Predicting Infant Mortality: A Global Analysis of 2023 Data

Aurora Degree & P.G College | M. Sc Applied Statistics Ruchitha | Shravanthika | Ramya | Madirai | Deepika

This study explores various machine learning models to predict infant mortality rates across different countries.

We evaluate multiple algorithms, including linear regression, random forests, support vector machines and more.

Content

1. Introduction	4
2. Objectives	5
3. Literature Review	6
4. About data	8
5. Data Cleaning	10
6. EDA	12
7. Modelling	23
8. Result	29
9. Conclusion	30
10. Recommendation	32

INTRODUCTION

The infant mortality rate (IMR) is often regarded as a barometer for overall welfare of a community or country.

It refers to the number of deaths per 1000 live births within the year

OBJECTIVES

Objective 1

To identify the significant factors that influence the infant mortality globally.

Objective 2

To develop the most accurate machine learning model for predicting infant mortality on a global scale

LITERATURE REVIEW

- In a study by Zakir Hossain, Enamul Kabir, and Rumana Rois (November 2021), machine learning algorithms were used to identify predictors of infant mortality in Bangladesh using data from the 2017–18 Demographic and Health Survey. Key features like age at first marriage, birth interval, and education were found significant. Among various ML models, random forest performed best with an accuracy of 89.3% and an AUC of 0.6613. The findings can guide policy-makers and public health interventions aimed at reducing infant mortality
- Leonardo Matsuno da Frota et al. (March 2024) used machine learning to predict infant mortality in Brazil from 2.9 million Brazil's Unique Health System(SUS) data points. Survival Support Vector Machines and Extreme Gradient Boosting achieved high accuracy (c-index: 0.84 and 0.83). The Cox model also performed well (c-index: 0.83), highlighting machine learning's role in enhancing mortality predictions and informing health policy.

About the Dataset

Data Source:

The Dataset for this project is a secondary data taken from Kaggle repository.

https://www.kaggle.com/datasets/nelgiriyewithana/countries-of-the-world-2023/data

Description:

The Dataset contains 195 countries as rows and 27 features.

some of the features include Country, Population, Land Area, Agriculture Land, Co2- Emissions, CPI,

Fertility Rate, Forested Area, Gasoline Price, GDP, Life expectancy, maternal mortality ratio, minimum

wage, Density, Longitude, Latitude.

Data overview

	Country	Density\n(P/Km2)	Agricultural Land(%)	Land Area(Km2)	Armed Forces size	Birth Rate	Co2- Emissions	CPI	CPI Change (%)	Fertility Rate	Forested Area (%)	Gasoline Price	GDP	Gross primary education enrollment (%)	Gross tertiary education enrollment (%)	Infant mortality	Life expectancy	Maternal mortality ratio	Minimum wage	Out of pocket health expenditure
0 A	Afghanistan	60	58.10%	652,230	323,000	32.49	8,672	149.9	2.30%	4.47	2.10%	\$0.70	\$19,101,353,833	104.00%	9.70%	47.9	64.5	638.0	\$0.43	78.40%
1	Albania	105	43.10%	28,748	9,000	11.78	4,536	119.05	1.40%	1.62	28.10%	\$1.36	\$15,278,077,447	107.00%	55.00%	7.8	78.5	15.0	\$1.12	56.90%
2	Algeria	18	17.40%	2,381,741	317,000	24.28	150,006	151.36	2.00%	3.02	0.80%	\$0.28	\$169,988,236,398	109.90%	51.40%	20.1	76.7	112.0	\$0.95	28.10%
3	Andorra	164	40.00%	468	NaN	7.20	469	NaN	NaN	1.27	34.00%	\$1.51	\$3,154,057,987	106.40%	NaN	2.7	NaN	NaN	\$6.63	36.40%
4	Angola	26	47.50%	1,246,700	117,000	40.73	34,693	261.73	17.10%	5.52	46.30%	\$0.97	\$94,635,415,870	113.50%	9.30%	51.6	60.8	241.0	\$0.71	33.40%
190	Venezuela	32	24.50%	912,050	343,000	17.88	164,175	2,740.27	254.90%	2.27	52.70%	\$0.00	\$482,359,318,768	97.20%	79.30%	21.4	72.1	125.0	\$0.01	45.80%
191	Vietnam	314	39.30%	331,210	522,000	16.75	192,668	163.52	2.80%	2.05	48.10%	\$0.80	\$261,921,244,843	110.60%	28.50%	16.5	75.3	43.0	\$0.73	43.50%
192	Yemen	56	44.60%	527,968	40,000	30.45	10,609	157.58	8.10%	3.79	1.00%	\$0.92	\$26,914,402,224	93.60%	10.20%	42.9	66.1	164.0	NaN	81.00%
193	Zambia	25	32.10%	752,618	16,000	36.19	5,141	212.31	9.20%	4.63	65.20%	\$1.40	\$23,064,722,446	98.70%	4.10%	40.4	63.5	213.0	\$0.24	27.50%
194	Zimbabwe	38	41.90%	390,757	51,000	30.68	10,983	105.51	0.90%	3.62	35.50%	\$1.34	\$21,440,758,800	109.90%	10.00%	33.9	61.2	458.0	NaN	25.80%
195 row	s × 27 colum	nns																		

Data Cleaning

Handling Missing Data

dropped country with more than 90% missing values

Country	null_percentage
Eswatini	74.074
Vatican City	85.185
Monaco	55.556
Nauru	81.481
North Macedonia	77.778
Palestinian National Authority	92.593
Tuvalu	51.852

Minimum wage	20.745
Tax revenue (%)	10.638
Armed Forces size	9.043
Gasoline Price	7.447
Unemployment rate	6.383
Population: Labor force participation (%)	6.383
CPI	5.319
CPI Change (%)	4.787
Maternal mortality ratio	3.723
Total tax rate	2.660
Gross tertiary education enrollment (%)	2.660
Out of pocket health expenditure	2.128
Physicians per thousand	1.064
Infant mortality	0.532
Life expectancy	0.532
Gross primary education enrollment (%)	0.532
Co2-Emissions	0.532
Agricultural Land(%)	0.532
Forested Area (%)	0.532
Population	0.000
Country	0.000
Density\n(P/Km2)	0.000
GDP	0.000
Fertility Rate	0.000
Birth Rate	0.000
Land Area(Km2)	0.000
Urban_population	0.000

^{*} Please refer to Appendix page 31 for a data descriptions

Exploratory Data

Analysis

Correlation Matrix

Density (P/Km2)	- 1	-0.035	-0.053	0.00017	-0.15	-0.0046	-0.014	-0.017	-0.049	-0.033	0.22	-0.018	0.0032	0.036	-0.11	0.055	-0.03	0.26	-0.092	0.21	-0.018	0.021	-0.012	-0.027	-0.033	-0.022	0.06	- 1.	.00
Agricultural Land(%) -	-0.035	1	-0.031	0.029	0.2	0.061	-0.0014	-0.007	0.18	-0.43	0.044	0.052	-0.046	-0.11	0.2	-0.24	0.2	-0.023	0.13	-0.036	0.12	-0.11	-0.052	0.16	0.06	0.1	-9.9e-05		
Land Area(Km2)	-0.053	-0.031	1	0.55	-0.066	0.59	0.021	0.034	-0.065	-0.014	-0.19	0.55	0.0061	0.22	-0.066	0.055	-0.054	0.12	-0.014	0.072	0.45	-0.007	-0.17	0.09	0.043	0.55	-0.026		
Armed Forces size -	0.00017	0.029	0.55	1	-0.14	0.74	0.039	0.059	-0.14	-0.018	-0.15	0.6	0.057	0.11	-0.076	0.074	-0.1	-0.019	0.14	0.013	0.87	-0.08	-0.17	0.11	-0.024	0.85	-1.4e-05	- 0).75
Birth Rate -	-0.15	0.2	-0.066	-0.14	1	-0.15	0.14	0.1	0.98	-0.073	-0.2	-0.18	-0.082	-0.71	0.86	-0.87	0.75	-0.45	0.25	-0.73	-0.053	0.17	-0.35	0.19	-0.042	-0.11	-0.00032		
Co2-Emissions -	-0.0046	0.061	0.59	0.74	-0.15	1	-0.017	-0.0042	-0.14	-0.029	-0.067	0.92	0.0024	0.16	-0.12	0.12	-0.11	0.08	-0.033	0.06	0.81	-0.014	-0.14	0.061	0.0065	0.93	5e-05		
CPI -	-0.014	-0.0014	0.021	0.039	0.14	-0.017	1	0.89	0.14	0.0022	-0.25	-0.027	-0.17	0.012	0.18	-0.18	0.3	-0.07	0.16	-0.037	-0.0049	0.021	-0.054	0.042	0.12	-0.0093	-4.2e-05		
CPI Change (%) -	-0.017	-0.007	0.034	0.059	0.1	-0.0042	0.89	1	0.094	0.012	-0.25	-0.011	-0.14	0.052	0.15	-0.15	0.22	-0.082	0.13	-0.029	0.0056	-0.016	-0.075	0.11	0.11	0.0073	-3.9e-05	- 0.).50
Fertility Rate -	-0.049	0.18	-0.065	-0.14	0.98	-0.14	0.14	0.094	1	-0.063	-0.12	-0.16	-0.14	-0.67	0.85	-0.85	0.77	-0.37	0.2	-0.66	-0.055	0.15	-0.35	0.21	-0.071	-0.1	-0.00026		
Forested Area (%)	-0.033	-0.43	-0.014	-0.018	-0.073	-0.029	0.0022	0.012	-0.063	1	0.13	-0.00056	0.14	-0.01	-0.055	0.0058	-0.06	-0.028	-0.24	-0.081	-0.056	0.14	0.11	0.033	-0.077	-0.035	-2.7e-06		
Gasoline Price -	0.22	0.044	-0.19	-0.15	-0.2	-0.067	-0.25	-0.25	-0.12	0.13	1	-0.02	-0.069	0.15	-0.16	0.23	-0.066	0.35	-0.27	0.24	-0.071	-0.01	0.33	0.051	-0.039	-0.074	0.00024	- 0).25
GDP -	-0.018	0.052	0.55	0.6	-0.18	0.92	-0.027	-0.011	-0.16	-0.00056	-0.02	1	-0.0041	0.21	-0.15	0.18	-0.12	0.21	-0.1	0.092	0.63	-0.007	-0.12	0.051	0.031	0.78	0.0001		
Gross primary education enrollment (%) -	0.0032	-0.046	0.0061	0.057	-0.082	0.0024	-0.17	-0.14	-0.14	0.14	-0.069	-0.0041	1	-0.0089	-0.14	0.094	-0.17	-0.05	-0.16	-0.026	0.04	0.22	0.16	-0.062	-0.034	0.029	1.9e-06		
Gross tertiary education enrollment (%) -	0.036	-0.11	0.22	0.11	-0.71	0.16	0.012	0.052	-0.67	-0.01	0.15	0.21	-0.0089	1	-0.7	0.71	-0.56	0.46	-0.17	0.7	0.025	-0.15	0.27	-0.032	0.037	0.097	0.00025		
Infant mortality -	-0.11	0.2	-0.066	-0.076	0.86	-0.12	0.18	0.15	0.85	-0.055	-0.16	-0.15	-0.14	-0.7	1	-0.92	0.87	-0.43	0.34	-0.68	0.0047	0.12	-0.36	0.23	0.0017	-0.057	-0.00027	- 0.	0.00
Life expectancy -	0.055	-0.24	0.055	0.074	-0.87	0.12	-0.18	-0.15	-0.85	0.0058	0.23	0.18	0.094	0.71	-0.92	1	-0.82	0.5	-0.31	0.68	0.0088	-0.15	0.34	-0.19	-0.039	0.07	0.00033		
Maternal mortality ratio -	-0.03	0.2	-0.054	-0.1	0.75	-0.11	0.3	0.22	0.77	-0.06	-0.066	-0.12	-0.17	-0.56	0.87	-0.82	1	-0.3	0.27	-0.53	-0.024	0.19	-0.32	0.2	-0.037	-0.067	-0.00018		
Minimum wage -	0.26	-0.023	0.12	-0.019	-0.45	0.08	-0.07	-0.082	-0.37	-0.028	0.35	0.21	-0.05	0.46	-0.43	0.5	-0.3	1	-0.37	0.41	-0.047	-0.046	0.24	-0.063	-0.044	0.0085	0.00039		-0.25
Out of pocket health expenditure -	-0.092	0.13	-0.014	0.14	0.25	-0.033	0.16	0.13	0.2	-0.24	-0.27	-0.1	-0.16	-0.17	0.34	-0.31	0.27	-0.37	1	-0.18	0.13	-0.19	-0.32	0.24	0.027	0.064	-0.0002		
Physicians per thousand -	0.21	-0.036	0.072	0.013	-0.73	0.06	-0.037	-0.029	-0.66	-0.081	0.24	0.092	-0.026	0.7	-0.68	0.68	-0.53	0.41	-0.18	1	-0.049	-0.14	0.26	-0.1	0.0022	0.00046	0.00031		
Population -	-0.018	0.12	0.45	0.87	-0.053	0.81	-0.0049	0.0056	-0.055	-0.056	-0.071	0.63	0.04	0.025	0.0047	0.0088	-0.024	-0.047	0.13	-0.049	1	-0.057	-0.19	0.082	-0.042	0.95	-0.02		
Population: Labor force participation (%) -	0.021	-0.11	-0.007	-0.08	0.17	-0.014	0.021	-0.016	0.15	0.14	-0.01	-0.007	0.22	-0.15	0.12	-0.15	0.19	-0.046	-0.19	-0.14	-0.057	1	-0.11	-0.17	-0.43	-0.049	2.1e-05		-0.50
Tax revenue (%)	-0.012	-0.052	-0.17	-0.17	-0.35	-0.14	-0.054	-0.075	-0.35	0.11	0.33	-0.12	0.16	0.27	-0.36	0.34	-0.32	0.24	-0.32	0.26	-0.19	-0.11	1	-0.081	0.21	-0.18	9.9e-05		
Total tax rate -	-0.027	0.16	0.09	0.11	0.19	0.061	0.042	0.11	0.21	0.033	0.051	0.051	-0.062	-0.032	0.23	-0.19	0.2	-0.063	0.24	-0.1	0.082	-0.17	-0.081	1	-0.034	0.099	-9.9e-05		
Unemployment rate -	-0.033	0.06	0.043	-0.024	-0.042	0.0065	0.12	0.11	-0.071	-0.077	-0.039	0.031	-0.034	0.037	0.0017	-0.039	-0.037	-0.044	0.027	0.0022	-0.042	-0.43	0.21	-0.034	1	-0.015	-5.8e-05		-0.75
Urban_population -	-0.022	0.1	0.55	0.85	-0.11	0.93	-0.0093	0.0073	-0.1	-0.035	-0.074	0.78	0.029	0.097	-0.057	0.07	-0.067	0.0085	0.064	0.00046	0.95	-0.049	-0.18	0.099	-0.015	1	1.2e-06		
GDP per capita -	0.06	-9.9e-05	-0.026	-1.4e-05	-0.00032	5e-05	-4.2e-05	-3.9e-05	-0.00026	-2.7e-06	0.00024	0.0001	1.9e-06	0.00025	-0.00027	0.00033	-0.00018	0.00039	-0.0002	0.00031	-0.02	2.1e-05	9.9e-05	-9.9e-05	-5.8e-05	1.2e-06	1		
	Density (P/Km2)	Agricultural Land(%) -	Land Area(Km2) -	Armed Forces size -	Birth Rate -	Co2-Emissions -	- Ido	CPI Change (%) -	Fertility Rate -	Forested Area (%) -	Gasoline Price -	- dQ9	Gross primary education enrollment (%) -	Gross tertiary education enrollment (%) -	Infant mortality -	Life expectancy -	Maternal mortality ratio -	Minimum wage -	Out of pocket health expenditure -	Physicians per thousand -	- Population -	Population: Labor force participation (%) -	Tax revenue (%) -	Total tax rate -	Unemployment rate -	Urban_population -	GDP per capita -		

Bar plot

Countries vs Population

Bottom 20 Countries with lower Population

Top 20 Countries with High Population (in M)

Countries with Population Density

Top 20 Countries with Highest Population Density

Bottom 20 Countries with Lowest population Density

Countries with GDP Per Capita

Top 20 Countries with GDP per capita

Bottom 20 Countries with GDP per capita

Country with Infant Mortality

Top 20 Countries with Highest IMR

Bottom 20 Countries with lowest IMR

Box Plot of Health Expenditure and Infant Mortality Rate

This means that in half of the countries, people spend 32% of their healthcare costs out of their own pockets.

This indicates that in half of the countries, the infant mortality rate is 14 or lower.

Scatter Plot

Most of the countries have less than \$50,000 GDP per capita having Infant mortality is upto 80 years.

Most of the countries are concentrated with Life expectancy <80 and GDP per capita \$25,000.

The countries with higher education enrolment have lower infant mortality

And higher infant mortality have lower education enrolment.

The countries with higher life expectancy have lower infant mortality

And higher infant mortality have lower life expectancy.

^{*} Please refer to Appendix page 36 for more plots

Multicollinearity check

Table 1

variables VIF Birth Rate 54.6 Urban population 52.6 44.9 Fertility Rate 28.7 Population 25.9 Co2-Emissions **GDP** 10.1 CPI Armed Forces size 5.7 5.6 CPI Change (%) Maternal mortality ratio 3.7 3.2 Physicians per thousand Gross tertiary education enrollment (%) 3.1 GDP per capita 2.3 2.2 Land Area(Km2) Minimum wage Gasoline Price 1.8 1.7 Out of pocket health expenditure Tax revenue (%) 1.6 1.5 Agricultural Land(%) Life expectancy 1.5 1.5 Forested Area (%) Population: Labor force participation (%) 1.5 Total tax rate Unemployment rate 1.4 Gross primary education enrollment (%) 1.3 Density\n(P/Km2)

Table 2

variables	¥	VIF	~
Urban_population			52.4
Population			28.6
Co2-Emissions			25.9
GDP			10.1
CPI			5.9
Armed Forces size			5.6
CPI Change (%)			5.5
Maternal mortality ratio			3.7
Fertility Rate			3.5
Gross tertiary education enrollment (%	6)		3
Physicians per thousand			2.8
GDP per capita			2.3
Minimum wage			2.1
Land Area(Km2)			2.1
Gasoline Price			1.7
Out of pocket health expenditure			1.6
Tax revenue (%)			1.6
Agricultural Land(%)			1.5
Life expectancy			1.5
Forested Area (%)			1.5
Population: Labor force participation (%	1	1.5
Total tax rate			1.4
Unemployment rate			1.4
Gross primary education enrollment (%)		1.2
Density\n(P/Km2)			1.2

Table 3

variables	•	VIF	-
Co2-Emissions			16.9
GDP			10.1
Population			8.3
CPI			5.9
Armed Forces size			5.6
CPI Change (%)			5.5
Maternal mortality ratio			3.7
Fertility Rate			3.5
Gross tertiary education enrollment (%	0)		3
Physicians per thousand			2.8
GDP per capita			2.3
Minimum wage			2.1
Land Area(Km2)			2
Gasoline Price			1.7
Out of pocket health expenditure			1.6
Tax revenue (%)			1.6
Agricultural Land(%)			1.5
Life expectancy			1.5
Forested Area (%)			1.5
Population: Labor force participation (%]		1.5
Unemployment rate			1.4
Total tax rate			1.3
Gross primary education enrollment (%	6)		1.2
Density\n(P/Km2)			1.2

Table 4

CPI			
W1 1			5.9
CPI Change (%)		5	5.5
Armed Forces size		5	5.4
Population		5	5.2
Maternal mortality ratio			3.6
Fertility Rate		3	3.5
Gross tertiary education enrollment (%))		3
Physicians per thousand		2	2.8
GDP		2	.4
GDP per capita		2	2.2
Minimum wage			2
Land Area(Km2)		1	9
Gasoline Price		1	7
Tax revenue (%)		1	6
Agricultural Land(%)		1	5
Life expectancy		1	5
Out of pocket health expenditure		1	5
Forested Area (%)		1	5
Population: Labor force participation (%	6)	1	5
Unemployment rate		1	4
Total tax rate		1	3
Gross primary education enrollment (%)	1	2
Density\n(P/Km2)		1	2

The features like **Birth Rate, Urban_population, Co2-Emission** were multicollinear in our dataset.

DATA MODELLING

Significance Test for Multiple Linear Regression 22

Ordinary Least squares

	OLS Regre	ession Re	esults				
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:		Adj. F-sta Prob Log-l AIC: BIC:	uared: R-squared: atistic: (F-statistic ikelihood:	:):	0.865 0.862 294.2 1.59e-78 -636.66 1283. 1300.		
=======================================	:========:	coef	std err	t	P> t	[0.025	0.975]
const Maternal mortality Fertility Rate Physicians per thou Out of pocket healt	ısand -	0.0411 5.1354 2.1225		11.164 6.942	0.000 0.000	3.676	0.048 6.595
Omnibus: Prob(Omnibus): Skew: Kurtosis:	34.512 0.000 0.942 4.992) Jarqı L Prob(•		2.209 59.001 1.54e-13 1.37e+03		

Multiple Linear Regression

★ Y(Infant Mortality)=0.9679

+0.0411(Maternal mortality ratio)

+5.1354(Fertility Rate)

-2.1225(Physicians per thousand)

+0.1174(Out of pocket health expenditure)

	Train-test	R^2	Train R^2
	80-20	0.87	0.84
*	75-25	0.88	0.84
	70-30	0.87	0.85
	60-40	0.86	0.85

Here the Multiple Regression is the good fit with $88\% R^2$

Decision Tree

Train-test	max_features mi	n_samples_leaf r	max_depth	R^2	Train R^2
80-20	4	3	4	0.73	0.85
75-25	4	3	4	0.74	0.80
70-30	4	3	4	0.69	0.86
60-40	4	3	4	0.73	0.87

Here the Decision Tree is consistent for different train-test ratio's as \mathbb{R}^2 is about 70%

^{*} Please refer to Appendix page 43 for a detailed Decision Tree diagram

Random Forest

Train-test	max_features min_s	amples_leaf max_de	epth	R ² Trair	R^2
80-20	4	3	4	0.83	0.94
75-25	4	3	4	0.85	0.94
70-30	4	3	4	0.86	0.95
60-40	4	3	4	0.84	0.95

Here the Random Forest Tree is consistent for different train-test ratio's as \mathbb{R}^2 is in around 83% to 86%.

^{*} Please refer to Appendix page 44 for a details code

KNN

Train-test	n	R^2	Train R ²
80-20	10	0.80	0.85
75-25	10	0.82	0.84
70-30	10	0.80	0.85
60-40	10	0.80	0.86

Here the KNN is consistent for different train-test ratio's as \mathbb{R}^2 is about 80%.

XGBoosting

Train-test	max_depth n	_estimators	sub_sample	R^2	Train R^2
80-20	4	100	0.031	0.71	0.78
75-25	4	100	0.031	0.64	0.65
70-30	4	100	0.031	0.53	0.70
60-40	4	100	0.031	0.55	0.76

Here the XGBoosting is **not consistent** for different train-test ratio's as \mathbb{R}^2 is ranging between 50% - 70%.

Bagging

train-test r	n_estimator	max_samples	max_features	R^2	MSE
80-20	99	0.8	4	0.87	33.37
75-25	99	0.8	4	0.86	44.92
70-30	99	0.8	4	0.86	48.88
60-40	99	0.8	4	0.86	47.49

Here the Bagging is consistent for different train-test ratio's as \mathbb{R}^2 is ranging is around 86%.

Results

Models/splits	80-20	75-25	70-30	60-40
Multiple Linear				
Regression	0.87	0.88	0.87	0.86
Random Forest	0.85	0.87	0.86	0.87
Decision Tree	0.73	0.74	0.69	0.72
KNN	0.80	0.82	0.80	0.80
SVR	0.73	0.74	0.75	0.73
Bagging	0.87	0.86	0.86	0.86
XGBoosting	0.71	0.64	0.53	0.55

Here the Multiple linear is consistent for different train-test ratio's as \mathbb{R}^2 is 88%.

Conclusion

• On comparing different machine learning algorithms the Multiple Linear Regression is the best model with best fit of 88%.

• From Multiple Linear Regression:

Having more doctors and longer life expectancy for countries helps reduce infant deaths, while having more children per family and higher health costs tend to increase it.

Linear model

Y(Infant Mortality)=0.9679

+0.0411(Maternal mortality ratio)

+5.1354(Fertility Rate)

-2.1225(Physicians per thousand)

+0.1174(Out of pocket health expenditure)

Recommendation

- Number of doctors(Physicians) of the country can reduce the infant mortality.
- In order to reduce the infant mortality in the country, government's must focus on improving the numbers of doctors and improving the Health care infrastructure.
- Promote Family Planning and Education, a need for policies that promote family planning, reproductive health education, and women's empowerment, aiming to reduce high fertility rates

Thank you

Ruchitha | Shravanthika | Ramya | Madirai | Deepika

Contributions

Ruchitha

Worked on Exploratory Data Analysis:

Shravanthika

Worked on Data Cleaning, and imputing methods

<u>Ramya</u>

Worked on Multicolinearity

Madirai

Worked on data modeling

<u>Deepika</u>

Worked on data modeling

Appendix

Data Description:

Variable Name	Description	
Country	Name of the country.	
Density (P/Km²)	Population density measured in persons per square kilometer.	
Agricultural Land (%)	Percentage of total land area that is used for agriculture.	
Land Area (Km²)	Total land area of the country in square kilometers.	
Armed Forces Size	Number of personnel in the country's armed forces.	
Birth Rate	Number of live births per 1,000 people in a year.	
CO2 Emissions	Amount of carbon dioxide emissions in metric tons.	
СРІ	Consumer Price Index, a measure of the average change in prices over time.	
CPI Change (%)	Percentage change in the Consumer Price Index over a specified peri	
Fertility Rate	Average number of children born to a woman during her lifetime.	
Forested Area (%)	Percentage of the total land area covered by forests.	
Gasoline Price	Price of gasoline per liter.	
GDP	Gross Domestic Product, total monetary value of all goods and service produced in a country.	
Gross Primary Education Enrollment (%)	Percentage of children of official primary school age enrolled in prim school.	
Gross Tertiary Education Enrollment (%)	Percentage of individuals of official tertiary education age enrolled i tertiary education.	
Infant Mortality	Number of deaths of infants under one year old per 1,000 live births	
Life Expectancy	Average number of years a person is expected to live.	
Maternal Mortality Ratio	Number of maternal deaths per 100,000 live births.	
Minimum Wage	Lowest legal wage that can be paid to workers.	
Out of Pocket Health Expenditure	Percentage of health expenses paid directly by individuals rather that covered by insurance.	
Physicians per Thousand	Number of physicians per 1,000 people in the population.	
Population	Total number of people living in the country.	
Population: Labor Force Participation (%)	Percentage of the working-age population that is part of the labor for	
Tax Revenue (%)	Government tax revenue as a percentage of GDP.	
Total Tax Rate	Total tax burden on businesses as a percentage of commercial profit	
Unemployment Rate	Percentage of the labor force that is unemployed and actively seeking employment.	
Urban Population	Percentage of the total population living in urban areas.	
GDP per Capita	GDP divided by the total population, representing average economic output per person.	

```
1 # Get pairs of variables with correlation greater than 0.5
 2 corr matrix = data1.iloc[:,1:].corr()
 3 high_corr pairs = []
 4 for i in range(len(corr_matrix.columns)):
 5 for j in range(i + 1, len(corr matrix.columns)):
      if abs(corr_matrix.iloc[i, j]) > 0.5:
         high_corr_pairs.append((corr_matrix.columns[i], corr_matrix.columns[j]))
 9 print("Pairs of variables with correlation greater than 0.5:")
10 for pair in high_corr_pairs:
11 print(pair)
12
Pairs of variables with correlation greater than 0.5:
('Land Area(Km2)', 'Armed Forces size')
'Land Area(Km2)', 'Co2-Emissions')
 'Land Area(Km2)', 'GDP')
 'Land Area(Km2)', 'Urban population')
 'Armed Forces size', 'Co2-Emissions')
 'Armed Forces size', 'GDP')
 'Armed Forces size', 'Population')
 'Armed Forces size', 'Urban_population')
 'Birth Rate', 'Fertility Rate')
 'Birth Rate', 'Gross tertiary education enrollment (%)')
 'Birth Rate', 'Infant mortality')
 'Birth Rate', 'Life expectancy')
 'Birth Rate', 'Maternal mortality ratio')
 'Birth Rate', 'Physicians per thousand')
 'Birth Rate', 'GDP per capita')
 'Co2-Emissions', 'GDP')
 'Co2-Emissions', 'Population')
 'Co2-Emissions', 'Urban population')
```

Pair of Features which are highly Correlated with each other

Scatter Plot between Urban Population and Population

Box Plot of GDP per Capita

count 188.00 mean 14987.56 std 22377.72 min 261.25 25% 1887.26 50% 5978.25 75% 17498.87 max 172357.47

Statistics of GDP per capita

plt.figure(figsize=(10, 6)) sns.scatterplot(x='Urban_population', y='Population', data=data1) plt.title('Scatter plot of urban population vs. Population') plt.ticklabel_format(style='plain', axis='y') plt.ticklabel_format(style='plain', axis='x') plt.xlabel('urban population') plt.ylabel('Population') plt.show()

Scatter Plot of IMR and Pocket health Expenditure

Grouped Life Expectancy into Group

Code for Variance Inflation Factor (VIF)

```
1 # Import library for VIF
2 from statsmodels.stats.outliers_influence import variance_inflation_factor
3
4 def calc_vif(X):
5
6  # Calculating VIF
7  vif = pd.DataFrame()
8  vif["variables"] = X.columns
9  vif["VIF"] = [variance_inflation_factor(X.values, i).round(1) for i in range(X.shape[1])]
10
11  return(vif)
12
13 vif_df = calc_vif(X)
14 vif_df.sort_values(by='VIF',ascending=False)
```

	variables	VIF
4	Birth Rate	54.6
24	Urban_population	52.6
8	Fertility Rate	44.9
19	Population	28.7
5	Co2-Emissions	25.9
11	GDP	10.1
6	CPI	6.0
3	Armed Forces size	5.7
7	CPI Change (%)	5.6
15	Maternal mortality ratio	3.7
18	Physicians per thousand	3.2
13	Gross tertiary education enrollment (%)	3.1
25	GDP per capita	2.3
2	Land Area(Km2)	2.2
16	Minimum wage	2.1
10	Gasoline Price	1.8
17	Out of pocket health expenditure	1.7
21	Tax revenue (%)	1.6
1	Agricultural Land(%)	1.5
14	Life expectancy	1.5

Code for Ordinary Least Square

```
1 x_nomulti_colinearity=X.drop(['Urban_population', 'Birth Rate', 'Co2-Emissions'],axis=
2
3 import statsmodels.api as sm
4
5 x_train_constant = sm.add_constant(x_nomulti_colinearity)
6
7 model = sm.OLS(y, x_train_constant).fit()
8
9 # Print the summary to get p-values
10 print(model.summary())
11 print(model.pvalues.sort_values(ascending=False).round(4))
```

Pair plot for Significant Features

Multiple Linear Regression

```
1 import statsmodels.api as sm
 2 import statsmodels.formula.api as smf
 3 import sklearn as sk
 4 from sklearn.model_selection import train_test_split
 5 from sklearn.linear_model import LinearRegression
 6 from sklearn.metrics import mean_squared_error, r2_score
 7 print("FOR DIFFERENT TRAIN TEST SPLITS: MULTIPLEREGRESSION")
 8 for i in [0.2,0.25,0.3,0.4]:
 9 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=i, random_state=0)
10
    # instantiate and fit
12 lm2 = LinearRegression()
    lm2.fit(X_train, y_train)
    y_pred = lm2.predict(X_train)
15
    r2 = r2 score(y train, y pred)
    print("-----\n")
    print(f"R^2 Score for the training set {(1-i)*100}% is : {r2.round(4)}")
19
    y pred = lm2.predict(X test)
    r2 = r2_score(y_test, y_pred)
    print(f"R^2 Score for the testing {(i)*100}% set is : {r2.round(4)}")
    print("Mean squared error:",(metrics.mean_squared_error(y_test, y_pred)))
24
25
```

Decision Tree

```
1 from sklearn.tree import DecisionTreeRegressor, plot tree
2 from sklearn.metrics import mean_squared_error, r2_score
     3 from sklearn.model selection import GridSearchCV
     5 for i in [x nomulti colinearity]:
        X train, X test, y train, y test = train test split(i, y, test size=0.2, random state=0)
        regressor = DecisionTreeRegressor(max features=4,min samples leaf=3,max depth=3)
        regressor.fit(X train, y train)
        y pred = regressor.predict(X test)
        print("\nTrain Mean Squared Error: ", mean_squared_error(y_train, regressor.predict(X_train)).round(3))
    10
        print("Test Mean Squared Error: ", mean squared error(y test, y pred).round(3))
    11
        print("\nTrain R^2 Score: ", r2_score(y_train, regressor.predict(X_train)).round(3))
    12
        print("Test R^2 Score: ", r2_score(y_test, y_pred).round(3))
    13
    14
```

Decision Tree Diagram

.

Random Forest

```
1 for i in [0.2,0.25,0.3,0.4]:
 2 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=i, random_state=0)
    # Creating the Random Forest Regressor model
    model = RandomForestRegressor(n_estimators=100, max_depth=3, min_samples_leaf=2, min_samples_split=2, max_features=4)
    # Training the model on the training data
    model.fit(X_train, y_train)
    # Predicting on the test data
10
    y_pred = model.predict(X_train)
12
13
    r2 = r2_score(y_train, y_pred)
14
    print("----\n")
15
    print(f"R^2 Score for the training set {(1-i)*100}% is : {r2.round(4)}")
17
18
    y pred = model.predict(X test)
    r2 = r2_score(y_test, y_pred)
19
    print(f"R^2 Score for the testing {(i)*100}% set is : {r2.round(4)}")
    print("Mean squared error:",(metrics.mean_squared_error(y_test, y_pred)))
22
```

.

KNN

```
1 from sklearn.neighbors import KNeighborsRegressor
             2 from sklearn.metrics import accuracy_score, r2_score
             3 from sklearn.preprocessing import StandardScaler
             5 scaler = StandardScaler()
             6 y array = y.to numpy()
             7 y_reshaped = y_array.reshape(-1, 1)
            10 y_scaled = pd.DataFrame(scaler.fit_transform(y_reshaped), columns=['Infant mortality'])
            11
            12 for i in [x_nomulti_colinearity]:
            13 # Fit the scaler to the data and transform it
            14 df_standardized = pd.DataFrame(scaler.fit_transform(i), columns=i.columns)
            15 X_train, X_test, y_train, y_test = train_test_split(df_standardized, y_scaled, test_size=0.2, random_state=0)
            16 for j in range(1,20):
                   model=KNeighborsRegressor(n_neighbors=j)
            17
                   model.fit(X_train,y_train)
            18
                  y_pred=model.predict(X_test)
            19
                   print(f'----N={j}----')
            20
                   print("Train Mean Squared Error: ", mean_squared_error(y_train, model.predict(X_train)).round(3))
            21
                   print("Test Mean Squared Error: ", mean_squared_error(y_test, y_pred).round(3))
            22
                   print()
            23
                   print("Train R^2 Score: ", r2_score(y_train, model.predict(X_train)).round(3))
            24
            25
                   print("Test R^2 Score: ", r2_score(y_test, y_pred).round(3))
            26
```

Support Vector Machine

```
1 from sklearn.svm import SVR
 4 for i in [0.2,0.25,0.3,0.4]:
    X_train, X_test, y_train, y_test = train_test_split(df_standardized, y_scaled, test_size=i, random_state=0)
    model=SVR(C=0.89)
    model.fit(X_train,y_train)
 9
   y_pred = model.predict(X_train)
11 r2 = r2_score(y_train, y_pred)
12 print("-----\n")
print(f"R^2 Score for the training set {(1-i)*100}% is : {r2.round(4)}")
14
   y_pred = model.predict(X_test)
    r2 = r2_score(y_test, y_pred)
    print(f"R^2 Score for the testing {(i)*100}% set is : {r2.round(4)}")
    print("Mean squared error:",(metrics.mean_squared_error(y_test, y_pred)))
19
```

.

.

XGBossting

.

.

• • • • • • • • • • • •

```
1 from sklearn.model_selection import train_test_split
  2 from xgboost import XGBRegressor
  3 from sklearn.metrics import r2_score
  6 for i in [0.2,0.25,0.3,0.4]:
     X_train, X_test, y_train, y_test = train_test_split(x_nomulti_colinearity, y, test_size=i, random_state=0)
      # Creating the XGBoost Regressor model
      model = XGBRegressor(max_depth=4,
 11
                          n_estimators=100,
                          subsample=0.0310,
 12
 13
 14
                          random_state=0)
 15
      # Training the model on the training data
      model.fit(X train, y train)
 18
      # Predicting on the test data
 20
 21
 22  y_pred = model.predict(X_train)
     r2 = r2_score(y_train, y_pred)
 24 print("-----\n")
      print(f"R^2 Score for the training set {(1-i)*100}% is : {r2.round(4)}")
 26
     y_pred = model.predict(X_test)
 28 r2 = r2_score(y_test, y_pred)
 29 print(f"R^2 Score for the testing {(i)*100}% set is : {r2.round(4)}")
                                                                                                               . . . . . . . . . . . . . . . .
     print("Mean squared error:",(metrics.mean squared error(y test, y pred)).round(3))
```

.

.

Bagging

```
1 from sklearn.ensemble import BaggingRegressor
 2 from sklearn.tree import DecisionTreeRegressor
 5 X=x_nomulti_colinearity=data1.drop(['Country', 'Urban_population', 'Birth Rate', 'Co2-Emissions'],axis=1)
 6 y=data1['Infant mortality']
 7 for i in [0.2,0.25,0.3,0.4]:
 8 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=i, random_state=0)
 9
    # Creating the Bagging Regressor model with Decision Tree as base estimator
    model = BaggingRegressor(
11
12
        base_estimator=DecisionTreeRegressor(),
        n_estimators=99, # Number of trees in the ensemble
13
14
        random_state=42,
15
        max_samples=0.8, # Fraction of samples to use for each tree
16
        max_features=4
17 )
18
    # Training the model on the training data
19
    model.fit(X train, y train)
20
21
    # Predicting on the test data
22
    y_pred = model.predict(X_test)
24
    # Calculating the R<sup>2</sup> score
    r2 = r2_score(y_test, y_pred)
26
27
    # Output the R<sup>2</sup> score
    print(f'\nR2 for test ration {i*100}% score: {r2:.4f}')
    print("Mean squared error:",(metrics.mean_squared_error(y_test, y_pred)))
```

.

Thank you

Ruchitha | Shravanthika | Ramya | Madirai | Deepika

80-20 split

Models/splits	R^2
Multiple Regression	0.927
Random Forest	0.853
Dession Tree	0.731
KNN	0.803
SVR	0.735
Bagging	0.870
XGBoosting	0.712

Here for 80-20 train-test split Multiple Regression is the best model as compared to the other models.

75-25 split

Models/splits	R ²	^2
Multiple Regress	ion	0.933
Random Forest		0.873
Dession Tree		0.744
KNN		0.820
SVR		0.749
Bagging		0.862
XGBoosting		0.647

Here for 75-25 train-test split Multiple Regression is the best model as compared to the other models.

70-30 split

M	lodels/splits	R^2	
M	Iultiple Regression	C).926
Ra	andom Forest	C).864
De	ession Tree	C	0.693
KI	NN	C	.807
S۱	√R	C).758
Ba	agging	C).866
XC	GBoosting	C).539

Here for 70-30 train-test split Multiple Regression is the best model as compared to the other models.

60-40 split

Models/splits	R^2
Multiple Regression	0.913
Random Forest	0.878
Dession Tree	0.729
KNN	0.802
SVR	0.736
Bagging	0.869
XGBoosting	0.558

Here for 60-40 train-test split Multiple Regression is the best model as compared to the other models.