Categorical variables

Encoding categorical variables

When is a variable categorical?

Categorical variables describe qualitative phenomena.

Examples

- Quantitative: Stock price
- **Qualitative**: Industry sector of the stock

Ordered and unordered categorical variables

Categorical variables can either be ordered or unordered.

Examples

- Ordered: "Poor", "Good", "Best"
- **Unordered**: "French", "Indian", "American"

Independent from data type

Numerical values can also be categorical variables.

Examples

• Postal codes: "64295", "55118" (Darmstadt is not 9177 better than Mainz)

Machine learning models for categorical data

Whether categorical values must be transformed depends on the chosen model.

Examples

- Decision trees can use categorical values as cut-offs
- CatBoost got its name from efficiently dealing with categorical variables
- Naive Bayes models work with contingency tables based on categorical values
- However: Most models expect numerical data

One Hot Encoding

Each category value receives a bit.

Person	City
1	DA
2	FFM
3	MZ
4	DA

Person	DA	FFM	MZ
1	1	0	0
2	0	1	0
3	0	0	1
4	1	0	0

Your Task

- Use sklearn.preprocessing.OneHotEncoder to encode categorical data
- OKCupid Data, one-hot encoding for column body_type
- Bonus: Where are the feature names?
- Bonus: What to do with missing values?

One Hot Encoding

As each category gets its own column, we have the equation:

$$e_1 + \ldots + e_k = 1$$

Here each e_i is one column.

Thus, there's linear dependency between columns. This can lead to numerical problems for some algorithms.

Dummy Coding

Solution for linear dependency: One category is implicitly represented by the zero vector.

- In python, two possible implementation: pandas.get_dummies, OneHotEncoder(drop='first')
- Why is sklearn.preprocessing.0neHotEncoder better for machine learning?

Effect Coding

Implicit category is represented by a vector of -1.

- Not used much in practice, only in old textbooks on linear regeression
- Advantage: In linear regression, the intercept becomes the mean of the target variable.
- Python: pandas.get_dummies, then manually adjust values.

Person	DA	FFM
1	1	0
2	0	1
3	-1	-1
4	1	0

Pros and Cons

Method	Pro	Con
One Hot	Missing data gets 0 vector	Redundant
Dummy	Not redundant	What to do with missing data?
Effect	Not redundant, easier interpretability	-1-vector is dense, computationally expensive

Problems with one hot encoding

- Incomplete vocabulary: Due to random sampling, some values just do not make it into your training set.
- Model size due to cardinality: What if you're categorical variable has millions of values, like e.g. a device id?
- Cold start: What to do with values that are not yet there during data
 collection of your training data, but appear later during the serving period?

Your Task

- Apply one-hot encoding to column location.
- Create a train-test split.
- Identify variables not appearing in the training set.

Solution with 'other' category

- Compute frequency per column.
- Categories below frequency cutoff become "other".
- Values not seen yet by the algorithm also go in "other"

Solution with Feature Hashing

- ullet Hash function maps a string to an integer in some range [-m,m]
- During hashing, collisions can appear: Two strings map to the same number

In case of encoding categorical variables:

• Collisions are not a bug, but a feature to reduce feature count

Feature Hashing: Method

For desired n buckets:

- Choose a deterministic hash function (no random seed)
- String → Hash value → (Hash value mod n)

Example with n=16:

- "San Francisco" → 823883475 → 15
- San Francisco receives 1 in the 15th column, else 0.

Feature Hashing: Extended

With (-1) as additional value, we get 2n features in n columns:

• String → Hash value → (Hash value mod 2n) - n

Example:

- "Palo Alto" → 834834297 → -14
- Palo Alto gets -1 in the 14th column, else 0.

Feature Hashing: Summary

- No free lunch: You pay with a decrease of model accurucay due to bucket collision
- Loss of accuracy especially high with skewed inputs. For example, when hashing airports, Heathrow and Frankfurt Hahn can end up in the same category.

Task: Feature Hashing

• Dataset: OK Cupid, column location

• Python: sklearn.feature_extraction.FeatureHasher

Tips:

- Use .unique to find distinct location values.
- Format data according to minimal working example.
- Then apply FeatureHasher.

Bin Counting

Convert category values into statistics about the variable value:

• Instead of sparse one-hot, dense numeric representation.

Bin Counting Example

Starting with counts for user clicks:

User	Clicks	Non-clicks
Alice	5	120
Bob	20	230

Odds Ratio

Calculate 2-way contingency tables to get odds ratio:

• Odds Ratio is

$$\frac{P(Y=1|X=1)/P(Y=0|X=1))}{P(Y=1|X=0)/P(Y=0|X=0)}$$

• In implementations, usually only the numerator is used.

Example: Odds Ratio

	Click	Non-click	Total
Alice	5	120	125
Not Alice	995	18880	19875
Total	1000	19000	20000

Then numerator of the odds ratio for Alice is

$$\frac{P(Y=1|X=1)}{P(Y=0|X=1)} = \frac{5/125}{120/125}$$

Task: Bin Counting

- Calculate numerator odds ratio per device id in Avazu CTR dataset.
- Hint: Use groupby and agg.

Bin Counting for rare categories

- Rare users get grouped in "other".
- Category emerges if count surpasses threshold.

Bin Counting and Leakage

- Direct use of target variable info risks leakage.
- Solution: Three phases during data collection.

