

Olimpiada de Fizică Etapa pe județ 19 februarie 2012

Barem de evaluare şi de notare

Se punctează în mod corespunzător oricare altă modalitate de rezolvare, care conduce la rezultate corecte

Nr. item	Problema I Pe pârtie		Punctaj
1. a.	Pentru:		2,00p
	alegerea scalei adecvate pentru reprezentarea grafică	0,20p	
	notarea axelor de coordonate	0,20p	
	specificarea unităților de măsură pentru fiecare axă de coordonate	0,20p	
	marcarea, pe hârtia milimetrică, a punctelor corespunzătoare perechilor de date înregistrate cu ajutorul aplicației GPS	0,40p	
	trasarea dependenței $v=v(t)$		
	v(m/s) A 22- 20- 18- 16- 14- 12- 10- 8- 6- 4- 2- 0- 0- 10- 20- 30- 40- t(s)	0,60p	
	marcarea pe grafic a porțiunii <i>AB</i> care corespunde situației în care forța de tracțiune a snowmobilului este constantă	0,20p	
	marcarea pe grafic a porțiunii <i>BC</i> care corespunde situației în care Octavian a urcat pe pârtie cu snowmobilul având motorul oprit	0,20p	
1. b.	Pentru: oricare modalitate de determinare corectă a distanței exemplu:		0,40p
	$\begin{cases} D = \frac{20 \frac{m}{s} \cdot (40 s - 30 s)}{2} \\ D = 100 m \end{cases}$	0,40p	

1. c.	Pentru:		2,20p
0.	diagrama forțelor		2,200
	y R A F F G	0,30p	
	expresia principiul fundamental al mecanicii $\vec{G} + \vec{N} + \vec{F}_f = m \cdot \vec{a}_u$	0,30p	
	$\begin{cases} -(M+m) \cdot g \cdot \sin \alpha - F_f = (M+m) \cdot a_u \\ N - (M+m) \cdot g \cdot \cos \alpha = 0 \end{cases}$	0,20p	
	expresia mărimii forței de frecare la alunecare $F_f = \mu \cdot N$	0,20p	
	expresia mărimii accelerației de urcare pe pârtie, cu snowmobilul având motorul oprit $\mathbf{a}_u = -\mathbf{g} \cdot \left(\sin \alpha + \mu \cdot \cos \alpha \right)$	0,20p	
	expresia coeficientului μ de frecare la alunecare a snowmobilului pe zăpadă $\mu = \frac{1}{\cos\alpha}\cdot\left(-\frac{a_u}{g}-\sin\alpha\right)$	0,20p	
	$oldsymbol{a}_u = rac{\Delta oldsymbol{v}}{\Delta t}$	0,20p	
	estimarea valorii accelerației a_u pe baza datelor din tabelul 1 $\begin{cases} a_u = \frac{(0.0-20.0)\frac{m}{s}}{(40-30)s} \\ a_u = -2.0\frac{m}{s^2} \end{cases}$	0,20p	
	$\sin \alpha \cong 0,1$ $\cos \alpha \cong 1$	0,20p	
	estimarea valorii coeficientului de frecare dintre snowmobil şi zăpada de pe pârtie $\mu=0,1$	0,20p	
1. d.	Pentru: diagrama forțelor	0,30p	1,80p
	expresia principiul fundamental al mecanicii $\vec{F}_t + \vec{G} + \vec{N} + \vec{F}_f = m \cdot \vec{a}_t$	0,30p	

$\int F_t - (M + m) \cdot g \cdot \sin \alpha - F_f = (M + m) \cdot a_t$	0.20%
$(N - (M + m) \cdot g \cdot \cos \alpha = 0$	0,20p

$$F_t = (M + m) \cdot [a_t + g \cdot (\sin \alpha + \mu \cdot \cos \alpha)]$$
 0,40p

estimarea valorii accelerației a_t pe baza datelor din tabelul 1

$$\begin{cases} a_t = \frac{(20-5)\frac{m}{s}}{(30-10)s} \\ a_t = 0.75\frac{m}{s^2} \cong 0.8\frac{m}{s^2} \end{cases}$$
 0,20p

estimarea valorii forței de tracțiune $\begin{cases} F_t = 200 kg \cdot 2,75 \frac{m}{s^2} \\ F_t = 550 \, N \end{cases}$ 0,40p

2. a. Pentru:

diagrama fortelor

expresia principiul fundamental al mecanicii $\vec{G} + \vec{N} + \vec{F}_f = m \cdot \vec{a}_c$ 0,20p

$$\begin{cases} (M+m) \cdot g \cdot \sin \alpha - F_f = (M+m) \cdot a_c \\ N - (M+m) \cdot g \cdot \cos \alpha = 0 \end{cases}$$
 0,20p

expresia modulului accelerației de coborâre a snowmobilului, care se deplasează motorul oprit $a_c = g \cdot (\sin \alpha - \mu \cdot \cos \alpha)$

$$a_c = 0 0,20p$$

expresiile pentru modulele componentelor orizontală, respectiv verticală ale vitezei snowmobilului

$$\begin{cases} V_{o, \text{ orizontal}} = V_o \cdot \cos \alpha & \begin{cases} V_{o, \text{ vertical}} = V_o \cdot \sin \alpha \\ V_{o, \text{ orizontal}} \cong V_o & \end{cases} & \begin{cases} V_{o, \text{ vertical}} = 0, 1 \cdot V_o \end{cases}$$

expresia impulsul sistemului, imediat înainte ca Octavian să treacă cu snowmobilul de pe porțiunea înclinată pe porțiunea orizontală a pârtiei

$$\begin{cases} \vec{P} = (M+m) \cdot \vec{v}_o \\ \vec{P} = (M+m) \cdot v_o \cdot (\cos \alpha \cdot \vec{i} + \sin \alpha \cdot \vec{j}) \end{cases}$$
 0,20p

expresia impulsul sistemului, imediat după ce Octavian trece – într-un interval foarte scurt de timp - cu snowmobilul de pe porțiunea înclinată pe porțiunea orizontală a pârtiei

$$\vec{P}' = (M + m) \cdot v_o \cdot \cos \alpha \cdot \vec{i}$$

0,20p

2,40p

	$\Delta \vec{P} = \vec{P}' - \vec{P} $ 0,	20p	
	expresia variației impulsului sistemului $\Delta \vec{P} = -(M+m) \cdot v_0 \cdot \sin \alpha \cdot \vec{j}$ Observație: variația totală a impulsului sistemului, apărută la trecerea lui Octavian cu snowmobilul de pe porțiunea înclinată pe porțiunea orizontală a pârtiei este orientată pe direcție verticală și cu sensul în sus	30p	
	$\begin{cases} \Delta \vec{P} = \Delta \vec{P}_{vertical} \\ \Delta \vec{P}_{vertical} = -(M+m) \cdot v_0 \cdot \sin \alpha \cdot \vec{j} \end{cases}$ 0,	20p	
2. b.	Pentru: valoarea variației totale de impuls pe direcție verticală, apărută la trecerea lui Octavian cu snowmobilul de pe porțiunea înclinată a pârtiei pe porțiunea orizontală $\Delta P_{\textit{vertical}} = 100 kg \cdot \frac{m}{s}$	20p	0,20p
Oficiu		1,00p	
TOTAL Problema I			10p

Olimpiada de Fizică Etapa pe județ 19 februarie 2012

Barem de evaluare şi de notare

Se punctează în mod corespunzător oricare altă modalitate de rezolvare, care conduce la rezultate corecte

Nr. item	Problema a II-a Compresorul		Punctaj
1.a.	Pentru:		1,00p
	expresia numărul de moli de aer $v_c^{(1)}$ introduşi în rezervorul compresorului la		
	o singură pompare $v_c^{(1)} = \frac{p_A \cdot V_p}{R \cdot T_A}$	0,50p	
	$v_c^{(1)} = 0.10 mol$	0,50p	
1.b.	Pentru:		1,00p
	$\Delta U^{(1)} = v_c^{(1)} \cdot C_V \cdot T_A$		
	$\Delta U = V_c \cdot \cdot$	0,40p	
	pompare, se datorează creșterii numărului de moli din vas cu cantitatea $v_c^{(1)}$	0,400	
	porripario, de dator calla oregion manual de montre de daminate de c		
	$\Delta U^{(1)} = \frac{5}{2} p_A \cdot V_p$	0,30p	
	$\frac{1}{2} \frac{1}{2} \frac{1}$	0,000	
	$\Delta U^{(1)} = 625 J$	0,30p	
1.c.	Pentru:		2,00p
	expresia numărul inițial de moli de aer din rezervor $v_{initial} = \frac{p_A \cdot V_R}{R \cdot T_A}$	0,30p	
	expresia numărului de moli de aer aflați în rezervor la momentul atingerii		
	·	0,30p	
	presiunii p_P $v_{final} = \frac{p_P \cdot V_R}{R \cdot T_A}$	0,00р	
	$v_{final} = v_{initial} + N_c \cdot v_c^{(1)}$	0,50p	
		о,оор	
	$N_c = \frac{V_R}{V_P} \cdot \left(\frac{p_P}{p_A} - 1\right)$	0,50p	
	$V_P \left(p_A \right)$	0,50р	
	$N_c = 3600$	0,40p	
2.a.	Pentru:		2,00p
	ecuația termică de stare aplicată pentru cantitatea de aer care iese din		
	rezervor în intervalul de timp Δt		
	$p_p \cdot D \cdot \Delta t = v_D \cdot R \cdot T_A$	0,50p	
	unde v_D este numărul de moli de aer, preluați din rezervor pentru dispozitivul pneumatic, în intervalul de timp Δt	-	
	pheumane, in intervalui de timp Δt		

			ı
	expresia numărului de moli pompați în rezervor în intervalul de timp Δt $v_t = v_c^{(1)} \cdot n_{c,s} \cdot \Delta t$	0,50p	
	$v_D = v_t$	0,50p	
	$n_{c,s} = \frac{p_P}{p_A} \cdot \frac{D}{V_p}$	0,50p	
2.b.	Pentru:		0,30p
	$n_{c,s} = 4 s^{-1}$	0,30p	
3.a.	Pentru:		2,20p
	expresia lucrul mecanic necesar pentru comprimarea izotermă a aerului la o singură pompare $L^{(1)} = v_c^{(1)} \cdot R \cdot T_A \cdot \ln \frac{p_p}{p_A}$	0,50p	
	expresia lucrul mecanic total efectuat în intervalul de timp $\Delta \tau$ $L = n_{c,s} \cdot \Delta \tau \cdot v_c^{(1)} \cdot R \cdot T_A \cdot \ln \frac{p_p}{p_A}$	0,50p	
	expresia cantității de căldură degajată prin arderea motorinei $ $	0,50p	
	$\eta = \frac{L}{Q}$	0,20p	
	expresia volumului de motorină consumat într-un interval de timp $\Delta \tau$ $V = \frac{n_{c,s} \cdot \Delta \tau \cdot p_A \cdot V_p \cdot \ln \frac{p_p}{p_A}}{q \cdot \eta}$	0,50p	
3.b.	Pentru:		0,50p
	valoarea volumului de motorină consumat de motorului Diesel care acționează compresorul într-o oră $V=0.95dm^3$	0,50p	
Oficiu	<u> </u>		1,00p
	L. Problema a II - a		10p
101A	L Tiouriia a 11 - a		iop

Olimpiada de Fizică Etapa pe județ 19 februarie 2012

Barem de evaluare şi de notare

Se punctează în mod corespunzător oricare altă modalitate de rezolvare, care conduce la rezultate corecte

Nr. item	Problema a III-a Vivariul		Punctaj
1.a.	Pentru:		1,50p
	legea refracției la suprafața de separare aer-sticlă $n_{aer} \cdot \sin i = n \cdot \sin r$),30p	
	$n_{aer} \simeq 1$ n),30p	
	valoarea unghiului de refracție $r=30^{\circ}$),10p	
	$I_1 I_2 = \frac{e}{cosr}$),20p	
	$I_1 I_2 = \frac{e}{\cos r}$ $\sin (i - r) = \frac{d}{I_1 I_2}$),20p	
	$d = \mathbf{e} \cdot \frac{\sin(i-r)}{\cos r}$),20p	
	d=2.6cm),20p	
2. a.	Pentru:		3,30p
	construcția imaginii O_1 a unei insectei O din vivariu, prin suprafața de separare Σ_1 dintre peretele și aerul din vivariu		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$),30p	
	$tg i_1 = \frac{N_1 N_2}{ON_1}$ $tg r_1 = \frac{N_1 N_2}{O_1 N_1}$),10p	
	$tg r_1 = \frac{N_1 N_2}{O_1 N_1} $),10p	

$$\frac{tg\,i_1}{tg\,r_1} = \frac{\delta_1}{\delta}$$

$$\begin{cases} tg \, i_1 \cong \sin i_1 \\ tg \, r_1 \cong \sin r_1 \end{cases}$$
 0,20p

legea refracției aplicată la suprafața de separare Σ_1 $\sin i_1 = n \cdot \sin r_1$ 0,30p

$$\delta_1 = \mathbf{n} \cdot \mathbf{\delta}$$
 0,20p

distanța la care este situată imaginea intermediară \textit{O}_{1} față de suprafața de separare Σ_{2}

$$\begin{cases} \delta_1' = \delta_1 + \mathbf{e} \\ \delta_1' = \mathbf{n} \cdot \delta + \mathbf{e} \end{cases}$$
 0,20p

construcția imaginii finale ${\it O}_2$ a insectei din vivariu, prin cea de-a doua suprafață de separare Σ_2 dintre peretele vivariului și aerul din exterior

$$tg \, i_2 = \frac{N_3 N_4}{O_1 N_3} \tag{0.10p}$$

$$tg \, r_2 = \frac{N_3 N_4}{O_2 N_3}$$
 0,10p

$$\frac{tg\,i_2}{tg\,r_2} = \frac{\delta_2}{\delta_1'}$$

$$\begin{cases} tg \, i_2 \cong \sin i_2 \\ tg \, r_2 \cong \sin r_2 \end{cases} \tag{9,20p}$$

legea refracției aplicată la suprafața de separare Σ_2 $n \cdot \sin i_2 = \sin r_2$ 0,30p

$$\begin{cases} \delta_2 = \frac{\delta_1'}{n} \\ \delta_2 = \delta + \frac{\mathbf{e}}{n} \end{cases}$$
 0,20p

$$D = \left(\delta + \mathbf{e}\right) - \left(\delta + \frac{\mathbf{e}}{n}\right)$$
 0,20p

$$D = \mathbf{e} \cdot \left(1 - \frac{1}{n}\right)$$
 0,20p

2. b.	Pentru:		0,20p
	D = 1.9 cm	0,20p	-, P
2. c.	Pentru:	•	2,00p
2. 0.	precizarea că imaginea crenguței nu este o linie verticală justificarea răspunsului exemplu: una dintre modalitățile de a stabili dacă imaginea crengii este sau nu o linie dreaptă verticală, constă în a deduce expresia coordonatei x' a imaginii $O'(x',y')$ a unui punct obiect $O(x,0)$ în raport cu un sistem de axe x S y ş i de a evalua dacă această coordonată variază, sau nu, în funcție de unghiul α de incidență.	0,30p	2,000
	H B C C B C C B C C B C C B C C C B C	0,40p	
	$KM = x \cdot (tg\beta - tg\alpha) + e \cdot (tg\beta' - tg\alpha')$	0,10p	
	$KM = (x'+e) \cdot (tg\beta - tg\alpha)$	0,10p	
	$x + e \cdot \frac{(tg\beta' - tg\alpha')}{(tg\beta - tg\alpha)} = e + x'$	0,10p	
	legea refracției $\sin \beta = n \cdot \sin \beta'$	0,10p	
	precizarea că razele de lumină KP şi MQ care ajung la ochiul observatorului sunt foarte apropiate (unghiurile $\Delta \alpha$ şi $\Delta \alpha'$ sunt foarte mici) $\begin{cases} \beta = \alpha + \Delta \alpha \\ \beta' = \alpha' + \Delta \alpha' \end{cases}$	0,10p	
	$\begin{cases} \sin\Delta\alpha \cong \Delta\alpha \\ \sin\Delta\alpha' \cong \Delta\alpha' \\ \cos\Delta\alpha \cong 1 \end{cases}, \text{ decarece } \Delta\alpha \text{ și } \Delta\alpha' \text{ sunt unghiuri foarte mici} \\ \cos\Delta\alpha' \cong 1 \end{cases}$	0,10p	
	legea refracției $\sin \beta = n \cdot \sin \beta'$ scrisă sub forma $\begin{cases} \sin(\alpha + \Delta \alpha) = n \cdot \sin(\alpha' + \Delta \alpha') \\ \sin \alpha \cdot \cos \Delta \alpha + \sin \Delta \alpha \cdot \cos \alpha = n \cdot [\sin \alpha' \cdot \cos \Delta \alpha' + \sin \Delta \alpha' \cdot \cos \alpha'] \\ \sin \alpha + \Delta \alpha \cdot \cos \alpha \cong n \cdot [\sin \alpha' + \Delta \alpha' \cdot \cos \alpha'] \\ [\sin \alpha - n \cdot \sin \alpha'] + \Delta \alpha \cdot \cos \alpha \cong n \cdot \Delta \alpha' \cdot \cos \alpha' \\ \Delta \alpha \cdot \cos \alpha \cong n \cdot \Delta \alpha' \cdot \cos \alpha' \end{cases}$	0,10p	

	$\frac{\Delta \alpha'}{\Delta \alpha} \cong \frac{1}{n} \cdot \frac{\cos \alpha}{\cos \alpha'}$	0,10p	
	$tgeta - tglpha \cong rac{\Deltalpha}{\cos^2lpha}$	0,10p	
	$tg\beta - tg\alpha \cong \frac{\Delta\alpha}{\cos^2\alpha}$ $tg\beta' - tg\alpha' \cong \frac{\Delta\alpha'}{\cos^2\alpha'}$	0,10p	
	$\begin{cases} x + e \cdot \frac{\cos^3 \alpha}{\cos^3 \alpha'} \cdot \frac{1}{n} \cong e + x' \\ x' \cong x - e \cdot \left[1 - \frac{1}{n} \frac{\cos^3 \alpha}{\left(\sqrt{1 - \sin^2 \alpha / n^2} \right)^3} \right] \\ \text{coordonata } x' = x' \left(\alpha \right) \text{ a imaginii } O' \left(x', y' \right) \text{ a unui punct obiect } O \left(x, 0 \right) \hat{n} \\ \text{raport cu un sistemul de axe } xSy \text{ nu este constantă, ci variază în funcție de unghiul de incidență } \alpha \end{cases}$	0,20p	
	imaginea observată de Octavian nu este o linie dreaptă verticală, deoarece diferitele puncte din imaginea crengii au coordonate $x'(\alpha)$ diferite Obs: Imaginea crengii ar fi fost o linie verticală, dacă pentru orice punct imagine s-ar fi obținut $x'=$ const .	0,10p	
3. a.	Pentru:		2,00p
	prima formulă fundamentală a lentilelor subțiri $\frac{1}{x_2} - \frac{1}{x_1} = C$	0,40p	•
	$x_2 = -(\delta_0 - d_0)$	0,30p	
	A' F_1 A F_2 $-x_2$ δ_0	0,40p	
	$x_1 = -7.0 \mathrm{cm}$	0,40p	
	expresia distanței dintre buburuză și ochiul lui Octavian $D_0 = x_1 + d_0$	0,30p	
	$D_0 = 9.0 cm$	0,20p	
Oficiu		•	1,00p
	C. Problema a III-a		10p
10 2,122 1.10000			

© Barem de evaluare și de notare propus de: Dr. Delia DAVIDESCU – Centrul Național de Evaluare și Examinare – M E C T S Conf. univ. dr. Adrian DAFINEI - Facultatea de Fizică – Universitatea București