# **ИТМО**

## НИУ ИТМО

## ОТЧЕТ ПО КУРСОВОМУ ПРОЕКТУ

По дисциплине "Теория автоматического управления"

"Стабализация перевернутого маятника"

Выполнил:

Александр Иванов, R3338

Преподаватели:

Перегудин А.А.

Пашенко А.В.

# Содержание

| 1. | Физ  | Физическая модель маятника   |    |  |  |  |  |
|----|------|------------------------------|----|--|--|--|--|
|    | 1.1. | Уравнения движения           | 3  |  |  |  |  |
|    | 1.2. | Точки равновесия             | 5  |  |  |  |  |
|    | 1.3. | Линейная модель              | 6  |  |  |  |  |
| 2. | Ана  | нализ математический модели  |    |  |  |  |  |
|    | 2.1. | Устойчивость системы         | 7  |  |  |  |  |
|    |      | 2.1.1. Управляемость системы | 8  |  |  |  |  |
|    |      | 2.1.2. Наблюдаемость системы | 9  |  |  |  |  |
|    |      | 2.1.3. Итоги анализа         | 9  |  |  |  |  |
|    | 2.2. | Передаточные функции         | 9  |  |  |  |  |
|    | 2.3. | Моделирование систем         | 11 |  |  |  |  |
|    | 2.4  | Итоги моледирования          | 17 |  |  |  |  |

## 1. Физическая модель маятника

Рассмотрим систему, состоящую из тележки массой M, движущейся по горизонтальной оси, и маятника с равномерно распределенной массой m и длиной  $l_{\rm pend}$ , закрепленного на шарнире на тележке. Примем за x координату тележки, а за  $\theta$  угол отклонения маятника от вертикали. Схема системы представлена на рисунке 1.



Рис. 1: Схема маятника на тележке

## 1.1. Уравнения движения

Используем законы Лагранжа для записи уравнений движения системы.

Так как кинетическая и потенциальная зависят от центра масс тележки и маятника, введем в рассмотрение расстояние l от точки подвеса маятника до его центра масс. При этом  $l=l_{\rm pend}/2$  для равномерно распределенной массы маятника.

Напишем уравнения для координат центра масс маятника  $x_m$  и  $y_m$  и продифференцировав их по времени, получим скорости центра масс маятника:

$$\begin{cases} x_m = x + l \sin \theta, \\ y_m = l \cos \theta \end{cases} \Rightarrow \begin{cases} v_x = \dot{x} + l\dot{\theta}\cos \theta, \\ v_y = -l\dot{\theta}\sin \theta \end{cases}$$
 (1)

Общая энергия системы складывается из кинетической и потенциальной энергии маятника и кинетической энергии тележки:

Кинетическая энергия системы равна:

$$T = \frac{1}{2}(M+m)\dot{x}^2 + m\dot{x}l\dot{\theta}\cos\theta + \frac{1}{2}ml^2\dot{\theta}^2$$
 (2)

Потенциальная энергия системы равна:

$$U = mgl\cos\theta \tag{3}$$

Записывая функция Лагранжа L=T-U, получаем:

$$L = \frac{1}{2}(M+m)\dot{x}^2 + m\dot{x}l\dot{\theta}\cos\theta + \frac{1}{2}ml^2\dot{\theta}^2 - mgl\cos\theta \tag{4}$$

Уравнения Лагранжа примут вид:

$$\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} = Q_x, 
\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{\theta}} \right) - \frac{\partial L}{\partial \theta} = Q_{\theta}$$
(5)

где  $Q_x$  и  $Q_\theta$  – обобщенные силы, действующие на тележку и маятник соответственно. В итоге получаем систему уравнений:

$$\begin{cases} (M+m)\ddot{x} + ml\ddot{\theta}\cos\theta - ml\dot{\theta}^2\sin\theta = Q_x, \\ ml^2\ddot{\theta} + ml\ddot{x}\cos\theta - mgl\sin\theta = Q_{\theta}. \end{cases}$$
(6)

Система уравнений (6) представляет собой уравнения баланса сил, приложенных к тележке и моментов, действующих на маятник.

Запишем этм уравнения разрешив их относительно высших производных. Заметим, что вторые производные входят в эти уравнения линейно. С учетом этого приведем уравнения к матричному виду:

$$\begin{bmatrix} ml^2 & ml\cos\theta\\ ml\cos\theta & M+m \end{bmatrix} \times \begin{bmatrix} \ddot{\theta}\\ \ddot{x} \end{bmatrix} = \begin{bmatrix} mgl\sin\theta + Q_\theta\\ ml\dot{\theta}^2\sin\theta + Q_x \end{bmatrix}$$
(7)

Убедимся в существовании и единственности решения системы:

$$D = ml^{2}(M+m) - m^{2}l^{2}\cos^{2}\theta = ml^{2}(M+m-m\cos^{2}\theta) > 0$$
(8)

Решая систему уравнений методом Крамера, получаем:

$$\Delta_{\ddot{\theta}} = \begin{vmatrix} mgl\sin\theta + Q_{\theta} & ml\cos\theta \\ ml\dot{\theta}^{2}\sin\theta + Q_{x} & M+m \end{vmatrix} = (mgl\sin\theta + Q_{\theta})(M+m) - ml\cos\theta(ml\dot{\theta}^{2}\sin\theta + Q_{x}) \quad (9)$$

$$\Delta_{\ddot{x}} = \begin{vmatrix} ml^2 & mgl\sin\theta + Q_\theta \\ ml\cos\theta & ml\dot{\theta}^2\sin\theta + Q_x \end{vmatrix} = ml^2(ml\dot{\theta}^2\sin\theta + Q_x) - ml\cos\theta(mgl\sin\theta + Q_\theta)$$
(10)

$$\begin{cases}
\ddot{x} = \frac{ml^2(ml\dot{\theta}^2\sin\theta + Q_x) - ml\cos\theta(mgl\sin\theta + Q_\theta)}{ml^2(M + m - m\cos^2\theta)} \\
\ddot{\theta} = \frac{(mgl\sin\theta + Q_\theta)(M + m) - ml\cos\theta(ml\dot{\theta}^2\sin\theta + Q_x)}{ml^2(M + m - m\cos^2\theta)}
\end{cases}$$
(11)

Можно записать систему в пространстве состояний X в форме Коши:

$$X = \begin{bmatrix} x \\ \dot{x} \\ \theta \\ \dot{\theta} \end{bmatrix} \quad \dot{X} = \begin{bmatrix} \dot{x} \\ \frac{ml^2(ml\dot{\theta}^2\sin\theta + Q_x) - ml\cos\theta(mgl\sin\theta + Q_\theta)}{ml^2(M + m - m\cos^2\theta)} \\ \dot{\theta} \\ \frac{(mgl\sin\theta + Q_\theta)(M + m) - ml\cos\theta(ml\dot{\theta}^2\sin\theta + Q_x)}{ml^2(M + m - m\cos^2\theta)} \end{bmatrix}$$
(12)

Измеряемым выходом системы будет считать вектор Y, состоящий из координат тележки и угла отклонения маятника от вертикали:

$$Y = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} X \tag{13}$$

#### 1.2. Точки равновесия

Найдем точки равновесия системы в отсутствие внешних сил  $(Q_x = Q_\theta = 0)$ . Для этого приравняем к нулю правые части уравнений движения, решим систему уравнений:

$$\dot{X} = 0 \Rightarrow \begin{cases}
\dot{x} = 0, \\
\dot{\theta} = 0, \\
\frac{(mgl\sin\theta + Q_{\theta})(M+m) - ml\cos\theta(ml\dot{\theta}^{2}\sin\theta + Q_{x})}{ml^{2}(M+m-m\cos^{2}\theta)} = 0 \\
\frac{ml^{2}(ml\dot{\theta}^{2}\sin\theta + Q_{x}) - ml\cos\theta(mgl\sin\theta + Q_{\theta})}{ml^{2}(M+m-m\cos^{2}\theta)} = 0
\end{cases}$$
(14)

Упростив, получаем:

$$\begin{cases} \sin \theta (g(M+m) - \cos \theta(ml)) = 0\\ \sin \theta (ml - \cos \theta g) = 0 \end{cases}$$
(15)

Решая систему уравнений, получаем:

$$\sin \theta = 0 \Rightarrow \theta = 0, \pi \tag{16}$$

Таким образом, точки равновесия системы определяются углом отклонения маятника от вертикали  $\theta = 0$  и  $\theta = \pi$ , что соответствует наивысшему и наинизшему положению маятника соответственно, что сходится с ожидаемым результатом.

#### 1.3. Линейная модель

Для дальнейшего анализа системы ее необходимо линеаризовать. Линеаризацию необходимо проводить в точках равновесия системы, которые были найдены в предыдущем пункте, в противном случае отклонения линейной модели от реальной системы будут велики. Линеаризуем систему в точке равновесия  $\theta=0$  и x=0, используя то, что  $\sin x\approx x$ ,  $\cos x\approx 1$ ,  $x^{n+1}\approx 0, n\in N$  при малых x.

$$\dot{X} = \begin{bmatrix} \dot{x} \\ \frac{lQ_x - mgl\theta - Q_\theta}{lM} \\ \dot{\theta} \\ \frac{(g\theta + \frac{Q_\theta}{ml})(M+m) - Q_x}{lM} \end{bmatrix}$$
(17)

Запишем систему в матричном виде, принимая за управление обобщенную силу, приложенную на каретку, а за внешнее внешнее возмущение обобщенную силу, приложенную на маятник  $u=Q_x, f=Q_{\theta}$ :

$$\begin{cases} \dot{x} = Ax + Bu + Df \\ y = Cx \end{cases} \tag{18}$$

$$\begin{bmatrix} \dot{x} \\ \dot{x} \\ \dot{\theta} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{-mg}{M} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & \frac{g(M+m)}{lM} & 0 \end{bmatrix} \times \begin{bmatrix} x \\ \dot{x} \\ \theta \\ \dot{\theta} \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{M} \\ 0 \\ \frac{-1}{lM} \end{bmatrix} \times Q_x + \begin{bmatrix} 0 \\ \frac{-1}{lM} \\ 0 \\ \frac{M+m}{ml^2 M} \end{bmatrix} \times Q_\theta$$

$$y = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \times \begin{bmatrix} x \\ \dot{x} \\ \theta \\ \dot{\theta} \end{bmatrix}$$
(19)

Таким образом, матрицы системы примут вид:

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{-mg}{M} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & \frac{g(M+m)}{lM} & 0 \end{bmatrix}, B = \begin{bmatrix} 0 \\ \frac{1}{M} \\ 0 \\ \frac{-1}{lM} \end{bmatrix}, D = \begin{bmatrix} 0 \\ \frac{-1}{lM} \\ 0 \\ \frac{M+m}{ml^2 M} \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
(20)

## 2. Анализ математический модели

#### 2.1. Устойчивость системы

Для дальнейшего анализа системы выберем случайным образом параметры системы:

$$M = 255.169, \quad m = 8.328, \quad l = 0.769$$
 (21)

Подставив эти значения в матрицы системы (18), получаем:

$$A = \begin{bmatrix} 0.00 & 1.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & -0.32 & 0.00 \\ 0.00 & 0.00 & 0.00 & 1.00 \\ 0.00 & 0.00 & 13.17 & 0.00 \end{bmatrix}, B = \begin{bmatrix} 0.00 \\ 0.00 \\ 0.00 \\ -0.01 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, D = \begin{bmatrix} 0.00 \\ -0.01 \\ 0.00 \\ 0.84 \end{bmatrix}$$
(22)

Проведем анализ полученный системы. Для этого, в первую очередь, найдем собственные

числа матрицы A.

$$\sigma(A) = \begin{bmatrix} 0.00 \\ 0.00 \\ 3.63 \\ -3.63 \end{bmatrix} \tag{23}$$

В матрице системы есть два нулевых собственных числа, один отрицательный (устойчивый) и один положительный (неустойчивый). Наличие хотя бы одного положительного собственного числа говорит о том, что система неустойчива. При этом наличие двух нулевых собственных чисел свидетельствует о колебательной природе системы.

Найдем собственные векторы матрицы A:

$$V_{1} = \begin{bmatrix} 1.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix}^{T}, \quad V_{2} = \begin{bmatrix} -1.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{bmatrix}^{T}, \quad V_{3} = \begin{bmatrix} -0.01 \\ -0.02 \\ 0.27 \\ 0.96 \end{bmatrix}^{T}, \quad V_{4} = \begin{bmatrix} 0.01 \\ -0.02 \\ -0.27 \\ 0.96 \end{bmatrix}^{T}$$

$$(24)$$

#### 2.1.1. Управляемость системы

Найдем матрицу управляемости системы U и определим ее ранг.

$$U = [B, AB, A^2B, A^3B] (25)$$

$$U = \begin{bmatrix} 0.00 & 0.00 & -0.00 & 0.00 \\ 0.00 & -0.00 & 0.00 & -0.02 \\ 0.00 & -0.01 & 0.05 & -0.07 \\ -0.01 & 0.05 & -0.07 & 0.68 \end{bmatrix}, \quad \text{Rank}(U) = 4$$
 (26)

Поскольку ранг матрицы управляемости равен количеству переменных системы, то система является полностью управляемой. Поскольку система является полностью управляемой, то нет необходимости проверять управляемость каждого собственного числа по отдельности.

#### 2.1.2. Наблюдаемость системы

Найдем матрицу наблюдаемости системы W и определим ее ранг.

$$W = \begin{bmatrix} C \\ CA \\ CA^2 \\ CA^3 \end{bmatrix} \tag{27}$$

$$W = \begin{bmatrix} 1.00 & 0.00 & 1.00 & 0.00 \\ 0.00 & 1.00 & 0.00 & 1.00 \\ 0.00 & 0.00 & 12.85 & 0.00 \\ 0.00 & 0.00 & 0.00 & 12.85 \end{bmatrix}, \quad \text{Rank}(W) = 4$$
(28)

Поскольку ранг матрицы наблюдаемости равен количеству переменных системы, то система является полностью наблюдаемой, так же пропустим этап проверки наблюдаемости каждого собственного числа по отдельности.

#### 2.1.3. Итоги анализа

В ходе анализа линеаризованной около верхней точки равновесия системы было установлено, что система является неустойчивой из-за наличия одного положительного собственного числа и двух нулевых собственных чисел, при этом система является полностью управляемой и наблюдаемой, что дает возможность синтезировать регуляторы для данной системы.

## 2.2. Передаточные функции

Так как выход системы являются вектором размерности 2, то передаточная функция (матрица)  $W_{u\to y}(s)$  по управлению u(t) и выходу y(t) и передаточная функция (матрица)  $W_{f\to y}(s)$  по возмущению f(t) и выходу y(t) системы будут иметь размерность  $2\times 1$  и могут быть получены из матричного уравнения состояния (18) системы следующим образом:

Пологая нулевые начальные условия, применим преобразование Лапласа к обоим частям

уравнения (18):

$$\begin{cases} sX(s) = AX(s) + BU(s) + DF(s) \\ Y(s) = CX(s) \end{cases}$$
(29)

где X(s), Y(s) и U(s), D(s) - векторные функции Лапласа, соответствующие вектору состояния x(t), выходу y(t) и входу u(t), f(t) системы соответственно.

Разрешим систему относительно X(s):

$$X(s) = (sI - A)^{-1}BU(s) + (sI - A)^{-1}DF(s)$$
(30)

Подставим полученное выражение в уравнение для выхода Y(s):

$$Y(s) = C(sI - A)^{-1}BU(s) + C(sI - A)^{-1}DF(s)$$
(31)

Теперь, пологая  $U(s) = U_0(s)$  и  $F(s) = F_0(s)$  получим передаточные матрицы системы по входу и внешнему возмущению соответственно:

$$W_{u \to y}(s) = C(sI - A)^{-1}B \tag{32}$$

$$W_{f \to y}(s) = C(sI - A)^{-1}D \tag{33}$$

Подставив в уравнения полученные ранее матрицы A, B, C и D получим:

$$W_{u\to y}(s) = \begin{bmatrix} \frac{-0.0013s + 0.0033}{s^4 + s^3 - 26.3392s^2} \\ \frac{0.0039s - 0.0102}{s^2 + s - 26.3392} \end{bmatrix}$$
(34)

$$W_{f \to y}(s) = \begin{bmatrix} \frac{-0.0102s^2}{s^4 + 26.3392s^2} \\ \frac{0.8383}{s^2 - 26.3392} \end{bmatrix}$$
(35)

Определим динамические порядки полученных передаточных функций. Принимая то, что динамический порядок системы с несколькими выходами определяется как наибольший из динамических порядков передаточных функций звеньев, получаем, для первой передаточной функции  $W_{u\to y}(s)$  динамический порядок равен 4, для второй передаточной функции  $W_{f\to y}(s)$  динамический порядок равен 4.

Относительный динамический порядок для первого выхода передаточной функции

 $W_{u\to y}(s)$  равен 3, для второго выхода передаточной функции  $W_{f\to y}(s)$  равен 1. Для второй передаточной функции  $W_{f\to y}(s)$  относительный динамический порядок обоих выходов равен 2.

Таким образом, рассматриваемая система является системой четвертого порядка с относительным динамическим порядком равным 3 и 1 для первой передаточной функции и 2 для второй передаточной функции.

Определим нули и полюса полученных передаточных функций. Для этого найдем корни полиномов числителя и знаменателя полученных передаточных функций.

#### 2.3. Моделирование систем

Создадим блоки, имитирующие поведение начальной системы (11) и ее линеаризованной модели (18) в среде MATLAB Simulink. На вход блоков будут подаваться управляющее воздействие u(t) и внешнее возмущение f(t), а на выходе будет получаться вектор измеряемых величин y(t). Схемы блоков представлены на рисунке 2 и 3.



Рис. 2: Схема блока нелинейной модели системы

Уравнения в блоках fcn представляют собой уравнения (11) системы.

Проведем моделирование свободного движения системы в отсутствии внешнего возмущения с различными начальными условиями: будем изменять начальное положение маятника (его отклонение от верхнего положения равновесия), все остальные параметры системы оставим равными нулю. В качестве начального условия выберем угол отклонения маятника из множества  $[0, 0.1, -0.1, 0.3, \pi/2, \pi]$ . Результаты моделирования представлены на рисунке 4 и 5.



Рис. 3: Схема блока линейной модели системы

На рисунках 4 и 5 видно, что при отсутствии отклонения от вертикального положения маятник остается в покое, при отклонении от вертикального положения маятник начинает движение, причем направление движения зависит от направления отклонения. При отклонении равным  $\pi$ , что соответствует нижнему положению равновесия, в случае нелинейной модели, остается неподвижным, в то время как в случае линеаризованной модели маятник начинает движение, что связано с тем, что линеаризация проводилась в окрестности верхней точки равновесия, а не нижней. Сравним результаты моделирования нелинейной и линеаризованной моделей. Графики различия движения приведены на рисунке 6.

Видно, что при отклонениях  $\theta_0=0.1,\ \theta_0=-0.1$  и  $\theta_0=0.3$  различия в движении незначительны, при этом увеличиваются с увеличением модуля отклонения. При отклонении  $\theta_0=\frac{\pi}{2}$  различия в движении уже становятся существенными, что, опять же, связано с линеаризацией вблизи верхней точки равновесия.

Проведем моделирование системы с начальным отклонением  $\theta_0 = 0.1$  на более длительном промежутке времени. Результаты моделирования представлены на рисунке 8, 7.

На графиках 7 и 8 видно, что в случае нелинейной модели система колебалась с затухающими колебаниями, что является ожидаемым результатом движения маятника, в то время как в случае линеаризованной модели система не является колебательной и выход системы стремится к бесконечности, это связано с тем, что линеаризованная модель способна давать корректные результаты только в окрестности верхней точки равновесия, а при больших отклонениях от вертикального положения.



Рис. 4: Свободное движение маятника (нелинейная модель)



Рис. 5: Свободное движение маятника (линеаризованная модель)



Рис. 6: Различия в движении маятника (нелинейная и линеаризованная модели)



Рис. 7: Свободное движение маятника (нелинейная модель)



Рис. 8: Свободное движение маятника (линеаризованная модель)

### 2.4. Итоги моделирования

В ходе анализа и моделирования модели системы перевернутого маятника на тележке и ее линеаризованной модели при небольших отклонениях от вертикального положения было показано, что линейная модель является хорошим приближением нелинейной модели в окрестности верхней точки равновесия, что позволяет использовать ее для дальнейшего синтеза. Можно, изменив способ задания угла отклонения, получить линейную модель, описывающую движение маятника в окрестности нижней точки равновесия, что может быть использовано для создания модели козлового крана.

Из-за того, что линеаризованная модель дает корректные результаты только в окрестности верхней точки равновесия, асимптотическое ее поведение сильно отличается от асимптотического поведения нелинейной модели, так же как в случае существенных отклонений от вертикального положения.