

SCHWEIZERISCHE EIDGENOSSENSCHAFT CONFÉDÉRATION SUISSE CONFEDERAZIONE SVIZZERA

RECEIVED

1 2 JAN 2005

WIPO PCT

Bescheinigung

Die beiliegenden Akten stimmen mit den ursprünglichen technischen Unterlagen des auf der nächsten Seite bezeichneten Patentgesuches für die Schweiz und Liechtenstein überein. Die Schweiz und das Fürstentum Liechtenstein bilden ein einheitliches Schutzgebiet. Der Schutz kann deshalb nur für beide Länder gemeinsam beantragt werden.

Attestation

Les documents ci-joints sont conformes aux pièces techniques originales de la demande de brevet pour la Suisse et le Liechtenstein spécifiée à la page suivante. La Suisse et la Principauté de Liechtenstein constituent un territoire unitaire de protection. La protection ne peut donc être revendiquée que pour l'ensemble des deux Etats.

Attestazione

I documenti allegati sono conformi agli atti tecnici originali della domanda di brevetto per la Svizzera e il Liechtenstein specificata nella pagina seguente. La Svizzera e il Principato di Liechtenstein formano un unico territorio di protezione. La protezione può dunque essere rivendicata solamente per l'insieme dei due Stati.

Bern. 3 0. SEP. 2004

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Eidgenössisches Institut für Geistiges Eigentum Institut Fédéral de la Propriété Intellectuelle Istituto Federale della Proprietà Intellettuale

Patentverfahren Administration des brevets Amministrazione dei brevetti Heinz Jenni

BEST AVAILABLE COPY

Hinterlegungsbescheinigung zum Patentgesuch Nr. 02128/03 (Art. 46 Abs. 5 PatV)

Das Eidgenössische Institut für Geistiges Eigentum bescheinigt den Eingang des unten näher bezeichneten schweizerischen Patentgesuches.

Titel:

Neue Herbizide.

Patentbewerber: Syngenta Participations AG Schwarzwaldallee 215 4058 Basel

Anmeldedatum: 12.12.2003

Voraussichtliche Klassen: A01N, C07D

Neue Herbizide

Die vorliegende Erfindung betrifft neue, herbizid wirksame Picolinoylcyclohexandione, Verfahren zu ihrer Herstellung, Mittel, die diese Verbindungen enthalten, sowie ihre Verwendung zum Bekämpfen von Unkräutern, vor allem in Nutzpflanzenkulturen, oder zum Hemmen des Pflanzenwachstums.

-1-

Gewisse herbizid wirksame Derivate von zweifach in 3,5-Stellung substituierten Picolinsäuren sind bekannt, wie beispielsweise aus EP-A-0316491 die 3,5-substituierten Picolinoylderivate der in 2-Stellung substituierten 1,3-Cyclohexandione.

Es wurden nun gefunden, daß Picolinoylcyclohexandione, die in 5,6-Position des Pyridins substituiert sind und in 3,4-Stellung des Pyridins unsubstituiert sind, hervorragende herbizide und wuchshemmende Eigenschaften aufweisen.

Gegenstand der vorliegenden Erfindung sind somit Verbindungen der Formel I

worin

 R_1 für $-R_4$ - X_1 - R_5 , $-NR_6R_7$, $-X_2$ - R_8 , $-X_3$ - L_1 - R_9 , C_1 - C_6 -Haloalkyl, C_2 - C_6 -Haloalkenyl, C_2 - C_6 -Haloalkinyl oder Halogen steht;

 L_2 , L_4 , L_6 , L_8 , L_{14} und L_{16} unabhängig voneinander C_1 - C_4 -Alkylen, das ein- zwei- oder dreifach durch C_1 - C_4 -Alkyl, Halogen oder C_1 - C_4 -Alkoxy substituiert sein kann, wobei an diese C_1 - C_4 -Alkylengruppe eine C_2 - C_5 -Alkylengruppe spirocyclisch angebunden sein kann, wobei diese C_2 - C_5 -Alkylengruppe ihrerseits ein- oder zweifach durch Sauerstoff, Schwefel, Sulfinyl oder Sulfonyl unterbrochen sein kann und durch C_1 - C_4 -Alkyl oder C_1 - C_4 -Alkoxy substituiert sein kann; bedeutet;

L₃, L₅, L₇, L₉, und L₁₅ unabhängig voneinander C₁-C₄-Alkylen, das ein- zwei- oder dreifach durch C₁-C₄-Alkyl, Halogen oder C₁-C₄-Alkoxy substituiert sein kann; bedeutet;

R₂ Halogen, C₁-C₄-Halogenalkyl, Cyano, C₁-C₃-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Alkylsulfinyl, C₁-C₄-Alkylsulfinyl, C₁-C₄-Halogenalkylthio, C₁-C₄-Halogenalkylsulfinyl oder C₁-C₄-Halogenalkylsulfonyl bedeutet;

 R_4 für eine C_1 - C_6 -Alkylen-, C_2 - C_6 -Alkenylen- oder C_2 - C_6 -Alkinylenkette steht, welche durch Halogen, Hydroxy, C_1 - C_6 -Alkoxy, C_3 - C_6 -Cycloalkyloxy, C_1 - C_6 -Alkoxy- C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy oder C_1 - C_2 -Alkylsulfonyloxy ein- zwei- oder dreifach substituiert sein kann;

 X_1 Sauerstoff, -OC(O)-, -C(O)-, -C(=NR_{14a})-, -C(O)O-, -C(O)NR_{14b}-, -OC(O)O-, -N(R₁₀)-O-, -O-NR₁₁-, Thio, Sulfinyl, Sulfonyl, -SO₂NR₁₂-, -NR₁₃SO₂-, -N(SO₂R_{14c})-, -N(R_{14d})C(O)- oder -NR₁₄- bedeutet;

 R_{10} , R_{11} , R_{12} , R_{13} , R_{14b} , R_{14d} und R_{14} unabhängig voneinander Wasserstoff, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Alkoxycarbonyl, C_1 - C_6 -Alkoxy- C_1 - C_6 -Alkoxy- C_1 - C_6 -Alkoxy- C_1 - C_6 -Alkoxy- C_1 - C_6 -Alkoxy-der Benzyl oder Phenyl bedeuten, wobei Phenyl und Benzyl ihrerseits ein- zwei- oder dreifach durch C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkoxy, Halogen, Cyano, Hydroxy, oder Nitro substituiert sein können;

 R_{14a} Hydroxy, C_1 - C_6 -Alkoxy, C_3 - C_6 -Alkenyloxy, C_3 - C_6 -Alkinyloxy, Benzyloxy; R_{14c} C_1 - C_6 -Alkyl;

R₅ für Wasserstoff, C₁- C₈-Alkyl oder eine C₁-C₈-Alkyl-, C₃-C₈-Alkenyl- oder C₃-C₈-Alkinyloder C₃-C₆-Cycloalkylgruppe steht, welche durch Halogen, Hydroxy, Amino, Formyl, Nitro, Cyano, Mercapto, Carbamoyl, C₁-C₆-Alkoxy, C₁-C₆-Alkoxycarbonyl, C₂-C₆-Alkenyl, C₂-C₆-Halogenalkenyl, C2-C6-Alkinyl, C2-C6-Halogenalkinyl, C3-C6-Cycloalkyl, durch Halogen substituiertes C₃-C₆-Cycloalkyl, oder durch C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy, C₁-C₆-Halogenalkoxy, C₃-C₆-Halogenalkenyloxy, Cyano-C₁-C₆-alkoxy, C₁-C₆-Alkoxy-C₁-C₆-alkoxy, C_1-C_6 -Alkoxy- C_1-C_6 -alkoxy- C_1-C_6 -alkoxy, C_1-C_6 -Alkylsulfinyl- C_1-C_6 -alkoxy, C_1-C_6 -Alkylsulfonyl- C_1-C_6 -alkoxy, C_1-C_6 -Alkoxycarbonyl- C_1-C_6 -alkoxy, C_1-C_6 -Alkoxycarbonyl, C_1 - C_6 -Alkylcarbonyl, C_1 - C_6 -Alkylthio, C_1 - C_6 -Alkylsulfonyl, C₁-C₆-Halogenalkylthio, C₁-C₆-Halogenalkylsulfinyl, C₁-C₆-Halogenalkylsulfonyl, oder durch Benzyloxy, Benzylthio, Benzylsulfinyl, Benzylsulfonyl, C₁-C₆-Alkylamino, Di-(C₁-C₆-Alkyl)amino, $R_{19}R_{20}C=NO$ -, $R_{15}S(O)_2O$ -, $R_{16}N(R_{17})SO_2$ -, Rhodano, Phenyl, Phenoxy, Phenylthio, Phenylsulfinyl oder Phenylsulfonyl ein-, zwei- oder dreifach substituiert ist; wobei die Phenyl oder Benzyl enthaltenden Gruppen ihrerseits durch eine oder mehrere C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, Halogen, Cyano, Hydroxy oder Nitro Gruppen substituiert sein können;

 R_{15} , R_{16} , R_{17} , R_{19} und R_{20} unabhängig voneinander Wasserstoff, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C₁-C₆-Alkoxycarbonyl, C₁-C₆-Alkylcarbonyl, C₁-C₆-Alkoxy-C₁-C₆-alkyl, oder C₁- C_6 -Alkoxy- C_1 - C_6 -alkyl substituiert durch C_1 - C_6 -Alkoxy, oder Benzyl oder Phenyl bedeuten, wobei Phenyl und Benzyl ihrerseits ein- zwei- oder dreifach durch C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, Halogen, Cyano, Hydroxy, oder Nitro substituiert sein können; oder R₅ steht für ein drei- bis zehngliedriges monocyclisches oder aneliertes bicyclisches Ringsystem, welches aromatisch, gesättigt oder teilweise gesättigt sein kann und 1 bis 4 Heteroatome ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthalten kann, wobei das Ringsystem direkt oder über eine C1-C4-Alkylen, C2-C4-Alkenylen -, C_2 - C_4 -Alkinylen-, -N(R_{18})- C_1 - C_4 -Alkylen-, -S(O)- C_1 - C_4 -Alkylen-, oder -SO₂- C_1 - C_4 -Alkylen-Gruppe an den Substituenten X₁ gebunden ist, wobei jedes Ringsystem nicht durch --C(=O)-. -C(=S)-, -C(=NR_{5a})-, -(N=O)-, -S(=O)- oder -SO₂- unterbrochen sein darf und jedes Ringsystem nicht mehr als 2 Sauerstoffatome und nicht mehr als zwei Schwefelatome enthalten kann, und das Ringsystem selbst durch C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₂-C₆-Alkenyl, C2-C6-Halogenalkenyl, C2-C6-Alkinyl, C2-C6-Halogenalkinyl, C1-C6-Alkoxy, Hydroxy, C₁-C₆-Halogenalkoxy, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy, Mercapto, C₁-C₆-Alkylthio, C₁-C₆-Halogenalkylthio, C₃-C₆-Alkenylthio, C₂-C₅-Halogenalkenylthio, C₃-C₆-Alkinylthio, C₂-C₅-Alkoxyalkylthio, C₃-C₅-Acetylalkylthio, C₃-C₆-Alkoxycarbonylalkylthio, C₂-C₄-Cyanoalkylthio, C₁-C₆-Alkylsulfinyl, C₁-C₆-Halogenalkylsulfinyl, C₁-C₆-Alkylsulfonyl, C₁-C₆-Halogenalkylsulfonyl, Aminosulfonyl, C₁-C₂-Alkylaminosulfonyl, Di-(C₁-C₂-Alkyl)aminosulfonyl, Di-(C1-C4-Alkyl)amino, Halogen, Cyano, Nitro, Phenyl und Benzylthio ein- zwei- oder dreifach substituiert sein kann, wobei Phenyl und Benzylthio ihrerseits am Phenylring durch C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Halogen, Cyano oder Nitro substituiert sein können, und wobei die Substituenten am Stickstoff im heterocyclischen Ring verschieden von Halogen sind; R_{5a} C₁-C₆-Alkyl, Hydroxy, C₁-C₆-Alkoxy, Cyano oder Nitro bedeutet: R₁₈ Wasserstoff, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxycarbonyl, C₁-C₆-Alkylcarbonyl, C₁-C₆-Alkoxy-C₁-C₆-alkyl, oder C₁-C₆-Alkoxy-C₁-C₆-alkyl substituiert durch C₁-C₆-Alkoxy, oder Benzyl oder Phenyl bedeutet, wobei Phenyl und Benzyl ihrerseits ein-, zwei- oder dreifach durch C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, Halogen, Cyano, Hydroxy, oder Nitro substituiert sein können; R₆ Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, C₁-C₆-Halogenalkyl, Hydroxy, C₁-

 C_6 -Alkoxy, -C(O)R₁₉ oder -C(S)R₂₀ bedeutet, wobei R₁₉ und R₂₀ unabhängig voneinander

Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, Phenyl, Heteroaryl, C₁-C₆-Alkoxy, C₃-C₆-

Alkenyloxy, Benzyloxy, C₁-C₄-Alkylthio oder eine Gruppe NR₂₁R₂₂ bedeuten, und R₂₁ und R₂₂ unabhängig voneinander für Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl oder Phenyl stehen, das seinerseits ein-, zwei oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein kann; oder R₂₁ zusammen mit R₂₂ und dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein kann; oder R₆ steht für -L₂-X₄-R₂₄; wobei

 X_4 für Sauerstoff, -NR₂₃-, -S-, -S(O)- oder S(O)₂ - steht;

R₂₃ Wasserstoff, C₁-C₆-Alkoxy, C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl bedeutet oder Phenyl, das ein- zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein kann, bedeutet;

R₂₄ Wasserstoff oder eine C₁-C₆-Alkyl-, C₃-C₆-Alkenyl- oder C₃-C₆-Alkinylgruppe bedeutet, wobei diese Gruppen ein-, zwei- oder dreifach durch Halogen, Hydroxy, C₁-C₆-Alkoxy, C₁-C₃-Alkoxy-C₁-C₃-alkoxy, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy, C₁-C₆-Alkylthio, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, Cyano, C(X₅)NR₂₅R₂₆, C₃-C₆-Cycloalkyl, Phenyl, Phenoxy oder durch 5-oder 6-gliedriges Heteroaryl oder Heteroaryloxy substituiert sein können, wobei Heteroaryl oder Heteroaryloxy ihrerseits einfach durch Sauerstoff oder Schwefel oder ein-, zwei- oder dreifach durch Stickstoff unterbrochen und entweder via ein C-Atom oder ein N-Atom an die C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinylgruppe gebunden sein können, und wobei die Phenyl und Heteroaryl enthaltenden Gruppen ein-, zwei oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfonyl, C₁-C₃-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein können;

R₂₄ bedeutet C(O)-R₇₄ oder C(S)-R₇₅;

oder

X₅ Sauerstoff, Schwefel, -S(O)- oder S(O)₂- bedeutet;

 R_{25} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl oder Phenyl bedeutet, das ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino; substituiert sein kann;

 R_{26} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl oder C_3 - C_6 -Alkinyl bedeutet; oder R_{25} zusammen mit R_{26} und dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkoxy, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino; substituiert sein kann;

oder R₆ steht für -L₃-R₂₇;

R₂₇ für Formyl, C₁-C₆-Alkylcarbonyl, C₃-C₆-Cycloalkylcarbonyl, Benzoyl, C₁-C₆-Alkoxycarbonyl, Cyano, C(X₆)NR₂₈R₂₉, Phenyl oder Heteroaryl steht, wobei Benzoyl und Phenyl ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro oder C₁-C₄-Alkoxycarbonyl; substituiert sein kann; oder R₂₇ bedeutet C₃-C₆-Cycloalkyl oder C₅-C₆-Cycloalkenyl, die ihrerseits ein-, zwei- oder dreifach durch C₁-C₄-Alkyl, Halogen oder C₁-C₄-Alkoxy substituiert sein können;

X₆ Sauerstoff, Schwefel, -S(O)- oder S(O)₂- bedeutet;

 R_{28} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl oder Phenyl bedeutet, das ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkoxy, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino; substituiert sein kann;

R₂₉ Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl bedeutet; oder R₂₈ zusammen mit R₂₉ und dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-

Halogenalkoxy, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino; substituiert sein kann;

 R_7 Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl, C_1 - C_6 -Halogenalkyl, C_3 - C_6 -Cycloalkyl, Phenyl, Heteroaryl, $C(X_7)R_{30}$ oder $NR_{33}R_{34}$ bedeutet;

X7 Sauerstoff oder Schwefel bedeutet;

 R_{30} für Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Cycloalkyl, Phenyl, Heteroaryl, C_1 - C_6 -Alkoxy, C_3 - C_6 -Alkenyloxy, Benzyloxy, C_1 - C_4 -Alkylthio oder eine Gruppe $NR_{31}R_{32}$ steht;

R₃₁ und R₃₃ unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl oder Phenyl bedeutet, das ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein kann;

R₃₂ und R₃₄ unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl bedeutet; oder R₃₁ zusammen mit R₃₂ oder R₃₃ zusammen mit R₃₄ jeweils mit dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein kann;

oder R₇ steht für -L₄-X₈-R₃₅; wobei

 X_8 für Sauerstoff, -NR₃₆-, -S-, -S(O)- oder S(O)₂ - steht;

R₃₆ Wasserstoff, C₁-C₆-Alkoxy, C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl bedeutet oder Phenyl, das ein- zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Alkylsulfinyl, C₁-

R₃₅ Wasserstoff oder eine C₁-C₆-Alkyl-, C₃-C₆-Alkenyl- oder C₃-C₆-Alkinylgruppe bedeutet, wobei diese Gruppen ein-, zwei- oder dreifach durch Halogen, Hydroxy, C₁-C₆-Alkoxy, C₁-C₃-Alkoxy-C₁-C₃-alkoxy, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy, C₁-C₆-Alkylthio, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, Cyano, C(X₉)NR₃₇R₃₈, C₃-C₆-Cycloalkyl, Phenyl, Phenoxy oder durch 5-oder 6-gliedriges Heteroaryl oder Heteroaryloxy substituiert sein können, wobei Heteroaryl oder Heteroaryloxy ihrerseits einfach durch Sauerstoff oder Schwefel oder ein-, zwei- oder

dreifach durch Stickstoff unterbrochen und entweder via ein C-Atom oder ein N-Atom an die C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl oder C_3 - C_6 -Alkinylgruppe gebunden sein können, und wobei die Phenyl und Heteroaryl enthaltenden Gruppen ein-, zwei oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkoxy, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino substituiert sein können;

X₉ Sauerstoff, Schwefel, -S(O)- oder S(O)₂- bedeutet;

 R_{37} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl oder Phenyl bedeutet, das ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkylsulfinyl, C_1 - C_4 -Alkylcarbonylamino; substituiert sein kann;

R₃₈ Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl bedeutet; oder R₃₇ zusammen mit R₃₈ und dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino; substituiert sein kann;

oder R₇ steht für -L₅-R₃₉;

 R_{39} für Formyl, C_1 - C_6 -Alkylcarbonyl, C_3 - C_6 -Cycloalkylcarbonyl, Benzoyl, C_1 - C_6 -Alkoxycarbonyl, Cyano, $C(X_{10})NR_{40}R_{41}$, Phenyl oder Heteroaryl steht, wobei Benzoyl und Phenyl ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylcarbonylamino; und wobei Heteroaryl ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkoxy, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro oder C_1 - C_4 -Alkoxycarbonyl; substituiert sein kann; oder R_{39} bedeutet C_3 - C_6 -Cycloalkyl oder C_5 - C_6 -Cycloalkenyl, die ihrerseits ein-, zwei- oder dreifach durch C_1 - C_4 -Alkyl, Halogen oder C_1 - C_4 -Alkoxy substituiert sein können;

X₁₀ Sauerstoff, Schwefel, -S(O)- oder S(O)₂- bedeutet;

 R_{40} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl oder Phenyl bedeutet, das ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -

Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino; substituiert sein kann;

R₄₁ Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl bedeutet; oder R₄₀ zusammen mit R₄₁ und dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein kann;

oder R₆ und R₇ bilden zusammen mit dem Stickstoffatom, an das sie gebunden sind, ein carbocylisches 3- bis 7-gliedriges, gesättigtes oder teilweise gesättigtes oder ungesättigtes monocyclisches oder bicyclisches Ringsystem, das einfach durch Sauerstoff, einfach durch Schwefel, einfach bis zu dreifach durch Stickstoff und/oder ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro oder C₁-C₄-Alkoxycarbonyl substituiert sein kann; wobei jedes Ringsystem nicht durch -C(=O)-, -C(=S)-, -C(=NR_{5a})-, -(N=O)-, -S(=O)- oder -SO₂- unterbrochen sein darf R_{5a} C₁-C₆-Alkyl, Hydroxy, C₁-C₆-Alkoxy, Cyano oder Nitro bedeutet;

 X_2 Sauerstoff, -NR₄₂- Schwefel, -S(O)- oder S(O)₂- bedeutet;

 R_{42} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl, C_1 - C_6 -Halogenalkyl, C_3 - C_6 -Cycloalkyl, Phenyl, Heteroaryl, $C(X_{11})R_{43}$ oder $NR_{46}R_{47}$ bedeutet;

X₁₁ Sauerstoff oder Schwefel bedeutet;

 R_{43} für Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Cycloalkyl, Phenyl, Heteroaryl, C_1 - C_6 -Alkoxy, C_3 - C_6 -Alkenyloxy, Benzyloxy, C_1 - C_4 -Alkylthio oder eine Gruppe $NR_{44}R_{45}$ steht;

R₄₄ und R₄₆ unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl oder Phenyl bedeutet, das ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein kann;

 R_{45} und R_{47} unabhängig voneinander Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl oder C_3 - C_6 -Alkinyl bedeutet; oder R_{44} zusammen mit R_{45} oder R_{46} zusammen mit R_{47} jeweils mit dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder

dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkoxy, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino; substituiert sein kann;

oder R₄₂ steht für -L₆-X₁₂-R₄₈; wobei

 X_{12} für Sauerstoff, -NR₄₉-, -S-, -S(O)- oder S(O)₂ - steht;

 R_{49} Wasserstoff, C_1 - C_6 -Alkoxy, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl bedeutet oder Phenyl, das ein- zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkoxy, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino substituiert sein kann, bedeutet;

 R_{48} eine C_1 - C_6 -Alkyl-, C_3 - C_6 -Alkenyl- oder C_3 - C_6 -Alkinylgruppe bedeutet, wobei diese Gruppen ein-, zwei- oder dreifach durch Halogen, Hydroxy, C_1 - C_6 -Alkoxy, C_1 - C_3 -Alkoxy- C_1 - C_3 -Alkoxy, C_3 - C_6 -Alkenyloxy, C_3 - C_6 -Alkinyloxy, C_1 - C_6 -Alkylthio, C_1 - C_6 -Alkylsulfinyl, C_1 - C_6 -Alkylsulfonyl, Cyano, $C(X_{13})NR_{50}R_{51}$, C_3 - C_6 -Cycloalkyl, Phenyl, Phenoxy oder durch 5- oder 6-gliedriges Heteroaryl oder Heteroaryloxy substituiert sein können, wobei Heteroaryl oder Heteroaryloxy ihrerseits einfach durch Sauerstoff oder Schwefel oder ein-, zwei- oder dreifach durch Stickstoff unterbrochen und entweder via ein C-Atom oder ein N-Atom an die C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl oder C_3 - C_6 -Alkinylgruppe gebunden sein können, und wobei die Phenyl und Heteroaryl enthaltenden Gruppen ein-, zwei oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkoxy, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino substituiert sein können;

X₁₃ Sauerstoff, Schwefel, -S(O)- oder S(O)₂- bedeutet;

 R_{50} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl oder Phenyl bedeutet, das ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino; substituiert sein kann;

 R_{51} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl oder C_3 - C_6 -Alkinyl bedeutet; oder R_{50} zusammen mit R_{51} und dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -

Halogenalkoxy, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino; substituiert sein kann;

oder R₄₂ steht für -L₇-R₅₂;

R₅₂ für Formyl, C₁-C₆-Alkylcarbonyl, C₃-C₆-Cycloalkylcarbonyl, Benzoyl, C₁-C₆-Alkoxycarbonyl, Cyano, C(X₁₄)NR₅₃R₅₄, Phenyl oder Heteroaryl steht, wobei Benzoyl und Phenyl ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Alkylsulfonyl, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino; und wobei Heteroaryl ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro oder C₁-C₄-Alkoxycarbonyl; substituiert sein kann; oder R₅₂ bedeutet C₃-C₆-Cycloalkyl oder C₅-C₆-Cycloalkenyl, die ihrerseits ein-, zwei- oder dreifach durch C₁-C₄-Alkyl, Halogen oder C₁-C₄-Alkoxy substituiert sein können;

X₁₄ Sauerstoff, Schwefel, -S(O)- oder S(O)₂- bedeutet;

 R_{53} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl oder Phenyl bedeutet, das ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino; substituiert sein kann;

R₅₄ Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl bedeutet; oder R₅₃ zusammen mit R₅₄ und dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein kann;

 R_8 Wasserstoff oder eine C_1 - C_6 -Alkyl-, C_3 - C_6 -Alkenyl- oder C_3 - C_6 -Alkinylgruppe bedeutet, wobei diese Gruppen ein-, zwei- oder dreifach durch Halogen, Hydroxy, C_1 - C_6 -Alkoxy, C_1 - C_3 -Alkoxy- C_1 - C_3 -alkoxy, C_3 - C_6 -Alkenyloxy, C_3 - C_6 -Alkinyloxy, C_1 - C_6 -Alkylsulfonyl, C_1 - C_6 -Alkylsulfonyl, Cyano, $C(X_{15})NR_{55}R_{56}$, C_3 - C_6 -Cycloalkyl, Phenyl, Phenoxy oder durch 5-oder 6-gliedriges Heteroaryl oder Heteroaryloxy substituiert sein können, wobei Heteroaryl oder Heteroaryloxy ihrerseits einfach durch Sauerstoff oder Schwefel oder ein-, zwei- oder

dreifach durch Stickstoff unterbrochen und entweder via ein C-Atom oder ein N-Atom an die C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl oder C_3 - C_6 -Alkinylgruppe gebunden sein können, und wobei die Phenyl und Heteroaryl enthaltenden Gruppen ein-, zwei oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkoxy, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino substituiert sein können;

oder R₈ bedeutet C(O)-R₇₆ oder C(S)-R₇₇;

X₁₅ Sauerstoff, Schwefel, -S(O)- oder S(O)₂- bedeutet;

 R_{55} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl oder Phenyl bedeutet, das ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino; substituiert sein kann;

R₅₆ Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl bedeutet; oder R₅₅ zusammen mit R₅₆ und dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein kann;

X₃ Sauerstoff, -NR₅₇-, Schwefel, -S(O)- oder S(O)₂- bedeutet;

 R_{57} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl, C_1 - C_6 -Halogenalkyl, C_3 - C_6 -Cycloalkyl, Phenyl, Heteroaryl, $C(X_{16})R_{58}$ oder $NR_{61}R_{62}$ bedeutet;

X₁₆ Sauerstoff oder Schwefel bedeutet;

 R_{58} für Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Cycloalkyl, Phenyl, Heteroaryl, C_1 - C_6 -Alkoxy, C_3 - C_6 -Alkenyloxy, Benzyloxy, C_1 - C_4 -Alkylthio oder eine Gruppe $NR_{59}R_{60}$ steht;

R₅₉ und R₆₁ unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl oder Phenyl bedeutet, das ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein kann;

 R_{60} und R_{62} unabhängig voneinander Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl oder C_3 - C_6 -Alkinyl bedeutet; oder R_{59} zusammen mit R_{60} oder R_{61} zusammen mit R_{62} jeweils mit dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring

bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein kann;

oder R₅₇ steht für -L₈-X₁₇-R₆₃; wobei

 X_{17} für Sauerstoff, -NR₆₄-, -S-, -S(O)- oder S(O)₂ - steht;

 R_{84} Wasserstoff, C_1 - C_6 -Alkoxy, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl bedeutet oder Phenyl, das ein- zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino substituiert sein kann, bedeutet;

R₆₃ eine C₁-C₆-Alkyl-, C₃-C₆-Alkenyl- oder C₃-C₆-Alkinylgruppe bedeutet, wobei diese Gruppen ein-, zwei- oder dreifach durch Halogen, Hydroxy, C₁-C₆-Alkoxy, C₁-C₃-Alkoxy-C₁-C₃-alkoxy, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy, C₁-C₆-Alkylthio, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, Cyano, C(X₁₈)NR₆₅R₆₆, C₃-C₆-Cycloalkyl, Phenyl, Phenoxy oder durch 5- oder 6-gliedriges Heteroaryl oder Heteroaryloxy substituiert sein können, wobei Heteroaryl oder Heteroaryloxy ihrerseits einfach durch Sauerstoff oder Schwefel oder ein-, zwei- oder dreifach durch Stickstoff unterbrochen und entweder via ein C-Atom oder ein N-Atom an die C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinylgruppe gebunden sein können, und wobei die Phenyl und Heteroaryl enthaltenden Gruppen ein-, zwei oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein können;

X₁₈ Sauerstoff, Schwefel, -S(O)- oder S(O)₂- bedeutet;

 R_{65} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl oder Phenyl bedeutet, das ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Alkylsulfonyl oder C_1 - C_4 -Alkylcarbonylamino substituiert sein kann;

R₆₆ Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl bedeutet; oder R₆₅ zusammen mit R₆₆ und dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-

Halogenalkoxy, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino substituiert sein kann;

oder R₅₇ steht für -L₉-R₆₇;

R₆₇ für Formyl, C₁-C₆-Alkylcarbonyl, C₃-C₆-Cycloalkylcarbonyl, Benzoyl, C₁-C₆-Alkycarbonyl, Cyano, C(X₁₉)NR₆₈R₆₉, Phenyl oder Heteroaryl steht, wobei Benzoyl und Phenyl ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkycarbonyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₄-Alkylcarbonylamino; und wobei Heteroaryl ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro oder C₁-C₄-Alkoxycarbonyl; substituiert sein kann; oder R₆₇ bedeutet C₃-C₆-Cycloalkyl oder C₅-C₆-Cycloalkenyl, die ihrerseits ein-, zwei- oder dreifach durch C₁-C₄-Alkyl, Halogen oder C₁-C₄-Alkoxy substituiert sein können;

X₁₉ Sauerstoff, Schwefel, -S(O)- oder S(O)₂- bedeutet;

 R_{68} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl oder Phenyl bedeutet, das ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino substituiert sein kann;

 R_{69} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl oder C_3 - C_6 -Alkinyl bedeutet; oder R_{68} zusammen mit R_{69} und dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Alkylcarbonylamino substituiert sein kann;

 L_1 C_1 - C_4 -Alkylen bedeutet, das ein- zwei- oder dreifach durch C_1 - C_4 -Alkyl, Halogen oder C_1 - C_4 -Alkoxy substituiert sein kann, wobei an diese C_1 - C_4 -Alkylengruppe eine C_2 - C_5 -Alkylengruppe spirocyclisch angebunden sein kann, wobei diese C_2 - C_5 -Alkylengruppe ihrerseits ein- oder zweifach durch Sauerstoff, Schwefel, Sulfinyl oder Sulfonyl unterbrochen sein kann und durch C_1 - C_4 -Alkyl oder C_1 - C_4 -Alkoxy substituiert sein kann;

oder L_1 C_1 - C_4 -Alkylen bedeutet, das ein- zwei- oder dreifach durch C_1 - C_4 -Alkyl, Halogen oder C_1 - C_4 -Alkoxy substituiert sein kann, wobei ein Kohlenstoffatom der L_1 Kette gemeinsam mit R_9 oder mit R_{70} eine C_2 - C_6 -Alkylenkette bildet, die ein- oder zweifach durch Sauerstoff, Schwefel, Sulfinyl oder Sulfonyl unterbrochen sein kann und durch C_1 - C_4 -Alkyl oder C_1 - C_4 -Alkoxy substituiert sein kann;

R₉ eine Gruppe --X₂₀-R₇₀ bedeutet, worin

 X_{20} für Sauerstoff, -NR₇₁-, -S-, -S(O)- oder S(O)₂ - steht;

 R_{70} Wasserstoff, C_1 - C_6 -Alkoxy, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl bedeutet oder Phenyl, das ein- zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylcarbonylamino substituiert sein kann, bedeutet;

oder R₇₀ bedeutet C(O)-R₇₈ oder C(S)-R₇₉; R₇₁ eine C₁-C₆-Alkyl-, C₃-C₆-Alkenyl- oder C₃-C₆-Alkinylgruppe bedeutet, wobei diese Gruppen ein-, zwei- oder dreifach durch Halogen, Hydroxy, C₁-C₆-Alkoxy, C₁-C₃-Alkoxy-C₁-C₃-alkoxy, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, Cyano, C(X₂₁)NR₇₂R₇₃, C₃-C₆-Cycloalkyl, Phenyl, Phenoxy oder durch 5- oder 6-gliedriges Heteroaryl oder Heteroaryloxy substituiert sein können, wobei Heteroaryl oder Heteroaryloxy ihrerseits einfach durch Sauerstoff oder Schwefel oder ein-, zwei- oder dreifach durch Stickstoff unterbrochen und entweder via ein C-Atom oder ein N-Atom an die C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinylgruppe gebunden sein können, und wobei die Phenyl und Heteroaryl enthaltenden Gruppen ein-, zwei oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Alkoxy, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₄-Alkylcarbonylamino substituiert sein können;

X₂₁ Sauerstoff, Schwefel, -S(O)- oder S(O)₂- bedeutet;

 R_{72} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl oder Phenyl bedeutet, das ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Alkylcarbonylamino substituiert sein kann;

R₇₃ Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl bedeutet; oder R₇₂ zusammen mit R₇₃ und dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-,

zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkoxy, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino substituiert sein kann:

oder R₉ für Formyl, C₁-C₆-Alkylcarbonyl, C₃-C₆-Cycloalkylcarbonyl, Benzoyl, C₁-C₆-Alkoxycarbonyl, Cyano, C(X₃₅)NR₁₂₅R₁₂₆, Phenyl oder Heteroaryl steht, wobei Benzoyl und Phenyl ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Alkylsulfonyl oder C₁-C₄-Alkylcarbonylamino; und wobei Heteroaryl ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro oder C₁-C₄-Alkoxycarbonyl; substituiert sein kann; oder R₉ bedeutet C₃-C₆-Cycloalkyl oder C₅-C₆-Cycloalkenyl, die ihrerseits ein-, zwei- oder dreifach durch C₁-C₄-Alkyl, Halogen oder C₁-C₄-Alkoxy substituiert sein können;

X₃₅ Sauerstoff, Schwefel, -S(O)- oder S(O)₂- bedeutet;

 R_{125} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl oder Phenyl bedeutet, das ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Alkylsulfonyl oder C_1 - C_4 -Alkylcarbonylamino; substituiert sein kann;

R₁₂₆ Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl bedeutet; oder R₁₂₅ zusammen mit R₁₂₆ und dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino;

substituiert sein kann;

 R_3 Hydroxy, O^*M^* , worin wobei M^* für ein Metallkation oder für ein Ammoniumkation steht; Halogen oder $S(O)_qR_{80}$ bedeutet, worin R_{80} für C_1 - C_{12} -Alkyl, C_2 - C_{12} -Alkenyl, C_2 - C_{12} -Alkinyl, C_3 - C_{12} -Allenyl, C_3 - C_{12} -Cycloalkyl oder C_5 - C_{12} -Cycloalkenyl steht und q für 0, 1 oder 2 steht; oder R_{80} steht für R_{121} - C_1 - C_{12} -Alkylen oder R_{122} - C_2 - C_{12} -Alkenylen, wobei die Alkylen- oder Alkenylenkette durch -O-, -S-, -S(O)-, SO_2 - oder -C(O)- unterbrochen und/oder einfach oder

bis zu fünffach durch R_{123} substituiert sein kann; oder R_{80} bedeutet Phenyl, das ein-, zwei-, drei-, vier- oder fünffach durch R_{124} substituiert sein kann;

R₁₂₁ und R₁₂₂ unabhängig voneinander Halogen, Cyano, Rhodano, Hydroxy, C₁-C₆-Alkoxy, C₂-C₆-Alkenyloxy, C₂-C₆-Alkinyloxy, C₁-C₆-Alkylsulfino, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, C₂-C₆-Alkenylthio, C₂-C₆-Alkinylthio, C₁-C₆-Alkylsulfonyloxy, Phenylsulfonyloxy, C₁-C₆-Alkylcarbonyloxy, C₁-C₆-Alkylcarbonyloxy, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkoxycarbonyloxy, C₁-C₆-Alkylcarbonyl, C₁-C₄-Alkoxycarbonyl, C₃-C₆-Cycloalkyl, Phenyl, Phenoxy, Phenylthio, Phenylsulfinyl oder Phenylsulfonyl, wobei die Phenyl enthaltenden Gruppen ihrerseits ein-, zwei- oder dreifach durch Halogen, C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, Hydroxy, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Cyano oder Nitro substituiert sein können;

R₁₂₃ Hydroxy, Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, Cyano, Carbamoyl, Carboxy, C₁-C₄-Alkoxycarbonyl oder Phenyl, wobei Phenyl einfach, zweifach oder dreifach durch Wasserstoff, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₃-C₄-Alkenyl, C₃-C₄-Alkinyl oder C₁-C₄-Alkoxy substituiert sein kann;

R₁₂₄ Halogen, C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, Hydroxy, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Cyano oder Nitro bedeutet;

oder R_3 steht für eine Gruppe - X_{29} - L_{16} - R_{96} , worin

X₂₉ für -NR₉₇ oder Schwefel steht;

R₉₇ Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, C₁-C₆-Halogenalkyl, Hydroxy, C₁-C₆-Alkoxy, -C(O)R₉₈ oder -C(S)R₉₉ bedeutet, wobei R₉₈ und R₉₉ unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, Phenyl, Heteroaryl, C₁-C₆-Alkoxy, C₃-C₆-Alkenyloxy, Benzyloxy, C₁-C₄-Alkylthio oder eine Gruppe NR₁₀₀R₁₀₁ bedeuten, und R₁₀₀ und R₁₀₁ unabhängig voneinander für Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl oder Phenyl stehen, das seinerseits ein- zwei oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein kann; oder R₁₀₀ zusammen mit R₁₀₁ und dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkythio, Cyano, Nitro, C₁-C₄-Alkythio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkythio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein kann;

oder R₉₇ steht für -L₁₄-X₃₀-R₁₀₂; wobei

 X_{30} für Sauerstoff, -NR₁₀₃-, -S-, -S(O)- oder S(O)₂ - steht;

 R_{103} Wasserstoff, C_1 - C_6 -Alkoxy, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl bedeutet oder Phenyl, das ein- zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkoxy, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Alkylcarbonylamino substituiert sein kann, bedeutet;

R₁₀₂ Wasserstoff oder eine C₁-C₆-Alkyl-, C₃-C₆-Alkenyl- oder C₃-C₆-Alkinylgruppe bedeutet, wobei diese Gruppen ein-, zwei- oder dreifach durch Halogen, Hydroxy, C₁-C₆-Alkoxy, C₁-C₃-Alkoxy-C₁-C₃-alkoxy, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy, C₁-C₆-Alkylsthio, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, Cyano, C(X₃₁)NR₁₀₃R₁₀₄, C₃-C₆-Cycloalkyl, Phenyl, Phenoxy oder durch 5- oder 6-gliedriges Heteroaryl oder Heteroaryloxy substituiert sein können, wobei Heteroaryl oder Heteroaryloxy ihrerseits einfach durch Sauerstoff oder Schwefel oder ein-, zwei- oder dreifach durch Stickstoff unterbrochen und entweder via ein C-Atom oder ein N-Atom an die C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinylgruppe gebunden sein können, und wobei die Phenyl und Heteroaryl enthaltenden Gruppen ein-, zwei oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein können; oder

 R_{102} bedeutet C(O)- R_{105} oder C(S)- R_{106} ;

X₃₁ Sauerstoff, Schwefel, -S(O)- oder S(O)₂- bedeutet;

 R_{103} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl oder Phenyl bedeutet, das ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Alkylsulfonyl oder C_1 - C_4 -Alkylcarbonylamino; substituiert sein kann;

R₁₀₄ Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl bedeutet; oder R₁₀₃ zusammen mit R₁₀₄ und dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino;

substituiert sein kann;

oder R₉₇ steht für -L₁₅-R_{105a};

R_{105a} für Formyl, C₁-C₆-Alkylcarbonyl, C₃-C₆-Cycloalkylcarbonyl, Benzoyl, C₁-C₆-Alkoxycarbonyl, Cyano, C(X₃₂)NR_{106a}R₁₀₇, Phenyl oder Heteroaryl steht, wobei Benzoyl und Phenyl ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-

Alkoxy, C_1 - C_3 -Halogenalkoxy, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_4 -Alkylcarbonylamino; und wobei Heteroaryl ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkoxy, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro oder C_1 - C_4 -Alkoxycarbonyl substituiert sein kann; oder R_{105a} bedeutet C_3 - C_6 -Cycloalkyl oder C_5 - C_6 -Cycloalkenyl, die ihrerseits ein-, zwei- oder dreifach durch C_1 - C_4 -Alkyl, Halogen oder C_1 - C_4 -Alkoxy substituiert sein können; X_{32} Sauerstoff, Schwefel, -S(O)- oder S(O)₂- bedeutet;

 R_{106a} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl oder Phenyl bedeutet, das ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino substituiert sein kann;

R₁₀₇ Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl bedeutet; oder R_{106a} zusammen mit R₁₀₇ und dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein kann;

R₉₆ eine Gruppe –X₃₃-R₁₀₈ bedeutet, worin

 X_{33} für Sauerstoff, -NR₁₀₉-, -S-, -S(O)- oder S(O)₂ - steht;

 R_{108} Wasserstoff, C_1 - C_6 -Alkoxy, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl bedeutet oder Phenyl, das ein- zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkoxy, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylcarbonylamino substituiert sein kann, bedeutet;

oder R₁₀₈ bedeutet C(O)-R_{112a} oder C(S)-R_{113a};

 R_{74} , R_{76} , R_{76} , R_{77} , R_{78} R_{79} R_{94} , R_{105} , R_{106} , R_{112a} und R_{113a} unabhängig voneinander Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Cycloalkyl, Phenyl, Heteroaryl, C_1 - C_6 -Alkoxy, C_3 - C_6 -Alkenyloxy, Benzyloxy, C_1 - C_4 -Alkylthio oder $NR_{127}R_{128}$ bedeuten;

 R_{127} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl oder Phenyl bedeutet, das ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -

Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino substituiert sein kann;

 R_{128} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl oder C_3 - C_6 -Alkinyl bedeutet; oder R_{127} zusammen mit R_{128} und dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkoxy, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino substituiert sein kann;

R₁₀₉ eine C₁-C₆-Alkyl-, C₃-C₆-Alkenyl- oder C₃-C₆-Alkinylgruppe bedeutet, wobei diese Gruppen ein-, zwei- oder dreifach durch Halogen, Hydroxy, C₁-C₆-Alkoxy, C₁-C₃-Alkoxy-C₁-C₃-alkoxy, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy, C₁-C₆-Alkylthio, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, Cyano, C(X₃₄)NR₁₁₀R₁₁₁, C₃-C₆-Cycloalkyl, Phenyl, Phenoxy oder durch 5- oder 6-gliedriges Heteroaryl oder Heteroaryloxy substituiert sein können, wobei Heteroaryl oder Heteroaryloxy ihrerseits einfach durch Sauerstoff oder Schwefel oder ein-, zwei- oder dreifach durch Stickstoff unterbrochen und entweder via ein C-Atom oder ein N-Atom an die C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinylgruppe gebunden sein können, und wobei die Phenyl und Heteroaryl enthaltenden Gruppen ein-, zwei oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein können;

X₃₄ Sauerstoff, Schwefel, -S(O)- oder S(O)₂- bedeutet;

 R_{110} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl oder Phenyl bedeutet, das ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino substituiert sein kann;

R₁₁₁ Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl bedeutet; oder R₁₁₀ zusammen mit R₁₁₁ und dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein kann;

A₁ -C(R₁₁₂R₁₁₃)- oder -NR₁₁₄- bedeutet;

 A_2 -C(R₁₁₅R₁₁₆)_m-, -C(=O)-, -O-, -NR₁₁₇- oder -S(O)_q- bedeutet;

A₃ -C(R₁₁₈R₁₁₉)- oder -NR₁₂₀- bedeutet;

mit Maßgabe, daß A_2 verschieden von -O- oder -S(O)_q- ist, wenn A_1 für –NR₁₁₄- und/oder A_3 für –NR₁₂₀ steht;

 R_{112} und R_{118} unabhängig voneinander Wasserstoff, C_1 - C_4 -Alkyl, C_2 - C_4 -Alkenyl, C_2 - C_4 -Alkylthio, C_1 - C_4 -Alkylsulfinyl, C_1 - C_4 -Alkylsulfonyl, C_1 - C_4 -Alkoxycarbonyl, Hydroxy, C_1 - C_4 -Alkoxy, C_3 - C_4 -Alkenyloxy, C_3 - C_4 -Alkinyloxy, Hydroxy- C_1 - C_4 -alkyl, C_1 - C_4 -Alkylsulfonyloxy- C_1 - C_4 -alkyl, Halogen, Cyano oder Nitro bedeuten;

 R_{113} und R_{119} unabhängig voneinander Wasserstoff, C_1 - C_4 -Alkyl oder C_1 - C_4 -Alkylsulfinyl oder C_1 - C_4 -Alkylsulfonyl bedeuten;

oder R_{113} zusammen mit R_{112} und/oder R_{119} zusammen mit R_{118} eine C_2 - C_5 -Alkylenkette, die durch -O-, -C(O)O- oder -S(O)_r- unterbrochen sein kann;

 R_{114} und R_{120} unabhängig voneinander Wasserstoff, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_3 - C_4 -Alkenyl, C_3 - C_4 -Alkinyl oder C_1 - C_4 -Alkoxy bedeuten;

 $R_{115}\ \ Wasserstoff,\ Hydroxy,\ C_1-C_4-Alkyl,\ C_1-C_4-Halogenalkyl,\ C_1-C_3-Hydroxyalkyl,\ C_1-C_4-Alkylcarbonyloxy-C_1-C_3-alkyl,\ C_1-C_4-Alkylcarbonyloxy-C_1-C_3-alkyl,\ C_1-C_4-Alkylcarbonyloxy-C_1-C_3-alkyl,\ C_1-C_4-Alkylcarbonyloxy-C_1-C_3-alkyl,\ C_1-C_4-Alkoxylcarbonyl,\ C_1-C_3-alkyl,\ C_1-C_4-Alkoxylcarbonyl,\ C_3-C_5-Oxacycloalkyl,\ C_3-C_5-Thiacycloalkyl,\ C_3-C_4-Dioxacycloalkyl,\ C_3-C_4-Alkoxylminomethyl,\ Carbamoyl,\ C_1-C_4-Alkylaminocarbonyl\ oder\ Di-(C_1-C_4-alkyl)aminocarbonyl\ bedeutet;$

oder R_{115} zusammen mit R_{112} oder R_{113} oder R_{114} oder R_{116} oder R_{118} oder R_{119} oder R_{120} , oder wenn m 2 bedeutet, auch mit einem zweiten R_{115} eine C_1 - C_4 -Alkylenbrücke bedeuten; R_{116} Wasserstoff, C_1 - C_3 -Alkyl oder C_1 - C_3 -Halogenalkyl;

 R_{117} Wasserstoff, C_1 - C_3 -Alkyl, C_1 - C_3 -Halogenalkyl, C_1 - C_4 -Alkoxycarbonyl, C_1 - C_4 -Alkylcarbonyl oder Di-(C_1 - C_4 -alkyl)aminocarbonyl bedeutet;

m 1 oder 2; und q und r unabhängig voneinander 0, 1 oder 2 bedeuten;

sowie agronomisch verträgliche Salze, Tautomere, Isomere und Enantiomere dieser Verbindungen.

Die in den Substituenten Definitionen vorkommenden Alkylgruppen können geradkettig oder verzweigt sein und stehen beispielsweise für Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, sek.-Butyl, iso-Butyl, tert.-Butyl, Pentyl, Hexyl, Heptyl, Octyl sowie deren verzweigte

Isomeren. Alkoxy-, Alkylthio-, Alkenyl- und Alkinylreste leiten sich von den genannten Alkylresten ab. Die Alkenyl- und Alkinylgruppen können ein- oder mehrfach ungesättigt sein, wobei auch eine Allenylgruppe oder eine gemischte Alken-alkinyl Gruppe mit eingeschlossen ist.

Alkoxygruppen sind dementsprechend Methoxy, Ethoxy, n-Propoxy, i-Propoxy, n-Butoxy, sek.-Butoxy, iso-Butoxy, tert.-Butoxy.

Alkylthiogruppen und deren oxidierte Formen haben vorzugsweise eine Kettenlänge von 1 bis 3 Kohlenstoffatomen; bevorzugt sind beispielsweise Methylthio, Ethylthio, n-Propylthio und iso-Propylthio; insbesondere Methyl- und Ethylthio. Alkylsulfinyl ist beispielsweise Methylsulfinyl, Ethylsulfinyl, n-Propylsulfinyl und iso-Propylsulfinyl, und Alkylsulfonyl steht bevorzugt für Methylsulfonyl, Ethylsulfonyl, Propylsulfonyl und iso-Propylsulfonyl; vorzugsweise für Methylsulfonyl und Ethylsulfonyl.

Halogen bedeutet in der Regel Fluor, Chlor, Brom oder Jod; vorzugsweise Fluor, Chlor und Brom. Halogen als Subsituent in Alkylgruppen, also in Halogenalkylgruppen,haben vorzugsweise eine Kettenlänge von 1 bis 6 Kohlenstoffatomen. C₁-C₄-Halogenalkyl ist beispielsweise Fluormethyl, Difluormethyl, Trifluormethyl, Chlormethyl, Dichlormethyl, Trichlormethyl, 2,2,2-Trifluorethyl, 2-Fluorethyl, 2-Chlorethyl, Pentafluorethyl, 1,1-Difluor-2,2,2-trichlorethyl, 2,2,2-Trichlorethyl, 1,1,2,2-Tetrafluorethyl, 2,2,3,3-Tetrafluorpropyl, 2,2,3,4,4,4-Hexafluorbutyl; vorzugsweise Fluormethyl, Difluormethyl, Difluorchlormethyl, Dichlorfluormethyl, Trifluormethyl, 2-Chlorethyl, 2,2,2-Trifluorethyl, 2,2,3,3-Tetrafluorpropyl, 2,2,3,3,3-Pentafluorpropyl.

Als Halogen in Alkenylgruppen kommen einfach oder mehrfach durch Halogen substituierte Alkenylgruppen in Betracht, wobei Halogen insbesondere Fluor und Chlor ist, wie beispielsweise 2,2-Difluor-1-methylvinyl, 3-Fluorpropenyl, 3-Chlorpropenyl, 3-Brompropenyl, 2,3,3-Trifluorpropenyl, 2,3,3-Trifluorpropenyl und 4,4,4-Trifluor-but-2-en-1-yl. Als Halogenalkinyl kommen beispielsweise ein- oder mehrfach durch Halogen substituierte Alkinylgruppen in Betracht, wobei Halogen sowohl Brom und Jod wie auch Fluor und Chlor bedeutet, wie beispielsweise 3-Fluorpropinyl, 3-Chlorpropinyl, 3-Brompropinyl, 3,3,3-Trifluorpropinyl und 4,4,4-Trifluor-but-2-in-1-yl. Entsprechendes gilt auch für Halogen in

Verbindung mit anderen Bedeutungen wie Halogenalkoxy, Halogenalkylthio, Halogenalkylsulfinyl, Halogenyalkylsulfonyl oder Halogenphenyl.

Unter Heteroaryl, wie z.B. in der Bedeutung $R_{\mbox{\scriptsize 9}}$, im Falle eines fünf- oder sechsgliedrigen, monocyclischen oder annelierten bicyclischen, aromatischen Ringsystems, versteht man insbesondere eine via ein C-Atom gebundene aromatische 5- oder 6-gliedrige Heteroarylgruppe, die einfach durch Sauerstoff, einfach durch Schwefel und/oder einfach, zweifach oder dreifach durch Stickstoff unterbrochen sein kann, wie beispielsweise 1-Methyl-1H-pyrazol-3-yl, 1-Ethyl-1H-pyrazol-3-yl, 1-Propyl-1H-pyrazo1-3-yl, 1H-Pyrazol-3-yl, 1,5-Dimethyl-1H-pyrazol-3-yl, 4-Chlor-1-methyl-1H-pyrazol-3-yl, 3-lsoxazolyl, 5-methyl-3isoxazolyl, 3-Methyl-5-isoxazolyl, 5-Isoxazolyl, 1H-Pyrrol-2-yl, 1-Methyl-1H-pyrrol-2-yl, 1-Methyl-1H-pyrrol-3-yl, 2-Furanyl, 5-Methyl-2-furanyl, 3-Furanyl, 5-Methyl-2-thienyl, 2-Thienyl, 3-Thienyl, 1-Methyl-1H-imidazol-2-yl, 1H-Imidazol-2-yl, 1-Methyl-1H-imidazol-4-yl, 1-Methyl-1H-imidazol-5-yl, 4-Methyl-2-oxazolyl, 5-Methyl-2-oxazolyl, 2-Oxazolyl, 2-Methyl-5-oxazolyl, 2-Methyl-4-oxazolyl, 4-Methyl-2-thiazolyl, 5-Methyl-2-thiazolyl, 2-Thiazolyl, 2-Methyl-5thiazolyl, 2-Methyl-4-thiazolyl, 3-Methyl-4-isothiazolyl, 3-Methyl-5-isothiazolyl, 5-Methyl-3isothiazolyl, 1-Methyl-1H-1,2,3-triazol-4-yl, 2-Methyl-2H-1,2,3-triazol-4-yl, 4-Methyl-2H-1,2,3triazol-2-yl, 1-Methyl-1H-1,2,4-triazol-3-yl, 1,5-Dimethyl-1H-1,2,4-triazol-3-yl, 4,5-Dimethyl-4H-1,2,4-triazol-3-yl, 4-Methyl-4H-1,2,4-triazol-3-yl, 5-Methyl-1,2,3-oxadiazol-4-yl, 1,2,3-Oxadiazol-4-yl, 3-Methyl-1,2,4-oxadiazol-5-yl, 5-Methyl-1,2,4-oxadiazol-3-yl, 5-Methyl-1,2,3thiadiazol-4-yl, 1,2,3-Thiadiazol-4-yl, 3-Methyl-1,2,4-thiadiazol-5-yl, 5-Methyl-1,2,4-thiadiazol-3-yl, 4-Methyl-1,2,5-thiadiazol-3-yl, 5-Methyl-1,3,4-thiadiazol-2-yl, 2-Pyridinyl, 6-Methyl-2pyridinyl, 4-Pyridinyl, 3-Pyridinyl, 6-Methyl-3-pyridazinyl, 5-Methyl-3-pyridazinyl, 3-Pyridazinyl, 4,6-Dimethyl-2-pyrimidinyl, 4-Methyl-2-pyrimidinyl, 2-Pyrimidinyl, 2-Methyl-4-pyrimidinyl, 2-Chlor-4-pyrimidinyl, 2,6-Dimethyl-4-pyrimidinyl, 4-Pyrimidinyl, 2-Methyl-5-pyrimidinyl, 6-Methyl-2-pyrazinyl, 2-Pyrazinyl, 4,6-Dimethyl-1,3,5-triazin-2-yl, 4,6-Dichlor-1,3,5-triazin-2-yl, 1,3,5-Triazin-2-yl, 4-Methyl-1,3,5-triazin-2-yl, 3-Methyl-1,2,4-triazin-5-yl, 3-Methyl-1,2,4triazin-6-yl. Und unter einer via das N-Atom gebundenen Heteroarylgruppe versteht man beispiesweise 1H-Pyrrol-1-yl, 1H-Pyrazol-1-yl, 3-Methyl-1H-pyrazol-1-yl, 3,5-Dimethyl-1Hpyrazol-1-yl, 3-Trifluormethyl-1H-pyrazol-1-yl, 3-Methyl-1H-1,2,4-triazol-1-yl, 5-Methyl-1H-1,2,4-triazol-1-yl, 4H-1,2,4-Triazol-4-yl.

Unter der Bedeutung L_1 C_1 - C_4 -Alkylen, das ein-, zwei- oder dreifach durch C_1 - C_4 -Alkyl, Halogen oder C_1 - C_4 -Alkoxy substituiert sein kann, wobei ein Kohlenstoffatom der L_1 Kette

gemeinsam mit R_9 eine C_2 - C_6 -Alkylenkette bildet, die ein- oder zweifach durch Sauerstoff, Schwefel, Sulfinyl oder Sulfonyl unterbrochen sein kann und durch C_1 - C_4 -Alkyl oder C_1 - C_4 -Alkoxy substituiert sein kann, versteht man im Rahmen der vorliegenden Erfindung beispielsweise die folgenden cyclischen C_2 - C_6 -Alkylengruppen: C_3 - C_6 -Oxacycloalkyl, C_2 - C_5 -Dioxacycloalkyl, C_3 - C_6 -Oxacycloalkyl- C_1 - C_2 -alkyl, C_3 - C_6 -Dioxacycloalkyl- C_1 - C_2 -alkyl oder ähnliche Sauerstoff oder Schwefel enthaltende Gruppen, insbesondere eine durch Sauerstoff ein- oder zweifach unterbrochene C_3 - C_6 -Cycloalkyl Gruppe, wie z.B. Oxetan-3-yl, Tetrahydrofuran-3-yl, Tetrahydropyran-2-yl, 1,3-Dioxacyclohex-4-yl, oder

worin jeweils das markierte 'C-Atom an

 X_3 gebunden ist; oder Oxiranyl-methyl, 3-Oxetanyl-methyl, Tetrahydrofuran-3-yl-methyl, Tetrahydrofuran-2-yl-methyl, 1,3-Dioxacyclopen-3-yl-methyl,1,3-Dioxa-4,5-dimethyl-cyclopen-3-yl-methyl,

oder eine durch Schwefel ein- oder zweifach unterbrochene C_3 - C_6 -Cycloalkyl Gruppe, z.B. Tetrahydrothien-2-yl-methyl, 1,3-Oxathio-cyclopen-3-yl-methyl, 1,3-Dithiacyclopen-2-yl-

ect., worin jeweils das markierte 'C-Atom

an X₁ gebunden ist.

Unter der Bedeutung NR₆R₇, worin R₆ zusammen mit R₇ und dem gemeinsamen N-Atom ein carbocylisches 3- bis 7-gliedriges, gesättigtes oder teilweise gesättigtes monocyclisches oder bicyclisches Ringsystem bildet, versteht man beispielsweise Morpholino (=Morpholin-4-yl), cis- und/oder trans-2,6-Dimethylmorpholin-4-yl, Thiomorpholin-4-yl, N-Methyl-piperidin-1-yl, 1H-Pyrrol-1-yl, 1H-Pyrazol-1-yl, 3-Methyl-1H-pyrazol-1-yl, 3,5-Dimethyl-1H-pyrazol-1-yl, 3-Trifluormethyl-1H-pyrazol-1-yl, 3-Methyl-1H-1,2,4-triazol-1-yl, 5-Methyl-1H-1,2,4-triazol-1-yl, 4H-1,2,4-Triazol-4-yl, oder Gruppen gemäß den Formeln

ect, worin jeweils das markierte 'N-Atom an die Picolinylgruppe gebunden ist.

Unter der Bedeutung L_1 , L_2 , L_4 , L_6 , L_8 , L_{10} , L_{12} , L_{14} und L_{16} für C_1 - C_4 -Alkylen, wobei an diese C_1 - C_4 -Alkylengruppe eine C_2 - C_5 -Alkylengruppe spirocyclisch angebunden sein kann, versteht man beispielsweise eine C_1 - C_3 -Alkylenkette, die eine Cyclopropylgruppe enthält, oder die durch eine 1,3-Dioxlan-2-ylgruppe substituiert ist, wie z.B.

°C-Atom die linke Valenz der Definitionen bedeuten, die den jeweiligen Substituenten L enthalten. Beispielsweise ist in -X₃-L₁-R₉ das markierte °C-Atom mit dem Substituenten X₃ verknüpft. Im allgemeinen können solche Alkylenketten, z.B. C₁-C₄-Alkylen für L₁ und L₄, auch durch eine oder mehrere C₁-C₃-Alkylgruppen, insbesondere durch Methylgruppen substituiert sein. Vorzugsweise sind solche Alkylenketten und die durch Sauerstoff oder Schwefel unterbrochene Alkylenketten und -gruppen unsubstituiert. Vorzugsweise sind auch C₃-C₆-Cycloalkyl, Oxiranyl, Oxetanyl, C₃-C₅-Oxacycloalkyl, C₃-C₅-Thiacycloalkyl, C₃-C₄-Dioxacycloalkyl, C₃-C₄-Dithiacycloalkyl oder C₃-C₄-Oxathiacycloalkyl enthaltende Gruppen sowie auch die Gruppen A₁, A₂ und A₃ unsubstituiert.

Die Verbindungen der Formel I können in verschiedenen tautomeren Formen auftreten, wie dies beispielsweise für Verbindungen der Formel I, worin R₃ Hydroxy ist, durch die Formeln I', I", I" und I"" dargestellt wird, wobei die Formen I" und I"" als isolierte Formen bevorzugt sind, und wobei I"" auch eine rotamere Form von I" darstellt.

Liegt in Verbindungen der Formel I - wie insbesondere in der Gruppen R₁ eine C=C oder C=N Doppelbindung vor, können die Verbindungen der Formel I, sofern eine Asymmetrie vorliegt, jeweils in der <E>- als auch in der <Z>-Form vorkommen. Liegt ein weiteres asymmetrisches Zentrum vor, wie beispielsweise ein asymmetrischen Kohlenstoffatom in der Gruppe R₁, oder durch die räumliche Anordnung von A₁, A₂, A₃ und den Substituenten R₁₁₂, R₁₁₃, R₁₁₅, R₁₁₆, R₁₁₈ und R₁₁₉, können auch chirale <R>- und <S>-Formen und/oder konstitutionsisomere Formen auftreten. Die vorliegende Erfindung umfaßt deshalb auch alle diese stereoisomeren und tautomeren Formen der Verbindung der Formel I.

Die Erfindung umfaßt ebenfalls die Salze, die die Verbindungen der Formel I vorzugsweise mit Aminen, Alkali- und Erdalkalimetallkationen oder quaternären Ammoniumbasen bilden können. Geeignete Salzbildner sind beispielsweise in WO 98/41089 beschrieben. Unter den Alkali- und Erdalkalimetallhydroxiden als Salzbildner sind die Hydroxyde von Lithium, Natrium, Kalium, Magnesium und Calcium hervorzuheben, insbesondere aber die von Natrium und Kalium.

Als Beispiele für zur Ammoniumsalzbildung geeignete Amine kommen sowohl Ammoniak wie auch primäre, sekundäre und tertiäre C₁-C₁₈-Alkylamine, C₁-C₄-Hydroxyalkylamine und C₂-C₄-Alkoxyalkylamine in Betracht, beispielsweise Methylamin, Ethylamin, n-Propylamin, iso-Propylamin, die vier isomeren Butylamine, n-Amylamin, iso-Amylamin, n-Hexylamin, Heptylamin, Octylamin, Nonylamin, Decylamin, Pentadecylamin, Hexadecylamin, Heptadecylamin, Octadecylamin, Methyl-ethylamin, Methyl-iso-propylamin, Methyl-hexylamin, Methyl-nonylamin, Methyl-pentadecylamin, Methyl-octadecylamin, Ethyl-

butylamin, Ethyl-heptylamin, Ethyl-octylamin, Hexyl-heptylamin, Hexyl-octylamin, Dimethylamin, Diethylamin, Di-n-propylamin, Di-iso-propylamin, Di-n-butylamin, Di-n-amylamin, Di-iso-amylamin, Dihexylamin, Diheptylamin, Dioctylamin, Ethanolamin, n-Propanolamin, iso-Propanolamin, N,N-Diethanolamin, N-Ethylpropanolamin, N-Butylethanolamin, Allylamin, n-Butenyl-2-amin, n-Pentenyl-2-amin, 2,3-Dimethylbutenyl-2-amin, Di-butenyl-2-amin, n-Hexenyl-2-amin, Propylendiamin, Trimethylamin, Triethylamin, Tri-n-propylamin, Tri-iso-propylamin, Tri-n-butylamin, Tri-iso-butylamin, Tri-sek.-butylamin, Tri-n-amylamin, Methoxyethylamin und Ethoxyethylamin; heterocyclische Amine wie z.B. Pyridin, Chinolin, iso-Chinolin, Morpholin, Piperidin, Pyrrolidin, Indolin, Chinuclidin und Azepin; primäre Arylamine wie z.B. Aniline, Methoxyaniline, Ethoxyaniline, o,m,p-Toluidine, Phenylendiamine, Benzidine, Naphthylamine und o,m,p-Chloraniline; insbesondere aber Triethylamin, iso-Propylamin und Di-iso-propylamin.

Bevorzugte quarternäre Ammoniumbasen, die zur Salzbildung geeignet sind, entsprechen z.B. der Formel [${}^{\dagger}N(R_aR_bR_cR_d)$ OH], worin R_a , R_b , R_c und R_d unabhängig voneinander C_1 - C_4 Alkyl bedeuten. Andere geeignete Tetraalkylammoniumbasen mit anderen Anionen können beispielsweise durch Anionenaustauschreaktionen erhalten werden.

In bevorzugten Verbindungen der Formel I bedeuten:

- a) A_1 , A_2 , A_3 Methylen, R_{112} Wasserstoff, Methyl, Methoxy, Methylthio, Methylsulfinyl, Methylsulfonyl, Methoxycarbonyl oder Ethoxycarbonyl und R_{113} , R_{115} , R_{116} , R_{118} und R_{119} unabhängig voneinander für Wasserstoff oder Methyl, besonders bevorzugt bedeutet A_1 , A_2 und A_3 unsubstituiertes Methylen;
- b) A_1 in Form von R_{112} zusammmen mit R_{113} Ethylen einen spirocylischen 3-gliedrigen Ring, A_2 und A_3 Methylen und R_{112} , R_{113} , R_{118} und R_{119} unabhängig voneinander Wasserstoff oder Methyl, insbesondere A_2 und A_3 unsubstituiertes Methylen;
- c) A_1 und A_3 Methylen, R_{112} , R_{113} , R_{118} und R_{119} Methyl und A_2 Carbonyl oder Sauerstoff, insbesondere Carbonyl;
- d) R₃ Hydroxy, O^{*}M⁺, C₁-C₈-Alkylthio, C₃-C₈-Alkenylthio, C₃-C₈-Alkinylthio, Benzylthio oder Phenylthio, insbesondere für Hydroxy oder ein Salz der Form O^{*}M⁺ steht, worin M⁺ ein agronomisch verträgliches Metallkation oder Ammoniumkation ist;
- e) R_2 Chlor, Brom, Cyano, Trifluormethyl, Difluormethyl, Difluormethyl, Difluormethyl, Difluormethyl, Difluormethyl, Difluormethyl, Difluormethyl, Difluormethyl, Difluormethyl, Trifluormethyl, Trifluormethyl, Trifluormethyl, Methylthio, Trifluormethyl, Oder Ethylsulfonyl, insbesondere Trifluormethyl; oder $R_1 NR_6 R_5$ oder eine Gruppe $-X_3-L_1-R_9$, worin R_3 oder R_5 , bedeutet.

In einer besonders bevorzugten Gruppe von Verbindungen der Formel I bedeutet

- g) R₁ eine Gruppe -X₃-L₁-R₉, worin X₃ für Sauerstoff steht;
- h) L_1 eine Methylen- oder eine Ethylenkette, die durch Methyl, Ethyl, Methoxy oder Ethoxy substituiert sein kann, wobei diejenigen Verbindungen hervorzuheben sind, worin R_1 in der Bedeutung $-X_3$ - L_1 - R_9 für die Seitenkette -O- L_1 -O- R_{70} steht, worin R_{70} C_1 - C_3 -Alkyl, Allyl, Propargyl, C_1 - C_2 -Alkoxy- C_1 - C_2 -alkyl oder C(O)- R_{78} bedeutet und R_{78} für $NR_{127}R_{128}$ steht; i) R_1 in der Bedeutung $-X_3$ - L_1 - R_9 die Gruppe -O- L_1 - X_{20} - R_{70} , worin X_{20} insbesondere Sauerstoff bedeutet und L_1 zusammen mit R_{70} eine C_2 - C_6 -Alkylenkette bildet, die einfach durch Sauerstoff unterbrochen sein kann und durch Methyl einfach oder zweifach substituiert sein kann:
- j) $R_1 X_3 L_1 X_{20} R_{70}$, worin R_{70} C(O)N $R_{72}R_{73}$ bedeutet;
- k) R_1 die Gruppe $-O-L_1-N(R_{71})C(O)R_{78}$ steht, worin R_{71} insbesondere Wasserstoff und R_{78} insbesondere C_1-C_4 -Alkyl, Cyclopropyl, Phenyl, C_1-C_4 -Alkoxy, Methylamino oder Dimethylamino bedeuten.

In einer weiteren besonders bevorzugten Gruppe von Verbindungen der Formel I bedeutet I) R_1 eine Gruppe NR_6R_7 oder eine Gruppe $-X_3-L_1-R_9$ ist, worin X_3 für $-NR_{57}$ steht, und worin L_1 eine Methylen- oder Ethylenkette ist, die durch Methyl, Ethyl, Methoxy oder Ethoxy substituiert sein kann, und wobei aus dieser Gruppe von Verbindungen der Formel I diejenigen hervorzuheben sind, worin

NR₆R₇ eine heterocyclische Gruppe ausgewählt aus Morpholin-4-yl, Pyrazol-1-yl und 1,2,4-Triazol-1-yl bedeutet, und wobei diese Gruppen durch Methyl, Trifluormethyl, Methoxy oder Ethoxy substituiert sein können:

m) NR_6R_7 , worin R_7 $C(X_7)R_{30}$ bedeutet; R_6 Methyl oder Ethyl; X_7 Sauerstoff; R_{30} C_1 - C_6 -Alkyl, C_3 - C_6 -Cycloalkyl oder Phenyl.

Ferner sind Verbindungen der Formel I bevorzugt, worin mindestens einer der Substituenten X_3 oder X_{20} für Sauerstoff steht, vorzugsweise stehen beide Substituenten für Sauerstoff.

 L_1 bedeutet bevorzugt eine unsubstituierte C_1 - C_3 -Alkylenkette oder eine einfach durch Methyl substituierte C_2 -Alkylenkette.

In einer anderen herausragenden Gruppe von Verbindungen bedeuten o) R_1 ein Gruppe – R_4 - X_1 - R_5 , worin R_4 C_1 - C_2 -Alkylen, das durch Methyl, Ethyl, Methoxy oder Ethoxy substituiert sein kann, insbesondere unsubstituiertes Methylen ist;

- i) R_1 ein Gruppe $-R_4$ - X_1 - R_5 , worin X_1 Sauerstoff, -C(O)-, -C(=NR_{14a})-, -C(O)O-, -C(O)NR_{14b}-, Schwefel, Sulfonyl, -NR₁₃SO₂-, -N(SO₂R_{14c})- oder $-NR_{14}$ worin R_{14} C₁-C₆-Alkoxycarbonyl oder C₁-C₆-Alkylcarbonyl ist, insbesondere X_1 Sauerstoff oder -N(SO₂R_{14c})- ist;
- j) R_1 ein Gruppe $-R_4-X_1-R_5$, worin R_5 C_1-C_6 -Alkylen bedeutet, das durch Halogen, Cyano, C_1-C_4 -Alkoxy, C_1-C_4 -Alkoxycarbonyl, C_2-C_4 -Alkenyl, C_2-C_4 -Halogenalkenyl, C_2-C_4 -Alkinyl, C_3-C_4 -Alkenyloxy, C_3-C_4 -Alkinyloxy, C_1-C_4 -Halogenalkoxy, C_3-C_4 -Halogenalkenyloxy, Cyano- C_1-C_3 -alkoxy, C_1-C_3 -Alkoxy- C_1-C_3 -alkoxy substituiert sein kann; insbesondere C_1-C_4 -Alkyl, C_3-C_4 -Alkenyl, C_3-C_4 -Alkinyl bedeutet, oder für C_1-C_3 -Alkylen steht, das einfach bis zu dreifach durch Fluor, einfach oder zweifach durch Chlor, einfach oder zweifach durch Methoxy oder Ethoxy, einfach durch Cyano, Allyloxy, Propargyloxy, Difluormethoxy, Trifluormethoxy, Methoxyethoxy oder C_3-C_6 -Cycloalkyl substituiert ist;
- k) R₁ ein Gruppe —R₄-X₁-R₅ bedeutet, worin R₅ Phenyl oder ein drei- bis sechsgliedriges monocyclisches Ringsystem ist, welches aromatisch, gesättigt oder teilweise gesättigt sein kann und 1 bis 4 Heteroatome ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthält, wobei Phenyl oder das Ringsystem direkt oder über eine C₁-C₂-Alkylen Gruppe an den Substituenten X₁ gebunden ist, und jedes Ringsystem nicht mehr als 2 Sauerstoffatome und nicht mehr als zwei Schwefelatome enthält, und wobei das Ringsystem selbst einfach oder bis zu vierfach durch C₁-C₃-Alkyl oder Halogen und/oder einfach durch C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Allyloxy, Propargyloxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfonyl substituiert sein kann; oder R₅ Phenyl oder ein drei- bis sechsgliedriges monocyclisches, gesättigtes Ringsystem bedeutet, welches 1 bis 2 Sauerstoff Atome enthält, und wobei Phenyl oder das Ringsystem entweder direkt oder über eine C₁-C₂-Alkylengruppe an den Substituenten X₁ gebunden ist, und wobei bevorzugt das Ringsystem selbst unsubstituiert oder einfach oder bis zu vierfach durch C₁-C₃-Alkyl und/oder einfach durch Methoxy oder Ethoxy substituiert sein kann.

In einer ganz besonders bevorzugten Gruppe von Verbindungen der Formel I, worin R_1 eine Gruppe $-R_4$ - X_1 - R_5 ist, bedeutet das bidentate Bindeglied $-R_4$ - X_1 - bevorzugt $-CH_2O$ -, - CH_2CH_2O - oder $-CH_2N(SO_2CH_3)$ -. Von ganz besonderem Interesse sind Verbindungen der Formel I, worin $-R_4$ - X_1 - R_5 für $CH_2OCH_2CH_2OCH_3$, $CH_2OCH_2CH_2OCH_2CH_3$, $CH_2OCH_2CH_3$, $CH_2OCH_2CH_3$, $CH_2OCH_2CH_3$, $CH_2OCH_2CH_3$, CH_2OCH_3 , CH_3OCH_3 , CH_3OC

 $\label{eq:ch2OCH2CH2OCH2CH2OCH2CH2OCH3} CH_2OCH_2CH_2OCH_2CH_2OCH_2CH_2OCH_2CH_2OCH_2CH_2OCH_3, CH_2OCH_2CH_2OCH_3, CH_2OCH_3, CH_2N(SO_2CH_3)CH_3, CH_2N(SO_2CH_3)CH_2CH_3, CH_2N(SO_2CH_3)CH_2CH_3, CH_2N(SO_2CH_3)CH_2CH_3, CH_2N(SO_2CH_3)CH_2CH_2OCH_3, Steht.$

Weitere hervorzuhebende Gruppen von Verbindungen der Formel I sind dadurch gekennzeichnet, daß X₁, X₂ und X₃ Schwefel, Sulfinyl oder Sulfonyl bedeuten.

Die Verbindungen der Formel I können über an sich bekannte, z.B. in WO 00/15615, EP-A-0316491 und EP-A-1352901 und WO 02/16305 beschriebenen Verfahren hergestellt werden.

Verbindungen der Formel I können beispielsweise hergestellt werden, indem man a) eine Verbindung der Formel

worin R_1 und R_2 die oben angegebenen Bedeutungen haben, in eine Verbindung der Formel

$$P_1$$
 P_2 P_2 P_3 P_4 P_4 P_4 P_4 P_5 P_6 P_6

worin Y₁ eine Abgangsgruppe wie Halogen, Cyano, Acyloxy oder dergleichen ist, überführt, und diese dann in Gegenwart einer Base, z.B. Triethylamin, Hünig's Base, Natriumbicarbonat oder Kaliumcarbonat, mit einem Dion der Formel

worin A₁, A₂ und A₃ die oben angegebenen Bedeutungen haben, umsetzt, und die Reaktionsmischung anschließend in Gegenwart der verwendeten Base, z.B. Triethylamin, mit Hilfe eines Cyanid Katalysators, z.B. Acetoncyanhydrin,

Trimethylsilylcyanid, Kupfercyanid, Natriumcyanid, Kaliumcyanid oder mittels Dimethylaminopyridin behandelt; oder

b) eine Verbindung der Formel

$$Y_4$$
 N R_1 R_2 (XIIIa)

worin R₁ und R₂ die oben angegebenen Bedeutungen haben und Y₄ für Halogen oder Trifluormethansulfonyloxy steht, unter Carbonylierungsbedingungen bei leicht erhöhtem Druck und leicht erhöhten Temperaturen in Gegenwart eines Palladium Katalysators mit geeigneten Liganden, z.B. PdCl₂(PPh₃)₂, Pd(PPh₃)₄, Pd₂(dba)₃, Pd(CH₃CN)₂(PPh₃)₂, Pd(OAc)₂, und gegebenenfalls in Gegenwart eines Hilfskatalysators, z.B. Triphenylphosphin, Tri-tertiärbutylphosphin, (Ph₃)₂PCH₂CH₂P(Ph₃)₂, (Ph₃)₂PCH₂CH₂P(Ph₃)₂, und in Gegenwart einer Base, z.B. Triethylamin, und gegebenenfalls weiteren Hilfsstoffen, z.B. LiCl oder Li₂CO₃, mit Kohlenmonoxid und einem Dion der Formel

worin A_1 , A_2 und A_3 die oben angegebenen Bedeutungen haben, zu einer Verbindung der Formel

$$\begin{array}{c} O \\ \\ O \\ \\ A_1 \\ \\ A_2 \\ \\ A_3 \\ \\ O \end{array} \qquad (XI_1)$$

worin A₁, A₂, A₃, R₁ und R₂ die oben angegebenen Bedeutungen haben, überführt, und dann diese mit Hilfe eines Cyanid haltigen Katalysators, z.B. Acetoncyanhydrin, Trimethylsilylcyanid, Kupfercyanid, Natriumcyanid, Kaliumcyanid in Gegenwart einer Trialkylaminbase, z.B. Triethylamin behandelt um zu Verbindung der Formel I zu gelangen; oder

c) im Falle, daß X₃ Sauerstoff bedeutet, eine Verbindung der Formel

$$A_{2}$$
 A_{3}
 O
 OH
 OH
 A_{2}
 A_{3}
 OH
 A_{3}
 OH
 A_{4}
 A_{5}
 OH
 A_{5}
 A_{5}
 OH

worin A_1 , A_2 , A_3 , R_2 und R_3 die oben angegebenen Bedeutungen haben, in Gegenwart einer geeigneten Base, z.B. Kaliumcarbonat, wasserfreiem Natriumhydroxid oder Natriumhydrid, mit einem Alkylierungsmittel der Formel

$$Y_2-L_1-R_9$$
 (IV),

worin R_9 und L_1 die oben angegebenen Bedeutungen haben, und Y_2 eine Abgangsgruppe wie Chlor, Brom, Jod, Mesyloxy oder Tosyloxy ist, umsetzt; oder

d) im Falle, daß X₂ bzw. X₃ Sauerstoff bedeutet, eine Verbindung der Formel

worin A_1 , A_2 , A_3 , R_2 und R_3 die oben angegebenen Bedeutungen haben, in Gegenwart eines Bis-diaza-alkoxycarboxylats der Formel ROC(O)-N=C=N-COOR oder eines Bis-diaza-alkylcarbamoyls der Formel RNHC(O)-N=C=N-C(O)NHR, worin R eine C_1 - C_6 -Alkyl- oder C_5 - C_6 -Cycloalkylgruppe ist, und eines Phosphins wie z.B. Triphenylphosphin oder Tritertiärbutyl-phosphin mit einem Alkohol der Formel

$$HO-R_8$$
 bzw. $HO-L_1-R_9$ (Va),

umsetzt; oder

e) eine Verbindung der Formel

worin A₁, A₂, A₃, R₂ und R₃ die oben angegebenen Bedeutungen haben und K₁ Halogen oder Alkylsulfonyl bedeutet, in Gegenwart einer Base, wie z.B. Kaliumtertiärbutylat, Natriumamylat, Natriumhydrid, trockenem Natrium- oder Kaliumhydroxid, oder einem Amin, z.B. Triethylamin, Hünig's Base, Dimethylaminopyridin, mit einem Alkohol, einem Mercaptan der Formel

$$HX_2-R_8$$
 bzw. $HX_3-L_1-R_9$ (V),

worin L_1 , R_8 und R_9 die oben angegebenen Bedeutungen haben, und X_2 und X_3 Sauerstoff oder Schwefel ist, oder mit einem Amin der Formel

$$HX_3$$
- L_1 - R_9 (V) oder HNR_6R_7 (VI)

worin X_3 für NR_{57} steht, und L_1 , R_6 , R_7 , R_9 und R_{57} die oben angegebenen Bedeutungen haben, entsprechend mit einem Amin der Formel

$$HNR_{57}-L_1-R_9$$
 (VIa),

umsetzt; oder

f) eine Verbindung der Formel

worin A_1 , A_2 , A_3 , R_2 und R_3 die oben angegebenen Bedeutungen haben und K_2 eine Funktionalisierungsgruppe, wie z.B. Hydroxy, Chlor, Brom, Jod, Mesyloxy, Tosyloxy, Formyl oder C_1 - C_4 -Alkylcarbonyl bedeutet, entweder mit einem entsprechenden Alkylierungsmittel der Formel

$$Y_3$$
- R_9 (VII), oder Y_3 - X_{20} - R_{70} (VIIa)

oder einem Ketalisierungsmittel der Formel

$$HX_{20}-R_{70}$$
 (VIII),

oder einem nukleophilen Reagens der Formel VIII oder dessen Salzes

$$M^+ X_{20} - R_{70}$$
 (VIIIa),

worin R_9 , R_{70} und X_{20} die oben angegebenen Bedeutung haben, und Y_3 eine Abgangsgruppe wie Brom, Jod, Mesyloxy, Tosyloxy oder Sulfonyloxy ist, und M^+ für ein Metallkation einer Alkalibase, wie Lithium, Natrium oder Kalium steht, gegebenenfalls in Gegenwart einer zusätzlichen Base, oder im Falle der Ketalisierung in Gegenwart einer zusätzlichen Säure, z.B. p-Toluolsulfonsäure, Trifluoressigsäure oder Schwefelsäure, umsetzt; oder

g) zur Herstellung von Verbindungen der Formel I, worin die Substituentenbedeutungen Sulfinyl- oder Sulfonylgruppen enthalten,

eine Verbindung der Formel I, worin die entsprechenden Substitentenbedeutungen Thiogruppen enthalten, mit einem Oxidationsmittel, wie z.B. Peressigsäure, Trifluorperessigsäure, m-Chlor-perbenzoesäure, Wasserstoffperoxid, Natriumperbromat, Natriumjodat, Natriumhypochlorid, Chlor oder Brom behandelt.

Bei dem Verfahren a) wird durch Umsetzung eines Dions der Formel III mit einer Säure der Formel IIa in Gegenwart eines geeigneten Kopplungsreagens, z.B. Dicyclohexylcarbodiimid, N-Ethyl-N'-(3-dimethylamino-propyl)-carbodiimid (EDC), 2-Chlor-1-methyl-pyridinium-jodid, N,N-Dimethyl-(1-chlor-2-methyl-propen)amin, oder durch Umsetzung eines Dions der Formel III mit einer aktivierten Form der Säure, z.B. einem Säurechlorid der Formel IIb, worin Y₁ Chlor bedeutet, in Gegenwart einer Base, z.B. Triethylamin, Hünig's Base oder Kaliumcarbonat, eine Enolester Verbindung der Formel

$$A_1$$
 A_2
 A_3
 A_3
 A_4
 A_2
 A_3
 A_3
 A_4
 A_4
 A_4
 A_5
 A_4
 A_5
 A_5

$$\begin{array}{c} O \\ A_1 \\ A_2 \cdot A_3 \end{array} \begin{array}{c} O \\ A_3 \end{array} \begin{array}{c} N \\ R_1 \end{array} \begin{array}{c} (Xlb_1) \\ R_2 \end{array}$$

worin A₁, A₂, A₃, R₁ und R₂ die oben angegebenen Bedeutungen haben, erhalten, die dann entweder direkt *in situ* durch Zugabe von katalytischen Mengen Cyanid Ionen, z.B. von 1 bis ca. 15% Acetoncyanhydrin Zugabe, zur Verbindung der Formel I umgelagert werden kann, oder vorher isoliert und gereinigt werden kann, und dann in einem zweiten Schritt in Gegenwart von katalytischen Mengen von durch Zugabe von ca. 0,1% bis zu ca. 5% Kaliumcyanid Ionen oder ca. 0.5% bis ca. 10% Acetoncyanhydrin, und einer frischen Menge Trialkylamin Base, z.B. 0,1 bis ca. 3 Äquivalente, bevorzugt 1 bis ca. 1,4 Äquivalente, zur Verbindung der Formel I umgelagert wird, wie dies oben an den Formelbeispielen XIa₁ und XIb₁ zu Verbindungen der Formel I angezeigt ist. Dieses Verfahren ist allgemein in Schema 1 am Beispiel der Herstellung von Verbindungen der Formel I dargestellt.

Schema 1:

HO R₁ Aktivierungsmittel:
$$R_2$$
 $Z.B. (COCI)_2$ R_3 R_4 R_5 R_5 R_6 R_7 R_8 R_8

Ein bevorzugtes Verfahren Herstellung von Verbindungen der Formel Xa

$$A_{1}$$
 A_{2}
 A_{3}
 A_{3}
 A_{3}
 A_{3}
 A_{4}
 A_{3}
 A_{3}
 A_{4}
 A_{3}
 A_{4}
 A_{3}
 A_{4}
 A_{3}
 A_{4}
 A_{4}
 A_{5}
 A_{5

worin A_1 , A_2 , A_3 , R_2 und R_3 die oben angegebenen Bedeutungen haben, die als Ausgangsmaterialien in den Verfahrensvarianten c) und d) Verwendung finden, ist dadurch gekennzeichnet, daß entweder eine Verbindung der Formel Xc

$$A_2$$
 A_3
 O
 N
 K_3
 O
 R_2
 O

worin A_1 , A_2 , A_3 , R_2 und R_3 die oben angegebenen Bedeutungen haben und K_3 Methoxy bedeutet , in Gegenwart eines Etherspaltungsreagenses, z.B. Bortrichlorid, Bortribromid, Aluminiumchlorid, Natriummethylmercaptid, Natriumethylmercaptid oder Trimethylsilyljodid umgesetzt wird, oder eine Verbindung der Formel Xc, worin K_3 Benzyloxy bedeutet, in Gegenwart von Wasserstoff katalytisch reduziert wird.

Die in der Verfahrensvariante c), d), e) und f) verwendeten Verbindungen der Formel

Q
$$R_0$$
 (X) bzw. A_2 A_3 O R_2 (Ib),

können ebenfalls gemäß der Verfahrensvariante a) oder gemäß der Verfahrensvariante b) aus den entsprechenden Verbindungen der Formel

worin K_2 , L_1 , R_2 , X_3 und Y_4 die oben angegebenen Bedeutungen haben, Y Hydroxy, Chlor, Cyano oder eine aktivierte Form einer Säuregruppe bedeutet, und R_0 für Hydroxy (Formel Xa), oder entsprechend K_1 für Halogen oder Methylsulfonyl (Formel Xb), oder entsprechend K_3 für Methylthio, Benzyloxy oder Methoxy (Formel Xc) steht, hergestellt werden, indem man aa) diese entsprechend mit einem Dion,der Formel

$$A_{1}$$
 A_{2}
 A_{3}
 A_{3}
 O
(IIIa),

umsetzt, oder indem man

bb) eine Hydroxyverbindung der Formel Xa

$$R_3$$
 O N OH (Xa) , A_2 A_3 O R_2

worin A_1 , A_2 , A_3 , R_2 und R_3 die oben angegebenen Bedeutungen haben, gemäß Verfahrensvariante c) mit einem entsprechenden Alkylierungsmittel der Formel

$$Y_2-L_1-K_2$$
 (IVd),

umsetzt oder

cc) gemäß Verfahrensvariante d) mit einem entsprechenden Alkohol der Formel

$$HO-L_1-K_2$$
 (Vd),

umsetzt, oder indem man

dd) gemäß Verfahrensvariante f) eine Verbindung der Formel

worin A₁, A₂, A₃, R₂ und R₃ die oben angegebenen Bedeutungen haben und K₁ Halogen oder Alkylsulfonyl bedeutet, mit einem Alkohol oder Mercaptan der Formel

$$HK_1$$
 (Ve) bzw. $HX_3-L_1-K_2$ (Vf),

worin K_2 , L_1 und Y_2 die oben angegebenen Bedeutungen haben, K_1 Methoxy oder Methylthio und X_3 Sauerstoff oder Schwefel ist, oder mit einem Amin der Formel

$$HNR_6-L_1-K_2$$
 (VId),

behandelt.

Die Ausgangsmaterialien der Formel IIa

HO
$$R_1$$
 (IIa),

und der Formel IIb

$$P_1$$
 P_2
 P_2
 P_2
 P_3
 P_4
 P_4

worin R_1 , R_2 und Y_1 die oben angegebenen Bedeutungen haben, wie auch Verbindungen der Formel IId

$$Y_0$$
 N
 R_1
 R_2
(IId),

worin Y₀ C₁-C₄-Alkoxy oder Benzyloxy bedeutet, die als Ausgangsmaterialien zur Herstellung von Verbindungen der Formel IIa Verwendung finden, können dadurch hergestellt werden, dass man analog bekannter Verfahren, wie z.B. in EP-A-0353187 beschrieben, eine Verbindung der Formel XIII

$$Y_4$$
 N
 R_0
 R_2
(XIII),

worin R₂ die oben angegebene Bedeutung hat, R₀ für Wasserstoff, Methoxy, Methylthio, Methylsulfonyl, Halogen oder eine unter diesem Verfahren stabile Gruppe R₁ steht, und Y₄ Chlor, Brom oder Trifluormethylsulfonyloxy bedeutet, unter Carbonylierungsbedingungen bei leicht erhöhtem Druck und leicht erhöhten Temperaturen in Gegenwart eines Palladium Katalysators mit geeigneten Liganden, z.B. PdCl₂(PPh₃)₂, Pd(PPh₃)₄, Pd(CH₃CN)₂(PPh₃)₂, Pd₂(dba)₃, Pd(OAc)₂, und gegebenenfalls in Gegenwart eines Hilfskatalysators, z.B. Triphenylphosphin, Tri-tertiärbutylphosphin, (Ph₃)₂PCH₂CH₂P(Ph₃)₂, (Ph₃)₂, und in Gegenwart einer Base, z.B. Triethylamin, mit Kohlenmonoxid und einem Alkohol der Formel XIX

 R_0 -OH (XIX)

in eine Verbindung der Formel XIIa

$$P_0$$
 P_0
 P_0
 P_0
 P_0
 P_0
 P_0
 P_0

worin R_0 , R_2 und Y_0 die oben angegebenen Bedeutungen haben, überführt, und diese dann in bekannten Umwandlungsverfahren, z.B. Verseifung und/oder Substitutionsreaktionen und anschließende Hydrolyse, in die Verbindung XII

umwandelt.

Beispielsweise kann man eine Verbindung der Formel XIIIb

worin R_2 und Y_3 die oben angegebenen Bedeutungen haben, durch Carbonylierung oder mittels *Grignard* Reaktion und CO_2 in eine Verbindung der Formel XIIb

worin R₂ und Y₀ die oben angegebenen Bedeutungen haben überführen, die dann in Gegenwart eines Oxidationsmittels, wie Wasserstoffperoxid, oder dem Wasserstoffperoxid-Harnstoffaddukt in Gegenwart von Trifluoressigsäureanhydrid, in eine N-Oxid Verbindung der Formel XV

$$Y_0 = \begin{pmatrix} O & O \\ N & + \\ R_2 \end{pmatrix}$$
 (XV),

worin R_2 , R_3 und Y_0 die oben angegebenen Bedeutungen haben, überführt wird, und dann schließend entweder

a) in Gegenwart von Phosphoroxychlorid oder Trifluoressigsäureanhydrid zu einer Hydroxyverbindung der Formel XIIc

umgesetzt wird, oder

b) im Falle der Verwendung eines geeigneten Nukleophils der Formel Vg

oder beim Einsatz eines Nukleophils der Formel VIb

worin R₁, R₆, R₃₀ die oben angegebenen Bedeutungen haben, in Gegenwart eines Aktivierungsreagenses, z.B. Oxalylchlorid oder Trifluoressigsäureanhydrid, und gegebenenfalls in Gegenwart eines Säure bindenden Mittels, z.B. Triethylamin oder Hünig's Base, direkt in die Verbindungen der Formel IId

$$P_0$$
 P_1 P_2 (IId)

worin R_1 , R_2 und Y_0 die oben angegebenen Bedeutungen haben, oder R_1 insbesondere eine Gruppe $-NR_4C(O)R_{30}$ bedeutet, überführt wird, die dann gemäß a) bei der Isolierung eines Zwischenproduktes der Formel XIIc unter bekannten und allgemeinen Umwandlungsverfahren wie Halogenierung, nukleophile Umsetzungen mit Alkoholen, Mercaptanen oder Aminen der Formeln

$$HX_3-L_1-R_9$$
 (V) bzw. HNR_6R_7 (VI)

worin X₃, L₁, R₆, R₇, R₉ die oben angegebenen Bedeutungen haben, wie oben unter den Verfahrensbedingungen c) bis f) beschrieben zu Verbindungen der Formel II

$$\begin{array}{ccc}
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &$$

umgewandelt werden kann.

Die Ausgangsmaterialien der Formel IId

$$Y_0$$
 N
 R_1
 R_2
(IId)

worin R_1 eine Gruppe - X_3 - L_1 - R_9 ist, X_3 für Sauerstoff steht, und L_1 , R_2 , R_9 , R_9 und Y_0 die oben angegebenen Bedeutungen haben, können auch dadurch hergestellt werden, dass man eine Verbindung der Formel XIIc

worin R_2 und Y_0 die oben angegebenen Bedeutungen haben, entweder gemäß Verfahrensvariante b) in Gegenwart einer geeigneten Base mit einem Alkylierungsmittel der Formel IV

 $Y_2-L_1-R_9$ (IV),

worin L_1 , R_9 und Y_2 die oben angegebenen Bedeutungen haben, behandelt, oder eine Verbindung der Formel XIIc

gemäß Verfahrensvariante c) gleichzeitig in Gegenwart eines Bis-diaza-alkoxycarboxylats der Formel ROC(O)-N=C=N-COOR oder eines Bis-diaza-alkylcarbamoyls der Formel RNHC(O)-N=C=N-C(O)NHR, worin R eine C₁-C₆-Alkyl- oder C₅-C₆-Cycloalkylgruppe ist, und eines Phosphins wie z.B. Triphenylphosphin oder Tri-tertiärbutyl-phosphin mit einem Alkohol der Formel

umsetzt.

Diese gemäß Verfahrensvariante c) dargestellte Reaktion ist allgemein als *Mitsunobu* Reaktion bekannt und eignet sich insbesondere zur Herstellung von denjenigen Verbindungen der Formel I und IId, worin R₁ eine Gruppe -X₃–L₁-R₉ oder -X₁-L₁-X₂₀-R₇₀ bedeutet, und X₃ für Sauerstoff steht, und L₁ eine in *alpha*-Stellung verzweigte oder durch Halogen oder Akoxy substituierte C₁-C₄-Alkylenkette ist.

Diese Verfahrenssequenzen sind in den nachfolgenden Reaktionsschematas 4-7 näher dargestellt.

Reaktionsschema 4:

$$\begin{array}{c} \underbrace{Carbonylierung:}_{CO/R'OH} \\ \\ Z.B. \ PdCl_2(PPh_3)_2 \\ \\ Triphenylphosphin \\ Triethylamin \\ oder \\ (XIII) \ Y_4=Cl \\ \\ \underbrace{Grignard \ Reaktion:}_{1) \ i-PrMgCl} \\ 2) \ CO_2 \\ 3) \ (R'O)_2SO_2 \\ \end{array} \begin{array}{c} \underbrace{Umwandlungs-}{Rekationen:} \\ \\ \hline Z.B. \\ R_0 - R_1 \\ \\ Substitution; \\ \\ Y_0 - Y_1 \\ \\ Verseifung \\ z.B. \ KOH; \\ und \ Chlorierung \\ z.B. \ (COCl)_2 \\ \end{array}$$

Reaktionsschema 5:

Reaktionsschema 6:

Reaktionsschema 7:

Die als Ausgangsmaterialien zur Herstellung von Verbindungen der Formel Ib und Ic verwendeten Verbindungen der Formel IIc

worin K_2 , L_1 , R_2 und X_3 die oben angegebenen Bedeutungen haben, und Y entsprechend für Y_0 , Hydroxy oder Y_1 steht, können ebenfalls gemäß den allgemein bekannten Verfahren oder entsprechend den oben für die Formel I und IIc angegebenen Herstellungsverfahren b) bis f) hergestellt werden.

Die als Ausgangsmaterialien verwendeten Verbindungen der Formel II

$$\begin{array}{ccc}
O & & & \\
& & & \\
& & & \\
& & & \\
R_2 & & \\
\end{array}$$
(II),

worin R_1 , und R_2 die oben angegebenen Bedeutungen haben und Y C_1 - C_4 -Alkoxy, Benzyloxy, Hydroxy, Chlor, oder Cyano steht, sind neu und stellen ebenfalls einen Gegenstand der vorliegenden Erfindung dar. Die als Ausgangsmaterialien verwendeten Verbindungen der Formel III sind allgemein bekannt. Beispielsweise sind Dione der Formel IIIa,

worin A_1 , A_2 und A_3 die oben angegebenen Bedeutungen haben, aus DE-A-3902818, WO 00/39094bekannt, oder sie können gemäß den dort beschriebenen Verfahren hergestellt werden.

Die Ausgangsmaterialen der Formel IIIb, IIId, IV, V, VI, VII, VIII, IX, XIII, XIV, XVI sind ebenfalls allgemein bekannt oder können analog der bekannten Verfahren hergestellt werden.

Alle Umsetzungen gemäß den Herstellungsverfahren a) bis g) zu Verbindungen der Formel I wie auch Zwischenprodukten der Formel II werden vorteilhafterweise in aprotischen und inerten organischen Lösungsmitteln vorgenommen. Solche Lösungsmittel sind Kohlenwasserstoffe wie Benzol, Toluol, Xylol oder Cyclohexan, chlorierte Kohlenwasserstoffe wie Dichlormethan, Chloroform, Tetrachlormethan oder Chlorbenzol, Ether wie Diethylether, Ethylenglykol-dimethylether, Diethylenglykol-dimethylether, Tetrahydrofuran oder Dioxan, Nitrile wie Acetonitril oder Propionitril, Amide wie N,N-Dimethylformamid, Diethylformamid oder N-Methylpyrrolidinon. Die Reaktionstemperaturen liegen dabei vorzugsweise zwischen -20°C und +120°C. Verlaufen die Umsetzungen leicht exotherm, können diese in der Regel bei Raumtemperatur durchgeführt werden. Zum Abkürzen der Reaktionszeit oder auch zum Einleiten der Umsetzung kann gegebenenfalls für kurze Zeit bis zum Siedepunkt des Reaktionsgemisches aufgewärmt werden. Die Reaktionszeiten können ebenfalls durch Zugabe von geeigneten Base als Reaktionskatalysatoren verkürzt werden. Als Basen sind insbesondere die tertiären Amine wie Trimethylamin, Triethylamin, Chinuclidin, 1,4-Diazabicyclo-[2.2.2]-octan, 1,5-Diazabicyclo-[4.3.0]-non-5-en oder 1,5-Diazabicyclo-[5.4.0]-undec-7-en geeignet. Als Basen können aber auch anorganische Basen wie Hydride, z.B. Natrium- oder Calciumhydrid, Hydroxide, z.B. trockenes Natrium- oder Kaliumhydroxid, Carbonate, z.B. Natrium- und Kaliumcarbonat oder Hydrogencarbonate, z.B. und Natrium- und Kaliumhydrogencarbonat verwendet werden.

Gemäß Verfahren a) erfolgt die Herstellung der Verbindungen der Formel I bzw. II unter Einsatz eines Chlorierungsmittels, wie z.B. Oxalylchlorid, Thionylchlorid, Phosgen, (1-Chloro-2-methyl-propenyl)-dimethyl-amin, Phosphorpentachlorid oder Phosphoroxychlorid oder vorzugsweise Oxalylchlorid. Die Reaktion wird vorzugsweise in einem inerten, organischen Lösungsmittel wie z.B. in aliphatischen, halogenierten aliphatischen, aromatischen oder halogenierten aromatischen Kohlenwasserstoffen, beispielsweise n-Hexan, Benzol, Toluol, Xylole, Dichlormethan, 1,2-Dichlorethan oder Chlorbenzol bei Reaktionstemperaturen im Bereich von -20°C bis zur Rückflußtemperatur des Reaktionsgemisches, vorzugsweise bei

ca. 40-100°C, und in Gegenwart einer katalytischen Menge N,N-Dimethylformamid durchgeführt.

Die Endprodukte der Formel I können auf übliche Weise durch Einengen oder Verdampfen des Lösungsmittels isoliert und durch Umkristallisieren oder Zerreiben des festen Rückstandes in Lösungsmitteln, in denen sie sich nicht gut lösen, wie Ether, aromatischen Kohlenwasserstoffe oder chlorierten Kohlenwasserstoffe, durch Destillation oder mittels Säulenchromatographie oder mittels HPLC-Technik mit einem geeigneten Eluationsmittel gereinigt werden.

Ferner ist dem Fachmann geläufig, in welcher Reihenfolge die Umsetzungen durchzuführen sind, um möglichst Nebenreaktionen zu vermeiden. Sofern keine gezielte Synthese zur Isolierung reiner Isomeren durchgeführt wird, kann das Produkt als Gemisch zweier oder mehreren Isomeren, z.B. chirale Zentren bei Alkylgruppen oder cis/trans Isomerie bei Alkenylgruppen oder <E>-oder <Z>-Formen anfallen. Alle diese Isomere können nach an sich bekannten Methoden, z.B. Chromatographie, Kristallisation, aufgetrennt werden, oder durch gezielte Reaktionsführung in gewünschter Form produziert werden.

Die erfindungsgemäßen Verbindungen der Formel I können in unveränderter Form wie sie in der Synthese anfallen, als Herbizid eingesetzt werden. In der Regel werden sie aber auf verschiedene Weise unter Verwendung von Formulierungshilfsmitteln wie Trägerstoffen, Lösungsmitteln und oberflächenaktiven Stoffen zu herbiziden Mitteln formuliert. Die Formulierungen können in verschiedenen physikalischen Formen vorliegen, z.B. als Stäubepulver, Gele, benetzbare Pulver, wasserdispergierbare Granulate, wasserdispergierbare Tabletten, Brausetabletten-Preßlinge, emulgierbare Konzentrate, mikroemulgierbare Konzentrate, Öl-in-Wasser Emulsion, wäßrige Dispersionen, ölige Dispersionen, Suspoemulsionen, wasserlösliche Konzentrate (mit Wasser oder einem mit Wasser mischbaren, organischen Lösungsmittel als Träger), imprägnierte Polymerfilme oder in anderen, z.B. aus dem Manual on Development and Use of FAO Specifications for Plant Protection Products, 5th Edition, 1999, bekannten Formen. Diese Formulierungen können entweder direkt angewendet werden, oder man verdünnt sie vor der Anwendung. Die Verdünnungen können beispielsweise mit Wasser, flüssigen Düngern, Mikronährstoffen, biologischen Organismen, Öl oder Lösungsmitteln hergestellt werden.

Die Formulierungen können z.B. hergestellt werden, indem man den Wirkstoff mit Formulierungshilfsmitteln vermischt, um Mittel in Form von fein verteilten Feststoffen, Granulaten, Kügelchen, Lösungen, Dispersionen oder Emulsionen zu erhalten. Die Wirkstoffe können auch mit anderen Hilfsstoffen wie etwa fein verteilten Feststoffen, Mineralölen, organischen Lösungsmitteln, Wasser, oberflächenaktiven Substanzen oder Kombinationen davon formuliert werden. Die Wirkstoffe können auch in sehr feinen Mikrokapseln bestehend aus einem Polymer enthalten sein. Mikrokapseln enthalten die Wirkstoffe in einem porösen Träger. Dies erlaubt die Freisetzung der Wirkstoffe in die Umgebung in kontrollierten Mengen. Mikrokapseln haben üblicherweise einen Durchmesser von 0,1 bis 500 Mikron. Sie enthalten Wirkstoffe in einer Menge von ca. 25 bis 95 Gew.% des Kapselgewichts. Die Wirkstoffe können als monolithischer Feststoff vorliegen, als feine Partikeln fest oder flüssig verteilt oder auch als geeignete Lösung. Die umhüllenden Membranen enthalten zum Beispiel Natur- und Kunstgummis, Cellulose, Styren-Butadien Copolymere, Polyacrylonitril, Polyacrylat, Polyester, Polyamide, Polyharnstoffe, Polyurethan oder chemisch modifizierte Polymere und Stärkexanthate oder andere Polymere, welche dem Fachmann in diesem Zusammenhang bekannt sind. Alternativ können sehr feine Mikrokapseln gebildet werden, worin der Wirkstoff in Form von fein verteilten Partikeln in einer Feststoffmatrix aus Grundsubstanz enthalten ist, wobei die Mikrokapsel aber von keiner Hülle umschlossen ist.

Die Formulierungshilfsmittel, die für die Herstellung der erfindungsgemäßen Mittel geeignet sind, sind an sich bekannt. Als flüssige Träger können benutzt werden: Wasser, Toluol, Xylol, Petrolether, pflanzliche Öle, Aceton, Methyl Ethyl Keton, Cyclohexanon, Säureanhydride, Acetonitril, Acetophenon, Amylacetat, 2-Butanon, Chlorbenzol, Cyclohexan, Cyclohexanol, Alkylester von Essigsäure, Diacetonalkohol, 1,2-Dichlorpropan, Diethanolamin, p-Diethylbenzol, Diethylenglykol, Diethylenglykol Abietat, Diethylenglykol Butylether, Diethylenglykol Methylether, N,N-Dimethylformamid, Dimethylsulfoxid, 1,4-Dioxan, Dipropylenglykol, Dipropyleneglykol Methylether, Dipropylenglykol Dibenzoate, Diproxitol, Alkyl Pyrrolidinon, Ethylacetat, 2-Ethyl Hexanol, Ethylencarbonat, 1,1,1-Trichlorethan, 2-Heptanon, Alpha Pinen, d-Limonen, Ethylenglykol, Ethylenglykol Butylether, Ethylenglykol Methylether, Gamma-Butyrolactone, Glycerol, Glycerolacetat, Glycerol Diacetat, Glycerol Triacetate, Hexadecan, Hexylenglykol, Isoamylacetat, Isobornylacetate, Isooctan, Isophoron, Isopropylbenzol, Isopropyl Myristat, Milchsäure, Laurylamin, Mesityloxid, Methoxy-Propanol, Methyl Isoamylketon, Methyl

Isobutylketon, Methyl Laurat, Methyl Octanoat, Methyl Oleat, Methylen Chloride, m-Xylol, n-Hexan, n-Octylamin, Octadecanoic Säure, Octylamin Acetat, Ölsäure, Oleylamin, o-Xylol, Phenol, Polyethylenglykol (PEG400), Propionsaüre, Propylenglykol, Propylenglykol Methylether, p-Xylol, Toluol, Triethylphosphat, Triethylenglykol, Xylolsulfonsäure, Paraffin, Mineralöl, Trichlorethylen, Perchlorethylen, Ethylacetat, Amylacetat, Butylacetat, Propylenglykol Methylether, Diethylenglykol Methylether, Methanol, Ethanol, Isopropanol, und Alkohole höheren Molekulargewichts wie Amylalkohol, Tetrahydrofurfurylalkohol, Hexanol, Octanol, usw., Ethylenglykol, Propylenglykol, Glycerol, N-Methyl-2-Pyrrolidinon, und ähnliche. Wasser ist im allgemeinen der Träger der Wahl für die Verdünnung der Konzentrate. Geeignete feste Träger sind z.B. Talk, Titandioxid, Pyrophyllit Tonerde, Silica, Attapulgit Tonerde, Kieselgur, Kalkstein, Calciumcarbonat, Bentonit, Ca-Montmorillonite, Baumwollsamenhülsen, Weizenmehl, Sojamehl, Bimsstein, Holzmehl, gemahlene Walnussschalen, Lignin und ähnliche Stoffe wie sie zum Beispiel in CFR 180.1001. (c) & (d) beschrieben sind.

Eine Vielzahl von oberflächenaktiven Stoffen kann vorteilhaft sowohl in festen als auch in flüssigen Formulierungen benutzt werden, insbesondere in jenen, welche vor der Anwendung mit einem Träger verdünnt werden können. Oberflächenaktive Substanzen können anionisch, kationisch, nichtionisch oder polymer sein, und sie können als Emulgier-, Benetzungs- oder Suspensionsmittel oder für andere Zwecke eingesetzt werden. Typische oberflächenaktive Stoffe umfassen etwa Salze von Alkylsulfaten, wie Diethanolammonium Laurylsulfat; Salze von Alkylarylsulfonaten wie Calcium- Dodecylbenzolsulfonat; Alkylphenolalkylenoxid-Additionsprodukte wie Nonylphenolethoxylate; Alkohol-Alkylenoxid-Additionsprodukte wie Tridecylalkoholethoxylate; Seifen, wie Natrium-Stearat; Salze von Alkylnaphthalensulfonaten wie Natrium-Dibutylnaphthalensulfonat; Dialkylester von Sulfosuccinat-Salzen, wie Natrium-di(2-ethylhexyl)-sulfosuccinat; Sorbitolester wie Sorbitol-Oleat; quaternäre Amine wie Lauryl-trimethylammoniumchlorid, Polyethylenglykolester von Fettsäuren wie Polyethylenglykolstearat; Block-Copolymere von Ethylenoxid und Propylenoxid; und Salze aus Mono- und Dialkylphosphatester; sowie weitere z.B. in "McCutcheon's Detergents und Emulsifiers Annual" MC Publishing Corp., Ridgewood New Jersey, 1981 beschriebene Substanzen.

Weitere Hilfsmittel, die üblicherweise in pestiziden Formulierungen benutzt werden können, umfassen Kristallisierungshemmer, viskositätsverändernde Substanzen, Suspensionsmittel,

Farbstoffe, Antioxidationsmittel, Schäumstoffe, Lichtabsorptionsmittel, Durchmischungshilfsmittel, Entschäumer, Komplexbildner, neutralisierende respektive pH-Wert modifizierende Stoffe und Puffer, Korrosionshemmstoffe, Duftstoffe, Netzmittel, Aufnahmeverstärker, Mikronährstoffe, Weichmacher, Gleitmittel, Schmiermittel, Dispergiermittel, Verdickungsmittel, Antifrostmittel, microbiozide Mittel, und ferner flüssige und feste Dünger.

Die Formulierungen können auch zusätzliche Aktivsubstanzen enthalten, z.B. weitere Herbizide, Herbizidsafener, Pflanzenwuchsregulatoren, Fungizide oder Insektizide.

Die erfindungsgemäßen Mittel können ferner ein Additiv enthaltend ein Öl pflanzlichen oder tierischen Ursprungs, ein Mineralöl, Alkylester dieser Öle oder Mischungen dieser Öle und Ölderivate enthalten. In dem erfindungsgemäßen Mittel betragen die Aufwandmengen an Öladditiv in der Regel zwischen 0,01% - 10% in Bezug auf die Spritzbrühe. Beispielsweise kann das Öladditv nach Herstellung der Spritzbrühe in der gewünschten Konzentration in den Sprühtank gegeben werden. Bevorzugte Öladditive enthalten Mineralöle oder ein Öl pflanzlichen Ursprungs wie beispielsweise Rapsöl, Olivenöl oder Sonnenblumenöl, emulgiertes Pflanzenöl wie AMIGO® (Rhône-Poulenc Canada Inc.), Alkylester von Ölen pflanzlichen Ursprungs wie beispielsweise die Methylderivate, oder ein Öl tierischen Ursprungs wie Fischöl oder Rindertalg. Ein bevorzugtes Additiv enthält z.B. als aktive Komponenten im wesentlichen 80 Gew.% Alkylester von Fischölen und 15 Gew.% methyliertes Rapsöl, sowie 5 Gew.% an üblichen Emulgatoren und pH-Modifikatoren.

Besonders bevorzugte Öladditive enthalten Alkylester von C₈-C₂₂Fettsäuren, wobei insbesondere die Methylderivate von C₁₂-C₁₈Fettsäuren, beispielsweise die Methylester der Laurinsäure, Palmitinsäure und Ölsäure von Bedeutung sind. Diese Ester sind bekannt als Methyllaurat (CAS-111-82-0), Methylpalmitat (CAS-112-39-0) und Methyloleat (CAS-112-62-9). Ein bevorzugtes Fettsäuremethylesterderivat ist Emery® 2230 und 2231 (Cognis GmbH). Diese und andere Ölderivate sind auch aus dem Compendium of Herbicide Adjuvants, 5th Edition, Southern Illinois University, 2000, bekannt.

Das Ausbringen und die Wirkung der Öladditive kann durch Kombination mit oberflächenaktiven Substanzen wie nichtionische, anionische oder kationische Tenside noch weiter verbessert werden. Beispiele für geeignete anionische, nichtionische und kationische

Tenside sind in der WO 97/34485 auf den Seiten 7 und 8 aufgezählt. Bevorzugte oberflächenaktive Substanzen sind anionische Tenside vom Typ der Dodecylbenzylsulfonate, insbesondere die Calciumsalze davon, sowie nichtionische Tenside vom Typ der Fettalkoholethoxylate. Insbesondere bevorzugt sind ethoxylierte C₁₂-C₂₂Fettalkohole mit einem Ethoxylierungsgrad zwischen 5 und 40. Beispiele für kommerziell erhältliche Tenside sind die Genapol-Typen (Clariant AG). Ebenso bevorzugt sind Silikontenside, insbesondere Polyalkyloxid modifizierte Heptamethyltrisiloxane, die kommerziell z.B. als Silwet L-77® erhältlich sind, sowie perfluorierte Tenside. Die Konzentration der oberflächenaktiven Substanzen in Bezug auf das gesamte Additiv beträgt im allgemeinen zwischen 1 und 30 Gew.%. Beispiele für Öladditive, die aus Mischungen von Ölen bzw. Mineralölen oder deren Derivaten mit Tensiden bestehen, sind Edenor ME SU®, Turbocharge® (Zeneca Agro, CA) oder Actipron® (BP Oil UK Limited, GB).

Gegebenenfalls können die genannten oberflächenaktiven Substanzen auch allein, d.h. ohne Öladditive, in den Formulierungen verwendet werden.

Ferner kann die Zugabe eines organischen Lösungsmittels zu dem Öladditiv/Tensidgemisch zu einer zusätzlichen Steigerung der Wirkung beitragen. Geeignete Lösungsmittel sind beispielsweise Solvesso® (ESSO) oder Aromatic Solvent® (Exxon Corporation). Die Konzentration derartiger Lösungsmittel kann von 10 bis 80 Gew.% des Gesamtgewichtes betragen. Solche Öladditive, die in Mischung mit Lösungsmitteln vorliegen, sind beispielsweise in US-A-4,834,908 beschrieben. Ein daraus bekanntes kommerziell erhältliches Öladditiv ist unter dem Namen MERGE® (BASF Corporation) bekannt. Ein weiteres erfindungsgemäß bevorzugtes Öladditiv ist SCORE® (Syngenta Crop Protection Canada).

Neben den oben angeführten Öladditiven können zur Steigerung der Wirkung der erfindungsgemäßen Mittel auch noch Formulierungen von Alkylpyrrolidonen (z.B. Agrimax®) zur Spritzbrühe gegeben werden. Es lassen sich dazu auch Formulierungen von synthetischen Latices wie z.B. Polyacrylamid, Polyvinylverbindungen oder Poly-1-p-menthen (z.B. Bond®, Courier® oder Emerald®) verwenden. Ferner können auch Propionsäure enthaltende Lösungen wie z.B. Eurogkem Pen-e-trate® als wirkungssteigernde Mittel der Spritzbrühe zugemischt werden.

Die herbiziden Mittel enthalten in der Regel 0,1 bis 99 Gew%, insbesondere 0,1 bis 95 Gew.-% Verbindungen der Formel I und 1 bis 99,9 Gew.% eines Formulierungshilfsmittels, das vorzugsweise 0 bis 25 Gew.% eines oberflächenaktiven Stoffes aufweist. Während als Handelsware üblicherweise konzentrierte Mittel bevorzugt werden, verwendet der Endverbraucher in der Regel verdünnte Mittel.

Die Aufwandmengen an Verbindungen der Formel I können innerhalb weiter Bereiche variieren und hängen von der Beschaffenheit des Bodens, der Art der Anwendung (pre- oder postemergent; Saatbeizung; Anwendung in der Saatfurche; no tillage Anwendung etc.), der Kulturpflanze, dem zu bekämpfenden Unkraut oder Ungras, den jeweils vorherrschenden klimatischen Verhältnissen und anderen durch Anwendungsart, Anwendungszeitpunkt und Zielkultur bestimmten Faktoren ab. Im allgemeinen werden die erfindungsgemäßen Verbindungen der Formel I in einer Aufwandmenge von 1 bis 2000g/ha angewendet.

Die Erfindung betrifft auch ein Verfahren zum selektiven Bekämpfen von Ungräsern und Unkräutern in Nutzpflanzenkulturen, welches darin besteht, dass man die Nutzpflanzen oder deren Anbaufläche bzw. Lebensraum mit den Verbindungen der Formel I behandelt.

Als Nutzpflanzenkulturen, in welchen das erfindungsgemäße Mittel angewendet werden kann, kommen insbesondere Getreide, Baumwolle, Soja, Zuckerrüben, Zuckerrohr, Plantagen, Raps, Mais und Reis in Betracht. Unter Kulturen sind auch solche zu verstehen, die durch konventionelle züchterische oder gentechnologische Methoden gegen Herbizide bzw. Herbizidklassen (z.B. ALS-, GS-, EPSPS- und HPPD-Hemmer) tolerant gemacht wurden. Ein Beispiel für Kulturen, die durch konventionelle züchterische Methoden z.B. gegen Imidazolinone wie Imazamox tolerant gemacht wurden, ist Clearfield® Sommerraps (Canola). Beispiele für Kulturen, die durch gentechnologische Methoden gegen Herbizide tolerant gemacht wurden, sind z.B. gegen Glyphosate bzw. Glufosinate resistente Maissorten, die unter der Handelsbezeichnung RoundupReady® bzw.LibertyLink® kommerziell erhältlich sind. Bei den zu bekämpfenden Unkräutern kann es sich sowohl um monokotyle wie um dikotyle Unkräuter handeln, wie zum Beispiel Stellaria, Nasturtium, Agrostis, Digitaria, Avena, Setaria, Sinapis, Lolium, Solanum, Echinochloa, Scirpus, Monochoria, Sagittaria, Bromus, Alopecurus, Sorghum, Rottboellia, Cyperus, Abutilon, Sida, Xanthium, Amaranthus, Chenopodium, Ipomoea, Chrysanthemum, Galium, Viola und Veronica.

Unter Kulturen sind ferner solche zu verstehen, die mit gentechnologischen Methoden gegen Schadinsekten resistent gemacht worden sind, wie beispielsweise Bt-Mais (gegen den Maiszünsler), Bt-Baumwolle (gegen den Baumwollkapselkäfer) und auch Bt-Kartoffeln (gegen den Kartoffelkäfer). Beispiele für Bt-Mais sind die Bt-176 Maishybriden von NK® (Syngenta Seeds). Das Bt-Toxin ist ein Protein, das natürlicherweise von *Bacillus thuringiensis*-Bodenbakterien gebildet wird. Beispiele für Toxine, oder transgene Pflanzen, die derartige Toxine synthetisieren können, sind in der EP-A-0 451 878, EP-A-0 374 753, WO 93/07278, WO 95/34656, WO 03/052073 und der EP-A-0 427 529 beschrieben.

Beispiele für transgene Pflanzen, welche ein oder mehrere Gene enthalten, die für eine insektizide Resistenz codieren und ein oder mehrere Toxine exprimieren, sind KnockOut® (Mais), YieldGard® (Mais); NuCOTN 33B® (Baumwolle), Bollgard® (Baumwolle), NewLeaf® (Kartoffeln), NatureGard® und Protecta®.

Pflanzenkulturen oder deren Saatgut können sowohl gegen Herbizide tolerant als gleichzeitig auch gegen Insektenfraß resistent sein ("stacked" transgene Ereignisse). Saat kann beispielsweise die Fähigkeit haben, ein Cry3 Protein zu exprimieren und gleichzeitig gegen Glyphosate tolerant sein.

Als Anbauflächen gelten die bereits mit den Kulturpflanzen bewachsenen und die zur Bebauung mit diesen Kulturpflanzen bestimmten Böden.

Die folgenden Beispiele erläutern die Erfindung weiter, ohne sie zu beschränken.

Herstellungsbeispiele:

Beispiel H1: Herstellung von 1-Oxy-5-trifluormethyl-pyridin-2-carbonsäure-ethylester
Zu einer Lösung aus 132 g (0,6 Mol) 5-Trifluormethyl-pyridin-2-carbonsäure-ethylester in
1000 1,2-Dichlorethan rührt man 197 g (2,1 Mol) Wasserstoffperoxid als Harnstoffaddukt
ein. Nun gibt man innerhalb von 2,5 Stunden bei einer Temperatur von –10°C unter Kühlung
(CO₂/Aceton Bad) 346 g (1,65 Mol) Trifluoressigsäureanhydrid zu. Die Reaktionsmischung
wird anschließend für weitere 2 Stunden bei einer Temperatur von 0 °C und dann bei
Umgebungstemperatur für 12 Stunden gerührt. Das Reaktionsgemisch wird anschließend in

Eiswasser gegeben und mit 30%iger Natronlauge auf pH 6-7 eingestellt. Man extrahiert mehrmals mit 1,2-Dichloethan, trocknet über Natriumsulfat und dampft ein. Zur Abtrennung von Nebenprodukten wird über eine kurze Kieselgelsäule filtriert (Laufmittel: Essigsäureethylester / Hexan 1:4), wobei nach Entfernen der Eluierungsmittel insgesamt 98,4 g 1-Oxy-5-trifluoromethyl-pyridine-2-carbonsäure-ethylester mit einem Schmelzpunkt von 64,5 bis 65 °C erhalten werden.

Beispiel H2: Herstellung von 6-Hydroxy-5-trifluormethyl-pyridin-2-carbonsäure-ethylester: Zu einer Mischung aus 77,6 g (0,33 Mol) 1-Oxy-5-trifluormethyl-pyridin-2-carbonsäure-ethylester in 900 ml Dimethylformamid gibt man bei einer Temperatur von 0°C innerhalb von 3,5 Stunden 450 ml Trifluoressigsäureanhydrid tropfenweise hinzu. Anschließend erwärmt man auf eine Temperatur von 45 bis 50 °C und rührt für weitere 2,5 Stunden. Dann wird die Reaktionsmischung unter reduziertem Druck (2,5 kPa) eingeengt. Der noch ölige Rückstand wird auf Eiswasser gegeben und mit 30%iger Natronlauge auf pH 5,5 eingestellt. Das ausgefallene Kristallisat wird abfiltriert, mit Wasser neutral gewaschen und bei einer Temperatur von 80 °C im Vakuumschrank getrocknet. Man erhält 61,6 g (79.4%) 6-Hydroxy-5-trifluormethyl-pyridin-2-carbonsäure-ethylester mit einem Schmelzpunkt von Smp. 141-141,5 °C.

Beispiel H3: Herstellung von 6-Chlor-5-trifluormethyl-pyridin-2-carbonsäure-ethylester: In einem kleinen Druckreaktor erhitzt man 16,5 g (70 mMol) 6-Hydroxy-5-trifluormethyl-pyridin-2-carbonsäure-ethylester in 20 ml Phenyldichlorphosphat 30 Minuten lang auf eine Temperatur von 170 °C. Das erkaltete Reaktionsgemisch nimmt man mit Essigsäureethylester auf, wäscht einmal mit kalter Natriumchlorid- Lösung, trocknet über Natriumsulfat und engt anschließend ein. Zur Entfernung von phosphathaltigen Anteilen wird der zurückbleibende Rückstand mittels einer Mischung von Essigsäureethylester / Hexan 1:4 über eine kurze Kieselgelsäule filtriert und zur dann Trockene eingedampft. Man erhält 16,2 g (91,3%) 6-Chlor-5-trifluormethyl-pyridin-2-carbonsäure-ethylester in Form eines Öls; ¹H-NMR (CDCl₃): 8.17, m, 2H; 4.52, q, 2H; 1.44, t, 3H.

Beispiel H4: Herstellung von 6-(Morpholin-4-yl)-5-trifluormethyl-pyridin-2-carbonsäure ethylester:

6,45 g (25 mMol) 6-Chlor-5-trifluormethyl-pyridin-2-carbonsäure-ethylester erhitzt man in Gegenwart von 5,5 g (63 mMol) Morpholin und einer katalytischen Menge 4-N,N-

Dimethylaminopyridin in 50 ml N-Methylpyrrolidon für 1 Stunde auf eine Temperatur von 110 °C. Das Reaktionsgemisch wird dann mit verdünnter Salzsäure auf pH 4 eingestellt, mit Essigsäureethylester extrahiert, über Magnesiumsulfat getrocknet und anschließend eingeengt. Zur Entfernung von polaren Nebenprodukten wird der Rückstand durch wenig Kieselgel filtriert und dann zur Trockne eingedampft, wobei man 7,08 g 6-(Morpholin-4-yl)-5-trifluormethyl-pyridin-2-carbonsäure-ethylester in Form eines Öls erhält; ¹H-NMR (CDCl₃): 7.97, d, 1H; 7.68, d, 1H; 4.42, q, 2H; 3.83, m, 4H; 3.40, m, 4H; 1.42, t, 3H.

Beispiel H5: Herstellung von 6-(Morpholin-4-yl)-5-trifluormethyl-pyridin-2-carbonsäure:

Zu einer Mischung von 30 ml Dioxan und 25 ml Wasser gibt man Gegenwart von 1,55 g

Kaliumhydroxid 7 g (23 mMol) 6-(Morpholin-4-yl)-5-trifluormethyl-pyridin-2-carbonsäureethylester hinzu und rührt die Reaktionsmischung bei Umgebungstemperatur für 30 Minuten.

Anschließend säuert man auf pH 3 an und extrahiert mit Essigsäureethylester, trocknet über

Natriumsulfat und engt geringfügig ein. Durch Zugabe von Hexan läßt sich die 6-(Morpholin-4-yl)-5-trifluormethyl-pyridin-2-carbonsäure ausfällen: Smp. 116-117 °C; Ausbeute 93.2%).

Beispiel H6: Herstellung von 6-(Morpholin-4-yl)-5-trifluormethyl-pyridin-2-carbonsäure-chlorid:

0,83 g (3 mMol) 6-(Morpholin-4-yl)-5-trifluormethyl-pyridin-2-carbonsäure und 0,46 (3,6 mMol) Oxalylchlorid werden in 10 ml Dichlormethan in Gegenwart von einem Tropfen Dimethylformamid für 15 Minuten auf Siedetemperatur erhitzt. Dann wird die klare, gelbliche Lösung eingedampft, wobei das 6-(Morpholin-4-yl)-5-trifluormethyl-pyridin-2-carbonsäure-chlorid als kristallines Produkt erhalten wird; Smp. 72-73 °C.

Beispiel H7: Herstellung von 6-(Acetyl-methyl-amino)-5-trifluormethyl-pyridin-2-carbonsäureethylester:

Zu einer Lösung von 0,841 g (11,5 mMol) N-Methylacetamid und 2,45 g (22,9 mMol) Lutidin in 40 ml Dichlormethan gibt man bei einer Temperatur von 0 °C unter Kühlung eine Lösung von 1,46 g (11,5 mMol) Oxalylchlorid in 5 ml Dichlormethan tropfenweise hinzu. Nach 20 Minuten Rühren trägt man 2,45 g (10,4 mMol) 1-Oxy-5-trifluormethyl-pyridin-2-carbonsäure-ethylester gelöst in 5 ml Dichlormethan ein. Man läßt die Reaktionsmischung auf Umgebungstemperatur erwärmen und erwärmt anschließend für eine Stunde auf Siedetemperatur. Anschließend extrahiert man mit Wasser gegen Dichlormethan, trocknet und dampft dann ein. Mittels Säulenchromatographie (Laufmittel: Essigsäureethylester /

Hexan 3:7) wird der erhaltene Rückstand gereinigt, wobei man als Hauptkomponente 6-(Acetyl-methyl-amino)-5-trifluormethyl-pyridin-2-carbonsäure-ethylester isoliert; Smp. 145-145,5 °C.

Beispiel H8: Herstellung von 6-([1,3]Dioxolan-2-ylmethoxy)-5-trifluormethyl-pyridin-2-carbonsäure-ethylester:

1,88 g (8 mMol) 6-Hydroxy-5-trifluormethyl-pyridin-2-carbonsäure-ethylester und 1,47 g (8 mMol) 2-Brommethyl-1,3-dioxolan in 30 ml Acetonitril werden in Gegenwart von 1,22 g (8,8 mMol) Kaliumcarbonat und katalytischen Mengen von Kaliumjodid und 18-Crown-6 für 6 Stunden auf Rückflußtemperatur erhitzt. Das Reaktionsgemisch wird anschließend mit Essigsäureethylester gegen Wasser und verdünnter Säure bei pH 3 extrahiert, über Natriumsulfat getrocknet und eingedampft. Nach chromatographische Auftrennung des Rückstandes (Laufmittel: Essigsäureethylester / Hexan 15:85) erhält man 0,755 g 6-([1,3]Dioxolan-2-ylmethoxy)-5-trifluormethyl-pyridin-2-carbonsäure-ethylesters; ¹H-NMR (CDCl₃): 8.00, d, 1H; 7.76, d, 1H; 5.40, t, 1H; 4.61, d, 2H; 4.42, q, 2H; 4.09, m, 2H; 3.93, m, 2H; 1.42, t, 3H.

Beispiel H9: Herstellung von 6-(Tetrahydro-furan-3-yloxy)-5-trifluormethyl-pyridin-2-carbonsäure-ethylester:

2,35 g (10 mMol) 6-Hydroxy-5-trifluormethyl-pyridin-2-carbonsäure-ethylester gelöst in 30 ml Dimethoxyethan werden in Gegenwart von 3,93 g (15 mMol) Triphenylphosphin tropfenweise mit einer Lösung von 2,53 g (14,5 mMol) Azodicarbonsäure-diethylester (DEAD) behandelt, wobei die Temperatur mittels eines Eisbades bei maximal 35°C gehalten wird. Nach einer Stunde Rühren bei Umgebungstemperatur wird eingedampft und das zurückbleibende Reaktionsgut mittels einer kurzen Kieselgelsäule (Laufmittel: Essigsäureethylester / Hexan 1:4) gereinigt. Man erhält 2,85 g (93,4%) 6-(Tetrahydro-furan-3-yloxy)-5-trifluoromethyl-pyridine-2-carbonsäure-ethylester mit einem Schmelzpunkt von 45-45,5°C.

Beispiel H10: Herstellung von 6-Methyl-5-trifluormethyl-pyridincarbonsäure ethylester:

Zu einer Mischung aus 15,2 g (60 mMol) 6-Chlor-5-trifluormethyl-pyridincarbonsäureethylester und 33,1 g (0.24 Mol) Kaliumcarbonat in 150 ml Dioxan gibt man 6,9 g (6 mMol) Tetrakis-triphenylphosphin-palladium und 8,3 g (66 mMol) 2,4,6-Trimethyl-cyclotriboroxan und erhitzt für 2,5 Stunden auf Rückflußtemperatur. Nach dem Ende der Reaktion

(Detektion mittels Dünnschichtchromatographie) kühlt man ab, gibt dann die Reaktionsmischung auf Eiswasser und säuert mit konzentrierter Salzsäure auf pH 5 an. Zur Abtrennung von festen Anteilen rührt man Hyflo® (Filterhilfsmittel) ein, saugt ab und extrahiert dann das Produkt mit Essigsäureethylester. Dann wird das über Natriumsulfat getrocknete organische Filtrat eingedampft und mittels Chromatographie an Kieselgel (Laufmittel: Essigsäureethylester/Hexan 7.5:92.5) gereinigt. Man erhält 11,28 gr (87.8%) 6-Methyl-5-trifluoromethyl-pyridinecarbonsäure ethylester in Form eines Öls; ¹H-NMR (CDCl₃): 8.05, "s", 2H; 4.48, q, 2H; 2.31, 2, 3H; 1.42, t, 3H.

Beispiel H11: Herstellung von 6-Brommethyl-5-trifluormethyl-pyridin-2-carbonsäureethylester:

1 g (4,3 mMol) 6-Methyl-5-trifluormethyl-pyridin-2-carbonsäure-ethylester werden zusammen mit 0,92 g N-Brom-succinimid und 20 ml Tetrachlorkohlenstoff vorgelegt und dann in Gegenwart einer katalytischen Menge Aza,aza-diisobutyronitril durch Erwärmen mit einer Lichtquelle (200 Watt Lampe) auf Rückflußtemperatur erhitzt. Danach wird das erkaltete Reaktionsgut über einen Kieselgelsaugfilter abfiltriert und mittels HPLC-Technik (Laufmittel: Essigsäureethylester/Hexan 1:4) aufgetrennt. Man isoliert als Hauptkomponente 6-Brommethyl-5-trifluormethyl-pyridin-2-carbonsäure ethylester; ¹H-NMR (CDCl₃): 6.14, "s", 2H; 4.78, s, 2H; 4.49, q, 2H; 1.45, t, 3H.

Beispiel H12: Herstellung von 6-(2-Methoxy-ethoxymethyl)-5-trifluormethyl-pyridin-2-carbonsäure:

Zu einer Mischung aus 0,25 g (5,8 mMol) Natriumhydrid als 55%-ige Dispersion in Öl in 10 ml wasserfreiem Tetrahydrofuran trägt man 0,6 g (2 mMol) 6-Brommethyl-5-trifluormethyl-pyridin-2-carbonsäure-ethylester gelöst in 3 ml Tetrahydrofuran ein und rührt für 2 Stunden bei Umgebungstemperatur. Man verfolgt die Reaktion mittels TLC und fügte dann nach vollständigem Umsatz Wasser zu. Nach vollständiger Hydrolyse der Estergruppe (Nachweis mittels TLC) extrahiert man mit Diethylether die organische Anteile (Lösungsmittel, Neutralteile) und verwirft diese. Die die Säure enthaltende wäßrige Phase wird nun mit Salzsäure auf pH 2 angesäuert und danach mit Essigsäureethylester extrahiert, über Natriumsulfat getrocknet und eingedampft. Man erhält 0,47 g 6-(2-Methoxy-ethoxymethyl)-5-trifluormethyl-pyridin-2-carbonsäure; ¹H-NMR (CDCl₃): 8.26, d, 1H; 8.17, d, 1H; 7.3, b, OH; 4.96, s, 2H; 3.91, m, 2H; 3.71, m, 2H; 3.48, s, 3H.

Beispiel H13: Herstellung von 2-(6-Thiomorpholin-4-yl-5-trifluormethyl-pyridin-2-carbonyl)-cyclohexan-1,3-dion:

Zu einer Mischung ausa 0,11 g (1 mMol) Cyclohexan-1,3-dion und 0,25 g (2,5 mMol) Triethylamin in 15 ml Acetonitril trägt man 0,31 g (1 mMol) frisch mit Oxalylchlorid hergestelltes 6-Thiomorpholin-4-yl-5-trifluormethyl-pyridin-2-carbonsäurechlorid ein und rührt für 2 Stunden bei Umgebungstemperatur. Danach gibt man 2 Tropfen Acetoncyanhydrin zu und rührt für weitere 12 Stunden. Das Reaktionsgemisch wird anschließend in Essigester aufgenommen und gegen verdünnte Salzsäure bei pH 3 extrahiert. Nach dem Eindampfen der organischen Phase wird der zurückbleibende Rückstand mittels Kieselgelchromatographie (Laufmittel: Essigsäureethylester/Methanol/Triethylamin 85:10:5) gereinigt. Nach dem Abdampfen der Lösungsmittel erhält man das Triethylammoniumsalz des 2-(6-Thiomorpholin-4-yl-5-trifluormethyl-pyridin-2-carbonyl)-cyclohexane-1,3-dions als harzartiges Produkt. Zur Freisetzung des reinen Produktes nimmt man dieses nochmals in wenig Essigsäureethylester auf, extrahiert erneut gegen verdünnte Salzsäure, trocknet über Natriumsulfat und dampft wieder ein. Nach dem Umkristallisieren aus Essigsäureethylester und Hexan erhält man als Kristallisat 2-(6-Thiomorpholin-4-yl-5-trifluormethyl-pyridin-2-carbonyl)-cyclohexane-1,3-dion; mit einem Schmelzpunkt von 106-106.5 °C.

Beispiel H13: Herstellung von 2-(6-Pyrazol-1-yl-5-trifluormethyl-pyridin-2-carbonyl)-cyclohexan-1,3-dion:

0,11 g 55%-ige Natriumhydrid-Dispersion (2,5 mMol) werden in 8 ml N-Methylpyrrolidon vorgelegt und dann bei Umgebungstemperatur der Reihe nach mit 0,32 g (1 mMol) 2-(6-Chlor-5-trifluormethyl-pyridin-2-carbonyl)-cyclohexan-1,3-dion und mit 82 mg (1,2 mMol) Pyrazol behandelt. Die Reaktionsmischung wird anschließend für 1,5 Stunden auf eine Temperatur von 120 °C erwärmt. Dann versetzt man die erkaltete Reaktionsmischung mit Wasser, säuert auf pH 2 an und extrahiert mit Essigsäureethylester. Der eingedampfte Rückstand wird mittels Kieselgelchromatographie (Laufmittel:

Essigsäureethylester/Hexan/Ameisensäure 49.5:49.5:1) gereinigt. Man erhält als harzartiges Produkt 2-(6-Pyrazol-1-yl-5-trifluormethyl-pyridin-2-carbonyl)-cyclohexan-1,3-dion; ¹H-NMR (CDCl₃): 15.78, b, OH, 8.30, d, 1H; 8.07, d, 1H; 7.69, d, 1H; 7.54, d, 1H; 6.44, m, 1H; 2.80, m, 2H; 2.48, m, 2H; 2.10, m, 2H.

Auf diese Weise können auch die in der folgenden Tabelle aufgeführten Verbindungen der Formel I hergestellt werden, wobei diejenigen Verbindungen, die als Öl, Harz, Wachs oder amorpher Feststoff definiert sind, zumindest in reiner Form mittels ¹H-NMR (Kernresonanzspektroskopie) und/oder MS (Massenspektrometrie) charakterisiert wurden.

Tabelle 1: Verbindungen der Formel IA

$$\begin{array}{c|c}
OH & O \\
O & N \\
R_3
\end{array}$$
(IA)

Bsp.Nr.	R ₁	R ₂	Physik. Eigenschaften
1.001	OCH₂OCH₃	CF₃	
1.002	OCH ₂ OCH ₂ CH ₃	CF₃	
1.003	OCH₂CH₂OCH₃	CF₃	Harz
1.004	OCH ₂ CH ₂ OCH ₂ CH ₃	CF₃	
1.005	OCH₂CH₂CH₂OCH₃	CF₃	
1.006	OCH(CH ₃)CH ₂ OCH ₃	CF₃	
1.007	OCH ₂ CH ₂ OCH ₂ CH=CH ₂	CF₃	
1.008	OCH ₂ CH ₂ OCH ₂ C≡CH	CF₃	
1.009	OCH ₂ CH ₂ O-benzyl	CF₃	
1.010	$OCH_2CH_2ON=C(CH_3)_2$	CF₃	
1.011	OCH ₂ CH ₂ OCH ₂ CH ₂ OCH ₃	CF₃	
1.012	OCH ₂ CH(OCH ₃) ₂	CF₃	Harz
1.013	OCH ₂ CH(OCH ₂ CH ₃) ₂	CF₃	
1.014		CF₃	
1.015	OCH ₃	CF₃	
1.016	O CH ₃	CF ₃	
1.017		CF ₃	

Bsp.Nr.	R ₁	R ₂	Physik. Eigenschaften
1.018		CF₃	
1.019	O CH ₃	CF₃	
1.020	OCH ₃ CH ₃	CF ₃	
1.021	○	CF₃	Harz
1.022	O-benzyl	CF₃	Harz
1.023	OCH ₂ CH ₂ SCH ₃	CF ₃	
1.024	OCH ₂ CH ₂ SCH ₂ CH ₃	CF ₃	
1.025	OCH ₂ CH ₂ S(O) ₂ CH ₃	CF₃	
1.026	OCH ₂ CH ₂ S(O) ₂ CH ₂ CH ₃	CF ₃	
1.027	SCH₂CH₂OCH₃	CF ₃	
1.028	SCH ₂ CH ₂ OCH ₂ CH ₃	CF₃	
1.029	OCH ₂ CH ₂ OC(O)CH ₃	CF ₃	
1.030	OCH ₂ CH ₂ OC(O)-phenyl	CF ₃	
1.031	OCH ₂ CH ₂ OC(O)OCH ₂ CH ₃	CF ₃	
1.032	OCH ₂ CH ₂ OC(O)NHCH ₂ CH ₃	CF ₃	
1.033	OCH ₂ CH ₂ NH ₂	CF ₃	
1.034	OCH₂CH₂NHC(O)CH₃	CF ₃	
1.035	OCH ₂ CH ₂ NHC(O)CH ₂ CH ₃	CF ₃	
1.036	OCH ₂ CH ₂ NHC(O)CH(CH ₃) ₂	CF ₃	
1.037	OCH₂CH₂NHC(O)-cyclopropyl	CF ₃	
1.038	OCH ₂ CH ₂ NHC(O)C(CH ₃) ₃	CF ₃	
1.039	OCH₂CH₂NHC(O)-phenyl	CF ₃	
1.040	OCH₂CH₂NHC(O)OCH₃	CF₃	
1.041	OCH ₂ CH ₂ NHC(O)OCH ₂ CH ₃	CF₃	Harz
1.042	OCH₂CH₂NHC(O)NHCH₃	CF ₃	
1.043	OCH₂CH₂NHC(O)NHCH₂CH₃	CF ₃	
1.044	OCH ₂ CH ₂ NHC(O)N(CH ₃) ₂	CF ₃	

Bsp.Nr.	R _t	R ₂	Physik. Eigenschaften
1.045	OCH ₂ CH ₂ NHC(O)N(CH ₂ CH ₃) ₂	CF₃	
1.046	NHCH₃	CF₃	
1.047	NHCH₂CH₃	CF₃	
1.048	NHCH₂CH₂CH₃	CF₃	
1.049	NHCH ₂ CH ₂ CH ₂ CH ₃	CF ₃	
1.050	NHCH(CH₃)₂	CF ₃	•
1.051	NHC(CH₃)₃	CF ₃	
1.052	NHCH ₂ -cyclopropyl	CF ₃	
1.053	NH-phenyl	CF₃	
1.054	NH-benzyl	CF₃	
1.055	NH-CH ₂ CH=CH ₂	CF ₃	
1.056	NHCH₂CH≡CH₂	CF ₃	
1.057	N(CH ₂ CH=CH ₂) ₂	CF ₃	
1.058	N(CH ₂ CH≡CH) ₂	CF ₃	
1.059	N(CH ₃) ₂	CF ₃	Viskoses Öl
1.060	N(CH ₂ CH ₃) ₂	CF₃	Viskoses Öl
1.061	N(CH ₂ CH ₂ CH ₃) ₂	CF ₃	
1.062	N(CH ₂ CH ₂ CH ₂ CH ₃) ₂	CF ₃	
1.063	NHCH ₂ CH ₂ OH	CF₃	
1.064	NHCH ₂ CH ₂ OCH ₃	CF ₃	Harz
1.065	NHCH(CH₃)CH₃OCH₃	CF ₃	
1.066	NHCH ₂ CH(OCH ₃) ₂	CF ₃	
1.067	NHCH ₂ CH(OCH ₂ CH ₃) ₂	CF ₃	
1.068	NH O	CF₃	
1.069	NHCH₂C(O)OCH₃	CF₃	
1.070	NHCH(CH₃)C(O)OCH₃	CF ₃	
1.071	NHCH ₂ C(O)OCH ₂ CH ₃	CF₃	
1.072	NHCH(CH ₃)C(O)OCH ₂ CH ₃	CF ₃	
1.073	ON	CF ₃	Harz

Bsp.Nr.	R ₁	R ₂	Physik. Eigenschaften
1.074	CH ₃	CF ₃	
	, N		
1.075	CH ₃	CF₃	Smp.:82-83°C
	'N'		
4.070	ČH₃ ,CH₃	CE	
1.076	'N O	CF₃	
4.077	CH ₃	05	·
1.077	F	CF₃	•
	'N		
1.078	'N	CHF₂	
1.079	'N S .	CF ₃	Smp.: 106-107°C
1.080	'N	CF₃	Harz
1.081	'N CF ₃	CF₃	Smp. 137-138 °C
1.082	'N N	CF₃	Harz
1.083	N CH ₃	CF ₃	·
	, N N		

Bsp.Nr.	R ₁	R ₂	Physik. Eigenschaften
1.084	O-CH ₃	CF₃	- In a second contract of
	'N'	•	
1.085	O-CH ₃	CHF ₂	
	'N O		
1.086	'N_s	CHF₂	
1.087	'N	CHF ₃	
1.088	N(CH ₃)C(O)H	CF₃	
1.089	N(CH₃)C(O)CH₃	CF₃	Smp. 130-131°C
1.090	N(CH ₃)C(O)CH ₂ CH ₃	CF₃	Smp. 120-121°C
1.091	N(CH ₃)C(O)-phenyl	CF₃	Smp. 141-142°C
1.092	N(CH₃)C(O)-benzyl	CF₃	Harz
1.093	N(CH₂CH₃)C(O)CH₃	CF₃	
1.094	'N_O	OCH ₂ CF ₃	Harz
1.095	CI	CF₃	
1.096	OCH₃	CF₃	
1.097	CH₂OH	CF₃	
1.098	CH₂CI	CF ₃	
1.099	CH₂Br	CF₃	
1.100	CH₂OSO₂CH₃	CF ₃	
1.101	CH₂O(CO)CH₃	CF ₃	
1.102	CH₂O(CO)C(CH₃)₃	CF ₃	
1.103	CH₂O(CO)Phenyl	CF₃	
1.104	CH ₂ O(CO)OCH ₂ CH ₃	CF₃	
1.105	CH₂OCH₃	CF₃	
1.106	CH₂OCH₂CH₃	CF₃	
1.107	· CH ₂ CH ₂ OCH ₃	CF₃	
1.108	CH₂CH₂OCH₂CH₃	CF ₃	

1.109 1.110	CH ₂ CH ₂ CH ₂ OCH ₃		
1 110		CF₃	
1.110	CH(CH₃)CH₂OCH₃	CF₃	
1.111	CH ₂ OCH ₂ CH=CH ₂	CF₃	
1.112	CH ₂ OCH ₂ C≡CH	CF ₃	
1.113	CH ₂ OCH ₂ C≡CCH ₃	CF₃	
1.114	CH ₂ OCH ₂ CH ₂ C≡CH	CF₃	
1.115	CH₂OCH₂CH₂C≡CCH₃	CF₃	
1.116	CH₂O-benzyl	CF₃	
1.117	CH₂OCH₂CF₃	CF₃	
1.118	CH ₂ OCH ₂ CH ₂ F	CF₃	•
1.119	CH ₂ OCH ₂ CH ₂ CI	CF₃	
1.120	CH₂OCH₂CH₂Br	CF₃	
1.121	CH ₂ OCH ₂ CH ₂ C≡N	CF₃	
1.122	CH ₂ OCH ₂ C≡N	CF₃	
1.123	CH₂OCH₂OCH₃	CF₃	
1.124	CH₂OCH₂OCH₂CH₃	CF₃	
1.125	CH ₂ OCH ₂ CH ₂ OH		
1.126	CH₂OCH₂CH₂OCH₃	CF₃	Harz
1.127	CH2OCH2CH2OCH2CH3	CF₃	
1.128	CH2OCH2CH2CH2OCH3	CF₃	
1.129	CH ₂ OCH(CH ₃)CH ₂ OCH ₃	CF₃	
1.130	CH2OCH2CH2OCH2CH=CH2.	CF₃	
1.131	CH ₂ OCH ₂ CH ₂ OCH ₂ C≡CH	CF₃	
1.132	CH ₂ OCH ₂ CH ₂ O-benzyl	CF₃	
1.133	CH ₂ OCH ₂ CH ₂ ON=C(CH ₃) ₂	CF₃	
1.134	CH2OCH2CH2OCH2CH2OCH3	CF₃	
1.135	CH ₂ OCH ₂ CH(OCH ₃) ₂	CF₃	
1.136	CH2OCH2CH(OCH2CH3)2	CF ₃	
1.137	,O	CF₃	
	'CH ₂ —0 0		
1.138	O CH ₃	CF ₃	
	'CH2-O O CH3		

Bsp.Nr.	R ₁	R ₂	Physik. Eigenschaften
1.139	O CH ₃	CF₃	yogooao
	$\overline{}$	•	
	'CH ₂ —O´ O´, CH ₃		
1.140	,0~	CF₃	
		•	
	'CH ₂ —O		
1.141	\sim	CF₃	
	'CH ₂ —O _O		
1.142	O _{>} ∠CH₃	CF₃	
1.172		Ol 3	
	'CH ₂ O		
1.143	ÇH₃	CF₃	
	CH ₃	J. 0	
	'CH ₂ -0		
1.144	○	CF₃	
1.144	ζ β	OF3	
	2011		
	'CH ₂ —O		
1.145	Γ_{J}^{2}	CF₃	
	'CH ₂ —O		
1.146	CH,OCH,	CF₃	
1.147		OF.	
1.147	CH2OCH2CH2SCH3 CH2OCH2CH2SCH2CH3	CF₃ CF₃	
1.149	CH ₂ OCH ₂ CH ₂ S(O) ₂ CH ₃	CF₃	
1.150	CH ₂ OCH ₂ CH ₂ S(O) ₂ CH ₂ CH ₃	CF₃	
1.151	CH₂SCH₂CH₂OCH₃	CF ₃	
1.152	CH₂SCH₂CH₂OCH₂CH₃	CF ₃	
1.153	CH ₂ OCH ₂ CH ₂ OC(O)CH ₃	CF ₃	
1.154	CH ₂ OCH ₂ CH ₂ OC(O)-phenyl	CF ₃	
1.155	CH₂OCH₂CH₂OC(O)OCH₂CH₃	CF₃	
1.156	CH2OCH2CH2OC(O)NHCH2CH3	CF₃	

Bsp.Nr.	R ₁	R ₂	Physik. Eigenschaften
1.157	CH ₂ OCH ₂ CH ₂ NH ₂	CF₃	
1.158	CH₂OCH₂CH₂NHC(O)CH₃	CF₃	
1.159	CH2OCH2CH2NHC(O)CH2CH3	CF₃	
1.160	CH2OCH2CH2NHC(O)CH(CH3)2	CF ₃	
1.161	CH₂OCH₂CH₂NHC(O)-cyclopropyl	CF₃	
1.162	CH ₂ OCH ₂ CH ₂ NHC(O)C(CH ₃) ₃	CF₃	
1.163	CH ₂ OCH ₂ CH ₂ NHC(O)-phenyl	CF ₃	
1.164	CH ₂ OCH ₂ CH ₂ NHC(O)OCH ₃	CF ₃	
1.165	CH2OCH2CH2NHC(O)OCH2CH3	CF ₃	
1.166	CH₂OCH₂CH₂NHC(O)NHCH₃	CF ₃	
1.167	CH2OCH2CH2NHC(O)NHCH2CH3	CF ₃	
1.168	CH ₂ OCH ₂ CH ₂ NHC(O)N(CH ₃) ₂	CF ₃	
1.169	$CH_2OCH_2CH_2NHC(O)N(CH_2CH_3)_2$	CF ₃	•
1.170	CH₂N(SO₂CH₃)CH₃	CF ₃	
1.171	CH ₂ N(SO ₂ CH ₃)CH ₂ CH ₃	CF ₃	
1.172	CH ₂ N(SO ₂ CH ₂ CH ₃)CH ₂ CH ₃	CF ₃	
1.173	CH ₂ N(SO ₂ CH ₃)CH ₂ CF ₃	CF ₃	
1.174	CH ₂ N(SO ₂ CH ₃)CH ₂ CHOCH ₃	CF ₃	
1.175	CH₂N(SO₂CH₃)CH₂cyclopropyl	CF₃	
1.176	CH₂N(SO₂CH₃)phenyl	CF ₃	
1.177	CH₂N(SO₂CH₃)benzyl	CF ₃	•
1.178	CH ₂ N(SO ₂ CH ₃)CH ₂ CH=CH ₂	CF₃	
1.179	CH ₂ N(SO ₂ CH ₃)CH ₂ CH≡CH ₂	CF ₃	
1.180	CH₂N(CH₃)C(O)H	CF ₃	
1.181	CH₂N(CH₃)C(O)CH₃	CF₃	
1.182	CH ₂ N(CH ₃)C(O)CH ₂ CH ₃	CF ₃	
1.183	CH ₂ N(CH ₃)C(O)-phenyl	CF ₃	
1.184	CH ₂ N(CH ₃)C(O)-benzyl	CF ₃	
1.185	CH₂N(CH₂CH₃)C(O)CH₃	CF ₃	
1.186	/ 0 ¬	CF ₃	
	'CH ₂		
1.187	CH ₂ O	CF₃	

Bsp.Nr.	R ₁	R ₂	Physik. Eigenschaften
1.188	'CH ₂	CF ₃	
1.189	C(OCH ₂ CH ₃)=CH ₂	CF ₃	
1.190	CH₂C(O)CH₃	CF ₃	
1.191	C(OCH ₃)₂	CF ₃	
1.192	O CH ₃	CF₃	
1.193	CH ₂ C(O)CH ₂ OCH ₃	CF ₃	
1.194	CH ₂ C(O)CH ₂ OCH ₂ CH ₂ OCH ₃	CF ₃	
1.195	CH₂C(O)CH₂N(SO₂CH₃)CH₃	CF ₃	
1.196	C(CH ₂ OCH ₃)=CH ₂	CF ₃	
1.197	,c	CF ₃	
1.198	'CHOO	CF ₃	
1.199	·c	CF₃	
1.200	,cH	CF₃	
1.201	°CH√ CH₃	CF₃	

Tabelle 2: Verbindungen der Formel IC

$$H_3C$$
 OH O R_1 (IC) H_3C CH_3 H_3C CH_3

Bsp.Nr. R ₁	R ₂	Physik. Eigenschaften
------------------------	----------------	-----------------------

Bsp.Nr.	R ₁	R ₂	Physik. Eigenschaften	
2.001	OCH₂OCH₃	CF ₃		
2.002	OCH ₂ OCH ₂ CH ₃	CF ₃		
2.003	OCH ₂ CH ₂ OCH ₃	CF ₃	Harz	
2.004	OCH ₂ CH ₂ OCH ₂ CH ₃	CF ₃		
2.005	OCH ₂ CH ₂ CH ₂ OCH ₃	CF ₃		
2.006	OCH(CH ₃)CH ₂ OCH ₃	CF₃		
2.007	OCH ₂ CH ₂ OCH ₂ CH=CH ₂	CF ₃		
2.008	OCH ₂ CH ₂ OCH ₂ C≡CH	CF ₃		
2.009	OCH ₂ CH ₂ O-benzyl	CF ₃		
2.010	OCH ₂ CH ₂ ON=C(CH ₃) ₂	CF ₃	Harz	
2.011	OCH ₂ CH ₂ OCH ₂ CH ₂ OCH ₃	CF ₃	:	
2.012	OCH ₂ CH(OCH ₃) ₂	CF ₃		
2.013	OCH ₂ CH(OCH ₂ CH ₃) ₂	CF ₃		
2.014	<i>></i>	CF ₃		
2.015	O O CH ₃ CH ₃ CH ₃	CF₃		
2.017		CF₃		
2.018		CF₃		
2.019	O CH ₃	CF₃		
2.020	O CH ₃ CH ₃	CF₃		

Bsp.Nr.	R ₁	R ₂	Physik. Eigenschaften
2.021	o / o	CF ₃	Harz
	0—		
2.022	O-benzyl	CF ₃	Harz
2.022	OCH ₂ CH ₂ SCH ₃	CF₃	Huiz
2.023	OCH ₂ CH ₂ SCH ₂ CH ₃	CF ₃	
2.024	OCH ₂ CH ₂ S(O) ₂ CH ₃	CF₃	
2.026	OCH ₂ CH ₂ S(O) ₂ CH ₂ CH ₃	CF ₃	
2.020	SCH ₂ CH ₂ OCH ₃	CF₃	
2.028	SCH ₂ CH ₂ OCH ₂ CH ₃	CF ₃	
2.029	OCH ₂ CH ₂ OC(O)CH ₃	CF ₃	
2.030	OCH ₂ CH ₂ OC(O)-phenyl	CF₃	
2.031	OCH ₂ CH ₂ OC(O)OCH ₂ CH ₃	CF ₃	
2.032	OCH ₂ CH ₂ OC(O)NHCH ₂ CH ₃	CF₃	
2.033	OCH ₂ CH ₂ NH ₂	CF₃	·
2.034	OCH ₂ CH ₂ NHC(O)CH ₃	CF₃	
2.035	OCH ₂ CH ₂ NHC(O)CH ₂ CH ₃	CF₃	
2.036	OCH ₂ CH ₂ NHC(O)CH(CH ₃) ₂	CF ₃	
2.037	OCH ₂ CH ₂ NHC(O)-cyclopropyl	CF₃	
2.038	OCH ₂ CH ₂ NHC(O)C(CH ₃) ₃	CF₃	
2.039	OCH ₂ CH ₂ NHC(O)-phenyl	CF₃	
2.040	OCH ₂ CH ₂ NHC(O)OCH ₃	CF₃	
2.041	OCH ₂ CH ₂ NHC(O)OCH ₂ CH ₃	CF₃	
2.042	OCH ₂ CH ₂ NHC(O)NHCH ₃	CF ₃	
2.043	OCH ₂ CH ₂ NHC(O)NHCH ₂ CH ₃	CF ₃	
2.044	OCH ₂ CH ₂ NHC(O)N(CH ₃) ₂	CF₃	
2.045	OCH ₂ CH ₂ NHC(O)N(CH ₂ CH ₃) ₂	CF ₃	
2.046	NHCH₃	CF₃	
2.047	NHCH₂CH₃	CF ₃	
2.048	NHCH₂CH₂CH₃	CF ₃	
2.049	NHCH₂CH₂CH₃	CF₃	
2.050	NHCH(CH ₃) ₂	CF ₃	
2.051	NHC(CH ₃) ₃	CF ₃	
2.052	NHCH₂-cyclopropyl	CF ₃	
2.053	NH-phenyl	CF ₃	

- 67 -

NH-benzyl NH-CH₂CH=CH₂ NHCH₂CH=CH₂ N(CH₂CH=CH₂)₂ N(CH₂CH=CH)₂ N(CH₃)₂ N(CH₂CH₃)₂ N(CH₂CH₂CH₃)₂ N(CH₂CH₂CH₃OH NHCH₂CH₂CH₂OH NHCH₂CH₂OCH₃ NHCH₂CH(OCH₃)₂ HCH₂CH(OCH₂CH₃)₂	CF ₃	Smp.: 95-96°C Smp.: 85-86°C Harz
NHCH ₂ CH≡CH ₂ N(CH ₂ CH≡CH ₂) ₂ N(CH ₂ CH≡CH) ₂ N(CH ₃) ₂ N(CH ₂ CH ₃) ₂ N(CH ₂ CH ₂ CH ₃) ₂ N(CH ₂ CH ₂ CH ₃) ₂ NHCH ₂ CH ₂ CH ₂ CH ₃) ₃ NHCH ₂ CH ₂ OH NHCH ₂ CH ₂ OCH ₃ NHCH ₂ CH ₃ OCH ₃ NHCH ₂ CH(OCH ₃) ₂	CF ₃	Smp.: 85-86°C
N(CH ₂ CH=CH ₂) ₂ N(CH ₂ CH≡CH) ₂ N(CH ₃) ₂ N(CH ₂ CH ₃) ₂ N(CH ₂ CH ₂ CH ₃) ₂ N(CH ₂ CH ₂ CH ₃) ₂ N(CH ₂ CH ₂ CH ₂ CH ₃) ₂ NHCH ₂ CH ₂ OH NHCH ₂ CH ₂ OCH ₃ NHCH ₂ CH ₃ OCH ₃ NHCH ₂ CH(OCH ₃) ₂	CF ₃	Smp.: 85-86°C
N(CH ₂ CH≡CH) ₂ N(CH ₃) ₂ N(CH ₂ CH ₃) ₂ N(CH ₂ CH ₂ CH ₃) ₂ N(CH ₂ CH ₂ CH ₂ CH ₃) ₂ N(CH ₂ CH ₂ CH ₂ OH NHCH ₂ CH ₂ OCH ₃ IHCH(CH ₃)CH ₃ OCH ₃ NHCH ₂ CH(OCH ₃) ₂	CF ₃	Smp.: 85-86°C
N(CH ₃) ₂ N(CH ₂ CH ₃) ₂ N(CH ₂ CH ₂ CH ₃) ₂ N(CH ₂ CH ₂ CH ₃) ₂ N(CH ₂ CH ₂ CH ₂ CH ₃) ₂ NHCH ₂ CH ₂ OH NHCH ₂ CH ₂ OCH ₃ IHCH(CH ₃)CH ₃ OCH ₃ NHCH ₂ CH(OCH ₃) ₂	CF ₃	Smp.: 85-86°C
N(CH ₂ CH ₃) ₂ N(CH ₂ CH ₂ CH ₃) ₂ N(CH ₂ CH ₂ CH ₂ CH ₃) ₂ NHCH ₂ CH ₂ OH NHCH ₂ CH ₂ OCH ₃ IHCH(CH ₃)CH ₃ OCH ₃ NHCH ₂ CH(OCH ₃) ₂	CF ₃ CF ₃ CF ₃ CF ₃ CF ₃ CF ₃	Smp.: 85-86°C
N(CH ₂ CH ₂ CH ₃) ₂ N(CH ₂ CH ₂ CH ₂ CH ₃) ₂ NHCH ₂ CH ₂ OH NHCH ₂ CH ₂ OCH ₃ IHCH(CH ₃)CH ₃ OCH ₃ NHCH ₂ CH(OCH ₃) ₂	CF ₃ CF ₃ CF ₃ CF ₃ CF ₃	·
N(CH ₂ CH ₂ CH ₂ CH ₃) ₂ NHCH ₂ CH ₂ OH NHCH ₂ CH ₂ OCH ₃ IHCH(CH ₃)CH ₃ OCH ₃ NHCH ₂ CH(OCH ₃) ₂	CF ₃ CF ₃ CF ₃ CF ₃ CF ₃	Harz
NHCH ₂ CH ₂ OH NHCH ₂ CH ₂ OCH ₃ IHCH(CH ₃)CH ₃ OCH ₃ NHCH ₂ CH(OCH ₃) ₂	CF ₃ CF ₃ CF ₃ CF ₃	Harz
NHCH2CH2OCH3 IHCH(CH3)CH3OCH3 NHCH2CH(OCH3)2	CF ₃ CF ₃ CF ₃	Harz
IHCH(CH3)CH3OCH3 NHCH2CH(OCH3)2	CF ₃ CF ₃	Harz
NHCH₂CH(OCH₃)₂	CF ₃	
• -•-	CF ₃	
HCH ₂ CH(OCH ₂ CH ₃) ₂		
	CE	
NH O	ОГ 3	
NHCH₂C(O)OCH₃	CF₃	
HCH(CH3)C(O)OCH3	CF₃	
IHCH₂C(O)OCH₂CH₃	CF₃	
CH(CH₃)C(O)OCH₂CH₃	CF₃	
'NO	CF ₃	Smp. 123-124 °C
'N O	CF₃	
CH ₃	CF₃	Smp.: 134-135°C
	'NOCH ₃	CF ₃ CH ₃ CF ₃ CF ₃ CF ₃

Bsp.Nr.	R ₁	R ₂	Physik. Eigenschaften
2.076	F	CF₃	
	'N O		
2.077	O-CH ₃	CF₃	
2.078	'N_s	CF₃	Smp.: 120-121°C
2.079	'N	CF₃	
2.080	'N CF ₃	CF₃	Smp. 99-100 °C
2.081	'N N	CF₃	
2.082	'N CH ₃	CF₃	
2.083	'NO	· CHF ₂	
2.084	'N_s	CHF₂	
2.085	'N CH ₃	CHF₂	
2.086	'N	CHF₂	
2.087	N(CH₃)C(O)H	CF ₃	
2.088	N(CH ₃)C(O)CH ₃	CF ₃	Smp. 150-151 °C
2.089	N(CH₃)C(O)CH₂CH₃	CF₃	Smp.: 117-118 °C

Bsp.Nr.	R ₁	R ₂	Physik. Eigenschaften
2.090	N(CH₃)C(O)-phenyl	CF ₃	Harz
2.091	N(CH₃)C(O)-benzyl	CF ₃	Smp.: 107-108°C
2.092	N(CH ₂ CH ₃)C(O)CH ₃	CF₃	
2.093	ОН	CF₃	
2.094	OCH₃	CF ₃	
2.095	OCH₂CH₃	CF ₃	
2.096	CH₂OH	CF₃	
2.097	CH₂CI	CF ₃	
2.098	CH₂Br	CF₃	
2.099	CH ₂ OSO ₂ CH ₃	CF₃	
2.100	CH₂O(CO)CH₃	CF ₃	
2.101	CH ₂ O(CO)C(CH ₃) ₃	CF ₃	
2.102	CH₂O(CO)Phenyl	CF ₃	
2.103	CH₂O(CO)OCH₂CH₃	CF ₃	
2.104	CH₂OCH₃	CF ₃	
2.105	CH₂OCH₂CH₃	CF ₃	
2.106	CH₂CH₂OCH₃	CF ₃	
2.107	· CH ₂ CH ₂ OCH ₂ CH ₃	CF ₃	
2.108	CH₂CH₂CH₂OCH₃	CF ₃	
2.109	CH(CH₃)CH₂OCH₃	CF₃	
2.110	CH ₂ OCH ₂ CH=CH ₂	CF₃	
2.111	CH ₂ OCH ₂ C≡CH	CF₃	
2.112	CH₂OCH₂C≡CCH₃	CF₃	
2.113	CH ₂ OCH ₂ CH ₂ C≡CH	CF₃	
2.114	CH₂OCH₂CH₂C≡CCH₃	CF₃	
2.115	CH ₂ O-benzyl	CF₃	
2.116	CH ₂ OCH ₂ CF ₃	CF₃	
2.117	CH ₂ OCH ₂ CH ₂ F	CF₃	
2.118	CH₂OCH₂CH₂CI	CF₃	
2.119	CH₂OCH₂CH₂Br	CF₃	•
2.120	CH ₂ OCH ₂ CH ₂ C≡N	CF₃	
2.121	CH ₂ OCH ₂ C≡N	CF₃	
2.122	CH₂OCH₂OCH₃	CF ₃	
2.123	CH₂OCH₂OCH₂CH₃	CF₃	
2.124	CH ₂ OCH ₂ CH ₂ OH		

Bsp.Nr.	R ₁	R ₂	Physik. Eigenschaften
2.125	CH₂OCH₂CH₂OCH₃	CF ₃	Harz
2.126	CH2OCH2CH2OCH2CH3	CF₃	
2.127	CH2OCH2CH2CH2OCH3	CF₃	
2.128	CH₂OCH(CH₃)CH₂OCH₃	CF ₃	
2.129	CH2OCH2CH2OCH2CH=CH2	CF₃	
2.130	CH ₂ OCH ₂ CH ₂ OCH ₂ C≡CH	CF ₃	
2.131	CH ₂ OCH ₂ CH ₂ O-benzyl	CF₃	
2.132	CH ₂ OCH ₂ CH ₂ ON=C(CH ₃) ₂	CF₃	•
2.133	CH2OCH2CH2OCH2CH2OCH3	CF ₃	
2.134	CH ₂ OCH ₂ CH(OCH ₃) ₂	CF₃	
2.135	CH ₂ OCH ₂ CH(OCH ₂ CH ₃) ₂	CF₃	
2.136	\ ⁰ _	CF ₃	
2.137	'CH ₂ —O O CH ₃	CF ₃	·
2.138	'CH ₂ —O O CH ₃ 'CH ₂ —O O CH ₃	CF₃	
2.139	'CH ₂ —O	CF ₃	
2.140	'CH ₂ -O	CF ₃	
2.141	O CH ₃	CF ₃	
2.142	CH ₂ OCH ₃ CH ₂ CH ₃	CF₃	

	_		Discoult Et a sala di acc
Bsp.Nr.	R ₁	R ₂	Physik. Eigenschaften
2.143	ζ γ	CF₃	
	<i></i>		
	'CH₂—Ó		
2.144	<u> </u>	CF ₃	
		-	
	'CH ₂ —O		
2.145	/ 9	CF ₃	
	CH ₂ OCH ₂	•	
2.146	CH₂OCH₂CH₂SCH₃	CF ₃	
2.147	CH2OCH2CH2SCH2CH3	CF ₃	
2.148	CH ₂ OCH ₂ CH ₂ S(O) ₂ CH ₃	CF ₃	
2.149	CH ₂ OCH ₂ CH ₂ S(O) ₂ CH ₂ CH ₃	CF ₃	
2.150	CH₂SCH₂CH₂OCH₃	CF ₃	
2.151	CH ₂ SCH ₂ CH ₂ OCH ₂ CH ₃	CF ₃	
2.152	CH2OCH2CH2OC(O)CH3	CF ₃	
2.153	CH ₂ OCH ₂ CH ₂ OC(O)-phenyl	CF ₃ .	
2.154	CH2OCH2CH2OC(O)OCH2CH3	CF ₃	
2.155	CH2OCH2CH2OC(O)NHCH2CH3	CF₃	
2.156	CH ₂ OCH ₂ CH ₂ NH ₂	CF₃	
2.157	CH₂OCH₂CH₂NHC(O)CH₃	CF₃	
2.158	CH ₂ OCH ₂ CH ₂ NHC(O)CH ₂ CH ₃ .	CF₃	
2.159	CH2OCH2CH2NHC(O)CH(CH3)2	CF₃	
2.160	CH ₂ OCH ₂ CH ₂ NHC(O)-cyclopropyl	CF₃	
2.161	$CH_2OCH_2CH_2NHC(O)C(CH_3)_3$	CF₃	
2.162	CH ₂ OCH ₂ CH ₂ NHC(O)-phenyl	CF₃	
2.163	CH ₂ OCH ₂ CH ₂ NHC(O)OCH ₃	CF₃	
2.164	CH2OCH2CH2NHC(O)OCH2CH3	CF₃	
2.165	CH₂OCH₂CH₂NHC(O)NHCH₃	CF₃	
2.166	CH2OCH2CH2NHC(O)NHCH2CH3	CF₃	
2.167	CH ₂ OCH ₂ CH ₂ NHC(O)N(CH ₃) ₂	CF₃	
2.168	CH ₂ OCH ₂ CH ₂ NHC(O)N(CH ₂ CH ₃) ₂	CF₃	
2.169	CH₂N(SO₂CH₃)CH₃	CF₃	
2.170	CH₂N(SO₂CH₃)CH₂CH₃	CF₃	
2.171	CH ₂ N(SO ₂ CH ₂ CH ₃)CH ₂ CH ₃	CF₃	

Bsp.Nr.	R ₁	R ₂	Physik. Eigenschaften
2.172	CH ₂ N(SO ₂ CH ₃)CH ₂ CF ₃	CF ₃	
2.173	CH ₂ N(SO ₂ CH ₃)CH ₂ CHOCH ₃	CF ₃	
2.174	CH ₂ N(SO ₂ CH ₃)CH ₂ cyclopropyl	CF ₃	
2.175	CH₂N(SO₂CH₃)phenyl	CF ₃	
2.176	CH₂N(SO₂CH₃)benzyl	CF ₃	
2.177	CH ₂ N(SO ₂ CH ₃)CH ₂ CH=CH ₂	CF ₃	
2.178	CH ₂ N(SO ₂ CH ₃)CH ₂ CH≡CH ₂	CF ₃	
2.179	CH₂N(CH₃)C(O)H	CF ₃	
2.180	CH₂N(CH₃)C(O)CH₃	CF ₃	
2.181	CH₂N(CH₃)C(O)CH₂CH₃	CF ₃	·
2.182	CH₂N(CH₃)C(O)-phenyl	CF ₃	
2.183	CH₂N(CH₃)C(O)-benzyl	CF ₃	
2.184	CH₂N(CH₂CH₃)C(O)CH₃	CF ₃	
2.185	'CH ₂	CF₃	
2.186	CH ₂ O	CF₃	
2.187	'CH ₂	CF₃	
2.188	C(OCH ₂ CH ₃)=CH ₂	CF ₃	
2.189	CH₂C(O)CH₃	CF ₃	
2.190	C(OCH ₃) ₂	CF₃	
2.191	O CH ₃	CF₃	
2.192	CH ₂ C(O)CH ₂ OCH ₃	CF₃	
2.193	CH₂C(O)CH₂OCH₂CH₂OCH₃	CF₃	
2.194	CH ₂ C(O)CH ₂ N(SO ₂ CH ₃)CH ₃	CF ₃	
2.195	C(CH ₂ OCH ₃)=CH ₂	CF₃	
2.196	. 'C	CF₃	

Bsp.Nr.	R ₁	R ₂	Physik. Eigenschaften
2.197	'CHO	CF ₃	
2.198	·c	CF ₃	
2.199	'CHO	CF₃	
2.200	'CH√CH₃	CF₃	

Tabelle 3: Verbindungen der Formel ID

Bsp.Nr	A ₁	A ₂	A ₃	R ₁	Physik.
					Eigenschaften
3.001	CH ₂	CH₂	CH(CH ₃)	· OCH₂OCH₃	
3.002	CH ₂	CH₂	CH(CH ₃)	OCH₂OCH₂CH₃	
3.003	CH ₂	CH ₂	CH(CH₃)	OCH₂CH₂OCH₃	
3.004	CH ₂	CH ₂	CH(CH₃)	OCH ₂ CH ₂ OCH ₂ CH ₃	
3.005	CH₂	CH₂	CH(CH₃)	OCH ₂ CH ₂ CH ₂ OCH ₃	
3.006	CH₂	CH₂	CH(CH₃)	OCH(CH₃)CH₂OCH₃	
3.007	CH ₂	CH ₂	CH(CH₃)	OCH ₂ CH ₂ OCH ₂ CH=CH ₂	
3.008	CH ₂	CH ₂	CH(CH₃)	OCH2CH2OCH2C?CH	-
3.009	CH ₂	CH ₂	CH(CH₃)	OCH ₂ CH ₂ O-benzyl	
3.010	CH ₂	CH₂	CH(CH₃)	OCH ₂ CH ₂ ON=C(CH ₃) ₂	•
3.011	CH ₂	CH₂	CH(CH₃)		
3.012	CH ₂	CH ₂	CH(CH₃)	OCH ₂ CH(OCH ₃) ₂	
3.013	CH ₂	. CH₂	CH(CH₃)	OCH ₂ CH(OCH ₂ CH ₃) ₂	

	Bsp.Nr	A ₁	A ₂	A ₃	R_1	Physik. Eigenschaften
	3.014	CH ₂	CH ₂	CH(CH₃)		
	3.015	CH₂	CH ₂	CH(CH₃)	OCH ₃	
	3.016	CH ₂	CH₂	CH(CH₃)	O O CH ₃	
	3.017	CH₂	CH₂	CH(CH₃)		
	3.018	CH ₂	CH₂	CH(CH₃)		
	3.019	CH₂	CH ₂	CH(CH₃)	O CH₃	
	3.020	CH₂	CH₂	CH(CH₃)	CH ₃ CH ₃	
	3.021	CH ₂	CH ₂	CH(CH₃)	o— ()	
	3.022	CH₂	CH₂	CH(CH₃)	O-benzyl	
	3.023	CH(CH ₃)	CH₂	CH₂	OCH ₂ CH ₂ SCH ₃	
,	3.024	CH ₂	CH₂	CH(CH₃)	OCH ₂ CH ₂ SCH ₂ CH ₃	
	3.025	CH ₂	CH ₂	CH(CH₃)	OCH ₂ CH ₂ S(O) ₂ CH ₃	•
	3.026	CH ₂	CH ₂	CH(CH ₃)	OCH ₂ CH ₂ S(O) ₂ CH ₂ CH ₃	
	3.027	CH ₂	CH₂	CH(CH₃)	SCH₂CH₂OCH₃	
	3.028	CH ₂	CH₂	CH(CH ₃)	SCH2CH2OCH2CH3	
	3.029	CH ₂	CH ₂	CH(CH ₃)	OCH ₂ CH ₂ OC(O)CH ₃	
	3.030	CH ₂	. CH₂	CH(CH ₃)	OCH ₂ CH ₂ OC(O)-phenyl	
	3.031	CH₂	CH ₂	CH(CH₃)	OCH ₂ CH ₂ OC(O)OCH ₂ CH ₃	

Bsp.Nr	A ₁	A ₂	A ₃	R ₁	Physik. Eigenschaften
3.032	CH₂	CH ₂	CH(CH₃)	OCH ₂ CH ₂ OC(O)NH-ethyl	
3.033	CH₂	CH₂	CH(CH₃)	OCH ₂ CH ₂ NH ₂	
3.034	CH₂	CH ₂	CH(CH₃)	OCH₂CH₂NHC(O)CH₃	
3.035	CH₂	CH ₂	CH(CH ₃)	OCH ₂ CH ₂ NHC(O)CH ₂ CH ₃	
3.036	CH ₂	CH ₂	CH(CH ₃)	OCH ₂ CH ₂ NHC(O)CH(CH ₃) ₂	
3.037	CH ₂	CH ₂	CH(CH₃)	OCH ₂ CH ₂ NHC(O)-cyclopropyl	
3.038	CH ₂	CH ₂	CH(CH ₃)	$OCH_2CH_2NHC(O)C(CH_3)_3$	
3.039	CH₂	CH ₂	CH(CH₃)	OCH ₂ CH ₂ NHC(O)-phenyl	
3.040	CH₂	CH ₂	CH(CH₃)	OCH ₂ CH ₂ NHC(O)OCH ₃	
3.041	CH ₂	CH ₂	CH(CH₃)	OCH ₂ CH ₂ NHC(O)O-ethyl	
3.042	CH₂	CH ₂	CH(CH₃)	OCH ₂ CH ₂ NHC(O)NHCH ₃	
3.043	CH₂	CH ₂	CH(CH₃)	OCH ₂ CH ₂ NHC(O)NH-ethyl	
3.044	CH ₂	CH ₂	CH(CH₃)	$OCH_2CH_2NHC(O)N(CH_3)_2$	
3.045	CH ₂	CH ₂	CH(CH₃)	OCH ₂ CH ₂ NHC(O)N(Et) ₂	
3.046	CH ₂	CH ₂	CH(CH₃)	NHCH₃	
3.047	CH₂	CH ₂	CH(CH ₃)	NHCH₂CH₃	
3.048	CH ₂	CH₂	CH(CH₃)	NHCH ₂ CH ₂ CH ₃	
3.049	CH ₂	CH₂	CH(CH ₃)	NHCH ₂ CH ₂ CH ₂ CH ₃	
3.050	CH ₂	CH ₂	CH(CH ₃)	NHCH(CH ₃) ₂	
3.051	CH ₂	CH ₂	CH(CH ₃)	NHC(CH ₃) ₃	
3.052	CH ₂	CH ₂	CH(CH₃)	. NHCH ₂ -cyclopropyl	
3.053	CH₂	CH ₂	CH(CH ₃)	NH-phenyl	
3.054	CH ₂	CH ₂	CH(CH₃)	NH-benzyl	
3.055	CH ₂	CH ₂	CH(CH ₃)	N(CH ₂ CH ₃) ₂	
3.056	CH ₂	CH₂	CH(CH ₃)	N(CH ₂ CH ₂ CH ₃) ₂	
3.057	CH ₂	CH ₂	CH(CH ₃)	N(CH ₂ CH ₂ CH ₂ CH ₃) ₂	
3.058	CH ₂	CH ₂	CH(CH ₃)	NHCH₂CH₂OH	
3.059	CH ₂	CH ₂	CH(CH ₃)	NHCH₂CH₂OCH₃	
3.060	CH ₂	CH ₂	CH(CH₃)	NHCH(CH₃)CH₃OCH₃	
3.061	CH ₂	CH ₂	CH(CH ₃)	NHCH₂CH(OCH₃)₂	
3.062	CH₂	CH ₂	CH(CH₃)	NHCH2CH(OCH2CH3)2	
3.063	CH₂	CH₂ ·	CH(CH₃)	NH O	

						·
	Bsp.Nr	A ₁	A ₂	A ₃	R ₁	Physik.
	<u> </u>					Eigenschaften
	3.064	CH₂	CH ₂	CH(CH ₃)	NHCH ₂ C(O)OCH ₃	
	3.065	CH ₂	CH ₂	CH(CH ₃)	NHCH(CH₃)C(O)OCH₃	
	3.066	CH ₂	CH₂	CH(CH ₃)	NHCH₂C(O)OCH₂CH₃	
	3.067	CH₂	CH ₂	CH(CH ₃)	NHCH(CH ₃)C(O)OCH ₂ CH ₃	
	3.068	CH₂	CH ₂	°C√	'NO	Harz
	3.069	CH₂	CH(CH ₃)	CH ₂	'NO	Smp.: 80-81°C
	3.070	CH ₃	CH₂	CH₂	'NO	Harz
		H³C				
	3.071	CH(CH₃)	CH ₂	CH ₂	'NO	Harz
·	3.072	C(CH ₃) ₂	CH ₂	CH ₂	'NO ·	Harz
	3.073	C(CH ₃) ₂	CH(CH ₃)	CH ₂	'N_O	Harz
	3.074	C(CH ₃) ₂	CH ₂	CH(CH₃)	'NO	Harz
	3.075	C(CH ₃) ₂	CH ₂	C(CH ₃) ₂	'NO	Harz
	3.076	C(CH ₃) ₂	0	C(CH ₃) ₂	"NO	Harz
	3.077	CH₂	C(CH ₃) ₂	CH₂	'NO	Smp.: 121-122 °C

Bsp.Nr	A ₁	A ₂	A ₃	R ₁	Physik. Eigenschaften
3.078	CH(CH₃)	CH₂	CH₂	'N O	
3.079	CH(CH₃)	CH₂	CH₂	"NOO	
3.080	CH(CH ₃)	CH₂	CH₂	CH ₃ CH ₃	
3.081	CH(CH₃)	CH₂	CH₂	CH ₃ F F F	
3.082	. CH(CH₃)	CH₂	CH₂	F F H	
3.083	CH(CH₃)	CH₂	CH₂	'N s	
3.084	CH(CH₃)	CH ₂	CH₂	'N	
3.085	CH(CH₃)	CH₂	CH ₂	'N CF ₃	
3.086	CH(CH₃)	CH₂	CH₂	'N N	

Bsp.Nr	A ₁	A ₂	A_3	R ₁	Physik. Eigenschaften
3.087	CH(CH ₃)	CH ₂	CH₂	N CH ₃	Ligensonarien
	(3)	-1.2	J	'N	
				Ň	
3.088	CH(CH₃)	CH₂	CH₂	CH₃	
				'n T	
3.089	CH(CH ₃)	CH ₂	CH ₂	,,,	
				N N	
3.090	CH(CH₃)	CH₂	CH₂	N(CH₃)C(O)H	
3.091	CH(CH ₃)	CH₂	CH₂	N(CH ₃)C(O)CH ₃	
3.092	CH(CH ₃)	CH₂	CH₂	N(CH₃)C(O)CH₂CH₃	
3.093	CH(CH ₃)	CH₂	CH ₂	N(CH ₃)C(O)-phenyl	
3.094	CH(CH ₃)	CH ₂	CH ₂	N(CH ₃)C(O)-benzyl	
3.095	CH(CH ₃)	CH₂	CH ₂	N(CH ₂ CH ₃)C(O)CH ₃	
3.096	CH ₂	CH(CH₃)	CH ₂	CH₂OH	
3.097	CH ₂	CH(CH₃)	CH ₂	CH₂CI	
3.098	CH ₂	CH(CH₃)	CH ₂	CH₂Br	
3.099	CH₂	CH(CH₃)	CH ₂	CH₂OSO₂CH₃	
3.100	CH ₂	CH(CH₃)	CH ₂	CH₂O(CO)CH₃	
3.101	CH₂	CH(CH₃)	CH ₂	CH ₂ O(CO)C(CH ₃) ₃	
3.102	CH ₂	CH(CH₃)	CH ₂	. CH₂O(CO)Phenyl	
3.103	CH ₂	CH(CH ₃)	CH ₂	CH₂O(CO)OCH₂CH₃	
3.104	CH₂	CH(CH ₃)	CH ₂	CH₂OCH₃	
3.105	CH ₂	CH(CH ₃)	CH₂	CH₂OCH₂CH₃	
3.106	CH₂	CH(CH₃)	CH ₂	CH₂CH₂OCH₃	
3.107	CH₂	CH(CH₃)	CH ₂	CH ₂ CH ₂ OCH ₂ CH ₃	
3.108	CH₂	CH(CH ₃)	CH₂	CH₂CH₂CH₂OCH₃	
3.109	CH₂	CH(CH₃)	CH ₂	CH(CH₃)CH2OCH3	
3.110	CH₂	CH(CH₃)	CH ₂	CH ₂ OCH ₂ CH=CH ₂	
3.111	CH ₂	CH(CH₃)	CH ₂	CH ₂ OCH ₂ C≡CH	
3.112	CH ₂	CH(CH₃)	CH ₂	CH₂OCH₂C≡CCH₃	
3.113	CH ₂	CH(CH ₃)	CH ₂	CH ₂ OCH ₂ CH ₂ C≡CH	
3.114	CH ₂	CH(CH₃)	CH ₂	CH₂OCH₂CH₂C≡CCH₃	
3.115	CH ₂	CH(CH₃)	CH ₂	CH₂O-benzyl	

	Bsp.Nr	A ₁	A ₂	A ₃	R ₁	Physik. Eigenschaften
	3.116	CH ₂	CH(CH₃)	CH₂	CH ₂ OCH ₂ CF ₃	
-	3.117	CH₂	CH(CH₃)	CH ₂	CH₂OCH₂CH₂F	•
	3.118	CH₂	CH(CH ₃)	CH₂	CH ₂ OCH ₂ CH ₂ Cl	
	3.119	CH ₂	CH(CH₃)	CH ₂	CH₂OCH₂CH₂Br	
	3.120	CH ₂	CH(CH₃)	CH ₂	CH ₂ OCH ₂ CH ₂ C≡N	
	3.121	CH₂	CH(CH₃)	CH ₂	CH₂OCH₂C≡N	
	3.122	CH ₂	CH(CH ₃)	CH ₂	CH₂OCH₂OCH₃	
	3.123	CH ₂	CH(CH ₃)	CH ₂	CH₂OCH₂OCH₂CH₃	
	3.124	CH ₂	CH(CH₃)	CH ₂	CH₂OCH₂CH₂OH	٠
	3.125	CH ₂	CH(CH₃)	CH ₂	CH₂OCH₂CH₂OCH₃	
	3.126	CH ₂	CH(CH₃)	CH ₂	CH2OCH2CH2OCH2CH3	
	3.127	CH₂	CH(CH₃)	CH ₂	CH2OCH2CH2CH2OCH3	
	3.128	CH₂	CH(CH₃)	CH ₂	CH ₂ OCH(CH ₃)CH ₂ OCH ₃	
	3.129	CH₂	CH(CH₃)	CH ₂	CH2OCH2CH2OCH2CH=CH2	
	3.130	CH ₂	CH(CH₃)	CH ₂	CH ₂ OCH ₂ CH ₂ OCH ₂ C≡CH	
	3.131	CH ₂	CH(CH₃)	CH ₂	CH₂OCH₂CH₂O-benzyl	
	3.132	CH ₂	CH(CH₃)	CH ₂	CH ₂ OCH ₂ CH ₂ ON=C(CH ₃) ₂	
	3.133	CH ₂	CH(CH ₃)	CH ₂	CH2OCH2CH2OCH2CH2OCH3	
	3.134	CH ₂	CH(CH ₃)	CH ₂	CH ₂ OCH ₂ CH(OCH ₃) ₂	
	3.135	CH₂	CH(CH₃)	CH ₂	CH2OCH2CH(OCH2CH3)2	
	3.136	CH₂	CH(CH₃)	CH ₂	,CH=-0	
	3.137	CH ₂	CH(CH₃)	CH ₂	OCH ₃	
	3.138	CH₂	CH(CH₃)	CH₂	'CH ₂ —O O CH ₃ 'CH ₂ —O CH ₃	
	3.139	CH ₂	CH(CH₃)	CH₂	'CH ₂ —O	

CH₂

CH₂

CH₂

3.158

3.159

3.160

CH(CH₃)

CH(CH₃)

CH(CH₃)

CH₂

CH₂

CH₂

CH₂OCH₂CH₂NHC(O)CH₂CH₃

CH₂OCH₂CH₂NHC(O)CH(CH₃)₂

CH2OCH2CH2NHC(O)-

Bsp.Nr	A ₁	A ₂	A ₃	R ₁	Physik. Eigenschafter
3.140	CH ₂	CH(CH₃)	CH₂	'CH ₂ —0	•
3.141	CH ₂	CH(CH₃)	CH₂	CH ₂ OCH ₃	
3.142	CH₂	CH(CH₃)	CH₂	O CH ₃	
3.143	CH₂	CH(CH₃)	. CH₂	CH ₂ —O	
3.144	CH₂	CH(CH₃)	CH₂	'CH₂—Ó	
3.145	CH₂	CH(CH₃)	CH₂	'CH ₂ —O' CH ₂ OCH ₂	
3.146	CH ₂	CH(CH₃)	CH ₂	CH₂OCH₂CH₂SCH₃	
3.147	CH ₂	CH(CH₃)	CH ₂	CH₂OCH₂CH₂SCH₂CH₃	
3.148	CH₂	CH(CH₃)	CH ₂	CH ₂ OCH ₂ CH ₂ S(O) ₂ CH ₃	
3.149	CH₂	CH(CH₃)	CH ₂	CH ₂ OCH ₂ CH ₂ S(O) ₂ CH ₂ CH ₃	
3.150	CH ₂	CH(CH₃)	CH ₂	CH ₂ SCH ₂ CH ₂ OCH ₃	
3.151	CH ₂	CH(CH₃)	CH ₂	CH ₂ SCH ₂ CH ₂ OCH ₂ CH ₃	
3.152	CH₂	CH(CH₃)	CH₂	CH₂OCH₂CH₂OC(O)CH₃	
3.153	CH₂	CH(CH ₃)	CH₂	CH ₂ OCH ₂ CH ₂ OC(O)-phenyl	
3.154	CH₂	CH(CH₃)	CH₂	CH ₂ OCH ₂ CH ₂ OC(O)OCH ₂ CH ₃	
3.155	CH₂	CH(CH₃)	CH₂	CH ₂ OCH ₂ CH ₂ OC(O)NHCH ₂ CH ₃	
3.156	CH₂	CH(CH₃)	CH₂	CH ₂ OCH ₂ CH ₂ NH ₂	
3.157	CH ₂	CH(CH₃)	CH ₂	CH ₂ OCH ₂ CH ₂ NHC(O)CH ₃	

- 81 -

Bsp.Nr	A ₁	A ₂	A ₃	R ₁	Physik. Eigenschaftei
			, <u></u>	cyclopropyl	
3.161	CH ₂	CH(CH₃)	CH₂	CH ₂ OCH ₂ CH ₂ NHC(O)C(CH ₃) ₃	
3.162	CH ₂	CH(CH₃)	CH ₂	CH ₂ OCH ₂ CH ₂ NHC(O)-phenyl	
3.163	CH ₂	CH(CH₃)	CH ₂	CH2OCH2CH2NHC(O)OCH3	
3.164	CH ₂	CH(CH₃)	CH ₂	CH2OCH2CH2NHC(O)OCH2CH3	
3.165	CH ₂	CH(CH₃)	CH ₂	CH2OCH2CH2NHC(O)NHCH3	
3.166	CH ₂	CH(CH₃)	CH ₂	CH2OCH2CH2NHC(O)NHCH2CH3	
3.167	CH ₂	CH(CH₃)	CH₂	CH2OCH2CH2NHC(O)N(CH3)2	
3.168	CH ₂	CH(CH₃)	CH ₂	CH2OCH2CH2NHC(O)N(CH2CH3)	
				2	
3.169	CH ₂	CH(CH₃)	CH ₂	CH₂N(SO₂CH₃)CH₃	
3.170	CH ₂	CH(CH₃)	CH ₂	CH ₂ N(SO ₂ CH ₃)CH ₂ CH ₃	
3.171	CH ₂	CH(CH ₃)	CH ₂	CH ₂ N(SO ₂ CH ₂ CH ₃)CH ₂ CH ₃	
3.172	CH ₂	CH(CH₃)	CH ₂	CH₂N(SO₂CH₃)CH₂CF₃	
3.173	CH ₂	CH(CH ₃)	CH ₂	CH ₂ N(SO ₂ CH ₃)CH ₂ CHOCH ₃	
3.174	CH ₂	CH(CH ₃)	CH ₂	CH ₂ N(SO ₂ CH ₃)CH ₂ cyclopropyl	
3.175	CH₂	CH(CH ₃)	CH ₂	CH ₂ N(SO ₂ CH ₃)phenyl	
3.176	CH ₂	CH(CH ₃)	CH ₂	CH ₂ N(SO ₂ CH ₃)benzyl	
3.177	CH ₂	CH(CH₃)	CH ₂	CH ₂ N(SO ₂ CH ₃)CH ₂ CH=CH ₂	
3.178	CH ₂	CH(CH ₃)	CH ₂	CH ₂ N(SO ₂ CH ₃)CH ₂ CH≡CH ₂	
3.179	CH ₂	CH(CH₃)	CH ₂	. CH₂N(CH₃)C(O)H	
3.180	CH ₂	CH(CH ₃)	CH ₂	CH₂N(CH₃)C(O)CH₃	
3.181	CH ₂	CH(CH₃)	CH ₂	CH₂N(CH₃)C(O)CH₂CH₃	
3.182	CH ₂	CH(CH ₃)	CH ₂	CH₂N(CH₃)C(O)-phenyl	
3.183	CH ₂	CH(CH ₃)	CH ₂	CH ₂ N(CH₃)C(O)-benzyl	
3.184	CH ₂	CH(CH ₃)	CH ₂	CH ₂ N(CH ₂ CH ₃)C(O)CH ₃	
3.185	CH₂	CH(CH₃)	CH₂	'CH ₂	
3.186	CH₂	CH(CH ₃)	CH₂	'CH ₂ O	

 Bsp.Nr	A ₁	A ₂	A ₃	R ₁	Physik. Eigenschaften
3.187	CH ₂	CH(CH₃)	CH ₂	'CH ₂ O—	Ligensonatien
3.188	CH ₂	CH(CH₃)	CH ₂	C(OCH ₂ CH ₃)=CH ₂	
3.189	CH ₂	CH(CH₃)	CH ₂	CH₂C(O)CH₃	
3.190	CH ₂	CH(CH₃)	CH ₂	C(OCH ₃) ₂	
3.191	CH ₂	CH(CH₃)	CH₂	O CH ₃	
3.192	CH ₂	CH(CH₃)	CH ₂	CH ₂ C(O)CH ₂ OCH ₃	
3.193	CH ₂	CH(CH₃)	CH₂	CH ₂ C(O)CH ₂ OCH ₂ CH ₂ OCH ₃	
3.194	CH ₂	CH(CH₃)	CH ₂	CH ₂ C(O)CH ₂ N(SO ₂ CH ₃)CH ₃	
3.195	CH ₂	CH(CH ₃)	CH ₂	C(CH ₂ OCH ₃)=CH ₂	
3.196	CH ₂	CH(CH₃)	CH₂	'C	
3.197	CH ₂	CH(CH ₃)	CH₂	'CHO	
3.198	CH ₂	CH(CH₃)	CH ₂	'c	
3.199	CH ₂	CH(CH ₃)	CH ₂	,cH	·
3.200	CH ₂	CH(CH₃)	CH ₂	CH CH3	

Tabelle Z1: Zwischenprodukte der Formel II

$$\begin{array}{ccc}
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &$$

Bsp.Nr. Y R₁ R₂ Physik. Eigenschaften

Bsp.Nr.	Υ	R ₁	R ₂	Physik. Eigenschaften
Z1.001	ОН	OCH₂OCH₃	CF ₃	
Z1.002	ОН	OCH₂OCH₂CH₃	CF ₃	
Z1.003	ОН	OCH₂CH₂OCH₃	CF ₃	Smp.: 66-67°C
Z1.004	ОН	OCH ₂ CH ₂ OCH ₂ CH ₃	CF ₃	
Z1.005	ОН	OCH₂CH₂CH₂OCH₃	CF ₃	
Z1.006	ОН	OCH(CH ₃)CH ₂ OCH ₃	CF ₃	
Z1.007	ОН	OCH ₂ CH ₂ OCH ₂ CH=CH ₂	CF ₃	
Z1.008	ОН	OCH₂CH₂OCH₂C≡CH	CF ₃	
Z1.009	ОН	OCH ₂ CH ₂ O-benzyl	CF ₃	
Z1.010	ОН	OCH ₂ CH ₂ ON=C(CH ₃) ₂	CF ₃	Smp.: 106-107°C
Z1.011	ОН	OCH ₂ CH ₂ OCH ₂ CH ₂ OCH ₃	CF ₃	
Z1.012	ОН	OCH ₂ CH(OCH ₃) ₂	CF ₃	Smp.: 53-54°C
Z1.013	ОН	OCH ₂ CH(OCH ₂ CH ₃) ₂	CF ₃	·
Z1.014	ОН		CF₃	amorph
Z1.015	ОН	OCH ₃	ÇF₃	
Z1.016	ОН	O CH ₃	CF₃	
Z1.017	ОН		CF₃	
Z1.018	ОН		CF₃	
Z1.019	ОН	O CH ₃	CF₃	
Z1.020	ОН	CH ₃ CH ₃	CF₃	

	Bsp.Nr.	Υ	R ₁	R ₂	Physik. Eigenschaften
\	Z1.021	ОН	0—	CF₃	Smp.: 124-125°C
	Z1.022	ОН	o— \ o	CF₃	wachsartig
	Z1.023	ОН	O-benzyl	CF ₃	Smp.: 96-97°C
	Z1.024	ОН	OCH₂CH₂SCH₃	CF₃	
	Z1.025	ОН	OCH ₂ CH ₂ SCH ₂ CH ₃	CF₃	
	Z1.026	ОН	OCH ₂ CH ₂ S(O) ₂ CH ₃	CF ₃	
	Z1.027	ОН	OCH ₂ CH ₂ S(O) ₂ CH ₂ CH ₃	CF ₃	
	Z1.028	ОН	SCH ₂ CH ₂ OCH ₃	CF₃	
	Z1.029	ОН	SCH₂CH₂OCH₂CH₃	CF ₃	
	Z1.030	ОН	OCH ₂ CH ₂ OC(O)CH ₃	CF ₃	
	Z1.031	ОН	OCH ₂ CH ₂ OC(O)-phenyl	CF₃	
	Z1.032	ОН	OCH ₂ CH ₂ OC(O)OCH ₂ CH ₃	CF₃	•
	Z1.033	ОН	OCH₂CH₂OC(O)NHCH₂CH₃	CF ₃	
	Z1.034	ОН	OCH ₂ CH ₂ NH ₂	CF ₃	•
	Z1.035	ОН	OCH₂CH₂NHC(O)CH₃	CF ₃	
	Z1.036	ОН	OCH₂CH₂NHC(O)CH₂CH₃	CF ₃	
	Z1.037	ОН	OCH ₂ CH ₂ NHC(O)CH(CH ₃) ₂	CF ₃	
	Z1.038	ОН	OCH₂CH₂NHC(O)-cyclopropyl	CF ₃	
	Z1.039	ОН	OCH ₂ CH ₂ NHC(O)C(CH ₃) ₃	CF ₃	
	Z1.040	ОН	OCH₂CH₂NHC(O)-phenyl	CF ₃	
	Z1.041	ОН	OCH ₂ CH ₂ NHC(O)OCH ₃	CF₃	
	Z1.042	ОН	OCH2CH2NHC(O)OCH2CH3	CF ₃	
	Z1.043	ОН	OCH ₂ CH ₂ NHC(O)NHCH ₃	CF ₃	
	Z1.044	ОН	OCH ₂ CH ₂ NHC(O)NHCH ₂ CH ₃	CF ₃	
	Z1.045	ОН	OCH ₂ CH ₂ NHC(O)N(CH ₃) ₂	CF ₃	
	Z1.046	ОН	OCH ₂ CH ₂ NHC(O)N(CH ₂ CH ₃) ₂	CF ₃	•
	Z1.047	ОН	NHCH₃	CF ₃	
	Z1.048	ОН	NHCH₂CH₃	CF₃	
	Z1.049	ОН	NHCH₂CH₂CH₃	CF ₃	
	Z1.050	ОН	NHCH₂CH₂CH₂CH₃	CF ₃	
	Z1.051	ОН	NHCH(CH ₃) ₂	CF ₃	
	Z1.052	ОН	NHC(CH₃)₃	CF₃	

				
Bsp.Nr.	<u>Y</u> _	R ₁	R ₂	Physik. Eigenschaften
Z1.053	ОН	NHCH ₂ -cyclopropyl	CF ₃	
Z1.054	ОН	NH-phenyl	CF₃	
Z1.055	ОН	NH-benzyl	CF ₃	
Z1.056	ОН	NH-CH ₂ CH=CH ₂	CF ₃	
Z1.057	ОН	NHCH ₂ CH≡CH ₂	CF ₃	
Z1.058	ОН	N(CH ₂ CH=CH ₂) ₂	CF ₃	
Z1.059	ОН	N(CH₂CH≡CH)₂	CF ₃	
Z1.060	ОН	N(CH ₃) ₂	CF ₃	Smp.: 53-54°C
Z1.061	ОН	N(CH ₂ CH ₃) ₂	CF ₃	viscoses Öl
Z1.062	ОН	N(CH ₂ CH ₂ CH ₃) ₂	CF ₃	
Z1.063	ОН	N(CH ₂ CH ₂ CH ₂ CH ₃) ₂	CF ₃	•
Z1.064	ОН	NHCH ₂ CH ₂ OH	CF ₃	
Z1.065	OEt	NHCH₂CH₂OCH₃	CF ₃	Öl
Z1.066	ОН	NHCH(CH₃)CH₃OCH₃	CF ₃	
Z1.067	ОН	NHCH ₂ CH(OCH ₃) ₂	CF ₃	
Z1.068	ОН	NHCH2CH(OCH2CH3)2	CF ₃	
Z1.069	ОН	$\overline{}$	CF₃	
		NH O		
Z1.070	OH	NHCH₂C(O)OCH₃	CF ₃	
Z1.071	ОН	NHCH(CH₃)C(O)OCH₃	CF ₃	
Z1.072	ОН	NHCH₂C(O)OCH₂CH₃	CF₃	•
Z1.073	ОН	NHCH(CH₃)C(O)OCH₂CH₃	CF₃	
Z1.074	ОН	'N	CF₃	Smp.: 115-116°C
Z1.075	ОН	'N O	CF₃	
Z1.076	ОН	CH ₃	CF₃	Smp.: 127-128 °C
		. CH ₃		

- 87 -

Bsp.Nr.	Υ	R ₁	R₂	Physik. Eigenschaften
Z1.07	7 OH	CH₃	CF₃	
		'NO		
		CH ₃		
Z1.078	в ОН	F F	CF ₃	
		'N_O		
Z1.079	OH e		CHF ₂	
		"NO	_	
Z1.08	ОН		CF₃	Smp.: 103-104°C
		'NS	-	·
Z1.08	1 OH	N	CF₃	
		'N		
Z1.082	2 OH	N CF ₃	CF₃	amorph
		'N		
Z1.08	з ОН	N	CF₃	
		'N N	J. 3	
Z1.084	+ OH	N CH₃	CF₃	
		'N	_	
71.00	- 04	~	05	
Z1.085	5 OH	'N]	CF₃	
Z1.086	s ОН	N(CH₃)C(O)H	CF₃	
Z1.087		N(CH ₃)C(O)CH ₃	CF₃	Smp.: 164-165°C
Z1.088		N(CH ₃)C(O)CH ₂ CH ₃	CF₃	Smp.: 76-77°C
Z1.089		N(CH ₃)C(O)-phenyl	CF₃	Smp.: 137-138°C
Z1.090		N(CH ₃)C(O)-benzyl	CF₃	Smp.: 154-156°C
Z1.091		· N(CH ₂ CH ₃)C(O)CH ₃	CF₃	Onp., 104-100 O
Z1.092		OH	CF₃	Smp.: 220°C
21.032		011	J i 3	omp ZZV O

Bsp.Nr.	Υ	R ₁	R ₂	Physik. Eigenschaften
Z1.093	ОН	Cl	CF ₃	Smp.: 166-167°C
Z1.094	ОН	OCH₃	CF₃	Smp.: 139-140°C
Z1.095	ОН	OCH₂CH₃	CF ₃	Smp.: 112-114°C
Z1.096	ОН	,	OCH ₂ CF ₃	Smp.: 133-134°C
		'N O		
Z1.097	ОН	ОН	CF ₃	Smp.: 220°C
Z1.098	ОН	CI	CF ₃	Smp.: 166-167°C
Z1.099	ОН	OCH₃	CF ₃	Smp.: 139-140°C
Z1.100	ОН	OCH₂CH₃	CF ₃	Smp.: 112-114°C
Z1.101	OEt	CI	CF ₃	Öl
Z1.102	OEt	CH₃	CF ₃	Öl
Z1.103	OEt	CH₂Br	CF ₃	Öl
Z1.104	OEt	CHBr ₂	CF₃	
Z1.105	OEt	C(=O)H	CF₃	•
Z1.106	ОН	CH₂OH	CF₃	
Z1.107	OEt	CH₂CI	CF ₃	
Z1.108	OEt	CH₂OSO₂CH₃	CF₃	
Z1.109	ОН	CH ₂ O(CO)CH ₃	CF ₃	
Z1.110	ОН	CH ₂ O(CO)C(CH ₃) ₃	CF ₃	
Z1.111	ОН	CH₂O(CO)Phenyl	CF ₃	
Z1.112	ОН	CH ₂ O(CO)OCH ₂ CH ₃	CF ₃	
Z1.113	ОН	CH₂OCĤ₃	CF₃	
Z1.114	ОН	CH ₂ OCH ₂ CH ₃	CF ₃	
Z1.115	ОН	CH₂CH₂OCH₃	CF₃	
Z1.116	ОН	CH ₂ CH ₂ OCH ₂ CH ₃	CF₃	
Z1.117	ОН	CH₂CH₂CH₂OCH₃	CF₃	
Z1.118	ОН	CH(CH₃)CH₂OCH₃	CF₃	
Z1.119	ОН	CH2OCH2CH=CH2	CF₃	
Z1.120	ОН	CH ₂ OCH ₂ C≡CH	CF₃	
Z1.121	ОН	CH₂OCH₂C≡CCH₃	CF₃	
Z1.122	ОН	CH₂OCH₂CH₂C≡CH	CF₃	
Z1.123	ОН	CH₂OCH₂CH₂C≡CCH₃	CF₃	
Z1.124	ОН	- CH₂O-benzyl	CF₃	
Z1.125	ОН	CH ₂ OCH ₂ CF ₃	CF₃	

Bsp.Nr.	Υ	R ₁	R ₂	Physik. Eigenschaften
Z1.126	ОН	CH₂OCH₂CH₂F	CF ₃	
Z1.127	ОН	CH₂OCH₂CH₂CI	CF ₃	
Z1.128	OH	CH₂OCH₂CH₂Br	CF ₃	
Z1.129	ОН	CH ₂ OCH ₂ CH ₂ C≡N	CF ₃	
Z1.130	ОН	CH ₂ OCH ₂ C≡N	CF ₃	
Z1.131	ОН	CH₂OCH₂OCH₃	CF ₃	
Z1.132	OH	CH₂OCH₂OCH₂CH₃	CF₃	
Z1.133	ОН	CH₂OCH₂CH₂OH		
Z1.134	ОН	CH2OCH2CH2OCH3	CF ₃	wachsartige Kritalle
Z1.135	ОН	CH2OCH2CH2OCH2CH3	CF ₃	-
Z1.136	ОН	CH2OCH2CH2CH2OCH3	CF₃	
Z1.137	ОН	CH ₂ OCH(CH ₃)CH ₂ OCH ₃	CF ₃	
Z1.138	ОН	CH2OCH2CH2OCH2CH=CH2	CF₃	
Z1.139	ОН	CH2OCH2CH2OCH2C≡CH	CF₃	
Z1.140	ОН	CH ₂ OCH ₂ CH ₂ O-benzyl	CF₃	
Z1.141	ОН	CH2OCH2CH2ON=C(CH3)2	CF₃	
Z1.142	ОН	CH2OCH2CH2OCH2CH2OCH3	CF₃	
Z1.143	ОН	CH ₂ OCH ₂ CH(OCH ₃) ₂	CF ₃	
Z1.144	ОН	CH2OCH2CH(OCH2CH3)2	CF₃	
Z1.145	ОН	<i>></i> -	CF₃	
		'CH2-0		
Z1.146	ОН	O CH ₃	CF ₃	
		'CH ₂ —O O CH ₃		
Z1.147	ОН	O CH ₃	CF ₃	
		'CH2-0 0 CH3		
Z1.148	ОН	'CH ₂ —O	CF ₃	
Z1.149	ОН	,CH2-0	CF₃	

Bsp.Nr.	Υ	R ₁	R ₂	Physik. Eigenschaften
Z1.150	ОН	,O√CH ₃	CF ₃	
		<u></u>		
		'CH ₂ —O		
Z1.151	ОН	C / CH ₃	CF ₃	
		CH₃		
		'CH ₂ —0		
Z1.152	ОН	^_	CF₃	
21.132	011	< <i>i</i>	0.3	
		'CH₂—Ó		
Z1.153	ОН	79	CF₃	
		'CH ₂ —O		
Z1.154	ОН	49	CF ₃	
		CH₂OCH₂		
Z1.155	ОН	CH ₂ OCH ₂ CH ₂ SCH ₃	CF ₃	•
Z1.156	ОН	. CH ₂ OCH ₂ CH ₂ SCH ₂ CH ₃	CF₃	
Z1.157	ОН	CH₂OCH₂CH₂S(O)₂CH₃	CF₃	
Z1.158	ОН	CH ₂ OCH ₂ CH ₂ S(O) ₂ CH ₂ CH ₃	CF ₃	
Z1.159	ОН	CH₂SCH₂CH₂OCH₃	CF ₃	
Z1.160	ОН	CH ₂ SCH ₂ CH ₂ OCH ₂ CH ₃	CF ₃	
Z1.161	ОН	CH ₂ OCH ₂ CH ₂ OC(O)CH ₃	CF₃	
Z1.162	ОН	CH ₂ OCH ₂ CH ₂ OC(O)-phenyl	CF₃	
Z1.163	ОН	CH ₂ OCH ₂ CH ₂ OC(O)OCH ₂ CH ₃	CF₃	
Z1.164	ОН	CH ₂ OCH ₂ CH ₂ OC(O)NHCH ₂ CH ₃	CF₃	
Z1.165	ОН	CH ₂ OCH ₂ CH ₂ NH ₂	CF₃	
Z1.166	ОН	CH ₂ OCH ₂ CH ₂ NHC(O)CH ₃	CF₃	
Z1.167	ОН	CH ₂ OCH ₂ CH ₂ NHC(O)CH ₂ CH ₃	CF₃	
Z1.168	ОН	CH ₂ OCH ₂ CH ₂ NHC(O)CH(CH ₃) ₂	CF₃	
Z1.169	OH	CH₂OCH₂CH₂NHC(O)-cyclopropyl	CF₃	
Z1.170	OH	CH ₂ OCH ₂ CH ₂ NHC(O)C(CH ₃) ₃	CF₃	
Z1.171	OH	CH ₂ OCH ₂ CH ₂ NHC(O)-phenyl	CF₃	
Z1.172	OH	CH ₂ OCH ₂ CH ₂ NHC(O)OCH ₃	CF₃	
Z1.173	ОН	CH2OCH2CH2NHC(O)OCH2CH3	CF₃	

 		•		
Bsp.Nr.	Υ	R ₁	R ₂	Physik. Eigenschaften
Z1.174	ОН	CH ₂ OCH ₂ CH ₂ NHC(O)NHCH ₃	CF₃	
Z1.175	ОН	CH2OCH2CH2NHC(O)NHCH2CH3	CF ₃	
Z1.176	ОН	CH2OCH2CH2NHC(O)N(CH3)2	CF ₃	
Z1.177	ОН	CH ₂ OCH ₂ CH ₂ NHC(O)N(CH ₂ CH ₃) ₂	CF ₃	
Z1.178	ОН	CH ₂ N(SO ₂ CH ₃)CH ₃	CF ₃	
Z1.179	ОН	CH ₂ N(SO ₂ CH ₃)CH ₂ CH ₃	CF ₃	
Z1.180	ОН	CH ₂ N(SO ₂ CH ₂ CH ₃)CH ₂ CH ₃	CF ₃	
Z1.181	ОН	CH ₂ N(SO ₂ CH ₃)CH ₂ CF ₃	CF ₃	
Z1.182	ОН	CH2N(SO2CH3)CH2CHOCH3	CF ₃	
Z1.183	ОН	CH ₂ N(SO ₂ CH ₃)CH ₂ cyclopropyl	CF ₃	
Z1.184	ОН	CH₂N(SO₂CH₃)phenyl	CF ₃	•
Z1.185	ОН	CH₂N(SO₂CH₃)benzyl	CF ₃	
Z1.186	ОН	CH ₂ N(SO ₂ CH ₃)CH ₂ CH=CH ₂	CF ₃	
Z1.187	ОН	CH ₂ N(SO ₂ CH ₃)CH ₂ CH≡CH ₂	CF ₃	
Z1.188	ОН	CH₂N(CH₃)C(O)H	CF₃	
Z1.189	ОН	CH₂N(CH₃)C(O)CH₃	CF₃	
Z1.190	ОН	CH₂N(CH₃)C(O)CH₂CH₃	CF ₃	
Z1.191	ОН	CH₂N(CH₃)C(O)-phenyl	CF₃	
Z1.192	ОН	CH₂N(CH₃)C(O)-benzyl	CF ₃	
Z1.193	ОН	CH₂N(CH₂CH₃)C(O)CH₃	CF ₃	
Z1.194	ОН		CF₃	
		'CH ₂		
Z1.195	ОН	/	CF ₃	
		'CH ₂ O		
Z1.196	ОН	,0—	CF₃	
		,CH		
	.	'CH ₂ '	05	
Z1.197	OH	C(OCH ₂ CH ₃)=CH ₂	CF₃	
Z1.198	OH	CH₂C(O)CH₃	ÇF₃	
Z1.199	ОН	C(OCH₃)₂	CF₃	
Z1.200	ОН		CF₃	
		CHOÓ		
		CH₃		

Bsp.Nr.	Υ	R ₁	R ₂	Physik. Eigenschaften
Z1.201	ОН	CH₂C(O)CH₂OCH₃	CF ₃	
Z1.202	ОН	CH ₂ C(O)CH ₂ OCH ₂ CH ₂ OCH ₃	CF ₃	
Z1.203	OH	$CH_2C(O)CH_2N(SO_2CH_3)CH_3$	CF ₃	
Z1.204	OH	C(CH ₂ OCH ₃)=CH ₂	CF ₃	
Z1.205	ОН	'c	CF ₃	
Z1.206	ОН	'CHO	CF ₃	
Z1.207	ОН	.c	CF₃	
Z1.208	ОН	'CHO——	CF₃	
Z1.209	ОН	CH3	CF ₃	•

Biologische Beispiele

Beispiel B1: Herbizidwirkung vor dem Auflaufen der Pflanzen (pre-emergente Wirkung)
Monokotyle und dikotyle Testpflanzen werden in Töpfen oder Saatwannen in Standarderde angesät. Unmittelbar nach der Saat werden die Prüfsubstanzen als wäßrige Suspension (hergestellt aus einem Spritzpulver (Beispiel F3, b) gemäß WO 97/34485) oder als Emulsion (hergestellt aus einem Emulsionskonzentrat (Beispiel F1, c) gemäß WO 97/34485) in einer Dosierung von 250 g/ha aufgesprüht. Anschließend werden die Testpflanzen im Gewächshaus unter optimalen Bedingungen kultiviert. Nach 4 Wochen Testdauer wird der Versuch ausgewertet mit einer elfstufigen Notenskala (10 = vollständige Schädigung, 0 = keine Wirkung). Bonitumoten von 10 bis 7 (insbesondere 10 bis 8) bedeuten eine sehr gute bis gute Herbizidwirkung.

Table B1: Pre-emergente Wirkung:

Bsp.Nr.	g/ha	Panicum	Digitaria Echinochloa		Scirpus	Abutilon	Amaranthus
1.012	250	10	9	5	7	10	5

Bsp.Nr.	g/ha		Digitaria		Scirpus	Abutilon	
•		Panicum	_	Echinochloa	•		Amaranthus
1.021	250	9	3	3	7	10	7
1.073	250	10	10	10	nt	10	6
1.075	250	10	10	10	7	9	10
1.079	250	10	10	10	4	10	10
2.059	250	7	7	8	nt	10	7
2.073	250	10	7	9	4	9	9
2.078	250	10	10	10	0	10	8
2.088	250	9	9	7	0	9	nt
2.089	250	9	8	8	nt	9	8
3.069	250	10	10	10	5	10	10
3.071	250	10	10	10	8	9	8
3.072	250	9	10	10	7	9	3
3.073	250	10	9	7	7	5	0

Beispiel B2: Post-emergente Herbizid-Wirkung

Monokotyle und dikotyle Testpflanzen werden im Gewächshaus in Kunststofftöpfen mit Standarderde angezogen und im 4- bis 6-Blattstadium mit einer wäßrigen Suspension der Prüfsubstanzen der Formel I, hergestellt aus einem 25 %-igen Spritzpulver (Beispiel F3, b) gemäß WO 97/34485) oder mit einer Emulsion der Prüfsubstanzen der Formel I, hergestellt aus einem 25 %-igen Emulsionskonzentrat (Beispiel F1, c) gemäß WO 97/34485), besprüht, entsprechend einer Dosierung von 125 bzw. 250 g AS/ha (500 I Wasser/ha). Anschließend werden die Testpflanzen im Gewächshaus unter optimalen Bedingungen weiterkultiviert. Nach ca. 18 Tagen Testdauer wird der Versuch ausgewertet mit einer elfstufigen Notenskala (10 = vollständige Schädigung, 0 = keine Wirkung). Bonitumoten von 10 bis 7 (insbesondere 10 bis 8) bedeuten eine sehr gute bis gute Herbizidwirkung. In diesem Versuch zeigen die Verbindungen der Formel I allgemeine eine starke Herbizidwirkung.

Table B2: Post-emergente Wirkung

Table bz. Post-emergence Winding									
Bsp.Nr.	g/ha	Panicum	Echinochloa	Euphorbia	Xanthium	Amaranthus	Cheno- podium	Stellaria	
1.003	250	8	8	6	9	9	10	10	
1.012	250	7	8	9	8	9	8	7	
1.021	250	6	6	7	9	9	8	7	
1.073	250	10	9	9	9	10	8	9	
1.075	250	10	8	8	7	10	10	8	
1.079	250	3	7	8	7	8	10	10	
1.081	250	10	9	9	9	10	9	6	
1.090	250	8	7	nt	8	8	9	6	
2.003	250	9	9	9	8	8	8	9	
2.021	250	9	9	9	8	9	8	7	
2.059	250	5	8	6	7	7	10	8	
2.073	250	9	9	9	9	9	8	7	
2.078	250	5	8	7	7	7	10	10	
2.080	250	9	9	9	9	. 9	6	7	
2.089	250	8	7	8	7	. 0	9	8	
2.095	250	8	8	8	7	3	9	9	
2.096	250	9	9	9	9	9	8 .	5	
3.021	250	. 8	8	9	4	7	7	7	
3.068	250	10	9	9	9	10	9	9	
3.069	250	8	7	5	8	8	10	7	
3.070	250	7	8	7	5	7	9	5	
3.071	250	9	8	7	8	8	10	8	
3.072	250	8	7	7	8	7	9	8	
3.073	250	7	8	7	7	4	9	7	
3.074	250	7	7	7	8	2	9	8	
3.075		5	7	7	8	2	9	8	
3.076	250	7	7	6	8	. 7	9	7	

Beispiel B3: Vergleichsversuch gegen eine Verbindung aus dem Stand der Technik: Postemergente Herbizid-Wirkung:

Die postemergente herbizide Wirkung der erfindungsgemäßen Verbindung Nr. 1.095 wurde mit der Verbindung A, die als Verb. Nr. 1.005 auf der Seite 15, Tabelle 1 von EP-A- 0353187 beschrieben ist, verglichen:

Tabelle B3: postemergente Wirkung:

Verb.	g/ha	Weizen	Mais	Sida	Ipomea	Ama-	Poly-	Sinapis	Stellaria	Galium
Nr.						ranthus	gonum			
1.095	125	0	0	5	7	7	7	7	8	6
Α	125	0	0	2	2	2	nt	6	9	1

Den Resultaten der Tabelle B3 läßt sich entnehmen, daß die erfindungsgemäße Verbindung Nr. 1.095 bei einer Aufwandmenge von 125 g/ha eine wesentlich bessere herbizide Wirkung auf die getesteten Unkräuter entfaltet als die Verbindung 1.005 aus dem Stand der Technik. Diese Wirkungssteigerung war aufgrund der strukturellen Ähnlichkeit dieser Verbindungen nicht zu erwarten.

Patentansprüche:

1. Verbindungen der Formel I

worin

 R_1 für $-R_4$ - X_1 - R_5 , $-NR_6R_7$, $-X_2$ - R_8 , $-X_3$ - L_1 - R_9 , C_1 - C_6 -Haloalkyl, C_2 - C_6 -Haloalkenyl, C_2 - C_6 -Haloalkinyl oder Halogen steht;

L₂, L₄, L₆, L₈, L₁₄ und L₁₆ unabhängig voneinander C₁-C₄-Alkylen, das ein- zwei- oder dreifach durch C₁-C₄-Alkyl, Halogen oder C₁-C₄-Alkoxy substituiert sein kann, wobei an diese C₁-C₄-Alkylengruppe eine C₂-C₅-Alkylengruppe spirocyclisch angebunden sein kann, wobei diese C₂-C₅-Alkylengruppe ihrerseits ein- oder zweifach durch Sauerstoff, Schwefel, Sulfinyl oder Sulfonyl unterbrochen sein kann und durch C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiert sein kann; bedeutet;

 L_3 , L_5 , L_7 , L_9 , und L_{15} unabhängig voneinander C_1 - C_4 -Alkylen, das ein- zwei- oder dreifach durch C_1 - C_4 -Alkyl, Halogen oder C_1 - C_4 -Alkoxy substituiert sein kann; bedeutet;

 R_2 Halogen, C_1 - C_4 -Halogenalkyl, Cyano, C_1 - C_3 -Halogenalkoxy, C_1 - C_4 -Alkylthio, C_1 - C_4 -Alkylsulfonyl, C_1 - C_4 -Halogenalkylthio, C_1 - C_4 -Halogenalkylsulfonyl bedeutet;

 R_4 für eine C_1 - C_6 -Alkylen-, C_2 - C_6 -Alkenylen- oder C_2 - C_6 -Alkinylenkette steht, welche durch Halogen, Hydroxy, C_1 - C_6 -Alkoxy, C_3 - C_6 -Cycloalkyloxy, C_1 - C_6 -Alkoxy- C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy oder C_1 - C_2 -Alkylsulfonyloxy ein- zwei- oder dreifach substituiert sein kann;

 X_1 Sauerstoff, -OC(O)-, -C(O)-, -C(=NR_{14a})-, -C(O)O-, -C(O)NR_{14b}-, -OC(O)O-, -N(R₁₀)-O-, -O-NR₁₁-, Thio, Sulfinyl, Sulfonyl, -SO₂NR₁₂-, -NR₁₃SO₂-, -N(SO₂R_{14c})-, -N(R_{14d})C(O)- oder -NR₁₄- bedeutet;

 R_{10} , R_{11} , R_{12} , R_{13} , R_{14b} , R_{14d} und R_{14} unabhängig voneinander Wasserstoff, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Alkoxycarbonyl, C_1 - C_6 -Alkoxy- C_1 - C_6 -Alkoxy- C_1 - C_6 -Alkoxy- C_1 - C_6 -Alkyl substituiert durch C_1 - C_6 -Alkoxy, oder Benzyl oder Phenyl bedeuten, wobei Phenyl und Benzyl ihrerseits ein- zwei- oder dreifach durch C_1 - C_6 -Alkyl, C_1 - C_6 -

Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, Halogen, Cyano, Hydroxy, oder Nitro substituiert sein können;

 R_{14a} Hydroxy, C_1 - C_6 -Alkoxy, C_3 - C_6 -Alkenyloxy, C_3 - C_6 -Alkinyloxy, Benzyloxy; R_{14c} C_1 - C_6 -Alkyl;

R₅ für Wasserstoff, C₁- C₈-Alkyl oder eine C₁-C₈-Alkyl-, C₃-C₈-Alkenyl- oder C₃-C₈-Alkinyloder C₃-C₆-Cycloalkylgruppe steht, welche durch Halogen, Hydroxy, Amino, Formyl, Nitro, Cyano, Mercapto, Carbamoyl, C₁-C₆-Alkoxy, C₁-C₆-Alkoxycarbonyl, C₂-C₆-Alkenyl, C₂-C₆-Halogenalkenyl, C₂-C₆-Alkinyl, C₂-C₆-Halogenalkinyl, C₃-C₆-Cycloalkyl, durch Halogen substituiertes C₃-C₆-Cycloalkyl, oder durch C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy, C₁-C₆-Halogenalkoxy, C₃-C₆-Halogenalkenyloxy, Cyano-C₁-C₆-alkoxy, C₁-C₆-Alkoxy-C₁-C₆-alkoxy, C_1-C_6 -Alkoxy- C_1-C_6 -alkoxy- C_1-C_6 -alkoxy, C_1-C_6 -Alkylsulfinyl- C_1 - C_6 -alkoxy, C_1 - C_6 -Alkylsulfonyl- C_1 - C_6 -alkoxy, C_1 - C_6 -Alkoxycarbonyl- C_1 - C_6 -alkoxy, C_1 - C_6 -Alkoxycarbonyl, C_1 - C_6 -Alkylcarbonyl, C_1 - C_6 -Alkylthio, C_1 - C_6 -Alkylsulfinyl, C_1 - C_6 -Alkylsulfonyl, C₁-C₆-Halogenalkylthio, C₁-C₆-Halogenalkylsulfinyl, C₁-C₆-Halogenalkylsulfonyl, oder durch Benzyloxy, Benzylthio, Benzylsulfinyl, Benzylsulfonyl, C₁-C₆-Alkylamino, Di-(C₁-C₆-Alkyl)amino, $R_{19}R_{20}C=NO_{-}$, $R_{15}S(O)_{2}O_{-}$, $R_{16}N(R_{17})SO_{2-}$, Rhodano, Phenyl, Phenoxy, Phenylthio, Phenylsulfinyl oder Phenylsulfonyl ein-, zwei- oder dreifach substituiert ist; wobei die Phenyl oder Benzyl enthaltenden Gruppen ihrerseits durch eine oder mehrere C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, Halogen, Cyano, Hydroxy oder Nitro Gruppen substituiert sein können;

R₁₅, R₁₆, R₁₇, R₁₉ und R₂₀ unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxycarbonyl, C₁-C₆-Alkylcarbonyl, C₁-C₆-Alkoxy-C₁-C₆-alkyl, oder C₁-C₆-Alkoxy-C₁-C₆-alkyl substituiert durch C₁-C₆-Alkoxy, oder Benzyl oder Phenyl bedeuten, wobei Phenyl und Benzyl ihrerseits ein- zwei- oder dreifach durch C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, Halogen, Cyano, Hydroxy, oder Nitro substituiert sein können; oder R₅ steht für ein drei- bis zehngliedriges monocyclisches oder aneliertes bicyclisches Ringsystem, welches aromatisch, gesättigt oder teilweise gesättigt sein kann und 1 bis 4 Heteroatome ausgewählt aus Stickstoff, Sauerstoff und Schwefel enthalten kann, wobei das Ringsystem direkt oder über eine C₁-C₄-Alkylen, C₂-C₄-Alkenylen -, C₂-C₄-Alkinylen-, -N(R₁₈)-C₁-C₄-Alkylen-, -S(O)-C₁-C₄-Alkylen-, oder -SO₂-C₁-C₄-Alkylen-Gruppe an den Substituenten X₁ gebunden ist, wobei jedes Ringsystem nicht durch -C(=O)-, -C(=S)-, -C(=NR_{5a})-, -(N=O)-, -S(=O)- oder -SO₂- unterbrochen sein darf und jedes Ringsystem nicht mehr als 2 Sauerstoffatome und nicht mehr als zwei Schwefelatome enthalten kann, und das Ringsystem selbst durch C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₂-C₆-

Alkenyl, C2-C6-Halogenalkenyl, C2-C6-Alkinyl, C2-C6-Halogenalkinyl, C1-C6-Alkoxy, Hydroxy, C₁-C₆-Halogenalkoxy, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy, Mercapto, C₁-C₆-Alkylthio, C₁-C₆- $Halogenal kylthio,\ C_3-C_6-Alkenylthio,\ C_3-C_6-Halogenal kenylthio,\ C_3-C_6-Alkinylthio,\ C_2-C_5-Alkinylthio,\ C_6-Alkinylthio,\ C_7-C_6-Alkinylthio,\ C_8-C_6-Alkinylthio,\ C_8-C_6-Alkinylthi$ Alkoxyalkylthio, C₃-C₅-Acetylalkylthio, C₃-C₆-Alkoxycarbonylalkylthio, C₂-C₄-Cyanoalkylthio, C₁-C₆-Alkylsulfinyl, C₁-C₆-Halogenalkylsulfinyl, C₁-C₆-Alkylsulfonyl, C₁-C₆-Halogenalkylsulfonyl, Aminosulfonyl, C1-C2-Alkylaminosulfonyl, Di-(C1-C2-Alkyl)aminosulfonyl, Di-(C1-C4-Alkyl)amino, Halogen, Cyano, Nitro, Phenyl und Benzylthio ein- zwei- oder dreifach substituiert sein kann, wobei Phenyl und Benzylthio ihrerseits am Phenylring durch C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Halogen, Cyano oder Nitro substituiert sein können, und wobei die Substituenten am Stickstoff im heterocyclischen Ring verschieden von Halogen sind; R_{5a} C₁-C₆-Alkyl, Hydroxy, C₁-C₆-Alkoxy, Cyano oder Nitro bedeutet; R₁₈ Wasserstoff, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxycarbonyl, C₁-C₆-Alkylcarbonyl, C_1 - C_6 -Alkoxy- C_1 - C_6 -alkyl, oder C_1 - C_6 -Alkoxy- C_1 - C_6 -alkyl substituiert durch C_1 - C_6 -Alkoxy, oder Benzyl oder Phenyl bedeutet, wobei Phenyl und Benzyl ihrerseits ein-, zwei- oder dreifach durch C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkoxy, Halogen, Cyano, Hydroxy, oder Nitro substituiert sein können; $R_6 \ Wasserstoff, \ C_1-C_6-Alkyl, \ C_3-C_6-Alkenyl, \ C_3-C_6-Alkinyl, \ C_1-C_6-Halogenalkyl, \ Hydroxy, \ C_1-C_6-Alkyl, \ C_3-C_6-Alkinyl, \ C_1-C_6-Alkyl, \ C_3-C_6-Alkinyl, \ C_1-C_6-Alkyl, \ C_1-C_6-$ C₆-Alkoxy, -C(O)R₁₉ oder -C(S)R₂₀ bedeutet, wobei R₁₉ und R₂₀ unabhängig voneinander Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Cycloalkyl, Phenyl, Heteroaryl, C_1 - C_6 -Alkoxy, C_3 - C_6 -Alkenyloxy, Benzyloxy, C_1 - C_4 -Alkylthio oder eine Gruppe $NR_{21}R_{22}$ bedeuten, und R_{21} und R_{22} unabhängig voneinander für Wasserstoff, C1-C6-Alkyl, C3-C6-Alkenyl, C3-C6-Alkinyl oder Phenyl stehen, das seinerseits ein-, zwei oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein kann; oder R21 zusammen mit R22 und dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein kann; oder R₆ steht für -L₂-X₄-R₂₄; wobei

 X_4 für Sauerstoff, -NR₂₃-, -S-, -S(O)- oder S(O)₂ - steht;

 R_{23} Wasserstoff, C_1 - C_6 -Alkoxy, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl bedeutet oder Phenyl, das ein- zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkoxy, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino substituiert sein kann, bedeutet;

R₂₄ Wasserstoff oder eine C₁-C₆-Alkyl-, C₃-C₆-Alkenyl- oder C₃-C₆-Alkinylgruppe bedeutet, wobei diese Gruppen ein-, zwei- oder dreifach durch Halogen, Hydroxy, C₁-C₆-Alkoxy, C₁-C₃-Alkoxy-C₁-C₃-Alkoxy, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, Cyano, C(X₅)NR₂₅R₂₆, C₃-C₆-Cycloalkyl, Phenyl, Phenoxy oder durch 5-oder 6-gliedriges Heteroaryl oder Heteroaryloxy substituiert sein können, wobei Heteroaryl oder Heteroaryloxy ihrerseits einfach durch Sauerstoff oder Schwefel oder ein-, zwei- oder dreifach durch Stickstoff unterbrochen und entweder via ein C-Atom oder ein N-Atom an die C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinylgruppe gebunden sein können, und wobei die Phenyl und Heteroaryl enthaltenden Gruppen ein-, zwei oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein können;

R₂₄ bedeutet C(O)-R₇₄ oder C(S)-R₇₅;

X₅ Sauerstoff, Schwefel, -S(O)- oder S(O)₂- bedeutet;

 R_{25} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl oder Phenyl bedeutet, das ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino; substituiert sein kann;

R₂₆ Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl bedeutet; oder R₂₅ zusammen mit R₂₆ und dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino; substituiert sein kann;

oder R₆ steht für -L₃-R₂₇;

R₂₇ für Formyl, C₁-C₆-Alkylcarbonyl, C₃-C₆-Cycloalkylcarbonyl, Benzoyl, C₁-C₆-Alkoxycarbonyl, Cyano, C(X₆)NR₂₈R₂₉, Phenyl oder Heteroaryl steht, wobei Benzoyl und Phenyl ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Alkylsulfonyl, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino; und wobei Heteroaryl ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro oder C₁-C₄-Alkoxycarbonyl; substituiert sein kann; oder R₂₇ bedeutet C₃-C₆-Cycloalkyl oder C₅-C₆-Cycloalkenyl, die ihrerseits ein-, zwei- oder dreifach durch C₁-C₄-Alkyl, Halogen oder C₁-C₄-Alkoxy substituiert sein können;

X₆ Sauerstoff, Schwefel, -S(O)- oder S(O)₂- bedeutet;

 R_{28} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl oder Phenyl bedeutet, das ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino; substituiert sein kann;

 R_{29} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl oder C_3 - C_6 -Alkinyl bedeutet; oder R_{28} zusammen mit R_{29} und dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkoxy, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino; substituiert sein kann;

 R_7 Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl, C_1 - C_6 -Halogenalkyl, C_3 - C_6 -Cycloalkyl, Phenyl, Heteroaryl, $C(X_7)R_{30}$ oder $NR_{33}R_{34}$ bedeutet;

X7 Sauerstoff oder Schwefel bedeutet;

 R_{30} für Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Cycloalkyl, Phenyl, Heteroaryl, C_1 - C_6 -Alkoxy, C_3 - C_6 -Alkenyloxy, Benzyloxy, C_1 - C_4 -Alkylthio oder eine Gruppe $NR_{31}R_{32}$ steht;

R₃₁ und R₃₃ unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl oder Phenyl bedeutet, das ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein kann;

R₃₂ und R₃₄ unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl bedeutet; oder R₃₁ zusammen mit R₃₂ oder R₃₃ zusammen mit R₃₄ jeweils mit dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein kann;

oder R₇ steht für -L₄-X₈-R₃₅; wobei

X₈ für Sauerstoff, -NR₃₆-, -S-, -S(O)- oder S(O)₂ - steht;

 R_{36} Wasserstoff, C_1 - C_6 -Alkoxy, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl bedeutet oder Phenyl, das ein- zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkoxy, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino substituiert sein kann, bedeutet;

R₃₅ Wasserstoff oder eine C₁-C₆-Alkyl-, C₃-C₆-Alkenyl- oder C₃-C₆-Alkinylgruppe bedeutet, wobei diese Gruppen ein-, zwei- oder dreifach durch Halogen, Hydroxy, C₁-C₆-Alkoxy, C₁-C₃-Alkoxy-C₁-C₃-alkoxy, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy, C₁-C₆-Alkylsthio, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, Cyano, C(X₉)NR₃₇R₃₈, C₃-C₆-Cycloalkyl, Phenyl, Phenoxy oder durch 5-oder 6-gliedriges Heteroaryl oder Heteroaryloxy substituiert sein können, wobei Heteroaryl oder Heteroaryloxy ihrerseits einfach durch Sauerstoff oder Schwefel oder ein-, zwei- oder dreifach durch Stickstoff unterbrochen und entweder via ein C-Atom oder ein N-Atom an die C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinylgruppe gebunden sein können, und wobei die Phenyl und Heteroaryl enthaltenden Gruppen ein-, zwei oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein können;

X₉ Sauerstoff, Schwefel, -S(O)- oder S(O)₂- bedeutet;

 R_{37} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl oder Phenyl bedeutet, das ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Alkylsulfonyl oder C_1 - C_4 -Alkylcarbonylamino; substituiert sein kann;

R₃₈ Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl bedeutet; oder R₃₇ zusammen mit R₃₈ und dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino; substituiert sein kann;

oder R₇ steht für -L₅-R₃₉;

R₃₉ für Formyl, C₁-C₆-Alkylcarbonyl, C₃-C₆-Cycloalkylcarbonyl, Benzoyl, C₁-C₆-Alkoxycarbonyl, Cyano, C(X₁₀)NR₄₀R₄₁, Phenyl oder Heteroaryl steht, wobei Benzoyl und Phenyl ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Alkylsulfonyl, C₁-C₄-Alkylcarbonylamino; und wobei Heteroaryl ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro oder C₁-C₄-Alkoxycarbonyl; substituiert sein kann; oder R₃₉ bedeutet C₃-C₆-Cycloalkyl oder C₅-C₆-Cycloalkenyl, die ihrerseits ein-, zwei- oder dreifach durch C₁-C₄-Alkyl, Halogen oder C₁-C₄-Alkoxy substituiert sein können;

X₁₀ Sauerstoff, Schwefel, -S(O)- oder S(O)₂- bedeutet;

 R_{40} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl oder Phenyl bedeutet, das ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino; substituiert sein kann;

R₄₁ Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl bedeutet; oder R₄₀ zusammen mit R₄₁ und dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein kann;

oder R_6 und R_7 bilden zusammen mit dem Stickstoffatom, an das sie gebunden sind, ein carbocylisches 3- bis 7-gliedriges, gesättigtes oder teilweise gesättigtes oder ungesättigtes

monocyclisches oder bicyclisches Ringsystem, das einfach durch Sauerstoff, einfach durch Schwefel, einfach bis zu dreifach durch Stickstoff und/oder ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkoxy, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro oder C_1 - C_4 -Alkoxycarbonyl substituiert sein kann; wobei jedes Ringsystem nicht durch -C(=0)-, -C(=S)-, $-C(=NR_{5a})$ -, -(N=0)-, -S(=0)- oder $-SO_2$ - unterbrochen sein darf R_{5a} C_1 - C_6 -Alkyl, Hydroxy, C_1 - C_6 -Alkoxy, Cyano oder Nitro bedeutet; X_2 Sauerstoff, $-NR_{42}$ - Schwefel, -S(0)- oder $S(0)_2$ - bedeutet; R_{42} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl, C_1 - C_6 -Halogenalkyl, C_3 - C_6 -Cycloalkyl, Phenyl, Heteroaryl, $C(X_{11})R_{43}$ oder $NR_{46}R_{47}$ bedeutet; X_{11} Sauerstoff oder Schwefel bedeutet;

R₄₃ für Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, Phenyl, Heteroaryl, C₁-C₆-Alkoxy, C₃-C₆-Alkenyloxy, Benzyloxy, C₁-C₄-Alkylthio oder eine Gruppe NR₄₄R₄₅ steht; R₄₄ und R₄₆ unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl oder Phenyl bedeutet, das ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-

R₄₅ und R₄₇ unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl bedeutet; oder R₄₄ zusammen mit R₄₅ oder R₄₆ zusammen mit R₄₇ jeweils mit dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino; substituiert sein kann;

oder R₄₂ steht für -L₆-X₁₂-R₄₈; wobei

Alkylcarbonylamino substituiert sein kann;

 X_{12} für Sauerstoff, -NR₄₉-, -S-, -S(O)- oder S(O)₂ - steht;

 R_{49} Wasserstoff, C_1 - C_6 -Alkoxy, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl bedeutet oder Phenyl, das ein- zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkoxy, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino substituiert sein kann, bedeutet;

R₄₈ eine C₁-C₆-Alkyl-, C₃-C₆-Alkenyl- oder C₃-C₆-Alkinylgruppe bedeutet, wobei diese Gruppen ein-, zwei- oder dreifach durch Halogen, Hydroxy, C₁-C₆-Alkoxy, C₁-C₃-Alkoxy-C₁-C₃-alkoxy, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy, C₁-C₆-Alkylthio, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfinyl, Cyano, C(X₁₃)NR₅₀R₅₁, C₃-C₆-Cycloalkyl, Phenyl, Phenoxy oder durch 5- oder 6-gliedriges Heteroaryl oder Heteroaryloxy substituiert sein können, wobei Heteroaryl oder Heteroaryloxy ihrerseits einfach durch Sauerstoff oder Schwefel oder ein-, zwei- oder dreifach durch Stickstoff unterbrochen und entweder via ein C-Atom oder ein N-Atom an die C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinylgruppe gebunden sein können, und wobei die Phenyl und Heteroaryl enthaltenden Gruppen ein-, zwei oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein können;

X₁₃ Sauerstoff, Schwefel, -S(O)- oder S(O)₂- bedeutet;

 R_{50} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl oder Phenyl bedeutet, das ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino; substituiert sein kann;

 R_{51} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl oder C_3 - C_6 -Alkinyl bedeutet; oder R_{50} zusammen mit R_{51} und dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkoxy, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino; substituiert sein kann;

oder R₄₂ steht für -L₇-R₅₂;

R₅₂ für Formyl, C₁-C₆-Alkylcarbonyl, C₃-C₆-Cycloalkylcarbonyl, Benzoyl, C₁-C₆-Alkoxycarbonyl, Cyano, C(X₁₄)NR₅₃R₅₄, Phenyl oder Heteroaryl steht, wobei Benzoyl und Phenyl ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino; und wobei Heteroaryl ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁

substituiert sein kann; oder R_{52} bedeutet C_3 - C_6 -Cycloalkyl oder C_5 - C_6 -Cycloalkenyl, die ihrerseits ein-, zwei- oder dreifach durch C_1 - C_4 -Alkyl, Halogen oder C_1 - C_4 -Alkoxy substituiert sein können;

X₁₄ Sauerstoff, Schwefel, -S(O)- oder S(O)₂- bedeutet;

 R_{53} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl oder Phenyl bedeutet, das ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino; substituiert sein kann;

R₅₄ Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl bedeutet; oder R₅₃ zusammen mit R₅₄ und dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein kann;

R₈ Wasserstoff oder eine C₁-C₆-Alkyl-, C₃-C₆-Alkenyl- oder C₃-C₆-Alkinylgruppe bedeutet, wobei diese Gruppen ein-, zwei- oder dreifach durch Halogen, Hydroxy, C₁-C₆-Alkoxy, C₁-C₃-Alkoxy-C₁-C₃-alkoxy, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy, C₁-C₆-Alkylshio, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, Cyano, C(X₁₅)NR₅₅R₅₆, C₃-C₆-Cycloalkyl, Phenyl, Phenoxy oder durch 5-oder 6-gliedriges Heteroaryl oder Heteroaryloxy substituiert sein können, wobei Heteroaryl oder Heteroaryloxy ihrerseits einfach durch Sauerstoff oder Schwefel oder ein-, zwei- oder dreifach durch Stickstoff unterbrochen und entweder via ein C-Atom oder ein N-Atom an die C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinylgruppe gebunden sein können, und wobei die Phenyl und Heteroaryl enthaltenden Gruppen ein-, zwei oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein können;

oder R₈ bedeutet C(O)-R₇₆ oder C(S)-R₇₇;

X₁₅ Sauerstoff, Schwefel, -S(O)- oder S(O)₂- bedeutet;

R₅₅ Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl oder Phenyl bedeutet, das ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino;

substituiert sein kann;

 R_{56} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl oder C_3 - C_6 -Alkinyl bedeutet; oder R_{55} zusammen mit R_{56} und dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkoxy, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino substituiert sein kann;

X₃ Sauerstoff, -NR₅₇-, Schwefel, -S(O)- oder S(O)₂- bedeutet;

 R_{57} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl, C_1 - C_6 -Halogenalkyl, C_3 - C_6 -Cycloalkyl, Phenyl, Heteroaryl, $C(X_{16})R_{58}$ oder $NR_{61}R_{62}$ bedeutet;

X₁₆ Sauerstoff oder Schwefel bedeutet;

 R_{58} für Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Cycloalkyl, Phenyl, Heteroaryl, C_1 - C_6 -Alkoxy, C_3 - C_6 -Alkenyloxy, Benzyloxy, C_1 - C_4 -Alkylthio oder eine Gruppe $NR_{59}R_{60}$ steht;

 R_{59} und R_{61} unabhängig voneinander Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl oder Phenyl bedeutet, das ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino substituiert sein kann;

R₆₀ und R₆₂ unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl bedeutet; oder R₅₉ zusammen mit R₆₀ oder R₆₁ zusammen mit R₆₂ jeweils mit dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein kann;

oder R₅₇ steht für -L₈-X₁₇-R₆₃; wobei

 X_{17} für Sauerstoff, -NR₆₄-, -S-, -S(O)- oder S(O)₂ - steht;

 R_{64} Wasserstoff, C_1 - C_6 -Alkoxy, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl bedeutet oder Phenyl, das ein- zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkysthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_4 -Alkylcarbonylamino substituiert sein kann, bedeutet;

R₆₃ eine C₁-C₆-Alkyl-, C₃-C₆-Alkenyl- oder C₃-C₆-Alkinylgruppe bedeutet, wobei diese Gruppen ein-, zwei- oder dreifach durch Halogen, Hydroxy, C₁-C₆-Alkoxy, C₁-C₃-Alkoxy-C₁-C₃-alkoxy, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy, C₁-C₆-Alkylthio, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, Cyano, C(X₁₈)NR₆₅R₆₆, C₃-C₆-Cycloalkyl, Phenyl, Phenoxy oder durch 5- oder 6-gliedriges Heteroaryl oder Heteroaryloxy substituiert sein können, wobei Heteroaryl oder Heteroaryloxy ihrerseits einfach durch Sauerstoff oder Schwefel oder ein-, zwei- oder dreifach durch Stickstoff unterbrochen und entweder via ein C-Atom oder ein N-Atom an die C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinylgruppe gebunden sein können, und wobei die Phenyl und Heteroaryl enthaltenden Gruppen ein-, zwei oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein können;

X₁₈ Sauerstoff, Schwefel, -S(O)- oder S(O)₂- bedeutet;

 R_{65} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl oder Phenyl bedeutet, das ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino substituiert sein kann;

 R_{66} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl oder C_3 - C_6 -Alkinyl bedeutet; oder R_{65} zusammen mit R_{66} und dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkoxy, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 - Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino substituiert sein kann;

oder R₅₇ steht für -L₉-R₆₇;

 R_{67} für Formyl, C_1 - C_6 -Alkylcarbonyl, C_3 - C_6 -Cycloalkylcarbonyl, Benzoyl, C_1 - C_6 -Alkoxycarbonyl, Cyano, $C(X_{19})NR_{68}R_{69}$, Phenyl oder Heteroaryl steht, wobei Benzoyl und Phenyl ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino; und wobei Heteroaryl ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkoxy, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro oder C_1 - C_4 -Alkoxycarbonyl;

substituiert sein kann; oder R_{67} bedeutet C_3 - C_6 -Cycloalkyl oder C_5 - C_6 -Cycloalkenyl, die ihrerseits ein-, zwei- oder dreifach durch C_1 - C_4 -Alkyl, Halogen oder C_1 - C_4 -Alkoxy substituiert sein können;

X₁₉ Sauerstoff, Schwefel, -S(O)- oder S(O)₂- bedeutet;

 R_{68} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl oder Phenyl bedeutet, das ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino substituiert sein kann;

R₆₉ Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl bedeutet; oder R₆₈ zusammen mit R₆₉ und dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein kann;

L₁ C₁-C₄-Alkylen bedeutet, das ein- zwei- oder dreifach durch C₁-C₄-Alkyl, Halogen oder C₁-C₄-Alkoxy substituiert sein kann, wobei an diese C₁-C₄-Alkylengruppe eine C₂-C₅-Alkylengruppe spirocyclisch angebunden sein kann, wobei diese C₂-C₅-Alkylengruppe ihrerseits ein- oder zweifach durch Sauerstoff, Schwefel, Sulfinyl oder Sulfonyl unterbrochen sein kann und durch C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiert sein kann; oder L₁ C₁-C₄-Alkylen bedeutet, das ein- zwei- oder dreifach durch C₁-C₄-Alkyl, Halogen oder C₁-C₄-Alkoxy substituiert sein kann, wobei ein Kohlenstoffatom der L₁ Kette gemeinsam mit R₉ oder mit R₇₀ eine C₂-C₆-Alkylenkette bildet, die ein- oder zweifach durch Sauerstoff, Schwefel, Sulfinyl oder Sulfonyl unterbrochen sein kann und durch C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiert sein kann;

R₉ eine Gruppe -X₂₀-R₇₀ bedeutet, worin

 X_{20} für Sauerstoff, -NR₇₁-, -S-, -S(O)- oder S(O)₂ - steht;

 R_{70} Wasserstoff, C_1 - C_6 -Alkoxy, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl bedeutet oder Phenyl, das ein- zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkoxy, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino substituiert sein kann, bedeutet;

oder R₇₀ bedeutet C(O)-R₇₈ oder C(S)-R₇₉; R₇₁ eine C₁-C₆-Alkyl-, C₃-C₆-Alkenyl- oder C₃-C₆-Alkinylgruppe bedeutet, wobei diese Gruppen ein-, zwei- oder dreifach durch Halogen, Hydroxy, C₁-C₆-Alkoxy, C₁-C₃-Alkoxy-C₁-C₃-Alkoxy, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, Cyano, C(X₂₁)NR₇₂R₇₃, C₃-C₆-Cycloalkyl, Phenyl, Phenoxy oder durch 5- oder 6-gliedriges Heteroaryl oder Heteroaryloxy substituiert sein können, wobei Heteroaryl oder Heteroaryloxy ihrerseits einfach durch Sauerstoff oder Schwefel oder ein-, zwei- oder dreifach durch Stickstoff unterbrochen und entweder via ein C-Atom oder ein N-Atom an die C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinylgruppe gebunden sein können, und wobei die Phenyl und Heteroaryl enthaltenden Gruppen ein-, zwei oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Alkylcarbonylamino substituiert sein können;

X₂₁ Sauerstoff, Schwefel, -S(O)- oder S(O)₂- bedeutet;

R₇₂ Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl oder Phenyl bedeutet, das ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein kann;

R₇₃ Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl bedeutet; oder R₇₂ zusammen mit R₇₃ und dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein kann;

oder R₉ für Formyl, C₁-C₆-Alkylcarbonyl, C₃-C₆-Cycloalkylcarbonyl, Benzoyl, C₁-C₆-Alkoxycarbonyl, Cyano, C(X₃₅)NR₁₂₅R₁₂₆, Phenyl oder Heteroaryl steht, wobei Benzoyl und Phenyl ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₄-Alkylcarbonylamino; und wobei Heteroaryl ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl

substituiert sein kann; oder R₉ bedeutet C₃-C₆-Cycloalkyl oder C₅-C₆-Cycloalkenyl, die ihrerseits ein-, zwei- oder dreifach durch C₁-C₄-Alkyl, Halogen oder C₁-C₄-Alkoxy substituiert sein können;

 X_{35} Sauerstoff, Schwefel, -S(O)- oder S(O)₂- bedeutet;

 R_{125} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl oder Phenyl bedeutet, das ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino; substituiert sein kann;

R₁₂₆ Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl bedeutet; oder R₁₂₅ zusammen mit R₁₂₆ und dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₄-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino;

substituiert sein kann;

 R_3 Hydroxy, O^*M^* , worin wobei M^* für ein Metallkation oder für ein Ammoniumkation steht; Halogen oder $S(O)_qR_{80}$ bedeutet, worin R_{80} für C_1 - C_{12} -Alkyl, C_2 - C_{12} -Alkenyl, C_2 - C_{12} -Alkinyl, C_3 - C_{12} -Cycloalkyl oder C_5 - C_{12} -Cycloalkenyl steht und q für 0, 1 oder 2 steht; oder R_{80} steht für R_{121} - C_1 - C_{12} -Alkylen oder R_{122} - C_2 - C_{12} -Alkenylen, wobei die Alkylen- oder Alkenylenkette durch -O-, -S-, -S(O)-, SO_2 - oder -C(O)- unterbrochen und/oder einfach oder bis zu fünffach durch R_{123} substituiert sein kann; oder R_{80} bedeutet Phenyl, das ein-, zwei-, drei-, vier- oder fünffach durch R_{124} substituiert sein kann;

R₁₂₁ und R₁₂₂ unabhängig voneinander Halogen, Cyano, Rhodano, Hydroxy, C₁-C₆-Alkoxy, C₂-C₆-Alkenyloxy, C₂-C₆-Alkinyloxy, C₁-C₆-Alkylthio, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, C₂-C₆-Alkenylthio, C₂-C₆-Alkinylthio, C₁-C₆-Alkylsulfonyloxy, Phenylsulfonyloxy, C₁-C₆-Alkylcarbonyloxy, C₁-C₆-Alkylcarbonyloxy, C₁-C₆-Alkylcarbonyl, C₁-C₄-Alkoxycarbonyloxy, C₁-C₆-Alkylcarbonyl, C₁-C₄-Alkoxycarbonyl, Benzoyl, Aminocarbonyl, C₁-C₄-Alkylaminocarbonyl, C₃-C₆-Cycloalkyl, Phenyl, Phenoxy, Phenylthio, Phenylsulfinyl oder Phenylsulfonyl, wobei die Phenyl enthaltenden Gruppen ihrerseits ein-, zwei- oder dreifach durch Halogen, C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, Hydroxy, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, Cyano oder Nitro substituiert sein können;

. . .

 R_{123} Hydroxy, Halogen, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Alkylsulfinyl, C_1 - C_6 -Alkylsulfonyl, Cyano, Carbamoyl, Carboxy, C_1 - C_4 -Alkoxycarbonyl oder Phenyl, wobei Phenyl einfach, zweifach oder dreifach durch Wasserstoff, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_3 - C_4 -Alkenyl, C_3 - C_4 -Alkinyl oder C_1 - C_4 -Alkoxy substituiert sein kann;

 R_{124} Halogen, C_1 - C_3 -Alkyi, C_1 - C_3 -Halogenalkyl, Hydroxy, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkoxy, Cyano oder Nitro bedeutet;

oder R₃ steht für eine Gruppe -X₂₉-L₁₆-R₉₆, worin

X₂₉ für -NR₉₇- oder Schwefel steht;

R₉₇ Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, C₁-C₆-Halogenalkyl, Hydroxy, C₁-C₆-Alkoxy, -C(O)R₉₈ oder -C(S)R₉₉ bedeutet, wobei R₉₈ und R₉₉ unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, Phenyl, Heteroaryl, C₁-C₆-Alkoxy, C₃-C₆-Alkenyloxy, Benzyloxy, C₁-C₄-Alkylthio oder eine Gruppe NR₁₀₀R₁₀₁ bedeuten, und R₁₀₀ und R₁₀₁ unabhängig voneinander für Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl oder Phenyl stehen, das seinerseits ein- zwei oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylcarbonylamino substituiert sein kann; oder R₁₀₀ zusammen mit R₁₀₁ und dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylsulfinyl, C₁-C

 X_{30} für Sauerstoff, -NR₁₀₃-, -S-, -S(O)- oder S(O)₂ - steht;

 R_{103} Wasserstoff, C_1 - C_6 -Alkoxy, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl bedeutet oder Phenyl, das ein- zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkysthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Alkylsulfonyl oder C_1 - C_4 -Alkylcarbonylamino substituiert sein kann, bedeutet;

 R_{102} Wasserstoff oder eine C_1 - C_6 -Alkyl-, C_3 - C_6 -Alkenyl- oder C_3 - C_6 -Alkinylgruppe bedeutet, wobei diese Gruppen ein-, zwei- oder dreifach durch Halogen, Hydroxy, C_1 - C_6 -Alkoxy, C_1 - C_3 -Alkoxy- C_1 - C_3 -alkoxy, C_3 - C_6 -Alkenyloxy, C_3 - C_6 -Alkinyloxy, C_1 - C_6 -Alkylsulfinyl, C_1 - C_6 -Alkylsulfonyl, Cyano, $C(X_{31})NR_{103}R_{104}$, C_3 - C_6 -Cycloalkyl, Phenyl, Phenoxy oder durch 5- oder 6-gliedriges Heteroaryl oder Heteroaryloxy substituiert sein können, wobei Heteroaryl oder Heteroaryloxy ihrerseits einfach durch Sauerstoff oder Schwefel oder ein-, zwei- oder dreifach durch Stickstoff unterbrochen und entweder via ein C-Atom oder ein N-Atom an die

 C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl oder C_3 - C_6 -Alkinylgruppe gebunden sein können, und wobei die Phenyl und Heteroaryl enthaltenden Gruppen ein-, zwei oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkoxy, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino substituiert sein können; oder

R₁₀₂ bedeutet C(O)-R₁₀₅ oder C(S)-R₁₀₆;

X₃₁ Sauerstoff, Schwefel, -S(O)- oder S(O)₂- bedeutet;

 R_{103} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl oder Phenyl bedeutet, das ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkoxy, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino; substituiert sein kann;

R₁₀₄ Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl bedeutet; oder R₁₀₃ zusammen mit R₁₀₄ und dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino;

substituiert sein kann;

oder R₉₇ steht für -L₁₅-R_{105a};

R_{105a} für Formyl, C₁-C₆-Alkylcarbonyl, C₃-C₆-Cycloalkylcarbonyl, Benzoyl, C₁-C₆-Alkoxycarbonyl, Cyano, C(X₃₂)NR_{105a}R₁₀₇, Phenyl oder Heteroaryl steht, wobei Benzoyl und Phenyl ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₄-Alkylcarbonylamino; und wobei Heteroaryl ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro oder C₁-C₄-Alkoxycarbonyl substituiert sein kann; oder R_{105a} bedeutet C₃-C₆-Cycloalkyl-oder C₅-C₆-Cycloalkenyl, die ihrerseits ein-, zwei- oder dreifach durch C₁-C₄-Alkyl, Halogen oder C₁-C₄-Alkoxy substituiert sein können; X₃₂ Sauerstoff, Schwefel, -S(O)- oder S(O)₂- bedeutet;

 $R_{105a} \ Wasserstoff, \ C_1-C_6-Alkyl, \ C_3-C_6-Alkenyl, \ C_3-C_6-Alkinyl \ oder \ Phenyl \ bedeutet, \ das \ ein-, \\ zwei- \ oder \ dreifach \ durch \ Halogen, \ C_1-C_4-Alkyl, \ C_1-C_4-Halogenalkyl, \ C_1-C_3-Alkoxy, \ C_1-C_3-Alkylsulfinyl, \ C_1-C_3-Alkylsulfonyl, \ C_1-C_3-Alkylsulfo$

Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino substituiert sein kann;

R₁₀₇ Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl bedeutet; oder R_{106a} zusammen mit R₁₀₇ und dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein kann;

R₉₆ eine Gruppe -X₃₃-R₁₀₈ bedeutet, worin

 X_{33} für Sauerstoff, -NR₁₀₉-, -S-, -S(O)- oder S(O)₂ - steht;

 R_{108} Wasserstoff, C_1 - C_6 -Alkoxy, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl bedeutet oder Phenyl, das ein- zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Alkylsulfonyl oder C_1 - C_4 -Alkylcarbonylamino substituiert sein kann, bedeutet;

oder R₁₀₈ bedeutet C(O)-R_{112a} oder C(S)-R_{113a};

 R_{74} , R_{75} , R_{76} , R_{77} , R_{78} R_{79} R_{94} , R_{105} , R_{106} , R_{112a} und R_{113a} unabhängig voneinander Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Cycloalkyl, Phenyl, Heteroaryl, C_1 - C_6 -Alkoxy, C_3 - C_6 -Alkenyloxy, Benzyloxy, C_1 - C_4 -Alkylthio oder $NR_{127}R_{128}$ bedeuten;

 R_{127} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl oder Phenyl bedeutet, das ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Alkylthio, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino substituiert sein kann;

R₁₂₈ Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl bedeutet; oder R₁₂₇ zusammen mit R₁₂₈ und dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein kann;

R₁₀₉ eine C₁-C₆-Alkyl-, C₃-C₆-Alkenyl- oder C₃-C₆-Alkinylgruppe bedeutet, wobei diese Gruppen ein-, zwei- oder dreifach durch Halogen, Hydroxy, C₁-C₆-Alkoxy, C₁-C₃-Alkoxy-C₁-C₃-alkoxy, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy, C₁-C₆-Alkylthio, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfinyl, Cyano, C(X₃₄)NR₁₁₀R₁₁₁, C₃-C₆-Cycloalkyl, Phenyl, Phenoxy oder durch 5- oder 6-gliedriges Heteroaryl oder Heteroaryloxy substituiert sein können, wobei Heteroaryl oder Heteroaryloxy ihrerseits einfach durch Sauerstoff oder Schwefel oder ein-, zwei- oder dreifach durch Stickstoff unterbrochen und entweder via ein C-Atom oder ein N-Atom an die C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinylgruppe gebunden sein können, und wobei die Phenyl und Heteroaryl enthaltenden Gruppen ein-, zwei oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein können;

X₃₄ Sauerstoff, Schwefel, -S(O)- oder S(O)₂- bedeutet;

 R_{110} Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl oder Phenyl bedeutet, das ein-, zwei- oder dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Alkylsulfinyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Alkylsulfonyl, C_1 - C_3 -Halogenalkylthio, Cyano, Nitro, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_4 -Alkylcarbonylamino substituiert sein kann;

R₁₁₁ Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl bedeutet; oder R₁₁₀ zusammen mit R₁₁₁ und dem jeweiligen N-Atom, an das sie gebunden sind, einen carbocyclischen 3- bis 6-gliedrigen Ring bedeuten, der durch Sauerstoff oder Schwefel unterbrochen und/oder ein-, zwei- oder dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfinyl, C₁-C₃-Alkylsulfonyl, C₁-C₃-Halogenalkylthio, Cyano, Nitro, C₁-C₄-Alkoxycarbonyl oder C₁-C₄-Alkylcarbonylamino substituiert sein kann;

A₁ -C(R₁₁₂R₁₁₃)- oder -NR₁₁₄- bedeutet;

 A_2 -C(R₁₁₅R₁₁₆)_m-, -C(=O)-, -O-, -NR₁₁₇- oder -S(O)_q- bedeutet;

A₃ -C(R₁₁₈R₁₁₉)- oder -NR₁₂₀- bedeutet;

mit Maßgabe, daß A_2 verschieden von -O- oder -S(O)_q- ist, wenn A_1 für –NR₁₁₄- und/oder A_3 für –NR₁₂₀ steht;

 $R_{112} \ und \ R_{118} \ unabhängig \ voneinander \ Wasserstoff, \ C_1-C_4-Alkyl, \ C_2-C_4-Alkenyl, \ C_2-C_4-Alkylsulfinyl, \ C_1-C_4-Alkylsulfonyl, \ C_1-C_4-Alkoxycarbonyl, \ Hydroxy, \ C_1-C_4-Alkoxy, \ C_3-C_4-Alkenyloxy, \ C_3-C_4-Alkinyloxy, \ Hydroxy-C_1-C_4-alkyl, \ C_1-C_4-Alkylsulfonyloxy-C_1-C_4-alkyl, \ Halogen, \ Cyano \ oder \ Nitro \ bedeuten;$

 R_{113} und R_{119} unabhängig voneinander Wasserstoff, C_1 - C_4 -Alkyl oder C_1 - C_4 -Alkylsulfonyl bedeuten;

oder R_{113} zusammen mit R_{112} und/oder R_{119} zusammen mit R_{118} eine C_2 - C_5 -Alkylenkette, die durch -O-, -C(O)O- oder -S(O)_r- unterbrochen sein kann;

 R_{114} und R_{120} unabhängig voneinander Wasserstoff, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_3 - C_4 -Alkenyl, C_3 - C_4 -Alkinyl oder C_1 - C_4 -Alkoxy bedeuten;

 $R_{115}\ \ Wasserstoff,\ Hydroxy,\ C_1-C_4-Alkyl,\ C_1-C_4-Halogenalkyl,\ C_1-C_3-Hydroxyalkyl,\ C_1-C_4-Alkylthio-C_1-C_3-alkyl,\ C_1-C_4-Alkylcarbonyloxy-C_1-C_3-alkyl,\ C_1-C_4-Alkylsulfonyloxy-C_1-C_3-alkyl,\ Tosyloxy-C_1-C_3-alkyl,\ Di-(C_1-C_4-alkoxy)-C_1-C_3-alkyl,\ C_1-C_4-Alkoxycarbonyl,\ Formyl,\ C_3-C_5-Oxacycloalkyl,\ C_3-C_5-Thiacycloalkyl,\ C_3-C_4-Dioxacycloalkyl,\ C_3-C_4-Dithiacycloalkyl,\ C_3-C_4-Oxathiacycloalkyl,\ C_1-C_4-Alkoxyiminomethyl,\ Carbamoyl,\ C_1-C_4-Alkylaminocarbonyl oder\ Di-(C_1-C_4-alkyl)aminocarbonyl bedeutet;$

oder R_{115} zusammen mit R_{112} oder R_{113} oder R_{114} oder R_{116} oder R_{118} oder R_{119} oder R_{120} , oder wenn m 2 bedeutet, auch mit einem zweiten R_{115} eine C_1 - C_4 -Alkylenbrücke bedeuten; R_{116} Wasserstoff, C_1 - C_3 -Alkyl oder C_1 - C_3 -Halogenalkyl;

 R_{117} Wasserstoff, C_1 - C_3 -Alkyl, C_1 - C_3 -Halogenalkyl, C_1 - C_4 -Alkoxycarbonyl, C_1 - C_4 -Alkylcarbonyl oder Di-(C_1 - C_4 -alkyl)aminocarbonyl bedeutet; m 1 oder 2; und

q und r unabhängig voneinander 0, 1 oder 2 bedeuten; sowie agronomisch verträgliche Salze, Tautomere, Isomere und Enantiomere dieser Verbindungen.

2. Verbindungen der Formel II

$$\begin{array}{cccc} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

worin R_1 , und R_2 die unter Formel I in Anspruch 1 angegebenen Bedeutungen haben und Y C_1 - C_4 -Alkoxy, Benzyloxy, Hydroxy, Chlor, oder Cyano bedeutet.

3. Herbizides Mittel, dadurch gekennzeichnet, dass es neben Formulierungshilfsmitteln einen herbizid wirksamen Gehalt an Verbindung der Formel I aufweist.

4. Verfahren zur Bekämpfung von Ungräsern und Unkräutern in Nutzpflanzenkulturen, dadurch gekennzeichnet, dass man eine Verbindung der Formel I oder ein diese Verbindung enthaltendes Mittel in einer herbizid wirksamen Menge auf die Pflanzen oder deren Lebensraum appliziert.

Zusammenfassung:

Verbindungen der Formel I

worin die Substituenten die in Anspruch 1 angegebenen Bedeutungen besitzen, sowie agronomisch verträgliche Salze/N-Oxide/Isomere/Enantiomere dieser Verbindungen eignen sich zur Verwendung als Herbizide.

PCT/EP2004/014113

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS 6.
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
☐ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.