- 1. Ακολουθία πραγματικών αριθμών ονομάζεται κάθε συνάρτηση της μορφής $a: \mathbb{N}^* \to \mathbb{R}$ όπου κάθε φυσικός αριθμός $\nu \in \mathbb{N}^*$, εκτός του μηδενός, αντιστοιχεί σε ένα πραγματικό αριθμό $a(\nu) \in \mathbb{R}$ ή πιο απλά a_{ν} .
 - Η ακολουθία των πραγματικών αριθμών συμβολίζεται (a_{ν}) .
 - Οι πραγματικοί αριθμοί $a_1, a_2, \ldots, a_{\nu}$ ονομάζονται **όροι** της ακολουθίας.
 - Ο όρος a_{ν} ονομάζεται **ν-οστός** ή **γενικός** όρος της ακολουθίας.
 - Οι όροι μιας ακολουθίας μπορούν να δίνονται είτε από
 - έναν **γενικό τύπο** της μορφής $a_{\nu}=f(\nu)$, όπου δίνεται κατευθείαν ο γενικός όρος της
 - είτε από αναδρομικό τύπο όπου κάθε όρος δίνεται με τη βοήθεια ενός ή περισσότερων προηγούμενων όρων. Θα είναι της μορφής

$$a_{\nu+i} = f(a_{\nu+i-1}, \dots, a_{\nu+1}, a_{\nu})$$
, a_1, a_2, \dots, a_i γνωστοί όροι.

Στον αναδρομικό τύπο, ο αριθμός $i\in\mathbb{N}$ είναι το πλήθος των προηγούμενων όρων από τους οποίους εξαρτάται ο όρος $a_{\nu+i}$. Είναι επίσης αναγκαίο να γνωρίζουμε τις τιμές των i πρώτων όρων της προκειμένου να υπολογίσουμε τους υπόλοιπους.

- Μια ακολουθία της οποίας όλοι οι όροι είναι ίσοι ονομάζεται σταθερή.
- 2. Να λυθούν γραφικά τα παρακάτω γραμμικά συστήματα.

i.
$$\begin{cases} x - y = 3 \\ 3x + y = 13 \end{cases}$$
iii.
$$\begin{cases} 3x - y = 2 \\ 6x - 2y = 4 \end{cases}$$
iii.
$$\begin{cases} 2x + y = 4 \\ x + 4y = 8 \end{cases}$$
iv.
$$\begin{cases} x - 2y = -3 \\ -2x + 4y = 5 \end{cases}$$

3. Να βρεθούν οι λύσεις των παρακάτω ανισώσεων

$$\alpha. \ x^2 - 3x + 2 > 0$$
 $\delta. \ x^2 - x - 2 \le 0$ $\beta. \ x^2 - 4x + 3 < 0$ $\epsilon. \ x^2 - 6x + 5 < 0$ $\gamma. \ 2x^2 - 5x + 3 \ge 0$ $\sigma\tau. \ 2x^2 - x - 1 > 0$

4. Να βρεθούν, αν υπάρχουν, τα κοινά σημεία των παρακάτω ευθειών.

i.
$$x + 3y = 6 \text{ kat } 2x + y = 8$$

ii. $3x + 4y = 5 \text{ kat } -x + 5y = 3$

iii.
$$2x - y = 10$$
 και $4x - 2y = 7$

iv.
$$3x - y = 2 \kappa \alpha i 6x - 2y = 4$$

5. Να βρεθούν οι λύσεις των παρακάτω ανισώσεων

$$\alpha$$
. $-x^2 + 7x - 12 > 0$

$$\delta. \ -3x^2 - 2x + 1 \le 0$$

$$\alpha. -x^2 + 7x - 12 > 0$$
 $\delta. -3x^2 - 2x + 1 \le 0$
 $\beta. -2x^2 + 3x + 2 < 0$ $\epsilon. -x^2 - 3x > 0$
 $\gamma. -x^2 + 2x + 15 \ge 0$ $\sigma\tau. -4x^2 + x < 0$

$$\varepsilon - x^2 - 3x > 0$$

$$y. \ -x^2 + 2x + 15 \ge 0$$

$$\sigma \tau$$
. $-4x^2 + x < 0$