M8 - Typy funkcí

Konstantní

konstantní funkce -
$$f: y = b$$
, $b \in \mathbb{R}$, $D(f) = \mathbb{R}$, $H(f) = \{b\}$

Lineární

lineární funkce -
$$f: y = ax + b$$
, $a \in \mathbb{R} - \{0\}$, $b \in \mathbb{R}$, $D(f) = H(f) = \mathbb{R}$

<u>Poznámka:</u> Změna koeficientu a se projeví jiným skonem přímky - s rostoucí |a| se přímka více "přimyká" k ose y.

Kvadratická

kvadratická funkce -
$$f: y = ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2 + \frac{4ac - b^2}{4a} = a(x + \alpha)^2 + \beta$$
, $a \in \mathbb{R} - \{0\}$, $b, c \in \mathbb{R}$,

$$D(f) = \mathbb{R}, H(f) = \langle \beta; \infty \rangle \text{ pro } a > 0, H(f) = (-\infty; \beta) \text{ pro } a < 0$$

Poznámka: Změna koeficientu a se projeví jinou šířkou paraboly - s rostoucí |a| je parabola užší.

lineárně lomená funkce -
$$f: y = \frac{ax+b}{cx+d} = \frac{a}{c} + \left(\frac{bc-ad}{c^2}\right) \cdot \frac{1}{x+\frac{d}{c}} = \alpha + \frac{\gamma}{x+\beta}, \quad a,b,c,d \in \mathbb{R}, \quad c \neq 0,$$

 $ad - bc \neq 0$,

$$D(f) = \mathbb{R} - \{-\beta\}, H(f) = \mathbb{R} - \{\alpha\}$$

<u>Poznámka:</u> Změna koeficientu γ se projeví jiným "prohnutím" hyperboly - s rostoucí $|\gamma|$ se hyperbola více "narovnává" a "průhyb se vzdaluje" od průsečíku pomocného osového kříže.

Mocninná

mocninná funkce - $f: y = a(x+b)^n + c$, $a \in \mathbb{R} - \{0\}$, $b, c \in \mathbb{R}$

a) n je celé kladné sudé - $D(f) = \mathbb{R}$, $H(f) = \langle c; \infty \rangle$ pro a > 0, $H(f) = (-\infty; c)$ pro a < 0;

b) n je celé kladné liché - $D(f) = \mathbb{R}$, $H(f) = \mathbb{R}$;

c) n je celé záporné sudé - $D(f) = \mathbb{R} - \{-b\}$, $H(f) = (c; \infty)$ pro a > 0, $H(f) = (-\infty; c)$ pro a < 0;

d) n je celé záporné liché - $D(f) = \mathbb{R} - \{-b\}$, $H(f) = \mathbb{R} - \{c\}$;

e) n je reálné z intervalu (0;1) - $D(f) = \langle -b; \infty \rangle$, $H(f) = \langle c; \infty \rangle$ pro a > 0, $H(f) = (-\infty; c)$ pro a < 0.

Všech pět obrázků je nakresleno pro a > 0.

Exponenciální

exponenciální funkce -
$$f: y = k.a^{x+b} + c$$
, $a \in (0,1) \cup (1,\infty)$, $b, c \in \mathbb{R}$, $k \in \mathbb{R} - \{0\}$,

$$D(f) = \mathbb{R}$$
, $H(f) = (c; \infty)$ pro $k > 0$, $H(f) = (-\infty; c)$ pro $k < 0$

Poznámka: Změna koeficientu a se projeví jiným stoupáním křivky - s rostoucím a pro $a \in (1; \infty)$ a s klesajícím a pro $a \in (0; 1)$ je křivka strmější.

Oba dva obrázky jsou nakresleny pro k > 0.

Logaritmická

$$\underline{\mathbf{logaritmick\acute{a}\;funkce}} - f: y = \log_a \big(x + b \big) + c \;,\; a \in \big(0;1\big) \cup \big(1;\infty\big),\; b,c \in \mathbb{R} \;,$$

$$D(f) = (-b; \infty), H(f) = \mathbb{R}$$

<u>Poznámka:</u> Změna koeficientu *a* se projeví jiným stoupáním křivky. Stačí si uvědomit, že logaritmická funkce je inverzní funkcí k funkci exponenciální.

Goniometrická

- a) funkce sinus $f: y = a \sin(bx + c) + d$, $D(f) = \mathbb{R}$, $H(f) = \langle d a; d + a \rangle$; perioda je $\frac{2\pi}{|b|}$;
- b) funkce kosinus $f: y = a\cos(bx+c)+d$, $D(f) = \mathbb{R}$, $H(f) = \langle d-a; d+a \rangle$; perioda je $\frac{2\pi}{|b|}$;
- c) funkce tangens $f: y = a \operatorname{tg}(bx + c) + d$, $D(f) = \mathbb{R} \left\{ \frac{(2k+1)\pi 2c}{2b}; k \in \mathbb{Z} \right\}$, $H(f) = \mathbb{R}$; perioda je $\frac{\pi}{|b|}$;
- d) funkce kotangens $f: y = a \cot(bx + c) + d$, $D(f) = \mathbb{R} \left\{ \frac{k\pi c}{b}; k \in \mathbb{Z} \right\}$, $H(f) = \mathbb{R}$; perioda je $\frac{\pi}{|b|}$.

Obrázky jsou kresleny pro b > 0.

 $\frac{d+a}{d-a} \xrightarrow{\frac{-c}{b}} \frac{-c}{\frac{-c}{b}} + \frac{2\pi}{b}$

<u>Poznámka:</u> Změna koeficientu a v grafu funkcí tangens a kotangens se projeví jiným stoupáním křivky - s rostoucím a bude křivka strmější.