Ringen en Lichamen

Luc Veldhuis

20 November 2017

Stelling

Als R een ontbindingsring is, F = Frac(R) dan is R[x] dat ook, met irreducibele factoren:

- $\pi \in R$, π irreducibel in R
- $f(x) \in R(x)$, $\deg(f(x)) \ge 1$, ggd(coefficienten) = 1, f(x) is irreducibel in R[x]

Bewijs existentie

Elk elementen $\neq 0 \notin \mathbb{R}[x]^* = R^*$ is een product van elementen van type (i) en (ii).

Als dat elementen in R is, dan kan het met type (i).

Dus neem $f(x) \in R[x]$, $\deg(f(x)) \ge 1$. Schrijf

 $f(x) = q_1(x) \dots q_m(x)$ met alle $q_i(x)$ irreducibel in F[x].

Gauß lemma, aannemen dat alle $q_j(x) \in R[x]$, nog steeds irreducibel in F[x].

Schrijf
$$q_j(x) = \begin{cases} \widetilde{q}_j(x) & \text{als } ggd(coeff) = 1 \\ d_j\widetilde{q}_j(x) & \text{als } ggd(coeff) = d_j \notin R^* \end{cases}$$

 $f(x) = d\widetilde{q_1}(x) ... \widetilde{q_m}(x) \text{ met } d = \pi d_j.$

Alle $\widetilde{q}_j(x)$ zijn nu van type (ii). Schrijf d als product van type (i). (Als $d \neq 1$, laat d weg als d = 1.) Dus elk element $\neq 0 \notin R[x]^*$ is een product van type (i), (ii). Ook het volgt dat er geen andere irreducibele elementen zijn in R[x].

Bewijs uniciteit

Al bekend voor element in $R \neq 0 \not\in R^*$.

Dus stel $\deg(f(x)) \ge 1$ en $f(x) = \pi_1 \pi_2 \dots \pi_r p_1(x) \dots p_m(x) = \xi_1 \xi_2 \dots \xi_s q_1(x) \dots q_n(x)$ met π_i , ξ_i type (i), $p_i(x)$, $q_i(x)$ type (ii), $s, r \geq 0$, $m, n \geq 1$. De factorizatie in F[x] is dan $(\pi_1 \dots \pi_r p_1(x)) p_2(x) \dots p_m(x)$ en $(\xi_1 \dots \xi_r q_1(x)) q_2(x) \dots q_n(x)$ met m = n en na eventueel hernummeren $p_i(x) = \frac{a_i}{b_i}q_i(x)$ met $a_i, b_i \in R$ en $a_i, b_i \neq 0$, dus nu zijn $p_i(x)$ en $q_i(x)$ geassocieerd in F[x]. Dus $b_i p_i(x) = a_i q_i(x)$ in R[x]. Voor de linker term geldt $ggd(coeff) = b_i$, en voor de rechter term geldt $ggd(coeff) = a_i$ want $p_i(x)$, $q_i(x)$ van type (ii). Dus $a_i = u_i b_i$ met $u_i \in R^*$ en $p_i(x) = u_i q_i(x)$ met $u_i \in R^*$ dus $p_i(x)$, $q_i(x)$ geassocieerd in R[x]. $\pi_1\pi_2\ldots\pi_r=u\xi_1\ldots\xi_s$ met $u\in R^*$.

Nu volgt r = s en na eventueel hernummeren is π_i geassocieerd met ξ_i in R.

Voorbeeld

- $\mathbb{Z}[x]$ is een ontbindingsring dus $\mathbb{Z}[x][y] = \mathbb{Z}[x,y]$ ook een ontbindingsring
- Als k een lichaam is, dan is k[x] een Euclidische ring, dus een ontbindingsring en dus ook k[x][y] = k[x,y] dus ook k[x,y][z] = k[x,y,z], enzovoort.

Voorbeeld

In
$$\mathbb{Q}[x,y] = \mathbb{Q}[y][x]$$
 is $(y^2+y)x^2+(y^3+y^2+y+1)x+(y^2+y)=(y+1)(yx^2+(y^2+1)x+y)=(y+1)(x+\frac{1}{y})(xy+y^2).$ Deel $yx^2+(y^2+1)x+y$ door $x+\frac{1}{y}$ in $\mathbb{Q}[y][x].$ $=(y+1)(yx+1)(x+y)$ met $y+1$ type (i) , de rest van type (ii) met $ggd(coeff)=1$ in $\mathbb{Q}[z]$ en $\deg_x(...)=1$

Definitie

Zij R een commutatieve ring, $f(x) \in R[x]$, dan heet $a \in R$ een **nulpunt** (Engels: zero point) of wortel van f(x) als f(x) = 0.

Voorbeeld

in $\mathbb{Z}/8\mathbb{Z}[x]$ heeft $x^2 - 1$ de nulpunten $\overline{1}, \overline{3}, \overline{5}, \overline{7}$.

Stelling

Zij F een lichaam, p(x) in F[x], $\deg(p(x)) \ge 1$. Dan heeft p(x) een nulpunt in $F \Leftrightarrow p(x)$ heeft een lineaire factorizatie in F[x].

Bewijs'

'⇒' stel p(a) = 0 voor $a \in F$. Schrijf p(x) = q(x)(x - a) + r(x) met $\deg(r(x)) < 1 \Leftrightarrow r(x)$ is een constante c. Vul x = a in: p(a) = q(a)(x - a) + c dus c = 0. Dus p(x) = q(x)(x - a). ' \Leftarrow ' Als $p(x) = (\alpha x + \beta)g(x)$ met $\alpha, \beta \in F$ $\alpha \neq 0$, dan is $-\beta\alpha^{-1}$ een nulpunt van p(x).

Opmerking

Zij F een lichaam, x een variabele.

- Een polynoom van graad 1 is irreducibel in F[x].
- Polynoom in F[x] van graad 2 of 3 zijn irreducibel ⇔ er is geen wortel in F.
- Polynoom van graad \geq 4, als er een wortel is \Rightarrow reducibel. Want $(x^2 + 1)$ in R[x] geen wortels in R maar wel reducibel.

Stelling

Zij R een ontbindingsring, met breuklichaam F.

Als $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ in R[x] en $a_n, a_0 \neq 0$, $n \geq 1$ en $\frac{r}{s}$ in F een wortel van F met ggd(r,s) = 1, dana geldt $s|a_n$ en $r|a_0$ in R.

In het bijzonder als $a_n \in R^*$ dan is elke wortel in F in R en deelt a_0 in R.

Voorbeeld

Als $R = \mathbb{Z}$ dan is $F = \mathbb{O}$.

$$f(x) = x^3 - 2x - 4$$
.

Wortels van f(x) in \mathbb{Q} zijn in \mathbb{Z} en delen -4 in \mathbb{Z} .

 \Rightarrow kandidaatwortels zijn $\pm 1, \pm 2, \pm 4$.

$$f(2) = 0$$
, en $f(x) = (x-2)(x^2+2x+2)$ kandidaat wortels $\pm 1, \pm 2$ geen voldoet $\Rightarrow x^2+2x+2$ is irreducibel in $\mathbb{Q}[x]$. $x-2$ is irreducibel in $\mathbb{Q}[x]$, graad is 1.

Voorbeeld

$$R = \mathbb{Q}[x] \ f(x,y) = y^3 x^2 + (y^2 + y)x + 1 \text{ in } \mathbb{Q}[x,y].$$

Neem
$$\mathbb{Q}[x][y]$$
 of neem $\mathbb{Q}[y][x]$. $f(x,y) = x^2y^3 + xy^2 + xy + 1$, $n = 3$, $a_3 = x^2$, $a_0 = 1$.

Potentiele wortels:
$$\frac{r(x)}{s(x)}$$
. $ggd(r(x), s(x)) = 1$ in $\mathbb{Q}[x]$ en $r(x)|1$ en $s(x)|x^2$.

Delers van 1 in $\mathbb{Q}[x]$: $c \in \mathbb{Q}^*$. Delers van x^2 in $\mathbb{Q}[x]$: d, dx, dx^2 met $d \in \mathbb{O}^*$.

Potentiele nulpunten zijn: $e, \frac{e}{r}, \frac{e}{r^2}$ met $e \in \mathbb{Q}^*$.

Bijvoorbeeld:
$$f(x, \frac{e}{x}) = \frac{e^3}{x} + \frac{e}{x^2} + e + 1 = 0 \Leftrightarrow \begin{cases} e^3 + e^2 = 0 \\ e + 1 = 0 \end{cases}$$

$$\Leftrightarrow e = -1.$$

$$\frac{-1}{x}$$
 is een nulpunt en

$$\hat{f}(x,y) = (y + \frac{1}{x})(x^2y^2 + x) = (xy + 1)(xy^2 + 1)$$
 irreducibel in $\mathbb{Q}[x][y]$. Want graad = 1 en $ggd(x,1) = 1$.

Stelling irreducibiliteitscriterium van Eisenheim

Zij P een priemideaal van een domein R en $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ in R[x] met $n \ge 1$. Als $a_{n-1}, a_{n-2}, \ldots, a_0 \in P$ en $a_0 \notin P^2$ dan is f(x) irreducibel in R[x].

Voorbeeld

$$R = \mathbb{Z}$$
, $x^5 + 8x^2 + 6x + 2$ is irreducibel in $\mathbb{Z}[x]$ (Eisenheim met $P = (2)$).

Voorbeeld

 $R = \mathbb{Z}$, P = (p), p een priemgetal.

$$f(x) = x^{p-1} + x^{p-2} + \cdots + x + 1$$
 is irreducibel in $\mathbb{Z}[x]$.

f(x) is irreducibel, maar dan is f(x+1) ook irreducibel.

Dit geeft $f(x) = \frac{x^p - 1}{x - 1}$ dus

$$f(x+1) = \frac{(x+1)^{p-1}}{x} = x^{p-1} + {p \choose 1}x^{p-2} + \dots + {p \choose p-2}x + {p \choose p-1}.$$

(Binomium van Newton).

Als p priem, dan is $\binom{p}{i} = \frac{p!}{(p-i)!i!}$ voor $i=1,\ldots,p-1$ deelbaar door p.

Dus irreducibel in $\mathbb{Z}[x]$. Eisenstein met p = (p).

Voorbeeld

 $x^6 + x^5 + \cdots + x + 1$ irreducibel in $\mathbb{Z}[x]$.

