Resolution of Mainlobe and Sidelobe Detections using Model Order Determination

Amin G. Jaffer Joe C. Chen Thomas W. Miller

Adaptive Sensor Array Processing Workshop (ASAP)

March 13-14, 2001

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate of mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis l	is collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE 14 MAR 2001		2. REPORT TYPE N/A		3. DATES COVERED -	
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER	
Resolution of Mainlobe and Sidelobe Detections using Model Order Determination				5b. GRANT NUMBER	
Deter initiation				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S) Amin G. Jaffer; Joe C. Chen; Thomas W. Miller				5d. PROJECT NUMBER	
				5e. TASK NUMBER	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Raytheon				8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)	
Defense Advanced Arlington, VA 222	Fairfax Drive	11. SPONSOR/MONITOR'S REPORT NUMBER(S)			
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited			
13. SUPPLEMENTARY NO See ADM001263 fo color images.	ores or entire Adaptive S	ensor Array Process	sing Workshop.,	The original o	document contains
14. ABSTRACT See briefing slides.					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC	17. LIMITATION OF ABSTRACT	18. NUMBER	19a. NAME OF		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	UU	OF PAGES 24	RESPONSIBLE PERSON

Report Documentation Page

Form Approved OMB No. 0704-0188

False Sidelobe and Multiple Target Resolution Problem

- Adaptive beamforming/filtering and STAP methods can result in high sidelobe levels, especially with limited sample support for estimating interference covariance matrix
- This can cause excessive "false" sidelobe detections arising from targets or undernulled interferences
- Sidelobe rejection capabilities of adaptive matched filter (AMF), generalized likelihood ratio test (GLRT) and AMF/ACE have been previously analyzed

Multiple Target and Sidelobe Detection using Weighted Least-Squares Fit to AMF and GLRT Data

- For simplicity of exposition, we will consider the spatial domain only although the method is directly applicable to the angle-Doppler domain
- The proposed method uses the output detection test statistic computed over the entire angular extent of interest
- In any given range cell the question is whether the totality of output test statisitic values computed over the beam directions of interest that exceed a preset threshold represent one target, two targets or up to a maximum M targets, i.e., the question is one of model order determination

J-amf and J-glrt Functions - Normalized Adaptive Array Outputs

Raytheon

• J-amf(q) represents the normalized adaptive array power output as a function of the angle q

$$J_{AMF}(q) = \frac{\left| d^{H}(q) \hat{R}^{-1} x \right|^{2}}{d^{H}(q) \hat{R}^{-1} d(q)} = \frac{\left| w^{H}(q) x \right|^{2}}{w^{H}(q) \hat{R} w(q)}$$

• J-glrt(a) is J-amf(a) further normalized by data power term

$$J_{GLRT}(q) = \frac{J_{AMF}(q)}{1 + x^{H} \hat{R}^{-1} x / K}$$

 $\hat{R} = \frac{1}{K} \sum_{k=1}^{K} x_k x_k^H \qquad x_k' s \text{ are secondary set of signal - free data}$

K - - Number of snapshots

Normalized Adaptive Array Outputs - - - continued

Raytheon

Diagonal Loading and shaded (tapered) steering vector:

$$\hat{R}_{DL} = \hat{R} + aI$$

 $d_{sh} = w_{sh} \cdot d$, • represents the Schur product, w_{sh} is a shading or taper function

• $w(q) = \hat{R}_{DL}^{-1} d_{sh}$ is also used in the J-amf(a) and J-glrt(a) functions

J-amf Function for One and Two Targets --- No Taper, K=100

J-amf function -- unshaded steering vector and 50 dB Chebyshev taper

 False sidelobe detections can occur in adaptive arrays even with 50 dB Chebyshev taper

Weighted Least-Squares and Model Order Determination Method

Raytheon

- Determine L peaks (or values adjacent to peaks) of $J_{AMF}(q)$ at $q_1,q_2,...,q_L$ which exceed preset threshold for given P_{FA}
- Test data vector x is modeled as

$$x = D_{s}a + n$$

where
$$D_s = d(q_{s1}), d(q_{s2}), \dots, d(q_{sM})$$
 an N by M matrix

a and n are the complex signal amplitude vector and interference plus noise vectors

• The application of the weight vector w(q) to the data yields

$$y(q) = w(q)^H x = w(q)^H D_s a + v$$

WLS Methodcontinued

Raytheon

- where $v(q) = w(q)^H n$
 - y(q) is evaluated at L distinct points
- The transformed signal model is fit to the y(q) data in a weighted least-squares sense and the residual is evaluated

The residual is computed as

$$J_{res} (q_{s1},...,q_{sM}) = |I - P(q_{s1},...,q_{sM})|^{2}$$

WLS Methodcontinued2

Raytheon

• $P(q_{s1},...,q_{sM})$ is an orthogonal projection operator

For details, see paper

- $J_{res}(q_{s1},...,q_{sM})$ is a function of $q_{s1},...,q_{sM}$ and needs to be minimized over those angles
- For computer simulation purposes, we limit ourselves to M=2
- As a first approximation, we take q_{s1} and q_{s2} to be the two highest peaks --- computationally efficient
- Better approximation -- fix one angle at global peak and search over other to minimize J_{res} - more computation

Akaike Information Criterion (AIC) for Model Order Determination

Raytheon

 Compute AIC(m) for model order m=1,2,....,M and choose the minimum

AIC(m)=
$$J_{res}$$
 + Number of free parameters in model
= J_{res} + 3m

 Alternate Minimum Description Length (MDL) criterion is not applicable here because the second term (the "penalty" term) becomes zero for single target signal snapshot

Performance Evaluation by Monte-Carlo Computer Simulation

- 10 element line array with half-wavelength inter-element spacing
- Single source placed at 0 degrees (broadside)
 Two sources at 0 and 45 degrees
 Noise jammer placed at -30 degrees, JNR=40dB
- Thresholds for AMF and GLRT methods to yield a specified P_{FA} computed in accordance with paper by F.C.Robey et.al.,
 - **IEEE Trans. on AES, March 1992**
- The probability of detection was based on 5000 trials for each point on the curve
- A target detection was considered valid if it fell within plus or minus 3 dB beamwidth of the true target angle

Probability of Mainlobe Detection (AMF)

Probability of Sidelobe Detections (AMF)

Probability of Mainlobe Detection --- AMF Taper

Probability of Sidelobe Detection --- AMF Taper

Probability of Mainlobe Detection AMF Taper plus Diagonal Loading

Probabilty of Sidelobe Detection AMF Taper plus Diagonal Loading

Probability of Detecting Two Sources - AMF

Probability of Detecting Two sources - GLRT

Probability of Detection - - GLRT

Probability of Sidelobe Detection - - GLRT

Probability of Detecting Two Sources - - - Various MT-AMF methods

Conclusions

- Proposed new method, using weighted least-squares fit to AMF or GLRT data combined with model order determination by Akaike Information Criterion, can significantly reduce false sidelobe detections
- This is true even when amplitude taper and diagonal loading is used
- The approximate method for angle estimation is computationally efficient and yields good detection and sidelobe rejection results