CLAIMS

- 1. Steel for mechanical components, wherein the composition thereof is, in percentages by weight:
 - $-0.19\% \le C \le 0.25\%;$
 - $-1.1\% \le Mn \le 1.5\%;$
 - $-0.8\% \le Si \le 1.2\%;$
 - $-0.01\% \le S \le 0.09\%;$
 - trace levels $\leq P \leq 0.025\%$;
 - trace levels \leq Ni \leq 0.25%;
 - $-1\% \le Cr \le 1.4\%;$
 - $-0.10\% \le Mo \le 0.25\%;$
 - trace levels \leq Cu \leq 0.30%;
 - $-0.010\% \le A1 \le 0.045\%;$
 - $-0.010\% \le Nb \le 0.045\%;$
 - $-0.0130\% \le N \le 0.0300\%;$
 - optionally trace levels \leq Bi \leq 0.10% and/or trace levels \leq Pb \leq 0.12%

and/or trace levels \leq Te \leq 0.015% and/or trace levels \leq Se \leq 0.030% and/or trace levels \leq Ca \leq 0.0050%;

the balance being iron and impurities resulting from the production operation, the chemical composition being adjusted so that the mean values J_{3m} , J_{11m} , J_{15m} and J_{25m} for five Jominy tests are such that:

$$\alpha$$
 = | J_{11m} - J_{3m} x 14/22 - J_{25m} x 8/22 | \leq 2.5 HRC; and β = J_{3m} - J_{15m} \leq 9 HRC.

2. Steel for mechanical components according to claim 1, wherein the composition thereof is adjusted so that

$$\beta = J_{3m} - J_{15m} \leq 8 \text{ HRC.}$$

3. Steel for mechanical components according to claim 1, wherein the composition thereof is:

```
-0.19\% \le C \le 0.25\%;
```

- $-1.2\% \le Mn \le 1.5\%;$
- $-0.85\% \le Si \le 1.2\%;$
- $-0.01\% \le S \le 0.09\%;$
- trace levels \leq P \leq 0.025%;
- $-0.08\% \le Ni \le 0.25\%;$
- $-1.1\% \le Cr \le 1.4\%;$
- $-0.10\% \le Mo \le 0.25\%;$
- $-0.06\% \le Cu \le 0.30\%;$
- $-0.010\% \le A1 \le 0.045\%;$
- $-0.015\% \le Nb \le 0.045\%;$
- $-0.0130\% \le N \le 0.0300\%;$
- optionally trace levels \leq Bi \leq 0.07% and/or trace levels \leq Pb \leq 0.12% and/or trace levels \leq Te \leq 0.010% and/or trace levels \leq Se \leq 0.020% and/or trace levels \leq Ca \leq 0.045%, the balance being iron and impurities resulting from the production operation.
- 4. Steel for mechanical components according to claim 3, wherein the composition thereof is:
 - $-0.20\% \le C \le 0.25\%;$
 - $-1.21\% \le Mn \le 1.45\%;$
 - $-0.85\% \le Si \le 1.10\%;$
 - $-0.01\% \le S \le 0.08\%;$
 - trace levels \leq P \leq 0.020%;
 - $-0.08\% \le Ni \le 0.20\%;$
 - $-1.10\% \le Cr \le 1.40\%;$
 - $-0.11\% \le Mo \le 0.25\%;$
 - $-0.08\% \le Cu \le 0.30\%;$
 - $-0.010\% \le A1 \le 0.035\%;$
 - $-.0.025\% \le Nb \le 0.040\%;$
 - $-0.0130\% \le N \le 0.0220\%;$

- optionally trace levels \leq Bi \leq 0.07% and/or trace levels \leq Pb \leq 0.12% and/or trace levels \leq Te \leq 0.010% and/or trace levels \leq Se \leq 0.020% and/or trace levels \leq Ca \leq 0.045%, the balance being iron and impurities resulting from the production operation.
- 5. Method for producing a mechanical component from carburised or carbonitrided steel, wherein a steel according to claim 1 is used for this purpose, on which a machining operation, carburising operation or carbonitriding operation is carried out, then a quenching operation.
- 6. Method according to claim 5, wherein the carburising or carbonitriding is carried out at a temperature of from 950 to 1050°C.
- 7. Steel mechanical component, wherein it is produced using the method according to claim 5.
- 8. Mechanical component according to claim 7, wherein it is a gear component.