Task Description

• COVID-19 daily cases prediction

• Training data: 2699 samples

• Testing data: 1078 samples

• Evaluation metric: Mean Squared Error (MSE)

Data

- States (37, encoded to one-hot vectors)
- COVID-like illness (4)
 - o cli, ili ...
- Behavior Indicators (8)
 - wearing_mask, travel_outside_state ...
- Mental Health Indicators (3)
 - o anxious, depressed ...
- Tested Positive Cases (1)
 - o tested_positive (this is what we want to predict)

data = 1(row num) + 37 states + 5 days * (4 illness + 8 behaviors + 3 mental + 1 results(positive)) = 118

modify 1 选择feature

54 + 70 + 86 + 102 results of 4 days

modify 2 change optimizer

源代码用的是SGD,但是因为batch=1, 所以只起到了GD的作用,同时SGD的作 用是解决卡在local minimum所以根据这张 图,change batch size and 加入 momentum 作用应该不大

SGDM
 为梯度下降加入一个冲量,每次迭代移动的方向为**梯度的反方向向量**加上**上次移动的方向向量**,向量前面可能会有系数。
 SGDM

SGDIVI
$$\theta_t = \theta_{t-1} - \eta m_t$$

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_{t-1}$$
SGDIM

但注意到since error surface is rugged, we need to have an adaptive learning rate

Different parameters needs different learning rate

最基础的adaptive learning rate 的算法: Adagrad (use root mean square)

Root Mean Square

RMSProp 类比Adagrad的一种优化方法,与Adagrad不同的是学习率所除的分母。 Adagrad学习率所除的分母会无限累加,导致后期参数更新幅度很小,RMSProp避免了这个问题。然而RMSProp无法解决卡在鞍点的问题。

Adam: RMSProp + Momentum

结合RMSProp和SGDM两种算法优点的一种优化算法。m和v需要除上1-β是为了前期的纠偏。 分母加上一个6是为了防止分母下溢到0导致学习率是未定义的。

Adam

SGDM

$$\theta_{t} = \theta_{t-1} - \eta m_{t}$$

$$m_{t} = \beta_{1} m_{t-1} + (1 - \beta_{1}) g_{t-1}$$

$$\begin{aligned} \theta_t &= \theta_{t-1} - \frac{\eta}{\sqrt{\nu_t}} g_{t-1} \\ v_1 &= g_0^2 \\ v_t &= \beta_2 v_{t-1} + (1 - \beta_2) (g_{t-1})^2 \end{aligned}$$

$$\theta_t = \theta_{t-1} - \frac{\eta}{\sqrt{\hat{v}_t} + \varepsilon} \widehat{m}_t$$

$$\begin{split} \widehat{m}_t &= \frac{m_t}{1 - {\beta_1}^t} \\ \widehat{v}_t &= \frac{v_t}{1 - {\beta_2}^t} \\ \beta_1 &= 0.9 \end{split} \text{ de-biasing}$$

$\widehat{m}_{t} = \frac{1 - \beta_{1}^{t}}{1 - \beta_{1}^{t}}$ $\widehat{v}_{t} = \frac{v_{t}}{1 - \beta_{2}^{t}}$ $\beta_{1} = 0.9$ $\beta_{2} = 0.999$ $\varepsilon = 10^{-8}$

Learning Rate Scheduling

Learning Rate Scheduling

 η^t

close to the destination, so we reduce the learning rate.

Warm Up 组果到了的 Increase and then decrease? */> At the beginning, the estimate of σ_i^t has large variance.

beening rate 小点, 多收集gi

modify3 select index

```
selector = SelectKBest(score_func=f_regression, k=k)
result = selector.fit(x_data, y_data)
```

The SelectKBest class is a univariate feature selection method that selects the k highest scoring features based on a specified scoring function. In this case, the scoring function used is f_regression, which is a statistical test for **linear regression that measures the linear relationship between each feature and the target variable.**

The fit() method calculates the scores of each feature based on the scoring function and selects the top k features with the highest scores.

modify4 change network

```
self.layers = nn.Sequential(
    nn.Linear(input_dim, 64),
    nn.ReLU(),
    nn.BatchNorm1d(64),
    nn.Dropout(0.2),

    nn.Linear(64, 32),
    nn.ReLU(),
    nn.BatchNorm1d(32),
    nn.Dropout(0.2),

    nn.Linear(32, 8),
    nn.ReLU(),
    nn.Linear(8, 1)
)
```



```
nn. Linear (input_dim, 32)
nn. ReLU(),
nn. BatchNorm1d(32),
nn. Dropout(0.3),

nn. Linear(32, 16),
nn. ReLU(),
nn. BatchNorm1d(16),
nn. Dropout(0.1),

nn. Linear(16, 8),
nn. ReLU(),
nn. BatchNorm1d(8),
nn. ReLU(),
nn. BatchNorm1d(8),
```



```
pred_modelchange.csv
Complete (after deadline) · now

14.66525

6.02546
```

```
self. layers = nn. Sequential(
    nn. Linear(input_dim, 32),
    nn. ReLU(),
    nn. BatchNorm1d(32),
    nn. Dropout(0.3),

nn. Linear(32, 16),
    nn. ReLU(),
    nn. BatchNorm1d(16),
    nn. Dropout(0.1),

nn. Linear(16, 1)
)
```


pred_modelchange3.csv
Complete (after deadline) · now

1.01822

0.97619

modify5 change learning rate

To schedule the combination of warmup and cosine annealing for your optimizer, you can use the PyTorch

CosineAnnealingWarmRestarts

scheduler. This scheduler allows you to set up warmup and cosine annealing schedules in a single step.

