Métodos numéricos Sesión 2 (Aritmética computacional)

Universidad Externado de Colombia Programa Ciencia de Datos

202410

Tabla de contenidos

- 1 Sucesiones Definición
- 2 Series infinitas
- 3 Series infinitas Definición
- 4 Suma de serie infinita
- **5** serie geométrica
- 6 Criterios para convergencia

Definición (Sucesión)

Una función sucesión es una función cuyo dominio es el conjunto

$$\{1,2,3,\dots,\}$$

de todos los números enteros positivos.

Definición (Límite sucesión)

Sea $\{x_n\}_{n=1}^\infty$ una sucesión infinita de números reales. Esta sucesión tiene el límite L (Converge a L) si, para cualquier $\epsilon>0$, existe un entero positivo $N(\epsilon)$ tal que $|x_n-x|<\epsilon$ siempre que $n>N(\epsilon)$

Serie infinita

Suponga una sucesión:

$$a_1, a_2, \cdots, a_n$$

Podemos obtener una suma infinita como:

$$a_1 + a_2 + \cdots + a_n$$

Suponga una sucesión:

$$a_1, a_2, \cdots, a_n$$

Podemos obtener una suma infinita como:

$$a_1 + a_2 + \cdots + a_n$$

$$s_1 = a_1$$

 $s_2 = a_1 + a_2$
 $s_3 = a_1 + a_2 + a_3$
 \vdots
 $s_n = a_1 + a_2 + a_3 \cdots + a_n$

Definición serie infinita

Si $\{a_n\}$ es una sucesión y

$$s_n = a_1 + a_2 + \cdots + a_n$$

entonces $\{s_n\}$ es una sucesión de sumas parciales conocida como serie infinita, denotada como:

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \cdots + a_n$$

Los elementos a_1, a_2, \cdots, a_n son los términos de la serie infinita.

Tenga en cuenta la siguiente sucesión
$$\left\{\frac{1}{3^{n+1}}\right\}$$

$$\frac{1}{9},\frac{1}{27},\frac{1}{81},\frac{1}{243},\cdots,\frac{1}{3^{n+1}},\cdots$$

- Definición

Tenga en cuenta la siguiente sucesión $\left\{\frac{1}{3^{n+1}}\right\}$ $\frac{1}{9},\frac{1}{27},\frac{1}{81},\frac{1}{243},\dots,\frac{1}{3^{n+1}},\dots$

Sumas parciales

$$s_1=rac{1}{9}$$

$$s_2 = \frac{1}{9} + \frac{1}{27}$$

$$s_3 = \frac{1}{9} + \frac{1}{27} + \frac{1}{81}$$

:

$$s_n = \frac{1}{9} + \frac{1}{27} + \frac{1}{81} + \dots + \frac{1}{3^{n+1}}$$

Luego podemos definir la serie infinita como:

$$\sum_{n=1}^{\infty} \frac{1}{3^{n+1}} = \frac{1}{9} + \frac{1}{27} + \frac{1}{81} \dots + \frac{1}{3^{n+1}}$$

Suma de una serie infinita

Definición

Considere $\sum_{n=1}^{\infty} a_n$ como una serie infinita, donde $\{s_n\}$ es la sucesión de sumas parciales.

- Si $\lim_{n\to\infty} s_n$ existe y es igual a S, la serie es convergente.
- Si $\lim_{n\to\infty} s_n$ no existe, entonces la serie es divergente y la serie no tiene suma.

Suma de una serie infinita

Definición

Considere $\sum_{n=1}^{\infty} a_n$ como una serie infinita, donde $\{s_n\}$ es la sucesión de sumas parciales.

- Si $\lim_{n\to\infty} s_n$ existe y es igual a S, la serie es convergente.
- Si $\lim_{n\to\infty} s_n$ no existe, entonces la serie es divergente y la serie no tiene suma.

Teorema 1 - Criterio de divergencia

Si la serie infinita $\sum_{n=1}^{\infty} a_n$ es convergente, entonces $\lim_{n\to\infty} a_n = 0$

$$1 \sum_{n=1}^{\infty} \frac{n^3+2}{n^3}$$

Criterios para

Solución $\lim_{n\to\infty}\frac{n^3+2}{n^3}=1\neq 0$ Como el límite es diferente a 0, por el criterio de divergencia la serie es divergente.

1
$$\sum_{n=1}^{\infty} \frac{n^3+2}{n^3}$$

Solución $\lim_{n\to\infty}\frac{n^3+2}{n^3}=1\neq 0$ Como el límite es diferente a 0, por el criterio de divergencia la serie es divergente.

$$\sum_{n=1}^{\infty} \cos \frac{n \cdot \pi}{2}$$

Solución Como el límite no exite, por el criterio de divergencia la serie es divergente.

¡Cuidado!

Si $\lim_{n\to\infty} a_n = 0$ la serie infinita $\sum_{n=1}^{\infty} a_n$ no necesariamente debe converger.

Serie armónica

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \cdots$$

Serie Geométrica

Una serie infinita de la forma

$$\sum_{n=1}^{\infty} \operatorname{ar}^{n-1} = \operatorname{a} + \operatorname{ar} + \operatorname{ar}^2 + \dots + \operatorname{ar}^{n-1}$$

se conoce como serie geométrica

Teorema 2

La serie geométrica converge a $\frac{a}{1-r}$ si |r|<1, y diverge cuando $|r|\geq 1$

$$3 \sum_{n=1}^{\infty} \frac{e^n}{3^{n-1}}$$

$$\sum_{n=1}^{\infty} \frac{\pi^n}{3^{n+1}}$$

$$\sum_{n=1}^{\infty} \frac{e^n}{3^{n-1}}$$

Teorema 3

Sea k cualquier constante distinta de cero.

- 1 Si la serie S_n es convergente y su suma es S, entonces la serie kS_n también es convergente y su suma es $k \times S$
- 2 Si la serie S_n es divergente, entonces la serie kS_n también es divergente

Teorema 4

Si S_n y Z_n son series infinitas convergentes cuya sumas son S y T respectivamente, entonces

- 1 $S_n + Z_n$ es una serie convergente y su suma es S + Z
- $2 S_n Z_n$ es una serie convergente y su suma es S Z

Si S_n es una serie infinita convergente y Z_n es una serie infinita divergente, entonces la suma es divergente.

Criterio por comparación

Sea $\sum_{n=1}^{\infty} a_n$ una serie de términos positivos:

1 Si $\sum_{n=1}^{\infty} b_n$ es una serie de términos positivos convergente y $a_n \leq b_n$ para

todo número entero positivo n, entonces $\sum_{n=1}^{\infty} a_n$ es convergente.

2 Si $\sum_{n=1}^{\infty} c_n$ es una serie de términos positivos divergente y $a_n \ge c_n$ para todo

número entero positivo n, entonces $\sum_{n=0}^{\infty} a_n$ es divergente.

Criterio paso al límite

Sean $\sum_{n=1}^{\infty} a_n$ y $\sum_{n=1}^{\infty} b_n$ series de términos positivos:

- 1 Si $\lim_{n\to\infty}\frac{a_n}{b_n}=K>0$, entonces, ambas series convergen o ambas series divergen.
- 2 Si $\lim_{n\to\infty}\frac{a_n}{b_n}=0$, y si $\sum_{n=1}^\infty b_n$ converge, entonces $\sum_{n=1}^\infty a_n$ converge.
- 3 Si $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$, y si $\sum_{n=1}^{\infty} b_n$ diverge, entonces $\sum_{n=1}^{\infty} a_n$ diverge.

Criterio de la integral

Sea f una función continua, decreciente, y de valores positivos para toda $x \ge 1$. Entonces la serie infinita:

$$\sum_{n=1}^{\infty} f(n) = f(1) + f(2) + f(3) + \cdots + f(n)$$

es convergente si la integral $\int_1^\infty f(x) \ dx$ existe, y es divergente si $\lim_{b \to \infty} \int_1^\infty f(x) \ dx = \infty$

Error de truncamiento

Suponga que $\lim_{n\to\infty} x_n = L$ y sea K un entero positivo. A la diferencia entre el término K-ésimo x_K de la sucesión $\{x_n\}_{n\in\mathbb{N}}$ y su limite L se le conoce como *error de truncamiento* y lo denotamos como:

$$T_K := |x_K - L|$$

Cuando $T_K < \epsilon$ se dice que x_K aproxima L con precisión ϵ

Ejemplo: Dada la siguiente serie infinita, encuentre el error de truncamiento para x=0.6 si solo se utilizan los primeros cuatro términos de la serie:

$$S_n = 1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x^n$$
 $|x| < 1$

Error de truncamiento

Suponga que $\lim_{n\to\infty} x_n = L$ y sea K un entero positivo. A la diferencia entre el término K-ésimo x_K de la sucesión $\{x_n\}_{n\in\mathbb{N}}$ y su limite L se le conoce como *error de truncamiento* y lo denotamos como:

$$T_K := |x_K - L|$$

Cuando $T_K < \epsilon$ se dice que x_K aproxima L con precisión ϵ

Ejemplo: Dada la siguiente serie infinita, encuentre el error de truncamiento para x=0.6 si solo se utilizan los primeros cuatro términos de la serie:

$$S_n = 1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x^n$$
 $|x| < 1$

Solución

$$S_4 = \left(1 + x + x^2 + x^3\right)_{x=0.6}$$

$$S_4 = 1 + 0.6 + 0.6^2 + 0.6^3 = 2.176$$

$$S = \frac{1}{1 + 0.6} = \frac{1}{0.4} = 2.5$$

$$T_K := \text{Error Truncamiento} := |2.5 - 2.176| = 0.324$$

Ejemplo

¿Cuál es la error de truncamiento para la integral $\int_1^5 x\ dx$ si se utiliza una suma de Riemann con rectángulos cuya altura es el lado izquierdo dado un $\Delta x=0.5?$

Figure: Suma de Riemann para f(x) = x en $1 \le x \le 5$

•
$$\int_1^5 x \ dx = \frac{x^2}{2} \Big|_1^5 = 12$$

- Riemann:= 11 unidades
- $T_K := \text{Error Truncamiento} = |12 11| = 1$:

Theorem

Suponga que $f \in C^n[a,b]$, $f^{(n+1)}$ existe en [a,b], $y \times_0 \in [a,b]$. Para cada $x \in [a,b]$, existe un número $\xi(x)$ entre x_0 $y \times$ donde:

$$P_n(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \cdots$$

$$+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n$$

con

$$f(x) = P_n(x) + R_n(x)$$

У

$$R_n(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} (x - x_0)^{(n+1)}$$

- $P_n(x)$: n-ésimo polinomio de Taylor para f alrededor de x_0
- $R_n(x)$: Residuo relacionado con $P_n(x)$ o Error de truncamiento
- Serie de Taylor: La serie obtenida al tomar el limite de $P_n(x)$ conforme $n \to \infty$
- Polinomio de Maclaurin: Cuando en el polinomio de Taylor $x_0 = 0$

Sea $f(x) = \cos x$ y $x_0 = 0$. Determine el segundo polinomio de Taylor (n = 2) para f alrededor de x_0 junto con el error de truncamiento para x = 0.01

$$P_2(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f^{(3)}(\xi(x))}{3!}x^3$$

Se tiene que:

$$f'(x) = -\sin x, \qquad f''(x) = -\cos x, \qquad f'''(x) = \sin x$$

Luego

$$f(0) = 1,$$
 $f'(0) = 0,$ $f''(0) = -1$

En ese sentido,

$$\cos x = 1 - \frac{1}{2}x^2 + \frac{1}{6}x^3 \sin \xi(x)$$

Aproximación

Sucesione Definición

Series infinita

Series infinitas

Suma de serie

serie

Criterios para convergencia

$$\cos x = 1 - \frac{1}{2}x^2 + \frac{1}{6}x^3 \sin \xi(x)$$

Criterios para convergencia

$$\cos x = 1 - \frac{1}{2}x^2 + \frac{1}{6}x^3 \sin \xi(x)$$

entonces:

$$\cos 0.01 = 1 - \frac{1}{2}0.01^2 + \frac{1}{6}0.01^3 \sin \xi(0.01)$$

Criterios para convergencia

$$\cos x = 1 - \frac{1}{2}x^2 + \frac{1}{6}x^3 \sin \xi(x)$$

entonces:

$$\cos 0.01 = 1 - \frac{1}{2}0.01^2 + \frac{1}{6}0.01^3 \sin \xi(0.01)$$

$$\cos 0.01 = 0.99995 + \frac{10^{-6}}{6} \sin \xi (0.01)$$

convergencia

$$\cos x = 1 - \frac{1}{2}x^2 + \frac{1}{6}x^3 \sin \xi(x)$$

entonces:

$$\cos 0.01 = 1 - \frac{1}{2}0.01^2 + \frac{1}{6}0.01^3 \sin \xi(0.01)$$

$$\cos 0.01 = 0.99995 + \frac{10^{-6}}{6} \sin \xi(0.01)$$

Luego, se concluye que, la aproximación para $\cos 0.01$ dado el polinomio de Taylor es de 0.99995 y el error de truncamiento es $\frac{10^{-6}}{6}\sin \xi(0.01)$

$$|\cos 0.01 - 0.99995| \le \frac{10^{-6}}{6} |\sin \xi(0.01)|$$

Ejercicio

1 Si $f(x) = \sin x$ y $x_0 = 0$. Determine el tercer polinomio de Taylor para f alrededor de x_0 y encuentre el error de truncamiento para x = 0.01

Criterios para convergencia

Definición

Suponga que p^* es una aproximación a p. El error real es $p-p^*$, el error absoluto es

$$|p-p^*|$$

, y el error relativo es

$$\frac{|p-p^*|}{|p|}$$

, siempre y cuando $p \neq 0$