Санкт-Петербургский политехнический университет Петра Великого Институт физики, нанотехнологий и телекоммуникаций Высшая инженерно-физическая школа

Анализ электронного разделения в молекуле орто-фенантролина

Отчет по лабораторной работе №3, вариант 16

Работу

выполнил:

В. Х. Салманов

Группа:

3430302/60201

Преподаватель:

И. М. Соколов

Санкт-Петербург 2020

Содержание

1.	Цель работы	3
2.	Постановка задачи	4
3.	Теоретическая информация 3.1. Разделение π - и σ -электроннов	4
4.	Результаты	5
5.	Выводы	7
6.	Контроль результатов	8

1. Цель работы

Исследование $\sigma-\pi$ разделения МО, нахождение n-орбиталей, π -электронных зарядов на атомах, содержащих π -электроны; исследование локализации π -электронов.

Рисунок 1.1. Молекула орто-фенантролина.

2. Постановка задачи

Предварительно оптимизировать молекулярную структуру с помощью программы Avogadro, затем провести расчеты в одной точке с помощью программы GAMESS методом DFT (B3LYP) в базисе STO-3G. Проанализировать следующие показатели:

- число заполенных МО, заполненных и вакантных π -орбиталей в заданном базисе;
- имеет ли место у каких-либо из заполненных π -орбиталей существенная локализация на каком-то определенном атоме;
- имеются ли какие-либо σ -орбитали, которые можно было бы классифицировать как n-орбитали 1 ;
- ullet по матрице плотности определить π -электронные заряды на атомах.

3. Теоретическая информация

3.1. Разделение π - и σ -электроннов.

Для плоских молекул МО можно разбить на две группы: орбитали, симметричные относительно отражения в плоскости молекулы (σ -орбитали), и орбитали, антисимметричные относительно такого отражения (π -орбитали). σ -электроны имеют максимальную вероятность нахождения в плоскости молекулы и поэтому локализованы близ нее, π -электроны — наоборот. π -электроны слабее связаны с остовом молекулы, более подвижны, легче ионизируются и более активны во взаимодействиях. Поэтому свойства ненасыщенных и ароматических систем — высокая реакционная способность, зависимость от донорных и акцепторных заместителей, спектры и т.д. — определяются, в основном, именно π -электронами.

 $^{^{1}}$ Здесь и в дальнейших работах мы считаем n-орбиталями такие заполненные σ -орбитали, которые одновременно удовлетворяют следующим условиям:

^{1.} располагаются энергетически либо выше всех заполненных π -орбиталей, либо среди высших из них;

^{2.} локализованы преимущественно на тех атомах, на которых химические соображения предполагают наличие неподеленных пар электронов (одной или нескольких).

Рисунок 3.1. π -орбиталь в молекуле бензола.

Рисунок 3.2. σ -орбиталь в молекуле бензола.

4. Результаты

Анализ молекулярных орбиталей

Число МО 78, из них заполнено 47. Число заполненных π -орбиталей 7 (33, 38, 41-45). Число вакантных π -орбиталей 7 (48-54) (разделы NUMBER OF OCCUPIED ORBITALS, EIGENVECTORS).

Анализ заполненных π -орбиталей

Среди заполненных π -орбиталей у 45-ой имеется существенная локализация на атомах C5 и C6. Соответствующие коэффициенты вкладов p_z -орбиталей: 0.407891 и 0.407891 (раздел EIGENVECTORS). Вероятно это связано с тем, что они наиболее удалены от атомов азота (см. 4.1).

Анализ n-орбиталей

Имеется 2 σ -орбитали, которые можно классифицировать как n-орбитали. Информация о них приведена ниже (раздел EIGENVECTORS):

Таблица 4.1 **n-орбитали в молекуле орто-фенантролина**

Номер п-орбитали	Атомы, на которых имеется
Помер и оройгали	преимущественная локализация
46	N1, N2
47	N1, N2

Они действительно удовлетворяют критериям, по которым мы классифицируем σ -орбитали как n-орбитали: они находятся энергетически выше всех заполненных π -орбиталей, атомы азота имеют одну неподеленную электронную пару на 2s-подуровне.

Анализ вкладов π -электронов в заряд на атомах

 π -электроные заряды на всех атомах, содержащих π -электроны, приведены в таблице ниже (раздел DENSITY MATRIX):

 π -электронные заряды на атомах

Таблица 4.2

Атом	π -электронный заряд, e
N1	0.85
N2	0.85
C1	0.79
C2	0.79
С3	0.76
C4	0.76
C5	0.79
C6	0.79
C7	0.78
C8	0.78
С9	0.78
C10	0.78
C11	0.79
C12	0.79

Рисунок 4.1. Молекула орто-фенантролина.

5. Выводы

- 1. Молекула обладает симметрией, что проявляется в симметричном распределении π -электронных зарядов на атомах;
- 2. на атомах азота содержится больше π -электронных зарядов, чем на атомах углерода, так как азот более электроотрицателен.

6. Контроль результатов

- 1. МО разделяются на 2 группы: у одних все коэффициенты МО при p_z -АО равны нулю (σ -орбитали), а у других только коэффициенты при p_z -АО не равны нулю;
- 2. число n-орбиталей соответствует числу неподеленных пар: два атома азота, у каждого по одной неподеленной паре.

Приложенные файлы:

- Phenanthroline.cml исходный файл в формате cml;
- Phenanthroline.inp исходные данные GAMESS для расчета методом DFT (B3LYP) в базисе STO-3G;
- Phenanthroline.log результат расчета методом DFT (B3LYP) в базисе STO-3G.