Varieties in more general settings

1 Geometric properties

Definition 1. Let **k** be a field and X a separated scheme of finite type over Spec **k**. We say that X has a geometric property \mathcal{P} if X_k has the property \mathcal{P} for the algebraic closure k of k.

Definition 2. A variety over a field \mathbf{k} is a geometrically integral scheme which is separated and of finite type over Spec \mathbf{k} .

2 Points in varieties

Proposition 3. Let \mathbf{k} be a field and \mathbf{K} an extension of \mathbf{k} . Let X be a variety over \mathbf{k} . Then we have the following:

- (a) there is a natural bijection between $X(\mathbf{K})$ and $X_{\mathbf{K}}(\mathbf{K})$;
- (b) let K'/K be an extension, then there is a natural inclusion $X(K) \subseteq X(K')$;
- (c) suppose that $X = \operatorname{Spec} \mathbf{k}[T_1, \dots, T_n]/I$ is an affine variety, then there is a natural bijection between $X(\mathbf{K})$ and the set $\{(x_1, \dots, x_n) \in \mathbf{K}^n | f(x_1, \dots, x_n) = 0, \forall f \in I\}$.

Proof. Yang: To be continued

Proposition 4. Let **k** be a field and X, Y varieties over **k**. Let $f, g : X \to Y$ be two morphisms. If f(x) = g(x) for all points $x \in X(\mathbb{k})$, then f = g.

Proof. Yang: To be continued

Example 5. Let $\mathbf{k} = \mathbb{F}_p$ and $X = \mathbb{A}^1_{\mathbf{k}} = \operatorname{Spec} \mathbf{k}[T]$. Yang: To be continued

Date: October 1, 2025, Author: Tianle Yang, My Homepage

