### Test Plot 1#: GSM 850\_Head Left Cheek\_Middle Channel

### **DUT:** Mobile phone; Type: G195; Serial: 17061500520;

Communication System: Generic GSM; Frequency: 836.6 MHz; Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz;  $\sigma$  = 0.88 S/m;  $\epsilon$ r = 42.672;  $\rho$  = 1000 kg/m³; Phantom section: Left Section

# DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(10.22, 10.22, 10.22); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: SAM1; Type: QD000P40CC; Serial: TP:1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (51x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.695 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.626 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.746 W/kg

SAR(1 g) = 0.565 W/kg; SAR(10 g) = 0.398 W/kg

Maximum value of SAR (measured) = 0.688 W/kg



0 dB = 0.688 W/kg = -1.62 dBW/kg

### Test Plot 2#: GSM 850\_Head Left Tilt\_Middle Channel

### **DUT:** Mobile phone; Type: G195; Serial: 17061500520;

Communication System: Generic GSM; Frequency: 836.6 MHz; Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz;  $\sigma$  = 0.88 S/m;  $\epsilon$ r = 42.672;  $\rho$  = 1000 kg/m³; Phantom section: Left Section

# DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(10.22, 10.22, 10.22); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: SAM1; Type: QD000P40CC; Serial: TP:1412
- Measurement SW: DASY52, Version 52.8 (8);

**Area Scan (51x91x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.311 W/kg

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.438 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.338 W/kg

SAR(1 g) = 0.249 W/kg; SAR(10 g) = 0.180 W/kg

Maximum value of SAR (measured) = 0.309 W/kg



0 dB = 0.309 W/kg = -5.10 dBW/kg

### Test Plot 3#: GSM 850\_Head Right Cheek\_Middle Channel

### **DUT:** Mobile phone; Type: G195; Serial: 17061500520;

Communication System: Generic GSM; Frequency: 836.6 MHz; Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz;  $\sigma$  = 0.88 S/m;  $\epsilon$ r = 42.672;  $\rho$  = 1000 kg/m³; Phantom section: Right Section

# DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(10.22, 10.22, 10.22); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: SAM1; Type: QD000P40CC; Serial: TP:1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (51x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.717 W/kg

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.715 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 0.755 W/kg

SAR(1 g) = 0.569 W/kg; SAR(10 g) = 0.393 W/kg

Maximum value of SAR (measured) = 0.692 W/kg



### Test Plot 4#: GSM 850\_Head Right Tilt\_Middle Channel

### **DUT:** Mobile phone; Type: G195; Serial: 17061500520;

Communication System: Generic GSM; Frequency: 836.6 MHz; Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz;  $\sigma$  = 0.88 S/m;  $\epsilon$ r = 42.672;  $\rho$  = 1000 kg/m³; Phantom section: Right Section

# DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(10.22, 10.22, 10.22); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: SAM1; Type: QD000P40CC; Serial: TP:1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (51x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.310 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.730 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.333 W/kg

SAR(1 g) = 0.255 W/kg; SAR(10 g) = 0.184 W/kg

Maximum value of SAR (measured) = 0.310 W/kg



### Test Plot 5#: GSM 850\_Body Worn Back\_Middle Channel

### **DUT:** Mobile phone; Type: G195; Serial: 17061500520;

Communication System: Generic GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz;  $\sigma$  = 0.959 S/m;  $\epsilon r$  = 57.299;  $\rho$  = 1000 kg/m³; Phantom section: Right Section

# DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.85, 9.85, 9.85); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (51x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.671 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.02 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.774 W/kg

SAR(1 g) = 0.553 W/kg; SAR(10 g) = 0.378 W/kg

Maximum value of SAR (measured) = 0.701 W/kg



0 dB = 0.701 W/kg = -1.54 dBW/kg

### Test Plot 6#: GSM 850\_Body Back\_Low Channel

### **DUT:** Mobile phone; Type: G195; Serial: 17061500520;

Communication System: Generic GPRS-2 slots; Frequency: 824.2 MHz;Duty Cycle: 1:4 Medium parameters used: f = 824.2 MHz;  $\sigma = 0.946$  S/m;  $\epsilon r = 56.827$ ;  $\rho = 1000$  kg/m<sup>3</sup>; Phantom section: Right Section

# DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.85, 9.85, 9.85); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

**Area Scan (51x91x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.06 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 30.35 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.22 W/kg

SAR(1 g) = 0.841 W/kg; SAR(10 g) = 0.574 W/kg

Maximum value of SAR (measured) = 1.07 W/kg



### Test Plot 7#: GSM 850\_Body Back\_Middle Channel

### **DUT:** Mobile phone; Type: G195; Serial: 17061500520;

Communication System: Generic GPRS-2 slots; Frequency: 836.6 MHz;Duty Cycle: 1:4 Medium parameters used: f = 836.6 MHz;  $\sigma = 0.959$  S/m;  $\epsilon r = 57.299$ ;  $\rho = 1000$  kg/m<sup>3</sup>; Phantom section: Right Section

# DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.85, 9.85, 9.85); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

**Area Scan (51x91x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.987 W/kg

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.99 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 1.11 W/kg

SAR(1 g) = 0.769 W/kg; SAR(10 g) = 0.524 W/kg

Maximum value of SAR (measured) = 0.981 W/kg



### Test Plot 8#: GSM 850\_Body Back\_High Channel

### **DUT:** Mobile phone; Type: G195; Serial: 17061500520;

Communication System: Generic GPRS-2 slots; Frequency: 848.8 MHz;Duty Cycle: 1:4 Medium parameters used: f = 848.8 MHz;  $\sigma = 0.955$  S/m;  $\epsilon_r = 57.206$ ;  $\rho = 1000$  kg/m<sup>3</sup>; Phantom section: Right Section

# DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(9.85, 9.85, 9.85); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

**Area Scan (51x91x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.792 W/kg

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.16 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.886 W/kg

SAR(1 g) = 0.627 W/kg; SAR(10 g) = 0.427 W/kg

Maximum value of SAR (measured) = 0.798 W/kg



### Test Plot 9#: GSM 1900\_Head Left Cheek\_Middle Channel

### **DUT:** Mobile phone; Type: G195; Serial: 17061500520;

Communication System: Generic GSM; Frequency: 1880 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz;  $\sigma$  = 1.361 S/m;  $\epsilon$ r = 41.209;  $\rho$  = 1000 kg/m³; Phantom section: Left Section

# DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(8.48, 8.48, 8.48); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: SAM1; Type: QD000P40CC; Serial: TP:1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (51x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.333 W/kg

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.362 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.393 W/kg

SAR(1 g) = 0.256 W/kg; SAR(10 g) = 0.165 W/kg

Maximum value of SAR (measured) = 0.322 W/kg



0 dB = 0.322 W/kg = -4.92 dBW/kg

### Test Plot 10#: GSM 1900\_Head Left Tilt\_Middle Channel

### **DUT:** Mobile phone; Type: G195; Serial: 17061500520;

Communication System: Generic GSM; Frequency: 1880 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz;  $\sigma$  = 1.361 S/m;  $\epsilon$ r = 41.209;  $\rho$  = 1000 kg/m³; Phantom section: Left Section

# DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(8.48, 8.48, 8.48); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: SAM1; Type: QD000P40CC; Serial: TP:1412
- Measurement SW: DASY52, Version 52.8 (8);

**Area Scan (51x91x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0935 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.486 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.104 W/kg

SAR(1 g) = 0.075 W/kg; SAR(10 g) = 0.055 W/kg

Maximum value of SAR (measured) = 0.0945 W/kg



0 dB = 0.0945 W/kg = -10.25 dBW/kg

### Test Plot 11#: GSM 1900\_Head Right Cheek\_Middle Channel

### **DUT:** Mobile phone; Type: G195; Serial: 17061500520;

Communication System: Generic GSM; Frequency: 1880 MHz; Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz;  $\sigma$  = 1.361 S/m;  $\epsilon$ r = 41.209;  $\rho$  = 1000 kg/m³; Phantom section: Right Section

# DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(8.48, 8.48, 8.48); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: SAM1; Type: QD000P40CC; Serial: TP:1412
- Measurement SW: DASY52, Version 52.8 (8);

**Area Scan (51x91x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.433 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.123 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.508 W/kg

SAR(1 g) = 0.307 W/kg; SAR(10 g) = 0.190 W/kg

Maximum value of SAR (measured) = 0.422 W/kg



### Test Plot 12#: GSM 1900\_Head Right Tilt\_Middle Channel

### **DUT:** Mobile phone; Type: G195; Serial: 17061500520;

Communication System: Generic GSM; Frequency: 1880 MHz; Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz;  $\sigma$  = 1.361 S/m;  $\epsilon$ r = 41.209;  $\rho$  = 1000 kg/m³; Phantom section: Right Section

# DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(8.48, 8.48, 8.48); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: SAM1; Type: QD000P40CC; Serial: TP:1412
- Measurement SW: DASY52, Version 52.8 (8);

**Area Scan (51x91x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.101 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.054 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.113 W/kg

SAR(1 g) = 0.077 W/kg; SAR(10 g) = 0.054 W/kg

Maximum value of SAR (measured) = 0.0981 W/kg



0 dB = 0.0981 W/kg = -10.08 dBW/kg

### Test Plot 13#: GSM 1900\_Body Worn Back\_Low Channel

### **DUT:** Mobile phone; Type: G195; Serial: 17061500520;

Communication System: Generic GSM; Frequency: 1850.2 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1850.2 MHz;  $\sigma$  = 1.463 S/m;  $\epsilon_r$  = 55.061;  $\rho$  = 1000 kg/m³; Phantom section: Left Section

# DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.95, 7.95, 7.95); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (51x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.37 W/kg

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.88 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.52 W/kg

SAR(1 g) = 0.736 W/kg; SAR(10 g) = 0.358 W/kg

Maximum value of SAR (measured) = 1.18 W/kg



0 dB = 1.18 W/kg = 0.72 dBW/kg

### Test Plot 14#: GSM 1900\_Body Worn Back\_Middle Channel

### **DUT:** Mobile phone; Type: G195; Serial: 17061500520;

Communication System: Generic GSM; Frequency: 1880 MHz; Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz;  $\sigma$  = 1.489 S/m;  $\epsilon$ r = 54.521;  $\rho$  = 1000 kg/m³; Phantom section: Left Section

# DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.95, 7.95, 7.95); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

**Area Scan (51x91x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.48 W/kg

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.19 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 1.56 W/kg

SAR(1 g) = 0.759 W/kg; SAR(10 g) = 0.380 W/kg

Maximum value of SAR (measured) = 1.25 W/kg



0 dB = 1.25 W/kg = 0.97 dBW/kg

### Test Plot 15#: GSM 1900\_Body Worn Back\_High Channel

### **DUT:** Mobile phone; Type: G195; Serial: 17061500520;

Communication System: Generic GSM; Frequency: 1909.8 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1909.8 MHz;  $\sigma$  = 1.518 S/m;  $\epsilon_r$  = 54.585;  $\rho$  = 1000 kg/m³; Phantom section: Left Section

# DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.95, 7.95, 7.95); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (51x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.33 W/kg

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.42 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.50 W/kg

SAR(1 g) = 0.820 W/kg; SAR(10 g) = 0.440 W/kg

Maximum value of SAR (measured) = 1.21 W/kg



### Test Plot 16#: GSM 1900\_Body Back\_Middle Channel

### **DUT:** Mobile phone; Type: G195; Serial: 17061500520;

Communication System: Generic GPRS-2 slots; Frequency: 1880 MHz;Duty Cycle: 1:4 Medium parameters used: f = 1880 MHz;  $\sigma = 1.489$  S/m;  $\epsilon r = 54.521$ ;  $\rho = 1000$  kg/m<sup>3</sup>; Phantom section: Left Section

# DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(7.95, 7.95, 7.95); Calibrated: 2016/11/15;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn379; Calibrated: 2016/10/4
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (51x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.25 W/kg

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.14 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 1.42 W/kg

SAR(1 g) = 0.743 W/kg; SAR(10 g) = 0.392 W/kg

Maximum value of SAR (measured) = 1.16 W/kg



0 dB = 1.16 W/kg = 0.64 dBW/kg