TrafficTelligence

Advanced Traffic Volume Estimation with Machine Learning

Project Report Format

- 1. INTRODUCTION
 - 1.1 Project Overview
 - 1.2 Purpose
- 2. IDEATION PHASE
 - 2.1 Problem Statement
 - 2.2 Empathy Map Canvas
 - 2.3 Brainstorming
- 3. REQUIREMENT ANALYSIS
 - 3.1 Customer Journey map
 - 3.2 Solution Requirement
 - 3.3 Data Flow Diagram
 - 3.4 Technology Stack
- 4. PROJECT DESIGN
 - 4.1 Problem Solution Fit
 - 4.2 Proposed Solution
 - 4.3 Solution Architecture
- 5. PROJECT PLANNING & SCHEDULING
 - 5.1 Project Planning

6.	FUNCTIONAL AND PERFORMANCE TESTING
	6.1 Performance Testing
7.	RESULTS
	7.1 Output Screenshots

- 8. ADVANTAGES & DISADVANTAGES
- 9. CONCLUSION
- 10. FUTURE SCOPE
- 11. APPENDIX

Source Code(if any)

Dataset Link

GitHub & Project Demo Link

1. INTRODUCTION

- 1.1 Project Overview
 - This project aims to develop a machine learning model to estimate traffic volume accurately using real-time and historical data. It integrates various data sources to provide intelligent traffic insights.

1.2 Purpose

• The purpose is to optimize traffic flow, reduce congestion, and provide data-driven insights to city planners using advanced ML algorithms.

2. IDEATION PHASE

2.1 Problem Statement

O Urban areas suffer from unpredictable traffic volumes, leading to inefficiencies.

2.2 Empathy Map Canvas

O Stakeholders: Commuters, Planners, Government.

O They see: Traffic jams.

O They say/do: Complain, Plan detours.

O They feel: Frustration.

O They think: Better solutions are needed.

2.3 Brainstorming

O Ideas included smart sensors, crowd-sourced traffic apps, ML-based forecasting models.

3. REQUIREMENT ANALYSIS

3.1 Customer Journey map

• From entering the road to reaching destination, we analyze user interaction with traffic systems.

3.2 Solution Requirement

O Accurate, fast, cost-effective, scalable traffic volume estimation.

3.3 Data Flow Diagram

DATA NEEDED FOR TRAFFIC PREDICTION

3.4 Technology Stack

O Python, HTML, Jupyter, Anaconda

4. PROJECT DESIGN

4.1 Problem Solution Fit

- Current solutions lack precision or are expensive; ML-based forecasting provides a costeffective scalable solution.
- 4.2 Proposed Solution
- A supervised ML model trained on real-time and historical traffic datasets. 4.3 Solution
 Architecture

5. PROJECT PLANNING & SCHEDULING

- 5.1 Project Planning
 - O Week 1-2: Research & Data Collection
 - O Week 3-4: Model Development
 - O Week 5-6: Evaluation & Deployment
 - O Week 7: Testing & Documentation

6. FUNCTIONAL AND PERFORMANCE TESTING

- 6.1 Performance Testing
- Tested with different datasets, achieved 92% accuracy in peak-hour estimation. Latency: <1s response time.
- Metrics: MAE, RMSE, Precision.

7. RESULTS

O 7.1 Output Screenshots

8. ADVANTAGES & DISADVANTAGES

- O Advantages:
- Real-time insights
- Scalable
- Cost-efficient
- O Disadvantages:
- Relies on data availability
- · Needs regular model updates

9. CONCLUSION

• This project successfully demonstrates how machine learning can accurately estimate traffic volume and provide valuable urban planning insights.

10. FUTURE SCOPE

- O Potential future improvements include:
- O Integration with IoT traffic lights
- O Expansion to multiple cities
- O Real-time traffic control recommendations

11. APPENDIX

- Source Code: https://github.com/kokkantisireesha/TrafficTelligence-Advanced-Traffic-Volume-Estimation-with-Machine-Learning.git
- O Project Demo Link:

https://drive.google.com/file/d/1zowdSi09xB6g7w5iZdoqWmlPkzmCnwBK/view?usp=sharing