Домашнее задание

Задача 1

Ниже приведено описание показателей, взятых из документации к результатам опроса:

- ID: id респондента, целочисленный тип;
- GENDER: пол, факторный тип (значения: 1 -женский, 2 -мужской);
- YEAR: год рождения, целочисленный тип.

Даны векторы, в которых сохранены несколько случайно выбранных значений из показателей, описанных выше:

```
ID <- 100:108

GENDER <- c(1, 2, 2, 1, 2, 1, 1, 1)

YEAR <- c("1983", " 1988", "1975 ", "1980", "1977 ", "1992", "1994", "1983 ")
```

- **1.1.** Проверьте, к какому типу относятся векторы (числовой, целочисленный, логический, строковый, факторный).
- **1.2.** Если тип какого-то вектора не соответствует заявленному в описании выше, исправьте это, сохранив изменения в самом векторе. Среди приведённых выше векторов «неправильных» может быть несколько.

Задача 2

В таблицах ниже приведены данные по объёму экспорта и импорта товаров в долларах США за 2019 год для трёх стран (данные проекта COMTRADE).

Таблица 1: экспорт

Партнёр 1	Партнёр 2	Экспорт (доллары США)
Канада	Нидерланды	3 905 228 446
Канада	США	336 531 873 909
Нидерланды	Канада	4 862 948 109
Нидерланды	США	29 807 484 356
США	Канада	292 338 433 401
США	Нидерланды	51 225 636 600

Таблица 2: импорт

Партнёр 1	Партнёр 2	Импорт (доллары США)
Канада	Нидерланды	3 515 239 399
Канада	США	229 687 088 046
Нидерланды	Канада	2 249 551 077
Нидерланды	США	42 262 861 193
США	Канада	326 628 559 104
США	Нидерланды	30 883 263 358

2.1. Создайте датафреймы goods_export и goods_import, которые выглядят так, как таблицы с данными выше.

Подсказка: названия столбцов датафрейма добавляются с помощью той же функции, что и у матриц.

2.2. На основе данных из таблиц 1 и 2 создайте матрицы export_mat и import_mat, которые будут в более компактном виде хранить информацию об экспорте и импорте. Это должны быть квадратные

матрицы (число строк равно числу столбцов), по строкам и столбцам должны идти названия стран: Канада, Нидерланды, США.

Пример. Известно, что страна А экспортирует в страну В товара на 20 000 долларов, а В экспортирует в А товара на 40 000 долларов. При этом мы считаем, что сама страна в себя ничего не экспортирует. Создадим матрицу для описания экспорта двух стран А и В:

$$\begin{array}{cc} {\bf A} & {\bf B} \\ 0 & 20000 \\ 40000 & 0 \end{array}$$

- **2.3.** Используя матрицы из пункта 2.2, создайте матрицу diff_mat, которая содержит разницу между экспортом и импортом стран.
- **2.4.** Используя матрицы из пункта 2.2, создайте матрицы с логарифмированными (десятичный логарифм) значениями экспорта и импорта. Назовите матрицы по своему усмотрению.
- 2.5. Создайте список L_data, который содержит следующие элементы:
 - элемент source со значением "COMTRADE, https://comtrade.un.org/";
 - элемент year со значением "2019";
 - элемент countries вектор с названиями стран (как в матрицах);
 - ullet элемент export датафрейм goods_export;
 - элемент import датафрейм goods_import;
 - элемент export_mat матрица export_mat;
 - элемент import_mat матрица export_mat.
- ${f 2.6.}$ Используя созданный список L_data и обращаясь только к индексам элементов, выведите на экран:
 - третью страну в векторе countries;
 - объём экспорта из Нидерландов в Канаду из матрицы export_mat;
 - объём импорта из США в Канаду из матрицы import_mat.
- ${f 2.7.}$ Добавьте в конец списка L_data элемент без названия, который содержит строку с сегодняшней датой в произвольном формате.