Lecture 16

Additional Topics in Regression and Time Series Analysis

MATH 4070: Regression and Time-Series Analysis

Whitney Huang Clemson University

Moving Away From Linear Regression

• We have mainly focused on linear regression so far

Model: $y = x\beta + \varepsilon$, $\varepsilon \sim N(0, \sigma^2)$

Data: y (response vector); X (design matrix)

$$\bullet \ \ \hat{\beta} = (X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}y; \ \hat{y} = X\hat{\beta} = \underbrace{X(X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}}_{H: \text{ "Hat" matrix}} y$$

$$\bullet \hat{\boldsymbol{\beta}} \sim \mathcal{N}(\boldsymbol{\beta}, \sigma^2(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X})^{-1})$$

Non-parametric regression modeling

Model: $y = f(x) + \varepsilon \Rightarrow E[y|x] = f(x)$

- The (smooth) function f(x) must be represented somehow
- The degree of smoothness of f(x) must be made controllable
- Some means for estimating the most appropriate degree of smoothness from data is required

Notes

Examples of Nonparametric Regression Fits

Regression Spline: 10 degrees of freedom quantile knot

Smoothing Spline: the amount of smoothness is estimated from the data by GCV

Kernel Regression: K: Epanechnikov kernel and h = 5

Additional Topics
in Regression
and Time Series
Analysis

Generalized Additive Models for Multiple Predictors

General non-parametric regression models

$$y = f(x_1, x_2, \dots, x_p) + \varepsilon$$

suffer from the "curse of dimensionality" Generalized Additive Models:

$$y = \beta_0 + f_1(x_1) + f_2(x_2) + \dots + f_p(x_p) + \varepsilon$$

Additional Topics in Regression and Time Series Analysis

LASSO

Shrinkage Methods

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_{p-1} x_{p-1} + \varepsilon, \quad \varepsilon \sim \mathrm{N}(0, \sigma^2)$$

 x_1, x_2, \dots, x_{p-1} are the predictors.

Question: What if we have too many predictors (i.e., p is "large")?

- Explanation can be difficult due to collinearity
- Can lead to overfitting by using too many predictors

Two methods, namely Ridge regression and LASSO, allow us to "shrink" the information contained in all the predictors into a more useful form

Climan Chivershy

Notes

Notes

Ridge Regression [Hoerl & Kennard, 1970]

Ridge regression assumes that the regression coefficients (after normalization) should not be very large

 \bullet The ridge regression estimate chooses the β that minimizes:

$$\sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p-1} \beta_j x_{ij})^2 + \lambda \sum_{j=1}^{p-1} \beta_j^2,$$

where $\lambda \geq 0$ is a **tuning parameter** to be determined via cross-validation

• The ridge regression estimates:

$$\hat{\beta}_{\text{ridge}} = \left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} + \lambda \boldsymbol{I} \right)^{-1} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{y}$$

 Ridge regression is particularly effective when the model matrix is collinear Additional Topics in Regression and Time Series Analysis

LASSO

Graphical Illustration of Ridge Regression

Estimation of ridge regression can also be solved by choosing $\boldsymbol{\beta}$ to minimize

$$\sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p-1} \beta_j x_{ij})^2$$

subject to $\sum_{j=1}^{p} \beta_j^2 \le t^2$

Source: p. 175, Fig. 11.9 Linear Models with R, Faraway, 2014

Additional Topics in Regression and Time Series Analysis

Least Absolute Shrinkage and Selection Operator (LASSO) Tibshirani, 1996

LASSO assumes the effects are **sparse** in that the response can be explained by a small number of predictors with the rest having no effect

• LASSO choose $\hat{\beta}$ to minimize:

$$\sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p-1} \beta_j x_{ij})^2 + \lambda \sum_{j=1}^{p-1} |\beta_j|$$

- No explicit solution to this minimization problem
- The penalty term has the effect of forcing some of the coefficient estimates to be zero when the tuning parameter λ is "large" ⇒ performs shrinkage and variable selection

Additional Topics in Regression and Time Series Analysis

Notes

Notes

Graphical Illustration of LASSO

Estimation of LASSO can also be solved by choosing $\boldsymbol{\beta}$ to minimize

$$\sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p-1} \beta_j x_{ij})^2$$

subject to $\sum_{j=1}^{p} |\beta_j| \le t$

Source: p. 175, Fig. 11.9 Linear Models with R, Faraway, 2014

Additional Topics in Regression and Time Series Analysis

T.A.S.S.O.

Generalized Linear Model

Gaussian Linear Model:

$$y \sim N(\mu, \sigma^2), \quad \mu = \boldsymbol{x}^T \boldsymbol{\beta}$$

Bernoulli Linear Model:

$$y \sim \text{Bernoulli}(\pi), \quad \log(\frac{\pi}{1-\pi}) = \boldsymbol{x}^T \boldsymbol{\beta}$$

Poisson Linear Regression:

$$y \sim \text{Poisson}(\lambda), \quad \log \lambda = \boldsymbol{x}^T \boldsymbol{\beta}$$

These models fall into the family of generalized linear models [Nelder and Wedderburn (1972); McCullagh and Nelder (1989)] with the **distributional assumptions** (normal, Bernoulli, Poisson) and the **link functions** (identity, logit, and log)

Additional Topics in Regression and Time Series Analysis

16.10

Frequency Domain Time Series Analysis

- Time domain methods [Box and Jenkins, 1970]:
 - Regress present on past

Example:
$$Y_t = \phi Y_{t-1} + Z_t$$
, $|\phi| < 1$, $\{Z_t\} \sim WN(0, \sigma^2)$

- Capture dynamics in terms of "velocity", "acceleration", etc
- Frequency domain methods [Priestley, 1981]:
 - Regress present on periodic sines and cosines

Example:

$$Y_t = \alpha_0 + \sum_{j=1}^{p} \left[\alpha_{1j} \cos(2\pi\omega_j t) + \alpha_{2j} \sin(2\pi\omega_j t) \right]$$

• Capture dynamics in terms of resonant frequencies

Additional Topics in Regression and Time Series Analysis

16.11

Notes

Notes

Searching Hidden Periodicities

$$y_t = 3\cos\left(2\pi(\frac{10}{200})t\right) + 2\cos\left(2\pi(\frac{32}{200}t + 0.3)\right)$$

as Series y

1500

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

Additional Topics in Regression and Time Series Analysis

LASSO

Notes

Spectral Density and Covariance Functions

Spectral density \iff Covariance function

If $\{Y_t\}$ has

 $\sum_{h=-\infty}^{\infty} |\gamma(h)| < \infty$, then its spectral density is

$$f(\omega) = \sum_{h=-\infty}^{\infty} \gamma(h) e^{-2\pi i \omega h}$$

for $-\infty < \omega < \infty$. We have

$$\gamma(h) = \int_{-\frac{1}{2}}^{\frac{1}{2}} e^{2\pi i \omega h} f(\omega) d\omega$$

Smoothing techniques, like those in nonparametric regression, are needed to estimate $f(\omega)$ well

GARCH Models for Volatility

Log-returns, r_t = $\log(\frac{y_t}{y_{t-1}})$, are often modeled instead of daily stock prices, y_t , in financial time series analysis

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) is commonly used to model the dynamics of fluctuations in log-returns to capture volatility clustering.

$$r_t = \mu_t + a_t, \quad a_t = \sigma_t \epsilon_t, \quad \sigma_t^2 = \alpha_0 + \sum_{i=1}^m \alpha_i a_{t-i}^2 + \sum_{j=1}^s \beta_j \sigma_{t-j}^2$$

Notes

Notes

State-Space Model

State: $X_t = M_t X_{t-1} + V_t$, $V_t \stackrel{i.i.d.}{\sim} WN(\mathbf{0}, Q_t)$, $t = 1, 2, \cdots$

Observation: $Y_t = H_t X_t + W_t$, $W_t \stackrel{i.i.d.}{\sim} WN(\mathbf{0}, R_t)$, $t = 1, 2, \cdots$

- ullet $X_t \in \mathbb{R}^p$ and $Y_t \in \mathbb{R}^q$ are the state vector and the observation vector at time t
- M_t is the $p \times p$ transition matrix, and H_t is the $q \times p$ observation matrix
- ullet V_t and W_t are the state and observation noises

Notes

Forecasting, Filtering, and Smoothing

Goal: To estimate the underlying unobserved signal X_t , given the data $\mathbf{Y}_{1:s}$ = $\mathbf{y}_{1:s}$ = $\{\mathbf{y}_1, \mathbf{y}_2, \cdots, \mathbf{y}_s\}$:

- When s < t, the problem is called forecasting or prediction
- When s = t, the problem is called filtering
- When s > t, the problem is called smoothing

In addition to these estimates, we would also want to measure their precision. The solution to these problems is accomplished via the Kalman filter and Kalman smoother

Notes

Notes

The Kalman Filter: General Results

Assume the filtering distribution at time t-1 is

$$\left[\boldsymbol{X}_{t-1}|\boldsymbol{Y}_{1:t-1}\right] \sim \mathrm{N}\left(\boldsymbol{\mu}_{t-1}^{a}, \boldsymbol{\Sigma}_{t-1}^{a}\right)$$

• Forecast Step: Gives the forecast distribution at

$$[\boldsymbol{X}_t|\boldsymbol{Y}_{1:t-1}] \sim \mathcal{N}\left(\boldsymbol{\mu}_t^f, \boldsymbol{\Sigma}_t^f\right),$$

where $\pmb{\mu}_t^f$ = $M_t \pmb{\mu}_{t-1}^a$, and Σ_t^f = $M_t \Sigma_{t-1}^a M_t^T + Q_t$.

• Update Step: updates the forecast distribution using new data Y_t

$$[\boldsymbol{X}_t|\boldsymbol{Y}_{1:t}] \sim \mathrm{N}(\boldsymbol{\mu}_t^a, \boldsymbol{\Sigma}_t^a),$$

where $\boldsymbol{\mu}_{t}^{a} = \boldsymbol{\mu}_{t}^{f} + K_{t} \left(\boldsymbol{Y}_{t} - H_{t} \boldsymbol{\mu}_{t}^{f} \right)$, and

$$\Sigma_t^a = (I - K_t H_t^T) \Sigma_t^f$$
, and

 $K_t = \Sigma_t^f H_t^T \left(H_t \Sigma_t^f H_t^T + R_t \right)^{-1}$

is the Kalman gain matrix

Multivariate Time Series Analysis

All the methods presented for univariate time series also apply to multivariate processes

$$\{\boldsymbol{Y}_t \in \mathbb{R}^p\}$$

• The theory becomes more involved as we generalize to the cross-covariance:

$$Cov(Y_s, Y_t) = C(s, t),$$

where $C(\cdot,\cdot)$ is the $p \times p$ matrix-valued cross-covariance function (CCVF)

• Similarly, in the frequency domain approach, the cross-spectrum is given by:

$$f_{XY}(\omega) = \sum_{h=-\infty}^{\infty} \gamma_{XY}(h)e^{-2\pi i\omega h}$$

Notes			

Vector Autoregressive (VAR) Models

VAR(p) model:

$$Y_t = \mu + A_1 Y_{t-1} + \dots + A_p Y_{t-p} + W_t, \quad t = 0, 1, 2, \dots,$$

where

- $\mathbf{Y}_t = (Y_{1t}, \dots, Y_{pt})^T$ is a $(p \times 1)$ random vector
- ullet A_i are $(p \times p)$ coefficient matrices
- $\bullet \ \, \boldsymbol{\mu} = (\mu_1, \cdots, \mu_p)^T \text{ is the intercept vector }$
- $W_t = (W_{1t}, \cdots, W_{pt})^T$ is a p-dimensional white noise, i.e., $\mathrm{E}[\boldsymbol{W}_t] = \mathbf{0}$, $\mathrm{E}[\boldsymbol{W}_t \boldsymbol{W}_t^T] = \Sigma_{\boldsymbol{W}}$ and $\mathrm{E}[\boldsymbol{W}_s \boldsymbol{W}_t^T] = \mathbf{0}$ for $s \neq t$.

Additional Topics in Regression and Time Series Analysis

Notes

16.19

Time-Frequency Analysis: A Motivation Example

in Regression and Time Series Analysis

Analys

Notes

Time-Frequency Analysis: Spectrogram

A spectrogram is a visual representation of the spectrum of frequencies of a signal as it varies with time

Additional Topics in Regression and Time Series Analysis

Notes

Non-Gaussian Time Series Methods

Some selected references:

- Regression models for time series analysis, Kedem and Fokianos, 2002
- Handbook of discrete-valued time series, edited by Davis, Holan, Lund, Ravishanker, 2016
- Bayesian Dynamic Generalized Linear Models, Gamerman *et. al*, 2016
- Count Time Series: A Methodological Review, Davis et. al., 2021

in F and	ional Topics Regression Time Series Analysis
	MATHEMATICAL AND STATISTICAL SCIENCES

Notes				
Notes				
Notes				
	_	 -	-	