Chapter 1:

Exercise 1.1

1.

(i)
$$f(3+h) = 4 - 3(3+h) = 4 - 9 - 3h = -5 - 3h$$

and $f(3) = 4 - 3 \times 3 = 4 - 9 = -5$

$$\frac{(3+h)-f(3)}{h} = \frac{-5-3h+5}{h} = -5$$

(ii)
$$\frac{f(x) - f(1)}{x - 1} = \frac{\frac{x + 3}{x + 1} - 2}{x - 1} = \frac{x + 3 - 2x - 2}{x^2 - 1} = \frac{-x + 1}{x^2 - 1} = \frac{-(x - 1)}{(x - 1)(x + 1)} = \frac{-1}{x + 1}$$

2.

i) For domain,
$$x^2 - 9 = 0 \implies x = \pm 3$$

f(x) is not exist for $x = \pm 3$, hence domain is set of all real number except 3 and -3

So, domain is $(-\infty, -3) \cup (-3, 3) \cup (3, \infty)$

(ii) For domain, $x^2 + x - 6 = 0$

$$x^2 + 3x - 2x - 6 = 0$$

$$x(x+3)-2(x+3)=0$$

$$(x-2)(x+3)=0$$

$$x = 2, -3$$

f(x) is not exist for x = 2 and x = -3.

Hence domain is set of all real number except 2 and -3.

So domain $(-\infty, -3) \cup (-3, 2) \cup (2, \infty)$

(iii) Here,
$$f(t)$$
 is exist for all value of t . Thus, domain is $(-\infty, \infty)$

(iv) For domain $3 - t \ge 0$ and $2 + t \ge 0$

i.e.
$$t-3 \le 0$$
 and $t \ge -2$

i.e.
$$t \le 3$$
 and $t \ge -2$

domain is
$$-2 \le t \le 3$$

(v) For domain, $2 - \sqrt{P} \ge 0$

$$\Rightarrow 0 \le P \le 4$$

(vi) Domain is set of all real number except 0.

i.e.
$$(-\infty, 0) \cup (0, \infty)$$

3.

(i) For domain, $4 - x^2 \ge 0$

$$x^2-4\leq 0$$

$$(x-2)(x+2) \le 0$$

Domain is $-2 \le x \le 2$.

For Range,
$$h(x) = \sqrt{4 - x^2}$$

$$y = \sqrt{4 - x^2}$$

 $y^2 = 4 - x^2$

$$x^2 = 4 - y^2$$

$$x = \pm \sqrt{4 - y^2}$$

Here, $4 - y^2 \ge 0$

i.e.
$$y^2 - 4 \le 0$$

i.e.
$$(y-2)(y-2) \le 0$$

$$\therefore -2 \le y \le 2$$

But by the question is always positive.

Hence, range is $0 \le y \le 2$.

(ii) For domain, $x - 5 \ge 0$

i.e.
$$x \ge 5$$

For range,
$$f(x) = \sqrt{x-5}$$

 $y = \sqrt{x-5}$
 $y^2 = x-5$

$$x = y^2 + 5$$

Here y is set of all real numbers. But by the question y is positive. Hence range is $0 \le y \le 0$.

(iii) Given, $g(x) = \frac{2x + 3}{x - 3}$

For domain, x - 3 = 0

i.e.
$$x = 3$$

... Domain n set of all real numbers except 3.

i.e.
$$(-\infty, 3) \cup (3, \infty)$$

For range,
$$y = \frac{2x+1}{x-3}$$

$$xy - 3y = 2x + 1$$

$$x(y = 2) = 1 + 3y$$

$$x = \frac{1+3y}{y-2}$$

.. Value of y is set of all real number except 2.

Here, range is $(-\infty, 2) \cup (2, \infty)$.

4.

- (i) y = x + 2 is graph of function because, for any vertical line x = 1, y = 1 + 2 = 3. Vertical line meet on only one point.
- (ii) $x = y^2$

Let x = 4, then $y = \pm 2$. Here vertical line x = 4 meet the curve at two points $y = \pm 2$. So $x = y^2$ is not function.

(iii) $y = x^2$. Let x = 1 then y = 1. Here vertical line x = 1 meet the curve at only one point. So it is function.

- (iv) $y = -\sqrt{x+2}$. Let x = 2, then y = -2. Here the vertical line x = 2 meet the curve at only one point y = -2. So it is function.
- (v) $x^2 + y = 5$, let x = 1, then y = 4. Here the vertical line x = 1 meet the curve at only one point. y = 4 so it is function.
- (vi) $x = y^2 2$. Let x = 2 then $y = \pm 2$. Here the vertical line x = 2 meet the curve at two points $y = \pm 2$. So it is not function.

5.

(i)
$$f(-x) = \frac{x^2}{x^4 + 1} = f(x)$$

- f(x) is even function.
- (ii) g(-x) = -x |x| = -g(x)
- f(x) is odd function.

(iii)
$$h(-x) = |-x^3 + x^5| = -(-1 + x^3 - x^5)$$

- h(x) is neither even nor odd function.
- (iv) f(-x) = 2|x| + 1 = f(x)
- f(x) is even function.
- (v) g(-x) = 3 = g(x)
- f(x) is even function.

7.

Perimeter =
$$2(l + w)$$

20 = $2(l + w)$

$$l+w=10 \dots (1)$$

Since
$$A = l w$$

$$A = l (10 - l)$$

$$A = 10 l - l^2$$

8.

Given
$$A = 16$$

$$b = \frac{16}{l}$$

Also, P = 2b + 2l

$$=2\times\frac{16}{l}+2l$$

$$P = \frac{32}{l} + 2l$$

9.

$$Volume = a \times a \times h$$

= a2 h; where a is length of base and h is height

$$2 = a^2h$$

i.e.
$$a^2h = 2$$

$$h = \frac{2}{a^2}$$

Surface area, A = area of base + Area of 4 sides $= a^2 + 4ah$

$$= a^2 + 4a \times \frac{2}{a^2}$$

$$A = a^2 + \frac{8}{a}$$

10. Let x = Width of rectangle window

$$\frac{x}{2}$$
 = Radius of circle

l = Length of rectangle

Area of window, A = Area of rectangle + Area of semicircle

$$= lx + \frac{\pi}{2} \left(\frac{x}{2}\right)^2$$
$$= lx + \frac{\pi x^2}{2}$$

The perimeter of window = Perimeter of semi-circle + Perime

$$30 = \frac{2\pi}{2} \frac{x}{2} + x + 2l$$

$$30 = \frac{\pi x}{2} + x + 2l$$

$$l = 15 - \frac{\pi x}{4} - \frac{x}{2}$$

Thus (1) becomes,

$$A = \left(15 - \frac{\pi x}{4} - \frac{x}{2}\right)x + \frac{\pi x^2}{8} = 15x - \frac{x^2(\pi + 4)}{8}$$

- 11. Here height is x, cutout length 2x and cutout width 2x.
- \therefore Volume of box, V = (Area of base) × height

$$= (20 - 2x) (12 - 2x) \times x$$
$$= 4x^3 - 64x^2 + 240x$$

- 12. Here $f(x) = \begin{cases} 15 (40 x) & \text{for } 0 \le x < 40 \\ 0 & \text{for } 40 \le x \le 65 \\ 15 (x 65) & \text{for } x > 65 \end{cases}$
- 13. $E = \begin{cases} 10 + 0.06x & \text{for } 0 \le x \le 1200 \\ 82 + 0.07 (x 1200) & \text{for } x > 1200 \end{cases}$

...(A)

Exercise 1.2

Equation of linear function is f(x) = mx + b....(1)

Given, f(x) = 1

So, f(x) = 2m + b

 $\Rightarrow 1 = 2m + b$

b = 1 - 2m

Given T = 0.02 t + 8.50Hence, (1) is f(x) = mx + (1 - 2m) be the family of linear function.

(a) Slope is m = 0.02

T-intercept is, T = 8.50 (put t = 0)

increase temp is increased by 0.02°C) m = 0.2 means rate of change of temperature is 0.02 (i.e. when 1 year

T = 8.50 means, in 1900, temperature of is 8.50°C

(b) In 2100 means, t = 200 year

 S_0 , $T = 0.02 \times 200 + 8.50$ = 12.5°

: In 2100, temperature of earth is 12.5°C

(A) be linear cost function.

Where y is cost in \$ to produce x number chairs in one day.

Given, y = 2200 for x = 100

So, $2200 = m \cdot 100 + b$

i.e. 100 m + b = 2200

1030 --

Also, given y = 4800 for x = 300

... (2)

300 m + b = 4800Solving (1) and (2)

 $-300 \text{ m} \pm \text{b} = -4800$ 100 m + b = 2200

-200 m = -2600

using on (1), we get

 $100 \times 13 + b = 2200$

b = 2200 - 1300

(A) is y = 13x + 900

Slope m = 13, it means rate of change of cost of with respect to number of hair is 13 i.e. to produce a more chair \$ 13 additional money is required. - intercept is , y = 900. It means fixed cost (there is no production of chair)

> (a) Given that N = 113 when $T = 70^{\circ}$ C and Let linear model is T = Nm + b

N = 173 when $T = 80^{\circ}$

Using it on (A) and solving

113 m + b = 70

 $-173 \text{ m} \pm \text{b} = -80$

...(2)

...(1)

-60 m = -10

Using (i) we get,

 $113 \times \frac{1}{6} + b = 70$

Scanned with CamScanne

 $b = 70 - \frac{113}{6} = \frac{420 - 113}{6} = \frac{303}{6} = \frac{101}{2}$

(b) Slope $m = \frac{1}{6}$. Rate of change of temperature with respect chirps is 1 more (A) is $T = \frac{1}{6}N + \frac{101}{2}$ is required model.

<u>ල</u> Find T when N = 150chirps per minutes rise the temperature $\frac{1}{6}$ by $\frac{1}{6}$ °F.

Since, $T = \frac{1}{6} \times 150 + \frac{101}{2}$

 $T = 75.5^{\circ}$

5

Let P = mt + b

Given that m = 2 cent/monthwhere P is the price and t be time (Here t = 0, first of January)

Also given, By Nov. fist p = 1.56\$ i.e. p = 156 cent Thus, P = 2t + b

Using (1) we get,

i.e. when t = 10, p = 156

 $156 = 2 \times 10 + b$

Hence (A) is

P = 2t + 136 is required linear function.

At beginning of the year means first of Jan, i.e. t = 0. So P = 136

So at beginning of the year price of a bottle of soda is 136 cent i.e. 1.36 S.

A complete solution of Mathematics-I

Let linear relationship is c = md + b

Where C is monthly cost in \$ and d is mile drive.

800 d + b = 460

By the question, when $c = 380 \, \text{\$}$, $d = 480 \, \text{ml}$

and $c = 460 \,$ \$, $d = 800 \,$ ml Thus, (A) becomes 480 d + b = 380

Solving (1) and (2)

$$320 d = 80$$

$$d = \frac{1}{4} = 0.25$$

Substituting value of d = 0.25 in (1) we get

$$480 \times 0.25 + b = 380$$

$$b = 380 - 120$$

$$b = 260$$

$$\therefore$$
 (A) is $\overline{C} = 0.25 \text{ d} + 260 \text{ is required model.}$

C = ? When d = 1500 ml

Since,
$$C = 0.25 d + 260$$

$$\therefore$$
 C = 0.25 × 1500 + 260

$$C = $536$$

Slope m = 0.25

m = 0.25 mean, when a more mile car drive paid 0.25 \$.

C-intercept = 260. It means fixed cost of driving per month is 260\$.

Let linear function, F = mc + b (A)

Where F be temperature in °F and C be the temperature in °C.

Given,
$$C = 0$$
 then $F = 32$ and $C = 100$ then $F = 212$

So, from (A) using 1st condition

$$32 = m 0 + b$$

i.e.
$$b = 32$$

and using 2nd condition

$$212 = m \times 100 + 32$$

$$m = \frac{9}{5}$$

:. (A) is
$$F = \frac{9}{5}C + 32$$

When $C = 15^{\circ}C$ find F = ?So, using model,

$$F = \frac{9}{5} \times 15 + 32$$

When $F = 68^{\circ}F$ find C = ?So, using model,

$$68 = \frac{9}{5}C + 32$$

$$\frac{9}{5}C = 36$$

$$C = 20^{\circ}$$

When F = C, So, using model

$$F = \frac{9}{5}F + 32$$

$$-\frac{4}{5}$$
 F = 32

$$F = -40$$

$$F = C = -40$$

Let functional relation between N and x is

N = mx + b

Given that N = 97, when x = 100 and

$$N = 110 \text{ when } x = 500$$

So, using it on (A) we get,

$$100 \text{ m} + \text{b} = 97$$

$$500 \text{ m} + \text{b} = 110$$

Solving equation (1) and (2)

$$m = \frac{13}{400}$$

From equation (1)

$$100 \times \frac{13}{400} + b = 97$$

$$\frac{13}{4}$$
 + b = 97

$$b = 97 - \frac{13}{4}$$

$$b = \frac{375}{4}$$

$$\therefore$$
 (A) is N = $\frac{13}{400}$ x + $\frac{375}{4}$

(b) Find N when x = 300.

Since N =
$$\frac{13}{400} \times 300 + \frac{375}{4} = \frac{39}{4} + \frac{375}{4} = \frac{414}{4} \approx 104$$
.

Because of constant rate 50 is linear model and is y = mt + b(A), where y is score and t is year from.

In 1995, given that t = 0, y = 545 and t = 5 (in 2000) y = 545using this data, we get b = 575 (from 1^{s_1} condition)

and $545 = m \times 5 + 575$ $\therefore m = -6$ (A) is y = -6t + 575In 2005, i.e. t = 10 $y = -6t + 575 = -6 \times 10 + 575 = -60 + 575 = 515$ Find t = ? when y = 527Since, y = -6t + 575 527 = -6t + 575or 6t = 575 = 527or t = 8In 1995 + 8 = 2003, the score is 527.

Exercise 1.3

$$(f+g) \times = f(x) + g(x) = x^3 + 5x^2 - 1$$

$$(f-g) \times = f(x) - g(x) = x^3 - x^2 + 1$$

$$(fg)(x) = f(x) g(x) = (x^3 + 2x^2) (3x^2 - 1) = 3x^5 + 6x^4 - x^3 - 2x^2$$

$$\frac{f}{g}(x) = \frac{f(x)}{g(x)} = \frac{x^3 + 2x^2}{3x^2 - 1}$$
The domain of $f(x)$ is $A = (-\infty, \infty)$ and domain of $g(x)$ is $B = (-\infty, \infty)$.

The domain for $f + g$, $f - g$, fg is $A \cap B = (-\infty, \infty)$.

The domain for f/g is $(-\infty, \infty) - \left\{ \pm \frac{1}{\sqrt{3}} \right\}$.

$$(f + g)(x) = f(x) + g(x) = \sqrt{3 - x} + \sqrt{x^2 - 1}$$

$$(f - g)(x) = f(x) - g(x) = \sqrt{3 - x} - \sqrt{x^2 - 1}$$

$$(f \cdot g)(x) = f(x) g(x) = \sqrt{(3 - x)} (x^2 - 1)$$

$$\frac{f}{g}(x) = \frac{f(x)}{g(x)} = \frac{\sqrt{3 - x}}{\sqrt{x^2 - 1}}$$
The domain of $f(x)$ is $3 - x \ge 0$
i.e. $x - 3 \le 0$

i.e. $x \le 3$

 $[-\infty, 3] = A$

The domain for $g(x) = \sqrt{x^2 - 1}$ $x^2 - 1 \ge 1$ $(x - 1) (x + 1) \ge 0$ $Domain is <math>(-\infty, -1] \cup [1, \infty) = B$ $Domain for f + g, f - g, f \cdot g \text{ is } A \cap B = (-\infty, -1] \cup [1, 3]$ $(f + g) (x) = \sqrt{3 - x} + \sqrt{x^2 - 1}$ $(f - g) (x) = \sqrt{3 - x} - \sqrt{x^2 - 1}$ $(f \cdot g) (x) = \sqrt{(3 - x)(x^2 - 1)}$ $(f/g) (x) = \sqrt{\frac{3 - x}{x^2 - 1}}, \quad x \ne \pm 1$ For Domain of $f(x) = \sqrt{3 - x}$

 $3 - x \ge 0$ $x - 3 \le 0$ $x \le 3 \quad \text{i.e. } (-\infty, 3]$

For domain of $g(x) = \sqrt{x^2 - 1}$

$$x_2 - 1 \ge 0$$

 $(x - 1) (x + 1) \ge 0$
 $B = (-\infty, -1] \theta [1, \infty)$

Thus Domain of (f + g), (f - g), and (f/g) is $B = (-\infty, -1] \theta [1, 3]$

The domain of f/g is $(-\infty, -1) \theta (1, 3]$

(iii)
$$(f + g)(x) = \sqrt{x} + \sqrt{1 - x}$$

 $(f - g)(x) = \sqrt{x} - \sqrt{1 - x}$
 $(f \cdot g)(x) = f(x) \cdot g(x) = \sqrt{x} \cdot (1 - x)^2$
 $\frac{f}{g}(x) = \frac{f(x)}{g(x)} = \sqrt{\frac{x}{1 - x}}; \quad x \neq 1$
Domain for $f(x) = \sqrt{x}$ is $x \ge 0$
i.e. $[0, \infty) = A$
Domain for $g(x) = \sqrt{1 - x}$ is $1 - x \ge 0$
i.e. $x = 1 \le 0$
i.e. $x \le 1$
i.e. $(-x, 1] = B$

Domain for
$$f + g$$
, $f - g$, $f \cdot g$ is $A \cap B = [0, 1]$.

(iv)
$$(f + g)(x) = f(x) + g(x) = x + \sqrt{x - 1}$$

 $(f - g)(x) = f(x) - g(x) = x - \sqrt{x - 1}$
 $(f g)(x) = f(x) g(x) = x \sqrt{x - 1}$
 $\frac{f}{g}(x) = \frac{f(x)}{g(x)} = \frac{x}{\sqrt{x - 1}}; x \neq 1$

Domain for
$$f(x) = x$$
 is $(-\infty, \infty) = A$
Domain for $g(x) = \sqrt{x-1}$ is $x-1 \ge 0$
i.e. $x > 1$

$$[1,\infty)=B$$

Domain for
$$f + g$$
, $f - g$, $f \cdot g$ is $A \cap B = [1, \infty)$.

Domain for $\frac{f}{g}(x)$ is $(1, \infty)$

(v)
$$(f + g)(x) = f(x) + g(x) = \sqrt{x+1} + \sqrt{x-1}$$

 $(f - g)(x) = f(x) - g(x) = \sqrt{x+1} = \sqrt{x-1}$
 $(fg)(x) = f(x) \cdot g(x) = \sqrt{x^2-1}$
 $\frac{f}{g}(x) = \frac{f(x)}{g(x)} = \sqrt{\frac{x+1}{x-1}}, \quad x \neq 1$

Domain of
$$f(x)$$
 is $x + 1 \ge 0$

i.e.
$$x \ge -1$$

i.e. $[-1, \infty) = A$

Domain for g(x) is $x - 1 \ge 0$

i.e.
$$x \ge 1$$

i.e.
$$[1, \infty) = B$$

Domain for f + g, f - g and $f \cdot g$ is $A \cap B = [1, \infty)$. Domain for f/g(x) is $(1, \infty)$.

2.

(i)
$$f(x) = \sqrt{x}$$
, $g(x) = x + 1$
 $f_{\circ}g(x) = f(g(x)) = f(x + 1) = \sqrt{x + 1}$
Domain is $x + 1 \ge 0$, i.e. $x \ge 0$
So domain is $[-1, \infty)$.
 $g_{\circ}f(x) = g(\sqrt{x}) = \sqrt{x} + 1$
Domain is $x \ge 0$ i.e. $[0, \infty)$

for f(x) = f(f(x)) = f(
$$\sqrt{x}$$
) = $\sqrt{\sqrt{x}}$ = $(x)^{\frac{1}{4}}$
Domain is $x \ge 0$ i.e. $[0, \infty)$
gog(x) = g(g(x)) = g(x + 1) = x + 1 + 1 = x + 2
Domain is $(-x, x)$

(ii)
$$f(x) = x^2 - 1$$
, $g(x) = 2x + 1$
 $f_*g(x) = f(2x + 1) = (2x + 1)^2 - 1 = 4x^2 + 4x$
Domain is $(-\infty, \infty)$
 $g_*f(x) = g(f(x)) = g(x^2 - 1) = 2(x^2 - 1) + 1 = 2x^2 - 1$
Domain is $(-\infty, \infty)$
 $g_*g(x) = g((g(x)) = g(2x + 1) = 2(2x + 1) + 1 = 4x + 3$
Domain is $(-\infty, \infty)$

(iii)
$$f(x) = \sqrt{x}$$
; $g(x) = \sqrt[3]{1-x}$
 $f_{\circ}g(x) = f(g(x)) = f(\sqrt[3]{1-x}) = \left[(1-x)^{\frac{1}{3}} \right]^{\frac{1}{2}} = (1-x)^{\frac{1}{6}}$
Domain is $1-x \ge 0$ i.e. $x - 1 \le 0$ i.e. $x \le 1$. So domain $(-\infty, 1]$
 $g_{\circ}f(x) = g(f(x)) = g(\sqrt{x}) = \sqrt[3]{1-x} = \left(1-\sqrt{x}\right)^{\frac{1}{3}}$
Domain is $x \ge 0$ i.e. $[0, \infty)$
 $f_{\circ}f(x) = f(f(x)) = f(\sqrt{x}) = \sqrt{\sqrt{x}} = (x)^{\frac{1}{4}}$
Domain is $x \ge 0$ i.e. $[0, \infty)$

$$g_{\circ}g(x) = g(g(x)) = g((1-x)^{\frac{1}{3}}) = \sqrt[3]{1-\sqrt[3]{1-x}}$$
Domain is $(-\infty, \infty)$

(iv)
$$f(x) = x + \frac{1}{x}$$
, $g(x) = \frac{x+1}{x+2}$
 $f_{0}g(x) = f\left(\frac{x+1}{x+2}\right) = \frac{x+1}{x+2} + \frac{1}{\frac{x+1}{x+2}} = \frac{x+1}{x+2} + \frac{x+2}{x+1} = \frac{2x^{2}+6x+5}{(x+2)(x+1)}$

Domain
$$g(x) = \frac{x+1}{x+2}$$
 is $R - \{-2\} = A$

Domain of
$$f(g(x)) = \frac{2x^2 + 6x + 5}{(x+2)(x+1)}$$
 is $R - \{-1, -2\} = B$

Domain of
$$f \circ g$$
 is $A \cap B = R - \{-1, -2\}$

$$g_{0}f(x) = g(f(x)) = g\left(x + \frac{1}{x}\right) = \frac{x + \frac{1}{x} + 1}{x + \frac{1}{x} + 2} = \frac{x^{2} + 1 + x}{x^{2} + 1 + 2x} = \frac{x^{2} + x + 1}{(x + 1)^{2}}$$

Domain of
$$f(x) = x + \frac{1}{x}$$
 is $R - \{0\} = A$

Domain of
$$f(g(x)) = \frac{x^2 + x + 1}{(x+1)^2}$$
 is R - {0, -1}.

$$f.f(x) = f(f(x)) = f\left(x + \frac{1}{x}\right) = x + \frac{1}{x} + \frac{1}{x + \frac{1}{x}} = \frac{\left(x + \frac{1}{x}\right)^2 + 1}{\left(x + \frac{1}{x}\right)} = \frac{x^4 + 3x^2 + 1}{x(x^2 + 1)}$$

Domain of
$$f(x)$$
 is $R - \{0\} = A$
Domain of $f(f(x))$ is $R - \{0\} = B$

Domain of fof is
$$A \cap B = R - \{0\}$$

$$g \cdot g(x) = g(g(x)) = g\left(\frac{x+1}{x+2}\right) = \frac{\frac{x+1}{x+2}+1}{\frac{x+1}{x+2}+2} = \frac{2x+3}{3x+5}$$

Here domain of
$$g(x)$$
 is $R - \{-2\} = A$

domain of
$$g(g(x))$$
 is $R - \left\{-\frac{5}{3}\right\} = B$

Domain of gog is
$$A \cap B = R - \left\{-2, -\frac{5}{3}\right\}$$

$$f(x) = \sqrt{x+1}$$
; $g(x) = \frac{1}{x}$

Here
$$f \circ g(x) = f(g(x)) = f\left(\frac{1}{x}\right) = \sqrt{\frac{1}{x} + 1}$$

Domain of
$$g(x)$$
 is $R - \{0\} = A$

Domain of
$$f(g(x))$$
 is $R - (-1, 0] = B$

Domain of
$$f \circ g$$
 is $A \cap B = R - (-1, 0]$

Now,

$$g_0 f(x) = g(f(x)) = g(\sqrt{x+1}) = \frac{1}{\sqrt{x+1}}$$

Domain for
$$f(x) = \sqrt{x+1}$$
 is $x + 1 \ge 0$ i.e. $x \ge -1$, i.e. $[-1, \infty) = A$

Domain for
$$g(f(x)) = \frac{1}{\sqrt{x+1}}$$
 is $x + 1 > 0$ i.e. $x > -1$, i.e. $(-1, \infty) = B$

Thus, domain for gof is $A \cap B = (-1, \infty)$.

$$f_0f(x) = f(f(x)) = f(\sqrt{x+1}) = (x+1)^{\frac{1}{4}}$$

Domain of
$$f(x) = \sqrt{x+1}$$
 is $[-1, \infty) = A$ and

Domain of
$$f(f(x)) = (x + 1)^{\frac{1}{4}} (-1, \infty) = B$$

Thus,

Domain of fof is
$$A \cap B = [-1, \infty)$$
.

$$g \cdot g(x) = g(g(x)) = g\left(\frac{1}{x}\right) = \frac{1}{\frac{1}{x}} = x$$

Domain of
$$g(x) = \frac{1}{x}$$
 is $R - \{0\} = A$

Domain for
$$g(g(x)) = x$$
 is $(-\infty \infty) = B$

Domain for
$$g \circ g$$
 is $A \cap B = R - \{0\}$

Domain of (g.f) (x) =
$$\frac{1}{\sqrt{x+1}}$$

Here g.f(x) = g(f(x)) = g(
$$\sqrt{x+1}$$
) = $\frac{1}{\sqrt{x+1}}$

Domain of
$$f(x) = \sqrt{x+1}$$
 is $x + 1 \ge 0$ i.e. $x \ge -1$ so, $A = [-1, \infty)$

Domain of
$$g(f(x)) = \frac{1}{\sqrt{x+1}}$$
 is $x + 1 > 0$ i.e. $x > -1$ so $B = (-1, \infty)$

Hence domain of g.f(x) is
$$A \cap B = (-1, \infty)$$

Domain of f.f(x) =
$$(x + 1)^{1/4}$$

Domain of
$$f(x) = \sqrt{x+1}$$
 is $x+1 \ge 0$ i.e. $x \ge 1$ so $B = [-1, \infty)$

Thus domain of f.f(x) is
$$A \cap B = [-1, \infty)$$

(vi)
$$f(x) = x^2$$
, $g(x) = 1 - \sqrt{x}$

$$f_{\circ}g(x) = f(g(x)) = f(1 - \sqrt{x}) = (1 - \sqrt{x})^2 = 1 - 2\sqrt{x} + x = 1 + x - 2\sqrt{x}$$

Domain is $x \ge 0$ i.e. $[0, \infty)$

$$g_0f(x) = g(f(x)) = g(x^2) = 1 - \sqrt{x^2} = 1 - x$$

Domain of g_0f is $(-\infty, \infty)$

$$f_0f(x) = f(f(x)) = f(x^2) = x^4$$

Domain is $(-\infty, \infty)$

$$g \circ g(x) = g(g(x)) = g(1 - \sqrt{x}) = 1 - \sqrt{1 - \sqrt{x}}$$

Domain for
$$g(x) = 1 - \sqrt{x}$$
 is $x \ge 0$ i.e. $[0, \infty) = A$

Domain for
$$g(g(x)) = 1 - \sqrt{1 - \sqrt{x}}$$
 is $[0, 1] = B$

Thus, domain of $g \circ g$ is $A \cap B = [0, 1]$

$$f(x) = 3x - 2$$
, $g(x) = \sin x$, $h(x) = x^2$

$$f_{\circ}g_{\circ}h(x) = f_{\circ}g(h(x)) = f_{\circ}g(x^2) = f(g(x^2)) = f(\sin x^2) = 3\sin x^2 - 2$$

ii.
$$f(x) = |x - 4|, g(x) = 2^x, h(x) = \sqrt{x}$$

$$f_0g_0h(x) = f_0g(h(x)) = f_0g(\sqrt{x}) = f(g(\sqrt{x})) = f(2^{\sqrt{x}}) = |2^{\sqrt{x}} - 4|$$

i.
$$F(x) = (2x + x^2)^4$$

Let
$$g(x) = 2x + x^2$$
 and $f(x) = x^4$

so,
$$f_{x}g(x) = f(g(x)) = f(2x + x^{2}) = (2x + x^{2})^{4} = F(x)$$

A complete solution of Mathematics-I

$$F = f_0 g$$
 where $f(x) = x^4$ and $g(x) = 2x + x^2$

ii.
$$F(x) = \cos^2 x = (\cos x)^2$$

Let $f(x) = x^2$

$$g(x) = cosx$$

$$f_{\cdot}g(x) = f(g(x)) = f(\cos x) = \cos^2 x = F(x)$$

for
$$g = F$$
 where $f(x) = x^2$ and $g(x) = \cos x$

iii.
$$v|t| = \sec(t^2) \tan(t^2)$$

Let $g|t| = \sec t \tan t$

$$f_{x}g(t) = f(g(t)) = f(t^{2}) = \sec t^{2} \cdot \tan t^{2} = v |t|$$

$$\therefore f_{\circ}g = v$$

So
$$f = sect$$
 tant and $g(t) = t^2$

5.

Express the function in form fogoh if

i.
$$R(x) = \sqrt{\sqrt{x-1}}$$

$$f(x) = x^{1/2}$$

$$g(x) = x - 1$$

$$h(x) = \sqrt{x}$$
. So that

$$f_0g_0h(x) = f_0g(h(x)) = f_0g(\sqrt{x}) = f_0(g(\sqrt{x})) = f(\sqrt{x} - 1) = \sqrt{\sqrt{x} - 1} = K(x)$$

 $f_0g_0h(x) = R(x)$

$$\therefore \quad f_{\circ}g_{\circ}h(x) = R(x)$$

Where,
$$f(x) = x^{1/2}$$
, $g(x) = x - 1$ and $h(x) = \sqrt{x}$

ii.
$$H(x) = \sqrt[8]{2 + |x|}$$

Here,
$$f(x) = \sqrt[8]{x}$$

$$g(x) = 2 + x$$

$$h(x) = |x|$$

So, that

$$f \circ g \circ h(x) = f \circ g(h(x)) = f \circ g(|x|) = f(g(|x|)) = f(2 + |x|) = \sqrt[8]{2 + |x|} = H(x)$$

$$\therefore f \cdot g(x) = H(x)$$

Where
$$f(x) = \sqrt[8]{x}$$
, $g(x) = 2 + x$ and $h(x) = |x|$

iii.
$$H(x) = \sec^4(\sqrt{x})$$

Let
$$f(x) = x^4$$
, $g(x) = \sec x$, $h(x) = \sqrt{x}$

$$f_{0}g_{0}h(x) = f_{0}g(h(x)) = f_{0}g(\sqrt{x}) = f(\sec\sqrt{x}) = \sec^{4}(\sqrt{x}) = H(x)$$

fog
$$h(x) = H(x)$$
, where $f(x) = x^4$, $g(x) = \sec x$ and $h(x) = \sqrt{x}$.

Given,
$$y = f(x)$$

For shift 3 unit upward, $y = f(x) + 3$

For shift 3 unit upward,
$$y = f(x) + 3$$

Given, $y = f(x)$, for shift 2 unit to the right, $y = f(x - 2)$

(iii) Given,
$$y = f(x)$$
, for reflect about y-axis, y = $f(x)$ (iv) Given, $y = f(x)$, for stretch vertically by a factor of 3, $y = 3 f(x)$

(iv) Given,
$$y = f(x)$$
, for stretch vertically by a factor 1, $y = f(1x) = f(x)$
(v) Given, $y = f(x)$, for compressed horizontally by a factor 1, $y = f(1x) = f(x)$

(i)
$$y = f(x) + 8$$

Graph is obtained by shifting the graph $y = f(x)$ distance 8 unit upward

(ii)
$$y = f(x + 8)$$

Graph is obtained by shifting the graph $y = f(x)$ a distance 8 unit to the

(iii)
$$y = f(8x)$$

Graph is obtained by compressing the graph $y = f(x)$ horizontally by a fact. The identity by a fact.

(iv) Graph is obtained by stretching horizontally by a factor of 8 follows stretching vertically by a factor of 8.

i.
$$f(x) = -\sqrt{x}$$
 shifted right by 3
Since, $y = f(x - c)$ is graph shifted by c unit to right of graph $y = f(x)$
So, required function if $f(x) = f(x - 3) = -\sqrt{x - 3}$

ii.
$$y = 2x - 7$$
 shifted up by 7.
Since, $y = f(x) + c$ is graph shifted by c unit up of graph $y = f(x)$.
So, required function is $y = 2x - 7 + 7$

i.e.
$$y = 2x$$

iii.
$$y = x^2 - 1$$
 stretched vertically by a factor of 3.
Since, $y = c$ f(x) is graph stretched vertically of graph of $y = f(x)$.
So, required function is $y = 3$ ($x^2 - 1$) i.e. $y = 3x^2 - 3$.

iv.
$$y = \sqrt{x+1}$$
 compressed horizontally by factor 4.
Since, $y = f(x)$ is graph compressed horizontally by factor c.
So, required function is $y = f(4x)$ i.e. $y = \sqrt{4x+1}$

v.
$$y = \frac{1}{2}(x+1) + 3$$

Since,
$$y = f(x) - C$$
 is graph shifted by c unit down, so required equation

$$y = \frac{1}{2}(x+1) + 3 + 5$$

$$y = \frac{1}{2}x + \frac{1}{2} + 8$$

$$y = \frac{1}{2}x + \frac{17}{2}$$

Since, y = f(x - c) is graph shifted by c down, so required equation is

$$y = \frac{1}{2}(x-1) + \frac{17}{2}$$

$$y = \frac{1}{2}x - \frac{1}{2} + \frac{17}{2}$$

$$y = \frac{1}{2}x + 8$$

$$f(x) = \frac{1}{x}$$

For shifted left to c is f(x) = f(x + c). So,

Required function is
$$f(x) = \frac{1}{(x+2)^2}$$

For shifted down to c is y = f(x) - c. Thus,

Required function is
$$f(x) = \frac{1}{(x+2)^2} - 1$$
.

i) $f(x) = x^3 - 4x^2 - 10$ compress vertically by 2 followed by reflection about x-axis.

Compress vertically factor 2. So, required equation is

$$f(x) = \frac{1}{2}f(x)$$

$$y = \frac{1}{2}(x^3 - 4x^2 - 10)$$

$$y = \frac{1}{2}x^3 - 2x^2 - 5$$

and followed by reflection about x-axis, is

$$y = -f(x)$$
 Or, $y = -\frac{1}{2}x^3 + 2x^2 + 5$

Required equation is $y = -\frac{1}{2}x^3 + 2x^2 + 5$

$$y = |x| - 2$$

Original function is y = |x|

New function y = |x| - 2 is obtained by shifting the graph of y = |x| a distance 2 unit down ward.

$$y = x^2 + 2$$

Original function is $v = x^2$.

(iii)
$$y = (x + 1)^2$$

Original function is $y = x^2$

New function $y = (x + 1)^2$ is obtained by shifting the graph of $y = x^2$ at distance 1 unit to the left.

(iv)
$$y = \sqrt{x-2} - 1$$

The original function is $y = \sqrt{x}$.

The new function $y = \sqrt{x-2} - 1$ is obtained by shifting the graph y = f(x) a distance 2 unit to the right followed by shifting a distance 1 unit down ward.

(v)
$$y = 1 - 2\sqrt{x+3}$$

The original function is $y = \sqrt{x}$ The new function $y = 1 - 2\sqrt{x + 3}$ New function is $y = \sqrt{x}$ Shift the graph $y = \sqrt{x}$ to left by 3 unit $y = \sqrt{x + 3}$

A complete solution of Mathematics-1

$$y = 2\sqrt{x+3}$$

Reflect the graph about x-axis

$$y = -2\sqrt{x+3}$$

Shift the graph 1 unit upward.

$$y = -2\sqrt{x+3} + 1$$

i.e.
$$y = 1 - 2\sqrt{x + 3}$$

Exercise 1.4

1. (i)
$$y = e^x - 2$$
 (ii) $y = e^{x-2}$

(ii)
$$y = e^{x-2}$$
 (

(iii)
$$y = -e^x$$
 (iv) $y = e^{-x}$

$$y = e^{-x}$$
 (v) $y = -e^{-x}$

(iii)

Since $f(x) = ca^x$ is passing through (1, 6) so, 6 = ca

Also it is passing through (3, 24) so, $24 = ca^2$

Solving (1) and (2)

$$a = 4$$

use on (i), we get $c = \frac{3}{2}$

Hence, required exponential function's, $f(x) = \frac{3}{2}(4)^x$

(ii) Since,
$$f(x) = ca^x$$
 is passing through $(1, 4/3)$ so, $\frac{4}{3} = ca$
i.e. $4 = 3ca$

(ii) Since,
$$f(x) = ca^x$$
 is passing through (1) 1, 1, 3
i.e. $4 = 3ca$ (1)

Also it is passing through (-1, 4) so,
$$4 = \frac{c}{a}$$

i.e. $c = 4a$ (2)

$$4 = 3 \times 4a \times a$$

i.e.
$$a = \sqrt{3}$$

Hence,
$$c = 4\sqrt{3}$$

Thus, exponential function is $f(x) = 4\sqrt{3} (\sqrt{3})^x$

$$f(x) = 4(\sqrt{3})^{x+1}$$

$$f(x) = 4(3)^{\frac{x+1}{2}}$$

 $f(x) = x^2 - 2x$, this is one to one function, because $f(x_1) = f(x_2)$

$$\Rightarrow x_1^2 - 2x_1 = x_2^2 - 2x_2$$

$$\Rightarrow x_1^2 - 2x_1 - x_2^2 = 2(x_1 - x_2) = 0$$

$$\Rightarrow (x_1 - x_2)(x_1 + x_2 - 2) = 0$$

$$\Rightarrow$$
 $(x_1 - x_2) = 0$

$$\Rightarrow$$
 $x_1 = x_2$

f is one to one.

(ii) f(x) = 10 - 3x is one to one, because Let $f(x_1) = f(x_2)$

$$\Rightarrow$$
 10 - 3x₁ = 10 - 3x₂

$$\Rightarrow$$
 $-3x_1 = -3x_2$

$$\Rightarrow$$
 $x_1 = x_2$

(iii)
$$g(x) = \frac{1}{x}$$
 is one to one, because

$$g(x_1) = g(x_2)$$

$$\Rightarrow \frac{1}{x_1} = \frac{1}{x_2}$$

$$\Rightarrow x_1 = x$$

(iv)
$$h(x) = 2 + |x|$$
 is not one to one because
for $1 \ne -1$
But $h(1) = h(-1) = 3$

(ii) $f(x) = \frac{4x-1}{2x} + 3$

$$y = \frac{4x - 1}{2x} + 3$$

$$y - 3 = \frac{4x - 1}{2x}$$

$$2xy - 6x = 4x - 1$$

$$10x - 2xy = 1$$

$$x(10 - 2y) = 1$$

$$x = \frac{1}{2(5 - y)}$$

$$f^{-1}(y) = \frac{1}{2(5 - y)}$$

$$\vdots f^{-1}(x) = \frac{1}{2(5 - y)}$$

(iv)
$$y = \frac{e^x}{1 + 2e^x}$$

 $y + 2ye^x = e^x$
 $e^x (1 - 2y) = y$
 $e^x = \frac{y}{1 - 2y}$
 $x = \ln\left(\frac{y}{1 - 2y}\right)$
 $f^1(y) = \ln\left(\frac{x}{1 - 2y}\right)$
 $f^1(x) = \ln\left(\frac{x}{1 - 2x}\right)$

 $f(x) = e^{2x-1}$ $y = e^{2x-1}$ $2x - y = \ln y$ $x = \frac{1 + \ln y}{2}$ $f^{-1}(y) = \frac{1 + \ln y}{2}$ $f^{-1}(x) = \frac{1}{2}(1 + \ln x)$