Bank Customer Segmentation Report

Project Title: Understanding Bank Customers Using Clustering Techniques

1. Project Objective

The goal of this project is to **group bank customers** based on their transaction behavior using **unsupervised machine learning**. By doing this, the bank can better understand customer needs, **offer personalized services**, and improve overall customer satisfaction. It also helps in identifying risky users and designing offers that reduce churn.

2. Dataset Overview

The dataset includes anonymous records of credit card usage for various bank customers. Key features are:

- Spending: Total money spent by a customer
- Advance Payments: Payments made in advance
- Probability of Full Payment: How likely the customer is to pay the full bill
- Current Balance: Current amount owed
- Credit Limit: Maximum allowed credit
- Min Payment Amount: Smallest amount paid
- Max Spent in One Transaction: Largest single shopping amount

We also created a new feature:

• Balance Utilization Ratio = Current Balance ÷ Credit Limit

This helps us know if a customer is close to maxing out their credit.

3. Data Cleaning and Preprocessing

Missing Values & Outliers

- The dataset had no missing values.
- Outliers were removed using the IQR method to avoid misleading cluster formation.

V Feature Scaling

- Used StandardScaler to bring all features to a similar scale.
- This step is **important for clustering**, as techniques like K-Means and PCA are distance-based and get affected by unscaled features.

4. Dimensionality Reduction

To reduce noise and simplify the dataset:

PCA (Principal Component Analysis)

- Reduced the dataset to fewer features while keeping **95% of original variance**.
- Helped in minimizing multicollinearity and improving model speed.

Autoencoder

- A deep learning model was used after PCA for further compression.
- We reduced features to just 5 hidden representations, capturing deeper behavior patterns.

5. Clustering Algorithm Used

- HDBSCAN (Hierarchical Density-Based Spatial Clustering)
 - We projected the autoencoder output to 2D using UMAP.
 - HDBSCAN was then applied to this projection.
 - It automatically detects the number of clusters and ignores noisy data.
- Silhouette Score (excluding noise): 0.6435

Why HDBSCAN?

- No need to pre-set the number of clusters
- Handles clusters of different shapes and densities
- Removes outliers effectively

6. Cluster Profiles

We found 4 main customer segments (excluding noise). Here's a simple summary:

Cluster	Type	Traits
0	High Spenders with Capacity	High shopping spend, high credit limit, low balance utilization
1	Over-Utilized Customers	High balance utilization, medium payments – possibly risky
2	Low Engagement Customers	Low spending and advance payments – safe but not profitable
3	Irregular High Spenders	High single spends, low full payment probability – unpredictable

7. Suggested Promotional Strategies

Cluster	Recommended Strategy
0	Offer premium credit cards, cashback deals, and loyalty programs
1	Educate about credit usage, suggest EMI options or lower-limit cards
2	Engage them with tips, offer debit-based incentives, and budgeting tools
3	Give them alerts, limited-time offers, and reward-based behavior nudges
-1	Send to manual review or monitor behavior

8. Business Value and Impact

This project helps the bank in:

- Targeting offers to the right customers
- Retaining risky users with early interventions
- Avoiding blanket marketing saving money and boosting efficiency
- Creating customer personas for long-term CRM strategies

9. Next Steps

- Try K-Means and Hierarchical Clustering on the same data to compare results.
- Add customer demographics like age, income, and tenure for deeper insights.
- Continuously update the model with **new customer data** for real-time segmentation.

10. Conclusion

With a structured ML approach using **PCA**, **Autoencoders**, **UMAP**, and **HDBSCAN**, we were able to find meaningful customer groups. These clusters reveal valuable patterns in user behavior, helping the bank improve services, **boost retention**, and **increase profitability** through intelligent decision-making.

✓ Note:

All visualizations and coding processes are included in the Jupyter Notebook file.