用 β 粒子验证相对论的动量-动能关系

邵智轩

学号: 1400012141*

(日期: 2019年3月28日)

本实验通过同时测量速度接近光速 c 的高速电子的动量和动能,来验证狭义相对论中动能与动量关系的正确性,并学习 β 磁谱仪的测量原理及其他核物理的实验方法和技术。

关键词:狭义相对论, β 衰变, β 磁谱仪,闪烁体探测器

 $^{^{\}ast}$ shaozhixuansh@pku.edu.cn; (86)13381350619

I. 引言

狭义相对论已为大量的实验所证实,并应用于近代物理的各个领域。本实验通过同时测量速度接近光速 c 的高速电子的动量和动能,来证明狭义相对论的正确性,并学习 β 磁谱仪的测量原理及其他核物理的实验方法和技术。

II. 实验原理

A. 相对论动量-动能关系

四-动量 P 可写成

$$\mathbf{P} = (p^0, p^1, p^2, p^3) = (\frac{E}{c}, \mathbf{p}),$$
 (1)

其中三-动量 $\mathbf{p} = \gamma m_0 \mathbf{v} = \gamma m_0 (v_1, v_2, v_3)$, $E = \gamma m_0 c^2$ 。四-动量 \mathbf{P} 的 Minkowski 内积 是 Lorentz 不变量:

$$-\left(\frac{E}{c}\right)^{2} + p^{2} = -\left(\frac{E'}{c}\right)^{2} + p'^{2},\tag{2}$$

其中 $p^2 = |\mathbf{p}|^2 = p_1^2 + p_2^2 + p_3^2$ 。若取 S' 为于物体静止的参考系,有 $\mathbf{p'} = \mathbf{0}$, $E' = E_0 = m_0 c^2$,则 (2) 写为:

$$E^2 - c^2 p^2 = E_0^2 (3)$$

这就是相对论的能量和动量关系,而动能和动量的关系为:

$$E_k = E - E_0 = (c^2 p^2 + m_0^2 c^4)^{1/2} - m_0 c^2$$
(4)

B. β 磁谱仪与动量测量

高速 β 粒子在垂直于运动方向的均匀磁场 B 中的运动方程为

$$m\frac{v^2}{R} = \frac{\mathrm{d}p}{\mathrm{d}t} = evB \tag{5}$$

从而

$$p = eBR \tag{6}$$

R 为 β 粒子轨道半径,是源与探测器间距的一半。移动探测器即改变 R,可得到不同动量的 β 粒子。

III. 实验内容

A. 闪烁计数器能量定标

 β 粒子的动能 E_i 与多道分析器的道数 n 成正比:

$$E_i = a + bn (7)$$

可用几个已知能量的放射源来标定待定参数 a 和 b,常用的标准源有 $^{137}\mathrm{Cs}$ γ 射线

图 1: ${}^{60}Co$ 和 ${}^{137}Cs$ 的计数-道数关系曲线

的 0.662 MeV 的光电峰和 0.184 MeV 的反射峰; 60 Co γ 射线的的 1.173 MeV 和 1.333 MeV 的两个光电峰。固定光电管的高电位于 594 V, 增益倍数为一固定位置,他们的计数-道数关系曲线如图1所示,各峰对应的道数如表I所示。

表 I: 用 60 Co 和 137 Cs 放射源进行能量定标

	¹³⁷ Cs 反散射峰	¹³⁷ Cs 光电峰	60Co 光电峰 1	⁶⁰ Co 光电峰 2
E_i/MeV	0.184	0.662	1.173	1.333
道数 n	43	160	282	319

拟合直线的相关系数 r = 0.99996, 回归系数为:

$$a = 1.7027 \times 10^{-3}, \quad b = 4.1607 \times 10^{-3}$$
 (8)

B. 测量不同动量的 β 粒子的相应动能

保持光电管的电压与放大倍数不变。 β 粒子放射源置于位置刻度线的 6.00 cm 处,粒子进入均匀磁场下的真空室,均匀磁场大小为 B=0.06555 T。将闪烁体探测器探头置于不同位置 x 处(在真空室的每一个窗口取一点),分别测定对应的 β 能谱的峰位,并记录探头的位置,记录的数据如表 Π 所示。

表 II: 测量不同动量的 β 粒子的相应动能(真空)

,	28.55					
$R/\mathrm{cm}^{\mathbf{a}}$	11.20	9.78	8.73	7.48	6.20	5.05
$pc/\text{MeV}^{\ \mathbf{b}}$	2.201	1.922	1.715	1.469	1.218	0.992
道数 n	398	333	276	223	166	109
$E_t/\mathrm{MeV^c}$						
$E_i/{\rm MeV}$	1.747	1.475	1.239	1.018	0.782	0.550

a $R = \frac{1}{2}(x - 6.15)$

狭义相对论理论下,动能和动量的关系为4,代入电子的静能 $m_0c^2=0.511$ MeV,以 MeV 为单位,有

$$E_k = \sqrt{(cp)^2 + 0.511^2} - 0.511 \tag{9}$$

而经典理论(伽利略时空观)下的动能动量关系为:

$$E_k = \frac{(cp)^2}{2 \times 0.511} \tag{10}$$

它们在高能端有显著的差异,如图2所示。我们将表II中的 6 个数据点也标在图中。可以看到,相对论动量-动能关系与实验相符。

此外还在大气中重复了以上实验,数据如表III所示。对比真空中的结果,不同之

表 III: 测量不同动量的 β 粒子的相应动能 (大气)

x/cm	16.25	21.10	25.70
R/cm		7.48	
pc/MeV	0.992	1.469	1.922
道数 <i>n</i>	108	214	324
E_t/MeV			
E_i/MeV	0.546	0.980	1.435

处有两点: 其一, 峰的半高宽变宽; 其二, 峰位对应的能量偏小, 且越往高能端越明

^b pc/MeV = 3(B/T)(R/cm)

^c $E_t = a + bn$

图 2: 经典力学与狭义相对论的动能-动量关系, 以及实测 β 粒子的动能-动量关系

显。这是由于真空度降低、压强升高后,电子的平均自由程减小,与空气分子的碰撞增多,使得两侧轨道的相近能量的电子更多地散射至探测器所在轨道,使展宽变宽;而从统计意义上说,内侧轨道的低能电子散射至探测器的概率更大,使峰位对应的能量略有降低。

IV. 结论

本实验通过同时测量速度接近光速 c 的高速电子的动量和动能,定量地验证了狭义相对论中动量-动能关系 (4) 的正确性,并学习 β 磁谱仪的测量原理及其他核物理的实验方法和技术。

V. 致谢

感谢张双全老师对实验的悉心指导,使我掌握了 β 磁谱仪的使用方法。张老师主张让我们自己多琢磨试错,勤于思考,这种精神让我受益匪浅。

[1] 吴思诚, 荀坤. 近代物理实验(第四版). 北京: 高等教育出版社, 2015