

2º Grado Informática Estructura de Computadores 18 de enero de 2018

Test de Teoría (3.0p)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
С	a	b	С	d	a	b	С	d	a	b	С	d	d	a	a	b	С	d	d	d	С	b	d	b	d	a	d	d	С

Test de Prácticas (4.0p)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
d	b	d	a	d	a	С	b	b	С	b	a	d	b	a	С	b	С	b	b

Examen de Problemas (3.0p)

1. Ensamblador (0.75 puntos).

Se puntúa 0.05p por celda (las tres celdas de modo dir. registro cuentan como una, total $0.05 \times 15 = 0.75p$)

Instrucción		Fuente		Destino						
	Modo de direccio-namiento	Dirección de memoria	Contenido o valor	Modo de direccio-namiento	Contenido o valor antes de ejecutar la instrucción	Contenido o valor después de ejecutar la instrucción				
mov (%rcx),%al	Indirecto (a través de registro)	0x60 1037	0x10	Registro	0	0x10				
shl \$0xc,%rax	Inmediato (constante literal)	N/A	0x0c	Registro	0x10 (=16)	0x1 0000 (=65536)				
mov (%rbx,%rax), %rbx	Indexado respecto a base	0x61 1038 + 0x01 0000 = 0x61 1038		Registro	0x60 1038	0x1010 1010 1010 1010				

2. Ensamblador (0.75 puntos).

Se supone convención cdecl, a falta de más información sobre cómo se pasa el argumento puntero Infinidad soluciones válidas entre 10-15 líneas, se valora brevedad, claridad, simplicidad... tal vez eficiencia. Si programa correcto de 10-15 líneas, nota completa. Pasar de 15 líneas puntúa negativamente. Correspondería a aproximadamente 0.05p por línea/instrucción (0.05 x 15 = 0.75p)

```
little2big:
                                  big2little:
 push %ebp
                                    push %ebp
 mov %esp, %ebp
                                    mov %esp, %ebp
 mov 8(%ebp), %eax # arg. ptr
                                    mov 8(%ebp), %eax
       $100, %ecx # cont/idx
 mov
                                    xor
                                          %ecx,
                                                  %есх
.bucle:
                                   .bucle:
 rolw $8, -2(%eax,%ecx,2)
                                    rorw $8, (%eax,%ecx,2)
                  # 100..1
                                                     # 0..99
     %ecx
                                    inc
                                         %ecx
 dec
                                         $100, %ecx
                                    cmp
                                         .bucle
      .bucle
                                    jnz
 jnz
 pop
      %ebp
                                    pop
                                         %ebp
 ret
                                    ret
```

ALTERNATIVAS CUERPO BUCLE (%eax,%ecx,2), %dl mov 1(%eax,%ecx,2), %dh mov %dh, (%eax,%ecx,2) mov %dl,1(%eax,%ecx,2) (%eax, %ecx, 2), %dh mov 1(%eax,%ecx,2), %dl mov %dx, (%eax, %ecx, 2) (%eax,%ecx,2), %dx mov mov %dh, (%eax,%ecx,2) mov %dl,1(%eax,%ecx,2) (%eax, %ecx, 2), %dxmov xchg %dh, %dl %dx, (%eax, %ecx, 2)

3. Unidad de Control (0.5 puntos).

Solución (inspirada en http://slideplayer.com/slide/11064764/)

Se puntúa 0.05p por micro-instrucción (aproximadamente 11 micro-instrucciones, una de regalo, total $0.05 \times 10 = 0.50p$)

fetch: MA:=PC; A:=PC

PC:=A+4
wait

Inst:=Mem[MA]
goto f(IR)

. . .

BEQ: A:=Reg[rs1]

B:=Reg[rs2]

if (A-B != 0) goto fetch

A:=PC

B:=Immediate

PC:=A+B; goto fetch

4. Configuración de memoria (0.5 puntos).

Solución (ver https://www.eevblog.com/forum/beginners/z80-single-board-memory-bank-switching/) Aproximadamente 0.1p por zona (MREQ#, A₁₅₋₁₃, CE#/CS#, OE#/WE#, A₁₂₋₀/D₇₋₀)

5. Memoria cache (0.5 puntos).

64 B/línea = 2^6 B/línea \Rightarrow 6 bits campo offset (desplazamiento, byte, ...)

L1i 16 x 64KB 4 vías ⇒ 4 líneas/conjunto L1i

L1d 16 x 32KB 8 vías ⇒ 8 líneas/conjunto L1d

MP 1TB = 2^{40} B \Rightarrow 40 bits dirección física

a) L1 instrucciones (0.25p)

L1i: 64 KB / 64 B/línea = 2^{16} B / 2^{6} B/línea = 2^{10} líneas (=1024) 1024 líneas / 4 vías = 2^{10} líneas / 2^{2} líneas/conjunto = 2^{8} conjuntos \Rightarrow 8 bits campo conjunto resto bits: etiqueta = 40 - 8 - 6 = 26 bits campo etiqueta

Dirección física de memoria principal desde el punto de vista de L1i: (0.10p = 0.05p + 0.025p +0.025p)

etiqueta (26) conjunto (8) byte (6)

Tamaño total en bits ocupado por todas las etiquetas en directorios L1i: (0.05p)

16 caches • 1024 líneas/cache • 26 bits/etiqueta = 2⁴x2¹⁰x26 bits = 2¹⁴x26 bits = 425 984 bits

alternativamente, una sola cache L1i = 1024 líneas • 26 bits/etiqueta = 26 Kbits

Tamaño total en bits ocupado por todos los datos/instrucciones en L1i: (0.05p)

16 caches • 64KB/cache • 8 bits/B = $2^4x2^{16}x2^3$ bits = 2^{23} bits = 8Mbits = 8 388 608 bits

alternativamente, una sola cache L1i = $2^{16}x2^3$ bits = 2^{19} bits = 512 Kbits

Porcentaje Etiquetas / (Datos/Instrucciones) = 425 984 / 8 388 608 = **5.08%** (0.05p) alternativamente, una sola cache L1i: 26Kb / 512Kb = **5.08%**

b) L1 datos (0.25p)

L1i: 32 KB / 64 B/línea = 2^{15} B / 2^6 B/línea = 2^9 líneas (=512) 512 líneas / 8 vías = 2^9 líneas / 2^3 líneas/conjunto = 2^6 conjuntos \Rightarrow 6 bits campo conjunto resto bits: etiqueta = 40 - 6 - 6 = 28 bits campo etiqueta

Dirección física de memoria principal desde el punto de vista de L1d: (0.10p = 0.05p + 0.025p + 0.025p)

etiqueta (28) conjunto (6) byte (6)

Tamaño total en bits ocupado por todas las etiquetas en directorios L1d: (0.05p)

16 caches • 512 líneas/cache • 28 bits/etiqueta = 2⁴x2⁹x28 bits = 2¹³x28 bits = 229 376 bits

alternativamente, una sola cache L1d = 512 líneas • 28 bits/etiqueta = 14 Kbits

Tamaño total en bits ocupado por todos los datos/instrucciones en L1d: (0.05p)

16 caches • 32KB/cache • 8 bits/B = $2^4x2^{15}x2^3$ bits = 2^{22} bits = 4Mbits = 4 194 304 bits

alternativamente, una sola cache L1d = $2^{15}x2^3$ bits = 2^{18} bits = 256 Kbits

Porcentaje Etiquetas / (Datos/Instrucciones) = 229 376 / 4 194 304 = 5.47% (0.05p) alternativamente, una sola cache L1i: 14Kb / 256Kb = 5.47%