ALGEBRAIC GEOMETRY - LOTHAR GÖTTSCHE LECTURE 19

WANG YUNLEI

Lemma 1 (Nakayama). Let A be a local ring and $\mathfrak{m} \subset A$ be its maximal ideal. Let M be a finitely generated A-module:

- (1) if $M = \mathfrak{m}M$, then $M = \{0\}$;
- (2) write $k = A/\mathfrak{m}$, let $f_1, \ldots, f_r \in M$ such that $\bar{f}_1, \ldots, \bar{f}_r$ generate $M/\mathfrak{m}M$ as k-vector space. Then f_1, \ldots, f_r generate M as an A-module.

Proof. (2) Let $N := \langle f_1, \ldots, f_r \rangle \subset M$. To show N = M is equivalent to show $M/N = \{0\}$. Since $\bar{f}_1, \ldots, \bar{f}_r$ generate $M/\mathfrak{m}M$, we have

$$(N + \mathfrak{m}M)/\mathfrak{m}M = M/\mathfrak{m}M.$$

This equation implies

$$N + \mathfrak{m}M = M$$
.

Then we get $\mathfrak{m} \cdot (M/N) = (\mathfrak{m}M + n)/N = M/N$, it implies $M/N = \{0\}$ by using the first conclusion of the lemma.

Definition 1 (Discrete Valuation Ring). Let A be a local ring, \mathfrak{m} be its maximal ideal. Further more, assume A is also an integral domain. Then A is called a discrete valuation ring(DVR) if the following conditions hold:

- (1) \mathfrak{m} is a principal ideal, i.e. $\mathfrak{m} = \langle t \rangle$ for some $t \in \mathfrak{m}$ (such a t is called a uniformizing parameter);
- (2) if t is a uniformizing parameter, then every element $f \in A$ can be written as $f = at^n$ for $a \in A$ a unit and $n \in \mathbb{Z}^+$.

Remark. If t is a uniformizing parameter, then $\mathfrak{m}^n = \langle t^n \rangle$.

This remark can be proved by induction. It is obvious that $\langle t^n \rangle \subset \mathfrak{m}^n$. The opposite inclusion is true for n=0,1, assume $\langle t^{n-1} \rangle = \mathfrak{m}^{n-1}$ is true. Then every element in \mathfrak{m} can be written as sum of elements of the form $abt^n = at \cdot bt^{n-1}$ with $a,b \in A$, hence $\mathfrak{m}^n \subset \langle t^n \rangle$.

Exercise 1. Prove that for a curve C and a nonsingular point $p \in C$, $\mathcal{O}_{C,p}$ is a discrete valuation ring.

Proposition 1. (1) Let A be a ring, $I \subset A$ be an ideal, $\pi : A \to A/I$ be a projective map. Then the map

is injective.

(2) If A is a noetherian ring, $I \subset A$ is an ideal, then A/I is also noetherian.

Date: June 19, 2017.

(3) Let X be a variety, $p \in X$. Then $\mathcal{O}_{X,p}$ is noetherian.

Proof. (3) To show $\mathcal{O}_{X,p}$ is noetherian, as $\mathcal{O}_{X,p}$ only depends on a neighborhood of p, we can assume $X \subset \mathbb{A}^n$ is an affine variety. Then A(X) is noetherian. The map

is injective, hence $\mathcal{O}_{X,p}$ is noetherian.

 $Email\ address{:}\ {\tt wcghdpwyl@126.com}$