Matemática Discreta

Vaira, Stella - Fedonczuk, Miguel Colliard, David - Cottonaro, Mariana

Lic en Sistemas de Información - FCyT - UADER

2022

Grupos y teoría de codificación.

Definiciones, ejemplos y propiedades elementales.

Grupo

Si G es un conjunto no vacío y \circ es una operación binaria en G, entonces (G, \circ) es un grupo si cumple las siguientes condiciones:

- $\forall a, b, c \in G, \ a \circ (b \circ c) = (a \circ) b \circ c. \ (asociativa)$
- 3 Existe $e \in G$ tal que $a \circ e = e \circ a = a$, para todo $a \in G$. (neutro)
- **9** Para todo $a \in G$ existe un elemento $b \in G$ tal que $a \circ b = b \circ a = e$. (inversos)

Si además se verifica para todo $a,b\in G$ que $a\circ b=b\circ a,$ entonces el grupo es abeliano o conmutativo.

Con la suma ordinaria, $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ y \mathbb{C} con cada uno grupo abeliano.

Sin el cero, $\mathbb{Q}^*, \mathbb{R}^*$ y \mathbb{C}^* son grupos abelianos multiplicativos.

En general: Si (R, +, .) es un anillo, entonces (R, +) es un grupo abeliano. Los elementos distintos de cero de un *cuerpo* forman un grupo abeliano multiplicativo.

Matemática Discreta

Orden de un grupo

Para cualquier grupo G, el número de elementos de G es el orden de G, y se denota con |G|. Cuando el número de elementos de un grupo no es finito, su orden es infinito.

Ejemplos

Para $c \in \mathbb{Z}^+$, n > 1, $(\mathbb{Z}_n, +)$ es un grupo abeliano. $|(\mathbb{Z}_n, +)| = n$ Si p es primo, $(\mathbb{Z}_p^*, .)$ es un grupo abeliano. $|(\mathbb{Z}_p^*, .)| = p - 1$ Veamos el ejemplo de $(\mathbb{Z}_5, +)$ y $(\mathbb{Z}_7^*, .)$

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

Ejemplo

Sea $(\mathbb{Z}_n,+,.)$ un anillo, el conjunto formado por las unidades de dicho anillo forman un grupo multiplicativo $(U_n,.)$. Además $|(U_n,.)| = \varphi(n)$ Veamos el ejemplo de U_9

	1	2	4	5	_7	8
1	1	2	4	5	7	8
2	2	4	8	1	5	7
4	4	8	7	2	1	5
5	5	1	2	7	8	4
7	7	5	1	8	4	2
8	8	7	5	4	2	1

Teorema

Sean (G, \circ) y (H, *) grupos. Definimos la operación binaria \cdot en $G \times H$ como $(g_1, h_1) \cdot (g_2, h_2) = (g_1 \circ g_2, h_1 * h_2)$. Entonces $(G \times H, \cdot)$ es un grupo llamado producto directo de G y H.

Ejemplo

Sea $(\mathbb{Z}_2,+)$ y $(\mathbb{Z}_3,+)$. Entonces $(\mathbb{Z}_2\times\mathbb{Z}_3,\cdot)$ es un anillo donde el neutro es (0,0) y, por ejemplo, (1,2) y (1,1) son inversos.

Teorema

Para cualquier grupo G,

- el neutro de G es único.
- el inverso de cada elemento de G es único.
- $\forall a,b,c \in G$ y ab=ac, entonces b=c. (cancelativa por izquierda)
- $\forall a, b, c \in G$ y ba = ca, entonces b = c. (cancelativa por derecha)

Subgrupo

Sea G un grupo y H un subconjunto no vacío de G. Si H es un grupo mediante la operación binaria de G, entonces H es un subgrupo de G.

Teorema

Si H es un subconjunto no vacío de un grupo G, entonces H es subgrupo de G si y sólo si $\forall a, b \in H$: (a) $ab \in H$ y (b) $a^{-1} \in H$.

Matemática Discreta

Teorema

Si H es un subconjunto finito no vacío de un grupo G, entonces H es subgrupo de G si y sólo si $\forall a, b \in H$ se verifica que $ab \in H$.

Ejemplos de subgrupo

- Todo grupo G tiene como subgrupos a G y e. (subgrupos triviales).
- $H = \{0, 2, 4\}$ y $K = \{0, 3\}$ son subgrupos de $(\mathbb{Z}_6, +)$.
- $H = \{1, 8\}$ y $K = \{1, 4, 7\}$ son subgrupos de $(U_9, .)$.
- El grupo $(\mathbb{Z},+)$ es un subgrupo de $(\mathbb{Q},+)$ que a su vez en subgrupo de $(\mathbb{R},+)$

Grupos y teoría de codificación.

Homomorfismos, isomorfismos y grupos cíclicos

Homomorfismo e isomorfismo

Si (G, \circ) y (H, *) son grupos y $f: G \to H$, entonces f es un homomorfismo de grupos si $\forall a, b \in G$ se verifica que $f(a \circ b) = f(a) * f(b)$.

Si además f es biyectiva, f es un isomorfismo de grupos. En tal caso, se dice que H y G son isomorfos.

Teorema

Sean (G, \circ) y (H, *) grupos con neutros respectivos e_G y e_H . Si $f: G \to H$ es un homomorfismo, entonces

- $f(e_G) = e_H$.
- $f(a^{-1}) = [f(a)]^{-1}$, para todo a en G.
- $f(a^n) = [f(a)]^n$ para todo a en G, con n entero.
- f(S) es un subgrupo de H para cada subgrupo S de G.

Matemática Discreta

Ejemplos

- Sean $(\mathbb{Z}, +)$ y $(\mathbb{Z}_4, +)$, con f(x) = [x] es homomorfismo de grupo porque: f(x+y) = [x+y] = [x] + [y] = f(x) + f(y) para todo $x \in y$ en G.
- $f:(\mathbb{R}^+,.) \to (\mathbb{R},+)$, con f(x) = log(x) es isomorfismo de grupo porque f es biyectiva, y f(xy) = log(ab) = log(a) + log(b) = f(x) + f(y) para todo x e y en G.
- También es isomorfismo de grupo $f: (\{1, -1, i, -i\}, .) \to (\mathbb{Z}_4, +)$, con f definida por f(1) = [0] f(-1) = [2] f(i) = [1] f(-i) = [3]

	1	-1	i	-i
1	1	-1	i	-i
-1	-1	1	-i	i
i	i	-i	-1	1
-i	− <i>i</i>	i	1	-1

Como se puede observar $i^1 = i$, $i^2 = -1$, $i^3 = -i$, $i^4 = 1$, tenemos que todo elemento de G es una potencia de i, y decimos, i genera a G. Se denota $G = \langle i \rangle$.

Grupos cíclicos

Un grupo G es *cíclico* si existe un elemento $x \in G$ tal que para todo $a \in G, a = x^n$ para algún n entero.

Ejemplos

- Sean $(\mathbb{Z}_4, +)$ es cíclico porque [1] y [3] lo generan. Para el caso de [3]: 1.[3] = [3], 2.[3] = [2], 3.[3] = [1] y 4.[3] = [0]. Escibimos H = < [3] > = < [1] >.
- U_9 es cíclico porque 2 lo genera. Verificar.

Si un elemento no genera a todo el grupo, generará un subgrupo distinto al grupo.

Orden de un generador

Si G es un grupo y $a \in G$, el orden de a, que denotamos con o(a), | < a > |.

Así por ejemplo, para U_9 , $< 4 >= \{1, 4, 7\}$ por lo que o(7) = 3.

Teorema

Sea $a \in G$ con o(a) = n. Si $k \in \mathbb{Z}$ y $a^k = e$, entonces n|k.

Teorema

Sea G un grupo cíclico:

- Si |G| es infinito, entonces G es isomorfo a $(\mathbb{Z}, +)$.
- Si |G| = n, con n > 1, entonces G es isomorfo a $(\mathbb{Z}_n, +)$.

Teorema

Cualquier subgrupo de un grupo cíclico es cíclico.

Ejemplo

Verificar que $f: U_9 \to (\mathbb{Z}_6, +)$ son isomorfos.

Grupos y teoría de codificación.

Clases laterales y el teorema de Lagrange

Lic. en Sistemas de Información

Clase lateral

Si H es un subgrupo de G, entonces para cualquier $a \in G$, el conjunto $aH = \{ah/h \in H\}$ es una clase lateral izquierda de H en G. El conjunto $Ha = \{ha/h \in H\}$ es una clase lateral derecha de H en G. Si la operación en G es suma, escribimos a + H en vez de aH.

Lema

Si H es un subgrupo de un grupo finito G, entonces para cualquier $a,b\in G$:

(a)
$$|aH| = |H|$$
 (b) $aH = bH$ o $aH \cap bH = \emptyset$.

Ejemplo

Verificar el lema para $G = (\mathbb{Z}_{12}, +)$ y $H = \{0, 4, 8\}$.

Teorema de Lagrange

Si G es un grupo finito de orden n y H es un subgrupo de orden m, entonces m|n.

Corolario 1

Si G es un grupo finito de orden n y $a \in G$, entonces o(a)|n.

Corolario 1

Cualquier grupo de orden primo es cíclico.