HUNT N' GATHER

an eclectic online store

CUSTOMER SEGMENTATION K-MEANS ALGORITHM

Created by: Jenni Hawk, February 2023

OBJECTIVES

- Identify customer groups that haven't been uncovered by looking for signals in the data from a completely numeric perspective
- Utilize k-Means algorithm
 - Explore other algorithms as a next phase of work

WHY USE A CLUSTERING ALGORITHM?

Leverage advanced math and computational power

Identify new customer clusters and insights by looking for signals in the data from a completely numeric perspective

Ability to process more purchasing behaviors

Includes all customers, not just a small sample Strategies are implemented on the exact customer

Utilize k-Means algorithm as starting point Explore other algorithms as a next phase of work

PROCESS

01

Exploratory Data Analysis

02

Define Clusters

03

Next Step Strategies

AVAILABLE DATA

Rows

541,909 Invoice Line Items

8 Columns

- Invoice No
- Stock Code
- Product Description
- Customer ID
- CountryQuantity OrderedInvoice Date / Time
- Unit Price

Unique Values • 25,900

- 4,070
- 4,223
- 4,372
- 38 Countries / 91% transactions come from UK
- Range: 1 80,9952010 & 2011, Months 1-12
 - NA

0 536365 85123A WHITE HANGING HEART T-LIGHT HOLDE 1 536365 71053 WHITE METAL LANTER 2 536365 84406B CREAM CUPID HEARTS COAT HANGE		2010 12 01 00:20:00	2.55 3.39	17850.0 17850.0	
	1 6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom
2 536365 84406B CREAM CUPID HEARTS COAT HANGE					
	8	2010-12-01 08:26:00	2.75	17850.0	United Kingdom
3 536365 84029G KNITTED UNION FLAG HOT WATER BOTTL	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom
4 536365 84029E RED WOOLLY HOTTIE WHITE HEAR	. 6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom

FIRST LOOK EDA OBSERVATIONS

Finding	Approach
2010: Only December Data Exists	Don't use 2010 Data
2011: Data for all 12 months, Incomplete Data for December (Missing day 10-31)	Use all 2011 data
Country: 91% of transactions from UK	Focus on UK
Appears there's a business customer in addition to retail customer because there are customers with extraordinary large spending and qty purchase	Don't remove these as outliers

STRATEGIC CONSIDERATIONS FOR K-MEANS FEATURE ENGINEERING

- Don't create categorical variables
 - Not applicable to k-means not relevant to Euclidean distance
- Be mindful to not creating features that would somehow replicate data that was already in another feature to prevent false strong signal
- Stay away from binning the math as to not create bias

ENGINEER FEATURES BASED ON BUYING BEHAVIORS

	BUYING BEHAVIORS	Feature(s) to Engineer
WHO Business and Retail Customer	What role does quantity of purchased items play in clustering? What role does number of orders play in clustering?	Sum_Qty = sum of total qty of items purchased per customer Num_Orders = Count number of invoices per customer
HOW MUCH MONEY Are they spending	What role does annual spend play in the creation of clusters? Which segments, and corresponding behaviors, could be shifted based on spend level? What characteristics do segments have based on annual spend level?	Annual_Spend = Sales Sum by Customer
WHEN Are they spending	Does number of months they purchase provide us with insight? • For example, does a customer who purchases in 3 unique months cluster differently from a customer that purchases in 6 unique months? • If so, what other characteristics define these people?	Unique_ Month = Count of number of unique months a customer purchased
WHAT ITEMS / HOW OFTEN	Does the number of unique stock codes purchased play a role in clustering?	Num_Unique_Stock = Number of unique stock codes that a customer purchased

OPTIMAL NUMBER OF CLUSTERS

01

SILHOUETTE SCORING: TWO VS THREE CLUSTERS

Three Clusters don't work

Cluster isn't Dense

 Cluster 1 has tail going left which means it's closer to other cluster than its own cluster

Clusters are not as clearly distinguished

- Silhouette coefficient for 3 clusters: 0.6
- Compare to coefficient for 2 clusters at 0.9

Scoring Key:

Score = 1: Clusters well apart and clearly distinguished

Score = 0: Distance between clusters not significant

Score = -1 Clusters are assigned in the wrong way

SILHOUETTE SCORING: TWO CLUSTERS WIN

Given the data / features it was provided

Clusters are Dense

• Don't have tails pointing left

Clusters are clearly distinguished

- Silhouette coefficient for 2 clusters: 0.9
- Note: Due to low volume of observations in cluster 1 the plot isn't colorizing

Scoring Key:

Score = 1: Clusters well apart and clearly distinguished

Score = 0: Distance between clusters not significant

Score = -1 Clusters are assigned in the wrong way

DEFINE CLUSTERS

02

K-MEANS CLUSTER ASSIGNMENTS

Number of Customers	Cluster Assignment
3396	Cluster 0
13	Cluster 1

CLUSTERS VISUALIZED

Cluster 1 is only 1% of total customers, but it greatly outperforms Cluster 0 in annual spend, ordering frequency, volume of items purchased

CLUSTERS VISUALIZED

Cluster 1 orders a lot more unique items and they order more frequently

NAME CLUSTERS BASED ON ANALYSIS

Name	Number of Customers	Cluster Assignment
Core Customer	3396	Cluster 0
Business Customer	13	Cluster 1

WHAT CHARACTERIZES THE CLUSTERS?

Core Customer Characteristics Backbone of Business 99% of Customers	Business Customer Characteristics Tiny but Mighty 1% of Customers
SpendMin Annual Spend: \$43Max Annual Spend: \$7,918	Spend Min Annual Spend: \$3,408 Max Annual Spend: \$336,942
 Orders 75% of customers bought a quantity of items between 13 – 996 50% of customers bought between 1 – 39 unique stock codes 	Orders • 75% of customers bought a quantity of items between 28,750 – 162,000 • 50% of customers bought between 434 – 1603 unique stock codes
75% of customers had between 2 – 105 orders	75% of customers had between 348 – 7692 orders

STRATEGIES

03

STRATEGY NEXT STEPS

Core Customer

Backbone of Business

Business Customer

Tiny but Mighty

- Understand how this group can be furthered clustered when the business customer is removed from the dataset
- Mark these people in the database as business customers and develop specific marketing communications based on their very specific buying behaviors
- To attract others, in order to expand this business segment, conduct interviews with this audience to understand why they purchase at this scale and to identify how the company can further address their needs

DISCUSSION