Tehnici de Optimizare

Facultatea de Matematica si Informatica
Universitatea Bucuresti

Department Informatica-2021

Probleme de programare neliniara

$$\min_{x} f(x)$$

$$s. l. g_i(x) = 0, \qquad i = 1, \dots, m$$

$$h_i(x) \le 0, \qquad i = 1, \dots, p$$

unde f, g, h sunt functii diferentiabile.

Problema convexa: f convexa + h_i convexe + g_i liniare!

Exemplu convex:

$$\min_{x} \frac{1}{2} ||Ax - b||^{2}$$

$$s. l. \quad Cx \le d$$

Probleme de programare neliniara

$$\min_{x} f(x)$$

$$s. l. g_i(x) = 0, \qquad i = 1, \dots, m$$

$$h_i(x) \le 0, \qquad i = 1, \dots, p$$

Notam $I(x) = \{i: h_i(x) = 0 < 0\}$, indicii inegalitatilor active (inactive).

Functia Lagrangian:
$$L: R^n \times R^m \times R^p_+$$
 $L(x, \lambda, \mu) = f(x) + \lambda^T g(x) + \mu^T h(x); L(x^*, \lambda^*, \mu^*) = \dots + \sum \mu_i^* h_i(x^*)$

Egalitatile sunt penalizate cand $||\lambda|| \to \infty$

Inegalitatile sunt penalizate cand
$$\mu \ge 0 \ (\mu^T h(x) \ge 0) \ si \ ||\mu|| \to \infty$$
 $h(x) = [h_1(x) \ h_2(x)] = [(< 0) \ (> 0)] \Rightarrow \mu^T h(x) = \mu_1 h_1(x) + \mu_2 h_2(x)$

$$\min_{x} f(x)$$
s. l. $Ax = b$,
$$h(x) \le 0$$
,

unde f, h_i sunt functii convexe.

Teorema Kuhn-Tucker. Fie f, h_i convexe, daca conditia Slater are loc, i.e.: $\exists x: Ax = b, h_i(x) < 0, i = 1, \dots, m, (relaxare la h_i neliniare)$

Atunci x^* este o solutie a problemei daca si numai daca: gasim $\mu^* \geq 0$

$$\mu_i^* h_i(x^*) = 0, \quad i = 1, \dots, m \text{ si } L(x, \lambda^*, \mu^*) \ge L(x^*, \lambda^*, \mu^*) \text{ sau } \nabla_x L(x^*, \lambda^*, \mu^*) = 0$$

$$\min_{x} f(x)$$
s. l. $Ax = b$,
$$h(x) \le 0$$
,

Regularitate: (x^*, μ^*) minim regulat (sau problema regulata) daca conditia Slater are loc si $\mu^* \geq 0$, $\mu_i^* h_i(x^*) = 0$.

Concluzia teoremei: Daca problema are minim regulat, atunci se poate reduce la o problema fara constrangeri (obiectivul este functia Lagrangian)!

$$\min_{x} f(x)$$
s. l. $Ax = b$,
$$h(x) \le 0$$
,

Regularitate: (x^*, μ^*) minim regulat daca $\mu^* \ge 0$, $\mu_i^* h_i(x^*) = 0$ si conditia Slater:

$$h_i(x^*) < 0, \qquad i = 1, \cdots, m$$

Concluzia teoremei: Daca problema are minim regulat,

$$x^* \Rightarrow \nabla_{\mathbf{x}} \mathbf{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = \mathbf{0}$$

$$\min_{x} x_{2}$$
s. l. $(x_{1} - 1)^{2} + x_{2}^{2} \le 1$, $(x_{1} + 1)^{2} + x_{2}^{2} \le 1$,

Conditia Slater nu are loc:

 $\begin{bmatrix} 0 & 0 \end{bmatrix}^T$ singurul punct fezabil!

Se arata usor ca nu exista $\mu_1^*, \mu_2^* > 0$

$$\operatorname{Incat} \nabla L(0,\mu^*) = \begin{bmatrix} 0 \\ 1 \end{bmatrix} + 2\mu_1^* \begin{bmatrix} -1 \\ 1 \end{bmatrix} + 2\mu_2^* \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 0.$$

$$\min_{x} x_{2}$$
s. l. $(x_{1} - 1)^{2} + x_{2}^{2} \le 2$, $(x_{1} + 1)^{2} + x_{2}^{2} \le 2$

Conditia Slater are loc!

C.N.:
$$\nabla_x L(x, \mu) = 0$$

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} + \mu_1 2 \begin{bmatrix} x_1 - 1 \\ x_2 \end{bmatrix} + \mu_2 2 \begin{bmatrix} x_1 + 1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\mu_1 [(x_1 - 1)^2 + x_2^2 - 2] = 0$$

$$\mu_2 [(x_1 + 1)^2 + x_2^2 - 2] = 0$$

$$\min_{x} x_{2}$$
s. l. $(x_{1} - 1)^{2} + x_{2}^{2} \le 2$, $(x_{1} + 1)^{2} + x_{2}^{2} \le 2$

Cazul
$$\mu_1 = \mu_2 = 0$$

C.N.: $\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ (Exclus)

$$\min_{x} x_{2}$$

$$s. l. (x_{1} - 1)^{2} + x_{2}^{2} \leq 2,$$

$$(x_{1} + 1)^{2} + x_{2}^{2} \leq 2$$
 Cazul $\mu_{1} = 0, \mu_{2} > 0$

C.N.:
$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} + 2\mu_2 \begin{bmatrix} x_1 + 1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow x_1 = -1 \text{ (violeaza prima ineg.)}$$

$$(x_1 - 1)^2 + x_2^2 < 2$$

$$(x_1 + 1)^2 + x_2^2 = 2$$

$$\min_{x} x_{2}$$
s. l. $(x_{1} - 1)^{2} + x_{2}^{2} \le 2$, $(x_{1} + 1)^{2} + x_{2}^{2} \le 2$

Cazul
$$\mu_1 > 0$$
, $\mu_2 = 0$
C.N.: $\begin{bmatrix} 0 \\ 1 \end{bmatrix} + 2\mu_1 \begin{bmatrix} x_1 - 1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow x_1 = 1 \ (violeaza \ a \ doua \ ineg.)$

$$(x_1 - 1)^2 + x_2^2 = 2$$

$$(x_1 + 1)^2 + x_2^2 < 2$$

$$\min_{x} x_{2}$$
s. l. $(x_{1} - 1)^{2} + x_{2}^{2} \le 2$, $(x_{1} + 1)^{2} + x_{2}^{2} \le 2$

Cazul
$$\mu_1>0$$
, $\mu_2>0$

C.N.:
$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} + 2\mu_1 \begin{bmatrix} x_1 - 1 \\ x_2 \end{bmatrix} + 2\mu_2 \begin{bmatrix} x_1 + 1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow x_1 = \frac{\mu_2 - \mu_1}{\mu_1 + \mu_2}, x_2 = -\frac{1}{\mu_1 + \mu_2}$$

$$(x_1 - 1)^2 + x_2^2 = 2$$

$$(x_1 + 1)^2 + x_2^2 = 2$$

$$\min_{x} x_{2}$$
s. l. $(x_{1} - 1)^{2} + x_{2}^{2} \le 2$, $(x_{1} + 1)^{2} + x_{2}^{2} \le 2$

Cazul
$$\mu_1 > 0, \mu_2 > 0$$

C.N.:
$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} + 2\mu_1 \begin{bmatrix} x_1 - 1 \\ x_2 \end{bmatrix} + 2\mu_2 \begin{bmatrix} x_1 + 1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow x_1 = \frac{\mu_2 - \mu_1}{\mu_1 + \mu_2}, x_2 = -\frac{1}{\mu_1 + \mu_2}$$

$$(x_1 - 1)^2 + x_2^2 = 2 \Rightarrow \mu_1 = \mu_2 = \frac{1}{2}$$

$$(x_1 + 1)^2 + x_2^2 = 2$$

$$\min_{x} x_{2}$$
s. l. $(x_{1} - 1)^{2} + x_{2}^{2} \le 2$,
 $(x_{1} + 1)^{2} + x_{2}^{2} \le 2$

Cazul
$$\mu_1 > 0$$
, $\mu_2 > 0$

C.N.:
$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} + 2\mu_1 \begin{bmatrix} x_1 - 1 \\ x_2 \end{bmatrix} + 2\mu_2 \begin{bmatrix} x_1 + 1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow x_1 = \frac{\mu_2 - \mu_1}{\mu_1 + \mu_2}, x_2 = -\frac{1}{\mu_1 + \mu_2}$$

$$(x_1 - 1)^2 + x_2^2 = 2 \Rightarrow \mu_1 = \mu_2 = \frac{1}{2} \Rightarrow x_1 = 0, x_2 = -1$$

$$(x_1 + 1)^2 + x_2^2 = 2$$

Functia Lagrangian:
$$L: R^n \times R^m \times R^p_+$$

 $L(x, \lambda, \mu) = f(x) + \lambda^T (Ax - b) + \mu^T h(x)$

Functia Lagrangian:
$$L: R^n \times R^m \times R^p_+$$

 $L(x, \lambda, \mu) = f(x) + \lambda^T (Ax - b) + \mu^T h(x)$

Functia duala: $\phi(\lambda, \mu) = \min_{x} L(x, \lambda, \mu) [L(x, \lambda, \mu) \text{ convexa in x!}]$

Functia Lagrangian:
$$L: R^n \times R^m \times R^p_+$$

 $L(x, \lambda, \mu) = f(x) + \lambda^T (Ax - b) + \mu^T h(x)$

Functia duala: $\phi(\lambda, \mu) = \min_{x} L(x, \lambda, \mu) [L(x, \lambda, \mu) \text{ convexa in x!}]$

Fie $\tilde{\mathbf{x}}$, μ fezabil, observam $\phi(\lambda,\mu) \leq L(\tilde{\mathbf{x}},\lambda,\mu) \leq f(\tilde{\mathbf{x}})$ pentru orice $\lambda \in R^m$, $\mu \geq 0$

In particular, $\max \phi(\lambda, \mu) = \phi^* \le f(x^*) = f^*$

```
Functia Lagrangian: L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}_+^p
                                                            L(x, \lambda, \mu) = f(x) + \lambda^{T}(Ax - b) + \mu^{T}h(x)
     L(x, (1-\alpha)\lambda_1 + \alpha\lambda_2, (1-\alpha)\mu_1 + \alpha\mu_2) = f(x) + ((1-\alpha)\lambda_1 + \alpha\lambda_2)^T (Ax - b) + ((1-\alpha)\mu_1 + \alpha\mu_2)^T h(x)
     = f(x) + (1 - \alpha)\lambda_1^T (Ax - b) + \alpha\lambda_2^T (Ax - b) + (1 - \alpha)\mu_1^T h(x) + \alpha\mu_2^T h(x)
     = (1 - \alpha)f(x) + \alpha f(x) + (1 - \alpha)\lambda_1^T (Ax - b) + \alpha \lambda_2^T (Ax - b) + (1 - \alpha)\mu_1^T h(x) + \alpha \mu_2^T h(x)
     = (1 - \alpha)[f(x) + \lambda_1^T (Ax - b) + \mu_1^T h(x)] + \alpha [f(x) + \lambda_2^T (Ax - b) + \mu_2^T h(x)]
     = (1 - \alpha)L(x_1, \lambda_1, \mu_1) + \alpha L(x_1, \lambda_2, \mu_2)
                                                     min f_1(x) + f_2(x) = f_1(x^*) + f_2(x^*) \ge f_1^* + f_2^*
Functia duala: \phi(\lambda, \mu) = min_x L(x, \lambda, \mu) [L(x, \lambda, \mu) \text{ convexa in x!}]
                       \phi((1-\alpha)\lambda_1 + \alpha\lambda_2, (1-\alpha)\mu_1 + \alpha\mu_2) = \min L(x, (1-\alpha)\lambda_1 + \alpha\lambda_2, (1-\alpha)\mu_1 + \alpha\mu_2)
                                                            = \min(1 - \alpha)L(x, \lambda_1, \mu_1) + \alpha L(x, \lambda_2, \mu_2)
                                                        \geq (1 - \alpha) \min_{x} L(x, \lambda_1, \mu_1) + \alpha \min_{x} L(x, \lambda_2, \mu_2)
                                                                  = (1 - \alpha)\phi(\lambda_1, \mu_1) + \alpha \phi(\lambda_2, \mu_2)
```

Functia Lagrangian:
$$L: R^n \times R^m \times R^p_+$$

 $L(x, \lambda, \mu) = f(x) + \lambda^T (Ax - b) + \mu^T h(x)$

Functia duala: $\phi(\lambda, \mu) = \min_{x} L(x, \lambda, \mu) [L(x, \lambda, \mu) \text{ convexa in x!}]$

- Fie $\tilde{\mathbf{x}}$ fezabil, observam $\phi(\lambda,\mu) \leq L(\tilde{\mathbf{x}},\lambda,\mu) \leq f(\tilde{\mathbf{x}})$ pentru orice $\lambda \in R^m, \mu \geq 0$
- Functia duala ϕ este **functie concava**!

Functia Lagrangian:
$$L: R^n \times R^m \times R^p_+$$

 $L(x, \lambda, \mu) = f(x) + \lambda^T g(x) + \mu^T h(x)$

Functia duala: $\phi(\lambda, \mu) = \min_{x} L(x, \lambda, \mu)$

Problema duala: $\max_{\mu \geq 0, \lambda} \phi(\lambda, \mu) = -\min_{\mu \geq 0, \lambda} -\phi(\lambda, \mu)$

- Solutiile problemei duale: μ^* , λ^* reprezinta multiplicatorii Lagrange!
- Soluta problemei primale: x^* se numeste solutie primala!

Teorema dualitate. Pentru oricare x, μ fezabili avem:

$$f(x) \ge \phi(\lambda, \mu)$$
.

Daca x^* minim regulat si (λ^*, μ^*) multiplicatori Lagrange, atunci $f^* = \phi^*$ (**Dualitate tare**)

- Sub regularitate, f si ϕ au minime, iar valorile optime coincid.
- Mai mult, rezolvarea problemei duale poate mai simpla decat primala!

$$\min_{x} c^{T} x$$

$$s. l. ||x||^{2} \le 1$$

$$\min_{x} c^T x$$

$$s. \ l. \ \big| |x| \big|^2 \leq 1$$
 Functia Lagrangian: $L(x,\mu) = c^T x + \mu \left(\big| |x| \big|^2 - 1 \right) \Rightarrow \nabla^2_{xx} L(x,\mu) = 2\mu I_n \geq 0$ Functia duala: $\phi(\mu) = \min_{x} L(x,\mu)$

$$\min_{x} c^{T}x$$

$$s. l. \left| |x| \right|^{2} \leq 1$$
Functia Lagrangian: $L(x, \mu) = c^{T}x + \mu \left(\left| |x| \right|^{2} - 1 \right)$
Functia duala: $\phi(\mu) = \min_{x} L(x, \mu)$

$$x(\mu) = arg\min_{x} c^{T}x + \mu \left(\left| |x| \right|^{2} - 1 \right) \Rightarrow c + 2\mu x^{*}(\mu) = 0$$

$$\min_{x} c^{T}x$$

$$s. l. \left| |x| \right|^{2} \leq 1$$
Functia Lagrangian: $L(x, \mu) = c^{T}x + \mu \left(\left| |x| \right|^{2} - 1 \right)$

$$\text{Functia duala: } \phi(\mu) = \min_{x} L(x, \mu)$$

$$x(\mu) = arg\min_{x} c^{T}x + \mu \left(\left| |x| \right|^{2} - 1 \right) \Rightarrow c + 2\mu x(\mu) = 0$$

$$\text{Deci: } x^{*}(\mu) = -\frac{1}{2\mu}c \Rightarrow \phi(\mu) = L(x^{*}(\mu), \mu) = c^{T}x(\mu) + \mu \left(\left| |x(\mu)| \right|^{2} - 1 \right)$$

$$\min_{x} c^{T}x$$

$$s. l. \left| |x| \right|^{2} \leq 1$$
Functia Lagrangian: $L(x, \mu) = c^{T}x + \mu \left(\left| |x| \right|^{2} - 1 \right)$

$$\operatorname{Functia duala:} \phi(\mu) = \min_{x} L(x, \mu)$$

$$x(\mu) = \underset{x}{\operatorname{argmin}} c^{T}x + \mu \left(\left| |x| \right|^{2} - 1 \right) \Rightarrow c + 2\mu x(\mu) = 0$$

$$\operatorname{Deci:} x(\mu) = -\frac{1}{2\mu}c \Rightarrow \phi(\mu) = L(x(\mu), \mu) = c^{T}x(\mu) + \mu \left(\left| |x(\mu)| \right|^{2} - 1 \right)$$

$$\phi(\mu) = -\frac{1}{4\mu} \left| |c| \right|^{2} - \mu \Rightarrow \mu^{*} = \frac{\left| |c| \right|}{2}$$

$$\min_{x} c^{T} x$$

$$s. l. ||x||^{2} \le 1$$

$$\max_{\mu \ge 0} -\frac{1}{4\mu} ||c||^2 - \mu$$

$$\min_{x} \frac{1}{2} \left| |Ax - b| \right|^2$$

$$s. l. \left| |x| \right|^2 \le 1$$

$$\min_{x} \frac{1}{2} \big| |Ax - b| \big|^{2}$$

$$s. \ l. \ \big| |x| \big|^{2} \le 1$$
F.L.: $L(x, \mu) = \frac{1}{2} \big| |Ax - b| \big|^{2} + \mu \left(\big| |x| \big|^{2} - 1 \right) \Rightarrow \nabla^{2} L(x, \mu) = A^{T} A + 2\mu I_{n} > 0$
Functia duala: $\phi(\mu) = \min_{x} L(x, \mu)$

$$\min_{x} \frac{1}{2} ||Ax - b||^{2}$$

$$s. l. ||x||^{2} \le 1$$

Functia Lagrangian:
$$L(x, \mu) = c^T x + \mu (||x||^2 - 1)$$

Functia duala: $\phi(\mu) = \min_{x} L(x, \mu)$

$$x(\mu) = arg\min_{x} \frac{1}{2} ||Ax - b||^{2} + \mu (||x||^{2} - 1) \Rightarrow A^{T}(Ax(\mu) - b) + 2\mu x(\mu) = 0$$

$$\begin{split} \min_{x} \frac{1}{2} \left| |Ax - b| \right|^2 \\ s. \, l. \, \left| |x| \right|^2 & \leq 1 \end{split}$$
 Functia Lagrangian: $L(x,\mu) = \frac{1}{2} \left| |Ax - b| \right|^2 + \mu \left(\left| |x| \right|^2 - 1 \right) \\ \text{Functia duala: } \phi(\mu) & = \min_{x} L(x,\mu) \\ x(\mu) & = arg \min_{x} \frac{1}{2} \left| |Ax - b| \right|^2 + \mu \left(\left| |x| \right|^2 - 1 \right) \Rightarrow A^T(Ax(\mu) - b) + 2\mu x(\mu) = 0 \\ (A^TA + 2\mu I_n) x(\mu) & = A^Tb \end{split}$ Deci: $x(\mu) = (A^TA + 2\mu I_n)^{-1} A^T b \Rightarrow \phi(\mu) = L(x(\mu), \mu) = \frac{1}{2} \left| |Ax(\mu) - b| \right|^2 + \mu \left(\left| |x(\mu)| \right|^2 - 1 \right) \end{split}$

$$\begin{split} \min_{x} \frac{1}{2} \big| |Ax - b| \big|^2 \\ s. \, l. \, \big| |x| \big|^2 & \leq 1 \end{split}$$
 Functia Lagrangian: $L(x, \mu) = \frac{1}{2} \big| |Ax - b| \big|^2 + \mu \left(\big| |x| \big|^2 - 1 \right) \\ \text{Functia duala: } \phi(\mu) & = \min_{x} L(x, \mu) \\ \phi(\mu) & = -\frac{1}{2} b^T A (A^T A + 2 \mu I_n)^{-1} A^T b - \mu c + \frac{1}{2} \big| |b| \big|^2 \end{split}$ Problema duala: $\max_{\mu \geq 0} -\frac{1}{2} b^T A (A^T A + 2 \mu I_n)^{-1} A^T b - \mu c + \frac{1}{2} \big| |b| \big|^2 \end{split}$

Probleme de programare neliniara

$$\min_{x} f(x)$$

$$s. l. g_i(x) = 0, \qquad i = 1, \dots, m$$

$$h_i(x) \le 0, \qquad i = 1, \dots, p$$

Notam $I(x) = \{i: h_i(x) = 0\}$, indicii inegalitatilor **active**.

Functia Lagrangian:
$$L: R^n \times R^m \times R^p_+$$

 $L(x, \lambda, \mu) = f(x) + \lambda^T g(x) + \mu^T h(x)$

Egalitatile sunt penalizate cand $||\lambda|| \to \infty$

Inegalitatile sunt penalizate cand
$$\mu \ge 0 \ (\mu^T h(x) \ge 0) \ si \ |\mu| \to \infty$$
 $h(x) = [h_1(x) \ h_2(x)] = [(< 0) \ (> 0)] \Rightarrow \mu^T h(x) = \mu_1 h_1(x) + \mu_2 h_2(x)$

PN – Conditii necesare

$$\min_{x} f(x)$$
s.l. $g_i(x) = 0, \quad i = 1, \dots, m$
 $h_i(x) \le 0, \quad i = 1, \dots, p$

In cazul convex, conditia Slater este necesara pt C.O.

Conditie de regularitate: daca $\nabla g_i(x^*)$ linear ind. si $\exists d : \nabla g_i(x^*)^T d = 0, \nabla h_i(x^*)^T d < 0, pt \ i \in I(x^*)$ atunci x^* este minim regulat.

(in figura se foloseste uniform g pt. toate constrangerile)

PN – Conditii necesare

Conditie de regularitate: daca $\nabla g_i(x^*)$ linear ind. si $\exists d \colon \nabla g_i(x^*)^T d = 0, \nabla h_i(x^*)^T d < 0, pt \ i \in I(x^*)$ atunci x^* este minim regulat.

Exemplu:
$$h_1(x) = (x_1 + 1)^2 + x_2^2 - 1$$
, $h_2(x) = (x_1 - 1)^2 + x_2^2 - 1$
Fie $x^* = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Observam $\nabla h_1(x^*) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\nabla h_2(x^*) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$, $h(x^*) = 0$
 $\nabla h_1(x^*)^T d = d_1 < 0$
 $\nabla h_2(x^*)^T d = -d_1 < 0$

Constrangeri neregulate!

Probleme de programare neliniara

$$\min_{x} f(x)$$

$$s. l. g_i(x) = 0, \qquad i = 1, \dots, m$$

$$h_i(x) \le 0, \qquad i = 1, \dots, p$$

Teorema [Conditii necesare KT]. Fie x^* minim regulat fezabil, atunci exista (λ^*, μ^*) a.i.

$$\nabla_{\mathbf{x}} \mathbf{L}(\mathbf{x}^*, \lambda^*, \mu^*) = 0, \qquad \mu^* \ge 0, \qquad \mu_i h_i(\mathbf{x}^*) = 0$$

$$(PN): \quad \min_{x} f(x) \quad s. l. \ g(x) = 0, h(x) \le 0$$

Teorema [Conditii suficiente]. Fie x^* KT regulat fezabil si conditiile necesare in x^* au loc. Fie f, g, h dublu diferentiabile in x^* . Daca pentru orice d:

$$\nabla g_i(x^*)^T d = 0, \qquad i = 1, ..., m$$
 $\nabla h_i(x^*)^T d = 0, \qquad i \in I(x^*), \mu_i^* > 0$
 $\nabla h_i(x^*)^T d \ge 0, \qquad i \in I(x^*), \mu_i^* = 0$

avem

$$\mathrm{d}^{\mathrm{T}}\nabla^{2}_{xx}L(x^{*},\lambda^{*},\mu^{*})d>0$$

Atunci x^* minim local al problemei PN.

C.S. - Exemplu

$$\min_{x} x_2 \ s. \ l. \ \left| |x| \right|^2 \le 1$$

C.S. - Exemplu

$$\min_{x} x_2 \ s. \ l. \ ||x||^2 \le 1$$

$$L(x, \mu) = x_2 + \mu (||x||^2 - 1)$$

C.S. - Exemplu

$$\min_{x} x_2 \ s. \ l. \ \left| |x| \right|^2 \leq 1$$

$$L(x,\mu) = x_2 + \mu \left(\left| |x| \right|^2 - 1 \right)$$
 C.N.-KT : $\mu^* x_1^* = 0$, $1 + 2\mu^* x_2^* = 0 \Rightarrow \mu^* > 0$ (constrangere activa)

$$\min_{x} x_2 \ s. \ l. \ ||x||^2 \le 1$$

$$L(x, \mu) = x_2 + \mu (||x||^2 - 1)$$

C.N.-KT: $\mu^* x_1^* = 0$, $1 + 2\mu^* x_2^* = 0 \Rightarrow \mu^* > 0$ (constrangere activa)

Adica
$$(x_1^*)^2 + (x_2^*)^2 = 1$$
. Solutie unica: $x^* = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\mu^* = \frac{1}{2}$.

$$\min_{x} x_2 \ s. \ l. \ \left| |x| \right|^2 \leq 1$$

$$L(x,\mu) = x_2 + \mu \left(\left| |x| \right|^2 - 1 \right)$$
 C.N.-KT : $\mu^* x_1^* = 0$, $1 + 2\mu^* x_2^* = 0 \Rightarrow \mu^* > 0$ (constrangere activa) Adica $x_1^* + x_2^* = 1$. Solutie unica: $x^* = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\mu^* = \frac{1}{2}$. Plan tangent: $T_Q(x^*) = \left\{ d \colon \left[0 - 1 \right] \begin{bmatrix} d_1 \\ d_2 \end{bmatrix} = 0 \right\} = \left\{ d \colon \ d_2 = 0 \right\}$

$$\min_{x} x_2 \ s. \ l. \ \left| |x| \right|^2 \leq 1$$

$$L(x,\mu) = x_2 + \mu \left(\left| |x| \right|^2 - 1 \right)$$
 C.N.-KT : $\mu^* x_1^* = 0$, $1 + 2\mu^* x_2^* = 0 \Rightarrow \mu^* > 0$ (constrangere activa) Adica $x_1^* + x_2^* = 1$. Solutie unica: $x^* = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\mu^* = \frac{1}{2}$. Plan tangent: $T_Q(x^*) = \left\{ d \colon \begin{bmatrix} 0 & -1 \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \end{bmatrix} = 0 \right\} = \left\{ d \colon d_2 = 0 \right\}$
$$\nabla^2 L(x^*,\mu^*) = \begin{bmatrix} \mu^* & 0 \\ 0 & 2\mu^* \end{bmatrix} \Rightarrow d^T \nabla^2 L(x^*,\mu^*) d = \mu^* d_1^2 > 0 \ (d \neq 0)$$

$$\min_{x} x_{2} \ s. \ l. \ \left| |x| \right|^{2} \leq 1$$

$$L(x,\mu) = x_{2} + \mu \left(\left| |x| \right|^{2} - 1 \right)$$
 C.N.-KT : $\mu^{*}x_{1}^{*} = 0$, $1 + 2\mu^{*}x_{2}^{*} = 0 \Rightarrow \mu^{*} > 0$ (constrangere activa) Adica $x_{1}^{*} + x_{2}^{*} = 1$. Solutie unica: $x^{*} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\mu^{*} = \frac{1}{2}$. Plan tangent: $T_{Q}(x^{*}) = \left\{ d: \ [0 - 1] \begin{bmatrix} d_{1} \\ d_{2} \end{bmatrix} = 0 \right\} = \{ d: \ d_{2} = 0 \}$
$$\nabla^{2}L(x^{*},\mu^{*}) = \begin{bmatrix} \mu^{*} & 0 \\ 0 & 2\mu^{*} \end{bmatrix} \Rightarrow d^{T}\nabla^{2}L(x^{*},\mu^{*})d = \mu^{*}d_{1}^{2} > 0 \ (d \neq 0)$$
 Concluzie: x^{*} minim local (global!).

Algoritmi

- Modelul convex: $\min_{x} f(x)$ s. l. $h(x) \le 0$
- $h_i(x) \ge h_i(x^k) + \nabla h_i(x^k)^T (x x^k)$

Metoda Gradient Proiectat cu Liniarizare:

$$x^{k+1} = argmin_{x} \nabla f(x^{k})^{T} (x - x^{k}) + \frac{1}{2\alpha_{k}} ||x - x^{k}||^{2}$$
s. l. $h_{i}(x^{k}) + \nabla h_{i}(x^{k})^{T} (x - x^{k}) \leq 0$, $\forall i$

Algoritmi

Metoda gradient proiectat cu liniarizare:

$$x^{k+1} = argmin_{x} \nabla f(x^{k})^{T} (x - x^{k}) + \frac{1}{2\alpha_{k}} ||x - x^{k}||^{2}$$
s.l. $h_{i}(x^{k}) + \nabla h_{i}(x^{k})^{T} (x - x^{k}) \leq 0$, $\forall i$

THEOREM 1. Let the set X^* of solutions of problem (1) be nonempty, let the functions f(x), $g_i(x)$ be differentiable, let their gradients satisfy a Lipschitz condition, and let Slater's condition hold. Then we can find a $\overline{\gamma} > 0$ such that for $0 < \gamma < \overline{\gamma}$ method (7) converges to a point $x^* \in X^*$. If, also, f(x) is strongly convex, then $||x-x^*|| \le cq^k$, $0 \le q \le 1$. \square

Algoritmi

Metoda gradient proiectat cu liniarizare:

$$x^{k+1} = \operatorname{argmin}_{x} \nabla f(x^{k})^{T} (x - x^{k}) + \frac{1}{2\alpha_{k}} \left| \left| x - x^{k} \right| \right|^{2}$$

$$s. l. \ h_{i}(x^{k}) + \nabla h_{i}(x^{k})^{T} (x - x^{k}) \leq 0, \qquad \forall i$$

La fiecare iteratie se rezolva:

$$\min_{x} \frac{1}{2} \left\| \left| x - \left(x^k - \alpha_k \nabla f(x^k) \right) \right| \right\|^2 = \frac{1}{2} \left\| \left| x - y^k \right| \right\|^2$$

$$s. l. Ax \le b$$

unde
$$A = \begin{bmatrix} \nabla h_1(x^k)^T \\ \dots \\ \nabla h_p(x^k)^T \end{bmatrix}$$
, $b = Ax^k - h(x^k)$

Conditia Slater are loc!

MPGL

$$\min_{x} \frac{1}{2} ||x - y^{k}||^{2}$$

$$s. l. Ax \le b$$

$$L(x, \mu) = \frac{1}{2} ||x - y^{k}||^{2} + \mu^{T} (Ax - b)$$

$$\nabla_{x} L(x, \mu) = 0 \Rightarrow x(\mu) = y^{k} - A^{T} \mu$$

$$\max_{\mu \ge 0} \phi(\mu) = \max_{\mu \ge 0} -\frac{1}{2} ||A^{T} \mu||^{2} + \mu^{T} (Ay^{k} - b) (QP)$$

• MGP, MGC...