Моделирование статических и динамических характеристик полевых транзисторов

Лабораторная работа №203М

1.Задание к допуску

Ознакомиться с методикой создания проекта и моделирования электронных элементов в системе проектирования печатных плат OrCAD_10.5.

Получить от преподавателя номер набора полевых транзисторов. В папке FRTK\#Gr\NAME\ создать проект с именем данной лабораторной работы [1].

Подключить библиотеки: SPECIAL, SOURCE и JJFET.

Для OrCAD_10.5_DEMO подключить библиотеки: SPECIAL, SOURCE, EVAL и EVALAA. В DEMO версии доступны для моделирования только два n-канальных полевых транзистора J2N3819, J2N4393 из библиотеки EVAL.

- 1.1. Начертить в тетради схемы моделирования вольтамперных характеристик:
 - n-канальных(рис.1.1,n),
 - р-канальных полевых транзисторов (рис.1.1,р)

Рис.1.1 Схемы моделирования вольтамперных характеристик полевых транзисторов

1.2. Начертить в тетради схему моделирования компенсации нелинейности проводимости **n**канального полевого транзистора (рис.1.2.n)

Рис.1.2.n Схема моделирования компенсации нелинейности проводимости **n**-канального полевого транзистора

1.3. Начертить в тетради схему моделирования компенсации нелинейности проводимости **р**-канального полевого транзистора (рис.1.3.р)

Рис.1.2.р Схема моделирования компенсации нелинейности проводимости **р**канального полевого транзистора

1.4. Начертить в тетради схемы моделирования емкости затворов полевых транзисторов (рис.1.3)

Рис. 1.3. Схемы моделирования емкости затворов полевых транзисторов

1.5. Начертить в тетради схемы моделирования переходных процессов полевых транзисторов (рис.1.4)

Рис.1.4. Схемы моделирования переходных процессов полевых транзисторов

2.Задание к выполнению работы

2.1,п. Составить схему моделирования вольтамперных характеристик **n**-канального полевого транзистора (рис.1.1,п).

Установить напряжение источника V2 равным +1mV. В режиме **DC Sweep** получить зависимость тока стока ID(J1) от напряжения источника V1 в диапазоне от -(3...1)V до 0V с шагом 0.01V. Определить масштаб проводимости вертикальной оси координат. По полученной зависимости определить $U_0(J1)$ и $g_{ko}(J1)$.

Перерисовать полученную зависимость проводимости в тетрадь.

2.1,р. Составить схему моделирования вольтамперных характеристик **р**-канального полевого транзистора (рис.1.1,р).

Установить напряжение источника V4 равным -1mV. В режиме **DC Sweep** получить зависимость тока стока -ID(J2) от напряжения источника V3 в диапазоне от 0V до +(1...3)V с шагом 0.01V. Определить масштаб проводимости вертикальной оси координат. По полученной зависимости определить U_0 (J2) и g_{ko} (J2).

Перерисовать полученную зависимость проводимости в тетрадь.

2.2,n. Установить напряжение источника V2 равным +5V. Получить зависимость тока стока ID(J1) от напряжения источника V1 в диапазоне от U_0 (J1) до 0V.

Перерисовать полученную зависимость тока в тетрадь.

2.2,р. Установить напряжение источника V4 равным -5V. Получить зависимость тока стока ID(J2) от напряжения источника V3 в диапазоне от 0V до U_0 (J2).

Перерисовать полученную зависимость тока в тетрадь.

2.3,n.1 Получить зависимость тока стока ID(J1) от напряжения источника V2 в диапазоне от 0V до +5V с шагом 0.01V с параметрическим изменением напряжения V1 на затворе от U_0 до 0V с шагом примерно равным – U_0 (J1)/5.

Перерисовать полученные зависимости тока в тетрадь.

- 2.3,n.2. Повторить предыдущий пункт задания для трех значений напряжения V1 на затворе: -0.05v, 0V и +0.05V. Определить по полученным результатам $g_m(J1)$, $g_i(J1)$, $U_A(J1)$ и $M(J1) = g_m(J1)/g_i(J1)$.
- 2.3,р.1 Получить зависимость тока стока ID(J2) от напряжения источника V4 в диапазоне от 5V до 0V с шагом 0.01V с параметрическим изменением напряжения V3 на затворе от 0V до U_0 с шагом примерно равным U_0 (J2)/5.

Перерисовать полученные зависимости тока в тетрадь.

- 2.3,р.2. Повторить предыдущий пункт задания для трех значений напряжения V3 на затворе: -0.05v, 0V и +0.05V. Определить по полученным результатам $g_m(J2)$, $g_i(J2)$, $U_A(J2)$ и $M(J2) = g_m(J2)/g_i(J2)$.
- 2.4,п. Составить схему моделирования компенсации нелинейности проводимости **n**-канального полевого транзистора (рис.1.2.n). Получить зависимости токов стока ID(J1) и ID(J2) от напряжения источника V2 в диапазоне от 0V до +2V с шагом 0.01V с параметрическим изменением напряжения V1 на затворе от 2 U_0 до 0V с шагом примерно равным -2 U_0 (J1)/5.

Перерисовать полученные зависимости тока в тетрадь.

2.4,р. Составить схему моделирования компенсации нелинейности проводимости **р**-канального полевого транзистора (рис.1.2.р). Получить зависимости токов стока ID(J1) и ID(J2) от напряжения источника V2 в диапазоне от -2V до 0V с шагом 0.01V с параметрическим изменением напряжения V1 на затворе от 0V до 2 U_0 с шагом примерно равным 2 U_0 (J1)/5.

Перерисовать полученные зависимости тока в тетрадь.

2.5. Составить схему моделирования емкости затворов полевых транзисторов (рис.1.3).

Сопротивления резисторов нагрузки **R1**, **R2** сделать глобальным параметром {**RD**}, с номинальным значением **RD**=1k.

Задание на моделирование (*Simulations Settings*) перевести в режим получения временных диаграмм (*Time Domain (Transient)*), установить *Run to Time* = 3us, *Start saving data after* = 10ns, *Maximum step size* = 1ns. Для трех значений глобального параметра {RD}: 100, 1k и 10k получить временные диаграммы токов затворов IG(J1), IG(J2) и контрольного конденсатора C1. По известной емкости контрольного конденсатора определить масштаб вертикальной оси в единицах пикофарад.

Перерисовать полученные временные диаграммы емкостей в тетрадь.

2.6. Составить схему моделирования переходных процессов полевых транзисторов (рис.1.4). Амплитуды (V2) импульсов генераторов V1 и V3 должны быть равны U_0 полевых транзисторов J1 и J2.

Проведя предварительное моделирование, подобрать для каждого полевого транзистора длительность (PW) импульса генератора так, чтобы она была соизмерима с длительностями фронтов и спадов напряжений на стоках.

Для каждого транзистора установить **Run to Time** = 1.5*PW, **Start saving data after** = 0, **Maximum step size** = 0.1ns.

- 2.6.1. Получить временные диаграммы токов стоков ID(J1), ID(J2) при двух значениях глобального параметра $\{RD\}$: 1 и 1k.
- 2.6.2. Получить временные диаграммы напряжений на стоках ID(J1), ID(J2) при номинальном значении глобального параметра $\{RD\}$ 1k.

Перерисовать, полученные, для каждого транзистора временные диаграммы токов стоков ID(J1) и ID(J2) и напряжений на стоках UD(J1) и UD(J2) в тетрадь.

3.Задание к сдаче работы

- 3.1. Как изменятся результаты моделирования пунктов 2.1,n,p, если поменять знаки напряжений источников V2 и V4 в схемах рис.1.1n,p?
- 3.2. Как зависят результаты моделирования пунктов 2.1, п, р от температуры?
- 3.3. По результатам моделирования пунктов 2.1,n,p построить зависимости дифференциального сопротивления каналов полевых транзисторов от напряжения затвора.
- 3.4. Определить по результатам моделирования п.2.2.n,р $g_m(J1,J2)$, сравнить с полученным в пунктах 2.3,n,p.
- 3.5. Определить по результатам моделирования п.2.3.n,р.1 $g_{\boldsymbol{ko}}$ (J1,J2) и $g_{\boldsymbol{i}}$ (J1,J2).
- 3.6. Как зависит $g_i(J1,J2)$ в области насыщения от напряжения исток затвор?
- 3.7. Как зависят результаты моделирования компенсации нелинейности проводимости каналов полевых транзисторов от сопротивления резисторов R1=R2 в схемах рис.1.2,n,p?
- 3.8. Как зависят результаты моделирования компенсации нелинейности проводимости каналов полевых транзисторов от отношения сопротивлений резисторов R1/R2 в схемах рис.1.2,n,p?
- 3.9. Как зависят результаты моделирования компенсации нелинейности проводимости каналов полевых транзисторов от температуры?
- 3.10. Определить по результатам моделирования п.2.3.n,р.1 $g_{ko}(J1,J2)$ и $g_i(J1,J2)$.
- 3.11. Как изменятся результаты моделирования п.2.5 при RD = 10000k и V2=V4=0, если в полевом транзисторе поменять сток с истоком?
- 3.12. Как зависит от температуры g_{ko} (J1,J2)?
- 3.13. Как зависит от температуры $\mathbf{g}_{\mathbf{m}}$ (J1,J2)?
- 3.14. Как зависит от температуры $g_i(J1,J2)$?
- 3.15. Как зависит от температуры U_{0} (J1,J2)?

Список литературы

- 1. Б.Н.Митяшев. Полупроводниковые приборы. Изд.МФТИ, 1978.
- 2. А.С.Терентьев. Биполярный транзистор. Изд.МФТИ, 2006.
- 3. В.П.Псурцев. Моделирование электронных схем.

Приложение 1

Наборы полевых транзисторов

паооры полевых транзисторов		
No	п-канальные	р-канальные
набора		
1	J2sk300	J2sj40
2	J2sk301	J2sj44
3	J2sk303	J2SJ45
4	J2sk304	J2sj72
5	J2sk316	J2sj74
6	J2sk330	J2sj103
7	J2sk332	J2sj104
8	J2sk333	J2sj105
9	J2sk334	J2sj106
10	J2sk362	J2sj107
11	J2sk363	J2sj108
12	J2sk364	J2sj109
13	J2sk365	J2sj125
14	J2sk366	J2sj129
15	J2sk367	J2sj144
16	J2sk368	J2sj145
17	J2sk369	J2sj163
18	J2sk370	J2sj164
19	J2sk371	J2sj72
20	J2sk372	J2sj103

Приложение 2

PSpice модели полевых транзисторов

п-канальные полевые транзисторы

```
.model J2sk300 NJF(Beta=24.54m Rs=10.28 Rd=10.28 Betatce=-.5 Lambda=33.33m
```

- + Vto=-1.068 Vtotc=-2.5m Cgd=3.634p M=.3333 Pb=1 Fc=.5
- + Cgs=5.923p Isr=49.61p Nr=898.5 Is=4.961p N=1 Xti=3
- + Alpha=290.6u Vk=77.59 Kf=2.712E-18 Af=.7967)

.model **J2sk301** NJF(Beta=3.559m Rs=28.98 Rd=28.98 Betatce=-.5 Lambda=20.43m

- + Vto=-1.562 Vtotc=-2.5m Cgd=4.225p M=.3333 Pb=1 Fc=.5 Cgs=4.6p
- + Isr=1.543n Nr=2 Is=154.3p N=1 Xti=3 Alpha=10u Vk=100 Kf=1E-18
- + Af=1)

п-канальные полевые транзисторы

.model **J2sj44** PJF(Beta=20.62m Rs=1 Rd=1 Betatce=-.5 Lambda=1.5m Vto=-.6711
+ Vtotc=-2.5m Cgd=17.79p M=.3333 Pb=1 Fc=.5 Cgs=32p Isr=174.9p
+ Nr=2 Is=17.49p N=1 Xti=3 Alpha=10u Vk=100 Kf=81.89E-18 Af=1)