Probe Klausur, Analysis/FFI Lösungen

1a)
$$f(x) = \ln(1-3x)$$
 1-3x>0
Defn.: $J-\infty$, $\frac{1}{3}$ $X < \frac{1}{3}$
Bild.: \mathbb{R}
1b) $g(x) = (x^2 + 2x - 3)^{\frac{1}{4}}$ $(x+3)(x-1) \ge 0$
Defn.: $J-\infty$; -3] \cup [1; ∞ [
Bild: $\mathbb{R}^{>0}$
1c) $h(t) = \frac{3}{2} \cos(3t+2)$ $-1 \le \cos x \le 1$
Defn: \mathbb{R}
Bild: $[-\frac{3}{2}; \frac{3}{2}]$

2a) g_1, g_2 stetig auf [a,b], $c_1, c_2 \in \mathbb{R}$ $\Rightarrow c_1 g_1$ und $c_2 g_2$ stetig auf [a,b] R.R. $\Rightarrow c_1 g_1 + c_2 g_2$ stetig auf [a,b]. $\Rightarrow c_1 g_1 + c_2 g_2$ stetig auf [a,b]. $\Rightarrow c_1 g_1 + c_2 g_2$ hat ein Maximum auf [a,b] $\Rightarrow c_1 g_1 + c_2 g_2$ hat ein Maximum auf [a,b] 2b) sin, cos stetig => cost-sint stetig I h ist stetig auf den offenen Intervallen Die Randpunkte müssen untersucht werden:

lim
$$h(t) = \lim_{t \to T/4} \cos t = \frac{12}{2}$$
 $t \to T/4$
 $\lim_{t \to T/4} h(t) = \lim_{t \to T/4} \sin t = \frac{12}{2} = h(\frac{\pi}{4})$
 $\lim_{t \to T/4} h(t) = \lim_{t \to T/4} \sin t = -1$
 $\lim_{t \to T/4} h(t) = \lim_{t \to 3\frac{\pi}{2}} \sinh t = -1$
 $\lim_{t \to 3\frac{\pi}{2}} h(t) = \lim_{t \to 3\frac{\pi}{2}} (\cos t - \sin t) = -1 = +1$
 $\lim_{t \to 3\frac{\pi}{2}} h(t) = \lim_{t \to 3\frac{\pi}{2}} (\cos t - \sin t) = -1 = +1$
 $\lim_{t \to 3\frac{\pi}{2}} h(t) = \lim_{t \to 3\frac{\pi}{2}} (\cos t - \sin t) = -1 = +1$

3a) 1,0,-1,0,1,0,-1,0, divergent

3a)
$$1,0,-1,0,1,0,-1,0,...$$
 alvergent
b) $\lim_{n\to\infty} 2^{n+1} = \lim_{n\to\infty} 2^{1} \cdot 2^{\frac{1}{n}} = 2$, konvergent

a)
$$1,0,-1,0,1,0,-1,0$$
) ... across

b) $\lim_{N\to\infty} 2^{n+1} = \lim_{N\to\infty} 2^{1} \cdot 2^{\frac{1}{2}n} = 2$, $\lim_{N\to\infty} 2^{n+1} \cdot 2^{\frac{1}{2}n} = 2$, $\lim_{N\to\infty} 2^{\frac{1}{2}n$

e)
$$\lim_{N\to\infty} \frac{3n^3 + 1000}{n^4 + 9,0001} = 0$$
, konvergent (GPZ < GPN)

f)
$$\lim_{N\to\infty} \frac{1 \cdot k^3 - 4k + 7}{2k^3 + 1} = \frac{1}{2}$$
, konvergent (GPZ = GPN)

4a)
$$f'(x) = \frac{1}{3}x^{-2/3} = \frac{1}{3\sqrt[3]{x^2}}$$
 falls die Ableitung in x existiert. f ist differenzier bar für alle $x \in \mathbb{R} \setminus \{0\}$.

4b)
$$g(0) = 3 \cos(\frac{\pi}{2}) = 0$$

 $g'(t) = -3 \sin(t + \frac{\pi}{2})$ $g'(0) = -3 \sin(\frac{\pi}{2}) = -3$
 $T = g(0) + g'(0)(x - \frac{\pi}{2})$
 $= -3(x - \frac{\pi}{2})$

4 c)
$$h'(x) = e^{x}(x^{2}+5) + e^{x}(2x)$$

$$j'(t) = \frac{1}{t}(t+3) - \ln t$$

$$(t+3)^{2}$$

$$k'(x) = \frac{15x^4 + 4}{2\sqrt{3}x^5 + 4x + 7}$$

$$\frac{2-3x^5+4x+7}{3k^5+4x+7} = \lim_{\substack{(4k+4)(4k+3)(4k+3)(4k+3)(4k+4)(3k+3)($$

divergent. The 5aii) <u>Leibniz</u> alt und monofon fallend:

$$\frac{5aii}{7(k+1)+1} - 7k+1 = 7>0$$

 $\Rightarrow \frac{1}{7(k+1)+1} - \frac{1}{7k+1} < 0.$

konvergent

5air)
$$\frac{90}{5}(\sqrt{5})^{1-n} = \frac{90}{5}\sqrt{5}\cdot(\frac{1}{\sqrt{5}})^n$$
, $\frac{2(\frac{1}{\sqrt{5}})^n}{\sqrt{5}}$ geom, Reihe konvergent

5av) QK

$$\lim_{k\to\infty} \frac{4(k+1)!}{(3k+3)!} \cdot \frac{(3k)!}{4k!} = \lim_{k\to\infty} \frac{4(k+1)}{(3k+3)(3k+2)(3k+1)} = 0$$

 $\lim_{k\to\infty} \frac{4(k+1)!}{(3k+3)!} \cdot \frac{(3k)!}{4k!} = \lim_{k\to\infty} \frac{4(k+1)}{(3k+3)(3k+2)(3k+1)} = 0$

konvergent

5avi)
$$\stackrel{\infty}{\underset{k=1}{\sum}} (-1)^{k+1} k$$
, $(\frac{k}{7k+1})$ ist keine Nullfolge,

4 denn lim $\stackrel{k}{\underset{k \to \infty}{\longrightarrow}} \frac{6Pz=6PN}{7k+1}$ divergent

5b)
$$n^2+3>n^2$$
 $\Rightarrow \frac{1}{n^2+3}<\frac{1}{n^2}$

Es gilt
$$0 \le \frac{1}{n^2 + 3} \le \frac{1}{n^2}$$
.

Des Weiteren konvergiert $\sum_{n=1}^{\infty} \frac{1}{n^2} \left(\frac{\text{Zeta-Reihe}}{\text{mit } s = 2 > 1} \right)$ d.h. $\sum_{n=1}^{\infty} \frac{1}{n^2+3}$ konvergiert.