# Learning Attention-based Embeddings for Relation Prediction in Knowledge Graphs

Deepak Nathani\* Jatin Chauhan\* Charu Sharma\* Manohar Kaul

Department of Computer Science and Engineering, IIT Hyderbad

{deepakn1019, chauhanjatin100, charusharma1991}@gmail.com, mkaul@iith.ac.in



#### Manohar Kaul

I am an Assistant Professor at IIT Hyderabad and my current re intersection of geometry, applied algebraic topology, Topologica Machine Learning.

#### Contact

Assistant Professor
Dept. of Computer Science
IIT Hyderabad India
mkaul (at) iith (dot) ac (dot) in
DBLP, Google Scholar

## **Deepak** Nathani

Hello! I am Deepak Nathani. I recently graduated from Indian Institute of Technology, Hyderabad with a B.Tech degree in Mechanical Engineering. Interestingly, I will also get a degree in Computer Science which was my second major. Currently I am exploring the fields of Machine Learning, Deep Learning and Natural Language Processing.

During my time as an undergraduate, I worked on various research problems with **Dr. Manohar Kaul**. I have also worked as a Summer Research Intern at IBM Research Labs, India where I worked under **Dr. Sumit Bhatia** and **Dr. Bapi Chatterjee**.



Among other things, I enjoy playing games, listening to music, reading books and most important of them all. I love food.

## Introduction

- Knowledge Graphs completion: (h, r,?)
  - Suffer from incompleteness in form of missing entities and relations.
  - knowledge graph embedding is one of the widely used approaches. (TransE, ConvE...)
- Shortcoming:
  - treat triples independently
  - fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple.
- Main contributions:
  - The first to learn new graph attention based embeddings that specifically target relation prediction on KGs.
  - Generalize and extend graph attention mechanisms to capture both entity and relation features in a multihop neighborhood of a given entity.
  - Experimental results indicate a clear and substantial improvement over state-of-the-art relation prediction methods.

## Related work—RGCN





encoder

encoder

encoder

encoder

encoder

encoder

encoder

(a) Entity classification

(b) Link prediction

- GCN:  $h_i^{(l+1)} = \sigma \left( \sum_{m \in \mathcal{M}_i} g_m(h_i^{(l)}, h_j^{(l)}) \right)$ 
  - $h_i^{(l)} \in \mathbb{R}^{d^{(l)}}$  is the hidden state of node  $v_i$ .  $\mathcal{M}_i$  denotes the set of incoming messages for node (incoming edges).  $g_m(\cdot, \cdot)$  is simply a linear transformation.
- RGCN:  $h_i^{(l+1)} = \sigma \left( \sum_{r \in \mathcal{R}} \sum_{j \in \mathcal{N}_i^r} \frac{1}{c_{i,r}} W_r^{(l)} h_j^{(l)} + W_0^{(l)} h_i^{(l)} \right)$ 
  - $\mathcal{N}_i^r$  denotes the set of neighbor indices of node i under relation  $r \in \mathcal{R}$ .  $c_{i,r}$  is a problem-specific normalization constant that can either be learned or chosen in advance (such as  $c_{i,r} = |\mathcal{N}_i^r|$ )
  - Loss function:  $\mathcal{L} = -\frac{1}{(1+\omega)|\hat{\mathcal{E}}|} \sum_{(s,r,o,y)\in\mathcal{T}} y \log l(f(s,r,o)) + (1-y) \log(1-l(f(s,r,o))),$

# **Graph Attention Networks**

- Shortcomings of GCNs:
  - gather information from the entity's neighborhood and all neighbors contribute equally in the information passing.
- GAT:
  - Attention value of the edge (ei, ej) :  $e_{ij} = a(\mathbf{W}\vec{x_i}, \mathbf{W}\vec{x_j})$
  - output of a Graph Attention Layer:  $\vec{x_i'} = \sigma \left( \sum_{j \in \mathcal{N}_i} \alpha_{ij} \mathbf{W} \vec{x_j} \right)$
  - Multi-head attention process of concatenating K attention heads:  $\vec{x_i'} = \prod_{k=1}^K \sigma \left( \sum_{j \in \mathcal{N}_i} \alpha_{ij}^k \mathbf{W}^k \vec{x_j} \right)$ 
    - $lpha_{ij}^k$  are normalized attention coefficients of edge  $(e_i,e_j)$  calculated by the k-th attention mechanism

# Relations are Important

- In KGs, entities play different roles depending on the relation they are associated with.
  - entity Christopher Nolan appears in two different triples assuming the roles of a brother and a director.
- GAT in KG:
  - Two embedding matrices as input:  $\mathbf{H} \in \mathbb{R}^{N_e \times T}$   $\mathbf{G} \in \mathbb{R}^{N_r \times P}$
  - vector representation of a triple  $(e_i, r_k, e_j)$ :  $c_{ijk} = \mathbf{W}_1[\vec{h}_i \| \vec{h}_j \| \vec{g}_k]$
  - Absolute attention value of the triple :  $b_{ijk} = ext{LeakyReLU} \Big( ext{W}_2 c_{ijk} \Big)$
  - relative attention values :  $\alpha_{ijk} = \operatorname{softmax}_{jk}(b_{ijk})$   $= \frac{\exp(b_{ijk})}{\sum_{n \in \mathcal{N}_i} \sum_{r \in \mathcal{R}_{in}} \exp(b_{inr})}$
  - new embedding of the entity :  $\vec{h_i'} = \sigma \left( \sum_{j \in \mathcal{N}_i} \sum_{k \in \mathcal{R}_{ij}} \alpha_{ijk} c_{ijk} \right)$



Figure 1: Subgraph of a knowledge graph contains actual relations between entities (solid lines) and inferred relations that are initially hidden (dashed lines).

ReLU

$$f(x) = \left\{egin{array}{l} x, ext{ if } x > 0 \ 0, ext{ if } x \leq 0 \end{array}
ight.$$



LeakyReLU

$$f(x) = \left\{ egin{aligned} x, & ext{if } x > 0 \ \lambda x, & ext{if } x \leq 0 \end{aligned} 
ight.$$



# Relations are Important



Figure 4: This figure shows end-to-end architecture of our model. Dashed arrows in the figure represent concatenation operation. Green circles represents initial entity embedding vectors and yellow circles represents initial relation embedding vectors.

$$\begin{aligned} &\text{Multi-head attention:} & \quad \vec{h_i'} = \prod_{m=1}^{M} \sigma \bigg( \sum_{j \in \mathcal{N}_i} \alpha_{ijk}^m c_{ijk}^m \bigg) \\ &\text{final layer employ averaging to get final embedding:} & \quad \vec{h_i'} = \sigma \bigg( \frac{1}{M} \sum_{m=1}^{M} \sum_{j \in \mathcal{N}_i} \sum_{k \in \mathcal{R}_{ij}} \alpha_{ijk}^m c_{ijk}^m \bigg) \end{aligned}$$

- Solve the problem that entities lose their initial embedding information  $\mathbf{H}'' = \mathbf{W}^E \mathbf{H}^t + \mathbf{H}^f$



Figure 3: Attention Mechanism

# Auxiliary relation

- Extend the notion of an edge to a directed path by introducing an auxiliary relation for n-hop neighbors between two entities.
  - embedding auxiliary relation: the summation of embeddings of all the relations in the path.
  - first layer: all entities capture information from their direct inflowing neighbors
  - second layer: U.S gathers information from entities Barack
     Obama, Ethan Horvath, Chevrolet, and Washington D.C, which
     already possess information about their neighbors Michelle
     Obama and Samuel L. Jackson, from a previous layer.



Figure 2: This figure shows the aggregation process of our graph attentional layer.  $\alpha_{ij}$  represents relative attention values of the edge. The dashed lines represent an *auxiliary* edge from a *n*-hop neighbors, in this case n=2.

# **Training Objective**

- translational scoring function:  $\vec{h}_i + \vec{g}_k \approx \vec{h}_j$
- Loss function:

$$L(\Omega) = \sum_{t_{ij} \in S} \sum_{t'_{ij} \in S'} \max\{d_{t'_{ij}} - d_{t_{ij}} + \gamma, 0\} \qquad d_{t_{ij}} = \|\vec{h_i} + \vec{g_k} - \vec{h_j}\|_1$$

- learn entity and relation embeddings to minimize the L1-norm dissimilarity measure.
- Invalid triples  $S' = \underbrace{\{t^k_{i'j} \mid e'_i \in \mathcal{E} \setminus e_i\}}_{\text{replace head entity}} \cup \underbrace{\{t^k_{ij'} \mid e'_j \in \mathcal{E} \setminus e_j\}}_{\text{replace tail entity}}$

# Decoder——ConvKB

- ConvKB:
  - each triple (head, relation, tail) is represented as a 3-column matrix.
  - This 3-column matrix is then fed to a convolution layer to generate different feature maps.
  - These feature maps are then concatenated into a single feature vector which multiplied with a weight vector via a dot product to return a score.
- Decoder:  $f(t_{ij}^k) = \left( igcap_{m=1}^{\Omega} \operatorname{ReLU}([\vec{h}_i, \vec{g}_k, \vec{h}_j] * \omega^m) \right). \mathbf{W}$ 
  - $\bullet \quad \text{soft-margin loss:} \quad \mathcal{L} = \sum_{t_{ij}^k \in \{S \cup S'\}} \log(1 + \exp(l_{t_{ij}^k}.f(t_{ij}^k))) + \frac{\lambda}{2} \|\mathbf{W}\|_2^2$

where 
$$l_{t_{ij}^k} = \begin{cases} 1 & \text{for } t_{ij}^k \in S \\ -1 & \text{for } t_{ij}^k \in S' \end{cases}$$



## **Datasets & Protocol**

| Dataset   | # Entities | # Relations | Training | Validation | Test   | Total   | Mean in-degree | Median in-degree |
|-----------|------------|-------------|----------|------------|--------|---------|----------------|------------------|
| WN18RR    | 40,943     | 11          | 86,835   | 3034       | 3134   | 93,003  | 2.12           | 1                |
| FB15k-237 | 14,541     | 237         | 272,115  | 17,535     | 20,466 | 310,116 | 18.71          | 8                |
| NELL-995  | 75,492     | 200         | 149,678  | 543        | 3992   | 154,213 | 1.98           | 0                |
| Kinship   | 104        | 25          | 8544     | 1068       | 1074   | 10,686  | 82.15          | 82.5             |
| UMLS      | 135        | 46          | 5216     | 652        | 661    | 6529    | 38.63          | 20               |

- Negative sampling:
  - Randomly sample equal number of invalid triples from both the sets to ensure robust performance on detecting both head and tail entity.
- Embedding initialization: TransE
- Two-step training procedure:
  - generalized GAT to encode information about the graph entities and relations.
  - train a decoder model like ConvKB to perform the relation prediction task.
- Evaluation Protocol: filtered setting

# Results and Analysis

|                                    | WN18RR |       |        |      |      |                  | FB    | 15K-2  | 37   |      |
|------------------------------------|--------|-------|--------|------|------|------------------|-------|--------|------|------|
|                                    |        |       | Hits@N |      |      |                  |       | Hits@N |      |      |
|                                    | MR     | MRR   | @1     | @3   | @10  | MR               | MRR   | @1     | @3   | @10  |
| DistMult (Yang et al., 2015)       | 7000   | 0.444 | 41.2   | 47   | 50.4 | 512              | 0.281 | 19.9   | 30.1 | 44.6 |
| ComplEx (Trouillon et al., 2016)   | 7882   | 0.449 | 40.9   | 46.9 | 53   | 546              | 0.278 | 19.4   | 29.7 | 45   |
| ConvE (Dettmers et al., 2018)      | 4464   | 0.456 | 41.9   | 47   | 53.1 | 245              | 0.312 | 22.5   | 34.1 | 49.7 |
| TransE (Bordes et al., 2013)       | 2300   | 0.243 | 4.27   | 44.1 | 53.2 | 323              | 0.279 | 19.8   | 37.6 | 44.1 |
| ConvKB (Nguyen et al., 2018)       | 1295   | 0.265 | 5.82   | 44.5 | 55.8 | 216              | 0.289 | 19.8   | 32.4 | 47.1 |
| R-GCN (Schlichtkrull et al., 2018) | 6700   | 0.123 | 20.7   | 13.7 | 8    | $\overline{600}$ | 0.164 | 10     | 18.1 | 30   |
| Our work                           | 1940   | 0.440 | 36.1   | 48.3 | 58.1 | 210              | 0.518 | 46     | 54   | 62.6 |

Table 2: Experimental results on WN18RR and FB15K-237 test sets. Hits@N values are in percentage. The best score is in **bold** and second best score is underlined.

|                                    | NELL-995 |       |      |        |      |       | Kinship |        |      |       |  |
|------------------------------------|----------|-------|------|--------|------|-------|---------|--------|------|-------|--|
|                                    |          |       | ]    | Hits@1 | V    |       |         | Hits@N |      |       |  |
|                                    | MR       | MRR   | @1   | @3     | @10  | MR    | MRR     | @1     | @3   | @10   |  |
| DistMult (Yang et al., 2015)       | 4213     | 0.485 | 40.1 | 52.4   | 61   | 5.26  | 0.516   | 36.7   | 58.1 | 86.7  |  |
| ComplEx (Trouillon et al., 2016)   | 4600     | 0.482 | 39.9 | 52.8   | 60.6 | 2.48  | 0.823   | 73.3   | 89.9 | 97.11 |  |
| ConvE (Dettmers et al., 2018)      | 3560     | 0.491 | 40.3 | 53.1   | 61.3 | 2.03  | 0.833   | 73.8   | 91.7 | 98.14 |  |
| TransE (Bordes et al., 2013)       | 2100     | 0.401 | 34.4 | 47.2   | 50.1 | 6.8   | 0.309   | 0.9    | 64.3 | 84.1  |  |
| ConvKB (Nguyen et al., 2018)       | 600      | 0.43  | 37.0 | 47     | 54.5 | 3.3   | 0.614   | 43.62  | 75.5 | 95.3  |  |
| R-GCN (Schlichtkrull et al., 2018) | 7600     | 0.12  | 8.2  | 12.6   | 18.8 | 25.92 | 0.109   | 3      | 8.8  | 23.9  |  |
| Our work                           | 965      | 0.530 | 44.7 | 56.4   | 69.5 | 1.94  | 0.904   | 85.9   | 94.1 | 98    |  |

Table 3: Experimental results on NELL-995 and Kinship test sets. Hits@N values are in percentage. The best score is in **bold** and second best score is underlined.

# Attention Values vs Epoch



Figure 5: Learning process of our model on FB15K-237 dataset. Y-axis represents attention values  $\times 1e^{-5}$ .



Figure 6: Learning process of our model on WN18RR dataset. Y-axis represents attention values  $\times 1e^{-5}$ 

# PageRank Analysis & Ablation Study

| Dataset     | <b>PageRank</b> | Relative Increase |
|-------------|-----------------|-------------------|
| NELL-995    | 1.32            | 0.025             |
| WN18RR      | 2.44            | -0.01             |
| FB15k-237   | 6.87            | 0.237             |
| <i>UMLS</i> | 740             | 0.247             |
| Kinship     | 961             | 0.388             |

Table 4: Mean PageRank  $\times 10^{-5}$  vs relative increase in MRR wrt. DistMult.

Anomaly: in case of NELL-995 versus WN18RR
 and attribute this to the highly sparse and
 hierarchical structure of WN18RR which poses as
 a challenge to our method that does not capture
 information in a top-down recursive fashion.



Figure 7: Epochs vs Mean Rank for our model and two ablated models on *NELL-995*. –PG (green) represents the model after removing *n*-hop auxiliary relations or *path generalization*, –Relations (blue) represents model without taking relations into account and Our model (red) represents the entire model.

# Conclusion

- This paper proposes a novel graph attention-based approach for relation prediction.
- Improves over the state-of-the-art models by significant margins.
- Generalize and extend graph attention mechanisms to capture both entity and relation features in a multi-hop neighborhood of a given entity.

# Learning to Exploit Long-term Relational Dependencies in Knowledge Graphs

Lingbing Guo, Zequn Sun, Wei Hu\*

Nanjing University, China

\* Corresponding author: whu@nju.edu.cn

#### Wei Hu

Recent update: 2019-7-2



#### Wei Hu

Associate Professor, PhD Supervisor

Department of Computer Science & Technology State Key Laboratory for Novel Software Technology Nanjing University

email: whu at nju.edu.cn

**L** phone: +86 (0)25 8968-1523

#### S Lingbing Guo Research

popu



## DSKG: A Deep Sequential Model for Knowledge Graph Completion

Knowledge graph (KG) completion aims to fill the missing facts in a KG,...

10/30/2018 · by Lingbing Guo, et al. · ♥ 0 · 🖈 share



#### Recurrent Skipping Networks for Entity Alignment

We consider the problem of learning knowledge graph (KG) embeddings...

11/06/2018 · by Lingbing Guo, et al. · ♥ 0 · 🖈 share



#### Learning to Exploit Long-term Relational Dependencies in Knowledge Graphs

We study the problem of knowledge graph (KG) embedding. A widely-...

05/13/2019 · by Lingbing Guo, et al. · ♡ 0 · 🖨 share



#### Multi-view Knowledge Graph Embedding for Entity Alignment

We study the problem of embedding-based entity alignment between  $\ldots$ 

06/06/2019 · by Oingheng Zhang, et al. · ○ 0 · A share

## **Knowledge graphs**



- Knowledge graphs (KGs) store a wealth of structured facts about the real world
  - $\circ$  A fact (s, r, o): subject entity, relation, object entity
- KGs are far from complete and two important tasks are proposed
  - Entity alignment: find entities in different KGs denoting the same real-world object



- KG completion: complete missing facts in a single KG
  - E.g., predict ? in (Tim Berners-Lee, employer, ?) or (?, employer, W3C)

## Challenges



- For KG embedding, existing methods largely focus on learning from relational triples of entities
- Triple-level learning has two major limitations
  - Low expressiveness
    - Learn entity embeddings from a fairly local view (i.e., 1-hop neighbors)
    - Insufficient for multi-mapping or long-tail entities
  - Inefficient information propagation
    - Only use triples to deliver semantic information within/across KGs
    - Entity alignment task rely on seed alignment

## Learning to exploit long-term relational dependencies



 A relational path is an entity-relation chain, where entities and relations appear alternately

$$United\ Kingdom \rightarrow country^- \rightarrow Tim\ Berners-Lee \rightarrow employer \rightarrow W3C$$
 (reverse)

- RNNs perform well on sequential data  $\mathbf{h}_t = \tanh(\mathbf{W}_h \mathbf{h}_{t-1} + \mathbf{W}_x \mathbf{x}_t + \mathbf{b}),$ 
  - Limitations to leverage RNNs to model relational paths
    - A relational path have two different types: "entity" and "relation"
      - Always appear in an alternating order
    - A relational path is constituted by triples, but these basic structure units are overlooked by RNNs

## Recurrent skipping networks



 A conditional skipping mechanism allows RSNs to shortcut the current input entity to let it directly participate in predicting its object entity

$$\mathbf{h}_t' = \begin{cases} \mathbf{h}_t & x_t \in \mathcal{E} \\ \mathbf{S}_1 \mathbf{h}_t + \mathbf{S}_2 \mathbf{x}_{t-1} & x_t \in \mathcal{R} \end{cases}$$

- h'<sub>t</sub> denotes the output hidden state of the RSN;
- $\mathbf{h}_t$  denotes the corresponding RNN output
- S1, S2 are the weight matrices, and their parameters are shared at different time steps.



Figure 1. Example of RSNs with a 2-hop relational path

## Tri-gram residual learning



## Residual learning

- $\circ$  Let F(x) be an original mapping, and H(x) be the expected mapping
- Compared to directly optimizing F(x) to fit H(x), it is easier to optimize F(x) to fit residual part H(x)
  - An extreme case, H(x) = x

#### $(United\ Kingdom,\ country\ {}^-,\ Tim\ Bernerz\text{-}Lee,\ employer,\ W3C)$

Models Optimize  $F([\cdot], employer)$  as

RNNs  $F([\cdot], employer) := W3C$ 

RRNs  $F([\cdot], employer) := W3C - [\cdot]$ 

RSNs  $F([\cdot], employer) := W3C - Tim Berners-Lee$ 

denotes context (United Kingdom, country -, Tim Berners-Lee)

## Tri-gram residual learning

- United Kingdom  $\rightarrow$  country  $\rightarrow$  Tim Berners-Lee  $\rightarrow$  employer  $\rightarrow$  W3C
- Compared to directly learning to predict W3C by employer and its mixed context, it is easier to learn the residual part between W3C and Tim Berners-Lee
  - Because they forms a triple, and we should not overlook the triple structure in the paths

## **Biased Random Walks**



- Conventional random walks: uniform distribution

f next entities. 
$$\Pr(e_{i+1} \mid e_i) = \begin{cases} \frac{\pi_{e_i \to e_{i+1}}}{Z} & \exists r \in \mathcal{R} \colon (e_i, r, e_{i+1}) \in \mathcal{T} \\ 0 & \text{otherwise} \end{cases}$$

- Biased random walks:
  - leverage the idea of second-order random walks.

• Depth bias in one KG: 
$$\mu_d(e_{i-1},e_{i+1}) = egin{cases} \alpha & d(e_{i-1},e_{i+1}) = 2 \\ 1-\alpha & d(e_{i-1},e_{i+1}) < 2 \end{cases}$$

• Cross-KG bias: 
$$\mu_c(e_{i-1},e_{i+1}) = \begin{cases} \beta & kg(e_{i-1}) \neq kg(e_{i+1}) \\ 1-\beta & \text{otherwise} \end{cases}$$

Combine the depth and cross-KG biases:

$$\mu(e_{i-1}, e_{i+1}) = \mu_d(e_{i-1}, e_{i+1}) \times \mu_c(e_{i-1}, e_{i+1})$$



(a) Depth-biased random walk (b) KG-biased random walk Figure 2. Samples of biased random walks. For simplicity, we reduce a KG as an undirected graph by merging relations and their corresponding reversed ones.  $e_2$  is the current entity that we now stand on and  $e_1$  is the previous one.

#### Algorithm 1 Biased random walk sampling

- 1: **Input:** Triple set  $\mathcal{T}$ , depth bias  $\alpha$ , cross-KG bias  $\beta$ , sampling times n, max length l
- 2: Obtain biased transition probability matrices  $M_d$ ,  $M_c$ ;
- 3: **for** i := 1 **to** n **do**
- 4: **for each** triple  $(s, r, o) \in \mathcal{T}$  **do**
- 5:  $p := s \rightarrow r \rightarrow o$
- 6: repeat
- 7: Look up  $M_d$ ,  $M_c$  and compute normalized transition probability distribution  $p_o$  of o;
- 8: Sample next entity e from  $p_o$ ;
- 9: Sample a relation r' between o and e;
- 10:  $p := p \to r' \to e;$
- 11: **until** length $(p) \ge l$ ;
- 12: end for
- 13: end for

## **Architecture**

- An end-to-end framework
  - Biased random walk sampling
    - Deep paths carry more relational dependencies than triples
    - Cross-KG paths deliver alignment information between KGs
  - 2. Recurrent skipping network
  - 3. Type-based noise contrastive estimation
    - Evaluate loss in an optimized way

$$\mathcal{L} = -\sum_{t=1}^{T-1} \left( \log \sigma(\mathbf{h}_t' \cdot \mathbf{y}_t) + \sum_{j=1}^k \mathbb{E}_{\tilde{y}_j \sim Q(\tilde{y})} \left[ \log \sigma(-\mathbf{h}_t' \cdot \tilde{\mathbf{y}}_j) \right] \right)$$

- If the current target is an entity, we draw negative samples from the noise probability distribution of entities.
- $Q(\tilde{y}) \propto q(\tilde{y})^{\frac{3}{4}}$  , where  $q(\tilde{y})$  is the frequency of  $\tilde{y}$  appearing in KGs.



Figure 5. Architecture of the proposed method for entity alignment

# **Datasets & Settings**

*Table 7.* Statistics of the entity alignment datasets

| Datasets | Source KGs         | No     | rmal     | D      | ense     |
|----------|--------------------|--------|----------|--------|----------|
| Dutusets |                    | #Rels. | #Triples | #Rels. | #Triples |
| DBP-WD   | DBpedia (English)  | 253    | 38,421   | 220    | 68,598   |
|          | Wikidata (English) | 144    | 40,159   | 135    | 75,465   |
| DBP-YG   | DBpedia (English)  | 219    | 33,571   | 206    | 71,257   |
| DBP-1G   | YAGO3 (English)    | 30     | 34,660   | 30     | 97,131   |
| EM ED    | DBpedia (English)  | 221    | 36,508   | 217    | 71,929   |
| EN-FR    | DBpedia (French)   | 177    | 33,532   | 174    | 66,760   |
| EN DE    | DBpedia (English)  | 225    | 38,281   | 207    | 56,983   |
| EN-DE    | DBpedia (German)   | 118    | 37,069   | 117    | 59,848   |

Each dataset contains about 15,000 entities.



Figure 6. Comparison of degree distributions of the entity alignment datasets extracted by different methods

- Entity alignment datasets:
  - segment-based random PageRank sampling (SRPRS)
    method, which can fluently control the degree
    distributions of entities in the sampled datasets.
  - four couples: nomal & dense entity distribution
- KG completion datasets:
  - FB15K、FB15K-237、WN18

*Table 6.* Experimental settings

|                       | Entity alignment  | KG completion |
|-----------------------|-------------------|---------------|
| Embedding sizes       | 256               | 256           |
| Batch sizes           | 512               | 2,048         |
| Learning rates        | 0.003             | 0.0001        |
| Bias hyper-parameters | lpha=0.9, eta=0.9 | lpha=0.7      |
| Path lengths          | 15                | 7             |

# **Entity Alignment Results**

Table 2. Entity alignment results on the normal datasets

| Methods             | DBP-WD |         |      |        | DBP-YG  |      |        | EN-FR   |      | EN-DE  |         |      |
|---------------------|--------|---------|------|--------|---------|------|--------|---------|------|--------|---------|------|
| memous              | Hits@1 | Hits@10 | MRR  |
| MTransE             | 22.3   | 50.1    | 0.32 | 24.6   | 54.0    | 0.34 | 25.1   | 55.1    | 0.35 | 31.2   | 58.6    | 0.40 |
| IPTransE            | 23.1   | 51.7    | 0.33 | 22.7   | 50.0    | 0.32 | 25.5   | 55.7    | 0.36 | 31.3   | 59.2    | 0.41 |
| JAPE                | 21.9   | 50.1    | 0.31 | 23.3   | 52.7    | 0.33 | 25.6   | 56.2    | 0.36 | 32.0   | 59.9    | 0.41 |
| BootEA              | 32.3   | 63.1    | 0.42 | 31.3   | 62.5    | 0.42 | 31.3   | 62.9    | 0.42 | 44.2   | 70.1    | 0.53 |
| GCN-Align           | 17.7   | 37.8    | 0.25 | 19.3   | 41.5    | 0.27 | 15.5   | 34.5    | 0.22 | 25.3   | 46.4    | 0.33 |
| TransR <sup>†</sup> | 5.2    | 16.9    | 0.09 | 2.9    | 10.3    | 0.06 | 3.6    | 10.5    | 0.06 | 5.2    | 14.3    | 0.09 |
| TransD <sup>†</sup> | 27.7   | 57.2    | 0.37 | 17.3   | 41.6    | 0.26 | 21.1   | 47.9    | 0.30 | 24.4   | 50.0    | 0.33 |
| ConvE <sup>†</sup>  | 5.7    | 16.0    | 0.09 | 11.3   | 29.1    | 0.18 | 9.4    | 24.4    | 0.15 | 0.8    | 9.6     | 0.03 |
| RotatE <sup>†</sup> | 17.2   | 43.2    | 0.26 | 15.9   | 40.1    | 0.24 | 14.5   | 39.1    | 0.23 | 31.9   | 55.0    | 0.40 |
| RSNs (w/o biases)   | 37.2   | 63.5    | 0.46 | 36.5   | 62.8    | 0.45 | 32.4   | 58.6    | 0.42 | 45.7   | 69.2    | 0.54 |
| RSNs                | 38.8   | 65.7    | 0.49 | 40.0   | 67.5    | 0.50 | 34.7   | 63.1    | 0.44 | 48.7   | 72.0    | 0.57 |

<sup>&</sup>quot;†" denotes KG completion methods conducted with the source code on the joint KGs. The same to the following.

Table 3. Entity alignment results on the dense datasets

| Methods             |        | DBP-WD  |      |        | DBP-YG  |      |        | EN-FR   |      | EN-DE  |         |      |
|---------------------|--------|---------|------|--------|---------|------|--------|---------|------|--------|---------|------|
| Wethous             | Hits@1 | Hits@10 | MRR  |
| MTransE             | 38.9   | 68.7    | 0.49 | 22.8   | 51.3    | 0.32 | 37.7   | 70.0    | 0.49 | 34.7   | 62.0    | 0.44 |
| IPTransE            | 43.5   | 74.5    | 0.54 | 23.6   | 51.3    | 0.33 | 42.9   | 78.3    | 0.55 | 34.0   | 63.2    | 0.44 |
| JAPE                | 39.3   | 70.5    | 0.50 | 26.8   | 57.3    | 0.37 | 40.7   | 72.7    | 0.52 | 37.5   | 66.1    | 0.47 |
| BootEA              | 67.8   | 91.2    | 0.76 | 68.2   | 89.8    | 0.76 | 64.8   | 91.9    | 0.74 | 66.5   | 87.1    | 0.73 |
| GCN-Align           | 43.1   | 71.3    | 0.53 | 31.3   | 57.5    | 0.40 | 37.3   | 70.9    | 0.49 | 32.1   | 55.2    | 0.40 |
| TransR <sup>†</sup> | 14.1   | 38.6    | 0.22 | 13.0   | 38.0    | 0.21 | 15.2   | 43.8    | 0.25 | 10.7   | 30.9    | 0.18 |
| TransD <sup>†</sup> | 60.5   | 86.3    | 0.69 | 62.1   | 85.2    | 0.70 | 54.9   | 86.0    | 0.66 | 57.9   | 81.6    | 0.66 |
| ConvE <sup>†</sup>  | 30.8   | 50.5    | 0.38 | 37.2   | 57.0    | 0.44 | 30.0   | 49.7    | 0.37 | 42.3   | 60.3    | 0.49 |
| RotatE <sup>†</sup> | 62.2   | 86.5    | 0.71 | 65.0   | 87.2    | 0.73 | 48.6   | 80.4    | 0.59 | 63.2   | 83.2    | 0.70 |
| RSNs (w/o biases)   | 74.6   | 90.8    | 0.80 | 80.2   | 95.0    | 0.86 | 73.2   | 90.7    | 0.80 | 71.0   | 87.2    | 0.77 |
| RSNs                | 76.3   | 92.4    | 0.83 | 82.6   | 95.8    | 0.87 | 75.6   | 92.5    | 0.82 | 73.9   | 89.0    | 0.79 |

# **KG Completion Results**

Table 4. KG completion results on FB15K

| Methods                  | Hits@1 | Hits@10 | MRR  |
|--------------------------|--------|---------|------|
| TransE <sup>‡</sup>      | 30.5   | 73.7    | 0.46 |
| TransR <sup>‡</sup>      | 37.7   | 76.7    | 0.52 |
| TransD <sup>‡</sup>      | 31.5   | 69.1    | 0.44 |
| ComplEx                  | 59.9   | 84.0    | 0.69 |
| ConvE                    | 67.0   | 87.3    | 0.75 |
| RotatE                   | 74.6   | 88.4    | 0.80 |
| RSNs (w/o cross-KG bias) | 72.2   | 87.3    | 0.78 |

Table 5. KG completion results on WN18

| Methods                  | Hits@1 | Hits@10 | MRR  |
|--------------------------|--------|---------|------|
| TransE <sup>‡</sup>      | 27.4   | 94.4    | 0.58 |
| TransR <sup>‡</sup>      | 54.8   | 94.7    | 0.73 |
| TransD <sup>‡</sup>      | 30.1   | 93.1    | 0.56 |
| ComplEx                  | 93.6   | 94.7    | 0.94 |
| ConvE                    | 93.5   | 95.5    | 0.94 |
| RotatE                   | 94.4   | 95.9    | 0.95 |
| RSNs (w/o cross-KG bias) | 92.2   | 95.3    | 0.94 |

Table 8. KG completion results on FB15K-237

| Methods                  | Hits@1 | Hits@10 | MRR  |
|--------------------------|--------|---------|------|
| TransE <sup>‡</sup>      | 13.3   | 40.9    | 0.22 |
| TransR <sup>‡</sup>      | 10.9   | 38.2    | 0.20 |
| TransD <sup>‡</sup>      | 17.8   | 44.7    | 0.27 |
| ComplEx                  | 15.2   | 41.9    | 0.24 |
| ConvE                    | 23.9   | 49.1    | 0.31 |
| RotatE                   | 24.1   | 53.3    | 0.34 |
| RSNs (w/o cross-KG bias) | 20.2   | 45.3    | 0.28 |

- RSNs outperformed all the translational models that also aim to learn KG embeddings rather than only complete KGs.
- Entity alignment and KG completion exist significant divergences.
- Several methods that performed pretty well on KG completion may be caused by that they were particularly designed for KG completion, and not be capable of training high-quality embeddings.
- The performance of KG completion can largely be improved with a sophisticatedly-designed structure for triples,

<sup>&</sup>quot;‡" denotes methods executed by ourselves using the source code, due to certain metrics were not evaluated.

## **Further analysis**

- RSNs vs. RNNs, RRNs [recurrent residual networks]
  - Achieved better results with only 1/30 epochs

- Random walk length
  - On all the datasets, increased steadily from length 5 to 15



Figure 3. Hits@1 results w.r.t. epochs to converge



(a) Normal datasets (b) Dense datasets Figure 4. Hits@1 results w.r.t. random walk length

## Conclusion



- We studied path-level KG embedding learning
  - RSNs: sequence models to learn relational paths
  - 2. End-to-end framework: biased random walk sampling + RSNs
  - 3. Superior in entity alignment and competitive in KG completion
- Future work
  - Unified sequence model: relational paths & textual information