Question 1:

Soit X1,X2,...,X100 un échantillon aléatoire d'une population X de loi normale de moyenne μ =1 et de variance σ 2=1, c'est-à-dire X $^{\sim}N(1,1)$

- a) Calculer P(1≤X≤1,05)
 - b) On définit deux variables T et U par

$$T = \sum_{i=1}^{6} X_i$$
 et $U = \sum_{i=7}^{9} X_i$. Calculez P(T>U)

- On définit $Y = \sum_{i=1}^{100} (X_i 1)^2$.
- 1.) Donner le nom de la loi exacte de Y ainsi que les valeurs de ses paramètres.
- 2.) Donner le nom de la loi approximative de Y selon le théorème central limite ainsi que les valeurs de ses paramètres.
- d) On définit $G = \sum_{i=1}^{6} (X_i 1)^2 \quad \text{et} \quad H = \sum_{i=7}^{9} (X_i 1)^2.$ Déterminer la valeur de m telle que P(G>mH)=0,01

Question #1 (6 points)

a)
$$X \sim N(\mu=1; \sigma^2=\frac{1}{100})$$
 $Z \sim N(0,1)$ où $Z=\frac{X-\mu}{\sigma}$

$$P(1 \leqslant X \leqslant 1.05) = P(0 \leqslant Z \leqslant 0.5) = \Phi(0) = 0.69146 - 0.5 = 0.19146$$

b) $P(T>U) = P(T-U>0) = P(V>0)$ où $V=T-U \Rightarrow V \sim N(3.9) = P(Z>-1) = 0.1914$

c) $Y = \sum_{i=1}^{100} |x_i - 1|^2$

1.c) $Y \sim X_{100}^2$

2.c) $Y \sim N(x_1, 3x_1)$
 $Y \sim N(100, 300)$

d) $G = \sum_{i=1}^{100} |x_i - 1|^2$

Far la bri de Fishes:

$$F = \frac{G}{HV} = \frac{G}{HS} = \frac{G}{2H}$$

On a:

$$P(G > mH) = 0.01$$

$$= P(G > mH) = 0.01$$

Question no 2: (6 points)

Le tableau ci-dessous présente la distribution de fréquence du nombre de défauts X sur le fini d'une pièce observés dans un échantillon aléatoire de 100 pièces d'une production.

Nombre de défauts (x_i)		1	2	3
Nombre de pièces (O_i)	15	45	25	15

En utilisant le test d'ajustement du Khi-deux, on veut tester l'hypothèse selon laquelle la variable X est distribuée selon une loi de Poisson.

a) (1 point) Formuler les hypothèses H_0 et H_1 du test à effectuer.

b) (5 points) Effectuer le test et conclure au seuil $\alpha = 5\%$.

Rappel: si
$$X \sim \text{Poisson}(c)$$
, alors $P(X = x) = \frac{c^x e^{-c}}{x!}$, pour $x = 0, 1, ...$

Question #2 (6 points)

a)
$$H_0: X \sim Poi(c)$$

b) On rejette H_0 si $C = (15 \cdot 0 + 45 \cdot 1 + 25 \cdot 2 + 15 \cdot 3) = 1.4$
 $M_0 > X_{0.05}; K - p - 1$

b) $X = 0$
 $X =$

On rejette Ho, car Mo > X0.05;2

Question 3:

Le service du contrôle de la qualité veut étudier (estimer et tester) la proportion actuelle d'unités non conformes d'une production. Pour cette étude, le service compte utiliser un échantillon de n unités prélevées au hasard de la production.

a) Quelle doit être la plus petite valeur de n pour que, avec un niveau de confiance de 95%, l'erreur d'estimation soit inférieure à 0,045 ?

Dans le passé, la proportion d'unités non conformes de la production était de 10%. Le service du contrôle de la qualité veut effectuer un test statistique, de seuil a = 5%, afin de vérifier si cette proportion est à présent plus élevée.

- b) Définir le paramètre d'intérêt et formuler les hypothèses Ho et H1 du test à effectuer.
- c) Avec un échantillon de 400 unités prélevées de la production, on obtient une valeur-p (ou «p-value») de 0,0024 pour le test des hypothèses définies en b).
- Quelle doit être la conclusion du test?
- Quel est le nombre d'unités non conformes observées dans cet échantillon?
 - d) Supposons que la proportion réelle d'unités non conformes soit actuellement de 11% et qu'on utilise un échantillon aléatoire de 500 unités pour le test. Quelle serait alors la probabilité de conclure à tort que la proportion d'unités non conformes actuelle n'est pas plus élevée que dans le passé?

Question #3 (8 points)

a)
$$n \geq \left(\frac{2\pi a_2}{e}\right)^2 \cdot 0.5(1-0.5)$$
 $n \geq \left(\frac{2\pi a_2}{e}\right)^2 \cdot \frac{1}{4}$
 $n \geq \left(\frac{1}{9} \cdot \frac{1}{4}\right)^3 \cdot \frac{1}{4}$
 $n \geq \left(\frac{1}{9} \cdot \frac{1}{9}\right)^3 \cdot \frac{1}{4}$
 $n \geq 474.27$
 $n = 475$

b) p : proportion actuelle d'unités non-conformes d'une production

 H_0 : $p = 0.10$
 H_1 : $p > 0.10$

c) Rejetter H_0 , car $0.0034 < 0.05$

• $1 \cdot 1 - 0.0034 = 0.9976$
 $2 \cdot 2 = \frac{\hat{p} - 0.10}{\sqrt{\frac{100(1-0.00)}{100}}} = 2.82 \implies \hat{p} = 0.1423$

3) $400 \cdot 0.1433 = 56.92 \approx 57$ unités

d) $\beta = P(Erreur de deuxième espace)$
 $\beta = P(P_0 - P_1 + Z_{\times}) \frac{|B(1-B)|}{N} = \frac{1}{100}$
 $\frac{|B|}{|B|} = \frac{1}{100} \frac{|B|}{|B|} =$

Question 4:

Dans un réseau informatique, un ingénieur mesure les délais de communication (en millisecondes) entre deux ordinateurs avec un protocole standard (population X1) et avec un protocole expé- rimental (population X2). L'ingénieur prélève un échantillon aléatoire de taille n1 = 16 de la population X1 et un échantillon aléatoire de taille n2 9 de la population X2. On suppose que les deux échantillons sont indépendants. Les modèles utilisés et les résultats obtenus sont décrits dans le tableau suivant.

Population X_i	Taille n_i	Moyenne \bar{x}_i	Variance s_i^2		
$X_1 \sim N(\mu_1, \sigma_1^2)$	16	52,4	0,37		
$X_2 \sim N(\mu_2, \ \sigma_2^2)$		50,3	2,18		

Important: formuler les hypothèses Ho et H1 pour chaque test.

- a) Donner un intervalle de confiance de niveau 90% pour le paramètre μ2.
- b) Donner un intervalle de prévision de niveau 90% pour une dixième mesure de délai du protocole expérimental.
- c) Peut-on rejeter l'affirmation selon laquelle σ 1^2 = 0,5? Donner la conclusion d'un test d'hypothèse au seuil α = 0,05.
- d) Peut-on dire que les variances σ 1^2 et σ 2^2 sont différentes? Donner la conclusion d'un test d'hypothèse au seuil α = 0,05.
- e) Peut-on affirmer qu'en moyenne les délais du protocole expérimental sont plus courts que ceux du protocole standard? Donner la conclusion d'un test d'hypothèses au seuil α = 0,05.

Question #4 (12 points)
a) On said que
$$X_a \sim N(\mu_a, \sigma_a^2)$$
 $IDC(\mu_z) = \overline{X} \pm t_{\frac{1}{2}} \cdot n_{-1} \cdot \frac{S}{\sqrt{n_1}}$
 $= 50.3 \pm t_{0.05; 0} \cdot \frac{1.48}{3}$
 $= 50.3 \pm 1.86 \cdot \frac{1.48}{3}$
 $= [49.3824; 51.2176]$
b) $X_{n+1} \in \overline{X} \pm t_{n-1}(\frac{1}{4}) \cdot \overline{S}_{N}[1+\frac{1}{n}]$
 $X_{n+1} \in 50.3 \pm 1.86 \cdot 1.476 \cdot \sqrt{1+\frac{1}{4}}$
 $X_{n+1} \in 50.3 \pm 2.89$
 $X_{n+1} \in [47.4]; 53.13$
c) $H_0: \overline{S}_0^2 = 0.5$
 $H_1: \overline{S}_1^2 \pm 0.5$
 $Rejetter Ho si $X_0^2 < X_{\frac{3}{2},n-1}^2$
 $X_{n-1}(\frac{1}{4}) = 0.7$
 $X_{n-1}(\frac{1}{4$$

d)
$$H_0: \sigma_1^2 = \sigma_2^2$$
 $\sigma_1^2 \neq \sigma_2^2$

Rejetter si $F_0 < F_{1-\frac{N}{2}}; n_{-1}; n_{3-1}$ ou $F_0 > F_{\frac{N}{2}}; n_{-1}; n_{2-1}$

1) $F_0 = \frac{S_1^2}{S_2^2} = \frac{0.37}{3.19} = 0.17$

2) $F_{1-\frac{N}{2}}; n_{-1}; n_{3-1} = \frac{1}{3.20} = 0.325$ $F_0 < F_{1-\frac{N}{2}}...$ (rejetter H_0)

3) $F_{\frac{N}{2}}; n_{1-1}; n_{3-1} = H_1 10$

4) $H_0: \mu_1 = \mu_2$
 $H_1: \mu_1 > \mu_2$
 $H_1: \mu_1 > \mu_2$
 $F_0: \frac{S_1^2/n_1 + S_2^2/n_2}{N_1 + 1} = \frac{N_1 + N_2}{N_2 + N_2}$
 $= 9.94$
 $= 9.94$
 $= 9.94$
 $= 1.81$

On rejette H_0 , our on plut affirmer quien more for defaus du protocole standare.

Question 5:

Pour des raisons de santé publique, on cherche à déterminer le lien entre la concentration d'ozone O3 dans l'air d'une journée et la température à midi de la même journée. Pour ce faire, on envisage un modèle de régression linéaire simple d'équation $Y = \beta_0 + \beta_1 X + \epsilon$,

où X représente la température à midi (en °C) et Y, la concentration d'ozone 03 dans l'air (en microgrammes par millilitre), Bo et Bi sont des paramètres et ε , une erreur aléatoire que l'on suppose de loi N(0, o2).

Les données recueillies pour un échantillon de 12 jours sont présentées dans le tableau suivant.

i	1	2	3	4	5	6	7	8	9	10	11	12
x_i	10,0	23,8	16,3	27,2	7,1	25,1	27,5	19,4	15,0	19,8	32,2	20,7
												102,8

- a) Calculer β ^0 et β ^1. Donner l'équation de la droite des moindres carrés.
- b) Compléter le tableau d'analyse de la variance ci-dessous. Quelle conclusion peut-on tirer au seuil $\alpha = 0.05$?
- c) Donner une estimation ponctuelle de la variance σ^2
- d) À un niveau de 95%, donner un intervalle de prévision pour la concentration d'ozone O3 d'une journée dont la température à midi est de 20C.
- e) Calculer le coefficient de détermination R^2 et interpréter ce résultat.

Question
$$\pm 5$$
 (14 points)

a) $\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \, \overline{X}$
 $\hat{\beta}_1 = \frac{S_{XY}}{S_{XY}}$

1) $S_{XY} = \sum_{i=1}^{n} X_i Y_i - n \overline{X} \overline{Y}$

1.1) $\overline{X} = \frac{1}{n} \sum_i Y_i = \frac{244_{110}}{12} = 20.34$

12) $\overline{Y} = \frac{1}{n} \sum_i Y_i = \frac{1132_{120}}{12} = 98.52$

Repitnons $S_{XY} = \frac{35}{631.34} - 12(20.34)(98.52) = 1584_{158}$

2) $S_{XX} = \sum_{i=1}^{n} X_i^2 - n \overline{X}^2 = 5567.37 - 12(20.34)^2 = 602.78$

3) $\hat{\beta}_1 = \frac{S_{XY}}{S_{XY}} = \frac{1584_{158}}{602_{178}} = 2.63$

4) $\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \, \overline{X} = 98.52 - 2.63.20.34 = 45.02$
 $Y = 45.02 + 2.63 \times 4 = 169.64$

Regretion $S_{XX} = 41.345$
 $S_{XX} = \frac{1}{124_{17}} = \frac{1}{124_$

Ho:
$$\beta = 0$$
 (aucun lien)
Hi: $\beta = 70$ (lien)
On rejette Ho si to > Fx;1;n-2
3) Fx;1;n-2 = 41.67
On rejette Ho. dors c'est possible qu'il y ait une règ. entre les 2
c) $\hat{\sigma}^2 = \text{HSE} = 128,0415$
d) $\hat{Y}_0 + \frac{1}{2}$ in-2 MSE ($1+\frac{1}{n}+\frac{(X_0-\overline{X})^2}{5\times x}$ 2) $\hat{Y}_0 = 45,02+2.63(20) = 97,62$
 $\hat{Y}_0 + 2,23$ [$127.49(1+\frac{1}{12}+\frac{120-2931^2}{602.78})$
 $\hat{Y}_0 + 26,21$ \Rightarrow [71.41 , 123.83]
e) $R^2 = \hat{\beta}_1^2 \frac{Sxx}{Syy} = 2.63^2 \cdot \frac{602.78}{121916,60-12197.52)^2} = 0.7661$

R2 est proche de 1, alors il y a une certaine régression linéaire.