RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFTEN DEUTSCHE POST LEHRSTUHL FÜR OPTIMIERUNG VON DISTRIBUTIONSNETZWERKEN Universitätsprofessor Dr.rer.nat.habil. Hans-Jürgen Sebastian

Klausur Methoden und Anwendungen der Optimierung (PT1) 7. Februar 2013

Klausurnummer:
Name:
Vorname:
Matrikelnummer:
Studiengang / Fachrichtung:
Hinweise:
• Füllen Sie die Felder oben vollständig aus bzw. korrigieren Sie ggf. die entsprechenden Einträge und unterschreiben Sie die Klausur.
• Sämtliche Einträge in dem Klausurexemplar sind mit dokumentenechten Schreibutensilien vorzunehmen (Kein Bleistift!).
• Die Antworten sind in diesem Klausurexemplar einzutragen. Bei Bedarf erhalten Sie weitere leere Blätter.
\bullet Es sind keine Hilfsmittel außer Stift und Lineal zugelassen. Insbesondere ist die Benutzung von Taschenrechnern und Vorlesungs-/Übungsunterlagen unzulässig!
• Handys dürfen nicht zur Klausur mitgebracht werden bzw. sind auszuschalten.
\bullet Die Höchstpunktzahl beträgt 90 Punkte; die Bearbeitungszeit beträgt 90 Minuten.
• Beantworten Sie die Aufgaben möglichst stichpunktartig.
• Überprüfen Sie die Klausur auf Vollständigkeit (Seiten 1 bis 11)!
Mit meiner Unterschrift bestätige ich, die obigen Hinweise zur Kenntnis genommen zu haben und diese zu akzeptieren.
Unterschrift:

Aufgabe	Fragen	A1	A2	A3	A4	A5	Σ	Note
max. Punkte	30	13	12	11	13	11	90	
Punkte								

Name:

Aufgabenteil (60 Punkte)

Aufgabe 1:Schnittebenenverfahren von Gomory (13 Punkte)

Gegeben ist das folgende ganzzahlige lineare Optimierungsproblem:

$$\max z = x_2$$
s.d.
$$3x_1 + 2x_2 \le 6$$
$$-3x_1 + 2x_2 \le 0$$
$$x_1, x_2 \in \mathbb{N}_0$$

Die Anwendung des Simplex-Algorithmus auf dessen LP-Relaxation führt zu folgendem optimalen Endtableau:

	x_1	x_2	s_1	s_2	b_i^*
x_1	1	0	1/6	-1/6	1
x_2	0	1	1/4	1/4	3/2
Δz_j	0	0	1/4	1/4	3/2

Da die optimale Lösung der LP-Relaxation für das ursprüngliche Problem nicht zulässig ist, soll diese mit Hilfe des Schnittebenenverfahrens von Gomory bestimmt werden.

(a) Stellen Sie die dafür notwendige Gomory-Restriktion für die Basisvariable x_2 auf. (3 Punkte)

(b) Erweitern Sie obiges Endtableau des primalen Simplex-Algorithmus um die in (a) aufgestellte Gomory-Restriktion und führen Sie einen dualen Simplex-Schritt durch. (6 Punkte)

	b_i^*
Δz_j	

Name:

	b_i^*
Δz_j	

(c) Ist die in Aufgabenteil (b) bestimmte Lösung zulässig für das ursprüngliche Problem? Begründen Sie Ihre Antwort! (1 Punkt)

(d) Bestimmen Sie für die in Aufgabenteil (a) aufgestellte Gomory-Restriktion die Gleichung der entsprechenden Schnittebene und geben Sie diese explizit an. (3 Punkte)

Aufgabe 2: Dijkstra-Algorithmus (12 Punkte)

Gegeben ist der folgende Digraph mit sechs Knoten:

Führen Sie für obigen Digraphen den Dijkstra-Algorithmus zur Bestimmung der kürzesten Wegen von Knoten S zu den Knoten 1, 2, 3, 4 und 5 durch.

(a) Tragen Sie hierfür in der untenstehenden Tabelle für jede Iteration des Dijkstra-Algorithmus den ausgewählten Knoten, die Menge der vorläufig markierten Knoten, die Menge der endgültig markierten Knoten sowie die Labels $d(1), \ldots, d(5)$ ein. (9 Punkte)

Iteration	Ausgewählter Knoten i	vorläufig markierte Knoten	endgültig markierte Knoten	d(1)	d(2)	d(3)	d(4)	d(5)
Initialisierung	-	S	-		∞		∞	∞

(b) Geben Sie die ermittelten kürzesten Wege von Knoten S zu den Knoten 1, 2, 3, 4 und 5 sowie deren Länge explizit an. (3 Punkte)

Aufgabe 3: Transportproblem (11 Punkte)

Gegeben ist ein Transportproblem mit folgenden Stücktransportkosten, Angebots- und Nachfragemengen:

c_{ij}	B_1	B_2	B_3	B_4	B_5	a_i
A_1	4	6	7	9	3	50
A_2	5	8	10	4	1	30
A_3	3	2	1	7	6	60
A_4	6	5	2	6	9	40
A_5	1	4	3	6	2	25
b_j	10	45	50	50	50	

(a) Bestimmen Sie mit Hilfe der Greedy-Heuristik eine zulässige Basislösung für das obige Transportproblem. (2 Punkte)

	B_1	B_2	B_3	B_4	B_5	a_i
A_1						50
A_2						30
A_3						60
A_4						40
A_5						25
b_j	10	45	50	50	50	

(b) Bestimmen Sie für die folgende Basislösung die dazugehörige duale Lösung. (2 Punkte)

	B_1	B_2	B_3	B_4	B_5	a_i
A_1	10	40				50
A_2		5	25			30
A_3			25	35		60
A_4				15	25	40
A_5					25	25
b_j	10	45	50	50	50	

	B_1	B_2	B_3	B_4	B_5	u_i
A_1	4	6	7	9	3	0
A_2	5	8	10	4	1	
A_3	3	2	1	7	6	
A_4	6	5	2	6	9	
A_5	1	4	3	6	2	
v_j						

(c) Überprüfen Sie die in Aufgabenteil (b) bestimmte duale Lösung auf Zulässigkeit, indem Sie die Werte der Δz_{ij} bestimmen. (2 Punkte)

	B_1	B_2	B_3	B_4	B_5	u_i
A_1						0
A_2						
A_3						
A_4						
A_5						
v_j						

Name:

- (d) Ist die duale Lösung zulässig? Was bedeutet dies für die in Aufgabenteil (b) vorgegebene Basislösung? Begründen Sie jeweils kurz Ihre Antwort. (1 Punkt)
- (e) Bestimmen Sie die nächste Basislösung und tragen Sie diese in die nachfolgende Tabelle ein. (2 Punkte)

	B_1	B_2	B_3	B_4	B_5	a_i
A_1						50
A_2						30
A_3						60
A_4						40
A_5						25
b_j	10	45	50	50	50	

(f) Geben Sie explizit alle primalen Basisvariablen an, mit deren Hilfe Sie die nächste duale Lösung berechnen würden. (2 Punkte)

Aufgabe 4: Nichtlineare Programmierung (13 Punkte)

Gegeben ist das folgende nichtlineare Optimierungsproblem:

min
$$f(x)$$
 = $(x_1 - 6)^2 + (x_2 - 1)^2$
s.d.
$$x_1^2 + 3x_2 - 9 \le 0$$
$$-3x_1 - 2x_2 + 6 \le 0$$
$$-x_1(x_2 + 1) - x_2 + 3 \le 0$$
$$x_1, x_2 \in \mathbb{R}$$

(a) Geben Sie für obiges Problem die Kuhn-Tucker-Bedingungen KTB' an. Verwenden Sie dabei die Standardform, d.h. nicht die Formulierung als Sattelpunkt der Lagrange-Funktion (7 Punkte)

- (b) Überprüfen Sie die folgenden Punkte anhand der Kuhn-Tucker Bedingungen grafisch(!) auf Optimalität. Verwenden Sie hierzu die auf den nächsten beiden Seiten abgebildeten Darstellungen des zulässigen Lösungsbereichs (grau markierte Flächen) (6 Punkte)
 - $P_1(0; 3)$
- $P_2(2; 1)$
- $P_3(3; 0)$

Punkt $P_1(0; 3)$

Ist P_1 optimal? Begründen Sie kurz Ihre Antwort!

Punkt $P_2(2; 1)$

Ist P_2 optimal? Begründen Sie kurz Ihre Antwort!

Punkt $P_3(3; 0)$

Ist P_3 optimal? Begründen Sie kurz Ihre Antwort!

Aufgabe 5: Dynamische Optimierung (11 Punkte)

Der Inhaber eines fertigenden Betriebs hat für die nächsten sieben Perioden die folgenden Bedarfsmengen (in Tonnen) eines für die Produktion benötigten Rohstoffes ermittelt:

Periode	1	2	3	4	5	6	7
Bedarf [Tonnen]	80	65	40	20	75	15	35

Bei der Bestellung beziehungsweise der Lagerung der Rohstoffs fallen folgende Kosten an:

- Bestellfixe Kosten K in Höhe von 200
 $\in\!/ \mbox{Bestellung}$
- Lagerkosten h in Höhe von $2 \in /(\text{Tonne-Periode})$

Bestimmen Sie mit Hilfe des Verfahrens von Wagner-Whitin eine optimale Bestellpolitik und geben Sie diese zusammen mit den optimalen Gesamtkosten explizit an. (11 Punkte)

j	z_{j}	C_j^*	κ_j^*	1	2	3	4	5	6	7

Optimale Bestellpolitik:

Optimale Gesamtkosten: