1. Back-and-forth

Introductory Model Theory

September 16, 2021

Important things to know about the class:

- The undergrad class is two hours; the grad class is three hours; the third hour is a high-level overview of algebra and topology for the graduate students.
- I will be gone for part of October.
- There is a WeChat group.
- We're following Poizat's textbook A Course in Model Theory; you can find an electronic copy on the Fudan Library website, or on eLearning for this class.
- Poizat has an unusual approach in the first two chapters, which we will follow. If you have seen model theory or mathematical logic before, things will make sense in a couple weeks.

The recommended reading for Today is Chapter 1 of Poizat. You're encouraged to read the introduction and preface as well.

1 Binary relations

Convention. We use the standard conventions that relations and functions are sets of tuples:

- If $f: \mathbb{R} \to \mathbb{R}$ is given by $f(x) = x^2$, then $f = \{(x, x^2) : x \in \mathbb{R}\}$.
- \geq is the set $\{(x,y) \in \mathbb{R} \times \mathbb{R} : x \geq y\}$.

Definition 1. A binary relation is a pair (E, R) where E is a set and $R \subseteq E^2$. We call E the universe of the relation. For $a, b \in E$, we write aRb if $(a, b) \in R$.

We abbreviate (E, R) as R or E, if E or R is clear from context.

Example. These are binary relations: $(\mathbb{R},<)$, $(\mathbb{R},=)$, (\mathbb{R},\geq) , $(\mathbb{Z},<)$.

Definition. A binary relation (E, R) is

• Reflexive if xRx for $x \in E$

- Symmetric if $xRy \implies yRx$ for $x, y \in E$
- Transitive if xRy and $yRz \implies xRz$ for $x, y, z \in E$
- Anti-symmetric if xRy and $yRx \implies x = y$ for $x, y \in E$
- Total if xRy or yRx for $x, y \in E$.
- An equivalence relation if it is reflexive, symmetric, and transitive.
- A partial order if it is reflexive, anti-symmetric, and transitive.
- A linear order if it is reflexive, anti-symmetric, transitive, and total.

Example. \leq is a linear order. = is an equivalence relation. \subseteq is a partial order.

2 Isomorphisms

Definition 2. An isomorphism from (E,R) to (E',R') is a bijection $f:E\to E'$ such that for any $a,b\in E$, $aRb\iff f(a)R'f(b)$. Two binary relations (E,R) and (E',R') are isomorphic (\cong) if there is an isomorphism between them.

Example. Let $2\mathbb{Z} = \{2x : x \in \mathbb{Z}\}$. There is an isomorphism

$$(\mathbb{Z}, <) \to (2\mathbb{Z}, >)$$

 $x \mapsto -2x$

because $x < y \iff (-2x) > (-2y)$.

Isomorphism is an equivalence relation:

$$\begin{split} R &\cong R \\ R &\cong S \implies S \cong R \\ R &\cong S \text{ and } S \cong T \implies R \cong T \end{split}$$

3 Restrictions and local isomorphisms

Definition 3. (E,R) is a restriction of (E',R') if $E \subseteq E'$ and $R = R' \cap E^2$. (E,R) is an extension of (E',R') if (E',R') is a restriction of (E,R).

Example. $(\mathbb{Z}, <)$ is a restriction of $(\mathbb{R}, <)$. $(\mathbb{R}, <)$ is an extension of $(\mathbb{Z}, <)$.

Definition 4. A relation R with universe E is *finite* if E is finite, and *countable* if E is countable.

Definition 5. A local isomorphism from R to R' is an isomorphism from a finite restriction of R to a finite restriction of R'. The set of local isomorphisms from R to R' is denoted $S_0(R, R')$. For $f \in S_0(R, R')$, dom(f) and im(f) denote the domain and range of f.

Example. There is a local isomorphism s from $(\mathbb{Z},<)$ to $(\mathbb{Z},<)$ given by

$$dom(s) = \{1, 2, 3\}$$
$$im(s) = \{10, 20, 30\}$$
$$s(1) = 10 \qquad s(2) = 20 \qquad s(3) = 30.$$

Definition 6. Let f, g be local isomorphisms from R to R'. Then f is a restriction of g if $f \subseteq g$, and f is an extension of g if $f \supseteq g$.

Example. Let $t \in S_0(\mathbb{Z}, \mathbb{Z})$ be $\{0, 1, 2, 3\} \to \{0, 10, 20, 30\}$. Then t extends s from before.

4 Karpian families

Definition 7. Let R, R' be binary relations with universes E, E'. A Karpian family for (R, R') is a set $K \subseteq S_0(R, R')$ satisfying the following two conditions for any $f \in K$:

- 1. (forth) If $a \in E$ then there is $g \in K$ with $g \supseteq f$ and $a \in \text{dom}(g)$.
- 2. (back) If $b \in E'$ then there is $g \in K$ with $g \supseteq f$ and $b \in \text{im}(g)$.

R and R' are ∞ -equivalent, written $R \sim_{\infty} R'$, if there is a non-empty Karpian family.

Proposition. Let f be an isomorphism from (E, R) to (E', R'). Let K be the family of finite restrictions of f. Then K is a Karpian family.

Proof. Suppose s is a finite restriction of f.

(forth) Given
$$a \in E$$
, let $b = f(a)$ and $t = s \cup \{(a, b)\}$. Then $t \supseteq s$, $a \in \text{dom}(t)$, and $t \in K$. (back) Similar.

Proposition. Let (E,R), (E',R') be countable. Suppose $R \sim_{\infty} R'$. Then $R \cong R'$.

Proof. Let

$$E = \{e_1, e_2, \ldots\}$$

 $E' = \{e'_1, e'_2, \ldots\}.$

Recursively build an ascending chain

$$f_1 \subseteq f_2 \subseteq \cdots$$

in K, by choosing

- $f_1 \in K$ arbitrary (K is non-empty)
- $f_{2i} \in K$ is an extension of f_{2i-1} such that $e_i \in \text{dom}(f_{2i})$ (forth condition).
- $f_{2i+1} \in K$ is an extension of f_{2i} such that $e'_i \in \text{im}(f_{2i+1})$ (back condition).

Let $f = \bigcup_{n=1}^{\infty} f_n$. Then $e_i \in \text{dom}(f_{2i}) \subseteq \text{dom}(f)$ and $e'_i \in \text{im}(f_{2i+1}) \subseteq \text{im}(f)$ so dom(f) = E and im(f) = E', and f is an isomorphism from R to R'.

Definition. A dense linear order without endpoints (DLO) is a linear order (C, \leq) satisfying the following conditions:

- \bullet $C \neq \emptyset$
- $\forall x \in C \ \exists y, z \in C : y < x < z$. (There are no greatest or least elements.)
- $\forall x, y \in C : x < y \rightarrow \exists z \in C \ (x < z < y)$. (The order is "dense".)

Example. (\mathbb{R}, \leq) and (\mathbb{Q}, \leq) are DLOs. (\mathbb{Z}, \leq) and $([0, 1], \leq)$ are not.

Proposition. Let (C, <) and (C', <) be DLOs. Then $S_0(C, C')$ is a Karpian family.

Proof. Let s be a local isomorphism from C to C'. Enumerate

$$dom(s) = \{a_1, \dots, a_n\}$$

$$a_1 < \dots < a_n$$
$$im(s) = \{b_1, \dots, b_n\}$$

$$b_1 < \dots < b_n$$
$$s(a_i) = b_i.$$

(forth) Given $a \in C$, we want $t \in S_0(R, R')$ with $t \supseteq s$ and $a \in \text{dom}(t)$. Break into cases:

- $a = a_i$ for some i. Take t = s.
- $a < a_1$. Take some $b < b_1$ (no endpoints) and set $t = s \cup \{(a, b)\}$.
- $a_i < a < a_{i+1}$ for some i. Take some $b \in C'$ with $b_i < b < b_{i+1}$ (density) and set $t = s \cup \{(a, b)\}.$
- $a > a_n$. Take some $b > b_n$ (no endpoints) and set $t = s \cup \{(a, b)\}$.

(back) Similar.

Corollary. Any two countable DLOs are isomorphic.

5 p-isomorphisms

Definition 8. Let R, R' be binary relations with universes E, E'.

- A 0-isomorphism from R to R' is a local isomorphism from R to R'.
- For p > 0, a *p-isomorphism* from R to R' is a local isomorphism f from R to R' satisfying the following two conditions:
 - 1. (forth) For any $a \in E$, there is a (p-1)-isomorphism $g \supseteq f$ with $a \in \text{dom}(g)$.
 - 2. (back) For any $b \in E'$, there is a (p-1)-isomorphism $g \supseteq f$ with $b \in \text{im}(g)$.
- An ω -isomorphism from R to R' is a local isomorphism f from R to R' such that f is a p-isomorphism for all $p < \omega$.

The set of p-isomorphisms from R to R' is denoted $S_p(R, R')$.

Example. If $R = R' = (\mathbb{Z}, <)$, then $f : \{2, 4\} \to \{1, 2\}$ isn't in $S_1(\mathbb{Z}, \mathbb{Z})$ because forth fails for a = 3. But $g : \{2, 4\} \to \{1, 5\}$ is a 1-isomorphism.

Proposition. If $g \in S_p(R, R')$ and $f \subseteq g$, then $f \in S_p(R, R')$. (Restrictions of p-isomorphisms are p-isomorphisms.)

Proof. If p = 0, then $f \in S_0(R, R')$ easily. Suppose p > 0.

(forth) Given $a \in E$, there is $h \in S_{p-1}(R, R')$ with $a \in \text{dom}(h)$ and $h \supseteq g \supseteq f$.

(back) Given
$$b \in E'$$
, there is $h \in S_{p-1}(R, R')$ with $b \in \text{im}(t)$ and $h \supseteq g \supseteq f$.

Proposition. The following are equivalent:

- 1. $S_p(R, R') \neq \emptyset$
- 2. $\varnothing \in S_p(R, R')$.

Proof. $(2) \Longrightarrow (1)$ trivial.

$$(1) \Longrightarrow (2)$$
: take $f \in S_p(R, R')$. Then $\varnothing \subseteq f$.

Definition 9. R and R' are p-equivalent, written $R \sim_p R'$, if there is a p-isomorphism from R to R'.

R and R' are ω -equivalent or **elementarily equivalent**, written $R \sim_{\omega} R'$ or $R \equiv R'$, if there is an ω -isomorphism from R to R'.

Note $R \sim_{\omega} R' \iff S_{\omega}(R, R') \neq \emptyset \iff \emptyset \in S_{\omega}(R, R') \iff \forall p \ (\emptyset \in S_p(R, R')) \iff \forall p \ (R \sim_p R').$

6 Ehrenfeucht-Fraïssé games

Definition 10. Let R, R' be binary relations with universes E, E'. The Ehfrenfeucht-Fraïssé game of length n, denoted $\mathrm{EF}_n(R, R')$, is played as follows.

- There are two players, the Duplicator and Spoiler.
- There are n rounds.
- In the *i*th round, the Spoiler chooses either an $a_i \in E$ or a $b_i \in E'$.
- The Duplicator responds with a $b_i \in E'$ or an $a_i \in E$, respectively.
- At the end of the game, the Duplicator wins if

$$\{(a_1,b_1),\ldots,(a_n,b_n)\}$$

is a local isomorphism from R to R'.

• Otherwise, the Spoiler wins.

Example. Here is a game of $EF_3(\mathbb{Q}, \mathbb{R})$:

- Spoiler chooses $a_1 = 7$. Duplicator chooses $b_1 = 7$.
- Spoiler chooses $b_2 = \sqrt{2}$. Duplicator chooses $a_2 = 1.4$.
- Spoiler chooses $b_3 = 1.41$. Duplicator chooses $a_3 = -10$.
- Duplicator wins.

Example. Here is a game of $EF_3(\mathbb{R}, \mathbb{Z})$:

- Spoiler chooses $b_1 = 1$. Duplicator chooses $a_1 = 1$.
- Spoiler chooses $b_2 = 2$. Duplicator chooses $a_2 = 1.1$.
- Spoiler chooses $a_3 = 1.01$. Duplicator chooses $b_3 = 0$ and loses.

Example. Try playing $EF_4(\mathbb{Z}, \mathbb{N})$. Who wins?

Let
$$C = \{1, -1, 1/2, -1/2, 1/3, -1/3, \ldots\}$$
. Try playing $EF_4(C, \mathbb{Z})$. Who wins?

Lemma. In $EF_n(R, R')$, suppose there have been q rounds, and $a_1, b_1, \ldots, a_q, b_q$ have been chosen. Let p = n - q, the number of remaining rounds. Then Duplicator has a winning strategy if and only if $s = \{(a_1, b_1), \ldots, (a_q, b_q)\}$ is an p-isomorphism.

Corollary. If R is p-equivalent to R', then $EF_p(R, R')$ is a win for the Duplicator. Otherwise it is a win for the Spoiler.

7 More about p-isomorphisms

Proposition. Every (p+1)-isomorphism is a p-isomorphism.

Proof. By induction on p.

- p=0: every 1-isomorphism is a 0-isomorphism. True by definition.
- p > 0. Suppose s is a p + 1-isomorphism. We claim s is a p-isomorphism.
- (forth) Given $a \in E$, there is $t \in S_p(R, R')$ such that $t \supseteq s$ and $a \in \text{dom}(t)$. By induction, $t \in S_{p-1}(R, R')$.
- (back) Given $b \in E'$, there is $t \in S_p(R, R')$ such that $t \supseteq s$ and $b \in \text{im}(t)$. By induction, $t \in S_{p-1}(R, R')$.

So $S_0(R, R') \supseteq S_1(R, R') \supseteq S_2(R, R') \supseteq \cdots$. In terms of the Ehfrenfeuch-Fraïssé game, if we reduce the number of remaining rounds, it can only help the Duplicator.

Proposition. Suppose $s \in S_p(R, R')$ and $t \in S_p(R', R'')$ and dom(t) = im(s). Then $u := t \circ s \in S_p(R, R'')$.

Proof. By induction on p. For p = 0, this says we can compose (local) isomorphisms; this is easy.

Suppose p > 0. Let E, E', E'' be the universes of R, R', R''.

(forth) Given $a \in E$, there is $b \in E'$ such that $s' := s \cup \{(a,b)\} \in S_{p-1}(R,R')$. There is $c \in E''$ such that $t' := t \cup \{(b,c)\} \in S_{p-1}(R',R'')$. By induction, $u' := t' \circ s' = u \cup \{(a,c)\} \in S_{p-1}(R,R'')$.

(back) Similar.

Corollary. If $R \sim_p R'$ and $R' \sim_p R''$, then $R \sim_p R''$.

Proposition. Suppose $s \in S_p(R, R')$. Then $s^{-1} \in S_p(R', R)$.

Proof. Exercise. \Box

Corollary. If $R \sim_p R'$, then $R' \sim_p R$.

Proposition. Let K be a Karpian family for (E,R) and (E',R'). If $s \in K$, then s is a p-isomorphism for all p.

Proof. By induction on p. For p = 0, we have $s \in K \subseteq S_0(R, R')$ by definition. Suppose p > 0:

(forth) For any $a \in E$ there is $t \in K$ with $t \supseteq s$ and $a \in \text{dom}(t)$. By induction $t \in S_{p-1}(R, R')$.

(back) Similar.

Corollary. If E, E' are DLOs, then $S_0(E, E') = S_p(E, E')$ for all $p. E \sim_{\omega} E'$.

Corollary. Suppose $f:(E,R) \to (E',R')$ is an isomorphism. If s is a finite restriction of f, then s is a p-isomorphism (for any p).

Corollary. $A \cong B \implies A \sim_{\infty} B \implies A \sim_{\omega} B \implies A \sim_{p} B$.

Corollary. \sim_p and \sim_{ω} are equivalence relations.

8 More dense linear orders

Proposition. Suppose $(\mathbb{Q}, \leq) \sim_{\omega} (C, R)$. Then (C, R) is a DLO.

Proof. Suppose (C, R) is not a DLO and break into cases:

- R not reflexive. Spoiler chooses $b_1 \in C$ such that $(b_1, b_1) \notin R$. Then Duplicator must choose $a_1 \in \mathbb{Q}$ such that $a_1 \nleq a_1$, impossible.
- R not antisymmetric. Spoiler chooses $b_1, b_2 \in C$ such that $b_1 \neq b_2$ but b_1Rb_2 and b_2Rb_1 . Duplicator must choose $a_1, a_2 \in \mathbb{Q}$ such that $a_1 \neq a_2$ and $a_1 \leq a_2$ and $a_2 \leq a_1$, impossible.
- R not transitive. Spoiler chooses $b_1, b_2, b_3 \in C$ such that b_1Rb_2 and b_2Rb_3 but $b_1 \not R b_3$. Duplicator must choose a_1, a_2, a_3 with $a_1 \leq a_2 \leq a_3$ and $a_1 \not a_3$, impossible.
- R not total. Spoiler chooses $b_1, b_2 \in C$ with $b_1 \not R$ b_2 and $b_2 \not R$ b_1 . Again, Duplicator must choose $a_1, a_2 \in \mathbb{Q}$ with $a_1 \not \leq a_2$ and $a_2 \not \leq a_1$, impossible.
- (C, R) has a maximum. Spoiler chooses $b_1 = \max(C)$. Duplicator chooses some $a_1 \in \mathbb{Q}$. Spoiler chooses $a_2 \in \mathbb{Q}$ greater than a_1 . Spoiler must choose $b_2 \in C$ with $b_2 > b_1$, impossible.
- (C, R) has a minimum. Similar.
- (C, R) is not dense. Spoiler chooses $b_1, b_2 \in C$ with $b_1 < b_2$ with nothing between them. Duplicator must choose $a_1, a_2 \in \mathbb{Q}$ with $A_1 < a_2$. Spoiler then chooses $a_3 = (a_1 + a_2)/2$, so that $a_1 < a_3 < a_2$. Duplicator must choose $b_3 \in C$ with $b_1 < b_3 < b_2$, impossible. \square

Corollary. The class of DLOs is the \sim_{ω} -equivalence class of (\mathbb{Q}, \leq)

9 Discrete linear orders

Definition. A linear order (C, \leq) is discrete without endpoints if $C \neq \emptyset$ and

$$\forall a \exists b : a \lhd b$$
$$\forall b \exists a : a \lhd b,$$

where $a \triangleleft b$ means $a \lessdot b$ and not $\exists c : a \lessdot c \lessdot b$.

Example. (\mathbb{Z}, \leq) and $\{1, -1, 1/2, -1/2, 1/3, -1/3, \ldots\}$ are discrete without endpoints.

Definition. Let (C, <) be discrete. If $a \le b \in C$, then d(a, b) is the size of $[a, b) = \{x \in C : a \le x < b\}$, or ∞ if infinite. If a > b, then d(a, b) = d(b, a).

Lemma. Let (C, <) and (C', <) be discrete linear orders without endpoints. Suppose $a_1 < \cdots < a_n$ in C and $b_1 < \cdots < b_n$ in C'. Let s be the local isomorphism $s(a_i) = b_i$. Suppose that for every $1 \le i < n$, we have

$$d(a_i, a_{i+1}) = d(b_i, b_{i+1}) \text{ or } d(a_i, a_{i+1}) \ge 2^p \le d(b_i, b_{i+1}).$$

Then s is a p-isomorphism.

Proof. By induction on p. p = 0 is trivial.

Suppose p > 0. We verify the forth condition (back is similar). Let $a \in C$ be given. We must find $b \in C'$ such that $s \cup \{(a,b)\}$ is a (p-1)-isomorphism. Break into cases:

- If $a < a_1$ and $d(a, a_1) = q < \infty$, take $b < b_1$ such that $d(b, b_1) = q$.
- If $a < a_1$ and $d(a, a_1) = \infty$, take $b < b_1$ such that $d(b, b_1) = 2^{p-1}$.
- If $a > a_n$, do something similar.
- If $a_i < a < a_{i+1}$...
 - If $d(a_i, a_{i+1}) < 2^p$, then $d(b_i, b_{i+1}) = d(a_i, a_{i+1})$. Take b with $b_i < b < b_{i+1}$ and $d(b_i, b) = d(a_i, a)$.
 - If $d(a_i, a_{i+1}) \geq 2^p$, then $d(b_i, b_{i+1}) \geq 2^p$. There are three cases:
 - * If $d(a_i, a) = q < 2^{p-1}$, then take $b > b_i$ with $d(b_i, b) = q$.
 - * If $d(a, a_{i+1}) = q < 2^{p-1}$, take $b < b_{i+1}$ with $d(b, b_{i+1}) = q$.
 - * If $d(a_i, a) \ge 2^{p-1} \le d(a_{i+1}, a)$, take $b > b_i$ with $d(b_i, b) = 2^{p-1}$.
- If $a = a_i$, take $b = b_i$.

In fact, Theorem 1.8 in Poizat shows that this condition exactly characterizes p-isomorphisms.

Proposition. Let (C, \leq) and (C', \leq) be discrete linear orders without endpoints. Then \varnothing is a p-equivalence from (C, \leq) to (C', \leq) for all p. Therefore $(C, \leq) \sim_{\omega} (C', \leq)$.

Remark. Again, one can show that if $(\mathbb{Z}, \leq) \sim_{\omega} (C, R)$, then (C, R) is a discrete linear order without endpoints. So the discrete linear orders without endpoints are exactly the \sim_{ω} -equivalence class of (\mathbb{Z}, \leq) .

Remark. Let $C = \{1, -1, 1/2, -1/2, 1/3, -1/3, \ldots\}$. Then C is a discrete linear order without endpoints, so $(C, \leq) \sim_{\omega} (\mathbb{Z}, \leq)$. But $(C, \leq) \not\sim_{\infty} (\mathbb{Z}, \leq)$, since $(C, \leq) \not\cong (\mathbb{Z}, \leq)$. So \sim_{∞} is stronger than \sim_{ω} .

10 The infinite Ehrenfeucht-Fraïssé game

Definition 11. Let R, R' be binary relations with universes E, E'. The *infinite Ehrenfeucht-Fraïssé game*, denoted $EF_{\infty}(R, R')$, is played as follows:

- There are two players, the Duplicator and Spoiler.
- There are infinitely many rounds (indexed by ω).
- In the *n*th round, the Spoiler chooses either an $a_n \in E$ or a $b_n \in E'$.
- The Duplicator responds with a $b_n \in E'$ or an $a_n \in E$, respectively.
- If $\{(a_1, b_1), \dots, (a_n, b_n)\}$ is not a local isomorphism, then the Spoiler immediately wins.
- The Duplicator wins if the Spoiler has not won by the end of the game.

Proposition. The following are equivalent:

- 1. $R \sim_{\infty} R'$, i.e., there is a non-empty Karpian family K.
- 2. Duplicator has a winning strategy for $EF_{\infty}(R, R')$.
- 3. Spoiler does not have a winning strategy for $EF_{\infty}(R, R')$.