

Report No. 251857-1

Test Report

Product Zigbee System on Chip Evaluation Board

Name and address of the

applicant

Texas Instruments Norway AS

Gaustadalléen 21, NO-0349 Oslo, Norway

Name and address of the

manufacturer

Texas Instruments Norway AS

Gaustadalléen 21, NO-0349 Oslo, Norway

Model CC2538-CC2592EM

Rating 3.0Vdc

Trademark Texas Instruments

Serial number /

Additional information Zigbee System on Chip

Tested according to FCC Part 15.247

Digital Transmission Systems

Industry Canada RSS-210, Issue 8

Low Power Licence-Exempt Radiocommunications Devices

Order number 251857

Tested in period 2014.01.08 to 2014.01.10

Issue date 2014.02.05

Name and address of the testing laboratory

Nemko

FCC No: 994405 IC OATS: 2040D-1

Instituttveien 6 Kjeller, Norway

TEL: (+47) 22 96 03 30 FAX: (+47) 22 96 05 50

Prepared by [G.Suhanthakumar]

Approved by [Frode Sveinsen]

This report shall not be reproduced except in full without the written approval of Nemko. Opinions and interpretations expressed within this report are not part of the current accreditation. This report was originally distributed electronically with digital signatures. For more information contact Nemko.

CONTENTS

1	INFORMATION	
1.1	Test Item	
1.2	Test Environment	4
1.2.1	Normal test condition	4
1.3	Test Engineer(s)	4
1.4	Test Equipment	
2	TEST REPORT SUMMARY	5
2.1	General	
2.2	Test Summary	
2.3	Description of modification for Modification Filing	6
2.4	Comments	6
2.5	Family List Rational	6
3	TEST RESULTS	7
3.1	Power Line Conducted Emissions	7
3.2	Minimum 6 dB Bandwidth	_
0.2	WILLITTUTT 6 UD DATIUWIULT	8
3.3	20 dB Bandwidth	
		12
3.3	20 dB Bandwidth Peak Power Output Spurious Emissions (Radiated)	12 13 23
3.3 3.4	20 dB BandwidthPeak Power Output	12 13 23
3.3 3.4 3.5	20 dB Bandwidth Peak Power Output Spurious Emissions (Radiated)	12 13 23 71
3.3 3.4 3.5 3.6	20 dB Bandwidth Peak Power Output Spurious Emissions (Radiated) Power Spectral Density (PSD)	
3.3 3.4 3.5 3.6	20 dB Bandwidth	

1 INFORMATION

1.1 Test Item

Name :	Texas Instruments
FCC ID :	ZAT25382592EM
IC:	451H-25382592EM
Model/version :	CC2538-CC2592EM
Serial number :	-
Hardware identity and/or version:	-
Software identity and/or version :	-
Frequency Range :	2405 – 2480 MHz
Number of Channels :	16
Type of Modulation :	250kbps, O-QPSK (Digital)
Conducted Output Power:	0.071 Watts (Peak)
User Frequency Adjustment :	None
Type of Power Supply :	3.0V _{DC} (2xAAA Battery)
Antenna Connector :	N/A
Antenna type:	PCB antenna
Antenna Diversity Supported :	No
Desktop Charger :	None

Description of Test Item

The CC2538-CC2592EM is a 2.4 GHz RF-transceiver evaluation module containing the CC2538 IEEE 802.15.4/ZigBee System-on-Chip and the CC2592 range extender.

TEST REPORT FCC Part 15.247 Report no.: 251857-1 FCC ID: ZAT25382592EM

1.2 **Test Environment**

Normal test condition 1.2.1

Temperature: 20.2 - 21.5 °C

Relative humidity: 40 - 43 % Normal test voltage: 3.0 V DC

The values are the limit registered during the test period.

Test Engineer(s) 1.3

G.Suhanthakumar

1.4 **Test Equipment**

See list of test equipment in clause 4.

TEST REPORT FCC Part 15.247 Report no.: 251857-1 FCC ID: ZAT25382592EM

2 TEST REPORT SUMMARY

2.1 General

All measurements are tracable to national standards.

The tests were conducted for the purpose of demonstrating compliance with FCC CFR 47 Part 15, paragraph 15.247 and Industry Canada RSS-210 Issue 8.

Radiated tests were conducted in accordance with ANSI C63.4-2003 and KDB 558074 D01 DTS Measurement Guidance v03r01. The radiated tests were made in a semi-anechoic chamber at measuring distances of 3m and 10m.

A description of the test facility is on file with the FCC and Industry Canada.

⊠ New Submission	☐ Production Unit
Class II Permissive Change	□ Pre-production Unit
DTS Equipment Code	☐ Family Listing

THIS TEST REPORT APPLIES ONLY TO THE ITEM(S) AND CONFIGURATIONS TESTED.

Deviations from, additions to, or exclusions from the test specifications are described in "Summary of Test Data".

Nemko Group authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any reproduction of parts of this report requires approval in writing from Nemko Group.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Group accepts no responsibility for damages suffered by any third party as a result of decisions made or actions based on this report.

2.2 Test Summary

Name of test	FCC Part 15 reference	RSS-210 Issue 8 & RSS-GEN Issue 3	Result	
Supply Voltage Variations	15.31(e)	N/A	Complies ¹	
Antenna Requirement	15.203	7.1.4 (RSS-GEN)	N/A ²	
Power Line Conducted Emission	15.107(a) 15.207(a)	N/A ¹		
Minimum 6 dB Bandwidth	15.247(a)(2)	A8.2	Complies	
Peak Power Output	15.247(b)	A8.4	Complies	
Power Spectral Density	15.247(d)	A8.2	Complies	
Spurious Emissions (Antenna Conducted)	15.247(c)	A8.5	Complies	
Spurious Emissions (Radiated)	15.247(c) 15.109(a) 15.209(a)	A8.5	Complies	
Receiver Emissions (Radiated)	N/A	2.3	N/A	

¹ EUT is battery operated only.

RSS Gen issue 3 covers section 7 & 6

RSS 210 issue 8 covers section A2.9

2.3 Description of modification for Modification Filing

Not applicable.

2.4 Comments

All ports were populated during spurious emission measurements.

2.5 Family List Rational

Not Applicable.

² PCB antenna

FCC Part 15.247 Report no.: 251857-1 FCC ID: ZAT25382592EM

TEST REPORT

3 **TEST RESULTS**

Power Line Conducted Emissions 3.1

Para. No.: 15.207 (a)

Measurement Data:

The test is not applicable since the device is battery powered.

Test Performed By: -Date of Test: -

ANSI C63.4-2003 using 50 μ H/50 ohms LISN. **Measurement procedure:**

Test Results:

TEST REPORT FCC Part 15.247 Report no.: 251857-1 FCC ID: ZAT25382592EM

3.2 Minimum 6 dB Bandwidth

Para. No.: 15.247 (a)(2)

Test Performed By: G.Suhanthakumar	Date of Test: 09 Jan 2014
------------------------------------	---------------------------

Test Results: Complies Measurement Data:

	Measured 6 dB Bandwidth (MHz)
2405MHz	2480MHz	
1.66	1.63	1.65

Tested according to KDB 558074 D01 DTS Meas Guidance v03r01, Section 8.1.

Requirements:

For Digital Transmission Systems in the 2400-2483.5 MHz band the minimum 6 dB bandwidth shall be at least 500 KHz.

Date: 9.JAN.2014 13:20:50

6 dB Bandwidth at 2405 MHz

Date: 9.JAN.2014 13:22:52

6 dB Bandwidth at 2440 MHz

Date: 9.JAN.2014 13:24:03

6 dB Bandwidth at 2480 MHz

3.3 20 dB Bandwidth

Test Performed By: G.Suhanthakumar Date of Test: 09 Jan 2014

Measurement Data:

Measured 20 dB Bandwidth (MHz)
2440 MHz
2.82

Requirements:

No requirements. Reported for information only.

Date: 9.JAN.2014 13:33:48

20 dB Bandwidth at 2440 MHz

TEST REPORT FCC Part 15.247 Report no.: 251857-1 FCC ID: ZAT25382592EM

3.4 Peak Power Output

Para. No.: 15.247 (b)

Test Performed By: G.Suhanthakumar Date of Test: 08-13 Jan 2014

Test Results: Complies

Measurement Data:

RF channel	2405 MHz	2440 MHz	2480 MHz
Measured Maxium Field strength (dBµV/m) –VP	116.73	116.53	98.05
Calc. Radiated Power (dBm)	21.47	21.27	2.79
Calc. Radiated Power (mW)	140.36	134.04	1.90
Measured Conducted Power (dBm)	18.53	18.09	1.78
Measured Conducted Power (mW)	71.28	64.42	1.51
Calculated Antenna Gain (dBi)	2.94	3.18	1.01

Tested according to KDB 558074 D01 DTS Meas Guidance v03r01, Section 9.1.1.

EIRP is calculated according to KDB 558074 D01 DTS Meas Guidance v03r01, Section 12.2.2. (e)

The maximum field strength is obtained in XY plane and Vertical polarization.

See att	ached	l grap	h.
---------	-------	--------	----

Detachable antenna?	Yes	⊠ No
If detachable, is the antenna connector non-standard?	Yes	No

Requirements:

The maximum peak output power shall not exceed the following limits:

For Digital Transmission Systems in the 2400 - 2483.5 MHz band: 1 Watt

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power from the intentional radiator shall be reduced below the stated value above by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Date: 8.JAN.2014 09:19:45

Radiated Field strength, VP , 2405 MHz,PK

Date: 8.JAN.2014 09:20:35

Radiated field strength, HP, 2405 MHz,PK

Date: 8.JAN.2014 09:45:53

Radiated field strength, VP, 2440 MHz,PK

Date: 8.JAN.2014 09:46:45

Radiated field strength, HP, 2440 MHz,PK

Date: 8.JAN.2014 10:10:39

Radiated field strength, VP, 2480 MHz,PK

Date: 8.JAN.2014 10:11:29

Radiated field strength, HP, 2480 MHz,PK

Date: 8.JAN.2014 16:28:08

Conducted power - 2405MHz,PK

Date: 8.JAN.2014 16:27:53

Conducted power - 2440MHz,PK

Date: 13.JAN.2014 07:53:41

Conducted power - 2480MHz, PK

3.5 Spurious Emissions (Radiated)

Para. No.: 15.247 (c)

Test Performed By: G.Suhanthakumar Date of Test: 09 Jan 2014

Test Results: Complies

Measurement Data:

Band-edge, @3m

Frequency	Measured Field Strength @3m, dBμV/m	Detector	Limit dBµV/m	Margin dB
2.39 GHz	53.61	PK	74	20.39
	47.01	AV	54	6.99
2.4835 GHz	35 GHz 66.80		74	7.2
	43.52	AV	54	10.48

Tested according to KDB 558074 D01 DTS Measurement Guidance v03r01, Section 13.1 & 13.3.2.

100% duty cycle

See attached plots.

RF conducted spurious emission

Scan performed with 100 kHz Bandwidth from 0.01 to 25 GHz.

All emissions are more than 20dB below carrier.

See plots.

Date: 8.JAN.2014 08:59:13

Band Edge, 2390 MHz, Peak Detector

Date: 8.JAN.2014 09:00:06

Band Edge, 2390 MHz, Average Detector

Date: 8.JAN.2014 10:14:50

Upper Band Edge, 2483.5 MHz, Peak Detector

Date: 8.JAN.2014 10:19:28

Upper Band edge power, 2483.5MHz, AV detector

Date: 8.JAN.2014 16:30:06

Conducted spurious emission 10MHz - 25GHz - ch2402MHz

Date: 8.JAN.2014 16:31:03

Conducted spurious emission 10MHz - 25GHz - ch2440MHz

Date: 13.JAN.2014 07:54:36

Conducted spurious emission 10MHz - 25GHz - ch2480MHz

Radiated emissions 9kHz - 30 MHz.

Detector: Quasi-Peak Measuring distance 10 m.

Date: 8.JAN.2014 14:04:29

Radiated Emissions, 9 kHz - 30 MHz @10m

Radiated emission 30 - 1000 MHz.

Detector: Peak

Measuring distance at 3m.

All values are below the limit even when measured with Peak Detector, RBW=100kHz, VBW=300kHz.

See attached plot.

Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)	Comment
920.472600	22.4	1000.0	120.000	277.0	V	100.0	2.6	23.6	46.0	

Radiated Emissions, 30 - 1000 MHz, VP and HP, @3m

Radiated Emissions, 1-25 GHz

1-8 GHz measured at a distance of 3 m

8 - 25 GHz measured at 1m distance

Peak detector

Frequency MHz	Field Strength dBμV/m	Detector	Limit dBμV/m	Margin dB
2342	59.12	Pk	74	14.88
2376	58.59	Pk	74	15.41
4811	49.96	Pk	74	24.04
4881	50.05	Pk	74	23.95
7217	58.31	Pk	74	15.69
7321	58.98	Pk	74	15.02
9618	44.15	Pk	74	29.85
9758	43.25	Pk	74	30.75
12027	58.27	Pk	74	15.73
12197	59.27	Pk	74	14.73
14433	58.09	Pk	74	15.91
14643	57.91	Pk	74	16.09
16831	50.54	Pk	74	23.46
17076	51.00	Pk	74	23.00

Antenna factor, amplifier gain and cable loss are included in Spectrum Analyzer "Transducer factor". See attached graphs.

Average detector

Frequency MHz	Field Strength dBμV/m	Detector	Limit dBμV/m	Margin dB
2341	51.93	AV	54	2.07
2376	52.27	AV	54	1.73
4811	41.33	AV	54	12.67
4879	40.57	AV	54	13.43
7216	52.24	AV	54	1.76
7321	52.51	AV	54	1.49
9618	36.00	AV	54	18.00
9762	34.74	AV	54	19.26
12027	53.17	AV	54	0.83
12202	53.78	AV	54	0.22
14433	53.00	AV	54	1.00
14643	53.04	AV	54	0.96
16838	43.22	AV	54	10.78
17083	43.00	AV	54	11.00

Antenna factor, amplifier gain and cable loss are included in Spectrum Analyzer "Transducer factor". See attached graphs.

Date: 8.JAN.2014 09:02:25

Radiated Emissions ch. 2405 MHz, 1 – 3 GHz, VP, @3m – Pre-scan with Peak detector

Date: 8.JAN.2014 09:38:35

Radiated Emissions ch. 2405 MHz, 1 - 3 GHz, HP, @3m - Pre-scan with Peak detector

Date: 8.JAN.2014 09:04:27

Spurious emission at 2.34 GHz, ch2405MHz, VP- Peak Detector

Date: 8.JAN.2014 10:03:19

Spurious emission at 2.34 GHz, ch2405MHz, VP- Average Detector

Date: 8.JAN.2014 09:50:39

Radiated Emissions ch. 2440 MHz, 1 - 3 GHz, VP, @3m - Pre-scan with Peak detector

Date: 8.JAN.2014 09:49:47

Radiated Emissions ch. 2440 MHz, 1 - 3 GHz, HP, @3m - Pre-scan with Peak detector

Date: 8.JAN.2014 09:51:32

Spurious emission at 2.37GHz, ch2440MHz, VP- Peak Detector

Date: 8.JAN.2014 09:57:53

Spurious emission at 2.37GHz, ch2440MHz, VP- Average Detector

Date: 8.JAN.2014 10:13:47

Radiated Emissions ch. 2480 MHz, 1 - 3 GHz, VP, @3m - Pre-scan with Peak detector

Date: 8.JAN.2014 10:12:28

Radiated Emissions ch. 2480 MHz, 1 - 3 GHz, HP, @3m - Pre-scan with Peak detector

Date: 8.JAN.2014 10:44:44

2nd harmonic , ch2402MHz – HP, PK detector

Date: 8.JAN.2014 12:13:07

2nd harmonic , ch2402MHz – HP, AV detector

Date: 8.JAN.2014 11:31:36

2nd harmonic , ch2440MHz – HP, PK detector

Date: 8.JAN.2014 11:30:50

2nd harmonic , ch2440MHz – HP, AV detector

Date: 8.JAN.2014 10:54:52

3rd harmonic , ch2405MHz – VP, PK detector

Date: 8.JAN.2014 12:14:33

3rd harmonic , ch2405MHz – VP, AV detector

Date: 8.JAN.2014 11:08:12

3rd harmonic , ch2440MHz – VP, PK detector

Date: 8.JAN.2014 11:29:21

3rd harmonic , ch2440MHz – VP, AV detector

Date: 8.JAN.2014 13:35:54

 $^{4^{}th}$ harmonic , ch2405MHz – VP, PK detector, @ 1m distance, Distance Correction factor of -9.5 dB is included in the graph.

Date: 8.JAN.2014 13:36:37

 $^{4^{}th}$ harmonic , ch2405MHz – VP, AV detector, @ 1m distance, Distance Correction factor of -9.5 dB is included in the graph.

Date: 8.JAN.2014 13:32:27

 $^{4^{}th}$ harmonic , ch2440MHz – VP, PK detector, @ 1m distance, Distance Correction factor of -9.5 dB is included in the graph.

Date: 8.JAN.2014 13:33:18

 $^{4^{}th}$ harmonic , ch2440MHz – VP, AV detector, @ 1m distance, Distance Correction factor of -9.5 dB is included in the graph.

Date: 8.JAN.2014 12:49:14

 $^{5^{}th}$ harmonic , ch2405MHz – HP, PK detector, @ 1m distance, Distance Correction factor of -9.5 dB is included in the graph.

Date: 8.JAN.2014 12:51:20

 $^{5^{}th}$ harmonic , ch2405MHz – HP, AV detector, @ 1m distance, Distance Correction factor of -9.5 dB is included in the graph.

Date: 8.JAN.2014 13:02:50

 $^{5^{}th}$ harmonic , ch2440MHz – HP, PK detector, @ 1m distance, Distance Correction factor of -9.5 dB is included in the graph.

Date: 8.JAN.2014 13:03:43

 $^{5^{}th}$ harmonic , ch2440MHz – HP, AV detector, @ 1m distance, Distance Correction factor of -9.5 dB is included in the graph.

Date: 8.JAN.2014 12:53:07

 6^{th} $\,$ harmonic , ch2405MHz – HP, PK detector, @ 1m distance, Distance Correction factor of -9.5 dB is included in the graph.

Date: 8.JAN.2014 12:54:01

 $^{6^{}th}$ $\,$ harmonic , ch2405MHz – HP, AV detector, @ 1m distance, Distance Correction factor of -9.5 dB is included in the graph.

Date: 8.JAN.2014 13:05:28

 $^{6^{}th}$ harmonic , ch2440MHz – HP, PK detector, @ 1m distance, Distance Correction factor of -9.5 dB is included in the graph.

Date: 8.JAN.2014 13:04:19

 6^{th} $\,$ harmonic , ch2440MHz – HP, AV detector, @ 1m distance, Distance Correction factor of -9.5 dB is included in the graph.

Date: 8.JAN.2014 12:55:29

 $^{7^{\}text{th}}$ harmonic , ch2405MHz – HP, PK detector, @ 1m distance, Distance Correction factor of -9.5 dB is included in the graph.

Date: 8.JAN.2014 12:56:12

 $^{7^{\}text{th}}$ harmonic , ch2405MHz – HP, AV detector, @ 1m distance, Distance Correction factor of -9.5 dB is included in the graph.

Date: 8.JAN.2014 13:05:12

 $^{7^{\}text{th}}$ harmonic , ch2440MHz – HP, PK detector, @ 1m distance, Distance Correction factor of -9.5 dB is included in the graph.

Date: 8.JAN.2014 13:04:44

 $^{7^{\}text{th}}$ harmonic , ch2440MHz – HP, AV detector, @ 1m distance, Distance Correction factor of -9.5 dB is included in the graph.

Date: 8.JAN.2014 13:38:30

Radiated Emissions ch. 2405 MHz, 18-25 GHz, VP, Pre-scan with Peak detector, Distance Correction factor -9.5dB is included in the graph.

Date: 8.JAN.2014 13:39:34

Radiated Emissions ch. 2405 MHz, 18 – 25 GHz, HP, Pre-scan with Peak detector, Distance Correction factor -9.5dB is included in the graph.

3.6 Power Spectral Density (PSD)

Para. No.: 15.247 (e)

Test Performed By: G.Suhanthakumar Date of Test: 09 Jan 2014	Test Performed By:	G.Suhanthakumar	Date of Test: 09 Jan 2014
--	--------------------	-----------------	---------------------------

Test Results: Complies

Measured and Calculated Data:

	calculated peak PSD dBm
Power Spectral Density @2405 MHz	3.2
Power Spectral Density @2440 MHz	4.2
Power Spectral Density @2480 MHz	-14.5

Tested according to KDB 558074 D01 DTS Meas Guidance v03r01, Section 10.2.

Requirements:

The Power Spectral Density of a Digital Transmission System shall be no greater than +8 dBm in any 3 kHz band.

Date: 9.JAN.2014 13:38:10

PSD Measurement - 2405MHz

Date: 9.JAN.2014 13:35:22

PSD Measurement - 2440MHz

Date: 9.JAN.2014 13:37:16

PSD Measurement - 2480MHz

LIST OF TEST EQUIPMENT 4

To facilitate inclusion on each page of the test equipment used for related tests, each item of test equipment and ancillaries are identified (numbered) by the test laboratory.

No.	Instrument/ ancillary	Type of instrument/ ancillary	Manufacturer	Ref. no.	Cal. Date	Cal. Due
1	FSU26	Spectrum Analyzer	Rohde & Schwarz	LR 1504	2013.11	2015.11
2	ESU40	EMI Receiver	Rohde & Schwarz	LR1639	2013.09.24	2014.09.24
3	3115	Antenna horn	EMCO	LR 1330	2010.08.05	2015.08.05
4	643	Antenna horn	Narda	LR 093	2009.01.26	2014.01.26
5	642	Antenna horn	Narda	LR 220	2009.01.26	2014.01.26
6	PM7320X	Antenna horn	Siverts lab	LR 103	2009.01.26	2014.01.26
7	DBF-520-20	Antenna horn	Systron Donner	LR 101	2009.01.26	2014.01.26
8	638	Antenna horn	Narda	LR 098	2010.06.17	2015.06.17
9	JB3	BiLog Antenna	Sunol Sciences	N-4525	2011.09.07	2014.09.07
10	8449B	Pre-amplifier	Hewlett Packard	LR 1322	2013.09.27	2014.09.27
11	LNA6900	Pre-amplifier	Teseq	LR 1593	2013.11	2014.11
14	80S	Signal Generator	Powertron	LT 502	Cal b4 use	
15	Model 87 V	Multimeter	Fluke	LR 1598	2012-12-14	2014-12-14
17	6810.17A	10 attenuator	Suhner	LR 1143	2012.09.15	2014.09.15
18	FA210A1010003030	Microwave cable	Rosenberger	LR1566	Cal b4 use	
19	6HC 3000-18000	HP Filter	Trithlic	LR1614	Cal b4 use	
20	6HC 2500-18000	HP Filter	Trithlic	LR1615	Cal b4 use	
21	FSW	Spectrum Analyzer	Rohde & Schwarz	LR1640	2012.06	2014.06

5 BLOCK DIAGRAM

5.1 Power Line Conducted Emission

5.2 Test Site Radiated Emission

