

Mushroom Classification

데이터에 기반하여 특정 버섯이 독버섯인지 아닌지를 예측하고 실제 결과와 대비해본다

1. Introduction

- (Week 1) Objectives
- ① Kaggle의 Dataset을 가져와 자료의 Basic Description 분석 및 시각화
- ② Github에 Commit하는 과정을 통한 기본 사용방법 익히기

1. Introduction

Domain Knowledge

15 Attributes

- 5 Sections:
- 1. Cap
- 2. Ring
- 3. Veil
- 4. Gills
- 5. Stalk

'Mushroom Classification'

- UCI에서 Machine Learning 교육을 위해 제공한 자료
- 가상의 버섯 8000여개를 23개의 feature로 labeling한 text data

Mushroom Classification Dataset

- 버섯 하나 당 23개의 Feature로 이루어져 있음
- 각 Feature는 알파벳 글자 하나로 Labeling 되어져 있음

- 'class'라는 feature는 해당 버섯이 <u>식용버섯인지 독버섯인지</u>를 나타냄
- 우리의 목표는 버섯의 특징을 입력 받아 식용인지 아닌지 판단하는 Binary Classifier를 신경망으로 구현하는 것
- 따라서 'class'를 신경망의 Y값으로 잡아 **Supervised Learning**을 시킬 예정

е	52%
р	48%
Other (0)	0%

- 보통 대략 70%의 Dataset을 신경망의 Training에, 30%를 Test에 활용함
- 따라서 총 8124개의 버섯 데이터 중 6124개를 Training에, 2000개를 Test에 사용할 예정

3. Methods

- 언어: Python3
- 환경: Jupyter Notebook
- 라이브러리
- Pandas, Matplotlib : 데이터 가공 및 시각화
- Tensorflow, Numpy : 신경망 구현

4. Results

(1) Dataset Format Analysis

• **shape** : 8124 X 23 꼴의 2차원 Matrix 형식 -> 총 8124개의 버섯이 23개의 feature들로 labeling 되어있음

```
In [10]: mushrooms.shape
Out [10]: (8124, 23)
```

• head(): head는 가장 앞의 5개 row를 제시, 각 데이터가 23개의 feature들로 구분됨을 알 수 있음

In [9]: mushrooms.head()

Out [9] :

	class	cap- shape	cap- surface	cap- color	bruises	odor	gill- attachment	gill- spacing	gill- size	gill- color	 stalk- surface- below- ring		color- below- ring				ring- type	spore- print- color	population
0	р	Х	s	n	t	р	f	С	n	k	 s	W	w	р	w	0	р	k	s
1	е	Х	s	у	t	а	f	С	b	k	 s	w	w	р	w	0	р	n	n
2	е	b	s	w	t	1	f	С	b	n	 S	w	W	р	w	0	р	n	n
3	р	Х	у	w	t	р	f	С	n	n	 s	w	W	p	w	0	р	k	S
4	е	Х	s	g	f	n	f	w	b	k	 s	W	W	р	W	0	е	n	а

5 rows x 23 columns

• describe(): 각 feature들이 몇 종류의 값으로 구분 되는 지와 그 횟수를 알 수 있음

In [6]: mushrooms.describe()

Out [6] :

	class	cap- shape	cap- surface	cap- color		odor	gill- attachment	gill- spacing	gill- size	gill- color	 stalk- surface- below- ring			veil- type	veil- color		ring- type		pop
count	8124	8124	8124	8124	8124	8124	8124	8124	8124	8124	 8124	8124	8124	8124	8124	8124	8124	8124	
unique	2	6	4	10	2	9	2	2	2	12	 4	9	9	1	4	3	5	9	
top	е	Х	у	n	f	n	f	С	b	b	 s	W	w	р	w	0	р	w	
freq	4208	3656	3244	2284	4748	3528	7914	6812	5612	1728	 4936	4464	4384	8124	7924	7488	3968	2388	

(2) Histogram

- 대표적으로 cap-color와 odor를 선택해 Histogram으로 시각화
- 해당 feature들이 class 수가 가장 많았기 때문에 시각화 하는 것이 효과적이라고 판단하였음

0.9

Pearson Correlation of Features

(3) Colleration Matrix

- 각데이터 간의 feature별 상관관계를 Matrix로 시각화
- Veil-color와 Gill-Attachment는 0.9라는 높은 상관관계를 가짐
- Veil-type은 모든 버섯이 p라는 변하지 않는 값을 갖기 때문에 상관관계를 알 수 없어 회색으로 표현됨

Work Done : Pandas와 Matplotlib를 이용해 버섯 데이터의 모양과 특성을 여러 가지 방법으로 분석 + Github에 올림

To Do: 머신러닝을 통해 임의의 특성을 가진 버섯이 식용 버섯 인지 독버섯인지 가려내는 프로그램을 작성