

Conductive Polymer Solid Electrolytic Chip Capacitors

A, B, C, D, E, G, H, K, S, T, **U, W, X, Y, 5 CASE**

XXXXX ~

∧ 476 E

XXXXX

N, P, R CASE

106

AVX LOGO

AVX LOGO Polymer

- ID Code

· Capacitance Value in pF 476 = 47µF

Rated Voltage

Rated Voltage Code J = 6.3V

MARKING

FEATURES

- Conductive polymer electrode
- Benign failure mode under recommended use conditions
- Lower ESR
- 3x reflow 260°C compatible
- CV range: 0.47-470µF / 2.5-125V
- 18 case sizes available

APPLICATIONS

• Smart phone, Tablets, Notebook, LCD TV, Power supplies

Elektra Award 2010

CASE DIMENSIONS: millimeters (inches)

Code	EIA Code	EIA Metric	L±0.20 (0.008)	W+0.20 (0.008) -0.10 (0.004)	H+0.20 (0.008) -0.10 (0.004)	W₁±0.20 (0.008)	A+0.30 (0.012) -0.20 (0.008)	S Min.
Α	1206	3216-18	3.20 (0.126)	1.60 (0.063)	1.60 (0.063)	1.20 (0.047)	0.80 (0.031)	1.10 (0.043)
В	1210	3528-21	3.50 (0.138)	2.80 (0.110)	1.90 (0.075)	2.20 (0.087)	0.80 (0.031)	1.40 (0.055)
O	2312	6032-28	6.00 (0.236)	3.20 (0.126)	2.60 (0.102)	2.20 (0.087)	1.30 (0.051)	2.90 (0.114)
D	2917	7343-31	7.30 (0.287)	4.30 (0.169)	2.90 (0.114)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
Е	2917	7343-43	7.30 (0.287)	4.30 (0.169)	4.10 (0.162)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
G	1206	3216-15	3.20 (0.126)	1.60 (0.063)	1.50 (0.059) max	1.20 (0.047)	0.80 (0.031)	1.10 (0.043)
Н	1210	3528-15	3.50 (0.138)	2.80 (0.110)	1.50 (0.059) max	2.20 (0.087)	0.80 (0.031)	1.40 (0.055)
K	1206	3216-10	3.20 (0.126)	1.60 (0.063)	1.00 (0.039) max	1.20 (0.047)	0.80 (0.031)	1.10 (0.043)
N	0805	2012-10	2.05 (0.081)	1.30 (0.051)	1.00 (0.039) max	1.00 (0.039)	0.50 (0.020)	0.85 (0.033)
Р	0805	2012-15	2.05 (0.081)	1.35 (0.050)	1.50 (0.059) max	1.00±0.10 (0.039±0.004)	0.50 (0.020)	0.85 (0.033)
R	0805	2012-12	2.05 (0.081)	1.30 (0.051)	1.20 (0.047) max	1.00±0.10 (0.039±0.004)	0.50 (0.020)	0.85 (0.033)
S	1206	3216-12	3.20 (0.126)	1.60 (0.063)	1.20 (0.047) max	1.20 (0.047)	0.80 (0.031)	1.10 (0.043)
Т	1210	3528-12	3.50 (0.138)	2.80 (0.110)	1.20 (0.047) max	2.20 (0.087)	0.80 (0.031)	1.40 (0.055)
U	2924	7361-43	7.30 (0.287)	6.10 (0.240)	4.10 (0.162)	3.10 (0.120)	1.30 (0.051)	4.40 (0.173)
W	2312	6032-15	6.00 (0.236)	3.20 (0.126)	1.50 (0.059) max	2.20 (0.087)	1.30 (0.051)	2.90 (0.114)
Х	2917	7343-15	7.30 (0.287)	4.30 (0.169)	1.50 (0.059) max	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
Υ	2917	7343-20	7.30 (0.287)	4.30 (0.169)	2.00 (0.079) max	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
5	2917	7343-40	7.30 (0.287)	4.30 (0.169)	3.80 (0.150)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
		١	W1 dimension a	applies to the termi	nation width for A d	imensional area o	only.	

HOW TO ORDER

TECHNICAL SPECIFICATIONS (Common for all TCJ series)

Technical Data:	All technical data relate to an ambient temperature of +25°C
Capacitance Tolerance:	±20%
Leakage Current DCL:	0.1CV
Reliability:	1% per 1000 hours at 85°C, V_R with 0.1 Ω /V series impedance, 60% confidence level
Resistance to soldering heat:	3x260°C peak for max. 10s reflow

NOTE: Conductive Polymer Capacitors are designed to operate within the limits of the environmental conditions specified for each series. If operated continuously at their maximum temperature and / or humidity limit, or beyond these limits, capacitors may exhibit a parametric shift in capacitance and increases in ESR. These changes may occur earlier if the specified environmental conditions are exceeded. Similarly, their normal operational time period will be significantly extended if their general duty cycle includes operation below maximum temperature within humidity controlled environments. Careful attention should be paid to maximum temperature with associated high humidity environments as well as voltage derating, ripple current and current surges. Please reference the AVX Conductive Polymer Capacitor Guidelines for more information or contact factory for application assistance.

Conductive Polymer Solid Electrolytic Chip Capacitors

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

С	ар					Rated Vol	tage DC (V) to 85°C						
μF	Code	2.5V (e)	4V (G)	6.3V (J)	10V (A)	16V (C)	20V (D)	25V (E)	35V (V)	50V (T)	63V (<u>J</u>)	75V (<u>P</u>)	100V (A)	125V (<u>B</u>)
0.47	474	.,	, ,	.,	. ,	. ,	, ,		. ,	. ,	B(400)			
0.68	684									B(400)	B(300)			
1.0	105							P(500)		B(300)	B(300) C(300)			
1.5	155								B(200)	B(300) C(300)	C(300)			
2.2	225								B(200)	C(300)	C(200)			
3.3	335								B(200)	C(200)	C(200)			D(250)
4.7	475				K(300,500) R(500)			B(100,150)	B(200) C(200)	C(200) X(250) Y(250)	C(200) D(120)	D(150)	D(250)	
6.8	685					A(200)		A(150), B(90,150) T(100,150)	C(200)	C(200) D(120)	D(120) E(100,150)	D(120)		
10	106			A(300) N(200,250,500) R(500)	A(200,300)	A(200) B(100,200) T(100,150,200)	A(150)	A(150) B(90,100,150)	B(200) C(200) Y(70)	D(90,120) E(70,100)	E(100,150)			
15	156		A(300)	A(300)	A(200)	B(150)		B(100,150) Y(90)	B(200), C(200) D(70,100) Y(70,100)	E(70,100)				
22	226		A(300)	A(300), K(400) N(500), R(500) S(400), T(150)	B(300) T(70,150)	A(300) B(150)	B(90,150) Y(70)	B(100,150), C(100) D(60,100) Y(70)	D(70,100) Y(150)					
33	336		A(300)	A(200) B(70,200) T(150)	B(70,200) C(100) T(70,150)	A(200) Y(45,60,70)	Y(70)	D(60,100) X(70,100) Y(60,70,100)	D(70,100) E(55,70) U(70), Y(100)					
47	476		A(200) T(80)	A(70,100,200), B(70) K(150,200,400) P(500), R(500) T(55,69,70,80,120)	B(70) C(100)	X(45,70) Y(45,70)	D(55) X(55,70) Y(70)	D(60,100) E(50) Y(100)	E(55), U(70) Y(100)					
68	686	A(250)	A(250) B(70) T(80)	B(55,70) C(100) T(200), W(70)	D(45,55) Y(45,55)	D(50) Y(50)	D(55) E(45)	D(70) E(50) Y(100)						
100	107	A(200), B(70)	A(200) B(40,70) G(300) T(70,150)	A(100,150) B(40,45,55,70) T(70,200)	D(18,25,45,55,80) Y(18,25,45,55)	D(50), E(40) Y(50)	D(55) E(45) Y(55)	D(55,70) E(80) U(70)						
150	157	B(70)	B(70), D(15) Y(15,25,45)	B(25,35,45,55,70) D(12,15,25,40) H(200), W(40,70) Y(15,25,40)	D(25,40,45,55) Y(25,40,45,55)	D(40,50,70) E(40) Y(40,50,70)		U(70)						
220	227	B(35,45,70)	B(35,45,55,60,70) D(12,15,25,40) Y(15,25,40)	B(70,200) D(12,15,25,35,40,50) H(170) Y(15,25,35,40,50)	D(12,15,25,40,50) Y(15,25,40,50)	D(50	U(70)							
330	337	B(35,45,70) Y(25,40)	D(15,25,40,50) Y(15,25,40,50)	D(12,15,25,40,50) Y(15,25,40,50)	D(25) 5(35,100)	E(50,70) 5(100)								
470	477	D(12,15,25,40,50) Y(15,25,40,50)	D(10,12,15,25,40,50) Y(15,25,40,50)	X(50,55,100)		5(100)								

Released ratings, (ESR ratings in mOhms in parentheses) Engineering samples - please contact AVX Note: Voltage ratings are minimum values. AVX reserves the right to supply higher voltage ratings in the same case size, to the same reliability standards.

Conductive Polymer Solid Electrolytic Chip Capacitors

AVX	Case	Capacitance	Rated	Maximum Operating	DCL	DF	ESR Max.	10	00kHz RMS	Current (n	nA)	Product	
Part No.	Size	(μ F)	Voltage (V)	Temperature (°C)	Max. (μA)	Max. (%)	@ 100kHz (mΩ)	45°C	85°C	105°C	125°C	Category	MSL
						t @ 85°C	·						
FC JA 107M000#0250	A	68	2.5	105	17	6	250	600	400	300	_	3	3
FC JR107M002#0200	A B	100	2.5 2.5	105 125	25 25	6	200 70	700 1300	500 900	300 600	300	3	3
CJB107M002#0070 CJB157M002#0070	В	150	2.5	105	37.5	6	70	1300	900	600	300	3	3
CJB227M002#0070	В	220	2.5	105	55	8	35	1900	1300	900		3	3
CJB227M002#0045	В	220	2.5	105	55	8	45	1700	1200	800	_	3	3
CJB227M002#0070	В	220	2.5	105	55	8	70	1300	900	600	_	3	3
CJB337M002#0035	В	330	2.5	105	82.5	8	35	1900	1300	900	_	3	3
CJB337M002#0045	В	330	2.5	105	82.5	8	45	1700	1200	800	_	3	3
CJB337M002#0070	В	330	2.5	105	82.5	8	70	1300	900	600	_	3	3
CJY337M002#0025	Υ	330	2.5	105	82.5	6	25	2700	1900	1200	_	2	3
CJY337M002#0040	Y	330	2.5	105	82.5	6	40	2200	1500	1000	_	3	3
CJD477M002#0012	D	470	2.5	105	117.5	6	12	4300	3000	1900	_	2	3
CJD477M002#0015	D	470	2.5	105	117.5	6	15	3900	2700	1800	_	2	3
CJD477M002#0025	D	470	2.5	105	117.5	6	25	3000	2100	1400	_	2	3
CJD477M002#0040 CJD477M002#0050	D	470 470	2.5 2.5	105	117.5 117.5	6	40	2400	1700	1100	_	3	3
CJY477M002#0030 CJY477M002#0015	Y	470	2.5	105 85	117.5	6	50 15	2100 3500	1500 2500	900	_	3 5	3
CJY477M002#0015	Y	470	2.5	105	117.5	6	25	2700	1900	1200	_	3	3
CJY477M002#0025	Y	470	2.5	105	117.5	6	40	2200	1500	1000	_	3	3
CJY477M002#0040	Y	470	2.5	105	117.5	6	50	1900	1300	900		3	3
<u></u>		710	2.0	100		@ 85°C	00	1000	1000	000		J	U
CJA156M004#0300	Α	15	4	125	6	6	300	600	400	300	200	1	3
CJA226M004#0300	Α	22	4	125	8.8	6	300	600	400	300	200	1	3
CJA336M004#0300	Α	33	4	125	13.2	6	300	600	400	300	200	1	3
CJA476M004#0200	Α	47	4	105	18.8	6	200	700	500	300	_	3	3
CJT476M004#0080	T	47	4	105	18.8	8	80	1100	800	500	_	3	3
CJA686M004#0250	Α	68	4	105	27.2	6	250	600	400	300	_	3	3
CJB686M004#0070	В	68	4	125	27.2	6	70	1300	900	600	300	1 1	3
CJT686M004#0080	T	68	4	105	27.2	8	80	1100	800	500	_	3	3
CJA107M004#0200	A	100	4	105	40	6	200	700	500	300	_	3	3
CJB107M004#0040	В	100	4	105	40	8	40	1800	1300	800	-	3	3
CJB107M004#0070	В	100	4	125	40	8	70	1300	900	600	300	1	3
CJG107M004#0300	G	100	4	105 105	40 40	10	300 70	600 1200	400 800	300 500	_	3	3
CJT107M004#0070 CJT107M004#0150	÷	100	4	105	40	8	150	800	600	400	_	3	3
CJB157M004#0070	В	150	4	105	60	6	70	1300	900	600		3	3
CJD157M004#0015	D	150	4	105	60	6	15	3900	2700	1800	_	2	3
CJY157M004#0015	Y	150	4	105	60	6	15	3500	2500	1600	_	2	3
CJY157M004#0025	Ý	150	4	105	60	6	25	2700	1900	1200	_	2	3
CJY157M004#0045	Ÿ	150	4	105	60	6	45	2000	1400	900	_	3	3
CJB227M004#0035	В	220	4	105	88	10	35	1900	1300	900	_	3	3
CJB227M004#0045	В	220	4	105	88	10	45	1700	1200	800	_	3	3
CJB227M004#0055	В	220	4	105	88	10	55	1500	1100	700	_	3	3
CJB227M004#0060	В	220	4	105	88	10	60	1400	1000	600	_	3	3
CJB227M004#0070	В	220	4	105	88	10	70	1300	900	600	_	3	3
CJD227M004#0012	D	220	4	105	88	6	12	4300	3000	1900	_	2	3
CJD227M004#0015	D	220	4	105	88	6	15	3900	2700	1800	_	2	3
CJD227M004#0025	D	220	4	105	88	6	25	3000	2100	1400	_	2	3
CJD227M004#0040	D	220	4	105	88	6	40	2400	1700	1100	_	2	3
CJY227M004#0015	Y	220	4	105	88	6	15	3500	2500	1600	_	2	3
CJY227M004#0025	Y	220	4	105	88	6	25	2700	1900	1200	_	2	3
CJY227M004#0040	Y D	220	4	105	132	6	40	2200	1500	1000	_	3	3
CJD337M004#0015 CJD337M004#0025	D	330 330	4	105 105	132 132	6	15 25	3900	2700 2100	1800	_	2 2	3
CJD337M004#0025	D	330	4	105	132	6	40	2400	1700	1100	_	3	3
CJD337M004#0040	D	330	4	105	132	6	50	2100	1500	900		3	3
CJY337M004#0015	Y	330	4	85	132	6	15	3500	2500	-		5	3
CJY337M004#0025	Ý	330	4	105	132	6	25	2700	1900	1200	_	3	3
CJY337M004#0040	Ý	330	4	105	132	6	40	2200	1500	1000	_	3	3
CJY337M004#0050	Y	330	4	105	132	6	50	1900	1300	900	_	3	3
CJD477M004#0010	D	470	4	105	188	6	10	4700	3300	2100	_	2	3
CJD477M004#0012	D	470	4	105	188	6	12	4300	3000	1900	_	2	3
CJD477M004#0015	D	470	4	105	188	6	15	3900	2700	1800	_	2	3
CJD477M004#0025	D	470	4	105	188	6	25	3000	2100	1400	_	2	3
CJD477M004#0040	D	470	4	105	188	6	40	2400	1700	1100	_	2	3
CJD477M004#0050	D	470	4	105	188	6	50	2100	1500	900	_	2	3
CJY477M004#0015	Υ	470	4	85	188	6	15	3500	2500	_	_	5	3
CJY477M004#0025	Υ	470	4	105	188	6	25	2700	1900	1200	_	3	3
CJY477M004#0040	Y	470	4	105	188	6	40	2200	1500	1000	_	3	3
CJY477M004#0050	Υ	470	4	105	188	6	50	1900	1300	900	_	3	3
C 1410CM000#0000	Ι Λ	10	6.0	105		t @ 85°C	200	600	100	200	000	1 4 1	0
CJA106M006#0300	A	10	6.3	125	6	6	300	600	400	300	200	1	3
CJN106M006#0200	N	10	6.3	105	6	6	200	600	400	300	_	3	3
CJN106M006#0250	N	10	6.3	105	6	6	250	600	400	300	_	3	3
CJN106M006#0500 CJR106M006#0500	R	10	6.3 6.3	105 105	<u>6</u>	6	500 500	400	300	200	_	3	3
O0111001V1000#0000	Π 1	10	0.3	100	U	U	500	400	300	200	_	0	J

Conductive Polymer Solid Electrolytic Chip Capacitors

AVX	Case	Capacitance	Rated	Maximum Operating	DCL	DF	ESR Max.	10	00kHz RMS	Current (m	nA)	Product	MSL
Part No.	Size	· (μF)	Voltage (V)	Temperature (°C)	Max. (μA)	Max. (%)	@ 100kHz (mΩ)	45°C	85°C	105°C	125°C	Category	
TCJA156M006#0300	Α	15	6.3	125	9	6	300	600	400	300	200	1	3
TCJA226M006#0300 TCJK226M006#0400	A K	22 22	6.3 6.3	125 105	13.2 13.2	<u>6</u> 8	300 400	600 500	400	300 200	200	3	3
TCJN226M006#0500	N	22	6.3	105	13.2	10	500	400	300	200	_	3	3
TCJR226M006#0500	R	22	6.3	105	13.2	10	500	400	300	200	_	3	3
TCJS226M006#0400	S	22	6.3	105	13.2	8	400	500	400	200	_	3	3
TCJT226M006#0150	Т	22	6.3	105	13.2	6	150	800	600	400	_	3	3
TCJA336M006#0200	A	33	6.3	105	19.8	6	200	700	500	300	_	3	3
TCJB336M006#0070	В	33	6.3	125	19.8	6	70	1300	900	600	300	1	3
TCJB336M006#0200 TCJT336M006#0150	B	33	6.3 6.3	125 105	19.8 19.8	<u>6</u> 8	200 150	800	600	400	200	3	3
TCJA476M006#0070	A	47	6.3	105	28.2	6	70	1200	800	500		3	3
TCJA476M006#0100	Α	47	6.3	105	28.2	6	100	1000	700	500	_	3	3
TCJA476M006#0200	Α	47	6.3	105	28.2	6	200	700	500	300	-	3	3
TCJB476M006#0070	В	47	6.3	125	28.2	6	70	1300	900	600	300	1	3
TCJK476M006#0150	K	47	6.3	105	28.2	6	150	800	600	400	_	3	3
TCJK476M006#0200	K	47	6.3	105	28.2	6	200	700	500	300	_	3	3
TCJK476M006#0400 TCJP476M006#0500	K	47 47	6.3 6.3	105 105	28.2 28.2	6 10	400 500	500 400	400 300	200	_	3	3
TCJR476M006#0500	R	47	6.3	105	28.2	10	500	400	300	200	_	3	3
TCJT476M006#0055	T	47	6.3	105	28.2	8	55	1300	900	600		3	3
TCJT476M006#0069	T	47	6.3	105	20	8	69	1200	800	500	_	3	3
TCJT476M006#0070	T	47	6.3	105	28.2	8	70	1200	800	500	_	3	3
TCJT476M006#0080	Ť	47	6.3	105	28.2	8	80	1100	800	500	-	3	3
TCJT476M006#0120	T	47	6.3	105	28.2	8	120	900	600	400	_	3	3
TCJB686M006#0055	В	68	6.3	125	40.8	8	55	1500	1100	700	400	1	3
TCJB686M006#0070	В	68	6.3	125	40.8	8	70	1300	900	600	300	1	3
TCJC686M006#0100	C	68	6.3	125	40.8	6	100	1300	900	600	300	1	3
TCJT686M006#0200 TCJW686M006#0070	T W	68 68	6.3 6.3	105 125	40.8 40.8	<u>8</u> 8	70	700 1400	500 1000	300 600	400	3	3
TCJA107M006#0070	A	100	6.3	105	60	10	100	1000	700	500	400	3	3
TCJA107M006#0150	A	100	6.3	105	60	10	150	800	600	400	_	3	3
TCJB107M006#0040	В	100	6.3	105	60	10	40	1800	1300	800	_	3	3
TCJB107M006#0045	В	100	6.3	105	60	10	45	1700	1200	800	_	3	3
TCJB107M006#0055	В	100	6.3	105	60	10	55	1500	1100	700	_	3	3
TCJB107M006#0070	В	100	6.3	105	60	10	70	1300	900	600	_	3	3
TCJT107M006#0070	T	100	6.3	105	60	10	70	1200	800	500	_	3	3
TCJT107M006#0200	T B	100	6.3	105	60 90	10 10	200	700 2200	500	300 1000	_	3	3
TCJB157M006#0025 TCJB157M006#0035	В	150 150	6.3 6.3	105 105	90	10	25 35	1900	1500 1300	900	_	3	3
TCJB157M006#0045	В	150	6.3	105	90	10	45	1700	1200	800	_	3	3
TCJB157M006#0055	В	150	6.3	105	90	10	55	1500	1100	700	_	3	3
TCJB157M006#0070	В	150	6.3	105	90	10	70	1300	900	600	-	3	3
TCJD157M006#0012	D	150	6.3	105	90	6	12	4300	3000	1900	_	2	3
TCJD157M006#0015	D	150	6.3	105	90	6	15	3900	2700	1800	-	2	3
TCJD157M006#0025	D	150	6.3	105	90	6	25	3000	2100	1400	_	2	3
TCJD157M006#0040	D	150	6.3	105	90	6	40	2400	1700	1100	_	2	3
TCJH157M006#0200	H W	150 150	6.3 6.3	105 105	90	<u>6</u>	200 40	700 1800	500 1300	300 800	_	3	3
TCJW157M006#0040 TCJW157M006#0070	W	150	6.3	105	90	6	70	1400	1000	600	_	3	3
TCJY157M006#0076	Y	150	6.3	105	90	6	15	3500	2500	1600	_	2	3
TCJY157M006#0025	Y	150	6.3	105	90	6	25	2700	1900	1200	-	2	3
TCJY157M006#0040	Υ	150	6.3	105	90	6	40	2200	1500	1000	_	3	3
TCJB227M006#0070	В	220	6.3	105	132	10	70	1300	900	600	_	3	3
TCJB227M006#0200	В	220	6.3	105	132	10	200	800	600	400	_	3	3
TCJD227M006#0012	D	220	6.3	105	132	6	12	4300	3000	1900	_	2	3
TCJD227M006#0015 TCJD227M006#0025	D D	220 220	6.3 6.3	105 105	132 132	<u>6</u> 6	15 25	3900 3000	2700 2100	1800 1400	_	2 2	3
TCJD227M006#0025	D	220	6.3	105	132	6	35	2500	1800	1100	_	3	3
TCJD227M006#0033	D	220	6.3	105	132	6	40	2400	1700	1100	_	3	3
TCJD227M006#0050	D	220	6.3	105	132	6	50	2100	1500	900	_	3	3
TCJH227M006#0170	H	220	6.3	105	132	10	170	800	600	400	_	3	3
TCJY227M006#0015	Υ	220	6.3	85	132	6	15	3500	2500	_	_	5	3
TCJY227M006#0025	Υ	220	6.3	105	132	6	25	2700	1900	1200	_	2	3
TCJY227M006#0035	Y	220	6.3	105	132	6	35	2300	1600	1000	_	2	3
TCJY227M006#0040	Y	220	6.3	105	132	6	40	2200	1500	1000	_	2	3
TCJY227M006#0050 TCJD337M006#0012	D	220 330	6.3 6.3	105 105	132 198	<u>6</u> 6	50 12	1900 4300	1300 3000	900 1900	_	3	3
TCJD337M006#0012	D	330	6.3	105	198	6	15	3900	2700	1800	_	3	3
TCJD337M006#0015	D	330	6.3	105	198	6	25	3000	2100	1400		3	3
TCJD337M006#0025	D	330	6.3	105	198	6	40	2400	1700	1100	_	2	3
TCJD337M006#0050	D	330	6.3	105	198	6	50	2100	1500	900	_	2	3
	Y	330	6.3	85	198	12	15	3500	2500	-	-	5	3
TCJY337M006#0015		330	6.3	105	198	12	25	2700	1900	1200	_	3	3
	Υ	000	0.0	100									
TCJY337M006#0015 TCJY337M006#0025 TCJY337M006#0040	Υ	330	6.3	105	198	12	40	2200	1500	1000	-	3	3
TCJY337M006#0015 TCJY337M006#0025 TCJY337M006#0040 TCJY337M006#0050	Y	330 330	6.3 6.3	105 105	198 198	12	50	1900	1300	900	-	3	3
TCJY337M006#0015 TCJY337M006#0025 TCJY337M006#0040	Υ	330	6.3	105	198								

Conductive Polymer Solid Electrolytic Chip Capacitors

AVX	Case	Capacitance	Rated Voltage	Maximum Operating	DCL Max.	DF Max.	ESR Max.	10	00kHz RMS	Current (m	nA)	Product	MS
Part No.	Size	(μF)	(V)	Temperature (°C)	(μΑ)	(%)	@ 100kHz (mΩ)	45°C	85°C	105°C	125°C	Category	1414
C II/47EN 4010#0000	IZ.	17	10	105		e 85°C	200	E00	100	000	_		
CJK475M010#0300 CJK475M010#0500	K	4.7 4.7	10 10	105 105	4.7 4.7	6	300 500	500 400	400 300	200	_	3	3
	R	4.7	10	105	4.7	6	500	400	300	200		3	3
CJR475M010#0500 CJA106M010#0200							200					1	
	A	10	10	125	10	6		700	500	300	200	1	
CJA106M010#0300	A	10	10 10	125	10	6	200	600	400 500	300	200	1	3
CJA156M010#0200	A	15		125	15	6		700		300		-	
CJB226M010#0300	B	22	10	125	22	6	300	600	400	300	200	1	
CJT226M010#0070	T	22	10	105	22	6	70	1200	800	500	_	3	
CJT226M010#0150	T	22	10	105	22	6	150	800	600	400	-	3	,
CJB336M010#0070	В	33	10	125	33	6	70	1300	900	600	300	1	
CJB336M010#0200	В	33	10	125	33	6	200	800	600	400	200	1	
CJC336M010#0100	С	33	10	125	33	6	100	1300	900	600	300	1	
CJT336M010#0070	T	33	10	105	33	6	70	1200	800	500	-	3	
CJT336M010#0150	Т	33	10	105	33	6	150	800	600	400	_	3	
CJB476M010#0070	В	47	10	105	47	6	70	1300	900	600	-	3	
CJC476M010#0100	С	47	10	125	47	6	100	1300	900	600	300	1	,
CJD686M010#0045	D	68	10	105	68	6	45	2200	1500	1000	_	3	
CJD686M010#0055	D	68	10	105	68	6	55	2000	1400	900	_	3	
CJY686M010#0045	Υ	68	10	105	68	6	45	2000	1400	900	-	3	
CJY686M010#0055	Υ	68	10	105	68	6	55	1800	1300	800	-	3	
CJD107M010#0018	D	100	10	105	100	6	18	3500	2500	1600	_	2	
CJD107M010#0025	D	100	10	105	100	6	25	3000	2100	1400	-	2	
CJD107M010#0045	D	100	10	105	100	6	45	2200	1500	1000	_	3	
CJD107M010#0055	D	100	10	105	100	6	55	2000	1400	900	_	3	
CJD107M010#0033	D	100	10	105	100	6	80	1700	1200	800	_	3	
CJY107M010#0000	Y	100	10	105	100	6	18	3200	2200	1400	_	2	
CJY107M010#0018	Y	100	10	105	100	6	25	2700	1900	1200	_	2	
CJY107M010#0025	Y	100	10	105	100	6	45	2000	1400	900	_	3	
CJY107M010#0045	Y	100	10	105	100	6	55	1800	1300	800	_	3	
CJD157M010#0035	D		10			6	25	3000	2100	1400			
		150		105	150						_	3	
CJD157M010#0040	D	150	10	105	150	6	40	2400	1700	1100	_	3	
CJD157M010#0045	D	150	10	105	150	6	45	2200	1500	1000	_	3	
CJD157M010#0055	D	150	10	105	150	6	55	2000	1400	900	-	3	
CJY157M010#0025	Y	150	10	105	150	6	25	2700	1900	1200	_	3	
CJY157M010#0040	Υ	150	10	105	150	6	40	2200	1500	1000	-	3	
CJY157M010#0045	Υ	150	10	105	150	6	45	2000	1400	900	_	3	
CJY157M010#0055	Υ	150	10	105	150	6	55	1800	1300	800	_	3	4.5
CJD227M010#0012	D	220	10	105	220	6	12	4300	3000	1900	-	3	,
CJD227M010#0015	D	220	10	105	220	6	15	3900	2700	1800	_	3	•
CJD227M010#0025	D	220	10	105	220	6	25	3000	2100	1400	_	3	4,
CJD227M010#0040	D	220	10	105	220	6	40	2400	1700	1100	_	3	
CJD227M010#0050	D	220	10	105	220	6	50	2100	1500	900	-	3	
CJY227M010#0015	Υ	220	10	85	220	6	15	3500	2500	_	_	5	
CJY227M010#0025	Υ	220	10	105	220	6	25	2700	1900	1200	_	3	
CJY227M010#0040	Υ	220	10	105	220	6	40	2200	1500	1000	_	3	
CJY227M010#0050	Υ	220	10	105	220	6	50	1900	1300	900	-	3	
CJD337M010#0025	D	330	10	105	330	6	25	3000	2100	1400	-	2	
CJ5337M010#0035	5	330	10	105	330	10	35	2600	1800	1200	_	2	
CJ5337M010#0100	5	330	10	105	330	10	100	1500	1100	700	_	2	
333337111373737373		000		.00		@ 85°C	100	1000	1.00				
CJA685M016#0200	Α	6.8	16	125	10.9	6	200	700	500	300	200	1	
CJA106M016#0200	A	10	16	125	16	6	200	700	500	300	200	1	
CJB106M016#0100	В	10	16	125	16	6	100	1100	800	500	300	1	
CJB106M016#0200	В	10	16	125	16	6	200	800	600	400	200	1	
CJT106M016#0100	T	10	16	125	16	6	100	1000	700	500	300	1	
CJT106M016#0150	Ť	10	16	125	16	6	150	800	600	400	200	1	
CJT106M016#0200	Ť	10	16	125	16	6	200	700	500	300	200	1	
CJB156M016#0150	В	15	16	125	24	6	150	900	600	400	200	1	
JA226M016#0300E	A	22	16	105	35.2	10	300	600	400	300	_	3	
CJB226M016#0150	B	22	16	125	35.2	6	150	900	600	400	200	1	
JA336M016#0200E	А	33	16	105	52.8	10	200	700	500	300	-	3	
CJY336M016#0045	Y	33	16	105	52.8	6	45	2000	1400	900	_	2	
CJY336M016#0045	Y	33	16	105	52.8	6	60	1800	1300	800	_	2	
CJY336M016#0070	Y	33	16	105	52.8	6	70	1600	1100	700	_	2	
CJX476M016#0045	X	47	16	105	75.2	6	45	2000	1400	900	_	2	
CJX476M016#0045	X	47	16	105	75.2	6	70	1600	1100	700	_	2	
CJY476M016#0070	Y	47	16	105		6	45	2000	1400	900		2	
	Y				75.2	6	70			700	-		
CJY476M016#0070		47	16	105	75.2			1600	1100		_	2	
CJD686M016#0050	D	68	16	105	108.8	6	50	2100	1500	900	-	2	
CJY686M016#0050	Y	68	16	105	108.8	6	50	1900	1300	900	_	2	
CJD107M016#0050	D	100	16	105	160	6	50	2100	1500	900	-	2	
CJE107M016#0040	E	100	16	105	160	6	40	2500	1800	1100	-	2	
CJY107M016#0050	Υ	100	16	105	160	6	50	1900	1300	900	-	2	
CJD157M016#0040	D	150	16	85	240	6	40	2400	1700	-	_	5	;
CJD157M016#0050	D	150	16	85	240	6	50	2100	1500	_	_	5	
CJD157M016#0070	D	150	16	105	240	6	70	1800	1300	800	_	3	
	Е	150	16	105	240	6	40	2500	1800	1100	-	2	
CJE157M016#0040													
	Y	150	16	85	240	6	40	2200	1500	_	_	5	:
CJE157M016#0040 CJY157M016#0040 CJY157M016#0050				85 85	240 240	6	40 50	2200 1900	1500 1300	_	_	5 5	;

Conductive Polymer Solid Electrolytic Chip Capacitors

AVX	Case	Capacitance	Rated	Maximum Operating	DCL	DF	ESR Max.	10	00kHz RMS	Current (m	nA)	Product	MOL
Part No.	Size	(μ F)	Voltage (V)	Temperature (°C)	Max. (μΑ)	Max. (%)	@ 100kHz (mΩ)	45°C	85°C	105°C	125°C	Category	MSL
TCJD227M016#0050	D	220	16	105	352	10	50	2100	1500	900	-	2	3
TCJE337M016#0050 TCJE337M016#0070	E	330 330	16 16	105 105	528 528	10	50 70	2200 1900	1500 1300	1000	_	2	3
TCJ5337M016#0100	5	330	16	105	528	10	100	1500	1100	700	_	2	3
TCJ5477M016#0100	5	470	16	105	752	10	100	1500	1100	700	_	3	3
						t @ 85°C							
TCJA106M020#0150	A	10	20	105	20	6	150	800	600	400	_	3	3
TCJB226M020#0090 TCJB226M020#0150	B	22 22	20 20	105 105	44 44	6	90 150	1200 900	800 600	500 400	_	3	3
TCJY226M020#0170	Y	22	20	105	44	6	70	1600	1100	700	_	2	3
TCJY336M020#0070	Ÿ	33	20	105	66	6	70	1600	1100	700	_	2	3
TCJD476M020#0055	D	47	20	105	94	6	55	2000	1400	900	-	2	3
TCJX476M020#0055	X	47	20	105	94	6	55	1800	1300	800	_	3	3
TCJX476M020#0070 TCJY476M020#0070	X	47 47	20 20	105 105	94 94	6	70 70	1600 1600	1100 1100	700 700	_	3 2	3
TCJD686M020#0055	Ď	68	20	105	136	6	55	2000	1400	900	_	3	3
TCJE686M020#0045	Ē	68	20	105	136	6	45	2400	1700	1100	_	2	3
TCJD107M020#0055	D	100	20	105	200	6	55	2000	1400	900	-	2	3
TCJE107M020#0045	E	100	20	105	200	6	45	2400	1700	1100	_	3	3
TCJY107M020#0055 TCJU227M020#0070E	Y	100 220	20 20	105 105	200 440	6 12	55 70	1800 2300	1300 1600	800 1000	_	2	3
10002271VIU2U#UU/UE			20	100		∠ : @ 85°C	10	2000	1000	1000	_		
TCJP105M025#0500	Р	1.0	25	105	2.5	6	500	400	300	200	_	2	3
TCJB475M025#0100	В	4.7	25	105	11.8	6	100	1100	800	500	_	3	3
TCJB475M025#0150	В	4.7	25	105	11.8	6	150	900	600	400	_	3	3
TCJA685M025#0150 TCJB685M025#0090	A B	6.8 6.8	25 25	105 105	17 17	6	150 90	800 1200	600 800	400 500	_	3 2	3
TCJB685M025#0090	В	6.8	25	105	17	6	150	900	600	400	_	3	3
TCJT685M025#0100	Ť	6.8	25	105	17	6	100	1000	700	500	_	3	3
TCJT685M025#0150	Т	6.8	25	105	17	6	150	800	600	400	-	3	3
TCJA106M025#0150	A	10	25	105	25	6	150	800	600	400	-	3	3
TCJB106M025#0090 TCJB106M025#0100	B	10	25 25	105 105	25 25	6	90	1200 1100	800 800	500 500	_	2	3
TCJB106M025#0150	В	10	25	105	25	6	150	900	600	400	_	2	3
TCJB156M025#0100	В	15	25	105	37.5	6	100	1100	800	500	_	2	3
TCJB156M025#0150	В	15	25	105	37.5	6	150	900	600	400	-	2	3
TCJY156M025#0090	Y	15	25	105	37.5	6	90	1400	1000	600	_	2	3
TCJB226M025#0100 TCJB226M025#0150	B	22	25 25	105 105	<u>55</u> 55	6	100 150	1100 900	800 600	500 400	_	3	3
TCJC226M025#0100	C	22	25	105	55	6	100	1300	900	600	_	3	3
TCJD226M025#0060	D	22	25	105	55	6	60	1900	1300	900	_	2	3
TCJD226M025#0100	D	22	25	105	55	6	100	1500	1100	700	-	2	3
TCJY226M025#0070	Y	22	25	105	55	6	70	1600	1100	700	_	3	3
TCJD336M025#0060 TCJD336M025#0100	D	33	25 25	105 105	82.5 82.5	6	100	1900 1500	1300	900 700	_	2	3
TCJX336M025#0070	X	33	25	105	82.5	6	70	1600	1100	700	-	2	3
TCJX336M025#0100	X	33	25	105	82.5	6	100	1300	900	600	_	2	3
TCJY336M025#0060	Y	33	25	105	82.5	6	60	1800	1300	800	-	2	3
TCJY336M025#0070 TCJY336M025#0100	Y	33	25 25	105 105	82.5 82.5	6	70 100	1600 1400	1100	700 600	_	2	3
TCJD476M025#0100	D	47	25	105	117.5	6	60	1900	1300	900	_	3	3
TCJD476M025#0100	D	47	25	105	117.5	6	100	1500	1100	700	_	3	3
TCJE476M025#0050	Е	47	25	105	117.5	6	50	2200	1500	1000	_	3	3
TCJY476M025#0100E	Y	47	25	105	117.5	6	100	1400	1000	600	_	3	3
TCJD686M025#0070 TCJE686M025#0050	D E	68 68	25 25	105 105	170 170	6	70 50	1800 2200	1300 1500	1000	_	3	3
TCJY686M025#0100E		68	25	105	170	6	100	1400	1000	600	_	3	3
TCJD107M025#0055	Ď	100	25	105	250	6	55	2000	1400	900	_	2	3
TCJD107M025#0070	D	100	25	105	250	6	70	1800	1300	800	_	2	3
TCJE107M025#0080	E U	100	25	105	250	6	80	1800	1300	1000	- 600	2	3
TCJU107M025#0070E TCJU157M025#0070E		100 150	25 25	125 105	250 375	12 12	70 70	2300	1600 1600	1000	600	2	3
. 300 101 WIOZU#001 OL		100	20	100		@ 85°C	, ,,				<u> </u>		
TCJB155M035#0200	В	1.5	35	105	5.3	6	200	800	600	400	_	2	3
TCJB225M035#0200	В	2.2	35	105	7.7	6	200	800	600	400	_	3	3
TCJB335M035#0200 TCJB475M035#0200	B	3.3 4.7	35 35	105 105	11.6 16.5	6	200 200	800 800	600	400 400	_	3	3
TCJC475M035#0200	C	4.7	35	105	16.5	6	200	900	600	400	_	3	3
TCJC685M035#0200	C	6.8	35	105	23.8	6	200	900	600	400	_	3	3
TCJB106M035#0200	В	10	35	105	35	6	200	800	600	400	_	2	3
TCJC106M035#0200	C	10	35	105	35	6	200	900	600	400	_	3	3
TCJY106M035#0070 TCJB156M035#0200	Y	10 15	35 35	105 105	35 52.5	6	70 200	1600 800	1100 600	700 400	_	2	3
TCJC156M035#0200	B	15	35	105	52.5	6	200	900	600	400	_	3	3
TCJD156M035#0070	Ď	15	35	105	52.5	6	70	1800	1300	800	_	3	3
TCJD156M035#0100	D	15	35	105	52.5	6	100	1500	1100	700	_	3	3
TCJY156M035#0070	Y	15	35	105	52.5	6	70	1600	1100	700	_	3	3
TCJY156M035#0100	Y D	15 22	35 35	105	52.5 77	6	100 70	1400	1000	600	_	3	3
TCJD226M035#0070		22	ುರಿ	105	11	6	10	1800	1300	800	_	2	<u> </u>

Conductive Polymer Solid Electrolytic Chip Capacitors

RATINGS & PART NUMBER REFERENCE

AVX	Case	Capacitance	Rated	Maximum Operating	DCL	DF	ESR Max.	10	00kHz RMS	Current (m	nA)	Product	1401
Part No.	Size	΄ (μ F)	Voltage (V)	Temperature (°C)	Max. (μA)	Max. (%)	@ 100kHz (mΩ)	45°C	85°C	105°C	125°C	Category	MSL
TCJD226M035#0100	D	22	35	105	77	6	100	1500	1100	700	_	2	3
TCJY226M035#0150	Υ	22	35	105	77	6	150	1100	800	500	_	3	3
TCJD336M035#0070	D	33	35	105	115.5	6	70	1800	1300	800	_	2	3
TCJD336M035#0100	D	33	35	105	115.5	6	100	1500	1100	700	-	2	3
TCJE336M035#0055	Е	33	35	105	115.5	6	55	2100	1500	900	_	3	3
TCJE336M035#0070	Е	33	35	105	115.5	6	70	1900	1300	900	_	3	3
TCJU336M035#0070E	U	33	35	125	115.5	12	70	2300	1600	1000	600	1	3
TCJY336M035#0100E	Υ	33	35	105	115.5	6	100	1400	1000	600	_	3	3
TCJE476M035#0055	Е	47	35	105	164.5	6	55	2100	1500	900	_	2	3
TCJU476M035#0070E	U	47	35	125	164.5	12	70	2300	1600	1000	600	1	3
TCJY476M035#0100E	Υ	47	35	105	164.5	6	100	1400	1000	600	-	3	3
						@ 85°C							
TCJB684M050#0400	В	0.68	50	105	3.4	6	400	600	400	300	_	3	3
TCJB105M050#0300	В	1.0	50	105	5	6	300	600	400	300	_	3	3
TCJB155M050#0300	В	1.5	50	105	7.5	6	300	600	400	300	-	3	3
TCJC155M050#0300	С	1.5	50	105	7.5	6	300	800	600	400	_	3	3
TCJC225M050#0300	С	2.2	50	105	11	6	300	800	600	400	_	3	3
TCJC335M050#0200	С	3.3	50	105	16.5	8	200	900	600	400	_	3	3
TCJC475M050#0200	С	4.7	50	105	23.5	8	200	900	600	400	_	3	3
TCJX475M050#0250	Χ	4.7	50	105	23.5	6	250	800	600	400	_	2	5
TCJY475M050#0250	Υ	4.7	50	105	23.5	6	250	900	600	400	_	2	5
TCJC685M050#0200	С	6.8	50	105	34	8	200	900	600	400	-	3	3
TCJD685M050#0120	D	6.8	50	105	34	10	120	1400	1000	600	_	3	3
TCJD106M050#0090	D	10	50	105	50	10	90	1600	1100	700	-	3	3
TCJD106M050#0120	D	10	50	105	50	10	120	1400	1000	600	_	3	3
TCJE106M050#0070	Е	10	50	105	50	6	70	1900	1300	900	_	3	3
TCJE106M050#0100	Е	10	50	105	50	6	100	1600	1100	700	_	3	3
TCJE156M050#0070	Е	15	50	105	75	6	70	1900	1300	900	_	3	3
TCJE156M050#0100	Е	15	50	105	75	6	100	1600	1100	700	_	3	3
					63 Volt	@ 85°C							
TCJB474M063#0400	В	0.47	63	105	3	8	400	600	400	300	_	3	3
TCJB684M063#0300	В	0.68	63	105	4.3	8	300	600	400	300	_	3	3
TCJB105M063#0300	В	1.0	63	105	6.3	8	300	600	400	300	_	3	3
TCJC105M063#0300	С	1.0	63	105	6.3	6	300	800	600	400	_	3	3
TCJC155M063#0300	С	1.5	63	105	9.5	6	300	800	600	400	_	3	3
TCJC225M063#0200	С	2.2	63	105	13.9	6	200	900	600	400	_	3	3
TCJC335M063#0200	С	3.3	63	105	20.8	6	200	900	600	400	-	3	3
TCJC475M063#0200	С	4.7	63	105	29.6	6	200	900	600	400	_	3	3
TCJD475M063#0120	D	4.7	63	105	29.6	6	120	1400	1000	600	_	3	3
TCJD685M063#0120	D	6.8	63	105	42.8	6	120	1400	1000	600	_	3	3
TCJE685M063#0100	Ē	6.8	63	105	42.8	6	100	1600	1100	700	_	3	3
TCJE685M063#0150	E	6.8	63	105	42.8	6	150	1300	900	600	_	3	3
TCJE106M063#0100	Ē	10	63	105	63	6	100	1600	1100	700	_	3	3
TCJE106M063#0150	Ē	10	63	105	63	6	150	1300	900	600	_	3	3
						@ 85°C							
TCJD475M075#0150	D	4.7	75	105	35.3	6	150	1200	800	500	_	3	3
TCJD685M075#0120	D	6.8	75	105	51	6	120	1400	1000	600	-	3	3
						t @ 85°C							
TCJD475M100#0250	D	4.7	100	105	47	8	250	900	600	400	_	4	3
					125 Vol	t @ 85°C							
TCJD335M125#0250	D	3.3	125	105	41.2	8	250	900	600	400	_	4	3

Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

All technical data relates to an ambient temperature of +25°C. Capacitance and DF are measured at 120Hz, 0.5RMS

with DC bias of 2.2 volts. DCL is measured at rated voltage after 5 minutes.

ESR allowed to move up to 1.25 times catalog limit post mounting.

For typical weight and composition see page 274.

NOTE: AVX reserves the right to supply higher voltage ratings or tighter tolerance part in the same case size, to the same reliability standards.

RECOMMENDED DERATING FACTOR

Voltage and temperature derating as percentage of Vr

Conductive Polymer Solid Electrolytic Chip Capacitors

PRODUCT CATEGORY 1 (TEMPERATURE RANGE -55°C TO +125°C)

TEST		Condition			Characteristics
				Visual examinatio	no visible damage
	Apply rated voltage (Ur) at 85°C and / or 2/3 rated voltage (Ur) at 125°C for 2000 hours through a circuit impedance of :0.1Ω/V. Stabilize at room temperature for 1-2 hours before measuring. Store at 125°C, no voltage applied, for 2000 hours. Stabilize at room temperature for measuring. Store at 125°C, no voltage applied, for 2000 hours. Stabilize at room temperature for 1-2 hours before measuring. Store at 125°C, no voltage applied, for 2000 hours. Stabilize at room temperature for 1-2 hours before measuring. Store at 65°C and 95% relative humidity for 500 hours, with no applied voltage. Stabilize at room temperature and humidity for 1-2 hours before measuring. Store at 65°C and 95% relative humidity for 500 hours, with no applied voltage. Stabilize at room temperature and humidity for 1-2 hours before measuring. Store at 65°C and 95% relative humidity for 500 hours, with no applied voltage. Stabilize at room temperature and humidity for 1-2 hours before measuring. Store at 65°C and 95% relative humidity for 500 hours, with no applied voltage. Stabilize at room temperature and humidity for 1-2 hours before measuring. Store at 125°C, no voltage applied, for 2000 hours. Stabilize at room temperature and humidity for 500 hours, with no applied voltage. Stabilize at room temperature and humidity for 1-2 hours before measuring. Store at 125°C, no voltage applied, for 2000 hours. Stabilize at room temperature in the form to visible damage and the form to applied voltage. Stabilize at room temperature in the form to visible damage and to applied voltage. Stabilize at room temperature in the form to visible damage and to applied voltage. Stabilize at room temperature in the form to visible damage and to applied voltage. Stabilize at room temperature in the form to visible damage and to visible damage. The form to visible damage and to visible damage and to visible damage. The form to visible damage and to visible damage. The form to visible damage and to visible damage. The form to visible damage and to visi	1.25 x initial limit			
Endurance	voltage (U impedanc	r) at 125°C for 2000 hour e of ≤0.1Ω/V. Stabilize at	s through a circuit room temperature	ΔC/C	within +10/-20% of initial value
				DF	1.5 x initial limit
				ESR	2 x initial limit
				Visual examinatio	no visible damage
					2 x initial limit
Storage Life			-2 hours before	ΔC/C	within +10/-20% of initial value
	measuring) .		DF	1.5 x initial limit
				ESR	2 x initial limit
					3 x initial limit
Humidity				ΔC/C	within +35/-5% of initial value
				DF	1.5 x initial limit
				ESR	2 x initial limit
	Step 1	Temperature°C +20			+20°C -55°C +20°C +85°C +125°C +20°
Temperature	2	-55	15	DCL	
Stability	4	+85	15	ΔC/C	n/a +0/-20% ±5% +20/-0% +30/-0% ±5%
			15	DF	
	Apply 1.3	3x 2/3x rated voltage (Ur) at 125°C for	Visual examinatio	no visible damage
Surge	1000 cyc	eles of duration 6 min (30 sec charge,	DCL	initial limit
Voltage			h a charge /	ΔC/C	within +10/-20% of initial value
voltago	alcorra.g	0.10010101100 01.100011		DF	1.25 x initial limit
				Visual examinatio	no visible damage
Mechanical				DCL	initial limit
Shock	MIL-STD	0-202, Method 213, Co	ondition C	ΔC/C	within ±5% of initial value
OHOOK				DF	initial limit
				ESR	initial limit
				Visual examinatio	no visible damage
				DCL	initial limit
Vibration	MIL-STD	0-202, Method 204, Co	ondition D	ΔC/C	within ±5% of initial value
				DF	initial limit
				ESR	initial limit

*Initial Limit

Initial measurement max. 1hr after the removal from dry pack or after pretreatment at 85°C for 24 hours.

Conductive Polymer Solid Electrolytic Chip Capacitors

PRODUCT CATEGORY 2, 3, 4 (TEMPERATURE RANGE -55°C TO +105°C)

TEST	Condition Characteristics													
		ed voltage (Ur) at 85°C		Visual examination	no vi	sible dan	nage							
		circuit impedance of \leq RIES). And / or apply ra		DCL	1.25	x initial li	imit							
Endurance	(CATEGO	RY 2) or 0.8x rated vol	Itage (CATEGORY	ΔC/C	withir	n +10/-20	% of initi	al value						
		05°C for 2000 hours three of ≤0.1Ω/V Always st		DF		initial lin								
		ure for 1-2 hours before		ESR		nitial limit								
						no visible damage								
				Visual examination DCL (V _R ≤ 75V)		x initial l								
0. 1.4		105°C, no voltage appli		DCL (VR ≥ 75V) DCL (VR > 75V)		nitial limi								
Storage Life		abilize at room tempera fore measuring.	ature for 1-2	ΔC/C				al value						
	nours bei	ore measuring.		DF		initial lin		ai vaiue						
				ESR		nitial limit								
				Visual examination		no visible damage								
	1	65°C and 95% relative h	,	DCL		nitial limit								
Humidity		th no applied voltage. S						ial value						
	measuring	,	humidity for 1-2 hours before $\Delta C/C$ within +35/-5% of initial val DF 1.5 x initial limit						iai value					
	mododing	9.		ESR		nitial limit		al value +85°C +105°C +20/-0% +30/-0% ±1.5 x IL* 2 x IL* al value						
	Step	Temperature°C	Duration(min)	-	+20°C		+20°C	ial value +85°C +105°C + 10 x IL* 12.5 x IL* +20/-0% +30/-0% = 1.5 x IL* 2 x IL* ial value	±20°C					
Temperature	2	+20 -55	15 15	DCL	IL*	n/a	IL*	al value +85°C +105°C - 10 x IL* 12.5 x IL* +20/-0% +30/-0% 1.5 x IL* 2 x IL* al value	IL*					
_	3	+20	15						+85°C +105°C + 10 x IL* 12.5 x IL* +20/-0% +30/-0% 1.5 x IL* 2 x IL*					
Stability	5	+85 +105	15 15	ΔC/C		+0/-20%								
	6	+20	15	DF	IL*	1.5 x IL*	IL*	1.5 x IL*	2 x IL*	IL*				
		rated voltage (Ur) at 105 1.3x 0.8x rated voltage		Visual examination	no vi	sible dar	nage							
Surge		Y 1.3x 0.8x rated voltage RY 3, 4 for 1000 cycles o		DCL	initia	l limit								
Voltage	(30 sec ch	arge, 5 min 30 sec discl	harge) through a	ΔC/C		1 +10/-20		al value						
	charge / d	lischarge resistance of 1	Ω000	DF	1.25	x initial li	imit							
				Visual examination		sible dam	age							
Mechanical				DCL	initial									
Shock	MIL-STD	-202, Method 213, Co	ndition C	ΔC/C		1 ±5% of	initial val	ue						
		DF				limit								
				ESR	initial									
				Visual examination		sible dam	age							
Vilanatia.		000 14 11 1001 0	D	DCL	initial									
Vibration	MIL-STD	-202, Method 204, Co	ndition D	ΔC/C	_	1 ±5% of	initial val	ue						
				DF	initial									
				ESR	initial	Iımit								

*Initial Limit

Initial measurement max. 1hr after the removal from dry pack or after pretreatment at 85°C for 24 hours.

Conductive Polymer Solid Electrolytic Chip Capacitors

PRODUCT CATEGORY 5 (TEMPERATURE RANGE -55°C TO +85°C)

TEST		Condition			Char	acteristic	s					
				Visual examination	no visib	le damage						
	Apply rate	ed voltage (Ur) at 85°C fo	r 2000 hours	DCL	1.25 x ir	nitial limit						
Endurance Storage Life Humidity	through a	circuit impedance of ≤ 0 .	1Ω/V. Stabilize at	ΔC/C	within +	10/-20% o	f initial va	lue				
	room tem	perature for 1-2 hours be	efore measuring.	DF		tial limit						
				ESR		2 x initial limit						
				Visual examination		le damage						
	Store at 8	5°C, no voltage applied,	for 2000 hours.	DCL		nitial limit						
Storage Life		at room temperature for 1	-2 hours before	ΔC/C	_	within +10/-20% of initial value						
	measuring).		DF	-	1.5 x initial limit						
				ESR		2 x initial limit						
				Visual examination		no visible damage						
		65°C and 95% relative h		DCL		5 x initial limit						
Humidity		th no applied voltage. Sure and humidity for 1-2		ΔC/C		within +35/-5% of initial value						
	measurin			DF		1.5 x initial limit						
	0.			ESR	2 x initi							
	Step 1	Temperature°C +20	Duration(min) 15		+20°C	-55°C	+20°C	+85°C	+20°C			
Temperature	2	-55	15	DCL	IL*	n/a	IL*	10 x IL*	IL*			
Stability	3 4	+20 +85	15 15	ΔC/C	n/a	+0/-20%	±5%	value C +85°C 10 x IL* 5 +20/-0% 1.5 x IL* value	±5%			
,	5	+20	15	DF	IL*	1.5 x IL*	IL*	+85°C	IL*			
0	Apply 1.2	x rated voltage (Ur) at 8	ESC for	Visual examination	no visib	le damage						
-	1000 cyc	les of duration 6 min (30	sec charge,	DCL	initial lin	initial limit						
voitage		sec discharge) through resistance of 1000Ω	a charge /	ΔC/C	within +	10/-20% o	f initial va	lue				
	discriarge	resistance of 100012		DF	1.25 x ir	nitial limit						
				Visual examination	no visib	le damage						
Machanical				DCL	initial lin	nit						
	MIL-STD	0-202, Method 213, Co	ndition C	ΔC/C	within ±	5% of initia	al value					
Snock				DF	initial lin	nit						
				ESR	initial lin	nit						
				Visual examination	no visib	le damage						
				DCL	initial lin	nit						
Vibration	MIL-STE	0-202, Method 204, Co	ndition D	ΔC/C	within ±	5% of initia	al value					
				DF	initial lin	nit						
				ESR	initial lin	nit						

*Initial Limit

Initial measurement max. 1hr after the removal from dry pack or after pretreatment at 85°C for 24 hours.

Conductive Polymer Solid Electrolytic Chip Capacitors

AVX SOLID ELECTROLYTIC CAPACITOR ROADMAP

Five Capacitor Construction Styles

SERIES LINE UP: CONDUCTIVE POLYMER

