Week 7

Juan Patricio Carrizales Torres Section 4: Indexed Collctions of Sets

September 06, 2021

Problem 37. Let $A = \{1, 2, 5\}$, $B = \{0, 2, 4\}$, $C = \{2, 3, 4\}$ and $S = \{A, B, C\}$. Determine $\bigcup_{X \in S} X$ and $\bigcap_{X \in S} X$.

Solution . The set of all elements that belong to at least one of the sets in S.

$$\bigcup_{X \in S} X = A \cup B \cup C = \{0, 1, \dots, 5\}.$$

The set of all elements that belong to every set in S.

$$\bigcap_{X \in S} X = A \cap B \cap C = \{2\}.$$

Problem 38. For a real number r, define $A_r = \{r^2\}$, B_r as the closed interval [r-1, r+1] and C_r as the interval (r, ∞) . For $S = \{1, 2, 4\}$, determine

(a)
$$\bigcup_{\alpha \in S} A_{\alpha}$$
 and $\bigcap_{\alpha \in S} A_{\alpha}$.

Solution a.
$$A_1 = \{1\}, A_2 = \{4\} \text{ and } A_4 = \{16\}.$$

 $\bigcup_{\alpha \in S} A_{\alpha} = A_1 \cup A_2 \cup A_4 = \{1, 4, 16\}.$
 $\bigcap_{\alpha \in S} A_{\alpha} = A_1 \cap A_2 \cap A_4 = \emptyset.$

(b)
$$\bigcup_{\alpha \in S} B_{\alpha}$$
 and $\bigcap_{\alpha \in S} B_{\alpha}$.

Solution b.
$$B_1 = [0, 2], B_2 = [1, 3] \text{ and } B_4 = [3, 5].$$

 $\bigcup_{\alpha \in S} B_{\alpha} = B_1 \cup B_2 \cup B_4 = [0, 5].$
 $\bigcap_{\alpha \in S} B_{\alpha} = B_1 \cap B_2 \cap B_4 = \emptyset \text{ (since } B_1 \cap B_4 = \emptyset).$

(c)
$$\bigcup_{\alpha \in S} C_{\alpha}$$
 and $\bigcap_{\alpha \in S} C_{\alpha}$.

Solution c.
$$C_1 = (1, \infty), C_2 = (2, \infty) \text{ and } C_4 = (4, \infty).$$

 $\bigcup_{\alpha \in S} C_{\alpha} = C_1 \cup C_2 \cup C_4 = (1, \infty).$
 $\bigcap_{\alpha \in S} C_{\alpha} = C_1 \cap C_2 \cap C_4 = (4, \infty).$

Problem 39. Let $A = \{a, b, ..., z\}$ be the set consisting of the letters of the alphabet. For $\alpha \in A$, let A_{α} consist of α and the two letters that follow it, where $A_y = \{y, z, a\}$ and $A_z = \{z, a, b\}$. Find a set $S \subseteq A$ of smallest cardinality such that $\bigcup_{\alpha \in S} A_{\alpha} = A$. Explain why your set S has the required properties.

Solution. Since |A|=26 and $|A_{\alpha}|=3$ for every $\alpha\in S$, at least 9 subsets A_{α} are needed (the greatest multiple of 3 nearest to 26 is 27) for their union to be the set A. Let, $S=\{a,d,g,j,m,p,s,v,y\}$. A majority of 8 subsets contains three different letters and one contains 2 different and one repeated letters, namely $A_y=\{y,z,a\}$.

Problem 40. For $i \in \mathbb{Z}$, let $A_i = \{i - 1, i + 1\}$. Determine the following:

(a)
$$\bigcup_{i=1}^{5} A_{2i}$$

Solution a. Since each set $A_{2i} = \{2i - 1, 2i + 1\}$, it follows that $\bigcup_{i=1}^{5} A_{2i}$ contains the odd numbers that precede and follow each of the first 5 positive multiples of 2.

$$\bigcup_{i=1}^{5} A_{2i} = \{1, 3, 5, 7, 9, 11\}$$

(b)
$$\bigcup_{i=1}^{5} (A_i \cap A_{i+1})$$

Solution b. Because $A_i = \{i-1, i+1\}$ and $A_{i+1} = \{i, i+2\}$, it follows that $A_i \cap A_{i+1} = \emptyset$ for every $i \in \mathbb{Z}$. Thus,

$$\bigcup_{i=1}^{5} (A_i \cap A_{i+1}) = \emptyset$$

(c)
$$\bigcup_{i=1}^{5} (A_{2i-1} \cap A_{2i+1})$$

Solution c. Since $A_{2i-1} = \{2(i-1), 2i\}$ and $A_{2i+1} = \{2i, 2(i+1)\}$, it follows that $A_{2i-1} \cap A_{2i+1} = \{2i\}$. Let $B = \{1, 2, ..., 5\}$. Therefore,

$$\bigcup_{i=1}^{5} (A_{2i-1} \cap A_{2i+1}) = \{2i : i \in B\} = \{2, 4, 6, 8, 10\}$$

Problem 41. For each of the following, find an indexed collection $\{A_n\}_{n\in\mathbb{N}}$ of distinct sets (that is, no two sets are equal) satisfying the given conditions.

(a)
$$\bigcap_{n=1}^{\infty} A_n = \{0\}$$
 and $\bigcup_{n=1}^{\infty} A_n = [0, 1]$

Solution a. Let the indexed collection of sets be $\{A_n\}_{n\in\mathbb{N}}$, where $A_n = \{x \in \mathbb{R} : 0 \le x \le \frac{1}{n}\} = \left[0, \frac{1}{n}\right]$.

The intersection $\bigcap_{n=1}^{\infty} A_n = \{0\}$ since $A_n = \left[0, \frac{1}{n}\right]$ and

$$\lim_{n \to \infty} A_n = \{0\}$$

The union $\bigcup_{n=1}^{\infty} A_n = [0,1]$ mainly because $A_1 = [0,1]$ (For all positive integers n > 1, the positive number 1/n < 1).

(b)
$$\bigcap_{n=1}^{\infty} A_n = \{-1, 0, 1\}$$
 and $\bigcup_{n=1}^{\infty} A_n = \mathbb{Z}$

Solution b. Let the indexed collection of sets be $\{A_n\}_{n\in\mathbb{N}}$, where $A_n = \{x \in \mathbb{Z} : |x| \le n\}$. The intersection $\bigcap_{n=1}^{\infty} A_n = \{-1,0,1\}$ since $A_n = \{x \in \mathbb{Z} : -n \le x \le n\}$ and $A_1 = \{-1,0,1\}$.

The union $\bigcup_{n=1}^{\infty} A_n = \mathbb{Z}$ mainly because

$$\lim_{n \to \infty} A_n = \{ \dots, -1, 0, 1, \dots \} = \mathbb{Z}$$

Problem 42. For each of the following collections of sets, define a set A_n for each $n \in \mathbb{N}$ such that the indexed collection $\{A_n\}_{n\in\mathbb{N}}$ is precisely the given collection of sets. Then find both the union and intersection of the indexed collections of sets.

(a)
$$\{[1, 2+1), [1, 2+1/2), [1, 2+1/3), \ldots\}$$

Solution a. Let the indexed collection be $\{A_n\}_{n\in\mathbb{N}}$, where $A_n=\{x\in\mathbb{R}:1\leq x<2+1/n\}=[1,2+1/n)$.

The union $\bigcup_{n\in\mathbb{N}} A_n = [1,2+1) = [1,3)$ since $A_1 = [1,2+1) = [1,3)$. The value of the positive number 1/n decreases as the positive integer n increases $(n \in \mathbb{N})$.

The intersection $\bigcap_{n\in\mathbb{N}} A_n = [1,2)$ because $A_n = [1,2+1/n)$ and

$$\lim_{n \to \infty} A_n = [1, 2+0) = [1, 2)$$

(b)
$$\{(-1,2), (-3/2,4), (-5/3,6), (-7/4,8), \ldots\}$$

Solution b. Let the indexed collection be $\{A_n\}_{n\in\mathbb{N}}$, where

$$A_n = \left\{ x \in \mathbb{R} : \frac{-2n+1}{n} < x < 2n \right\} = \left(\frac{-2n+1}{n}, 2n\right)$$

Certainly, for $n \in \mathbb{N}$,

$$\lim_{n \to \infty} A_n = \left(\lim_{n \to \infty} \frac{-2n+1}{n}, \lim_{n \to \infty} 2n\right)$$
$$= \left(-2 + \lim_{n \to \infty} \frac{1}{n}, \infty\right)$$
$$= (-2, \infty)$$

It is understood that for $a, b \in \mathbb{N}$, if a > b, then $A_b \subseteq A_a$.

Therefore, the union $\bigcup_{n\in\mathbb{N}} A_n = (-2, \infty)$.

Also, the intersection $\bigcap_{n\in\mathbb{N}} A_n = A_1 = (-1,2)$.

Problem 43. For $r \in \mathbb{R}^+$, let $A_r = \{x \in \mathbb{R} : |x| < r\}$. Determine $\bigcup_{r \in \mathbb{R}^+} A_r$ and $\bigcap_{r \in \mathbb{R}^+} A_r$.

Solution . Certainly, for every $r \in \mathbb{R}^+$,

$$A_r = \{ x \in \mathbb{R} : |x| < r \} = \{ x \in \mathbb{R} : -r < x < r \} = (-r, r)$$

It is understood that for $a, b \in \mathbb{R}^+$, if a > b, then $A_b \subseteq A_a$; In fact, for $r \in \mathbb{R}^+$,

$$\lim_{r\to\infty} A_r = (-\infty, \infty)$$

Therefore, the union $\bigcup_{r \in \mathbb{R}^+} A_r = (-\infty, \infty) = \mathbb{R}$. Also, the intersection $\bigcap_{r \in \mathbb{R}^+} A_r = \{0\}$ since $0 \in A_r$ for every $r \in \mathbb{R}^+$.

Problem 44. Each of the following sets is a subset of $A = \{1, 2, ..., 10\}$:

 $A_1 = \{1, 5, 7, 9, 10\}, A_2 = \{1, 2, 3, 8, 9\}, A_3 = \{2, 4, 6, 8, 9\},\$

 $A_4 = \{2, 4, 8\}, A_5 = \{3, 6, 7\}, A_6 = \{3, 8, 10\}, A_7 = \{4, 5, 7, 9\},$

 $A_8 = \{4, 5, 10\}, A_9 = \{4, 6, 8\}, A_{10} = \{5, 6, 10\},$

 $A_{11} = \{5, 8, 9\}, A_{12} = \{6, 7, 10\}, A_{13} = \{6, 8, 9\}.$

Find a set $I \subseteq \{1, 2, ..., 13\}$ such that for every two distinct elements $j, k \in I$, $A_j \cap A_k = \emptyset$ and $\bigcup_{i \in I} A_i$ is maximum.

Problem 45. For $n \in \mathbb{N}$, let $A_n = \left(-\frac{1}{n}, 2 - \frac{1}{n}\right)$. Determine $\bigcup_{n \in \mathbb{N}} A_n$ and $\bigcap_{n \in \mathbb{N}} A_n$.

Solution. For every $a, b \in \mathbb{N}$, if a > b, then 1/b > 1/a. Also, for $n \in \mathbb{N}$,

$$A_1 = (-1, 1)$$
 and $\lim_{n \to \infty} A_n = (0, 2)$

Therefore, as n increases, the left and right endpoints of the interval A_n approach from the left, respectively, 0 and 2.

Certainly, the union $\bigcup_{n\in\mathbb{N}} A_n = (-1,2)$.

Also, the intersection $\bigcap_{n\in\mathbb{N}} A_n = [0,1)$ since $[0,1)\subseteq A_n$ for every $n\in\mathbb{N}$.