

SRM Institute of Science and Technology College of Engineering and Technology

Mode of Exam

OFFLINE

SET B

DEPARTMENT OF ECE

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2021-2022 (EVEN)

Test: CLAT- 2
Course Code & Title: 18ECC201J – Analog Electronic Circuits
Year & Sem: II / IV
Date: 24-05-2022
Duration: 2 periods
Max. Marks: 50

Course Articulation Matrix:

	18ECC201J - Analog Electronic Circuits	Program Outcomes (POs)														
			Graduate Attributes PS				PSO									
COs	Course Outcomes (COs)	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1 :	Analyze bipolar amplifier circuits and their frequency response.	1	2	3	1	-	1	-	- 1	1	1	-	-	1	1	-
CO-2 :	Develop MOSFET amplifier circuits and their frequency response.	1	2	3	- 1	-	1	1	-	1	1	1	1	1	1	-
CO-3	Compile various negative feedback amplifier and oscillator circuits.	1	-	3	-	-	1	-	-	-	-	-	1	-	-	-
CO-4 :	Demonstrate the different classes of power amplifiers according to their performance characteristics.	1	2	3	- 1	-	1	- 1	-	1	1	- 1	- 1	- 1	- 1	-
CO-5	Construct the basic circuit building blocks that are used in the design of IC amplifiers, namely current mirrors and sources.	1	2	3	-	-	-	-	-	1	1	-	-	-	-	-
CO-6 :	Organize analog electronic circuits using discrete components to measure various analog circuits' performance.	-	-	3	-	-	-	-	-	2	-	-	-	3	1	-

	Part - A							
(10 x 1 = 10 Marks) Instructions: Answer ANY 5 Questions								
Q. No	Question	Marks	BL	CO	PO			
1.	When a gate to source voltage of common source amplifier is at positive peak, drain to source voltage will be	1	1	CO2	1			
	a. at positive peak							
	b. at negative peak							
	c. infinite							
	d. zero							
2.	What is the reason for connecting a capacitor in parallel with R_s ?	1	2	CO2	1			
	a. It blocks the noise							
	b. For ac signal it acts a short circuit resulting in							
	grounding source terminal							
	c. It blocks the noise & for ac signal it acts a short							
	circuit resulting in grounding source terminal							
	d. To increase impedance							
3.	The MOSFET in the following circuit is in	1	2	CO2	1			
	configuration.							
	R_D v_o							
	* = =							
	a. common source							
	b. common gate							
	c. common drain							
	d. common substrate							
4.	The lower and upper cut off frequency of MOSFET amplifier	1	2	CO2	2			
	is 35KHz and 45MHz respectively. The calculated Bandwidth							
	is							
	a. 10MHz							

Г		T	1	1	
	b. 80MHz				
	c. 45MHz				
	d. 5MHz				
5.	The region produces the maximum voltage gain in a	1	2	CO2	1
	single-stage FET amplifier.				
	a. low-frequency				
	b. high-frequency				
	c. mid-frequency				
	d. corner frequency				
6.	Name the feedback topology given below.	1	2	CO3	2
	Basic O				
	Current amplifier				
	6† ¥*				
	Feedback				
	network 2				
	a. Series-Series				
	b. Shunt-Series				
	c. Shunt-Shunt				
	d. Series-Shunt				
7.	d. Series-Shant	1	2	CO3	1
/•	connection increases both input and output	_	_	003	1
	impedance.				
	a. Series-Series				
	b. Shunt-Series				
	c. Shunt-Shunt				
	d. Series-Shunt				
8.	The trans-resistance amplifier uses feedback	1	2	CO3	1
0.	a. Series-Series	_	_		-
	b. Shunt-Series				
	c. Shunt-Shunt				
	d. Series-Shunt				
9.	The phase shift network will produce a phase shift of 180	1	2	CO3	1
7.	degrees at	_	_		-
	a. three different frequencies				
	b. one frequency				
	c. two different frequencies				
	d. infinitely many frequencies				
10	In clapp oscillator voltage is divided by using	1	2	CO3	1
	a. resistors				
	b. capacitors				
	c. inductors				
	d. voltage dividing circuits are not used				
	Part – B				
	$(4 \times 10 = 40 \text{ Marks})$				
	SECTION B1				
11	Instructions: Answer ANY 2 Questi		2	CO2	
11	Calculate the small signal voltage gain of the source	10	3	CO2	2
	follower circuit shown in Fig A.				

12	Fig A Draw the circuit of the n-channel common source	10	3	CO2	2
	amplifier and derive the expression for the input				
13	resistance, output resistance and voltage gain. a. Explain the impact of output coupling capacitor in frequency response of an amplifier with necessary diagram. b. Determine the input and output resistance of CS amplifier shown below. VTN=1.5V R=0.5mA/V ² A=0.01v ⁻¹ R3 R3 R3 R3 R3 R3 R3 R3 R4	5	3	CO2	3
	SECTION B2 Instructions: Answer ANY 2 Questi	ons			
14	a. Draw the current series feedback topology and derive the expression for the transfer gain, input resistance, output resistance with feedback.	8	3	CO3	2
	b. Explain the Barkhausen Criterion for an oscillator.	2	2	CO3	2
15	a. For a given circuit, identify the type of feedback topology and derive the expression for the transfer gain, input resistance and output resistance with feedback.	8	3	CO3	3

	Vi + Vcc Vi + Q1 NPN Vbe R1 R1				
	b. Compare Colpitts and Hartley oscillator.	2	2	CO3	1
16	a. A tank circuit contains an inductance of 1mH.Compute the range of tuning capacitor value if the resonant frequency ranges from 540Khz – 1650 KHz.	4	3	CO3	3
	b. Explain the working of Wein bridge oscillator with neat diagram, write the expression for frequency of oscillation and the condition for oscillation.	6	2	CO3	2

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

Approved by the Course Coordinator

Signature of the Question paper setter

BL-3

Evaluation Sheet

Name of the Student:

Register No.:

Part- A (10 x 1= 10 Marks)							
Q. No	CO	PO	Maximum	Marks	Total		
			Marks	Obtained			
1	CO4	1	1				
2	CO4	1	1				
3	CO4	1	1				
4	CO4	2	1				
5	CO4	1	1				
6	CO5	2	1				
7	CO5	1	1				
8	CO5	1	1				
9	CO5	1	1				
10	CO5	1	1				
		Part- B (4 x 10= 40 Ma	arks)			
11	CO4	3	10				
12	CO4	2	10				
13.a	CO4	2	5				
13.b	CO4	3	5				
14.a	CO5	2	8				
14.b	CO5	2	2				
15.a	CO5	3	8				
15.b	CO5	1	2				
16.a	CO5	3	4				
16.b	CO5	2	6				

Consolidated Marks:

CO	Maximum Marks	Marks Obtained
2		
3		
Total		

PO	Maximum	Marks
	Marks	Obtained
1		
2		
3		
Total		

Signature of Course Teacher

Signature of the Course Coordinator

Signature of the Academic Advisor