

AE 755 COURSE PROJECT

Optimal drone deployment to maximize network coverage in uneven terrain

TEAM HEXA Members

Nikhil Anand 213014002
Gokul S 213010019
Tabiyar Rasesh Narendrabhai 213010022
Anamika Mondal 213010016
Pema Wanchuk Lama 213011002
Susan Basnet 213011006

170010046

Peela Anudeep

Stage 1 Presentation

29th January, 2022

PROBLEM STATEMENT

Finding the optimal location of drones such that maximum users in a given terrain can be provided with coverage, while ensuring

- i. Quality of service to each connected user
- ii. Operation within the capacity of each drone
- iii. Connectivity between drones

Design Variables:

(x,y,z) Position & Altitude of each drone

$$0 \le x, y \le 1000$$

$$z_{terrain} \le z \le R_d$$

PROBLEM SETTING

Terrain specifications

- A 1000m x 1000m region has been selected with hilly features
- The region is assumed to be in an urban settling (to simulate path loss effects due to buildings and other structures)
- 50 Users have been randomly initialized in this terrain.

Drone specifications

- Bandwidth Capacity (C): 10 Mbps
- Max bandwidth per user (B): 1 Mbps
- Communication Frequency $(f_c) = 2GHz$
- Number of drones = 6

Objective Function

Maximize No. of Users connected

$$u_i = \begin{cases} 1, & \text{if it is connected to at least 1 drone} \\ 0, & \text{if it is NOT connected to any drone} \end{cases}$$

$$\text{Minimize} \quad J = \begin{cases} -\sum_{i=1}^{N_U} u_i & \text{if } N_c < N_U \\ \sum_{i=1}^{N_U} \sum_{j=1}^{6} PL_{i,j} & \text{if } N_c = N_U \end{cases}$$

- Connection between the drone is established if the following conditions are met
 - \checkmark Path Loss within acceptable limits ($PL_{i,j} \leq \gamma$)
 - \checkmark Distance between User and Drone within communication radius $(d_{i,j} \leq R_d)$

Constraints

Bandwidth capacity of each drone is not surpassed

$$\sum B_{i,j} \leq C_j$$

Path loss between each drone and user is within expected values

$$PL_{i,j} \leq \gamma$$

• Each drone is within the communication radius of nearby drone

$$d_{i,j} \leq R_d$$

Path Loss Computation

- Path loss is a measure of reduction in power density of EM wave as it propagates through space
- Two types of Communications
 - Line of Sight (LoS)
 - Non-Line of Sight (NLoS)
- NLoS communication leads to higher path loss
- Probability of NLoS communication (P(NLoS)) is higher in high rise urban areas

a, b : Environmental Constants

θ: Elevation Angle

• Using typical environment based path loss coefficients $\eta_{LoS} \ \& \ \eta_{NLo}$, path loss can be computed as

$$PL = 20 \log(\frac{4\pi f_c d}{c}) + P(LoS)\eta_{LoS} + P(NLoS)\eta_{NLoS},$$

Path Loss vs Altitude for various horizontal distances

For urban areas,

$$a = 9.61$$

$$b = 0.16$$

$$\eta_{LoS} = 1.0$$

$$\eta_{NLoS} = 20.0$$

Typical values of acceptable path loss in urban areas is 110 dB – 120 dB

DESIGN SPACE MAPPING

- The value of the objective function depends on the location of all the drones.
- Design space has been mapped using the following method
 - All drone locations have been randomly initialized
 - Individually, each drone is moved horizontally across the design space, while keeping all the other drones fixed
 - Value of the objective function is computed by checking the number of users that satisfy the connection requirements
- The design space is seen to be multimodal

SELECTION OF OPTIMIZERS

- From preliminary analysis, the design space appears non-convex
- Moreover, the objective function is non-differentiable. Hence, all gradient free techniques have been chosen for the project

Gradient Free Algorithms

- 1. Particle Swarm Optimization
- Differential Evolution
- 3. Genetic Algorithm

ADVANTAGES:

- Initializes a large number of particles in the design space, and uses heuristics to attain a globally optimal solution
- Flexible in terms of scalability
- Adaptive mechanisms such as introducing trade-off between exploration and exploitation can be introduced

RELEVANCE TO OUR PROBLEM:

 Search space is multimodal in nature, a global search method ensures globally optimal solutions

THANK YOU

ADDITIONAL SLIDES

FUTURE PLAN

- **Development and Validation of optimizers**
 - Coding of algorithms in Python
 - Psuedocode & Python code
 - Validation with standard test functions
- **❖** Integration of optimizer with project code (also in Python)
 - Psuedocode & Python code
- **❖** Benchmarking of results with available literature
- **❖** Implementation of developed algorithm on
 - Different population distributions
 - Different terrain maps

Optimization Strategy

- 1. Conservative estimate on the number of drones (N_c) will be obtained
- 2. The optimum locations for N_c drones will be computed
- 3. Redundancy in the present solution will be determined
- 4. If redundancy exists,
 - i. $N = N_c 1$
 - ii. Repeat Step 2 onwards
- 5. Else, Exit with the minimum number of drones required to provide coverage