Statistics for Linguistics

Adam J.R. Tallman

2021-06-01

From last class

- Causal inference
- Confounds (forks, pipes)
- Model selection
- interactions

Today's class

- Confound (pipes, colliders)
- Probability vs. Likelihood
- Generalized linear models
- Logistic regression
- Final project draft is due July 13th

More confounds

 You want to estimate the effect of X on Y, but the relationship is forked by another variable Z

What do you do?

 You want to estimate the effect of X on Y, but the relationship is forked by another variable Z

• What do you do?

 You want to estimate the effect of X on Y, but the relationship is forked by another variable Z

- What do you do?
- You condition on Z

 You want to estimate the effect of X on Y, but the relationship is forked by another variable Z

- What do you do?
- You condition on Z
- That means putting Z in as a predictor in your model

The pipe

• You want to estimate the relationship of X on Y, but the relationship is piped by Z.

What do you do?

The pipe

 You want to estimate the relationship of X on Y, but the relationship is piped by Z.

What do you do?

If your question is how a change in X will influence a change in Y, then notihing You do not want to add variables that block off causal pathways

The pipe

• Let's try a simulation

We want to assess the relationship of X on Y, and both X and Y cause Z.

• Should we condition on Z?

- We want to assess the relationship of X on Y, and both X and Y cause
 Z.
- Should we condition on Z?
- This is the most counterintuitive confound
- So let's illustrate.

- Let's say you are interested in the relationship between a loss of taste and back pain.
- You think that a loss of taste might be a proxy for covid for instance, and you want to see, the effect of covid on back pain.
- But you can only observe patients in a hospital.

- T = Loss of taste sensation
- B = backpain
- H = hospitalization
- We know that more people go to the hospital if they have a loss of taste
- We know that more people go to the hospital if they have backpain

- Let's simulate this
- But imagine you can only observe people in a hospital

```
set.seed(115)
n <- 1000
notaste <- rnorm(n)
backpain <- rnorm(n)

p <- 0.2 #proportion of people who go to hospital
z <- notaste + backpain + rnorm(n) #measure of overall discomfort
q <- quantile(z, 1-p)
h <- ifelse(z>=q, TRUE, FALSE)
model.hospital <- lm(backpain[h]~notaste[h])
summary(model.hospital)</pre>
```

Should you conclude that covid cures back pain?

```
Call:
Im(formula = backpain[h] ~ notaste[h])
Residuals:
  Min
         10 Median 30 Max
-1.72670 -0.61173 -0.06442 0.52977 2.57790
Coefficients:
      Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.00764  0.08018 12.567 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.8355 on 198 degrees of freedom
Multiple R-squared: 0.1412, Adjusted R-squared: 0.1369
F-statistic: 32.57 on 1 and 198 DF, p-value: 4.157e-08
```

- Let's say you have access to data from people outside the hospital as well.
- Should you include the hospital factor in your model?

model.collider <- lm(backpain~notaste+h) summary(model.collider)

```
Call:
Im(formula = backpain ~ notaste + h)
Residuals:
  Min
        1Q Median 3Q Max
-2.95109 -0.59268 0.00274 0.55379 2.97088
Coefficients:
     Estimate Std. Error t value Pr(>|t|)
notaste -0.23603 0.02998 -7.874 8.94e-15 ***
hTRUE 1.13326 0.07574 14.962 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 0.8832 on 997 degrees of freedom

Multiple R-squared: 0.1867, Adjusted R-squared: 0.1851

F-statistic: 114.5 on 2 and 997 DF, p-value: < 2.2e-16

- You *shouldn't* condition on a collider because it introduces a confound.
- You should avoid designing research questions in such a way that you create collider biases as well.

In the real world

• When scientists advocate more tests for people who show no symptoms or for people who are not hospitalized, they are generally worried about collider effects associated with hospitalization.

Causal inference

Take-away:

• In later stages of research, don't just throw lots of variables into a model – think about what you are doing in terms of causal structure.

• Statistical inference depends on a causal model.

Next week we'll look at the last confound (the descendent)

Generalized linear models

Generalized linear models

 Up until now we have been using OLS (ordinary least squares) regression.

A more powerful tool is a generalized linear model

 Generalized linear models use Maximum Likelihood Estimation (MLE) in order to get their parameters.

Generalized linear models

Likelihood and maximum likelihood simulation exercise

pr(data|distribution)

L(distribution|data)

Logistic regression

Logistic regression

Logistic regression is a method for modelling binary data.

 The basic ideas can be extended to non-binary data as long as they are organized into levels.

• It is typically used when the dependent variable is binary and there is an interest in knowing how a change in *x* effects the probability that something is *y*.

Logistic regression (typical uses)

 Psycholinguistic experiments where subjects have to give yes or no answers.

Various uses in natural language processing

Predict the risk of developing a specific disease.

 Predict probability that someone will vote for a particular political party

Logistic regression

 A logistic regression or logit model can be represented with the following equation.

$$logit(y) = b_0 + b_1x_1 + b_2x_2...$$

$$logit(p) = log \frac{p}{1-p}$$

$$Prob\{y = 1|x\} = \frac{1}{1 + exp(-x\beta)}$$

Odds, log odds, oddrs ratios and log odds ratios

- Odds: simple ration of the probability of one event to the probability of another evento (frequency of a / frequency b) are the odds of a over b.
- Log odds: Logarithmically transformed odds
- Odds ratio: ratio of two odds
- Log odds ratio: Logarithmically transformed log odds

Logistic regression

Y Is bounded to 0 or 1

 The relationship between x and y has a ceiling effect (like logarithms)

• Let's run a simulation model to get the feel for it.

Two causative constructions in Dutch

Doen relates to direct causation

Laten relates to indirect causation

```
(1) Hij deed me denken aan mijn vader
He did me think at my father
'He reminded me of my father.'
```

(2) Ik liet hem mijn huis schilderen
I let him my house Paint
'I had him paint my house.'

Homework and reading

- Chapter 11 and 12 of Levshina (2016)
- Chapter 7 Baayen (2008)
- Please finish homework!

- Next lecture:
 - Interpreting logistic regression
 - The descendent confound
 - Hierarchical models