UC Berkeley

Department of Electrical Engineering and Computer Sciences

ELECTRICAL ENGINEERING 126: PROBABILITY AND RANDOM PROCESSES

Discussion 2

Spring 2017

1. Poisson Properties

- (a) Suppose X and Y are independent Poisson random variables with mean λ and μ respectively. Prove that X+Y has the Poisson distribution with mean $\lambda + \mu$. (This is known as **Poisson merging**.)
- (b) Suppose that X has the Poisson distribution with mean λ . View X as the number of arrivals of a process. Independently, for each arrival, mark the arrival as 0 with probability p and 1 with probability 1-p. Let Y be the number of 0 arrivals and Z be the number of 1 arrivals. Prove that Y and Z are independent Poisson random variables with means λp and $\lambda(1-p)$ respectively. (This is known as **Poisson splitting**.)

2. Sampling Without Replacement

Suppose you have N items, G of which are good and B of which are bad (B+G=N). You start to draw items without replacement, and suppose that the first good item appears on draw X. Compute the mean and variance of X.

3. Clustering Coefficient

This problem will explore an important probabilistic concept of clustering that is widely used in machine learning applications today. Consider n students. For each pair of students, say student i and student j, they are friends with probability p, independently of other pairs. We assume that friendship is mutual. We can see that the friendship among the n students can be represented by an undirected graph G. Let N(i) be the number of friends of student i and T(i) be the number of triangles attached to student i. We define the clustering coefficient C(i) for student i as follows:

$$C(i) = \frac{T(i)}{\binom{N(i)}{2}}.$$

Figure 1: Friendship and clustering coefficient.

Clustering coefficient is not defined for the students who have no friends. An example is shown in Figure 1. Student 3 has 4 friends (1, 2, 4, 5) and there are two triangles attached to student 3, i.e., triangle 1-2-3 and triangle 2-3-4. Therefore $C(3) = 2/\binom{4}{2} = 1/3$.

Find $E[C(i) \mid N(i) \ge 2]$.

4. Packet Routing

Consider a system with n inputs and n outputs. At each input, a packet appears independently with probability p. If a packet appears, it is destined for one of the n outputs uniformly randomly, independently of the other packets.

- (a) Let X denote the number of packets destined for the first input. What is the distribution of X?
- (b) What is the probability of a collision, that is, more than one packet heading to the same output?