

Machine Learning on Sequences

▶ GNNs are architectures specialized in learning data defined over graph supports

▶ Several processes have a sequential nature. To learn from them, we need dedicated architectures

▶ Often, we want to learn properties of a sequence ⇒ Is the particle entering the forbidden area?

- ▶ This problem is not just a simple sequence of classifications $\Rightarrow y_t = \phi(x_t)$
- ▶ It is a (sequence of) classifications of a sequence $\Rightarrow y_t = \phi(x_{1:t}) = \phi(x_t, x_{t-1}, \dots, x_1)$

▶ Predictions on a sequence depends on observation histories $\Rightarrow \hat{y}_t = \Phi(x_t, x_{t-1}, \dots, x_1)$

Recurrent neural networks (RNNs) estimate a hidden state to avoid this unbounded memory growth

A stochastic process (random sequence) is said to be Markov or memoryless if

$$p\left(\mathsf{x}_{t+1} \,\big|\, \mathsf{x}_{1:t}\right) = p\left(\mathsf{x}_{t+1} \,\big|\, \mathsf{x}_{t}\right)$$

- It is the same to condition on the current value x_t or conditioning or on the whole trajectory $x_{0:t}$
 - ⇒ The future, given the present, is independent of the past
 - ⇒ For predicting the future, knowledge of the past is irrelevant
- ▶ Outputs (e.g., trajectory categories) are conditionally independent $\Rightarrow p(y_t \mid x_t) = p(y_t \mid x_{1:t})$

- ▶ In a memoryless Markov Process, learning is equivalent reduce to a sequence of learning problems
- ▶ State evolution is a chain of memoryless transitions. And outputs depend on the current state only

 \triangleright An AI to predict y_t mimics the conditional distribution of the observations. The past is irrelevant

- ▶ In a memoryless Markov Process, learning is equivalent reduce to a sequence of learning problems
- ▶ State evolution is a chain of memoryless transitions. And outputs depend on the current state only

 \triangleright An AI to predict y_t mimics the conditional distribution of the observations. The past is irrelevant

Recurrent Neural Networks

lacktriangle Machine Learning in stochastic processes that are not Markov \Rightarrow The past is relevant in learning

5

- ▶ The evolution of the trajectory is not a Markov Process if we observe positions only
- ▶ But it is Markov if we have access to velocities and accelerations ⇒ Hidden (unobserved) states

lacktriangle All systems are Markov \Rightarrow We often lack enough information to observe their Markov structure

Stochastic process x_t follows a hidden Markov model if there exists a process z_t such that

$$p(\mathbf{z}_{t+1} \, | \, \mathbf{z}_{1:t}) = p(\mathbf{z}_{t+1} \, | \, \mathbf{z}_t)$$
 and $p(\mathbf{x}_t \, | \, \mathbf{z}_t) = p(\mathbf{x}_t \, | \, \mathbf{z}_{0:t})$

ightharpoonup The hidden state z_t is a memoryless Markov stochastic process

- ightharpoonup The observed state x_t is conditionally independent. Depends only on the current hidden state z_t
- ▶ Outputs are also conditionally independent $\Rightarrow p(y_t | z_t) = p(y_t | z_{1:t})$

- ▶ In a hidden Markov model learning is not equivalent to a sequence of learning problems
- ▶ The AI can try to mimic the conditional distribution $p(y_t | z_t)$. But we don't have access to z_t

▶ Recurrent Neural Network (RNN) \Rightarrow Use observed state x_t to estimate hidden state z_t

- ▶ In a hidden Markov model learning is not equivalent to a sequence of learning problems
- ▶ The AI can try to mimic the conditional distribution $p(y_t | z_t)$. But we don't have access to z_t

▶ Recurrent Neural Network (RNN) \Rightarrow Use observed state x_t to estimate hidden state z_t

- A recurrent neural network is made up of two separate learning parametrizations
 - $\Rightarrow \Phi_1(x_t, z_{t-1}) \Rightarrow$ From observed state $x_t \Rightarrow$ and hidden state $z_{t-1} \Rightarrow$ to hidden state update z_t
 - $\Rightarrow \Phi_2(\mathbf{z}_t) \Rightarrow$ From updated hidden state $\mathbf{z}_t \Rightarrow$ to output estimate $\hat{\mathbf{y}}_t$

It is a recurrent neural network because hidden states are fed-back as inputs for the next time step

• Use a perceptron for the AI that updates the hidden state $\Rightarrow \Phi_1(x_t, z_{t-1}) = \sigma(Ax_t + Bz_{t-1})$

▶ Number of learnable parameters \equiv Entries of A and B \Rightarrow Does not depend on the time index t

▶ Use another perceptron for the AI that predicts the output $\Rightarrow \Phi_1(z_t) = \sigma(Cz_t)$

 \blacktriangleright We can also use a multi-layer neural network for the output prediction AI $\Rightarrow \Phi_1\Big(z_t\Big) = \Phi\Big(z_t; H\Big)$

▶ Use another perceptron for the AI that predicts the output $\Rightarrow \Phi_1(z_t) = \sigma(Cz_t)$

 \blacktriangleright We can also use a multi-layer neural network for the output prediction AI $\Rightarrow \Phi_1\Big(z_t\Big) = \Phi\Big(z_t; H\Big)$

Time Gating

▶ We discuss the problem of vanishing/exploding gradients in recurrent neural networks

▶ We introduce gating mechanisms in the form of long short-term memories and gated recurrent units

Vanishing/Exploding Gradients for Long Term Dependencies

- ▶ In some tasks, the RNN may have to learn how to model long term dependencies of length T
- ▶ This poses a challenge \Rightarrow the Jacobian $\partial z_T/\partial B$ will depend on a chain of multiplications by B

- ▶ If eigenvalues of B \ll 1, the gradients tend to vanish, leading to exponentially smaller weights B
- ▶ If eigenvalues of $B \gg 1$, the gradients tend to explode, leading to exponentially larger weights B

 \blacktriangleright Consider a simplification of the RNN where we omit the nonlinear function $\sigma(\cdot)$ and the inputs x_t

$$\mathsf{z}_t = \mathsf{B}\mathsf{z}_{t-1}$$

ightharpoonup At time t = T, the state variable z_T depends on the Tth power of the matrix B

$$z_T = B^T z_{t-T}$$

▶ If B admits an eigendecomposition $B = Q\Lambda Q^{T}$, the recurrence can be rewritten as

$$z_T = Q \Lambda^T Q^T z_{t-T}$$

- ⇒ Eigenvalues less than one will vanish and eigenvalues greater than one will explode
- \Rightarrow Any component of z_{t-T} not aligned with the largest eigenvalues will be discarded

Gating Mechanism

- ► To address the issue of vanishing gradients, we add a gating mechanism to RNNs
- ightharpoonup Gates are scalars in [0,1] acting on the current input and on the previous state
 - \Rightarrow Control how much of the input and past time information should be taken into account
- ► The value of each gate is updated at every step of the sequence
 - \Rightarrow Allows creating paths through time with derivatives that neither vanish nor explode
 - ⇒ Creates dependency paths that allow encoding both short and long term dependencies

Long Short-Term Memory (LSTM)

- ▶ The most popular gated RNN architecture is the Long Short-Term Memory (LSTM) cell
- ▶ Three gates: a forget gate $f_t \in [0,1]$, an input gate $g_t \in [0,1]$, and a cell output gate $q_t \in [0,1]$
- Let x_t be the input, z_t the state, and define the internal memory s_t of the LSTM cell
- ightharpoonup Memory s_t updated by applying the forget gate to s_{t-1} and the input gate to the state update

$$\mathsf{s}_t = \mathbf{f}_t \mathsf{s}_{t-1} + \mathbf{g}_t \sigma \left(\mathsf{A} \mathsf{x}_t + \mathsf{B} \mathsf{z}_{t-1} \right)$$

 \triangleright State z_t updated by applying the cell output gate to the internal cell memory s_t

$$z_t = q_t \sigma(s_t)$$

Gated Recurrent Unit (GRU)

- ▶ The Gated Recurrent Unit (GRU) is a second popular gated version of the RNN
- ▶ Slight variation of LSTM \Rightarrow single gate $u_t \in [0,1]$ plays the role of input and forget gates

$$z_t = u_t z_{t-1} + (1 - u_t) \sigma \left(A x_t + r_t B z_{t-1} \right)$$

 \Rightarrow Reset gate $r_t \in [0,1]$ controls contribution of previous state z_{t-1} to updated state

▶ Besides the LSTM and the GRU, many more variants of gating mechanisms for RNNs exist

- ▶ In the LSTM and the GRU, the gates themselves are calculated as the outputs of RNNs
- \triangleright For example, the forget gate f_t of the LSTM has its own state variable z_t' (as do all the other gates)

$$\mathsf{z}_t' = \sigma \left(\mathsf{A}' \mathsf{x}_t + \mathsf{B}' \mathsf{z}_{t-1}' \right)$$

▶ The forget gate f_t is then calculated from the input x_t and the state z_t' as

$$f_t = \text{sigmoid} \left(\mathsf{Ux}_t + \mathsf{Wz}_t' \right)$$

- ⇒ With U and W linear layers mapping the input and state features to a single scalar
- \Rightarrow And the sigmoid activation function ensuring gate values in the [0,1] interval

Graph Recurrent Neural Networks

▶ We define Graph Recurrent Neural Networks (GRNNs) as particular cases of RNNs

 \triangleright Consider a time varying process x_t in which each of the signals is supported on shift operator S

- ► A graph recurrent neural network (GRNN) combines
 - \Rightarrow A GNN because x_t is supported on a graph. \Rightarrow An RNN because x_t is a sequence

- An RNN has a hidden state z_t updated with the perceptron $\Rightarrow z_t = \sigma(Ax_t + Bz_{t-1})$
- ▶ An it has an output prediction \hat{y}_t given by the perceptron $\Rightarrow \hat{y}_t = \sigma(Cx_t)$

- \blacktriangleright The observed state x_t and the output y_t are graph signals supported on the graph shift operator S
 - \Rightarrow The hidden state z_t is constructed to be a graph signal supported on the graph shift operator S

► Hidden and observed state are propagated through graph filters to update the hidden state

$$A = A(S) = \sum_{k=0}^{K-1} a_k S^k$$
 $B = B(S)x = \sum_{k=0}^{K-1} b_k S^k$

► The state update is $\Rightarrow z_t = \sigma \left[A(S)x_t + B(S)z_{t-1} \right] = \sigma \left[\sum_{k=0}^{K-1} a_k S^k x_t + \sum_{k=0}^{K-1} b_k S^k z_{t-1} \right]$

▶ The hidden state z_t is propagated through a graph filter to make a prediction \hat{y}_t of the output y_t

$$C = C(S) = \sum_{k=0}^{K-1} c_k S^k$$

► The prediction of the output y_t is given by $\Rightarrow \hat{y}_t = \sigma \left[C(S)z_t \right] = \sigma \left[\sum_{k=0}^{K-1} c_k S^k z_t \right]$

▶ A GRNN is made up a hidden state update perceptron and an output prediction perceptron

$$\mathbf{z}_{t} = \sigma \left[\sum_{k=0}^{K-1} \mathbf{a}_{k} \mathbf{S}^{k} \mathbf{x}_{t} + \sum_{k=0}^{K-1} \mathbf{b}_{k} \mathbf{S}^{k} \mathbf{z}_{t-1} \right] \qquad \hat{\mathbf{y}}_{t} = \sigma \left[\sum_{k=0}^{K-1} \mathbf{c}_{k} \mathbf{S}^{k} \mathbf{z}_{t} \right]$$

Each of these filters can be replaced by a MIMO filter to yield a GRNN with multiple features

$$\mathbf{Z}_{t} = \sigma \left[\sum_{k=0}^{K-1} \mathbf{S}^{k} \mathbf{X}_{t} \mathbf{A}_{k} + \sum_{k=0}^{K-1} \mathbf{S}^{k} \mathbf{Z}_{t-1} \mathbf{B}_{k} \right] \qquad \hat{\mathbf{Y}}_{t} = \sigma \left[\sum_{k=0}^{K-1} \mathbf{S}^{k} \mathbf{Z}_{t} \mathbf{C}_{k} \right]$$

Multiple-feature hidden state Z_t permits larger dimensionality relative to observed states

Spatial Gating

- ▶ We extend time gating to GRNNs to handle the problem of vanishing/exploding gradients
- ► We discuss long range graph dependencies and introduce node and edge gating

- Like RNNs, GRNNs may also experience the problem of vanishing/exploding gradients
 - \Rightarrow Happens when eigenvalues of B(S) are much smaller/larger than 1
- Similarly to what we did for RNNs, we address it by adding gating operators to GRNNs

$$Z_{t} = \sigma \left(\hat{Q}\left\{\mathcal{A}_{S}(X_{t})\right\} + \check{Q}\left\{\mathcal{B}_{S}(Z_{t-1})\right\}\right)$$

- ▶ Input gate operator $\hat{Q}: \mathbb{R}^{N \times H} \to \mathbb{R}^{N \times H} \Rightarrow$ controls the importance of the input X_t at time t
- ▶ Forget gate operator $\check{Q}: \mathbb{R}^{N \times H} \to \mathbb{R}^{N \times H} \Rightarrow$ controls the importance of the state Z_t at time t

- ► First type of gating for GRNNs is time gating ⇒ simple extension of input and forget gates of RNNs
- ▶ In the Time-Gated GRNN, the input and forget gate operators are expressed as

$$\hat{\mathcal{Q}}\left\{\mathcal{A}_{S}(X_{t})\right\} = \hat{q}_{t}\mathcal{A}_{S}(X_{t}), \qquad \check{\mathcal{Q}}\left\{\mathcal{B}_{S}(Z_{t})\right\} = \check{q}_{t}\mathcal{B}_{S}(Z_{t})$$

- lacktriangle Time gating multiplies the input and the state by scalar gates $\hat{q}_t \in [0,1]$ and $\check{q}_t \in [0,1]$
- ▶ A single scalar gate is applied to the whole graph signal ⇒ same gate value for all nodes

Long Range Spatial Dependencies

- lacktriangle Even if eigenvalues of B(S) \sim 1 spatial imbalances can cause gradients to vanish in space
 - \Rightarrow Some nodes/paths might get assigned more importance than others in long range exchanges
- **Example**: graphs with community structure, where some nodes are highly connected within clusters
 - \Rightarrow Gradients of $Z_{\mathcal{T}}$ depend on successive products of B(S) \Rightarrow successive products of S
 - \Rightarrow For large T, the matrix entries in S^T with highly connected nodes will get densely populated
 - \Rightarrow Overshadows community structure \Rightarrow can't encode long processes that are local on the graph

- ▶ Node and edge structure of the graph allows for other forms of gating ⇒ spatial gating
- ▶ Node gating ⇒ one input and one forget gate for each node of the graph

Spatial gating strategies help encode long range spatial dependencies in graph processes

- ▶ Node and edge structure of the graph allows for other forms of gating ⇒ spatial gating
- ► Edge gating ⇒ one input and one forget gate for each edge of the graph

Spatial gating strategies help encode long range spatial dependencies in graph processes

▶ In the Node-Gated GRNN, the input gate and forget gate operators are expressed as

$$\hat{\mathcal{Q}}\left\{\mathcal{A}_{S}(X_{t})\right\} = \mathsf{diag}(\hat{q}_{t})\mathcal{A}_{S}(X_{t}), \qquad \tilde{\mathcal{Q}}\left\{\mathcal{B}_{S}(Z_{t})\right\} = \mathsf{diag}(\check{q}_{t})\mathcal{B}_{S}(Z_{t})$$

- Gating operators correspond to multiplication of the input and state by diagonal matrices
 - \Rightarrow The diagonals are the input and forget vector gates $\hat{q}_t \in [0,1]^N$ and $\check{q}_t \in [0,1]^N$
- lacktriangle A scalar gate applied to each nodal component of the signal \Rightarrow different gate values for each node

▶ In the Edge-Gated GRNN, the input gate and forget gate operators are expressed as

$$\hat{\mathcal{Q}}\left\{\mathcal{A}_{S}(\mathsf{X}_{t})\right\} = \mathcal{A}_{\mathsf{S} \odot \hat{\mathbb{Q}}_{t}}(\mathsf{X}_{t}), \qquad \check{\mathcal{Q}}\left\{\mathcal{B}_{S}(\mathsf{Z}_{t})\right\} = \mathcal{B}_{\mathsf{S} \odot \check{\mathbb{Q}}_{t}}(\mathsf{Z}_{t})$$

- Gating operators correspond to elementwise multiplication of the shift operator by gate matrices
 - \Rightarrow The matrices multiplying the GSOs are the input and forget matrix gates $\hat{\mathsf{Q}}_t$ and $\check{\mathsf{Q}}_t \in [0,1]^{N \times N}$

► Separate gate for each edge ⇒ control the amount of information transmitted across edges

- Parameters of input and forget gate operators are the outputs of GRNNs themselves
- ► Input and forget gate states are expressed as

$$\hat{\mathsf{Z}}_t = \hat{\sigma}igg(\hat{\mathcal{A}}_\mathsf{S}(\mathsf{X}_t) + \hat{\mathcal{B}}_\mathsf{S}(\hat{\mathsf{Z}}_{t-1})igg) \qquad \check{\mathsf{Z}}_t = \check{\sigma}igg(\check{\mathsf{A}}_\mathsf{S}(\mathsf{X}_t) + \check{\mathcal{B}}_\mathsf{S}(\check{\mathsf{Z}}_{t-1})igg)$$

- ⇒ Gate computation takes different forms depending on the type of gating
- In the case of time gating, the gates are calculated as

$$\hat{q}_t = \operatorname{sigmoid}(\hat{c}^{\mathsf{T}}\operatorname{vec}(\hat{\mathsf{Z}}_t)) \qquad \check{q}_t = \operatorname{sigmoid}(\check{c}^{\mathsf{T}}\operatorname{vec}(\check{\mathsf{Z}}_t))$$

 \Rightarrow Where $\hat{c} \in \mathbb{R}^{\hat{H}N}$ and $\check{c} \in \mathbb{R}^{\check{H}N}$ are fully connected layers and the sigmoid ensures gates in [0,1]

- Parameters of input and forget gate operators are the outputs of GRNNs themselves
- ► Input and forget gate states are expressed as

$$\hat{\mathsf{Z}}_t = \hat{\sigma} igg(\hat{\mathcal{A}}_\mathsf{S}(\mathsf{X}_t) + \hat{\mathcal{B}}_\mathsf{S}(\hat{\mathsf{Z}}_{t-1}) igg) \qquad \check{\mathsf{Z}}_t = \check{\sigma} igg(\check{\mathsf{A}}_\mathsf{S}(\mathsf{X}_t) + \check{\mathcal{B}}_\mathsf{S}(\check{\mathsf{Z}}_{t-1}) igg)$$

- ⇒ Gate computation takes different forms depending on the type of gating
- ▶ In the case of node gating, the gates are calculated as

$$\hat{\mathbf{q}}_t = \operatorname{sigmoid}\left(\hat{\mathcal{C}}_{S}(\hat{\mathbf{Z}}_t)\right) \qquad \check{\mathbf{q}}_t = \operatorname{sigmoid}\left(\check{\mathcal{C}}_{S}(\check{\mathbf{Z}}_t)\right)$$

 \Rightarrow Where \hat{C}_S and \check{C}_S are graph convolutions and the sigmoid ensures gates in $[0,1]^N$

- ▶ Parameters of input and forget gate operators are the outputs of GRNNs themselves
- Input and forget gate states are expressed as

$$\hat{\mathsf{Z}}_t = \hat{\sigma} igg(\hat{\mathcal{A}}_\mathsf{S}(\mathsf{X}_t) + \hat{\mathcal{B}}_\mathsf{S}(\hat{\mathsf{Z}}_{t-1}) igg) \qquad \check{\mathsf{Z}}_t = \check{\sigma} igg(\check{\mathsf{A}}_\mathsf{S}(\mathsf{X}_t) + \check{\mathcal{B}}_\mathsf{S}(\check{\mathsf{Z}}_{t-1}) igg)$$

- ⇒ Gate computation takes different forms depending on the type of gating
- In the case of edge gating, the gates are calculated as

$$[\hat{\mathbf{Q}}_t]_{ij} = \operatorname{sigmoid}\left(\hat{\mathbf{c}}^\mathsf{T}[\boldsymbol{\delta}_i^\mathsf{T}\hat{\mathbf{Z}}_t\hat{\mathbf{C}}||\boldsymbol{\delta}_j^\mathsf{T}\hat{\mathbf{Z}}_t\hat{\mathbf{C}}]^\mathsf{T}\right) \qquad [\check{\mathbf{Q}}_t]_{ij} = \operatorname{sigmoid}\left(\check{\mathbf{C}}^\mathsf{T}[\boldsymbol{\delta}_i^\mathsf{T}\check{\mathbf{Z}}_t\check{\mathbf{C}}||\boldsymbol{\delta}_j^\mathsf{T}\check{\mathbf{Z}}_t\check{\mathbf{C}}]^\mathsf{T}\right)$$

- \Rightarrow Where δ_i and δ_j are *N*-dimensional Dirac deltas; $\hat{C} \in \mathbb{R}^{\hat{H} \times \hat{H}'}$, $\check{C} \in \mathbb{R}^{\check{H} \times \check{H}'}$ are linear layers
- \Rightarrow And $\hat{c} \in \mathbb{R}^{2\hat{H}' \times 1}$ and $\check{c} \in \mathbb{R}^{2\check{H}' \times 1}$ are f.c. layers applied to concatenation || of features of i and j

Stability of GRNNs

▶ GRNNs can be seen as a time extension of GNNs, therefore they inherit their stability properties

Definition (Relative perturbation matrices)

Given GSOs S and \tilde{S} , we define the set of relative perturbation matrices modulo permutation as

$$\mathcal{E}(S,\tilde{S}) = \left\{ E \in \mathbb{R}^{N \times N} : P^{T} \tilde{S} P = S + ES + SE^{T}, P \in \mathcal{P} \right\}$$
(1)

where $\mathcal{P} = \{ P \in \{0, 1\}^{N \times N} : P1 = 1, P^T1 = 1 \}.$

- ▶ We consider that the distance between two graphs S and \tilde{S} is given by $d(S, \tilde{S}) = \min_{E \in \mathcal{E}(S, \tilde{S})} \|E\|$
- Notice that if \tilde{S} is a permutation of the shift matrix S, then we have $d(S, \tilde{S}) = 0$

Definition (Integral Lipschitz filters)

A filter A(S) = $\sum_{k=0}^{K-1} a_k S^k$ is integral Lipschitz if there exists C > 0 such that $a(\lambda) = \sum_{k=0}^{K-1} a_k \lambda^k$ satisfies

$$|a(\lambda_2) - a(\lambda_1)| \le C \frac{|\lambda_2 - \lambda_1|}{|\lambda_1 + \lambda_2|/2}$$
 (2)

for all $\lambda_1, \lambda_2 \in \mathbb{R}$.

- ▶ Integral Lipschitz filters also satisfy $|\lambda a'(\lambda)| \leq C$, where $a'(\lambda)$ is the derivative of $a(\lambda)$
- \triangleright Recall that the frequency response of integral Lipschitz filters becomes flat for large λ

ightharpoonup We consider a GRNN with $F_X=1$ input feature, $F_Z=1$ state feature, and $F_Y=1$ output feature

$$z_t = \sigma(A(S)x_t + B(S)z_{t-1})$$
 $\hat{y}_t = \rho(C(S)z_t)$

- (A1) A, B and C are integral Lipschitz with constants C_A , C_B and C_C and ||A|| = ||B|| = ||C|| = 1
- (A2) Nonlinearities σ and ρ satisfy: $|\sigma(b) \sigma(a)| \leq |b-a|$ for all $a, b \in \mathbb{R}$, $\sigma(0) = \rho(0) = 0$
- (A3) Initial hidden state is identically zero, i.e., $z_0 = 0$, and the x_t satisfy $||x_t|| \le ||x|| = 1$ for all t

Theorem (Stability of GRNNs)

Let $S = V\Lambda V^H$ and \tilde{S} be the GSOs of the original and perturbed graph, and let $E = UMU^H \in \mathcal{E}(S,\tilde{S})$ such that $d(S,\tilde{S}) \leq ||E|| \leq \varepsilon$. Let y_t and \tilde{y}_t be the outputs of the GRNNs running on S and \tilde{S} respectively, and satisfying assumptons (A1)-(A3). Then,

$$\min_{\mathsf{P}\in\mathcal{P}}\|\mathsf{y}_t-\mathsf{P}^\mathsf{T}\tilde{\mathsf{y}}_t\|\leq C(1+\sqrt{N}\delta)(t^2+3t)\varepsilon\ +\mathcal{O}(\varepsilon^2) \tag{3}$$

where $C = \max\{C_A, C_B, C_C\}$ and $\delta = (\|U - V\| + 1)^2 - 1$.

- ▶ GRNNs are stable to relative perturbations with constant $C(1 + \sqrt{N\delta})(T^2 + 3T)$, T process length
- ightharpoonup C could be set at a fixed value or learned from data through A, B and C \Rightarrow design parameter
- ► The term $(1 + \delta \sqrt{N})$ is a property of the graph perturbation \Rightarrow cannot be controlled by design
- ▶ Eigenvector misalignment $\delta = (\|U V\| + 1)^2 1$ measures commutativity of matrices S and E
- ightharpoonup Polynomial dependence on $T \Rightarrow$ due to recurrence relationship in the computation of x_t

Epidemic Modeling with GRNNs

▶ We use a GRNN, a GNN, and a RNN to track an epidemic on a high school friendship network

▶ Model the spread of an infectious disease over a friendship network as a graph process

Graph is a symmetric friendship network corresponding to a high school in France

Model the spread of the disease on the graph using Susceptible-Infectious-Removed (SIR) model

► Compare the performance of a GRNN, a RNN, and a GNN in predicting infections after 8 days

- ▶ Real-world friendship network corresponding to 134 students from a high school in Marseille
- ► Each node of the graph represents a student
- ► Friendships are modeled as symmetric unweighted edges
- ▶ Isolated nodes are removed to make the graph fully connected
- Assumption: friends are likely to be in contact with each other

- ▶ Process starts with random seed infections on day $0 \Rightarrow \text{probability } p_{\text{seed}} = 0.05$
- ► Each person is in one of the three SIR states ⇒ updated each day with the following rules
- **Susceptible**: can get the disease from an infected friend with probability $p_{inf} = 0.3$
- Infectious: can spread the disease for 4 days after being infected, after which they recover
- Removed: have overcome the disease and can no longer spread it or contract it

- Problem: given the node states, goal is to predict whether each node will be infected in 8 days
- ▶ **Input**: graph process x_t where, at each time t, $[x_t]_i$ is given by

$$[x_t]_i = \begin{cases} 0, & \text{if student } i \text{ is susceptible} \\ 1, & \text{if student } i \text{ is infected} \\ 2, & \text{if student } i \text{ is removed} \end{cases}$$

Output: binary graph process $y_t \Rightarrow$ our goal is only to track infections

$$[y_t]_i = \begin{cases} 0, & \text{if student } i \text{ is susceptible or removed} \\ 1, & \text{if student } i \text{ is infected} \end{cases}$$

ightharpoonup Given $x_t, x_{t+1}, \ldots, x_{t+7}$, we want to predict $y_{t+8}, y_{t+9}, \ldots, y_{t+15} \Rightarrow$ binary node classification

Objective Function

- ightharpoonup Accuracy is not a good performance metric \Rightarrow does not distinguish true positives and true negatives
- lacktriangle In epidemic tracking, true positives are more important than true negatives \Rightarrow maximize F1 score

$$F1 = 2 \cdot \frac{\mathsf{Precision} \cdot \mathsf{Recall}}{\mathsf{Precision} + \mathsf{Recall}}$$

- ▶ Precision = True Positive/Predicted Positive
 ⇒ Proportion of correct positive predictions
- ▶ Recall = True Positive/All Actual Positive
 ⇒ Proportion of correctly predicted positives

		Actual	
		Positive	Negative
Predicted	Positive	True	False
		Positive	Positive
	Negative	False	True
		Negative	Negative

▶ Loss function we minimize is 1 - F1 \Rightarrow trade-off between minimizing FPs and FNs

- ▶ We compare a GRNN with a GNN and a RNN, all with roughly the same number of parameters
 - \Rightarrow In the GNN, the time instants become input features \Rightarrow parameters depend on T
 - \Rightarrow In the RNN, the nodal components become input features \Rightarrow parameters depend on N

ightharpoonup GRNN improves upon RNN and GNN \Rightarrow exploits both spatial and temporal structure of the data