§1. Limita posloupnosti

Určete několik prvních členů posloupnosti $\left\{\frac{n+1}{n}\right\}_{n=1}^{\infty}.$ nak
reslete její graf a určete, jak Př: se posloupnost chová pro vzrůstající n:

Def: Nechť $\{a_n\}_{n=1}^{\infty}$ je posloupnost, $A \in \mathbb{R}$ číslo. Řekneme, že posloupnost $\{a_n\}_{n=1}^{\infty} m \acute{a}$ limitu rovnu číslu A, jestliže $\forall \epsilon \in \mathbb{R}^+ : \exists n_0 \in N : \forall n \geq n_0 : |a_n - A| < \epsilon$, zapisujeme $\lim_{n\to\infty} a_n = A.$

Pozn: $|a_n - A| < s \Leftrightarrow a_n \in (A - s; A + s)$

Má-li posloupnost limitu, pak se nazývá konvergentní, v opačném případě divergentní. Def:

V.1.1.: Každá posloupnost má nejvýše jednu limitu.

[Dk: Sporem: Nechť má posloup
nsost $\{a_n\}_{n=1}^{\infty}$ limitu A a B, A < B.

Položme $\epsilon = \frac{B-A}{2}$. Musí platit: $a_n \in (A-\epsilon;A+\epsilon) \cap a_n \in (B-\epsilon;B+\epsilon) \Rightarrow a_n \in \emptyset$, což je spor.]

V.1.2.: Každá konvergentní posloupnost je omezená.

Obrácení předchozí věty neplatí: $\{(-1)^n\}_{n=1}^{\infty}$. Př:

Důsledek: Jestliže posloupnost není omezená, pak je divergentní. Pozn:

Určete limitu posloupnosti $\left\{\frac{n+1}{n}\right\}_{n=1}^{\infty}$, hypotéza z předchozího příkladu: Máme dokázat: Př:

$$\forall \epsilon \in \mathbb{R}^+ : \exists n_0 \in \mathbb{N} : \forall n \ge n_0 : |a_n - A| < \epsilon$$

$$|a_n - A| < \epsilon \Leftrightarrow |\frac{n+n}{n} - 1| < \epsilon \Leftrightarrow |\frac{1}{n}| < s\epsilon \Leftrightarrow \frac{1}{n} < \epsilon, \text{ neboť } n \in \mathbb{N} \Leftrightarrow \frac{1}{\epsilon} < n \Rightarrow n_0 = \left[\frac{1}{\epsilon}\right] + 1.$$

V.1.3.: Každá nekonečná posloupnost vybraná z konvergentní posloupnosti je konvergentní a má stejnou limitu.

Pokud lze vybrat z posloupnosti $\{a_n\}_{n=1}^{\infty}$ dvě konvergentní posloupnosti s různou limitou, je posloupnost $\{a_n\}_{n=1}^{\infty}$ divergentní. (např.: $\{(-1)^n\}_{n=1}^{\infty}$) Pozn:

V.1.4.: Nechť $\{a_n\}_{n=1}^\infty$ a $\{b_n\}_{n=1}^\infty$ jsou posloupnosti takové, že $\forall n\in\mathbb{N}:0\leq a_n\leq b_n$ $\lim_{n\to\infty} b_n = 0$, pak $\lim_{n\to\infty} a_n = 0$

[Dk: $\forall \epsilon \in \mathbb{R}^+ : \exists n_0 \in \mathbb{N} : \forall n \geq n_0 : b_n < \epsilon \Rightarrow \forall \epsilon \in \mathbb{R}^+ : \exists n_0 \in \mathbb{N} : \forall n \geq n_0 : 0 \leq a_n \leq n_0 \leq n_0$

Pozn: Předpoklady předchozí věty lze zeslabit, nerovnosti nemusejí platit pro konečný počet členů posloupnosti.

V.1.5.:

<u>Věta o třech limitách:</u> Nechť $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ a $\{c_n\}_{n=1}^{\infty}$ jsou tři posloupnosti takové, že $\exists n_0: \forall n>n_0: a_n\leq b_n\leq c_n\cap \lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=A.$ Pak $\lim_{n\to\infty}b_n=A.$

Př:

- 1. $\{1\}_{n=1}^{\infty}$ $\forall \epsilon > 0 : \forall n : a_n = 1 \Rightarrow \lim_{n \to \infty} 1 = 1.$
- $\forall \epsilon > 0 : \forall n > \frac{1}{\epsilon} : 0 < a_n = \frac{1}{n} < \frac{1}{1/\epsilon} = 0 + \epsilon \quad \Rightarrow \quad \lim_{n \to \infty} \frac{1}{n} = 0.$
- 3. $\left\{1 + (-1)^{n+1} \frac{1}{n}\right\}_{n=1}^{\infty}$ $\forall \epsilon > 0: \forall n > \frac{1}{\epsilon}: 1 - \epsilon = 1 - \frac{1}{1/\epsilon} = 1 - \frac{1}{n} \le 1 + (-1)^n \frac{1}{n} = a_n = 1 + (-1)^n \frac{1}{n} \le 1 + \frac{1}{n} < \frac{1}{1/\epsilon} = 1 + \epsilon \implies \lim_{n \to \infty} \frac{1}{n} = 0.$
- 4. $\{(-1)^n\}_{n=1}^{\infty}$

Na sudých členech $\lim (-1)^{2n} = \lim 1 = 1.$ Na lichých členech $\lim (-1)^{2n+1} =$ $\lim -1 = -1.$

Diverguje!