Geometria A - Secondo Modulo

Esercizi di preparazione per gli esami

Giordano Santilli giordano.santilli@unitn.it

Trento, 20 Maggio 2020

"Noi tutti abbiamo perso qualcosa di prezioso: casa, sogni, amici...
Ma ora Sin è morto finalmente! Spira è di nuovo nostra! Unendo le forze, avremo una nuova casa e nuovi sogni. Il viaggio sarà duro, ma abbiamo tempo: insieme ricostruiremo Spira! La strada ci aspetta. Iniziamo a percorrerla da oggi. Un' ultima cosa: i compagni persi, i sogni svaniti... Non dimentichiamoli mai!"

Final Fantasy X - 2001 (Giappone)

Esercizio 1. Sia \mathbb{E}^2 il piano euclideo di coordinate (x,y). Siano definite le due curve

$$\mathcal{C}_h: hx^2+2hxy+3y^2-4x-2y=0 \qquad \text{e} \qquad \mathcal{D}_k: kx^2+4ky^2+4kxy+x=0$$
 al variare di $k, h \in \mathbb{R}$.

- (i) Si classifichi le due coniche al variare dei parametri reali $h \in k$.
- (ii) Si trovino i valori di h e k per cui \mathcal{C}_h è affinemente equivalente a \mathcal{D}_k . In corrispondenza di ciascuno di tali valori di h, si trovi un'isometria che porta \mathcal{C}_h in forma canonica.
- (iii) Si trovino dei valori di $k \in \mathbb{R}$ per cui \mathcal{D}_k è congruente a \mathcal{C}_h .

Esercizio 2. Sia $\mathbb{P}^2(\mathbb{R})$ il piano proiettivo reale di coordinate $[x_0, x_1, x_2]$. Si consideri la proiettività $f: \mathbb{P}^2 \to \mathbb{P}^2$ tale che:

$$f([1,2,-1]) = [2,-3,2]$$

$$f([-1,2,3]) = [2,1,4]$$

$$f([0,1,-2]) = [0,1,3]$$

$$f([1,-3,4]) = [1,-2,-3].$$

- (i) Si trovi una matrice rappresentativa M associata alla proiettività f rispetto il riferimento proiettivo standard.
- (ii) Si calcolino i punti fissi della proiettività. Si trovino delle rette proiettive che sono invarianti rispetto alla proiettività f.
- (iii) Si classifichi la conica proiettiva \mathcal{Q}_k al variare di $k \in \mathbb{R}$ di equazione

$$Q_k$$
: $F_k(x_0, x_1, x_2) = kx_0^2 + x_1^2 + kx_0x_1 - x_1x_2 = 0$.

Si scriva esplicitamente l'equazione della forma canonica in corrispondenza di questi valori. Sia r la retta passante per i due punti fissi di f. Si determini per quali $k \in \mathbb{R}$, la retta r è una tangente principale per \mathcal{Q}_k .

Esercizio 3. Sia \mathbb{E}^3 lo spazio euclideo con riferimento ortonormale Oe_1, e_2, e_3 . Siano P = (0, 0, 1), Q = (1, 1, 0) e R = (1, 0, 2) punti dello spazio euclideo e siano inoltre:

$$r: \begin{cases} x=1\\ y=t-1\\ z=-t+3 \end{cases} \quad t \in \mathbb{R} \qquad r': \begin{cases} x-y=0\\ x-y+z=0. \end{cases}$$

- (i) Si trovino le equazioni cartesiane delle rette s tali che
 - $d(s,r) = \frac{1}{\sqrt{2}};$
 - $s \cap r' = Q$;
 - \bullet s forma un angolo di 45° con la retta r'.
- (ii) Si trovino le equazioni cartesiane delle rette s^\prime tali che
 - $s' \perp r'$;
 - $\bullet \ s'\cap r=R;$
 - d(s', P) = 1;
 - $\bullet \ s' \not\perp \boldsymbol{v} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}.$
- (iii) Si trovino le equazioni cartesiane delle rette $s^{\prime\prime}$ tali che
 - $s'' \perp r$;
 - $s'' \cap r \neq \emptyset$;
 - $\bullet \ s^{\prime\prime}$ è perpendicolare ad almeno un piano che contiene la retta $r^{\prime}.$