Statistics

2023 Lectures
Part 12 - Introduction to Econometrics I

Institute of Economic Studies Faculty of Social Sciences Charles University

Goal of regression

- New setting: observed values of Y (dependent variable) are influenced by some other variable(s) x (independent or explanatory variable(s))
- Easiest setting: Let Y_1, \ldots, Y_n be independent random variables with $E(Y_i) = \alpha + \beta x_i, i = 1, \ldots, n$ and $Var(Y_i) = \sigma^2$, where $(\alpha, \beta) \in \mathbb{R}^2$, $\sigma^2 > 0$ are unknown parameters, x_1, \ldots, x_n are known constants with $\sum (x_i \bar{x}) > 0$.
- typically we have observed data in the form of pairs (Y_i, x_i) , i = 1, ..., n, where some values can repeat
- Goal: to find (interval) estimators of α , β , σ^2 and test hypotheses about the parameters.

Simple regression model

- Consider the following model: $Y_i = \alpha + \beta x_i + \varepsilon_i$, ε_i iid with $E(\varepsilon_i) = 0$, $Var(\varepsilon_i) = \sigma^2$, $i = 1, \ldots, n$. Setting $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n)^{\top}$, the assumptions on the moments of the disturbances are condensed to $E(\varepsilon) = 0$, $Var(\varepsilon) = \sigma^2 I$.
- Obvious generalizations:

$$Y_{i} = \beta_{0} + \beta_{1}x_{i1} + \dots + \beta_{n}x_{in} + \varepsilon_{i}, i = 1, \dots, n;$$

$$Y_{i} = \beta_{0} + \beta_{1}x_{i} + \beta_{2}x_{i}^{2} + \varepsilon_{i}, i = 1, \dots, n;$$

$$Y_{i} = \frac{1}{1 + \alpha x^{\beta}} + \varepsilon_{i}, i = 1, \dots, n;$$

$$\vdots$$

$$Y = X\beta + \varepsilon$$

• The last model is a linear regression model in a matrix form (linear in parameters β_i).

Least Squares Estimators

In our model of simple linear regression the (ordinary) least squares estimators of α and β , based on minimization of

$$S(\alpha, \beta) = \sum_{i=1}^{n} (Y_i - \alpha - \beta x_i)^2,$$

are

$$\hat{\alpha}_{OLS} = \bar{Y} - \hat{\beta}\bar{x}$$

$$\hat{\beta}_{OLS} = \frac{\sum_{i=1}^{n} (Y_i - \bar{Y})(x_i - \bar{x})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

These estimators are unbiased and if $\frac{1}{n}\sum x_i^j\to c_j, j=1,2$, such that $c_2-c_1^2>0$, then they are also consistent. Under normality, these estimators coincide with MLEs. Moreover,

$$\hat{\sigma}_{MLE}^2 = \frac{1}{n} \sum_{i=1}^n (Y_i - \hat{\alpha} - \hat{\beta} x_i)^2.$$

The very last example

Example 104: Model of trend in GDP (in billions of CZK)

	1966							
t	1	2	3	4	5	6	7	8
r_t	1 140	146	162	171	176	187	197	209

Theoretical model: $r_t = \alpha + \beta t + \varepsilon_t$

Estimated model: $\hat{r}_t = 129.68 + 9.74t$.

MORE IN ECONOMETRICS I