# **Neural Network and Deep Learning**



**Perceptron Learning** 

# Outline

- Learning rule
- Perceptron Learning Rule
- Perceptron Learning Algorithm

Learning rule

# Learning rule

- Neural networks learn by mimicking the human brain's learning process, which is capable of adapting and changing behavior in response to environmental stimuli.
- Neural networks learning rules can be defined as the algorithm called Learning
   Algorithm.

# Perceptron Learning Rule

# Perceptron





# Perceptron



# Perceptron Learning Rule

- Frank Rosenblatt published the first concept of the perceptron learning rule based on the McCulloch-Pitts neuron model in 1957
- In the perceptron learning rule, weight adjustments are made through iterative operations.
- According to convergence theory, every round, the weights of the perceptron must be adjusted to the proper weights; that is, the adjusted weights should produce an output that is as close to the actual value as possible.

# Perceptron Learning Rule

ullet In Perceptron Learning, when the learning rate  $\eta$  is defined, the weights are adjusted as

$$w_i(t+1) = w_i(t) + \eta(y - \hat{y})x_i$$

- where  $0 < \eta \le 1$
- According to convergence theory, if the input vector and target values can be
  linearly separated, then when using the perceptron learning algorithm, the
  weights should be obtained within a finite number of rounds.

Perceptron Learning Algorithm

# Perceptron





bias

# Perceptron Learning Algorithm

### Step 1:

- Initially, random the weights with small value
- ullet Define the value of **learning rate**  $\,\eta=(0,1]$
- Define the stopping criteria i.e. number of round

### Step 2:

- Check the stopping criteria
  - If meet the criteria, then stop
  - If far from the criteria, go to step 3

# Perceptron Learning Algorithm

### Step 3: Train model

- For each data point (x)
  - Step 3.1: Calculate sum-of-product between input and weight

$$u = w_0 + \sum_{i=1}^n w_i x_i$$

**Step 3.2:** Calculate the **output** of model 
$$\hat{y} = \begin{cases} 1; & u > the shold \\ 0 & or -1; & u \leq the shold \end{cases}$$

**Step 3.3: Update Weights** 

$$w_i(t+1) = w_i(t) + \eta(y-\hat{y})x_i$$

### Step 4:

Go to step 2

# Perceptron Learning Computation

Weights adjustment when emulate the behavior of logic gate.

| x <sub>1</sub> | $\mathbf{x}_2$ | у  |  |
|----------------|----------------|----|--|
| 1              | 1              | 1  |  |
| 1              | -1             | -1 |  |
| -1             | 1              | -1 |  |
| -1             | -1             | -1 |  |



| x <sub>1</sub> | X <sub>2</sub> | у  |  |
|----------------|----------------|----|--|
| 1              | 1              | 1  |  |
| 1              | -1             | -1 |  |
| -1             | 1              | -1 |  |
| -1             | -1             | -1 |  |

### Step 1:

• Initially, set the initial weights  $w_0=0, w_1=0, w_2=0$ 

- Define the value of learning rate  $\eta = 1$
- Define the threshold value = 0

$$\hat{y} = egin{cases} 1; & u > 0 \ -1; & u \leq 0 \end{cases}$$

- Define the stopping criteria
  - number of round = 1

|                       |                       |   | Step 3.1                                                                                                        | Step 3.2                                                          |                | Step 3.3             |                  |
|-----------------------|-----------------------|---|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------|----------------------|------------------|
|                       |                       |   | n                                                                                                               |                                                                   | $w_i(t+1)$     | $1) = w_i(t) + \eta$ | $(y-\hat{y})x_i$ |
| <b>x</b> <sub>1</sub> | <b>x</b> <sub>2</sub> | у | $u = w_0 + \sum_{i=1}^{n} w_i x_i$                                                                              | $\hat{y} = \begin{cases} 1; & u > 0 \\ -1; & u \le 0 \end{cases}$ | $\mathbf{w}_0$ | w <sub>1</sub>       | w <sub>2</sub>   |
| 1                     | 1                     | 1 | $egin{array}{ccc} w_0 & w_1 & w_2 \ {\color{red}0} + ({\color{red}0}^* \ ) + ({\color{red}0}^* \ ) \end{array}$ |                                                                   |                |                      |                  |

|                       |                       |   | <b>Step 3.1</b>                              | Step 3.2                                                   |            | <b>Step 3.3</b>                     |                                                               |
|-----------------------|-----------------------|---|----------------------------------------------|------------------------------------------------------------|------------|-------------------------------------|---------------------------------------------------------------|
| <b>x</b> <sub>1</sub> | <b>X</b> <sub>2</sub> | у | $u = w_0 + \sum_{i=1}^n w_i x_i$             | $\hat{y}=egin{cases} 1; & u>0 \ -1; & u\leq 0 \end{cases}$ | $w_i(t+1)$ | $1) = w_i(t) + \eta$ $\mathbf{w}_1$ | $egin{pmatrix} (y-\hat{y})x_i \ \mathbf{w}_2 \ \end{pmatrix}$ |
|                       |                       | 1 | $w_0  w_1  w_2$<br>$0 + (0^*1) + (0^*1) = 0$ |                                                            |            |                                     |                                                               |

|                       |                |   | Step 3.1                           | Step 3.2                                                          |                | <b>Step 3.3</b>      |                  |
|-----------------------|----------------|---|------------------------------------|-------------------------------------------------------------------|----------------|----------------------|------------------|
|                       |                |   | n                                  | (1,)                                                              | $w_i(t+1)$     | $1) = w_i(t) + \eta$ | $(y-\hat{y})x_i$ |
| <b>x</b> <sub>1</sub> | x <sub>2</sub> | у | $u = w_0 + \sum_{i=1}^{N} w_i x_i$ | $\hat{y} = \begin{cases} 1; & u > 0 \\ -1; & u \le 0 \end{cases}$ | $\mathbf{w}_0$ | w <sub>1</sub>       | w <sub>2</sub>   |
| 1                     | 1              | 1 | $0 + (0*1) + (0*1) \neq 0$         | -1                                                                |                |                      |                  |

|                       |                |   | <b>Step 3.1</b>                    | Step 3.2                                                        |                                 | <b>Step 3.3</b>                 |                                 |
|-----------------------|----------------|---|------------------------------------|-----------------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|
|                       |                |   | n                                  |                                                                 | $w_i(t+1)$                      | $1) = w_i(t) + \eta$            | $(y-\hat{y})x_i$                |
| <b>x</b> <sub>1</sub> | x <sub>2</sub> | У | $u = w_0 + \sum_{i=1}^{n} w_i x_i$ | $\hat{y} = egin{cases} 1; & u > 0 \ -1; & u \leq 0 \end{cases}$ | $\mathbf{w}_0$                  | $\mathbf{w}_{1}$                | w <sub>2</sub>                  |
| 1                     | 1              | 1 | 0 + (0*1) + (0*1) = 0              | -1                                                              | $w_i(t) + \eta(y - \hat{y})x_i$ | $w_i(t) + \eta(y - \hat{y})x_i$ | $w_i(t) + \eta(y - \hat{y})x_i$ |

| K                     | Juliu          | ( 1 1 | Step 3.1                         | Step 3.2 | Step 3.3                               |                      |                  |  |  |
|-----------------------|----------------|-------|----------------------------------|----------|----------------------------------------|----------------------|------------------|--|--|
|                       | X <sub>2</sub> |       | $u = w_0 + \sum_{i=1}^n w_i x_i$ | •        | · ·                                    | $1) = w_i(t) + \eta$ | $(y-\hat{y})x_i$ |  |  |
| <b>x</b> <sub>1</sub> |                | У     |                                  |          | $\mathbf{w}_0$                         | w <sub>1</sub>       | $\mathbf{w}_2$   |  |  |
| 1                     | 1              |       | $0 + (0^*1) + (0^*1) = 0$        | (-1)     | $ \frac{\eta}{0 + 1^* (1 - (-1)) *1} $ | η<br>0+1*(1-(-1))*1  | $\eta$           |  |  |
|                       |                |       |                                  | 1        |                                        |                      |                  |  |  |

|                       |                       |   | <b>Step 3.1</b>                | Step 3.2                                                        | <b>Step 3.3</b>                     |                                     |                                     |
|-----------------------|-----------------------|---|--------------------------------|-----------------------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
|                       |                       |   | n                              | (1. 4 > 0                                                       | $w_i(t+1)$                          | $1) = w_i(t) + \eta$                | $(y-\hat{y})x_i$                    |
| <b>x</b> <sub>1</sub> | <b>x</b> <sub>2</sub> | У | $u = w_0 + \sum_{i=1} w_i x_i$ | $\hat{y} = egin{cases} z, & u > 0 \ -1; & u \leq 0 \end{cases}$ | $W_0$                               | $\mathbf{w}_1$                      | w <sub>2</sub>                      |
|                       |                       | 1 | $0 + (0^*1) + (0^*1) = 0$      | -1                                                              | <b>0</b> + 1* (1 - (-1)) * <b>1</b> | <b>0</b> + 1* (1 - (-1)) * <b>1</b> | <b>0</b> + 1* (1 - (-1)) * <b>1</b> |

|                       |                |   | Step 3.1                                | Step 3.2                                                        |                                    | Step 3.3                           |                                    |
|-----------------------|----------------|---|-----------------------------------------|-----------------------------------------------------------------|------------------------------------|------------------------------------|------------------------------------|
|                       |                |   | n                                       |                                                                 | $w_i(t+1)$                         | $1) = w_i(t) + \eta$               | $(y-\hat{y})x_i$                   |
| <b>x</b> <sub>1</sub> | x <sub>2</sub> | у | $u = w_0 + \sum_{i=1}^{\infty} w_i x_i$ | $\hat{y} = egin{cases} 1; & u > 0 \ -1; & u \leq 0 \end{cases}$ | $\mathbf{w}_0$                     | $\mathbf{w}_{1}$                   | w <sub>2</sub>                     |
| 1                     | 1              | 1 | $0 + (0^*1) + (0^*1) = 0$               | -1                                                              | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> |

|                       |                       |    | <b>Step 3.1</b>                         | Step 3.2                                                        |                         | Step 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |
|-----------------------|-----------------------|----|-----------------------------------------|-----------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|                       |                       |    | n                                       |                                                                 | $w_i(t+1)$              | $1) = w_i(t) + \eta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $(y-\hat{y})x_i$        |
| <b>x</b> <sub>1</sub> | <b>x</b> <sub>2</sub> | У  | $u = w_0 + \sum_{i=1}^{\infty} w_i x_i$ | $\hat{y} = egin{cases} 1; & u > 0 \ -1; & u \leq 0 \end{cases}$ | $\mathbf{w}_0$          | $\mathbf{w}_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\mathbf{w}_2$          |
|                       |                       |    | <i>t</i> —1                             |                                                                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| 1                     | 1                     | 1  | $0 + (0^*1) + (0^*1) = 0$               | -1                                                              | $0+1*(1-(-1))*1 \neq 2$ | $0+1*(1-(-1))*1 \neq 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0+1*(1-(-1))*1 \neq 2$ |
|                       |                       |    | $w_0$ $w_1$ $w_2$                       |                                                                 | /                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /                       |
| 1                     | -1                    | -1 | 2 + (2* ) + (2* )                       |                                                                 |                         | and the second s |                         |

|                       |                |    | <b>Step 3.1</b>                              | Step 3.2                                                        |                                          | <b>Step 3.3</b>                    |                            |
|-----------------------|----------------|----|----------------------------------------------|-----------------------------------------------------------------|------------------------------------------|------------------------------------|----------------------------|
|                       |                |    | n                                            |                                                                 | $w_i(t+1) = w_i(t) + \eta(y-\hat{y})x_i$ |                                    |                            |
| <b>x</b> <sub>1</sub> | x <sub>2</sub> | У  | $u = w_0 + \sum_{i=1}^{n} w_i x_i$           | $\hat{y} = egin{cases} 1; & u > 0 \ -1; & u \leq 0 \end{cases}$ | $\mathbf{w}_0$                           | $\mathbf{w}_1$                     | $\mathbf{w}_{2}$           |
|                       |                |    | t-1                                          |                                                                 |                                          |                                    |                            |
| 1                     | 1              | 1  | $0 + (0^*1) + (0^*1) = 0$                    | -1                                                              | <b>0</b> + 1*(1-(-1))*1 = <b>2</b>       | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> | $0 + 1^*(1 - (-1))^*1 = 2$ |
|                       | (-1)           | -1 | $w_0$ $w_1$ $w_2$ $2 + (2^*1) + (2^*-1) = 2$ |                                                                 |                                          |                                    |                            |

|                       |                       |    | <b>Step 3.1</b>                                                           | Step 3.2                                                                           |                                    | <b>Step 3.3</b>            |                            |
|-----------------------|-----------------------|----|---------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------|----------------------------|----------------------------|
|                       |                       |    | n                                                                         |                                                                                    | $w_i(t+1)$                         | $1) = w_i(t) + \eta$       | $(y-\hat{y})x_i$           |
| <b>X</b> <sub>1</sub> | <b>x</b> <sub>2</sub> | у  | $u = w_0 + \sum_{i=1}^{n} w_i x_i$                                        | $\hat{y} = \left\{ egin{array}{ll} 1; & u > 0 \ -1; & u \leq 0 \end{array}  ight.$ | $\mathbf{w}_0$                     | $\mathbf{w}_{1}$           | w <sub>2</sub>             |
| 1                     | 1                     | 1  | $0 + (0^*1) + (0^*1) = 0$                                                 | \-1                                                                                | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> | $0 + 1^*(1 - (-1))^*1 = 2$ | $0 + 1^*(1 - (-1))^*1 = 2$ |
| 1                     | -1                    | -1 | $\frac{2}{2} + (\frac{2}{2} + 1) + (\frac{2}{2} + 1) + (\frac{2}{2} + 1)$ | ,<br>↓<br>1                                                                        |                                    |                            |                            |

|                       |                       |    | <b>Step 3.1</b>                                                    | Step 3.2                                                        |                                 | <b>Step 3.3</b>                 |                                    |
|-----------------------|-----------------------|----|--------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------|---------------------------------|------------------------------------|
|                       |                       |    | n                                                                  | (1: u > 0)                                                      | $w_i(t+1)$                      | $1) = w_i(t) + \eta$            | $(y-\hat{y})x_i$                   |
| <b>x</b> <sub>1</sub> | <b>x</b> <sub>2</sub> | у  | $u = w_0 + \sum_{i=1} w_i x_i$                                     | $\hat{y} = egin{cases} 1, & u > 0 \ -1; & u \leq 0 \end{cases}$ | $\mathbf{w}_0$                  | w <sub>1</sub>                  | w <sub>2</sub>                     |
| 1                     | 1                     | 1  | $0 + (0^*1) + (0^*1) = 0$                                          | -1                                                              | $0 + 1^*(1 - (-1))^*1 = 2$      | $0 + 1^*(1 - (-1))^*1 = 2$      | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> |
| 1                     | -1                    | -1 | $\frac{2}{2} + (\frac{2}{2} \cdot 1) + (\frac{2}{2} \cdot -1) = 2$ | 1                                                               | $w_i(t) + \eta(y - \hat{y})x_i$ | $w_i(t) + \eta(y - \hat{y})x_i$ | $w_i(t) + \eta(y - \hat{y})x_i$    |

|                       |                | • | Step 3.1                                                           | Step 3.2                                                        |                                  | <b>Step 3.3</b>                    |                             |
|-----------------------|----------------|---|--------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------|------------------------------------|-----------------------------|
|                       |                |   | n                                                                  |                                                                 | $w_i(t+1)$                       | $1) = w_i(t) + \eta$               | $(y-\hat{y})x_i$            |
| <b>x</b> <sub>1</sub> | x <sub>2</sub> | у | $u = w_0 + \sum_{i=1}^{\infty} w_i x_i$                            | $\hat{y} = egin{cases} 1; & u > 0 \ -1; & u \leq 0 \end{cases}$ | $\mathbf{w}_0$                   | w <sub>1</sub>                     | w <sub>2</sub>              |
| 1                     | 1              | 1 | $0 + (0^*1) + (0^*1) = 0$                                          | -1                                                              | $0 + 1^*(1 - (-1))^*1 = 2$       | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> | $0 + 1^*(1 - (-1))^* 1 = 2$ |
| 1                     | -1             |   | $\frac{2}{2} + (\frac{2}{2} \cdot 1) + (\frac{2}{2} \cdot -1) = 2$ |                                                                 | $\eta$ <b>2</b> + 1* (-1 - 1) *1 | η <b>2</b> + 1* (-1 · 1) *1        | η<br>2+ 1* (-1 - 1) *-1     |
|                       |                | 1 |                                                                    | \                                                               | 1 1                              | / /                                | 1/1/                        |

|                       |                       |    | <b>Step 3.1</b>                                                    | Step 3.2                                                        |                                    | <b>Step 3.3</b>                    |                                    |
|-----------------------|-----------------------|----|--------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------|------------------------------------|------------------------------------|
|                       |                       |    | n                                                                  |                                                                 | $w_i(t+1)$                         | $1) = w_i(t) + \eta$               | $(y-\hat{y})x_i$                   |
| <b>x</b> <sub>1</sub> | <b>x</b> <sub>2</sub> | у  | $u = w_0 + \sum_{i=1} w_i x_i$                                     | $\hat{y} = egin{cases} 1; & u > 0 \ -1; & u \leq 0 \end{cases}$ | $\mathbf{w}_0$                     | w <sub>1</sub>                     | w <sub>2</sub>                     |
| 1                     | 1                     | 1  | $0 + (0^*1) + (0^*1) = 0$                                          | -1                                                              | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> | $0 + 1^*(1 - (-1))^*1 = 2$         |
|                       | (-1)                  | -1 | $\frac{2}{2} + (\frac{2}{2} \cdot 1) + (\frac{2}{2} \cdot -1) = 2$ | 1                                                               | Bias<br>2+1*(-1-1)*1               | <b>2</b> +1*(-1-1)* <b>1</b>       | <b>2</b> + 1* (-1 - 1) * <b>-1</b> |

Stan 31

### Round 1(Train model)

|                       |                       |    | Step 3.1                           | Step 3.2                                                        |                                    | Step 3.3                   |                                    |
|-----------------------|-----------------------|----|------------------------------------|-----------------------------------------------------------------|------------------------------------|----------------------------|------------------------------------|
|                       |                       |    | n                                  |                                                                 | $w_i(t+1)$                         | $1) = w_i(t) + \eta$       | $(y-\hat{y})x_i$                   |
| <b>x</b> <sub>1</sub> | <b>x</b> <sub>2</sub> | у  | $u = w_0 + \sum_{i=1}^{n} w_i x_i$ | $\hat{y} = egin{cases} 1; & u > 0 \ -1; & u \leq 0 \end{cases}$ | $\mathbf{w}_0$                     | $\mathbf{w}_{1}$           | $W_2$                              |
|                       |                       |    | <i>t</i> —1                        |                                                                 |                                    |                            |                                    |
| 1                     | 1                     | 1  | $0 + (0^*1) + (0^*1) = 0$          | -1                                                              | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> | $0 + 1^*(1 - (-1))^*1 = 2$ | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> |
| 1                     | -1                    | -1 | $2 + (2^*1) + (2^*-1) = 2$         | 1                                                               | <b>2</b> + 1*(-1-1)*1 = <b>0</b>   | 2+1*(-1-1)*1=0             | <b>2</b> + 1*(-1-1)*-1 = <b>4</b>  |

Stan 33

Stan 3.2

|                       |                | •  | Step 3.1                                           | Step 3.2                                                   |                                     | <b>Step 3.3</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|-----------------------|----------------|----|----------------------------------------------------|------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| <b>x</b> <sub>1</sub> | X <sub>2</sub> | у  | $u = w_0 + \sum_{i=1}^n w_i x_i$                   | $\hat{y}=egin{cases} 1; & u>0 \ -1; & u\leq 0 \end{cases}$ | $w_i(t+1)$                          | $\mathbf{u}_{1}(t) = w_{i}(t) + \eta$ $\mathbf{w}_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $(y-\hat{y})x_i$ $\mathbf{w}_{\mathbf{z}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 1                     | 1              | 1  | $0 + (0^*1) + (0^*1) = 0$                          | -1                                                         | <b>0</b> + 1*(1-(-1))*1 = <b>2</b>  | <b>0</b> + 1*(1-(-1))*1 = <b>2</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>0</b> + 1*(1-(-1))*1 = <b>2</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| 1                     | -1             | -1 | $2 + (2^*1) + (2^*-1) = 2$                         | 1                                                          | <b>2</b> + 1*(-1-1)*1 ±( <b>0</b> ) | <b>2</b> + 1*(-1-1)*1 ± (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>2</b> + 1*(-1-1)*-1 ± (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| -1                    | 1              | -1 | $egin{array}{cccccccccccccccccccccccccccccccccccc$ |                                                            |                                     | and the second s | and the second s |  |  |  |
|                       |                |    |                                                    |                                                            |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |

|                |       |       | <b>Step 3.1</b>                           | Step 3.2                                                        |                                                          | <b>Step 3.3</b>                             |                                    |
|----------------|-------|-------|-------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------|------------------------------------|
| X <sub>1</sub> | $X_2$ | у     | $u = w_0 + \sum_{i=1}^{n} w_i x_i$        | $\hat{y} = \begin{cases} 1; & u > 0 \\ -1; & u < 0 \end{cases}$ | $\begin{bmatrix} w_i(t+1) \\ \mathbf{w}_0 \end{bmatrix}$ | $\mathbf{w}_{i}(t) + \eta$ $\mathbf{w}_{1}$ | $(y-\hat{y})x_i$ $\mathbf{w}_2$    |
| 1              | 2     |       | i=1                                       | ( 2,                                                            | U                                                        | 1                                           | 2                                  |
| 1              | 1     | 1     | $0 + (0^*1) + (0^*1) = 0$                 | -1                                                              | <b>0</b> + 1*(1-(-1))*1 = <b>2</b>                       | $0 + 1^*(1 - (-1))^*1 = 2$                  | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> |
| 1              | -1    | -1    | $2 + (2^*1) + (2^*-1) = 2$                | 1                                                               | <b>2</b> + 1*(-1-1)*1 = <b>0</b>                         | 2+1*(-1-1)*1=0                              | <b>2</b> + 1*(-1-1)*-1 = <b>4</b>  |
|                |       | -1    | $w_0$ $w_1$ $w_2$ $0 + (0*1) + (4*1) = 4$ |                                                                 |                                                          |                                             |                                    |
|                |       | 22222 |                                           |                                                                 |                                                          |                                             |                                    |

### Round 1(Train model)

|                       |                |    | Step 3.1                         | Step 3.2                                                   |                                    | Step 3.3                                            |                                    |
|-----------------------|----------------|----|----------------------------------|------------------------------------------------------------|------------------------------------|-----------------------------------------------------|------------------------------------|
| <b>x</b> <sub>1</sub> | x <sub>2</sub> | у  | $u = w_0 + \sum_{i=1}^n w_i x_i$ | $\hat{y}=egin{cases} 1; & u>0 \ -1; & u\leq 0 \end{cases}$ | $\mathbf{w}_{i}(t+1)$              | $\mathbf{w}_{1} = w_{i}(t) + \eta$ $\mathbf{w}_{1}$ | $(y - \hat{y})x_i$ $\mathbf{w}_2$  |
| 1                     | 1              | 1  | $0 + (0^*1) + (0^*1) = 0$        | -1                                                         | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> | <b>0</b> + 1*(1-(-1))*1 = <b>2</b>                  | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> |
| 1                     | -1             | -1 | 2 + (2*1) + (2*-1) = 2/          | \ 1                                                        | 2+1*(-1-1)*1=0                     | <b>2</b> + 1*(-1-1)*1 = <b>0</b>                    | <b>2</b> + 1*(-1-1)*-1 = <b>4</b>  |
| -1                    | 1              | -1 | 0 + (0*1) + (4*1) + (4*1)        | ž                                                          |                                    |                                                     |                                    |
|                       |                |    |                                  |                                                            |                                    |                                                     |                                    |

Stan 3 3

Ston 3 2

 $\frac{0}{0} + (\frac{0}{0} + 1) + (\frac{4}{1} + 1) = 4$ 

Round 1(Train model)

-1

| ( | <b>Step 3.1</b> | <b>Step 3.2</b>       | Step 3.3                                 |
|---|-----------------|-----------------------|------------------------------------------|
|   | <u>n</u>        | (1, ,, )              | $w_i(t+1) = w_i(t) + \eta(y-\hat{y})x_i$ |
|   | . 🔽             | $\downarrow$ 1; $u>0$ |                                          |

| i |
|---|
|   |

| <b>x</b> <sub>1</sub> | x <sub>2</sub> | у | $u = w_0 + \sum_{i=1}^{\infty} w_i x_i$ | $\hat{y} = \begin{cases} 1; & u > 0 \\ -1; & u \le 0 \end{cases}$ | $\mathbf{w}_0$                     | w <sub>1</sub>                     | w <sub>2</sub>                     |
|-----------------------|----------------|---|-----------------------------------------|-------------------------------------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| 1                     | 1              | 1 | 0 + (0*1) + (0*1) = 0                   | -1                                                                | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> |

| 1 | 2 |   | i=1                       | ( 1, | U                                  | 1                                  | L                                  |
|---|---|---|---------------------------|------|------------------------------------|------------------------------------|------------------------------------|
| 1 | 1 | 1 | $0 + (0^*1) + (0^*1) = 0$ | -1   | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> |

| 1 | 1 | 1 | $0 + (0^*1) + (0^*1) = 0$ | -1 | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> |
|---|---|---|---------------------------|----|------------------------------------|------------------------------------|------------------------------------|

| 1 | 1 | 1 | $0 + (0^*1) + (0^*1) = 0$ | -1 | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> | $0 + 1^*(1 - (-1))^*1 = 2$ | $0 + 1^*(1 - (-1))^*1 = 2$ |
|---|---|---|---------------------------|----|------------------------------------|----------------------------|----------------------------|
|   |   |   |                           |    |                                    |                            |                            |

 $w_i(t) + \eta(y - \hat{y})x_i | w_i(t) + \eta(y - \hat{y})x_i | w_i(t) + \eta(y - \hat{y})x_i$ 

| 1 | 1  | 1  | $0 + (0^*1) + (0^*1) = 0$                       | -1 | $0 + 1^*(1 - (-1))^* 1 = 2$ | $0 + 1^*(1 - (-1))^*1 = 2$ | $0 + 1^*(1 - (-1))^*1 = 2$        |
|---|----|----|-------------------------------------------------|----|-----------------------------|----------------------------|-----------------------------------|
| 1 | -1 | -1 | <b>2</b> + ( <b>2</b> *1) + ( <b>2</b> *-1) = 2 | 1  | 2+ 1*(-1-1)*1 = 0           | 2+ 1*(-1-1)*1 = <b>0</b>   | <b>2</b> + 1*(-1-1)*-1 = <b>4</b> |

|                               |    |                                | <b>Step 3.1</b>                                                  | Step 3.2       | 3.2 Step 3.3                     |                                    |                                    |  |  |
|-------------------------------|----|--------------------------------|------------------------------------------------------------------|----------------|----------------------------------|------------------------------------|------------------------------------|--|--|
|                               |    |                                | n                                                                |                | $w_i(t+1)$                       | $1) = w_i(t) + \eta$               | $(y-\hat{y})x_i$                   |  |  |
| x <sub>1</sub> x <sub>2</sub> | У  | $u = w_0 + \sum_{i=1} w_i x_i$ | $\hat{y}=\left\{egin{array}{ll} -1; & u\leq 0 \end{array} ight.$ | $\mathbf{w}_0$ | w <sub>1</sub>                   | w <sub>2</sub>                     |                                    |  |  |
| 1                             | 1  | 1                              | $0 + (0^*1) + (0^*1) = 0$                                        | -1             | $0 + 1^*(1 - (-1))^*1 = 2$       | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> |  |  |
| 1                             | -1 | -1                             | $2 + (2^*1) + (2^*-1) = 2$                                       | 1              | <b>2</b> + 1*(-1-1)*1 = <b>0</b> | <b>2</b> + 1*(-1-1)*1 = <b>0</b>   | <b>2</b> + 1*(-1-1)*-1 = <b>4</b>  |  |  |
| -1                            | 1  |                                | 0 + (0*1) + (4*1) = 4                                            | ( <u>1</u> )   | η<br>0+1*(-1-1)*1                | η<br>0+1*(-1-1)*-1                 | η<br>4+ 1* (-1 - 1) *1             |  |  |
|                               |    |                                | ****                                                             | 1000           |                                  |                                    | and a second                       |  |  |

|                       |                | •  | Step 3.1                         | Step 3.2                                                   | Step 3.3                           |                                     |                                    |  |
|-----------------------|----------------|----|----------------------------------|------------------------------------------------------------|------------------------------------|-------------------------------------|------------------------------------|--|
| <b>x</b> <sub>1</sub> | X <sub>2</sub> | у  | $u = w_0 + \sum_{i=1}^n w_i x_i$ | $\hat{y}=egin{cases} 1; & u>0 \ -1; & u\leq 0 \end{cases}$ | $w_i(t+1)$                         | $1) = w_i(t) + \eta$ $\mathbf{w}_1$ | $(y-\hat{y})x_i$ $\mathbf{w}_2$    |  |
| 1                     | 1              | 1  | $0 + (0^*1) + (0^*1) = 0$        | -1                                                         | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> | <b>0</b> + 1*(1-(-1))*1 = <b>2</b>  | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> |  |
| 1                     | -1             | -1 | $2 + (2^*1) + (2^*-1) = 2$       | 1                                                          | <b>2</b> + 1*(-1-1)*1 = <b>0</b>   | <b>2</b> + 1*(-1-1)*1 = <b>0</b>    | <b>2</b> + 1*(-1-1)*-1 = <b>4</b>  |  |
|                       |                | -1 | 0 + (0*1) + (4*1) = 4            | 1                                                          | Bias 0+ 1* (-1 - 1) *1             | <b>0</b> + 1* (-1 - 1) * <b>-1</b>  | <b>4</b> + 1* (-1 - 1) * <b>1</b>  |  |
| ``                    | *****          |    |                                  |                                                            |                                    |                                     |                                    |  |

2 + (2\*1) + (2\*-1) = 2

 $\mathbf{0} + (\mathbf{0}^* - 1) + (\mathbf{4}^* 1) = 4$ 

#### 1 / Train no a dal

-1

-1

1

-1

| <b>Round I</b> (Irain i | nodel)   |                 |                       |  |  |
|-------------------------|----------|-----------------|-----------------------|--|--|
|                         | Step 3.1 | <b>Step 3.2</b> | Step 3.               |  |  |
|                         |          |                 | $(w_i(t+1) = w_i(t))$ |  |  |

1

|                       |                |   | n                              |                                                                 | u | $v_i(t+1) = w_i(t) + v_i(t) +$ | $\eta(y-\hat{y})x_i$ |
|-----------------------|----------------|---|--------------------------------|-----------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| <b>x</b> <sub>1</sub> | x <sub>2</sub> | у | $u = w_0 + \sum_{i=1} w_i x_i$ | $\hat{y} = egin{cases} 1; & u > 0 \ -1; & u \leq 0 \end{cases}$ | W | $\mathbf{w}_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | w <sub>2</sub>       |

| <b>x</b> <sub>1</sub> | x <sub>2</sub> | у | $u = w_0 + \sum_{i=1} w_i x_i$ | $\hat{y} = \begin{cases} 1; & u > 0 \\ -1; & u \le 0 \end{cases}$ | $\mathbf{w}_0$   | w <sub>1</sub>       | w <sub>2</sub>   |
|-----------------------|----------------|---|--------------------------------|-------------------------------------------------------------------|------------------|----------------------|------------------|
| 1                     | 1              | 1 | 0 + (0*1) + (0*1) = 0          | 1                                                                 | 0   1*(1 ( 1))*1 | 0   1*(1 ( 1))*1   2 | 0 + 1*(1 ( 1))*1 |

|   |   |   | i=1                       |    |                            |                            |                                    |
|---|---|---|---------------------------|----|----------------------------|----------------------------|------------------------------------|
| 1 | 1 | 1 | $0 + (0^*1) + (0^*1) = 0$ | -1 | $0 + 1^*(1 - (-1))^*1 = 2$ | $0 + 1^*(1 - (-1))^*1 = 2$ | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> |

| 1 | 1 | 1 | $0 + (0^*1) + (0^*1) = 0$ | -1 | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> |
|---|---|---|---------------------------|----|------------------------------------|------------------------------------|------------------------------------|

2+1\*(-1-1)\*1=0

0+1\*(-1-1)\*1=-2

2+1\*(-1-1)\*1=0

0+1\*(-1-1)\*-1=2

2+1\*(-1-1)\*-1=4

4+1\*(-1-1)\*1=2

|                       |                |    | Step 3.1                             | Step 3.2                                                   | Step 3.3                           |                                                     |                                    |  |  |
|-----------------------|----------------|----|--------------------------------------|------------------------------------------------------------|------------------------------------|-----------------------------------------------------|------------------------------------|--|--|
| <b>x</b> <sub>1</sub> | x <sub>2</sub> | у  | $u = w_0 + \sum_{i=1}^n w_i x_i$     | $\hat{y}=egin{cases} 1; & u>0 \ -1; & u\leq 0 \end{cases}$ | $w_i(t+1)$                         | $\mathbf{u}_{1} = w_{i}(t) + \eta$ $\mathbf{w}_{1}$ | $(y - \hat{y})x_i$ $\mathbf{w}_2$  |  |  |
| 1                     | 1              | 1  | $0 + (0^*1) + (0^*1) = 0$            | -1                                                         | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> | <b>0</b> + 1*(1-(-1))*1 = <b>2</b>                  | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> |  |  |
| 1                     | -1             | -1 | $2 + (2^*1) + (2^*-1) = 2$           | 1                                                          | <b>2</b> + 1*(-1-1)*1 = <b>0</b>   | <b>2</b> + 1*(-1-1)*1 = <b>0</b>                    | <b>2</b> + 1*(-1-1)*-1 = <b>4</b>  |  |  |
| -1                    | 1              | -1 | $0 + (0^* - 1) + (4^* 1) = 4$        | 1                                                          | <b>0</b> + 1*(-1-1)*1=(-2)         | <b>0</b> + 1*(-1-1)*-1 <b>2</b>                     | <b>4</b> + 1*(-1-1)*1 = <b>2</b>   |  |  |
| -1                    | -1             | -1 | $w_0 \ w_1 \ w_2$ -2 + (2* ) + (2* ) |                                                            |                                    |                                                     |                                    |  |  |

|                |                |    | <b>Step 3.1</b>                                   | Step 3.2                                                   |                                          | Step 3.3                           |                                   |  |
|----------------|----------------|----|---------------------------------------------------|------------------------------------------------------------|------------------------------------------|------------------------------------|-----------------------------------|--|
|                |                |    | n                                                 | į                                                          | $w_i(t+1) = w_i(t) + \eta(y-\hat{y})x_i$ |                                    |                                   |  |
| х <sub>1</sub> | x <sub>2</sub> | у  | $u = w_0 + \sum_{i=1}^{n} w_i x_i$                | $\hat{y}=egin{cases} 1; & u>0 \ -1; & u\leq 0 \end{cases}$ | $\mathbf{w}_0$                           | $\mathbf{w}_1$                     | $W_2$                             |  |
| 1              | 1              | 1  | $0 + (0^*1) + (0^*1) = 0$                         | -1                                                         | $0 + 1^*(1 - (-1))^*1 = 2$               | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> | $0 + 1^*(1 - (-1))^*1 = 2$        |  |
| 1              | -1             | -1 | $2 + (2^*1) + (2^*-1) = 2$                        | 1                                                          | <b>2</b> + 1*(-1-1)*1 = <b>0</b>         | <b>2</b> + 1*(-1-1)*1 = <b>0</b>   | <b>2</b> + 1*(-1-1)*-1 = <b>4</b> |  |
| -1             | 1              | -1 | $0 + (0^* - 1) + (4^* 1) = 4$                     | 1                                                          | <b>0</b> + 1*(-1-1)*1= <b>-2</b>         | <b>0</b> + 1*(-1-1)*-1 = <b>2</b>  | <b>4</b> + 1*(-1-1)*1 = <b>2</b>  |  |
|                |                |    | $egin{array}{cccc} w_0 & w_1 & & w_2 \end{array}$ |                                                            |                                          |                                    |                                   |  |

|                                           |    |    | <b>Step 3.1</b>                           | Step 3.2                                                   |                                                          | <b>Step 3.3</b>                     |                                    |
|-------------------------------------------|----|----|-------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|-------------------------------------|------------------------------------|
| $\begin{bmatrix} x_1 & x_2 \end{bmatrix}$ |    | у  | $u = w_0 + \sum_{i=1}^n w_i x_i  \hat{y}$ | $\hat{y}=egin{cases} 1; & u>0 \ -1; & u\leq 0 \end{cases}$ | $\begin{bmatrix} w_i(t+1) \\ \mathbf{w}_0 \end{bmatrix}$ | $1) = w_i(t) + \eta$ $\mathbf{w}_1$ | $(y-\hat{y})x_i$ $\mathbf{w}_2$    |
| 1 2 3                                     | J  | 0  |                                           |                                                            | 1                                                        | 2                                   |                                    |
| 1                                         | 1  | 1  | $0 + (0^*1) + (0^*1) = 0$                 | -1                                                         | <b>0</b> + 1*(1-(-1))*1 = <b>2</b>                       | $0 + 1^*(1 - (-1))^* 1 = 2$         | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> |
| 1                                         | -1 | -1 | $2 + (2^*1) + (2^*-1) = 2$                | \\1                                                        | <b>2</b> + 1*(-1-1)*1 = <b>0</b>                         | 2+1*(-1-1)*1=0                      | <b>2</b> + 1*(-1-1)*-1 = <b>4</b>  |
| -1                                        | 1  | -1 | $0 + (0^* - 1) + (4^* 1) = 4$             | 1                                                          | <b>0</b> + 1*(-1-1)*1= <b>-2</b>                         | <b>0</b> + 1*(-1-1)*-1 = <b>2</b>   | <b>4</b> + 1*(-1-1)*1 = <b>2</b>   |
| -1                                        | -1 | -1 | $-2 + (2*-1) + (2*-1) \neq -6$            | -1                                                         |                                                          |                                     |                                    |
|                                           |    |    |                                           |                                                            |                                                          |                                     |                                    |

Sten 3.1

 $\mathbf{0} + (\mathbf{0}^*1) + (\mathbf{0}^*1) = 0$ 

2 + (2\*1) + (2\*-1) = 2

 $\mathbf{0} + (\mathbf{0}^* - 1) + (\mathbf{4}^* 1) = 4$ 

-2 + (2\*-1) + (2\*-1) = -6

| Round 1  | Train model  |
|----------|--------------|
| Roulla I | Hallilliouei |

-1

-1

-1

1

-1

-1

-1

-1

|                               |   | otep 0.1                         | Otep 0.2                                                   |                                         | Otcp 0.0                                                 |                                                    |  |
|-------------------------------|---|----------------------------------|------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------|----------------------------------------------------|--|
| x <sub>1</sub> x <sub>2</sub> | у | $u = w_0 + \sum_{i=1}^n w_i x_i$ | $\hat{y}=egin{cases} 1; & u>0 \ -1; & u\leq 0 \end{cases}$ | $egin{pmatrix} w_i \ w_0 \end{pmatrix}$ | $\mathbf{w}_{1}(t+1) = w_{i}(t) + \eta$ $\mathbf{w}_{1}$ | $\begin{bmatrix} y - \hat{y} \\ w_2 \end{bmatrix}$ |  |
|                               | 1 | I .                              | I .                                                        | l .                                     |                                                          |                                                    |  |

Sten 3.2

-1

1

1

-1

|                |   | n                              |                                                            |   | $w_i(t+1)$            | $1) = w_i(t) + \eta$ | $y(y-\hat{y})x_i$ |  |
|----------------|---|--------------------------------|------------------------------------------------------------|---|-----------------------|----------------------|-------------------|--|
| x <sub>2</sub> | у | $u = w_0 + \sum_{i=1} w_i x_i$ | $\hat{y}=egin{cases} 1; & u>0 \ -1; & u\leq 0 \end{cases}$ | V | <b>v</b> <sub>0</sub> | $\mathbf{w}_1$       | w <sub>2</sub>    |  |
|                |   |                                |                                                            |   |                       |                      |                   |  |

0+1\*(1-(-1))\*1=2

2+1\*(-1-1)\*1=0

0+1\*(-1-1)\*1=-2

Sten 3.3

0+1\*(1-(-1))\*1=2

2+1\*(-1-1)\*1=0

0+1\*(-1-1)\*-1=2

 $w_i(t) + \eta(y - \hat{y})x_i |w_i(t) + \eta(y - \hat{y})x_i| w_i(t) + \eta(y - \hat{y})x_i$ 

0+1\*(1-(-1))\*1=2

2+1\*(-1-1)\*-1=4

4+1\*(-1-1)\*1=2

|                       |                       |    | Step 3.1                                                    | Step 5.2                                                   |                                                       | Step 3.3                            |                                   |  |
|-----------------------|-----------------------|----|-------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------|-------------------------------------|-----------------------------------|--|
| <b>x</b> <sub>1</sub> | <b>x</b> <sub>2</sub> | у  | $u = w_0 + \sum_{i=1}^n w_i x_i$                            | $\hat{y}=egin{cases} 1; & u>0 \ -1; & u\leq 0 \end{cases}$ | $\mathbf{w}_{i}(t+\mathbf{w}_{0})$                    | $1) = w_i(t) + \eta$ $\mathbf{w_1}$ | $(y-\hat{y})x_i$ $\mathbf{w}_2$   |  |
| 1                     | 1                     | 1  | $0 + (0^*1) + (0^*1) = 0$                                   | -1                                                         | <b>0</b> + 1*(1-(-1))*1 = <b>2</b>                    | <b>0</b> + 1*(1-(-1))*1 = <b>2</b>  | $0 + 1^*(1 - (-1))^*1 = 2$        |  |
| 1                     | -1                    | -1 | $2 + (2^*1) + (2^*-1) = 2$                                  | 1                                                          | <b>2</b> + 1*(-1-1)*1 = <b>0</b>                      | <b>2</b> + 1*(-1-1)*1 = <b>0</b>    | <b>2</b> + 1*(-1-1)*-1 = <b>4</b> |  |
| -1                    | 1                     | -1 | $0 + (0^* - 1) + (4^* 1) = 4$                               | 1                                                          | 0+1*(-1-1)*1= <b>-2</b>                               | <b>0</b> + 1*(-1-1)*-1 = <b>2</b>   | <b>4</b> + 1*(-1-1)*1 = <b>2</b>  |  |
| -1                    | -1                    |    | $\frac{-2}{2} + (\frac{2}{2} - 1) + (\frac{2}{2} - 1) = -6$ | (-1)                                                       | η<br>-2+1*(-1 <sup>1</sup> / <sub>2</sub> (-1))<br>*1 | 2+ 1* (-1 - (-1)) *-1               | 2+1*(-1-(-1)) *-1                 |  |
|                       |                       |    |                                                             |                                                            |                                                       |                                     |                                   |  |

#### **Round 1**(Train model)

|                       |                |   | ann modern                              |                                                                 |                            |                                    |            |
|-----------------------|----------------|---|-----------------------------------------|-----------------------------------------------------------------|----------------------------|------------------------------------|------------|
|                       |                |   | <b>Step 3.1</b>                         | Step 3.2                                                        |                            | <b>Step 3.3</b>                    |            |
|                       |                |   | n                                       |                                                                 | $w_i(t +$                  | $1) = w_i(t) + \eta$               | $(y \cdot$ |
| <b>x</b> <sub>1</sub> | x <sub>2</sub> | у | $u = w_0 + \sum_{i=1}^{\infty} w_i x_i$ | $\hat{y} = egin{cases} 1; & u > 0 \ -1; & u \leq 0 \end{cases}$ | $\mathbf{w}_0$             | w <sub>1</sub>                     |            |
| 1                     | 1              | 1 | $0 + (0^*1) + (0^*1) = 0$               | -1                                                              | $0 + 1^*(1 - (-1))^*1 = 2$ | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> | 0-         |

| <b>x</b> <sub>1</sub> | x <sub>2</sub> | у | $u = w_0 + \sum_{i=1}^{\infty} w_i x_i$ | $\int_{0}^{y} \int_{0}^{z} (-1);  u \leq 0$ | 0                                  | <b>vv</b> <sub>1</sub>             | vv <sub>2</sub>                    |
|-----------------------|----------------|---|-----------------------------------------|---------------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| 1                     | 1              | 1 | $0 + (0^*1) + (0^*1) = 0$               | -1                                          | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> | <b>0</b> + 1*(1-(-1))*1 = <b>2</b> |

 $-\hat{y})x_i$ 

1 1 1 
$$0 + (0*1) + (0*1) = 0$$
 -1  $0 + 1*(1-(-1))*1 = 2$   $0 + 1*(1-(-1))*1 = 2$   $0 + 1*(1-(-1))*1 = 2$ 
1 -1 -1  $2 + (2*1) + (2*-1) = 2$  1  $2 + 1*(-1-1)*1 = 0$   $2 + 1*(-1-1)*1 = 0$   $2 + 1*(-1-1)*-1 = 4$ 

1 -1 -1 
$$2 + (2*1) + (2*-1) = 2$$
 1  $2 + 1*(-1-1)*1 = 0$   $2 + 1*(-1-1)*1 = 0$   $2 + 1*(-1-1)*-1 = 4$  -1  $1 -1 0 + (0*-1) + (4*1) = 4$  1  $0 + 1*(-1-1)*1 = 2$   $0 + 1*(-1-1)*-1 = 2$   $4 + 1*(-1-1)*1 = 2$ 

#### **Round 1**(Train model)

1

-1

-1

-1

-1

-1

-1

-1

| x <sub>1</sub> | X <sub>2</sub> | у |     | $\hat{y}=egin{cases} 1; & u>0 \ -1; & u\leq 0 \end{cases}$ | $w_i(t+w_0)$ | $1) = w_i(t) + \eta$ $\mathbf{w}_1$ | $(y-\hat{y})x_i$ $\mathbf{w}_2$ |
|----------------|----------------|---|-----|------------------------------------------------------------|--------------|-------------------------------------|---------------------------------|
|                |                |   | i=1 |                                                            |              |                                     |                                 |

-1

1

1

-1

0+1\*(1-(-1))\*1=2

2+1\*(-1-1)\*1=0

0+1\*(-1-1)\*1=-2

**-2**+1\*(-1-(-1))\*1=**-2** 

**Step 3.3** 

0+1\*(1-(-1))\*1=2

2+1\*(-1-1)\*1=0

0+1\*(-1-1)\*-1=2

2+1\*(-1-(-1))\*-1=2

0+1\*(1-(-1))\*1=2

2+1\*(-1-1)\*-1=4

4+1\*(-1-1)\*1=2

**2**+ 1\*(-1-(-1))\*-1(= **2** 

# **Step 3.1 Step 3.2**

 $\mathbf{0} + (\mathbf{0}^*1) + (\mathbf{0}^*1) = 0$ 

2 + (2\*1) + (2\*-1) = 2

 $\mathbf{0} + (\mathbf{0}^* - 1) + (\mathbf{4}^* 1) = 4$ 

-2 + (2\*-1) + (2\*-1) = -6

After finish round 1, we obtained

$$w_0 = -2$$
  $w_1 = 2$   $w_2 = -2$ 

According to linear equation, we can get a linear line from our weights

$$w_0 + w_1 x_1 + w_2 x_2 = 0$$
$$-2 + 2x_1 + 2x_2 = 0$$

### Discuss!!

## If the round number is 2, how to continue?



Round 2 (Train model)

|                       |                |   | <b>Step 3.1</b>                                         | Step 3.2                                                   |                       | <b>Step 3.3</b>                     |                                                               |
|-----------------------|----------------|---|---------------------------------------------------------|------------------------------------------------------------|-----------------------|-------------------------------------|---------------------------------------------------------------|
| <b>x</b> <sub>1</sub> | x <sub>2</sub> | у | $u = w_0 + \sum_{i=1}^n w_i x_i$                        | $\hat{y}=egin{cases} 1; & u>0 \ -1; & u\leq 0 \end{cases}$ | $\mathbf{w}_{i}(t+1)$ | $1) = w_i(t) + \eta$ $\mathbf{w}_1$ | $\begin{bmatrix} (y-\hat{y})x_i \end{bmatrix}$ $\mathbf{w}_2$ |
| 1                     | 1              | 1 | $w_0$ $w_1$ $w_2$ $-2$ $\div$ $(2^*$ $)$ $+$ $(2^*$ $)$ |                                                            |                       |                                     |                                                               |

Obtained from round 1

## Hands On