Nature of Invention: Chemical molecule and synthesis route

Applicant: GreenovateX

Inventors: Navdeep

Chemical Formula: C₁₀H₁₉O₆PS₂

Chemical Name: Malathion

Chemical synthesis routes:

1. Direct Esterification of 0,0-Dimethyl Phosphorodithioic Acid

Chemicals Required

- 1. O,O-Dimethyl Phosphorodithioic Acid (DMPA) Diethyl Maleate (DEM) – $C_2H_5O_2CCH=CHCO_2C_2H_5$
- 3. Sulfuric Acid (H₂SO₄) or p-Toluenesulfonic Acid
- 4. Toluene (C₆H₅CH₃) or Xylene (C₈H₁₀)
- 5. Molecular Sieves (3Å or 4Å) or Anhydrous Sodium Sulfate (Na₂SO₄)
- 6. Sodium Carbonate (Na₂CO₃) or Sodium Hydroxide (NaOH)

Vessels Required

- 1. Esterification Reactor (Glass-Lined or Stainless Steel Reactor with Acid Resistance)
- 2. Mixing Vessel
- 3. Separation Vessel (Decanter/Settler)
- 4. Filtration Unit (Vacuum Filter or Pressure Filter)
- 5. Distillation Column (Fractional Distillation Unit)
- 6. Product Storage Tank (HDPE or Stainless Steel with Antioxidant Lining)
- 7. Solvent Storage Tank
- 8. Waste Neutralization Tank

Process analysis

1. Objective

To produce Malathion ($C_{10}H_{19}O_6PS_2$) using the direct esterification of O,O-Dimethyl Phosphorodithioic Acid (DMPA) with Diethyl Maleate (DEM) in the presence of catalysts, followed by purification.

2. Chemical Reaction

0,0-Dimethyl Phosphorodithioic Acid+Diethyl Maleate→Malathion+H20

- Reactants:
 - 0,0-Dimethyl Phosphorodithioic Acid (DMPA) \rightarrow (CH₃O)₂PS₂H
 - Diethyl Maleate (DEM) \rightarrow C₆H₁₀O₄
- Products:
 - Malathion $\rightarrow C_{10}H_{19}O_6PS_2$
 - Water (byproduct)
- Catalysts/Additives:
 - o Sulfuric Acid (H₂SO₄) or p-Toluenesulfonic Acid (p-TSA) as an acid catalyst.
 - o **Sodium Hydroxide (NaOH)** for neutralization.

3. Reaction Conditions

Temperature 80-100°C

Pressure Atmospheric or slight vacuum

Catalyst Sulfuric Acid (H₂SO₄) / p-TSA

Reaction Time 2-4 hours

pH Control NaOH neutralization (pH 7-8)

4. Process Flow

Step 1: Raw Material Preparation

- O,O-Dimethyl Phosphorodithioic Acid (DMPA) and Diethyl Maleate (DEM) are mixed in a **Mixing Vessel**.
- Catalyst (H₂SO₄ or p-TSA) is added to initiate the esterification reaction.

Step 2: Esterification Reaction

- The mixture is transferred to **Reactor 1**, where it is heated to **80-100°C** for 2-4 hours.
- Malathion forms along with water as a byproduct.

Step 3: Water Removal

 The reaction mixture is sent to a Vacuum System, which removes excess water to drive the reaction forward.

Step 4: Neutralization & pH Adjustment

- The crude product is treated with NaOH or Na₂CO₃ in Reactor 2 to neutralize residual acid.
- The pH is adjusted to **7-8** to prevent decomposition.

Step 5: Liquid-Liquid Extraction

- The mixture enters a **Liquid Extraction Column**, where **organic Malathion** is separated from the aqueous phase.
- Aqueous waste (salts and excess water) is removed.

Step 6: Filtration

 The organic phase undergoes Pressure Filtration to remove impurities and solid residues (NaCl and unreacted materials).

Step 7: Solvent Removal & Drying

- The filtered solution is sent to a **Vacuum Dryer or Distillation Column** to remove any residual solvents.
- This ensures 98%+ pure Malathion.

Step 8: Storage & Stabilization

 The purified Malathion is stored in a Storage Tank with stabilizers (e.g., antioxidants) to prevent degradation.

5. Process Flow Diagram (PFD) Overview

Stage	Equipment Used	Output
Raw Material Prep	Mixing Vessel	DMPA + DEM Mixture
Esterification	Reactor 1 (80-100°C)	Crude Malathion + Water
Water Removal	Vacuum System	Malathion + less water
Neutralization	Reactor 2 (pH 7-8)	Neutralized Malathion
Extraction	Liquid Extraction Column	Organic Malathion, Aqueous Waste
Filtration	Pressure Filter	Purified Malathion Solution
Drying	Vacuum Dryer	98%+ Pure Malathion
Storage	Storage Tank	Final Malathion with Stabilizers

2. Malathion Production via Thiophosphorylation of Diethyl Fumarate/Diethyl Maleate

Chemicals Required

- Phosphorus Pentasulfide (P₂S₅)
- Methanol (CH₃OH)
- Diethyl Maleate (DEM) or Diethyl Fumarate (DEF)
- Sulfuric Acid (H₂SO₄) or Sodium Hydroxide (NaOH)
- Tertiary Amines (e.g., Triethylamine, Pyridine)
- Toluene, Dichloromethane (DCM), or Hexane
- Water (Deionized or Distilled)
- Sodium Bicarbonate (NaHCO₃) or Sodium Hydroxide (NaOH)

Vessels Required

- Storage Tanks
- · Agitated Feed Tanks
- Jacketed Stirred Tank Reactor
- Reflux Condenser
- Heat Exchanger (Shell & Tube or Plate Type)
- Vacuum System (Rotary Vacuum Pump)
- Nutsche Filter / Pressure Filter
- Liquid-Liquid Extraction Column
- Thin Film Evaporator / Falling Film Evaporator
- Spray Dryer / Vacuum Dryer

Process Analysis

1. Objective

To produce Malathion through the thiophosphorylation of Diethyl Fumarate/Diethyl Maleate using O,O-dimethyldithiophosphoric acid.

2. Chemical Reactions

1. Synthesis of 0,0-Dimethyl Dithiophosphoric Acid:

$P2S5+4CH3OH\rightarrow 2(CH3O)2P(S)SH+H2S$

2. Thiophosphorylation Reaction (Formation of

Malathion):(C2H5O2C)CH=CH(COOC2H5)+(CH3O)2PS2H

→Malathion+Byproducts

3. Reaction Conditions

- Synthesis of 0,0-Dimethyl Dithiophosphoric Acid:
 - o **Temperature**: 50-60°C.
 - o **Reaction Time**: 1-2 hours.
 - o **Pressure**: Atmospheric.
 - o **Stirring**: Continuous.
- Thiophosphorylation Reaction:
 - o **Temperature**: 50-80°C.
 - o **Pressure**: Atmospheric or slight vacuum.
 - o **Reaction Time**: 3-6 hours.
 - o **Catalyst (if used)**: Acidic (H₂SO₄) or Basic (NaOH).

4. Process Flow

1. Raw Material Preparation & Handling:

- a. Store and transfer reactants under controlled conditions.
- b. Required materials: P₂S₅, CH₃OH, DEM/DEF, catalysts (if used), and solvents.
- 2. Preparation of 0,0-Dimethyl Dithiophosphoric Acid:
 - a. React P₂S₅ with CH₃OH to form dimethyl dithiophosphoric acid.
 - b. Conditions: 50-60°C, 1-2 hours, atmospheric pressure.
- 3. Thiophosphorylation Reaction (Formation of Malathion):
 - a. React 0,0-dimethyl dithiophosphoric acid with DEM/DEF.
 - b. Conditions: 50-80°C, 3-6 hours, atmospheric or slight vacuum.

4. Filtration & Solvent Removal:

- a. Remove solid impurities via filtration.
- b. Evaporate solvent using a thin-film evaporator or distillation.
- c. Neutralize if necessary.

5. Drying & Final Product Storage:

- a. Dry the product under vacuum conditions.
- b. Store Malathion in pure liquid or powder form.

5. Process Flow Diagram (PFD)

Stage	Equipment Used	Output
Raw Material Prep	Agitated Feed Tanks	$P_2S_5 + CH_3OH + DEM/DEF$
Kaw Material Frep		Mixture
Synthesis of	Jacketed Stirred Tank Reactor	0,0-Dimethyl
Dithiophosphoric Acid	Jacketed Stiffed Talik Reactor	Dithiophosphoric Acid
Thiophosphorylation	Jacketed Stirred Tank Reactor	Crude Malathion
Filtration & Solvent	Nutsche Filter / Pressure Filter & Thin	Purified Malathion
Removal	Film Evaporator	Solution
Drying	Vacuum Dryer	Pure Malathion
Storage	Storage Tanks	Final Malathion Product

Reasons due to which The Direct Esterification of O,O-Dimethyl Phosphorodithioic Acid is a more efficient route for Malathion production compared to the Thiophosphorylation of Diethyl Fumarate.

- Direct Esterification of 0,0-Dimethyl Phosphorodithioic Acid gives higher yield (~98%) and is more efficient.
- Thiophosphorylation of Diethyl Fumarate is safer as it avoids POCl₃ and NaCN.
- Direct Esterification has faster reaction time and simpler purification steps.
- Thiophosphorylation operates under milder conditions (50-80°C) but has lower yield (~92-95%).
- Direct Esterification requires strict anhydrous conditions, as reactants are moisturesensitive.
- Thiophosphorylation involves more reaction steps, leading to higher operational costs.
- Direct Esterification is preferred for industrial production due to better efficiency and cost-effectiveness.
- Thiophosphorylation is a viable alternative when safety and environmental factors are a priority.

References:

https://patents.google.com/patent/US8138366B2/en https://www.atsdr.cdc.gov/toxprofiles/tp154-c5.pdf https://core.ac.uk/download/pdf/223059315.pdf https://www.vedantu.com/chemistry/malathion https://en.wikipedia.org/wiki/Malathion

https://www.cdc.gov/niosh/npg/npgd0375.html https://pubchem.ncbi.nlm.nih.gov/compound/Malathion

https://go.drugbank.com/drugs/DB00772

List the contributions of each author:Navdeep

- Designed and implemented a chemical synthesis route for the production of Malathion, including raw material selection, process design, and optimization of key stages such as esterification, purification, and drying.
- Explored an alternative way to produce malathion through the thiophosphorylation of Diethyl Fumarate/Diethyl Maleate using 0,0-dimethyldithiophosphoric acid.
- Figured out which process is better and its reasoning which can be more friendly for company and production

Sign the pdf and upload.

Name	Roll No	Signature
Aditya Singh	230079	Aditya Singh
Navdeep	230683	Randeef