6429589                    | 6430577          | 6431565      | 6432552            | 6433540            |
| 440        | 6439459                    | 6440445          | 6441430      | 6442416            | 6443401            |
| 441        | 6449307                    | 6450291          | 6451274      | 6452257            | 6453240            |
| 442        | 6459133                    | 6460114          | 6461095      | 6462076            | 6453057            |
| ·          |                            |                  | ) (1         |                    |                    |

|                    | Artificial Numbers: Or, |                             |           |                    |                             |  |  |
|--------------------|-------------------------|-----------------------------|-----------|--------------------|-----------------------------|--|--|
| Natural<br>Numbers | .0                      | 1                           | 2         | 3                  | 4                           |  |  |
| 443                | 6464037                 | 6465017                     | 6465997   | 6466977            | 6467957                     |  |  |
| 444                | 6473830                 | 6474808                     | 6475785   | 6476763            | 6477740                     |  |  |
| 445                | 6483600                 | 6484576                     | 6485552   | 6486527            | 6487502                     |  |  |
| 446                | 6493349                 | 6494322                     | 6495296   | 6496269            | 6497242                     |  |  |
| 447                | 6503075                 | 6504047                     | 6505018   | 6505989            | 6506960                     |  |  |
| 448                | 6512780                 | 6513749                     | 6514719   | 6515687            | 6516656                     |  |  |
| 449                | 6522463                 | 6523430                     | 6524397   | 6525364            | 6526331                     |  |  |
| 450                | 6532125                 | 6533090                     | 6534055   | 6535019            | 6535984                     |  |  |
| 451                | 6541765                 | 6542728                     | 6543691   | 6544653            | 6545616                     |  |  |
| 452                | 6551384                 | 6552345                     | 6553306   | 6554266            | 6555226                     |  |  |
| 453                | 6 <i>56</i> 0982        | 6561941                     | 6562899   | 6563857            | 6564815                     |  |  |
| 454                | 6570559                 | 6571515                     | 657247I   | 6573427            | 6574383                     |  |  |
| 455                | 6580114                 | 6581068                     | 6582023   | 6 <b>58</b> 2976   | 6583930                     |  |  |
| 456                | 6589648                 | 6590601                     | 6591553   | 6592505            | 6593456                     |  |  |
| 457                | 6599162                 | 6600112                     | 6601062   | 6602012            | 6602962                     |  |  |
| 458                | 6608655                 | 6609603                     | 6610551   | 6611499            | 6612446                     |  |  |
| 459                | 6618127                 | 6619073                     | 6620019   | 6620964            | 6621910                     |  |  |
| 460                | 6627578                 | 6628522                     | 6529466   | 6630410            | 6631353                     |  |  |
| 461                | 6637009                 | 6637951                     | 6638893   | 6639835            | 6640776                     |  |  |
| 462                | 6646420                 | 6647360                     | 6648299   | 6649239            | 6650178                     |  |  |
| 463                | 6655810                 | 6656748                     | 6657685   | 6658623            | 6659560                     |  |  |
| 464                | 6665180                 | 6666116                     | 6667051   | 6667987            | 6668922                     |  |  |
| 465                | 6674530                 | 6675463                     | 6676397   | 6677331            | 6678264                     |  |  |
| 466                | 6683859                 | 6684791                     | 6685723   | 6686654            | 6687585                     |  |  |
| 467                | 6693169                 | 6694099                     | 6695028   | 6695958            | 6696887                     |  |  |
| 468                | 6702459                 | 6703386                     | 6704314   | 6705242            | 6706169                     |  |  |
| 469                | 6711728                 | 6712654                     | 6713580   | 6714506            | 6715431                     |  |  |
| 470                | 6720979                 | 6721903                     | 6722826   | 6723750            | 6724673                     |  |  |
| 471                | 6730209                 | 6731131                     | 6732053   | 6732974            | 6733896                     |  |  |
| 472                | 6739420                 | 6740340                     | 6741260   | 6742179            | 6743099                     |  |  |
| 473                | 6748611                 | 6749529                     | 6750447   | 6751365            | 6752283                     |  |  |
| 474                | 6757783                 | 6758700                     | 6759615   | 6760531            | 6761447                     |  |  |
| 475                | 6766936                 | 6767850                     | 6768764   | 6769678            | 6770592                     |  |  |
| 476                | 6776069                 | 6776982                     | 6777894   | 6778866            | 6779718<br>6788824          |  |  |
| 477                | 6785184                 | 6786094                     | 6787004   | 6787914            |                             |  |  |
| 478                | 6794279                 | 6795187                     | 6796096   | 6797004            | 6797912<br>6806980          |  |  |
| 479                | 6803355                 | 6804.262                    | 6805168   | 6806074            | 6816030                     |  |  |
| 480<br>481         | 6812412                 | 6813317                     | 6814222   | 6815126            | 6825061                     |  |  |
| 482                | 6821451                 | 6822354<br>6831371          | 6823256   | 6824159            |                             |  |  |
|                    | 6830470                 |                             | 6832272   | 6833173            | 6834073                     |  |  |
| 483<br>484         | 6839471                 | 6840370                     | 6841269   | 6842168            | 6843066                     |  |  |
| 485                | 6848454                 | 6849 <b>35</b> 1<br>6858313 | 6850248   | 6851145<br>6860103 | 6852041<br>686c <i>99</i> 8 |  |  |
| 486                | 6857417                 | 6867256                     | 6868149   | 6869c43            | 6869936                     |  |  |
| 400                | 0000303                 | 1 300/230                   | 1 0000149 | 1 000 9043         | 0009930                     |  |  |

Logarithms (to 4869.)

|          | Logarithms (to 4869.) |                   |         |                            |                    |  |  |
|----------|-----------------------|-------------------|---------|----------------------------|--------------------|--|--|
| Natural  | 5 1                   | 6                 | 7       | 8                          | 9                  |  |  |
| Numbers. | 6468936               | 6469915           | 6470894 | 6471873                    | 6472851            |  |  |
| 443      | 6478718               | 6479695           | 6480671 | 6481648                    | 6482624            |  |  |
| 444      | 6488477               | 6489452           | 6490426 | 6491401                    | 6492375            |  |  |
| 446      | 6498215               | 6499187           | 6500160 | 6501132                    | 6502104            |  |  |
| 447      | 6507930               | .6508 <i>9</i> 01 | 6509871 | 6510841                    | 6511811            |  |  |
| 448      | 6517624               | 6518593           | 6519561 | 6520528                    | 6521496            |  |  |
| 449      | 6527297               | 6528263           | 6529229 | 6530195                    | 6531160            |  |  |
| 450      | 6536948               | 6537912           | 6538876 | 6539839                    | 6540802            |  |  |
| 451      | 6546578               | 6547539           | 6548501 | 6549462                    | 6550423            |  |  |
| 452      | 6556186               | 6557145           | 6558105 | 6559064                    | 6560023            |  |  |
| 453      | 6565773               | 6566730           | 6567688 | 6568645                    | 6569602            |  |  |
| 454      | 6575339               | 6576294           | 6577250 | 6578205                    | 6579159            |  |  |
| 455      | 6584884               | 6585837           | 6586790 | 6587743                    | 6588696            |  |  |
| 456      | 6594408               | 6595359           | 6596310 | 6597261                    | 6598212            |  |  |
| 457      | 6603911               | 6604860           | 6605809 | 6606758                    | 6607706            |  |  |
| 458      | 6613393               | 6614340           | 6615287 | 6616234                    | 6617181            |  |  |
| 459      | 6622855               | 6623800           | 6624745 | 6625690                    | 6626634            |  |  |
| 460      | 6632296               | 6633239           | 6634182 | 6635125                    | 6636067            |  |  |
| 461      | 6641717               | 6642658           | 6643599 | 6644539                    | 6645480            |  |  |
| 462      | 6651117               | 6652056           | 6652995 | 6653933                    | 6654872            |  |  |
| 463      | 6660497               | 6661434           | 6662371 | 6663307                    | 6664244            |  |  |
| 464      | 6669857               | 6670792           | 6671727 | 6672661                    | 6673595            |  |  |
| 465      | 6679197               | 6680130           | 6681062 | 6681995                    | 6682927            |  |  |
| 466      | 6688516               | 6689447           | 6690378 | 6691308                    | 6692239            |  |  |
| 467      | 6697816               | 6698745           | 6699674 | 6700602                    | 6701530            |  |  |
| 468      | 6707096               | 6708023           | 6708950 | 6709876                    | 6710802            |  |  |
| 469      | 6716356               | 6717281           | 6718206 | 6719130                    | 6720054            |  |  |
| 470      | 6725596               | 6726519           | 6727442 | 6728365                    | 6729287            |  |  |
| 47I      | 6734817               | 6735738           | 6736659 | 6737574                    | 6738500            |  |  |
| 472      | 6744018               | 6744937           | 6745856 | 6746775                    | 6747693            |  |  |
| 473      | 6753200               | 6754117           | 6755034 | 6755951                    | 6756867            |  |  |
| 474      | 6762362               | 6763277           | 6764192 | 6765107                    | 6766022            |  |  |
| 475      | 6771505               | 6772418           | 6773332 | 6774244                    | 6775157            |  |  |
| 476      | 6780629               | 6781540           | 6782452 | 6783362                    | 6784273            |  |  |
| 477      | 6789734               | 6790643           | 6791552 | 6792461                    | 6793370            |  |  |
| 478      | 6798819               | 6799727           | 6830634 | 6801541                    | 6802448<br>6811507 |  |  |
| 479      | 6807886               | 6808792           | 6809697 | 6810602                    | 6820548            |  |  |
| 480      | 6816934               | 6817838           | 6818741 | 6819645                    | 6829569            |  |  |
| 481      | 6825963               | 6826865           | 6827766 | 6828668                    | 6838572            |  |  |
| 482      | 6834973               | 6835873           | 6836773 | 6837673                    | 6847556            |  |  |
| 483      | 6843965               | 6844863           | 6845761 | 6846659                    | 6856522            |  |  |
| 484      | 6852938               | 6853834           | 6854730 | 6855626                    | 6865469            |  |  |
| 485      | 6861892               | 6862787           | 6863681 | 686457 <b>5</b><br>6873506 | 6874398            |  |  |
| 485      | 6870828               | 6871721           | 6872613 | 00/3)00                    | -074525            |  |  |
|          |                       | Q                 | Q 2     |                            |                    |  |  |

| _                   | Artificial Numbers: Or, |                    |                    |                    |                    |  |  |
|---------------------|-------------------------|--------------------|--------------------|--------------------|--------------------|--|--|
| Natural<br>Numbers. | 0                       | I                  | 2                  | 3                  | 4                  |  |  |
| 487                 | 6875290                 | 6876181            | 6877073            | 6877964            | 6878855            |  |  |
| 488                 | 6884198                 | <i>6</i> 885088    | 6885978            | 6886867            | 6887757            |  |  |
| 489                 | 6893089                 | <i>68939</i> 77    | 6894864            | 6895752            | 6896640            |  |  |
| 490                 | 6901961                 | 6902847            | 6403733            | 6934616            | 6905505            |  |  |
| 49I                 | 6910815                 | 6911699            | 6912584            | 6913468            | 6914352            |  |  |
| 492                 | 6919651                 | 6920534            | 6921416            | 6922298            | 6923180            |  |  |
| 493                 | 6928469                 | 6929350            | 9930231            | 6931111            | 6931991            |  |  |
| 494                 | 6937269                 | 6938148            | 6939027            | 6939906            | 6940785            |  |  |
| 495                 | 6946052                 | 6946929            | 6947806            | 6948683            | 6949560            |  |  |
| 496                 | 6954817                 | 6955692            | 6956568            | 6957443            | 6958318            |  |  |
| 497                 | 6963564                 | 6964438            | 6965311            | 6966185            | 6967058            |  |  |
| 498                 | 6972293                 | 6973165            | 6974037            | 6974909            | 6975780            |  |  |
| 499                 | 6981005                 | 6981876            | 6982746            | 6983616            | 6984485            |  |  |
| 500                 | 6989700                 | 6990569            | 6991437            | 6992305            | 6993173            |  |  |
| 501                 | 6998377                 | 6999244            | 7000111            | 7000977            | 7001843            |  |  |
| 502                 | 7007037                 | 7007902            | 7008767            | 7009632            | 7010496            |  |  |
| 503                 | 7015680                 | 7016543<br>7025167 | 7017406            | 7018269<br>7026890 | 7019132<br>7027751 |  |  |
| 504                 | 7024305                 | 7033774            | 7034633            | 7035493            | 7036352            |  |  |
| 505                 | 7032914<br>7041505      | 7042363            | 7043221            | 7644079            | 7044937            |  |  |
| 506<br>507          | 7050080                 | 7050936            | 7051792            | 7052649            | 7053505            |  |  |
| 508                 | 7058637                 | 7059492            | 7060347            | 7061201            | 7062055            |  |  |
| 509                 | 7067178                 | 7068031            | 7068884            | 7069737            | 7070589            |  |  |
| 510                 | 7075702                 | 7076553            | 7077405            | 7078256            | 7079107            |  |  |
| 511                 | 7084206                 | 7085059            | 7085908            | 7086758            | 7087607            |  |  |
| 512                 | 7092700                 | 7093548            | 7094396            | 7095244            | 7096091            |  |  |
| 513                 | 7101174                 | 7102020            | 7102866            | 7103713            | 7104559            |  |  |
| 514                 | 71c963I                 | 7110476            | 7111321            | 7112165            | 7113010            |  |  |
| 515                 | 7118072                 | 7118915            | 7119759            | 7120601            | 7121444            |  |  |
| 516                 | 7126497                 | 7127339            | 7128180            | 7129021            | 7129862            |  |  |
| 517                 | 7134905                 | 7135745            | 7136585            | 7137425            | 7138264            |  |  |
| 518                 | 7143298                 | 7144136            | 7144974            | 7145812            | 7146650            |  |  |
| 5.19                | 7151674                 | 7152510            | 7153347            | 7154183            | 7155019            |  |  |
| 520                 | 7160033                 | 7160869            | 7161703            | 7162538            | 7163373            |  |  |
| 521                 | 7168377                 | 7169211            | 7170044            | 7170877            | 7171710            |  |  |
| 522                 | 7176705                 | 7177537            | 7178369            | 7179200            | 7180032            |  |  |
| 523                 | 7185017                 | 7185847            | 7186677            | 7187507            | 7188337            |  |  |
| 524                 | 7193313                 | 7194142            | 71 94970           | 7195799            | 7196627            |  |  |
| 525                 | 7201593                 | 7202420            | 7203247            | 7204074            | 7204901            |  |  |
| 526                 | 7209857                 | 7210683<br>7218930 | 7211508            | 7212334            | 7213159            |  |  |
| 527                 | 7218106                 | 7227162            | 7219754            | 7220578<br>7228806 | 7221401<br>7229628 |  |  |
| 528<br>529          | 7234557                 | 7235378            | 7227984<br>7236198 | 7237019            | 7237839            |  |  |
| 530                 | 7242759                 | 7243578            | 7244397            | 7245216            | 7246035            |  |  |
| 1 770               | /-T-//7                 | 1-40X/0            | 1 /                | /-T/2-0            | 1-7-437            |  |  |

Digitized by Google

Logarithms (to 5309.)

|                     | Logaruhms (10 5309.)                |                  |                    |         |                             |  |  |
|---------------------|-------------------------------------|------------------|--------------------|---------|-----------------------------|--|--|
| Natural<br>Numbers. | 5                                   | 6                | 7                  | 8       | 9                           |  |  |
| 487                 | 6879746                             | 6880637          | 6881528            | 6882418 | 6883308                     |  |  |
| 488                 | 6888646                             | 6889535          | 6890423            | 6891312 | 6892200                     |  |  |
| 489                 | 6897527                             | 6898414          | 6899301            | 6900188 | 6901074                     |  |  |
| 490                 | 6906390                             | 6907275          | 6908161            | 6909046 | 6909930                     |  |  |
| 491                 | 6915235                             | 6916119          | 6917002            | 6917885 | 6918768                     |  |  |
| 492                 | 6924062                             | 6924944          | 6925826            | 6926707 | 6927588                     |  |  |
| 493                 | 6932872                             | 6933752          | 6934631            | 6935511 | 6936390                     |  |  |
| 494                 | 6941663                             | 6942541          | 6943419            | 6944297 | 6945174                     |  |  |
| 495                 | 6950437                             | 6951313          | 6952189            | 6953065 | 6953941                     |  |  |
| 496                 | 6959193                             | 6960 <b>0</b> 67 | 6950942            | 6961816 | 6962690                     |  |  |
| 497                 | 6967931                             | 6968804          | 6969676            | 6970549 | 6971421                     |  |  |
| 498                 | 6976652                             | 6977523          | 6978394            | 6979264 | 698C135                     |  |  |
| 499                 | 6985355                             | 6986224          | 6987093            | 6987963 | 6988831                     |  |  |
| 500                 | 6994041                             | 69 <b>949</b> 08 | 6995776            | 6996643 | 6997510                     |  |  |
| 201                 | 7002709                             | 7003575          | 7004441            | 7005307 | 7006172                     |  |  |
| 502                 | 7011361                             | 7012225          | 7013089            | 7013953 | 7014816                     |  |  |
| 503                 | 7019995                             | 7020857          | 7021719            | 7022582 | 7023144                     |  |  |
| 504                 | 7028612                             | 7029472          | 7070333            | 7031193 | 70320 <b>5</b> 4<br>7040647 |  |  |
| 505                 | 7037212                             | 7038071          | 7038929            | 7048366 | 7049223                     |  |  |
| 506                 | 7045793                             | 7046652          | 7047509<br>7056072 | 7056927 | 7057782                     |  |  |
| 507<br>508          | 7054360                             | 7055216          | 7064617            | 7065471 | 7066324                     |  |  |
| 509                 | 7062910                             | 7072294          | 7073146            | 7073998 | 7074850                     |  |  |
| 510                 | 7071442<br>707 <i>99</i> <b>5</b> 7 | 7080808          | 7081659            | 7082509 | 7083359                     |  |  |
| 511                 | 7088456                             | 7089305          | 7090154            | 7091003 | 7091851                     |  |  |
| 512                 | 7096939                             | 7097786          | 7098633            | 7099480 | 7100327                     |  |  |
| 513                 | 7105404                             | 7106250          | 7107096            | 7107941 | 7108786                     |  |  |
| 514                 | 7113854                             | 7114698          | 7115542            | 7116385 | 7117229                     |  |  |
| 515                 | 7122287                             | 7123129          | 7123971            | 7124813 | 7125655                     |  |  |
| 516                 | 7130703                             | 7131544          | 7132385            | 7133225 | 7134065                     |  |  |
| 517                 | 7139104                             | 7139943          | 7140782            | 7141620 | 7142459                     |  |  |
| 518                 | 7147488                             | 7148325          | 7149162            | 7150000 | 7150837                     |  |  |
| 519                 | 7155856                             | 7156691          | 7157527            | 7158363 | 7159198                     |  |  |
| 520                 | 7164207                             | 7165042          | 7165876            | 7166710 | 7167544                     |  |  |
| 521                 | 7172543                             | 7173376          | 7174208            | 7175C4I | 7175873                     |  |  |
| 522                 | 7180863                             | 7181694          | 7182525            | 7183356 | 7184186                     |  |  |
| 523                 | 7189167                             | 7189996          | 7190826            | 7191655 | 7192484                     |  |  |
| 524                 | 7197455                             | 7198283          | 7199111            | 7199938 | 7200766                     |  |  |
| 525                 | 7205727                             | 7206554          | 7207380            | 7208206 | 7209032                     |  |  |
| 526                 | 7213984                             | 7214809          | 7215633            | 7216458 | 7217282                     |  |  |
| 527                 | 7222225                             | 7223048          | 7223871            | 7224694 | 7225517                     |  |  |
| 528                 | 7230450                             | 7231272          | 7232093            | 7232914 | 7233736                     |  |  |
| 529                 | 7238660                             | 7239480          | 7240300            | 7241120 | 7241939                     |  |  |
| 530                 | 7246854                             | 7247672          | 7248491            | 7249309 | 1/23012/                    |  |  |

| Artificial Numbers: Or, |                  |                 |                  |                              |                 |  |
|-------------------------|------------------|-----------------|------------------|------------------------------|-----------------|--|
| Natural<br>Numbers.     | 0                | Ĺ               | 2                | 3                            | 4               |  |
| 531                     | 7250945          | 7251763         | 7252581          | 7253398                      | 7254215         |  |
| 532                     | 7259116          | 7259933         | 7260749          | 7261565                      | 7262380         |  |
| 533                     | 7267272          | 7268087         | 7268931          | 7269716                      | 7270531         |  |
| 534                     | 7275413          | 7276226         | 7277039          | 7277852                      | 7278664         |  |
| 535                     | 7283538          | 7284349         | 7285161          | 7285972                      | 7286784         |  |
| 536                     | 7291648          | 7292458         | 7293268          | 7294078                      | 7294888         |  |
| 537                     | 7299743          | 7300551         | 7301360          | 7302168                      | 7302977         |  |
| 538                     | 7307823          | 7308630         | 7309437          | 7310244                      | 7311051         |  |
| 539                     | 7315888          | 7316693         | 7317499          | 7318304                      | 7319109         |  |
| 540                     | 7323938          | 7324749         | 7325546          | 7326350                      | 7327153         |  |
| 541                     | 7331 <i>9</i> 73 | 7332775         | 7333578          | 7334380                      | 7335182         |  |
| 542                     | 7339993          | 7340794         | 7341595          | 7342396                      | 7343197         |  |
| 543                     | 7347 <i>99</i> 8 | 7348798         | 7349598          | 7350397                      | 7351196         |  |
| 544                     | 735 <b>59</b> 89 | 7356787         | 7357585          | 7358383                      | 7359181         |  |
| 545                     | 7363965          | 7364762         | 7365558          | 7366355                      | 7367151         |  |
| 546                     | 7371 <i>926</i>  | 7372722         | 7373517          | 7374312                      | 7375107         |  |
| 547                     | 73 <i>79</i> 873 | 7380667         | 7381461          | 7382254                      | 7383048         |  |
| 548                     | 7387806          | 7388598         | 7389390          | 7390182                      | 7390974         |  |
| 549                     | 7395723          | 7396514         | 7397305          | 7398096                      | 7398886         |  |
| 550                     | 7403627          | 7404416         | 7405206          | 7405995                      | 7406784         |  |
| 551                     | 7411516          | 7412304         | 7413092          | 7413880                      | 7414668         |  |
| 552                     | 741 <i>9</i> 391 | 7420177         | 7420964          | 7421750                      | 7422537         |  |
| 553                     | 7427251          | 7428037         | 7428822          | 7429607                      | 74303 <i>92</i> |  |
| 554                     | 7435098          | 743588i         | 7436665          | 7437449                      | 7438232         |  |
| 555                     | 7442930          | 7443712         | 7444495          | 7445277                      | 7446059         |  |
| 556.                    | 7450748          | 7451529         | 7452310          | 7453091                      | 7453871         |  |
| 557                     | 7458552          | 7459332         | 7460111          | 7460890                      | 7461670         |  |
| 558                     | 7466342          | 7467120         | 74678 <i>9</i> 8 | 7468676                      | 7469454         |  |
| 559                     | 7474118          | 7 <b>474895</b> | 7475672          | 7476448                      | 7477225         |  |
| 560                     | 7481880          | 7482656         | 7483431          | 7484206                      | 7484981         |  |
| 561                     | 7489629          | 7490403         | 7491177          | 7491950                      | 7492724         |  |
| 562                     | 7497363          | 7498136         | 7498908          | <i>7</i> 499 <sup>6</sup> 81 | 7500453         |  |
| 563                     | 7505087          | 7505855         | 7506626          | 7 <b>5</b> 073 <i>9</i> 8    | 7508168         |  |
| 564                     | 7512791          | 7513561         | 7514331          | 7515100                      | 7515870         |  |
| 565                     | 7520484          | 7521253         | 7522022          | 7522790                      | 7523558         |  |
| 566                     | 7528164          | 7528932         | 7529699          | 7530466                      | 7531232         |  |
| 567                     | 7535831          | 7536596         | 7537362          | 7538128                      | 7538893         |  |
| 568                     | 7543483          | 7544248         | 7545012          | <i>75</i> 45777              | 7546541         |  |
| 569                     | 7551123          | 7551886         | 7552649          | 7553412                      | 7554178         |  |
| 570                     | 7558749          | 7559510         | 7560279          | 7561034                      | 7561795         |  |
| 571                     | 7566361          | 7567122         | 7567882          | 7568642                      | 7569402         |  |
| 572                     | 7573960          | 7574719         | 7575479          | 7576237                      | 7576996         |  |
| 573                     | 7581546          | 7582304         | 7583062          | 7583819                      | 7584577         |  |
| 574                     | 7589119          | 7589875         | 7590632          | 7591388                      | 7592144         |  |
| -                       |                  |                 |                  |                              |                 |  |

Logarithms (to \$749.)

| Natural<br>Numbers. | 5                | 6                  | ,                  |                                             |                             |
|---------------------|------------------|--------------------|--------------------|---------------------------------------------|-----------------------------|
| 1 1 -               |                  |                    |                    | 704-400                                     | 7240000                     |
|                     | 7255033          | 7255850            | 7256667            | 7257483                                     | 7258300                     |
|                     | 7263196          | 7264012            | 7264827            | 7265642                                     | 7266457                     |
|                     | 7271344          | 7272158            | 7272972            | 7273786                                     | 7274599                     |
|                     | 7279477          | 7280290            | 7281101            | 7281914                                     | 7282726                     |
|                     | 7287595          | 7288406            | 7289216            | 7290027                                     | 7290838                     |
| 1                   | 7295697          | 7296506            | 7297316            | 7298125                                     | 7298934                     |
|                     | 7303785          | 7304593            | 7305400            | 73062C8                                     |                             |
|                     | 7311857          | 7312663            | 7313470            | 7314276                                     | 7315082                     |
|                     | 7319914          | 7320719            | 7321524            | 73 <b>22329</b><br>73 <b>3</b> 0367         | 7331170                     |
|                     | 7327957          | 7328760            | 7329564            | 7338390                                     | 7339191                     |
|                     | 7335985          | 7336787            | 7337588            | 7346398                                     | 7347198                     |
|                     | 7343 <i>99</i> 7 | 7344798            | 7345598            |                                             | 7355191                     |
|                     | 7351995          | 7352794            | 7353593            | 7354 <b>3</b> 92<br>736237 <b>1</b>         | 7363168                     |
|                     | 7359979          | 7360776            | 7361574            |                                             | 7371131                     |
| 1 ' ' ' 1           | 7367948          | 7368744            | 7369540            | 7370335<br>737828 <b>5</b>                  | 7379079                     |
| , , ,               | 7375902          | 7376696            | 7377491            |                                             |                             |
|                     | 7383841          | 7384634            | 7385427            | 7356220<br>7394141                          | 7387013<br>7394932          |
|                     | 7391766          | 7392558            | 7393350            |                                             | 7402837                     |
|                     | 7399677          | 7400467            | 7401257            | 7402047                                     | 7410728                     |
|                     | 7407573          | 7408362            | 7409151            | 7409939                                     | 7418604                     |
| 1                   | 7415455          | 7416283            | 7417030            | 7417817                                     | 7426466                     |
| 1 1                 | 7423323          | 7424109            | 7424895            | 7425680                                     |                             |
|                     | 7431176          | 7431961            | 7432745            | 7433530                                     | 7434314                     |
|                     | 7439015          | 7439799            | 7440582            | 7441365                                     | 7442147                     |
|                     | 7446841          | 7447622            | 7448404            | 7449187                                     | 7449967                     |
|                     | 7454652          | 7455432            | 7456212            | 7456992                                     | 7457772<br>7465 <b>5</b> 64 |
|                     | 7462449          | 7463218            | 7464006            | 7464785<br>7472564                          | 7473341                     |
| 1                   | 7470232          | 7471009            | 7471787            | 7472304                                     | 7481105                     |
|                     | 7478501          | 7478777            | 7479553            | 7488080                                     | 7488854                     |
|                     | 7485756          | 7486531            | 7487306            | 7495817                                     | 7496 <b>5</b> 90            |
|                     | 7493498          | 7494271            | 7495044            |                                             | 7504312                     |
|                     | 75CI 225         | 7501997            | 7502769            | 7503541                                     | 7512021                     |
|                     | 7508939          | 7509710            | 7510480            | 7511251<br>7518947                          | 7519716                     |
|                     | 7516639          | 7517409            | 7518178            | 7526629                                     | 7 <b>5</b> 27397            |
|                     | 7524326          | 7525094            | 7525862            | 7534298                                     | 7535065                     |
|                     | 7531999          | 7532766            | 7533532            |                                             | 7542719                     |
| 567                 | 7539659          | 7540424            | 7541189            | 7541 <i>9</i> 54<br>7 <b>54<i>9</i>59</b> 6 | 7550359                     |
|                     | 7547305          | 7548669            | 7548832            |                                             | 7 <b>5</b> 57987            |
|                     | 7554937          | 7555700            | 7556462            | 7557224<br>7564840                          | 7565600                     |
|                     | 7562556          | 7563318            | 7564079            | 757244I                                     | 7573201                     |
|                     | 7570162          | 7570922            | 7571682            | 7580030                                     | 7580788                     |
| 1 1                 | 7577755          | 7578513<br>7586091 | 7579272<br>7586848 | 7587605                                     | 7588362                     |
|                     | 7585334          | 7593656            | 7594412            | 7595168                                     | 7595923                     |
| 574                 | 7592 <u>9</u> 00 | 1793070            | 1/394412           | יסטי (פני/                                  | 13/37-5                     |

|                     | Artificial Numbers: Ur, |                    |                    |                          |                            |  |  |
|---------------------|-------------------------|--------------------|--------------------|--------------------------|----------------------------|--|--|
| Natural<br>Numbers. | •                       | I                  | 2                  | 3                        | 4                          |  |  |
| 575                 | 7596678                 | <b>759</b> 7434    | 7598189            | 7598944                  | 7599699                    |  |  |
| 576                 | 7604225                 | 7604979.           | 7605733            | 7609486                  | 7607240                    |  |  |
| 577                 | 7611758                 | 7612511            | 7613263            | 7614016                  | 7614768                    |  |  |
| 578                 | 7619278                 | 7620030            | 7620781            | 7621532                  | 7622283                    |  |  |
| 579                 | 7626786                 | 7627536            | 7628286            | 762 <b>9</b> 03 <b>5</b> | 7629785                    |  |  |
| 580                 | 7634280                 | 7635029            | 7635777            | 7636526                  | 7637274                    |  |  |
| 187                 | 7641761                 | 7642509            | 7643256            | 7644003                  | 7644750                    |  |  |
| 582                 | 7649230                 | 7649976            | 7650722            | 7051408                  | 7652214                    |  |  |
| 583                 | 7656686                 | 7657430            | 7658175            | 7658920                  | 7659664                    |  |  |
| 584                 | 7664128                 | 7664872            | 7665616            | 7666359                  | 7667102                    |  |  |
| 585                 | 7671559                 | 7672301            | 7673043            | 7673785                  | 7674527                    |  |  |
| 586                 | 7678976                 | 7679717            | 7680458            | 7681199                  | 7681940                    |  |  |
| 587                 | 7686381                 | 7687121            | 7687860            | 7688600                  | 7689339                    |  |  |
| 588                 | 7693773                 | 7694512            | 7695250            | 7695988                  | 7696727                    |  |  |
| 589                 | 7701153                 | 7701890            | 7702627            | 7703364                  | 7704101                    |  |  |
| 590                 | 7708520                 | 7709256            | 7709992            | 771C728                  | 7711463                    |  |  |
| 591                 | 7715875                 | 7716610            | 7717344            | 7718079                  | 7718813                    |  |  |
| 592                 | 7723217                 | 772395 I           | 7724684            | 7725417                  | 7726150                    |  |  |
| 593                 | 7730547                 | 7731279            | 7732011            | 7732743                  | 7733475                    |  |  |
| 594                 | 7737864                 | 7738596            | 7739326            | 7740057                  | 7740788                    |  |  |
| 595                 | 7745170                 | 7745899            | 7746629            | 7747359                  | 7748088                    |  |  |
| 596                 | 7752463                 | 7753191            | 7753920            | 7754648                  | 7755376                    |  |  |
| 597                 | 7759743                 | 7760471            | 7761198            | 7761925                  | 7762652                    |  |  |
| 598                 | 7767012                 | 7767738            | 7768464            | 7769190                  | 7769916                    |  |  |
| 599                 | 7774268                 | 7774993            | 7775718            | 7776443                  | 7777167                    |  |  |
| 600                 | 7781513                 | 7782236            | 7782960            | 7783983                  | 7784407                    |  |  |
| 601                 | 7788745                 | 7789467            | 7790190            | 7790912                  | 7791634                    |  |  |
| 602                 | 7795965                 | 7796686            | 7797408            | 7798129                  | 7798850                    |  |  |
| 603                 | 7803173                 | 7803893            | 7804613            | 7805333                  | 7806053                    |  |  |
| 604                 | 7810369                 | 7811088            | 7811807            | 7812526                  | 7813245                    |  |  |
| 605                 | 7817554                 | 7818272            | 7818989            | 7819707                  | 7820424                    |  |  |
| 606                 | 7824726                 | 7825443            | 7826159            | 7826876                  | 7827592                    |  |  |
| 607                 | 7831887                 | 7832602            | 7833318            | 7834033                  | 7834748                    |  |  |
| 608                 | 7839036                 | 7839750            | 7840464            | 7841178                  | 7841892                    |  |  |
| 609                 | 7846173                 | 7846886            | 7847599            | 7848312                  | 7849024                    |  |  |
| 610                 | 7853298                 | 7854010<br>7861123 | 7854722            | 7855434                  | 7856145                    |  |  |
| 611<br>612          | 7860412                 | 7868224            | 7861833<br>7868933 | 7862544                  | 7863254                    |  |  |
| 613                 | 7874605                 | 7875313            | 7876021            | 7869643                  | 7870352                    |  |  |
| 614                 | 7881684                 | 7882391            | 7883028            | 7876730                  | 7877438                    |  |  |
| 6.5                 | 7888751                 | 7889457            | 7890163            | 78838 <b>0</b> 5         | 7884512                    |  |  |
| 616                 | 7895807                 | 7896512            | 7897217            | 789c869                  | 7891 <b>575</b><br>7898620 |  |  |
| 617                 | 7902852                 | 7903.555           | 7904259            | 7897922                  | 7905666                    |  |  |
| 618                 | 7902072                 | 79.0587            | 0911290            | 7904963<br>7911992       | 791 2695                   |  |  |
| <u> </u>            | 17-700)                 | 177.5707           |                    | /211222                  | 19, 209)                   |  |  |

Logarithms (to 6189.)

| Natural            | . 5                         | 6                          | ,7                                   | 8 1                         | ا و ا              |
|--------------------|-----------------------------|----------------------------|--------------------------------------|-----------------------------|--------------------|
| Numbers.           |                             | 7601208                    | 7601962                              | 7602717                     | 7603+71            |
| 575                | 7600453<br>7607993          | 7608746                    | 7609500                              | 7610253                     | 7611005            |
| 576                | 7615520                     | 7616272                    | 7617024                              | 7617775                     | 7018527            |
| 57 <b>7</b><br>578 | 7623034                     | 7623784                    | 7624535                              | 7625285                     | 7626035            |
| 579                | 7630534                     | 7631284                    | 7632033                              | 7632782                     | 7633531            |
| 580                | 7638022                     | 7638770                    | 7639518                              | 7640266                     | 7641014            |
| 581                | 7645497                     | 7646244                    | 7646991                              | 7647737                     | 7648484            |
| 582                | 7652959                     | 7653705                    | 7654450                              | 7555195                     | 7655941            |
| 583                | 7660409                     | 7661153                    | 7661897                              | 7662641                     | 7663385            |
| 584                | 7667845                     | <i>76</i> 68588            | 7669331                              | 7670074                     | 76708:6            |
| 585                | 7675269                     | 767 <i>6</i> 011           | 7676752                              | 7677494                     | 7678235            |
| 586                | 7682680                     | 76834 <b>2</b> 1           | 7684161                              | 7684901                     | 7685641            |
| 587                | 7690079                     | 7690818                    | 7691557                              | 7692296                     | 7693035            |
| 588                | 7697465                     | 7698203                    | 7698940                              | 7699678                     | 7700416            |
| 589                | 7704838                     | 77°5575                    | 7706311                              | 7707048                     | 7707784            |
| 590                | 7712199                     | 7712934                    | 7713670                              | 7714405                     | 7715140            |
| 591                | 7719547                     | 7720282                    | 7721016                              | 7721750                     | 7722483            |
| 592                | 7726884                     | 7727616                    | 7728349                              | 7729082                     | 7729814            |
| 593                | 7734207                     | 7734939                    | 7735670                              | 7736402                     | 7737133            |
| 594                | 7741519                     | 7742249                    | 7742979                              | 7743710                     | 7744440            |
| 595                | 7748818                     | 7749547                    | 7750276                              | 7751005                     | 7751734<br>7759016 |
| 596                | 7756104                     | 7756832<br>7764106         | 77 <b>575</b> 60<br>77 <b>6</b> 4833 | 7758288<br>776 <b>555</b> 9 | 7766286            |
| 597                | 7753379<br>7770642          | 7771367                    | 7772093                              | 7772818                     | 7773543            |
| 598                | 7770042                     | 7778616                    | 7779340                              | 7780065                     | 7780789            |
| 5 <i>99</i><br>600 | 7785130                     | 7785853                    | 7786576                              | 7787299                     | 7788022            |
| 106                | 7792356                     | 7793078                    | 7793800                              | 7794522                     | 7795243            |
| 602                | 7799571                     | 7800291                    | 7801012                              | 7801732                     | 7802453            |
| 603                | 7806773                     | 7807492                    | 7808212                              | 7808931                     | 7809650            |
| 604                | 7813963                     | 7814681                    | 7815400                              | 7816118                     | 7816836            |
| 605                | 7821141                     | 7821859                    | 7822576                              | 7823293                     | 7824010            |
| 606                | 7828308                     | 782 <i>9</i> 024           | 7829740                              | 7830456                     | 7831171            |
| 607                | 7835463                     | 7836178                    | 7836892                              | 7837607                     | 7838321            |
| 608                | 7842606                     | 7843319                    | 7844033                              | 7844746                     | 7845460            |
| 609                | 7849737                     | 7850450                    | 7851162                              | 7851874                     | 7852586            |
| 610                | 7856857                     | 7857568                    | 7858279                              | 7858990                     | 7859701            |
| 611                | 7863965                     | 7864675                    | 7865385                              | 7866095                     | 7866805            |
| 612                | 7871061                     | 7871770                    | 7872479                              | 7873188                     | 7873896            |
| 613                | 7878146                     | 7878853                    | 7879561                              | 788c269                     | 7880976<br>7888045 |
| 614                | 7885219                     | 7885926                    | 7886632                              | 7887339<br>7894397          | 7895102            |
| 615                | 7892281                     | 7892986<br>790003 <b>5</b> | 7893691<br>7900739                   | 7901444                     | 7902148            |
| 616                | 78 <i>99</i> 331<br>7906370 | 7907073                    | 7907776                              | 7908479                     | 7909182            |
| 618                | 7913397                     | 7914099                    | 7914801                              | 7915503                     | 7916205            |
| <u> </u>           | 12.3321                     | 177-4-09                   | R r                                  | 17-77-5                     | 1,2                |

|                     | Artificial Numbers: Or, |                  |                 |                    |                 |  |  |
|---------------------|-------------------------|------------------|-----------------|--------------------|-----------------|--|--|
| Natural<br>Numbers. | . 0                     | I                | 2               | 3                  | 4               |  |  |
| 619                 | 7916906                 | 7917608          | 7918309         | 7919011            | 7919712         |  |  |
| 620                 | 7923917                 | 7924617          | 7925318         | 7926018            | 7926718         |  |  |
| 621                 | 7930916                 | 7931615          | 7932314         | 7933014            | 7933712         |  |  |
| 622                 | 7937904                 | 7938602          | 7939300         | 7939998            | 7940696         |  |  |
| 623                 | 7944880                 | 7945578          | 7946274         | 7946971            | 7947668         |  |  |
| 624                 | 7951846                 | 7952542          | 7953238         | 7953933            | 7954629         |  |  |
| 625                 | 7958800                 | 7959495          | <i>796019</i> 0 | 7960884            | 7961578         |  |  |
| 626                 | 7965743                 | 7966437          | 7967131         | 7967824            | 7968517         |  |  |
| 627                 | 7972675                 | <i>79</i> 73368  | 7974060         | 7974753            | 7975445         |  |  |
| 628                 | 7979596                 | 7 <i>9</i> 80288 | 7980979         | 7981671            | <i>79</i> 82362 |  |  |
| 629                 | 79865c6                 | 79871 <i>9</i> 7 | 7987887         | 7 <i>9</i> 88577   | 7982267         |  |  |
| 630                 | 7993405                 | 7994097          | 7994784         | 7995473            | 7996162         |  |  |
| 631                 | 8000294                 | 8000982          | 8001670         | 8002358            | 8003046         |  |  |
| 632                 | 8007171                 | 8007858          | 8008545         | 8009232            | 8009919         |  |  |
| 633                 | 8014037                 | 8014723          | 8015409         | 8016095            | 8016781         |  |  |
| 634                 | 8020893                 | 8021578          | 8022262         | 8022947            | 8023632         |  |  |
| 635                 | 8027737                 | 8028421          | 8029105         | 8029789            | 8030472         |  |  |
| 636                 | 8034571                 | 8035254          | 8035937         | 8036619            | 8037302         |  |  |
| 637                 | 8041394                 | 8042076          | 8042758         | 8043439            | 8044121         |  |  |
| 638                 | 8048207                 | 8048887          | 8049568         | 8050248            | 8050929         |  |  |
| 639                 | 8055009                 | 8055688          | 8056368         | 80.57047           | 8057726         |  |  |
| 640                 | 8061800                 | 8062478          | 8063157         | 806383 <b>&lt;</b> | 8064513         |  |  |
| 641                 | 8068580                 | 8069258          | 8069935         | 8070612            | 8071290         |  |  |
| 642                 | 8075350                 | 8076027          | 8076703         | 8077379            | 8078055         |  |  |
| 643                 | 8082110                 | 8082785          | 8083460         | 8084136            | 8084811         |  |  |
| 644                 | 8088859                 | 8089533          | 8090207         | 8090881            | 8091555         |  |  |
| 645                 | 8095597                 | 8096270          | 8096944         | 8097617            | 8c98290         |  |  |
| 646                 | 8102325                 | 8102997          | 8103670         | 8104342            | 8105013         |  |  |
| 647                 | 8109043                 | 8109714          | 8110385         | 8111056            | 8111727         |  |  |
| 648                 | 8115750                 | 8116420          | 8117090         | 8117760            | 8118430         |  |  |
| 649                 | 8122447                 | 8123116          | 81 23785        | 8124454            | 8125123         |  |  |
| 650                 | 8129134                 | 8129802          | 8130470         | 8131138            | 8131805         |  |  |
| 651                 | 8135810                 | 8136477          | 8137144         | 8137811            | 8138478         |  |  |
| 652                 | 8142476                 | 8143142          | 8143808         | 8144474            | 8145140         |  |  |
| 653                 | 8149132                 | 8149797          | 8150462         | 8151127            | 8151791         |  |  |
| 65+                 | 8155777                 | 8156441          | 8157105         | 8157769            | 8158433         |  |  |
| 655                 | 8162413                 | 8163076          | 8163739         | 8164402            | 8165064         |  |  |
| 656                 | 8169038                 | 8169700          | 8170362         | 8171024            | 8171686         |  |  |
| 657                 | 8175654                 | 8176315          | 8176976         | 8177636            | 8178297         |  |  |
| 658                 | 8182259                 | 8182919          | 8183579         | 8184239            | 8184898         |  |  |
| 669                 | 8188854                 | 8189513          | 8190172         | 8190831            | 8191489         |  |  |
| 661,                | 8195439                 | 8196097          | 81 96755        | 8197413            | 8198071         |  |  |
| 2                   | 8202015                 | 8202672          | 8203328         | 8203987            | 8204642         |  |  |
| 662                 | 8208580                 | 8209236          | \$209892        | 8210548            | 8211203:        |  |  |

Logarithms (to 6629.)

| _                   |         |                          | ns (10 0029. | ,       | 1        |
|---------------------|---------|--------------------------|--------------|---------|----------|
| Natural<br>Numbers. | 5 .     | 6                        | 7            | 8       | 9        |
| 619                 | 7920413 | 7921114                  | 7921815      | 7922516 | 7923216  |
| 620                 | 7927418 | 7928118                  | 7928817      | 7929517 | 7936217  |
| 621                 | 7934411 | 7935110                  | 7935809      | 7936507 | 7937206  |
| 622                 | 7941394 | 7942091                  | 7942789      | 7943486 | 7944183  |
| 623                 | 7948365 | 7949061                  | 7949757      | 7950454 | 7951150  |
| 624                 | 7955324 | 7956020                  | 7956715      | 7957410 | 7958105  |
| 625                 | 7962273 | 7962967                  | 7963662      | 7964356 | 7965050  |
| 626                 | 7969211 | 7969904                  | 7970597      | 7971290 | 7971983  |
| 627                 | 7976137 | 7976829                  | 7977521      | 7978213 | 7978905  |
| 628                 | 7983053 | 7983744                  | 7984435      | 7985125 | 7985816  |
| 629                 | 7989957 | 7990647                  | 7991337      | 7992027 | 7492716  |
| 630                 | 7996851 | 7997540                  | 7998228      | 7998917 | 7999605  |
| 631                 | 8003734 | 8004421                  | 8005109      | 8005796 | 8006484  |
| 632                 | 8010605 | 8211292                  | 8011978      | 8012665 | 8013351  |
| 633                 | 8017466 | 8018152                  | 8018837      | 8019522 | 8020208  |
| 634                 | 8024316 | 8025001                  | 8025685      | 8026369 | 8c27053  |
| 635                 | 8031156 | 80 <b>3</b> 183 <i>9</i> | 8032522      | 8033205 | 8033888  |
| 636                 | 8037984 | 8038666                  | 8039348      | 8c40031 | 8040712  |
| 637                 | 8044802 | 8045483                  | 804.5164     | 8046845 | 8047526  |
| 638                 | 8051609 | 8052289                  | 8052969      | 8053649 | 8054329  |
| 639                 | 8058405 | 8059085                  | 8059763      | 8060442 | 8061121  |
| 640                 | 8065191 | 8065869                  | 8066547      | 8067225 | 8067903  |
| 641                 | 8071967 | 8072643                  | 8073320      | 8073997 | 8074874  |
| 642                 | 8078731 | 8079407                  | 8080083      | 8080759 | 8081434  |
| 643                 | 8085485 | 8086160                  | 8086835      | 8087510 | 8088184  |
| 644                 | 8092229 | 8092903                  | 8093577      | 8094250 | 8094924  |
| 645                 | 8098962 | 8099635                  | 8160308      | 8100980 | 8101653  |
| 646                 | 8105685 | 8106357                  | 8107029      | 8107700 | 8108371  |
| 647                 | 8112398 | 81 13068                 | 8113739      | 8114409 | 8115080  |
| 648                 | 8119100 | 8119769                  | 8120439      | 8121108 | 8121778  |
| 649                 | 8125792 | 8126460                  | 8127129      | 8127797 | 8128465  |
| 650                 | 8132473 | 8133141                  | 8133808      | 8134475 | 8135143  |
| 651                 | 8139144 | 118,2818                 | 8140477      | 8141144 | 8141810  |
| 652                 | 8145805 | 8146471                  | 8147136      | 8147801 | 8148467  |
| 653                 | 8152456 | 8153120                  | 8153785      | 8154449 | 8155113  |
| 654                 | 8159096 | 8159760                  | 8160423      | 8161087 | 8161750  |
| 655                 | 8165727 | 8166389                  | 8167052      | 8167714 | 8168376  |
| 656                 | 8172347 | 8173009                  | 8173670      | 8174331 | 8174993  |
| 657                 | 8178958 | 8179618                  | 8180278      | 8180939 | 8181599  |
| 658                 | 8185558 | 8186217                  | 8186877      | 8187536 | 8188195. |
| 659                 | 8192146 | 8192806                  | 8193465      | 8194123 | 8194781  |
| 660                 | 8198728 | 8199386                  | 8200043      | 8200700 | 8201358  |
| 661                 | 8205298 | 8205955                  | 8206611      | 8207268 | 8207924  |
| 662                 | 8211859 | 8212514                  | 8213170      | 8213825 | 8214480  |
|                     |         |                          | Rr2          |         |          |

| Artificial Numbers: Or, |                             |                             |                                      |                    |                    |  |
|-------------------------|-----------------------------|-----------------------------|--------------------------------------|--------------------|--------------------|--|
| Natural<br>Numbers.     | 0                           | I                           | 2                                    | 3                  | 4                  |  |
| 663                     | 8215135                     | 8215790                     | 8216445                              | 8217100            | 8217755            |  |
| 664                     | 8221681                     | 8222335                     | 8222989                              | 8223643            | 8224296            |  |
| 665                     | 8228216                     | 8228869                     | 8229522                              | 8230175            | 8230828            |  |
| 666                     | 8234742                     | 8235394                     | 8236046                              | 8236698            | 8237350            |  |
| 667                     | 8241258                     | 8241909                     | 8242560                              | 8243211            | 8243862            |  |
| 668                     | 8247765                     | 8248415                     | 8249065                              | 8249715            | 8250364            |  |
| 669                     | 8254261                     | 8254915                     | 8255559                              | 8256208            | 8256857            |  |
| 670                     | 8260748                     | 8261396                     | 8262044                              | 8262692            | 8263340            |  |
| 671                     | 8267225                     | 8267872                     | 8268519                              | 8269166            | 8269813            |  |
| 672                     | 8273693                     | 8274339                     | 82 <b>749</b> 85                     | 8275631            | 8276277            |  |
| 673                     | 8280151                     | 8280796                     | 8281441                              | 8282086            | 8282731            |  |
| 674                     | 8285599                     | 82872+3                     | 8287887                              | 8288532            | 8289176            |  |
| 675                     | 8293038                     | 8293681                     | 8294324                              | 8294967            | 8295611            |  |
| 676                     | 8299467                     | 8300109                     | 8300752                              | 83013 <i>9</i> 4   | 8302036            |  |
| 677                     | 8305887                     | 8306528                     | 8307169                              | 8307811            | 8308452            |  |
| 678                     | 8312297                     | 8312937                     | 8313578                              | 8314218            | 8314858            |  |
| 679                     | 8318698                     | 8319337                     | 8319977                              | 8320616            | 8321255            |  |
| 680                     | 8325089                     | 8325728                     | 8326366                              | 8327005            | 8327643            |  |
| 681                     | 8331471                     | 8332109                     | 8332746                              | 8333384            | 8334021            |  |
| 682                     | 8337844                     | 8338485                     | 8339117                              | 8339754            | 8340390            |  |
| 683                     | 8344207                     | 8344843                     | 8345479                              | 8346114            | 8346750            |  |
| 684                     | 8350561                     | 8351196                     | 8351831                              | 8352465            | 83531co            |  |
| 685                     | 8356906                     | 8357540                     | 8358174                              | 8358807            | 8359441            |  |
| 686                     | 8363241                     | 8363874                     | 8364507                              | 8365140            | 8365773            |  |
| 687                     | 8369567                     | 8370199                     | 8370832                              | 8371463            | 8372095            |  |
| 688                     | 8375884                     | 8376516                     | 8377147                              | 8377778            | 8378409            |  |
| 689                     | 8382192                     | 8382822                     | 8383453                              | 8384083            | 8384713            |  |
| 690                     | 8388491                     | 8389120                     | 8389750                              | 8390379            | 8391008            |  |
| 691                     | 839+780                     | 8395409                     | 8396037                              | 8396666            | 8397294            |  |
| 692                     | 8401061                     | 8401688                     | 8402316                              | 8402943            | 8403571            |  |
| 693                     | 8407332                     | 8407959                     | 8408586                              | 8409212            | 8409838            |  |
| 694<br>695              | 8413595                     | 8414220                     | 8414846                              | 8415472            | 8416097            |  |
| 696                     | 841 <i>9</i> 848<br>8426092 | 8420473                     | 8421098                              | 8421722            | 8422347            |  |
| 697                     | 8432328                     | 8426716                     | 8427340                              | 8427964            | 8428588            |  |
| 698                     | 8438554                     | 8432951<br>8439176          | 8433574<br>843 <i>9</i> 7 <i>9</i> 8 | 8434197            | 8434819            |  |
| 699                     | 8444772                     | 8415202                     | 8446014                              | 8440420            | 8441042<br>8447256 |  |
| 700                     | 8450980                     | 84+53 <i>9</i> 3<br>8451601 | 8452221                              | 8446635            | 8453461            |  |
| 701                     | 8457180                     | 8457800                     | 8458419                              | 8452841            | 8459658            |  |
| 702                     | 8463371                     | 8463990                     | 8454608                              | 8459038<br>8465227 | 8465845            |  |
| 703                     | 8469553                     | 8470171                     | 8470789                              | 8471406            | 8472024            |  |
| 704                     | 8475727                     | 8476343                     | 8476960                              | 8477577            | 8478193            |  |
| 705                     | 8481891                     | 8482507                     | 8483123                              | 8483739            | 8484355            |  |
| 706                     | 8488047                     | 8488662                     | 8489277                              | 8489892            | 8490507            |  |
| I——                     |                             |                             |                                      | 7707072            | 2720101            |  |

Logarithms (to 7069.)

| Logarithms (to 7069.) |                             |                    |                    |                    |                    |  |
|-----------------------|-----------------------------|--------------------|--------------------|--------------------|--------------------|--|
| Natural               | 5                           | 6                  | 7                  | 8                  | 9                  |  |
| Numbers.              | 8218409                     | 8219064            | 8219718            | 8220372            | 8221027            |  |
| 664                   | 8224950                     | 8225603            | 8226257            | 8226910            | 8227563            |  |
| 665                   | 8231481                     | 8232133            | 8232786            | 8233438            | 8234090            |  |
| 666                   | 8238002                     | 8238653            | 8239305            | 8239956            | 8240607            |  |
| 667                   | 8244513                     | 8245163            | 8245814            | 8246464            | 8247114            |  |
| 668                   | 8251014                     | 8251664            | 8252313            | 8252963            | 8253612            |  |
| 669                   | 8257506                     | 8258154            | 8258803            | 8259451            | 8260100            |  |
| 670                   | 8263988                     | 8264635            | 8265283            | 8265931            | 8266578            |  |
| 671                   | 8270460                     | 8271107            | 8271753            | 8272400            | 8273046            |  |
| 672                   | 8276923                     | 8277569            | 8278214            | 8278860            | 8279505            |  |
| 673                   | 828337 <i>6</i>             | 8284021            | 8284665            | 828531C            | 8285955            |  |
| 674                   | 8289820                     | 8290463            | 8291107            | 8291751            | 8292394            |  |
| 675                   | 8296254                     | 82968 <b>96</b>    | 8297539            | 8298182            | 8298824            |  |
| 676                   | 8302678                     | 8303320            | 83 <b>c3</b> 962   | 8304 <i>6</i> 03   | 8305245            |  |
| 677                   | 8309093                     | 8309734            | 8310375            | 8311016            | 8311656            |  |
| 678                   | 8315499                     | 8316139            | 8316778            | 8317418            | 8318058            |  |
| 679                   | 8321895                     | 8322534            | 8323173            | 8323812            | 8324450            |  |
| 680                   | 8328281                     | 8328919            | 8329558            | 8330195            | 8330833            |  |
| 136                   | 8334659                     | 8335296            | 8335933            | 8336570            | 8337207            |  |
| 682                   | 8341027                     | 8341663            | 8342299            | 8342937            | 8343571            |  |
| 683                   | 8347385                     | 8348021            | 8348656            | 8349291            | 8349926            |  |
| 684                   | 8353735                     | 8354369            | 8355003            | 8355638            | 8356272            |  |
| 685                   | 8360075                     | 8360708            | 8391341            | 8361975            | 8362608            |  |
| 686                   | 8366405                     | 8367038            | 8367670            | 8368303            | 8368935            |  |
| 687                   | 8372727                     | 8373359            | 8373990            | 8374622            | 8375253            |  |
| 688                   | 8379039                     | 8379670            | 8380301<br>8386602 | 8380931            | 8381562            |  |
| 689                   | 8385343                     | 8385973            |                    | 8387232            | 8387861            |  |
| 690                   | 8391637                     | 8392266            | 8392895            | 8393523            | 8394152            |  |
| 691                   | 8397922                     | 8398550            | 8399178            | 83998c6            | 8400433            |  |
| 692                   | 8404198                     | 8404825            | 8405452            | 8406079            | 8406706            |  |
| 693                   | 8410465                     | 8411091            | 8411717            | 8412343            | 8412969            |  |
| 694                   | 8416722                     | 8417348            | 8417973<br>8424220 | 8418598            | 8419223            |  |
| 695                   | 8422971                     | 8423596            | 8+30458            | 8424844            | 8425468            |  |
| 696                   | 8429211                     | 8429735<br>8436c65 | 8436687            | 8431081            | 8431705            |  |
| 697<br>698            | 843 <b>544</b> 2<br>8441664 | 8442286            | 8442907            | 8437310            | 8437932<br>8444150 |  |
|                       | 8447877                     | 8442200            | 8449119            | 8443529            | 8450360            |  |
| 700                   | 84 <b>54</b> 081            | 8454703            | 8455321            | 8449739<br>8455941 | 8456561            |  |
| 701                   | 8460277                     | 8460896            | 8461515            | 8462134            | 8462752            |  |
| 702                   | 8466463                     | 8467081            | 8467700            | 8468318            | 8468935            |  |
| 703                   | 8472641                     | 8473258            | 8473876            | 8474493            | 8475110            |  |
| 704                   | 8478810                     | 8479426            | 8480043            | 848c659            | 8481275            |  |
| 705                   | 8484970                     | 8485586            | 8486201            | 8486817            | 8487432            |  |
| 706                   | 8491122                     | 8491736            | 8492351            | 8492965            |                    |  |
| 1                     | -7/2                        | -77.75             | 1 -27.             | 1 - 42 - 2 - 3     | -4777              |  |

| Artificial Numbers: Or, |                            |                                     |                                      |                            |                    |  |  |
|-------------------------|----------------------------|-------------------------------------|--------------------------------------|----------------------------|--------------------|--|--|
| Natural<br>Numbers      |                            | 1                                   | 2                                    | 3                          | 4                  |  |  |
| 707                     | 8494194                    | 8494808                             | 8495423                              | 8496037                    | 8496651            |  |  |
| 708                     | 8500333                    | 8500946                             | 8501559                              | 8502172                    | 8502786            |  |  |
| 709                     | 8506462                    | 8507075                             | <b>85</b> 07 <b>6</b> 87             | 8508300                    | 8508912            |  |  |
| 710                     | 8512583                    | 8513195                             | 851 3807                             | 8514418                    | 8515030            |  |  |
| 711                     | 8518696                    | 8519307                             | 8519917                              | 8520528                    | 8521139            |  |  |
| 712                     | 8524800                    | 8525410                             | 8526020                              | 8526629                    | 8527239            |  |  |
| 713                     | 8530895                    | 8531504                             | 8532113                              | 8532722                    | 8533331            |  |  |
| 714                     | 8536982                    | 8537590                             | 8538198                              | 8538806                    | 8539414            |  |  |
| 715                     | 8543060                    | 8543668                             | 8544 <b>2</b> 7 <b>5</b>             | 8544882                    | 8545489            |  |  |
| 716                     | 8549130                    | 8549737                             | 8550343                              | 8550949                    | 8551556            |  |  |
| 717                     | 8555192                    | 8555797                             | 8556403                              | 8557008                    | 8557614            |  |  |
| 718                     | 8561244                    | 8561849                             | 8562454                              | 8563059                    | 8563663<br>8569704 |  |  |
| 719.                    | 8567289                    | 8567893                             | 8568497                              | 8509101                    | 8575737            |  |  |
| 720                     | 8573325                    | 8573928                             | 8574531                              | 8575134<br>858115 <i>9</i> | 8581761            |  |  |
| 721<br>722              | 8579353<br>8585372         | 8579955                             | 8580557                              | 8587176                    | 8587777            |  |  |
| 723                     | 8591383                    | 898 <b>5973</b><br>8591 <i>9</i> 84 | 8586575<br>8592 <b>5</b> 84          | 8593185                    | 8593785            |  |  |
| 724                     | 8597386                    | 8597985                             | 8598585                              | 8599185                    | 8599784            |  |  |
| 725                     | 8603380                    | 8603979                             | 8604578                              | 8605177                    | 8605776            |  |  |
| 726                     | 8609366                    | 8609964                             | 8610562                              | 8611160                    | 8611758            |  |  |
| 727                     | 8615344                    | 8615941                             | 8616539                              | 8617136                    | 8617733            |  |  |
| 728                     | 8621314                    | 8621910                             | 8622507                              | 8623103                    | 8623699            |  |  |
| 739                     | 8617275                    | 8627871                             | 8628467                              | 8629062                    | 8629658            |  |  |
| 730                     | 8633229                    | 8633823                             | 8634418                              | 8635013                    | 8635608            |  |  |
| 731                     | 8639174                    | 8639768                             | 8640362                              | 8640956                    | 8641550            |  |  |
| 732                     | 8645111                    | 8645704                             | 8646297                              | 8646890                    | 8647483            |  |  |
| 733                     | 8651040                    | 8651632                             | 8652225                              | 8652817                    | 8653409            |  |  |
| 734                     | 8656961                    | 8657552                             | 8658144                              | 8658735                    | 8659327            |  |  |
| 735                     | 8662873                    | 8663464                             | 8664055                              | 866464 <b>6</b>            | 8665236            |  |  |
| 736                     | 8668778                    | 8669368                             | 8669958                              | 8670548                    | 8671138            |  |  |
| 737                     | 8674675                    | 8675264                             | 8675853                              | 8676442                    | 8677031            |  |  |
| 738                     | 8680564                    | 8681152                             | 8681749                              | 8682329                    | 8682917            |  |  |
| 739                     | 8686444                    | 8687032                             | 8687620                              | 8688207                    | 8688794            |  |  |
| 740                     | 8692317                    | 8692904                             | 8693491                              | 8694077                    | 8694664            |  |  |
| 741                     | 8698182                    | 8698768                             | 8699354                              | 8699940                    | 8700526<br>8706380 |  |  |
| 742                     | 870403 <i>9</i><br>8709888 | 8704624                             | 8705209                              | 8705795                    | 8712226            |  |  |
| 743                     | 8715729                    | 8710473<br>8716313                  | 8711057                              | 8711641                    | 8718064            |  |  |
| 744<br>745              | 8721563                    | 8722146                             | 871 <i>6</i> 8 <i>9</i> 7<br>8722728 | 8717480<br>8733311         | 8723894            |  |  |
| 746                     | 8727388                    | 8727970                             | 8728552                              | 8729134                    | 8729716            |  |  |
| 747                     | 8733206                    | 8733788                             | 8734369                              | 873+950                    | 8735531            |  |  |
| 748                     | 8739016                    | 8739597                             | 8740177                              | 8740757                    | 8741338            |  |  |
| 749                     | 8744818                    | 8745398                             | .8745978                             | 8746557                    | 8747137            |  |  |
| 750                     | 8750613                    |                                     |                                      | 8752349                    | 8752928            |  |  |
| -                       |                            |                                     | 1,71,-                               | -17-57-                    |                    |  |  |

Logarithms (to 7509.)

| Natural | 1 '3    | 1 6                | ns (10 7 309).<br>1 7 | 8                        | 9                           |
|---------|---------|--------------------|-----------------------|--------------------------|-----------------------------|
| Numbers |         |                    | 9.00.00               |                          | 1                           |
| 707     | 8497264 | 8497878            | 8498492               | 8499106                  | 8499719                     |
| 708     | 8503399 | 8504011            | 8504624               | 8505237                  | 8505850                     |
| 709     | 8509524 | 8510136            | 8510748               | 8511360                  | 8511972                     |
| 710     | 8515641 | 8516252            | 8516863               | 8517474                  | 8518085                     |
| 711     | 8521749 | 8522359            | 8521970               | 8523580                  | 8524190                     |
| 712     | 8527849 | 8528458            | 8529068               | 8529677                  | 8530286                     |
| 713     | 8533940 | 8534548            | 8535157               | 8535705                  | 8536374                     |
| 714     | 8540022 | 8540630<br>8546703 | 8541238               | 8541845                  | 8542453                     |
| 715     | 8546096 | 8552768            | 8547310               | 8547917<br>8553980       | 8548524                     |
| 716     | 8552162 | 8558824            | 8553374               | 8560035                  | 8554586                     |
| 717     | 8558219 | 8504872            | 8569429<br>8555476    | 8566081                  | 8566640                     |
| 718     | 8564268 | 8570912            | 8571515               | 8572118                  | 8566685                     |
| 719     | 8570308 | 8576943            | 8577545               | 8578148                  | 8572722                     |
| 720     | 8576340 | 8582965            | 8577545<br>8583567    | 8584169                  | 8578 <b>75</b> 0            |
| 721     | 8582363 | 8588980            | 8589581               | 8590181                  | 8584770                     |
| 722     | 8588379 | 8594986            | 8595586               | 8596186                  | 8590782                     |
| 723     | 8594385 | 8000983            | 8601583               | 8602182                  | 85 <i>9</i> 6786<br>8602781 |
| 724     | 8606374 | 8606973            | 8607571               | 8608170                  | 8608768                     |
| 725     | 8612356 | 8612954            | 8613552               | 8614149                  | 8614747                     |
| 726     | 8618330 | 8618927            | 8619524               | 8620120                  | 8620717                     |
| 727 728 | 8624296 | 8624892            | 8625488               | 8626084                  | 8626679                     |
|         | 8630253 | 8630848            | 8631443               | 8632039                  | 8732634                     |
| 729     | 8636202 | 8636797            | 8637391               | 8637985                  | 8638580                     |
| 731     | 8642143 | 8642737            | 8643331               | 8643924                  | 8644517                     |
| 732     | 8648076 | 8648669            | 8649262               | 8649855                  | 865044.7                    |
| 733     | 8654001 | 8654593            | 8655185               | 8655777                  | 8656369                     |
| 734     | 8659918 | 8660509            | 8661100               | 8661691                  | 8662282                     |
| 735     | 8665827 | 8666417            | 8667008               | 8667598                  | 8668188                     |
| 735     | 8671728 | 8672317            | 8672907               | 8673496                  | 8674086                     |
| 737     | 8677620 | 8678209            | 8678798               | 8679387                  | 8679975                     |
| 738     | 8683505 | 8684093            | 8684681               | 8685269                  | 8685857                     |
| 739     | 8689382 | 8689969            | 8690556               | 8691143                  | 8691790                     |
| 740     | 8695251 | 8695837            | 8696423               | 8697010                  | 8697596                     |
| 741     | 8701112 | 8701697            | 8702283               | 8702868                  | 8703454                     |
| 742     | 87c6965 | 87°7549            | 8708134               | 8708719                  | 8709304                     |
| 743     | 8712813 | 8713394            | 8713978               | 8714562                  | 8715146                     |
| 744     | 8718647 | 8719230            | 8719814               | 8720397                  | 8720980                     |
| 745     | 8724476 | 8725059            | 8725641               | 8726224                  | 8726806                     |
| 746     | 8730298 | 8730880            | 8731461               | 8732043                  | 9732625                     |
| 747     | 8736112 | 873669 <b>3</b>    | 8737274               | 873 <b>7</b> 85 <b>5</b> | 8738435                     |
| 748     | 8741918 | 8742498            | 8743078               | 8743658                  | 8744238                     |
| 749     | 8747716 | 8748296            | 8748875               | 8749454                  | 8750034                     |
| 750     | 8753507 | 8754086            | 8754664               | 8755243                  | 8755821                     |
| -       |         | <del></del>        | <u> </u>              |                          |                             |

|                     | •                  | Artificial 1       | Numbers: O         | r,                 |                    |   |
|---------------------|--------------------|--------------------|--------------------|--------------------|--------------------|---|
| Natural<br>Numbers. | 0                  | 1                  | 2                  | 3                  | 4                  | ļ |
| 75 I                | 8756399            | 8756978            | 8757556            | 8758134            | 8758712            |   |
| 752                 | 8762178            | 8762756            | 8763333            | 8763911            | 8764488            |   |
| 753                 | 8767950            | 8768526            | 8769103            | 8 <i>769</i> 680   | 8770256            | ĺ |
| 754                 | 8773713            | 8774289            | 8774865            | 8775441            | 8776017            |   |
| 755                 | 8779469            | 8780045            | 8780620            | 8781195            | 8781770            |   |
| 756                 | 8785218            | 8785792            | 8786367            | 8786941            | 8787515            | l |
| 757                 | 8790959            | 8791532            | 8792106            | 8792680            | 8793253            |   |
| 758                 | 8796692            | 0797265            | 8797838            | 8798411            | 8798983            |   |
| 752                 | 8802418            | 8802990            | 8803562            | 8804134            | 8804.706           |   |
| 760                 | 8808136            | 8808707            | 8809279            | 8809350            | 8810421            |   |
| 761                 | 8813847            | 8814417            | 8814988            | 8815558            | 8816129            |   |
| 762                 | 8819550            | 8820120            | 8820689            | 8821259            | 8821829            |   |
| 763                 | 8825245            | 8825815            | 8826384            | 8826953            | 8827522            |   |
| 764                 | 8830934            | 8831502            | 8832070            | 8832639            | 8833207            |   |
| 765                 | 8836614            | 8837182            | 8837750            | 8838317            | 8838885            |   |
| 766                 | 8842288            | 8842855            | 8843421            | 8843988            | 8844555            | ĺ |
| 767                 | 8847954            | 8848520            | 8849086            | 8849652            | 8850218            |   |
| 768                 | 8853612            | 8854178            | 8854743<br>8860393 | 8855308            | 8855874            |   |
| 769                 | 8859263            | 8859828            | 8866035            | 8860957<br>8866599 | 8861522<br>8867163 |   |
| 770                 | 8864907            | 8865471            | 8871670            | 8872233            | 8872796            |   |
| 771                 | 8870544            | 8871107<br>8876736 | 8877298            | 8877860            | 8878423            | Ì |
| 772                 | 8876173<br>8881795 | 8882357            | 8882918            | 8883480            | 8884042            |   |
| 773                 | 8887410            | 8887971            | 8888532            | 8889093            | 8889653            |   |
| 774                 | 8893017            | 8893577            | 8894138            | 8894698            | 8895258            | ĺ |
| 775                 | 8898617            | 8899177            | 8899736            | 8900296            | 8900855            |   |
| 776                 | 8904210            | 8904769            | 8905328            | 8905887            | 8906445            | ı |
| 777                 | 8909796            | 8910354            | 891c912            | 8911470            | 8912028            | l |
| 779                 | 8915375            | 8915932            | 8916489            | 8917047            | 8917604            | l |
| 780                 | 8920946            |                    | 8922059            | 8922616            | 8923173            | l |
| 781                 | 8926510            | 8927066            | 8937622            | 8928178            | 8928734            | ı |
| 782                 | 8932068            | 8932623            | 8933178            | 8933733            | 8934288            | l |
| 783                 | 8937618            | 8938172            | 8938727            | 8939281            | 8939836            | ı |
| 784                 | 8943161            | 8943715            | 8944268            | 8944822            | 8945376            | ı |
| 785                 | 8948697            | 8949250            | 8949803            | 8950356            | 8950909            | ı |
| 786                 | 8954225            | 8954778            | 8955330            | 8955883            | 8956435            | ı |
| 787                 | 8959747            | 8960299            | 8960851            |                    | 8961954            |   |
| 788                 | 8965162            |                    | 8966364            |                    | 8967466            | ĺ |
| 789                 | 8978770            | 8971320            |                    |                    | 8972971            | ĺ |
| 790                 | 8976271            |                    | 8977370            |                    | 8978469            |   |
| 791                 | 8981765            |                    |                    |                    | 8983960            | } |
| 792                 | 8987252            |                    |                    |                    | 8989445            | 1 |
| 793                 | 8992732            |                    |                    |                    | 8994922            |   |
| 794                 | 8998205            | 8998752            | 8999299            | 8999846            | 9000392            |   |
|                     |                    |                    |                    |                    |                    |   |

| Logarithms ( | to | 7949.) |
|--------------|----|--------|
|--------------|----|--------|

|                    | _       | Eugar mini                | ,, (.o /y <del>4</del> 9. |                  | ا بر             |
|--------------------|---------|---------------------------|---------------------------|------------------|------------------|
| Natural<br>Numbers |         | 6                         | 7.                        | 8 ,              | 9                |
| 751                | 8759290 | 875 <i>9</i> 868          | 8760445                   | 8761023          | 8761601          |
| 752                | 8765065 | 8765642                   | 8766219                   | 8766795          | 8767373          |
| 753                | 8770833 | 8771409                   | 8771 <i>9</i> 85          | 8772561          | 8773137          |
| 754                | 8776592 | 8777168                   | 8777743                   | 8778319          | 87788 <i>9</i> 4 |
| 755                | 8782345 | 8782919                   | 8783494                   | 8784069          | 8784643          |
| 756                | 8788089 | 8788 <i>6</i> 63          | 8789237                   | 878 <i>9</i> 811 | 8790385          |
| 757                | 8793826 | 8794400                   | 8794973                   | 8795546          | 8796119          |
| 758                | 8799556 | 8800128                   | 8800701                   | 8801273          | 8801846          |
| 759                | 8805278 | 8805850                   | 8806421                   | 8806993          | 8807564          |
| 760                | 8810992 | 8811563                   | 8812134                   | 8812705          | 8813276          |
| 761                | 8816699 | 8817269                   | 8817840                   | 8818410          | 8818980          |
| 762                | 8822398 | 8822968                   | 8823537                   | 8824107          | 8824676          |
| 763                | 8828090 | 8828659                   | 8829228                   | 8829797          | 8830365          |
| 764                | 8833775 | 8834343                   | 8834911                   | 8835479          | 8836047          |
| 765                | 8839452 | 884001 <i>9</i>           | 8840586                   | 8841154          | 8841721          |
| 766                | 8845122 | 8845688                   | 8846255                   | 8846821          | 8847387          |
| 767                | 8850784 | 8851350                   | 8851915                   | 8852481          | 8853047          |
| 768                | 8856439 | 8857004                   | 8857569                   | 8858134          | 8858699          |
| 769                | 8866086 | 8862651                   | 8863215                   | 8863779          | 8863343          |
| 770                | 8867726 | 8868290                   | 8868854                   | 8869417          | 8869980          |
| 774                | 8873359 | 8873922                   | 8874485                   | 8875048          | 8875610          |
| 772                | 8878985 | 887 <i>9</i> 547          | 8880109                   | 8880671          | 8881233          |
| 773                | 8884603 | 8885165                   | 8885726                   | 8886287          | 8886848          |
| 774                | 8890214 | 88 <i>9</i> 0775          | 8891336                   | 8891896          | 8892+57          |
| 775                | 8895818 | 88 <i>96</i> 378          | 8896935                   | 8897498          | 8898058          |
| 775                | 8901415 | 8901974                   | 8902533                   | 8903092          | 8903651          |
| 777                | 8907004 | 8907562                   | 8908121                   | 8908679          | 8909238          |
| 778                | 8912586 | 8913144                   | 8913702                   | 8914259          | 8914817          |
| 779                | 1918161 | 8918718                   | 8919275                   | 8919832          | 8920389          |
| 780                | 8923729 | 8924285                   | 8924842                   | 8925398          | 8925954          |
| 781                | 8929290 | 8929846                   | 8930401                   | 8930957          | 89315126         |
| 782                | 8934843 | 893 <b>5</b> 398          | 893 <b>5953</b>           | 8936508          | 8937063          |
| 783                | 8940390 | 8 <i>9</i> 4c <i>9</i> 44 | 8941498                   | 8942053          | 8942607          |
| 784                | 8945929 | 8 <i>9</i> 46483          | 8947037                   | 8947590          | 8948143          |
| 785                | 8951462 | 8952015                   | 8952567                   | 8953120          | 8953673          |
| 786                | 8956987 | 8957539                   | 8958092                   | 8958644          | 8959195          |
| 787                | 8962506 | 8963057                   | 8963608                   | 8964160          | 8964711          |
| 788                | 8968017 | 8968 <b>56</b> 8          | 8969118                   | 896 <b>96</b> 69 | 8970219          |
| 789                | 8973521 | 8974071                   | 8974621                   | 8975171          | 8975721          |
| 790                | 8979019 | 8979568                   | 8980117                   | 8980667          | 8981216          |
| 791                | 8984509 | 8985 <b>°5</b> 8          | 8985606                   | 8986155          | 8986703          |
| 792                | 8989993 | 8990541                   | 8991089                   | 8991636          | 8992184          |
| 793                | 8995469 | 8996017                   | 8996564                   | 8997111          | 8997658          |
| 794                | 9000939 | 9001486                   | 9002032                   | 9002579          | 9003125          |
| -                  |         |                           |                           |                  |                  |

| Numbers   9003671   9004218   9004764   9005310   9005856   795   9009131   9009676   9010222   9010767   9011313   9016762   9010767   9011313   9015673   9016218   9016762   902575   9025753   9021117   9021661   9022205   9025555   9027098   9027041   9025555   9027098   9023641   9036325   9036867   9037409   9037951   9038493   802   9047155   9047696   9048237   9043368   9043909   9057960   9058498   9059038   9059796   9058498   9059038   9059796   9058498   9059038   9059779   9060116   9058635   9063351   9076263   905938   9059577   9060116   9058635   9063351   9076263   9076263   9079485   9080022   9080559   9081039   9070885   808   9074114   9074651   9075188   9075726   9076263   809   9079485   9080022   9080559   9081095   9081631   9090099   9090644   9091279   9091815   9092379   909663   9097164   9101974   9102508   91034042   9101974   9102508   91034042   9111576   9112109   9112642   9113174   9112707   912220   9122752   9122324   9123815   9129666   9138439   9133868   91339198   9139127   9140878   9139128   9139128   9139128   9139128   9139128   9139128   9139128   9149566   915979   9160326   9160853   9163664   9169800   9170326   9160853   9163664   9169800   9170326   9160853   9163664   9169800   9170326   9160853   916188   9169800   9170326   9160853   916188   9169800   9170326   9160853   916188   9169800   9170326   9160853   916188   9169800   9170326   9160853   916188   9190781   9191827   9192799   9192799   9192799   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873   9192873 | Artificial Numbers: Or, |         |         |                 |         |         |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------|---------|-----------------|---------|---------|--|--|
| 795 9003671 9004218 9004764 9005310 9005856 795 9009131 900676 9010222 9010767 9011313 797 9014583 9015128 9015673 9016218 9016762 798 9020029 9020573 9021117 9021661 9022205 799 9015468 9026011 9026555 9027098 9027641 800 903090 9031443 9031985 9032528 9033071 801 9036325 9036867 9037409 9037951 9038493 802 9047155 9047696 9048237 9043368 9043909 803 9047155 9047696 9048237 9043368 9043909 804 9052560 9053101 9053641 9054181 9054721 805 9063351 9063889 9059038 9059077 9060116 806 9063351 9063689 905428 9064967 9065505 807 9068735 906922 9080559 9081095 9070887 808 9074114 9074651 9075188 9075726 9076263 809 9079485 9080022 9080559 9081095 9081632 810 9084880 9085386 908592 9086448 9086948 811 9090209 9090744 9091279 9091815 9092350 812 9095560 9096095 9096630 9097165 9097669 813 9100905 9101440 9101974 9102508 9103042 814 9106244 9106778 9107311 9107844 9108378 815 9111576 9112109 9112642 91131774 9113704 816 9116902 9117434 9117966 9118498 9119030 817 912220 912752 9123234 9123815 9124346 819 9132839 9133869 9133899 9134430 9134960 820 9138139 9138668 9189595 9129126 9129656 821 9143422 9142961 914489 9139737 9140587 822 9148718 9149246 9149775 9150303 9150831 823 915398 9154526 9159504 9150323 9150831 824 915972 9159799 9160326 9160853 9161380 825 9164539 9165066 9170326 9160853 9161380 826 9169800 9170326 9150853 9171554 828 9180303 9180828 9181352 9166138 9166645 826 9169800 9170326 9107852 9171378 9171903 827 9175055 9175580 9176105 9176630 9177155 828 9180303 9180828 9181352 9181877 9182401 830 9190781 9191304 9191827 9192379 9192381 831 9201233 9201755 9202277 9202799 9203321 833 9201635 9217385 9217002 9213222 9213743 835 9216865 9217385 9217905 9218425 9218743 836 9222063 9222582 9223102 9223621 9224140 837 9227255 9227773 9228292 9228811 9229330                                                                                                                                                                                                                                                                   | Natural                 | 0       | I .     | 2               | 3       | 1 4     |  |  |
| 795 9009131 9009676 9010222 9010767 9011313 797 9014483 9015128 9015073 9016218 9016762 798 9020029 9020573 9021117 9021661 9022205 799 902448 9026011 9026555 9027098 9027041 800 9030900 9031443 9031985 9032528 9033071 801 9036325 9036867 9037409 9037951 9038493 802 9047154 9042285 9042827 9043368 9043909 803 9047155 9047696 9048237 9048778 9049318 804 9052560 9053101 9053641 9054181 9054721 805 9053960 9058498 9059038 9059577 9060116 806 9063351 9063889 9064428 9064967 9065505 807 9068735 9069273 9069812 9070350 9070887 808 9074114 9074651 9075188 9075726 9076263 809 9079485 9080022 9080559 9081095 9081632 810 9084850 9085386 908559 9081095 9081632 811 9090209 9090744 9091279 9091815 9092350 812 9095560 9096095 9096630 9097165 9097699 813 9100905 9101440 9101974 9102508 9103042 814 9106244 9106778 9107311 9107844 9108378 815 9111576 9112109 9112642 9113174 9113707 816 9116902 9117434 9117966 9118498 9119030 817 9122200 9122752 9123234 9123815 9124346 818 9127533 9128064 9128595 9139126 9124346 818 9123839 9133868 9139198 9134730 9134960 820 9138139 9138668 9139198 9139717 9140557 822 9148718 9149246 9149775 9150303 9150818 823 915398 9154526 9155054 915581 9156109 826 9169800 9170326 9160853 9161380 827 9175055 9175580 9176105 9176630 9177155 828 9180303 9180828 9181352 9181877 9182401 831 9190610 9196533 9197055 9197578 9198100 821 9185545 9186069 9185593 9187117 9187640 832 9185545 9186069 9185593 9187117 9187640 833 92001233 9201755 9202777 9202799 9203321 834 9211661 9212181 9212702 9213222 9213743 835 9216865 9217385 9217905 9218825 922851 922561 837 9227255 9227773 922829 9228811 9229330                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | 9003671 | 9004218 | 9004764         | 9005310 | 9005856 |  |  |
| 797         9014583         9015128         9015673         9016218         9016762           798         9020029         9020573         9021117         9021661         9022205           799         9025468         9026011         9026755         9027088         9027641           800         9030900         9031443         9031985         9032528         9033071           801         9031515         9036867         9037409         9037951         9038493           802         9041744         9042285         9042827         9043368         9043909           803         9047155         9047696         9048237         9048778         9049318           804         9052560         9053101         9054181         9054721         9059038         9054181         9054721           805         9063351         9063889         9054428         9064967         9065505         9070350         9070887           807         9068735         9080022         9080599         9080595         9080695         9074269         9074269         9074269         9074269         9074269         9074269         9074269         908095         9086920         9086630         9097165         9078095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |         |         |                 |         |         |  |  |
| 798 9020029 9020573 9021117 9021661 9022205 799 9025468 9026011 9026555 9027098 9027041 800 903090 9031443 9031985 9032528 9033071 801 9036325 9036867 9037409 9037951 9038493 802 9041754 9042285 9042827 9043368 9043909 803 9047155 9047696 9048237 9048778 9049318 804 9052560 9053101 9053641 9054181 9054721 805 9057960 9058498 9059038 9059577 9060116 806 9063351 9063889 9064428 9064967 9065505 807 9068735 9069889 9064428 90790350 90706263 808 9074114 9074651 9075188 9075726 9076263 809 9079485 9080022 9080559 9081095 9081632 810 9084850 9085386 908559 908095 9086630 811 9090209 9090744 9091279 9091815 9092350 812 9095560 9096095 9096630 9097165 9097699 813 9100905 9101440 9101974 9102508 9103042 814 9106244 9106778 9107311 9107844 9108378 815 9111576 9112109 9112642 9113174 9113707 816 9116902 9117434 9117966 9118498 9119030 817 9122220 9122752 9123234 9123815 9124346 818 9132839 9133369 9133899 9134430 9134960 820 9138139 9138668 9139198 9139727 9140257 821 9143432 9143961 9144489 9145018 9149567 822 9148718 9149246 9149775 9150303 9150831 823 9153998 9154526 9155054 9155581 9156109 824 9169800 9170326 9170852 9171378 9171903 825 9164539 9155066 9165592 9166118 9166645 826 9169800 9170326 9170852 9171378 9171903 827 9175055 9175580 9176105 9176630 9177155 828 9185345 9188089 9181352 9181877 9182401 829 9185545 9186069 9185593 9187117 9187640 830 9190781 9191304 9191827 9192350 9192873 831 9196010 9196533 9197055 9197578 9198100 832 9201233 9201755 9202277 9202799 9203321 833 9206450 9206971 9207493 9208014 9208535 834 9211661 9212181 9212702 9213222 9213743 835 9216865 9217385 9217095 9218425 9218458 836 9222063 9222582 9223102 9223621 9224410 837 9227255 9227773 9228292 9228811 9229330                                                                                                                                                                                                                                                                                                                                           |                         |         | 9015128 | 9015673         | 9016218 |         |  |  |
| 799         9025468         9026011         9026555         9027098         9027641           800         9036900         9031443         9031985         9032528         9033071           801         9036325         9036867         9037409         9037951         9038493           802         9041744         9042827         9043368         9043909           803         9047155         9047696         9048237         9048778         9049318           804         9052560         9053101         9053641         9054181         9054721           805         9057960         9058498         9059038         9059777         906116           806         9063351         9063889         9064428         9064967         9065505           807         9068735         9069273         9069812         907350         9070887           809         9079485         9080022         9080559         9081095         9081632           810         9084850         9085386         9085922         9086458         908095           811         9090544         9091279         9091815         9092509           812         9095560         9096095         90861630 <td< td=""><td></td><td></td><td>9020573</td><td></td><td>9021661</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |         | 9020573 |                 | 9021661 |         |  |  |
| 800         9030900         9031443         9031985         9032528         9033071           801         9036325         9036867         9037409         9037951         9038493           802         9041744         9042285         9042827         904368         9043909           803         9047155         9047696         9048237         9048778         904318           804         9052560         9053101         9053641         9054181         9054731           805         905351         9059038         9059577         9060116           806         9063351         9063889         9064428         9064967         9065505           807         9068735         9069273         9069812         9070350         9070887           809         9079485         908022         9080599         9081035         9081035         9081035         9081632           810         9085366         9085922         9086458         9086494         9091279         9091815         9092350           811         9095560         9096095         9096030         9097165         9097699         909630         9097165         9097699           813         910095         9101440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | 9025468 | 9026011 |                 | 9027098 | 9027641 |  |  |
| 802         9041744         9042285         9042827         9043368         9043909           803         9047155         9047696         9048237         9048778         9049318           804         9052560         9053101         9053641         9054181         9054721           805         90537960         9058489         905428         9064967         906016           806         9063351         9063889         9064428         9064967         9065505           807         9068735         9069273         9069812         9070350         9076263           808         907414         9074651         9075726         9076263           809         9079485         908022         908059         9081095         9081632           810         9084850         9085386         9085922         9086458         9086994           811         9090744         9091279         9091815         9092350           812         9095560         9096074         910174         9101274         9101268           814         9106778         9107311         9102508         9103042           814         911576         9112642         9113174         9113707      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 800                     |         |         |                 | 9032528 |         |  |  |
| 803         9047155         9047696         9048237         9048778         9049318           804         9052560         9053101         9053641         9054181         9054721           805         9057960         9058498         9059038         9059577         9060116           806         9063351         9063889         9064428         9064967         9065505           807         9068735         9069273         9069812         9070350         9070887           808         9074114         9074651         9075188         9075726         9070263           809         907485         9080022         9080559         9081632         9081632           810         9084850         9085386         9085922         9086458         9086994           811         9090209         909044         9091279         9091815         9097699           812         9095560         9096095         9096630         9097165         9097699           813         9100905         9101440         9101974         9102508         9103042           814         9106244         9106778         9107311         9107844         9102508           815         9115760 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |         |         |                 |         |         |  |  |
| 804         9052560         9053101         9053641         9054181         9054721           805         9057960         9058498         9059038         9059577         9060116           806         9063351         9052889         9064428         9064967         9065505           807         9068735         9069273         9069812         9070350         907087           808         907411         907451         9075188         9075726         9076263           809         9079485         9080022         9080559         9081632         908699         9081632           810         9085386         9085922         9086458         9086994         9091279         9091815         9092356           811         9090209         9090744         9091279         9091815         9092356           812         9095560         9096095         9096630         9097165         9097699           813         9100905         9101440         9101974         9102508         9103042           814         9106244         9106778         9107311         9107844         9108378           815         9111576         9112109         9112642         9113498         91391379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |         |         |                 |         |         |  |  |
| 805         9057960         9058498         9059038         9059577         9060116           806         9063351         9063889         9064428         9064967         9065505           807         9068735         9069273         9069812         9070350         9070887           808         9074114         9074051         9075188         9075726         9076263           809         9079485         9080022         9080559         9081095         9081095           811         9090209         9090744         9091279         9091815         9092350           812         9095560         9096095         9096530         9097165         9097699           813         9100905         9101440         9101974         9102508         9103042           814         9106244         9106778         9107311         9107844         9108378           815         9111576         9112109         9112642         9113174         9113707           816         9129220         9122752         9123234         9123815         9129656           817         9122200         9127752         9123234         9123815         9129656           819         9132839         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |         |         |                 |         |         |  |  |
| 806         9063351         9063889         9064428         9064967         9065505           807         9068735         9069273         9069812         9070350         9070887           808         9074114         9074651         9075188         9075726         9076263           809         9079485         9080022         9080559         9081095         9081631           810         9084850         9085386         9085922         9086458         9086994           811         9090209         9090744         9091279         9091815         9092350           812         9095560         9096095         9096630         9097165         9097699           813         9100905         9101440         9101974         9102508         9103042           814         9106905         910440         9107311         9102508         9103042           815         911576         9112109         9112642         9113174         9103042           816         9116902         9117434         9117966         9118498         9119030           817         9122220         9122752         9128595         9129126         91294346           818         9127533 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |         |         |                 |         |         |  |  |
| 807         9368735         9369273         9069812         9070350         9070887           808         9374114         9074651         9075188         9075726         9076263           810         9084850         9080386         9085392         9086458         9086994           811         9390209         9090744         9091279         9091815         9092350           812         9095560         9096095         9096630         9097165         9097699           813         9100905         9101440         9101974         9102508         9103042           814         9106244         9106778         9107311         9107844         9108378           815         911570         9117434         9117966         9118498         911370           816         9116902         912752         9123234         9123815         9124346           817         9122220         9122752         9123234         912498         9119030           817         912220         9122752         9123815         912446           818         9127533         9128664         9128595         9129126         9134960           819         913839         9133369         9134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |         |         |                 |         |         |  |  |
| 808         9074114         9074651         9075188         9075726         9076263           809         9079485         9080022         9080559         9081095         9081632           810         9084850         9085386         9085922         9086458         9086994           811         9090209         9090744         9091279         9091815         9092350           812         9095560         9096095         9096630         9097165         9097699           813         9100905         9101440         9101974         9102508         9103042           814         9106244         9106778         9107311         9107844         9108378           815         9111576         9112109         9112642         9113174         9119766           9116902         9117434         9117966         9118498         91191903           817         912220         9122752         9123349         9123116         9129656           819         9127533         9128064         9128595         9129126         9129656           819         9132839         9133899         9134430         9149257           821         9148718         9149246         9149775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |         |         |                 |         |         |  |  |
| 809         9079485         9080022         9080559         9081095         9081632           810         9084850         9085386         9085922         9086458         9086994           811         9090209         9090744         9091279         9091815         9092350           812         9095560         9096095         9096630         9097165         9097699           813         9100905         9101440         9101974         9102508         9103042           814         9106244         9106778         9107311         9107844         9108378           815         911576         9112109         9112642         9113174         9113707           816         9116902         9117434         9117966         9118498         9119030           817         912220         9122752         9123234         9123815         9123656           819         9132839         9133369         9133899         9134430         9134960           819         9132839         9133868         9139198         9134730         9145547           821         9143432         9143961         9144489         9145018         9145547           822         9148718 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |         |         |                 |         |         |  |  |
| 810         9084850         9085386         9085922         9086458         9086994           811         9090209         9090744         9091279         9091815         9092350           812         9095560         9096095         9096630         9097165         9097699           813         9100905         9101440         9101974         9102508         9103042           814         9106244         9106778         9107311         9107844         9108378           815         9111576         9112109         9112642         9113174         9113707           816         9116902         9117434         9117966         9118498         9119030           817         9122220         9122752         9123234         9123815         9124346           818         9127533         9128064         9128595         9129126         9129656           819         9132839         9133369         9134430         9134960         9139126         9139126         9139126         9134960         91349727         9140257         9144489         9145018         9145547         915033         9150831         915033         9150831         915033         9150831         91515054         9155581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |         |         |                 |         |         |  |  |
| 811         9090209         9090744         9091279         9091815         9092350           812         9095560         9096095         9096630         9097165         9097699           813         9100905         9101440         9101974         9102508         9103042           814         9106244         9106778         9107311         9107844         9108378           815         9111576         9112109         9112642         9113174         9113707           816         9116902         9117434         9117966         9118498         9119030           817         912220         9122752         9123234         9123815         9124346           818         9127533         9128064         9128595         9129126         9129656           819         9132839         9133869         9134430         9134960         829139198         9139727         9140257           821         9143432         9143961         9144489         9145018         9145547           822         9148718         9149246         9149775         9150323         9150831           823         915398         9154526         915504         9156581         9161380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |         |         | 9080559         |         |         |  |  |
| 812       9095560       9096095       9096630       9097165       9097699         813       9100905       9101440       9101974       9102508       9103042         814       9106244       9106778       9107311       9107844       9108378         815       911576       9112109       9112642       9113174       9113707         816       9116902       9117434       9117966       9118498       9119030         817       912220       9122752       9123234       9123815       9124346         818       9127533       9128064       9128595       9129126       9129656         819       9132839       9133369       9133899       9134430       9134960         820       9138139       9138668       9139198       9139727       9140257         821       9143432       9143961       9144489       9145018       9145547         822       9148718       9149246       9149775       9150303       9150831         823       9153998       9154526       9155054       9156581       9156109         824       9159272       9159799       9160326       9160853       9161380         825       9164539 </td <td>810</td> <td></td> <td></td> <td>9005922</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 810                     |         |         | 9005922         |         |         |  |  |
| 813       9100905       9101440       9101974       9102508       9103042         814       9106244       9106778       9107311       9107844       9108378         815       9111576       9112109       9112642       9113174       9113707         816       9116902       9117434       9117966       9118498       9119030         817       9122220       9122752       9123234       9123815       9124346         818       9127533       9128064       9128595       9129126       9129656         819       9132839       9133369       9133899       9134430       9134960         820       9138139       9133998       9139198       9139727       9140257         821       9143432       9143961       9144489       9145018       9145547         822       9148718       9149246       9149775       9150303       9150831         823       9153998       9154526       9155054       9155581       9156109         824       9159272       9159799       9160326       9160853       9161380         825       9164539       9165506       9165592       9166118       9166445         826       918980<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |         |         | 9091279         |         |         |  |  |
| 814       9106244       9106778       9107311       9107844       9108378         815       9111576       9112109       9112642       9113174       9113707         816       9116902       9117434       9117966       9118498       9119030         817       9122220       9122752       9123234       9123815       9124346         818       9127533       9128064       9128595       9129126       9129656         819       9132839       9133899       9134430       9134960         820       9138139       9138668       9139198       913727       9140257         821       9143432       9143961       9144489       9145018       9145547         822       9148718       9149246       9149775       9150303       9150831         823       9153998       9154526       9155054       9155581       9156109         824       9159272       9159799       9160326       9160853       9161380         825       9164539       9165066       9165592       9166118       9166445         826       9169800       9170326       9170852       9171378       9171903         827       915555       9180333 </td <td></td> <td>• •</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | • •     |         |                 |         |         |  |  |
| 815         9111576         9112109         9112642         9113174         9113707           816         9116902         9117434         9117966         9118498         9119030           817         9122220         9122752         9123234         9123815         9124346           818         9127533         9128064         9128595         9129126         9129656           819         9132839         9133369         9133899         9134430         9134960           820         9138139         9138668         9139198         9139727         9140257           821         9143432         9143961         9144489         9145018         9145547           822         9148718         9149246         9149775         9150303         9150831           823         9153998         9154526         9155054         9155581         9156109           824         9159272         9159799         9160326         9160853         9161380           825         9164539         9165066         9165592         916118         916645           826         9169800         9170326         9170852         9171378         9171903           827         9175055 <td< td=""><td>013</td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 013                     |         |         |                 |         |         |  |  |
| 816         9116902         9117434         9117966         9118498         9119030           817         9122220         9122752         9123234         9123815         9124346           818         9127533         9128064         9128595         9129126         9129656           819         9132839         9133869         9134430         9134960           820         9138139         9138668         9139198         9139727         9140257           821         9143432         914361         9144489         9145018         9145547           822         9148718         9149246         9149775         9150303         9150831           823         9153998         9154526         9155054         9155581         9156109           824         9159272         9159799         9160326         9160853         9161380           825         9164539         9165066         9165592         9166118         9166645           826         9169800         9170326         9170852         9171378         9171903           827         9175055         9185828         9181352         9181877         9182401           829         9185545         9186069 <t< td=""><td>814</td><td></td><td></td><td></td><td></td><td>-</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 814                     |         |         |                 |         | -       |  |  |
| 817       9122220       9122752       9123234       9123815       9124346         818       9127533       9128064       9128595       9129126       9129656         819       9132839       9133369       9133899       9134430       9134960         820       9138139       9138668       9139198       9139727       9140257         821       9143432       9143961       9144489       9145018       9145547         822       9148718       9149246       9149775       9150323       9150831         823       9153998       9154526       9155054       9155581       9156109         824       9159272       9159799       9160326       9160853       9161380         825       9164539       9165066       9165592       9166118       916645         826       9169800       9170326       9170852       9171378       9171903         827       9175055       9175580       9176105       9176630       9177155         828       918033       9180828       9181352       9181877       9182401         829       9185545       9186069       9185593       9187117       9187640         830       9190781 </td <td>816</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 816                     |         |         |                 |         |         |  |  |
| 818       9127533       9128064       9128595       9129126       9129656         819       9132839       9133369       9133899       9134430       9134960         820       9138139       9138668       9139198       9139727       9140257         821       9143432       9143961       9144489       9145018       9145547         822       9148718       9149246       9149775       9150323       9150831         823       9153998       9154526       9155054       9155581       9156109         824       9159272       9159799       9160326       9160853       9161380         825       9164539       9165066       9165592       9166118       9166645         826       9169800       9170326       9170852       9171378       9171903         827       9175055       9175580       9176105       9176630       9177155         828       918033       9180828       9181352       9181877       9182401         829       9185545       9186069       9185593       9187117       9187640         830       9190781       9191304       9191827       9192350       9192873         831       9196010<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |         |         |                 |         |         |  |  |
| 819       9132839       9133369       9133899       9134430       9134960         820       9138139       9138668       9139198       9139727       9140257         821       9143432       9143961       9144489       9145018       9145547         822       9148718       9149246       9149775       9150303       9150831         823       9153998       9154526       9155054       9155581       9156109         824       9159272       9159799       9160326       9160853       9161380         825       9164539       9165066       9165592       9166118       9166645         826       9169800       9170326       9170852       9171378       9171903         827       9175055       9175580       9176105       9176630       9177155         828       918033       9180828       9181352       9181877       9182401         829       9185545       9186069       9185593       9187117       9187640         830       9190781       9191304       9191827       9192350       9192873         831       9196010       9196533       9197055       9197578       9198100         832       9201233<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |         | 0128064 |                 |         |         |  |  |
| 820       9138139       9138668       9139198       9139727       9140257         821       9143432       9143961       9144489       9145018       9145547         822       9148718       9149246       9149775       9150303       9150831         823       9153998       9154526       9155054       9155581       9156109         824       9159272       9159799       9160326       9160853       9161380         825       9164539       9165066       9165592       9166118       9166645         826       9169800       9170326       9170852       9171378       9171903         827       9175055       9175580       9176105       9176630       9177155         828       9180303       9180828       9181352       9181877       9182401         829       9185545       9186069       9185593       9187117       9187640         830       9190781       9191304       9191827       9192350       9192873         831       9196010       9196533       9197055       9197578       9198100         832       9201233       9201237       9202277       9202799       9203321         833       9206450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |         |         |                 |         |         |  |  |
| 821       9143432       9143961       9144489       9145018       9145547         822       9148718       9149246       9149775       9150303       9150831         823       9153998       9154526       9155054       9155581       9156109         824       9159272       9159799       9160326       9160853       9161380         825       9164539       9165066       9165592       9166118       9166645         826       9169800       9170326       9170852       9171378       9171903         827       9175055       9175580       9176105       9176630       9177155         828       9180303       9180828       9181352       9181877       9182401         829       9185545       9186069       9185593       9187117       9187640         830       9190781       9191304       9191827       9192350       9192873         831       9196010       9196533       9197055       9197578       9198100         832       9201233       9201755       9202277       9202799       9203321         833       9206450       9206971       9207493       9208014       9208535         834       9211661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |         | 9128668 |                 |         |         |  |  |
| 822       9148718       9149246       9149775       9150303       9150831         823       9153998       9154526       9155054       9155581       9156109         824       9159272       9159799       9160326       9160853       9161380         825       9164539       9165066       9165592       9166118       9166645         826       9169800       9170326       9170852       9171378       9171903         827       9175055       9175580       9176105       9176630       9177155         828       9180303       9180828       9181352       9181877       9182401         829       9185545       9186069       9185593       9187117       9187640         830       9190781       9191304       9191827       9192350       9192873         831       9196010       9196533       9197055       9197578       9198100         832       9201233       9201755       9202277       9202799       9203321         833       9206450       9206971       9207493       9208014       9208535         834       9211661       9212181       9212702       9213222       9213743         835       9216865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |         |         |                 |         |         |  |  |
| 823 9153998 9154526 9155054 9155581 9156109 824 9159272 9159799 9160326 9160853 9161380 825 9164539 9165066 9165592 9166118 9166645 826 9169800 9170326 9170852 9171378 9171903 827 9175055 9175580 9176105 9176630 9177155 828 9180303 9180828 9181352 9181877 9182401 829 9185545 9186069 9185593 9187117 9187640 830 9190781 9191304 9191827 9192350 9192873 831 9196010 9196533 9197055 9197578 9198100 832 9201233 9201755 9202277 9202799 9203321 833 9206450 9206971 9207493 9208014 9208535 834 9211661 9212181 9212702 9213222 9213743 835 9216865 9217385 9217905 9218425 9218945 836 9222063 9222582 9223102 9223621 9224140 837 9227255 9227773 9228292 9228811 9229330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 822                     |         |         |                 |         |         |  |  |
| 824       9159722       9159799       9160326       9160853       9161380         825       9164539       9165066       9165592       9166118       9166645         826       9169800       9170326       9170852       9171378       9171903         827       9175055       9175580       9176105       9176630       9177155         828       9180303       9180828       9181352       9181877       9182401         829       9185545       9186069       9185593       9187117       9187640         830       9190781       9191304       9191827       9192350       9192873         831       9196010       9196533       9197055       9197578       9198100         832       9201233       9201755       9202277       9202799       9203321         833       9206450       9206971       9207493       9208014       9208535         834       9211661       9212181       9212702       9213222       9213743         835       9216865       9217385       9217905       9218425       9218945         836       9222063       9222582       9223102       9223621       9224140         837       9227255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |         |         |                 |         |         |  |  |
| 825       9164539       9165066       9165592       9166118       9166645         826       9169800       9170326       9170852       9171378       9171903         827       9175055       9175580       9176105       9176630       9177155         828       9180303       9180828       9181352       9181877       9182401         829       9185545       9186069       9185593       9187117       9187640         830       9190781       9191304       9191827       9192350       9192873         831       9196010       9196533       9197055       9197578       9198100         832       9201233       9201755       9202277       9202799       9203321         833       9206450       9206971       9207493       9208014       9208535         834       9211661       9212181       9212702       9213222       9213743         835       9216865       9217385       9217905       9218425       9218945         836       9222063       9222582       9223102       9223621       9224140         837       9227255       9227773       9228292       9228811       9229330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 824                     |         |         | 9160326         |         |         |  |  |
| 826       9169800       9170326       9170852       9171378       9171903         827       9175055       9175580       9176105       9176630       9177155         828       9180303       9180828       9181352       9181877       9182401         829       9185545       9186069       9185593       9187117       9187640         830       9190781       9191304       9191827       9192350       9192873         831       9196010       9196533       9197055       9197578       9198100         832       9201233       9201755       9202277       9202799       9203321         833       9206450       9206971       9207493       9208014       9208535         834       9211661       9212181       9212702       9213222       9213743         835       9216865       9217385       9217905       9218425       9218945         836       9222063       9222582       9223102       9223621       9224140         837       9227255       9227773       9228292       9228811       9229330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 825                     |         |         | 9165502         |         |         |  |  |
| 827       9175055       9175580       9176105       9176630       9177155         828       9180303       9180828       9181352       9181877       9182401         829       9185545       9186069       9185593       9187117       9187640         830       9190781       9191304       9191827       9192350       9192873         831       9196010       9196533       9197055       9197578       9198100         832       9201233       9201755       9202277       9202799       9203321         833       9206450       9206971       9207493       9208014       9208535         834       9211661       9212181       9212702       9213222       9213743         835       9216865       9217385       9217905       9218425       9218945         836       9222063       9222582       9223102       9223621       9224140         837       9227255       9227773       9228292       9228811       9229330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 826                     | 9169800 |         | 9170852         |         |         |  |  |
| 828 9180303 9180828 9181352 9181877 9182401 829 9185545 9186069 9185593 9187117 9187640 830 9190781 9191304 9191827 9192350 9192873 831 9196010 9196533 9197055 9197578 9198100 832 9201233 9201755 9202277 9202799 9203321 833 9206450 9206971 9207493 9208014 9208535 834 9211661 9212181 9212702 9213222 9213743 835 9216865 9217385 9217905 9218425 9218945 836 9222063 9222582 9223102 9223621 9224140 837 9227255 9227773 9228292 9228811 9229330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 827                     |         |         |                 | 9176630 |         |  |  |
| 829 9185545 9186069 9185593 9187117 9187640<br>830 9190781 9191304 9191827 9192350 9192873<br>831 9196010 9196533 9197055 9197578 9198100<br>832 9201233 9201755 9202277 9202799 9203321<br>833 9206450 9206971 9207493 9208014 9208535<br>834 9211661 9212181 9212702 9213222 9213743<br>835 9216865 9217385 9217905 9218425 9218945<br>836 9222063 9222582 9223102 9223621 9224140<br>837 9227255 9227773 9228292 9228811 9229330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 828                     | 9180303 |         | 9181352         |         | 9182401 |  |  |
| 830 9190781 9191304 9191827 9192350 9192873 831 9196010 9196533 9197055 9197578 9198100 832 9201233 9201755 9202277 9202799 9203321 833 9206450 9206971 9207493 9208014 9208535 834 9211661 9212181 9212702 9213222 9213743 835 9216865 9217385 9217905 9218425 9218945 836 9222063 9222582 9223102 9223621 9224140 837 9227255 9227773 9228292 9228811 9229330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 829                     | 9185545 |         | 9185593         |         | 9187640 |  |  |
| 831       9196010       9196533       9197055       9197578       9198100         832       9201233       9201755       9202277       9202799       9203321         833       9206450       9206971       9207493       9208014       9208535         834       9211661       9212181       9212702       9213222       9213743         835       9216865       9217385       9217905       9218425       9218945         836       9222063       9222582       9223102       9223621       9224140         837       9227255       9227773       9228292       9228811       9229330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |         | 9191304 | 9191827         |         | 9192873 |  |  |
| 832 9201233 9201755 9202277 9202799 9203321<br>833 9206450 9206971 9207493 9208014 9208535<br>834 9211661 9212181 9212702 9213222 9213743<br>835 9216865 9217385 9217905 9218425 9218945<br>836 9222063 9222582 9223102 9223621 9224140<br>837 9227255 9227773 9228292 9228811 9229330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         | 9196010 | 9196533 |                 |         | 9198100 |  |  |
| 833 9206450 9206971 9207493 9208014 9208535<br>834 9211661 9212181 9212702 9213222 9213743<br>835 9216865 9217385 9217905 9218425 9218945<br>836 9222063 9222582 9223102 9223621 9224140<br>837 9227255 9227773 9228292 9228811 9229330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |         | 9201755 | 9202277         |         |         |  |  |
| 834   9211661   9212181   9212702   9213222   9213743   835   9216865   9217385   9217905   9218425   9218945   836   9222063   9222582   9223102   9223621   9224140   837   9227255   9227773   9228292   9228811   9229330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |         |         | 9207493         |         | 9208535 |  |  |
| 835   9216865   9217385   9217905   9218425   9218945   836   9222063   9222582   9223102   9223621   9224140   837   9227255   9227773   9228292   9228811   9229330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |         | _       | 9212702         |         | 9213743 |  |  |
| 837   9227255   9227773   9228292   9228811   9229330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |         |         |                 |         |         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | _       |         | 9223102         |         | 9224140 |  |  |
| 038   <i>9</i> 232440   <i>9</i> 232958   <i>9</i> 233477   9233 <i>995</i>   <i>9</i> 234 <b>513</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |         |         | 9228292         |         |         |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 838                     | 9232440 | 9232958 | <b>92</b> 33477 | 9233995 | 9234513 |  |  |

Logarithms (to 8389.)

|                     | Logarunms (to 8389.) |                                  |                          |                         |                                     |  |  |
|---------------------|----------------------|----------------------------------|--------------------------|-------------------------|-------------------------------------|--|--|
| Natural<br>Numbers. | 5                    | 6                                | 7                        | 8                       | 9                                   |  |  |
| 795                 | 9006402              | 9006948                          | 9007494                  | <i>9</i> 00803 <i>9</i> | 9008585                             |  |  |
| 796                 | 9011858              | 901 2403                         | 9012948                  | <i>9</i> 013493         | 9014038                             |  |  |
| 797                 | <i>9</i> 017307      | 9017851                          | <i>9</i> 0183 <i>9</i> 6 | <i>9</i> 018940         | <i>9</i> 01 <i>9</i> 485            |  |  |
| 798                 | 9022749              | 9023293                          | <i>9</i> 023837          | 9524381                 | 9024924                             |  |  |
| 799                 | 9028185              | <i>9</i> 028728                  | <i>9</i> 029271          | 9029814                 | 9030357                             |  |  |
| 800                 | 9033613              | <i>9</i> 0341 <i>5</i> 6         | <i>9</i> 034698          | 9035241                 | 9035783                             |  |  |
| 108                 | 9039035              | <i>9</i> 039 <b>5</b> 7 <b>7</b> | 9040119                  | 9040661                 | 9041202                             |  |  |
| 802                 | 9044450              | 9044992                          | 9045533                  | 9046073                 | 9046615                             |  |  |
| 803                 | 9049859              | 9050399                          | 9050940                  | 9051480                 | 9052020                             |  |  |
| 804                 | 9055261              | 9055800                          | 9056340                  | 9056880                 | 9057419                             |  |  |
| 805                 | 9060655              | 9061195                          | 9061734                  | 9062274                 | 9062812                             |  |  |
| 806                 | 9066044              | 9066582                          | 9067121                  | 9067659                 | 9068197                             |  |  |
| 807                 | 9071425              | 9071 <i>9</i> 63                 | 9072501                  | 9073038                 | 9073576                             |  |  |
| 8c8                 | 9076800              | 9077337                          | 9077874                  | 9078411                 | 9078948                             |  |  |
| 809                 | 9082169              | 9082705                          | 9083241                  | 9083778                 | 9084314                             |  |  |
| 810                 | 9087530              | <i>9</i> 088066                  | 9088602                  | 9089137                 | <i>9</i> 08 <i>9</i> 673            |  |  |
| 811                 | 9092885              | 9093420                          | 9093955                  | 9094490                 | 9095025                             |  |  |
| 812                 | 9098234              | 9098768                          | 9099303                  | 9099837                 | 9100371                             |  |  |
| 813                 | 9103576              | 9104109                          | 9104643                  | 9105177                 | 9105710                             |  |  |
| 814                 | 9108911              | 9109444                          | 9109977                  | 9110510                 | 9111043                             |  |  |
| 815                 | 9114240              | 9114772                          | 9115305                  | 9115837                 | 9116369                             |  |  |
| 816                 | 9119562              | 9120094                          | 9123626                  | 9121157                 | 9121689                             |  |  |
| 817                 | 9124878              | 9125409                          | 9125940                  | 9126471                 | 9127002                             |  |  |
| 818                 | 9130187              | 9130717                          | 9131248                  | 9131778                 | 9132309                             |  |  |
| 819                 | 9135490              | 9136019                          | 9136549                  | 9137079                 | 9137609                             |  |  |
| 820                 | 9140786              | 9141315                          | 9141844                  | 9142373                 | 9142903                             |  |  |
| 821                 | 9146076              | 9146604                          | 9147133                  | 9147661                 | 9148190                             |  |  |
| 822                 | 9151359<br>9156636   | 9151887                          | 9152415                  | 9152943<br>9158218      | 9153471                             |  |  |
| 823                 |                      | 9157163                          | 9157691<br>9162960       | 9163487                 | 9158745                             |  |  |
| 824                 | 9161907<br>9167171   | 9162433                          | 9168223                  | 9168749                 | 9164013                             |  |  |
| 825<br>826          | 9172429              | 9167697                          | 9173479                  | 9174005                 | 9169275                             |  |  |
| 827                 | 9177680              | 9172954<br>9178205               | 9178730                  | 9179254                 | 9174530                             |  |  |
| 828                 | 9182925              | 91 83449                         | 9183973                  | 9184497                 | 9179779<br>918 <b>5</b> 02 <b>1</b> |  |  |
| 829                 | 9188164              | 9188687                          | 9189211                  | 9189734                 | 9190258                             |  |  |
| 830                 | 9193396              | 9193919                          | 9194442                  | 9194965                 | 9195488                             |  |  |
| 831                 | 9198623              | 9199145                          | 9199667                  | 9200189                 | 9200711                             |  |  |
| 832                 | 9203842              | 9204364                          | 9204886                  | 9205407                 | 9205929                             |  |  |
| 833                 | 9209056              | 9209577                          | 9210098                  | 9210619                 | 9211140                             |  |  |
| 834                 | 9214263              | 9214784                          | 9215304                  | 9215824                 | 9216345                             |  |  |
| 835                 | 9219465              | 9219984                          | 9220504                  | 9221024                 | 9221543                             |  |  |
| 836                 | 9224659              | 9225179                          | 9125698                  | 9226217                 | 9216736                             |  |  |
| 837                 | 9229848              | 9230367                          | 9230885                  | 9231404                 | 9231922                             |  |  |
| 838                 | 9235031              | 9235549                          | 9236066                  | 9236584                 | 9237102                             |  |  |
| <del></del>         |                      |                                  | <b>1</b> 2               |                         | -                                   |  |  |

|                 |         | Artificial Numbers: Or, |          |                                    |                          |  |  |  |  |
|-----------------|---------|-------------------------|----------|------------------------------------|--------------------------|--|--|--|--|
| Natural         | 0       | 1                       | 2        | 3                                  | 4                        |  |  |  |  |
| Numbers.<br>839 | 9237620 | 9238137                 | 9238655  | 9239172                            | 9239690                  |  |  |  |  |
| 840             | 9242793 | 9243310                 | 9243827  | 9244344                            | 9244860                  |  |  |  |  |
| 841             | 9247960 | 9248476                 | 9248993  | 9249509                            | 9250025                  |  |  |  |  |
| 842             | 9253121 | 9253637                 | 9254152  | <i>9</i> 2 <u>5</u> 4668           | 9255184                  |  |  |  |  |
| 843             | 9258276 | 9258791                 | 9259306  | 9259821                            | 9260336                  |  |  |  |  |
| 844             | 9263424 | 9263939                 | 9264453  | 9264968                            | <i>9</i> 26 <u>5</u> 482 |  |  |  |  |
| 845             | 9268567 | 9269081                 | 9269595  | 9270109                            | 9270622                  |  |  |  |  |
| 846             | 9273704 | 9274217                 | 9274730  | 9275243                            | 9275757                  |  |  |  |  |
| 847             | 9278834 | 9279347                 | 9279859  | <i>9</i> 280372                    | <i>9</i> 280885          |  |  |  |  |
| 848             | 2283959 | 9284471                 | 9284983  | 9285495                            | 928 <b>6</b> co7         |  |  |  |  |
| 849.            | 9289077 | 9289588                 | 9290100  | 9290611                            | 9291123                  |  |  |  |  |
| 850             | 9294189 | 9294700                 | 9295211  | 9295722                            | 9296233                  |  |  |  |  |
| 851             | 9299296 | 9299806                 | 9300316  | 93co826                            | 9301336                  |  |  |  |  |
| 852             | 9304396 | 9304906                 | 9305415  | 9305925                            | <i>9</i> 306434          |  |  |  |  |
| 853             | 9309490 | 9309999                 | 9310508  | 9311017                            | 9311526                  |  |  |  |  |
| 854             | 9314579 | 9315087                 | 9315596  | 9316104                            | 9316612                  |  |  |  |  |
| 855             | 9319661 | 9320169                 | 9320677  | 9321185                            | 9321692                  |  |  |  |  |
| 856             | 9324738 | 9325245                 | 9325752  | 9326259                            | 9326767                  |  |  |  |  |
| 857             | 9329808 | 9330315                 | 9330822  | 9331328                            | 9331835                  |  |  |  |  |
| 858             | 9334873 | 9335379                 | 9335885  | 9336391                            | 9336897                  |  |  |  |  |
| 859             | 9339932 | 9340437                 | 9340943  | 9341448                            | 9341953                  |  |  |  |  |
| 860             | 9344984 | 9345489                 | 9345994  | 9346499                            | 9347004                  |  |  |  |  |
| 861             | 9350032 | 9350536                 | 9351040  | 9351544                            | 9352049                  |  |  |  |  |
| 862             | 9355073 | 9355576                 | 9356080  | 9356584                            | 9357087                  |  |  |  |  |
| 863             | 9360108 | 9360611                 | 9361114  | 9361617                            | 9362120                  |  |  |  |  |
| 864             | 9365137 | 9365640                 | 9366143  | 9366645                            | 9367148                  |  |  |  |  |
| 86 <b>5</b>     | 9370161 | 9370663                 | 9371 165 | <i>9</i> 371667                    | 9372169                  |  |  |  |  |
| 866             | 9375179 | 9375680                 | 9376182  | <i>9</i> 376683                    | <i>9</i> 377184          |  |  |  |  |
| 867             | 9380191 | 9380692                 | 9381193  | 9381693                            | 9382194                  |  |  |  |  |
| 868             | 9385197 | 9385697                 | 9386198  | 9386698                            | 9387198                  |  |  |  |  |
| 869             | 9390198 | 9390697                 | 9391197  | 9391697                            | 9392196                  |  |  |  |  |
| 870             | 9395193 | 9395692                 | 9396191  | <i>939</i> 66 <i>9</i> 0           | 9397189                  |  |  |  |  |
| 871             | 9400182 | 9400680                 | 9401179  | <i>9</i> 401 <i>6</i> 77           | 9402176                  |  |  |  |  |
| 872             | 9405165 | 9405663                 | 9406161  | 9406659                            | 9407157                  |  |  |  |  |
| 873             | 9410142 | 9410640                 | 9411137  | 9411635                            | 94I2I32                  |  |  |  |  |
| 874             | 9415114 | 9415611                 | 9416108  | <i>9</i> 41 <i>6</i> 60 <i>5</i> . | <i>9</i> 417101          |  |  |  |  |
| 875             | 9420081 | 9420577                 | 9421073  | 9421569                            | 9422065                  |  |  |  |  |
| 876             | 9425041 | 9425537                 | 9426¢32  | <i>9</i> 426528                    | 9427024                  |  |  |  |  |
| 877             | 9429996 | 9430491                 | 9430986  | <i>9</i> 431481                    | 9431976                  |  |  |  |  |
| 878             | 9434945 | 9435440                 | 9435934  | 9436429                            | 9436923                  |  |  |  |  |
| 879             | 9439889 | 9440383                 | 9440877  | 9441371                            | 9441865                  |  |  |  |  |
| 880             | 9444827 | 9445320                 | 9445814  | 9446307                            | 9446800                  |  |  |  |  |
| 188             | 9449759 | 9450252                 | 9450745  | 9451238                            | 9451730                  |  |  |  |  |
| 882             | 9454686 | 9455178                 | 9455671  | 9456163                            | 9456655                  |  |  |  |  |

Logarithms (to 8829.)

|          |                             | Logarin            | ms (to 8829, |          |                    |
|----------|-----------------------------|--------------------|--------------|----------|--------------------|
| Natural  | 5                           | 6                  | 7            | 8        | 9                  |
| Numbers. | 9240208                     | 9240724            | 9241 246     | 9241759  | 9242276            |
| 840      | 9245377                     | 9245894            | 9246410      | 9246927  | 9247444            |
| 841      | 9250541                     | 9251057            | 9251573      | 9252689  | 9252605            |
| 842      | 9255699                     | 9256215            | 9255730      | 9257245  | 925776I            |
| 843      | 9260851                     | 9261366            | 9261880      | 9262395  | 9262910            |
| 844      | 9265995                     | 9266511            | 9267025      | 9267539  | 9268053            |
| 845      | 9271136                     | 9271650            | 9272163      | 9272677  | 9273190            |
| 846      | 9276270                     | 9276783            | 9277296      | 9277808  | 9278321            |
| 847      | 9281397                     | 9281909            | 9282422      | 9282934  | 9283446            |
| 848      | 9286518                     | 9287030            | 9287542      | 9288054  | 9288565            |
| 849      | 9291634                     | 9292145            | 9292656      | 9293167  | 9293678            |
| 850      | 9296743                     | 9297254            | 9297764      | 9298275  | 9298785            |
| 851      | 9301847                     | 9302357            | 9302866      | 9303376  | 9303886            |
| 852      | 9306944                     | 9307453            | 9307963      | 9308472  | 9308981            |
| 853      | 9312035                     | 9312544            | 9313053      | 9313561  | 9314070            |
| 854      | 9317121                     | 9317629            | 9318137      | 9318645  | 9319153            |
| 855      | 9322200                     | 9322708            | 9323215      | 9323723  | 9324230            |
| 856      | 9327274                     | 9327781            | 9328288      | 9328795  | 9329301            |
| 857      | 9332341                     | 9332848            | 9333354      | 9333860  | 9334367            |
| 858      | 9337403                     | 9337909            | 9338415      | 9338920  | 9339426            |
| 859      | 9342459                     | 9342964            | 9343469      | 9343974  | 9344479<br>9349527 |
| 860      | 9347509                     | 9348013<br>9353057 | 9348518      | 9349022  | 9354569            |
| 861      | 9352553                     | 9358095            | 9353561      | 9354065  | 9359605            |
| 862      | 9357591                     | 9363126            | 9358598      | 9364132  | 9364635            |
| 863      | 9362623<br>93676 <b>5</b> 0 | 9368152            | 9368655      | 9369157  | 9369659            |
| 864      | 9372671                     | 9373172            | 9373674      | 9374176  | 9374677            |
| 866      | 9377686                     | 9378187            | 9378688      | 9379189  | 9379690            |
| 867      | 9382695                     | 9383195            | 9383696      | 9384196  | 9384697            |
| 868      | 9387698                     | 9388198            | 9388698      | 9389198  | 9389698            |
| 869      | 9392696                     | 9393195            | 9393695      | 9394194  | 9394693            |
| 870      | 9397688                     | 9398187            | 9398685      | 9399184  | 9399683            |
| 871      | 9402674                     | 9403172            | 9403670      | 9404169  | 9404667            |
| 872      | 9407654                     | 9408152            | 9408650      | 9409147  | 9409645            |
| 873      | 9412629                     | 9413126            | 9413623      | 9414120  | 9414617            |
| 874      | 9417598                     | 9418095            | 9418591      | 9419088  | 9419584            |
| 875      | 9422561                     | 9423058            | 9423554      | 9424049  | 9424545            |
| 876      | 9427519                     | 9428015            | 9428510      | 9429005  | 9429501            |
| 877      | 943247 I                    | 9432966            | 9433461      | 9433956  | 9434450            |
| 878      | 9437418                     | 9437912            | 9438406      | 9438900  | 9439395            |
| 879      | 9442358                     | 9442852            | 9443346      | 9443840  | 9444333            |
| 880      | 9447294                     | 9447787            | 9448280      | 944877.3 | 9449266            |
| 881      | 9452223                     | 9452716            | 9453208      | 9453701  | 9454193            |
| 882      | 9457.147                    | 9457639            | 9458131      | 9458623  | 9459115            |
|          |                             |                    |              |          |                    |

| Artificial Numbers: Or, |                          |                          |                 |                  |                 |  |  |  |  |
|-------------------------|--------------------------|--------------------------|-----------------|------------------|-----------------|--|--|--|--|
| Natural<br>Numbers.     | 0                        | E                        | 2               | 3                | 4               |  |  |  |  |
| 883                     | 9459607                  | 9460099                  | 9460591         | 9461082          | 9461574         |  |  |  |  |
| 884                     | 9464523                  | 9465014                  | 9465505         | 9465996          | 9466487         |  |  |  |  |
| 885                     | 9469433                  | 9469923                  | 9470414         | 9470905          | 9471395         |  |  |  |  |
| 886                     | 9474337                  | 9474827                  | 9475317         | 9475807          | 9476297         |  |  |  |  |
| 887                     | 9479236                  | <i>9</i> 47 <i>9</i> 726 | 9480215         | 9480705          | 9481194         |  |  |  |  |
| 888                     | 9484130                  | 9484619                  | 9485108         | 9485597          | 9486085         |  |  |  |  |
| 88 <i>9</i>             | <i>9</i> 48 <i>9</i> 018 | 9489506                  | 9489994         | 9490483          | 9490971         |  |  |  |  |
| 890                     | 9493900                  | 9494388                  | 9494876         | 9495364          | 9495852         |  |  |  |  |
| 891                     | 9498777                  | 9499264                  | 9499752         | 9500239          | 9500726         |  |  |  |  |
| 892                     | 9503649                  | 9504135                  | 9504622         | 9505109          | 9505595         |  |  |  |  |
| 893                     | 9508515                  | 9509001                  | 9509487         | 9509973          | 9510459         |  |  |  |  |
| 8 <i>9</i> 4            | 9513375                  | 9513861                  | 9514347         | 9514832          | 9515318         |  |  |  |  |
| 895                     | 9518230                  | 9518716                  | 9519201         | 9519686          | 9520171         |  |  |  |  |
| 896                     | 9 <b>5</b> 23080         | 9523565                  | 9524049         | 9524534          | 9525018         |  |  |  |  |
| 897                     | 9527924                  | 9528409                  | 9528893         | 9529377          | 9529861         |  |  |  |  |
| 898                     | 9532763                  | 9533247                  | 9533730         | 9534214          | 9534697         |  |  |  |  |
| 899                     | 9537597                  | 9538080                  | 9538563         | 9539046          | 9539529         |  |  |  |  |
| 900                     | 9542425                  | 9542908                  | 9543390         | 9543872          | 9544355         |  |  |  |  |
| 901                     | 9547248                  | <i>9</i> 547730          | 9548212         | 9548694          | 9549176         |  |  |  |  |
| 902                     | 9552065                  | 9552547                  | 9553028         | 9553510          | 9553991         |  |  |  |  |
| 903                     | 9556877                  | 9557358                  | 9557839         | 9558320          | 9558801         |  |  |  |  |
| 904                     | 9561684                  | 9562165                  | 9562645         | 9563125          | 9563605         |  |  |  |  |
| 905                     | 9566486                  | 9566966                  | 9567445         | 9567925          | 9568405         |  |  |  |  |
| 906                     | 9571282                  | 9571761                  | 2572241         | 9572720          | 9573199         |  |  |  |  |
| 907                     | 9576073                  | 9576552                  | 9577030         | 9577509          | 9577988         |  |  |  |  |
| 908                     | 9580858                  | 9581337                  | 9581815         | 9582293          | 9582771         |  |  |  |  |
| 909                     | <i>9</i> 585639          | 9586117                  | <b>958</b> 6594 | 9587072          | 9587549         |  |  |  |  |
| 910                     | 9590414                  | <i>959</i> 0891          | 9591368         | 9591845          | 9592322         |  |  |  |  |
| 911                     | 9595184                  | 9595660                  | <b>95</b> 96137 | 9596614          | 9597090         |  |  |  |  |
| 912                     | 9599948                  | 9600425                  | 9600901         | 9601377          | 9601853         |  |  |  |  |
| 913                     | 9604708                  | 9605183                  | 9605659         | 9606135          | 9606610         |  |  |  |  |
| 914                     | 9609462                  | 9609937                  | 9610412         | 9610887          | 9611362         |  |  |  |  |
| 915                     | 9614211                  | 9614686                  | 9615160         | 9615635          | 9616109         |  |  |  |  |
| 916                     | 9618955                  | 9619429                  | 9619903         | 9620377          | 962C851         |  |  |  |  |
| 917                     | 9623693                  | 9624167                  | 9624640         | 9625114          | 9625587         |  |  |  |  |
| 918                     | 9628427                  | 9628900                  | 9629373         | 9629846          | 9630319         |  |  |  |  |
| 919                     | 9633155                  | 9633628                  | 9634100         | 9634573          | 9635045         |  |  |  |  |
| 920                     | <i>9637</i> 878          | 9638350                  | 9638822         | 9539 <b>1</b> 94 | <i>9</i> 639766 |  |  |  |  |
| 921                     | 9642596                  | 9643068                  | 9643539         | 9644011          | 9644482         |  |  |  |  |
| 922                     | 9647309                  | 9647780                  | 9648251         | 9648722          | 9647193         |  |  |  |  |
| 923                     | 9652017                  | 9652488                  | 9652958         | 9653428          | 9653899         |  |  |  |  |
| 924                     | 9656720                  | 9657190                  | 9657660         | 9658130          | 9658599         |  |  |  |  |
| 925                     | 9661417                  | 9661887                  | 9662356         | 9662826          | 9663295         |  |  |  |  |
| 926                     | 9666110                  | 9667579                  | 9667048         | 9667517          | 9667985         |  |  |  |  |

Logarithms (to 9269.)

| ST 4 .              |                                      | Logaruni           | ns (10 9209.,      | ,<br>I <b>8</b>           |                                               |
|---------------------|--------------------------------------|--------------------|--------------------|---------------------------|-----------------------------------------------|
| Natural<br>Numbers. | 5                                    | 6                  | 7                  | 8                         | 9                                             |
| 883                 | 9462066                              | 9462557            | 9463048            | 9463540                   | 9464031                                       |
| 884                 | 9466978                              | 9467469            | 9467960            | 9468451                   | 9468942                                       |
| 885                 | 9471886                              | 9472376            | 9472866            | 9473357                   | 9473847                                       |
| 886                 | 9476787                              | 9477277            | 9477767            | 9478257                   | 9478747                                       |
| 887                 | 9481684                              | 9482173            | 9482662            | 9483151                   | 9483641                                       |
| 888                 | 9486574                              | 9487063            | 9487552            | 9488040                   | 9488529                                       |
| 889                 | 9491460                              | 9491948            | 9492436            | 9492924                   | 9493412                                       |
| 890                 | 9496330                              | 9496827            | 9497314            | 9497802                   | 9498290                                       |
| 168                 | 9501213                              | 9501701            | 9502188            | 9502675                   | 9503162                                       |
| 892                 | 9506082                              | 9506569            | 9507055            | 9507542                   | 9508028                                       |
| 893                 | 9510946                              | 9511432            | 9511918            | 9512404                   | 9512889                                       |
| 894                 | 9515803                              | 9516289            | 9516774            | 9517260                   | 9517745                                       |
| ·895                | 9520656                              | 9521141            | 9521626            | 9522111                   | 9522595                                       |
| 896                 | 9525503                              | 9525987            | 9526472            | 2526956                   | 9527440                                       |
| 897                 | 9530345                              | 9530828            | 9531312            | 9531796                   | 9532280                                       |
| 898                 | 9535181                              | 9535664            | 9536147            | 9536631                   | 9537114                                       |
| 899                 | 9540012                              | 9540494            | 9540977            | 9541460                   | 9541943                                       |
| 950                 | 9544837                              | 9545319            | 9545802            | 9546284                   | 9546766                                       |
| 901                 | 9549657                              | 9550139            | 9550621            | 9551102                   | 9551584                                       |
| 902                 | 9554472                              | 9554953            | 9555434            | 9555915                   | 9556397                                       |
| 903                 | 9559282                              | 9559762            | 9560243            | 9560723                   | 9561204                                       |
| 904                 | 9564086                              | 9564566            | 9565046            | 9565526                   | 9566006                                       |
| 905                 | 9568885                              | 9569364            | 9569844<br>9574636 | 9570323                   | 9570803                                       |
| 906                 | 9573678                              | 9574157            | 9579423            | 9575115<br>9579902        | 9 <b>5</b> 755 <i>9</i> 4<br>9 <b>5</b> 80380 |
| 907                 | 9578466                              | 9578945<br>9583727 | 9584205            | 9584683                   | 9585161                                       |
| 908                 | 9583249                              | 9588505            | 9588982            | 9589459                   | 9589937                                       |
| 909                 | 9588C27                              | 9593276            | 9593754            | 9594230                   | 9594707                                       |
| 910                 | 9592799                              | 9598043            | 9598520            | 9 <b>5</b> 989 <b>9</b> 6 | 9599472                                       |
| 911                 | 9597 <b>5</b> 67<br>960 <b>2</b> 329 | 9602805            | 9603280            | 9603756                   | 9604232                                       |
| 912                 | 9607086                              | 9607561            | 9608036            | 9608511                   | 9608987                                       |
| 913                 | 9511837                              | 9612312            | 9612787            | 9613261                   | 9613736                                       |
| 915                 | 9516583                              | 9617058            | 9617532            | 9618006                   | 9618481                                       |
| 916                 | 9621325                              | 9621799            | 9622272            | 9622746                   | 9623220                                       |
| 917                 | 9626061                              | 9626534            | 9627007            | 9627481                   | 9627954                                       |
| 918                 | 9630792                              | 9631264            | 9631737            | 9632210                   | 9632683                                       |
| 919                 | 9635517                              | 9635990            | 9636462            | 9636934                   | 9637406                                       |
| 920                 | 9640238                              | 9640710            | 9641181            | 9641653                   | 9642125                                       |
| 921                 | 9644953                              | 9645425            | 9645896            | 9646367                   | 9646838                                       |
| 922                 | 9649664                              | 9650134            | 9650605            | 9651076                   | 9651546                                       |
| 923                 | 9654369                              | 9654839            | 9655309            | 9655780                   | 9656250                                       |
| 924                 | 9659069                              | 9659539            | 9660009            | 9660478                   | 9660948                                       |
| 925                 | 9663764                              | 9664233            | 9664703            | 9665172                   | 9665541                                       |
| 926                 | 9568454                              | 9668923            | 9669392            | 9669860                   | 9670329                                       |
| 1 —                 |                                      |                    |                    | •                         |                                               |

|                     | ,                           | Artijusat !                 | (Numbers: O        |                                      |                    |
|---------------------|-----------------------------|-----------------------------|--------------------|--------------------------------------|--------------------|
| Natural<br>Numbers. | 0                           | 1 1                         | 2                  | 3 . (                                | 4.                 |
| 927                 | 9670797                     | 9571266                     | 9671734            | 9672203                              | 9672671            |
| 928                 | 9675480                     | 9675948                     | 9676416            | 9676882                              | 9677351            |
| 929                 | 9680157                     | 9680625                     | 9681092            | 9681550                              | 9682027            |
| 930                 | 9684829                     | 9585296                     | 9685763            | 9686230                              | 9686697            |
| 931                 | 9689497                     | 9689963                     | 9.90430            | 9690896                              | 9691362            |
| 932                 | 9094159                     | 9694625                     | 9095091            | 9095557                              | 9696023            |
| 933                 | 9698816                     | 9699282                     | 9699747            | 9700213                              | <i>9</i> 700678    |
| 934                 | 9703469                     | 9703934                     | 9704399            | 9704853                              | 9705328            |
| 935                 | 9708116                     | 9708581                     | 97-9045            | 9709509                              | 9709974            |
| 936                 | 9712758                     | 9713222                     | 9713636            | 9714150                              | 9714514            |
| 937                 | 9717396                     | 9717859                     | 9716323            | 9718786                              | 9719249            |
| 938                 | 9722028                     | 9722491                     | 9722954            | 9723417                              | 9723880            |
| 939                 | 9726656                     | 9727118                     | 9727581            | 9728043                              | 9728506            |
| 940                 | 9731278                     | 9731741                     | 9732202            | 9732664                              | 9733126            |
| 941                 | 9735896                     | 9736358                     | 9736819            | 9737281                              | 9737742            |
| 942                 | 9740509                     | 9740970                     | 9741431            | 9741892                              | 9742353            |
| 943                 | 9745117                     | 9745577                     | 9746038            | 9746498                              | 9746959            |
| 944                 | 9749720                     | 9750180                     | 9750640<br>9755237 | 97 <b>5</b> 1100<br>97 <b>5</b> 5695 | 9751560<br>9756156 |
| 945                 | 9754318<br>97 <b>5</b> 8911 | 9754778<br>97593 <b>7</b> 0 | 9759829            | 9760288                              | 9760747            |
| 946                 | 9763500                     | 9763958                     | 9764417            | 9764875                              | 9765334            |
| 948                 | 9768983                     | 9768541                     | 9768999            | 9769457                              | 9769915            |
| 949                 | 9772662                     | 9773120                     | 9773577            | 9774035                              | 9774492            |
| 950                 | 9777236                     | 9777693                     | 9778150            | 9778607                              | 9779064            |
| 951                 | 9781805                     | 9782262                     | 9782718            | 9783175                              | 9783631            |
| 952                 | 9786369                     | 9786826                     | 9787282            | 9787738                              | 9788194            |
| 953                 | 9790929                     | 9791385                     | 9791840            | 9792296                              | 9792751            |
| 954                 | 9795484                     | 9795939                     | 9796394            | 9796849                              | 9797304            |
| 955                 | 9800034                     | 9800488                     | 9800943            | 9801398                              | 9801852            |
| 956                 | 9804579                     | 9805023                     | 9805487            | 9805942                              | 9806396            |
| 957                 | 9809119                     | 9809573                     | 9812027            | 9810481                              | 9810934            |
| 958                 | 9813655                     | 9814108                     | 9814562            | 9815015                              | 9815468            |
| 959                 | 9818186                     | 9818639                     | 9819092            | 9819544                              | 9819997            |
| 960                 | 9822712                     | 9823165                     | 9823617            | 9824069                              | 9824522            |
| 961                 | 9827234                     | 9827686                     | 9828138            | 9828589                              | 9829041            |
| 962                 | 9831751                     | 9832202                     | 9832654            | 9833105                              | 9833556            |
| 963                 | 9836263                     | 9836714                     | 9837165            | 9837616                              | 838066 <b>و</b>    |
| 964                 | 9840770                     | 9841221                     | 9841671            | 9842122                              | 9842572            |
| 965                 | 9845273                     | 9845723                     | 9846173            | 9846623                              | 9847073            |
| 966<br>967          | 9849771                     | 9850221                     | 9850670            | 9851120                              | 9851569            |
| 968                 | 9854265<br>9858754          | 9854714                     | 9855163            | 9855612                              | 9856061            |
| 969                 | 9863238                     | 985920 <b>2</b><br>9863686  | 9859651            | 9869099                              | 9860548            |
| 970                 | 9867717                     | 9868165                     | 9864134            | 9864582<br>9869060                   | 9865030            |
| 1                   |                             | ,,,,,,                      | 3-00015            | 3203000                              | 9869508            |

Logarithms (10 9709.)

|                    |                 | Logarith             | ms (12 9709        | <sub>(</sub> )  |                    |
|--------------------|-----------------|----------------------|--------------------|-----------------|--------------------|
| Natural<br>Numbers |                 | 6                    | 7                  | 8               | 9                  |
| 927                | 9673139         | 9673607              | 9574076            | 9674544         | 9675012            |
| 928                | 9677819         | 9678287              | 9678754            | 9679222         | 9679690            |
| 929                | 9582494         | 9682961              | 9683428            | 9683895         | 9684362            |
| 930                | 9687164         | 9687630              | 9683097            | 9688564         | 9689030            |
| 931                | 9691829         | 9592295              | 9692761            | 9693227         | 9693693            |
| 932                | 9696488         | 9696954              | 9697420            | 9697885         | 9698351            |
| 933                | 9701143         | 9701608              | 9702074            | 9702539         | 9703004            |
| 934                | 9705793         | 9705258              | 9706722            | 97.7187         | 9707652            |
| 935                | 9710438         | 9710902              | 9711365            | 9711830         | 9712294            |
| 936                | 9715078         | 9715542              | 9716005            | 9716469         | 9716932            |
| 937                | 9719713         | 9720176              | 9720639            | 9721102         | 9721565            |
| 938                | 9724343         | 9724805              | 9725268            | 9725731         | 9726193            |
| 939                | 9728968         | 9729430              | 9729892            | 9730354         | 9730816            |
| 940                | 9733588         | 9734050              | 9734511            | 9734973         | 9735435            |
| 941                | 9738203         | 9738664              | 9739126            | 9739587         | 9740048            |
| 942                | 9742814         | 9743274              | 9743735            | 9744196         | 9744656            |
| 943                | 9747419         | 9747 <sup>8</sup> 79 | 9748340            | 9748800         | 9749260            |
| 944                | 9752020         | 9752479              | 9752939            | 9753399         | 9753858            |
| 945                | 9756615         | 9757075              | 9757534            | 9757993         | 9758452            |
| 946                | 9761206         | 9761665              | 9762124            | 9762582         | 9763041            |
| . 947              | 9765792         | 9766251              | 9766709            | 9767167         | 9767625            |
| 9+8                | <i>9</i> 770373 | 9770831              | 9771289            | 9771747         | 9772204            |
| 949                | 9774950         | 9775407              | 9775864            | 9776322         | 9776779            |
| 950                | 9779521         | 9779978              | 9780435            | 978 <b>0892</b> | 9781348            |
| 951                | 9784088         | 9784544              | 9785001            | 9785457         | 9785913            |
| 952                | 9788650         | 9789106              | 9789562            | 9790017         | 9790473            |
| 953                | 9793207         | 9793662              | 9794118            | 9794573         | 9795028            |
| 954                | 9797759         | 9798214              | 9798669            | 9799124         | 9799579            |
| 955                | 9802307         | 9802761              | 9803216            | 9803670         | 9804125            |
| 956                | 9800850         | 98073 <b>04</b>      | 9807758            | 9808212         | 9808666            |
| 957                | 9811388         | 9811841              | 9812295            | 9812748         | 9813202            |
| 958                | 9815921         | 9816374              | 9816827            | 9817280         | 9817733            |
| 959                | 9820450         | 9820902              | 9821355            | 9821807         | 9822260            |
| 960                | 9324974         | 9825426              | 9825878            | 9826330         | 9826782            |
| 961                | 9829493         | 9839945              | 9830396            | 9830848         | 9831299            |
| 962                | 9834007         | 9834459              | 9834910            | 9835361         | 9835812            |
| 963                | 9838517         | 9838968              | 9839419            | 9839869         | 9840320            |
| 964                | 9843022         | 9843473              | 9843923            | 9844373         | 9844823            |
| 965                | 9847523         | 9847973              | 9848422            | 9848872         | 9849322            |
| 966                | 9852019         | 9852468              | 9852917            | 9853366         | 9853816            |
| 967                | 9856510         | 9856959              | 98574°7<br>9861893 | 9857856         | 9858305            |
| 968                | 9860996         | 9861445              | 9866374            | 9862341         | 9862790            |
| 969                | 9865478         | 9865926              | 9870850            | 9866822         | 9867270<br>9871745 |
| 970                | 9869955         | 9870403              |                    | 9871298         | 20/1/4)            |
|                    |                 | ,                    | l`t                | ,               |                    |

| )<br> -             | ,               | Artificial I            | Numbers: O      | r,              |                 | •  |
|---------------------|-----------------|-------------------------|-----------------|-----------------|-----------------|----|
| Natural<br>Numbers. | 0               | . <b>t</b> .            | 2               | 3.              | 4 .             |    |
| 97I                 | 9872192         | 9872640                 | 9873087         | 9873534         | <i>9</i> 873981 | Ī  |
| 972                 | 9876663         | 9877109                 | 9877556         | 9878003         | 9878449         | ŀ  |
| 973                 | 9881128         | 9881575                 | 9882021         | 9882467         | 9882913         | ŀ  |
| 974                 | 9885590         | 9886035                 | 9886481         | 9886927         | 9887373         |    |
| 975                 | 9890046         | 9890492                 | 9893937         | <i>9</i> 891382 | 9891828         |    |
| 976                 | 9894498         | 9894943                 | 9895388         | 9895833         | 9896178         |    |
| 977                 | 9898946         | 9899390                 | 9899835         | 9900279         | 9900723         | l  |
| <i>9</i> 78         | 9903389         | <i>99</i> 0383 <b>3</b> | 9904277         | 9904721         | 9905164         | ł  |
| 979                 | <i>99</i> 07827 | 9908270                 | 9908714         | 9909158         | <i>99</i> 09601 | l  |
| <i>9</i> 80         | 9912261         | <i>9</i> 91 2704        | 9913147         | 9913590         | 9914033         | -  |
| <i>9</i> 81         | 9916690         | 9917133                 | 9917575         | 9918018         | 9918461         | ľ  |
| 982                 | 9921115         | 9921557                 | 9921999         | 9922441         | 9922884         |    |
| <i>9</i> 83         | 9925535         | 9925977                 | 9926419         | 9926860         | 9927302         | ľ  |
| <i>9</i> 84         | 9929951         | 9930392                 | <i>99</i> 30834 | 9931275         | 9931716         |    |
| 985                 | 9934362         | 9934803                 | 9935244         | 9935685         | 9936126         |    |
| 986                 | 9938769         | 9939210                 | 9939650         | 9940090         | 9940531         |    |
| 987                 | 9943172         | 9943612                 | 9944051         | 9944491         | 9944931         |    |
| 988                 | 9947569         | 9948009                 | 9948448         | 9948888         | 9949327         | l  |
| 989                 | 9951963         | 9952402                 | 9952841         | 9953280         | 9953719         | ł  |
| 990                 | 9956352         | 9956791                 | 9957229         | 9957668         | 9958106         |    |
| 991                 | 9960737         | 9951175                 | 9961613         | 9962051         | 9962489         | I  |
| 992                 | 9965117         | 9965554                 | 9965992         | 9966430         | 9966868         | ł  |
| 993                 | 9969492         | 9969930                 | 9970367         | 9970804         | 9971242         |    |
| 994                 | 9973864         | 9974301                 | 9974738         | 9975174         | 9975611         |    |
| 995                 | 9978231         | 9978667                 | 9979104         | 9979540         | <i>99799</i> 76 |    |
| 996                 | 9982593         | 9983029                 | 9983465         | 9983901         | 9984337         |    |
| 997                 | 9986952         | 9987387                 | 9987823         | 9988258         | 9988694         |    |
| 998                 | 9991305         | 9991740                 | 9992176         | 9992611         | 9993046         | Ι. |
| 999                 | 9995655         | 9996090                 | 9996524         | 9996959         | 9997393         |    |

Logarithms (to 10000.)

| 1 Natural | ۱ س ۱                    | 6               | 7                        | 8                        |                  |
|-----------|--------------------------|-----------------|--------------------------|--------------------------|------------------|
| Numbers.  | 5                        |                 | •                        | _                        | 2                |
| 971       | 9874428                  | <i>9</i> 874875 | 9875322                  | 9875769                  | 9876216          |
| 972       | 9878896                  | 9879343         | 9879789                  | 9880236                  | 9880682          |
| 973       | 9883360                  | <i>9</i> 883806 | 9884252                  | 9884698                  | 9885144          |
| 974       | 9887818                  | 9888264         | 9888710                  | 9889155                  | 9889601          |
| 975       | 9892273                  | <i>9</i> 892718 | <i>9</i> 893163          | 9893608                  | 9894050          |
| 976       | 9896722                  | 9897167         | 9897612                  | <b>9898</b> 0 <b>5</b> 6 | 9898501          |
| 977       | <i>99</i> 011 <i>6</i> 8 | 9901612         | 9902056                  | 9902500                  | 9902944          |
| 978       | 9905608                  | 9906052         | <b>9</b> 9064 <b>9</b> 6 | 9906940                  | <i>99</i> 07383  |
| 979       | 9910044                  | 9910488         | 9910931                  | 9911374                  | 9911818          |
| 980       | 9914476                  | 9914919         | 9915362                  | 9915805                  | 9916247          |
| 981       | 9918903                  | 9919345         | 9919788                  | 9920230                  | 9 <b>920</b> 673 |
| 982       | 9923326                  | 9923768         | 9924210                  | 9924651                  | 9925093          |
| 983       | 9927744                  | 9928185         | 9928627                  | 9929068                  | 9929510          |
| 984       | 9932157                  | 9932598         | 9933039                  | 9933480                  | 9933921          |
| 985       | 9936566                  | 9937007         | 9937448                  | 9937888                  | 9938329          |
| 986       | 9940971                  | 9941411         | 9941851                  | 9942291                  | 9942731          |
| 987       | 9945371                  | 9945811         | 9946251                  | 9946690                  | <i>99</i> 47130  |
| 988       | 9949767                  | 9959206         | 9950645                  | 9951085                  | 9951524          |
| 989       | 9954158                  | 9954597         | 9955036                  | 9955474                  | 9955913          |
| 990       | 9958545                  | 9958983         | 9959422                  | 9959860                  | 9960298          |
| 991       | 9962927                  | 9963365         | 9963803                  | 9964241                  | 9964679          |
| 992       | 9967305                  | 9967743         | <i>99</i> 68180          | 9968618                  | 9969055          |
| 993       | 9971679                  | 9972116         | 9972553                  | 9972990                  | 9973427          |
| 994       | 9976048                  | 9976485         | 9976921                  | 9977358                  | 9977794          |
| 995       | 9980413                  | 9980849         | 9981285                  | 9981721                  | 9982157          |
| 996       | 9984773                  | 9985209         | 9985645                  | 9986080                  | 9986516          |
| 997       | 9989129                  | 9989564         | 9990000                  | 9990435                  | 9990870          |
| 998       | 9993481                  | 9993916         | 9994350                  | 9994785                  | 9995220          |
| 999       | 9997828                  | 9998262         | 9998697                  | 9999131                  | 9999566          |
| -         |                          |                 |                          |                          | 1                |

10000 it's Log.=4.0000000

### The End of the Table of Logarithms.



Digitized by Google

# TABLE

OF THE

## Parts Proportional Parts

OF THE

### DIFFERENCES

O F

### LOGARITHMS.

By which the foregoing TABLE is made to extend to the Logarithm of 100000, &c.

| Differences<br>of<br>Logarithms. |    | Tenth Parts of those Differences. (VIZ.) |     |     |     |     |      |     |     |  |  |  |
|----------------------------------|----|------------------------------------------|-----|-----|-----|-----|------|-----|-----|--|--|--|
| E S                              | I  | ( 2                                      | 1 3 | 1 4 | 1 5 | 16  | I 7. | 18  | 9   |  |  |  |
| 435                              | 44 | 87                                       | 130 | 174 | 218 | 261 | 305  | 348 | 392 |  |  |  |
| 436                              | 44 | 87                                       | 131 | 174 | 218 | 262 | 305  | 349 | 392 |  |  |  |
| 438                              | 44 | 88                                       | 131 | 175 | 219 | 263 | 307  | 350 | 394 |  |  |  |
| 440                              | 44 | 88                                       | 132 | 176 | 220 | 264 | 308  | 352 | 396 |  |  |  |
| 442                              | 44 | 88                                       | 133 | 177 | 221 | 265 | 309  | 354 | 398 |  |  |  |
| 444                              | 44 | 89                                       | 133 | 178 | 222 | 266 | 311  | 355 | 400 |  |  |  |
| 446                              | 45 | 89                                       | 134 | 178 | 223 | 268 | 312  | 357 | 401 |  |  |  |
| 448                              | 45 | 90                                       | 134 | 179 | 224 | 269 | 314  | 358 | 403 |  |  |  |
| 450                              | 45 | 90                                       | 135 | 180 | 225 | 270 | 315  | 360 | 405 |  |  |  |
| 452                              | 45 | 90                                       | 136 | 181 | 226 | 271 | 316  | 362 | 407 |  |  |  |
| 454                              | 45 | 91                                       | 136 | 182 | 227 | 272 | 318  | 363 | 409 |  |  |  |
| 456                              | 46 | 91                                       | 137 | 182 | 228 | 274 | 319  | 365 | 410 |  |  |  |
| 458                              | 46 | 92                                       | 137 | 183 | 229 | 275 | 321  | 366 | 412 |  |  |  |

|                |      | Te    | nth Pa   | rts of     | those I    | Differen   | ces.     |              |            |
|----------------|------|-------|----------|------------|------------|------------|----------|--------------|------------|
| Diff.of        | 1    | 2     | 3        | 4          | .5         | 6          | 7        | 8            | 9          |
| Logara<br>460  | 46   | 92    | 138      | 184        | 230        | 276        | 322      | 368          | 414        |
| 462            | 46   | 92    | 139      | 185        | 23I        | 277        | 323      | 370          | 416        |
| 464            | 46   | 93    | 139      | 186        | 232        | 278        | 325      | 371          | 418        |
| 466            | 47   | 93    | 140      | 186        | 233        | 280        | 326      | 373          | 419        |
| 468            | 47   | 94    | 140      | 187        | 234        | 281        | 328      | 374          | 421        |
| 470            | 47   | 94    | 141      | ₹88        | 235        | 282        | 329      | 376          | 423        |
| 472            | 47   | 94    | 142      | 189        | 236        | 283        | 330      | 378          | 425        |
| 474            | 47   | 95    | 142      | 190        | 237        | 284        | 332      | 379          | 427        |
| 476            | 48   | 95    | 143      | 190        | 238        | 286        | 333      | 188          | 428        |
| 478            | 48   | 96    | 143      | 191        | .239       | 287        | 335      | 382          | 430        |
| 480            | 48   | 96    | 144      | 192        | 240        | 288        | 336      | 384          | 432        |
| 482            | 48   | 96    | 145      | 193        | 241        | 289        | 337      | 386          | 434        |
| 484            | 48   | 97    | 145      | 194        | 242        | 290        | 339      | 387          | 436        |
| 486            | 49   | 97    | 146      | 194        | 243        | 292        | 340      | 389          | 437        |
| 488            | 49   | 98    | 146      | 195        | 244        | 293        | 342      | 390          | 439        |
| 490            | 49   | 98    | 147      | 196        | 245        | 294        | 343      | 392          | 44 I       |
| 492            | 49   | 98    | 148      | 197        | 248        | 295        | 344      | 394          | 443        |
| 494            | 49   | 99    | 148      | 198        | 247        | 296        | 346      | 395          | 445        |
| 496            | 50   | - 99  | 149      | 1.98       |            | 298        | 347      | 397          | 446        |
| 498            | 50   | 100   | 149      | 199        | 249        | 299        | 348      | 3 <i>9</i> 8 | 448        |
| 500            | 50   | 100   | 150      | 200        | 250        | 300        | 350      | 400          | 450        |
| 502            | 50   | . LOO | 12T      | 201        | 251        | 301        | 351      | . 402        | . 452      |
| 504            | 50   | IQI   | . 151    | 202        | 252        | 302        | 353      | 403          | 454        |
| 506            | 51   | 101   | 152      | 202        | 253        | 30#        | 354      | 405          | 453        |
| 508            | 121  | 102   | 152      | 203.       | 254        | 305        | 356      | 406          | 457        |
| 51.0           | 51   | 102   | 153      | 204        | 255        | 306<br>307 | 357      | 408          | 459        |
| 5.1.2          | ŞI   | 102   | 154      | 302.       | 256        | 308        | 358      | 4ro          | 461        |
| 514            | 21   | 103   | 154      | 206        | 257        | 310        | 361      | 411          | 463        |
| 5.16           | 52   | 103   | 15.5     | 206        | 258        | 311        | 363      | 413          | 464        |
| 5,18           | 52   | 104   | 155      | 207        | 259        | 312        | 364      | 414          | 466        |
| 5,20           | 5.2. | 104   | 156      | 208        | 260        | 313        | 365      | 416          | 468        |
| 5.22           | 5.2  | I 04. | 157      | 209°       | 261<br>262 | 314        | 367      | 418          | 470        |
| 524.           | 52   | 105   | 157      |            | 263        | 316        | 368      | 419          | 472        |
| 526            | 53   | 105   | 158      | 210<br>211 | 264        | 317        | 370      | 421          | 473        |
| 528            | 53   | 105   | 158      |            | 265        | 318        | 371      | 422          | 475        |
| 5.30           | 53   | 106.  | 159      | 212        | 266        | 319        | 372      | 424          | 477<br>479 |
| 5-3-2          | 5.3  | 106   | 160      | 214        | 267        | 320        | 3.74     |              | 481        |
| 534            | 5.3  | 107   | 161      | 214        | 268        | 322        | 375      | 427          | 482        |
| 536.           | 54   | 108   | 161      | 215        | 11         | 323        | 377.     | 430          | 484        |
| <del>538</del> | 1-74 | 1     | 4 A.L.L. | 1-44.)     | 1. 20%.    | W 4-7      | 1.37. /. | , 450        | 1. 4.04    |

|                   |     | T    | enth Pa | erts of | those I | Differe     | nces.        |     |     |
|-------------------|-----|------|---------|---------|---------|-------------|--------------|-----|-----|
| Diff.of<br>Logar. | ı   | 2    | 3       | 4       | 5       | 6           | 7            | 8   | 9   |
| 540               | 54  | 108  | 152     | 216     | 270     | 324         | 378          | 432 | 486 |
| 542               | 54. | 108  | 163     | 217     | 271     | 325         | 379          | 434 | 488 |
| 544               | 54  | 109  | 163     | 218     | 272     | 326         | 181          | 435 | 490 |
| 546               | 55  | 109  | 164     | 218     | 273     | 328         | 382          | 437 | 491 |
| 548               | 55  | 110  | 164     | 219     | 274     | 329         | 384          | 438 | 493 |
| 550               | 55  | 110  | 165     | 220     | 275     | 330         | 385          | 440 | 495 |
| 552               | 55  | 110  | 166     | 221     | 276     | 331         | 386          | 442 | 497 |
| 554               | 55  | 111  | 166.    | 222     | 277     | 332         | 388          | 443 | 499 |
| 556               | 36  | 111  | 167     | 322     | 278     | 334         | 389          | 445 | 500 |
| 5.58              | 56  | -I12 | 167     | 223     | 279     | 335         | 391          | 446 | 502 |
| 560               | 56  | 112  | 168     | 224     | 280     | 336         | 392          | 448 | 504 |
| 562               | 56  | 112  | 169     | 225     | 28.1    | 337         | 393          | 450 | 506 |
| 564               | 56  | 113  | 169     | 226     | 282     | 338         | 395          | 451 | 508 |
| 566               | 57  | 113  | 170     | 226     | 283     | 340         | 396          | 453 | 509 |
| 568               | 57  | 114  | 170     | 227     | 284     | 341         | 3 <i>9</i> 8 | 454 | 511 |
| 570               | 57  | 114  | 171     | 228     | 285     | 342         | 392          | 456 | 513 |
| 572               | 57  | 114  | 172     | 229     | 286     | 343         | 400          | 458 | 515 |
| 574               | 57  | 115  | 172     | 230     | 287     | 344         | 40I          | 459 | 516 |
| 5.76              | 58  | 115  | 173     | 230     | 288     | 346         | 403          | 461 | 218 |
| 578               | 58  | 116  | 173     | 231     | 289     | 347         | 405          | 462 | 520 |
| 580               | 58  | 116  | 174     | 232     | 290     | 348         | 406          | 464 | 522 |
| 582               | 58  | 116  | 175     | 233     | 291     | 3 <b>49</b> | 407          | 466 | 524 |
| 584               | 58  | 117  | 175     | 234     | -292    | 350         | 409          | 467 | 526 |
| 586               | 59  | 117  | 176     | 234     | 293     | 352         | 410          | 469 | 527 |
| 588               | 59  | 118  | 176     | 235     | 294     | 353         | 4I2          | 470 | 529 |
| 590               | 59  | 118  | 177     | 236     | 295     | 354         | 413          | 472 | 531 |
| 592               | 59  | 118. | 178     | 237     | 295     | 355         | 414          | 474 | 533 |
| 594               | 59  | 119  | 178     | 238     | 297     | 356         | 416          | 475 | 535 |
| 596               | 60  | 119  | 179     | 238     | 298     | 328.        | 417          | 477 | 536 |
| 598               | 60  | 120  | 179     | 239     | 299     | 359         | 419          | 478 | 538 |
| 600               | 60  | 120  | 180     | 240     | 300     | 360         | 420          | 480 | 540 |
| 602               | 60  | 120  | 181     | 241     | 301     | 361         | 421          | 482 | 542 |
| 604               | 60  | 121  | 181     | 242     | 302     | 362         | 423          | 483 | 544 |
| 606               | 51  | 121  | 182     | 242     | 303     | 364         | 424          | 485 | 545 |
| 608               | 61  | 122  | 182     | 243     | 304     | 365         | 426          | 486 | 547 |
| 610               | 61  | 122  | 183     | 2++     | 305     | 366         | 427          | 488 | 549 |
| 612               | 61  | 122  | 184     | 245     | . 306   | 367         | 428          | 490 | 551 |
| 614               | 61  | 123  | 184     | 246     | 307     | 368         | 430          | 492 | 553 |
| 616               | 62  | 123  | 185     | 246     | 308     | 370         | 431          | 493 | 554 |
| 618               | 62  | 124  | 185     | 147     | 309     | 371         | 433          | 494 | 556 |

|                   | -   | Te   | nth Pa | rts of t    | hose I | Differen     | ices. |     |      |
|-------------------|-----|------|--------|-------------|--------|--------------|-------|-----|------|
| Diff.of<br>Logar. | 1.  | `2   | 3      | 4           | 5      | 6            | 7 ]   | 8   | 9.   |
| 620               | 62  | 124  | 186    | 248         | 310    | 372          | 434   | 496 | 558  |
| 622               | 62  | 124  | 187    | 249         | 311    | 373          | 435   | 498 | 560  |
| 624               | 62  | 125  | 187    | 250         | 312    | 374          | 437   | 499 | 562  |
| 626               | 63  | 125  | 188    | 250         | 313    | 376          | 43.8  | 501 | 563  |
| 628               | 63  | 126  | 188    | 251         | 314    | 377          | 440   | 502 | 565  |
| 630               | 63  | 126  | 189    | 252         | 315    | 378          | 44 '  | 504 | 567  |
| 632               | 63  | 126  | 190    | 253         | 316    | 379          | 442   | 506 | 569  |
| 634               | 63  | 127  | 190    | 254         | 317    | 380          | 444   | 507 | 57 I |
| 636               | 64  | 127  | 191    | <b>25</b> 4 | 318    | 382          | 445   | 509 | 572  |
| 638               | 64  | 128  | 191    | 255         | 319    | 383          | 447   | 510 | 574  |
| 640               | 64  | 128  | 192    | 256         | 320    | 384          | 448   | 512 | 576  |
| 642               | 64  | 128  | 193    | 257         | 321    | 385          | 449   | 514 | 578  |
| 644               | 64  | 129  | 193    | 258         | 322    | 386          | 451   | 515 | 580  |
| 646               | 65  | 129  | 194    | 258         | 323    | 388          | 452   | 517 | 581  |
| 648               | 65  | 130  | 194    | 259         | 324    | 389          | 454   | 518 | 583  |
| 650               | 65  | 130  | 195    | 260         | 325    | 3 <i>9</i> 0 | 455   | 520 | 585  |
| 652               | 65  | 130  | 196    | 261         | 326    | 391          | 456   | 522 | 587  |
| 654.              | 65  | 131  | 196    | 262         | 327    | 392          | 458   | 523 | 589  |
| 656               | 66  | 131  | 197    | 262         | 328    | 3 <i>9</i> 4 | 459   | 525 | 590  |
| 658               | 66  | 132  | 197    | 263         | 329    | 395          | 461   | 526 | 592  |
| 660               | 66  | 132  | 198    | 264         | 330    | 396          | 462   | 528 | 594  |
| 662               | 66  | 132  | 199    | 265         | 331    | 397          | 463   | 530 | 595  |
| 664               | 66  | 133  | 199    | 266         | 332    | 398          | 465   | 531 | 598  |
| 666               | 67  | 133  | 200    | 266         | 333    | 400          | 466   | 533 | 599  |
| 668               | 67  | 134. | 200    | 267         | 334    | 401          | 468   | 534 | 601  |
| 670               | 67  | 134  | 201    | 268         | 335    | 402          | 469   | 536 | 603  |
| 672               | 67  | 134  | 202    | 269         | 336    | 403          | 470   | 538 | 605  |
| 674               | 67  | 135  | 202    | 270         | 337    | 404          | 472   | 539 | 607  |
| 976               | 68  | 135  | 203    | 270         | 338    | 406          | 473   | 541 | 608  |
| 678               | 68  | 136  | 203    | 271         | 334    | 407          | 475   | 542 | 610  |
| 680               | 68  | 136  | 204    | 272         | 340    | 408          | 476   | 544 | 612  |
| 682               | 68  | 136  | 205    | 273         | 341    | 409          | 477   | 546 | 614  |
| 684               | 68  | 137  | 205    | 274         | 342    | 410          | 479   | 547 | 616  |
| 686               | 69  |      | 206    | 274         | 3+3    | 412          | 480   | 549 | 617  |
| 688               | 69  | 138  | 206    | 275         | 344    | 413          | 482   | 550 | 619  |
| 690               | 69  | 138  | 207    | 276         | 345    | 414          | 483   | 552 | 621  |
| 692               | 59  |      | 208    | 277         | 345    | 415          | 484   | 554 | 623  |
| 694               | 69  |      | 208    | 278         | 347    | 416          | 486   | 555 | 625  |
| 696               | 70  |      | 209    | 278         | 348    | 417          | 187   | 557 | 626  |
| 698               | 170 | 140  | 209    | 279         | 349    | 1419         | 489   | 558 | 628  |

|                   |          | T    | enth P | arts of     | those I | Differe | nces. |              |     |
|-------------------|----------|------|--------|-------------|---------|---------|-------|--------------|-----|
| Diff.of<br>Logar. | I        | 2    | 3 .    | 4           | 1 5     | 6       | 7     | 8            | 9   |
| 700               | 70       | 140  | 210    | 280         | 350     | 420     | 490   | 560          | 630 |
| 702               | 70       | 140  | 211    | 281         | 351     | 421     | 491   | 562          | 632 |
| 704               | 70       | 141  | 211    | 282         | 352     | 422     | 492   | 563          | 634 |
| 706               | 71       | 141  | 212    | 282         | 353     | 424     | 494   | 565          | 635 |
| .708              | 71       | 142  | 212    | 283         | 354     | 425     | 496   | 566          | 637 |
| 710               | 71       | 142  | 213    | 284         | 355     | 426     | 497   | 568          | 639 |
| 712               | 71       | 142  | 214    | 285         | 356     | 427     | 498   | 570          | 641 |
| 714               | 71       | 143  | 214    | 286         | 357     | 428     | 500   | 571          | 643 |
| 716               | 72       | 143  | 215    | 286         | 358     | 430     | 501   | 573          | 644 |
| 718               | 72       | 144  | 215    | 287         | 359     | 431     | 503   | 574          | 646 |
| 720               | 72       | 144  | 216    | 288         | 360     | 432     | 504   | 576          | 648 |
| 722               | 72       | 144  | 217    | 289         | ·361    | 433     | 505   | 578          | 650 |
| 724               | 72       | 145  | 217    | 290         | 362     | 434     | 507   | 579          | 652 |
| 726               | 73       | 145  | 218    | 290         | 363     | 436     | 508   | 581          | 653 |
| 728               | 73       | 146  | 218    | 291         | 364     | 437     | 510   | 582          | 655 |
| 730               | 73       | 146  | 219    | 292         | 365     | 438     | 511   | 584          | 657 |
| 732               | 73       | 146  | 223    | 293         | 366     | 439     | 512   | 586          | 659 |
| 734               | 73       | 147  | 220    | 294         | 367     | 440     | 514   | 587          | 661 |
| 736               | 74       | 147  | 221    | 294         | 368     | 442     | 515   | 58 <i>9</i>  | 662 |
| 738               | 74       | 148  | 221    | 295         | 369     | 443     | 517   | 590          | 664 |
| 740               | 74       | 148  | 222    | 296         | 370     | 444     | 518   | 592          | 666 |
| 742               | 74       | 148  | 223    | 297         | 371     | 445     | 519   | 594          | 668 |
| 744               | 74       | 149  | 223    | <i>29</i> 8 | 372     | 446     | 521   | 595          | 670 |
| 746               | 75       | 149  | 224    | <b>2</b> 98 | 373     | 448     | 522   | 5 <i>9</i> 7 | 671 |
| 748               | 75       | 120  | 224    | 299         | 374     | 449     | 524   | <b>59</b> 8  | 673 |
| 750               | 75       | 150  | 225    | 300         | 375     | 450     | 525   | 600          | 675 |
| 752               | 75       | 150  | 226    | 301         | 376     | 45I     | 526   | 602          | 677 |
| 754               | 75       | 151  | 226    | 302         | 377     | 452     | 528   | 603          | 679 |
| 756               | 76       | 121  | 227    | 302         | 378     | 454     | 529   | 605          | 680 |
| 758               | 76       | 152  | 227    | 303         | 379     | 455     | 531   | 6୍6          | 682 |
| 760               | 76       | 152  | 228    | 304         | 380     | 456     | 532   | 608          | 684 |
| 762               | 76       | 152  | 229    | 305         | 381     | 457     | 533   | 610          | 686 |
| 764               | 76       | 153  | 229    | 306         | 382     | 458     | 535   | 119          | 688 |
| 766               | 77       | 153  | 230    | 306         | 383     | 460     | 536   | 613          | 689 |
| 768               | 77       | 154  | 230    | 307         | 384     | 461     | 538   | 614          | 691 |
| 770               | 77       | 154  | 231    | 308         | 385     | 462     | 539   | 616          | 693 |
| 772               | 77       | 154  | 232    | 309         | 386     | 463     | 540   | 618          | 695 |
| 774               | 77       | 155  | 232    | 310         | 387     | 464     | 542   | 619          | 697 |
| 776               | 78<br>78 | 155  | 233    | 310         | 388     | 466     | 543   | 62 <b>I</b>  | 699 |
| 778               | 101      | 1)01 | 233    | 311         | 389 l   | 467     | 545   | 622          | 700 |

| 1                |            | Te         | nth Pa     | rts of      | those I | Differer           | ices.      | <del></del> |       |
|------------------|------------|------------|------------|-------------|---------|--------------------|------------|-------------|-------|
| Diff.of<br>Logar | I          | 2          | 3          | 4           | 5.1     | 6                  | 7          | 8           | ا و ا |
| 780              | 78         | 156        | 234        | 312         | 390     | 468                | 546        | 624         | 702   |
| 782              | 78         | 156        | 235        | 313         | 391     | 469                | 547        | 626         | 704   |
| 784              | 78         | 157        | 235        | 314         | 392     | 470                | 549        | 627         | 726   |
| 786              | 79         | 157        | 236        | 314         | 393     | 472                | 550        | 629         | 737   |
| 788 ⋅            | 79         | 158        | 235        | 315         | 394     | 473                | 552        | 630         | 709   |
| 790              | 79         | 158        | 237        | 316         | 395     | 474                | 553        | 632         | 711   |
| 792              | 79         | .158       | 238        | 317         | 396     | 475                | 554        | 634         | 713   |
| 794              | 79         | 159        | 238        | 318         | 397     | 477                | 556        | 635         | 715   |
| 796              | 50 l       | 159        | 239        | . 318       | 398     | 478                | 557        | 637         | 717   |
| 798              | 80         | 160        | 239        | 319         | 399     | 479                | 559        | 638         | 718   |
| 800              | 80         | 160        | 240        | 320         | 400     | 480                | 560        | 640         | 720   |
| 802              | 80         | 160        | 241        | 321         | 401     | 481                | 561        | 642         | 722   |
| 804              | 80<br>0-   | 161        | 241        | 322         | 402     | 482                | 563        | 643         | 724   |
| 806              | 81         | 161        | 242        | 322         | 403     | 484                | 564        | 645         | 725   |
| 808              | 81         | 162        | 242        | 323         | 404     | 485                | 566        | 646         | 727   |
| 018              | 81         | 162        | 243        | 324         | 405     | 486                | 567        | 648         | 729   |
| 812              | 18         | 162        | 244        | 325         | 406     | 487                | 568        | 650         | 731   |
| 814              | 81         | 163        | 244        | 326         | 407     | 488                | 570        | 651         | 733   |
| 816              | 82         | 163        | 245        | 326         | 4°8     | 490                | 571        | 653         | 734   |
| 818              | 82         | 164        | 245        | 327         | 409     | 491                | 572        | 654         | 736   |
| 820              | 82         | 164        | 246        | 328         | 410     | 492                | 574        | 656         | 738   |
| 822              | 82         | 164        | 247        | 32 <i>9</i> | 411     | 493                | 575        | 658         | 740   |
| 824              | 82         | 165        | 247        | 330         | 412     | 494                | 577        | 659         | 742   |
| 826<br>828       | 83<br>83   | 165        | 248        | 330         | 413     | 496                | 578        | 661.        | 743   |
|                  | 83         | 166        | 248        | 331         | 414     | 497                | 580        | 662         | 745   |
| 830<br>832       | 83         | 166        | 249        | 332         | 415     | 498                | 581        | 664         | 747   |
| 834              | 83         | 166        | 250        | 333         | 416     | 499                | 582        | 666         | 749.  |
| 836              | 84         | 167        | 250        | 334         | 417     | 500                | 584        | 667         | 751   |
| 838              | 84         | 167<br>168 | 251        | 334         | 418     | 502                | 585        | 669         | 753   |
| 840              | 84         | 108        | 25I        | 335         | 419     | 503                | 587        | 670         | 754   |
| 842              | 84         | 168        | 252        | 336         | 420     | 504                | 588        | 672         | 756   |
| 844              | 84         | 169        | 253        | 337         | 42I     | 505                | 589        | 674         | 758   |
| 846              | 85         | 169        | 253        | 338         | 422     |                    | 591        | 675         | 760   |
| 18.8             | 85         | 170        | 254        | 338         | 423     | 508                | 592        | 677         | 761   |
| 850              | 8 <b>5</b> | 170        | 254        | 339         | 424     | 50 <u>9</u><br>510 | 594        | 678         | 763   |
| 852              | 85         | 170        | 255<br>256 | 340         | 425     | 511                | 595        | 680         | 765   |
| 854              | 85         | 171        | 256        | 341         | 426     | 512                | 5.96       | 682         | 767.  |
| 856              | 86         | 171        |            | 342         | 427     |                    | 598        | 683         | 769   |
| 858              | 86         | 172        | 257<br>257 | 342         | 428     | 514                | 599<br>601 | 685         | 771   |
| 1000             | 00         | . / ~ 1    | 4)/        | 343         | 429     | 515                | 1 201      | 686         | 773   |

| 1                 | Tenth Parts of those Differences. |     |     |              |            |      |            |       |            |  |  |
|-------------------|-----------------------------------|-----|-----|--------------|------------|------|------------|-------|------------|--|--|
| Diff.of<br>Logar. | 1                                 | 1 2 | 3   | 4            | 1.5        | 16   | 7          | 18    | 9          |  |  |
| 850               | 86                                | 172 | 258 | 344          | 430        | 516  | 602        | 688   | 774        |  |  |
| 862               | 86                                | 172 | 259 | 345          | 431        | 517  | 603        | 690   | 776        |  |  |
| 864               | 86                                | 173 | 259 | 346          | 432        | 518  | 605        | 691   | 778        |  |  |
| 866               | 87                                | 173 | 260 | 346          | 433        | 520  | 606        | 693   | 779        |  |  |
| 868               | 87                                | 174 | 260 | 347          | 434        | 521  | 608        | 694   | 781        |  |  |
| 870               | 87                                | 174 | 261 | 348          | 435        | 522  | 609        | 696   | 783        |  |  |
| 872               | 87                                | 174 | 262 | 349          | 436        | 523  | 611        | 698   | 785        |  |  |
| 874               | 87                                | 175 | 262 | 350          | 437        | 524  | 612        | 699   | 787        |  |  |
| 876               | 88                                | 175 | 263 | 350          | 438        | ·526 | 613        | 701   | 789        |  |  |
| 878               | 88                                | 176 | 263 | 3 <b>5</b> I | 439        | 527  | 615        | 702   | 791        |  |  |
| 880               | 88                                | 176 | 264 | 352          | 440        | 528  | 616        | 704   | 793        |  |  |
| 882               | 88                                | 176 | 265 | 353          | 44I        | 529  | 617        | 706   | 795        |  |  |
| 884               | 88                                | 177 | 265 | 354          | 442        | 530  | 619        | 707   | 796        |  |  |
| 886               | 89                                | 177 | 266 | 354          | 443        | 532  | 620        | 709   | 797        |  |  |
| 888               | 89                                | 178 | 266 | 355          | 444        | 533  | 622        | 710   | 799        |  |  |
| 890               | 89                                | 178 | 267 | 356          | 445        | 534  | 623        | 712   | 801        |  |  |
| 892               | 89                                | 178 | 268 | 357          | 446        | 535  | 624        | 714   | 803        |  |  |
| 894               | 89                                | 179 | 268 | 358          | 447        | 536  | 626        | 715   | 805        |  |  |
| 896               | 90                                | 179 | 269 | 358          | 448        | 538  | 627        | 717   | 8.6        |  |  |
| 898               | 90                                | 180 | 269 | 359          | 449        | 539  | 629        | 718   | 808        |  |  |
| 900               | 90                                | 180 | 270 | 360          | 450        | 540  | 63c        | 720   | 810.       |  |  |
| 003               | 90                                | 181 | 271 | 361          | 451        | 542  | 632        | 722   | 813        |  |  |
| 906               | 91                                | 181 | 272 | 363          | 453        | 544  | 634        | 725   | 815<br>818 |  |  |
| 9                 | 91                                | 182 | 273 | 364          | 454        | 545  | 636        | 727   | 821        |  |  |
| 912               | 91                                | 182 | 274 | 365          | 456        | 547  | 638        | 730   | 823        |  |  |
| 915               | 91                                | 183 | 274 | 366          | 457        | 549  | 640        | 732   | 826        |  |  |
| 918               | 92                                | 184 | 275 | 367          | 459        | 551  | 643        | 734   | 829        |  |  |
| 921               | 92                                | 184 | 276 | 368          | 460<br>462 | 553  | 645        | 737   | 832        |  |  |
| 924               | 92                                | 185 | 277 | 370          | 463        | 554  | 647        | 739   | 834        |  |  |
| 927               | 93                                | 185 | 278 | 371          | 465        | 556  | 649        | 742   | 837        |  |  |
| 930               | 93                                | 186 | 279 | 372          | 466        | 558  | 651<br>653 | 744   | 839        |  |  |
| 933               | 93                                | 187 | 280 | 373          | 468        | 560  | 655        | 746   | 842        |  |  |
| 936               | 94                                | 187 | 281 | 374          |            | 562  |            | 749   | 845        |  |  |
| 939               | 94                                | 188 | 282 | 376          | 469        | 563  | 657        | 75I   | 848        |  |  |
| 942               | 94                                | 188 | 283 | 377          | 471        | 565  | 659<br>661 | 754   | 850        |  |  |
| 945               | 94                                | 189 | 283 | 378          | 472        | 567  | 664        | 756   | 853        |  |  |
| 948               | 95                                | 190 | 284 | 379          | 474        | 569  | 666        | 758   | 856        |  |  |
| 951               | 95                                | 190 | 285 | 380<br>382   | 475        | 571  | 668        | 761   | 859        |  |  |
| 954               | 95                                | 191 | 286 | 383          | 477<br>478 | 572  | 670        | 763   | 861        |  |  |
| 257               | 96                                | 191 | 287 |              | 2          | 574  | 3/0        | 700 1 | 33-1       |  |  |

| 1                 | <del></del> | Tentl      | Parts      | of the       | se Dif     | ferenc | es.        | 7.1         |                    |
|-------------------|-------------|------------|------------|--------------|------------|--------|------------|-------------|--------------------|
| Diff.of<br>Logar. | .1          | · <b>2</b> | 3          | 4            | 5          | 6      | 7          | - 8         | 9.                 |
| 950               | 96          | 192        | 288        | 384          | 480        | 576    | 672        | 768         | 864                |
| 963               | 96          | 193        | 289        | 385          | 481        | 578    | 674        | 770         | 867                |
| 966               | 97          | 193        | 290        | 386          | 483        | 580    | 676        | 773         | 869                |
| 969               | 97          | 194        | 29I        | 388          | 484        | 581    | 678        | 775         | 872                |
| 972               | 97          | 194        | 292        | 389          | 486        | 583    | 680        | 778         | 875                |
| 975               | 98          | 195        | 292        | 3 <i>9</i> 0 | 487        | 585    | 682        | 780         | 878                |
| 978               | 98          | 196        | 293        | 391          | 489        | 587    | 685        | 782         | 88o                |
| 981               | 98          | 196        | 294        | 392          | 490        | 589    | 687        | 785         | 883                |
| 984               | 98          | 197        | 295        | 394          | 492        | 590    | 689        | 787         | 886                |
| 987               | 99          | 197        | 296        | 395          | 493        | 592    | 691        | <i>79</i> ° | 888                |
| 990               | 99          | 198        | 297        | 396          | 495        | 594    | 693        | 792         | 168                |
| 993               | 99          | 199        | 298        | 397          | 496        | 596    | 6.95       | 794         | 894                |
| 996               | Ico         | 199        | 299        | 398          | 498        | 598    | 697        | 797         | 897                |
| 999               | 100         | 200        | 300        | 400          | 499        | 599    | 699        | 799         | 899                |
| 1005              | 101         | 201        | 301        | 402          | 502        | 603    | 703        | 804         | 904                |
| 1009              | IoI         | 202        | 303        | 404          | 504        | 605    | 706        | 807         | <i>9</i> 08        |
| 1013              | 101         | 203        | 304        | 405          | 506        | 608    | 709        | 810         | 912                |
| 1017              | 102         | 203        | 305        | 407          | 508        | 610    | 712        | 814         | 915                |
| 1021              | 102         | 204        | 3C6        | 408          | 510        | 613    | 715        | 817         | 919                |
| 1025              | 103         | 205        | 307        | 410          | 512        | 615    | 717        | 820         | 923                |
| 1029              | 103         | 206        | 309        | 412          | 514        | 617    | 720        | 823         | 926                |
| 1033              | 103         | 207        | 310        | 413          | 516        | 620    | 723        | 826         | 930                |
| 1037              | 104         | 207        | 311        | 415          | 518        | 622    | 726        | 830         | 933                |
| 1041              | 104         | 208        | 312        | 416          | 520        | 625    | 729        | 833         | 937                |
| 1045              | 105         | 209        | 313        | 418          | 522        | 627    | 731        | 836         | 24.1               |
| 1049              | 105         | 210        | 315        | 420          | 524        | 629    | 734        | 839         | 944                |
| 1053              | 105         | 211        | 316        | 421          | 526        | 632    | 737        | 842         | 948                |
| 1057              | 106         | 211        | 317        | 423          | 528        | 634    | 740        | 846         | 951                |
| 1065              | 106         | 212        | 318        | 424          | 530        | 637    | 743        | 849         | 955                |
|                   | 107         | 214        | 319        | 426          | 532        | 639    | 745        | 852         | 959                |
| 1069              | 107         | 215        | 321        | 428          | 534        | 641    | 748        | 855         | 962                |
| 1073              | 107         | 215        | 322<br>323 | 429<br>431   | 536        | 644    | 751        | 858         | 966                |
| 1081              | 108         | 216        |            |              | 538        | 646    | 754        | 862         | 969                |
| 1085              | 109         | 217        | 324        | 432          | 540        | 649    | 757        | 865         | 973                |
| 1089              | 109         | 218        | 325        | 434          | 542        | 651    | 759<br>762 | 868         | 977<br><i>9</i> 8c |
| 1093              | 110         | 21.9       | 327<br>328 | 436          | 544        | 653    | 765        | 871         | 984                |
| 1097              | 110         | 219        | 329        | 437          | 546        | 656    | 768        | 874         | 987                |
| 1101              | FIO         | 220        | 329        | 439          | 548        | 658    |            | 878<br>881  | 991                |
| 1105              | 111         | 221        | 331        | 440<br>442   | 550<br>552 | 663    | 77I        | 884         | 991<br>994         |
| 1-10)             |             |            | 23.        | 44-          | ))2        | 1003   | 773        | 1 004       | 274                |

| I                  |      | Ten             | th Pa       | rts of | thofe       | Differ | ences.     |       |              |
|--------------------|------|-----------------|-------------|--------|-------------|--------|------------|-------|--------------|
| Diff. of<br>Logar. | 1    | 2               | .3.         | 1 4.   | 5           | 6      | 7          | 8     | 9            |
| 1109               | III  | 222             | 333         | 444    | 554         | 665    | 776        | 887   | 998          |
| 1113               | ILI  | 223             | 334         | 445    | 556         | 668    | 779        | 890   | 1002         |
| 1117               | 112  | 223             | 335         | 447    | 558         | 670    | 782        | 894   | 1005         |
| 1121               | 112  | 224             | 336         | 448    | 560         | 673    | 785        | 897   | 1009         |
| 1125               | 113  | 225             | 337         | 450    | 562         | 675    | 787        | 900   | 1013         |
| 1129               | 113  | 226             | 339         | 452    | 564         | 677    | 790        | 903   | 1016         |
| 1133               | 113  | 227             | 340         | 453    | 566         | 68ن    | 793        | 906   | 1020         |
| 1137               | 114  | 227             | 34I         | 455    | 568         | 682    | 796        | 910   | 1023         |
| 1141               | 114  | 228             | 342         | 456    | 570         | 685    | 799        | 913   | 1027         |
| 1145               | 115  | 229             | 243         | 458    | 572         | 687    | 801        | 916   | 1031         |
| 1149               | 115  | 230             | 345         | 460    | 574         | 689    | 804        | 919   | 1034         |
| 1153               | 115  | 23 I            | 345         | 461    | 576         | 692    | 807        | 922   | 1038         |
| 1157               | 116  | 231             | 347         | 463    | 578         | 694    | 810        | 926   | 1041         |
| 1161               | 116  | 232             | 348         | 464    | 58c         | 697    | 813        | 929   | 1045         |
| 1165               | 117  | 233             | 349         | 466    | 582         | 699    | 815        | 932   | 1049         |
| 1169               | 117  | 234             | 351         | 468    | 584         | 701    | 818        | 935   | 1052         |
| 1173               | 117  | 235             | 352         | 469    | 586         | 704    | 821        | 938   | 1056         |
| 1177               | 118  | 235             | <b>35</b> 3 | 471    | 588         | 706    | 824        | 942   | 1059         |
| 181                | 118  | 236             | 354         | 472    | 590         | 709    | 827        | 945   | 1063         |
| 1185               | 118  | 237             | 3 <b>55</b> | 474    | 592         | 711    | 829        | 948   | 1067         |
| 1189               | 119  | 238             | 357         | 476    | 594         | 713    | 832        | 951   | 1070         |
| 1193               | 119  | 239             | 358         | 477    | 596         | 716    | 835        | 954   | 1074         |
| 1197               | 120  | 239             | 359         | 479    | 598         | 718    | 838        | 958   | 1077         |
| 1201               | 120  | 240             | 360         | 480    | 600         | 721    | 841        | 961   | 1081         |
| 1205               | 120  | 241             | 36 I        | 482    | <b>602</b>  | 723    | 843        | 964   | 1084         |
| 1209               | 121  | 242             | 363         | 484    | 004         | 725    | 846        | 967   | 1088         |
| 1213               | 121  | 243             | 364         | 485    | 606         | 728    | 849        | 970   | 1092         |
| 1217               | 122  | 243             | 365         | 487    | <i>6</i> c8 | 730    | 852        | 974   | 1095         |
| 1221               | 122  | 244             | 366         | 488    | 610         | 732    | 855        | 977   | 1099         |
| 1225               | 122  | 245             | 367         | 490    | 612         | 735    | 857        | 980   | 1102         |
| 1229               | 123  | 246             | 369         | 492    | 614         | 737    | 860        | 983   | 1106         |
| 1233               | 123  | <sup>2</sup> 47 | 370         | 493    | 616         | 740    | 863        | 986   | 1110         |
| 1237               | 124  | 247             | 37 I        | 495    | 618         | 742    | 866        | 990   | 1113         |
| 1241               | 124  | 248             | 372         | 496    | 620         | 745    | 869        | 993   | 1117         |
| 1245               | 124  | 249             | 373         | 498    | 622         | 747    | 871        | 996   | 1120<br>1124 |
| 1249               | 125  | 250             | 375         | 500    | 624         | 749    | 874        | 999   | 1128         |
| 1253               | 125  | 251             | 376         | 501    | 626         | 752    | 877        | 1006  | 1120         |
| 1257               | 1 26 | 251             | 377         | 503    | 628         | 754    | 880        | 1     |              |
| 1260               | 126  | 252             | 378         | 504    | 630         | 756    | 882<br>884 | 1010  | 1134<br>1137 |
| 1263               | 126  | 253             | 379         | 505    | 631         | 758    | 1 004      | 11010 | 143/         |

|                |      | Tent  | h Par | ts of t    | hose l     | Differ | ences.     | 1    |       |
|----------------|------|-------|-------|------------|------------|--------|------------|------|-------|
| Diff.of        | 1 1  | 2     | 3     | 4          | 15         | 6      | 7          | 8    | ا و ا |
| Logar.<br>1267 | 127  | 253   | 380   | 507        | 633        | 760    | 887        | 1014 | 1140  |
| 1271           | 127  | 254   | 381   | 508        | 635        | 763    | 890        | 1017 | 1144  |
| 1275           | 127  | 255   | 382   | 510        | 637        | 765    | 892        | 1020 | 1147  |
| 1279           | 128  | 256   | 384   | 512        | 639        | 767    | 895        | 1023 | 1151  |
| 1283           | 128  | 257   | 385   | 513        | 641        | 770    | 898        | 1026 | 1155  |
| 1287           | 129  | 257   | 386   | 515        | 643        | 772    | 901        | 1030 | 1158  |
| 1291           | 129  | 258   | 387   | 516        | 645        | 775    | 904        | 1033 | 1162  |
| 1295           | 129  | 259   | 388   | 518        | 647        | 777    | 900        | 1036 | 1165  |
| 1299           | 130  | 260   | 389   | 520        | 649        | 779    | 909        | 1039 | 1169  |
| 1303           | 130  | 261   | 391   | 521        | 651        | 782    | 912        | 1042 | 1173  |
| 1307           | 131  | 261   | 392   | 523        | 653        | 784    | 915        | 1046 | 1176  |
| 1311           | 131  | 262   | 393   | 524        | 655        | 787    | 918        | 1049 | 1180  |
| 1315           | 131  | 263   | 394   | 526        | 657        | 789    | 920        | 1052 | 1183  |
| 1319           | 132  | 264   | 396   | 528        | 659        | 791    | 923        | 1055 | 1187  |
| 1323           | 132  | 265   | 397   | 529        | 661        | 794    | 926        | 1058 | 1191  |
| 1327           | 133  | 265   | 398   | 531        | 663        | 796    | 929        | 1062 | 1194  |
| 1331           | 133  | 266   | 399   | 532        | 665        | 799    | 932        | 1065 | 1198  |
| 1335           | 133  | 267   | 400   | 534        | 667        | 801    | 93+        | 1068 | 1,201 |
| 1339           | 134  | 268   | 402   | 536        | 669        | 803    | 937        | 1071 | 1205  |
| 1343           | 134  | 269   | 403   | 537        | 671        | 866    | 940        | 107+ | 1209  |
| 1347           | 135  | 269   | 404   | 539        | 673        | 808    | 943        | 1073 | 1212  |
| 1351           | 135  | 270   | 405   | 540        | 675        | 811    | 946        | 1801 | 1216  |
| 1355           | 132  | 271   | 406   | 542        | 677        | 813    | 948        | 1084 | 1219  |
| 1359           |      | 272   | 408   | 544        | 679        | 815    | 951        | 1087 | 1223  |
| 1363           |      | 273   | 409   | 545        | 681        | 818    | 954        | 1090 | 1227  |
| 1367           |      | 273   | 410   | 547        | 683        | 820    | 957        | 1094 | 1230  |
| 1371           | 137  | 274   | 411   | 548        | 685        | 823    | 960        | 1097 | 1234  |
| 1375           | 1 0  | 275   | 412   | 550        | 687        | 825    | 962        | 1100 | 1237  |
| 1379           |      | 276   | 414   | 552        | 689        | 827    | 965        | 1103 | 1241  |
| 1383           |      | 277   | 415   | 553        | 691        | 830    | 968        | IIC6 | 1245  |
| 1387           |      | 277   | 416   | 555        | 693        | 832    | 971        | IIIO | 1248  |
| 1391           |      | 278   | 417   | 556        | 695        | 835    | 974        | 1113 | 1252  |
| 1395           |      | 279   | 418   | 558        | 697        | 837    | 976        | 1116 | 1255  |
| 1399           |      | 280   | 420   | 559        | 699        | 839    | 979        | 1119 | 1259  |
| 1403           |      | 281   | 421   | 561        | 701        | 842    | 985        | 1122 | 1263  |
| 1407           |      | 281   | 422   | 563        | 703        | 844    | 988        | 1126 | 1266  |
| 1411           |      | 282   | 423   | 564<br>566 | 1          | 847    | 4          | 1129 | 1270  |
| 1415           |      | 283   | 424   |            | 707        |        | 990<br>994 | 1132 | 1273  |
| 1420           |      | 285   | 426   | 568        | 719<br>712 | 852    | 997        | 1136 | 1278  |
| 1425           | 1142 | 1 20) | 427   | 1 570      | 1/12       | 855    | 122/       | 1140 | 1282  |

| 1             |     | Ten | th Pa      | rts of       | thofe       | Ditter      | ences. |       |              |
|---------------|-----|-----|------------|--------------|-------------|-------------|--------|-------|--------------|
| Diff o Logar. | 1   | 2   | 3          | 4            | 5           | 6           | 7      | 8     | 9            |
| 1430          | 143 | 286 | 429        | 572          | 715         | 858         | 1001   | 1144  | 1287         |
| 1435          | 143 | 287 | 430        | 574          | 717         | 861         | 1004   | 1148  | 1291         |
| 1440          | 144 | 288 | 432        | 576          | 720         | 864         | 1008   | 1152  | 1296         |
| 1445          | 144 | 289 | 433        | 578          | 722         | 867         | 1011   | 1156  | 1300         |
| 1450          | 145 | 290 | 435        | 580          | 725         | 870         | 1015   | 1160  | 1305         |
| 1455          | 145 | 291 | 436        | 582          | 727         | 873         | 1018   | 1164  | 1309         |
| 1460          | 146 | 192 | 438        | 584          | 730         | 876         | I022   | 1168  | 1314         |
| 1465          | 146 | 293 | 439        | 586          | 732         | 879         | 1025   | 1172  | 1318         |
| 1470          | 147 | 294 | 441        | 588          | 735         | 882         | 1029   | 1176  | 1323         |
| 1475          | 147 | 295 | 442        | 590          | 737         | 885         | 1032   | 1180  | 1327         |
| 1480          | 148 | 296 | 444        | 592          | 740         | 888         | 1036   | 1184  | 1332         |
| 1485          | 148 | 297 | 445        | 594          | 742         | 891         | 1039   | 1188  | 1336         |
| 1490          | 149 | 298 | 447        | 596          | 745         | 894         | 1043   | 1192  | 1341         |
| 1495          | 149 | 299 | 448        | 5 <i>9</i> 8 | 747         | 897         | 1046   | 1196  | 1345         |
| 1500          | 150 | 300 | 450        | .600         | <b>75</b> 0 | <i>9</i> 00 | 1050   | I 200 | 1350         |
| 1505          | 150 | 301 | 451        | 602          | 752         | 903         | 1053   | 1 204 | 1354         |
| 1510          | 151 | 302 | 453        | 604          | 755         | 906         | 1057   | 1208  | 1359         |
| 1515          | 151 | 3C3 | 454        | 606          | 757         | 909         | 1060   | 1212  | 1363         |
| 1520          | 152 | 304 | 456        | 608          | 760         | 912         | 1064   | 1216  | 1368         |
| 1525          | 152 | 305 | 457        | 610          | 762         | 915         | 1067   | 1220  | 1372         |
| 1530          | 153 | 306 | 459        | 612          | 765         | 918         | .1071  | 1224  | I 377        |
| 1535          | 153 | 307 | 460        | 614          | 767         | 921         | 1074   | 1228  | 1381         |
| 1540          | 354 | 308 | 462        | 616          | 770         | 924         | 1078   | 1232  | 1386         |
| 1545          | 154 | 3¢9 | 463        | 618          | 772         | 927         | 1001   | 12.36 | 1390         |
| .1550         | 155 | 310 | 465        | 620          | 775         | 930         | 1085   | 1240  | 1395         |
| 1555          | 155 | 311 | 460        | 6.22         | 777         | 933         | 1088   | 1244  | 1399         |
| 1560          | 156 | 312 | 468        | 624          | 780         | 936         | 1092   | 1248  | 1404<br>1408 |
| 1565          | 156 | 313 | 469        | 626          | 782         | 939         | 1095   | 1256  | - 1          |
| 1570          | 157 | 314 | 471        | 628          | 785         | 942<br>945  | 1099   | 1260  |              |
| 3575          | 157 | 315 | 472        | 630          | 787         | 948         | 1102   | 1264  | 1422         |
| 1580          | 158 | 316 | 474        | 632          | 790         | 951         | 1109   | 1268  | 1426         |
| 1585          | 158 | 317 | 475        | 634          | 792         | 954         | 1113   | 1272  | 1431         |
| 1590          | 159 | 318 | 477        | 636          | 795         | 957         | 1116   | 1276  | 1435         |
| 1595          | 159 | 319 | 478        | 638          | 797         | 900<br>900  | 1110   | 1280  | 1440         |
| 1600          | 160 | 320 | 480        | 640          | 800<br>802  | 963         | 1123   | 1284  | 1444         |
| 1605          | 160 | 321 | 481<br>483 | 642          | 805         | 966         | 1127   | 1288  | 1449         |
| 1610          | IGI | 322 | 484        | 644<br>646   | 807         | 969         | 1130   | 1292  | 1453         |
| 1615          | 161 | 323 | 486        | 648          | 810         | 972         | 1134   | 1296. | 1458         |
| 1620          | 162 | 324 |            | 650          |             | 975         | 1137   | 1300  |              |
| 1625          | 162 | 325 | 487        | 1 930        | 1012        | 17/3        | 1 /    | 1.300 | 701          |

| Ĩ |               |     | Tent            | h Par      | ts of t             | hose I          | Differen | ices. |      |              |
|---|---------------|-----|-----------------|------------|---------------------|-----------------|----------|-------|------|--------------|
|   | Diffof Logar. | 1 ( | 2               | 3          | 4                   | 5               | 6        | 7     | 8    | 9            |
| ľ | 1630          | 163 | 326             | 489        | 652                 | 812             | 978      | 1141  | 1304 | 1467         |
| ١ | 1635          | 163 | 327             | 490        | 654                 | 817             | 981      | 1144  | 1308 | 1471         |
| ١ | 1640          | 164 | 328             | 492        | 656                 | 820             | 984      | 1148  | 1312 | 1476         |
| ١ | 1645          | 164 | 329             | 493        | 658                 | 822             | 987      | 1151  | 1316 | 1480         |
| ١ | 1650          | 165 | 330             | 495        | 660                 | 825             | 990      | 1155  | 1320 | 1485         |
|   | 1655          | 165 | 331             | 496        | 662                 | 827             | 993      | 1158  | 1324 | 1489         |
|   | 1660          | 166 | 332             | 498        | 664                 | 830             | 996      | 1162  | 1328 | 1494         |
| - | 1665          | 167 | 333             | 499        | 666                 | 832             | 999      | 1166  | 1332 | 1498         |
|   | 1670          | 167 | 334             | 501        | 668                 | 835             | 1002     | 1169  | 1336 | 1503         |
|   | 1675          | 167 | 335             | 502        | 670                 | 837             | 1005     | 1172  | 1340 | 1507         |
|   | 1680          | 168 | 336             | 504        | 672                 | 840             | 1 008    | 1176  | 1344 | 1512         |
|   | 1685          | 168 | 337             | 505        | 674                 | 842             | 1011     | 1179  | 1348 | 1516         |
|   | 1690          | 169 | 338             | 507        | 676                 | 845             | 1014     | 1183  | 1352 | 1521         |
|   | 1695          | 169 | 339             | 508        | 678                 | 847             | 1017     | 1186  | 1356 | 1525         |
|   | 1700          | 170 | 340             | 210        | 680                 | 850             | 1020     | 1190  | 1360 | 1530         |
|   | 1705          | 170 | 34 <sup>I</sup> | 511        | 682                 | 852             | 1023     | 1193  | 1364 | 1534         |
|   | 1710          | 171 | 342             | 513        | 684                 | 855             | 1026     | 1197  | 1368 | 1539         |
|   | 1715          | 171 | 343             | 514<br>516 | 6 <b>8</b> 6<br>688 | 857             | 1029     | 1200  | 1372 | I 543        |
|   | 1720          | 172 | 344             | 517        |                     | 86 <sub>2</sub> | 1032     | 1204  | 1376 | 1548         |
|   | 1725          |     | 345<br>346      | 519        | 690                 | 865             | 1035     | 1207  | 1380 | 1552         |
|   | 1730<br>1735  |     | 347             | 520        | 694                 | 867             | 1038     | 1211  | 1384 | 1557         |
|   | 1740          |     | 348             | 522        | 696                 | 870             | 1041     | 1214  | 1388 | 1561         |
|   | 1745          |     | 349             | 523        | 698                 | 872             | 1044     | 1218  | 1392 | I 566        |
|   | 1750          |     |                 | 525        | 700                 | 875             | 1047     | 1221  | 1396 | 1570         |
|   | 1755          |     | 351             | 526        | 702                 | 877             | 1050     | 1225  |      | 1575<br>1579 |
|   | 1760          |     | 352             | 528        | 704                 | 880             | 1056     | 1232  |      |              |
|   | 1765          |     |                 | 529        | 706                 | 882             | 1059     | 1235  |      | 1588         |
|   | 1770          |     | 354             | 531        | 768                 | 885             | 1062     | 1239  |      |              |
|   | 1775          |     |                 | 532        | 710                 | 887             | 1065     | 1 242 |      |              |
|   | 1780          |     | 356             | 534        |                     | 890             | 1068     |       |      |              |
|   | 1785          | 179 |                 | 535        | 714                 | 892             | 1071     | 1249  |      |              |
|   | 1790          |     |                 | 537        | 716                 | 895             | 1074     |       |      |              |
|   | 1795          |     |                 |            |                     | 897             | 1077     |       |      |              |
|   | 1800          |     | 360             |            |                     | 900             |          |       |      |              |
|   | 1809          |     |                 | 541        | 722                 | 902             | 1683     |       |      | •            |
|   | 1810          |     | 362             |            |                     |                 |          |       |      |              |
|   | 1819          |     |                 |            | 726                 | 907             | 1089     |       |      |              |
|   | 1820          |     |                 |            |                     |                 |          |       |      |              |
|   | 182           | 183 | 365             | 1547       | 730                 | 912             | 1095     | 127   |      | 1642         |
|   |               |     |                 |            |                     |                 |          |       |      |              |

| Tenth Parts of those Differences. |     |     |             |            |             |      |                  |       |      |  |
|-----------------------------------|-----|-----|-------------|------------|-------------|------|------------------|-------|------|--|
| Diff.of                           | 1   | _ 2 | 3           | 4          | 5           | 6    | 7                | 8     | 9    |  |
| Logar.<br>1830                    | 183 | 366 | 549         | <b>732</b> | 915         | 1098 | 1281             | 1464  | 1647 |  |
| 1835                              | 184 | 367 | 550         | 734        | 917         | 1011 | 1284             | 1468  | 1651 |  |
| 1840                              | 184 | 368 | 552         | 736        | 920         | 1104 | 1 288            | 1472  | 1656 |  |
| 1845                              | 185 | 369 | 553         | 738        | 922         | 1107 | 1291             | 1476  | 1660 |  |
| 1850                              | 185 | 370 | 555         | 740        | 925         | 0111 | 1295             | 1480  | 1665 |  |
| 1855                              | 186 | 371 | 556         | 742        | 927         | 1113 | 1298             | 1484  | 1669 |  |
| 1860                              | 186 | 372 | 558         | 744        | 930.        | 1116 | 1302             | 1488  | 1674 |  |
| 1865                              | 187 | 373 | 559         | 746        | 932         | 1119 | 1305             | 1492  | 1678 |  |
| 1870                              | 187 | 374 | 561         | 748        | 935         | 1122 | 1309             | 1496  | 1683 |  |
| 1875                              | 188 | 375 | 562         | 750        | 937         | 1125 | 1312             | 1500  | 1687 |  |
| 1880                              | 188 | 376 | 564         | 752        | 940         | 1128 | 1316             | 1504  | 1692 |  |
| 1885                              | 189 | 377 | 565         | 754        | 942         | 1131 | 1319             | 1508  | 1696 |  |
| 1890                              | 189 | 378 | 567         | 756        | 945         | 1134 | 1323             | 1512  | 1701 |  |
| 1895                              | 190 | 379 | 568         | 758        | 947         | 1137 | 1326             | 1516  | 1705 |  |
| 1900                              | 190 | 38c | 570         | 760        | 950         | 1140 | 1330             | 1520  | 1710 |  |
| 1905                              | 191 | 381 | 571         | 762        | 952         | 1143 | I 333            | 1524  | 1714 |  |
| 1910                              | 191 | 382 | 573         | 764        | 955         | 1146 | 1337             | 1528  | 1719 |  |
| 1915                              | 192 | 383 | 574         | 766        | 957         | 1149 | 1340             | 1532  | 1723 |  |
| 1920                              | 192 | 384 | 576         | 768        | 960         | 1152 | 1344             | 1536  | 1728 |  |
| 1925                              | 193 | 385 | 577         | 770        | 962         | 1155 | I 347            | 1540  | 1732 |  |
| 1930                              | 193 | 386 | <b>5</b> 79 | 772        | 965         | 1158 | 1351             | 1544  | 1737 |  |
| 1935                              | 194 | 387 | 580         | 774        | 967         | 1161 | <sup>1</sup> 354 | 1548  | 1742 |  |
| 1940                              | 194 | 388 | 582         | 776        | 970         | 1164 | 1358             | 1552  | 1746 |  |
| 1945                              | 195 | 389 | 583         | 778        | 972         | 1167 | 1361             | 1556  | 1750 |  |
| 1950                              | 195 | 390 | 585         | 780        | 975         | 1170 | 1365             | 156c  | 1755 |  |
| 1955                              | 196 | 391 | 586         | 782        | 977         | 1173 | 1368             | 1564  | 1759 |  |
| 1960                              | 196 | 392 | 588         | 784        | <i>9</i> 80 | 1176 | 1372             | 1568  | 1764 |  |
| 1965                              | 197 | 393 | 589         | 786        | 982         | 1179 | 1375             | 1572  | 1768 |  |
| 1970                              | 197 | 394 | 591         | 788        | 985         | 1182 | 1 37 <i>9</i>    | 1576  | 1773 |  |
| 1975                              | 198 | 395 | 592         | 790        | 987         | 1185 | 1382             | 1 280 | 1777 |  |
| 1980                              | 198 | 396 | 594         | 792        | 990         | 1188 | 1386             | 1584  | 1782 |  |
| 1985                              | 199 | 397 | 595         | 794        | 992         | 1191 | 1389             | 1588  | 1786 |  |
| 1990                              | 199 | 398 | 597         | 796        | 995         | 1194 | 1393             | 1592  | 1791 |  |
| 1995                              | 200 | 399 | 598         | 798        | 997         | 1197 | 1396             | 1596  | 1795 |  |
| 2000                              | 200 | 400 | 600         | 800        | 1000        | 1200 | 1400             | 1600  | 1800 |  |
| 2010                              | 201 | 402 | 603         | 804        | 1005        | 1206 | 1407             | 1608  | 1809 |  |
| 2020                              | 202 | 404 | 606         | 808        | 1010        | 1212 | 1414             | 1616  | 1818 |  |
| 2030                              | 203 | 406 | 609         | 812        | 1015        | 1218 | 1421             | 1624  | 1827 |  |
| 2040                              | 204 | 408 | 612         | 816        | 1020        | 1224 | 1428             | 1632  | 1836 |  |
| 2050                              | 205 | 410 | 615         | 820        | 1025<br>X x | 1230 | 1435             | 1640  | 1845 |  |

| 1                 |            | Te         | nth P | arts of    | those l      | Differe | nces. |      |                |
|-------------------|------------|------------|-------|------------|--------------|---------|-------|------|----------------|
| Diff.of<br>Logar. | 1          | 2          | 3     | 4          | 5            | 6       | 7     | -8   | 9              |
| 2060              | 206        | 412        | 618   | 824        | 1030         | 1236    | 1442  | 1648 | 1854           |
| 2070              | 207        | 414        | 621   | 828        | 1035         | 12.12   | 1449  | 1656 |                |
| 2080              | 208        | 416        | 624   | 832        | 1040         | 1248    | 1456  | 1664 | 1872           |
| 2090              | 209        | 418        | 627   | 836        | 1045         | 1254    | 1463  | 1672 | 1881           |
| 2100              | 210        | 420        | 630   | 840        | 1050         | 1260    | 1470  | 1680 | 1890           |
| 2110              | 211        | 422        | 633   | 844        | 1055         | 1256    | 1477  | 1688 | 1899           |
| 2120              | 212        | 424        | 636   | 848        | 106c         | 1272    | 1484  | 1696 | 1908           |
| 2130              | 213        | 426        | 639   | 852        | 1065         | 1278    | 1491  | 1704 | 1917           |
| 2140              | 214        | 428        | 642   | 856        | 1070         | 1284    | 1498  | 1712 | 1926           |
| 2150              | 215        | 430        | 645   | 865        | 1075         | 1290    | 1505  | 172¢ | 1935           |
| 2160              | 216        | 432        | 648   | 864        | 1085         | 1296    | 1512  | 1728 | 1944           |
| 2170              | 217        | 434        | 651   | 868        | 1c85         | 1302    | 1519  | 1736 | 1953           |
| 2180              | 218        | 436        | 654   | 872        | 09ن ا        | 1308    | 1526  | 1744 | 1962           |
| 2190              | 219        | 438        | 657   | 876        | 1095         | 1314    | 1533  | 1752 | .1 <i>9</i> 71 |
| 2200              | 220        | 440        | 660   | 880        | 1100         | 1320    | 1540  | 1760 | 1980           |
| 2210              | 221        | .442       | 663   | 884        | 1105         | 1326    | 1547  | 1768 | 1989           |
| 2220              | 222        | 444        | 666   | 888        | IIIO         | 1332    | 1554  | 1776 | 1998           |
| 2230              | 223        | 446        | 669   | 892        | 1115         | 1338    | 1561  | 1784 | 2007           |
| 2240              | 224        | 448        | 672   | 896        | II20         | 1344    | 1568  | 1792 | 2016           |
| 2250              | 225        | 450        | 675   | 900        | 1 I 25       | 1350    | 1575  | 1800 | 2025           |
| 2260              | 226        | 452        | 678   | 904        | 1130         | 1356    | 1582  | 1808 | 2034           |
| 2270              | 227        | 454        | 681   | 908        | 1135         | 1362    | 1589  | 1816 | 2043           |
| 2280              | 228        | 456        | 684   | 912        | 1140         | 1368    | 1596  | 1824 | 2052           |
| 2290              | 229        | 458        | 687   | 916        | 1145         | 1374    | 1603  | 1832 | 206.1          |
| 2300              | 230        | 450        | 690   | 920        | 1150         | 1380    | 1610  | 1840 | 2070           |
| 2310              | 231        | 462        | 693   | 924        | 1155         | 1386    | 1617  | 1848 | 2079           |
| 2320              | 232        | 464        | 696   | 928        | 1160         | 1392    | 1624  | 1856 | 2088           |
| 2330              | 233        | 466        | 699   | 932        | 1165         | 1398    | 1631  | 1864 | 2097           |
| 2340              | 234        | 468        | 702   | 936        | 1170         | 1404    | 1638  | 1872 | 2106           |
| 2350              | 235        | 470        | 705   | 940        | 1175         | 1410    | 1645  | 1880 | 2115           |
| 2360              | 236        | 472        | 708   | 944        | 1180         | 1416    | 1652  | 1888 | 2124           |
| 2370              | 237<br>238 | 474        | 711   | 948        | 1185         | 1422    | 1659  | 1896 | 2133           |
|                   |            | 476        | 714   | 952        | 1190         | 1428    | 1666  | 1904 | 2142           |
| 2390              | 239        | 478<br>480 | 717   | 956        | 1195         | 1434    | 1673  | 1912 | 2151           |
| 2400<br>2410      | 240        | 482        | 720   | 960        | 1200         | 1440    | 1680  | 1920 | 2160           |
| 2420              | 24I<br>242 | 484        | 723   | 964        | 1205         | 1446    | 1687  | 1928 | 2169           |
| 2430              | 243        | 486        | 726   | 968        |              | 1452    | 1694  | 1936 | 2178           |
| 2440              | 244        | 488        | 729   | 972        | 1215<br>1220 | 1458    | 1701  | 1944 | 2187           |
| 2450              | 245        | 490        | 732   | 976<br>980 | 1225         | 1464    | 1708  | 1952 | 2196           |
| 1 -470            | • -+7      | 1 420      | 735   | 700        | -44)         | 1470    | 1715  | 1960 | 2205           |

|                    | <del></del> | Te               | nth Pa | rts of | hofe I | Differe | nces. |               |      |
|--------------------|-------------|------------------|--------|--------|--------|---------|-------|---------------|------|
| Diff. of<br>Logar. | 1.          | 2                | 3.     | 4      | 5      | 1 6     | 7     | 8             | 9    |
| 2460               | 246         | 492              | 738    | 984    | 1230   |         |       | 1968          | 2214 |
| 2470               | 247         | 494              | 741    | 988    | 1235   |         |       |               | 2223 |
| 2480               | 248         | 496              | 744    | 992    | 1240   |         | 1736  |               | 2232 |
| 2490               | 249         | 498              | 747    | 996    | 1245   | 1494    | 1743  | 1992          | 2241 |
| 2500               | 250         | 500              | 750    | 1000   | 1250   |         |       | <b>2</b> 000  | 2250 |
| 2510               | 25 i        | 502              | 753    | 1004   | 1255   |         | 1757  | 2008          | 2259 |
| 2520               | 252         | 504              | 756    | 1008   | 1260   | 1       | 1764  | 2016          | 2268 |
| 2530               | 253         | 500              | 759    | 1012   | 1265   | 15.18   |       | 2024          | 2277 |
| 2540               | 254         | <sup>1</sup> 508 | 762    | 1016   | 1270   | 1       | 1778  | 2C32          | 2286 |
| 2550               | 255         | 510              | 765    | 1020   | 1275   | 1530    | 1785  | 2040          | 2295 |
| 2560               | 256         | 512              | 768    | 1024   | 1280   | 1536    | 1792  | 2048          | 2304 |
| 2570               | 257         | 514              | 771    | 1028   | 1285   | 1542    | 1799  | 2056          | 2313 |
| 2580               | 258         | 516              | 774    | 1032   | 129C   | 1548    | 1806  | 2064          | 1322 |
| 2590               | 259         | 518              | 777    | 1036   | 1295   | 1554    | 1813  | 2072          | 2331 |
| 2600               | 260         | 520              | 780    | 1040   | 1300   | 1560    | 1820  | 2080          | 2340 |
| 2610               | 261         | 522              | 783    | 1044   | 1305   | 1566    | 1827  | 2088          | 2349 |
| 2620               | 262         | 524              | 785    | 1048   | 1310   | 1572    | 1834  | 2096          | 2358 |
| 2530               | 263         | 526              | 789    | 1052   | 1315   | 1578    | 1841  | 2104          | 2367 |
| 2640               | 264         | 528              | 792    | 1056   | 1320   | 1 584   | 1848  | 2112          | 2376 |
| 2650               | 265         | 530              | 795    | 1060   | ,I 325 | 1590    | 1855  | 2120          | 2385 |
| 2660               | 266         | 532              | 798    | 1664   | 1330   | 1596    | 1862  | 2128          | 2394 |
| 2670               | 267         | 534              | 108    | 1068   | 1335   | 1602    | 1869  | 2136          | 2403 |
| 2680               | 268         | 536              | 804    | 10,72  | 1340   | 1608    | 1876  | 2144          | 2412 |
| 2690               | 269         | 538              | 807    | 1076   | 1345   | 1614    | 1883  | 2152          | 2421 |
| 2700               | 27.0        | 540              | 810    | 1080   | 1350   | 1620    | 1890  | 2160          | 2430 |
| 2710               | 27 <b>I</b> | 542              | 813    | 1084   | 1355   | 1626    | 1897  | 2168          | 2439 |
| 2720               | 272         | 544              | 816    | 1088   | 1360   | 1632    | 1904  | 2176          | 2448 |
| 2730               | 273         | 546              | 819    | 1092   | 1365   | 1638    | 1911  | 2184          | 2457 |
| 2740               | 274         | 548              | 822    | 1096   | 1370   | 1644    | 1918  | 2192          | 2466 |
| 2750               | 275         | 550              | 825    | 1100   | 1375   | 1650    | 1925  | 2200          | 2475 |
| 2760               | 276         | 552              | 828    | 1104   | 1380   | 1656    | 1932  | 2208          | 2484 |
| 2770               | 277         | 554              | 831    | 1108   | 1385   | 1662    | 1939  | 2216          | 2493 |
| 2780               | 278         | 556              | 834    | 1112   | 1390   | 1668    | 1946  | 2224          | 2502 |
| 2790               | 279         | 558              | 837    | 1116   | 1395   | 1674    | 1953  | -             | 2511 |
| 2800               | 280         | 560              | 840    | 1120   | 1400   | 168c    | 1960  | 2240          | 2520 |
| 2810               | 281         | 562              | 843    | 1124   | 1405   | 1686    | 1967  |               | 1529 |
| 2820               | 282         | 564              | 846    | 1128   | 1410   | 1692    |       |               | 2538 |
| 2830               | 283         | 566              | 849    | 1132   | 1415   | 1698    |       |               | 2547 |
| 2840               | 284         | 568              | 852    | 1136   | 1420   | 170+    |       |               | 2556 |
| 2850               | 285         | 570              | 855    | 1140   | 1425   | 1710    | 1995  | 22 <b>8</b> c | 2565 |

|                 |                    | T'en               | th Pa       | rts of t | hose D | itteren | ces. |      |       |
|-----------------|--------------------|--------------------|-------------|----------|--------|---------|------|------|-------|
| Diff. of Logar. | 1                  | 2                  | 3           | 4        | 5      | 6       | 1: 7 | 8    | 9     |
| 2860            | 286                | 572                | 858         | 1144     | 1430   | 1716    | 2002 | 2288 | 2574  |
| 2870            | 287                | 574                | 861         | 1148     | 1435   | 1722    | 2009 | 2296 | 2583  |
| 2880            | 288                | 576                | 864         | 1152     | 1440   | 1728    | 2016 | 2304 | 2592  |
| 2890            | 289                | 578                | 867         | 1156     | 1445   | 1734    | 2023 | 2312 | 1601  |
| 2900            | 2 <i>9</i> 0       | 580                | 870         | 1160     | 1450   | 1740    | 2030 | 2320 | 2610  |
| 2910            | 291                | 582                | 873         | 1164     | 1455   | 1746    | 2037 | 2328 | 2619  |
| 2920            | 292                | 584                | 876         | 1168     | 1460   | 1752    | 2044 | 2336 | 2628  |
| 2930            | 293                | 586                | 879         | 1172     | 1465   | 1758    | 2051 | 2344 | 2637  |
| 2940            | 294                | 588                | 882         | 1176     | 1470   | 1764    | 2058 | 2352 | 2646  |
| 2950            | 295                | 590                | 885         | 1180     | 1475   | 1770    | 2065 | 2360 | 2655  |
| 2960            | 296                | 592                | 888         | 1184     | 1480   | 1776    | 2072 | 2368 | 2664  |
| 2970            | 297                | 594                | 891         | 1188     | 1485   | 1782    | 2079 | 2376 | 2673. |
| 2980            | 298                | <b>5</b> 96        | 894         | 1192     | 1490   | 1788    | 2085 | 2384 | 2682  |
| 2990            | 299                | 598                | 897         | 1196     | 1495.  | 1794    | 2093 | 2392 | 2691  |
| 3000            | 30 <b>0</b>        | 600                | 900         | 1200     | 1 500  | 1800    | 2100 | 240C | 2700  |
| 3010            | 301                | 602                | 903         | 1204     | 1505   | 1806    | 2107 | 2408 | 2709  |
| 3020            | 302                | 604                | 906         | 1208     | 1510   | 1812    | 2114 | 2416 | 2718  |
| 3030            | 303                | 606                | 909         | 1212     | 1515   | 1818    | 2121 | 2424 | 2727  |
| 3040            | 304                | 608                | 912         | 1216     | 1520   | 1824    | 2128 | 2432 | 2736  |
| 3050            | 305                | 610                | 915         | 1220     | 1525   | 1830    | 2135 | 2440 | 2745  |
| 3060            | 306                | 612                | 918         | 1224     | 1530   | 1836    | 2142 | 2448 | 2754  |
| 3070            | 307                | 614                | 921         | 1228     | 1535   | 1842    | 2149 | 2456 | 2763  |
| 3080            | 308                | 616                | 924         | 1232     | 1540   | 1848    | 2156 | 2464 | 2772  |
| 3000            | 300                | 618                | 927         | 1235     | 1545   | 1854    | 2163 | 2472 | 2781  |
| 3100            | 310                | 620                | 930         | 1240     | 1550   | 1860.   | 2170 | 2480 | 2790  |
| 3110            | 311                | 622                | 933         | 1244     | 1555   | 1866    | 2177 | 2488 | 2799  |
| 3120            | 312                | 624                | 936         | 1 288    | 1560   | 1872    | 2184 | 2496 | 2808  |
| 3130            | 313                | 626                | 939         | 1252     | 1565   | 1878    | 2191 | 2504 | 2817  |
| 3140            | 314                | 628                | 942         | 1256     | 1570   | 1884    | 2198 | 2512 | 2826  |
| 3150<br>3160    | 315<br>316         | 630                | 945<br>948  | I 260    | 1575   | 1890    | 2205 | 2520 | 2835  |
| 3170            | _                  | 632                | 951         | 1264     | 1580   | 1896    | 2212 | 2528 | 2844  |
| 3180            | 317                | 634<br>636         | 954         | 1268     | 1585   | 1 902   | 2219 | 2536 | 2853  |
|                 | -                  |                    |             | 1272     | 1590   | 1908    | 2226 | 2544 | 2862  |
| 3190<br>3200    | 31 <i>9</i><br>320 | 6 <b>38</b><br>640 | 957<br>960  | 1276     | 1595   | 1914    | 2233 | 2552 | 2871  |
| 3210            | 321                | 642                | <i>9</i> 63 | 1280     | 1600   | 1920    | 2240 | 2560 | 288a  |
| 3220            | 321                | 644                | 966         | 1284     | 1605   | 1926    | 2247 | 2568 | 2889  |
| 3230            | 323                | 646                | 969         |          | 1610   | 1932    | 2254 | 2576 | 2898. |
| 3240            | 324                | 648                | 909<br>972  | 1292     | 1615   | 1938    | 2261 | 2584 | 2907  |
| 3250            | 325                | 650                | 975         | 1296     | 1625   | 1944    | 2268 | 2592 | 2916  |
| 7.7             |                    |                    | 7/7         | 1 . 300  | 102)   | 1950    | 2275 | 2600 | 2925  |

|                    |              | Ten         | th Pai      | rts of t | hofe I | Ditfer <b>e</b> | nces.            |        |      |
|--------------------|--------------|-------------|-------------|----------|--------|-----------------|------------------|--------|------|
| Diff. of<br>Logar. | ,1           | 2           | 3           | 4 1      | 5      | 6               | 7                | 1 8    | 9    |
| 3260               | 326          | 652         | <i>9</i> 78 | 1 304    | 1630   | 1956            | 2282             | 2608   | 2934 |
| 3270               | 327          | 654         | 981         | 1308     | 1635   | 1962            | 2289             | 2616   | 2943 |
| 3280               | 328          | 656         | 984         | 1312     | 1640   | 1968            | 2296             | 2624   | 2952 |
| 3290               | 329          | 658         | 987         | 1316     | 16+5   | 1974            | 2303             | 2632   | 2961 |
| 3300               | 330          | 660         | 990         | 1320     | 1650   | 1980            | 2310             | 2640   | 2970 |
| 3310               | 331          | 662         | 993         | 1324     | 1655   | 1986            | 2317             | 2648   | 2979 |
| 3320               | 332          | 664         | 296         | 1328     | 1660   | 1992            | 2324             | 2656   | 2988 |
| 3330               | 333          | 666         | 999         | 1332     | 1665   | 1998            | 2331             | 2664   | 2997 |
| 3340               | 334          | 668         | 1002        | 1336     | 1670   | 2004            | 2338             | 2672   | 3006 |
| 3350               | 335          | 675         | 1005        | 1 340    | 1675   | 2010            | 2345             | 2680   | 3015 |
| 3360               | 336          | 672         | 1008        | 1344     | 0861   | 2016            | 2352             | 2688   | 3024 |
| 3370               | 337          | 674         | 1011        | 1348     | 1685   | 2022            | 2359             | 6ز 26. | 3033 |
| 3380               | 338          | 676         | 1014        | 1352     | 1690   | 2028            | 2366             | 2704   | 3042 |
| 3390               | 339          | 678         | 1017        | 1356     | 16.95  | 2034            | 2373             | 2712   | 3051 |
| 3400               | 340          | 680         | 1020        | 1360     | 1700   | 2040            | 2380             | 2720   | 3060 |
| 3410               | 341          | <i>6</i> 82 | 1023        | 1364     | 1705   | 2046            | 2387             | 2728   | 3069 |
| 3420               | 342          | 684         | 1026        | 1368     | 1710   | 2052            | <sup>2</sup> 394 | 2736   | 3078 |
| 3430               | 343          | 686         | 1029        | 1372     | 1715   | 2058            | 2401             | 2744   | 3087 |
| 3440               | 344          | 688         | 1032        | 1376     | 1720   | 2064            | 2408             | 2752   | 3096 |
| 3450               | 345          | 690         | 1035        | 1380     | 1725   | 2070            | 2415             | 2760   | 3105 |
| 3460               | 346          | 692         | 1038        | 1384     | 1730   | 2076            | 2422             | 2768   | 3114 |
| 3470               | 347          | 694         | 1041        | 1388     | 1735   | 2082            | 2429             | 2776   | 3123 |
| 3480               | 348          | 696         | 1044        | 1392     | 1740   | 2088            | 2436             | 2784   | 3132 |
| 3490               | 34 <b>9</b>  | 698         | 1047        | 1396     | 1745   | 2094            | 2443             | 2792   | 3141 |
| 3500               | 350          | 700         | 1050        | 1400     | 1750   | 2100            | 2450             | 2800   | 3150 |
| 3510               | 351          | 702         | 1053        | 1404     | 1755   | 2106            | 2457             | 2808   | 3159 |
| 3520               | 352          | 704         | 1056        | 1408     | 1760   | 2112            | 2464             | 2816   | 3168 |
| 3530               | 353          | 706         | 1059        | 1412     | 1765   | 2118            | 2471             | 2824   | 3177 |
| 354c               | 354          | 708         | 1062        | 1416     | 1770   | 2124            | 2478             | 2832   | 3186 |
| 3550               | 355          | 710         | 1065        | 1420     | 1775   | 2130            | 2485             | 2840   | 3195 |
| 3560               | 356          | 712         | 1068        | 1424     | 1780   | 2136            | 2492             | 2848   | 3204 |
| 3570               | 357          | 714         | 1071        | 1428     | 1785   | 2142            | 2499             | 2856   | 3213 |
| 3580               | 358          | 716         | 1074        | 1432     | 1790   | 2148            | 2506             | 2864   | 3222 |
| 3590               | 359          | 718         | 1077        | 1436     | 1795   | 2154            | 2513             | 2872   | 3231 |
| 3600               | 360          | 720         | 1080        | 1440     | 1800   | 2160            | 2520             | 2880   | 3240 |
| 3610               | 361          | 722         | 1083        | 1444     | 1805   | 2166            | 2527             | 2888   | 3249 |
| 3620               | 362          | 724         | 1086        | 1448     | 1810   | 2172            | 2534             | 2896   | 3258 |
| 3630               | 3 <b>6</b> 3 | 726         | 1089        | 1452     | 1815   | 2178            | 2541             | 2904   | 3267 |
| 3640               | 364          | 728         | 1092        | 1456     | 1820   | 2184            | 2548             | 2912   | 3276 |
| 3650               | 365          | 730         | 1095        | 1460     | 1825   | 2190            | 2555             | 2920   | 3285 |

| Tenth Parts of those Differences. |             |             |          |       |       |               |      |       |      |
|-----------------------------------|-------------|-------------|----------|-------|-------|---------------|------|-------|------|
| Diff. of<br>Logar.                | 1           | . 2         | 3        | 4     | 5     | 6             | 7    | 8     | 9    |
| 3660                              | 366         | 732         | 1098     | 1464  | 1830  | 2196          | 2562 | 2928  | 3294 |
| 3670                              | 367         | 734         | IOI      | 1468  | 1835  | 2202          | 2569 | 2936  | 3303 |
| 3680                              | 368         | 736         | 1104     | 1472  | 1840  | 2258          | 2576 | 2944  | 3312 |
| 3590                              | 369         | 738         | 1107     | 1476  | 1845  | 2214          | 2583 | 2952  | 332I |
| 3700                              | 370         | 740         | 1110     | 1480  | 1850  | 2220          | 2590 | 2960  | 3330 |
| 3710                              | 371         | 742         | 1113     | 1484  | 1855  | 2226          | 2597 | 2968  | 3339 |
| 3720                              | 372         | 744         | 1116     | 1488  | 1860  | 2232          | 2604 | 2976  | 3348 |
| 3730                              | 373         | 746         | 1119     | 1492  | 1865  | 2238          | 2611 | 2984  | 3357 |
| 3740                              | 374         | <i>7</i> 4δ | TI22     | 1496  | 187c  | 2244          | 2618 | 2992  | 3366 |
| 3750                              | 375         | 750         | 1125     | 1500  | 1875  | 22 <b>5</b> 0 | 2625 | 3000  | 3375 |
| 3760                              | 375         | 752         | 1128     | 1504  | 188c  | 2256          | 2632 | 3008  | 3384 |
| 3770                              | 377         | <b>75</b> 4 | ·I 1 3 1 | 1508  | 1885  | 2262          | 2639 | 3016  | 3393 |
| 3780                              | 378         | 756         | 1134     | 1512  | 1890  | 2268          | 2646 | 3024  | 3402 |
| 3790                              | 37 <b>9</b> | 758         | 1137     | 1516  | 1895  | 2274          | 2653 | 3032  |      |
| 3800                              | 380         | <b>76</b> 0 | 1140     | 1520  | 1900  | 2280          | 2660 | 3040  | 3420 |
| 3810                              | 381         | 762         | 1143     | 1524  | 1905  | 2286          | 2667 | 3048  | 3429 |
| 3820                              | 382         | 764         | 1146     | 1528  | 1910  | 2292          | 2674 | 3056  | 3438 |
| 3830                              | 38 <b>3</b> | 766         | 1149     | 1532  | 1915  | 2298          | 2681 | 3064  | 3447 |
| 3840                              | 384         | 768         | 1152     | 1536  | 1920  | 2304.         | 2688 | 3072  | 3456 |
| 3850                              | 385         | 770         | 1155     | 1 540 | 1925  | 2310          | 2695 | 3080  | 3465 |
| 3860                              | 386         | 772         | 1128     | 1 544 | 1930  | 2316          | 2702 | 3088  | 347+ |
| 3870                              | 387         | 774         | 1161     | 1548  | 1935  | 2322          | 2709 | 3096  | 3483 |
| 3880                              | 388         | 776         | 1164     | 1552  | 1 940 | 2328          | 2716 | 3104  | 3492 |
| 3890                              | 38 <i>9</i> | 778         | 1167     | 1556  | 1945  | 2334          | 2723 | 3112  | 3501 |
| 3900                              | 390         | 780         | 1170     | 1560  | 1950  | 2340          | 2730 | 3120. | 3510 |
| 3910                              | 391         | 782         | 1173     | 1564  | 1955  | 2346          | 2737 | 3128  | 3519 |
| 3920                              | 392         | 784         | 1176     | 1568  | 1960  | 2352          | 2744 | 3136  | 3528 |
| 3930                              | <b>39</b> 3 | 786         | 1179     | 1572  | 1965  | 2358          | 2751 | 3144  | 3537 |
| 3940                              | 394         | 788         | 1182     | 1576  | 1970  | 2364          | 2758 | 3152  | 3546 |
| 3950                              | 395         | 790         | 1185     | 1580  | 1975  | 2370          | 2765 | 3160  | 3555 |
| 3960                              | 396         | 792         | 1188     | 1584  | 1980  | 2376          | 2772 | 3168  | 3564 |
| 3970                              | 397         | 794         | 1191     | 1588  | 1985  | 2382          | 2779 | 3176  | 3573 |
| 3980                              | 398         | 796         | 1194     | 1592  | 1990  | 2388          | 2786 | 3184  | 3582 |
| 3990                              | 399         | 798         | 1197     | 1596  | 1995  | 2394          | 2793 | 3192  | 3591 |
| 4000                              | 400         | 800         | 1200     | 1600  | 2000  | 2400          | 2800 | 3200  | 3600 |
| 4010                              | 401         | 802         | 1203     | 1604  | 2005  | 2406          | 28-7 | 3208  | 3609 |
| 4020                              | 402         | 804         | 1206     | 1608  | 2310  | 2412          | 2814 | 3216  | 3618 |
| 4030                              | 403         | 806         | 1 209    | 1612  | 2015  | 2418          | 2821 | 3224  | 3627 |
| 4040                              | 404         | 808         | 1212     | 1616  | 202C  | 2424          | 2828 | 3232  | 3636 |
| 4050                              | 405         | 810         | 1215     | 1620  | 2025  | 2430          | 2835 | 3240  | 3645 |

| Tenth Parts of those Differences. |                   |     |      |      |      |                  |                  |      |               |
|-----------------------------------|-------------------|-----|------|------|------|------------------|------------------|------|---------------|
| Diff.of                           | I                 | 2   | 3    | 4    | 5    | 6                | 7                | 3    | 9             |
| Logar.<br>4050                    | 406               | 812 | 1218 | 1624 | 2030 | 2436             | 2842             | 3248 | 3654          |
| 4070                              | 407               | 814 | 1221 | 1628 | 2035 | 2442             | 2849             | 3256 | 3663          |
| 4080                              | 408               | 816 | 1224 | 1632 | 2040 | 2448             | 2856             | 3264 | 3672          |
| 4090                              | 409               | 818 | 1227 | 1636 | 2045 | 2454             | 2863             | 3272 | ვა81          |
| 4100                              | 410               | 820 | 1230 | 1640 | 2050 | 2460             | 2870             | 3280 | 3690          |
| 4110                              | 411               | 822 | 1233 | 1644 | 2055 | 2466             | 2877             | 3288 | 3699          |
| 4120                              | 412               | 824 | 1236 | 1648 | 2050 | 2472             | 2884             | 3296 | 3708          |
| 4130                              | 413               | 826 | 1239 | 1652 | 2065 | 2478             | 2891             | 3304 | 3717          |
| 4140                              | 414               | 828 | 1242 | 1656 | 2070 | 2484             | 2898             | 3312 | 3726          |
| 4150                              | 415               | 830 | 1245 | 1660 | 2075 | <b>249</b> 0     | 2905             | 3320 | 3735          |
| 4160                              | 416               | 832 | 1248 | 1664 |      | 2496             | 2912             | 3328 | 3744          |
| 4170                              | 417               | 834 | 1251 | 1668 | 2085 | 2502             | 2919             | 3336 | 3753          |
| 4180                              | 418               | 836 | 1254 | 1672 | 2090 | 2508             | 2926             | 3344 | 3762          |
| 4190                              | 419               | 838 | 1257 | 1676 | 2095 | 2514             | 2933             | 3352 | 3771          |
| 4200                              | 420               | 840 | 1260 | 1680 | 2100 | 2520             | 2940             | 3360 | 3780          |
| 4210                              | 421               | 842 | 1263 | 1684 | 2105 | 2526             | <sup>2</sup> 947 | 3368 | 3789          |
| 4220                              | 422               | 844 | 1266 | 1688 | 2110 | 2532             | 2954             | 3376 | 37 <i>9</i> 8 |
| 4230                              | 423               | 846 | 1269 | 1692 | 2115 | 2538             | 2961             | 3384 | 3807          |
| 4240                              | 424               | 848 | 1272 | 1696 | 2120 | 2544             | 2 <i>9</i> 68    | 3392 | 3816          |
| 4250                              | 425               | 850 | 1275 | 1700 | 2125 | 2550             | 2975             | 3400 | 3825          |
| 4260                              | 426               | 852 | 1278 | 1704 | 2130 | 2556             | 2982             | 3408 | 3834          |
| 4270                              | 427               | 854 | 1281 | 1708 | 2135 | 2562             | 2989             | 3416 | 3843          |
| 4280                              | 428               | 856 | 1284 | 1712 | 2140 | 2568             | 2996             | 3424 | 3852          |
| 4290                              | 429               | 858 | 1287 | 1716 | 2145 | <sup>2</sup> 574 | 3003             | 3432 | 3861          |
| +300                              | 430               | 860 | 1293 | 1720 | 2150 | 2580             | 3010             | 3440 | 3870          |
| 4310                              | 43 <sup>1</sup> . |     | 1293 | 1724 | 2155 | 2586             | 3017             | 3448 | 3879          |
| 4320                              | 432               | 864 | 1296 | 1728 | 2160 | 2592             | 3024             | 3456 | 3888          |

The End of the Table of Parts Proportional.



#### CHAP. VIII.

#### Lineal Arithmetic. (See Plate A.)

HIS fourth Species of Arithmetic is performed by Right Lines, fo that Magnitude being here confidered, it may be called Geometrical Arithmetic.

2. A Right Line is properly defined to be the nearest Distance between two Points, as the Line a (a c b, Fig. 1.) is the nearest Distance between the Points a and b.

3. The Disposition of the two principal Lines, by which this kind of Arithmetic is performed, are either in a Right Angle or an Oblique.

4. A Right Angle is when one Line falls Perpendicular on another, as the Line ab (Fig. 2.) does on bc; but when two Lines meet not so, they form an Angle called Oblique, as the Angle def (Fig. 3) by both which, Questions are answered.

As in Logarithms those Artificial Numbers are not employed about the most easy and self-evident Rules of Addition and Substration of Natural Numbers: So here by Lines I shall only shew how Multiplication, Division, the Rule of Proportion, with Extraction of Roots, are performed thereby.

#### SECT. II. Multiplication by Lines, three Ways.

1. What is the Product of  $17\frac{1}{2}$  by  $12\frac{1}{2}$ ? See Fig. 4. in the folded Sheet (A.)

To answer this, draw a Line at pleasure, and set off 12½ equal Parts as from a to b, from the Line of equal Parts.

Then draw a perpendicular Line at pleasure as bc, and set off

from b to c  $17\frac{1}{2}$ .

Lastly, Draw Lines between each equal Part, and the  $\frac{1}{2}$ , Parallel to (ab) and to (bc), then telling the several little Squares each of which is a Unit, you'll find 204 intire, and 17 and 12 Halves, or  $14\frac{1}{2}$  which together, and the  $\frac{1}{4}$  at the Angle (c) make the Product  $218\frac{1}{4}$ .

If you would multiply 175 by 125, that is, if you suppose every Unit in the Line (a b) to be 10, then 12½ will be 125, and by the

the same Rule the Line bc will be 175, and by supposing each little Square 100 (or 10 times 10, the Lines ab and bc being 10 times as many as before) you'll find 20400 little Squares or Units, and 17 and 12 Fiftie (or 1450) and 25 the 4th of 100 at the Angle (c), which added together, makes 21875 = the Product required.

#### A second Way to multiply by Lines.

But before I proceed therein, it will be necessary to shew how to draw a Line Parallel to another, and through any Point assigned: So to draw a Line through the Point (a) (See Fig. 5. Plane A.) and Parallel to (mn), set the Foot of your Compasses in the Point, and extend the other to the Line mn, so as to describe the Arc cc just to touch the Line mn; and with that Distance of the Feet set one in the Point (e) (or thereabout) and describe the Arc (dd); then lay a Ruler from that Arc to the Point a, and draw the Line pq, which is the Answer.

To multiply by 2 Lines, including an Oblique Angle as that (edn,)

Fig. 6.

What is the Product of 3.5 by 2.2? For answer, having made

an Angle at pleasure, not too acute.

Rule.] Take a Line of equal Parts, and set off 1 from the Angle d to 1. Then set the Multiplicand from d to 3.5 on the other Leg (dn). 3dly, Set the Multiplier from 1 to 2.2. 4tbly, Draw the Line 1 to 3.5, produced to about (m), for the better drawing the Line (2.2; 7.7) Parallel to (1, m); so is the Distance between 3.5 and 7.7 the Answer, which measured upon the same Line of equal Parts, is found 7.7 = the Product.

2. Or if you fet the Multiplicand from 1 to b; and the Multiplier from d to a, a Line (bc) drawn Parallel to (1, a) cutteth the

Product (a c) 7.7 as before.

3. Or if you suppose the Factors 10 times as much, the Answer will be by the same Method 770.

#### A third Way to multiply by Lines.

This shows the Use of a Line of Numbers, or as 'tis often called Gunter's Line; being a Line of Logarithms, as will appear by the Use, Addition performing Multiplication; Substraction, the Work of Division; Division, the Extraction of Roots, &c.

This

This useful line was the Invention of Mr Edmund Gunter, Professor of Astronomy at Gresham-College about the Year 1620; and it is a line divided into 10 unequal Parts, and those 10 Parts repeated are called 20, 30, 40, &c. when the former Parts are called 1, 2. 3, Gr.

If the first 10 are Tens, If the first 10 are Hundreds, The 2d ten Parts are 100's The 2d Radius are so many (Thousands.

If you multiply 1 place by 2 places, The Product is so many 10's

(as the Figure denotes.

As your own Experience will eafily discover to you. See the making of this line near the End of Sest. 4th following.

To multiply any 2 Numbers, as those in the last Case 2,2 by

3.5. See Fig. 7. Plate A.

Rule.] Extend the Foot of a Pair of Compasses (or other Meafure) from 1 to 2.2, and that Extent reaches from 3.5 to 7.7;

2dly, Or the Extent from 1 to 3.5, reaches from 2.2 to 7.7.

3 dly, Or if you multiply 35 by 22: In this case, what is called 1, 2, &c. in the 1st part, must be supposed 10, 20, &c. and what are 10th parts must be called Units, and if both Factors be 10 or more each, the Product is Hundreds. So the Extent as before from 10 to 22, reaches from 35 to 770; for here 35 being multiplied by a Number which is above 10, is fo many 100's and 10's as the Measure extends to; for your Inspection shews, that 34 by 10 is 350, which is 3 places; and if for any Number of Tens, the like: And if the 2d Extent be beyond 10 on the line, it is still so many Hundreds, as 30 by 50 is 1500, &c.

And Note, That whatever you call the larger Divisions, the fmaller in the same Radius are a 10th thereof, as is before hinted,

and the contrary.

#### SECT. III. Divisions by Lines, three Ways.

As I have shewed Multiplication by three different lines, and by each two ways; so I intend to shew how to divide.

Case 1.] What is the Quotient of 218‡ by 17½? See Fig. 4.

The Dividend is represented by the several small Squares and Parts in the Superficies a c, which if you divide by the fide (4171) the Quotient will be one of the smaller sides a b or  $(17\frac{1}{2}c)$ .

Y y 2

Fer

For having divided a Line (a, 17½) into 17½, parts, your Divifor, and made a little Square upon each part, and half of one for the half; if you add to those Squares at Right Angles so many as will make them up 2181, and as many in one Row of Squares as another; you will then find that the Line including a Right Angle with  $(a \ 17^{\frac{1}{2}})$  will be  $(a \ b)$  which will contain  $12^{\frac{1}{2}}$  of those small Squares, and is consequently the Quotient, because that Quote multiplied in the Divisor (a, 17½) produceth the Dividend or Number of small Squares  $(ac) = 218\frac{1}{4}$ . And the same may be said of other like Superficies and their Sides, whatever they be for Numbers.

#### A second Way to divide Lines.

What is the Quote of 7.7 divided by 3.5? (Fig. 6. for I make use of the same Numbers as in Multiplication, to prevent Confusion by a Multitude of prickt Lines.)

1st, Take 1 from any Line of equal Parts, and set off (d 1). 2dly, Set the Divisor (d, 3.5) off from the same Line of Parts. 3dly, Draw the Line (1, 3.5) and produce it to m, &c.

4tbly, Set your Dividend (7.7) from 3½ towards n, which extends

to 7.7.

5tbly, Through that Point draw a Line parallel to (1 m) and it will pass through the Point 2.2 in the Line (de).

6thly, Take the Distance from 1 to 2.2, and apply it to your

equal Parts, and you'll find it 2.2 = the Quote.

Or if you were to divide 7.7 by 2.2, the Divisor set from d to a. and the Dividend from a to c: If a Line be drawn (1 a), and another parallel thereto through the Point c, that Line will pass thro' b in the Line de, and the distance (1 b) measured on the same Line of equal Parts, will be 3.5 = the Quote.

Or if you divide 770 by 35, the Method is the same as the first of these, and 77 by 22 the same as the second or last, viz. 35. And

the like of other Numbers.

#### A third Way to divide by Lines.

Suppose by the Line of Numbers, Fig. 7. Plate A. you would divide 770 by 22. Extend the Compasses from 10 to 22 (calling those 10, &c. in the first Radius, which are 1, 2, &c. and those 100's in the second, which are 10, 20, 30, &c.) and the SECT. IV. The direct Rule of Proportion by Lines. 349 fame Extent reaches from 770 in the second Radius, backward to 35.

Or to divide 770 by 35, the Extent from 10 to 35, extends

backward from 770 to 22. And the like of other Numbers.

#### SECT. IV. The direct Rule of Proportion by Lines.

If 10 th of Sugar cost 22 s. what will 35 th cost?

1st, By the lines, Fig. 6. set 10 from the Angle to 1 (which suppose 10, as if the 1 was not there;) then set the 22 s. from 1 to 2.2, that is, from 10 to 22. 3dly, Set the third Number from the Angle at d to 3.5, or to 35. Then draw a line from 10 to 35 = the third Number given, and a line parallel to that through the Point 2.2 (here 22 will pass through, or cut the line d n in 7.7) so the Distance 7.7 to 3.5 (measured upon the line whereby d 1 is 10) is 77 s. = the value of the 35 lb of Sugar. I have done this (as I said before) by the same parallel lines, to prevent Consusion by a Multiplicity.

2dly, By the line of Numbers, Fig. 7. If 12 C. of Sugar cost 25 l.

4 s. what will 1 Ton or 20 C. cost?

Extend the Compasses from 12 C. to 25.2, and the same Extent reaches from 20 C. to 42 l. the Answer.

Quest. 2. If you would know the Interest of 90 l. for a Year at 6 per Cent: extend the Compasses from 100 backward to 6; and the same Extent reaches from 90 to 5.4 l. or l. 5:8: = the Answer.

3dly, To Extract the Square Root, take half the Distance between the Square Number given and 1. And 1 third of the Distance from a Cube Number to 1 is the Cube Root, taking the third next to 1.

And now I might end this part of Arithmetic, but before I do I shall shew the making of a line of Chords of Numbers, and a line of half Tangents with something of their Use, and that of equal Parts, which will be a Preparative for those who would know how to perform Trigonometry Geometrically.

The line of Chords is 90 Degrees (or equal Parts in the fourth Part of a Circle) fet off upon a straight line, as Fig. 8. Plate A. the Degree (em) are set upon the Diameter (ecm) where (e60) of the Circle, is equal to Radius or the Semi-diameter of that Circle,

and em equal to en, &c.

Now to measure any Angle by this line extend the Compasses from e to 60 in the line (en), and with that (suppose in Fig. 9.) set

#### 350 The direct Rule of Proportion by Lines. CHAP. VIII.

fet one Foot in b, and describe the Arc (ro), then take the Distance (ro) in your Compasses, and apply it to your line of Chords, and you'll find it 33 Degrees: That is to say, the line or leg (bf) is distant from that gb 33 Degrees or equal Parts of the Circle (dme, &c.) is those are transferred upon the line (ed); so the Angle (bfg) or at f, is found 58 Degrees, and the Sum of those two Angles deducted from 180 leaves the Angle (fgb), or) at g. And the Sides of this Triangle are measured by applying them between the Compasses to the line of equal Parts (yz), Fig. 10.

The way to make a Line of Numbers or Logarithms (commonly called Gunter's Line).

The line (1, 10, Plate A.) is thus made: First, Make a line of equal Parts according to the Length you intend your line of Numbers, as here (0, 1000) is divided actually into 100 equal Parts, and each Part supposed to be divided into 10, makes 1000; and if your line were designed to be much longer, you might divide your equal Parts into 10000.

2dly, Lay before you a Table of Logarithms, and from that take the Logarithms (omitting the Index) of 2, 3, 4, &c. to 10, the largest Divisions of your line: As, for 2 I find the Logarithm 3010300, but I take Notice only of the three next places to the Point agreeable to my line of equal Parts, as 301 taken from that line, and set off upon the Line (1, 10,) from 1 to 2 gives the first

of the first 9 unequal Parts of the line of Numbers.

| Then I find the Logarithms of | 3 to 5 6 7 8 9 | .477<br>.602<br>.698<br>.778<br>.845<br>.903 | Which Logarithms taken from the line of equal Parts, and fet on that of Numbers from | 1 to 5<br>1 to 6<br>1 to 7<br>1 to 8 | Gives you the other unequal Parts of the line of Numbers. |
|-------------------------------|----------------|----------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------|
|-------------------------------|----------------|----------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------|

Then for the Sub-divisions or smaller unequal Parts: I proceed in the very same manner 'till I have set them all off from a (the beginning of the line of Numbers): As.

The



| The Loga- | .041 |                | 1 to 1.1  |                |
|-----------|------|----------------|-----------|----------------|
| rithm     | .079 |                | I to 1.2  |                |
|           | .113 |                | 1 to 1.3  |                |
|           | .146 | Taken from the | I to 1.4  | On the Line of |
|           | .176 | Line of equal  | 1 to 1.5  | Numbers.       |
| •         | .204 | Parts, extends | 1 to 1.6  | ·              |
|           | .230 | from           | 1 to 1.7  |                |
|           | .255 |                | 1 to 1.8  | •              |
|           | .278 | •              | 1 to 1.9  |                |
| ٠         | .322 |                | I to 2.I  | •              |
| •         | .342 | ಆ ಒ            | I to 2.2, | <i>હ</i> ∙.    |

I have been more particular in this Affair than has been shewed before, because I find most Persons, and some even the Instrument-Makers, ignorant, how this very useful line is made originally to any Radius, which depends on the Magnitude of the equal Parts.

But Note, That the line of Numbers consistent of two fuch lines, as (1, 10; on Plate A. Fig. 10.) next the Fig. 7. (or Numbers) and so from 10 is numbered 20, 30, &c. to 100 on the 2d Part, which is made 1 line with the first, and must so be made by the Artist.

#### To make a Line of equal Parts.

To make the line (0, 1000, Fig. 10.) imaginarily divided into 1000 Parts, or actually into 100.

1st, I divide it into 5 with my Compasses.

2 dly, I divide each 5th into 2, which makes the whole into 10.

3dly, I divide I tenth Part into 10 (as 0, 100).

4thly, I take (0, 100) between my Compasses, and setting I Foot in (i), the other extends to (i), or a 10th of the next 10th, and so forward divides the whole line into 100, and each 100 must be supposed 10, in taking off the 1000th Parts to make the line of Numbers by, or in other Uses.

The line of balf Tangents, is the line (c m, Fig. 8.) made by laying a Ruler to (d), and the several Degrees in the Quadrant (e m), and is used in measuring such straight lines as pass through the Center of a Circle, and do represent Circles, though they appear Right lines, as (c m), (c e), (c d), &cc. The Use of the line of equal Parts has been fully shewn before in measuring Right lines,

and

and there is nothing more falls within the Compass of Lineal or Geometrical Arithmetic; which will be of great Use to such as intend to study Geometry, to which I recommend the reading of Euclid, lib. 2. I shall therefore proceed to

#### 000 1884 300 1884 300 1884 300 1884 300 1884 300 1884 300 1884 300 1884 300 1884 300 1884 300 1884 300 1884 300

#### CHAP. IX.

#### INSTRUMENTAL ARITHMETIC.

NSTRUMENTAL Arithmetic is that Part which is performed by Instruments, accommodated with Figures or Numbers for that purpose. Of this kind, that of Neper's Bones justly claims the first Consideration, as being the most plain and easy Instrument for all Operations, whether in Multiplication, Di-

vision, or Extraction of Roots.

A Description of Neper's Bones, (See Fig. 1. Plate B.) As to their Matter, they are sometimes made of Ivory, and then called Bones, sometimes of Box-Wood, and then called Virgulæ, or little Rods; for as to their Magnitude and Form, they may be made as large as you please: But the common Sort are each Rod about 2.5 Inches long, and 32 Inches broad, and are in Figure what Geometricians call a Parallelopipedon, which is a long Square solid, bounded with 6 Superficies, (or like 7, 8 ec Dice joined exactly one to another.)

The Number of these Rods in a Set are 10, that is, the 9 Digits and Cypher, besides the Index-Bone which is fixed to the Box, and hath only one Face divided into 9 equal Parts, whereon the 9 Digits are placed as you see Fig. 1. Plate B. But the other 10 have 4 Faces each, whereon are placed the 9 Digits at the top, and an Arithmetical Progression of those Digits added as 2, 4, 6, or 3, 9, 12, &c. And whatever the first Figure of any Rod is, that of the opposite Side is the Complement that makes it up 9. And the 10 times 4 Faces or Sides being 40, contain 4 of each of the 9 Digits, and their Series's Arithmetical, and 4 more Faces are of Cyphers.

How to add the Figures on the Rods. See Fig. 12, Plate A.

To reduce any line of Figures on the Rods which stand against any Digit on the Index-Face to a true legible Number, you must

must begin at the right hand: Thus to add the Digits standing against 6 in the Set, Fig. 1. Plate B. You see there is nothing to do but to add the two Digits together, which stand between the same Slant or Diagonal lines, as 4 is 4, then 5 and 8 is 13; 1 and 4 is 5, and 2 is 7; 4 and 6 is 10; 1 and 3 is 4; 3 and 4 is 7; 2 and 8 is 10; 1 and 1 is 2, and 2 is 4; 1 and 6 is 7: So that six times 123456789, is found 740740734.

SECT. II. To multiply by Neper's Rods or Bones.

Quest. 1. What is the Product of 34729 by 23795; See Fig. 13.

Plate A.

First, tabulate the Multiplicand, (or either Factor, but the larger is most usual:) that is, take so many Rods out of your Set, that the first Figures (or those at the upper End of each Rod) will compose your Multiplicand in order, as you see done, Fig. 13. of Plate A.

Then looking for the Figures of your Multiplier severally in the Index-Rod next the left hand, you find against each its respective Product in the Multiplicand, as Fig. 13. aforesaid.

Quest. 2. What is the Product of 3040999 by 2341?

In this Example there being 3 Nines and 2 Cyphers, on the opposite Sides, whereof are 2 Nines makes 5 Nines, which is one more than is in a set of these Rods; therefore, if you have

3040999 = the Multiplicand.

Multiplied by i = 3040999by 4 = 12163996by 3 = 9122997by 2 = 6081998

7118978659 = Product.

not another Set, you may easily supply the Defect by observing the Product of each Figure (as you go on) in the
Multiplier, and those other Nines, and so making one of those
extraordinary: Thus in Multiplying by the 4 there (as Fig. 14.)
and if there were another Rod for the third Nine in the Multiplier, I can easily see there would be more (as Fig. 15. Plate A.)
which therefore, I suppose, and so put down 6, and then two
Nines instead of the one Nine in the Rods; so when I multiply
by the 3, I find in the Tabulet toward the right hand against
3, (see Fig. 16. Plate A.) But I know if I had another Rod of the
Z z

fame Digit 9, there would have been another, as Fig. 17. Plate A. which supposing there, it would make 2997, that is, a 9 more than I find in the Tabulet, and so the rest.

#### SECT. III. Division by Neper's Bones or Rods.

What is the Quote of 23734.691084 divided by 253.24?

An Example of the whole Process, and of what help you have

in dividing from the Rods. See Fig. 18. Plate A.

Hence it appears, that the Rods are only useful in exhibiting the Products of the Divisor by each Figure put in the Quotient, which knowing, you proceed in all other Respects as in Division of Integers, Sect. 5. Chap. I. ec. first Tabulating the Divisor, and then whatsoever the Quote be, you have each Figure multiplied in the Divisor, although I have only placed in the Index-Rod the Figures that fall in the Quote above, and that in the Order they happen therein, for the more orderly shewing the Nature of the Work, and how it agrees with common Division; so that in doing this Question above, you finding that 227916 is the next Number on the Rods to, and less than, 237346 (the first Part of the Dividend) looking against that in the Index-Rod you find 9; therefore put 9 in the Quote, and deduct as in the Example, and the Remainer (with 9 brought down to it) is 94309; which found in the Rods, or what is next less, I observe 3 to stand against it, which I put in the Quote, and so proceed with the rest as in the Example, which is so plain, that it will serve for all. I have put the Figures of the Quote against their respective Dividuals, which added and placed as above in its proper place, is the general Quotient required 93.7241.

# SECT. IV. The Use of Neper's Bones or Rods in Extraction of the Square Root.

What is the Square Root of 54756? (See Fig. 3. Plate B.)

Rule.] Having pointed the Square Number given, as taught in intire Numbers; by the three Points, it appears, there will be Hundreds, Tens, and Units in the Root.

2dly, Having put the Rod of the Square of the 9 Digits next towards the right hand of the Index-Rod, you'll find that against 4, the

| Square. Square Root. |
|----------------------|
| 54756 (234           |
| 4                    |
| 147                  |
| 129                  |
| 1856                 |
| 1856                 |
| o Rests.             |

next

next Square to 5 (the first pointed towards the lest hand) there stands its Root upon the said fixed Rod, viz. 2; therefore put 2 in the Root, and deduct the said Square 4 from 5, and there rests 1.

3dly, Having brought as usual the next Branch down, it makes 147. Then take a Rod, whose uppermost Number is the double of the Figure last put in that Root (here 4); and place the Rod of Squares to the right hand, that (as you see Fig. 3. Plate B. in the middle Part over 30) then look in the two Rods next the right hand for 147, and the next less is 129, right against which on the Index-Rod stands 3; therefore put 3 in the Root, and deduct 129

from 147, and the Remainer is 18.

4thly, Having placed the next two Figures (or last Binary of the Square given) toward the right hand of 18, they make 1856. Then place two Rods (between the Rods of the Index, and that of Squares) whose uppermost Digits are the double of the 2 in the Root (as you see done in Fig. 3. aforesaid next the right hand) and look in the 3 Rods next that hand for your 1856, which you find just, and towards the lest hand thereof, on the Index-Rod stands 4; therefore put 4 in the Root, and deducting, you see nothing remains, and that 234 is the Root required. This I have made much more plain than has been done before, by Fig. 3. which shews the Position of the Rods upon each Digit put in the Root, and doubt not but it is sufficiently intelligible.

But Note, That if the double of the Figure put in the Root be more than 9, you must put two Rods next the Index, which begin with the Digits of that double; and three Rods put when the double of two places is above 99. Thus, if 9 is the first in the Root, the double is 18; so I put two Rods between the Index and the Rod of Squares, beginning with 1 and 8. So also, if 99 were the two first in the Root, the double is 198; I put therefore three Rods, beginning with 1, 9, and 8, between the Index-Rod and that of

Squares, &c.

For a farther Exemplification; extract the Square Root by the Bones of 97535376. See the Work in the Margin.

 $Zz_2$ 

ift, Here

1st, Here you find 81 the next less Square to 97, and against it is 9 in the fixed Rod; so you put 9 in the Root, and deducting 81, there rests 16, and the next Branch or Period is 1653.

2dly, Doubling 9 is 18, which two Rods placed next that fixed, and that of Squares next the right hand; the top Digits will stand in this

| Square.                             |
|-------------------------------------|
| Example $2 = 97535376 (9876 = Reor$ |
| 81                                  |
| 1653                                |
| 1504                                |
| 14953                               |
| 13769                               |
| 118476                              |
| 118476                              |
| 6 Y                                 |

Order, see Fig. 19. Plate A. and in the Progression lower you'll find against 1504, the next less, to 1653, stands 8, which put in the Root, and deduct 1504, there rests 149; which with the next

Period makes 14953.

3dly, Doubling 98 is 195; which three Rods placed next that fixed, and that of Squares towards the right, the first Figures on the Tabulet Rods will stand thus, see Fig. 20. Plate A. And in the Progression thereof lower you'll find 13769; against which is 7, which put in the Root, and the 13769 deducted from 14953, there rests 1184; to which bringing down the next Branch, makes 118476.

4tbly, Doubling 987 in the Root, makes 1974; therefore taking 6 out of the last Tablet, and putting the Rods beginning with 7 and 4, the top of the fix Rods will stand thus, see Fig. 21. And in the Progression lower you'll find on the 5 Rods next the right hand 118476, against which towards the left hand upon the fixed Rod

is 6: So there Rests (0), and the Operation is finished.

# SECT. V. The Use of Neper's Bones in the Extraction of the Cube Root.

The Rods make this (which is reckoned the most difficult Rule) very easy, so soon as you know how to place your Virgulæ, which I shall therefore illustrate by an Example of their Position at every Figure put in the Root, as I have done in the preceeding Parts of Arithmetic by the Rods.

The

The Cube Number given must be prepared for Extraction by pointing over the Units, and every third afterwards, as is taught in extracting Roots of Vulgar intire Numbers, &c. for Example: What is the Cube Root of 182284628? See Figures 22, 23, 24. Plate A.

1st, The first Figure in the Root is found by placing your Cube-rod next the Index-rod; for looking on the former for 182 (the first Point next the left) you find the next less to be 125.

And right against that 125, stands 5 on the fixed Rod, which 5 I therefore put in the Root, and substracting 125 from 182, there Rests 57. To which bringing down the next Point or Branch, it makes 57284.

-45216 540 50616 6668628

Then for a Divisor to divide the 57284: Take treble the Square of the 5 (in the Root) which is 75, see Fig. 23. Plate A. And having tabulated that, and the Rod of Cubes, as you see, I find on those three Rods 45216 the next less to be taken, against which in the Index is 6, which I put in the Root: To which 45216 I add 540 (which is the Square of 6 in the Root multiplied in three times the 5 there) and the Sum is 50616; which substracted from the Dividend 57284, there rests 6668, to which I bring down 628 = the third Branch.

9408) 6668628 6585943 8232 6668263 365

And it makes the last Dividend 6668628; and treble the Square of the Root (56) makes 9408 (a Divisor) which Tabulated with the Rod of Cubes, as you see Fig. 24. Plate A. I look upon the Rods, and find 6585943 to be the next less Number than the 6668628;

6668628; and against it is 7 in the Index, which 7 I put in the Root: Then for the 8232 to be added to the Number next above it, I multiply 3 times 56 (in the Root) by the Square of 7 there; and the Sum is 6668263, which I take from the last Dividend 6668628, and the Remainer is 365; to which, if you desire Decimal Places, you may put three Cyphers towards the Right, and so proceed as before. I have made this Example so demonstrative, that I shall need to give no more, for by the very same Method you may do any other.

Note, That in the Division (by 75) the next of all on the Rods, and less than the Dividend 57284 is 52843, against which stands 7 on the Index, but then had you put 7 in the Root instead of 6, you would have found a Number too great to be deducted from the said Dividend or Resolvend 57284; and therefore I take still the

next less Number which stands against 6.

2d Note, That the 540 and the 8232 are placed I Degree towards the left hand, because they would fall so if put under the Tens places of the Cube of the last Figure put in the Root; as is

done in the common way of Extraction.

Note also, That if you have not the Rods of Squares and Cubes, you may do without, either by placing in the room a Rod, whose first Number is the fame with that which falls in the Root (which you may know by comparing the Figures on the Rods toward the left hand with those of the Dividend) or by making them (for prefent Use) of Paper, according to the many Examples above given of them, till you get the Rods of Squares and Cubes.

# SECT. VI. Notation and Numeration of the Diagonal Circular Instrument, (See Plate B.)

This Instrument was by me contrived chiefly for Reduction of Money, Weight, or Measure, into Decimals; or for finding with Ease and Speed the Value of those Fractions, and for Multiplication, Division, and Evolution. It is marked on Plate B. with Fig. 5. and consistent of seven Concentric Circles (besides the two outermost, which are Lines of Numbers) as

1. The outward or largest Circle (save two) is of equal Parts, to which all the rest that are lesser Circles refer in their Use; it is first divided into 10 Parts, each of which being subdivided into 10, makes a 100 Parts; and each 100 Part again divided into 10 by the

the Diagonal Line (1000, a) &c. divides the whole Circle into 1000 equal Parts. So that for Example: To find in that Circle 767 thou-fandth Parts, you have 760 in the Arch of that Circle, and 7 in the Diagonal Line, telling the Parts upward from 760.

2. The second Circle is of English Coin, the whole representing 1 l. divided into 20 s. each Shilling in 12 Pence, and each Penny by the Diagonal into 4 Farthings. So that to set off 13 s. 7 d. 4 q. look for 13 s. 7 d. in the Ambit of the Circle, and then from 7 d.

telling upwards, you see I Farthing in the Diagonal.

3. The next inner Circle (which is the third from those of Numbers) is of Beer Measure, being one Barrel divided into 4 Firkins, each Firkin into 9 Gallons, and each Gallon into Quarts and Pints as you see.

4. The next inward is a Barrel of Ale divided into 4 Firkins, those into each 8 Gallons, and those again into Quarts and Pints.

- 5. The fifth Circle inward from those of Logarithms is the Pound Averdupois divided into 16 Ounces, and those each Ounce into 16 Drams.
- 6. The next inward Circle is the Hundred Averdupois divided into four Quarters, and each Quarter into 28 lb. And

7. The innermost Circle is Foot Measure, being 1 Foot divided

into 12 Inches, and each Inch into 4 Quarters.

And all these Divisions and Subdivisions are actually done, and not imagined only as some Scales are, which are of little or no Use. And any Quantity in the seven inner Circles is easily pointed to by the same Rule as given for the two sirst; from those of Numbers, only in these three are no Diagonals, there being no need of them, the Parts being sufficiently expressed without.

8. The two outermost Circles are Lines of Numbers, whose

Uses follow after 10th.

#### Reduction of Decimals by the Circular Instrument.

Quest. 1.] What Decimal of a Pound is 13 s. 6 d. \(\frac{1}{4}\) q?

Rule.] Lay a Ruler from the Center to 13 s. 6 d.  $\frac{1}{4}$  q. in the fecond Circle, and that will cut in the Diagonal Circle .676, which is the Answer.

Quest. 2.] What is the Value of .876543 of a Pound Sterling? Rule.] Lay a Ruler to the Center, and to 876, and half in the Diagonal Circle (or equal Parts) and you'll find it to cut in the Circle of Money 17 s. 6 d. ½ q.

Quest.



Quest. 3.] What Decimal of a Barrel of Beer is 2 Firkins, 7 Gal-

lons, 3 Quarts, and a Pint?

Rule.] Lay the Ruler to the Center, and the Quantity given in the third Circle from the Line of Numbers, and it will shew in the first Circle the Decimal required to be .7187, or apparently more than .718 and ½.

Quest. 4.] What is the Value of .876543 of a Barrel of Ale?

Rule.] Lay a Ruler to the Center, and the Decimal given in the Diagonal Circle (I mean the four first Figures next the Point) and it will cut in the fourth Circle 3 Firkins, 4 Gallons, and about half a Pint.

Quest. 5.] In 3 Firkins, 5 Gallons, 3 Quarts of Ale, how much

Beer?

Rule.] Lay a Ruler from the Center to the Quantity given in the Circle of Ale Measure, and it will give in the Circle of Beer Measure 3 Firkins, 6 Gallons, 2 Quarts Beer. And in like manner Beer is reduced to Ale Measure.

Quest. 6.] What Decimal of a Pound is 13 Ounces 11 Drams? Rule.] Lay a Ruler from the Center to 13 Ounces and 11 Drams,

and it will cut in the Diagonal Circle .855.

• Quest. 7.] What is the Value of .876543 of a Pound Averdupois? Rule.] By laying a Ruler to the Center, and the Decimal given, it will shew the Value in the fifth Circle from those of Numbers to be 14 Ounces and near half a Dram.

Quest. 8.] What Decimal of a hundred Weight is 2 Quarters

21 Pound?

Rule.] Lay a Ruler to the Center, and the given Quantity in the fixth Circle, and it will cut in the Diagonal Circle .687, or .6875.

Quest. 9.] What is the Value of .876543 of an hundred Weight? Rule.] Laying a Ruler as in the 7th Question, it will cut in the 6th Circle 3 Quarters 14 Pound.

Quest. 10.] What Decimal of a Foot is 10 Inches 3 Quarters?

Rule.] Laying a Ruler to the Center, and the Quantity given in the 7th Circle, it will cut in the equal Parts .8958, or visibly

.895 and more.

And a Line of Numbers being delineated without the largest or diagonal Circle (as by Rules given for drawing that Line, setting the Parts off from the Center) and another to turn round within it; you may by them do most Questions in Multiplication, Division, and Extraction of Roots very accurately, as by Rules in Chap. VIII. Or thus, Suppose I would do the second Question in

Sett. 4. of Chap. VIII. i. e. If 12 C. of Sugar cost 1. 25:4:0 what will 1 Ton cost?

Turn 12 in the inner Circle, to 20 in the outer Circle; and then

against 25.2 in the inner, will stand 42 in the outer.

Or in Case you have only a Cut of this Instrument pasted on a strong Board that will not warp; you may do these Questions by the Compasses and one of the Lines (or the outmost Circle); as if 20 require 30, what will 50 require? In the second half Circle, the Extent of a pair of Compasses from 20 to 30, will extend from 50 to 75, the sourch Proportional or Answer.

The compound Interest of any Sum for Years, is found by the two Lines of Numbers: as that of l. 650 for 5 Years at 5 per Cent. the fifth Power of 1.05 in the Amount of l. 1 for five Years, which

multiplied by 1.650 gives 1.829: 11:0 the Answer: For

And turning 1 in the inner Circle to 1.28 in the innermost Circle; against 650 (the Principal) in the inner Circle, you will find 829½ in the outer Circle, the Amount required.

Many other Questions might be proposed, and Uses shewn of this Instrument; but I leave it to the Reader to find out, of his own accord, to exercise his Parts.

The End of Instrumental Arithmetic.

લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે લાકું કે

#### CHAP. X.

#### ALGEBRAICAL ARITHMETIC.

LGEBRA being a Word derived from the Arabic Algiabr, makes it probable, that the Arabs were the most ancient Professors, and great Proficients in this Art. Although some have ascribed the first Invention to the Chinese, Indians, or Persians, some to the Grecians, and that it was first propagated by Plato; though it was kept a Secret, from the Principle, that A a a

i

the divulging a Truth was prophaning of it. The first Treatise of this Art is said to be wrote by Diophantus, extant in Latin and Greek; but the first European Author, was, most probably, Lucas de Burgo, a Friar, who publish'd a Book of this Subject in Italian, printed at Venice, Anno 1494; yet Scipio, Cardan, and others about their Time, first shewed the Solution of Cubical Equations. The famous Vieta was the Inventor of Specious Algebra about 1590, which was improved by Oughtred; and the Methods of solving Quadratics, by changing the second Term, and by compleating of the Square, were, with many other excellent Improvements, introduced by the celebrated Harriot, who was contemporary with Oughtred, and flourished about the Year 1630. And so much may suffice for the Invention and Improvement of this great Art.

II. Some define Algebra to be, The Art of Restitution and Comparifon. It is sometimes called, The Analitick, or the Art of Enquiring into the fundamental Nature and Reason of Propositions, and of composing and solving Equations, and discovering Canons and Theorems accordingly.

III. Algebra is either Numeral or Literal; the former, when a Question is folved by the Numbers themselves; and Literal, when done by Symbols, Letters, or Species, representing the Numbers in a Question.

What I have proposed for this first Section, I shall give the Reader in this Method.

1. Shew him the Characters and Signs used in Algebra.

2. Say what is necessary of the Symbols or Letters, representing. Numbers in this Case.

3. Of the Notation, Numeration, or way of reading Compound e c Quantity.

4. Of the Definitions and Explanations of Terms peculiar to, and used in Algebra.

IV. The learned Algebraists, for the more commodious and expeditious Way of Process in solving Problems, have very wisely agreed upon certain Charasters, whereby Quantities, or the Powers of them, are expressed and connected, and the Mind of the Artist is briefly and methodically explained, which would appear inconveniently confused, should Words at length be used: Thus,

| Signs or                   | Their Signification                                  | Literal Examples;             | Numeral Examples;               |
|----------------------------|------------------------------------------------------|-------------------------------|---------------------------------|
| Charatters.                |                                                      | as,                           | or,                             |
| +                          | More.                                                | b+a.                          | 3+2=5.                          |
|                            | Less.                                                | b—a.                          | 3-2=1.                          |
| =                          | Equal to                                             | b+a=c.                        | 3+2=5.                          |
| +                          | Transpos'dto the Right.                              | a+b=c, is $a=c-b$ .           | 2+3=5, is $2=5-3$ .             |
| ×                          | Multiply'd by                                        | $b \times a = ba$ .           | $3 \times 2 = 6.$               |
| +                          | Transposed to the Left.                              | b=c-a, is $a+b=c$ .           | 3 = 5 - 2, is $2 + 3 = 5$ .     |
| ÷                          | Divided by                                           | $b := a = \frac{b}{a}$        | $3 \div 2 = \frac{1}{2} = 1.5.$ |
| S                          | Difference between                                   | bO a                          | ¹ 3 <b>℃</b> 2=1.               |
| ∠ (or →)                   | Lesser than                                          | $a \mathrel{\sqsubseteq} b$ . | 2-3.                            |
| 7 (or = )                  | Greater than                                         | b ¬a.                         | 3 ⊏ 2.                          |
|                            | CSo is (when in the)                                 |                               |                                 |
| ::                         | middle of 4 Geo-<br>metrical Propor-                 | $b. \ a :: c. \frac{ac}{b}$   | $3.2::5.\frac{10}{3}$ .         |
| <del>::-</del>             | C tionals.) Continual Geo- metrical Propor- tionals. | a.b.d.b.r. :::                | 1. 3. 9. 27. 81 ::-             |
|                            | The Square Root of                                   | $\sqrt{bb}=b$ .               | <b>√</b> 9=3.                   |
| 3                          | The Cube Root of                                     | $\sqrt[3]{aaa=a}$ .           | $\sqrt[3]{8=2}$ .               |
| 7                          | The Biquadrat Root of                                | √asaa=a.                      | $\sqrt[4]{16}=2.$               |
| 3                          | The Root of the 5th Power, or Surfolid Root.         | <i>√bbbbb=b.</i>              | $\sqrt[3]{243} = 3.'$ for       |
| $aa (or a^2)$              | The Square of a                                      | $a^2 = aa$ .                  | 2 <sup>2</sup> =4.              |
| aaa (or a <sup>3</sup> )   | The Cube of a                                        | $a^3 = a a a$ .               | $2^3 = 8.$                      |
| aaaa (or a4)               |                                                      | $a^{+}=aaaa$ .                | 2 <sup>1</sup> =16.             |
| aaaaa (or a <sup>5</sup> ) | { The 5th Power, } or Surfolid of a }                | a'=aaaaa.                     | 25=32.                          |

Other Characters less used are;  $a \lor b$  used in Surds, signifies a is multiplied in the Square Root of b.

(L) Right Angle. (Φ) Square. (<) Angle. (Δ) Triangle. (½) Equilateral. (⑤) Involution, obviating that such a Quantity is squared; and (ω) Evolution (or that the Root is extracted).

A 2 2

V. The

Digitized by Google

V. The Species or Symbols used in Algebra, are Letters, which are placed in an Operation to represent the Numbers given in any Question; and these are commonly Consonants, as b, c, d, &c. But the Letters put in an Operation by Algebra to stand for the unknown Numbers (or those sought for) are usually Vowels. And I shall observe this way in the following Work, but with those Limitations which I think are necessary.

1. I shall put such Consonants to stand for the known Numbers as are most expressive of the Things to which those Numbers relate; and the like for unknown, or if there is but one unknown Number

fought in a Question, I shall always put u for it.

2. I shall not, as has been usual, put the Letters in a Product promiscuously, and without Order, but shall place them as they have Order or Priority in the Alphabet; whereby one and the same Quantity is easier seen in contracting manifold compound Quantities, and several other good Uses may be made thereof.

VI. Of the Notation, Numeration, or way of reading Algebraical

Quantities, it may be observed from the foregoing Signs.

1. Such as are connected with the Affirmative Sign +, as a+b+c+d=p, are to be read, a more b, more c, more d, equal to p.

Note, Which p, though it hath no Sign before, is (and the like is always to be observed) supposed to have +, as being always af-

firmative.

2. Such Quantities as are connected with the Negative Sign —, as, a-b-c, are to be read thus; a lefs b, lefs c. And as in the first Example, the Numbers signified by b, c, and d, are to be added together to make the Number represented by p: So in this second Example, either the Sum of the Numbers represented by b and c, are to be deducted from a; or else b and c taken from a singly, b from a, and then c from the Remainer.

Or suppose  $b-b-c-d=a \otimes p$ ; that is, the Number represented by d, being deducted from the Sum of those represented by b and c; the Remainer is equal to the difference between the Numbers repre-

fented by p, and that unknown Number by a.

Note, That such Quantities as have no Numbers standing to the left hand, are supposed to have a Unit or 1; thus b is 1b, c is 1c, C.

In  $c-b+a-p \circ a$ : Here the Difference between p and a, is to be deducted from the Remainer, when b more d is taken from c; for 'tis read, c less b more d, less the difference between p and a; for

for a being unknown, it is so likewise whether the Excess lieth in a or

p, therefore the to represent the Difference is necessary.

3. Such Quantities as have the Sign x between them, are commonly expressed without it, and the Letters put as in a Word; thus  $a \times b$ , is, a multiplied in b, or ab;  $c \times b \times p$ , is c multiplied in b, and that Product in p, but is mostly put thus bcp; and  $b \times in b$  is bb,  $c \times c \times d \times d$  is ccdd, or c squared in d squared.

Or  $a \circ c + b \times p \times r$  is  $a \circ c + b p r$ , that is the Product of b, p,

and r added to the difference between a and c.

- 4. So all Quantities having the Sign  $\div$  may be, and are most  $\div$  commonly expressed by way of Fraction, the Quantity to be divided being placed over the other thus, a-b  $\div c+p$  will stand a-b c+p; i. e. a less b, divided by c more p.
- 5. Surd Quantities are expressed with their proper Marks before them, as  $\sqrt{g-a}$  is the Square Root of the Remainer, when  $\sqrt[4]{a}$  is deducted from g. So also  $\sqrt[4]{p+q-r}$  is the Cube Root of the Remainer, when r is deducted from the Sum of p and q. Lastly,  $\sqrt[4]{b-c+\frac{d}{q}}$ , which is the biquadrat Root of the Sum when c is taken  $\sqrt[4]{a}$  from b, and that Remainer added to the Quote of d, divided by q.

But some Examples admit of a double Entendre.

As under the 2d of this 6th Head, wherein c - b + d: If it were not for the Line over b and d, instead of deducting b + d from  $\tau$ , b would only be shewed to be deducted from the Sum of c and d.

So also in the 4th above, if there were a Line over b := c + p, it would stand thus a = b := c + p, which without the Line (supposing a = 40, b = 20, c = 6, and p = 4) would be but 2; whereas with the Line tis = 38, for

$$a-b=20$$
And that divided by  $c+p=10$ 
is = 2
But (with the Line)  $a=40$ 
Lefs  $(b)$ 
Divided by  $c+p$ 

$$= 2$$
Which deducted is  $=38$ 

fo there is 36 difference. According to the 5th Example above, there is nothing more frequent in folving Quadratic Equations, than to have occasion in the Canon or Answer to use Lines to distinguish what Quantities are to have their Roots extracted, and which

which are not, as  $u = \sqrt{bc+p} - d$ ; that is, (u) is equal to the Remainer, when (d) is deducted from the Square Root of the Sum of (p), and (b) multiplied in (c), as if b be 16.

The Numbers to which Equation discover, from the Letters, the Value of (u), and so you must unfold any Canon of Species.

But had not the Line been drawn over bc + p, it would have shewed that the Root is to be extracted of bc + p - d, which would give too much.

c=3Product=48

More p=16Sum = 64

Square Root of which is 8

Lefs d=3, fo (u=5.)

7. In the new Notation  $\frac{1}{a}$  is often expressed  $a^{-1}$ ;  $\frac{1}{a^2}$  is  $a^{-2}$ ;  $\frac{1}{a^3}$  is

 $a^{-3}$ ;  $\frac{1}{a^4} = a^{-4}$ , &c. And is read 1 divided by a; 1 divided by a fquared; 1 by a cubed, &c.

Also  $a^7 + b^8$ , &c. is the 7th Power of a, plus, the 8th Power of b. And  $\frac{1}{a+b}$  is wrote  $a+b^{-1}$ , &c.  $a^7 + b^7 \times \frac{1}{a+b}$  is  $a^7 + b^7 \times a+b^{-1}$  that is, 1 divided by a more b; and the 7th Power of a more the 7th Power of b multiplied in 1 divided by a more b.

Likewise  $\frac{1}{a^2}b$ ,  $\frac{1}{a^3}b^2$ , &c. is in the new Notation  $a^{-2}b$ ;  $a^{-3}b^2$ , &c. that is, 1 divided by the Square of a multiplied in b; 1 divided by the Cube of a multiplied in b squared.

VII. An Alphabetical Explanation and Definition of most Terms used in Algebra, which the Reader may have recourse to as he finds occasion; for having well understood what is above in this Section, he may pass this Head, and proceed to Addition, &c.

Absolute

Absolute Quantity, or Absolute Number, Is such a known one as possessible of an Equation, as u + cu = b, here b is the Absolute Quantity, whose Value is known, and is free from any Dependance or Power of any other. Or it is 1 marked with the Sign +, contrary to Negative marked —.

Affirmative Quantities.] Such as have either no Sign before them, or are marked with +; so a+b are both Affirmative Quantities,

as by the last.

Algorism,] Is the Operations in the several Parts of Algebra practically handled.

Algorithm.] The Parts of single Arithmetick, as Numeration, Ad-

dition, Substraction, &c.

Arithmetic of Infinites.] The same as infinite Series, or converging

Arithmetic of Infinites.] The same as infinite Series, or converging Series.

Adfetted Equations.] When in a Quadratic Equation, (which see Sett. 10. in this Chap.) the unknown Quantity is in one Term, and

its Square in another.

Analogies.] The same as Proportions, as the Analogy of these sour Quantities, a. b :: c. d, &c. and because the Rectangle of the two Extremes is equal to that of the means; therefore ad = bc, the Analogy being converted to an Equation.

Approximation.] See Converging Series.

Arithmetic of Negatives.] See Negative, under N.

Binomial Quantities or Roots.] Those consisting of 2 Names, Terms, or Members, connected together by the Sign ++, as u+d, &c.

Coëfficients.] Those Numbers or known Quantities in a Quadratic, &c. Equation, which are (in the 2d Term commonly) multiplied in the Root of the first or unknown Quantity, as uu + 2bu, here 2b is the Coëfficient: And note, That where there is no Number nor Quantity multiplied in the Root in the 2d Term, then 1 or a Unit is the Coëfficient, as uu + u is = uu + 1u. See Compleating the Square.

Compound Quantities.] Are such as are either the Product, Sum, or Difference of two or more single Quantities: Thus (up) is a Rectangle compounded of u and p, u+d, or u-d, the Sum or

Difference of those two Quantities u and d.

Compleating a Square.] This is to square half the Coëfficient: As suppose two Members of a Square uu-bu be given; to find what Quantity must be put to compleat the Square, is to square half the Coëfficient or  $\frac{b}{2}$ , which Square is  $\frac{bb}{4}$ , so that  $uu+bu+\frac{bb}{4}$  is a compleat Square: For Proof of which you may multiply

 $u + \frac{b}{2}$  (which is the Root of that Square) in itself. And if this were a Quadratic Equation, this Square of half the Coëfficient must be added to both Parts of the Equation, as admit uu + bu = c, half the Coëfficient being squared and added, will make it  $uu + bu + \frac{bb}{4} = c + \frac{bb}{4}$ .

Composing an Equation, Is the way of proceeding (to resolve Problems) till we make some Quantities in the Question equal to some others; (see Resolution of Equations) as if I were asked, what Number that is which being multiplied by 7, and that Product divided by 3, the Quotient will make 1000, abating half the Number sought? Here, to compose this Equation, I put u for the unknown Number, or that sought; then 7 times that is 7 u; that divided by

3, makes  $\frac{7u}{3}$ . Then putting b to represent 1000, this Equation is

composed from the Nature of the Question, viz.  $\frac{7u}{3} = b - \frac{u}{2}$ .

(See this Equation resolved under the Word Resolution.) And where the Quantities in the Proposition or Problem can be reduced naturally into Analogy, then that Analogy is reduced, or an Equation composed from it: See Analogy.

Construction of an Equation, Is to demonstrate Geometrically the Truth of the Equation, and Canon, from Lines or Geometrical Figures laid down for that purpose, as simple and quadratic from the Sides of the Triangles and Arcs of Circles; and cubical from the Parabola and Circle, &c.

Conversion of Equations,] Is properly the converting of an Equation into that which is not so, i. e. into Analogy, as if ad=bc; then it follows, that as the Quantity a is to c or b, so is the other of them to d, viz. a. b:: c. d. See Analogy, of which Example this is the Converse, and they ought both to be remember'd. But some call this following, and the like, a Conversion, (but I call it Reduction by Multiplication, of which more under Reduction of Equations,) viz.

 $\frac{u}{r} + c d = p$ , this by multiplying each Member by the Denominator r, gives u + c dr = pr, &c. of any other.

Converging Series.] Lines converge, when two right ones proceed nearer and nearer to each other, till they meet in a Point where they

they make an Angle: So in Numbers, it is the orderly approaching nearer and nearer to the Truth (as to the Root of a furd Number or Quantity) by the common Rules. Examples hereof, see Section the 13th following: Note, Sometimes this Method of Process is called also Arithmetic of Infinites, Infinite Series, and Approximation.

Contraction.] This in Algebra is to leave out all repeated or superfluous Terms, or single Quantities; as 4ab-3c+5c-3ab, this contracted is ab+2c; for 4ab, less 3ab, leaves ab; and 5c, less 3c, leaveth 2c. So also 7uu+3pu-du-3pu is 7u-d; for first, u being in each Member 1u, may be lest quite out, and then 'tis 7u+3p-d-3p; secondly, +3p and -3p destroy each other: So there rests but 7u-d of the Total, and the like may be observed in Contraction of other Quantities.

Calculus.] A Term in Fluxions: It is either Calculus Integralis, which is the Method of finding a flowing Quantity of any Fluxion given; or else Calculus Differentialis; which is the way of finding a

Fluxion of any flowing Quantity.

Canon.] As it relates to Trigonometry, is the Rule of Proportion by which an Angle or fides of a  $\Delta$  is found; the Tables of Artificial Numbers (Logarithms, Sines, and Tangents) are sometimes called Canons; but in Algebra it is a resolved Equation, being the Result of an Operation, and is the Value of some unknown Quantity in known Species, or Numbers, which being wrote down in Words, contains a plain general Rule for the Solution of any Question of like Nature; which is one of the great Excellencies of Algebra.

Cossick Powers.] Algebraick Powers of Number or Quantity; for the first, see Chap. I. Sect. 1. of this Treatise; whence it follows, that the Powers of any Quantity will stand thus,  $u=a \operatorname{Root}$ ;  $u^2=the$  Square or second Power;  $u^3=the$  Cube or third Power;  $u^4=the$  Biquadrat or south Power of u, &c. See Extraction of Roots in this Chapter Sect.

this Chapter, Sett. 6.

Cubic Equations.] Vide SeEt. 12. of this Chapter.

Depression.] This Word is used in the Solution of Cubic ec Equations, where the Equation is depressed or reduced from one of the third Dimension to a Quadratic; that being one of the ways of resolving Cubical Equations: Or Depression is the reducing of an Equation by Division; as puu + duu = cu - du by dividing by p+d, that Equation is reduced to  $u = \frac{c-d}{p+d}$ , first expunging or cast-

ing out u, because found in each Member or Term of the Equation: See this Chapter, Sea. 5.

Bbb

Discrete



Discrete Proportionals] Are Numbers or Quantities, where there is the same Proportion between the third and fourth, as between the first and second; but not the same between the second and third, as in u.b:b.k, there is the same Analogy between b and k, as between u and b, but not the like between b and b; so that tis also called Disjunct Proportion in Number, 3.7:12.28.

Dimensions.] In Equations, where the first Term is uuuu, that is one of 4 Dimensions; uuu is an Equation of 3 Dimensions; uu of

2, &c. u being unknown.

Equation.] An Equation in Algebra is, when one or feveral known or unknown Quantities are made equal to other Quantities upon a due and regular Process of Composing, (see that Word,) as if u+c-d=rs+tu, that is, u more c less d is equal to r multiplied in s+tu, which Equation is resolved as under Resolution; see also Simple, Quadratic, Cubical and Lateral Equations, in this part.

Evolution] Is marked w, (or the Extraction of a Root) and tells us, that the Number or Quantity before which it stands, is the Square Root of some other Step referred to in an Algebraical Operation.

Exponents] Are those small Figures placed almost over any Quantity, to shew (or expound) what Power of the said Quantity is expressed. See Cossic Powers above. And

Exponential Quantities] Is a Term in Fluxions, these being such Quantities, whose Exponents are variable or flowing Quantities.

Fluxions] Are defined to be the Doctrine, or Algorithm of the infinitely small Increment or Decrement of variable and indeterminate Quantities: For the best Notion we have of generating a Line, is by the Motion of a Point; of a Surface by the Motion of a Line; and of a Solid by the Motion of a Superficies: Now as this Increase of a Figure by Local Motion, is termed a flowing Quantity; so the Velocity of that Increase of the flowing Quantity is called a Fluxion; and is distinguished from the Character or Symbol of the flowing Quantity by a Point over it, &c. which is a kind of Artificial Algebra, but is wrought by Rules peculiar to itself, being a late Invention and a great Improvement.

Flowing Quantities.] See Fluxions above.

Generating.] In Geometry Points Lines and Superficies generate as under the word Fluxion; or in Arithmetic, what is produced by Multiplication or Involution is a generated Number or Quantity in Algebra.

Homogeneal] Is of the same kind: So such surd Roots as have the same radical Sign are Homogeneal, as  $\sqrt{ab}$ ,  $\sqrt{ac}$  ec;  $\sqrt[3]{cd}$ ,  $\sqrt[3]{brke}$ ;  $\sqrt[4]{lp}$ ,  $\sqrt[4]{g}$ , &c. See this Word in the Introduction, Sect. 1.

Homologous.

Digitized by Google

Homologous.] In a Proportion of four Quantities. If u.b::c.d. Here the two Antecedents u and c are Homologous, as are the two Confequents b and d,  $\Im c$ . and u is Homologous to c, as b to d.

Heterogeneal.] (Of different kind;) So Surds are Heterogeneal when

their radical Sines are not the same, as  $\sqrt{bc}$ ;  $\sqrt{tu}$ ,  $\sqrt{rst}$ , &c.

Infinite Series.] See Converging Series above, and Chap. 10. follow-

ing, Sett. 13.

Involution. Is marked @, and shews that the Quantity before which it stands is the Square of some other which is referred to; the contrary to Evolution.

Ineffable Quantities.] Surds, whose Roots can only be expressed

by the proper radical Signs.

Irrational Quantities.] The same as Ineffable, last above.

Lateral Equations.] Simple Equations which have but one Root, or in figurate Numbers they are those of the first Order, as 1, 2, 3, 4, &c. See Ses. 14 of this Chapter.

Like Signs.] Those Quantities in Algebra which have the same

Sign, as +b+c+d, or -b-c-d, &c.

Like Quantities.] Such as have the same Symbols or Species, as 23 b c d, 14 b c d, 2b c d, &c. there being the same Number of each Letter.

Maximis and Minimis] Is a Term used in Fluxions. It is a Method whereby Problems are resolved, which require the greatest or least Quantity attainable in that Case; it is a stable Quantity naturally; and therefore to determine to a Maximum or Minimum in any flowing Quantity, is to make it a permanent Quantity.

Members of an Equation.] Those Quantities contained between every Sign, as ab + du - cp = r; here ab, du, cp, and r, are the

four Members or Terms of this Equation.

Moments.] A Term in Fluxions according to some; being such Parts of Quantity as are in a continual Flux, either decreasing or increasing: Or rather, Moments are the beginning (of the generating Principle) of Magnitude, and are themselves no Magnitude conceiveable, because infinitely small.

Multinomial. | See Polynomial.

Negative Signs.] See under the last Article (or Head) among the

Characters used in Algebra for (—).

Negative, or the Arithmetic of Negatives, Is that kind wherein Negative Numbers or Quantities are employed, which are known by this mark (---) before them.

Bbb 2

The

The Numeration is no more than only adding the Words [less than nothing] to what is wrote down; as -a, or -7 is read a less than nothing, or 7 less than nothing, and -.75 ec is that Decimal less than nothing.

Addition] Shews the adding of Negative to Negative or Affirmative, as by the Rule of adding the Quantities of like Signs together, and taking the Difference for the Sum; as the Sum of -7 + -3 is -10; -7 - 3 is -4; and 12 + -13 = -1.

Substraction] Is done by changing the Sign of the Subtrahend, and then adding the Quantities; as from —7 take —3, rests—4; from —7 take —3, rests—10; and if from 12 you take —13,

there rests 25, &c.

Multiplication] Is nothing difficult, for you only observe, that if Quantities of like Signs be multiplied, the Sign of the Product is Affirmative or +; but if the Factors have unlike Signs, the Sign of the Product is Negative or -: Thus -7 by -3 is 21, and so +7 by +3; but 7 by -3 is -21, and -12 by 13 is -156, &c. And the same Rule serveth for

Division of Negatives.] As to prove those in Multiplication, 21 ÷ -7 quoteth -3; -21 ÷ -3 quoteth 7; and -156 ÷ 13 = -12. All which you'll find farther illustrated, with variety of Examples, Sect. 3. of Chap. 7. also Sections 2, 3, 4, and 5 of this Chap. X. and the last of my Examples in Converging Series near the and of the Book.

Nome.] Whence Binomial, Trinomial, and Multi- (or Poly-) nomial, i.e. Roots of 2, 3, or more Names; fee those Words.

Numeral Algebra.] When the Work is performed Algebraically

with Figures or Numbers, and not Letters.

Periodical Degrees, or Parodical.] Of the Terms of a Cubical ec Equation, are when the Exponents of the Powers therein rife or fall gradually in an Arithmetical Ratio, as  $u^4 - 59u^3 + 1154u^2 - 8080u$ = 12000, &c. are regular Biquadratics, having all their Terms in a gradual Order.

Permanent Quantities.] In Fluxions such Quantities as are invariable without Motion, or at Rest, and consequently have no Flu-

xions to them.

14

Powers of Quantities.] See that of Numbers, Chap. I. Sect. 1. or Exponents here below; as u or c, &c. are Roots or first Powers, uu or cc are Squares or second Powers, uuu or ccc the Cubes or third Powers.

Power.



Power to raise the Powers of Numbers to that of any other.] As suppose I raise the Root b to the same Power as cccc or  $c^+$ , this is to multiply b in itself ec, to bring it to the fourth Power or Biquadrat: Or suppose  $\sqrt{82}$ , were to be multiplied by 2, here 2 must be raised up to the same Power or Cube with the 82, and it will stand either  $2\sqrt{82}$ , or  $\sqrt{8} \times \sqrt{82} = \sqrt[3]{656}$ ; this will be of Use to observe, when you come to the Doctrine of surd Quantities, Sect. 7. of this Chapter.

Polynomial Roots or Quantities.] Those which consist of above three

Names or Numbers; as u+s+t+n, &c.

Positive Quantities, The same with Affirmative; which are those that are marked with or follow the Sign +, or else such as have no Sign before them.

Quantity.] In Algebra, either that fought for, or those given in a Question, or they are all those Symbols which represent any Number. See Simple, Compound, Surd, and Variable Quantity.

Quadratic Equations] Are such (or reduceable to such) as have the Square of the unknown Quantity in the first Term, and the Root (or that multiplied in some known Quantity) in the second Term, as  $uu + bu + \epsilon = rs$ . See two Sorts, Sect. the 10th of this Chapter.

Rational Quantities.] Either such whose Roots can be extracted accurately; or such as are already the Root of some Quantities, or

which want no Extraction.

Raise the Powers of Number or Quantity.] See Powers.

Radical Signs] Are  $\checkmark$  for the Square Root;  $\checkmark$  for the Cube;  $\checkmark$  for the Biquadrat Root, &c. see Roots and the Powers in the Ar-

ticle preceeding, of Algebraical Characters: And also

Roots of Quantities.] Are either (in Algebra) put actually down (if of Rational Quantities) or if of Surd Quantities the Root is expressed by putting the proper Radical Sign before the Quantity; thus in the first Case, the Square Root of bb is b, of cc is c, &c. the Cube Root of uuu is u, &c. and in the second Case, the Square Root of u+s is  $\sqrt{u+s}$ ; the Cube Root of u+s is  $\sqrt[3]{u+s}$ ; the Biquadrat Root of it is  $\sqrt[3]{u+s}$ , and the like of any other Surd Quantity. See Binomial, Trinomal, Polynomial, and Residual. Note, That the Surd  $c\sqrt[3]{d}$ , ec, is c multiplied in the Square Root of d, ec.

Resolution



Resolution of (or to solve) Equations.] After an Algebraist has done with the composing an Equation, as under that Word, he resolves it by several Rules requisite thereto, as by Multiplication, Division, Addition, Substraction, Evolution, &cc. so the Equation composed under the word Composing as above, which is  $\frac{7u}{3} = b - \frac{u}{2}$ ; being resolved by multiplying by the Denominators of the Fraction, and adding 3 u to each Part of the Equation, dividing by 14 and 3 (or 17) gives the Solution of the Question, or the Canon  $u = \frac{6b}{17}$ . Now b we find is = 1000 in the Question, so u the unknown Quantity is easily found by dividing 6000 by 17. And the Equation under that Word, viz. u + c - d = rs + tu being resolved, is  $u = \frac{d-c+rs}{t-1}$ . Particular Rules for resolving Equations, see Sect. the 9th of this Chapter; where it appears, that an Equation is resolved when the unknown Quantity alone possessite one Side of the Equation as here u doth.

Residual Roots or Quantities.] Such as have a Negative Sign be-

tween them, as be-d, &c. or 40-10=30 the Residue.

Simple Quantities.] In a strict Sense are those single Letters which represent the several Numbers in a Problem, given or required: Or some take them in a larger Sense, for such Quantities as are not connected by + or - to any other, though they be multiplied in other; of the first sort are b, or c, or d, &c. of the second are 4b, bc, drs, &c.

Signs,] See the Table of Characters, Article IV. of this Section;

also Affirmative, Negative, and Radical.

Simple Equations. Such as are free from the Involution or Powers

of the unknown Number or Quantity.

Simple Quadratic Equations.] Such as have (or are reduceable to have) the Square of the unknown Number or Quantity in only one of the Members or Terms, as uu = pq, that is,  $u = \sqrt{pq}$ , or uuu + ub + udc, which by the Seclution of u in each, is  $u = \sqrt{b + dc}$ .

Series.] A Rank, Row, or Column of Numbers or Quantities

orderly placed. See Progression and Converging Series.

Species.] In Algebra, are the Letters which represent the Numbers in a Question, they are also called Symbols; so specious Arithmetic is not Numeral, but Literal Algebra.

Substitution.]

Substitution] Is the putting one Symbol or Quantity into the Progress of Algebraical Operations, in the room of some other: As in the Solution of a Quadratic Equation, by changing the second Term, and as in Fluxions.

Surd Quantities.] Such as cannot have the Root expressed, and are therefore marked with their proper Radical Sign, which Term

see above, and also Roots of Quantities.

Terms] Of an Equation, are commonly said to be the several Members thereof; (see that Word above) but if in a Quadratic, as uu - ub + ud = k - c, the Terms are called but three Terms, as uu the first; ub + ud (because the known Quantities are multiplied in the same power of the unknown) the second; and k + c the third Term.

Transposition] Is the changing the Places of the Members of an Equation, in order to make the unknown Quantities to possess one Side, and the known the other Side of the Equation; whereby the Knowledge is gained of what Value the Number sought in a Question, really is, by finding what it is equal to. See Sest. 9. of this Chapter, for Rules to perform the same.

Trinomial Roots or Quantities] Are such as have three Nomes or

Names, as u + rs + tu, &cc.

Vanish, or be Wanting.] A Quantity is so, when by Reduction or Contraction it is expunged or thrown out of an Equation: Or as in a Cubic, &c. When the highest and lowest Powers of the unknown Quantity are only expressed, as  $x^3 + x$ : here  $x^2$  is wanting.

Variable Quantities] Are such as are supposed in continual Motion, whereby they generate Lines, Superficies, and Solids, the

same as Flowing Quantities.

Unciæ] Are the Numbers prefixed to the Quantities, which are the Powers of some Binomial Roots; as in the Square of a+b=aa+2ab+bb, the Unciæ is 1, 2, 1, for aa and bb are 1 aa and 1 bb; so in the Cube of a+b, viz.  $a^3+3aab+3abb+bbb$ , the Unciæ is 1, 3, 3, 1, Cc. for according to Sir Isaac Newton's Rule, the Unciæ of any Powers are sound (as suppose the third Power or

• Cube) by this Rule;  $1 \times \frac{3-0}{1} (3 \times \frac{3-1}{2} (3 \times \frac{3-2}{3})(1)$ , which in Words is read thus: One multiplied in 3 the Power, less 0, divided by 1 is 3 = the second of the *Unciæ*; 3, the second, multiplied in 3 the Power, less 1, divided by 2, gives 3 = the third of the *Unciæ*; and 3, the third multiplied in the Power 3, less 2, divided by 3, gives 1 = the fourth of the *Unciæ*.

And

And by the same Rule, the *Unciæ* of the Sursolid is 1, 5, 10, 10, 5, 1, for every Quote and the first 1, are the *Unciæ* arising.

This 
$$(1 \times \frac{5-0}{1}) (5 \times \frac{5-1}{2}) (10 \times \frac{5-2}{3}) (10 \times \frac{5-3}{4}) (5 \times \frac{5-4}{5}) (1 ; fee also Sett. 6.)$$

Vinculum] Is a Compound Surd Quantity multiplied by a Fluxion; in which this is a Term.

Unfold.] To unfold an Algebraick Canon, expressed Literally, is to compare the known Quantities with the Numbers which they represent, and working with them, as the Canon directs, we discover the Value of the unknown Number, or that sought.

Wanting.] See Vanish.

Having in this Section laid a plain and copious Foundation; I shall be something briefer in the subsequent Rules, but no farther than is consistent with evident Demonstration.

## SECT. II. Addition of Algebra.

Note 
$$b = 70$$

Literal  $9b = 630$  Numeral
 $10b = 700$ 

Sum  $20b = 1400$  Sum or Proof.

Note  $c = 35$ 

Literal  $-12c = -420$  Numeral
 $-7c = -245$ 
 $20c = 700$ 

Sum  $= c = 35$  Sum or Proof.

Compound Quantities.

Note,  $d = 4$ ;  $g = 16$ ;  $b = 6$ .

The General Rule for Addition.

That the Quantities of like Signs are to be added together, and where there are different Signs, as in the second and third Examples, you must substract the Sum under one Sign from that under another, and put the Difference down marked with the same Sign as that Sum, wherein was the Excess: As I deduct 190 from 200 (in the second Example) and the Difference is c for the Sum required.

And in the third Example, (Col. 1.) the Excess lies in the Negative Sign, for taking 4ddb from — 5 ddb, the Remainer is — ddb (or — 1 ddb.)

And

And in the second Series of Quantities in that third Example, the Signs making the Quantities to balance; I therefore put (0)

down, all which is proved by the respective Numbers.

And whereas it may be thought strange, that a Sum Total should be ddb, or 96 less than nothing; it is no more than what falls out in many Cases: For if a Merchant draws on his Factor 480 l. (as the Number is in Example 3.) and that Factor has but 288 l. and 96 l. = viz. 384 l. to pay the Bills in his Hands; 'tis plain, when the Factor has paid what is drawn on him, the Merchant will have 96 l. less than 0 in the Factor's Hands, &c. And this is also plain from the Reason given for adding Affirmative and Negative Indices of Logarithms, Chap. IV. foregoing; which they who have considered, the Addition and Substraction of Algebra will to them appear evident and reasonable.

And when Numbers are to be added that have different Quantities annexed, there is nothing to do but to put them down in one Line with their Signs between them; as to add 5ab to 3ad, is = 5ab+3ad; and ubc to rst is -rst+ubc, &c. And the Quantities in the foregoing Examples are truly added by the same way, being afterward contracted as under the word Contraction in

the last Section foregoing.

# SECT. III. Substraction of Algebra.

The General Rule, &c. see after the Examples.

Note, 
$$b=70$$
 Example 1. From  $c=35$ 

Literal = Numeral Take 11  $b=770$ 
Refts  $9b=630$  Results 1. Refts  $20c=700$ 

Note (as in Addition of Compound Quantities) d=4; g=16, and b=6.

From 
$$- ddb = -96$$
 Example 3.  
Take  $-5ddb-2gbb=-480-1152$   
Refts  $4ddb+2gbb=-384+1152$ 

And as a fourth Example; if from 4ddb+gbb+bb, I take bb+gg-bb-d. The Remainer will frand thus:

$$4ddb+gbb+bb$$
;  $-bb-gg+bb+d$   
Ccc For

For Proof of which. By the last Section it appears that 4 ddb = 384. From this Sum 5860 taking the Sum of the four Quantities in the Subtrahend (added according to the Rules of Addition,) which is the Rules of Addition,) which is a = bb = 420 as a = 4 by the Margin a = bb = 36 and fo it will be by this Rule.

## The General Rule for Substraction, i.e.

Change the Sign of the Quantities to be substracted, and then proceed as in Addition.

So in the first Example, 20b-11b=9b, for 1400-770=630; which is 9b, or 9 times 70.

And in the second Example, c+19c=20c, or 35+665=700;

which is 20 times 35.

In the third Example; I change the Sign of 2gbb, (or 1152), and add the fame to (o), makes +2gbb = +1152; and -5ddb, or -480 having the Sign changed and added to -ddb, and -96 gives 4ddb, or 384 = the Remainer as you see. And

In the fourth Example; If the four Signs of the Subtrahend be

changed and made as in the Remainer above, that Remainer will prove true and agreeable to the Deduction foregoing, althoit be done differently and according to the General Rule for Substraction of Algebraical Integers, as by the Margin appears, where 5860—636=5224.

Note, These Examples prove the Truth of those in Addition.

$$4ddb = 384$$

$$gbb = 576$$

$$bb = 4900$$
Sum = 5860

And -bb = -420
$$-gg = -256$$

$$+bb = +36$$

$$+d = +4$$
Refts = 5224

# The Reason of the General Rule for Substruction.

1st, Either the Sign of the Subtrahend is + or -, if + as to take 2 from 6, or + 6 to take 2 from 6 is (speaking Algebraically) to say 6-2 (or 6 less 2) whereby the Sign of the 2 is of Course changed,

2dly, And if the Sign of 2 (ec) as given to be substracted were (—), then by what is said of Substraction of Indices of Logarithms, as well as from the Reason of the Thing itself; if I take (0) from 6, there will remain 6; but if — 2 (2 less than 0) from 6, tis the same as to add 2 to 6, so there must remain 8; for by how much the less any Number is that is deducted, by so much the greater is the Remainer; and by how much soever the Number substracted is less than 0, by so much does it make the Remainer greater than the Sum substracted from.

SECT. IV. Multiplication in Algebra.

Note, u=25; b=12; c=20; d=4; g=5; b=10.

A General Rule, see after the Examples.

| · · · · · · · · · · · · · · · · · · · | To multiply simple Quantum $u = 25$<br>by $b = 12$                             | Multipl                            | ple.<br>y $d = 4$<br>y $g = 5$ | Case 2.       |
|---------------------------------------|--------------------------------------------------------------------------------|------------------------------------|--------------------------------|---------------|
|                                       | Product $bu = 300$                                                             | Product                            | dg = 20                        |               |
|                                       | $\begin{array}{ccc} \text{ltiply} - c = -20 \\ \text{by} & b = 10 \end{array}$ | Multiply u by — c                  | = 25<br>= - 20                 | Case 4.       |
| Proc                                  | $\operatorname{luct} - cb = -200$                                              | Product—cu                         | = 500                          |               |
| Prop. 2. 7<br>Case 1.                 | To multiply compound<br>Multiply 2 bu-<br>by                                   | Quantities by $+d = 500 + c = 600$ | Simple.                        | Case 1.       |
| •                                     | Product = $2cbu$                                                               | -cd=10000+                         | 80=1008                        | lo            |
| Case 2.                               | Multiply — ed                                                                  | -b = -80 $-c =$                    | 10<br>20                       | Case 2.       |
|                                       | Product + ccd-                                                                 | +cb=+ 160                          | 0 + 200                        | =1800         |
| Case 3.                               | Multiply 2bu                                                                   | +d= 500<br>-c=                     | + 4<br>- 20                    | Cafe 3.       |
|                                       | Product -2 chu-                                                                | -cd=-10000                         | <del>- 80=</del>               | <u>_10080</u> |
|                                       | Co                                                                             | C 2                                | . uz                           | Prop.         |

Prop. 3. To multiply compound Quantities by Compound.

Case 1. Multiply 
$$bb+g=100+5=105$$
  
by  $gg+b=25+10=35$   
 $ggbb+ggg$   
 $bb+ggg$   
 $ggbb+ggg$   
 $ggbb+ggg$   
 $ggbb+ggg$   
 $ggbb+gb$ 

Product ggbb+ggg+bbb+gb=3675 Product.

Case 2. Multiply 
$$-bb-g=-100-5=-105$$
  
by  $-gg-b=-25-10=-35$   
 $ggbb+ggg$   $525$   
 $+bbb+gb$   $315$ 

Product ggbb+ggg+bbb+gb=3675 Product.

Case 3. Multiply 
$$bb+g = 100 + 5 = 105$$
  
 $by-gg-b = -25 - 10 = -35$ .  
 $-ggbb-ggg -525$   
 $-bbb-gb -315$ 

Product = -ggbb-ggg-bbb-gb=-3675 Product.

To multiply Cossick Powers, see at the end of Division of Algebra.

The General Rule for Multiplication.

If the Signs of both the Factors are like, then the Sign of the Product is Affirmative: But if the Signs of the Factors are different, the Sign of the Product is Negative.

This Rule will appear to be observed in the nine Cases of Multiplication as above, which I have demonstrated by Numbers, which.

agree to the Quantities of the Factors and Products: For Instance, the Product of the first Case of *Prop. 3*. is as in the Margin, where the Value of the Product is equal to the Rectangle of those Numbers 105 and 35 (the Values of the Factors) being multiplied together.

Quantities. Values. ggbb = 2500 ggg = 125 bbb = 1000 gb = 50Sum = 3675

The Reason of the General Rule for Multiplication.

Is, Multiplication being nothing but the Work of many Additions; it follows that -ab being added to -ab, is -2ab, which is the same as multiplying -ab by 2; and so -gb - 2gb - 3gb added, is =-6gb, which is the same as  $-gb \times 6$ ; which shews, that the Negative Quantity -gb by the Affirmative 6, must give the Negative -6gb, and the like Reason holds for any other Negative by a positive Quantity.

2dly, And as in Logic, two Negatives make an Affirmative; so in Algebra, one Negative Number or Quantity multiplied by another Negative, produceth an Affirmative: For the Sign — being directly contrary to —, must make a Product of a direct contrary Nature when the Multiplier is —, then (as above) when it is —; as substracting a Negative, is adding really so much as we seem to substract, as — 2 from 4 is 6.

## SECT. V. Division of Algebra.

I shall make use of the same Letters and their Values as in the last Section, and the Examples shall be such as to prove both themselves and those in the last Section.

Prop. 1. To divide a simple Quantity by a Simple.

Cafe 1. Divide 
$$bu = 300$$
 |  $b$  |  $bu$  ( $-u = Quote = 25$ ; for  $-12$ )  $300$  ( $-25 = -40$  |  $bu$  |  $-b = -12$  |  $bu$  |  $-b$  |  $bu$  |  $-b$  |  $bu$  |  $-b$  |  $bu$  |  $-b$  |  $bu$  |  $-b$  |  $bu$  |  $-b$  |  $bu$  |  $-b$  |  $bu$  |  $-b$  |  $bu$  |  $-b$  |  $-b$  |  $-b$  |  $-b$  |  $-b$  |  $-b$  |  $-b$  |  $-b$  |  $-b$  |  $-b$  |  $-b$  |  $-b$  |  $-b$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-c$  |  $-$ 

Prop.

Prop. 2. To divide a Compound be a simple Quantity. Quote. Case 1. Divide 2chu + cd = 10000 + 80(c) 2chu + cd(2hu + d20)10080(504)2 c b u =2bu+dby 20 -cd c d o rests. Quote. Case 2. Divide ccd + cb = 1600 + 200 - c)ccd + cb(-cd-b - 20)1800(by ·cb Quote. Case 3. -2cbu-cd(2bu-d)Divide—2cbu-cd=-10000-80-20)--10080(504

Prop. 3. To divide compound Quantities by Compound. Case 1. Divide ggbb+ggg+bbb+gb=3675 by gg+b=35Quote. Quote. gg+b)gghb+ggg+bbb+gb(bb+g35)3675 (105=bb+g ggbb+bbb Deduct ggg-bbb+bbb+gb rest of the (Dividend.) Or = ggg + gb, if Contracted. ggg+gb Deduct. o rests.

Case 2. Divide ggbb+ggg+bbb+gb=3675**-105)3675(-**-bb-g)ggbb+ggg+bbb+gb(-gg-b)=Quote. ggbb+ggg *<del>|-</del>bbb-*Case

Case 3. Divide 
$$-gghh - ggg - hhh - gh$$
by
$$-gg - h$$

$$-gg - h$$

$$-gghh - ggg - hhh - gh (hh + g = the)$$
Quote.
$$-gghh - hhh$$

$$-ggg + hhh - hhh - gh = the rest of$$
(the Dividend.
$$Or - ggg - gh \text{ if Contracted.}$$

$$-ggg - gh$$
o rests.

General Rule as to the Signs.

It is easily seen by the 9 Cases above, that if you divide Quantities by those having like Signs with those divided, then the Signs of those put in the Quote are + or Affirmative; but if the Signs of the Dividend and Divisor are unlike, then the Sign of those Quantities put in the Quote are Negative.

## General Rule as to the Quantities.

Proceed in the Method of common Division, putting those Quantities in the Quote which are not in the Divisor, as in the last Case; I ask how often —gg in —ggbb? the Answer therefore is bb, which I put in the Quote, and multiplying the Divisor by bb, is =—ggbb—bbb (in the last Case above), so the Remainer is —ggg +bbb (because the Sign must be changed of bbb, to deduct it from —ggg); then because here is +bbb—bbb, they destroy one another, (as is shewn under the Word Contraction, in Sect. 1. of this Chap.) so there rests but —ggg—gb: and I find I can have —gg of the Divisor in —ggg of the Dividual +g, by which multiplying the Divisor—gg—b, produceth—ggg—gb, which deducted from the last compound Quantity contracted, seaves 0, or nothing for a Remainer.

But tho' this is pretty enough, and ferves to shew the Coherence of Division in Algebra, with that in other kinds of Arithmetic; yet it is far from falling in use, so much as where the Divisor in Species will not divide any part of the Divisor of especially where it wont divide it all, but some part; and the rest as a Fraction of the Divisor being put under the remaining part of the Divisor.

The first Kind of more common Cases in Division are these.

To divide g b by r, quoteth 
$$\frac{gb}{r}$$
; fo  $pr+st-m$  by c, is  $\frac{pr+st-m}{c}$ 

and also cd-c+m by pr+s-tu, is  $\frac{cd-c+m}{pr+s-tu}$ , &c. which are done by only putting the Dividend over the Divisor.

The second kind of more common Cases in Division are.

Where the Divisor is found in some Quantities of the Dividend but not in all: As su + stu + g being divided by s + st, will stand as in the Margin.

So also to divide msu+pru+gb-rs by ms+pr.

$$s-(-st)$$
  $su+stu+gb$   $(u-(-st)) = the Quote$ 

$$\frac{su+stu}{-gb} = the Quote$$

ms+pr) msu+pru+gb-rs ( $u+\frac{gb-rs}{ms+pr}$ msu+pru = the Quote.

The Truth of these two Cases is easily demonstrated, by supposing the Species to represent any Numbers. But because I shall a little further have Occasion to shew how to solve Equations by Division, I shall refer the Numeral Work thereto.

A learned Friend put me in mind of giving this for my last Example in Division.

ample in Droylan.

$$a^7 + b^7$$
 ( $a^6 - a^5b + a^4b^2 - a^3b^3 + a^2b^4 - ab^5 + b^6 = \text{the Quote,}$ 
 $a^7 + a^6b$  (prov'd thus.

 $a^7 - a^6b + a^5b^2 - a^4b^3 + a^3b^2 - a^2b^5 + ab^6$ 
 $-a^6b - a^5b^2$   $+ a^6b - a^5b^2 + a^4b^3 - a^3b^4 + a^2b^5 - ab^6 + b^7$ 
 $+ a^5b^2 + b^7$  Sum =  $a^7 + b$  = the Prod. contracted.

 $-a^4b^3 + b^7$  = the Dividend.

 $-a^4b^3 + a^3b^4 - a^3b^5$  = the Dividend.

 $-a^2b^5 + a^5b^5$   $-a^2b^5 + a^5b^7$   $-a^2b^5 + ab^6$   $-a^2b^5 - ab^6$   $-a^2b^5 - ab^6$ 

And

And Note, That the Differences of any two like Powers of two Quantities, will always be divided by the Difference of the Quantities without any Remainer, as  $a^{+}-b^{+}$ : a-b,= $a^{3}+a^{2}b+ab^{2}+b^{3}$ .

2. When the Exponents of the Powers are odd Numbers, the Sum of the Powers can be divided by the Sum of the Quantities without Remainer, as  $a^3 + b^3 \div a + b = a^2 - ab + bb$ . And as in the above Example at large.

3. Also when the Powers are even, the Difference of the Powers can be divided by the Sum of the Quantities; as  $a^5 - b^6 \div a + b$ ,

 $=a^{5}-a^{4}b-a^{3}b^{2}-a^{2}b^{3}+ab^{4}-b^{7}$ .

SECT. VI. Of raising the Powers of Numbers and Quantities and of Extracting the Roots.

- 1. By the following Table you have the several Ways of expressing the Powers with their Exponents, both of Numbers and Species; what is said of the Powers of 9 being expressed by their Exponents, being to be taken also in the other Roots 8, 7, 6, 5, 4, 3, 2, and 1, for as 9<sup>1°</sup> is to the 10<sup>th</sup> Power of 9, which by the Table is 3486784401: So is 8<sup>1°</sup> = the 10<sup>th</sup> Power of 8, which you see is 1073741824, which are the two various Ways of expressing the Powers of Numbers.
- 2. For the Powers of Quantities, whether Simple as those of u, or compounded by Multiplication as those of ub, viz. uu or  $u^2$ , and uuu or  $u^3$ , &c. for the second and third Powers of u, or of ub, whose Square is uubb, or better  $u^2b^2$ , the Cube  $= u^3b^3$ ; you have the best way of Notation in this Table.

Ddd

ATABLE

386 To raise the Powers of Numbers, &c. CHAP. X.

A TABLE shewing the several Ways of expressing the Powers, both of Numbers and Species.

|                                               | Power.                                        | Power.                                                                 | Power.                                              | Power.                                             | Power.                                            | Power.                                                  | Power.                                                | Power.                                                    | Power.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | toth Power.                                 |
|-----------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|---------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Exponents.                                    | 世                                             | , p                                                                    | 34                                                  | tt<br>th                                           | 5th                                               | 6th                                                     | 7th                                                   | 8th                                                       | 9th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | roth                                        |
| Or more<br>brief.                             | Root or 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | 1 4.96 256 964 1 960 256 964 1 902 202 202 202 202 202 202 202 202 202 | Cube of 125 216 343 512 729 33 103                  | 1681<br>2566<br>6255<br>1296<br>4096<br>6561<br>94 | 1 lo pijouns 1 32 243 1024 31 25 7776 16887 82768 | 64<br>729<br>4096<br>15625<br>46656<br>117649<br>262144 | 2197<br>16384<br>78125<br>279936<br>823543<br>2097152 | 6561<br>65536<br>390625<br>1679616<br>5764801<br>16777216 | I Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Coped Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube of Cube o | - Squared Surfolid or 1 1024 59649 10765625 |
| In Species<br>thus:                           | 3 "                                           | uu                                                                     | 222                                                 | 2222                                               |                                                   |                                                         |                                                       | หลกนกสกุก                                                 | สหสสสสสสส                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <i>uuun kuu</i>                             |
| Or rather.  If compound thus: Or better thus: |                                               |                                                                        | u <sup>3</sup> uuubbb u <sup>3</sup> b <sup>3</sup> | 24<br>&c.<br>24 64                                 | u <sup>5</sup> b <sup>5</sup>                     | 46 66                                                   | $u^7$ $u^7 b^7$ $b^7 c^7 d^7$                         | 48 48 48                                                  | u9<br>.,<br>u9 h9<br>b9 c9 d9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | uro gro                                     |

# And the Notation of Powers with Fractional Exponents is thus:

| Roots.            | Squares           | Cubes.             | Biqua-<br>drat.    | Surfo-<br>lid.     |          | Second<br>Surfolid. |                    | Cubed<br>Cube      | Squared<br>Surfolid.     |
|-------------------|-------------------|--------------------|--------------------|--------------------|----------|---------------------|--------------------|--------------------|--------------------------|
| $a^{\frac{1}{2}}$ | a                 | $a^{1\frac{1}{2}}$ | $a^2$              | $a^{2\frac{1}{2}}$ | $a^3$    | $a^{3\frac{1}{2}}$  | a <sup>4</sup>     | $a^{4\frac{1}{2}}$ | •                        |
| $a^{\frac{1}{3}}$ | $a^{\frac{2}{3}}$ | [                  | $a^{1\frac{1}{3}}$ |                    |          | $a^{2\frac{1}{3}}$  | $a^{2\frac{2}{3}}$ |                    | $a^{3\frac{1}{3}}$       |
| $a^{\frac{1}{4}}$ | $a^{\frac{1}{2}}$ | a <sup>‡</sup>     |                    |                    |          |                     |                    | $a^{2\frac{1}{4}}$ | $a^{2\frac{1}{2}}$ , &c. |
|                   |                   | ł                  |                    |                    | h Litera | l Expone            | nts, thus:         |                    |                          |
| m                 | 2m                | 3m                 | 4m                 | <u>5m</u>          | 6m       | $\frac{7m}{n}$      | 8m                 | 9m                 | 10M                      |
| $a^{-}$           | a ",              | a ",               | $a^n$ ,            | a*,                | a*,      | a <sup>n</sup> ,    | a",                | a",                | $a^{*}, \propto c$       |

Some

#### Some Observations upon this Table.

1. Any two Exponents added, give that of the Product of the respective Powers: As where the Root is 3, and the Exponents 4 and 5. I say, the Sum of 4 and 5=9, which is equal to the Exponent of the Rectangle of the respective Powers  $243 \times 81 = 19683$ .

2. Double any Exponent, gives the Exponent of the Square of the respective Power, as in the 4th Power of 5, which is 625. I say, double the Exponent is 8, which is the Exponent of the Rect-

angle of 625 x 625, viz. of 390625.

3. I observe that 3, 4, ec times any Exponent, gives the Exponent of the 3d, 4th, &c. Powers: As three times the Exponent 2 is 6, so the Cube of the Powers 9, 16, ec under the Exponent 2, gives 729, 4096, ec the respective Powers under the Exponent 6.

4. If an 8th Power be to be divided by a 2d Power, the Exponent 2 taken from the Exponent 8, leaves the Exponent 6; so any of the Numbers under the Exponent 8, (as suppose 256,) divided by any of those respectively under the Exponent 2, (as for Instance 4,) the Quote will be respectively the Powers under the

Exponent 6, (in this Example 64.)

5. The Cube ec Root of any Power, is the Power respectively of the Exponent of that Power given, divided by 3ec; so the Cube Root of 262144 (its Exponent being 9, a third of which is 3,) is 64, found under the Exponent 3, and against the Power given. So likewise the Sursolid Root of 1024, (or any of the Numbers under the Exponent 10,) is 4, or the respective Numbers under the Exponent 2, the Quote of 10 divided by 5; for 4'=1024 the Proof. So much for raising the Powers of Quantities compounded by Multiplication; I proceed to shew,

Ddd 2

III. How

III. How to raise the Powers of Quantities compounded by Addition or Substraction, i. e. from a Binomial or Residual Root, and to extract

$$u+b=$$
 the Root or 1st Power.  
 $u+b=$ 

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b+bbu=$$

$$u+b+bb=$$

$$u^3+3buu+3bbu+bbb=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

$$u+b=$$

 $+bu^3+3bbuu+3ub^3+b^4$ 

 $u^4 + 4bu^3 + 6b^2u^2 + 4ub^3 + b^4 =$  the Biquadrat or 4th Power of u+b.

$$\frac{u^{5} + 4bu^{4} + 6b^{2}u^{3} + 4u^{2}b^{3} + ub^{4}}{+ bu^{4} + 4b^{2}u^{3} + 6u^{2}b^{3} + 4ub^{4} + b^{5}}$$

 $u^3+5bu^4+10b^2u^3+10u^2b^3+5ub^4+b^5$  = the Surfolid or 5th Power of (u+b,

$$u^{6} + 6bu^{5} + 15b^{2}u^{4} + 20u^{3}b^{3} + 15u^{2}b^{4} + 6ub^{5} + b^{6} = \text{the Squared Cube}$$
(of  $u + b$ .

$$\frac{u^{7}+6bu^{6}-15b^{2}u^{5}+20u^{4}b^{3}+15u^{3}b^{4}+6u^{2}b^{5}+ub^{6}}{+bu^{6}+6b^{2}u^{5}+15u^{4}b^{3}+20u^{3}b^{4}+15u^{2}b^{5}+6ub^{6}+b^{7}}$$

 $u^7 + 7bu^6 + 21b^2u^5 + 35u^4b^3 + 35u^3b^4 + 21u^2b^5 + 7ub^6 + b^7 =$ the 2d (Surfolid of u+b.  $u^{8} + 8bu^{7} + 28b^{2}u^{6} + 56u^{5}b^{3} + 70u^{4}b^{4} + 56u^{3}b^{5} + 28u^{2}b^{6} + 8ub^{7} + b^{8}$ 

(=the 8th Power.

 $u^9 + 9bu^8 + 36b^2u^7 + 84u^6b^3 + 126u^5b^4 + 126u^4b^5 + 84u^3b^6 + 36u^2b^7 +$  $(9ub^8+b^9)$  = the 9th Power.

 $\begin{array}{c} \mathbf{z}^{1\circ} + 10bu^9 + 45b^2u^8 + 120u^7b^3 + 210u^6b^4 + 252u^7b^5 + 210u^4b^6 + \\ (120u^3b^7 + 45u^2b^8 + 10ub^9 + b^{1\circ} = \text{the 10 Power of } u + b. \end{array}$ Observations

## Observations from this last Table of Powers.

1. That the Sum of the Square of the Parts of any Number or Quantity more the double Rectangle is = the Square of the whole,

as per Euclid.

2. That the foregoing Example of Powers may serve as a Table for any one to know any Power of any other Binomial Roots by, though of other Letters, mutatis mutandis; the Unciæ and Powers being the same as in this.

3. That the 10th Power is easily produced from the 9th or any subsequent Power from the preceding, by first finding the Unciæ as per the Rules foregoing, or as under the 5th Head following, and considering the Course of the Powers that precede that which you would find: By which Method I have produced the 8th, 9th, and 10th Powers without any Multiplication.

4. And that the Reader may not want a proper Way of expreffing in Words any Power, I shall give an Example how the 10th

Power is properly read; which is thus:

The squared Sursolid of u, more 10 times the Rectangle of b in the cubed Cube of u; more 45 times the Square of b in the squared Biquadrat of u; more 120 times the 2d Sursolid of u in the Cube of b; more 210 times the squared Cube of u in the Biquadrat of b; more 252 times the Sursolid of u in the Sursolid of b; more 210 times the Biquadrat of u in the squared Cube of u; more 120 times the Cube of u in the 2d Sursolid of u; more 45 times the Square of u in the squared Biquadrat of u; more 10 times u in the cubed Cube of u; more the squared Sursolid of u.

5. A very brief Way of finding the Unciæ of any Power by that of the next preceding Power is this; (which I have not seen given before.)

## A second Way of finding the Unciæ.

Add the Unciæ of the 1st and 2d Members (for Example of the 9th Power to find the Unciæ of the 10th) together they make 10, which is that of the 2d Member of the 10th Power, 36 in the 3d, and 9 in the 2d Members of the 9th Power is the 3d Member in the 10th or 45; 36 and 84 in the 3d and 4th Members is 120 belonging to the 4th Member of the 10th Power, &c. of the rest.

And the Powers themselves, and their proper Exponents are found by the like Method, observing, That in which of the 2 Powers soever added.

added, is the greatest Exponent, that Exponent must be put in the Sum.

Thus to make the 10th Power by these Rules from the 9th. The Unciæ of the 1st and 2d Members is 10 = the 2d in the 10th; and the Sum of the Powers is  $bu^9$ ; (because 9 is found the highest Exponent of u and b is only the 1st Power.) So  $10bu^9$  is the 2d Member of the 10th Power. The 3d Member of the 10th is the 2d and 3d Members of the 9th,  $\mathcal{C}c$ . done as in that last mentioned.

And this will be made plain by a Numeral Example of finding the Unciæ to the 15th Power of a Binomial, by an easy Addition of only two Numbers; which Unciæ, with those of all the intermediate, are found much speedier than that of the 15th Power alone can be by the Method before-mentioned; which requires Substraction, Multiplication, and Division, and those pretty tedious ones before those of the 15th Power can be exhibited by this Method.

# A new Table of the Unciæ to the 15th Power of a Binomial Root, made by Addition only.

| 5add  | <b>∑</b> add | PH PH    |      |            |      | •          |      |      |           |          |           |     |              |          |                                 |
|-------|--------------|----------|------|------------|------|------------|------|------|-----------|----------|-----------|-----|--------------|----------|---------------------------------|
| , , , | ı            | ٮڰؖ      | , स् |            |      |            |      |      |           |          |           |     |              |          | :                               |
| ī     | 2            | 1        | ىتە  | ን 필        |      |            |      |      |           |          |           |     | ٠.           | • • •    | •                               |
| I     | 3            | . 3      | 1    | مثہ        | ъ    |            |      |      |           |          | •         |     |              |          | •                               |
| 1     | 4            | 6        | 4    | I          | ~~~  | add        | ~    |      |           |          |           |     | •            | •        | •                               |
| I     | 5<br>6       | 10       | 10   | 5          | 1    | ميم        | adc  | -11  |           |          |           |     | •            |          | -                               |
| 1     |              | 15       | 20   | 15         | 6    | t          | ~~   | åd   | 7         |          |           |     |              |          |                                 |
| 1     | 7            | 21       | 35   | 35         | 21   | 7 .        | 1    | ~    | pr.       | P        |           |     |              |          |                                 |
| I     | 8            | 28       | 56   | 70         | 56   | 28         | 8    | ī    | ~~        | 2        | ~         |     |              |          |                                 |
| 1     | 9            | 36       | 84   | 126        |      | 84         | 36   | 9    | I         | ~~       | , ad      | 7   |              |          |                                 |
| I     | 11           | 45       |      | 210<br>330 | 252  | 210<br>462 | 120  | 45   | 10        | .I       | <u>~~</u> | a d | <u> </u>     |          |                                 |
| 1     | 12           | 55<br>66 |      |            |      | 924        | 330  | 165  | 55<br>220 | 11<br>66 | 12        | ,   | , ````<br>~~ | <b>T</b> |                                 |
| i     | 13           | 78       |      |            | 1287 | 1716       | 1716 | 495  | 715       | 286      | 78        | 13  | ,            | ؞؞ٞ      | 1                               |
| 1     | 14           | 91       |      | 1001       | 2002 | 3003       | 3432 | 3003 | 2002      | 1001     | 364       | 91  | 14           | 1        | = the Unciz of                  |
| . 1   | 15           | 105      | 455  | 1365       | 3003 | 5005       | 6435 | 6435 | 5005      | 3003     | 1365      | 455 | 105          | 15       | the 14 Power.  1 = the Unciz of |
|       |              | . 14     | ~ -  |            |      | _          |      |      |           |          |           |     |              |          | the 15 Power.                   |

This Method, to me, is intirely New, and my own Contrivance:
But see a Third Way a little farther.

6. It is observable, that the Unciæ encrease till you come to the middle, and then decrease; there being the same Unciæ to the right hand of the highest, as towards the left; so that when you

A Third Way to find the Uncia. SECT. VI.

you have found half the Unciæ, you have all: Observing farther, That there are two highest Unciæ in the middle of the odd Powers,

as the 3d, 5th, 7th, &c. Powers.

And that the Exponents of several Members after you come to the highest, do change, as in the 10th Power in the former Table above; the Member toward the left hand of the highest is 210 u6 b4, but toward the right of the highest, the Power is 210  $u^+b^0$ , which is the same, only the Exponent's changed: So the 2d Member towards the left hand is  $120u^7b^3$ ; but it is  $120u^3b^7$ . The  $3d = 45 u^8 b^2$ ; but 'tis  $45 u^2 b^8$ . toward the right. The 4th =  $10u^9b$ ; but 'tis  $10ub^9$ , &c.

7. You may see that four of the Unciæ, viz. the two first and two last are always known in all Powers, being one; and the Exponent of the Power. And by these Rules the Unciæ, the Powers, and Exponents of any Binomial Root may be found with much less Trouble than the common Way, or any I have seen before.

8. But the Unciæ of any Term, or Member of any of the Powers in the Table above, may be found without any of the previous Unciæ of Powers or their Terms, by eafy Operations in Multiplication and Division, as by these 6 Examples.

A third Way of finding the Unciæ.

| Term or Member. | Power  | Factors.                     | Products.                            | Quote or Un-<br>ciæ required. |
|-----------------|--------|------------------------------|--------------------------------------|-------------------------------|
| 4 of t          | he 4 { | 1,2,3 = 4,3,2 =              | 6 the Divisor<br>24 the Dividend     | }= 4                          |
| 4               | 5 {    | 1,2,3 =<br>5,4,3 =           | 6 the Divisor 60 the Dividend        | e 10                          |
| <b>5</b>        | 10 {   | 1,2,3,4 =                    | 24 the Divisor<br>5040 the Dividend  | = 210                         |
| 7               | 10 {   | 1,2,3,4,5,6 = 10,9,8,7,6,5 = | 720 the Dividend                     | = 210                         |
| <b>5</b> .      | 15     | 1,2,3,4 = 15,14,13,12 =      | 24 the Divisor<br>32760 the Dividend | = 1365                        |
| 4               | 16 {   | 1,2,3 =<br>16,15,14 =        | 6 the Divisor<br>3360 the Dividend   | = 560                         |

Here it may easily be seen that I tell the Figures from one to within one of the Term given, and multiply them together for a Divisor.

And

```
The Square, &c. Numbers by the Canon. CHAP. X.
  And telling as many from the Power given backward; I multi-
ply them one in another for a Dividend; whence the Unciæ of any
Term of any Power arifeth by Division.
  For suppose p = the Exponent of any Power, and t = the Term.
and u = the Unciæ fought, the Rule will be
\frac{p \times p - 1 \times p - 2 \times p - 3}{t - 1 \times t - 2 \times t - 3 \times t - 4}, &c. = u (in this Example the Online of the 5th Term or Member of the 10th Power = 210.)
                                    7 (in this Example the Uncia of
  9. Any Number may be squared by the Canon exhibited in the
Square, or 2d Power of the above Table of the Powers raised from
a Binomial Root. For Example; What is the Square of 12349?
   The Analytical Square or Canon directing us how to work, is
uu+2ub+bb. Now suppose 1200 the 2 first Figures = a
                      And 34 the 2 next the right hand = b
  It follows, That u^2 = 1200^2 = 1440000
               2ub \text{ or } u \times b \times 2 \text{ is} = 81600 = 1200 \times 34 \times 2
               bb (or 34×34) is=
                                     1156
                           Sum = 1522756 = uu + 2ub + bb - 1234^2.
   10. And by the Cube or 3d Power we have a Rule how to cube
                             The Canon = u^3 + 3u^2b + 3ub^2 + b^3
any Number. Example:
What is the Cube of 2232?
I fay 2000 = u
       200 = b
     2400000000 = 3uub = 2000^2 \times 200 \times 3
       240000000 = 3ubb = 2000 \times 200^{2} \times 3
         8000000 = bbb = 200^3.
   10648000000 = Sum or 2200' or uuu in the 2d Operation; where
                                                             2200=#
```

and 30 = b

 $435600000 = 3uub, = 2200^2 \times 30 \times g$  $5940000 = 3ubb = 2200 \times 900 \times 3$  $27000 = bbb = 30^3$ .

11089567000 = Sum, or 2230<sup>3</sup>. So in the 3d Operation 2230 = uand 2 = b

 $29837400 = 3uub = 2230^2 \times 2 \times 3$  $26760 = 3ubb = 2230 \times 4 \times 3$  $8=bbb=2^3.$ 

 $11119431168 = 2232^3 = uuu + 3uub + 3ubb + bbb.$ 

This

This proves that the third Power in the foregoing Table is the the true Cube of u+b, as is here demonstrated by Numbers working with the Species exactly according to the Canon, without having regard to the way of placing Numbers in common *Multiplication*.

admirably useful is, that they shew plainly the Reason of all those mysterious Rules given in extracting the Root of any Power, as the Square, Cube, Biquadrat, &c. Roots in the former Part of this Book mentioned: For Example,

In Extracting the Square Root of 1522756.

```
Canon for the Square Root.
                                            =aa+2ab+bb.
                         1522756(1000=a
                          1000000 = aa deduct.
i = this Rest by 2a = 2000) 522756 rests, (200 = b = the Quote.
                           400000 = 2 ab.
                            40000 = bb.
                           440000 = 2ab + bb, deduct from the
                                                      (last Rest.
                            82756 remains, and now 1000 + 200
         \div by 2a = 2400)
                                 -(=1200=a go=b, the Quote.
                            72000 = 2ab.
                              900 = bb.
                            72900 = 2ab + bb, deduct from the last
                                                     (Remainer.
                             9856 = \text{reft}; and now 1230 = the 3
         \div by 2a = 2460)
                                 -(Roots=a4=b=the Quote or last
                                              in the Root fought.
                            9840 = 2ab
                                16 = bb.
                             9856 = 2ab + bb, deduct from the
                                                       (last Rest.
                                 o rests.
```

Ecc

And

```
To Extract Roots of Numbers, &c. CHAP. X.
304
  And the Reason of Extracting the Cube Root, will appear in
the following Example, proceeding according to this Canon:
aaa + 3aab + 3ab^2 + b^3.
  Extract the
Cube Root of 11119431168 (2000 = a.
               12006000) \overline{3119431168} resteth, which divide by 3a + 3aa.
                                                  (gives 200=b.
                          -(200 = b.
                      6000 = 3a, the Treble Root.
                 12000000 = 3aa, = the Treble Square of the
                                                        (Root a..
                 12006000 = 3a + 3aa, the Divisor.
                  8000000 = bbb or 200^3.
                240000000 = 3abb = 6000 \times 40000.
               2400000000 = 3aab = 4000000 \times 200 \times 3.
               \overline{2648000000} = bbb + 3abb + 3aab = the fubtrahend
                               - (to deduct from the last resolvend.
    14526600) 471431168 refleth the second resolvend (30=b, =
                                                     (the Quote.
                      6600 = Treble Root 2200 = 3a.
                 14520000 = 344 = 2200^3 \times 3.
                14526600 = 3a + 3aa = the Divisor for 2d Re-
                                          (folvend, gives 30=b.
                    27000 = bbb = 30^3.
                5940000 = 3abb = 6600 \times 900.
                435600000 = 3aab = 4840000 \times 30 \times 3.
                441567000 = bbb + 3abb + 3aab = the fubtrahend.
    14925390) 29864168 = third resolvend rests. 2=b, the Quote-
                    6690 = 3a, the Treble Root = 2230 x 3.
                 14918700 = 3aa = 4972900 \times 3.
                 14925390=3a-13aa, the Divisor for the third
                                                     (Resolvend.
                         8 = bbb = 2^3.
                   .26760 = 3abb = 5590 \times 4.
```

26760=3abb= 5690×4. 29837400=3aab= 14918700×2. 29864168= $b\bar{b}b$ +  $3a\bar{b}b$ + 3aab, the Sum or sub-(trahend, which taken from the 3d Resolvend there Rests (0) So the Root is found 2000+200+30+2.

And

SECT. VI. To Extract Roots of Numbers, &c. 395

And the Process according to the Canon of the third Power of a+b, is repeated three times, viz.

1st, 
$$2000 = a$$
, and  $200 = b$  or  $2000$   
2dly,  $2200 = a$ , and  $30 = b$   $+$   $200$   $+$   $200$   $+$   $200$  required.  
3dly,  $2230 = a$ , and  $2 = b$   $+$   $2$ 

These Examples, according to the 2d and 3d Powers of the Binomial Roots in the Table above, fully shew the Reason of the Method used in the Extraction of the Square and Cube Roots. And by the observing of the Canon given by the Powers, the Root of any other, even the squared Sursolid may be extracted: As I did that of the Biquadrat in Sect. 6. of Chap. I. Article the 2d; having never seen it done but only proceeding purely as the 4th Power directs.

IV. The Roots of Algebraic Quantities are either those of Rationals or Surds. 1. The Roots of Rational Quantities, whether those Quantities be compounded by Multiplication of Single Binomial, or Residual Roots are thus express'd.

1. How Single Roots of Powers are express'd in Species and Numbers.

|            | Po            | owers.                    | Their 1      | Their Roots. |  |  |
|------------|---------------|---------------------------|--------------|--------------|--|--|
|            | in Species.   | in Numb.                  | Species.     | Numb.        |  |  |
| Square     | uu =          | 4                         | "=           | 2            |  |  |
| Cube       | bbb =         | 27                        | b =          | 3            |  |  |
| Biquadrat  | · · · · · · = | ·- · 25 <del>6</del> ·- · | c =          | 4 .          |  |  |
| Surfolid   | d'=           | - 0 0                     | $\int d = d$ | <b>5</b>     |  |  |
| Squared (  |               | 46656                     | b =          | 6            |  |  |
| 2d Surfoli | $id k^7 =$    | 823543                    | k =          | 7            |  |  |

2. How Binomials and Residual Roots are extracted.

Binomial Powers. Their Roots.

Species. N°. Spec. N°.

Species. N°. Spec. N°.

Species. N°. Spec. N°.

Species. N°. Spec. N°.

dd—2ds—uu= 9. d—u= 3

uu—2 u—1 = 9. u—1 = 3

16bb—8bk—kk=961.4b—k=31

bbuu—2buu—ua= 64-ba—u= 8

E e e 2

Residual Roots are extracted.

Residual Roots are extracted.

Species. N°. Spec. N°.

4 b—2 d d—2ds—uu= 9. d—u= 3

16bb—8bk—kk=289. 4b—k=17

bbuu—2buu—ua= 64-ba—u= 8

E e e 2

2dly, Surd

3dly, Surd Roots, or Roots of Surd Quantities, are expressed thus by their own Radical Signs.

# Simple Surd Quantities.

| Powers. 1          | Roots.                | Powers. Roots     | i.            |
|--------------------|-----------------------|-------------------|---------------|
| Square Root of u=  | =√ u or in N          | [°. 171=√1        | 7 r           |
| Cube Root b        | = \$\display b        | <b>-</b> 315=√3   | 15            |
| Biquadrat c=       | =√ c                  | <b>–</b> 517=√ 5  | 17            |
| Surfolid d         | = <sup>3</sup> ⁄ d —— | <b>-</b> 735=√7   | 3 <i>5</i> .  |
| Squared Cube g     | =∲g ——                | <b>–</b> 379=∛ 33 |               |
| 2d Surfolid b      | = \( \frac{1}{b} \)   | —1231=√ 1         | 23 L          |
| Squared Biquad. ka | $= \sqrt[8]{k}$       | <b>—</b> 339=√ 3  | <b>39</b> -   |
| Cubed Cube 1       | = 1/1                 | —1129=√ 1         | 129.          |
| Squared Surfol. m= | $=\sqrt[10]{m}$       | —1057=√ 1         | 0 <i>57</i> : |

## Compound Surd Quantities...

| Powers:             | Roots.                  |
|---------------------|-------------------------|
| <i>u</i> + <i>b</i> | √u- <del> </del> -b     |
| u+b+c               | $\sqrt[3]{u+b+c}$       |
| u+b+c+d             | $\sqrt[4]{u+b+c+d}$     |
| u+b+c+d-g           | $\sqrt[5]{u+b+c+d-g}$   |
| u+b+c-d+g+b .       | $\sqrt[6]{u+b+c-d+g+b}$ |
| u+b+c-d+g-b-k       | 7                       |
| u+b-c+d+g+b+k+1 -   | 8                       |
| u+b+c+d-g-b+k+l+m-  | 0                       |
| 17r+gb-bc+m         | 10                      |

It must be observed. That the Sign connecting the Residual Root is always the same with that of the double Rectangle, i. e. Negative as under the 2d above.

Having fully shewn the Nature of raising the Powers of Quantities, and extracting the Roots, and illustrated the same by Numbers. which I shall also demonstrate by Numbers.

## SECT. VH. The Algorithm of Surd Quantities.

In regard there is often Occasion for Working the Roots of Species or Numbers, as by Addition, Substraction, Multiplication, &c. of them; and that it would be tedious and less accurate to find near the real Roots of Numbers, and impossible to be done of all Algebraic Quantities; therefore the Business of this Section is to give Rules for such Operations in Powers without regarding the Roots farther than by the Radical Signs prefixed: So that the compleat Powers of Quantities, or Numbers may hereby be added, substracted, &c. as well, (and much sooner) than if the real Roots were known, and the Work done by them See Article 7. Sect. 1. of this Chapter.

## L. Reduction of Surd Quantities.

Reduction is here taught first, because Quantities are required to be reduced to a common Radical Sign before those that have different Signs can be multiplied, divided, &c.

Example 1. Reduce  $\sqrt{u}$  and  $\sqrt[3]{c}$  to Surds having a common. Radical Sign; or Surds Heterogeneal to Homogeneal. See the Operation.

4, 4 The common Radical Sign. (ponents. 2, r = T he lowest Terms of the given Radical Signs or Ex-  $\sqrt[4]{u}$ ,  $\sqrt[4]{c} = T$  he Surds given to be reduced.  $\sqrt[4]{u}$ ,  $\sqrt[4]{c} = T$  he Answer or the Surds given in a common Radical

(Sign. By the Operation it is plain, that first I take half the Radical Sign 2 (given) and put it over the other given, or 4; and half the given Radical Sign 4, and place it over the other given or 2, which are the lowest Terms of the given Radical Sign.

2dly, I multiply the Radical Signs given by those standing over respectively, and they produce 4 = the common Radical Sign required.

3dly, I

(given reduced.

2dly, I raise the Surd Roots given to the Powers of the lowest Terms of the given Radical Signs which stand over the respective Root; as u raised to the 2d Power is uu, c in the 1st Power is = c, and placing the common Radical Sign before this uu and the c, I have the Answer  $\sqrt[4]{uu}$  and  $\sqrt[4]{c}$ .

Example 2d shall be in Numbers, as to reduce  $\sqrt[4]{9}$  and  $\sqrt[4]{16}$  to a common Radical Sign.

See the Work by the fame Rule as above; and in Multiplication and Addition it is shewn how these prove each other, or how the Totals agree, and consequently prove the Truth of this Method of Reduction.

| 4,   | 4=Common Radical Sign.                      |
|------|---------------------------------------------|
| 2,   | I = Least Terms of given                    |
|      | ——— (Radical Signs, placed interchangeably. |
| √g,_ | √16= Surds given.                           |
| ¥81, | √16=Surds required, or those                |

## H. Multiplication of Simple Surds.

In this Article I shall shew,

- 1. How to multiply a Surd by a Rational Number or Quantity.
- 2. To multiply a Surd in others of the same kind, or the same Radical Sign.
  - 3. To multiply Surds together having different Radical Signs.
    - 1. To multiply a Surd in a Rational Number or Quantity.

This is expressed two Ways, for Example, to multiply  $\sqrt[4]{c}$  by b, the Answer is very often expressed thus,  $b\sqrt[4]{c}$  or b in the Biquadrat Root of c. But actually to multiply them is done by this

Rule.] Raise b up to the Power of the Surd given, as here b in the fourth Power is bbbb and putting the same Radical Sign before, is  $\sqrt{bbbb}$ , which being multiplied by  $\sqrt[4]{c}$ , gives  $\sqrt[4]{bbbbc}$ .

Or in Numbers, suppose c = 16, and b = 8, then  $b^* = 4096$ , and  $\sqrt[4]{16}$  multiplied in  $\sqrt[4]{4096} = \sqrt[4]{65536}$  the Product, and that Root being extracted is = 16, the Product in a Rational Number.

To prove both which Ways of working, by raising the Power of the Rational Number, to be genuine,

I fay, c being = 16, its  $\sqrt[7]{,=2}$ , which multiplied by b=8, gives 16 as before.

2. To multiply a Surd Number by a Surd, which are Homogeneal, or when the Radical Signs are the same.

Rule.] Multiply the one by the other, and the Product is the Answer, prefixing one of the Radical Signs given.

Example. Multiply  $\sqrt[3]{dr}$  by  $\sqrt[3]{u}$ , and the Product is  $=\sqrt[3]{dr}u$ , and putting u=8; r=9; and d=3. It is thus done in Numbers,  $\sqrt[3]{27}$  by  $\sqrt[3]{8} = \sqrt[3]{216} = 6$  the Product.

Proved thus: By the real Roots without Surds. I fay  $\sqrt[3]{27} = 3$ , and  $\sqrt[3]{8} = 2$ , and 2 times 3 is 6, as before in the Numerical Way last above, which is the same as the Literal:

3. To multiply Heterogeneal or Surds, baving different Radical Signs.

Rule.] Reduce them to a common Radical Sign, and then work as in the last.

Example. Multiply  $\sqrt[4]{c}$  by  $\sqrt[4]{u}$ . In a common Radical Sign, the Surds are  $\sqrt[4]{u}$  u and  $\sqrt[4]{c}$ ; whose Product is  $\sqrt[4]{c}uu$ .

Or in Numbers: c=16; and u=9; or  $\sqrt[4]{16}$  to be multiplied by  $\sqrt[3]{9}$ , which in a common Radical Sign are  $\sqrt[4]{16}$  and  $\sqrt[4]{81}$ , whose Product is  $\sqrt[4]{1296}=6$ .

Rule proved thus: By the real Roots, for  $\sqrt{16}=2$ ; and  $\sqrt[4]{81}=3$ ; and  $3\times 2=6$ .

## III. Division of Surd Quantities.

There is nothing of Difficulty in this Rule; for if the Quantities of the Dividend can be divided by those of the Divisor, and the Radical Signs are the same, work as is taught in Division of Algebra, or of whole Numbers; as  $\sqrt{ubc} \div by \sqrt{bc}$  the Quote.  $=\sqrt{u}$ , &c.

**O**r

Or in Numbers;  $\sqrt{144} + \sqrt{9} = \sqrt{16} = 4$ , or = 12 ÷ 3. For Proof, 2. If the Radical Signs are not the same, they may be reduced to a common Radical Sign, and then divide the Power of the Dividend by the Divisor; or put it over that of the Divisor, as if the  $\sqrt[4]{cuu}$  be divided by  $\sqrt[4]{u}$ . In a common Radical Sign they are  $\sqrt[4]{cuu}$  for the Dividend, and  $\sqrt[4]{uu}$  for the Divisor; so the Answer is  $\sqrt[4]{\frac{cuu}{uu}} = \sqrt[4]{c}$ . And this proves the last Example in the last Rule, and is farther proved by dividing the Numeral Rectangle there by one Factor, for the Quotient will be the other Factor.

## IV. Addition of Surd Quantities.

This Rule is placed after Multiplication, because that is often used in this Rule of Addition. I shall shew

1. How to add when there are the same Quantities and Radical

Signs.

2. When there are different Quantities of Species, but the same Radical Signs, which Quantities are supposed commensurable.

3. How to add Quantities, having the same Species, but different Radical Signs, or when both the Radical Signs are different, and the Quantities incommensurable.

1. To add  $\sqrt[7]{u}$ ,  $\sqrt[7]{u}$ , and  $\sqrt[7]{u}$ .

Rule.] Multiply any one of the Surds by the whole Number of them, as here  $\sqrt[4]{u} \times by \quad 3 = \sqrt[4]{81} u$ , (observing the first Rule of Multiplication last above,) which is the Answer.

Or in Numbers: Add  $\sqrt{16}$ ,  $\sqrt[4]{16}$ , and  $\sqrt[4]{16}$ . Here 3 the Number of Roots raised to the fourth Power is 81; and  $\sqrt[4]{16} \times \sqrt[4]{81} = \sqrt[4]{1296} = 6$  proved thus;  $\sqrt[4]{16} = 2$ , and 3 times 2 is 6, or 2+2+2,

which proves the Rule.

2. When two unequal Surds are commensurable, and have the fame Radical Signs, and when divided by their greatest common Measure, are reduced to such Quantities as are the compleat Powers of some Quantities or Numbers; they may be added thus, suppose \$\frac{3}{40}\$ to be added to \$\sqrt{135}\$.

2d Rule.]



2d Rule.] Divide the Surds by their common Measure  $\sqrt[3]{5}$ , and they are reduced to  $\sqrt[3]{8}$  and  $\sqrt[3]{27}$ , the Cube Roots of which are 2 and 3; the Sum of which is.5, which Sum of the Roots multiplied is  $5\sqrt[3]{5} = \sqrt[3]{625}$  the Answer.

And for Proof, Extract the Cube Roots of the Surds given in the common way of Extraction, and you'll find the Sum =  $\sqrt[3]{625}$ 

= 8.55.

How to add Quantities baving the same Surds, but different Radical Signs; or when the Radical Signs are either different or the same, and the Surds are incommensurable.

Rule.] There is no Occasion for farther Operation, than to put the Radical Sign + between the given Surd Roots: As

To add  $\sqrt{cc}$  to the  $\sqrt{cc}$  and  $\sqrt{cc}$ ; the Sum is  $\sqrt{cc} + \sqrt[3]{cc} + \sqrt[4]{cc}$ .

Or the Sum of  $\sqrt{5}$ , the  $\sqrt[3]{6}$  and  $\sqrt[3]{13}$ , is  $=\sqrt{5}+\sqrt[3]{6}+\sqrt[3]{13}$ .

Or  $\sqrt{3} + \sqrt{7} + \sqrt{12}$ , &c. is the Sum of fuch Surds as  $\sqrt{3}$ ,  $\sqrt{7}$  and  $\sqrt{12}$ , &c.

There is a Rule which some pretend helps us to the Sum of these kind of Surds, when the Radical Sign is  $\sqrt[3]{}$ . The Rule is this; To the square Root of the Sum of the Squares of the Surds given, add the double Rectangle of these Surds, and the Sum is the Answer.

Example. To  $\sqrt{12}$ , add  $\sqrt{8}$ ; according to the Rule, the Sum of the Squares of the Surds is =20, its Root  $\sqrt{20}$ , and the double Rectangle of the Surds is  $2\sqrt{96}=8\times12\times4=\sqrt{384}$ , by the first Example of Multiplication of Surds. So by this Rule, the Sum of  $\sqrt{12}+\sqrt{8}$  is reduced to  $\sqrt{20}+\sqrt{384}$ . I must confess I do not see the Use of the Rule, nor of the Alteration of the Surds, since to say the Answer is  $\sqrt{12}+\sqrt{8}$  is more true and intelligible, than to call the Sum  $\sqrt{20}+\sqrt{384}$ .

## V. Substraction of Simple Surds.

1. When the Surd Roots are commensurable or reduceable to Rational Quantities, as in the second Example in Addition; work F f f

Addition and Substraction of Surds. CHAP. X. as is there directed, but when you come to the Roots, instead of taking their Sum, take their Difference, and multiply as in the same Example. To know the Difference between  $\sqrt[3]{40}$  and  $\sqrt[3]{135}$ : These  $\div \sqrt[3]{5}$  reduces them to  $\sqrt[3]{8}$  and  $\sqrt[3]{27}$ , whose Roots are 2 and 3, and the Difference of those Roots is 1, which multiplied by the

common Measure  $\sqrt{5}$ , gives  $\sqrt{5}$  for the Remainer or Difference. But when the Surds are incommensurable, as in the last Example in *Addition*, you have nothing to do but place the Sign (—) between the Surds given; so the Difference of  $\sqrt{b}$  above  $\sqrt{g}$ , is

 $\sqrt{b}$ — $\sqrt{g}$ .

### VI. Addition and Substraction of Compound Surds.

1st, For commensurable Surds, as those under the second Rule of Addition above, take this Example.

To 
$$\sqrt{45+\sqrt{294}}$$
 Sum= $\sqrt{320+\sqrt{54}}$ .

Here the Sum of  $\sqrt{45}$  and  $\sqrt{125} = \sqrt{320}$ ; and of  $\sqrt{294}$  and  $-\sqrt{96} = \sqrt{54}$  by the faid fecond Rule.

2 dly, For mixt Numbers, as Surds and Rational Numbers; see this Example.

To 
$$331 + \sqrt{768} - \sqrt{80}$$
 Or from  $331 + \sqrt{768} + \sqrt{80}$   
Add  $153 + \sqrt{243} + \sqrt{1280}$  Take  $153 + \sqrt{243} - \sqrt{1280}$   
Sum= $484 + \sqrt{7203} + \sqrt{80}$  Refts= $178 + \sqrt{3} + \sqrt{1296}$ 

I need give no farther Examples, because the Addition and Subfiraction of these Surds are done by the self-same Rules as those called Simple Surds, as by the Rule under the second Example, and in Substraction of those Surds.

The fecond Example last foregoing is done thus: To add  $\sqrt[4]{768}$  to  $\sqrt[4]{243}$ ; I divide them by the common Measure  $\sqrt[4]{3}$ , which reduceth them to  $\sqrt[4]{256}$  and  $\sqrt[4]{81}$ , whose Roots are 4 and 3, whose Sum

Sum is 7, so  $7\sqrt[4]{3}$  is the Answer, or  $7^4 \times \sqrt[4]{3} = \sqrt[4]{7203}$ , and so of the Rest.

The Demonstration of the-Rule for this last, as under Article IV.
Rule 2.

This I shall do by this plain Instance of Numbers adapted on purpose, as in the Margin; where  $\sqrt{64} + \sqrt{64}$ , are given to have their Sum found.

$$\sqrt{4}$$
  $\sqrt{64}$  +  $\sqrt{64}$  = the supposed Surds given.  
Quotes  $\sqrt{16} = \frac{4}{4}$  Roots.  
 $\sqrt{8} = \text{Sum of the Roots.}$   
and  $\sqrt{84} = \sqrt{256} = 16$  the Answer.  
 $\sqrt{64} + \sqrt{64} = 8 + 8$ .

1. These divided by  $\sqrt{4}$ , are reduced to the Root  $\sqrt{16} + \sqrt{16}$ , whose real Roots are 4 + 4 = 8. And  $\sqrt{4} \times 8$ , as by the first Rule of *Multiplication* above, gives the  $\sqrt{256}$ , whose Square Root being 16, is = the Sum of the Roots of the two Surds given.

# VI. Multiplication of Compound Suras.

Three Examples or Varieties The three Examples in Species done in Species two Ways. proved by Numbers. Example 1. Example 1. To multiply  $b \sqrt{ac}$  See the Operation,  $\int 4 \sqrt{64}$  Multiply as in ac + 16 also in Numbers 2 + 16 the Species. abc/ac+b/abc=the Prod. or in No.=8/64+4/64/6=102 to all Surds. For  $4\times8 (=\sqrt{64})=32$ -and that  $32 \times 2 + 4 = \sqrt{16} = 6$ Example 2. Example 2d proved thus: To multiply b Vac 4/64 \ Multiply as the Multiply by 2/16 \ Species are. in ac Vb  $abc\sqrt{abc}$  = the Prod, or in Numb. =  $8\sqrt{64}\sqrt{16}$  = 256 Or reduced \ = \langle aabbbecc For 4,  $\times 8 \ (=\sqrt{64})=32$ And  $32 \times 2 \times 4 (=2\sqrt{16}) = 8$ **7**56 ( ) i.e. l. [ 5d ; Acord William Ff.f 2 3 au 3 4 c. 7. ·Example

Example 3. Example 3. To multiply  $b+\sqrt{ac}$  Or in N°. thus:  $4+\sqrt{64}$  By the 3d Examp. in  $ac+\sqrt{b}$  x in  $2+\sqrt{15}$ 

 $abc + ac\sqrt{ac} + b\sqrt{b} + \sqrt{abc} \begin{cases} =8 + 2\sqrt{64} + 4\sqrt{16} + \sqrt{64}\sqrt{16} = 72 \\ \text{And fo't is in reality for } 4 + \sqrt{64} = 12 \end{cases}$ Or more  $\begin{cases} -2\sqrt{64} + 4\sqrt{16} + \sqrt{64}\sqrt{16} = 72 \\ \text{And } 2 + \sqrt{16} = 6 \end{cases}$   $\text{And } 12 \times 6 = 72 \end{cases}$ 

1. Note, That in multiplying b, multiplied in the Square Root of ac, by ac more the Square Root of b; I say  $b\sqrt{ac}$  by ac = abc  $\sqrt{ac}$ , and stands so in the Example 1. More b (in the Multiplicand)

√abc, &c.

2. Note, In like manner by the Numbers, Example 1. I fay 2 times  $4\sqrt{64}$  is  $8\sqrt{64}$ .  $2dly 4\sqrt{64}$  by  $\sqrt{16}$ , is  $=4\sqrt{64}\sqrt{16}$ ; fo the Product is  $=8\sqrt{64}+4\sqrt{64}\sqrt{16}$ . Now the Square Root of 64 is 8, and of 16, 4; fo that this Product is  $8\times8=4\times8\times4=192$ : And that this is right multiplied, will appear by the Numbers given, or  $4\times$  in 8, (which 8 is the Square Root of 64,) gives 32 for the Value of the Multiplicand.

And 2, more 4, (which 4 is the Square Root of 16,) makes 6, which is the Value of the Multiplier; so 6 times 32 is = 192 as before, which is a full Proof of the Rule by the first Example, and the rest are performed and proved much after the same manner,

which it would be needless to insist farther upon.

Example 4. To multi-

ply  $\sqrt{u-cd}$  by  $\sqrt{u+cd}$ : See the Operation in the Margin.

In Numbers demonstrated thus; u=8, c=1, d=2.

$$\sqrt[3]{u+cd}$$

Then 
$$\sqrt[3]{8}$$
  $+\sqrt[3]{cccdddu}$ — $ccdd$ 

by  $\sqrt[3]{8}$   $+2$  Prod.  $=\sqrt[3]{uu}$   $+\sqrt[3]{cccdddu}$ — $\sqrt[3]{cccdddu}$ — $ccdd$ 

Product contracted  $=\sqrt[3]{uu}$ — $ccdd$ 
 $+\sqrt[3]{64}$ — $4$ 

 $\sqrt{64-4}$  = the Sum or Product contracted. Now the Cube Root of 64=4, and 4-4=0

So the  $\sqrt{8}$  = the Multiplicand = 2, and 2 = 2 = 0 × 2 in the Multiplier (= 0 the Proof. 5. Hence

. 5. Hence it appears, that if you multiply two Surd Numbers together, whose Radical Signs are  $\sqrt{\ }$ , the Square Root of the Product is the Answer in a Rational Number. But if the Root cannot be extracted without a Remainer, divide the Product by the greatest Square Number, that will do it without Remainer; so the Root of that Divisor in the Quote is the Answer, as in the first Case,  $\sqrt{16}$  in  $\sqrt{9} = \sqrt{144} = 12$  the Answer. And in the second Case,  $\sqrt{72}$  in  $\sqrt{8} = \sqrt{576}$ , which  $\div$  144 quoteth 4, and the  $\sqrt{144} = 12$ ; so that  $12\sqrt{4}$  is the Answer.

#### VII. Division of Compound Surds.

This will appear very easy to those who understand common Division in Species, as before taught, and Multiplication of Surds.

$$\sqrt{u}$$
)  $\sqrt{bu} + \sqrt{du}$  ( $\sqrt{b} + \sqrt{d}$ .

Example, Divide  $\sqrt{bu} + \sqrt{du}$  by  $\sqrt{u}$ ; fee the marginal Work.

o refts.

Example 2. To divide  $abc+ac\sqrt{ac}+b\sqrt{b}+\sqrt{abc}$  by  $b+\sqrt{ac}$ , or in Numbers,  $8+2\sqrt{64}+4\sqrt{16}+\sqrt{64}\sqrt{16}$  by  $2+\sqrt{16}$ .

#### Done Literally thus:

$$b+\sqrt{ac}$$
 abc+ac\ac+b\sigmab+\sqrt{abc} (ac+\sqrt{b}= the Quote.'
abc+ac\ac

$$b \checkmark b + \checkmark abc$$

$$b \checkmark b + \checkmark abc$$

Done Numerally thus:

$$2+\sqrt{16}$$
)  $8+2\sqrt{64}+4\sqrt{16}+\sqrt{64}\sqrt{16}$  (4 $\sqrt{64}$ = Quote:  $8+4\sqrt{16}$ 

Or Contracted, and the 
$$\xi = 2\sqrt{64} + \sqrt{64} \sqrt{16}$$
 rest brought down.

o remains.

There

There is nothing of Difficulty in these Operations, observing to change the Signs of what you substract: As in the Numeral Example, I am to take 4/16 from 2/64, therefore I say that 2/64—4/16 is the Remainer, to which if I bring down 4/16, the + and - destroy the 4/16: So that bringing down to the said Remainer 2/64, the rest of the Dividend, which is /64/16, I find that 2 + /64 is contained in 2/64; //64 times, which I put in the Quote, and multiply and deduct, so the Remainer is (0).

And the Truth is thus proved, 1st, In that it agrees with the Literal Example. 2dly, As it is the Product of Example the Third foregoing, divided by the Multiplier. And 3dly, and most plainly,

thus:

2000

### The Value of the feveral Members of the Numeral Dividend are,

# SECT. VIII. Algebraical Fractions.

Although the Business of Fractions in Species are often used in the Solution of Analytical Questions: Yet since the Reader of this Part is supposed to have perfectly learnt Reduction of Vulgar Fractions, Chap. II. Sect. 1. and there being so very little Difference between the Method of working Fractions in Numbers and Species, therefore I shall not need to enlarge much on this Section.

1. Note, The fifth Case is done thus: Multiply the Quantity given by the proposed Denominator, and place the Product over the Denominator for the Answer.

2. And the fixth Case is only placing the Integral Quantity given as a Numerator, and a Unit for a Denominator.

3. And that the Quantities omitted, which are found in both the Terms, brings a Fraction into its lowest Terms.

o remains

The Cases of Reduction of Algebraical Fractions.

| Z                   | The Cajes of Reduction of Aige                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | braical Fractions.                 |                  |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------|
| No. of Cafes given. | Examples, To reduce two to each Case.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The Answers. Done Rules C. II. Sea | <i>j</i> .<br>1. |
| given.              | Mixt Quantities to Fractions. $ab + \frac{b}{c}$ $b + c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | bcu+b andCafe                      | S.               |
| •                   | $u + \frac{1}{d}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{du+b+c}{d}$                 |                  |
| . 2                 | An improper $\frac{bcu+b}{c}$ Fraction to a $\frac{bcu+b}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $bu+\frac{b}{c}$                   | 2                |
|                     | Quantity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $u+\frac{b+c}{d}$                  |                  |
| 3                   | A Fraction to its lowest Terms.  ubc  14udc + 21dpu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>bd</u>                          |                  |
| ,                   | 7dru 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{2c+3p}{r}$                  |                  |
| 4                   | Fractions of dif-<br>ferent to com-<br>mon Denomina- $ \frac{u}{c}, \frac{m}{r}, \frac{s}{t} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | urt cmt crs crt' crt' crt          | 6                |
| ř                   | tors. $\frac{u+c}{m}, \frac{b+d}{gg}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ggu + cgg, bm + dm ggm ggm         | 7                |
|                     | A whole Quantity to a Fraction b to that of Denominat. r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | br+cr<br>r                         | _                |
| 5                   | lue, whose De-<br>nominator is gi-<br>ven. $u + m$ to that whose Deno-<br>minator $= r + s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ru+mr+su+ms                        | 4                |
|                     | An Integeral Quantity to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | bu<br>ī                            |                  |
| 6                   | form of a Fraction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | cu-pr+bb                           |                  |
| -                   | A Compound to $\int_{a}^{u} \int_{b}^{c} \int_{a}^{c} \int_{a}^{r} \int_{m}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} \int_{a}^{r} $ | cru<br>bdm                         | _                |
| 7                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3bru +cbr-15bstu-5cdst<br>bm-mn    | 3                |
|                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    | l                |

II. Addition, Substraction, Multiplication, and Division of Algebraical Fractions; two Examples to each Rule.

|                | •                                                                     | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |                                                                                         |
|----------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Addition       | Propositions or Examples.  1. To $\frac{am}{u}$ add $\frac{2bb}{m}$ . | Sum = mu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ctions to a common<br>Denominator and<br>add the Numera-<br>tors, as in Vulgar          |
| A              | 2. To $\frac{u-r}{g}$ add $\frac{r}{g+u}$                             | gu_gr+uu_ru+gr<br>gg+gu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Note, —grand<br>+gr defiroy each<br>other.                                              |
| ion            | 1. From $\frac{amm+2bbu}{mu}$ Take $\frac{2bb}{m}$                    | $Refts = \frac{am}{u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Reduce to a com-                                                                        |
| Substraction   | 2. From $\frac{gu-gr+uu-ru+gr}{gg+gu}$ Take $\frac{r}{g+u}$           | Rests $\frac{u-r}{g}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and Work as in<br>Vulgar, reducing<br>the Remainers to<br>their lowest Terms.           |
| Multiplication | 1. $\frac{2bu}{c}$ by $\frac{b}{n}$                                   | Product 2bbu cn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Multiply the Numerators give 2bbx, and the Denominator — c n as in vulgar Fractions re- |
| Multip         | 2. $u + \frac{b}{r}$ by $\frac{3mp}{s}$                               | $Prod.=\frac{3mpru3bmp}{rs}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ducing $u + \frac{b}{r}$ into a Fraction, 28 by the first Reduction.                    |
| uo             | 1. Divide $\frac{2bbu}{cn}$ by $\frac{b}{n}$                          | Quote = $\frac{2bu}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Work as in Vul-<br>gar, and reducing                                                    |
| Divifion       | 2. $\frac{3mpru+3bmp}{rs}$ by $\frac{3mp}{s}$                         | Quote = $u + \frac{b}{r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the Quotes to low-<br>eft Terms, shall be<br>as you fee.                                |

These Examples above are very easy to such as have sufficiently acquainted themselves with Vulgar Fractions, and the two Examples in Substraction prove those in Addition, as those in Division do

do those in *Multiplication*; there is no need to illustrate these by Numbers, because that is done by comparing these with the like Examples in *Vulgar Fractions*. So that I proceed to

# SECT. IX. Rules to resolve Simple Equations.

The Business of this is, (when unknown Quantities are intermixt with known,) to bring the unknown Quantity to possess solely one Side of the Equation (commonly that towards the left hand) now these complex Quantities being so either by the unknown Quantity, being added to, substracted from, multiplied in, or divided by known, or by most or all of these together; therefore Equations are resolved, or the Value of the unknown Quantity is discovered by Addition, Substraction, Multiplication, Division, and Evolution, &c. and that in a contrary Way to that by which the known and unknown Quantities are connected and placed together, i. e. those of Substraction solved by Addition; Addition by Substraction; Multiplication by Division; and those divided and standing Fraction-Ways are solved by Multiplication, as by these Examples.

## Simple Equations Resolved.

| 1. By Addition - Note < c:                                                                          | And that $u$ is put for the unknown Quantity required.  Numerally $u-8=20-12$ Add 8 8 Add.  Sum $u=20-12+8=16$ |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 2. By Substraction. • $u+d=b+c$ Deduct $d$ , $d$ Deduct Refts $u=b+c-d$ the Answ.                   | u+8=20+12 Deduct 8, 8 Deduct $u=20+12-8=24$                                                                    |
| 3. By Multiplication. $ \frac{u}{4} = \frac{dc}{b} $ $ u = \frac{4dc}{b} = \text{the Answer.} $ G g | $\frac{u}{4} = \frac{96}{20}$ Answer $u = \frac{96 \times 4}{20} = 19$ ;                                       |

4. By Division.
$$du + cu = 5b$$

$$u = \frac{5b}{d+c} \text{ the Answer.}$$

$$u = \frac{5b}{8+12} = 5$$

5. By Addition, and Substraction, or Transposition
$$u + c - d = b$$

$$u = b - c + d \text{ the Answer.}$$

6. By Addition, Substraction, and Multiplication.
$$u - d + 2c = 2b - 2d$$

$$u = 2b - d - 2c \text{ the Answer.}$$

7. By Addition, Substraction, Multiplication, and Division.
$$cu + du + d - b = 5c$$

$$cu + du + bd - bb = 3bc$$

$$cu + du = 3bc - bd + bb$$

$$u = \frac{3bc - bd + bb}{c + d} \text{ the Answer.}$$

8  $u + 12u = 20 \times 5$ 

$$u + 12u = 20 \times 5$$

$$u + 12u = 20 \times 5$$

$$u + 12u = 20 \times 5$$

$$u + 12u = 20 \times 5$$

$$u + 12u = 20 \times 5$$

$$u + 12u = 20 \times 5$$

$$u + 12u = 20 \times 5$$

$$u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 20 \times 12u + 8u + 2$$

Eight General Rules for resolving Simple Equations, applied to the foregoing Examples.

1. When one or more known Negative Quantities are connected with an unknown Affirmative, they are separated, and the unknown made to possess solely one Side of the Equation (which is the same as to say that such Equations are resolved) by Addition only. So in the Example of resolving by Addition, I add the Quantity connected with u, as d to both Parts of the Equation, and the Sum is very plainly u=b-c+d.

The Reason of which is plain, and shews the Foundation of Transposition:

(which Word see in the Alphabetical Account near the beginning

of this Section) For adding the same Quantity or Number to both Parts of the Equation does preserve the Equality; but this Advantage is gained thereby, that +d added to -d, destroys the Quantity -d, so that it vanishes and leaves u in Possession of one Side of the Equation, and that +d being added to the other part of the Equation, makes b-c+d, to which u is therefore sound equal. And the Reason appears still more plain in the Numerical Operation; for if u-8 be =8, (or 20-12,) it must follow, that u=8+8 or 16, and this is no more than what is taught in Substraction of intire natural Numbers.

2. When one or more known affirmative Quantities are connected with an unknown, that Equation is resolved by substracting such known Quantities from each part of the Equation. Thus in the Example of the Resolving by Substraction, d taken from +d (which is connected with u) leaves nothing but u on that Side of the Equation; and d deducted from the other part of the Equation, there rests b+c-d, to which therefore u is equal, and the Equation is resolved.

The Reason of this is evident from what was said of adding in the first Rule above; for if equal Numbers or Quantities be either added to or taken from equal, the Sums or Remainers will be equal. And the Reason plainly appears also in the Numerical Work; for if u-8

be = 32, it follows that u = 32, abating only the 8.

- 3. When in an Equation, there are several known Quantities on the same Side with the unknown, some Affirmative, and some Negative; it follows from the above Rules, that you may transpose such known Quantities to the other Side of the Equation, changing their Signs, as in the fifth Example: And this you may do both ways to the Right, or thence towards the less thand of the =, and that with either known or unknown Quantities, keeping close to the Rules above, your own Reason, and the Nature of the Question: I mean, you will not think it reasonable to make the unknown Quantity a Negative, by transplacing it, when the Reason and Nature of the Question does dictate, that what is on the other Side of the Equation, is so far from being equal to u, that it ought to be at least equal to u, or to some absolute Number or Quantity which u is not.
- 4. When in an Equation, the unknown Quantity is divided by fome Number or known Quantity, possessing one Side of the Equation; then every Member of such Equation must be multiplied by the Denominator of the Fraction, whereof the unknown Quantity is the Numerator, as in the third Example; I multiply Ggg 2

ply  $\frac{u}{4}$  by 4, produceth u; and  $\frac{dc}{b}$  by 4, produceth  $\frac{4dc}{b}$ ; and fo the Equation is refolved, the unknown Quantity being cleared and found  $=\frac{4dc}{b}$ , as the Numeral Work farther demonstrates; for equal Quantities multiplied by equal, produce equal, as well as adding and substracting.

The Reason is very evident: For if a fourth Part of u be  $=\frac{dc}{b}$ , it must follow, that the whole u must be equal to four times the  $\frac{dc}{b}$ , and the like holds for any other Divisor of the unknown Quantity, or Denominator as abovesaid.

5. Hence it appears, that in multiplying by the Denominator of such a Fraction, 1st, That every Member of both Parts of an Equation must be multiplied. And 2dly, That the Numerator of that Fraction is multiplied by putting it down as a whole Number, as  $\frac{1}{2} \times \text{by 2}$ .

is = 1;  $\frac{1}{2}$  by 4, is = 3;  $\frac{1}{6}$  by 6, is = 5,  $\frac{1}{6}$ c.

6. When Quantities known and unknown stand multiplied together in an Equation possessing one Side thereof, such Equations are solved by Division; in which Case the Quantities so multiplied in the unknown, are to be your Divisor; as in the fourth Example or Division above. To separate u (in the two Members du+cu) from the known Quantity d and c; I divide both Parts of the Equation by d+c, and the

Quotient is  $u = \frac{5 b}{d+c}$ ; for equal Quantities divided by one and the same Quantity, must exhibit equal Quotients; and at the time you free one Side of the Equation of complex Quantities, and shew the known, which the unknown Quantity is equal to. Thus in the Numeral Example, the Matter is plain, for where 8u + 12u = 100; 20 u is = 100; therefore u only must be equal to  $\frac{100}{20}$ , which is the same as in the Process, according to the Rule above; for 8u + 12u = 100

as in the Process, according to the Rule above; for 8u + 12u = 8 + 12 = 4; and  $20 \times 5$ , or  $100 \div 8 + 12 = 5$ .

But Note, That when you have two Members, one mixt with a known Quantity, the other intirely unknown; in this Case, the known + or - 1 is your Divisor, as if 8u - u = 49, then u =

$$\frac{49}{8-1}$$
, and if  $6u-u=25$ , then  $u=\frac{25}{6-1}=3$ .

· 7. When

7. When (as in the feventh Example) 'tis found that unknown

Quantities are so mixt with known, as to have Products, Quotients, Sums, and Remainers; you have nothing to do but to work as by these foregoing Rules, as in  $\frac{cu+du}{b}+d-b=3c$ : For if the whole is multiplied by b, it gives the next Step cu + du + bd - bb=3bc. And if bd-bb be transposed, (as being all known Quantities.) the third Step stands thus; cu + du = 3bc - bd + bb. And if the third Step be divided by c+d, (because those are the known Quantities that are multiplied in the unknown,) the fourth Step or Quote, which is the Answer, is  $u = \frac{3bc - bd + bb}{c}$ ; each of which Steps appears still more plain in the Literal Work, which shews in this latt Equation u=48.

8. There is one other Thing to be observed, but that is rather in composing or forming the Equation, than in the Resolution,

i. e. If u: c: b. d. what is the Value of u ?

Here the fecond Step is found, as being the Rectangle of the two Extreams, which is equal to that of the means. And dividing by d, gives the Canon. See the Words Analogy in the beginning of this Chapter, and Equation. And if you would reduce an Equation into an Analogy, it is as u to c or b; so is the other to d in (u.b): c. d

the two Examples above, or

u. c:: b. d ud = bc $u = \frac{cb}{d}$  the Answer.

### SECT. X. Resolution of Quadratic Equations.

· What simple and adjected Quadratics are, is shewed in the foregoing Definition of Terms near the beginning of this Chapter; where under the Words Simple Quadratics, I have said enough relating to that kind. As for adfected Quadratic Equations, (which Word see,) there are, by some Algebraists, reckoned three Sorts, but I make but two really distinct; to one of which, all other adfected Equations are reducible. I shall give Examples,

I. Of the two distinct Kinds of Square adjected Equations. 2dly, Of those reducible thereto, and how performed.

II. Show bow these Equations are Resolved by compleating the Square.

III. How Resolved by Substitution; bow done four different Ways, two of which (being the best) are new.

if, The

1st, The two distinct Forms of Quadratic Equations are these only.

In Species. In Numbers.

1st, 
$$uu+du=bc$$
 —  $uu+6u=135$ 

2dly,  $uu-du=\frac{bc}{5}$  —  $uu-6u=27$ 

2 dly, Equations reducible to one of the two Forms above, are these and such like.

Equations given.

If the du-uu=m

2dly, 
$$u+b=\frac{c-d+b}{2cu}$$
 $uu-du=-m$ , as the 2d Form.

 $uu-bu=\frac{c-d+b}{2c}$ , as the 1st Form.

4thly,  $u=\frac{cu+tu}{3bu}$ 
 $uu-bu=\frac{c+db}{3b}$ , the 1st Form ec.

### Notes upon these Reductions.

If, That the first is performed by changing the Signs of all the Members, (as is directed in Rule the Third foregoing to Simple Equations) which makes -m = -du + uu, which is the same as to say uu - du = -m, as in the second Form; though some make this a distinct Sort, but with no more Reason than the three subsequent; for the Square is compleated, the Root extracted, and the Canon produced exactly as in one of the two Kinds abovementioned.

2dly, The second Equation above is reduced, as taught in the 4th and 6th Rules to the Examples of Simple Equations, multiplying

by 2 cu, and dividing by 2c each part of the Equation.

3dly, The third Equation above is reduced by the fecond, fourth, and fixth Rules to the Examples of Simple Equations, transposing b, multiplying by 3bu, and dividing by 3b.

4thly, The fourth is reduced by multiplying by 3buu, expunging

u in each Member, and dividing the rest by 3b.

II. The

II. The Steps of resolving Quadratic Equations by compleating the Square.

| Equations proposed.                           | Squares compleated.                                                                     |                                                                          | ·                                                                           |
|-----------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------|
|                                               | Ift,                                                                                    | 2 <i>dl</i> y,                                                           | . 3 <i>dl</i> y,                                                            |
| uu- -du=bc                                    | $uu + du + \frac{dd}{4} = bc + \frac{dd}{4}$                                            | $u+\frac{d}{2}=\sqrt{\frac{bc+dd}{4}}$                                   | $u = \sqrt{bc + \frac{dd}{4}} \frac{d}{2}$                                  |
| $uu-du=\frac{bc}{5}$                          | 4 5 4                                                                                   | $u - \frac{d}{2} = \sqrt{\frac{bc}{5} + \frac{dd}{4}}$                   | $u = \sqrt{\frac{bc}{5} + \frac{dd}{4} + \frac{2}{d}}$                      |
| uu + 2cu = 3b<br>uu + u = 2b<br>uu + 6u = 135 | uu 2cu -cc=3b -cc<br>uu - u - = =2b - =<br>uu - 6u - 9=135 - 9                          | $u + \frac{1}{2} \sqrt{2b} + \frac{1}{4}$                                | $u = \sqrt{3b + cc - c}$ $u = \sqrt{2b + \frac{1}{4} - \frac{1}{3}}$        |
| $uu-6u=\frac{135}{5}$                         | $\begin{array}{c} uu + 0u + 9 = 135 + 9 \\ uu - 6u + 9 = \frac{135}{5} + 9 \end{array}$ | $u + 3 = \sqrt{\frac{135}{5} + 9}$<br>$u - 3 = \sqrt{\frac{135}{5} + 9}$ | $u = \sqrt{\frac{135 + 9}{135 + 9 + 3}}$ $u = \sqrt{\frac{135}{5} + 9 + 3}$ |
| uu + u=90                                     | uuu                                                                                     | $u + \frac{1}{2} = \sqrt{90}$                                            | $u = \sqrt{904} - \frac{1}{2}$                                              |

Rules to be observed in this Method (which is the best) of the Resolution of Quadratic Equations, applied to the Examples above.

If, Whatsoever known Quantities are multiplied in the Root, or unknown, they are called the Co-efficients; as d, 2c, and 1 in the second Terms of the four first Examples: In the fourth of which there being no Co-efficient, therefore 1 must be taken for it, because a Unit is supposed to stand before every Quantity, as u is = 1u, c=1c, &c.

2dly, To compleat any Square baving only the two first Members given, is done by adding the Square of half the Co-efficient:

Thus in the first and second Examples, half the Co-efficients  $\frac{d}{2}$ .

(the

(the Square of which is  $\frac{dd}{d}$ ) added to the two other Members standing towards the left hand, the compleat Squares are uu + du + $\frac{dd}{dt}$  and  $uu - du + \frac{dd}{dt}$ . And in the third and fourth Examples 20 and I are the Co-efficients, the half of which are c and  $\frac{1}{2}$ ; the Squares of which Halves are cc and \( \frac{1}{2} \), the former of which compleats the Square of the two Members towards the left hand of the third Example, and the later (or 4) added, doth compleat the Square of the fourth Example: See at the beginning of this Chapter.

3dly, And because this Addition of the Square of half the Coefficients is made to one part of the Equations, where the unknown Quantities are; therefore it must be added also to the other part of the Equations, That so the Equality may be continued, (as is said in the first and second Rules to the Examples of Simple Equations,) and thus the fecond Column is made in all the feven Examples above.

4tbly, The third Column from the left hand, are the Roots of these in the second.

1st, For in all compleat Squares, the Square Roots are exactly those of the first and third Member.

adly, The Sign connecting the Quantities of the Root, is always the same as that before the second Term of the compleat Square, or of the Equation given: Thus the Roots of

Squares. Roots.  $uu + du + \frac{dd}{d}$  in the fecond Column, is  $u + \frac{d}{d}$  in the third Column.

And for a Proof, any of these Roots being multiplied in itself, produces the respective Square above.

3dly, The Root of the 1st Part being extracted, in order to discover the Value of the fingle unknown Quantity; therefore the Roots of the Quantities known, standing on the other part of the Equation, (as is faid under the 3d of adding the Square of half the Coefficient) must have their Roots extracted; which is done by prefixing the Radical Sign, because they are generally Surds.

4thly, To reduce the 3d Column to the 4th, or to the Canons or Answers, you have nothing to do but to transpose the Root of the 3d Member of the compleat Square, as  $\frac{d}{2}$ , c, and  $\frac{1}{2}$  in the four first Examples changing the Sign as taught.

A farther Demonstration or Proof of the Method for the Solution of Quadratics, by the Numeral Operations above.

In the Numeral Work these Numbers are equal to the Letters in the Specious, viz. d=6, b=45, c=3, and u is found equal to 9.

Here (proceeding by the Rules for Solution above) in the Equation uu + 6u = 135, u in the 4th Column is found  $= \sqrt{135 + 9} - 3$ .

Now 135 + 9 is = 144, the Square Root of which is 12, whence

take 3, and the rest is = 9, so u = 9.

And u being found = 9 by the Canon, grounded upon the Method of Process abovesaid; if supposing u = 9, the 2 Parts of the Equations proposed prove equal, it sully proves the Truth of the Method for Solution.

So uu + 6u = 81 + 54 in the 5th Equation given, is = 135 = the other part of that Equation given.

uu-6u=81-54 in the 1st part of the 6th Equation is =  $27=\frac{1}{2}$  the 2d part of that Equation.

And uu+u=81+9 in the 1st part of the 7th Equation is = 90 in

the 2d part of that Equation. &c.

Thus I have given the most plain and demonstrative Rules and Examples for the understanding and proving the Method of solving Square Equations by the way of compleating the Square. I proceed to shew,

Hhb

III. The

| 18                                       |                                               |                                               | Quadi                                                | ratic                              | Equa                                               | tions                             | by Subj                     | litution.                                                     |                            | Снар.                                         |
|------------------------------------------|-----------------------------------------------|-----------------------------------------------|------------------------------------------------------|------------------------------------|----------------------------------------------------|-----------------------------------|-----------------------------|---------------------------------------------------------------|----------------------------|-----------------------------------------------|
|                                          | 9                                             | ∞                                             | 7                                                    | 6                                  | ري<br>د                                            | 4                                 | ω                           | 2                                                             | ⊶ .eqs                     | 12 %.N                                        |
| A 2d Example see towards the right band. | $u = \sqrt{18d + \frac{cc}{4} - \frac{c}{2}}$ | $u + \frac{c}{2} = \sqrt{18d + \frac{cc}{4}}$ | $a=\sqrt{\frac{18d+\frac{cc}{4}}{18d+\frac{cc}{4}}}$ | $aa - \frac{cc}{4} = 18d - \cdots$ | $aa - ac + \frac{cc}{4} + ac - \frac{cc}{2} = 18d$ | 32-38                             | aa-ac+ cc                   | for $u$ is put $a - \frac{c}{2}$ in this 1st Case.            | nu+cu=18d                  | Steps towards the                             |
| the right hand                           | <sup>c</sup> in the 8 +                       | $u+\frac{c}{2}$ put for $a$                   | = 6th w, and -                                       | =5th contracted.                   | = 18d = 3d Step + 4th.                             | $= a - \frac{c}{2} \times c - cu$ | or $a - \frac{c}{2} \Theta$ |                                                               | produced.  Equation given. | <u>2.                                    </u> |
|                                          | 9                                             | ∞ò                                            | 7                                                    | Ø                                  | જ                                                  | 4                                 | ω                           | (4                                                            | ⊶ .eq                      | 512 Jo. N                                     |
|                                          | + 6 /= "                                      | $u-\frac{c}{2}\sqrt{9d}$                      | a=V9d++                                              | aa=9d                              | aa+ac++                                            | - 20 - 20                         | aa+ac-                      | 2 for $u$ is put $a + \frac{1}{2}$ Cafe $u = a + \frac{1}{2}$ | <i>uu-cu</i> =9 <i>d</i> = | Process                                       |
| in th                                    | $+\frac{cc}{4}+\frac{c}{2}$                   | + 66                                          | *   6                                                | 94                                 | $-ac - \frac{1}{2} = 9d = 3d + 4th $ Steps.        |                                   | 2 4-                        | $\frac{1+\frac{1}{2}}{2}$ in this 2d                          | An/wer. = 9 d =            | Process towards an                            |

I have here inserted the Operations at large, to make them more plain and easy; which the 3d and 6th Columns from the right hand do so fully contribute to, that I have little to add, only,

1. To put the Reader in mind, that the Signs connecting the substituted Quantities are always contrary to that which connecteth the 2 Members of the Square given, as is plain by the 2 Examples above.

2. That any Letter as well as a (if it be not in the Equation given) + or less half the Co-efficient, as above, may be substituted.

3. In the 8th Step I omit a, and substitute in place thereof  $u + \frac{c}{2}$  in the 1st Example, because if  $a - \frac{c}{2} = u$ , then by transpo-

fing 
$$-\frac{c}{2}$$
, a is  $= u + \frac{c}{2}$ , and in the 2d Example  $a = u - \frac{c}{2}$ .

A New and Better Way.

But tho' this is the only Way I know extant of folving these Equations by Substitution; yet I am sure it is a better, to make the Vowel and balf the Co-efficient in the Quantities given to be your Substitute: and then it will fall right at the last, remembering that half the Co-efficient is to be added or deducted, and 'twill save some Steps of working. For Example, putting  $u - \frac{d}{2}$  for u, in the Equation uu + du = bc.

Here it only needs to be noted, that when the Sign connecting the 2 first Terms of the Equation given is +, I make the half Coefficient added to the Surd Root of the Answer —; and the contrary.

But in truth this way of folving Equations by Substitution, is at the best not so brief and easy a Method as that by compleating the Square; for if that be well considered, there arises from it,

$$uu - du + \frac{dd}{4} = \Box u - \frac{d}{2}$$

$$du - \frac{dd}{2} = u - \frac{d}{2} \times d.$$

$$uu - \frac{dd}{4} = bc; \begin{cases} \text{the Sum of the 2} \\ \text{last contrasted.} \end{cases}$$

$$u = \sqrt{bc + \frac{dd}{4}} - \frac{d}{2} = \text{the Canon.}$$

IV. These Examples and Rules for solving most Quadratic Equations by Inspection only.

Examples. Note, 
$$c=3$$
, and  $u$  found  $= 9$ .

1. Equations  $\begin{cases} uu + 10u = 57c \\ v = \sqrt{37c + 25} - 5 \end{cases}$ 

Canon  $u = \sqrt{37c + 25} - 5$ 

Hhhh 2

Demonstrations of the Truth of the Solutions or Canons.

 $\sqrt{57c + 25} - 5 = 9$ : so  $u = 9$  as  $per$  Canon 1.

2. Equations

 $\sqrt{9c-p}+3=9$ : fo u=9 as per Canon 2. 9c=27: fo is uu-6u=27 as per Equation 2.

The Rules for Solving a Quadratic Equation by Inspection.

1. What I mean here, by Inspection, is the putting down only the Canon or Answer without any previous Operation: To do which, take the Root of the Square of the unknown Quantity, which here is u.

2. Make the Sign of Equation, and to the right hand of that, place the Root of the unknown Quantity or Quantities given, with

the Sign  $\sqrt{\phantom{a}}$  before, as in Equation the 1st,  $u = \sqrt{57} c$ .

3. Square half the Co-efficient, and add to the last mentioned Quantity with the Sign + always before it, and it will be u =

√57·c--25.

4. To the last add half the Co-efficient, when the Sign is —, and substract it when the Sign before the Quantity where the Co-efficient is, is +; as in this Example I put -5, because 10*u* is + 10*u*: so is the Canon  $u = \sqrt{57c + 25} - 5$ .

And thus you may give the Canon for any Quadratic Equation

when reduced into either of the two Forms above.

Here is the proper place for giving the Geometrical Construction of Simple and Quadratic Equations; which I omit for these four Reasons: 1. Because it is done by so many other Authors. 2. For that this Treatise is designed to be as easy as possible, in order to instruct and encourage the Tyro, rather than to make a shew of Learning. 3. It cannot be expected, where so many things are contained in one small Volume. And, 4. It is sufficiently proved and demonstrated above, by comparing the Parts of the Canon and those of the Equation given, as grounded on the Solution, especially in the Numeral Operations.

SECT. XI. Containing for Exercise, some Questions resolved by Simple and Quadratic Equations, and by various Positions.

I. P Simple Equations. I had the following proposed to me, which the Querist, my Friend, had a real Occasion to know, as falling in his Business.

Problem 1.] 365 Pounds is received for the Use of a publick Building, and the Receiver was to have 4 d per Pound for what he paid in: what was the Poundage, and what paid in?

Steps



| O L    | CI. Ali Zicjiioni v                        | Comple L                  | y mar rurs.                              | 441   |
|--------|--------------------------------------------|---------------------------|------------------------------------------|-------|
| Steps. | Done Literally thus.                       | The Column<br>of Rules to | ,                                        | Steps |
| I      | u=the Poundage, and b is = 365             | both Ways                 | z=the Poundage.                          | li    |
| 2      | b-u= the Sum paid in.                      |                           | 365 - u = the Sum paid i                 | n. 2  |
| 3      | 60 u = b - u                               | 2                         | 60u = 365 - u                            | 3     |
| 4      | 61 u = b                                   |                           | 61u = 365                                | 4     |
| 5      | $u = \frac{b}{6\pi}$ the Canon.            | 61                        | $u = \frac{365}{61} = \text{the Canon.}$ | 5     |
| -      | So $\frac{b}{61}$ = the Poundage.          |                           | 365 ÷ 61=1.5:19:8                        |       |
|        | And $b - \frac{b}{61} = $ the Sum paid in. |                           | and $365 - \frac{365}{61} = 359 : 0$ :   | 4     |

Problem 2.] The whole Length of a May-Pole is 16 Yards, the major part of which is broke by the Wind, the not quite off, but so that the Top of the Pole extends from the Frature to the Ground at 8 Yards distant from the Appearance of the Pole above the Surface of the Earth in which it was placed: bow much is broken off, and how much is standing?

I put 
$$16 = k$$
 and  $8 = n - k$ 
 $u = \text{the Perpendicular or}$ 
 $(Part flanding.)$ 
 $k = u = \text{Hypothenuse}.$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text{Hypothenuse}$ 
 $n = \text$ 

Problem 3.] Numbers in Geometrical Progression being given, to find the Rule for the Aggregate of any Series. This is shown in Progression, Chap. II. pag. 82.

Problem 4.] Supposing the Pendulum of a Clock which vibrateth Seconds (or 60 times in a Minute) he 39.2 Inches in length; how long must a Pendulum he to, vibrate as often in a Minute as it hath Inches in length? This also was a Question proposed for me to answer, which I did thus:

Steps.

I put k=60 Seconds: and n=39.2 Inches.  $u=N^{\circ}$  of Vibrat. Rules for the Work. n = the No of Vibrat. requir'd. The Analogy. □Vib. Le. Pen. □Vib. Le. Pen. 602.39.2:uu.39.2 kk. n. 2 uu in a direct Prox60° ÷ uu (portion. 3 3d Reduced. 4  $=\sqrt[3]{}$  of the 4th  $u = \sqrt{kkn}$  $u = \sqrt{60 \times 39.2} |_5$ (viz. of 141120

 $kk=3600, \times n(=39.2)=141120;$  and  $\sqrt[3]{141120}=52=$  the Vi-Vi41120=52 near. brations in a Minute, And Inches for the Length of such a Pendulum.

Problem 5.] What Age is that Person when \$ of the Time from his Birth is equal to \$ of what he wants of 60?



Problem 6.] Two Persons, A and B, have each a certain Number of Pounds, so that if B give A 3 of his, then they will have each a like Number: But if A give B three of his Pounds, then B will have 5 times as many as A: What Number of Pounds had each at first?

I put n=3 and k=5.

| u = B hath at first.   u supposed   $u = B$ hath at first.                                     | I |
|------------------------------------------------------------------------------------------------|---|
| $2   u-2 n = A$ hath at first. $  2n   u-3 \times 2$                                           | 2 |
| $3   u - n = B \text{ will have.} \qquad   \text{ift} - \frac{1}{2}   u - 3$                   | 3 |
| 4   u - n = A will have. ibid. as 3d. $  u - 3  $                                              | 4 |
| 5   u - 3n = A  will after have.   = u - 2n - n   u - 9                                        | 5 |
| 6   u + n = B will then have. $  u + 3  $                                                      | 6 |
| $7 ku - 2kn = u + n$   5th xk + 6th   5u - 3 \times 5 \times 3 = u + 3                         | 7 |
| $8   ku - u = n + 3 kn $ $  u + & 3ku +   5u - u = 3 + 3 \times 5 \times 3$                    | 8 |
| 9 $u = \frac{n+3kn}{k-1}$ the Answer. 8th $\div k-1$ $u = \frac{3+3\times5\times3}{4}$ Answer. | 9 |
| $\frac{u+3kn}{k-1}=4n$ , which B had. $\frac{3+3\times5\times3}{4}=12$ , we B at 1st had.      | 1 |
| And A had $2n$ : for $2n-n$ And A had 6: for $6-3=3$ ; and                                     | 1 |
| $= n : $ and $n + 4n = 5n$ . $3 + 12 = 5 \times 3 = 15$ .                                      |   |

Problem 7.] A Hare, 50 of her Steps or Paces before a Greybound, takes 4 Steps to the Dog's three; but then the Dog steps as much at twice as the Hare does at thrice: How many Steps must the Dog make before he catch the Hare? This old Algebraic Question I answer thus:

I put k=50, n=3, s=2, and b=4.

u = the fupposed Answer (or Dog's Steps.)

$$\frac{bu}{n \cdot b : u \cdot \frac{bu}{n}}$$
 all the Hare's (actual Steps.)

 $\frac{bu}{n \cdot s : \frac{bu}{n} + k \cdot \frac{bsu}{nn} + \frac{ks}{n}}$  (the Dog's Steps.)

 $\frac{bsu}{nnu - bsu = kns}$  the  $\frac{kns}{nn - bs}$  the Canon for (Answer.)

 $\frac{u}{3 \cdot 4 : u \cdot \frac{4u}{3}}$ 
 $3 \cdot 4 : u \cdot \frac{4u}{3}$ 
 $3 \cdot 4 : u \cdot \frac{4u}{3}$ 
 $3 \cdot 4 : u \cdot \frac{4u}{3}$ 
 $3 \cdot 4 : u \cdot \frac{4u}{3}$ 
 $3 \cdot 4 : u \cdot \frac{4u}{3}$ 
 $3 \cdot 4 : u \cdot \frac{4u}{3}$ 
 $3 \cdot 4 : u \cdot \frac{4u}{3}$ 
 $3 \cdot 4 : u \cdot \frac{4u}{3}$ 
 $4 \cdot u \cdot \frac{4u}{3} + 50 \cdot \frac{8u}{9} + \frac{100}{3}$ 
 $4 \cdot u \cdot \frac{8u}{3} + \frac{100}{3}$ 
 $4 \cdot u \cdot \frac{8u}{3} + \frac{100}{3}$ 
 $4 \cdot u \cdot \frac{8u}{3} + \frac{100}{3}$ 
 $4 \cdot u \cdot \frac{8u}{3} + \frac{100}{3}$ 
 $4 \cdot u \cdot \frac{8u}{3} + \frac{100}{3}$ 
 $5 \cdot \frac{8u}{9} + \frac{100}{3}$ 
 $6 \cdot \frac{8u}{9} + \frac{100}{3}$ 
 $7 \cdot \frac{8u}{3} + \frac{100}{3}$ 
 $8 \cdot \frac{8u}{9} + \frac{100}{3}$ 
 $9 \cdot u - 8 \cdot u = \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 
 $9 \cdot \frac{900}{3}$ 

Problem 8.] A Ciftern that hath four Vents of different Dimensions containeth 72 Barrels of Liquid: If one Vent or Cock be opened, the Liquid will be spent in 6 Hours; if a second be opened alone, it will run out in 8 Hours; if the third Cock be turned alone, the Liquid will be exhausted in 9 Hours; and the fourth Cock or Vent is so small, that if it alone be opened, it will be twelve Hours before the Cistern is empty: Now the Question is, in what Time the Cistern will be void of Liquid, if all the four Vents be opened at the same Moment of Time. This Question (which I have not as I know of, seen before answered by Algebra) I solve thus; tho' there is somewhat a shorter way: but I design it plain to the Learner, and if 72 or k be omitted and supposed 1, it will come to the same Canon, as you may make trial at your leisure, for k is thrown out even in this Example.

For 72 I put k, 6=n, 8=s, 9=t, 12=r. u=the unknown Time or fup-(posed Answer.  $\left| \frac{72u}{6} + \frac{72u}{8} + \frac{72u}{9} + \frac{72u}{12} \right| = 72$ or  $\div$  by k  $= \frac{u}{6} + \frac{u}{8} + \frac{u}{9} + \frac{u}{12} = 1$  $6\frac{u}{u} + \frac{u}{t} + \frac{u}{t} + \frac{u}{t} = 1$  $7u + \frac{nu}{s} + \frac{nu}{t} + \frac{nu}{r} = n$   $8su + nu + \frac{nsu}{t} + \frac{nsu}{r} = ns$ the 6th × n  $u + \frac{6u}{8} + \frac{6u}{9} + \frac{6u}{12} = 6$ the 7th × s  $8u + 6u + \frac{6u \times 8}{9} + \frac{6u \times 8}{12} = 6 \times 8$  $9 | stu + ntu + nsu + \frac{nstu}{r} = nst \text{ the } 8th \times t | 8u \times 9 + 6u \times 9 + 6u \times 8 + \frac{6u \times 8 \times 9}{12} = 6x8x9$  $10 | rstu + nrtu + nrsu + nstu = nrst | the 9th \times r | 8ux9x12 + 6ux9x12 + 6ux8x12 - 6ux8x9 = 6x8x9x12$ 6 x 8 x 9 x 12  $\frac{nrst}{rst-nrs-nrs-nst} = Anf. \text{ the 10th ÷ all } u = \frac{6 \times 8 \times 9 \times 12}{8 \times 9 \times 12 + 6 \times 9 \times 12 + 6 \times 8 \times 12 + 6 \times 8 \times 12 + 6 \times 8 \times 9}$ And  $\frac{nrst}{rst + nrs + nrs} = \frac{5184}{2520}$  Hours, Numer. = 5184; Denom. = 2520 = 2:3:25 which is the accurate Answer. Problem 9.] How shall I find out a Canon for discovering the Discount of Money? See the Operation.

d= Days to come. c= 100 l. p= Principal. r= Rate of Int. y= a Year, or 365 Days. u= the Difcount fought.

$$y. r :: d. \frac{dr}{y}$$

And  $c + \frac{dr}{y} \cdot \frac{dr}{y} :: p. u$ 
 $cu + \frac{dru}{y} = \frac{dpr}{y}$ 

or  $cuy + dru = drp$ , and confequently  $u = \frac{dpr}{cy + dr}$ , the Canonfor Difcount.

Problem 10.] To find a Canon for discovering the present Worth of Money due at the end of any Days. Symbols as above.

These Canons apply'd under Sett. 8. Chap. 3. find the Discount of Money much sooner than by the common Way of the Rules of Proportion.

y. 
$$r :: d. \frac{dr}{y}$$
  
 $c + \frac{dr}{y} \cdot c :: p. u$   
 $cu + \frac{dru}{y} = cp$   
 $cu \cdot y + dru = cpy$ ; and confequently  $u = \frac{cpy}{cy + dr} = \text{the Canon}$   
for prefent Worth.

II. To resolve Questions by Quadratic Equations, which they form.

Problem 1.] There are three Numbers in Geometrical Proportions continued; the Mean = 42, the Difference between the Extremes = 112: What are the two Extremes? I put k=112; n=42.

1 | u = the leffer Extreme.  
2 | u + k the greater.  
3 | u + ku = nn | 2d × 1st = n<sup>2</sup> | u = the leffer Extreme. 1 | u + 112 = the greater. 2 | u + 112 u = 42<sup>2</sup> | 3 | u + 112 u = 42<sup>2</sup> | 3 | 4 | u = 
$$\sqrt{42^2 + 56^2 - 56}$$
 | 4

 $\sqrt{nn + \frac{kk}{4} - \frac{k}{2}} = 14$  = the leffer.  $\sqrt{42^2 + 56^2} - 56 = 14$  the leffer. And 14 + k = the greater Extreme. And 14 + 112 = 126 the greater. And for Proof  $14 \times 126 = 42^2 = 1764$ .

Problem 2.] To divide a Line into extreme and mean Proportionals: or (which is one Use thereof) to find the side of the Dodecalii 426

hedron by having that of the Octahedron given, whereof this is the greater proportional part.

A Line is thus divided, when the Square of the greater Part is

= the Rectangle under the whole Line and the lesser Part.

Problem 3.] A Merchant fold a Ship for l. 2400, and gained after the Rate of what the Ship cost by laying out 10000 Pounds: What did the Vessel cost him?



Problem 4.] Admit bin (Fig. 9. Plate C.) to be the Curve of an Hyperbola, and that there are given

t (=io) the Latus transversum=7.4

l (=ib) the Latus rectum=1.76

o (=zb) the greatest Ordinat = 4.68

What is the Length of the Abscissa, (iz) for which I put u because unknown?

$$\begin{array}{l}
1 & 0 = lu + \frac{luu}{t} = \text{the Pro-} \\
\text{(perty of the Curve.} \\
2 & ltu + luu = 0 \text{ ot} \\
3 & uu + tu = \frac{0 \text{ ot}}{l} \\
4 & u = \sqrt{\frac{00t}{l} + \frac{tt}{4} - \frac{t}{2}} \\
= 6.7
\end{array}$$

$$\begin{array}{l}
4.68^2 = 1.76 \times u + \frac{1.76 \times uu}{7.4} \\
1.76 \times 7.4 \times u + 1.76 \times uu = 4.68^2 \times 7.4^2 \\
2d - by / uu + 7.4 \times u = \frac{4.68^2 \times 7.4}{1.76} \\
3 & u = \sqrt{\frac{4.68^2 \times 7.4}{1.76} + \frac{7.4}{4}} - \frac{7.4}{2} \\
= 6.7
\end{array}$$

Problem 5.] What Number is that, whose Square multiplied by 10, being added to its Biquadrate, the Sum makes 30251?

And for Proof  $13^2 = 169 \times 10 = 1690 + 13^4$  (= 28561) = 30251.

The last Canon for the Answer = u, is thus to be read: That if half n be deducted from the Square Root of  $k + \frac{nn}{4}$ , the Square Root of the Remainer is = u = 13.

Iii 2

Problem 6.]

Problem 6.] A Farmer left his Son and a Nephew 1. 400 to be so divided between them, that their Parts being alternately divided by each other, the Sum of the Quotients will be 30; but the greater part he devised to his Son: What did he leave to each?

Some make this Question, which I propose as above, to be solved by various Positions, others by the Doctrine of Surds: But I am sure it is most naturally reducible to the 2d of my 2 Cases of Quadratics before mentioned. And because I have not seen it done before, I shall insert the Solution at large as it is most easily understood, and that by the numeral Way; but shall wave the literal Method on purpose that the Reader may try his own Proficiency therein.



And

And  $\sqrt{35000} + 200 = \text{Son's Share} = l. 387.083$ ; and 400 - 387, 360 = 12.917

And for Proof 387.083 : 12.917=29.966; and 12.917 : 387.083=.034; and .034+29.966=30: which answers in every part the Requisites.

Problem 7.] What Number is that by which if we divide 20, and to that Quote add 4 times that unknown Number the Sum is 24?

I put 
$$b=4$$
,  $t=20$ ,  $c=24$ .

 $\frac{t}{a} + ab = c$ 
 $t+aab=ac$ 
 $aab-ac=-t$ 
 $aa - \frac{ac}{b} = -\frac{t}{b}$ 
 $a - \frac{ac}{2b} = \sqrt{-\frac{t}{b} + \frac{cc}{4bb}}$ 
 $a - \frac{c}{2b} = \sqrt{-\frac{t}{b} + \frac{cc}{4bb}} = -\frac{t}{2b} = true$ 

(Answer = 5 = 5 =  $a$ 

nave inserted this last Question that the Learner may see how to manage when the 2d Term (or the known Number multiplied in the Root) is a Fraction; as in the 4th Step foregoing.

#### III. The Resolution of Questions which require various Positions.

Having in Sea. 9, and 10. given Rules for solving Simple and Quadratic Equations; there was no need in Sea. 11. that I should repeat any thing farther than what I have done in the middle Column of Rules: But in this Head of various Positions having said nothing thereon before, I shall make it as plain as I can.

1. Then

1. Then by various Positions we mean Questions which have more Numbers than 1 sought for, and are discovered by assuming a Vowel

for each Number fought.

2. And we proceed in the Work first with one unknown Number, not regarding the rest but as known: And when we have found the first unknown Quantity equal to some others, we omit that Quantity, and take instead thereof what it is equal to. Examples, and Rules thereupon, will make the matter plain.

Problem 1.] There is a Composition of 20 Integers, whose total Value is 82; but there are 2 different prized Ingredients in the 20, 1 of 4, the other of  $4\frac{1}{4}$ : How much of each Simple is there in the said Composition, and what the Value of each Ingredient in the whole of it, to make up the 82?

I put 
$$q=20$$
,  $4=k$ ,  $4\frac{1}{4}=n$ , and  $82=t$ .

Rules for the Operations.

| u = the Quantity at 4 | Operations. | 2 | 4u+4\frac{1}{4}=82 | 3u=82-4\frac{1}{4}a | 4u=82-4\frac{1}{4}a  appears the Canon to find the Quantity at  $4\frac{1}{4}$ , viz.  $\frac{82-80}{4\frac{1}{4}-4}$ =  $2\div\frac{1}{4}=8$ . and 20-8=12=a.

For Proof of which, 12 at 4=48; and 8 at  $4\frac{1}{4}=34$ : Now 48+34: =82 = the total Value.

Problem 2.] A Person dying, left by Will to 2 Sons each a Sum of Money; so that if to 5 times what he left the elder you add 3 times what

what he gave to the younger, the Sum will be 1675: And if from 7 times the Share of the elder Brother you deduct 8 times the Share of the younger, the Remainer will be 210: What Sum did the Father leave to each?

I put 
$$s = 1675$$
,  $d = 210$ ,  $k = 5$ ,  $n = 3$ ,  $m = 7$ , and  $t = 8$ .

And for Proof  $230 \times 5 + 175 \times 3 = 1675$ . And  $230 \times 7 - 175 \times 8 = 210$ , as per the Question.

Problem 3.] A Surveyor having measured three Fields of Enclofure, hath lost the Contents: But remembers, that if 847 Acres be
added to the 1st, the Sum will be equal to that of the other two
Fields; if 847 Acres be added to the 2d Enclosure, the Sum will be
double

double to the Content of the 1st and 3d; and if 847 Acres be added to the 3d Field, it will make treble the 1st and 2d: How many Acres is in each Field?

I put a = 1ft, e = 2d, u = 3d, and k = 847.

Now  $\frac{k}{11} = a$  the 1st Field = 77 And for Proof, 77 + 847 = 924 = 385 + 539 = the 2d and 3d.  $\frac{5k}{11} = e$  the 2d Field = 385 = 2d and 3×2.  $\frac{7k}{11} = u$  the 3d Field = 539 = 1st and 2d×3.

Notes

Notes on the three Operations to the last three Problems above.

The middle Column has such plain Directions, as may suffice a docile Reader; but that I may render every thing plain, I shall observe that

In the first Operation, every Step is as easy as in common simple Equations, till you come to the fixth Step, which is formed thus:

Since u (an unknown Quantity in the 5th Step) is found  $=\frac{t-an}{k}$ , and fince u+a (the 2 Quantities of the different Ingredients in the 20) is equal to q=20; therefore that I may get rid of u, I take what it is equal to, and fay  $\frac{t-an}{k}+a=q$ , and then proceeding by

the common Rules laid down, I find  $a = \frac{t-kq}{n-k}$ , which are all known Quantities: and this Canon doth shew a = 8.

Therefore u must be 20 - 8 = 12. Or you may find it by a more artificial way, by having recourse to the 5th Step, where  $u = \frac{t - an}{k}$  ergo  $u = \frac{t - 8n}{k}$ , which you'll find u = 12.

In the 2d Operation, I proceed as in common simple Equations to the 4th Step, and there, because  $u = \frac{s-an}{k}$  I omit u, and take what it

is equal to,  $\frac{s-an}{k}$ , which according to the Tenor of the Question being multiplied by m, and made less by at, the Remainer is =d; and so proceeding by the usual Rules, as before taught, I find  $a = \frac{ms-dk}{mn-kt} = 175$ : And if you have recourse to the 4th Step, and instead of an there, put 175n (a being found a = 175) you will have  $a = \frac{s-175n}{k}$ , or a = 230. And

In the 3d Operation, the three first Steps are composed according to the very Words of the Problem, and the 2d part of those Steps are the same, only having k transposed towards the right, there is shew'd what the 3 several unknown Quantities are simply equal to.

Now for the 4th Step I argue thus: Confidering that in the 2d Step e = 2a + 2u - k, and that a is = e + u - k, therefore e = 2e + 2u - 2k (which is twice the first Step, = 2a in the 2d) + 2u - k, which are the rest of the 2d Step.

Kkk

Which

Which 4th Step is in the 5th reduced to 3k-4u.

Then I proceed to discover the Value of u by composing the sixth. Step, thus: u being in the third Step towards the right hand = 3a + 3e - k; and the 1st Quantity in what a is =, being e; and e being in the 5th Step = 3k - 4u; therefore I say a a's is sirst  $\frac{1}{3}$  times 3k - 4u, i.e. 9k - 12u: and the Remainer of what a is =, being u - k, ergo that  $\times$  by the a, I say a = 9k - 12u + 3u - 3k. Now the rest of what a is a being a a, and a in the said a therefore (to make the Process plain) I repeat a or a or a in the said a therefore I say in the 6th Step a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a in the said a i

Lastly, a being = e + u - k; I say it is = e in the 9th Step, + u (in the 8th Step) -k, or  $a = 2k - \frac{21k}{11}$ , which is  $= \frac{k}{11}$ .

SECT. XII. Concerning Cubical Equations.

A Cubical Equation may be known by having commonly (for the first Term) the Cube of the unknown Quantity; the 2d Term, being the Square of that Quantity multiplied in a Co-efficient or some known Quantity; the third is the unknown Quantity sought in a known, as thus and the like; uuu + cuu + du = k, u being the Root or Quantity sought.

A Cubical Equation is formed from 1, 2 or 3 Binomials, &c. involved or multiplied in each other; representing either a compleat Cube or Parallelopiped, whose Base is either a Geometrical Square, or a Parallelogram: in which last, if u+b be the greater Side, u-b= the lesser Side of the Base, and u+d= the Length; the Quantities multiplied produce this Cubical Equation, viz. uuu+duu-bbu-bbd=k the Content. To find the Dimensions, which depend on the Value of u, it must be done by the Rules following.

2. In a Quadratic Equation, by the Methods of Resolution foregoing, you gain 1 Root; and by dividing the Equation given by that Root you find the other, if there be 2 different Roots.

Thus in the Equation uu-16u=-63, being refolved gives u=9: And if the uu-16u+63 (the 63 being transposed) be divided by u-9 (the 9 being transposed) the Quote will be u-7 or u=7. So are u-9 and u-7 found the 2 Roots or Dimensions of that Equation, i.e. 9 and 7.

3. I. To resolve Cubic Equations by Tentation and Depression.

Having by tryal, as in the following Example, found I Root, you must divide the Cubic Equation given by that Root, and that will depress the Equation into a Quadratic; which Quadratic you may find the Roots of, as is shewn last above.

Example 1.] What are the real Roots of this three Dimension

(or Cubical) Equation uuu-57uu+1040u=6000?

To answer this; I must first find by tryal a Root, which being multiply'd, &c. according to the given Equation, will be 6000.

To which end I suppose 10 to be 1 Root = u.

Then uuu (or  $10^3$ ) is = 1000 Sum = 11400 Refts 5700 2d Term -57uu (or  $57\times10^2$ ) deduct. = 5700 The Remainer should be 6000, but 'tis only 5700; therefore the 10 supposed is too little.

2dly, I suppose therefore a Root to be 12 = u.

Then 
$$uuu$$
 (or  $12^3$ ) is =  $1728$    
+  $1040u$  — =  $12480$  Sum =  $14208$  Refts 6000  
-  $57uu$  (or  $57 \times 144$ ) — — — =  $8208$  So that I find  $12=u$  or  $u=12$  to be 1 Root.

By which Root having divided the Cubic Equation given, I depress it to the Quadratic Equation uu-45u=-500. Which Equation being resolved, gives u=25, or u-25 for another Root. And dividing that Quadratic by this u-25, the Quote or 3d Root is found u-20, or u=20. See the Operation.

$$uuu - 57uu + 1040u - 6000 (= uu - 45u = 500 = the Quote or Quadratic.$$

$$-45uu + 1040u - 45uu + 540u$$

$$-45uu + 540u$$

$$-6000 - 500u - 6000 - 500u - 6000$$

$$uu - 25uu - 45u + 500(u - 20u - 20u - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu - 25uu$$

So that the 3 Roots being found 12, 20 and 25; you may prove the Truth by putting u equal to each, transposing the Roots, and multiplicaths Quantities are in another

plying the Quantities one in another: for the 2d Rectangle will be the Cubical Equation given, transposing the Member next the right hand of the last Product.

Kkk 2

1. Note,

-20*u* + 500

O

1. Note, That in a Cubic Equation if the fingle Root or Square of the unknown Quantity be multiply'd in more than one known Quantity, with Signs between the Rectangles, as several Members of the Equation; where the faid unknown Root is found foured in 2  $\mathfrak{S}_{\ell}$ , such Members, they make but 1 Term: and fo do all those where the unknown Root is found fingle make another; as  $u^3 - u^2b - u^2d + uc + ur$  $+d^3=o$ . In this  $-u^2b-u^2d$  is but I Term of the Equation, and uc+ur is one other Term.

2. Note, That in the Cubic suppose  $u^3 = uc + ur + d^3 = 0$ ; the The Proof of the foregoing Work. u - 25u --- 20 uu --- 25 u -20u + 500uu - 45u + 500uuu — 45 uu + 500 u -12uu + 540u - 6000*uuu*—57 *uu* —1040*u*—6000 or uuu-57 uu + 1040 u = 6000 =(the Equation given, for Proof.

2d Term here is faid to be wanting, and uc+ur is the 3d Term. Example 2.] Admit this Equation were to be refolved; uuu-30.5 uu + 309 u = 1039.5: I suppose 1 Root = 12. and working as

by the Equation, I find

 $u^3 = 12^3 = 1728$  The Sum as per Addition of Algebra  $-30.5u^2 = -4392 >$  is 1044, which is more than the +309 u = 37081039.5

2dly, I therefore suppose a lesser Number, viz. 11 = a Root, then  $u^3 = 11^3 = 1331$  7 The Sum of which is = 1039.5 = the -30.5 uu = -3690.5 > Sum in the Equation given: fo that +309 u = 339911 is 1 Root.

3dly, Dividing the Equation given (with the 1039.5 transposed) by u-11. I depress it to the Quadratic uu-19.5u=-94.5.

4thly, This Quadratic being refolved is  $u = \sqrt{95.0625 - 94.5}$ 

+9.75 = 10.5 a 2d Root.

5tbly, Dividing this Quadratic Equation by the 2d Root = u or u-10.5, the Quote or 3d Root is found 9. And for Proof, the 3 Roots 9, 10.5, and 11, (putting each = u, and transposing it) multiplied one in another, will give the Cubic Equation proposed to have its Root extracted, viz.  $u^3 - 30.5 u^2 + 309 u = 1039.5$ 

From these 2 Examples it may be observed, That whether you happen to pitch upon the least Root (upon your Tryals) as in the first Example, or upon the greatest of the 3, as in the 2d Trial of the , 2d Example; the Method of Process is the same: and so it would,

if you happen first upon the middle Root.

These 2 Examples are of Regular Cubics having all their Terms. 4. I shall give one Example of an Irregular Solid Equation: as

fuppose uuuuu + .10uu = 20.61293.

To resolve this, I can easily see that 2 is more than the Root; for 10 times the Square of 2 (alone, without the Sursolid) is 40. Therefore I take 1.5 for the Root, and (working with that according to the Equation) I find it too great; I therefore try 1.4, which is also a small matter too much: so that working according to the Equation with 1.3, I find it just = 20.61293. So that I discover the Root to be 1.3 = u. for  $1.3^5 + 10 \times 1.3^2 = 20.61293$ .

5. Biquadratic Equations are resolved after the same manner as the Regular Cubics in the 2 first Examples: First, By supposing a Root till you pitch upon the right, and depressing the Biquadratic thereby into a Cubic; and then finding another Root by Tentation whereby to divide the Cubic to depress it to a Quadratic, &c. as in the said 2 first Examples above for all Regular Biquadratics (or such as have all their Terms.) Thus, for Example, to resolve or find the Roots of the Biquadratic uuuu—29 uuu—308 uu—1420 u=2400.

(1.) By Tentation I find 8 to be i Root, and dividing the Equation given by u-8, I depressit to the Cubical Equation uuu-21uu

+140u = 300.

(2.) I make Tryal again, and find 10 to be another Root; fo dividing the Cubic Equation by u-10, I depress it to the Quadratic uu-11u=-30, which being resolved, gives a 3d Root or u=6.

(3.) Dividing the faid Quadratic Equation by u-6, I find the Quote to be =u-5 or u=5, the 4th Root: so are 8, 10, 6 and 5 the 4 Roots required.

There are 3 other Ways of resolving or finding the Roots of all Cubic and Biquadratic Equations, done more Mathematically: as,

II. By Substitution, Deduction, and Division.

III. By way of Construction, with the help of the Parabola and Circle.

IV. By Approximation or Converging Series.

II. To resolve Cubic Equations by Substitution.

It has been shewed how to resolve Quadratics by Substitution, and much after the same manner is a Canon sound whereby to re-

folve Cubic, &c. Equations.

Example 1.] Admit the Value of u is required in this following Equation, viz. uuu + duu - gu = k, or uuu + 120uu + 300u = 3714544: Here 'tis plain that d is put for the given 120; g for 300; and k for 3714544.

The first Step toward the Answer is to substitute b + c in the place of u in every Term of the Equation, in the Power that (u) is put.

Then

Then will this be  $\begin{cases} bbb+3bbc+3bcc+ccc \text{ (instead of } uuu) \\ bbc Canon for \\ bbd+2bcd+ccd \dots \text{ (instead of } duu) \\ Resolution. \\ bg-cg \text{ (in the place of } -gu) \end{cases}$ 

The whole Process and Rules are in the Margin, whereby u is found = 124.

- 1. Having your Canon before you, and also that d = 120, g = 300, proceed as the Canon directs you, first pointing over every third after the first Digit of the given Number; the 3 Points shewing the Root sought, will consist of 3 places, and therefore the 1 (= the first b) is 100.
- 2. You must compose a Number to deduct from that given, by taking those in the Canon which have not c found in them; as  $b^3 + bb d bg = 2170000$ , which deducted reduceth the Number given to 1544544, which is your first Dividend, as by Step 7.
- 3. Take for a Divisor (in order to discover the Value of c) the Sum of the Numbers answering to the Sumbals mixed with or x by c, such are those in the 8th, 9th, 10th, 11th, and 12th Steps; which Sum is

54120

```
-bg - cg (in the place of -gu)
  An Example of the Resolution of a Cubic.
 1|3714544 (100 = b)
 2|1000000 = bbb|
 31200000 = bbd
 4|2200000 = bbb + bbd = 1 + 2d Step.
    30000 = -bg deduct from the 4th.
 62170000 reils, which deduct from the 1st Step-
 7 1544544 :== the 1th -- the 6 Step := by 13
    30000 = 3bb
    ..300 = 3b
    24000 = 2bd > Add.
10
    ..120 = d
I 2
    -300 = -g
   ÷ 54120 = the Sum, or Divisor.
            (20=c
   600000 = 3bbc
15 | 120000 = 3bcc
|16|...8000 = ccc
                    Add.
17 \mid 480000 = 2 b c d
    48000 = ccd
18
19 - 6000 = -cg
20/1250000 = Sum deduct from the 7th Step.
    294544 ÷, rests of b, or 1st Step.
           Now 120 = b
     43200 = 3bb
22
     ..360 = 3b
23
     28800 = 2bd \text{ } Add.
24
     ..120 = d
25
26
     -300=-g
    -72180 = Sum, by which to: the 21 Step.
                (4=c)
28
    172800 = 3bbc
   ..5760 = 3bcc
29
   \dots 64 = ccc
30
                    >Add.
    115200 = 2bcd
31
    ..1920 = ccd
32
    -1200 = -cg
   294544 = Sum, deduct from the 21 Step.
          o rests.
```

54120 your Divisor, which may be had in the 6 Figures next the left hand of the Dividend 2 times, (which 2 must be 20, because it is the middle of the 3 that will be in the Root, as is observed above) this 20 is = c.

4. You must not make any farther Use of the Quantities in the 1st, 2d, and 4th Steps, but having found the Value of c, you proceed to find your 2d Subtrahend in the 20th Step with the several Quantities in the Canon; which you see in the 14th, 15, 16, 17, 18,

and 19th Steps.

5. And having found your 2d Divisor by the very same Quantities that you had the 1st, (and observing that here b = 120, and not to 100) you may easily finish the Operation by the Example, which is only a repetition of the Method above shewed, and you find the 3 several Roots put together is 124 = u required: which I shall prove both from the Equation given, and by the Canon, to be the true Answer.

1. By the Equation 
$$u^3 = 124^3 = 1906624$$
  
 $+ 120 uu = 1845120$   
 $- 300 u = - 37200$ 

Sum = 3714544 = k in the Equation given.

2. The Proof by the Canon bbb + 3 bbc + 3 bcc + ccc + bbd + 2 bcd.

3714544 refts = k

Biquadratics are refolved after the fame Method, raifing the Power of b+c (which is substituted) accordingly in making the Canon; and proceeding by that, as has been in the last Example observed.

Example 2.] Of an irregular Cubic Equation, as suppose uuu+32334u=823975=k, or  $u^3+fu=k$ .

I. Make your Canon as before, substituting b+c in the 2 Mem-

bers of the Equation (as u is in power) in the place of u.

2. Where the Equation has not all its Terms, and the Co-efficient is large, you must put such a Number first in the Root, as being

ing multiply'd by the Co-efficient, and added to its own Cube, the Sum will be as near as possible to, and less than that given on the right side of the Equation; as in the Example finding 50 = b much too great (as in the 4th Step) I try 30 = b, which I still find too much, as in the 7th Step. Then putting 20=b, I find its Cube as in the 8th Step, and the Co-efficient 32334 by 20, the Sum is deducible as in the 10th Step from the first, and then you proceed with the Remainer as in the last Example, and the Value of u=25. 3. It sometimes happens where the Co-ef-

ficient is very large, and the Root of the highest Power (or Va-Iue of u) is fmall, that you must make that

```
The Canon is bbb+3bbc+3bcc+ccc+bf
+cf=k.
   823975 (50=b (30=b (20=b
   125000 = bbb
 3|1616700=bf
 41741700 = bbb + bf > 1ft Step,
              - and cannot be deducted.
     27000 = 30^3 = b^3
   970020 = bf
   997020 = b^3 + bf > 1ft Step.
      8000 = b = 20^3
   646680 = bf
   654680 deduct from the 1st Step.
    169295 ÷ rests of the 1st Step.
11
      1200=3 667
I 2
        60=3b > Add.
13
     3^2334 = f
14
15: 33594=the 3 last Steps a Divisor.
                   (5=c)
16
      6000 = 3bbc
17
      1500=3bcc(
                   Add.
18
       125=ccc
|19| 161670=cf
20 169295 Sum, deduct from the 11th Step.
         o rests.
```

Figure 1st put in the Root one place (or more) less than the Points over the Number given (as in the 1st Step above) denote. See the following Example.

Example 3.] Admit  $u^3 + 82334u = 2073975$ , what is the Value of u? 82334 being = f, and b + c substituted in the room of u.

Here

Here 'tis plain the Numb. given admits of 3 Cubical Points, but the Root u (or b+c) is but 25.

1. For if I should put 1 as the Root of 2 next the left hand; that I (there being 3 Points) must be 100. Now if I multiply the Co-efficient by 100, i.e. if I suppose two Cyphers put towards the right hand of it, it will be 8233400, w<sup>ch</sup> (without the Cube of the 100, which must, as per the Examples above, be added) is much too great to be taken from the 2073975 in the first Step.

```
The Canon l = b^3 + 3b^2c + 3bcc + c^3
    as before. \( \frac{1}{2} + bf + cf \)
 1|2073975 (20 = b)
      8000 = b^3
 3|1646680 = bf
 4^{1654680} = Sum, from the 1st Step.
    419295 rests of Step 1st.
 5
 6
       1200 = 3bb
 7
8
        60 = 3b
     82334 = f
 9
     83594 = Sum or Divisor.
               (5=c)
      6000 = 3bbc
10
      1500 = 3bcc
11
12
       125 = ccc
13
   411670 = cf
   419295 = Sum, from the 5th Step.
14
         o rests.
```

2. Seeing a lesser Digit than I cannot be put first, or in hundreds place in the Root; I must therefore conclude, that the Root will have but two places.

3. I therefore suppose 10 in the Root, by putting 1 Cypher towards the right hand of the Co-efficient (to represent bf) which would be 823340, which (by doubling the 8 next the left hand I find 16) may easily be taken from 20, (next the same left hand of the Number given) I therefore put the double of 10 (or 20) in the Root and so proceed; all the difficulty in this case being to put the first true Figure in the Root: to which end I have not seen any Rules that contribute to do so easily and certainly as these above.

LII

Example 4.] Of Resolving Cubics by Substitution, &c.  
Admit 
$$uuu+350u^2=1225125$$
. Or that  $uuu+duu=k$ ; and that  $b+c$  is put =  $u$ .

This

This Example is of an irregular Cubic composed of 2 Members different from the former; where tho' there be 3 Cubical Points (or Ternaries) yet the Roothas but 2 places, viz. 55.

For if we suppose b = but i in the 3dplace (or 100) you will find bbb + bbd to be much more than can be taken from the Numb, pointed; and 10 = b is much too little: therefore I try 50=b, and find that to be the Root, that produces (by its Cube added to bbd) the next Number to and less than 1225125 given, and therefore I proceed as by the Canon, as directed in Example the 1st, last foregoing.

The Canon is  $bbb + 3bbc + 3bcc + ccc = u^3$  bbd + 2bcd + ccd - dbbd + 2bcd + ccd = duu. 1 1225125 (50=b 125000 = bbb875000 = bbd4!10000000 = Sum 225125=1st-4th Step, a Dividend. 6 7500 = 300150 = 3b7 8 35000 = 2 bd350 = d91 10:+43000=Sum, a Divisor. (5=c)37500 = 3bbcII 12 3750=3bcc 13 125=666 175000 = 2bcd8750 = ccd225125=11+12+13+14+15th Steps rests o 5th — 16th Step.

III. To resolve Cubic Equations by way of Construction. Vid. Plate A. Fig. 27.

This being done by the Parabola and Circle, it is necessary to shew the making of the Parabola, &c.

A Parabola is one of the 5 Sections of a Cone, being made by cutting a Cone by a Plane parallel to the Side which is opposite to that wherein you cut; and it is Geometrically formed thus:

1. Draw the Line  $(tvF \oplus dy)$  the Axis of the Section. Then cross the same at right Angles with a Line at pleasure, as (ap) and according as you would have the same (or if the ap, which is called the

Abscissa.

the Latus restum, or Parameter, be given) suppose 1 Inch, set half an Inch from F to a, and to p.

Then take half of one of those Halfs (or  $\frac{1}{4}$  of the Parameter, or of 1 Inch) and set it from F to v, and from v to t, so is F = the

Focus, and v the Vertex of the Parabola.

Then draw as many Lines as you please parallel to ap (as ool,  $\mathfrak{Sc}$ .) with a Ruler on purpose for drawing parallel Lines; and the Distance t to o in the Axis extends from F the Focus, to l in the same Parallel forming the Curve  $(vplll, \mathfrak{Sc}.)$  which you may draw through the Points  $(l, l, \mathfrak{Sc}.)$ . And having found the Curve on one side of the Axis, as vl, set it off on the same Parallel, on the other side of the Axis, as vo, vo,  $\mathfrak{Sc}$ . and draw the Curve (oov) so is the Section sinished, and aFp is the latus restum, ool an Ordinat Applicate (or whole Ordinat) oo the Semi-Ordinat, (which is commonly called the Ordinat) any vo in the right Line is called an

Now suppose a Cu-  
bic Equation were 
$$\begin{cases} uuu + buu - pu - q = 0 \\ 0 & uuu + 3uu - 2u - 2 = 0 \end{cases}$$
 so 
$$\begin{cases} b = 3 \\ p = 2 \\ q = 2 \end{cases}$$

Ist, To find the Value of u. From the same Scale by which you set off the Latus resum of your Parabola, take 3 (the Co-efficient multiply'd in the Square of the Root sought) and applying it at right Angles to the Axis (vy) towards the right hand, because +3 it will cut b in the Curve.

2dly, Draw a Line at pleasure cutting a supposed Line (vb) in

the middle at right Angles, as q q.

3dly, Where that Line intersects the Axis, as at  $\Theta$  fet half p downward, because -p, viz. 1, from the same Scale extends from  $\Theta$  to n.

4thly, On n erect a perpendicular Line n m which will cut the infinite Line q q in r.

5tbly, From r fet half q = 1 towards the right hand because -q, and it extends (by the same Scale) from r to s, which is the Center

of the Circle fought.

6thly, Extend the Compasses from s to b, and describe the Arch  $\lambda e b$ , which cutting the Curve at e the perpendicular Line e e measured on the same Scale, gives u = 1, which is +1 or affirmative, because the Section e is in the right hand part of the Curve. See Philosophical Transactions, N° 188 and 190; Dr Halley's Method.

L11.2

SECTI



### SECT. XIII. Approximation or Converging Series.

What is meant hereby, is shewn under the words Converging Series in the foregoing Alphabetical Account at the beginning of this Chapter, and will be farther explained by the Rules and Examples following:  $as u - u^2b + u^3b^2 - u^4b^3 + u^5b^4 - u^6b^5$ , &c, is a Series; which I multiply by  $u^2 - b^2$  as followeth.

$$\frac{u - ub + u^{3}b^{2} - u^{4}b^{3} + u^{5}b^{4} - u^{6}b^{5}}{u^{2} - b^{2}}$$

$$u - b + u^{3}b^{2} - u^{2}b^{3} + u^{3}b^{4} - u^{4}b^{5} + u^{5}b^{6}, &c.$$

$$- u^{5}b^{2} + u^{2}b^{3} - u^{3}b^{4} + u^{4}b^{5} - u^{5}b^{6}, &c.$$

$$u - b = \text{the Product.}$$

Here it is plain, that if the Series was continued never so far, the Negatives would destroy the Assirmatives: But my intent in this Section is not to shew the way of representing or expressing by a Series, a Product, Root, &c. for though that be a pretty Speculation, yet 'tis not so easy to discover the Roots, &c. therefrom. But I chuse rather here to shew the great Use of Converging, in finding with much ease and expedition the real Roots themselves.

### H. To find the Square Root, as suppose of 13.

Here I will put s for the Square or Surd Number given; r = the rst two Figures in the Root; a = the 2d Approach to the true Root; and e = the 3d Approach; the several Approaches being the coming nearer and nearer to the Truth of the Root by so many Divisions, by 1 of which several places in the Root are gained, as is shewed under the fifth Head following.

If in the Example above it be considered what Number squared will be next to and less than 13, or what 2 Digits will be next to 13.00 and put r for those 2 places it will then be s-rr-2r=a the 2d Approach.

or in Numbers  $13 - 3.6^2 \div 3.6 \times 2 = .00555 = a$  the 2d Approach, 36. = r.

Digitized by Google

 $13-3.60555^2 \div 3.60555 \times 2 = .00000127546 = e$ , and r+a+e. Or  $3.6 \div .00555 \div .00000127546$  which is = 3.605551275464 -= the Square Root required to 13 places (but fee more under General Head the 5th following). Or e will be = s-rr-2ra-aa

 $\frac{s-rr-2ra-aa}{2r+2a}$  which facilitateth the Operation as to fquaring 3.60555,  $\mathfrak{S}c$ .

Or instead of 3.6 at the 1st Approach, you may, as in the common Way of Extraction, put 3, whose square is next to and less than that of any other Digit deducible from 13.

Prop. 2. To find the Square Root of a larger Number, as of 371.00071 = s, &c. as before.

$$371.00071 = s$$
.  $19 = r$  the 1st Approach.  $-361 = rr$ 

10.00071  $\div 2r (= 31) = .26 = a$  the 2d Approach, and r+a=19.26.

Again 371.00071 — 19.26<sup>2</sup> = .05311  $\div$  19.26 x 2 = 0013787 =  $\epsilon$  the 3d Approach.

And r + a + e = 19 + .26 + .0013787 + = 19.2613787 =the Root fought.

So by the fame Rules of Converging Series the Square Root of 4712345 is found 2170.7936+

# III. Approximation, or the Extraction of the Cube Root by the Method of Converging Series.

I shall also proceed in this with as much Plainness as I can, ob-

viating what only is to the purpose.

1. Suppose then I would know the Cube Root of 13 = 5, for the first in the Root which is known here I put r. Then the Process, as in common Extraction, (which is the best way in this Case, as being most accurate and certain for the 2d in the Root) will be

 $s-r^3 \div 3rr = R = .3$  the 2d in the Root. Or supposing 2.3 put in the Root together (for I can easily see that 2.3 is the Root of the next Cube Number to and less than 13.000) it will be as before to find the 2d Approach, 2.3 = r = the 1st Approach.

Then  $s-r^3 \div 3rr = .05 =$ the 2d Approach, and now 2.35 = R. And  $s-R^3 \div 3RR = .001333 + <math>s =$ the 3d Approach. So is 2.351333 + s =the Root.

Or

Or in Numbers more plainly thus;

$$13-2.3^3 (=12.167) = .833, \div 2.3^2 \times 3 (=15.87) = .05$$
 the 2d Approach.

And  $13-2.35^3 (=12.977875)=.022125 \div 2.35^2 \times 3 (=16.5675)$ =001333 += the 3d Approach.

And the 1st Approach + the 2d + the 3d = 2.351333 +, which is the Cube Root of 13, done with near 200 Figures fewer than in the common Way of Extraction.—But see Head 8. following.

2. And if we put r = the known part of the Root, and a for each new Approach, you have

$$rr + 2ra + aa =$$
 the Square of  $r + a$   
 $r^3 + 3r^2a + 3ra^2 + a^3 =$  the Cube of  $r - a$ 

So likewise  $r^4 + 4r^3a + 6r^2a^2 + 4a^3r + a^4 =$  the Biquadrate of r + aAnd  $r^5 + 5r^4a + 10r^3a^2 + 10r^2a^3 + 5ra^4 + a^5 =$  the Surfolid of r + a

And as in the Square and Cube Roots it appears to be (putting s for the Number given to have its Root extracted)

 $s - rr \div 2r = a$  the feveral Approaches in the Square Root.  $s - r^3 \div 3rr = a =$  the Approaches in the Cube Root.

So for the Biquadrate and Sursolid Roots it will be

 $s-r^4 \div 4r^3 = a =$  the Approaches to the Biquadrate Root. And  $s-r^5 \div 5r^4 = a =$  the Approaches to the Surfolid Root.

Approaches Squared Cube = 
$$8 - r6 \div 6r5 = a$$
  
Lot the Squared Cube =  $8 - r7 \div 7r6 = a$   
Squ. Biquad. =  $8 - r8 \div 8r7 = a$   
Cubed Cube =  $8 - r9 \div 9r8 = a$ 

Hence it appears, That the known part of the 2d Quantity next the left hand in the abovementioned Powers of r + a, is your Divisor. I come next,

- IV. To illustrate by Numeral Examples the Extraction of the Biquadrate and Sursolid Roots by way of Converging Series.
- 1. To find the Biquadrate Root of 314. The Process is (the 1st r being = 4)

1/f,  $314-r^{4}$  (= 256) = 58 ÷ 4 $r^{3}$  (= 256) =.2=a. So is 4.2 a new r.

2dly,  $314-r^2$  (=311.1696) = 2.8304 ÷ 4 $r^3$  (=296) = .009; fo is 4.209 = a new r.

And by repeating the same Method with that last r, you have 4.2099 + for the Biquadrate Root of 314.

2. To

2. To find the Surfolid Root of 314 (the first r=3) the Process will be

1st, 
$$314-3^5$$
 (=243)= $71\div 5r^4$  (=405)=.1=a. So is 3.1 a new r.

2dly, 
$$314-3.1$$
,  $(=286.29) = 27.7185 \div .461.75$   $(=5r^4) = .05$   
= a, and  $3.15 = a$  new r.

3dly, 
$$314-3.15$$
,  $(=310.1364) = 3.8636 \div 5 r^4$   $(=492.28) = .007 = a$ . So is  $3.157 = a$  new  $r$ .

And proceeding in the same Method with that new r, the Surfolid Root of 314 is found 3.1578 +

But there is yet

### V. Another Way of Converging (for Example) to the Square Root.

For as in the 1st Example in the Square Root in this Section the Canon was (putting s = the Square Number or Surd given, and r for each Approach to the true Root)  $\frac{s-rr}{2r} = r$  the 2d, &c. (or here

to a) so in this Method I am going to shew, the Canon is  $\frac{s+rr}{2r}$  = r the 2d,  $\varepsilon e$ .

Now suppose s=13, it follows that the first r (or Figure in the Root) is 3, so that  $13+3^2 \div 6 = 3.66 = r$  the 2d.

Note, The Divisors are 
$$13 + 3.66^2 \div 7.32 = 3.605955 = r 3d$$
.  
And  $13 + 3605955^2 \div 7.21191 = 3.60555129$   
the 1 next before.  $= r + 3605955^2 \div 7.21191 = 3.605555129$ 

From the last Example you may note,

1. That though the preceeding Number be false, yet by every Repetition of Process according to the Canon, it convergeth or comes nearer to the true Root or Value of r.

2. That the Places of the Digits in the feveral Approaches are true, according to the Progression whose Ratio is 2, and the 1st Term = 1. So Places.

And if the Operation were repeated, as  $3.60555129^2 + 13 = 3.60555129 \times 2$ , the Quote will give 16 places true in the Roots for

for every Approach affords double to that preceeding. But the Reader may chuse which of the two ways he likes as the best, this, or the first way, which I take to be somewhat easier and shorter in the Operations of Division.

Example 2.] Of this Way of Converging; to extract the Square Root of 29507710.4132345.

$$2r = 10) \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{545} - \frac{25}{5$$

VI. But to perform the last Operation by the Method first taught making a = each Approach, and t = the Total of the Approaches; it will fland thus:

$$\frac{s-tt}{2t} = a \frac{29507710.4132345 = s}{10)45 - - - 04 = a} \text{ and } t + a = t \text{ 2d} = 54$$

$$\frac{2950}{2916 = tt} \text{ and } t \text{ the 2d} + a \text{ the 2d} = t \text{ the 3d} = 5432$$

$$2t = 108) \frac{347}{237} - - \frac{(0032. = a \text{ the 2d}.}{t \text{ 3d} + a \text{ the 3d} = t \text{ 4th.}}$$

$$\frac{29507710}{29506624 = tt}$$

$$2t = 10864) \frac{10864 - - (0000.1000 = a \text{ 3d.})}{0132}$$

$$\frac{29507710.41323450}{29507710.41000000 = tt}$$

$$2t = 10864.2000) = .00323450000 (0000.00000297721 = a \text{ the})$$

$$1061660 \frac{4th.}{838820} \text{ and } a \text{ the 4th} + t \text{ the 4th.}$$

$$783260 \frac{227660}{227660} = 5432.100000297721 - a \text{ the}$$

This Method is shorter than the last (as I said before) because the Figures in the Approaches are not repeated by dividing: or the Sum of the 1st t and the a's is = the said Root.

Note, The Approaches are added as Decimals, or put so many Cyphers towards the right hand of each Approach as there are significant Places in the next subsequent Approach, and so add.

And as in the last Example the Operations in Division are shorter than in that next before; so the Canon for the Approaches (next after the 2 first, when the Squaring of the Approaches grows operose) does shorten the Work of Multiplication; or that Prop. of Euclid (I think 1, 2.) which says, That of two Lines (or Numbers)

103760 = the Squ. Root fought.

bers) if one be divided into any Number of Parts, the Sum of the Rectangles of one by the several Parts of the other, is = the Rect-

angle of one whole by the other.

But it being my Design here, only to shew how the large Multiplications for producing the 4th, &c. Approaches may be contracted; I shall explain the said Canon, which is grounded on another *Prop.* of *Euclid*, i. e. any Line (or Number) divided into two Parts; the Sum of the Squares of the Parts, more the double Rectangle of those Parts is = the Square of the whole.

So in the last Example putting 
$$t$$
 the 3d = 5432  
 $a$  the 3d = .1000  
 $Ergo\ aa + 2ta + tt = t + a^2$ 

There arises agreeable to the Canon under the 2d Head of Con-

verging toward the Square Root, this Equation.

Now whereas it would be a little tedious to square the whole of the 4th = 5432.1000 (especially if the Cyphers were significant Figures) I therefore always divide it into 2 parts just at the meeting of the Approaches, as t the 3d, and a the 3d, viz. into 5432, and .1000, then as the Canon directs.

.10 = a a  
1086.4 = 2 t a  
29506624 = tt in the last Approach before, (ready done.)  
29507710.41 = 
$$t + a^2$$
 = the Sum = 5432.1<sup>2</sup> = tt in the last Example.

In this Operation (this way performed) you fave the trouble of

working and inferting 12 Figures in 29.

And this later Method being used, after the 3d, &c. Approaches, does much facilitate the Operations. And thus I think I have made this matter shorter, more certain in the Approaches, and plainer than has been done before.

VII. Another

VII. Another Example of Approximation to the Cube Root shall be to extract the Cube Root of 33148648517294436663656267 = c

$$\frac{c-s^3}{3^{s^2}} = a = \text{the Theorem}$$
or Canon.

Root fought = r

Each Approach = a

And the Sum of the Approaches = s

- 1. Note, You always bring down so much of c, as will admit of s<sup>3</sup> to be deducted.
- 2. If any thing had remained upon deducting the last 33, you must have put Cyphers, and divided again by 3 32. See the Operation, and the Probation thereof.

This might be proved by the common Way of Extracting, tho with very many more Figures: I shall chuse therefore rather toprove it by Involution of the Root, multiplying by 2 Digits at once, as taught Compend. 6. Chap. III.

321234323 = r =the Root × 321234323

73883**89429**1381307588**9**7388389429
674592078**3**963702969

 $103191490273268329 = r^2$ 321234323 = r

2373404276285171567 4437234081750538147 2373404276285171567 2167021295738634909 309574470819804987

33148648517294436663656267 = c =the Proof.

3. Note, That the you put a Figure or 2 too many or too few, or too little or too great, next the right hand of your Quotients, it will be rectify'd in the following Operations, if you proceed as per the Theorm. But the fafeft way is not to proceed farther at one Division than in the Example.

VIII. To illustrate what is said in Note 3: I shall shew how the first Example of Approximation to the Cube Root foregoing in this 13th Section, is done by different Approaches and Figures to what it is there: And how to manage when Negative Numbers sall in, as when the Cube of a or s exceed the Cube given from which they are to be substracted.

Thus



```
Thus to extract the Cube Root of 13 = c Approaches = a
                                     Sum of the Approaches = s
                                                       Root = r
                       \frac{-3}{25^2} = a \text{ the 1st, 2d, } \mathcal{C}c.
                                       (.4 = a 2d. + a 1ft. = s = 2.4 = s
                          12.000 = 6
                          13.824 = 5^3
             33^2 = 17.28) -.824000 rests (-.0476=a the 3d. + a the 2d.
                             13280
                                                          =2.3524=5.
                              11840
                          13.
                         13.01767621824 = 5^3
       35^2 = 16.60135718)—.017676218240000 (—.0010647 = a the 4th.
                               10748610600 + 2.3524 = 2.3513353 = 5.
                                 7877962920
                                 12374200480
                         13.000010155464809237977 = 5^3
3s^2 = 1658633307907827)—.0000101554648092379770000 (—.000000612278=a
                                                                       the 5th.
                                   2036649617910150
                                                             +2.3513353
                                    3780163100023230
                                                            = 2.351334687722
                                     4628964842075760
                                                                          (=s.
                                     13116982262601060
                                                             = r the Root of the
                                     15045491072462710
                                                                 (c given propè.
```

T. It may be observed from the last Operation, That there are different Digits in every Approach, from those in the Approaches under the first Example of the Cube Root, in this Sest. foregoing. But 2dly, That tho' the Digits towards the right hand in these Approaches be wrong, yet those a's arising from the subsequent Operations proceed in each nearer and nearer to the Truth.

2. Although.

2. Although the Cube of s does all along exceed c the Cube Number given, and cannot therefore in the common way be substracted: yet by the Rules foregoing in Logarithms and Algebra, and under the word Negative (Arithmetic) in the Alphabetical Explanation at the beginning of Algebra, it may; (for Example) 13.824 may be taken from 13: but then there will always remain so much less than nothing to be mark'd with the Sign — as the Subtrahend (or Cube of s) exceeds (c) i. e. in this Example of deducting a' (the first) from c (or 13.824 from 13) there must remain —.824 to be divided by the last Approach squared and multiply'd by 3. And therefore that Quote must be negative, i. e. -.0476, which added to 2.4 = a the first (as per the Doctrine of Addition of Algebra) the Sum is = 2.3524. And fo forward of the Management of the other Negative Numbers or Quantities; as is taught in the Arithmetic of Negatives under the word Negative, at the beginning of Algebra, Chap. X. and also Sett. 2, 3, 4, 5. of that Chapter; and also Sett. 3. of Chap. VII.

These are the most brief and accurate Ways that I know of Converging Series, tho' I am not ignorant of others which some Authors have been fond of exhibiting; but they are neither so short nor accurate as the common way of Extraction. I shall give the Instance which they have exemplify'd in finding the Square Root of 133225.

Their Way by Converging Series.

$$133225 = c$$

$$r = 3) 66612.5 = \frac{c}{2}$$

$$-4.5 = \frac{rr}{2}$$

$$Divisor r = 3) 216 (6 = s)$$

$$18 = rs$$

$$+18 = \frac{ss}{2}$$

$$= 198 = Sum.$$

$$r = 36) 1812.5 (5 = s)$$

$$12.5 = \frac{ss}{2}$$

$$12.5 = \frac{ss}{2}$$

$$Root = 365$$

$$0$$

The common Way of Extraction.

$$\begin{array}{c}
133225 \ (365 = Root. \\
6) \ 432 \\
72) \ 3625
\end{array}$$

Done by putting down 20 Figures: Whereas their Way by Converging takes 48, besides the Signs and Symbols, and is therefore not worthy of Consideration.

Their

Their other Instance of Converging, in the Example of 2, takes 25 Digits more in the Operation than the common Way of Extraction, and is not true in the 3d Decimal Place: Wonderful new Invention!

SECT. XIV. Concerning Figurate Numbers, with universal Series's to exhibit and give all the Figurate Numbers of any Order.

I have added what follows because the Series's will be found very useful in a great many Cases, as how the Unciæ of Powers of a Binome are found; they are useful likewise in determining the Numbers of Combinations, and the Laws of Chances, &c.

### The Table of Figurate Numbers.

| Monads — — — I          | I   | I   | 1  | I   | I    | I   |
|-------------------------|-----|-----|----|-----|------|-----|
| Laterals — — I          | 2   | ´ 3 | 4  | 5   | 6    | 7   |
| Triangulars — — I       | 3   | 6   | 10 | 15  | _    | 28  |
| Pyramidals — — I        | 4 - | 10  | 20 | 35  |      | -84 |
| Triangular Pyramidals 1 | 5   | 15  | 35 |     | .126 |     |
| Pyramid Pyramidals— 1   | 6   | 2 I | 56 | 126 | 252  | 462 |

#### The Construction and Use of the Table.

The Monads, or Units, being added give the lateral Range, which are called Numbers of the 1st Order, as 1 and 1 is 2, and 1 is 3, and 1 is 4, &c. or 1, 2, 3, 4, 5, 6, 7.

The Laterals being added give the Triangulars: as 1 and 2 is 3, and 3 is 6, and 4 is 10, &c. so that these Triangulars 1, 3, 6, 10,

15, 21, 28, are called Numbers of the 2d Order.

The Triangular range being added give the Pyramidals or Numbers of the 3d Order: as 1 and 3 is 4, and 6 is 10, &c. giving 1, 4, 10, 20, 35, 56, 84.

The Pyramidals being added as 1 and 4 is 5, and 10 is 15, give 1, 5, 15, 35, &c. called triangular Pyramidals or Numbers of the 4th Order; and

The Triangular Pyramidals added as before, give the range called Pyramid Pyramidals which are Numbers of the 5th Order, &c.

The Names of these Numbers are analogous to the Cossic Numbers or Powers: For if in the side of an Equilateral Triangle there

be 2 Points..., the number of Points in the Triangle are 3 = 1 + 2 = the triangular Number of the lateral 2; if there be 3 points in the Side as ... the Number of Points in the Triangle are 6.

= the Triangular of 3; if 4 Points are in the Side as ..., the Number of all the Points are 10 = the Triangular of 4, and so in the rest. In the same manner, the Numbers in the Pyramidal Range will make the number of Points of which an equilateral triangular Pyramid may be supposed to consist, if it be imagined to be composed of Triangulars that are parallel to the Base, and that the Sum of all the Triangulars make up the Pyramid. That Number in the Lateral Range, which is the perpendicular Column over any Figurate Number, is called the Side; thus 5 is the Side of the Triangular Number 15, and 7 is the Side of the Triangular 28, and of the Pyramidal 84.

Problem 1. The Laterals given, to find the respective Triangulars? Note, a Period, (in these Cases) between 2 Numbers,  $\mathcal{C}_c$  is the same as x, = multiplyed by.

The Triangular of the Lateral 2 is  $2+1=3=\frac{2.3}{2}$  Answer.

Of 3, it is 
$$\frac{2.3}{2} + 3 = \frac{2.3 + 2.3}{2} = \frac{3.2 + 2}{2} = \frac{3.4}{2}$$
 Answer.

Of 4, it is 
$$\frac{3.4}{2} + 4 = \frac{3.4 + 2.4}{2} = \frac{4.3 + 2}{2} = \frac{4.5}{2}$$
 Answer.

Of 5, it is 
$$\frac{4.5}{2} + 5 = \frac{4.5 + 2.5}{2} = \frac{5.4 + 2}{2} = \frac{5.6}{2}$$
 Answer.

Universally therefore if the Side be l, the Triangular Number will be  $\frac{l \cdot l + 1}{2}$ , or if you suppose l = n - 1, the Triangular of n - 1

will be 
$$n$$
,  $\frac{n-1}{2}$ .

Prob.

Problem 2. The Laterals given to find the correspondent Pyramidals.

The Pyramidal of the Lateral 2 is 
$$= 4 = \frac{2 \cdot 3 \cdot 4}{2 \cdot 3}$$
  
Of 3 is  $= \frac{2 \cdot 3 \cdot 4}{2 \cdot 3} + \frac{3 \cdot 4}{2} = \frac{2 \cdot 3 \cdot 4}{2 \cdot 3} + \frac{3 \cdot 3 \cdot 4}{2 \cdot 3} = \frac{3 \cdot 4 \cdot 2 + 3}{2 \cdot 3} = \frac{3 \cdot 4 \cdot 5}{2 \cdot 3}$   
Of 4, is  $= \frac{3 \cdot 4 \cdot 5}{2 \cdot 3} + \frac{4 \cdot 5}{2} = \frac{3 \cdot 4 \cdot 5}{2 \cdot 3} + \frac{3 \cdot 4 \cdot 5}{2 \cdot 3} = \frac{4 \cdot 5 \cdot 6}{2 \cdot 3} = \frac{4 \cdot 5 \cdot 6}{2 \cdot 3}$   
Of 5, is  $= \frac{4 \cdot 5 \cdot 6}{2 \cdot 3} + \frac{5 \cdot 6}{2} = \frac{4 \cdot 5 \cdot 6}{2 \cdot 3} + \frac{3 \cdot 5 \cdot 6}{2 \cdot 3} = \frac{5 \cdot 6 \cdot 4 + 3}{2 \cdot 3} = \frac{5 \cdot 6 \cdot 7}{2 \cdot 3}$ 

And universally if the Side be l the Pyramidal of the Side will be  $\frac{l}{1}$ .  $\frac{l+1}{2}$ .

Or making 
$$n-2=l$$
, it is  $\frac{n}{1}$ .  $\frac{n-1}{2}$ .  $\frac{n-2}{3}$ .

Problem 3. The Lateral Numbers given to find the Triangular Pyramidals.

The Triangular Pyramidals of 2 is  $5 = \frac{2.3.4.5}{2.3.4}$ 

Of 3, it is 
$$\frac{2 \cdot 3 \cdot 4 \cdot 5}{2 \cdot 3 \cdot 4} + \frac{3 \cdot 4 \cdot 5}{2 \cdot 3} = \frac{2 \cdot 3 \cdot 4 \cdot 5}{2 \cdot 3 \cdot 4} + \frac{3 \cdot 4 \cdot 4 \cdot 5}{2 \cdot 3 \cdot 4} = \frac{3 \cdot 4 \cdot 5 \cdot 2}{2 \cdot 3 \cdot 4}$$

$$= \frac{3 \cdot 4 \cdot 5 \cdot 6}{\cdot 3 \cdot 4}$$

$$= \frac{3 \cdot 4 \cdot 5 \cdot 6}{\cdot 3 \cdot 4} + \frac{4 \cdot 5 \cdot 6}{\cdot 3 \cdot 4 \cdot 5 \cdot 6} + \frac{4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6 \cdot 3 \cdot 4 \cdot 5} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6 \cdot 3 \cdot 4 \cdot 5} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6 \cdot 3 \cdot 4 \cdot 5} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6 \cdot 3 \cdot 4 \cdot 5} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6 \cdot 3 \cdot 4 \cdot 5} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 \cdot 5 \cdot 6} = \frac{$$

Of 4, 
$$\frac{3.4.5.6}{2.3.4} + \frac{4.5.6}{2.3} = \frac{3.4.5.6}{2.3.4} + \frac{4.4.5.6}{2.3.4} = \frac{4.5.6.3 + 4}{2.3.4}$$

$$= \frac{4.5.6.7}{3.3.4}$$

Of 5, 
$$\frac{4.5.6.7}{2.3.4} + \frac{5.6.7}{2.3} = \frac{4.5.6.7}{2.3.4} + \frac{4.5.6.7}{2.3.4} = \frac{5.6.7.4 + 4}{2.3.4} = \frac{5.6.7.8}{2.3.4}$$

N n n

And

And univerfally if the Side be l, the Figurate Number of the 4th Order is  $\frac{l}{1}$ .  $\frac{l+1}{2}$ .  $\frac{l+2}{3}$ .  $\frac{l+3}{4}$ . And if we make n-3=l, the Figurate of n-3 will be  $\frac{n}{1}$ .  $\frac{n-1}{2}$ .  $\frac{n-2}{3}$ .

In the same manner we shall find, That in the Figurate Numbers of the 5th Order; if the Side be = l, the Figurate Number answering is  $\frac{l}{1} \cdot \frac{l+1}{2} \cdot \frac{l+2}{3} \cdot \frac{l+3}{4} \cdot \frac{l+4}{5}$ . Or supposing l=n-4. the Series will be  $\frac{n}{1} \cdot \frac{n-1}{2} \cdot \frac{n-2}{3} \cdot \frac{n-3}{4} \cdot \frac{n-4}{5}$ .

Hence the following Series will give us all the Figurate Numbers of any Order whatfoever: i. e.  $\frac{l}{1}$ .  $\frac{l+1}{2}$ .  $\frac{l+2}{3}$ .  $\frac{l+3}{4}$ .  $\frac{l+4}{5}$ .  $\frac{l+6}{6}$ .  $\frac{l+7}{8}$ , &c. Or this Series.  $\frac{n}{1}$ .  $\frac{n-1}{2}$ .  $\frac{n-2}{3}$ .  $\frac{n-3}{4}$ .  $\frac{n-4}{5}$ .  $\frac{n-5}{6}$ .  $\frac{n-6}{7}$ .  $\frac{n-7}{8}$ , &c.





AN

# APPENDIX

To an intire System of ARITHMETIC.

By EDWARD HATTON, Gent.

### Of the Mensuration of Superficies and Solids.



Y Intent is to be as brief, and yet as copious as posfible; not doubting but the Variety of Figures here measured, more than any other Treatise of Meafuring contains, that I have seen or believe to be published, will meet with the Approbation of the Studious in this Geometrical Science.

The Dimensions I will suppose taken in Feet and Decimal Parts, as best answering that Accuracy and Brevity which will be expected from me: But at the Close of this Appendix I shall give my Advice what Instruments are most proper for the several kinds of Workmen; and also by what Denomination the several kinds of Work is valued.

Nnn 2

CHAP.



### CHAP. I.

### To measure any Superficies.

A Superficies is properly defined to consist only of Length and Breadth or Girt, without taking any Notice of Thickness.

### SECT. I. The Geometrical Square and Parallelogram, Rhombus and Rhomboides.

| Proposition 1. To measure the Geometrical Square. Definition. This is a Figure consisting of 4 equal S right Angles: as Fig. I. Plate C.                                 | Sides, and as many                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Rule. Take the Dimensions of one Side, as ab, itself, gives the Content.                                                                                                 | and multiply it by                    |
| Example. The Side of any Square being 11.28, the Content is found 127.238, as per Marg. Prop. 2. To find the Area of the Parallelogram.                                  | 11.28                                 |
| ded by, 2 longer equal parallel Sides, and 2 shorter equal and parallel Sides, having 4                                                                                  | 315 <b>8</b> 4<br>12408               |
| right Angles: as Fig. II. Plate C. Rule. Multiply the Length by the Breadth, and the Product is the Area.                                                                | Answ.=127.2384                        |
| Example. The Length $a b = 23.53$ , Breadth $b c = 2.15$ . See the Work.                                                                                                 | · · · · · · · · · · · · · · · · · · · |
| Prop. 3. To find the Area of a Rhombus.  Defin. This Figure is bounded by 4 equal  Sides, and bath 4 Angles, the 2 area from                                             | Anfw. = 50.5895                       |
| Sides, and hath 4 Angles, the 2 opposite ones the Sides parallel: as Fig. III. Plate C. Rule. The distance between 2 opposite Angles, by the Line e c, gives the Answer. | i i                                   |

Example.



| SECT. II.                 | To measure the Conic Sections:                                                                            |      | 461            |
|---------------------------|-----------------------------------------------------------------------------------------------------------|------|----------------|
|                           | Diagonal $bd = 1.34$ ; $ec = .85$ ;                                                                       |      | 1.34           |
| the Answer                | nd the Area of the Rhomboides.                                                                            |      | .85            |
| Defin. This F the opposit | igure is bounded with 4 right Lines, e Sides equal and parallel, and the ngles equal: as Fig. 4. Plate C. |      | 1.1390         |
| Rule. Multip              | ly the Diagonal ab by the Perpen-                                                                         | •    | 12.47          |
| dicular cn                | or $mr$ , and the Rectangle answers e Diagonal $ab = 12.47$ , the Per-                                    |      | 4.127          |
| pendicular                | c n = 4.127, and the Answer is as per Margin, = 51.46369.                                                 |      | 33669<br>51127 |
|                           | An                                                                                                        | [w.= | 51.46369       |

## SECT. II. To measure the Conic Sections.

| Prop. 1. To measure a Triangle.  Defin. Right-lined Triangles are of 3 kinds (besides the embode Sides are equal) viz. Right angled, as arn or angled at r in Fig. 5. 2dly, Scalenous Triangles, as or o, of which are all unequal. And, 3dly, Isoceles Triangle appears; 2 of whose Sides are equal. This last is of Sections of a Cone, made by cutting the Cone (e w a g x the Axis, as o p, Fig. 5. Plate C.  Rule. Multiply the Base (as x a) by half the Perpendicular or half the Base by the Perpendicular, or the Perpendicular and the Base and Perpendicular.  Example. The Base a x being = 9.35, the Perpendicular n r = 12.42, the Area is | the Sides<br>es as an me<br>ne of the<br>na) down<br>ar (as nr)<br>licular by<br>rea of any |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 58.0635, as per Margin.  Prop. 2. To measure the Circle  Defin. This is formed by cutting the Cone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19635<br>5610                                                                               |
| (x w a g x n a) parallel to the Base (x w a g x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 58.0635                                                                                   |

1st, As 7 to 22, so the Diameter (as rs, Fig. 6) to the Circumference.

2dly, As 1 to 3.1416, so the Diameter to the Circumference. Then multiply the Circumference by a 4th of the Diameter, or a 4th of the Circumference by the Diameter, gives the Answer.

Or the Area of a Circle is found without the Circumference thus:

As 1 is to .7854:: so is the Square of any Diameter to the Area.

| Area.                                               | <b>Y</b> .        |
|-----------------------------------------------------|-------------------|
| Example. Admit the Diameter r s, Fig. 6. be         | 14.32             |
| = 14.32, what is the Area?                          | 14.32             |
| By the last Method                                  | <del></del>       |
| 17854:: 205.0624. 161.056 = Answ.                   | 45824             |
| Prop. 3. To measure the Ellipsis, or Oval.          | 20048             |
| Defin. This is a Section of a Cone, made by         |                   |
| cutting it through both its Sides, but not pa-      | $\Box = 205.0624$ |
| rallel to the Base; as the Section le Fig. 5.       | •                 |
| Plate C. which produceth Fig. 7. Plate C.           |                   |
| Rule. Multiply the Latus transversum (or transverse | Ax)lt, by the     |
| Discussion of the Bushes is made                    |                   |

Rule. Multiply the Latus transversum (or transverse Ax) lt, by the Diameter Conjugate cd and the Product is = the Square of the Diameter of a Circle equal to the Oval: then work as in the last.

| Example. Admit $t = 15.34$ , and $t = 12.28$   | ii = 15.34                              |
|------------------------------------------------|-----------------------------------------|
| the Answer is found 147.95 fere: for           | $\epsilon d = 12.28$                    |
| 17854 :: 188.3752. 147.9499                    | *************************************** |
| Prop. 4. To find the Area of the Parabola.     | 42952                                   |
| Defin. This Section is formed by cutting the   | 18408                                   |
| Cone parallel to the opposite Side, as in the  | -                                       |
| Line ts, Fig. 5. which is parallel to the Side | < = 188.3752                            |
| a n and produceth a Parabola; as Fig. 8. Plate |                                         |

Rule. This Figure being 2 Thirds of a Parallelogram made of the whole Ordinat pa and the Abscissa st therefore multiplying those 2 Lines together, 2 Thirds of the Rectangle is the Area.

Example. Admit a p = 3.84, and s s = 2.54; 2 Thirds of the Restangle is = the Answer = 6.5024.

20736 768

Rectangle = 9.7536 \$\frac{1}{3} = 3.2512\$
\$\frac{2}{3}\$ or Answer = 6.5024

Prop.

3.84

2.54

Prop. 5. To find the Area of the Hyperbola (or Hyperbolic Space).

Defin. This Section of a Cone is formed by cutting it (not parallel to the Side, as in the Parabola, but) so that if the Axis of the Section were continued upward, it would intersect the opposite Side of the Cone produced: the Section's Axis is represented by the Line yz, Fig. 5. and produceth an Hyperbola, as Fig. 9. Plate C.

To measure this Figure, there is no general Rule that can be given for Practice: But the Investigation is performed by the help of the Alymptotes, an Infinite Series, and partly by the Method of Eluxions; which 'tis not proper here to insert.

#### SECT. III. To measure any of the Regular Polygons.

Defin. These are Figures consisting of above 4 equal Sides, and as many equal Angles. As,

The Pentagon having 5 equal Sides, and as many Angles.

Hexagon 6
Heptagon 7
Octogon 8
Nonogon 9
Decagon 10
Undecagon 13
Dodecagon 12

Rule. To measure any of these, draw 2 Lines from any 2 Angles that include a Side to the Center: then find the Content of that Triangle, as taught Prop. 1. Sest. 2. above. Lastly, Multiply the Area of that Triangle by the Number of Sides, and the Product is the Content of the whole Polygon. Or multiply half the Sum of the Sides by the nearest Distance from the Center to one of the Sides, gives the Answer.

Example. The Side of the Pentagon (s d, &c.) Fig. 10. is = 15.34, the Perpendicular (or Radius of a Circle inscribed) is re = 10.5:
So that 15.24 multiplied by 5, the Number

So that 15.34 multiplied by 5, the Number of Sides, gives = 76.7 = Sum of the Sides; half of that is = 38.35, which multiplied by xc = 10.5, gives the Area = 402.675.

38.35

Answer = 402.675

SECT.

SECT. IV To measure the Trapezium, the Parallelogramic, the Polygram, (or Multangle, or irregular Polygon) the Area or Superficies of the Cylinder, Cone, and Sphere.

Prop. 1. To measure the Trapezium. Defin. This is a Figure of 4 Sides and 4 Angles, uncertain whether parallel or equal, but is commonly neither; as Fig. 11. Plate C. Rule. Multiply the Diagonal (a n) by half the Sum of the Perpendiculars m p and c p; or the Sum of the Perpendiculars by half the Diagonal, and either of the Products is the Answer. 8.71 Example. The Diagonal an = 17.42; the Perpendicular m p = 4, and c p = 2.6r, half the Dia-6.6r gonal is = 8.71, and m p more cp = 6.6r, the Product of which 2 last is 58.06666, &c. 5226 Or half the Product of the Diagonal in the Per-Answ.=58.06r1 pendiculars gives the Answer. Prop. 2. To find the Area of the Parallelogramic, or Parallelopleuron. Defin. This Figure hath 4 Sides, 2 of which opposite are parallel, and of 4 Angles the 2 at each end being equal: as Fig. 12. Plate C. Rule. Multiply half the Sum of the 2 Sides (vr) and (st) by the Length (t w) gives the Answer. Or a Diagonal (r t) multiplied by half the Sum of 2 Perpendiculars let Sum ru + st = 1.49fall on that Diagonal from s and v. Example. The Ends ru = 0.79; st = 0.7; Length wt = .8888, &c. half the Sum <sup>2</sup> = √745 of .79 and .7 multiplied in .8r = .662ri. Prop. 3. To find the Area of the Polygram, 596**0** ( sometimes called an irregular Polygon, or Multangle.) Defin. This is any Geometrical Figure .662*r* 1 having above 4 Sides, which are uncertain, and generally unequal; as are also its Angles: as Fig. 13. Plate C.

Rule. First divide your Figure into Trapeziums and Triangles, and then measure the same as under Prop. 1. Sect. 2. and Sect. 4.

Example.



```
To measure the Cylinder, &c. 465
SECT. IV.
  Example. Figure 13 is divided into.
1. The Trapeziums (utmqv) | In the 1st, qt=18.26, the \frac{1}{2}=9.13
2. - - and q m p r q | u = 5.17, more b = 3.5 = 8.67
3. And the Triangle qraq.
                                                        61171
                                              Prod. = 79.1571
  In 2d Trapez. qp = 15.73, the half = 7.865 \ Prod. = 53.56065
    mn = 4.5, more rs = 2.31 = 6.81 —
  In 2d or the \triangle, qa = 10.72; the half = 5.36 } Prod. = 17.5272
     ro=the Perpend.=3.27-
         The Sum = the Area of the whole Fig. 13. = 150.24495
Prop. 4 To find the Area of a
  Cylinder.
                                   Area of the curved?
Defin. This Figure is defined
                                     part of the Cylin->
                                                       3.1416
  under Prop. I. Chap. 2.
                                     der is therefore — >
Rule. Multiply the Ambit or
                                        Area of the Base = .7854
  Circumference of the Cylin-
                                        Ditto = .7854
  der by its Length, and to that
  Rectangle add the double A-
  rea of the Base or End, and
                                    Whole Area (or Sum) = 4.7124
  the Sum is the whole Area.
Example. Ambit of the Cylinder = 3.1416; Altitude as also the
  Diameter of the Base = 1.
But there are 2 other ways of doing this, where the Diameter and
   Altitude are equal.
As, 2dly, Multiply the Area of the Sphere having the same Dia-
  meter by 3, and divide by 2.
Or, 3 dly, 6 times the Area of the Base, or End, is the Answer. Thus
  6 times .7854 is = 4.7124, as above.
Prop. 5. To find the Convex Superficial Content of a Sphere.
Defin. This Body is defined where its Solidity is measured, Prop. 4.
  Chap. II. and 'tis represented Fig. 6. Plate C.
Rule. The Area is 4 times that of
                                             I. 7854:: 144.
   a great Circle; therefore having
   by the Diameter found the Area
                                    Prod. = 113.0976 Area Circle.
  of a great Circle of any Sphere,
   multiply it by 4, and you have
                                                    - (the Sphere.
   the Answer.
                                            452.3904 = Area of
Exam. The Diameter of a Sphere
   being 12, the Area of the same
                                      000
                                                       Prop. 6.
   is 452.39, as per Margin.
```

466 To find the Area of the Parts of a Circle. CHEP. I.

Prop. 6. To find the Superficies (or Area) of a Pyramid.

Defin. This is a folid Body, having (generally) a Square or some regular Polygon for its Base, being tapering like the Spire of a Steeple, &c.

Rule. Multiply the Circumference of the Base (or Sum of the Sides), by half the Altitude, and it gives the Superficial Content.

Example. The Side of the Base of a Pyramid (being an Octogon) is =5.65, that multiplied by 8 = the

Number of Sides, and that Product by half the Altitude = 30.7, the last Product is the Area fought.

Prop 7. To find the Area of a Cone.

Defin. The Cone is a Solid which hath a

Circle for its Base, from whence it is gradually tapering upward till it terminate in a Point directly over the Center of its Base; as Fig. 5. Plate C.

Rule. As the Radius of the Base: Is to the Side of the Cone:: So is the Area of the Base to the Area of the Cone.

Example. Diameter of the Base = 6; Side of the Cone = 15: So the Area of the Base of the Cone is found =

28.2744; and the Area of the Cone, as by the 2d Analogy = 141.37.

Or Note farther, That the Area of a Cone is = that of a Triangle, whose Perpendicular is the Altitude of the Cone, and the Base = the Circumference of the Cone's Base: For in Example, 1. 3.1416:: 6. 18.8496 = the Base or Circumference; half of which multiplied by the 15, gives the Answer as before = 141.37.

SECT. V. To find the Area of the Parts of a Circle; as the Semicircle, Quadrant, Sector, Segment, Lune or Crescent, and the Trochoid or Cycloidal Space.

Prop. 1. To measure the Semicircle, Quadrant, and Sessors of a Circle, also the Segment.

Defin. The Semi- or Half-Circle is the Space between dmbd. Fig. 14.

Plate C; the Quadrant or Quarter of the Circle is dmcd, the Sector is cbrec or the like, less or more than a Quadrant.

Rule

Digitized by Google

The Total Sides = 45.20

Area = 1387.64

Half the Altitude = 30.7

1. .7854 :: 36

Rad. Bas. Side. Ar. Base Ar. Come

3. 15:: 28.2744. 141.37

28.2744 = Area of the

Base.

| SECT. V. To find the Area of the Parts of a C                                                                                                                 | ircle. 467         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Rule. Multiply 1 fourth of the Ark, or Curve Line,                                                                                                            | by the Dia-        |
| meter of the Circle, and the Product is the Area re                                                                                                           | quired.            |
| Example. The Circumference is $= 3.1416$ , the Dian                                                                                                           | neter of that      |
| Circle = 1.                                                                                                                                                   |                    |
| The Ark of the Half-Circle $d c b m d$ as $b m d = 1.5$                                                                                                       |                    |
| of the Quadrant $cmdc$ as $mmd = .78$                                                                                                                         | 35 <b>4</b>        |
| of the Sector $cbrec$ as $erb = 1.05$                                                                                                                         | 0 m 4 <b>al</b> ha |
| So that I fourth of 3.1416 = .7854 x by 1, gives .78 of the Circle.                                                                                           |                    |
| 1 fourth of 1.5708 = .3927 × by 1, gives .39<br>of the Half-Circle.                                                                                           |                    |
| 1 fourth of .7854=.1963 x by 1, gives .196<br>of the Quadrant.                                                                                                | 35 the Area        |
| 1 fourth of $1.05 = .26271 \times by 1$ , gives .262                                                                                                          | ri the Area        |
| of the Sector.                                                                                                                                                |                    |
| And the Area of the Sector cbrec, less the Area of                                                                                                            | the Triangle       |
| cbnec, gives the Area of the Segment enbre; Fig. 1                                                                                                            | 4. Plate C.        |
| Prop. 2. To find the Area of the Lune.                                                                                                                        | 3.5                |
| Defin. This is a Figure like a Crescent or increasing                                                                                                         | g Moon; as         |
| arnea, Fig. 15.<br>Rule. Find first the Ares of the Semicirle nearn, as                                                                                       | d from the         |
| deduct that of the Segment n c a o n, and the Remaine                                                                                                         |                    |
| of the Lune.                                                                                                                                                  | 1 13 CHC 22100     |
| Example. The Diameter $na=1$ , and confequently th                                                                                                            | <b>c</b> .3927     |
| Ark $arn = 1.5708$ , and Area = .3927.                                                                                                                        | .121               |
| The Area of the Sector eaone is = .256, from which                                                                                                            |                    |
| deducting the Area of the Triangle nean = .135                                                                                                                |                    |
| the rest is the Area of the Segment = $noac$                                                                                                                  | n .e, there        |
| = .121; which taken from the Area of the Sem                                                                                                                  |                    |
| rest eth the Answer = .2717.  Prop. 3. To find the Area of the Trochoid, or Gerated by                                                                        | ice.               |
| Prop. 3. To find the Area of the Trocboid, or Gerated by                                                                                                      | the Circle         |
| Defin. This Figure (as 16, Plate C.) is ine arc, the (lbor) which turneth round on the Line again at                                                          | Point at b         |
| (160r) which turneth round on the Line again at                                                                                                               | c, the Cy-         |
| beginning at a, and when it tood the Space from that cloidal Curve a b c is finished generating Circle.  art contains 3 times the aid generating Circle, who  | to the Line        |
| ciodal Curve a o c is minned generating Circle.                                                                                                               | C. Diamatan        |
| art contains 3 times the aid generating Circle.  Rule. Therefore having Sound the Area of a Circle, who is (ab) multiply that by 3, and it produceth the Area | le Diameter        |
|                                                                                                                                                               |                    |
| cloidal Space. $rb=1$ ; Area of the Circle = .78 Example. The Line $rb=1$ 3.76                                                                                | ca and of          |
| Example. The Line $rb=1$ ; Area of the Circle = ./6                                                                                                           | 275 4110 01        |
| the Cycuidal Space = 2.356.                                                                                                                                   | CHAP               |
| Vuu4                                                                                                                                                          |                    |

## CHAP. II.

### The Mensuration of Solids.

SECT. I. To find the solid Content of a Cylinder, Parallelopiped, Prism. Cone, Pyramid, and Sphere.

ROP. 1. To measure the Cylinder. Defin. A Cylinder is a folid Body having a Circle for its Base, and is of equal Circumference from one end to the other, like a Rolling-Stone for Walks, &c. as the Figure 17. Plate C.

Rule. Multiply the Area of the Base (found as under Prop. 2. of Sect. 2. Chap. 1.) by the Length, and the Product is the Answer.

Example. The Diameter of the Base, as (ab) or (cd) = 14.32, the Area of that Circle will be 161.056 found 161.056; which multiplied by the Length 14.32 (bc) = 14.32, or (ad) the folid Content, is = 2306.32192, as per Margin. 5153792 Prop. 2. To find the solid Content of the Parallelopipedon 2254784 und of the Prism. eoThis Solid is bounded by 4 Parallelograms. 2306.32192

or Pard parallel, for the Sides; and 2 Squares 18. Plate Crams, equal and parallel, for the Ends: as Fig.

Rule. Multiply the . Rectangle is the An of the Base or End by the Length, and the

| Example. The End is a       | *; |
|-----------------------------|----|
| Square whose Side is        | _  |
| 3.72, and the Length        |    |
| = 31.44. See the <b>O</b> - |    |
| peration, where (ac-        |    |
| cording to the Me-          |    |
| thod of working Cale        |    |
| 5. of Sect. 5. of Cb. 3.)   |    |
| [5. 01 0ett. 5. 01 Cb. 3.)  |    |

the Solidity is found

435.0793.

| 2 at the end 138384 | 3.72            |
|---------------------|-----------------|
| b inverted 44.13    | 3.72            |
| 415152.             | 26784           |
| 138384              | 1116            |
| 55354<br>505        | 13.8384=Area    |
| 435.0793            | = Solid Content |

Note,

### SECT. I. To find the solid Content of the Cone, &c. 469

Note, That a Prism is measured also by multiplying the Area of the Base (which is either a Triangle or a Polygon) by the Length of the Prism. This or the last Figure are three times a Pyramid of the same Base and Altitude.

Prop. 3. To find the solid Content of the Cone: And 2dly, of a Pyramid. Defin. This Figure hath a Circle for its Base, and is defined Prop. 7

Sect. 4. of Chap. 1. of this Appendix.
Rule Multiply the Area of the Base by one third.

Rule. Multiply the Area of the Base by one third of the perpendicular Altitude of the Cone, and that Rectangle is the Answer.

But Note, That to find the Height (it being a folid Body)

must be done by this Rule, as Euclid 47. 1.

From the Square of the flant Height (m l Fig. 19.) deduct the Square of the Semidiameter of the Base as (ma), and the Square Root of the Remainer is the perpendicular Altitude (xl).

Example. The Diameter md is = 6, the flant Height ml = 5; and confequently the true Altitude (al) = 4: for 5 squared less  $\frac{1}{2} = \frac{1}{2}$ 

ma fquared, = 16 = the Square of al; that is, 5 fquared less 3 fquared, is = 16; whose Root is 4 = al. So that as 1. .7854:: 36. 28.274 = the Area of the Base: Which multiplied by 1 third of 4 = 1.3r, the Product is = 37.6986r1.

To measure the Pyramid, you must also multiply the Area of the Base by a Third of the perpendicular Altitude: for as a Cone is I Third of a Cylinder of the same Base and Altitude, so is a Pyramid I

 $\begin{array}{r}
28,274 \\
1.3r1 \\
\hline
84822 \\
\hline
94246 \\
28274 \\
\hline
37.6986r1 = Anf.
\end{array}$ 

Third of a Prism or Parallelopiped. 'Tis defined Prop. 6. Sect. 4. Chap. 1. of this Appendix.

Prop. 4 To find the folid Content of a Sphere.

Defin. This is a folid Body, every way perfectly round, so that all Lines drawn from the Convex Area to the Center are equal. It is 2 Thirds of a Cylinder of the same Diameter of the Base and Altitude with the Diameter of the Sphere, or of a Cylinder circumscribed.

Rule. Find the Area of a great Circle, as Prop. 5. of Sect. 4. Chap. 1. which multiply by the Diameter; and 2 Thirds of the Rectangle is the folid Content required.

Example. The Diameter of a Sphere being 12, the Area of a great Circle (as Fig. 6. Plate C.) is = 113.0976; which multiplied by the

the Diameter (or Length of a Cylinder) 12, the Rectangle is = 1357.171, the Solidity of the Cylinder; 2 Thirds of which is the folid Content of the Sphere = 904.7808.

SECT. II. To find the Solidity of the five Platonic, or Regular Bodies, viz. the Tetrahedron, Hexahedron, Ostahedron Dodecahedron, and Icosihedron.

Prop. 1. To measure the Tetrahedron.

Defin. This is a folid Body bounded with 4 equal equilateral Triangles; and being measured as a Pyramid, it needs no other Rule than as under Prop. 3. of Sect. 1, Chap. 2. See Fig. 20. Plate C. Prop. 2. To find the Solidity of the Hexahedron or Cube.

Defin. This Solid is bounded with 6 equal Geometrical Squares.

Rule. Multiply a Side in itself, and that Rectangle by the Side gives the Answer. See Fig. 21. Plate C.

Prop. 3. To find the solid Content of the Octabedron.

Defin. This Figure is bounded with 8 equal equilateral Triangles, which are the Bases of as many Pyramids, which meet in the Center of a Sphere, (out of which this Body is cut) so that it being 8 Pyramids. (See Fig. 22. Plate C.)

Rule. First find the Area of one of the Triangles, then take with Callipers, &c. the Distance between the Center of that Triangle and that of the opposite, by one sixth part of which multiply the Area of any one Triangle; and that Product multiply'd by 8, this last Rectangle gives the Solidity required.

Prop. 4. To find the solid Content of the Dodecahedron.

Defin. This is a Solid bounded by 12 equal Pentagons, which are the Bases of so many Pyramids that meet in the Center of this Solid, or of a Sphere out of which this Body is cut. See Fig. 23. Plate C.

Rule. Therefore take with a Pair of Callipers the Distance from the Center of one Pentagon to that of its opposite, and by one sixth of that multiplying the Area of any of the Pentagons; 12 times that Rectangle gives the Solidity. Or twice the Distance of the opposite Pentagons multiplied by the Area of 1 Pentagon, gives the Answer.

Prop. 5. To find the Solidity of the Icasibedron.

Defin. This is the last of the 5 Platonic or Regular Bodies: it is bounded with 20 equal equilateral Triangles, which are Bases to so many Pyramids, whose small Ends terminate in a Point in the Center of a Sphere which circumscribeth this Solid and out of which it is cut. (See Fig. 24. Plate C.)

Rule.

SECT. III. Solid Content of a Parabolic Conoid, &c. 471

Rule. Multiply the Area of one Triangle by I fixth of the Distance of the Centers of 2 opposite Triangles (taken with Callipers) and that Rectangle multiplied by 20 (the Number of Pyramids in the Body) gives the Solidity fought.

I have not thought it necessary to give Examples to these 5 Rules because there is not much more therein besides the repeated Mensuration of a Pyramid, which is taught above. But I have chiesly inserted them for the sake of the Desinitions, which I do not remember to be in any Tract of Measuring, no more than many other things contained in other Propositions of this Appendix.

SECT. III. To find the folid Content of the Parabolic Conoid, the Parabolic Spindle, the Cylindroid, the Sphereoid, and the Hyper-bolic Conoid.

Prop. 1. To find the solid Content of the Parabolic Conoid.

Defin. This Solid is generated by the Rotation of a Semi-Parabola, as (pss Fig. 8. Plate C.) round its Axis ss; and is = half of the circumscribing Cylinder pqsxasp (or 1 and half of the Cone inscribed). Therefore

Rule. Multiply the Area of the Base by the Axis or greatest Abscis,

and half the Rectangle is the Answer.

Example. The Diameters of the Figure (as a p) = 14.32, the Area of the Base will be found 161.056; which multiplied by the Abscis (ss) = 14.32, the Rectangle is = 2306.32192; the half of which is = 1153.16096 the Answer.

Prop. 2. To find the Solidity of the Parabolic Spindle.

Defin. This Figure is generated by the Rotation of the Semi-parabola round its Ordinat, and is is of the circumscribing Cylinder. Therefore

Rule. Multiply the Content found as a Cylinder by 8, and divide by 15, the Quote is the Answer, which needs no Example.

Prop. 3. To find the solid Content of the Cylindroid.

Defin. This Figure only differs from that under Prop. 1. Sect. 1. of Chap. 2. inalmuch as that hath a Circle, this hath an Ellipsis for its Base: so that to measure it,

Rule. Multiply the Base sound as per Prop. 3 Sect. 2. Chap. 1. by

the Length, and that Product is the Answer.

Example. Admit the Latus transversum (as lt, Fig. 7. Plate C.) by cd = the Diameter Conjugate, (i. e. suppose lt = 15.34, and cd =

cd = 12.28) the Area is = 147.95, which multiply'd by the Length = 1.8r1, the Answer is = 279.45.

Prop. 4. To find the solid Content of the Sphereoid.

Defin. This Figure is generated by the Rotation of the Semi-Ellipsis round its Axis, or Latus transversum; and 'tis by some called the Problate Sphereoid, to distinguish it from that which is generated by the Rotation of a Semi-Ellipsis, which turns round its Diameter Conjugate, and is called and Oblate Sphereoid, (of which Figure, 'tis afferted by the most Learned, our Earth is, the Diameter at the Equator being greater than between the Poles.) This Problate Sphereoid is 2 Thirds of a Cylinder, whose Base's Diameter is = the greatest Diameter of the Sphereoid, and its Altitude = the Latus transversum of the Ellipsis.

Rule. Multiply the Area of a Circle, whose Base is the Conjugate Diameter, (or here the greatest Diameter of the Sphereoid) by the Length, and 2 Thirds of the Product is the Content of the

Sphereoid.

Example. The Diameter in the Middle = 14.32, as c d Fig. 7. the Area of that Circle 161.056, which multiply'd in the Length 1t=14, gives 200.48; 2 Thirds of which = 133.65, the Answer.

Prop. 5. To find the Solidity of the Hyperbolic Conoid.

Defin. This Figure is generated by the Rotation of the Semi-Hyperbola (zbri) Fig. 9. round the Abscissa zi; which formeth the Hyperbolic Conoid brinzb.

Rule. The Latus transversum = io, multiply'd by 6; more the Axis

or the Abscissa iz multiply'd by 6 is = the Divisor.

2dly, Multiply baisnzb=the Content of the Cylinder (whose Diameter is equal to the whole Ordinat bn, and its Length = the Abscissa zi) in 3 times the Latus transversum, more 2 times the Abscissa, and that Rectangle is = a Dividend; which divided, there ariseth the Quotient, which is the Solidity required. Example. The whole Ordinat (or Diameter) bn = 3.51, the Ab-

fciss or Axis iz=ba=2.43, and the Latus-transversum io=2.16. The Content of the Cylinder basnzb, is therefore =23.513 mult. The Latus transversum mult. in 3=6.48 Sum =11.3 mult. The Axis or Abscissa mult. in 2=4.82

The Latus transversum mult. in 6 = 12.96The Axis multiplied in 6 is = 14.46= Sum Divisor = 27.42 265.6969= Prod. 18916 9.69= 24649 the Ans.

SECT. IV.

# CHAP. II. The Solidity of the Frustums of a Cone, &c. 473

SECT. IV. To find the Solidity of the Frustums of a Cone, Sphere, and Sphereoid.

Prop. 1. To find the folid Content of the Frustum of a Cone or Pyramid. Defin. This may be done several ways: as to find the Content of that part of the Cone (drrmad) Fig. 19. Plate C. Rule. 1. Find the Content of the whole Cone (d l m d) then deducting the Content of the upper part (rlr) the rest is the Content 1 01 . 1 of the Frustum (drrmd.) All the difficulty (more than as Prop. 3. Sett. 1. of this Chap.) is to find the Height (al) which is done by this Rule, That the hoi mogeneal Sides of limilar Triangles are in proportion: fo that as mnimr:: ma. m la whence a Perpendicular let fall to a, is the true Altitude of the Cone. Rule 2. But more general for a Cone, Pyramid, &c. without the upper part: Multiply the Areas of the greater and leffer Ends together. extract the Square Root of the Product; then multiply the Sum of the faid Root, and a Areas of the Ends by one third of the Altitude of the Frustum, and the Product is the Content. Example. In Fig. 19. Plate C. the Area of the greater Base (modxm) is = 36.72; of the leffer End (as rsrsr) = 15.5; the Product of which is = 569.16, whose Square Root is 23.857; which added to the 2 Areas, gives = 76.077; which multiply'd by 1 third of the Altitude nr = 6.6r, the Product is the folid Content of the ...Frustum=507.179#1:0 10 11/2 11 11 11 Prop. 2. To find the folid Content of the Prustum of Sphere or Globe. Defin. By a Segment is meant a part of the Sphere cut off perpendiwould by a Plain: as bnerb, Fig. 14. Plate C. Rule. Find the Area of the Segment's Base, which multiply by the Aktitude, referving the Product. Then To half the Altitude of the greater Frustum add I fixth of the Al--4 titude of the leffer, and multiply the Sum by the referv'd Rect-30 angle, and divide this last by the greater Frustum's Altitude, and cothe Quote is the lesser Frustum's Solidity required. Enample: Diameter of the Fristum = 15.832 = be, Area = 179.46 Its Altitude = #7."...=5 Altit. of the greater Frustum =  $n_0 = 7$  | Referv'd Rectan. = 897.3Sixth of the Altit. of the leffer  $= .83 r_1$  Sum multipl.  $= 4.3 r_1$ Product = 3885.309

Ppp

1 Seventh

174 The Frustums of a Sphereoid, &c. CHAP. II.

1 Seventh of which last Product is = 555.044 = the Solidity of Frustum required.

Note, That if you divide the Square of half the Diameter of the Frustum's Base by the Altitude of either Frustum, the Quote is the other Frustum's Altitude.

Prop. 3. To find the folid Content of the middle Frustum of a Sphereoid. Defin. This is represented by raiser, Fig. 7. like a Cask.

Rule. The easiest Rule, and what is near the Truth, is this: Multiply the Difference of the Bung and Head Diameters by .7, and add the Product to the Head Diameter; to that Sum find the Area of a Circle, and multiply it by the Length of the Cask, and that Product is the Answer.

Example. The Bung Diameter 20 ± rd, Head 15 ± rd or ii.

Length ao = 12... The Difference between the Bung and Head = 5, which multiply'd by .7 is 3.5; which added to the Head 15, gives 18.5 for a mean Diameter, whose Area is = 268.803; which multiplied by the Length = 12, the Solidity is = 3223.638 = the Content of the faid Frustum (radioir).

Note, That if the Sphereoid be cut in the middle of (tm) by a Plain (r a) that part (retuer) is 5 Ninchsof a Cylinder, whose Base is (rea) and the Altitude (et.)

I believe I have, in the Pages preceeding of this Appendix, shown the best Ways of Measuring a greater Variety of Superficies and Solids than any Book wrote purely on that Subject contains: and to close this Chapter of Solid Measure, I may farther add, There is no Body, the never so irregular, but what may have its Content discovered by the help of Water For Example, I would know the solid Inches in a Faggot.

First, I put Water into a Vessel (suppose 36 Inch. by 20, and is a Parallelopipedon; and taking the Dopth, I find it 30 Inches deep) into which I immerse the Faggot, so as to cover it with Water; and taking the Depth again, I find it 33 Inches deep, or 3 more than before the Faggot was was in: so the said 36 by 20 = 720 multiply'd in this 3, produceth 2160, the Inches solid contained in the Faggot.

und in the site of the terminal with the unique of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the site of the

Brief and Useful Observations on the most Proper Instruments to be used in the Mensuration of several things, &c.

Ricklayers Work is best measured by the Foot and 100 Parts:

for the Divisor being 272: and a quater, (which is the Feet in one Rod, or the Square of 16 Foot and half) to reduce Feet into Rods, by which Denomination they value their Work: it is necessary that the Superficies of the Walls being the Dividends, should be Feet and Decimal Parts, the Divisor or 1 Rod, Brick and half thick is = 272.25 Feet Or without the Rod, the shortest Way is to mul-

r without the Rod, the shortest Way is to multiply any Number of Feet by the Value of 1 Foot at the Rate agreed on per Rod, as at 1.5:10:0, the Foot is in Value 1.020202, &c.

5.4450

Here the Multiplier being .020202, &c. or .0272

5.499r1

I only multiply the Feet on the flat Wall by 2, and add every other Figure of the Product till there are but 2

places left, which put down as in

Example 2. What is the Value of 1361.25 Foot, Brick and half thick, at l. 0202020202, &c. or 02r2 l. per Foot, or l. 5: 10 per Rod. See the Operation.

Foot 1361.25 Mult. =02r

As per Rule, add every other of = 27.2250Sum or Answer = 27.4999, &c. or l. 27.5

Note, That all Walls must be reduced to Brick and half thick by Multipling the Superficial Feet by the half Bricks which the Wall is thick, and Dividing by 3.

Carpenters Work. The common two Foot serves as well as any other Instrument to measure Flooring, Partitioning, and Roofing; they being each valued by the Square of 100 Foot: so that Feet multiply'd by Feet, and 2 Figures cut off towards the right hand, give the Squares towards the left hand.

Painters and Plaisterers giving in and valuing their Work by the Yard, I think the best Instrument for them to take their Dimensions with, to be a Yard divided into 100 equal Parts.

Glasiers

\* Brief and Useful Observations; &c.

Glaissers Work and Glass being valued by the Foot, and Crown-Glass being to be done accurately, ought to be measured by the Foot, and Decimal, or 100 Parts of a Foot.

Joiners Work (as Wainscoat, especially Oak) being valued by the Yard, ought to be measured by the Foot divided into 100 Parts, (as being of considerable Value) and the Sum of the Feet divided by 9. (the Square Feet in a Yard.)

Land. The best Instrument to measure it with, is a 4 Pole Chain, divided into 100 Parts or Links: for 40 single Pole long and 4 broad making 160 square Perches or 1 Acre; if the Chain be 4 Pole long, then 10 long and 1 broad make an Acre. So that whatever the Dimensions be in square Chains and Links (or hundred Parts) instead of dividing them by 160, if they were measured by a one Pole Chains.

Chain, here you have nothing to do but 40.30 to cut off 5 places from any Product to 20.40

Breadth 30.40 Chains; the Content, by dividing the Product by 10, (or cutting off 1 place besides the 4 which are Decimals) is 122:512 Acres.

give the Acres. As suppose a Field be

## F I N I S.









Digitized by Google



Digitized by Google



Digitized by Google



## PRESERVATION SERVICE

SHELFMARK 1478 B 19

THIS BOOK HAS BEEN
MICROFILMED (1999)

MICROFILM NO SEE ESTC.



