

Olimpiada Departamental de Física 2018 1Ra Ronda - Nivel II

Nombre:
echa de Nacimiento:
DIRECCIÓN:
DEPARTAMENTO:
ELÉFONO:
NSTITUCIÓN EDUCATIVA:

Problema 1: Explique por qué una escalera puede ser colocada formando un ángulo sobre un piso rugoso y contra una pared lisa; pero no sobre un piso liso y contra una pared rugosa.

Problema 2: Dos cuerpos se deslizan, sin fricción, por las trayectorias *adb* y *acb* (ver figura). ¿Cuál llegará primero al punto b? ¿Cuál llegará con más velocidad?

Problema 3: Una flecha de masa $0.1\ kg$ se aproxima a una manzana de $0.2\ kg$ con una rapidez de $10\ m/s$, figura de la izquierda. La figura de la derecha muestra la situación después de que la flecha se ha incrustado en la manzana y el sistema flecha - manzana se mueve como un todo. Calcule la rapidez del sistema flecha - manzana.

Problema 4: Un bloque triangular de masa *M*, con ángulos de 30°, 60° y 90°, descansa sobre el lado $30^{\circ}-90^{\circ}$ encima de una mesa horizontal. Un bloque cúbico, de masa m, descansa sobre el lado $60^{\circ} - 30^{\circ}$

- a) ¿Qué aceleración horizontal a debe tener M con relación a la mesa para que m se quede fija con respecto al bloque triangular, suponiendo que no haya rozamiento en los contactos?
- b) ¿Qué fuerza horizontal *F* debe aplicarse al sistema para lograr ese resultado, suponiendo que la mesa no tiene rozamiento?
- c) Suponiendo que no se aplica ninguna fuerza a M y que ambas superficies de contacto carecen de rozamiento, describe el movimiento, describe el movimiento resultante.

Problema 5: Un artillero medieval coloca su cañón de 200 kg en el borde de un techo plano en una torre elevada. Dispara horizontalmente una bala de 5 kg. La bala cae a 300 m de la base de la torre. El cañón también se mueve sobre ruedas sin fricción y cae desde la torre al suelo. ¿Cuál es la distancia horizontal al borde del edificio a la cual cae el cañón?

Tiempo: 3.5 horas Cada problema vale: 7 puntos