1 Test sufficiency of angular sampling

- 1. Create a $L \times L \times L$ cube of zeros, $\rho(\vec{r})$. Here, L matches the image length of your 2D projections.
- 2. Fill $\rho(\vec{r})$ with a centered ball of random values. This ball should have radius R_N , the approximate radius of the nanoparticle in the experimental data. Plot the central sections of $\rho(\vec{r})$: $\rho(x, y, 0)$, $\rho(x, 0, z)$, $\rho(0, y, z)$.
- 3. Apply a low-pass filter to the densities $\rho(\vec{r})$. To do this, Fourier transform $\rho(\vec{r}) \to \rho(\vec{k})$ and apply the low-pass filter:

$$\rho_B(\vec{k}) = \rho(\vec{k}) \exp\left(-\frac{|\vec{k}|^2}{2k_0^2}\right),\tag{1}$$

where k_0 is approximately $R_N/2$.

- 4. Inverse Fourier transform $\rho_B(\vec{k}) \to \rho_B(\vec{r})$. Plot the central sections of this blurred object. Check that you get a blurred versions of the central sections in step 2.
- 5. We are ready to expand our densities. Do $\operatorname{expand}(\rho_B(\vec{k}), \operatorname{quat}_n) \to \widetilde{\rho}_B(j,i)$ to obtain the tomograms sampled by the list of quaternions quat_n . I will give you a number of quaternions $\{n=4,\ldots,10\}$. Time how long this takes, and how much memory is used.
- 6. Now, compress($\widetilde{\rho}_B(j,i)$, quat_n) $\to \widetilde{\rho}_B(\vec{k})$. Time how long this takes, and how much memory is used.
- 7. Compute the resolution-resolved error

$$\Delta(k) = \sqrt{\left\langle \left(|\widetilde{\rho}_B(\vec{k})| - |\rho_B(\vec{k})| \right)^2 \right\rangle_{|\vec{k}| = k}}.$$
 (2)

You should modify your algorithm for computing angular averages to do this.

8. Plot how $\Delta(k)$ varies with n, for the $\rho_{L\times L\times L}$ that is relevant to our problem.