Let y = f(x) be any function of x. On its graph take two points P(a, f(a)) and Q(a + h, f(a + h)) close to each other. Draw PL and QM perpendiculars to x-axis and $PN \perp QM$.

Q(a+h, f(a+h))

Now,
$$OL = a$$
, $OM = a + h$
and, $PL = f(a)$, $QM = f(a + h)$

Join PQ.

We know that

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Clearly, from Δ PQN, the ratio whose limit we are taking is equal to tan (QPN), which in fact is the slope of the chord PQ. In the limiting process as $h \to 0$, the point Q tends to P along the curve.

$$\therefore \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{QM - PL}{OM - OL}$$
$$= \lim_{h \to 0} \frac{QM - NM}{LM} = \lim_{h \to 0} \frac{QN}{PN}$$

:. The chord PQ takes the form of tangent at P of the curve y = f(x). The angle QPN takes the position of angle ψ , which the tangent at P makes with the positive direction of x-axis.

Hence,
$$f'(a) = \tan \psi$$

Thus we can say that the derivative at any point represents the slope of tangent to the curve at that point.

3.1 Tangent Lines and the Derivative at a Point

In this section we define the slope and tangent to a curve at a point, and the derivative of a function at a point. The derivative gives a way to find both the slope of a graph and the instantaneous rate of change of a function.

Fig. 13.7

Finding a Tangent Line to the Graph of a Function

To find a tangent line to an arbitrary curve y = f(x) at a point $P(x_0, f(x_0))$, we use the procedure introduced in Section 2.1. We calculate the slope of the secant line through P and a nearby point $Q(x_0 + h, f(x_0 + h))$. We then investigate the limit of the slope as $h \to 0$ (Figure 3.1). If the limit exists, we call it the slope of the curve at P and define the tangent line at P to be the line through P having this slope.

FIGURE 3.1 The slope of the tangent line at *P* is $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$.

DEFINITIONS The **slope of the curve** y = f(x) at the point $P(x_0, f(x_0))$ is the number

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
 (provided the limit exists).

The **tangent line** to the curve at *P* is the line through *P* with this slope.

EXAMPLE 1

- (a) Find the slope of the curve y = 1/x at any point $x = a \ne 0$. What is the slope at the point x = -1?
- **(b)** Where does the slope equal -1/4?
- (c) What happens to the tangent line to the curve at the point (a, 1/a) as a changes?

Solution

(a) Here f(x) = 1/x. The slope at (a, 1/a) is

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{\frac{1}{a+h} - \frac{1}{a}}{h} = \lim_{h \to 0} \frac{1}{h} \frac{a - (a+h)}{a(a+h)}$$
$$= \lim_{h \to 0} \frac{-h}{ha(a+h)} = \lim_{h \to 0} \frac{-1}{a(a+h)} = -\frac{1}{a^2}.$$

Notice how we had to keep writing " $\lim_{h\to 0}$ " before each fraction until the stage at which we could evaluate the limit by substituting h=0. The number a may be positive or negative, but not 0. When a=-1, the slope is $-1/(-1)^2=-1$ (Figure 3.2).

(b) The slope of y = 1/x at the point where x = a is $-1/a^2$. It will be -1/4 provided that

$$-\frac{1}{a^2} = -\frac{1}{4}$$
.

This equation is equivalent to $a^2 = 4$, so a = 2 or a = -2. The curve has slope -1/4 at the two points (2, 1/2) and (-2, -1/2) (Figure 3.3).

(c) The slope $-1/a^2$ is always negative if $a \neq 0$. As $a \to 0^+$, the slope approaches $-\infty$ and the tangent line becomes increasingly steep (Figure 3.2). We see this situation again as $a \to 0^-$. As a moves away from the origin in either direction, the slope approaches 0 and the tangent line levels off, becoming more and more horizontal.

Rates of Change: Derivative at a Point

The expression

$$\frac{f(x_0+h)-f(x_0)}{h}, \quad h \neq 0$$

is called the **difference quotient of** f at x_0 with increment h. If the difference quotient has a limit as h approaches zero, that limit is given a special name and notation.

DEFINITION The derivative of a function f at a point x_0 , denoted $f'(x_0)$, is

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

provided this limit exists.

3.2 The Derivative as a Function

In the last section we defined the derivative of y = f(x) at the point $x = x_0$ to be the limit

HISTORICAL ESSAY The Derivative www.goo.gl/llNWop

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

We now investigate the derivative as a *function* derived from f by considering the limit at each point x in the domain of f.

DEFINITION The **derivative** of the function f(x) with respect to the variable x is the function f' whose value at x is

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h},$$

provided the limit exists.

Differentiable on an Interval; One-Sided Derivatives

A function y = f(x) is **differentiable on an open interval** (finite or infinite) if it has a derivative at each point of the interval. It is **differentiable on a closed interval** [a, b] if it is differentiable on the interior (a, b) and if the limits

$$\lim_{h \to 0^+} \frac{f(a+h) - f(a)}{h}$$
 Right-hand derivative at a
$$\lim_{h \to 0^-} \frac{f(b+h) - f(b)}{h}$$
 Left-hand derivative at b

exist at the endpoints (Figure 3.7).

Right-hand and left-hand derivatives may or may not be defined at any point of a function's domain. Because of Theorem 6, Section 2.4, a function has a derivative at an interior point if and only if it has left-hand and right-hand derivatives there, and these one-sided derivatives are equal.

EXAMPLE 4 Show that the function y = |x| is differentiable on $(-\infty, 0)$ and on $(0, \infty)$ but has no derivative at x = 0.

FIGURE 3.8 The function y = |x| is not differentiable at the origin where the graph has a "corner" (Example 4).

Solution From Section 3.1, the derivative of y = mx + b is the slope m. Thus, to the right of the origin, when x > 0,

$$\frac{d}{dx}(|x|) = \frac{d}{dx}(x) = \frac{d}{dx}(1 \cdot x) = 1. \qquad \frac{d}{dx}(mx + b) = m, |x| = x \operatorname{since} x > 0$$

To the left, when x < 0,

$$\frac{d}{dx}(|x|) = \frac{d}{dx}(-x) = \frac{d}{dx}(-1 \cdot x) = -1 \qquad |x| = -x \operatorname{since} x < 0$$

(Figure 3.8). The two branches of the graph come together at an angle at the origin, forming a non-smooth corner. There is no derivative at the origin because the one-sided derivatives differ there:

Right-hand derivative of
$$|x|$$
 at zero $=\lim_{h\to 0^+} \frac{|0+h|-|0|}{h} = \lim_{h\to 0^+} \frac{|h|}{h}$
 $=\lim_{h\to 0^+} \frac{h}{h} \qquad |h| = h \text{ when } h > 0$
 $=\lim_{h\to 0^+} 1 = 1$

Left-hand derivative of
$$|x|$$
 at zero $=\lim_{h\to 0^-}\frac{|0+h|-|0|}{h}=\lim_{h\to 0^-}\frac{|h|}{h}$ $=\lim_{h\to 0^-}\frac{-h}{h}$ $|h|=-h$ when $h<0$ $=\lim_{h\to 0^-}-1=-1$.

Differentiable Functions Are Continuous

A function is continuous at every point where it has a derivative.

THEOREM 1—Differentiability Implies Continuity If f has a derivative at x = c, then f is continuous at x = c.

Derivative of a Constant Function

If f has the constant value f(x) = c, then

$$\frac{df}{dx} = \frac{d}{dx}(c) = 0.$$

Derivative of a Positive Integer Power

If n is a positive integer, then

$$\frac{d}{dx}x^n = nx^{n-1}.$$

Differentiate the following powers of x.

(a)
$$x^3$$

(b)
$$x^{2/3}$$

(c)
$$x^{\sqrt{2}}$$

(d)
$$\frac{1}{x^4}$$

(a)
$$x^3$$
 (b) $x^{2/3}$ (c) $x^{\sqrt{2}}$ (d) $\frac{1}{x^4}$ (e) $x^{-4/3}$ (f) $\sqrt{x^{2+\pi}}$

Derivative Constant Multiple Rule

If u is a differentiable function of x, and c is a constant, then

$$\frac{d}{dx}(cu) = c \, \frac{du}{dx}.$$

Derivative Sum Rule

If u and v are differentiable functions of x, then their sum u + v is differentiable at every point where u and v are both differentiable. At such points,

$$\frac{d}{dx}(u+v) = \frac{du}{dx} + \frac{dv}{dx}.$$

Find the derivative of the polynomial $y = x^3 + \frac{4}{3}x^2 - 5x + 1$. EXAMPLE 3

Derivative Product Rule

If u and v are differentiable at x, then so is their product uv, and

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + \frac{du}{dx}v.$$

Find the derivative of $y = (x^2 + 1)(x^3 + 3)$. EXAMPLE 5

Derivative Quotient Rule

If u and v are differentiable at x and if $v(x) \neq 0$, then the quotient u/v is differentiable at x, and

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}.$$

EXAMPLE 6 Find the derivative of
$$y = \frac{t^2 - 1}{t^3 + 1}$$
.

Second- and Higher-Order Derivatives

If y = f(x) is a differentiable function, then its derivative f'(x) is also a function. If f' is also differentiable, then we can differentiate f' to get a new function of x denoted by f''. So f'' = (f')'. The function f'' is called the **second derivative** of f because it is the derivative of the first derivative. It is written in several ways:

$$f''(x) = \frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{dy'}{dx} = y'' = D^2(f)(x) = D_x^2 f(x).$$

Find the derivatives of the following functions using the first principle:

(iii)
$$\cos (3x + 2)$$

(iv)
$$\sin x + \cos x$$

$$(v) \ \frac{\sin x}{x}$$

(vi)
$$\sin \sqrt{x}$$

$$(vii) \sin x^2$$

(viii)
$$\cos^2 x$$

$$(ix) \sin^3 x$$

(x)
$$\sqrt{\tan x}$$

(xi)
$$\sqrt{\csc x}$$