Edge Detection

CS485/685 Computer Vision Dr. George Bebis

Definition of Edges

• Edges are significant local changes of intensity in an image.

What Causes Intensity Changes?

- Geometric events
 - surface orientation (boundary) discontinuities
 - depth discontinuities
 - color and texture discontinuities
- Non-geometric events
 - illumination changes
 - specularities
 - shadows
 - inter-reflections

surface normal discontinuity

depth discontinuity

color discontinuity

illumination discontinuity

Goal of Edge Detection

• Produce a line "drawing" of a scene from an image of that scene.

Why is Edge Detection Useful?

- Important features can be extracted from the edges of an image (e.g., corners, lines, curves).
- These features are used by higher-level computer vision algorithms (e.g., recognition).

Effect of Illumination

Edge Descriptors

- Edge direction:

 perpendicular to the direction
 of maximum intensity change
 (i.e., edge normal)
- Edge strength: related to the local image contrast along the normal.
- Edge position: the image position at which the edge is located.

Modeling Intensity Changes

• Step edge: the image intensity abruptly changes from one value on one side of the discontinuity to a different value on the opposite side.

Modeling Intensity Changes (cont'd)

• Ramp edge: a step edge where the intensity change is not instantaneous but occur over a finite distance.

Modeling Intensity Changes (cont'd)

• Ridge edge: the image intensity abruptly changes value but then returns to the starting value within some short distance (i.e., usually generated by lines).

Modeling Intensity Changes (cont'd)

• Roof edge: a ridge edge where the intensity change is not instantaneous but occur over a finite distance (i.e., usually generated by the intersection of two surfaces).

Main Steps in Edge Detection

(1) Smoothing: suppress as much noise as possible, without destroying true edges.

(2) Enhancement: apply differentiation to enhance the quality of edges (i.e., sharpening).

Main Steps in Edge Detection (cont'd)

(3) Thresholding: determine which edge pixels should be discarded as noise and which should be retained (i.e., threshold edge magnitude).

(4) Localization: determine the exact edge location.

sub-pixel resolution might be required for some applications to estimate the location of an edge to better than the spacing between pixels.

Edge Detection Using Derivatives

- Often, points that lie on an edge are detected by:
 - (1) Detecting the local <u>maxima</u> or <u>minima</u> of the first derivative.
 - (2) Detecting the <u>zero-crossings</u> of the second derivative.

Image Derivatives

- How can we differentiate a *digital* image?
 - Option 1: reconstruct a continuous image, f(x,y), then compute the derivative.
 - Option 2: take discrete derivative (i.e., finite differences)

Consider this case first!

Edge Detection Using First Derivative

1D functions

(not centered at x)

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \approx f(x+1) - f(x) \quad (h=1)$$
 mask: [-1 1]

$$mask M = [-1, 0, 1]$$

(centered at x)

(upward) step edge

S_1			12	12	12	12	12	24	24	24	24	24
S_1	8	M	0	0	0	0	12	12	0	0	0	0

(downward) step edge

S_2			24	24	24	24	24	12	12	12	12	12
S_2	8	M	0	0	0	0	-12	-12	0	0	0	0

ramp edge

S_3			12	12	12	12	15	18	21	24	24	24
S_3	8	M	0	0	0	3	6	6	6	3	0	0

roof edge

S_4			12	12	12	12	24	12	12	12	12	12
S_4	8	M	0	0	0	12	0	-12	0	0	0	0

Edge Detection Using Second Derivative

• Approximate finding maxima/minima of gradient magnitude by finding places where:

$$\frac{df^2}{dx^2}(x) = 0$$

• Can't always find discrete pixels where the second derivative is zero – look for zero-crossing instead.

1D functions:

$$f''(x) = \lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h} \approx f'(x+1) - f'(x) =$$
$$f(x+2) - 2f(x+1) + f(x) \quad (h=1)$$

(centered at x+1)

Replace x+1 with x (i.e., centered at x):

$$f''(x) \approx f(x+1) - 2f(x) + f(x-1)$$

mask:

[1 -2 1]

(upward) step edge

S_1			12	12	12	12	12	24	24	24	24	24
S_1	8	M	0	0	0	0	-12	12	0	0	0	0

(downward) step edge

S_2			24	24	24	24	24	12	12	12	12	12
S_2	8	M	0	0	0	0	12	-12	0	0	0	0

ramp edge

S_3			12	12	12	12	15	18	21	24	24	24
S_3	8	M	0	0	0	-3	0	0	0	3	0	0

roof edge

S_4			12	12	12	12	24	12	12	12	12	12
S_4	8	M	0	0	0	-12	24	-12	0	0	0	0

• Four cases of zero-crossings:

$$\{+,-\}, \{+,0,-\}, \{-,+\}, \{-,0,+\}$$

- Slope of zero-crossing {a, -b} is: |a+b|.
- To detect "strong" zero-crossing, threshold the slope.

Effect Smoothing on Derivates

Effect of Smoothing on Derivatives (cont'd)

Combine Smoothing with Differentiation

$$\frac{\partial}{\partial x}(h\star f)=(\frac{\partial}{\partial x}h)\star f$$
 (i.e., saves one operation)

f

$$(\frac{\partial}{\partial x}h)\star f$$

Mathematical Interpretation of combining smoothing with differentiation

- Numerical differentiation is an ill-posed problem.
 - i.e., solution does not exist or it is not unique or it does not depend continuously on initial data)
- Ill-posed problems can be solved using "regularization"
 - i.e., impose additional constraints
- Smoothing performs image interpolation.

Edge Detection Using First Derivative (Gradient)

2D functions:

• The first derivate of an image can be computed using the gradient:

$$\nabla f \\ grad(f) = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix}$$

Gradient Representation

• The gradient is a vector which has magnitude and direction:

$$magnitude(grad(f)) = \sqrt{\frac{\partial f^{2}}{\partial x} + \frac{\partial f^{2}}{\partial y}}$$
$$direction(grad(f)) = \tan^{-1}(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x})$$

(approximation)

or $\left| \frac{\partial f}{\partial x} \right| + \left| \frac{\partial f}{\partial y} \right|$

- Magnitude: indicates edge strength.
- **Direction:** indicates edge direction.
 - i.e., perpendicular to edge direction

Approximate Gradient

Approximate gradient using finite differences:

$$\frac{\partial f}{\partial x} = \lim_{h \to \infty} \frac{f(x+h,y) - f(x,y)}{h}$$

$$\frac{\partial f}{\partial y} = \lim_{h \to \infty} \frac{f(x,y+h) - f(x,y)}{h}$$

$$\frac{\partial f}{\partial y} = \lim_{h \to 0} \frac{f(x, y+h) - f(x, y)}{h}$$

$$\frac{\partial f}{\partial x} = \frac{f(x + h_x, y) - f(x, y)}{h_y} = f(x + 1, y) - f(x, y), \ (h_x = 1)$$

$$\frac{\partial f}{\partial y} = \frac{f(x, y + h_y) - f(x, y)}{h_y} = f(x, y + 1) - f(x, y), \ (h_y = 1)$$

Approximate Gradient (cont'd)

- Cartesian vs pixel-coordinates:
 - *j* corresponds to *x* direction
 - i to -y direction

$$f(x+1,y) - f(x,y)$$
 $\longrightarrow \frac{\partial f}{\partial x} = f(i,j+1) - f(i,j)$

$$f(x, y+1) - f(x, y),$$

$$\frac{\partial f}{\partial y} = f(i, j) - f(i+1, j)$$

Approximate Gradient (cont'd)

sensitive to horizontal edges!

 $\frac{\partial f}{\partial y}$

 $\frac{\partial f}{\partial y}$

Approximating Gradient (cont'd)

• We can implement $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ using the following masks:

Approximating Gradient (cont'd)

A different approximation of the gradient:

$$\frac{\partial f}{\partial x}(x, y) = f(x, y) - f(x+1, y+1)$$
$$\frac{\partial f}{\partial y}(x, y) = f(x+1, y) - f(x, y+1),$$

•
$$\frac{\partial f}{\partial x}$$
 and

$$\frac{\partial f}{\partial y}$$

• $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ can be implemented using the following masks:

Another Approximation

• Consider the arrangement of pixels about the pixel (i, j):

3 x 3 neighborhood:
$$a_0$$
 a_1 a_2 a_7 $[i, j]$ a_3 a_6 a_5 a_4

• The partial derivatives $\frac{\partial f}{\partial x}$ $\frac{\partial f}{\partial y}$ can be computed by:

$$M_x = (a_2 + ca_3 + a_4) - (a_0 + ca_7 + a_6)$$

 $M_y = (a_6 + ca_5 + a_4) - (a_0 + ca_1 + a_2)$

• The <u>constant c</u> implies the emphasis given to pixels closer to the center of the mask.

Prewitt Operator

• Setting c = 1, we get the Prewitt operator:

$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \qquad M_y = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

 M_x and M_y are approximations at (i, j)

Sobel Operator

• Setting c = 2, we get the Sobel operator:

$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \qquad M_y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

 M_x and M_y are approximations at (i, j)

Edge Detection Steps Using Gradient

(1) Smooth the input image $(\hat{f}(x, y) = f(x, y) * G(x, y))$

(2)
$$\hat{f}_x = \hat{f}(x, y) * M_x(x, y) \longrightarrow \frac{\partial f}{\partial x}$$

(3)
$$\hat{f}_y = \hat{f}(x, y) * M_y(x, y) \longrightarrow \frac{\partial f}{\partial y}$$

(4)
$$magn(x, y) = |\hat{f}_x| + |\hat{f}_y|$$
 (i.e., sqrt is costly!)

(5)
$$dir(x, y) = \tan^{-1}(\hat{f}_y/\hat{f}_x)$$

(6) If magn(x, y) > T, then possible edge point

Example (using Prewitt operator)

$$M_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \qquad M_{y} = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

$$f_{X} = ((65-38)/2 + (64-14)/2 + (42-12)/2)/3$$

$$= (13 + 25 + 15)/3 = 18$$

$$\theta = \tan^{1}(16/18) = 0.727 \text{ rad}$$

$$= 42 \text{ degrees}$$

$$|\nabla f| = (16^{2} + 18^{2})^{1/2} = 24$$

Note: in this example, the divisions by 2 and 3 in the computation of f_x and f_y are done for normalization purposes only

Another Example

Another Example (cont'd)

$$\nabla = \sqrt{\left(\frac{d}{dx}I\right)^2 + \left(\frac{d}{dy}I\right)^2}$$

Isotropic property of gradient magnitude

• The magnitude of the gradient detects edges in all directions.

$$\nabla = \sqrt{\left(\frac{d}{dx}I\right)^2 + \left(\frac{d}{dy}I\right)^2}$$

Practical Issues

- Noise suppression-localization tradeoff.
 - Smoothing depends on mask size (e.g., depends on σ for Gaussian filters).
 - Larger mask sizes reduce noise, but worsen localization (i.e., add uncertainty to the location of the edge) and vice versa.

smaller mask

Practical Issues (cont'd)

• Choice of threshold.

low threshold

gradient magnitude

high threshold

Practical Issues (cont'd)

• Edge thinning and linking.

Criteria for Optimal Edge Detection

(1) Good detection

- Minimize the probability of <u>false positives</u> (i.e., spurious edges).
- Minimize the probability of <u>false negatives</u> (i.e., missing real edges).

(2) Good localization

Detected edges must be as close as possible to the true edges.

• (3) Single response

- Minimize the number of local maxima around the true edge.

Canny edge detector

• Canny has shown that the **first derivative of the Gaussian** closely approximates the operator that optimizes the product of <u>signal-to-noise</u> ratio and <u>localization</u>.

(i.e., analysis based on "step-edges" corrupted by "Gaussian noise")

J. Canny, *A Computational Approach To Edge Detection*, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

Steps of Canny edge detector

Algorithm

1. Compute f_x and f_y

$$f_x = \frac{\partial}{\partial x} (f * G) = f * \frac{\partial}{\partial x} G = f * G_x$$

$$f_y = \frac{\partial}{\partial y} (f * G) = f * \frac{\partial}{\partial y} G = f * G_y$$

G(x, y) is the Gaussian function

$$G_x(x, y)$$
 is the derivate of $G(x, y)$ with respect to x : $G_x(x, y) = \frac{-x}{\sigma^2} G(x, y)$

$$G_y(x, y)$$
 is the derivate of $G(x, y)$ with respect to y: $G_y(x, y) = \frac{-y}{\sigma^2} G(x, y)$

Steps of Canny edge detector (cont'd)

2. Compute the gradient magnitude (and direction)

$$magn(x, y) = |\hat{f}_x| + |\hat{f}_y| dir(x, y) = tan^{-1}(\hat{f}_y/\hat{f}_x)$$

- Apply non-maxima suppression.
- 4. Apply hysteresis thresholding/edge linking.

Canny edge detector - example

original image

Canny edge detector – example (cont'd)

Gradient magnitude

Canny edge detector – example (cont'd)

Thresholded gradient magnitude

Canny edge detector – example (cont'd)

Thinning (non-maxima suppression)

Non-maxima suppression

• Check if gradient magnitude at pixel location (i,j) is local maximum along gradient direction

Non-maxima suppression (cont'd)

<u>Warning:</u> requires checking interpolated pixels p and r


```
Algorithm

For each pixel (i,j) do:

if magn(i, j) < magn(i_1, j_1) or magn(i, j) < magn(i_2, j_2)
then I_N(i, j) = 0
else I_N(i, j) = magn(i, j)
```

Hysteresis thresholding

• Standard thresholding:

$$E(x,y) = \left\{ \begin{array}{ll} 1 & \text{if } \|\nabla f(x,y)\| > T \text{ for some threshold } T \\ 0 & \text{otherwise} \end{array} \right.$$

- Can only select "strong" edges.
- Does not guarantee "continuity".

Pa no an fi

gradient magnitude

high threshold

Hysteresis thresholding (cont'd)

- Hysteresis thresholding uses two thresholds:
 - low threshold t_1
 - high threshold t_h (usually, $t_h = 2t_l$)

$$\begin{aligned} & \|\nabla f(x,y)\| \geq \ \mathbf{t_h} & \text{ definitely an edge} \\ & \mathbf{t_l} \geq \|\nabla f(x,y)\| < \ \mathbf{t_h} & \text{ maybe an edge, depends on context} \\ & \|\nabla f(x,y)\| < \ \mathbf{t_l} & \text{ definitely not an edge} \end{aligned}$$

• For "maybe" edges, decide on the edge if neighboring pixel is a strong edge.

Hysteresis thresholding/Edge Linking

Idea: use a **high** threshold to start edge curves and a **low** threshold to continue them.

Hysteresis Thresholding/Edge Linking (cont'd)

Algorithm

1. Produce two thresholded images $I_1(i, j)$ and $I_2(i, j)$. (using t_l and t_h)

(note: since $I_2(i, j)$ was formed with a high threshold, it will contain fewer false edges but there might be gaps in the contours)

- 2. Link the edges in $I_2(i, j)$ into contours
 - 2.1 Look in $I_1(i, j)$ when a gap is found.
 - 2.2 By examining the 8 neighbors in $I_1(i, j)$, gather edge points from $I_1(i, j)$ until the gap has been bridged to an edge in $I_2(i, j)$.

Note: large gaps are still difficult to bridge. (i.e., more sophisticated algorithms are required)

Second Derivative in 2D: Laplacian

The Laplacian is defined mathematically as

$$\nabla^2 = \nabla \cdot \nabla = \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{bmatrix} \cdot \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{bmatrix} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

When we apply it to an image, we get

$$\nabla^2 f = \left(\begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{bmatrix} \cdot \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{bmatrix} \right) I = \frac{\partial^2 I}{\partial x^2} + \frac{\partial^2 I}{\partial y^2}$$

Second Derivative in 2D: Laplacian (cont'd)

$$\frac{\partial^2 f}{\partial x^2} = f(i, j+1) - 2f(i, j) + f(i, j-1)$$

$$\frac{\partial^2 f}{\partial y^2} = f(i+1, j) - 2f(i, j) + f(i-1, j)$$

$$\nabla^2 f = -4f(i,j) + f(i,j+1) + f(i,j-1) + f(i+1,j) + f(i-1,j)$$

0	0	0
1	-2	1
0	0	0
U	0	_

0	1	0
0	-2	0
0	1	0

Variations of Laplacian

0.5	0.0	0.5
1.0	-4.0	1.0
0.5	0.0	0.5

2	-1	2
-1	-4	-1
2	-1	2

Laplacian - Example

5	5	5	5	5	5
5	5	5	5	5	5
5	5	10	10	10	10
5	5	10	10	10	10
5	5	5	10	10	10
5	5	5	5	10	10

detect zero-crossings

-	-	-	-	-	-
-	0	-5	-5	-5	-
-	-5	10	5	5	-
-	-5	10	0	0	-
-	0	-10	10	0	-
-			-	-	-

Properties of Laplacian

- It is an isotropic operator.
- It is cheaper to implement than the gradient (i.e., one mask only).
- It does not provide information about edge direction.
- It is more sensitive to noise (i.e., differentiates twice).

Laplacian of Gaussian (LoG) (Marr-Hildreth operator)

- To reduce the noise effect, the image is first smoothed.
- When the filter chosen is a Gaussian, we call it the LoG edge detector.

$$G(x, y) = e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

It can be shown that:

$$\nabla^2 G(x, y) = (\frac{r^2 - 2\sigma^2}{\sigma^4})e^{-r^2/2\sigma^2}, (r^2 = x^2 + y^2)$$

 $\nabla^2 [f(x, y) * G(x, y)] = \nabla^2 G(x, y) * f(x, y)$

σ controls smoothing

Laplacian of Gaussian (LoG) - Example

(inverted LoG)

 5×5 Laplacian of Gaussian mask

0	0	-1	0	0
0	-1	-2	-1	0
-1	-2	16	-2	-1
0	-1	-2	-1	0
0	0	-1	0	0

(inverted LoG)

 17×17 Laplacian of Gaussian mask

0	0	0	0	0	0	-1	-1	-1	-1	-1	0	0	0	0	0	0
0	0	0	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	0	0	0
0	0	-1	-1	-1	-2	-3	-3	-3	-3	-3	-2	-1	-1	-1	0	0
0	0	-1	-1	-2	-3	-3	-3	-3	-3	-3	-3	-2	-1	-1	0	0
0	-1	-1	-2	-3	-3	-3	-2	-3	-2	-3	-3	-3	-2	-1	-1	0
0	-1	-2	-3	-3	-3	0	2	4	2	0	-3	-3	-3	-2	-1	0
-1	-1	-3	-3	-3	0	4	10	12	10	4	0	-3	-3	-3	-1	-1
-1	-1	-3	-3	-2	2	10	18	21	18	10	2	-2	-3	-3	-1	-1
-1	-1	-3	-3	-3	4	12	21	24	21	12	4	-3	-3	-3	-1	-1
-1	-1	-3	-3	-2	2	10	18	21	18	10	2	-2	-3	-3	-1	-1
-1	-1	-3	-3	-3	0	4	10	12	10	4	0	-3	-3	-3	-1	-1
0	-1	-2	-3	-3	-3	0	2	4	2	0	-3	-3	-3	-2	-1	0
0	-1	-1	-2	-3	-3	-3	-2	-3	-2	-3	-3	-3	-2	-1	-1	0
0	0	-1	-1	-2	-3	-3	-3	-3	-3	-3	-3	-2	-1	-1	0	0
0	0	-1	-1	-1	-2	-3	-3	-3	-3	-3	-2	-1	-1	-1	0	0
0	0	0	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	- 0	0	0	0
0	0	0	0	0	0	-1	-1	-1	-1	-1	0	0	0	0	0	0

filtering

zero-crossings

Decomposition of LoG

• It can be shown than LoG can be written as follows:

$$\nabla^2 g(x,y) = \frac{\partial}{\partial y^2} \, g(y) \, * \, g(x) \, + \, g(y) \, * \, \frac{\partial}{\partial x^2} \, g(x).$$

• 2D LoG convolution can be implemented using 4, 1D convolutions.

Decomposition of LoG (cont'd)

Steps

- 1. Convolve the image with a second derivative of Gaussian mask $(g_{yy}(y))$ along each column.
- Convolve the resultant image from step (1) by a Gaussian mask (g(x)) along each row.
 Call the resultant image I^x.
- 3. Convolve the original image with a Gaussian mask (g(y)) along each column.
- 4. Convolve the resultant image from step (3) by a second derivative of Gaussian mask $(g_{xx}(x))$ along each row. Call the resultant image I^y .
- 5. Add I^x and I^y .

Difference of Gaussians (DoG)

• The Laplacian of Gaussian can be approximated by the difference between two Gaussian functions:

$$\nabla^2 G \approx G(x, y; \sigma_1) - G(x, y; \sigma_2)$$

approximation

actual LoG

Difference of Gaussians (DoG) (cont'd)

$$\nabla^2 G \approx G(x, y; \sigma_1) - G(x, y; \sigma_2)$$

 $\sigma = 1$

 $\sigma = 2$

(b)-(a)

Ratio (σ_1/σ_2) for best approximation is about 1.6. (Some people like $\sqrt{2}$.)

Gradient vs LoG

- Gradient works well when the image contains sharp intensity transitions and low noise.
- Zero-crossings of LOG offer better localization, especially when the edges are not very sharp.

step edge

2	2	2	2	2	8	8	8	8	8
2	2	2	2	2	8	100000		10000	8
2	2	2	2	2	8	8	8	8	8
2	2	2	2	2	8	8	8	8	8
2	2	2	2	2	8	8	8	8	8
2	2	2	2	2	8	8	8	8	8

ramp edge

2	2	2	2	2	5	8	8	8	8
2	2	2	2	2	5	8	8	8	8
2	2	2	2	2	5	8	8	8	8
2	2	2	2	2	5	8	8	8	8
2	2	2	2	2	5	8	8	8	8
2	2	2	2	2	5	8	8	8	8

Gradient vs LoG (cont'd)

LoG behaves poorly at corners

Directional Derivative

$$\nabla f \\ grad(f) = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix}$$

$$\nabla f \atop grad(f) = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix} \qquad \nabla^2 f = \begin{pmatrix} \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{bmatrix} \cdot \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{bmatrix} \end{pmatrix} I = \frac{\partial^2 I}{\partial x^2} + \frac{\partial^2 I}{\partial y^2}$$

- The partial derivatives of f(x,y) will give the slope $\partial f/\partial x$ in the positive x direction and the slope $\partial f/\partial y$ in the positive y direction.
- We can generalize the partial derivatives to calculate the slope in any direction (i.e., directional derivative).

Directional Derivative (cont'd)

• Directional derivative computes intensity changes in a specified direction.

Compute derivative in direction u

Directional Derivative (cont'd)

(From vector calculus)

$$\nabla_{\vec{u}} f(\vec{x}) = \nabla f(\vec{x}) \cdot \vec{u}$$

Directional derivative is a linear combination of partial derivatives.

Directional Derivative (cont'd)

$$\cos \theta = \frac{u_x}{u}, \sin \theta = \frac{u_y}{u}$$

$$u_x = \cos \theta, u_y = \sin \theta$$

$$u_x = \cos \theta, \ u_y = \sin \theta$$

Higher Order Directional Derivatives

$$f_{\theta}'(x, y) = \frac{\partial f}{\partial x} \cos \theta + \frac{\partial f}{\partial y} \sin \theta$$

$$f_{\theta}''(x,y) = \frac{\partial^2 f}{\partial x^2} \cos^2 \theta + 2 \frac{\partial^2 f}{\partial x \partial y} \cos \theta \sin \theta + \frac{\partial^2 f}{\partial y^2} \sin^2 \theta$$

$$f_{\theta}^{"'}(x,y) = \frac{\partial^3 f}{\partial x^3} \cos^3 \theta + 3 \frac{\partial^3 f}{\partial x^2 \partial y} \cos^2 \theta \sin \theta + 3 \frac{\partial^3 f}{\partial x \partial y^2} \cos \theta \sin^2 \theta + \frac{\partial^3 f}{\partial y^3} \sin^3 \theta$$

Edge Detection Using Directional Derivative

What direction would you use for edge detection?

Direction of gradient:

$$\theta = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix} = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$$

Second Directional Derivative

(along gradient direction)

$$f_{\theta}''(x,y) = \frac{\partial^2 f}{\partial x^2} \cos^2 \theta + 2 \frac{\partial^2 f}{\partial x \partial y} \cos \theta \sin \theta + \frac{\partial^2 f}{\partial y^2} \sin^2 \theta$$

$$\theta = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix} = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$$

$$\frac{\partial^2 f}{\partial n^2} \equiv \frac{f_X^2 f_{XX} + 2f_X f_y f_{Xy} + f_y^2 f_{yy}}{f_X^2 + f_y^2}$$

Edge Detection Using Second Derivative

Laplacian:
$$\nabla^2 f(x,y) \equiv \frac{\partial^2 f(x,y)}{\partial x^2} + \frac{\partial^2 f(x,y)}{\partial y^2}$$

or
$$\nabla^2 f \equiv f_{xx} + f_{yy}$$

Second directional derivative along the gradient:

$$\frac{\partial^2 f}{\partial n^2} \equiv \frac{f_X^2 f_{XX} + 2f_X f_y f_{Xy} + f_y^2 f_{yy}}{f_X^2 + f_y^2}$$

- (i) the second directional derivative is equal to zero and
- (ii) the third directional derivative is negative.

Properties of Second Directional Derivative (along gradient direction)

Mathematical:

- $\frac{\partial^2}{\partial n^2}$ is non-linear
- 2 $\frac{\partial^2}{\partial n^2}$ neither commutes nor associates with convolution

$$\frac{\partial^{2}}{\partial n^{2}}(g*f) \neq \left(\frac{\partial^{2}g}{\partial n^{2}}\right)*f$$

$$\left(\frac{\partial^{2}g}{\partial n^{2}}\right)*f \neq g*\left(\frac{\partial^{2}f}{\partial n^{2}}\right)$$

3 $\frac{\partial^2}{\partial n^2}$ is not everywhere defined (i.e., require $f_x^2 + f_y^2 \neq 0$)

Experimental:

 $\frac{\partial^2}{\partial n^2}$ provides better localization, especially at corners

Facet Model

- Assumes that an image is an array of samples of a continuous function f(x,y).
- Reconstructs f(x,y) from sampled pixel values.
- Uses directional derivatives which are computed analytically (i.e., without using discrete approximations).

z=f(x,y)

Facet Model (cont'd)

- For complex images, f(x,y) could contain extremely high powers of x and y.
- **Idea:** model f(x,y) as a piecewise function.
- Approximate <u>each</u> pixel value by fitting a bi-cubic polynomial in a small neighborhood around the pixel (facet).

$$f(x,y) = k_1 + k_2 x + k_3 y + k_4 x^2 + k_5 x y + k_6 y^2 + k_7 x^3 + k_8 x^2 y + k_9 x y^2 + k_{10} y^3.$$

Facet Model (cont'd)

Steps

- (1) Fit a bi-cubic polynomial to a small neighborhood of each pixel (this step provides smoothing too).
- (2) Compute (analytically) the second and third directional derivatives in the direction of gradient.
- (3) Find points where (i) the second derivative is equal to zero and (ii) the third derivative is negative.

Fitting bi-cubic polynomial

$$f(x,y) = k_1 + k_2 x + k_3 y + k_4 x^2 + k_5 x y + k_6 y^2 + k_7 x^3 + k_8 x^2 y + k_9 x y^2 + k_{10} y^3.$$

- If a 5 x 5 neighborhood is used, the masks below can be used to compute the coefficients.
 - Equivalent to least-squares (e.g., SVD)

	-13	2	7	2	-13	3								31	-5	-17	-5	31
	2	17	22	17	7 2									-44	-62	-68	-62	-44
$\frac{1}{175}$	7	22	27	22	2 7								$\frac{1}{420}$	0	0	0	0	0
	2	17	22	17	7 2									44	62	68	62	44
	-13	2	7	2	-13	3								-31	5	17	5	-31
k_1													k_2					
$\frac{1}{420}$	31	-44	0	44	-31			2	2	2	2	2		4	2 (-2	-4	
	-5	-62	0	62	5			-1	-1	-1	-1	-1		2	1 () -1	-2	
	-17	-68	0	68	17		$\frac{1}{70}$	-2	-2	-2	-2	-2	$\frac{1}{100}$	0	0 (0	0	
	-5	-62		62	5			-1	-1	-1	-1	-1		-2	-1 (_	2	
	31	-44	0	44	-31			2	2	2	2	2		-4	-2 (2	4	
k_3							k_4						k_5					

_						_												
	2	-1	-2	-1	2	1		-1	-1	-1	-1	-1		-4	-2	0	2	4
Ī	2	-1	-2	-1	2	1		2	2	2	2	2		2	1	0	-1	-2
$\frac{1}{70}$	2	-1	-2	-1	2	1	$\frac{1}{60}$	0	0	0	0	0	$\frac{1}{140}$	4	2	0	-2	-4
	2	-1	-2	-1	2	1		-2	-2	-2	-2	-2		2	1	0	-1	-2
Ī	2	-1	-2	-1	2	1		1	1	1	1	1		-4	-2	0	2	4
•						•												
k_6							k_7						k_8					
	-4	2	4	: 2	? .	4							[-1	2	0	-2	1
	-2	1	2	1		2							Ī	-1	2	0	-2	1
$\frac{1}{140}$	0	0	0	()	0							$\frac{1}{60}$	-1	2	0	-2	1
140	2	-1	-2	2 -	1	2							- 00	-1	2	0	-2	1
	4	-2	; -4	Į -:	2	4							ı	-1	2	0	-2	1
k_9			_										k_{10}					

Analytic computations of second and third directional derivatives

$$f(x,y) = k_1 + k_2 x + k_3 y + k_4 x^2 + k_5 x y + k_6 y^2 + k_7 x^3 + k_8 x^2 y + k_9 x y^2 + k_{10} y^3.$$

• Using polar coordinates $x = \rho \sin \theta, y = \rho \cos \theta$

$$f_{\theta}(\rho) = C_0 + C_1 \rho + C_2 \rho^2 + C_3 \rho^3,$$

where

$$C_0 = k_1,$$

 $C_1 = k_2 \sin \theta + k_3 \cos \theta,$
 $C_2 = k_4 \sin^2 \theta + k_5 \sin \theta \cos \theta + k_6 \cos^2 \theta,$
 $C_3 = k_7 \sin^3 \theta + k_8 \sin^2 \theta \cos \theta + k_9 \sin \theta \cos^2 \theta + k_{10} \cos^3 \theta.$

Compute analytically second and third directional derivatives

• Gradient angle θ (with positive y-axis at (0,0)):

$$\sin \theta = \frac{k_2}{\sqrt{k_2^2 + k_3^2}},$$

$$\cos \theta = \frac{k_3}{\sqrt{k_2^2 + k_3^2}}.$$

Locally approximate surface by a plane and use the normal to the plane to approximate the gradient.

$$f(x,y) = k_1 + k_2 x + k_3 y + k_4 x^2 + k_5 x y + k_6 y^2 + k_7 x^3 + k_8 x^2 y + k_9 x y^2 + k_{10} y^3.$$

Computing directional derivatives (cont'd)

• The derivatives can be computed as follows:

$$f_{\theta}(\rho) = C_0 + C_1 \rho + C_2 \rho^2 + C_3 \rho^3,$$

$$f_{\theta}'(\rho) = C_1 + 2C_2\rho + 3C_3\rho^2,$$

 $f_{\theta}''(\rho) = 2C_2 + 6C_3\rho,$
 $f_{\theta}'''(\rho) = 6C_3.$

Second derivative equal to zero implies:

$$f_{\theta}''(\rho) = 2C_2 + 6C_3\rho = 0$$
, we get $\left|\frac{C_2}{3C_3}\right| < \rho_0$

Third derivative negative implies:

$$f_{\theta}'''(\rho) < 0$$
, we get $6C_3 < 0$, or $C_3 < 0$,

Edge Detection Using Facet Model (cont'd)

Steps

- 1. Find $k_1, k_2, k_3, \ldots, k_{10}$ using least square fit, or masks given in Figure 2.8.
- 2. Compute θ , $\sin \theta$, $\cos \theta$.
- 3. Compute C_2, C_3 .
- 4. If $C_3 < 0$ and $\left| \frac{C_2}{3C_3} \right| < \rho_0$ then that point is an edge point.

Figure 2.9: The steps in Haralick's Edge Detector.

Anisotropic Filtering (i.e., edge preserving smoothing)

- Symmetric Gaussian smoothing tends to blur out edges rather aggressively.
- An "oriented" smoothing operator would work better:
 - (i) Smooth aggressively perpendicular to the gradient
 - (ii) Smooth little along the gradient
- Mathematically formulated using diffusion equation.

Anisotropic filtering - Example

result using anisotropic filtering

Effect of scale (i.e., σ)

- Small σ detects fine features.
- Large σ detects large scale edges.

Multi-scale Processing

• A formal theory for handling image structures at different scales.

- Process images multiple scales.
- Determine which structures (e.g., edges) are most significant by considering **the range of scales** over which they occur.

Multi-scale Processing (cont'd)

- •Interesting scales: scales at which important structures are present.
 - e.g., in the image above, people can be detected at scales [1.0 4.0]

Scale Space (Witkin 1983)

- Detect and plot the zero-crossing of a 1D function over a continuum of scales σ.
- Instead of treating zerocrossings at a single scale as a single point, we can now treat them at multiple scales as contours.

X

A. Witkin, "Scale-space filtering", 8th Int. Joint Conf. Art. Intell., Karlsruhe, Germany,1019–1022, 1983

Scale Space (cont'd)

- Properties of scale space (assuming Gaussian smoothing):
 - Zero-crossings may shift with increasing scale (σ).
 - Two zero-crossing may merge with increasing scale.
 - A contour may *not* split into two with increasing scale.

Multi-scale processing (cont'd)

(Canny edges at multiple scales of smoothing, σ =0.5, 1,

Multi-scale processing (cont'd)

(Canny edges at multiple scales of smoothing, σ = 000, 2, 4, 8, 16)

Edge detection is just the beginning...

image

gradient magnitude

Berkeley segmentation database: http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/