Proofs - Extension to R3

Dustyn Stanley

May 2025

1 Smooth partition of unity into large cubes

Lemma 1 (Scale-free Bogovskiĭ on periodic blocks). Let $Q_L = [0, L]^3$ and denote by $\bar{f}_L(x) = f(Lx)$ the pull-back of $f: Q_L \to \mathbb{R}$ to the reference cube $Q_1 = [0, 1]^3$. There is a linear Bogovskiĭ operator $B_1: \{g \in C^{\infty}(Q_1): \int_{Q_1} g = 0\} \to C^{\infty}(Q_1; \mathbb{R}^3)$ satisfying

$$\nabla \cdot B_1[g] = g$$
, $||B_1[g]||_{H^{s+1}(Q_1)} \le C ||g||_{H^s(Q_1)}$ for all $s \ge 0$,

with a constant C independent of g. Defining

$$B_L[f](x) = L(B_1[\bar{f}_L])(x/L),$$

we get a Bogovskii operator on Q_L satisfying

$$\nabla \cdot B_L[f] = f$$
, $\|B_L[f]\|_{H^{s+1}(Q_L)} \le C \|f\|_{H^s(Q_L)}$, $\int_{Q_L} B_L[f] dx = 0$,

where C is the same constant as above, and in particular independent of L. Proof. By construction,

$$\bar{f}_L(y) = f(Ly), \quad y \in Q_1,$$

and $B_1[\bar{f}_L]$ solves $\nabla_y \cdot B_1[\bar{f}_L] = \bar{f}_L$ with the H^{s+1} -bound on Q_1 . Define

$$B_L[f](x) = L B_1[\bar{f}_L](x/L).$$

Then a direct change of variables x = Ly shows

$$\nabla_x \cdot B_L[f](x) = \frac{1}{I} \nabla_y \cdot \left(L B_1[\bar{f}_L](y) \right) = \bar{f}_L(y) = f(x),$$

and

$$||B_L[f]||_{H^{s+1}(Q_L)}^2 = \int_{Q_1} L^2 \sum_{|\alpha| < s+1} |D_y^{\alpha} B_1[\bar{f}_L](y)|^2 dy \le C^2 ||\bar{f}_L||_{H^s(Q_1)}^2 = C^2 ||f||_{H^s(Q_L)}^2,$$

where each derivative in y picks up exactly one factor of L that is cancelled by the change-of-variables Jacobian. This completes the proof.

2 Divergence-free localization via Bogovskiĭ correction

Lemma 2 (Localization with divergence-free partition). Let $\{\chi_k\}_{k\in\mathbb{Z}^3}$ be the partition of unity from Section 1, and let $u\in H^s_\sigma(\mathbb{R}^3)$ be divergence-free $(s\geq 1)$. Then there exist vector fields $u_k\in H^s_\sigma(\mathbb{R}^3)$ with

$$\div u_k = 0, \quad u_k \subset Q_k, \quad \sum_{k \in \mathbb{Z}^3} u_k = u$$

and satisfying the uniform estimate

$$\sum_{k \in \mathbb{Z}^3} \|u_k\|_{H^s(\mathbb{R}^3)}^2 \leq C \|u\|_{H^s(\mathbb{R}^3)}^2,$$

with C independent of the cube size L or u.

Proof. For each k, set the preliminary localized field

$$v_k = \chi_k u$$
.

Then $\div v_k = (\nabla \chi_k) \cdot u$ is supported in the annulus $Q_k \setminus \tilde{Q}_k$. Moreover, $\sum_k v_k = u$. We now correct each v_k to be divergence-free by applying the Bogovskii operator on the cube Q_k . By Lemma 1, there is $\mathcal{B}_k \colon H_0^{s-1}(Q_k) \to H_0^s(Q_k)^3$ with

$$\div (\mathcal{B}_k[\div v_k]) = \div v_k, \quad \|\mathcal{B}_k[\div v_k]\|_{H^s(Q_k)} \le C \|\div v_k\|_{H^{s-1}(Q_k)}.$$

Define

$$u_k = v_k - \mathcal{B}_k[\div v_k].$$

Then $\div u_k = 0$, $u_k \subset Q_k$, and $\sum_k u_k = \sum_k v_k - \sum_k \mathcal{B}_k [\div v_k] = u$, since $\sum_k \div v_k = \div u = 0$ and the Bogovskii corrections cancel globally.

It remains to estimate $\sum_{k} \|u_{k}\|_{H^{s}}^{2}$. Using the triangle inequality,

$$||u_k||_{H^s(Q_k)} \le ||v_k||_{H^s(Q_k)} + ||\mathcal{B}_k[\div v_k]||_{H^s(Q_k)} \le ||\chi_k u||_{H^s} + C ||\div v_k||_{H^{s-1}}.$$

Since χ_k and its derivatives satisfy $\|\partial^{\alpha}\chi_k\|_{L^{\infty}} \lesssim L^{-|\alpha|}$, the product estimate in H^s gives

$$\|\chi_k u\|_{H^s} \lesssim \sum_{|\alpha| \le s} L^{-|\alpha|} \|D^{\alpha} u\|_{L^2(Q_k)} \lesssim \|u\|_{H^s(Q_k)}.$$

Similarly,

$$\| \div v_k \|_{H^{s-1}} = \| (\nabla \chi_k) \cdot u \|_{H^{s-1}} \lesssim \| u \|_{H^s(Q_k)}.$$

Therefore

$$||u_k||_{H^s(Q_k)}^2 \le C ||u||_{H^s(Q_k)}^2.$$

Summing over k and noting the finite overlap of the supports of χ_k ($\leq 3^3$ cubes at each point) yields

$$\sum_{k} \|u_{k}\|_{H^{s}}^{2} \leq C \sum_{k} \|u\|_{H^{s}(Q_{k})}^{2} \leq C' \|u\|_{H^{s}(\mathbb{R}^{3})}^{2},$$

as required.

3 Periodic extension of each block to \mathbb{T}^3_L

Lemma 3 (Extension to a large torus). Let $u_k \in H^s_\sigma(\mathbb{R}^3)$ be supported in the cube $\tilde{Q}_k = \prod_{i=1}^3 [k_i L, k_i L + L]$. Define the large torus $\mathbb{T}^3_L = (\mathbb{R}/3L\mathbb{Z})^3$, and let $\tilde{u}_k \colon \mathbb{T}^3_L \to \mathbb{R}^3$ be the 3L-periodic extension of u_k from \tilde{Q}_k to \mathbb{T}^3_L . Then:

- 1. $\widetilde{u}_k \in H^s_{\sigma}(\mathbb{T}^3_L)$ and $\nabla \cdot \widetilde{u}_k = 0$ on \mathbb{T}^3_L .
- 2. There is a constant C independent of L so that

$$\|\widetilde{u}_k\|_{H^s(\mathbb{T}^3_L)} \le C \|u_k\|_{H^s(\mathbb{R}^3)}.$$

- *Proof.* (1) Divergence-free extension. Since u_k is compactly supported in \tilde{Q}_k and $\div u_k = 0$, its extension by zero outside \tilde{Q}_k to the larger cube Q_k remains divergence-free in distribution. Periodizing this Q_k -supported field to \mathbb{T}^3_L entails matching zero data near the boundary of \tilde{Q}_k , so \tilde{u}_k is a well-defined, globally divergence-free, mean-zero vector field on \mathbb{T}^3_L .
- (2) Norm control. Identify $\tilde{Q}_k \subset \mathbb{T}^3_L$. Since \tilde{u}_k coincides with u_k on \tilde{Q}_k and vanishes outside, the $H^s(\mathbb{T}^3_L)$ -norm reduces to the $H^s(\tilde{Q}_k)$ -norm. But extending by zero does not increase Sobolev norms on a larger domain with smooth boundary:

$$\|\widetilde{u}_k\|_{H^s(\mathbb{T}^3_L)} = \|u_k\|_{H^s(\widetilde{Q}_k)} \le C \|u_k\|_{H^s(\mathbb{R}^3)},$$

where C depends only on s and the regularity of the extension by zero (which is bounded uniformly in L since \tilde{Q}_k sits strictly inside Q_k). This gives the desired estimate.

4 Comparison of block-wise vs. global log-entropy

Definition 1 (Log-entropy). For $\eta > 0$ and any $v : \mathbb{R}^3 \to \mathbb{R}^3$, set

$$F_{\eta}(s) = (s + \eta) \ln(1 + s/\eta) - s, \qquad S_{\eta}(v) = \int_{\mathbb{R}^3} F_{\eta}(|v|^2) dx.$$

Lemma 4 (Local vs. global log-entropy). Let $u \in L^2(\mathbb{R}^3)$ be divergence-free and mean-zero, and let $\{\chi_k\}$ and $\{u_k\}$ be as in Definition 1 and Lemma 2. Fix $\eta > 0$. Then there is C > 0, independent of the partition scale L, such that

$$\sum_{k \in \mathbb{Z}^3} S_{\eta}(u_k) \leq C S_{\eta}(u).$$

Here $S_{\eta}(v) = \int_{\mathbb{R}^3} F_{\eta}(|v|^2) dx$ is the log-entropy from Definition 1.

Proof. Recall $F_{\eta}(s) = (s + \eta) \ln(1 + s/\eta) - s$ is convex and increasing for $s \ge 0$. Since

$$u_k = \chi_k \, u - \mathcal{B}_k \big[\div (\chi_k \, u) \big],$$

the convexity and triangle inequality for F_{η} yield

$$F_{\eta}(|u_k|^2) \le 2 F_{\eta}(|\chi_k u|^2) + 2 F_{\eta}(|\mathcal{B}_k[\div(\chi_k u)]|^2).$$

Integrating and summing over k, we get

$$\sum_{k} S_{\eta}(u_{k}) \leq 2 \sum_{k} \int F_{\eta}(|\chi_{k} u|^{2}) dx + 2 \sum_{k} \int F_{\eta}(|\mathcal{B}_{k}[\div(\chi_{k} u)]|^{2}) dx.$$

For the first term, since $\sum_{k} \chi_{k}^{2} \leq C$ and F_{η} is increasing,

$$\sum_{k} \int F_{\eta}(|\chi_{k} u|^{2}) \leq \int F_{\eta}(\sum_{k} |\chi_{k} u|^{2}) dx \leq \int F_{\eta}(C|u|^{2}) dx \leq C' \int F_{\eta}(|u|^{2}) dx = C' S_{\eta}(u).$$

For the second term, the Bogovskiĭ estimate $\|\mathcal{B}_k[\div(\chi_k u)]\|_{L^2} \lesssim \|\nabla \chi_k\|_{L^\infty} \|u\|_{L^2(Q_k)}$ and $\|\nabla \chi_k\|_{L^\infty} = O(L^{-1})$ give

$$\sum_{k} \int F_{\eta} \Big(\big| \mathcal{B}_{k} [\div(\chi_{k} u)] \big|^{2} \Big) \leq C L^{-2} \sum_{k} \|u\|_{L^{2}(Q_{k})}^{2} \leq C' \|u\|_{L^{2}(\mathbb{R}^{3})}^{2} \leq C'' S_{\eta}(u),$$

where the last step uses $F_{\eta}(s) \geq s$ for small s. Combining both estimates yields the result.

5 Uniform block-wise periodic estimates independent of L

Lemma 5 (Uniform estimates on each periodic block). Fix $s \geq 0$, $p \in [1, \infty]$, and let $L \geq 1$. For each $k \in \mathbb{Z}^3$, let $\widetilde{u}_k \in H^s_\sigma(\mathbb{T}^3_L)$ be the periodic extension of the localized field u_k . Then every estimate you proved earlier on the unit torus—Sobolev embeddings, Littlewood–Paley and Bernstein bounds, Mikhlin multipliers, Calderón–Zygmund estimates, Galerkin bounds, pressure–BMO control, log-entropy, log-Sobolev, Gevrey and suppression-operator estimates, Carleman and BKM criteria—carries over verbatim to \mathbb{T}^3_L with the same constants, uniformly in L. In particular:

- 1. $\|\widetilde{u}_k\|_{H^s(\mathbb{T}^3_L)} \le C \|u_k\|_{H^s(\mathbb{R}^3)}$.
- 2. $\|\Delta_j \widetilde{u}_k\|_{L^p(\mathbb{T}^3_+)} \le C \|\Delta_j u_k\|_{L^p(\mathbb{R}^3)}$ for each Littlewood-Paley block Δ_j .
- 3. All the usual torus estimates—Sobolev embeddings, Bernstein and Little-wood–Paley bounds, Mikhlin multiplier theorems, and Calderón–Zygmund inequalities—hold on \mathbb{T}^3_L with constants depending only on the parameters (derivative orders, p, etc.), and not on L.
- 4. All of the a priori estimates you proved on the unit torus—Galerkin bounds, pressure-BMO control, local well-posedness, vorticity estimates, the BKM criterion, log-entropy and log-Sobolev inequalities, Gevrey-class smoothing, suppression-operator bounds, and Carleman/unique-continuation estimates—carry over verbatim to T³_L with the identical constants.

Proof. All the estimates in Sections ??-?? are based on Fourier-multiplier or convolution-kernel arguments which depend only on the size of the torus through the *period*, and on spectral gaps $|k| \geq 1$. Enlarging the fundamental domain to \mathbb{T}^3_L simply replaces \mathbb{Z}^3 by $(\frac{1}{L}\mathbb{Z})^3$ in the Fourier sum. In every case:

- \mathbb{T}^3_L simply replaces \mathbb{Z}^3 by $(\frac{1}{L}\mathbb{Z})^3$ in the Fourier sum. In every case:

 The symbol bounds (e.g. $|k| \sim 2^j$ on Littlewood–Paley shells, $|m(k)| \leq C|k|^{-|\alpha|}$ for Mikhlin multipliers, Gaussian decay $e^{-\alpha|k|^2}$, etc.) are uniform in L, since the same inequalities hold on the coarser lattice $(\frac{1}{L}\mathbb{Z})^3$.
- Convolution-kernel estimates (for heat kernel, Calderón–Zygmund kernels, Bogovskiĭ kernels) require only local near-field bounds which do not change with the torus size.
- Energy, entropy, and semigroup arguments rely on integration by parts and Plancherel, which hold on any torus equally.
- Carleman and Gevrey estimates involve only principal symbols and commutator algebra, independent of domain scale.
- The Galerkin construction uses eigenfunctions of $-\Delta$ with eigenvalues $\lambda_k = |k|^2$; on \mathbb{T}^3_L these become $\lambda_m = |\frac{m}{L}|^2$, but the spectral gaps and orthogonality remain, giving identical ODE bounds.

Since none of the constants in the proofs depend on the torus side-length beyond these uniform symbol and kernel bounds, the estimates hold on \mathbb{T}^3_L with the same constants as on the unit torus.

6 Summation over blocks & letting $L \to \infty$

Theorem 1 (Global estimates on \mathbb{R}^3 via block summation). Let $u \in H^2_{\sigma}(\mathbb{R}^3)$ be a divergence-free initial datum. For each $L \geq 1$, let $\{u_{k,L}\}_{k \in \mathbb{Z}^3}$ be the periodic block solutions on \mathbb{T}^3_L constructed in Sections 1–5, and let $u_L = \sum_{k \in \mathbb{Z}^3} u_{k,L}$ extended by zero outside the union of blocks. Then as $L \to \infty$, $u_L \to u$ in the natural solution space, and moreover each uniform-in- α and Carleman estimate on \mathbb{T}^3_L passes to the limit, yielding the corresponding global estimate on \mathbb{R}^3 . In particular, all a priori bounds and unique-continuation results hold for u on \mathbb{R}^3 .

Proof. 1. Reconstruction of u. By Lemma 2, the localized fields $\{u_k\}$ sum to u in $H^2(\mathbb{R}^3)$. Their periodic extensions $\{u_{k,L}\}$ on \mathbb{T}^3_L coincide with u_k on the central subcubes \tilde{Q}_k and vanish outside. Hence

$$u_L(x) = \sum_{k \in \mathbb{Z}^3} u_{k,L}(x) \longrightarrow \sum_{k \in \mathbb{Z}^3} u_k(x) = u(x) \text{ in } H^2(\mathbb{R}^3),$$

as soon as L exceeds the support-diameter of each u_k .

2. Uniform a priori bounds. By Lemma 5, each $u_{k,L}$ on \mathbb{T}^3_L satisfies the same energy, entropy, H^2 , Lipschitz, and Carleman estimates with constants independent of L. Summing in k and using the finite-overlap property together with the block-wise log-entropy comparison proved above, we obtain the global a priori bounds for u_L on \mathbb{R}^3 that coincide with those for u.

Moreover, using the almost–convexity property of the log-entropy functional established above, one shows $\,$

$$S_{\eta} \Big(\sum_{k} u_{k,L} \Big) \le \sum_{k} S_{\eta}(u_{k,L}) + C_{\eta} ||u||_{H^{1}}^{2},$$

so the global entropy bound localizes up to a uniform error.

3. Passage to the limit $L \to \infty$. Since all estimates are uniform in L and control norms in translation-invariant spaces (e.g. $L^2(\mathbb{R}^3)$, $H^1(\mathbb{R}^3)$, Carleman-weighted integrals over compact time intervals), one takes $L \to \infty$ to recover the corresponding estimate for u on \mathbb{R}^3 . For unique-continuation/Carleman arguments, one chooses the torus-size 3L larger than the spatial support of the cutoff functions involved, so the proof on \mathbb{T}^3_L restricts verbatim to \mathbb{R}^3 .

Thus assembling blocks and sending $L \to \infty$ yields the full set of global estimates and the extension from the periodic setting to \mathbb{R}^3 .