Effect of Sample Size on Kernel Deep Neural Network

Xiaoran Tong Qin Lu

Michigan State University

tongxia1@msu.edu qlu@epi.msu.edu

December 15, 2017

Table of Content

1 Simulation 1: Effect of Sample Size

Simulation 2, Effect of Batch Size

Current Speculation

Simulation Settings:

- N = {32, 64, 96, 128, 256}
- P=2000, FRQ=0.50, ϕ =2.0
- link (h) = {I, sigmoid, sin}
- Number of Hidden Units = 96
- True Model: $y \sim \mathcal{N}(0, X'X + \phi I)$
- Batch Size = 16
- learning rate = 6.4e-4, Momentum = 0.0
- Reserved Time = 2 hours, Reserved Iteration = ∞
- No rendom seed.

Performance by Time, till finish:

- y-axis: evaluation error (H=256) relative to NULL model.
- no significant performance differenciation between choice of sample sizes.

Performance by Time, first 10 min:

- y-axis: evaluation error (H=256) relative to NULL model.
- no significant performance difference among choices of sample size.

Evaluation error at Finish:

	N	Р	Н	frq	ycv	lnk	PHI	bsz	М	err	rep
1	32	2000	256	0.50	р	ı	2	16	96	0.92	49
2	64	2000	256	0.50	p	I	2	16	96	0.90	49
3	96	2000	256	0.50	p	I	2	16	96	0.91	50
4	128	2000	256	0.50	р	1	2	16	96	0.90	49
5	256	2000	256	0.50	p	I	2	16	96	0.90	48

- no significant performance difference among choices of sample size;
- samaller batch improves stability.

Performance by Time, first 1 min, finner recording:

- y-axis: evaluation error (H=256) relative to NULL model.
- no significantly different performce by varying sample sizes.

Evaluation error at Finish, finner recording:

	N	Р	Н	frq	ycv	lnk	PHI	bsz	М	mu	rep
1	32	2000	256	0.50	р	I	2	16	96	0.92	49
2	64	2000	256	0.50	p	I	2	16	96	0.90	49
3	96	2000	256	0.50	p	I	2	16	96	0.91	50
4	128	2000	256	0.50	p	I	2	16	96	0.90	49
5	256	2000	256	0.50	p	I	2	16	96	0.90	48

• no significant performance difference among choice of sample sizes;

Simulation Settings:

- N = 256, H=256
- P=2000, FRQ=0.50, ϕ =2.0
- link (h) = l
- Number of Hidden Units = 96
- True Model: $y \sim \mathcal{N}(0, X'X + \phi I)$
- Batch Size = {32, 64, 128, 256}
- learning rate = $\{6.4e-4, 3.2e-4, 1.6e-4, 8.0e-5\}$
- Momentum = 0.0
- Reserved Time = 2 hours, Reserved Iteration = ∞
- No rendom seed.

Performance by Time, first 1 min:

- y-axis: evaluation error (H=256) relative to NULL model
- larger batch may converge better at the begining.

Performance at Finish:

	N	Р	Н	frq	ycv	Ink	PHI	bsz	М	mu	rep
1	256	2000	256	0.50	р	l	2	32	96	0.90	46
2	256	2000	256	0.50	p	1	2	64	96	0.90	42
3	256	2000	256	0.50	р	1	2	128	96	0.93	33
4	256	2000	256	0.50	р	1	2	256	96	0.94	31

- large batch is better at the begining (1 min), but worse at finishing (2 hours).
- larger batch is untable, a new simulation is ongoing.

• by varying sample size, the evaluation error after convering seems no difference.