The group G is isomorphic to the group labelled by [8,3] in the Small Groups library. Ordinary character table of $G \cong D8$:

	1a	2a	4a	2b	2c
χ_1	1	1	1	1	1
χ_2	1	1	1	-1	-1
χ_3	1	1	-1	1	-1
χ_4	1	1	-1	-1	1
χ_5	2	-2	0	0	0

Trivial source character table of $G \cong D8$ at p = 2:

 $P_1 = Group([()]) \cong 1$

 $P_2 = Group([(1,4)(2,6)(3,7)(5,8)]) \cong C2$

Normalisers N_i	N_1	N_2	N_3	N_4	N_5	N_6	N_7	N_8
p-subgroups of G up to conjugacy in G		P_2	P_3	P_4	P_5	P_6	P_7	P_8
Representatives $n_j \in N_i$		1a						
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 2 \cdot \chi_5$		0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5$		4	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5$	4	0	2	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5$		0	0	2	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5$	2	2	2	0	2	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5$		2	0	2	0	2	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5$		2	0	0	0	0	2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5$		1	1	1	1	1	1	1

```
\begin{array}{l} P_3 = Group([(1,3)(2,5)(4,7)(6,8)]) \cong C2 \\ P_4 = Group([(1,2)(3,8)(4,6)(5,7)]) \cong C2 \\ P_5 = Group([(1,4)(2,6)(3,7)(5,8),(1,3)(2,5)(4,7)(6,8)]) \cong C2 \times C2 \\ P_6 = Group([(1,4)(2,6)(3,7)(5,8),(1,2)(3,8)(4,6)(5,7)]) \cong C2 \times C2 \\ P_7 = Group([(1,4)(2,6)(3,7)(5,8),(1,8,4,5)(2,7,6,3)]) \cong C4 \\ P_8 = Group([(1,4)(2,6)(3,7)(5,8),(1,3)(2,5)(4,7)(6,8),(1,2)(3,8)(4,6)(5,7)]) \cong D8 \\ N_1 = Group([(1,2)(3,8)(4,6)(5,7),(1,3)(2,5)(4,7)(6,8),(1,4)(2,6)(3,7)(5,8)]) \cong D8 \\ N_2 = Group([(1,2)(3,8)(4,6)(5,7),(1,3)(2,5)(4,7)(6,8),(1,4)(2,6)(3,7)(5,8)]) \cong D8 \\ N_3 = Group([(1,3)(2,5)(4,7)(6,8),(1,4)(2,6)(3,7)(5,8)]) \cong C2 \times C2 \\ N_4 = Group([(1,2)(3,8)(4,6)(5,7),(1,6)(2,4)(3,5)(7,8)]) \cong C2 \times C2 \\ N_5 = Group([(1,3)(2,5)(4,7)(6,8),(1,4)(2,6)(3,7)(5,8),(1,2)(3,8)(4,6)(5,7)]) \cong D8 \\ N_6 = Group([(1,2)(3,8)(4,6)(5,7),(1,4)(2,6)(3,7)(5,8),(1,2)(3,8)(4,6)(5,7)]) \cong D8 \\ N_7 = Group([(1,8,4,5)(2,7,6,3),(1,4)(2,6)(3,7)(5,8),(1,2)(3,8)(4,6)(5,7)]) \cong D8 \\ N_8 = Group([(1,2)(3,8)(4,6)(5,7),(1,3)(2,5)(4,7)(6,8),(1,4)(2,6)(3,7)(5,8)]) \cong D8 \\ N_8 = Group([(1,2)(3,8)(4,6)(5,7),(1,3)(2,5)(4,7)(6,8),(1,4)(2,6)(3,7)(5,8),(1,2)(3,8)(4,6)(5,7)]) \cong D8 \\ N_8 = Group([(1,2)(3,8)(4,6)(5,7),(1,3)(2,5)(4,7)(6,8),(1,4)(2,6)(3,7)(5,8),(1,4)(2,6)(3,7)(5,8)]) \cong D8 \\ N_8 = Group([(1,2)(3,8)(4,6)(5,7),(1,3)(2,5)(4,7)(6,8),(1,4)(2,6)(3,7)(5,8)]) \cong D8 \\ N_8 = Group([(1,2)(3,8)(4,6)(5,7),(1,3)(2,5)(4,7)(6,8),(1,4)(2,6)(3,7)(5,8)]) \cong D8 \\ N_8 = Group([(1,2)(3,8)(4,6)(5,7),(1,3)(2,5)(4,7)(6,8),(1,4)(2,6)(3,7)(5,8)]) \cong D8 \\ N_8 = Group([(1,2)(3,8)(4,6)(5,7),(1,3)(2,5)(
```