PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-138134

(43) Date of publication of application: 14.05.2002

(51)Int.CI.

CO8G 61/12 // C07D495/04

(21)Application number: 2000-335991

(71)Applicant: KOYAMA NOBORU

NIPPON SODA CO LTD

(22) Date of filing:

02.11.2000

(72)Inventor: KOYAMA NOBORU

KATO MASAHIKO KANEKO BUHEI

(54) POLYPYRROLE CONTAINING POLYSULFIDE AND METHOD OF PRODUCING THE SAME

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a new electroconductive polypyrrole derivative having sulfide bonds in the molecule which split in a reductive state and recombine in a oxidative state repeatedly in expectation of use as a positive pole active material of a secondary battery.

SOLUTION: This new polypyrrole derivative is obtained by reacting dihalogenopyrrole with alkali metal polysulfide under a specific conditions to produce a pyrrole having more than three sulfur atoms bridged, followed by electrolytic polymerization of the pyrrole to produce the new polypyrrole derivative expressed by formula (1) (R1, R2 each independently represents linear or branched alkylene group having 1 to 4 carbons, n is an integer of 3 to 6, and m is an integer of 10 to 10,000) which is confirmed to have excellent

LEGAL STATUS

electric characteristics.

(12)公開特許公報 (A)

(II)特許出願公開番号 特開2002—138134

最終頁に続く

(P2002-138134A) (43)公開日 平成14年5月14日(2002.5.14)

(51) Int. Cl. 7 COSG 61/12	識別記号	F I デーマコート' (参考) C08G 61/12 4C071
// CO7D495/04	103	C07D495/04 103 4J032
	111	111
	116	116
		審査請求 未請求 請求項の数6 OL (全10頁)
(21)出願番号	特願2000-335991(P2000-335991)	(71)出願人 599037366 小山 昇
(22)出顧日	平成12年11月2日(2000.11.2)	東京都武蔵野市吉祥寺東町3丁目10番7号
		(71)出願人 000004307
		日本曹達株式会社
		東京都千代田区大手町2丁目2番1号
		(72)発明者 小山 昇
		東京都武蔵野市吉祥寺東町3丁目10番7号
		(72)発明者 加藤 雅彦
		新潟県中頸城郡中郷村大字藤沢950日本曹
		達株式会社二本木工場生産技術研究所内
	,	(74)代理人 100096482
		弁理士 東海 裕作 (外1名)

(54) 【発明の名称】ポリスルフィド含有ポリピロールおよびその製造方法。

(57)【要約】

【課題】分子内にスルフィド結合を有し、スルフィド結合が還元状態で開裂し、酸化状態で再結合を繰り返すことにより二次電池の正極活物質としてその利用が期待される新規導電性ポリピロール誘導体を提供すること。

【解決手段】特定の条件でジハロゲノピロールとアルカリ金属多硫化物を反応させることで架橋した硫黄数が3以上のピロールを電解重合することで式(I)

【化1】

(式中、 R_1 、 R_1 はそれぞれ独立に、直鎖または分枝鎖を有する $C1\sim C4$ のアルキレン基を表し、nは3 ~6 のいずれかの整数を表し、mは、 $10\sim 10$, 000のいずれかの整数を表す。)で表される新規ポリピロール誘導体を得ることができ、優れた電気特性を有すること

を確かめた。

【特許請求の範囲】 【請求項1】式(I)

【化1】

$$(S)_{h} R_{2} \cdots (I)$$

を有するC1~C4のアルキレン基を表し、nは3~6 のいずれかの整数を表し、mは、10~10,000の いずれかの整数を表す。)で表される新規ポリピロール

【請求項2】式(11)

【化2】

(式中、R1、R1、およびnは前記と同じ意味を表 す。) で表されるピロール誘導体を電解重合させる請求 項1に記載の新規ポリピロール誘導体製造方法。

【請求項3】式(11)

【化3】

$$R_1$$
 R_2 \cdots (II)

(式中、 R_1 、 R_2 、およびnは前記と同じ意味を表 す。) で表される新規ピロール誘導体。

【請求項4】式(11)

【化4】

(式中、R₁、R₁、およびnは前記と同じ意味を表 す。)で表される新規ピロールの製造方法において、式 (III)

【化5】

$$R_1$$
 R_2
 R_2
 R_1
 R_2
 R_2

(式中、R₁およびR₂は前記と同じ意味を表し、Xおよ びYは、それぞれ独立に、ハロゲン原子を表し、Zは保 護基を表す。) で表される化合物を、アルカリ金属硫化 物および硫黄と反応させ、脱保護基を行う製造方法。

【請求項5】アルカリ金属硫化物を式(III)で表され る化合物に対して1~100倍当量用い、硫黄をアルカ リ金属硫化物に対して1~100倍当量用いる請求項4 に記載の製造方法。

【請求項6】アルカリ金属硫化物および硫黄を、室温か (式中、 R_1 、 R_2 はそれぞれ独立に、直鎖または分枝鎖 10 ら用いる溶媒の沸点の範囲で $1\sim7$ 2 時間処理した後、 式(III)で表される化合物と反応させる請求項4また は5に記載の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、分子内にポリスル フィド結合を有する導電性ポリマーであるポリピロール 誘導体の製造方法およびその原料となるピロール誘導体 の製造方法に関する。

[0002]

【従来の技術】分子内にスルフィド結合を有する導電性 化合物のうち、スルフィド結合が還元状態で開裂し、酸 化状態で再結合を繰り返す化合物は、特に二次電池の正 極活物質としてその利用が期待される化合物である。英 国特許GB2288799号公報には、上記性質を有す る可能性がある化合物として、下記式で表されるポリピ ロール化合物のみが記載されている。

[0003]

【化6】

[0004]

【発明が解決しようとする課題】本発明は、同様の性質 又はそれ以上の性能を有する新規なポリピロール誘導体 を提供することを目的とする。

[0005]

【課題を解決するための手段】本発明者らは、上記課題 を解決すべく鋭意検討した結果、特定の条件でジハロゲ ノピロールとアルカリ金属多硫化物を反応させることで 架橋した硫黄数が3以上のピロールおよびポリピロール 誘導体を得ることできることを見出し、本発明を完成す るに至った。

【0006】すなわち本発明は、(1)式(1) 【化7】

(式中、R₁、R₁はそれぞれ独立に、直鎖または分枝鎖 を有するC1~C4のアルキレン基を表し、nは3~6 のいずれかの整数を表し、mは、10~10,000の いずれかの整数を表す。) で表される新規ポリピロール 10 誘導体、(2)式(II)

【化8】

$$\begin{array}{c} R_1 \\ \\ \end{array} \begin{array}{c} R_2 \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{$$

(式中、 R_1 、 R_2 、およびnは前記と同じ意味を表 す。) で表されるピロール誘導体を電解重合させる

(1) に記載の新規ポリピロール誘導体製造方法、

(3)式(11)

【化9】

(式中、R1、R1、およびnは前記と同じ意味を表 す。) で表される新規ピロール誘導体、(4)式(II) 【化10】

$$R_1$$
 R_2
 R_2
 R_2
 R_2
 R_2

(式中、 R_1 、 R_2 、およびnは前記と同じ意味を表 す。)で表される新規ピロールの製造方法において、式 (III)

【化11】

$$\bigvee_{l}^{Y} X_{R_2} \cdots (III)$$

(式中、R,およびR,は前記と同じ意味を表し、Xおよ びYは、それぞれ独立に、ハロゲン原子を表し、Zは保 護基を表す。)で表される化合物を、アルカリ金属硫化 物および硫黄と反応させ、脱保護基を行う製造方法、

(5) アルカリ金属硫化物を式 (III) で表される化合 50 【0012】

物に対して1~100倍当量用い、硫黄をアルカリ金属 硫化物に対して1~100倍当量用いる(4)に記載の 製造方法、(6)アルカリ金属硫化物および硫黄を、室 温から用いる溶媒の沸点の範囲で1~72時間処理した 後、式(111)で表される化合物と反応させる(4)ま たは(5)に記載の製造方法、に関する。

[0007]

【発明の実施の形態】本発明である式(1)で表される ポリピロール誘導体は新規であり、式中、R₁、R₂はそ れぞれ独立に、直鎖または分枝鎖を有するC1~C4の アルキレン基を表す。具体的には、メチレン基、エチレ ン基、プロピレン基、ブチレン基、メチルメチレン基、 エチルメチレン基、1,1-ジメチルメチレン基、n-プロピルメチレン基、イソプロピルメチレン基、1-メ チルエチレン基、2-メチルエチレン基、1,1-ジメ チルエチレン基、1,2-ジメチルエチレン基、1-メ チルプロピレン基、2-メチルプロピレン基、3-メチ ルプロピレン基(但し、ピロール環に結合している炭素 を1とする。) 等を例示することができる。nは3~6 20 のいずれかの整数を表す。mは10~10,000のい ずれかの整数を表す。

【0008】式(I)で表されるポリピロール誘導体の 製造方法としては、電解重合法を好ましく例示すること ができる。電解重合に用いる溶媒としては、特に制限さ れないが、具体的には、アセトニトリル、ジメチルホル ムアミド、ジメチルアセトアミド、ジメチルスルホキサ イド、ホルムアミド、ジメトキシエタン、ニトロメタ ン、プロピレンカーボネート等を例示することができ、 これらは単独で、また2種以上の混合溶媒として使用す 30 ることができる。

【0009】支持電解質としては、特に制限されない が、具体的には、リチウム、ナトリウム等のアルカリ金 属カチオンと、BF、、AsF、、PF、、ClO、、 HSO、等または、SO、基またはSO、基を有するポ リマーのアニオンとの塩等を例示することができる。ま た、好ましい負極として、具体的には、チタン、ニッケ ル、白金、鉄等の金属電極、またはITOガラス等を例 示することができる。

【0010】重合は、例えば、0.5~20mA/cm 40 'で行うことができ、さらに1~5 mA/c m'の電流密 度で行うので好ましい。生成したポリマーは、電極表面 からはがし、溶媒等で洗浄することで容易に得ることが できる。

【0011】式(1)で表されるポリピロールの原料と なる式(11)で表されるピロール誘導体も新規化合物で あり、式中、R₁、R₂、nは前記と同様の具体例を例示 することができる。式(II)で表されるピロール化合物 としては、下記第1表に具体的に例示することができ る。

【表1001】

第1妻

化合物 No	R ₁	R,	n
1	CH.	CH.	3
2	CH,	(CH,),	3
3	CH,	(CH2) 3	3
4	CH,	(CH.)	3
5	CH ₃	C'H (CH,)	3
6	CH,	C' (CHa)	3
7	CH,	C'H (CH,) CH,	3
8	CH.	C' (CH ₃) *CH*	3
9	CH,	C'H (CH,) CH (CH,)	3
10	CH,	C'H,CH (CH,)	3
11	CH _a	C'H,C (CH,)	3
12	CH,	C'H (CH,) CH,CH,	3
1 3	CH,	C'H,CH (CH,) CH,	3
14	CH ₂	C'H,CH,CH (CH,)	3
15	(CH _a) ₁	(CH ₂) 2	3
16	(CH ₂) t	(CH ₂)' ₃	3
17	(CH ₂) s	(CH ₂) .	3
1.8	(CH ₂)	C'H (CH,)	3
19	(CH ₂) ₁	C' (CH ₂)	3
20	(CH ₁) t	C'H (CH ₁) CH ₂	3
21	(CH ₂) ₂	C' (CH ₂) ₂ CH ₂	3
22	(CH ₂) _g	С'Н (СН,) СН (СН,)	3
23	(CH ₂)	C'H,CH (CH,)	3
24	(CH _g) _g	C'H,C (CH,) ,	3
2 5	(CH ₂) a	С'Н (СН,) СН,СН,	3
26	(CH ₂)	C'H'CH (CH') CH'	3
27	(CH ₁)	C'H,CH,CH (CH,)	3
28	(CH ₁)	(CH ₂) 2	3
29	(CH ₁)	(CH ₂) 4	3
30	(CH ₂),	C,H (CH*)	3
31	(CH ₄)	C, (CH2) 7	3
3 2	(CH ₂),	C'H (CH ₃) CH ₃	3 3 3 3
3 3	(CH ₂),	C' (CH2) CH2	3
34	(CH ₂)	С, н (сн*) сн (сн*)	3
35	(CH ₁)	C'H,CH (CH,)	3
36	(CH ₁),	C'H,C (CH,) ,	3
37	(CH ₁),	стн (сн.) сн.сн.	3

[0013]

【表1002】

奮	1	事の	25

化合物 No	R ₁	R,	T _
38	(CH ₂),	C'H,CH (CH,) CH,	n
3 9	(CH ₂)	C'H, CH, CH (CH,)	3
40	(CH ₂)	(CH ₂)	3
41	(CH ₂)	G'H (CH,)	3
42	(CH ₂)	C' (CH.)	3
4 3	(CH ₂)	C'H (CH') CH'	3
44	(CH ₂) 4	Cr (CH') CH'	3
45	(CH ₂) 4	C'H (CH.) CH (CH.)	3
46	(CH ₂)	C'H,CH (CH,)	3
47	(CH ₂) 4	C'H,C (CH,)	3
4.8	(CH ₃)	C'H (CH3) CH1CH2	3
49	(CH ₂),	C'H,CH (CH,) CH,	3
5 0	(CH ₁)	C'H,CH,CH (CH,)	3
5 1	C'H (CH,)	C'H (CH,)	3
5 2	C1H (CH2)	C1 (CH,),	3
5 3	CtH (CH3)	C'H (CH3) CH3	3
54	C'H (CH,)	C, (CH*) *CH*	3
5 5	C'H (CH,)	C'H (CH,) CH (CH,)	3
56	C, H (CH2)	C'H,CH (CH,)	3
57	C1H (CH3)	C'H,C (CH,)	3
5 8	C1H (CH2)	C'H (CH,) CH,CH,	3
5 9	C,H (CH*)	C'H,CH (CH,) CH,	3
60	C'H (CH _a)	C,H*CH*CH (CH*)	3
61	C1 (CH ₂) 2	C1 (CH,) ,	3
62	C1 (CH,)	C'H (CH ₁) CH ₁	3
6.3	C1 (CH1) 1	C' (CH.) CH.	3
84	C, (CH')	C'H (CH,) CH (CH,)	3
6.5	C1 (CH2)	C'H2CH (CH1)	
6.6	C1 (CH2) 3	C'H,C (CH,)	3
67	C1 (CH ₄) 2	C'H (CH,) CH,CH,	3
88	C1 (CH,)	C'H,CH (CH,) CH,	3 3 3
69	C1 (CH3)	С'Н,СН,СН (СН,)	3
70	С'н (СНа) СН	с'н (сн.) сн.	
71	С'н (СН,) СН,	СТ (СН.) .СН.	3
7 2	С'H (СН,) СН,	C'H (CH3) CH (CH4)	3 3 3
73	C'H (CH, CH,	C.H*CH (CH*)	3
74	C'H (CH ₃) CH ₄	C'H'C (CH2)	3
75	C'H (CH3) CH3	сін (сн.) сн.сн.	3

[0014]

【表1003】

#1 表の統当 化合物 No	毎1虫の蛙	.a.		10
7 8 C'H (CH ₂) CH ₁ C'H ₁ CH (CH ₂) CH ₂ 3 7 7 C'H (CH ₂) CH ₃ C'H ₄ C'H ₄ CH (CH ₃) 3 7 8 C' (CH ₃) CH ₄ C' (CH ₃) CH ₄ 3 7 9 C' (CH ₃) CH ₂ C'H (CH ₃) CH ₄ 3 8 0 C' (CH ₃) CH ₂ C'H (CH ₃) CH (CH ₄) 3 8 1 C' (CH ₃) CH ₂ C'H ₄ C'H ₄ CH ₄ CH ₄ 8 2 C' (CH ₃) CH ₂ C'H ₄ C'H ₄ CH ₄ CH ₃ 3 8 3 C' (CH ₃) CH ₂ C'H ₄ C'H ₄ CH ₄ CH ₃ CH ₄ 8 3 C' (CH ₃) CH ₂ C'H ₄ CH ₄ C'H ₄ CH ₃ CH ₄ 8 4 C' (CH ₃) CH ₂ C'H ₄ CH ₄ C'H ₄ CH ₄ CH ₃ CH ₄ 8 5 C'H (CH ₃) CH ₄ C'H ₄ CH ₄ CH ₄ CH ₃ CH ₄ 8 6 C'H (CH ₃) CH (CH ₃) C'H ₄ CH ₄ CH ₄ CH ₃ 3 8 7 C'H (CH ₃) CH (CH ₃) C'H ₄ CH ₄ CH ₄ CH ₄ CH ₃ 3 8 8 C'H (CH ₃) CH (CH ₃) C'H ₄ CH ₄ CH ₄ CH ₄ CH ₄ 3 8 9 C'H (CH ₃) CH (CH ₃) C'H ₄ CH ₄ CH ₄ CH ₄ 3 8 9 C'H (CH ₃) CH (CH ₃) C'H ₄ CH ₄ CH ₄ CH ₄ 3 9 0 C'H (CH ₃) CH (CH ₃) C'H ₄ CH ₄ CH ₄ CH ₄ 3 9 1 C'H ₄ CH ₃ CH (CH ₄) C'H ₄ CH ₄ CH ₄ CH ₄ 3 9 2 C'H ₄ CH (CH ₄) C'H ₄ CH ₄ CH ₄ CH ₄ CH ₄ CH ₄ 3 9 3 C'H ₄ CH (CH ₄) C'H ₄ CH ₄ CH ₄ CH ₄ CH ₄ CH ₄ 3 9 4 C'H ₄ CH (CH ₄) C'H ₄ CH ₄			T	
77 C'H (CH ₂) CH ₂ C'H ₂ CH ₂ CH (CH ₃) 3 78 C' (CH ₃) 2CH ₂ C' (CH ₃) 2CH ₃ 3 79 C' (CH ₃) 1CH ₂ C'H (CH ₃) CH (CH ₃) 8 80 C' (CH ₃) 1CH ₂ C'H (CH ₃) CH (CH ₃) 3 81 C' (CH ₃) 1CH ₂ C'H ₁ CH (CH ₃) 3 82 C' (CH ₃) 1CH ₂ C'H ₁ CH (CH ₃) 4 83 C' (CH ₃) 1CH ₂ C'H ₁ CH (CH ₃) CH ₃ 84 C' (CH ₃) 1CH ₂ C'H ₁ CH (CH ₃) CH ₄ 85 C'H (CH ₃) 1CH ₂ C'H ₁ CH (CH ₃) CH ₄ 86 C'H (CH ₃) CH ₄ C'H ₁ CH (CH ₃) 3 87 C'H (CH ₃) CH (CH ₄) C'H ₁ CH (CH ₃) 3 88 C'H (CH ₃) CH (CH ₃) C'H ₁ CH (CH ₄) 3 89 C'H (CH ₃) CH (CH ₃) C'H ₁ CH (CH ₄) 3 89 C'H (CH ₃) CH (CH ₃) C'H ₄ CH (CH ₄) CH ₄ CH (CH ₃) 3 90 C'H (CH ₃) CH (CH ₃) C'H ₄ CH (CH ₃) 3 91 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) 3 92 C'H ₄ CH (CH ₄) C'H ₄ CH (CH ₃) 3 93 C'H ₄ CH (CH ₄) C'H ₄ CH (CH ₃) 3 94 C'H ₄ CH (CH ₄) C'H ₄ CH (CH ₃) 3 95 C'H ₄ CH (CH ₄) C'H ₄ CH (CH ₃) 3 96 C'H ₄ CH (CH ₄) C'H ₄ CH (CH ₃) 3 97 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) 3 98 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) 3 99 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) 3 90 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) 3 91 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) 3 92 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) CH ₄ 3 93 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) CH ₄ 3 94 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) CH ₄ 3 95 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) CH ₄ 3 96 C'H ₄ C (CH ₃) C'H ₄ CH (CH ₃) CH ₄ 3 97 C'H ₄ C (CH ₃) C'H ₄ CH (CH ₃) CH ₄ 3 100 C'H (CH ₃) CH ₄ CH CH ₄ C'H ₄ CH (CH ₃) CH ₄ 3 100 C'H (CH ₃) CH ₄ CH CH ₄ C'H ₄ CH (CH ₃) CH ₄ 3 101 C'H ₄ CH (CH ₃) CH ₄ CH (CH ₄) CH ₄ CH (CH ₃) CH ₄ 3 102 C'H ₄ CH (CH ₃) CH ₄ CH (CH ₄) CH ₄ CH (CH ₃) CH ₄ 3 103 C'H ₄ CH (CH ₃) CH ₄ C'H ₄ CH (CH ₄) CH ₄ 3 105 C'H ₄ CH (CH ₃) CH ₄ C'H ₄ CH (CH ₃) CH ₄ 4 107 CH ₄ C'H ₄ CH (CH ₃) CH ₄ C'H ₄ CH (CH ₄) CH ₄ 4 108 CH ₄ (CH ₄) CH ₄ (CH ₄) C'H ₄ CH (CH ₄) CH ₄ 4 109 CH ₄ (CH ₄) CH ₄ (C'H ₄) C'H ₄ (C'H ₄) CH ₄ (CH ₄) CH ₄ 4 110 CH ₄ C'H ₄ C'H ₄ (C'H ₄) C'H ₄ (C'H ₄) CH ₄ (C'H ₄) CH ₄ 4 111 C'H ₄ C'H ₄ C'H ₄ C'H ₄ C'H ₄ C'				
78 C' (CH ₃) 2CH ₂ C' (CH ₃) 2CH ₁ 3 79 C' (CH ₃) 1CH ₂ C'H (CH ₄) CH (CH ₄) 3 80 C' (CH ₃) 1CH ₂ C'H ₄ C(H ₄) CH (CH ₄) 3 81 C' (CH ₃) 1CH ₂ C'H ₄ C(H ₃) CH ₄ CH ₄ 82 C' (CH ₃) 1CH ₂ C'H ₄ C(H ₃) CH ₄ 83 C' (CH ₃) 1CH ₂ C'H ₄ C(H ₃) CH ₄ 84 C' (CH ₃) 1CH ₂ C'H ₄ C'H ₄ (CH ₃) CH ₃ 85 C'H (CH ₃) 1CH ₄ C'H ₄ CH (CH ₃) 3 86 C'H (CH ₃) 1CH ₄ C'H ₄ CH (CH ₃) 3 87 C'H (CH ₃) CH (CH ₄) C'H ₄ CH ₄ (CH ₃) 3 88 C'H (CH ₃) CH (CH ₄) C'H ₄ CH ₄ (CH ₃) 3 89 C'H (CH ₃) CH (CH ₃) C'H ₄ CH ₄ (CH ₃) 3 90 C'H (CH ₃) CH (CH ₃) C'H ₄ CH ₄ (CH ₃) 3 91 C'H ₄ CH (CH ₃) CH (CH ₃) C'H ₄ CH (CH ₃) 3 92 C'H ₄ CH (CH ₃) CH (CH ₃) C'H ₄ CH (CH ₃) 3 93 C'H ₄ CH (CH ₃) C'H ₄ CH ₄ (CH ₃) 3 94 C'H ₄ CH (CH ₃) C'H ₄ CH ₄ (CH ₃) 3 95 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) 3 96 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) 3 97 C'H ₄ C (CH ₃) C'H ₄ CH ₄ (CH ₃) C'H ₄ CH (CH ₃) 3 98 C'H ₄ C (CH ₃) C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) 3 99 C'H ₄ C (CH ₃) C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) 3 100 C'H (CH ₃) CH ₄ CH (CH ₃) C'H ₄ CH (CH ₃) CH ₄ 3 101 C'H (CH ₃) CH ₄ CH ₄ C'H ₄ C'H ₄ CH ₄ (CH ₃) 3 102 C'H (CH ₃) CH ₄ CH ₄ C'H ₄ C'H ₄ CH ₄ CH ₄ 3 103 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) CH ₄ 3 104 C'H ₄ CH (CH ₃) CH ₄ CH ₄ C'H ₄ CH ₄ CH ₃ CH ₄ 3 105 C'H ₄ CH (CH ₃) CH ₄ CH ₄ C'H ₄ CH ₄ CH ₃ CH ₄ 3 106 CH ₄ C'H ₄ CH ₄ CH ₄ CH ₄ C'H ₄ CH ₄ CH ₄ CH ₄ 3 107 CH ₄ C'H ₄ CH (CH ₃) CH ₄ C'H ₄ CH ₄ CH ₄ CH ₄ CH ₄ 3 109 CH ₂ C'H ₄ CH ₄ CH ₄ C'H ₄ CH ₄			CIH CH CH (CH)	
79 C' (CH ₃) 3CH ₂ C'H (CH ₄) CH (CH ₄) 80 C' (CH ₂) 1CH ₂ C'H ₄ CH (CH ₄) 81 C' (CH ₂) 1CH ₂ C'H ₄ CH (CH ₃) 82 C' (CH ₃) 1CH ₂ C'H (CH ₂) CH ₃ CH ₄ 83 C' (CH ₃) 1CH ₄ C'H (CH ₃) CH ₄ CH ₄ CH 84 C' (CH ₃) 1CH ₄ C'H (CH ₄) CH ₄ CH 85 C'H (CH ₄) 1CH ₄ C'H (CH ₄) 86 C'H (CH ₄) CH (CH ₄) C'H (CH ₄) CH (CH ₃) 87 C'H (CH ₃) CH (CH ₃) C'H ₄ CH (CH ₄) 88 C'H (CH ₃) CH (CH ₃) C'H ₄ CH (CH ₄) 89 C'H (CH ₃) CH (CH ₃) C'H ₄ CH (CH ₄) 90 C'H (CH ₃) CH (CH ₄) C'H ₄ CH (CH ₃) 91 C'H ₄ CH (CH ₄) CH (CH ₃) C'H ₄ CH (CH ₃) 92 C'H ₄ CH (CH ₄) C'H ₄ CH (CH ₃) 93 C'H ₄ CH (CH ₄) C'H ₄ CH (CH ₃) 94 C'H ₄ CH (CH ₄) C'H ₄ CH (CH ₃) 95 C'H ₄ CH (CH ₄) C'H ₄ CH (CH ₃) 96 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) 97 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) 98 C'H ₄ C (CH ₃) C'H ₄ CH (CH ₃) 99 C'H ₄ C (CH ₃) C'H ₄ CH (CH ₃) 90 C'H (CH ₃) CH (CH ₃) C'H ₄ CH (CH ₃) 91 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) 92 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) 93 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) 94 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) 95 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) 96 C'H ₄ C (CH ₃) C'H ₄ CH (CH ₃) 97 C'H ₄ C (CH ₃) C'H ₄ CH (CH ₃) 98 C'H ₄ C (CH ₃) C'H ₄ CH (CH ₃) 100 C'H (CH ₃) CH ₄ CH 101 C'H (CH ₃) CH ₄ CH 102 C'H (CH ₃) CH ₄ CH 103 C'H ₄ CH (CH ₃) CH ₄ CH 104 C'H ₄ CH (CH ₃) CH ₄ CH 105 C'H ₄ CH (CH ₃) CH ₄ CH 106 CH ₄ C'H ₄ CH (CH ₃) 107 CH ₄ C'H ₄ CH (CH ₃) 108 C'H ₄ CH (CH ₃) CH 109 CH ₂ C'H ₄ CH (CH ₃) 110 C'H 111 CH ₂ C'H ₄ CH (CH ₃) 110 C'H 111 CH ₂ C'H ₄ CH (CH ₃) 110 C'H 111 CH ₂ C'H ₄ CH (CH ₃) 111 C'H ₄ C'H ₄ CH ₄ CH 111 C'H ₄ C'H ₄ C'H 111 C'H ₄ C'H ₄ C'H 111 C'H ₄ C'H ₄ C'			C. (CH.) CH	
80 C' (CH ₃) 1CH ₂ C'H ₄ CH (CH ₃) 3 81 C' (CH ₂) 2CH ₂ C'H ₄ C (CH ₃) 4 82 C' (CH ₃) 1CH ₂ C'H ₄ CH (CH ₃) CH ₄ C'H ₄ CH (CH ₃) CH ₄ 83 C' (CH ₃) 1CH ₂ C'H ₄ CH (CH ₃) CH ₄ C'H ₄ CH (CH ₃) CH ₄ 85 C'H (CH ₃) 1CH ₂ C'H ₄ CH (CH ₄) CH ₄ 86 C'H (CH ₄) CH (CH ₄) C'H ₄ CH (CH ₃) 3 87 C'H (CH ₃) CH (CH ₃) C'H ₄ CH (CH ₃) 3 88 C'H (CH ₃) CH (CH ₃) C'H ₄ CH (CH ₃) 3 89 C'H (CH ₃) CH (CH ₃) C'H ₄ CH (CH ₃) CH ₄ 90 C'H (CH ₃) CH (CH ₃) C'H ₄ CH (CH ₃) CH ₄ 91 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) 3 91 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) 3 92 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) 3 93 C'H ₄ CH (CH ₄) C'H ₄ CH (CH ₃) 3 94 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) 3 95 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) 3 96 C'H ₄ C (CH ₃) C'H ₄ CH (CH ₃) 3 97 C'H ₄ C (CH ₃) C'H ₄ CH (CH ₃) 3 98 C'H ₄ C (CH ₃) C'H ₄ CH (CH ₃) 3 99 C'H ₄ C (CH ₃) C'H ₄ CH (CH ₃) 3 100 C'H ₄ C (CH ₃) C'H ₄ CH (CH ₃) 3 110 C'H ₄ C (CH ₃) CH ₄ CH (CH ₃) C'H ₄ CH (CH ₃) 3 103 C'H ₄ C (CH ₃) C'H ₄ CH (CH ₃) CH ₄ 3 104 C'H ₄ C (CH ₃) CH ₄ CH (CH ₄) C'H ₄ CH (CH ₃) 3 105 C'H ₄ CH (CH ₃) CH ₄ CH (CH ₄) C'H ₄ CH (CH ₃) 3 106 CH ₄ (CH ₃) CH ₄ CH (CH ₃) CH ₄ 3 107 CH ₄ (CH ₃) CH ₄ CH (CH ₃) CH ₄ 3 108 CH ₄ (CH ₃) CH ₄ CH (CH ₃) CH ₄ 4 109 CH ₄ (CH ₄) CH ₄ (CH ₃) CH ₄ (CH ₃) CH ₄ 4 109 CH ₄ (CH ₄) CH ₄ (CH ₃) CH ₄ (CH ₃) CH ₄ 4 109 CH ₄ (CH ₄) CH ₄ (CH ₃) C'H ₄ CH (CH ₃) A 109 CH ₄ (CH ₄) CH ₄ (CH ₃) CH ₄ 4 110 CH ₄ (CH ₄) CH ₄ (CH ₄) CH ₄ (CH ₄) CH ₄ 4 110 CH ₄ (CH ₄) CH ₄ (CH ₄) CH ₄ (CH ₄) CH ₄ 4 110 CH ₄ (CH ₄) CH ₄ (CH ₄) CH ₄ (CH ₄) CH ₄ 4 110 CH ₄ (CH ₄) CH ₄ (C		C' (CH.) CH		
81 C' (CH ₂) ₂ CH ₂ C'H ₁ C (CH ₃) ₄ 82 C' (CH ₃) ₂ CH ₂ C'H (CH ₃) CH ₃ CH ₄ 83 C' (CH ₃) ₁ CH ₂ C'H ₄ CH (CH ₃) CH ₄ 84 C' (CH ₃) ₁ CH ₂ C'H ₄ CH (CH ₃) CH ₄ 85 C'H (CH ₄) CH (CH ₄) C'H ₄ CH (CH ₃) 3 86 C'H (CH ₃) CH (CH ₄) C'H ₄ CH (CH ₃) 3 87 C'H (CH ₃) CH (CH ₃) C'H ₄ CH (CH ₃) 3 88 C'H (CH ₃) CH (CH ₃) C'H ₄ CH (CH ₃) 3 89 C'H (CH ₃) CH (CH ₃) C'H ₄ CH (CH ₃) CH ₄ CH 90 C'H (CH ₃) CH (CH ₃) C'H ₄ CH (CH ₃) CH ₄ 91 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) 3 91 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) 3 92 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) 3 93 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) 3 94 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) 3 95 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) 3 96 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) 3 97 C'H ₄ C (CH ₃) C'H ₄ CH (CH ₃) 3 98 C'H ₄ C (CH ₃) C'H ₄ CH (CH ₃) 3 99 C'H ₄ C (CH ₃) C'H ₄ CH (CH ₃) 3 100 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) CH ₄ 102 C'H (CH ₃) CH ₄ CH 103 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) CH ₄ 104 C'H ₄ CH (CH ₃) CH ₄ CH 105 C'H ₄ CH (CH ₃) CH ₄ CH 107 CH ₄ C'H ₄ CH (CH ₃) 3 108 C'H ₄ CH (CH ₃) CH ₄ CH 109 CH ₄ C'H ₄ CH (CH ₃) 3 109 CH ₄ C'H ₄ CH (CH ₃) 3 110 C'H ₄ CH (CH ₃) CH ₄ CH 110 CH ₄ C'H ₄ CH (CH ₃) 3 110 C'H ₄ CH (CH ₃) CH ₄ CH 110 CH ₄ C'H ₄ CH (CH ₃) 4 111 CH ₄ C'H ₄ CH (CH ₃) 4 112 CH ₂ C'H (CH ₃) CH ₄ CH 112 CH ₂ C'H (CH ₃) CH ₄ 112 CH ₂ C'H (CH ₄) CH ₄ 112 CH ₂ C'H (CH ₄) CH ₄ 112 CH ₂ C'H (CH ₄) CH ₄ 112 CH ₂ C'H (CH ₄) CH ₄ 112 CH ₂ C'H (CH ₄) CH ₄ 112 CH ₂ C'H (CH ₄) CH ₄ 112 CH ₂ C'H (CH ₄) CH ₄ 112 CH ₂ C'H (CH ₄) CH ₄ 112 CH ₂ C'H (CH ₄) CH ₄ 112 CH ₂ C'H (CH ₄) CH ₄ 112 CH ₂ C'H (CH ₄) CH ₄ 112 CH ₂ C'H (CH ₄) CH ₄ 112 CH ₂ C'H (CH ₄) CH ₄ 112 CH ₂ C'H (CH ₄) CH ₄ 113 C'H		C, (CH-) - CH	CH (CH _a) CH (CH _a)	
82 C¹ (CH,) 3CH, C¹H (CH,) CH,CH, 3 83 C¹ (CH,) 4CH, C¹H, CH,CH,CH, 3 84 C¹ (CH,) 4CH, C¹H, CH,CH,CH,CH,CH,CH,CH,CH,CH,CH,CH,CH,CH,C		C, (CH.) CH	Cla C (Ca)	
83 C¹ (CH,) ¹CH, C¹H, CH, CH, CH, CH, CH, S 3 84 C¹ (CH,) ¹CH, C¹H, CH, CH, CH, CH, CH, S 3 85 C¹H (CH,) CH (CH,) C¹H, CH, CH, CH, CH, S 3 86 C¹H (CH,) CH (CH,) C¹H, CH, CH, S 3 87 C¹H (CH,) CH (CH,) C¹H, CH, CH, CH, S 3 88 C¹H (CH,) CH (CH,) C¹H, CH, CH, CH, CH, S 3 89 C¹H (CH,) CH (CH,) C¹H, CH, CH, CH, CH, S 3 90 C¹H (CH,) CH (CH,) C¹H, CH, CH, CH, CH, S 3 91 C¹H, CH, CH, CH, CH, CH, CH, CH, CH, CH, S 3 92 C¹H, CH, CH, CH, CH, CH, CH, CH, CH, CH, S 3 93 C¹H, CH, CH, CH, CH, CH, CH, CH, CH, CH, C		Cr (CH.) CH	CH (CH) CH CH	
84 C¹ (CH,) ¹CH, CH, CH,CH (CH,) 3 85 C¹H (CH,) CH (CH,) C¹H (CH,) CH (CH,) 3 86 C¹H (CH,) CH (CH,) C¹H (CH,) CH (CH,) 3 87 C¹H (CH,) CH (CH,) C¹H (CH,) CH,CH, 3 88 C¹H (CH,) CH (CH,) C¹H (CH,) CH,CH, 3 89 C¹H (CH,) CH (CH,) C¹H (CH,) CH,CH, CH, 3 90 C¹H (CH,) CH (CH,) C¹H (CH,) C¹H (CH,) CH, 3 91 C¹H (CH,) CH (CH,) C¹H (CH,) 3 92 C¹H (CH,) CH (CH,) C¹H (CH,) 1 93 C²H (CH,) CH (CH,) C¹H (CH,) 1 94 C¹H (CH,) CH (CH,) C¹H (CH,) CH,CH (CH,) 3 95 C'H (CH,) CH (CH,) C¹H (CH,) CH,CH, 3 96 C¹H (CH,) C¹H (CH,) C¹H (CH,) CH, CH, 3 97 C¹H (CH,) CH (CH,) C¹H (CH,) CH,CH (CH,) 3 98 C³H (CH,) CH (CH,) C¹H (CH,) CH,CH (CH,) 3 99 C³H (CH,) CH,CH (CH,) C¹H (CH,) CH,CH (CH,) 3 100 C¹H (CH,) CH,CH (CH,) C¹H (CH,) CH,CH (CH,) CH, 3 101 C³H (CH,) CH,CH (CH,) C¹H (CH,) CH, 3 102 C¹H (CH,) CH,CH (CH,) C¹H (CH,) CH, 3 103 C³H (CH,) CH,CH (CH,) C¹H (CH,) CH, 3 104 C'H (CH,) CH,CH (CH,) C¹H (CH,) CH, 3 105 C'H (CH,) CH,CH (CH,) C¹H (CH,) CH, 3 106 CH, (CH,) CH, CH, C'H (CH,) CH, 3 107 CH; (CH,) CH, CH, C'H (CH,) CH, 3 108 CH, (CH,) CH, CH, C'H (CH,) CH, 4 110 CH, CH, CH, CH, C'H (CH,) CH, 4 111 CH, C' (CH,) A 112 CH, C'H (CH,) CH, CH, C'H (CH,) CH, 11 113 CH, C'H (CH,) CH, CH, C'H (CH,) CH, 11 114 CH, C'H (CH,) CH, CH, C'H (CH,) CH, 11 115 CH, C'H (CH,) CH, CH, C'H (CH,) CH, 11 117 CH, C'H (CH,) CH, C'H (CH,) CH, CH, CH,) CH, 11 119 CH, C'H (CH,) CH, CH, C'H (CH,) CH, CH, CH,) CH, 11 110 CH, C'H (CH,) CH, CH, C'H (CH,) CH, CH, CH,) CH, 11 111 CH, C'H (CH,) CH, CH, C'H (CH,) CH, CH,) CH, 11 112 CH, C'H (CH,) CH, CH, CH, CH,) CH,			CH (CH ₂) CH ₂ CH ₂	
85 C'H (CH ₄) CH (CH ₄) C'H (CH ₅) CH (CH ₅) 3 86 C'H (CH ₃) CH (CH ₄) C'H ₄ CH (CH ₅) 3 87 C'H (CH ₃) CH (CH ₃) C'H ₄ CH (CH ₅) 3 88 C'H (CH ₃) CH (CH ₃) C'H ₄ CH (CH ₅) CH ₄ CH 89 C'H (CH ₃) CH (CH ₃) C'H ₄ CH (CH ₅) CH ₄ 90 C'H (CH ₃) CH (CH ₃) C'H ₄ CH (CH ₃) 3 91 C'H ₄ CH (CH ₄) C'H ₄ CH (CH ₅) 3 92 C'H ₄ CH (CH ₇) C'H ₄ CH (CH ₇) 3 93 C'H ₄ CH (CH ₇) C'H ₄ CH (CH ₇) 3 94 C'H ₄ CH (CH ₇) C'H ₄ CH (CH ₇) C'H ₄ CH (CH ₇) 3 95 C'H ₄ CH (CH ₇) C'H ₄ CH (CH ₇) C'H ₄ CH (CH ₇) 3 96 C'H ₄ CH (CH ₇) C'H ₄ CH (CH ₇) 3 97 C'H ₄ C (CH ₃) C'H ₄ CH (CH ₇) 3 98 C'H ₄ C (CH ₃) C'H ₄ CH (CH ₇) 3 99 C'H ₄ C (CH ₃) C'H ₄ CH (CH ₇) 3 100 C'H (CH ₃) CH ₄ CH CH ₄ C'H ₄ CH (CH ₃) 3 101 C'H (CH ₃) CH ₄ CH CH ₄ C'H ₄ CH (CH ₃) 3 102 C'H ₄ CH (CH ₃) CH ₄ CH C'H ₄ C'H ₄ CH (CH ₃) 3 103 C'H ₄ CH (CH ₃) CH ₄ CH C'H ₄ C'H ₄ CH (CH ₃) 3 104 C'H ₄ CH (CH ₃) CH ₄ C'H ₄ CH (CH ₃) 3 105 C'H ₄ CH (CH ₃) CH ₄ C'H ₄ CH (CH ₃) 3 106 CH ₄ C'H ₄ CH (CH ₃) CH ₄ C'H ₄ CH (CH ₃) 3 107 CH ₄ (CH ₆) CH ₄ C'H ₄ CH (CH ₃) 3 108 CH ₄ (CH ₄) CH ₄ C'H ₄ CH (CH ₃) 4 110 CH ₄ C'H ₄ CH (CH ₃) CH ₄ 4 111 CH ₄ C' (CH ₄) C'H ₄ C'H ₄ C'H ₄ CH (CH ₃) 4 112 CH ₄ C'H (CH ₄) CH ₄ C'H ₄		C1 (CH) CH	CIH OH OH (CH)	
86 C'H (CH ₂) CH (CH ₃) C'H ₁ CH (CH ₄) 3 87 C'H (CH ₃) CH (CH ₃) C'H ₁ C (CH ₄); 3 88 C'H (CH ₃) CH (CH ₃) C'H (CH ₄) CH ₁ CH ₁ 89 C'H (CH ₃) CH (CH ₃) C'H ₁ CH (CH ₄) CH ₄ 90 C'H (CH ₃) CH (CH ₃) C'H ₁ CH (CH ₃) CH ₄ 91 C'H ₂ CH (CH ₄) C'H ₁ CH (CH ₃) 3 92 C'H ₁ CH (CH ₄) C'H ₁ CH (CH ₃) 3 93 C'H ₁ CH (CH ₄) C'H ₁ CH (CH ₃) C'H ₁ CH (CH ₄) 3 94 C'H ₂ CH (CH ₄) C'H ₁ CH (CH ₄) C'H ₁ CH (CH ₄) CH ₁ 95 C'H ₁ CH (CH ₃) C'H ₁ CH (CH ₄) C'H ₁ CH (CH ₄) 3 96 C'H ₁ C (CH ₃) C'H ₁ CH (CH ₃) C'H ₁ CH (CH ₄) 3 97 C'H ₃ C (CH ₃) C'H ₁ CH (CH ₄) C'H ₁ CH (CH ₃) C'H ₁ C'H (C'H ₃) C'H ₁			C'H, CH, CH (CH ₃)	3
87 C'H (CH ₃) CH (CH ₄) C'H ₄ C (CH ₄); 88 C'H (CH ₃) CH (CH ₄) C'H (CH ₄) CH ₁ CH; 89 C'H (CH ₃) CH (CH ₃) C'H ₄ CH (CH ₄) CH ₄ 90 C'H (CH ₃) CH (CH ₃) C'H ₄ CH (CH ₃) CH ₄ 91 C'H ₄ CH (CH ₄) C'H ₄ CH (CH ₃) 92 C'H ₄ CH (CH ₄) C'H ₄ C (CH ₄); 93 C'H ₄ CH (CH ₄) C'H ₄ C (CH ₄); 94 C'H ₄ CH (CH ₄) C'H ₄ CH (CH ₄) CH ₄ 95 C'H ₄ CH (CH ₄) C'H ₄ CH (CH ₄) 96 C'H ₄ C (CH ₃); S'H ₄ C (CH ₃); C'H ₄ C (CH ₃); S'H ₄ C (CH ₃); C'H ₄ C (CH ₃); S'H ₄ C (CH ₃); C'H ₄ C (CH ₃); S'H ₄ C (CH ₃); C'H ₄ CH (CH ₃) CH ₄ CH; 30 C'H ₄ CH (CH ₃); C'H ₄ CH (CH ₃) CH ₄ CH; 31 C'H ₄ CH (CH ₃); C'H ₄ CH (CH ₄); C'H ₄ CH (CH ₄); C'H ₄ CH (CH ₄); C'H ₄ CH		CIM (CM) CM (CM)	CH (CH ₁) CH (CH ₃)	
88 C'H (CH ₃) CH (CH ₄) C'H (CH ₄) CH ₁ CH ₁ 89 C'H (CH ₃) CH (CH ₄) C'H ₄ CH (CH ₄) CH ₄ 90 C'H (CH ₃) CH (CH ₄) C'H ₄ CH (CH ₃) CH ₄ 91 C'H ₄ CH (CH ₄) C'H ₄ CH (CH ₄) 92 C'H ₄ CH (CH ₄) C'H ₄ C (CH ₄) 93 C'H ₄ CH (CH ₄) C'H ₄ C (CH ₄) 94 C'H ₄ CH (CH ₄) C'H ₄ CH (CH ₄) 95 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₄) 96 C'H ₄ C (CH ₄) C'H ₄ C (CH ₄) 97 C'H ₄ C (CH ₃) C'H ₄ CH (CH ₄) 98 C'H ₄ C (CH ₃) C'H ₄ CH (CH ₃) CH ₄ 99 C'H ₄ C (CH ₃) C'H ₄ CH (CH ₃) 100 C'H (CH ₃) C'H ₄ CH (CH ₃) 101 C'H (CH ₃) CH ₄ CH 102 C'H (CH ₃) CH ₄ CH 103 C'H ₄ CH (CH ₃) CH ₄ CH 104 C'H ₄ CH (CH ₃) CH ₄ 105 C'H ₄ CH (CH ₃) CH ₄ 106 CH ₄ 107 CH ₄ 108 CH ₄ 109 CH ₂ 100 CH ₄		CIR (CH.) CR (CH.)		
89 C'H (CH ₂) CH (CH ₃) C'H ₁ CH (CH ₃) CH ₄ 90 C'H (CH ₂) CH (CH ₃) C'H ₁ CH ₂ CH (CH ₃) 91 C'H ₃ CH (CH ₄) C'H ₄ CH (CH ₃) 92 C'H ₄ CH (CH ₃) C'H ₄ C (CH ₃) 93 C'H ₄ CH (CH ₃) C'H ₄ C (CH ₃) 94 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₃) CH ₄ 95 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₄) 96 C'H ₄ C (CH ₃) C'H ₄ CH (CH ₄) 97 C'H ₄ C (CH ₃) C'H ₄ CH (CH ₃) 98 C'H ₄ C (CH ₃) C'H ₄ CH (CH ₃) 99 C'H ₄ C (CH ₃) C'H ₄ CH (CH ₃) 100 C'H (CH ₃) C'H ₄ CH (CH ₃) 101 C'H (CH ₃) CH ₄ CH 102 C'H (CH ₃) CH ₄ CH 103 C'H ₄ CH (CH ₃) CH ₄ CH 104 C'H ₄ CH (CH ₃) CH ₄ CH 105 C'H ₄ CH (CH ₃) CH ₄ 106 CH ₄ 107 CH ₄ 108 CH ₄ 109 CH ₂ 100 CH ₄ 101 C'H ₄ CH ₄ CH (CH ₃) 103 C'H ₄ CH (CH ₃) CH ₄ 104 C'H ₄ CH (CH ₃) CH ₄ 105 C'H ₄ CH ₄ CH (CH ₃) 106 CH ₄ 107 CH ₄ 108 CH ₄ 109 CH ₂ 110 CH ₄ 111 CH ₄ 112 CH ₄ 112 CH ₄ 113 CH ₄ 114 CH ₄ 115 CH ₄ 116 CH ₄ 117 CH ₄ 117 CH ₄ 118 CH ₄ 119 CH ₄ 119 CH ₄ 110 CH ₄ 110 CH ₄ 111 CH ₄ 111 CH ₄ 112 CH ₄ 112 CH ₄ 113 CH ₄ 114 CH ₄ 115 CH ₄ 116 CH ₄ 117 CH ₄ 117 CH ₄ 118 CH ₄ 119 CH 119 CH 110 CH 110 CH 111	-	CIN (CH ₃) OR (CH ₃)	C'H ₁ C (CH ₁) ₁	
90 C'H (CH ₂) CH (CH ₂) C'H ₁ CH ₂ CH (CH ₃) 3 91 C'H ₄ CH (CH ₄) C'H ₄ CH (CH ₃) 3 92 C'H ₄ CH (CH ₄) C'H ₄ C (CH ₁) 3 93 C'H ₄ CH (CH ₄) C'H ₄ CH (CH ₃) CH ₄ CH 94 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₄) CH ₄ 3 95 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₄) CH ₄ 3 96 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₄) 3 97 C'H ₄ C (CH ₃) C'H ₄ CH (CH ₃) CH ₄ 3 98 C'H ₄ C (CH ₃) C'H ₄ CH (CH ₃) CH ₄ CH 99 C'H ₄ C (CH ₃) C'H ₄ CH (CH ₃) CH ₄ 3 100 C'H ₄ C (CH ₃) C'H ₄ CH ₄ CH (CH ₃) 3 101 C'H (CH ₃) CH ₄ CH ₄ C'H ₄ CH (CH ₃) CH ₄ 3 102 C'H (CH ₃) CH ₄ CH ₄ C'H ₄ CH (CH ₃) CH ₄ 3 103 C'H ₄ CH (CH ₃) CH ₄ CH ₄ C'H ₄ CH (CH ₃) CH ₄ 3 104 C'H ₄ CH (CH ₃) CH ₄ C'H ₄ CH (CH ₃) CH ₄ 3 105 C'H ₄ CH (CH ₃) CH ₄ C'H ₄ CH ₄ CH (CH ₃) 3 106 CH ₄ C'H ₄ CH (CH ₃) CH ₄ C'H ₄ CH ₄ CH (CH ₃) 3 107 CH ₄ (CH ₄) CH ₄ C'H ₄ CH ₄ CH (CH ₃) 3 108 CH ₄ (CH ₄) C'H ₄ C'H ₄ CH (CH ₃) 4 110 CH ₄ C'H ₄ CH (CH ₃) 4 111 CH ₄ C'H (CH ₄) CH ₄ C'H (CH ₄) CH ₄ 4 112 CH ₄ C'H (CH ₄) CH ₄ C'H (CH ₄) CH ₄ 4 113 CH ₄ C'H (CH ₄) CH ₄ C'H (CH ₄) CH ₄ 4 113 CH ₄ C'H (CH ₄) CH ₄ C'H (CH ₄) CH ₄ 4 113 CH ₄ C'H (CH ₄) CH ₄ C'H (CH ₄) CH ₄ 4 113 CH ₄ C'H (CH ₄) CH ₄ C'H (CH ₄) CH ₄ 4 113 CH ₄ C'H (CH ₄) CH ₄ C'H (CH ₄) CH ₄ 4 113 CH ₄ C'H (CH ₄) CH ₄ C'H (CH ₄) CH ₄ 4			C.H (CH*) CH*CH*	
91 C'H ₄ CH (CH ₄) C'H ₄ CH (CH ₇) 3 92 C'H ₄ CH (CH ₇) C'H ₄ C (CH ₇) 3 93 C'H ₄ CH (CH ₄) C'H (CH ₇) C'H ₄ C (CH ₇) 3 94 C'H ₄ CH (CH ₄) C'H ₄ CH (CH ₄) CH ₄ 3 95 C'H ₄ CH (CH ₃) C'H ₄ CH (CH ₄) CH ₄ 3 96 C'H ₄ C (CH ₇) C'H ₄ C (CH ₇) 3 97 C'H ₄ C (CH ₇) C'H ₄ C (CH ₇) C'H ₄ CH (CH ₇) 3 98 C'H ₄ C (CH ₇) C'H ₄ CH (CH ₇) CH ₄ 3 99 C'H ₄ C (CH ₇) C'H ₄ CH (CH ₇) CH ₄ 3 100 C'H (CH ₇) CH ₄ CH C'H ₄ CH (CH ₇) 3 101 C'H (CH ₇) CH ₄ CH C'H ₄ CH (CH ₇) CH ₄ 3 102 C'H (CH ₇) CH ₄ CH C'H ₄ CH (CH ₃) CH ₄ 3 103 C'H ₇ CH (CH ₇) CH ₄ CH C'H ₄ CH (CH ₃) CH ₄ 3 104 C'H ₄ CH (CH ₇) CH ₄ C'H ₄ CH (CH ₇) CH ₇ 3 105 C'H ₄ CH (CH ₇) CH ₇ C'H ₄ CH (CH ₇) CH ₇ 3 106 CH ₇ CH ₇ CH ₇ CH ₇ C'H ₇ CH ₇ CH (CH ₇) 3 107 CH ₇ (CH ₇) C'H ₇ CH ₇ CH (CH ₇) 4 109 CH ₂ (CH ₇) 4 110 CH ₈ C'H (CH ₇) C'H (CH ₇) CH ₇ 4 112 CH ₈ C'H (CH ₇) CH ₇ C'H (CH ₇) CH ₇ 4 113 CH ₈ C'H (CH ₇) CH ₇ C'H (CH ₇) CH ₇ 4 112 CH ₈ C'H (CH ₇) CH ₇ C'H (CH ₇) CH ₇ 4 113 C'H (CH ₇) CH ₈ C'H (CH ₇) CH ₇ 4 114 C'H ₈ C'H (CH ₇) CH ₈ C'H (CH ₇) CH ₇ 4 115 C'H (CH ₇) CH ₈ C'H (CH ₇) C'H ₈ CH ₈ CH ₈ 4 117 C'H (CH ₇) CH ₈ C'H (CH ₇) C'H ₈ CH ₈ C'H (CH ₇) C'H (CH ₇) C'H ₈ C'H (C'H ₈) C'H ₈ C'H (C'H ₈) C'H (C'H ₈) C'H ₈ C'H (C'H ₈) C'H ₈ C'H (C'H ₈) C'H (C'H ₈)			C'H,CH (CH,) CH,	3
91 C'H ₁ CH (CH ₂) C'H ₁ CH (CH ₂) 3 92 C'H ₁ CH (CH ₂) C'H ₁ C (CH ₂) 1 93 C'H ₁ CH (CH ₂) C'H (CH ₂) C'H (CH ₃) CH ₂ CH ₂ 94 C'H ₁ CH (CH ₂) C'H ₁ CH (CH ₃) CH ₂ 95 C'H ₁ CH (CH ₃) C'H ₁ CH (CH ₃) 3 96 C'H ₁ C (CH ₃) 1 C'H ₁ C (CH ₃) 1 97 C'H ₂ C (CH ₃) 1 C'H ₁ CH (CH ₃) CH ₂ CH ₂ 98 C'H ₁ C (CH ₃) 1 C'H ₁ CH (CH ₃) CH ₂ CH ₃ 99 C'H ₁ C (CH ₃) 1 C'H ₁ CH (CH ₃) CH ₂ CH ₃ 100 C'H (CH ₃) CH ₂ CH ₄ C'H ₁ CH (CH ₃) 3 101 C'H (CH ₃) CH ₂ CH ₄ C'H ₁ CH (CH ₃) CH ₄ 102 C'H (CH ₃) CH ₂ CH ₄ C'H ₁ CH (CH ₃) CH ₄ 103 C'H ₃ CH (CH ₃) CH ₂ CH ₄ C'H ₁ CH (CH ₃) 3 104 C'H ₁ CH (CH ₃) CH ₂ C'H ₁ CH (CH ₃) CH ₃ 105 C'H ₁ CH ₂ CH (CH ₃) CH ₄ C'H ₁ CH ₂ CH (CH ₃) 3 106 CH ₃ CH ₄ C'H ₂ CH (CH ₃) 4 107 CH ₄ (CH ₃) CH ₄ C'H ₄ CH ₄ CH (CH ₃) 4 109 CH ₄ (CH ₃) 4 110 CH ₄ C'H (CH ₃) A 112 CH ₄ C'H (CH ₄) CH ₄ A 113 CH ₄ C'H (CH ₄) CH ₄ A 114 C'H ₄ CH (CH ₄) A 115 CH ₄ C'H (CH ₄) CH ₄ A 117 CH ₄ C'H (CH ₄) CH ₄ A 118 C'H (CH ₄) CH ₄ C'H (CH ₄) CH ₄ A 119 CH ₄ C'H (CH ₄) CH ₄ A 110 CH ₄ C'H (CH ₄) CH ₄ A 111 CH ₄ C'H (CH ₄) CH ₄ A 112 CH ₄ C'H (CH ₄) CH ₄ A 113 CH ₄ C'H (CH ₄) CH ₄ A 114 C'H ₄ CH ₄			C'H,CH,CH (CH,)	3
93 C'H,CH (CH,) C'H (CH,) CH,CH, 3 94 C'H,CH (CH,) C'H,CH (CH,) CH, 3 95 C'H,CH (CH,) C'H,CH (CH,) CH, 3 96 C'H,C (CH,), C'H,CH,CH, 3 97 C'H,C (CH,), C'H,CH,CH, 3 98 C'H,C (CH,), C'H,CH,CH, CH, 3 99 C'H,C (CH,), C'H,CH,CH,CH, 3 100 C'H (CH,) CH,CH, C'H,CH,CH, 3 101 C'H (CH,) CH,CH, C'H,CH,CH, 3 102 C'H (CH,) CH,CH, C'H,CH,CH,CH, 3 103 C'H,CH (CH,) CH,CH, C'H,CH,CH,CH, 3 104 C'H,CH (CH,) CH,CH, C'H,CH,CH,CH,CH, 3 105 C'H,CH (CH,) CH, C'H,CH,CH,CH,CH,CH, 3 106 CH, CH,CH,CH,CH,CH,CH,CH,CH,CH,CH,CH,CH,CH,C				3
93 C'H,CH (CH,) C'H,CH, CH, CH, CH, CH, CH, CH, CH, CH, CH				3
94 C'H ₁ CH (CH ₂) C'H ₁ CH (CH ₃) CH ₂ 95 C'H ₁ CH (CH ₃) C'H ₁ CH ₂ CH (CH ₃) 96 C'H ₁ C (CH ₃) C'H ₁ C (CH ₃) 97 C'H ₃ C (CH ₃) C'H ₁ C (CH ₃) 98 C'H ₃ C (CH ₃) C'H ₁ CH (CH ₃) CH ₁ CH 99 C'H ₃ C (CH ₃) C'H ₁ CH (CH ₃) 100 C'H (CH ₃) CH ₂ CH 101 C'H (CH ₃) CH ₂ CH 102 C'H (CH ₃) CH ₂ CH 103 C'H ₃ CH (CH ₃) CH ₄ CH 103 C'H ₃ CH (CH ₃) CH ₄ CH 104 C'H ₃ CH (CH ₃) CH 105 C'H ₄ CH (CH ₃) CH 106 CH 107 CH 108 CH 109 CH 109 CH 110 CH 110 CH 110 CH 111 CH 112 CH 112 CH 113 CH 114 CH 115 CH 116 CH 117 CH 117 CH 118 CH 119 CH 119 CH 110			C'H (CH3) CH3CH2	
95 C'H ₁ CH (CH ₂) C'H ₁ CH ₂ CH (CH ₃) 96 C'H ₁ C (CH ₃) ₂ C'H ₁ C (CH ₃) ₄ 97 C'H ₃ C (CH ₃) ₂ C'H ₁ C (CH ₃) ₄ 98 C'H ₃ C (CH ₃) ₂ C'H ₁ CH (CH ₃) CH ₃ CH ₄ 99 C'H ₃ C (CH ₃) ₃ C'H ₃ CH ₄ CH (CH ₃) 100 C'H (CH ₃) CH ₃ CH ₄ C'H ₄ CH ₄ CH (CH ₃) 101 C'H (CH ₃) CH ₃ CH ₄ C'H ₄ CH (CH ₃) CH ₄ 102 C'H (CH ₃) CH ₄ CH ₄ C'H ₃ CH ₄ CH (CH ₃) 103 C'H ₃ CH (CH ₃) CH ₄ CH ₄ C'H ₃ CH ₄ CH (CH ₃) 104 C'H ₃ CH (CH ₃) CH ₄ C'H ₄ CH (CH ₃) CH ₄ 105 C'H ₄ CH ₄ CH (CH ₃) CH ₄ C'H ₄ CH ₂ CH (CH ₃) 106 CH ₄ CH ₄ CH ₄ 107 CH ₄ (CH ₃) 108 CH ₄ (CH ₃) 109 CH ₂ (CH ₃) 110 CH ₄ C'H (CH ₃) 111 CH ₄ C'H (CH ₃) 112 CH ₄ C'H (CH ₃) 113 CH ₄ C'H (CH ₃) 114 C'H 115 CH ₄ C'H (CH ₃) 115 C'H 117 CH ₄ C'H (CH ₃) 117 CH ₄ C'H (CH ₃) 118 C'H 119 CH ₄ C'H (CH ₃) 119 C'H			C'H,CH (CH,) CH,	
97 C'H,C (CH,), C'H,C (CH,), 3 97 C'H,C (CH,), C'H (CH,) CH,CH, 3 98 C'H,C (CH,), C'H,CH, CH,CH, CH, CH, CH, CH, CH, CH, CH,			C'H'CH'CH (CH')	3
97 C'H ₁ C (CH ₂) 2 C'H (CH ₂) CH ₂ CH ₂ 3 98 C'H ₁ C (CH ₂) 2 C'H ₁ CH (CH ₂) CH ₂ 3 100 C'H (CH ₂) CH ₂ CH ₂ C'H (CH ₂) CH ₂ CH ₂ 3 101 C'H (CH ₂) CH ₂ CH ₂ C'H ₁ CH (CH ₂) CH ₂ 3 102 C'H (CH ₂) CH ₂ CH ₂ C'H ₂ CH (CH ₂) CH ₂ 3 103 C'H ₂ CH (CH ₂) CH ₂ C'H ₂ CH (CH ₂) CH ₃ 3 104 C'H ₂ CH (CH ₂) CH ₂ C'H ₂ CH (CH ₂) CH ₃ 3 105 C'H ₂ CH (CH ₃) CH ₂ C'H ₂ CH (CH ₂) 3 106 CH ₂ C'H ₂ CH (CH ₃) C'H ₂ CH (CH ₃) 3 107 CH ₂ (CH ₂) 4 108 CH ₂ (CH ₂) 4 110 CH ₂ C'H (CH ₃) 4 111 CH ₂ C'H (CH ₃) CH ₂ 4 112 CH ₂ C'H (CH ₃) CH ₂ 4				3
98 C'H ₁ C (CH ₂) C'H ₁ CH (CH ₃) CH ₁ 99 C'H ₁ C (CH ₂) C'H ₁ CH ₁ CH (CH ₃) 100 C'H (CH ₂) CH ₂ CH ₁ 101 C'H (CH ₂) CH ₂ CH ₂ 102 C'H (CH ₂) CH ₂ CH ₃ 103 C'H ₁ CH (CH ₂) CH ₄ 104 C'H ₁ CH (CH ₂) CH ₄ 105 C'H ₁ CH (CH ₃) CH ₄ 106 CH ₂ 107 CH ₁ 108 CH ₂ 109 CH ₂ 109 CH ₂ 109 CH ₂ 109 CH ₂ 110 CH ₄		C'H,C (CH,)	C'H (CH,) CH,CH,	3
99 C'H,C (CH,) 2 C'H,CH,CH (CH,) 3 100 C'H (CH,) CH,CH, C'H (CH,) CH,CH, 3 101 C'H (CH,) CH,CH, C'H,CH (CH,) CH, CH, 3 102 C'H (CH,) CH,CH, C'H,CH (CH,) CH, 3 103 C'H,CH (CH,) CH, C'H,CH (CH,) CH, 3 104 C'H,CH (CH,) CH, C'H,CH (CH,) CH, 3 105 C'H,CH (CH,) CH, C'H,CH,CH (CH,) 3 106 CH, CH,CH (CH,) C'H,CH,CH (CH,) 3 107 CH, (CH,) CH, (CH,) 4 108 CH, (CH,) 4 109 CH, (CH,) 4 110 CH, C'H (CH,) 4 111 CH, C'H (CH,) CH, C'H (CH,) 4 112 CH, C'H (CH,) CH,			C'H,CH (CH,) CH,	
100 C'H (CH ₂) CH ₂ CH ₄ 101 C'H (CH ₂) CH ₂ CH ₄ 102 C'H (CH ₂) CH ₂ CH ₄ 103 C'H ₂ CH (CH ₂) CH ₄ 104 C'H ₂ CH (CH ₂) CH ₄ 105 C'H ₄ CH (CH ₂) CH ₄ 106 CH ₂ 107 CH ₄ 108 CH ₄ 109 CH ₂ 110 CH ₄ 110 CH ₄ 110 CH ₄ 112 CH ₄ 112 CH ₄ 111 CH ₄ 112 CH ₄ 111 CH ₄ 112 CH ₄ 111 CH ₄ 111 CH ₄ 112 CH ₄ 111 CH ₄ 111 CH ₄ 111 CH ₄ 111 CH ₄ 112 CH ₄ 112 CH ₄ 113 CH ₄ 114 CH ₄ 115 CH ₄ 116 CH ₄ 117 CH ₄ 117 CH ₄ 118 CH ₄ 119 CH ₄ 110 CH ₄			C'H, CH, CH (CH,)	3
101 C'H (CH ₃) CH ₁ CH ₁ C'H ₁ CH (CH ₃) CH ₁ 102 C'H (CH ₃) CH ₂ CH ₂ C'H ₃ CH ₂ CH (CH ₃) 103 C'H ₃ CH (CH ₃) CH ₂ C'H ₁ CH (CH ₃) CH ₃ 104 C'H ₃ CH (CH ₃) CH ₃ C'H ₄ CH ₃ CH (CH ₃) 3 105 C'H ₄ CH ₂ CH (CH ₃) C'H ₄ CH ₃ CH (CH ₃) 3 106 CH ₃ CH ₄ CH ₄ 107 CH ₄ (CH ₄) 108 CH ₄ (CH ₄) 109 CH ₂ (CH ₃) 109 CH ₂ (CH ₃) 110 CH ₄ C'H (CH ₃) 111 CH ₄ C'G (CH ₃) 112 CH ₄ C'H (CH ₃) 113 CH ₄ C'H (CH ₃) 114 CH ₄ C'H (CH ₃) 115 CH ₄ C'H (CH ₃) 117 CH ₄ C'H (CH ₃) 118 C'H (CH ₃) C'H 119 C'H 110 CH ₄ C'H (CH ₃) C'H 111 C'H 111 C'H 112 C'H 113 C'H 114 C'H 115 C'H 115 C'H 116 C'H 117 C'H 117 C'H 117 C'H 118 C'H 119 C'		C'H (CH ₃) CH, CH,	C'H (CH,) CH,CH,	
102 C'H (CH ₂) CH ₂ CH ₂ C'H ₃ CH ₂ CH (CH ₃) 103 C'H ₃ CH (CH ₃) CH ₂ C'H ₃ CH (CH ₃) CH ₃ 104 C'H ₃ CH (CH ₃) CH ₂ C'H ₃ CH ₃ CH (CH ₃) 105 C'H ₃ CH ₂ CH (CH ₃) C'H ₃ CH ₃ CH (CH ₃) 3 106 CH ₃ CH ₄ CH ₄ CH (CH ₃) 107 CH ₄ (CH ₂) 2 4 108 CH ₄ (CH ₃) 4 109 CH ₂ (CH ₃) 4 110 CH ₃ C'H (CH ₃) 4 111 CH ₄ C'G(CH ₃) 2 4 112 CH ₄ C'H (CH ₃) 3 4 113 CH ₄ C'H (CH ₃) CH ₄ 4		С, н (сн°) сн°сн°	C'H,CH (CH,) CH,	3
103 C'H,CH (CH ₂) CH ₂ C'H,CH (CH ₃) CH ₃ 104 C'H,CH (CH ₂) CH, C'H,CH,CH (CH ₃) 105 C'H ₁ CH,CH (CH ₃) C'H ₁ CH ₂ CH (CH ₃) 3 106 CH ₂ CH ₂ 4 107 CH ₂ (CH ₂) 4 108 CH ₂ (CH ₃) 4 109 CH ₂ (CH ₃) 4 110 CH ₃ C'H (CH ₃) 4 111 CH ₄ C'H (CH ₃) 4 112 CH ₂ C'H (CH ₃) 6 113 CH ₂ C'H (CH ₃) 6 113 CH ₂ C'H (CH ₃) CH ₂ 4		C1H (CH2) CH2CH2	C'H,CH,CH (CH,)	3
104 C'H ₁ CH (CH ₂) CH ₁ C'H ₁ CH ₂ CH (CH ₂) 105 C'H ₁ CH ₂ CH (CH ₃) C'H ₂ CH ₂ CH (CH ₂) 3 106 CH ₂ CH ₂ 107 CH ₂ (CH ₂) 4 108 CH ₂ (CH ₃) 4 109 CH ₂ (CH ₃) 4 110 CH ₂ C'H (CH ₃) 4 111 CH ₂ C' ₁ (CH ₃) 4 112 CH ₂ C'H (CH ₃) 2 4		C'H'CH (CH') CH'	C'H,CH (CH,) CH,	3
105 C'H ₁ CH ₂ CH (CH ₃) C'H ₂ CH ₂ CH (CH ₃) 3 106 CH ₂ CH ₂ 4 107 CH ₂ (CH ₂) ₂ 4 108 CH ₂ (CH ₃) ₄ 4 109 CH ₂ (CH ₃) ₄ 4 110 CH ₃ C'H (CH ₃) ₄ 4 111 CH ₄ C' (CH ₃) ₄ 4 112 CH ₂ C'H (CH ₃) ₄ 4			C'H,CH,CH (CH,)	
106 CH ₂ CH ₂ 4 107 CH ₂ (CH ₂) ₂ 4 108 CH ₂ (CH ₃) ₄ 4 109 CH ₂ (CH ₃) ₄ 4 110 CH ₃ C'H (CH ₃) ₄ 4 111 CH ₄ C' (CH ₃) ₄ 4 112 CH ₂ C'H (CH ₃) ₄ 4			C'H,CH,CH (CH,)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			CH ₂	
108 CH ₂ (CH ₃) 4 109 CH ₂ (CH ₂) 4 110 CH ₃ C'H (CH ₃) 4 111 CH ₄ C' (CH ₃) a 4 112 CH ₂ C'H (CH ₃) a 4			(CH ₂) 2	
109 CH ₂ (CH ₂) 4 110 CH ₃ C'H (CH ₃) 4 111 CH ₄ C' (CH ₃) 4 112 CH ₂ C'H (CH ₄) CH ₃ 4				
110 CH ₂ C'H (CH ₃) 4 111 CH ₂ C' (CH ₃) 4 112 CH ₂ C'H (CH ₄) CH ₃ 4		CH ₂	(CH ₂)	
111 CH, C' (CH,) , 4 112 CH, C'H (CH,) CH, 4		<u></u>	C'H (CH,)	
112 CH ₂ CH (CH ₄) CH ₂				
119 (2)		CH ₂		
	113	CH,	C' (CH,) CH,	

[0015]

【表1004】

	`	• ,	נוען עד
11			12
第1表の続:	a		
化合物 No	R,	R ₂	n
114	CH,	C'H (CH3) CH (CH3)	4
115	CH:	C'H,CH (CH,)	4
116	CH:	C'H,C (CH,)	4
	CH:	C'H (CH,) CH,CH,	4
	CH ₂	C'H,CH (CH,) CH,	4
	CH.	C'H,CH,CH (CH,)	4
120	(CH ₁) ;	(CH ₂)	4
121	(CH ₂) ,	(CH ₁),	4
122	(CH ₂),	(CH ₂)	4
123	(CH ₂)	C,H (CH*)	4
124	(CH ₂)	C' (CH,)	4
125	(CH ₃) 3	C'H (CH,) CH,	4
126	(CH ₁)	C' (CH') CH'	4
127	(CH ₃) a	C'H (CH ₃) CH (CH ₃)	
128	(CH ₂),	C'H,CH (CH,)	4
129	(CH,) :	C'H'C (CH')	4
130	(CH ₂) a	C'H (CH,) CH,CH,	
131	(CH ₂) ,	C'H,CH (CH,) CH,	4
132	(CH ₂) ;	C'H,CH,CH (CH,)	4
133	(CH ₂),	(CH ₃)	4
134	(CH ₂),	(CH ₃) 4	4
135	(CH ₂)	C'H (CH,)	
136	(CH ₂),	C, (CH')	4
137	(CH ₂) 1	C'H (CH,) CH,	4
138	(CH ₂),	Cr (CH*) *CH*	4
139	(CH ₂),	C'H (CH3) CH (CH3)	4
140	(CH ₂) ,	C'H,CH (CH,)	4
141	(CH ₂),	C'H,C (CH,)	4
142	(CH ₂) 1	C'H (CH,) CH,CH,	4
143	(CH _g)	C'H,CH (CH,) CH,	4
144	(CH ₁),	C'H,CH,CH (CH,)	4
145	(CH ₂) 4	(CH _B)	4
146	(CH ₁) 4	C'H (CH,)	4
147	(CH ₂) 4	С, (Сн.)	4
148	(CH ₁) ,	C'H (CH,) CH,	4
149	(CH ₁) ,	C' (CH,) CH,	4
150	(CH ₂) 4	C'H (CH,) CH (CH,)	4
151	(CH ₂) ,	C'H'CH (CH')	4

[0016]

【表1005】

10			14
第1表の統			
化合物 No	R ₁	Ra	a
152	(CH ₁)	C'H,C (CH,)	4
153	(CH _s)	C,H (CH2) CH3CH3	4
154	(CH ₁)	C'H CH (CH) CH	4
155	(CH ₁)	C'HaCHaCH (CHa)	4
158	C1H (CH3)	C'H (CH3)	4
157	C'H (CH,)	C, (CH') '	4
158	C1H (CH2)	C'H (CH ₂) CH ₂	4
159	C'H (CH ₃)	C' (CH,) CH,	4
160	C'H (CH,)	C'H (CH,) CH (CH,)	4
161	C1H (CH,)	C'HaCH (CHa)	4
162	C'H (CH3)	C'H ₂ C (CH ₃) 2	4
163	C'H (CH _a)	C'H (CH') CH'CH'	4
164	C'H (CHa)	C'H,CH (CH,) CH,	4
165	C'H (CH ₃)	C'H,CH,CH (CH,)	4
166	C' (CH2) 2	C'-(CH ₂) 3	4
167	C1 (CH3) ;	C'H (CH,) CH,	4
168	C1 (CHa) a	C' (CH3) CH3	4
169	C1 (CH2) 2	С'Н (СН,) СН (СН,)	4
170	C1 (CH,),	C'H,CH (CH,)	4
171	C' (CH,)	C'H,C (CH,)	4
172	C1 (CH4) *	C'H (CH,) CH,CH,	4
173	C1 (CH1) ,	C'HICH (CHI) CHI	1
174	C1 (CH ₄) ,	C'H,CH,CH (CH,)	4
175	С'Н (СН3) СН3	C'H (CH,) CH,	4
176	C'H (CH _a) CH _a	С' (СН.) .СН.	4
177	C'H (CH ₃) CH ₃	C'H (CH ₃) CH (CH ₃)	4
178	C'H (GH _B) CH ₁	C'H,CH (CH,)	4
179	C'H (CH2) CH1	C'H,C (CH,)	14
180	С'Н (СН,) СН,	C'H (CH,) CH,CH,	4
181	C'H (CH3) CH3	C'H,CH (CH,) CH,	4
182	С1Н (СН3) СН1	C'H1CH1CH (CH3)	4
183	C1 (CH,) CH,	С' (СН.) *СН.	4
184	C1 (CHa) CH2	С'Н (СН,) СН (СН,)	4
185	C, (CH*) CH*	С'Н,СН (СН,)	4
186	C1 (CH _s) _s CH _s	C'H,C (CH,)	4
187	C, (CH*) *CH*	C'H (CH,) CH,CH,	4
188	C' (CH,) CH2	C'H2CH (CH3) CH1	4
189	C1 (CH1) 1CH2	C'H3CH3CH (CH3)	4

[0017]

【表1006】

R₂ C'H (CH₂) CH (CH₃)

191	G,H (CH2) CH (CH2)	C'H,CH (CH,)	4
192	C'H (CH,) CH (CH,)	C'H,C (CH,)	4
193	С'Н (СН3) СН (СН3)	С'Н (СН,) СН,СН,	4
194	C'H (CH3) CH (CH3)	С'н,СН (СН,) СН,	4
195	C'H (CH') CH (CH')	C'H,CH,CH (CH,)	4
196	C'H,CH (CH,)	C'H,CH (CH,)	4
197	C'H,CH (CH,)	C'H,C (CH,)	4
198	C'H,CH (CH,)	C'H (CH,) CH,CH,	4
199	C'H,CH (CH,)	C'H,CH (CH,) CH,	4
200	С.Н.СН (СН.)	C'H,CH,CH (CH,)	4
201	C'H,C (CH,),	C'H,C (CH,),	4
202	C'H'C (CH')	C'H (CH.) CH.CH.	4
203	C'H,C (CH,)	C'H,CH (CH,) CH,	4
204	C'H,C (CH,)	C'H,CH,CH (CH,	4
205	C'H (CH.) CH.CH.	C.H (CH.) CH.CH	1

207

208

第1表の続き 化合物 No

t合物 No R₁ 190 C'H (CH,) CH (CH,)

206 С'н (Сн.) сн.сн.

209 С'н,сн (сн.) сн.

210 C'H, CH, CH (CH,)

C'H (CH,) CH,CH,

С.н.сн (Сн.) Сн.

C.H*CH (CH*) CH* C.H*CH (CH*) CH*

сін,сн,сн (сн,)

C'H,CH,CH (CH,)

【0018】式(II)で表される化合物は、式(III)で表される化合物をアルカリ金属硫化物および硫黄と反応させ、さらに保護基2を脱離させることで製造することができる。式(III)で表される化合物中、XおよびYはそれぞれ独立にハロゲン原子を表し、具体的には、塩素原子、臭素原子、ヨウ素原子を例示することができる。R₁およびR₁は前記と同じ意味を表し、同様の具体例を例示することができる。また、2は、窒素原子の保護基であり、具体的には、アルコキシカルボニル基、アリールスルホニル基、アルキルオキシメチル基、トリア 10ルキルシリル基等を例示することができる。

【0019】本反応に用いる溶媒としては、水、メタノ ール、エタノール、プロパノール、エチレングリコール 等のC1~C6直鎖または分枝鎖を有するアルコール、テ トラヒドロフラン、ジエチルエーテル、ジオキサン、グ ライム、ジグライム等の鎖状もしくは環状エーテル、ベ ンゼン、トルエン等の芳香族炭化水素系溶媒、クロロホ ルム、ジクロロメタンなどの塩素系溶媒、ジメチルホル ムアミド、ジメチルスルホキサイド等の非プロトン性極 性溶媒等を具体的に例示することができ、これらは2種 20 類以上の混合溶媒及び2層系溶媒で行うこともできる。 【0020】反応は−10℃から用いる溶媒の沸点で円 滑に進行する。 用いるアルカリ金属硫化物は、予め調 整された水和物、無水物いずれも使用することができ、 さらに、アルカリ金属アルコラートと硫化水素より反応 系中で生成させたものをそのまま使用することもでき る。アルカリ金属硫化物と硫黄はあらかじめ上記溶媒中 で室温から用いる溶媒の沸点の温度範囲で1~72時間 攪拌混合してから式 (III) で表される化合物と反応さ せるのが好ましい。アルカリ金属硫化物は、式(III) で表される化合物に対して1~100倍モルの範囲で使 用することができ、さらに硫黄は、導入する硫黄の数、 即ち、nの値に応じてアルカリ金属硫化物に対して1~

【0021】N保護基の脱保護は、塩酸、硫酸などの鉱酸類、水酸化ナトリウム、水酸化カリウム、硫化ナトリウム、ナトリウムジスルフィドなどのアルカリ類を用いた加水分解、及び金属アルコラート類を用いた加アルコール分解、水素化リチウムアルミニウム、水素化ホウ素ナトリウムなどを用いた還元反応などの一般的に知られ40た脱保護反応で行うことができる。また、N保護された化合物を一旦単離することなく、続けて脱保護反応を行うことにより式(III)で表される化合物を得ることもできる。

100倍モルの範囲で使用することができる。

【0022】以下実施例を用いて本発明を詳細に説明するが、本発明の範囲は実施例に限定されるものではない。

[0023]

【実施例】参考例1 (1-t-プトキシカルポニルー3,4-ジ(クロロメチル)-ピロールの製造)

ジクロロトリフェニルホスホラン5. 19g (15.6 mmol)をTHF20mlに溶解させ、これに氷水冷却下、1-t-プトキシカルボニル-3, 4-ジ(ヒドロキシメチル)ーピロール1. 61g (7.1 mmol)のテトラヒドロフラン (THF)溶液をゆっくり滴下する。室温で2時間攪拌した後、溶媒のTHFを減圧留去し、そこへ水と酢酸エチルを加えて分液し、酢酸エチル層を無水硫酸マグネシウムで乾燥し減圧濃縮した。カラムクロマトグラフィーで精製した後、1-t-プトキシカルボニル-3, 4-ジ(クロロメチル)ーピロール1.53g (収率83%、 $n_0^{11-1}=1$.5144)を得た。

【0024】実施例1 (5, 7-ジハイドロ-1H-トリチエピノ [5, 6-c] ピロールの製造) 7-t-プトキシカルポニル-5,7-ジハイドロ-1 H-トリチエピノ [5, 6-c] ピロール 0. 2g (0.7mmol)を1N-塩酸5mlに懸濁させ、9 0℃で3.5時間攪拌した。冷却後、飽和重曹水を加え て中和し酢酸エチルを加えて抽出した。酢酸エチル溶液 を無水硫酸マグネシウムで乾燥し、濃縮し、カラムクロ マトグラフィーで精製を行い、5,7-ジハイドロ-1 (8%、mp154~157℃ (Dec)) を得た。 ¹H-NMR (CDCl₃) δ 4. 29 (m, 4H), 6. 64 (d, 2H), 7.81 (bs, 1H) 【0025】実施例2(7-t-プトキシカルボニルー 5, 7-ジハイドロー1H-トリチエピノ [5, 6c] ピロールの製造)

硫化ナトリウム9水和物1.2g(5mmo1)にエタ ノール5mlと硫黄粉末0.24g(7.5mmol) を加え7時間加熱還流を行った。冷却後、この溶液に1 - t - プトキシカルボニル-3, 4-ジ(クロロメチ ル) -ピロール1g (3.8mmol)のTHF溶液を 氷水冷却下ゆっくり加え、室温で12時間、加熱還流下 3時間反応を行った。冷却して水と酢酸エチルを加えて 分液し、酢酸エチル層を無水硫酸マグネシウムで乾燥 し、滅圧濃縮し、カラムクロマトグラフィーで精製し て、7-t-プトキシカルボニル-5,7-ジハイドロ -1H- +1H- 2g(収率47%、mp136-138℃)を得た。 ¹H-NMR (CDCl₃) δ 1. 57 (s, 9H), 4. 15 (m, 4H), 7. 08 (s, 2H) 【0026】実施例3(5,7-ジハイドロ-1H-ト リチエピノ [5, 6-c] ピロールの製造) 硫化ナトリウム9水和物1.18g(4.9mmol) に水2m1と硫黄粉末0.14g(4.4mmol)を 加え、70℃以上で4時間攪拌した。冷却後、これに1 - t - プトキシカルポニル-3, 4 - ジ (クロロメチ ル) -ピロール 0.5g(1.9mmol)のエタノー 50 ル溶液を室温下でゆっくり添加し、室温で3日間反応さ

せた。減圧濃縮し、水と酢酸エチルを加えて分液し、酢酸エチル層を無水硫酸マグネシウムで乾燥し、減圧濃縮し、カラムクロマトグラフィーで精製して、5, 7-ジハイドロー1Hートリチエピノ [5, 6-c]ピロール 0. 12g(収率33%、 $mp154~157<math>\mathbb{C}$ (dec.)) を得た。

【0027】実施例4

溶媒としてプロピレンカーボネート(PC)、電解質塩として過塩素酸リチウムを用いて、0.1M の過塩素酸リチウムを含有するPC溶液を調整し、電解液とした。この電解液中に5mMとなるように5, 7-ジハイドロ-1H-トリチエピノ <math>[5, 6-c] ピロール(式(II): R_i 、 R_i = CH_i 、n=3)を溶解させ、+0. $2V\sim+1.4V$ (対銀線)までの範囲を10mV/S

の掃引速度で電位掃引を繰り返し、電極表面上に電解重合膜を作製し、サイクリックボルタンメトリー (CV)を測定し、その結果を図1に示す。この結果から、上述した方法で電解重合した膜は、酸化還元電位の高い、優れた電気化学的活性を持つことがわかった。

[0028]

【発明の効果】以上述べたように、本発明において、分子内にスルフィド結合を有する新規なポリピロール誘導体を作成し、優れた電気特性を有することを見出した。 10 また、原料となる単量体も新規化合物であり、その簡便な製造方法を確立することができた。

【図面の簡単な説明】

【図1】実施例4において測定したCV測定図を表す。

【図1】

フロントページの続き

(72)発明者 金子 武平 東京都千代田区大手町2丁目2番1号 日 本曹達株式会社内

F 夕一ム(参考) 4C071 AA01 BB01 CC01 CC23 CC24 EE12 EE14 EE16 FF03 GG01 KK01 LL03 4J032 BA14 BB01 BC22 BC25 BC29 CG01