Introducción al Análisis Matemático Tema 2 Clase Práctica 2

Licenciatura en Matemática Curso 2022

Al estudiante:

Bienvenido a la primera Clase Práctica del segundo tema del curso *Introducción al Análisis Matemático*. Los siguientes ejercicios pueden ser abordados con los conocimientos adquiridos en la conferencia. ¡Éxitos!

Colectivo de la asignatura

EJERCICIOS

Ejercicio 1.

Halle el cociente incremental para las siguientes funciones en el punto indicado:

a)
$$y = 2x^3 - x^2 + 1$$
 en $x_0 = 1$.

b)
$$y = \frac{1}{x}$$
 en $x_0 = 2$.

Analice a qué se aproxima este cociente cuando el incremento se hace infinitamente pequeño.

Ejercicio 2.

Calcule las derivadas de las funciones siguientes e indique para que valores es válida la expresión obtenida:

a)
$$y = \frac{1 + \sqrt{x}}{1 + \sqrt{2x}}$$
.

b)
$$y = \operatorname{sen}(\frac{1}{x})$$
.

c)
$$y = \frac{1 - \sqrt[4]{2x}}{1 + \sqrt[3]{2x}}$$
.

d)
$$y = \sin \sqrt{1 + x^2}$$
.

e)
$$y = e^{\sin x}$$
.

f)
$$y = \arctan(x^5 - 3x^4)$$
.

g)
$$y = \ln(x + \sqrt{4 + x^2})$$
.

h)
$$y = \sqrt[3]{\ln\left(\operatorname{sen}\left(\frac{x+3}{4}\right)\right)}$$
.

i) $y = x \operatorname{sen}(x \arctan x)$.

Ejercicio 3.

Calcula las derivadas de las funciones hiperbólicas:

- a) $y = \operatorname{senh} x$.
- b) $y = \cosh x$.
- c) $y = \tanh x$.

y de sus inversas:

- d) y = arcsenhx.
- e) y = arccoshx.
- f) y = arctanhx.

Ejercicio 4.

Calcula aproximadamente el valor de:

$$\sqrt{\frac{2,037^2-3}{2,037^2+5}}$$

Ejercicio 5.

Un automóvil se desplaza sobre una recta de modo tal que su distancia s del punto inicial al cabo de t segundos es igual a:

$$s = \frac{t^4}{4} - 4t^3 + 16t^2$$

¿En qué momentos la velocidad instantánea fue igual a cero?

Ejercicio 6.

La relación entre las variables x y y viene dada en forma paramétrica por:

$$\begin{cases} x = 2t - 1 \\ y = t^3 \end{cases}$$

Halle $\frac{dy}{dx}$.

Ejercicio 7.

Demuestre que si $f: \mathbb{R} \to \mathbb{R}$ es una función diferenciable tal que f(1) = 0, entonces la recta tangente a la curva

$$x^4 - f^2(x) + \operatorname{sen}(xf(x)) + e^{f(x)} = 2$$

en el punto (1;0) es perpendicular a la recta y=2x.

Ejercicio 8.

Euler denotó a^x como $\exp_a x$. Halla la derivada de:

$$\exp_a\left[\exp_a\left[\exp_a\left[\exp_ax\right]\right]\right]$$

Ejercicio 9.

Halla las derivadas de:

- a) $f(x) = x^c$ donde c = a + ib.
- b) $f(x) = (1 + ix)^3$
- c) $f(x) = (x+i)^{-1}$

Ejercicio 10.

Demuestre que las siguientes funciones satisfacen la ecuación diferencial ordinaria correspondiente:

- a) $y = xe^{-x}$ satisface xy' = (1 x)y.
- b) $y = \frac{1}{2}x^2e^x$ satisface $y'' 2y' + y = e^x$.
- c) $y = c_1 e^{-x} + c_2 e^{-2x}$ satisface y'' + 3y' + 2y = 0 cualesquiera sean $c_1, c_2 \in \mathbb{R}$.

Ejercicio 11.

Si $f:\mathbb{R}\to\mathbb{R}$ es derivable, calcule la primera y segunda derivada de g en las situaciones siguientes:

- a) $g(x) = f(x^2)$.
- b) $g(x) = f(\sin^2 x) + f(\cos^2 x)$.
- c) g(x) = f(f(x)).
- d) $g(x) = f(x)e^{f(x)}$.
- e) $g(x) = \ln f(x^2 + 1)$.
- f) $g(x) = \ln^2 f(x^2 + 1)$.
- g) $g(x) = \cos f(x^2) + f^2(x) + 1$.

Ejercicio 12.

Si

$$g(t) = f(\operatorname{sen} t) + e^{f(t)+1}, \quad h(t) = \ln(2 + f(t)) + f(\ln(1+t))$$

donde f es una función real derivable que satisface f(0) = -1, f'(0) = 1, probar que g'(0) = h'(0).

Ejercicio 13.

La ecuación $x^3 + y^3 = 1$ define una ecuación implícita y = f(x).

a) Suponiendo que $\exists f',$ demuestra sin despejar y, que y' satisface la ecuación

$$x^2 + y^2 y' = 0.$$

b) Suponiendo que $\exists f''$, demuestre que siempre que $y'' \neq 0$, se verifica:

$$y'' = -2xy^{-2} - 2x^4y^{-5}.$$