TRIGONOMÉTRIE2

Leçon : les équations et inéquations trigonométriques Présentation globale

I) les équations trigonométriques élémentaires

II) les inéquations trigonométriques élémentaires

les équations trigonométriques élémentaires

1) Equation: $\cos x = a$

Propriété: Soit a un nombre réel.

Si a > 1 ou a < -1 alors l'équation $\cos x = a$ n'admet pas de solution dans \mathbb{R} et on a : $S = \emptyset$.

Si a = -1 alors on a l'équation $\cos x = -1$

On sait que : $\cos \pi = -1$ donc tous les réels de la forme : $\pi + 2k\pi$ avec k un nombre relatif sont solution de l'équation dans \mathbb{R} et on a : $S = \{\pi + 2k\pi / k \in \mathbb{Z}\}$.

Si a=1 alors on a l'équation $\cos x=1$:

On sait que : $\cos 0 = 1$ donc tous les réels de la forme : $0 + 2k\pi$ avec k un nombre relatif sont solution de l'équation dans \mathbb{R} et on a : $S = \{2k\pi / k \in \mathbb{Z}\}$.

Si -1 < a < 1 réels alors on a l'équation $\cos x = a$:

Et on sait qu'il existe un unique réels : α dans $[0;\pi]$ tel que $\cos x = \cos \alpha$ et alors on a : $S = \{\alpha + 2k\pi; -\alpha + 2k\pi / k \in \mathbb{Z}\}.$

Exemple: Résoudre dans \mathbb{R} les équations suivantes :

a)
$$\cos x = \frac{\sqrt{2}}{2}$$

b)
$$\cos x = -\frac{1}{2}$$
 c) $\cos^2 x = \frac{1}{2}$

c)
$$\cos^2 x = \frac{1}{2}$$

Correction: a) $\cos x = \frac{\sqrt{2}}{2}$ ssi $\cos x = \cos \frac{\pi}{4}$

Donc les solutions de l'équation dans \mathbb{R} sont : $S_{\mathbb{R}} = \left\{ \frac{\pi}{4} + 2k\pi; -\frac{\pi}{4} + 2k\pi / k \in \mathbb{Z} \right\}$

b)
$$\cos x = -\frac{1}{2}$$
 ssi $\cos x = -\cos\frac{\pi}{3}$ ssi $\cos x = \cos\left(\pi - \frac{\pi}{3}\right)$ ssi $\cos x = \cos\left(\frac{2\pi}{3}\right)$

Donc les solutions de l'équation dans \mathbb{R} sont : $S_{\mathbb{R}} = \left\{ \frac{2\pi}{3} + 2k\pi; -\frac{2\pi}{3} + 2k\pi / k \in \mathbb{Z} \right\}$

$$\cos^2 x = \frac{1}{2} \Leftrightarrow \cos^2 x - \frac{1}{2} = 0 \Leftrightarrow \left(\cos x - \frac{\sqrt{2}}{2}\right) \left(\cos x + \frac{\sqrt{2}}{2}\right) = 0$$

$$\Leftrightarrow \cos x = \frac{\sqrt{2}}{2}$$
 ou $\cos x = -\frac{\sqrt{2}}{2} \Leftrightarrow \cos x = \cos \frac{\pi}{4}$ ou $\cos x = \cos \frac{3\pi}{4}$

$$\mathsf{Ainsi}: \ S_{\mathbb{R}} = \left\{ \frac{\pi}{4} + 2k\pi \ ; -\frac{\pi}{4} + 2k\pi \ ; \frac{3\pi}{4} + 2k\pi \ ; -\frac{3\pi}{4} + 2k\pi \ \right\} \quad avec \ k \in \mathbb{Z}$$

1) Equation: $\sin x = a$

Propriété: Soit a un nombre réel.

Si a > 1 ou a < -1 alors l'équation $\sin x = a$ n'admet pas de solution dans \mathbb{R} et on a : $S_{\mathbb{R}} = \emptyset$.

Si a = -1 alors on a l'équation $\sin x = -1$ On sait $\sin\left(-\frac{\pi}{2}\right) = -1$ donc les solution dans \mathbb{R} de

l'équation sont :
$$S_{\mathbb{R}} = \left\{ -\frac{\pi}{2} + 2k\pi / k \in \mathbb{Z} \right\}$$
 .

Si a=1 alors on a l'équation : $\sin x = 1$ On sait

$$\sin\!\left(\frac{\pi}{2}\right) = 1 \, \text{donc on a} : \, S_{\mathbb{R}} = \left\{\frac{\pi}{2} + 2k\pi \, / \, k \in \mathbb{Z}\right\} \, .$$

Si -1 < a < 1 réels alors on a l'équation $\sin x = a$:

Et on sait qu'il existe un unique réels : α dans $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ tel que $\sin x = \sin \alpha$ et alors on

a:
$$S_{\mathbb{R}} = \left\{ \alpha + 2k\pi; \pi - \alpha + 2k\pi / k \in \mathbb{Z} \right\}$$
.

Exemple: Résoudre dans \mathbb{R} les équations suivantes :

a)
$$\sin x = \frac{\sqrt{3}}{2}$$

b)
$$\sin x = -\frac{1}{2}$$
 c) $\sin^2 x = \frac{1}{2}$

c)
$$\sin^2 x = \frac{1}{2}$$

Correction: a)
$$\sin x = \frac{\sqrt{3}}{2}$$
 ssi $\sin x = \sin \frac{\pi}{3}$

Donc les solutions de l'équation dans \mathbb{R} sont : $S_{\mathbb{R}} = \left\{ \frac{\pi}{3} + 2k\pi; \pi - \frac{\pi}{3} + 2k\pi / k \in \mathbb{Z} \right\}$

$$S_{\mathbb{R}} = \left\{ \frac{\pi}{3} + 2k\pi; \frac{2\pi}{3} + 2k\pi / k \in \mathbb{Z} \right\}$$

b)
$$\sin x = -\frac{1}{2}$$
 ssi $\sin x = -\sin \frac{\pi}{6}$ ssi $\sin x = \sin \left(-\frac{\pi}{6}\right)$

L'équation a pour solution $-\frac{\pi}{6} + 2k\pi$ et $\pi - \left(-\frac{\pi}{6}\right) + 2k\pi = \frac{7\pi}{6} + 2k\pi$ où $k \in \mathbb{Z}$

Donc les solutions de l'équation dans \mathbb{R} sont : $S_{\mathbb{R}} = \left\{ -\frac{\pi}{6} + 2k\pi; \frac{7\pi}{6} + 2k\pi/k \in \mathbb{Z} \right\}$

$$\sin^2 x = \frac{1}{2} \Leftrightarrow \sin^2 x - \frac{1}{2} = 0 \Leftrightarrow \left(\sin x - \frac{\sqrt{2}}{2}\right) \left(\sin x + \frac{\sqrt{2}}{2}\right) = 0$$

$$\Leftrightarrow \sin x = \frac{\sqrt{2}}{2}$$
 ou $\sin x = -\frac{\sqrt{2}}{2} \Leftrightarrow \sin x = \sin \frac{\pi}{4}$ ou $\sin x = \sin \left(-\frac{\pi}{4}\right)$

$$\mathsf{Ainsi}: \ S_{\mathbb{R}} = \left\{ \frac{\pi}{4} + 2k\pi \ ; -\frac{\pi}{4} + 2k\pi \ ; \frac{5\pi}{4} + 2k\pi \ ; \frac{3\pi}{4} + 2k\pi \ \right\} \quad avec \ k \in \mathbb{Z}$$

EXERCICE

Résoudre dans
$$]-\pi,\pi]$$
 l'équation $\cos 2x = \frac{\sqrt{3}}{2}$

Étape 1 : utiliser le cercle trigonométrique et/ou le tableau de valeurs remarquables afin de

que:

retrouver <u>une</u> valeur dont le cosinus vaut $\frac{\sqrt{3}}{2}$

Le cosinus se lit sur l'axe des abscisses

on peut dire que $\frac{\sqrt{3}}{2}$ est le cosinus de $\frac{\pi}{6}$ par exemple.

Étape 2 : Utiliser ce résultat pour écrire l'équation proposée sous la forme " $\cos U = \cos V$ "

$$\cos 2x = \frac{\sqrt{3}}{2}$$
 ssi $\cos 2x = \cos \frac{\pi}{6}$ On applique

alors la propriété

Donc on a :
$$2x = \frac{\pi}{6} + 2k\pi$$
 ou $2x = -\frac{\pi}{6} + 2k'\pi$

$$x = \frac{\pi}{12} + k\pi$$
 ou $x = -\frac{\pi}{12} + k'\pi$ avec k et k' dans \mathbf{Z}

$$x = \frac{\pi}{12} + k\pi$$
 ou $x = -\frac{\pi}{12} + k'\pi$

Mais il ne va falloir garder **que** les valeurs de x dans l'intervalle imposé c'est à dire dans $]-\pi,\pi]$ on a deux méthodes soit encadrement ou on donnant des valeurs a k

Pour la première série de valeurs : $x = \frac{\pi}{12} + k\pi$ avec k dans **Z**

Prenons par exemple la valeur k=-2 et remplaçons : on obtient $x=\frac{\pi}{12}-2\pi$; cette valeur

n'appartient pas à $]-\pi,\pi]$; il est donc évident que des valeurs de k inférieures à -2 ne conviendront pas non plus.

Par contre, si je choisis k=-1: on obtient $x=\frac{\pi}{12}-\pi$; cette valeur appartient à $]-\pi,\pi]$.

Il s'agit donc de trouver toutes les valeurs de k telles que les solutions trouvées appartiennent bien à l'intervalle imposé, en appliquant cette démarche de manière systématique.

pour
$$k = -1$$
 $x_1 = \frac{\pi}{12} - \pi = -\frac{11\pi}{12}$ convient car appartient à $]-\pi,\pi]$

pour
$$k = 0$$
 $x_2 = \frac{\pi}{12}$ convient car appartient à $]-\pi,\pi]$

pour
$$k=1$$
 $x=\frac{\pi}{12}+\pi=\frac{13\pi}{12}$ ne convient pas car n'appartient pas à $]-\pi,\pi]$

Il est inutile de poursuivre pour la première série de valeur (car si pour k=1, la valeur trouvée n'appartient plus à l'intervalle, il en sera de même *a fortiori* pour des valeurs supérieures de k) Faisons de même pour la deuxième série de valeurs

$$x = -\frac{\pi}{12} + k'\pi$$
 avec k' dans **Z**

pour
$$k' = -1$$
 $x = -\frac{\pi}{12} - \pi = -\frac{13\pi}{12}$ ne convient pas car n'appartient pas à $]-\pi,\pi]$

pour
$$k' = 0$$
 $x_3 = -\frac{\pi}{12}$ convient car appartient à $]-\pi,\pi]$

pour
$$k'=1$$
 $x=-\frac{\pi}{12}+\pi=\frac{11\pi}{12}$ convient pas car appartient à $]-\pi,\pi]$

pour k'=2 $x=-\frac{\pi}{12}+2\pi$ ne convient pas car n'appartient pas à $]-\pi,\pi]$

Donc L'ensemble solution de l'équation dans $]-\pi,\pi]$ est donc: $S = \left\{-\frac{11\pi}{12}; -\frac{\pi}{12}; \frac{\pi}{12}; \frac{11\pi}{12}\right\}$

3) Equation : tan x = a

Propriété: Soit a un nombre réel.

L'équation $\tan x = a$ est définie dans \mathbb{R} ssi $x \in \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi \right\}$ avec k un nombre relatif

Donc
$$D = \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi; k \in \mathbb{Z} \right\}$$

Dans D il existe un unique réel : α dans $\left]-\frac{\pi}{2};\frac{\pi}{2}\right[$ tel que $\tan x = \tan \alpha$ et alors on a : $S_{\mathbb{R}} = \left\{\alpha + k\pi / k \in \mathbb{Z}\right\}$.

EXERCICE

1) Résoudre dans \mathbb{R} l'équations suivantes : $4\tan x + 4 = 0$

2) Résoudre dans
$$\left[-\frac{\pi}{2}; \frac{5\pi}{2}\right]$$
 l'équations suivantes : $2\sqrt{2}\sin x + 2 = 0$

Correction: 1) on a $4\tan x + 4 = 0$ est définie dans \mathbb{R} ssi $x \in \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi \right\}$ avec k un

nombre relatif Donc
$$D = \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi; k \in \mathbb{Z} \right\}$$

$$4\tan x + 4 = 0$$
 ssi $\tan x = -1$ ssi $\tan x = -\tan \frac{\pi}{4}$ ssi $\tan x = \tan \left(-\frac{\pi}{4}\right)$

Donc les solutions de l'équation dans \mathbb{R} sont : $S_{\mathbb{R}} = \left\{ -\frac{\pi}{4} + k\pi / k \in \mathbb{Z} \right\}$

2)
$$2\sqrt{2}\sin x + 2 = 0$$
 ssi $\sin x = -\frac{\sqrt{2}}{2}$ ssi $\sin x = -\sin\frac{\pi}{4}$

L'équation a pour solution $-\frac{\pi}{4} + 2k\pi$ et $\pi - \left(-\frac{\pi}{4}\right) + 2k\pi = \frac{5\pi}{4} + 2k\pi$ où $k \in \mathbb{Z}$

• Encadrement de
$$-\frac{\pi}{4} + 2k\pi$$
: $-\frac{\pi}{2} \le -\frac{\pi}{4} + 2k\pi \le \frac{5\pi}{2}$ et $k \in \mathbb{Z}$

Donc
$$-\frac{1}{2} \le -\frac{1}{4} + 2k \le \frac{5}{2}$$
 Donc $-\frac{1}{2} + \frac{1}{4} \le 2k \le \frac{5}{2} + \frac{1}{4}$

Donc
$$-\frac{1}{8} \le k \le \frac{11}{8}$$
 Donc $-0.12 \le k \le 1.37$ et $k \in \mathbb{Z}$

Donc
$$k=0$$
 ou $k=1$

Pour
$$k=0$$
 on trouve $x_1 = -\frac{\pi}{4} + 2 \times 0\pi = -\frac{\pi}{4}$

Pour
$$k=1$$
 on trouve $x_2 = -\frac{\pi}{4} + 2 \times 1\pi = \frac{7\pi}{4}$

• Encadrement de
$$\frac{5\pi}{4} + 2k\pi$$
 : $-\frac{\pi}{2} \le \frac{5\pi}{4} + 2k\pi \le \frac{5\pi}{2}$ et $k \in \mathbb{Z}$

Donc
$$-\frac{1}{2} \le \frac{5}{4} + 2k \le \frac{5}{2}$$
 Donc $-\frac{1}{2} - \frac{5}{4} \le 2k \le \frac{5}{2} - \frac{5}{4}$

الأستاذ: عثماني نجيب 4

Donc
$$-\frac{7}{8} \le k \le \frac{5}{8}$$
 Donc $-0.8 \le k \le 0.6$ et $k \in \mathbb{Z}$

Donc k = 0

Pour
$$k = 0$$
 on trouve $x_3 = \frac{5\pi}{4} + 2 \times 0\pi = \frac{5\pi}{4}$

Donc
$$S = \left\{-\frac{\pi}{4}; \frac{7\pi}{4}; \frac{5\pi}{4}\right\}$$

EXERCICE

1) Résoudre dans
$$\mathbb{R}$$
 l'équations suivantes : $\cos 2x = \cos \left(x - \frac{\pi}{3}\right)$

2) Résoudre dans
$$[0; \pi]$$
 l'équations suivantes : $\sin\left(2x - \frac{\pi}{3}\right) = \sin\left(\frac{\pi}{4} - x\right)$

3) Résoudre dans
$$\left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$$
 l'équations suivantes : $\tan \left(2x - \frac{\pi}{5} \right) = 1$

Correction: 1) on a
$$\cos 2x = \cos \left(x - \frac{\pi}{3}\right)$$
 ssi $2x = x - \frac{\pi}{3} + 2k\pi$ ou $2x = -\left(x - \frac{\pi}{3}\right) + 2k\pi$

Ssi
$$2x - x = -\frac{\pi}{3} + 2k\pi$$
 ou $2x + x = \frac{\pi}{3} + 2k\pi$ Ssi $x = -\frac{\pi}{3} + 2k\pi$ ou $x = \frac{\pi}{9} + \frac{2k\pi}{3}$ et $k \in \mathbb{Z}$

$$S_{\mathbb{R}} = \left\{ -\frac{\pi}{3} + 2k\pi; \frac{\pi}{9} + \frac{2k\pi}{3} / k \in \mathbb{Z} \right\}$$

2) on a
$$\sin\left(2x - \frac{\pi}{3}\right) = \sin\left(\frac{\pi}{4} - x\right)$$
 ssi $2x - \frac{\pi}{3} = \frac{\pi}{4} - x + 2k\pi$ ou $2x - \frac{\pi}{3} = \pi - \frac{\pi}{4} + x + 2k\pi$

ssi
$$3x = \frac{\pi}{4} + \frac{\pi}{3} + 2k\pi$$
 ou $x = \pi - \frac{\pi}{4} + \frac{\pi}{3} + 2k\pi$

Donc
$$x = \frac{7\pi}{36} + \frac{2k\pi}{3}$$
 ou $x = \frac{13\pi}{12} + 2k\pi$

• Encadrement de
$$\frac{7\pi}{36} + \frac{2k\pi}{3}$$
: $0 \le \frac{7\pi}{36} + \frac{2k\pi}{3} \le \pi$ et $k \in \mathbb{Z}$

Donc
$$0 \le \frac{7}{36} + \frac{2k}{3} \le 1$$
 Donc $-\frac{7}{24} \le k \le \frac{29}{36}$ Donc $-0, 29 \le k \le 1, 2$ et $k \in \mathbb{Z}$

Donc
$$k=0$$
 ou $k=1$

Pour
$$k = 0$$
 on trouve $x_1 = \frac{7\pi}{36}$

Pour
$$k = 1$$
 on trouve $x_2 = \frac{7\pi}{36} + \frac{2\pi}{3} = \frac{31\pi}{36}$

• Encadrement de
$$x = \frac{13\pi}{12} + 2k\pi$$
 $0 \le \frac{13\pi}{12} + 2k\pi \le \pi$ et $k \in \mathbb{Z}$

Donc
$$0 \le \frac{13}{12} + 2k \le 1$$
 Donc $-\frac{13}{24} \le k \le -\frac{1}{24}$ Donc $-0.54 \le k \le 0.04$ et $k \in \mathbb{Z}$

Donc k n'existe pas

• Donc
$$S_{[0,\pi]} = \left\{ \frac{7\pi}{36}; \frac{31\pi}{36} \right\}$$

3) on a
$$\tan\left(2x-\frac{\pi}{5}\right)=1$$
 est définie ssi $2x-\frac{\pi}{5}\neq\frac{\pi}{2}+k\pi$ ssi $2x\neq\frac{\pi}{2}+\frac{\pi}{5}+k\pi$

ssi
$$2x \neq \frac{7\pi}{10} + k\pi$$
 ssi $x \neq \frac{7\pi}{20} + \frac{k\pi}{2}$ Donc $D = \mathbb{R} - \left\{ \frac{7\pi}{20} + \frac{k\pi}{2}; k \in \mathbb{Z} \right\}$

أستاذ: عثمانی نجیب

or on sait que :
$$\tan\left(\frac{\pi}{4}\right) = 1$$
 Donc $\tan\left(2x - \frac{\pi}{5}\right) = \tan\left(\frac{\pi}{4}\right)$

Donc
$$2x - \frac{\pi}{5} = \frac{\pi}{4} + k\pi$$
 ssi $2x = \frac{\pi}{4} + \frac{\pi}{5} + k\pi$ ssi $2x = \frac{9\pi}{20} + k\pi$ ssi $x = \frac{9\pi}{40} + \frac{k\pi}{2}$

Encadrement de
$$\frac{9\pi}{40} + \frac{k\pi}{2}$$

$$-\frac{\pi}{2} \le \frac{9\pi}{40} + \frac{k\pi}{2} \le \frac{\pi}{2} \quad \text{et} \quad k \in \mathbb{Z} \quad \text{donc} \quad -\frac{1}{2} \le \frac{9}{40} + \frac{k}{2} \le \frac{1}{2} \quad \text{donc} \quad -\frac{29}{40} \le \frac{k}{2} \le \frac{11}{40}$$

donc
$$-\frac{29}{40} \le \frac{k}{2} \le \frac{11}{40}$$
 donc $-\frac{29}{20} \le k \le \frac{11}{20}$ Donc $-1,45 \le k \le 0,55$ et $k \in \mathbb{Z}$

Donc
$$k=0$$
 ou $k=-1$

Pour
$$k = 0$$
 on trouve $x_1 = \frac{9\pi}{40}$

Pour
$$k = -1$$
 on trouve $x_2 = \frac{9\pi}{40} - \frac{\pi}{2} = -\frac{11\pi}{40}$ Donc $S = \left\{-\frac{11\pi}{40}; \frac{9\pi}{40}\right\}$

II) les inéquations trigonométriques élémentaires

Exemple1: Résoudre dans $[0,2\pi[$ l'inéquation suivante : $\sin x \ge \frac{1}{2}$

$$\sin x \ge \frac{1}{2} \quad \text{ssi } \sin x \ge \sin \frac{\pi}{6}$$

$$\text{donc } S = \left[\frac{\pi}{6}, \frac{5\pi}{6}\right]$$

Exemple2: Résoudre dans $]-\pi,\pi]$ l'inéquation suivante : $\sin x \le -\frac{1}{2}$

$$\sin x \le -\frac{1}{2}$$
 ssi $\sin x \le \sin\left(-\frac{\pi}{6}\right)$

donc
$$S = \left[-\frac{5\pi}{6}; -\frac{\pi}{6} \right]$$

Exemple3:

Résoudre dans $]-\pi,\pi]$ l'inéquation suivante :

$$\cos x \ge \frac{\sqrt{2}}{2}$$

$$\cos x \ge \frac{\sqrt{2}}{2}$$
 ssi $\cos x \ge \cos \frac{\pi}{4}$

donc
$$S = \left[-\frac{\pi}{4}, \frac{\pi}{4} \right]$$

Exemple4: Résoudre dans $\left] -\frac{\pi}{2}, \pi \right]$ l'inéquation suivante : $\cos x \le \frac{1}{2}$

$$\cos x \le \frac{1}{2} \quad \text{ssi} \quad \cos x \le \cos \frac{\pi}{3}$$

Donc
$$S = \left[-\frac{\pi}{2}, -\frac{\pi}{3} \right] \cup \left[\frac{\pi}{3}, \pi \right]$$

Exemple5: Résoudre dans $]-\pi,\pi]$ les inéquations suivantes : 1) $\cos x \le 0$ 2) $\sin x \ge 0$

1)
$$S = \left] -\pi, -\frac{\pi}{2} \right] \cup \left[\frac{\pi}{2}, \pi \right]$$

2)
$$S = [0, \pi]$$

Exemple6: Résoudre dans $S = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ l'inéquation suivante : $\tan x \ge 1$

$$S = \left\lceil \frac{\pi}{4}, \frac{\pi}{2} \right\rceil$$

Exemple7: Résoudre dans $[0; 2\pi]$ l'inéquation suivante : $\sin x > -\frac{\sqrt{2}}{2}$

On sait que :
$$\sin\left(-\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}$$
 et $\sin\left(\frac{7\pi}{4}\right) = -\frac{\sqrt{2}}{2}$

L'arc MM' en rouge correspond a tous les points M(x)

$$tq x v\'{e}rifie sin x > -\frac{\sqrt{2}}{2}$$

Donc

$$\sin x \ge \frac{1}{2} \quad \text{ssi } \sin x \ge \sin \frac{\pi}{6}$$

donc
$$S = \left[0; \frac{5\pi}{4}\right] \cup \left[\frac{7\pi}{4}; 2\pi\right]$$

Exemple8: Résoudre dans $[-\pi; \pi]$ l'inéquation suivante : $3\tan x - \sqrt{3} \ge 0$

On a
$$3\tan x - \sqrt{3} \ge 0$$
 ssi $\tan x \ge \frac{\sqrt{3}}{3}$

On sait que :
$$\tan \frac{\pi}{6} = \frac{\sqrt{3}}{2}$$

Les arc MJ et M'J' en rouge correspond a tous les points M(x) tq x vérifie $3\tan x - \sqrt{3} \ge 0$ Donc

$$S = \left[-\frac{5\pi}{6}; -\frac{\pi}{2} \right] \cup \left[\frac{\pi}{6}; \frac{\pi}{2} \right]$$

Exemple9: Résoudre dans $[0; 2\pi]$ l'inéquation suivante : $\tan x - 1 \ge 0$

On a $\tan x - 1 \ge 0$ ssi $\tan x \ge 1$

On sait que :
$$\tan \frac{\pi}{4} = 1$$

Les arc MJ et M'J' en rouge correspond a tous les points M(x) tq x vérifie $\tan x - 1 \ge 0$ Donc

$$S = \left[\frac{\pi}{4}; \frac{\pi}{2}\right] \cup \left[\frac{5\pi}{4}; \frac{3\pi}{2}\right]$$

Activités : 1) a)Résoudre dans \mathbb{R} l'équations suivantes : $2\sin^2 x - 9\sin x - 5 = 0$ et en déduire les solutions dans $[0; 2\pi]$

- b) résoudre dans $[0; 2\pi]$ l'inéquation suivante : $2\sin^2 x 9\sin x 5 \le 0$
- 2) Résoudre dans $[0; \pi]$ l'inéquation suivante : $(2\cos x 1)(\tan x + 1) \ge 0$

Correction: 1) a)on pose $t = \sin x$

$$2\sin^2 x - 9\sin x - 5 \le 0$$
 ssi $2t^2 - 9t - 5 \le 0$

On cherche les racines du trinôme $2t^2 - 9t - 5$:

Calcul du discriminant : $\Delta = (-9)^2 - 4 \times 2 \times (-5) = 121$

Les racines sont :
$$t_1 = \frac{9 - \sqrt{121}}{2 \times 2} = -\frac{1}{2}$$
 et $t_2 = \frac{9 + \sqrt{121}}{2 \times 2} = 5$ Donc $\sin x = -\frac{1}{2}$ et $\sin x = 5$

Or on sait que $-1 \le \sin x \le 1$ donc l'équation $\sin x = 5$ n'admet pas de solutions dans \mathbb{R}

$$\sin x = -\frac{1}{2} \operatorname{ssi} \sin x = \sin \left(-\frac{\pi}{6} \right) \operatorname{ssi} x = -\frac{\pi}{6} + 2k\pi \operatorname{ou} x = \pi - \left(-\frac{\pi}{6} \right) + 2k\pi$$

ssi
$$x = -\frac{\pi}{6} + 2k\pi$$
 ou $x = \frac{7\pi}{6} + 2k\pi$ et $k \in \mathbb{Z}$

$$S_{\mathbb{R}} = \left\{ -\frac{\pi}{6} + 2k\pi; \frac{7\pi}{6} + 2k\pi / k \in \mathbb{Z} \right\}$$

• Encadrement de
$$-\frac{\pi}{6} + 2k\pi$$
 : $0 \le -\frac{\pi}{6} + 2k\pi \le 2\pi$ et $k \in \mathbb{Z}$

Donc
$$0 \le -\frac{1}{6} + 2k \le 2$$
 Donc $\frac{1}{12} \le k \le \frac{13}{12}$ Donc $0,08 \le k \le 1,02$ et $k \in \mathbb{Z}$

Donc k=1

Pour
$$k=1$$
 on remplace on trouve $x_1 = -\frac{\pi}{6} + 2\pi = \frac{11\pi}{6}$

• Encadrement de
$$\frac{7\pi}{6} + 2k\pi$$
 : $0 \le \frac{7\pi}{6} + 2k\pi \le 2\pi$ et $k \in \mathbb{Z}$

Donc
$$0 \le \frac{7}{6} + 2k \le 2$$
 Donc $-\frac{7}{12} \le k \le \frac{5}{12}$ Donc $-0.5 \le k \le 0.41$ et $k \in \mathbb{Z}$

Donc
$$k=0$$
 on remplace on trouve $x_2 = \frac{7\pi}{6}$

Donc
$$S_{[0;2\pi]} = \left\{ \frac{11\pi}{6}; \frac{7\pi}{6} \right\}$$

1) b)
$$2\sin^2 x - 9\sin x - 5 \le 0$$
 ssi $2\left(\sin x + \frac{1}{2}\right)\left(\sin x - 5\right) \le 0$

Or on sait que
$$-1 \le \sin x \le 1$$
 donc $-1 \le \sin x \le 1 < 5$ Donc $\sin x - 5 < 0$

الأستاذ: عثماني نجيب

Puisque $\sin x - 5 < 0$ et 2 > 0 alors $2 \left(\sin x + \frac{1}{2} \right) \left(\sin x - 5 \right) \le 0$ ssi $\sin x + \frac{1}{2} \ge 0$

ssi
$$\sin x \ge -\frac{1}{2}$$
 ssi $\sin x \ge \sin\left(-\frac{\pi}{6}\right)$

L'arc en rouge correspond a tous les points M(x)

tq x vérifie
$$\sin x \ge -\frac{1}{2}$$

donc
$$S = \left[0; \frac{7\pi}{6}\right] \cup \left[\frac{11\pi}{6}; 2\pi\right]$$

2) l'inéquation $(2\cos x - 1)(\tan x + 1) \ge 0$ est définie dans $[0; \pi]$ ssi $x \ne \frac{\pi}{2} + k\pi$

Donc
$$D = [0; \pi] - \left\{\frac{\pi}{2}\right\}$$

 $2\cos x - 1 \ge 0$ ssi $\cos x = \frac{1}{2}$ ssi $\cos x \ge \cos \frac{\pi}{3}$

 $\tan x + 1 \ge 0$ ssi $\tan x \ge -1$ ssi $\tan x \ge \tan \left(\frac{3\pi}{4}\right)$

	π		$\tau \sim 3\pi$	
x	0 3		$\frac{1}{2}$	π
2cosx -1	+ () –	_	_
tanx+1	+	+	- (+
$(2cosx{}1)(tanx{+-}1)$	+	_	+	· –

donc
$$S = \left[0; \frac{\pi}{3}\right] \cup \left[\frac{\pi}{2}; \frac{3\pi}{4}\right]$$