Parul Institute of Engineering and Technology Parul University Engineering Physics (303192102) B. Tech. Semester 2

Assignment 2

Date: 29/04/2024

LONG QUESTIONS

- 1. Classify the solid materials based on the band structure.
- 2. Prove that in an intrinsic semiconductor, Fermi level lies exactly at the middle of the band gap.
- 3. What is effective mass of electron? Derive an expression for the effective mass (m*) of an electron in valance and conduction band.
- 4. Derive an expression for the carrier concentration in the n-type semiconductor.
- 5. Explain construction (with diagram), working, and applications of a PN Junction photodiode.
- 6. Explain construction (with diagram), working and applications of photoconductive cell.
- 7. Explain classification of nano-materials based on dimensionality with examples.
- 8. What are novel materials? Explain their applications in detail.

SHORT QUESTIONS

- 1. Explain P type semiconductors and N type semiconductor.
- 2. Draw and explain E-K diagram.
- 3. Write short note about direct bandgap material and indirect bandgap material.
- 4. What is a semiconductor and how does it differ from a conductor and an insulator?
- 5. Write applications of photodetectors (any five).
- 6. Explain construction, working and applications of LED with necessary diagram.
- 7. Write short note about photovoltaic cell/solar cell with the necessary diagram.
- 8. Explain physical and thermal properties of nanomaterial.
- 9. Explain quantum devices and their application.
- 10. Write examples of 0-D materials.
- 11. Write examples of 1-D materials.
- 12. State working principle of X-ray Diffractometer.
- 13. Distinguish between the following: nanoparticles, aggregates and agglomerates.

DEFINE below mentioned terms

- 1. Effective mass
- 2. Density of States (DOS) (with formula)

- 3. Bandgap
- 4. Intrinsic and Extrinsic semiconductors
- 5. Photoconductivity
- 6. Photodetector
- 7. Optocoupler
- 8. Schottky Junction and Ohmic junction
- 9. Quantum devices
- 10. Nanomaterials

MCQs

- 1. In PIN diode, "I" stands for
 - a. Insulator
 - b. Ionization
 - c. Intrinsic semiconductor
 - d. None of the above
- 2. How does density of states vary with energy E?
 - a. E^2
 - b. $E^{1/2}$
 - c. E^3
 - d. None of above
- 3. Fermi energy level for intrinsic semiconductors lies
 - a. At middle of the band gap
 - b. Close to conduction band
 - c. Close to valence band
 - d. None
- 4. Fermi energy level for p-type extrinsic semiconductors lies
 - a. At middle of the band gap
 - b. Close to conduction band
 - c. Close to valence band
 - d. None
- 5. In ______ band gap materials, when electron makes transition from conduction band to valence band, the value of k changes.
 - a. Direct
 - b. Indirect
 - c. Direct as well as indirect
 - d. Large
- 6. Schottky junction is possible between
 - a) Metal and Metal
 - b) Semiconductor and Semiconductor
 - c) Metal and Semiconductor
 - d) Metal and Superconductor
- 7. Which of the following materials has the highest electrical conductivity?
 - a. Glass

- b. Ge
- c. Copper
- d. Silicon
- 8. Which of the following statements is true about the formation of energy bands in solids?
 - a. Energy bands only form in metals
 - b. Energy bands only form in insulators
 - c. Energy bands are formed by the interaction of electrons in the crystal lattice
 - d. Energy bands are not present in semiconductors
- 8. Which type of semiconductor has an equal number of electrons and holes at room temperature?
 - a. Extrinsic semiconductor
 - b. Intrinsic semiconductor
 - c. P-type semiconductor
 - d. N-type semiconductor
- 9. Optoelectronic couplers are commonly used as
 - a. Signal converters
 - b. Source of light
 - c. Detector of light
 - d. None of the above
- 10. Which type of light interaction must be dominant in material to act as good and efficient material for an optoelectronic device
 - a. Transmission
 - b. Absorption
 - c. Reflection
 - d. All of the above
- 11. The disadvantage of avalanche photo-diode is _____
 - a. High operating voltage
 - b. Less gain
 - c. Purity of semiconductor
 - d. All of above
- 12. Which is not an optoelectronic device among the below mentioned devices,
 - a. Photoconductive cell
 - b. LED
 - c. Capacitor
 - d. PIN Photodiode
- 13. SOUID stands for
 - a. Supercapacitor Quantum Interference dots
 - b. Super-cooled Quantum Intrinsic Device
 - c. Superconducting Quantum Interface Device
 - d. None of above

14. ′	The	drifting electron with sufficient kinetic energy causes impact ionization process in
-	a.	Avalanche photodiode
		PIN photodiode
		Photo transistor
	d.	None of above
15.		aterial with two dimensions in the nanometer range and a third dimension that is large is
		wn as:
	a)	Micromaterial
	b)	Quantum wire
		Quantum well
	d)	Macromaterial
16.	One	e can classify artificial nanomaterials as
		Carbon-based and non-metallic based
		Carbon-based only
		Carbon-based and metal & semiconductor based
	d.	Carbon-based and dendrimers
17.	Qua	ntum confinement is the property which is realized when
	,	Material size is in the nano scale
	,	Material size is not in the nano scale
		Γemperature is high
(d) I	Physical strength is high
	Wh calle	at is the temperature, above which a ferromagnetic substance shows no ferromagnetism ed?
;	a) (Curie temperature
	,	Critical temperature
		Neel temperature
(d) [There exists no such temperature
		are materials that, after having been deformed, revert back to their original
9	shap	bes when temperature is changed.
	a.	
		Shape memory alloys
		Alloys
20		None of the above
20	a.	is the ability of a material to resist elastic deformation. Brittleness
		Conductivity
		Elasticity
		resistivity
	u.	1001041113

21. Grain size of nano-materials are typically

- a. < 100 nm b. < 10 pm c. < 100 cm d. < 10 Å

F	\mathbf{II}	\mathbf{L}	IN	ΙŢ	Ή	\mathbf{E}	\mathbf{B}	LA	N	IK	S
---	---------------	--------------	----	----	---	--------------	--------------	----	---	-----------	---

1.	is a mechanical property of a metal. (Ductility/ Heat capacity).
2.	Quantum dots are examples of nanomaterials. (0-D / 1-D)
3.	CNTs stands for
4.	In the PIN photodiode,semiconductor is placed in between two extrinsic
	materials. (intrinsic/ n-type)
5.	Photodiode and phototransistor are (photo-detectors/ photo-sources)
6.	In 1-D nanomaterial, the electron is confined in the dimension. (2 / 3)
7.	Opto-couplers are made of an LED and a (IR emitter/photo-detector).
8.	LED stands for
9	Two-dimensional material has confinement in dimensions and mobility in dimensions.