Diversity Maximization in the Presence of Outliers (Supplementary File)

Additional Experiment

Result obtained by STREAMING. Figure 1(a) illustrates an example of X consisting of points including outliers¹, whereas Figure 1(b) shows a diverse set obtained by STREAMING. (As this X contains a small number of points, CORESET returns the same solution.) From Figure 1, STREAMING also returns only inliers, different from GMM (see Figure 2 of our main paper).

Figure 1: Result set obtained by STREAMING (k = 10)

Result of GMM and PODS19. Table 1 clearly shows that most points in S computed by GMM and PODS19 are outliers. This result demonstrates that simply running an existing algorithm for the problem of Max-Min diversification without outliers does not work.

Table 1: Average number of outliers in S(k = 100)

Algorithm	FCT	Household	KDD99	Mirai
GMM	99.00	99.00	99.00	99.00
PODS19	92.35	91.55	87.40	84.05

Standard deviation result. Table 2 reports the standard deviation w.r.t. div(S) of GREEDY, STREAMING, and CORESET. We used the default parameter setting. CORESET has a larger standard deviation than the others, and this result is actually reasonable. The coreset C has a much smaller number of points than n = |X|, thus div(S) of CORESET tends

Table 2: Standard deviation of div(S)

Algorithm	FCT	Household	KDD99	Mirai
GREEDY	0.483	0.460	1.211	1.639
STREAMING	0.217	0.240	0.564	5.344
CORESET	2.345	1.506	4.307	4.444

to depend on the first random point of S. Since GREEDY and STREAMING use X, they do not have this tendency.

Impact of success probability p. Table 3 shows the average $\overline{div(S)} = \min_{x,x' \in S} \overline{dist(x,x')}$ and running time [msec] of CORESET with different p. (Note that CORESET did not return any outliers for these values of p.)

We see that div(S) with p=0.9 is smaller than those with p=0.95 and p=0.99. On the other hand, the running time becomes longer as p becomes larger. For the running time, this result is reasonable, since a smaller p constructs a coreset with a smaller size. (Recall that the time complexity of COREST is O(kc), where c is the coreset size.) This result is also reasonable for div(S). Given a larger p, a coreset contains more points in X, so $\min_{x,x'\in S} dist(x,x')$ tends to be larger.

Table 3: CORESET's average div(S) and running time [msec] (k = 100 and z = 200)

\overline{p}	FCT		Household	
	div(S)	Time	div(S)	Time
0.90	48.996	1.369	36.916	1.553
0.95	50.158	5.323	38.369	5.823
0.99	51.425	13.422	39.294	27.239

p	KDD99		Mirai	
	div(S)	Time	div(S)	Time
0.90	73.690	3.253	101.880	30.500
0.95	77.064	8.523	106.352	97.760
0.99	80.153	54.130	107.272	476.063

¹This is the same set as that in Figure 2 of our main paper.