INSTALLATION RESTORATION PROGRAM

FINAL PRELIMINARY ASSESSMENT/SITE INSPECTION REPORT

110th FIGHTER WING MICHIGAN AIR NATIONAL GUARD W.K. KELLOGG REGIONAL AIRPORT BATTLE CREEK, MICHIGAN

APRIL 1996

HAZARDOUS WASTE REMEDIAL ACTIONS PROGRAM Environmental Restoration and Waste Management Programs

Oak Ridge, Tennessee 37831-7606 managed by LOCKHEED MARTIN ENERGY SYSTEMS, INC. for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-84OR21400 19960610 137

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

REPORT DOCUMENTATION PAGE

3.433.1

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarter's Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arrington, VA 22202-302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 25503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE April 1996 3.	REPORT TYPE AND Preliminary	Assessment/Site Inspection
4. TITLE AND SUBTITLE Installation Restoration Programmer Report. WK Kellogg, Battle Company of the Company of	ram Preliminary Assessment/		S. FUNDING NUMBERS
6. AUTHOR(S) N/A			
7. PERFORMING ORGANIZATION NAME	(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
~Oak Ridge TN	LIMETTATION PAGE	attitud ti ve i ve tive yang tig vega	
9. SPONSORING/MONITORING AGENCY Hazardous Waste Remedial A Martin Marietta Energy Syste Oak Ridge, TN 37831	actions Program ems, Inc.	The Volume Town of the Volume To	10. SPONSORING/MONITORING AGENCY BEPORT NUMBERS DATES COVERED STUDY DATE HON-BERS
11. SUPPLEMENTARY NOTES	apragnonium in manazana manazan in menongo ing internologi yan siyo ing	Control Construences and the construences	
12a. DISTRIBUTION/AVAILABILITY STATE	TEMENT		12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited	PER ANGLES SVERILLES	or executing approach and the execution	1. PLEICAMING ORGANIZATION REPORT NUMBER
Preliminary Assessment/ Site Battle Creek, MI. A Preliminate to confirm or deny the presentinclude: AOC A, Waste Accumate South; AOC D, Fire Train (Building 6901). The recommendation	ary Assessment/ Site Inspection of contamination at the AO nulation Area; AOC B, Motor I ining Area West; AOC E, Old	on was performed C's. The AOC's Pool Drainage D Hanger (Buildin	d on 6 AOC's at WK Kellogg involved in this investigation pitch; AOC C, Fire Training ag 6900); AOC F, New Hanger
PARTITION OF THE PROPERTY OF T	en en et waren et kan kan jarren et en en et en et en	Andrew Control of the Angel State of the Angel Stat	and the control of th
E. ASTERNAT	on the more and the common new more required by the common as a second of the common and the com		
Commissione entre management and research in a commission of the c	COMPANIES SAME A CAMPANIA AND A CAMP	on the substitute of the source of the sourc	eria i vina vivanara massivane massivane vivasi. NSS - 京格 [19] 张设置(GR) - 司高觀數
TOURS OF SME OF SURE AND SERVICE		100 mg/s (100 mg/s) (1	CORORED SAME CONTRACTOR CONTRACTO
14. SUBJECT TERMS			15. NUMBER OF PAGES
¹³ Installation Restoration Progr Inspection; WK Kellogg, Batt		liminary Assessi	ment/ Sto 198
17. SECURITY CLASSIFICATION 18. Unr. REPORTED	SECURITY CLASSIFICATION 19. S OF THIS PAGE classified	ECURITY CLASSIFIC OF AUSTRACEMIED	ATION 20. LIMITATION OF ABSTRACT

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filling in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

- Block 1. Agency Use Only (Leave blank).
- Block 2. Report Date. Full publication date including day, month, and year, if available (e.g. 1 Jan 88). Must cite at least the year.
- Block 3. Type of Report and Dates Covered.

 State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g. 10 Jun 87 30 Jun 88).
- Block 4. <u>Title and Subtitle</u>. A title is taken from the part of the report that provides the most meaningful and complete information. When a report is prepared in more than one volume, repeat the primary title, add volume number, and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.
- Block S. Funding Numbers. To include contract and grant numbers; may include program element number(s), project number(s), task number(s), and work unit number(s). Use the following labels:

C - Contract

PR - Project

G - Grant PE - Program TA - Task

PE - Program Element WU - Work Unit Accession No.

- Block 6. <u>Author(s)</u>. Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s).
- **Block 7.** <u>Performing Organization Name(s) and Address(es).</u> Self-explanatory.
- Block 8. Performing Organization Report
 Number. Enter the unique alphanumeric report
 number(s) assigned by the organization
 performing the report.
- **Block 9.** Sponsoring/Monitoring Agency Name(s) and Address(es). Self-explanatory.
- **Block 10.** Sponsoring/Monitoring Agency Report Number. (If known)
- Block 11. Supplementary Notes. Enter information not included elsewhere such as: Prepared in cooperation with...; Trans. of...; To be published in.... When a report is revised, include a statement whether the new report supersedes or supplements the older report.

- Block 12a. <u>Distribution/Availability Statement</u>. Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g. NOFORN, REL, ITAR).
 - DOD See DoDD 5230.24, "Distribution Statements on Technical Documents."

DOE - See authorities.

NASA - See Handbook NHB 2200.2.

NTIS - Leave blank.

Block 12b. Distribution Code.

DOD - Leave blank.

DOE - Enter DOE distribution categories from the Standard Distribution for Unclassified Scientific and Technical Reports.

NASA - Leave blank.
NTIS - Leave blank.

- Block 13. <u>Abstract</u>. Include a brief (*Maximum 200 words*) factual summary of the most significant information contained in the report.
- Block 14. <u>Subject Terms</u>. Keywords or phrases identifying major subjects in the report.
- Block 15. <u>Number of Pages</u>. Enter the total number of pages.
- Block 16. <u>Price Code</u>. Enter appropriate price code (NTIS only).
- Blocks 17. 19. <u>Security Classifications</u>. Selfexplanatory. Enter U.S. Security Classification in accordance with U.S. Security Regulations (i.e., UNCLASSIFIED). If form contains classified information, stamp classification on the top and bottom of the page.
- Block 20. <u>Limitation of Abstract</u>. This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.

FINAL

PRELIMINARY ASSESSMENT/SITE INSPECTION REPORT

110TH FIGHTER WING, MICHIGAN AIR NATIONAL GUARD W.K. KELLOGG REGIONAL AIRPORT BATTLE CREEK, MICHIGAN

Submitted to:

AIR NATIONAL GUARD READINESS CENTER ANDREWS AFB, MARYLAND

Submitted by:

HAZARDOUS WASTE REMEDIAL ACTIONS PROGRAM LOCKHEED MARTIN ENERGY SYSTEMS, INC.

Oak Ridge, Tennessee 37831

for the:

U.S. DEPARTMENT OF ENERGY

AND CULLINY INDPECTED 2

Prepared by:

EARTH TECH, Inc.
Oak Ridge, Tennessee 37830

APRIL 1996

TABLE OF CONTENTS PRELIMINARY ASSESSMENT/SITE INSPECTION REPORT 110TH FIGHTER WING, MICHIGAN AIR NATIONAL GUARD W.K. KELLOGG REGIONAL AIRPORT BATTLE CREEK, MICHIGAN

SECTION	<u>PAG</u>	ìΕ
LIST OF T LIST OF F LIST OF A	CONTENTS	v vii ix
1.0 INT 1.1 1.2 1.3	SCOPE	-1 -3 -4
2.0 FA 2.7 2.2 2.3	ORGANIZATION AND HISTORY 2	!-1 !-4 !-4 !-5
3.0 EN 3.3 3.3 3.4 3.4	PHYSIOGRAPHY AND TOPOGRAPHY 3 SOILS 3 GEOLOGY 3 3.4.1 Regional Geology 3 3.4.2 Local Geology 3 3.5.1 Surface Water 3- 3.5.2 Regional Hydrogeology 3- 3.5.3 Local Hydrogeology 3- 3.5 GROUNDWATER USE 3-	3-1 3-1 3-2 3-4 3-7 10 12 12 15
4.	TE EVALUATION	4-1

i

	4.3 4.4	PAST WASTE DISPOSAL PRACTICES	4-5 4-5 4-7 4-9 4-9 4-11
	4.5	4.4.4 Building 6901 (Old Hangar) - Area of Concern E	4-13 4-13
5.0	FIELD 5.1 5.2	PROGRAM GENERAL APPROACH FIELD SCREENING SAMPLING AND ANALYSIS 5.2.1 Soil Gas Sampling 5.2.2 Groundwater Screening 5.2.3 Soil Screening 5.2.4 Analytical Methods - Field Screening 5.2.4.1 Soil Gas Sample Preparation and Analytical Procedures 5.2.4.2 Soil Sample Preparation and Analytical Procedures 5.2.4.3 Groundwater Sample Preparation and Analytical Procedures	5-1 5-2 5-2 5-2 5-3 5-3 5-5 5-5
	5.3	CONFIRMATION SAMPLING AND ANALYSIS	. 5-6 . 5-6 . 5-7 . 5-7
	5.4 5.5 5.6 5.7 5.8	DECONTAMINATION	. 5-8 . 5-8 . 5-9 . 5-9
6.0		STIGATION RESULTS	. 6-1 . 6-1
	6.2	6.1.2 Michigan Natural Resources and Environmental Protection Act (PA 451)	. 6-2 . 6-3 . 6-4 . 6-5 . 6-9 6-10

	6.2.2.2 Soil Screening	6-10
	6.2.3 AOC A -Soil Analytical Results	6-12
	6.2.3.1 Surface Soil	6-12
	6.2.3.2 Subsurface Soil	6-19
6.3	AREA OF CONCERN B - MOTOR POOL DRAINAGE DITCH	6-21
	6.3.1 Geology and Hydrogeology	
	6.3.2 Screening Activities	6-23
	6.3.2.1 Soil Gas Survey	6-25
	6.3.2.2 Soil Screening	6-25
	6.3.3 AOC B - Soil Analytical Results	6-26
	6.3.3.1 Surface Soil	6-26
	6.3.3.2 Subsurface Soil	6-29
6.4	AREA OF CONCERN C - FORMER FIRE TRAINING AREA SOUTH	6-31
	6.4.1 Geology and Hydrogeology	6-33
	6.4.2 Results of AOC C Screening Activities	6-33
	6.4.2.1 SOV and Groundwater Screening Survey	6-35
	6.4.3 AOC C -Soil Analytical Results	6-36
	6.4.3.1 Surface Soil	6-36
	6.4.3.2 Subsurface Soil	
	6.4.4 AOC C - Groundwater Analytical Results	6-43
6.5	AREA OF CONCERN D - FORMER FIRE TRAINING AREA WEST	
	6.5.1 Geology and Hydrogeology	6-47
	6.5.2 Results of AOC D Screening Activities	6-47
	6.5.2.1 Soil Organic Vapor Survey	6-47
	6.5.2.2 Soil Screening	6-47
	6.5.3 AOC D - Soil Analytical Results	6-48
	6.5.3.1 Surface Soil	6-48
	6.5.3.2 Subsurface Soil	6-50
6.6	AREA OF CONCERN E - OLD HANGAR (BUILDING 6901)	0-53 CEE
	6.6.1 Geology and Hydrogeology	0-00 6 E E
	6.6.2 Results of AOC E Screening Activities	. 0-00
	6.6.2.1 Soil Organic Vapor Survey	. 0-00 6.57
	6.6.2.2 Soil Screening	. 0-57 6.57
	6.6.3 AOC E - Soil Analytical Results	. 0-57 6-57
	6.6.3.1 Surface Soil	. 6-57 6-59
6.7	AREA OF CONCERN F - NEW HANGAR (BUILDING 6900)	. 0-33 6-62
0.7	6.7.1 Geology and Hydrogeology	. 6-63
	6.7.2 Soil Screening	
	6.7.3 AOC F - Soil Analytical Results	. 6-63
	0.7.5 ACC - Coll Analytical Nesalts 1.11111111111111111111111111111111111	
SUMI	MARY, CONCLUSIONS, AND RECOMMENDATIONS	7-1
7.1	GENERAL	7-1
7.2	AOC A	7-1
	7.2.1 Summary	7-1
	7.2.2 Conclusions	7-2
	7.2.3 Recommendations	7-4

7.0

	7.3	AOC B 7-4
		7.3.1 Summary
		7.3.2 Conclusions
		7.3.3 Recommendations
	7.4	AOC C 7-6
		7.4.1 Summary
		7.4.2 Conclusions
		7.4.3 Recommendations
	7.5	AOC D 7-8
		7.5.1 Summary
		7.5.2 Conclusions
		7.5.3 Recommendations
	7.6	AOC E
		7.6.1 Summary
		7.6.2 Conclusions
		7.6.3 Recommendations
	7.7	AOC F
		7.7.1 Summary
		7.7.2 Conclusions
		7.7.3 Recommendations
8.0	BIBLIOG	RAPHY

APPENDICES

APPENDIX A:	FIELD ANALYTICAL RESULTS
APPENDIX B:	FIELD CHANGE REQUESTS
APPENDIX C:	INVESTIGATION-DERIVED WASTE RESULTS
APPENDIX D:	FIELD FORMS
APPENDIX E:	LABORATORY ANALYTICAL DATABASE
APPENDIX F:	DATA VALIDATION SUMMARIES AND LABORATORY CHAIN O
	CUSTODIES
APPENDIX G:	MICHIGAN DEPARTMENT OF NATURAL RESOURCES
	ENVIRONMENTAL RESPONSE DIVISION OPERATIONAL
	MEMORANDUM

LIST OF TABLES PRELIMINARY ASSESSMENT/SITE INSPECTION REPORT 110TH FIGHTER WING, MICHIGAN AIR NATIONAL GUARD W.K. KELLOGG REGIONAL AIRPORT BATTLE CREEK, MICHIGAN

TABLE	<u>PAGE</u>
Table 4-1	Activity Review 4-3
Table 5-1	Summary of Site Inspection Field Program 5-1
Table 5-2	Confirmation Program Analytical Summary 5-7
Table 6-1	Background Surface and Subsurface Soil and Groundwater Concentrations
Table 6-2	Soil Values Protective of Groundwater - Metals 6-8
Table 6-3	Area of Concern A: Waste Accumulation Area Surface Soil Analytical Results 6-13
Table 6-4	Area of Concern A: Waste Accumulation Area Subsurface Soil Analytical Results 6-20
Table 6-5	Area of Concern B: Motor Pool Drainage Ditch Surface Soil Analytical Results
Table 6-6	Area of Concern B: Motor Pool Drainage Ditch Subsurface Soil Analytical Results
Table 6-7	Area of Concern C: Fire Training Area - South Surface Soil Analytical Results
Table 6-8	Area of Concern C: Fire Training Area - South Subsurface Soil Analytical Results
Table 6-9	Area of Concern C: Fire Training Area - South Groundwater Analytical Results
Table 6-10	Area of Concern D: Former Fire Training Area - West Surface Soil Analytical Results 6-49
Table 6-11	Area of Concern D: Former Fire Training Area - West

Final PA/SI Report, 110th FW, MIANG

V

toc_1.027-April 19, 1996

	Subsurface Soil Analytical Results	6-52
Table 6-12	Area of Concern E: Building 6901 (Old Hangar) Surface Soil Analytical Results	6-58
Table 6-13	Area of Concern E: Building 6901 (Old Hangar) Subsurface Soil Analytical Results	6-61
Table 6-14	Area of Concern F: Building 6900 (New Hangar) Subsurface Soil Analytical Results	6-66

LIST OF FIGURES PRELIMINARY ASSESSMENT/SITE INSPECTION REPORT 110TH FIGHTER WING, MICHIGAN AIR NATIONAL GUARD W.K. KELLOGG REGIONAL AIRPORT **BATTLE CREEK, MICHIGAN**

<u>Figure No.</u>	<u>Page</u>
Figure 2-1	Location Map
Figure 2-2	Site Map Showing the Locations of Areas of Concern (AOCs) A-F and Installation Restoration Program (IRP) Sites 1-6
Figure 3-1	Site Map Showing the Locations of Areas of Concern (AOCs) A-F and Soil Types
Figure 3-2	Typical Lithologic Column in Battle Creek, Michigan Area 3-5
Figure 3-3	Bedrock Geology Map of Michigan 3-6
Figure 3-4	Generalized Hydrogeologic Cross-Section X - X'
Figure 3-5	Generalized Hydrogeologic Cross-Section Y - Y'
Figure 3-6	Surface Water Hydrology
Figure 3-7	Glacial Aquifer Groundwater (Water Table) Elevation Contour Map (March 1991)
Figure 3-8	Glacial Aquifer Groundwater (Water Table) Elevation Contour Map (May 1994)
Figure 3-9	Ground Water Use Surrounding the W.K. Kellogg Regional Airport 3-16
Figure 4-1	Area of Concern A: Waste Accumulation Area Site Plan 4-6
Figure 4-2	Area of Concern B: Motor Pool Drainage Ditch Site Plan 4-8
Figure 4-3	Chronology of Fire Training Activities 4-10
Figure 4-4	Area of Concern C: Fire Training Area - South 4-12
Figure 4-5	Area of Concern D: Former Fire Training Area - West Site Plan 4-14
Figure 4-6	Area of Concern E: Building 6901 (Old Hangar) 4-15
toc 1.027-April 19, 1996	Final PA/SI Report, 110th FW, MIANG vii

Figure 4-7	Area of Concern F: Building 6900 (New Hangar) Site Plan	4-16
Figure 6-1	Area of Concern A: Waste Accumulation Area Sample Locations	6-11
Figure 6-2	Area of Concern A: Waste Accumulation Area Surface Soil Analytical Summary	6-18
Figure 6-3	Area of Concern A: Waste Accumulation Area Subsurface Soil Analytical Summary	6-22
Figure 6-4	Area of Concern B: Motor Pool Drainage Ditch Sample Locations and Soil Gas Results (ug/l) micrograms/liter	6-24
Figure 6-5	Area of Concern B: Motor Pool Drainage Ditch Surface Soil Analytical Summary	6-28
Figure 6-6	Area of Concern B: Motor Pool Drainage Ditch Subsurface Soil Analytical Summary	6-32
Figure 6-7	Area of Concern C: Fire Training Area - South	6-34
Figure 6-8	Area of Concern C: Fire Training Area - South Soil Analytical Summary	6-39
Figure 6-9	Area of Concern D: Former Fire Training Area - West Sample Locations	6-46
Figure 6-10	Area of Concern D: Former Fire Training Area - West Surface Soil Analytical Summary	6-51
Figure 6-11	Area of Concern D: Former Fire Training Area - West Subsurface Soil Analytical Summary	6-54
Figure 6-12	Area of Concern E: Building 6901 (Old Hangar) Sample Locations and Soil Gas Results (ug/l) micrograms/liter	6-56
Figure 6-13	Area of Concern E: Building 6901 (Old Hangar) Soil Sample Analysis Summary	6-60
Figure 6-14	Area of Concern F: Building 6900 (New Hangar) Sample Locations	6-64
Figure 6-15	Area of Concern F: Building 6900 (New Hangar) Subsurface Soil Analysis Survey	6-69

LIST OF ACRONYMS PRELIMINARY ASSESSMENT/SITE INSPECTION REPORT 110TH FIGHTER WING, MICHIGAN AIR NATIONAL GUARD W.K. KELLOGG REGIONAL AIRPORT BATTLE CREEK, MICHIGAN

AMSL above mean sea level
AOC Area of Concern
ANG Air National Guard

ANGRC Air National Guard Readiness Center

ARARs Applicable or Relevant and Appropriate Requirements

ASTM American Society for Testing and Materials

bgs below ground surface

BTEX Benzene, Toluene, Ethylbenzene, and Xylene

CLP Contract Laboratory Program

DCE Dichloroethene
DD Decision Document
DoD Department of Defense
DOE Department of Energy

EA Environmental Assessment

EARTH TECH The Earth Technology Corporation EPA Environmental Protection Agency

ES Engineering-Science

FFS Focused Feasibility Study

FG Fighter Group

FIRM Flood Insurance Rate Map

FR Federal Register
FS Feasibility Study
FTA Fire Training Area
FW Fighter Wing

GC Gas Chromatograph

HAZWRAP Hazardous Waste Remedial Actions Program

HMTC Hazardous Materials Technical Center

IRP Installation Restoration Program

LMES Lockheed Martin Energy Systems

MCL Maximum Contaminant Level

MDL method detection limit MDNR Michigan Department

MDOT Michigan Department of Transportation
MERA Michigan Environmental Response Act

MIANG Michigan Air National Guard

NCP National Contingency Plan

NREPA National Resources and Environmental Protection Act

OWS Oil/Water Separator

PA Preliminary Assessment

PAH polynuclear aromatic hydrocarbons

PA/SI Preliminary Assessment/Site Investigation

PCBs Polychlorinated Biphenyls

PCE tetrachlorethene

PD-680 Petroleum Distillate - 680
PID Photoionization Detector
POL Petroleum, oil, and lubricants

PP Priority Pollutant
PVC polyvinyl chloride

QA Quality Assurance

QA/QC Quality Assurance/Quality Control

QC Quality Control

RI Remedial Investigation

RI/FS Remedial Investigation/Feasibility Study

SI Site Inspection
SOV Soil Organic Vapor

SVOCs Semivolatile Organic Compounds

TCA Trichloroethane TCE Trichloroethene

TCLP Toxicity Characteristic Leaching Procedure

TICs tentatively identified compounds TPH Total Petroleum Hydrocarbons

USDA United States Department of Agriculture

USEPA United States Environmental Protection Agency

UST underground storage tank

VOA Volatile Organic Analyte
VOCs Volatile Organic Compounds

WMD Waste Management Division

EXECUTIVE SUMMARY

This Preliminary Assessment (PA)/Site Inspection (SI) Report documents activities The Earth Technology Corporation performed at the 110th Fighter Wing, Michigan Air National Guard (MIANG), W.K. Kellogg Regional Airport, Battle Creek, Michigan under the U.S. Department of Defense Installation Restoration Program. The base encompasses 315 acres of land in southwestern Battle Creek, Michigan. The property was established and used by the Army Air Corps from 1942 to 1946. The MIANG has occupied the property from 1946 to the present. In 1992, the 110th Fighter Wing, MIANG, was assigned the A-10 aircraft which it currently operates.

Activities completed during the PA included interviews with 28 active or retired MIANG personnel and a records review (base operations and outside state and county agencies). These dat a were used to describe past waste handling and disposal practices on base and identify areas of environmental concern (AOC). Six AOC (numbered A through F). Sampling strategies (focusing on surface and subsurface soils) were developed, incorporated into the PA/SI Work Plan (March 1994) and implemented during July and November 1994.

Preliminary Assessment

Several base operations have used, or currently use, potentially hazardous or toxic materials. Since 1985, these materials have been collected and removed from the base by the Defense Reutilization and Marketing Organization. Prior to 1985, much of the liquid waste generated by the various shops located on the base was collected and used during fire training exercises. One location within the vehicle refueling area (subsequently identified as AOC A) was used as a temporary collection point for these wastes. Smaller amounts of wastes generated in the hangars were reportedly placed in the dumpsters located at Building 6900 or poured on the ground. The data collected during the PA identified six AOCs where sampling activities were initiated to confirm or deny the presence of contamination. These AOCs are:

AOC A: Waste Accumulation Area - Prior to 1980, this facility was used as a waste petroleum, oil, and lubricants (POL) and solvent collection and storage area. An estimated 20

to 100 gallons of waste accumulated in this area per month. Spillage was estimated to be less than 5 gallons/month.

AOC B: Motor Pool Drainage Ditch - This area received runoff from the motor pool and areas adjoining the motor pool and directed these surface waters to the drainage swale (IRP Site 2) from 1963 to the present.

AOC C: Fire Training Area (FTA) - South - A former FTA, consisting of two separate bermed areas, was located on airport property immediately south of the base. These FTAs were used from approximately 1965 to 1967. An estimated total of 5,400 to 7,200 gallons of fuels and/or solvents were used at AOC C.

AOC D: Fire Training Area - West - This FTA was used once in 1978 to burn a damaged aircraft prior to its being shipped off-base for disposal. The area is located within the boundaries of IRP Site 5. An estimated total of 1,800 to 2,400 gallons of fuels and/or solvents were used at AOC D.

AOC E: Old Hangar (Building 6900) - Prior to construction of the new hangar (1962) aircraft maintenance activities were housed in the old hangar (Building 6901). After 1962, the old hangar was used for vehicle maintenance and aircraft parts painting operations. A grassy area existing between the hangar and the apron was suspected of being an area where small amounts of shop wastes were disposed of.

AOC F: New Hangar (Building 6901) - The new hangar (Building 6900) has housed aircraft maintenance operations since the facility was constructed in 1962. Small quantities of used solvent, and waste paint and POL were disposed of in the dumpsters. The dumpsters reportedly leaked and stained soils were reported beneath the dumpsters.

Site Inspection Results

Under Part 201 of the Michigan Natural Resources and Environmental Protection Act (NREPA) of 1994, PA451, interim, generic residential, commercial and industrial chemical-specific

cleanup criteria exist for soils and groundwater. Soil analytical results obtained during the SI were compared to the generic industrial direct contact values and the residential 20 times groundwater values to evaluate their potential impacts on human health and the groundwater beneath the facility. Groundwater analytical results were compared to the residential cleanup criteria. Site-specific background metals concentrations were developed during the Remedial Investigation (EARTH TECH, June 1995) and have been incorporated into this evaluation. The results, conclusions, and recommendations obtained from the sampling are included in the following discussions.

AOC A: Waste Accumulation Area - SI soil analytical results contained hydrocarbons, primarily SVOCs, and metals which were associated with these hydrocarbons. These results support the reports from base personnel that past spills of waste POL/solvents have occurred at AOC A. No compounds were detected in the soils in concentrations which exceed generic industrial direct contact values. Surface and subsurface soil analytical results show methylene chloride (subsurface soils) and phenanthrene (surface soils) were detected in concentrations exceeding 20 times their health-based drinking water values, while the metals antimony, arsenic, barium, beryllium, chromium, lead, nickel, and zinc were detected in either the surface or subsurface soil samples in concentrations that exceed their respective soil protective of groundwater values. These results indicate a potential threat to the groundwater.

It is recommended to perform leachate testing on AOC A surface and subsurface soil samples to determine if the potential threat to the groundwater is substantiated by leachate testing. Leachate testing should be completed for the SVOCs and metals listed in the previous paragraph using procedures approved by the Michigan Department of Natural Resources.

AOC B: Motor Pool Drainage Ditch - Organic compounds, indicative of past spills or the disposal of potentially toxic or hazardous substances were detected in the soils at AOC B. SI analytical results indicate that no compounds were detected in the soils in concentrations which exceed generic industrial direct contact values. Phenanthrene (surface soils) was quantified in excess of the residential 20 times health-based drinking water value, indicating a potential threat to the groundwater. The metals antimony, arsenic, beryllium, cadmium, chromium, lead, mercury, nickel, and zinc were detected in surface and/or subsurface soils

in concentrations their respective soil protective of groundwater values.

Similar contaminant profiles exist in the soils at Sites 1 and AOC B (geographically continuous areas). Because of this, AOC B was included with Site 1 in the Internal Draft Remedial Investigation Report (EARTH TECH, June 1995). It is recommended to continue the evaluation of AOC B through the Remedial Investigation process.

AOC C: Fire Training Area - South - Residual hydrocarbons (non-target, tentatively identified compounds as quantified on the SVOC analysis) indicative of past fire training exercises were detected in the soils and groundwater beneath AOC C. The results obtained from the SI suggests the extent of these hydrocarbon-containing soils have been delineated. SI results indicate that no compounds were detected in the soils in concentrations which exceed generic industrial direct contact values. No VOCs or SVOCs were detected in concentrations exceeding the residential 20 times health-based drinking water values. No SVOCs (TCLP extraction and analysis) above the analytical detection limit were detected in the leachate from the hydrocarbon-containing soils. These data suggest that the organic compounds detected in the soils pose no substantial threat to the groundwater beneath AOC C. The data are reinforced by the groundwater analytical results, which show no VOCs or SVOCs present in concentrations above the residential health-based drinking water values. These results were obtained from one groundwater sample collected at the water table from beneath the source area. The metals antimony, arsenic, beryllium and nickel were detected in one or more AOC C soil samples in concentrations exceeding their respective soil protective of groundwater values; further analysis shows that only antimony was present in the subsurface soils in an average concentration exceeding the soil protective of groundwater value. antimony was not detected in the hydrocarbon-containing soils in concentrations exceeding the soil protective of groundwater value suggesting the use of fuels during fire training exercises was not the cause of the elevated antimony. Metals were not detected in the groundwater sample in concentrations exceeding the residential health-based drinking water values. No further actions are recommended for AOC C.

AOC D: Fire Training Area - West - Hydrocarbons indicative of residual contamination from past fire training exercises were not detected in the soils collected and analyzed during the SI.

No VOCs or SVOCs were detected above the applicable NREPA PA451 criteria for surface and subsurface soils collected and analyzed during the SI. Arsenic, beryllium, mercury, and zinc were detected in either the surface or subsurface soil samples in concentrations exceeding the soil protective of groundwater values.

The surface of AOC D is proposed for soil stabilization and capping as part of the Source Removal Action Plan (SRAP - The Earth Technology Corporation, June 1994). No data collected during this SI would indicate that alternative or additional interim remedial measures are needed across AOC D. No further remedial actions, beyond what are proposed during the SRAP (The Earth Technology Corporation, June 1994), are recommended for AOC D.

AOC E: Old Hangar (Building 6901) - No VOCs or SVOCs at concentrations exceeding the applicable NREPA PA451 values or indicative of the disposal of waste POL or solvents were detected in the soils collected and analyzed from AOC E. Arsenic and beryllium were detected the soil samples in concentrations exceeding their respective soil protective of groundwater values, indicating a potential threat to groundwater. Unlike AOC A for example, where the elevated metals detections are associated with hydrocarbons, the detections of arsenic and beryllium at AOC E which exceed the soil protective of groundwater values are not associated with the presence of hydrocarbons. The AOC E metals detections are considered outliers and not the result of spills or the disposal of potentially hazardous substances. No further actions are recommended for AOC E.

AOC F: New Hangar (Building 6900) - SI analytical results indicate that no compounds were detected in the soils in concentrations which exceed generic industrial direct contact values. Methylene chloride was the only organic compound detected within the subsurface soils at a concentration exceeding its respective residential 20 times health-based drinking water criteria, indicating a potential threat to the groundwater. However, methylene chloride is a common laboratory contaminant and the result presented in this report was qualified B by the laboratory which indicates some type or blank contamination. Methylene chloride was reportedly used by the non-destructive interference shop, which is currently located in this hangar. Although methylene chloride is considered a common laboratory contaminant, its use in the new hangar suggests that it may have originated from disposal or waste handling

activities. This area is covered by asphalt and receives very little if any direct surface infiltration. In addition, the methylene chloride was quantified above NREPA PA451 criteria only in the 1 to 3 ft below ground surface interval, suggest that the compound is not moving vertically down through the soil column. The methylene chloride detection in the subsurface soils, although detected in a concentration exceeding the residential 20 times health-based drinking water value is not considered a significant threat the shallow groundwater beneath AOC F. Antimony, arsenic and beryllium were each detected above the soil protective of groundwater value, indicating a potential threat to the groundwater; further analysis indicates only antimony and beryllium are present in the subsurface soils in average concentrations above the soil protective of groundwater values. However, because the area is covered by asphalt and receives very little, if any, direct surface infiltration, the potential threat to the groundwater is minimized.

No further actions are recommended for AOC F.

1.0 INTRODUCTION

This report documents Preliminary Assessment (PA)/Site Inspection (SI) activities that The Earth Technology Corporation (EARTH TECH) performed at the 110th Fighter Wing (FW), Michigan Air National Guard (MIANG), W.K. Kellogg Regional Airport; Battle Creek, Michigan under the U.S. Department of Defense (DOD) Installation Restoration Program (IRP). The field activities described in this report were conducted between October 19, 1993 and July 16, 1994. The PA/SI activities were implemented in general accordance with the PA/SI Work Plan, which was approved by the Air National Guard Readiness Center (ANGRC) in March 1994. The following subsections describe the background of the IRP, present the purpose of the PA/SI program, outline the scope of the report, and discuss the methodology of the investigation.

1.1 PURPOSE OF THE INSTALLATION RESTORATION PROGRAM

DOD has initiated the IRP to identify, evaluate, and remediate suspected environmental problems associated with past usage, storage, handling, and disposal of hazardous substances at DOD facilities. Section 120 of the Superfund Amendments and Reauthorization Act (SARA) of 1986 requires that IRP activities adhere to the procedures which are specified in the National Contingency Plan (NCP) Final Rule [55 FR 8666]. The NCP details a sequence of steps to be followed when investigating and cleaning up hazardous waste sites. This sequence begins with the discovery of a suspected hazardous waste release or threat of release and ends with a permanent remedy to eliminate or minimize the environmental impact and long-term monitoring of the remediation effort. The five phases that constitute the IRP process as well as the purpose and activities associated with each phase are presented below:

Preliminary Assessment - A PA is conducted to identify and evaluate the type
and location of suspected problems associated with past hazardous waste
handling procedures, disposal sites, and spill sites. This is accomplished
through interviews with past and present base employees, historical records
searches, and visual site inspections. In addition, detailed geological,

hydrogeological, meteorological, land use, and environmental data for the area of study are gathered. A detailed analysis of all information obtained identifies areas of concern. The initial PA for the base was conducted by the Hazardous Materials Technical Center (HMTC) in 1987. This supplemental PA was completed based on the potential that additional areas exist on base which may have been impacted by past waste handling activities.

- Site Inspection/Site Investigation The purpose of this SI is to acquire the necessary data to either confirm or deny the existence of contamination at each identified area of concern. A *Site Investigation* is similar in purpose to a SI, but can be expanded to include a preliminary evaluation of the potential risks to human health, welfare, or the environment. Site Investigations can also identify specific chemical contaminants, their concentrations in environmental media, and determine the potential for contaminant migration through site-specific hydrogeologic investigations. A Site Investigation for the base was previously conducted by Engineering-Science (ES) in 1991. This SI was completed based on the results of the supplemental PA.
- Remedial Investigation During a Remedial Investigation (RI) the necessary data are acquired to define the extent of confirmed contamination and to assess the associated risks to human health, welfare, or the environment. The RI quantifies the magnitude and the extent of contamination at the sites, as well as identifies the specific chemical contaminants present and their concentrations in environmental media. A determination is also made as to the potential for contaminant migration by assessing site-specific hydrogeologic and contaminant characteristics.
- Feasibility Study A Feasibility Study (FS) is performed to develop the remedial
 action alternative that mitigates confirmed contamination at each site and
 meets the applicable and or relevant and appropriate requirements (ARARs).
 The FS considers risk assessments and cost benefit analyses in providing the
 necessary data, direction, and documented supportive rationale to acquire

regulatory concurrence (federal, state, and local) with the recommended remedial alternative. During the FS, recommendations are evaluated, developed, and provided for remedial actions at each site where remediation is required.

- Remedial Design The purpose of Remedial Design (RD) is to provide engineering design drawings and construction specifications which are required to implement the recommended remedial action selected through the FS process.
- Remedial Action The Remedial Action (RA) is the implementation of the RD.
 A RA requires appropriate regulation acceptance prior to implementation.

The IRP requires the identification and evaluation of environmentally deleterious sites on DOD installations and the control of adverse effects on human health and the environment from those sites. The ANGRC, through a U.S. Air Force interagency technical support agreement with the U.S. Department of Energy (DOE), uses Lockheed Martin Energy Systems, Inc. (LMES) to provide technical assistance for the implementation of the Air National Guard (ANG) IRP. EARTH TECH has been retained by LMES under the Hazardous Waste Remedial Actions Program (HAZWRAP) to conduct additional IRP PA/SI activities at the base.

1.2 PURPOSE OF THE PRELIMINARY ASSESSMENT/SITE INSPECTION

Information gathered by MIANG personnel subsequent to the initial PA and SI activities suggested that additional environmental areas of concern (AOC) exist on the base. This PA/SI was conducted not only to identify and evaluate suspected problems associated with past waste handling procedures, disposal sites, and spill sites, but also to determine if any newly-identified AOC warrant classification as formal IRP Sites. The objectives of the PA/SI (for each AOC identified) are to provide one or more of the following recommendations: (1)

develop a plan and initiate immediate response actions, (2) take no further action, (3) initiate a Focused Feasibility Study, where appropriate, to select a Remedial Measure, or (4) continue characterizing those AOC where contamination was confirmed by proceeding with the RI/FS.

1.3 SCOPE

This report summarizes the work completed to date, presents and interprets the findings of the investigation, and states the conclusions and recommendations reached as a result of the PA/SI activities. This report contains the following sections:

- Section 1. Introduction The remainder of this section discusses the methodology of the PA/SI.
- Section 2. Facility Background Section 2 describes the location of the base,
 its history and organization, and previous IRP activities conducted at the base.
- Section 3. Environmental Setting Section 3 includes a discussion of the regional climate, the regional and local geology, the regional and local hydrology, and the critical habitats and endangered or threatened species found in the vicinity of the base.
- Section 4. Site Evaluation Section 4 presents an overview of the PA activities, identifies and describes the AOC, and presents recommendations and conclusions based upon the findings of the PA.
- Section 5. Field Program Section 5 discusses the general approach of the SI
 field program and includes variations between the proposed Work Plan activities
 and the actual fieldwork performed. Investigation-derived waste and disposal
 is also addressed in this section.

- Section 6. Investigation Results Section 6 presents the laboratory analytical data for the soil and groundwater samples collected during the SI field effort.
- Section 7. Summary, Conclusions, and Recommendations Section 7 presents site-by-site conclusions and recommendations based upon the investigation results of the PA/SI.
- Section 8. Bibliography A bibliography is included as Section B.

Additional information that can be found in this PA/SI report includes a list of acronyms and abbreviations, appendices detailing the results of the soil organic vapor survey, boring logs, soil and groundwater screening results, and analytical reports. Field change request forms and chain-of-custody forms are also provided.

1.4 METHODOLOGY

Activities conducted during the PA included the review of relevant records (from on-base and outside agencies) and personnel interviews. This information was then assessed in order to determine when and where a release might have occurred and the volume of potentially hazardous materials, wastes, and/or spills, if any, that were released into the environment. Preliminary identification of potential AOC was made during the PA/SI kickoff meeting. Following evaluation of the interviews, records, and data, AOC-specific sampling and analysis strategies were prepared (SI phase) and incorporated into the PA/SI Work Plan (The Earth Technology Corporation, March 1994). The proposed field sampling activities were implemented in the summer of 1994.

2.0 FACILITY BACKGROUND

The following sections briefly describe the base location, summarize the base history and organization, and discuss previous IRP activities.

2.1 BASE LOCATION

The base is located in south-central Michigan at the W. K. Kellogg Regional Airport in southwest Battle Creek (Figure 2-1). Battle Creek is located in Calhoun County, approximately 100 miles west of Detroit and 20 miles east of Kalamazoo. The base occupies approximately 315 acres in the northwestern portion of the airport, approximately 204 acres of which are separated from the main portion of the base by the Grand Trunk Western Railroad (Figure 2-2). Runway facilities at the airport are used jointly for military and civilian purposes.

2.2 ORGANIZATION AND HISTORY

Prior to 1924, the property on which the base is located was used for agricultural purposes. In September of 1924, a lease with an option to buy the property was signed by the Battle Creek Chamber of Commerce. Four years later, W. K. Kellogg donated the necessary money to purchase and make improvements to the site. The Army Air Corps utilized the airport for combat duty training and to stage crews for overseas deployment from 1942 until 1946. During this time, new runways were constructed and existing runways were lengthened. Buildings were also erected to house base personnel and to support military functions. In 1986, the area that the base occupied was increased from approximately 90 acres to 315 acres.

The very same year that the Army Air Corps ceased using the airport, the 172nd Fighter Squadron of the MIANG was formed and Kellogg Field was designated as its headquarters. In 1951, the unit was called to active duty as part of the 56th Fighter Wing at Selfridge Air Force Base in Michigan. The unit was redesignated as the 172nd Fighter Bomber Squadron

FIGURE 2-2.dwg 8/95

when it returned to Kellogg Field the following year. In 1955, the unit was reorganized as the 172nd Fighter Interceptor Squadron which was upgraded to the 110th FG the very next year. This unit was deactivated and redesignated the 172nd Tactical Reconnaissance Squadron two years after it had been upgraded. In 1962, the base was reorganized again, and the 172nd Tactical Reconnaissance Squadron became the 110th Tactical Reconnaissance Group. This unit was replaced by the 110th Tactical Air Support Group in 1971. In 1992, the unit was reorganized as the 110th Fighter Group (FG) and assigned the A-10 aircraft which it currently operates. The 110th FG was renamed the 110th FW in August 1995. Throughout its history, the base has stored and used various types of potentially hazardous materials in support of its primary fighter mission. Historical operations and their relationship to historic waste handling and disposal activities are described in Section 4.0.

2.3 PREVIOUS IRP ACTIVITIES

Previous IRP activities are discussed in the following subsections. In addition to the IRP activities at the base, an Environmental Assessment (EA) of the base area was conducted by Hickok and Associates (Hickok, 1985). The EA did not address potential contamination due to the past activities of existing facilities on the base.

2.3.1 Preliminary Assessment

An IRP Phase I PA was conducted in 1987 to identify and assess past operations at the base that may have involved storage or disposal of hazardous materials or wastes (HMTC, 1987). The purpose of the assessment was to evaluate the potential for environmental releases from hazardous materials and waste management practices. Four sites (1 through 4 as described in Section 2.3.3) were identified as potential sources of contaminant release and were recommended for further investigations. Sites 5 and 6 were added to the Site Investigation after completion of the PA.

2.3.2 Immediate Response Investigation

Upon completion of the 1987 PA, an Immediate Response Investigation (ES, 1988) was completed to assess groundwater quality at the base boundary. Fifteen monitoring wells (BC-MW1 through BC-MW15) along the northern and southern base boundaries were installed, sampled, and analyzed. These groundwater samples were analyzed for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and priority pollutant (PP) list metals. VOCs and elevated concentrations of metals were detected in several of the samples.

After the Immediate Response Investigation report was finalized, the analytical data became suspect. A laboratory audit showed numerous problems with the laboratory's quality assurance (QA) and quality control (QC) procedures, rendering a majority of the data unuseable. These problems are addressed in the QA report for the SI analyses conducted in 1988 (ES, November 1993).

2.3.3 Site Investigation

A Site Investigation for the six sites listed below was initiated in November 1988 and a Final Site Investigation Report was issued by ES in November 1993. The locations of Sites 1 through 6 are presented on Figure 2-2. A brief description of the sampling results for each site follows:

Site 1: Fuel Tank Farm

The Fuel Tank Farm was used for gasoline storage until 1949 and for the storage of heating fuel in 1973 and 1974. During this latest time period, leakage of fuel was reported. The tanks were removed in 1988. The Site Investigation soil sampling results from 1988 were not useable due to poor data quality and lack of laboratory QA/QC procedures (ES, November 1993). Although soil contamination at Site 1 was not quantified, the data did indicate the presence of petroleum products in the soil. Soil staining and petroleum odor were noted during drilling operations. Monitoring well BC2-MW1, located down-gradient of Site 1, was free of contamination associated with fuels. The removal of contaminated soil at the site was

recommended in the Final Site Investigation Report. The ANGRC determined that additional soil and groundwater sampling was necessary prior to remedial actions, if appropriate, for Site 1. An RI Work Plan was completed for Site 1 (EARTH TECH, September 1994).

Site 2: Drainage Swale

The drainage swale is a topographic depression that receives storm water run-off from the northern half of the base. Surface water accumulating in the swale is removed by the processes of evaporation and infiltration. Both sediment and surface water samples from the drainage swale were collected and analyzed. SVOCs exceeding the risk-based ARARs were found only in the sediments at the bottom of the swale, whereas metals exceeding these levels were found in both sediments and surface waters. Down-gradient groundwater monitoring wells were found to contain 1,1,2,2-tetrachloroethane in concentrations slightly exceeding the risk-based criteria (ES, November 1993). The Site Investigation Report recommended a FS be completed for Site 2. A Source Removal Action Plan and Plans and Specifications for capping have been developed for Site 2 (ES, July, 1994).

Site 3: Fire Training Area

The Fire Training Area (FTA) is a bermed earthen area used for fire training activities between 1977 and 1986. Waste oils, jet fuel, hydraulic fluids and spent solvents were reportedly floated on water inside the bermed area, ignited, and extinguished. Data is not available to quantify contaminant levels in Site 3 soils. However, the 1988 data indicated high concentrations of fuel constituents in the soil. Lead was detected in concentrations estimated to exceed Michigan Environmental Response Act 307 Type A (Type A) default criteria. The Site Investigation recommended a FS be completed for this site. The site was selected for a bioventing pilot study which was initiated in September 1992 (ES, November 1992). These results show that benzene, toluene, ethylbenzene, and xylene (BTEX) concentrations and total petroleum hydrocarbons (TPH) concentrations have decreased significantly in the Site 3 soils (Air Force Center for Environmental Excellence, May 17, 1994).

Site 4: Abandoned Landfill

The abandoned landfill was used for the disposal of concrete and asphalt during runway repairs. Empty drums and paint cans, noted during the PA (HMTC, 1987), were found at the site. No contaminants were detected in the groundwater samples that were collected from the Site 4 monitoring wells. Soil contamination was not quantified. The Site Investigation Report stated that a decision document should be prepared for Site 4 recommending no further action (ES, November 1993).

Site 5: Former Coal Storage Area

Coal particles remaining in the soil at the former Coal Storage Area have been exposed to the environment, which may have resulted in the leaching of contaminants into the ground or surface water. No useable data for the evaluation of soil contamination was collected during the Site Investigation. Five additional hand-augered borings were drilled and soil samples collected at Site 5 during September 1992 (ES, March 1993). The analytical results from these samples indicated the presence of SVOCs and metals above the Type A and Michigan Environmental Response Act 307 Type B (Type B) cleanup criteria. The down-gradient monitoring wells at Site 5 contained 1,1,1-TCA and xylenes suspected to have originated from Site 3. A removal action was recommended for Site 5 in the Site Investigation Report (ES, November 1993). A Source Removal Action Plan (The Earth Technology Corporation, June 1994) and Plans and Specifications (EARTH TECH, July 1994) were developed for soil stabilization and capping of the area.

Site 6: Fuel Spill

The Fuel Spill site includes an underground jet fuel storage area. A 2,000 gallon fuel spill occurred at the ground surface as a result of an electrical system failure. Toluene and TPH were detected in Site 6 soils. One sample contained toluene in excess of the Type B cleanup criteria. VOCs, lead, and zinc were detected in groundwater from Site 6 monitoring wells.

However, the groundwater analytical results did not exceed any ARARs. A decision document recommending no further action was recommended for Site 6 in the Site Investigation Report (ES, November 1993).

3.0 ENVIRONMENTAL SETTING

A complete discussion of the base environmental setting will be presented in the following subsections.

3.1 METEOROLOGY

The Battle Creek region is characterized by a climate that is predominately continental in nature, although it frequently alternates between continental and semi-maritime conditions. Continental climates are characterized by pronounced differences in seasonal temperatures (i.e., hot summers and very cold winters). Semi-maritime climates experience moderate temperatures during the winter and summer. The variable nature of seasonal weather patterns in the area is caused by winds originating from the Great Lakes. When these winds extend into the Battle Creek region, the continental climate is replaced by a semi-maritime climate (HMTC, June 1987).

The Battle Creek area has an annual precipitation of 30.73 inches, based on the period from 1956 to 1985. Precipitation is fairly well distributed through the year, with the heavier amounts occurring as thunderstorms during May and June. Snowfall for the Battle Creek area is moderate, averaging about 52 inches per year (HMTC, June 1987).

Net precipitation was calculated according to the method outlined in the <u>Federal Register</u> (47 FR 31224, 16 July 1982), and was presented in the PA. A net precipitation value of 0.73 inches per year was obtained. Rainfall intensity based on 1 year frequency, 24 hour duration was 2.25 inches as calculated according to 47 FR 31235, 11 July 1982 (HMTC, June 1987).

3.2 PHYSIOGRAPHY AND TOPOGRAPHY

The base is located within the Central Lowland Physiographic Province of the Interior Plains. This region is characterized by its vast plain, relatively low altitude of 500 to 2000 ft above mean sea level (AMSL), and slight local relief.

The base consists of large paved areas and has a gently rolling to nearly flat topography (Figure 2-1). The mean elevation of the airport area is 941 ft AMSL (Hickok, 1985). Wet swampy areas occur in the portion of the installation west of the railroad tracks. Elevations on the western property range from 890 to 920 ft AMSL.

3.3 SOILS

The soils at Battle Creek are comprised primarily of five soil series, which have been given the United States Department of Agriculture (USDA) Soil Conservation Service names Houghton, Spinks, Oshtemo, Boyer, and Udorthents. The distribution of these soils within the vicinity of the base is shown in Figure 3-1. These soil series are described as follows:

Houghton Series, 0 to 2 % slopes - This mapping unit consists of very poorly drained soils that were formed in herbaceous organic deposits, bogs, and other depressional areas within outwash plains, lake plains, till plains, and moraines.

Spinks Series, 0 to 18 % slopes - This mapping unit consists of very deep, well-drained soils formed in glaciofluvial deposits on moraines, till plains, beach ridges, and outwash plains.

Oshtemo Series, 0 to 18 % slopes - This mapping unit consists of well-drained soils formed in loamy and sandy glaciofluvial deposits on outwash plains and moraines.

Boyer Series, 0 to 12 % slopes - This mapping unit consists of very deep, well-drained soils formed in loamy and sandy glaciofluvial deposits on outwash plains, deltas, valley trains, and moraines.

Udorthents, 0 to 2 % slopes - This mapping unit consists of well-drained to excessively drained soils which have been mixed by land leveling, filling, or excavation.

FIGURE 3-1.dwg B/95

In general, the permeability of these soils ranges from moderate (4.2 X 10^{-4} to 1.4 X 10^{-3} cm/sec) to rapid (4.2 X 10^{-3} to 1.4 X 10^{-2} cm/sec).

3.4 GEOLOGY

The regional and local geologic settings of the area will be presented in the next two subsections.

3.4.1 Regional Geology

South-Central Michigan, including the base, is located within the Michigan Basin of the Central Lowland Physiographic Province. A plain of Pleistocene-aged (Wisconsin Series) glacial advance deposits covers the Battle Creek area. Valleys and morainal ridges arranged in concentric arcs around the ends of the Great Lakes interrupt this plain. A regional stratigraphic column is shown in Figure 3-2.

Bedrock in the Michigan Basin (Figure 3-3) is Pennsylvanian-aged in the center and Cambrian-aged at the outer boundary of the basin. The geologic structure of the basin is expressed as small folds, fractures, and faults. These minor structural features are generally oriented to trend northwest - southeast in the Battle Creek area. Offsets in the trend of buried valleys and major bends in the Battle Creek River suggest folds, fractures, faults, or a combination of all three (Grannemann and Twenter, 1985).

In southern Michigan, the Pleistocene-aged glacial deposits consist of till, outwash, and channel deposits, derived principally from fragments of sandstone and shale, deposited as the last continental glacier retreated across Michigan. Composition and mode of deposition (glacier or meltwater) differentiated these deposits of sand, silt, clay, gravel, and boulders. The glacial deposits in the area range in thickness from a few feet to greater than 100 ft. The glacial deposits overlie the Paleozoic sedimentary bedrock which consists of sandstone, siltstone, and shale.

	Geologic Unit			Lithologic Characteristics	Hydrologic Unit		
		Glacial deposits		Sand and gravel Bedrock surface	Sand and Gravel Aquifer		
				Sandstone, very fine to medium			
				Sandstone, very fine to fine, silty			
	Upper sandstone			Sandstone, very fine to medium, some zones of very fine to fine sandstone and siltstone	Upper sandstone Gravel Aquifer		
U				Sandstone, very fine to fine, some thin zones of siltstone and shale			
Marshall Formation	Upper						
		siltstone		Siltstone	Confining bed		
				Sandstone, very fine to fine, shaly Sandstone, very fine to fine Sandstone, very fine to fine, silty, or sandy shale			
				Sandstone, very fine to fine	1		
	Lower sandstone			Sandstone, very fine to fine, silty, or sandy shale	Lower		
				Sandstone, very fine to fine	sandstone aquiter		
				Sandstone, very fine to fine, silty, or sandy shale			
		Unit 1		Siltstone Sandstone, very fine to fine, shaly or silty] [
	Lower siltstone	Unit 2	2222	Siltstone			
				Sandstone, very fine to fine, shaly or silty			
		Shale A		Shale			
	Shale			Sandstone, very fine to fine, shally, or sandy shale			
		Shale 8					
				Sandstone, very fine to fine, shaly			

From Granneman and Twenter, 1985.

INSTALLATION RESTORATION PROGRAM 110TH FIGHTER GROUP, MICHIGAN ANG BATTLE CREEK, MICHIGAN

TYPICAL LITHOLOGIC COLUMN IN BATTLE CREEK, MICHIGAN AREA

Figure 3-2

In the Battle Creek area, the Marshall Formation underlies the glacial deposits (Figure 3-2) and ranges in thickness from about 10 to 140 ft. This formation is very fine- to coarse-grained sandstone containing layers of siltstone, shale, and sandy shale (Grannemann and Twenter, 1985). The sandstones can be either hard or soft. The soft sandstones may have been cemented to a lesser degree or have had the cement material weathered away, leaving loosegrained sands. The well cemented or hard sandstones contain fractures and joints. The Marshall Formation overlies the Coldwater Shale which may be up to 1,300 ft thick and contain layers of sandstone, limestone, and cherty limestone (Vanlier, 1966).

3.4.2 Local Geology

The base is underlain by a mantle of Pleistocene-aged glacial drift material, approximately 100 ft thick overlying the Mississippian-aged Marshall Formation. This drift material consists of layers of sand, sand and gravel, and clay. The stratigraphy of the Pleistocene-aged glacial drift encountered beneath the base is illustrated by two geologic cross-sections labeled X-X' and Y-Y' presented in Figures 3-4 and 3-5, respectively. The on-base well locations used to prepare the sections are shown on figures presented in Section 3.5.3 of this report. The sands range in size from very fine-grained to very coarse-grained with a predominance of fine-to medium-grained sand. Sand layers are from 10 to 15 ft thick. Beds of sand and gravel are interlayered with the sand layers and are generally 10 to 20 ft thick.

Thin clay layers and silty or sandy clay layers are present in the deeper sections of the glacial drift material. Rock fragments are also common in deeper sections and may be derived from the loosely cemented Marshall Formation.

Grey clay layers, mainly sandy or silty, exist locally at depths of 65 to 115 ft. The clay layers usually directly overlie the Marshall Formation, which is described as a blue, soft, medium-grained, loosely cemented sandstone. The Marshall Formation has an irregular rolling and hilly surface probably due to preglacial stream erosion.

3-8

3-9

3.5 HYDROLOGY

The regional and local hydrogeologic settings will be presented in the following subsections.

3.5.1 Surface Water

The major surface water features of the area are the Kalamazoo River, Harts Lake, and Goguac Lake. The Kalamazoo River is located approximately 1.5 miles north of the base, Goguac Lake is located approximately 2 miles southeast of the base, and Harts and Lawrence Lakes are located approximately 0.5 miles west of the base (Figure 2-1). Approximately one-third of the annual precipitation in the vicinity of the base flows into the Kalamazoo River by direct run-off, or by infiltrating or percolating into the ground and then discharging into the Kalamazoo River by underground flow. The remaining annual precipitation is returned to the atmosphere by transpiration and evaporation from plants (Vanlier, 1966). Localized ponding and wet areas occur throughout the Battle Creek area, but most streams in the area discharge into the Kalamazoo River.

Because of the generally low relief at the base, surface water drainage has been improved by the construction of storm sewers or drainage ditches. Figure 3-6 illustrates the general surface and storm water flow directions on the base. Surface water collected from the main portion of the base drains in a northerly direction to the drainage swale (IRP Site 2), while the tarmac and portions of the hangar drain in a southerly direction to a low area just off the apron. This area roughly corresponds with the "V" in the apron. There is no surface water outlet from this low area. A third area of the base, (southwest of the main base) is serviced by a storm sewer system that drains south and west. The outfall from this area goes under the Grand Trunk Western Railroad property and in the future will be the permitted storm sewer outfall.

The base is not within an area classified as a floodplain (Hickock, 1985). According to the Flood Insurance Rate Map (FIRM) for the city of Battle Creek, the W.K. Kellogg Airport, including the base, is in "Zone C", an area of minimal flooding from rivers (Federal Emergency Management Agency, FIRM, 14 April, 1983).

3.5.2 Regional Hydrogeology

Groundwater occurs in useable quantities in both the glacial deposits and the Marshall Formation in the Battle Creek area. These two aquifers are reported to be connected hydrologically, although relatively impermeable clay layers may be present locally in sufficient thickness to retard water movement between the glacial materials and the Marshall Formation. In some areas, the two aquifers function as a single hydrologic unit. Most of the water that enters the glacial aquifer eventually moves to the Marshall Formation and is discharged to stream flow or as well withdrawals (HMTC, 1987). Although it is generally used only for domestic supplies, the glacial aquifer produces water of sufficient quality and quantity for municipal supplies. The depth to the groundwater in the glacial aquifer varies with topography, gradients, and surface water flow patterns. The glacial aquifer is recharged directly from precipitation and infiltration. Horizontal conductivities in the glacial aquifer range from 15 to 110 ft per day (HMTC, 1987).

3.5.3 Local Hydrogeology

Groundwater beneath the base occurs in the surficial glacial drift and in the Marshall sandstone under unconfined conditions. The glacial aquifer beneath the base consists of very fine to coarse sand, gravel, silt, and sandy clay. Limited data indicate that the glacial aquifer is approximately 110 to 135 ft thick. Some of these deposits include significant amounts of clay and silt-sized materials which reduce permeability in these areas. However, in other areas, these finer particles have been washed out of the sand and gravel deposits, which increases the permeability of these deposits.

The depth to the glacial aquifer water table beneath the base ranges from approximately 10 to 40 ft below land surface. Groundwater elevations range from approximately 899 ft AMSL at Site 4 to approximately 884 ft AMSL at the northern base boundary. The general groundwater flow direction across the base is to the northwest, although a radial pattern is exhibited at the central portion of the northern base boundary. Glacial aquifer water level elevations and flow directions beneath the base in March 1991 and May 1994 are shown in Figures 3-7 and 3-8, respectively. Recharge to the surficial aquifer is due to infiltration of

11g_0 7.ding 0/0

precipitation and surface water. Movement of water into the Marshall sandstone may be hampered where the glacial drift material has a higher clay content. A thick clay layer is present under portions of the base but is not extensive over the entire area (ES, November 1993). The water table elevations from 1987-1989 (ES, November 1993) show a pattern similar to those in Figures 3-7 and 3-8.

A 160 ft deep well set into the Marshall sandstone aquifer supplied the base's water until 1986. Presently, the base uses water supplied by the city of Battle Creek.

3.6 GROUNDWATER USE

Water well records were obtained from the Calhoun County Department of Public Health for Township 2 South, Range 8 West, Sections 3, 4, 5, 8, 9, 10, 15, 16, 17, 20, 21, and 22 and for Township 1 South, Range 8 East, Sections 32, 33, and 34. The present use status of these wells is unknown. The wells for which records were obtained from the county are presented on Figure 3-9. As shown on this figure, the nearest wells down-gradient (north) of the base are located in Section 33, Township 1S, Range 8E, approximately 1 mile north of the northern base boundary. According to the water well records there are eight wells located in Section 33. Two of these eight wells are completed in bedrock, while the other six wells are reportedly completed in glacial sands and gravels. As is also shown on Figure 3-9, additional wells exist at a radial distance of 1 to 2 miles north of the base, and to the east and southeast (cross-gradient) of the base. According to CDM (June 1992), the private wells sampled north of Dickman Road that were contaminated are no longer used. The residences served by these wells were supplied with municipal water in 1990.

3.7 CRITICAL HABITATS/ENDANGERED OR THREATENED SPECIES

Critical habitats are specific areas that are recognized or managed by federal, state, and/or local governments and/or private organizations as rare, unique, unusually sensitive, or important natural resources. While permanent and seasonal habitats of federally designated endangered species, nature preserves such as federal and state parks, wilderness areas,

wildlife sanctuaries, and wetlands are included as critical habitats, parks established solely for historic preservation or recreation are not.

According to the Phase I Records Search (HMTC, 1987), no endangered or threatened species of flora or fauna are located in the vicinity of the base. Low-lying swampy areas exist in the central portion of the area west of the railroad and in an area which forms the southern base boundary to the west of the railroad. These areas, however, are not critical habitats (i.e., unique or unusual natural settings that are necessary for the continued propagation of key species in the ecosystem). More recently, the MDNR has indicated that Nortropis anogenus (Pugnose shiner) and Filipendula rubra (Queen of the Prairie), which are found in the Battle Creek area, are listed as threatened (Personal communication with Thomas Weise, MDNR 1994). However, neither of these have been identified in the vicinity of the base.

Based upon the information shown in United States Geological Survey 7.5-minute series topographic maps of the base and its surrounding areas, no publicly-owned nature preserves, wildlife sanctuaries, or wilderness areas are present within a three mile radius of the base (Radian, July 1994).

4.0 SITE EVALUATION

The results of the PA (completed as part of this investigation) are presented in the following subsections.

4.1 PRELIMINARY ASSESSMENT - OVERVIEW

Seventeen active duty and five retired ANG personnel were contacted during the October 19th through October 21st, 1993 PA/SI kickoff meeting. Additionally, follow-up telephone interviews with six personnel have been performed since the October 1993 interviews. Personnel interviewed are, or were (if retired), associated with the following functions or shops on base:

- · Motor Pool
- · Operations/Flightline
- · Aerospace Ground Equipment
- Pneudraulics
- · Fuels Management
- Munitions
- Structural Maintenance/Corrosion Control
- · Supply
- Non-Destructive Inspection
- · Fire Department
- · Photo Lab
- · Civil Engineering
- Engine Shop
- Environmental

Records were examined from the environmental coordinators office, as well as from base supply, civil engineering, and the real property office. Outside agencies contacted include the Calhoun County, Michigan, Department of Public Health, Michigan Department of

Transportation (MDOT), and the MDNR. The results of the interviews and records search were used to identify AOC which warranted sampling to confirm or deny the presence of contamination resulting from past waste disposal practices.

4.2 ACTIVITY REVIEW

Several areas on base routinely used or use potentially hazardous or toxic materials. Base personnel reported past or current use of the following materials:

- · Oils
- · Aviation Gasoline
- · JP-4 Jet Fuel
- · Diesel Fuel
- · Paints
- · Methyl Ethyl Ketone
- · Paint strippers and thinners
- · Trichloroethane (TCE)
- · Petroleum Solvent 661 (PS-661)

- · Greases
- · Motor Gasoline (leaded and unleaded)
- · Hydraulic Fluids
- · Heating Oil
- · Petroleum Distillate 680 (PD-680)
- · Primers (zinc chromate)
- · Methylene chloride
- · Trichloroethane (TCA)
- · Neutralized battery acid

Table 4-1 provides an estimate of the types and quantities of waste generated by each activity or shop on base, and describes the past and present waste disposal practices for each activity or shop. The operations listed in Section 4.0 have been determined (best-estimate basis) to generate more than 5 gallons/year of waste. If an activity or shop generated less than 5 gallons per year of waste it was not included on Table 4-1.

t4-1_1.027-April 10, 1996

Table 4-1

Activity Review 110th Fighter Wing, Michigan Air National Guard W.K. Kellogg Regional Airport, Battle Creek, Michigan

Activity (Location)	Materials Used	Amounts/Year (gals/yr)	Disposal Method/Area and Dates Used ^(c)	
Motor Pool Building 6908 1963 - Present Building 6998 pre-1963	PS-661 Oil Hydraulic Fluid Transmission/brake fluid Paints/thinners Jaff fuel Neurraiized Rattery Acid	150 (gallons/year) ^(a) 650 (gallons/year) ^(a) 100 ^(a) (gallons/year) ^(a) 25 ^(a) (gallons/year) ^(a) < 5 ^(a) (gallons/year) ^(a) 50 ^(b) (gallons/year) ^(a)	1963← FTAs/Waste Accumulation Area/OWS Neutralized and dumped down drain	→1985
Pneudraulics Building 6900 1962 - Present Building 6901 pre-1962	Hydraulic Fluid	125 gallons/year ^{lb)}	1962← FTAs/Waste Accumulation Area Small quantities in dumpster	→ 1985
Aerospace Ground Equipment (AGE) Building 6998 1991 - present Building 6901 1977 - 1991 Building 6900 nre-1977	Oil PD-680 Paint Strippers/Removers Hydraulic Fluid/Transmission Fluid	30 gallons/year ^{ia)} 420 gallons/year ^{ia)} 16 gallons/year ^{ia)} 70 gallons/year ^{ia)}	1962← FTAs/Waste Accumulation Area	→1985
Munitions Building 6929 1994 - present Building 6901 pre-1994	PD-680 Solvents Fuels Naptha Paint	± 5 gal/year Pre-1992 ^(b) ± 70 gal/year Post-1992 ^(b)	1969← FTAs/Waste Accumulation Area Small quantities in dumpster	→1985

Table 4-1 (Continued)

Activity Review 110th Fighter Wing, Michigan Air National Guard W.K. Kellogg Regional Airport Battle Creek, Michigan

			W/F 17 88 1	[3]	
Activity (Location)	Materials Used	Amounts/Year	Disposal Method/Area and Dates Used	i Dates Used	
Structural Maintenance/ Corrosion Control New Hangar 6900 1963 - Present	Naptha PD-680 TCE MEK 60 Paints Paint Strippers/Primers	unspecified quantities unspecified quantities 1 gallon/year ^(b) 60 gallons/year ^(a) unspecified quantities 180 gallons/year ^(b)	1963← FTAs/Wa Small quar	FTAs/Waste Accumulation Area Small quantities in dumpsters	→1985
Non-Destructive Inspection New Hangar 6900 1963 - Present	Oil Methylene Chloride TCA	300 gallons/year ^{tb)} < 5 gallons/year ^{tb)} 1 gallon/year ^{tb)}	1963← FTAs/Wa Small quar	FTAs/Waste Accumulation Area Small quantities in dumpsters	→1985
Operations/Flightline Old/New Hangar (6900/6901) 1950 - present	Oil Hydraulic Fluid PD-680 AvGas/JP-4	70 gallons/year ^{ta)} 110 gallons/year ^{ta)} 120 gallons/year ^{ta)} unspecified quantities	1963← FTAs/Wa	FTAs/Waste Accumulation Area Small quantities in dumpsters	→1985

Source:

(a) Phase I Records Search, 110th Tactical Air Support Wing Michigan Air National Guard (HMTC, 1987)
 (b) Developed during this study.
 (c) Since 1985 all regulated wastes generated by each shop have been disposed of through the Defense Reutilization and Marketing Office (DRMO).

AVGAS - Aviation gasoline FTA - Fire Training Area MEK 60 - Methyl ethyl ketone OWS - Oil/water separator PD-680 - Petroleum distillate 680 PS-661 - Petroleum solvent 661 TCA - Trichloroethane

4.3 PAST WASTE DISPOSAL PRACTICES

Since 1985, the potentially toxic or hazardous materials generated by the various shops have been collected and removed from the base by the Defense Reutilization and Marketing Organization (DRMO) which is located at Selfridge ANG Base, Mt. Clemens, Michigan. Prior to 1985, much of the liquid waste generated on the base was collected and used during fire training exercises. The wastes were reportedly collected by the individual shops. One area in particular within the vehicle refueling area was used as a collection point for waste petroleum, oil, and lubricants (POL) and solvents. Smaller amounts of wastes generated in the hangars were reportedly placed in the dumpsters located at Building 6901 or poured on the ground. A review of the past waste disposal practices, by area, is included in the following discussions.

4.4 CONCLUSIONS AND RECOMMENDATIONS FOR SELECTING AREAS OF CONCERN

The remaining portions of Section 4.0 are structured to provide rationale for determining which previous waste disposal areas were to be sampled during the SI phase of the project.

4.4.1 Waste Accumulation Area - Area of Concern A

This area is grass and gravel-covered and is located within the vehicle refueling area immediately east of Building 6910 (Figure 4-1). The area where waste collection occurred is approximately 10 ft wide and 40 ft long. According to base personnel, this facility was used as a waste POL and solvent collection and storage area prior to 1980. One photograph (located in the Civil Engineering (CE) Building) dating from approximately 1980, shows 6 drums located along the northwestern and western corners of the fenced in area. These drums were used to collect waste oils, fuels, and solvents which were generated from the various shops on base. It was reported that some spillage occurred. It is estimated that approximately 20 to 100 gallons of waste accumulated in this area per month and that less

4-6

than 5 gallons of this waste was spilled per month. When full, the barrels were either taken to the fire training area(s) (FTA) and emptied, or removed from the base. Because past spills were reported, this area was recommended for inclusion in the SI.

4.4.2 Motor Pool Drainage Ditch - Area of Concern B

Building 6908 which houses the motor pool was constructed in 1963 (Figure 4-2). Routine vehicle maintenance activities (oil changes, etc.) occur in the facility for approximately 100 vehicles. The vehicle types serviced by the Motor Pool range in size from automobiles to 15-ton trucks. The facility is equipped with an oil/water separator (OWS) located beneath the eastern portion of Building 6908.

Reportedly, the OWS was an original part of the motor pool. Prior to 1985, an open ditch ran from the northwest corner of the motor pool parking area to the drainage swale (IRP Site 2). The location of Building 6908 and the surrounding surface drainage features are illustrated in Figure 4-2). In 1985 a storm sewer (concrete pipe) replaced the ditch and the ditch was filled in. From 1963 to 1992, the overflow from the OWS in Building 6908 entered the ditch via a concrete drain. In 1992 the overflow from the OWS was rerouted to the sanitary sewer system.

Base personnel indicated that it was never a common practice to directly dispose of waste POL in the ditch. However, sediment samples collected from the outfall of the old drainage ditch contained VOCs, polynuclear aromatic hydrocarbons (PAHs), and various metals (ES, November 1993). These data suggest that the ditch has, in the past, carried contaminated runoff. In addition, it was reported that stained soils were observed by construction personnel when the storm sewer was installed in the course of the ditch.

Motor pool personnel indicated that a majority of the waste POL generated during maintenance activities was not disposed of through the OWS. The OWS was generally full and reportedly not pumped out regularly. However, during the period of 1972 through 1993 while refueling trucks were being serviced in the motor pool, approximately 50 gallons per

year of JP-4 jet fuel was disposed of through the OWS. Additionally, a variety of operations involving waste POL were conducted in the parking area behind the facility, including the cleaning of engines and vehicles. The parking area was routinely washed and the resulting wastewater flowed into the ditch. Based on the preceding discussions, the former drainage ditch was included in the SI phase of the project.

4.4.3 Former Fire Training Areas

A majority of the liquid waste POL and solvents generated on base prior to 1987 were disposed of during fire training activities. A review of the history of base fire training activities and summaries of AOC recommended for SI sampling is included in the following subsections.

4.4.3.1 Fire Training Activity Review

The most recent base FTA is currently included in the IRP as Site 3. Current or former base personnel reported that fire training exercises were conducted at four locations on base. These four areas are illustrated on Figure 4-3. These locations were reportedly active from the 1950s -1986. However, it was also reported that before the arrival of the fire trucks in 1964 very little fire training was completed on base.

Initially (1950s through 1963) fire training exercises were conducted west of the water tower in the drainage swale (IRP Site 2). In 1963 the training pit was established west of the west ramp adjacent to the perimeter road. This is in the same location as the most recently used pit (IRP Site 3). Fire training exercises were conducted at this location from 1963-1986. In 1965 two additional training areas were established south of the east-west runway overrun. These FTAs were used from approximately 1965 to 1967. Reportedly these two FTAs were used sparingly because of their location away from the main portion of the base. These FTAs have been designated AOC C and are described further in Section 4.4.3.2. A final FTA was

used a few times in 1978 to burn a damaged aircraft prior to its being shipped off-base for disposal. The area is located west of Building 6909. This FTA is located within the boundary of IRP Site 5 and has been designated AOC D. AOC D is described further in Section 4.4.3.3.

Base fire department personnel reported that fire training exercises were conducted four times per year and that approximately three to four individual fires were extinguished per day of training (12 to 16 fires per year). Prior to completing a fire training exercise, a circular, bermed area was constructed on the ground. The area was constructed of native soils and was reportedly unlined. The bermed area was then filled with water and approximately 300 gallons of waste POL, solvents, and JP-4 jet fuel (collected from the shops on base) were floated on top of the water. This mixture was ignited and extinguished. This process was completed three to four times per day (900 to 1,200 gallons of hydrocarbons used per day). The resulting liquid wastes were allowed to evaporate and infiltrate into the soils.

4.4.3.2 Former Fire Training Areas (South) - Area of Concern C

In 1965 two FTAs were established south of the east-west runway overrun (Figure 4-3). These FTAs were used sparingly from approximately 1965 to 1967, because their remote location away from the main portion of the base made access difficult. The location of one of these FTAs was confirmed by a site visit on October 20, 1993. This former FTA contained the remains of at least one aircraft fuselage. A second FTA was reportedly located approximately 60 yards south of the confirmed FTA, but was not confirmed during the October 1993 site visit. The locations of both fire pits were confirmed by inspection of a 1978 aerial photograph obtained from the MDOT. Both locations are presented on Figure 4-4. These AOC are located on airport property, but reportedly were used solely by the ANG.

Because of the age of the fire training pits, no present or former base personnel contacted could accurately recall how often this area was used for fire training exercises. However, if the area was used two times per year for three years (1965, 1966, and 1967) an estimated total of 5,400 to 7,200 gallons (six days at 900 to 1,200 gallons per day) of fuels/solvents were used at AOC C.

FIG_4-4.DWG 7/95

4.4.3.3 Former Fire Training Area (West) - Area of Concern D

As stated in Section 4.4.3.1 an FTA was established west of Building 6909 (Figure 4-5) and used a few times in 1978 to burn a damaged aircraft prior to its being shipped off-base for disposal. Photographs of the exercises obtained by the base environmental coordinator place the location of the FTA within the civil engineering outside storage area and within the boundary of IRP Site 5 (Figure 2-2). If the area was used two times, an estimated total of 1,800 to 2,400 gallons (two days at 900 to 1,200 gallons per day) of fuels/solvents were used at AOC D.

4.4.4 Building 6901 (Old Hangar) - Area of Concern E

Prior to construction of the new hangar (Building 6900) in 1962, aircraft maintenance activities were conducted in the old hangar (Building 6901). After construction of the new hangar, some vehicle maintenance activities for the military vehicles assigned to the base were moved into the old hangar. It was reported that vehicles and aircraft parts were painted in the old hangar from 1971 through 1976. It has also been used to wash vehicles. Because of the age of the old hangar, few individuals were able to provide information regarding the past waste handling and disposal practices within the hangar. However, some personnel indicated that small quantities of waste were disposed of by pouring the waste on the ground. A grass-covered area exists on the south side of the hangar between the building and the apron (Figure 4-6). No present or former base personnel indicated that this area was used as a disposal area. As such, an estimate of the amount of waste disposed of in this area cannot be accurately determined. The grassy area may have been a convenient location to dispose of liquid wastes in, and as such, was included in the SI.

4.4.5 Building 6900 (New Hangar) - Area of Concern F

The new hangar (Building 6900- Figure 4-7) was built in 1962 and is currently home to a majority of the aircraft maintenance activities conducted on base. Reported waste disposal methods (prior to 1980) used during maintenance activities in the new hangar consisted of disposing of small quantities of used solvent, paint wastes, and POL in the dumpsters. These

fig_4-7.dwg 7/95

dumpsters were and still are located in an alcove on the northeastern corner of the building (Figure 4-7). Larger quantities were collected and taken to the FTAs to be burned. It was reported that the dumpster area has always been covered by asphalt. However, it was also reported the dumpsters leaked and that the asphalt beneath the dumpsters was frequently in disrepair. Stained soils beneath the dumpsters were also reported by one base employee. The amount of material which may have leaked from the dumpsters is estimated to be less than one gallon per month. The potential exists that waste POL and solvents have entered the soil and/or groundwater from the leaking dumpsters. Based on these data, sampling was completed for AOC F.

4.5 OTHER PERTINENT INFORMATION

Several areas were under consideration for inclusion as AOC, but were removed from further consideration for various reasons. These areas and the rationale for not including them in the SI phase of the project are described in the following subsections.

Fuels refueling/defueling areas: According to base personnel, aircraft were refueled or defueled in two general areas on base: the area on the apron south of the old base fuels area, and/or the area south of the old hangar where the apron makes a "V". No large fuel spills were reported occurring in these areas, except for the spill associated with IRP Site 6 (Fuel Spill Site). It was reported that numerous small fuel spills (less than approximately five gallons of fuel) occurred in these areas. However, base personnel indicated that spills greater than approximately one gallon of fuel were contained and cleaned up quickly because of the potential fire hazard these spills presented to the aircraft. Additionally, a review of the existing analytical data from previous IRP investigations at Site 6 (ES, November 1993) and from the background monitoring wells installed on the edge of the apron south of the hangars indicate no evidence of groundwater quality problems associated with fuel spills.

- Area West of the Railroad Tracks: In 1986, a tract of 204 acres of land was acquired by the Michigan ANG along the western boundary of the base (Figure 2-2). This land is separated from the main portion of the base by land owned by the Grand Trunk Western Railroad. The original PA (HMTC, 1987) states "several widely scattered fire training burn areas were identified on the new property leased by the ANG". However, interviews with past and present base personnel indicated this area has always been forested, and it has not been used by either the previous owners or by base personnel for any activities involving potentially hazardous materials.
- Truck Ramp: A truck ramp exists north of the base motor pool area. The truck ramp was constructed to allow vehicles to be elevated while a petroleum-based undercoating was applied to the trucks. Reportedly, the undercoating applicator clogged every time it was used and the operation was abandoned after only two or three uses (either in 1983 or 1984). An inspection of the ramp (October 20, 1993) did not reveal the presence of visible buildup of the undercoating on the ramp itself or the presence of stained soils surrounding the ramp.
- Base Storm Sewer Outfall: Based on underground utilities information contained in the Michigan ANG Base Master Plan (Snell Environmental Group, 29 July 1987), surface water flow can be traced for various areas on base. Surface water collected from the main portion of the base drains in a northerly direction to the drainage swale (IRP Site 2), while the tarmac and portions of the hangar drain in a southerly direction to a low area just off the apron. This area roughly corresponds with the fuels refueling/defueling area ("V" in the apron). There is no surface water outlet from this low area. A third area of the base (by the new POL area) is serviced by a storm sewer system that drains south and west. The outfall from this area goes under the Grand Trunk Western Railroad property and in the future will be the permitted storm sewer outfall.

5.0 FIELD PROGRAM

The methods used in the field program will be summarized in the following sections.

5.1 GENERAL APPROACH

The SI field program activities that EARTH TECH implemented at the MIANG, W.K. Kellogg Regional Airport during 1994 are described in this section. These activities included soil gas sampling, the collection of surface and subsurface soil samples, and groundwater sampling. The field program is summarized in Table 5-1.

Table 5-1 Summary of Site Inspection Field Program 110th FW, MIANG, W.K. Kellogg Regional Airport

Screening Samples ^(a)		AOC A	AOC B	AOC C	AOC D	AOC E	AOC F	Total
	Soil Gas	10	17	22	14	21		83
	Soil	12	18	20	7	12	22	91
	Groundwater			3				3
Totals (screening)		22	35	45	21	33	22	177
Confirmation Activity	3						· · · ·	
	Soil Borings	2	4	7	2	2	3	20
Confirmation Samples ^(a)								
	Soil	8	10	12	4	4	7	39
	Groundwater			1				1
Totals (Confirmation)		8	10	11	4	4	7	40

⁽a) QA/QC samples not included

5.2 FIELD SCREENING SAMPLING AND ANALYSIS

Field screening activities consisted of initial site screening (on-site gas chromatograph [GC]) analysis of soil gas, groundwater, and soil samples that were collected from the confirmation-round soil borings. Target compounds that were screened for during these activities included BTEX and chlorinated aliphatic compounds (cis, and trans-1,2-dichloroethene (DCE), TCE, tetrachloroethane (PCE), and chlorobenzene. CIS-1,2-DCE and TCE coeluted during the analyses. The results are reported as C1S-1,2-DCE/TCE. The screening methods will be discussed in the following sections along with the uses of the various techniques employed in the field program.

5.2.1 Soil Gas Sampling

Soil gas samples were collected from each AOC (except AOC F where no SOV survey was proposed) and analyzed for the presence of chlorinated solvents, BTEX, and total VOCs. Eighty-three soil gas samples were collected and analyzed in the field. Soil gas samples were collected at regular intervals in a fixed grid pattern until the on-site GC results became available. Subsequent sampling locations were relocated, as needed, based on those results.

The probe rods were advanced into the soil column using a truck-mounted hydraulic cylinder/percussion hammer unit. Once the soil gas probe was driven to the desired sampling depth, a sampling cap which isolates the interior of the rods from the atmosphere was attached to the lead probe. A length of silicone tubing was then attached to the top of the sampling cap. Finally, the sample line was attached to the vacuum/volume system. Prior to the sampling, a minimum of three purge volumes were evacuated from the rods. Soil gas was obtained using a 5 ml, gas-tight syringe needle which was used to pierce the silicone tubing at the top of the sampling cap and withdraw the soil gas samples. These syringes were delivered to the on-site GC for analysis.

5.2.2 Groundwater Screening

A total of three groundwater samples were collected at AOC C. Using the on-site GC, they were analyzed for the presence of chlorinated solvents, BTEX, and total VOCs. The hydraulic

cylinder/percussion hammer unit was used to advance the probe rods. After the probe rods had intercepted the water table, a section of inert polyethylene tubing was inserted through the probe rods into the groundwater. The aboveground end of the tubing was connected to a peristaltic pump. A groundwater sample was obtained and placed in 40 ml glass vial sealed with a Teflon®-lined septum screw-cap and delivered to the on-site GC for analysis.

5.2.3 Soil Screening

A total of 91 soil samples were collected from AOC A through F and analyzed using the on-site GC during the installation of conformational soil borings. These samples were collected using a 24 inch × 1.375 inch outside diameter piston-type sampling barrel fitted with removable stainless steel liners. Each stainless steel liner consisted of four six inch sections kept in line with a polyvinyl chloride (PVC) sleeve. This configuration is capable, depending upon subsurface conditions, of recovering a core approximately 22 inch long \times 1-1/16 inch diameter (320 ml). The assembled sampler was attached to the probing rods and driven and/or pushed to the top of the desired sampling depth. The piston stop pin was removed at this time, and the sampler was driven and/or pushed to the end of the sampling interval. The probe rods were then retracted, and the sampler was recovered. Each sampler was opened upon recovery, and the stainless steel sample liners were removed. The liners were then split apart by hand or with a stainless steel knife. The end of each liner was scanned with a photoionization detector (PID) meter and the reading was recorded on the boring log. A soil sample was extruded from the deepest or lead liner, placed in a 40 ml sample vial, sealed with a Teflon®-lined septum screw-cap, and transported to the field GC for analysis. The second liner was sealed with Teflon® tape and tightly fitting plastic caps for potential laboratory analysis (VOCs). The remaining sample was composited in a stainless steel bowl and placed in an 8 ounce amber jar for potential laboratory analysis (SVOCs and PP metals). The samples were labeled, placed in a cooler, and chilled to 4° C.

5.2.4 Analytical Methods - Field Screening

The soil gas, soil, and groundwater samples collected during the site screening activities were all analyzed for the same target compounds, using the same instrumentation, and using similar methods. This section provides a general description of the analytical instrumentation and target

compounds, as well as a summary of analytical methods specific to the soil gas, soil, and groundwater samples. All analytical results are included in Appendix A.

Instrumentation and Target Compounds

A Sentek Scentograph Plus II™ gas GC equipped with a SP2100 column, an argon ionization detector, an electron capture detector, and a purge and trap sampling system was used for the analysis of screening samples.

For this survey, the target compounds and their method detection limits (MDLs) are as follows:

Compound	MDL (μg/L)
trans-1,2-Dichloroethene(DCE)	34
Benzene	4
cis-1,2-Dichloroethene(DCE)	23
Trichloroethane(TCE)	4
Tetrachlorethane(PCE)	4.7
Toluene	3.7
Chloro/Ethylbenzene	8.2
m,p-Xylene	6.8
o-Xylene	5.6

The MDL is the lowest compound concentration that can be practicably measured using a given analytical method. MDLs were calculated by analyzing seven replicates of a mixed standard with a concentration within ten times the estimated MDL. The concentration for each analyte was determined for each replicate. (A standard deviation was then calculated for the seven standard concentrations multiplied by the Student t value for a one-tailed test with a 99% confidence interval.)

A compound's identification was based upon comparison of target compound retention times with sample retention times. Because of the possibility of chromatographic interferences and coelution problems, compounds are considered to be tentatively identified.

Sample quantification was based upon average response factors from continuing calibrations. Response factors were initially calculated using a four-point calibration curve. Due to a problem with temperature stability in the van housing the field GC, however, it was often difficult to obtain a four-point calibration curve. In these cases, a three-point standard curve was used instead. A three-point standard curve is considered to be statistically valid and does not affect the quality of the reported data. In each case, the standards that were prepared consisted of known concentrations of BTEX, chlorobenzene, and 4-bromofluorobenzene in a methanolic solution and known concentrations of cis-1,2-DCE, trans-1,2-DCE, PCE, and TCE in a neat solution. The concentration and identification of target compounds were performed by the integrator and checked by the chemist to ensure that data reduction was performed correctly.

5.2.4.1 Soil Gas Sample Preparation and Analytical Procedures

Soil gas samples were prepared for analysis by injecting 5 ml of soil gas into a prelabeled volatile organic analyte (VOA) vial containing 20 ml of American Society of Testing and Materials (ASTM) Type II water. The sample/water mixture was connected to the purge and trap system, purged for approximately 12 to 15 minutes (purging times were dependent on the measured purge gas flow rates, which were determined periodically during sampling), and run through the GC.

5.2.4.2 Soil Sample Preparation and Analytical Procedures

Soil samples were prepared for analysis by removing 5 grams of soil from the VOA vial and placing this soil in a pre-weighed VOA vial lined with a Teflon® septum. The vial plus soil was weighed and the weight recorded. ASTM Type II water was added to the vial to bring the entire volume of material within the vial to equal 20 ml. The vial plus soil and water was then weighed and the weight recorded. The sample/water mixture was connected to the purge and trap system, purged for approximately 12 to 15 minutes (purging times were dependent on the measured purge gas flow rates, which were determined periodically during sampling), and run through the GC.

5.2.4.3 Groundwater Sample Preparation and Analytical Procedures

Groundwater samples were prepared for analysis by withdrawing 20 ml of groundwater from the VOA vial used to collect the sample and transferring this sample to another precleaned VOA vial. A decontaminated syringe was used to transfer sample from vial to vial. The sample/water mixture was connected to the purge and trap system, purged for approximately 12 to 15 minutes (purging times were dependent on the measured purge gas flow rates, which were determined periodically during sampling), and run through the GC.

5.3 CONFIRMATION SAMPLING AND ANALYSIS

Confirmation sampling activities consisted of the collection and laboratory analysis of selected soil and groundwater samples. Sampling was completed according to HAZWRAP Level B guidelines using protocols established in the Final PA/SI Work Plan (The Earth Technology Corporation, March, 1994). The following sections will describe the methods used to collect and analyze these samples.

5.3.1 Soil Sampling

Thirty-nine confirmation soil samples were submitted to Compuchem Laboratories for analysis of their VOC (Contract Laboratory Program (CLP) 3/90 methods), SVOC (CLP 3/90 method) and PP list metals (CLP methods) content. Confirmation samples were submitted from each of the soil borings completed during the field event. As proposed in the Final PA/SI Work Plan (The Earth Technology Corporation, March, 1994) surface soil samples and soil samples obtained from the zone immediately above the water table, if reached, were submitted from each boring. Gravel layers at some AOC prevented the Geoprobe® from reaching the water table. In these cases, the deepest soil sample obtained prior to refusal was sent to the laboratory. Confirmation soil samples were collected by the methods described in Section 5.2.3.

5.3.2 Groundwater Sampling

One groundwater confirmation sample was collected during the field sampling event. The sample was collected using the methods described in Section 5.2.2 with the following exceptions. Teflon® tubing was substituted for polyethylene tubing during the confirmation groundwater sampling. The Geoprobe® rods were purged using the peristaltic pump. The samples were collected by inserting a check valve on the end of the Teflon® and manually filling the tubing with water. Sample bottles were filled by pulling the tubing from the hole and draining the tubing into the bottles. The confirmation sample was collected and analyzed for VOCs (CLP 3/90 methods), SVOCs (CLP 3/90 methods), and both filtered and unfiltered PP list metals (CLP methods). Filtered metals samples were collected at the end of the sampling. A cartridge filter containing filter membrane with a $0.45\mu m$ pore size was attached to the end of the Teflon® tubing. Groundwater was drawn through the Teflon® tubing using the peristaltic pump and collected in the appropriate sample container. The sample containers were labeled and placed on ice for temporary on-site storage.

5.3.3 Analytical Methods - Confirmation Sampling

The numbers of samples collected per AOC and the analysis performed on each sample is included in Table 5-2.

Table 5-2 Confirmation Program Analytical Summary 110th FW, MIANG, W.K. Kellogg Regional Airport

	VOCs (a) (CLP)	SVOCs (a) (CLP)	Metals (a)(b) (CLP)	PCBs (a) (SW 846-8080)	TCLP (c)
AOC A	5	8	8		_
AOC B	9	9	9		_
AOC C	13/1	13/1	13/2	1	1
AOC D	4	4	4		_
AOC E	4	4	4	_	
AOC F	7	7	7	_	
Subtotal	42/1	45/1	45/2	1	1
Field Duplicates	4	4	4		
Equipment Rinseates	4	4	4		
Totals	48/1	53/1	53/2	1	1

5.4 DECONTAMINATION

Decontamination procedures for all sampling activities were carried out in general accordance with DOE/HWP-100, SOP 14. Major sampling equipment such as the truck-mounted hydraulic cylinder/percussion hammer was decontaminated prior to beginning work at the base as follows:

- Washed with high pressure steam and laboratory grade detergent.
- Rinsed with potable water.

Decontamination of the major sampling equipment was also completed between sites and at the discretion of the field team leader.

Other sampling equipment such as soil gas probes, sampling barrels, stainless steel mixing bowls, etc., was decontaminated prior to each use as follows:

- Washed with a mixture of potable water and laboratory grade detergent.
- Rinsed with potable water.
- Rinsed with ASTM Type II water.
- Rinsed with pesticide-grade methanol.
- Allowed to air-dry

Because the sample liners were wrapped in PVC they were not rinsed with methanol (Field Change Request 2). Tools that were not to be used immediately were wrapped in aluminum foil. All decontamination fluids were contained during the decontamination process and transferred as required to high capacity polyethylene tanks. The handling and disposition of the waste water generated during the decontamination process is discussed in Section 5.8.

5.5 BACKGROUND

Background soil samples were not collected as part of the SI program implemented by EARTH TECH at the W.K. Kellogg Memorial Airport. The MDNR has established default cleanup criteria for soils

at sites where metals are of concern (State of Michigan MDNR, September 1993). These values are based on the analysis of the database for the Michigan Background Soil Survey (April 1991), which is maintained by the Waste Management Division (WMD). They represent the mean plus one standard deviation for WMD data from combined clay, topsoil, and sand categories. Background is discussed further in Section 6.2.

5.6 DEVIATION FROM WORK PLAN

All deviations from the Final PA/SI Work Plan (The Earth Technology Corporation, March 1994) are considered to be minor. Three field change requests (presented in Appendix B) were submitted by EARTH TECH during the field events.

5.7 SURVEYING

Sampling locations were not surveyed. Samples collected at each of the AOC were tied to a building corner, fence, storm sewer outfall or some other geographic feature on base. The accuracy of the sampling locations presented in Section 6.0 is estimated to be approximately \pm two feet.

5.8 INVESTIGATION-DERIVED WASTE MANAGEMENT

Materials which were generated during SI field operations consisted of unused soil samples, decontamination fluid, and miscellaneous solid waste.

Unused soil samples were returned to their respective boreholes. The borehole was then plugged with granular bentonite. The miscellaneous solid waste generated during field activities was containerized and disposed of as nonhazardous material.

Used decontamination fluids were collected in clean polyethylene containers. Wastewater generated during the May 1994 groundwater sampling event was previously stored on base. SI wastewater was combined with this existing wastewater and a composite sample was collected and analyzed for VOCs, SVOCs, and metals using EPA 6000 Series (drinking water) methods. These analytical results were transmitted to the base environmental coordinator and representatives of HAZWRAP and the ANGRC. Copies of the results are included in Appendix C.

6.0 INVESTIGATION RESULTS

The results of the SI program completed at the MIANG, W.K. Kellogg Regional Airport will be discussed in this section. The SI program consisted of soil gas screening, and soil and groundwater sampling and analysis.

The subsections within Section 6.0 will present the data generated by the SI program with a discussion of the findings for each AOC. Each section will address such topics as: sampling locations; screening, confirmational, and QC sampling results; significant findings relating to geologic and hydrogeologic conditions; comparison of concentrations of detected contaminants to ARARs and background levels; and identification of data gaps.

The data interpretations presented in this section are based upon data collected during this investigation and previous investigations, where applicable. Field data, such as boring logs and soil sampling forms, are included in Appendix D. Field VOC analytical results and chromatograms for the soil gas and soil screening are included in Appendix A. The confirmation soil and groundwater analytical results generated during the investigations are printed in their entirety in Appendix E. The data tables included in Section 6.0 present only those compounds and analytes for which a positive response was detected in at least one sample. Per guidance presented in the Final PA/SI Work Plan (The Earth Technology Corporation, March 1994), only limited data validation was completed on the confirmation data set (one in ten samples validated or at least one sample per sample delivery group; field QA samples collected under Level B protocols). Data validation summaries are presented in Appendix F.

6.1 APPLICABLE OR RELEVANT, AND APPROPRIATE REQUIREMENTS

A discussion of the Applicable or Relevant, and Appropriate Requirements (ARARs) for the SI portion of this project are included in the following discussions.

6.1.1 Michigan Environmental Response Act 307 of 1982

The Michigan Environmental Response Act (MERA) 307, enacted in 1982, provided for the identification, risk assessment, and priority evaluation of environmental contamination in the state of Michigan. MERA 307 of 1982 identified three types of cleanup criteria:

- Type A Background (or method detection limit).
- Type B Risk-based with standardized residential exposure assumptions.
- Type C Risk-based with site-specific exposure assumptions.

Legislation passed in 1994 and 1995 has significantly modified the existing MERA 307 regulations regarding the assessment and cleanup of environmental contamination in the state of Michigan.

6.1.2 Michigan Natural Resources and Environmental Protection Act (PA 451)

The Michigan Natural Resources and Environmental Protection Act (NREPA), PA 451, was enacted in 1994. Provisions contained within PA 451 inserted the existing MERA 307 into the newly created NREPA. The pre-existing MERA 307 is now titled Part 201 of the NREPA. On June 5, 1995 House Bill 4596, amending Part 201 of the NREPA, was signed into law. These amendments have substantially modified the provisions of the law regarding liability for the cleanup of environmental contamination (Michigan Department of Natural Resources (MDNR), June 15, 1995). New interim guidance and cleanup standards have been issued by the Environmental Response Division of the MDNR. The major changes to the existing guidance and discussions regarding the new guidance is included in the following subsections.

6.1.2.1 **General**

The three types of cleanup criteria (Type A, Type B and Type C) which existed under the old MERA 307 have been replaced with four cleanup standard categories:

residential (formerly Type B criteria)

- commercial (formerly generic Type C criteria)
- recreational
- industrial (formerly generic Type C criteria)

Generic residential, commercial, and industrial, chemical-specific cleanup criteria have been developed by the MDNR using standardized exposure and dose assumptions using algorithms developed under current U.S. Environmental Protection Agency (EPA) guidance. Exposure assumptions have been developed and used to determine acceptable risk levels for carcinogens (one in one hundred thousand, i.e. 10⁻⁵) and for non-carcinogens (Hazard Quotient exceeding 1). Interim guidance has been published by the MDNR (Operational Memorandum (O.M.) #8, revision 4, June 5, 1995, and O.M. #14, revision 2, June 6, 1995) which includes chemical-specific cleanup criteria for residential, commercial and industrial exposures. As of July 1995, generic, chemical-specific recreational cleanup criteria were not available from the MDNR. Background concentrations of metals may be substituted as cleanup goals in cases where background is higher than the applicable generic criteria. The default soil values (Type A) contained in O.M. #15 (MDNR, September 30, 1993) may still be applied as state-wide background values.

General discussions regarding the generic industrial, commercial and residential exposure assessments, chemical-specific ARARs, and their applicability to this project are presented in the following subsections.

6.1.2.2 Groundwater

Contaminated Groundwater as a Threat to Human Health

Both health-based and aesthetic groundwater values have been developed for residential and industrial/commercial exposure scenarios. Algorithms used to evaluate the exposure scenarios and develop the chemical-specific values are included in O.M. #8, revision 4 and O.M. #14, revision 2, copies of which are included in Appendix G. Commercial/industrial values were developed assuming that groundwater beneath the facility is used as an on-facility source of drinking water. Inhalation of VOCs released during showering etc., were not evaluated under

these exposure scenarios. However, if no significant inhalation risk exists, criteria and/or exposure control measures which are protective for other routes of exposure are deemed protective for the inhalation pathway.

Contaminated Groundwater as a Threat to Surface Water

Groundwater-surface water interface (GSI) values have been developed by the MDNR and represent the maximum allowable hazardous substance concentration at the groundwater-surface water or the edge of the mixing zone, whichever is applicable for a particular site. GSI values are the same for both residential and commercial/industrial exposure scenarios.

6.1.2.3 Soils

Contaminated Soils as a Threat to Groundwater Quality

Procedures and criteria have been developed by the MDNR to evaluate the potential effects contaminated soils have or might have on groundwater beneath a site. Soil action levels judged to be protective of groundwater can be determined through:

- a comparison of measured soil concentration to 20 times (20x) the appropriate groundwater criterion (background or the health-based or aesthetic drinking water)
- leachate testing (O.M. #12, revision 1, September 1994)
- other methods, such as fate and transport modeling

The 20x values presented for residential exposure scenarios are provided for convenience and are not mandatory if leachate tests or other methods which better represent in situ conditions support the use of a higher value. Commercial/industrial 20x values have not been published.

Contaminated Soil as a Threat to Surface Water

Soil action levels judged to be protective of surface water applying residential exposure scenarios have been determined by MDNR to be 20x the appropriate GSI value. Commercial/industrial 20x values have not been published. However, generic commercial/industrial soil cleanup criteria protective of surface water can be developed using the same approaches that apply to soil criteria protective of groundwater (i.e., leachate testing or modeling).

Contaminated Soil as a Threat to Human Health

Direct contact values have been developed to protect residents or site workers against long-term, systemic health effects from ingestion and dermal absorption of hazardous substances in soil. The exposure assumptions used in the algorithms are discussed in O.M #8, revision 4 and O.M. #14, revision 2. Average, on-site soil concentrations, represented by the 95% upper confidence level (UCL) on the arithmetic mean, may be used to determine compliance with the soil direct contact values. Note that exposures through inhalation of VOCs released from the soils or inhalation of particulate contaminant emissions are excluded from the direct contact values. However, if no significant inhalation risk exists, criteria and/or exposure control measures which are protective for other routes of exposure are deemed protective for the inhalation pathway.

6.1.3 Application of NREPA Cleanup Criteria to the PA/SI

An objective of the SI is to determine which AOC require further analysis or listing as IRP sites. To accomplish this objective soil and groundwater analytical results obtained during the SI were compared to the applicable generic cleanup criteria developed by the MDNR. Only surface and subsurface soils and groundwater (AOC C only) samples were collected during this investigation. Surface water and groundwater surface water interface criteria are not applicable to this investigation because there are no surface water bodies adjacent to the AOC investigated during this SI.

Soil

Information presented in the Internal Draft RI Report (EARTH TECH, June 1995) suggests the base should be considered an industrial facility. Therefore, soil analytical results were compared to the interim chemical-specific, industrial, direct contact criteria prepared by the MDNR. Background soils metals concentrations, developed during the RI, were also incorporated into this evaluation.

In addition to evaluating the direct contact pathway, the soils were directly compared to the residential 20x drinking water value as a way of screening for constituents which may be susceptible to leaching from the soils and adversely affecting groundwater. Because groundwater flows off-base, to areas of Battle Creek which may in the future be residential areas, groundwater results were evaluated against these residential cleanup criteria.

Soil Protective of Groundwater

Following guidance developed by the MDNR soils are judged protective of groundwater if total chemical concentrations contained within the soils are below the 20x health-based drinking water values (for organics) or the higher of:

- site-specific or default background concentrations
- 20x the applicable health-based or aesthetic drinking water concentrations

Table 6-1 presents background concentrations for surface and subsurface soils and groundwater which were developed during the RI. Table 6-2 lists the three evaluation criteria used to develop soil protective of groundwater values for metals. As stated previously, the soil protective of groundwater value is the higher of background or 20x the applicable residential health-based or aesthetic drinking water criteria. 20x the groundwater background concentrations may be substituted in place of the health-based or drinking water concentrations if background concentrations are higher than the health-based concentrations. The soil protective of groundwater values reproduced on this table are not mandatory cleanup

Table 6-1
Background Surface and Subsurface Soil and Groundwater Concentrations
110th FW, MIANG, Battle Creek, Michigan

		Standard	Background		Type A	
	MEAN	Deviation	Concentration	CV ^(a)	Value (d)	Background ^(e)
	MEAN	(STD)	(MEAN + 3 STD)	CV	v alue	Background
Background Surface Soils			(WILAN TO STD)			
Antimony (b)	0.13	0.04	0.25	0.32		0.25
Arsenic	3.39	1.25	7.14	0.37	5.8	7.14
Barium	33.73	14.23	76.43	0.42	75	76.43
Beryllium	0.17	0.01	0.19	0.06		0.19
Cadmium (c)	(0.05 U)				1.2	1.2
Chromium	7.65	3.82	19.10	0.50	18	19.10
Copper	4.30	1.22	7.96	0.28	32	32
Lead	6.78	3.28	16.61	0.48	21	21
Mercury (c)	(0.1 U)				0.13	0.13
Nickel	5.66	1.92	11.43	0.34	20	20
Selenium	0.29	0.10	0.59	0.34	0.41	0.59
Silver (c)	(0.5 U)				1.0	1.0
Thallium	0.30	0.11	0.62	0.36		0.62
Zinc	14.80	4.83	29.30	0.33	47	47
Background Subsurface So	ile					
Antimony (8)	0.14	0.07	0.36	0.5		0.36
Arsenic	3.23	1.11	6.57	0.34	5.8	6.57
Barium	6.90	1.15	10.36	0.17	75	75
Beryllium (b)	0.05	0.01	0.08	0.17	, , , , , , , , , , , , , , , , , , ,	0.08
Cadmium (c)	(0.05 U)		0.08 	0.13 	1.2	1.2
Chromium	4.38	0.75	6,63	0.17	18	18
Copper	3.85	0.17	4.37	0.04	32	32
Lead	2.58	0.36	3.65	0.14	21	21
Mercury (c)	(0.1 U)				0.13	0.13
Nickel	4.70	0.61	6.52	0.13	20	20
Selenium (c)	(0.47 U)				0.41	0.41
Silver (c)	(0.5 U)				1.0	1
Thallium	0.19	0.09	0.45	0.47	0.45	0.45
Zinc	11.75	3.90	23.45	0.33	47	47
		0.00	200	0.00	• •	•••
Background Groundwater						
Aluminum	62.2					62.2
Antimony	18.2	••				18.2
Arsenic	1.3					1.3
Barium	51.2		••			51.2
Beryllium	0.2		·		••	0.2
Cadmium	1.8					1.8
Calcium	73850.0		**			73850.0
Chromium	2.6		••			2.6
Cobalt	3.1					3.1
Copper	5.0					5.0
Iron	356.0					356.0
Lead	2.2		-			2.2
Magnesium	14972.5		,			14972.5
Manganese	807.3					807.3
Mercury Nickel	0.1		••			0.1
Potassium	9.2 1839.9					9.2 1839.9
Selenium	1.8		 	-		1.8
Silver	2.2	- -				2.2
Sodium	10217.5					10217.5
Thallium	1.3					1.3
Vanadium	1.6					1.6
Zinc	5.9		 		·	5.9
LIIIO	0.9	_ _	- -	J <u>-</u>		5.5

soil results are presented in mg/kg

groundwater results are presented in μg/ℓ

⁽a) CV = coefficient of variation test; test must produce a value below 0.5 to be statistically valid for granular soils, (MDNR, April 1994).

⁽b) Some data were rejected resulting in a data set of insufficient size to develop a background.

⁽c) Element was not detected in the background samples.

⁽d) Type A default values MERA Operational Memorandum #15 (MDNR, Sept 30, 1993)

⁽e) Highest of Mean + 3 STD or Type A default value.

Soil Values Protective of Groundwater - Metals 110th FW, MIANG, Battle Creek, Michigan Table 6-2

SURFACE SOIL

SUBSURFACE SOIL

Soil Protective of	Groundwater	Value (d)	0.36	6.57	75	0.08	1.2	18	32	21	0.13	20	1.0	1.0	0.45	48
	Groundwater Grou		0.36	0.026	1.02	0.004	0.036	0.052	0.10	0.044	0.002	0.184	0.036	0.044	0.026	0.118
	Residential Gro	(q)	0.12	1.0	40	0.08	0.1	2	20	0.08	0.04	2	1.0	0.68	0.040	48
	Background	(a)	0.36	6.57	75	0.08	1.2	18	32	21	0.13	20	0.41	-	0.45	47
			F													
Soil Protective of	Groundwater	Value (d)	0.36	7.14	76.43	0.19	1.2	19.10	32	21	0.13	20	1.0	1.0	0.62	48
20x	5	(0)														0.118
	20xDW	(q)	0.12	1.0	40	0.08	0.10	2	20	0.08	0.04	2	1.0	0.68	0.040	48
	Background	(a)	0.25	7.14	76.43	0.19	1.2	19.10	32	27	0.13	20	0.59	1.0	0.62	Zinc 47 48
			Antimony	Arsenic	Barium	Bervllium	Cadmium	Chromium	Conner		Mercury	Nickel	Selenium	Silver	Thallium	Zinc

all concentrations are presented in mg/kg

(c) (a)

Background surface and subsurface soil concentrations were obtained from Table 6-1
From MDNR O.M. #8, Revision 4
Groundwater background concentrations were obtained from Table 6-1 and multiplied by 20. This results in a value in units of mg/f which was converted to mg/kg by dividing by 1000 and assuming the density of water is 1000g/kg

Site-specific (Column 2), or 20x site-specific groundwater value is the greatest of the soil background (Column 1), 20x residential health-based drinking water value (Column 2), or 20x site-specific groundwater (Column 3)

criteria. Leachate testing or other methods which better represent in situ conditions can be used to support the use of higher levels or no further action. All soil analytical tables presented in this report contain two criteria; the generic industrial direct contact value and the soil protective of groundwater value obtained from Table 6-2.

Groundwater

Because groundwater flows off-base, to areas of Battle Creek which may in the future be residential areas, the groundwater samples collected at AOC C will be compared to the interim residential health-based and aesthetic drinking water values. Background groundwater metals concentrations, developed during the RI, will be incorporated where applicable, into this evaluation.

6.2 AREA OF CONCERN A - WASTE ACCUMULATION AREA

The field activities consisted of a soil gas survey (ten samples; eight locations identified as SG1 through SG8) followed by collection and analysis of surface and subsurface soil samples from borings ASB1 and ASB2. Total depths and the screening and confirmation sampling intervals for the AOC A borings are presented in the following table.

Boring Number	Total Depth (feet bgs)	Field Screen Sample Intervals	Confirmation Sample Intervals
ASB1	27	0-1, 5-7, 10-12, 15-17, 20-22, and 25-27	0-1, 5-7, and 25-27
ASB2	32	5-7,10-12, 15-17, 20-22, 25-27 and 30-32	0-2 and 25-27

These activities were completed during July 1994. Additional surface soil samples (ASS01 through ASS03) were collected and analyzed during November 1994. All of these sampling locations are presented on Figure 6-1. The results of these activities are presented in the following subsections.

6.2.1 Geology and Hydrogeology

The soils beneath AOC A were described in the field as being composed of brown to yellowish-brown, well-sorted, fine-grained sand. Wet sands, indicating saturated conditions were encountered in the 30 to 32 ft sample interval obtained from boring ASB2. Groundwater flow is to the northwest beneath AOC A (Figure 3-7).

6.2.2 Results of AOC A Screening Activities

The results of the soil gas and soil screening activities for AOC A are included in the following subsections.

6.2.2.1 Soil Gas Survey

The initial screening activities at AOC A consisted of collection and on-site analysis of ten soil gas samples. Location ASG1 was sampled initially and was vertically profiled. Samples ASG1a, b, and c were collected at depths of 5, 10, and 20 ft, respectively. No target compounds or total VOCs were reported in these three samples. The remainder of the soil gas survey at AOC A was completed at the 5 ft depth interval. No target compounds or total VOCs were reported in the remainder of the SOV survey. Because the results of the SOV survey were negative, borings ASB1 and ASB2 were located in the general area where photographs and personnel interviews indicated the waste oil drums were stored (Section 4.0).

FIG_6-1.dwg B/95

6.2.2.2 Soil Screening

Soil samples were collected from borings ASB1 and ASB2 at the surface and at 5 ft intervals until the water table was encountered. A total of 12 soil samples were obtained from these borings and analyzed for their VOC content using the on-site GC. Faint to possible hydrocarbon odors were detected and recorded by the field team during the collection of samples numbered BCA-B1-0001 and BCA-B1-0507. No target compounds or total VOCs were reported from the on-site analysis of these samples, or from any of the other AOC A soil samples.

6.2.3 AOC A - Soil Analytical Results

A discussion of the analytical results obtained for the surface and subsurface soils are included in the following sections.

6.2.3.1 Surface Soil

Five surface soil samples were collected from AOC A. The surface soil analytical results for AOC A are presented in Table 6-3, and are discussed by compound or analyte lists (VOCs, SVOCs, and metals) in the following subsections.

VOCs

VOCs were only analyzed for at locations ASB1 and ASB2. Only the common laboratory contaminants acetone (18 to 33 μ g/kg) and methylene chloride (7 to 53 μ g/kg) were detected in the four samples collected and analyzed from AOC A. Neither compound was detected in a concentration greater than the generic industrial direct contact or soil protective of groundwater values.

02	QUAL	JB	ם כ כ	> =) ⊃ =) D :))	⊃ ⁻) ⊃	> =) ⊃)	> =))	7	*]	z m	⊃*
B2 2-00 4/9⁄ ER4	RESULT	∞ ∞	340 340 340	340	340	340 340	340 340	340	340	340 340	340	340	340 340	340	47	3.30	10.10	0.36
4 4	QUAL	U B	כככ	⊃ -	, ⊃	₹⊃ :	⊋⊃	¬ ¬) ⊃	⊃ -)))) T	, ¬	T		z ⊃	
ASB2 BCA-B2-0002 07/14/94 BCER4	RESULT	11	340 340 340	340	340	340	77 340	36	340	340	340	340	340 59	99	82	3.50	8.70	0.36 6.50
. 01	QUAL	⊃ @	כככ	7			7	=) ¬	⊃	7		>		\supset	N Z	z 🗅	N N
B1 1-00 0/94 ER4	RESULT	11	3800 3800 3800	820	4600	5000	9700 890	3800	1100	3800	420	4500	3800	7500	3800	3.40	0.70	0.44
1 01	QUAL	മമ	000	٥	<u>م</u> ۵	ם ו	Ω	۵ =	>	= C	נ	:	С	۵	(B)	٦	0	(<u>r</u>
ASB1* BCA-B1-0001 06/30/94 BCER4	RESULT	33	180 340 330	920	4300	2300	10000 720	4000	510	270	520	2400	170	7200	280	3.40	39.60	0.49
LOCATOR: SAMPLE ID: COLLECTION DATE: OCIATED FIELD QC:	PA451 PART 201 CRITERIA (b)	7.4E+7/15,000 3.3E+6/100	ID/ID 8.1E+8/26,000 1.6E+7/520	1.0E+9/1.5E+5	21,000/	2.1E + 5/ 1.6E + 7/	2.1E+6/ /	2.1E+7/ 5.4E+8/18.000	21,0	ID/ID 5.45+8/18.000	5.4E + 8/18,000		1.6E+8/5,200 1.6E+7/520	3.4E+8/11,000	late 1.1E+7/	1,600/0.36	83/7.14 35/0.19	2.3E + 3/1.2 1.0E + 6/19.10
)) ASSO(PA451 PAR	CLP VOA (µg/kg) Acetone Methylene chloride	CLP SVOA (µg/kg) 2-Methylnaphthalene Acenaphthene Acenaphthylene	Anthracene Renzo(a) anthracene	Benzo(a) pyrene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene Carbazole	Chrysene Di-n-butyl phthalate	Dibenzo(a,h)anthracene	Dibenzofuran Fluoranthana	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene Phenanthrene	Pyrene	bis(2-Ethylhexyl)phthalate	CLP METAL (mg/kg) Antimony	Arsenic Beryllium	Cadmium Chromium

BCA-B1-0001, BCG-B1-0001, BCA-B2-0002, and BCG-B2-0002 are field duplicates 1.0E+B is abbreviated scientific notation and is equivalent to 1,000 mg/kg miligrams/kilogram mg/l miligrams/kilogram grams/kilogram space and params/kilogram willigrams/kilogram space and params/kilogram grams/kilogram willigrams/kilogram grams/kilogram grams/kilogram harmole validated using HAZWRAP level C QC sanche validated using HAZWRAP level C QC generic industrial direct contact value/soil protective of groundwater action level (b)

ODData Validation Qualifiers

1. Result is between the detection limit and the quantitation limit

CB Value is unreliable due to blank contamination value

J Reported value is blased low

L Reported value is blased low

U Compound analyzed for but not detected

Result is unreliable

Ray to produced from a single point method-of-standard addition Analyte side detected in associated blank (organic)
Rasult between IDL and CRDL (norganic)
Rasult between IDL and dilution
Chemical or physical interference during analysis
Reported value is estimated
Matrix related interference in the sample
Compound analyzed for but not detected
Sample specific qualifier
Non-homogeneous sample matrix

Laboratory Qualifiers
A Result produced
B Analyre also de
B Result between
D Sample result is
E Chemical or phyl
J Reported value
N Matrix related in
U Compound anal
X Sample specific

. 02	QUAL			z	*	ш
ASB2 3CG-B2-0002 07/14/94 BCER4) 	0.01	6.20	2.20	3.40	7.40
AS BCG-B 07//	RESULT QUAL	0		•	ω	_
002 4	QUAL	Ω		Z	*	ш
SB2 B2-00 114/94		0	4.80	3.80	5.70	വ
ASB2 BCA-B2-0002 07/14/94 BCER4	RESULT QUAL					_
10 -1	RESULT QUAL	ס				Π
ASB1 3CG-B1-0001 06/30/94 BCER4	_ ⊢	0	1.10	43.80	0.80	31
A BCG-1 06/	RESUL		_	4	_	13
	AL	⊃				_
* 0001 94	au		0		0	
ASB1* 3CA-B1-0001 06/30/94 BCFR4	RESULT QUAL	0	8.20	124	8.70	75
ш						
ATOR: LE ID: DATE:	RIA (b)	2.2E+4/	-5/32	4.0E + 2/21	F 5/20	.0E + 6/48
LOCATOR: SAMPLE ID: COLLECTION DATE: ASSOCIATED FIEID OC:	PA451 PART 201 CRITERIA (b)	2.2E	1.7E+	4.0E +	3.4€ +	1.0E ⊦
OLLEC	Г 201	(8)				
OC PSSOC	PAR	kg) 6 (mg/				
	PA45	- (mg/				
		:LP METAL (mg/kg) Chromium, Cr + 6 (mg/ℓ)	per	-	e	
		CLP.	Copper	Lead	Nickel	Zinc

micrograms/kilogam Sample validated using HAZWRAP level C QC generic industrial direct contact value/soil protective of groundwater action level

Appara Validation Qualifiers
 Result is between the detection limit and the quantitation limit
 Paule is unreliable due to blank contamination value
 Reported value is based low
 Compound analyzed for but not detected
 Result is unreliable

Result produced from a single point method-of-standard addition
Analyte also detected in associated blank (organic)
Result between IDL and CRDL (inorganic)
Sample result is from a dilution
Chemical or physical interference during analysis
Reported value is estimated
Matrix related interference in the sample
Compound analyzed for but not detected
Sample specific qualifier
Non-homogeneous sample matrix

Laboratory Qualifiers
A Result produced
B Result between
B Result between
D Sample result is
E Chemical or phy
J Reported value
N Matrix related in
U Compound anal
X Sample specific

ASS03	BCA-SS03	11/10/94
ASS02	BCA-SS02	11/10/94
ASS01	BCA-SS01	11/10/94
LOCATOR:	SAMPLE ID:	COLLECTION DATE:

) - -	-				
PA451 PART	PA451 PART 201 CRITERIA (b)	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL
CLP SVOC (µg/kg)							
2-Methylnaphthalene	OI/OI	46	7	110	7	150	7
Acenaphthene	8.1E+8/26,000	160	7	330	7	099	
Acenaphthylene	1.6E + 7/520	370	⊃	41	7	53	\neg
Anthracene	1.0E + 9/1.5E + 5	230	٦	470		700	
Benzo(a)anthracene	2.1E+5/	1700		2800		3700	۵
Benzo(a)pyrene	21,000/	1700		2300		2800	
Benzo(b)fluoranthene	2.1E+5/	4800	DX	5800	DX	0069	ΧO
Benzo(g,h,i)perylene	1.6E + 7/	920		1500		1600	
Benzo(k)fluoranthene	2.1E+6/	5200	ΧQ	2000	ΧO	7000	ΧO
Butyl benzyl phthalate	7.2E + 8/24,000	69	7	380	⊃	390	⊃
Carbazole	/	210	7	440		880	
Chrysene	2.1E+7/	1800		2600		4400	Ω
Di-n-butyl phthalate	5.4E+8/18,000	370	⊃	71	7	68	7
Dibenzo(a,h)anthracene	21,000/	200	7	290	7	510	
Dibenzofuran	D/ID	84	7	190	7	370	ר
Fluoranthene	5.4E+8/18,000	2500		2600	Ω	7300	۵
Fluorene	5.4E+8/18,000	160	7	330	7	520	
Indeno(1,2,3-cd)pyrene	2.1E+5/	880		1500		1600	
Naphthalene	1.6E + 8/5,200	48	7	180	7	450	
Phenanthrene	1.6E + 7/520	1600		2800		5700	۵
Pyrene	3.4E+8/11,000	2400		4800	Ω	0089	۵
bis(2-Ethylhexyl)phthalate	1.1E+7/	370	n	380	⊃	390	⊃
CLP METAL (ma/ka)							
Antimony	1,600/0.36	10.70	N N	11.50	N O	12.10	N O
Arsenic	83/7.14	6		13.80	z	6.50	z
Barium	3.2E + 5/76.43	37.30	В	76.70		53.50	

BCA-B1-0001, BCG-B1-0001, BCA-B2-0002, and BCG-B2-0002 are field duplicates 1.0E+3 is abbrevaited scientific notation and is equivalent to 1,000 mg/kg milligrams/kilogram mg/k milligrams/kilogram mg/k milligrams/kilogram g/k micrograms/kilogram kg/kg micrograms/kilogram g/kg micrograms/kilogram hg/kg micrograms/kilograms/kilogram hg/kg micrograms/kilogram hg/kg micrograms/kilogram hg/kg micrograms/kilogram hg/kg micrograms/kilogram hg/kg micrograms/kilograms/kilogram hg/kg micrograms/kilogram hg/kg micrograms/kilograms/kilogram hg/kg micrograms/kilograms/kilogram hg/kg micrograms/kilogram hg/kg micrograms/kilograms/k

ODData Validation Qualifiers

1. Result is between the detection limit and the quantitation limit

1. Reported value is unreliable due to blank contamination value

2. Reported value is biased low

2. Reported value is biased low

3. Compound analyzed for but not detected

Result is unreliable

Laboratory Qualifiers

A Result produced from a single point method-of-standard addition

B Result produced from a single point method-of-standard addition

B Rasult between IDL and CRPL (inorganic)

B Result is from a dilution

C hemical or physical interference during analysis

J Reported value is estimated

N Matrix related interference in the sample

U Compound analyzed for but not detected

X Sample specific qualifier

Non-homogeneous sample matrix

ASS03	BCA-SS03	11/10/94
ASS02	BCA-SS02	11/10/94
ASS01	BCA-SS01	11/10/94
LOCATOR:	SAMPLE ID:	COLLECTION DATE:

PA451 PAF	PA451 PART 201 CRITERIA (6) RESULT QUAL	RESULT	QUAL	RESULT QUAL	QUAL	RESULT QUAL	QUAL
CLP METAL (mg/kg)							
Beryllium	35/0.19	0.26	а Э	0.50	В	0.37	7 B
Cadmium	2.3E + 3/1.2	0.90	n (0.98	⊃ ~	-	⊃
Chromium	1.0E + 6/19.10	12	*	10.80	*	10	*
Copper	1.7E+5/32	8.80	*	10.50	*	8.2	*
Lead	4.0E + 2/21	51.60	_	62		46.90	0
Mercury	1.4E + 3/0.13	0.11	n _	0.12	\supset	0.1	2 O
Nickel	3.4E + 5/20	9.20	_	10.50	_	8.7	9 0
Zinc	1.0E + 6/48	58.20	*	53.80	*	40.4	*

micrograms/kilogram Sample validated using HAZWRAP level C QC generic industrial direct contact value/soil protective of groundwater action level BCA-B1-0001, BCG-B1-0001, BCA-B2-0002, and BCG-B2-0002 are field duplicates 1.0E+3 is abbreviated scientific notation and is equivalent to 1,000 mg/kg milligrams/kliogram mg/f milligrams/kliogram mg/f milligrams/kliogram + gample validated using HAZWRAP level C QC sample validated using HAZWRAP level C QC generic industrial direct contact value/soil protective of groundwater action le

ODData Validation Qualifiers

1 (1) Result is between the detection limit and the quantitation limit on Result is between the detection limit and the quantitation limit of Value is unreliable due to blank contamination value Reported value is estimated L Reported value is biased low Compound analyzed for but not detected R Result is unreliable

Laboratory Qualifiers

A Result produced from a single point method-of-standard addition

B Analyte also detected in associated blank (organic)

B Result between IDL and CRDL (inorganic)

B Result between IDL and CRDL (inorganic)

Chemical or physical interference during analysis

J Reported Value is estimated

N Matrix related interference in the sample

U Compound analyzed for but not detected

X Sample specific qualifier

Non-homogeneous sample matrix

SVOCs

Twenty-two individual SVOCs were detected in the five surface soil samples, including compounds from the PAHs and phthalate ester groups, and dibenzofuran, and carbazole. Individual SVOCs, when detected, were quantified in concentrations ranging from 36 to 11,000 μ g/kg. Di-n-butyl phthalate (five detections - 68 to 260 μ g/kg), butyl benzyl phthalate (one detection - 65 μ g/kg) and bis (2-Ethylhexyl) phthalate (three detections - 47 to 280 μ g/kg) were quantified in the surface soil samples. Phthalate ester compounds were not detected in concentrations exceeding their respective action levels. Dibenzofuran was detected in four samples in concentrations ranging from 84 to 370 μ g/kg, while carbazole was quantified in five samples in concentrations ranging from 210 to 890 μ g/kg. Insufficient data is available to develop a direct contact or soil protective of groundwater value for carbazole.

Total PAHs concentrations, obtained by summing the concentrations of individual PAHs, range from all individual PAHs non-detect in BCG-B2-0001 to 59,770 μ g/kg in BCA-B1-0001. No samples contained individual PAHs in concentrations exceeding their respective generic industrial direct contact values. Samples BCA-B1-0001 and BCG-B1-0001 (a field duplicate pair), ASS01, ASS02, and ASS03 all contained phenanthrene in concentrations exceeding the soil protective of groundwater value of 520 μ g/kg. The distribution of total PAHs and phenanthrene is presented in Figure 6-2.

<u>Metals</u>

Metals lists were slightly different for samples collected from locations ASB1 and ASB2 (July 1994) when compared to samples collected from locations ASS01, ASS02, or ASS03. Barium was added to the metals list for ASS01 through ASS03 and hexavalent chromium +6 was dropped from the list. Hexavalent chromium was omitted because the July 1994 data (Table 6-3) did not show that the hexavalent chromium +6 was quantified in AOC A soils in concentrations well below the soil protective of groundwater values.

The metals antimony, arsenic, barium, beryllium, cadmium, chromium (total and +6), copper, lead, nickel, and zinc were detected in the surface soils at AOC A. Of these ten metals,

antimony, arsenic, barium, beryllium, chromium (total), lead, and zinc were detected in one or more samples in concentrations exceeding their respective soil protective of groundwater values. Arsenic was quantified in all five surface soils in concentrations of 6.5 to 39.6 mg/kg. Four of these detections exceed the soil protective of groundwater value for arsenic of 7.14 mg/kg. Barium (soil protective of groundwater value = 75 mg/kg) was detected in sample BCA-SS02 at 76.7 mg/kg. Chromium (total) was found in all five samples, but in only BCA-B1-0001(23 mg/kg) was the concentration of chromium quantified above the soil protective of groundwater value of 18 mg/kg. Lead was detected in concentrations exceeding the soil protective of groundwater value of 21 mg/kg in four of five samples (46.9 to 124 mg/kg), while zinc was detected in three of five samples (ranging from 53.8 to 131 mg/kg) in concentrations exceeding the soil protective of groundwater value of 48 mg/kg. Antimony and beryllium were each detected in one and four samples above the soil protective of groundwater value, respectively. The distribution of the metals detections within the surface soils which exceed the soil protective of groundwater values is also presented in Figure 6-2.

6.2.3.2 Subsurface Soil

The analytical results for the three AOC A subsurface soil samples collected during this SI are presented in Table 6-4, and are discussed by compound or analyte list (VOCs, SVOCs, and metals) in the following subsections.

VOCs

The VOCs acetone and methylene chloride (common laboratory contaminants) were detected in one or more of the subsurface soil samples collected and analyzed from AOC A. Methylene chloride was detected at a concentration of 180 μ g/kg (greater than the 20x residential health-based drinking water criteria of 100 μ g/kg) in one sample, BCA-B1-0507. This result was qualified B by the laboratory which indicates some type of blank contamination. Acetone was detected in a concentration of 190 μ g/kg (below regulatory levels) in boring ASB1 (25 to 27 ft).

27	QUAL	U ab	> > =) ⊃	$\supset \supset$	7	⊃	> =) ⊃	⊃	*	N V	\supset	*		z	*	ш
ASB2 BCA-B2-2527 07/14/94 BCER4	RESULT (10	330	330	330 330	79	330	330	330	330	3.10	5.20	0.11	3.30	2.80	1.90	4.10	11.70
27	aUAL	മമ	٠ - >	3 7	۲ ¬	⊃	7	¬ -	, ¬	Ω	S	Z	\supset	z		*		Z W
ASB1 BCA-B1-2527 6/30/94 BCER4	RESULT (190	110	110	250 110	340	260	96 130	190	069	3.20	5.40	0.12	8.40	4.10	3.60	299	19.30
70	aUAL	⊃æ	> > =	o)	⊃	⊃	> =	∍⊃	AB B	z	*	В	z		*		Z W
ASB1 BCA-B1-0507 06/30/84 BCER4	RESULT	11	350 350	350	350 350	350	350	350	350	66	4.30	75.40	0.13	6.10	6.20	33	7.60	14.80
LOCATOR: SAMPLE ID: COLLECTION DATE: ASSOCIATED FIELD QC:	PA451 PART 201 CRITERIA (b)	7.4E+7/15,000 3.3E+6/100	2.1E + 5/ 21,000/	2.1c+3/ 1.6E+7/	2.1E+6/ 2.1E+7/	5.4E+8/18,000	5.4E+8/18,000	2.1E + 5/ 1 RF + 7/520	3.4E + 8/11,000	ate 1.1E+7/	1,600/0.36	83/6.57	35/0.08	1.0E + 6/18	1.7E + 5/32	4.0E + 2/21	3.4E + 5/20	1.0E+6/48
OO ASSOC	PA451 PART	CLP VOA (µg/kg) Acetone Methylene chloride	CLP SVOA (µg/kg) Benzo(a)anthracene Benzo(a)pyrene	Benzo(b)nuorantnene Benzo(g,h,i)perylene	Benzo(k)fluoranthene Chrysene	Di-n-butyl phthalate	Fluoranthene	Indeno(1,2,3-cd)pyrene	Pyrene	bis(2-Ethylhexyl)phthalate	CLP METAL (mg/kg) Antimony	Arsenic	Beryllium	Chromium	Copper	Lead	Nickel	Zinc

mg/kg milligrams/kilogram j/g/kg micrograms/kilogram Sample validated using HAZWRAP level C QC (b) generic industrial direct contact value/soil protective of groundwater action level 1.0E+3 is abbreviated scientific notation and is equivalent to 1,000

(b) generic industrias conservations (b) Data Validation Qualifiers

O) Result is between the detection limit and the quantitation limit B Revolute is unreliable due to blank contamination value D Reported value is estimated U Compound analyzed for but not detected R Result is unreliable

Laboratory Qualifiers

A Result produced from a single point method-of-standard addition

Analyte also detected in associated blank (organic)

B Analyte also detected in associated blank (organic)

E Result between IDL and CRDL (inorganic)

E Result between IDL and CRDL (inorganic)

C Remide of physicial interference during analysis

Natrix related interference in the sample

U Compound analyzed for but not detected

X Sample specific qualifier

Non-homogeneous sample matrix

SVOCs

Twelve individual SVOCs were detected in the subsurface soil samples, including compounds from the PAHs family and di-n-butyl and bis(2-Ethylhexyl) phthalate. Neither of the phthalate esters were detected in concentrations exceeding their respective generic industrial direct contact or soils protective of groundwater values. PAHs were only detected in the 25 to 27 ft sample interval analyzed from boring ASB1. Individual PAHs quantified in BCA-B1-2527 ranged from 96 to 250 μ g/kg, while the total PAHs concentration, obtained by summing the concentrations of individual PAHs, is 1596 μ g/kg. No individual PAHs was detected in a concentration greater than their generic industrial direct contact or soils protective of groundwater values.

Metals

The metals antimony, arsenic, beryllium, chromium (total only), copper, lead, nickel, and zinc were detected in the subsurface soils at AOC A. Of these eight metals, antimony, arsenic, lead, and nickel were detected in one or more samples at concentrations exceeding their respective soils protective of groundwater values. No metals were detected in concentrations exceeding the generic industrial direct contact values. Antimony was detected in the 5 to 7 ft interval from ASB1 in a concentration of 4.3 mg/kg (soil protective of groundwater value = 0.36 mg/kg). Arsenic (soil protective of groundwater value = 6.57 mg/kg) and lead (soil protective of groundwater value = 21 mg/kg) were quantified in sample BCA-B1-0507 at concentrations of 75.4 and 33 mg/kg, respectively. Nickel was detected in BCA-B1-2527 at a concentration of 299 mg/kg. The soil protective of groundwater value for nickel is 20 mg/kg. The distribution of the metal detections which exceed the soil protective of groundwater values for the subsurface soils is presented in Figure 6-3.

6.3 AREA OF CONCERN B - MOTOR POOL DRAINAGE DITCH

The field activities consisted of a soil gas survey (17 samples; 15 locations numbered SG1 through SG15) followed by collection and analysis of surface and subsurface soil samples

fig_6-3.dwg 8/95

from borings BSB1 through BSB4. Total depths and the screening and confirmation sampling intervals for the AOC B borings are presented in the following table.

Boring Number	Total Depth (feet bgs)	Field Screen Sample Intervals	Confirmation Sample Intervals
SB1	27	0-2, 5-7, 10-12, 15-17,- 20-22 and 25-27	0-2 and 25-27
BSB2	27	0-2, 5-7, 10-12, 15-17,- 20-22 and 25-27	0-2 and 20-22
BSB3	11	0-2, 5-7, and 10-12	0-2 and 10-11
BSB4	12	0-2, 5-7, and 10-12	0-2, 5-7, and 10-12

All AOC B sampling locations are presented in Figure 6-4. The results of these activities are presented in the following subsections.

6.3.1 Geology and Hydrogeology

The soils beneath AOC B were described in the field as being composed of yellowish-brown, well-sorted, fine-grained sand. These sands generally contained minor amounts of gravel. The soils (based on this SI) show little variation across the AOC. Refusal of the Geoprobe® rods at 11 and 12 ft during the sampling of borings BSB3 and BSB4, respectively, has been interpreted to indicate that gravel-rich zones exist beneath the northwestern portion of the AOC B. Because the ground surface slopes from the southeast (BSB1) towards the northwest (borings BSB2, BSB3 and BSB4) the depth to groundwater varies across the AOC B. Wet sands, indicating saturated conditions, were encountered in the 25 to 27 ft sample interval obtained from boring BSB2, while the same subsurface interval from boring BSB1 (located at a higher elevation than BSB2), was described as containing very moist sand. Groundwater flow is to the northwest across AOC B (Figure 3-7).

6.3.2 Screening Activities

The results of the soil gas and soil screening activities for AOC B are included in the following subsections.

FIG_6-4.dwg 8/95

6.3.2.1 Soil Gas Survey

The initial screening activities at AOC B consisted of collection and on-site analysis of 17 soil gas samples. The survey results are presented on Figure 6-4. Location BSG1 was vertically profiled. Samples BSG1a, b, and c were collected at depths of 5, 10, and 20 ft, respectively. TCE/cis-1,2 - DCE was detected in BSG1a at a concentration of $5.2 \mu g/l$ of air, while toluene was detected in BSG1b at a concentration of $45.83 \mu g/l$ of air. No target compounds were reported in the BSG1c. The remainder of the soil gas survey at AOC B was completed at the 5 ft depth interval. Target compounds or total VOCs were also detected in soil gas samples BSG2, -3, -7, -10, -11(duplicate), -13, -14, and -15 (Appendix A). The results of this SOV survey were used to select boring locations. Individual boring numbers and the rationale used to select each boring location is included in the following:

- BSB1 located by SOV sample location BSG1
- BSB2 located by SOV sample location BSG7
- BSB3 located between SOV sample locations BSG11 and -13
- BSB4 located between SOV sample locations BSG14 and -15

6.3.2.2 Soil Screening

Soil samples were collected from borings BSB1 through BSB4 at the surface and at 5 ft intervals until the water table was encountered. A total of 18 soil samples were obtained from these borings and analyzed for their VOC content using the on-site GC. No target compounds or total VOCs were reported from the on-site analysis of these soils. The absence of target or total VOC detections, as quantified on the field GC, is consistent with the absence of field PID detections and the lack of noticeable hydrocarbon odors detected during the collection of the AOC B soils.

6.3.3 AOC B - Soil Analytical Results

A discussion of the analytical results obtained for the surface and subsurface soils is included in the following sections.

6.3.3.1 Surface Soil

The surface soil analytical results for AOC B are presented in Table 6-5, and are discussed by compound or analyte list (VOCs, SVOCs, and metals) in the following subsections.

VOCs

Only the common laboratory contaminants acetone (23 to 69 μ g/kg) and/or methylene chloride (9 to 59 μ g/kg) were detected in the four surface soil samples collected and analyzed from AOC B. Neither compound was detected in a concentration greater than the generic industrial direct contact value or soil protective of groundwater values.

SVOCs

Twenty-two individual SVOCs were detected in the surface soil samples, including compounds from the PAHs and phthalate ester groups, and carbazole. Individual SVOCs, when detected, were quantified in concentrations ranging from 30 to 1,800 μ g/kg. Di-n-butyl phthalate (one detection - 45 μ g/kg) and bis (two-Ethylhexyl) phthalate (2 detections - 160 and 230 μ g/kg) were quantified in the surface soil samples. Carbazole (65 μ g/kg) was found in sample BCB-B1-0001. Phthalate ester compounds were not detected in concentrations exceeding their regulatory levels. Cleanup criteria have not been developed for carbazole. Total PAH concentrations in the surface soil samples were obtained by summing the concentrations of individual PAHs and range from 745 μ g/kg in BCB-B4-0001 to 9,266 μ g/kg in BCB-B1-0001. Phenanthrene (one detection - 650 mg/kg) was quantified in sample BCB-B1-0001 in a concentration exceeding the soil protective groundwater value of 520 μ g/kg. The distribution of total PAHs and phenanthrene is presented in Figure 6-5.

TABLE 6-5 AREA OF CONCERN B: MOTOR POOL DRAINAGE DITCH SURFACE SOIL ANALYTICAL RESULTS

02	QUAL	<u> </u>	AB P		⊃	7	- >	\geq	>	\gtrsim	>	7	⊃	⊃	7	⊃	⊃	7	7)		z	z	>	N	z	⊃		*		EN	
BSB4 BCB-B4-0002 07/13/94 BCER6	RESULT	23	တ		340	ഉള	20	100	340	140	340	74	340	340	140	340	340	80	100	340		3.20	11.40	0.11	0.35	7.30	0	7.30	16.20	10.30	36.50	
4 22	QUAL	മ	മ		7			×	7	×	⊃		⊃	7		⊃	7	7)		N S	z	മ	⊃	z	⊃		*		N N	
BSB3 BCB-B3-0002 07/13/94 BCER4	RESULT	25	ე ე		49	490	220	1000	100	1400	340	290	340	85	850	340	220	330	650	340		3.10	8.70	0.22	0.35	6.80	0	6.10	13.70	თ	25	
02	QUAL	ω	മ		7	_	<u></u>	×	7	×	⊃	7	>	7		⊃	7	7	7	7		S	A	മ	z	z				⊃	Ш	
BSB2 BCB-B2-0002 07/13/94 BCER4 RESULT QU	69	മ		70	310	210	440	120	009	320	260	350	30	410	350	160	210	330	160		3.20	ო	0.16	2.70	58.10	0.02	24.60	200	4.30	112		
4 02 4 02	QUAL	Δ	ЭВ		7			×	7	×	7		7	7		7				7		S	AN	മ	N O	z	⊃				Ш N	
BSB1 BCB-B1-0002 07/13/94 BCER4	RESULT	29	10		82	680	760	1300	300	1800	65	850	45	130	1200	44	540	650	930	230		3.30	7.60	0.21	0.37	9.90	0	12.40	36.30	8.90	41.20	
LOCATOR: SAMPLE ID: COLLECTION DATE: ASSOCIATED FIELD QC:	r 201 CRITERIA (b)	7.4E+7/15,000	3.3E+6/100		1.0E+9/1.5E+5	2.1E+5/	21,000/	2.1E+5/	1.6E+7/-	2.1E+6/)	2.1E+7/	5.4E+8/18,000	e 21,000/	5.4E+8/18,000	5.4E+8/18,000		÷	4	ate 1.1E+7/		1,600/0.36	83/7.14	35/0.19	2.3E+3/1.2	1.0E+6/19.1		1.7E+5/32	4.0E+2/21	3.4E+5/20	1.0E+6/48	
CCASOCASSOCASSOCASSOCASSOCASSOCASSOCASS	PA451 PART	CLP VOA (µg/kg) Acetone	Methylene chloride	CLP SVOA (µg/kg)	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Carbazole	Chrysene	Di-n-butyl phthalate	en	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Phenanthrene	Pyrene	bis(2-Ethylhexyl)phthalate	CLP METAL (mg/kg)	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Chromium, Cr+6 (mg/l)	Copper	Lead	Nickel	Zinc	

 $1.0E \pm 3$ is abbreviated scientific notation and is equivalent to 1,000

Departs validation Qualifiers

Note: Secure is between the detection limit and the quantitation limit by Value is unreliable due to blank contamination value Reported value is estimated Compound analyzed for but not detected Result is unreliable

Analyte also detected from a single point method-of-standard addition
Analyte also detected in associated blank (organic)
Result between IDL and CRDL (inorganic)
Chamical or physical interference during analysis
Reported value is estimated
Matrix related interference in the sample
Compound analyzed for but not detected
Sample specific qualifier
Non-homogeneous sample matrix

Laboratory Qualifiers
A Result produced
B Result between
E Chemical or phy
J Reported value
N Matrix related in
U Compound anal
X Sample specific

t6-05_1.027-April 23, 1996

Metals

The metals antimony, arsenic, beryllium, cadmium, chromium (total and +6), copper, lead, nickel, and zinc were detected in the surface soils at AOC B. Of these nine metals, antimony, arsenic, beryllium, cadmium, chromium (total), lead, and zinc were detected in one or more samples in concentrations exceeding their respective soil protective of groundwater values. Arsenic and lead concentrations exceed the soil protective of groundwater values in three of four and two of four samples collected at AOC B, respectively. Arsenic (soil protective of groundwater value = 7.14 mg/kg) concentrations range from 3 to 11.4 mg/kg, while lead (soil protective of groundwater value = 21 mg/kg) concentrations range from 13.7 to 200 mg/kg. Cadmium, chromium (total), and zinc were detected in concentrations exceeding the soil protective of groundwater value only in sample BCB-B2-0002. Antimony was detected in one sample, BCB-B4-0002, at a concentration of 3.2 mg/kg, exceeding the soil protective of groundwater values of 0.36 mg/kg. Beryllium was detected above the soil protective of groundwater value of 0.08 mg/kg within the surface soils in three samples (0.16 to 0.22 mg/kg). The distribution of the metals detections which exceed the soil protective of groundwater values is also presented in Figure 6-5.

6.3.3.2 Subsurface Soil

The subsurface soil analytical results for the five AOC B soil samples collected and analyzed during this SI are presented in Table 6-6, and are discussed by compound and analyte list (VOCs, SVOCs, and metals) in the following subsections. Sample BCG-B4-1012 is a field duplicate of sample BCB-B4-1012.

VOCs

The common laboratory contaminants acetone (21 to $44 \,\mu g/kg$) and/or methylene chloride (0.6 to 10 $\,\mu g/kg$) were detected in all five of the subsurface soil samples collected and analyzed from AOC B. Neither compound was detected in a concentration greater than the generic

TABLE 6-6 AREA OF CONCERN B: MOTOR POOL DRAINAGE DITCH SUBSURFACE SOIL ANALYTICAL RESULTS

C.	aUAL	ď	· - 9		7			*_	z	⊃	*	മ	z		*	ш
BSB4 BCG-B4-1012 07/14/94 BCER6		44	10		140	00		3.50	1.70	0.13	4.70	2.80	2.10	0.15	13.50	9.10
BCG- 07	RESULT	7	•		17	9									,-	
12	aUAL	α	9		⊃	7			A		z		*	⊃		EN
BSB4 BCB-B4-1012 07/13/94 BCER6	RESULT	21	įω		340	150		3.10	2.10	0.11	6.20	3.80	1.80	0.10	21.30	13.40
07	QUAL	α	(B)		⊃)		_1		0	_			⊃		_
BSB4* BCB-B4-0507 07/13/94 BCER6	RESULT	24	0		340	340		3.80	12.70	0.13	80	4.40	4.50	0.10	9.90	29.90
- +	QUAL	۵	<u> </u>		⊃	⊃		z	z	മ	z		*	⊃		Ш
BSB3 BCB-B3-1011 07/13/94 BCER6	RESULT	ر م	7		340	340		4.70	8.50	0.22	8.20	6.80	6.50	0.10	10.90	18.40
. 5	QUAL	nc	<u>۾</u>		7			z	z	മ	z		*	⊃		N N
BSB2 BCB-B2-2022 07/13/94 BCER4	RESULT	7.6	<u>`</u>		48	340		3.50	5.30	0.12	8.50	6.40	3.40	0.10	15.10	17.80
27 t	QUAL	α	<u> </u> В		7	⊃		S	z	⊃	z	ω	* *	⊃	⊃	EN
BSB1 BCB-B1-2527 07/13/94 BCER4	RESULT	32	၂ တ		45	340		3.20	2	0.12	3.30	2.50	2.20	0.10	4.20	12.80
LOCATOR: SAMPLE ID: COLLECTION DATE: ASSOCIATED FIELD QC:	PA451 PART 201 CRITERIA (6)	7 45 ± 7/15 000	3.3E+6/100		5.4E+8/18,000	alate 1,1E+7/		1,600/0.36	83/6.57	35/0.08	1.0E+6/18	1.7E+5/32	4.0E+2/21	1.4E+3/0.13	3.4E+5/20	1.0E+6/48
ASSC	PA451 PAI	CLP VOA (µg/kg)	Methylene chloride	CLP SVOA (µg/kg)	Di-n-butyl phthalate	bis(2-Ethylhexyl)phthalate	CLP METAL (mg/kg)	Antimony	Arsenic	Beryllium	Chromium	Copper	Lead	Mercury	Nickel	Zinc

BCB-B4:1012 and BCG-B4:1012 are a field duplicate pair

1.0E + 3 is abbreviated scientific notation and is equivalent to 1,000 mg/kg milligrams/kilogram

yg/kg micrograms/kilogram

** Sample validated using HAZWRAP level C QC

(b) generic industrial direct contact value/soil protective of groundwater action level

Result is between the detection limit and the quantitation limit Value is unreliable due to blank contamination value
Reported value is estimated
Reported value blased low
Compound analyzed for but not detected
Result is unreliable

9Data Validation Qualifiers
(C) Result is between the OB Value is unreliable du J Reported Value is est U Reported Value is bia U Compound analyzed Result is unreliable

Laboratory Qualifiers

A Result produced from a single point method-of-standard addition
B Analyte also detected in associated blank (organic)
B Result between IDL and CRDL (inorganic)
E Chemical or physicial interference during analysis
J Reported value is estimated
N Matrix related interference in the sample
U Compound analyzed for but not detected
X Sample specific qualifier
Non-homogeneous sample matrix

t6-06_1.027-April 23, 1996

industrial direct contact value or soil protective of groundwater value for that particular compound.

SVOCs

Only two SVOCs, di-n-butyl phthalate (three detections - 45 to 140 μ g/kg) and bis (2-Ethylhexyl) phthalate (three detections - 150 to 600 μ g/kg) were quantified within the five subsurface soil samples collected and analyzed from AOC B. Neither compound was detected in a concentration greater than the generic industrial direct contact value or soil protective of groundwater value for that particular compound.

Metals

The metals antimony, arsenic, beryllium, chromium (total only), copper, lead, mercury, nickel, and zinc were detected in the subsurface soils at AOC B. Of these nine metals, antimony, arsenic, beryllium, mercury, and nickel were detected in one or more samples in concentrations exceeding their respective soil protective of groundwater values. No metals were detected in concentrations exceeding their generic industrial direct contact values. Antimony was detected in three samples in concentrations ranging from 3.5 to 4.7 mg/kg. These concentrations exceed the antimony soil protective of groundwater value of 0.36 mg/kg. Arsenic concentrations in two samples (8.5 and 12.7 mg/kg) exceed the soil protective of groundwater value of 6.57 mg/kg. Mercury (soil protective of groundwater value = 0.13 mg/kg) was quantified in sample BCG-B4-1012 at a concentration of 0.15 mg/kg, while nickel (soil protective of groundwater value = 20 mg/kg) was quantified in sample BCB-B4-1012 at a concentration of 21.3 mg/kg. The distribution of the metals detections which exceed their respective soil protective of groundwater values for the subsurface soils is presented in Figure 6-6.

6.4 AREA OF CONCERN C - FORMER FIRE TRAINING AREA SOUTH

The field activities completed in July 1994 consisted of a soil gas survey (22 samples; 20 locations numbered SG1 through SG20) followed by collection and analysis of surface and subsurface soil samples from borings CSB1 through CSB7, and groundwater screening

samples numbered BCC-W5 through W7. Total depths and the screening and confirmation sampling intervals for the AOC C borings are presented in the following table.

Boring Number	Total Depth (feet bgs)	Field Screen Sample Intervals	Confirmation Sample Intervals
CSB1	17	0-2, 5-7, 10-12, and 15-17	0-2 and 10-12
CSB2	12	0-2, 5-7, and 10-12	0-2, 5-7, and 10-12
CSB3	16	0-2, 5-7, 10-12, and 14-16	0-2 and 14-16
CSB4	12	0-2, 5-7, and 10-12	0-2 and 10-12
CSB5	12		10-12
CSB6	12		10-12
CSB7	12		10-12

During November 1994 sample location CSB2 was resampled at the 10 to 12 ft depth interval and analyzed for polychlorinated biphenyls (PCBs) and TCLP (semi-volatile fraction only). One groundwater sample was collected from this location and analyzed for VOCs, SVOCs, and metals (filtered and unfiltered). All AOC C sampling locations are presented in Figure 6-7. The results of these activities are presented in the following subsections.

6.4.1 Geology and Hydrogeology

The soils beneath AOC C were described in the field as being composed of brown to yellowish brown, well-sorted, loose fine-grained sand. Wet sands, indicating saturated conditions, were encountered in the 15 to 17 ft sample interval obtained from CSB1. Groundwater flow is assumed to be to the northwest beneath AOC C (Figure 3-7).

6.4.2 Results of AOC C Screening Activities

The results of the SOV survey and soil and groundwater screening activities for AOC C are included in the following subsections.

6.4.2.1 SOV and Groundwater Screening Survey

The screening results obtained from the AOC C SOV and groundwater screening activities are described below:

- Initially, location CSG1 was vertically profiled; samples CSG1a, b, and c were collected at the 5, 10 and 20 ft depth intervals. Upon retrieval of the probe rods, a hydrocarbon odor was detected on the rods that were driven into the ground to a depth greater than approximately 15 ft below ground surface (bgs). No target compounds or total VOCs were detected in these samples.
- Sample locations CSG2 through CSG18 (all collected from the 5 ft depth interval) were then sampled. Sample CSG13 contained TCE/cis-1,2-DCE at a concentration of 4.85 μ g/l of air. No target compounds or total VOCs were detected in samples CSG2 through CSG12 and CSG14 through CSG18.
- Two additional samples, numbered CSG19 and CSG20 were collected from the 15
 ft depth interval from within the northernmost bermed area (Figure #6-7). A
 hydrocarbon odor was detected on the rods retrieved from location CSG19. No
 target compounds or total VOCs were detected in these samples.
- Groundwater screening samples W5, W6, and W7 (Figure 6-7) were collected and analyzed for their VOC content using the field GC. Each groundwater screening sample was collected at depths between 14 and 16 ft bgs. No target compounds or total VOCs were detected in these samples.

Soil borings CSB1 and CSB2 were located inside the northernmost bermed area by SOV locations CSG1 and CSG19 (hydrocarbon odors). Borings CSB3 and CSB4 were located in the southern previously bermed area. Borings CSB5, CSB6, and CSB7 were advanced to define the limits of the suspected contamination detected during the sampling of CSB2.

6.4.3 AOC C - Soil Analytical Results

Soil samples were initially collected from borings CSB1 through CSB4 at the surface and at 5 ft intervals until the water table was encountered. Additional samples were collected from borings CSB5 through CSB7 from the 10 to 12 ft bgs interval only. A total of 20 soil samples were obtained from these borings and were analyzed for their VOC content using the on-site GC. During the analysis of sample BCC-B2-1012 the detector connected to the on-site GC became saturated with hydrocarbons. No other samples contained target compounds or total VOCs. The results of the field GC analysis is consistent with the field PID readings obtained during the collection of the AOC C samples.

6.4.3.1 Surface Soil

The surface soil analytical results for AOC C are presented in Table 6-7, and are discussed by compound type and analyte list (VOCs, SVOCs, and metals) in the following subsections.

VOCs

The common laboratory contaminants acetone (11 to 19 μ g/kg) and methylene chloride (5 to 15 μ g/kg) were detected in one or more of the four surface soil samples collected and analyzed from AOC C. Neither compound was detected in a concentration greater than their respective generic industrial direct contact values or soil protective of groundwater values.

SVOCs

Only two SVOCs were detected in the surface soil samples. Both compounds were members of the phthalate ester group. Di-n-butyl phthalate was detected in all four samples at concentrations of 74 to 120 μ g/kg, while bis(2-Ethylhexyl) phthalate was quantified in three of the four samples at concentrations ranging from 38 to 140 μ g/kg. Neither compound was detected in a concentration greater than their respective generic industrial direct contact values or soil protective of groundwater values.

TABLE 6-7 AREA OF CONCERN C: FIRE TRAINING AREA - SOUTH SURFACE SOIL ANALYTICAL RESULTS

902 4	aUAL	ш	ЭВ	٦	⊃		Z	മ		*	⊃		z	*	ш
CSB4 BCC-B4-0002 07/14/94 BCER7	RESULT	11	വ	120	340		1.50	0.14	0.39	5.40	0	4.10	2.50	4.10	14.90
02	aUAL	В	B B	7	7		z	>	⊃	*			z	*	ш
CSB3 BCC-B3-0002 07/14/94 BCER6	RESULT	14	თ	74	140		2.10	0.12	0.36	5.60	0.01	3.60	1.90	4.20	11.70
25 .	aUAL	В	മ	7	7		AN	⊃	⊃	*			z	*	ш
CSB2 BCC-B2-0002 07/14/94 BCER6	RESULT	19	15	92	38		8.70	0.11	0.35	7.10	0.02	3.50	2.80	8.80	12
22	aUAL	ם	РВ	7	7		z	⊃	⊃	*	⊃		z	*	ш
CSB1 BCC-B1-0002 07/14/94 BCER6	RESULT	11	တ	100	77		1.90	0.12	0.36	6.10	0	9	10.20	4.50	16
LOCATOR: SAMPLE ID: COLLECTION DATE: ASSOCIATED FIELD QC:	01 CRITERIA (b)	7.4E+7/15,000	3.3E+6/100	5.4E+8/18,000	1.1E+7/		83/7.14	35/0.19	2.3E+3/1.2	1.0E+6/19.1	2.2E+4/	1.7E+5/32	4.0E + 2/21	3.4E + 5/20	1.0E+6/48
COLL	PA451 PART 201 CRITERIA (b)	CLP VOA (µg/kg) Acetone	Methylene chloride	CLP SVOA (µg/kg) Di-n-butyl phthalate 5	bis(2-Ethylhexyl)phthalate	CLP METAL (mg/kg)	Arsenic	Beryllium	Cadmium	Chromium	Chromium, Cr+6 (mg/l)	Copper	Lead	Nickel	Zinc

^{1.0}E + 3 is abbreviated scientific notation and is equivalent to 1,000 mg/kg miligrams/kilogram mg/kg miligrams/kilogram mg/kg miligrams/kilogram wircognams/kilogram wircognams/kilogram * Sample validated using HAZWRAP level C OC generic industrial direct contact value/soil protective of groundwater action level C generic industrial direct contact value/soil protective of groundwater action level Sample validation Qualifiers

(b) generic industrial direct contact value/soil protective of groundwater action level Sample value site setting the Quantitation limit B Value is sertinated

U Compound analyzed for but not detected

R Result is unreliable

Result produced from a single point method-of-standard addition Analyte also detected in associated blank (organic)
Result between IDL and CRDL (inorganic)
Chemical or physical interference during analysis
Reported value is estimated
Martix related interference in the sample
Compound analyzed for but not detected
Sample specific qualifier
Non-bornogeneous sample matrix

Laboratory Qualifiers
A Result produce
B Ravilyte also de
B Result between
C Chemical or ph
J Reported value
N Matrix related i
U Compound ana
X Sample specifit
* Non-honogene

Metals

The metals arsenic, beryllium, cadmium, chromium (total and +6), copper, lead, nickel, and zinc were detected in the surface soils at AOC C. Of these eight metals, only arsenic and beryllium were detected at concentrations exceeding their soil protective of groundwater values. Arsenic was quantified in sample BCC-B2-0002 at a concentration of 8.7 mg/kg, which is above the soil protective of groundwater value of 7.14 mg/kg, while beryllium (0.14 mg/kg) was detected in BCC-B4-0002 at a concentration exceeding its soil protective of groundwater value of 0.08 mg/kg. Analytical results illustrating which compounds were detected within the surface soils above soil protective of groundwater values are shown in Figure 6-8.

6.4.3.2 Subsurface Soil

The subsurface soil analytical results for the eight AOC C soil samples collected and analyzed during this SI are presented in Table 6-8 and are discussed by compound list (VOCs, SVOCs, and metals) in the following subsections. Sample BCC-B2-1012 was analyzed for VOCs, SVOCs, and metals during the July 1994 field event. The same location was resampled and analyzed for PCBs and TCLP (semi-volatile fraction only) during November 1994. Sample BCG-B7-1012 is a field duplicate of sample BCC-B7-1012.

VOCs

The common laboratory contaminants acetone (10 to 140 μ g/kg) and/or methylene chloride (8 to 87 μ g/kg) were detected in all nine of the subsurface soil samples collected and analyzed from AOC C. Neither analyte was detected in a concentration greater than their respective generic industrial direct contact values or soil protective of groundwater values.

TABLE 6-8 AREA OF CONCERN C: FIRE TRAINING AREA SOUTH SUBSURFACE SOIL ANALYTICAL RESULTS

		ЭΘ	77	* Z * ⊃ Z * Ш
012 34	QUAL		, ,	
CSB5 BCC-B5-1012 07/15/94 BCER7	RESULT	11	80	3.40 1.60 0.70 3.40 1.30 7.50 NA
12	QUAL	മമ	7 7	* Z * ⊃ Z * Ш ⊃
CSB4 BCC-B4-1012 07/14/94 BCER7	RESULT	46	52 180	3.40 1.50 8.30 0 3.20 1.50 43.20 10.20
16	QUAL	മമ	ר ר	* Z * ⊃ @ Z * Ш ⊃
CSB3 BCC-B3-1416 07/14/94 BCER7	RESULT	31	66 320	3.50 2 7 0 2.90 1.80 27.50 8.80
2	QUAL	ω	ם כ	U L G
CSB2*(a) BCC-B2-1012 07/14/94 BCER6	RESULT (31	6100	3.70 1.60 5.10 0.01 3.50 1.60 4.90 11.70
70	QUAL	а в	7 0	* Z * ⊃ Z * Ш ⊃ ∢
CSB2 BCC-B2-0507 07/14/94 BCER6	RESULT (30	79 350	3.20 8.20 3.40 0 2.80 2.10 15.20 NA
12	QUAL	В	フコ	* Z * ⊃ [®] Z * [®]
CSB1 BCC-B1-1012 07/14/94 BCER6	RESULT	30	82 63	3.60 1.80 5.30 0 2 2 1.60 4.70 NA
LOCATOR: SAMPLE ID: COLLECTION DATE: ASSOCIATED FIELD QC:	PA451 PART 201 CRITERIA (b)	7.4E+7/15,000 3.3E+6/100	5.4E+8/18,000 ate 1.1E+7/	1,600/0.36 83/6.57 1.0E+6/18 2.2E+4/ 1.7E+5/32 4.0E+2/21 3.4E+5/20 1.0E+6/48
CC ASSOC	PA451 PAR	CLP VOA (µg/kg) Acetone Methylene chloride	CLP SVOA (µg/kg) Di-n-butyl phthalate 5. bis(2-Ethylhexyl)phthalate	CLP METAL (mg/kg) Antimony Arsenic Chromium Chromium, Cr+6 (mg/ℓ) Copper Lead Nickel Zinc SW-846 PCBs (μg/kg) Aroclor-1260

BCC-B7-1012 and BCG-B7-1012 are a field duplicate pair

1.0E + 3 is abbreviated scientific notation and is equivalent to 1,000
mg/kg milligrams/liter
mg/kg micrograms/literan

NA Not analyzed for
Sample validated using HAZWRAP level C QC

• Sample validated using HAZWRAP level C QC

Doars Validation Qualifiers
 Result is between the detection limit and the quantitation limit
 Passult is between the detection limit and the quantitation limit
 Value is unreliable due to blank contamination value
 Seported value is estimated
 Reported value is biased low
 Compound analyzed for but not detected
 Result is unreliable

Analyte also detected in associated brank (organic)
Analyte also detected in associated brank (organic)
Result hewen IDL and CRDL (inorganic)
Chemical or physical interference during analysis
Reported value is estimated
Matrix related interference in the sample
Compound analyzed for but not detected
Sample specific qualifier
Non-homogeneous sample matrix
Greater than 25% difference between initial and confirmation GC runs Laboratory Qualifiers
A Result produces
B Analyte also de
B Result between
E Chemical or phy
J Reported value
N Matrix related it
U Compound anal
X Sample specific
N Non-homogene
P Greater than 28

t6-8_1.027-April 11, 1996

TABLE 6-8 AREA OF CONCERN C: FIRE TRAINING AREA SOUTH SUBSURFACE SOIL ANALYTICAL RESULTS

12	QUAL	7	മ	7	7		z	*	*	⊃	В	*NO	>	ш		
CSB7 BCG-B7-1012 07/15/94 BCER7	RESULT (10	13	40	84		9	2.50	2.80	0	1.90	0.18 UQN*	4.40	9.70		A A
12	QUAL		ш	7	7		*	N V	*	⊃		z	*	ш		
CSB7 BCC-B7-1012 07/15/94 BCER7	RESULT	140	47	160	87		3.40	8.30	6.20	0	4.60	2.50	6.20	17.40		NA
12	QUAL	7	В	7	⊃		*>	Z	*	⊃		z	*⊃	ш		
CSB6 BCC-B6-1012 07/15/94 BCER7	RESULT (12	87	72	420		3.90	3.20	5.40	0	3.40	2.40	5.10	13.70		NA
LOCATOR: SAMPLE ID: COLLECTION DATE: ASSOCIATED FIELD QC:	PA451 PART 201 CRITERIA (b)	7.4E+7/15,000	3.3E + 6/100	5.4E+8/18,000	9 1.1E+7/		1,600/0.36	83/6.57	1.0E + 6/18	2.2E + 4/-	1.7E + 5/32	4.0E + 2/21	3.4E + 5/20	1.0E+6/48		21,000/
COLI	PA451 PART 2	CLP VOA (µg/kg) Acetone	Methylene chloride	CLP SVOA (µg/kg) Di-n-butyl phthalate	bis(2-Ethylhexyl)phthalate	CLP METAL (mg/kg)	Antimony	Arsenic	Chromium	Chromium, Cr + 6 (mg/l)	Copper	Lead	Nickel	Zinc	SW-846 PCBs (ua/ka)	Aroclor-1260

Result produced from a single point method-of-standard addition Analyte also detected in associated blank (organic)
Result beween IDL and CRDL (inorganic)
Chemical or physical interference during analysis
Reported valle is estimated
Matrix related interference in the sample
Compound analyzed for but not detected
Sample specific qualifier
Non-homogeneous sample matrix
Greater than 25% difference between initial and confirmation GC runs

Laboratory Qualifiers
A Result produced
B Ranalyte also de
B Result between
E Chemical or phy
J Reported value
N Matrix related it
U Compound anal
X Sample specific
Non-honder

ODData Validation Qualifiers
Result is between the detection limit and the quantitation limit
Result is between the detection limit and the quantitation limit
Value is unreliable due to blank contamination value
Reported value is blased low
U
Compound analyzed for but not detected
Result is unreliable

BCC-B7-1012 and BCG-B7-1012 are a field duplicate pair
1.0E + 3 is abbreviated scientific notation and is equivalent to 1,000
mg/kg milligrams/kilogram
mg/kg milligrams/kilogram
ng/kg milligrams/kilogram
NA Not analyzed for
* Sample validated using HAZWRAP level C QC
* Sample validated using HAZWRAP level C QC

* Sample be validated using HAZWRAP level C QC

* Sample be a positive of groundwater action level
(a) PCBs were sampled 11/8/94
(b) generic industrial direct contact value/soil protective of groundwater action level

SVOCs and PCBs

Only two SVOCs were detected in the subsurface soil samples. Both compounds were members of the phthalate ester group. Di-n-butyl phthalate was detected in eight of the nine samples in concentrations ranging from 40 to 160 μ g/kg, while bis(2-Ethylhexyl) phthalate was quantified in six of the nine samples in concentrations ranging from 54 to 320 μ g/kg. Neither compound was detected in a concentration greater than the generic industrial direct contact value or soil protective of groundwater value for that respective compound.

Sample BCC-B2-1012 contained relatively high levels of tentatively identified compounds (TICs). Concentrations of the twenty TICs (hydrocarbons), quantified during the library search completed by the laboratory, ranged from 6,900 to 68,000 μ g/kg. By necessity, the sample was diluted (approximately 20:1) to quantify the relatively high concentrations of the TICs in this sample. The high dilution factor applied to this soil sample resulted in elevated detection limits for the target SVOCs, all of which were quantified as non-detects. The potential exists However, these compounds could not be quantified that SVOCs exist within the soils. because of the large number of interfering peaks (TICs) on the chromatogram. Based on information obtained from an analysis of the chromatogram from this sample, additional analyses for TCLP (semi-volatile fraction only) and PCBs were completed on this sample. One PCB compound, Aroclor-1260, was quantified in BCC-B2-1012 at a concentration of 21.5 $\mu g/kg$. The generic industrial direct contact value for PCBs is 17,000 $\mu g/kg$. No soil protective of groundwater value exists for PCBs. No SVOCs (by TCLP) were quantified above the reporting limits in sample BCC-B2-1012. TCLP analytical results are included in Appendix E.

Metals

The metals antimony, arsenic, chromium (total and +6 valence), copper, lead, nickel, and zinc were detected in the subsurface soils at AOC C. Chromium +6 and antimony were detected in one and two samples, respectively. The remaining metals, arsenic, chromium, copper, lead, nickel, and zinc were detected more frequently (five to nine times). Of these six metals, only antimony, arsenic and nickel were detected in concentrations exceeding their

respective soil protective of groundwater values. No metals were detected above their respective generic industrial direct contact values. Arsenic concentrations exceed the soil protective of groundwater values of 6.57 mg/kg in samples BCC-B2-0507 (8.2 mg/kg) and BCC-B7-01012 (8.3 mg/kg), while nickel concentrations exceed the soil protective of groundwater value (20 mg/kg) in samples BCC-B3-1416 and BCC-B4-1012. Antimony was detected above its soil protective of groundwater value (0.36 mg/kg) in two samples, BCC-B7-1012 (6 mg/kg) and BCC-B5-1012 (3.4 mg/kg). The distribution of metals detections above the soil protective of groundwater values are included on Figure 6-8.

6.4.4 AOC C - Groundwater Analytical Results

Based upon the subsurface soil sampling results from BCC-B2-1012 it was suspected that hydrocarbons had migrated to the groundwater surface (estimated to be at approximately 14 ft) beneath the northernmost bermed areas. One confirmation groundwater sample (BCC-GW1) was collected at location CSB2 to investigate this possibility. BCC-GW1 was collected from a depth interval of 14 to 16 ft bgs using Geoprobe® sample collection methods. This sample was analyzed for VOCs, SVOCs, and metals (filtered and unfiltered) in an analytical laboratory. Analytical results are presented in Table 6-9. No groundwater monitoring wells exist at the AOC C. Extrapolating the groundwater flow direction from Site 4 towards AOC C (Figures 3-7 and 3-8) suggests that groundwater flow is to the west/northwest beneath AOC C.

VOCs

Methylene chloride (a common laboratory contaminant) and xylenes (total) were detected in this groundwater sample at concentrations of 0.9 and 0.8 μ g/l, respectively. Both compounds were quantified in concentrations less than their respective generic residential health-based drinking water values.

TABLE 6-9 AREA OF CONCERN C: FIRE TRAINING AREA - SOUTH GROUNDWATER ANALYTICAL RESULTS

CGW1 BCC-GW1F^(a) 11/08/94 CGW1 BCC-GW1 11/08/94 LOCATOR: SAMPLE ID: COLLECTION DATE:

QUAL RESULT QUAL RESULT PA451 PART 201 CRITERIA (b)

(1) 577 (0008/0108					
out v/auzo violo (µg/)) Methylene chloride	വ	0.90	ηB	1	
Xylenes (Total)	10,000	0.80	7	ı	
CLP SVOC (µg/!)					
2-Methylnaphthalene	≙	4	7	•	
bis(2-Ethylhexyl)phthalate	9	2	7	•	
CLP METAL (ua/I)					
Arsenic	50	3.80	ш	4.80	
Barium	2,000	19.30	മ	19.20	
Copper	1,400	66.60		7.60	
Zinc	2.400	6.50	В	5.20	

 \square \square \square

Result produced from a single point method-of-standard addition
Analyte also detected in associated blank (organic)
Result between IDL and CRDL (inorganic)
Chemical or physical interference during analysis
Reported value is estimated
Matrix related interference in the sample
Compound analyzed for but not detected
Sample specific qualifier
Non-homogeneous sample matrix Laboratory Qualifiers
A Result produced
B Analyte also de
B Result between
E Chemical or phy
J Reported value
N Matrix related i
U Compound anal
X Sample specific

1.0E +3 is abbreviated scientific notation and is equivalent to 1,000 µg/t micrograms/liter available to develop criteria

ID sample validated using HAZWRAP level C QC

(a) Filtered sample

(b) Generic residential health-based drinking water values

9 Constitution Objects of American Properties Pt 1 Result is between the Possible blank contains

Result is between the detection limit and the quantitation limit Possible blank contamination
Possible blank contamination
Possible blank contamination
Reported value is estimated
Reported value is biased low
Compound analyzed for but not detected

SVOCs

Only two SVOCs were detected in groundwater sample BCC-GW1; 2-methylnapthalene (4 μ g/l and bis(2-Ethylhexyl) phthalate (2 μ g/l). Bis (2-Ethylhexyl) phthalate was quantified in a concentration less than the generic residential health-based drinking water value of 6 μ g/l. According to guidance contained in the MERA Operational Memorandum #8, Revision 4 (MDNR, June 5, 1995) inadequate data is available to develop criteria for 2-methylnapthalene.

Metals

The metals arsenic, barium, copper (unfiltered sample only), and zinc (unfiltered sample only) were detected in groundwater sample BCC-GW1. No metals were detected in concentrations exceeding their respective generic residential health-based drinking water values.

6.5 AREA OF CONCERN D - FORMER FIRE TRAINING AREA WEST

The field activities consisted of a soil gas survey (14 samples; 12 locations numbered SG1 through SG12) followed by collection and analysis of surface and subsurface soil samples from borings DSB1 and DSB2. Total depths, screening, and confirmation sampling intervals for AOC D borings are presented in the following table.

Boring Number	Total Depth (feet bgs)	Field Screen Sample Intervals	Confirmation Sample Intervals
DSB1	27	0-2, 5-7, 15-17, 20-22, and 25-27	0-2 and 25-27
DSB2	7	0-2, and 5-7	0-2 and 5-7

All AOC D sampling locations are presented in Figure 6-9. The results of these activities are presented in the following subsections.

FIG_6-9.DWG 8/95

6.5.1 Geology and Hydrogeology

The soils beneath AOC D were described in the field as being composed of yellowish-brown, well-sorted, fine-grained sand. The sands themselves did not contain significant amounts of gravel. However, distinct gravel layers were encountered in the subsurface beneath AOC D. Refusal of the Geoprobe® rods occurred at 11 and 8 ft bgs during the sampling of borings DSB1 and DSB2, respectively. Three attempts were made to collect the 10 to 12 ft bgs sample from DSB1. After the third attempt, the sample interval was skipped and the boring advanced to the 15 to 17 ft bgs sample interval. Five attempts (in roughly a 20 ft radius around location DSB2) were made to advance the Geoprobe® rods below 8 ft bgs before determining that refusal was reached. In both cases, refusal was interpreted to be due to the gravel-rich zones existing in the subsurface. Damp sands, interpreted to be the beginning or the top of the saturated zone, were encountered in the 25 to 27 ft sample interval obtained from boring DSB1. Groundwater flow is toward the northwest beneath AOC D (Figure 3-7).

6.5.2 Results of AOC D Screening Activities

The results of the soil gas and soil screening activities for AOC D are included in the following subsections.

6.5.2.1 Soil Organic Vapor Survey

The initial screening activities at AOC D consisted of collection and on-site analysis of 14 soil gas samples. Location SG1 was vertically profiled. Samples SG1a, b, and c were collected at depths of 5, 10, and 20 ft, respectively. TCE/cis - 1,2 - DCE was detected at all three depths sampled at location DSG1. Sample DSG6 contained TCE/cis-1,2-DCE, PCE, and total VOCs at concentrations of 17.79, 31.56, and 49.35 μ g/l of air. No other SOV samples collected and analyzed from AOC D contained target compounds or total VOCs. Based on data collected during the SOV survey two borings were advanced at AOC D. Boring DSB1 was located by SG6 and SG1 (the two SOV samples which contained target compounds). Boring DSB2 was located south of boring DSB1 and was placed in this location to provide representative geographic coverage across the AOC D.

6.5.2.2 Soil Screening

Soil samples were collected from borings DSB1 at the surface and at 5 ft intervals until the water table was encountered. DSB2 was sampled at the surface and to a depth of 8 ft bgs. The seven soil samples obtained from these borings were analyzed for their VOC content using the on-site GC. No target compounds or total VOCs were reported from the on-site analysis of these soils. The absence of target or total VOC detections, as quantified on the field GC, is consistent with the absence of field PID detections and the lack of noticeable hydrocarbon odors detected during the collection of the AOC D samples.

6.5.3 AOC D - Soil Analytical Results

A discussion of the analytical results obtained for the AOC D surface and subsurface soils is included in the following sections.

6.5.3.1 Surface Soil

The surface soil analytical results for AOC D are presented in Table 6-10, and are discussed by compound list (VOCs, SVOCs, and metals) in the following subsections.

The ground surface at AOC D was, in most places, covered with coal particles. However, the ground surface at locations DSB1 and DSB2 did not contain significant amounts of coal.

VOCs

Only the common laboratory contaminants, acetone (one detection - 19 μ g/kg) and/or methylene chloride (two detections - each 9 μ g/kg) were detected in the surface soil samples collected and analyzed from AOC D. Neither compound was detected in a concentration greater than its corresponding generic industrial direct contact values or soil protective of groundwater value.

TABLE 6-10 AREA OF CONCERN D: FORMER FIRE TRAINING AREA - WEST SURFACE SOIL ANALYTICAL RESULTS

BCER6	BCER6	ASSOCIATED FIELD QC:
07/15/94	07/15/94	COLLECTION DATE:
BCD-B2-0002	BCD-B1-0002	SAMPLE ID:
USB2*	USBI	LOCALOR:

COLLE ASSOCIAT	COLLECTION DATE: ASSOCIATED FIELD QC:	07/15/94 BCER6	94	07/15/94 BCER6	94 6
PA451 PART 201 CRITERIA (b)	01 CRITERIA (b)	RESULT	QUAL	RESULT	QUAL
CLP VOA (µg/kg) Acetone 7.	7.4E+7/15,000	10	n	19	
Methylene chloride	3.3E+6/100	တ	ЛВ	တ	(B)
CLP SVOA (µg/kg)					
Di-n-butyl phthalate 5.	5.4E+8/18,000	57	7	54	0
bis(2-Ethylhexyl)phthalate	1.1E+7/	36	7	340	コ
CLP METAL (mg/kg)					
Arsenic	83/7.14	24.40	*2	വ	_
Beryllium	35/0.19	0.21	1 B	0.17	()
Chromium 1	1.0E + 6/19.10	8,50	*	17.60	0
Chromium, Cr+6 (mg/l)	2.2E+4/	0.02	2	0.01	_
Copper	1.7E+5/32	4.70	0	8.30	0
Lead	4.0E+2/21	3.90	*2	3.20	0 B
Mercury	1.4E + 3/0.13	0.15	* '	0.17	7
Nickel	3.4E+5/20	17.40	0	8.70	0
Zino	1.0E+6/48	16	ш	65.20	0

Laboratory Qualifiers

A Result produced from a single point method-of-standard addition
B Analyte also detected in associated blank (organic)
B Result between IDL and CRDL (inorganic)
E Chemical or physicial interference during analysis
J Reported value is estimated
N Matrix related interference in the sample
U Compound analyzed for but not detected
X Sample specific qualifier
Non-homogeneous sample matrix

Obata Validation Qualifiers
(A) Result is between the GB Value is unreliable du

micrograms/kilogram Sample validated using HAZWRAP level C QC generic industrial direct contact value/soil protective of groundwater action level

mg/kg milligrams/kilogram mg/k milligrams/kilogram pg/kg micrograms/kilogram • Sample validstrad sing (b) generic industrial direct

1.0E + 3 is abbreviated scientific notation and is equivalent to 1,000

Result is between the detection limit and the quantitation limit Value is unreliable due to blank contamination value
Reported value is estimated
Reported value is biased low
Compound analyzed for but not detected
Result is unreliable

SVOCs

Only two SVOCs were detected in the surface soil samples. Both compounds were members of the phthalate ester group of compounds. Di-n-butyl phthalate and bis(2-Ethylhexyl) phthalate were quantified in the two soil samples at relatively low concentrations; 36 to 57 μ g/kg. Neither compound was detected in a concentration greater than their respective generic industrial direct contact values, or soil protective of groundwater value.

Metals_

The metals arsenic, beryllium, chromium (total and +6 valence), copper, lead, mercury, nickel, and zinc were all detected in both surface soil samples collected and analyzed from AOC D. No metals were detected in concentrations above their respective generic industrial direct contact values. Arsenic, beryllium, mercury, and zinc were detected in concentrations exceeding their respective soil protective of groundwater values. Arsenic (soil protective of groundwater value = 7.14 mg/kg) and mercury (soil protective of groundwater value = 0.13 mg/kg) were quantified in BCD-B1-0001 in concentrations of 24.4 and 0.15 mg/kg, respectively, while mercury and zinc (soil protective of groundwater value = 47 mg/kg) were quantified in BCD-B1-0001 in concentrations of 0.17 and 65.2 mg/kg, respectively. Berylllium was quantified in BCD-B1-0001 in a concentration of 0./21 mg/kg, which exceeds the soil protective of groundwater value of 0.19 mg/kg. The distribution of the metals detections which exceed the soil protective of groundwater values for the surface soils is presented in Figure 6-10.

6.5.3.2 Subsurface Soil

The soil analytical results for the two AOC D subsurface samples collected and analyzed during this SI are presented in Table 6-11, and are discussed by analyte type (VOCs, SVOCs, and metals) in the following subsections.

FIG_6-10.DWG 8/95

TABLE 6-11 AREA OF CONCERN D: FORMER FIRE TRAINING AREA - WEST SUBSURFACE SOIL ANALYTICAL RESULTS

DSB2	BCD-B2-0507	07/15/94	BCER7	RESULT QUAL
_	2527	94	7	QUAL
DSB1	BCD-B1-2527	07/15/94	BCER7	RESULT
LOCATOR:	SAMPLE ID:	COLLECTION DATE:	ASSOCIATED FIELD QC:	PA451 PART 201 CRITERIA (6)

Ш	רכ	* V V	മ	*		* V		ш
12	350 55	9	0.13	5.80	4.60	4.10	7.60	14.80
JB	⊃	* Z	⊃	*		*		ш
7	540 360	4.10	0.12	5.70	4	3.10	6.20	19.10
3.3E+6/100	1.1E+7/-	83/6.57	35/0.08	1.0E+6/18	1.7E+5/32	4.0E+2/21	3.4E+5/20	1.0E+6/48
CLP VOA (µg/kg) Methylene chloride	CLP. SVOA (µg/kg) bis(2-Ethylhexyl)phthalate Carbozole	CLP METAL (mg/kg) Arsenic	Beryllium	Chromium	Copper	Lead	Nickel	Zinc
~ =	eesteste T :				·Y	,; , , ,		

mg/kg milligrams/kilogram
ug/kg micrograms/kilogram
* Sample validated using HAZWRAP level C QC
* generic industrial direct contact value/soil protective of groundwater action level
(b) generic industrial direct contact value/soil protective of groundwater action level 1.0E + 3 is abbreviated scientific notation and is equivalent to 1,000

CData Validation Qualifiers
CI Result is between the detection limit and the quantitation limit
CI Result is between the detection limit and the quantitation limit
B Value is unreliable due to blank contamination value
Campound is estimated
U Compound analyzed for but not detected
R. Result is unreliable

Laboratory Qualifiers

A Result produced from a single point method-of-standard addition
B Analyte also detected in associated blank (organic)
B Result between IDL and CRDL (inorganic)
E Chemical or physicial intefference during analysis
J Reported value is estimated
N Matrix related interference in the sample
U Compound analyzed for but not detected
X Sample specific qualifier
Non-homogeneous sample matrix

VOCs

Only methylene chloride (7 and 12 μ g/kg), a common laboratory contaminant, was detected in the subsurface soil samples collected and analyzed from AOC D. Methylene chloride was not detected in a concentration greater than the generic industrial direct contact values or soil protective of groundwater value.

SVOCs

Bis(2-Ethylhexyl) phthalate was quantified in BCD-B1-2527 at a concentration of 540 μ g/kg, while carbazole was detected from BCD-B2-0507 in a concentration of 55 μ g/kg. No other SVOCs were found in the subsurface soil samples collected and analyzed from AOC D. Bis(2-Ethylhexyl) phthalate was not detected in a concentration greater than the generic industrial direct contact value or soil protective of groundwater value. Cleanup criteria for carbazole have not been established.

<u>Metals</u>

The metals arsenic, beryllium, chromium (total only), copper, lead, nickel, and zinc were quantified in the subsurface soils at AOC D. Of these seven metals, only beryllium, detected in a concentration of 0.13 mg/kg in sample BCD-B2-0507, was found in concentration which exceeds the soil protective of groundwater value of 0.08. The distribution of the metals detections which exceed the soil protective of groundwater values is presented in Figure 6-11.

6.6 AREA OF CONCERN E - OLD HANGAR (BUILDING 6901)

Field activities were completed at AOC E to acquire the necessary data to either confirm or deny the existence of contamination. The field activities consisted of a soil gas survey (21 samples; 19 locations numbered SG1 through SG19) followed by collection and analysis of surface and subsurface soil samples from borings ESB1 and ESB2. Total depths and screening and confirmation sampling intervals for the AOC E borings are presented in the following table.

Boring Number	Total Depth (feet bgs)	Field Screen Sample Intervals	Confirmation Sample
ESB1	32	5-7, 10-12, 15-17, 20- 22, 25-27, and 30-32	0-2 and 30-32
ESB2	32	0-1, 5-7, 10-12, 15-17, 20-22, and 30-32	0-2 and 30-32

All AOC E sampling locations are presented in Figure 6-12. The results of these activities are presented in the following subsections.

6.6.1 Geology and Hydrogeology

The soils beneath AOC E were described in the field as being composed of yellowish-brown, well-sorted, fine-grained sand, with or without trace amounts of gravel. No gravel layers were encountered in the subsurface beneath AOC E. Very moist sands, interpreted to indicate the top of the saturated zone, were encountered in the 30 to 32 ft sample interval obtained from boring ESB1. Groundwater flows to the northwest beneath AOC E (Figure 3.7).

6.6.2 Results of AOC E Screening Activities

The results of the soil gas and soil screening activities for AOC E are included in the following subsections.

6.6.2.1 Soil Organic Vapor Survey

The initial screening activities at AOC E consisted of collection and on-site analysis of 21 soil gas samples. The results are presented on Figure 6-12. Location ESG1 was vertically profiled. Samples ESG1a, b, and c were collected from the same location at depths of 5, 10, and 20 ft, respectively. TCE/cis - 1,2 - DCE in a concentration of 6.79 μ g/l of air was detected in the 5 ft bgs sample. No target compounds or total VOCs were quantified in the 10 and 20 ft samples. Based on these data the remaining survey (locations ESG2 through ESG19) was completed at the 5 ft bgs depth interval. Of the 18 additional SOV samples

FIG_6-12.dwg 8/95 AREAE.DWG

collected after the analysis of ESG1a, b, and c at AOC E, TCE/cis-1,2-DCE was quantified in samples ESG4, ESG13, ESG14, ESG17, and SG18. The concentration of TCE/cis-1,2-DCE detected in these five samples ranged from 1.38 to 37.28 μ g/l. The location of boring ESB1 was located between SOV samples ESG17 and ESG18, while boring ESB2 was located between ESG1 and ESG14. Each boring location was selected to confirm or deny the detections of TCE/cis-1,2-DCE found during completion of the SOV survey.

6.6.2.2 Soil Screening

Soil samples were collected from borings ESB1 and ESB2 at the surface and at 5 ft intervals until the water table was encountered. The 12 soil samples obtained from these borings were analyzed for their VOC content using the on-site GC. No target compounds or total VOCs were reported from the on-site analysis of these soils. These absence of target or total VOC detections, as quantified on the field GC, is consistent with the absence of field PID detections and the lack of noticeable hydrocarbon odors detected during the collection of the soil samples.

6.6.3 AOC E - Soil Analytical Results

A discussion of the analytical results obtained for the AOC E surface and subsurface soils is included in the following sections.

6.6.3.1 Surface Soil

The surface soil analytical results for AOC E are presented in Table 6-12 and are discussed by compound list and analyte type (VOCs, SVOCs, and metals) in the following subsections.

VOCs

Only the common laboratory contaminants, acetone (16 and 21 μ g/kg) and/or methylene chloride (7 and 8 μ g/kg) were detected in the surface soil samples collected and analyzed from

TABLE 6-12 AREA OF CONCERN E: BUILDING 6901 (OLD HANGAR) SURFACE SOIL ANALYTICAL RESULTS

ESB2*	BCE-B2-0002	07/12/94	BCER8
ESB1	BCE-B1-0002	07/12/94	BCER8
LOCATOR:	SAMPLE ID:	COLLECTION DATE:	ASSOCIATED FIELD QC:

	AL	B (B)		=	ᅼ					_	
ω	QUAL		0	7		2	0	0	0		
BCER8	RESULT	16	6.50	0.22	10	0.02	6.20	6.90	7.9	26	
	aUAL	8 B	z	മ	z			*		Z Z	
BCER8	RESULT	21 8	5.90	0.30	9.90	0.02	9.30	9.10	10	24.10	
ASSOCIATED FIELD QC:	PA451 PART 201 CRITERIA (b)	7.4E+7/15,000 3.3E+6/100	83/7.14	35/0.19	1.0E+6/19.1) 2.2E+4/	1.7E+5/32	4.0E+2/21	3.4E+5/20	1.0E+6/48	
ASSOC	PA451 PART	CLP VOA (µg/kg) Acetone Methylene chloride	CLP METAL (mg/kg) Arsenio	Beryllium	Chromium	Chromium, Cr + 6 (mg/l)	Copper	Lead	Nickel	Zinc	

Result produced from a single point method-of-standard addition Analyte also detected in associated blank (organic)
Result between IDL and CRDL (inorganic)
Result between IDL and CRDL (inorganic)
Chemical or physical interference during analysis
Reported value is estimated
Matrix related interference in the sample
Compound analyzed for but not detected
Sample specific qualifier
Non-homogeneous sample matrix Laboratory Qualifiers
A Result produces
B Ranalyte also de
B Result between
E Chemical or phy
J Reported value
N Matrix related is
U Compound anal
X Sample specific

1.0E + 3 is abbreviated scientific notation and is equivalent to 1,000 mg/kg milligrams/kilogram mg/k milligrams/kilogram mg/k milligrams/kilograms/kilograms/kilograms squares/kilograms squares/kilograms squares/kilogram hazwrap i evel c oc occurrent value/soil protective of groundwater action level (b) generic industrial direct contact value/soil protective of groundwater action level

AOC E. Neither compound was detected in a concentration greater than their respective generic industrial direct contact values or soil protective of groundwater values.

SVOCs

No SVOCs were detected in the two surface soil samples collected and analyzed from AOC E.

Metals

The metals, arsenic, beryllium, chromium (total and +6 valence), copper, lead, nickel, and zinc were quantified in the surface soil samples collected from AOC E. None of these metals were detected in concentrations exceeding their respective direct contact values. Only beryllium (0.3 and 0.22 mg/kg) was detected at a concentration which exceeds the soil protective of groundwater values of 0.08 mg/kg. These detections are illustrated on Figure 6-13.

6.6.3.2 Subsurface Soil

The soil analytical results for the two AOC E subsurface samples collected and analyzed during this SI are presented in Table 6-13, and are discussed by compound list and analyte type (VOCs, SVOCs, and metals) in the following subsections.

VOCs

Only the common laboratory contaminants acetone (30 μ g/kg in each sample) and methylene chloride (12 and 16 μ g/kg) were detected in both of the subsurface soil samples collected and analyzed from AOC E. Neither compound was detected in a concentration greater than their generic industrial direct contact values or soil protective of groundwater values.

6-60

TABLE 6-13 AREA OF CONCERN E: BUILDING 6901 (OLD HANGAR) SUBSURFACE SOIL ANALYTICAL RESULTS

ESB2	BCE-B2-3032	07/12/94	BCER8
ESB1	BCE-B1-3032	07/12/94	BCER8
LOCATOR:	SAMPLE ID:	COLLECTION DATE:	ASSOCIATED FIELD QC:

Asse	ASSOCIATED FIELD &C.		n		0	
PA451 PAF	PA451 PART 201 CRITERIA (b)	RESULT QUAL	QUAL	RESULT QUAL	QUAL	
CLP VOA (µg/kg) Acetone	7.4E+7/15,000	30	В	30	В	
Methylene chloride	3.3E+6/100	12	മ	16	ω	
CLP METAL (mg/kg)						
Antimony	1,600/0.36	3.40		4.30	*	
Arsenic	83/6.57	4.70	O AN	3.80	z 0	
Chromium	1.0E+6/18	5.10	z	വ	*	
Copper	1.7E+5/32	3.90	0	3.90	0	
Lead	4.0E+2/21	2.70	*	2.80	z 0	
Nickel	3.4E+5/20	7.90	0	5.30	*	
Zinc	1.0E+6/48	17.20	O EN	20.20	О Е	

Laboratory Qualifiers

mg/kg milligrams/kilogram ug/kg mtrograms/kilogram * Sample validrated using HAZWRAP level C QC (b) generic industrial direct contact value/soil protective of groundwater action level

1.0E + 3 is abbreviated scientific notation and is equivalent to 1,000

(b) generic industrial direct contact value/soil protective of groundy

(c) generic industrial direct contact value/soil protective of groundy

(d) Value is unreliable due to blank contamination value

(e) Nature is estimated

(f) Compound analyzed for but not detected

(g) Result is unreliable

(g) Result is unreliable

Analyte also detected from a single point method-of-standard addition
Analyte also detected in associated blank (organic)
Result between IDL and CRDL (inorganic)
Chemical or physical interference during analysis
Reported value is estimated
Matrix related interference in the sample
Compound analyted for but not detected
Sample specific qualifier
Non-homogeneous sample matrix

∢⋒⋒⋒⋺⋜⊃×∗

SVOCs

No SVOCs were detected in the two subsurface soil samples collected and analyzed from AOC E.

Metals

Seven metals, as listed on Table 6-13, were quantified in either one or both subsurface soil samples collected and analyzed from AOC E. The metals and their corresponding concentrations are antimony (one detection; 4.3 mg/kg), arsenic (3.8 and 4.7 mg/kg), chromium (total - 5 and 5.1 mg/kg), copper (3.9 mg/kg in each sample), lead (2.7 and 2.8 mg/kg), nickel (5.3 and 7.9 mg/kg), and zinc (17.2 and 20.2 mg/kg). None of the metals were detected in a concentration which exceeds its respective generic industrial direct contact values. Antimony (4.3 mg/kg) was detected above its soil protective of groundwater value of 0.36 mg/kg in sample BCE-B2-3032. The detection of antimony is presented in Figure 6-13.

6.7 AREA OF CONCERN F - NEW HANGAR (BUILDING 6900)

Field activities were completed at AOC F to acquire the necessary data to either confirm or deny the existence of contamination. The field activities were limited to the collection and analysis of subsurface soil samples from borings FSB1, FSB2, and FSB3. Total depths and screening and confirmation sampling intervals for AOC F are presented in the following table.

Boring Number	Total Depth (feet bgs)	Field Screen Sample Intervals	Confirmation Sample Intervals
FSB1	37	1-3, 5-7, 10-12, 15-17, 20- 22, 25-27, 30-32 and 35-37	1-3 and 30-32
FSB2	32	1-3, 5-7, 10-12, 15-17, 20- 22, 25-27, and 30-32	1-3 and 30-32
FSB3	32	1-3, 5-7, 10-12, 15-17, 20- 22, 25-27 and 30-32	1-3, 5-7, and 30-32

All AOC F sampling locations are presented in Figure 6-14. The results of these activities are presented in the following subsections.

6.7.1 Geology and Hydrogeology

The soils beneath AOC F can generally be described as being composed of brown to yellowish-brown, well-sorted, fine-grained sand. A lens of well-sorted, medium to coarse-grained sand was encountered in borings FSB1 and FSB2. The top of this lens occurred at a depth of 10 ft bgs and extend to approximately 17 ft bgs in FSB1 and to approximately 19 ft bgs in FSB2. No gravel layers were encountered in the subsurface beneath AOC F. Wet sands, interpreted to indicate the top of the saturated zone, were encountered in the 35 to 37 ft sample interval obtained from boring FSB1. Groundwater flow is toward the northwest beneath AOC F (Figure 3-7).

6.7.2 Soil Screening

Soil samples were collected from borings FSB1, FSB2, and FSB3 from just under the asphalt cover and at 5 ft intervals until the water table was encountered. The 22 soil samples obtained from these borings were analyzed for their VOC content using the on-site GC. No target compounds or total VOCs were reported from the on-site analysis of these soils. These absence of target or total VOC detections, as quantified on the field GC, is consistent with the absence of field PID detections and the lack of noticeable hydrocarbon odors detected during the collection of the soil samples.

6.7.3 AOC F - Soil Analytical Results

A discussion of the analytical results obtained for the AOC F subsurface soils is included in the following sections.

FIG_ 6-14.dwg 8/95

Subsurface Soil

The soil analytical results for the seven AOC F subsurface samples collected and analyzed during this SI are presented in Table 6-14, and are discussed by compound list and analyte type (VOCs, SVOCs, and metals) in the following subsections.

VOCs

Acetone and methylene chloride, (both common laboratory contaminants) and chlorobenzene were all detected in one or more of the seven subsurface soil samples collected and analyzed from AOC F. Methylene chloride was detected in a concentration of 130 μ g/kg (greater than the soils protective of groundwater values) in one sample, the 1 to 3 ft interval collected from FSB2. This result was qualified B by the laboratory which indicates some type of blank contamination. Acetone was detected in three samples at relatively low concentrations (18 to 45 μ g/kg). Acetone was not detected at a concentration exceeding the soils protective of groundwater values or generic industrial direct contact values. Chlorobenzene was detected only in sample BCF-B1-O103 at a concentration of 1 μ g/kg, which is below the soils protective of groundwater values or generic industrial direct contact criteria.

SVOCs

Eleven individual SVOCs were detected in the subsurface soil samples, including compounds from the PAHs and phthalate ester groups. SVOCs were more common in the 1 to 3 ft bgs samples than the deeper subsurface samples. Individual SVOCs, when detected, were quantified in concentrations ranging from 38 to 150 μ g/kg. Total PAHs concentrations, obtained by summing the concentrations of individual PAHs, range from 258 μ g/kg in BCF-B2-0103 to 869 μ g/kg in BCF-B3-0103. No SVOCs were detected in a concentration exceeding their respective soils protective of groundwater values or generic industrial direct contact values.

TABLE 6-14 AREA OF CONCERN F: BUILDING 6900 (NEW HANGAR) SUBSURFACE SOIL ANALYTICAL RESULTS

				_	_		_	_		_	_	_	_	_	_	_	_					_		_					
4	QUAL			⊃	(B)		_	⊃	\supset	⊃	⊃	0	⊃)	⊃	⊃	0			\supset		0		⊃		_			
FSB3 BCF-B3-0507 07/14/94 BCER8	RESULT		39	1	10		340	340	340	340	340	96	340	340	340	340	38		•	3.20	8.10	0.22	6.30	0	09.9	3.40	9	18	
6 8	aUAL			⊃	B B		7	7	$\vec{\times}$	$\vec{\times}$	7	7	7	7	7	7	7			* -	Z	മ	*			z	*	ш	
FSB3* BCF-B3-0103 07/14/94 BCER8	RESULT		45	1	ω		68	69	130	140	73	64	150	43	86	110	50		•	3.20	5.70	0.31	11.70	90.0	7.10	8.40	8.80	28.10	
32	QUAL		മ	⊃	JB		⊃	\supset	⊃	⊃	⊃	>	⊃	>	⊃	⊃	Я		;	Z :	Z	മ	z	>		*		Z	
FSB2 BCF-B2-3032 06/30/94 BCER8	RESULT		18	-	വ		350	350	350	350	350	350	350	350	350	350	240			3.20	4	0.15	5.40	0	3.90	2.80	8.70	16.80	
	QUAL		⊃	⊃	m		7	⊃	extstyle e	×	7	⊃	7	>	>	7	ЛВ		:	2	z	മ	z			*		Z N	
FSB2 BCF-B2-0103 06/29/94 BCER8	RESULT		11	11	130		38	350	65	65	37	350	65	350	350	23	91		•	3.20	5.30	0.14	8.80	0.01	വ	4.70	7.80	18.40	
. 32	QUAL		⊃	⊃	മ		D	J	>	>	⊃	⊃	⊃	⊃	⊃	⊃	Я		:	2	z	മ	z	⊃		*		EN	
FSB1 BCF-B1-3032 06/29/94 BCER8	RESULT (10	10	16		340	340	340	340	340	340	340	340	340	340	83		1	3.10	4.40	0.14	5.50	0	4.30	3.40	6.80	15.80	
03 + 03	QUAL		⊃	7	ш		⊃	⊃	$\stackrel{\sim}{\times}$	Z	7	>	7	>	7	7	ЛВ					മ	z	⊃		*		Ш	
FSB1 BCF-B1-0103 06/29/94 BCER8	RESULT		11	-	1		360	360	46	47	47	360	74	360	120	വ	170		,	3.30	4.70	0.33	12.40	0	7.40	9.70	9.30	23	
LOCATOR: SAMPLE ID: COLLECTION DATE: ASSOCIATED FIELD QC:	PA451 PART 201 CRITERIA (b)	CLP VOA (µg/kg)	Acetone 7.4E+7/15,000	Chlorobenzene 1.4E+7/2,000	Methylene chloride 3.3E + 6/100		Benzo(a)anthracene 2:1E+5/		thene	Benzo(k)fluoranthene 2.1E+6/	Chrysene 2.1E+7/	phthalate	Fluoranthene 5.4E+8/18,000	-cd)pyrene	Phenanthrene 1.6E+7/520	ne 3.4E+8/11,000	bis(2-Ethylhexyl)phthalate 1.1E+7/		AL (mg/kg)	Antimony 1,600/0.36		Beryllium 35/0.08	Chromium 1.0E+6/18	Chromium, Cr + 6 (mg/l) 2.2E + 4/		1.0E+2/21	el 3.4E+5/20		
		CLP	Ace	딩	Zet	<u>م</u> ح	Ber	Ben	Ben	Ben	Chr	P.	Fluo	Inde	Phe	Pyrene	bis(.		S	Ant	Arsenic	Ber	Chr	Shr	Copper	Lead	Nickel	Zinc	

1.0E + 3 is abbreviated scientific notation and is equivalent to 1,000

ODData Validation Qualifiers
OP Result is between the detection limit operation value is unreliable due to blank contamination value
OP Reported value is estimated
L Reported value is based low
U Compound analyzed for but not detected
R Result is unreliable

Laboratory Qualifiers

A Result produced from a single point method-of-standard addition
B Analyte also detected in associated blank (organic)
B Result between IDL and CRDL (inorganic)
E Chemical or physicial interference during analysis
J Reported value is estimated
N Matrix related interference in the sample
U Compound analyzed for but not detected
X Sample specific qualifier
Non-homogeneous sample matrix

mg/kg milligrams/kilogram mg/f milligrams/kilogram pg/kg micrograms/kilogram pg/kg micrograms/kilogram * Sample validased using HAZWRAP level: Q.C. (b) generic industrial direct contact value/soil protective of groundwater action level

TABLE 6-14 AREA OF CONCERN F: BUILDING 6900 (NEW HANGAR) SUBSURFACE SOIL ANALYTICAL RESULTS

BCF-B3-3032 07/14/94 **BCER8** FSB3 LOCATOR: SAMPLE ID: COLLECTION DATE: ASSOCIATED FIELD QC:

QUAL RESULT PA451 PART 201 CRITERIA

⊃ ⊃ B	בככרכככככ	у * Z ⊃ * ⊃ Z * Ш
0 C R	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3.40 3.40 7.50 0.11 0.10 6.50 16.10
7.4E+7/15,000 1.4E+7/2,000 3.3E+6/100	2.1E+5/- 21,000/- 2.1E+5/- 2.1E+6/- 2.1E+7/- 5.4E+8/18,000 5.4E+8/18,000 5.4E+8/18,000	1,600/0.36 1,600/0.36 83/6.57 35/0.08 1.0E + 6/18 2.2E + 4/- 1.7E + 5/32 4.0E + 2/21 3.4E + 5/20 1.0E + 6/48
CLP VOA (µg/kg) Acetone Chlorobenzene Methylene chloride	CLP SVOA (µg/kg) Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Di-n-butyi phthalate Fluoranthene Indeno(1,2,3-cd)pyrene	ryrense bis(2-Ethylhexyl)phthalate CLP METAL (mg/kg) Antimony Arsenic Beryllium Chromium, Cr+6 (mg/l) Copper Lead Nickel Zinc

1.0E+3 is abbreviated scientific notation and is equivalent to 1,000

mg/kg milligrams/kilogram mg/t milligrams/liter µg/kg micrograms/kilogram * Sample validated using

micrograms/kilogram Sample validated using HAZWRAP level C QC generic industrial direct contact value/soil protective of groundwater action level **(**9

Result is between the detection limit and the quantitation limit Value's unreliable due, io, blank contamination value Reported value is estimated.

Reported value is estimated.

Reported value is biased low
Compound analyzed for but not detected

Result is unreliable. 9Data Validation Qualifiers
190 Result is between the Value is unreliable of J Reported value is bein U Compound analyzed Result is unreliable

Analyte also detected from a single point method-of-standard addition
Analyte also detected in associated blank (organic)
Result perveen IDL and CRDL (inorganic)
Chemical or physical interference during analysis
Reported value is estimated
Matrix related interference in the sample
Compound analyzed for but not detected
Sample specific qualifier
Non-homogeneous sample matrix

Laboratory Qualifiers
A Result produced
B Analyte also de
B Result between
E Chemical or phy
J Reported value
N Matrix related in
U Compound anal
**X Sample specific

Metals

The metals antimony, arsenic, beryllium, chromium (total and +6), copper, lead, nickel, and zinc were detected in the subsurface soils at AOC F. Antimony (one detection) and chromium +6 (two detections) were detected infrequently in the data set. The remaining metals, arsenic, beryllium, chromium, copper, lead, nickel, and zinc were detected more frequently in the data set (six to seven samples). No metals were detected in concentrations which exceed the generic industrial direct contact values. Arsenic was detected in concentrations which exceeds its soils protective of groundwater values in samples BCF-B3-0507 (8.1 mg/kg) and BCF-B3-3032 (7.5 mg/kg). Antimony was detected above its soils protective of groundwater values of 0.36 mg/kg in sample BCF-B3-3032 in a concentration of 3.4 mg/kg. Beryllium was detected in six of the seven AOC F samples in concentrations ranging from 0.14 to 0.33 mg/kg, and in excess of the soils protective of groundwater value of 0.08 mg/kg. The distribution of the metals detections which exceed soils protective of groundwater criteria for the subsurface soils is presented on Figure 6-15.

7.0 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

7.1 GENERAL

A PA, consisting of a records search and personnel interviews, was completed for the base. This PA was supplemental to the existing PA (HMTC operated by Dynamac Corporation, 1987). Based on the results of the PA, a field program (SI) was initiated to confirm or deny the existence of environmental contamination for six AOC. The field program focused on soil sampling and analysis.

All media-specific VOC, SVOC, and metals chemical analyses were compared to the lowest of their applicable NREPA PA 451 interim generic industrial direct contact or soil protective of groundwater values. This analysis provided a process to preliminarily identify whether additional remedial actions may be warranted at an AOC.

7.2 AOC A

A summary of the data collected during the SI, conclusions based on these data, and recommendations regarding the disposition of AOC A are included in the following sections.

7.2.1 Summary

The former waste accumulation area was located inside the fenced-in area housing vehicle refueling operations. This facility was used as a waste POL and solvent collection and storage area from the 1960s to the early 1980s. Past spills of waste POL/solvents were reported by base personnel during waste handling procedures at AOC A. SI sampling activities included a SOV survey in the area the drums were stored and surface and subsurface soil sampling and analysis.

Surface Soils

No VOCs were detected above the applicable NREPA PA 451 cleanup criteria for surface soils. Phenanthrene, a SVOC, was detected in the surface soils in concentrations exceeding its soil protective of groundwater value, indicating a potential threat to the groundwater. Antimony, arsenic, barium, beryllium, chromium (total), lead, and zinc were quantified in one or more samples at a concentration which exceeds the soil protective of groundwater value for each particular metal. These data also indicate a potential threat to groundwater. No compounds were detected in the soil samples in concentrations which exceed generic industrial direct contact values.

Subsurface Soils

Methylene chloride was detected within the subsurface soil at a concentration which exceeds its residential 20x health-based drinking water criteria, indicating a potential threat to the groundwater. However, methylene chloride is a common laboratory contaminant and the result presented in this report was qualified B by the laboratory which indicates some type or blank contamination. Although SVOCs (PAHs) were detected in the subsurface soil samples, no SVOCs were detected in the subsurface soil samples in concentrations exceeding applicable NREPA PA 451 cleanup criteria. Arsenic, lead, and nickel were detected above their respective soil protective of groundwater values. No compounds were detected in the soil samples in concentrations which exceed generic industrial direct contact values.

7.2.2 Conclusions

The PAHs and metals concentrations quantified during the SI indicate that past spills of waste POL/solvents have occurred at AOC A. The extent of these compounds, particularly in the surface soils has not been determined. Soil protective of groundwater values were exceeded in both the surface and subsurface soils. Average surface and subsurface soil concentrations for the compounds detected above the soil protective of groundwater values are presented in the following table:

	Average conce	entration (a)	Soil protective	Average concentration	
	surface soil	subsurface soil	surface soil	subsurface soil	exceeds value?
Methylene chloride	NA	89	NA	100	No
Phenanthrene	3,203	NA	520	NA	Yes
Antimony	4.45	2.48	0.36	0.36	Yes/Yes
Arsenic	12.47	28.67	7.14	6.57	Yes/Yes
Barium	55.83	NA	76.43	NA	No
Beryllium	0.29	0.08	0.19	0.08	Yes/No
Chromium	11.36	NA	19.10	NA	No
Lead	49.48	12.83	21	21	Yes/No
Nickel	NA	102.88	NA	20	Yes
Zinc	54.32	NA	48	NA	Yes

NA - not applicable

metals concentrations are presented in mg/kg; organic compounds concentrations are presented in μ g/kg (a) one-half of the reported value was used for non-detects; field duplicate concentrations were averaged prior to computing average AOC concentrations

Average surface soil concentrations for phenanthrene, antimony, arsenic, beryllium, lead, and zinc and subsurface soil concentrations for antimony, arsenic, and nickel exceed their respective soil protective of groundwater values, suggesting a potential threat to the groundwater exists from these soils.

7.2.3 Recommendations

It is recommended to subject AOC A surface and subsurface soil samples to leachate testing to determine if the potential threat to the groundwater is substantiated by leachate testing. Leachate testing should be completed for the SVOCs and metals listed in the previous subsection of this report using procedures approved by the MDNR (O.M. #12, revision 2, January 1995).

7.3 AOC B

A summary of the data collected during the SI, conclusions based on these data, and recommendations regarding the disposition of AOC B are included in the following sections.

7.3.1 Summary

The Motor Pool Drainage Ditch received runoff from the motor pool and areas adjoining the motor pool and directed these surface waters to the drainage swale (IRP Site 2) from 1963 to the present. The occurrence of organic compounds and metals in sampling results from the outfall of the ditch (ES, Nov. 1993), stained soils observed during construction activities in the ditch, and the reports of waste JP-4 jet fuel and POL entering the ditch from the motor pool led to the inclusion of the ditch in the SI. SI sampling activities included a SOV survey along the length of the ditch and the sampling and analysis of four soil borings.

Surface Soils

No VOCs were detected above the applicable NREPA PA 451 cleanup criteria for surface soils. Phenanthrene, a SVOC, was detected in the surface soils in concentrations exceeding the residential 20x health-based drinking water value. Metals were also detected in the surface soils in concentrations exceeding their respective soil protective of groundwater values. Concentrations of antimony, arsenic, cadmium, chromium (total), lead, and zinc exceed the soil protective of groundwater value in one or more samples, suggesting a potential threat to

groundwater. No compounds were detected in the soil samples in concentrations which exceed generic industrial direct contact values.

Subsurface Soils

No VOCs or SVOCs were detected within the subsurface soils at concentrations exceeding their respective NREPA PA451 cleanup criteria. Metals were detected above applicable NREPA PA 451 criteria in the subsurface soils. Concentrations of antimony, arsenic, beryllium, mercury, and nickel exceed the soil protective of groundwater values for these individual metals, suggesting a potential threat to the groundwater. No compounds were detected in the soil samples in concentrations which exceed generic industrial direct contact values.

7.3.2 Conclusions

The PAHs and metals concentrations quantified during the SI suggest that contaminated surface runoff could have been carried by the ditch in the past. The occurrence of these compounds in the surface soils may be due to reworking of the soil during construction and installation of the storm sewer.

VOC and SVOC subsurface soil analytical results indicate that the soils beneath the ditch have not been adversely affected by the infiltration of wastes or waste waters containing solvents and/or POL. Metals concentrations in the soils may be elevated due to past waste handling practices.

Preliminary results indicate that similar contaminant profiles exist in the surface soils at Sites 1 and AOC B. These areas are geographically continuous. The origin of the organic and inorganic contaminants detected in the surface soils at AOC B may be related to the contaminants detected in the Site 1 soils.

7.3.3 Recommendations

AOC B was included with Site 1 in the Internal Draft RI Report (EARTH TECH, June 1995). It is recommended to continue the evaluation of AOC B through the RI process.

7.4 AOC C

A summary of the data collected during the SI, conclusions based on these data, and recommendations regarding the disposition of AOC C are included in the following sections.

7.4.1 Summary

A former FTA, consisting of two separate bermed areas, was located on airport property immediately south of the base. These FTAs were used from approximately 1965 to 1967. An estimated 5,400 to 7,200 gallons of waste POL were used during fire training exercises. SI sampling activities included a SOV survey across both bermed areas, surface and subsurface soil sampling within each bermed area, and field and laboratory analysis of groundwater samples.

Surface Soils

No VOCs or SVOCs were detected above the NREPA PA 451 cleanup criteria for surface soils. Arsenic and beryllium were detected in the surface soils in concentrations exceeding their soil protective of groundwater values. No compounds were detected in the soil samples in concentrations which exceed generic industrial direct contact values.

Subsurface Soils

No VOCs, or PCBs were detected within the subsurface soils at concentrations exceeding their respective NREPA PA 451 cleanup criteria. One soil sample containing high levels of petroleum hydrocarbons (quantified as TICs on the SVOC GC/MS analysis), was obtained from the subsurface soils. TCLP extract concentrations (semi-volatile list only) were non-detect on

this soil sample. Analytical results from borings CSB1, -SB2, -SB5, -SB6 and -SB7 (surrounding the hydrocarbon - containing soils) indicate that the extent of the soils containing these relatively high concentrations of hydrocarbons were delineated during the SI. Antimony, arsenic, and nickel concentrations exceed the soil protective of groundwater values, suggesting a threat to the groundwater. No compounds were detected in the soil samples in concentrations which exceed generic industrial direct contact values.

Groundwater

Groundwater analytical results from one sample collected immediately beneath the hydrocarbon-containing soil show that no VOCs, SVOCs, and metals were detected above interim residential health-based drinking water values.

7.4.2 Conclusions

Residual hydrocarbons indicative of past fire training exercises were detected in the soils and groundwater beneath AOC C. Based on the analytical results obtained during this SI, the lateral and vertical extent of hydrocarbon-containing soils has been delineated. TCLP extract concentrations (semi-volatile list only) show that these SVOCs should not leach from the hydrocarbon-containing soils in concentrations which would be detrimental to groundwater quality. Relatively low concentrations of four organic compounds (0.8 to 4 μ g/l) were detected in the groundwater sample collected and submitted for laboratory analysis from AOC C. The groundwater analytical results for VOCs, SVOCs, and metals indicate that although affected, groundwater quality beneath AOC C has not been impacted to the extent that the interim residential health-based drinking water values in the source area have been exceeded. The metals detected in soil samples may be elevated due to past fire training exercises.

Average concentrations for arsenic and beryllium in the surface soils and antimony, arsenic, and nickel in the subsurface soils are presented in the following table:

	Average conce	entration (a)	Soil protective	Average concentration	
	surface soil	subsurface soil	surface soil	subsurface soil	exceeds value?
Antimony	NA	2.24	NA	0.36	Yes
Arsenic	3.55	3.16	7.14	6.57	No/No
Beryllium	0.078	NA	0.19	NA	No
Nickel	NA	13.2	NA	20	No

NA - not applicable

metals concentrations are presented in mg/kg;

(a) one-half of the reported value was used for non-detects; field duplicate concentrations were averaged prior to computing average AOC concentrations

As shown in this table only antimony was present in the subsurface soils in an average concentration which exceeds the soil protective of groundwater value. Unlike AOC A where soils containing metals above the soil protective of groundwater values are associated with hydrocarbons, the antimony detections present at AOC C which exceed the soil protective of groundwater values are located outside of the area where the soils contain hydrocarbons. Therefore, these detections are considered outliers and may be due to natural variation of the metals content of the soils.

7.4.3 Recommendations

No further actions are recommended for AOC C.

7.5 AOC D

A summary of the data collected during the SI, conclusions based on these data, and recommendations regarding the disposition of AOC D are included in the following sections.

7.5.1 Summary

This FTA was used once in 1972 to burn a damaged aircraft prior to its being shipped off-base for disposal. The area is located west of Building 6909, within the boundaries of IRP Site 5. An estimated 1,800 to 2,400 gallons of waste POL/solvents were used at this location. SI sampling activities included a SOV survey across the area and surface and subsurface soil sampling.

No VOCs or SVOCs were detected above the applicable NREPA PA 451 cleanup criteria for surface and subsurface soils collected and analyzed during the SI. Arsenic, beryllium, mercury, and zinc were detected in either the surface or subsurface soil samples in concentrations exceeding their respective soil protective of groundwater values. No compounds were detected in the soil samples in concentrations which exceed generic industrial direct contact values.

7.5.2 Conclusions

No VOCs or SVOCs indicative of residual contamination from past fire training exercises were detected in the soils collected and analyzed during the SI. The surface of AOC D is proposed for soil stabilization and capping as part of the Source Removal Action Plan (SRAP - The Earth Technology Corporation, June 1994). No data collected during this SI would indicate that alternative or additional interim remedial measures are needed across AOC D.

7.5.3 Recommendations

No further remedial actions, beyond what are proposed during the SRAP (The Earth Technology Corporation, June 1994) are recommended for AOC D.

7.6 AOCE

A summary of the data collected during the SI, conclusions based on these data, and recommendations regarding the disposition of AOC E are included in the following sections.

7.6.1 Summary

Prior to construction of the new hangar (1962), aircraft maintenance activities were housed in the old hangar (Building 6901). After 1962, the old hangar was used for vehicle maintenance and aircraft parts painting operations. A grassy area existing between the hangar and the apron was suspected of being an area where small amounts of shop wastes were disposed of. SI sampling activities completed in this grassy area included a SOV survey and surface and subsurface soil sampling.

No VOCs were detected above their applicable NREPA PA 451 cleanup criteria for surface and subsurface soils collected and analyzed during the SI. No detections of SVOCs were reported in the data set. Beryllium (surface soils) and antimony (subsurface soils) were each detected in concentrations exceeding their respective soil protective of groundwater values, indicating a potential threat to groundwater. No compounds were detected in the soil samples in concentrations which exceed generic industrial direct contact values.

7.6.2 Conclusions

No VOCs or SVOCs indicative of the disposal of waste POL or solvents were detected in the soils at concentrations above applicable NREPA PA 451 cleanup criteria. Average on-site concentrations for the metals antimony (subsurface soils) and beryllium (surface soils) are presented in the following table:

	Average concer	ntration (a)	Soil protective	Average		
	surface soil subsurface soil		surface soil Subsurface soil		exceeds value?	
Antimony	NA	3.05	NA	0.36	Yes	
Beryllium	0.26	NA	0.19	NA	Yes	

NA - not applicable

metals concentrations are presented in mg/kg;

(a) one-half of the reported value was used for non-detects

As shown on this table average antimony and beryllium concentrations exceed the soil protective groundwater values. This evaluation suggests the presence of antimony (subsurface soils) and of beryllium (surface soils) poses a potential threat to the groundwater beneath AOC E. Unlike AOC A where soils containing metals above the soil protective of groundwater value are associated with hydrocarbons, these elevated metals concentrations are not associated with organic compounds suggestive of past spills or the disposal of potentially hazardous materials. These metals detections are considered outliers and not likely the result of spills or the disposal of potentially hazardous substances.

7.6.3 Recommendations

No further actions are recommended for AOC E.

7.7 AOC F

A summary of the data collected during the SI, conclusions based on these data, and recommendations regarding the disposition of AOC F are included in the following sections.

7.7.1 Summary

AOC F, the new hangar (Building 6900) has housed aircraft maintenance operations since the facility was constructed in 1962. Small quantities of used solvent, and waste paint and POL were disposed of in the dumpsters. The dumpsters reportedly leaked. Stained soils were also reported beneath the dumpsters. As part of the SI, subsurface soil sampling and analysis were completed in the alcove which contains the dumpsters.

Methylene chloride was detected within the subsurface soils at a concentration exceeding its 20 x residential health-based drinking water cleanup criteria, indicating a potential threat to the groundwater. However, methylene chloride is a common laboratory contaminant and the result presented in this report was qualified B by the laboratory which indicates some type or blank contamination. SVOCs (PAHs) were detected in the subsurface soil samples. No

SVOCs were detected in the subsurface soil samples in concentrations exceeding applicable NREPA PA 451 cleanup criteria. Antimony, arsenic, and beryllium were detected above their respective soil protective of groundwater criteria in the subsurface soils. No compounds were detected in the soil samples in concentrations which exceed generic industrial direct contact values.

7.7.2 Conclusions

VOCs or SVOCs were detected in the soils collected and analyzed during the SI. The detection of these compounds suggests they may be due to the disposal of waste POL or solvents. However, the only VOC or SVOC detected in concentrations exceeding the 20x residential health-based drinking water value is methylene chloride. Methylene chloride was reportedly used by the non-destructive interference shop, which is currently located in this hangar. Although methylene chloride is considered a common laboratory contaminant, its use in the new hangar suggests that it may have originated from disposal or waste handling activities. This area is covered by asphalt and receives very little if any direct surface infiltration. In addition, the methylene chloride was quantified in the 1 to 3 ft bgs interval, but not in the 30 to 32 ft bgs interval from FSB2. These results suggest that the compound is not moving vertically down through the soil column. The methylene chloride detection in the shallow subsurface soils, although detected in a concentration exceeding the 20x health-based drinking water value, is not considered a significant threat the shallow groundwater beneath Metals concentrations may be elevated due to past waste handling activities. AOC F. Average subsurface soil concentrations for antimony, arsenic, and beryllium are included in the following table:

	Average concer	ntration (a)	Soil protective	Soil protective of groundwater value		
	surface soil	subsurface soil	surface soil	subsurface soil	concentration exceeds value?	
Antimony	NA	1.86	NA	0.36	Yes	
Arsenic	NA	5.7	NA	6.57	No	
Beryllium	NA	0.19	NA	0.08	Yes	

NA - not applicable metals concentrations are presented in mg/kg; (a) one-half of the reported value was used for non-detects

As shown on this table, average antimony and beryllium concentrations exceed their respective soil protective of groundwater values. This evaluation suggests the presence of antimony and beryllium in the subsurface soils poses a potential threat to the groundwater beneath AOC F. However, the area is covered by asphalt and receives very little, if any, direct surface infiltration. This significantly reduces the potential mobility of these metals.

7.7.3 Recommendations

No further actions are recommended for AOC F.

8.0 BIBLIOGRAPHY

Air Force Center for Environmental Excellence, Completion of One-Year Bioventing Test, IRP Site 3. 110th FG, MIANG, May 17, 1994.

Camp Dresser and McKee, Springfield Wells Site Final Technical Memorandum, June 1992.

Earth Technology Corporation, Final PA/SI Work Plan, 110th FG, MIANG, Battle Creek, Michigan, March 1994.

Earth Technology Corporation, Draft Final RI Work Plan, 110th FG, MIANG, Battle Creek, Michigan, September 1994.

Earth Technology Corporation, Final Source Removal Action Plan, Site 5 - Coal Storage Area, 110th FG, Michigan ANG, W.K. Kellogg Airport, Battle Creek, Michigan, June 1994.

Earth Technology Corporation, Internal Draft RI Report, 110th FG, MIANG, Battle Creek, Michigan, June 1995.

Engineering-Science, IRP Draft Immediate Response Report: 110th TASG, Michigan ANG, 1988.

Engineering-Science, Part I Bioventing Pilot Test Work Plan and Part II Draft Interim Pilot Test Results for IRP Site 3, Battle Creek ANG, Michigan, November 1992.

Engineering-Science, Final Site Investigation Report, 110th TASG, Michigan Air National Guard, W.K. Kellogg Regional Airport, Battle Creek, Michigan, November 1993.

Engineering-Science, Draft Final Source Removal Action Plan, Site 2 - Drainage Swale, 110th Fighter Group, Michigan Air National Guard, W.K. Kellogg Airport, Battle Creek, Michigan, (June, 1994).

Engineering-Science, Site 5: Soil Sampling and Analysis, 110th Fighter Group, Michigan Air National Guard, March 1993.

Engineering-Science, Final Site Investigation Report, 110th TASG, Michigan Air National Guard, W.K. Kellogg Regional Airport, Battle Creek, Michigan, November 1993.

Grannemann and Twenter, Geohydrology and Groundwater Flow at Verona Well Field, Battle Creek, Michigan. U.S. GS Water Resources Investigations Report 85-4056.

Hazardous Materials Technical Center (Dynamac Corporation) "Installation Restoration Program Phase I Records Search: 110th TASG, Michigan Air National Guard, W.K. Kellogg Regional Airport, Battle Creek, Michigan, June 1987.

HAZWRAP, 1990. Standard Operating Procedures for Site Characterizations, DOE/HWP-100, July 1990.

Hickok and Associates, Base Environmental Assessment. 110th Fighter Group, Michigan Air National Guard, 1985.

Radian Management Action Plan, 110th FG, MIANG, Battle Creek, Michigan, July 1994.

Snell Environmental Group, Base Master Plan, 110th FG MIANG, Battle Creek, Michigan, 29 July 1987.

State of Michigan, "Administrative Rules for Public Act 307, as amended"; 1982.

State of Michigan, MDNR; Thomas Weise Personal Communication, November 28, 1994.

State of Michigan, MDNR; MERA Operational Memorandum #15, September 30, 1993.

State of Michigan, MDNR; MERA Operational Memorandum #8, Revision 4, June 5, 1995.

State of Michigan, MDNR; Addendum to MERA Operational Memorandum #8, Revision 3, June 21, 1994.

State of Michigan, MDNR; Operational Memorandum #12, Revision 2, January 1995.

State of Michigan, MDNR, Operational Memorandum #14, Revision 2, June 6, 1995.

Vanlier, Kenneth E., 1966. Groundwater Resources of the Battle Creek Area, Michigan. Michigan Geological Survey, Water Investigation 4.

APPENDIX A: FIELD ANALYTICAL RESULTS

Table 2 Summary of Samples with Detectable Concentrations of Analytes Michigan Air National Guard Base 110th Fighter Group Battle Creek, Michigan

Sample ID	Trace #	Compound Detected	Concentration (µg/L)
BC-B-SG1A	103	TCE/Cis-1,2-DCE	5.2J
BC-B-SG1B	106	Toluene	45.83
BC-D-SG1A	109	TCE/Cis-1,2-DCE	2.67J
BC-D-SG1B	110	TCE/Cis-1,2-DCE	15.75
BC-D-SG1C	111	TCE/Cis-1,2-DCE	7.49
BC-E-SG1A	131	TCE/Cis-1,2-DCE	6.79
BC-FB-1	136	TCE/Cis-1,2-DCE	17.64
BC-B-SG2	139	TCE/Cis-1,2-DCE	1.08J
BC-B-SG3	140	TCE/Cis-1,2-DCE	8.41
BC-B-SG7	157	TCE/Cis-1,2-DCE	3.8J
BC-B-SG7	157	Toluene	33.14R
BC-B-SG7	157	TVOC	36.94JR
BC-B-SG10	160	TCE/Cis-1,2-DCE	0.43J
BC-B-SG11DUP	162	TCE/Cis-1,2-DCE	2.05J
BC-B-SG13	167	TCE/Cis-1,2-DCE	5.84
BC-B-SG13	167	Toluene	1.79Ј
BC-B-SG13	167	TVOC	7.63J
BC-B-SG14	168	TCE/Cis-1,2-DCE	35.4
BC-B-SG15	179	TCE/Cis-1,2-DCE	2.38J
BC-D-SG6	221	TCE/Cis-1,2-DCE	17.79
BC-D-SG6	221	TCE/Cis-1,2-DCE	31.56

PCE 15127/95

Table 2
Summary of Samples with Detectable Concentrations of Analytes

Sample ID	Trace #	Compound Detected	Concentration (µg/L)
BC-D-SG6	221	TVOC	49.35
BC-E-SG4	246	TCE/Cis-1,2-DCE	6.39
BC-E-SG13	268	TCE/Cis-1,2-DCE	16.56
BC-E-SG14	269	TCE/Cis-1,2-DCE	16.7
BC-E-SG17	273	TCE/Cis-1,2-DCE	1.38J
BC-E-SG18	274	TCE/Cis-1,2-DCE	37.28
BC-C-SG13	280	TCE/Cis-1,2-DCE	4.85

Area of Concern (AOC) A: Former Fire Training Area - West Air National Guard Base Battle Creek, Michigan

Area of Concern (AOC) B: Motor Pool Parking Air National Guard Base Battle Creek, Michigan

Area of Concern (AOC) C: Fire Training Area - South Air National Guard Base Battle Creek, Michigan

Figure 4
Area of Concern (AOC) D:
Former Fire Training Area - West
Air National Guard Base
Battle Creek, Michigan

Eigure 5
Area of Concern (AOC) E:
Old Hangar (Building 6901)
Air National Guard Base
Battle Creek, Michigan

Cis-1,2-DCE

The average %RSD during the second half of the SI (July 11-July 16, 1994) for cis-1,2-DCE was 25.35%. The range was 9.59 to 64.22%. Inconsistencies in sample temperature and variations in the ambient temperature inside the van contributed to the wide ranges in %RSD values.

TCE/cis-1,2-DCE

TCE and cis-1,2-DCE co-eluted and the standards are reported as a combined RF during the first half of the investigation (June 21- July 1, 1994). The average %RSD during the SI for TCE/cis-1,2-DCE was 25.65%. The range was 0.3 to 180.39%. Inconsistencies in sample temperature and variations in the ambient temperature inside the van contributed to the wide ranges in %RSD values.

TCE

The average %RSD during the second half of the SI (July 11 to July 16, 1994) for TCE was 15.26. The range was 1.91 to 44.48%. Inconsistencies in sample temperature and variations in the ambient temperature inside the van contributed to the wide ranges in %RSD values. Generally, TCE was used as the criteria for re-running check standards. If the %RSD for TCE was greater than 25, the standard was mixed again and re-run.

PCE

The average %RSD during the SI for PCE was 23.82%. The range was 0.98 to 78.61%. Inconsistencies in sample temperature and variations in the ambient temperature inside the van contributed to the wide ranges in %RSD values.

Toluene

The average %RSD during the SI for Toluene was 21.18%. The range was 0.92 to 71.02%. Inconsistencies in sample temperature and variations in the ambient temperature inside the van contributed to the wide ranges in %RSD values.

Ethylbenzene

Ethylbenzene co-eluted with chlorobenzene in field standards and samples were reported as chloro/ethylbenzene. The average %RSD during the SI was 45.19%. The range was 1.35 to 85.75%. Inconsistencies in sample temperature and variations in the ambient temperature inside the van contributed to the wide ranges in %RSD values.

m,p-xylene

The average %RSD during the SI for m,p-xylene was 42.45%. The range was 0.42 to 94.86%. The late elution of the xylenes in the packed column (less sensitive to the late-eluting compounds), in addition to inconsistencies in sample temperature and variations in the ambient temperature inside the van contributed to the wide ranges in %RSD values.

o-xylene

The average %RSD during the SI for o-xylene was 47.36%. The range was 1.87 to 87.31%. The late elution of the xylenes in the packed column (less sensitive to the late-eluting compounds), in addition to inconsistencies in sample temperature and variations in the ambient temperature inside the van, contributed to the wide ranges in %RSD values.

2.3.2 Samples

Duplicate samples (DUPS) were taken as quality assurance samples for soil gas and soil samples. DUPS were taken from the same bore hole and same interval for both media. The DUPS showed the same results as associated samples with the exception of one. BCB-SG11DUP had an estimated level of Toluene $(2.05\mu g/L)$ and the associated sample was below the MDL for Toluene.

APPENDIX B

STANDARD CURVES, RESPONSE FACTORS AND QA

Trans 1,2 DCE

June 21, 1994

Analyte	Conc	Area	RF	AVG RF
	(µg/L)	Area counts	Area counts/(µg/L)	Area counts/(µg/L)
Trans 1,2 DCE	99.52	1140970.00	11464.44	11797.13
Trans 1,2 DCE	49.76	541363.00	10879.21	
Trans 1,2 DCE	24.88	362056.00	14551.72	
Trans 1,2 DCE	12.44	128050.00	10293.15	
Trans 1,2 DCE	0.00	0.00	0.00	
trans				
	Regression Output:			
Constant			21536.57	
Std Err of Y Est			56245.92	
R Squared			0.99	
No. of Observations			4.00	
Degrees of Freedom			2.00	
X Coefficient(s)		11180.28045		
Std Err of Coef.		843.21990		

1984-001

TCE/CIS

June 21, 1994

Calibration standards were used tocalibrate samples analyzed June 21, 1994 Traces 10

Analyte	Conc (µg/L)	Area Area counts	RF Area counts/(µg/L)	AVG RF Area counts/(µg/L) 11071.58
TCE/CIS	99.52	1221734.00	12275.96	
TCE/CIS	49.76	616456.00	12388.27	
TCE/CIS	24.88	212742.00	8550.51	
TCE/CIS	0.00	0.00	0.00	
	Regression Output:			
Constant	-		-89897.00	
Old Em of V	드라		54026.86	

Constant	-89897.00
Std Err of Y Est	54026.86
R Squared	0.99
No. of Observations	3.00
Degrees of Freedom	1.00
Dog. occ or res	

X Coefficient(s)	13324.33
Std Err of Coef.	1005.18

PCE

June 21, 1994

Analyte	Conc	Area	RF	AVG RF
	(µg/L)	Area counts	Area counts/(µg/L)	Area counts/(µg/L)
PCE	99.52	820615.00	8245.52	8794.98
PCE	49.76	346029.00	6953.78	
PCE	24.88	254762.00	10239.37	
PCE	12.44	121184.00	9741.23	
PCE	0.00	0.00	0.00	

Regression Output:

Constant	21078.17
Std Err of Y Est	55270.13
R Squared	0.98
No. of Observations	4.00
Degrees of Freedom	2.00

X Coefficient(s)	7814.79
Std Err of Coef.	828.59

Toluene

June 21, 1994

Analyte	Conc	Area	RF	AVG RF
	(µg/L)	Area counts	Area counts/(µg/L)	Area counts/(µg/L)
Toluene	99.52	1047632.00	10526.58	8418.54
Toluene	49.76	413224.00	8304.13	
Toluene	24.88	201970.00	8117.56	
Toluene	12.44	83672.00	6725.88	
Toluene	0.00	0.00	0.00	

Regression Output:

Constant	-46855.65
Std Err of Y Est	53298.30
R Squared	0.99
No. of Observations	5.00
Degrees of Freedom	3.00

X Coefficient(s) 10614.83 Std Err of Coef. 677.41

chloro/ethylbenzene

June 21, 1994

Calibration standards were used tocalibrate samples analyzed June 21, 1994 Traces 103-111

Analyte	Conc	Area	RF	AVG RF
·	(µg/L)	Area counts	Area counts/(µg/L)	Area counts/(µg/L)
chloro/ethylbenzene	197.55	75021.00	379.77	440.01
chloro/ethylbenzene	98.77	42984.00	435.18	
chloro/ethylbenzene	49.39	24944.00	505.08	

Regression Output:

Constant	8925.50
Std Err of Y Est	1080.54
R Squared	1.00
No. of Observations	3.00
Degrees of Freedom	1.00

X Coefficient(s) 336.05 Std Err of Coef. 10.13

p-xylene

June 21, 1994

Analyte	Conc (µg/L)	Area Area counts	RF Area counts/(µg/L)	AVG RF Area counts/(µg/L)
p-xylene	99.52	242240.00	2434.02	1919.22
p-xylene	49.76	105720.00	2124.54	
p-xylene	24.88	29834.00	1199.09	

Regression Output:

	regression output	
Constant	-38426.00	
Std Err of Y Est	4076.27	
R Squared	1.00	
No. of Observations	3.00	
	1.00	
Degrees of Freedom		
X Coefficient(s)	2831.07	
Std Err of Coef.	75.84	

o-xylene

June 21, 1994

Calibration standards were used tocalibrate samples analyzed June 21, 1994 Traces 103-111

Analyte	Conc	Area	RF	AVG RF
	(µg/L)	Area counts	Area counts/(µg/L)	Area counts/(µg/L)
o-xylene	99.52	312036.00	3135.33	2568.25
o-xylene	49.76	169380.00	3403.85	
o-xylene	24.88	29000.00	1165.57	
o-xylene	0.00	0.00	0.00	

Regression Output:

Constant	-44276.17
Std Err of Y Est	26146.94
R Squared	0.98
No. of Observations	4.00
Degrees of Freedom	2.00

X Coefficient(s) Std Err of Coef. 3684.37 391.99

1984-001

Trans 1,2 DCE

June 21, 1994

Calibration standards were used to calibrate samples analyzed June 21, 1994 Traces 119-146

Analyte	Conc (µg/L)	Area Area counts	RF Area counts/(µg/L)	AVG RF Area counts/(µg/L) 13282.19
Trans 1,2 DCE	99.52	2100623.00	21107.02 14724.35	13202.13
Trans 1,2 DCE	49.76	732702.00 202390.00	8134.44	
Trans 1,2 DCE	24.88 12.44	113990.00	9162.95	
Trans 1,2 DCE Trans 1,2 DCE	0.00	0.00	0.00	

Regression Output:

• Jank	-313856.57
Constant	147839.92
Std Err of Y Est	0.98
R Squared	4.00
No. of Observations	2.00
Degrees of Freedom	

X Coefficient(s)
Std Err of Coef.

23606.75565 2216.36614

Trans 1,2 DCE

June 21, 1994

Calibration standards were used to calibrate samples analyzed June 21, 1994 Traces 119-146

	Trans			
Date & time	Trace#	area	Conc	%RSD
6/21/94 20:24	123	608308.00	49.76	7.96
6/22/94 09:58	130	1360164.00	49.76	105.79
6/22/94 11:19	134	311841.00	49.76	52.82
6/22/94 14:49	142	372071.00	49.76	43.71
6/22/94 17:39	146	337677.00	49.76	48.91

TCE/CIS

June 21, 1994

Calibration standards were used to calibrate samples analyzed June 21, 1994 Traces 119-146

Analyte	Conc (µg/L)	Area Area counts	RF Area counts/(µg/L)	AVG RF Area counts/(µg/L) 16128.50
TCE/CIS	49.76	728369.00	14637.27	
TCE/CIS	24.88	438390.00	17619.73	
TCE/CIS	0.00	0.00	0.00	
	Regression Outpu	t:		
Constant	_		24735.17	
Std Err of Y Est			60588.54	
R Squared			0.99	
No. of Observati	ons		3.00	
Degrees of Free	dom		1.00	
X Coefficient(s)		14637.27		
Std Err of Coef.		1721.92		

TCE/CIS

June 21, 1994

Calibration standards were used to calibrate samples analyzed June 21, 1994 Traces 119-146

	TCE/CIS			
Date & time	Trace#	area	Conc	%RSD
6/21/94 20:24	123	65526.00	99.52	95.92
6/22/94 09:58	130		99.52	100.00
6/22/94 11:19	134	380564.00	99.52	76.29
6/22/94 14:49	142		99.52	100.00
6/22/94 17:39	146		99.52	100.00

1984-001

PCE

June 21, 1994

Calibration standards were used to calibrate samples analyzed June 21, 1994 Traces 119-146

Analyte	Conc (µg/L)	Area Area counts	RF Area counts/(µg/L)	AVG RF Area counts/(µg/L) 9083.63
PCE	99.52	1353328.00	13598.21	9003.03
PCE	49.76	494234.00	9932.11	
PCE	12.44	46285.00	3720.57	
PCE	0.00	0.00	0.00	

Regression Output:

Constant	-184410.51
	91310.89
Std Err of Y Est	0.99
R Squared	2.0
No. of Observations	3.00
Degrees of Freedom	1.00

X Coefficient(s) 15131.20
Std Err of Coef. 1477.87

PCE

June 21, 1994

Calibration standards were used to calibrate samples analyzed June 21, 1994 Traces 119-146

	PCE			
Date & time	Trace#	area	Conc	%RSD
6/21/94 20:24	123	346858.00	49.76	23.26
6/22/94 09:58	130	886393.00	49.76	96.10
6/22/94 11:19	134	252831.00	49.76	44.07
6/22/94 14:49	142	111023.00	49.76	75.44
6/22/94 17:39	146	110470.00	49.76	75.56

Toluene

June 21, 1994

Calibration standards were used to calibrate samples analyzed June 21, 1994 Traces 119-146

Analyte	Conc (µg/L)	Area Area counts	RF Area counts/(µg/L)	AVG RF Area counts/(μg/L)
Toluene	99.52	2331529.00	23427.15	11570.55
Toluene	49.76	793353.00	15943.19	
Toluene	24.88	218511.00	8782.38	
Toluene	12.44	124230.00	9986.08	
Toluene	0.00	0.00	0.00	

Regression Output:

Constant	-163191.00
Std Err of Y Est	103237.67
R Squared	0.96
No. of Observations	3.00
Degrees of Freedom	1.00

X Coefficient(s)	18668.19
Std Err of Coef.	3841.52

Toluene

Toluene

June 21, 1994

Calibration standards were used to calibrate samples analyzed June 21, 1994 Traces 119-146

Date & time	Trace#	area	Conc	%RSD
6/21/94 20:24	123	648916.00	49.76	12.71
6/22/94 09:58	130	2121535.00	49.76	268.47
6/22/94 11:19	134	667997.00	49.76	16.02
6/22/94 14:49	142	443143.00	49.76	23.03
6/22/94 17:39	146	454178.00	49.76	21.12

chloro/ethylbenzene

June 21, 1994

Calibration standards were used to calibrate samples analyzed June 21, 1994 Traces 119-146

Analyte	Conc (µg/L)	Area Area counts	Alca coalite (Fg)	
chloro/ethylbenzene	197.55	422386.00	2138.17	5277.04
chioro/ethylbenzene	98.77	459537.00	4652.47	
chloro/ethylbenzene	49.39	446477.00	9040.49	
chloro/ethylbenzene	0.00	449295.00	ERR	

Regression Output:

Constant Std Err of Y Est R Squared No. of Observations Degrees of Freedom	465052.50 16909.89 0.60 3.00 1.00	
X Coefficient(s) Std Err of Coef.	-193.11 158.50	

chloro/ethylbenzene

June 21, 1994

Calibration standards were used to calibrate samples analyzed June 21, 1994 Traces 119-146

Date & time	Trace#	area	Conc	%RSD
6/21/94 20:24	123	441973.00	99.52	
6/22/94 09:58	130	245019.00	99.52	
6/22/94 11:19	134		99.52	
6/22/94 14:49	142	274535.00	99.52	
6/22/94 17:39	146	310133.00	99.52	

p-xylene

June 21, 1994

Calibration standards were used to calibrate samples analyzed June 21, 1994 Traces 119-146

Analyte	Conc (µg/L)	Area Area counts	RF Area counts/(µg/L)	AVG RF Area counts
p-xylene	99.52	269094.00	2703.85	1781.93
p-xylene	49.76	106642.00	2143.07	
p-xylene	24.88	12412.00	498.86	
p-xylene	0.00	0.00	0.00	

Regression Output:

Constant	-68814.00
Std Err of Y Est	6950.93
R Squared	1.00
No. of Observations	3.00
Degrees of Freedom	1.00

X Coefficient(s)	3413.96
Std Err of Coef.	129.32

p-xylene

June 21, 1994

Calibration standards were used to calibrate samples analyzed June 21, 1994 Traces 119-146

	p-xylene			
Date & time	Trace#	area	Conc	%RSD
6/21/94 20:24	123	165613.00	49.76	86.77
6/22/94 09:58	130	306970.00	49.76	246.19
6/22/94 11:19	134	219293.00	49.76	147.31
6/22/94 14:49	142	117814.00	49.76	32.87
6/22/94 17:39	146	123590.00	49.76	39.38

o-xylene

June 21, 1994

Calibration standards were used to calibrate samples analyzed June 21, 1994 Traces 119-146

Analyte	Conc (µg/L)	Area Area counts	RF Area counts/(µg/L)	AVG RF Area counts/(µg/L) 1692.70
o-xylene	24.88	36841.00	1480.71	
o-xylene	12.44	23695.00	1904.69	
o-xylene	0.00	0.00	0.00	
	Regression Output:			
Constant			1758.17	
Std Err of Y Est			4306.61	
R Squared			0.97	
No. of Observations			3.00	
Degrees of Freedom			1.00	
X Coefficient(s)		1480.71		
Std Err of Coef.		244.79		

o-xylene

June 21, 1994

Calibration standards were used to calibrate samples analyzed June 21, 1994 Traces 119-146

	o-xylene			
Date & time	Trace#	area	Conc	%RSD
6/21/94 20:24	123	165534.00	49.76	96.52
6/22/94 09:58	130	337837.00	49.76	301.08
6/22/94 11:19	134	428912.00	49.76	409.21
6/22/94 14:49	142	95224.00	49.76	13.05
6/22/94 17:39	146	104818.00	49.76	24.44

1984-001

14

Trans 1,2 DCE

June 22, 1994

Calibration standards were used tocalibrate samples analyzed June 22, 1994 Traces 157-179

Analyte	Conc (µg/L)	Area Area counts	RF Area counts/(µg/L	AVG RF Area counts/(µg/L) 15987.97
Trans 1,2 DCE Trans 1,2 DCE Trans 1,2 DCE Trans 1,2 DCE	60.00 40.00 20.00 0.00	1100839.00 602092.00 291286.00 0.00	18347.32 15052.30 14564.30 0.00	
Constant Std Err of Y Est R Squared No. of Observations Degrees of Freedom	Regression Output:		-144814.00 76726.59 0.98 3.00 1.00	
X Coefficient(s) Std Err of Coef.		20238.82500 2712.69467		

Trans 1,2 DCE

June 22, 1994

Calibration standards were used tocalibrate samples analyzed June 22, 1994 Traces 157-179

	trans			
Date & time	Trace#	area	Conc	%RSD
6/23/94 08:02	156	168855.00	80.00	86.80
6/23/94 10:02	161	475065.00	40.00	25.72
6/23/94 13:09	166	573452.00	40.00	10.33
6/23/94 15:21	178	427285.00	40.00	33.19

1984-001

2

TCE
June 22, 1994

Calibration standards were used tocalibrate samples analyzed June 22, 1994 Traces 157-179

Analyte	Conc (µg/L)	Area Area counts	RF Area counts/(µg/L)	AVG RF Area counts/(µg/L) 15342.68
TCE TCE TCE	120.00 80.00 40.00 0.00	2226323.00 1164886.00 516571.00 0.00	18552.69 14561.08 12914.28 0.00	
Constant Std Err of Y Est R Squared No. of Observations Degrees of Freedom	Regression Output:		-407158.67 168656.35 0.98 3.00 1.00	
y Coefficient(s)		21371.90	•.	

TCE

June 22, 1994

Calibration standards were used tocalibrate samples analyzed June 22, 1994 Traces 157-179

	tce/cis			
Date & time	Trace#	area	Conc	%RSD
6/23/94 08:02	156	1015325.00	160.00	58.64
6/23/94 10:02	161	282517.00	80.00	76.98
6/23/94 13:09	166	1082778.00	80.00	11.78
6/23/94 15:21	178	636712.00	80.00	48.13

PCE

June 22, 1994

Calibration standards were used tocalibrate samples analyzed June 22, 1994 Traces 157-179

Analyte	Conc (µg/L)	Area Area counts	RF Area counts/(µg/L)	AVG RF Area counts/(µg/L) 13486.66
PCE	60.00	879276.00	14654.60	
PCE	40.00	504637.00	12615.93	
PCE	20.00	263789.00	13189.45	
PCE	0.00	0.00	0.00	

Regression Output:

Constant	-19875.90
Std Err of Y Est	46369.04
R Squared	0.99
No. of Observations	4.00
Degrees of Freedom	2.00

PCE

June 22, 1994

Calibration standards were used tocalibrate samples analyzed June 22, 1994 Traces 157-179

Date & time	Trace#	area	Conc	%RSD
6/23/94 08:02	156	216298.00	80.00	79.95
6/23/94 10:02	161	258116.00	40.00	52.15
6/23/94 13:09	166	440214.00	40.00	18.40
6/23/94 15:21	178	477811.00	40.00	11.43

Toluene

June 22, 1994

Calibration standards were used tocalibrate samples analyzed June 22, 1994 Traces 157-179

Analyte	Conc (µg/L)	Area Area counts	RF Area counts/(µg/L)	AVG RF Area counts/(µg/L) 24384.49
Toluene	79.62	6144076.00	77169.43	24304.49
Toluene	59.71	1777132.00	29760.98	
Toluene	39.81	918922.00	23083.27	
Toluene	19.90	404245.00	20309.23	
Toluene	0.00	0.00	0.00	
	Regression Output:			
Constant			-339454.00	
Std Err of Y Est			140246.76	
-			0.98	
R Squared			3.00	
No. of Observations Degrees of Freedom			1.00	
		34486.85		

X Coefficient(s) Std Err of Coef. 34486.85 4982.26

Toluene

June 22, 1994

Calibration standards were used tocalibrate samples analyzed June 22, 1994 Traces 157-179

Date & time	Trace#	area	Conc	%RSD
6/23/94 08:02	156	768275.00	79.62	60.43
6/23/94 10:02	161	812119.00	39.81	16.34
6/23/94 13:09	166	763247.00	39.81	21.37
6/23/94 15:21	178	771805.00	39.81	20.49

1984-001

8

chloro/ethylbenzene

June 22, 1994

Calibration standards were used tocalibrate samples analyzed June 22, 1994 Traces 157-179

Analyte	Conc (µg/L)	Area Area counts	RF Area counts/(µg/L)	AVG RF Area counts/(µg/L)
chloro/ethylbenzene	158.04	394290.00	2494.93	1810.05
chloro/ethylbenzene	39.51	44454.00	1125.16	
chloro/ethylbenzene	0.00	0.00	0.00	

Regression Output:

Constant	-24977.77
Std Err of Y Est	42454.04
R Squared	0.98
No. of Observations	3.00
Degrees of Freedom	1.00

X Coefficient(s) 2600.30 Std Err of Coef. 365.00

chloro/ethylbenzene

June 22, 1994

Calibration standards were used tocalibrate samples analyzed June 22, 1994 Traces 157-179

Date & time	Trace#	area	Conc	%RSD
6/23/94 08:02	156	297208.00	158.04	3.90
6/23/94 10:02	161	357506.00	79.02	149.96
6/23/94 13:09	166	323514.00	79.02	126.19
6/23/94 15:21	178	371482.00	79.02	159.73

p-xylene

June 22, 1994

Calibration standards were used tocalibrate samples analyzed June 22, 1994 Traces 157-179

Analyte	Conc	Area Area counts	RF Area counts/(µg/L)	AVG RF Area counts/(µg/L)
	(µg/L)			3661.77
p-xylene	79.62	308090.00	3869.60	3001.77
p-xylene	59.71	219893.00	3682.47	
p-xylene	39.81	137218.00	3446.91	
p-xylene	19.90	72614.00	3648.12	
p-xylene	0.00	0.00	0.00	

Regression Output:

Constant	-5128.80
Std Err of Y Est	8422.05
R Squared	1.00
No. of Observations	5.00
Degrees of Freedom	3.00

X Coefficient(s) 3835.61
Std Err of Coef. 133.80

p-xylene

June 22, 1994

Calibration standards were used tocalibrate samples analyzed June 22, 1994 Traces 157	-179
---	------

Date & time	Trace#	area	Conc	%RSD
6/23/94 08:02	156	581195.00	79.62	99.35
6/23/94 10:02	161	103430.00	39.81	29.05
6/23/94 13:09	166	217774.00	39.81	49.39
6/23/94 15:21	178	122963.00	39.81	15.65

o-xylene

June 22, 1994

Calibration standards were used tocalibrate samples analyzed June 22, 1994 Traces 157-179

Analyte	Conc (µg/L)	Area Area counts	RF Area counts/(µg/L)	AVG RF Area counts/(µg/L) 6472.41
o-xylene o-xylene o-xylene o-xylene o-xylene	79.62 59.71 39.81 19.90 0.00	619310.00 468295.00 224467.00 92161.00 0.00	7778.52 7842.36 5638.60 4630.16 0.00	0.7.2
Constant Std Err of Y Est R Squared No. of Observations Degrees of Freedom	Regression Output:		-42104.20 46929.22 0.98 5.00 3.00	
X Coefficient(s) Std Err of Coef.		8112.51 745.58		

o-xylene

June 22, 1994

Calibration standards were used tocalibrate samples analyzed June 22, 1994 Traces 157-179

Date & time	Trace#	area	Conc	%RSD
6/23/94 08:02	156	783228.00	79.62	51.99
6/23/94 10:02	161	159125.00	39.81	38.24
6/23/94 13:09	166	227637.00	39.81	11.65
6/23/94 15:21	178	104097.00	39.81	59.60

1984-001

Trans 1,2 DCE

June 23, 1994

Calibration standards were used to calibrate samples analyzed June 23, 1994 Traces 187-333

Analyte	Conc (µg/L)	Area Area counts	RF Area counts/(µg/L)	AVG RF Area counts/(µg/L) 12487.15
Trans 1,2 DCE Trans 1,2 DCE Trans 1,2 DCE	40.00 20.00 0.00	528002.00 235485.00 0.00	13200.05 11774.25 0.00	
	Regression Output:			
Constant	J ,		-9505.33	
Std Err of Y Est			23283.22	
R Squared			1.00	
No. of Observations	,		3.00	
Degrees of Freedor			1.00	
X Coefficient(s) Std Err of Coef.		13200.05000 823.18601	•.	

Trans 1,2 DCE

June 23, 1994

Calibration standards were used to calibrate samples analyzed June 23, 1994 Traces 187-333

	trans			
Date & time	Trace#	area	Conc	%RSD
6/24/94 08:07	188	499554.00	40.00	0.01
6/24/94 11:50	196	527145.00	40.00	5.54
6/24/94 15:42	202	620809.00	40.00	24.29
6/24/94 17:32	207	512675.00	40.00	2.64
6/25/94 08:49	210	419205.00	40.00	16.07
6/25/94 10:09	213	397632.00	40.00	20.39
6/25/94 12:15	219	456624.00	40.00	8.58
6/25/94 16:01	227	474814.00	40.00	4.94
6/25/94 17:19	231	491789.00	40.00	1.54
6/26/94 08:40	234	415128.00	40.00	16.89
6/26/94 10:49	240	1097617.00	80.00	9.87
6/26/94 12:07	243	332647.00	40.00	33.40
6/26/94 15:41	249	510976.00	40.00	2.30
6/27/94 10:01	255	499524.00	40.00	0.01
6/27/94 12:03	261	467031.00	40.00	6.50
6/27/94 15:14	270	328892.00	40.00	34.15
6/27/94 18:18	277	394630.00	40.00	20.99
6/28/94 08:09	279	285862.00	40.00	42.77
6/28/94 11:21	286	608704.00	40.00	21.87
6/28/94 14:08	292	515996.00	40.00	3.31
6/28/94 14:45	293	803909.00	40.00	60.95
6/28/94 16:18	297	326179.00	40.00	34.70
6/28/94 17:01	299	466064.00	40.00	6.69
6/29/94 08:49	302	575933.00	40.00	15.31
6/29/94 12:59	306	410379.00	40.00	17.84
6/29/94 15:27	312	788839.00	60.00	5.29
6/29/94 17:45	317	291923.00	40.00	41.56
6/30/94 08:05	319	452928.00	40.00	9.32
6/30/94 10:05	325	649207.00	40.00	29.98
6/30/94 13:08	332	726466.00	40.00	45.44
6/30/94 13:50	334	416994.00	40.00	16.52

TCE\CIS

June 23, 1994

Calibration standards were used to calibrate samples analyzed June 23, 1994 Traces 187-333

Analyte TCE\CIS TCE\CIS	Conc (µg/L) 160.00 80.00	Area Area counts 2718065.00 1071216.00	RF Area counts/(µg/L) 16987.91 13390.20	AVG RF Area counts/(µg/L) 14468.99
TCE\CIS	40.00 0.00	521154.00 0.00	13028.85 0.00	

Regression Output:

Constant	-120908.20
Std Err of Y Est	170143.42
R Squared	0.99
No. of Observations	4.00
Degrees of Freedom	2.00

X Coefficient(s) 17121.67 Std Err of Coef. 1437.97

TCE\CIS

June 23, 1994

Calibration standards were used to calibrate samples analyzed June 23, 1994 Traces 187-333 TCE\CIS

	TCE\CIS			
Date & time	Trace#	area	Conc	%RSD
6/24/94 08:07	188	1205826.00	80.00	4.17
6/24/94 11:50	196	911881.00	80.00	21.22
6/24/94 15:42	202	1219984.00	00.08	5.40
6/24/94 17:32	207	1046555.00	80.00	9.59
6/25/94 08:49	210	1079713.00	80.00	6.72
6/25/94 10:09	213	891233.00	80.00	23.00
6/25/94 12:15	219	846145.00	80.00	26.90
6/25/94 16:01	227	903373.00	80.00	21.96
6/25/94 17:19	231	887125.00	80.00	23.36
6/26/94 08:40	235	1039053.00	80.00	10.23
6/26/94 10:49	240	2361545.00	160.00	2.01
6/26/94 12:07	243	630353.00	80.00	45.54
6/26/94 15:41	249		80.00	
6/27/94 10:01	255	1308588.00	80.00	13.05
6/27/94 12:03	261	1198511.00	80.00	3.54
6/27/94 15:14	270	764961.00	80.00	33.91
6/27/94 18:18	277	830103.00	80.00	28.29
6/28/94 08:09	279	0.00	80.00	
6/28/94 11:21	286	0.00	80.00	
6/28/94 14:08	292	1349847.00	80.00	16.62
6/28/94 14:45	293	3245539.00	80.00	180.39
6/28/94 16:18	297	410769.00	80.00	64.51
6/28/94 17:01	299	1603880.00	80.00	38.56
6/29/94 08:49	302		80.00	
6/29/94 12:59	306	1123995.00	80.00	2.90
6/29/94 15:27	312	1741502.00	120.00	0.30
6/29/94 17:45	317	639966.00	80.00	44.71
6/30/94 08:05	319	1296972.00	80.00	12.05
6/30/94 10:05	325	1673605.00	80.00	44.59
6/30/94 13:08	332	1961539.00	80.00	69.46
6/30/94 13:50	334	967565.00	80.00	16.41

June 23, 1994

Calibration standards were used to calibrate samples analyzed June 23, 1994 Traces 187-333

Analyte	Conc (µg/L)	Area Area counts	RF Area counts/(µg/L)	AVG RF Area counts/(µg/L) 10697.36
PCE PCE	40.00 20.00	414401.00 220694.00	10360.03 11034.70	
PCE	0.00	0.00	0.00	
	Regression Output:			
Constant			4497.83	
Std Err of Y Est			11017.40	
R Squared			1.00	
No. of Observation	S		3.00	
Degrees of Freedo			1.00	
X Coefficient(s) Std Err of Coef.		10360.03 389.52		

PCE

PCE

June 23, 1994

Calibration standards were used to calibrate samples analyzed June 23, 1994 Traces 187-333

Date & time	Trace#	area	Conc	%RSD
6/24/94 08:07	188	499554.00	40.00	16.75
6/24/94 11:50	188	432314.00	40.00	1.03
6/24/94 15:42	196	311200.00	40.00	27.27
6/24/94 17:32	202	378352.00	40.00	11.58
6/25/94 08:49	207	309504.00	40.00	27.67
6/25/94 10:09	210	185913.00	40.00	56.55
6/25/94 12:15	213	135887.00	40.00	68.24
6/25/94 16:01	219	458270.00	40.00	7.10
6/25/94 17:19	227	349202.00	40.00	18.39
6/26/94 08:40	231	433254.00	40.00	1.25
6/26/94 10:49	234	261304.00	40.00	38.93
6/26/94 12:07	240	632921.00	80.00	26.04
6/26/94 15:41	243	194398.00	40.00	54.57
6/27/94 10:01	249	237650.00	40.00	44.46
6/27/94 12:03	255	447302.00	40.00	4.54
6/27/94 15:14	261	432201.00	40.00	1.01
6/27/94 18:18	270	282439.00	40.00	33.99
6/28/94 08:09	277	404603.00	40.00	5.44
6/28/94 11:21	279	195128.00	40.00	54.40
6/28/94 14:08	283	1432977.00	75.00	78.61
6/28/94 14:45	286	398429.00	40.00	6.89
6/28/94 16:18	292	496720.00	40.00	16.08
6/28/94 17:01	293	643483.00	40.00	50.38
6/29/94 08:49	297	191108.00	40.00	55.34
6/29/94 12:59	299	365736.00	40.00	14.53
6/29/94 15:27	302	153059.00	40.00	64.23
6/29/94 17:45	306	318883.00	40.00	25.48
6/30/94 08:05	312	761273.00	60.00	18.61
6/30/94 10:05	317	288301.00	40.00	32.62
6/30/94 13:08	319	455497.00	40.00	6.45
6/30/94 13:50	325	505664.00	40.00	18.17
	332	527961.00	40.00	23.39
	334	237028.00	40.00	44.61

6

1984-001

Toluene

June 23, 1994

Calibration standards were used to calibrate samples analyzed June 23, 1994 Traces 187-333

Analyte	Conc (µg/L)	Area Area counts	RF Area counts/(µg/L)	AVG RF Area counts/(µg/L) 16751.14
Toluene Toluene Toluene	39.81 19.90 0.00	708476.00 312608.00 0.00	17796.88 15705.39 0.00	
Regression Output: Constant Std Err of Y Est R Squared No. of Observations Degrees of Freedom			-13876.67 33990.75 1.00 3.00 1.00	
X Coefficient(s) Std Err of Coef.		17796.88 1207.52		

Toluene

June 23, 1994

Calibration standards were used to calibrate samples analyzed June 23, 1994 Traces 187-333

	Toluene			
Date & time	Trace#	area	Conc	%RSD
6/24/94 08:07	188	791302.00	39.80	18.69
6/24/94 11:50	196	587568.00	39.80	11.87
6/24/94 15:42	202	821983.00	39.80	23.29
6/24/94 17:32	207	650143.00	39.80	2.48
6/25/94 08:49	210	557492.00	39.80	16.38
6/25/94 10:09	213	435581.00	39.80	34.67
6/25/94 12:15	219	563861.00	39.80	15.43
6/25/94 16:01	227	526518.00	39.80	21.03
6/25/94 17:19	231	538957.00	39.80	19.16
6/26/94 08:40	234	515262.00	39.80	22.71
6/26/94 10:49	240	1404650.00	79.60	5.34
6/26/94 12:07	243	300203.00	39.80	54.97
6/26/94 15:41	249	630159.00	39.80	5.48
6/27/94 10:01	255	901550.00	39.80	35.23
6/27/94 12:03	261	750849.00	39.80	12.62
6/27/94 15:14	270	422115.00	39.80	36.69
6/27/94 18:18	277	570785.00	39.80	14.39
6/28/94 08:09	279	854196.00	39.80	28.12
6/28/94 11:21	286	824187.00	39.80	23.62
6/28/94 14:08	290	385991.00	39.80	42.10
6/28/94 14:45	297	527016.00	39.80	20.95
6/28/94 16:18	300	703063.00	39.80	5.45
6/28/94 17:01	302	1004998.00	39.80	50.74
6/29/94 08:49	306	545883.00	39.80	18.12
6/29/94 12:59	312	1231240.00	59.70	23.12
6/29/94 15:27	317	396108.00	39.80	40.59
6/29/94 17:45	319	704981.00	39.80	5.74
6/30/94 08:05	325	1025128.00	39.80	53.76
6/30/94 10:05	332	1140213.00	39.80	71.02
6/30/94 13:08	334	497876.00	39.80	25.32
6/30/94 13:50				

chloro/ethylbenzene

June 23, 1994

Calibration standards were used to calibrate samples analyzed June 23, 1994 Traces 187-333

Analyte	Conc (µg/L)	Area Area counts	RF Area counts/(µg/L)	AVG RF Area counts/(µg/L) 3878.29
chloro/ethylbenzene	158.04	809506.00	5122.28	3070.29
chloro/ethylbenzene	118.53	652991.00	5509.20	
chloro/ethylbenzene	79.02	79285.00	1003.38	
chloro/ethylbenzene	0.00	0.00	0.00	

Regression Output:

1(09:000:01:00:01	
Constant	-581404.17
• • • • • • • • • • • • • • • • • • • •	170317.51
Std Err of Y Est	0.90
R Squared	• • • • • • • • • • • • • • • • • • • •
No. of Observations	3.00
	1.00
Degrees of Freedom	• •

X Coefficient(s) 9241.17
Std Err of Coef. 3048.23

chloro/ethylbenzene

June 23, 1994

Calibration standards were used to calibrate samples analyzed June 23, 1994 Traces 187-333

Date & time	Trace#	area	Conc	%RSD
6/24/94 08:07	188	88587.00	79.02	71.09
6/24/94 11:50	196	134955.00	79.02	55.96
6/24/94 15:42	202	93073.00	79.02	69.63
6/24/94 17:32	207	137808.00	79.02	55.03
6/25/94 08:49	210	43684.00	79.02	85.75
6/25/94 10:09	213	387407.00	79.02	26.42
6/25/94 12:15	219	310607.00	79.02	1.35
6/25/94 16:01	227	96247.00	79.02	68.59
6/25/94 17:19	231	156117.00	79.02	49.06
6/26/94 08:40	234	273119.00	79.02	10.88
6/26/94 10:49	240	143474.00	158.04	76.59
6/26/94 12:07	243	110272.00	79.02	64.02
6/26/94 15:41	249	79285.00	79.02	74.13
6/27/94 10:01	255	211194.00	79.02	31.08
6/27/94 12:03	261	99244.00	79.02	67.62
6/27/94 15:14	270	83344.00	79.02	72.80
6/27/94 18:18	277	111326.00	79.02	63.67
6/28/94 08:09	279	497415.00	79.02	62.31
6/28/94 11:21	286	312275.00	79.02	1.90
6/28/94 14:08	290	210092.00	79.02	31.44
6/28/94 14:45	297	146568.00	79.02	52.17
6/28/94 16:18	300	246054.00	79.02	19.71
6/28/94 17:01	302	119181.00	79.02	61.11
6/29/94 08:49	306	132173.00	79.02	56.87
6/29/94 12:59	312	215065.00	118.53	53.21
6/29/94 15:27	317	162232.00	79.02	47.06
6/29/94 17:45	319	161908.00	79.02	47.17
6/30/94 08:05	325	249580.00	79.02	18.56
6/30/94 10:05	332	223837.00	79.02	26.96
6/30/94 13:08	334	107973.00	79.02	64.77
6/30/94 13:50				

p-xylene

June 23, 1994

Calibration standards were used to calibrate samples analyzed June 23, 1994 Traces 187-333

Anaiyte	Conc (µg/L)	Area Area counts	RF Area counts/(µg/L)	AVG RF Area counts/(µg/L) 3664.78
p-xylene	59.71	304729.00	5103.18	
p-xylene	39.81	147651.00	3708.99	
p-xylene	19.90	43435.00	2182.17	
p-xylene	0.00	0.00	0.00	
	Regression Output:			
Constant			-96022.33	
Std Err of Y Est			21580.82	
Old Ell Of 1 Est			0.00	

 Constant
 -96022.33

 Std Err of Y Est
 21580.82

 R Squared
 0.99

 No. of Observations
 3.00

 Degrees of Freedom
 1.00

X Coefficient(s) 6563.69
Std Err of Coef. 766.66

p-xylene

June 23, 1994

Calibration standards were used to calibrate samples analyzed June 23, 1994 Traces 187-333

Date & time	Trace#	area	Conc	%RSD
6/24/94 08:07	188	38061.00	39.82	73.92
. 6/24/94 11:50	196	136888.00	39.82	6.19
6/24/94 15:42	202	151823.00	39.82	4.04
6/24/94 17:32	207	125253.00	39.82	14.16
6/25/94 08:49	210	7496.00	39.82	94.86
6/25/94 10:09	213	46768.00	39.82	67.95
6/25/94 12:15	219	125163.00	39.82	14.23
6/25/94 16:01	227	124874.00	39.82	14.42
6/25/94 17:19	231	138184.00	39.82	5.30
6/26/94 08:40	234	49759.00	39.82	65.90
6/26/94 10:49	240	271406.00	79.63	7.00
6/26/94 12:07	243	38350.00	39.82	73.72
6/26/94 15:41	249	187812.00	39.82	28.71
6/27/94 10:01	255	83634.00	39.82	42.69
6/27/94 12:03	261	119629.00	39.82	18.02
6/27/94 15:14	270	76964.00	39.82	47.26
6/27/94 18:18	277	88791.00	39.82	39.15
6/28/94 08:09	279	145308.00	39.82	0.42
6/28/94 11:21	286	209403.00	39.82	43.50
6/28/94 14:08	290	48648.00	39.82	66.66
6/28/94 14:45	297	99046.00	39.82	32.12
6/28/94 16:18	300	110919.00	39.82	23.99
6/28/94 17:01	302	158431.00	39.82	8.57
6/29/94 08:49	306	103388.00	39.82	29.15
6/29/94 12:59	312	191646.00	59.73	12.44
6/29/94 15:27	317	73073.00	39.82	49.92
6/29/94 17:45	319	52553.00	39.82	63.99
6/30/94 08:05	325	103751.00	39.82	28.90
6/30/94 10:05	332	91941.00	39.82	36.99
6/30/94 13:08	334	114531.00	39.82	21.51
6/30/94 13:50				

o-xylene

June 23, 1994

Calibration standards were used to calibrate samples analyzed June 23, 1994 Traces 187-333

Analyte	Conc (µg/L)	Area Area counts	RF Area counts/(µg/L)	AVG RF Area counts/(µg/L) 4851.79
o-xylene	39.81	225558.00	5666.01	
o-xylene	19.90	80366.00	4037.58	
o-xylene	0.00	0.00	0.00	
R	egression Outpu	ıt:		
Constant	_		-10804.33	
Std Err of Y Est			26465.10	
R Squared			0.97	
No. of Observation	ns		3.00	
Degrees of Freedo	om		1.00	
X Coefficient(s)		5666.01	•.	

o-xylene

June 23, 1994

Calibration standards were used to calibrate samples analyzed June 23, 1994 Traces 187-333

Date & time	Trace#	area	Conc	%RSD
6/24/94 08:07	196	164027.00	39.82	15.09
6/24/94 11:50	202	180486.00	39.82	6.57
6/24/94 15:42	207	150465.00	39.82	22.11
6/24/94 17:32	210	39141.00	39.82	79.74
6/25/94 08:49	213	95541.00	39.82	50.54
6/25/94 10:09	219	123703.00	39.82	35.96
6/25/94 12:15	227	169339.00	39.82	12.34
6/25/94 16:01	231	142320.00	39.82	26.33
6/25/94 17:19	234	84989.00	39.82	56.00
6/26/94 08:40	240	325565.00	79.63	15.73
6/26/94 10:49	243	32692.00	39.82	83.08
6/26/94 12:07	249	169039.00	39.82	12.49
6/26/94 15:41	255	100807.00	39.82	47.82
6/27/94 10:01	261	128192.00	39.82	33.64
6/27/94 12:03	270	91845.00	39.82	52.45
6/27/94 15:14	277	87915.00	39.82	54.49
6/27/94 18:18	279	153927.00	39.82	20.32
6/28/94 08:09	286	196788.00	39.82	1.87
6/28/94 11:21	297	90666.00	39.82	53.07
6/28/94 14:08	300	106505.00	39.82	44.87
6/28/94 14:45	302	156886.00	39.82	18.79
6/28/94 16:18	306	107854.00	39.82	44.17
6/28/94 17:01	312	213393.00	59.72	26.36
6/29/94 08:49	317	67377.00	39.82	65.12
6/29/94 12:59	319	80496.00	39.82	58.33
6/29/94 15:27	325	148768.00	39.82	22.99
6/29/94 17:45	332	151680.00	39.82	21.48
6/30/94 08:05	334	125227.00	39.82	35.17
6/30/94 10:05				
6/30/94 13:08				
6/30/94 13:50				

Trans 1,2 DCE

July 11, 1994

Analyte	Conc (µg/L)	Area Area counts	RF Area counts/(µg/L)	AVG RF Area counts/(µg/L) 7419.67
Trans 1,2 DCE	60.00	527922.00	8798.70	
Trans 1,2 DCE	40.00	351000.00	8775.00	
Trans 1,2 DCE	20.00	93706.00	4685.30	
Trans 1,2 DCE	0.00	0.00	0.00	

Regression Output:

1,49	· - · · · - · · · ! ·	
Constant	-110006.66667	
Std Err of Y Est	32811.73160	
R Squared	0.98871	
No. of Observations	3.00000	
Degrees of Freedom	1.00000	
Y Coefficient(s)	10855.40	

TRANS

Trans 1,2 DCE

July 11, 1994

Calibration standards were used tocalibrate samples analyzed on or after July 11, 1994

		•	•	•
Date & time	Trace#	area	Conc	%RSD
7/11/94 18:29	374	541830.00	40.00	82.57
7/12/94 09:25	381	387351.00	40.00	30.51
7/12/94 11:53	386	300353.00	40.00	1.20
7/12/94 17:36	395	392004.00	40.00	32.08
7/12/94 18:56	399	532531.00	40.00	79.43
7/12/94 21:19	408	335465.00	40.00	13.03
7/13/94 08:25	410	375074.00	40.00	26.38
7/13/94 11:09	422	356705.00	40.00	20.19
7/13/94 14:06	432	390376.00	40.00	31.53
7/13/94 16:25	440	326843.00	40.00	10.13
7/14/94 08:07	443	355094.00	40.00	19.65
7/14/94 12:31	445	290678.00	40.00	2.06
7/14/94 14:53	450	288950.00	40.00	2.64
7/14/94 18:33	459	442473.00	40.00	49.09
7/15/94 08:08	462	155935.00	40.00	47.46
7/15/94 08:53	464	330950.00	40.00	11.51
7/15/94 10:58	472	230003.00	40.00	22.50
7/15/94 11:11	473	451115.00	40.00	52.00
7/15/94 14:45	482	363648.00	40.00	22.53
7/16/94 10:44	500	204012.00	40.00	31.26

cis 1,2 DCE

July 11, 1994

Analyte	Conc	Area	RF	AVG RF
,	(µg/L)	Area counts	Area counts/(µg/L)	Area counts/(µg/L) 5069.58
cis 1,2 DCE	60.00	315951.00	5265.85	
cis 1,2 DCE	40.00	180212.00	4505.30	
cis 1,2 DCE	20.00	108752.00	5437.60	
cis 1,2 DCE	0.00	0.00	0.00	
	Regression Output:			
Constant			-1668.20	
Std Err of Y Est			18680.31	
R Squared			0.99	
No. of Observations			4.00	
Degrees of Freedom			2.00	
X Coefficient(s)		5096.56		
Std Err of Coef.		417.70		

CIS

::

cis 1,2 DCE

July 11, 1994

Calibration standards were	used tocalibrate	eamples analyzed	on or after Ju	iv 11 1994
Calibration standams were	used tocalibrate	sambies analyzeu	on or after Ju	17 II, 1337

Date & time	Trace#	area	Conc	%RSD
7/11/94 18:44	375	515482.00	40.00	154.20
7/12/94 08:37	378	223064.00	40.00	10.00
7/12/94 12:08	387	461374.00	40.00	127.52
7/12/94 17:52	396	333012.00	40.00	64.22
7/12/94 19:12	400	545927.00	40.00	169.22
7/13/94 08:40	411	286964.00	40.00	41.51
7/13/94 11:25	423	232384.00	40.00	14.60
7/13/94 14:23	433	278729.00	40.00	37.45
7/13/94 16:40	441	258202.00	40.00	27.33
7/14/94 08:23	444	262660.00	40.00	29.53
7/14/94 12:46	446	272765.00	40.00	34.51
7/14/94 15:07	451	268253.00	40.00	32.29
7/14/94 18:48	460	378576.00	40.00	86.69
7/15/94 08:23	463	136284.00	40.00	32.79
. 7/15/94 09:09	465	235696.00	40.00	16.23
7/15/94 11:25	474	232931.00	40.00	14.87
7/15/94 15:01	483	225180.00	40.00	11.04
7/15/94 19:20	495	222236.00	40.00	9.59
7/16/94 10:21	498	226434.00	40.00	11.66

TCE July 11, 1994

Analyte	Conc (µg/L)	Area Area counts	RF Area counts/(µg/L)	AVG RF Area counts/(µg/L) 8947.35
TCE	60.00	607172.00	10119.53	
TCE	40.00	410767.00	10269.18	
TCE	20.00	129067.00	6453.35	
TCE	0.00	0.00	0.00	
	Regression Output:			

 Constant
 -95769.67

 Std Err of Y Est
 34821.54

 R Squared
 0.99

 No. of Observations
 3.00

 Degrees of Freedom
 1.00

X Coefficient(s) 11952.62 Std Eπ of Coef. 1231.13

::

TCE

July 11, 1994

	TCE			
Date & time	Trace#	area	Conc	%RSD
7/11/94 18:29	374	713002.00	40.00	99.22
7/12/94 09:25	381	410100.00	40.00	14.59
7/12/94 11:53	386	308605.00	40.00	13.77
7/12/94 17:36	395	447555.00	40.00	25.05
7/12/94 18:56	399	592340.00	40.00	65.51
7/12/94 21:19	408	442672.00	40.00	23.69
7/13/94 08:25	410	387391.00	40.00	8.24
7/13/94 11:09	422	364727.00	40.00	1.91
7/13/94 14:06	432	365230.00	40.00	2.05
7/13/94 16:25	440	334542.00	40.00	6.52
7/14/94 08:07	443	334561.00	40.00	6.52
7/14/94 12:31	445	416779.00	40.00	16.45
7/14/94 14:53	450	294684.00	40.00	17.66
. 7/14/94 18:33	459	660864.00	40.00	84.65
7/15/94 08:08	462	215910.00	40.00	39.67
7/15/94 08:53	464	342378.00	40.00	4.34
7/15/94 10:58	472	259466.00	40.00	27.50
7/15/94 11:11	473	444555.00	40.00	24.21
7/15/94 14:45	482	383649.00	40.00	7.20
7/16/94 10:44	500	198692.00	40.00	44.48

PCE

July 11, 1994

Analyte	Conc (µg/L)	Area Area counts	RF Area counts/(µg/L)	AVG RF Area counts/(µg/L) 7047.04
PCE	60.00	446214.00	7436.90	
PCE	40.00	317115.00	7927.88	
PCE	20.00	115527.00	5776.35	
PCE	0.00	0.00	0.00	

Regression Output:

Constant	-11320.50
Std Err of Y Est	25524.06
R Squared	0.99
No. of Observations	4.00
Degrees of Freedom	2.00

X Coefficient(s)	7701.15
Std Err of Coef.	570.74

::

PCE

July 11, 1994

PCE	,		•
Trace#	area	Conc	%RSD
374	373632.00	40.00	32.55
381	402254.00	40.00	42.70
386	234876.00	40.00	16.68
395	353982.00	40.00	25.58
399	397589.00	40.00	41.05
408	284653.00	40.00	0.98
410	297596.00	40.00	5.57
422	242785.00	40.00	13.87
432	378433.00	40.00	34.25
440	322045.00	40.00	14.25
443	310243.00	40.00	10.06
445	236588.00	40.00	16.07
450	295747.00	40.00	4.92
459	311799.00	40.00	10.61
462	143695.00	40.00	49.02
464	337496.00	40.00	19.73
472	260046.00	40.00	7.75
473	462271.00	40.00	63.99
482	358973.00	40.00	27.35
500	212795.00	40.00	24.51
	Trace# 374 381 386 395 399 408 410 422 432 440 443 445 450 459 462 464 472 473 482	Trace# area 374 373632.00 381 402254.00 386 234876.00 395 353982.00 399 397589.00 408 284653.00 410 297596.00 422 242785.00 432 378433.00 440 322045.00 443 310243.00 445 236588.00 450 295747.00 459 311799.00 462 143695.00 464 337496.00 472 260046.00 473 462271.00 482 358973.00	Trace# area Conc 374 373632.00 40.00 381 402254.00 40.00 386 234876.00 40.00 395 353982.00 40.00 408 284653.00 40.00 410 297596.00 40.00 422 242785.00 40.00 432 378433.00 40.00 440 322045.00 40.00 443 310243.00 40.00 445 236588.00 40.00 450 295747.00 40.00 459 311799.00 40.00 462 143695.00 40.00 464 337496.00 40.00 472 260046.00 40.00 473 462271.00 40.00 482 358973.00 40.00

Toluene

July 11, 1994

Analyte	Conc (µg/L)	Area Area counts	RF Area counts/(µg/L)	AVG RF Area counts/(µg/L) 14773.49
Toluene Toluene Toluene Toluene	59.71 39.81 19.90 0.00	1045702.00 658037.00 204591.00 0.00	17511.99 16529.86 10278.63 0.00	
Constant Std Err of Y Est R Squared No. of Observations Degrees of Freedom	Regression Output:		-205001.00 26854.98 1.00 3.00 1.00	
		21128.66		

X Coefficient(s) 21128.66
Std Err of Coef. 954.02

::

Toluene

July 11, 1994

	TOLUENE			
Date & time	Trace#	area	Conc	%RSD
7/11/94 18:29	374	1175236.00	39.80	99.87
7/12/94 09:25	381	781649.00	39.80	32.94
7/12/94 11:53	386	489056.00	39.80	16.83
7/12/94 17:36	395	771805.00	39.80	31.26
7/12/94 18:56	399	1068622.00	39.80	81.74
7/12/94 21:19	408	832719.00	39.80	41.62
7/13/94 08:25	410	724578.00	39.80	23.23
7/13/94 11:09	422	670505.00	39.80	14.03
7/13/94 14:06	432	687882.00	39.80	16.99
7/13/94 16:25	440	582538.00	39.80	0.93
7/14/94 08:07	443	566146.00	39.80	3.71
7/14/94 12:31	445	532566.00	39.80	9.43
7/14/94 14:53	450	593398.00	39.80	0.92
7/14/94 18:33	459	997612.00	39.80	69.67
7/15/94 08:08	462	358444.00	39.80	39.04
7/15/94 08:53	464	579922.00	39.80	1.37
7/15/94 10:58	472	424428.00	39.80	27.82
7/15/94 11:11	473	815752.00	39.80	38.74
7/15/94 14:45	482	633101.00	39.80	7.67
7/16/94 10:06	497	619408.00	39.80	5.34

chloro/ethylbenzene

July 11, 1994

Calibration standards were used tocalibrate samples analyzed on or after July 11, 1994

Analyte	Conc (µg/L)	Area Area counts	RF Area counts/(µg/L)	AVG RF Area counts/(µg/L) 1522.29
chloro/ethylbenzene	79.02	110962.00	1404.26	
chloro/ethylbenzene	39.51	64808.00	1640.33	
chloro/ethylbenzene	0.00	0.00	0.00	

Regression Output:

	Kegiession Output.	
Constant	•	18654.00
Std Err of Y Est		ERR
R Squared		1.00
No. of Observations		2.00
Degrees of Freedom		0.00
X Coefficient(s) Std Err of Coef.	1168.19 ERR	•• •

11

chloro/ethylbenzene

July 11, 1994

Calibration standards were used tocalibrate samples analyzed on or after July 11, 1994 CHLORO-ETHYL

Date & time	Trace#	area	Conc	%RSD
7/11/94 18:29	374	65182.00	79.02	45.81
7/12/94 09:25	381	94768.00	79.02	21.22
7/12/94 11:53	386	103899.00	79.02	13.63
7/12/94 17:36	395	126440.00	79.02	5.11
7/12/94 18:56	399	147034.00	79.02	22.23
7/12/94 21:19	408	172647.00	79.02	43.53
7/13/94 08:25	410	211871.00	79.02	76.13
7/13/94 11:09	422	37177.00	79.02	69.09
7/13/94 14:06	432	147274.00	79.02	22.43
7/13/94 16:25	440	85261.00	79.02	29.12
7/14/94 08:07	443	71482.00	79.02	40.57
7/14/94 12:31	445	66033.00	79.02	45.10
7/14/94 14:53	450	130702.00	79.02	8.66
7/14/94 18:33	459	32375.00	79.02	73.09
7/15/94 08:08	462	19007.00	79.02	84.20
7/15/94 08:53	464	50014.00	79.02	58.42
7/15/94 10:58	472	47025.00	79.02	60.91
7/15/94 11:11	473	61713.00	79.02	48.70
7/15/94 14:45	482	53553.00	79.02	55.48
7/16/94 10:06	497	54270.00	79.02	54.88

12

p-xylene

July 11, 1994

Calibration standards were used tocalibrate samples analyzed on or after July 11, 1994

Analyte	Conc (µg/L)	Area Area counts	RF Area counts/(µg/L)	AVG RF Area counts/(µg/L) 1633.88
p-xylene	59.71	127235.00	2130.76	
p-xylene	39.81	45263.00	1137.00	
p-xylene	0.00	0.00	0.00	

Regression Output:

Constant	-118681.00
Std Err of Y Est	ERR
R Squared	1.00
No. of Observations	2.00
Degrees of Freedom	0.00

X Coefficient(s) Std Err of Coef. 4118.26 ERR

::

	P-XYLENI
Date & time	Trace#

ice# area

Conc

%RSD

p-xylene

July 11, 1994

- m m m m m m m m m m m m m m m m m m m		amples engineed on	ar offer luby 11 100	24
Calibration standards were u				
7/11/94 18:29	374	52964.00	39.82	18.59
7/12/94 09:25	381	86748.00	39.82	33.34
7/12/94 11:53	386	88424.00	39.82	35.92
7/12/94 17:36	395	105097.00	39.82	61.55
7/12/94 18:56	399	90804.00	39.82	39.58
7/12/94 21:19	408	165894.00	39.82	155.00
7/13/94 08:25	410	60401.00	39.82	7.16
7/13/94 11:09	422	47084.00	39.82	27.63
7/13/94 14:06	432	77219.00	39.82	18.70
7/13/94 16:25	440	63228.00	39.82	2.81
7/14/94 08:07	443	26684.00	39.82	58.98
7/14/94 12:31	445	32153.00	39.82	50.58
7/14/94 14:53	450	56614.00	39.82	12.98
7/14/94 18:33	459	42126.00	39.82	35.25
7/15/94 08:08	462		39.82	100.00
7/15/94 08:53	464	15199.00	39.82	76.64
7/15/94 10:58	472	13872.00	39.82	78.68
7/15/94 11:11	473	30099.00	39.82	53.73
7/15/94 14:45	482	17230.00	39.82	73.52
7/15/94 19:05	494	26766.00	39.82	58.86

o-xylene

July 11, 1994

Calibration standards were used tocalibrate samples analyzed on or after July 11, 1994

Analyte	Conc	Area	RF	AVG RF
, ,	(µg/L)	Area counts	Area counts/(µg/L)	Area counts/(µg/L) 3735.02
o-xylene	59.71	377932.00	6329.09	
o-xylene	39.81	140334.00	3525.18	
o-xylene	19.90	26887.00	1350.80	
o-xylene	0.00	0.00	0.00	
	Regression Output:			
Constant	•		-169327.33	
Std Err of Y Est			50684.43	
R Squared			0.96	
No. of Observations			3.00	
Degrees of Freedom			1.00	
X Coefficient(s)		8818.23		
Std Err of Coef.		1800.56		

O-XYLENE

o-xylene

July 11, 1994

Calibration standards were	used togalibrate	samples analyzed	on or after.	July 11, 1994
Candianul Sianualus Weie	useu iucaninaie	Saurines analyzed	un un anci	3417 11, 1007

Date & time	Trace#	area	Conc	%RSD
7/11/94 18:29	374	88574.00	39.82	40.44
7/12/94 09:25	381	100897.00	39.82	32.15
7/12/94 11:53	386	102222.00	39.82	31.26
7/12/94 17:36	395	125087.00	39.82	15.89
7/12/94 18:56	399	133441.00	39.82	10.27
7/12/94 21:19	408	209725.00	39.82	41.03
7/13/94 08:25	410	61868.00	39.82	58.40
7/13/94 11:09	422	52508.00	39.82	64.69
7/13/94 14:06	432	86238.00	39.82	42.01
7/13/94 16:25	440	73981.00	39.82	50.25
7/14/94 08:07	443	36902.00	39.82	75.19
7/14/94 12:31	445	37903.00	39.82	74.51
7/14/94 14:53	450	65084.00	39.82	56.23
7/14/94 18:33	459	60804.00	39.82	59.11
7/15/94 08:08	462	3290.00	39.82	97.79
7/15/94 08:53	464	18872.00	39.82	87.31
7/15/94 10:58	472		39.82	100.00
7/15/94 11:11	473	39912.00	39.82	73.16
7/15/94 14:45	482	18866.00	39.82	87.31
7/15/94 19:05	494	20179.00	39.82	86.43

APPENDIX C CALCULATED DATA AND QA

AMPLE ANALYSES TRACES 103-111

let	hod	Dete	ction	. 1 i	mits
101	nou				

	Compound	Concentration µg/L	
_	TRANS 1,2 DCE	34.00	
	BENZENE	4.00	
	CIS 1,2 DCE	23.00	
_	TCE	4.00	
	PCE	4.70	
-	TOLUENE	3.70	
	CHLORO/ETHYLBENZENE	8.20	
	p-XYLENE	6.80	
_	o-XYLENE	5.60	
SAMPLE ID: E	3C-B-SG1-A	Analyte	Conc.ug/ Qualifier
SAMPLE DATE: J		Trans 1,2 DCE	Conc µg/ Qualifier 34.00 U
_	•	benzene	4.00 U
SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: 5		Cis 1,2 DCE	23.00 U
ANALYSIS DATE: J		TCE/CIS 1,2 DCE	5.25 J
ANALYSIS TIME: 1	•	PCE	4.70 U
GC TRACE#: 1		Toluene	3.70 U
		chioro/ethylbenzene	8.20 U
	•	p-xylene	6.80 U
•		o-xylene	5.60 U
SAMPLE ID: E	BC-B-SG1-B	BC-B-SG-1B	
SAMPLE DATE:		Analyte	Conc µg/L
		Trans 1,2 DCE	34.00 U
SAMPLE DEPTH (Ft): 1 SAMPLE TYPE: 5		benzene	4.00 U
ANALYSIS DATE: J		Cis 1,2 DCE	23.00 U
ANALYSIS TIME: 1		TCE/CIS 1,2 DCE	4.00 U
GC TRACE#: 1	106	PCE	4.70 U
		Toluene	45.83
		chloro/ethylbenzene	8.20 U
		p-xylene	6.80 U
1		o-xylene	5.60 U
SAMPLE ID: E	BC-B-SG1-C	Analyte	Conc µg/L
SAMPLE DATE: .	JUNE 21, 1994	Trans 1,2 DCE	NA Pg. D
SAMPLE DEPTH (Ft): 2	•	benzene	NA
SAMPLE TYPE: S	SOIL GAS	TCE/CIS 1,2 DCE	NA
ANALYSIS DATE: .	JUNE 21, 1994	PCE	NA
ANALYSIS TIME:	1253	Toluene	NA
GC TRACE#:	107	chloro/ethylbenzene	NA
GC crashed, sample lost		p-xylene	NA

SAMPLE ANALYSES TRACES 103-111

SAMPLE ID:	BC-D-SG1-A
SAMPLE DATE:	JUNE 21, 1994
SAMPLE DEPTH (Ft):	5
SAMPLE TYPE:	SOIL GAS
ANALYSIS DATE:	JUNE 21, 1994
ANALYSIS TIME:	1330

GC TRACE#: 109

SAMPLE ID: BC-D-SG1-B
SAMPLE DATE: JUNE 21, 1994
SAMPLE DEPTH (Ft): 10
SAMPLE TYPE: SOIL GAS
ANALYSIS DATE: JUNE 21, 1994
ANALYSIS TIME: 1455
GC TRACE#: 110

SAMPLE ID: BC-D-SG1-C
SAMPLE DATE: JUNE 21, 1994
SAMPLE DEPTH (Ft): 20
SAMPLE TYPE: SOIL GAS
ANALYSIS DATE: JUNE 21, 1994
ANALYSIS TIME: 1517
GC TRACE#: 111

o-xylene	NA
Analyte Trans 1,2 DCE benzene CIS 1,2 dce TCE/CIS 1,2 DCE PCE Toluene chloro/ethylbenzene p-xylene o-xylene	Conc μg/L 34.00 U 4.00 U 23.00 U 2.67 J 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U
Analyte Trans 1,2 DCE benzene cis 1,2 DCE TCE/CIS 1,2 DCE PCE Toluene chloro/ethylbenzene p-xylene o-xylene	Conc µg/L 34.00 U 4.00 U 23.00 U 15.75 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U
Analyte Trans 1,2 DCE benzene cis 1,2 DCE TCE/CIS 1,2 DCE PCE Toluene chloro/ethylbenzene p-xylene	Conc µg/L 34.00 U 4.00 U 23.00 U 7.49 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U

o-xylene

SAMPLE ANALYSES TRACES 119-145

thod Detection Limits						
	Compound		Concentration µg/L			
_		TRANS 1,2 DCE	;	34.00		
		BENZENE		4.00		
•		CIS 1,2 DCE		23.00		
=		TCE		4.00		
		PCE		4.70		
		TOLUENE		3.70		
	CHLORO	ETHYLBENZENE		8.20		
		p-XYLENE		6.80		
_		o-XYLENE		5.60		
CAMPLE ID	. BC A SC1 A		Analyte		Conc µg/	Qualifier
	: BC-A-SG1-A		Trans 1,2 DCE		34.00	
	: JUNE 21, 1994		benzene		4.00	
SAMPLE DEPTH (Ft)			TCE/CIS 1,2 DCE		23.00	
SAMPLE TYPE			PCE		4.00	
	: JUNE 21, 1994		Toluene		4.70	
ANALYSIS TIME			chloro/ethylbenzene	3	3.70	
GC TRACE	F. 119		p-xylene	•	8.20	
			o-xylene		6.80	
			o Aylono		5.60	
SAMPLE I	D: BC-A-SG1-B		Analyte		Conc µg/l	L
	E: JUNE 21, 1994		Trans 1,2 DCE		34.00	U
SAMPLE DEPTH (F			benzene		4.00	U
SAMPLE TYPE	-				23.00	U
	E: JUNE 21, 1994		TCE/CIS 1,2 DCE		4.00	U
ANALYSIS TIM			PCE		4.70	υ
GC TRACE			Toluene		3.70	U
_			chloro/ethylbenzen	e	8.20	U
			p-xylene		6.80) U
			o-xylene		5.60	o U
SAMPLE	D: BC-B-SG-1C		BC-B-SG-1C			
SAMPLE DAT	E: JUNE 21, 1994	ļ.	Analyte		Conc µg/	/L
SAMPLE DEPTH (F			Trans 1,2 DCE		34.0	0 U
,	E: SOIL GAS		benzene		4.0	0 U
ANALYSIS DAT	E: JUNE 21, 1994	4			23.0	0 U
ANALYSIS TIM	IE: 1942		TCE/CIS 1,2 DCE	•	4.0	0 U
GC TRACE	#: 121		PCE		4.7	0 U
			Toluene		3.7	O U
			chloro/ethylbenze	ne	8.2	20 U

984-001

SAMPLE ANALY	SES TRACES	119-145
--------------	------------	---------

MPLE ANALYSES TRACES 119-145		
	p-xylene	6.80 U
	o-xylene	5.60 U
SAMPLE ID: BC-A-SG1-C	Analyte	Conc µg/L
SAMPLE DATE: JUNE 21, 1994	Trans 1,2 DCE	34.00 U
SAMPLE DEPTH (Ft): 20	benzene	4.00 U
SAMPLE TYPE: SOIL GAS		23.00 U
ANALYSIS DATE: JUNE 21, 1994	TCE/CIS 1,2 DCE	4.00 U
ANALYSIS TIME: 2001	PCE	4.70 U
GC TRACE#: 122	Toluene	3.70 U
	chloro/ethylbenzene	8.20 U
	p-xylene	6.80 U
	o-xylene	5.60 U
SAMPLE ID: BC-E-SG1-A	ANALYTE	Conc µg/L
SAMPLE DATE: JUNE 22, 1994	trans	34.00 U
SAMPLE DEPTH (Ft): 5		4.00 U
SAMPLE TYPE: SOIL GAS	cis	23.00 U
ANALYSIS DATE: JUNE 22, 1994	TCE	6.79
ANALYSIS TIME: 1017	PCE	4.70 U
GC TRACE#: 131	Toluene	3.70 U
	chloro/ethyl	8.20 U
	p-xylene	6.80 U 5.60 U
	o-xylene	5.60 0
	ANALYTE	Conc µg/L
SAMPLE ID: BC-E-SG1-A DUP	trans	34.00 U
SAMPLE DATE: JUNE 22, 1994	benzene	4.00 U
SAMPLE DEPTH (Ft): 5	cis	23.00 U
SAMPLE TYPE: SOIL GAS	TCE	4.00 U
ANALYSIS DATE: JUNE 22, 1994	PCE	4.70 U
ANALYSIS TIME: 1037	Toluene	3.70 U
GC TRACE#: 135	chloro/ethyl	8.20 U
	p-xylene	6.80 U
	o-xylene	5.60 U
	ANALYTE	Conc µg/L
SAMPLE ID: BC-SG-FB-1	trans	34.00 U
SAMPLE DATE: JUNE 22, 1994	benzene	4.00 U 23.00 U
SAMPLE DEPTH (Ft): 3	cis	23.00 U 17.64
SAMPLE TYPE: 1 3FT ROD	TCE	17.04 4.70 U
ANALYSIS DATE: JUNE 22, 1994	PCE	3.70 U
ANALYSIS TIME: 1158	Toluene	8.20 U
GC TRACE#: 136	chloro/ethyl	0.20

2

1984-001

AMPLE ANALYSES TRACES 119-145

	p-xylene	6.80 U
	o-xylene	5.60 U
	ANALYTE	Conc µg/L
SAMPLE ID: BC-E-SG1-C	trans	34.00 U
SAMPLE DATE: JUNE 22, 1994	benzene	4.00 U
SAMPLE DEPTH (Ft): 20	cis	23.00 U
SAMPLE TYPE: SOIL GAS	TCE	4.00 U
ANALYSIS DATE: JUNE 22, 1994	PCE	4.70 U
ANALYSIS TIME: 1223	Toluene	3.70 U
GC TRACE#: 137	chloro/ethyl	8.20 U
	p-xylene	6.80 U
	o-xylene	5.60 U
	ANALYTE	Conc µg/L
SAMPLE ID: BC-E-SG1-B	trans	34.00 U
SAMPLE DATE: JUNE 22, 1994	benzene	4.00 U
SAMPLE DEPTH (Ft): 10	cis	23.00 U
SAMPLE TYPE: SOIL GAS	TCE	4.00 U
ANALYSIS DATE: JUNE 22, 1994	PCE	4.70 U
ANALYSIS TIME: 1243	Toluene	3.70 U
GC TRACE#: 138	chloro/ethyl	8.20 U
	p-xylene	6.80 U
	o-xylene	5.60 U
	ANALYTE	Conc µg/L
SAMPLE ID: BC-B-SG2	trans	34.00 U
SAMPLE DATE: JUNE 22, 1994	benzene	4.00 U
SAMPLE DEPTH (Ft): 5	cis	23.00 U
SAMPLE TYPE: SOIL GAS	TCE	1.08 J
ANALYSIS DATE: JUNE 22, 1994	PCE	4.70 U
ANALYSIS TIME: 1342	Toluene	3.70 U
GC TRACE#: 139	chloro/ethyi	8.20 U
	p-xylene	6.80 U
	o-xylene	5.60 U
	ANALYTE	Conc µg/L
SAMPLE ID: BC-B-SG3	trans	34.00 U
SAMPLE DATE: JUNE 22, 1994	benzene	4.00 U
SAMPLE DEPTH (Ft): 5	cis	23.00 U
SAMPLE TYPE: SOIL GAS	TCE	8.41
ANALYSIS DATE: JUNE 22, 1994	PCE	4.70 U
ANALYSIS TIME: 1403	Toluene	3.70 U
GC TRACE#: 140	chloro/ethyl	8.20 U

SAMPLE	ANALYSES	TRACES	119-145
--------	-----------------	--------	---------

SAMPLE ANALYSES TRACES 119-145	p-xylene o-xylene	6.80 U 5.60 U
SAMPLE ID: H2O BLANK SAMPLE DATE: JUNE 22, 1994 SAMPLE DEPTH (Ft): 0 SAMPLE TYPE: H20 BLANK ANALYSIS DATE: JUNE 22, 1994 ANALYSIS TIME: 1423 GC TRACE#: 141	ANALYTE trans benzene cis TCE PCE Toluene chloro/ethyl p-xylene o-xylene	Conc µg/L 34.00 U 4.00 U 23.00 U 4.00 U 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U
SAMPLE ID: BC-B-SG4 SAMPLE DATE: JUNE 22, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 22, 1994 ANALYSIS TIME: 1524 GC TRACE#: 143	ANALYTE trans benzene cis TCE PCE Toluene chloro/ethyl p-xylene o-xylene	Conc µg/L 34.00 U 4.00 U 23.00 U 4.00 U 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U
SAMPLE ID: BC-B-SG5 SAMPLE DATE: JUNE 22, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 22, 1994 ANALYSIS TIME: 1606 GC TRACE#: 144	ANALYTE trans benzene cis TCE PCE Toluene chloro/ethyl p-xylene o-xylene	Conc µg/L 34.00 U 4.00 U 23.00 U 4.00 U 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U
SAMPLE ID: BC-B-SG6 SAMPLE DATE: JUNE 22, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 22, 1994 ANALYSIS TIME: 1701 GC TRACE#: 145	ANALYTE trans benzene cis TCE PCE Toluene chloro/ethyl	Conc μg/L 34.00 U 4.00 U 23.00 U 4.00 U 4.70 U 3.70 U 8.20 U

MPLE ANALYSES TRACES 119-145

p-xylene o-xylene 6.80 U 5.60 U

5

SAMPLE ANALYSES TRACES 157-179

Method	Detection	Limits
--------	-----------	--------

Compound		Concentration µg/L
Compound	TRANS 1,2 DCE	34.00
	BENZENE	4.00
	CIS 1,2 DCE	23.00
	TCE	4.00
	PCE	4.70
	TOLUENE	3.70
CHLORG	O/ETHYLBENZENE	8.20
•,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	p-XYLENE	
	o-XYLENE	5.60

SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 23, 1994 ANALYSIS TIME: 818 GC TRACE#: 157 Cis 23.00 U 7CE 4.70 U 70luene 70luene 70luene 70hloro/ethyl 70-xylene 9-xylene 9-xylene 9-xylene 9-xylene	ANALYSIS DATE: JUNE 23, 1994 ANALYSIS TIME: 818	TCE 3.80 J PCE 4.70 U Toluene 33.14 R chloro/ethyl 8.20 U p-xylene 6.80 U
---	--	---

1

SAMPLE ID: BC-B-SG8	
SAMPLE DATE: JUNE 23, 1994	
SAMPLE DEPTH (Ft): 5	
SAMPLE TYPE: SOIL GAS	

ANALYSIS DATE: JUNE 23, 1994

ANALYSIS TIME: 837 GC TRACE#: 158

SAMPLE ID:	BC-B-SG9
SAMPLE DATE:	JUNE 23, 1994
SAMPLE DEPTH (Ft):	5

SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 23, 1994

ANALYSIS TIME: 857 GC TRACE#: 159

, ,, ,, ,	• –
trans	34.00 U
benzene	4.00 U
cis	23.00 U
TCE	3.80 J
PCE	4.70 U
Toluene	33.14 R
chloro/ethyl	8.20 U
p-xylene	6.80 U
o-xylene	5.60 U
• min	

ANALYTE	CONC µg/L	QUALIFIER
trans	34.00	U
benzene	4.00	U
cis	23.00	U
TCE	4.00	U
PCE	4.70	
Toluene	3.70	
chloro/ethyl	8.2	
p-xylene		0 U
o-xylene	5.6	0 U

ANALYTE	CONC µg/L	QUALIFIER
trans	34.00	U
benzene	4.00	Ü
cis	23.00	U
TCE	4.00	U
PCE	4.70	U
Toluene	3.70	U
chloro/ethyl	8.20) ป
p-xylene	6.80	U

1984-001

SAMPLE ANALYSES TRACES 157-179

SAMPLE ID: BC-8-SG10		o-xylene	5.60	U
SAMPLE DEPTH (FI): 5	SAMPLE ID: BC-B-SG10	ANALYTE	CONC µg/L	QUALIFIER
SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 23, 1994 ANALYSIS TIME: 939 GC TRACE#: 160 GC TRACE#: 160 SAMPLE ID: BC-B-SG11 DUP SAMPLE DATE: JUNE 23, 1994 ANALYSIS TIME: 1054 GC TRACE#: 162 SAMPLE DEPTH (FI): 5 CONC µg/L CONC µg/L QUALIFIER CONC µg/L CONC µg/L QUALIFIER CONC µg/L CONC µg/L QUALIFIER CONC µg/L	SAMPLE DATE: JUNE 23, 1994	trans	34.00	U
ANALYSIS DATE: JUNE 23, 1994 ANALYSIS TIME: 939 GC TRACE#: 160 Toluene 3.70 U chloro/ethyl 8.20 U p-xylene 6.80 U o-xylene 5.60 U SAMPLE ID: BC-B-SG11 DUP ANALYTE CONC µg/L QUALIFIER SAMPLE DATE: JUNE 23, 1994 ANALYSIS DATE: JUNE 23, 1994 ANALYSIS TIME: 1054 GC TRACE#: 162 Toluene 3.70 U chloro/ethyl 8.20 U p-xylene 6.80 U o-xylene 4.00 U SAMPLE TYPE: SOIL GAS CIS 23.00 U ANALYSIS TIME: 1054 GC TRACE#: 162 Toluene 3.70 U chloro/ethyl 8.20 U p-xylene 6.80 U o-xylene 5.60 U SAMPLE DATE: JUNE 23, 1994 ANALYSIS DATE: JUNE 23, 1994 ANALYSIS DATE: JUNE 23, 1994 ANALYSIS TIME: 1118 GC TRACE#: 163 ANALYSIS TIME: 1118 GC TRACE#: 163 ANALYSIS TIME: 1118 PCE 4.70 U Chloro/ethyl 8.20 U p-xylene 6.80 U chloro/ethyl 8.20 U p-xylene 6.80 U ANALYSIS TIME: 1118 PCE 4.70 U Chloro/ethyl 8.20 U p-xylene 6.80 U Chloro/ethyl 8.20 U	SAMPLE DEPTH (Ft): 5	benzene	4.00	U
ANALYSIS TIME: 939 GC TRACE#: 160 Toluene 3.70 U chloro/ethyl 8.20 U p-xylene 6.80 U o-xylene 5.60 U SAMPLE ID: BC-B-SG11 DUP SAMPLE DATE: JUNE 23, 1994 ANALYTE CONC µg/L QUALIFIER SAMPLE TYPE: SOIL GAS Cis 23.00 U ANALYSIS TIME: 1054 GC TRACE#: 162 Toluene 3.70 U chloro/ethyl 8.20 U p-xylene 4.00 U SAMPLE ID: BC-B-SG11 SAMPLE ID: BC-B-SG11 SAMPLE DATE: JUNE 23, 1994 ANALYSIS DATE: JUNE 23, 1994 ANALYSIS DATE: JUNE 23, 1994 ANALYSIS TIME: 155 SAMPLE DATE: JUNE 23, 1994 ANALYSIS DATE: JUNE 23, 1994 ANALYSIS TIME: 1118 GC TRACE#: 163 TOluene 3.70 U CANDER ANALYSIS TIME: 1118 PCE 4.00 U ANALYSIS TIME: 1118 PCE 4.70 U CANDER ANALYSIS TIME: 1118 ANALYSIS TIME: 1118 ANALYSIS TIME: 1118 ANALYSIS TIME: 1153 PCE 4.70 U CANDER CANDER CANDER ANALYSIS TIME: 1153 PCE 4.70 U CANDER CAND	SAMPLE TYPE: SOIL GAS	cis	23.00	U
Toluene 3.70 U Chloro/ethyl 8.20 U P-xylene 6.80 U P-xylene 5.60 U Chloro/ethyl 8.20 U P-xylene 6.80 U P-xylene 5.60 U Chloro/ethyl 8.20 U P-xylene 5.60 U Chloro/ethyl 8.20 U P-xylene 5.60 U Chloro/ethyl 8.20 U Chloro/e	ANALYSIS DATE: JUNE 23, 1994	TCE	0.43	J
Chloro/ethyl	ANALYSIS TIME: 939	PCE	4.70	U
P-xylene	GC TRACE#: 160	Toluene	3.70	U
P-xylene		chloro/ethyl	8.20	U
O-xylene 5.60 U SAMPLE ID: BC-B-SG11 DUP SAMPLE DATE: JUNE 23, 1994 trans 34.00 U SAMPLE DEPTH (Ft): 5 benzene 4.00 U SAMPLE TYPE: SOIL GAS dis 23.00 U ANALYSIS DATE: JUNE 23, 1994 TCE 2.05 J ANALYSIS TIME: 1054 PCE 4.70 U GC TRACE#: 162 Toluene 3.70 U chloro/ethyl 8.20 U p-xylene 6.80 U p-xylene 6.80 U p-xylene 6.80 U SAMPLE DATE: JUNE 23, 1994 trans 34.00 U SAMPLE DATE: JUNE 23, 1994 trans 34.00 U SAMPLE TYPE: SOIL GAS dis 23.00 U ANALYSIS DATE: JUNE 23, 1994 TCE 4.00 U ANALYSIS TIME: 1118 PCE 4.70 U GC TRACE#: 163 Toluene 3.70 U chloro/ethyl 8.20 U p-xylene 6.80 U o-xylene 5.60 U SAMPLE DEPTH (Ft): 5 benzene 4.00 U ANALYSIS TIME: 1118 PCE 4.70 U GC TRACE#: 163 Toluene 3.70 U chloro/ethyl 8.20 U p-xylene 6.80 U o-xylene 5.60 U SAMPLE DATE: JUNE 23, 1994 trans 34.00 U SAMPLE DEPTH (Ft): 5 benzene 4.00 U SAMPLE DATE: JUNE 23, 1994 trans 34.00 U ANALYSIS TIME: 1153 PCE 4.00 U ANALYSIS TIME: 1153 PCE 4.00 U ANALYSIS TIME: 1153 PCE 4.70 U GC TRACE#: 164 Toluene 3.70 U chloro/ethyl 8.20 U		•	6.80	U
SAMPLE DATE: JUNE 23, 1994 trans			5.60	U
SAMPLE DEPTH (FI): 5 SAMPLE TYPE: SOIL GAS Cis	SAMPLE ID: BC-B-SG11 DUP	ANALYTE	CONC µg/L	QUALIFIER
SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 23, 1994 ANALYSIS TIME: 1054 GC TRACE#: 162 Toluene Chiloro/ethyl GC TRACE#: 162 Toluene Chiloro/ethyl Chiloro/ethyl SAMPLE ID: BC-B-SG11 SAMPLE DATE: JUNE 23, 1994 SAMPLE DATE: JUNE 23, 1994 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 23, 1994 ANALYSIS TIME: 1118 GC TRACE#: 163 SAMPLE ID: BC-B-SG12 SAMPLE DATE: JUNE 23, 1994 ANALYSIS TIME: JUNE 23, 1994 ANALYSIS TIME: 1118 CONC µg/L QUALIFIER 4.00 U CHILOROPHY ANALYSIS TIME: 1118 CONC µg/L CHILOROPHY ANALYSIS TIME: 1118 CONC µg/L CHILOROPHY ANALYSIS TIME: 1118 CONC µg/L CHILOROPHY ANALYSIS TIME: JUNE 23, 1994 CHILOROPHY CHILOROPHY ANALYSIS TIME: JUNE 23, 1994 ANALYSIS DATE: JUNE 23, 1994 ANALYSIS TIME: 1153 CIS 23.00 U ANALYSIS TIME: 1153 CIC 4.00 U CHILOROPETHYI CONC µg/L CONC	SAMPLE DATE: JUNE 23, 1994	trans	34.00	U
ANALYSIS DATE: JUNE 23, 1994 ANALYSIS TIME: 1054 GC TRACE#: 162 Toluene Chloro/ethyl CONC µg/L SAMPLE ID: BC-B-SG11 SAMPLE DATE: JUNE 23, 1994 ANALYSIS DATE: JUNE 23, 1994 SAMPLE TYPE: SOIL GAS ANALYSIS TIME: 1118 GC TRACE#: 163 CIS 23.00 CHORO/ethyl CHORO/eth	SAMPLE DEPTH (Ft): 5	benzene	4.00	U
ANALYSIS TIME: 1054 GC TRACE#: 162 Toluene 3.70 U chloro/ethyl 8.20 U p-xylene 6.80 U o-xylene 5.60 U SAMPLE ID: BC-B-SG11 ANALYTE CONC µg/L QUALIFIER SAMPLE DATE: JUNE 23, 1994 Trans 34.00 U SAMPLE DEPTH (Ft): 5 benzene 4.00 U ANALYSIS DATE: JUNE 23, 1994 TCE 4.00 U ANALYSIS TIME: 1118 PCE 4.70 U GC TRACE#: 163 Toluene 3.70 U chloro/ethyl 8.20 U p-xylene 6.80 U o-xylene 5.60 U SAMPLE ID: BC-B-SG12 ANALYSIS DATE: JUNE 23, 1994 TTANS 34.00 U SAMPLE DEPTH (Ft): 5 benzene 4.00 U SAMPLE DATE: JUNE 23, 1994 TCE 4.00 U DEPTH (Ft): 5 SOIL GAS CISC 23.00 U DEPTH (Ft): 5 SOIL GAS ANALYSIS TIME: 1118 PCE 4.70 U DEPTH (Ft): 5 SOIL GAS CISC 23.00 U DEPTH (Ft): 5 SOIL GAS ANALYSIS DATE: JUNE 23, 1994 TTANS 34.00 U SAMPLE DEPTH (Ft): 5 SOIL GAS CISC 23.00 U ANALYSIS DATE: JUNE 23, 1994 TCE 4.00 U ANALYSIS DATE: JUNE 23, 1994 TCE 4.00 U ANALYSIS TIME: 1153 PCE 4.70 U Chloro/ethyl 8.20 U Chloro/ethyl 8.20 U Chloro/ethyl 8.20 U	SAMPLE TYPE: SOIL GAS	cis	23.00	U
GC TRACE#: 162 Toluene 3.70 U chloro/ethyl 8.20 U p-xylene 6.80 U p-xylene 5.60 U SAMPLE ID: BC-B-SG11 ANALYTE CONC μg/L QUALIFIER SAMPLE DATE: JUNE 23, 1994 SAMPLE TYPE: SOIL GAS ANALYSIS TIME: 1118 GC TRACE#: 163 SAMPLE ID: BC-B-SG12 SAMPLE ID: BC-B-SG12 SAMPLE DEPTH (Ft): 5 SAMPLE DEPTH (Ft): 5 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS TIME: JUNE 23, 1994 ANALYSIS TIME: JUNE 23, 1994 ANALYSIS TIME: 1118 ANALYSIS TIME: 1118 BC TRACE#: 163 ANALYTE CONC μg/L SAMPLE DATE: JUNE 23, 1994 ANALYTE CONC μg/L SAMPLE DATE: JUNE 23, 1994 ANALYTE CONC μg/L SAMPLE DATE: JUNE 23, 1994 ANALYTE CONC μg/L ANALYSIS DATE: JUNE 23, 1994 ANALYSIS DATE: JUNE 23, 1994 ANALYSIS TIME: 1153 ANALYSIS TIME: 1153 ANALYSIS TIME: 1153 BC TRACE#: 164 Toluene 3.70 Chloro/ethyl 8.20 U	ANALYSIS DATE: JUNE 23, 1994	TCE	2.05	J
Chloro/ethyl P-xylene 6.80 U U U U U U U U U	ANALYSIS TIME: 1054	PCE	4.70	U
P-xylene 6.80 U O-xylene 5.60 U	GC TRACE#: 162	Toluene	3.70	U
P-xylene o-xylene 6.80 U coxylene 5.60 U coxylene 6.80 U coxylene c	·.	chloro/ethyl	8.20	U
SAMPLE ID: BC-B-SG11 SAMPLE DATE: JUNE 23, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 23, 1994 ANALYSIS TIME: 1118 CONC μg/L ANALYSIS TIME: 1118 CE ANALYSIS TIME: 1118 CHOROLETHY CHOROLETHY ANALYSIS TIME: 1163 ANALYSIS TIME: 163 Toluene Chloro/ethyl SAMPLE ID: BC-B-SG12 ANALYTE SAMPLE DATE: JUNE 23, 1994 ANALYTE SAMPLE DATE: JUNE 23, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE DEPTH (Ft): 5 SAMPLE DEPTH (Ft): 5 ANALYSIS DATE: JUNE 23, 1994 ANALYSIS DATE: JUNE 23, 1994 ANALYSIS TIME: 1153 CE ANALYSIS TIME: 1154 CONC μg/L CONC μg/L CONC μg/L CONC μg/L CONC μg/L CONC μg/L CHIOTOLETHY ANALYSIS TIME: 1154 CONC μg/L CONC μg/L CHIOTOLETHY ANALYSIS TIME: 1154 CONC μg/L CHIOTOLETHY ANALYSIS TIME: 1154 CONC μg/L CONC			6.80	U
SAMPLE DATE: JUNE 23, 1994 trans 34.00 U		o-xylene	5.60	U
SAMPLE DEPTH (Ft): 5 benzene 4.00 U SAMPLE TYPE: SOIL GAS cis 23.00 U ANALYSIS DATE: JUNE 23, 1994 TCE 4.00 U ANALYSIS TIME: 1118 PCE 4.70 U GC TRACE#: 163 Toluene 3.70 U chloro/ethyl 8.20 U p-xylene 6.80 U o-xylene 5.60 U SAMPLE ID: BC-B-SG12 ANALYTE CONC µg/L QUALIFIER SAMPLE DATE: JUNE 23, 1994 trans 34.00 U SAMPLE DEPTH (Ft): 5 benzene 4.00 U SAMPLE TYPE: SOIL GAS cis 23.00 U ANALYSIS DATE: JUNE 23, 1994 TCE 4.00 U ANALYSIS TIME: 1153 PCE 4.70 U GC TRACE#: 164 Toluene 3.70 U chloro/ethyl 8.20 U	SAMPLE ID: BC-B-SG11	ANALYTE	CONC µg/L	QUALIFIER
SAMPLE TYPE: SOIL GAS cis 23.00 U ANALYSIS DATE: JUNE 23, 1994 TCE 4.00 U ANALYSIS TIME: 1118 PCE 4.70 U GC TRACE#: 163 Toluene 3.70 U chloro/ethyl 8.20 U p-xylene 6.80 U o-xylene 5.60 U SAMPLE ID: BC-B-SG12 ANALYTE CONC μg/L QUALIFIER SAMPLE DATE: JUNE 23, 1994 trans 34.00 U SAMPLE TYPE: SOIL GAS cis 23.00 U ANALYSIS DATE: JUNE 23, 1994 TCE 4.00 U ANALYSIS TIME: 1153 PCE 4.70 U GC TRACE#: 164 Toluene 3.70 U chloro/ethyl 8.20 U	SAMPLE DATE: JUNE 23, 1994	trans	34.00) U
ANALYSIS DATE: JUNE 23, 1994 ANALYSIS TIME: 1118 GC TRACE#: 163 Toluene chloro/ethyl p-xylene co-xylene co-xylene SAMPLE ID: BC-B-SG12 SAMPLE DATE: JUNE 23, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 23, 1994 ANALYSIS TIME: 1153 CC TRACE#: 164 TCE 4.00 U ANALYSIS TIME: 1153 PCE 4.70 U Chloro/ethyl 8.20 U Chloro/ethyl 8.20 U	SAMPLE DEPTH (Ft): 5	benzene	4.00	U
ANALYSIS TIME: 1118 GC TRACE#: 163 Toluene 3.70 U chloro/ethyl 8.20 U p-xylene 6.80 U o-xylene 5.60 U SAMPLE ID: BC-B-SG12 ANALYTE CONC µg/L QUALIFIER SAMPLE DATE: JUNE 23, 1994 trans 34.00 U SAMPLE TYPE: SOIL GAS cis 23.00 U ANALYSIS DATE: JUNE 23, 1994 TCE 4.00 U ANALYSIS TIME: 1153 PCE 4.70 U GC TRACE#: 164 Toluene 3.70 U chloro/ethyl 8.20 U	SAMPLE TYPE: SOIL GAS	cis	23.00	U
Toluene 3.70 U Chloro/ethyl 8.20 U P-xylene 6.80 U O-xylene 5.60 U O-xylene 5.60 U O-xylene 5.60 U O-xylene O-xyle	ANALYSIS DATE: JUNE 23, 1994	TCE	4.00	บ
chloro/ethyl 8.20 U p-xylene 6.80 U o-xylene 5.60 U SAMPLE ID: BC-B-SG12 ANALYTE CONC μg/L QUALIFIER SAMPLE DATE: JUNE 23, 1994 trans 34.00 U SAMPLE DEPTH (Ft): 5 benzene 4.00 U SAMPLE TYPE: SOIL GAS cis 23.00 U ANALYSIS DATE: JUNE 23, 1994 TCE 4.00 U ANALYSIS TIME: 1153 PCE 4.70 U GC TRACE#: 164 Toluene 3.70 U chloro/ethyl 8.20 U	ANALYSIS TIME: 1118	PCE	4.70	o U
p-xylene 6.80 U 0-xylene 5.60 U SAMPLE ID: BC-B-SG12 ANALYTE CONC μg/L QUALIFIER SAMPLE DATE: JUNE 23, 1994 trans 34.00 U SAMPLE DEPTH (Ft): 5 benzene 4.00 U SAMPLE TYPE: SOIL GAS cis 23.00 U ANALYSIS DATE: JUNE 23, 1994 TCE 4.00 U ANALYSIS TIME: 1153 PCE 4.70 U GC TRACE#: 164 Toluene 3.70 U chloro/ethyl 8.20 U	GC TRACE#: 163	Toluene	3.70	ว บ
O-xylene 5.60 U SAMPLE ID: BC-B-SG12 ANALYTE CONC µg/L QUALIFIER SAMPLE DATE: JUNE 23, 1994 trans 34.00 U SAMPLE DEPTH (Ft): 5 benzene 4.00 U SAMPLE TYPE: SOIL GAS cis 23.00 U ANALYSIS DATE: JUNE 23, 1994 TCE 4.00 U ANALYSIS TIME: 1153 PCE 4.70 U GC TRACE#: 164 Toluene 3.70 U chloro/ethyl 8.20 U		chloro/ethyl	8.20	บ
SAMPLE ID: BC-B-SG12 ANALYTE CONC µg/L QUALIFIER SAMPLE DATE: JUNE 23, 1994 trans 34.00 U SAMPLE DEPTH (Ft): 5 benzene 4.00 U SAMPLE TYPE: SOIL GAS cis 23.00 U ANALYSIS DATE: JUNE 23, 1994 TCE 4.00 U ANALYSIS TIME: 1153 PCE 4.70 U GC TRACE#: 164 Toluene 3.70 U chloro/ethyl 8.20 U		p-xylene	6.8	U
SAMPLE DATE: JUNE 23, 1994 trans 34.00 U SAMPLE DEPTH (Ft): 5 benzene 4.00 U SAMPLE TYPE: SOIL GAS cis 23.00 U ANALYSIS DATE: JUNE 23, 1994 TCE 4.00 U ANALYSIS TIME: 1153 PCE 4.70 U GC TRACE#: 164 Toluene 3.70 U chloro/ethyl 8.20 U		o-xylene	5.6	O U
SAMPLE DEPTH (Ft): 5 benzene 4.00 U SAMPLE TYPE: SOIL GAS cis 23.00 U ANALYSIS DATE: JUNE 23, 1994 TCE 4.00 U ANALYSIS TIME: 1153 PCE 4.70 U GC TRACE#: 164 Toluene 3.70 U chloro/ethyl 8.20 U	<u> </u>	ANALYTE	CONC µg/L	QUALIFIER
SAMPLE TYPE: SOIL GAS cis 23.00 U ANALYSIS DATE: JUNE 23, 1994 TCE 4.00 U ANALYSIS TIME: 1153 PCE 4.70 U GC TRACE#: 164 Toluene 3.70 U chloro/ethyl 8.20 U	SAMPLE DATE: JUNE 23, 1994	trans		
ANALYSIS DATE: JUNE 23, 1994 TCE 4.00 U ANALYSIS TIME: 1153 PCE 4.70 U GC TRACE#: 164 Toluene 3.70 U chloro/ethyl 8.20 U	SAMPLE DEPTH (Ft): 5	benzene	4.0	0 U
ANALYSIS TIME: 1153 PCE 4.70 U GC TRACE#: 164 Toluene 3.70 U chloro/ethyl 8.20 U	SAMPLE TYPE: SOIL GAS	cis	23.0	0 U
GC TRACE#: 164 Toluene 3.70 U chloro/ethyl 8.20 U	ANALYSIS DATE: JUNE 23, 1994	TCE	4.0	0 U
chloro/ethyl 8.20 U	ANALYSIS TIME: 1153	PCE	4.7	o U
	GC TRACE#: 164	Toluene	3.7	o U
p-xylene 6.80 U		chloro/ethyl	8.2	10 U
		p-xylene	6.8	10 U

SAMPLE ANALYSES TRACES 157-179

LE AIVLE OLD THE COLO TO	o-xylene	5.60 U
SAMPLE ID: BC-B-SG13 SAMPLE DATE: JUNE 23, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 23, 1994 ANALYSIS TIME: 1337 GC TRACE#: 167	ANALYTE trans benzene cis TCE PCE Toluene chloro/ethyl p-xylene o-xylene	CONC μg/L QUALIFIER 34.00 U 4.00 U 23.00 U 5.84 4.70 U 1.79 J 8.20 U 6.80 U 5.60 U
SAMPLE ID: BC-B-SG14 SAMPLE DATE: JUNE 23, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 23, 1994 ANALYSIS TIME: 1414 GC TRACE#: 168	ANALYTE trans benzene cis TCE PCE Toluene chloro/ethyl p-xylene o-xylene	CONC μg/L QUALIFIER 34.00 U 4.00 U 23.00 U 35.40 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U
SAMPLE ID: BC-B-SG15 SAMPLE DATE: JUNE 23, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 23, 1994 ANALYSIS TIME: 1537 GC TRACE#: 179	ANALYTE trans benzene cis TCE PCE Toluene chloro/ethyl p-xylene	CONC µg/L QUALIFIER 34.00 U 4.00 U 23.00 U 2.38 J 4.70 U 3.70 U 8.20 U 6.80 U

3

o-xylene

5.60 U

AMPLE ANALYSES TRACES 191-368

Compound

hth	od	Dete	ction	a Lin	mite
51N	α	Dete	CHOL	1 L.	111115

TRANS 1,2 DCE	34.00	
BENZENE	4.00	
CIS 1,2 DCE	23.00	
TCE	4.00	
PCE	4.70	
TOLUENE	3.70	
CHLORO/ETHYLBENZENE	8.20	
p-XYLENE		
o-XYLENE		
SAMPLE ID: BC-C-SG1-A	ANALYTE	CONC µg/L Qualifier
SAMPLE DATE: JUNE 24, 1994	trans	34.00 U
SAMPLE DEPTH (Ft): 5	benzene	4.00 U
SAMPLE TYPE: SOIL GAS	cis	23.00 U
ANALYSIS DATE: JUNE 24, 1994	TCE	4.00 U
ANALYSIS TIME: 922	PCE	4.70 U
GC TRACE#: 191	Toluene	3.70 U
	chloro/ethyl	8.20 U
	p-xylene	6.80 U
	o-xylene	5.60 U
SAMPLE ID: BC-C-SG1-B	ANALYTE	CONC µg/L
SAMPLE DATE: JUNE 24, 1994	trans	34.00 U
SAMPLE DEPTH (Ft): 10	benzene	4.00 U
SAMPLE TYPE: SOIL GAS	cis	23.00 U
ANALYSIS DATE: JUNE 24, 1994	TCE	4.00 U
ANALYSIS TIME: 941	PCE	4.70 U
GC TRACE#: 192	Toluene	3.70 U
	chloro/ethyl	8.20 U
	p-xylene	6.80 U
	o-xylene	5.60 U
•		
SAMPLE ID: BC-C-SG1-C	ANALYTE	CONC µg/L
SAMPLE DATE: JUNE 24, 1994	trans	34.00 U
SAMPLE DEPTH (Ft): 20	benzene	4.00 U
SAMPLE TYPE: SOIL GAS	cis	23.00 U
ANALYSIS DATE: JUNE 24, 1994	TCE	4.00 U
ANALYSIS TIME: 1009	PCE	4.70 U
GC TRACE#: 193	Toluene	3.70 U
	chloro/ethyl	8.20 U
	p-xylene	6.80 U

Concentration µg/L

SAMPLE ANALYSES TRACES 191-368

E ANALYSES TRACES 191-300	o-xylene	5.60 U
	ANALYTE CON	IC μg/L
SAMPLE ID: BC-C-SG-2	trans	34.00 U
SAMPLE DATE: JUNE 24, 1994	benzene	4.00 U
SAMPLE DEPTH (Ft): 5	cis	23.00 U
SAMPLE TYPE: SOIL GAS	TCE	4.00 U
ANALYSIS DATE: JUNE 24, 1994	PCE	4.70 U
ANALYSIS TIME: 1125	Toluene	3.70 U
GC TRACE#: 195	chloro/ethyl	8.20 U
	p-xylene	6.80 U
	o-xylene	5.60 U
	0-Xylollo	
SAMPLE ID: BC-C-SG-3	ANALYTE CO	NC µg/L
SAMPLE DATE: JUNE 24, 1994	trans	34.00 U
SAMPLE DEPTH (Ft): 5	benzene	4.00 U
SAMPLE TYPE: SOIL GAS	cis	23.00 U
ANALYSIS DATE: JUNE 24, 1994	TCE	4.00 U
ANALYSIS TIME: 1216	PCE	4.70 U
GC TRACE#: 197	Toluene	3.70 U
	chloro/ethyl	8.20 U
	p-xylene	6.80 U
	o-xylene	5.60 U
	ANALYTE C	ONC μg/L
SAMPLE ID: BC-C-SG-4	trans	34.00 U
SAMPLE ID. BC-C-SG-4 SAMPLE DATE: JUNE 24, 1994	benzene	4.00 U
	cis	23.00 U
SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS	TCE	4.00 U
ANALYSIS DATE: JUNE 24, 1994	PCE	4.70 U
ANALYSIS TIME: 1240	Toluene	3.70 U
GC TRACE#: 198	chloro/ethyl	8.20 U
GC TRACE#. 190	p-xylene	6.80 U
	o-xylene	5.60 U
	431413 <i>(</i> TF	ONC µg/L
	, <u> </u>	34.00 U
SAMPLE ID: BC-C-SG-5	trans	4.00 U
SAMPLE DATE: JUNE 24, 1994	benzene	23.00 U
SAMPLE DEPTH (Ft): 5	cis	4.00 U
SAMPLE TYPE: SOIL GAS	TCE	4.70 U
ANALYSIS DATE: JUNE 24, 1994	PCE	3.70 U
ANALYSIS TIME: 1440	Toluene	8.20 U
GC TRACE#: 200	chloro/ethyl	6.80 U
	p-xylene	0.00

_	o-xylene	5.60 U
	ANALYTE	CONC µg/L
SAMPLE ID: BC-C-SG-6	trans	34.00 U
SAMPLE DATE: JUNE 24, 1994	benzene	4.00 U
SAMPLE DEPTH (Ft): 5	cis	23.00 U
SAMPLE TYPE: SOIL GAS	TCE	4.00 U
ANALYSIS DATE: JUNE 24, 1994	PCE	4.70 U
ANALYSIS TIME: 1515	Toluene	3.70 U
GC TRACE#: 201	chloro/ethyl	8.20 U
	p-xylene	6.80 U
_	o-xylene	5.60 U
	ANALYTE	CONC µg/L
SAMPLE ID: BC-C-SG-7	trans	34.00 U
SAMPLE DATE: JUNE 24, 1994	benzene	4.00 U
SAMPLE DEPTH (Ft): 5	cis	23.00 U
SAMPLE TYPE: SOIL GAS	TCE	4.00 U
ANALYSIS DATE: JUNE 24, 1994	PCE	4.70 U
ANALYSIS TIME: 1601	Toluene	3.70 U
GC TRACE#: 203	chloro/ethyl	8.20 U
	p-xylene	6.80 U
	o-xylene	5.60 U
	ANALYTE	CONC µg/L
SAMPLE ID: BC-C-SG-8	trans	34.00 U
SAMPLE DATE: JUNE 24, 1994	benzene	4.00 U
SAMPLE DEPTH (Ft): 5	cis	23.00 U
SAMPLE TYPE: SOIL GAS	TCE	4.00 U
ANALYSIS DATE: JUNE 24, 1994	PCE	4.70 U
ANALYSIS TIME: 1621	Toluene	3.70 U
GC TRACE#: 204	chloro/ethyl	8.20 U
	p-xylene	6.80 U
	o-xylene	5.60 U
	ANALYTE	CONC µg/L
SAMPLE ID: BC-C-SG-9	trans	34.00 U
SAMPLE DATE: JUNE 24, 1994	benzene	4.00 U
SAMPLE DEPTH (Ft): 5	cis	23.00 U
SAMPLE TYPE: SOIL GAS	TCE	4.00 U
ANALYSIS DATE: JUNE 24, 1994	PCE	4.70 U
ANALYSIS TIME: 1649	Toluene	3.70 U
GC TRACE#: 205	chloro/ethyl	8.20 U
	p-xylene	6.80 U

3

SAMPLE ANALYSES	TRACES	191-368
-----------------	--------	---------

SAMPLE ANALYSES TRACES 191-368	o-xylene	5.60 U
SAMPLE ID: BC-C-SG-10 SAMPLE DATE: JUNE 24, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 24, 1994 ANALYSIS TIME: 1709 GC TRACE#: 206	ANALYTE CONC µg trans benzene cis TCE PCE Toluene chloro/ethyl p-xylene o-xylene	34.00 U 4.00 U 23.00 U 4.00 U 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U
SAMPLE ID: BC-C-SG-11 SAMPLE DATE: JUNE 25, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 25, 1994 ANALYSIS TIME: 920 GC TRACE#: 211	ANALYTE CONC trans benzene cis TCE PCE Toluene chloro/ethyl p-xylene o-xylene	µg/L 34.00 U 4.00 U 23.00 U 4.00 U 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U
SAMPLE ID: BC-C-SG-12 SAMPLE DATE: JUNE 25, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 25, 1994 ANALYSIS TIME: 946 GC TRACE#: 212	ANALYTE CONG trans benzene cis TCE PCE Toluene chloro/ethyl p-xylene o-xylene	34.00 U 4.00 U 23.00 U 4.00 U 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U
SAMPLE ID: BC-D-SG-2 SAMPLE DATE: JUNE 25, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 25, 1994 ANALYSIS TIME: 1050 GC TRACE#: 215	ANALYTE CO trans benzene cis TCE PCE Toluene chloro/ethyl	NC µg/L 34.00 U 4.00 U 23.00 U 4.00 U 4.70 U 3.70 U 8.20 U 6.80 U

p-xylene

6.80 U

GC TRACE#: 215

_	o-xylene	5.60 U
SAMPLE ID: BC-D-SG-3	ANALYTE	CONC µg/L
SAMPLE DATE: JUNE 25, 19	94 trans	34.00 U
SAMPLE DEPTH (Ft): 5	benzene	4.00 U
SAMPLE TYPE: SOIL GAS	cis	23.00 U
ANALYSIS DATE: JUNE 25, 19	94 TCE	4.00 U
ANALYSIS TIME: 1110	PCE	4.70 U
GC TRACE#: 216	Toluene	3.70 ∪
1	chloro/ethyl	8.20 U
	p-xylene	6.80 U
	o-xylene	5.60 U
SAMPLE ID: BC-D-SG-3 I	DUP ANALYTE	CONC µg/L
SAMPLE DATE: JUNE 25, 19	994 trans	34.00 U
SAMPLE DEPTH (Ft): 5	benzene	4.00 U
SAMPLE TYPE: SOIL GAS	cis	23.00 U
ANALYSIS DATE: JUNE 25, 19	994 TCE	4.00 U
ANALYSIS TIME: 1130	PCE	4.70 U
GC TRACE#: 217	Toluene	3.70 U
	chloro/ethyl	8.20 U
	p-xylene	6.80 U
	o-xylene	5.60 U
SAMPLE ID: BC-D-SG-4	ANALYTE	CONC µg/L
SAMPLE DATE: JUNE 25, 1	994 trans	34.00 U
SAMPLE DEPTH (Ft): 5	benzenebenze	
SAMPLE TYPE: SOIL GAS	cis	23.00 U
ANALYSIS DATE: JUNE 25, 19		4.00 U
ANALYSIS TIME: 1150	PCE	4.70 U
GC TRACE#: 218	Toluene	3.70 U
_	chloro/ethyl	8.20 U
	p-xylene	6.80 U
	o-xylene	5.60 U
SAMPLE ID: BC-D-SG-6	ANALYTE	CONC µg/L
SAMPLE DATE: JUNE 25,	1994 trans	34.00 U
SAMPLE DEPTH (Ft): 5	benzene	4.00 U
SAMPLE TYPE: SOIL GAS	cis	23.00 U
ANALYSIS DATE: JUNE 25, 1		17.79
ANALYSIS TIME: 1347	PCE	31.56
GC TRACE#: 221	Toluene	3.70 U
-	chloro/ethyl	8.20 U
	p-xylene	6.80 U

5

CAMPIE	ANIAI	VOES	TDA	CES	101_368
	ANAL	1500	IRA	しころ	191-300

PLE ANALYSES TRACES 191-300	o-xylene	5.60 U
SAMPLE ID: BC-D-SG-5	ANALYTE	CONC µg/L
SAMPLE DATE: JUNE 25, 1994	trans	34.00 U
SAMPLE DATE: 65/12 25, 166 /	benzene	4.00 U
SAMPLE TYPE: SOIL GAS	cis	23.00 U
ANALYSIS DATE: JUNE 25, 1994	TCE	4.00 U
ANALYSIS TIME: 1406	PCE	4.70 U
GC TRACE#: 222	Toluene	3.70 U
GO HOOL#. ZZZ	chloro/ethyl	8.20 U
	p-xylene	6.80 U
	o-xylene	5.60 U
SAMPLE ID: BC-D-SG-7	ANALYTE	CONC μg/L
SAMPLE DATE: JUNE 25, 1994	trans	34.00 U
SAMPLE DEPTH (Ft): 5	benzene	4.00 U
SAMPLE TYPE: SOIL GAS	cis	23.00 U
ANALYSIS DATE: JUNE 25, 1994	TCE	4.00 U
ANALYSIS TIME: 1427	PCE	4.70 U
GC TRACE#: 223	Toluene	3.70 U
	chloro/ethyl	8.20 U
	p-xylene	6.80 U
	o-xylene	5.60 U
SAMPLE ID: BC-D-SG-8	ANALYTE	CONC µg/L
SAMPLE DATE: JUNE 25, 1994	trans	34.00 U
SAMPLE DEPTH (Ft): 5	benzene	4.00 U
SAMPLE TYPE: SOIL GAS	cis	23.00 U
ANALYSIS DATE: JUNE 25, 1994	TCE	4.00 U
ANALYSIS TIME: 1446	PCE	4.70 U
GC TRACE#: 224	Toluene	3.70 U
	chloro/ethyl	8.20 U
	p-xylene	6.80 U
	o-xylene	5.60 U
SAMPLE ID: BC-D-SG-9	ANALYTE	CONC µg/L
SAMPLE DATE: JUNE 25, 1994	trans	34.00 U
SAMPLE DEPTH (Ft): 5	benzene	4.00 U
SAMPLE TYPE: SOIL GAS	cis	23.00 U
ANALYSIS DATE: JUNE 25, 1994	TCE	4.00 U
ANALYSIS TIME: 1527	PCE	4.70 U
GC TRACE#: 226	Toluene	3.70 U
	chloro/ethyl	8.20 U
	p-xylene	6.80 U

6

1	o-xylene	5.60 U
SAMPLE ID: BC-D-SG-10	ANALYTE	CONC µg/L
SAMPLE DATE: JUNE 25, 1994	trans	34.00 U
SAMPLE DEPTH (Ft): 5		4.00 U
SAMPLE TYPE: SOIL GAS	cis	23.00 U
ANALYSIS DATE: JUNE 25, 1994	TCE	4.00 U
ANALYSIS TIME: 1617	PCE	4.70 U
GC TRACE#: 228	Toluene	3.70 ∪
1	chloro/ethyl	8.20 U
	p-xylene	6.80 U
•	o-xylene	5.60 U
SAMPLE ID: BC-D-SG-11	ANALYTE	CONC µg/L
SAMPLE DATE: JUNE 25, 1994	trans	34.00 U
SAMPLE DEPTH (Ft): 5	benzene	4.00 U
SAMPLE TYPE: SOIL GAS	cis	23.00 U
ANALYSIS DATE: JUNE 25, 1994	TCE	4.00 U
ANALYSIS TIME: 1637	PCE	4.70 U
GC TRACE#: 229	Toluene	3.70 U
1	chloro/ethyl	8.20 U
	p-xylene	6.80 U
	o-xylene	5.60 U
SAMPLE ID: BC-D-SG-12	ANALYTE	CONC µg/L
SAMPLE DATE: JUNE 25, 1994	trans	34.00 U
SAMPLE DEPTH (Ft): 5	benzene	4.00 U
SAMPLE TYPE: SOIL GAS	cis	23.00 U
ANALYSIS DATE: JUNE 25, 1994	TCE	4.00 U
ANALYSIS TIME: 1657	PCE	4.70 U
GC TRACE#: 230	Toluene	3.70 U
	chloro/ethyl	8.20 U
	p-xylene	6.80 U
	o-xylene	5.60 U
	ANALYTE	CONC µg/L
SAMPLE ID: BC-A-SG-2	trans	34.00 U
SAMPLE DATE: JUNE 26, 1994	benzene	4.00 U
SAMPLE DEPTH (Ft): 5	cis	23.00 U
SAMPLE TYPE: SOIL GAS	TCE	4.00 U
ANALYSIS DATE: JUNE 26, 1994	PCE	4.70 U
ANALYSIS TIME: 903	Toluene	3.70 U
GC TRACE#: 235	chioro/ethyl	8.20 U
	p-xylene	6.80 U
	o-xylene	5.60 U

SAMPLE ID: BC-A-SG-3 SAMPLE DATE: JUNE 26, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 26, 1994 ANALYSIS TIME: 922 GC TRACE#: 236	ANALYTE CON trans benzene cis TCE PCE Toluene chloro/ethyl p-xylene o-xylene	NC μg/L 34.00 U 4.00 U 23.00 U 4.00 U 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U
SAMPLE ID: BC-A-SG-3 DUP SAMPLE DATE: JUNE 26, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 26, 1994 ANALYSIS TIME: 947 GC TRACE#: 237	ANALYTE CO trans benzene cis TCE PCE Toluene chloro/ethyl p-xylene o-xylene	34.00 U 4.00 U 23.00 U 4.00 U 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U
SAMPLE ID: BC-A-SG-4 SAMPLE DATE: JUNE 26, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 26, 1994 ANALYSIS TIME: 1026 GC TRACE#: 239	ANALYTE of trans benzene cis TCE PCE Toluene chloro/ethyl p-xylene o-xylene	34.00 U 4.00 U 23.00 U 4.00 U 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U
SAMPLE ID: BC-A-SG-5 SAMPLE DATE: JUNE 26, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 26, 1994 ANALYSIS TIME: 1124 GC TRACE#: 241	ANALYTE trans benzene cis TCE PCE Toluene chloro/ethyli p-xylene	34.00 U 4.00 U 23.00 U 4.00 U 4.70 U 3.70 U 8.20 U 6.80 U

o-xylene

5.60 U

SAMPLE ID: BC-A-SG-6 SAMPLE DATE: JUNE 26, 1994	ANALYTE trans	CONC μg/L 34.00 U
SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS	benzene	4.00 U
	cis	23.00 U
ANALYSIS DATE: JUNE 26, 1994	TCE	4.00 U
ANALYSIS TIME: 1143	PCE	4.70 U
GC TRACE#: 242	Toluene	3.70 U
	chloro/ethyl	8.20 U
	p-xylene	6.80 U
-	o-xylene	5.60 U
SAMPLE ID: BC-A-SG-7	ANALYTE	CONC µg/L
SAMPLE DATE: JUNE 26, 1994	trans	34.00 U
SAMPLE DEPTH (Ft): 5	benzene	4.00 U
SAMPLE TYPE: SOIL GAS	cis	23.00 U
ANALYSIS DATE: JUNE 26, 1994	TCE	4.00 U
ANALYSIS TIME: 1226	PCE	4.70 U
GC TRACE#: 244	Toluene	3.70 U
	chloro/ethyl	8.20 U
	p-xylene	6.80 U
	o-xylene	5.60 U
SAMPLE ID: BC-E-SG-2	ANALYTE	CONC µg/L
SAMPLE DATE: JUNE 26, 1994	trans	34.00 U
SAMPLE DEPTH (Ft): 5	benzene	4.00 U
SAMPLE TYPE: SOIL GAS	cis	23.00 U
ANALYSIS DATE: JUNE 26, 1994	TCE	4.00 U
ANALYSIS TIME: 1339	PCE	4.70 U
GC TRACE#: 245	Toluene	3.70 U
_	chloro/ethyl	8.20 U
	p-xylene	6.80 U
	o-xylene	5.60 U
SAMPLE ID: BC-E-SG-4	ANALYTE	CONC µg/L
SAMPLE DATE: JUNE 26, 1994	trans	34.00 U
SAMPLE DEPTH (Ft): 5	benzene	4.00 U
SAMPLE TYPE: SOIL GAS	cis	23.00 U
ANALYSIS DATE: JUNE 26, 1994	TCE	6.39
ANALYSIS TIME: 1437	PCE	4.70 U
GC TRACE#: 246	Toluene	3.70 U
	chloro/ethyi	8.20 U
_	p-xylene	6.80 U
	o-xylene	5.60 U

SAMPLE ID: BC-E-SG-3 SAMPLE DATE: JUNE 26, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 26, 1994 ANALYSIS TIME: 1458 GC TRACE#: 247	ANALYTE CO trans benzene cis TCE PCE Toluene chloro/ethyl p-xylene o-xylene	34.00 U 4.00 U 23.00 U 4.00 U 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U
SAMPLE ID: BC-E-SG-5 SAMPLE DATE: JUNE 26, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 26, 1994 ANALYSIS TIME: 1519 GC TRACE#: 248	ANALYTE C trans benzene cis TCE PCE Toluene chloro/ethyl p-xylene o-xylene	ONC µg/L 34.00 U 4.00 U 23.00 U 4.00 U 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U
SAMPLE ID: BC-E-SG-6 SAMPLE DATE: JUNE 27, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 27, 1994 ANALYSIS TIME: 1020 GC TRACE#: 256	ANALYTE trans benzene cis TCE PCE Toluene chloro/ethyl p-xylene o-xylene	34.00 U 4.00 U 23.00 U 4.00 U 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U
SAMPLE ID: BC-E-SG-7 SAMPLE DATE: JUNE 27, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 27, 1994 ANALYSIS TIME: 1042 GC TRACE#: 257	ANALYTE trans benzene cis TCE PCE Toluene chloro/ethyl p-xylene o-xylene	34.00 U 4.00 U 23.00 U 4.00 U 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U

SAMPLE ID: BC-E-SG-7 DUP SAMPLE DATE: JUNE 27, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 27, 1994 ANALYSIS TIME: 1100 GC TRACE#: 258	ANALYTE of trans benzene cis TCE PCE Toluene chloro/ethyl p-xylene o-xylene	34.00 U 4.00 U 23.00 U 4.00 U 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U
SAMPLE ID: BC-E-SG-8 SAMPLE DATE: JUNE 27, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 27, 1994 ANALYSIS TIME: 1140 GC TRACE#: 260	ANALYTE trans benzene cis TCE. PCE Toluene chloro/ethyl p-xylene o-xylene	34.00 U 4.00 U 23.00 U 4.00 U 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U
SAMPLE ID: BC-E-SG-9 SAMPLE DATE: JUNE 27, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 27, 1994 ANALYSIS TIME: 1220 GC TRACE#: 262	ANALYTE trans benzene cis TCE PCE Toluene chloro/ethyl p-xylene o-xylene	34.00 U 4.00 U 23.00 U 4.00 U 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U
SAMPLE ID: BC-E-SG-10 SAMPLE DATE: JUNE 27, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 27, 1994 ANALYSIS TIME: 1239 GC TRACE#: 263	ANALYTE trans cis TCE PCE Toluene chloro/ethyl p-xylene o-xylene	34.00 U 4.00 U 23.00 U 4.00 U 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U

SAMPLE ID: BC-E-SG-11 SAMPLE DATE: JUNE 27, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 27, 1994 ANALYSIS TIME: 1257 GC TRACE#: 264	ANALYTE trans benzene cis TCE PCE Toluene chloro/ethyl p-xylene o-xylene	CONC μg/L 34.00 U 4.00 U 23.00 U 1.28 U 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U
SAMPLE ID: BC-E-SG-12 SAMPLE DATE: JUNE 27, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 27, 1994 ANALYSIS TIME: 1410 GC TRACE#: 267	ANALYTE trans benzene cis TCE PCE Toluene chloro/ethyl p-xylene o-xylene	34.00 U 4.00 U 23.00 U 4.00 U 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U
SAMPLE ID: BC-E-SG-13 SAMPLE DATE: JUNE 27, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 27, 1994 ANALYSIS TIME: 1432 GC TRACE#: 268	ANALYTE trans benzene cis TCE PCE Toluene chloro/ethyl p-xylene o-xylene	34.00 U 4.00 U 23.00 U 16.56 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U
SAMPLE ID: BC-E-SG-14 SAMPLE DATE: JUNE 27, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 27, 1994 ANALYSIS TIME: 1451 GC TRACE#: 269	ANALYTE trans benzene cis TCE PCE Toluene chloro/ethyl p-xylene o-xylene	CONC μg/L 34.00 U 4.00 U 23.00 U 16.70 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U

12

SAMPLE ID: BC-E-SG-15 SAMPLE DATE: JUNE 27, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 27, 1994 ANALYSIS TIME: 1531 GC TRACE#: 271	ANALYTE trans benzene cis TCE PCE Toluene chloro/ethyl p-xylene o-xylene	34.00 U 4.00 U 23.00 U 4.00 U 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U
SAMPLE ID: BC-E-SG-16 SAMPLE DATE: JUNE 27, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 27, 1994 ANALYSIS TIME: 1557 GC TRACE#: 272	ANALYTE trans benzene cis TCE PCE Toluene chloro/ethyl p-xylene o-xylene	CONC μg/L 34.00 U 4.00 U 23.00 U 4.00 U 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U
SAMPLE ID: BC-E-SG-17 SAMPLE DATE: JUNE 27, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 27, 1994 ANALYSIS TIME: 1618 GC TRACE#: 273	ANALYTE trans benzene cis TCE PCE Toluene chloro/ethyl p-xylene o-xylene	34.00 U 4.00 U 23.00 U 1.38 J 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U
SAMPLE ID: BC-E-SG-18 SAMPLE DATE: JUNE 27, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 27, 1994 ANALYSIS TIME: 1712 GC TRACE#: 274	ANALYTE trans benzene cis TCE PCE Toluene chloro/ethyl p-xylene o-xylene	CONC μg/L 34.00 U 4.00 U 23.00 U 37.28 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U

ANALYSES TRACES 191-300		
SAMPLE ID: BC-E-SG-18 DUP SAMPLE DATE: JUNE 27, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 27, 1994 ANALYSIS TIME: 1731 GC TRACE#: 275	ANALYTE trans benzene cis TCE PCE Toluene chloro/ethyl p-xylene o-xylene	CONC μg/L 34.00 U 4.00 U 23.00 U 4.00 U 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U
SAMPLE ID: BC-A-SG-8 SAMPLE DATE: JUNE 27, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 27, 1994 ANALYSIS TIME: 1756 GC TRACE#: 276	ANALYTE trans benzene cis TCE PCE Toluene chloro/ethyl p-xylene o-xylene	CONC μg/L 34.00 U 4.00 U 23.00 U 4.00 U 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U
SAMPLE ID: BC-C-SG-13 SAMPLE DATE: JUNE 28, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 28, 1994 ANALYSIS TIME: 826 GC TRACE#: 280	ANALYTE trans cis TCE PCE Toluene chloro/ethyl p-xylene o-xylene	CONC μg/L 34.00 U 4.00 U 23.00 U 4.85 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U
SAMPLE ID: BC-C-SG-14 SAMPLE DATE: JUNE 28, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 28, 1994 ANALYSIS TIME: 846 GC TRACE#: 281	ANALYTE trans benzene cis TCE PCE Toluene chloro/ethy p-xylene o-xylene	CONC µg/L 34.00 U 4.00 U 23.00 U 4.00 U 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U

SAMPLE ID: BC-C-SG-15A SAMPLE DATE: JUNE 28, 1994	ANALYTE trans	CONC µg/L 34.00 U
SAMPLE DEPTH (Ft): 5		4.00 U
SAMPLE TYPE: SOIL GAS	cis	23.00 U
ANALYSIS DATE: JUNE 28, 1994	TCE	4.00 U
ANALYSIS TIME: 1034	PCE	4.70 U
GC TRACE#: 284	Toluene	3.70 ∪
	chioro/ethyi	8.20 U
	p-xylene	6.80 U
	o-xylene	5.60 U
-	•	
SAMPLE ID: BC-C-SG-15B	ANALYTE	CONC µg/L
SAMPLE ID: BC-C-SG-15B SAMPLE DATE: JUNE 28, 1994	trans	34.00 U
SAMPLE DEPTH (Ft): 15	benzene	4.00 U
SAMPLE TYPE: SOIL GAS	cis	23.00 U
ANALYSIS DATE: JUNE 28, 1994	TCE	4.00 U
ANALYSIS TIME: 1053	PCE	4.70 U
GC TRACE#: 285	Toluene	3.70 U
	chloro/ethyl	8.20 U
	p-xylene	6.80 U
	o-xylene	5.60 U
SAMPLE ID: BC-C-SG-16	ANALYTE	CONC µg/L
SAMPLE DATE: JUNE 28, 1994	trans	34.00 U
SAMPLE DEPTH (Ft): 5	benzene	4.00 U
SAMPLE TYPE: SOIL GAS	cis	23.00 U
ANALYSIS DATE: JUNE 28, 1994	TCE	4.00 U
ANALYSIS TIME: 1140	PCE	4.70 U
GC TRACE#: 287	Toluene	3.70 U
	chloro/ethyl	8.20 U
	chloro/ethyl p-xylene	8.20 U 6.80 U
	•	
	p-xylene	6.80 U
SAMPLE ID: BC-C-SG-17	p-xylene	6.80 U
SAMPLE ID: BC-C-SG-17 SAMPLE DATE: JUNE 28, 1994	p-xylene o-xylene	6.80 U 5.60 U
	p-xylene o-xylene ANALYTE	6.80 U 5.60 U CONC µg/L
SAMPLE DATE: JUNE 28, 1994	p-xylene o-xylene ANALYTE trans	6.80 U 5.60 U CONC μg/L 34.00 U
SAMPLE DATE: JUNE 28, 1994 SAMPLE DEPTH (Ft): 5	p-xylene o-xylene ANALYTE trans benzene	6.80 U 5.60 U CONC µg/L 34.00 U 4.00 U
SAMPLE DATE: JUNE 28, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS	p-xylene o-xylene ANALYTE trans benzene cis	6.80 U 5.60 U CONC µg/L 34.00 U 4.00 U 23.00 U
SAMPLE DATE: JUNE 28, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 28, 1994	p-xylene o-xylene ANALYTE trans benzene cis TCE	6.80 U 5.60 U CONC µg/L 34.00 U 4.00 U 23.00 U 4.00 U
SAMPLE DATE: JUNE 28, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 28, 1994 ANALYSIS TIME: 1201	p-xylene o-xylene ANALYTE trans benzene cis TCE PCE	6.80 U 5.60 U CONC µg/L 34.00 U 4.00 U 23.00 U 4.00 U 4.70 U 3.70 U 8.20 U
SAMPLE DATE: JUNE 28, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 28, 1994 ANALYSIS TIME: 1201	p-xylene o-xylene ANALYTE trans benzene cis TCE PCE Toluene	6.80 U 5.60 U CONC µg/L 34.00 U 4.00 U 23.00 U 4.70 U 3.70 U

SAMPLE ID: BC-C-SG-18 SAMPLE DATE: JUNE 28, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 28, 1994 ANALYSIS TIME: 1220 GC TRACE#: 289	ANALYTE trans benzene cis TCE PCE Toluene chloro/ethyl p-xylene o-xylene	34.00 U 4.00 U 23.00 U 4.00 U 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U
SAMPLE ID: BC-C-SG-19 SAMPLE DATE: JUNE 28, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 28, 1994 ANALYSIS TIME: 1521 GC TRACE#: 294	ANALYTE trans benzene cis TCE PCE Toluene chloro/ethyl p-xylene o-xylene	CONC μg/L 34.00 U 4.00 U 23.00 U 4.00 U 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U
SAMPLE ID: BC-C-SG-19 DUP SAMPLE DATE: JUNE 28, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 28, 1994 ANALYSIS TIME: 1541 GC TRACE#: 295	ANALYTE trans benzene cis TCE PCE Toluene chloro/ethyl p-xylene o-xylene	CONC μg/L 34.00 U 4.00 U 23.00 U 4.00 U 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U
SAMPLE ID: BC-C-SG-20 SAMPLE DATE: JUNE 28, 1994 SAMPLE DEPTH (Ft): 5 SAMPLE TYPE: SOIL GAS ANALYSIS DATE: JUNE 28, 1994 ANALYSIS TIME: 1638 GC TRACE#: 298	ANALYTE trans benzene cis TCE PCE Toluene chloro/ethyi p-xylene o-xylene	CONC µg/L 34.00 U 4.00 U 23.00 U 4.00 U 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U

16

MINIPLE ANALTSES TRACES 191-300		
_	ANALYTE	CONC µg/L
SAMPLE ID: BC-E-SG-19	trans	34.00 U
SAMPLE DATE: JUNE 29, 1994	benzene	4.00 U
SAMPLE DEPTH (Ft): 5	cis	23.00 U
SAMPLE TYPE: SOIL GAS	TCE	. 4.00 U
ANALYSIS DATE: JUNE 29, 1994	PCE	4.70 U
ANALYSIS TIME: 910	Toluene	3.70 U
GC TRACE#: 303	chloro/ethyl	8.20 U
	p-xylene	6.80 U
	o-xylene	5.60 U
SAMPLE ID: BC-F-B1-0103	ANALYTE	CONC µg/L
SAMPLE DATE: JUNE 29, 1994	trans	34.00 U
SAMPLE DEPTH (Ft): 1-3	benzene	4.00 U
SAMPLE TYPE: SOIL	cis	23.00 U
ANALYSIS DATE: JUNE 29, 1994	TCE	4.00 U
ANALYSIS TIME: 1215	PCE	4.70 U
GC TRACE#: 304	Toluene	3.70 U
	chloro/ethyl	8.20 U
	p-xylene	6.80 U
	o-xylene	5.60 U
SAMPLE ID: BC-F-B1-0507	ANALYTE	CONC µg/L
SAMPLE DATE: JUNE 29, 1994	trans	34.00 U
SAMPLE DEPTH (Ft): 5-7	benzene	4.00 U
SAMPLE TYPE: SOIL	cis	23.00 U
ANALYSIS DATE: JUNE 29, 1994	TCE	4.00 U
ANALYSIS TIME: 1235	PCE	4.70 U
GC TRACE#: 305	Toluene	3.70 U
	chloro/ethyl	8.20 U
	p-xylene	6.80 U
	o-xylene	5.60 U
SAMPLE ID: BC-F-B1-1012	ANALYTE	CONC µg/L
SAMPLE DATE: JUNE 29, 1994	trans	34.00 U
SAMPLE DEPTH (Ft): 10-12	benzene	4.00 U
SAMPLE TYPE: SOIL	cis	23.00 U
ANALYSIS DATE: JUNE 29, 1994	TCE	4.00 U
ANALYSIS TIME: 1339	PCE	4.70 U
GC TRACE#: 307	Toluene	3.70 U
	chloro/ethyl	8.20 U
	p-xylene	6.80 U

o-xylene

5.60 U

SAMPLE ANALYSES TRACES 191-368 SAMPLE ID: BC-F-B1-1517 SAMPLE DATE: JUNE 29, 1994 SAMPLE DEPTH (Ft): 15-17 SAMPLE TYPE: SOIL ANALYSIS DATE: JUNE 29, 1994 ANALYSIS TIME: 1358 GC TRACE#: 308	ANALYTE trans benzene cis TCE PCE Toluene chloro/ethyl p-xylene o-xylene	34.00 U 4.00 U 23.00 U 4.00 U 4.00 U 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U
SAMPLE ID: BC-F-B1-2022 SAMPLE DATE: JUNE 29, 1994 SAMPLE DEPTH (Ft): 20-22 SAMPLE TYPE: SOIL ANALYSIS DATE: JUNE 29, 1994 ANALYSIS TIME: 1418 GC TRACE#: 309	ANALYTE trans benzene cis TCE PCE Toluene chloro/ethyl p-xylene o-xylene	CONC μg/L 34.00 U 4.00 U 23.00 U 4.00 U 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U
SAMPLE ID: BC-F-B1-2527 SAMPLE DATE: JUNE 29, 1994 SAMPLE DEPTH (Ft): 25-27 SAMPLE TYPE: SOIL ANALYSIS DATE: JUNE 29, 1994 ANALYSIS TIME: 1440 GC TRACE#: 310	ANALYTE trans benzene cis TCE PCE Toluene chloro/ethyl p-xylene o-xylene	34.00 U 4.00 U 23.00 U 4.00 U 4.00 U 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U
SAMPLE ID: BC-F-B1-3032 SAMPLE DATE: JUNE 29, 1994 SAMPLE DEPTH (Ft): 30-32 SAMPLE TYPE: SOIL ANALYSIS DATE: JUNE 29, 1994 ANALYSIS TIME: 1440 GC TRACE#: 311	ANALYTE trans benzene cis TCE PCE Toluene chloro/ethyl p-xylene o-xylene	CONC μg/L 34.00 U 4.00 U 23.00 U 4.00 U 4.70 U 3.70 U 8.20 U 6.80 U 5.60 U

MPLE ANALYSES TRACES 191-368		
SAMPLE ID: BC-F-B1-3537	ANALYTE	CONC µg/L
SAMPLE DATE: JUNE 29, 1994	trans	34.00 U
SAMPLE DEPTH (Ft): 35-37	benzene	4.00 U
SAMPLE TYPE: SOIL	cis	23.00 U
ANALYSIS DATE: JUNE 29, 1994	TCE	4.00 U
ANALYSIS TIME: 1606	PCE	4.70 U
GC TRACE#: 313	Toluene	3.70 U
	chloro/ethyl	8.20 U
	p-xylene	6.80 U
	o-xylene	5.60 U
SAMPLE ID: BC-F-B2-0103	ANALYTE	CONC µg/L
SAMPLE DATE: JUNE 29, 1994	trans	34.00 U
SAMPLE DEPTH (Ft): 1-3	benzene	4.00 U
SAMPLE TYPE: SOIL	cis	23.00 U
ANALYSIS DATE: JUNE 29, 1994	TCE	4.00 U
ANALYSIS TIME: 1643	PCE	4.70 U
GC TRACE#: 314	Toluene	3.70 U
	chloro/ethyl	8.20 U
	p-xylene	6.80 U
	o-xylene	5.60 U
SAMPLE ID: BC-F-B2-0507	ANALYTE	CONC µg/L
SAMPLE DATE: JUNE 29, 1994	trans	34.00 U
SAMPLE DEPTH (Ft): 5-7	benzene	4.00 U
SAMPLE TYPE: SOIL	cis	23.00 U
ANALYSIS DATE: JUNE 29, 1994	TCE	4.00 U
ANALYSIS TIME: 1703	PCE	4.70 U
GC TRACE#: 315	Toluene	3.70 U
	chloro/ethyl	8.20 U
	p-xylene	6.80 U
	o-xylene	5.60 U
SAMPLE ID: BC-F-B2-1012	ANALYTE	CONC µg/L
SAMPLE DATE: JUNE 30, 1994	trans	34.00 U
SAMPLE DEPTH (Ft): 10-12	benzene	4.00 U
SAMPLE TYPE: SOIL	cis	23.00 U
ANALYSIS DATE: JUNE 30, 1994	TCE	4.00 U
ANALYSIS TIME: 823	PCE	4.70 U
GC TRACE#: 320	Toluene	3.70 U
_	chloro/ethyl	8.20 U
	p-xylene	6.80 U
	1	5 60 11

o-xylene

5.60 U

CAMBLE ANALYSES TRACE	ES	191-368	•
-----------------------	----	---------	---

SAMPLE ID: BC-F-B2-1517 SAMPLE DATE: JUNE 30, 1994

SAMPLE DEPTH (Ft): 15-17 SAMPLE TYPE: SOIL

ANALYSIS DATE: JUNE 30, 1994

ANALYSIS TIME: 842 GC TRACE#: 321

SAMPLE ID:	BC-F-B2-2022
SAMPLE DATE:	JUNE 30, 1994
SAMPLE DEPTH (Ft):	
SAMPLE TYPE:	
ANALYSIS DATE:	JUNE 30, 1994

ANALYSIS TIME: 901 GC TRACE#: 322

SAMPLE ID:	BC-F-B2-2527
SAMPLE DATE:	JUNE 30, 1994
SAMPLE DEPTH (Ft):	

SAMPLE DEPTH (Ft): 25-27 SAMPLE TYPE: SOIL

ANALYSIS DATE: JUNE 30, 1994

ANALYSIS TIME: 920 GC TRACE#: 323

SAMPLE ID:	BC-F-	-B2-	3032
SAMPLE DATE:			

SAMPLE DEPTH (Ft): 30-32 SAMPLE TYPE: SOIL

ANALYSIS DATE: JUNE 30, 1994

ANALYSIS TIME: 940 GC TRACE#: 324

ANALYTE	CONC µg/L
rans	34.00 U
benzene	4.00 U
	23.00 U
cis	4.00 U
TCE	4.70 U
PCE	3.70 U
Toluene	
chloro/ethyl	8.20 U
p-xylene	6.80 U
o-xylene	5.60
-	

ANALYTE	CONC µg/L
trans	34.00 U
benzene	4.00 U
cis	23.00 U
TCE	4.00 U
PCE	4.70 U
Toluene	3.70 U
chloro/ethyl	8.20 U
p-xylene	6.80 U
o-xylene	5.60 U
•	

ANALYTE	CONC µg/L
trans	34.00 U
benzene	4.00 U
cis	23.00 U
TCE	4.00 U
PCE	4.70 U
Toluene	3.70 U
chloro/ethyl	8.20 U
	6.80 U
p-xylene	5.60 U
o-xylene	

ANALYTE	CONC µg/L
trans	34.00 U
benzene	4.00 U
cis	23.00 U
TCE	4.00 U
	4.70 U
PCE	3.70 U
Toluene	8.20 L
chloro/ethyl	6.80 \
p-xylene	5.60 L
o-xylene	

PLE ANALYSES TRACES 191-368 SAMPLE ID: BC A B1 0507	ANALVIE	CONC µg/L
SAMPLE ID. BC A BT 0507 SAMPLE DATE: JUNE 30, 1994	ANALYTE trans	34.00 U
·		4.00 U
SAMPLE DEPTH (Ft): 5-7 SAMPLE TYPE: SOIL	benzene	23.00 U
	cis TCE	4.00 U
ANALYSIS DATE: JUNE 30, 1994 ANALYSIS TIME: 1101	PCE	4.70 U
GC TRACE#: 328	Toluene	3.70 U
GC TRACE#. 320	chloro/ethyl	8.20 U
	•	6.80 U
	p-xylene	5.60 U
	o-xylene	3.00 0
SAMPLE ID: BC A B1 1012	ANALYTE	CONC µg/L
SAMPLE DATE: JUNE 30, 1994	trans	34.00 U
SAMPLE DEPTH (Ft): 10-12	benzene	4.00 U
SAMPLE TYPE: SOIL	cis	23.00 U
ANALYSIS DATE: JUNE 30, 1994	TCE	4.00 U
ANALYSIS TIME: 1042	PCE	4.70 U
GC TRACE#: 327	Toluene	3.70 U
	chloro/ethyl	8.20 U
	p-xylene	6.80 U
••	o-xylene	5.60 U
SAMPLE ID: BC A B1 1517	ANALYTE	CONC µg/L
SAMPLE DATE: JUNE 30, 1994	trans	34.00 U
SAMPLE DEPTH (Ft): 15-17	benzene	4.00 U
SAMPLE TYPE: SOIL	cis	23.00 U
ANALYSIS DATE: JUNE 30, 1994	TCE	4.00 U
ANALYSIS TIME: 1120	PCE	4.70 U
GC TRACE#: 329	Toluene	3.70 U
	chloro/ethyl	8.20 U
	p-xylene	6.80 U
	o-xylene	5.60 U
SAMPLE ID: BC A B1 2022	ANALYTE	CONC µg/L
SAMPLE DATE: JUNE 30, 1994	trans	34.00 U
SAMPLE DEPTH (Ft): 20-22	benzene	4.00 U
SAMPLE TYPE: SOIL	cis	23.00 U
ANALYSIS DATE: JUNE 30, 1994	TCE	4.00 U
ANALYSIS TIME: 1139	PCE	4.70 U
GC TRACE#: 330	Toluene	3.70 ∪
22 22	chloro/ethyl	8.20 U
	p-xylene	6.80 U
	, ,	5 60 11

5.60 U

o-xylene

SAMPLE ID: BC A B1 2527 SAMPLE DATE: JUNE 30, 1994

SAMPLE DEPTH (Ft): 25-27

SAMPLE TYPE: SOIL

ANALYSIS DATE: JUNE 30, 1994

ANALYSIS TIME: 1200

GC TRACE#: 331

trans	34.00	J
benzene	4.00	U
cis	23.00	U
TCE	4.00	U
PCE	4.70	U
Toluene	3.70	U
chloro/ethyl	8.20	U
p-xylene	6.80	U
o-xylene	5.60	U

ANALYTE

CONC µg/L

SAMPLE ID: BC A B1 0001 SAMPLE DATE: JUNE 30, 1994 SAMPLE DEPTH (Ft): 0-2

SAMPLE TYPE: SOIL

ANALYSIS DATE: JUNE 30, 1994

ANALYSIS TIME: 1326 GC TRACE#: 333

ANALYTE	CONC µg/L	
trans	34.00	U
benzene	4.00	U
cis	23.00	U
TCE	4.00	U
PCE	4.70	U
Toluene	3.70	U
chloro/ethyl	8.20	U
p-xylene	6.80	U
o-xylene	5.60	U
O-VAISILE	=	

MPLE ANALYSES TRACES 369-500

NIVIPLE ANALYSES TRACES	000 000		
Method Detection Limits			
TRANS 1.3 BEN CIS 1,3 TOL CHLORO/ETHYLBEN p-XY	Z DCE ZENE Z DCE TCE PCE UENE	: 4 3 8	34 4 23 4 4.7 3.7 3.2 3.8 5.6
SAMPLE SAMPLE DEPT SAMPLE ANALYSIS ANALYSIS GC TR TRANS 1, BEN CIS 1, CHLORO/ETHYLBEN	DATE: JL TYPE: SC DATE: JU TIME: 176 ACE#: 366 C0 2 DCE VZENE 2 DCE TCE PCE LUENE	DIL JLY 11, 1994 105 19 Incentration µg/I	Qualifier 34 U 4 U 23 U 4 U 4.7 U 3.7 U 8.2 U 6.8 U 5.6 U
SAMPLE SAMPLE DEPT SAMPLE ANALYSIS ANALYSIS GC TF TRANS 1 BE: CIS 1 CHLORO/ETHYLBE P-X	DATE: JI TH (Ft): 5- TYPE: SC DATE: JL TIME: 17 RACE#: 37 CC ,2 DCE NZENE ,2 DCE TCE PCE LUENE	OIL JLY 11, 1994 720	/L Qualifier 34 U 4 U 23 U 4 U 4.7 U 3.7 U 8.2 U 6.8 U 5.6 U
SAMPLE SAMPLE DEP SAMPLE ANALYSIS ANALYSIS	EDATE: J TH (Ft): 10 ETYPE: S DATE: J	SOIL ULY 11, 1994 735	

SAMPLE ANALYSES TRACES 369-500 Concentration µg/L Qualifier 34 U TRANS 1,2 DCE 4 U BENZENE 23 U CIS 1,2 DCE 4 U TCE 4.7 U PCE 3.7 U **TOLUENE** 8.2 U CHLORO/ETHYLBENZENE 6.8 U p-XYLENE 5.6 U o-XYLENE SAMPLE ID: BC F-B3-1517 SAMPLE DATE: JULY 11, 1994 SAMPLE DEPTH (Ft): 15-17 SAMPLE TYPE: SOIL ANALYSIS DATE: JULY 11, 1994 ANALYSIS TIME: 1749 GC TRACE#: 372 Concentration µg/L Qualifier 34 U TRANS 1,2 DCE 4 U BENZENE 23 U CIS 1,2 DCE 4 U TCE 4.7 U PCE 3.7 U TOLUENE 8.2 U CHLORO/ETHYLBENZENE 6.8 U p-XYLENE 5.6 U o-XYLENE SAMPLE ID: BC F-B3-2022 SAMPLE DATE: JULY 11, 1994 SAMPLE DEPTH (Ft): 20-22 SAMPLE TYPE: SOIL ANALYSIS DATE: JULY 11, 1994 ANALYSIS TIME: 1804 GC TRACE#: 373 Concentration µg/L Qualifier 34 U TRANS 1,2 DCE 4 U BENZENE 23 U CIS 1,2 DCE 4 U TCE 4.7 U PCE 3.7 U **TOLUENE** 8.2 U CHLORO/ETHYLBENZENE 6.8 U p-XYLENE 5.6 U o-XYLENE SAMPLE ID: BC F-B3-2527 SAMPLE DATE: JULY 12, 1994

SAMPLE DATE: JULY 12, 1994
SAMPLE TYPE: SOIL
ANALYSIS DATE: JULY 12, 1994
ANALYSIS TIME: 845

GC TRACE#: 379

Concentration µg/L Qualifier

SMPLE ANALYSES TRACES 369-50	0	
TRANS 1,2 DCE		34 U
BENZENE		4 U
CIS 1,2 DCE		23 U
TCE		4 U
PCE		4.7 U
TOLUENE		3.7 U
CHLORO/ETHYLBENZENE		8.2 U
p-XYLENE		6.8 U
o-XYLENE		5.6 U
	BC F-B3-3032	
SAMPLE DATE:		
SAMPLE DEPTH (Ft): SAMPLE TYPE:	30-32	
ANALYSIS DATE:		
ANALYSIS TIME:		
GC TRACE#:		
GC TRACE#.	Concentration µg	/I Qualifier
TRANS 1,2 DCE	· · · · · · · · · · · · · · · · · · ·	34 U
BENZENE		4 U
CIS 1.2 DCE		23 U
TCE		4 U
PCE		4.7 U
TOLUENE		3.7 U
CHLORO/ETHYLBENZENE		8.2 U
p-XYLENE		6.8 U
o-XYLENE		5.6 U
	BC-A-B2-0507	
	JULY 12, 1994	
SAMPLE DEPTH (Ft): SAMPLE TYPE:		
ANALYSIS DATE:		
ANALYSIS DATE		
GC TRACE#		
	Concentration µ	g/l Qualifier
TRANS 1,2 DCE		34 U
BENZENE		4 U
CIS 1,2 DCE		23 U
■ TCE	<u>:</u>	4 U
PCE	•	4.7 U
TOLUENE		3.7 U
CHLORO/ETHYLBENZENE	:	8.2 U
p-XYLENE		6.8 U
0-XYLENE	=	5.6 U
0.4401 5 10	. DO A DO 4040	
	: BC-A-B2-1012 : JULY 12, 1994	
SAMPLE DATE SAMPLE DEPTH (Ft)		
SAMPLE DEPTH (F)		
ANALYSIS DATE		
ANALYSIS TIME		
GC TRACE		
		ıg/L Qualifier
TRANS 1,2 DC	•	34 U

```
SAMPLE ANALYSES TRACES 369-500
                                               4 U
                      BENZENE
                                              23 U
                    CIS 1,2 DCE
                                               4 U
                           TCE
                                              4.7 U
                           PCE
                                              3.7 U
                      TOLUENE
                                              8.2 U
        CHLORO/ETHYLBENZENE
                                              6.8 U
                      p-XYLENE
                                              5.6 U
                      o-XYLENE
                     SAMPLE ID: BC-A-B2-1517
                  SAMPLE DATE: JULY 12, 1994
             SAMPLE DEPTH (Ft): 15-17
                  SAMPLE TYPE: SOIL
                ANALYSIS DATE: JULY 12, 1994
                 ANALYSIS TIME: 1119
                     GC TRACE#: 384
                                Concentration µg/L Qualifier
                                               34 U
                  TRANS 1,2 DCE
                                                4 U
                       BENZENE
                                                23 U
                     CIS 1,2 DCE
                                                 4 U
                            TCE
                                               4.7 U
                            PCE
                                               3.7 U
                       TOLUENE
                                               8.2 U
         CHLORO/ETHYLBENZENE
                                               6.8 U
                       p-XYLENE
                                               5.6 U
                       o-XYLENE
                      SAMPLE ID: BC-A-B2-2022
                   SAMPLE DATE: JULY 12, 1994
              SAMPLE DEPTH (Ft): 20-22
                   SAMPLE TYPE: SOIL
                  ANALYSIS DATE: JULY 12, 1994
                  ANALYSIS TIME: 1134
                      GC TRACE#: 385
                                  Concentration µg/L Qualifier
                                                 34 U
                   TRANS 1,2 DCE
                                                 4 U
                        BENZENE
                                                 23 U
                       CIS 1,2 DCE
                                                 4 U
                             TCE
                                                 4.7 U
                             PCE
                                                 3.7 U
                        TOLUENE
                                                 8.2 U
          CHLORO/ETHYLBENZENE
                                                 6.8 U
                        p-XYLENE
                                                 5.6 U
                        o-XYLENE
                       SAMPLE ID: BC-A-B2-2527
                    SAMPLE DATE: JULY 12, 1994
               SAMPLE DEPTH (Ft): 25-27
                    SAMPLE TYPE: SOIL
                   ANALYSIS DATE: JULY 12, 1994
                   ANALYSIS TIME: 1214
                       GC TRACE#: 388
                                   Concentration µg/L Qualifier
                                                  34 U
                    TRANS 1.2 DCE
```

BENZENE

4 U

SAMPLE ANALYSES TRACES 369-500 CIS 1,2 DCE TCE PCE TOLUENE CHLORO/ETHYLBENZENE p-XYLENE 0-XYLENE	23 U 4 U 4.7 U 3.7 U 8.2 U 6.8 U 5.6 U
SAMPLE DATE: S SAMPLE DEPTH (Ft): 3 SAMPLE TYPE: S ANALYSIS DATE: J ANALYSIS TIME: 1 GC TRACE#: 3	80-32 SOIL JULY 12, 1994 1233
TCE PCE TOLUENE CHLORO/ETHYLBENZENE p-XYLENE 0-XYLENE	4 U 4.7 U 3.7 U 8.2 U 6.8 U 5.6 U
SAMPLE DATE: SAMPLE DEPTH (Ft): SAMPLE TYPE: ANALYSIS DATE: ANALYSIS TIME: GC TRACE#:	JULY 12, 1994 5-7 SOIL JULY 12, 1994 1626
BENZENE CIS 1,2 DCE TCE PCE TOLUENE CHLORO/ETHYLBENZENE p-XYLENE 0-XYLENE	4 U 23 U 4 U 4.7 U 3.7 U 8.2 U 6.8 U 5.6 U
SAMPLE DATE: SAMPLE DEPTH (Ft): SAMPLE TYPE: ANALYSIS DATE: ANALYSIS TIME: GC TRACE#:	10-12 SOIL JULY 12, 1994 1642 392 Concentration µg/L Qualifier
TRANS 1,2 DCE BENZENE CIS 1,2 DCE	4 U

SAMPLE ANALYSES TRACES 369-500 TCE PCE TOLUENE CHLORO/ETHYLBENZENE p-XYLENE 0-XYLENE	3.7 U 3.7 U 8.2 U 6.8 U 5.6 U
SAMPLE ID: SAMPLE DATE: SAMPLE DEPTH (Ft): SAMPLE TYPE: ANALYSIS DATE: ANALYSIS TIME: GC TRACE#:	15-17 SOIL JULY 12, 1994 1702
TRANS 1,2 DCE BENZENE CIS 1,2 DCE TCE PCE TOLUENE CHLORO/ETHYLBENZENE 0-XYLENE	34 U 4 U 23 U 4 U 4.7 U 3.7 U 8.2 U 6.8 U
	: SOIL : JULY 12, 1994 : 1717 : 394 Concentration µg/L Qualifier
TRANS 1,2 DCI BENZENI CIS 1,2 DC TC PC TOLUEN CHLORO/ETHYLBENZEN p-XYLEN	E 4 U E 23 U E 4 U E 4.7 U E 3.7 U E 8.2 U E 6.8 U
SAMPLE DAT SAMPLE DEPTH (F SAMPLE TYP ANALYSIS DAT ANALYSIS TIM GC TRACE TRANS 1,2 DO BENZEI CIS 1,2 DO	E: SOIL E: JULY 12, 1994 IE: 1756 E#: 397 Concentration µg/L Qualifier CE 34 U NE 4 U

MPLE ANALYSES TRACES 369-500 PCE TOLUENE CHLORO/ETHYLBENZENE p-XYLENE 0-XYLENE	4.7 U 3.7 U 8.2 U 6.8 U 5.6 U
SAMPLE ID: BC-E-B1-3032 SAMPLE DATE: JULY 12, 1994 SAMPLE DEPTH (Ft): 30-32 SAMPLE TYPE: SOIL ANALYSIS DATE: JULY 12, 1994 ANALYSIS TIME: 1812 GC TRACE#: 398 Concentration µg	
TCE PCE TOLUENE	34 U 4 U 23 U 4 U 4.7 U 3.7 U 8.2 U 6.8 U 5.6 U
SAMPLE ID: BC-E-B2-0001 SAMPLE DATE: JULY 12, 1994 SAMPLE DEPTH (Ft): 0-2 SAMPLE TYPE: SOIL ANALYSIS DATE: JULY 12, 1994 ANALYSIS TIME: 2031 GC TRACE#: 404 Concentration pages.	
TRANS 1,2 DCE BENZENE CIS 1,2 DCE TCE PCE TOLUENE CHLORO/ETHYLBENZENE p-XYLENE 0-XYLENE	34 U 4 U 23 U 4 U 4.7 U 3.7 U 8.2 U 6.8 U 5.6 U
SAMPLE ID: BC-E-B2-0507 SAMPLE DATE: JULY 12, 1994 SAMPLE DEPTH (Ft): 5-7 SAMPLE TYPE: SOIL ANALYSIS DATE: JULY 12, 1994 ANALYSIS TIME: 1945 GC TRACE#: 401 Concentration	L
TRANS 1,2 DCE BENZENE CIS 1,2 DCE TCE PCE	34 U 4 U 23 U 4 U 4.7 U

SAMPLE ANALYSES TRACES 369-500 TOLUENE CHLORO/ETHYLBENZENE p-XYLENE 0-XYLENE	3.7 U 8.2 U 6.8 U 5.6 U
SAMPLE ID: BC-E-B2-101 SAMPLE DATE: JULY 12, 199 SAMPLE DEPTH (Ft): 10-12 SAMPLE TYPE: SOIL ANALYSIS DATE: JULY 12, 199 ANALYSIS TIME: 2016 GC TRACE#: 403 Concentration	4
TRANS 1,2 DCE BENZENE CIS 1,2 DCE TCE PCE TOLUENE CHLORO/ETHYLBENZENE p-XYLENE 0-XYLENE	34 U 4 U 23 U 4 U 4.7 U 3.7 U 8.2 U 6.8 U 5.6 U
SAMPLE ID: BC-E-B2-1 SAMPLE DATE: JULY 12, 19 SAMPLE DEPTH (Ft): 15-17 SAMPLE TYPE: SOIL ANALYSIS DATE: JULY 12, 19 ANALYSIS TIME: 2045 GC TRACE#: 405	994
TRANS 1,2 DCE BENZENE CIS 1,2 DCE TCE PCE TOLUENE CHLORO/ETHYLBENZENE p-XYLENE 0-XYLENE	34 U 4 U 23 U 4 U 4.7 U 3.7 U 8.2 U 6.8 U 5.6 U
SAMPLE ID: BC-E-B2- SAMPLE DATE: JULY 12, SAMPLE DEPTH (Ft): 20-22 SAMPLE TYPE: SOIL ANALYSIS DATE: JULY 12, ANALYSIS TIME: 2001 GC TRACE#: 402	1994
TRANS 1,2 DCE BENZENE CIS 1,2 DCE TCE PCE TOLUENE	34 U 4 U 23 U 4 U 4.7 U 3.7 U

_

```
MPLE ANALYSES TRACES 369-500
     CHLORO/ETHYLBENZENE
                                           8.2 U
                   p-XYLENE
                                          6.8 U
                   o-XYLENE
                                           5.6 U
                  SAMPLE ID: BC-E-B2-3032
               SAMPLE DATE: JULY 12, 1994
          SAMPLE DEPTH (Ft): 30-32
               SAMPLE TYPE: SOIL
             ANALYSIS DATE: JULY 13, 1994
              ANALYSIS TIME: 901
                 GC TRACE#: 413
                             Concentration µg/L Qualifier
              TRANS 1,2 DCE
                                           34 U
                   BENZENE
                                           4 U
                                           23 U
                  CIS 1,2 DCE
                        TCE
                                            4 U
                        PCE
                                           4.7 U
                   TOLUENE
                                           3.7 U
     CHLORO/ETHYLBENZENE
                                           8.2 U
                   p-XYLENE
                                           6.8 U
                   o-XYLENE
                                           5.6 U
                  SAMPLE ID: BC-B-B2-0002
               SAMPLE DATE: JULY 13, 1994
          SAMPLE DEPTH (Ft): 0-2
               SAMPLE TYPE: SOIL
              ANALYSIS DATE: JULY 13, 1994
              ANALYSIS TIME: 1003
                 GC TRACE#: 418
                             Concentration µg/L Qualifier
               TRANS 1,2 DCE
                                            34 U
                                            4 U
                    BENZENE
                  CIS 1,2 DCE
                                            23 U
                         TCE
                                            4 U
                                           4.7 U
                         PCE
                    TOLUENE
                                           3.7 U
      CHLORO/ETHYLBENZENE
                                           8.2 U
                    p-XYLENE
                                           6.8 U
                    o-XYLENE
                                            5.6 U
                  SAMPLE ID: BC-B-B2-0507
                SAMPLE DATE: JULY 13, 1994
           SAMPLE DEPTH (Ft): 5-7
                SAMPLE TYPE: SOIL
              ANALYSIS DATE: JULY 13, 1994
              ANALYSIS TIME: 931
                  GC TRACE#: 415
                              Concentration µg/L Qualifier
               TRANS 1,2 DCE
                                            34 U
                    BENZENE
                                             4 U
                   CIS 1,2 DCE
                                            23 U
                         TCE
                                            4 U
                         PCE
                                            4.7 U
                    TOLUENE
                                            3.7 U
      CHLORO/ETHYLBENZENE
                                            8.2 U
```

```
SAMPLE ANALYSES TRACES 369-500
                                            6.8 U
                      p-XYLENE
                                             5.6 U
                      o-XYLENE
                    SAMPLE ID: BC-B-B2-1012
                  SAMPLE DATE: JULY 13, 1994
             SAMPLE DEPTH (Ft): 10-12
                  SAMPLE TYPE: SOIL
                ANALYSIS DATE: JULY 13, 1994
                 ANALYSIS TIME: 916
                    GC TRACE#: 414
                                Concentration µg/L Qualifier
                                               34 U
                  TRANS 1,2 DCE
                                                4 U
                       BENZENE
                                               23 U
                     CIS 1,2 DCE
                                                4 U
                            TCE
                                               4.7 U
                            PCE
                                               3.7 U
                       TOLUENE
                                               8.2 U
         CHLORO/ETHYLBENZENE
                                               6.8 U
                       p-XYLENE
                                               5.6 U
                       o-XYLENE
                      SAMPLE ID: BC-B-B2-1517
                   SAMPLE DATE: JULY 13, 1994
              SAMPLE DEPTH (Ft): 15-17
                   SAMPLE TYPE: SOIL
                  ANALYSIS DATE: JULY 13, 1994
                  ANALYSIS TIME: 1018
                      GC TRACE#: 419
                                 Concentration µg/L Qualifier
                                                 34 U
                   TRANS 1,2 DCE
                                                 4 U
                        BENZENE
                                                 23 U
                       CIS 1,2 DCE
                                                 4 U
                             TCE
                                                4.7 U
                             PCE
                                                3.7 U
                        TOLUENE
                                                8.2 U
          CHLORO/ETHYLBENZENE
                                                 6.8 U
                        p-XYLENE
                                                 5.6 U
                        o-XYLENE
                       SAMPLE ID: BC-B-B2-2022
                    SAMPLE DATE: JULY 13, 1994
                SAMPLE DEPTH (Ft): 20-22
                    SAMPLE TYPE: SOIL
                   ANALYSIS DATE: JULY 13, 1994
                    ANALYSIS TIME: 1033
                       GC TRACE#: 420
                                   Concentration µg/L Qualifier
                                                  34 U
                    TRANS 1,2 DCE
                                                   4 U
                          BENZENE
                                                  23 U
                        CIS 1,2 DCE
                                                   4 U
                              TCE
                                                  4.7 U
                               PCE
                                                  3.7 U
                          TOLUENE
                                                  8.2 U
            CHLORO/ETHYLBENZENE
```

p-XYLENE

6.8 U

ANALYSIS TIME: 1144 GC TRACE#: 425

0-XYLENE

Concentration µg/L Qualifier TRANS 1,2 DCE 34 U 4 U BENZENE 23 U CIS 1,2 DCE 4 U TCE 4.7 U PCE 3.7 U TOLUENE 8.2 U CHLORO/ETHYLBENZENE 6.8 U p-XYLENE

5.6 U

11

SAMPLE ID: BC-B-B3-1012 SAMPLE DATE: JULY 13, 1994

SAMPLE DEPTH (Ft): 10-12 SAMPLE TYPE: SOIL

ANALYSIS DATE: JULY 13, 1994

ANALYSIS TIME: 1159 GC TRACE#: 426

Concentration µg/L Qualifier

34 U TRANS 1,2 DCE 4 U BENZENE 23 U CIS 1,2 DCE 4 U TCE 4.7 U PCE 3.7 U TOLUENE 8.2 U CHLORO/ETHYLBENZENE 6.8 U p-XYLENE 5.6 U o-XYLENE

> SAMPLE ID: BC-B-B4-0002 SAMPLE DATE: JULY 13, 1994

SAMPLE DEPTH (Ft): 0-2 SAMPLE TYPE: SOIL

ANALYSIS DATE: JULY 13, 1994

ANALYSIS TIME: 1215 GC TRACE#: 427

Concentration µg/L Qualifier TRANS 1,2 DCE 34 U

BENZENE 4 U
CIS 1,2 DCE 23 U
TCE 4 U

PCE 4.7 U
TOLUENE 3.7 U
VETUVI BENIZENE 8.2 U

CHLORO/ETHYLBENZENE 8.2 U
p-XYLENE 6.8 U
o-XYLENE 5.6 U

SAMPLE ID: BC-B-B4-0507 SAMPLE DATE: JULY 13, 1994

SAMPLE DEPTH (Ft): 5-7 SAMPLE TYPE: SOIL

ANALYSIS DATE: JULY 13, 1994

ANALYSIS TIME: 1231 GC TRACE#: 428

Concentration µg/L Qualifier

TRANS 1,2 DCE 34 U
BENZENE 4 U
CIS 1,2 DCE 23 U

TCE 4 U
PCE 4.7 U

TOLUENE 3.7 U
CHLORO/ETHYLBENZENE 8.2 U
CASYLENE 6.8 U

p-XYLENE 6.8 U o-XYLENE 5.6 U

```
MPLE ANALYSES TRACES 369-500
                 SAMPLE ID: BC-B-B4-1012
               SAMPLE DATE: JULY 13, 1994
          SAMPLE DEPTH (Ft): 10-12
               SAMPLE TYPE: SOIL
             ANALYSIS DATE: JULY 13, 1994
              ANALYSIS TIME: 1246
                 GC TRACE#: 429
                             Concentration µg/L Qualifier
                                            34 U
              TRANS 1,2 DCE
                                            4 U
                   BENZENE
                                            23 U
                  CIS 1,2 DCE
                                             4 U
                        TCE
                                            4.7 U
                        PCE
                                            3.7 U
                    TOLUENE
                                            8.2 U
     CHLORO/ETHYLBENZENE
                                            6.8 U
                    p-XYLENE
                                            5.6 U
                    o-XYLENE
                  SAMPLE ID: BLANK
               SAMPLE DATE: JULY 13, 1994
           SAMPLE DEPTH (Ft): 0
               SAMPLE TYPE:
              ANALYSIS DATE: JULY 13, 1994
              ANALYSIS TIME: 1301
                  GC TRACE#: 430
                              Concentration µg/L Qualifier
                                             34 U
               TRANS 1,2 DCE
                                             4 U
                    BENZENE
                                             23 U
                   CIS 1,2 DCE
                                             4 U
                         TCE
                                             4.7 U
                         PCE
                                             3.7 U
                     TOLUENE
                                             8.2 U
      CHLORO/ETHYLBENZENE
                                             6.8 U
                    p-XYLENE
                                             5.6 U
                     o-XYLENE
                   SAMPLE ID: BLANK
                SAMPLE DATE: JULY 13, 1994
           SAMPLE DEPTH (Ft): 0
                SAMPLE TYPE:
               ANALYSIS DATE: JULY 13, 1994
               ANALYSIS TIME: 1322
                   GC TRACE#: 431
                               Concentration µg/L Qualifier
                                              34 U
                TRANS 1,2 DCE
                                              4 U
                     BENZENE
                                              23 U
                   CIS 1,2 DCE
                                               4 U
                          TCE
                                             4.7 U
                          PCE
                                             3.7 U
                     TOLUENE
                                             8.2 U
       CHLORO/ETHYLBENZENE
                                             6.8 U
                     p-XYLENE
                                              5.6 U
                     o-XYLENE
```

```
SAMPLE ANALYSES TRACES 369-500
                 SAMPLE DATE: JULY 13, 1994
            SAMPLE DEPTH (Ft): 0-2
                 SAMPLE TYPE: SOIL
                ANALYSIS DATE: JULY 13, 1994
                ANALYSIS TIME: 1436
                    GC TRACE#: 434
                               Concentration µg/L Qualifier
                                              34 U
                 TRANS 1,2 DCE
                                               4 U
                      BENZENE
                                               23 U
                    CIS 1,2 DCE
                                               4 U
                           TCE
                                              4.7 U
                           PCE
                                              3.7 U
                      TOLUENE
                                              8.2 U
        CHLORO/ETHYLBENZENE
                                              6.8 U
                      p-XYLENE
                                               5.6 U
                      o-XYLENE
                     SAMPLE ID: BC-B-B1-0507
                  SAMPLE DATE: JULY 13, 1994
              SAMPLE DEPTH (Ft): 5-7
                  SAMPLE TYPE: SOIL
                 ANALYSIS DATE: JULY 13, 1994
                 ANALYSIS TIME: 1451
                     GC TRACE#: 435
                                 Concentration µg/L Qualifier
                                                34 U
                  TRANS 1,2 DCE
                                                4 U
                        BENZENE
                                                23 U
                      CIS 1,2 DCE
                                                 4 U
                             TCE
                                                4.7 U
                             PCE
                                                3.7 U
                        TOLUENE
                                                8.2 U
          CHLORO/ETHYLBENZENE
                                                6.8 U
                        p-XYLENE
                                                5.6 U
                        o-XYLENE
                       SAMPLE ID: BC-B-B1-1012
                    SAMPLE DATE: JULY 13, 1994
               SAMPLE DEPTH (Ft): 10-12
                    SAMPLE TYPE: SOIL
                  ANALYSIS DATE: JULY 13, 1994
                   ANALYSIS TIME: 1506
                      GC TRACE#: 436
                                  Concentration µg/L Qualifier
                                                 34 U
                    TRANS 1,2 DCE
                                                  4 U
                         BENZENE
                                                 23 U
                       CIS 1,2 DCE
                                                  4 U
                              TCE
                                                 4.7 U
                              PCE
                                                 3.7 U
                         TOLUENE
                                                 8.2 U
           CHLORO/ETHYLBENZENE
                                                 6.8 U
                         p-XYLENE
                                                 5.6 U
                         o-XYLENE
                        SAMPLE ID: BC-B-B1-1517
```

14

SAMPLE DATE: JULY 13, 1994

```
MPLE ANALYSES TRACES 369-500
         SAMPLE DEPTH (Ft): 15-17
               SAMPLE TYPE: SOIL
             ANALYSIS DATE: JULY 13, 1994
             ANALYSIS TIME: 1522
                 GC TRACE#: 437
                             Concentration µg/L Qualifier
                                            34 U
              TRANS 1,2 DCE
                                            4 U
                   BENZENE
                                            23 U
                  CIS 1,2 DCE
                        TCE
                                            4 U
                                            4.7 U
                        PCE
                                            3.7 U
                    TOLUENE
                                           8.2 U
     CHLORO/ETHYLBENZENE
                    p-XYLENE
                                           6.8 U
                                            5.6 U
                    o-XYLENE
                  SAMPLE ID: BC-B-B1-2022
               SAMPLE DATE: JULY 13, 1994
          SAMPLE DEPTH (Ft): 20-22
               SAMPLE TYPE: SOIL
              ANALYSIS DATE: JULY 13, 1994
              ANALYSIS TIME: 1540
                  GC TRACE#: 438
                              Concentration µg/L Qualifier
                                             34 U
               TRANS 1,2 DCE
                                             4 U
                    BENZENE
                   CIS 1,2 DCE
                                             23 U
                                             4 U
                         TCE
                                            4.7 U
                         PCE
                                            3.7 U
                     TOLUENE
                                             8.2 U
      CHLORO/ETHYLBENZENE
                                             6.8 U
                     p-XYLENE
                                             5.6 U
                    o-XYLENE
                   SAMPLE ID: BC-B-B1-2527
                SAMPLE DATE: JULY 13, 1994
           SAMPLE DEPTH (Ft): 25-27
                SAMPLE TYPE: SOIL
              ANALYSIS DATE: JULY 13, 1994
               ANALYSIS TIME: 1601
                   GC TRACE#: 439
                               Concentration µg/L Qualifier
                                              34 U
                TRANS 1,2 DCE
                                              4 U
                     BENZENE
                                              23 U
                   CIS 1,2 DCE
                                              4 U
                          TCE
                                             4.7 U
                          PCE
                                             3.7 U
                     TOLUENE
                                             8.2 U
       CHLORO/ETHYLBENZENE
                                             6.8 U
                     p-XYLENE
                                             5.6 U
                     o-XYLENE
                    SAMPLE ID: BC-C-B1-0002
                 SAMPLE DATE: JULY 14, 1994
```

SAMPLE DEPTH (Ft): 0-2

15

SAMPLE TYPE: SOIL

ANALYSIS DATE: JULY 14, 1994

ANALYSIS TIME: 1404 GC TRACE#: 447

Concentration µg	J/L Qualitier
------------------	---------------

34 U TRANS 1,2 DCE 4 U BENZENE 23 U CIS 1,2 DCE 4 U TCE 4.7 U PCE 3.7 U TOLUENE 8.2 U CHLORO/ETHYLBENZENE 6.8 U p-XYLENE 5.6 U o-XYLENE

> SAMPLE ID: BC-C-B1-0507 SAMPLE DATE: JULY 14, 1994

SAMPLE DEPTH (Ft): 5-7 SAMPLE TYPE: SOIL

ANALYSIS DATE: JULY 14, 1994

ANALYSIS TIME: 1419 GC TRACE#: 448

Concentration µg/L Qualifier

34 U TRANS 1,2 DCE 4 U BENZENE 23 U CIS 1,2 DCE 4 U TCE 4.7 U PCE 3.7 U TOLUENE 8.2 U CHLORO/ETHYLBENZENE 6.8 U p-XYLENE

o-XYLENE 5.6 U

SAMPLE ID: BC-C-B1-1012 SAMPLE DATE: JULY 14, 1994

SAMPLE DEPTH (Ft): 10-12 SAMPLE TYPE: SOIL

ANALYSIS DATE: JULY 14, 1994

ANALYSIS TIME: 1434 GC TRACE#: 449

Concentration µg/L Qualifier

TRANS 1,2 DCE 34 U

BENZENE 4 U

CIS 1,2 DCE 23 U

TCE 4 U

PCE 4.7 U

TOLUENE 3.7 U

CHLORO/ETHYLBENZENE 8.2 U

P-XYLENE 5.6 U

o-XYLENE 5.6 U

SAMPLE ID: BC-C-B1-1517

SAMPLE DATE: JULY 14, 1994 SAMPLE DEPTH (Ft): 15-17

```
MPLE ANALYSES TRACES 369-500
              SAMPLE TYPE: SOIL
            ANALYSIS DATE: JULY 14, 1994
             ANALYSIS TIME: 1517
                GC TRACE#: 452
                            Concentration µg/L Qualifier
                                           34 U
              TRANS 1,2 DCE
                                            4 U
                   BENZENE
                                           23 U
                 CIS 1,2 DCE
                        TCE
                                          . 4 U
                                           4.7 U
                        PCE
                   TOLUENE
                                           3.7 U
                                           8.2 U
     CHLORO/ETHYLBENZENE
                                           6.8 U
                   p-XYLENE
                   o-XYLENE
                                           5.6 U
                  SAMPLE ID: BC-C-B2-0002
               SAMPLE DATE: JULY 14, 1994
          SAMPLE DEPTH (Ft): 0-2
               SAMPLE TYPE: SOIL
             ANALYSIS DATE: JULY 14, 1994
             ANALYSIS TIME: 1551
                 GC TRACE#: 453
                             Concentration µg/L Qualifier
              TRANS 1,2 DCE
                                            34 U
                   BENZENE
                                             4 U
                                            23 U
                  CIS 1,2 DCE
                                             4 U
                        TCE
                        PCE
                                            4.7 U
                    TOLUENE
                                            3.7 U
     CHLORO/ETHYLBENZENE
                                            8.2 U
                                            6.8 U
                    p-XYLENE
      o-XYLENE
                                            5.6 U
                  SAMPLE ID: BC-C-B2-0507
               SAMPLE DATE: JULY 14, 1994
          SAMPLE DEPTH (Ft): 5-7
               SAMPLE TYPE: SOIL
              ANALYSIS DATE: JULY 14, 1994
              ANALYSIS TIME: 1606
                  GC TRACE#: 454
                              Concentration µg/L Qualifier
                                            34 U
               TRANS 1,2 DCE
                                             4 U
                    BENZENE
                                             23 U
                  CIS 1,2 DCE
                                             4 U
                         TCE
                         PCE
                                            4.7 U
                    TOLUENE
                                            3.7 U
      CHLORO/ETHYLBENZENE
                                            8.2 U
                    p-XYLENE
                                            6.8 U
                    o-XYLENE
                                            5.6 U
                   SAMPLE ID: BC-C-B2-1012
                SAMPLE DATE: JULY 14, 1994
           SAMPLE DEPTH (Ft): 10-12
```

984-001 17

SAMPLE TYPE: SOIL

SAMPLE ANALYSES TRACES 369-500 ANALYSIS DATE: JULY 14, 1994 ANALYSIS TIME: 1622 GC TRACE#: 455 Concentration µg/L Qualifier 34 E TRANS 1,2 DCE 4 E BENZENE 23 E CIS 1,2 DCE 4 E TCE 4.7 E PCE 3.7 E TOLUENE 8.2 E CHLORO/ETHYLBENZENE 6.8 E p-XYLENE 5.6 E o-XYLENE SAMPLE ID: BC-C-B3-0002 SAMPLE DATE: JULY 14, 1994 SAMPLE DEPTH (Ft): 0-2 SAMPLE TYPE: SOIL ANALYSIS DATE: JULY 14, 1994 ANALYSIS TIME: 1712 GC TRACE#: 456 Qualifier Concentration µg/L U **TRANS 1,2 DCE 34** U BENZENE 4 U CIS 1,2 DCE 23 U TCE 4 U **PCE 4.7** U TOLUENE 3.7 U CHLORO/ETHYLBENZENE 8.2 U p-XYLENE 6.8 o-XYLENE 5.6 SAMPLE ID: BC-C-B3-0507 SAMPLE DATE: JULY 14, 1994 SAMPLE DEPTH (Ft): 5-7 SAMPLE TYPE: SOIL ANALYSIS DATE: JULY 14, 1994 ANALYSIS TIME: 1739 GC TRACE#: 457 Qualifier Concentration µg/L U **TRANS 1,2 DCE 34** U BENZENE 4 U CIS 1,2 DCE 23 U TCE 4 **PCE 4.7 TOLUENE 3.7** U CHLORO/ETHYLBENZENE 8.2 p-XYLENE 6.8 o-XYLENE 5.6

SAMPLE ID: H2O BLANK SAMPLE DATE: JULY 14, 1994 SAMPLE DEPTH (Ft): 0

SAMPLE TYPE: H2O BLANK ANALYSIS DATE: JULY 14, 1994

SMPLE ANALYSES TRACES 369-500 ANALYSIS TIME: 1814 GC TRACE#: 458 Concentration µg/L TRANS 1,2 DCE 34 BENZENE 4 CIS 1,2 DCE 23 TCE 4 PCE 4.7 TOLUENE 3.7 CHLORO/ETHYLBENZENE 8.2 p-XYLENE 6.8 0-XYLENE 5.6	Qualifier U U U U U U U U U
SAMPLE ID: BC-C-B3-1012 SAMPLE DATE: JULY 15, 1994 SAMPLE DEPTH (Ft): 10-12 SAMPLE TYPE: SOIL ANALYSIS DATE: JULY 15, 1994 ANALYSIS TIME: 920 GC TRACE#: 466 Concentration µg/L TRANS 1,2 DCE 34 BENZENE 4 CIS 1,2 DCE 23 TCE 4 PCE 4.7 TOLUENE 3.7 CHLORO/ETHYLBENZENE 8.2 p-XYLENE 6.8 0-XYLENE 5.6	Qualifier U U U U U U U U U U
SAMPLE ID: BC-C-B3-1416 SAMPLE DATE: JULY 15, 1994 SAMPLE DEPTH (Ft): 14-16 SAMPLE TYPE: SOIL ANALYSIS DATE: JULY 15, 1994 ANALYSIS TIME: 935 GC TRACE#: 467 Concentration µg/L TRANS 1,2 DCE 34 BENZENE 4 CIS 1,2 DCE 23 TCE 4 PCE 4.7 TOLUENE 3.7 CHLORO/ETHYLBENZENE 8.2 p-XYLENE 6.8 0-XYLENE 5.6 SAMPLE ID: BC-C-B4-0002 SAMPLE DATE: JULY 15, 1994 SAMPLE DEPTH (Ft): 0-2 SAMPLE TYPE: SOIL ANALYSIS DATE: JULY 15,1994 ANALYSIS TIME: 1230	Qualifier U U U U U U U

SAMPLE ANALYSES TRACES 369-500

\sim	т	0	$^{\wedge}$	⊏#-	479	
GU	- 1	\neg	$\neg \smile$	<u></u>	413	

	Concentration µg/L	Qualifier
TRANS 1,2 DCE	34	U
BENZENE		U
CIS 1,2 DCE	23	U
TCE		U
PCE	4.7	U
TOLUENE	3.7	U
CHLORO/ETHYLBENZENE	8.2	U
p-XYLENE		U
o-XYLENE	5.6	U

SAMPLE ID: BC-C-B4-0507 SAMPLE DATE: JULY 15, 1994

SAMPLE DEPTH (Ft): 5-7 SAMPLE TYPE: SOIL

ANALYSIS DATE: JULY 15, 1994

ANALYSIS TIME: 950 GC TRACE#: 468

	Concentration µg/L	Qualifier
TRANS 1,2 DCE	34	U
BENZENE		U
CIS 1,2 DCE	23	U
TCE		U
PCE	4.7	U
TOLUENE		U
CHLORO/ETHYLBENZENE		U
p-XYLENE		U
o-XYLENE		U
• • • • • • • • • • • • • • • • • • • •		

SAMPLE ID: BC-C-B4-1012 SAMPLE DATE: JULY 15, 1994

SAMPLE DEPTH (Ft): 10-12 SAMPLE TYPE: SOIL

ANALYSIS DATE: JULY 15, 1994

ANALYSIS TIME: 1006 GC TRACE#: 469

	Concentration µg/L	Qualifier
TRANS 1,2 DCE	34	Ų
BENZENE	4	U
CIS 1,2 DCE	23	U
TCE	4	U
PCE	4.7	U
TOLUENE	3.7	U
CHLORO/ETHYLBENZENE	8.2	U
p-XYLENE		U
o-XYLENE	5.6	U

SAMPLE ID: BC-C-B4-1012DUP SAMPLE DATE: JULY 15, 1994

SAMPLE DATE: JULY 15, SAMPLE DEPTH (Ft): 10-12 SAMPLE TYPE: SOIL

ANALYSIS DATE: JULY 15, 1994

ANALYSIS TIME: 1025 GC TRACE#: 470

d	A A DI	I =	ΛÞ	LAL	YSES	TDA	CES	360	500
_	ירואו	L.=	Αı	MAT.	-1252	IRA	c = 0	ಎರ೨.	-DUU

	Concentration µg/L	Qualifier
TRANS 1,2 DCE	34	U
BENZENE	4	U
CIS 1,2 DCE	23	U
TCE	4	U
PCE	4.7	U
TOLUENE	3.7	U
CHLORO/ETHYLBENZENE	8.2	U
p-XYLENE	6.8	U
o-XYLENE	5.6	U

SAMPLE ID: BC-D-B1-0002 SAMPLE DATE: JULY 15, 1994

SAMPLE DEPTH (Ft): 0-2 SAMPLE TYPE: SOIL

ANALYSIS DATE: JULY 15, 1994

ANALYSIS TIME: 1215 GC TRACE#: 478

Concentration µg/L Qualifier
TRANS 1,2 DCE 34 U
BENZENE 4 U
CIS 1,2 DCE 23 U
TCE 4 U
PCE 4.7 U
TOLUENE 3.7 U

P-XYLENE 5.6

CHLORO/ETHYLBENZENE 8.2

U

0-XYLENE 5.6

U

SAMPLE ID: BC-D-B1-0507 SAMPLE DATE: JULY 15, 1994

SAMPLE DEPTH (Ft): 5-7 SAMPLE TYPE: SOIL

ANALYSIS DATE: JULY 15, 1994

ANALYSIS TIME: 1039 GC TRACE#: 471

Concentration µg/L Qualifier
TRANS 1,2 DCE 34 U
BENZENE 4 U
CIS 1,2 DCE 23 U
TCE 4 U
PCE 4.7 U
TOLUENE 3.7 U
CHLORO/ETHYLBENZENE 8.2 U
p-XYLENE 6.8 U

SAMPLE ID: BC-D-B1-1012* SAMPLE DATE: JULY 15, 1994

o-XYLENE 5.6

SAMPLE DEPTH (Ft): 10-12 SAMPLE TYPE: SOIL

ANALYSIS DATE: NA NO RECOVERY

ANALYSIS TIME: NA GC TRACE#: NA

SAMPLE ANALYSES TRACES 369-500	
SAMPLE ID: BC-D-B1-1517	
SAMPLE DATE: JULY 15, 1994	
SAMPLE DEPTH (Ft): 15-17 SAMPLE TYPE: SOIL	
ANALYSIS DATE: JULY 15, 1994	
ANALYSIS TIME: 1130	
GC TRACE#: 475	
201100111121111111111111111111111111111	Qualifier U
110410 1,2 002 04	U
	Ü
TCE 4	Ŭ
PCE 4.7	U
TOLUENE 3.7	U
CHLORO/ETHYLBENZENE 8.2	U
p-XYLENE 6.8	U
o-XYLENE 5.6	J
SAMPLE ID: BC-D-B1-2022	
SAMPLE DATE: JULY 15, 1994	
SAMPLE DEPTH (Ft): 20-22	
SAMPLE TYPE: SOIL	
ANALYSIS DATE: JULY 15, 1994 ANALYSIS TIME: 1145	
GC TRACE#: 476	
Concentration μg/L	Qualifier
TRANS 1,2 DCE 34	U ·· U
BENZENE 4 CIS 1,2 DCE 23	Ü
TCE 4	Ŭ
PCE 4.7	U
TOLUENE 3.7	U
CHLORO/ETHYLBENZENE 8.2	U U
p-XYLENE 6.8 o-XYLENE 5.6	U
0-XTLEINE 5.0	•
SAMPLE ID: BC-D-B1-2527	
SAMPLE DATE: JULY 15, 1994	
SAMPLE DEPTH (Ft): 25-27 SAMPLE TYPE: SOIL	
ANALYSIS DATE: JULY 15, 1994	
ANALYSIS TIME: 1200	
GC TRACE#: 477	0 110
Concentration µg/L	Qualifier U
TRANS 1,2 DCE 34 BENZENE 4	U
CIS 1,2 DCE 23	Ŭ
TCE 4	U
PCE 4.7	U
TOLUENE 3.7	U

SAMPLE ID: BC-D-B2-0002

p-XYLENE 6.8 o-XYLENE 5.6

CHLORO/ETHYLBENZENE 8.2

U

U

U

```
IPLE ANALYSES TRACES 369-500
              SAMPLE DATE: JULY 15, 1994
         SAMPLE DEPTH (Ft): 0-2
              SAMPLE TYPE: SOIL
             ANALYSIS DATE: JULY 15, 1994
             ANALYSIS TIME: 1305
                 GC TRACE#: 481
                                               Qualifier
                             Concentration µg/L
              TRANS 1,2 DCE 34
                                               U
                                               U
                   BENZENE 4
                                               U
                 CIS 1,2 DCE 23
                        TCE 4
                                               U
                        PCE 4.7
                                               U
                   TOLUENE 3.7
     CHLORO/ETHYLBENZENE 8.2
                                               U
                   p-XYLENE 6.8
                   o-XYLENE 5.6
                  SAMPLE ID: BC-D-B2-0507
               SAMPLE DATE: JULY 15, 1994
          SAMPLE DEPTH (Ft): 5-7
               SAMPLE TYPE: SOIL
             ANALYSIS DATE: JULY 15, 1994
              ANALYSIS TIME: 1250
                 GC TRACE#: 480
                             Concentration µg/L Qualifier
               TRANS 1,2 DCE 34
                                                U
                                                U
                    BENZENE 4
                                                U
                  CIS 1,2 DCE 23
                                                U
                         TCE 4
                                                U
                         PCE 4.7
                                                U
                    TOLUENE 3.7
                                                U
     CHLORO/ETHYLBENZENE 8.2
                                                U
                    p-XYLENE 6.8
                    o-XYLENE 5.6
                  SAMPLE ID: BC-C-B3-0002
               SAMPLE DATE: JULY 15, 1994
           SAMPLE DEPTH (Ft): 0-2
                SAMPLE TYPE: SOIL (Second analysis of sample
              ANALYSIS DATE: JULY 15, 1994
              ANALYSIS TIME: 1517
                  GC TRACE#: 484
                                                Qualifier
                              Concentration µg/L
                                                U
               TRANS 1,2 DCE 34
                    BENZENE 4
                                                 U
                                                 U
                   CIS 1,2 DCE 23
                                                 U
                          TCE 4
                                                 U
                         PCE 4.7
                    TOLUENE 3.7
      CHLORO/ETHYLBENZENE 8.2
                                                 U
                    p-XYLENE 6.8
                                                 U
                    o-XYLENE 5.6
```

SAMPLE ID: BC-C-B3-0507 SAMPLE DATE: JULY 15, 1994

SAMPLE ANALYSES TRACES 369-500 SAMPLE DEPTH (Ft): 5-7 SAMPLE TYPE: SOIL (Second analysis of sample ANALYSIS DATE: JULY 15, 1994 ANALYSIS TIME: 1532 GC TRACE#: 485 Concentration µg/L Qualifier **TRANS 1,2 DCE 34** U BENZENE 4 U CIS 1,2 DCE 23 U TCE 4 U **PCE 4.7** U TOLUENE 3.7 U CHLORO/ETHYLBENZENE 8.2 U p-XYLENE 6.8 U o-XYLENE 5.6 SAMPLE ID: BC-C-B5-0507 SAMPLE DATE: JULY 15, 1994 SAMPLE DEPTH (Ft): 5-7 SAMPLE TYPE: SOIL ANALYSIS DATE: JULY 15, 1994 ANALYSIS TIME: 1609 GC TRACE#: 486 Qualifier Concentration µg/L U **TRANS 1,2 DCE 34** U BENZENE 4 U CIS 1,2 DCE 23 TCE 4 **PCE 4.7 TOLUENE 3.7** CHLORO/ETHYLBENZENE 8.2 p-XYLENE 6.8 o-XYLENE 5.6 SAMPLE ID: BC-C-B5-1012 SAMPLE DATE: JULY 15, 1994 SAMPLE DEPTH (Ft): 10-12 SAMPLE TYPE: SOIL ANALYSIS DATE: JULY 15, 1994 ANALYSIS TIME: 1629 GC TRACE#: 487 Qualifier Concentration µg/L U **TRANS 1,2 DCE 34** U BENZENE 4 U CIS 1,2 DCE 23 U TCE 4 **PCE 4.7** TOLUENE 3.7 CHLORO/ETHYLBENZENE 8.2 p-XYLENE 6.8 o-XYLENE 5.6 SAMPLE ID: BC-C-B6-0507 SAMPLE DATE: JULY 15, 1994

SAMPLE DEPTH (Ft): 5-7

24

```
MPLE ANALYSES TRACES 369-500
              SAMPLE TYPE: SOIL
            ANALYSIS DATE: JULY 15, 1994
             ANALYSIS TIME: 1640
                GC TRACE#: 488
                            Concentration µg/L Qualifier
              TRANS 1,2 DCE 34
                                              U
                   BENZENE 4
                 CIS 1,2 DCE 23
                        TCE 4
                                              U
                        PCE 4.7
                                              U
                                              U
                   TOLUENE 3.7
                                              U
     CHLORO/ETHYLBENZENE 8.2
                                              U
                   p-XYLENE 6.8
                   o-XYLENE 5.6
                  SAMPLE ID: BC-C-B6-1012
               SAMPLE DATE: JULY 15, 1994
          SAMPLE DEPTH (Ft): 5-7
               SAMPLE TYPE: SOIL
             ANALYSIS DATE: JULY 15, 1994
              ANALYSIS TIME: 1700
                 GC TRACE#: 489
                             Concentration µg/L
                                               Qualifier
              TRANS 1,2 DCE 34
                                               U
                    BENZENE 4
                                               U
                  CIS 1,2 DCE 23
                                               U
                         TCE 4
                         PCE 4.7
                    TOLUENE 3.7
      CHLORO/ETHYLBENZENE 8.2
                    p-XYLENE 6.8
                    o-XYLENE 5.6
                  SAMPLE ID: BC-C-B7-0507
               SAMPLE DATE: JULY 15, 1994
           SAMPLE DEPTH (Ft): 5-7
                SAMPLE TYPE: SOIL
              ANALYSIS DATE: JULY 15, 1994
              ANALYSIS TIME: 1714
                  GC TRACE#: 490
                                                Qualifier
                              Concentration µg/L
               TRANS 1,2 DCE 34
                                                U
                                                U
                     BENZENE 4
                   CIS 1,2 DCE 23
                                                U
                         TCE 4
                          PCE 4.7
                     TOLUENE 3.7
      CHLORO/ETHYLBENZENE 8.2
                                                U
                     p-XYLENE 6.8
                     o-XYLENE 5.6
                   SAMPLE ID: BC-C-W-5
                SAMPLE DATE: JULY 15, 1994
           SAMPLE DEPTH (Ft): 12
```

SAMPLE TYPÉ: H2O

SAMPLE ANALYSES TRACES 369-500

ANALYSIS DATE: JULY 15, 1994

ANALYSIS TIME: 1811 GC TRACE#: 491

Concentration µg/L Qualifier TRANS 1,2 DCE 34

BENZENE 4 U CIS 1,2 DCE 23 U

TCE 4
PCE 4.7

TOLUENE 3.7

CHLORO/ETHYLBENZENE 8.2 U
p-XYLENE 6.8 U

o-XYLENE 5.6

SAMPLE ID: BC-C-W-6 SAMPLE DATE: JULY 15, 1994

SAMPLE DEPTH (Ft): 12 SAMPLE TYPE: H2O

ANALYSIS DATE: JULY 15, 1994

ANALYSIS TIME: 1826 GC TRACE#: 492

Concentration µg/L Qualifier

TRANS 1,2 DCE 34 U
BENZENE 4 U

CIS 1,2 DCE 23 U

TCE 4 U PCE 4.7 U

TOLUENE 3.7 U

CHI OPO/ETHYI BENZENE 8.2 U

CHLORO/ETHYLBENZENE 8.2 U

p-XYLENE 6.8 U

O XYLENE 5.6

o-XYLENE 5.6

SAMPLE ID: BC-C-W-7 SAMPLE DATE: JULY 15, 1994

SAMPLE DEPTH (Ft): 12 SAMPLE TYPE: H2O

ANALYSIS DATE: JULY 15, 1994

ANALYSIS TIME: 1846

GC TRACE#: 493
Concentration µg/L Qualifier

TRANS 1,2 DCE 34

BENZENE 4 U CIS 1,2 DCE 23 U

TCE 4 U PCE 4.7 U

TOLUENE 3.7

CHLORO/ETHYLBENZENE 8.2

p-XYLENE 6.8 U
o-XYLENE 5.6 U

DATA QUALIFIERS (HAZWRAP)

_	•	•		
l m	м.	ica	+0	٠.

Qualifier	Definition	Uncertain Identity?	Uncertain Concentration?					
Inorganic and Organic Data								
Ŭ	The material was analyzed for, but not detected. The associated numerical value is the MDL.	Yes	Yes					
1	The associated numerical value is an estimated quantity	No	Yes					
R ·	Quality control indicates that the data are unusable (compound may or may not be present). Re-sampling and/or re-analysis is necessary for verification.	Yes	Yes					
Z	No analytical results (inorganic data only).	NA	NA					
Q	No analytical result (organic data only).	NA	NA					
N	Presumptive evidence of presence of material (tentative identification).	Yes	Yes					
E	Analytical result exceeded calibration	Yes	Yes					

APPENDIX B: FIELD CHANGE REQUESTS

ر الم	5
Field change No.	
Page	f <u> </u>

Figure 2-11. Field Change Request

	oth EG MIANG			Project Numbe	
Description: Re <u>See attach</u>		iring an	d labore	fory sam	mple numbers
Minor change X	Jack Brieg	Major change		Major	project impact
Planned s	Preliminar	1 soil	es resumple t	ults do n	ot justify sed in workplan
Recommended disp	position: approve as re	come	nded		
	and completed work:	timpa	ct		
Accepted 🔀	Rejected	Signature	Project QAV	<u> </u>	Date <u>ししてもしゅ</u> 4 Date
(Required prior to in	nplemenation of major of	changes)			
Accepted	Rejected	Signature			_ Date
Accepted	Rejected	Signature	Program QA	•	_ Date
(Required prior to im	plementation of chang	es with major pr	oject impact)		
Approved	Rejected	Signature	CLIENT Pro	ject Manager	_ Date
Final Disposition					•
Signature —	•		Date		

(b) all borings at AOCs B, C and F should be sampled according to the work plan

(c). Boring numbers should be reduced as follows:

AOCA: From 3 (proposed) to 2

AOCB: no change

AOC C: no change at this time

AOCD: from 3 (proposed) to 2

AOCE: From 3 (proposed) to 2

AOC F: no change

(d) immuno assay screening for PAHs on AOC C soil borings should be initiated.

Tax at National Brand

- moreover by the	
	The Earth Technology
	Corporation

Field change	No.	6	
Page		1	

Figure 2-11. Field Change Request

Project name	110th FG, 1 em Fmal PA	MIANG Battle SI Work Pla	Creft Number Date 6/2	948901-05
Description: C	nange res	JASTM TO	or ASTM T	type II weter
Minor change 🔀	Jack Br	Major change	Major	project impact
Reason for change:	heated for	Discumions nis is an ac	with HAZ ceptable a	WRAP person Iternative
Recommended disp	oosition:	we as recom	mended	
Impact on present	and completed work	« ·		
Accepted Accepted	Rejected	Signature	ect Manager	Date <u>6 29 94</u> Date
(Required prior to in Accepted Accepted	Rejected Rejected	Signature Prog	gram Manager am QA/QC Officer	— Date
(Required prior to in	Rejected	nges with major project imp SignatureCLIEN	act)	— Date ———
		Date	4-00-00-00-00-00-00-00-00-00-00-00-00-00	

		7
Field char	ige No	
Page	01 -	

Figure 2-11. Field Change Request

Project name 10 MFG Applicable Document Fine	MIANG Rett	le Crek Mproject Numbe wk Plan Date 6/2	9 (94
Description: Change 50: Jeschel on a	I sample to	randling proce	dure as
Minor change \(\) \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	k Briegel	Major	project impact
Reason for change:	t proposed	process will re	ot allow th
ms, te geo loges t	to accurate	ly describe the	e sorks
Recommended disposition:	inve as pelo	mmended	
Impact on present and complete	ed work: .		
Accepted Rejected Accepted Rejected	Signature	nioject Manager	- Date 6/29/94
(Required prior to implemenation	of major changes)		
Accepted Rejected	Signature	Program Manager	- Date
Accepted Rejected	Signature	Program QA/QC Officer	_ Date
(Required prior to implementation	of changes with major pr	oject impact)	
Approved Rejected	Signature	CLIENT Project Manager	- Date
Final Disposition			
Signature —		Date	•

Form3E-1 6/30/89 Gl29/94 Field Change 7 Soil handling procedures

- (a) The Geoprobe dowes piston-type core barrelus lined with stainless sted! sleeves. The capacity of the barrels is 320 ml (~ 11 035). If full recovery is obtained the laboratory will require 3 liners (at a : minimum). and the held lab will require ± 5 grams of soil. If the liners are all capped and delivered to the labs the onsite geologist will not have an opportunity to describe the core.
 - (b) Its recommended to cap only one of the liners (for voc analysis). The remaining liners will be emptied, to logged and placed in 4-oz sort jars for shipment to the field and fixed base (svoc and metals) analysis.

APPENDIX C: INVESTIGATION-DERIVED WASTE RESULTS

August 23, 1994

Captain Fred Vollmerhausen Environmental Coordinator 110th Fighter Group, Michigan Air National Guard 3545 Mustang Avenue Battle Creek, Michigan 49015-5509

Dear Captain Vollmerhausen:

Field sampling activities at the 110th Fighter Group were ongoing from the middle of May to the middle of July, 1994. Approximately 400 to 450 gallons of wastewater generated by purging monitoring wells and decontaminating sampling equipment was containerized in polyethylene tanks and left on site. A composite sample of this wastewater was collected and analyzed for priority pollutant list volatile and semivolatile organic compounds, pesticides, PCBs, and metals (EPA methods 608, 624, and 625) in the WWES Laboratory, Grand Rapids, Michigan. The final report has been mailed to our office and, once received, will be provided to you in a more official version.

Telephone

Facsimile

615.483.9404

615.481.383-

Please contact me if you have any questions or comments regarding these matters.

Sincerely,

EARTH TECH

Government Services Division

Jack S. Briegel Project Manager

cc: Mr. Dan Wyatt, ANGRC (1 Copy)

Mr. Tom Cady, HAZWRAP (1 Copy)

The copy K-20 (HAZWRAD)

5555 Glenwood Hills Parkway, SE, Post Office Box 8-4, Grand Rapids, Michigan 19588-08-4

file: K-20 HALWRAP

10W (Investigation Derived

waste)

August 22, 1994

EARTH TECH - OAK RIDGE Attn: Jack Briegel EARTH TECH 683 EMORY VALLEY ROAD OAK RIDGE, TN 37830

RE: 110th Fighter Group MICH A.N.G.

Telephone

616.942.9600

Facsimile

616.942.6499

Dear Mr. Jack Briegel:

Enclosed are two copies of your laboratory report and one copy of your invoice for project number 32429. This submittal was completely received on July 28, 1994. All analyses have been validated and comply with our Quality Control program statistics unless otherwise noted.

If you have any questions or require further information, please do not hesitate to contact me.

Sincerely,

Mryay K. Reed
Project Chemist

Enclosure

ANALYTICAL REPORT

EARTH TECH - OAK RIDGE

Proj: 110th Fighter Group

MICH A.N.G.

Subm: 27-JULY-1994 Sampling

Submittal Number: 32429-

Location:

CCS Number

CCS Manager:

.00

Jack Briegel

1.

ug/1

ug/l

Purge Well

Reporting Units

Limit

1.0

0.2

50

10

1.0

0.2

10

2.0

0.2

20

2.0

2.0

10

Lab Sample No:

93376

Project Specific Fraction Enclosed

USEPA 624

Project Specific Fraction * Enclosed

USEPA 625

Organochlorine Pesticides * Enclosed

USEPA METHOD 608

Organochlorine Pesticides * Enclosed

USEPA Method 608

The child out	
Arsenic, Total	8.6
Cadmium, Total	2.2
Chromium, Total	<50
Copper, Total	42
Lead, Total	<1.0
Mercury, Total	<0.2
Nickel, Total	570
Selenium, Total	<2.0
Silver, Total	<0.2
Zinc, Total	210
Antimony, Total	<2.0
Thallium, Total	<2.0
Beryllium, Total	<10

Sampled by: M.C. Date Sampled: 07/27/94 Time Sampled: 11:00 Date Received: 07/27/94 Time Received: 15:40

* See attached Statement of Data Qualifications.

PROJECT SPECIFIC FRACTION USEPA 624

EARTH TECH - OAK RIDGE Proj: 110th Fighter Group

MICH A.N.G.

Subm: 27-JULY-1994 Sampling Purge Well

Sample:

32429-Submittal Number

Date Sampled: 07/27/94 Time: 11:00 Date Received: 07/27/94 15:40 Time:

Analysis Date: 08/03/94

Lab Sample No: 93376

Parameter	Result ug/l	. Parameter	Result ug/l
1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,2-Dichloroethylene- (total) 1,2-Dichloroethane 1,2-Dichloropropane 2-Chloroethyl Vinyl Ether Benzene Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chloroethane Chloroethane	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	Chloroform Chloromethane cis-1,3-Dichloropropene Dibromochloromethane Ethylbenzene Methylene Chloride Tetrachloroethene Toluene trans-1,3-Dichloropropene Vinyl Chloride Xylene, Total Trichloroethene Acrolein Acrylonitrile Dichlorodifluoromethane Trichlorofluoromethane	<1.0 <1.0 <1.0 <1.0 1.1 <1.0 <1.0 <1.0 <

Time:

15:

PROJECT SPECIFIC FRACTION USEPA 625

EARTH TECH - OAK RIDGE Submittal Number

Proj: 110th Fighter Group Date Sampled: 07/27/94 Time: 11:

MICH A.N.G. Date Received: 07/27/94

Subm: 27-JULY-1994 Sampling Analysis Date: 08/04/94 Sample: Purge Well Lab Sample No: 93376

Parameter	Result ug/l	Parameter	Result ug/l
1,2,4-Trichlorobenzene	<5.0	Di-n-Butylphthalate	<5.0
2,4,5-Trichlorophenol	<5.0	Di-n-Octylphthalate	<5.0
2,4,6-Trichlorophenol	<5.0	Dibenzo (a,h) Anthracene	<5.0
2,4-Dichlorophenol	<5.0	Dimethylphthalate	<5.0
2,4-Dimethylphenol	<5.0	Diethylphthalate	10
2,4-Dinitrophenol	<20	Fluoranthene	<5.0
2,4-Dinitrotoluene	<5.0	Fluorene	<5.0
2,6-Dinitrotoluene	<5.0	Hexachlorobenzene	<5.0
2-Chloronaphthalene	<5.0	Hexachlorobutadiene	<5.0
2-Chlorophenol	<5.0	Hexachlorocyclopentadiene	<5.0
2-Methylnaphthalene	<5.0	Hexachloroethane	<5.0
2-Methylphenol	<5.0	Isophorone	<5.0
2-Nitrophenol	<5.0	Indeno (1,2,3-cd) Pyrene	<5.0
4-Bromophenyl Phenylether	<5.0	N-Nitrosodi-n-Propylamine	<5.0
4,6-Dinitro-	<20	N-Nitroso-di-Phenylamine	6.0
2-Methylphenol			
4-Chloro-3-Methylphenol	<5.0	Naphthalene	<5.0
4-Chlorophenylphenyl-	<5.0	Pentachlorophenol	< 50
Ether			
4-Methylphenol	<5.0	Phenanthrene	<5.0
4-Nitrophenol	<20	Phenol	<5.0
Acenaphthene	<5.0	Pyrene	<5.0
Acenaphthylene	<5.0	1,2-Dichlorobenzene	< 5.0
Anthracene	<5.0	1,3-Dichlorobenzene	<5.0
Benzo (a) Anthracene	<5.0	1,4-Dichlorobenzene	<5.0
Benzo (a) Pyrene	<5.0	3,3'-Dichlorobenzidine	<20
Benzo (b&k) Fluoranthene	<5.0	4-Chloroaniline	<20
Benzo (g,h,i,) Perylene	<5.0	Dibenzofuran	<5.0
Benzoic Acid	<50	2-Nitroaniline	<20
Benzyl Alcohol	<50	3-Nitroaniline	<20
Bis (2-Chloroisopropyl) - Ether	<5.0	4-Nitroaniline	<20
Bis (2-Chloroethyl) Ether	<5.0	Nitrobenzene	<5.0
Bis (2-ethylhexyl)-	12	Benzidine	<50
Phthalate			

PROJECT SPECIFIC FRACTION USEPA 625

EARTH TECH - OAK RIDGE

Proj: 110th Fighter Group

MICH A.N.G.

Subm: 27-JULY-1994 Sampling Sample: Purge Well

32429- 1 Submittal Number Date Sampled: 07/27/94 Time: 11:00

15:40 Date Received: 07/27/94 Time:

Analysis Date: 08/04/94 Lab Sample No: 93376

Parameter	Result ug/l	Parameter	Result ug/l
Bis (2-Chloroethoxy)-	<5.0	1,2-Diphenylhydrazine	<5.0 <10
Methane Butyl Benzyl Phthalate Chrysene	<5.0 <5.0	N-Nitroso-di-methylamine	120

ORGANOCHLORINE PESTICIDES USEPA METHOD 608

EARTH TECH - OAK RIDGE

Proj: 110th Fighter Group

MICH A.N.G.

Subm: 27-JULY-1994 Sampling

Sample:

Purge Well

Submittal Number 32429- 1

Date Sampled: 07/27/94 Time: 11:00

Date Received: 07/27/94 Time: 15:40

Analysis Date: 08/18/94 Lab Sample No: 93376

Parameter	Result ug/l	Parameter	Result ug/l
Aldrin Alpha-BHC Beta-BHC Delta-BHC Lindane 4,4'-DDD	<1.0	Dieldrin	<1.0
	<1.0	Endosulfan I	<1.0
	<1.0	Endosulfan II	<1.0
	<1.0	Endosulfan Sulfate	<1.0
	<1.0	Endrin	<1.0
	<1.0	Endrin Aldehyde	<1.0
4,4'-DDE	<1.0	Heptachlor	<1.0
4,4'-DDT	<1.0	Heptachlor Epoxide	<1.0

ORGANOCHLORINE PESTICIDES USEPA METHOD 608

EARTH TECH - OAK RIDGE

Proj: 110th Fighter Group

MICH A.N.G.

Subm: 27-JULY-1994 Sampling

Sample:

Purge Well

32429 - 1 Submittal Number

Date Sampled: 07/27/94 Time: 15:40

Date Received: 07/27/94 Time:

Analysis Date: 08/02/94

Lab Sample No: 93376

Parameter	Result ug/l	Parameter	Result ug/l
Chlordane (technical) Toxaphene PCB-1016 PCB-1221 PCB-1232	<1.0 <1.0 <1.0 <1.0 <1.0	PCB-1242 PCB-1248 PCB-1254 PCB-1260	<1.0 <1.0 <1.0 <1.0

Page 6 - End of Analytical Report

METHODS PAGE

rameter: Project Specific Fraction

USEPA 624

Method:

Volatiles Purge & Trap-GC/MS

Reference Citation: USEPA-624

Application:WW nalyst:

Phuong K. Tran

Date Analyzed: 08/03/94

93376

Purge Well

arameter:

Project Specific Fraction

USEPA 625

Method:

Semi-Volatiles GC/MS

Reference Citation: USEPA-625

Application:WW Analyst: Scott Borgeson

Date Analyzed:

Date Analyzed:

08/04/94

93376

Purge Well

Parameter: Antimony, Total

Method: Atomic Absorption-Furnace, Antimony

Reference Citation: USEPA-204.2

Application:WW

Analyst: Diane L. VanMale

08/01/94

93376

Purge Well

Parameter: Arsenic, Total

Method:

Atomic Absorption-Furnace, Arsenic

Application: WW

Reference Citation: USEPA-206.2

Date Analyzed: 08/02/94

Analyst:

93376

Purge Well

Parameter: Beryllium, Total

Method:

Atomic Emission-ICP

Rebecca A. McColgan

Application: WW

Analyst: J.T. Whitmore

Reference Citation: EPA-200.7/6010 Date Analyzed: 08/06/94

93376

Purge Well

Parameter: Cadmium, Total

93376

Method:

Atomic Absorption-Furnace, Cadmium

Application: WW

Reference Citation: USEPA-213.2

Analyst:

Rebecca A. McColgan

Date Analyzed: 08/01/94

Purge Well

1

METHODS PAGE

Chromium, Total Parameter:

Atomic Emission-ICP Method:

Application: WW

J.T. Whitmore

Reference Citation: EPA-200.7/6010

08/06/94 Date Analyzed:

93376

Purge Well

Parameter:

Copper, Total

Method:

Analyst:

Analyst:

Atomic Emission-ICP

Application: WW

J.T. Whitmore

Reference Citation: EPA-200.7/6010

Date Analyzed:

08/06/94

Purge Well 93376

Parameter:

Semi-Volatile Extraction

Method:

Separatory Funnel Liquid-Liquid Extract.

Application: WW

Reference Citation: USEPA-3510

Analyst:

Scott S. Hetrick

Date Analyzed:

08/02/94

93376

Purge Well

Parameter:

PCB Pesticide Extraction

Method:

Separatory Funnel Liquid-Liquid Extract.

Application: WW

Reference Citation: USEPA-3510

Analyst:

Kari L. Zeller

07/31/94 Date Analyzed:

93376

Purge Well

Parameter:

Lead, Total

Method:

Atomic Absorption-Furnace, Lead

Application: WW

Rebecca A. McColgan

Reference Citation: USEPA-239.2

Analyst:

08/02/94 Date Analyzed:

93376

Purge Well

Parameter:

Mercury, Total

Method:

Manual Cold Vapor, Mercury

Application: WW

Analyst:

David W. Johnson

Reference Citation: USEPA-245.1

Date Analyzed:

08/01/94

93376

Purge Well

METHODS PAGE

Parameter: Digestion Method-3005 Furnace-AA (Wastewater)

Method: Acid Digestion for Furnace-AA

Application: WW Reference Citation: USEPA-3005 Analyst: Linda A. Harrison Date Analyzed: 07/29/94

93376 Purge Well

Parameter: Metals Pretreatment- Arsenic and/or Selenium

Method: Digestion for Furnace As/Se

Application: WW Reference Citation: USEPA Methods

Analyst: Linda A. Harrison Date Analyzed: 07/29/94

93376 Purge Well

Parameter: Digestion Mtd. 245.1/7471 Mercury-Cold Vapor Method

Method: Digestion for Manual Cold-Vapor Mercury

Application: WW Reference Citation: USEPA-245.1

Analyst: Colette A. Clark Date Analyzed: 08/01/94

93376 Purge Well

Parameter: Digestion Method-3010 Flame-AA/ICP (Wastewater)

Method: Acid Digestion for Flame AA-ICP

Application: WW Reference Citation: USEPA-3010

Analyst: Linda A. Harrison Date Analyzed: 07/29/94

93376 Purge Well

Parameter: Digestion Method-3020 Furnace-AA (Wastewater)

Method: Acid Digestion for Furnace-AA

Application: WW Reference Citation: USEPA-3020

Analyst: Linda A. Harrison Date Analyzed: 07/29/94

93376 Purge Well

Parameter: Nickel, Total

Method: Atomic Emission-ICP

Application: WW Reference Citation: EPA-200.7/6010

Analyst: J.T. Whitmore Date Analyzed: 08/06/94

•

93376 Purge Well

METHODS PAGE

Parameter: Organochlorine Pesticides

USEPA METHOD 608

Method:

Organochlorine Pesticides & Pcb's

Application: WW

Analyst:

Don J. Ghysels

Reference Citation: USEPA-608 Date Analyzed: 08/18/94

93376

Purge Well

Parameter:

Organochlorine Pesticides

USEPA Method 608

Method:

Organochlorine Pesticides & Pcb's

Application: WW

Reference Citation: USEPA-608

Analyst:

Karen Kennedy Brooks

Date Analyzed:

08/02/94

93376

Purge Well

Parameter:

Selenium, Total

Method:

Atomic Absorption-Furnace, Selenium

Application: WW

Diane L. VanMale

Reference Citation: USEPA-270.2

Analyst:

Date Analyzed:

08/02/94

93376

Silver, Total

Method:

Atomic Absorption-Furnace, Silver

Purge Well

Application: WW

Reference Citation: USEPA-272.2

Analyst:

Parameter:

Rebecca A. McColgan

Date Analyzed:

07/29/94

93376

Purge Well

Parameter:

Thallium, Total

Method:

Atomic Absorption-Furnace, Thallium

Reference Citation: USEPA-279.2

Application: WW Analyst:

Diane L. VanMale

Date Analyzed:

08/03/94

93376

Purge Well

Parameter:

Zinc, Total

Method:

Atomic Emission-ICP

Application: WW

Diane L. VanMale

Reference Citation: EPA-200.7/6010

Date Analyzed:

07/29/94

Analyst:

93376

Purge Well

Page

End of Methods Page

STATEMENT OF DATA QUALIFICATIONS

Analysis: Organochlorine Pesticides

Organochlorine Pesticides & Pcb's

WW USEPA-608

Qualification:

Surrogate results are unavailable due to positive results in the sample extract resulting in a dilution of greater than 1:5.

Sample(s) Qualified: 93376 Purge Well

Page 1

Note: This document is included as a part of the analytical report for the above referenced project and submittal, and should be retained as a permanent record thereof.

STATEMENT OF DATA QUALIFICATIONS

Analysis: Organochlorine Pesticides

Organochlorine Pesticides & Pcb's

WW USEPA-608

Qualification:

Surrogate spike result(s) for this sample and analysis had a recovery of > 10%, but are below the lower control limit for this method and matrix. All positive results must be considered estimated. All < or non-dectectable results must be considered approximate.

Sample(s) Qualified:

93376

Purge Well

Page 2

Note: This document is included as a part of the analytical report for the above referenced project and submittal, and should be retained as a permanent record thereof.

APPENDIX D: FIELD FORMS

Borehole Log

			V	N.K.	KE	ucaca 1	resiona	دلس کارد	2 PORT			er: 94-8901-05 Sheet 1 of 7	
Boret	nole	Locat	ion: ,	ARE	A 0	FCON	CERN	<u>"A"</u>		Borehole No. BCA - B1	Borehole No. BCA-BI		
Orillin	ig Aç	gency	: G	EO-	M	ARINE				Driller JOE GREWRY	<i>\</i>		
Drillin	ıg Ed	quipm	ent:	GE	OB	ROBE	8M			Date Started: \$6/30/94	Total Depth (f	eet): 27	
Drillin	ig M	letho	d: L	ARG	EBO	RE SA	HAPLE	2_		Date Finished: \$6/30/94	Depth to Bedrock	c (feet): NA	
Drillin	ig Fl	uid	NA							Number of 5 Samples:	Depth to Water (o feet): NA	
•							E BACK		Æρ	Borehole Diameter (in): 1 1/16	Claumeia		
~111	-7 1 -	OUE	- MJ	هد ر) 60	N COM	PLETIO	7		Logged by: S. SMITH			
		S	ampi	8		Field A	nalysis	L	OG.	Checked by:	Date:		
(1eel)	Number	Interval	Blow Count	Весо иелу	Time	FID (ppm) S/B*	PID (ρρπ) (§/Β'	Graphic	USCS or Rock Type	Lithologic Descriptio	ın	Remarks	
0 = - - - 5 =	BCA- 61 -000 !	1 - 0 0 - 1 - 0	ΝA	100%	0800 - 0813 Fred	AV	ΑA		Å	O'-5', DRIVE ONL SURFACE SOIL! SAND! GRAINED, DK BROWN W/ AND FINES; FAINT HYDRO THACE ODOR; SOIL APPEARS ST	GRAVEL CALSON	GRASSE SURFACE	
ס 	RA-81-6567	φε'-01'	NA	251	0360	₹	BPL		\$	SAND, FINE GRAINED, N MODERATE YELLOWISH AND DARK YELLOWISH B LOOSE, SHEHRY FROIST	Brown	POSSIBLE HYDROCA ODOR; SAMPLE SELECTED FOR LABORATORY ADDITION BY, PP METALS	
- - - 10					7212					-7'-10', DRNE ON			
	RA-81-1612	14-12	AZ	757	204 13/12	0 ₫	J08		SP	SAND, FINE GRAINED, MOTT MODERATE YELLOWISH B AND DARK YELLOWISH B LOOSE, STIGHT MOISE	ROWN.	_	
12-										12'-15', DRIVE ONL	-4		
- - - -	BCA-B1-1517	,21-,51	A Z	787	10+75/10	₫ 2	BPL		45	SAND, FINE GRAINED, M MODERATE YELLOWISH TO AND DARK YELLOWISH LOOSE, DRITTED MOIS	BROWN		
17- - - -	-							-		- 1-20, DISINE ONLY			
2φ- - -	4-R1-2622	24-22	42	909	1046	₫ 2	BD-		52	SANDIFINE GRANED, HOT MODERATE YELLOWSH T AND DARK YELLOWSH LOOSE DRYPSTIZ	كعصاما		

Borehole Log

W.K. KELLOGG REGIONAL AIRPORT Borehole Location: AREA OF CONCERN "A"								"A"	Borehole No. BCA-B1 Sheet 2-of 2			
illing Agency: GEO-MARINE									Driller. JOE GREGORY			
Drilling Equipment: GEOPROBE &M									Date Started: 66/30/94-			
Orilling Method: LARGEBORE SAMPLER									Date Finished: 46/30/94	Depth to Bedrock (feet): NA		
Drilling Fluid NA									Number of Samples:	Depth to Water (feet): NA		
Completion Information: BORE BACKFILLED WITH HOLE PLUG UFON COMPLETION								E0 W	Borehole Diameter (in):	Elevation and Datum: NA		
10U	E P				<i>د</i> د					Logged by: \leq . \leq \leftarrow \leftarrow \leftarrow Checked by:	Date:	
		Sa	ampl	8			nalysis	L,C	og	Cilected by:		
(1001)	Number	Interval	Blow Count	Зесочегу	Time	FID (ppm) S/B*	PID (ppm) SØ	Graphic	USCS or Rock Type	Lithologic Description	on	Remarks
-2 -	Z	7	В	В	1					ONLY	-1VE _	23.5'-25'
.s -	B.A-B1-2577	, 22-, 52	42	80%	1127	<i>₹</i> z	BPL	S.P		SAND, FINE GRANED, HO MODERATE YELLOWISH AND DARK YELLOWISH LOOSE, DRY	Beone Beone	SU. PP METALS
27	1									-TO = 27'		HONSELL BOCK

Borehole Log

Project Name: 110TH FG, MIANG; BATTLE Borehole Location: AREA OF CONCERN "A"									Borehole No. BCA - B2		Sheet 1 of 21/3	
	Orilling Agency: GEO-MARINE								Driller JOE GREGORY			
Drillin	Drilling Equipment: GEOBEOBE BM									Date Started: 7/12/94 Total Depth (feet): 32 1/2		
Drillin	Drilling Method: LARGEBORE SAMPLER									Date Finished: 7/12/94 Depth to Bedrock (feet): NA		
Drilling Fluid NA									Number of Donth to 12-55		1/2-55	
Completion Information: BOREHOLE BACKFILLED WITH HOLEPIUG UPON COMPLETION									Borehole Diameter (in): 11/16	Elevation	K I A	
WI	TH	HOI	حعر	ەس	ن	DOM	COMPL	ETTO	J	Logged by: S. SHITH		
		Sá	ımpi	8		Field A	nalysis	LC	G	Checked by:	Date:	
Depth (feet)	Number	Interval	Blow Count	Весо	Time	FID (ppm) S/B*	PID (ppm)	Graphic	USCS or Rock Type	Lithologic Descriptio		Remarks
1 2 3 4 5 6 7 8 9	BCAB20002	00,-05	A N	208	0945	NA	ES.		SP	0'-0.5' GEASS, ROOTS, HIGH 0.5'-20' SAND, FINE GRAII HODERATE YELLOWISH BR LOOSE, MOIST	SEO	FOR LABORATORY
										_2'-5', DRIVE ONLY - - -	- - -	
	BCAR 20507	05'-01'	AN	25 L	1001	4 7	702		45	SAND, FINE GRAINED, MODERATE VELLOWIS BROWN, LOOSE, MOIS	н -	
										_7'-10', DEINE ONL	- - - - -	
10 -	804821012	10,-12,	47	75%	1015	NA A	ВР		G,	_SAND, FINE GRAINED _HODERATE YELLOW _BROWN, LOOSE, HOIS	usH .	
13 -										_12'-15', DRIVEON	ILY	- - - -

Key

			W	. K.	KEL	ڪڪھا۔	region Ucern	AL AI	RPORT	Borehole No. BCA-B2	S	heet 2 of 3
						ARINE				Driller JOE GREGOR	۲۲	
						OBE				Date Started: 7/12/94	Total Depth (fe	et): 32
								ER		Date Finished: 7/12/94	Depth to Bedrock	(feet): NA
rilling	. Ме	tnoa	· LA	rese	- PO	OKE 3	SAMPL		· 	Number of —7	Depth to Water (fe	20t
	g Flu		411				- Da - 1			Samples: Borehole Diameter (in): 1/16	Elevation	ν. Λ.
mp	ietioi	n Info	rmat	ion: '	2008 	JPON C	E BACK	ETIO	N 260	Diameter (iii).	and Datu	ım: N
					-	Fleid A			og	Logged by: S. SMITH Checked by:	Date:	
		Sa	mpl	3	\dashv		i					
(leet)	Number	Interval	Blow Count	Recovery	Time	FID (ppm) S/B*	PID (ppm) SB:	Graphic	USCS or Rock Type	Lithologic Description	on	Remarks
		 i			-					SAND, FINE GRAINS		
, <u> </u> -	BCAB721617	, 21-,	4Z	65%	131	4 T	BDL		SP	BROWN, LOOSE, HO		
	BCAB	15		,	9		(1)			7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	\\	
/. <u>_</u>							ļ			17'-20', DEIVE ON	- -	1
3 -		l I										
9 -	-									_	-	_
- - ه		ļ								(1) T T 1) E (2)	<u> </u>	
_	22022	,-22,	1		3		آ ا		ds	SAND, FINE GRAINS		
-1 - -	AB22		2	201	104	47	RS RS		h	BROWN, LOOSE, MO	ist]
-2 -	BAS	 `	-	-				 	 	_22'-25', DRIVE	ONLY	
. S.	7								815	-		-
2 A	-								51/L 48			
24	3								1			
25	士:	; ;	+	+	\top		1		2/2	SAND FINE GRAIN	6 0,	- SAMPLE SELECT
26	- j	75'-27'	4	00%	200	Z Z	BDL		6	MODERATE YELLO M BROWN, LOOSE, M	0155	AVALYSES; VOA SV, PP METALS
27	1	3 6			-					27'-30', DRIVE		
	=							-	ي ا	. 1		
28									\$ 10 m			+
29	4								4	<u> </u>		4

Project Na	ıme:	110)TH [FG	, MIAI	NG; ~	BAT	TLE (CREEK, MI Proje	ect Numbe	r:94-8901-05
Borehole L		٧	ساد.	KEU	1066 R	EGIONA	L AV	27025			Sheet 3 of 3
Drilling Ag	ency	: G	E0-	- M	ARINE	<u>.</u>			Driller. JOE GREGO	ey	
Drilling Eq	uipm	ent:	Œ	3F2	DB∈	84			Date Started: 7/12/94	Total Depth (fe	et): 32
Drilling M	etho	d: L	AR	GE.	BORE	52,50	PLE	2	Date Finished: 7/12/94	0	
Drilling Flu	uid	24							Number of 7	Depth to Water (fo	204
Completio	n Info	orma	tion:	BOI	ZEHOL	E.BF	ACKF PUET	TON	Borehole Diameter (in): 1/16	Elevation and Date	
									Logged by: S.SHITH		
	S	ampi	e		Field A	naiysis	LC	G	Checked by:	Date:	
Depth (feet) Number	Interval	Blow Count	Весо ивлу	Time	FID (ppm) S/B*	PID (ρρπ) (Δ/Β'	Graphlc	USCS or Rock Type	Lithologic Descriptio	n	Remarks
32									SAND, FINE GRAINED,	_	
2 E 1 1 1 1 1 1 1 1 1 1	30'-32'	NA A	308	123	4	BPL		4	BROWN, LOOSE, WET		
32 - 89 32 - 89	S	_	6	_	2	18			- REDOW' FORZE'MEL	_	
									_TOTAL DEPTH = 32'	-	SAMPLE RCABROCOL ORIGINALLY COLLECTED W/ HAND AUGER. DUE TO SHIPPING PROBLEMS, SAMPLES BCABROCOCZ AND BCABRIST WERE RESAMPLED ON 7/14/94 WITH THE GEOPROBE.

				1.14.	KE	1066	PEGION CONCE	AL A	1640ET	Borehole No. BCB-B1	5	Sheet 1 of 2
						1ARIN				Driller DE GREGO	RY	
						OBE				Date Started: 7/13/94		eet): 27
							AMPLE	ER		Date Finished: 7/13/94	Depth to Bedrock	(feet): NA
		ıid \								Number of Samples:	Depth to Water (f	eet): NA
omo	letio	n Info	rmat	ion:	Bot	REHOLE	346	KFILL	ED	Borehole Diameter (in): 11/6	Elevation and Dat	n JN
<i>5177</i>	(T	SEN	10 K	2 WE	ن ن	700	COMP	CETT		Logged by: S. SHITH		
\neg		Sa	mpi	B		Field A	nalysis	LC	G	Checked by:	Date:	
(1001)	Number	Interval	Blow Count	Recovery	Tlme	FID (ppm) S/B*	PID (ppm) © /B•	Graphic	USCS or Rock Type	Lithologic Descripti		Remarks
-		w'-62'	47	Box.	1400	₫ 2	BPL		6	O'-O, S'GRASS, ROOTS, HIS O. S'-ZO' SAND, FINE OF MODERATE YELLOWS LOOSE, MOIST		
2 - 3 - 4 - 5 -										_2'-5', DRIVE OUL		
- - 6 -	11111111111111111111111111111111111111	,10-,50	42	752	1418	4 2	BPL		85	_SAUD, FIVE GRAIN	ماديد	
7 - 8 - 9 -										-		-
11	1111111	7.101.189701.7	3 42	7.52.	1477	42	୍ର ବହା		45	_SAND, FINE GRAIN _HODERATE YELLON _BROWN, TRACE GR LOSSE, MOIST	₩15H	
13	7											

Proje	ct Na	ime:					RECIONA			ZEEK, III		er: 94-8901-05
Boren	ole l	ocat	ion:	Ar	LEA	OF	CONCE	ZN '	\mathcal{B} "	Borehole No. BCB-B		Sheet 2 of 7
Drillin	g Ag	ency	: G	E0 1	- M	ARINE	Ē			Driller. JOE GREGO	RY	
Drillin	ıg Ec	uipm	ent:	GE	19O	ROBE	9 M			Date Started: 7/13/94	Total Depth (f	eet): 27
Drillin	ıg M	ethod	d: 1_4	466	EB	ORE	SAMPL	ER		Date Finished: 7/13/94	Depth to Bedrock	(feet): NA
Drillin	ıg Fli	uid	AU		-					Number of Samples: 6	Depth to Water (1	
							BACK		ÆΟ	Borehole Diameter (in):	Elevation and Date	KI IN
VOIT	` .			• • • • • • • • • • • • • • • • • • • •						Logged by: S. SHITH		
		S	ampi	8		Field A	nalysis	LC	o G	Checked by:	Date:	T
Depth (feet)	Number	Interval	Blow Count	Весо ивту	Time	FID (ppm) S/B*	PID (ppm) S /B*	Graphic	USCS or Rock Type	Lithologic Descriptio	n	Remarks
16 =	BC881 1517	,21-,51	A N	75%	1445	¥7	BDL		SP	SAND, FINE GRAINE WI SOME GRAVEL, MO YELLOWISH BROWN MOIST	ODERATE	
19 -											-	
21 - 21 - 22-	BCBB12022	20'-22'	47	251	1511	4 2	Bal		G	SAND, FINE GRAINED MODERATE YELLOWI BROWN, TRACE GRI LOOSE, MOIST	1 5H 20E4	
23 - 23 - 24 -												- - - -
25- 26- 27-	8c6812527	25-27'	4	60%	1541	A Z	JAE.		5	SAND, FINE GRAINE MODERATE YELLOW BROWN, LOOSE, V. A	いくろトー	SAMPLE SELECTED FOR LABORATORY ANALYSES: VOA, SU, PD METALS
										TOTAL DEPTH = 27'		- - - - -

			W	. K. K	ELL	ass re	sional sceen '	Hilling	ORT	Borehole No. BCB - B2	s	heet 1 of Z
						IRINE				Driller JOE GREGO	RY	
										Date Started: 7/13/94	Total Depth (fe	et): 27
_						OBE				Date Finished: 7/13/94	Depth to	(feet): NA
lin	g Me	ethod	كا :ا	NRGI	BC	RE	SAMPL	JEK_		Number of	Depth to	254
	-	id /								Samples: 6	Water (fe	
np	letio	n Info	rmat	ion: T	30e	ehous	e BACK ompu	FTO	eo N	Diameter (in):	and Datu	ım: NA
						Field A			og	Loaged by: S.SHITH Checked by:	Date:	
		Sa	ampl	8	\dashv							
(1991)	Number	Interval	Blow Count	Recovery	Time	FID (ppm) S/B*	PID (ppm) ©B:	Graphic	USCS or Rock Type	Lithologic Description	oπ	Remarks
	7	nl '20-'0e	NA BI	757. R	T 7180	4	1 2			0'-0.5', GRASS, ROOTS, HI ORGANIC O.6'-2.0' SAND, FINE GRA MODERATE YELLOWS LOOSE, MOIST	INEO, -	SAMPLE SELECTED FOR LABORATORY ANALYSES: VOA, SV, PP METALS
										2'-5', DRIVE ONL	- - - -	
, - , .	111111 Reseased	,20-,50		60%	0823	40	326		6	BROWN, LOOSE, MO	5H 15T	
3	11111111									_7'-10', DRIVE ON		-
0 1 2	411111	PCBB21017	1 4	60%	V	0 -	BPL		G	LOOSE MOIST	2084 AUEL,	-
3	1111									_12'-15', DRIVE 0	NL(-

oren	ole l	ocat		2۱.۱۷	. K	ELLO	sc eri	ONAL	AVEROR	Borehole No. BCB - BZ		Sheet 2 of 2
Orillin	g Ag	ency				lARINI				Driller JOE GREGO	zY	
Orillin	g Eq	uipm				oBE.				Date Started: 7/13/94	Total Depth (fe	eet): 27
Orillin	g M	ethod	<u>ا:</u> ر	ARG	EB	DRE S	DIMPLE	:r_		Date Finished: 7/13/94	Depth to Bedrock	(feet): NA
Orillin	g Fi	uid	AU	,						Number of Samples:		
							BACKE			Borehole Diameter (in):	C1	
~ ((,	,0,0						~	Logged by: S. SM LTH		
		Sa	ampi	8		Field A	nalysis	LC)G	Checked by:	Date:	
(leet)	Number	Interval	Blow Count	Весо ивту	Tlme	FID (ppm) S/B*	PID (ppm) ©/B*	Graphic	USCS or Rock Type	Lithologic Descriptio	n	Remarks
6 7	Bc8821517	, 21-, 51	42	209	2580	₹	30-		85	JENONIEL ESAINED JENONIEH BROWN, I MOIST	•	
8 - 9								-		_17'-20', DeWE ON _ _ _	- - - -	
21 -	BC382.2022	20,-22,	4 2	309	8060	₹ 7	BOL		安	SAND, FINE GRAINED, M LYELLOWISH BROWN HOIST		
23 -										-22'-25', DRIVE ON	-	
26 - 26 - 27 -	868812527	25-27	47	808	0940	4 2	BOL		5	SAND, FINE GRAINED, I YELLOWISH BROWN, GRANEL, & LOOSE, MA WET TOTAL DEPTH = 27'	TRACE	2
-	 									- - -		

reh		ocati	~). K. k	سع	CG RE	SIONAL	AIKPO	RA	Borehole No. BCB-B3	s	heet 1 of
illino	A A G	ency:								Driller: JOE GREG	SORY	
						ARINE				Date Started: 7/13/94	Total Depth (fe	et):
						BE 8				Date Finished: 7/13/94	Donth to	(feet): NA
illin	g M	ethod	: LA	rs e		ORE	SAMA	EC		Number of 3	T	
	-	iid V	-				20. 11.1					et): NA
mp کات	ietio ER	n info ಎಆ	rmat مع ی	ion: 7 5 N	Bor	ehole	BACKF	ule0	WIIH	Diameter (in): 1 1/16	and Datu	um: NA
- 1								1.0	og	Logged by: S. SM ITH Checked by:	Date:	
	- 1	Sa	ampi	8	\dashv		nalysis					
(leel)	Number	Interval	Blow Count	Весо ину	Time	FID (ppm) S/B*	PID (ppm) S/B°	Graphic	USCS or Rock Type	Lithologic Description		Remarks
										0'-0,5' GRAGS, ROOTS, HIGHLY	ORGANIC_	SAMPLE SELECTED
	BCBB3coo2	-02,	47	300	900			į		CIS'-2.0' EAND, FINE GRAIN MODERATE YELLOWISH	, -	MONCISCS . 45.11
_	-8B3	.,	7	Ø	2					LOOSE, MOIST		SV, PP RETAIN
_	8	0						-		2'-5', DRIVE ON	LY -	
	1										-	
-	1							İ		_	_	_
	-									_	_	
-	7									_	-	
· -	}_	-	-	-	-					SAND, FINE CRAINE	٠,٠	-
0 -	130507	107	٠,	209	300					MODERATE YELLOW	sy -	
- o -	BC883(42	3	0					BROWN, LOOSE, MOIS	-	
7	<u>- 88</u>	10	-					 		-7'-10', DRIVE ON	عدلا :	
· -]											_
' - 3 -	4						ļ			-		
/ - 3 -			- (-
7 - 8 - 9 -				- [1		1			1
9 ·	7111111											- CANDIE SECENIE
9 ·	183	1 1	4	12	25					SAND FINE GRAINED, HE YELLOWISH BROWN, TR	ODERATE ACE	END LABORATORY
9	B-883	1011	42	707	1025					GRAVEL, LOOKE, MOIST	PCE.	AUALYSES: VOA,
9		10-11/01	42	707	1025					GRAVEL, LOOSE, MOIST	W	END LABORATORY
9	B-8833	10111	42	707	1025					TOTAL DEPTH = 11' GEOPLOBE REFUS	WI AL;	FOR LABORATORY ANALYSES: VOA,
9	1.1.1.1 B.883	1101	42	707	1025					TOTAL DEPTH = 11' GEOPROBE REFUS TOGGIBLE GRAVE	WI AL;	FOR LABORATORY ANALYSES: VOA,
9	1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	1011	42	707	1025					TOTAL DEPTH = 11' GEOPLOBE REFUS	WI AL;	SAMPLE SELECTER FOR LABORATORY AUGUSES: VOA, PP METALS
-	1111111 1 1 1 1 1 1 1 1	10-11/01	42	707	1025					TOTAL DEPTH = 11' GEOPROBE REFUS TOGGIBLE GRAVE	WI AL;	AUALYSES: VOA,

Proje	ct Na	ame:								1	roject N	umbe	r: 94-8901-05
Borei	nole i	Locat	ion:	J.K. ARE	KE	illogs OF CO	regioi NCERA	7 "B	AIR.PC	Borehole No. BCB-B	4	5	Sheet 1 of L
Drillin	ig Ag	ency	: G	EO	_ H	ARINE	<u> </u>			Driller: JOE GREG	ORY		
Drillin	ng Ec	uipm	ent:	GE	79c	SOBE	84			Date Started: 7/13/94	L Tot Der	al oth (fe	_{eet):} 12
Drillin	ng M	etho	d: اــ	ARG	E	JORE	SAMPL	ER		Date Finished: 7/13/94	4 Dep Bec	oth to drock	(feet): NA
Drillin	ng Fli	uid <i>f</i>	AL							Number of Samples: 3	Dep	oth to	eet): NA
							E BACKE COMPLE			Borehole Diameter (in): 11/16	Ele	vation Datu	ım: NA
· ·	• • • •	<u> </u>								Logged by: S.SHITH			
		Si	ampi	8		Fleid A	nalysis	LC)G	Checked by:	Dat	te:	
Depth (feet)	Number	Interval	Blow Count	Recovery	Tlme	FID (ppm) S/B*	PID (ppm)	Graphic	USCS or Rock Type	Lithologic Descrip			Remarks
1 7	Beblacer	·20-,σ	NA	208	1057	₹	BDL	₹ 3	SP.	0'-0.5'GRASS, ROOTS, HE O.S'-2.0'SAND, FINES MODERATE YELLOU LOOSE, MOIST	PAINE	Ο.	FOR LABORATORY
3 - 4 - 5 -								•					
9 - 7	BCBBdos 07	, LO-, SO	40	707	2011	47	BDL	42	\$	SAUD, FINE GRAINER GRANEL, MOPERATE BROWN, LOSSE, MO	- YEUD		SAMPLE SELECTED FOR LABORATORY ANALYSES: VOA SV, PP METALS
8 -												 	
11 -	BCB841012	10,-15,	42	762	1115	۵ 2	3	42	SP	SAND, FINE GRAIN GRAVEL, MODERAN BROWN, LOOSE, M	TE YEU	وكالدته	SAMPLE SELECTE FOR LABORATORY ANALYSES: VOA SV, PP METALS
12-								-		TOTAL DEPTH = 17 GEORROBE REFUS POSSIBLE GRAVE COBBLE ZONE	AL,	- - - -	* NOTE: FIELD 60 SHOWED THREE PEAKS DURING BLANK RU COULD HAVE BEE RESIDUAL FROM ANY OF ABOVE SAMPLES

rend	ole Lo	ocatio	on:	N.K ARE	A C	illogg of con	REGIO CERN	NAL "C"	AIRPORT			heet 1 of 2
illing	g Age	ancy:	G	- 0	MAR	ZINE				Driller JOE GREGOR		
						BE	8M			Date Started: 14 July 1994	Total Depth (fee	et): \7
							MPLE	e_		Date Finished: 14 JULY 1994	Depth to Bedrock (feet): NA
										Number of A	Depth to Water (fe	et): 15±
		id N		ion:	Boo	EHOLE	BACI	LFILL	-EO	Borehole Diameter (in): 11/6	Flevation	
OUD OUD	\mathcal{F}	ENT	0 <i>/</i> 71.	TE	09U	N COP	IPLET	011		Logged by: S. SHITH	and Date	
		9:	mpl			Field Ar	nalysis	L	og	Checked by:	Date:	
(1001)	Number	Interval	Blow Count	Recovery	Time	FID (ppm) S/B*	PID (ppm) (g/B°	Graphic	USCS or Rock Type	Lithologic Descriptio	ρΠ	Remarks
	BCC810002 N	00'-02' In	NA B	80% R	1300	47	BDL			SAND, FINE GRAIN MODERATE YELD BROWN, HOOSE, M	- 72101 	SAMPLE SELECTED FOR LABORATORY ANALYSE: VOA, SV, PP HETALS
2, - - - -	8									_2'-5', DRIVE ON	- - - -	
5-	RC2810507	_	12	%0%	1305	4Z	BDL			SAND, FINE GRAIN MODERATE VELLO BROWN, HOIST MOIST 7'-10', DRIVE ON	005E,	
10		4~'-17'	71_0	7 0	1323	47	BDL			SAND, FINE GRAI MODERATE YELLOW BROWN, LOOSE, WOIST L12'-15', DRIVE	JBH VERY 	SAMPLE SELECTED FOR LABORATORY ANALYSES: VOA SV, PP METALS
	41111											-

Boreho				W. k	۷. ۲	ELLOGG	REGION	A LAC	ILPORT	Borehole No. BCC-B1		Sheet 2_of Z
Drilling						OF C NARINE	ONCER	2 0	·	Driller JOE GREGO		
 						PROBE				Date Started: 7/14/94	Total	eet): \7'
									· · · · · ·	-	Depth (fe	
Drilling	М-	etho	ت: لـ 	ARG	€ B	ore s	AMPLE			Date Finished: 7/14/94 Number of	Bedrock Depth to	(feet): NA
Drilling										Samples: 4	Water (f	Bet): ' ' '/KT
-							e Baci MPLET		EO	Borehole Diameter (in): 11/16	Elevation and Date	um: NA
		9				Fleid A	nalveis	10)G	Logged by: S, SMITH Checked by:	Date:	
<u> </u>	Sample Fleid Analysis LOG									Ollockou by.	Date.	
1 -	Number	Interval	Blow Count	Весо	Time	FID (ppm) S/B*	PID (ppm)	Graphic	USCS or Rock Type	Lithologic Descriptio	n	Remarks
15-	Bcc8(1517	12,-11,	AZ	15%	1341	AN A	BDL			_SAND, MEDIUM GRA _MODERATE BROW _LOOSE, WET		
17										TD BORING = 17	-	

Key

			· ·	1 V.	VEL	LOGG RI	EGIONAL	- W	CPORT	Borehole No. BCC-B2		heet 1 of \
rilling	g Age	ncy:	G	E0 -	M	ARINE	- 			Driller JOE GREGOR		
rilling	g Equ	ipme	nt:	GE	OPI	SOBE	84			Date Started: 14 JULY 1994	Depth (fe	et): 12'
rilling	g Me	thod	: ا	186	EB	ORE S	SAMPLE	ER		Date Finished:14 JULY 1994	Bedrock	(feet): VA
	g Flu									Number of 3 Samples:	Depth to Water (fe	eet): NA
omo	letior	n Info	rmat	ion:	Bo	REHOL	E BAC	KFIL	LEO	Borehole Diameter (in):	Elevation and Datu	
JIT	H 7	BEN	4070	JITE	= (upon c	OMPLE	077	7	Logged by: S. SMITH		
		Sa	mpi	8		Field Ar	alysis	L	OG	Checked by:	Date:	
(1991)	Number	Interval	Blow Count	Recovery	Time	FID (ppm) S/B*	PID (ppm) ©B°	Graphic	USCS or Rock Type	Lithologic Description	on	Remarks
	BCB10002	,20-,00	47	100%	1425	47	302			SAND, FINE GRAINED, HODERATE YELLOWIS LOOSE, MOIST	H BROW	SAMPLE SELECTER FOR LABORATORY ANALYSES: VOA, SV, PP METALS
- - - - - -										_2'-5', DRIVE ON	- - - -	- SAMPLE SELECTER
5 -	8C820507	, 10-,50		757		å Z	235			SAND, FINE GRAN MODERATE YELLON BROWN, LOOSE, I	NISH MOIST	FOR LABORATORY ANALYSES: VOA, SV, PP METALS
	للبليليني									, - - -		HYDROCARBON
10	11111	7,0,7,0,7		100	400	<u>د</u> 2	CVER			_SAND, FINE GR _DUSKY YELLOWIS _BROWN, LOOSE, N	401ST	ODOR, SAMPLE SELECTED FOR LABORATORY ANALYSES; VOR SU, DP METALS
12	, 									_TOTAL DEPTH = 17	L '	Form F

t Na	me:									ect Numbe	r: 94 -8901-05
ole L	ocati	on:	W.K ARE	. K	ellogg of cor	region Yern	JAL "C"	HEPORT	Borehole No. BCC - B:	3	Sheet 1 of L
, Ag	ency:	G	E0	- M	LARINE	Ξ			Driller JOE GREGO	sey	
Eq.	uipm	ent:	GE	OP	ROBE	84			Date Started: 7/14/94	Total Depth (fe	eet): 16
ј М	ethoc	1: LA	1REE	E B0	RE 6	AMPLE	ار		Date Finished: 7/14/94		
g Flu	ıid	AN							Number of Samples:		
								ED	Borehole Diameter (in):		K \ \D
. ~		(O, K)	"	. •,	· O. Q · C.		11010		Logged by: S. SMITH		
	Sa	ımpl	9		Field A	nalysis	LC	o G	Checked by:	Date:	
Number	Interval	Blow Count	Весо иелу	Time	FID (ppm) S/B*	PID (ppm) ©B°	Graphic	USCS or Rock Type	Lithologic Descriptio	n	Remarks
46	,,					ı					SAMPLE SELECTED FOR LABORATURY
88	þ	47	200	5	₹	۲				NED, _	ANALYSES: VOA,
3	8	_	9	9	_	$\widetilde{\mathbf{a}}$			LOOSE, MOISI		SV, PP HETALS
60									2'-5' DRIVE ON	_Y _	
									[_	
							,		_	-	1
					<u> </u>					_	
5	1,			3		,			SAND, FINE GRAIN	ED, -	-
200	ģ	4	200	100	4	7					
ğ		2	9.	14	2	18			8.200	-	
									-7'-10', DRIVE	SNLY :	
1										•	4
1								ļ		•	-
]					1				_	•	
├.	-	-	-	-			-	-		νεΩ.	POSSIBLE SAININ
012	7,	1	10	0	L				BARKES HODERATE		- ON END OF DRIV
183	1	2	00	630	2	10			YELLOWISH BROWN	المحصا	SHOE
1 23	0		=	=		CD					
1									12'-14', DRIVE ON	7LY	4
									-		-
-									-		
_	1		1						CONTINUED WEXT	PAGE	_
	RC6831012 RC6836057 RC7831012 R R R R R R R R R R R R R R R R R R R	RCB31012 Wetpool Wetpo	Pocession: Wethod: Agency: German Nation: Accessed Number Nation: Ascession: Adenote: Nation Information: Nation Information Info	1630 1610 11me 1 1610 11me 1630 163	ACEBOCSCO AREA OF CON AREA OF	N.Y. KELLOGG REGION AREA OF CONCERN AGENCY: GEO- MARINE Equipment: GEOPROBE BM Method: LARGEBORE SAMRLE Fluid NA etion Information: Booken Sample Field Analysis Sample Field Manalysis Sample Sample Field Manalysis Sample Sample Field Manalysis Sample Field Manalysis ANA ANA ANA ANA BDA ANA ANA ANA	Agency: Geo-Marine Equipment: Geoprobe BM Method: Largebore Sample Fluid NA etion information: Borehold Box (bbm) Sample Sample Floid (bbm) Sample Sample Floid (bbm) Sample Sample Geophic Sub-100 (bbm) Agency: GEO - MARINE Equipment: GEOPROBE BM Method: LARGEBORE SAMPLER Fluid NA etion Information: BOREHOLE BACKEILLED Sample Field Analysis LOG Subject of the condition	AGENCY: GEO- MARINE AGENCY: GEO- MARINE Driller: JOE GREEN Equipment: GEOPROBE BM Date Started: 7/14/94 Date Finished: 7/	AGENCY: GEO-MARINE Driller: JOE GREGORY AGENCY: GEO-MARINE Equipment: GEOPROBE BM Date Started: 7/14/94 Depth (Bedforck Date Finished: 7/14/94 Depth (Bedforck Number of Samples: Service) BENTONITE UPON COMPLETION Sample Field Analysis LOG Checked by: Date: Lithologic Description SAND, MODERATE VELLOWSH BROWN, LOOSE, MOIST AGENCY: GEO-MARINE Date Finished: 7/14/94 Depth (Bedforck Number of Samples: Sampl		

Projec	na Na	me:					eegio1					er: 94-8901-05 Sheet 2 of 2
3oreh	ole L	.ocati	on:	ARE	A	OF COI	KERN	<u>, "c</u>		Botomore 300 00		
Drillin	g Ag	впсу:	G	EO	- M	IARIN	٤			Driller. JOE GREGO	eY	
Drillin	g Eq	uipm	ent:	GE	OPE	20BE	вн			Date Started: 7/14/94	Total Depth (
							AMPLE	=e_		Date Finished: 7/14/94	Depth to Bedrock	o k (feet): NA
Drillin	ng Flu	uid N	JA							Number of 4 Samples:	Depth t Water ((feet): NA
Comp	oletio	n Info	orma	tion:	Bor	ZEHOLE	E BACK OMPLES	FILLE	ED	Borehole 11/6	Elevation and Da	
w	7 1 1	DE N	.0~	.,,_	O 1-	<i>-</i>				Logged by: S.SMITH	<u> </u>	
		Si	ampi	8		Fleid A	naiysis	LC)G	Checked by:	Date:	
Depth (feet)	Number	Interval	Blow Count	Recovery	Time	FID (ppm) S/B*	PID (ppm) ©B°	Graphic	USCS or Rock Type	Lithologic Description		Remarks
14 -										SAND, FINE GRAIN	ED,	SAMPLE SELECTEY FOR LABORATORY
- -	BCC 531416	14'-16'	AN	100%	1700	A 7	-1d8			MODERATE YELLOWI BROWN, LOOSE, DA	MP	ANALYSES: VOA, SV, PP METALS
16-	8	=								TOTAL DEPTH = 16		
-	-											-
	=									_		
-	‡									-		_
-												
	=									_		
	4											-
'	7											
	3									_		
	_											-
	-											
1]									-		4
	4											-
	극											
	\exists									-		4
	4									-		1
	7							}]
]									_		-
	4					Ì				-		_
	7											Form F-

Proie	ct Na	ıme:	110	TH	FG	MIAN	G: RA	TTLE	CRE	EK, MI	Project Numi	per: 94-8901-05
Borei				W.	14.	KELLOG	G REGIONALES	ONAL	AHRADO			Sheet 1 of)
Drillin	ng Ag	впсу	: C			MARIN		<u>, </u>		Driller DE GRE	EGORY	
Drillin	ng Eq	uipm	ent:	GE	EOP	ROBE	8M			Date Started: 7/14/94	Total Depth	(feet): 12
							MPLER	<u> </u>		Date Finished: 7/14/9	Depth	
Drillin	ng Flu	nid V	4					············		Number of 3	Depth Water	to NA
							BACK		EO	Borehole Diameter (in): 11/6		on NA
	n E	y .~ \	010		Ų,		JAPCE.	11017		Logged by: S.SHIT	4	
		Sa	mpi	8		Field A	nalysis	LC)G	Checked by:	Date:	
Depth (feet)	Number	Interval	Blow Count	Rесоvеry	Time	FID (ppm) S/B*	PID (ppm)	Graphic	USCS or Rock Type	Lithologic Descr	ription	Remarks
0 -	BCC 840002	,20-,00	42	100%	1720	42	BDL			SAND, FINE GRAIN MODERATE VELLON LOOSE, MOIST	NEO, WISH BROW	SAMPLE SELECTER N, FOR LABORATORY ANALYSES : VOA, SV, PP METALS
- +								-		-2'-5', DRIVE - -	ONLY	
5	PC-B40507	,10-,50	47	60%	1725	42	BOL			SAND, FINE GRAI MODERATE YEL BROWN, LOOSE	HZIWOL	
										-7'-10', DRIVE	ONLY	
12-	BCB41012	10,-15,	みて	60%	1735	4 7	BOL			SAND, FINE GRA- MODERATE VEL BROWN, LOOSE TOTAL DEPTH = 13	HZIWOL TMACT,	SAMPLE SELECTES FOR LABORATORY ANALYSES: VOA, SV, PP METALS
-										- - - -		-

NA = not analyzed

Key

oreho	ile Lo	catio	n: ¥	J.K.	PA	ELLOGG 3 AREA	e eesi	anal Ancer	- AIRPOI ZN"C"	000 00		neet 1 of 1
						RINE				Driller. JOE GREGORY		
						OBE E	3M			Date Started: 7/15/94	Total Depth (fee	
							SAMPLE	<u>=e</u>		Date Finished: 7/15/94		feet): NA
Drilling Drilling										Number of Samples:	Depth to Water (fe	
niin) Compl	letion	Info	rmati	ion:	Boi	ZEHOU	E BACK	FILL TAR!	.E0	Borehole Diameter (in):	Elevation and Datu	
WITH	ر -2	ero Gro	اخت	HÉ	U F					Logged by: S. SMITH	Date:	
T			mp!e	B		Field Ar		L	OG	Checked by:	Jule.	
Depth (leet)	Number	Interval	Blow Count	Recovery	Time	FID (ppm) S/B*	PID (ppm)	Graphic	USCS or Rock Type	Lithelogic Descriptio	n	Remarks
5 7 10 12	[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5,012	2	1	091		BDL BDL			SAND, FINE GRAINED, MOI YELLOWISH BROWN, M LOOSE SAND, FINE GRAINED YELLOWISH BROWN LOOSE TOTAL DEPTH = 12	DERATE : ADIST, INDERATE : N, MOIST,	SAMPLE SFLECTER FOR LABORATORY MALYSES: VOA, SV, PP METALS
	1									-		_

				2.14	2. 1	LELLO	GG REG	SIONA	L AIRP	105		94-8901-05 Sheet 1 of (
Boreno	oie L	ocati	on:	ARE	EA	OF CO	NCER	<u>" (</u>	<u></u>	Borehole No. BCC-B6		Onder 1 01 (
Orilling	g Ag	ency:	G	E0-	MA	RINE				Driller JOE GREGORY		
Orilling	g Eq	uipm	ent: (SEO.	PRC	BE 8	М			Date Staned: 7/15/94-	Total Depth (f	eet): 12
Orilling	g M	ethod	l: L_F	arge	_Bo	RE S	AMPLE	R		Date Finished: 7/15/94	Depth to Bedrock	(feet): NA
Orilling	g Flu	uid 1	46		_,					Number of Samples: Z	Depth to Water (
Comp	ietio	n Info	rmat	ion:	Bor	ZEHOU!	E BACK	FILL	ÆO	Borehole Diameter (in): 11/6	Elevation	K 1 12
OTTA	Φ.	Eig /	7/19	3,-			PLET			Logged by: S.SHITH		
		Sa	mpi	9		Field A	naiysis	LC	oG	Checked by:	Date:	1
(leet)	Number	Intervat	Blow Count	Весо иелу	Tlme	FID (ppm) S/B*	РІО (ррм) © ∕В•	Graphic	USCS or Rock Type	Lithologic Descriptio	n	Remarks
\dashv										_0'-5', DRIVE ONLY		
, <u> </u>			Í							-	•	-
4						:				_	•	
2 -												
3 =								.				-
										_	•	_
4 =										_		
5 -	7	,,		٥						SAND, FINE GRAINED, MO		
6-	050	10-	42	80%	1630	₹ 7	BOL			YELLOWISH BROWN,	LOOSE,	
-	Beckesso	8	_	o)	70	2	B			MOIST		_
7 -	P. P.	<u> </u>			-			1		7'-10', DRIVE ONLY		
8 -]
	1									-		
9 -]											4
10-	=									-		SAMPLE SELECTED
-	7	10.		~0			,			SAND, FINE GRAINED,		FOR LABORATCE
\ { -	BCC861012	21 - ,01	Z	60%	164	47	306			TELLOWER BEDWIN, I	loose,	ANAUSES: WA, SU, PP HETALS
12-	<u>م</u> - ا-	+-	+	-	+	 				TOTAL DEPTH = 12'		
								t				
-	-											_
١.	_									-		-

			2	.14.	ILE	1066	CERN "	عز الم	LOKI	Borehole No. BCC-B7	S	heet 1 of I
rillinç	Age	ency:	G	EO	- M	ARIN	E			Driller. JOE GREGOR		
						OBE				Date Started: 7/15/9A	Total Depth (fe	et): 12
							SAMPL	EC		Date Finished: 7/15/94	Depth to Bedrock	(feet): NA
		id h								Number of Samples: 2	Depth to Water (fe	
				ion:	Boe	EHOLE	E BACK	FILL	ED	Borehole Diameter (in):	Elevation and Datu	
ンバブ	H Ŧ	GRO	(DO	RE	130F	90N C	OMPLET	707		Logged by: 5.5KmH		
		Sá	ampi	8	\Box	Field A	naiysis	LC)G	Checked by:	Date:	
(leet)	Number	Interval	Blow Count	Зесоивгу	Time	FID (ppm) S/B*	PID (ppm) ©VB*	Graphlc	USCS or Rock Type	Lithologic Description	on	Remarks
		-	B	4						0'-5', DRIVE ONLY	₹ -	
1 -										<u>-</u>	-	
	1										-	-
2 -											-	1
3 -										-	-	
_	1									F	_	
4 -										_		
5 -	+	+-	-		+-					SAND, FINE GRAINED, P	ODERATE.	
6.	70507	-01	42	70%	700	47	RDL			VELLOWISH BROWN, LE	107E]
•	32.87	08,	2	7	17	7	Ċά			7/15		
7.	76	-	+	+-	+	1				-7'-10', DRIVE ONLY	ł	
8	3									-		-
	1					ļ						
9	1									-		
10	+	+-	+	+-	+	+	-	+-		SAND, FINE GRAINE	O, MODER	ATE SAMPLE SELECT
	7	7,01	1	, ,	اع اع	3 2	7			LYELLOWISH BROWN	u, wase,	- ANALYSES: VOA,
1	7	BCCB 7101		2 6	170%	¥ Z	708			DAMP		- SU, PP METALS
12	- 	8 -	+	+	+			+		TOTAL DEPTH = 12		_
	1									_		-
	F									-		
1	_			1				1	ı	-		

Proje	ct Na	ame:								EEIL , M l Project Number: 94 -8901-05
Borei	ole l	_ocat					LEGIONAL LERN		796	Borehole No. BCO -BI Sheet 1 of Z
Drillin	g Ag	өпсу	: G	EO	- M	/ARINE				Driller JOE GREGORY
						COBE				Date Started: 7/15/94 Total Depth (feet): 27
Drillin	ig M	ethod	d: رو	arc	EBC	DEE S	AMPLE	e		Date Finished: 7/15/94 Depth to Bedrock (feet): NA
Drillin	ng Flu	uid	NA							Number of Samples: Depth to Water (feet): NA
							BACK		Eρ	Borehole Diameter (in): 1/16 Elevation and Datum:
WIII	H A	さたへ	יסדני	317Y	ح ر	, WW.	COMPLE	E170~		Logged by: S, SM (TH
		S	ampi	e		Field A	naiysis	LC	o G	Checked by: Date:
Dapth (feet)	Number	Interval	Blow Count	Recovery	Time	FID (ppm) S/B*	PID (ppm) S/B*	Graphic	USCS or Rock Type	Lithologic Description Remarks
	BCD810002	00,-05	Ąγ	80%	0955	47	BDL			SAND, FINE GRAINED, SAMPLE SELECTE FOR LABORATORY MODERATE YELLOWSH - WALYSES: VOA BROWN, LOOSE, MOIST - SU.PP METAL
2										2'-5', DeINE ONLY _
5 -	Rep Bloso 7	,20-,50	4 2	50%	1005	4	BDL_			SAND, FINE GRAINED, FOR LATSORATE MODERATE YELLOWSH - ANALYSES: VO BROWN, LOOSE, MOIST - SV, PP METAL
10-										SAMPLER REFUSED @ 10'; PREPROBE REAXED@11'; POSSIBLE GRAVEL LAYER(3) MOVE ~ 5'W, THEN ~ 5N; STILL TOO FIRM 10'-12', CONTINUE TO 15'

oren	ole L	ocati	on: V	V.K. ARF	IZEL EA	OF CC	EGIONAL	AIRP	ORT	Borehole No. BCD-B1	s	heet 2 of 2
						ARINE				Driller JOE GREGORY		
						OPE 8	3M			Date Started: 7/15/94	Total Depth (fe	et): 27
							AMPLE	2		Date Finished: 7/15/94-	Depth to Bedrock	(feet): NA
		ıid I								Number of Samples:	Depth to Water (fe	et): NA
`0.770	datio	n info	rmat	ion:	Bog	ZEHOLE SPON	COMPL	FILL	ED 7	Borehole Diameter (in): 11/16	Elevation and Datu	. 1 .
いて	17 B		. _ ^							Logged by: S. SHITH	Detri	
		Sa	ampl	8		Field A	nalysis	LC	og	Checked by:	Date:	
(leet)	Number	Interval	Blow Count	Recovery	Time	FID (ppm) S/B*	PID (ppm) S/B*	Graphic	USCS or Rock Type	Lithologic Descriptio		Remarks
5 _										SAND, FINE GRAIN	ED,	
-	BC0811517	2,-17	#3500 A	0%						MODERATE YELLOW	M12H -	
	180	18.	\$3	8						BROWN, LOOSE, M		
17-	18									_17'-20', DRIVE C	only -	1
]									_	_	1
	1			,						-	-]
-	‡									-	-	4
	4											
20-	<u> </u>	1.	ţ,A	1						SAND, FINE GRAIL	NED, -	1
-	11111 B12027	,-22,	A)	200						MODERATE YELLO	- HSIW	4
-	18	20,-	1	Ψ						BROWNILOSEIM	,~ i31 	
22-	- 8	10	+	+-	+-	+	+	+				†
-]									-	•]
•	=									-		_
-	7									-		-
	-											- SAMPLE SELECTE
25.	12	1,2	1,0	+						SAND, FINE GRAIN	JEO,	FOR LABORATOR
	125	12-,	5							DARK YELLOWISH T	promo	ANALYSES: SOA,
	1 3	25,	2	<u>ŏ</u> :)					LOOSE, DAMP		
27	بنا هُ	7	+	+	+			-		TOTAL DEPTH = 27		
	1							}				_
1	7									-		4
1					-				•)		i .

orenole	Loca	ition:				e read			Borehole No. BCD -B	党	Sheet 1 of
rilling A	genc	y: G			ARINE				Driller JOE GREE		
rilling E	quip	nent:	GE	OP1	ZOBE	84			Date Started: 7/15/94	Total Depth (fe	eet): 7
orilling N	Metho	od: L	-ARG	EBO	DRE S	AMPLER	_		Date Finished: 7/15/94	Depth to Bedrock	(feet): NA
rilling F	luid	AN							Number of 2 Samples:	Depth to Water (fo	.14
						E BAC			Borehole Diameter (in): 1/16	Elevation and Date	1 1
i		Samp	ie		Fleid A	nalysis	10	og	Logged by: S. SMITH Checked by:	Date:	
	T .		16						Chocked by:		
(leet) Number	Interval	Blow Count	Весоvегу	Time	FID (ppm) S/B*	PID (ppm) (\$\sum{\text{S}}\text{B*}	Graphic	USCS or Rock Type	Lithologic Descripti		Remarks
1 1 1 1 BCDB10002	00,-05	42	100%	1155	47	BDL			_SAND, MODERATE \ _BROWN, FINE GR _LOOSE, MOIST	YEUOWSH 	SAMPLE SELECTE FOR LABORATORY ANALYSES; VOA SU, PP METALS
, 									- 2'-5', DRNE C		
1 1 1 1 1 1 1 1 1 1	05'-07'	42	50%	1200	47	BDL			SAND, MODERATE -BROWN, FINE G -LOOSE, MOIST	RAINED	
									TOTAL DEPTH = 7	- - - - - - - - - - -	

NA = not analyzed

			12.	V	KEL	1066 R	: BATT	al ai	RHORT			r: 94-8901-05 Sheet 1 of 3
oren	ole Lo	catio	n: A	RE	A 0	F CON	CERN	"E				
rilling	g Age	ncy:	GE	:o-	MA	SINE				Driller JOE GREGORY	Total	
rilling	g Equ	ipme	nt: c	SEO	PEC	BE 8	И			Date Started: 7/12/94	Depth (fe	et): 32
							AMPLE	=e_		Date Finished: 7/12/94		(feet): NA
	g Flui									Number of Samples:	Depth to Water (f	eet): NA
				ion: 1	BORE	EHOLE	BACKF	ILLE	0	Borehole Diameter (in): 1/16	i	n um: NA
ンバ	H B	ENT	001	TE	T	on co	MPLE	MON		Logged by: S. SHITH		
		Sa	mpi	8		Fleid A	nalysis	LC)G	Checked by:	Date:	
(leet)	Number	Interval	Blow Count	Recovery	Time	FID (ppm) S/B*	PID (ppm)	Graphic	USCS or Rock Type	Lithologic Descripti	on	Remarks
	 	-	西			<u> </u>				SAND, FINE GRAINED, HOC	ERATE	SAMPLE SELECTED FOR LABORATORY
- - -	BLEBIO002	25-,00	47	752	1540	47	B		SP	VELLOWISH BEDWIN,		ANALYSES: VOA, SU, PRIMETALS GRASS AT SURFACE
2 -	- 8	0	-							2'-5', DRIVE ONLY	!	_
- 3 -	‡ !								-			7
٠.	7									F		_
4	3											
5	76	-07,		10	1.0		(SAND, FINE GRANED	, modern J	
6	BLEBIOSO	02.50	2	201	1545	42	BOL		\$	LOOSE, MOIST	•	
7	- 8			-						-7'-10' DRIVE ON	LY	
8	=											
9]											4
	=											
10	1	1 .	,	, ,	و ر	0 ,	ر			SAND, FINE GRAINER	~ + 600E16	.c.
11	7	WE 81 101)		2	200	2	800		92	-MOIST	• -	_
12	2]	3 -	-	-	+	-				-7'-10', DRIVE OF	JLY	
13	3 -											_
	_ ‡											4

oren	oie L	.ocati	on: \	N.K ARE	2. 10 EA 6	CELLOG CE CO	CERN	ONA!	- AIRPO	Borehole No. BCE-B	s	theet 2 of 3
rilling	g Ag	ency:				ARINE				Driller: DE GREGOR	24	
rillin	g Eq	uipm	ent: (GEO	PPE	OBE '	ви		·-	Date Started: 7/12/94	Total Depth (fe	et): 32
Orillin	g M	ethod	i: L-£	WG (EBO	ORE S	SAMPLE	ER		Date Finished: 7/12/94	D = = 45	(feet): NA
rillin	g Flu	id N	AL							Number of —7	Depth to	et): NA
•							E BACK			Borehole Diameter (in): 1 /16	Flevation	
NITT	Н 7	BEV	101	SITT	₹ (PON (COMPL	ETIC	5N	Logged by: S. SMITH		
		Sa	mpi	8		Field A	nalysis	LC)G	Checked by:	Date:	
(1991)	Number	Interval	Blow Count	Весо иелу	Time	FID (ppm) S/B*	PID (ppm) ©/B*	Graphic	USCS or Rock Type	Lithologic Description		Remarks
9 7	BCE81517	15'-17'	4 Z	2009	1625	なフ	30-		SP	_ SAND, FINE GRAINE _ MODERATE YELLOW! _ BROWN, TRACE GRAIN _ LOOSE, MOIST	SH _	
19-										_ 17'-20', DRIVE ON	- - - -	
21-	BCE 81 2022	20,-21,	AN	202	1643	A'N	BOL		do	-SAND, FINE GRAINED -MODERATE YEUGH -BROWN, LOOSE, MOIS	કન્ <u> </u>	
23- 23- 24- 25-										-22'-25', DRIVE OF	- - - -	
26 - 26 - 27 -	BCE812527	25-27	AN	60%	1705	47	BPL		G	_SAND, FINE GRAINS -MODERATE YELLOW - BROWN, LOOSE, MO	_ ۱۶۲۱	
28- 29-										-21'-30', DRWE 0	טבץ .	

Key

Project Name: 110TH FG	MIANG; BA	+TTL	E CR	CEEK. PII		:94-8901-05		
Borehole Location: W.K. K	cellog regions of concern	"E"	41210	Borehole No. BCE-B1	S	heet 3 of 3		
Orilling Agency: GEO - M				Driller JOE GREGOE				
Drilling Equipment: GEOPE				Date Started: 7/12/94	Total Depth (fe	et): 32		
				Date Finished: 7/12/94		(feet): NA		
Drilling Method: LARGER	OBE SAMPLE			Number of —7	T	eet): NA		
Drilling Fluid NA			.5.0	Samples:	Elevation	1 110		
Completion Information: 801	rehole bac	ETTO	<u> </u>	Borehole Diameter (in): 1/16 Logged by: S.SHITH	and Date	ım: 10 · ·		
Sample	Field Analysis	L,O		Checked by:	Date:			
Depth (feet) Number Interval Blow Count Recovery	FID (ppm) S/B* PID (ppm)	Graphic	USCS or Rock Type	Lithologic Description	-0.10. E 451 545E			
30'-32' 1 NA NA 1750	80 J 08		SP	- SAND, FINE ERAINED - MODERATE YELLOW - BROWN, LOOSE!M	>12H -	sample selected for laboratory awalyses: Voa, SV, PP METALS		
32.				TOTAL DEPTH = 32'				

Key

reh	ole I	ocat	ion.	w.1	۷. ۱۷	ELLOG	6 REGI	ONAL	AIRPOR	Borehole No. BCE-B2	. s	Sheet 1 of 3
				HU	_1 (DF CO	NCEK)E	<u>- </u>			
rilling	g Ag	ency	: G	EO	<u>-M</u>	ARINE	Ξ			Driller JOE GREGO	Total	
rillin	g Eq	uipm	ent:	GE	9C	20BE	- BH			Date Started: 7/12/94	<u> </u>	eet): 32
rillin	g M	etho	:: ↓	IRG	ERC	DRE	SAMA	ER		Date Finished: 7/12/94	Depth to Bedrock	(feet): NA
rillin	g Fiu	Jid N	AL							Number of Samples: N 7	Depth to Water (fe	eet): NA
omp	letio	n infe	orma	tion:	BOG	ZEHOL	E BAC	KFILL	-Eo	Borehole Diameter (in): 11/16	Elevation	1 .1.6
							COMPLI			Logged by: S. SMITH	and Dan	Jin.
		s	ampi	8		Field A	nalysis	LC	OG	Checked by:	Date:	
(leet)	Number	Interval	Blow Count	Весо	Time	FID (ppm) S/B*	PID (ppm) S/B*	Graphic	USCS or Rock Type	Lithologic Descriptio	n	Remarks
	BEERLOOL				1815						_	SAMPLE SELECTED FOR LABORATORY ANALYSES: VOA, SU, PP METALS
3											- - - -	
5 - 6 - 7 - 7 - 7	BCEB20507				1828						- - -	
8 -										_ _ _ _	- - -	
0 -	18E 12 1012				1847							
13 - 14 -										- - -		- - - -

		141	1.14.	KEL	۲ کاکست	ZEGIONA CERN "	IL AIR	PORT	Borehole No. BCE - B2	Sh	eet 2 of 3
illing Age									Driller JOE GREGOR		
					OBE	8H			Date Started: 7/12/94	Total Depth (feet	1): 32
						SAMPL	ER		Date Finished: 7/12/94	Depth to Bedrock (fe	eet): NA
									Number of 7 Samples:	Depth to Water (fee	et): NA
rilling Flu ompletio	n Info	rmat	ion:	Boe	EHOLE	BACK	FILLE	ED.	Borehole Diameter (in): 11/16	Elevation and Datur	n: NA
NTH T	3EN	DN	ITE	9U 	<u></u>	MPLET			Logged by: S. SHITH	Date:	
	Sa	ampi	8		Field A	naiysis	LC	OG .	Checked by:	Date.	
(feet) Number	Interval	Blow Count	Recovery	Time	FID (ppm) S/B*	PID (ppm) S/B*	Graphic	USCS or Rock Type	Lithologic Description	on	Remarks
2 2 2 6 8 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1) {			1912							
23	BE811517			0.0							

Project Name: 110TH FG	MIANG; BATTLE		ct Number: 94 -8901-05
W.K. KEL Borehole Location: AREA	LOGG REGIONAL AIRPO	Potetiole 140. BCE - BC	
Drilling Agency: GEO-N	MARINE	Driller STIL JOE GV	regory
Drilling Equipment: GEOP	ROBE 8M	Date Started: 7/12/94	Total Depth (feet): 32
Drilling Method: LARGER	GORE SAMPLER	Date Finished: 7/12/94	Depth to Bedrock (feet): NA
Drilling Fluid NA		Number of Samples: 7	Depth to Water (feet): NA
Completion Information: Bot	REHOLE BACKFILLE UPON COMPLETION	Borehole Diameter (in):	Elevation NA and Datum:
WIN BENIONITE	0,014 00. (1.00)	Logged by: S. SHITH	
Sample	Fleid Analysis LOG	Checked by:	Date:
(feet) Number Interval Blow Count Recovery	FID (ppm) S/B* S/B* Graphic USCS or	Lithologic Description	n Remarks
111111 E823052		-	Sample selected for laboratury mualyses: voa, — su, pp metals
32		TOTAL DEPTH = 32'	

					1/6	1000	REGION .	2 L 216	PORT	Borehole No. BCF -B1	s	heet 1 of 2
						RINE				Driller JOE GREGORY		
						OBE 8	 ЗМ			Date Started: 06/24/94	Total Depth (fe	et): 37
							SAMPLI	ER		Date Finished: \$\phi 6 29 9 4	Depth to Bedrock	(feet): NA
		id l								Number of 9 Samples:	Depth to Water (fe	eet): 35±
ome	etio	n Info	rmat	ion: 1	Boe	EHOUE	BACKF	IUE	2	Borehole Diameter (in): 11/16	Elevation and Date	1 NA [
ンバ	чн	OLE	PU	ا کے د	, 6 0	N 20P	PLETTO			Logged by: S. SMITH	Detai	
		Şa	mpi	8		Field A	nalysis	LC		Checked by:	Date:	
(1691)	Number	nterval	Blow Count	Rесоvегу	Time	FID (ppm) S/B*	PID (ppm) ©B°	Graphic	USCS or Rock Type	Lithologic Descriptio	on	Remarks
	2		-	<u> </u>	-					4-1' DRIVE ONLY		20.2' ASPHALT
\	RF-81-4143	φ1,-φ3,	NA	60%	1117		3DF	SP		SAND, FINE GRAINED, I BROWN, LOOSE, DRY		E SAMPLE SELECTE FOR LABORATORY ANALYSES: VOA, SV, PP METALS
3 -	<u> </u>									-3'-5', DRIVE ONLY	-	
5 - - -	BCF-B1-4547	45'-47'	4 7	25.7.56	1130		Rol	35		SAUP, FINE GRAINED, MODE BROWN, LOOSE, DRY		NSF RECOVERY, WILL PUSH SECON! ATTEMPT FOR RECOVERY
7 -	1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2	2.		25%	13 TE	 	B D-L	35		- SAND, FINE GRAINED -YELLOWISH BROWN -DRY	LOOSE,	NO FIELD GC SAMPLE COLLECTED
9	78		+	+-	1					10% 9'-10', DRIVE 0	NLY	
10	1 1 1 1 1 1 1 1 1 1	19-12	2	257	147.85	181	BDL	dy.		SAND, MEDIUM TO CO GRAINED, MOTTLED M YELLOWISH BROWN YELLOWISH BROWN	AND DAR LOOSE	K
	1											
15	41111	BKF-BH517		101	400	0	ВРС	ą,		SAND, MEDIUM TO COA GRAINED, MOTTLED M YELLOWISH BROWN DARK YELLOWISH B LOOSE, DRY 17'-187' DIZIVE O	ROWN!	

oreh			S	.K.	KEL	6 خکی ا	CERN	7 L 1965	270RT	Borehole No. BCF-B1		Sheet 7 of 2
								•				
rillin	g Ag	өпсу	: G	≣ం-	M,	ARINE				Driller JOE GREGOR		
rillin	g Eq	uipm	ent:	Geo	9 <i>9</i> c	DBE 9	3 M			Date Started: 66/29/94		feet): 37
rillin	g M	ethod	1: LX	rce	_B0	re s	4MPLE	EVZ.		Date Finished: 46/29/94	Depth t Bedroc	o k (feet): NA
rillin	ıg Flı	niq K	46							Number of 9 Samples:	Depth t Water	feet): 532
							BACKE		.0	Borehole Diameter (in): 1 1/16	Elevation and Da	tum: NA
~ ` `						J.C				Logged by: S.SMITH		
		S	ampl	8		Field A	nalysis	LC)G	Checked by:	Date:	
(1001)	Number	Interval	Blow Count	Весо ину	Tlme	FID (ppm) S/B*	PID (ppm) ©/ B*	Graphic	USCS or Rock Type	Lithologic Descriptio	PΠ	Remarks
φ _	27	`.								SAND, FINE GRAINED, MO MODERNIE YELLOWICH	TTLED	
-	B.F-81-2022	14-12	₹ 2	4070	1221	₹ 2	BDL	다		-LOOSE, DRY		
2 <u>-</u> - -										251-255 DRIVE ONL	۲	
-5- - - - - -	1252-18-37E	72,-27	42	40%	1255	ΑN	Bol	đ		SAND, FINE GRAINED, MOT MODERATE YELLOWISH AND PARK YELLOWISH LOOSE, DRY	Brown	i i
. /- - - - - !										27'-30', DRIVE ON	164	- -
A	BCF-181-3432	34:32'	42	357		đ Z	BDL	25		SAND, FINE GRAINED, M MODERATE YELLOWISH AND DAKK YELLOWISH LOOSE, DAMPS MOIST	BROWN	POIS CHEDISATOIS
-										32'-35', DRIVE ON	۲-	
35- - -	BCF-B1-3537	35,37	42	40%	至	AZ A	708	d's		SAND, FINE TO MEDIUM O MOTTLED MODERATE YEL BROWN AND DARK YEL BROWN, LOOSE, WET	ساء	
37- - -										DIAL DEPTH = 37'		_ PNI COLOR: _ MUNSELL ROCK COLOR CHART

Tilling Method: LARGEBORE SAMPLER Date Finished: \$46/30/74 Bedrock (feet): NA Number of Samples: 7 Depth to Water (feet): NA Ompletion Information: Borehole Backfilled Diameter (in): 1/16 Elevation and Datum: NA Logged by: S.S. H 1TH Date: Checked by: Date: Checked by	reno	ole L	ocati	دں an: A	REA	LEL	CONCI	EGIONAI EGN	-AJRA	ORT	Borehole No. BCF-B2	S	Sheet 1 of 2
Date Started: \$\delta \text{Plant}\$ Depth (feet): \$\frac{3}{2}\$ Prilling Method: LARGEBORE SAMPLER Date Finished: \$\delta \text{Plant}\$ Depth to Bernok (feet): \$\frac{1}{2}\$ NA Prilling Fluid NA Date Finished: \$\delta \text{Plant}\$ Depth to Water (feet): \$\frac{1}{2}\$ NA Prilling Fluid NA Prilling Fluid NA Depth to Water (feet): \$\frac{1}{2}\$ NA Depth to Depth to Water (feet): \$\frac{1}{2}\$ NA Depth to Water (feet): \$\frac{1}{2}\$ NA Depth to Sample: \$\frac{1}{2}\$ NA Depth to Sample: \$\frac{1}{2}\$ NA Depth to Depth to NA Depth to Water (feet): \$\frac{1}{2}\$ NA Depth to Sample: \$\frac{1}{2}\$ NA Depth to Depth to Water (feet): \$\frac{1}{2}\$ NA Depth to Depth to Water (feet): \$\frac{1}{2}\$ NA Depth to Water (fee	rilling	g Age	ency:	GE	0-1	MAG	ZINE				Driller: JOE GREGORY		
Date Finished: LARGEBORE SAMPLER Date Finished: April 19 Bedrock (feet): NA Samples: 7 Depth to Date: 10 Depth to Samples: 7 Depth to Date: 10 Depth to Samples: 10 Depth to Date: 10	rilling	g Equ	uipm	ent: (Gea)PR	OBE 8	3 M			Date Started: φω/29/94	Total Depth (fe	et): 32_
Depth to Water (leet): NA Number of Samples: 7 Depth to Water (leet): NA Distribution information: Borehole Edackfilled Distribution: Tyle Elevation and Datum: NA Logged by: S. S. H. ITH Date: Sample Field Analysis LOG Checked by: Date: Lithologic Description Remarks Distribution: Date: Sample Field Analysis LOG Checked by: Date: Lithologic Description Remarks Application: Date: SAND, Fine Graned, Moderate For Large and St. Pr. Pr. Pr. Pr. Pr. Pr. Pr. Pr. Pr. Pr	rilling	g Me	ethoc	1: LA	REE	BC	RE S	AMPLE	2			Depth to Bedrock	(feet): NA
OMDISTION Information: Beachale Backfilled Diameter (in): 1/16 and Datum: NA Logged by: S. S. M ITH Logged by: S. S. M ITH Logged by: S. S. M ITH Checked by: Date: Checked by: Da	rillin	g Flu	id N	A							Number of 55 7	Depth to Water (fe	eet): NA
Sample Field Analysis LOG Checked by: Date: Checked by: Date:	omp	letio	n Info	rmat						0	1 1/	1	
Sample Field Analysis Lithologic Description Remarks Lithologic Description Lithol	νιπ	TH HOLEPLUS UPON COMPLETION									Logged by: S.SM ITH		
Lithologic Description Remarks Lithologic Description Remarks ACZ' ASPHALT SAND, FINE GRAINED, MODERATE FOR LAGORATE AND LYSES: VC SV, PP METAL SAND, FINE GRAINED, MODERATE FOR LAGORATE AND LYSES: VC SV, PP METAL SAND, FINE GRAINED, MODERATE FOR LAGORATE AND LYSES: VC SV, PP METAL SAND, FINE GRAINED, MODERATE VELLOWISH BROWN, LOOSE, DRY AND PARE FULLOWISH BROWN, LOOSE, DRY TO TO TO TO THE ONLY SAND, MEDIUM GRAINED, MOTTLED MODERATE VELLOWISH BROWN, LOOSE, DRY AND DARRY FELLOWISH BROWN, LOOSE, DRY IZ'-15', DRIVE ONLY SAND, MEDIUM GRAINED, MOTTLED MODERATE VELLOWISH BROWN, LOOSE, DRY AND DARRY FELLOWISH BROWN, LOOSE, DRY SAND, MEDIUM GRAINED, MOTTLED MODERATE VELLOWISH BROWN, LOOSE, DRY 12'-15', DRIVE ONLY LOOSE, DRY AND DARRY FELLOWISH BROWN, LOOSE, DRY LOOSE, DRY LOOSE, DRY LOOSE, DRY LOOSE, DRY LOOSE, DRY			Sá	ample			Field A	naiysis	LC	G	Checked by:	Date:	
O'-1', DRIVE ONLY SAMPLE SEE FOR LABORATE F	(1991)	Number				Time	FID (ppm) S/B°	PID (ppm) Ŝ/B*	Graphic	USCS or Rock Type	Lithologic Description	on	
SAND, FINE GRAINED, MODERATE POR LEGISLATE ANALYSES: VA SV. PP METAL SAND, FINE GRAINED, MODERATE VELLOWISH BROWN, LOOSE, DRY SAND, MEDIUM GRAINED, MOTTLED MODERATE VELLOWISH BROWN, AND DARK VELLOWISH BROWN, LOOSE, DRY SAND, MEDIUM TO COARSE GRAINED, MOTTLED MODERATE VELLOWISH BROWN, AND DARK VELLOWISH BROWN, LOOSE, DRY SAND, MEDIUM TO COARSE GRAINED, MOTTLED MODERATE VELLOWISH BROWN, AND DARK VELLOWISH BROWN, AND DARK VELLOWISH BROWN, LOOSE, DRY		-		-	-						\$'-1', DRIVE ONLY		
3'-5', DRINE ONLY SAND, FINE GRAINED, MODERAFE YELLOWISH BROWN, LOOSE, DRY 7'-14', DRINE ONLY	3 -	F-32-4143	φι'-43'	A Z	60%	1620	<u>d</u> 2	BDL	42		SAND, FINE GRAINED, BROWN, LOOSE, DRY	MODERATE - -	SAMPLE SELECTE FOR LABORATORY ANALYSES: VOA, SV, PP METALS
THE GRAINED, FORM VELLOWISH BROWN, LOOSE, DRY TO THE GRAINED, MOTTLED VELLOWISH BROWN, LOOSE, DRY TO THE GRAINED, MOTTLED VELLOWISH BROWN, AND DARK YELLOWISH BROWN, LOOSE, DRY TO TO THE GRAINED, MOTTLED NODERATE YELLOWISH BROWN, LOOSE, DRY TO THE GRAINED, MOTTLED VELLOWISH BROWN, AND DARK YELLOWISH BROWN, LOOSE, DRY AND DARK YELLOWISH BROWN, LOOSE, DRY LOOSE, DRY LOOSE, DRY LOOSE, DRY LOOSE, DRY	_	-									\$3'-5', DRIVE ONLY		
SAND, MEDIUM GRAINED, NOTTLED MODERATE YELLOWISH BROWN, AND DARK YELLOWISH BROWN, LOOSE, DRY SAND, MEDIUM TO COARSE GRAINED, MOTTLED MODERATE VELLOWISH BROWN, LOOSE, DRY LOOSE, DRY LOOSE, DRY LOOSE, DRY LOOSE, DRY	-	KF-B2.4547	45'-47'	NA	209	1628	4 2	BDL	d'S		_ YELLOWISH BROWN, L _ DRY	.00\$E, -	-
THE SAND, MEDIUM TO COARSE GRAINED, INTER MEDIUM TO COARSE GRAINED, INTER MEDIUM TO COARSE GRAINED, HOTTED MEDIUM TO COARSE GRAINED, LOOSE, DRY LOOSE, DRY	7 - - -										7'-10', DRIVE ONLY	- - -	
15 - 15', DRIVE ONLY 15 - 17' - 15', DRIVE ONLY SANO, HEDIUM TO COARSE GRAINED, MOTTLED MUSERATE VELLOWISH BROWN, AND DARL YELLOWISH BROWN, LOOSE, DRY	•	٦ ہا	14,-15,	42	20%	1648	42	BPL	SP		MODERATE YELLOWISH	Beaun,	
TOOSE, DRY LOOSE, DRY LOOSE, DRY	12-	- 									12'-15', DRIVE ONL	Υ	
17-20', DRIVE ONLY		111111	,11-,51	4 7			4 7	89-	32		HOTTLED MUDERATE YELLOWISH LOOSE, DRY	Beomy	1
24											17'-20', DRIVE ON	-4	_

					/ /	E11060	RESIDE	<u> ΔΑ</u> Δι	20021	-		or: 94-8901-05 Sheet ² x of 2
orei	oie i	_ocat	ion: {	£5	ARE	AOF	CONTE	en'	"F"	Borehole No. BCF-B2		oneet 7 of 2
rillin	g Ag	ency	: G	E0 -	MA	RINE				Driller JOE GREGOR	۲	
rillir	ig Ec	Juipm	ent:	GE	OPI	cobe "	8 M			Date Started: 46/29/94	Total Depth (fe	eet): 32
rillir	ng M	ethod	d: L4	AR66	EBC	DE S	AMPLE	e re		Date Finished: 46/30/94	Depth to Bedrock	(feet): NA
illir	ıg Fli	nid	Au							Number of Samples:	Depth to Water (fe	eet): NA
,						EHOLE '	BACKFIL	€ 0	W LTH	Borehole Diameter (in): 11/16	Elevation and Datu	1 um: 44
	•						-			Logged by: S. SMITH	_	
		Sá	ampl	8		Field A	naiysis	LC	OG .	Checked by:	Date:	
(1001)	Number	Interval	Blow Count	Весо ивгу	Tlme	FID (ppm) S/B*	PID (ppm) S/B*	Graphic	USCS or Rock Type	Lithologic Description		Remarks
	24-81-241	24'-22'	42	60%	1738	<i>¥</i> 2	Врс	去		_SAND, FINE GRAINED, MO MODERATE YELLOWISH BI AND DARK YELLOWISH B LOOSE, DRY	rown _	ENO SHIFT \$6/29
_										-22'-25', DRIVE ONLY	_	
5	RF-82-2527	25'.27'	N.A.	208	4825	4 7	30-	3.5		SAND FINE GRAINED MOTTLE MODERATE YELLOWISH BROW AND DACK YELLOWISH B LOOSE, DRY	~~ <u> </u>	BEGAN USING PVC SHRINK WRAPPED TUBES
7- /	(SEA									27'-30', DRIVE ONLY		
5 - - - -	BCF-81-3432	34,-35,	A Z	80%	006¢	£ 2	BPL	gs Gs		SAND, FINE SCANED, MOTTLE MODERATE YELLOWISH BROW AND PARK YELLOWISH BR LOOSE, MOIST	CO	SAMPLE SELECTED FOR LABORATORY ANALYSES: YOA, SV, PP METALS
										-TOTAL DEPTH = 32'	- - - - - - - -	DNI) COLOR: MUNSELL ROCK COLOR CHARZT

				11 14	. KI	EULOGO F CONCU	REGIO	NAL	AVEFOR	Borehole No. BCF-B3)	Sheet 1 of 23
rilling	g Ag	ency:	ے		 _ М	IARINE				Driller JOE GREGO	2۲	
						ZOBE				Date Started: 7/11/94	Total Depth (f	eet): 32
						ORE		_ER		Date Finished: 7/11/94	1 -	
		aid N		1100						Number of 7	J	
omp	letio	n Info	rmat			EHOLE			LED	Borehole Diameter (in): 11/6	1	
۲۳۱۷	H	40L1	EPL	دد	90	on cov	MPLET	10~		Logged by: S. SMITH		
		Sa	ampl	9		Field A	nalysis	LC)G	Checked by:	Date:	
(leet)	Vumber	Interval	Blow Count	Recovery	rlme	FID (ppm) S/B*	PID (ppm)	Graphic	USCS or Rock Type	Lithologic Descripti	on	Remarks
	Z	=	Ш	<u>E</u>	-					0'-1', DRIVE ON	LY .	20,2 ASPHALT
1111111111	BCF B10103	01,-03,	47	80%	1553	A Z	35-1-		SP	_SAND, FINE GRAIN _MODERATE BROW _LOOSE, SLIGHTLY I	\sim	SAMPLE SELECTE FOR LABORATORY ANALYSES 'VOA, SV, PP METALS
3 -										_3'-5', DRIVE ON	1LY	
5 -	RCFB10507	,10-,50	47	50%	1604	<u>4</u> 2	BDL		A- Vo	SAUD, FINE GRAINER MODERATE YELLO BROWN, LOOSE, MON	سادهما	POSSIBLE ODOR SAMPLE SELECE FOR LABORATORY ANALYSES: VOA SU, PP METALS
7 -		0								7'-10', DRIVE C	NLY	
10	2401189	10,-15,	42	30%	166	4 2	BDL		¢,	BROWN, LOOSE, MON	6H 6T	
1 4										12'-15', DRNE C	NLY	+

Proje	ect Na	ame:	1101	nH F	 	MIAN	1G: B	TTPA	E C	REEK, MI	Project Nur	mber: 94-8901-05
		Locat		W. k	2. K	ELLOGA	S REGIO	NAL	ALRPO		33	Sheet 2 of 23
Drilli	ng Aç	ency	:			MARI			. 668	Driller JOE GRE	GORY	
Drilli	ng Ed	quipm	-				. 8H			Date Started: 7/11/94	4 Total Depth	n (feet): 32
					·······		E SAM		e	Date Finished: 7/11/9	A Depth	
Drilli	ng Fl	uid N	AL		-					Number of -7 Samples:	Depti	n to or (feet): NA
							E BACK			Borehole Diameter (in): 1/16		
۱۱حی	M X	2 E V	10	711	E	01-00	COMP	-E-TIC	<i>N</i>	Logged by: S.SHITH		
		S	ampi	8		Field A	naiysis	LC)G	Checked by:	Date	
Cleet)	Number	Interval	Blow Count	Recovery	Time	FID (ppm) S/B*	PID (ppm)	Graphic	USCS or Rock Type	Lithologic Descr	iption	Remarks
15	7	1,			\sim	سا	1	·		SAND, FINE GRAINE		ATE
-	315	L1-,S	42	75%	1630	オフ	BPL		A V	YELLOWISH BROW	· ~ ,	-
-	BCFB31517	15	2	7	-	2	8		, ,	Loose moist		-
17-	+									17'-20', DRIVE	ONLY	
-]											4
-	†					3				_		7
-	=									_]
- 20	7											
204	BeFB32012	7			3		1			SANO, FINE GRAI		-
-	728	20,-22	42	70%	1703	女つ	4		S	MODERATE YELL		-
	7	3	2	7	<u></u>		ص			BROWN, LOOSE	MOIST	
22	+									22'-25', DRINE	ONLY	
	3											-
-	7									-		
-	-						 			_		
חב	1											_
25	27	1,		100			1			SAUD, FINE GRAIN		
	11111	,12,	とフ	80%	718	47	BDL		5	YELLOWISH BRO	سررمص	اع.
		25	1	$ \omega $	1	2	β2		"	MOKT		4
27	- 2	<u> </u>								27'-30', DRIVE	ONLY	
	Ξ							-			,	
	4											_
	_											-
												-

	MIANG; BATTL	MERORIT	Borehole No. BCF-B3	Sheet 3 of 3
orehole Location: AREA			Driller JOE GEEGO	
rilling Agency: GEO- H			Date Started: 7/11/94	Total Depth (feet): 32
rilling Equipment: GEOPP	OBE BM			
rilling Method: LARSE 80	RE SAMPLER		Date Finished: 7/11/94	Depth to Depth to
Orilling Fluid NA			Number of 7 Samples:	Water (feet):
Completion Information: 800	REHOLE BACKFILL	J€P	Borehole Diameter (in):	Elevation NA and Datum:
WITH BENZONITE OF			Logged by: S. SMITH	Date:
Sample	Field Analysis	LOG	Checked by:	Date.
(feet) Number Interval Blow Count Recovery	FID (ppm) S/B* PID (ppm) ŜB*	USCS or Rock Type	Lithologic Descriptio	
30-32' 1 NA NA 1753		SAND, FINE CRAINS MODERATE YELLOW! -BIRCON, LOOSE, V.	SH - ANALYSES: VOA,	
32-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1			TOTAL DEPTH = 32	

APPENDIX E: LABORATORY ANALYTICAL DATABASE

2 527 34	QUAL	=		=	=	> :	.)	-	>	_	>	⊃	-	>	_	⊃	>	⊃	_	_	>	_	>	ח	-	>	97)	ר	· =	=) =))	o	⊃	
BCA-B2 BCA-B2-2527 07/14/94	RESULT	01	. 0		2 5	2 ;	0	10	9	0	10	10	10	01	10	10	01	01	10	10	10	10	01	10	10	10	01	œ	10	10	5 5	2 5	2 5	2 9	2 ;	2	330	
2 002 34	QUAL	=	=	=	:	> :	-	>	>	>	Þ	Þ	כ	>	>	Þ	⊃	>	>	>	>)	· >) ⊃	_)	>	<u>e</u>] =	=	=) =)	:	o :)	>	
BCA-B2 BCA-B2-0002 07/14/94	RESULT	-		- ;	- ;	_ ;	=	11	=	=	11	=======================================	11	11	-	11	-1	=	=	1	11	=		=======================================	=======================================	=	-		- [-			- ;	= ;	= ;	Ξ:	Ξ	340	
1 !527 94	QUAL	Ξ	=) :	ɔ :	>	כ	>	כ	כ	כ	כ	5	ω	>	-	כ	-	-	5	_) =) =	> =) =	> =	=	α α) =) =) =)	> :)	>	>	>	
BCA-B1 BCA-B1-2527 06/30/94	RESULT	-		- ;		=	-	11	=	11	11	=	=	190	-	1	11	-		=======================================	=	= =	: :	: :		= =	: ;=	- 6	3 :	- ;	- ;	- ;	Ξ:	=	-	=	340	
1 507 84	QUAL	=	> =	> :	>	>	⊃	>	-	-	>	-	>	_	· >))	=) =) =) =	> =) =	> =) =	> =	=	۵ ۵	o <u>-</u>) :	ɔ :)	-	⊃	5	>	-	
BCA-B1 BCA-B1-0507 06/30/84	RESULT	;	= ;	= ;	=	-	=	11	11	=======================================	-	=	-	=======================================	=	-	: =		: :	: -			: :	= ;	- ;	- :		- 0	2 .	= ;	= ;	<u>ר</u>	_	=	-	=	350	
11 001DL 94	QUAL																																				_)
BCA-B1 BCA-B1-0001DL 06/30/94	RESULT		•	•	•	į	•	•	•	•	•	•	•	•		•	•		• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1800	2
11 0001 94	QUAL	:	> :	>	-	>	_	· >	_	=	-	=	> =	0	o <u>-</u>	> =	> =) -	> =	> =) :	> :	> :	> :	ɔ :	> :	> :	י כ	n :	> '	-	>	n	⊃	⊃	>	=	•
BCA-B1 BCA-B1-0001 06/30/94	RESULT	;	= ;	-	1	1	11	=	11	: [- 6	 		- ;	- ;	- ;		= ;	= ;	Ξ;	E ;	= :	= ;	= ;	= :	50	-	=	11	=	11	11	=	360	8
LOCATOR: SAMPLE ID: COLLECTION DATE:	UNITS:		UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	IIG/KG	ופ/גפ	98/90 10/80	יופי/גפ	98/80 10/80	מאלט מאלט מילי	98/90 03/01	08/80 07/01	08/80 0// 01	08/90	OG/KG	06/RG	06/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	OG/KG	OG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	97/91	94/90 0
COFFEC			l, 1, 1-Trichloroethane	I, 1, 2, 2-Tetrachloroethane	1.1.2-Trichloroethane	1.1-Dichloroethane	1 Dichloroethene	1 2-Dichloroethane	7.2 Dishlorosthene (Total)	2-Dichlorography (oral)	, z-Dicnioropropane	Z-Butanone	Z-Hexanone	4-Metnyl-Z-pentanone	Acetone	Benzene	Bromodichioromethane	Bromotorm	Bromomethane	Carbon disultide	Carbon tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	Cis-1,3-Dichloropropene	Dibromochloromethane	Ethylbenzene	Methylene chloride	Styrene	Fetrachloroethene	Toluene	Trans-1.3-Dichloropropene	Trichloroethene	Vinyl chloride	Xylenes (Total)		1,2,4-Irichlorobenzene

(27 4	QUAL	=	=) :	: c	>)	Þ	¬	=) =	=	_	=) =	:	> :	>	>	>	>	⊃)	_	=	=	> =	=	> =	=	> =	o :	0	-	>	כ	⊃	>	¬	2		
BCA-B2 BCA-B2-2527 07/14/94	RESULT	330		000	330	330	790	330	330	330	000	330	330	330	9 0	330	330	330	790	330	330	790	790	330	330	000	000	330	1 0	1 20	067	330	330	330	330	330	330	330	330	330	1	
6 4 2 4	QUAL	=) :	>	-	>	5	=	=) =	> =) <u>-</u>) =)	> :	>	>	>	-	כ	Þ	- =	=) <u>-</u>) <u>-</u>	o :	o :	> =	ɔ :	ɔ :) :	>	>	J	7	>	×	=	· 🛪	į =)	
BCA-B2 BCA-B2-0002 07/14/94	RESULT	0	340	340	340	340	830	340	2 6	2	04.0	930	54.0 0.4.0	340	340	340	340	340	830	340	340	0.8		930	040	340	340	340	340	830	830	340	340	340	42	340	7.2		240	340	2	
527 4	QUAL	:	>	-	-	_	=) :	o :	o :	: כ)	ɔ :)		Þ	-	כ	· ⊃	=	=) <u>=</u>) :) :)	>	ɔ	-	-	>	-	Þ	>	>	, -	, -	, >	ξ-	خ	3 =	>	
BCA-B1 BCA-B1-2527 06/30/94	RESULT		340	340	340	340	0 0	000	340	340	340	830	340	340	340	340	340	340	0.00	0 6 6	2 4 5	5 0	830	830	340	340	340	340	340	830	830	340	340	340	1,0		2 0	730	סביל	250	340	
607	QUAL		>	Þ	-	=	o :) :	-	>	>	>	⊃	>	>	>	- =	=	> =) :) :	: כ	>	>	Þ	Þ	J	Þ	Þ	-	כ	_	=) =) :	o :	o :	-) :)	>	
BCA-B1 BCA-B1-0507 06/30/84	RESULT		350	350	350	0 0	020	820	350	350	350	850	350	350	350	350	3 20	9 0	000	900	320	350	820	850	350	350	350	350	350	850	850	350	0 0	0 0	200	350	350	320	320	350	320	
10L 4	QUAL		>	=) =	:	- :	>	っ	-	כ	>	>	၁	7	=) =	o :) :)	>)	J	Þ	כ	⊃	>	>	¬	=	=	? 2	3 2	3 7	3 '	۵	۵	ă	۵	ă	>	
BCA-B1 BCA-B1-0001DL 06/30/94	RESULT		1800	000	9 6	900	1800	4400	1800	1800	1800	4400	1800	1800	1800	9 6	0001	008	1800	4400	1800	1800	4400	4400	1800	1800	1800	1800	0081	0 0 0	000	1 0	2/0	240	860	4800	4300	6800	2300	10000	1800	
100 4	OUAL) :	o :	>	>	-	၁	_))	· ⊃)	=	=	: c) :	=	J	>	J	>	¬	· =	=	=) =	=	> =) =	5) :	=	c		ш	ш	ш		ш	>	
BCA-B1 BCA-B1-0001 06/30/94	RESUIT	ורכספד	096	000	360	360	360	880	360	360	360	0 8	360	960		360	360	180	360	880	360	360	088	0 8	980	9 6	0 0	0 0	9 6	000	288	088	340	330	920	4900	4600	9800	2300	11000	360	
LOCATOR: SAMPLE ID: :TION DATE:	- INITS:	6	2	06/RG	UG/KG	UG/KG	UG/KG	UG/KG	116/KG	02/01	09/80	מאנים ו	יופי/גפ	מאַלט מאַלט מ	06/RG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	HG/KG	02/20	02/50	0 2 2 2	06/RG	06/KG	06/RG	UG/KG	06/RG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	ווט/אנט	119/KG	119/KG	03/20 10/KG)
LOCATOR: SAMPLE ID: COLLECTION DATE:			•	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1.4-Dichlorobenzene	2 2'-Oxybis(1-chloropropane)	2,2 -OAybist circicping	Z,4,5-inclinatophianal	2,4,6-Irichiorophenioi	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methylnaphthalene	2-Methylphenol	2 Nitrophilipe	2 Mittotheool		3,3'-Dichlorobenziaine	3-Nitroaniline	4,6-Dinitro-2-methylphenol	4-Bromophenyl phenyl ether	4-Chloro-3-methylphenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenanhthylene	V		Denzo(a) antenacento	Benzo(a)pyrene	Benzo(b)filloranthene	Benzo(g,h,t)perylene	Benzo(k)fluorantnene	Butyl benzyl prinalate

7	QUAL	>	>	7	>)	- :) :	> :	> :	> :	o :	> :	> :	> :	> :	> :	ɔ :) :) :	> :	> :	> :	> :	> :	> :	ɔ :	>	<u>*</u>	, :	Z	=	> :	o ,		>
BCA-B2 BCA-B2-2527 07/14/94	RESULT C	330	330	79	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	790	330	330	330	330	330	330	,	٠ : د	5.20	٠ (- ;	0.35	3.30	0
4 Q	QUAL	-	7	7	ɔ)	-)	>	; ר	ɔ :	ɔ :) :) :)))	> :	5)	כ	>	7	>	7)	>	7		. :	z	:	>	-	*	⊃
BCA-B2 BCA-B2-0002 07/14/94	RESULT	340	36	260	340	340	340	340	340	97	340	340	340	340	340	340	340	340	340	340	340	830	23	340	99	340	340	82	i.	3.50	8.70	•	0.12	0.36	6.50	0
527	QUAL	>	7	כ	-	-	-	>	-	7)	>	> '	ɔ	ɔ	7	၁	ɔ	ɔ	-	Þ	כ	7	-	7	כ	>	œ		_	z			_	z	>
BCA-B1 BCA-B1-2527 06/30/94	RESULT	340	110	340	340	340	340	340	340	260	340	340	340	340	340	96	340	340	340	340	340	830	130	340	190	340	340	069	,	3.20	5.40	•	0.12	0.36	8.40	0
507	QUAL	כ	ם	>	-	-	-	>	כ	ב	-	ɔ	כ	ɔ	>	-	כ	כ	כ	כ	-	_	-	-	>	-	כ	8		z	*			S	z	n
BCA-B1 BCA-B1-0507 06/30/84	RESULT	350	350	350	350	350	350	350	350	350	350	350	350	350	350	350	350	350	350	350	350	850	350	350	350	350	350	66		4.30	75.40	•	0.13	0.36	6.10	0
1 01DL 34	QUAL	3	۵)	>	3	2	>	Þ	۵	2	Þ	Þ	כ	>	۵	>	Þ	>	>	>	>	۵	כ	۵	כ	>	DJB								
BCA-B1 BCA-B1-0001DL 06/30/94	RESULT	909	4000	1800	1800	420	250	1800	1800	9500	470	1800	1800	1800	1800	2400	1800	1800	1800	1800	1800	4400	5500	1800	7200	1800	1800	210			1	•	•	•	•	,
. t	QUAL		u.	۰ -	: ⊃)	0	: >	>	ш		>	>	>	>		>	_	-	0	: ⊃	· ⊃	w	· >	ш	· >	Þ	<u>@</u>		٦			0	· =		כי
BCA-B1 BCA-B1-0001 06/30/94	RESULT	720	4300	600	360	510	270	360	360	7300	520	360	360	360	360	2400	360	360	360	170	360	880	5400	360	6500	360	360	280		3.40	39.60	•	0.28	0.49	23	0
LOCATOR: SAMPLE ID: TION DATE:	UNITS:	116/KG	16/86	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	11G/KG	UG/KG	US/KG	UG/KG	ופ/אפ	11G/KG	UG/KG	UG/KG		MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	mg/L
LOCATOR: SAMPLE ID: COLLECTION DATE:		- Cochec	Calbazore	Cillysolid Displanted abthalate	Discottd phthelete	Districtly Printegers	Dibenzofuran	Diethyl ohthalate	Dimethyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indepo(1.2.3-cd)byrene	leaphorone	N-Nitroso-di-n-propylamine	N-Nitrosodiphenylemine(1)	Nonhtholone	Nittohonsono	Dentschlorophenol	Dhonosthrana	Dhood		Fylene Fig/2 Chlomothowy)methene	bis(2-Chloroethyl)ether	bis(2-Ethylhexyl)phthalate	ო	Antimony	Arenic	Barium	Bendlim		Cadiman	Chromuim, Cr + 6

BCA-B2 BCA-B2-2527 07/14/94	RESULT QUAL	2.80 1.90 N 0.10 U* 0.40 UWN 0.41 U 0.37 U
BCA-B2 BCA-B2-0002 07/14/94	RESULT QUAL	4.80 3.80 N 0.10 U 5.70 * 0.41 UWN 0.42 U
BCA-B1 BCA-B1-2527 06/30/94	RESULT QUAL	4.10 3.60 * 0.10 U 0.41 UWN 0.42 U 0.38 U
BCA-B1 BCA-B1-0507 06/30/84	RESULT QUAL	6.20 33 * 0.11 U 7.60 0.41 UWN 0.42 U 0.38 U
BCA-B1 BCA-B1-0001DL 06/30/94	RESULT QUAL	
BCA-B1 BCA-B1-0001 06/30/94	RESULT QUAL	8.20 124 0.11 U 8.70 0.43 UL 0.44 U 75 L
LOCATOR: SAMPLE ID: COLLECTION DATE:	UNITS:	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG

Copper Lead Mercury Nickel Selenium Silver Thellium Zinc

پ	QUAL	;)	>	-	>	>	>	=	=) =	> =) :	> :	> :	⊃ .	>	2	>	>	>	>	-	=) 그) <u> </u>) =) =	> =	=) =	, 2	3 =	; ت	3 '	<u> </u>	۵	ă	۵	ă	⊃	
BCA BCA-SS03DL 11/10/94	RESULT		1200	1200	1200	1200	1200	2900	1200	1 200	7200	2000	2300	0071	1200	1200	1200	140	1200	2900	1200	1200	2900	2900	1200	1200	1200	1200	1200	2007	2900	670	0,00	2007	830	3700	3600	0069	2000	7000	1200	İ
ო ↔	QUAL		>	>	כ	-	כ	=) =) =) :	ɔ :	ɔ :)	>	⊃	-	7	כ	כ	. =) =) =) =) =	> =	> =	> =) =) <u>=</u>	o =	ס	-	7		۵		ă		ă	=)
BCA- BCA-SS03 11/10/94	RESULT		390	390	390	390	390	0 15		000	066	380	950	390	390	390	390	150	390	026	066	0 00	0 6	000	000	000	000	000	000	0 0	00.00	000	9 6	53	700	3700	2800	0069	1600	7000	390	
2DL 14	QUAL		>	-	-	¬	_	=) :	o :) :	> :	>	>	>	-	>	2	, ⊃	=	=) =) =)	o	> =) :) :	> :) :	o :	> ;	3	>	2	۵	۵	ă	۵	ă	=)
BCA BCA-SS02DL 11/10/94	RESULT		760	760	760	760	760	200	900	09/	09/	760	1900	760	760	760	760	120	760	00,1	260	100	200	900	900	09/	760	09/	760	09/	1900	008	380	760	640	3200	3100	5800	1700	5900	760	3
2 4	QUAL		>	-	-	- =	=)) :	ɔ :	>	>	>	כ	⊃	>	>	7) =) =	o =	o :	o :	o :	ɔ :	ɔ :	ɔ :) :) :)	- :	>	7	7				XQ	í	č	<u> </u>	>
BCA BCA-SS02 11/10/94	RESULT		380	380	380	380	086	000	930	380	380	380	930	380	380	380	380	110	06	9 6	000	380	380	930	930	380	380	380	380	380	930	930	330	4	470	2800	2300	5800	1500	0005		280
10L 34	QUAL		-	-	=	=) =	: c	> :	-	>	-	⊃	>	-	-	=	=) =	o :	ɔ :))	5	> :	-)	⊃	⊃	⊃	⊃	⊃	2	>	2	۵	۵ د	י בי	<u> </u>	خ د خ	<u> </u>	>
BCA BCA-SS01DL 11/10/94	RESULT		1500	1500	1500	0001	000	000	3200	1500	1500	1500	3500	1500	1500	1500	1500	100	000	0001	3500	1500	1500	3500	3500	1500	1500	1500	1500	1500	3500	3500	250	1500	400	2400	2200	7,00	1000	- 4	2200	1500
01 34	QUAL		_	=	=) =) :)	>	ɔ	-	>	-	כ	_	=	=	· -	: ר) :	> :	>	>))	ɔ	ɔ	ס	5	כ	⊃	-	7	>	7)		2	ś	\$	š	7
BCA BCA-SS01 11/10/94	RESULT		370	370	07.0	0 0	370	370	890	370	370	370	890	370	370	370	0,70	2 5	0 1	370	890	370	370	890	890	370	370	370	370	370	890	890	160	370	230	1700	7 20	2 6	4800 000	920	2200	65
LOCATOR: SAMPLE ID: TION DATE:	UNITS:		HG/KG	116/86		9//90	og/Ro	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	116/KG	וט /גיט	28/00	5 (S) (S)	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	11G/KG	11G/KG	2/01	08/80	UG/KG	UG/KG	06/RG	UG/KG	UG/KG
LOCATOR: SAMPLE ID: COLLECTION DATE:			1 2 4 Trichlorchenzene	1,2,+Illeliotobalizatio	1, Z-Digniorobelizatio	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,2'-Oxybis(1-chloropropane)	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2.4-Dichlorophenol	2 4-Dimethylphenol	2 4-Dinitronhenol	2 A-Dinitrotolilana	Z, t-Dimitoriologic	2,0-Dimilotolidens	z-Chloronaphinalene	Z-Chlorophenol	2-Methylnaphthalene	2-Methylphenol	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4,6-Dinitro-2-methylphenol	4-Bromophenyl phenyl ether	4-Chloro-3-methylphenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acapaphthana	According	Acenaphringing	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Butyl benzyl phthalate

BCA BCA-SS03DL 11/10/94	RESULT QUAL					1200 U			1200 U					1200 U	1200 U			1300		0071		-					0089			1200 U					•	1		,		•
	QUAL RI			۵	7	כ)	-	· =) =	o c	2	2) =	=) =)	:	ɔ :)	>		>	>	۵	J	۵	⊃	>	-			⊃	z		a				
BCA BCA-SS03 11/10/94	RESULT		880	4400	89	390	0. R	7 0	900	000	330	300	020	0 0	000	000	060	000	380	390	390	450	390	950	5700	390	6800	390	390	390			12.10	6.50	53.50	0.37) •	- ;	2	
2DL 94	QUAL		2	۵	3	; =	2	3 7	3 :	ɔ :) (ב :	3 =	> :	o :) :	י כ	۵ ٔ	>	J	ɔ	2	>	Þ	۵	5	۵	つ	-	· =)									
BCA BCA-SS02DL 11/10/94	RESULT		530	3300	98	1	2 60	2 .	210	760	760	5600	380	760	09/	760	760	1700	760	760	760	210	760	1900	3700	760	4800	760	760	760	3		•	į	1		•	1	•	
02 94	QUAL				-	: י	ο.	7	7	>	>	۵	- > :	-	-	-	>		5	Þ	>	, ¬	ר	=)	-	2 د) =	=)	>		11.50 UN				0.50 B	O.98 U	* 0.80	
BCA BCA-SS02 11/10/94	RESULT		440	0000	7 7	- ;	380	290	190	380	380	2600	330	380	380	380	380	1500	380	380	380	180	280	0 0		7000	000	000	9 6	380	380		-		- 1	/6./0	o	Ö	10	
10L 34	QUAL	! ;	ā	3 4	: ב	>	ɔ	2)	-	>	۵	2	>	⊃	o	-	۵	=) =	=	> =) =	o :	0 4	: ב)	: ב	ɔ :	> :)									
BCA BCA-SS01DL 11/10/94	RESULT	1	C	000	3100	1500	1500	460	1500	1500	1500	5300	260	1500	1500	1500	1500	1800	1500	1 200	0 0	1 500	000	0061	3500	3200	1500	4500	1500	1500	1500			1	ı	•	•	•	ļ	
	IAIIO	1001	•	ר		-	>	7	, –	=) =)	7	>	>)	=)	=	> :	o :	> -	; ר	-	>		>		>	>	>			-	z					
BCA BCA-SS01 11/10/94	TILIDEG		,	210	1800	370	370	000	4 8		370	2500	160	370	370	370	0.76		0 0	370	3/0	370	48	370	890	1600	370	2400	370	370	370		İ	10.70	ത	37.30	,,	2 6	6.5	
LOCATOR: SAMPLE ID:				UG/KG	UG/KG	11G/KG	11G/KG	2/01	98/90 97/01	0 X/00	08/80 07/01	08/VG	08/KG) (S) (S)	93/S0	ביינים פיינים	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	58/50 57/61:	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG			MG/KG	MG/KG	MG/KG		0/2/S	MG/KG	
LOCATOR: SAMPLE ID:				Carbazole	Chrisena		Di-n-butyi primalata	Di-n-octyl primalate	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Fluoranthene	Fluorene	Hexachiorobenzene	Hexachlorobutadiene	Hexachlorocyclopentaglene	Hexachloroethane	Indeno(1,2,3-cd)pyrene	Isophorone	N-Nitroso-di-n-propylamine	N-Nitrosodiphenylamine(1)	Naphthalene	Nitrohanzana	Pentachlorophenol	Dhananthrana	Drend	Dyrana	List?-Chloroethoxy)methane	Dis(z-Cinciocinox)	bis(z-Cmoroamyroams) bis(2-Ethvihexvi)phthalate	7)510	r	Antimony	Arcenic	Arseine	Barium	Beryllium	Cadmium	

BCA BCA-SSO3DL 11/10/94	RESULT QUAL	
BCA BCA-SS03 11/10/94	RESULT QUAL	8.20 * 46.90 0.12 U 8.70 B 0.67 UWN 0.76 U 0.86 U 40.40 *
BCA BCA-SS02DL 11/10/94	RESULT QUAL R	
BCA BCA-SS02 11/10/94	RESULT QUAL	10.50 * 62 0.12 U 10.50 0.73 U 0.83 U 53.80 *
BCA BCA-SS01DL 11/10/94	RESULT QUAL	
BCA BCA-SS01 11/10/94	RESULT QUAL	8.80 * 51.60 0.11 U 9.20 0.62 UWN 0.67 U
LOCATOR: SAMPLE ID: COLLECTION DATE:	UNITS:	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG
		Copper Lead Mercury Nickel Selenium Silver Thallium

RESULT COUNTY OF THE PROPERTY	SCOLLECT	LOCATOR: SAMPLE ID: COLLECTION DATE:	BCB-B1 BCB-B1-0002 07/13/94	11 2002 94	BCB-B1 BCB-B1-2527 07/13/94	11 2527 94	BCB-B2 BCB-B2-0002 07/13/94	32 0002 94	BCB-B2 BCB-B2-0002RE 07/13/94	32 002RE ¹⁹⁴	BCB-B2 BCB-B2-2022 07/13/94	32 2022 94	BCB-B3 BCB-B3-0002 07/13/94	3 002 34
UG/KG 111 U		UNITS:	RESULT	QUAL	RESULT	aUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL
UG/KG 11 U 11 U 11 U 11 U 11 U U														;
UG/KG 111 U			•	=	-	=	-	-	11	-	5	-	9	-
10 10 10 10 10 10 10 10	ane	OG/KG	=	o :	= ;	:	: ;	=	-	=	10	-	0	ɔ
UG/KG 111 U	ethane	UG/KG	11	>	-	>	=	•	= ;	· :		=	ç	=
UG/KG 111 U 111 U 111 U 111 U 111 U 110 U 100 U		0// 011	11	=	11	>	Ξ	>	Ξ	>	2	> :	2 ;) :
UG/KG 111 U	2	08/00	- ;	=	-	=	11	-	=	>	9	>	2	>
UG/KG 111 U		UG/KG	_	>	= :	:	: ;) =		=	5	_	5	>
UG/KG 111 U		UG/KG	-	>	11	>	=	-	- ;) :	2 5	=	1	=
UG/KG 11 U 11 U 11 U 11 U 11 U 11 U 11 U 11		ווט/געט	11	>	11	>	11	>	=	>	2	o :	2 9) =
UG/KG 111 U	:	92/95	• •	=		Ξ	1	>	=	>	9	>	2	o
UG/KG 111 U	(Total)	UG/KG	=	5	- ;			=	-	=	10	>	5	>
UG/KG 11 U 11 U 11 U 11 U 11 U 11 U 11 U 10 U	9	OG/KG	1	5	=	>	_	>	- :	:		=	Ç	=
UG/KG 11 U 11 U 11 U 11 U 10 U 10 U 10 U 10	!	יוני יוגני	11	=	-	>	Ξ	>	=	>	2)	2 9) :
UG/KG 111 U		00/20	- ;) :	: ‡	=	11	=	-	-	10	>	2	>
UG/KG 111 U 11 U 11 U 11 U 11 U 11 U 11 U 1		OG/KG	Ξ	5	-) :) =	-	-	5	_	5	>
UG/KG 11 U 11 U 11 U 11 U 11 U 10 U 10 U 10	900	UG/KG	-	>	=	>	=	>	- ;	י כ	7 -	0	35	œ
UG/KG 11 U 11 U 11 U 11 U 10 U 10 U 10 U 10	2	0//011	96	ď	32	Ω	37	Ω	69	20	/7	Δ ;	3 4	1 :
UG/KG 11 U 11 U 11 U 11 U 11 U 11 U 11 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U 11 U		92/90	3 -) :		=	11		-	>	5	>	2	>
UG/KG 111 U		OG/KG	Ξ	>	_ ;	o :	:) =	-	=	10	>	10)
UG/KG 111 U	hane	UG/KG	1	>	-	>	= :	:	- ;) =	. 5	=	10	_
UG/KG 11 U 11 U 11 U 11 U 11 U 11 U 11 U 11		119/KG	11	-	=	>	=	>	_	o :	2 ;) :	9 5	=
UG/KG 11 U 11 U 11 U 11 U 10 U 10 U 10 U 10				=	11	-	=	>	11	>	2	>	2 :	o :
UG/KG 111 U 111 U 111 U 111 U 111 U 111 U 110 U 100 U		9/\s0	= ;	: :		=	Ξ	=	Ξ	>	5	¬	9	>
UG/KG 111 U		UG/KG	_	>	= :	o :	- ;) =	-	=	10	-	5	Þ
UG/KG 111 U	90	UG/KG	Ξ	5	=	>	=	>	= :) :	9 6	=	5	=
UG/KG 11 U 11 U 11 U 11 U 11 U 11 U 11 U 10 U 10 U 10 U 10 U 11 U	3	ווטיוגט	11	=	-	⊃	=	>	=	>	2 ∶	> :	2 9) =
UG/KG 11 U 11 U 11 U 11 U 11 U 11 U 10 U 10		9//90	- •) =	-	=	-	⊃	Ξ	⊃	9	>	2	o :
UG/KG 111 U 11 U 111	OG/KG	-	o :	= ;) :		=	11	⊐	10	-	5	>	
UG/KG 11 U 11 U 11 U 11 U 10 U 10 U 10 U 10		UG/KG	=	>	Ξ	o	= ;	.	- ;	=	5	7	10	>
UG/KG 11 U 11 U 11 U 11 U 10 U 10 U 10 U 10		UG/KG	=	>	-	>	=	כ	= :	:	2 5	=	5	=
UG/KG 11 U 11 U 11 U 10 U 10 U 10 U 10 U 10	!	0/1/011	11	=	11	>	=	>	Ξ	>	2 :	:	2 :) =
UG/KG 11 U 11 U 11 U 10 U 10 U 10 U 10 U 10	euedo.	04/90	: ;) =	-	=	11	=	=	>	9	>	2	>
UG/KG 11 U 11 U 11 U 10 U 10 U 10 U 10 U 10	thane	OG/KG	=	o :	- :) :		=	-	7	10	>	5	>
UG/KG 10 JB 9 JB 14 B 59 B 7 10 10 10 10 10 10 10 10 10 10 10 10 10		OG/KG	=	>	=	>	= :	، د	- C		7	ā	5	മ
UG/KG 11 U 11 U 11 U 10 U 10 U 10 U 10 U 10		IIG/KG	0	8	6		14	m	n O	Δ ;	` ;	3 =		=
UG/KG 111 U 111 U 111 U 10 U 10 U 10 U 10 U	,			=	11	-	=	>	=	>	2)	2 9) =
UG/KG 11 U 11 U 11 U 10 U 10 U 10 U 10 U 10		06/80	- ;) =	-	=	-	7	=	-	5	>	2	>
UG/KG 11 U 11 U 11 U 10 U 10 U 10 U 10 U 10		OG/KG	=)	- ;) :	:	=	11	=	01	_	9	>
UG/KG 11 U 11 U 11 U 10 U 10 U 10 U 10 U 10		UG/KG	7	>	Ξ	>	- :	:	- ;	=	5	=	10	⊃
UG/KG 11 U 11 U 11 U 10 U 10 U 10 U 10 U 10	900000	UG/KG	11	-	=	>	=	>	=	> :	2 ;) :		=
UG/KG 11 U 11 U 11 U 10 U 10 U 10 U 10 U 10	anadaid			=	1,	-	Ξ	-	=	>	2	>	2 ;) :
UG/KG 11 U 11 U 11 U 10 U 10 U 10 U 10 U 10		9/20	- ;	:		Ξ	17	=	_	-	9	>	2	0
UG/KG 11 U 11 U 11 U I O CO CO CO CO CO CO CO CO CO CO CO CO C		OG/KG	=	>	=	>	= :	:		Ξ	5	=	10	J
וופאכ 340 ט 350 ט 340 ט 340		UG/KG	11	-	=	>	-	>	=	>	2	•	2	
16 KG 360 U 350 U - 340 U 340														
116/kg 360 U 340 U 350 U 350							ļ	:			240	=	340	כ
		וופי/אנט	360	>	340	⊃	350	>	•		540	כ)))

c	ı	QUAL	5	-	5	-	>)	>	D	-))	> :)) :	> :	> :)	> :	ɔ :	> :	> :	> :	> :))	ɔ :)	⊃ :	٥.	7			×	7	×	=)
BCB-B3	07/13/94		340	340	340	340	830	340	340	340	830	340	340	340	340	340	340	830	340	340	830	830	340	340	340	340	340	830	830	340	340	94 6	490	520	000	100	1400	340	2
a	0	RESULT	(4)	(*)	•••	(*)	w	(*)	(*)	(*)	w	(*)	.,				,	ω ,	,		ω ,	ω .	.,	(*)	(.)	(*)	(7)	ω .	ω	.,	,		7	u,	2	•	17	•	,
22	94	QUAL	כ	>	>	⊃	>	>	>	-	>	>	>	⊃	>	> 1	5	>	-	> :	>	>	>	⊃	⊃	>	>	>	>	> :	-	> :	>	>	⊃	>	_	Ξ)
BCB-B2	07/13/94	RESULT	340	340	340	340	820	340	340	340	820	340	340	340	340	340	340	820	340	340	820	820	340	340	340	340	340	820	820	340	340	340	340	340	340	340	340	270	2
2000	34 34	QUAL																																					
BCB-B2	07/13/94	RESULT	•	•	•	1	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	1	•	•	1		ı
2	200	aUAL	>	-	>	>	>	>	>)	-	>	⊃	5	Þ	Þ	J	>	>	-	⊃	>	>	-	⊃	>	-	>	>	>	>	7	ה	7	×	. –	· >	< :	>
BCB-B2	BCB-B2-0002 07/13/94	RESULT	350	350	350	350	840	350	350	350	840	350	350	350	350	350	350	840	350	350	840	840	350	350	350	350	350	840	840	350	350	70	310	210	440	130	24.9	9 9	320
_ ;	52/ 14	QUAL	5	-	>	>	· >)	>	Þ	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	⊃	>	Þ	>	>	>	>	- =	=	> =	> :	>
BCB-B1	BCB-B1-252/ 07/13/94	RESULT	340	340	340	340	830	340	340	340	830	340	340	340	340	340	340	830	340	340	830	830	340	340	340	340	340	830	830	340	340	340	340	340	340	0 6	, c	040	340
_	002 14	QUAL	>	>))	=) =) ⊃	· >))	· ⊃	-	>	>	>	_	ב	>	-	· >	>	-	>)	· ⊃	· >))	>)	>	D	7			×	< -	, ר	<	>
BCB-B1	BCB-B1-0002 07/13/94	RESULT	360	360	360	360	870	360	360	360	870	360	360	360	360	360	360	870	360	360	870	870	360	360	360	360	360	870	870	360	360	82	680	760	1300	200	000	1800	360
LOCATOR:	SAMPLE ID: TION DATE:	UNITS:	וופי/אנט	UG/KG	11G/KG	וט/אט	פאנט וויט	08/KG	13/KG	OS/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	11G/KG	10/KG	UG/KG	UG/KG	11G/KG	UG/KG	UG/KG	UG/KG	UG/KG	וט /אט	02/01	98/90	06/RG	UG/KG	UG/KG
	SAMPLE ID: COLLECTION DATE:		1 2 Dickloschenzene	1 3. Dichlorobenzene	1 4 Dichloropena	2.2. Om this (1 obligation and)	2,2 -Oxypist I-ciliotopiopans)	2,4,3-ircliiotophenol	2.4.0-incliniophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2 4-Dinitrotoluene	2 6-Dinitrotoluene	2-Chloronanhthalene	2-Chlorophanol	2-Methylpaphthalene	2-Methylphenol	2-Nitrospiline	2-Nitrophenol	3-3'-Dichlorobenzidine	3-Nitroaniline	4 6-Dinitro-2-methylphenol	4. Bromonhand phenyl ether	4-District 3-methylphenol	4.Chloropiline	4-Cillotosiumis	4-Chordeligh phenyl chief	4-Nitrospiline	4 Mittophenol	Acenanhthane	Acenephthylene	Anthracene	Benzo(a)anthracene		Benzo(a)pyrene	Benzo(b)fluorantnene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Butyl benzyl phthalate

	aUAL	-		>	-	7	-	-	>		-	-)	-	ח	. ¬	=) =	:	ɔ :	>	>	>	7	⊃		-	ם	=	•		=	Z :	z		ω)	z	¬		
BCB-B3 BCB-B3-0002 07/13/94		_	. ~	_	_	ιo	C	c	c	0	0	0	0	0			, (ę c	Ç.	Q	ç	오	830	330	340	650	340	340	2 5	2		•	3.10	8.70	•	0.22	0.35	6.80	0		
BCB-B3 07/1	RESULT	340	230	340	340	85	340	340	340	820	340	340	340	340	340	200	1 6	340	340	340	340	340	88	ë	ř	9	i č	י מ	ה כ	'n											
	AL	=) =	, -) =	· ⊃	_	· ⊃	-	>	כ	_	=) =	> =	> =	> :)	>	-	-	_	כ	_	=	=) =)	>				z	z		α	=	2 2	: =)	
-82 :-2022 3/94	QUAL						_		_							.	_	0	0	0	0					, (,	• ç	o,	Q			3.50	5.30		1,		9.0	9	>	
BCB-B2 BCB-B2-2022 07/13/94	RESULT	6	340 040	ot o	2 70	340	340	340	340	340	340	340	2 6	ŕ	040	340	340	340	340	340	340	340	820	240	2 5	7	040	340	340	340											
111	AL																																								
BCB-B2 B-B2-0002RI 07/13/94	QUAL											,		,	,						ı				,	,	,			•											
BCB-B2 BCB-B2-0002RE 07/13/94	RESULT		•	•			•																																		
			5	7	-	>	7)	> :	-		-	>	-	>	-	-	· =) =	o :	ɔ :	-	>	>	7	>	7	>	¬	. –	י		•	5	Z		Ω	z	z		
-B2 0002 3/94	QUAL						_	_	_	_	_	_	_	_	_					o ,	0	0	0	0	0	0	0	Q		0 0	Š		1	3.20	က		0.16	2.70	58.10	0.02	
BCB-B2 BCB-B2-0002 07/13/94	RESULT		350	260	350	350	30	350	320	350	410	350	350	350	350	350	160	2 6	ה ני מ	320	320	350	350	840	210	350	330	350	200	,	_										
	ā	į	-	-	7	כ	-	-	-	-	-	-	-	=) =) =) :	ɔ :	>	-	>	-	-	5	¬	=	=	=	.	> :	5			z	z		_	Z	z	: >	ı
.B1 -2527 2/94													_					_	_	_	_	_		0					.	0	0			3.20	7		0 12	98.0	200) ; ;	•
BCB-B1 BCB-B1-2527 C7713/94	FILLORG	1002	340	340	45	340	340	340	340	340	340	340	340	2 6	2 6	2 4	÷ .	340	340	340	340	340	340	830	340	240	2 6	7 0	340	340	340										
			-	,	_	· =	, –	, =	· =	· –	,	_	, =) :	ɔ :	o :	>		>	ם	ר	-) =) =)	:	>	;	>	>	7			Z	2 2	•	c	n <u>:</u>	5 2	z :	כ
B1 -0002	48	GUAL																			_					_	_	_	0	0	0			200	7.50	3.		0.21	0.37	9.6 0	0
BCB-B1 BCB-B1-0002	07/13/94	RESULT	Ü	ה כ סנ	200	נין נין	9 6	960	200	200	5 5	227	1 0	360	360	360	360	540	360	360	260	200	000	מ מ	8,0	200	360	930	360	360	230										
			,	9	9 9	9	<u>.</u>	<u> </u>	2 9	98/80 00/80	06/RG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	116/KG	52/50 10/50	2 2	OG/RG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	HG/KG	19/KG			0	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	mg/L
LOCATOR: SAMPLE ID:	ON DA	UNITS:		DG/KG	UG/KG	06/KG	06/KG	06/KG	94/90 0%/01:	9 C	9 C	פֿר פֿר	00	ອ	ย	อ	ย	90) =	3 =	5 :	ء 5	ָ ב	٠ ک	Š	š	ĭ	ĭ	ĭ	Ĭ	5 <u>=</u>	5		•	ŽΊ	Σ	Σ	Σ	Σ	Σ	
- <i>Y</i> s	COLLECTION DATE:							•								Jiene		9	<u> </u>			ъе(1)							ethane	;	1000	alate									
	ၓ					alate	alate	thracen		5	late			zene	adiene	lopenta		arre Aborton	ajbyra	•	propyla	ənylamir			enol				hovoda	יייעאטויי	inyi)etn	cyi)pntn									ı + 6
				ě	9	Di-n-butyl phthalate	Di-n-octyl phthalate	Dibenzo(a,h)anthracene	furan	Diethyl phthalate	Dimethyl phthalate	thene	•	Hexachlorobenzene	Hexachlorohitadiene	Hoxachlorocyclopentadiene	4	Hexachloroetharie	Indeno(1,2,3-cd)pyrene	rone	N-Nitroso-di-n-propylamine	N-Nitrosodiphenylamine(1)	Naphthalene	Nitrobenzene	Pentachlorophenol	Phananthrane	_		ryreiis : - /a Chlorosthowylmethans		bis(2-Chloroetnyi)ether	bis(2-Ethylhexyl)phthalate)oray	. <u>0</u>	F	En.	Eng.	Chromium	Chromuim, Cr + 6
				Carbazole	Chrysene	Di-n-bu	Di-n-oc	Dibenzo	Dibenzofuran	Diethyl	Dimeth	Fluoranthene	Fluorene	Hexach	- Avevel	Toyour T	יייייייייייייייייייייייייייייייייייייי	Hexaci	Indeno	Isophorone	N-Nitr	N-Nitro	Napht	Nitrob	Pentac	Phana	or and		, c,	-7)SIQ	bis(2-	bis(2-		ო	Antimony	Arsenic	Barium	Reryllium	Cadmium	Chro	Chro

BCB-B3 BCB-B3-0002 07/13/94	RESULT QUAL	6.10	13.70 *	0.10 U	თ	0.41 UWN	0.42 U	0.38 U	25 EN
BCB-B2 BCB-B2-2022 07/13/94	RESULT QUAL	6.40	3.40	0.10 U	15.10	0.40 UWN	0.41 U	0.37 UW	17.80 EN
BCB-B2 BCB-B2-0002RE 07/13/94	RESULT QUAL	•		•				•	,
BCB-B2 BCB-B2-0002 07/13/94	RESULT QUAL	24.60	200	0.11 U	4.30 U				112 EN
BCB-B1 BCB-B1-2527 07/13/94	RESULT QUAL			0.10 U		_			12.80 EN
BCB-B1 BCB-B1-0002 07/13/94	RESULT QUAL	12.40	36.30	0.11	06.8	0.43 UN	0.44	500	41.20 EN
LOCATOR: SAMPLE ID: COLLECTION DATE:	UNITS:	MG/KG	DVG /KG	No.Kg	MG/KG	MG/KG	Mag/Kg	DAI, DIM	MG/KG
		,	indeposit	Maronny	Niekel	Solenium	City	Silver Freilist	Zinc

12	QUAL	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Þ
BCC-B1 CC-B1-1012 07/14/94	RESULT	22222222222222222222222222222222222222	390
05 + 05	OUAL		כ
BCC-81 BCC-81-0002 07/14/94	RESULT		350
21 +	QUAL		כ
BCB-B4 BCB-B4-1012 07/13/94	RESULT	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	340
2 0 .	QUAL F		כ
BCB-B4 BCB-B4-0507 07/13/94	RESULT	555555555555555555555555555555555555555	340
7	JUAL		ר
BCB-B4 BCB-B4-0002 07/13/94	RESULT	55555555555555555555555555555555555555	340
= -	JOAL		5
BCB-B3 BCB-B3-1011	RESULT	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	340
LOCATOR: SAMPLE ID:		UG/KG UG/KG	UG/KG
OT	COLLECTION DATE: UNITS:	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Bromodichloromethane Bromodichloromethane Bromoform Bromodichloromethane Chlorobenzene Chloropene Chloroethane Chloromethane Chloromethane Chloromethane Chloromethane Chloromethane Chloromethane Chloromethane Cis-1,3-Dichloropropene Dibromochloromethane Ethylbenzene Styrene Tetrachloroethene Tetrachloroethene Trichloroethene Trichloroethene Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride	2 1,2,4-Trichlorobenzene

BCC-B1 BCC-B1-1012 07/14/94	J QUAL	э 0	л	n 0	о О	o	⊃ 0	ວ : ດ	o :	n :	o :) :)	o:	o :	o :	o :	o :	o:	o :	o :	o :	o :	o:	o:	o:) :)	o :	o:	o :	o :	o :	o :	o :	o :	o :	o	= c
BCC-1	RESULT	390	390	390	390	940	390	390	390	940	390	390	390	088	380	390	040	390	390	940	940	390	390	390	390	390	040	940	390	390	390	390	390	390	390	390	290
BCC-B1 BCC-B1-0002 07/14/94	QUAL	5	-	-	5	-	D	>)	-	> :)	> :	:	> :	> :	> :	- :	-	> :	-) :	> :	> :	> :	> :) :)) :	O	> 1	-	> :	-		⊃	=
BCC-B 07/1	RESULT	350	350	350	350	840	350	320	350	840	350	350	350	320	350	350	840	350	320	840	840	350	320	350	350	320	840	840	350	350	350	350	350	350	350	320	080
-B4 1-1012 3/94	QUAL)	>	>	>	>	>	>	>		ɔ :	-	.	-)	- :	-	⊃	-	>	-	>	-	⊃	-	> :)	-	-	>	-	>	-	>	-	>	=
BCB-B4 BCB-B4-1012 07/13/94	RESULT	340	340	340	340	820	340	340	340	820	340	340	340	340	340	340	820	340	340	820	820	340	340	340	340	340	820	820	340	340	340	340	340	340	340	340	()
-B4 -0507 3/94	QUAL	-	· >)	כ	_	כ	-	>	_	>	>	⊃	>	>	>	>	כ	J	⊃	5	-	J	¬	J	>	>	>	>)	J	J	⊃	⊃	J	Þ	:
BCB-B4 BCB-B4-0507 07/13/94	RESULT	340	340	340	340	810	340	340	340	810	340	340	340	340	340	340	810	340	340	810	810	340	340	340	340	340	810	810	340	340	340	340	340	340	340	340	
-B4 -0002 3/94	QUAL	=	=) >) ⊃	· >	>	>	>	J	7	>)	>	כ	S)	J	J	n	⊃	>	Þ	¬	Þ	⊃	כ	כ	J	כ)	7	7	Z	J	2	: :
BCB-B4 BCB-B4-0002 07/13/94	RESULT	340	340	340	340	820	340	340	340	820	340	340	340	340	340	340	820	340	340	820	820	340	340	340	340	340	820	820	340	340	340	52	56	100	340	140	: :
-B3 -1011 //94	QUAL	=	=	> =	=) >	· ⊃) >	>)	>	⊃	⊃	>	⊃	כ	Þ	Þ	>	_	>	-	>	>	Þ	>	⊃	⊃	>	>	כ	כ	>	>	>)	,
BCB-B3 BCB-B3-101 07/13/94	RESULT	340	24.0	340	340	820	340	340	340	820	340	340	340	340	340	340	820	340	340	820	820	340	340	340	340	340	820	820	340	340	340	340	340	340	340	340	
LOCATOR: SAMPLE ID: COLLECTION DATE:	UNITS:	0///011	ופי/גפ	DG/KG	ופיאנפ	116/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	IIG/KG	
S/S		O Distriction	,z-Dichioropenizene	, s-Dichlorobenzene	1,4-Dicimologalizaria	2,2 -Oxybis(1-ciliotopiopalie) 2,4 Effichlorophenol	2, 4, 5-frichlorophenol	2, 4, 0-inclinate programs	2.4-Dimethylphenol	2.4-Dinitrophenol	2,4-Dinitrotoluene	2.6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methylnaphthalene	2-Methylphenol	2-Nitroaniline	2-Nitrophenol	3 3'-Dichlorobenzidine	3-Nitroaniline	4 6-Dinitro-2-methylohenol	4-Bromophenyi phenyl ether	4-Chloro-3-methylohenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenanhthylene	Anthracene	Renzo(a)anthracene	Benzo(a)nvrene	Benzo(h)fluoranthene	Denzo(a h ilhendene	Jones (Lyffingrouthone	Denzo(K/IIIdoralitificing

B1 1012 /94	QUAL	=) =	.	7	¬)	П	=	> =) :	o :)		_	¬	⊃	J					o =		o :			D	o '	⊃ [·]	~ ~		**	3.60 0.	1.80 N		_	_	5.30 *	⊃ 0		
BCC-B1 BCC-B1-1012 07/14/94	RESULT	Coc	900	380	82	390	390	000	000	066	390	390	390	390	390	390	390	068	0 0	066	066	066	380	390	940	390	390	390	390	390	63			.,		,	•	Ū	-			
2	QUAL	:)	>	7	=) =	:	> :)	>	>	>	>	-	=	=) =	:	> :)	-	>	>	>	⊃	>	>)	>	7			_	z		<u>۔</u>	⊃ "		_	,	
BCC-B1 BCC-B1-0002 07/14/94	RESULT		350	350	100	, C	000	350	320	350	350	350	350	350	350	9 6	000	320	350	350	320	350	350	350	840	350	350	350	350	350	77	•		3.20	1.90	•	0.12	0.36	6.10		>	,
12	QUAL		-	_	. =) :	: כ	>	ɔ	Þ	-	כ	=	=	=	o :	: כ)	>	כ	כ	Þ	ɔ	>	>))	=) =) =) =	, –	,		NO O			-	-		z :		
BCB-B4 BCB-B4-1012 07/13/94	RESULT		340	340	5 6	9	340	340	340	340	340	340	340	2 5	9 6	340	340	340	340	340	340	340	340	340	820	340	9 6	240	9 6	4 6	04 A	2		3.10	2.10	•	-	- 6	0.35	07.0		>
	QUAL		_) :	> :	>	>	>	=)	=	> =) :	> :	> :	-	>	>	-	כ	_	=) =) =) =	o :	> :	ɔ :	> :	> :	> :	>		-	J _	1	=	0	5	_		=
BCB-B4 BCB-B4-0507 07/13/94	RESULT OI		340) t	340	340	340	340	340	340	9 6	340	340	340	340	340	340	340	340	340	340	5 6	0,40	340	340	810	340	340	340	340	340	340		c	3.80	12.70	•	0.13	0.35	œ		c
			=	-	_	>	_	- =) :) =	o :	> '	7	-	-	-	_	· =) =)	o :	ɔ :))	> :	>	7)	7	>	>	D		;	z	z		¬	S	z		:
BCB-B4 BCB-B4-0002 07/13/94	DESCRIPT OUAL		•	340	74	340	340	2 5	040	340	340	340	140	340	340	340	340	240	010	340	340	340	340	340	340	820	80	340	100	340	340	340			3.20	11.40	•	0.11	0.35	7.30		ı
	2	ļ		-	_	. =) =	ɔ :	-	5	-	-	-	_	7) =	> =	o :	>	> '	>	⊃	>	-	-	-	_	· ⊃	_	· ⊃))))			z	z		α	<u> </u>	; z	:	:
BCB-B3 BCB-B3-1011	, 10,	RESULT OU		340	340	0 0	340	340	340	340	340	340	340	340	340	9 4	340	340	340	340	340	340	340	340	340	820	340	340	340	340	340	340	2		4.70	8.50		,,,	0.22			0.4.0
	i	UNITS: RE		יוט /עט		06/80	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	IIG/KG	116/KG	28/01	08/07	06/RG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	HG/KG	11G/KG	116/KG	ופ/גפ	28/00	58/50	5 / S / S / S / S / S / S / S / S / S /	08/VG	08/V0	06/86	54/90 0		MG/KG	MG/KG		MG/KG	MG/KG	MG/KG		ر کار/کا
LOC	COLLECTION DATE:				Carbazole	Chrysene	Di-n-butyl phthalate	Di-n-octyl phthalate	City of houthracens	Dibenzo(a,man		Diethyl phrhalate	Dimethyl prinalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	i mochlomothane	nexaciliotomics:		Isophorone	N-Nitroso-di-II-propyimino	N-Nitrosodipnenyiamine	Naphthalene	Nitrobenzene	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl)ether	bis(2-Ethylhexyl)phthalate		·	Antimony	Arsenic	Barium	Beryllium	Cadmium		

BCC-B1 BCC-B1-1012 07/14/94	RESULT QUAL	2 B 1.60 N 0.12 U 4.70 U* 0.48 U 0.43 U
BCC-B1 BCC-B1-0002 07/14/94	RESULT QUAL	6 10.20 N 0.10 U 4.50 * 0.41 UWN 0.42 U
BCB-B4 BCB-B4-1012 07/13/94	RESULT QUAL	3.80 1.80 * 0.10 U 21.30 0.40 UWN 0.41 U 0.37 UW
BCB-B4 BCB-B4-0507 07/13/94	RESULT QUAL	4.40 4.50 0.10 6.90 0.40 0.41 0.37 U
BCB-B4 BCB-B4-0002 07/13/94	RESULT QUAL	7.30 16.20 * 0.10 U 10.30 0.40 UWN 0.41 U 0.37 U
BCB-B3 BCB-B3-1011 07/13/94	RESULT QUAL	6.80 6.50 0.10 0.40 UWN 0.41 U 0.37 UW
LOCATOR: SAMPLE ID: COLLECTION DATE:	UNITS:	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG
		Copper Lead Mercury Nickel Selenium Silver Thallium

75	QUAL		
BCC-B4 BCC-B4-0002 07/14/94	RESULT (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	aual F		
BCC-B3 07/14/94	RESULT	22222222222222222222222 88	
	aual f	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	
BCC-B3 BCC-B3-0002 07/14/94	RESULT	### ##################################	
212	QUAL	ם כככככככמככככככככ ככככככככככ)
BCC-B2 BCC-B2-1012 07/14/94	RESULT	55555555555555555555555555555555555555	5
4	QUAL		5
BCC-B2 BCC-B2-0507 07/14/94	RESULT	======================================	320
202	QUAL	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	⊃
BCC-B2 BCC-B2-0002 07/14/94	RESULT	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	340
LOCATOR: SAMPLE ID:	UNITS:	UG/KG UG/KG	UG/KG
LOCATOR: SAMPLE ID:		1,1,1-Trichloroethane 1,1,2,2-fetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Butanone 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Bromodichloromethane Bromodichloromethane Carbon disulfide Carbon disulfide Carbon tetrachloride Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Thoroethane Chloroethane Chloroethane Tolloroethane Tichloroethene Tolluene Tetrachloroethene Tolluene Trichloroethene Tichloroethene Vinyl chloride Xylenes (Total)	2 1,2,4-Trichlorobenzene

4 002 34	QUAL	ס	⊃	>	>)	-	> :)	-	⊃	⊃	>	>	ɔ	>	>	>	>	>	>	⊃	> :	> :	> :	> :	> :)	>	> :	> :)	>	>	>	Þ
BCC-B4 BCC-B4-0002 07/14/94	RESULT	340	340	340	340	830	340	340	340	830	340	340	340	340	340	340	830	340	340	830	830	340	340	340	340	340	830	830	340	340	340	340	340	340	340	340	340
3 416 94	QUAL	⊃	>	>	>	>	>	>	> :	>	>	>	-	>	>	>	>	-	5	>	>	-	⊃	>	>	> :	-	>	-	-	>	>	>	>	>	>	>
BCC-B3 BCC-B3-1416 07/14/94	RESULT	380	380	380	380	920	380	380	380	920	380	380	380	380	380	380	920	380	380	920	920	380	380	380	380	380	920	920	380	380	380	380	380	380	380	380	380
3 0002 34	QUAL	>	J	>	>	>	>	Þ	>	-	⊃	>	כ	J	>	Þ	ɔ	>	>	-	-	>	⊃	_	-	>)	ɔ)	>	⊃	⊃	>	-	⊃	>	-
BCC-B3 BCC-B3-0002 07/14/94	RESULT	340	340	340	340	830	340	340	340	830	340	340	340	340	340	340	830	340	340	830	830	340	340	340	340	340	830	830	340	340	340	340	340	340	340	340	340
2 012 34	QUAL	>	>	>	>	>	>	>	>	>	-	⊃	-	_	-	-	-	-	-	>	⊃	-	>	>	>	>	>	>)	J	>	>	>	>	>	>	>
BCC-B2 BCC-B2-1012 07/14/94	RESULT	6100	6100	6100	6100	15000	6100	6100	6100	15000	6100	6100	6100	6100	6100	6100	15000	6100	6100	15000	15000	6100	6100	6100	6100	6100	15000	15000	6100	6100	6100	6100	6100	6100	6100	6100	6100
2)507 94	QUAL	-	>	>	-	>	_	>	>	-	⊃	-	>	>	>	ר	>	>	>	>	>	>	>	⊃	>	>	>	>	J	J	⊃	>	⊃	>	>	⊃)
BCC-B2 BCC-B2-0507 07/14/94	RESULT	350	350	350	350	840	350	350	350	840	350	350	350	350	350	350	840	350	350	840	840	350	350	350	350	350	840	840	350	350	350	350	350	350	350	350	350
2 1002 34	QUAL	-	>	>	>	⊃	-	>	⊃)	>	-	>	>	>	-	>	>	>	>	>	>	>	>	_	>	>	>	כ	J	>	>	>	>	>	>	¬
BCC-B2 BCC-B2-0002 07/14/94	RESULT	340	340	340	340	830	340	340	340	830	340	340	340	340	340	340	830	340	340	830	830	340	340	340	340	340	830	830	340	340	340	340	340	340	340	340	340
LOCATOR: SAMPLE ID: TION DATE:	UNITS:	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG
LOCATOR: SAMPLE ID: COLLECTION DATE:		1.2-Dichlorobenzene	1.3-Dichlorobenzene	1.4-Dichlorobenzene	2.2'-Oxvbis(1-chloropropane)	2,4,5-Trichlorophenol	2, 4, 6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methylnaphthalene	2-Methylphenol	2-Nitroaniline	2-Nitrophenol	3.3'-Dichlorobenzidine	3-Nitroaniline	4.6-Dinitro-2-methylphenol	4-Bromophemy phenyl ether	4-Chloro-3-methylphenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(a.h.i)perviene	Benzo(k)fluoranthene	Butyl benzyl phthalate

8	QUAL	J	>	7	=) =	o :	ɔ :	> '	>	>	-	_	-	=) :)	: כ	>	>	>	¬	=	=	> =	> =	o :	> :	>	>	>		:	.	z		മ		*	⊃		
BCC-B4 BCC-B4-0002 07/14/94		340	340	120	240	2 5	340	340	340	340	340	340	340	340	970	2 9	340	340	340	340	340	340	3.40	0 0	2 5	340	340	340	340	340	340			3.10	1.50	,	0.14	0.39	5.40	0		
BCC 9	RESULT	'n	m	_	۰ ،	9 (. 0	m	m	က	ო	n	m	· 67	יז נ	, (י כיה	(**)	(7)	(")	(1)		, (, .				••	•••	••	• •											
9 .	QUAL)	=	, -	, :	> :	>	>	⊃	>	-	>	=) =) =	> :	>	-	>	>	=	=)	o :	> :	>	>	-	⊃	>	7			* -	z		D	=		=)	
BCC-B3-1416 07/14/94	RESULT	380	Cac	9 9	00	380	380	380	380	380	380	380	000		280	380	380	380	380	380	0 8 6	9 6	380	380	920	380	380	380	380	380	320			3.50	7	ı ¹	0.13	0.40	, , ,	٠ .	>	
	QUAL	=) =	ъ.	7	>	-	-	>	- =	> =	> =)	o :	>	>	_	-) =	> =	ɔ :	-	>	-	כ	>	-	>	=	, -	,		*	z	•	=	> =	> *			
BCC-B3 BCC-B3-0002 07/14/94	RESULT OL	2	540	340	74	340	340	340	340	970	5 6	5 6	340	340	340	340	340	340	340	5 6	040	340	340	340	830	340	340	340	340	0 6	2 4 5	<u>}</u>		3.20	01.6	7. 7		2.0	0.30	5.00	0.01	
98			.	-	-	つ		· =) =) :	.	:	> '	-	-	-	_	=) =)	> '	>	>	>)	_	=) =) =	o :	.	5		=	7		:	>	>			
BCC-B2 BCC-B2-1012 07/14/94	QUAL			_	_	_					_	_	_	_	_	_			.	.	0	0	0	0	0					۰ د	0	0		,	2.5	1.60		0.14	0.42	5.10	0.01	
BCC-B: 07/1	RESULT		6100	6100	6100	6100	6100	200	2 6	2 5	6100	9100	6100	6100	6100	6100	6100	9 6	0 0	9100	6100	6100	6100	6100	15000	6100	0019	9 6	9100	2 9	6100	6100										
_	QUAL		>	-	7	=) =)	ɔ :	>	>	>	-	>	¬	=) =) :)	>	>	>	>	_	=) =	> =	o :	> :	>	⊃	>		;	-	N N		>	>	*	>	
BCC-B2 CC-B2-0507 07/14/94			350	350	79	010	2 6	220	350	350	350	350	350	350	350	0 0	000	350	350	350	350	350	350	250		0 t	000	350	320	350	350	350			3.20	8.20		0.12	0.36	3.40	0	
BG	RESULT		.,			•			•																																	
202	QUAL	!	>	=	, -	? :	> :	>	>	⊃	⊃	>	¬	=	=	:	> :	>	-	⊃	>	=	> =	> =	o :	> :	>	>	-	_)	7				O AN		ח				ļ
BCC-B2 BCC-B2-0002 07/14/94	RESUIT		340	340		76	340	340	340	340	340	340	340	0.70	5 6	340	340	340	340	340	340	0 6	9 4	340	340	830	340	340	340	340	340	38			3.10	8.70	•	0.11	0.35	7.1	200	;
LOCATOR: SAMPLE ID:		5	וופ/אנפ		03/90	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	HG/KG	92/90		54/90 57/90	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	02/20	08/90	06/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	HG/KG	UG/KG			MG/KG	MG/KG	MG/KG	MC/KG	MG/KG	02/044	5/2/2/NG/NG	mg/L
LOCATOR: SAMPLE ID:	COFFECTION					ŧ	te	acene				D			90	ene	entadiene		VIEDA	2112140		pytamine	lamine(1)			70				w.hmothana	Aylındındın Nether	retirei ohthalate										vo.
				Carbazole	Chrysene	Di-n-butyl phthalate	Di-n-octyl phthalate	Dibenzo(a,h)anthracene	Dibenzofuran	District phthelate	Dietnyl printiglare	Ulmetinyi pintinanata	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Levechloroethane	Texacillotocillotocal	Indenov 1, 2, 3	Isophorone	N-Nitroso-di-n-propyiamine	N-Nitrosodiphenylamine(1)	Naphthalene	Nitrobenzene	Pentachlorophenol	Phananthrane	Dheno		ryrene	bis(z-chloroethoxy/memano	bis(2-Chioroethy)ethel	DIS(2-LuiyinoAyi)	,		Antimony	Arsenic	Barıum	Beryllium	Cadmium	Chromium	Chromuim, Cr + 6

BCC-B4 BCC-B4-0002 07/14/94	RESULT QUAL	4.10 2.50 0.10 0.10 0.40 UWN 0.41 0.37 U
BCC-B3 BCC-B3-1416 07/14/94	RESULT QUAL	2.90 B 1.80 N 0.12 U 27.50 * 0.46 UWN 0.47 U
BCC-B3 BCC-B3-0002 07/14/94	RESULT QUAL	3.60 1.90 N 0.10 U 4.20 U* 0.41 UWN 0.42 U 0.38 U
BCC-B2 BCC-B2-1012 07/14/94	RESULT QUAL	3.50 1.60 L 0.12 U 4.90 U 0.48 UL 0.45 U
BCC-B2 BCC-B2-0507 07/14/94	RESULT QUAL	2.80 2.10 N 0.11 U 15.20 * 0.41 UWN 0.42 U 0.38 U
BCC-B2 BCC-B2-0002 07/14/94	RESULT QUAL	3.50 2.80 N 0.10 U 8.80 * 0.40 UWN 0.37 U
LOCATOR: SAMPLE ID: COLLECTION DATE:	UNITS:	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG
		Copper Lead Mercury Nickel Selenium Silver Thallium

2	LOCATOR: SAMPLE ID: COLLECTION DATE:	BCC-B4 BCC-B4-1012 07/14/94	4 012 94	BCC-B5 BCC-B5-1012 07/15/94	5 012 34	BCC-B6 BCC-B6-1012 07/15/94	36 1012 94	BCC-B7 BCC-B7-1012 07/15/94	7 012 94	BCD-B1 BCD-B1-0002 07/15/94	1 0002 34	BCD-B1 BCD-B1-2527 07/15/94	1 527 34
	UNITS:	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL
										;	:	;	=
		•	=		=	13	-	-	>	9	>	_ ;	.
1.1.1-Trichloroethane	OG/KG	Ξ)	- ;			=	1	>	9	-	Ξ	>
1 1 2 2-Tetrachloroethane	OG/KG	=	-	=	> :	2 5) =	-	Ξ	10	כ		>
1 1 2 Trickle roothane	UG/KG	1	>	=	-	5	o :	- ;	=	100	3	11	>
1, 1, Z-momorovanano	HG/KG	11)	-	>	13	>	- ;	כ כ	5 5) =	-	>
1,1-Dichloroethane	֓֞֝֞֜֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	: -	=	11	כ	13	-	=	>	2 () :		1 =
1,1-Dichloroethene	DG/RG	- ;) :		=	13	>	-	כ	10	>	- ;	o :
1.2-Dichloroethane	UG/KG	=	> :	- ;) =		=	11	>	5	>	=)
1 2-Dichloroethene(Total)	NG/KG	=	>	= :	ɔ :	2 5	=	-	-	01	>	=	>
1 2-Dichloropropane	UG/KG	-	>	=	>	2	o :		=	10	>	1	-
1,2-Dicilioping	ווטיאנט	=	-	1	>	13	5	= ;)	5	=		ɔ
2-Butanone			=	11	¬	13	>	=	>	2 :)		Ξ
2-Hexanone	פלאפ	- ,) =	: =	=	13	-	1	>	10)	- ;) =
4-Methyl-2-pentanone	UG/KG	= 1	י כ	- ;) =	1,5	7	140		10	>	=	ɔ :
Acetone	UG/KG	46	8	<u>-</u> ;	o :	1 -	=	11	ɔ	10	⊃	1	כ
90000	UG/KG		>	=	> 1	2 () :		=	10	-	Ξ	>
Delicelle	UG/KG	11)	-	>	<u> </u>	o :	- *) =	. 5	_	1	Þ
Bromodicaloromana	9//SI	11	-	1)	13	>	= :	o :	2 5) =	-	>
Bromoform	9 (S) (S)	- ;	=	11	-	13	כ	=	>	2 ;)		=
Bromomethane	06/RG	- :	=	=======================================	_	13)	11	>	0 !	ɔ :	- ;) =
Carbon disulfide	UG/KG	= ;	o :		=	13	>	=	5	10	>	= ;	o :
Carbon tetrachloride	UG/KG	Ξ:	o :	- ;	=	13	-	11	J	10	>	Ξ;	o :
Chlorobenzene	OG/KG	=	:	- ;) =	7 - 6	=	-	-	9	כ	-) :
Chloroethane	UG/KG	-)	= ;	o :		=	=======================================	ס	5	J	1)
Chloroform	UG/KG	-1	⊃	=) :	2 5) =	: [-	-	01	Þ	-	-
Chloromethane	UG/KG	-	>	=	>	2 () :		=	10	-	1	>
Ciliotoficiano	UG/KG	-	⊃	11	5	5			=	10	>	11	J
Cis-1,3-Dismondary	UG/KG	11)	=	>	2			=	5	_	-	כ
Ulbromocniolorinaria	ופיונט	11	כ	=	>	13	>	= !	0 6	<u> </u>	α	7	85
Ethylbenzene	16/KG	=======================================	ω	12	ω	87	6	4/	o :	ָר בָּ	} =	-	Þ
Methylene chloride	ָבְאָלָטְבָּי ביילים		=	=======================================	-	13	-	=)	2 9) =	11	=
Styrene	98/90	- :	=	1	_	13	J	-	>	2 :	:	- ;	=
Tetrachloroethene	UG/KG	- ;) =		=	13	>	-	ɔ	10)	- ;) =
Toluene	UG/KG	-	ɔ :	- ;	> =	7 - 7	=	<u>;</u>	-	5)	Ξ	: כ
Trans-1.3-Dichloropropene	UG/KG	=)		ɔ :	2 -	=	: =)	5	J	-	>
Tichlorosthene	UG/KG	=	-		>	2 9) :		=	10	ר	Ξ	-
	UG/KG	11	>	11	>	13	o :	- ;	=	5 5	=	1	⊃
Vinyi chioride	וופ/אַט	-	¬	=======================================	¬	13	-	=	0	2)		
Xylenes (Total)		-											
(Ċ	=	340		360	5
2	IIG/KG	370	>	370	>	420	-	360	כ	2)	; 1	
1,2,4-irichlorobenzene	!												

BCD-B1 BCD-B1-2527 07/15/94	RESULT QUAL	360 U	360 U	360 U	360 U	870 U	360 U	360	360 0	360	360	360	360	360	360	870	360 U	360 U	870 U	870 U	36G U	360 U	360	000	360	870	360	360 U	360 U	360 U	360 U	360 U	360	360 U	
BCD-B1 BCD-B1-0002 07/15/94	. QUAL	5	5	5	> :	_)	> =	> =) =) =	o =)	o =) =) =	0 =))	5	ɔ	5	-	ɔ :	o :	- :) =	=) =		· >) =) =) =) :
BCD-B 07/1	RESULT	340	340	340	340	820	340	340	340	020	04.6 0.4.0	340	040	340	340	04.0	340	340	820	820	340	340	340	340	340	820	340	340	340	340	340	340	9 40	340)+o
BCC-B7 BCC-B7-1012 07/15/94	Z OUAL	D	<u>-</u>	ے د	<u>-</u>	ے د	> :	> :	> :	o :	o :	o :	o :	o :	o :	o :	o =	=))	D	ے د	ے د	> :) (:	> :) =) = -) =) =) =	> =) = -	o =	o
BCC-B 07/1	RESULT	360	360	360	360	880	360	360	360	088	360	360	360	360	360	360	ORR	960	880	880	360	360	360	360	360	880	000	360	360	360	096	260	5 6	360	360
BCC-B6 BCC-B6-1012 07/15/94	r aual	0))	O	<u>-</u>	O C	Ω))	o :	o :) () () () () (o :	o :) =	o =) D	э	<u>ح</u>	ے د	<u>ر</u>	<u>ح</u>	⊃ : ດ :	o :	o :) : -)) :) (o (o :	o :	C
BCC-B	RESULT	420	420	420	420	1000	420	420	420	1000	420	420	420	420	420	420	1000	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1000	1000	420	420	420	420	420	1000	1000	420	420	420	420	420	420	420	420
BCC-B5 BCC-B5-1012 07/15/94	r QUAL	=) D	-	O 0	-	Ο	_	<u>۔</u>	D	о О	ے د	<u>ح</u>	<u>ت</u>	э	- :	o :	> =) =		<u>۔</u>	D 0	<u>-</u>	<u>-</u>	O C) (o :	o :	o :	o :	o :	o :	o :	ے د
BCC-B	RESULT	370	370	370	370	890	370	370	370	890	370	370	370	370	370	370	068	370	3/0	000	370	370	370	370	370	890	890	370	370	370	370	370	370	370	370
BCC-B4 CC-B4-1012 07/14/94	QUAL	=	=	> =		-	<u> </u>	-	-	-	-	>		>	ס	>	>) :	-	> =) =	_	· >	-	>	-					>	>	-	¬	<u>ح</u>
BCC-B4 BCC-B4-101 07/14/94	RESULT	07.0	370	370	370	006	370	370	370	006	370	370	370	370	370	370	900	370	370			370	370	370							370	370	370	370	370
LOCATOR: SAMPLE ID: COLLECTION DATE:	UNITS:	2	מאַ/פס מאַ/פס	09/KG	09/kg	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	OG/KG	UG/KG	06/KG	פאני פאני פאני	וופ/גפ	UG/KG	UG/KG	OG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG
_					1,4-Dichlorobenzene 2,3/ Oschio/1-chloropropane)	ì													3,3'-Dichlorobenzidine	•	4,6-Dinitro-2-methylphenol	4-Bromophenyi pireliyi etilel	4-Chlorogailine	4-Chlorophenyl phenyl ether										Benzo(g,h,i)perylene	Benzo(k)fluoranthene

.B1 -2527 i/94	QUAL	Ξ) =	o :	>	J	>	3) =) -	o :)	>	>	J	>	⊃								>	ɔ			5	-				3.30 ON	4.10 N°		_	0.38 U	5.70 *	⊃ 0		
BCD-B1 BCD-B1-2527 07/15/94	RESULT	Cac	9 6	360	360	360	360	360	900	000	360	360	360	360	360	360	360	360	0 0	000	360	360	360	360	870	360	360	360	360	360	540	•	•	٠, ٧٠	4		0	•	L ,			
07	QUAL	=	> :	>	7	7	=) :	> :	-	>	>	⊃	>	⊃	=	=	> =	o :)	-	>	>	_	⊃	⊃	>	>	=	=	, –	•		_	ž			٦			ı	
BCD-B1 BCD-B1-0002 07/15/94	RESULT	,	340	340	57	340	2 6	2 6	340	340	340	340	340	340	340	340	9 6	340	340	340	340	340	340	340	820	340	340	340	340	340	9,4	9		3.10	24.40	•	0.21	0.35	8.50	200))	
8	QUAL		>	>	-,	• =	:	>	>	>	-	_	_	=	· =) =	o :	> :	>	>	-	-	>	>	_	=	=) =) =	> =	> -	ר		<u>*</u>	A		=	=		=		
BCC-B7 BCC-B7-1012 07/15/94	RESULT		360	360	160	2 6	360	360	360	360	360	360	380	960	9 6	000	360	360	360	360	360	360	360	360	Caa	090	0 0	000	900	360	360	83		3.40	8.30	, ,	0.13		0.38	0.20	o	
a	QUAL		>	=	, -	; ר	>	-	>	_	=	=	> =) :	> :	5	>	>	>	၁	¬	=	=) =	> =	> :	> :	ɔ :	> :	>	>	>		*	, 2	2	=	> :	⊃ [,]	*	>	
BCC-B6 BCC-B6-1012 07/15/94	RESULT O		420	2,7	120	7.7	420	420	420	420	7 20	22.5	2 5	074	420	420	420	420	420	420	420	0 0	22.4	5 4 0 6	0 0 0 0	000	420	420	420	420	420	420		06 8	3.20	3.20		41.0	0.44	5.40	0	
8	QUAL		=) =	o .	7	>	-	=) =) =	o :	> :	>	>	>	>	>	=) =	=) :)	o :	> :	>	>	-	⊃	>	כ	7		*	. 2	z		>)	*	J	
BCC-B5 BCC-B5-1012 07/15/94	RESULT Q	1	07.6	0/6	370	80	370	370	270	0 6	0.0	3/0	3/0	370	370	370	370	370	0.76	0 0	970	370	370	370	370	890	370	370	370	370	370	54			3.40	1.60		0.12	0.38	5.70	0	
a l	OUAL	!	=	> :	>	7	_	=	> =	> :)	-	>	>	-	_	=	=	> :	o :	> :	5	> :	>	>	>	>	>)	>	_	, ¬		;	<u>.</u>	z		-	>	*	כ	
BCC-B4 BCC-B4-1012 07/14/94	•		•	370	370	52	370	27.0	2 1	3/0	370	370	370	370	370	370	370	0 0	2 :	3/0	370	370	370	370	370	900	370	370	370	370	370	180			3.40	1.50		0.12	0.39	30	0	
BCC-	TILIZA			8	9			5 6	กั	m	m	m	m	'n	'n	Ċ	, ic) (9	m	ო	ო	က	က	ო	6	m	m	•													
LOCATOR: SAMPLE ID:	SEINITE	SI SI	;	UG/KG	UG/KG	IIG/KG	2/01	DY/50	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	DY/SI	93/911		59/90 50:00:	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	וט /עט	11G/KG	ופאפ			UG/KG			MG/KG	MG/KG	MG/KG	N/G/KG	MG/KG	MG/KG	J/ou	•
7. 2				Carbazole	9000000		Di-n-putyl putualare	Di-n-octyl phthalate	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Fluorenthene	Lincoln	Fluorene	Hexachioropenicalia	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)pyrene	Isophorone	N-Nitroso-di-n-propylamine	N-Nitrosodiphenylamine(1)	Nanhthalana	Miscohondon	Nitrobelizelle	Pentacinologicalio	Phenanthrene	Phenol	Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl)ether	DIS(Z-EIIIYIIIGAYI)PIIKIICIECE	ď	Antimony	Allumony	Arsenic	Barum	Beryllium	Cadmium	Chromium	Chromula, cr + o

BCD-B1 BCD-B1-2527 07/15/94	RESULT QUAL	4	3.10 N*	0.11 U*	6.20	0.43 U	0.44 U	0.40 UWN	19.10 E
BCD-B1 BCD-B1-0002 07/15/94	RESULT QUAL	4.70	3.90 N*		17.40	0.40 UW		0.37 UWN	16 E
BCC-B7 BCC-B7-1012 07/15/94	RESULT QUAL	4.60	2.50 N	0.11 U	6.20	0.43 UWN		0.40 UW	17.40 E
BCC-B6 BCC-B6-1012 07/15/94	RESULT QUAL	3.40		0.13 U		0.50 UWN		0.46 U	13.70 E
BCC-B5 BCC-B5-1012 07/15/94	RESULT QUAL	3.40	1.30 N	0.11 U	7.50 *	0.44 UWN			12 E
BCC-B4 BCC-B4-1012 07/14/94	RESULT QUAL	3.20	1.50 N	0.11 U	43.20 *	0.44 UWN	0.46 U	0.41 U	10.20 E
LOCATOR: SAMPLE ID: COLLECTION DATE:	UNITS:	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG
		Copper	l ead	Mercury	Nickel	Selenium	Silver	Thallium	Zinc

2 (032 94	QUAL		> =	5	ɔ :	-	>	D	כ	-	ר	כ	J	œ	⊃	>)	כ	¬) =	=) =	o =	> =	o =	o =	> =) =	=	=	> =	> =	o =	5		=		
BCE-B2 BCE-B2-3032 07/12/94	RESULT		= ;		Ξ	11	11	11	11	11	1	11	11	30	11	-	=======================================				- ;	- ;	= ;	= ;	- ;		- ;				- •	- ;	- ;	_ ;	- 1	F			000	
82 0002 /94	QUAL		⊃	>	>	>	-))	_) 3))	=) =	ο α	=	=) =	o =	o :	ɔ :	>	>	-	⊃ : _	⊃ _	ם : -	-) D	(B)) 	٦ د	- -	ا	1			350 U	
BCE-B2 BCE-B2-0002 07/12/94	RESULT		11	11	-11	1	-	: =					- ;		0	- ;	- ;	Ξ;		=	=	-	-	=	-	-	-	-	•		-	-	_	_	_	_			36 U	
B1 -3032 2/94	QUAL		כ	7	=	=) =	-	o :	o :	o :	o :) :				-	о -	> -	ם		<u>-</u>		. r	J C	. r		. C	12 B	1 U	1 U	<u> </u>	<u>۔</u>		n ====================================	· -	<u>.</u>		360	
BCE-B1 BCE-B1-3032 07/12/94	RESULT		11			- ;	= ;	<u> </u>	-	-	-		=	Ξ	30	11	-	-	-	-	•	_	_							, -	· =	· -	· (-	· -	· ·	o =	5			
BCE-B1 BCE-B1-0002 07/12/94	. GUAL		-	o =	o : -	o : _	o -	C	- C	ا د	ا د	ا د	1 C	J U	8	<u>-</u>	<u>-</u>	<u>۔</u>			- :	- : - :) = = :	= :	= :		_;	= 7	<u> </u>				_ ;	- :	- ;		_		,	1
BCE-BY	ä		•	- .	-	-	-	1	_	_	_	_	·-) =	· (-	`	- ` - :	· •		· >		-	-	-	> :	ָי כ	m ;	.) :)) :	D	_D	つ			
BCD-B2 BCD-B2-0507	0//15/34 0//15/34			- C	٦ د		ח	<u>.</u>			::			- ;					_ :	-	11	11	11	11	-	11	11	11	11	12	11	11	11	=	11	11	11			
BC BCD-E	1	RESUL		-		_	_				- ·				_	,	-	-	_	5	5	כ	5	כ	n	n	כ	2	-	(B)	n n	כ	כ	n	-	· ⊃	· >			
BCD-B2 BCD-B2-0002	6/3	QUAL		D							0 :		o :	<u>.</u>		61	0	5	- 0	2	10	10	0	2 2	01	2 2	10	2				2	. 01	2 2	2 2	2 0	5 6			
BCD-B2 BCD-B2-00	07/1	RESULT		10	5 5	2 5	- ;	e ;	Ξ,	-			•	•	•		•		•												. ('	. "	י ני	ם כ	י כ	5 (י פ	2		
LOCATOR: SAMPLE ID:	COLLECTION DATE:	UNITS:		25,01	98/90	OG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	OG/KG	9//90	וט/גט	מאלטה	OS/KG	ייט /גט	יופי/גפ	מאלים	98/90 116/KG	9X/90	116/KG	93/80 110/80	יופ/אפ	יופי/גפ				טפ/עט טפ/עט	200		
	COLLEC				1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1 1 2-Trichloroethane	1.1-Dichloroethane	1 1-Dichloroethene	1 2 Dichloroethane	1 2-Dichloroethene(Total)	1 2 Dichloropropane	1,Z-Dicting of the		Z-nexallolle 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4 *	4-Methyl-z-pomenono	Acetone	Benzene 	Bromodichiologication	Bromoform	Bromomethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	Cis-1,3-Dichloropropene	Dibromochloromethane	Ethylbenzene	Methylene chloride	Styrene	Tetrachloroethene	Toluene	Trans-1,3-Dichloropropene	Trichloroethene	Vinyl chloride	Xylenes (Total)		

2 032 94	QUAL	-	>	>)	> :	ɔ :	> :	> :	> =)	o :	> :	: כ	> :) :	> :	> :	> :	ɔ :	> =	> =) =))	¬	>	>	⊃	Þ	Þ	Þ) =	=	> =	o :	>	
BCE-B2 BCE-B2-3032 07/12/94	RESULT	360	360	360	360	860	360	360	360	200	000	360	360	360	360	360	860	360	360	860	860	098	360	360	360	860	860	360	360	360	360	360	360	960	098	360	360	
2002 4	QUAL	-	>	-	>	-	>	> :	> :	> :	ɔ :	> :	> :	>	> :	-)	>)	> :	> :	o :	> =	=) =	>	>	כ	⊃	_	=	=	> =	> =	> =)	-	
BCE-B2 BCE-B2-0002 07/12/94	RESULT	350	350	350	350	840	350	350	350	840	320	350	350	320	350	320	840	320	350	840	840	350	320	200	3 20	840	840	350	350	350	350	350	000) (350	350	320	
1 032 34	QUAL	כ	-	כ	כ	>	ɔ	>))	>	>	ɔ	>	ɔ	ɔ	-	ɔ	5	כ))	> :	> =) =) =))	=) =	=	> =	> =)) :) :	>	ɔ	
BCE-B1 BCE-B1-3032 07/12/94	RESULT	360	360	360	360	880	360	360	360	880	360	360	360	360	360	360	880	360	360	880	880	360	360	9 6	260	0 0	880	380	960	000	000	2 6	200	360	360	360	360	
1 002 14	QUAL	2	>	>	>	>	-	¬)	ɔ	>	כ	J	J	J	Þ	כ	>	כ	J	-)	ɔ :	o :	> =) =	=	=	> =) =)	> :	ɔ :)	כ	>	5	
BCE-B1 BCE-B1-0002 07/12/94	RESULT	350	350	350	350	840	350	350	350	840	350	350	350	350	350	350	840	350	350	840	840	350	350	350	350	330	840	0 10	0000	000	350	350	350	320	350	320	350	
32 0507 94	QUAL																																					
BCD-B2 BCD-B2-0507 07/15/94	RESULT	•	•	1	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1	,	i	•	1	
(2)002 94	QUAL	٦	=) =) =) >	כ	5	-	>	>	-)	כ		5)	_	· >	5	>	-	-	⊃	> :) :	> :) :	ɔ :))	>	ɔ	כ	כ	>	כ	
BCD-B2 BCD-B2-0002 07/15/94	RESULT	340	340	340	340	830	340	340	340	830	340	340	340	340	340	340	830	340	340	830	830	340	340	340	340	340	830	830	340	340	340	340	340	340	340	340	340	
LOCATOR: SAMPLE ID: COLLECTION DATE:	UNITS:	וופיוגנפ	וופי/גיפ	19/KG	16/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	HG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	OG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	
ō≥≲	د																																					

	QUAL	-	_	_	=) =)	> :	ɔ :	5	o :)) :	o :	ɔ :	ɔ :	5	> :	>	>	>	-	-	¬	⊃	⊃	¬	>	Þ			*	z		>	>	*	⊃		
BCE-B2 BCE-B2-3032 07/12/94		360	360	360	9 6	9	360	360	360	360	360	360	360	360	360	360	360	360	360	360	360	360	860	360	360	360	360	360	360			4.30	3 80) } ; '	0.12	0.37	വ	0		
BCE 07	RESULT	(4)	, (, (, (., .		.,	.,		•	•																												
20 +	QUAL	=	-	o :	> :	>	>	>	>	⊃	>	>	⊃	>	⊃	⊃	>	_	-	>	_)	7	\Box	=	=	> =) =) =	•		=		5	·		9 -		į	
BCE-B2 BCE-B2-0002 07/12/94	RESULT	C L	320	320	320	320	350	350	350	350	350	350	350	350	350	350	350	350	350	350	350	350	840	250	0 40	א ה ה	000	000	350 010	320		Ċ	3.20	6.50	' (0.22	8.0°	200	2	
	٩٢	;	5	>	>	-)	>	_	-	>	>	-	-	>	_	=	=) =) =	> =	> =	> =)	o :	> :	ɔ :)	ɔ :	>			S	Z	:	> :	S :	z:)	
BCE-B1 BCE-B1-3032 07/12/94	r QUAL		_	0	0	0	0			. 0	. 0	0		Q	Ç	9 9	2 9	2 5	2 9	0 0	2 5	360	200	280	360	360	360	360	360	360			3.40	4.70		0.12	0.38	5.10	0	
BCE-B 07/1	RESULT		360	360	360	360	360	360	360	360	360	360	360	360	360	360	0 0	9 6	200	9 6	, c	, i	ž (ã ;	ัก เก	ñ	ñ	ĕ	Ö	ñ										
	QUAL		>	-	_	- =) =	> =) <u>=</u>) =	> =) =) =) =)	> :	> :	> :	ɔ :)	> :	> :	>	>	>	>	>	>	>	>			S	z		80	S	z		
BCE-B1 BCE-B1-0002 07/12/94			0	Q	Ç	2 9	2 9	2 9	350	000	2 9	000	2 5	000	350	320	350	350	350	350	350	350	350	840	350	350	350	350	350	350	}		3.20	5.90		0.30	0.36	9.90	0.02	
BC BCE-E 07/	RESULT		350	350	200	0 0	מים כ	5	, i	5 6	ή č	, i	ő	Ϋ́ (70	(m	m	ო	ო	က	ന	က	00	m	m	m	(1)	(1)		•									
_		1																															2	* Z	į	œ			כ	
BCD-B2 BCD-B2-0507 07/15/94			,	,															•				,	,		,					ı		,	S 4	י כ	. 0	0.36	5.80	0	
BCD-6	FILL	A CO																																						
8		QUAL	:	> :	>	0	-	-	-	⊃	>	-	>	-	⊃	>)	၁)) =) =	=	=) =) =)	o :)	> :	⊃		:	ᆿ.	نـ		= :			
BCD-B2 BCD-B2-0002	6/6			340	340	54	340	340	340	340	340	340	340	340	340	340	340	340	340	340	240	240	5 6	2 0	2 5	3.40 0.40	340	340	340	340	340			3.20	വ	, ,	0.17	0.30	0.70	· >
BCD-	0	RESULT		č	ř	. ,	ň	ň	ň	'n	Ŕ	m	Ċ	က	m	m	. (*	. "	י מ	י ני	י כ	, (, (, .															, n	1
LOCATOR: AMPLE ID:	DATE:	UNITS:		UG/KG	UG/KG	UG/KG	UG/KG	IIG/KG	11G/KG	UG/KG	UG/KG	UG/KG	HG/KG	UG/KG	D /KG	10/KG		מיאנים	02/20	92/90	92/90	06/KG	06/86	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG			MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	mg/L
LOCATOR: SAMPLE ID:	COLLECTION DATE:	ر		_	_	_	_									,	Đ				60 -	_							ane		•									
	COLLE					•										90	ntadien		yrene	•	pylamin	amine(1			_				y)meth	ether	hthalate									~
						heholat	htholot	onthalat	n)antnra	an	naiate	กเกลเลเร	2		nezuego	obutadie	ocyclope	oethane	5,3-cd)p	60	di-n-pro	Jiphenyl	ne	ane	ropheno	rene			roethox	roothyl	dhexvl)r						_	_	٤	A, Cr+(
				Carbazole	Christophe	Tyselle Tyselle	Di-n-butyi pintilalate	Di-n-octyl primarate	Dibenzo(a,h)antnracerre	Dibenzoruran	Diethyl phthalale	Dimethyl phthalate	Fluorantnene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)pyrene	sophorone	N-Nitroso-di-n-propylamine	N-Nitrosodiphenylamine(1)	Naphthalene	Nitrobenzene	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	his(2-Chloroethoxy)methane	Els(z Choroethyl)ether	bis(2-Cillofostiny) buthalate	7)61		Antimony	A rsenic	Rarium	Bervillum	Cadmium	Chromium	Chromuim, Cr +6
				å	3 8	ז כֿ	בֿ בֿ	בֿ בֿ	۵	בֿ וֹ	בֿ וֹ	ا دُ	Í i	Ē:	Ĭ	Í	Í	Ĭ	=	8	Ż	Ż	Z	Z	ته	۰	. ۵	. Δ	ء .		ם ב	1	~	, ~	. 1				_	_

BCE-B2 BCE-B2-3032 07/12/94	RESULT QUAL	3.90	2.80 N	0.11 U		0.42 UWN		WU 6E.0	20.20 E
BCE-B2 BCE-B2-0002 07/12/94	RESULT QUAL	6.20	6.90	0.10 U	7.90	0.41 UL	0.42 U	0.38 U	26 L
BCE-B1 BCE-B1-3032 07/12/94	RESULT QUAL	3.90	2.70	0.11 U	7.90	0.43 UWN		0.40 UW	
BCE-B1 BCE-B1-0002 07/12/94	RESULT QUAL	9.30	9.10	0.11 U	01	0.41 UWN	0.42 U	0.38 U	24.10 EN
BCD-B2 BCD-B2-0507 07/15/94	RESULT QUAL	4.60	4.10 AN*	0.11 U*	7.60	0.42 U	0.43 U	0.38 UWN	14.80 E
BCD-B2 BCD-B2-0002 07/15/94	RESULT QUAL	8,30	3.20 B		8.70	0.41 U	0.42 U	0.38 UL	65.20
LOCATOR: SAMPLE ID: COLLECTION DATE:	UNITS:	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG
		Copper	Lead	Mercilin	Nickel	Selenium	Silver	Thallium	Zinc

7	QUAL	${\tt DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD$	D
BCF-B3 BCF-B3-0507 07/14/94	RESULT		340
	QUALR	ეეეეეეეე ეეეეეეეეეეე ლეეეეეე)
BCF-B3 BCF-B3-0103 07/14/94	RESULT O		350
	QUAL RE		5
BCF-B2 BCF-B2-3032 06/30/94	RESULT Q	======================================	350
	QUAL RE		כ
BCF-B2 BCF-B2-0103 06/29/94	RESULT Q	=======================================	350
	aual RI	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Þ
BCF-B1 BCF-B1-3032	RESULT O	555555555555555555555555555555555555555	340
	4 QUAL RI		כ
BCF-B1 BCF-B1-0103	06/29/94 RESULT Ω	=======================================	360
		UG/KG UG/KG	UG/KG
LOSAM	COLLECTION DATE: UNITS:	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Tichloroethane 1,1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Butanone 2-Butanone 2-Butanone Benzane Benzane Bromodichloromethane Bromodichloromethane Carbon disulfide Carbon tetrachloride Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Titrachloroethene Tetrachloroethene Titrachloroethene Toluene Tichloroethene	2 1,2,4-Trichlorobenzene

33 2507 94	QUAL	J	>	>	⊃	-	⊃	>	> :	> :	-	>	> :	>	> :	-	>	⊃	>	>	>	>	>	⊃	⊃	> :	> :	> 1	>	>	⊃	>	>	>	⊃	⊃	_	
BCF-B3 BCF-B3-0507 07/14/94	RESULT	340	340	340	340	830	340	340	340	830	340	340	340	340	340	340	830	340	340	830	830	340	340	340	340	340	830	830	340	340	340	340	340	340	340	340	340	
3 1103 94	QUAL	כ	>	>	>	>	>	>	>	>	>	>	>	>	>	ɔ	-	⊃	-	-	⊃	>	-	⊃	⊃	>	>	>	>	>	-	7	7	⋜	>	2	>	
BCF-B3 BCF-B3-0103 07/14/94	RESULT	350	350	350	350	850	350	350	320	820	350	350	350	350	350	350	850	350	350	820	820	350	350	350	350	350	850	820	350	320	350	68	69	130	350	140	350	
12 3032 94	QUAL	-	>	>	⊃	5	-	-	>	>	-	>	ɔ	>	>	-)	כ	-	>	-	J	>	⊃	>	⊃	>	>	¬	-	-	-	-	>	ɔ	⊃	⊃	
BCF-B2 BCF-B2-3032 06/30/94	RESULT	350	350	350	350	840	350	320	320	840	350	350	350	350	350	350	840	350	350	840	840	350	350	350	350	320	840	840	350	350	350	350	350	350	350	350	350	
2 1103 94	QUAL	-	-	-	כ)	⊃	>	>	כ	-	ɔ	כ	>	כ	כ	⊃	Þ	>	>	>	>	>	כ	J	>	Þ	כ	J	J	⊃	7	>	2	Þ	Z	>	
BCF-B2 BCF-B2-0103 06/29/94	RESULT	350	350	350	350	840	350	350	350	840	350	350	350	350	350	350	840	350	350	840	840	350	350	350	350	350	840	840	350	350	350	38	350	65	350	65	350	
11 3032 94	QUAL	5	>	כ	-	>	-	>	>	כ	כ	כ	Þ	Þ	J	>	כ	כ	כ	>	כ	כ	כ	כ	>	>	J	כ	>	כ	כ	כ	-	⊃	>	>	-	
BCF-B1 BCF-B1-3032 06/29/94	RESULT	340	340	340	340	830	340	340	340	830	340	340	340	340	340	340	830	340	340	830	830	340	340	340	340	340	830	830	340	340	340	340	340	340	340	340	340	
31 2103 94	QUAL	⊃	_	၁	¬)	-	>	>	-	>	Þ	Þ	>	>	>	כ	כ	כ	_	כ	>	כ	>	כ	>	>	>	>	-	>	>	>	Z	כ	Z)	
BCF-B1 BCF-B1-01(06/29/94	RESULT	360	360	360	360	860	360	360	360	860	360	360	360	360	360	360	860	360	360	860	860	360	360	360	360	360	860	860	360	360	360	360	360	46	360	47	360	
LOCATOR: SAMPLE ID: TION DATE:	UNITS:	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	
LOCATOR: SAMPLE ID: COLLECTION DATE:		1.2-Dichlorobenzene	1.3-Dichlorobenzene	1.4-Dichlorobenzene	2.2'-Oxvbis(1-chloropropane)	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methylnaphthalene	2-Methylphenol	2-Nitroaniline	2-Nitrophenol	3.3'-Dichlorobenzidine	3-Nitroaniline	4.6-Dinitro-2-methylphenol	4-Bromophenyl phenyl ether	4-Chloro-3-methylphenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzolabovrene	Benzo(b)fluoranthene	Benzo(a.h.i)perviene	Benzo(k)fluoranthene	Butyl benzyl phthalate	

٠.

	aUAL	ɔ :	-	= :	>)	>)	> :	ɔ :	ɔ :	> :	> :	>	⊃	-	>	>	>	J	>	>)	-)	-	>	0		:	-		0)		>	
BCF-B3 BCF-B3-0507 07/14/94	RESULT Q	340	340	96	340	340	340	340	340	340	340	340	340	340	340	340	340	340	340	340	340	830	340	340	340	340	340	38		,	3.20	 5	0.22	0.36	6.30	0	
0	RES																																	_			
£	QUAL	>	7	7	⊃	>)	-	⊃	7	>	⊃	⊃	-	>	7	=	=) =) =) =	=	, -	ר ב	-	? =	=	ر (_	z	α	_	*	9	
BCF-B3 BCF-B3-0103 07/14/94	RESULT	350	73	64	350	350	350	350	350	150	350	350	350	350	350	43	250	200	000	000	0 0	ט ט ט ט	000	0 0	350	0 2	0000	20.00	}		3.20	5.70	. 0	0.36	11.70	90.0	
		-	-	_	=))	- =))	_	· ⊃	-	כ	· ⊃	. =	=	=	> =	> :	> :	ɔ :	> :	ɔ :	> :) :	> :	ɔ :	> :	و د	9		N O	z	ſ	2 2	z	>	
BCF-B2 BCF-B2-3032 06/30/94	. QUAL		_	. ~													.	o (0	0	0	0	Q	Q	Q	Q	Q	350	240		3.20	4		36.0	5.40	0	
BCF-B; 06/3	RESULT	350	350	350	2 6	920	2 6	350	250	350	350	350	3 00	200	9 6	0 0	ה ה	350	320	320	320	320	840	320	320	320	320	8 3	77								
	QUAL	=	, -	י =) :	> =	o :	> =) <u> </u>	o -	· =) =	> =	> :	> :	> :	>	>	>	D))	-	>	5	7	-)	8		2	5 Z		a :	z z)	•	
BCF-B2 BCF-B2-0103 06/29/94		,			.	0 (0 (.	5 E	n (.	.	.	0	o	o	Q	Q	Q	0	350	840	350	350	53	350	350	91		ç	5.30	•	0.14	0.36	0.0	
BCF-B BCF-B 06/2	RESULT	200	9 0	י פ	350	350	320	320	200	350	ם נ	200	000	350	320	320	350	320	350	350	350	36	8	36	ë		ñ	ë	••								
	QUAL	:	> :	ɔ :	-)	>)	>	> :	> :))	>	>	>	-	-	-	>	· >	>	-		· =))	_	>	8		:	z z	:	ω	S ?	z ⊃)
BCF-B1 BCF-B1-3032 06/29/94			_	_	_	_	_	_	_	_	_	0	0	0	0	0	0	0	. 0			, c	, c	, c	, ,	2 9	9	요	83			3.10	} • '	0.14	0.35	5.50	•
BCF-B' 06/2	RESUIT		340	340	340	340	340	340	340	340	340	340	340	340	340	340	340	340	340	340	340	340	0830	340	340	340	340	340	w								
		<u>.</u>	>	7	>	>	-	-	>	Þ	7	>	>	>	>)	=	=	=) =) =) =) =	o -	: ר	-	ב י) =	8			<u>5</u> 2	z	80	3	z:	>
BCF-B1 BCF-B1-0103	5		0	7	0	0	Q	Q	Q	o.	74	Q.	Q	360	360	360	360	200	000	2 6	000	200	200	200	120	360	ຄຸດ	260	170)		3.30	4.70	0.33	0.37	12.40	0
BCF-B	100 d	ייייייייייייייייייייייייייייייייייייייי	360	47	360	360	360	360	360	360	_	360	360	36	3.	· ·	6	ň č	ň	5 6	, i	7) (უ (ΣO ·	- '	m											•
LOCATOR: SAMPLE ID:		: 	UG/KG	UG/KG	IIG/KG	UG/KG	11G/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	IIG/KG	2/201			08/90 08/90	06/KG	OG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	08/90 00/KG	24/20		MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	mg/L
LOC	COLLECTION DATE:															Đ				•	_							ane		n							
	COLLI					.	ָ	cene					,	D .		ntadien		yrene		pylamin	amine(1			_				y)meth	ether	hthalat							
					4.1	ontnalat	urualar	anthra). ביי	BII 1-1-1-6-1	nalate Ltholote	וווופופני	<u> </u>	1		butadie	cyclope	ethane	,3-cd)p	•	di-n-pro	liphenyl	ne	ane	ropheno	909			roethox	roethyl	dhexyl)r						- =	n, Cr+(
			9	Carbazore	Chrysene	Di-n-butyl phthalate	Di-n-octyl primalare	Dibenzo(a,h)anthracene	Dibenzoruran	Diethyl phthalate	metriyi p	Fluorantnene	Fluorene	Hexachloropenzene	Hexachiorobutadiene	Hexachiorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)pyrene	Isophorone	N-Nitroso-di-n-propylamine	N-Nitrosodiphenylamine(1)	Naphthalene	Nitrobenzene	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl)ether	bis(2-Ethylhexyl)phthalate		3 Antimotr	Arsenic	Barium	Beryllium	Chromium	Chromuim, Cr + 6
			ć	נֿ כֿ	<u>5</u>	ā	בֿ	ត ត	וֹ בֿ	ם מ	ì	Ιį	I:	I	I	I	I	=	<u>-5</u>	Z	Z	2	2		. i.	. 1	14.				•						

	٩Ľ		_	-		7	-	D	
83 0507 /94	QUAL	õ	♀	<u>o</u>		- -	12	38	
BCF-B3 BCF-B3-0507 07/14/94	RESULT	9.9	3.4	0.1	9	9.0	0.4	0.38	18
4 4	QUAL		z	-		N N	⊃	>	ш
BCF-B3 BCF-B3-0103 07/14/94	RESULT	7.10	8.40	0.11	8.80	0.42	0.43	0.39	28.10
32	QUAL		*	⊃		N N N	⊃		Ë
BCF-B2 BCF-B2-3032 06/30/94	RESULT QUAL	3.90	2.80	0.10	8.70	0.41	0.42	0.38	16.80
£ 4	QUAL			>		N N N	>	>	Ë
BCF-B2 BCF-B2-0103 06/29/94	RESULT	ហ	4.70	0.10	7.80	0.41	0.42	0.38	18.40
4	QUAL		*	¬		N	_	` <u>}</u>	15.80 EN
BCF-B1 BCF-B1-3032 06/29/94	RESULT	4.30	3.40	0.10	6.80	0.40	0.41	0.37	15.80
6 t	QUAL		•		,	NMI	: =		E C
BCF-B1 BCF-B1-0103 06/29/94	RESULT	7.40	02 6	0.15	08.6	0 42	0.43	96.0	23
LOCATOR: SAMPLE ID: COLLECTION DATE:	UNITS:	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	Mac/KG	Ma/KG	MG/KG
		200	copper 1	Marain	Niekel	Solonium	City in a second	Thoffing	Zinc

1.1.177710400000000000000000000000000000	COLLE	LOCATOR: SAMPLE ID: COLLECTION DATE:	BCF-B3 BCF-B3-3032 07/14/94	i3 3032 94	BCG-B1 BCG-B1-0001 06/30/94	11 0001 94	BCG-B2 BCG-B2-0002 07/14/94	12 0002 94	BCG-B4 BCG-B4-1012 07/13/94	34 1012 94	BCG-B7 BCG-B7-1012 07/15/94	7 012 34
UG/KG 10 UG/		UNITS:	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL
UG/KG 10 U 11 U 11 U 11 U 11 U 11 U 11 U 11				:		=	;	=	1	5	11	ס
UG/KG 10 U 111 U U 111 U	hloroethane	UG/KG	9	5	_ :	> :	- ;	=	=	_	1	>
UG/KG 10 U 111 U U 111 U U U 111 U U U 111 U U U 111 U U U 111 U	atrophoroathana	UG/KG	9	>	=	>	= '	o :	- ;	=		_
UG/KG 10 U 111 U 1			,	=		-	=	>	=	.	: ;) =
UGKG 10 U 111 U U 111 U U 111 U U 111 U U 111 U U 111 U U 111 U U 111 U U UGKG 10 U 340 U 380 U 340 U 380 U 340 U 380 U 340 U	hloroethane	98/90	2 :	:		=	11	⊃	1	>		>
UGKG 10 U 11 U 11 U U U U U	oroethene	OG/KG	9	>	=	o :	: ;	- =	11	=	-	>
Total) UG/KG 10 11 U 11 U 11 U 11 U U		ווט/עט	10	¬	-	>	Ξ	> :	- ;) :		Ξ
UG/KG 10 U 11 U 11 U 11 U 11 U 11 U 11 U 11	oroethene			Ξ	11	>	=	>	Ξ	>	- :) :
UG/KG 10 U 11 U 11 U 11 U 11 U 11 U 11 U 11	loroethane	08/80	2) :	. ;	Ξ	-	=	-	-	Ξ	>
UG/KG 10 U 11 U 11 U 11 U 11 U 11 U 11 U 11	(Incompleted Total)	OG/KG	10	>	=	>	= ;) :	-	Ξ	-	>
UG/KG 10 U 11 U 11 U 11 U 11 U 11 U 11 U 11	TOTOGETHOUSE TOTOGETH	02/01	O.	¬	_	>	=	>	=	:	: ;	=
UG/KG 10 U 11 U 11 U 11 U 11 U 11 U 11 U 11	loropropane	04/90	2 ;	. =	-	=	-	⊃	_	>	=	>
UG/KG 10 U 11 U 11 U 11 U 11 U 11 U 11 U 11	one.	OG/KG	0	>	= :	:	-	Ξ	11	-	17	>
UG/KG 10 U 111 U 18 U 111 U 18 U 18 U 18 U 18		11G/KG	5	>	=	>	=) :		=	11	=
UG/KG 10 U 11 U 11 U 11 U 11 U 11 U 11 U 11	one			=	11	-	=	>	=	>	- :	, -
UG/KG 10 U 11 U 11 U 11 U 11 U 11 U 11 U 11	4-2-pentanone	OG/KG	2	o :	- ;	=	ά		44	œ	5	7
UG/KG 10 U 11 U 11 U 11 U 11 U 11 U 11 U 11	•	OG/KG	5	>	=)	2 ;	:		=		>
UG/KG 10 U 11 U 11 U 11 U 11 U 11 U 11 U 11		ויטיוגט	10	¬	Ξ	>	=	>	- ;	:	-	Ξ
UG/KG 10 U 11 U 11 U 11 U 11 U 11 U 11 U 11		פאלפים :	2 5	=	11	⊃	=	ɔ	-	>	-) :
UG/KG 10 U 11 U 11 U 11 U 11 U 11 U 11 U 11	ichloromethane	UG/KG	2	o :	- ;	=	-		=	>	Ξ	>
ulfide UG/KG 10 U 11 U 11 U 11 U 11 U 11 U 11 U 11	E	UG/KG	5	>	= :	:	: ;	=	11	>	-	-
UG/KG 10 U 111 U 1	othone	UG/KG	5	-	=	>	= ;) :		=	-	כ
UG/KG 10 U 11 U 11 U 11 U 11 U 11 U 11 U 11	7.57	ווטי/גט	10	⊃	1	>	=	>	= ;) :		Ξ
UG/KG 10 U 11 U 11 U 11 U 11 U 11 U 11 U 11	disultide	98/90		Ξ	11	Þ	=======================================	>		0	- ;	> =
UG/KG 10 U 11 U 11 U 11 U 11 U 11 U 11 U 11	etrachloride	OG/RG	2 :	:		=		>	=	-	=	>
UG/KG 10 U 11 U 11 U 11 U 11 U 11 U 11 U 11	90200	UG/KG	9	-	= ;	o :	- ;	=	11	-	Ξ	⊃
UG/KG 10 U 11 U II U II U II	9004	UG/KG	5	>	Ξ	>	= :	:		=	11	>
UG/KG 10 U 11 U II U II U II	laila	0/1/01	ç	=	=	כ	=	>	=	:		=
UG/KG 10 U 11 U II U II U II U II	Ē	92/90	2 .	=	-	=	=	>	=	>	_	o :
propene UG/KG 10 U 11 U 11 U 11 U 11 U 11 U 11 U 11	ethane	OG/KG	2	>	= ;) =	-	=	-	-	Ξ	>
UG/KG 10 U 11 U 11 U 11 U 11 U 11 U 11 U 11	Dishloropropere	UG/KG	5	>	Ξ	0	- ;) =	-	=	1	-
UG/KG 10 U 11 U 11 U 11 U 11 U 11 U 11 U 11	Cicio de la como	()// () -	7	=	=	>	Ξ	>	-) :		=
loride UG/KG 10 U 11 U 11 U 11 U 11 U 11 U 11 U 11	chloromethane	92/90	2 ;) =	-	=	11	-	=	>	=	י כ
loride UG/KG 5 JB 53 B 7 11 U 11 U 11 U 11 U 11 U 11 U 11 U	200	OG/KG	0	5	- :) (·	<u>a</u>	10	9	13	œ
UG/KG 10 U 11 U 11 U 11 U 11 U 11 U 11 U 11		ווט/אַט	ß	8	53	m	o	9 :	2 ;	} =	11	=
UG/KG 10 U 11 U 11 U 11 U 11 U 11 U 11 U 11	ne chloride		•	-	1,	=	Ξ	>	=	>	-) :
UG/KG 10 U 11 U 11 U 11 U 11 U 11 U 11 U 11		OG/KG	2	>	- ;) =	-	=	11	-	=	>
UG/KG 10 U 11 U 11 U 11 U 11 U 11 U 11 U 11	4000	UG/KG	2	>	=	5	- :	:		=	-	⊃
UG/KG 10 U 11 U 11 U 11 U 11 U 11 U 11 U 11		0// 011	5	_	=	>	=	>	= :	:		Ξ
UG/KG 10 U 11 U 11 U 11 U 11 U 11 U 11 U 11			2 ;) =	11	=	-	>	=	>	-)
UG/KG 10 U 11 U 11 U 11 U 11 U 11 U 11 U 11	3-Dichloropropene		2	>	=) :		Ξ	11	⊃	=	>
UG/KG 10 U 11 U 11 U 11 U 11 U 11 U 11 U 11			10	-	=	>	=) :		=	11	=
UG/KG 10 U 11 U 11 U 11 U 11 U 11 U 11 U UG/KG 340 U 3800 U 340 U 380	ernene			=	11	>	Ξ	>	=	>	- :) :
UG/KG 10 U 11 U	loride	OG/KG	2	>	: ;	• =	11	=	-	⊃	=	>
UG/KG 340 U 3800 U 340 U 380 U 360	(Total)	UG/KG	5	>	=)	=)	•			
UG/KG 340 U 3800 U 340 U 380 U 360											,	:
UG/KG 340 U 3000			•		000	Ξ	340	>	380		360	>
	ichlorobenzene	UG/KG	340		2000)))					

LOCA' SAMPLI COLLECTION D	LOCATOR: SAMPLE ID: TION DATE:	BCF-B3 BCF-B3-3032 07/14/94	.3 1032 94	BCG-B1 BCG-B1-0001 06/30/94	1 0001 34	BCG-B2 BCG-B2-0002 07/14/94	32 3002 94	BCG-B4 BCG-B4-1012 07/13/94	34 1012 94	BCG-B7 BCG-B7-1012 07/15/94	37 1012 94
	UNITS:	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL	RESULT	QUAL
1 2-Dichlorobenzene	UG/KG	340)	3800	ɔ	340	-	380	>	360	၁
1.3-Dichlorobenzene	UG/KG	340	>	3800	_	340	>	380	>	360	כ
1.4-Dichlorobenzene	UG/KG	340	>	3800	>	340	>	380	>	360	ɔ
2.2'-Oxvbis(1-chloropropane)	UG/KG	340	>	3800	-	340	>	380	>	360	5
2.4.5-Trichlorophenol	UG/KG	820	>	9100)	830	>	910	>	870	-
2.4.6-Trichlorophenol	UG/KG	340	>	3800	-	340	ɔ	380	5	360)
2.4-Dichlorophenol	UG/KG	340	>	3800	-	340	5	380	>	360	¬
2.4-Dimethylphenol	UG/KG	340	>	3800)	340	>	380	5	360	⊃
2.4-Dinitrophenol	UG/KG	820	>	9100)	830	>	910	>	870	>
2.4-Dinitrotoluene	UG/KG	340	>	3800	>	340	¬	380	>	360	⊃
2.6-Dinitrotoluene	UG/KG	340	>	3800	⊃	340	>	380	>	360)
2-Chloronaphthalene	UG/KG	340	>	3800	¬	340	>	380)	360)
2-Chlorophenol	UG/KG	340	>	3800	⊃	340	>	380	>	360	⊃
2-Methylnaphthalene	UG/KG	340	>	3800	>	340	>	380	>	360	>
2-Methylphenol	UG/KG	340	>	3800	_	340	>	380	>	360	>
2-Nitroaniline	UG/KG	820	>	9100	>	830	-	910	כ	870	ɔ
2-Nitrophenol	UG/KG	340	>	3800	-	340	>	380	>	360)
3.3'-Dichlorobenzidine	UG/KG	340	>	3800	>	340	כ	380)	360	ɔ
3-Nitroaniline	UG/KG	820	J	9100	>	830	>	910	>	870)
4.6-Dinitro-2-methylphenol	UG/KG	820	>	9100	>	830	-	910	⊃	870	>
4-Bromophenyl phenyl ether	UG/KG	340	>	3800	>	340	-	380	>	360	>
4-Chloro-3-methylphenol	UG/KG	340	>	3800	>	340	כ	380	5	360	⊃
4-Chloroaniline	UG/KG	340	>	3800	>	340	>	380	>	360	>
4-Chlorophenyl phenyl ether	UG/KG	340	>	3800	>	340	>	380	¬	360	>
4-Methylphenol	UG/KG	340	>	3800	>	340	כ	380	5	360	>
4-Nitroaniline	UG/KG	820	>	9100	>	830	>	910	-	870	>
4-Nitrophenol	UG/KG	820	-	9100	Þ	830	⊃	910	5	870	>
Acenaphthene	UG/KG	340	>	3800	>	340	כ	380	>	360	Þ
Acenaphthylene	UG/KG	340	>	3800	>	340	-	380	⊃	360	>
Anthracene	UG/KG	340	>	820	7	340	ר	380	>	360	>
Benzo(a)anthracene	UG/KG	340	>	5200		340	>	380	-	360	⊃
Benzolalnyrana	UG/KG	340	כ	4600		340	⊃	380	-	360	>
Benzo(b)fluoranthene	UG/KG	340	>	9200		340	>	380		360	Þ
Benzola h ilnervlene	UG/KG	340	-	2000		340	⊃	380	כ	360	>
Benzo(k)flioranthene	UG/KG	340	_	9700		340	כ	380	כ	360)
Butvl benzvl phthalate	UG/KG	340	· ⊃	3800	כ	340	>	380	כ	360	>

	QUAL	-	>	7	J	כ	Þ	၁	-	ɔ	>	>	>	ɔ)	>)	>	כ	-	כ	>	כ	-	ɔ	>	>	7		7	Z ;	ž	=				>		
BCG-B7 BCG-B7-1012 07/15/94	RESULT OI	360	360	4	360	360	360	360	360	360	360	360	360	360	360	360	360	360	360	360	360	870	360	360	380	360	360	84		1	ဖ	2.50	•	0.12	0.38	2.80	0		
12	QUAL	כ	ם	7	=	=	=) =) =) ⊃)	⊃	כ	ר	-	¬	>)) =) ⊃	=	=	=	=)) =) =	•			* O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.70 N		0.13 U	O.39 U	4.70 *	כ		
BCG-B4 BCG-B4-1012 07/13/94	RESULT	380	380	140	2 6	9 6	9 6	000	000	000	086	000	380	380	380	380	086	086	000	280		380	2 0	380	380	380	380	280	200		3.50	<u>-</u>	•	o	Ö	4	0	•	
	۸Ł	=)	o -	: ר	ɔ :	> :) :	> :	> :	5	5	> =) =	> =) =	> :	o :	ɔ :	> :	> :))	>	>	>	>	> '	7		*	z	:	α) <u>-</u>	> *			
BCG-B2 BCG-B2-0002 07/14/94	אטס דונ	9	340	340	160	340	340	340	340	340	340	340	340	340	340	340	340	340	340	340	340	340	830	340	340	340	340	340	47		000	0.00	2 '	, (2.5	0.36	, 0	9	
BCG O7	RESULT	•	יפי	(7)		(*)	(')	.,	.,	••	••																						_		~	- ,	7	_	
-	QUAL		7		>	၁	7	>)	-		7	⊃	>	>	>		>	>)	>)	-)		_	-)			>	z			ш	z 0		
BCG-B1 BCG-B1-0001 06/30/94	RESULT 0	ļ	068	4400	3800	3800	1100	3800	3800	3800	11000	420	3800	3800	3800	3800	4500	3800	3800	3800	3800	3800	9100	6100	0088	7500	3800	3800	3800			3.40	7.70	•	0.20	0.44	11.50	0	
			-	¬	, –	- =) =) =) =	· –	-)	-	-	၁	-	כ	-) =) =	=) =	-	> =) :	> =	> =	=	ר כ			*	V		>	כ	*	၁	
BCF-B3 BCF-B3-3032 07/14/94	I TI O LI		340	340	45	2 5	040	2 40	2 6	340	340	340	340	340	340	340	340	340	2 5	940	250	5 6	5 6	07.8	340	340	340	340	340 53	;		3.40	7.50	•	0.11	0.35	4.30	0	
BCF.	F11.000	A CO	C.	י ר	, -	- (, (, (, (, (, \																					_				n (1	. "	لـ ı	
LOCATOR: SAMPLE ID:		ONI S:	9 N	0%/90	06/RG	OG/RG	UG/KG	UG/KG	UG/KG	5/SO	06/RG	08/90	5 / S C	מאלט מאלט ב	פארט פיארט פיארט	28/00	5 / S	06/86	UG/KG	08/80	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG			NAG /KG	MG/KG	אים/אנט	MG/KG	MG/KG	03/044	mg/L	
SAN	COLLECTION DATE:			Carbazole	Chrysene	Di-n-butyl phthalate	Di-n-octyl phthalate	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)pyrene	Isophorone	N-Nitroso-di-n-propylamine	N-Nitrosodiphenylamine(1)	Naphthalene	Nitrobenzene	Pentachlorophenol	Dhananthrana	Chend	£00000	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl)ether	bis(2-Ethylhexyl)phthalate		m	Antimom	Arsenic	Barium	Beryllium	Cadmium	Chromium Chromiim Cr+6	· · · · · · · · · · · · · · · · · · ·

BCG-B7 BCG-B7-1012 07/15/94	RESULT QUAL	1.90 B	0.18 UQN*	0.11 U*	4.40 U	0.43 U	0.44 U	0.40 UWN	9.70 E
BCG-B4 BCG-B4-1012 07/13/94	RESULT QUAL	2.80 B	2.10 N	0.15	13.50	0.45 UWN	0.46 U	0.41 U	9.10 E
BCG-B2 BCG-B2-0002 07/14/94	RESULT QUAL	6.20	2.20 N	O.10	8.40	0.41 UWN	0.42 U	0.38 UW	17.40 E
BCG-B1 BCG-B1-0001 06/30/94	RESULT QUAL	11.10	43.80	0.11 U	10.80	0.44 UWN	0.46	0.41	131 EN
BCF-B3 BCF-B3-3032 07/14/94	RESULT QUAL	4 70	2 0	2 0 0		0.50 0.40	2.40	WII 75 0	16.10 E
LOCATOR: SAMPLE ID: COLLECTION DATE:	UNITS:	WG/KG	SW SW	SW SW	SW/SW	DY/DW	DY/DW VX	DY/DIM	MG/KG
			reddoo	Lead	Mercury	Nickel	Selenium	i ver	i hallium Zinc

BCC BCC-GW1RE 11/08/94	RESULT QUAL	
BCC BCC-GW1F 11/08/94	RESULT QUAL	
BCC BCC-GW1 11/08/94	RESULT QUAL	
LOCATOR: SAMPLE ID: COLLECTION DATE:	UNITS:	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Tichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dibromo-3-chloropropane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,3-Dichloroethane 1,3-Dichlor

BCC-GW1RE 11/08/94	RESULT QUAL		1	•		•	•		<u>ی</u>	•	1		ာ : အ	20 -	ວ: ໝ	ວ : ຄ ເ	: c	70 : C	ວ : ຜາ	១ =	ດ :	o -	7 : 7 :	o :	07 ¹¹	ກ <u>=</u>		07 07	70 - -		ວ:				20 : U	=
BCC-GW1F 11/08/94	RESULT QUAL	,		•	•	•			•	Þ	•		•	•	•	•		•	•	,	,	•	1			•	•	•	1	•	•	•	•	•	•	
BCC BCC-GW1 11/08/94	RESULT QUAL	-	- -	- -	- -	- -	O.80		2	•	•	•	⊃	70 07	<u>ی</u>	2	5 C	70 07	2	വ :	2	2	4 U	ວ : ຜ _ູ		o :			_	2	_		2	5	20 U	
LOCATOR: SAMPLE ID: COLLECTION DATE:	UNITS:	NG/L	hloroethene UG/L	_)) NG/L		benzene UG/L	enzene UG/L	enzene UG/L	enzene UG/L	2,2'-Oxybis(1-chloropropane) UG/L	ophenol UG/L	_	_	_		_				_					_	methylphenol UG/L	_	ethylphenol UG/L	ne UG/L	4-Chlorophenyl phenyl ether UG/L	_		
		Toluene	Trans-1,2-Dichloroethene	Trans-1,3-Dichloropropene	Trichloroethene	Vinyl chloride	Xylenes (Total)	8	1.2.4-Trichlorobenzene	1.2-Dichlorobenzene	1,3-Dichlorobenzene	1.4-Dichlorobenzene	2,2'-0xybis(1	2.4.5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methylnaphthalene	2-Methylphenol	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4,6-Dinitro-2-methylphenol	4-Bromophen	4-Chloro-3-methylphenol	4-Chloroaniline	4-Chlorophen	4-Methylphenol	4-Nitroaniline	

BCC BCC-GW1RE 11/08/94	RESULT QUAL	2	2	⊃ . ư	· =	o :	ວ : ຜ	5 C	5 O	ى د	⊃ 16	•	Ω v						ດ :			: n				ស D :		្រ :								o د			n •	7	
BCC BCC-GW1F 11/08/94	RESULT QUAL	•		1	ı	•	•	•	,		1	•	•	1	•	·	•		•	•	•	•	1	•	•	4			•	•	1	•	,	•	,		•	•		•	
BCC BCC-GW1 11/08/94	RESULT QUAL	-	o :	ъ О	ъ О	<u>ر</u>					2 2	ص د	•	5 C	ر ت	<u>ت</u>	_r.							ຄະ														2		5	
LOCATOR: SAMPLE ID: COLLECTION DATE:	UNITS:		UG/L	UG/L	NG/L		06/L	UG/L			ng/L	Te UG/L	UG/L	UG/L	1/90	701			7,00	UG/L	OG/L	1/9/n	OG/L			adiene		rene UG/L					06/L	UG/L	OG/L	UG/L	UG/L			9	
3			Accreptthene	Acellaphinions	Acenaphinyleile	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzola h ilperylene	Benzo (k) fluoranthene	Delizo(k/indoise)	Butyi Delikyi piminana	Carbazore	Chrysene	Di-n-butyl phthalate	Di-n-octyl phthalate	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)pyrene	Isophorone	N-Nitroso-di-n-propylamine	N-Nitrosodiphenylamine(1)	Naphthalene	Nitrobenzene	Pentachlorophenol	Phenanthrene	701010	Phenoi	Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl)ether	bis(2-Ethylhexyl)pntnalate

BCC BCC-GW1RE 11/08/94	RESULT QUAL		•	•	•	•	•	•	•	•	•	•	•	•	•		•	ı	•	,	•		i	•	
ш.	QUAL			>	ω	20	>	Þ		>		⊃		>			>	>		⋛	-		}		>
BCC-GW1F 11/08/94	RESULT		•	50.80	4.80	19.20	0.50	4.30	,	5.40	•	7.60	•	2.30	•	•	0.20	17.30		2.80	3.20	•	3.60	•	5.20
	QUAL			>	ω	ω	-	>		-				>			>	>		-	>		>		œ
BCC-GW1 11/08/94	RESULT		•	50.80	3.80	19.30	0.50	4.30	•	5.40	•	66.60	•	2.30	•	•	0.20	17.30	•	2.80	3.20	•	3.60	ı	6.50
LOCATOR: SAMPLE ID: COLLECTION DATE:	UNITS:		NG/L	NG/L	NG/L	NG/F	NG/L	UG/L	NG/L	NG/L	NG/L	NG/L	OG/L	NG/L	NG/L	UG/L	NG/L	NG/L	NG/L	UG/L	NG/L	NG/L	NG/L	NG/L	NG/L
		ю	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc

TCLP SVOCS

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

BCC-SB2-10'-12' SAMPLE NO.

7/31/95

BCB21012

Lab Name: COMPUCHEM ENV. CORP. Contract: 500639

Case No.: 29605 SAS No.:

SDG No.: 00004

Matrix: (soil/water) WATER

Lab Sample ID: 655506

Sample wt/vol:

Lab Code: COMPU

1000 (g/mL) ML

Lab File ID: GH055506A05.D

Level: (low/med) LOW

Date Received: 11/10/94

% Moisture: ____ decanted: (Y/N)___

Date Extracted:11/18/94

Concentrated Extract Volume: 1000(uL)

Date Analyzed: 11/19/94

Injection Volume: 1.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH:____

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Q

10	10-86-1	(AS NO.	CO		1
78-59-1Isophorone5_U	88-75-5		62-75-9	PyridineParaldehydeEthylmethacrylate2-PicolineNitrosomethylethylamineMethyl MethanesulfonateN-NitrosodiethylamineEthyl MethanesulfonatePhenolAnilineBis(2-chloroethyl)etherPentachloroethane2-Chlorophenol1,3-DichlorobenzeneBenzyl Chloride1,4-DichlorobenzeneBenzyl Alcohol1,2-Dichlorobenzene2-Methylphenol0is(2-Chloroisopropyl)ether3-Methylphenol3-MethylphenolN-NitrosopyrrolidineN-NitrosomorpholineN-NitrosomorpholineN-Nitrosomorpholine	20 10 15 45 20 20 15 20 10 10 10 10 10 10 10 10 10 10 10 10 10	UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU
78-59-1	1 00-75-5		78-59-1	2-Nitrophenol	_	5 U
88-75-5						

BCB21012

Lab Name: COMPUCHEM ENV. CORP. Contract: 500639

Lab Code: COMPU Case No.: 29605 SAS No.:

SDG No.: 00004

Matrix: (soil/water) WATER

Lab Sample ID: 655506

Sample wt/vol: 1000 (g/mL) ML Lab File ID: GH055506A05.D

Level: (low/med) LOW

Date Received: 11/10/94

% Moisture: _____ decanted: (Y/N)___ Date Extracted:11/18/94

Concentrated Extract Volume: 1000(uL) Date Analyzed: 11/19/94

Injection Volume: 1.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH:____

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L

108-70-3	Bis(2-chloroethoxy)methane2,4-Dichlorophenol1,2,4-TrichlorobenzeneNaphthalene4-Chloroaniline2,6-DichlorophenolHexachloropropeneHexachlorobutadiene1,2,3-TrichlorobenzeneBenzotrichlorideN-Nitroso-di-n-butylamine4-Chloro-3-methylphenolSafrole2-Methylnaphthalene1-Methylnaphthalene1-Methylnaphthalene1,2,4,5-Tetrachlorobenzene1,2,3,5-Tetrachlorobenzene	95 15 15 15 5 5 25 20 5 5 10 10 15 25 10	מממממממממממממממממממ
87-65-0 1888-71-7 87-68-3	2,6-Dichlorophenol Hexachloropropene Hexachlorobutadiene	25 20 5	U U U
98-07-7 924-16-3 59-50-7	Benzotrichloride N-Nitroso-di-n-butylamine 4-Chloro-3-methylphenol	5 10 10	ט ט ט
91-57-6 90-12-0 77-47-4	2-Methylnaphthalene 1-Methylnaphthalene Hexachlorocyclopentadiene	10 - 15 - 25	U U
634-90-2	1,2,3,5-Tetrachlorobenzene2,4,6-Trichlorophenol	15 - 25 - 25	1
634-66-2 91-58-7 90-13-1 88-74-4	1,2,3,4-Tetrachlorobenzene2-Chloronaphthalene1-Chloronaphthalene2-Nitroaniline	15 25 20	U U U U
131-11-3	1,4-Napthoquinone Dimethylphthalate 1,3-Dinitrobenzene	_ 10	5 U 0 U 5 U

BCB21012

Lab Name: COMPUCHEM ENV. CORP. Contract: 500639

Lab Code: COMPU Case No.: 29605 SAS No.: SDG No.: 00004

Matrix: (soil/water) WATER Sample wt/vol: 1000 (g/mL) ML Lab File ID: GH055506A05.D

Lab Sample ID: 655506

CONCENTRATION UNITS:

Level: (low/med) LOW

Date Received: 11/10/94

% Moisture: ____ decanted: (Y/N) ___ Date Extracted:11/18/94

Concentrated Extract Volume: 1000(uL) Date Analyzed: 11/19/94

Injection Volume: 1.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH:____

CAS NO.	COMPOUND (ug/L or ug/K	g) UG/L Q
208-96-8 99-09-2 83-32-9 51-28-5 100-02-7 608-93-5 121-14-2 91-59-8 58-90-2 84-66-2 297-97-2 7005-72-3 99-55-8 100-01-6 534-52-1 86-30-6 122-39-4 122-66-7 99-35-4 2303-16-4 2303-16-4 101-55-3 118-74-1 92-67-1	4-Chiorophenyi phony	15 U 10 U 30 U 10 U 10 U 45 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: COMPUCHEM ENV. CORP. Contract: 500639 BCB21012

Lab Code: COMPU Case No.: 29605 SAS No.: SDG No.: 00004

Matrix: (soil/water) WATER Lab Sample ID: 655506

Sample wt/vol: 1000 (g/mL) ML Lab File ID: GH055506A05.D

Level: (low/med) LOW Date Received: 11/10/94

% Moisture: ____ decanted: (Y/N)___ Date Extracted:11/18/94

Concentrated Extract Volume: 1000(uL) Date Analyzed: 11/19/94

Injection Volume: 1.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH:____

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

4.5 1.0.	(35, 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	J	
85-01-8	Phenanthrene	15	U
	Anthracene	15	U i
	Di-n-butylphthalate	15	Ū
56-57-5	4-Nitroquinoline-1-oxide	75	
91-80-5	Methapyrilene	30	
6055-19-2	Cyclophosphamide	20	
465-73-6	Isodrin	15	
	Fluoranthene	20	
92-87-5	Benzidine	25	
129-00-0	Pyrene	10	
140-57-8	Aramita	20	
60-11-7	p-Dimethylaminoazobenzene	10	
510 1E . 6	Chlorobenzilate	10	
52-85-7		65	
05 60 7	Butylbenzylphthalate	10	
110 02 7	3,3'-Dimethylbenzidine	100	1
TT3-33-/	2 Agetylamine fluorene	10	
53-96-3	2-Acetylamino fluorene	20	
119-90-4	3,3'-Dimethoxybenzidine	10	
11/-81-/	bis(2-ethylhexyl)Phthalate		Ū
101-14-4	4,4'-Methylene-bis(2-chloroa		Ū
91-94-1	3,3'-Dichlorobenzidine		Ü
	Benzo(a)Anthracene		บี
218-01-9	Chrysene		บั
117-84-0	Di-n-octylphthalate		บี
57-97-6	7,12-Dimethylbenz(a)anthrace		
205-99-2	Benzo(b) fluoranthene		U
	Benzo(k) fluoranthene		U
	Benzo(a)pyrene	5	
56-49-5	3-Methylcholanthrene		U
224-42-0	Dibenzo(a,j)acridine		U
193-39-5	Indeno (1, 2, 3-c, d) pyrene		ט
	Dibenzo(a,h)anthracene		U
191-24-2	Benzo(g,h,i)perylene	. 10	וע
		1	

page 4 of 4

FORM I SV-4

SAMPLE DATA PACKAGE AMENDED 5/12/95 04.0 APPENDIX F: DATA VALIDATION SUMMARIES AND LABORATORY CHAIN OF CUSTODIES

7	School	Blanke	Surrogate	Matrix spike/	Internal Standards
Sample #	Calibration	2	Recovery	Matrix spike	
	Compounds with %D≤25	FORM I & IV VOA	FORM II VOA	Duplicates FORM III VOA 142	FORM VII VOA
	ch-cthare	Quality hits in samples "B"if the hit	Check number of surrogates out:	Verify that spikes are within limits:	Internal standard area counts must not exceed upper or lower
	J-Merbaler	blank hit for common contaminants and 5x for all others	Verify blanks have no surrogates out: Qualifier: Action:	οK	Retention time within +/- 30
	1410	Qualify hits in samples "B"if the hit	Check number of surrogates out:	Verify that spikes are within limits:	Internal standard area counts must not exceed upper or lower limits:
	- Sylving -	blank hit for common contaminants and 5x for all others	Verify blanks have no surrogates out:	٥٨	Retention time within +/· 30
		Qualify hits in samples "B"if the hit	Check number of surrogates out:	Verify that spikos are within limits:	Internal standard area counts must not exceed upper or lower limits:
		is less than lox the blank hit for common contaminants and 5x for all others	Verify blanks have no surrogates out:		Retention time within +/- 30
		Qualify hits in samples "B"if the hit	Check number of surrogates out:	Verify that spikos are within limits:	Internal standard area counts must not exceed upper or lower limits:
· · · · · · · · · · · · · · · · · · ·		Is less than 10% the blank hit for common contaminants and 5% for all others	Verify blanks have no surrogates out: Qualifier: Action:		Retention time within +/- 30

SITE NAME: VALIDATED BY: SAMPLE DELIVERY GROUP DATA BUICHART FORM! B H A 8

SOIL SAMPLES:

(µg/Kg)

Sampling Date:

To calculate sample quantitation limit: (CRQL * Dilution Factor) / ((1 - 1 mointurm)/100)

									-		l	<u> </u>						-				1			1010	16/10	•
																									STATES TORIG	nerison o	
	_	-		 		- 	$\frac{1}{1}$	+	+	Ì	Ī	Ī	Ī								1	1	1				;
				<u> </u>		+	\dagger	\dagger	T	1	1	Ì	Ť	1	T											ron code	
	. '																		1	<u> </u>	1	1	1	1	- 11		
 	<u> </u>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					Ť	Ť	Ī	Ī							1	1	\downarrow	1	_	1	$\frac{1}{1}$	1	1	HARRATIVE	
		-	•		$\overline{}$																					HAR	
												1				1	_	_							4	田口田	
<u> </u>	$\frac{1}{1}$		•														_		_		-	_				1	
33.52			İ		II																						
<u> ५८</u> - १३ २०२१														<u> </u>				<u> </u>	_	<u> </u>	+	-	 	-	<u> </u>		
-								1	$oldsymbol{igstyle igstyle igytyle igytyle igytyle igstyle igytyle igytyle igytyle igytyle igytyle igytyle igstyle igytyle	_	igert	-	-	+	-	-	-	+	\vdash	+	+	+	+	 	+		
KE. B. Dass																											
RE							1	4	1	1	+	+	$\frac{1}{1}$	+	+	+	+	$\frac{1}{1}$	+	+	\dagger	\dagger	\dagger	i	Ť	1	
S							\dashv	$\frac{1}{1}$	+	+	+	+	+	+	+	+	+	+	\dagger	\dagger	\dagger	+	\dagger	\dagger	Ť		
ACD-63-0003																1						1					
Rel				<u> </u>		<u> </u>			-	<u> </u>	늭	+	1	<u> </u>	+	十	<u> </u>	-	+		<u></u>						
	701-								-	-	\dashv	-	_		-	1	1	-	Ť	Ì							
																-											
	541-329 (20-19-20)	111		╬	<u> </u>	$\frac{1}{1}$	<u> </u>	<u> </u>																			
	030			\parallel	++	+	+	十	\vdash	-	-																
	50																						1	_	<u> </u>	<u> </u>	
	<u> </u>			╣-			\dagger	\dagger	Ť	İ	T	Ī		Ī							<u> </u>	1	$\frac{1}{2}$	<u> </u>	$\frac{1}{1}$	<u> </u>	
	1000-18-0001			\parallel		-	\dagger	+	\dagger	Ť	T	T	1	T	T							120					The state of the s
	CB - BJ														,		1			1	1	7	4	1	4	4	4
	3			7	$\dot{\top}$		Ť	Ī	T		ايو		اع	- 1					2								
•	3	Smple no. Dilution factor X Moisture Location			يوا								2					1	ž		E						
		Sampi Lon X Loo			116		al serve	JEE DE	nterve		doudo		o Jd	2		1		hend	thoxy	henol	rober	1	2				
		DIIO			1	OC.	rober	rober	orobe	henol	orols	herol	P	se the	e.	2	henol	thylp	loroe	loro	타	E	lluao				
				CONTOUND	Phenol	2. Chilorophenol	1, 3-pichlorobenzene	1,4-Dichlorobenzene	Dichi	2-Hethylpherol	bis(2-Chiorolsopropyi)ether	4-Hethylpherol	N-Nitroso-di-n-propy lemine	Hexachloroethane	Witrobentene	l sophorone	2- Hitrophenol	2,4-0 Imethy [phenol	bis(2-chiorocthoxy)methane	2 4-Dichlorophenol	1.2.4. Irichlorobentene	Marchtholene	4-Chloroeniline				
				ដ	Phenol	2 Ch	1	-	1,2.	- ¥	1919	Ĭ.	=	Hex	E	100	-×	2,4	ā	~	7	=	ف				

* Contract Required Quantitation Limit

Dhan BUH...... FC. B 6

BOIL BAMPLES (µg/Kg)

Bampling Dato(s):

1 to 12

To calculate mample quantitation limit: (CRQL * Dilution Factor) / ((100 - 1 mointure)/100)

									_			_			_			1	<u> </u>		_		i		-	!	1	1	1	7	0NB /92
		į					-	1						<u> </u>	$\frac{1}{1}$	_		1	1	Ť		Ī		Ī							CODE DEFINITIONS revised 07/92
																															Erri
_	1	1	1	1		=	_ _	 -	1		<u> </u>																				DR D
1							1	1	! 				<u> </u>										İ								
																															ron
-			1	+			<u>-</u>	_	$\frac{1}{1}$	-	<u> </u>	<u> </u>			<u> </u>	 	-			Ì											LIVE
					•		H	+	+	+	<u> </u>	<u> </u> 	<u> -</u> 	<u> </u>	\vdash	\	╁	$\dot{\parallel}$	`	Ì	+										תווא
																															BEE NAUNATIVE
							{		+	+	╁	$\frac{1}{1}$	\dagger	十	+	t	\dagger	+	+	†	+	İ	1	Ī	Ī						10
١					ı			H	+	╁	+	\dagger	+	\dagger	\dagger	\dagger	\dagger	\dagger	+	\dagger	\dagger	Ť	1			1					
											-					-															
•	F	<u> </u>	+	-					_	+	\dagger	1	+	\dagger	+		Ť	†	\dagger	T	Ť	T			T						
								H	\dashv	\dashv	+	\dashv		\dagger	+	1	1	Ť	1		1	1		1							
											1								1												
	H	1	$\frac{1}{1}$	$\frac{1}{1}$	$\frac{1}{1}$			╬			•		-	1																	
									\vdash						-		_														
										-			٠.																		
		-	i	 	+			Ť	Ī																						_
																				-											
																			<u> </u>							_	<u> </u>				
		_			1												1	1	_	1	1	<u> </u>		_	_	_	-	-			
							_																								. ا
																	<u> </u>	<u> </u>	-		1	<u> </u>	1	-	\ 1	<u> </u>	-	+	$\frac{1}{1}$	+	
										<u></u>	<u>1</u>	1	1	1	1		ド	<u> </u>	+	¥	4	1	4	4	1	\downarrow	+	+	$\frac{1}{1}$	+	
											22							330		4	2,0			0 0			1	270			
										1	7	1		1		_		7	-	<u>. </u>	1	1	1	4	+	<u> </u>		1	+	 	┼╢ '
				٥ ا	. E							٤															ther			gg	
			Sample No.	Dilution Factor	Location					leno!		to bal	181		- 2												emple			nz zaho	
			Spr	<u>r</u> ,	\ \				2	thylp	halen	loper	Cophs	io of	heler	92	late	2	desp	2		brook				11	y Lep		2	-Zince	
				=				25	1	¥	Ted Ted	7007	Ishis	달	hop	1111	phth	thyle	I COL	111u	thene	1100	pheno	(yr.m	Iscal	됩	adpa	92	Jugo	nitre	
		ï						COMPOUND	" Lineshot will pitch	4-chloro-3-methylphenal	2-Hethylnaphthalene	Hexachi arocyclopentadiene	11-9	2, 4, 5- Ir Ichlorophenol	2. Chioromophthal ene	2-Xitroeniling	Dimethylphtholate	Acenaphthylene	0-9	3-Witroaniline	Acenoplithene	2,4-piniscaphenal	4-Xitrophenol	Dibentofyrm	2.4.Plaistasaluene	ethyl	K.chlocophenyl-phenylether	Luncene	4-Hitroaniline	4.6-Piniteg-Imchalahendi	
			i					_		7 - F	¥-5	Ę	2.4	7,7	~	1	۵	کِن کِن	2.5	۱	کو	2.	.,	ā	7	٥	٦		3	4	
		ا	}						-	1	<u> </u>	<u> </u>	<u> </u>		!	<u> </u>	1	<u> </u>	1	1	!	<u>-</u>	<u> </u>						0	0	

L ~ Contract Required Quantitation Limit

DATA BURKARI FORM! B N A 8

BOIL SAMPLES (µg/Kg)

Sampling Date(s):

=

(CRQL * Dilution factor) / ((100 - 1 wointurn)/300) To calculate anaple quantitation limits

-		l I						i		-	1	1			<u> </u>	<u> </u>	1	<u> </u>	1	1		1	<u> </u>		1	<u> </u>	!		1			=
																								-	\ 		-				DEFIN	revised
		Ì	<u> </u>										_		1	1	1	1	1	1	$\frac{1}{1}$	1	$\frac{1}{1}$	1	<u> </u>	<u> </u>	1		+	-	COD	×
			1																			1		<u> </u>	-						VE FOR	
							1				_	<u> </u>	1	1	1	_		_				_					<u> </u>				BEE HARMATIVE	
-																			-									<u> </u>	-		BEE H]]
							1	1	-		+	<u> </u>	2	_		<u> </u>	-	-		+	0				\	-	+	-	-	+-		
												J.	90						-	1	1	+				+	1	1		-		
	Ī							1	+	+	<u> </u>	-		_	-	1	+	$\frac{1}{1}$	+	$\frac{1}{1}$	1	 	+	+	\dagger	+		+	$\frac{1}{1}$	$\frac{1}{1}$		
																	1	1	1	1	1	1	1		1	1	1	<u> </u>	1	<u> </u>		
		-					-			•		-			+	1	+	1				+	-	+	-							
					·								1		7																_	
								-	-	13.		+	+	1	_			_														
												1	<u> </u>					<u> </u>		-	-	<u> </u> -	<u> </u>	<u> </u>		1	1		<u> </u>			
								1	-	+	$\frac{1}{1}$	$\frac{1}{1}$	1			<u> </u>	<u> </u>	-	+	1	-	-				+	+	\dagger				
						 			<u> </u>	1	1					1	1,,	<u> </u>	+	1	<u> </u>	16	3	 - -	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u> </u>		1	+	+	-	
									1	$\frac{1}{1}$	1	5400 E	920	000	<u>に</u> に に に に に に に に に に に に に に に に に に	- i-	1300 /	70050	 	1	1500		250 4	┿	+	_	_	2400	20/5	2300].
						 				<u> </u>		15	6		1	1	7.	3		<u>; </u>	Ť	7	+	+	7	7	-			7		1
	1	Sample No.	ector	Figure X	1002001			2	ether											dine			hthelete		2	9 U.		yrette	cene	ų		
		Sout	Dilution Fector	¥ .	8			thery m	1-pheny	ntene	theriol					hthelate	¥		phthele	robentle	threcene		(hexy()p	phthelat	nor enthe	nor sully	Lene	1,5.cd)p	h) enthre	peryler		
		i li	<u> </u>				COMPOUND	at the sent the roll mal De	4-8r omophemyl-phemylether	Hexachlorobentene	and achier meteriol	hres	בו מוויווו מו	Anthractic	Carbatole	Di-n-butyiphthelate	r Luor enthene	Pyrene	Butvibentyiphthelete	1 11-0 ich lorobenz idine	Benzo(a) anthracene	Chrysene	bis(2-Ethylhexyl)puthalate	DI-n-octylphthelate	Benzo(b) Hoor onthers	Benzo(K) I luor milhene	Bento (1) pyr ene	Indervol 1, 2, 3 colpyrene	Dibenz(a, h) anthracene	Bento(g,h)perylene		
							ב	,	JB - 7	Hexa	100		-	Anti	25.	-	13	2			1 2	ਚਿੱ	119	0	100	ł	:	-	0	-		

- Contract Required Quantitation Limit

DATA VALIDATION FORM FOR SEMI-VOLATILES CLP

Sample #	Holding Times	Instrument Performance Check	Initial Calibration	Initial Calibration Compounds With %RSD<30	Continuing Calibration
184-81-000 I	Sample date: Date Received: 7-1-5-1 Extraction Date: 2-5-1	Dato: 1/5, 2	Date: 2-15-5-1 Instrument: 0 9 Time: 73-5 RRF> 0.05:	4. (1 - 12 m hr e	Vorify RNF > .05 Qualify R or L if not: %D < 25: Qualify J or UJ If not:
Matrix	Analyzod:) 1.5 % Holding time: Instrument # : 1.0 %	Samplo analyzod: /5 5 /	Avg RRF ≥ 0.05: %RSD≤30:		Instrument:
128- B4-550	Sample date: Date Recoived: 7-14.5" Extraction Date: 7-17.5"	Date: 7 - 8 - 8 - 1 Time: 15 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8	Date: (+ 10 54 Instrument: 07 Time: 215.2	10,00	1 - 1 -
Motrix ,	Analyzod: 7-20-54 Holding timo: Instrument #: +107	Sample enelyzed:	Avg RRF > 0.05:		Timo: / / / / / / / / / / / / / / / / / / /
دان - 13 - آن:	Sample date: 1 16.54 Date Received: 1 20.64 Extraction Date: 1 20.64	Date: 7-29-54 Time: 0005	Date: 2 - 15 - 11 Instrument: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1. (1 ca. 12.0	Voilly Ritt 2.05 Qualify B or L if not: %D < 25: Quality J or UJ if not:
Matrix	Analyzod: 3-75-5-1 Holding timo: 130.5	Sample enelyzod: OC25	RRF≥ 0.05:	11 . 11	Time: 1447 375 34 Instrument: 23
9x0-62-0x0		Dato: 7-3:54 Timo: 1248	Date: 2 15 54 Instrument: 08 Tine: 1503	d : 1(U 5 1) . L	log of
Metrix	Analyzed: 7:30-54 Holding time: Instrument #: 68	Somple enolyzed:	Avg RRF ≥ 0.05: %RSD≤30:		Time: (5) the Instrument: (5)

SITE NAME:
VALIDATED BY:
SAMPLE DELIVERY GROUP

53 53 75.00.

					Internal Standards
Sample #	Continuing Calibration	Blanks	Surrogate Recovery	Matrix spike/ Matrix spike Duplicates	
	Compounds with				
	c7>∩%		o Joseph Minister of	ikes are	Internal standard area cours.
	. Ch and	Qualify hits in	surrogates out:	within limits:	limits:
	46.0.1.74.0.34	la lose than 10x the blank hit for common	OU BAE	RPD 0 of 1/ out	Retention time within +1.30
	A supplied to the supplied to	contaminants and 5x	Qualifier:	4-0-3-10-11/12/1 H	:000;
		Blank #: 0		V. de. else enikes are	Internal standard area counts
	Just.	Quality hits in	Chack number of surrogates out:	Within limits:	must not excood upper of tower
		is loss than 10x the	on execution to	RPD O of 1/ out	- 1- 1- 1- 1- 1- 30
		blank hit for common	Surrogates out:	SR 2 of 2'2 out	Rotonilon units
		for all others	Qualiflor:	1	
•		Blank #: 7.3		West shot snikes 810	Internal standard area counts
	4.16.00 de	Qualify hits in	Check number of	within limits:	must not excood upper of lower
	3-10-21:01	semples "B"if the nit	\ \	10 // 10 / Can	
	24 - D. nAcche.	blank hit for common	Verify blanks have no	SR 4 of 2 Lout	Rotention time within +1-30
		conteminants and 5x	Qualifier:	CAP HIST	
	46. 1.34	Blank #: 55		V10, that snikes 816	Internal standard area counts
	3-Ditingailes	Quality hits in	Chack number of surrogates out:	within limits:	limits:
		is less than 10x the	Verify blanks have no	RPD 6 of 11 out	Retention time within +1.30
		blank hit for common contaminants and 5x	surrogates out:	SR 3 of 2.2 out	:003
		for all others	Quelliter:	11:11	
		Blank #:			
SITE NAME:				-	-
VALIDATED BY:	VERY GROUP				
שאואון דר גיייי					

DATA VALIDATION FORM FOR SEMI-VOLATILES CLP

Sample #	Holding Times	Instrument Performance Check	Initial Calibration	Initial Calibration Compounds With %RSD<30	Continuing Calibration
1XE-133-0007	Sample date: Date Received: 1-14-5-1 Extraction Date: 1-18-54	Date: 7:00 5:4	Date: (6-20-5-1) Instrument: 07 Time: 2-5-5	(1)	5 If not: I If not:
Motrix	Analyzod: 7:20:54 Holding timo: Instrument #: A02	Sample analyzed: 2351	Avg RRF ≥ 0.05: %RSD≤30:	1 0 2 1	Timo: 75 5 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
U.F. 63-0507	171-1	Date: 7.28-57 Time: 2005	Date: 3 - 15 - 5 · 1 Instrument: 0.5 Time: 1808	4 CV:90:14.8	10 de 1
Matrix	Analyzod: 7 2.9 9.9 Holding timo: Instrument #: COS	Semple enalyzed: 0,25,0	Avg RRF > 0.05:		Time: Oct Control Instrument:
	Sample date: Date Received:	Date:Time:	Date:Instrument:		Quality R or L if not: Quality J or UJ if not:
Matrix	Analyzod: Holding timo: Instrument # :	Sample analyzed:	RRF≥ 0.05; Avg RRF ≥ 0.05; %RSD≤30;		Timo: Instrument:
	Samplo dato: Data Recoivad: Extraction Dato:	Dato:	Date: Instrument: Time:		Quality R or L if not:
Mntrix	Analyzad: Holding timo: Instrument # :	Samplo analyzed:	Avg RRF ≥ 0.05: %RSD≤30:		Tinst: Instrument:

SITE NAME: VALIDATED BY: SAMPLE DELIVERY GROUP

									Ī					T								
Internal Standards		Internal standard area counts	must not excoad upper of 19719.	Retention time within +1.30	o Carolina de la caro	Internal standard area common must not exceed upper or lower	limits:	Retantion time within +1-30		Internal standard area counts	must not exceed upper of interest		Retention time within 5		Internal standard area counts	must not exceed appear	Rotontion time within + 1-30	:005		-		
Matrix enikal	Matrix spike Duplicates	Verify that spikes are	within limits:	RPD O of / lout SR 2 of 22 out	240 200	Verify that spikes are within limits:) / John Jane	SR 4 of 22 out		Waify that spikos are	within limits:	app of out			Varify that spikes are	within limits:	RPD of out	;				
OLF	Surrogate Recovery		Chack number of surrogates out:	Verify blanks have no surrogates out:		_	surrogatos out:	Verify blanks have no surrogates out:	Qualifier:		Check number of		Verify blanks have no	Qualifier:		Check number of surrogates out:		Surrogates out:				
	Blanks		Qualify hits in	is loss than 10x the blank hit for common	for all others	Blank #:		Is lose than 10x the blank hit for common	for all others	Blank #:	Qualify hits in	semples B if the int	blank hit for common	conteminants and 3x	Blank #:	Quelify hits in	is less than 10x the	contaminants and 5x	Blank #:		1	
	Continuing Calibration Compounds with	%D≤25	Door				1 000 CD. CUCLO DESTEN	3. 2) 10 gar 12 6	4. W+001112	Sec 1" 1											Y: VERY GROUP	
	Sample #									•	-									SITE NAME:	VALIDATED BY: SAMPLE DELIVERY GROUP	

Nº 2479

CHAIN-OF-CUSTODY RECORD
EAGTH TECA

COMPUCHEM ENVIRONMENTAL

1.3561-8-H - High M - Medlum L - Low data when hive years of archivel? (Circle Choice see Note 4) DESTROY OF RETURN (in days, see Note 3) Sample storage time (See Note 1.) Box #6: Remarks/Comments Sampling for project complete? Y or A Project-specific (PS) or Batch (B) QC 8 į. Set S i we R. Radiological T. TCLP O Other 地 755 596 822 745 Field Point-of-Contact: Telephone No: ((15) K #4; C. CLP avo S. SW-846 W. CNA 600-series L. Low Coric CLP 83 Relinquished By. (Sig.) Other #3 Received By. (Sig.) Phenois XOT/DOT H9T/D&O Company Name: MON EGER Company Name Syanides Derte JO-AOV マイミ PesyPCB-GC SV-GCMS Sampler Name: Project Name: Sampler Sig (AUG to SM) Use for Lab QC 4 9 4 N 7 56789328 No. of Bottles #2 Relinquished By. (Sig. Comprehen Box 33 Z ۷ #2 Received By (Sig.) Σ Airbill No. Expect. Conc. E les Only Company Name Company Name Box # ψ Describe Problems, If Amy. Method 2 LEDEX Box #2: A HC \supset Fittered/Unittered 🖁 Ш W S (T) α Ship to. 2 PIESEIVATIVE 2 Matrix <u>Q</u> 18005 910000118 6129 15:30 612915:30 6 129 15:30 136 129 11:17 S1:E116217 Research Triangle Park, NC 27709 əmiT CORPORATION 0 6. Trip Blank 7. Off 6. Waste 9. Other: 3306 Chapel Hill/Nelson Highway 30 Lab: Received in Good Conditions of IN Oste: Year: 19 9 3 0 0 K 0 ~ Sample ID
(Organics: 9 characters max, Inorganics: 6 characters; see Note 2) 1. Surface Water
2. Ground Water
3. Leachate 0 Ō Client's Special Instructions 0 #1 Retinquished By. (Sig.) #1 Received By: (Sig.) o Q 3 ω 1-800-833-5097 ٦ 7 Company Name: B $\overline{\omega}$ 8 8 Ф Company Name 4 $\boldsymbol{\omega}$ 3 \overline{u} Ü W W Box #1 S 8

ples to await remainder of project-maximizing batch size and minimizing QC ratio; if "T lab will begin processing betches now. 1908 [2]: if CLP inorganics diskette required, ID limited to maximum of aix characters Note [1]: If "I's list will hold eamples to await remainder of project-maximizing batch size and minimizing QC ratio, if "?" lab will begin processing batches now. Note [2]: If CLP inorganics destroyed the result of sold in the copies of data destroyed after five years unless client requests and pays for return of copies; annual storage fee billed in January of year six Mode [3]: Samples shored 60 days after data report mailed at no extra charge. Note [4]: All lab copies of data destroyed after five years unless client requests and pays for return of copies; annual storage fee billed in January of year six 2 102

2484 일

CHAIN-OF-CUSTODY RECORD

DESTROY or RETURN data when the years of archives? (Curle chuice, see Note 4) Sample storage lime requested? (in days, see Note 3) H - High M - Modlum L - Low Box #6: gioc; if This built begin processing betthes now. Note [2]: # CLP inorganics disketts required, ID limited to maximum of six characters Remarks/Comments Sampling for project complete? Y for N 272 Time. Project-specific (PS) or Batch (B) QC 1mg 8 R. Radiological T. TCLP O Other Telephone No: (415) Field Point-of-Contact: S. SW-848 W. CWA 600-erre L. Low Cone CLP Box #4: C. CLP 340 R3 Relinquished By. (Sig.) #3 Received By: (Sig.) Other Phenois Compeny Name. Company Name: XOT/OOT H9T/D&O Project Name: EARTH TEUN 110 FG, MIANG ě 23diologicals Sabinayo P S S Mercury 8 8 Sampler Signature:) < SV-GCMS Pesupcb-GC VOA-GC Box #3: F Flaned Sampler Name: VOA-GCMS Use for Lab QC (MS or DUP) 4 Carrier Leden Alithii No. 56789329 9 V Relinquished By. (Sig.) No. of Bottles #2 Received By (Sig.) Z Box X I S Sten Company Name es to reference index (The index in a series charge). Note 14: All tab copies in the confine the copies in the cop Expect. Conc. ل Describe Problems, M Amc. Box # Method ¥ Filtered/Unfiltered 🖁 另 Box #2 O ste Time Preservative Box #1 **Matrix** 125/2/76/34/27 05:60 57 72 6 650 Jime Research Triangle Park, NC 27709 CORPORATION 6. Trip Blenk 7. Of 6. Waste 9. Other ENVIRONMENTAL 3306 Chapel Hill/Nelson Highway COMPUCHEM Sear: 19 Sear Client's Special Instructions: Sample ID (organics: 9 characters max, inorganics: 6 characters; characters; see Note 2) Lab; Received in Good Co Box #1 1. Surface Water
2. Ground Water
3. Leachate
4. Rinstant
5. SoutSediment'S #1 Relinquished By: (Sig.) Note 113: If TA' TAB WILL DO 81 Received By. (Sig.) 1-800-833-5097 <u>a</u> Company Name Company Name: <u>8</u> 4 d <u>8</u>

Analytical Laboratories

Chain of Custody Record

Date 7/15/94

Ch1967 묏 5 751 1 150 145 (-);2 DROJPO60 FRom ID'S orfulay Remarks Company Contract (& Dert 149 Signature M. Stora O. 38 139 Printed MI STEVENS 35 5 137 3 75 3 4 30 139 45 2 Analysis Required 136 Ŋ 7 7 4 2 4 2 Telephone No. (615) 463-9404 Project Manager J. BOLESEL Samplers: (Signature) Relinquished by: FAX. NO. (615)481-3834 Company -Signature Printed Temp. Type/Size of Container 1-STAINLERS STEEL CHON LIOTHES, MIANS, BATTLE CREEK, MI 7/14 1300 Soil Received by: Signature Company 7/4 1323 5511 7/4 145 Soll 7/4 1503 5016 7/14 1515 5012 1/14 17W SOIL Time Sample 7/14 1700 Soil 1745 Sal 7/14 1610 Soir Printed 1/14 1735 Son Project Name / Number 94-8901-05 Time 7/14 ÷ FAX (714) 890-4032 BC-32-0507 AFUSKA Location Address EARTH TECH Contract / Purchase Order / Quote --Huntington Beach, Ca. 92649 yc-13-000 BC-81-1012 BC-13-002 8x-12-0002 KC-B2- b17 34-84-000 BCC-B1-102 Field Sample Number 8c-13-14K 3c-81-1012 (714) 892-2565 Laboratory Sumple Number Relinquished by: Signature Company Resson

Stored over 90 days (additional fee)

Returned to customer

☐ Disposed of (additional fee)

Stored (90 days max)

After analysis, samples are to be:

Migrat did und Rollinglich

Neleted all dish Arow ID's

Samples, mis

Method of Shipment:

Special Instructions:

Shipment No.

The Earth Technology
Corporation

Analytical Laboratories 5702 Bolsa Ave. Huntington Beach, Ca. 92t (714) 892-2565 FAX

Chain of Custody Record

Dote 7/14/94 Lab job no.: -Page

1,

Analysis Required	A COLATO SE SE SE SE SE SE SE SE SE SE SE SE SE		1 1 1 de l'arrelles de la chappel	SAMPLES REC'D IN GOOD CONDITION	Date Received by: Signature Printed Time Company	After analysis, samples are to be: Disposed of (additional fee) Stored (90 days max) Stored over 90 days (additional fee) Heturned to customer
Project Manager J. Reiesel	Teleph Fax. No	1-802 AMREC LINE Temp. Chemical 1-802 AMREC	7.0		Lunce Luiden Reil	Comments: CLP 3/90 SAMPLING NOT CO
5702 Bolsa Ave. Hunlington Beach, Ca. 92649 (714) 892-2565 FAX (714) 890-4032	Client 110 TH FG, MIGNG; SATTE CREEC, M. Address EACTH TECH Project Name / Number 94-8901-05 Contract / Purchase Order / Quote	Laboratory Sample Number Location Date Time: Type Sample Number 7/14 0827 501L 8CF-83-0507 7/14 0825 501L 8CF-83-0507 7/14 0902 501L 6CF-83-3032 7/14-0902 501L 6CF-83-3032 6CF-83-3032 7/14-0902 501L 6CF-83-3032	1/14 0947 Solt 1/14 1005 Solt 1/14 1005 Solt 849-81-1527		Relinquished by: Signature Signature Printed EACTH TECH Time Time Company	FING 126 569 800 726

5702 Bolsa Ave. Huntington Beach, Ca. 92649 The Earth Technology Corporation Analytical Laboratories

Chain of Custody Record

Dois 7/13/94 7 Leb job no.: _ Page

(714) 892-2565 FAX (714) 890-4032 CILCY 10TH FG, HIANG; BATTLE CREEK, M	TTECE	EEK			1	Analysis Required	-
Address EARTH TECH		.	. 1	. 1	* Section 1		
Project Name / Number 94-8901-05	1-05		Fax. No. (615) 481-3834-	,	2 Ly 2 Chy 2	Remarks	
Contract / Purchase Order / Quote			Samplers: (Signature)		377		
Field Location	Date		Type/Size of Container	Preservation Chemical	2/2/2		
	7/3/1400		Soil 1-BOZ AMBER.	7	7		
	7/13 1541	Soll	->	7	7	786367	
						1466	
						7.416	
						625 46/	
						494	
						25-	
		-					
							!
	- 2	Received by:	7, ->	Relinquished by:	a a	Date Received by:	
J		Signeture	1	Signature			
SAHSHITH	٧٠ <u>/</u>	Printed -	V. Batter	Printed		Printed	:
Company EACH TECH	<u> </u>	Company	Corpo CHON	Company		Time Company	
SHIPPING	1	Resson	>	Reseon		Resson	
Heliped of Shipment: DEO EX		Commen	COMMENS: CLP 3/90, SAMPLING NOT	NS NOT COMPLETE		After analysis, samples are to be:	
AIRBILL No. 9569800 785				MI WALLENGED IN	2	Stored (90 days max)	
Special Instructions:				AEUEI¥I	ED-IN	Stored over 90 days (additional fee) Returned to customer	lee)
					ADITION		F1000

Chain of Custody Record

The Earth Technology
Corporation

Analytical Laboratories 5702 Bolsa Ave.

Client 1 WIMFG, MIANG; BATTE CREEK, MI Huntington Beach, Ca. 92649 (714) 892-2565 FAX (714) 890-4032

Address EARTH TECH

Project Name / Number 94-890 | -05

Contract / Purchase Order / Quote -

Telephone No. (615) 483-9464 Samplers: (Signature) Project Manager J. BeleseL Fax. No. (615) 481-3834

Remarks Analysis Required

Date 7 13 94.

Page

Leb job no.:

2 8 1 201 101 701	454, 175, 113	625497 543 507	SV ANDVOA &	625424, 625427	62543, 625435, 625437	625479, 625483	625 456, 655 447	675 497 628 492.	Received by:	Printed		After analysis, samples are to be:	Disposed of (additional res) Stored (90 days max)	Returned to customer
Semple Sample Semple Service of March 1990	1540 Solu 1	1	7/12 1922 Soil 1000 1000 1000 1000 1000 1000 1000 10	2-1- AWENG	1/3 0817 Solt 1-802 AMBER 7/12 0808 Solt	7/13 1000 Solt	7/13 1025 Solt	087 Soil		Signature V O TTE	Time Company Company Company	Reason Reason Ass. D. U. U. U. COMPLETE	Comments: CLP 3/90 SAMPLING TO THE RECEIVED IN	MOLLING GOOD CONDITION
<u> </u>	mber 555 0002 +5 47[]		7/12			7/13			1/2 - 101. PG-84-101.T		Printed SAM SALITA		Method of Shipment: FED EX	

The Earth Technolog	Corporation

Analylical Laboratories 5702 Bolsa Ave. Huntington Beach, Ca. 92649 (714) 892-2565 FAX (714) Ю

15/4	- 10
Date 7	Page

Chain of Custody Record

_	_		Remarks		
Analysis Required	19	S S S S S S S S S S S S S S S S S S S	/ / / / / / / / / / / / / / / / / / /		/ / / / / / / / / / / / / / / / / / /
NO THE	Project Manager 3: Ulcitas	Telephone No. (615) 483-9404	Fax. No. (615) 481-3834	Samplers: (Signature)	
(714) 892-2565 FAX (714) 890-4032	Client 10TH FS, MIANG; BATTE CREEK, MI	Address EACH TECH	Project Name / Number 94-8901-05	Contract / Purchase Order / Quote	

COMPUCHEM

CHAIN-OF-CUSTODY RECORD

ENVIRONMENTAL

Project Name: | PRITIECREEK HILL | BRIEGEL BI US Organics Analysis SAM J. Sampler Signature: Box #3: F Filtered Sampler Name: Airbill No.: 1 5/2793250 COMPUCHEN Box #2: A. Ha E Lie Only B. HW, O. Other C. Nariso, N. Nof Preserv D. Ne, S.O. Carrier EX Ship to. 3306 Chapel Hill/Nelson Highway Research Triangle Park, NC 27709 Trip Blank Off Waste Other CORPORATION Box #1 1. Surface Welet 2. Ground Water 3. Leachala 4. Rinsate 5. Soli/Sedimen/Sudge 1-800-833-5097

H - High M - Modlum L - Low

Box #6:

R. Radiological T. TCLP O. Other

Box #4: c. c.p. 340 S. SW-849 W. CWA 600-enter W. CWA 600-enter

0

6

Sampling for project complete? Y or (NS (See Note 1.)

Project-specific (PS) or Batch (B) QC:

Telephone No: (615) 483-940 4-

g beneffi∂nU\be

Box M

Box #4

2

Box #2

Box #1

													7	<u>*</u>	
ıts											erine and an analysis but a	requested? (in days, see Note 3)	DESTROY OF RETURN	data after the years of archive? (Circle choice	See Note 4)
comme		RNE			. 7							Deta	Ime.	Deta	Time.
Remarks/Comments	SER	ESE		026.398	401										
Re	UNPRESERVED	UNPRESERVED		o He	~										
	2		-	-								3			
Jeri				_				+-				9y. (S		8	
OC/TOX OC/TOX	2		1	_			+-		-	-		pedal	2	Ä	Company Name
		<u></u>	+		+	-	+	+	1-	+		ra Balinoulabed By. (Sig.)	Name Name	S Becelved By: (Sig.)	hedu
stipologicals		<u> </u>			+	 	+	-	-			-	21 5	¥ 5	11 8
etals (PP) ercury yanides	<u>wl</u>			>	+								5 C	Time:	e e
		+	+		+	+	1				-	-	4	7	-
ენ-40 ენ-40	9H	+			-	-		-+-		\pm	┧ ┃	-			
25-829Vs	ASI .	+	2	1	-	+	+				_				
2M25-40	3/1/3	+				\top									
6 for Lab QC	SN)	_	_	_		+				-	-				
of Bottles	ON	1 6	1 -	-		-				_	-		ed By. (Sig.)		6
.conctoə	Exp		1	_		-	_						quished By	Company Name.	#2 Received By (Sig.)
роц	Meti		0	<u>ပ</u>		_		_			-	18, W AM	#2 Relinquishe	Compan	
bed/Unfiftered	Fine:	2	2	2	_	1					_	Describe Problems, M And	16	1800	12/8/
eviteve E	Presi	ᆈ	Ш	8	_		_		_		-	Descri	01/1	au.	Cate: 7
X SIVALIVE S	inteM	4	4	4							_		2	1	
	2011	<u>8</u>	7 1/6 11:00	3:1			••							زاز	1
	- Time	=	= 9	19/									2	1	
Met neay	Date:	7/16	7	E						1		L	- 1/	<u>.</u> ا	
								<u> </u>	1			ž	Lab: Received in Good Condition	#1 Relinquished By (Sig.)	E HICH H
i clers	ote 2)	_				-	1	+-	1			Cilent's Special Instructions:	Ood	(80)	A S
Sample ID (Organics: 9 characters	characters; see Note 2)	ব						-	-		-	clal in	U P	100	9
Sample ID forganics: 9 c	Clets	ER		ER	 	+-	+	+-	1		上	S S	Necely.	Inquit	Company Name
Sam (orga	Chara.	1	ن اد) U		İ	+		1		+-	Cirent	F.del	Re	S
		\\ \alpha) d	<u>ما ھ</u>	1										

i-maximizing batch size and minimizing QC rado; if "T" lab will begin processing betches now. NOB [2]: if CLP inorganics diskette required, it) limited to maximum of six characters Des 1 530

Date: 7/18/44

Note [3]: Samples stored 60 days after date report mails

#1 Received By: (Sig.)

Company Name:

The Earth Technology Corporation

100 Chain of Custody Record

Date 7 (15/94	Page 1 of

-Analytical Laboratories --5702-Boisa Ave: -Huntington Beseh, Cs. 92649-

							-
1, 7 ld 111		ешр.		_		Sample Number Sample Number	Sample Number
1) 6/3/11		Type/Size of Container		ete Time	Location Date Time Time	Field	Laboratory
- TE	/ / / / d/S />	Preservation			-		
BOLLIANDS ADDS	7 / / / / 0/5/50						
/ NEUEIVED IN	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Samplers: (Signature)			ote	Contract / Purchase Order / Quote	Contract / Purc
/ DEFENSED IN	/ / / / / / / / / / / / / / / / / / / /				7	Project Name / Number 77	Project Name /
Remarks	1 / 12/5/10	1 1 1 1 1 1 1 2034		•	(•	
_	/ / / 5/ . / 5/ 5/50.	Telephone No. ((012) 405 74-24			HJ:	Address EARTH TECH	Address E
	/ / / / / / / / / / / / / / / / / / /						
_	1 1 1 1 1 1	Project Manager U. DK. EGEL	REEK MI	THE	NG: BI	LIOTH FG. MIANG: BATTLE CREEK MI	TOIL PERSON
_	Analysis Required	777.02	•			1	anna sen (ne.)
					FAX (714) 890-4099		71 AV ROT 3666
						The section of the Subtract	THE WOLLD'S

	181	_																		
GOOD CONDITION		UNDRESERVED	(2/1/2/2)	499 1	(β)	417	43.5	100	49.3'	454	7667	707	1821	Received by: 1443	Pilnted	Сотрепу	Reason	After analysis, samples are to be:	Stored (90 days max) Stored over 90 days (additional fee)	Returned to customer
	1														- ā		ě	er analy:		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u> </u>													Dete		Time	1	Affic		
<u>\</u> \!	2			>	7	7	7	7	_											
70	X		7		7	\	7	2										ш		
	\forall																	PE		
3	Temp. Chemical		HCL	HNO3		1	(1						7/8/1 /Relinquished by:	Printed Printed	Company	Resson	LING INCOM		
Samplers: (Signature)	Type/Size of Container	2-1L ANBER	2-404-	1-1000HL	1-STAINLESS STEEL			->	504969	410.					EUSUS	James Oles	-	COMMENTS. CLP CAC ; SAMPLING INCOMPLETE		
	Sample Type	4	4	4	7	7	7	7						eived by:	Signature I	Company	Resear	Commente		
	Time	7/15 0800	7/15 0800	7/15 0800	7/15 0955	1125	911	1200						Date Rec	1/3	Time			1 1	I
	Date	7/15	7/15	7/15	7/15	2//5	0411 51/2	7/15 1200						ă	<u> </u>	= 	1			
ote	Location					1,5/94										CH		EX	0,0	
Contract / Purchase Order / Quote	Field Sample Number	RCER7	BCERT	RCER 7	Reo-BI-002	18cp-81-4587 8/15/44 7/15 1125	B-1-82-0002	RP82-0507						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Printed JAN 15 TECH	SHIPPING	Method of Shipment: FED EX	Special instructions:	
Contract / Pure	Laboratory Sample Number		/			7	/	1						Relinquished by:	Signature —	Printed Company	Beech	Method of Shi	Special Instructions:	

Kellogg SI

Battlecreek, Michigan

Inorganic Data Validation by CLP Metals

Sampling Dates: June - July 1994

Samples:

BCA-B1-0001

BCB-B4-0507

BCC-B2-1012

BCD-B2-0002

BCE-B2-0002

BCF-B3-0507

I. Sample Holding Times: Acceptable/All criteria met

Discussion:

All samples analyzed within the 6 months for metals (28 days for mercury).

II. Initial and Continuing Calibration: Acceptable/All criteria met.

Discussion

All percent recoveries were within the appropriate control limits of 90-110% for most metals (80-120% for mercury).

III. Blank Analyses: Acceptable/With the following exceptions

Qualified Data: None

Discussion:

Method blanks (preperation blanks and inital and continuing claibration blanks), field blanks, and equipment rinseates were analyzed at the required frequency. Lead was detected in one of the initial calibration blank at 2.2 ppb. There were no associated lead detects less than 11 ppb, and qualifiers were not added. Non-detects were not qualified. Zinc was detected at 1.6 ppm in the preparation blank associated with BCA-B1-0001, BCB-B4-0507, and BCE-B2-0002. There were no associated zinc detects less than 8 ppm, and qualifiers were not added. Non-detects were not qualified.

IV. ICP Interference Check Sample (ICS) Analyses: Acceptable/All criteria met

Discussion:

Interference check sampels were analyzed at the beginning and end of each ICP analytical run, as required. All percent recoveries were within the 80-120% recovery control imits.

V. Laboratory Control Sample (LCS) Analyses: Acceptable/All criteria met

Discussion:

Two laboratory control samples (duplicate control samples) were analyzed by the laboratory with each delivery group. All percent recoveries were within the control limit of \pm /- 20%.

VI. Matrix Spike Sample analyses (Percent Recoveries): Acceptable/With the following exceptions.

Discussion:

Antimony, arsenic, lead, and thallium reported low recovery in the matrix spike for sample BCD-B2-0002. The sample detects for these metals were qualified "L". Non-detects were qualified "UL". Antimony, cadmium, chromium, selenium, and zinc reported low recoveries in the matrix spike associated with BCA-B1-0001, BCB-B4-0507, and BCE-B2-0002. Sample detects for these metals were qualified "L". Non-detects were qualified "UL". Lead and selenium reported low recovery in the matrix spike for sample BCC-B2-1012 and BCF-B3-0507. The sample detects for these metals were qualified "L". Non-detects were qualified "UL".

VII. Duplicate Sample Analyses (Relative Percent Differences): Acceptable/all criteria met

Discussion:

All analyses met the appropiate control limit.

VIII Furnace AA Quality Control Analyses (GFAA): Acceptable/all criteria met

Discussion:

All spike recoveries met the control limit of 20%.

IX. ICP Serial Dilution: Acceptable/With the following exceptions

Qualified Data: None

Discussion

Beryllium, chromium, copper, nickel, and zinc exceeded the the 10% control limit for ICP serial dilution analysis for BCD-B2-0002. No sample detects were greater the 50 times the IDL nad qualifiers were not added. Arsenic, beryllium, chromium, copper, lead, nickel, and zinc exceeded the 10% control limit for the ICP serial dilution analysis for BCA-B1-0001, BCB-B4-0507, and BCE-B2-0002. No sample detects were greater the 50 times the IDL nad qualifiers were not added. Antimony, chromium, copper, nickel, and zinc exceeded the the 10% control limit for ICP serial dilution analysis for BCD-B2-0002. No sample detects were greater the 50 times the IDL nad qualifiers were not added.

Kellogg SI

Battlecreek, Michigan

Volatile Organic Data Validation by SW-846 Method 8240

Sampling Dates: June - July 1994

Samples:

BCA-B1-0001

BCB-B4-0507

BCC-B2-1012

BCD-B2-0002

BCE-B2-0002

BCF-B3-0507

Sample Holding Times: Acceptable/All criteria met I.

Discussion:

All samples analyzed within 14 days.

GC/MC Instrument Performance Check: Acceptable/All criteria met II.

Discussion:

Bromofluorobenzene (BFB) was analyzed at the beginning of each 12 hour calibration period. All samples were analyzed within 12 hours the BFB tune.

Initial and Continuing Calibration: Acceptable/With the following exceptions. III.

Qualified Data:

Compound	Sample ID	Qualifier
Methylene chloride Acetone	BCB-B4-0507 BCE-B2-0002 BCA-B1-0001 BCB-B4-0507 BCC-B2-1012 BCD-B2-0002 BCE-B2-0002 BCF-B3-0507	1 1 1 1 1 1

Discussion

All relative response factors (RRF) in the initial calibrations were above the 0.05 lower control limit. Methylene chloride and acetone had percent relative standard deviations (%RSD) above the 30% control limit in the initial calibration associated with all samples. Detects for methylene chloride and acetone were qualified "J" in all associated samples. All detects for methylene chloride and several detects for acetone were later qualified "B" due to blank contanimation.

Continuing calibrations were performed at the proper frequency. All RRF were above the 0.05 control limit. Several continuing calibrations reported compounds with response factor percent difference (%D) greater than the maximum allowable value of +/-25%. The compounds are listed in the data validation worksheets. Qualifiers were not added for non-detects.

IV. Blank Analyses: Acceptable/With the following exceptions

Qualified Data

Compound	Sample ID	Qualifier	
Methylene chloride	BCA-B1-0001	В	
, and the second	BCB-B4-0507	В	
i i	BCC-B2-1012	В	
	BCD-B2-0002	В	
	BCE-B2-0002	В	
	BCF-B3-0507	В	
Acetone	BCA-B1-0001	В	
	BCB-B4-0507	В	
	BCE-B2-0002	В	

Discussion:

Method blanks, field blanks, and equipment rinseates were analyzed at the required frequency. Methylene chloride and acetone were detected in both of the method blanks. Sample detects less than 10 times the concentration detected in the associated method blank were qualified "B". Non-detects and sample detects greater than ten times the associated blank concentration were not qualified.

V. Surrogate Recovery: Acceptable/All within criteria

Discussion:

All surrogate recoveries were within the appropriate control limits.

VI. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Sample Analysis: Acceptable/.All criteria met

Discussion:

All spike recoveries (SR) and relative percent differences (RPD) were within the appropriate control limits.

VII. Internal Standards Area Performance: Acceptable/All criteria met

Discussion:

All internal standards met control criteria for retention times and area counts.

Kellogg SI

Battlecreek, Michigan

Semi-volatile Organic Data Validation by SW-846 Method 8240

Sampling Dates: June - July 1994

Samples:

BCA-B1-0001

BCB-B4-0507

BCC-B2-1012

BCD-B2-0002

BCE-B2-0002

BCF-B3-0507

I. Sample Holding Times: Acceptable/All criteria met

Discussion:

All samples were extracted within seven days and analyzed within 40 days.

II. GC/MC Instrument Performance Check: Acceptable/All criteria met

Discussion:

Decafluorotriphenylphosphine (DFTPP) was analyzed at the beginning of each 12 hour calibration period. All samples were analyzed within 12 hours the DFTPP tune.

III. Initial and Continuing Calibration: Acceptable/With the following exceptions

Qualified Data: None

Discussion

All relative response factors (RRF) in the initial calibrations were above the 0.05 lower control limit. 4-chloroaniline, had a percent relative standard deviation (%RSD) above the 30% control limit in the initial calibration associated with four samples. 4-chloroaniline was not detected in the associated samples and qualifiers were not added.

Continuing calibrations were performed at the proper frequency. All RRF were above the 0.05 control limit. Several continuing calibrations reported compounds with response factor percent difference (%D) greater than the maximum allowable value of +/-25%. The compounds are listed in the data validation worksheets. Qualifiers were not added for non-detects.

IV. Blank Analyses: Acceptable/With the following exceptions

Qualified Data

Sample ID	Qualifier
BCA-B1-0001	В

Discussion:

Method blanks, field blanks, and equipment rinseates were analyzed at the required frequency. Bis(2-Ethylhexyl)phthalate was detected in one of the four method blanks at 48 ppb. Sample detects less than 10 times the concentration detected in the associated method blank were qualified "B". Non-detects and sample detects greater than ten times the associated blank concentration were not qualified.

V. Surrogate Recovery: Acceptable/All criteria met

Discussion:

All surrogate recoveries were within the appropriate control limits.

VI. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Sample Analysis: Acceptable/With the following exceptions

Qualified Data: None

Discussion:

Several spike compounds reported high recoveries. The compounds were not detected in the associated samples and qualifiers were not added. All relative percent differences (RPD) were within the appropriate control limits.

VII. Internal Standards Area Performance: Acceptable/All criteria met

Discussion:

All internal standards met control criteria for retention times and area counts.

GANICS INOR DATA SUMMARY FORM:

SOIL SAMPLE (mg/Kg)	CRA-61-0001 CCB-62-022 CCD-62-0202 CCE-63-0507 C			29 1, UL 3.8 L 1.10 UL 6.5 81	7	10.137 (6.13)		33.0 L 8.0 L 5.1 126 10.0 L 6.3	6.3 6.4 C.3 C.3 C.3		124 45 1.6 1. 3.2 6 8 6.7 3.1 6			9.7 6.9 8.1 2.9 6.0				75 0 L 29.9 L 11.2 65:2 26:0 L L& O	·		BEE NARRATIVE FOR CODE DEFINITIONS
mpling Dat	1000-10-8X			١	,,,,	\vdash		1		3	134					101		十	╁		
ite Name: Kellous	Somple No.	X solids Location	CRDL ANALYTE	12 Antimony ,	\bot	Beryllium	Cadmium		Cobalt	5 Copper	-	1000 Hagnesium	-	D.2 hercury	+	1 Selenium		mined of	+	+-	

CRDL * Contract Required Detection Limit

DATA SUMMARY FORM: VOLATILES

SOIL SAMPLES (µg/Kg)

ragh to ...

DATA SUMMARY FORM: VOLATILES

N

SOIL SAMPLES

HOTE BARKET (HB/KB)

Sampling Date(s):

Han :

Ë

To calculate sample quantitation light: (CRQL * Dilution Factor) / ((100 - % moisture)/100)

	•															7
							+		1							_
	Sample No.					•						T				_
	Dilution Factor								_			1		-		T
	X Noisture			1								1		1		Τ
	Location			-					_					-		_
												-				7
				7.												7
9	COMPOUND			}		<u> </u>						1		1		T
۲	1 2-nichloropropre			+	1				-							T
†	ALL S T. Dichloropene				1		†		-					-		T
2 0	Trichloroethene			-	+		+	+		<u> </u>				-	ŀ	T
+	a the control or constitute				$\frac{1}{1}$		†	+		-						T
	U1Dromocii ol olica in a							-	1	-	-					_
_	1, 1, 2-Trichloroethane			<u> </u>						1	+	1				<u> </u>
0	Benzene		+	-								1		1		Ī
1	Trans-1.3-Dichloropropene			+	+									1		T
2					1		†									Ī
#	Bromotorm			_			1	+	+	+						
10	4-Hethyl -2-pentanone		-						1	$\frac{1}{1}$		T				
9	2-Hexanone		-	_	_				-							Γ
5	Tetrachloroethene	1	-	1						-		1		+		Ī
9	1,1,2,2,-Tetrachloroethane		+	+	-							1				
9	Toluene		+	<u> .</u>	-		H							+		Ι
	Chlorobenzene				+		H							†		
2 0	Ethylbenzene			+	-											
٤	Styrene		+	1	-		F			-				+		Ī
2 5	Total Xvienes			+	+				-			1		1		Ī
				1	+	-								1		I
T				-	+	-	1	+	-							I
7									1							
٦									+	+	1					
				<u> </u> 	-				+		1					
			+	1					-	1	-	1				
			+	+					_	_						
Γ											SEE MARRATIVE FOR CODE DEFINITIONS	RATIVE	S FOR CC	DOME DE	FINITI	SNO
	- Contract Required Quantitation Limit	ititation 1	cimit											revised	70 000	76/10

QL = Contract Required Quantitation Limit

Comple #	Continuing	Blanks	Surrogate	Matrix spike/	Internal Standards	
sallipie #	Calibration		Recovery	Duplicates	A OV IV MAGOS	
	Compounds with	FORM I & IV VOA	FORM II VOA	FORM III VOA 182		
	010	Qualify hits in	Chack number of	Verify that spikes are within limits:	Internal standard area counts must not exceed upper or lower	
	+1.3.0. Wage	is less than 10x the	Verify blanks have no	02	minus.	
	Heyana: c	blank hit for common conteminants and 5x	surrogates out:		Retenior unit with the section of th	
		for all others Blank #: IS	Action:		to the standard area counts	
		Qualify hits in	Check number of	Verify that spikes are within limits:	must not exceed upper or lower	
	2-e4-2-02-10-11	samples "B"if the hit is less than 10x the		OK	limits:	
	14-mety 1-2. Pentar.	blank hit for common conteminants and 5x	Verify blanks have no surrogates out:	,	Retention time within +/- 30	
		for all others	Qualifier:			
		Digital in	Check number of	Verify that spikes are	internal standard area counts	
	Dovie	samples "B"if the hit	surrogates out:	within limits:	limits:	
		is less than 10x the blank hit for common	Verify blanks have no	0 X	Retention time within + f- 30	
		contaminants and 5x	Qualifier:		8ec;	
		Blank #: 000	Action:	Waifs that anikes 870	Internal standard area counts	
	- 18. 18. Oct	Qualify hits in samples "B"if the hit	Check number of surrogates out:	within limits:	must not exceed upper or lower limits:	
	Cahor Displicat	is less than 10x the	Verify blanks have no	70	Retention time within +1-30	
•	1,1-Dick - 116 6	contaminants and 5x	Surrogates out:	<i>/</i>	89C;	
	7 7 8 8 6	Blank #: 5	Action:			
SITE NAME: VALIDATED BY: SAMPLE DELIVERY GROUP	í: VERY GROUP					

	F - 11 - 1	SW/J5	Initial Calibration	Initial Calibration	Continuing
Sample #	Rolding Times	Instrument Performance		Compounds With %D ≤30	Calibration
	Form I VOA	Check	FORM VI VOA		FORM VII VOA
8CF-82.0007	Sample date: 7-13-54	Date: 2 : 25 : 54	Date: 7-6 5 4 Instrument: 5 4	Methyles chlaid	Varity RRF > .05 Quality R or L if not:
	1-1-1	Ion abundance: Sample analyzed:	Time:		Qualify J or UJ if not: Time: 744 7 25 6 4 Instrument: 5 4
LCF-83:0507		Date: 7-21-54 Time: 0132	Dato: 7 - /5 - 5 ⁻¹ Instrument: 191 3	Acolore	Varity RRF > 05 Quality R or L if not:
	Analyzed: 22154 Holding time: 72	Ion abundance: Sample analyzed:	Time: 1.2 \$ 1		Quality J or UJ if not: Time: 2015(; 7:21-5"/ Instrument: A /3
	Matrix: Sample date:	Date:	Date:		Verity RRF > .05 Quality R or L if not:
	Date Received: Analyzed: Holding time: Instrument #:	ion abundance: Sample analyzed:	Time: RRF≥ 0.05:		Qualify J or UJ if not:
	Sample date: Date Received:	Date: Time: Ion abundance:	Date:		Verity RRF2.05 Quality R or L if not: %D±£25: Quality J or UJ if not:
	Holding time: Instrument # :	Sample analyzed:	RRF≥ 0.05: Avg RRF ≥ 0.05: %RSD≤30:		Time: Instrument:
CITE NAME.					

SITE NAME: VALIDATED BY: SAMPLE DELIVERY GROUP_

:				Initial Calibration	Continuing
Sample #	Holding Times	GC/MS Instrument Performance	Initial Calibration	Compounds With %D <30	Calibration
		Check	ACV. St. See.		FORM VII VOA
	Form I VOA		7.02.54	Aceto 0	Verify RRF > 05
BCA - B1-0001	Sample date: (c-30 -54 Date Received: 7- 1. 54	Dato: 7 (, 54)	Date: 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2. Rulanone	Qualify R or L if not: %D±L25:
	Analyzed: 74 Holding time: 74 Holding time: 75 Holding time: 75 Holding time: 75 Holding times t	Sample analyzed:	ANG RRF 2 0.05:		Time:
		20.5	7-6-94	1) will so a state of the	Varify RRF > 105
18.134.0507	Sample date: 2-13-94 Date Received: 2-14-94	Date: 7 - 25 24 Time: 742 §	Instrument: 5 t/	Aceda!	%D±1-25:
!	Analyzed: 7.25 54.	lon abundanca: Samola analyzad:	RRF > 0.05: Avg RRF > 0.05:		Time: 1-49 7-25-57
	'Instrument # :	7 T	%RSD < 30:	2. A. J. now P	Varify RRF > .05
BCC - BJ. 1019	Sample date: 7.15 1,21 Date Received: 7-16-57	Date: 7-25 5"	Date: 1-25 Instrument: 0 Time: 13.2.2	Acedora 2 Accedora	Qualify R or L if not: %D ± L-25:
	<u> </u>	Ion abundance: Sample enalyzed:	RRF > 0.05:		Time: 2-25 54 7537 Instrument: 0.5
	Matrix:	2155	%RSD≤30:	Der Perif	Verify RRF>.05
5000 82 000		Time: //	Dato:		%D±L25: Qualify J or UJ if not:
	Analyzad: 62 Holding time: 62 Lostrument #: 62 Lostrument	Sample analyzed:	RRF≥ 0.05: Avg RRF ≥ 0.05: %RSD<30:		Time: Instrument:
	Matrix:				

SITE NAME: VALIDATED BY: SAMPLE DELIVERY GROUP_

He

 \overline{S}

15 N

APPENDIX G: MICHIGAN DEPARTMENT OF NATURAL RESOURCES ENVIRONMENTAL RESPONSE DIVISION OPERATIONAL MEMORANDUM

- 8 (Revision 4)
- 12 (Revision 2)
- 14 (Revision 2)
- 15

MICHIGAN DEPARTMENT OF NATURAL RESOURCES

INTEROFFICE COMMUNICATION

June 5, 1995

TO:

Environmental Response Division Staff

FROM:

Alan J. Howard, Chief, Environmental Response Division

SUBJECT:

Interim Environmental Response Division Operational Memorandum #8, Revision 4: Generic Residential Cleanup Criteria

THIS DRAFT, INTERIM OPERATIONAL MEMORANDUM HAS BEEN PREPARED TO FACILITATE IMPLEMENTATION OF THE 1995 AMENDMENTS TO PART 201 OF THE NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION ACT, 1994 PA 451 (FORMERLY THE MICHIGAN ENVIRONMENTAL RESPONSE ACT). THIS OPERATIONAL MEMORANDUM WILL TAKE EFFECT CNLY WHEN HOUSE BILL 4596 IS SIGNED INTO LAW. INTERNAL REVIEW OF THIS MEMORANDUM IS ON-GOING, AND NO OUTSIDE REVIEW HAS BEEN COMPLETED. THE CONTENT OF THE MEMORANDUM, AND THE ATTACHED CRITERIA, ARE SUBJECT TO CHANGE AND SHOULD BE RELIED UPON ONLY AFTER CONFIRMATION WITH APPROPRIATE ERD STAFF.

Revision 4 of this Operational Memorandum reflects changes made as a result of two major legislative actions: (1) the incorporation of the Michigan Environmental Response Act (MERA), 1982 PA 307, as amended, (2) into the Natural Resources and Environmental Protection Code, 1994 PA 451; and the 1995 amendments to Part 201 contained in [House Bill 4596]. Enactment of the Natural Resources and Environmental Protection Act resulted in new section numbers for all of the former MERA, but did not make any substantive changes in the law. [House Bill 4596] substantially amends Part 201. Those amendments, particularly the changes in cleanup standards, are reflected in this revision of Operational Memorandum #8. Unless otherwise noted, Section references in this memorandum are to Part 201 of Act 451.

The attached table lists generic residential cleanup criteria which have been developed pursuant to Sections 20120A(1)(A) and (3), according to the updated algorithms presented in this memo. This table replaces the previously issued list of Type B criteria dated February 4, 1994. The label of "Type B" has been eliminated and the criteria are now referred to as generic residential criteria. The algorithms as presented in the administrative rules of the Michigan Environmental Response Act, 1982 Public Act 307, as amended, have been replaced by updated algorithms which represent current U.S. Environmental Protection Agency (EPA) guidance and a format consistent with the industrial/commercial equations and those used by the Underground Storage Tank Division (USTD).

The criteria were developed using currently available toxicological data, exposure data, and other data and are subject to change as new data become

available. These criteria are presented in two significant figures; reference doses and slope factors used to generate the criteria were also reported in two significant figures. Cleanup criteria from the attached table should be compared to analytical data presented in two significant figures, as well.

This list presents noncarcinogens and carcinogens together; carcinogens are presented in bold and italics. Chemicals beginning with numbers (such as 1,1,2-trichloroethane) are incorporated alphabetically within the list. Criteria on these lists should be considered draft; final cleanup criteria will be confirmed by Environmental Response Division (ERD) toxicologists and approved as part of a specific remedial action plan (RAP). Staff are reminded that generic residential RAPs must address all elements required by Part 201 and the administrative rules, including those for which specific criteria have not been developed. Additional guidance follows.

Note that in cases where generic residential criteria are less than target method detection limits (MDLs) or background, target MDLs or background levels become the cleanup goal. Generic residential criteria are not relevant in these cases.

The table presents values for the subrules that are most often expected to be the controlling factor in determining soil cleanup criteria. However, a generic residential RAP must include rationale that supports the conclusions drawn from the assessment of pertinent pathways (i.e., some discussion of each pertinent pathway must be included which assesses whether more restrictive criteria are required; See R 299.5711(1) and R 299.5711(6).

HEALTH-BASED AND AESTHETIC DRINKING WATER VALUES

The values in the first column of the table were developed using the residential groundwater algorithms presented later in this memo for carcinogens and noncarcinogens. The values in the second column of the table were established, where sufficient data are available, to protect against adverse aesthetic impacts of hazardous substances on groundwater.

The most restrictive of the values in the first two columns of the table is the cleanup criterion required to satisfy Section 20120A(4) of Part 201. However, where a State Drinking Water Standard has been established, that standard will override the health-based drinking water criteria, as indicated in Sec. 20120A(5) of Part 201. A more restrictive aesthetic criterion will take precedence over the State Drinking Water Standard. Note that Rule 299.5709, referenced in Section 20120A(5), requires that aquifer cleanup criteria take into account adverse aesthetic impacts resulting from one or a combination of hazardous substances. If adverse aesthetic impacts remain when health-based criteria have been achieved, further remedial measures may be required. Consult your Supervisor if you encounter such a case.

IMPACTS OF GROUNDWATER CONTAMINANTS ON SURFACE WATER

The third column in the table lists values based on calculations done by Surface Water Quality Division (SWQD) in accordance with Rule 323.1057 of Part 4 of Part 31 of the Natural Resources and Environmental Protection Act, 1994 PA 451 (formerly known as the Water Resources Commission Act, 1929, PA 245, as amended) or on the National Toxics Rule (NTR; Federal Register, December 22, 1992. Vol. 57(246):60848-60923). For use in ERD programs, the criterion which protects surface water has been termed the groundwater surface water interface (GSI) value. The final GSI value is the more restrictive of the Rule 57 value and the NTR value, where both are available (with the exception of arsenic whose GSI value is the Rule 57 value even though it is greater than the NTR value). Where only one of the two values is available, that number becomes the GSI value.

The GSI values are the criteria used to judge compliance with Rule 299.5713. GSI values are developed for surface water which is not used as a drinking water source and also for surface water which serves as a source of drinking water. GSI values presented in the list are for surface waters not protected as a drinking water source. If the surface water at a site serves as a drinking water source, contact an ERD toxicologist to obtain the correct GSI value. In cases where data are inadequate to calculate a GSI value, the party proposing the remedial action may generate the minimum data necessary to propose a value for Department review and approval.

Prior to passage of the 1995 amendments, a mixing zone was not allowed when assessing the impact of groundwater venting to a surface water. A mixing zone is now allowed for venting groundwater at those sites where an additional load to the receiving stream of site-specific contaminants is allowable and where a mixing zone is appropriate for the receiving stream. If a RAP allows for venting groundwater, the discharge must comply with requirements of Part 31 of Act 451 and the relevant rules promulgated under that Part.

Demonstration of compliance with surface water requirements may be made by assessing groundwater concentrations at the groundwater-surface water interface or through evaluation of mixing zone, whichever is appropriate for a particular site. Predictive modeling and direct monitoring are options to establish compliance with the GSI value at the groundwater-surface water interface. If the groundwater-surface water interface is the compliance point for a particular site, it is not necessary that the GSI value be achieved throughout the aquifer. However, a remedial action plan which proposes to meet the GSI value throughout the aquifer in lieu of monitoring at the interface or modeling will be acceptable.

Note that the sixth column on the table will show 20 times the GSI values. This value is shown for ease of reference in cases where soil is to be remediated to that level as a source control measure. Rule 299.5711 does not require that soil meet the "20 times GSI values", as long as the GSI value is not exceeded at the appropriate compliance point.

SOIL CRITERIA PROTECTIVE OF GROUNDWATER

The "20X" values in the table are provided for convenience and are not mandatory if leachate tests or other methods which better represent in situ conditions support the use of a higher value (refer to Operational Memo #12 for guidance on appropriate leachate methods). For certain chemicals which strongly adsorb to soil and are known not to leach at significant concentrations (i.e., PCBs, carcinogenic polynuclear aromatic hydrocarbons and some chlorinated pesticides), the direct contact value is accepted as the soil cleanup criterion to protect groundwater in addition to the protection against long-term, systemic direct contact hazards. However, there are certain situations (i.e., presence of solvents or collection of unfiltered groundwater samples) which could result in the presence of these types of materials in groundwater. These other conditions should be evaluated before a chemical is considered nonmobile in soil. Consult an ERD toxicologist if you think direct contact values for other contaminants would be protective of groundwater or if you have questions about conditions that could cause the transport of a nonmobile contaminant through soil.

SOIL DIRECT CONTACT CRITERIA

Direct contact criteria only consider long-term, systemic exposure from ingestion of and dermal contact with contaminated soil. Consequently, there

are other potential concerns that may need to be addressed (see discussion of issues not addressed by the direct contact criteria presented below).

Compliance with direct contact criteria are required throughout the affected media in the unlimited residential land use category, but exposure controls and land use restrictions may be employed to prevent exposures to more highly contaminated soils at depth under the limited residential land use category.

Average on-site soil concentrations, represented as a 95% upper confidence level (UCL) on the arithmetic mean, may be used to determine compliance with the soil direct contact value. On-site 95% UCLs should, however, reasonably represent the areas over which exposures are expected to occur. Typically, the exposure area for a residential property is approximately one-quarter acre in size. Refer to EPA guidance on how to appropriately calculate the 95% UCL (EPA, 1992a).

Issues Not Addressed by the Direct Contact Criteria

Inhalation: All RAPs must document that they are protective of the public health, safety and welfare and the environment. As a result, they must contain some discussion of potential inhalation risks, and whether inhalation (i.e. exposure through volatile or particulate contaminant emissions) is a pertinent pathway for human exposure at the site in question. The direct contact criteria do not address and are not applicable for the inhalation pathway because they do not incorporate potential inhalation effects, long-term or acute, of hazardous substances in soil.

Chemical characteristics which are pertinent to this discussion include vapor pressure and/or Henry's Law constant, the potential to cause cancer via the inhalation route, the potential to cause irritation of respiratory tissue and special characteristics which may make a contaminant an inhalation hazard (e.g., friable asbestos). The RAP should indicate whether any materials with these characteristics are present. If such materials are present, it may be necessary to conduct a risk assessment of the inhalation pathway to determine if lower cleanup criteria are required for protection of human health. Consult an ERD toxicologist for guidance. If no significant inhalation risk exists, criteria and/or exposure control measures which are protective for other routes of exposure will be deemed protective for the inhalation pathway and a narrative assessment for the inhalation pathway will be sufficient.

Dermal Toxicity: The direct contact soil equation does not address acute skin toxicity or skin sensitization. These concerns may have to be addressed before chemicals with skin toxicity or sensitization characteristics can be left in place at the direct contact value. Contact an ERD toxicologist for guidance.

Ecological Concerns: RAPs must also address ecological concerns. The RAP should include a description of the physical setting of the site, including any natural resources which could be affected by the release(s) addressed in the plan. In general, potential ecological impacts are defined as adverse impacts on a community or a population of organisms rather than on an individual who is the focus of a human health risk assessment. An ecological risk assessment will be required only if there is a "sensitive environmental resource" present at or near the site, or if there are other special circumstances such as concern for persistent or bioaccumulative hazardous substances, which may adversely effect the food chain, or a physical feature that would attract wildlife to the site (e.g., migratory waterfowl habitat).

Professional judgment must be used to determine whether it is likely that criteria more restrictive than those required to protect public health, or those required pursuant to other applicable regulations (e.g., groundwater/surface water interface criteria), are necessary to protect natural resources at or near the site. If ERD staff believe that there is a need for an ecological assessment, this should be reviewed with your supervisor and other technical experts as appropriate. Ecological risk assessments will be the exception rather than the rule.

TARGET METHOD DETECTION LIMITS

The table also includes the target method detection limits (MDLs) for each hazardous substance, where one has been determined. These target MDLs are taken from Operational Memorandum #6, revision 4 and are provided to allow for convenient comparison between generic residential criteria and target MDLs. Consult Operational Memorandum #6 for a full description of the use of target MDLs and proper methods for analysis.

The use of particular methods and detection limits listed in Operational Memorandum #6 are not mandatory. Other methods or detection limits may be approved as part of a site-specific RAP.

These target MDLs are applicable to environmental investigations and monitoring performed pursuant to Part 201 response activities. These detection limits may not be applicable to environmental monitoring activities performed pursuant to other Parts of Act 451 or environmental statutes. Facilities subject to regulation under other environmental statutes should consult with the appropriate DNR Division for further information regarding appropriate analytical detection limits.

GENERIC RESIDENTIAL ALGORITHMS

RESIDENTIAL GROUNDWATER ALGORITHMS:

CARCINOGENS:

 $C_{dw} = \frac{10^{-5} \times BW \times AT \times CF}{SF \times EF \times ED \times IR_{dw}}$

where, C_{dw} (risk-ba

C_{dw} (risk-based drinking water

concentration)
10⁻⁵ cancer risk

BW (body weight)
AT (averaging time in

AT (averaging time in days) CF (conversion factor)

SF (cancer slope factor, mg/kg-d⁻¹)

EF (exposure frequency)
ED (exposure duration)

IR_{dw} (drinking water ingestion rate)

= in ug/l (ppb)

= acceptable risk

= 70 kg

= 25,550 days (70×365)

= 1000 ug/mg

= chemical-specific

= 350 d/yr = 30 yr

= 2 liter/day

NONCARCINOGENS:

$C_{dw} = HQ \times RfD \times BW \times AT \times RSC \times CF$ $EF \times ED \times IR_{dw}$

Cdw (risk-based drinking water where, = in ug/l (ppb) concentration) = 1. HQ (hazard quotient) = chemical-specific RfD (oral reference dose, mg/kg/d) = 70 kgBW (body weight) $= 10,950 \text{ days} (30 \times 365)$ AT (averaging time) = 0.2RSC (relative source contribution) = 1000 ug/mgCF (conversion factor) = 350 d/yrEF (exposure frequency) = 30 yrED (exposure duration) IR_{dw} (drinking water ingestion rate) = 2 liter/day

RESIDENTIAL DIRECT CONTACT SOIL CRITERION ALGORITHMS:

CARCINOGENS:

$C_s = \frac{10^{-5} \times AT \times CF}{SF \times FC \times [(EF_i \times IF \times AE_i) + (EF_d \times DF \times AE_d)]}$

where, C_s (risk-based soil concentration) = ug/kg (ppb)
10⁻⁵ cancer risk = acceptable risk
AT (averaging time) = 25,550 days (70 x 365)
CF (conversion factor) = 1E+9 ug/kg
SF (cancer slope factor, mg/kg-d⁻¹) = chemical-specific
FC (fraction of soil contaminated) = 1
EF_i (ingestion exposure frequency) = 350 d/yr
EF_d (dermal exposure frequency) = 245 d/yr
IF (age-adjusted soil ingestion factor) = 114 mg-yr/kg-d*
AE_i (ingestion absorption efficiency) = (see text)
DF (age-adjusted soil dermal factor) = 2442 mg-yr/kg-d**
AE_d (dermal absorption efficiency) = (see text)

NONCARCINOGENS:

$\frac{\text{HQ x RfD x AT x CF}}{\text{FC x } \{(\text{EF}_i \text{ x IF x AE}_i) + (\text{EF}_d \text{ x DF x AE}_d)\}}$

= ug/kg (ppb)C_s (risk-based soil concentration) where, = 1 HQ (hazard quotient) = chemical-specific RfD (oral reference dose, mg/kg/d) $= 10,950 \text{ days } (30 \times 365)$ AT (averaging time) = 1E+9 ug/kgCF (conversion factor) = 1 FC (fraction soil contaminated) = 350 d/yrEF_i (ingestion exposure frequency) = 245 d/yrEF_d (dermal exposure frequency) IF (age-adjusted soil ingestion factor) = 114 mg-yr/kg-d* AE_i (ingestion absorption efficiency) = (see text)

DF (age-adjusted soil dermal factor) = 2442 mg-yr/kg-d**

AE_d (dermal absorption efficiency) = (see text)

```
*IF<sub>soil/age-adj</sub> = IR<sub>soil/age 1-6</sub> \times ED<sub>age 1-6</sub> + IR<sub>soil/age 7-31</sub> \times ED<sub>age 7-31</sub>
                                        BWage 1-6
                                                                               BWage 7-31
                   IR_{soil/age 1-6} (soil ingestion rate)
                                                                                      = 200 \text{ mg/day}
where,
                   ED<sub>age 1-6</sub> (exposure duration)
                                                                                      = 6 years
                                                                                    = 15 \text{ kg}
                   BW<sub>age 1-6</sub> (body weight)
                                                                                      = 100 \text{ mg/d}
                   IR<sub>soil/age 7-31</sub> (soil ingestion rate)
                   ED<sub>age 7-31</sub> (exposure duration)
                                                                                      = 24 yr
                   BW<sub>age 7-31</sub> (body weight)
                                                                                      = 70 \text{ kg}
          DF_{soil/age-adj.} = SA_{age 1-6} \times AF \times ED_{age 1-6} + SA_{age 7-31} \times AF \times ED_{age 7-31}
                                                                                    BWage 7-31
                                      BW<sub>age 1-6</sub>
                   SA<sub>age 1-6</sub> (skin surface area)
                                                                                       = 1820 \text{ cm}^2/\text{day}
where,
                   AF (soil adherence factor)
                                                                                      = 1.0 \text{ mg/cm}^2
                                                                                      = 6 years
                   ED<sub>age 1-6</sub> (exposure duration)
                                                                                      = 15 \text{ kg}
                   BW<sub>age 1-6</sub> (body weight)
                   SA<sub>age 7-31</sub> (skin surface area)
                                                                                    = 5000 \text{ cm}^2/\text{day}
                   AF (soil adherence factor)
                                                                                      = 1.0 \text{ mg/cm}^2
                                                                                      = 24 yr
                   ED<sub>age 7-31</sub> (exposure duration)
                   BW<sub>age 7-31</sub> (body weight)
                                                                                       = 70 \text{ kg}
```

The residential equations yield values which represent concentrations of contaminants in water in units of micrograms per liter (ug/l) and in soil in units of micrograms per kilogram (ug/kg), or parts per billion (ppb). To convert to units of parts per million or milligrams per liter (mg/l) in water and milligrams per kilogram (mg/kg) in soil, divide by 1,000.

All exposure assumptions represent current EPA guidance. The selection of an appropriate averaging time (AT) is dependent upon the type of toxic effect being evaluated. AT represents the number of days over which the exposure is averaged. When evaluating long-term exposure to noncarcinogenic compounds, exposures are calculated by averaging over the period of exposure (i.e., subchronic or chronic exposures). For carcinogenic compounds, exposures are calculated by prorating the total cumulative dose over a lifetime (also called lifetime average daily dose). The approach for carcinogens is based on the assumption that a high dose of a carcinogen received over a short period of tome is equivalent to a corresponding low dose spread over a lifetime. The averaging time for carcinogens is 25,550 days (70 years x 365 days) and 10,950 days (30 years x 365 days) for noncarcinogens.

The acceptable level of risk for carcinogens has been changed from one in one million (10⁻⁶) to one in one hundred thousand (10⁻⁵). All criteria for carcinogens have been changed appropriately. The acceptable hazard quotient (HQ) for noncarcinogens has always been 1, although this parameter was not explicitly presented in the previous MERA equations. The HQ is the ratio of a single substance's exposure level over a specified time period to a reference dose for that substance derived from a similar exposure period. An HQ of 1 indicates that an exposure level greater than the reference dose is unacceptable.

The relative source contribution factor (RSC) of 20% remains a parameter within the equations for groundwater criteria for noncarcinogens to maintain consistency with the EPA and State of Michigan in their development of

drinking water standards. The 20% RSC represents a default value to be replaced with a chemical-specific value when data are available. The RSC has been eliminated from the equations for the direct contact soil criteria. (For additional discussion on the RSC, see Operational Memo #14.)

The exposure duration of 30 years represents a national upper-bound time (90th percentile) at one residence (EPA, 1989). The exposure frequency (EF) of 350 represents the number of days per year that a resident is exposed to drinking water at their home; it assumes that people spend approximately 15 days per year away from their homes for vacations or other reasons. Two separate EF values are used for exposure to soil, each specific to the ingestion and dermal routes of exposure.

For ingestion of soil, EPA guidance ("Standard Default Exposure Factors" OSWER Directive: 9285.6-03, March 25, 1991) recommends a daily intake rate of 200 mg/day for children aged 1-6 years and 100 mg/day for all others. These intake values are believed to represent upper-bound estimates of average soil ingestion rates.

The EPA-recommended soil ingestion rates account for ingestion of both outdoor soils and indoor dust. The values are derived primarily from fecal tracer studies which estimate the amount of soil ingested throughout a day's activities. As such, the intake rates are not event-specific (i.e. the rates do not represent the amount of soil ingested during outdoor activities). Data suggest that up to 80% of indoor dust consists of outdoor soils which have been brought into a residence by air deposition and foot traffic. Therefore, it may not be assumed that ingestion of contaminated soil is entirely precluded by climatic conditions such as snow cover.

There is no currently available method for determining the relative contribution of soil vs. dust to the daily total, or the effect of climatic conditions on the rate of soil ingestion. Therefore, a constant year round exposure is assumed and the appropriate EF value for ingestion of soil/dust for the residential soil direct contact criterion is 350 days per year.

The EPA recommends that local weather conditions such as snow cover be considered in determining the appropriate EF for dermal contact with soil. It is assumed that Michigan winters last for 4 months (120 days) making soil unavailable for contact. Therefore, the EF for dermal contact with soil for the residential soil direct contact criterion is 245 days per year (365-120).

Ingestion and dermal contact rates within the direct contact soil criterion equation are adjusted to account for both children and adults. It is assumed that during the 30 year exposure period, 6 years is spent as a child who ingests more soil/day and the remaining 24 years is spent as a child/adult ingesting less soil/day. The age-adjusted approach was previously used in the development of the Type B soil direct contact criteria (although the data and calculations were different) and is recommended by EPA (EPA, 1991).

The skin surface area for child and adult receptors in the age-adjusted dermal factor is equal to 25 percent of the 50th percentile of total skin surface area for the respective age group (EPA, 1992b). Dermal exposure to soil is expected to occur on the hands, arms, legs, neck and head, accounting for approximately 25% of the total skin surface area.

The absorption efficiencies are the same as those used previously. When chemical-specific data are not available, the absorption efficiency applicable

to ingestion (AE_i) shall be either 100% for volatile organic chemicals or 50% for other organic chemicals, polychlorinated biphenyls, pesticides, or inorganic parameters. When chemical-specific data are not available, the absorption efficiency applicable to dermal contact (AE_d) shall be either 10% for a volatile organic chemical or 1% for other organic chemicals, polychlorinated biphenyls, pesticides, or inorganic parameters.

This memo is intended to provide guidance to Division staff to foster consistent application of Part 201 of the Natural Resources and Environmental Protection Act, 1994 PA 451 and associated Administrative Rules. This document is not intended to convey any rights to any parties nor create any duties or responsibilities under law. This document and matters addressed herein are subject to revision.

Questions about values in the attached table should be directed to one of the ERD toxicologists: Christine Flaga, telephone 517-373-0160, Jeffrey Crum, telephone 517-335-3092, or Linda Larsen, telephone 517-335-3161. Other questions about this memorandum should be directed to District Supervisors.

Attachment rev. 4

REFERENCES

EPA, 1992a. Supplemental Guidance to RAGS: Calculating the Concentration Term. OSWER Publication 9285.7-081. May, 1992.

EPA, 1992b. Dermal Exposure Assessment: Principles and Applications. Interim Report. EPA/600/8-91/011B. January, 1992.

J. g. Khand

PART 201 OF THE NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION ACT, 1994 PA 451 GENERIC RESIDENTIAL CLEANUP CRITERIA FOR GROUNDWATER AND SOIL

(Revision 4)

sidential criteria were calculated using currently available toxicological data. These criteria may change as new toxicity data become wailable. They are not necessarily final cleanup standards. Please read the attached introduction for details. Carcinogenic chemicals are shown in bold italics. All values are expressed in units of parts per billion (ppb); ug/l in water and ug/kg in soil. Scientific notation is represented by E+ or E- a value, for example 2 x 10⁶ is reported as 2E+6. Please refer to Operational Memorandum #6 for additional information concerning analytical methods and method detection limits.

	GRO	DUNDWAT	ER (ppb:u	g/l)		SOIL (ppt	:ug/kg)	-
Chemical	Health- Based Drinking Water Value	Aesthetic Drinking Water Value	GSI Value	Target Method Detection Limit in Water	20X Drinking Water Value	20X GSI Value	Direct Contact Value	Target Method Detection Limit in Soil
Acenaphthene	1,300	NA	3.8	5	26,000	76	7.6E+7	330
Acenaphthylene	26	NA	{B}	5	520	(B)	1.5E+6	330
Acetaidehyde	950	NA	{B}	500	19,000	{B}	1.4E+7	2,500
Acetic acid	4,200	NA	{B}	18,000	84,000	(B)	6.3E+7	9.0E+5
Acetone	730	NA	25,000	100	15,000	5.0E+5	1.1E+7	100
Acetonitrile .	140	NA	810	50	2,800	16,000	2.1E+6	100
Acrolein	120	NA	2.5	5	2,400	50	1.8E+6	10
Acrylamide	0.19	NA	9.1	0.5	3.8	180	2,200	5
Acrylic acid	3,900	NA	(B)	NA	78,000	(B)	5.8E+7	NA
ryionitrile	1.6	NA	2.2	1	32	44	4,700	10
Alachior	2 (C)	NA	48	1	40	960	1.2E+5	20
Aldicarb	3 (C)	NA	{B}	2	60	(B)	4.2E+5	50
Aldicarb sulfoxide	4 (C)	NA	(B)	2	80	(B)	5.5E+5	50
Aidicarb sulfone	2 (C)	NA	(B)	2	40	(B)	4.6E+5	50
Aldrin	0.05	NA	0.0014	0.01	(E)	(E)	580	20
Aluminum	ID	50 (A,F)	{B}	100	1,000	(B)	ID	700
Ammonia	10 (P)	NA .	20 (D)	50	ID (P)	400	ID (P)	1,000
Aniline	150	NA	4	20	3,000	80	1.7E+6	1,700
Anthracene	7,300	NA	1.1E+5	5	1.5E+5	2.2E+6	4.2E+8	330
Antimony	6 (A,C)	NA	50 (A)	5	120 (A)	1,000	1.5E+5	500
Arsenic	50 (A,C)	NA	11 (A)	5	1,000 (A)	220 (A)	5,500 (A)	100
Atrazine	3 (C)	NA	7.8	1	60	160	45,000	50
Azobenzene	7.7	NA	{B}	NA	150	{B}	90,000	NA
Barium	2,000 (A,C)	NA.	630 (A,D)	200	40,000 (A)	13,000 (A)	3.0E+7	1,000
Benzene	5 (C)	NA	53	5	100	1,100	88,000	10
Benzidine	0.0037	NA	0.0054	50	0.074	0.11	43	1,000
Benzo(a)anthracene (Q)	1.2	NA	0.31	5	{E}	(E)	14,000	330
Benzo(b)fluoranthene (Q)	1.2	NA	0.31	5	(E)	(E)	14,000	330
Benzo(k)fluoranthene (Q)	12	NA	0.31	5	(E)	(E)	1.4E+5	330
120(g,h,i)perylene	26	NA.	{B}	5	(E)	(E)	1.5E+6	330

	GR	DUNDWAT	ER (ppb:u	g/l)		SOIL (ppb	:ug/kg)	
Chemical	Heelth- Basad Drinking Water Value	Aesthetic Drinking Water Value	GSI V a lue	Target Method Detection Limit in Water	20X Drinking Water Value	20X GSI Value	Direct Contact Value	Target Method Detection Limit in Soil
Benzo(a)pyrene (Q)	0.2 (C)	NA	0.31	5	(E)	{E}	1,400	330
	32,000	NA.	{B}	50	6.4E+5	{B}	1E+9 (G)	3,300
Senzoic acid	10,000	NA.	22	50	2.0E+5	440	1.6E+8	1,300
lenzyl alcohol	5	NA.	{B}	0.5	100	(B)	15,000	200
Benzyl chloride	4 (C)	NA.	(B)	1	80	(B)	2,300	200
Seryillum	ID ID	NA NA	(B)	5	10	(B)	ID OI	330
lis(2-chloroethoxy)ethane	0.77	NA NA	4.2	5	15	84	2,300	330
nie(2-Chloroethyl)ether	1		59	5	(E)	(E)	7.0E+5	330
bis(2-Ethylhexyl)phthalate	6 (C)	NA NA	(B)	300	8,800 (A)	(B)	2.5E+7	8,000
Boron	440 (A)	NA NA	(B)	1	ID	(B)	ID	10
3romobenzene	ID	NA			2,000 (S)	480	41,000	10
Bromodichiorometh ane	100 (C,S)	NA NA	24	1	2,000 (S)	1,300	3.2E+5	10
Bromoform	100 (C,S)	NA	65	1	200	220	1.5E+5	10
Bromomethane	10	NA	11	1		(B)	1.4E+7	4,400
n-Butanoi	950	NA	(B)	800	19,000	1.4E+5	2.0E+8	100
2-Butanone (MEK)	13,000	NA	7,200	50	2.6E+5	800	8.3E+6	20
n-Butyl acetate	550	NA	40	10	11,000		5.9E+7	4.400
-Butyl alcohol	3,900	NA	8,300	1,000	78,000	1.7E+5	5.9E+7 6.8E+7	330
Butyl benzyl phthelate	1,200	NA	(8)	5	24,000	(B)		1
Cadmium	5 (A,C)	NA	0.64 (A,D)	0.5	100 (A)	13 (A)	2.1E+5	50
Camphene	סו	NA	{B}	NA	ID	· {B}	10	NA
Caprolactam	5,800	NA	{B}	NA	1.2E+5	{B}	3.4E+8	NA
Carbaryl	700	NA	(B)	20	14,000	(B)	4.1E+7	1,000
Carbofuran	40 (C)	NA	1.6	20	800	32	5.5E+5	200
Carbon disulfide (R)	800	NA	(B)	50	16,000	(B)	1.2E+7	100
Carbon tetrachloride	5 (C)	NA	21	1	100	420	20,000	10
Chiordane	2 (C)	NA	0.00053	0.02	(E)	{E}	7,600	10
Chloride	ΙD	2.5E+5	{B}	10,000	5.0E+5	(B)	ID	2.0E+
Chlorobenzene	100 (C)	NA	71	1	2,000	1,400	2.1E+6	10
Chloroethane	220	NA	{B}	1	4,400	(B)	6.7E+5	10
2-Chloroethyl vinyl ether	ID	NA.	(B)	10	1D	(B)	ID	100
Chloroform	100 (C,S)	NA.	80	1	2,000 (S)	1,600	4.2E+5	10
Chioromethane	66	NA.	(B)	1	1,300	(B)	2.0E+5	10
4-Chioro-3-methylphenol	150	NA.	4.4	5	3,000	88	2.2E+8	330
• •	1,800	NA.	(B)	5	36,000	{B}	2.7E+7	330
bets-Chloronaphthalene 2 Chloronaphanel	45	NA NA	10	5	900	200	6.8E+5	330
2-Chlorophenol			(B)	1	3,000	(B)	2.2E+6	10
o-Chlorotofuene	150	NA NA		0.2	440	0.04	1.3E+6	10
Chlorpyrifos	22	NA NA	0.002		2,000 (A)	1,500 (A)	6.3E+8	2,500
Chromium (iii) {i}	100 (A,C,J		77 (A,D)	50			2.0E+6	200
Chromium (VI) {I}	100 (A,C,J	} NA	7.3 (A)	5	2,000 (A)	150 (A)	2,0270	

	GR	OUNDWA	TER (ppb:	ug/l)		SOIL (pp	b:ug/kg)	
Chemical	Health- Based Drinking Water Value	Aesthetic Drinking Water Value	GSI Value	Target Method Detection Limit in Water	20X Drinking Water Value	20X GSI Value	Direct Contact Value	Target Method Detectio Limit in Soil
Chrysene (Q)	120	NA	0.31	5	(E)	(E)	1.4E+6	330
Cobalt	37	NA	(B)	10	740	(B)	2.1E+6	500
Copper	1,400 (A)	1,000	18 (A,D)	25	20,000	360 (A)	1.6E+7	1,000
Cyanazine	1.5	NA	4.7	10	30	94	17,000	500
Cyanide (R)	200 (C)	NA	5.2	20	4,000	100	9.3E+6	500
Cyclohexanone	33,000	NA	{B}	50	6.6E+5	{B}	5.0E+8	100
Dacthal	73	NA.	{B}	1	1,500	(B)	4.2E+6	20
Dalapon	200 (C)	NA.	{B}	10	4,000	(8)	9.3E+6	100
	3.5	NA	0.0084	0.02	{ € }	(E)	41,000	20
4-4'-DDE	2.5	NA	0.0059	0.02	{E}	{E}	29,000	20
(-1 '-DDT	2.5	NA	0.00023	0.02	{E}	{E}	29,000	20
Decabromodiphenyl ether	73	NA	{B}	10	1,500	{B}	4.2E+6	100
Di-n-butyl phthalate	880 .	NA	12,000	5	18,000	2.4E+5	5.1E+7	330
Di(2-ethylhexyl) adipate	400 (C)	NA	{B}	5	8,000	{B}	2.1E+6	330
Di-n-octyl phthalate	130	NA	{B}	5	2,600	(B)	7.6E+6	330
Diacetone alcohol	lD OI	NA	{B}	NA	1D	{B}	ID	NA
Diazinon	1.3	NA	0.002	0.5	26	0.04	76,000	10
enzo(a,h)anthracene (Q)	0.12	NA	0.31	5	(E)	(E)	1,400	330
Dibenzofuran	ID	NA	{B}	5	ID	(B)	ID	330
Dibromochioromethane	100 (C,S)	NA	29	1	2,000	580	31,000	10
Dibromomethane	80	NA	{B}	5	1,600	(B)	4.6E+6	10
1,2-Dichlorobenzene	600 (C)	NA	7	1	12,000	140	9.4E+6	10
1,3-Dichlorobenzene	600 (C)	NA.	180	1	12,000	3,600	9.4E+6	10
1,4-Dichlorobenzene	75 (C)	NA	15	1	1,500	300	1.1E+5	10
3,3'-Dichlorobenzidine	1.9	NA	0.063	20	38	1.3	5,700	2,000
Dichlorodifluoromethane	1,700	NA	(B)	1	34,000	(B)	2.5E+7	10
1,1-Dichloroethane	880	NA	(B)	1	18,000	{B}	1.3E+7	10
1,2-Dichioroethane	5 (C)	NA	560	1	100	11,000	28,000	10
1,1-Dichloroethylene	7 (C)	NA	32	1	140	640	1.1E+5	10
cis-1,2-Dichloroethylene	70 (C)	NA	(B)	1	1,400	(B)	1.2E+6	10
rans-1,2-Dichloroethylene	100 (C)	NA	300	1	2,000	6,000	1.9E+6	10
2,6-Dichloro-4-nitroaniline	2,200	NA	(B)	0.01	44,000	{B}	1.3E+8	0.1
2,4-Dichlorophenol	73	NA	34 (D)	5	1,500	680	4.2E+6	330
2,4-Dichlorophenoxyacetic acid	70 (C)	NA	47	10	1,400	940	4.2E+6	200
1,2-Dichloropropane	5 (C)	NA	64	1	100	1,300	38,000	10
1,3-Dichloropropene (J)	4.7	NA	3	1	96	60	14,000	10
Dichlorovos	2.9	NA	(B)	0.1	58	(B)	34,000	50
"tyclohexyl phthalate	ΙD	NA	(B)	5	ID	{B}	ID .	330
veldrin .	0.053	NA.	3.2E-5	0.02	(E)	(E)	620	20

	GR	OUNDWAT	ER (ppb:u	g/l)		SOIL (ppi	o:ug/kg)	
Chemical	Health- Based Drinking Water Value	Aesthetic Drinking Water Value	GSI Value	Target Method Detection Limit in Water	20X Drinking Water Value	20X GSI Valu e	Direct	Target Method Detection Limit in Soil
	ID	NA	(B)	10	ID	{B}	D CI	100
Diethoxymethane	3,700	NA	(B)	50	74,000	(8)	5.5E+7	100
Diethyl ether	5,500	NA.	1.2E+5	5	1.1E+5	2.4E+6	3.2E+8	330
Diethyl phthalata	88	NA.	(B)	NA	1,800	{B}	5.1E+6	NA
Diethylene glycol monobutyl ether	5.6	NA.	{B}	NA	110	{B}	85,000	NA
Disopropylamine	73,000	NA.	2.9E+6	5	1.5E+6	5.8E+7	1E+9 (G)	330
Dimethyl phthalate	180	NA NA	(B)	NA	3,600	{B}	2.7E+6	NA
N,N-Dimethylacetamide	16	NA NA	(B)	NA	320	(B)	2.4E+5	NA
N,N-Dimethylaniline	700	NA NA	3,800	NA	14,000	76,000	1.1E+7	NA
Dimethylformamide	370	NA NA	31	5	7,400	620	2.1E+7	330
2,4-Dimethylphenoi			(B)	5	88	{B}	2.5E+5	330
2,6-Dimethylphenol	4.4	NA		5	200	(B)	5.9E+5	330
3,4-Dimethylphenol	10	NA	{B}	NA NA	4.4E+6	(B)	1.0E+9 (G)	NA
Dimethylsulfoxide	2.2E+5	NA 	(B)	5	26	1,800	15,000	330
2,4-Dinitrotokuene	1.3	NA .	91		140	10	4.2E+5	20
Dinoseb	7 (C)	NA	0.5 {D}	1		40,000	2.3E+5	10
1,4-Dioxane	77	NA	2,000	1	1,500	,	9.3E+5	NA
Diquat	20 (C)	NA	(B)	1	400	(B)	97,000	3.3
Endosulfan (J)	1.7	NA	(B)	0.01	(E)	(E)	7.2E+6	NA
Endothali	100 (C)	NA	(B)	20	2,000	(B)	72,000	20
Endrin	2 (C)	NA	0.0023	0.02	(E)	(E)	·	10
Epichiorohydrin	86	NA	{B}	5	1,700	(B)	2.6E+5	1
Ethanoi	2.0E+6	NA	41,000	1,000	4.0E+7	8.2E+5	1.0E+9 (G	`
Ethyl acetate	6,600	NA	1,000	NA	1.3E+5	20,000	9.9E+7	NA
1-Ethyl-2-methylbenzene	ID	NA	{B}	NA NA	1D	{B}	ID	NA
Ethylbenzene	700 (C)	74	31	1	1,500	620	1.1E+7	10
Ethylene dibromide	0.05 (C)	NA	1.1	1	1	22	30	10
Ethylene glycol	15,000	NA	68,000	5,000	3.0E+5	1.4E+6	8.4E+8	5,000
Ethylene glycol acetate	ID	NA	{B}	NA	ID	(B)	10	NA
Ethylene glycol monobutyl ether	95	NA NA	(B)	NA NA	1,900	(B)	1.4E+6	NA .
Fluoranthene	880	NA	370	5	18,000	7,400	5.1E+7	330
Fluorene	880	NA	14,000	5	18,000	2.8E+5	5.1E+7	330
Fluorine	400 (C)	2,000	1,900	NA	8,000	38,000	2.5E+7	NA
Formaldehyde	1,300	NA	170	100	26,000	3,400	2.0E+7	500
Formic acid	10,000	NA	{B}	18,000	2.0E+5	{B}	1.5E+8	9.0E-
1-Formylpiperidine	80	NA	(B)	NA	1,600	(B)	- 1.2E+6	NA
Gentian violet	8.5	NA	(B)	NA	170	(B)	99,000	NA
Glyphosate	700 (C)	NA	(B)	100	14,000	{B}	4.2E+7	NA NA
Heptachlor	0.4 (C)	NA.	0.0016	0.01	(E)	(E)	2,200	20
Heptachior epoxide	0.2 (C)	NA.	0.0011	0.01	(E)	(E)	1,100	20

	GR	OUNDWAT	ER (ppb:u	g/l)		SOIL (ppt	o:ug/kg)	
Chemical	Health- Based Drinking Water Value	Aesthetic Drinking Water Value	GSI Value	Target Method Detection Limit in Water	20X Drinking Water Value	20X GSI Value	Direct Contact Value	Target Method Detection Limit in Soil
n-Heptane	32,000	NA	4	NA	6.4E+5	80	4.8E+8	NA
Hexabromobenzene	20	NA	{B}	(K)	400	(B)	1.2E+6	(K)
Hexachlorobenzene (C-86)	1 (C)	NA .	0.0019	{K}	20	0.038	6,200	(K)
Hexachlorobutadiene (C-48)	11	NA	500	{K}	220	10,000	1.3E+5	(K)
alphe-Hexachlorocyclohexane	0.14	NA	0.13	0.01	2.8	2.6	1,600	20
beta-Hexachiorocyclohexane	0.47	NA	0.46	0.01	9.6	9.2	5,500	20
Hexachlorocyclopentadiene (C-56)	50 (C)	NA.	0.54	{K}	1.000	11	3.0E+6	{K}
Hexachloroethane	61	NA .	13	2	1,200	260	1.8E+5	50
n-Hexane	3,000	NA NA	(B)	NA NA	60,000	(B)	4.5E+7	NA NA
2-Hexanone	1,000	NA NA	(8)	50	20,000	(B)	1.5E+7	100
Indeno(1,2,3-cd)pyrene (Q)	1.2	NA.	0.31	5	(E)	(E)	14,000	330
Iron	ID	300 (A)	(B)	100	6,000 (A)	(E)	ID	2,000
Isobutyl alcohol	2,300	NA	(B)	1,000	48,000	(B)	3.5E+7	4,400
Isophorone	900	NA NA	860	5	18,000	17,000	2.7E+6	330
Isopropyl alcohol	470	NA NA	21,000	400	9.400	4.2E+5	7.0E+6	4,400
Lead	4 (A,L)	NA NA	6.6 (A,D)	3	80 (A)	130 (A)	4.0E+5	1,000
Lindane	0.2 (C)	NA.	0.08	0.01	4	1.6	7.600	20
gnesium	4.2E+5	NA	(B)	30	8.4E+6	1.0E+9	7, 000 1.0E+9 (G)]
Manganese	180 (A)	50 (A)	(B)	20	1,000 (A)		2.0E+6	
Mercury (Inorganic)	2 (A,C)	NA	0.0013 (A)	0.2	40 (A)	(B) 0.026 (A)	1.3E+5	100
Methanol	3,700	NA NA	41,000	1.000	74,000	8.2E+5	5.5E+7	4,400
Methoxychlor	40 (C)	NA NA	(B)	0.5	80	6.2E+5 (B)	2.1E+6	50
2-Methoxyethanol	29	NA NA	(B)	NA	580	(B)	4.4E+5	
2-Methyl-4-chlorophenoxyacetic acid	7.3	NA NA	(B)	0.5	150			NA 400
2-Methyl-4,6-dinitrophenol	2.6	NA NA	0.59	20	52	(B)	4.2E+5	100
4-Methyl-2-pentanone (MIBK)	370	NA NA	(B)	50	7,400	12	1.5E+5	1,700
Methyl-tert-butyl ether (MTBE)	240	NA NA	380	50	1	(B)	5.5E+6	100
N-Methyl-morpholine	20	NA NA			4,800	7,600	3.6E+6	100
Methylcyclopentane	ID	NA NA	{B}	NA 50		(B)	3.0E+5	NA Soc
4,4'-Methylene-bis-2-chioroeniline (M)	0.88	NA NA	(B) (B)	1	ID	(B)	1D 10 000	500
Methylene chloride	5 (C)	NA NA	(B) 59	1	(E) 100	(E)	10,000	50
2-Methylnaphthalene	ID	NA NA	39 {B}	5	ID	1,200	3.4E+5 ID	10 330
2-Methylphenol	370	NA NA	(B) 38	5	7,400	(B)	5.5E+6	330
3-Methylphenol	370	NA NA	36 {B}	5	7,400	760		
4-Methylphenol	37	NA NA	6.2	5	7,400	(B)	2.1E+7	330
Metolechior	160	NA NA			1	120	2.1E+6	330
Molybdenum			150	10	3,200	3,000	1.9E+6	50
Whithsiene	37 (A)	NA NA	800 (A)	10	740	16,000 {A}	2.1E+6	100
Nickel	260 100 (A,C)	NA NA	29 57 (A,D)	5 50	5,200 2,000 (A)	580 1,100 (A)	1.5E+7 3.2E+7	330

	GRO	DUNDWAT	ER (ppb:u	g/l)		SOIL (ppt	o:ug/kg)	
Chemical	Health- Based Drinking Water Value	Aesthetic Drinking Water Value	GSI Value	Target Method Detection Limit in	20X Drinking Water Value	20X GSI Value	Direct Contact	Farget Viethod Detection Limit in Soil
	10,000 (C,P)	NA	{B}	100	2.0E+5 (P)	(B)	ID	NA
litrate (P)	1,000 (C,P)	NA.	(B)	100	20,000 (P)	(B)	ID	NA
litrite (P)	3.4	NA.	1,900	5	68	38,000	51,000	330
Ikrobenzene	20	NA .	(B)	5	400	(B)	1.2E+6	330
2-Nitrophenol	0.12	NA NA	(B)	5	2.4	{B}	370	330
-Nitroso-di-n-propylamine	170	NA.	160	5	3,400	3,200	5.2E+5	330
V-Nikrosodiphenylamine			(B)	NA	4,000	(B)	1.6E+7	NA
Охаттуі	200 (C)	NA NA	(B) {B}	NA NA	1,500	(B)	1.1E+6	NA
Oxo-hexyl acetate	73	NA 	•	0.1	18.000	12	5.1E+7	20
Pendimethalin	880	NA	0.62	2	120	(B)	3.5E+5	50
Pentachlorobenzene	6.1	NA	(B)		1,100	(B)	3.2E+6	50
Pentachloronitrobenzene	55	NA	(B)	2		16	82,000	3,400
Pentachiorophenol	1 (C)	NA	0.8 (D)	20	20		1D	1,000
Pentane	ID	NA	(B)	100	ID.	(B)	ID ·	NA
2-Pentene	ID	NA	(8)	NA .	ID	(B)	1.5E+6	330
Phenanthrene	26	NA	{B}	5	520	(B)	6.6E+7	330
Phenol	4,400	NA	1,100	5	88,000	22,000		1
Picloram	500 (C)	NA	{B}	10	10,000	{B}	3.0E+7	100
Piperidine	3.2	NA	{B}	NA	64	{B}	48,000	NA
Polybrominated biphenyls (J)	0.096	NA	(B)	NA	⟨E⟩	(E)	1,100	NA .
Polychiorinated biphenyls (PCBs) (J,T)	0.5 (C)	NA	2.0E-5	0.2	{ E }	(E)	2,300	330
Prometon .	160	NA	{B}	0.5	3,200	(B)	9.3E+6	20
Propachior	95	NA	{B}	1	1,900	(B)	5.5E+6	20
Propazine	200	NA	{B}	0.5	4,000	(B)	1.1E+7	20
·	12,000	NA	(B)	100	2.4E+5	{B}	1.9E+8	6,700
Propionic acid	1,400	NA.	15,000	NA	28,000	3.0E+5	2.1E+7	NA
Propyl alcohol	1.5E+5	NA NA	1.9E+5	5,000	3.0E+6	3.8E+6	1.0E+9 (G	5,000
Propylene glycol	550	NA.	11,000	5	11,000	2.2E+5	3.2E+7	330
Pyrene	7.3	NA	20	20	150	400	1.1E+5	330
Pyridine			5 (A)	5	1,000 (A)	100 (A)	2.1E+6	500
Selenium	50 (A,C)	NA 100	0.1 (A)	0.5	680 (A)	2 (A)	2.0E+6	500
Silver	34 (A)	100		10	80	68	2.2E+6	40
Simazine	4 (C)	NA ***	3.4	j i	3.2E+6	(B)	1.0E+9 (C	S) NA
Sodium	1.6E+5	NA	(B)	NA .	2,000	380	85,000	10
Styrene	100 (C)	NA	19	1	·	380 {B}	1D	NA
Sulfate	ID	2.5E+5		NA NA	5.0E+6		3.0E+7	NA.
Tebuthiuron	510	NA	(B)	NA	10,000	(B)	(O)	0.01
2,3,7,8-Tetrabromodibenzo-p-dioxin (C) (0)	NA	{O}	0.0001		(E)	(O) 1.4E+8	20
1,2,4,5-Tetrachlorobenzene	2,500	NA	0.4	0.1	50,000	8		1
2,3,7,8-Tetrachlorodibenzo-p-dioxin (C) 3E-5 (C)	NA	1.4E-8	1.0E-5	(E)	(E)	0.09	0.00
1,1,1,2-Tetrachioroethane	33	NA	(B)	1	660	(8)	99,000	10

	GRO	UNDWAT	ER (ppb:u	g/l)		SOIL (pp	b:ug/kg)	
Chemical ·	Health- Based Drinking Water Value	Aesthetic Drinking Water Value	GSI Value	Target Method Detection Limit in Water	20X Drinking Water Value	20X GSI Value	Direct Contact Value	Target Method Detection Limit in Soil
1,1,2,2-Tetrachioroethane	4.3	NA	32	1	86	640	13,000	10
Tetrachioroethylene	5 (C)	NA	22	1	100	440	50,000	10
Tetrahydrofuran	240	NA	3,300	1,000	4,800	66,000	3.6E+6	10,000
Thallium	2 {A,C}	NA	5.4 (A)	2	40 (A)	110 (A)	28,000	500
Toluene	1,000 (C)	790	110	1	16,000	2,200	2.4E+7	10
p-Toluidine	4.5	NA	(B)	NA	90	{B}	52,000	NA
Toxaphene	3 (C)	NA	0.0002	1	60	0.004	2,300	170
Triallate	95	NA	{B}	1	1,900	{B}	5.5E+6	20
Tributylamine	10	NA	(B)	NA	200	(B)	1.5E+5	NA
1,2,4-Trichlorobenzene	70 (C)	NA	22	5	1,400	440	6.3E+6	330
1,1,1-Trichloroethane	200 (C)	NA	120	1	4,000	2,400	3.1E+6	10
1,1,2-Trichioroethane	5 (C)	NA	65	1	100	1,300	45,000	10
Trichioroethylene	5 (C)	NA	94	1	100	1,900	1.6E+5	10
Trichlorofluoromethane	2,600	NA	580	1	52,000	12,000	3.8E+7	10
2,4,5-Trichlorophenol	730	NA	25	50	15,000	500	4.2E+7	1,700
2,4,6-Trichlorophenol	77	NA	27 (D)	5	1,500	540	9.0E+5	330
2(2,4,5-Trichlorophenoxy)propionic acid (N)	50 (C)	NA	21	1	1,000	420	3.2E+6	50
,3-Trichloropropane	42	NA	{B}	1	840	(B)	2.4E+6	10
1,1,2-Trichloro-1,2,2-trifluoroethane	2.0E+5	NA_	33	NA	4.0E+8	660	1.0E+9 (G)	NA
Triethanolamine	3,700	NA	(B)	NA	74,000	(B)	5.5E+7	NA
3-Trifluoromethyl-4-nitrophenol	4,500	NA	32 (D)	NA	90,000	640	2.6E+8	NA
Triffuralin	110	NA	(B)	1	2,200	{B}	1.3E+6	50
2,2,4-Trimethyl pentane	ID	NA	(B)	50	ID	(B)	iD	500
2,2,4-Trimethyl-2-pentene	ID	NA	(B)	NA NA	ID OI	(B)	1D	NA
1,2,4-Trimethylbenzene	30	NA	22	1	600	440	4.5E+5	10
1,3,5-Trimethylbenzene	23	NA	26	1	460	520	3.4E+5	10
tris(2,3-Dibromopropyl)phosphate	0.47	NA	(B)	NA	9.4	(B)	5,500	NA
Urea	ID (P)	NA	(B)	400	ID (P)	{B}	ID (P)	20,000
Vanadium	64 (A)	NA	8 (A)	20	1,300 (A)	160 (A)	3.7E+6	1,000
Vinyl acetate	640	NA	(B)	50	13,000	(B)	9.7E+6	100
Vinyl chloride	2 (C)	NA	3.1	1	40	62	1,200	10
White phosphorus (R)	0.11	NA	(8)	NA	2.2	(8)	6,300	NA
Xylenes	10,000 (C)	280	59	3	5,600	1,200	2.0E+8	30

Footnotes

- (A) Background, as defined in Rule 701(c), may be substituted if higher than the cleanup criteria.
- (B) Chemical has either not been evaluated or an inadequate data base precludes the development of a GSI value. Contact an ERD toxicologist for assistance.
- (C) State of Michigan Drinking Water Standard established pursuant to Section 5 of the Safe Drinking Water Act, Act No. 399 of the Public Acts of 1976 used as the default.
- (D) GSI value is pH, temperature, or water hardness dependent. Contact an ERD toxicologist for details.
- (E) Chemical, due to its physicochemical properties, is not expected to leach through soils to groundwater under most conditions.
- (F) Professional judgment used to determine that 50 ppb of aluminum in drinking water is protective of human health.
- (G) Criteria exceeds 100% in soil, hence it is reduced to 100%.
- (H) Criteria is based on agricultural impacts (phytotoxicity), not 20X groundwater criterion.
- Valence-specific chromium data (Cr III and Cr VI) must be compared to the same valence-specific cleanup criteria. If analytical data are provided for "total" chromium only, then values for chromium VI must be applied as the cleanup criteria. Chromium III cleanup criteria can only be used at sites where groundwater is prevented from being used as a public water supply, currently or in the future.
- (J) Chemical may be present in several isomer forms. Isomer specific concentrations must be combined for comparison to criteria. Contact an ERD toxicologist for further explanation.
- {K} Two different analytical methods and target method detection limits are available for this chemical. Refer to Operational Memorandum #6 for details.
- (L) Criteria developed using the U.S. EPA Integrated Uptake Biokinetic Model for children. No risk assessment method(s) is currently available to evaluate lead toxicity in adults. Higher level may be acceptable if soil concentration is less than 400 ppm and groundwater migrating off-site will not impact adjacent properties. Contact an ERD toxicologist for further explanation.
- (M) Also known as MBOCA.
- {N} Also known as Silvex.
- (O) Use 2,3,7,8-TCDD "toxicity equivalence factors" (TEFs) for other chlorinated and /or brominated dibenzo-p-dioxins and chlorinated and/or brominated dibenzofurans for comparison to cleanup criteria. Contact an ERD toxicologist for details.
- {P} All potential sources of nitrogen-nitrate must be combined and compared to nitrate criteria. Contact an ERD toxicologist for details.
- (Q) Criteria for carcinogenic polynuclear aromatic hydrocarbons (PAHs) were developed using "relative potential potencies" (RPPs) to benzo(a)pyrene.
- (R) Chemical may be reactive in soil.
- (S) Concentrations of trihalomethanes in groundwater must be combined to determine compliance with the health-based drinking water value of 100 ppb.
- Toxic Substances Control Act, Subpart G PCB Spill Cleanup Policy standards may be more restrictive.
- ID = Inadequate data to develop criterion; NA = Not available.

MICHIGAN DEPARTMENT OF NATURAL RESOURCES

INTEROFFICE COMMUNICATION

January 5, 1995

Jackson Bisteric

DNR-DISTRICT 13

ERD 20

T0:

Environmental Response Division Staff

FROM:

Alan J. Howard, Chief, Environmental Response Division

SUBJECT:

MERA Operational Memorandum #12, Revision #2: Alternate Soil

Leaching Procedures

This memorandum identifies certain laboratory methods which may be used in lieu of the Toxicity Characteristic Leaching Procedure (TCLP) to demonstrate compliance with the MERA Administrative Rule 299.5711(2). Subrule (a) of that rule states that the TCLP shall be an acceptable leaching test method to determine potential impacts of soil contaminants on groundwater. Subrule (b) of that rule allows other methods to be approved by the Department if they more accurately simulate conditions at the site than the TCLP. A number of alternative leaching tests have been reviewed and determined to be acceptable for the applications specified in the attached table. Further review of these methods is not required if such methods are used for a hazardous substance that is in a category noted "appropriate" on the attached table. The list of alternative methods will be updated as additional methods are approved.

Proposals for other standard methods and/or other applications of the approved methods may be considered. Modifications of the standard methods are generally not acceptable (e.g., the use of precipitation collected at the site as a leaching medium). Other proposed methods must be well documented, reproducible, and simulate soil leaching. Preference will be given to methods developed by the U.S. Environmental Protection Agency or national organizations, such as the American Society for Testing and Materials (ASTM).

The attached table lists appropriate soil leaching methods. The table includes "totals" tests as a reminder that it may be useful to initially screen soil samples for total (i.e., not just leachable) concentrations to determine if R 299.5711(2) is satisfied by virtue of total concentrations being less than 20 times the groundwater criterion. Please note, however, that the concentration remaining in soils may not exceed Type B Direct Contact Values regardless of the leachate concentration. Furthermore, since many TCLP waste characteristic regulatory levels are less than Type B Direct Contact Values, soils which exceed the TCLP regulatory levels should be managed according to the Hazardous Waste Management Act, 1979 PA 64, as amended.

Since the TCLP method was developed for application in another context, it may sometimes be too aggressive to accurately simulate site conditions. However, it is widely available and often useful as a "first-cut" leaching procedure. If the TCLP results exceed the groundwater cleanup criteria, other leaching methods may be used to demonstrate that a higher concentration of hazardous substance may be left in the soil without unacceptable groundwater impacts. Alternative methods listed in the attached table may be selected in lieu of the TCLP (i.e., it is not necessary to "fail" the TCLP before selecting another appropriate method).

January 5, 1995 Page 2

Environmental Response Division Staff MERA Operational Memorandum #12, Revision #2

This memorandum is intended to provide guidance to Division staff to foster consistent application of the Michigan Environmental Response Act, 1982 PA 307, as amended, and the administrative rules promulgated thereunder. This document is not intended to convey any rights to any parties or create any duties or responsibilities under the law. This document and matters addressed herein are subject to revision.

Questions about this memorandum should be directed to either Ralph Curtis at 517-373-8389 or George Jackson at 517-335-0223.

Attachment

rev. 2

a 9. Hours

TEST METHOD	EXTRACTION FLUIDS(S)	APPROPRIATE FOR:	INAPPROPRIATE FOR:
"Totals" methods	As per each analytical method	All, see MERA Operational Memo #6 for correct methods	
Toxicity Characteristic Leaching Procedure (TCLP) EPA Method 1311	Buffered Acetic Acid, pH 2.88 or 4.93	metals, semi-volatiles, pesticides, PCBs, volatiles	cyanide, sulfides, hexavalent chromium
Synthetic Precipitation Leaching Procedure	Fluid #1: H ₂ SO ₄ & HNO ₃ @ pH 4.20	Extraction Fluid #1: metals, semi-volatiles, pesticides, PCBs	
(SPLP) EPA Method 1312	Fluid #3: Reagent Water	Extraction Fluid #3: cyanide, sulfides, volatiles, hexavalent chromium	
ASTM D3987-85 (ASTM Neutral Leach)	Reagent Water	semi-volatiles, pesticides, PCBs cyanide, sulfides, hex. chromium	metals, volatiles
ASTM D5233-92 (ASTM Single Batch) 3	Buffered Acetic Acid, pH 2.88 or 4.93	metals, semi-volatiles pesticides, PCBs	volatiles, cyanide, sulfides,
			hexavalent chromium

Notes:

?

- Sodium in Method 1311 (TCLP) and the ASTM Single Batch extraction fluids may interfere with analysis of detection levels. To avoid interference with sodium, non-furnace analytical methods and/or a leachate procedure which does not contain sodium (e.g., Method 1312) may be used. certain metals analyzed by graphite furnace procedures and thereby prevent attainment of Act 307 target
- weight of the soil (mg/Kg). However, in order to use this soil leaching procedure for the purpose of evaluating contaminant mobility and potential impact on groundwater, leachable contaminant levels must be reported in terms of the volume of the leaching fluid (ug/l or mg/l). This requirement must be The ASTM Neutral Leach Procedure provides for reporting the leachable contaminant levels in terms of the conveyed to the lab prior to sample analysis.
- Any monolith subject to this method must also be Method useful for large particle-sized materials. Any mono evaluated with ASTM D4842-89 to evaluate freeze-thaw effects. щ .

MICHIGAN DEPARTMENT OF NATURAL RESOURCES

INTEROFFICE COMMUNICATION

June 6, 1995

TO:

Environmental Response Division Staff

FROM:

Alan J. Howard, Chief, Environmental Response Division

SUBJECT:

Environmental Response Division Operational Memorandum #14 Revision 2: Remedial Action Plans Using Generic Industrial or Generic Commercial Cleanup Criteria and Other Requirements

THIS DRAFT, INTERIM OPERATIONAL MEMORANDUM HAS BEEN PREPARED TO FACILITATE IMPLEMENTATION OF THE 1995 AMENDMENTS TO PART 201 OF THE NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION ACT, 1994 PA 451 (FORMERLY THE MICHIGAN ENVIRONMENTAL RESPONSE ACT). THIS OPERATIONAL MEMORANDUM WILL TAKE EFFECT ONLY WHEN HOUSE BILL 4596 IS SIGNED INTO LAW. INTERNAL REVIEW OF THIS MEMORANDUM IS ON-GOING, AND NO OUTSIDE REVIEW HAS BEEN COMPLETED. THE CONTENT OF THE MEMORANDUM, AND THE ATTACHED CRITERIA, ARE SUBJECT TO CHANGE AND SHOULD BE RELIED UPON ONLY AFTER CONFIRMATION WITH APPROPRIATE ERD STAFF.

Revision 2 of this Operational Memorandum reflects changes made as a result of two major legislative actions: (1) the incorporation of the Michigan Environmental Response Act (MERA), 1982 PA 307, as amended, (2) into the Natural Resources and Environmental Protection Code, 1994 PA 451; and the 1995 amendments to Part 201 contained in [House Bill 4596]. Enactment of the Natural Resources and Environmental Protection Act resulted in new section numbers for all of the former MERA, but did not make any substantive changes in the law. [House Bill 4596] substantially amends Part 201. Those amendments, particularly the changes in cleanup standards, are reflected in this revision of Operational Memorandum #14. Unless otherwise noted, Section references in this memorandum are to Part 201 of Act 451.

This memorandum provides direction in the preparation and review of generic industrial and commercial land use remedial action plans (RAPs) to comply with Section 20120A(1)(B) and (D). The following information highlights some important aspects of generic land use cleanups:

- The preparation, review and approval of RAPs based on the generic industrial/commercial approach is anticipated to require less effort than a site-specific RAP for most sites. In general, it will not be necessary to develop site-specific cleanup criteria for those sites which can be appropriately and completely addressed with these generic criteria.
- Site-specific RAPs are also an option under Section 20120A(2). Site-specific RAPs require the development of exposure assumptions that are representative of the activities of human receptors at the site. Site-

specific direct contact cleanup criteria may be developed by appropriately adjusting the exposure assumptions in the generic algorithms. Justification must be provided for the site-specific exposure assumptions identified.

- If a RAP relies on the attached generic risk assessment algorithms and criteria, the RAP must include a statement confirming that the generic exposure assumptions are representative of, or exceed, the expected exposure of workers at the site.
- In identifying which generic cleanup criteria are appropriate for a site, primary consideration should be given to the human receptors and the kinds of activities in which they engage. Land-use specific criteria can be used for a site not typically categorized under that specific land use, as long as the exposures do not exceed those identified in the algorithm used to derive the criteria.
 - These generic industrial and commercial criteria apply only to the assessment of human health risks for workers at these sites. The need for assessment of off-site human health risks will be determined based on an evaluation of exposure potential for off-site receptors.

The direction provided in this memo is intended to facilitate the preparation of RAPs by setting forth the Environmental Response Division's (ERD) expectations for the human health risk assessment assumptions which are used to generate acceptable cleanup criteria for specific land uses. Additional information about the applicability of this approach and the criteria listed in the attached tables follows.

The attached sections on the land use-specific categories explain the basis for the exposure assumptions used in the generic approaches. In general, the exposure assumptions were established to be protective for a "reasonable maximum exposure" (RME) of a worker under the scenarios established. The RME is defined as the highest exposure that is reasonably expected to occur at a site. These exposure assumptions would also be protective of other workers at the facility who are outdoors less often. If the workers at a commercial or industrial property have a greater exposure potential (e.g., the exposure duration or exposure frequency is greater than that assumed in the generic algorithms), a site-specific RAP which reflects the exposure potential at the site should be submitted. This can be done by adjusting the exposure assumptions within the generic equation.

The criteria in the attached tables have been calculated by ERD toxicologists for the convenience of parties preparing generic industrial or commercial RAPs. The criteria are not maximum allowable criteria; they are concentrations that may be allowable for exposure in certain industrial or commercial settings. Higher concentrations may be approved as part of a limited industrial/commercial RAP if exposure barriers or engineering controls prevent or limit exposure. The criteria in the tables can be used as a screening tool to determine which areas of a site may be addressed by land use restrictions alone, and which require additional remediation or control.

The values in the table are useful in determining acceptable concentrations protective of human health through exposure pathways characterized by standardized assumptions. The text of the attachment describing the

algorithms includes discussions of other human exposure pathways which may require additional consideration in exceptional circumstances (e.g., inhalation pathway if a hazardous substance present in shallow soils is a carcinogen via inhalation but not ingestion or risks from contaminated subsurface materials to construction workers). When these special circumstances exist, contact an ERD toxicologist for guidance.

Generic Industrial and Commercial Cleanup Criteria Groundwater and Soil Direct Contact

The attached tables list the generic industrial and commercial site criteria in a format similar to the table of residential criteria in Operational Memorandum #8. The applicability of values from the generic commercial and industrial tables may vary depending, for example, on site characteristics, reasonably foreseeable groundwater use, and the nature of the remedy being proposed. Additional guidance on the applicability of values from the chart follows.

HEALTH-BASED AND AESTHETIC DRINKING WATER CRITERIA

These criteria apply to groundwater in an aquifer. The RAP should identify whether each saturated zone underlying the site is an aquifer. Any formation which serves or may serve as a drinking water source meets the definition of "aquifer" in R 299.5101(c). Cleanup criteria for groundwater not in an aquifer must be determined by consideration of potential public health and environmental impacts associated with contamination of that groundwater (see discussion of Groundwater/Surface Water Interface Values below).

The health-based values in the attached table were calculated using the generic land use algorithms which are designed to protect workers whose drinking water is from an on-site groundwater source. If groundwater is the source of drinking water at the property, and the values in the table are exceeded, a remedial action to address groundwater will be necessary. If a state drinking water standard is available for an on-site contaminant, the drinking water standard overrides the health-based criterion and becomes the cleanup goal. In addition, if the affected groundwater is the source of drinking water at the industrial/commercial site, the aesthetic criterion (as defined by R 299.5709(2)(c) or (d)) must be met if that criterion is more restrictive than the health-based-criterion unless an assessment is presented that justifies an alternative criterion. The state drinking water standard would not, however, override a more restrictive aesthetic criterion. This assures that the groundwater will not be unusable because of aesthetic impacts. If groundwater is not the source of drinking water at the property, but it is or may be the source for off-site drinking water, then the need for remedial action to address the groundwater would be determined by other rules (e.g., R 299.5709). Groundwater beyond the property boundary would need to be addressed either by remediation or exposure controls.

Consider this example: A RAP using the generic criteria is proposed for an industrial site where groundwater is used as the source of drinking water for that facility and for private wells off-site. The groundwater concentrations on site (current and expected concentrations, based on information about migration potential developed during the Remedial Investigation and explained in the RAP) do not exceed the applicable drinking water criteria in the attached table. Remedial actions to address on-site groundwater would be

determined by the requirements of R 299.5705(5) and (6) (unless the Department makes a finding pursuant to Section 20118(5) and (6) that compliance with those subrules is not required) and/or compliance with GSI criteria. However, if hazardous substance concentrations in groundwater exceed the generic residential criteria at the industrial site boundary, groundwater remediation or exposure controls, or both, may be required to address potential off-site risks.

GROUNDWATER SURFACE WATER INTERFACE (GSI) CRITERIA

The GSI values included in the attached table are the same GSI values as presented in Op Memo #8. See Op Memo #8 for a complete explanation of GSI values. The GSI values are included here because they define the maximum allowable hazardous substance concentration.at the groundwater surface water interface or at the edge of the mixing zone, whichever is applicable for a specific site, in industrial/commercial situations as well as residential situations. This is a function of applicable requirements of Part 31 of Act 451. Judgments about the applicability of GSI values and the compliance point for GSI criteria are the same for residential and commercial/industrial situations.

Prior to passage of the 1995 amendments, a mixing zone was not allowed when assessing the impact of groundwater venting to a surface water. A mixing zone is now allowed for venting groundwater at those sites where an additional load to the receiving stream of site-specific contaminants is allowable and where a mixing zone is appropriate for the receiving stream. If a RAP allows for venting groundwater, the discharge must comply with requirements of Part 31 of Act 451 and the relevant rules promulgated under that Part.

TARGET METHOD DETECTION LIMITS IN WATER AND SOIL

The values in these columns are identical to those in Operational Memorandum #8 and Operational Memorandum #6. See Op Memo #6 for a complete explanation of "target method detection limits" and analytical methodology.

SOIL CRITERIA PROTECTIVE OF GROUNDWATER

The determination of a soil concentration protective of groundwater in an aquifer can be more complex at industrial/commercial sites than for some residential sites, consequently, these values are not presented on the list. If groundwater contamination is confined (and will remain) on-site, and the groundwater at the site is used as a source of drinking water, then the soil cleanup criteria protective of groundwater can be determined in one of the following ways: 1), through the use of leachate test (see Operational Memorandum #12), comparing the leachate results to the industrial/commercial health-based drinking water value or aesthetic value, whichever is more restrictive, or if available, the state drinking water standard (unless the aesthetic criterion is more restrictive); 2) by comparing the concentration in soil (i.e., measured as a total, not leachable concentration) to 20 times the appropriate groundwater criterion; or 3) by the use of other methods, such as fate and transport modeling or perched in-situ groundwater evaluation, that demonstrate that hazaracus substances in soil will not result in relevant groundwater criteria being exceeded. However, if off-site groundwater is or may be used as a source of drinking water, the groundwater must meet residential criteria at the property boundary or exposure controls must be provided. In that case, on-site soils may need to be cleaned up to a level more restrictive than that described above in order to assure that residential

criteria will be met at the appropriate location, unless groundwater remediation is being used to achieve the residential groundwater criteria offsite. It is possible that acceptable soil criteria protective of groundwater may vary across the site.

For certain chemicals which strongly adsorb to soil and are known not to leach at significant concentrations (i.e., PCBs, carcinogenic polynuclear aromatic hydrocarbons and some chlorinated pesticides), the direct contact value is accepted as the soil cleanup criterion to protect groundwater in addition to the protection against long-term, systemic, direct contact hazards. However, there are certain situations (i.e., presence of solvents or collection of unfiltered groundwater samples) which could result in the presence of these types of materials in groundwater. These other conditions should be evaluated before a chemical is considered nonmobile in soil. Consult an ERD toxicologist if you think direct contact values for other contaminants would be protective of groundwater or if you have questions about conditions that could cause the transport of a nonmobile contaminant through soil.

SOIL CRITERIA PROTECTIVE OF SURFACE WATER

The default values are shown in Op Memo #8 as 20 times the GSI value. If the GSI value is the controlling factor for groundwater and/or aquifers at an industrial/commercial site, the 20 times GSI value would be applied here in the same way it would be at a residential site. See Operational Memorandum #8 for a full discussion of this issue. Since the GSI value applies only at the groundwater surface water interface it is not necessary that soil concentrations throughout the site be less than or equal to 20 times the GSI number. However, in some cases, it may be simplest to make this comparison in judging the need for soil remediation to protect surface water. Generic industrial/commercial soil cleanup criteria protective of surface water can be developed using the same approaches that apply to the soil criteria protective of drinking water (i.e., leachate tests, 20 times water concentrations, comparison of perched water quality to GSI values or fate and transport modeling). This accounts only for leaching of hazardous substances from soil into groundwater and the subsequent impact of that groundwater on surface water. If there is significant potential for runoff to carry contaminated soil into surface water (i.e., this pathway is pertinent in the risk assessment), the impact of that runoff should be characterized in the risk assessment using fate and transport modeling. This type of analysis may be necessary in cases where the hazardous substances present at the site are highly persistent and/or bioaccumulative, since transport of substances with these properties may result in unacceptable impact on surface water sediments or in the food chain.

DIRECT CONTACT CRITERIA

These values protect workers at the site against long-term, systemic health effects from ingestion and dermal absorption of hazardous substances in soil. The exposure assumptions used in the algorithms are discussed in the generic industrial and commercial sections. The generic land-use direct contact criteria are applied like the residential direct contact values, except that the requirement that direct contact concentrations be met throughout the affected media will not always apply to industrial/commercial cleanups. It is possible for a generic industrial/commercial RAP to combine the application of these values for shallow soils and land use restrictions to protect against exposure to higher concentrations in deeper soils to provide for a remedy that is, when considered in total, protective of public health. In general,

surface soils are considered to be the top 0-6 inches, unless activities at a site indicate that a greater depth is more appropriate. However, unless use restriction are in place for contaminated subsurface materials, contaminant concentrations cannot exceed the appropriate soil concentration to protect public health.

Average on-site soil concentrations, represented as a 95% upper confidence level (UCL) on the arithmetic mean, may be used to determine compliance with the soil direct contact value. On-site 95% UCLs should, however, reasonably represent the areas over which exposures are expected to occur. Refer to EPA Guidance (EPA, 1992b) on appropriate methodology for calculating the 95% UCL.

ISSUES NOT ADDRESSED BY THE DIRECT CONTACT CRITERIA

Since all RAPs must document that they are protective of the public health, safety and welfare and the environment, they must contain some discussion of potential inhalation risks, and whether inhalation is a pertinent pathway for human exposure at the site in question. The direct contact criteria do not address and are not applicable for the inhalation pathway because they do not incorporate the potential inhalation effects, long-term or acute, of hazardous substances in soil.

In many cases, the inhalation pathway will be addressed by a simple description of the physical characteristics of the site such as pavement, vegetative cover, depth to contamination, or characteristics of on-site contaminants, which would allow for its elimination as a pertinent pathway. Characteristics of the contaminants that should be considered are vapor pressure and/or Henry's Law constant, the potential to cause cancer via the inhalation route, the potential to cause irritation of respiratory tissue and special characteristics which may make a contaminant an inhalation hazard (e.g., friable asbestos). The RAP should indicate whether any materials with these characteristics are present. If such materials are present, it may be necessary to conduct a risk assessment of the inhalation pathway, pursuant to Rules 299.5717(3)(a) and (f) in general, and to include criteria or exposure controls which are protective under the inhalation scenario. If not, criteria and/or exposure control measures which are protective for other routes of exposure will be deemed protective for the inhalation pathway and a narrative assessment for the inhalation pathway will be sufficient. EPA guidance should be followed when evaluating the inhalation pathway (EPA, 1991).

Dermal Toxicity: The direct contact soil equations do not address acute skin These concerns may have to be addressed toxicity or skin sensitization. before chemicals with these characteristics can be left in place at the direct contact concentration.

Ecological Concerns: Industrial/commercial RAPs also must address ecological concerns. The RAP should include a description of the physical setting of the site, including any natural resources which could be affected by the release(s) addressed in the plan. In general, potential ecological impacts are defined as adverse impacts on a community or a population of organisms rather than on an individual who is the focus of a human health risk assessment. An ecological risk assessment will be required only if there is a "sensitive environmental resource" (See Rule 299.5803(j)) present at or near the site, or if there are other special circumstances such as concern for persistent or bioaccumulative hazardous substances which may adversely effect the food chain, or a physical feature that would attract wildlife to the site

(e.g., migratory waterfowl habitat). Professional judgment must be used to determine whether it is likely that criteria more restrictive than those required to protect public health, or those required pursuant to other applicable regulations (e.g., groundwater/surface water interface criteria), are necessary to protect natural resources at or near the site. If ERD staff believe that there is a need for an ecological assessment, this should be reviewed with your supervisor and other technical experts as appropriate. Ecological risk assessments will be the exception rather than the rule.

Other Requirements for Industrial and Commercial RAPs

The generic industrial and commercial cleanup criteria will simplify the human health risk assessment component of the RAP when they are applicable. If the site meets the criteria for application of the generic approach, the human health risk assessment can consist of a comparison to the generic criteria when they are proposed for use at the site. If other criteria are proposed, they must be justified as protective of public health, safety, welfare and the environment. Regardless of whether generic or site-specific criteria are proposed, the RAP must also contain a demonstration that it satisfies all other requirements of Part 201 and the administrative rules, including applicable or relevant and appropriate requirements (ARARs) from other environmental laws. You should review Rules 299.5717, 299.5719 which contain requirements applicable specifically to industrial/commercial (formerly "Type C") cleanups. Also review Rules 299.5601 and 299.5603 which describe the factors the Department must consider in deciding whether to approve a RAP. Parties preparing industrial/commercial RAPs should directly and succinctly address how the RAP is responsive to all requirements of Rules 299.5601, 299.5603, 299.5717, and 299.5719 (or explain why the requirement is not applicable to the site).

Important components of an industrial/commercial RAP, in addition to the risk assessment, include:

- a thorough description of the proposed exposure controls (including a proposed restrictive covenant which addresses the factors called for in Rule 299.5719(3)). Exposure controls can be as simple as a commitment, through the restrictive covenant, that the land use of the site will remain consistent with the industrial or commercial risk assessment assumptions. More complex controls will be required if, for example, an engineered containment structure is part of the remedy.
 - an explanation of how the proposed controls will be reliable, effective and satisfy other requirements of law.
 - an operation and maintenance plan (see Rule 299.5517) and a monitoring plan (see Rule 139.5519), or both, if necessary. These plans may be conceptual (e.g., they need not specify manufacturers for equipment to be used, but must describe the function of the equipment). However, the plans must be presented in sufficient detail to allow us to judge their adequacy. The plans must also include cost estimates for implementation of the operation and maintenance and/or monitoring work. The cost estimates, which will be used, in part, to determine the amount of financial assurances required pursuant to Rule 299.5719(2), should be

Environmental Response Division Staff Operational Memorandum #14 (rev. 2)

based on work being done by contractor personnel rather than by employees of the party responsible for implementation of the RAP. This allows us to be confident that financial assurances would cover necessary costs if the state must take over these activities.

This memo is intended to provide guidance to Division staff to foster consistent application of Part 201 of the Natural Resources and Environmental Protection Act, 1994 PA 451 and associated Administrative Rules. This document is not intended to convey any rights to any parties nor create any duties or responsibilities under law. This document and matters addressed herein are subject to revision.

Questions about the generic industrial and commercial algorithms and criteria should be directed to ERD toxicologists (Chris Flaga, at 517-373-0160; Jeff Crum, at 517-335-3092; or Linda Larsen at 517-335-3161). Questions about other aspects of generic industrial and commercial RAPs should be directed to District Supervisors.

GENERIC INDUSTRIAL LAND USE CATEGORY

A generic industrial site will include sites with the following characteristics:

- The primary activity at the site is industrial in nature (e.g., manufacturing; utilities; industrial research and development; petroleum bulk storage) and access to the site is reliably restricted consistent with its use (e.g., by fences or security personnel or both). The term industrial site does not include farms, gasoline service stations or other commercial establishments where children may commonly be present. Inactive or abandoned sites are included if the property use was industrial, as described above.
- The current zoning of the property is industrial, the zoning is anticipated to be industrial (see below), or the RAP includes documentation that the current industrial use is a legal non-conforming use. This may include different zoning designations, depending on the community, such as "light industrial" or "heavy industrial".

 Documentation of zoning must be provided in the form of a map or current property record card which shows the zoning status of the site and all adjacent properties. If the RAP is based on anticipated zoning changes, discussion of this issue must indicate how and when the zoning changes are to be accomplished. The RAP must identify (preferably on a map) the nearest current residential land uses and nearest parcels which are zoned for residential use. Any non-conforming land uses in the vicinity of the site must be identified in the RAP (e.g., residential use on a parcel zoned "transitional industrial").

Generic Industrial Cleanup Criteria Algorithms

The following equations represent a reasonable and conservative approach for deriving generic cleanup criteria for an industrial facility. Assumptions are conservative to include a reasonable maximum exposure. The population protected are those industrial workers who spend a significant percentage of

their work time outdoors. Algorithms are presented for both the ingestion of groundwater and for direct contact with soil.

The generic industrial equations follow.

Generic Groundwater Algorithms:

```
CARCINOGENS: \frac{10^{-5} \times BW \times AT \times CF}{SF \times EF \times ED \times IR_{dW}}
```

where, 10⁻⁵ cancer risk = acceptable risk

BW (body weight) = 70 kg

AT (averaging time in days) = 25,550 (70 x 365)

CF (conversion factor) = 1000 ug/mg

SF (cancer slope factor, mg/kg-d⁻¹) = chemical-specific

EF (exposure frequency) = 245 d/yr

ED (exposure duration) = 21 yr

IR_{dw} (drinking water ingestion rate) = 1 liter/day

NONCARCINOGENS: HQ x RfD x BW x AT x RSC x CF EF x ED x IR_{dw}

```
where,
             HQ (hazard quotient)
             RfD (oral reference dose, mg/kg/d) = chemical-specific
             BW (body weight)
                                                     = 70 \text{ kg}
             AT (averaging time)
                                                     = 7,665 \text{ days} (21 \times 365)
             CF (conversion factor) ·
                                                     = 1000 \text{ ug/mg}
             RSC (relative source contribution) = 0.2
             EF (exposure frequency)
                                                     = 245 d/yr
             ED (exposure duration)
                                                     = 21 yr
             IR<sub>dw</sub> (drinking water ingestion rate) = 1 liter/day
             ED (exposure duration)
                                                     = 21 yr
             IR_{dw} (drinking water ingestion rate) = 1 liter/day
```

These equations yield values which represent concentrations of contaminants in water in units of parts per billion (ppb) or micrograms per liter (ug/l). To convert to units of parts per million (ppm) or milligrams per liter (mg/l) in water, divide by 1,000.

The selection of an appropriate averaging time (AT) is dependent upon the type of toxic effect being evaluated. EPA guidance is followed on this issue (USEPA, 1989; USEPA, 1991). AT represents the number of days over which the exposure is averaged. When evaluating long-term exposure to noncarcinogenic compounds, exposures are calculated by averaging over the period of exposure (i.e., subchronic or chronic exposures). For carcinogenic compounds, exposures are calculated by prorating the total cumulative dose over a lifetime (also called lifetime average daily dose). The approach for carcinogens is based on the assumption that a high dose of a carcinogen received over a short period of time is equivalent to a corresponding low dose spread over a lifetime. The averaging time for carcinogens is 25,550 days (70 years x 365 days) and 7,665 days (21 years x 365 days) for noncarcinogens.

MDNR's recommendation of 21 years as the exposure duration (ED) for a worker is based on 1991 statistics from the U.S. Dept. of Labor. However, since the Dept. of Labor statistics did not detail the distribution for employees

working greater than 19 years at one location, the EPA 95th percentile estimate of 25 years was assumed. The 90th percentile was estimated to be 21 years. Although an ED of 21 years differs from EPA's recommendation of 25 years, our value represents more recent data. In addition, we follow general EPA guidance which recommends using a combination of exposure assumptions which represent 50th, 90th and 95th percentiles.

The exposure frequency (EF) for the drinking water scenario is derived assuming 260 work days per year minus 3 work weeks (15 days) of vacation and sick time. The assumed amount of water ingested at work (1 liter/day) is based on EPA's recommendation (USEPA, 1991). It is pointed out, however, that workers engaged in hard, physical labor could ingest a greater volume of water and this should be considered before finalizing the criteria to be used at a specific site.

The RSC of 0.2 (20%) assumes that a worker gets 80% of his/her exposure to onsite contaminants from other sources. The RSC represents a default value, and if chemical-specific data are available, they should be used in place of the default. Use of the RSC is consistent with the algorithms for the residential cleanup criteria. Justification for use of a RSC follows. There are many chemicals to which people are exposed through a variety of media and activities. For example, solvents, which are common industrial contaminants, are also commonly found in products routinely used by the general consumer. Ignoring exposures from other sources could underestimate the risk posed by that type of chemical. However, other chemicals may not occur at significant levels, or may not occur at all, outside of the work place. In light of the fact that chemical-specific data pertaining to this issue is extremely limited and significant exposures to certain chemicals do occur outside of the work place, it is necessary to identify a conservative default for this generic approach. As data suggesting something other than 20% becomes available, they will be incorporated into the chemical-specific criteria calculations.

An RSC is only used for groundwater criteria; it has been eliminated from the direct contact soil equations. It's use for the industrial/commercial scenario is consistent with the residential equations. A 20% RSC for groundwater criteria is consistent with the approach taken by U.S. EPA for establishing Maximum Contaminant Level goals (MCLg) for noncarcinogens (previously known as RMCLs). Twenty percent is used by EPA "as a reasonable approximation of the actual exposure and recognizes that this value may somewhat either overestimate or underestimate the actual drinking water contribution. EPA does not believe that it is appropriate to set the RMCL at 100 percent of the ADI, as drinking water is not the sole contributor to total exposure, and using 100 percent of the ADI would underestimate the other sources of exposure" (U.S. EPA, 1985). An RSC has also been incorporated into the Great Lakes Initiative risk assessment process and has been informally used by the Waste Management Division in establishing groundwater permit limits for noncarcinogens.

In those cases where a State Drinking Water Standard is available, it will replace the health-based drinking water criterion, unless a more conservative aesthetic criterion is available.

Generic Industrial Direct Contact Soil Criterion Algorithms

```
10<sup>-5</sup> x BW x AT x CF
CARCINOGENS:
                 SF x (EF x FD) x ED x FC x [(IR<sub>s</sub> x AE_i) + (SA x AF x AE_d)]
                     10<sup>-5</sup> cancer risk
       where,
                                                               = acceptable risk
                     BW (body weight)
                                                               = 70 \text{ kg}
                     AT (averaging time)
                                                              = 25,550  days
                     CF (conversion factor)
                                                              = 1E+9 ug/kg
                     SF (cancer slope factor, mg/kg-d<sup>-1</sup>) = chemical-specific
                     EF (exposure frequency)
                                                              = 112 d/yr
                     ED (exposure duration)
                                                              = 21 yr
                     FC (fraction of soil contaminated) = 1
                     IR<sub>s</sub> (soil ingestion rate)
                                                              = 50 \text{ mg/day}
                     AE_i (ingestion absorp. efficiency) = (see text)
                     SA (skin surface area) = 2570 \text{ cm}^2/\text{day}

AF (soil adherence factor) = 1.0 \text{ mg/cm}^2
                     AE_d (dermal absorption efficiency) = (see text)
NONCARCINOGENS:
                              HQ x RfD x BW x AT x CF
                    EF x ED x FC x [(IR_s \times AE_i) + (SA \times AF \times AE_d)]
      where,
                     HQ (hazard quotient)
                     RfD (oral ref. dose, mg/kg/day)
                                                               = chemical-specific
                     AT (averaging time)
                     BW (body weight)
                                                              = 70 \text{ kg}
                                                              = 7,665  days
                     CF (conversion factor)
                                                              = 1E+9 ug/kg
                     EF (exposure frequency)
                                                             = 112 d/yr
                     ED (exposure duration)
                                                             = 21 yr
                     FC (fraction soil contam'd)
                                                             = 1
                     Ir<sub>s</sub> (soil ingestion rate)
                                                             = 50 mg/day
                     Ae<sub>i</sub> (ingestion absorp. efficiency) = (see text)
                     SA (skin surface area)
AF (soil adherence factor)
                                                              = 2570 \text{ cm}^2/\text{day}
                                                             = 1.0 \text{ mg/cm}^2
                     AE_d (dermal absorption efficiency) = (see text)
```

These equations yield values representative of concentrations of contaminants in soil in units of ppb or micrograms/kilogram (ug/kg). To convert to units of ppm or milligrams/kilogram (mg/kg) in soil, divide by 1,000.

The exposure frequency (EF) for the direct contact scenario was derived considering climatic factors (e.g., snow cover, frozen soil) and inclement weather conditions (e.g., rain) as well as variation in daily activities in which industrial workers participate. It is assumed that Michigan winters last for 4 months (120 days) making soil unavailable for contact. Allowing three weeks off for vacations and sick leave, and adjusting for a standard five day work week yields a maximum number of 160 days per year of industrial outdoor exposure in Michigan. The assumptions represent high-end values within a range of potential exposures.

Environmental Response Division Staff Operational Memorandum #14 (rev. 2)

Data from the Air Quality Division indicate that, on average, precipitation exceeds 0.25 inch one day per week during the months of March through October. These data represent average values from a 30 year period, 1951 through 1980. It is assumed that rainfall which exceeds 0.25 inches makes working outdoors difficult. Incorporating this factor also assumes that this significant rainfall occurs during the work week and during the eight hour work shift, which may not always be the case. However, this assumption may be balanced or "corrected" by a few low temperature days or snow days in March or October which could prevent a worker from working outdoors. This factor results in the number of days per week which a worker comes into contact with soil to be reduced from 5 to 4.

Activity patterns of a reasonable maximum exposed worker are not likely to bring the individual into contact with bare soil each and every day, since many different duties may be performed at any given facility. As a conservative estimate, it is assumed that one half day per week is spent performing some activity which does not bring the worker into contact with bare site soil. The incorporation of this factor results in a reasonable maximum EF value of 3.5 days per week or 112 days per year.

$$160 \times 3.5/5 = 112$$

The soil ingestion rate recommended by MDNR is 50 mg/day, which follows EPA's recommendation for industrial/commercial workers.

The oral absorption efficiency default is assumed to be 100% for volatiles and 50% for semi- and nonvolatile chemicals. When chemical-specific data are available, they will be used in place of the defaults. This policy is consistent with the Type B algorithms.

The skin surface area was estimated in the following manner:

skin surface area
$$(cm^2)$$
 = u SA forearms = 1140
u SA face (1/2 head) = 590
u SA hands = 840
2570

The amount of exposed skin surface area identified represents an average scenario, realizing that at times a worker could have more or less skin exposed. For example, there may be times when a worker is working without a shirt and times when a worker may be working in a long-sleeved shirt and/or a coat. The average scenario assumes that a worker is working in a short-sleeved shirt and long pants with hair or a hat covering part of his/her head. This scenario estimates a skin surface area value of 2,570 cm²/day. In addition to the above discussion, surface area is strongly correlated with body weight. Since the assumed body weight represents an average value, surface area should be represented by an average value as well.

The attenuation factor of $1.0~\text{mg/cm}^2$ is the value recommended by EPA (EPA, 1991). After evaluating the available soil adherence studies, EPA concludes that all of the studies considered have uncertainties thereby making a recommendation difficult. The studies provide a possible range from 0.2 to $1.5~\text{mg/cm}^2$. A conservative central value of $1.0~\text{mg/cm}^2$ is recommended until better data are available.

The dermal absorption efficiency is assumed to be 10% for volatiles and 1% for semi- and nonvolatiles as assumed in the Type B algorithm. All absorption values represent defaults which will be replaced if chemical-specific data are or become available.

As indicated earlier, EPA provides general guidance on how to characterize exposures and risks when conducting risk assessments. For Superfund exposure assessments, intake and exposure values should be selected so that the combination of all variables results in an estimate of the reasonable maximum exposure (RME) for that pathway. The RME is the maximum exposure that is reasonably expected to occur at a site. Under this approach, some intake variables may not be at their individual maximum values, but when in combination with other variables, will result in estimates of the RME (USEPA, 1989). More recent EPA guidance (USEPA, 1992), recommends estimating the high end exposure by "...identifying the most sensitive parameters and using maximum or near-maximum values for one or a few of these variables, leaving others at their mean values". This guidance applies when only limited information on the distribution of the exposure or dose factors is available. The basis for this recommendation is that maximizing all variables will result in an estimate that is above the range of actual values seen in the population. The algorithms presented in this document follow EPA guidance by combining exposure assumptions which represent a mix of high-end and mid-range values. For example, when evaluating the direct contact equation, a 70 year life span, body weight and surface area all represent a 50th percentile, while the exposure duration of 21 years and the soil ingestion rate represent the 90th percentile.

Since no distributions exist for frequency of exposure to soil, it's difficult to estimate a value and its associated percentile. However, it's reasonable to assume that the value chosen (112 days) is representative of the higher end of the range of possible exposures. Data supporting the dermal contact rate is also lacking, making it difficult to estimate the percentile that it represents. Although we are using average skin surface area values as presented by EPA (USEPA, 1990), estimation of those areas which are exposed to soil is strictly based upon best professional judgment. Although a significant amount of uncertainty surrounds the estimated exposure frequency and the dermal contact rate, the exposure assumptions selected are reasonable and conservative for the purpose of developing state-wide, generic cleanup criteria for industrial facilities.

REFERENCES

- Calabrese, E.J. et al. 1990. Preliminary adult soil ingestion estimates: Results of a pilot study. Reg. Toxicol. Pharmacol. 12:88-95.
- GCA Corporation. 1985. Development of Statistical Distributions or Ranges of Standard Factors Used in Exposure Assessments. Final Report. Prepared for Office of Health and Environmental Assessment, Office of Research and Development, USEPA. August.
- USEPA. 1985. Federal Register, Vol. 50, No. 219, Wednesday, November 13, 1985.
- USEPA. 1989. Risk Assessment Guidance for Superfund. Volume I. Human Health Evaluation Manual (Part A). Interim Final. EPA/540/1-89/002. December 1989.
- USEPA. 1990. Exposure Factors Handbook. EPA/600/8-89/043.
- USEPA. 1991. Risk Assessment Guidance for Superfund: Volume I--Human Health Evaluation Manual (Part B, Development of Risk-based Preliminary Remediation Goals). Interim. Publication 9285.7-01B. December 1991.
- USEPA. 1992a. Memorandum: Guidance on Risk Characterization for Risk Managers and Risk Assessors. From: F. Henry Habicht II. February 26, 1992.
- USEPA. 1992b. Supplemental Guidance to RAGS: Calculating the Concentration Term. OSWER. Publication 9285.7081, May 1992.

GENERIC COMMERCIAL LAND USE CATEGORY

The commercial land use category is extremely varied and broad, encompassing everything from day care centers and schools to gas stations and warehouse operations. The physical setting of commercial properties and the activities which workers and the general public engage in at these sites are also extremely variable. Given the breadth of the commercial land use category, it is impossible to assign a single set of "typical" or generic exposure assumptions to characterize the activities of all potentially exposed populations.

In order to facilitate the development of generic commercial criteria, the universe of commercial land uses has been divided into four subcategories based on factors which are critical to the assessment of potential risk. These factors include the potentially exposed populations (workers or general public) and the nature, duration, and frequency of the exposures likely to occur when people occupy, work at, visit, or patronize the site. The division of the commercial land use category into subcategories allows for some useful generalizations to be made.

A substantial degree of variability remains even within the subcategories of commercial land use. It will be the responsibility of the party proposing a remedy to demonstrate that the site and exposure setting is consistent with the characteristics of the subcategory closely enough to warrant use of the criteria. Similarly, the party proposing the remedy will have to describe in the RAP those measures that will be put in place (institutional controls, restrictive covenants, access restrictions, etc.) to assure that the exposure setting of the site is maintained consistent with the exposure characteristics of the subcategory. This will serve to guarantee that uses of the site which might yield unacceptable exposures will be precluded in the future. Conversely, land uses consistent with a subcategory may not possess exposures that are similar to those used to define the category. Proper characterization of those site-specific activities or exposures may warrant the use of generic criteria from another subcategory or category.

In the following sections, exposure assumptions protective for the set of site and exposure characteristics described below for subcategory III and IV sites have been developed. Some commercial subcategory III and IV sites may be located in or near residential areas and, therefore, may be used by other populations for purposes other than the intended commercial use (e.g. recreational). It may be inappropriate to apply the generic criteria developed for a given subcategory of commercial land use, if anticipated exposure from unintended uses exceeds the exposures assumed under that subcategory. Adjustments can be made to the exposure assumptions to represent these other uses or criteria for a more representative category can be used. Alternatively, the RAP may denote measures designed to preclude unintended uses.

For the purpose of determining if the generic commercial criteria presented in this memorandum are applicable, the party proposing a remedy must first determine that the site falls within the definition of commercial land use or that the site-related exposures are similar to those assumed for this category. The definition of commercial land use includes the following two elements:

- The primary activity at the site is commercial in nature (e.g., retail; warehouse; office/business space, etc.). This could include abandoned or inactive commercial facilities as long as they fit both the definition of a commercial facility and one of the subcategory definitions described below.
- The current zoning of the property is commercial, future zoning is anticipated to be commercial, or the RAP includes documentation that the current commercial use is a legal non-conforming use. This may include different zoning designations, depending on the community, such as "community commercial", "regional commercial", "retail", or "office-business". Documentation of zoning must be provided in the form of a map or current property record card which shows the zoning status of the site and all adjacent properties. If the RAP is based on anticipated zoning changes, discussion of this issue must indicate how and when the zoning changes are to be accomplished. The RAP must identify (preferably on a map) the nearest current residential land uses and nearest parcels which are zoned for residential use. Any non-conforming land uses in the vicinity of the site must be identified in the RAP (e.g., residential use on a parcel zoned "transitional commercial").

Caution should be used when categorizing sites on the basis of facility or business type. We expect that activities may vary considerably even among facilities of the same type. Activities and exposures should be the primary considerations when determining a land use category for a specific site.

If the site meets the definition of commercial land use, the party proposing the remedy must determine which of the four subcategories of commercial land use defined below is most representative of the exposure setting of the subject site. The subcategories and the features which define them are described below:

Subcategory I: This commercial land use subcategory is characterized by any use which is intended to house, educate, or provide care for children, the elderly, the infirm, or other sensitive subpopulations. The activities engaged in by these populations at the site are characterized by exposures of relatively significant duration and/or frequency approximating the magnitude of exposures used to develop the residential criteria. The site setting may include unpaved or landscaped areas containing contaminated surficial soils which may be frequented by potentially exposed populations (e.g. play areas). Any soil contaminants present may therefore be readily accessible to the resident populations. If relied on for drinking water, exposure to groundwater would also be significant. In addition, this subcategory of commercial land use is usually, but not always, located in or near residential areas and, therefore, may be used by other populations for purposes other than the intended commercial use (e.g. recreational). This subcategory could include, but is not limited to, the following uses:

- day care centers
- any form of educational facility
- hospitals, elder care facilities, and nursing homes.

Although a site-specific risk assessment may be conducted on sites within this category, no generic commercial cleanup criteria will be developed because in

most cases, the site setting and uses will warrant the application of residential criteria. There are forms of subcategory I commercial land uses that do not possess the exposure characteristics of the residential exposure setting, for example, long-term or convalescent care facilities where patients are not expected to come into contact with soils on a frequent basis. In such cases, site-specific cleanup criteria or criteria from another subcategory can be utilized with proper justification.

Subcategory II: This commercial land use subcategory is characterized by the following features. Access to the public is reliably restricted, consistent with its use, by fences, security, or both. Affected surficial soils are located in unpaved or landscaped areas that are frequently contacted by worker populations such as groundskeepers, maintenance workers, or other employees whose primary duties are performed outdoors. If site groundwater is relied on for drinking water, worker populations would receive half of their total exposure from on site drinking water.

This subcategory could include, but is not limited to, the following uses:

- · large-scale commercial warehouse operations
- wholesale lumber yards
- building supply warehouses

The degree of exposure for such employees under Subcategory II property is assumed to be equivalent to the exposures used to model outdoor activities in the development of the generic industrial criteria. As a result, a unique set of generic criteria has not been defined for this subcategory of commercial land use. Sites which fall into this subcategory should be addressed through the application of the generic industrial criteria or through a site-specific risk assessment.

Subcategory III: A subcategory III commercial site is characterized by the following features. Access to the public is unrestricted, however, the general public's occupancy of the site is expected to be intermittent and significantly less in frequency and duration relative to the population working at the site. Although some of the activities for both worker populations and the general public at a subcategory III commercial site are conducted indoors, a significant component of their activity will likely be outdoors. Affected surficial soils are located in unpaved or landscaped areas that may be contacted frequently, primarily by the worker populations (as may be the cases at gas stations, auto dealerships or building supply warehouses with unpaved or landscaped areas). If site groundwater is relied on for drinking water, worker populations would receive about half of their total exposure from the site.

This subcategory could include, but is not limited to, the following uses:

- Retail gas stations
- Auto service stations
- Auto dealerships
- Retail warehouses selling the majority of their merchandise indoors but including some limited storage or stockpiling of materials in a rear yard (building supply, retail flower and garden shops not involving on site plant horticulture and excluding open air nurseries, tree farms and sod farms which would fall into an agricultural land use).

- Repair and service establishments including but not limited to, lawn mower, boat, snowmobile, or small appliance repair shops that have small outdoor yards.
- Small warehouse operations

Subcategory IV: A subcategory IV commercial site is characterized by the following features. Access to the public is unrestricted, however, the general public's occupancy of the site is intermittent in frequency and of short duration relative to the worker populations resident at the site (i.e. the frequency and duration of general public occupancy at the site is typified by the time necessary to transact business at a retail establishment or to receive personal services). The predominant activities performed by both workers and the general public at this type of commercial property are conducted indoors. Affected surficial soils are located in unpaved or landscaped areas that are contacted by worker populations on an occasional basis, such as outdoor break or eating areas. General public contact with these areas is anticipated to be significantly less than the worker's contact, both in terms of frequency and duration. If site groundwater is relied on for drinking water, worker populations would receive one-half of their total exposure at the site.

This subcategory could include, but is not limited to, the following uses:

- Professional offices (lawyers, architects, engineers, real estate, insurance, etc.)
- Medical/dental offices and clinics (not including hospitals)
 - Banks, credit unions, savings and loan institutions, etc.
- · Publicly owned office buildings
- Any retail business whose principal activity is the sale of food or merchandise within an enclosed building
- · Personal service establishments which perform services indoors (health clubs, barber/beauty salons, mortuaries, photographic studios, etc.).

Generic Commercial Cleanup Criteria Algorithms

The following section provides justification for the exposure assumptions used under the generic commercial subcategories III and IV. The methods used to establish the generic commercial cleanup criteria for commercial subcategories III and IV are briefly summarized below.

Groundwater: The worker population was used to establish exposure parameters for the generic commercial groundwater criteria. Because workers are expected to spend the most time on site, their exposures are assumed to be greater than exposures to the general public. Protection of the more highly exposed population assures protection of the general public.

Unlike soil exposures, the exposure assumptions which serve as the basis for the generic groundwater criteria were not varied between subcategories (except for subcategory I which assumes the ingestion of 2 liters of water/day). No meaningful distinctions could be made between commercial land use subcategories and water ingestion rates. The exposure assumptions and the resulting groundwater criteria do not differ from those developed for the generic industrial scenario. Please refer to the narrative on groundwater

exposure assumptions in the generic industrial section for details. When available, State Drinking Water Standards serve as the ultimate drinking water criterion, unless a more restrictive aesthetic cleanup criterion is available.

Soil: The exposure assumptions used in the direct contact algorithms are protective for a "reasonable maximum exposure". The focus was the worker population within each subcategory that spends the largest amount of time outdoors engaged in activities that permit contact with affected soils. The worker population in both commercial subcategory III and subcategory IV represents the segment of the population within the subcategory with the highest potential exposures. Protection of less significantly exposed populations, like customers or workers who spend less time outdoors, is thereby assured.

Generic Commercial Direct Contact Soil Algorithm

The direct contact soil algorithm for the commercial scenario is the same as the industrial direct contact soil algorithm with the exception of different values for two exposure parameters, specifically, exposure frequency (EF) and the skin surface area (SA), and incorporation of an exposure time parameter. Please refer to the generic industrial section for details on the exposure assumptions that have not changed.

```
CARCINOGENS:
                                       10<sup>-5</sup> x BW x AT x CF
                 SF x (EF x FD) x ED x FC x [(IR<sub>s</sub> x AE<sub>i</sub>) + (SA x AF x AE<sub>d</sub>)]
                    10<sup>-5</sup> cancer risk
       where,
                                                              = acceptable risk
                     BW (body weight)
                                                              = 70 \text{ kg}
                    AT (averaging time)
                                                              = 25,550  days
                     CF (conversion factor)
                                                              = 1E+9 ug/kg
                    SF (cancer slope factor, mg/kg-d<sup>-1</sup>) = chemical-specific
                    EF (exposure frequency)
                                                              = (see text)
                    FD (fraction of work day)
                                                              = (see text)
                    ED (exposure duration)
                                                              = 21 yr
                    FC (fraction of soil contaminated) = 1
                    IR, (soil ingestion rate)
                                                              = 50 \text{ mg/day}
                    AE_i (ingest. absorption efficiency) = (see text)
                    SA (skin surface area)
                                                              = (see text)
                    AF (soil adherence factor)
                                                              = 1.0 \text{ mg/cm}^2
                    AE_d (dermal absorption efficiency) = (see text)
NONCARCINOGENS:
                                 HQ x RfD x BW x AT x CF
                   (EF x FD) x ED x FC x [(IR<sub>s</sub> x AE_i) + (SA x AF \times AE_d)]
                    HQ (hazard quotient)
                    RfD(oral reference dose, mg/kg day) = chemical specific
                    BW
                                                              = 70 \text{ kg}
                    AT
                                                              = 7,665  days
                    CF
                                                              = 1E+9 \text{ ug/kg}
                    EF
                                                              = (see text)
                    ED
                                                              = 21 yr
                    FD
                                                              = (see text)
```

= 1

FC (fraction soil contam'd)

Environmental Response Division Staff Operational Memorandum #14 (rev. 2)

Ir,	= 50 mg/day
AE;	= (see text)
SA SA	= (see text)
AF	$= 1.0 \text{ mg/cm}^2$
AEa	= (see text)

These equations yield values which represent concentrations of contaminants in soil in units of ppm or mg/kg. To convert to units of ppb or micrograms/kilogram in soil (ug/kg), multiply by 1,000.

Commercial Subcategory III

A typical receptor in this subcategory is a gas station attendant who must perform a combination of indoor and outdoor activities. The EF of 160 days/year was derived assuming that four months of winter would preclude an individual from coming into contact with soil. Rain and other inclement weather factors were not considered because it is assumed that this type of worker must still perform his/her outdoor duties. Allowing for three weeks off per year for vacations and sick leave and adjusting for a standard five day work week yields a maximum number of 160 days per year of potential exposure (i.e., $365 - 120 - 21 \times 5/7 = 160$). Having both indoor and outdoor responsibilities, this type of commercial worker is conservatively expected to spend four out of eight hours per work day outdoors. The FD parameter is equal to 0.5 (4/8 hours).

The area of skin exposed is assumed to be the same as for the generic industrial worker, 2570 cm²/day. This assumes that the face, hands and forearms of the receptor are available for exposure, typified by a worker wearing a short-sleeved shirt and long pants.

Commercial Subcategory IV

The typical worker in this subcategory may be represented by an office worker who eats lunch and takes breaks outdoors. The EF was derived assuming that four months of winter would preclude an individual from coming into contact Allowing three weeks off for vacations and sick leave and adjusting for a standard five day work week yields 160 days/year. As in the generic industrial scenario, it is also assumed that it rains one day out of the week. This results in a value of 128 days/year. Since this type of receptor is outdoors only a small portion of the work day, reasonably 1.5 hours/day, a fraction of day parameter (FD) (1.5 hours out of 8) is incorporated into the algorithm. FD is equal to 0.19 (1.5/8).

This type of receptor is assumed to be a person with face, hands, forearms and lower legs exposed. This represents an individual wearing a short-sleeved shirt and a dress or skirt. The total skin surface area for these exposed areas is 4575 cm²/day.

The assumed EF, FD, and SA values for the two commercial subcategories are summarized as follows:

• .	Exposure Frequency	Fraction of Day	Surface <u>Area</u>
Commercial Subcat. III	160	0.50	2570
Commercial Subcat. IV	128	0.19	4575

Attached as a table is a matrix presenting all commercial category and subcategory definitions and exposure assumptions. Use this table when trying to determine the most appropriate commercial land use subcategory for the site in question.

O Hamel

Table 1. Definitions of industrial and commercial categories and commercial subcategories and associated exposure assumptions.

		EXPO	SURE ASSUMP	TIONS							
LAND USE CATEGORIES AND SUBCATEGORIES											
	Exposure Frequency (d/year)	Fraction of Day (unitless)	Exposure Duration (years)	Soil Ingestion Rate (mg/day)	Skin Surface Area (cm ^{2/} day)						
INDUSTRIAL		·	•								
primary activity is industrial; property has tandscaped and/or unpaved areas maintained by employees on a regular basis or employees are present whose primary duties are performed outdoors; access to general public is restricted; zoning is industrial	≤112	<u>≤</u> 1	⊴21	≤50	≤2570						
COMMERCIAL											
primary activity is commercial; access is unrestricted; zoning is commercial; see subcategories					·						
SUBCATEGORY I											
a property where children, the elderly, the infirm or other sensitive subpopulations are housed, educated or otherwise cared for, e.g., schools, nursing homes, day cares; residential cleanup required	≤365	<u><</u> 1	<u>≤</u> 70	≤90	varies for different age grps.						
SUBCATEGORY II											
activities similar to those characterized in industrial category; industrial cleanup required	<u>≤</u> 112	<u><</u> 1	≤21	≤50	≤2570						
SUBCATEGORY III											
property has landscaped or unpaved areas in which some employees will spend approximately half of their work time, e.g., gas station attendants	≤160	≤0.5	≤21	≤50	<u><</u> 2570						
SUBCATEGORY IV											
a property with unpaved or landscaped areas that will be frequented by employees on an occasional basis, e.g., outdoor eating areas	<u><</u> 128	≤0.19	<u><</u> 21	≤50	<u><</u> 4575						

PART 201 OF THE NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION ACT, 1994 PA 451

GENERIC INDUSTRIAL AND COMMERCIAL CLEANUP CRITERIA FOR GROUNDWATER AND SOIL

(REVISION 2)

These criteria were calculated using currently available toxicological data. Criteria may change as new toxcity data become available. They are not necessarily final cleanup standards. The determination of a soil concentration protective of surface water and/or groundwater in an aquifer is more complex than for residential sites, consequently, there are no values shown on the list. PLEASE READ THE ATTACHED OPERATIONAL MEMORANDUM FOR DETAILS. Carcinogenic chemicals are shown in bold italics. All values are expressed in units of parts per billion (ppb); ug/l in water and ug/kg in soil. (Values are converted from units of parts per million (ppm) as generated by algorithms). Scientific notation is represented by E+ or E- a value, for example 2 x 10⁴ is reported as 2E+6. Please refer to Operational Memorandum #6 and #8 for information concerning method detection limits and residential cleanup criteria, respectively.

	GROU	NDWAT	ER (ppt	o:ug/l)	SOIL (ppb:ug/kg)			
Chemical	Drinking Water	Aesthetic Drinking Water Value	GSI Value	Target Method Detection Limit in Water	D	Commercial Subcategory III	Value Commercial Subcategory IV	Target Method Detection Limit in Soil
Acenaphthene	3,800	NA	3.8	5	8.1E+8	1.0E+9 (G)	1.0E+9 (G)	330
Acenaphthylene	75	NA	{B}	5	1.6E+7	2.3E+7	5.4E+7	330
Acetaldehyde	2,700	NA	{B}	500	9.7E+7	1.4E+8	2.7E+8	2,500
Acetic acid	12,000	NA	{B}	18,000	4.2E+8	5.9E+8	1.0E+9 (G)	9.0E+5
Acetone	2,100	NA	25,000	100	.7.4E+7	1.0E+8	2.1E+8	100
Acetonitrile	400	NA	810	50	1.4E+7	2.0E+7	3.9E+7	100
Acrolein	330	NA	2.5	5	1.2E+7	1.7E+7	3.3E+7	10
Acrylamide	0.78	NA	9.1	0.5	33,000	47,000	1.1E+5	5
Acrylic acid	11,000	NA	(B)	NA	3.9E+8	5.5E+8	1.0E+9 (G)	NA
Acrylonitrile	6.4	NA .	2.2	1	46,000	64,000	1.3E+5	10
Alachior	2 (C)	NA	48	1	1.9E+6	2.6E+6	6.2E+6	20
Aldicarb	3 (C)	NA	{B}	2	4.5E+6	6.3E+6	1.5E+7	50
Aldicarb sulfoxide	4 (C)	NA	{B}	2	5.9E+6	8.2E+6	1.9E+7	50
Aldicarb sulfone	2 (C)	NA	(B)	2	5.0E+6	7.0E+6	1.6E+7	50
Aldrin	0.2	NA	0.0014	0.01	8,800	12,000	29,000	20
Aluminum	10	50 (A,F)	(B)	100	ID	ID	ID	700
Ammonia	ID (P)	NA	20 (D)	50	ID (P)	ID (P)	ID (P)	1,000
Aniline	610	NA	4	20	2.6E+7	3.7E+7	8.7E+7	1,700
Anthracene	21,000	NA	1.1E+5	5	1.0E+9 (G)	1.0E+9 (G)	1.0E+9 (G)	330
Antimony	6 (A,C)	NA	50 (A)	5	1.6E+6	2.2E+6	5.2E+6	500
Arsenic	50 (A,C)	NA	11 (A)	5	83,000	1.2E+5	2.8E+5	100
Atrazine	3 (C)	NA	7.8	1	6.8E+5	9.5E+5	2.3E+6	50
Azobenzene	32	NA	(B)	NA	1.4E+6	1.9E+6	4.5E+6	NA
Barium	2.000 {A,C}	NA	630 (A,D)	200	3.2E+8	4.4E+8	1.0E+9 (G)	1,000
Benzene	5 (C)	NA	53	5	8.5E+5	1.2E+6	2.4E+6	10

GENERIC INDUSTRIAL AND COMMERCIAL CLEANUP CRITERIA

	GROU	NDWAT	ER (ppb	:ug/i)	SOIL (ppb:ug/kg) •			
Chemical	Health- Based Drinking Water Value	Aesthetic Drinking Water Value	GSI	Target Method Detection Limit in Water	Di Industrial	Commercial Subcategory III	Value Commercial Subcategory IV	Target Method Deter Limit h. Soil
	0.015	NA	0.0054	50	650	910	2,200	1,000
Benzidine	4.8	NA.	0.31	5	2.1E+5	2.9E+5	6.8E+5	330
Benzo(a)anthracene (Q)	4.8	NA	0.31	5	2.1E+5	2.9E+5	6.8E+5	330
Benzo(b)fluoranthene (Q)	48	NA .	0.31	5	2.1E+6	2.9E+6	6.8E+6	330
Benzo(k)fluoranthene (Q)	75	NA NA	(B)	5	1.6E+7	2.3E+7	5.4E+7	330
Benzo(g,h,i)perylene	0.2 (C)	NA .	0.31	5	21,000	29,000	68,000	330
Benzo(a)pyrene (Q)	92,000	NA NA	(B)	50	1.0E+9 (G)	1.0E+9 (G)	1.0E+9 (G)	3,300
Benzoic acid		NA.	22	50	1.0E+9 (G)	1.0E+9 (G)	1.0E+9 (G)	1,300
Benzyl alcohol	29.000	NA NA	(B)	0.5	1.5E+5	2.0E+5	4.1E+5	200
Benzyl chloride	20	NA NA	(B)	1	35,000	49,000	1.2E+5	200
Beryllium	4 (C)		• •	5	ID	10	ID	330
Bis(2-chloroethoxy)ethane	ID	NA NA	(B) 4.2	5	23.000	32,000	63,000	330
bis(2-Chloroethyl)ether	3.2	NA NA		5	1.1E+7	1.5E+7	3.5E+7	330
bis(2-Ethylhexyl)phthalate	6 (C)	NA	59	1	2.7E+8	3.8E+8	8.9E+8	8,000
Boron	1,300 (A)	NA	{B}	300		ID ID	ID	10
Bromobenzene	ID	NA	(B)	1	ID	5.6E+5	1.1E+6	10
Bromodichloromethane	100 (C,S)	NA	24	1	4.0E+5	4.4E+6	8.7E+6	10
Bromoform	100 (C.S)	NA	65	1	3.1E+6		2.9E+6	10
Bromomethane	29	NA	11	1	1.0E+6	1.5E+6	2.9E+8	4,400
n-Butanol	2,700	NA	{B}	800	9.7E+7	1.4E+6		100
2-Butanone (MEK)	38,000	NA	7,200	50	1.0E+9 (G)		1.0E+9 (G)	20
n-Butyl acetate	1,600	NA	40	10	5.7E+7	7.9E+7	1.6E+8	4,400
t-Butyl alcohol	11,000	NA	8,300	1,000	4.0E+8	5.6E+8	1.0E+9 (G)	l.
Butyl benzyl phthalate	3,300	NA	{B}	5	7.2E+8	1.0E+9 (G)	1.0E+9 (G)	330
Cadmium	5 (A,C)	NA	0.64 (A,D)	0.5	2.3E+6	3.2E+6	7.4E+6	50
Camphene	1D	NA	(B)	NA	ID	ID	1D'	NA
Caprolectam	17,000	NA	(B)	NA	1.0E+9 (G) 1.0E+9 (G)		NA
Carbaryi	2,000	NA	(B)	20	4.3E+8	6.1E+8	1.0E+9 (G)	1,000
Carbofuran	40 (C)	NA	1.6	20	3.7E+6	5.2E+6	1.0E+7	200
Carbon disulfide (R)	2,300	NA	(8)	50	8.2E+7	1.1E+8	2.3E+8	100
Carbon tetrachloride	5 (C)	NA	21	1	1.9E+5	2.7E+5	5.3E+5	10
Chlordane	2 (C)	N A	0.00053	0.02	1.2E+5	1.6E+5	3.8E+5	10
Chloride	10	2.5E+5	i (B)	10,000	ID	ID	סו	2.0E
Chlorobenzene	100 (C)	NA	71	1	1.4E+7	2.0E+7	3.9E+7	10
Chloroethane	910	NA	(B)	1	6.5E+6	9.1E+6	1.8E+7	10
2-Chloroethyl vinyl ether	ID	NA	{B}	10	ID	ID	ID	100
	100 (C,S		80	1	4.1E+6	5.7E+6	1.1E+7	10
Chloroform	270	NA	(B)	1	1.9E+6	2.7E+6	5.3E+6	10
Chloromethane	420	NA	4.4	5	1.5E+7	2.1E+7	4.1E+7	330
4-Chloro-3-methylphenol	1720	117		1-	1.9E+8	2.6E+8	5.2E+8	330

	GROL	INDWA	TER (pp	b:ua/l)		SOIL (ppb:ug/kg)			
	Health-		***	Target		Disease Contract VI I			
Chemical	Based Drinking Water Value	Aesthetic Drinking Water Value	GSI Value	Method Detection Limit in Water	Industrial	Commercial Subcategory III	Commercial	Target Method Detection Limit in Soil	
2-Chlorophenol	130	NA	10	5	4.6E+6	6.5E+6	1.3E+7	330	
o-Chlorotoluene	420	NA	{B}	1	1.5E+7	2.1E+7	4.1E+7	10	
Chlorpyrifos	63	NA.	0.002	0.2	1.4E+7	1.9E+7	4.5E+7	10	
Chromium (III) (I)	100 (A,C,J)	NA	77 (A,D)	50	1.0E+9 (G)	1.0E+9 (G)	1.0E+9 (G)	2,500	
Chromium (VI) {I}	100 (A,C,J)	NA	7.3 (A)	5	2.2E+7	3.0E+7	7.1E+7	200	
Chrysene (Q)	480	NA	0.31	5	2.1E+7	2.9E+7	6.8E+7	330	
Cobett	100	NA.	(B)	10	2.3E+7	3.2E+7	7.4E+7	500	
Copper	4,000 (A)	1,000	18 (A,D)	25	1.7E+8	2.4E+8	7.4E+7 5.6E+8	1	
Cyanazine	6	NA.	4.7	10	2.6E+5	3.6E+5		1,000	
Cyanide (R)	200 (C)	NA NA	5.2	20	9.9E+7	1.4E+8	8.5E+5	500	
Cyclohexanone	94,000	NA NA	(B)	50	1.0E+9 {G}	1.0E+9 (G)	3.3E+8	500	
Dacthal	210	NA NA	(B)	1	4.5E+7	6.3E+7	1.0E+9 (G)	100	
Dalapon	200 (C)	NA NA	(B)	10	6.3E+7	8.8E+7	1.5E+8	20	
4-4'-000	14	NA NA	0.0084	0.02	6.3E+5		1.8E+8	100	
4-4'-DDE	10	NA NA	0.0059	0.02	4.4E+5	8.8E+5	2.1E+6	20	
4-4'-DDT	10	NA NA	0.00023	0.02		6.2E+5	1.5E+6	20	
Decabromodiphenyl ether	200	NA NA			4.4E+5	6.2E+5	1.5E+6	20	
Di-n-butyl phthalate	2.500	NA NA	(B) 12,000	10	4.5E+7	6.3E+7	1.5E+8	100	
Di(2-ethylhexyl) adipate	400 (C)	NA NA	-•	5	5.4E+8	7.6E+8	1.0E+9 (G)	330	
Di-n-octyl phthalate	380	NA NA	(B)	5	2.1E+7	2.9E+7	5.8E+7	330	
Diacetone alcohol	ID	NA NA	(B)	.	8.1E+7	1.1E+8	2.7E+8	330	
Diazinon	3.8	NA NA	(B)	NA 0.5	ID	ID	ID	NA	
Dibenzo(a,h)anthracene (Q)			0.002	0.5	8.1E+5	1.1E+6	2.7E+6	10	
Dibenzofuran	0.48	NA	0.31	5	21,000	29,000	68,000	330	
Dibromochloromethane	1D	NA NA	{B}	5	ID	ID	ID	330	
	100 (C,S)	NA	29	1	3.0E+5	4.1E+5	8.2E+5	10	
Dibromomethane 1,2-Dichlorobenzene	230	NA	(B)	5	5.0E+7	6.9E+7	1.6E+8	10	
,	600 (C)	NA	7	1	6.4E+7	9.0E+7	1.8E+8	10	
1,3-Dichlorobenzene .	600 (C)	NA	180	1	6.4E+7	9.0E+7	1.8E+8	10	
1,4-Dichlorobenzene	75 (C)	NA	15	1	1.0E+6	1.4E+6	2.9E+6	10	
3,3'-Dichiorobenzidine	7.7	NA	0.063	20	55,000	77,000	1.5E+5	2,000	
Dichlorodifluoromethane	4,800	NA	(B)	1	1.7E+8	2.4E+8	4.8E+8	10	
1,1-Dichloroethane	2,500	NA	(B)	1.	8.9E+7	1.3E+8	2.5E+8	10	
1,2-Dichloroethane	5 (C)	NA	560	1	2.7E+5	3.8E+5	7.6E+5	10	
1,1-Dichloroethylene	7 (C)	NA	32	1	7.4E+5	1.0E+6	2.1E+6	10	
cis-1,2-Dichloroethylene	70 (C)	NA	{B}	1	8.2E+6	1.1E+7	2.3E+7	10	
trans-1,2-Dichloroethylene	100 (C)	NA	300	1	1.3E+7	1.8E+7	3.5E+7	10	
2,6-Dichloro-4-nitroaniline	6,300	NA	{B}	0.01	1.0E+9 (G)	1.0E+9 (G)	1.0E+9 (G)	0.1	
2,4-Dichlorophenol	210	NA	34 (D)	5	4.5E+7	6.3E+7	1.5E+8	330	
2,4-Dichlorophenoxyacetic acid	70 (C)	NA	47	10	4.5E+7	6.3E+7	1.5E+8	200	

GENERIC INDUSTRIAL AND COMMERCIAL CLEANUP CRITERIA

	GROU	NDWAT	ER (ppb	:ug/i)	SOIL (ppb:ug/kg)				
Niaal	Health- Based Drinking Water Value	Aesthetic Drinking Water Value	GSI Value	Target Method Detection Limit in Water	D Industrial	Commercial Subcategory III	Commercial Subcategory IV	Target Method Detect Limit in Soil	
Chemical	5 (C)	NA .	64	1	3.6E+5	5.1E+5	1.0E+ 6	10	
1,2-Dichloropropane	19	NA	3	1	1.4E+5	1.9E+5	3.8E+5	10	
i,3-Dichloropropene (J)	12	NA.	{B}	0.1	5.2E+5	7.2E+5	1.7E+6	50	
Dichiorovos	ID	NA.	(B)	5	ID	ID	ID	330 -	
Dicyclohexyl phthalete	0.22	NA NA	3.2E-5	0.02	9,400	13,000	31,000	20	
Dieldrin	1D	NA.	{B}	10	ID	(D)	· ID	100	
Diethoxymethane	10.000	NA.	(B)	50	3.7E+8	5.2E+8	1.0E+9 (G)	100	
Diethyl ether	1 - 7	NA.	1.2E+5	5	1.0E+9 (G)	1.0E+9 {G}	1.0E+9 (G)	330	
Diethyl phthalate	16,000		(B)	NA	5.4E+7	7.6E+7	1.8E+8	NA	
Diethylene glycol monobutyl ether	250	NA NA	(B)	NA.	5.7E+5	8.0E+5	1.6E+6	NA	
Dileopropylamine	16	NA NA	(P) 2.9E+6	5	1.0E+9 (G)	1.0E+9 {G}	1.0E+9 (G)	330	
Dimethyl phthalate	2.1E+5		(B)	NA	1.9E+7	2.6E+7	5.2E+7	NA	
N,N-Dimethylacetamide	520	NA NA	• •	NA	1.6E+6	2.3E+6	4.6E+6	NA	
N,N-Dimethylaniline	46	NA ***	(B) 3,800	NA NA	7.1E+7	1.0E+8	2.0E+8	NA	
Dimethylformamide	2,000	NA		5	2.3E+8	3.2E+8	7.4E+8	330	
2,4-Dimethylphenol	1,000	NA	31	5	2.7E+6	3.8E+6	8.9E+6	330	
2,6-Dimethylphenol	13	NA	(B)	5	6.3E+6	8.8E+6	2.1E+7	330	
3,4-Dimethylphenol	29	NA	{B}	1	1.0E+9 (G		1.0E+9 (G)	NA	
Dimethylsulfoxide	6.3E+5	NA	{B}	NA	2.2E+5	3.1E+5	7.3E+5	330	
2,4-Dinitrotoluene	5.1	NA NA	91	5	4.5E+6	6.3E+6	1.5E+7	20	
Dinoseb	7 (C)	NA	0.5 (D)	1	2.3E+6	3.2E+6	6.3E+6	10	
1,4-Dioxane	320	NA	2,000	1		1.4E+7	3.3E+7	NA	
Diquat	20 (C)	NA	{B}	1	9.9E+6	1.5E+6	3.4E+6	3.3	
Endosulfan (J)	4.8	NA	{B}	0.01	1.0E+6	1.1E+8	2.5E+8	NA	
Endothali	100 (C)	NA	(B)	20	7.7E+7		2.5E+6	20	
Endrin	2 (C)	NA	0.0023	0.02	7.7E+5	1.1E+6	7.0E+6	10	
Epichlorohydrin	350	NA	(B)	5	2.5E+6	3.5E+6		1	
Ethanol	5.6E+6	NA	41,000	1,000	1.0E+9 (-	1.0E+9 {G}		
Ethyl acetate	19,000	NA	1,000	NA	6.7E+8	9.4E+8	ID	NA	
1-Ethyl-2-methylbenzene	ID	NA	(B)	NA NA	ID .	ID	2.0E+8	10	
Ethylbenzene	700 (C)	74	31	1	7.2E+7	1.0E+8	2.0E+6 810	10	
Ethylene dibromide	0.05 (C)	NA.	1.1	1	290	410			
Ethylene glycol	42,000	NA	68,000	5,000	1.0E+9		,	NA NA	
Ethylene glycol acetate	ΙD	NA	(B)	NA	ID	ID	1D	NA.	
Ethylene glycol monobutyl ether	270	NA	(B)	NA	9.7E+6	1.4E+7	2.7E+7		
Fluoranthene	2,500	NA	370	5	5.4E+8	7.6E+8	1.0E+9 (G	.	
Fluorene	2,500	NA	14,000	5	5.4E+8	7.6E+8	1.0E+9 (G	•	
Fluorine	400 (C)	2,000	0 1,900	NA	2.7E+8		8.9E+8	NA 50	
Formaldehyde	3,800	NA.	170	100	1.3E+8	1.9E+8	3.7E+8	50	
Formic acid	29,000	NA	(B)	18,00	0 1.0E+9	(G) 1.0E+9 (G} 1.0E+9 (G	9.0	

	GRO	UNDWA	TER (ppi	o:ug/l)	1	SOIL (ppb:ug/kg)			
	Health-		(РР			irect Contact			
Chemical	Based Drinking Water Value	Aesthetic Drinking Water Value	GSI Value	Target Method Detection Limit in Water	Industrial	Commercial Subcategory III	Commercial Subcategory IV	Target Method Detection Limit in Soil	
	230	NA	{B}	NA	8.2E+6	1.1E+7			
1-Formylpiperidine	35	NA	(B) {B}	NA NA	1.5E+6	2.1E+6	2.3E+7 5.0E+6	NA NA	
Gentian violet	1	NA NA	(B)	100	4.5E+8	6.3E+8	******		
Glyphoeate	700 (C)		(B) 0.0016	0.01			1.0E+9 {G}	NA ~	
Heptachlor	0.4 (C) 0.2 (C)	NA NA	0.0016	0.01	33,000 16,000	47,000 23,000	1.1E+5	20	
Heptachlor epoxide	92.000	NA NA	4	NA		•	54,000	20	
n-Heptane	58 58				1.0E+9 (G)	1.0E+9 {G}	1.0E+9 (G)	NA CO	
Hexabromobenzene	1	NA NA	{B}	(K)	1.3E+7	1.8E+7	4.2E+7	{K}	
Hexachlorobenzene (C-44) Hexachlorobutadiene (C-44)	1(C) 45	NA NA	0.0019	(K)	94,000	1.3E+5	3.1E+5	{K}	
	0.55	NA NA	500	(K)	1.9E+6	2.7E+6	6.4E+6	(K)	
alpha-Hexachlorocyclohexane	1	NA NA	0.13	0.01	24,000	33,000	79,000	20	
beta-Hexachlorocyclohexane	1.9	NA NA	0.46	0.01	83,000	1.2E+5	2.8E+5	20	
Hexachlorocyclopentadiene (C-56)	50 (C)	NA NA	0.54	(K)	3.2E+7	4.5E+7	1.1E+8	{K}	
Hexachioroethane	250	NA NA	13	2	1.8E+6	2.5E+6	4.9E+6	50	
n-Hexane	8,600	NA NA	(B)	NA SO	3.1E+8	4.3E+8	8.5E+8	NA .	
2-Hexanone	2,900	NA NA	(B)	50	1.0E+8	1.5E+8	2.9E+8	100	
Indeno(1,2,3-cd)pyrene (Q)	4.8	NA	0.31	5	2.1E+5	2.9E+5	6.8E+5	330	
fron	ID	300 (A)	(B)	100	ID	ID	ID	2,000	
Isobutyl alcohol	6,700	NA 	(B)	1,000	2.4E+8	3.3E+8	6.6E+8	4,400	
Isophorone	3,700	NA	860	5	2.6E+7	3.7E+7	7.3E+7	330	
Isopropyl alcohol	1,300	NA 	21,000	400	4.8E+7	6.7E+7	1.3E+8	4,400	
Load	4 (A,L)	NA	6.6 (A,D)	3	4.0E+5 (L)	4.0E+5 {L}	4.0E+5 (L)	1,000	
Lindane	0.2 (C)	NA	0.08	0.01	1.2E+5	1.6E+5	3.8E+5	20	
Magnesium	1.2E+6	NA	(B)	30	1.0E+9 (G)	1.0E+9 {G}	1.0E+9 (G)	3,000	
Manganese	500 (A)	50 (A)	(B)	20	2.2E+7	3.0E+7	7.1E+7	2,000	
Mercury (Inorganic)	2 {A,C}	NA	0.0013 (A)		1.4E+6	1.9E+6	4.5E+6	100	
Methanol	10,000	NA	41,000	1,000	3.7E+8	5.2E+8	1.0E+9 (G)	4,400	
Methoxychiar	40 (C)	NA	(B)	0.5	2.3E+7	3.2E+7	7.4E+7	50	
2-Methoxyethanoi	83	NA	(B)	NA	3.0E+6	4.2E+6	8.3E+6	NA	
2-Methyl-4-chlorophenoxyacetic acid	21	NA	(B)	0.5	4.5E+6	6.3E+6	1.5E+7	100	
2-Methyl-4,6-dinitrophenol	7.3	NA	0.59	20	1.6E+6	2.2E+6	5.2E+6	1,700	
4-Methyl-2-pentanone (MIBK)	1,000	NA	{B}	50	3.7E+7	5.2E+7	1.0E+8	100	
Methyl-tert-butyl ether (MTBE)	690	NA	380	50	2.5E+7	3.4E+7	6.8E+7	100	
N-Methyl-morpholine	56	NA	{B}	NA	2.0E+6	2.8E+6	5.6E+6	NA	
Methylcyclopentane	ID	NA .	(8)	50	ID	ID .	ID	500	
4,4'-Methylene-bis-2-chloroaniline (M)	3.6	NA	(B)	1	1.6E+5	2.2E+5	5.1E+5	50	
Methylene chloride	5 (C)	NA	59	5	3.3E+6	4.6E+6	9.2E+6	10	
2-Methylnaphthalene	Ю	NA	(B)	5	ID	ID	ID	330	
2-Methylphenol	1,000	NA	38	5	3.7E+7	5.2E+7	1.0E+8	330	
3-Methylphenol	1,000	NA	{B}	5	2.3E+8	3.2E+8	7.4E+8	330	

	GROU	NDWAT	TER (ppt	o:ug/l)	SOIL (ppb:ug/kg)			
	Health- Based Drinking Water Value	Aesthetic Drinking Water Value	GSI Value	Target Method Detection Limit in Water	Di	Commercial Subcategory III	Commercial Subcategory IV	Target Methor Detec Limit in Soil
hemical	100	NA	6.2	5	2.3E+7	3.2E+7	7. 4E+7	330
Methylphenol	670	NA.	150	10	2.9E+7	4.0E+7	9.5E+7	50
fetolachior	100 {A}	NA .	800 (A)	10	2.3E+7	3.2E+7	7.4E+7	100
MORYDOMINUM	750	NA	29	5	1.6E+8	2.3E+8	5.4E+8	330
laphthalene	100 (A,C)	NA NA	57 (A,D)	50	3.4E+8	4.8E+8	1.0E+9 (G)	1,000
lickel	10,000 (C,F		(B)	100	ID	ID	ID	NA
Vitrate (P)	1,000 (C,P)	-	(B)	100	סו	ID	ID	NA
Nitrite (P)	9.6	NA.	1,900	5	3.4E+5	4.8E+5	9.5E+5	330
Nitrobenzene	58	NA NA	(B)	5	1.3E+7	1.8E+7	4.2E+7	330
2-Nitrophenal	0.5	NA NA	(B)	5	3,500	5,000	9,900	330
n-Nitroso-di-n-propylamine	710	NA	160	5	5.1E+6	7.1E+6	1.4E+7	330
N-Nitrosodiphenylemine		NA.	(B)	NA	1.7E+8	2.4E+8	5.6E+8	NA
Oxamyl	200 (C) 210	NA NA	(B)	NA	7.4E+6	1.0E+7	2.1E+7	NA
Oxo-hexyl acetate		NA	0.62	0.1	5.4E+8	7.6E+8	1.0E+9 (G)	20
Pendimethalin	2,500 17	NA NA	(B)	2	3.7E+6	5.2E+6	1.2E+7	50
Pentachiorobenzene	160	NA	(B)	2	3.4E+7	4.7E+7	1.1E+8	50
Pentachioronitrobenzene	1	NA NA	0.8 (D)	20	1.3E+6	1.8E+6	4.1E+6	3,400
-Pentachlorophenol	1 (C)	NA NA	(B)	100	ID	ID	1D	1,00
Pentane	10	NA NA	(B)	NA NA	ID	מו	ID	NA
2-Pentene	ID	NA NA	(B)	5	1.6E+7	2.3E+7	5.4E+7	330
Phenanthrene	75	NA NA	1,100	5	4.5E+8	6.2E+8	1.0E+9 (G)	330
Phenol	13,000			10	3.2E+8	4.4E+8	1.0E+9 (G)	100
Picloram ,	500 (C)	NA	(B)	NA.	3.3E+5	4.6E+5	9.1E+5	NA
Piperidine	9.2	NA	(B)	NA.	17,000	24,000	56,000	NA
Polybrominated biphenyls (J)	0.39	NA NA	(B) 2.0E-5	0.2	21,000	30,000	58,000	330
Polychlorinated blphenyls (PCBs) (J,T)		NA		0.5	9.9E+7	1.4E+8	3.3E+8	20
Prometon	460	NA NA	(B)	1	5.9E+7	8.2E+7	1.9E+8	20
Propachlor	270	NA NA	(B)	0.5	1.2E+8		4.0E+8	20
Propazine	560	NA NA	{B}	100	1.0E+9 {		1.0E+9 (G)	6,7
Propionic acid	35,000	NA NA	{B} 15,000	NA NA	1.4E+8	2.0E+8	3.9E+8	NA
Propyl alcohol	4,000	NA NA	15,000 1.9E+5	1	1.0E+9 {		3) 1.0E+9 (G	5,0
Propylene glycol	4.2E+5	NA NA		5	3.4E+8	4.7E+8	1.0E+9 (G	33(
Pyrene	1,600	NA NA	11,000 20	20	7.4E+5	1.0E+6	2.1E+6	33
Pyridine	21	NA NA		5	2.3E+7	3.2E+7	7.4E+7	50
Selenium	50 (A,C		5 (A)		2.1E+7		7.0E+7	50
Silver	98 (A)	100	0.1 (A)	10	2.3E+7	3.3E+7	7.7E+7	40
Simazine	4 (C)	NA	3.4	NA	1.0E+9			3) N
Sodium	4.5E+5		(B)	ì	8.3E+5		2.3E+6	10
Styrene	100 (C)	NA.	19	1	1D	ID.	ID	N

	GROL	INDWAT	ER (ppi	o:ug/l)	SOIL (ppb:ug/kg)			
	Health-			Target		irect Contact		Toront
Chemical	Based Drinking Water Value	Aesthetic Drinking Water Value	GSI Value	Method Detection Limit in Water	industrial	Commercial Subcategory III	Commercial Subcategory IV	Target Method Detection Limit in Soil
Tebuthluron	1.500	NA	{B}	NA	3.2E+8	4.4E+8	1.0E+9 (G)	NA
2,3,7,8-Tetrabromodibenzo-p-dioxin (O)	{O}	NA.	(O)	0.0001	{O}	{O}	(O)	0.01
1,2,4,5-Tetrachlorobenzene	7.100	NA.	0.4	0.1	1.0E+9 (G)	1.0E+9 (G)	1.0E+9 {G}	20
2,3,7,8-Tetrachiorodibenzo-p-dioxin (O)	3.0E-5 (C)	NA.	1.4E-8	1.0E-5	0.99	1.4	2.9	0.001
1,1,1,2-Tetrachioroethane	130	NA.	{B}	1	9.5E+5	1.3E+6	2.7E+6	10
1.1.2.2-Tetrachioroethane	17	NA.	32	1	1.2E+5	1.7E+5	3.5E+5	10
Tetrachioroethylene	5 (C)	NA.	22	1	4.9E+5	6.8E+5	1.4E+6	10
Tetrahydrofuran	690	NA.	3,300	1,000	2.5E+7	3.4E+7	6.8E+7	10.000
Thallium	2 (A,C)	NA.	5.4 (A)	2	3.0E+5	4.2E+5	1.0E+6	500
Toluene	1,000 (C)	790	110	1	1.6E+8	2.3E+8	4.6E+8	10
p-Toluidine	18	NA.	(B)	NA	7.9E+5	1.1E+6	2.6E+6	NA NA
Toxaphene	3 {C}	NA.	0.0002	1	23.000	32,000	63,000	170
Trialiste	270	NA.	(B)	1	5.9E+7	8.2E+7	1.9E+8	20
Tributylamine	29	NA.	(B)	NA	1.0E+6	1.5E+6	2.9E+6	NA
1,2,4-Trichlorobenzene	70 (C)	NA.	22	5	6.8E+7	9.5E+7	2.2E+8	330
1,1,1-Trichloroethane	200 (C)	NA	120	1	2.1E+7	2.9E+7	5.8E+7	10
1,1,2-Trichioroethane	5 (C)	NA	65	1	4.4E+5	6.1E+5	1.2E+6	10
Trichioroethylene	5 (C)	NA	94	1	1.6E+6	2.2E+6	4.3E+6	10
Trichlorofluoromethane	7,300	NA	580	1	2.6E+8	3.6E+8	7.3E+8	10
2,4,5-Trichiorophenol	2,100	NA	25	50	4.5E+8	6.3E+8	1.0E+9 (G)	1,700
2,4,6-Trichlorophenol	320	NA	27 (D)	5	1.4E+7	1.9E+7	4.5E+7	330
2(2,4,5-Trichlorophenoxy)propionic acid (N)	50 (C)	NA	21	1	3.4E+7	4.7E+7	1.1E+8	50
1,2,3-Trichloropropane	120	NA	(B)	1	2.6E+7	3.6E+7	8.5E+7	10
1,1,2-Trichioro-1,2,2-trifluoroethane	5.6E+5	NA	33	NA	1.0E+9 (G)	1.0E+9 (G)	1.0E+9 (G)	NA
Triethanolamine	10,000	NA	{B}	NA	3.7E+8	5.2E+8	1.0E+9 (G)	NA
3-Trifluoromethyl-4-nitrophenol	13,000	NA	32 (D)	NA	1.0E+9 (G)	1.0E+9 {G}	1.0E+9 (G)	NA
Triffuralin	450	NA	(B)	1	2.0E+7	2.7E+7	6.4E+7	50
2,2,4-Trimethyl pentane	ID	NA	(B)	50	ID	ID	1D	500
2,2,4-Trimethyl-2-pentene	ID	NA	{B}	NA	ID	ID	ID	NA
1,2,4-Trimethylbenzene	86	NA	22	1	3.1E+6	4.3E+6	8.5E+6	10
1,3,5-Trimethylbenzene	65	NA	26	1	2.3E+6	3.2E+6	6.4E+6	10
tris(2,3-Dibromopropyl)phosphate	1.9	NA	(B)	NA	83,000	1.2E+5	2.8E+5	NA
Urea	ID (P)	NA	{B}	400	ID (P)	ID (P)	ID (P)	20,000
Vanadium	180 (A)	NA	8 (A)	20	3.9E+7	5.5E+7	1.3E+8	1,000
Vinyl acetate	1,800	NA	{B}	50	6.5E+7	9.2E+7	1.8E+8	100
Vinyi chioride	2 {C}	NA	3.1	1	11,000	16,000	31,000	10
White phosphorus (R)	0.31	NA	{B}	NA	68,000 .	95,000.	2.2E+5.	NA
Xylenes	10,000 (C)	280	59	3	1.0E+9 (G)	1.0E+9 (G)	1.0E+9 (G)	30
Zinc	6,900 (A)	5.000 (A)	81 (A,D)	20	1.0E+9 (G)	1.0E+9 (G)	1.0E+9 (G)	1,000

Footnotes

- (A) Background, as defined in Rule 701(c), may be substituted if higher than the cleanup criteria.
- (B) Chemical has either not been evaluated or an inadequate data base precludes the development of a GSI value Contact an ERD toxicologist for assistance.
- (C) State of Michigan Drinking Water Standard established pursuant to Section 5 of the Safe Drinking Water Act, Ad No. 399 of the Public Acts of 1976 used as the default.
- (D) GSI value is pH, temperature, or water hardness dependent. Contact an ERD toxicologist for details.
- (E) Chemical, due to its physicochemical properties, is not expected to leach through soils to groundwater under most conditions.
- (F) Professional judgment used to determine that 50 ppb of aluminum in drinking water is protective of human health.
- (G) Criteria exceeds 100% in soil, hence it is reduced to 100%.
- (H) Criteria is based on agricultural impacts (phytotoxicity), not 20X groundwater criterion.
- Valence-specific chromium data (Cr III and Cr VI) must be compared to the same valence-specific cleanup criteria. If analytical data are provided for "total" chromium only, then values for chromium VI must be applied the cleanup criteria. Chromium III cleanup criteria can only be used at sites where groundwater is prevented from being used as a public water supply, currently or in the future.
- (J) Chemical may be present in several isomer forms. Isomer specific concentrations must be combined for comparison to criteria. Contact an ERD toxicologist for further explanation.
- Two different analytical methods and target method detection limits are available for this chemical. Refer to Operational Memorandum #6 for details.
- Criteria developed using the U.S. EPA Integrated Uptake Biokinetic Model for children. No risk assessment method(s) is currently available to evaluate lead toxicity in adults. Higher level may be acceptable if soil concentration is less than 400 ppm and groundwater migrating off-site will not impact adjacent properties. Contact an ERD toxicologist for further explanation.
- {M} Also known as MBOCA.
- (N) Also known as Silvex.
- (O) Use 2,3,7,8-TCDD "toxicity equivalence factors" (TEFs) for other chlorinated and /or brominated dibenzo-p-dioxins and chlorinated and/or brominated dibenzofurans for comparison to cleanup criteria. Contact an ERD toxicologist for details.
- {P} All potential sources of nitrogen-nitrate must be combined and compared to nitrate criteria. Contact an ERD toxicologist for details.
- Q Criteria for carcinogenic polynuclear aromatic hydrocarbons (PAHs) were developed using "relative potential potencies" (RPPs) to benzo(a)pyrene.
- {R} Chemical may be reactive in soil.
- (S) Concentrations of trihalomethanes in groundwater must be combined to determine compliance with the health-based drinking water value of 100 ppb.
- Toxic Substances Control Act, Subpart G PCB Spill Cleanup Policy standards may be more restrictive.

ID = Inadequate data to develop criterion; NA = Not available.

INTEROFFICE COMMUNICATION

September 30, 1993

TO:

Environmental Response Division Staff

FROM:

Alan J. Howard, Chief, Environmental Response Division

SUBJECT: MERA Operational Memorandum #15: Default Type A Cleanup Criteria

In order to facilitate cleanup decisions at sites at which naturally occurring metals may be of concern, the following acceptable default Type A soil cleanup criteria have been established. These values are based on analysis of the database for the Michigan Background Soil Survey (April 1991) which is maintained by Wasta Management Division (WMD). They represent the mean plus one standard deviation for WMD data from combined clay, topsoil and sand categories. The values are presented in two significant figures. Data should be rounded to two significant figures for comparison.

Table 1: ACCEPTABLE DEFAULT VALUES
TYPE A SOIL CLEANUP CRITERIA

7m TypeB	Substance	Acceptable Concentration (mg/kg)	<u>Substance</u>	Acceptable Concentration	(ma/ka)
487, 00 4.00	Aluminum Arsenic Barium Cadmium Cobalt Chromium (tota Copper Cyanide	6900 5.8 75 1.2 6.8 1) 18. 32 0.39	Iron Mercury Lithium Manganese Nickel Lead Selenium Silver Zinc	12000 0.13 9.8 440 20 21 0.41 1.0 47	600 00 00 00 00 00 00 00 00 00 00 00 00

The default values apply as follows:

- 1. If measured concentrations at a site do not exceed the values listed in Table 1, site specific samples to establish background are not required.
- 2. The values apply to all soil types, statewide.
- 3. It is acceptable to establish a site-specific background concentration higher than the default values. Such sampling should be conducted according to requirements in existence before the issuance of this memorandum. Comparison of site values is made against the mean plus three standard deviations calculated from background samples as provided for in existing ERD guidance regarding verification of soil remediation.

4. Staff also may approve Type A cleanups based on a regionally proximate background value higher than the default values. Comparison should be made as in #3, above.

This memorandum is intended to provide guidance to Division staff to foster consistent application of the Michigan Environmental Response Act (1982 PA 307, as amended) and the Administrative Rules promulgated thereunder. This document is not intended to convey any rights to any parties nor create any duties or responsibilities under law. This document and matters addressed herein are subject to revision.

Any questions about this memorandum should be directed to Bill Iversen at 517-373-0907.

rey. 0

cc: Dennis Drake, Air Quality Division Bob Miller, Surface Water Quality Division Tom Segall, Geological Survey Division Jim Sygo, Waste Management Division