Question 5

Sunday, November 5, 2023

6:16 PM

5. Let $P \in \mathcal{L}(V)$ be an orthogonal projection map in inner product space V that projects vectors into subspace U. Show from first principle that $\langle x, Py \rangle = \langle Px, y \rangle = \langle Px, Py \rangle$ for all $x, y, z \in V$.

if
$$\langle x_3 p y \rangle = \langle p x_3 y \rangle$$

if we consider The spectrum Decompisation of vector any vector $\vec{v} \in \vec{V}$, then $\vec{v} = \vec{V}_U + \vec{V}_{UL}$ $\vec{V}_U \in U$ and $\vec{V}_{UL} \in U^{\perp}$. Then $\vec{X} = X_U + X_{UL}$

But Since any Vector in U¹ and U are rule of Basis vectors orthogonal 40 one arother, any vector NEU¹ and V¹EU are orthogonal and their inner product is zero.

$$\langle x_0, y_0 \rangle + \langle x_0, y_0 \rangle = \langle x_0, y_0 \rangle + \langle x_0, y_0 \rangle$$

 $\langle x, p_y \rangle = \langle x_0, y_0 \rangle = \langle x_0, p_y \rangle = \langle p_x, p_y \rangle$