Statistiques et probabilités Cours n°6

Guillaume Postic

Université Paris-Saclay, Univ. Evry Département informatique

Master 1 MIAGE - 2022/2023

Statistiques descriptives

Objectif : décrire, c'est-à-dire de résumer ou représenter, par des statistiques, les données disponibles quand elles sont nombreuses.

- Indicateurs de tendance centrale : moyenne, médiane
- Indicateurs de dispersion : variance, écart-type, IQR

Inférence statistique (1)

Ensemble des techniques permettant d'induire les caractéristiques d'un groupe général (la population) à partir de celles d'un groupe particulier (l'échantillon), en fournissant une mesure de la certitude de la prédiction : la probabilité d'erreur.

Inférence statistique (2)

Exemple : estimation de la moyenne et TLC

Plus *n* est grand, plus la dispersion autour de la moyenne (*i.e.* variance ou écart type) est petite.

Test statistique (1)

Un test, ou **test d'hypothèse**, est une procédure de décision entre deux hypothèses. Il s'agit d'une démarche consistant à **rejeter ou à ne pas rejeter** une hypothèse statistique, appelée hypothèse nulle, en fonction d'un échantillon de données.

 H_0 : hypothèse nulle

 H_1 : hypothèse alternative, complémentaire à H_0

Test statistique (2)

Objectifs

- Inférence : comparer des indicateurs mesurés sur un échantillon à ceux d'une distribution théorique (population)
- Comparer plusieurs groupes par des indicateurs mesurés sur des échantillons
- Prédiction (p. ex., régression)

Exemple: test Z

- But: comparer deux distributions par leurs moyennes
 - \circ Échantillon vs population (de paramètres μ_0 et σ)
- H_0 : les moyennes ne sont pas significativement différentes
- H₁: les moyennes sont différentes

À partir des données, on calcule la « statistique de test », ou « variable de décision » :

$$Z=rac{(ar{X}-\mu_0)}{\sigma}$$

Cette valeur du test s'interprète comme une différence standardisée entre les deux moyennes.

On reporte cette valeur sur la distribution représentant l'hypothèse nulle (H_0) : la distribution Z.

Régions de rejet (et non-rejet)

Test unilatéral droit

Test unilatéral gauche

Test bilatéral

Valeur p (*p-value*)

Plus on s'éloigne de 0, c'est à dire plus la différence entre les moyennes est grande, plus la **probabilité d'observer une différence au moins aussi grande** (quand on considère les moyennes comme étant égales, car on se place sous H_0) est faible.

Cette probabilité est la p-value. Plus elle est faible, plus on peut rejeter l'hypothèse H_0 , donc plus la différence entre les moyennes est significative. Sa valeur peut être calculée en intégrant la fonction de distribution.

Erreurs de types I et II

On compare la *p-value* à une valeur seuil : la **probabilité** α **de se tromper en rejetant** H_0 (**erreur de type I ou risque de première espèce**). Si $p < \alpha$, la différence entre les moyennes est significative (on rejette H_0).

Il est possible de calculer une **probabilité** β de se tromper en rejetant H_1 . Cela nécessite donc une seconde distribution représentant l'hypothèse alternative H_1 . La moyenne de cette seconde distribution sera arbitrairement définie. Enfin, la **puissance du test sera calculée par 1-\beta**.

Conditions d'application

Test de Student (1)

- But: comparer deux distributions par leurs moyennes
 - Échantillon vs population (de paramètres μ_0)
- H_0 : les moyennes ne sont pas significativement différentes
- H₁: les moyennes sont différentes

À partir des données, on calcule un **estimateur de** σ , puis la statistique de test :

$$t = rac{Z}{s} = rac{ar{X} - \mu}{\widehat{\sigma} / \sqrt{n}}$$

La variable de décision t suit une **loi de Student à n-1 degrés de liberté** sous H_0 (théorème de Cochran).

Test de Student (2)

df : degrees of freedom

N = Normal distribution NND = Non normal distribution

Tests non-paramétriques

- Un test paramétrique est un test pour lequel on fait une hypothèse paramétrique sur la loi des données sous H₀ (loi normale, loi de Poisson...). Les hypothèses du test concernent alors les paramètres de cette loi.
- Un test non-paramétrique est un test ne nécessitant pas d'hypothèse sur la loi des données.

