BERGISCHE UNIVERSITÄT WUPPERTAL FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN

Angewandte Informatik
Dr. Martin Galgon
M.Sc. Jose Jimenez

Bildgenerierung

Wintersemester 2023 / 2024

Übungsblatt 9

Aufgabe 24 (Hermite-Kurven Schleife)

Betrachten Sie den Fall $p_1=(a,a), p_4=(a+b,a), r_1=(\rho,\rho), r_4=(\rho,-\rho)$ für $\rho\in\mathbb{R}$ und festes $a,b\in\mathbb{R}$. Skizzieren Sie, welche Kurventypen sich für verschiedene Werte von ρ ergeben und berechnen Sie, ab wann eine Schleife entsteht.

Aufgabe 25 (*Hermite-Kurven*) -

Ergänzen Sie im Rahmenprogramm hermite.cc, welches Sie im Verzeichnis /home/bildgen/Aufgaben/splines-1 finden können, die Funktion

die eine Hermite-Kurve zwischen zwei Punkten $p_1, p_4 \in \mathbb{R}^2$ mit Tangentenvektoren $r_1, r_4 \in \mathbb{R}^2$ zeichnet. Approximieren Sie die Kurve durch eine Folge von n Linien, indem Sie n-1 Zwischenpunkte bestimmen.

Aufgabe 26 (Bézier-Kurven) -

Schreiben Sie eine Funktion zum Zeichnen von Bézier-Kurven. Ergänzen Sie hierzu das Rahmenprogramm curves.cc im Verzeichnis /home/bildgen/Aufgaben/splines-2 entsprechend.

Es seien m + 1 Punkte $p_0, ..., p_m$ gegeben. Für die Funktion

void maleBezierKurve(Drawing& pic, const vector<DPoint2D>& p, int n)

ist vorausgesetzt, dass m ein Vielfaches von 3 ist. Die Kurve besteht dann aus $\frac{m}{3}$ einzelnen Kurvenstücken.

Sie können zum Testen die Dateien points?.in benutzen.

Aufgabe 27 (*B-Splines*) -

Schreiben Sie eine Funktion zum Zeichnen von B-Splines. Ergänzen Sie hierzu in Ihrer Lösung zu Aufgabe 26 die Funktion

void maleBSpline(Drawing& pic, const vector<DPoint2D>& p, int n)

die den zu $p_0, ..., p_m$ gehörenden B-Spline (in einer anderen Farbe) malt. Markieren Sie zusätzlich zum Zeichnen der m-2 Abschnitte die Knotenpunkte zwischen diesen.

Aufgabe 28 (Catmull-Rom-Splines) —

Die Catmull-Rom-Splines können durch die Basismatrix

$$M_{CR} = \frac{1}{2} \begin{pmatrix} -1 & 2 & -1 & 0 \\ 3 & -5 & 0 & 2 \\ -3 & 4 & 1 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix}$$

definiert werden. Hierbei handelt es sich um einen interpolierenden Spline, d. h. zu gegebenen Punkten $p_0, ..., p_m$ werden $p_1, ..., p_{m-1}$ durch eine Kurve verbunden.

- 1. Zeigen Sie, dass die Kurve wirklich durch $p_1, ..., p_{m-1}$ verläuft und damit die Stetigkeit.
- 2. Berechnen Sie die Tangenten in den Punkten p_i , i=1,...,m-1, und zeigen Sie so, dass die Kurve C^1 -stetig ist.
- 3. Ist die Kurve C^2 -stetig? (Begründung!)
- 4. Ergänzen Sie in Ihrer Lösung zu Aufgabe 26 die Funktion maleCRSpline.

Aufgabe 29 (Hermite-Kurven Animation) –

Verwenden Sie Ihre Lösung aus Aufgabe 25, um sich die Abhängigkeit der Kurven von den Tangentenrichtungen und -längen in einer Animation zu veranschaulichen.

- a) Starten Sie mit einer Geraden und lassen Sie dann den Tangentenvektor r_4 um den Endpunkt p_4 rotieren.
- b) Legen Sie die beiden Endpunkte auf die Gerade y = x, verwenden Sie im unteren Punkt einen Tangentenvektor nach rechts (links) und im oberen Punkt einen Tangentenvektor nach oben (unten). Variieren Sie die Längen der Tangentenvektoren.

Abgabe: Do., 12.01.2023, 16:15 Uhr

Senden Sie Ihre Lösungen der Theorie-Aufgaben und Ihre Programme per E-Mail an bildgen@studs.math.uni-wuppertal.de.