4. Greatest Common Divisor

Definition 4.1. For $a, b \in \mathbb{Z}$, not both zero, we call $d \in \mathbb{Z}$ their greatest common divisor and write $d = \gcd(a, b)$ if:

- (1) d > 0;
- (2) $d \mid a \text{ and } d \mid b$;
- (3) if $c \in \mathbb{Z}$ is such that $c \mid a$ and $c \mid b$, then $c \leq d$.

We say that a, b are coprime if gcd(a, b) = 1.

Lemma 4.2. Let $a, b \in \mathbb{Z}$, such that $a \neq 0$ and $a \mid b$. Then gcd(a, b) = |a|.

Proof: Clearly |a| > 0 and |a| divides both a and b. Furthermore if $c \in \mathbb{Z}$ is such that $c \mid a$ and $c \mid b$, then by Lemma 3.3(5), we get that $c \leq |a|$. In particular $\gcd(a,b) = |a|$.

Theorem 4.3. For $a, b \in \mathbb{Z}$, not both zero, gcd(a, b) exists and is the minimal element of $S := \{sa + tb \mid s, t \in \mathbb{Z}, sa + tb > 0\}.$

Proof: Note that $|a|, |b| \in S$ and so S is a non-empty set of natural numbers. Then S has a minimal element d = sa + tb. Clearly d > 0. Next we show that $d \mid a$. Assume it does not. By the Division Algorithm there are $q, r \in \mathbb{Z}$ such that a = qd + r, with $0 \le r < d$. As $d \nmid a$ we must have 0 < r. Now

$$r = a - qd = a - q(sa + tb) = (1 - qs)a + (-qt)b.$$

But then $r \in S$ and r < d, which contradicts the minimality of d. Hence $d \mid a$. Likewise one shows that $d \mid b$.

Finally let $c \in \mathbb{Z}$ such that $c \mid a$ and $c \mid b$. If $c \leq 0$, then surely c < d. Hence assume that c > 0. By Lemma 3.3 (7) we get $c \mid d$, that is, ct = d, for some $t \in \mathbb{Z}$. By Lemma 3.1 we have t > 0, as otherwise d < 0. Hence d = c(1 + (t - 1)) = c + c(t - 1). Now either t - 1 = 0, in which case d = c or t - 1 > 0, in which case c < d. In all cases we have $c \leq d$. Over all this shows that $d = \gcd(a, b)$.

Corollary 4.4. Let a, b be integers, not both zero. Then

- (1) a and b are coprime if and only there exist integers s, t such that 1 = sa + tb.
- (2) If $d = \gcd(a, b)$, then $\gcd\left(\frac{a}{d}, \frac{b}{d}\right) = 1$.

Corollary 4.5 (Euclid's Lemma). Suppose that a, b are coprime integers and that $a \mid bc$, for some integer c. Then $a \mid c$.

Example 4.6. (1) Note that $-2 \mid 16 = (-2) \cdot (-8)$. Hence, by Lemma 4.2, we have that gcd(-2, 16) = 2.

(2) We have $3 \cdot 17 + (-5) \cdot 10 = 1$. Hence 17 and 10 are coprime. Furthermore $3 \cdot 34 + (-5) \cdot 20 = 2$ and as $2 \mid 34$ and $2 \mid 20$ we must have that gcd(34, 20) = 2.

Theorem 4.7. (The Euclidean Algorithm) Let $a, b \in \mathbb{Z}$, not both zero and $b \nmid a$. Set $r_{-1} := a$ and $r_0 := b$ and apply the division algorithm successively to r_{k-1} and r_k , for $k \geq 0$ to obtain integers q_k and r_{k+1} , where $0 \leq r_{k+1} < |r_k|$, until $r_{n+1} = 0$, for some $n \geq 0$. That means we have

$$\begin{array}{lll} r_{-1} &= q_0 r_0 + r_1, & where \ 0 < r_1 < |r_0| \\ r_0 &= q_1 r_1 + r_2, & where \ 0 < r_2 < r_1 \\ r_1 &= q_2 r_2 + r_3, & where \ 0 < r_3 < r_2 \\ \vdots &\vdots &\vdots \\ r_{n-2} &= q_{n-1} r_{n-1} + r_n, & where \ 0 < r_n < r_{n-1} \\ r_{n-1} &= q_n r_n + r_{n+1}, \end{array}$$

Then $gcd(a,b) = r_n$.

Proof: As the sequence $(r_k)_{k\geq 1}$ is positive and decreasing, the above process must terminate eventually. In particular r_n exists and $r_n > 0$, by construction. Working through the equations in reverse order one checks that r_n divides both a and b. Finally working through the equations in forward order one checks that every $c \in \mathbb{Z}$ which divides a and b, also divides r_n . In particular $c \leq r_n$, by Lemma 3.3(5). Overall it follows that $\gcd(a,b) = r_n$.

Corollary 4.8. (1) $gcd(a, b) = gcd(r_k, r_{k+1}), for k \ge 0.$

(2) There are $x_i, y_i \in \mathbb{Z}$ such that $r_i = x_i a + y_i b$, for all i = -1, 0, 1, ..., n, such that $x_{-1} = y_0 = 1$, $y_{-1} = x_0 = 0$ and

$$x_{i+1} = x_{i-1} - q_i x_i$$
, and $y_{i+1} = y_{i-1} - q_i y_i$,

for all i = 0, 1, ..., n - 1. In particular $gcd(a, b) = x_n a + y_n b$.

Example 4.9. *Compute* gcd(7128, 5148).

Thus gcd(7128, 5148) = 396 and $396 = (-5) \cdot 7128 + 7 \cdot 5148$. Furthermore gcd(1980, 1188) = 396

Remark 4.10. A **Diophantine equation** is an equation in one or more unknowns with integer coefficients, where we are only interested in integer solutions. Let $a, b, c \in \mathbb{Z}$ be given. Then ax + by = c is a Diophantine equation with two unknown x and y. For example one can see that 6x + 4y = 10 has a solution (x, y) = (1, 1), while 6x + 4y = 5 has no integer solutions.

Theorem 4.11. Set $d = \gcd(a, b)$. The equation ax + by = c is has integer solutions if and only if $d \mid c$. If (x_0, y_0) is any solution, then the solution set is

$$\{(x_0 + (b/d)t, y_0 - (a/d)t) : t \in \mathbb{Z}\}.$$

Example 4.12. Consider the equation 7128x + 5148y = 792. In Example 4.9 we found that gcd(7128, 5148) = 396. As $396 \mid 792 = 2 \cdot 396$, our equation has a integer solution. Furthermore in the example we found that

$$396 = (-5) \cdot 7128 + 7 \cdot 5148,$$

and thus x = -10, y = 14 is a solution for our equation. As 7128/396 = 18 and 5148/396 = 13, the set of all solutions is given by

$$\{(-10+13t, 14-18t): t \in \mathbb{Z}\}\$$

That means, for t = -2 we get (x, y) = (-36, 50), which then is also a solution to our equation.

In fact, let us find all solutions (x,y) such that 15 < x + y < 25. As x = -10 + 13t and y = 14 - 18t we have x + y = 4 - 5t. Now

$$15 < x + y < 25 \Leftrightarrow 15 < 4 - 5t < 25 \Leftrightarrow t \in \{-3, -4\}.$$

Hence $(x, y) \in \{(-49, 68), (-62, 86)\}.$