Neoglycoprotein-Synthesis

FIG. 1

Polysaccharide Modification

a) Reductive Amination

$$\begin{array}{c} \text{OH} \\ \text{OH} \\ \text{OH} \end{array}$$

b) I_2 -Oxidation

c) CNBr-Activation

$$0 - C - Br$$

$$0 - C - Br$$

$$0 + OH$$

$$0$$

$$0 - C - N - Protein$$

$$0 - C - N - Protein$$

$$0 - C - N - Protein$$

Alternative: Activation with CDAP

d) NaIO₄-Cleavage

FIG. 2.1

Oligosaccharide Modification

a) Reductive Amination

b) N-Glycosylation

FIG. 2.2

NH2-and CHO/COOH-Coupling Reactions

1a: N-Hydroxysuccinimides

1b: Imido esters

$$NH_2^+C1^ NH_2^+C1^ NH_2^+$$
 NH_2^+ NH

1c: Aryl azides

2: Hydrazides

$$H_2N-NH-C-R$$
 $R'CHO$
 $RH_3'C-NH-NH-C-R$
 $RH_3'C-NH-NH-C-R$
 $RH_3'C-NH-NH-C-R$
 $R'CHO$
 $RH_3'C-NH-NH-C-R$
 $R'CHO$
 $RH_3'C-NH-NH-C-R$

FIG. 3.1

SH-Coupling Reactions

3a: Haloacetates

3b: Maleimides

$$\begin{array}{c|c}
0 \\
N-R
\end{array}
\qquad
\begin{array}{c}
R'SH\\
RS'
\end{array}
\qquad
\begin{array}{c}
0 \\
N-R
\end{array}$$

3c: Pyridyl disulfides

$$R'-S-S-R$$
 $R'-S-S-R$
 $R'-S-S-R$

FIG. 3.2

Crosslinkers

1: Homobifunctional

a)
$$H_2CO-C-(CH_2)_n-C-OCH_3$$
 $DMA (n=4) DMP (n=5) DMS (n=6)$
b) $N-O-C-(CH_2)_n-C-O-N DSG (n=3) DSS (n=6)$
c) $H_2N-NH-C-(CH_2)_4-C-NH-NH_2$ ADH

2: Heterobifunctional

d)

a)
$$N-(CH_2)_n-C-0-N$$
 AMAS $(n=1)$ GMBS $(n=3)$ EMCS $(n=5)$
b) $N-CH_2-C-NH-NH_2$ M_2C_2H
c) $N-CH_2-C-NH-NH_2$ SPDP

FIG. 4

BMOE (n=2)

BMB (n=4) BMH (n=6)

Linkers for SH Couplings

1: Maleimide

a)
$$\begin{array}{c} AMAS & (n=1) \\ MBS & (n=3) \\ EMCS & (n=5) \\ \end{array}$$

$$\begin{array}{c} MCC \\ N-CH_2 \\ N-CH_2-C-O-N \\ \end{array}$$

$$\begin{array}{c} SO_3Na \\ Sulfo-GMBS \\ Sulfo-EMCS \\ Sulfo-SMCC \\ \end{array}$$

$$\begin{array}{c} Sulfo-GMBS \\ Sulfo-EMCS \\ Sulfo-SMCC \\ \end{array}$$

$$\begin{array}{c} D \\ N-CH_2-C-O-N \\ \end{array}$$

$$\begin{array}{c} N-CH_2 \\ -C-NH-NH_2 \\ \end{array}$$

$$\begin{array}{c} M_2C_2H \\ \end{array}$$

$$\begin{array}{c} MBS \\ \end{array}$$

$$\begin{array}{c} SMPB \\ \end{array}$$

$$\begin{array}{c} MBS \\ \end{array}$$

FIG. 5.1

Linkers for SH Couplings

2: Haloacetate

$$I-CH_{2}-C-O-N$$

$$I-CH_{2}-C-O-N$$

$$I-CH_{2}-C-O-N$$

$$SIAB$$

$$Br-CH_{2}-C-O-N$$

$$SIAB$$

$$SIAB$$

$$SIAB$$

3: Pyridyldisulfide

FIG. 5.2