Lecture 4b: Knowledge Based Agents

CSCI 360 Introduction to Artificial Intelligence USC

Western philosophy

Socrates

Aristotle

Western philosophy (humor)

- Socrates was the greatest of his age, the founding father of Western philosophy, but he didn't publish anything. They killed him.
- His student, Plato, published much of what he'd learned from Socrates. He became a famous teacher and attracted best students from all over.
- One of his students, Aristotle, published even more. So Alexander
 the Great came to sit at his feet to learn to become the most powerful
 man in the world.
- Publish or perish!

-- by Donald Wunsch

Here is where we are...

	Week	30000D	30282R	Topics	Chapters
	1	1/7	1/8	Intelligent Agents	[Ch 1.1-1.4 and 2.1-2.4]
		1/9	1/10	Problem Solving and Search	[Ch 3.1-3.3]
Ī	2	1/14	1/15	Uninformed Search	[Ch 3.3-3.4]
		1/16	1/17	Heuristic Search (A*)	[Ch 3.5]
İ	3	1/21	1/22	Heuristic Functions	[Ch 3.6]
		1/23	1/24	Local Search	[Ch 4.1-4.2]
		1/25		Project 1 Out	
Ī	4	1/28	1/29	Adversarial Search	[Ch 5.1-5.3]
\geq		1/30	1/31	Knowledge Based Agents	[Ch 7.1-7.3]
	5	2/4	2/5	Propositional Logic Inference	[Ch 7.4-7.5]
		2/6	2/7	First-Order Logic	[Ch 8.1-8.4]
		2/8		Project 1 Due	
		2/8		Homework 1 Out	
	6	2/11	2/12	Rule-Based Systems	[Ch 9.3-9.4]
		2/13	2/14	Search-Based Planning	[Ch 10.1-10.3]
		2/15		Homework 1 Due	
İ	7	2/18	2/19	SAT-Based Planning	[Ch 10.4]
		2/20	2/21	Knowledge Representation	[Ch 12.1-12.5]
	8	2/25	2/26	Midterm Review	
		2/27	2/28	Midterm Exam	
- 1		~			ı

Outline

- What is Al?
- Problem-solving agent
- Uninformed search
- Informed search (A*)
- Adversarial search
- Knowledge based agents

Reasoning

- Agents we've seen so far cannot perform "reasoning"
- Types of reasoning

Deductive reasoning

Inductive reasoning

Abductive reasoning

Reasoning

- Agents we've seen so far cannot perform "reasoning"
- Types of reasoning
 - Deductive reasoning
 - Facts + rules → more facts
 - "Socrates is a human" + "All humans are mortal" → "Socrates is mortal"
 - Inductive reasoning
 - Facts + rules → more facts
 - "X/Y/Z is a human" + "X/Y/Z is mortal" → "All humans must be mortal"
 - Abductive reasoning
 - Facts + rules → more facts
 - "All humans are mortal" + "Socrates is a mortal" → "Socrates may be a human"

How to do reasoning?

- Need representations of knowledge (either prior or acquired knowledge)
- In "problem-solving" agents, knowledge is baked into the problem statement
 - $S \leftarrow RESULT(S, A)$
 - Problem: Limited and inflexible, has to anticipate all facts that an agent might need, and bake them into the problem statement

Knowledge representation

- Logic as language for knowledge representation
 - Propositional logic (Boolean)
 - First-order logic (FOL)

Domain independent algorithms

Domain specific content

- Advantage
 - Can combine and recombine information to suit many purposes

Knowledge-based agent

```
function KB-AGENT(percept) returns an action persistent: KB, a knowledge base t, a counter, initially 0, indicating time  \text{Tell}(KB, \text{Make-Percept-Sentence}(percept, t)) \\ action \leftarrow \text{Ask}(KB, \text{Make-Action-Query}(t)) \\ \text{Tell}(KB, \text{Make-Action-Sentence}(action, t)) \\ t \leftarrow t + 1 \\ \text{return } action
```

1. TELL KB what was perceived

Insert new sentences (representations of facts) into KB

2. ASK KB what to do

Use reasoning to examine actions and select the best

Outline for today

- Knowledge Based Agents
- The Wumpus World
- Logic
- Propositional Logic

Wumpus world (game)

- Illustrating unique strength of "knowledge-based" agents
 - A cave consisting of dark rooms, on a 4x4 grid
 - · Agent can move Forward, Turn Left, or Turn Right
 - Moving Forward into a wall does not change location
 - Beast (named Wumpus) hidden in one room
 - Agent will be eaten if walks into that room
 - Wumpus can be shot by the agent, but the agent has only one arrow
 - Pits hidden in some rooms
 - Agent will die if walks into these rooms

Wumpus world: sensors

- Sensors:
 - Stench: squares directly (not diagonally) adjacent to Wumpus are smelly
 - Breeze: squares directly adjacent to pit are breezy
 - Glitter: in the square where the gold is
 - Bump: when the agent walks into a wall
 - Scream: when Wumpus is shot by an arrow, it screams and dies

(Stench, Breeze, Glitter, Bump, Scream)

3

2

Wumpus world: performance measure

- Performance measure:
 - +1000: for coming out of the cave with gold
 - -1000: for dying in a pit or being eaten
 - -10: for using up the (one and only) arrow
 - -1: for each action taken
 - Forward, TurnLeft, TurnRight, Climb
 - Grab,
 - Shoot

4

3

2

1

Characterization of Wumpus World

Deterministic?

Accessible?

• Static?

Discrete?

Episodic?

Characterization of Wumpus World

Deterministic? Yes – outcome exactly specified

Accessible? No – only local perception

Static? Yes – Wumpus and pits do not move

Discrete?Yes

Episodic?Yes

 Recall that "you don't know what's hidden in each room"

,	SSSSS Stench		Breeze	
				Breeze
,	SSTSS SSTENCT		-Breeze	
	START	Breeze		Breeze
	1	2	3	4

- Recall that "you don't know what's hidden in each room"
- Recall that "you also don't have percepts until walking into a room"

- What do you know now?
- Recall that
 - Stench: in the squares directly (not diagonally) adjacent to Wumpus, agent perceives Stench
 - Breeze: in the squares directly adjacent to a pit, agent perceives Breeze
- Neither "Stench" nor "Breeze" in [1,1]
 - Wumpus cannot be in (1,2) or (2,1)
 - Pit cannot be in (1,2) or (2,1)

- What do you know now?
- Recall that
 - Breeze: in the squares directly adjacent to a pit, the agent perceives a Breeze
 - Pit may be in (2,2)
 - Pit may be in (3,1)
- Agent's only choice is going back to (1,1)

- What do you know now?
- Recall that
 - Breeze: in the squares directly adjacent to a pit, the agent perceives a Breeze
 - Pit may be in (2,2)
 - Pit may be in (3,1)
- Agent's only choice is going to (1,2)

- What do you know now?
- Recall that
 - Breeze: in the squares directly adjacent to a pit, the agent perceives a Breeze
 - Pit may be in (2,2)
 - Pit may be in (3,1)
 - Pit cannot be in (1,2)
 - Pit cannot be in (2,1)
- · Agent may go to (1,2)

What do you know now?

- Recall that
 - Stench: in the square containing Wumpus, and in the directly (not diagonally) adjacent squares, the agent perceives a Stench

```
- Pit may be in (2,2)
```

- Pit may be in (3,1)
- Pit cannot be in (1,2)
- Pit cannot be in (2,1)
- Pit cannot be in (2,2)
- Wumpus cannot be in (2,2)
- Wumpus MUST be in (1,3)
- Agent may go to (2,2)

4

3

2

1

- What do you know now?
- Recall that

```
- Pit may be in (2,2)
```

- Pit may be in (3,1)
- Pit cannot be in (1,2)
- Pit cannot be in (2,1)
- Pit cannot be in (2,2)
- Wumpus cannot be in (2,2)
- Wumpus Must be in (1,3)
- Pit must be in (3,1)
- Pit cannot be in (2,3)

Agent may go to (2,3) or (3,2) or (2,1) or (1,2)

Agent finds gold, and backtracks to (1,1)

A= Agent

B= Breeze

S= Smell

P= Pit

W= Wumpus

OK = Safe

V = Visited

A= Agent

B= Breeze

S= Smell

P= Pit

W= Wumpus

OK = Safe

V = Visited

A= Agent

B= Breeze

S= Smell

P= Pit

W= Wumpus

OK = Safe

V = Visited

A= Agent

B= Breeze

S= Smell

P= Pit

W= Wumpus

OK = Safe

V = Visited

Breeze in (1,2) and (2,1)

Breeze in (1,2) and (2,1) \Rightarrow no safe actions

Assuming pits uniformly distributed, (2,2) is most likely to have a pit

Smell in (1,1) \Rightarrow cannot move


```
Smell in (1,1)

⇒ cannot move

Can use a strategy of coercion:

shoot straight ahead

wumpus was there ⇒ dead ⇒ safe

wumpus wasn't there ⇒ safe
```

Question: Can you play the game using search alone?

 No, unless you want to risk "being eaten" or "dying in a pit" multiple times, before learning the transition model of the environment

Question: Can you play the game using search alone?

- No, unless you want to risk "being eaten" or "dying in a pit" multiple times, before learning the transition model of the environment
- With a "Knowledge Base (KB)", the agent can infer facts such as
 - [2,2] cannot have Pit
 - [2,2] cannot have Wumpus
 - [1,3] must have Wumpus
 - [3,1] must have Pit
- Correctness is guaranteed
 - As long as KB is correct

What's a Knowledge Base (KB)

 Consists of a set of sentences, each about something of the environment that the agent knew

Symbols:

 $P_{x,y}$ is true if there is a pit in [x,y]. $W_{x,y}$ is true if there is a wumpus in [x,y], dead or alive. $B_{x,y}$ is true if the agent perceives a breeze in [x,y]. $S_{x,y}$ is true if the agent perceives a stench in [x,y].

- Sentence#1: There is no pit in [1,1]
- Sentence#2: There is breeze in [2,1]

 $\neg P_{1,1}$. $B_{2,1}$.

Sentence#3: A square is breezy IFF pit is in a neighboring square

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}).$$
 $B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1}).$
 $B_{3,1} \dots$
 $B_{4,1} \dots$

What's a Knowledge Base (KB)

Consists of a set of **sentences**, each about something of

the environment that the agent knew

Symbols:

 $P_{x,y}$ is true if there is a pit in [x,y].

 $W_{x,y}$ is true if there is a wumpus in [x,y], dead or alive.

 $B_{x,y}$ is true if the agent perceives a breeze in [x,y].

 $S_{x,y}$ is true if the agent perceives a stench in [x,y].

Sentence#1: There is no pit in [1,1]

Sentence#2: There is breeze in [2,1]

Breeze

Breeze

Sentence#3: A square is breezy IFF pit is in a neighboring square

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$
.

$$B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1}) .$$

 $B_{3,1}$...

Outline for today

- Knowledge Based Agents
- The Wumpus World
- Logic
- Propositional Logic

Syntax vs. Semantics (of ordinary arithmetic)

Syntax specifies all well formed sentences (in KB)

```
-(x+y=4) is a well-formed sentence
-(x 4 y + =) is not a well-formed sentence
```

Syntax vs. Semantics (of ordinary arithmetic)

Syntax specifies all well formed sentences (in KB)

```
-(x+y=4) is a well-formed sentence
-(x 4 y + =) is not a well-formed sentence
```

Semantics defines the meaning of the sentences

```
- (x + y = 4) is true in worlds where

• ...

• x = 0, y = 4

• x = 1, y = 3

• x = 2, y = 2

• x = 3, y = 1

• x = 4, y = 0

Models of a
```

The Semantic Wall

Symbol System

- +BLOCKA+
- +BLOCKB+
- +BLOCKC+

 P_1 : (IS_ON +BLOCKA+ +BLOCKB+)

P₂: (IS_RED +BLOCKA+)

Truth depends on Interpretation

Entailment

$$\alpha_1$$
 = "There is no pit in [1,2]."

in every model in which KB is true, α_1 is also true.

$$KB \models \alpha_1$$

Based on the facts put into KB so far, can we make this claim, with certainty?

Entailment (another example)

- Let $\alpha = (x > 10)$
- Let $\beta = (x > 0)$

$$\alpha \models \beta$$

- α entails β
- β follows logically from α
- In every model in which α is satisfied, β is also satisfied

Entailment (another example: the models...)

- Let $\alpha = (x > 10)$
- Let $\beta = (x > 0)$

$$\alpha \models \beta$$

- α entails β
- β follows logically from α
- In every model in which α is satisfied, β is also satisfied

$$\alpha \models \beta$$
 if and only if $M(\alpha) \subseteq M(\beta)$

Entailment (another example: Venn diagram...)

- Let $\alpha = (x > 10)$
- Let $\beta = (x > 0)$

$$\alpha \models \beta$$

- α entails β
- β follows logically from α
- In every model in which α is satisfied, β is also satisfied

Entailment (another example: algebra...)

- Let $\alpha = (x > 10)$
- Let $\beta = (x > 0)$

$$\alpha \models \beta$$

- α entails β
- β follows logically from α
- In every model in which α is satisfied, β is also satisfied

Entailment

 α_1 = "There is no pit in [1,2]."

in every model in which KB is true, α_1 is also true.

First, find all models in KB

Then, for each model, check if the sentence is true

Entailment

 α_2 = "There is no pit in [2,2]."

in some models in which KB is true, α_2 is false.

$$KB \not\models \alpha_2$$

First, find all models in KB

Then, for each model, check if the sentence is true

Logical inference

- Two methods
 - Method#1: Based on entailment (model checking)
 - Method#2: Based on inference rules (theorem proving)

 Enumerate all models to check if "a is true in all models in which KB is true"

$$M(KB) \subseteq M(\alpha)$$
.

Soundness and Completeness

- Logical inference based on "model checking" is sound
 - Truth-preserving: only entailed sentences will be derived
- It is also complete
 - Can derive any sentence that is entailed

When playing the **Wumpus World** game, for example, the agent is guaranteed to be as good as anyone (or anything)...

Logical sentences vs. Physical configurations

Is in this set = Is in this set =
$$\{11, 12, ..., +\infty\}$$
 $\{1, 2, ..., 11, 12, ... +\infty\}$

Outline for today

- Knowledge Based Agents
- The Wumpus World
- Logic
- Propositional Logic

Syntax of Propositional Logic

- Propositional symbols
 - P, Q, R, etc.
 - Boolean variables: either "true" or "false"
- Logical connectives
 - − NOT (¬)
 - AND (∧)
 - OR (V)
 - IMPLIES (→)
 - EQUIVALENT (↔)

Gramma of sentences

Recursive definition

```
Sentence \rightarrow AtomicSentence \mid ComplexSentence
          AtomicSentence \rightarrow True \mid False \mid P \mid Q \mid R \mid \dots
         ComplexSentence \rightarrow (Sentence) \mid [Sentence]
                                       \neg Sentence
                                       Sentence \wedge Sentence
                                       Sentence \vee Sentence
                                       Sentence \Rightarrow Sentence
                                       Sentence \Leftrightarrow Sentence
Operator Precedence : \neg, \wedge, \vee, \Rightarrow, \Leftrightarrow
```

• Truth table

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

· The truth table

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

· The truth table

	P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
	false	false	true	false	false	true	true
	false	true	true	false	true	true	false
	true	false	false	false	true	false	false
I	true	true	false	true	true	true	true

· The truth table

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
$true \ true$	$false \ true$	$false \ false$	false $true$	$true \ true$	$false \ true$	$false \ true$
trac	trac	Janse	vi ac	vi ac	trac	trac
		2	1	3	3	2

Truth table can tell you, for each formula, the **number of models** (satisfying assignments)

Checking entailment: enumeration method

Let
$$\alpha = A \vee B$$
 and $KB = (A \vee C) \wedge (B \vee \neg C)$

Is it the case that $KB \models \alpha$?

Check all possible models— α must be true wherever KB is true

A	B	C	$A \lor C$	$B \lor \neg C$	KB	α
False	False	False				
False	False	True				
False	True	False				
False	True	True				
True	False	False				
True	False	True				
True	True	False				
True	True	True				

Checking entailment: enumeration method

Let
$$\alpha = A \vee B$$
 and $KB = (A \vee C) \wedge (B \vee \neg C)$

Is it the case that $KB \models \alpha$? Check all possible models— α must be true wherever KB is true

A	B	C	$A \lor C$	$B \lor \neg C$	KB	α	
False	False	False	False	True	False	False	
False	False	True	True	False	False	False	
False	True	False	False	True	False	True	
False	True	True	True	True	True	True	
True	False	False	True	True	True	True	
True	False	True	True	False	False	True	
True	True	False	True	True	True	True	
True	True	True	True	True	True	True	

Checking entailment: enumeration method

Let
$$\alpha = A \vee B$$
 and $KB = (A \vee C) \wedge (B \vee \neg C)$

Is it the case that $KB \models \alpha$? Check all possible models— α must be true wherever KB is true

A	B	C	$A \lor C$	$B \lor \neg C$	KB	α
False	False	False	False	True	False	False
False	False	True	True	False	False	False
False	True	False	False	True	False	True
False	True	True	True	True	True	True
True	False	False	True	True	True	True
True	False	True	True	False	False	True
True	True	False	True	True	True	True
True	True	True	True	True	True	True

Checking entailment: another example

Based on "model checking"

$$R_1: \neg P_{1,1}.$$
 $R_2: B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1}).$
 $R_3: B_{2,1} \Leftrightarrow (P_{1,1} \lor P_{2,2} \lor P_{3,1}).$
 $R_4: \neg B_{1,1}.$
 $R_5: B_{2,1}.$

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
false false : false	false false : true	false false : false false true : false	true true true true	true true true true	true false : false	$egin{array}{c} true \ true \ \vdots \ true \end{array}$	false false : true	false false false false				
false false false	true true true	false false false	false false false	false false false	false true true	$true \\ false \\ true$	true true true	true true true	true true true	$true \ true \ true$	$true \ true \ true$	$\frac{\underline{true}}{\underline{true}}$
false : true	true : true	false : true	false : true	$true$ \vdots $true$	false : true	false : true	true : false	false : true	false : true	true : false	<i>true</i> : <i>true</i>	false : false

Logical inference

- Two methods
 - Method#1: Based on entailment (model checking)
 - Method#2: Based on inference rules (theorem proving)
- Standard logical equivalences

```
(\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg(\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg(\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{De Morgan} \\ \neg(\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{De Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \\ \end{pmatrix}
```

Validity

- A sentence is "valid" if it is true in "all" models (i.e., in each and every possible model)
 - Valid sentences are also called "tautologies"
- Can you think of an example?

Validity

- A sentence is "valid" if it is true in "all" models (i.e., in each and every possible model)
 - Valid sentences are also called "tautologies"
- Can you think of an example?
 - True \vee A
 - $A \lor (\neg A)$
 - $\neg (A \land (\neg A))$
 - $A \Leftrightarrow A$
 - $((P \lor Q) \Leftrightarrow P) \lor (\neg P \land Q)$
 - $(P \Leftrightarrow Q) \Longrightarrow (P \Longrightarrow Q)$

Validity

- A sentence is "valid" if it is true in "all" models (i.e., in each and every possible model)
 - Valid sentences are also called "tautologies"

More examples

 α is valid if and only if $True \models \alpha$.

For any α , $False \models \alpha$.

Satisfiability

- A sentence is "satisfiable" if it is true in "some" models (i.e., in at least one model)
- Some examples:

$$(A \lor B) \land \neg (A \Rightarrow B)$$
 is satisfiable.

$$(A \Leftrightarrow B) \land (\neg A \lor B)$$
 is satisfiable.

Connection between Validity and Entailment

"Checking entailment" can be done by "checking validity"

For any sentences α and β , $\alpha \models \beta$ if and only if the sentence $(\alpha \Rightarrow \beta)$ is valid.

Connection between Validity and Satisfiability

 A sentence is "valid" if and only if its negation is "unsatisfiable"

 $\alpha \models \beta$ if and only if the sentence $(\alpha \land \neg \beta)$ is unsatisfiable.

This is the intuition behind "Proof by contradiction"

```
Assume that "alpha" does not entail "beta"

Then, there must be a case where "alpha" is ture but "beta" is false...
```

...

Since the case ("alpha" is true but "beta" is false) is unsatisfiable, our assumption doesn't hold. Thus, the original statement ("alpha" entails "beta") is correct.

QED

More examples

• Is the sentence valid, satisfiable, or neither?

```
[(Food \Rightarrow Party) \lor (Drinks \Rightarrow Party)] \Rightarrow [(Food \land Drinks) \Rightarrow Party]
```

Outline

- What is AI?
- Problem-solving agent
 - Uninformed search
 - Informed search (A*)
 - Local search
 - Adversarial search

Knowledge-based agent

- The Wumpus World
- Propositional Logic