3.86. Показать, что
$$\max_{|x| \le 1} |U_n(x)| = U_n(1) = n+1$$
.

3.87. Вычислить
$$I_{mn} = \int_{-1}^{1} \sqrt{1-x^2} U_n(x) U_m(x) dx$$
.

3.3. Численное дифференцирование

Пусть известны значения функции f(x) в точках x_1, x_2, \ldots, x_n и требуется приближенно определить производную $f^{(k)}(x_0)$ для некоторого $0 \le k \le n-1$. Построим интерполяционный многочлен $L_n(x)$ и положим $f^{(k)}(x) \approx L_n^{(k)}(x)$; при этом для погрешности справедливо представление

$$f^{(k)}(x) - L_n^{(k)}(x) = \sum_{j=0}^k \frac{k!}{(k-j)!(n+j)!} f^{(n+j)}(\xi_j) \omega_n^{(k-j)}(x).$$

Для системы равноотстоящих узлов $(x_{i+1} - x_i = h)$ часто используют другой подход, основанный на получении приближений для старших производных через приближения для младших, аналогично последовательному дифференцированию. Базовыми являются следующие выражения:

$$\partial f(x) = \frac{f(x+h) - f(x)}{h}, \ \bar{\partial} f(x) = \frac{f(x) - f(x-h)}{h}, \ \tilde{\partial} f(x) = \frac{\partial f(x) + \bar{\partial} f(x)}{2},$$

которые являются простейшими аналогами первой производной функции f(x). Их называют разностями вперед, назад и центральной соответственно. Для вывода оценок погрешностей при данном подходе удобно использовать разложения Тейлора.

Для получения формул численного дифференцирования на практике также используют метод неопределенных коэффициентов. Он заключается в следующем: искомую формулу записывают в виде $f^{(k)}(x_0) = \sum\limits_{i=1}^n c_i f(x_i) + R(f)$, и коэффициенты c_i определяют из системы линейных уравнений при R(f) = 0, для получения которой последовательно полагают f(x) равной $1, x, x^2, \ldots, x^{n-1}$.

Будем далее использовать обозначение $f(x) \in C^{(r)}$, если функция f(x) имеет на интересующем нас отрезке все непрерывные производные до порядка r включительно.

3.88. Показать, что в точке $x=x_i$ (одном из узлов интерполяции) справедлива оценка погрешности

$$|f'(x_i) - L'_n(x_i)| \le \frac{1}{n!} \max_{x \in [x_1, x_n]} |f^{(n)}(x)| \prod_{\substack{j=1\\ j \neq i}}^n |x_i - x_j|.$$

Указание. Использовать явное представление погрешности для производной многочлена Лагранжа.

3.89. Доказать равенства:

1) если
$$f \in C^{(2)}$$
, то $\partial f(x) - f'(x) = \frac{h}{2} f''(\xi), x < \xi < x + h;$

2) если
$$f \in C^{(3)}$$
, то $\tilde{\partial} f(x) - f'(x) = \frac{h^2}{6} f'''(\xi), x - h < \xi < x + h.$

Указание. Использовать разложение в ряд Тейлора.

3.90. Получить явные формулы для разностных аналогов старших производных: $f''(x) \approx \bar{\partial} \partial f(x), \ f'''(x) \approx \tilde{\partial} \bar{\partial} \partial f(x), \ f^{(4)}(x) \approx \bar{\partial}^2 \partial^2 f(x).$

Ответ:
$$\begin{split} \bar{\partial}\partial f(x) &= \frac{f(x+h) - 2\,f(x) + f(x-h)}{h^2} \;, \\ \tilde{\partial}\,\bar{\partial}\partial f(x) &= \frac{f(x+2h) - 2\,f(x+h) + 2\,f(x-h) - f(x-2h)}{2\,h^3} \;, \\ \bar{\partial}^2\partial^2 f(x) &= \frac{f(x+2h) - 4\,f(x+h) + 6\,f(x) - 4\,f(x-h) + f(x-2h)}{h^4} \;. \end{split}$$

- **3.91.** Найти величину $K_i = K_i(h)$ в следующих равенствах:
 - 1) если $f \in C^{(4)}$, то $\bar{\partial}\partial f(x) f''(x) = K_2 f^{(4)}(\xi), x h < \xi < x + h;$
 - 2) если $f \in C^{(5)}$, то $\tilde{\partial} \, \bar{\partial} \partial f(x) f'''(x) = K_3 f^{(5)}(\xi), \, x 2h < \xi < x + 2h;$
 - 3) если $f \in C^{(6)}$, то $\bar{\partial}^2 \partial^2 f(x) f^{(4)}(x) = K_4 f^{(6)}(\xi), x 2h < \xi < x + 2h.$

Otbet: 1)
$$K_2 = \frac{h^2}{12}$$
; 2) $K_3 = \frac{h^2}{4}$; 3) $K_4 = \frac{h^2}{6}$.

3.92. Считая, что значения функции в формулах численного дифференцирования для аналогов второй и четвертой производных из 3.91 заданы с абсолютной погрешностью ε , получить оценки полной погрешности этих формул как сумму погрешности метода и вычислительной погрешности. Найти оптимальный шаг h_0 , при котором минимизируется величина оценки полной погрешности.

У казание. Решение провести по аналогии со следующим примером для разности вперед (см. также 1.6). Полная погрешность для разности вперед $\partial f(x)$ имеет вид

$$R_1(h,\varepsilon) = \left| \frac{f^*(x+h) - f^*(x)}{h} - f'(x) \right|,$$

где $f^*(x+h)$ и $f^*(x)$ — приближенные значения функции f(x) в соответствующих точках. Добавляя в числитель дроби $\pm f(x+h)$ и $\pm f(x)$, после перегруппировки слагаемых получим

$$\left| \frac{f^*(x+h) - f(x+h)}{h} - \frac{f^*(x) - f(x)}{h} + \left(\frac{f(x+h) - f(x)}{h} - f'(x) \right) \right|.$$

Оценка вычислительной погрешности для каждого из двух первых слагаемых имеет вид $\frac{\varepsilon}{h}$, а погрешность метода в предположении ограниченности второй производной $|f''(\xi)| \leq M_2$ равна $\frac{hM_2}{2}$. Окончательно имеем $R_1(h,\varepsilon) \leq \frac{2\,\varepsilon}{h} + \frac{h\,M_2}{2}$. Для определения значения h_0 , при котором минимизируется полная погрешность, необходимо правую часть полученного

выражения продифференцировать по h и приравнять к нулю. Решая уравнение $-2\varepsilon h^{-2} + \frac{M_2}{2} = 0$, находим $h_0 = 2\sqrt{\frac{\varepsilon}{M_2}}$ и $R_1(h_0, \varepsilon) = 2\sqrt{\varepsilon M_2}$.

Ответ: 1)
$$h_0=2\left(\frac{3\varepsilon}{M_4}\right)^{1/4}$$
 для $R_2(h,\varepsilon)\leqslant \frac{4\varepsilon}{h^2}+\frac{h^2M_4}{12}$; 2) $h_0=2\left(\frac{3\varepsilon}{M_6}\right)^{1/6}$ для $R_4(h,\varepsilon)\leqslant \frac{16\varepsilon}{h^4}+\frac{h^2M_6}{6}$.

3.93. Методом неопределенных коэффициентов построить формулы численного дифференцирования наиболее высокого порядка точности по h:

1)
$$f'(0) \approx \frac{a f(-2h) + b f(0) + c f(h)}{h}$$
;

2)
$$f''(0) \approx \frac{a f(-h) + b f(h) + c f(2h) + d f(3h)}{h^2}$$
.

$$\text{O}\,{\rm tbet}:\,1)\ a=-\frac{1}{6},\ b=-\frac{1}{2},\ c=\frac{2}{3},\ 2)\ a=\frac{1}{2},\ b=-2, c=2,\ d=-\frac{1}{2}.$$

3.94. Доказать, что
$$\tilde{\partial} f(0) - f'(0) = \frac{1}{4h} \int_{-h}^{h} (h - |x|)^2 f'''(x) dx$$
.

Указание. Разбить интеграл на два, раскрывая модуль, и интегрировать по частям.

3.95. Используя формулу Тейлора с остаточным членом в интегральной форме

$$f(b) = f(a) + (b-a)f'(a) + \dots + \frac{(b-a)^n}{n!} f^{(n)}(a) + \frac{1}{n!} \int_a^b (b-\xi)^n f^{(n+1)}(\xi) d\xi,$$

получить оценки погрешности формул численного дифференцирования (постоянные C_1, C_2 не зависят от f и h)

$$|\bar{\partial}f(x) - f'(x)| \leqslant C_1 \int_{x-h}^{x} |f''(\xi)| d\xi,$$
$$|\bar{\partial}\partial f(x) - f''(x)| \leqslant C_2 h \int_{x-h}^{x+h} |f^{(4)}(\xi)| d\xi.$$

3.96. Доказать справедливость следующих равенств:

$$\partial(f g) = f \, \partial g + g \, \partial f + h \, \partial f \, \partial g, \quad \bar{\partial} \left(\frac{f}{g}\right) = \frac{g \, \bar{\partial} f - f \, \bar{\partial} g}{g \, (g - h \, \bar{\partial} g)}.$$

3.97. Пусть вычислены точное и приближенное значения $f''(x_0)$ при заданных узлах интерполяции $x_{-l},\ldots,x_0,\ldots,x_l,\ x_i-x_{i-1}=h.$ Показать, что справедливо представление

$$f''(x_0) - L_n''(x_0) = \frac{2(-1)^l (l!)^2}{(2l+2)!} f^{(2l+2)}(\xi) h^{2l}.$$

3.98. Используя формулу Тейлора с остаточным членом в интегральной форме, получить оценки погрешности следующих формул численного дифференцирования (постоянные C_i не зависят от f и h):

1)
$$|\partial f(x) - f'(x)| \le C_1 \int_x^{x+h} |f''(\xi)| d\xi;$$

2)
$$|\tilde{\partial} f(x) - f'(x)| \leq C_2 h \int_{x-h}^{x+h} |f'''(\xi)| d\xi;$$

3)
$$|2\partial f(x) - \tilde{\partial} f(x+h) - f'(x)| \le C_3 h \int_{x}^{x+2h} |f'''(\xi)| d\xi;$$

4)
$$|2\bar{\partial}f(x) - \tilde{\partial}f(x-h) - f'(x)| \leq C_4 h \int_{x-2h}^{x} |f'''(\xi)| d\xi;$$

5)
$$|\bar{\partial}^2 \partial^2 f(x) - f^{(4)}(x)| \le C_5 h \int_{x-2h}^{x+2h} |f^{(6)}(\xi)| d\xi.$$

3.99. Доказать справедливость следующих равенств:

1)
$$\bar{\partial}(fg) = f \bar{\partial}g + g \bar{\partial}f - h \bar{\partial}f \bar{\partial}g;$$

2)
$$\tilde{\partial}(fg) = f \,\tilde{\partial}g + g \,\tilde{\partial}f + \frac{h^2}{2} \,(\bar{\partial}\partial f \,\tilde{\partial}g + \bar{\partial}\partial g \,\tilde{\partial}f);$$

3)
$$\partial \left(\frac{f}{g} \right) = \frac{g \, \partial f - f \, \partial g}{g \, (g + h \, \partial g)}.$$

3.100. Получить формулу численного дифференцирования наиболее высокого порядка точности по h следующего вида:

- 1) $f'(0) \approx h^{-1}[a f(0) + b f(h) + c f(2h)];$
- 2) $f'(0) \approx h^{-1}[a f(0) + b f(-h) + c f(2h)];$
- 3) $f'(0) \approx h^{-1}[a f(0) + b f(-h) + c f(-2h)];$
- 4) $f'(0) \approx h^{-1}[a f(0) + b f(2h) + c f(3h)]$

и найти h, при котором достигается минимум оценки полной погрешности, если $\max_x |f^{(k)}(x)| \leqslant A_k$, и абсолютная вычислительная погрешность функции не превосходит ε , т. е. $\max_x |f(x) - f^*(x)| \leqslant \varepsilon$.

Other: 1)
$$a = -\frac{3}{2}$$
, $b = 2$, $c = -\frac{1}{2}$; $h_0 = \left(\frac{6\varepsilon}{A_3}\right)^{1/3}$; 2) $a = \frac{1}{2}$, $b = -\frac{2}{3}$, $c = \frac{1}{6}$; $h_0 = \left(\frac{2\varepsilon}{A_3}\right)^{1/3}$; 3) $a = \frac{3}{2}$, $b = -2$, $c = \frac{1}{2}$; $h_0 = \left(\frac{6\varepsilon}{A_3}\right)^{1/3}$; 4) $a = -\frac{5}{6}$, $b = \frac{3}{2}$, $c = -\frac{2}{3}$; $h_0 = \left(\frac{3\varepsilon}{2A_3}\right)^{1/3}$.

3.101. Пусть
$$f \in C^{3,\lambda}$$
, $0 \leqslant \lambda \leqslant 1$, т. е. $f \in C^{(3)}$, $|f'''(x) - f'''(y)| \leqslant k|x-y|^{\lambda} \ \forall x,y$. Доказать, что $\bar{\partial}\partial f(x) - f''(x) = O(h^{1+\lambda})$.

- **3.102.** Пусть числа α_j , не зависящие от h, порождают формулу численного дифференцирования максимального порядка точности среди формул вида $f^{(k)}(x) \approx h^{-k} \sum_{j=-n}^{n} \alpha_j f(x+jh)$. Доказать, что:
 - 1) $\alpha_{j} = \alpha_{-j}$, если k четное, $\alpha_{j} = -\alpha_{-j}$, если k нечетное;
 - 2) формула с дополнительным слагаемым

$$f^{(k)}(x) \approx h^{-k} \sum_{j=-n}^{n+1} \beta_j f(x+jh)$$

не может иметь больший порядок точности; причем она имеет тот же порядок точности тогда и только тогда, когда $\beta_{n+1}=0,\ \beta_j=\alpha_j,\ j=-n,-n+1,\ldots,n-1,n.$

- **3.103.** Доказать, что если все точки x_i различны и удалены от точки x_0 на расстояние O(h), где h малая величина, то при гладкой f(x) приближенная формула численного дифференцирования $f^{(k)}(x_0) \approx \sum_{i=1}^n c_i f(x_i)$ имеет порядок погрешности $O(h^m)$. Здесь $m \geqslant j+1-k, \ j$ максимальная степень многочленов, для которых эта формула точна.
- **3.104.** Найти аппроксимацию f''(x) по равноотстоящим $(x_{i+1} x_i = h)$ узлам $x_i, x_{i\pm 1}, x_{i\pm 2}$ с максимально возможным порядком точности по h.
- **3.105.** Найти коэффициенты формул численного дифференцирования максимальной степени точности:
 - 1) $f'(x) \approx \frac{af(x) + bf(x+h) + cf(x-h)}{h}$;
 - 2) $f'(x) \approx \frac{af(x) + bf(x+h) + cf(x-2h)}{h}$;
 - 3) $f''(x) \approx \frac{af(x) + bf(x+h) + cf(x+2h)}{h^2}$;
 - 4) $f''(x) \approx \frac{af(x) + bf(x+h) + cf(x-h)}{h^2}$;
 - 5) $f''(x) \approx \frac{af(x) + bf(x-h) + cf(x-2h)}{h^2}$.

3.4. Многочлен наилучшего равномерного приближения

Пусть R — пространство ограниченных вещественных функций, определенных на отрезке [a,b] вещественной оси, с нормой $\|f(x)\| = \sup_{x \in [a,b]} |f(x)|$. Для элемента $f \in R$ отыскивается наилучшее приближение вида $Q_n(x) = \sum_{j=0}^n a_j \, x^j$. Многочлен $Q_n^0(x)$ называется многочленом наилучшего равномерного приближения для функции f(x), если для любого многочлена $Q_n(x)$ степени n справедливо неравенство $\|f - Q_n^0\| \le \|f - Q_n\|$.