MA204: Mathematics IV

Complex Analysis: Complex valued functions

Gautam Kalita IIIT Guwahati

Complex valued functions

Let $S \subseteq \mathbb{C}$. A complex valued function $f: S \to \mathbb{C}$ is a rule which assigns every element of $z \in S$ to a complex number $z \in \mathbb{C}$. In this case, we write $w = f(z)^1$.

The set S is called domain of the function and the set $\{w \in \mathbb{C} : w = f(z) \text{ for some } z \in S\}$ is called range of the function.

For the function $f(z) = \frac{z}{(z-1)(z-i)}$, the domain is $\mathbb{C} - \{1, i\}$.

If z = x + iy, the we can write w = f(z) as

$$f(x+iy)=f(x,y)=u(x,y)+iv(x,y),$$

where $u(x,y),v(x,y):\mathbb{R}^2\to\mathbb{R}$ are real valued functions².

The function also can have polar representation. If $z = r \cos \theta + i \sin \theta$, then we have³

$$f(re^{i\theta}) = f(r,\theta) = u(r,\theta) + iv(r,\theta).$$

Limit of a function

Limit of a function: Let f be a complex valued function defined at all points z in some deleted neighborhood of z_0 . We say that f has a limit a as $z \to z_0$ if for every $\epsilon > 0$, there is a $\delta > 0$ such that

$$|f(z)-a|<\epsilon$$
 whenever $0<|z-z_0|<\delta$.

In this case, we write $\lim_{z\to z_0} f(z) = a$.

Theorem

If limit of a function at a point exists, then it is unique.

Limit of a function

If $\lim_{z\to z_0} f(z)$ exists, then f(z) must approach to a unique limit, no matter how or in which direction z approaches z_0 . Thus the limit is independent of the path taken by z along z_0 .

If the value of $\lim_{z\to z_0} f(z)$ is different along at least any two paths approaching z to z_0 , then we say that the limit does not exists.

Theorem

If f(z) = u(x, y) + iv(x, y) and $z_0 = x_0 + iy_0$ then, $\lim_{z \to z_0} f(z) = u_0 + iv_0$ if and only if $\lim_{(x,y) \to (x_0,y_0)} u(x,y) = u_0$ and $\lim_{(x,y) \to (x_0,y_0)} v(x,y) = v_0$.

Limit of a function

Properties: Let f(z) and g(z) be two complex valued function with $\lim_{z\to z_0}=a$ and $\lim_{z\to z_0}=b$. Then

(a)
$$\lim_{z \to z_0} (f(z) \pm g(z)) = \lim_{z \to z_0} f(z) \pm \lim_{z \to z_0} g(z) = a + b$$
.

(b)
$$\lim_{z\to z_0} (f(z)\cdot g(z)) = \lim_{z\to z_0} f(z)\cdot \lim_{z\to z_0} g(z) = ab.$$

(c)
$$\lim_{z \to z_0} \left(\frac{f(z)}{g(z)} \right) = \frac{\lim_{z \to z_0} f(z)}{\lim_{z \to z_0} g(z)} = \frac{a}{b}$$
 provide $b \neq 0$.

(d)
$$\lim_{z\to z_0} kf(z) = k \lim_{z\to z_0} f(z) = ka$$
 for every $k\in\mathbb{R}$.

Problem: Find limit of the following functions, if exist. If exists, then verify.

(a)
$$f(z) = \frac{z}{\bar{z}}$$
 at $z = 0$.

(b)
$$f(z) = \frac{z+1}{iz+3}$$
 at $z = -1$.

(c)
$$f(z) = \frac{2+iz}{1+z}$$
 at $z = 0$.

Continuity of a function

Continuity at a point: A function $f:D\to\mathbb{C}$ is continuous at a point $z_0\in D$ if for every $\epsilon>0$, there is a $\delta>0$ such that

$$|f(z) - f(z_0)| < \epsilon$$
 whenever $|z - z_0| < \delta$.

In other words, f is continuous at a point z_0 if

$$\lim_{z\to z_0} f(z)$$
 exists $f(z_0)$ exists

 $\lim_{z\to z_0}=f(z_0).$

A function f is continuous on D if it is continuous at each and every point in D.

Property: If f(z) and g(z) are two complex valued continuous functions at $z=z_0$, then $(f\pm g)(z)$, (fg)(z), $\left(\frac{f}{g}\right)(z)$, (kf)(z), and $(f\circ g)(z)$ are also continuous at $z=z_0$.

Continuity of a function

Theorem

If a function f(z) is continuous and nonzero at a point z_0 , then there is an open ball $B_r(z_0)$ such that $f(z) \neq 0$ for all $z \in B_r(z_0)$.

Continuity of a function

Theorem

If a function f(z) is continuous and nonzero at a point z_0 , then there is an open ball $B_r(z_0)$ such that $f(z) \neq 0$ for all $z \in B_r(z_0)$.

Theorem

If f(z) = u(x, y) + iv(x, y) and $z_0 = x_0 + iy_0$, then f(z) is continuous at $z = z_0$ if and only if u(x, y) and v(x, y) are continuous at (x_0, y_0) .

Problem

Problem: Check continuity of the following functions:

- (a) $f(z) = \frac{z+i}{2z-3}$ at z = i.
- (b) $f(z) = \frac{z}{|z|}$ at z = 0.

Derivative of a function

Let S be a nonempty open subset of $\mathbb C$ and $z_0 \in S$. The function $f:S \to \mathbb C$ is differentiable at z_0 if the limit

$$\lim_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0} \text{ or } \lim_{h\to 0}\frac{f(z_0+h)-f(z_0)}{h}$$

exists. The value of the limit is denoted by $f'(z_0)$, and is called the derivative of f at the point z_0 .

Problem: Find derivatives of $f(z) = z^2$, $g(z) = \bar{z}$, $h(z) = |z|^2$, and $h(z) = \frac{z-1}{2z+1}$ at any point z_0 , if exists.

Theorem

If f is differentiable at z_0 then f is continuous at z_0 . The converse is not necessarily true.

Properties: Suppose f, g are two differentiable complex valued functions at z_0 and $\alpha, \beta \in \mathbb{C}$. Then

- (a) $(\alpha f + \beta g)'(z_0) = \alpha f'(z_0) + \beta g'(z_0)$.
- (b) If h(z) = f(z)g(z), then $h'(z_0) = f'(z_0)g(z) + g'(z_0)f(z0)$.
- (c) If $h(z) = \frac{f(z)}{g(z)}$ and $h(z_0) \neq = 0$, then $h'(z_0) = \frac{f'(z_0)g(z_0) f(z_0)g'(z_0)}{g(z_0)^2}$.

4

Properties: Suppose f, g are two differentiable complex valued functions at z_0 and $\alpha, \beta \in \mathbb{C}$. Then

- (a) $(\alpha f + \beta g)'(z_0) = \alpha f'(z_0) + \beta g'(z_0)$.
- (b) If h(z) = f(z)g(z), then $h'(z_0) = f'(z_0)g(z) + g'(z_0)f(z0)$.
- (c) If $h(z) = \frac{f(z)}{g(z)}$ and $h(z_0) \neq = 0$, then $h'(z_0) = \frac{f'(z_0)g(z_0) f(z_0)g'(z_0)}{g(z_0)^2}$.

Theorem (Chain Rule)

$$(f\circ g)'(z_0)=rac{d}{dz}\{f(g(z))\}=f'(g(z_0))g'(z_0)$$
 whenever all the terms make sense.

4

Properties: Suppose f,g are two differentiable complex valued functions at z_0 and $\alpha,\beta\in\mathbb{C}$. Then

- (a) $(\alpha f + \beta g)'(z_0) = \alpha f'(z_0) + \beta g'(z_0)$.
- (b) If h(z) = f(z)g(z), then $h'(z_0) = f'(z_0)g(z) + g'(z_0)f(z0)$.
- (c) If $h(z) = \frac{f(z)}{g(z)}$ and $h(z_0) \neq = 0$, then $h'(z_0) = \frac{f'(z_0)g(z_0) f(z_0)g'(z_0)}{g(z_0)^2}$.

Theorem (Chain Rule)

$$(f \circ g)'(z_0) = \frac{d}{dz} \{ f(g(z)) \} = f'(g(z_0))g'(z_0)$$
 whenever all the terms make sense.

Question: Is there any difference between the differentiability in \mathbb{R}^2 and in $\mathbb{C}?^4$

Properties: Suppose f,g are two differentiable complex valued functions at z_0 and $\alpha,\beta\in\mathbb{C}$. Then

- (a) $(\alpha f + \beta g)'(z_0) = \alpha f'(z_0) + \beta g'(z_0)$.
- (b) If h(z) = f(z)g(z), then $h'(z_0) = f'(z_0)g(z) + g'(z_0)f(z0)$.
- (c) If $h(z) = \frac{f(z)}{g(z)}$ and $h(z_0) \neq = 0$, then $h'(z_0) = \frac{f'(z_0)g(z_0) f(z_0)g'(z_0)}{g(z_0)^2}$.

Theorem (Chain Rule)

 $(f \circ g)'(z_0) = \frac{d}{dz} \{ f(g(z)) \} = f'(g(z_0))g'(z_0)$ whenever all the terms make sense.

Question: Is there any difference between the differentiability in \mathbb{R}^2 and in \mathbb{C} ?

If the real and imaginary parts of a complex function are differentiable at a point, it is not necessary that the function is differentiable at that point.

Theorem (C-R Equations)

Suppose that f(z) = f(x + iy) = u(x, y) + iv(x, y) is differentiable at $z_0 = x_0 + iy_0$. Then the partial derivatives of u(x, y) and v(x, y) exist at the point $z_0 = (x_0, y_0)$ and

$$f'(z_0) = u_x(x_0, y_0) + iv_x(x_0, y_0) = v_y(x_0, y_0) - iu_y(x_0, y_0).$$

Thus equating the real and imaginary parts we get

$$u_x = v_y, u_y = -v_x, \text{ at } z_0 = x_0 + iy_0.$$

The C-R equations are necessary conditions for differentiability of a complex valued function at a point.

Note:

- (a) If the function f(z) = u(x,y) + iv(x,y) is differentiable at $z_0 = x_0 + iy_0$, then $u_x(x_0,y_0) = v_y(x_0,y_0)$ and $v_x(x_0,y_0) = -u_y(x_0,y_0)$. For example, $f(z) = z^2$ is differentiable everywhere and hence satisfies the C-R equations everywhere.
- (b) If $u_x(x_0, y_) \neq v_y(x_0, y_0)$ or $v_x(x_0, y_0) \neq -u_y(x_0, y_0)$, then f(z) = u(x, y) + iv(x, y) is not differentiable at $z_0 = x_0 + iy_0$. For example, $f(x) = \bar{z}$ does not satisfy the C-R equations at any point, and hence nowhere differentiable.
- (c) If $u_x(x_0, y_) = v_y(x_0, y_0)$ and $v_x(x_0, y_0) \neq -u_y(x_0, y_0)$, then it is not necessary that f(z) = u(x, y) + iv(x, y) is differentiable at $z_0 = x_0 + iy_0$. For example, $f(z) = \frac{\bar{z}^2}{z}$ if $z \neq 0$ and f(0) = 0 satisfies the C-R Equations at 0, but not differentiable at 0.

Theorem (Sufficient condition for differentiability)

Let $z_0=x_0+iy_0\in\mathbb{C}$ and the function f(z)=u(x,y)+iv(x,y) be defined on $B_r(z_0)$ for some r. If u_x,u_y,v_x,v_y exist on $B_r(z_0)$ and are continuous at z_0 . If u and v satisfies C-R equations at z_0 , then $f'(z_0)$ exist and

$$f'(z_0) = u_x(x_0, y_0) + iv_x(x_0, y_0).$$

Theorem (Sufficient condition for differentiability)

Let $z_0=x_0+iy_0\in\mathbb{C}$ and the function f(z)=u(x,y)+iv(x,y) be defined on $B_r(z_0)$ for some r. If u_x,u_y,v_x,v_y exist on $B_r(z_0)$ and are continuous at z_0 . If u and v satisfies C-R equations at z_0 , then $f'(z_0)$ exist and

$$f'(z_0) = u_x(x_0, y_0) + iv_x(x_0, y_0).$$

Problem: Check differentiability of the following functions:

- (a) $f(z) = z^3$.
- (b) $f(z) = \cos z$.

Theorem (Sufficient condition for differentiability)

Let $z_0=x_0+iy_0\in\mathbb{C}$ and the function f(z)=u(x,y)+iv(x,y) be defined on $B_r(z_0)$ for some r. If u_x,u_y,v_x,v_y exist on $B_r(z_0)$ and are continuous at z_0 . If u and v satisfies C-R equations at z_0 , then $f'(z_0)$ exist and

$$f'(z_0) = u_x(x_0, y_0) + iv_x(x_0, y_0).$$

Problem: Check differentiability of the following functions:

- (a) $f(z) = z^3$.
- (b) $f(z) = \cos z$.

Result: Let D be a domain in \mathbb{C} . If $f: D \to \mathbb{C}$ is such that f'(z) = 0 for all $z \in D$, then f is a constant function.

C-R Equations in polar form: Let $f(z) = f(re^i) = u(r, \theta) + iv(r, \theta)$. The polar form of Cauchy-Riemann equations are

$$u_r = \frac{1}{r} v_\theta$$
 and $v_r = -\frac{1}{r} u_\theta$.

Thank You

Any Question!!!