

E10-915MS30 产品规格书

SI4463 915MHz 1W SPI 贴片型无线模块

成都亿佰特电子科技有限公司 Chengdu Ebyte Electronic Technology Co.,Ltd.

第一章 概述

1.1 简介

E10-915MS30 是基于美国芯科 (Silicon Labs) 生产的 Si4463 为核 心自主研发的最大发射功率为 1W 的 915MHz 贴片式无线模块,使用工业 级高精度 26MHz 晶振。

由于采用原装进口的 Si4463 为模块核心,在原有基础上内置了功 率放大器 (PA) 与低噪声放大器 (LNA), 使得最大发射功率达到 1W 的同 时接收灵敏度也获得进一步的提升, 在整体的通信稳定性上较没有功率 放大器与低噪声放大器的产品大幅度提升。该模块主要针对智能家庭、 无线抄表、科研和医疗以及中远距离无线通信设备。由于射频性能与元 器件选型均按照工业级标准,并且该产品已获得 FCC、CE、RoHS 等国际 权威认证报告,用户无需担忧其性能。

由于该模块是纯射频收发模块需要使用 MCU 驱动或使用专用的 SPI 调试工具。

1.2 特点功能

- 内置 PA+LNA,整体的通信距离和稳定性有大幅度提升;
- 理想条件下,通信距离可达 6km;
- 最大发射功率 1W, 软件多级可调;
- 支持全球免许可 ISM 915MHz 频段;
- 支持 1.2k~1000kbps 的数据传输速率;;
- 支持多种调制模式, (G)FSK, 4(G)FSK, (G)MSK, 00K;
- 64/128 字节收发数据寄存器(FIF0);
- 支持 2.5~5.5V 供电,大于 5V 供电均可保证最佳性能;
- 工业级标准设计,支持-40~+85℃下长时间使用;
- 双天线可选用(IPEX/邮票孔),便于用户二次开发,利于集成。

1.3 应用场景

- 智能家居以及工业传感器等;
- 无线报警安全系统;
- 楼宇自动化解决方案;
- 无线工业级遥控器;
- 医疗保健产品;
- 高级抄表架构(AMI);
- 汽车行业应用。

第二章 规格参数

2.1 极限参数

计 西	性	能	女 分	
主要参数	最小值	最大值	备注 	
电源电压 (V)	0	5. 5	超过 5.5V 永久烧毁模块	
阻塞功率(dBm)	-	10	近距离使用烧毁概率较小	
工作温度(℃)	-40	+85	工业级	

2.2 工作参数

主要参数		性能			备注
	工女少奴	最小值	典型值	最大值	田 在
	工作电压 (V)	4.8	5.0	5.5	≥5.0V 可保证输出功率
	通信电平 (V)		3.3		使用 5V TTL 有风险烧毁
	工作温度(℃)	-40	ı	+85	工业级设计
	工作频段 (MHz)	900	915	925. 5	支持 ISM 频段
T-1-	发射电流 (mA)		753		瞬时功耗
功耗	接收电流(mA)		20		
杜	休眠电流 (μA)		5		软件关断
	最大发射功率 (dBm)	29	30	31	
	接收灵敏度(dBm)	-121	-122	-124	空中速率为 1kbps
	空中速率(bps)	0.123k	_	1M	用户编程控制

主要参数	描述	备注
参考距离	6000m	晴朗空旷环境,天线增益 5dBi, 天线高度 2.5 米, 空中速率 1kbps
FIFO	64Byte	单次发送最大长度
晶振频率	26MHz	
调制方式	GFSK(推荐)	支持多种调制模式, (G)FSK, 4(G)FSK, (G)MSK, OOK
封装方式	贴片式	
接口方式	2.54mm	邮票孔
通信接口	SPI	0~10Mbps
外形尺寸	25*40mm	
天线接口	邮票孔/IPEX	等效阻抗约 50 Ω
产品净重	5g	

第三章 机械尺寸与引脚定义

	1	•	Unit: mm	
引脚序号	引脚名称	引脚方向	引脚用途	
1	GND		地线,连接到电源参考地	
2	SDN	输入	模块工作使能控制引脚,工作时为低电平(详见 SI4463 手册)	
3	GPIO3	输出	连接模块内部射频开关的发射,可不连接,由 SI4463 智能控制	
4	GPI02	输出	连接模块内部射频开关的接收,可不连接,由 SI4463 智能控制	
5	CSN	输入	模块片选引脚,用于开始一个 SPI 通信	
6	MOSI	输入	模块 SPI 数据输入引脚	
7	MISO	输出	模块 SPI 数据输出引脚	
8	GND		地线,连接到电源参考地	
9	SCK	输出	模块 SPI 时钟引脚	
10	IRQ	输出	模块中断引脚	
11	GPI01	输出	模块信息输出引脚(详见 SI4463 手册)	
12	GPI00	输出	模块信息输出引脚(详见 SI4463 手册)	
13	VCC		供电电源,必须 5.0~5.5V DC (高于 6V 电压,将导致模块永久损毁)	
14	GND		地线,连接到电源参考地	
15	GND		地线,连接到电源参考地	
16	GND		地线,连接到电源参考地	
17	GND		地线,连接到电源参考地	
18	GND		地线,连接到电源参考地	
19	GND		地线,天线端口参考地	
20	ANT	输出	天线接口(高频信号输出引脚)	

第四章 基本操作

硬件设计 4. 1

- 推荐使用直流稳压电源对该模块进行供电,电源纹波系数尽量小,模块需可靠接地;
- 请注意电源正负极的正确连接,如反接可能会导致模块永久性损坏;
- 请检查供电电源,确保在推荐供电电压之间,如超过最大值会造成模块永久性损坏;
- 请检查电源稳定性, 电压不能大幅频繁波动;
- 在针对模块设计供电电路时,往往推荐保留30%以上余量,有整机利于长期稳定地工作;
- 模块应尽量远离电源、变压器、高频走线等电磁干扰较大的部分;
- 高频数字走线、高频模拟走线、电源走线必须避开模块下方,若实在不得已需要经过模块下方,假设模块焊接在 Top Layer, 在模块接触部分的 Top Layer 铺地铜(全部铺铜并良好接地),必须靠近模块数字部分并走线在 Bottom Layer:
- 假设模块焊接或放置在 Top Layer, 在 Bottom Layer 或者其他层随意走线也是错误的, 会在不同程度影响模块的杂散 以及接收灵敏度;
- 假设模块周围有存在较大电磁干扰的器件也会极大影响模块的性能,跟据干扰的强度建议适当远离模块,若情况允许 可以做适当的隔离与屏蔽;
- 假设模块周围有存在较大电磁干扰的走线(高频数字、高频模拟、电源走线)也会极大影响模块的性能,跟据干扰的 强度建议适当远离模块,若情况允许可以做适当的隔离与屏蔽;
- 通信线若使用 5V 电平, 必须串联 1k-5.1k 电阻 (不推荐, 仍有损坏风险);
- 尽量远离部分物理层亦为 2.4GHz 的 TTL 协议,例如: USB3.0;
- 天线安装结构对模块性能有较大影响,务必保证天线外露,最好垂直向上。当模块安装于机壳内部时,可使用优质的 天线延长线,将天线延伸至机壳外部;
- 天线切不可安装于金属壳内部,将导致传输距离极大削弱。

4. 2 软件编写

- 此模块为 Si4463+PA+LNA, 其驱动方式完全等同于 CC1101, 用户可以完全按照 CC1101 芯片册进行操作;
- GPI00 \ GPI01 \ GPI02 \ GPI03 是一般通用 I/0 口,可以配置成多种功能,相见 SI4463 手册。若不使用可以悬空。
- IRQ 引脚,也可不接,可采用 SPI 查询方式来获取中断状态,但是推荐连接使用单片机外部中断。
- SPI 通讯速率不宜设置过高,通常 1Mbps 是被推荐的。
- SI4463 的状态转换请参考数据手册 "Operating Modes and Timing" 部分, TX 与 RX 的状态转换必须经过 Ready, 不 可直接切换。
- 可在芯片空闲时重新初始化寄存器配置以获得更高的稳定性。
- 如果需要进行外部控制 GPIO2 、GPIO3, 引脚的状态如下:

发送模式时: GPIO2 = 0; GPIO3 = 1;

接收模式时: GPIO2 = 1: GPIO3 = 0:

如果需要 SI4463 自行控制可在程序初始化时,配置引脚的模式为如下:

SI44XX GPIO CONFIG(0, 0, 32|0x40, 33|0x40, 0, 0, 0);

EBYTE 成都亿佰特电子科技有限公司

5.1 基本电路

第五章 基本应用

第六章 常见问题

6.1 传输距离不理想

- 当存在直线通信障碍时,通信距离会相应的衰减;
- 温度、湿度,同频干扰,会导致通信丢包率提高;
- 地面吸收、反射无线电波,靠近地面测试效果较差;
- 海水具有极强的吸收无线电波能力,故海边测试效果差;
- 天线附近有金属物体,或放置于金属壳内,信号衰减会非常严重;
- 功率寄存器设置错误、空中速率设置过高(空中速率越高,距离越近);
- 室温下电源低压低于推荐值,电压越低发功率越小;
- 使用天线与模块匹配程度较差或天线本身品质问题。

6.2 模块易损坏

- 请检查供电电源,确保在推荐供电电压之间,如超过最大值会造成模块永久性损坏;
- 请检查电源稳定性,电压不能大幅频繁波动;
- 请确保安装使用过程防静电操作,高频器件静电敏感性;
- 请确保安装使用过程湿度不宜过高,部分元件为湿度敏感器件;
- 如果没有特殊需求不建议在过高、过低温度下使用。

6.3 误码率太高

- 附近有同频信号干扰,远离干扰源或者修改频率、信道避开干扰;
- SPI 上时钟波形不标准, 检查 SPI 线上是否有干扰, SPI 总线走线不宜过长;
- 电源不理想也可能造成乱码,务必保证电源的可靠性;
- 延长线、馈线品质差或太长,也会造成误码率偏高。

第七章 焊接作业指导

7.1 回流焊温度

Profile Feature	曲线特征	Sn-Pb Assembly	Pb-Free Assembly
Solder Paste	锡膏	Sn63/Pb37	Sn96.5/Ag3/Cu0.5
Preheat Temperature min (Tsmin)	最小预热温度	100℃	150℃
Preheat temperature max (Tsmax)	最大预热温度	150℃	200℃
Preheat Time (Tsmin to Tsmax)(ts)	预热时间	60-120 sec	60-120 sec
Average ramp-up rate(Tsmax to Tp)	平均上升速率	3℃/second max	3℃/second max
Liquidous Temperature (TL)	液相温度 183℃		217℃
Time (tL) Maintained Above (TL)	液相线以上的时间	60-90 sec	30-90 sec
Peak temperature (Tp)	峰值温度	220−235℃	230-250℃
Aveage ramp-down rate (Tp to Tsmax)	平均下降速率	6℃/second max	6℃/second max
Time 25℃ to peak temperature	25℃到峰值温度的时间	6 minutes max	8 minutes max

7.2 回流焊曲线图

第八章 相关型号

模块型号	芯片方案	载波频率 发射功率		通信距离	封装形式	天线形式
快火空与	心月刀条	Hz	dBm	m	到表形式	八线形式
E10-433MS	SI4463	433M	20	2000	贴片	邮票孔
E10-433MD-SMA	SI4463	433M	20	2000	直插	SMA-K
E10-433MS1W	SI4463	433M	30	6000	贴片	邮票孔
E10-868MS20	SI4463	868M	20	2500	贴片	邮票孔/IPEX
E10-868MS30	SI4463	868M	30	6000	贴片	邮票孔/IPEX
E10-915MS20	SI4463	915M	20	2500	贴片	邮票孔/IPEX
E10-915MS30	SI4463	915M	30	6000	贴片	邮票孔/IPEX
E10-433MD3	SI4438	433M	20	2000	贴片	IPEX

第九章 天线指南

9.1 天线推荐

产品型号	类型	频段	增益	尺寸	馈线	松口	特点
一面空节	火型	Hz	dBi	mm	cm	接口	
TX915-JZ-5	胶棒天线	915M	2.0	50	-	SMA-J	超短直式,全向天线
TX915-JK-11	胶棒天线	915M	2.5	110	-	SMA-J	可弯折胶棒,全向天线
TX915-JK-20	胶棒天线	915M	3.0	200	_	SMA-J	可弯折胶棒,全向天线
TX915-XPL-100	吸盘天线	915M	3. 5	290	100	SMA-J	小型吸盘天线, 性价比

9.2 天线选择

使能邮票半孔 (默认)

使能 IPEX 接口

EBYTE 成都亿佰特电子科技有限公司

修订历史

版本	修订日期	修订说明	维护人
1.0	2017/10/16	初始版本	huaa
1.1	2018/5/23	内容增加	huaa
1.2	2018/9/19	手册拆分	huaa
1.3	2019-1-29	内容增加	Ray

关于我们

销售热线: 4000-330-990 公司电话: 028-61399028 技术支持: <u>support@cdebyte.com</u> 官方网站: <u>www.eb</u>yte.com 公司地址: 四川省成都市高新西区西芯大道 4 号创新中心 B333-D347

