NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA

DTIC QUALITY INSPECTED 4

THESIS

TRANSONIC AXIAL COMPRESSOR DESIGN CASE STUDY AND PREPARATIONS FOR TESTING

by

William D. Reid

September, 1995

Thesis Advisor:

Raymond P. Shreeve

Approved for public release; distribution is unlimited.

19960328 008

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

REPORT D	OCUMENTA	TION PAGE
----------	----------	------------------

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1.	AGENCY USE ONLY (Leave blank)	2.	REPORT DATE September 1995	3.			TYPE AND DATES COVERED Thesis
4.	TRANSONIC AXIAL COMPRESSOR PREPARATIONS FOR TESTING.	DESI	IGN CASE STUDY AN	D		5.	FUNDING NUMBERS
6.	AUTHOR(S) William D. Reid					7	
7.	PERFORMING ORGANIZATION NAM Naval Postgraduate School Monterey, CA 93943-5000	ИE(S)) AND ADDRESS(ES)			8.	PERFORMING ORGANIZATION REPORT NUMBER
9.	SPONSORING/MONITORING AGENC	Y N.	AME(S) AND ADDRES	S(ES)		10.	SPONSORING/MONITORING AGENCY REPORT NUMBER
11.	SUPPLEMENTARY NOTES The view official policy or position of the De	ws e: epari	expressed in this thesi tment of Defense or	s are tho	ose of to	the au	on thor and do not reflect the nt.
12a.	12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited.		12b.	DISTRIBUTION CODE			

13. ABSTRACT (maximum 200 words)

Test runs of the transonic axial compressor test rig at the Naval Postgraduate School, Turbopropulsion Laboratory, were conducted in preparation for the installation of a new stage design. Modifications in the cooling air supply to the high speed bearings, and to the design of the torque measuring system were completed during subsequent overhaul.

A case study of the design of the new transonic stage was initiated. This consisted of a review of the procedure used in the design, as well as a design comparison. The comparison examined the differences between the blades designed for the new stage, which was primarily accomplished using a full, three-dimensional, Computational Fluid Dynamics code, and blades designed using two-dimensional streamline curvature methods. The axi-symmetric through-flow code, used in the design case study was modified to run on workstations at the Naval Postgraduate School, Department of Aeronautics and Astronautics, providing students and faculty with a design tool for single or multiple stage axial flow compressors.

14.	SUBJECT TERMS AX Turbomachinery	IDES, Compressor, Transonic	, CFD,	15.	NUMBER OF PAGES 113
 				16.	PRICE CODE
17.	SECURITY CLASSIFI- CATION OF REPORT Unclassified	18. SECURITY CLASSIFI- CATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICA- TION OF ABSTRACT Unclassified	20.	LIMITATION OF ABSTRACT UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18 298-102

Approved for public release; distribution is unlimited.

TRANSONIC AXIAL COMPRESSOR DESIGN CASE STUDY AND PREPARATIONS FOR TESTING

William D. Reid
Lieutenant, United States Navy
B.M.E., The George Washington University, 1988

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

September 1995

Author:

William D. Reid

Approved by:

Raymond P. Shreeve, Thesis Advisor

Garth V. Hobson, Second Reader

Daniel J. Collins, Chairman

Department of Aeronautics and Astronautics

ABSTRACT

Test runs of the transonic axial compressor test rig at the Naval Postgraduate School, Turbopropulsion Laboratory, were conducted in preparation for the installation of a new stage design. Modifications in the cooling air supply to the high speed bearings, and to the design of the torque measuring system were completed during subsequent overhaul.

A case study of the design of the new transonic stage was initiated. This consisted of a review of the procedure used in the design, as well as a design comparison. The comparison examined the differences between the blades designed for the new stage, which was primarily accomplished using a full, three-dimensional, Computational Fluid Dynamics code, and blades designed using two-dimensional streamline curvature methods. The axisymmetric through-flow code, used in the design case study was modified to run on workstations at the Naval Postgraduate School, Department of Aeronautics and Astronautics, providing students and faculty with a design tool for single or multiple stage axial flow compressors.

TABLE OF CONTENTS

I. INTRODUCTION	
II. NEW STAGE DESIGN	
A. PROCEDURE	
1. Design Intent	
2. Preliminary Calculations	
3. Final Selection of Preliminary Design Parameters	
4. Blade Shape Definition	
5. Fabrication	
B. DESIGN COMPARISON	11
1. Overview	11
2. Method Of Comparison	12
3. Results Of Comparison	14
III. PREPARATIONS FOR TESTING	21
A. OVERVIEW	21
B. PRELIMINARY TEST RUNS	21
C. OVERHAUL	22
Cooling Of The High Speed Bearings	
Torque Measurement system	
D. FINAL TEST RUN	30
IV. CONCLUSIONS AND RECOMMENDATIONS	31
APPENDIX A. AXIDES CODE	25

A. OVERVIEW	35
B. INPUT	36
C. CODE EXECUTION	45
D. OUTPUT	47
E. CONCLUDING REMARKS	48
APPENDIX B. AXIDES OUTPUT	59
APPENDIX C. TEST RIG	93
A. OPERATING PROCEDURE	93
B. DISASSEMBLY AND REASSEMBLY	94
C. INSTRUMENTATION	96
LIST OF REFERENCES	99
INITIAL DISTRIBUTION LIST	

LIST OF SYMBOLS

Ψ	Specific Head Rise Parameter
C_p	Specific Heat at Constant Pressure
T_{01}	Inlet Total Temperature
PR	Pressure Ratio, Total-to-Total
γ	Ratio of Specific Heats
U_{t}	Rotor Wheel Speed at Tip

I. INTRODUCTION

The Naval Postgraduate School (NPS) transonic axial compressor design was completed by Dr. M.H. Vavra in July of 1968. All of the calculations and drawings required for the complete aerodynamic and mechanical design were done by Dr. Vavra alone, by hand. From 1968 until the mid 1980's the compressor served well as a test vehicle for the development of innovative flow measurement instrumentation as well as a means for graduate students to gain experience in the operation, test, and analysis of high speed compressors [Ref. 1-5]. The initial stage design was unique but no real technology advance was attained. This was due to two design inaccuracies, discovered after some period of testing. In addition to an incorrect assumption of constant through-flow velocity, an error was made in the calculations associated with the rotor blade setting angle, and this was subsequently built into the blading [Ref. 6]. Consideration was given to twisting the fabricated blades to correspond with the shape intended in the design. This was not attempted since the design itself had resulted from an inaccurate through-flow prediction. Following the completion of a study by Neuhoff [Ref. 7], to measure rotor losses, and to separately identify shock and viscous components, the compressor was not operated again until the present study was initiated.

A transonic axial compressor stage designed specifically for the existing NPS transonic test rig, shown in Figure 1, was completed at NASA Lewis in 1994, by Nelson L. Sanger [Ref. 8]. This new design was sought to perform the functions originally intended for the Vavra design, namely, to serve as a test vehicle for instructional purposes, and to provide a tool for meaningful research. However, the timing of the project, after a period of years in which advanced Computational Fluid Dynamics (CFD) methods for turbomachinery had evolved, provided a unique opportunity. The design would provide a test of a wholly CFD design approach. The experimental evaluation would provide both a validation of the design approach, and an experimental test case for CFD analysis codes. The manufactured blading is shown in Figure 2.

Figure 1. Transonic Compressor Test Rig.

Figure 2. Manufactured Blading; Rotor (Top), Stator (Bottom).

This report is intended to document the effort to bring the NPS transonic compressor test rig back on line, in order to evaluate the newly designed axial stage, and to review, for the record, the procedure used in the stage design. The report has two main sections. The first section contains a review of the process used in the design of the new stage. This section also contains a comparison of the final blade design, resulting from CFD analysis, with a blade design using conventional streamline curvature and axisymmetric through-flow calculations. The second section is an account of the process that was conducted to return the test rig to working order. Appendix A contains a description of, AXIDES, a 2-D blade design code, written by Jim Crouse [Ref. 9], which was used in the preliminary design and in the production of final fabrication coordinates of the new stage. This code has been modified for use at the NPS, Department of Aeronautics and Astronautics, as a tool for advanced axial compressor design. Appendix C contains information regarding the test rig disassembly and reassembly, and the operating procedure.

II. NEW STAGE DESIGN

A. PROCEDURE

1. Design Intent

The object of the design was to produce a state-of-the-art transonic compressor stage, representative of a typical inlet stage, or fan stage. At the time the design was being contemplated, the use of CFD codes as analysis tools was increasing. However there was little work done using these codes for design. Given that the stage was to be used for research and was not intended as an actual aircraft component, the decision was made to use CFD as the principle tool in the aerodynamic design. Additional computer codes were used in the design including the AXIDES code, however these codes were used mainly in supporting roles. The complete package, including the design, testing and measurement of the stage constitutes, in the words of the designer, "the ultimate CFD validation experiment".

2. Preliminary Calculations

Although the design was intended to be derived from state-of-the-art technology, the decision to utilize the existing NPS Turbopropulsion Laboratory (TPL) transonic compressor test rig imposed several constraints that were unavoidable. The decision to use the existing test rig mechanical design was economic in nature. Retooling the rig to produce a desired flow path was determined to be unjustified in light of the cost, and effect on the final design. The constraints imposed on the design included a constant blade tip diameter dictated by the existing compressor shroud, a pre-determined blade chord set by restrictions in the flow path and the need to provide clearance for probe measurements. A further requirement was that the stator discharge angle be axial in order to accommodate the unique torque measuring system (see Chapter III, Section C2). An additional constraint of significant importance was the limitation that the turbine drive unit was capable of providing a maximum of 450 to 470 horsepower.

Within the confines of the physical constraints imposed by the existing compressor rig, the designer conducted a preliminary analysis of desired design parameters with the goal of producing a stage that achieved,

" as high a loading and specific weight flow as was practical, while keeping rotor tip Mach number at a moderate level. "

Sanger '94

Using the specific head rise parameter,

$$\Psi = C_p T_{01} (PR^{(\gamma-1/\gamma)} - 1) / U_t^2$$

a parametric study was performed. The specific head rise was calculated over a range of tip speeds, and pressure ratios, using as a reference several previous designs, including the original Vavra design and the well known NASA Rotor 67. To produce a design that was state-of-the-art, the initial selection of design parameters was fairly optimistic. Subsequent calculations of the horsepower and inlet ramp angle required to support this selection of design parameters revealed that they were in fact too optimistic. The power required exceeded that available by nearly 200 hp, and the ramp angle on the spinner hub was calculated to be 42 Deg.

In order to reduce the power required by the stage to that constrained by the existing drive turbine, and lower the inlet ramp angle to a more reasonable figure, several compromises had to be made. Notable compromises were the reductions in specific weight flow and rotor and stage pressure ratio, to alleviate the power imbalance, and a reduction in the axial velocity ratio, to reduce the inlet-to-exit area ratio and therefore the inlet ramp angle. With these corrections, the required input power was reduced to 457 horsepower, and the ramp angle became 28.2 Deg. Selection of additional design parameters such as solidity and diffusion factor was primarily based on the designer's experience with similar machines. The results of the parametric study are shown in Figure 3.

Figure 3. Results of parametric study [from Ref. 8].

3. Final Selection of Preliminary Design Parameters

Prior to this stage in the design the analysis was restricted to one-dimensional methods. To arrive at a detailed description of the flow path, and evaluate the performance of the preliminary design, the designer used the AXIDES code. The reasoning behind using this code was to reveal any obvious deficiencies in the preliminary design and to produce the flow field from which the blading would be derived. The AXIDES code provided the full 2-D radial equilibrium solution, where steady, axisymmetric flow is assumed, and produced distributions of the flow between blade rows at the specified design condition. At this point in the design process the flow-field estimation option of the code was used by setting the parameter OP, of the input data set, to APPROX (see Appendix A). Using this option, no blades are designed or specified. The

code simply estimated blade-edge locations from the stacking line, and produces velocity diagram and performance information based on these approximations.

The information that was specified in the input data set to the AXIDES code was RPM, mass flow rate, stage pressure ratio, inlet total pressure, inlet total temperature, tangential velocity, the flow path of the existing compressor rig, annular station locations, and estimated blockage. Although typically input in the form of loss-correlation tables, the losses across the blading were implicitly defined by entering the total pressure and total temperature distributions at the outlet of the rotor. A discussion of this option of the code can be found in Reference 9, page 12. The total-pressure distribution was essentially constant except for losses at the hub and tip. The total-temperature distribution was also nearly constant, however, higher temperatures were input near the tip to account for increased shock losses along the blades. The values used for estimated blockage and totalpressure and total-temperature distributions at the outlet of the rotor, were based on experience and on the values of successful stages in the same design range. Additional information specified in the input data set were the radial distributions of blade leading and trailing edge radii, chord length, and maximum thickness-to-chord ratio. All of these distributions were based on the designer's experience with transonic rotors. The input used to define the stator attributes were similar. A notable exception was the exit tangential velocity which was zero.

Several iterations through the AXIDES code were conducted, until output distributions of such parameters as diffusion factor and loss appeared reasonable. Modifications to the input data file consisted mainly of variations in pressure ratio and flow path geometry. There was initial concern about the low values of output loss distribution across the rotor. It was decided, however, that if an error in efficiency was to be made, to design for high efficiency and be wrong was better than designing for lower efficiency and be correct.

At the time of this report only a representative example of the final input data set of preliminary design parameters was available. Described as "one of the last" data sets

used during iterations through the AXIDES code, it was a very close approximation of the actual input. This input file was run on the version of the code installed at NPS. The output received was the designer's final preliminary design flow-field and the associated performance parameters. Reference 10 contains this input file in its raw form, and the associated output file. Appendix A gives a description of input and output file structure and parameters.

Once satisfied with the 2-D flow field and performance, the preliminary design parameters were fixed. A list of first cut, and final selection of design parameters is shown in Table 1.

Parameter	Initial Selection	Final Selection
Rotor Pressure Ratio	1.63	1.61
Stage Pressure Ratio	1.60	1.56
Tip Speed	1300 ft/sec	1300 ft/sec
Design Weight Flow	22.21 lb _m /sec	17.09 lb _m /sec
Specific Weight Flow	40 lb _m /sec-ft ²	35 lb _m /sec-ft ²
Specific Head Rise	0.265	0.246
Tip Inlet Relative Mach Number	1.30	1.28
Hub/Tip Radius Ratio	0.40	0.51
Rotor Inlet Ramp Angle	42.0 deg.	28.2 deg.
Power Required	638 HP	457 HP

Table 1. First cut, and final selection of design parameters.

The problem now consisted of blading design to produce the loss distribution, and flow angles, specified in the output of the AXIDES code.

4. Blade Shape Definition

The AXIDES code provided the designer with a picture of the desired flow field, between blade rows, on the meridional plane. The next step was to fit blade shapes to the velocity diagrams to produce this flow. From the conception of the design, it had been decided that CFD would be used to arrive at these blade shapes. The idea was to make an initial "guess" of blade shape, using output from the AXIDES code, run this blade through

the CFD analysis, and check the results. If the output seemed reasonable the design was complete. If not, blade shape modification was required. The designer created initial blade sections essentially by hand, guided by the flow angle distributions produced by the AXIDES code and experience with supersonic flow across blading. Iteration on blade shape, which turned out to be required, was performed using a NASA in-house blade element code, derived from the geometry portion of the AXIDES code.

The procedure used to screen the initial blade sections was modified over the course of the design. Initially, a quasi-three-dimensional code, written by John Denton [Ref. 11], was used. This code was coupled with an integral boundary layer code [Ref. 12], to check the surface boundary layer condition. The Denton code used was an Euler code containing a simple transpiration model to estimate the boundary layer blockage. Together these codes provided the designer with a quick tool for screening the blade shapes.

During the process of designing the blading, the full three-dimensional version of the Denton code (TIP3D), as reported in Denton 1986 [Ref. 13], became available. This code was simply an upgrade in the original Euler code, containing a simple approximation for viscous effects and an empirical equation defining the distribution of shear stress from the wall. Consideration was given to using a code with a more complex and possibly more accurate turbulence-modeling scheme, however, given the iterative nature of the design process, the increase in accuracy was deemed insignificant when compared with the increase in computational execution time.

Using the quasi-3D results as a "base design", the iteration on blade shape was continued in the same manner as previously described, using the updated version of the Denton code. The criteria used for acceptance of the blade included the requirements to minimize shock strength in the tip region and to prevent or delay boundary layer separation. The shock strength was reduced by minimizing the supersonic acceleration of the flow approaching the shock. This was accomplished by making the suction surface at the leading-edge portion of the blade wedge shaped, and curving it after the shock to

provide the required turning. To prevent separation, the attempt was made to control the diffusion towards the trailing edge of the blade. Final-design blade sections, used to generate the now-rotating shape for fabrication, labeled "Sanger Design", are shown in Figure 7, located in section B3 of this Chapter. Because these sections were used for fabrication, they represented elements of the blade on cylindrical planes, parallel to the axis of rotation of the rotor.

5. Fabrication

After all criteria had been met, to within certain acceptable tolerances, the aerodynamic portion of the design was complete. What remained was the mechanical analysis and fabrication of the blading. Historically, the Engineering Design Department at NASA-Lewis had used the same geometry specifications as prescribed in the AXIDES code, to perform their mechanical analysis. Therefore, the final blade parameters were input back into the streamline curvature code using the output option (OP), COORD (see Appendix A). This option created an output file containing blade coordinates for fabrication. A copy of the input file used to produce the final blade fabrication coordinates and the output file containing these coordinates can be found in Reference 10.

B. DESIGN COMPARISON

1. Overview

Streamline curvature methods have been used for the design of many successful machines. Historically, the flow-field between blade rows is calculated using these methods, a blade shape is arrived at, and the flow within the blade row, where any problems are likely to occur, is checked by a more detailed analysis code. The AXIDES code was written with the objective of integrating the design and analysis portions of the overall design process in a more efficient manner. It produces through-flow output that can be directly input into the blade-to-blade analysis codes T-SONIC [Ref. 14], and MERIDL [Ref. 15]. The code also provides input features which allow for corrections in

the blade shape, determined as necessary from the output of these analysis codes, to be easily made. The result is a composite through-flow code, capable of both aerodynamic and blade design, that can be interfaced with two codes that analyze the flow within the blade rows. Currently, the version of the AXIDES code at NPS, is not capable of interfacing with MERIDL. An update to the code should include this feature.

For the reasons mentioned previously, CFD techniques were used throughout for the design and analysis of the new Sanger stage. The AXIDES code was not used as a blade design tool. It was simply used to describe the flow-field which satisfied the requirements dictated by the preliminary design parameters. No blade shapes were input, nor specified by the code, and only velocity diagram and performance information was output. The initial "guess" of the blade shapes was generated by hand. Although iteration on blade definition was performed using a geometry routine extracted from the AXIDES code, the blade sections were stacked based on information produced by the CFD analysis, and not within the aerodynamic iterations of the streamline curvature method. This section contains a comparison between the final Sanger design and a design produced strictly with the use of the AXIDES code; that is, the blading specification and aerodynamic performance output by AXIDES, when used in a design capacity. The motivation for this comparison was two-fold. First, the Crouse 2-D code was to be used for instruction in compressor design at NPS. A comparison with the geometry arrived at using advanced analysis methods, was a useful exercise of the code. Second, no similar comparison was found between a design resulting from relatively simple, and computationally-efficient streamline curvature methods, and the geometry obtained using more detailed flow analysis routines, requiring significant investments in computational time.

2. Method Of Comparison

The performance of the Sanger design was taken from Sanger, 1994 [Ref. 8]. The blade definition parameters and performance distributions, as described previously, were set using the Denton TIP3D code. The AXIDES code was used strictly to provide the

initial flow-field estimate, and produced coordinates of the final blade design in a form that could be conveniently used in the mechanical analysis and the subsequent fabrication process. During the design review, when the picture of the procedure used in the design became clear, there was initial skepticism as to how the final blade design parameters could be input into the AXIDES code, simply to provide the desired form of the blade geometry in the output. The concern was that the program would modify the blade shape as it attempted to converge on a 2-D radial-equilibrium solution. A solution which would obviously be, at the least, slightly different than the results of full 3-D CFD calculations. This concern was reconciled by checking the blade geometry parameters in the final output of the AXIDES code, that was sent to the NASA-Lewis Engineering Design Department, against the results of the CFD design, as reported in Sanger '94 [Ref. 8]. Specifically, such blade parameters as, radial distribution of maximum thickness, and maximum thickness location, extracted from the AXIDES output, were reviewed for discrepancies; none were found. The blade shape produced by the AXIDES code was identical to the blade specified in the input. This appeared to have been accomplished by completely specifying all blade parameters in the input file. The aerodynamic output was of no interest to the designer. Aerodynamic input data were used simply to fill in the spaces of the input data set and did not represent the performance generated when the code was run. Again, the AXIDES code was used simply to reproduce the geometry of a blade designed using CFD in the form required by the NASA mechanical design system.

The design produced using the AXIDES code, and henceforth referred to as the "conventional design", was to represent what the Sanger design would have looked like if it had been sent for mechanical analysis directly after the initial design parameters were fixed. The blades were designed by taking the final form of these initial parameters, which Sanger used to build his "guess" of the blade shape, and inputting them back into the AXIDES code. In this case, however, the input file was modified to produce blade shapes for fabrication instead of merely calling for flow-field description, as had been done in the Sanger design. This was accomplished by changing the OP parameter to COORD and

using defaults for incidence angle and deviation angle by choosing 2-D for input parameters AA, and BB. The 2-D option resulted in the use of calculations specified in NASA SP-36 [Ref. 16], for these angles. Additional modifications to the input file included setting option CC to OPTIMUM, which assigned a value to the turning rate ratio of the blade element segments using an empirical function of inlet relative Mach number; setting option DD to shock, which placed the transition point at the location of the shock; and setting option EE to TRAN, which located the maximum thickness point at the transition point. A copy of the input file, and output file are located in Reference 10. A detailed description of the AXIDES code available input options, can be found in Appendix A, Section 2, and Reference 9.

3. Results Of Comparison

As previously noted, the intent of the Sanger design was to produce blading with increased loading at lower tip speeds. A plot of rotor diffusion factor, indicative of loading on the blade, is shown in Figure 4. It is clear from this plot that the loading on the Sanger rotor is larger over 90% of the blade than that of the "conventional" design. Using the detailed picture of the flow-field provided by the CFD code, the designer was able check for flow separation along the suction surface of the blade as he increased the amount of turning imparted to the flow. Figure 5 shows the amount of energy addition provided by the rotor in the form of total temperature ratio. Figure 6 illustrates the increase in total pressure ratio across the rotor. The plots indicate an increase in total pressure ratio and energy addition produced by careful analysis of the flow within the blade row. The blade sections for the conventional design and the Sanger design are shown in Figure 7. This figure displays the blade sections at 90%, 50%, and 20% span, from the hub. Looking closely at these sections, it can be seen that the curvature on the suction surface of the Sanger rotor, near the leading edge, is very small. This was done to minimize the supersonic acceleration of the flow as it approached the shock, and therefore reduce its strength. The AXIDES code used in the design of the conventional blade also attempted

to account for the effects of a large inlet relative Mach number. This was accomplished by activating the blade definition option OPTIMUM, located in the input data set. It can be seen, however, that the curvature in the leading-edge portion of the conventional blade, although modified, is still larger than on the Sanger blade. The turning of the flow was accomplished further aft on the blade, as can be seen in the distribution of blade maximum thickness location shown in Figure 8. The losses across the rotor were kept nearly the same as the conventional blade. A plot of the distribution of loss coefficient is shown in Figure 9.

Figure 4. Rotor diffusion factor.

Figure 5. Total temperature ratio across the rotor.

Figure 6. Total pressure ratio across the rotor.

Figure 7. Tip, mean-line and hub blade sections (from top).

Figure 8. Rotor maximum thickness point location.

Figure 9. Rotor loss coefficient distribution.

The preceding comparisons show that the Sanger blading inputs a larger amount of work than blading designed using 2-D methods alone, while maintaining very similar through-flow and loss profiles. Assuming that the CFD code used in the design predicts the 3-D flow field accurately, the design represents a step forward toward optimizing the design of highly loaded, efficient, transonic blading.

III. PREPARATIONS FOR TESTING

A. OVERVIEW

The transonic stage designed at NASA-Lewis, was designed to be installed in the NPS/TPL transonic compressor test rig, which is shown schematically in Figure 1. Since the rig had not been operated since 1986, an evaluation of its condition, and overhaul of some its components was necessary. This section gives an account of the preliminary evaluation and subsequent overhaul, to date, required to prepare the machine to test the new design.

B. PRELIMINARY TEST RUNS

Preliminary test runs of the transonic compressor test rig were conducted in early 1995. The tests were run with the existing machine as it was left, with the initial rotor, designed Dr. Vavra, still installed. This testing was conducted to become familiar with the operation of the test rig and to determine the extent of overhaul necessary to return it to routine working order. The operating procedure is given in Appendix C.

A total of four tests were run over a period of two months. The first test was considered a basic operational check to make sure the machine would turn over with no major component failure. The rig was accelerated up to 5,000 RPM, un-throttled, with the inlet piping removed to prevent any deposits in the piping from being pulled into the blading. During this test the following mechanical aspects of the machine were monitored,

- 1. Pressure ratio across the laboratory 12 stage axial compressor supplying air to the drive turbine.
- 2. Balance air used to provide relief of the axial load on the high speed compressor bearings.
- 3. Test rig rotational speed.
- 4. Drive turbine and compressor bearing temperatures.

All of these indications were monitored at the test control panel. A photograph of the control panel is given in Appendix C.

The results of the operational check were encouraging. Although, the test rig had not been operated for many years, there was no appearance of malfunction or unusual operation. The tests that followed were conducted in the same manner, however the RPM was increased with each run, to a final value of 20,000 RPM. During the testing, the bearing temperatures were monitored and compared with values recorded from test runs conducted years earlier. These values remained nearly identical to those previously recorded until approximately 15,000 RPM (50% design speed). Above 15,000 RPM the bearing temperatures increased at a greater rate than previously documented. By adjusting the oil-mist cooling air and oil supply settings, the temperatures of the bearings supporting the turbine-drive shaft and the downstream end of the compressor shaft were controlled to within 2 degrees of earlier recorded values. This was accomplished by reducing the oil mist drop rate from approximately 80 drops per minute to 12 drops per minute, and increasing air supply pressure from 20 psi to 35 psi. The bearings supporting the upstream end of the compressor drive shaft, however, failed to respond to the changes in the cooling system. They remained approximately 25 degrees high and continued to increase at a rate of approximately 1 degree per hour.

The decision was made to tear down the compressor in an effort to resolve the problem with cooling of the compressor inlet bearings, and to check the bearings for any damage that might have occurred due to the high temperatures. Additionally, a decision was made to leave the turbine-drive unit intact since no problems in its operation had been revealed.

C. OVERHAUL

The transonic compressor test rig was a unique machine that had undergone several modifications over the years. Although some modifications were documented, the

overhaul that was conducted for the present project revealed that some of the changes made to had not been recorded. Additionally, the procedure involved in disassembling and reassembling the test rig was undocumented. The overhaul presented a significant challenge because of the mechanical complexity inherent in the arrangement of a high-speed air turbine driving a high speed research compressor. The goal was first to determine the method by which the rig was to be disassembled and then to carefully disassemble and reassemble without causing damage to any of the mostly non-standard components. During the course of the tear down and rebuild effort, video tape was taken to document the procedure.

1. Cooling Of The High Speed Bearings

The driving consideration behind the overhaul was the problem encountered with bearing cooling. Disassembly of the compressor hub revealed that, of the two cooling lines intended to provide oil-mist air to the compressor inlet bearings, one was completely disconnected. A second line which had not been indicated on the original design drawings, was bent so that no air could flow through it. Figure 10 shows a drawing of the compressor hub assembly. The bearings, notably the ones to the right, were not receiving the oil-mist air supply needed to cool them. To correct the problem the cooling lines were fitted with new tubing. As an indication of previous problems with bearing temperatures, a one-eighth inch copper water cooling line was found encircling the inner compressor hub. This water cooling device was not shown on the original drawings, nor recorded in any available test log.

2. Torque Measurement system

The torque acting on the test rig rotor drive shaft was measured by the deflection of a cantilever beam. The beam extended between the outer portion of the compressor hub, that rotated on bearings, and the inner hub annulus which was stationary (see Figure 10). The rotation of the outer hub was a result of the swirling air-flow exiting the rotor

Figure 10. Compressor hub assembly.

and impinging on the stator. The stator removed most of the swirl component of the velocity, and a honeycomb flow straightener, removed the residual. The stator and flow straightener were both mounted on the outer hub which rotated on the outer hub bearings. The cantilever beam (torque balance), whose fixed end was attached to the outer hub and free end was constrained by a channel fixed to the inner stationary hub annulus, deflected as it tried to prevent relative rotation. Four strain gauges, mounted on the cantilever beam, provided the signal that was a measure of the torque imparted to the air-flow by the rotor.

A static calibration of the torque balance was conducted in preparation for the tests to follow overhaul. A significant drift in the strain gauge output was found. A plot of the calibration is shown in Figure 11. The calibration was performed using weights hung from a 20.01 inch moment arm which was mounted on the outer hub. The load was increased from zero to 35 pounds in five pound increments. A zero of -1.0 milli-volts was set on the output voltage display. This was done because the beam appeared to have some pre-load on it and the bridge output could not be set to zero. The plot clearly indicates repeatability, however, the measurements, conducted for two static load and unload cycles, were taken after the output settled down after a drift of approximately two millivolts per second. This required waiting an average of 15 minutes from the time the load was changed until the time the readings were taken. The time dependent nature of the static load, as well as other difficulties with the torque measurement, were documented for an early compressor test program using the same rig, by R.P. Shreeve [Ref. 17].

After careful consideration of the problem, and the ramifications of possible changes to the system, modification of the torque balance assembly was made as shown in Figure 12. The first change was an attempt to insure the fixed end of the cantilever beam was firmly "encased" in the outer hub. Four set screws, mounted in the outer ring were installed to apply pressure to the top of the beam and secure it in place. They replaced the single (center) set screw in the original design. Additionally, the channel fixed to the inner hub annulus was modified. The side of the channel resisting the load was drilled and fitted

with a three-eighths inch ball bearing. This was done to insure a point load would be transmitted at the free end of the cantilever beam.

Figure 11. Torque balance calibration (first).

Figure 12. Torque balance modifications.

A second calibration of the torque balance was conducted in the same manner as the first with the exception that the zero-load output was set at 0.1 milli-volts. A plot of the calibration is shown in Figure 13. The results indicated that the drift in the output reading had disappeared. However, as can be seen clearly in Figure 13, there was a distinct lack of repeatability over the four load and unload cycles. The output seemed to settle out after the second cycle, however, the overall uncertainty for the four data sets was in the vicinity of 10%. Since the uncertainty in the torque measurement gives an equal uncertainty in the measurement of efficiency the lack of repeatability is unexceptable. However, since the intent of the overhaul effort was to return the rig to stable mechanical operation, no further modifications were attempted. Recommendations for additional modifications to the torque assembly include,

- Installing additional set screws to attach the outer ring firmly to the outer hub, to prevent movement of the parts constraining the fixed end of the cantilever beam.
- 2. Fitting the existing beam with new strain gauges.
- 3. Replacing the existing beam and strain-gauges with a new design having a larger, rectangular fixed end.

Figure 13. Torque balance calibration (second).

D. FINAL TEST RUN

A final test run of the transonic compressor was conducted up to a speed of 20,000 RPM. This testing was performed un-throttled, with the inlet piping removed. The test rig setup was similar to the preliminary test runs except for the addition of a honeycomb flow straightener and the original stator that were installed during overhaul. The duration of the test was two hours and twenty minutes. The objective of the test run was to check the mechanical operation of the rig, and in particular, the behavior of the bearing temperatures, following overhaul.

The test rig operated smoothly during the entire run, at no time indicating problems with balancing or vibration. At a speed of 15,000 RPM, the temperature of the bearings supporting the inlet end of the compressor drive shaft were stable, but reading approximately ten degrees high, relative to temperatures recorded during earlier test runs at the same RPM. As the rotational speed was increased from 15,000 RPM, to 20,000 RPM, the temperature of these bearings increased significantly. The temperature was recorded to be 143 Deg. F, and climbing at a rate of approximately five degrees per minute, when the RPM indicated 18,000. All other bearing temperatures were stable and within limits. The temperature limitations of these bearings require operating levels of less than 160 Deg. F. The RPM was reduced to 10,000 RPM and after temperatures stabilized the machine was shutdown.

IV. CONCLUSIONS AND RECOMMENDATIONS

A case study was initiated of the design of a new transonic compressor stage which is to be tested at the Turbopropulsion Laboratory at the Naval Postgraduate School. The stage was designed by Nelson Sanger of the NASA Lewis Research Center, using 3-D, CFD methods. The program of testing, scheduled to follow installation of the new stage, will provide data with which to validate those methods used in the design, and serve as a test case for still-emerging analysis codes.

The process followed by the designer was reviewed and a version of the code (AXIDES), which was used early in the design was installed and made operational at the School. The code was used successfully both to examine the design process for the new stage, and later to carry out the design of a multi-stage core compressor. In preparation for testing, the test rig was operated, partially overhauled, and operated again to 75% design speed. The following were concluded:

Stage Design

- The initial flow-field used by the designer was reproduced successfully using AXIDES,
 and the (conventional) blading associated with this flow-field was generated.
- More highly loaded blading was produced using CFD advanced design methods than could have resulted from the use of the AXIDES code alone.
- The differences in blade shape that enabled the higher loading were, visually, relatively subtle.
- The new stage was manufactured successfully and is ready to test after installation in the rig.

AXIDES Code

- The AXIDES code was made operational on NPS, AA Department workstations, and on the TPL PC.
- The code was run for several design cases, the input and output of which serve as examples of the varied uses of the code.

Test Rig

- Preliminary test runs were conducted up to 20,000 RPM (design speed is 30,000 RPM).
- The machine was overhauled to correct problems with cooling of the compressor inlet bearings. The bearings were in good condition and were re-installed. The cooling air supply system was checked and returned to working order.
- The torque measuring system was modified; however, a lack of repeatability remains.
- Following the reassembly, a test run was completed up to 20,000 RPM, and indicated continuing problems with the bearings at the inlet end of the compressor.
- The pressure at the rotor exit is greater when the machine is run without the inlet piping, than when the piping, screens and throttle are installed. Since the rotor exit is where the cooling air is exhausted after passing through the bearings, the higher pressure may be preventing the cooling air from circulating as intended.

The following recommendations are made:

- The "conventional" blading design should be put through CFD analysis, using a more recent 3-D code, and compared with the results of the Denton, TIP3D code.
- The tools for complete axial compressor design, including preliminary 1-D, 2-D, and
 3-D CFD, codes, all now available at NPS, should be integrated.
- The AXIDES code should be upgraded to include a graphics package, and reliable interfacing with the off-design code AXIOFF.
- The transonic test-rig inlet pipe and housing should be installed, and the test rig
 operated, to determine if the reduced pressures at the rotor exit effect the compressor
 inlet bearing temperatures.
- The new stage testing program should move ahead without delay to prevent the recent experience from being lost.

APPENDIX A. AXIDES CODE

A. OVERVIEW

The AXIDES code written by Jim Crouse is a composite aerodynamic and blade design code. It uses the streamline curvature method to arrive at a full, 2-D, radial equilibrium solution of the flow between blade rows in the meridional plane, assuming steady, axisymmetric flow. The code can be used for either aerodynamic or blade design, or both. In the case where both design capabilities are required, the code performs four iterations of the aerodynamic solution, and then stacks the blades. This process is continued until the solution converges. The final blade shape is calculated after the aerodynamic solution is complete. The code can be used for either single or multistage axial compressors. A complete description of the AXIDES code can be found in Reference 9.

A version of the AXIDES code was purchased by the Naval Postgraduate School. The code is originally PC based and has been modified to run on the Department of Aeronautics and Astronautics workstations. The PC version was installed and operated on the Turbopropulsion laboratory's 486 machine. After overcoming initial difficulties with input and output assignments and initialization of variables, the code was used for the following,

- To reproduce the initial flow-field solution used in the design of the new, NPS transonic compressor stage.
- 2. To reproduce the geometry of the final blade design, of the same stage, used in the mechanical analysis and fabrication of the hardware.
- 3. To design a stage using the strictly 2-D calculations of the code, for the comparison with the new stage, arrived at using 3-D CFD methods.
- 4. To design a multi-stage compressor for the AA Department Engine Design Course.

B. INPUT

Creating the input file to the AXIDES code is crucial to its successful use as a compressor design tool. Along with the need for a basic understanding of internal and turbo-machinery flows, a general understanding of the input file structure is required to produce realistic output. This section provides the tools necessary to build a working input file.

The input to the code is in the form of a formatted data field. Each piece of the data has a specific location in the data field and a specific length. If the input data is not in the correct location, the formatted READ statements in the code will not read the correct information and the program will run based on invalid input, or may not run at all.

Note:

An important note here is that a "dummy" editor, such as NotepadTM, on the PC, or jot, on the workstations should be used to create or modify the input file. Other editors including DOS and word processing editors have been found to change the formatted structure of the file, however slightly, enough to move the input data out of position and prevent the correct input from being read.

Figure 14, located on page 49, shows an example working input data file. This file was provided with the code in an effort to get the program up and running on the AA Department machines. To arrive at a successful input file it is recommended that an example file be run first, to become familiar with the operation of the code, and then modifications to that file be made to create an original design. Five input files were used to produce this report. Four of these, namely,

Examp.dat: The example file provided when the code was purchased,

 Approx.dat: The file used to set final preliminary design parameters, and define the desired flow-field for the new Sanger stage,

• Conv.dat : The file used to produce the "conventional" stage for the design comparison,

• Multax.dat: The file used in the design of a four stage compressor,

are provided for use as a starting point to build an input data set. The input file Examp.dat is shown in Figure 14. A copy of the output associated with Examp.dat (Examp.out), is located in Appendix B. The last three files listed above can be found in Reference 10. The fifth input file, also located in Reference 10, titled Sanger.dat, was used simply to produce fabrication coordinates and the aerodynamic input is not representative of the blades that the code designed; See Chapter II, Section B2, paragraph 1, for a discussion of this.

The input file to the code is broken up into two main sections. The first section contains general information which includes the number of stages, the flow path or casing and hub geometric coordinates, the RPM, and the desired overall pressure ratio. The second section consists of annular calculation station and blade row data. This data includes axial locations of annular stations and blade rows, boundary layer blockage estimates, the number of blades on the rotor and stator, solidity, and blade definition parameters such as leading and trailing edge radii.

Figures 15-19, located on pages 50-54, provide another look at the example input data file mentioned previously (Examp.dat). This illustration is included as an aid in identifying the input file parameters used for this particular design. It must be emphasized that this figure is <u>not</u> a working file but is included only for parameter clarification. The corresponding working input file is shown in Figure 14. Also included is an illustration of the general form of the input (Figures 20, 21, and 22, pages 55, 56, and 57), taken from notes provided by the author of the code, with all possible input parameters and associated formatting. For a complete description of the code and its input see Reference 9.

The following is a description of the input parameters used in the example input file Examp.dat. It addresses each parameter in the file in the order shown in Figures 13-17. The information provided below was extracted entirely from Reference 9, and is included merely for the readers convenience.

Indices

• I Calculation station index

• IROTOR Rotor index.

• J Streamline index. Numbered from one at the tip.

• K Loss set index.

General Input

Not an input parameter. The first three lines simply show the relationship of the data below to the 80 column FORTRAN data field.

• TITLE The title of the design.

ITG

Output blade fabrication coordinate specification. The output of the blade shapes produced by the code is in the form of suction and pressure surface coordinates on blade sections. These coordinates are located at uniform and round number increments of the chord-wise distance from the leading-edge. Included in the table of coordinates are the tangency points between the blade surfaces and the leading and trailing-edge ellipses. The locations of the point of tangency for the suction and pressure surfaces will be different. If the parameter ITG is set to 0, the program will insert an artificially high value of 99.9999, for the height of the surface

• ITG (cont'd)

opposite the surface that is tangent at that chord-wise distance. This clearly identifies the junction point between that surfaces and the end ellipse. The leading and trailing-edge information is provided below the table of coordinates. If ITG is set to 1, the program simply outputs the actual height of the surface opposite the surface that is tangent at that point. The tangency points must then be determined by noting the change in the surface heights near the leading and trailing-edges.

IBR

Set equal to 0 to get error messages printed when running the code. Set equal to 1 to suppress the error message output. If set to a value greater than 1, the program will provide no error messages during the run, and stop after the performance summary is printed, printing neither radial distribution information, nor fabrication coordinates, even if specified in the input file.

NSTRM

Number of streamlines (11 max.).

NROW

Number of blade rows (20 max.).

NA

Number of annular stations. Fifty maximum, including leading and trailing edges of each blade. Must be at least four prior to first blade row and three after the last.

NLOSS

Number of loss sets input in the form of tables of correlation data.

NTIP

Number of outer case wall geometric coordinates.

NHUB

Number of hub geometric coordinates.

ROT

Compressor RPM.

FLOW

Mass flow rate (lb./sec).

PRATIO

Desired overall pressure ratio.

MOLWT

Molecular weight of air.

• SCALEF Scaling factor. If set to other than 1.0, the program will scale all linear dimensions and the weight-flow to a different size compressor, by the factor indicated.

• CP(K) Constants for specific heat polynomial.

• LUNITI Units of input. Set equal to 1 if SI and 2 if English.

LUNITO Desired units of output. Set to 1 for SI and 2 for English.

• FLO(K) Cumulative flow fraction at streamlines, from the tip.

• TO(1,J) Inlet total temperature at streamlines from tip.

PO(1,J) Inlet total pressure at streamlines from tip.

• VTH(1,J) Inlet tangential velocity at streamlines from tip.

• XTIP(I) Axial coordinate of casing wall points.

• RTIP(I) Radial coordinates of casing wall points.

• XHUB(I) Axial coordinates of hub wall points.

• RHUB(I) Radial coordinates of hub wall points.

• DLOSS(K,J,1) Array of loss parameter correlations (five sets max.).

• DFTAB(K,J,1) Array of diffusion factor correlations (five sets max.).

Calculation Station And Blade Row Data

• AA Type of axial station:

: ANNULAR

: ROTOR

: STATOR

,or, depending on location in data set,

Incidence angle input

: 2-D NASA SP-36 correlations performed internal to

code.

: 3-D NASA SP-36 correlations.

AA (cont'd) : SUCTION Zero inc. to suction surface.

: TABLE Input in tabular form as INC(IROW,J), at the end of associated blade rows input

data set.

• ZTIP(I) Tip axial coordinate of annular station or blade stacking line.

ZHUB(I) Hub axial coordinate of annular station or blade stacking line.

• BT (I) Tip boundary layer blockage for annular station or blade LE or TE.

Can be input as a fraction of annular area, or as the displacement from the wall in inches if preceded by a negative sign.

• BH(I) Hub boundary layer blockage (same as BT except applied at hub).

BLEED(I) Fraction of weight flow bled off at annular station or blade row.
 DLIM(IROW) Diffusion factor limit. Applies to tip for rotors and hub for stators.
 If limit exceeded the program will reduce the energy addition across that particular blade row and try to make it up in others that have not exceeded their limit. If all blade rows are at there

limit the overall pressure ratio will be reduced.

ALIM(IROW) Minimum relative flow angle limit leaving rotor hub, or, maximum
allowable Mach number entering the stator hub. Adjustments made
to satisfy limitations are the same as for DLIM except applied to
flow angle and Mach number.

CRENGY
 Cumulative fraction of energy input across rotor to that input across stage. If greater than 2, interpreted as rotor tip exit total temperature in degrees Rankine, and is converted to energy addition internal to program using the total temperature profile input in the form of parameters PRA-PRE.

BMATL(IROW) Material density of rotor (lb./in.³).

 NXCUT(IROW) Number of blade sections for which fabrication coordinates will be produced. If zero, the program will select this number based on

- NXCUT (IROW) aspect ratio. If negative, represents the number of sections desired,
 (cont'd) and program reads specific locations in a table input as parameter
 XCUT, at end of entire data file.
- Loss set used for blade row. If less than or equal to 0 total pressure at the blade row exit is input instead of losses being computed internal to the program. See Reference 9 for a discussion of parameters PTT and PTC.
- OP Input option controlling amount and type of output information.
 - : APPROX Only velocity diagram output based on estimated blade edge locations.
 - : VEL. DIA. Only velocity diagram output based on blade edge locations that are input as ZTEMP, and RTEMP, at the end of the associated blade rows input data set.
 - : DESIGN Output consists of velocity diagram information only based on stacked blade edge locations computed internal to code.
 - : COORD Output includes velocity diagram and blade section fabrication coordinate information based on stacked blade edge locations.
- Part of incidence angle TABLE input option. If SS, the code will reference incidence angle input to the suction surface at the leading edge. Otherwise it will be referenced to the leading edge centerline.
- BB Deviation angle input.
 - : 2-D NASA SP-36 correlations.
 - : 3-D NASA SP-36 correlations.
 - : TABLE Input in tabular form as parameter DEV(IROW,J), at the end of associated blade rows input data set.

• BB (cont'd)

: CARTER Devia

Deviation calculated internal to the code

using Carter's rule.

CC

Blade element geometry input.

: CIRCULAR

Code Designs circular arc blade sections.

: OPTIMUM

Curvature at the leading edge set by an

empirical function of inlet relative Mach

number. Below M'1 of 0.8 the shape will be

circular arc. As the relative Mach Number increases, the ratio of turning rates of the

front and rear blade segments is reduced to

avoid large shock losses.

: TABLE

Ratio of front to rear segment turning rates. Input in tabular form as PHI(IROW), at the

end of associated blade rows input data set.

DD

Input location of transition point.

: CIRCULAR

Transition point between front and rear

segments put at mid-chord.

: SHOCK

Transition point located at suction surface

shock attachment point.

: TABLE

Input as TRANS(IROW,J), in tabular form,

at the end of the associated blade rows input

data set.

• EE

Maximum thickness location input.

: TRAN

Locates the max. thickness point at the

transition point.

: TABLE

Maximum thickness location input as

ZMAX(IROW,J), in tabular form, at the end of the associated blade rows input data set.

EB

Used with TABLE option of max. thickness location. If LE, the maximum thickness location is input as a fraction of blade chord from the leading edge. Otherwise it is input as a fraction of the chord from the transition point.

• CHOKE(IROW)

Choke margin input. If greater than 0 the program will adjust incidence angle in an attempt to provide this margin. If 0 the code makes no adjustment.

• BLADES(IROW)

Number of rotor or stator blades.

• SOLID(IROW)

Input solidity.

• TILT(IROW)

Stacking axis tilt angle.

• PRA-PRE(IROW)

Coefficients of the input pressure or temperature profile polynomial at the exit of a rotor, or tangential velocity at the exit of a stator. The pressure profile is input here if stage energy addition is input using CRENGY. If the rotor tip exit total temperature profile is input as the parameter CRENGY, the total temperature profile polynomial coefficients are input here and the pressure profile is input using PTT and PTC.

• TALE-TDLE(IROW)

Polynomial coefficients describing the distribution of the ratio of blade element leading-edge radius to chord.

• TATE-TDTE(IROW)

Same as TALE-TDLE except applied to the trailing-edge.

• TAMAX-TDMAX(IROW)

Polynomial coefficients describing the distribution of the ratio of blade element maximum thickness to chord. • CHORDA-CHORDC(IROW) Polynomial coefficients describing the distribution of the ratio of blade element chord to tip chord on a

projected plane.

• IDEF(IROW) Blade section definition parameter. If 0 the blade

element surfaces and centerline are described by

dk/ds = const. If not 0 they are defined by a fourth-

degree polynomial input on the next line of the data

set. See Reference 9, for a more complete

discussion.

INC(IROW,J) Incidence angle array on streamlines.

• DEV(IROW,J) Deviation angle array on streamlines.

PHI(IROW,J)
 Inlet/outlet segment turning rates on streamlines.

• TRANS(IROW,J) Transition point location on streamlines.

ZMAX(IROW,J) Maximum thickness point location on streamlines.

C. CODE EXECUTION

The name of the executable file running on the AA Department workstations, and a 486 PC at the Turbopropulsion laboratory is Stream. To run the code on the workstations simply type stream and enter. When running the code on the PC, you must first activate the extended memory by typing os386 and enter, this is a requirement of the FORTRAN compiler, and then up stream and enter. At this point you will be prompted for the name of the input data file. This data file must be located in the same directory as the executable file. If you stick to a prefix of less than seven alpha-numeric positions, and a suffix of three letters, e.g. NASAR20.DAT, you will be O.K. After typing in the name of the input file press enter and you will immediately be prompted for the name of the output file. Use the same direction for the name of this file as was used for the input file. After typing in the output file name press enter again. If the code has any trouble reading the input file the program will stop at the point where the difficulty was encountered. By

checking the output file that, will be printed up until the time of the error, you should be able to find the source of the error in the input.

Reminder:

An important note here is that a "dummy" editor, such as NotepadTM, on the PC, or jot, on the workstations should be used to create or modify the input file. Other editors including DOS and word processing editors have been found to change the formatted structure of the file, however slightly, enough to move the input data out of position and prevent the correct input from being read.

Once the input is read the program will ask if you want an off design output file to be created. At the time of this report the off-design code that was written to interface with the design code was undergoing modifications. If yes or Y is selected the program will create an input data set to the off-design code, however, given that the off-design program is not up and running it would be prudent to type N. After the off-design prompt the program will enter its aerodynamic and blade design (if activated) iteration. It is recommended that the input parameter IBR be set to zero until the program is running to take advantage of any error messages displayed during these iterations. After the programs aerodynamic solution converges, you will be prompted to reset blade angles. This option has not been exercised. It is up to the reader to investigate this "uncharted territory". If N is entered at this prompt, the program will continue by stacking the blades one final time and printing the coordinates. The output and, if selected, the off-design input file will be placed in the same directory as the executable and the input files.

D. OUTPUT

The output of the code is broken up into four sections, consisting of the following;

- 1. A summary of the input.
- 2. Velocity diagrams and flow-field information at annular and blade edge calculation stations.
- 3. Stage performance summary.
- 4. Fabrication coordinates if blade design option is activated.

Additionally, iteration output is provided, after the input summary, if the error message parameter IBR is set to zero. A copy of the output for the five runs of the code, as described in part A of this appendix, is located in Reference 10.

The output of the code is formatted in a landscape orientation. Because of the length of the file, up to more than eighty pages for a multistage compressor, the file must be printed from a word processor on a PC. The conversion process involved in transferring the file from DOS to the word processor tends to change the layout. Attempts to print the correct layout of the output on a PC were unsuccessful. However, using the following command,

>/usr/local/bin/a2ps.5.2 -p -nH -l -1 -ns -nP -F8.5 FILENAME | lp -dhp3si_1

on the AA Department workstations, it was possible to print the output. The current operation of the networking system requires this exact input to specify all the parameters needed for printing.

A final note concerning the output is that if the program is run using the PC version, the output is broken up into two parts. The first part uses the name defined by the user, and contains the performance information. The second part is located in a separate file, using the same prefix and .COO for the suffix, and contains the blade fabrication

coordinate data. The fabrication coordinates of the output blade design are given for the suction and pressure surfaces on planes parallel to the axis of rotation, relative to the chord, and relative to the axial direction ("turbomachinery orientation"). When running the program on the workstations these files are combined in the user defined output file. Recall that the fabrication-coordinate data are only output when the blade design option is activated.

E. CONCLUDING REMARKS

As noted previously, the AXIDES code is a 2-D code that produces the aerodynamic and blade design (if desired), of single or multistage axial compressors. The run time of the code is measured in seconds, and the output of the code is in a form that can be readily used in mechanical analysis routines and in the fabrication process. The AXIDES code is available commercially and can be conveniently used on a personal computer. Although the code is based on 2-dimensional flow theory, if the application for the compressor being designed does not require "cutting edge" design technology, the short run time and conveniently formatted output make the AXIDES code a powerful tool to use. It is understood that smaller companies that design compressors for use primarily in an industrial capacity, and not for high performance aircraft, currently use the AXIDES code as a final design tool. These companies can not make a major investment in the development of their own design system and "reverse engineering" data base as do the larger aircraft engine companies. Equally, they can not afford the engineering and computer costs of using sophisticated CFD analysis codes.

Figure 14. Examp.dat input data file.

		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*** COLUM 33333333444 3456789012	444444555	55555555666	00000000	, , , , , , , , ,
		TIT	LE				ITG IBR
Gire	r Stage Re	=== edesign of	:== NASA 2 Sta	ge - AR	= 1.52		1 0
						MOLWT	SCALEF
NSTRM NROW	NA NLOSS	NTIP NHUB	ROT	====	=====	=====	=====
		20 20	16100.0	29.484		28.9700	1.0000
		CP (1	K), K=1, 3				LUNITI
			======				=====
. 237	62070E+00	. 395	56990E-04	2846	52996E-06		1
		CP (K), K=4,6				LUNITO
			=======				====== 1
.816	508 4 0E-09	819	93708E-12	. 2844	12579E-15		*
	c	UMULATIVE	FLOW FRACT	ON AT STR	EAMLINES		
		========	======= .4686	.5714	.6686	.7600	. 8457
.1257 .9257							
	1	NLET TOTAL	TEMPERATU	RE AT STRE	AMLINES		
288.17 288.17	288.17	288.17 288.17	288.17	288.17	288.17	288.17	288.17
		INLET TOTA	L PRESSURE	AT STREAM	LINES		
			10130.0	========	10130 0	10130 0	10130.0
10130.0 10130.0	10130.0 10130.0		10130.0	10130.0	10130.0	10130.0	#+==+··
	11	NLET TANGE	TIAL VELOC	ITY AT STR	EAMLINES		
0000			 .0000		.0000	.0000	.0000
. 0000 . 0000			.0000				
		AXIAL COOR	DINATE OF C	ASING WALL	POINTS		
		=========	========	15 2422	-12 7000	-10 1600	-7.6200
-35.5600	-30.4800	- 25 . 4000	-20.3200 4.0640	5.0800	7.6200	10.9730	12.7000
	-2.5400 17.7800			2.0000			

Figure 15. Examp.dat input data file (breakdown).

1 2345678 90	123436							56789012	23456789
				INATE OF					
25.4000			.4000	25.4000	25.4000			5.4000	25.4000
25.4000			. 3900	25.1460	25.1460	25.1		5.1460	25.1460
25.1460	25.1	460 25	.1460	25.1460					
		IXA	AL COOR	DINATE OF	HUB WALI	POINTS	;		
-35.5600	-30.4			20 2200					
-5.0800			.0000	-20.3200 4.0640	-15.2400			0.1600	-7.6200
15.2400			.3200	24.0000	5.0800	7.6	200 10	0.9730	12.7000
		תמם	TAT. COO	RDI NATE O	D LUTD WAT				
		===:		=======					
7.3020	7.3		.4930	8.2550	9.1440		890 10	.0960	10.5150
11.0490 15.2400			.6680	13.9700	14.3360	14.7	320 15	.2400	15.2400
13.2400	15.2	400 15	. 2400	15.2400					
		Parametei			DIFF	USION F.	ACTOR PA	RAMETER	ARRAY
	=====	======	======	SET		=====			=====
				===:					
.0167	.0199	.0243	.0312	.0406	.3000	.4000	.5000	.6000	. 7000
.0123	.0143	.0176	. 0222	. 0289	. 3000	.4000	.5000	. 6000	. 7000
.0100 .0080	.0113	.0132	.0163	.0210	. 3000	.4000	.5000	.6000	. 7000
.0080	.0089	.0103	.0130	.0165	.3000	.4000	. 5000	. 6000	.7000
.0080	. 0089 . 0089	.0103	.0130	.0165	. 3000	.4000	.5000	. 6000	. 7000
. 0080	.0089	.0103 .0103	.0130	.0165	. 3000	.4000	.5000	. 6000	.7000
.0080	.0089	.0103	.0130	.0165	.3000	.4000	.5000	. 6000	. 7000
.0090	.0103	.0103	.0130	.0165	.3000	.4000	.5000	. 6000	.7000
.0092	.0110	.0122	.0153 .0182	.0200	.3000	.4000	.5000	. 6000	. 7000
.0104	.0127	.0168	.0221	.0243 .0296	. 3000	.4000	.5000	.6000	. 7000
			.0221	.0256	. 3000	.4000	. 5000	. 6000	. 7000
				SET					
. 0309	.0336	.0373	.0430	. 0508	.3000	.4000	.5000	. 6000	. 7000
.0272	.0290	. 0320	. 0362	.0423	.3000	.4000	.5000	. 6000	. 7000
.0250	.0263	.0282	.0313	.0360	.3000	.4000	.5000	. 6000	.7000
. 0230	.0239	.0253	.0280	.0310	.3000	.4000	.5000	.6000	.7000
.0211	.0220	.0234	. 0261	. 0296	. 3000	.4000	.5000	.6000	.7000
	.0222	. 0236	.0264	. 0299	. 3000	.4000	.5000	.6000	.7000
.0214	.0226	.0241	. 0269	. 0306	.3000	.4000	.5000	. 6000	. 7000
.0218	.0231	.0248	. 0278	.0317	. 3000	.4000	.5000	.6000	.7000

Figure 16. Examp.dat input breakdown (cont'd).

			SET #2 (CONT'D)				
		070			4000 .5	000	. 6000	. 7000
.0233 .0272		.0303 .0320 .0362	.0347 .0423			000	.6000	.7000
.0272		358 .0441			4000 .5	000	. 6000	.7000
			SET	# 3				
			====					
. 0								-2.0 .05
. 0								. 03
. 0								. 03
. 0								
. 0								
. 0								
. 0								
. 0								
. 0 . 0								
. 0								
AA ==	ZTIP	ZHUB ====	BT ==	BH ==	BLEED =====			
annular	-32.0000	-32.0000	. 0000	.0000	.0000			
ANNULAR	-21.0000	-21.0000	.0000	.0000	.0000			
ANNULAR	-13.0000	-13.0000	.0000	.0000	.0000			
ANNULAR	-7.0000	-7.0000	.0000	.0020	.0000			
ANNULAR	-3.0000	-3.0000	.0030	.0030	.0000			
AA	ZTIP	ZHUB	BT(LE)	BH(LE)	BLEED(LE			
==	====	2.0500	.0070	.0070	.0000	=		
ROTOR	2.0500	2.0500	.0070	.0070				
DLI		BT (TE)	BH (TE)	BLEED (TE)			MATL	NXCUT
.460		.0100	.0100	.0000	1.0000		7.823	0
ILOSS	OP	AA AB B	в с		DD	EE	БВ	CHOKE
====	==	== == =			:= .prp 7	## "NDIE	== f.E	0000
1	COORD	TABLE SS TA	BLE TA	ABLE TA	ABLE .	adda	44	, 0000
	==	== == =	= =	= =	=		==	

Figure 17. Examp.dat input breakdown (cont'd).

	*****	******	**** COLU	MN *****	******	******	*****
11	11111111222	22222233			555555566	6666666677	
12345678901	23456789012	3456789012	2345678901	23456789012	2345678901	2345678901	//////////////////////////////////////
							-51507050
# BLADES	SOLIDITY	TILT	PRA	PRB	PRC	PRD	PRE
44 0000	=======	====	===	===	===	===	===
44.0000	1.3000	. 0000	.0000	.0000	.0000	. 0000	- 0000
TALE	TBLE	TCLE	TDLE	TATE	TBTE	TCTE	TDTE
====	====	====	====	====	====	====	====
. 0055	. 0000	.0000	0.0000	.0055	. 0000	. 0000	0.0000
TAMAX	TBMAX	TCMAX	TDMAX	CHORDA	CHORDB	CHORDC	IDEF
=====	====	=====	=====	=====	=====	=====	====
.0327	. 0496	.0000	0.0000	. 0000	.0000	.0000	0
			CE ANGLE A				
. 00	. 00	.00	.00				
. 00	.00	.00	. 00	00	. 00	. 00	. 00
			ON ANGLE A				
5.40	4.40	2.90	2.60	=======: 2.80	2.90	2.90	
3.60	6.20	7.80		2.00	2.30	2.90	3.00
	INLE	T/OUTLET	SEGMENT TU	RNING RATE	ON STREAM	INES	
0.00	====	========			=======	====	
0.00 1.000	INLE ==== 0.25 1.000	0.50	SEGMENT TUI	RNING RATE	ON STREAMS	INES 1.000	1.00
	0.25	========			=======	====	1.00
	0.25 1.000	0.50 1.000 TRANSITION	0.75 N POINT LO	1.00 CATION ON S	1.00	1.000	1.00
	0.25 1.000	0.50 1.000 TRANSITION	0.75	1.00	1.00	1.000	
1.000	0.25 1.000	0.50 1.000 TRANSITION	0.75 N POINT LO	1.00 CATION ON S	1.00	1.000	0.480
1.000 0·.700	0.25 1.000 0.680 0.360	0.50 1.000 TRANSITION 0.660 0.300	0.75 N POINT LOC 0.640 NESS POINT	1.00 CATION ON S 0.620 LOCATION O	1.00 TREAMLINES 0.600 N STREAMLI	1.000 0.540	
1.000 0.700 0.420	0.25 1.000 0.680 0.360	0.50 1.000 TRANSITION 0.660 0.300 MUM THICKN	0.75 N POINT LOG 0.640 NESS POINT	1.00 CATION ON S 0.620 LOCATION O	1.00 TREAMLINES 0.600 N STREAMLI	1.000 0.540	
1.000 0·.700	0.25 1.000 0.680 0.360	0.50 1.000 TRANSITION 0.660 0.300	0.75 N POINT LOC 0.640 NESS POINT	1.00 CATION ON S 0.620 LOCATION O	1.00 TREAMLINES 0.600 N STREAMLI	1.000 0.540	
1.000 0.700 0.420	0.25 1.000 0.680 0.360 MAXI	0.50 1.000 TRANSITION 0.660 0.300 MUM THICKN	0.75 N POINT LOG 0.640 NESS POINT	1.00 CATION ON S 0.620 LOCATION O	1.00 TREAMLINES 0.600 N STREAMLI	1.000 0.540	0.480

Figure 18. Examp.dat input breakdown (cont'd).

	234567890123	456789012	234567890123	34567890123		4567890123	NXCUT
DLIM	ALIM	BT (TE)	BH(TE)				=====
====	====	0100	.0100		=		0
.7000	1.0000	.0100	.0100	.0000			
ILOSS	OP AA	AB I	3B C	D D1	D EE	E EB	CHOKE
=====	== ==	== :	== ==	= =:			=====
		LE SS T		BLE SH	OCK TAE	BLE LE	.0000
-						222	PRE
# BLADES	SOLIDITY	TILT	PRA	PRB	PRC	PRD	===
=======	=======	====	===	===	.0000	.0000	.0000
48.0000	1.2700	.0000	.0000	.0000	. 0000	. 0000	. 0000
	mn * **	mor E	TDLE	TATE	TBTE	TCTE	TDTE
TALE	TBLE	TCLE	1DLE ====	====	====	====	====
-===		.0000	.0000	.0061	0.0000	.0000	. 0000
.0061	0.0000	. 0000			•		
XAMAX	TBMAX	TCMAX	TDMAX	CHORDA	CHORDB	CHORDC	IDE
=====		=====	=====	=====	=====	Z=====	====
.0667	0.0200	.0000	. 0000	.0000	.0000	.0000	C
			NCE ANGLE A	=======	=======	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00					
			ON ANGLE A				
14.20	11.10	9.40	8.90		8.80	8.80	8.70
8.70	8.80	9.10					
			SEGMENT TU				
						0.50	0.50
0.50	0.50	0.50	0.50	0.50	0.50	0.30	0.50
0.50	0.50	0.50					
			ON POINT LO				
.50	.50	.50	.50	.50	. 50	.50	.50
.50	.50	.50					
AA	ZTIP	ZHUB	вт	ВН	BLEED		
AA E=	====	====	==	==	=====		
ANNULAR	14.0000	14.0000	.0150	.0150	.0000		
ANNULAR	18.0000	18.0000	.0150	.0150	.0000		
ANNULAR	23.0000	23.0000	.0150	.0150	.0000		

Figure 19. Examp.dat input breakdown (cont'd).

	Input Data Field for		
	(General or	Overall Data)	
		Column *********	1
Option		33444444444455555555555566666666777777777	:
·	e 1234567890123456789012345678901234567		
**************			••••
	G TITLE(K), K=1,18		BR 18A4, 214
	lal.		F 615, 5F10.4
			[1] 3E20.8, 10x, 11
			10 3E20.8, 10x, 11
IF NETOW-O	G (Cumulatative Flow Frac. From Tip &		•
IF NSTRM>9	[G]	(FLO(K),K=10,NSTR	1) 8F10.4
	G (Inlet Total Temp. 2 Streamlines)	(1,1),J=1,NSTRM)	8F10.4
IF WSTRM>B	[6]	(TO(1,J),J=9,MSTRM)	8F10.4
	G (Inlet Total Press. 2 Streamlines)	(PO(1,J),J=1,NSTRH)	8F10.4
IF NSTRM>8	[6]	(PO(1,J),J=9,NSTRM)	BF10.4
	[G] (Inlet Tang. Vel. 2 Streamlines)	(VTH(1,J),J=1,NSTRM)	8F10.4
IF NSTRM>B	[G]	(VTH(1,J),J=9,NSTRM)	8F10.4
	G (Akial Coord. of Casing Wall Pts.)	(XTIP(1),1=1,NTIP)	8F10.4
IF NTIP>8	[G]	(XTIP(1), I=9, NTIP)	
IF NTIP>16	IGI	(XTIP(I),I=Y,NTIP) (XTIP(I),I=17,NTIP)	8F10.4 8F10.4
IF WTIP>24	[6]	(XTIP(1),1=25,NTIP)	
IF NTIP>32	[6]	(XTIP(1),1=33,NTIP)	8F10.4 8F10.4
	G (Radial Coord. of Casing Wall Pts.)		8F10.4
IF NTIP>8	[G]	(RTIP(I), I=9, NTIP)	8F10.4
IF NTIP>16	jaj	(RTIP(1),1=17,NTIP)	8F10.4
IF NTIP>24	jej	(RTIP(1),1=25,NTIP)	8F10.4
IF WTIP>32	ici	(RTIP(1),1=33,NTIP)	8F10.4
	G (Axial Coord. of Hub Wall Pts.)	(XHUB(1),I=1,NTIP)	BF10.4
IF NHUB>B	[G]	(XHUB(I), I=9, HTIP)	8F10.4
IF NHU8>16	isi	(XHUB(I),1=17,NTIP)	8F10.4
1F NHU8>24	[6]	(XHUB(1), [=25,NT[P)	8F10.4
IF NHUB>32	[6]	(XHUB(1), [=33,NT[P)	BF10.4
	[G] (Redial Coord. of Hub Wall Pts.)	(RHUB(I), I=1,NTIP)	8F10.4
IF NHUB>8	[c]	(RHUB(1), I=9, NTIP)	8F10.4
	ie	(RHUB(I), I=17, NTIP)	8F10.4
	[c]	(RHU8(1),1=25,NTIP)	8F10.4
	[c]	(RHUB(1),1=33,NTIP)	8F10.4
IF WLDSS>0, J=1) (Dfactor Array) (DFTAB(K,J,1),K=1,5)	10F8.4
J=5	1-1		10F8.4
	[G] (DLOS(K,J,1),K=1,5		
	[G] (DLOS(K,J,1),K=1,5		10F8.4
	[G] (DLOS(K,J,1),K=1,5		
J=2	G (Loss Parameter) (DLOS(K,J,2),K=1,5		
	[6]		
	G (DLOS(K,J,2),K=1,5		
IF MLDSS>2, J=1			
J=2			
	G (DLOS(K,J,3),K=1,5)		
	G (DLOS(K,J,3),K=1,5)		
J=RSTRM	G (DLOS(K,J,3),K=1,5)	(DETABLE 3) K-1 EV	
IF NLOSS>3, J=1	G (Loss Parameter) (DLOS(K,J,4),K=1,5)	(Difactor Array) (DFTAB(K,J,4),K=1,5)	10F8.4
J=2	G (DLOS(K,J,4),K=1,5)	(DFTAB(K, J, 4), K=1,5)	10F8.4
	G (DLOS(K,J,4),K=1,5)		
	G (DLOS(K,J,4),K=1,5)	(DFTAB(K,J,4),K=1,5)	
J=NSTRM		(DFTAB(K,J,4),K=1,5)	
1F MLOSS>4, J=1		(Dfactor Array) (DFTAB(K,J,5),K=1,5)	
J=2		(DFTAB(K,J,5),K=1,5)	
	G (DLOS(K, J, 5), K=1, 5)	(DFTAB(K,J,S),K=1,5)	
	G (DLOS(K,J,5),K=1,5)	(DFTAB(K,J,S),K=1,5)	

Figure 20. General input data field format.

Input Data Field for the Program AXIDES (Data for Annular Stations & Rotors)

		T Y	**************************************	Format
	Option	P e	1111111111222222222233333333334444444445555555555	rormat
•			Profits British British British(1)	A4,6X,5F10.4
		٠,	BU(2) DIFFO(2)	A4,6X,5F10.4
			DU(3) DIFFO(3)	A4,6X,5F10.4
				A4,6X,5F10.4
			AA 7710(1WAR) 7HUR(1WAB) BT(1) BH(1) BLEED(1)	A4,6x,5F10.4
			AN ZITE (TRAD) ENDOTTED AND THE CONTROL OF THE CONT	7F10.7,110
		ļR ļ		15,1x,2A4,2x,3(A4
		ĮR Į	ILOSS OPH OP OPO AA AB BB CC DD EE EB CHOKE(IRW) BLADES(IRW) SOLID(IRW) TILI(IRW) PRA(IRW) PRB(IRW) PRC(IRW) PRD(IRW) PRE(IRW)	
				6F10.4
1 F	ILOSS(IRO₩)>≖0	is i	TALE(IRW) TBLE(IRW) TCLE(IRW) TDLE(IRW) TATE(IRW) TBTE(IRW) TCTE(IRW) TDTE(IRW)	8F10.4
		: :	TAMAX() TBMAX() TCMAX() TDMAX() CHORDA() CHORDB() CHORDC() IDEF(IRW)	7F10.4,110
		R	(PCE/ LIPOU) (=1.4)	8F10.6
1 F	IDEF(IROW)#0	R	(0057) 1901) 1-1 4)	8F10.6
	1DEF(TROW)#0	R	(BCP/ IROU) (=1.4)	8F10.6
	IDEF(IROW)#0	ĮR.	(000(1.1804) 4=1.4)	8F10.6
-	IDEF(IROW)#0	ĮR.	(CTE() IROU) (=1 4)	8F10.6
	IDEF(IROW)#0	ĮR.	(STEC) (BOW) Jet 4)	8F10.6
	IDEF(IROM)#0	R	(5) (5) (5) (6) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	8F10.6
	IDEF(IROW)#0	ĮR.	(217(3,10017)-1-14)	BF10.6
-	IDEF(IROW)#0	R	(0.10(1), 100(1), 1-1.43	BF10.6
	IDEF(IROM)#0	R	(CIRCO, IROS), 0 1117	BF10.4
Į.F	AA=TABLE	R	(Including angle Arts)	8F10.4
	IF NSTRM>8	R		8F10.4
ĮF	BB=TABLE	R		8F10.4
	, 1F WSTRH>B	P	!	8F10.4
1+	CC=TABLE	R	1	8F10.4
	IF WSTRM>8	R		8f10.4
Į F	DO=TABLE	R		8F10.4
	IF NSTRM>8	ĮR	!	8F10.4
1+	EE=TABLE	R	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8F10.4
	IF NSTRM>8	ĮR		10F8.4
-	OP=VEL.DIA.	R R		10F8.4

Figure 21. General input data field (cont'd).

		Innut Date	. p:	.				
		(Data fo	r Stat	ors t	he Pr	ogram AXIDES ar Stations)		
		(======================================	ı Stat	OIS &	Aimu	ar Stations)		
	Įī Įy			*****				!
Option	P		2222222233			55555555555666666666677	********** *******	format
						0123456789012345678901		
	isi	AA ZTIP(INAB) Z	HUR(INAR)	81(1)	RW/1) BLEED(1)	• • • • • • • • • • • • • • • • • • • •	A4.6X.5F10.4
		DLIM(IRW) ALIM(IRW)	81(1)		BLEED(1)	•	XCUT (IRW)	7F10.7,110
			AA AB	89	CC			15,1x,2A4,2x,3(A4
17 11 000 (I DOUL					PRB(IRW) PRC(IRW) PRD(IRW)	PRE(IRW)	?
1F 1LOSS(IROW)>=			PTC(J,IRW)		******	. TRIC(1011) TOTE(1011)	TOTE (I DIO)	6F10.4
	5) TBTE(IRW) TCTE(IRW) ') CHORDB() CHORDC()		
IF IDEF(IROW)#0	s	(ACF(J, IROW				(BCF(J, JROW), J=1,4)		8F10.6
IF IDEF(IROW)#0	İs	(CCF(J, IROW				(DCF(J, IROW), J=1,4)		8F10.6
IF IDEF(IROM)#0	S	(ACR(J, IROW),J=1,4)			(BCR(J, IROW), J=1,4)	ĺ	8F10.6
IF IDEF(IROW)#0	S	(CCR(J,IROW				(DCR(J, IROW), J=1,4)		8F10.6
IF IDEF(IROW)#0 IF IDEF(IROW)#0	S	(ELE(J, IROW				(ETE(J, IROU), J=1,4)		8F10.6
IF IDEF(IROW)#0	s	(ATF(J,1ROW (CTF(J,1ROW				(BTF(J, IROW), J=1,4) (DTF(J, IROW), J=1,4)		8F10.6 8F10.6
IF IDEF(IROW)#0	s	(ATR(J, IROW				(BTR(J, IROW), J=1,4)		BF10.6
IF IDEF(IROW)#0	S	(CTR(J,IROW),J=1,4)			(DTR(J, IROW), J=1,4)	i	8F10.6
JF AA=TABLE	\$	(Incidence Angle A	rray on Str	eamlines)		(INC(IROW, J), J=1, NSTRM	•	BF10.4
IF MSTRM>B IF BB=TABLE	S	(Devieties Amela A	64-			(INC(IROW, J), J=9, NSTRM		8F10.4
IF NSTRM>8	S	(Deviation Angle A	rray on Str	eamines)		(DEV(IROW, J), J=1, NSTRM (DEV(IROW, J), J=9, NSTRM		8F10.4 8F10.4
IF CC=TABLE	İsi	(Inlet/Outlet Segme	ent Turning	Rate)		(PHI(IROW, J), J=1, NSTRM		BF10.4
IF NSTRM>8	S					(PHI(IROW, J), J=9, NSTRM		8F10.4
IF DD=TABLE IF NSTRM>8	S	(Trans. Point Locat	ion)			(TRANS(IROW, J), J=1, NST		BF10.4
IF EE=TABLE	S	(Max. Thickness Poi	nt Locatio	~ \		(TRANS(IROW,J),J=9,NST		8F10.4
IF NSTRM>8	s	(Text III CARESS FOR	in totallo	***		(ZMAX(IROW,J),J=1,NSTRI (ZMAX(IROW,J),J=9,NSTRI		8F10.4 8F10.4
IF OP=VEL.DIA.	s	(ZTEMP(1-1, 2),J=1,5)			(RTEMP(I-1,J),J=1,5)	i	10F8.4
IF OP=VEL.DIA.	\$	(ZTEMP(1,J),	J=1,5)			(RTEMP(1,J),J=1,5)	i	10F8.4
	1.1						• • • • • • • • • • • • • • • • • • • •	••••••
	ŀΪ							
	<u> - </u>							
	1-1							
	[A]	AA ZTIP(1)	ZHU8(1)	BT(1)	BH(1)	BLEED(1)	1	A4,6x,5F10.4
	ļΑİ		ZHUB(1)	BT(I)		BLEED(1)		A4,6X,5F10.4
*****	ia!	AA ZTIP(I)	ZHUB(1)	BT(I)	BH(1)	BLEED(1)		A4,6X,5F10.4
IF WXCUT(IROW)<0	lci	(Redial Location of	Riade Sect	ione)		(XCUT(J),J=1,NC)	1	8F10.4
	ci		500	/		XCUT(J),J=9,NC)		8F10.4
	cj					XCUT(J),J=17,NC)		BF10.4
	·							
i								
•	•							

Figure 22. General input data field (cont'd).

APPENDIX B. AXIDES OUTPUT

This appendix contains the output file Examp.out, associated with input file Examp.dat. The input file is the example provided with the code when it was purchased and was the first to be successfully run on the AA Department workstations.

*** HIPUT DATA FOR COMPRESSOR DESIGN PPOSPAN ***

First Stage Redesign of NASA 2 Stage \sim AR ≈ 1.52

	The Inlet Flow Rate is 29.484 (Kg	The Molecular Weight is 28.97	The Compressor Has 2 Blade Fows.
Scale Factor is 1.0000	The Compressor Rotational Speed is 16100.0 Rpm.	The Desired Compressor Pressure Ratio is 1.574	Calculations Will be Performed on 11 Streamlines.

is 29.464 (Kg./Sec.)

Calculations Will Be Made at The Blade Edges And at. 8 Annular Stations.

Cp = 0.23762E+00 + 0.39557E-04-T + -0.28463E-06-T-+2 + 0.81651E-09-T-+3 + .0.81994E 12-T-+4 + 0.28443E-15-T-+ The Specific Heat Polynomial is in The Following Form

INPUT DISTRIBUTIONS BY STREAMLINE OR STREAMTUBE

	ei S		
Streamtube Flow Fraction	0.1257 0.2457 0.2457 0.3600 0.4686 0.5714 0.5714 0.9257 1.0000	Hub Radius (Cm)	7.302 7.302 7.493
Streamtube No.	0trrouns.	Hub Axial Coordinate (Cm)	-35.560 -30.480 -25.400
Inlet Whirl Velocity (M/Sec)	10130.0 0.009 10130.0 0.000 10130.0 0.000 10130.0 0.000 10130.0 0.000 10130.0 0.000 10130.0 0.000 10130.0 0.000 10130.0 0.000 10130.0 0.000 10130.0 0.000 10130.0 0.000		
Inlet Total Pressure (Kg/sq M)	10130.0 10130.0 10130.0 10130.0 10130.0 10130.0 10130.0 10130.0 10130.0 10130.0	Tip Radius (Cm)	25.400 25.400 25.400
Inlet Total Temperature (Deg. K.)	288.170 288.170 288.170 288.170 288.170 288.170 288.170 288.170 288.170 288.170	Tip Axial Coordinate (Cm)	-35.560 -30.480 -25.400
Streamline No.	11 6 8 8 11		

u u c	200		1 000	66.0	ST - ST		7	12 668	13 975	916 11	0 ()	*) i	571	15 240	15 240		0.74 n.4	15.240	. *** *** ***	
.26.320	.15 240	002 61.	001.01.		079	0.000 0.000	0.540	0.550	4.064	5 980	0.00	(20 01	2.5.0	14.700	15.240	285 11		25 329	ののの 写 は	
25.400	25.400	25.400	25.409	25.400	25.400	25 400	000.30	0.65.52	25.146	25.146	25.146	25.146	25 146		72.146	25.146	26 146	061.67	25.146	
-20.320	-15 240	-12.700	-10.160	-7.620	-5.080	-2.540	000		\$00.F	080.5	7.620	10.973	12.700	240	0.5.01	17.780	001 00	0 0 0	24.000	

WARNING ONLY, At Input Point, 13, The Hub Contour Data is Not Very Smeath.

THE INPUT PROFILE LOSS TABLES - ONEGA(Bar) *COS(Beta) *72.9*Sigma)

Page 18.

	Loss Faram	
	D. Fastir	7000 0,7000 0,7000 0,7000 0,7000 0,7000
	Loss Param.	0.0312 0.0222 0.0163 0.0130
	D-Factor	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
** PROFILE LOSS TABLE NO. 1 **	Loss Param	0.0243 0.0176 0.0132 0.0103
LE LOSS TAB	D-Factor	0.5000
. PROFI	Loss Param.	0.0199 0.0143 0.0113 0.0089
	D-Factor	0.4000 0.44000 0.44000 0.44000
	Loss Param.	0.0167 0.0123 0.0100 0.0080 0.0080
	D-Factor	0.3000 0.3000 0.3000 0.3000
	Pct. Pass	0.00 10.00 20.00 30.00

0.0165 0.0165 0.0165 0.0165 0.0243		: : : :	0.000000000000000000000000000000000000	9670.0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1.454	20000000000000000000000000000000000000	
0.0130 0.0130 0.0130 0.0130 0.0163 0.0163		Loss Param	0.0436 0.0436 0.0362 0.0361 0.0264 0.0269 0.0269 0.0303	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		D-Factor	00000000000000000000000000000000000000	
0.0103 0.0103 0.0103 0.0123 0.0140 0.0168	LOSS TABLE NO. 2	Loss Param.	0.0373 0.0320 0.0282 0.0283 0.0234 0.0234 0.0241 0.0240 0.0270 0.0358	
000000000000000000000000000000000000000	ILE LOSS TAB	D-Factor	0.000 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.	
0.0089 0.0089 0.0089 0.0103 0.0110	PROFILE	Loss Param.	0.0336 0.0290 0.0263 0.0220 0.0222 0.0222 0.0224 0.0231 0.0248	
0.4000 0.4000 0.4000 0.4000		D-Factor	0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000	
0.0080 0.0080 0.0080 0.0090 0.0092		Loss Param.	0.0309 0.0272 0.0250 0.0250 0.0211 0.0211 0.0214 0.0218 0.0233	
0.3000 0.3000 0.3000 0.3000 0.3000		D-Factor	0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000	
50.00 60.00 70.00 80.00 100.00		Pct Pass.	0.00 10.00 20.00 30.00 50.00 60.00 60.00 80.00 100.00	

•• LOSS SET No. 3 is The Analytical Method by ROBERTS For Profile And Secondary Losses ••

The Input Clearances Are 0.0500 (Cm) For The Rotor Tip And 0.0300 (Cm) For The Stator Hub.

7

PAGE NO

*** PRINTOUT OF INPUT STATION DATA ***

•• INPUT SET NO. 1 IS AN ANNULAR STATION ••

MASS BLEED FRANTION	2499 5		MASS BLEED FFACTION	0.5000		MASS BLEED FPACTION	54,00° C		MASS BLEED FFACTION	0.0000		MASS BLEED FRACTION	9690.6
HUB BLOTKAGE FACTOR	ର୍ଷ୍ଟେଶ୍ୱ	TATION	HUB BLOCKAGE FACTOR	6066.6	STATION	HUB BLOCKAGE FACTOR	0 00es	STATION	HUB BLOCKAGE FACTOR	6.0025	STATION	HUR BLOCKAGE FACTOR	0.0039
TIP BLOCKAGE FACTOR	0.000	SET NO. 2 IS AN ANNULAR STATION **	TIP BLOCKAGE FACTOR	0.0000	SET HO. 3 IS AN ANNULAR STATION	TIP BLOCKAGE FACTOR	0.000.0	SET NO. 4 IS AN ANNULAR STATION **	TIP BLOCKAGE FACTOR	000000	SET NO. 5 IS AN ANNULAR STATION	TIP BLOCKAGE FACTOR	0.0030
HUB AXIAL LOCATION	(Cm) -32.0000	· INPUT SET HO.	HUB AXIAL LOCATION (Cm)	-21.0000	•• INPUT SET NO.	HUB AXIAL LOCATION (Cm)	-13,0000	·· INPUT SET NO.	HUB AXIAL LOCATION (Cm)	-7.0000	· INPUT SET NO.	HUB AXIAL LOCATION (Cm)	-3.0000
TIP AXIAL LOCATION	(CB) -32.0000		TIP AXIAL LOCATION (Cm)	-21.0000		TIP AXIAL LOCATION (Cm)	-13.0000		TIP AXIAL LOCATION (Cm)	-7.0000		TIP AXIAL LOCATION (Cm)	-3.0000

PAGE NO. 5

*** PRINTOUT OF INPUT STATION DATA ***

.. INPUT SET NO. 6 IS ROTOR NO. 1 ..

. FOR THIS BLADE ROW THE INPUT OPTION IS COORD.

TIP C.G. AXIAL LOCATION HUB C.G. AXIAL LOCATION INLET TIP BLOCKAGE (Cm) 2.0500 0.0070

INLET MASS BLEED 0.0000

INLET HUB BLOCKAGE 0.0070

TTTLET MASS BLEEF	5565.6	CUM ENERGY ADD FPACT.	9966-1
CUTLET HUB BLOCKAGE	9 9166	NUMBER OF BLADES	77
OUTLET TIP BLOCKAGE	0.0100	TIP SOLIDITY	1.3000
BLADE TILT ANGLE	0000.0	HUB FLOW ANGLE LIMIT	-20.0000
LOSS SET USED	-	TIP D FACTOR LIMIT	0.4600

* POLYNOMIAL COEFS. FOR RADIAL PROFILES OF A BLADE AERO. PARAMETER AND BASIC BLADE ELEMENT GEOMETRY PARAMETERS *

r Ar Street Eng.	CHORD TIF CHORD	0000 0 0000 0 0000 0
	MAX. THICKNESS CHORD	0.0327 0.0496 5.0000 0.000
	T.E. RADIUS:CHORD	0.0055 0.0000 0.0000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E.E. FAUTUS/CHURD	00000 00000 00000 00000
POTOR OFFICE PRESENTER		000000
COEF		CONSTANT LINEAR QUADRATIC CUBIC QUARTIC

· INPUT BLADE ELEMENT DEFINITION OPTIONS ·

BLADE MATERIAL DENSITY (Sm. (cm) **3)	00128 F
CHOKE MARGIN	NONE
MAX. THICKNESS POINT	TABLE (L.E. REF.)
TRANSITION POINT	TABLE
TURHING RATE RATIO	TABLE
DEVIATION ANGLE	TABLE
INCIDENCE ANGLE	TABLE (S.S.REF.)

(VARIABLES CONTROLLED BY OTHER OPTIONS WILL APPEAR AS ZEROS IN THE TABLE.) . TABLE OF BLADE SECTION DESIGN VARIABLES HIFUT .

	MAX. THICKNESS LOCATION CHORD	0 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PASE 19
1. January 2011	TRAUSITION/CHORD LOCATION	0.7000 0.6800 0.6600 0.6600 0.6200 0.6000 0.4800 0.3600	
	INLET/OUTLET TURNING RATE RATIO	0.2500 0.2500 0.5500 0.5500 1.0000 1.0000 1.0000 1.0000	*** PRINTOUT OF INPUT STATION DATA ***
	DEVIATION ANGLE (DEGREES)	5.2000 7.2000 7.2000 7.2000 7.2000 7.2000 7.2000 7.2000	*** PRINTOUT OF II
	SUCTION SURFACE INCIDENCE ANGLE (DEGREES)	000000000000000000000000000000000000000	
	STREAMLINE HUMBER	11 U W & W & U W & W & U	

** INPUT SET NO. 7 IS A GUIDE VANE OR STATCR** . FOR THIS BLADE ROW THE INPUT OPTION IS COORD.

INLET MASS BLEED	- 0 6 0 B	CUTLET MASS RIFER	0.0000
INLET HUB BLOCKAGE	0.9100	CUTLET HUB BLOCKAGE	0.0100
INLET TIP BLOCKAGE	0.0100	OUTLET TIP BLOCKAGE	0.0100
TIP C.G. AXIAL LOCATION HUB C.G. AXIAL LOCATION II (Cm)	9.4000	BLADE TILT ANGLE (Degrees)	0.000
TIP C.G. AXIAL LOCATION (Cm)	0000	LOSS SET USED	7

	BOHETET PARAMETERS .		3 9556 9 5569 1 7765						MAX. THICKNESS LOCATION CHORD	9,5999	0 - 500u	0.5000	0.5000	0.5999 0.5000	9.5000	0.5000	(日) (日) (日) (日) (日) (日) (日) (日) (日) (日)			1	MASS BLEED FRACTION	3000°0		MASS BLEED FRACTION	0.000
SEP OF BLACES	ADE ELEMENT	MAX THITKNESS CHOPL	9,9667 0,9269 9,5600 5,9500		KHESS CHOKE T MARGIN	REF.1 NONE	. 5	OS IN THE TABLE '	: TRANSITION/CHORD LOCATION	0.000	0,000,0	0000.0	0.0000	3000 0 0 0000 0	00000	00000	5696 0 5696 0	•	:		BLOCKAGE FACTOR	0.0150	:	3 BLOCKAGE FACTOR	9.0150
SOLIDITY HUMBER 1.2706	PAPAMETER AND BASIC	E. PADIUS CHORD	0.0061 0.0000 0.0000 0.0000	ELEMENT DEFINITION OPTIONS	TRANSITION MAX. THICKNES POINT	SHOCK TABLE (L.E.	I DESIGN VARIABLES INPUT	OPTIONS WILL APPEAR AS ZEROS	INLET/OUTLET TURNING RATE RATIO	0 2 2 0 0 0	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	INPUT STATION DATA	IS AN ANNULAR STATION		BLOCKAGE FACTOR HUB	0.0150	IS AN ANNULAR STATION	BLOCKAGE FACTOR HUB	0.0150
111	ES OF A BLADE AERO.	PADIUS/CHORD T	0.0061 0.0080 0.0000 0.0000	INPUT BLADE ELEMEN	TURNING RATE TRAN	TABLE S.S.	LE OF BLADE SECTION	ву отнек	DEVIATION ANGLE (DEGREES)	14.2000	11.1000	9.4000	0008.8	8.8000	8.8000	8.7000	8.8000 9.1000	*** PRINTOUT OF	8 CN FGA FIGNI		TIP		· INPUT SET NO. 9	TIP	
INLET HUB MACH LINIT 1.0000	FOR RADIAL PROFILES	V(0) L.E. PA	0000	•	DEVIATION TURNI ANGLE P	TABLE	· TABLE	(VARIABLES CONTROLLED	SUCTION SURFACE INCIDENCE ANGLE (DEGREES)	0000	0000.0	0.000	0.000	0.000	00000	0.000	000000000000000000000000000000000000000		•		HUB AXIAL LOCATION (Cm)	14.0909	•	HUB AXIAL LOCATION (Cm)	18.0000
HUB D FACTOR LIMIT 9.7009	· POLYNOMIAL COEFS.	COEF. STATOR OUTLET	INV.SQ. 0.00 INVERSE 0.00 CONSTANT 0.00 LINBAR 0.00 QUADRATIC 0.00		INCIDENCE DEV ANGLE	<u>.</u>			STREAMLINE NUMBER	•	2 1	ım	4	0	۲.	90 or	10	1			TIP AXIAL LOCATION (Cm)	14.0000		TIP AXIAL LOCATION (Cm)	18.0000

AN ANTULAR STATION IS 10 9. INPUT SET

BLEED FRACTION	¢,						-:	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	T (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	490.03 593.55	543.85	582.41	509.10 492.28 496.50
MASS BLEED F	ତ୍ତ୍ତ୍ ଓ							463,73	512.16 512.16	607.12	535.43	583.22	529.43 514.22 518.11
		AR	0.0000 1.56935 1.9835 2.4531 3.4246 3.6331 3.6578 3.6931 3.6431 3.6431 3.6431 3.6431 3.6431				٠ ٠ ٠						531.41 534.49
 BLOCKAGE FACTOR	0.0150	Z(1,3) (Cm)	00000 00000 00000 00000 00000 00000 0000										541.49 541.49 543.75
			1211				:	474.48	544.55	524 45	524.47	547.22	548.72
AN ANNOLAK STATICH GE FACTOR HUB		-	11100001111111111111111111111111111111		PR 1.5740	E NUMBER		476.37 490.41 518.15	550.76	657.92 520.08	519.78	544.14	551.97 552.50
BLOCKA	0.0150	AR	0.0000 1.5696 1.9835 1.9835 2.4531 3.4246 3.6378 6.631 6.631 3.978		CPR 0.0000	STREAMLINE		492.57	555.27 602.11	664.57 516.82	516.30	540.99	555.38 554.98
100			DHHNMMMMH	_	: DHC :39 19.303	•		494.13 521.60	558.33 606.42	668,55 513.08	512.38	537.14 550.74	557.10 555.72
HUB AXIAL LOCATION	23.0000	Z(Ift,JM) (Cm)	-32 0000 -21 0000 -13 0000 -7 0000 0 4150 3 9247 7 7701 11 3647 14 0000 23 0000	Fact2 = 4.5924	PSUN DHCI 0.0 17.2239		:	495.20 522.45					
HUB A		Ift	11 12 11 11 11 11		DHI 0.000	• •	479.75	495.83	605.77	499.39	526.39	531.05	556.01
CATION	00	H	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 = 2.3777	GAMMA 1.40064	f - (Ft/sec)	479.82	495.98 523.16	605.66	496.91	511.04	554.42	555.71
TIP AXIAL LOCATI	23.0000			Fact 1	CP 0.23968	•• VZ ARRAY			 • ທ ໝ		 . eo c	10,	12
-					ITER 1	rs	:						

ITER CP (0.24010 1	•• VZ ARRAY	125 42 5 7 7 8 8 8 10 11 11 11 11 11 11 11 11 11 11 11 11	TTER CP .	•• VZ ARRAY STATION	126.45.00.00.00.00.00.00.00.00.00.00.00.00.00	ITER CP
GAMMA	1.40064	- (Ft/sec)	479.69 523.16 523.78 560.52 608.28 608.28 608.28 61	GAITMA .40064	- (Ft/	24 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	GAMMA
:	16.629	c) •	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	DHI 17.289	sec)	44.0000 0000 0000 0000 0000 0000 0000 0	DHI
	3218.0	m		PSUM 3271.0	m	49 49 49 49 49 49 49 49 49 49 49 49 49 4	PSUM
	17.2239	4	31 40 80 31 40 40 40 40 40 40 40 40 40 40	DHCI 17.2239	4	138 4948 87 891 27 860 27 860 665 42 808 92 842 92 842 92 842 92 842 93 843 93 843 93 843	DHCI
	19.994		771 771 772 773 773 773	DHC		560 252 252 256 266 266 27 23 23	DHC
	1.5510	STREAMLINE	4477.78 5520.18 556.45 556.45 551.15 511.56 511.47 546.71 547.22	CPR 1.5765	STREAMLINE 5	477.71 492.99 520.06 520.06 600.68 666.08 510.70 510.70 541.78 543.24 543.96	CPR
	1.5740	NUMBER 6	446 46 46 46 46 46 46 46 46 46 46 46 46	PR 1.5740	E NUMBER 6	476.44 490.84 517.79 551.61 594.88 663.43 512.66 552.39 536.17 536.17 536.17 536.17 536.17	ጸ
		t ~	40.44 40.44			474.69 487.91 514.86 584.47 585.96 657.17 516.56 516.59 539.28 541.71 541.11	
		α .	4473 .22 4473 .22 5111 4 9 566 .93 520 .93 520 .85 542 .65 534 .95 534 .35 534 .23		α.	4472.32 483.93 511.18 531.18 533.09 647.05 520.95 562.79 562.79 536.09 536.09	
		æ.	442 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			5 6 6 8 8 9 8 9 8 9 8 9 8 9 8 9 9 9 9 9 9	
		- 1 	4464 4764 510 510 525 521 521 521 521 531 531 531 531 531 531 531 531 531 53		9 1	464.41 470.63 500.62 500.62 529.35 614.39 528.61 543.08 510.68	
		11	$\begin{array}{c} \mathbf{d} \cdot $		= = = = = = = = = = = = = = = = = = = =	64 64 64 64 64 64 64 64 64 64 64 64 64 6	

STREAMLINE NUMBER

.. VZ ARRAY - (Ft/sec) ..

ruder								
reid from intruder		# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						622 633 71 61 63 63 63 64 64
reid fr	Ξ						Ξ	5252 5004 5004 5004 5004 5005 5006 5006
Printed by		**************************************						288 33 3 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
٩	12	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4					10	512 527 527 537 537 537 537 537 537 537 537
		A 4 6 4 8 0 0 9 9 4 4 0 4 8 4 6 4 8 0 0 9 9 9 4 4 0 9 4 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	45	1000 1696 1835 1835 1246 1478 1478 916 650				600 600 600 600 600 600 600 600 600 600
	,-	44000000000000000000000000000000000000		04110000000000 0004400000000			6	44 446 600 600 600 600 600 600 600 600 6
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						400 600 600 600 600 600 600 600 600 600
	a	44000000000000000000000000000000000000	(I, J)	00000044			σο	650 650 650 650 650 650 650 650 650 650
		48448C 000 100 000 000 000 000 000 000 000 00	13	-32.0 -73.0				73 73 73 73 73 73 73 73
		4 4 10 10 10 10 10 10 10 10 10 10 10 10 10	-				· .	444 4884 5444 5601 516 516 546 546 546 546
		6.41 0.93 11.63 13.80 22.04 22.04 22.04 22.04 22.04 22.04 22.04 22.04 22.04 22.04 22.04 22.04 22.04 22.04 22.04 22.04	_	122 4 4 6 9 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		PR 5740	NUMBER 6	.38 .96 .60 .60 .63 .63 .86 .97
	. 2	64 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				12 1		5 4 4 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6
	٠	77.64 203.05 203.05 203.05 203.05 203.05 203.05 333.20 43.40 47.66				CPR 1.5743	REAML INE	32 32 32 33 34 34 35 36 36 36
		440000000000000000000000000000000000000	AR	0000 5696 9835 4531 4531 4531 5080 5080 5960 3936 3936 3936		ر 916	STR 5	677. 693. 520. 520. 500. 507. 507. 549. 549. 552.
	4 .	78 50 22 05 22 05 22 05 22 05 60 10 60 10		0		DHC 19.9		2.00 2.00 2.00 2.00 3.00 3.00 3.00 3.00
	•				24	ICI 2239	4 :	620 620 620 620 620 620 620 620 620 620
	_ :	479.06 495.54 523.32 561.93 6604.08 6604.08 505.57 505.57 535.44 542.81 549.17	Ift, JM: (Cm)	0000 0000 0000 0000 0000 0000 0000	4.5924	17.	•	8.97 3.56 3.40 6.14 6.14 7.70 11.38 7.78
	:)) (I) Z	-32 -21 -3 -3 -3 -3 -13 -13 -13 -13 -13 -13 -1	ict2 =	SUM 266.1	£ :	4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	2	479.35 496.10 524.04 562.41 6603.34 650.96 501.26 501.26 525.44 522.86 543.60 549.54	ų.		E.	a. m	:	6.11 6.11 7.69 7.69 7.58 7.38 8.62 4.26
	:		Ift	100 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			5 :	5 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	_ :	479.41 524.57 524.57 560.99 603.99 603.99 609.09 508.92 518.75 548.97	-	1 2 3 3 3 4 4 4 7 7 7 7 11 10 10 12	.3777		. د	6 2 3 1 2 1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3
	:	44nn004nnnvvv			:1 = 2	GAY.		0.000 0.000
	₹ .	* * * * * * * * * * * * * * * * * * *			Fact 1	P 4012 1		
	STATION	11 12 14 14 14 14 14 14 14 14 14 14 14 14 14				CP 0.24	STATION	110 88 77 110 110
	:					ITER 5	ST	
						-		

•		5	DHI	PSUM DHCI	5		r.					
•	0.24910	1.40064	16.932 3	242.2 17.2239	39 20.259	1.5627	1.5740					
	· VZ ARRAY	- (Ft/	sec)									
STA	STATION	-	7	•	• •	STREAMLINE 5	МЛЯВЕК 6	· .	a :	a	12 12	11
:			479.17	60			476.36	474.74	472.53	469.46	465.00 470.24	457.91
			496.13 524.46			22	517.57	· 🛶 .		505.65		503.35
			561.75	4.0		0 6	551.62 595.28			556.90		491.28
	 . vo		655.36			. eo c	668.33	~ ~		636.42 525.92		547.04
	ر <i>د</i>		496.35	n m		09	508.49			525.82		546.88
	on e		524.79	45 G		56 96	551.90 537.16	- 0		10 115		61 91
	61		544.71	1 60		20	544.01	CI C		1,35 42 1,35 42 1,03 0A		504 50
	11	549.50 548.78	550.40 549.62	550.19 549.72	549.87 549.68		546.17 546.38	N (V		52 p 53		P
ITER	å	GAMMA	DHI	PSUM DHCI	. DHC	CPR	PR					
٢	0.24012	1.40064	17.252	3268.9 17.223	9 20.22	6 1.5751	1.5740					
•	•• VZ ARRAY	AY - (Ft/sec)	: ()									
						STREAMLINE	NUMBER.	ı	c	c	ž	Ξ
STA	STATION		2	.	7	S.	: : : •				9	
		œ.	_	478	Α,	ς,	~ (200			457.96
		ر. د. در	~ ·	495 523	9 7	7	טיט	2 0	2.5		1 7	.0.
			-	561	9	S	9	60 4	0 1		40	33.7
	 ທີ່	ار. . م	. 9	664	7 6	⊃ ~	2 (7	٠-	י סי		. 0 1	
		۲.	0.0	500	w	φυ	O A	oα	00 00		~ ~	~ (- -
		٠.	. •	200		ישו	0		562.94	566.48	570.11	0.0
		٥,٠	⊣ જ.	544	4	2 en	•	· "			. —	03.7
	111	549.62 549.18	550.59 550.06	550.48 550.20	550.25 550.18	549.33 549.42	546.69 546.89	542.80 543.08	537.82 538 18	528.57 528.99	512.95 512.95	2.2
ITER	CP	GAMMA	DHI	PSUM DHCI	I DHC	CPR	ad					
•	•	,		8600 61 6 3300	וני טר פני	1 1 5738	ו ביזעה					

** VZ ARRAY - (Ft/sec) **

	STATION	Z .	# :	:	8	E :	:	4	STREAM 5	REAMLINE NUMBER	ľ	α٠	g,	10	11
	110 110 111 121	***********	679 675 525 600 600 600 600 600 600 600 600 600 60	5. 31 2. 02 2. 01 2. 01 2. 02 7. 72 7. 72 8. 73 8. 74 8. 74 8. 74 8. 74 8. 74 8. 74 8. 74 8. 74 8. 74 8. 74	479.06 496.19 524.62 561.59 601.24 654.28 497.17 497.17 525.96 525.18 526.40 550.40		478 78 495 64 495 64 495 64 602 11 664 23 500 48 550 48 605 54 60 60 60 60 60 60 60 60 60 60 60 60 60	478.26 494.65 522.31 552.31 559.64 601.89 603.47 503.47 544.24 550.16	477 46 493 15 520 24 520 24 599 94 605 62 505 45 505 45 544 80 549 30	476.32 517.53 551.68 551.68 595.56 668.07 508.36 551.87 551.87 551.87 551.87 551.87	474 75 474 15 514 15 544 95 587 92 662 07 513 73 513 74 533 44 542 88 543 88	472.60 484.09 536.13 536.13 576.00 651.99 519.66 519.66 542.51 541.81	469 65 478 42 525 15 528 15 528 16 525 66 525 56 565 90 548 182 538 16 528 76 528 76	465.23 470.02 500.20 512.63 511.07 615.32 615.32 534.18 569.14 569.14 522.53	459.15 458.12 494.54 594.03 481.32 587.32 587.32 547.08 548.57 548.57 492.37
ITER	d O	^	GAMMA	¥	DHI	PSUM	DHCI	DHC	CPR	8					
6	0.24012	1012	1.40064	17.	226	3265.8	17.223	19 20.229	-	1.					
	. VZ ARRAY -	ARR		(Ft/sec)	:										
:	STATION	:		:	n	e :		4	STREAMLINE 5	INE NUMBER 6	٢	60	6	10	=
	H Ch w & ru ro		479.07 496.33 525.29 559.91 601.63		479.01 496.22 524.68 561.45 600.84	5233 5613 6613	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	478.23 494.68 522.33 559.57 601.64	477.43 493.17 520.25 556.47	476.30 491.05 517.50 551.71	474.75 488.12 514.10 545.04 588.14	472.63 484.08 510.07 536.26 576.34	469.63 478.40 505.47 525.28 558.53	669 3	
	ر د B و د				497.45 497.44 526.42 525.33	500 500 536 528	525 23 23 23	503.47 503.47 543.36 532.54	505.43 505.43 505.41 547.78 535.68	508.32 508.32 508.30 551.89	9000	51.	ا ق ا ا ا ا	534.49 534.50 534.50 569.19	200 200 200 200 200 200 200 200 200 200
	121		4 4 4 4 0 0		544.94 550.33 550.07	24 20 20 20 20 20 20 20 20 20 20 20 20 20	01 21 21	544.27 550.18 550.19	544.85 549.37 549.44	544.49 546.83 546.92	- 10 O T	38.5	L W 00 0	42.4 23.7 13.0	200
ITER	ð		GAMMA	DHI		PSUM	DHCI	DHC	200	ŝ					
10	0.24012		1.40064	17.21	8	265.2	~	9 20.237	7	PK 38 1.5740					
	** VZ ARRAY	ARRA	٠ (٣	t/sec) *	•										
is :	STATION	:		:	2	m		•	STREAMLINE 5	INE NUMBER 6	7	©	o	c -	=
	7		479.03		478.97	· 60	.70	478.19	477.41	476.29	474.75	472.65	469.72	465.42	458 34

4659 4094 4094 4094 4084 5046 5049 5049 4092 4092 601 601 601 601 601 601 601 601
9699 9509 9513 9513 9513 9514 9515 9515 9515 9515 9515 9515 9515
4 A B B B B B B B B B B B B B B B B B B
5 1 1 2 4 2 3 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5
68 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
5517.49 5517.49 5517.49 569.71 569.71 569.71 571.73 544.42 546.79 546.79
493.19 520.25 556.44 599.80 670.32 505.31 505.31 544.77 544.77 549.28
694.694.6522.694.6594.6994.699.301.318.699.318.899.318.899.318.899.318.899.318.899.318.899.318.899.318.999.318
52 3 69 52 3 69 52 1 66 56 1 66 66 3 96 50 6 3 9 50 6 4 9 52 3 6 1
524 - 24 524 - 24 524 - 30 560 - 52 653 - 60 653 - 60 653 - 60 653 - 60 526 - 55 526 - 55 526 - 35 520 - 14
525 135 601 13
22 4 4 3 3 4 7 7 7 7 7 7 7 7 7 7 1 1 1 1 1 1 1 1 1

*** COMPUTED COMPRESSOR DESIGN PARAMETERS FOR A ROTATIONAL SPEED OF. 16130.4. PPH

** THE CORRECTED UEIGHTFLOW PER UNIT OF CASING ANNULAR AREA AT THE INLET FACE OF THE FIRST BLADE POUL IS 198 78 K3 SEC H12

	POURE (CM)	1397,73		PRACT EVEP-37	7 2 9360 PAGE 14 ·
	TORÇUE (M-Kg)	83 83		POUBE	1387,77 PAG
	S HOMEITES FLADE TANG:	-9.586 0.427		TORQUE 'M-Kg)	C
	SAS BENDING MOMENTS FOR EACH BLADE FOR. AX TANG. IM-Kg) (M-Kg)	0.862 0.152	WETTERS **	FOR. AX. SHAFT THRUST (Pg:	136,58 95,93
AMETERS	FOR. AX. SHAFT THRUST (Kg)	448.11	DAMIC PAR	POLY EFF.	0.8980 0.8604
AMIC PAR	ASPECT RATIO	2.54	E AERODY	ADIA. EFF.	0.8910
** MASS AVERAGED ROTOR AND STAGE AERODYNAMIC FARAMETERS	POLY. EFF.	0.8980	MASS AVERAGED ROTOR AND STAGE AERODYDAMIC PARAMETERS **	HEAD IDEAL HEAD COEF. COEF.	0.2579
R AND STA	ADIA. EFF.	0.8910	AGED ROTO	HEAD COEF.	0.2298
AGED ROTO	TOTAL TEMP. RATIO	1.1626 1.1626	MASS AVER	TOTAL TEMP. RATIO	1.1626
MASS AVER	TOTAL PRESS RATIO	1.6056	SUMS OF	TOTAL PRESS. RATIO	1.6056
:	ID, HEAD COEF.	0.2579	CUMULATIVE	TOTAL TEMP.	288.17 335.02 335.02
	HEAD COEF.	0.2298	:	TOTAL PRESS. (KG/M*2)	10130.0 16264.7 15945.0
	FLOW COEF.	0.4654 0.3906		VEIGHT FLOW (KG/SEC)	29.48 29.48 29.48
	STAGE BLADE NO. TYPE	1 ROTOR 1 STATOR		STAGE BLADE NO. TYPE (K	1 INLET 1 ROTOR 1 STATOR
					-

•• VALUES OF PARAMETERS ON STREAMLINES AT STATION, 1. WHICH IS AN ANNULUS ••

STATIC TEMP. (Deg.K.)	277,56	2777 55	277.56	277.58	277.61	277.66	277.73	277.82
STATIC PRESS. Kg'm'2	8885.6	8883.5	8884.8	8887.3	8891.2	9.9688	8904.1	8914.3
TOTAL TEMP. (Deg.K.)	288.17	288.17	288.17	288.17	288.17	288.17	288.17	288.17
TOTAL PRESS. Kg.m.2	10130 0	10130.0	10130.0	10130.0	10130.0	10130.0	10130.0	10130.0
STREAM. CURV. I Cm.)	000 0	0000	0.001	0.001	0.001	0.002	0.002	0.003
STREAM. SLOPE (Deg)	0.03	0.14	0.26	0.40	0.55	0.70	0.86	1.01
ABS.FLOU ANGLE (Deg)	00.0	00.0	00.0	00.0	00.0	00.0	00.0	00.0
ABS. MACH NO.	0.4371	0.4370	0.4368	0.4363	0.4356	0.4345	0.4331	0.4311
ABS. VEL. (M/sec)	146.01	145.99	145.91	145.76	145.52	145.18	144.72	144.09
TANG. VEL. (M/sec)	00.0	00.0	00.0	00.0	00.0	00.0	00.0	00.0
MERD. VEL. (M/sec)	146.01	145.99	145.91	145.76	145.52	145.18	144.72	144.09
AXIAL VEL. (M/sec)	146.01	145.99	145.91	145.75	145.51	145.17	144.71	144.07
AXIAL COORD.	-32.000	-32.000	-32.000	-32.000	-32,000	-32.000	-32.000	-32.000
STREAMLINE NO. RADIUS (Cm.)	TIP 25.400	2 23 901	3 22 377	4 20.820	5 19.223	6 17.575	7 15.855	8 14.042

intrude
fon
reid
وَ
ted
Pri

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
89 89 90 20 40 40 40 40 40 40 40 40 40 40 40 40 40
288.17 299.17 250.17
10130.0 10130.0 10130.0
0,004 0,005 0,005
1.16
0.00
0.4284 0.4243 0.4177
143.20 141.90 139.75
0.00
143.20 141.90 139.75
143.17 141.86 139.70
-32.000 -32.000 -32.000 -32.000
9 12.089 10 9.910 11 7.296 HUB 7.296

** VALUES OF PARANETERS ON STREAMLINES AT STATION, 2, UHICH IS AN AUDILUS **

		1.9
STATIC TEMP. (Deg.K.)	22222222222222222222222222222222222222	PAGE NO
STATIC PRESS Kg m^2	87966.5 87996.5 87996.2 88011.2 88311.3 88535.1 8853.8 8853.8	
TOTAL TEMP. (Deg.K.)	288.17 288.17 288.17 288.17 288.17 288.17 288.17 288.17 288.17	
TOTAL PRESS. Kg:m^2	10130.0 10130.0 10130.0 10130.0 10130.0 10130.0 10130.0 10130.0	
STREAM. CURV. (1. 'Cm.)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
STREAM. SLOPE (Deg)	-0.04 0.32 0.32 1.10 1.10 2.05 2.05 2.64 3.37 7.95	
ABS.FLOW ANGLE (Deg)		
ABS. MACH NO.	0.4535 0.4529 0.4529 0.4520 0.4488 0.4462 0.4427 0.4378 0.4378	
ABS. VEL. (M/sec)	151.29 151.26 151.10 150.81 150.38 149.77 148.94 147.81 146.23	
TANG. VEL. (M/sec)	000000000000000000000000000000000000000	
MERD. VEL. (M/sec)	151.29 151.26 151.10 150.81 169.77 148.94 147.81 143.93	
AXIAL VEL. (M/sec)	151.29 151.25 151.09 150.78 150.32 149.68 147.55 145.81 143.22	
AXIAL COORD. (Cm.)	-21.000 -21.000 -21.000 -21.000 -21.000 -21.000 -21.000 -21.000 -21.000	
	1 25 400 3 22 467 4 20 961 5 19 418 6 17 831 7 16 180 9 12 590 110 10 540 HTR 8 134	
IS IT	112 W 4 2 0 C 0 C 11 E	-

•• VALUES OF PAPAMETERS ON STREAMLINES AT STATION, 3, WHICH IS AN ANTHLUS ••

STATIC TEMP.	22 22 22 22 22 22 22 22 22 22 22 22 22
STATIC PRESS. Kg.m.2	886592 3 866592 3 86659 2 86659 2 86659 3 86669 6 86669 6 8674 8 874 >8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
TOTAL TEMP. (Deg.K.)	2888.17 2888.17 2888.17 2888.17 2888.17 2888.17 2888.17 2888.17 2888.17
TOTAL PRESS. Kg/m^2	10130.0 10130.0 10130.0 10130.0 10130.0 10130.0 10130.0 10130.0
STREAM. CURV. (1./Cm.)	0.001 0.001 0.002 0.002 0.003 0.003 0.003
STREAM. SLOPE (Deg)	0 11 0 63 1 24 1 90 2 62 3 42 4 30 5 31 6 52 10 72
ABS.FLOW ANGLE (Deg)	
ABS. MACH NO.	0.4812 0.4799 0.4799 0.4768 0.4746 0.4718 0.4686 0.4650
ABS. VEL. (M/sec)	160.13 159.95 159.70 159.30 158.74 158.01 157.13 156.12 155.06 154.01
TANG. VEL. (M/sec)	
MERD. VEL. (M/sec)	160.13 159.95 159.70 159.30 158.01 157.13 156.12 155.06 155.06
AXIAL VEL. (M/sec)	160 . 12 159 . 94 159 . 94 159 . 21 158 . 57 156 . 69 155 . 45 152 . 47
AXIAL COORD. (Cm.) -13.000	13.000 13.000 13.000 13.000 13.000 13.000 13.000 13.000 13.000
STREAMLINE NO. RADIUS (Cm.) TIP 25.400	1 25,400 3 22,600 3 22,600 5 19,708 6 18,212 8 15,666 9 13,366 9 13,366 10 11,547 HVB 9,532

** VALUES OF PADAMETERS ON STREAMLINES AT STATION. 4. WHICH IS AN AUDULUS **

	1.1
STATIC TEMP. (Deg.K.)	273 66 273 59 273 65 273 65 274 98 274 63 275 09 275 91 PAGE NO
STATIC PRESS. Kg m ²	8456 84447 84447 8469 8469 8469 8611 8611 86611
TOTAL TEMP.	2888117 2888117 2888117 2888117 2888117 2888117 2888117 2888117
TOTAL PRESS. Kg·m ²	10130.0 10130.0 10130.0 10130.0 10130.0 10130.0 10130.0 10130.0 10130.0
STREAM. CURV.	-0.003 -0.001 -0.001 0.0003 0.0003 0.0003 0.0010 0.010
STREAM. SLOPE (Deg)	-0.35 0.58 0.58 1.50 2.48 3.33 4.68 7.28 10.20 11.32
ABS.FLOW ANGLE (Deg)	000000000000000000000000000000000000000
ABS. MACH NO.	0.5143 0.5159 0.5158 0.5146 0.5146 0.5030 0.4960 0.4872 0.4773
ABS. VEL. (M/Sec)	170.62 171.09 171.07 171.07 169.73 168.73 167.04 167.81 158.87
TANG. VEL. (M/sec)	000000000000000000000000000000000000000
MERD. VEL. (M/sec)	170.62 171.09 171.07 170.69 170.69 168.73 167.04 164.81 162.02 158.87
AXIAL VEL. (M/sec)	170.61 171.08 171.01 170.53 170.53 168.60 168.15 166.15 160.14 156.36
AXIAL COORD.	7.000 -7.000 -7.000 -7.000 -7.000 -7.000 -7.000 -7.000 -7.000
STREAMLINE NO. RADIUS	TIP 25 400 1 25 400 3 22 4078 3 22 1398 4 21.398 5 20.028 6 18 613 7 17.195 7 17.195 10 12.487 10 12.487 11 10.681 HUB 10.631

.. VALUES OF PARAMETERS ON STREAMLINES AT STATION, 5, WHICH IS AN AURULUS ..

	.4	
STATIC TEME.	271 42 271 47 271 39 271 39 271 59 272 37 273 16 274 21 274 21 275 27	TEMP (Deg.K.) 269.52 268.36 267.75 267.31 267.31 267.31 267.37 267.37
STATIC PRESS. Kg·m^2	9210.6 9222.3 9226.0 9216.0 9218.9 9235.4 9235.4 9318.0 8318.0 8318.1 8318.1	STATI: PRESS: Kg:m.2 8017.8 8017.9 7835.8 7790.9 7796.4 7853.7 7965.3
TOTAL TEMP. (Deg K.)	30.0 289.17 30.0 288.17 30.0 288.17 30.0 288.17 30.0 288.17 30.0 288.17 30.0 288.17 30.0 289.17 30.0 289.17	TOTAL TEME. (Deg.K.) 288.17 288.17 288.17 288.17 288.17 288.17 288.17 288.17 288.17
TOTAL PRESS. Kg m^2	10130 9 10130 9 10130 9 10130 9 10130 9 10130 0 10130 0 10130 0 10130 0	TOTAL FRESS. Kg'm'2 10130.0 10130.0 10130.0 10130.0 10130.0 10130.0
STREAM CURV.		STREAM CURV. (1. Cm.) -0.036 -0.012 -0.008 -0.0036 -0.0036 -0.008 -0.0098 -0.0098 -0.0036 -0.0036 -0.0036 -0.006
STREAM. SLOPE (Deg)	00 -0.31 0.004 00 0.36 0.002 00 2.45 -0.001 00 3.79 0.001 00 5.34 0.003 00 7.12 0.005 00 9.18 0.009 00 14.59 0.014 00 14.59 0.014 00 14.59 0.013 00 18.27 0.023 00 18.27 0.023	STREAM. SLOPE (Deg) -3.99 -2.08 -0.39 11.38 3.13 7.26 9.11 12.63 11.38 1
ABS.FLOW ANGLE (Deg)	0000000000	ABS.FLOW ANGLE (Deg) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
ABS. A	0.5548 0.5540 0.5551 0.5555 0.5546 0.5466 0.5380 0.5380 0.5040 0.5040	ABS MACH 110. 0.5876 0.6167 0.6223 0.6223 0.6220 0.6197 0.6197 0.6197
ABS. VEL. (M/sec)	183.29 0.00 183.29 0 183.37 0.00 183.04 0 183.37 0.00 183.37 0 183.49 0.00 183.37 0 182.36 0.00 183.22 0 180.72 0.00 182.22 0 180.72 0.00 180.72 0 178.03 0.00 178.03 0 167.36 0.00 167.36 0 154.84 0.00 154.84 0	ABS. VEL. (M/sec) 193.43 199.35 204.58 204.58 204.58 204.58 204.58 204.58
TANG. VEL. (M/sec)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	TANG. VEL. (M/sec.) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
MERD. VEL. (M/sec)		MERD. VEL. (M/sec) 193.43 199.35 204.06 204.06 204.28 203.28 203.28 198.99
AXIAL VEL. (M/sec)	183.28 183.28 183.32 183.32 182.82 181.92 179.32 175.76 175.06 147.03	AXIAL VEL. (M/sec) 192.96 192.96 192.02.37 204.01 204.26 204.26 201.65 198.65
AXIAL COORD.	13.000 13.000 13.000 13.000 13.000 13.000	AXIAL COORD. (Cm.) 0.949 0.943 0.943 0.943 0.774 0.774 0.704 0.774 0.626 0.626 0.371
STREAMLINE NO. RADIUS (Cm.)	TIP 25.398 1 25.368 3 22.843 4 21.570 6 18.982 7 17.652 8 16.285 9 14.861 10 13.347 11 11.669 HUB 11.669	STREAMLINE NO. RADIUS (Cm.) TIP 25.33 1 25.272 2 24.072 3 24.072 3 24.072 3 20.507 6 19.308 7 18.092 8 16.852 9 15.573

	LAYOUT CONE ANG E (Deg)	; ;	0.4	יטי	Ŋ	C	ω	u.	G.	1 5	14,49 12,17			L.E.EDGE CIR.CENT	<u>.</u> .	1631 9	\$ 10 C	0.040.0	-0.0459	6.04.3	.6.0479	-0.0539	7 00 0	-9.1012	-0.0825	: T		ATIC EMP.		•	. 0	· cc		r-	~	S.	۽ ڪ	n, c	99.		DEGREE
	SECMENT IN/OUT C TURIL. PATE	0	0.2599			٠,	ς.	ς.	C .	0			******	MIN.CHK. PT.LOC.IN	COV. CHAN	5000	0000	0000	0000	0000	0000	0000	0000	0.0000	. 0000	É		STATIC STA PRESS. TE	:De	,	· · · cc	'n	2	o,	_	~ì.	٠,	۰ ح	11353.1 309.		SHOCK
t = 0 0 0 0	TRAN.PT. LOCATION CHORD	۲	. 69	99	9.	. 52	9.	5.	ω (••••••••••••••••••••••••••••••••••••	7	0,3609 5,3009		I	AREA		0	0	¢	C	0	2 0	0	0	0.0528	0	IPPMBER, 1			eg . K . ı	40,65	38.08	36.26	34.85	34.37	33.92	7	17.11	333.12 119	33.16		SSOT NC
19139 G	MAX. TH PT. LOC. CHORD			٠.	٠,٠		J) 1	41.6	יינ	٠,٠	5,5009 6,5009		* 1	AS FRACT	כ	. 319	370	414	658	200	597	637	.682	0.7295	7	I OF POTOR		PRESS.	_	54.7	64.7	54.7	54.7	C- E-	· ·	. 4	7	16264.7	7.4.7		DIFFUSION
9.918	MAX.TH. CHORD	0.0330	. 0.0377	0.0423	0.0470	0.0516	0.0563	0 0611	6000	60.0.0	9.0817		fa1	AS FRACT		w.	Ψ.			. 9	. 7	Τ.	Υ.	0.2705		THE OUTLET	CTDEAM	CURV	(TE) (TE)									-0.026			HEAD ADTAB
99 21.29	L.E.RAD.										0 0055		AYOUT CON	AT SHOCK		1.4807	1.4632	1.4166	1.3372	1.2994	1.2630	1.2289	1.2018	1.1434))) ,	WHICH IS	OW STREAM	E SLOPE	(634)	٠,	-,	۰,	٦ ,	4	• •	60	10	3 12.07	14		IDEAL
5842 9	FLOW COEF.	•	4	죠.	٠,٠	7 5	. ~	. 4	4	4	0.4199		181 050	S.S.CAM		S.	4.	` "		9.1	0.0	6	2.5	13.68		SIATION, 7.	ABS. FL	NO. ANGLE		~	39.2	4.00	6 6	41.8	42.8	43.9	45.3	46.5	7.		FLOW HEAD
92.39 0.	WHEEL SPEED (M/sec)	426.08	405.86	385.81	365.81	125 51	305.03	284.13	262.56	240.00	216.00		7	E ANGLE		96	ָ הַ		53.	20	47	£.	2 6	25.75	Ē	₹	S. ABS.	7		0	5 C	0	0	0	Ö	0					
9.00 19	REL.MACH NUMBER		1.3765										DE TRAN. PT	BL. ANGLE	ı	63.03	0 C C C C C C C C C C C C C C C C C C C	55.54	52.75	49.81	46.77	43.49	35.50	31.99	CTREAM! THE			VEL. VEL. (M/sec) (M/sec	į	196.78	2 60	98	28	£ ;	17	D 4	2 a	0 0	;		FEL. MACH WHEEL
92.39		467.93	52.18	10.07	01.74	84.32	66.56	48.35	29.45	85.60	89.26					63.03	. 6	2 6	54.	52.	20	8 4	4	41.	PARAMETERS ON			(M/sec) (M/	;	74 124	55 125	47 127	.22 133	38 139	46 146	101	54 175	00 189		į	
1 76.97	EL. G.VEL. /sec)	26.08	92.86	20.02	45.74	25.53	05.03	34.13	52.56	00 . 01	16.00	- 7	a .:	E ANGLE (Deg)		63.03	8.6	26	20	52		4	43	41	SOF			(M/sec) (M/		67 151	. 55 152	. 42 153	.02 154	.90 155	151 55	18 162	86 166	71 172			
9.009 -9.993	FLOW TA	65.58	9 6		9	6	۳ ج	رة 2	4	3	1 2	5	2 .	GLE ANGLE		.55 0.00		0			• •		0	0	VALUE		XIAL	G. F.	1 4 6	.240 151	. 291	363	456	255	772	901	050	174 1	. 192	C. FLOW RET	•
12.812 12.667	MLINE /RTIP	9974	9031	8563	8093	7620	7140	6651	6146	5618	0.5056 0.4999	•		NO. PCT. ANGLI PASS. (Deg)		9.99	9.37	74	.13	V V	6.97	7.07	7.63	3.85			~ ((Cm.)	, ,		<u> </u>	m	~ (~ ~	, ~	~	7	4	4	EAML INE REI	
11 HUB	DC - D.										11 HUB		STRE	O X		7	m	~ ′	л ч	۰,	- 60	0	01	1	i		STREA NO. R	TIP		7	~ i	.		7 6	8	9 1(10	11		STREAM	

	L.E.EDGE CIR.CENT R*D0 DR	6,0280 6,0380 6,045 6,045 6,045 6,045 6,045 6,045 6,045 6,041 6,113 6,113 6,113	KPIC William on Tricks William	DEGREE REACTION 0.1372 0.1508 0.1628 0.1746 0.1904 0.2065
	MIN.CHE. I	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	STATIC STATIC FRESS. TEMP. Kg/m^2 (Deg.K.) 4019.5 328.01 3964.9 323.33 3964.9 323.33 3964.9 321.12 3963.7 321.12 3863.7 321.12 3863.7 321.12 3864.3 326.65 3877.1 319.53 3567.2 319.53	AERO. D CHORD. RE (Cm.) 4.1804 0 4.1807 0 4.1815 0 4.1845 0 4.1841 0.4.1841
	MIN.CHK.	0.3247 0.265916 0.2659 0.2457 0.2255 0.2046 0.11812 0.1570 0.1047 0.0782	TOTAL ST TOTAL ST TEMF. Kg 3340.55 140 3340.55 139 334.36 139 334.39 139 333.51 138 333.51 138 333.51 138	ELEMENT SOLIDITY 1.2741 1.3302 1.4548 1.5249 1.6015 1.6856
	COV.CHAIL.	0.5417 0.5853 0.6140 0.6309 0.6485 0.6485 0.6485 0.6485 0.6828 0.6828	TOTAL PRESS. Kg/m^2 (15990.6 16012.1 16022.1 16028.1 16028.1 15998.3 15998.3 15944.2 15944.2	SHOCK LOSS COEF. 0.0000 0.0000 0.0000 0.0000
1.38 2.52 2.52 3.15 3.88 4.64 5.51 7.51	SH.LOC. AS FRACT OF S.S.	0.3298 0.3148 0.3032 0.2932 0.2879 0.2824 0.2762 0.2762 0.25701 0.2557 0.2557 0.2557	STREAM. CURV. (1./Cm.) -0.008 -0.008 -0.009 -0.011 -0.014 -0.014 -0.018	STATOR LOSS COEF. 0.0888 0.0730 0.0735 0.06826 0.06826
000000000000000000000000000000000000000	LAYOUT CONE . MACH NO AT SHOCK LOCATION	0.7137 0.7187 0.7188 0.7268 0.7418 0.7773 0.7773 0.8263 0.8563	STREAM. STREAM. SLOPE SLOPE 1.049 0.13 0.134 0.2.28 0.2.28 0.3.07 0.3.07	DIFFUSION FACTOR 1 0.4509 0.4402 0.4345 0.4309 0.4416
0 . 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1st SEG. S.S.CAM. (Deg)	16.56 15.50 14.95 14.91 15.23 15.23 15.23 15.43 16.43	S. ABS.FLOW ANGLE (Deg) 1372 0.00 1475 0.00 1475 0.00 1475 0.00 1571 0.00 1571 0.00 1582 0.00 622 0.00	STAGE DAD.EFF. 0.7648 0.8068 0.8647 0.8731 0.8786
0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000	BLD.SET E ANGLE (Deg)	12.70 14.09 14.09 14.93 114.93 115.51 116.08 116.75 117.66 118.51	MAM 00000000000000000000000000000000000	TAGE .RATIO .5785 .5807 .5816 .5818 .5793
0.0710 0.0729 0.0749 0.0769 0.0888 0.0826 0.0845	++++++++++ DE TRAN. PT. BL. ANGLE (Deg)	20.86 20.92 21.12 21.13 21.36 21.36 22.64 23.33 24.13 25.26 26.34 27.62	MG. ABS. TL. VEL. Sec.) (M/Sec.)	TATOR RATIO .9832 .9845 .9855 .9856 .9816
0.0078 0.0086 0.0094 0.0102 0.0109 0.0117 0.0125 0.0132	IN.BLA ANGLE (Deg)	32.54 31.55 31.22 31.29 32.09 32.98 34.88 34.88 37.81 39.59	The control of the co	1DEAL HEAD S COEF. PO 0.2889 0 0.2748 0 0.2570 0 0.2518 0 0.2518 0
999 777 733 735 77	EAMLINE T. IN. BLADE ANGLE (Deg)	32.55 31.56 31.56 31.36 32.11 32.95 34.91 36.38 37.83 39.60		AAD EF. 210 220 221 221 221 201
3827 3908 3908 3936 4010 40010 40014 4001 4001 4001 4001	INLET STREAL S.S.INC. E ANGLE	99 0.00 6 0.00 77 0.00 7 0.00 6 0.00 6 0.00 4 0.00 9 0.00 0F PARAMET	AL AXIAL PED. VEL	LOW HE CO. 23715 0.22 3774 0.22 3820 0.22 3836 0.22 3836 0.22 3836 0.22 3850
1119 0 1707 9 1300 0 1300 0 1495 0 1702 0 1702 0 1702 0 1856 0	INC ANGL (Deg	179 6.0 27 6.1 20 6.1 20 6.1 76 6.1 76 6.1 11 6.1 65 6.0	NE AXIAL COORD. (US COORD.) (Cm.) (C	000000
3 0 9 8 0 0 1 1 1 0 0 5 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0	STREAMLINE NO PCT. PASS.	1 0 2 111 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	STREAMLINE NO. RADIUS (10.6) TIP 25.146 2 24.038 3 23.040 4 22.032 5 21.050 6 20.080 7 19.120 8 18.173 9 17.238 11.15.388 HUB 15.258	STREAMLINE NO. R/RTIP 1 0.9968 2 0.9559 3 0.9157 4 0.9157 5 0.7985 7 0.7604

· VALUES OF PARAMETERS ON STREAMLINES AT STATION, 19, VALUE IS AN AUPHIUS **

STATIC TEMP. (Deg.K.)	326.69 324.33 324.33 321.18 320.68 320.68 319.55 319.53 320.47
STATIC PRESS. Kg m ²	13822.6 13849.2 13849.1 13849.1 13846.1 13836.7 13760.9 1377.2 13705.5
TOTAL TEMP.	340.55 338.05 334.26 334.86 334.93 333.43 333.43 333.43 333.44
TOTAL PRESS Kg/m/2	15990.6 16012.3 16022.1 16023.9 16023.9 1598.3 15920.9 15844.2 15700.8
STREAM. CURV.	0.010 0.003 0.003 0.004 0.004 0.005 0.007 0.007
STREAM. SLOPE (Deg)	-0.65 -0.18 0.22 0.56 0.84 1.17 1.19 1.04 1.04
ABS.FLOW ANGLE (Deg)	
ABS. A	0.4609 0.4601 0.4618 0.4618 0.4627 0.4627 0.4622 0.4561 0.4561
ABS. VEL. (M/sec)	166.95 166.07 165.78 165.87 165.97 165.69 165.69 163.22 163.51 159.63
TANG. VEL. (M/sec)	
MERD. VEL. (M/sec)	166.95 166.07 165.78 165.87 165.69 165.69 165.22 165.22 165.23
AXIAL VEL. (M/sec)	166.93 166.07 165.78 165.86 165.86 165.66 165.18 165.18 165.18
AXIAL COORD.	14.000 14.000 14.000 14.000 14.000 14.000 14.000 14.000 14.000 14.000
STREAMLINE NO. RADIUS	TIP 25.146 1 25.026 2 24.032 3 23.046 4 22.071 5 21.106 6 21.106 6 11.15.428 HVB 15.232

** VALUES OF PARAMETERS ON STREAMLINES AT STATION. 11, MAICH IS AN AURULUS **

STATIC TEMP. (Deg.K.)
STATIC PRESS. Kg/m^2
TOTAL TEMP. (Deg.K.)
TOTAL PRESS. Kg/m^2
STREAM. CURV.
STREAM. SLOPE (Deg)
ABS.FLOW S' ANGLE (Deg)
ABS. MACH NO.
ABS. VEL. (M/sec)
TANG. VEL. (M/sec)
MERD. VEL. (M/sec)
AXIAL VEL. (M/sec)
AXIAL COORD. (Cm.)
STREAMLINE NO. RADIUS (Cm.)

	r.
22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.	PAGE NO.
13512 7 13806 2 13806 2 13804 2 13796 8 13790 2 13790 2 13782 6	
30 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
15990 6 16022 1 16023 1 16023 9 15998 3 15964 1 15926 1 1590 8 15700 8	
0.001 0.001 0.001 0.001 0.001 0.001 0.001	
0 22 0 14 0 114 0 116 0 118 0 117 0 117	
0 4621 0 4661 0 4661 0 4661 0 4667 0 4667 0 4617 0 4857 0 4895	
167.36 167.69 167.69 167.66 167.66 167.66 167.65 167.65 167.65	
167 .36 167 .69 167 .69 167 .65 166 .66 165 .52 164 .04 161 .25 156 .36	
167.36 167.69 167.69 167.66 167.42 166.66 165.52 164.03 161.25	
18 000 18 000 18 000 18 000 18 000 18 000 18 000 18 000 18 000	
1 25.026 24.037 3 23.060 4 22.095 5 21.138 6 20.189 7 19.243 8 18.303 9 17.362 11 10 16.410 11 15.249	_

•• VALUES OF PARAMETERS ON STREAMLINES AT STATION, 12. WHICH IS AN ANTULUS ••

		<u> </u>
STATIC TEMP.	326 58 324 0 58 322 27 320 89 320 46 320 46 319 76 320 90 321 99	PAGE 110
STATIC PRESS. Kg/m^2	13812.0 13809.9 13806.2 13803.6 13796.8 13796.4 13790.4 13790.4	
TOTAL TEMF. (Deg.K.)	33 2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	PPM
TOTAL PRESS. Kg/m^2	15990.6 16012.3 16022.1 16023.9 15998.3 15964.1 15920.9 15700.8	16100.0,
STREAM. CURV. (1./Cm.)	000000000000000000000000000000000000000	SPEED OF,
STREAM. SLOPE (Deg)	-0.13 -0.13 -0.14 -0.16 -0.19 -0.17 -0.17	
ABS.FLOW ANGLE (Deg)		FOR A ROTATIONAL
ABS.	0.4621 0.4647 0.4661 0.4667 0.4667 0.4617 0.4577 0.4595 0.4195	PARAMETERS FO
ABS. VEL. (M/sec)	167.38 167.69 167.69 167.68 167.45 166.53 164.03 164.03 161.23 156.34	DESIGN PAR
TANG. VEL. (M/sec)	000000000000000000000000000000000000000	COMPRESSOR DE
MERD. VEL. (M/sec)	167.38 167.65 167.69 167.69 167.68 166.68 165.53 164.03 161.23 150.14	сомритер сомв
AXIAL VEL. (M/Sec)	167.38 167.65 167.69 167.68 166.68 166.68 164.03 164.03	••• COMP
AXIAL COORD. (Cm.) 23.000	23 .000 23 .000 23 .000 23 .000 23 .000 23 .000 23 .000 23 .000	
STREAMLINE NO. RADIUS (Cm.) TIP 25.146	1 25.026 2 24.037 3 22.060 4 22.095 5 21.138 6 20.189 7 19.28 18.303 10 16.411 11 15.436 HUB 15.240	•

^{**} THE CORRECTED WEIGHTFLOW PER UNIT OF CASING ANNULAR AREA AT THE INLET FACE OF THE FIRST BLADE ROW IN 18 19 KG SET H**

•• MASS AVERAGED ROTOR AND STAGE AERODYNAMIC PARAMETERS ••

451251	(KR)	1387.
TOR, UE	(M-Kg)	93.93
GAS BENDING MOMENTS FOR EACH BLADE FOR, AX. TANG.	(M-Kg)	-0.586
GAS BENDI FOR EAC FOR, AX.	(M-Kg)	0.862
FOR. AX SHAFT THRUST	(Kg)	448.10
ASPECT RATIO		2.54
FOLY		0.8980
ADIA. EFF.		0.8910
TOTAL TEMP. RATIO		1.1626 1.1626
TOTAL PRESS RATIO		1.6056
ID. HEAD COEF.		0.2579
HEAD COEF.		0.2195
FLOW COEF.		0.3906
GE BLADE O. TYPE	2000	STATOR
STAGE NO.	-	

^{**} CUMULATIVE SUMS OF MASS AVERAGED ROTOR AND STAGE AEPODYDAMIC PARAMETERS **

FRACT	943
POWER	(Kw)
TORQUE	(M-Kg)
FOR. AX. SHAFT THRUST	(Kg)
POLY. EFF.	
ADIA. EFF	
IDEAL HEAD COEF.	
HEAD COEF.	
TOTAL TEMP. RATIO	
TOTAL PRESS. RATIO	
TOTAL TEMP.	
TOTAL PRESS.	
WEIGHT FLOW (KG/SEC)	
STAGE BLADE NO. TYPE (R	

0.8910 0.8980 136.58 83.93 1387.77 1 0565 0.8512 0.8604 95.94				MOMENTS OF INERTIA IMAX SECTION SECTION THROUGH C.G. SETTING TORSION TWIST THROW THAY ANGLE CONSTANT STIFFNES	(Cm.) • 4 (Cm.) • 4 (DEG.) (Cm.) • 4 (Cm.) • 4 (0.00296	0,00082 0,774 62,798 0,00316 1,1203 0,00105 0,8261 60,590 0,00408 1,1927 0,00131 0,8742 59,133 0,00511 1,2558	O 3 COORDINATES SECTION NO. 4 COORD	HE T SH AH	0.0259 0.0259 0.0000 0.0258 0	0.0001 0.0517 0.0238 0.0001 0	-0.0047 0.0642 0.2000 -0.0059 0	-0.0097 0.0772 0.4009 9.5122 9	-0.0182 0.0993 0.8000 -0.0230 0	-0.021/ 0.1065 1.0000 0.0315 0	-0.0270 0.1232 1.4000 -0.0348 F	-0.0258 0.1288 1.8000 0.0393 -0.0300 0.1331 1.8000 0.0393	-0.0305 0.1364 2.0000 -0.0405 0	0.0295 0.1395 2.4000 0.0407	-0.02/9 0.1395 2.8000 -0.0397 -0.0252 0.1397 2.8000 -0.0380	-0.0233 0.1363 3.6000 -0.0354 3	0.0146 0.1299 3.4000 0.0283	-0.0102 0.1227 3.6000 -0.0243 0.0072 0.1144 3.8000 -0.0261	-0.0044 9.1034 4.0000 -0.0157	-0.0023 0.0903 4.2000 -0.0110 0.0063 0.0000 0.0063 0.0063	-0.0001 0.0571 4.6000 -0.0014	0.0000 0.0517 4.6577 0.0000	0.0002 0.0514 4.6595 0.0001 0.0515 0.0258 0.0258 0.0258	COTOR NO. 1	STACKING LINE IN COMPRESSOR = 2.050 Cm.	MOMENTS OF INERTIA IMAX SECTION SECTION THROUGH C.G. SETTING TORSION TWIST	*2 (Cm.)*4 (Cm.)*4 (DEG.) (Cm.)*4	18 0.00160 0.9214 58.000 0.0052 1.3172 51 0.00194 0.9693 56.681 0.00770 1.3772
.2579	Stage	IES OF	OF STAC	SECTION AREA	(Cm.)	0.5586 0.6035 0.6477	1401100	3 !			0.2000			1.200	1.400	1.600	2.000	2.400	2.600	3.000	3.400	3.600	4.000	4.200	4.600	4.65	4.6587	ĭ	OF	SECTION AREA	(C	0.69
0.2298 0 0.2195 0	n of NASA 2	SECTION PROPERT	LOCATION	ODE SECTION COORDINATES	(Cm.)	0.0470		COOKUINALES	(Cm.)	0.0519	0.0519	0.0724	0.0904	0.0979	0.1102	0.1150	0.1222	0.1264	0.1276	0.1284	0.1282	0.1234	0.1066	0.0935	0.0575	0.0516	0.0511	CTION PROPERT	AXIAL LOCATION	DE SECTION COORDINATES	H EO	40
1.1626	Redesign	BLADE SEC	AXIAL		- ••	2.3311	•	₹					-0.0154 -0.0196												0050	0000	0.0002	ADE SE	ΥX	C.G.	٦ <u>٩</u>	2.341
1.6056	First Stage	:	44.0	SECTION	ANGLE (DEG.)	62.449 60.416 59.065		ž		0244	2000	4000		0000	4000	6000	0000	4000	6000	0000	. 2000	.6000	0000	2000			4.6586	•	= 44.0	SECTION	ANGLE (DEG.)	57.994 56.717
298.17 335.02 335.02	-		BLADES .	G POINT	Ca.)	0.0028				519	1520	703	788 1864	1932	1044	1088	1157	1183	1219	1243	1248	1228	1164	0942	0778	0516	0.0510		F BLADES	ING POINT RDINATES	(CB.)	-0.0007 0.0017
10130.0 16264.7 15945.0			NUMBER OF	M IN		2.3176	0	COORD	_;	000	00	16	16	929	175	29	36	26	46	75	118	33	890	686	292	000	202	2	NUMBER OF	STACKI	· ·	2.3326
INLET 29.48 ROTOR 29.48 STATOR 29.48						2 25.150 3 24.400	•		я.) (Ся	0000 0.0 0246 0.0	0251 0.0	4000 -0.0	8000 -0.0	0000 -0.0	4000 -0.0	6000 -0.0	0000	4000 -0.0	6000 -0.09	0000	4000 -0.	.6000	.8000	.2000 0.	4000 0.	.6545 0.	4.6595 0.00	.0 0100.		LADE SE	NO. LOC.	5 22.900 6 22.150
		-	,	BI	NO																							1		E	_	

	100 2.3384 0.0092 NO. 5 CORDINATES (Cm.)
7.5.7.7 0.0954 33.2 0.1075 33.9 0.1075 45.7 0.1346 55.48 0.1406 604 0.1466 60.1 0.1450 60.1 0.1455 61.9 0.1495 61.9 0.1495 61.9 0.1454 61.1 0.1284 44.7 0.1199	0.0231 0.0920 0.6000 -0.0257 0.0917 0.0917 0.0010 -0.0357 0.0357 0.0954 0.6000 -0.0357 0.0357 0.0954 0.6000 -0.0357 0.0357 0.0057 0.0010 -0.0357 0.0357 0.0010 -0.0357 0.0357 0.0010 -0.0357 0.0357 0.0354 0.0358 0.0357 0.0358 0.
6 CORDINATE F CORDINATE HP HS CCM. 1 CORDINATE HS CCM. 2 CORDINATE CO	Company Comp
6 COORDINATES HP HS (Cm.) (Cm.) (Cm.) (Cm.) (Cm.) (Cm.) (Cm.) (Cm.) (Cm.) (Cm.) (Cm.) (Cm.) (Cm.) (Cm.) (Cm.) (Cm.) (Cm.) (Cm.) (Cols (Col	100 2.3184 0.0092 55.198 2.3438 0.000 2.3418 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0006 0.000
HP HP HP HP HP HP HP HP HP HP HP HP HP H	100 2.384 0.0092 55.198 2.3464 2.3413 0.0204 53.464 2.3414 0.0204 53.464 2.3414 0.0204 53.464 2.3414 0.0204 53.464 2.3414 0.0258 0.0000 0.0258 0.0000 0.0258 0.0001 0.0218 0.0000 0.0218 0.0000 0.0218 0.0000 0.0218 0.0000 0.0218 0.0000 0.0218 0.0000 0.0218 0.0000 0.0218 0.0000 0.0218 0.0200 0.0218 0.0200 0.0218 0.0228 0.0020 0.0228 0.0228 0.0228 0.0020 0.0228 0.0020 0.0228 0.0020 0.0228 0.0020 0.0228 0.0020 0.00218 0.00218 0.00218 0.0020 0.00218 0.0020 0.00218 0.0020 0.00218 0.00218 0.0020 0.00218 0.0020 0.00218 0.0020 0.00218 0.0020 0.00218 0.0020 0.00218 0.0020 0.00218 0.0020 0.00218 0.0020 0.00218 0.0020
	100 2.3384 0.0092 55.15 100 2.3413 0.0294 53.46 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10
	NO. 5 HP (Cm.) 0 0.005 0.00
13184 0.0 1413 1.0 15184 1.0 15184 1.0 15184 1.0 15186 1	20 00000000000000000000000000000000000

8			
0.2697 0.2822 0.2822 0.2831 0.2831 0.2751 0.2751 0.2751 0.2751 0.2750 0.2750 0.1868 0.1868 0.1868 0.1868 0.1868 0.0631 0.0530 0.0583		SECTION TWIST STIFFHESS (Cm.)*6 1 29855 1 98593 1 98082	HS 0.0501 0.0501 0.0501 0.0501 0.1110 0.2541 0.3531 0.31111 0.5460 0.5022 0.5437 0.5428 0.5428 0.4629 0.4629 0.4629 0.4629 0.4629 0.4629 0.4629 0.4629
0.0005	EO.	SECTION TORSION CONSTANT (Cm.) '4 0.02367 0.02721 0.03094	HF (CM.) 0.00157 0.00175 0.00227 0.0727 0.0727 0.1289 0.1289 0.1573 0.1573 0.1681 0.1675 0.1675 0.1681 0.1675 0.1681 0.1682 0.1683
1.0000 2.2000 2.2000 2.2000 2.2000 3.2000 3.2000 3.2000 4.2000 4.2000 4.2000 4.6497 4.6497 4.6497		IMAX CETTING ANGLE (DEG.) 42.857 42.857 39.900 32.769	10 mm) 1
2495 2465 2497 2497 2488 2248 2248 2234 2234 2234 2234 2234	COMPRESSOR	DE INERTIA SH C.G. IMAX (Cm.) *4 1.3609 1.4688	URA IES (Cm.) 0.0257 0.0257 0.0257 0.1085 0.1085 0.1085 0.3125 0.3125 0.3125 0.3125 0.4093 0.4093 0.4574 0.4574 0.4597 0.4195 0.3926 0.3926 0.2674 0.0677
0.0004 0.	стие ти	MOMENTS OF THROUGH IMIN (Cm.) *4 0.00724 0.00246	7. 15 COOR (Cm.) 0.0257 0.0010 0.0010 0.0014 0.0022 0.0022 0.0922 0.0922 0.0922 0.1133 0.1135 0.1192 0.1192 0.1192 0.1192 0.1193 0.1193 0.1194 0.1194 0.0194
1.8000 2.2000 2.2000 2.4000 3.4000 3.4000 3.4000 4.4000 4.6000 4.6000 4.6000 4.6000 4.6000	OF STAC	SECTION APEA (Cm.)*2 1.0509 1.0993 1.1461	SECTION IN CLEAN CONTRACT OF C
0.2141 0.22194 0.2226 0.2229 0.2208 0.2208 0.1868 0.1968 0.1911 0.1134 0.0662 0.0662 0.0662	CATI	ADE SECTION COORDINATES H (Cm.) (Cm.) (20 0.1361 445 0.1758 63 0.2307	COORDINATES HS HS (Cm.) 57 0.0257 0.0254 68 0.0985 42 0.1472 112 0.1311 0.2668 139 0.3446 139 0.3446 139 0.3446 139 0.3446 139 0.3446 139 0.3446 139 0.3446 139 0.3446 139 0.3557 0.3819
0.0422 0.0441 0.0441 0.0462 0.04647 0.04647 0.0442 0.0442 0.0387 0.0387 0.0183 0.0183 0.01083 0.0009	BLADE SEC	C BI C C C C C C C C C C C C C C C C C C C	H H H H H H H H H H H H H H H H H H H
2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	44.0	SECTION SETTING ANGLE (DEG.) 42.791 39.695 36.154	ECTION NO Complex (Cm.) Comple
927 1974 1997 1997 1980 1981 1981 1881 1881 1879 1179 1036 1036 0520 0520	OF BLADES	(5 ⊷	ADINATES HS (Cm.) (Cm.) (Cm.) (0.051) 0.0520 0.0520 0.0520 0.1317 0.188 0.275
0503 0525 0539 0539 0549 0549 06496 06496 06496 06496 06496 06499 0649 064	BER	STACI STACI CO L (Cm.) 2.353 2.353	13 COOI HP CCM.) 1.0257 1.0257 1.00257 1.00257 1.00257 1.0005
1 8000 -0.2 2000 -0.2 2000 -0.2 2000 -0.2 2000 -0.3 3.0000 -0.3 3.0000 -0.3 3.6000 -0.3 4.0000 -0.4 4.0000 -0.4 6.6565 0 0		LADE SECTION RAD. NO. (Cm.) (Cm.) 13 16.900 14 16.150 15 15.450	DECTION NO. (Cm.)

::

0.0269 0.0269 4.6450 0.0271 9.0271 BLADE SECTION PROPERTIES OF POTCE NO. 1 ** 0.0265 9.0265 6794

SECTION SECTION TORSION TWIST CONSTANT STIFFUESS (Cm.)*4 (Cm.)*6 0.04081 2.05619 0.04715 2.11293 0.0546 2.16636 0.04754 3.11490 2 € COORDINATES

HS

(Cm.)
(59 6.0259
22 6.0494
03 6.6571 SECTION NO. 25 L HF IMAX SETTING ANGLE (DEG.) 28.987 25.513 22.517 2.55 L L (Cm.) 10.0000 0.0156 0.015 NO. 1 IN THE TURBOMACHINE ORIENTATION H MOMENTS OF INERTIA THROUGH C.G. IMIN IMAX (Cm.) *4 (Cm.) *4 0.0223 1.5263 4 0.03281 1.6673 7 0.0289 1.5808 AXIAL LOCATION OF STACKING LINE IN COMFRESSOR SECTION NO. 19 COORDINATES

(Cm.) (Cm.) (Cm.)
0.0015 0.0254 0.0261
0.0151 0.0254 0.0496
0.0151 0.0254 0.0496
0.0150 0.0307 0.0385 0.2475
0.6000 0.1319 0.3361
0.6000 0.1319 0.3361
0.6000 0.273 0.4156
1.2000 0.2371 0.466
1.8000 0.273 0.466
1.8000 0.273 0.6426
1.8000 0.273 0.4361
1.8000 0.273 0.4361
1.8000 0.273 0.6620
2.2000 0.373 0.6620
2.4000 0.3147 0.732
2.4000 0.3167 0.6929
3.4000 0.2569 0.6520
3.4000 0.2569 0.6520
3.4000 0.1923 0.4904
4.2000 0.1492 0.3998
4.2000 0.1492 0.3998
4.2000 0.1492 0.3988
4.2000 0.1492 0.3988
4.2000 0.0366 0.1560
4.5247 0.00556 SECTION AREA (Cm.)*2 1.2563 1.3154 1.3714 1.3187 ELADE SECTION
C.G. COORDINATES
H
(Cm.) (Cm.)
2.3611 0.3417
2.3633 0.3860
2.3634 0.3881 18 COORDINATES
HP
HS
CM.)
(CM.)
(1.025) (CM.)
(1.025) (0.025)
(1.025) (0.0496
(1.0021) (0.0496
(1.0021) (0.0496
(1.0021) (0.0496
(1.0021) (0.0496
(1.0021) (0.0496
(1.0021) (0.0496
(1.0021) (0.0496
(1.0021) (0.0496
(1.0021) (0.0496
(1.0021) (0.0496
(1.0021) (0.0496
(1.0021) (0.0496
(1.0021) (0.0496
(1.0021) (0.0497
(0.0491) (0.0297
(0.0491) (0.0297
(0.0491) (0.0297
(0.0491) (0.0297)
(0.0491) (0.0297
(0.0491) (0.0297
(0.0491) (0.0297
(0.0491) (0.0297
(0.0491) (0.0297
(0.0491) (0.0297
(0.0491) (0.0297
(0.0491) (0.0297
(0.0491) (0.0297
(0.0491) (0.0297
(0.0491) (0.0297
(0.0250) (0.0250
(0.0250) (0.0250
(0.0250) (0.0250
(0.0250) (0.0250
(0.0250) (0.0250
(0.0250) (0.0250
(0.0250) (0.0250
(0.0250) (0.0250
(0.0250) (0.0250
(0.0250) (0.0250
(0.0250) (0.0250
(0.0250) (0.0250
(0.0250) (0.0250) (0.0250
(0.0250) (0.0250) (0.0250
(0.0250) (0. (Cm.) 0.0259 0.0021 0.00319 0.0379 0.0792 0.1516 0.2824 0.2824 0.2824 0.2824 0.2894 0.2893 0.2863 0.2756 SECTION COORDINATES SECTION NO. SECTION SETTING ANGLE (DEG.) 28.390 24.867 21.826 24.683 CGM.)
0.0156
0.0156
0.0298
0.0298
0.02000
0.4000
1.0000
1.0000
2.0000
2.4000
2.4000
3.0000
3.0000
3.0000
4.2000
4.5574
4.5574 STACKING POINT
COORDINATES
L
H
(Cm.) (Cm.)
2.3621 0.3387
2.3634 0.4177
2.3634 0.3859 NUMBER OF BLADES COORDINATES HS (Cm.) 0.0498 0.0498 0.0555 0.1314 0.2868 0.2868 0.4645 0.5096 0.5096 0.5997 0.6217 0.5297 0.5297 0.5297 0.5297 0.5297 0.5297 (Cm.) 0.0258 0.0258 0.0309 0.0309 0.1246 0.1346 0.1334 0.2233 0.2 SECTION NO. 17 L HP SECTION RAD. LOC. (Cm.) 14.050 13.350 12.600 13.310 CGT.)
0.000.0
0.0165
0.0288
0.0288
0.0288
0.0288
0.04000
0.4000
0.4000
0.4000
0.4000
0.4000
0.4000
0.4000
0.4000
0.4000
0.4000
0.4000
0.4000
0.4000
0.4000
0.4000
0.4000 17 18 19 20

SECTION 3 FOR XCUT OF 24.4000 Cm. SUCTION SURFACE PRESSURE SURFACE (Cm.) (Cm.) (Cm.)	-1.1785 -1.9769 -1.1329 -2.0013 -1.1386 -1.8931 -1.0850 -1.9221 -1.0783 -1.7675 -1.0133 -1.8031 -0.9970 -1.6005 -0.9179 -1.6442 -0.7684 -1.1437 -0.6574 -1.2061 -0.6406 -0.8960 -0.5166 -0.9663 -0.5107 -0.6494 -0.3766 -0.7559
SECTION 2 FOR XCUT OF 25.1500 Cm. SUCTION SURFACE PRESSURE SURFACE Z Y Z (Cm.) (Cm.) (Cm.)	-1.1089 -2.0079 -1.0626 -2.0313 -1.0708 -1.9233 -1.0173 -1.9505 -1.0133 -1.7964 -0.9495 -1.6572 -0.9359 -1.6275 -0.8595 -1.6672 -0.7191 -1.1648 -0.7476 -1.204 -0.5984 -0.9136 -0.4761 -0.7305
SECTION 1 FOR XCUT OF 25. SUCTION SURFACE PRESSURE Z Y Z (Cm.) (Cm.) (Cm.)	-1.082 -1.9330 -0.9946 -1.0409 -1.0482 -1.9330 -0.9946 -1.9597 -0.915 -1.8057 -0.9280 -1.8377 -0.8190 -1.4249 -0.8395 -1.6749 -0.7021 -1.1719 -0.5988 -1.2255 -0.5837 -0.9195 -0.4692 -0.9794 -0.4640 -0.6677 -0.3409 -0.7326
FRACT OF SURF.	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

3

P.O.TOR

Q.

	60 60	
-6.4849 -6.2433 -0.2011 -0.2011 0.4853 0.7295 0.7295 1.2178 1.2178 1.86432 1.9452	-1.9879 2.0384 FAGE NO.	
0.2377 0.0599 0.1723 0.1053 0.3069 0.4392 0.5712 0.7040 0.9496 1.0977 1.1077	.1.1551	
0.0842 0.0842 0.0842 0.0842 0.0868 0.0868 1.0868 1.0838 1.0838 1.0838 1.0838 1.0838 1.0838		:. No
-0 3788 -0 24489 -0 1093 0 10282 0 3079 0 4570 0 7467 0 7467 0 10568 1 10568		ORIENTATION
-0.4846 -9.23749 0.00944 0.5565 0.7565 11.0066 11.5029 11.99204 2.0727	-2.0186 2.0856	1 IN THE TURBOMACHINE
-0.2209 -0.0924 0.0346 0.2835 0.4835 0.5256 0.7484 0.7439 0.9677	-1.0852 1.0563	IN THE TU
0.4132 0.0842 0.3320 0.3320 0.82592 1.0717 1.5147 1.5545 2.1003		ROTOR NO. 1
0.3524 -0.1010 -0.1010 0.0263 0.1545 0.2483 0.5488 0.5488 0.9884 0.9841		NATES OF R
-0.4851 -0.2359 0.2623 0.2623 0.5132 0.5132 1.0175 1.1 2685 1.1 5174 1.1 7233 1.8868 2.0088	-2.0284 2.1025	BLADE SECTION COORDINATES OF
-0.2141 -0.0997 -0.0997 0.1568 0.2765 0.3941 0.5102 0.8518 0.8518		BLADE SECT
-0.4165 -0.1659 -0.0842 0.3338 0.5830 0.5830 0.5830 1.3256 1.3256 1.3256 1.3256 1.3256 1.3256 1.3256 2.3200 2.3200		:
0.34430 0.02980 0.1502 0.1502 0.2748 0.4006 0.5315 0.6880 0.9831	LE CENTER	
00000000000000000000000000000000000000	L.E. CIRCLE T.E. CIRCLE	

XCUT OF 22.1500 Cm. PRESSURE SURFACE 2 Y (Cm.) (Cm.)	-1.2669 -1.9329 -1.2124 -1.8581 -1.0225 -1.5957 -0.8778 -1.4075 -0.5773 -1.806 -0.5773 -1.806 -0.5739 -0.9529 -0.4599 -0.9529 -0.0551 -0.4941 -0.0578 -0.5312 0.0560 -0.0312 0.0560 -0.0312 0.0571 -0.031	1.2535 1.9536 PASE NO
6 FOR XCUT O RFACE PRE Y (Cm.) (C	-1,9053 -1,2669 -1,8238 -1,2124 -1,5397 -1,0225 -1,3379 -0,8878 -1,0970 -0,5279 -0,6195 -0,4599 -0,1479 -0,0570 0,0857 -0,2531 -0,1479 -0,0560 0,0857 -0,5087 0,0857 -0,5087 0,0857 -0,5087 1,0043 -0,5087 1,2298 -0,5087 1,453 -0,458 1,453 -1,0643 1,453 -1,0643 1,649 -1,283 1,969 -1,283	1
SECTION 6 FOR SUCTION SURFACE Z Y (Cm.)	-1.3104 -1.12664 -1.1099 -0.957 -0.957 -0.7269 -0.1208	
.9000 Cm. E SURFACE Y (Cm.)	1 9567 1 8805 1 659 1 6129 1 1 6129 1 1 900 1 1 900 1 1 900 1 1 6103 1 1 9722	1.9849
XCUT OF 22.9000 Cm. PRESSURE SURFACE Z Y (Cm.) (Cm.)		1.2094
SECTION 5 FOR SUCTION SURFACE Y (Cm.)	-1.9302 -1.8480 -1.8480 -1.5612 -1.5512 -1.3574 -0.6308 -0.6308 -0.3911 6.0.1529 0.0.391 1.0180 1.1.2475 1.1.2475 1.1.6640 3.1.9260 -1.9260 -1.9260 -1.9260 -1.9260 -1.9260	
SECTI SUCTIC 2 (Cm.)	-1.2680 -1.2253 -1.1605 -1.1605 -0.9626 -0.8275 -0.6900 -0.2636 -0.1827 -0.2636 -0.1827 -0.2636 -0.1827 -0.2636 -0.1827 -0.2636 -0.1827 -0.3182 -0.4907 -0.490	
T OF 23.6500 Cm. PRESSURE SURFACE Z Y (Cm.) (Cm.)		-1.9638 2.0087
ρ		-1.2050
SECTION 4 FOR) SUCTION SURFACE Z Y (Cm.) (Cm.)	1. 9524 1. 8694 1. 7451 1. 7451 1. 5798 1. 1280 1. 1280 1. 1260 1. 1260 1. 0312 1. 0313 1. 0483 1. 048	(C E O)
SECTION SUCTION 2 (Cm.)	-1.2282 -1.1868 -1.1241 -1.0396 -0.0312 -0.5686 -0.558 -0.358 -0.0139	CIRCLE CENTER
FRACT. OF SURF.	00000000000000000000000000000000000000	L.E. CIRC T.E. CIRC

÷

** BLADE SECTION COORDINATES OF ROTOR NO. 1 IN THE TURBOMACHINE ORIENTATION **

SECTION 7 FOR XCUT OF 21.4000 Cm.
SUCTION SURFACE PRESSURE SURFACE
Z Y Z Y
(Cm.) (Cm.) (Cm.)

FRACT. OF SURF.

-1.8400 -1.7702 -1.6652 -1.5248

-1.4127 -1.3525 -1.2624 -1.1426

-1.8096 -1.7302 -1.6117 -1.4544

-1.4541 -1.4064 -1.3340 -1.2360

-1.8737 -1.8022 -1.6946 -1.5509

-1.3630 -1.3046 -1.2173 -1.1013

-1.4051 -1.8442 -1.3586 -1.7641 -1.2882 -1.6444 -1.1929 -1.4855

-1.9053 -1.8322 -1.7222 -1.5752

-1.3132 -1.2568 -1.1723 -1.0601

-1.8768 -1.7960 -1.6751 -1.5146

-1.3561 -1.3108 -1.2423 -1.1497

0.00 0.02 0.05 0.09

	27			2.88
11000000000000000000000000000000000000	00 to (5	6500 Cm. SURFACE T	1.719.1.1.1.2.1.2.1.1.1.2.1.2.1.2.2.2.2.2.2	Jr. 1.40
00000000000000000000000000000000000000	43.2	XCUT OF 17. PRESSURE 2 (Cm.)	-11.5694 -11.50694 -11.4064 -11.4064 -10.9176 -0.9176	6788 6598 6598 0F 15 EESSURE 2
0.000000000000000000000000000000000000		12 FOR URFACE T (Cm.)	-1.6858 -1.6086 -1.34934 -1.34934 -0.9307 -0.9307 -0.0865 -0.0800 0.0800 0.0800 0.0800 0.0800 0.0800 0.0800 0.0800 0.0800 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.0	1.6130 1.6130 1.6130 1.6130
1111 -0.890 -0.890 -0.404 -0.1904 -0.1904 -0.1904 -0.1904 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0	ORIEN	SECTION SUCTION S 2	-1.608 -1.5570 -1.3727 -1.2367 -0.5330 -0.5439 -0.1463 -0.1463 -0.1479	.6452 ENTATI SECTION CTION
1.15705 -0.9348 -0.9348 -0.4949 -0.0508 0.1729 0.03977 0.6396 0.8507 1.3085 1.5006 1.5006 1.5010	∞ ∞ ∑	4000 Cm. SURFACE Y (Cm.)	-1.7633 -1.6970 -1.46970 -1.2970 -0.8985 -0.02885 -0.02885 -0.02885 -0.02886 -0.02886 -0.02886 -0.02886 -0.02886 -0.02886 -1.1650 -1.1	9. 7. 8. OK ()
-0.9568 -0.6128 -0.6128 -0.6128 -0.2730 -0.0628 0.3228 0.3520 0.3521 0.3521 1.1640 1.3641	3828 3733 THE	XCUT OF 18.4 PRESSURE: Z (Cm.)	1.5152 -1.4516 -1.2293 -1.0708 -0.6809 -0.5023 -0.1335 -0.1335 -0.0526 0.0626 0.0626 0.0626 0.0626 1.1766 1.3290 1.3290	1.6014 -1.5335 1.5815 IN THE CUT OF 1 PRESSU
-1.2879 -0.8134 -0.5881 -0.1389 -0.1318 0.0931 0.5363 0.5363 1.1843 1.3958 1.5702 1.7087 1.8804		FOR Y Y (Cm.)	1. 7310 1. 6531 1. 3829 1. 3829 1. 3829 1. 1923 1. 0. 2244 1. 0. 2244 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	1.6958 OR NO. 14 FOR URFACE Y
-1.0717 -0.9239 -0.7711 -0.6157 -0.2954 -0.1305 0.0375 0.3824 0.3828 0.3828 0.3828 0.3828 1.1917 1.1917	S OF	SECTION 11 SUCTION SUF Z (Cm.)	1.5550 1.4584 1.1253 1.1253 1.1253 1.1253 1.029 1.029 1.029 0.2395 0.2395 0.2395 0.2395 1.235 1.335 1.335	OF R(CTION CTION CTION
-1.3907 -1.1585 -0.9451 -0.7207 -0.2687 -0.0411 0.4176 0.6486 0.6486 1.3482 1.3482 1.7017 1.8201	36 -1.8894 91 1.9127 SECTION COORDINATE:	.1500 Cm. E SURFACE Y (Cm.)	-1.8036 -1.355 -1.6331 -1.4962 -1.3246 -1.3246 -0.0101	
-0.9205 -0.7540 -0.5887 -0.4246 -0.2617 -0.0599 0.3757 0.3122 0.9873 0.9873 1.2827 1.3311	-1.3336 1.3091 BLADE SECT		-1.4630 -1.4010 -1.309 -0.8631 -0.6631 -0.2980 -0.1166 0.0640 0.0640 0.0640 0.0640 0.0640 0.0640 0.0640 0.0640 1.1271 1.1271 1.3860	1.5077 1.7 1.5077 1.7 BLADE SECTION XCUT OF 16.9000 PRESSURE SUF
-1.3148 -1.0757 -0.8401 -0.6053 -0.1479 0.3164 0.5424 0.5427 1.2088 1.4272 1.6077 1.6077 1.9592 1.9592	(Cm.)	O FOR RFACE Y (Cm.)	-1.7722 -1.6936 -1.6936 -1.4206 -0.9983 -0.7721 -0.3748 -0.1100 0.1047 0.1047 0.9316 0.9316 1.1300 1.1300 1.1300 1.1300 1.1300 1.1300 1.1300 1.1300 1.1300 1.1300 1.1300	(Cm.) (Cm.) 13 FOR (URFACE Y (Cm.)
-1.0321 -0.8882 -0.7414 -0.5916 -0.4335 -0.1254 0.10384 0.10384 0.2331 0.6331 1.12693	RCLE CENTER RCLE CENTER	SECTION CTION Z (Cm.)	-1.5036 -1.4547 -1.2797 -1.1511 -0.8306 -0.8306 -0.8306 -0.8306 -0.8306 -0.1402 0.0188 0.01883 0.01883 0.01996 1.0096 1.0096	CENTER CENTER CENTER SECTION SUCTION (Cm.)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L.E. CIRC	205	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ፈ և ፈ

1.5542	1052	1 2265	100-		100	# F F F F F F F F F F F F F F F F F F F	70.00		19 7 5	-0.1099	S 0540	6.2151	5.3732	0000		5.5.93	0.8256	5.9461	1.5394	1.1079	1 1522		.1 5341	1,1762 FANE UT	
1 7517	10,5	-1 4404	6976	1000	. C.C.C. T.	0.8430	56.29.0	0.4135	- 9 1955	0.6245	0 2466	5 4711	31.09 0		1.76.0	1:1591	1.3938	1.5916	1.7514	1 \$722	1.9530		1.7676	1000	
6615 T	030		101.1	1000.1.	9 8 6	-0.5914	-0.3821	S561 S	950000	5 1696	5.3363	0.4929	2019			0 8962	1.0055	1.0857	1.1421	1.1799	1.202				•
קיקר ן . נונה ו	0000	N 10 - 1 -	. 550.1.	7885	.1.2543	-1.0129	-0.8140	-0.657 8	-0.3942	0.1733	9.0549	5560 5	5321	1000	0.487.0	1.9364	1.2982	1.5211	1.7023	1.8399	1.9324				the second second
614	7701	0100.		-1 1875	-1.5053	-0.8238	-0.6429	-0.4629	-0.2835	- 9.1956	0 0715	0 2476		1771	0.5960	0.7681	0,9383	1.0787	1.1901	1.2730	1.3280		-1.5945	1.3495	
-1.6885	-1.6275	-1.5185	-1.3821	-1.2111	-1.0051	-0.7982	-0.5902	-0.3811	-0.1768	0.0457	0 2511	6748		0.000.0	0.8991	1.1172	1.3368	1.5211	1.6695	1 7812	1 8560		-1.7050	1.8398	
-1.5790	-1.5030	-1.3899	-1.2408	-1.0574	-0.8419	-0.6317	-0.4271	-0.2284	-0.0369	0.1497	1961 0	8008		0.0023	0.8172	0.9629	1.0991	1.2044	1.2832	1 1189	1 1741				
-1.7256	-1.6729	-1.5902	-1.4785	-1.3348	-1.1561	-0.9709	-0.7791	-0.5808	-0.3761	-0 1651	0 0522	3260.0	0 10 0	CCUC.0	0.7411	0.9827	1 2300	1.4406	1 6119	1 7420	1 8 2 0 6	20.4			
-1.6639	-1.6971	-1.5129	-1.3872	-1.2390	-1.0413	-0.8525	-0.6638	-0.4752	-0.2866	-0.0982	1000	1060.0	50/7:0	0.4665	0.6544	0.8423	1 0300	1 1863	1 111	1 4051	3536		-1.6507	1.4871	
-1.6264	-1.5598	-1.4597	-1.3262	-1.1591	-0.9583	-0.7571	-0.5555	-0.3534	-0.1508	AC. C. C.		0.2339	0.4000	0.6645	0.8695	1.0749	1 2008	1 4527	7005	1.070	1.07.0	7707.7	-1 6436	1.7449	
-1.6356	-1.5591	-1.4450	٠.		٠,	-0 6752								٠.	-			1 2007	1.4307	1. 55.00	\$ 0 F U	1.5104	£	(Cm.)	
-1.6645	-1.5120	-1.5320	-1.4231	-1.2832	-1.1099	80200-	-0.7459	25.5	0000	10.00	7 0 1 0	9.0504	0.2633	0.4815	0.7050	0 9337	1 1675	1 2661	1000.1	0/70.1	1.0499	1 . / 3 2 2	וני כנאוונים	LE CENTER	
00.00	ŭ 92	0.05	0.09	0 14	0 20	36.0	2 6	3 6		7 U	00.00	9.56	0.62	0.68	0 74	· a	00.0	0.0	16.0	0.00	96.0	00.1	ú	T.E. CIRCLE	_

** BLADE SECTION COORDINATES OF ROTOR NO. 1 IN THE TURBOHACHINE OPTENTATION **

OF SIBE	SUCTION SURFA	O E	XCUT OF 14.7500 Cm. PRESSURE SURFACE 2 Y	T OF 14.7500 Cm. PRESSURE SURFACE 2 Y	SUCTION SURFACE Z	SURFACE Y	>	PRESSURE SURFACE 7	HOLLONS 2	SURFACE	PRESSURE SUPPACE	SUPPACE
	(C m .)	(Cm.)	(Cm.)	(Cm.)	(Cm.)	(E)	(Cm.)	(Cm.)	.E.J.	EU.	Ē	Ē
00	-1.8574	-1.4462	-1.8221	-1.4830	-1.9262	-1.3694	-1.8918	-1 4072	-1.9887	1.29:3	1 9550	1 3311
0.02		-1.3706		-1.4247	-1.8690	-1.2941	-1.8207	-1.3503	-1.9298	1.2172	-1.9927	1 2756
50.0		-1.2585		-1.3376	-1.7812	-1.1825	-1.7135	-1.2655	-1.8392	-1.1963	-1,733	11.1931
60.0		-1,1114		-1.2223	-1.6603	-1.0365	-1.5694	-1.1536	-1.7142	-0.9615	-1.6261	1 0848
0.14		-0.9318	-1.3276	-1.0795	-1.5032	-0.8590	-1.3874	-1.0169	-1.5514	-0.7862	-1.4398	€₹36 O:
0.20	-1.2566	-0.7227		-0.9104	-1.3058	-0.6536	-1.1662	-0.8541	-1.3465	. 5.5845	-1.2126	386C 51
0.26		-0.5213		-0.7440	-1.0991	-0.4572	-0.9416	-0.6964	-1.1315	1606 9	10.9614	- 5 6491
0.32		-0.3282		-0.5807	-0.8833	-0.2705	-0.7136	-0 5433	5356 6	13 43 43	1040.0	Signal u
0.38	-0.6353	-0.1439	-0.4492	-0.4209	-0.6583	-0.0945	-0.4821	550E 0				# **
0 44		0.0305		-0.2646	-0.4243	9690.0	-0.2473	0 2515	14.4284	7 2	- 1007	
0.50	6	0.1943		-0.1121	-0.1816	0.2209	0.0000-	0 1133	3563 5	1-1	1.5 4 4 6	-
0.56	_	0.3466		0.9364	0.0695	0.3583	0.2327	9 5192	1.567		73. 7	٠.
0.62		0.4865		0.1804	0.3285	0.4807	0.4780	9.1455	4.35.44	9.7	1000	
9 68		0.6130		0.3196	0.5950	0.5867	0.7269	0 2651	8089 0		1. IF. 6	
0 74	9 8241	0.7250		0.4534	0.8681	0.6750	3676 0	7.16 6	3010 6		. Tr 6 T	÷
0.80		0.8213	1.1996	0.5813	1.1473	0.7440	1.2356	0.4913	1 1959	76.69	1.26.42	30000
98.0		0.9004	1.4484	0.7028	1.4315	0.7921	1.4953	0.5764	1.4934	9 9	1 6.2.41)
0.91		0.9522	1.6587	0.7987	1.6713	0.8148	1.7144	0.6483	1 7234	0.6941	1 7512	6970
9.95	1.7901	0.9837	1.8287	0.8715	1.8645	0.8208	1.8914	0.7695	1.9146	5.6866	1. 3. 35	7.7
0.98		1.0011	1.9574	0.9238	2.0099	0.8179	2.0251	0.7363	2.9569	0.6450	2 5634	0.5512
1.00	2.0294	1.0096	2.0437	0.9574	2.1069	0.8122	2.1146	985.70	2.1516	7 4264	2.1526	C1
L.E. CIRCI	CIRCLE CENTER	(Cm.)	-1.8375	-1.4624			-1.9666	1 3961			résé I-	-1.3396
E. CIRCI	CE CENTER	(CB)	2.0328	0.9825			2.1966	0 0			7	

** BLADE SECTION COORDINATES OF ROTOR NO. 1 IN THE TURBONACHINE OF IRITATE 48 **

		~		
		्य का स्था सं	01	HS HS HS HS HS HS HS HS HS HS HS HS HS H
		Ë	SECTIC TORSIO CONSTA (Cm.) 0.015 0.016 0.017	(Cm.) 4 COORD (Cm.) 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		••	O	(Cm.) (Cm.)
		PTOP NO. 1 COMPRESSOR	HROUGH C.G. N IMAX 1.)*4 (Cm.)*4 1519 0.8930 1423 0.9055 1367 0.9196 1344 0.9349	HS Cm.) 00293 0029
E SURFACE Y	1. 3269 1. 22169 1. 1. 1890 1. 1. 1890 1. 1. 1890 1. 1. 1890 1. 1. 180 1. 18	-1.3053 0.5898 LOWING RC LINE IN	MF4F0000	19. 10. 00. 00. 00. 00. 00. 00. 00. 00. 00
PRESSURE 2 (Cm.)	1. 9584 -1. 8859 -1. 7764 -1. 4629 -1. 2149 -0. 2630 -0. 2050 -0. 2321 0. 2321 0. 2458 0. 7456 -1. 2062 1. 9307 2. 0644 2. 1536	-1.97; 2.141 NO. 1 F STACE	AREA (Cm.) *2 0.8648 0.8780 0.9780 0.9066	
N SURFACE Y (Cm.)	-1.2880 -1.1020 -1.1020 -1.1020 -0.5806 -0.5806 -0.2095 -0.0421 0.2416 0.3716 0.5607 0.6624 0.6731 0.6831	OF STATC	10N MATES MH H H H 13 3 4 6 9 3 3 2 2 4 3 2 2 9 3 5 2 5 8	
SUCTION 2 (Cm.)	-1.9920 -1.9329 -1.18421 -1.5537 -1.3484 -1.13484 -0.9078 -0.4283 -0.1368 0.0868 0.0868 0.0868 0.0131 1.1984 1.4859 1.7257 2.15224	.2321 .4342 SECTION PROPERTIES	BLADE SEC C.G. COORDI L. (Cm.) 2.0964 2.0924 2.0837 2.0853	24
SURFACE Y (Cm.)	-1.2543 -1.2002 -1.1202 -1.1502 -0.8888 -0.423 -0.4708 -0.167 -0.1167 -0.0189 0.162 0.162 0.163 0.3787 0.3787 0.3787 0.4051		ECTION ANGLE DEG.) 2.627 3.115 3.546 3.904	(Cm.) (Cm.)
PRESSURE 2 (Cm.)	-2.0094 -1.9354 -1.6724 -1.6724 -1.2470 -0.5191 -0.5191 -0.5692 -0.160 0.2401 0.7593 1.0211 1.5684 2.0584 2.0584	782 .	W	
SURFACE Y (Cm.)	-1.2142 -1.1395 -1.1395 -1.1395 -0.215 -0.5154 -0.1547 0.1689 0.2758 0.533 0.533 0.533 0.533 0.533 0.533 0.533 0.533 0.533 0.533 0.533 0.533 0.533	(Cm.) (Cm.)	STACKING POINT COORDINATES L (Cm.) 2.0964 0.3669 2.0924 0.3469 2.087 0.3324 2.0853 0.3229	(Cm.) 54 0.0254 25 0.0483 13 0.1354 13 0.1356 10 2206 10 0.3660 10 0.3660 10 0.3660 10 0.3660 10 0.3660 10 0.3660 10 0.3660 10 0.5646 10 0.6026 10 0.576 10 0.576
SUCTION 2 2 (Cm.)	-2.0423 -1.9811 -1.8970 -1.5576 -1.5576 -0.6726 -0.6726 -0.1124 -0.112	E CENTER	O O O O O O O O O O O O O O O O O O O	(Cm.) (Cm.) 0.0254 0.01554 0.0157 0.00254 0.0115 0.00254 0.0015 0.0005 0
OF SURF.	00.00 00	I K	BLADE SI NO. 1 2 3 3 4 2 5 CTT	(Car
		_		

32		m m	
0.4449 0.3975 0.3175 0.1352 0.0593 0.0476 0.0476 0.0255 FAGE NO.	SECTION TUIST STIFFNESS (Cm.)*6 1.07299 1.09301 1.11333	4 -000000000000000000000000000000000000	STIFF (Cm 1.1 1.1 1.2
0.2143 0.1821 0.1822 0.0975 0.0011 0.0034 0.0255	SECTION TORSION CONSTANT (Cm.)*4 0.01886 0.01886 0.01981		TORSION CONSTANT (Cm.)*4 0.02279 0.02386 0.02497
3.2000 3.40000 3.60000 3.60000 4.10000 4.1681 4.1681 4.1681 4.1681	IMAX SETTING ANGLE (DEG.) 15.167 15.38 15.966	SECTION (C00)	SETTING ANGLE (DEG.) 16.310 16.660 17.012
.4533 .3945 .3234 .2394 .0597 .0474 .0255 .TOR NO I .	T INERTIA I C. G. I MAX (Cm.) • 4 0.9514 0.9687 0.9862 1.0042	## E00014444000000000000000000000000000000	C.G. IMAX (Cm.) 1.022 1.022 1.040 1.059
2269 9 1921 0 1511 0 1029 0 00472 0 0036 0 0255 0 LOUING ROT	MOMENTS OF THROUGH IMIN (Cm.) *4 0.01350 0.01378 0.01423	7 COORDJ HP OCORDJ 1036 0036 00036 00036 00036 00036 00036 00035 00359 00359 00359 00359 00359 00359 00359 00359 00359 00359 00359 00359 00359 00359 00359 00359 00359	0.0 4 4 4 7 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 8 7 8
2000 0 4000 0 0 6000 0 0 0 0 0 0 0 0 0 0	SECTION 1 AREA (Cm.)*2 0.9218 0.9374 0.9528	CCTION NO. CCTION NO. CCTION NO. CCCTION NO. CCCTION NO. CCCTION NO. CCCTION NO. CCCTION NO. LEGIS CCCTION NO. LEGIS CCCTION NO. CCCTION NO. LEGIS CCCTION NO. LEGIS CCCTION NO. LEGIS CCCTION NO. LEGIS CCCTION NO. LEGIS CCCTION NO. LEGIS CCCTION NO. LEGIS CCCTION NO. LEGIS CCCTION NO. LEGIS CCCTION NO. LEGIS CCCTION NO. LEGIS CCCTION NO. LEGIS CCCTION NO. LEGIS CCCTION NO. LEGIS CCCTION NO. LEGIS CCCTION NO. LEGIS CCCTION NO. LEGIS CCCTION NO. CCCTION NO. LEGIS CCCTION NO. LEGIS CCCTION NO. LEGIS CCCTION NO. LEGIS CCCTION NO. LEGIS CCCTION NO. LEGIS CCCTION NO. LEGIS CCCTION NO. LEGIS CCCTION NO. LEGIS CCCTION NO. LEGIS CCCTION NO. CCCTION NO. LEGIS CCCTION NO. LEGIS CCCTION NO. LEGIS CCCTION NO. LEGIS CCCTION NO. LEGIS CCCTION NO. LEGIS CCCTION NO. LEGIS CCCTION NO. LEGIS CCCTION NO. LEGIS CCCTION NO. LEGIS CCCTION NO. CCCTION NO. LEGIS CCCTION N	AREA (Cm.)*2 0.9845 1.0005 1.0165
672 3 3366 3 3366 3 465 3 4651 4 472 4 472 4 255 4 LOCATION OF	ADE SECTION COORDINATES H (Cm.) 21 0.3182 91 0.3183 41 0.3220	SS SS SS SS SS SS SS SS SS SS SS SS SS	ORDINATES H (Cm.) 0.3261 0.3343 0.3343
2430 0.4 1626 0.34 1107 0.2 0508 0.1 0508 0.0 0014 0.0 0255 0.0 PROPERTIES	BLADE S. C.G. COOR! L (Cm.) 2.0821 2.0791 2.0741	6 COORDINATE HP HS HS HS HS HS HS HS HS HS HS HS HS HS	10 8 ra r
2000 0. 4000 0. 8000 0. 8000 0. 1467 0. 1686 0. 1807 0. E SECTION	SECTION SETTING ANGLE (DEG.) 14.31 14.31 14.554 14.879	L L C C C C C C C C C C C C C C C C C C	SETTING ANGLE (DEG.) 15.202 15.524 15.849
4874 3 4243 3 4243 3 12568 3 1503 4 00618 4 0055 • BLADES =	KING POINT ORDINATES H (Cm.) 1 0.3182 1 0.3183	ν	OORDINATES H (Cm.) 18 0.3261 97 0.3303 76 0.3343 57 0.3381
561 0. 264 9. 214 0. 214 0. 556 0. 041 0. 255 0.	00 -8664 4664	P COOJ 33.1 33.1 33.1 33.1 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2	COORDI L (Cm.) 2.0718 2.0697 2.0676 2.0657
2000 6000 6000 0.27 6000 0.11 6000 0.11 1604 0.00	SECTION RAD. LOC. (Cm.) 22.150 22.150 21.575 21.000		Con.) 20.425 19.850 19.275
<u>ખુખખુ</u> વૃત્વે વૃ	BLADE NO. 5 6 7	S C C C C C C C C C C C C C C C C C C C	NO. 10 11 11 12 12

																																2	7																															
CORDINATES	ic.	E	2000	n .	3	- 1	,			428	4.7	520	S.		0 0	0	609	604	635	5	9 6	0 1	5.5	414	C)	25.1	7	14/	069	047	0.25	200	ι.			-1		STIFFNES	(Cm.)		1.2644	1.2976	1.3109		2	HS	(Cm.)	. 953	100	-	4 1	2.0	,,	155	20 1	456	0.5089	554	592	622	641	648	0.6445	628
C)	•	<u> </u>	7967	٠.				D	0	C	0	0	0		,			0	0	c		,		- 0	0	c	,		0	0	0.0			Ë		01	_	٠.				0.02995		•	10. 16 COO	_	Ü	0	0	0	0	0			, ,		5 6		5 6		9 (, e	0.2980	0
SECTION	ِ ز	7	0.00				٠.	٠.		٠.	٠.	٠.	_	_	•	٠,	•	٠.	·	w		, ,	ч	•	w	ш	, ,	٠,	4.1476	4.1689	4.1808	:		60 to 100	1	IMAX	SETTING	ANGLE	(DEG.)	17.821	18.356	18.941	19.494	1000	SEC 1 1011	، د	() E ()	0000.0	0.0312	0.0653	0.2000	0.4000	0.6000		1 0000	0000	1.2000			1.6000	0000.	2000	2.4000	4.6000
OORDINATES	ν <u>.</u>	,	700							٠.	٠.	٠.	-:	-	_		٠.	• • •		٠.	۰	``	,	Ψ,	٠,	14	-	٠.	٠,	Ų.	0.0255	ROTOR NO. 1	č	I COMPRESSOR		S OF INERTIA	3					1.1356		PDIMATES		5 1	Ē	2	660.	. 113	. 173	. 253	325	390	448	667	3	8	1 2	100	, ,	3	0.6172	10
No. 11 CO	- 5									0.16	0.18	0.212	0.235	0.254	0 267	2,0		0.67	0.269	0.257	0.238	0 213		707.0	0.142	0.097	0 044		100.0	0.003	0.025	FOLLOWING		1111	į	TUTENIS	TMI		010	7010	1610	0.02014	1	No. 15 CODE	4	į		000	. 00	. 001	.03	990.	104	.138	.170	198	0.2250	248	269	283	290	291	0.2853	1
SECTION	ء و		0.000	0.00	2000	0 4000	0000	000	0000	1.0000	1.2000	1.4000	1.6000	1.8000	2.0000	2 2000	200	2007	0000	2.8000	3.0000	3.2000	4000		2.0000	3.8000	4.0000		1071	1991.	•	200	1 OF STACKING	;	SECTTOR	APEA	5	-	4 8	, ,	9	1.0996		SECTION	-1	٤		0000	0000	7790.0	0.2000	0.4000	0.6000	0.8000	•	•	1.4000						2.6000	
COORDINATES	ũ	c	Ö	0	c	0	c					· ·	0	0	0	0	-			5	0	0	0				-	0			CC20.0	TIES	KIAL LOCATION	!	DE	COO	×	Ü	0.3	0.3		0.3607		PLINATES	HS	ē	0	c								0	0.5343	0	<u>.</u>	0	0	0	0	
NO. 10 CC	(CB)	0.0425	0.0036	0.0008	0.0292	0.0652	0.0989	0.1303	0 1503	1960	0000	0.2104	0.2324	0.2516	0.2648	0.2716	0 2722	0 2664		5607.0	0.2357	0.2107	0.1792	0 1410		0 0 0 0	0.0441	0.0011	8200	0.00.0	0.0200	Z,	Ϋ́Υ			S		S S	7.0	2.0	2.0	2.059		No. 14 COO	НP	() E)	0.0500	0.0044	0.0011	0 00 0	0.0671	0.1026	2001.0	0.130	7997.0	0. 1942	0.2198	0.2429	0.2629	0.2767	0.2840	0.2846	0.2787	
SECTION	(C.E.)	0.000	0.0255	0.0507	0.2000	0.4000	0.6000	0.8000	1 0000	1 2000	7.000	000	0000	1.8000	2.0000	2.2000	2.4000	2.6000	0000	0000	3 . 0000	3.2000	3.4000	3.6000	0000 E	0000	4 . 0000	4.1478	4.1686	4.1808	7	₹	48.0		SECTIC	SETTIN	ANGLE	(DEC.)	16.601	17.088	17.626	18.135		SECTION N	J	o	٠.	Ξ.	Ξ,		٠.	Ξ.	_		٠,	•	1.4000	٠,	~ .	٠,	٧.	Ψ,	•	
COORDINATES HS		0	0	0	0	0	0	0	0	0	•	, ,	•	۰ د	0	0	0	0	c	•	9	خ	Ö	Ö	c		5	Ö	Ö	0		0	IBER OF BLADES		STACKING POINT	000		-	639 0.341	23	508 0.353	594 0.360	į	COKUINATES																				
2	Ü	Ö	Ö	o.	0	0	0	Ö	ö	0	0	c			5			0	0			5		0	0				0	0.0			MON		CTION									י בי בי	5	١,	٠.	0	0	0	0	0	0	0	0	0	0					0	;	
SECTION	(C <u>m</u> .)		0.024																											4.1809					BLADE SECT		.01		~ ·	1.71		<u>.</u>	C T T T ON	2 NOT 1 2	ع و	(111)	0.000	0.0285	0.05/8	0.2000	0.4000	0.6000	0.8000	1.0000	1.2000	1.4000	1.6000	1.8000	2.0000	2.2000	2.4000	2.6000		

3.5		2
9.6919 9.6613 9.5099 9.5099 9.1864 0.2685 0.0664 9.0467	SECTION TVIST STIFFHESS (Cm.)*6 1.33485 1.35993 1.36993	COORDINATES HS HS (Cm.) (Cm.) 5 0 0255 0 0483 1 0.1354 13 0.2206 13 0.2206 13 0.2206 13 0.2206 13 0.2206 142 0.2257 144 0.612 15 0.6212 16 0.613 16 0.613 17 0.6212 18 0.555 18 0.555 18 0.557 18 0.555 18 0.555 18 0.555 18 0.555 18 0.555 18 0.555 18 0.555 19 0.6212 20 0.6255
0.2787 0.2314 0.2314 0.1951 0.1951 0.0464 0.0046	Cm. SECTION CONSTANT (Cm.)*4 0.03259 0.03406 0.03406 0.03540	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.8000 3.0900 3.2000 3.4000 3.8000 4.1664 4.1662	= 9.459 IMAX SETTING ANGLE (DEC.) 20.564 20.691 21.410	
0.5899 0.4993 0.4949 0.3566 0.2635 0.0618 0.0468 0.0256 ROTOR NO. 1	THE IN COMPRESSOR TENTS OF INERTA THROUGH C.G. IIN IMAX ICM.)*4 (Cm.)*4 CD.233 1.1762 0234 1.1977 02518 1.2205 01518 0.8931	THE
0.2725 0.2528 0.2261 0.1925 0.1925 0.1033 0.0043 0.0043	MG TO O O O	(Cm.) (Cm.) (Cm.) 0.0596 0.0060 0.0308 0
2.8000 3.2000 3.2000 3.4000 3.8000 4.0000 4.1693 4.1806 NO. 18	SECTION PAREA (Cm.)*2 1.1171 1.1350 1.1550 0.8649	111110H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.5788 0.5402 0.4897 0.4265 0.2585 0.0512 0.0612 0.0256	AXIAL LOCATION LADE SECTION COORDINATES (Cm.) (C	0.000000000000000000000000000000000000
0.2661 0.2661 0.2208 0.2208 0.01879 0.01880 0.01008 0.0012	O O O O O O O O O O O O O O O O O O O	
2 8000 3 2000 3 2000 3 4000 3 8000 4 1474 4 1809 BLADE SECTI	48.0 SECTION SETTING ANGLE (DEG.) 18.647 19.201 19.201	SECTION NO L. C. C. J. C. C. J. C. C. J. C. C. J. C. C. C. C. C. C. C. C. C. C. C. C. C.
5699 5318 44819 4195 2542 2542 1499 0608 0608	STACKING POINT CORDINATES L L H (Cm.) (Cm.) (Cm.) (Cm.) (Cm.) 2.0572 0.3659 0.3871	HINA HINA HINA HINA HINA HINA HINA HINA
2618 0.22428 0.22428 0.1846 0.0990 0.0012 0.0012 0.0012 0.0056	STACKING CORD. CORD. L (Cm.) 2.0582 2.0572 2.0572	2.0953 1.0 COORD M.P. (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
2.8000 3.2000 3.2000 3.4000 3.6000 4.0000 4.1475 6.1891	BLADE SECTION NO. LOC. (Cm.) 17 15 18 15 250 18 15 250 19 14 675	SECTION NO. (CT.) (CT.) (O.0000 (O.

| SECTION 2 FOR XCUT OF 24.5500 Cm. | SUCTION SURPACE | PRESSURE SURFACE | Y | Cm. | (Cm.) | (Cm.)

SECTION 1 FOR XCUT OF 25.1500 Cm.
SUCTION SURFACE PRESSURE SURFACE
2 Y 2 Y
(Cm.) (Cm.) (Cm.)

FRACT. OF SURF. -1.9621 -0.7661 -1.9348 -0.8087

00.0

-1.9556 -0.7582 -1.9268 -0.8044

-1.9491 -0.7538 -1.9186 -0.8035

PAGE 110		101010100	1 TH THE THEBONACHINE	1 113 745	FOLLOWING ROTOR NO	FOLLOWING		SECTION COORDINATES OF STATOR NO. 1	ION COORDI	BLADE SECT	# :	
0.1857	2.0810			0.1551	2 0819			0.1100	7.00.7		i	
5.7775	-1.9312			26/7.0-	0000			1160	2 0815		LE CENTER	щ
,				9077 0-	.1 0187			-0.7859	-1.9462		TLE CENTER	L.E. CIRCLE
9.1663	2.0790	9.2191	2.0885	0.1297	2.0791	0.1792	2.0900				• 700.7))
0.1663	1.9959	0 2346	2.0056	0.1382	1.9961	907.0	6.00.7		0000	1011	4000	
0.1739	1.8/11	0.26/8	1.8803	0.1486	1.0.13	1777	200.4		000	1701	2 0104	86.0
				7071	1 2713	0 2423	1 8826		1.8721	0.2105	1.8860	0.95
1 - C	1011	0 3054	1.7116	0.1580	1.7046	0.2836	1.7142		1.7053	0.2572	1./181	16.0
9.1775	1.4964	0.3416	1.4985	0.1627	1.4960	0.3242	1.5012		1.4962	0.3038	1.5053	
9.1673	1.2468	0.3690	1.2407	0.1580	1.2456	0.3565	1.2431		1.2451	0.3424	1.2468	9.0
9.1466	0.9978	0.3788	0.9815	0.1420	0.9957	0.3704	0.9833		0.9941	0.3518	7996.0	
0.1155	0.7499	0.3710	0.7223	0.1146	0.7468	0.3661	0.7231		0.7439	0.3620	967/0	9 6
0.0738	0.5035	0.3455	0.4642	0.0760	0.4994	0.3435	0.4639		0.4952	0.3429	0.4641	79.0
9.0219	0.2591	9.3025	0.2084	0.0263	0.2539	0.3027	0.2069		0.2484	0.3046	0.2055	9 0
- 9.0495	9.0171	0.2422	-0.0438	-0.0346	0.0110	0.2438	-0.0465		0.0043	0.2474	-0.0495	0.50
-6.1139	-0.2229	0.1648	-0.2914	-0.1064	-0.2289	0.1672	-0.2952		-0.2365	0.1715	-0.2996	9 0
-0.1952	-6.4580	0.9709	-0.5332	-0.1886	-0.4655	0.0736	-0.5380		-0.4738	0.0777	-0.5436	95.0
-0.2821	- 6.6923	-0.0345	-0.7702	-0.2758	-0.7003	-0.0321	-0.7759		-0.7091	-0.0287	-0.7823	0.32
-6.3724	-0.9253	-0.1495	-1.0028	-0.3669	-0.9337	-0.1477	-1.0090		-0.9427	-0.1455	-1.0162	97.0
-5.4662	-1.1579	-0.2739	-1.2304	-0.4616	-1.1655	-0.2730	-1.2371		-1.1747	-0.2725	-1.2447	0.20
-0.5634	-1.3872	-0.4076	-1.4528	-0.5601	-1.3958	-0.4079	-1.4597		-1.4049	-0.4094	1.4674	0.14
-0.6471	-1.5790	-0.5258	-1.6338	-0.6451	-1.5865	-0.5273	-1.6408		-1.5953	-0.5309	-1.6483	60.0
-0.7156	1.7298	.0.5248	-1.7756	-0.7149	-1.7382	-0.6275	-1.7925		-1.7468	-0 6329	-1.7897	60.0
-0.7681	-1.8432	-0.7015	-1.8802	-0.7683	-1.8515	-0.7052	-1.8869	-0.7715	-1.8598	-0.7120	-1.8937	0.05

H	ADE SECT	LADE SECTION COORDINATES OF	INATES OF ST	STATOR NO. 1 FOLLOWING ROTOR NO. 1 IN THE TURBONACHINE ORIENTATION	FOLLOWIN	G ROTOR NO	HT WITH	E TURBONAC	HINE ORIES	TATION	PAGE 1
SECTION 4 FOR	A	Ş	1.3500 Cm.	SECTION	SECTION 5 FOR	XCUT OF 22.7500 Cm.	.7500 СМ.	SECT	SECTION 6 FUR	XCT	0051
			X Z	2	SURFACE Y	PRESSURE 2	E SURFACE Y	SUCTI	SUCTION SURFACE	PRESSURE 3	SURFAC
Ö	E E O	(CB)	(Cm.)	(Cm.)	(CB)	(Cm.)	(Cm.)	(CB)	(Cm.)	(CBC)	(Cm.)
-0.752	520	-1.9106	-0.8050	-1.9371	-0.7510	-1.9030	-0 B074	1 017			
٠. م	000	-1.8351	-0.7700	-1.8683	-0.6992	-1 9276	200.0	77670		-	018 0-
٠ و	6238	-1.7217	-0.7181	-1.7637	-0.6233	-1 7142.	-0.7710	1 7500			0.775
٥	5255	-1.5698	-0.6502	-1.6220	-0.5252	-1 5625	.0 6534	007.1-		; .	-0.723
٠	4079	-1.3792	-0.5673	-1.4413	-0.4078	-1 1720	0.000	10.1-			-0.656
ė	2749	-1.1491	-0.4708	-1.2195	-0.2749	-1.1422	-0 4745	-1.4359		-1.3656	-0.573
ç	.1508	-0.9178	-0.3774	-0.9927	-0.1508	-0 9111	-0.3812	77.7			0.477
°	. 0359	-0.6851	-0.2873	-0.7612	-0.0357	-0.6787	-0 2011	0.00			-0.384
0	.0697	-0.4512	-0.2004	-0.5253	0.0702	-0.4452	.0 2041	0.623.0	0.0343	0.6/31	-0.2938
0	0.1640	-0.2157	-0.1181	-0.2847	0.1649	-0.2101	-0.1215	0.322			0.206
0 0	2422	0.0227	-0.0448	-0.0385	0.2438	0.0279	-0.0478	-0.035			-0.123
9 6	3035	0.2640	0.0188	0.2123	0.3062	0.2686	0.0167	0.214			P
	. 2480	0.5076	0.0726	0.4668	0.3520	0.5116	0.0717	0.4690	0.3559		0.0
,	10/0	1.0001	0.1166	0.7237	0.3808	0.7566	0.1172	0.725			
, c	7000	1.0003	700.0	0.9819	0.3927	1.0032	0.1532	0.9838			127
· c	3550	7.640	0.1.0	1.2403	0.3874	1.2509	0.1795	1.2422		-	
· c	400E	1 2054	0.1890	1.4978	0.3652	1.4996	0.1962	1.4996		1.5021	200
•	7000		77.7	1.7109	0.3336	1.7071	0.2027	1.712	_	-	000
• •	2563	7700	0 1915	1.8/99	0 . 3000	1.8732	0.2031	1.8817	_	_	000
	200	1.7704	0 TB/9	2.0055	0.2699	1.9977	0.2006	2.0074		-	7,000
,	***	****	0.1832	7.0888	0.2476	2.0807	0.1975	2.0906	0	2.0828	0 2050
9	(Cm.)	-1.9238	-0.7767			-1.9170	-0.7774				
2	- E	2.0809	0.2087			2.0818	0.2230			2 0838	-0.7/84
										000	7.7

^{-1.9109 -0.7784} 2.0838 0.2308 PAGE NO. 38 ** BLADE SECTION COORDINATES OF STATOR NO. 1 FOLLOWING ROTOR NO. 1 IN THE TURBOMACHINE ORIENTATION ** SECTION 7 FOR XCUT OF 21.5750 Cm. FRACT.

SECTION 8 FOR XCUT OF 21.0000 Cm. SUCTION SURFACE PRESSURE SURFACE

SECTION 9 FOR XCUT OF 20.4250 Cm. SUCTION SURFACE PRESSURE SURFACE

		39		40
()	0.8446 0.8683 0.86842 0.96842 0.96842 0.96842 0.96842 0.96842 0.96842 0.96842 0.96842 0.91843 0.91843 0.91843 0.91866 0.918	0.2563 PAGE NO.	0 CR CR FAC CR CR	-6.8438 0.2829 PAGE NO.
	1. 8673 1. 7928 1. 5307 1. 1449 1. 1449 1. 1449 1. 1449 1. 1446 1.	. I.8853 2.0894 TION ••	18 SUR 63 642 642 642 642 642 642 642 642 642 643 643 643 643 643 643 643 643 643 643	-1.8578 2.0938 ATION
F (Cm.)	-0.7763 -0.7231 -0.5438 -0.5438 -0.2848 -0.0356 0.0755 0.0	2 2 NE ORIENTATION	12 FOR SURFACE (Cm.) -0.8084-0.7534-0.6724-0.2984-0.0386-0	-1. 2. INE ORIENTATION
2 2 2 3	-1.9106 -1.8428 -1.6021 -1.4219 -1.2028 -0.7485 -0.2765 -0.2186 0.2186 0.4727 0.2186 0.4727 0.2186 1.2467 1.2467 1.2467 1.2467 1.2467 1.2467 1.2467 1.2467 2.0131	TURBOMACHINE	SECTION SUCTION C C C C C C C C C C C C C C C C C C C	TURBOMACHINE
Y CB.	0.8313 0.7957 0.7429 0.7429 0.6736 0.05890 0.3943 0.3943 0.1268 0.1268 0.0171 0.0751 0.0751 0.1928 0.2129 0.2223	33 79 THE	SSURE SURFACE Y Mm.) (Cm.) 4469 -0.8710 731 -0.8315 6520 -0.7780 1132 -0.7780 1132 -0.7780 1132 -0.7780 1132 -0.7780 1132 -0.7780 1132 -0.7780 1132 -0.7780 1132 -0.7780 1132 -0.1352 1135 -0.2102 1135 -0.2102 1135 -0.2102 1135 -0.2102 1135 -0.2102 1135 -0.2102 1135 -0.2102 1135 -0.2102 1135 -0.2102 1135 -0.2102 1135 -0.2102 1135 -0.2102 1135 -0.2102 1135 -0.2102 1135 -0.2102 1135 -0.2102	-0.8315 0.2731 . 1 IN THE
2 (CB.)	-1.8776 -1.8027 -1.5395 -1.3504 -1.1221 -0.8926 -0.0496 -0.0496 -0.1959 -0.0496 -0.1959 -0.1959 -0.1959 -1.1938 -1.2588 -1.2588 -1.2588 -1.338	-1.8944 2.0876 ROTOR NO.	XCUT OF 19. PRESSURE (Cm.) -1.8469 -1.731 -1.6620 -1.3264 -1.3264 -1.0621 -0.8130 -0.1810 -0.5202 -0.1810 -0.5309 -0.1810 -0.5309 -0.1810 -0.5309 -0.1810 -0.5309 -0.1810 -0.5309 -0.1810 -0.1810 -0.5309 -0.1810 -0.5309 -0.1810 -0.5309 -0.1810 -0.5309 -0.1810 -0.5309 -0.1810 -0.5309 -0.1810 -0.5309 -0.1810 -0.5309 -0.1810 -0.5309 -	-1.8671 2.0926 G ROTOR NO
, e E 	0. 7658 0. 7132 0. 6360 0. 6361 0. 2865 0. 1724 0. 1887 0. 1888 0.	FOLLOWING	URFACE (Cm.) Y (Cm.) (Cm	1 FOLLOWING
2 (Cm.)	-1.9183 -1.8501 -1.465 -1.4070 -1.2070 -0.9818 -0.7518 -0.2180 -0.2180 -0.2180 -0.2176 0.42176 1.2083 1.5083 1.7163 2.0945	STATOR NO. 1	SECTION SUCTION S CCTION S CCT	STATOR NO.
۲ (C a .)	-0.8182 -0.78132 -0.73133 -0.6631 -0.8728 -0.8728 -0.2973 -0.2992 -0.2992 -0.2992 -0.2993 -0.1582 0.0158 0.0158 0.0158 0.0158 0.0158	848 391 OF	SURFACE Y (Cm.) -0.8578 -0.8210 -0.6948 -0.6042 -0.6042 -0.5049 -0.1109 -0.1109 -0.1109 -0.1109 -0.202 0.2064	198 646 OF
(CB.)	-1.8877 -1.69926 -1.5483 -1.3584 -1.3584 -0.8991 -0.6675 -0.4348 -0.2368 0.2767 0.2167 1.0092 1.2564 1.2564 1.2564 1.2564 1.2564 1.2564 1.2564 1.2564	-1.9035 -0.7 2.0857 0.2 ION COORDINATES	XCUT OF 19.89 PRESSURE 2 2 (Cm.) 1.8571 1.1520 1.1513 1.15108 0.0484 0.1897 0.0484 0.1897 1.166 1.166 1.2632 1.5108 1.5108 1.5108 2.0076	-1.8762 -0.8 2.0911 0.2 TION COORDINATES
¥ ()	527 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Cm.) Cm.) E SECT	RFACE Y (Cm.) 7330 7330 7330 7330 7330 7330 7331 7331	(Cm.) (Cm.) LADE SEC
2 2	2260 2260 3312 3321 3321 3336 3339 3339 3339 3339 3339 3339 333	CLE CENTER CLE CENTER	SECTION SUCTION RCLE CENTER RCLE CENTER	
SURF	00000000000000000000000000000000000000	L.E. CIRC T.E. CIRC	FRACT. SURF. C. 0.00 0.00 0.00 0.00 0.00 0.00 0.00	L.E. CIRC T.E. CIRC

	· -	
T OF 16.9750 Cm. PRESSURE SURFACE Z Y (Cm.) (Cm.)	-0.99411 -0.9906 -0.9906 -0.9406 -0.5531 -0.3458 -0.3458 -0.3458 -0.0481 -0.0481 -0.0481 -0.0481 -0.0481 -0.0481 -0.0481 -0.0559 -0.2873 -0.28	
XCUT OF 16.9750 Cm PRESSURE SURFACI Z Y (Cm.) (Cm.)	1,7975 -1,7255 -1,6171 -1,6171 -1,689 -0,899 -0,9689 -0,1665 -	*10 7 16
SUCTION 15 FOR SUCTION SURFACE X Y (Cm.)	-0.8576 -0.8051 -0.7155 -0.715	
SECTION SUCTION 2	-1.8580 -1.7933 -1.6948 -1.3850 -1.1755 -0.5957 -0.2728 -0.2728 -0.2728 -0.2728 -0.2728 -0.2728 -1.2487 1.7227 1.7	
T OF 17.5500 Cm. PRESSURE SURFACE Z Y (Cm.) (Cm.)	-0.9188 -0.8798 -0.8798 -0.8208 -0.5400 -0.5400 -0.3301 -0.2301 -0.2302 -0.0939 -0.0039 -0.003	
XCUT OF 17.5500 Cm. PRESSURE SURFACE 2 Y (Cm.) (Cm.)	-1.8693 -0.8175 -1.8121 -0.9188 -1.8580 -0.8576 -1.795 -1.7042 -0.6579 -1.6302 -0.8793 -1.7933 -0.8071 -1.725 -1.7042 -0.6579 -1.6302 -0.8208 -1.6948 -0.7155 -1.617 -1.3688 -0.7800 -1.6302 -0.8208 -1.6948 -0.7155 -1.617 -1.3956 -0.6502 -1.4838 -0.7439 -1.5608 -0.6058 -1.4718 -0.9529 -0.4736 -1.2956 -0.0428 -0.1731 -0.8530 -0.4334 -0.9597 -0.1801 -0.8450 -0.0581 -0.0428 -0.0428 -0.0428 -0.0428 -0.0325 -0	
SECTION 14 FOR) SUCTION SURFACE Z Y (Cm.) (Cm.)	-0.8375 -0.7810 -0.5979 -0.6979 -0.6078 -0.1733 -0.1733 -0.1733 -0.1883 0.1883 0.1883 0.1883 0.1883 0.1883 0.1883 0.1883 0.1869	
SECTION SUCTION 2 (Cm.)	-1.8693 -1.7042 -1.3568 -1.3568 -1.1821 -0.7380 -0.273 -0.273 -0.273 -0.273 -0.273 -1.273 -1.2494 1.5085 1.5085 1.728 1.728 1.728 1.728 2.0188 2.0188	
.1250 Cm. E SURFACE Y (Cm.)	-0.8999 -0.8612 -0.7286 -0.5290 -0.5290 -0.2265 -0.04248 -0.2265 -0.0444 0.0891 0.2243 0.2243 0.2694 0.2694 0.2694 0.2694	
XCUT OF 18.1250 Cm. PRESSURE SURFACE Z Y (Cm.) (Cm.)	-1.8251 -0.8999 -1.7520 -0.8612 -1.6420 -0.8038 -1.3047 -0.7286 -1.0857 -0.5290 -0.6364 -0.4248 -0.6364 -0.2265 -0.1746 -0.1337 -0.2963 -0.0249 -0.2963 -0.0249 -0.2963 -0.0249 -0.2963 -0.0249 -0.2963 -0.0249 -0.2963 -0.0249 -0.2963 -0.2243 -0.225 -0.140 -0.225 -0.137 -0.140 -0.225 -0.144 -0.225 -0.144 -0.225 -0.144 -0.225 -0.144 -0.228 -1.8478 -0.8575 -1.8478 -0.8575 -1.8478 -0.8575	
SECTION 13 FOR SUCTION SURFACE 2 Y (Cm.) (Cm.)	1131 -0.7653 1725 -0.8210 1726 -0.6834 1761 -0.4497 866 -0.3043 660 -0.1676 660 -0.1860 090 0.0789 090 0.0789 090 0.0789 1315 0.4395 1315 0.4395 144 0.4032 1315 0.4395 1315 0.4368 0.43	
SECTION SUCTION 2 (Cm.)	00 -1 8792 02 -1.8131 05 -1.7126 04 -1.4016 10 -1.1866 10 -0.5090 10 -0.203 10 -0	
FRACT. OF SURF.	0.00 0.05 0.05 0.05 0.14 0.126 0.138 0.148	

XCUT OF 15.2500 Cm. PRESSURE SURFACE Z (Cm.) (Cm.)	0.000 0.000	0.3326
XCUT OF 15 PRESSUR Z (Cm.)	1. 43 55 1. 1. 43 55 1. 1. 43 55 1. 1. 43 55 1. 1. 43 55 1. 1. 25 1. 1. 25 1. 1. 25 1. 1. 25 1. 1. 25 1. 1. 25 1. 1. 25 1. 1. 25 1. 1. 25 1. 1. 25 1. 1. 25 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	2.0950
SECTION 18 FOR SUCTION SURFACE 2 Y (Cm.) (Cm.)	0.9178 0.09778 0.07581 0.07581 0.07582 0.0987 0.0987 0.0987 0.0987 0.0987 0.0987 0.0987 0.0987 0.0987 0.0987 0.0987 0.0987 0.0987 0.0987 0.0987	0.3828
SECTION SUCTION Z (Cm.)		2.1030
8250 Cm. SURFACE Y (Cm.)	0.0 9483 0.0 9483 0.0 9482 0.0 9483 0.0 9483 0.0 9483 0.0 9483 0.0 0486 0.0 04	0.3202
CCUT OF 15 8250 Cm. PRESSURE SURFACE Z Y Cm.) (Cm.)	-1.7686 -1.6978 -1.5978 -1.4683 -1.0504 -0.0883 -0.1591 -0.1591 -0.1591 -0.1591 -0.1591 -1.2708 -1.571 -1.2708 -1.571 -1.2708	
17 FOR URFACE Y (Cm.)	0.08959999999999999999999999999999999999	* 0 . 0
SUCTION S Z (Cm.)	11.7223 1.224 1.3463 1.	1
5.4000 Cm. RE SURFACE Y (Cm.)	-0.95623 -0.92683 -0.92683 -0.67944 -0.5637 -0.3428 -0.1377 -0.0338 -0.0338 -0.2543 -0.2583 -0.3059)))
XCUT OF 16.4000 PRESSURE SURE Z Y (Cm.) (Cm.)	-1.783 -1.6043 -1.6043 -1.24602 -0.61380 -0.61380 -0.1627 -0.1	! !
50.5	910001100011000177	
SUCTION 2 (Cm.)	00 -1.8471 -0.81 02 -1.7832 -0.81 03 -1.5531 -0.48 11.5531 -0.48 11.5531 -0.48 12.6 -0.1731 -0.33 26 -0.1731 -0.18 27 -0.046 28 -0.5072 0.07 29 -0.2169 0.37 20 -0.2169 0.37 20 -0.2169 0.37 20 -0.2169 0.49 21 -0.2278 0.49 21 -0.228 0.41 21 -0.238 0.41	
FRACT. OF SURF.	00000000000000000000000000000000000000	

-1,7835 -0.9588 2,0953 0.3583 PAGE NO. 42 ** BLADE SECTION COORDINATES OF STATOR NO. 1 FOLLOWING ROTOR NO. 1 IN THE TURBONACHINE ORIENTATION ** -1.7975 -0.9361 2.0954 0.3459 L.E. CIRCLE CENTER (Cm.) -1.8105 -0.9159 T.E. CIRCLE CENTER (Cm.) 2.9954 0.3337

T OF 25.1451 Cm. PRESSURE SURFACE Z Y (Cm.) (Cm.)	0.08086 0.7715 0.77166 0.05580 0.04575 0.0580 0.0580 0.0580 0.0180 0.01452 0.01452 0.01870 0.01870 0.01870 0.01870 0.01870	
SECTION 20 FOR XCUT OF 25.1451 Cm. SUCTION SURFACE PRESSURE SURFACE X Y Z Y (Cm.) (Cm.) (Cm.) (Cm.)	1. 9348 -1. 7467 -1. 7467 -1. 7467 -1. 7467 -0. 9426 -0. 2485 -0. 248	
4 20 FOR X SURFACE Y (Cm.)	0.1766 0.7166 0.7166 0.5328 0.5339 0.2725 0.0726 0.1715 0.3429 0.3429 0.3429 0.3429 0.3429 0.3429 0.3429 0.3429 0.3429 0.3429 0.3429 0.3429 0.3429 0.3429 0.3429	
SECTION SUCTION 2 (Cm.)	11.99520 11.89320 11.6482 11.6482 11.64842 11.6482 10.29996 10.29996 10.29996 11.2468 11.5468 11.5468 11.8860 2.0103	
6750 Cm. SURFACE Y (Cm.)	-1.0353 -0.9905 -0.9240 -0.9240 -0.7294 -0.6040 -0.1408 -0.1240 -0.124	
XCUT OF 14.6750 Cm. PRESSURE SURFACE Z Y (Cm.) (Cm.)	1. 7349 -1. 6653 -1. 5613 -1. 2447 -1. 23447 -0. 3757 -0.	
	-0.9439 -0.79122 -0.6728 -0.6219 -0.0621 -0.06	
SECTION 19 FOR SUCTION SURFACE 2 Y (Cm.) (Cm.)	5 -1.8102 5 -1.6489 5 -1.6558 9 -1.5275 4 -1.3631 6 -0.9486 6 -0.9486 6 -0.9486 6 -0.9486 7 -0.0331 6 -0.0337 6 -0.0337 6 -0.0337 1 -0.2775 9 -0.2038 1 -0.2038 1 -0.2038 1 -0.2038 1 -0.2038 2 -0.2038 1 -0.2038 1 -0.2038 2 -0.2	
FRACT OF SURF	L. E. C. C. C. C. C. C. C. C. C. C. C. C. C.	

APPENDIX C. TEST RIG

This appendix contains information pertaining to the transonic axial compressor test rig located at the NPS TPL. Included is the general procedure involved in operating the test rig, and its disassembly and reassembly. This information is provided to fill the void that currently exists in the documentation associated with maintenance and operation of the test rig.

A. OPERATING PROCEDURE

A photograph of the control panel, from which the operation of the test rig is controlled and monitored, is located in Figure 23. The panel is used to control the supply of air from the laboratory's 12 stage compressor to the test-rig drive turbine, to relieve the axial load on the drive shaft bearings by porting low pressure air to a balance piston inside the compressor hub, and to remotely operate the hydraulic throttle located in the compressor-intake housing. It is also used to monitor the operating temperatures of the drive-shaft bearings, the RPM, and levels of vibrations. The following is a description of the operating procedure.

- 1. The technician starts and warms up the laboratory air-supply compressor (1 hour), with the bypass (dump) valves in the open position.
- 2. Turn on the control-panel activation switch (located beneath the control-panel counter-top).
- Ensure that air is being supplied to the balance piston, and bearing oil-mist cooling lines. This air is supplied through the shop air lines, by the Elliot compressor.
- 4. Set the oil-mist cooling, air-oil regulators, to 35 psi, and 12 drops of oil per minute (count the number of drips over a three minute interval and average).
- 5. Check that the bearing temperature readings are indicating test-cell ambient values (not wandering).

- 6. Close supply-air dump valves (2 ea.),until a two-to-one pressure ratio across the laboratory air supply compressor is indicated (on gauge to the right of control panel), and the noise level in the control room is acceptable (some combinations of valve settings are noisy).
- Open air supply valve and close dump valves partially until desired RPM is indicated, while maintaining the two-to-one pressure ratio across the air supply compressor.
- 8. As the RPM increases, the air supplied to the balance piston must be increased to compensate for the axial load on the bearings. If the value displayed on the analogue readout is maintained at the level indicated before start-up (with no air supplied to the balance piston), the axial load produced by the spinning rotor will be negated by the pressure on the balance piston. This will result in approximately zero axial load on the high speed bearings.
- 9. Set throttle valve as required, and correct air-supply valve to maintain RPM.

During operation of the test rig, RPM, bearing temperature, balance piston, and vibration indications must be monitored continuously. Additionally, periodic checks of the oil-mist regulators is recommended.

B. DISASSEMBLY AND REASSEMBLY

The disassembly and reassembly performed in association with this report was documented on video tape. This tape will be maintained with the records of the test rig for guidance in future overhaul efforts. A few notes, however, concerning the disassembly and reassembly of the machine should be emphasized.

Disassembly

be taken to prevent the shroud (attached to, and removed with, the nozzle bell), from coming into contact with the rotor blade tips. To remove the nozzle bell and shroud assembly without incident, pull out the positioning pins, and un-screw the bolts securing the assembly to its support structure. Then attach the test-cell overhead crane to the eye bolt on the top of the nozzle and raise the crane until there is a slight tension on the chain. Attach a winch to the nozzle-inlet face, and the piping from the inlet housing (outside the test cell), and gently pull it axially away from the hub housing. If the winch cables are evenly distributed around the nozzle face the assembly should slide along the channels fastened to the nozzle-bell support structure that ensure clearance of the rotor blade tips. The overhead crane will prevent the assembly from dropping as it clears the edge of the nozzle base.

<u>Reassembly</u>

- Ensure that markings on splines are located during disassembly and aligned during reassembly. These markings line up the high speed rotational components as they were when the machine was originally balanced.
- The pre-load on the high speed bearings is defined as "light". A mere 2-3 in.-lb.
 torque, on the rotor mounting bolt, is all that is desired to keep the bearings, rotor and
 rotor shaft in place.
- Perform a new calibration of the torque balance each time the machine is reassembled.
- Check bearing oil-mist cooling lines, bearing temperatures, and internal
 instrumentation lines for proper operation/indications prior to reassembling.

C. INSTRUMENTATION

The test runs and overhaul of the test rig, as described in this report, have been primarily driven by the desire to return the machine to routine operation. The myriad of instrumentation, that was added in a piece-meal fashion over the fifteen years of operation of the rig, is in need of overhaul. Currently the data-acquisition system at the TPL is in transition. The Hewlett-Packard Basic workstation and programs that have been used for data acquisition are being augmented and possibly replaced with a PC data acquisition controller using LabviewTM. A VXI-Bus mainframe has been purchased, and obsolete scanners are to be replaced. All instrumentation lines from the test-cell to the data acquisition area must yet be verified or replaced before performance mapping of the new stage can begin.

Figure 23. Transonic Compressor Test Rig Control Panel.

LIST OF REFERENCES

- 1. Paige, G. C., <u>Measurement of Case Wall Pressure Signatures in a Transonic Compressor Using Real-Time Digital Instrumentation</u>, M.S. Thesis, Naval Post Graduate School, June 1976.
- 2. West, J.C., <u>Digital Programmable Timing Device for Fast Response</u>

 <u>Instrumentation in Rotating Machines</u>, M.S. Thesis, Naval Postgraduate School,
 December 1976.
- Simmons, J. M., <u>Data Acquisition and Analysis Techniques for Measuremen of Unsteady Wall Pressures in a Transonic Compressor</u>, M.S. Thesis, Naval Postgraduate School, July 1977.
- 4. Dodge, F.J., <u>Development of a Temperature-Pneumatic Probe and Application at the Rotor Exit in a Transonic Compressor</u>, M.S. Thesis, Naval Postgraduate School, June 1976.
- 5. Hawkins, W.R., <u>Determination of the Blade-Element Performance of a Small Transonic Rotor</u>, M.S. Thesis, Naval Postgraduate School, December 1976.
- Erwin, J. R., <u>A Review of the Design of the NPS/TPL Transonic Compressor</u>, Contractor Report NPS67-83-004CR, Naval Postgraduate School, Monterey, California, March 1983.
- 7. Neuhoff, F., Shreeve, R.P., and, Fottner, L., <u>Evaluation of the Blade-to-Blade Flow From a High Speed Compressor Rotor</u>, ASME Paper 86-GT-117, Presented at the International Gas Turbine Conference and Exhibit, Dusseldorf, West Germany, June 8-12, 1986.
- 8. Sanger, N.L., <u>Design of a Low Aspect Ratio Transonic Compressor Stage Using CFD Techniques</u>, ASME Paper No. 94-GT-236, Presented at the International Gas Turbine and Aeroengine Congress and Exposition, The Hague, The Netherlands, June 13-16, 1994.
- Crouse, J.E., and Gorrell, W.T., <u>Computer Program for Aerodynamic and Blading Design of Multistage Axial-Flow Compressors</u>, NASA Technical Paper 1946, NASA Lewis Research Center, Cleveland, Ohio, December 1981.

- 10. Reid, W.D., <u>AXIDES Code Input and Output Files</u>, Turbopropulsion Laboratory Technical Note, TPL-TN-95- 01, Naval Postgraduate School, Monterey, California, September 1995.
- 11. Denton, J.D., <u>An Improved Time-Marching Method for Turbomachinery Flow Calculation</u>, ASME Paper 82-GT-239, Presented at the 27th International Gas Turbine Conference and Exhibit, London, England, April 18-22, 1982.
- 12. McNally, W.D., <u>FORTRAN Program for Calculating Compressible Laminar and Turbulent Boundary Layers in Arbitrary Pressure Gradients</u>, NASA TN D-5861, NASA Lewis Research Center, Cleveland, Ohio, 1970.
- Denton, J.D., <u>The Use of a Distributed Body Force to Simulate Viscous Effects in 3D Calculations</u>, ASME Paper 86-GT-144, Presented at the International Gas Turbine Conference and Exhibit, Dusseldorf, West Germany, June 8-12, 1986.
- 14. Katsanis, T., <u>FORTRAN Program for Calculating Transonic Velocities on a Blade-to-Blade Stream Surface of a Turbomachine</u>, NASA TN D-5427, NASA Lewis Research Center, Cleveland, Ohio, 1969.
- 15. Katsanis, T., and, McNally, W.D., Revised FORTRAN Program for Calculating Velocities and Streamlines on the Hub-Shroud Midchannel Stream Surface of an Axial-, Radial-, or Mixed-Flow Turbomachine or Annular Duct, NASA TN D-8430, NASA Lewis Research Center, Cleveland, Ohio, March 1977.
- National Aeronautics and Space Administration Report No. N65-23345,
 <u>Aerodynamic Design of Axial-Flow Compressors</u>, NASA SP-36, Washington,
 D.C., 1965
- 17. Shreeve, R.P., Report on the Testing of a Hybrid (Radial-to-Axial) Compressor, Report No. NPS-57Sf73112A, Naval Postgraduate School, Monterey, California, November 1973.

INITIAL DISTRIBUTION LIST

1.	Defense Technical Information Center Cameron Station	2
	Alexandria, VA 22304-6145	
2.	Dudley Knox Library	2
	Code 052	
	Naval Postgraduate School	
	Monterey, CA 93943-5101	
3.	Chairman	1
	Department of Aeronautics and Astronautics	•
	Code AA	
	Naval Postgraduate School	
	699 Dyer Road - Room 137	
	Monterey, CA 93943-5106	
4.	Professor R.P. Shreeve	10
	Department of Aeronautics and Astronautics	•
	Code AA/SF	
	Naval Postgraduate School	
	699 Dyer Road - Room 137	
	Monterey, CA 93943-5106	
5.	Professor G.V. Hobson	1
	Department of Aeronautics and Astronautics	4
	Code AA/SF	
	Naval Postgraduate School	
	699 Dyer Road - Room 137	
	Monterey, CA 93943-5106	
6.	Commander	1
	Naval Air Systems Command	•
	Code AIR 4.4.T	
	1421 Jefferson Davis Highway	
	Arlington, Virginia 22243	

7.	Naval Air Warfare Center Aircraft Division	1
	Code AIR 4.4.3.1 [S. McAdams]	
	Propulsion and Power Engineering, Bldg.106	
	Patuxent River, Maryland 20670-5304	
8.	Curricular Officer, Code 31	1
	Naval Postgraduate School	
	Monterey, CA 93943-5002	
9.	Mr. Thomas J. Reid	2
	33 Crestwood Street	
	Syosset, NY 11791	
10.	Mr. James Crouse	1
	No. 7 ST. Mary's	
	Allegany, NY 14706-9672	
11.	Mr. Nelson Sanger	1
	752 Elmwood Road	
	Rocky River OH 44116	