Introduction

Optimizing Decision-Making in Multi-Agent RL with CPT

- Investigating Multi-Agent Reinforcement Learning (MARL) under Cumulative Prospect Theory (CPT)
- Key motivation: Aligning autonomous agents with human decision-making biases
- Focus areas:
 - Utility and probability distortions in MARL
 - Strategy optimization in multi-agent interactions
 - Emergent behaviors in mixed agent populations
 - Strategic information elicitation

Background

Cumulative Prospect Theory (CPT) & MARL

- Traditional RL: Agents maximize expected rewards
- CPT Agents: Modify reward and probability perception
 - Reference-dependent evaluation
 - Loss aversion: More sensitive to losses than gains
 - Nonlinear value and probability weighting functions
- MARL Setting: Multi-agent interactions in cooperative, competitive, and mixedmotive environments

MARL Formulation

Mathematical Framework

- Markov Decision Process (MDP):
 - States, actions, transition probabilities, rewards, discount factor
- Multi-Agent Extension:
 - Multiple agents optimizing individual rewards
 - Interaction through joint action space
 - Nash equilibrium as a classical solution concept
- CPT Integration:
 - Agents optimize for prospect-theoretic utilities rather than expected rewards

CPT-Driven Reinforcement Learning

How CPT Alters RL Decision-Making

• Value Function: Loss aversion and diminishing sensitivity

$$v(x) = egin{cases} x^lpha, & x \geq 0 \ -\lambda(-x)^lpha, & x < 0 \end{cases}$$

• Probability Weighting: Overweighting rare events, underweighting frequent events

$$w(p)=rac{p^{eta}}{(p^{eta}+(1-p)^{eta})^{1/eta}}$$

- Policy Optimization Challenge:
 - Nonconvexity in probability and value transformations
 - No Bellman equation, making dynamic programming ineffective

Implementation Strategy

Technical Approach & PyTorch Implementation

- Policy Gradient Optimization with CPT
 - CPT-adjusted rewards & probability distortions
 - Model-free learning using policy gradients
- Implementation Workflow:
 - i. Design neural network for policy representation
 - ii. Transform rewards using CPT functions
 - iii. Compute policy gradients using automatic differentiation
 - iv. Optimize policies using gradient ascent
- Evaluation:
 - Multi-agent simulations (PettingZoo, Gym)

Initial Results

Current Progress & Observations

- MARL Training with MADDPG Successfully Implemented
 - Reward trends show learning progress
 - Policy updates and replay buffer working as expected

• Challenges:

- No CPT mechanisms integrated yet
- Stability issues in multi-agent coordination
- Absence of explicit evaluation metrics (e.g., win/loss ratio, episodic scores)

Next Steps & Challenges

Planned Improvements

CPT Integration

- Implement probability weighting and value distortions
- Modify policy updates for CPT-weighted objectives

Technical Hurdles

- Gradient stability under CPT-induced reward transformations
- Multi-agent coordination under risk-sensitive behaviors
- Computational overhead from probability-weighted updates

Open Questions

- How does CPT impact equilibrium stability?
- Best strategies for CPT-weighted return approximation?

Conclusion

Summary & Future Directions

- MARL framework successfully implemented, but CPT integration pending
- Policy gradient approach chosen for adaptability to nonconvex objectives
- Early results validate **agent learning**, but evaluation metrics need refinement
- Next Steps:
 - Incorporate CPT-based distortions
 - Improve training stability & evaluation methods
 - Assess strategic behaviors under CPT in multi-agent environments

Thank You! Questions?