Lecture 18

6.2.3 Language classes with respect to time and space complexity

187

i. Infinity

language hierarchy is infinite

- i. Infinity
 - language hierarchy is infinite
- ii. Continuity for fully space-constructible functions
 - language hierarchy is continuous for fully space-constructible functions

- i. Infinity
 - language hierarchy is infinite
- ii. Continuity for fully space-constructible functions
 - language hierarchy is continuous for fully space-constructible functions
- iii. Continuity for fully time-constructible functions
 - language hierarchy is continuous for fully time-constructible functions

i. Infinity

language hierarchy is infinite

ii. Continuity for fully space-constructible functions

language hierarchy is continuous for fully space-constructible functions

iii. Continuity for fully time-constructible functions

language hierarchy is continuous for fully time-constructible functions

iv. Gaps in hierarchy

 language hierarchy is not continuous for the general case of functions which are not space and time constructible

i. Infinity

language hierarchy is infinite

ii. Continuity for fully space-constructible functions

language hierarchy is continuous for fully space-constructible functions

iii. Continuity for fully time-constructible functions

language hierarchy is continuous for fully time-constructible functions

iv. Gaps in hierarchy

 language hierarchy is not continuous for the general case of functions which are not space and time constructible

v. Optimal TM

 there is a language for which there is no optimal TM which accepts it in minimal time or minimal space

i. Infinity

language hierarchy is infinite

ii. Continuity for fully space-constructible functions

language hierarchy is continuous for fully space-constructible functions

iii. Continuity for fully time-constructible functions

language hierarchy is continuous for fully time-constructible functions

iv. Gaps in hierarchy

 language hierarchy is not continuous for the general case of functions which are not space and time constructible

v. Optimal TM

 there is a language for which there is no optimal TM which accepts it in minimal time or minimal space

vi. Union of language classes

there is a complexity function which covers all languages from the union

 $L_1 \not\in \mathsf{DTIME}(f_1(n))$

Input (number)

Input (number)

 $L_2 \not\in \mathsf{DTIME}(f_2(n))$

DTIME
$$(f(n))$$

DTIME (f(n))

• If

- If
 - f(n) is a total recursive function

- If
 - f(n) is a total recursive function
- Then there is a language L

- If
 - f(n) is a total recursive function
- Then there is a language L
 - L∉DTIME(f(n))

- If
 - f(n) is a total recursive function
- Then there is a language L
 - L∉DTIME(f(n))
 - *L*∉NTIME(*f*(*n*))

- If
 - f(n) is a total recursive function
- Then there is a language L
 - $L \notin \mathsf{DTIME}(f(n))$
 - *L*∉NTIME(*f*(*n*))
 - L∉DSPACE(f(n))

- If
 - f(n) is a total recursive function
- Then there is a language L
 - $L \notin \mathsf{DTIME}(f(n))$
 - *L*∉NTIME(*f*(*n*))
 - L∉DSPACE(f(n))
 - L∉NSPACE(f(n))

L∉DTIME(f(n))

DTIME (f(n))

- Encoding of TM M
 - tape symbols: {0, 1, B, X₄, X₅, ... X_m}
 - symbol X_k is encoded by the string of zeros 0^k

- Encoding of TM M
 - tape symbols: {0, 1, B, X₄, X₅, ... X_m}
 - symbol X_k is encoded by the string of zeros 0^k
- String w_i
 - string w_i is the *i*-th string in a canonical sequence of all strings

- Encoding of TM M
 - tape symbols: {0, 1, B, X₄, X₅, ... X_m}
 - symbol X_k is encoded by the string of zeros 0^k
- String w_i
 - string w_i is the *i*-th string in a canonical sequence of all strings
- TM M_i
 - index value i in TM M_i equals to the integer value of its binary encoding

DTIME
$$(f(n))$$

•
$$L = \{ w_i \mid$$

•
$$L = \{ w_i \mid TM M_i \text{ does not accept } w_i \}$$

DTIME (f(n))

```
    L = { w<sub>i</sub> |
        TM M<sub>i</sub> does not accept w<sub>i</sub>
        in less than f(|w<sub>i</sub>|) head moves}
```


DTIME
$$(f(n))$$

L∉DTIME(f(n))

DTIME (f(n))

Language L is recursive

 $L\notin \mathsf{DTIME}(f(n))$

Language L is recursive

TM M accepts L and always halts

L∉DTIME(f(n))

DTIME (f(n))

Language L is recursive

TM M accepts L and always halts

TM M computes the input length n = |w|

B

B

DTIME
$$(f(n))$$

Language L is recursive

We calculate f(n)

f(n) is a total recursive function

DTIME (f(n))

DTIME (f(n))

L∉DTIME(f(n))

DTIME (f(n))

TM M accepts L and always halts								
TM M computes the input length $n = w $								
TM N con	TM N computes the value f(n) and always halts							
TM M finds the index i of string w_i in the canonical sequence TM M finds the binary encoding of i which is also the encoding of								
В	В	В	В	В	В	Market		
Head mo	ves count	er f(n)	В	В	В	M		

TM M accepts L and always halts							
TM M computes the input I	В	M					
TM N computes the value f(n) and always halts							
TM M finds the index i of string w_i in the canonical sequence TM M finds the binary encoding of i which is also the encoding of T							
Invalid code - TM M _i has no defined transitions							
Head moves counter f(n)	В	В	В	M			

DTIME (f(n))

 $L \notin \mathsf{DTIME}(f(n))$ DTIME (f(n))

DTIME
$$(f(n))$$

TM M accepts L and always halts							
TM M computes the input length $n = w $							
TM N computes the value f(n) and always halts							
TM M finds the index i of string w_i in the canonical sequence TM M finds the binary encoding of i which is also the encoding of TI							
TM M _i halts and accepts the string							
Head moves counter f(n)	В	В	В	M			

DTIME (f(n))

DTIME (f(n))

TM M accepts L and always halts							
TM M computes the input length $n = w $							March
TM N computes the value f(n) and always halts							
TM M finds the index i of string w_i in the canonical sequence TM M finds the binary encoding of i which is also the encoding of i							
TM M_i does not accept the string, head moves > $f(n)$ times							Jacob
Head moves counter f(n)		В		В	В		M

 $L \notin \mathsf{DTIME}(f(n))$ DTIME (f(n))

Language L is recursive

55 of 205

TM M accepts L and always halts							
TM M computes the input length $n = w $							March
TM N computes the value f(n) and always halts							
TM M finds the index i of string w_i in the canonical sequence TM M finds the binary encoding of i which is also the encoding of i							
TM M_i does not accept the string, head moves > $f(n)$ times							Jacob
Head moves counter f(n)		В		В	В		M

DTIME
$$(f(n))$$

L∉DTIME(f(n))

DTIME (f(n))

A proof that L∉DTIME(f(n))

- A proof that $L \notin DTIME(f(n))$
 - Assumption: L=L(M_i)


```
DTIME (f(n))
```

- A proof that L∉DTIME(f(n))
 - Assumption: L=L(M_i)
 - —language L is accepted by TM M_i of time complexity f(n)

- A proof that L∉DTIME(f(n))
 - Assumption: L=L(M_i)
 - —language L is accepted by TM M_i of time complexity f(n)
 - $|w_i| = n$


```
DTIME (f(n))
```

- A proof that L∉DTIME(f(n))
 - Assumption: L=L(M_i)
 - —language L is accepted by TM M_i of time complexity f(n)
 - $|w_i| = n$
 - Assumption : $w_i \in L(M_i)$

- A proof that L∉DTIME(f(n))
 - Assumption: $L=L(M_i)$
 - —language L is accepted by TM M_i of time complexity f(n)
 - $|w_i| = n$
 - Assumption : $w_i \in L(M_i)$
 - \Rightarrow TM M_i accepts the string w_i in less than f(n) head moves

- A proof that L∉DTIME(f(n))
 - Assumption: L=L(M_i)
 - —language L is accepted by TM M_i of time complexity f(n)
 - $|w_i| = n$
 - Assumption : $W_i \in L(M_i)$
 - \Rightarrow TM M_i accepts the string w_i in less than f(n) head moves
 - $\Rightarrow W_i \notin L$, because $L=\{w_i \mid M_i \text{ does not accept } w_i \text{ in less than } f(|w_i|) \text{ head moves}\}$

- A proof that L∉DTIME(f(n))
 - Assumption: L=L(M_i)
 - —language L is accepted by TM M_i of time complexity f(n)
 - $|w_i| = n$
 - Assumption : $w_i \in L(M_i)$
 - \Rightarrow TM M_i accepts the string w_i in less than f(n) head moves
 - $\Rightarrow W_i \notin L$, because $L=\{w_i \mid M_i \text{ does not accept } w_i \text{ in less than } f(|w_i|) \text{ head moves}\}$
 - $\Rightarrow W_i \notin L(M_i)$, because we assume that $L=L(M_i)$

- A proof that L∉DTIME(f(n))
 - Assumption: L=L(M_i)
 - —language L is accepted by TM M_i of time complexity f(n)
 - $|w_i| = n$
 - Assumption : $w_i \in L(M_i)$
 - \Rightarrow TM M_i accepts the string w_i in less than f(n) head moves
 - $\Rightarrow W_i \notin L$, because $L=\{w_i \mid M_i \text{ does not accept } w_i \text{ in less than } f(|w_i|) \text{ head moves}\}$
 - $\Rightarrow W_i \notin L(M_i)$, because we assume that $L=L(M_i)$
 - ⇒ contradiction

• Assumption: $W_i \notin L(M_i)$

- Assumption: $W_i \notin L(M_i)$
 - \Rightarrow TM M_i does not accept the string w_i in less than f(n) head moves

- Assumption: $w_i \notin L(M_i)$
 - \Rightarrow TM M_i does not accept the string w_i in less than f(n) head moves
 - $\Rightarrow W_i \in L$, because $L=\{w_i \mid M_i \text{ does not accept } w_i \text{ in less than } f(|w_i|) \text{ head moves}\}$

- Assumption: $w_i \notin L(M_i)$
 - \Rightarrow TM M_i does not accept the string w_i in less than f(n) head moves
 - $\Rightarrow W_i \in L$, because $L=\{w_i \mid M_i \text{ does not accept } w_i \text{ in less than } f(|w_i|) \text{ head moves}\}$
 - $\Rightarrow W_i \in L(M_i)$, because we assume that $L=L(M_i)$

- Assumption: $w_i \notin L(M_i)$
 - \Rightarrow TM M_i does not accept the string w_i in less than f(n) head moves
 - $\Rightarrow W_i \in L$, because $L=\{w_i \mid M_i \text{ does not accept } w_i \text{ in less than } f(|w_i|) \text{ head moves}\}$
 - $\Rightarrow W_i \in L(M_i)$, because we assume that $L=L(M_i)$
 - ⇒ contradiction

DSPACE $(S_1(n))$

 $L \in DSPACE(S_2(n))$ $L \not\in DSPACE(S_1(n))$

DSPACE $(S_1(n))$

 $L \in DSPACE(S_2(n))$ $L \notin DSPACE(S_1(n))$

DSPACE $(S_1(n))$

DSPACE $(S_3(n))$

 $L \in DSPACE(S_2(n))$ $L \notin DSPACE(S_1(n))$

 $L \in DSPACE(S_3(n))$ $L \notin DSPACE(S_1(n))$

DSPACE $(S_1(n))$

DSPACE $(S_3(n))$

 $L \in DSPACE(S_2(n))$ $L \notin DSPACE(S_3(n))$

 $L \in DSPACE(S_3(n))$ $L \notin DSPACE(S_1(n))$

DSPACE $(S_1(n))$

DSPACE $(S_3(n))$

 $L \in DSPACE(S_2(n)) \land L \not\in DSPACE(S_1(n))$

DSPACE $(S_1(n))$

 $L \in DSPACE(S_2(n)) \land L \notin DSPACE(S_1(n))$ DSPACE $(S_1(n))$ DSPACE $(S_2(n))$

If

$$L \in DSPACE(S_2(n)) \land L \notin DSPACE(S_1(n))$$

DSPACE $(S_1(n))$

DSPACE $(S_2(n))$

- If
 - $S_2(n)$ is a fully space-constructible function

$$L \in DSPACE(S_2(n)) \land L \notin DSPACE(S_1(n))$$

DSPACE $(S_1(n))$

DSPACE $(S_2(n))$

- If
 - $S_2(n)$ is a fully space-constructible function
 - $\inf_{n\to\infty} S_1(n)/S_2(n) = 0$

$$L \in DSPACE(S_2(n)) \land L \notin DSPACE(S_1(n))$$

DSPACE $(S_1(n))$

DSPACE $(S_2(n))$

- If
 - $S_2(n)$ is a fully space-constructible function
 - $\inf_{n\to\infty} S_1(n)/S_2(n) = 0$
 - $S_1(n)$ and $S_2(n)$ are at least $\log_2 n$

$$L \in DSPACE(S_2(n)) \land L \notin DSPACE(S_1(n))$$

DSPACE $(S_1(n))$

DSPACE $(S_2(n))$

If

- $S_2(n)$ is a fully space-constructible function
- $\inf_{n\to\infty} S_1(n)/S_2(n) = 0$
- $S_1(n)$ and $S_2(n)$ are at least $\log_2 n$
- Then there is a language L

$$L \in DSPACE(S_2(n)) \land L \notin DSPACE(S_1(n))$$

DSPACE $(S_1(n))$

DSPACE $(S_2(n))$

If

- $S_2(n)$ is a fully space-constructible function
- $\inf_{n\to\infty} S_1(n)/S_2(n) = 0$
- $S_1(n)$ and $S_2(n)$ are at least $\log_2 n$
- Then there is a language L
 - $L \in DSPACE(S_2(n)) \land L \notin DSPACE(S_1(n))$

 $L \in DSPACE(S_2(n)) \land L \notin DSPACE(S_1(n))$

DSPACE $(S_1(n))$

$$L \in DSPACE(S_2(n)) \land L \notin DSPACE(S_1(n))$$

DSPACE $(S_1(n))$

DSPACE $(S_2(n))$

We construct TM M for which:

$$L \in DSPACE(S_2(n)) \land L \notin DSPACE(S_1(n))$$

DSPACE $(S_1(n))$

DSPACE $(S_2(n))$

- We construct TM M for which:
 - TM M has space complexity of $S_2(n)$

$$L \in DSPACE(S_2(n)) \land L \notin DSPACE(S_1(n))$$

DSPACE $(S_1(n))$

DSPACE $(S_2(n))$

- We construct TM M for which:
 - TM M has space complexity of $S_2(n)$
 - TM M gives the opposite decision than any TM with space complexity $S_1(n)$ for at least one input string

 $L \in DSPACE(S_2(n)) \land L \notin DSPACE(S_1(n))$

DSPACE $(S_1(n))$

 $L \in DSPACE(S_2(n)) \land L \notin DSPACE(S_1(n))$ DSPACE $(S_1(n))$ DSPACE $(S_2(n))$

• TM M – ensure a space complexity $S_2(n)$

$$L \in DSPACE(S_2(n)) \land L \notin DSPACE(S_1(n))$$

DSPACE $(S_1(n))$

DSPACE $(S_2(n))$

- TM M ensure a space complexity $S_2(n)$
 - We simulate any TM M_{S2} with space complexity $S_2(n)$

$$L \in DSPACE(S_2(n)) \land L \notin DSPACE(S_1(n))$$

DSPACE $(S_1(n))$

DSPACE $(S_2(n))$

- TM M ensure a space complexity $S_2(n)$
 - We simulate any TM M_{S2} with space complexity $S_2(n)$
 - $S_2(n)$ is fully space-constructible

$$L \in DSPACE(S_2(n)) \land L \notin DSPACE(S_1(n))$$

DSPACE $(S_1(n))$

DSPACE $(S_2(n))$

- TM M ensure a space complexity $S_2(n)$
 - We simulate any TM M_{S2} with space complexity $S_2(n)$
 - $S_2(n)$ is fully space-constructible
 - \Rightarrow TM M_{S2} for any string of length n uses all $S_2(n)$ cells

 $L \in DSPACE(S_2(n)) \land L \notin DSPACE(S_1(n))$ DSPACE $(S_1(n))$ DSPACE $(S_2(n))$

• TM M - ensure a space complexity $S_2(n)$

• TM M - ensure a space complexity $S_2(n)$

 $L \in DSPACE(S_2(n)) \land L \notin DSPACE(S_1(n))$ DSPACE $(S_1(n))$ DSPACE $(S_2(n))$

• TM M - ensure a space complexity $S_2(n)$

Ledspace($S_2(n)$) \land Ledspace($S_1(n)$)

DSPACE($S_1(n)$)

DSPACE($S_2(n)$)

• TM M - ensure a space complexity $S_2(n)$

В	B	B	B	B	B	B	B	B	B	B	B	B	B	B	1
В	В	В	В	В	B	B	B	В	B	B	В	B	В	B	, s

Ledspace($S_2(n)$) \land Ledspace($S_1(n)$)

DSPACE($S_1(n)$)

DSPACE($S_2(n)$)

• TM M - ensure a space complexity $S_2(n)$

TM M which accepts the language L

Simulation of TM M_{S2}

B	B	B	B	B	B	B	B	B	В	B	B	В	B	B	<i>y S</i>
В	B	B	B	B	B	B	B	B	B	B	B	B	B	B	}

• TM M - ensure a space complexity $S_2(n)$

• TM M - ensure a space complexity $S_2(n)$

• TM M - ensure a space complexity $S_2(n)$

 $L \in DSPACE(S_2(n)) \land L \not\in DSPACE(S_1(n))$ DSPACE $(S_1(n))$ DSPACE $(S_2(n))$

• Opposite decision than any TM in class DSPACE($S_1(n)$)

• Opposite decision than any TM in class DSPACE($S_1(n)$)

• Opposite decision than any TM in class DSPACE($S_1(n)$)

$$L \in DSPACE(S_2(n)) \land L \notin DSPACE(S_1(n))$$

DSPACE $(S_1(n))$

DSPACE $(S_2(n))$

Opposite decision than any TM in class DSPACE(S₁(n))

• Opposite decision than any TM in class DSPACE($S_1(n)$)

 $L \in DSPACE(S_2(n)) \land L \not\in DSPACE(S_1(n))$ DSPACE $(S_1(n))$ DSPACE $(S_2(n))$

• Simulating only those TM with space complexity $S_1(n)$

$$L \in DSPACE(S_2(n)) \land L \notin DSPACE(S_1(n))$$

DSPACE $(S_1(n))$

DSPACE $(S_2(n))$

- Simulating only those TM with space complexity $S_1(n)$
 - DSPACE($S_1(n)$) \Rightarrow DTIME($c^{S1(n)}$)

$$L \in DSPACE(S_2(n)) \land L \notin DSPACE(S_1(n))$$

DSPACE $(S_1(n))$

DSPACE $(S_2(n))$

- Simulating only those TM with space complexity $S_1(n)$
 - DSPACE($S_1(n)$) \Rightarrow DTIME($c^{S1(n)}$)

TM M which accepts the language L

- Simulating only those TM with space complexity $S_1(n)$
 - DSPACE($S_1(n)$) \Rightarrow DTIME($c^{S1(n)}$)

TM M which accepts the language L

B
B
B
B
B
B
B

- Simulating only those TM with space complexity $S_1(n)$
 - DSPACE($S_1(n)$) \Rightarrow DTIME($c^{S1(n)}$)

TM M which accepts the language LHead moves counter up to $C^{S1(n)}$

- Simulating only those TM with space complexity $S_1(n)$
 - DSPACE($S_1(n)$) \Rightarrow DTIME($c^{S1(n)}$)

TM M which accepts the language LHead moves counter up to $C^{S1(n)}$

- Choosing the counter number base
 - Counter length < values of functions S₁(n) and S₂(n)

 $L \in DSPACE(S_2(n)) \land L \notin DSPACE(S_1(n))$ DSPACE $(S_1(n))$ DSPACE $(S_2(n))$

• Ensure that M simulates M_w from DSPACE($S_1(n)$) in $S_2(n)$ cells

$$L \in DSPACE(S_2(n)) \land L \notin DSPACE(S_1(n))$$

DSPACE $(S_1(n))$

DSPACE $(S_2(n))$

- Ensure that M simulates M_w from DSPACE($S_1(n)$) in $S_2(n)$ cells
 - Number of cells used by simulating a TM from class DSPACE($S_1(n)$):

$$L \in DSPACE(S_2(n)) \land L \notin DSPACE(S_1(n))$$

DSPACE $(S_1(n))$

DSPACE $(S_2(n))$

- Ensure that M simulates M_w from DSPACE($S_1(n)$) in $S_2(n)$ cells
 - Number of cells used by simulating a TM from class DSPACE($S_1(n)$):

t – number of tape symbols of a TM from class DSPACE($S_1(n)$)

$$L \in DSPACE(S_2(n)) \land L \notin DSPACE(S_1(n))$$

DSPACE $(S_1(n))$

DSPACE $(S_2(n))$

- Ensure that M simulates M_w from DSPACE($S_1(n)$) in $S_2(n)$ cells
 - Number of cells used by simulating a TM from class DSPACE(S₁(n)) :

t – number of tape symbols of a TM from class DSPACE($S_1(n)$)

 $\{0, 1, B\}$ – tape symbols of TM M

$$L \in DSPACE(S_2(n)) \land L \notin DSPACE(S_1(n))$$

DSPACE $(S_1(n))$

DSPACE $(S_2(n))$

- Ensure that M simulates M_w from DSPACE($S_1(n)$) in $S_2(n)$ cells
 - Number of cells used by simulating a TM from class DSPACE($S_1(n)$):

t

t – number of tape symbols of a TM from class DSPACE($S_1(n)$)

 $\{0, 1, B\}$ – tape symbols of TM M

$$L \in DSPACE(S_2(n)) \land L \notin DSPACE(S_1(n))$$

DSPACE $(S_1(n))$

DSPACE $(S_2(n))$

- Ensure that M simulates M_w from DSPACE($S_1(n)$) in $S_2(n)$ cells
 - Number of cells used by simulating a TM from class DSPACE(S₁(n)) :

log₂t

t – number of tape symbols of a TM from class DSPACE($S_1(n)$)

 $\{0, 1, B\}$ – tape symbols of TM M

- Ensure that M simulates M_w from DSPACE($S_1(n)$) in $S_2(n)$ cells
 - Number of cells used by simulating a TM from class DSPACE($S_1(n)$):

$$\lceil \log_2 t \rceil$$

t – number of tape symbols of a TM from class DSPACE($S_1(n)$)

(0, 1, *B***)** – tape symbols of TM *M*

$$L \in DSPACE(S_2(n)) \land L \notin DSPACE(S_1(n))$$

DSPACE $(S_1(n))$

DSPACE $(S_2(n))$

- Ensure that M simulates M_w from DSPACE($S_1(n)$) in $S_2(n)$ cells
 - Number of cells used by simulating a TM from class DSPACE(S₁(n)) :

$$\lceil \log_2 t \rceil S_1(n)$$

t – number of tape symbols of a TM from class DSPACE($S_1(n)$)

(0, 1, *B***)** – tape symbols of TM *M*

 $L \in DSPACE(S_2(n)) \land L \notin DSPACE(S_1(n))$ DSPACE $(S_1(n))$ DSPACE $(S_2(n))$

• Ensure that M simulates M_w from DSPACE($S_1(n)$) in $S_2(n)$ cells

$$L \in DSPACE(S_2(n)) \land L \notin DSPACE(S_1(n))$$

DSPACE $(S_1(n))$

DSPACE $(S_2(n))$

- Ensure that M simulates M_w from DSPACE($S_1(n)$) in $S_2(n)$ cells
 - $(\inf_{n\to\infty} S_1(n)/S_2(n) = 0) \Rightarrow (\lceil \log_2 t \rceil S_1(n) < S_2(n))$

$$L \in DSPACE(S_2(n)) \land L \notin DSPACE(S_1(n))$$

DSPACE $(S_1(n))$

DSPACE $(S_2(n))$

- Ensure that M simulates M_w from DSPACE($S_1(n)$) in $S_2(n)$ cells
 - $(\inf_{n\to\infty} S_1(n)/S_2(n) = 0) \Rightarrow (\lceil \log_2 t \rceil S_1(n) < S_2(n))$
 - We expand the encoding procedure of TM:

$$L \in DSPACE(S_2(n)) \land L \notin DSPACE(S_1(n))$$

DSPACE $(S_1(n))$

DSPACE $(S_2(n))$

- Ensure that M simulates M_w from DSPACE($S_1(n)$) in $S_2(n)$ cells
 - $(\inf_{n\to\infty} S_1(n)/S_2(n) = 0) \Rightarrow (\lceil \log_2 t \rceil S_1(n) < S_2(n))$
 - We expand the encoding procedure of TM:

$$L \in DSPACE(S_2(n)) \land L \notin DSPACE(S_1(n))$$

DSPACE $(S_1(n))$

DSPACE $(S_2(n))$

- Ensure that M simulates M_w from DSPACE($S_1(n)$) in $S_2(n)$ cells
 - $(\inf_{n\to\infty} S_1(n)/S_2(n) = 0) \Rightarrow (\lceil \log_2 t \rceil S_1(n) < S_2(n))$
 - We expand the encoding procedure of TM:

111111111111111111 code, 11 code, 11 --- 11 code, 111

$$L \in DTIME(T_2(n)) \land L \notin DTIME(T_1(n))$$

$$DTIME(T_1(n))$$

$$DTIME(T_2(n))$$

If

$$L \in \mathsf{DTIME}(T_2(n)) \land L \notin \mathsf{DTIME}(T_1(n))$$

$$\mathsf{DTIME}(T_1(n))$$

$$\mathsf{DTIME}(T_2(n))$$

- If
 - $T_2(n)$ is a fully time-constructible function

- If
 - $T_2(n)$ is a fully time-constructible function
 - $\inf_{n\to\infty} T_1(n) \log T_1(n)/T_2(n) = 0$

- If
 - $T_2(n)$ is a fully time-constructible function
 - $\inf_{n\to\infty} T_1(n) \log T_1(n)/T_2(n) = 0$
- Then there is a language L

If

- $T_2(n)$ is a fully time-constructible function
- $\inf_{n\to\infty} T_1(n) \log T_1(n)/T_2(n) = 0$
- Then there is a language L
 - $L \in \mathsf{DTIME}(T_2(n)) \land L \notin \mathsf{DTIME}(T_1(n))$

$$L \in DTIME(T_2(n)) \land L \notin DTIME(T_1(n))$$

$$DTIME(T_1(n))$$

$$DTIME(T_2(n))$$

We construct a TM M for which:

$$L \in \mathsf{DTIME}(T_2(n)) \land L \notin \mathsf{DTIME}(T_1(n))$$

$$\mathsf{DTIME}(T_1(n))$$

$$\mathsf{DTIME}(T_2(n))$$

- We construct a TM M for which:
 - TM M has time complexity $T_2(n)$

- We construct a TM M for which:
 - TM M has time complexity $T_2(n)$
 - TM M gives the opposite decision than any TM with time complexity $T_1(n)$ for at least one input string

$$L \in \mathsf{DTIME}(T_2(n)) \land L \notin \mathsf{DTIME}(T_1(n))$$

$$\mathsf{DTIME}(T_1(n))$$

$$\mathsf{DTIME}(T_2(n))$$

• TM M – ensure a time complexity of $T_2(n)$

$$L \in \mathsf{DTIME}(T_2(n)) \land L \notin \mathsf{DTIME}(T_1(n))$$

$$\mathsf{DTIME}(T_1(n))$$

$$\mathsf{DTIME}(T_2(n))$$

- TM M ensure a time complexity of $T_2(n)$
 - Parallel simulation

- TM M ensure a time complexity of $T_2(n)$
 - Parallel simulation
 - work of TM M_w for an input string w

- TM M ensure a time complexity of $T_2(n)$
 - Parallel simulation
 - work of TM M_w for an input string w
 - work of any TM M_{T2} with time complexity $T_2(n)$

- TM M ensure a time complexity of $T_2(n)$
 - Parallel simulation
 - work of TM M_w for an input string w
 - work of any TM M_{T2} with time complexity $T_2(n)$
 - $T_2(n)$ is fully time-constructible

- TM M ensure a time complexity of $T_2(n)$
 - Parallel simulation
 - work of TM M_w for an input string w
 - work of any TM M_{T2} with time complexity $T_2(n)$
 - $T_2(n)$ is fully time-constructible
 - \Rightarrow TM M_{T2} for any string of length n does $T_2(n)$ moves

TM M which accepts the language L

$$L \in \mathsf{DTIME}(T_2(n)) \land L \notin \mathsf{DTIME}(T_1(n))$$

$$\mathsf{DTIME}(T_1(n))$$

$$\mathsf{DTIME}(T_2(n))$$

• Ensure that M simulates M_w from class DTIME($T_1(n)$) in $T_2(n)$ moves

- Ensure that M simulates M_w from class DTIME(T₁(n)) in T₂(n)
 moves
 - Multiple tapes of TM M_w are reduced to two tapes
 - To enable simulating TM M_w with an arbitrary number of tapes by the TM M with a limited number of tapes
 - $T_1(n) \Rightarrow T_1(n) \log T_1(n)$

- Ensure that M simulates M_w from class DTIME(T₁(n)) in T₂(n)
 moves
 - Multiple tapes of TM M_w are reduced to two tapes
 - To enable simulating TM M_w with an arbitrary number of tapes by the TM M with a limited number of tapes
 - $T_1(n) \Rightarrow T_1(n) \log T_1(n)$
 - $(\inf_{n\to\infty} T_1(n)\log T_1(n)/T_2(n)=0) \Rightarrow (T_1(n)\log T_1(n) < T_2(n))$

- Ensure that M simulates M_w from class DTIME(T₁(n)) in T₂(n)
 moves
 - Multiple tapes of TM M_w are reduced to two tapes
 - To enable simulating TM M_w with an arbitrary number of tapes by the TM M with a limited number of tapes
 - $T_1(n) \Rightarrow T_1(n) \log T_1(n)$
 - $(\inf_{n\to\infty} T_1(n)\log T_1(n)/T_2(n)=0) \Rightarrow (T_1(n)\log T_1(n) < T_2(n))$
 - Encoding procedure of TM:

- Ensure that M simulates M_w from class DTIME(T₁(n)) in T₂(n)
 moves
 - Multiple tapes of TM M_w are reduced to two tapes
 - To enable simulating TM M_w with an arbitrary number of tapes by the TM M with a limited number of tapes
 - $T_1(n) \Rightarrow T_1(n) \log T_1(n)$
 - $(\inf_{n\to\infty} T_1(n)\log T_1(n)/T_2(n)=0) \Rightarrow (T_1(n)\log T_1(n) < T_2(n))$
 - Encoding procedure of TM:

111111111111111111 code, 11 code, 11 --- 11 code, 111

DSPACE (S(n))

DSPACE (S(n))

DSPACE (g(S(n)))

• g(n) is an arbitrary total recursive function, $g(n) \ge n$

DSPACE (S(n))

- g(n) is an arbitrary total recursive function, $g(n) \ge n$
 - g(n) is not fully time or space constructible

DSPACE (S(n))

- g(n) is an arbitrary total recursive function, g(n)≥n
 - g(n) is not fully time or space constructible
- It is possible to construct a total recursive function S(n)

DSPACE (S(n))

- g(n) is an arbitrary total recursive function, $g(n) \ge n$
 - **g(n)** is not fully time or space constructible
- It is possible to construct a total recursive function S(n)
 - DSPACE(S(n)) = DSPACE(g(S(n)))

DSPACE (S(n))

- g(n) is an arbitrary total recursive function, $g(n) \ge n$
 - **g(n)** is not fully time or space constructible
- It is possible to construct a total recursive function S(n)
 - DSPACE(S(n)) = DSPACE(g(S(n)))
 - DTIME(f(n)) = NTIME(f(n)) = DSPACE(f(n)) = NSPACE(f(n))

• r(n) – any total recursive function

- r(n) any total recursive function
- It is possible to construct a language L

- r(n) any total recursive function
- It is possible to construct a language L
 - for any TM M_i with complexity $S_i(n)$ that accepts the language $L(M_i)=L$

- r(n) any total recursive function
- It is possible to construct a language L
 - for any TM M_i with complexity $S_i(n)$ that accepts the language $L(M_i)=L$
 - there is a TM M_j with complexity $S_j(n)$ that accepts the language $L(M_j)=L(M_j)=L$

- r(n) any total recursive function
- It is possible to construct a language L
 - for any TM M_i with complexity $S_i(n)$ that accepts the language $L(M_i)=L$
 - there is a TM M_j with complexity $S_j(n)$ that accepts the language $L(M_i)=L(M_i)=L$
 - $S_i(n) \ge r(S_i(n))$ for almost all values of n

- r(n) any total recursive function
- It is possible to construct a language L
 - for any TM M_i with complexity $S_i(n)$ that accepts the language $L(M_i)=L$
 - there is a TM M_j with complexity $S_j(n)$ that accepts the language $L(M_j)=L(M_j)=L$
 - $S_i(n) \ge r(S_i(n))$ for almost all values of n

Code TM M₁

- r(n) any total recursive function
- It is possible to construct a language L
 - for any TM M_i with complexity $S_i(n)$ that accepts the language $L(M_i)=L$
 - there is a TM M_j with complexity $S_j(n)$ that accepts the language $L(M_j)=L(M_j)=L$
 - $S_i(n) \ge r(S_i(n))$ for almost all values of n

Code TM M_1 Code TM M_2

- r(n) any total recursive function
- It is possible to construct a language L
 - for any TM M_i with complexity $S_i(n)$ that accepts the language $L(M_i)=L$
 - there is a TM M_j with complexity $S_j(n)$ that accepts the language $L(M_j)=L(M_j)=L$
 - $S_i(n) \ge r(S_i(n))$ for almost all values of n

Code TM M_1 Code TM M_2 Code TM M_3

- r(n) any total recursive function
- It is possible to construct a language L
 - for any TM M_i with complexity $S_i(n)$ that accepts the language $L(M_i)=L$
 - there is a TM M_j with complexity $S_j(n)$ that accepts the language $L(M_j)=L(M_j)=L$
 - $S_i(n) \ge r(S_i(n))$ for almost all values of n

Code TM M_1 Code TM M_2 Code TM M_3 Code TM M_4

- r(n) any total recursive function
- It is possible to construct a language L
 - for any TM M_i with complexity $S_i(n)$ that accepts the language $L(M_i)=L$
 - there is a TM M_j with complexity $S_j(n)$ that accepts the language $L(M_j)=L(M_j)=L$
 - $S_i(n) \ge r(S_i(n))$ for almost all values of n

- r(n) any total recursive function
- It is possible to construct a language L
 - for any TM M_i with complexity $S_i(n)$ that accepts the language $L(M_i)=L$
 - there is a TM M_j with complexity $S_j(n)$ that accepts the language $L(M_j)=L(M_j)=L$
 - $S_i(n) \ge r(S_i(n))$ for almost all values of n

- r(n) any total recursive function
- It is possible to construct a language L
 - for any TM M_i with complexity $S_i(n)$ that accepts the language $L(M_i)=L$
 - there is a TM M_j with complexity $S_j(n)$ that accepts the language $L(M_j)=L(M_j)=L$
 - $S_i(n) \ge r(S_i(n))$ for almost all values of n

$$L(M_2) = L$$

- r(n) any total recursive function
- It is possible to construct a language L
 - for any TM M_i with complexity $S_i(n)$ that accepts the language $L(M_i)=L$
 - there is a TM M_j with complexity $S_j(n)$ that accepts the language $L(M_j)=L(M_j)=L$
 - $S_i(n) \ge r(S_i(n))$ for almost all values of n

$$L(M_2) = L$$

$$L(M_4) = L$$

- r(n) any total recursive function
- It is possible to construct a language L
 - for any TM M_i with complexity $S_i(n)$ that accepts the language $L(M_i)=L$
 - there is a TM M_j with complexity $S_j(n)$ that accepts the language $L(M_j)=L(M_j)=L$
 - $S_i(n) \ge r(S_i(n))$ for almost all values of n

$$L(M_2) = L$$

$$L(M_4) = L$$

$$L(M_6) = L$$

- r(n) any total recursive function
- It is possible to construct a language L
 - for any TM M_i with complexity $S_i(n)$ that accepts the language $L(M_i)=L$
 - there is a TM M_j with complexity $S_j(n)$ that accepts the language $L(M_j)=L(M_j)=L$
 - $S_i(n) \ge r(S_i(n))$ for almost all values of n

$$L(M_2) = L$$

$$L(M_{A}) = L$$

$$L(M_6) = L$$

$$S_2(n) \geq r(S_4(n))$$

- r(n) any total recursive function
- It is possible to construct a language L
 - for any TM M_i with complexity $S_i(n)$ that accepts the language $L(M_i)=L$
 - there is a TM M_j with complexity $S_j(n)$ that accepts the language $L(M_i)=L(M_i)=L$
 - $S_i(n) \ge r(S_i(n))$ for almost all values of n

$$L(M_2) = L$$
 $L(M_4) = L$ $L(M_6) = L$ $S_2(n) \ge r(S_4(n))$ $S_4(n) \ge r(S_6(n))$

• $\{f_i(n) \mid i=1, 2, ...\}$ – a set of recursive functions

- $\{f_i(n) \mid i=1, 2, ...\}$ a set of recursive functions
- If we can construct a TM M that outputs the list

- $\{f_i(n) \mid i=1, 2, ...\}$ a set of recursive functions
- If we can construct a TM M that outputs the list
 - TM M_1 , M_2 , ... compute $f_1(n)$, $f_2(n)$, ...

- $\{f_i(n) \mid i=1, 2, ...\}$ a set of recursive functions
- If we can construct a TM M that outputs the list
 - TM M_1 , M_2 , ... compute $f_1(n)$, $f_2(n)$, ...
- and if for all *n* and *i* it holds that

- $\{f_i(n) \mid i=1, 2, ...\}$ a set of recursive functions
- If we can construct a TM M that outputs the list
 - TM M_1 , M_2 , ... compute $f_1(n)$, $f_2(n)$, ...
- and if for all n and i it holds that
 - $f_i(n) < f_{i+1}(n)$

- $\{f_i(n) \mid i=1, 2, ...\}$ a set of recursive functions
- If we can construct a TM M that outputs the list
 - TM M_1 , M_2 , ... compute $f_1(n)$, $f_2(n)$, ...
- and if for all n and i it holds that
 - $f_i(n) < f_{i+1}(n)$
- then there is a recursive function S(n) for which

- $\{f_i(n) \mid i=1, 2, ...\}$ a set of recursive functions
- If we can construct a TM M that outputs the list
 - TM M_1 , M_2 , ... compute $f_1(n)$, $f_2(n)$, ...
- and if for all n and i it holds that
 - $f_i(n) < f_{i+1}(n)$
- then there is a recursive function S(n) for which

DSPACE(
$$S(n)$$
) = $\bigcup_{i\geq 1}$ DSPACE($f_i(n)$)

- $\{f_i(n) \mid i=1, 2, ...\}$ a set of recursive functions
- If we can construct a TM M that outputs the list
 - TM M_1 , M_2 , ... compute $f_1(n)$, $f_2(n)$, ...
- and if for all n and i it holds that
 - $f_i(n) < f_{i+1}(n)$
- then there is a recursive function S(n) for which

DSPACE(
$$S(n)$$
) = $\bigcup_{i\geq 1}$ DSPACE($f_i(n)$)

- $\{f_i(n) \mid i=1, 2, ...\}$ a set of recursive functions
- If we can construct a TM M that outputs the list
 - TM M_1 , M_2 , ... compute $f_1(n)$, $f_2(n)$, ...
- and if for all n and i it holds that
 - $f_i(n) < f_{i+1}(n)$
- then there is a recursive function S(n) for which

DSPACE(
$$S(n)$$
) = $\bigcup_{i\geq 1}$ DSPACE($f_i(n)$)

DSPACE (
$$f_1(n)$$
)
DSPACE ($f_2(n)$)

- $\{f_i(n) \mid i=1, 2, ...\}$ a set of recursive functions
- If we can construct a TM M that outputs the list
 - TM M_1 , M_2 , ... compute $f_1(n)$, $f_2(n)$, ...
- and if for all n and i it holds that
 - $f_i(n) < f_{i+1}(n)$
- then there is a recursive function S(n) for which

DSPACE(
$$S(n)$$
) = $\bigcup_{i\geq 1}$ DSPACE($f_i(n)$)

```
DSPACE (f_1(n))
DSPACE (f_2(n))
DSPACE (f_3(n))
```


- $\{f_i(n) \mid i=1, 2, ...\}$ a set of recursive functions
- If we can construct a TM M that outputs the list
 - TM M_1 , M_2 , ... compute $f_1(n)$, $f_2(n)$, ...
- and if for all n and i it holds that
 - $f_i(n) < f_{i+1}(n)$
- then there is a recursive function S(n) for which

DSPACE(
$$S(n)$$
) = $\bigcup_{i\geq 1}$ DSPACE($f_i(n)$)

```
DSPACE (f_1(n))
DSPACE (f_2(n))
DSPACE (f_3(n))
DSPACE (f_4(n))
```


- $\{f_i(n) \mid i=1, 2, ...\}$ a set of recursive functions
- If we can construct a TM M that outputs the list
 - TM M_1 , M_2 , ... compute $f_1(n)$, $f_2(n)$, ...
- and if for all n and i it holds that
 - $f_i(n) < f_{i+1}(n)$
- then there is a recursive function S(n) for which

DSPACE(
$$S(n)$$
) = $\bigcup_{i\geq 1}$ DSPACE($f_i(n)$)

S(n) – covers all languages for all classes $f_i(n)$

```
DSPACE (f_1(n))
DSPACE (f_2(n))
DSPACE (f_3(n))
DSPACE (f_4(n))
```


- $\{f_i(n) \mid i=1, 2, ...\}$ a set of recursive functions
- If we can construct a TM M that outputs the list
 - TM M_1 , M_2 , ... compute $f_1(n)$, $f_2(n)$, ...
- and if for all n and i it holds that
 - $f_i(n) < f_{i+1}(n)$
- then there is a recursive function S(n) for which

DSPACE(
$$S(n)$$
) = $\bigcup_{i\geq 1}$ DSPACE($f_i(n)$)

S(n) – does not cover any other langauge

```
DSPACE (f_1(n))
DSPACE (f_2(n))
DSPACE (f_3(n))
DSPACE (f_4(n))
```

