

MIHash: Online Hashing with Mutual Information

Fatih Cakir*, Kun He*, Sarah Adel Bargal, Stan Sclaroff (*equal contribution) Computer Science, Boston University {fcakir,hekun,sbargal,sclaroff}@cs.bu.edu

Background

Online Hashing: learn $\Phi: \mathcal{X} \to \mathcal{H}^b$ with streaming data.

Q: When do we update the hash table?

A: Only when hashing quality improves!

Quality Measure: Mutual Information

• Mutual Information: decrease in entropy of distance distribution, when conditioned on neighborhood info.

• Quality measure: integrate over feature space

$$Q(\Phi) = \int_{\mathcal{X}} \mathcal{I}(\mathcal{D}_{\hat{\mathbf{x}},\Phi}; C_{\hat{\mathbf{x}}}) p(\hat{\mathbf{x}}) d\hat{\mathbf{x}}$$
$$= \int_{\mathcal{X}} (H(\mathcal{C}_{\hat{\mathbf{x}}}) - H(\mathcal{C}_{\hat{\mathbf{x}}} | \mathcal{D}_{\hat{\mathbf{x}},\Phi})) p(\hat{\mathbf{x}}) d\hat{\mathbf{x}}$$

Trigger Update: Plug-in Module

- Snapshot Φ^s , current Φ_t
- Update if

$$Q(\Phi_t) - Q(\Phi^s) > \theta$$

Monte-Carlo approximation of *Q* (sampling from stream):

Reservoir Sampling [Vitter 1985]

$$Q_{\mathcal{R}}(\Phi) = \frac{1}{|\mathcal{R}|} \sum_{\mathbf{x}^{\mathbf{r}} \in \mathcal{R}} \mathcal{I}_{\mathcal{R}}(\mathcal{D}_{\mathbf{x}^{\mathbf{r}}, \Phi}; \mathcal{C}_{\mathbf{x}^{\mathbf{r}}})$$

MIHash: Gradient-based MI Optimization

$$\frac{\partial \mathcal{I}(D_{\hat{\mathbf{x}},\Phi}; \mathcal{C}_{\hat{\mathbf{x}}})}{\partial \Phi(\hat{\mathbf{x}})} = \frac{\partial H(\mathcal{D}_{\hat{\mathbf{x}},\Phi})}{\partial \Phi(\hat{\mathbf{x}})} - \frac{\partial H(\mathcal{D}_{\hat{\mathbf{x}},\Phi}|\mathcal{C}_{\hat{\mathbf{x}}})}{\partial \Phi(\hat{\mathbf{x}})}$$

$$= \sum_{l} \frac{\partial H(\mathcal{D}_{\hat{\mathbf{x}},\Phi})}{\partial p_{\mathcal{D},l}} \frac{\partial p_{\mathcal{D},l}}{\partial \Phi(\hat{\mathbf{x}})}$$

$$- \left[p^{+} \sum_{l} \frac{\partial H(\mathcal{D}_{\hat{\mathbf{x}},\Phi})}{\partial p_{\mathcal{D},l}^{+}} \frac{\partial p_{\mathcal{D},l}^{+}}{\partial \Phi(\hat{\mathbf{x}})} - p^{-} \sum_{l} \frac{\partial H(\mathcal{D}_{\hat{\mathbf{x}},\Phi})}{\partial p_{\mathcal{D},l}^{-}} \frac{\partial p_{\mathcal{D},l}^{-}}{\partial \Phi(\hat{\mathbf{x}})} \right]$$

Optimization approach: continuous relaxation

- Differentiable histogram binning [Usnitova & Lempitsky, NIPS'16]
- Binary bits: sigmoid approximation

https://github.com/fcakir/mihash

Experiments: Online Hashing

Datasets: CIFAR-10 (60K), Places205 (**2.5M**), LabelMe (22K) OKH [IJCAI'13], AdaptHash [ICCV'15], SketchHash [CVPR'15], OSH [ICIP'15]

Trigger Update on vs. off: CIFAR-10, 32 bits, mAP

Trigger Update on: 32 bits, mAP

Experiments: Batch Hashing

Batch Hashing: CIFAR-10, mAP

Setting 1: 5K / 1K, VGG-F fc7. Setting 2: 50K / 10K, VGG-F end-to-end.

Methods:

SHK [CVPR'12] SDH [CVPR'15] FastHash [CVPR'14] VDSH [CVPR'16] DPSH [IJCAI'16] DTSH [ACCV'16]

		Code Length			
	Method	12	24	32	48
Setting 1	SHK	0.497	0.615	0.645	0.682
	SDH	0.521	0.576	0.589	0.592
	VDSH	0.523	0.546	0.537	0.554
	DPSH	0.420	0.518	0.538	0.553
	DTSH	0.617	0.659	0.689	0.702
	FastHash	0.632	0.700	0.724	0.738
	$MIHash^1$	0.524	0.563	0.597	0.609
	MIHash	0.683	0.720	0.727	0.746
	Method	16	24	32	48
Setting 2	DPSH ²	0.763	0.781	0.795	0.807
	$DTSH^2$	0.915	0.923	0.925	0.926
	DPSH	0.908	0.909	0.917	0.932
	DTSH	0.916	0.924	0.927	0.934
	MIHash	0.929	0.933	0.938	0.942

¹ Trained for a single epoch. ² Original reported results.