DAT630 Classificat

Alternative Techniques

Introduction to Data Mining, Chapter 5

14/09/2015

Krisztian Balog | University of Stavanger

Outline

- Alternative classification techniques
 - Rule-based
 - Nearest neighbors
 - Naive Bayes
 - SVM
 - Ensemble methods
 - Artificial neural networks
- Class imbalance problem
- Multiclass problem

Support Vector Machine

Support Vector Machine (SVM)

- Find a linear hyperplane (decision boundary) that will separate the data

One possible solution

Another possible solution

Other possible solutions

Which one is better? B_1 or B_2 ?

- How do you define better?

Max. Margin Hyperplanes

- Find the hyperplane that maximizes the margin

Rationale

- Decision boundaries with large margins tend to have better generalization errors
 - If the margin is small, any slight perturbation to the decision boundary can have a significant impact on classification
 - Small margins are more suspectible to overfitting
- A more formal explanation can be obtained using structural risk minimization

Linear SVM Separable Case

- Search for a hyperplane with the largest margin
 - Also known as maximal margin classifier
- Key concepts
 - Linear decision boundary
 - Margin
- Binary classification problem with N training examples
 - Each example is a tuple (x_i, y_i), where x_i corresponds to the attribute set for the ith example
 - Class label y by convention is -1 or 1

Remember

- Dot product of two vectors (of equal length)

$$\vec{a} \cdot \vec{b} = \sum_{i=1}^{n} a_i b_i$$

- Dot product of a vector with itself

$$\vec{a} \cdot \vec{a} = ||\vec{a}||^2$$

Key Concepts

Predicting the Class Label

Predicting the class label y for a test example z $\int 1 \quad if \ \vec{w} \cdot \vec{z} + b \ge 0$

-1 if $\vec{w} \cdot \vec{z} + b < 0$

Learning the Model

- Estimating the parameters w and b of the decision boundary from training data
- Maximalizing the margin of the decision boundary
 - Equivalent to minimizing the objective function

$$L(w) = \frac{||\vec{w}||^2}{2}$$

- Subjected to the following constraints
 - All training instances classified correctly

$$f(\vec{x_i}) = \begin{cases} 1 & if \ \vec{w} \cdot \vec{x_i} + b \ge 1 \\ -1 & if \ \vec{w} \cdot \vec{x_i} + b \le -1 \end{cases}$$

Learning the Model

- Constrained optimization problem
- Numerical approaches are used to solve it
 - Lagrange multiplier method
 - Karush-Kuhn-Tucker conditions
 - ..

What if the problem is not linearly separable?

Linear SVM Nonseparable Case

- Learn a decision boundary that is tolerable to small training errors by using a soft margin approach
- Construct a linear decision boundary even in situations where the classes are not linearly separable
- Consider the trade-off between the width of the margin and the number of training errors committed by the linear decision boundary

Nonseparable Case

- Introduce slack variables
- Need to minimize $||\vec{w}||^2 + C(\sum_{i=1}^{N} |\vec{w}_i|^2 + C(\sum_{i=1}^{N} |\vec{w}_i|^2)$

 $L(w) = \frac{||\vec{w}||^2}{2} + C(\sum_{i=1}^{N} \zeta_i)^{k}$

- Subject to

$$f(\vec{x_i}) = \begin{cases} 1 & if \ \vec{w} \cdot \vec{x_i} + b \ge 1 - \zeta_i \\ -1 & if \ \vec{w} \cdot \vec{x_i} + b \le -1 + \zeta_i \end{cases}$$

What if the decision boundary is not linear?

Nonlinear SVM

- Trick: transform data from original coordinate space in ${\bf x}$ into a new space $\Phi(x)$ so that a linear decision boundary can be used

user-specified parameters

(penalty for misclassifying 1 the traing instances)

(a) Decision boundary in the original

(b) Decision boundary in the transformed space.

Problems with Transformation

- Not clear what type of mapping should be used to ensure that a linear decision boundary can be constructed in the transformed space
- Even if the appropriate mapping function is known, solving the constrained optimization problem in the high-dimensional feature space is computationally expensive

The dot product

- The dot product is often regarded as a measure of similarity between two input vectors
- Geometrical interpretation

$$A \cdot B = ||A|| \ ||B|| \cos \theta$$

Kernel trick

- The dot product can also be regarded as a measure of similarity in the transformed space
- The kernel trick is a method for computing similarity in the transformed space using the original attribute set
 - The similarity function K which is computed in the original attribute space is known as the **kernel** function

Kernel functions

- Mercer's theorem ensures that the kernel functions can always be expressed as the dot product between two input vectors in some high-dimensional space
- Examples $K(\vec{x},\vec{y}) = (\vec{x}\cdot\vec{y}+1)^p$ $K(\vec{x},\vec{y}) = tanh(k\vec{x}\cdot\vec{y}-\delta)$
- Computing the dot products using kernel functions is considerably cheaper than using the transformed attribute set

Example

Figure 5.29. Decision boundary produced by a nonlinear SVM with polynomial kernel.

Categorical attributes

- SVM can be applied to categorical attributes by introducing "dummy" variables for each categorical attribute value
 - E.g., Martial status = {Single, Married, Divorced}
 - Three binary attributes: isSingle, isMarried, isDivorced

Summary

- SVM is one of the most widely used classification algorithms
- The learning problem is formulated as a convex optimization problem
 - Possible to find global minimum of the objective function as opposed to other classification methods
- User parameters
 - Type of kernel function
 - Cost function (C) for introducing each slack variable

Ensemble Methods

Ensemble Methods

- Construct a set of classifiers from the training data
- Predict class label of previously unseen records by aggregating predictions made by multiple classifiers

General Idea

Random Forests

Artificial Neural Networks

Artificial Neural Networks (ANN)

Output Y is 1 if at least two of the three inputs are equal to 1.

Artificial Neural Networks (ANN)

Artificial Neural Networks (ANN)

- Model is an assembly of inter-connected nodes and weighted links
- Output node sums up each of its input value according to the weights of its links
- Compare output node against some threshold t

Output

Perceptron Mode

$$Y = I(\sum_{i} w_{i}X_{i} - t) \text{ or }$$

$$Y = sign(\sum_{i} w_{i}X_{i} - t)$$

General Structure of ANN

Summary

- Choosing the appropriate topology is important
- Can handle redundant features well
- Sensitive to the presence of noise
- Training is a time consuming process

DS Deep Learning: Neural Nets Strike Back(again)

Class Imbalance Problem

Class Imbalance Problem

- Data sets with imbalanced class distributions are quite common in real-world applications
 - E.g., credit card fraud detection
- Correct classification of the rare class has often greater value than a correct classification of the majority class
- The accuracy measure is not well suited for imbalanced data sets
- We need alternative measures

Confusion Matrix

		Predicted class	
		Positive	Negative
Actual class	Positive	True Positives (TP)	False Negatives (FN)
	Negative	False Positives (FP)	True Negatives (TN)

Additional Measures

- True positive rate (or sensitivity)
 - Fraction of positive examples predicted correctly

$$TPR = \frac{TP}{TP + FN}$$

- True negative rate (or specificity)
 - Fraction of negative examples predicted correctly

$$TNR = \frac{TN}{TN + FP}$$

Additional Measures

- False positive rate
 - Fraction of negative examples predicted as positive

$$FPR = \frac{FP}{TN + FP}$$

- False negative rate
 - Fraction of positive examples predicted as negative

$$FNR = \frac{FN}{TP + FN}$$

Additional Measures

- Precision
 - Fraction of positive records among those that are classified as positive

$$P = \frac{TP}{TP + FP}$$

- Recall
 - Fraction of positive examples correctly predicted (same as the true positive rate)

$$R = \frac{TP}{TP + FN}$$

Additional Measures

- F1-measure
 - Summarizing precision and recall into a single number
 - Harmonic mean between precision and recall

$$F1 = \frac{2RP}{R+P}$$

Multiclass Problem

Multiclass Classification

- Many of the approaches are originally designed for binary classification problems
- Many real-world problems require data to be divided into more than two categories
- Two approaches
 - One-against-rest (1-r)
 - One-against-one (1-1)
- Predictions need to be combined in both cases

One-against-rest

- $Y=\{y_1, y_2, ..., y_K\}$ classes
- For each class yi
 - Instances that belong to y_i are positive examples
 - All other instances are negative examples
- Combining predictions
 - If an instance is classified positive, the positive class gets a vote
 - If an instance is classified negative, all classes except for the positive class receive a vote

Example

- 4 classes, $Y=\{y_1, y_2, y_3, y_4\}$
- Classifying a given test intance

One-against-one

- Y={y₁, y₂, ... yκ} classes
- Construct a binary classifier for each pair of classes (y_i, y_j)
 - K(K-1)/2 binary classifiers in total
- Combining predictions
 - The positive class receives a vote in each pairwise comparison

Example

- 4 classes, $Y=\{y_1, y_2, y_3, y_4\}$
- Classifying a given test intance

