Name: Md SHaherier Khan
UCID: 30132195
TA: Xi Wang
Report Assignment 3

Complexity Analysis
Let <i>n</i> be the total number of records stored in the data structure.
1. Assuming that the records are inserted into the tree in random order, what is the height of your tree expressed using big-O notation?
2. What is the worst-case height of the tree? What input gives the worst case?
3. What is the worst-case space complexity of the depth-first, in-order traversal and breadth-first traversal? Compare your implementation of these two methods: is there one that will outperform another in terms of memory usage for a specific data set? Discuss.
(1) Following the rules of binary tree wer can insert in the left of the if data is loss than or equal to parent node, else it would be the night.
Suppose the bineary true is balanced so it was a node can have a mon of 2 children.
Suppose k is the height of root to longest leafnode. so the munipul of node is 2th, k also represent the
the level. 2°-1 vons, so to find k = log(n). The big 0 notation is O (Ign) -
(2) The Worst case for a true is when it degenerates to a dinklist causing the data to be shared to be left or right. So that the O(n) as he height become n-1 The data that would cause such a linklist would be if data is sort
3) Space complaining is worst case for DFS when man height is n-1 where n is the number of nodes. This O(n) as big notation height is(n-1) when true degentes to n-1
Space compristy is worst are for BFS when man width of true is 2" where k is man beight of true
The more complete I balance the tree the more width increase so does the space completing. Also more belone indicate
more node are stored in quee: Since man node is 2kin, que stores k z logens, , k is the high
so complenity $O(n)$.
To aummarize
If the tree's well balances, it better to use DFS from BFS.
If the true degrads to linklist jet better to use BFs than DFs
If the Node that we are looking for is at the top then we BFS

If the node that we are looking for is at the bottom then DFS

