

LINEAR ALGEBRA

SPRING 2024 – SECTIONS L1, L3, L5 QUIZ 3 (1st Feb, 2024)

Max Marks: 10

Time: 8 minutes

Q. Prove the following:

- (a) If $A \underline{X} = B$ represents a system of "m" equations in "m" variables, then prove that the solution is unique if A is invertible.
- (b) Show that: $(A^{-1})^T = (A^T)^{-1}$

LINEAR ALGEBRA

SPRING 2024 – SECTIONS L1, L3, L5

QUIZ 4 (1st Feb 2024)

Max Marks: 10

Time: 6 minutes

Q. Find the value(s) of k for which the system below has (a) exactly one solution (b) no solution:

$$kx + y = 1$$

$$x + ky = 1$$

QUIZ 3 SOLUTIONS

SECTIONS L1, L3, L5 (1:15 – 2:30)

Thursday 1st Feb, 2024

* Part (a)	
Let X1 & X2 be two solvions	* Part (b)
Such that	kk know that
AXI = 8 (1)	I = I
	→
$A \times_2 = B \longrightarrow \widehat{a}$	(AA-1) = I-D; Since A-1/A=I
On compaing 1) & 1 , we get	Applying transfore on both sides, we get
$A \times I = A \times 2 $	$(AA^{-1})^T = (I)^T$
Further are know that A & investige	$\Rightarrow A^{T}(A^{-1})^{T} = I \qquad \therefore (AB)^{T} = B^{T}A^{T} & I^{T} = I$ $\Rightarrow (A^{T})^{-1} A^{T}(A^{-1})^{T} = (A^{T})^{-1} I$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
which proxes to required yealt	- T ((1) = (1)
which promes the required vesult	which proves the required result
<u>OR</u>	
We know that A' is uneque	-
Therefore,	
$A \times = B \Rightarrow A^{-1}(A \times) = A^{-1}B$	-
⇒ IX = A ⁻¹ B ⇒ X = A ⁻¹ B 2 unique	

QUIZ 4 SOLUTIONS L1, L3, L5 (1:15 – 2:30) Thursday 1st Feb

Question 01:

Since A has first column consisting of zeros only, A is not invertible.

Question 02:

(1) FOR EXACTLY ONE SOLUTION 1 MUST BE TRANSFORMED INTO THE ECHELON FORM BY MAKING THE ENTRY (2,2) ONE BY PERFOR-R2 -> R2 > K + 1 - FOR ONE SOLUTION. USING K = -1 IN O GIVES $\begin{bmatrix}
1 & K & | & 1 \\
0 & | & | & |
\end{bmatrix} = \begin{bmatrix}
1 & K & | & 1 \\
0 & 0 & | & 2
\end{bmatrix}, so we$ HAVE NO SOLUTION FOR K=-SECOND ROW GIVES O-2 WHICH IS NOT POSSIBLE.

LINEAR ALGEBRA

SPRING 2024 – SECTIONS L2, L4, L6

QUIZ 4 (1st Feb 2024)

Max Marks: 10

Time: 8 minutes

Q. 1 Consider the matrix
$$A = \begin{bmatrix} 1 & 0 \\ -5 & 2 \end{bmatrix}$$
, find the two elementary matrices E_1 and E_2 such that $E_2E_1A = I$.

Q. 2 Let Ax = 0 be a homogenous system of n linear equations in n variables that has only the trivial solution. Show that if k is any positive integer, then the system $A^kx = 0$ also has only the trivial solution.

QUIZ 4 SOLUTIONS **L2, L4, L6** (3:30 – 4:45) Thursday 1st Feb

Question 01:

Solution: $E_2E_1A = I$

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1/2 \end{array}\right] \left[\begin{array}{cc} 1 & 0 \\ 5 & 1 \end{array}\right] \left[\begin{array}{cc} 1 & 0 \\ -5 & 2 \end{array}\right] = I_2$$

Question 02:

Since Ax = has only x = 0 as a solution, Theorem 1.6.4 guarantees that A is invertible. By Theorem 1.4.8 (b), A^k is also invertible. In fact,

$$\left(A^k\right)^{-1} = \left(A^{-1}\right)^k$$

Since the proof of Theorem 1.4.8 (b) was omitted, we note that

$$\underbrace{A^{-1}A^{-1}\cdots A^{-1}}_{k} \underbrace{AA\cdots A}_{k} = I$$
factors
factors

Because A^k is invertible, Theorem 1.6.4 allows us to conclude that $A^kX = \mathbf{0}$ has only the trivial solution.