Maths - automne 2009

Fonctions de plusieurs variables

Consignes

- L'épreuve dure 2h et comporte 5 questions.
- L'usage de la calculatrice est interdit (et inutile).
- Rédigez clairement vos solutions en explicitant votre raisonnement et mentionnant les résultats utilisés.
- Bon succès!

Contrexemples

1. Soit $f: \mathbf{R}^2 \to \mathbf{R}$ la fonction définie par

$$f(x,y) = \begin{cases} xy \sin \frac{1}{x^2 + y^2} & \text{si } (x,y) \neq (0,0), \\ 0 & \text{sinon.} \end{cases}$$

- a) Calculer les dérivées partielles de f et montrer qu'elles ne sont pas continues en (0,0).
- b) Montrer que f est o $(\sqrt{x^2+y^2})$ à l'origine et conclure qu'elle y est différentiable.
- c) Cela est-il compatible avec les résultats vus en classe?
- 2. Soit $f: \mathbf{R}^2 \to \mathbf{R}$ la fonction définie par

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & \text{si } (x,y) \neq (0,0), \\ 0 & \text{sinon.} \end{cases}$$

- a) Calculer les dérivées partielles $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ et montrer qu'elles sont partout continues.
- b) Montrer que les dérivées secondes mixtes $\frac{\partial^2 f}{\partial x \partial y}$ et $\frac{\partial^2 f}{\partial y \partial x}$ existent en (0,0) mais ne sont pas égales.
- c) Cela contredit-il un résultat vu en classe?

Laplacien et fonctions harmoniques

Le la placien d'une fonction f de classe \mathcal{C}^2 sur un ouver t U de \mathbf{R}^n est la fonction continue $\Delta f: U \to \mathbf{R}$ définie comme

$$\Delta f = \frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} + \dots + \frac{\partial^2 f}{\partial x_n^2}.$$

3. a) Si f et g sont deux fonctions de classe C^2 sur U, établir les identités

$$\Delta(f+g) = \Delta f + \Delta g,$$
 $\Delta(fg) = (\Delta f)g + 2\nabla f \cdot \nabla g + f(\Delta g).$

b) Si $f: \mathbf{R} \to \mathbf{R}$ et $g: \mathbf{R}^n \to \mathbf{R}$ sont des fonctions de classe \mathcal{C}^2 , montrer que

$$\Delta(f \circ g) = (f'' \circ g) \sum_{i=1}^{n} \left(\frac{\partial g}{\partial x_i}\right)^2 + (f' \circ g) \Delta g.$$

- 4. Soit $T: \mathbf{R}^2 \to \mathbf{R}^2$ la transformation $T(r, \theta) = (r\cos\theta, r\sin\theta)$. Si l'on a une fonction $f: \mathbf{R}^2 \to \mathbf{R}$, la composée $F = f \circ T$ est "f exprimée en coordonnées polaires".
- a) Calculer la matrice jacobienne de T et l'utiliser pour exprimer $\frac{\partial F}{\partial r}$ et $\frac{\partial F}{\partial \theta}$ en termes de $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$.
- b) En faisant une restriction convenable du domaine si nécessaire, obtenir à partir de a) que

$$\mathbf{\nabla} f = \frac{\partial F}{\partial r} \mathbf{u} + \frac{1}{r} \frac{\partial F}{\partial \theta} \mathbf{v},$$

où $\mathbf{u} = (\cos \theta, \sin \theta)$ et $\mathbf{v} = (-\sin \theta, \cos \theta)$.

c) En déduire l'expression du laplacien en coordonnées polaires :

$$\Delta f = \frac{\partial^2 F}{\partial r^2} + \frac{1}{r} \frac{\partial F}{\partial r} + \frac{1}{r^2} \frac{\partial^2 F}{\partial \theta^2}$$

- 5. Une fonction de classe C^2 est dite harmonique si son laplacien est nul. Dans ce problème nous déterminons, en toute dimension n, quelles sont les fonctions harmoniques ne dépendant que de la distance à l'origine.
- a) Soit $\rho: \mathbf{R}^n \setminus \{\mathbf{0}\} \to \mathbf{R}$ la fonction définie par $\rho(\mathbf{x}) = ||\mathbf{x}||$. Montrer qu'elle est de classe \mathcal{C}^2 et que l'on a :

$$\frac{\partial \rho}{\partial x_i} = \frac{x_i}{\rho}, \qquad \frac{\partial^2 \rho}{\partial x_i^2} = \frac{\rho^2 - x_i^2}{\rho^3}, \qquad i = 1, \dots, n.$$

En déduire une expression simple pour le la placien de $\rho.$

b) Soit $f: \mathbf{R}_{>0} \to \mathbf{R}$ une fonction de classe C^2 et considérons $F = f \circ \rho$. En utilisant 3 b), montrer que F est harmonique si et seulement si f est une solution de l'équation différentielle

$$f''(t) + \frac{n-1}{t}f'(t) = 0.$$

c) En interprétant l'équation précédente comme une équation différentielle pour la dérivée f' de f, montrer qu'elle doit être de la forme

$$f'(t) = At^{1-n}$$

où A est une constante.

d) Conclure:

$$\Delta F = 0 \iff F = \begin{cases} B\rho + C & \text{si } n = 1, \\ B\log\rho + C & \text{si } n = 2, \\ B\frac{1}{\rho^{n-2}} + C & \text{si } n \geqslant 3, \end{cases}$$

où B et C sont des constantes.