PRÁCTICA JFLP SESIÓN 1

Jorge Rodriguez Fraile 100405951 Grupo 81 Carlos Rubio Olivares 100405834 Grupo 81 Ejercicio 1.a:

OBTENER EL AFD EQUIVALENTE:

	0	1	λ	λ*	λ*0λ*	λ*1λ*
->q0	q1,q2	-	1	q0	q1,q2,q3, q4	
q1	q2	-	q2	q1,q2,q3,q4 q2,q3,q4		q3, q4
q2	1	q3,q4	q3,q4	q2,q3,q4		q3, q4
q3	1	q4	1	q3	1	q4
*q4				q4		

	0	1
->{q0}	{q1,q2,q3, q4}	Ф
* {q1,q2,q3, q4}	{q2}	{q3,q4}
*{q2,q3,q4}	Ф	{q3,q4}
*{q3,q4}	Ф	{q4}
{q4}	Ф	Ф
Ф	Ф	Φ

AFND:

MANUAL

Ejercicio 1.b: Mínimo del AFD equivalente:

q1,2,3,4 = q1 q2,3,4 = q2 q3,4 = q3

	0	1	Q/E1 0	Q/E1 1	Q/E2 0	Q/E2 1	Q/E3 0	Q/E3 1
->q0	q1	Ф	C1	C1	C1	C1	C1	C4
*q1	q2	q3	C1	C1	C1	C3	C1	C3
*q2	Ф	q3	C1	C1	C1	C3	C4	C3
*q3	Ф	q4	C1	C2				
*q4	Ф	Ф						
Φ	Ф	Ф	C1	C1	C1	C1	C4	C4

```
 \begin{aligned} & \text{Q/E0} = \{\text{C1=} \{\text{q0,q1,q2,q3,}\Phi\}, \text{ C2} = \{\text{q4}\}\} \\ & \text{Q/E1} = \{\text{C1=} \{\text{q0,q1,q2,}\Phi\}, \text{ C2} = \{\text{q4}\}, \text{ C3} = \{\text{q3}\}\} \\ & \text{Q/E2} = \{\text{C1=} \{\text{q1,q2}\}, \text{ C2} = \{\text{q4}\}, \text{ C3} = \{\text{q3}\}, \text{ C4=}\{\text{q0,}\Phi\}\} \\ & \text{Q/E3} = \{\text{C1=} \{\text{q1}\}, \text{ C2} = \{\text{q4}\}, \text{ C3} = \{\text{q3}\}, \text{ C4=}\{\text{q0}\}, \text{ C5} = \{\Phi\}, \text{ C6} = \{\text{q2}\}\} \end{aligned}
```

ES IGUAL AL AFD ANTERIOR, POR TANTO, EL AFD YA ERA MÍNIMO.

Ejercicio 1.c: Mínimo del AFD equivalente:

El lenguaje que reconocen estos autómatas es 0^m 1^n tal que 1<=m<=2 y
0<=n<=2
MÍNIMO TEST

AFD EQUIVALENTE TEST

EJERCICIO 2: AFND:

AFD:

AFD Mínimo:

TEST LENGUAJE:

