

Simon Blanchoud¹

Artificial seawater V.1

¹University of Fribourg

Works for me

dx.doi.org/10.17504/protocols.io.bru7m6zn

Feb 03, 2021

Blanchoud lab, UNIFR

Marta Wawrzyniak University of Fribourg

ABSTRACT

Three alternative solutions for artificial seawater (ASW) have been tested successfully on our Botrylloides colonies. For routine work, we use commercial sea salts (CSS), for most analyses we use the Cold Spring Harbor Protocols (CSPH) and for very clean work the K-depleted Phosphate-buffered saline (K-PBS). While, CSPH and K-PBS can be prepared at 10X, CSS should be prepared at 2X directly.

Mix to dissolve and adjust pH as well as salinity to your local conditions.

DOI

dx.doi.org/10.17504/protocols.io.bru7m6zn

PROTOCOL CITATION

Simon Blanchoud 2021. Artificial seawater. protocols.io https://dx.doi.org/10.17504/protocols.io.bru7m6zn

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Jan 27, 2021

LAST MODIFIED

Feb 03, 2021

PROTOCOL INTEGER ID

46719

MATERIALS TEXT

- Commercial sea salts
- NaCl
- KCI
- CaCl₂
- MgCl₂·6H₂O
- MgSO₄· 7H₂O
- NaH₂PO₄· H₂O
- Na₂HPO₄

2X CSS

- 1 **□70 g** sea salt in **□1 L** H20.
- 2 Mix to dissolve.
- 3 Filter at 10 μm

10x CSHP

4 To prepare 10X CSHP take

Α	В	С
NaCl	262.9g	4.5M
KCI	7.4g	100mM
CaCl2	9.9g	90mM
MgCl2 6H2O	60.9g	300mM
MgS04 7H20	39.4g	160mM
H20	1000ml	

10X K-PBS

5 To prepare 10x K-PBS take

Α	В	С
NaH2PO4 · H2O	2.8 g	0.02 M
Na2HPO4	11.4 g	0.08 M
NaCl	87.5 g	1.5 M
H20	1000ml	