

Figure 3.3: Activity u (solid lines) with h = W(10), w defined in (1.6) with A = 2, k = 0.08 and  $\alpha = \frac{\pi}{10}$  and invariant external input S(dashed lines) with  $S_s = 8$  and  $S_i = 0.5$  and different widths,  $\sigma = 0.4$  (left),  $\sigma = 3$  (middle),  $\sigma = 13$  (right).  $S(x) \neq 0$  (top) and S(x) = 0 (bottom).

The proof of this Theorem is given in Appendix A.

Note that since w(x) < 0 for  $z_1 < x < z_2$  the equilibrium local excitation of width  $a^*$  is stable.

The following numerical example shows the range of input widths that lead to a stable one-bump. Consider the coupling function w given by (1.6) with A=2, k=0.08, and  $\alpha=\frac{\pi}{10}, \ h=W(10), \ \text{and} \ S(x)$  given by (3.5) with  $S_s=8, \ S_i=0.5$  and  $\sigma>0$ . In this example, S(0)=7.5>W(10), thus by Theorem 3 if  $S\left(\frac{z_1}{2}\right)>0$  and  $S\left(\frac{z_2}{2}\right)<0$  there exists a value  $a^*\in(z_1,z_2)$  such that  $W(10)-S\left(\frac{a^*}{2}\right)=W(a^*)$ . Figure 3.5 shows the values of  $S\left(\frac{z_1}{2}\right)$  and  $S\left(\frac{z_2}{2}\right)$  as a function of  $\sigma\in[0,6]$ . Since  $S\left(\frac{z_1}{2}\right)>0$  at  $\sigma>1.1156$  and  $S\left(\frac{z_2}{2}\right)<0$  at  $\sigma<3.2389$ , we can conclude that for  $1.1156<\sigma<3.2389$  there exists  $a^*\in(z_1,z_2)$  such that  $W(10)-S\left(\frac{a^*}{2}\right)=W(a^*)$ .

It is easy to see that the excitation pattern generated by the input is in the basis of attractor of the equilibrium width solution  $a = \frac{\pi}{\alpha}$  when the input is removed. Let  $a^*(t)$  be the width of the excited region at time t, the equation with S(x,t) = 0 that describes the change of width is given by

$$\frac{da^*}{dt} = \frac{1}{\tau c} [W(a^*) - h] \tag{3.14}$$