Package AquaEnv: an Aquatic modelling Environment in R

Andreas F. Hofmann

Centre for Estuarine and Marine Ecology Netherlands Institute of Ecology The Netherlands

Abstract

AquaEnv is an integrated development toolbox for aquatic chemical model generation focused on (ocean) acidification and CO2 air-water exchange.

- It contains all elements necessary to model the pH, the related CO2 air-water exchange, as well as aquatic acid-base chemistry in general for an arbitrary marine, estuarine or freshwater system. Also chemical batches can be modelled.
- Next to the routines necessary to calculate desired information, **AquaEnv** also contains a suite of tools to visualize this information.
- Furthermore, **AquaEnv** can not only be used to build dynamic models of aquatic systems, but it can also serve as a simple desktop tool for the experimental aquatic chemist to generate and visualize all possible derived information from a set of measurements with one single easy to use R function.
- Additionally, the sensitivity of the system to variations in the input variables can be visualized.
- AquaEnv also contains a number of example "applications" that make use of the aquatic modelling toolbox that AquaEnv provides:
 - a theoretical titration simulator
 - and a routine to determine total alkalinity ([TA]), the total dissolved inorganic carbon concentration ([\sum CO2]), as well as additionally the electrode standard potential (E₀) and the first dissociation constant of the carbonate system ($K_{CO_2}^*$)

Keywords: aquatic modelling, pH, pH scales, dissolved inorganic carbon, total alkalinity, total alkalinity curve fitting, theoretical titration, revelle factor, omega, solubility products, CO₂, ocean acidification, estuaries, carbonate system, seawater, R.

Contents

1	Introduction					
2	2 The elements of an object of class aquaenv					
3	3 Using AquaEnv					
3.1 Basic features		features	8			
		3.1.1	calling the "K" functions directly	8		
		3.1.2	Minimal aquaenv definition	9		
		3.1.3	Defining the complete aquaenv system in different ways	10		
		3.1.4	Cloning the aquaenv system: 1 to 1 and with different pH or TA $$	12		
		3.1.5	preparing input variables	13		
		3.1.6	Vectors as input variables	14		

1 Introduction

AquaEnv is a toolbox for aquatic modelling that serves several purposes

- It provides functions to calculate the stoichiometric equilibrium constants (K*) for key acid base systems in natural seawater, the Henry's constants (K₀), as well as the solubility products (K_{sp}) for calcite and aragonite. This functionality is provided via the functions K_CO2, K_HCO3, K_BOH3, K_W, K_HSO4, K_HF, K_NH4, K_H2S, K_H3PO4, K_H2PO4, K_HPO4, K_SiOH4, K_SiOOH3, KO_CO2, KO_O2, Ksp_aragonite, and Ksp_calcite.
- It is designed to make its use as easy as possible: all the information that can be calculated from the set of parameters know of a system or sample can be obtained by one single function: aquaenv. This function returns a list of class aquaenv that contains next to the input parameters
 - the clorinity, the ionic strength, $[\sum B(OH)_3]$, $[\sum H_2SO_4]$, $[\sum HF]$, $[Cl^-]$, $[Cl^-]$, $[\sum Br]$, $[Na^+]$, $[Mg^{2+}]$, $[Ca^{2+}]$, $[K^+]$, $[Sr^{2+}]$ calculated from salinity as given in DOE (1994) (Please note that if values for $[\sum B(OH)_3]$, $[\sum H_2SO_4]$, $[\sum HF]$ are given as input parameters, these parameters are used and not the ones calculated from salinity.)
 - the hydrostatic pressure calculated from the given depth and the seawater density calculated from temperature and salinity as given by Millero and Poisson (1981)
 - a set of conversion factors to convert between different pH scales (Dickson 1984;
 Zeebe and Wolf-Gladrow 2001) and between mol/kg-H₂O and mol/kg-solution (inferred from Roy, Roy, Vogel, PorterMoore, Pearson, Good, Millero, and Campbell (1993) and DOE (1994))
 - the Henry's constants for CO_2 (Weiss 1974) and for O_2 (inferred from Weiss 1970) calculated from temperature and salinity as well as the associated saturation concentrations of CO_2 and O_2 .
 - the ion product of water (Millero 1995), the stoichiometric equilibrium constants of HSO₄⁻ (Dickson 1990), HF(Dickson and Riley 1979), CO₂ (Roy et al. 1993), HCO₃⁻ (Roy et al. 1993), B(OH)₃ (Dickson 1990), NH4⁺(Millero, Yao, and Aicher 1995), H2_S (Millero 1995), H₃PO4(Millero 1995), H₂PO4⁻ (Millero 1995), HPO4²⁻ (Millero 1995), SiOH4 (Millero, Plese, and Fernandez 1988), SiOOH3⁻ (Wischmeyer, Del Amo, Brzezinski, and Wolf-Gladrow 2003), HNO2 (Riordan, Minogue, Healy, O'Driscoll, and Sodeau 2005), HNO3, H2SO4 (Atkins 1996), HS (Atkins 1996) mostly calculated as functions of temperature and salinity and pressure corrected according to Millero (1995).
 - the solubility products of calcite and aragonite (Mucci 1983) as well as the associated Ω 's if a full speciation is calculated (see below)
 - the partial pressure of CO₂ if a full speciation is calculated (see below)
 - if $[\sum CO_2]$ and pH are given [TA] is calculated, if $[\sum CO_2]$ and [TA] are given pH is calculated, if $[\sum CO_2]$ and $[CO_2]$ or pCO₂ are given, pH and [TA] are calculated.
 - if either one of the pairs pH and $[CO_2]$ or pCO₂, pH and [TA], or [TA] and $[CO_2]$ or pCO₂ is given, $[\sum CO_2]$ is calculated

- if sufficient information is given and the flag speciation=TRUE is set, a full speciation of $[\sum CO2]$, $[\sum NH4]$, $[\sum H_2S]$, $[\sum HNO3]$, $[\sum HNO2]$, $[\sum H_3PO4]$, $[\sum Si(OH)_4]$, $[\sum B(OH)_3]$, $[\sum H_2SO_4]$, $[\sum HF]$, as well as water itself is calculated
- if the flag revelle=TRUE is set, the revelle factor (Zeebe and Wolf-Gladrow 2001) is calculated. item if the flag revelle=TRUE is set, all necessary quantities for the explicit "direct substitution approach" (DSA) to pH modelling as given in Hofmann, Meysman, Soetaert, and Middelburg (2008b) are calculated. These are the buffer factor (the partial derivative of [TA] with respect to [H⁺]) and the partial derivatives of [TA] with respect to the other total quantities. Furthermore, the partial derivatives of [TA] with respect to changes in the equilibrium constants (K*), multiplied with the partial derivatives of the equilibrium constants with respect to their variables needed for the DSA with time variable equilibrium constants as described in Hofmann, Meysman, Soetaert, and Middelburg (2008a) are calculated. Finally, the ionization fractions as defined by Stumm and Morgan (1996) and used in Hofmann, Middelburg, Soetaert, Wolf-Gladrow, and Meysman (2008c) are calculated for the full speciation.
- Input for aquaenv has to be supplied in standard SI units, the free proton pH scale and in molinity¹ (mol/kg-solution). Conversion of input parameters to this necessary units and pH scale can be done with the generic function convert.
- The information created with aquaenv is also supplied in standard SI units and in molinity. All elements of an object of class aquaenv of a certain unit or pH scale can be converted into other units or pH scales with the function convert as well.
- One can use input vectors of temperature T, salinity S or depth d for aquaenv to obtain vectors of all calculated information as function of the input vector. This can be visualized in a large variety of ways using the plot function specially defined for objects of type aquaenv.
- Objects of class aquaenv can be used in dynamic models to define the state of the
 system in each timestep of the numerical integration (done e.g. with deSolve). with the
 function aquaenv and the flag from.data.frame=TRUE it is possible to convert output
 of those dynamic models into objects of type aquaenv which allows the user to use the
 whole suite of visualisation tools that is provided by the function plot in AquaEnv.
- As mentioned above Hofmann et al. (2008b), Hofmann et al. (2008a), and Hofmann et al. (2008c) describe methods for an "explicit" pH modelling which allows for the quantification of the influences of kinetically modelled processes on the pH. Objects of type aquaenv provide all needed quantities (partial derivatives of [TA], ionization fractions, etc.) to employ both of those methods in dynamic models. Furthermore, AquaEnv provides the functionality to cumulatively plot the obtained influences on the pH.
- As an example of how to use the toolbox that is **AquaEnv**, two applications are provided

¹Note that it is not sufficient to give a gravimetric concentration in mol/kg since there is a substancial difference between mol/kg-H₂O (molality) and mol/kg-solution (molinity).

- The function titration: creates theoretical titrations which can be used e.g. to create bjerrum plots, something that can also be done with the function plot in AquaEnv.
- − The function TAfit: a routine based on a method in DOE (1994) that makes use of that theoretical titration function and allows for determining total alkalinity ([TA]), the total dissolved inorganic carbon concentration ([\sum CO2]), as well as additionally the electrode standard potential (E₀) and the first dissociation constant of the carbonate system ($K_{CO_2}^*$) using the Levenberg-Marquart algorithm (least squares optimization procedure) as provided in **minpack.lm**.

2 The elements of an object of class aquaenv

The function aquaenv, the central function of **AquaEnv**, returns an object of class aquaenv. This object is a list of different elements which can be accesses with the \$\\$ character or with the [[]] operator

```
> test <- aquaenv(10, 35)
> test$Tc

[1] 10
attr(,"unit")
[1] "deg C"

> test[["Tc"]]

[1] 10
attr(,"unit")
[1] "deg C"
```

Maximally, i.e., if the enough input data is supplied to define the pH of the system and the flags speciation, dsa, and revelle are TRUE while the flag skeleton is FALSE, an object of class aquaenv contains the following elements

element	unit	explanation
Tc	°C	temperature
Tk	K	absolute temperature
\mathbf{S}	"psu" (no unit)	salinity
Cl	%0	chlorinity
I	$mol/kg-H_2O$	ionic strength
d	m	depth
hydroP	bar	hydrostatic pressure
density	kg/m^3	(seawater) density
SumCO2	mol/kg-soln	$[\sum CO_2]$, total dissolved inorganic carbon concen-
		tration
SumNH4	mol/kg-soln	$\left[\sum NH_4^+\right]$, total ammonium concentration
SumH2S	mol/kg-soln	$\sum H_2S$, total sulfide concentration
SumHNO3	mol/kg-soln	\sum HNO ₃ , total nitrate concentration
SumHNO2	mol/kg-soln	$\left[\sum \text{HNO}_2\right]$, total nitrite concentration
SumH3PO4	mol/kg-soln	$[\overline{\sum} H_3PO_4]$, total phosphate concentration

SumSiOH4	mol/kg-soln	$[\sum Si(OH)_4]$, total silicate concentration
SumBOH3	mol/kg-soln	$[\sum B(OH)_3]$, total borates concentration
SumH2SO4	mol/kg-soln	$[\sum H_2SO_4]$, total sulfate concentration
SumHF	mol/kg-soln	$[\sum HF]$, total fluoride concentration
SumBr	mol/kg-soln	$[\sum_{i} HBr]$, total bromide concentration
ClConc	mol/kg-soln	[Cl ⁻], chloride concentration
Na	mol/kg-soln	[Na ⁺], sodium concentration
Mg	mol/kg-soln	[Mg ²⁺], magnesium concentration
Ca	mol/kg-soln	[Ca ²⁺], calcium concentration
K	mol/kg-soln	[K ⁺], potassium concentration
Sr	mol/kg-soln	[Sr ²⁺], strontium concentration
molal2molin	(mol/kg-soln)/(mol/kg-H2O)	concentration conversion factor: from molality to
		molinity
free2tot	_	pH conversion factor: free scale to total scale
free2sws		pH conversion factor: free scale to sawater scale
tot2free		pH conversion factor: total scale to free scale
tot2sws		pH conversion factor: total scale to seawater scale
sws2free		pH conversion factor: seawater scale to free scale
	_	
sws2tot	1//1 1 * /	pH conversion factor: seawater scale to total scale
K0_CO2	mol/(kg-soln*atm)	Henry's constant for CO ₂
K0_O2	mol/(kg-soln*atm)	Henry's constant for O ₂
$CO2_sat$	mol/kg-soln	CO ₂ saturation concentration at an atmospheric
_		partial pressure/fugacity of Fugacity\$CO2
O2_sat	mol/kg-soln	O_2 saturation concentration at an atmospheric
		partial pressure/fugacity of Fugacity\$O2
$K_{-}W$	(mol/kg-soln) ² , free pH scale	stoichiometric equilibrium ion product of
		$H_2O: K_W^* = [H^+][OH-]$
K_HSO4	mol/kg-soln, free pH scale	stoichiometric equilibrium constant
		$K_{HSO_4^-}^* = [H^+][SO_4^{2-}]/[HSO_4^-]$
K_HF	mol/kg-soln, free pH scale	stoichiometric equilibrium constant
IX_III	mor/kg-som, free pir scale	$K_{HF}^* = [H^+][F^-]/[HF]$
V CO2	mol/lengels free pH goals	KHF = [II][F]/[IIF]
$K_{-}CO2$	mol/kg-soln, free pH scale	stoichiometric equilibrium constant
17 11000	1/1 1 6 11 1	$K_{CO_2}^* = [H^+][HCO_3^-]/[CO_2]$
K_HCO3	mol/kg-soln, free pH scale	stoichiometric equilibrium constant
		$K_{HCO_3^-}^* = [H^+][CO_3^{2-}]/[HCO_3^-]$
K_BOH3	mol/kg-soln, free pH scale	stoichiometric equilibrium constant
		$K_{B(OH)_3}^* = [H^+][B(OH)_4^-]/[B(OH)_3]$
K_NH4	mol/kg-soln, free pH scale	stoichiometric equilibrium constant
	, , , , , , ,	$K_{NH_4^+}^* = [H^+][NH_3]/[NH_4^+]$
IZ HOG	1/1 1 C II 1	
$K_{-}H2S$	mol/kg-soln, free pH scale	stoichiometric equilibrium constant
II Habo i	1/1 1 6 17	$K_{H_2S}^* = [H^+][HS^-]/[H_2S]$
K_H3PO4	mol/kg-soln, free pH scale	stoichiometric equilibrium constant
		$K_{H_3PO_4}^* = [H^+][H_2PO_4^-]/[H_3PO_4]$
K_H2PO4	mol/kg-soln, free pH scale	stoichiometric equilibrium constant
		$K_{H_2PO_4^-}^* = [H^+][HPO_4^{2-}]/[H_2PO_4^-]$
K_HPO4	mol/kg-soln, free pH scale	stoichiometric equilibrium constant
	, , , ,	$K_{HPO_4^{2-}}^* = [H^+][PO_4^{3-}]/[HPO_4^{2-}]$
V S:OH4	mol/lengels free pH goals	
K_SiOH4	mol/kg-soln, free pH scale	stoichiometric equilibrium constant
Tr GLOOTIO	1/1 1 6 17	$K_{Si(OH)_4}^* = [H^+][SiO(OH)_3^-]/[Si(OH)_4]$
K_SiOOH3	mol/kg-soln, free pH scale	stoichiometric equilibrium constant
		$K_{SiO(OH)_3^-}^* = [H^+][SiO_2(OH)_2^{2-}]/[SiO(OH)_3^-]$
K_HNO2	mol/kg-soln; mol/kg-H2O; mol/l	approximate value for equilibrium constant
	, , , , , , , , , , , , , , , , , , , ,	$K_{HNO_2}^* = [H^+][NO_2^-]/[HNO_2]$
K_HNO3	mol/kg-soln; mol/kg-H2O; mol/l	approximate value for equilibrium constant
-	, , , , , , , , , , , , , , , , , , , ,	$K_{\text{HNO}_3}^* = [\text{H}^+][\text{NO}_3^-]/[\text{HNO}_3]$
K_H2SO4	mol/kg-soln; mol/kg-H2O; mol/l	approximate value for equilibrium constant
	, , , , , , , , , , , , , , , , , , , ,	Tr

	1	***
** ***	10 10 10 10	$K_{H_2SO_4}^* = [H^+][HSO_4^-]/[H_2SO_4]$
K_HS	mol/kg-soln; mol/kg-H2O; mol/l	approximate value for equilibrium constant
		$K_{HS^-}^* = [H^+][S^{2-}]/[HS^-]$
$Ksp_calcite$	$(\text{mol/kg-soln})^2$	stoichiometric equilibrium solubility product of
		calcite
		$Ksp_{cal}^* = [Ca^{2+}][CO_3^{2-}]$
Ksp_aragonite	$(\text{mol/kg-soln})^2$	stoichiometric equilibrium solubility product of
	, , ,	aragonite
		$Ksp_{ara}^* = [Ca^{2+}][CO_3^{2-}]$
TA	mol/kg-soln	[TA], total alkalinity
pH	-, free scale	pH
pCO2		partial pressure (fugacity) of CO ₂ in the water
•	atm,	
CO2	mol/kg-soln	
HCO3	mol/kg-soln	[HCO ₃]
CO3	mol/kg-soln	$\begin{bmatrix} CO_3^{2-} \end{bmatrix}$
BOH3	mol/kg-soln	$[B(OH)_3]$
BOH4	mol/kg-soln	$[B(OH)_4^-]$
ОН	mol/kg-soln	$[OH^-]$
H3PO4	mol/kg-soln	$[H_3PO_4]$
H2PO4	mol/kg-soln	$[H2PO_4^-]$
HPO4	mol/kg-soln	$[\mathrm{HPO_4^{2-}}]$
PO4	mol/kg-soln	$[PO_4^{3-}]$
SiOH4	mol/kg-soln	$\left[\operatorname{Si}(\operatorname{OH})_{4}\right]$
SiOOH3	mol/kg-soln	$\left[\text{SiO}(\text{OH})_3^- \right]$
SiO2OH2	mol/kg-soln	$\begin{bmatrix} \operatorname{SiO}_2(\operatorname{OH})_2^{2-} \end{bmatrix}$
H2S	mol/kg-soln	$[H_2S]$
HS	mol/kg-soln	[HS ⁻]
S2min	mol/kg-soln	$\begin{bmatrix} S^2 \end{bmatrix}$
NH4	The state of the s	$\begin{bmatrix} NH_4^+ \end{bmatrix}$
	mol/kg-soln	
NH3	mol/kg-soln	
H2SO4	mol/kg-soln	$[H_2SO_4]$
HSO4	mol/kg-soln	$[HSO_4^-]$
SO4	mol/kg-soln	$[SO_4^{2-}]$
$_{ m HF}$	mol/kg-soln	[HF]
\mathbf{F}	mol/kg-soln	[F ⁻]
HNO3	mol/kg-soln	[HNO ₃]
NO3	mol/kg-soln	$[NO_3^-]$
HNO2	mol/kg-soln	$[HNO_2]$
NO2	mol/kg-soln	$[NO_2^-]$
omega_calcite	-	saturation state Ω with respect to calcite
omega_aragonite	_	saturation state Ω with respect to aragonite
revelle	_	Revelle factor
c1	_	ionization fraction $c_1 = [CO_2]/[\sum CO_2]$
c2	_	ionization fraction $c_2 = [HCO_3^-]/[\sum CO_2]$
c3		ionization fraction $c_3 = [CO_3^{2-}]/[\sum CO_2]$
dTAdSumCO2		$\partial[TA]$
d1Ad5ulliCO2	-	$\frac{\partial [TA]}{[\partial \sum CO_2]}$
		with $[TA] = f([H^+], [\sum CO_2],)$
b1	-	ionization fraction $b_1 = [B(OH)_3]/[\sum B(OH)_3]$
b2	-	ionization fraction $b_2 = [B(OH)_4^-]/[\sum B(OH)_3]$
dTAdSumBOH3	-	$\frac{\partial [TA]}{[\partial \sum B(OH)_3]}$
		with $[TA] = f([H^+], [\sum CO_2],)$
so1	_	ionization fraction $so_1 = [H_2SO_4]/[\sum H_2SO_4]$
so2	_	ionization fraction $so_2 = [HSO_4^-]/[\sum H_2SO_4]$
so3		ionization fraction $so_3 = [SO_4^2]/[\sum H_2SO_4]$
dTAdSumH2SO4		∂[TA]
d 1 Ausum 12504	_	$\frac{\partial [TA]}{[\partial \sum H_2 SO_4]}$
Ca		with $[TA] = f([H^+], [\sum CO_2],)$
f1	1 -	ionization fraction $f_1 = [HF]/[sumHF]$

f2	-	ionization fraction $f_1 = [F^-]/[sumHF]$
dTAdSumHF	-	$\frac{\partial[TA]}{[\partial \Sigma HF]}$
		with $[TA] = f([H^+], [\sum CO_2],)$
dTAdH	-	$\frac{\partial[TA]}{\partial[H^+]}$: buffer factor
		with $[TA] = f([H^+], [\sum CO_2],)$
dTAdKdKdS	_	$\sum_{i} \frac{\partial [TA]}{\partial K_{i}^{*}} \frac{\partial K_{i}^{*}}{\partial S}$
		$\begin{array}{c} \sum_{i} \partial K_{i}^{*} \partial S \\ \text{with } [TA] = f([H^{+}], [\sum CO_{2}],, K_{i}^{*}) \end{array}$
dTAdKdKdT		$\begin{array}{c} \text{with } [\Pi] = I([\Pi], [\Sigma], [\Sigma],, \Pi_1) \\ \sum_i \frac{\partial [TA]}{\partial K_i^*} \frac{\partial K_i^*}{\partial T} \end{array}$
dTAdNdNdT	_	
		with $[\dot{T}A] = f([H^+], [\sum CO_2],, K_i^*)$
dTAdKdKdd	-	$\sum_{i} \frac{\partial [TA]}{\partial K_{i}^{*}} \frac{\partial K_{i}^{*}}{\partial d}$
		with $[TA] = f([H^+], [\sum CO_2],, K_i^*)$
dTAdKdKdSumH2SO4	-	$\sum_{i} \frac{\partial [TA]}{\partial K_{i}^{*}} \frac{\partial K_{i}^{*}}{\partial [\sum H_{2}SO_{4}]}$
		with $[TA] = f([H^+], [\sum CO_2],, K_i^*)$
dTAdKdKdSumHF	_	$\sum_{i} \frac{\partial [TA]}{\partial K_{i}^{*}} \frac{\partial K_{i}^{*}}{\partial [\sum HF]}$
		with $[\dot{T}A] = f([H^+], [\sum CO_2],, K_i^*)$

ANOTHER LONGTABLE WITH REFERENCES AND ALL EXPLANATIONS! longtable with names, units, references, descriptions etc. of EVERYTHING that is stored in an object of type qauaenv

explain pressure correction: what has been corrected in Millero1995?

3 Using AquaEnv

3.1 Basic features

3.1.1 calling the "K" functions directly

```
> K_CO2(15, 30)
[1] 9.089117e-07
attr(,"unit")
[1] "mol/kg-soln"
attr(,"pH scale")
[1] "free"
> K_HCO3(15, 30)
[1] 6.014934e-10
attr(,"unit")
[1] "mol/kg-soln"
attr(,"pH scale")
[1] "free"
> KO_CO2(15, 30)
[1] 0.03852158
attr(,"unit")
[1] "mol/(kg-soln*atm)"
```

```
> Ksp_calcite(15, 30, 100)
[1] 3.644549e-07
attr(,"unit")
[1] "(mol/kg-soln)^2"
3.1.2 Minimal aquaenv definition
> ae <- aquaenv(Tc = 15, S = 30)
> ae$K_CO2
[1] 9.089117e-07
attr(,"unit")
[1] "mol/kg-soln"
attr(,"pH scale")
[1] "free"
> ae$Ksp_calcite
[1] 3.582242e-07
attr(,"unit")
[1] "(mol/kg-soln)^2"
> ae$Ksp_aragonite
[1] 5.643199e-07
attr(,"unit")
[1] "(mol/kg-soln)^2"
> ae <- aquaenv(Tc = 15, S = 30, d = 10)
> ae$K_CO2
[1] 9.09921e-07
attr(,"unit")
[1] "mol/kg-soln"
attr(,"pH scale")
[1] "free"
> ae$Ksp_calcite
[1] 3.588429e-07
attr(,"unit")
[1] "(mol/kg-soln)^2"
```

> ae\$Ksp_aragonite

"Ksp_aragonite"

[53] "K_HS"

```
[1] 5.652276e-07
attr(,"unit")
[1] "(mol/kg-soln)^2"
> names(ae)
                                       "S"
 [1] "Tc"
                      "Tk"
                                                        "C1"
 [5] "I"
                      "d"
                                       "hydroP"
                                                        "density"
 [9] "SumCO2"
                      "SumNH4"
                                       "SumH2S"
                                                        "SumHNO3"
[13] "SumHNO2"
                      "SumH3PO4"
                                       "SumSiOH4"
                                                        "SumBOH3"
[17] "SumH2SO4"
                      "SumHF"
                                       "SumBr"
                                                        "ClConc"
                                       "Ca"
[21] "Na"
                      "Mg"
                                                        "K"
[25] "Sr"
                      "molal2molin"
                                       "free2tot"
                                                        "free2sws"
[29] "tot2free"
                      "tot2sws"
                                       "sws2free"
                                                        "sws2tot"
[33] "KO_CO2"
                      "K0_02"
                                       "CO2_sat"
                                                        "02_sat"
                                                        "K_C02"
[37] "K_W"
                      "K_HSO4"
                                       "K_HF"
                                                        "K_H2S"
[41] "K_HCO3"
                      "K_BOH3"
                                       "K_NH4"
                      "K_H2P04"
[45] "K_H3PO4"
                                       "K_HP04"
                                                        "K_SiOH4"
                                                        "K_H2SO4"
[49] "K_SiOOH3"
                      "K_HNO2"
                                       "K_HN03"
```

3.1.3 Defining the complete aquaenv system in different ways

"Ksp_calcite"

```
> Tc <- 15
> S <- 30
> d <- 10
> SumCO2 <- 0.002
> pH <- 8
> TA <- 0.002140323
> pCO2 <- 0.000533576
> CO2 <- 2.055419e-05
> ae <- aquaenv(Tc, S, d, SumCO2 = SumCO2, pH = pH)
> ae$TA
[1] 0.002140800
attr(,"unit")
[1] "mol/kg-soln"
> ae <- aquaenv(Tc, S, d, SumCO2 = SumCO2, TA = TA)
> ae$pH
[1] 7.998791
attr(,"pH scale")
[1] "free"
> ae <- aquaenv(Tc, S, d, SumCO2 = SumCO2, CO2 = CO2)
> ae$pH
```

```
[1] 7.999293
attr(,"pH scale")
[1] "free"
> ae <- aquaenv(Tc, S, d, SumCO2 = SumCO2, pCO2 = pCO2,
      dsa = TRUE, revelle = TRUE)
> ae$pH
[1] 7.999293
attr(,"pH scale")
[1] "free"
> names(ae)
                                               "S"
  [1] "Tc"
                           "Tk"
                           "I"
  [4] "C1"
                                               "d"
  [7] "hydroP"
                           "density"
                                               "SumCO2"
 [10] "SumNH4"
                          "SumH2S"
                                               "SumHNO3"
 [13] "SumHNO2"
                          "SumH3P04"
                                               "SumSiOH4"
 [16] "SumBOH3"
                           "SumH2SO4"
                                               "SumHF"
 [19] "SumBr"
                           "ClConc"
                                               "Na"
                                               "K"
 [22] "Mg"
                          "Ca"
 [25] "Sr"
                                               "free2tot"
                           "molal2molin"
 [28] "free2sws"
                          "tot2free"
                                               "tot2sws"
 [31] "sws2free"
                           "sws2tot"
                                               "K0_C02"
 [34] "KO_O2"
                           "CO2_sat"
                                               "02_sat"
 [37] "K_W"
                           "K_HS04"
                                               "K_HF"
 [40] "K_CO2"
                           "K_HCO3"
                                               "K_BOH3"
 [43] "K_NH4"
                          "K_H2S"
                                               "K_H3P04"
 [46] "K_H2PO4"
                           "K_HP04"
                                               "K_SiOH4"
 [49] "K_SiOOH3"
                          "K_HN02"
                                               "K_HNO3"
 [52] "K_H2SO4"
                           "K_HS"
                                               "Ksp_calcite"
                                               "Hq"
 [55] "Ksp_aragonite"
                           "TA"
 [58] "pCO2"
                          "CO2"
                                               "HC03"
 [61] "CO3"
                           "BOH3"
                                               "BOH4"
                                               "H2P04"
 [64] "OH"
                          "H3P04"
                           "P04"
 [67] "HPO4"
                                               "SiOH4"
 [70] "SiOOH3"
                           "SiO2OH2"
                                               "H2S"
 [73] "HS"
                           "S2min"
                                               "NH4"
 [76] "NH3"
                           "H2S04"
                                               "HS04"
                                               "F"
                          "HF"
 [79] "S04"
 [82] "HNO3"
                          "NO3"
                                               "HN02"
 [85] "NO2"
                          "omega_calcite"
                                               "omega_aragonite"
 [88] "revelle"
                          "c1"
                                               "c2"
 [91] "c3"
                                               "b1"
                           "dTAdSumCO2"
 [94] "b2"
                          "dTAdSumBOH3"
                                               "so1"
 [97] "so2"
                          "so3"
                                               "dTAdSumH2SO4"
```

> TA <- 0.002

> ae\$pH

> aeclone3 <- aquaenv(ae = ae, TA = TA)

```
[100] "f1"
                         "f2"
                                            "dTAdSumHF"
[103] "dTAdH"
                         "dTAdKdKdS"
                                            "dTAdKdKdT"
                         "dTAdKdKdSumH2SO4" "dTAdKdKdSumHF"
[106] "dTAdKdKdd"
> ae <- aquaenv(Tc, S, d, SumCO2 = SumCO2, CO2 = CO2, pCO2 = pCO2)
[1] "Error! Overdetermined system: entered pCO2: 0.000533576, calculated pCO2: 0.00053357
[1] "Please enter only one of: pH, TA, CO2, or pCO2."
> ae <- aquaenv(Tc, S, d, SumCO2 = SumCO2, pH = pH, TA = TA)
[1] "Error! Overdetermined system: entered TA: 0.002140323, calculated TA: 0.002140799720
[1] "Please enter only one of: pH, TA, CO2, or pCO2."
> ae <- aquaenv(Tc, S, d, SumCO2 = SumCO2, pH = pH, CO2 = CO2)
[1] "Error! Overdetermined system: entered pH: 8 , calculated pH: 7.99929303203143"
[1] "Please enter only one of: pH, TA, CO2, or pCO2."
> ae <- aquaenv(Tc, S, d, SumCO2 = SumCO2, pH = pH, pCO2 = pCO2)
[1] "Error! Overdetermined system: entered pH: 8 , calculated pH: 7.99929301525035"
[1] "Please enter only one of: pH, TA, CO2, or pCO2."
> ae <- aquaenv(Tc, S, d, SumCO2 = SumCO2, TA = TA, CO2 = CO2)
[1] "Error! Overdetermined system: entered TA: 0.002140323, calculated TA: 0.002140520813
[1] "Please enter only one of: pH, TA, CO2, or pCO2."
> ae <- aquaenv(Tc, S, d, SumCO2 = SumCO2, TA = TA, pCO2 = pCO2)
[1] "Error! Overdetermined system: entered TA: 0.002140323, calculated TA: 0.002140520806
[1] "Please enter only one of: pH, TA, CO2, or pCO2."
     Cloning the aquaenv system: 1 to 1 and with different pH or TA
> Tc <- 15
> S <- 30
> SumCO2 <- 0.002
> TA <- 0.00214
> ae <- aquaenv(Tc, S, SumCO2 = SumCO2, TA = TA)
> aeclone1 <- aquaenv(ae = ae)
> pH <- 9
> aeclone2 <- aquaenv(ae = ae, pH = pH)
```

```
[1] 7.99838
attr(,"pH scale")
[1] "free"
> aeclone1$pH
[1] 7.99838
attr(,"pH scale")
[1] "free"
> aeclone2$TA
[1] 0.002982758
attr(,"unit")
[1] "mol/kg-soln"
> aeclone3$pH
[1] 7.548174
attr(,"pH scale")
[1] "free"
3.1.5 preparing input variables
> Tc <- 15
> S <- 10
> pH_NBS <- 8.142777
> SumCO2molar <- 0.002016803
> pH_free <- convert(pH_NBS, "pHscale", "nbs2free", Tc = Tc,
> SumCO2molin <- convert(SumCO2molar, "conc", "molar2molin",
      Tc = Tc, S = S)
> ae <- aquaenv(Tc, S, SumCO2 = SumCO2molin, pH = pH_free)
> ae$pH
[1] 8
attr(,"pH scale")
[1] "free"
> ae$SumCO2
[1] 0.002000000
attr(,"unit")
[1] "mol/kg-soln"
> ae$TA
[1] 0.002048921
attr(,"unit")
[1] "mol/kg-soln"
```

3.1.6 Vectors as input variables

```
(only ONE input variable may be a vector)
(with full output: including the Revelle factor and the DSA properties)
> SumCO2 <- 0.002
> pH <- 8
> Tc <- 1:15
> S <- 30
> d <- 10
> ae <- aquaenv(Tc, S, d, SumCO2 = SumCO2, pH = pH, revelle = TRUE,
      dsa = TRUE)
> plot(ae, xval = Tc, xlab = "T/(deg C)", newdevice = FALSE)
extra examples
> options(prompt = " ")
> Tc <- 15
> S <- 1:30
> ae <- aquaenv(Tc, S, d, SumCO2 = SumCO2, pH = pH, revelle = TRUE,
      dsa = TRUE)
> plot(ae, xval = S, xlab = "S")
> S <- 30
> d <- seq(1, 1000, 100)
> ae <- aquaenv(Tc, S, d, SumCO2 = SumCO2, pH = pH, revelle = TRUE,
      dsa = TRUE)
> plot(ae, xval = d, xlab = "depth/m")
> TA <- 0.0023
> Tc <- 1:15
> S <- 30
```

References

Atkins PW (1996). Physikalische Chemie. VCH Weinheim, 2nd edition.

- Dickson AG (1984). "Ph Scales and Proton-Transfer Reactions in Saline Media Such as Sea-Water." *Geochimica Et Cosmochimica Acta*, **48**(11), 2299–2308. URL <GotoISI>: //A1984TT08000013.
- Dickson AG (1990). "Standard Potential of the Reaction AgCl(S)+1/2h-2(G)=Ag(S)+HCl(Aq) and the Standard Acidity Constant of the Ion HSO4⁻ in Synthetic Sea-Water from 273.15-K to 318.15-K." *Journal of Chemical Thermodynamics*, **22**(2), 113–127. URL <GotoISI>://A1990CY50200001.
- Dickson AG, Riley JP (1979). "Estimation of Acid Dissociation-Constants in Seawater Media from Potentiometric Titrations with Strong Base .1. Ionic Product of Water Kw." *Marine Chemistry*, **7**(2), 89–99. URL <GotoISI>://A1979GJ26800001.
- DOE (1994). Handbook of Methods for the Analysis of the Various Parameters of the Carbon Dioxide System in Sea Water. ORNL/CDIAC-74.
- Hofmann A, Meysman F, Soetaert K, Middelburg J (2008a). "Factors governing the pH in a heterotrophic, turbid, tidal estuary." *Biogeosciences Discussion*.
- Hofmann AF, Meysman FJR, Soetaert K, Middelburg JJ (2008b). "A step-by-step procedure for pH model construction in aquatic systems." *Biogeosciences J1 BG*, **5**(1), 227–251. URL http://www.biogeosciences.net/5/227/2008/L1-http://www.biogeosciences.net/5/227/2008/bg-5-227-2008.pdf.
- Hofmann AF, Middelburg J, Soetaert K, Wolf-Gladrow DA, Meysman F (2008c). "pH modelling in aquatic environments: from an alkalinity-based to a proton-based view." in preparation.
- Millero FJ (1995). "Thermodynamics of the Carbon-Dioxide System in the Oceans." Geochimica Et Cosmochimica Acta, 59(4), 661–677. URL <GotoISI>://A1995QH99100003.

- Millero FJ, Plese T, Fernandez M (1988). "The Dissociation of Hydrogen-Sulfide in Seawater." Limnology and Oceanography, 33(2), 269–274. URL <GotoISI>://A1988N101700008.
- Millero FJ, Poisson A (1981). "International One-Atmosphere Equation of State of Seawater." Deep-Sea Research Part a-Oceanographic Research Papers, 28(6), 625–629. URL <GotoISI>://A1981LY51900008.
- Millero FJ, Yao WS, Aicher J (1995). "The Speciation of Fe(II) and Fe(III) in Natural-Waters." Marine Chemistry, 50(1-4), 21–39. URL <GotoISI>://A1995RV93400004.
- Mucci A (1983). "The Solubility of Calcite and Aragonite in Seawater at Various Salinities, Temperatures, and One Atmosphere Total Pressure." American Journal of Science, 283(7), 780–799. URL <GotoISI>://A1983RF42100006.
- Riordan E, Minogue N, Healy D, O'Driscoll P, Sodeau JR (2005). "Spectroscopic and optimization modeling study of nitrous acid in aqueous solution." *Journal of Physical Chemistry* A, **109**(5), 779–786. URL <GotoISI>://000226779800009.
- Roy RN, Roy LN, Vogel KM, PorterMoore C, Pearson T, Good CE, Millero FJ, Campbell DM (1993). "The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperatures O to 45 degrees C (vol 44, pg 249, 1996)." Marine Chemistry, 52(2), 183–183. URL <GotoISI>://A1996UH75200007.
- Stumm W, Morgan JJ (1996). Aquatic Chemistry: Chemical Equilibria and Rates in natural Waters. Wiley Interscience, New York.
- Weiss RF (1970). "Solubility of Nitrogen, Oxygen and Argon in Water and Seawater." Deep-Sea Research, 17(4), 721–735. URL <GotoISI>://A1970H126100004.
- Weiss RF (1974). "Carbon dioxide in water and seawater: the solubility of a non-ideal gas." *Marine Chemistry*, **2**, 203–215.
- Wischmeyer AG, Del Amo Y, Brzezinski M, Wolf-Gladrow DA (2003). "Theoretical constraints on the uptake of silicic acid species by marine diatoms." *Marine Chemistry*, **82**(1-2), 13–29. URL <GotoISI>://000183605000002.
- Zeebe RE, Wolf-Gladrow D (2001). CO₂ in Seawater: Equilibrium, Kinetics, Isotopes. Number 65 in Elsevier Oceanography Series. Elsevier, first edition.

Affiliation:

Andreas F. Hofmann

Centre for Estuarine and Marine Ecology (CEME)

Netherlands Institute of Ecology (NIOO)

4401 NT Yerseke, Netherlands E-mail: a.hofmann@nioo.knaw.nl

URL: http://www.nioo.knaw.nl/ppages/ahofmann