Amendments to the claims:

This listing of claims will replace all prior versions and listing of claims in the application.

- 1. (Cancelled)
- 2. (Cancelled)
- 3. (Cancelled)
- 4. (Currently Amended) A method of measuring a DUT comprising the steps of:
 - providing a vector network analyzer having at
 least two measurement ports,
 - measuring a reflection characteristic of a high reflect calibration standard at each measurement port,
 - measuring forward and reverse reflection and transmission characteristics of a line calibration standard,
 - measuring forward and reverse reflection and transmission characteristics of a source terminated thru calibration standard,
 - measuring forward and reverse reflection and transmission characteristics of a locally terminated thru calibration standard,

- calculating error coefficients for said at
 least two measurement ports based upon
 results in said steps of measuring,
- calculating a shifted electrical length

 attributable to said calibration standards

 based upon results in said steps of

 measuring,
- connecting the DUT to the measurement ports,
- measuring s-parameters at the measurement ports,
- correcting for systematic errors in said sparameters based upon said error
 coefficients to yield a corrected Sparameter matrix, and
- shifting a reference plane for each element of

 said corrected S-parameter matrix to

 coincide with a measurement reference

 plane
- wherein a shifted electrical length between
 said indirect pairs is calculated using
 load match and source match error
 coefficient terms, and

A method of measuring as recited in claim 3

$$\frac{\Gamma_{SA_portm}}{\Gamma_{LA_portm}} = S_{21_thru_nm} S_{12_thru_nm}$$

wherein $S_{21_thru_nm}$ is equal to $S_{12_thru_mn}$ and an argument of both solutions for $S_{21_thru_nm}$ is fit to a straight line, the solution having a y-

intercept closest to zero being the <u>a</u> correct solution and the <u>a</u> resulting argument of the correct solution being the electrical delay.

- 5. (Cancelled)
- 6. (Cancelled)
- 7. (Cancelled)
- 8. (Currently Amended) <u>A method of measuring a DUT</u> comprising the steps of:
 - providing a vector network analyzer having at
 least two measurement ports,
 - measuring a reflection characteristic of a high
 reflect calibration standard at each
 measurement port,
 - measuring forward and reverse reflection and transmission characteristics of a line calibration standard,
 - measuring forward and reverse reflection and transmission characteristics of a source terminated thru calibration standard,
 - measuring forward and reverse reflection and transmission characteristics of a locally terminated thru calibration standard,

- calculating error coefficients for said at
 least two measurement ports based upon
 results in said steps of measuring,
- calculating a shifted electrical length

 attributable to said calibration standards

 based upon results in said steps of

 measuring,
- connecting the DUT to the measurement ports,
- measuring s-parameters at the measurement ports,
- correcting for systematic errors in said sparameters based upon said error
 coefficients to yield a corrected Sparameter matrix, and
- shifting a reference plane for each element of

 said corrected S-parameter matrix to

 coincide with a measurement reference

 plane,
- measuring forward and reverse reflection and transmission characteristics of a source terminated thru calibration standard for indirect pairs of said measurement ports,
- wherein the step of calculating further

 comprises calculating a different

 respective shifted electrical length for
 each said direct and indirect pair, and
- wherein said shifted electrical length between proximal pairs is determined by averaging

a shifted electrical length between said direct pair and said indirect pair having respective proximal pair measurement ports in common.

- 9. (Cancelled)
- 10. (Cancelled)
- 11. (Cancelled)
- 12. (Cancelled)
- 13. (Currently Amended) A method of measuring a DUT comprising the steps of:
 - providing a vector network analyzer having at
 least two measurement ports,
 - measuring a reflection characteristic of a high
 reflect calibration standard at each
 measurement port,
 - measuring forward and reverse reflection and transmission characteristics of a line calibration standard,
 - measuring forward and reverse reflection and transmission characteristics of a source terminated thru calibration standard,

- measuring forward and reverse reflection and transmission characteristics of a locally terminated thru calibration standard,
- calculating error coefficients for said at
 least two measurement ports based upon
 results in said steps of measuring,
- calculating a shifted electrical length
 attributable to said calibration standards
 based upon results in said steps of
 measuring,
- connecting the DUT to the measurement ports,
- measuring s-parameters at the measurement ports,
- correcting for systematic errors in said sparameters based upon said error
 coefficients to yield a corrected Sparameter matrix, and
- shifting a reference plane for each element of

 said corrected S-parameter matrix to

 coincide with a measurement reference

 plane, and
- determining a type of high reflect calibration standard, comprising

A method of measuring as recited in claim 12 wherein said step of determining further comprises calculating a characteristic of said high reflect calibration standard, fitting arguments of two possible solutions for said

characteristics to a straight line, identifying which a solution is closest to zero phase at DC.

- 14. (Cancelled)
- 15. (Cancelled)
- 16. (Currently Amended) <u>A method of measuring</u> a DUT comprising the steps of:
 - providing a vector network analyzer having more than two measurement ports,
 - measuring a reflection characteristic of a high reflect calibration standard at each measurement port,
 - measuring forward and reverse reflection and transmission characteristics of a line calibration standard for direct pairs of the measurement ports,
 - measuring forward and reverse reflection and transmission characteristics of a source terminated thru calibration standard for indirect pairs of the measurement ports,
 - measuring forward and reverse reflection and transmission characteristics of a locally terminated thru calibration standard for the indirect pairs,

- calculating error coefficients for said at

 least two measurement ports based upon
 results in said steps of measuring,
- calculating a shifted electrical length

 attributable to said calibration standards

 based upon results in said steps of

 measuring for each direct and indirect

 pair,
- connecting the DUT to the measurement ports,

 measuring s-parameters at the measurement

 ports,
- correcting for systematic errors in said sparameters based upon said error
 coefficients to yield a corrected Sparameter matrix, and
- shifting a reference plane for each element of

 said corrected S-parameter matrix to

 coincide with a measurement reference

 plane comprising modifying an argument of

 respective S-parameters according to

 respective ones of the shifted electrical

 lengths comprising

A method of measuring as recited in claim 15 wherein said step of shifting a reference plane comprises adjusting each said element of said corrected S-parameter matrix according to:

$$S_{dut} = \mid \rho \mid e^{-j(\theta_0 + \delta\theta(f))}$$

wherein $\delta\theta$ is calculated from said electrical

length as a function of frequency.

- 17. (Currently Amended) A method of measuring a DUT comprising the steps of:
 - providing a vector network analyzer having at least two measurement ports,
 - measuring a reflection characteristic of a high reflect calibration standard at each measurement port,
 - measuring forward and reverse reflection and transmission characteristics of a line calibration standard,
 - measuring forward and reverse reflection and transmission characteristics of a source terminated thru calibration standard,
 - measuring forward and reverse reflection and transmission characteristics of a locally terminated thru calibration standard,
 - calculating error coefficients for said at

 least two measurement ports based upon
 results in said steps of measuring,
 - calculating a shifted electrical length

 attributable to said calibration standards

 based upon results in said steps of

 measuring by A method of measuring as

 recited in claim 1 wherein said step of

 calculating a shifted electrical length

 comprises calculating a characteristic of

said high reflect calibration standard, fitting an argument of said characteristic to a straight line, and using a slope of said straight line to calculate a shifted electrical length,

- measuring s-parameters at the measurement ports, ports,
- correcting for systematic errors in said sparameters based upon said error
 coefficients to yield a corrected Sparameter matrix, and
- 18. through 72. (Cancelled)