10B11MA111 Mathematics-I

Tutorial Sheet 3 B.Tech. Core

Double and Triple Integrals

1. Integrate

(a)
$$f(x, y) = x^2 + y^2$$
 over the triangular region having vertices $(0,0),(1,0)$ and $(0,1)$.

(b)
$$f(x, y) = (x + y)^2$$
 over the region bounded by the ellipse $x^2/a^2 + y^2/b^2 = 1$.

Ans.(a)1/6, (b)
$$\pi ab(a^2 + b^2)/4$$

2. Evaluate the following integrals by sketching the region of integration. Also verify your result by changing the order of integration and evaluating the resulting integral.

(a)
$$\int_{0}^{1} \int_{2}^{4-2x} dy dx$$
, (b) $\int_{0}^{1} \int_{y}^{\sqrt{y}} dx dy$, (c) $\int_{0}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} 3y dx dy$ Ans.(a) 1, (b) 1/6, (c) 2

3. Change the order of integration in the following integrals and evaluate (iii) and (iv).

(i)
$$\int_{0}^{\frac{1}{\sqrt{2}}} \int_{x}^{\sqrt{1-x^2}} f(x,y) dy dx$$
, (ii) $\int_{0}^{\frac{\pi}{2}} \int_{0}^{2a \cos\theta} f(r,\theta) dr d\theta$. (iii) $\int_{0}^{\infty} \int_{x}^{\infty} (e^{-y} / y) dy dx$, (iv) $\int_{0}^{1} \int_{2y}^{2} e^{-x^2} dx dy$
Ans. (iii) 1 (iv) $(1-e^{-4})/4$

4. Evaluate by changing to polar coordinates:

(a)
$$\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-y^{2}}} (x^{2}+y^{2}) dy dx$$
, (b)
$$\int_{0}^{a} \int_{y}^{a} \frac{x^{2}}{\sqrt{x^{2}+y^{2}}} dx dy$$
, Ans. (a) $\pi a^{4} / 8$, (b) $a^{3} \ln(\sqrt{2}+1) / 3$

5. (i) Find by double integration, the area lying inside the cardioid $r = 1 + \cos \theta$ and outside the parabola $r(1 + \cos \theta) = 1$. (ii) Find the volume bounded by the cylinder $x^2 + y^2 = a^2$ and the

cone
$$x^2 + y^2 = z^2$$
. Ans. (i) $\frac{3\pi}{4} - \frac{4}{3}$ (ii) $\frac{4\pi a^3}{3}$.

- 6. Calculate by double integration the volume generated by the revolution of the cardioid $r = a(1-\cos\theta)$ about its axis.

 Ans. $8\pi a^3/3$
- 7. Using suitable transformation, evaluate $\iint_R (x-y)^2 \cos^2(x+y) dx dy$, where R is the rhombus with successive vertices at $(\pi, 0)$, $(2\pi, \pi)$, $(\pi, 2\pi)$ and $(0, \pi)$.

 Ans. $\pi^4/3$
- 8. Using the transformation x + y = u, y = uv, show that $\int_{0}^{1} \int_{0}^{1-x} e^{\frac{y}{x+y}} dy dx = \frac{e-1}{2}.$
- 9. Find the volume enclosed by the solid bounded above by the sphere $x^2 + y^2 + z^2 = 2a^2$ and below by the paraboloid $az = x^2 + y^2$.

 Ans. $\left(\frac{4\sqrt{2}}{3} \frac{7}{6}\right)\pi a^3$.
- 10. Find the mass, moment of inertia, radius of gyration and centre gravity of a thin plate bounded by the curves $y = x^2$ and y = x + 2 whose density $\rho(x, y)$ is constant. (M= 9 ρ /2)
- 11. (a) Find the volume of the solid lying in the first octant bounded by the paraboloid $z = 36 4x^2 9y^2$.
 - (b) Find the volume of the solid enclosed between the surfaces $x^2 + y^2 = a^2$ and $x^2 + z^2 = a^2$.