Assignment 2

Q1	No. of observations Provided correct	No. of observations Not	No. of observations	Total No. of observations						
	info	Provided	Provided incorrect info							
	3930 (64.5%)	890 (14.6%)	1270 (20.9%)	6090 (100%)						
	3930 (64.5%)	2160 (35.5%)		6090 (100%)						
	3930 (75.6%)	Removed	1270 (24.4%)	5200 (100%)						
	The site investigated 203 members with 30 items, total observation is 6090, after remove "Not Provided", observation is 5200									

Var	Description	Total Observation n ₁ :6090	After remove n ₂ :5200	Findings				
Knowledge	Yes	3150 (51.7%)	2725 (52%)	More than half observations (52%) of				
of the site	No	2940 (48.3%)	2475 (48%)	user has knowledge on the site.				
Experience	Yes	2520 (41.4%)	2169 (42%)	More than half observations (58%) of user has direct or indirect experience of				
	No	3570 (58.6%)	3031 (58%)	online matchmaking. It means users have already built a trust relationship on a site.				
Internet	1 (Don't believe)	30 (0.5%)	30 (0.6%)	Around 37% observations of user have got moderate trustworthy of the internet.				
trust	>1-2	240 (3.9%)	211 (4.1%)					
	>2-3	1560 (26%)	1390 (27%)					
	>3-4	2370 (39%)	1921(37%)					
	>4-5	1680 (28%)	1447 (28%)					
	>5-6 (High)	210 (3.4%)	201(3.9%)					
Internet	>1-2 (Low)	90(1.5%)	88 (1.7%)	Around 82% observations of user have				
privacy	>2-3	180 (3%)	154 (3%)	got moderate to high concern about				
concern	>3-4	840 (14%)	708 (14%)	Internet privacy.				
	>4-5	2010 (33%)	1761(34%)	7				
	>5-6	2010 (33%)	1657 (32%)					
	>6-7(High)	960 (17%)	832 (16%)					
Age	18	30 (0.5%)	23(0.4%)	Around 82% observations of user as				
_	19-20	1470 (24%)	1200 (23%)	distribution are between 19-24.				
	21-22	1680 (28%)	1432 (28%)					
	23-24	1830 (30%)	1562 (30%)	_				
	25-26	810 (13%)	733 (14%)					
	27-28	150 (2.5%)	133 (2.6%)	-				
	29-30	120 (2%)	117 (2.3%)	7				
sex	Female	2820 (46%)	2381(46%)	More than half observations (54%) of				
SCA	male	3270 (54%)	2819 (54%)	user is male.				
Provide	1 (correct)	3930 (64.5%)	3930 (75.6%)	More than 75% observations of user				
correct	2 (not provided)	890 (14.9%)	3730 (73.070)	have provided correct information.				
info	3 (incorrect)	1270 (20.9%)	1270 (24.4%)	nave provided correct information.				
Sensitivity	0 (Not at all)	0	0	Around 21% observations of user				
Schsilivity	1-10	0	0	Around 21% observations of user believed that the items of survey are				
	11-20	0	0	moderately sensitive to provide				
	21-30	812 (13%)	719 (14%)	information.				
	31-40	1015 (17%)	917 (18%)	information.				
	41-50	1218 (20%)	1095 (21%)	-				
	51-60	406 (6.7%)	352 (6.8%)	-				
	61-70		619 (12%)	4				
	71-80	812 (13%)		4				
	81=90	1218 (20%)	980 (19%) 344 (6.6%)	4				
		406 (6.7%)	. /	4				
D -1	91-100 (extremely)	203 (3.3%)	174 (3.3%)	M 41 (10/ -1 4: 5				
Relevant	0 (Not at all) 1-10	0	0	More than 61% observations of user believed that the items of survey are				
			0					
	11-20	203 (3.3%)	174 (3.3%)	moderately to high relevant (51-90) to find a good matching.				
	21-30	406 (6.7%)	365 (7%) 678 (13%)	Tind a good matching.				
	31-40	-50 1015 (17%) 78 -60 812 (13%) 75						
	41-50							
	51-60			4				
	61-70	1421 (23%)	1151(22%)	4				
	71-80	1015 (17%)	916 (18%)	_				
	81=90	406 (6.7%)	377 (7.3%)	_				
	91-100 (extremely)	0	0					

Assignment 2

(Cont'Q1) Hypothesis	Observations	t-statistic	p-value	Findings by t-test
H1: There are sensitivity difference	6090	- 23.328	p< 2.2e-16	They are significantly different in terms of
between those provided correct info with			(sig. &	sensitivity. Less sensitive (mean= 49.5) in those
those not provided & provided incorrect			supported)	have provided correct info than those not
info.				provided+ provided incorrect info (mean=
				61.7).
Finding: The accuracy of providing	5200	-22.579	p< 2.2e-16	They are significantly different in terms of
information (D=1) is highly depend on	(removed		(sig. &	sensitivity. Less sensitive (mean= 49.5) in those
contextual nature of information	not		supported)	have provided correct info than those provided
sensitivity in survey.	provided)			incorrect info (mean= 64.1).
H2: There are relevant difference between	6090	19.482	p< 2.2e-16	They are significantly different in terms of
those provided correct info with those not			(sig. &	relevant. Much relevant (mean= 58.5) in those
provided +provided incorrect info.			supported)	have provided correct info than those not
				provided+ provided incorrect info
				(mean=49.4).
Finding: Relevance of information asked	5200	21.395	p-value <	They are significantly different in terms of
in survey will positively influence user	(removed		2.2e-16(sig.	relevant. Much relevant (mean= 58.5) in those
attitudes toward provide correct	not		&	have willing provided correct info than those
information (D=1).	provided)		supported)	provided incorrect info (mean=46.2).

After performing statistical analysis, we decide to remove "not provided" observations for this assessment, because (i) we don't have any information for "not provided observations" (ii) Even removed "not provided" observations, the dataset is still good enough (still maintain high population (n=5200) with likely no bias compared with original one.

Q2 & Q3. Pooling model ignores the unobserved heterogeneity of users, and it also ignores possible association within users (groups). To control for the unobserved heterogeneity, we can take the first difference (period-to-period change) and use it for the analysis by First Difference (FD) Model, or include the dummies indicating each user by Fixed Effects (FE) Model (or Least Squares Dummy Variable (LSDV) Model) Or use a group(user)-specific random element by Random Effects (RE) Model.

FD model perfectly controls for time-invariant user heterogeneity.

FE Model: Make the dummy variables indicating each user and apply the regression to the data including all dummy variables. It's perfectly controls for time-invariant user heterogeneity.

RE model separates individual effects into two pieces: (a) individual effects from observed heterogeneity; (b) individual effects from unobserved heterogeneity, which is a group(user)-specific random element and has a strict assumption that the effects are uncorrelated with the regressors. RE model cannot perfectly controls for time-invariant user heterogeneity

Typically, FE model is preferred to RE model, but we can test the observed heterogeneity as it can be incorporated in the RE model. Also, we can save the degree of freedom so we can have a better chance of rejecting the null hypothesis. (See Table in p.3)

Q4		F-	p-value	# Findings1	Wald test				
		statistic							
	Main effect model	622.5	< 2.2e-16(sig. & supported)	There is main effect model of relv on the relationship between D & sen.	The purpose of Wald test is to find out if explanatory variables in a model are significant. We found that Chi-squared				
	Moderation 419.6 effect model		< 2.2e-16(sig. & supported)	There is moderation effect model of relv on the relationship between D & sen.	X2 is 11.4 & P(> X2) 0.00075. It shows the parameters are not zero, which means we should include variables in the Moderation effect model.				
	Main effect $Relv = 66.35877 - 0.31457 \text{ sen } +7.75973 \text{ D}$								
	Moderation e	effect	Relv = 70.38979 - 0.37747 sen + 2.44947 D + 0.08874 sen*D						

To test the moderation effect, we include the interaction term between the predictor and the moderator, and test the coefficient of the interaction. $relv = c + \beta_1 sen + \beta_2 D + \beta_3 senD + \gamma_1 z_1 + \gamma_2 z_2 + \dots + \varepsilon$

Then, we have two models for fitting the data.
$$relv=c+\beta_1sen+\beta_2+\beta_3sen+\gamma_1z_1+\gamma_2z_2+\cdots+\varepsilon$$
 when $D=1$
$$relv=c+(\beta_1+\beta_3)sen+\beta_2+\gamma_1z_1+\gamma_2z_2+\cdots+\varepsilon$$
 when $D=1$
$$relv=c+\beta_1sen+\gamma_1z_1+\gamma_2z_2+\cdots+\varepsilon$$
 when $D=0$

Compare the fit (R-square) between the restricted model and the unrestricted model

square) between the restricted model and the unrestricted model
$$relv = c + \beta_1 sen + \beta_2 D + \beta_3 sen \ D + \gamma_1 z_1 + \gamma_2 z_2 + \dots + \varepsilon \qquad unrestricted \ model \\ relv = c + \beta_1 sen + \beta_2 D + \gamma_1 z_1 + \gamma_2 z_2 + \dots + \varepsilon \qquad restricted \ model \ by \ \beta_3 = 0$$

Further study and Suggestions for (i) screening &(ii) main effect and interaction effect on relv, sen and D by ANOVA: From results of ANOVA, both result of Pr(>F) are very close to zero, which mean "relv" is a significant predictor, while the interaction of relv, sen and D is also significant. Furthermore, we performed model comparison in AVOVA. Two models are found significant, namely (i) Model 2 which is the significant on rely, sen and D; (ii) Model 5 which is the significant on rely, sen, D, know, expr & itr. See more details in R Markdown (Assignment 2b.Rmd) with R-Studio which including R-code and visualization graphs.

Q5. We do need more data to establish the relationship between D and sen, relv. The possible control variables like citizen, born of country, race and skin colour.

Assignment 2

 $lnD_{it} = \beta_1 + \beta_2 sen_{it} + \beta_3 relv_{it} + \beta_4 know_{it} + \beta_5 expr_{it} + \beta_6 itr_{it} + \beta_7 ip_{it} + \beta_8 sex_i + \beta_9 age_{it} + \varepsilon_{it}$

Table Estin	nate the impa	ct of accuracy	for provid	ing inform	ation (D) or	sensitivity,	relevant and	other control v	ariables.	, , , ,		<u> </u>				
Cont' Q2	OLS							Oneway (ind		t First-	Fixed effect	(FE) model			dividual) effe	ct Random
	OLS			Panel Ro	bust Mode	Pooling m	odel	Difference Model (FD)						Effect Model (RE)		
Variables	Estimates Coefficient	Std. Error	p-value	Std. Erro	p-value	Std. Error	p-value	Estimates Coefficient	Std. Error	p-value	Estimates Coefficient	Std. Error	p-value	Estimates Coefficient	Std. Error	p-value
β ₁ : constant	0.4591604	0.0701880	6.66e-11 ***	0.0713	< 0.0001	0.0701879	6.660e-11 ***	0.00047534	0.00700171	0.945877	-	-	-	0.4691976	0.14557733	0.00127
β ₂ : sen	-0.005088	0.0003018	< 2e-16	0.0003	<0.0001	0.0003017	< 2.2e-16	-	-	-	-	-	-	-0.005547	0.00135569	4.338e-(***
β ₃ : relv	0.0047139	0.0003309	< 2e-16	0.0003	< 0.0001	0.0003308	< 2.2e-16	-	-	-	-	-	=	0.0045382	0.00150220	0.00253 **
β ₄ : know	-0.065745	0.0185931	0.00041 ***	0.0196	0.0008	0.0185930	***	-0.0313228	0.01704313	0.066140	-0.0644196	0.01721600	0.0001847	-0.064476	0.01723934	0.00018 ***
β ₅ : expr	0.0488335	0.0188836	0.00974	0.0204	0.0166	0.0188836		0.03676882	0.01747344		0.04245882	0.01748623	0.0152109	0.0427640	0.01750988	0.01462
β ₆ : itr	0.0588246	0.0062304	< 2e-16	0.0063	<0.0001	0.0062304	< 2.2e-16	0.04102547	0.00550429	1.061e-11 ***	0.05729759	0.00576814	< 2.2e-16 *	0.0573746	0.00577600	< 2.2e-1 ***
β ₇ : ip	-0.000616	0.0052656	0.90677	0.0055	0.9102	0.0052655	0.9067747	-0.0060394	0.00493095	0.220705	0.00064785	0.00487486	0.8942800	0.0005875	0.00488150	0.90419
β ₈ : sex	0.0764637	0.0119982	2.01e-10 ***	0.0117	<0.0001	0.0119982	2.015e-10 ***	0.03106479	0.01105206	0.004961	0.07587051	0.01111200	6.8278 9.63 12 ***	0.0759005	0.01112695	1.005e-1 ***
β9: age	0.0029821	0.0024950	0.23205	0.0025	0.2273	0.0024950		0.00846236	0.00230448	0.000243 ***				0.0036230	0.00231327	0.11736
Finding#1		riables, "know					re slightly	To control for the unobserved p-value of "ip" and "age" >0.05, so they p-value of "ip" and "ip"								
	correlated v	correlated with at least one of the other predictors in the model.							heterogeneity, we can take the first difference (period-to-period change) a			ficant in the m	nodel & just	they are not significant in the mode just control variables.		
									difference (period-to-period change) a control variables. use it for analysis.					just control	variables.	
Finding#2	"ip" and "a	ge" are just co	ontrol varia	bles.				Adv: t can remove the latent								
									y from the mo							
								the fixed or random effect model is								
Finding#3	RP test has	a n-value< ?	2e-16 so u	e can reiec	et the null b	vnothesis and	l infer that	appropriate. Disadv: The differencing also remove								
1 manig#3	BP test has a p-value< 2.2e-16, so we can reject the null hypothesis and infer that heteroscedasticity is indeed present.							any time-invariant variables from the model.								
	netrosetamentally to indeed presents															
Findings								ral observation							nmend. #3. C	onduct
	Hausman test to check whether the individual effects are uncorrelated with the regressors, we found that p-value is 0.9979, therefore we use Random Effect Model (RE).															

Using the panel glm model, Maximum Likelihood estimation

osing the panel gill	sing the panel gain model, maximum bikemood estimation										
Variables	β1: const	β2: sen	β3: relv	β4: know	β5: expr	β6:itr	β7: ip	β8: sex	β9: age	sigma	Finding
Estimate Coef	-1.012507	-0.034665	0.032038	-0.374817	0.360162	0.456089	-0.016133	0.695291	0.041967	1.826031	p-value of "sen" "relv",
Std. Error	1.247833	0.002207	0.002386	0.381473	0.380481	0.131381	0.105941	0.222851	0.050043	0.127687	"itr","sex" <0.05, so they are significant in the model.
p-value	0.417129	< 2e-16 ***	< 2e-16 ***	0.325828	0.343845	0.000518 ***	0.878966	0.001809 *	0.401679	< 2e-16 ***	-