Harvard-MIT Division of Health Sciences and Technology
HST.951J: Medical Decision Support, Fall 2005
Instructors: Professor Lucila Ohno-Machado and Professor Staal Vinterbo

6.873/HST.951 Medical Decision Support Fall 2005

Logistic Regression Maximum Likelihood Estimation

Lucila Ohno-Machado

Risk Score of Death from Angioplasty

Unadjusted Overall Mortality Rate = 2.1%

Linear Regression Ordinary Least Squares (OLS)

Minimize Sum of Squared Errors (SSE)

n data points

i is the subscript for each point

$$\hat{y}_i = \beta_0 + \beta_1 x_i$$

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} [y_i - (\beta_0 + \beta_1 x_i)]^2$$

Logit

$$p_{i} = \frac{1}{1 + e^{-(\beta_{0} + \beta_{1}x_{i})}}$$

$$p_{i} = \frac{e^{\beta_{0} + \beta_{1}x_{i}}}{e^{\beta_{0} + \beta_{1}x_{i}} + 1}$$

$$\log \left[\frac{p_i}{1 - p_i} \right] = \beta_0 1 + \beta_1 x_i$$

Increasing β

Finding β_0

Baseline case

$$p_i = \frac{1}{1 + e^{-(\beta_0)}}$$

	Blue(1)	Green(0)		
Death	28	22	50	
Life	45	52	97	
Total	73	74	147	

$$0.297 = \frac{1}{1 + e^{-(\beta_0)}}$$

$$\beta_0 = -0.8616$$

Odds ratio

• Odds: p/(1-p)

Odds-ratio

	Blue	Green	
Death	28	22	50
Life	45	52	97
Total	73	74	147

$$OR = \frac{\frac{p_{death|blue}}{1 - p_{death|blue}}}{\frac{p_{death|blue}}{1 - p_{death|green}}}$$

$$OR = \frac{28/45}{22/52} = 1.47$$

What do coefficients mean?

 $OR = \frac{28/45}{22/52} = 1.47$

$$e^{\beta_{color}} = OR_{color}$$

				$e^{\beta_{color}} = 1.47$
	Blue	Green		$\beta_{color} = 0.385$
Death	28	22	50	1
Life	45	52	97	$p_{blue} = \frac{1}{1 + e^{-(-0.8616 + 0.385)}} = 0.383$
Total	73	74	147	1
				$p_{green} = \frac{1}{1 + e^{0.8616}} = 0.297$

What do coefficients mean?

$$e^{\beta_{age}} = OR_{age}$$

	Age49	Age50	
Death	28	22	50
Life	45	52	97
Total	73	74	147

$$OR = \frac{\frac{p_{death|age=50}}{1 - p_{death|age=50}}}{\frac{p_{death|age=49}}{1 - p_{death|age=49}}}$$

Why not search using OLS?

$$\hat{y}_i = \beta_0 + \beta_1 x_i$$

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\log \left[\frac{p_i}{1 - p_i} \right] = \beta_0 1 + \beta_1 x_i$$

P(model | data)?

$$p_i = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_i)}}$$

If only intercept is allowed, which value would it have?

P (data | model)?

P(data|model) = [P(model | data) P(data)] / P(model)

When comparing models:

P(model): assume all the same (ie, chances of being a model with high coefficients the same as low, etc)

P(data): assume it is the same Then, P(data | model) α P(model | data)

Maximum Likelihood Estimation

- Maximize P(data | model)
- Maximize the probability that we would observe what we observed (given assumption of a particular model)
- Choose the best parameters from the particular model

Maximum Likelihood Estimation

Steps:

- Define expression for the probability of data as a function of the parameters
- Find the values of the parameters that maximize this expression

Likelihood Function

$$L = Pr(Y)$$

$$L = Pr(y_1, y_2, ..., y_n)$$

$$L = Pr(y_1) Pr(y_2) ... Pr(y_n) \neq \prod_{i=1}^{n} Pr(y_i)$$

Likelihood Function Binomial

$$L = Pr(Y)$$

$$L = Pr(y_1, y_2, ..., y_n)$$

$$L = Pr(y_1) Pr(y_2) ... Pr(y_n) = \prod_{i=1}^{n} Pr(y_i)$$

$$Pr(y_i = 1) = p_i$$

 $Pr(y_i = 0) = (1 - p_i)$

$$\Pr(y_i) = p_i^{y_i} (1 - p_i)^{1 - y_i}$$

Likelihood Function

$$L = \prod_{i=1}^{n} \Pr(y_i) = \prod_{i=1}^{n} p_i^{y_i} (1 - p_i)^{1 - y_i}$$

$$L = \prod_{i=1}^{n} \left(\frac{p_i}{(1 - p_i)} \right)^{y_i} (1 - p_i)$$

Log Likelihood Function

$$L = \prod_{i=1}^{n} \Pr(y_i) = \prod_{i=1}^{n} p_i^{y_i} (1 - p_i)^{1 - y_i}$$

$$L = \prod_{i=1}^{n} \left(\frac{p_i}{(1 - p_i)} \right)^{y_i} (1 - p_i)$$

$$\log L = \sum_{i} y_{i} \log \left(\frac{p_{i}}{(1 - p_{i})} \right) + \sum_{i} \log(1 - p_{i})$$

Log Likelihood Function

$$\log L = \sum_{i} y_{i} \log \left(\frac{p_{i}}{(1-p_{i})}\right) + \sum_{i} \log(1-p_{i})$$

$$\log L = \sum_{i} y_{i} (\beta x_{i}) - \sum_{i} \log(1+e^{\beta x_{i}})$$

Since model is the logit

Maximize

$$\log L = \sum_{i} y_{i}(\beta x_{i}) - \sum_{i} \log(1 + e^{\beta x_{i}})$$

Maximize

$$\log L = \sum_{i} y_{i}(\beta x_{i}) - \sum_{i} \log(1 + e^{\beta x_{i}})$$

$$\frac{\partial \log L}{\partial \beta} = \sum_{i} y_{i} x_{i} - \sum_{i} \hat{y}_{i} x_{i} = 0$$

$$\hat{y}_i = \frac{1}{1 + e^{-\beta x_i}}$$

Not easy to solve because y-hat is non-linear, need to use iterative methods: most popular is Newton-Raphson

Newton-Raphson

- Start with random or zero βs
- "walk" in the "direction" that maximizes
 MLE
 - how big a step (Gradient or Score)
 - direction

Maximizing the LogLikelihood

Maximizing the LogLikelihood

Similar iterative method to Minimizing the Error in Gradient Descent (neural nets)

Newton-Raphson Algorithm

$$\log L = \sum_{i} y_{i}(\beta x_{i}) - \sum_{i} \log(1 + e^{\beta x_{i}})$$

$$U(\beta) = \frac{\partial \log L}{\partial \beta} = \sum_{i} y_{i} x_{i} - \sum_{i} \hat{y}_{i} x_{i}$$
 Gradient

$$I(\beta) = \frac{\partial^2 \log L}{\partial \beta \partial \beta'} = -\sum_i x_i x_i \hat{y}_i (1 - \hat{y}_i)$$
 Hessian

$$\beta_{j+1} = \beta_j - I^{-1}(\beta_j)U(\beta_j)$$
 a step

Convergence

Criterion

$$\left|\frac{\beta_{j+1} - \beta_j}{\beta_j}\right| < .0001$$

 Convergence problems: complete and quasicomplete separation

Complete separation

MLE does not exist (ie, it is infinite)

Quasi-complete separation

Same values for predictors, different outcomes

No (quasi)complete separation is fine to find MLE

How good is the model?

- Is it better than predicting the same prior probability for everyone? (ie, model with just β_0)
- How well do the training data fit?
- How well does is generalize?

Generalized likelihood-ratio test

• Are β_1 , β_2 , ..., β_n different from 0?

$$L = \prod_{i=1}^{n} \Pr(y_i) = \prod_{i=1}^{n} p_i^{y_i} (1 - p_i)^{1 - y_i}$$

$$\log L = \sum_{i} [y_i \log p_i + (1 - y_i) \log(1 - p_i)]$$

$$G = -2\log L_o + 2\log L_1$$

G has χ^2 distribution

$$cross - entropy _error = -\sum_{i} [y_i \log p_i + (1 - y_i) \log(1 - p_i)]$$

AIC, SC, BIC

- To compare models
- Akaike's Information Criterion, k parameters

$$AIC = -2\log L + 2k$$

 Schwartz Criterion, Bayesian Information Criterion, n cases

$$BIC = -2\log L + k \log n$$

Summary

- Maximum Likelihood Estimation is used in finding parameters for models
- MLE maximizes the probability that the data obtained would have been generated by the model
- Coming up: goodness-of-fit (how good are the predictions?)
 - How well do the training data fit?
 - How well does is generalize?