MODIS-derived Snow Metrics Algorithm

Version 1.0

Jiang Zhu¹, Chuck Lindsay²
1. Geographic Information Network of Alaska, UAF
2. National Park Service, Anchorage

Mar., 26, 2013

Introduction

The National Park Service and Geographic Information Network of Alaska (GINA) are developing an algorithm to derive snow cover climatology for Alaska using the Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover daily product. The algorithm is two-fold and involves both data processing and the derivation of snow cover metrics. Terra MODIS snow cover daily 500m grid data (MOD10A1) are processed to reduce cloud obscuration through iterations of cloud reduction methods that include spatial, temporal, and snow cycle filtering. MRT tool is used to mosaic daily tile files and re-sample the data. A total of 12 metrics (e.g. date of first snow, date of persistent snow cover) for each pixel are calculated. IDL with ENVI subroutines were used to develop the algorithm.

Input dataset

The MODIS Terra Snow Cover Daily L3 Global 500m Grid data (MOD10A1) from the National Snow and Ice Data center (NSIDC) are used to calculate the snow metrics for a snow year. A snow year is defined as August 1 of the previous year to July 31 of the year in which it ends. For example, 2010 snow year is from August 1 of 2009 to July 31 of 2010.

MOD10A1 data contains snow cover, snow albedo, fractional snow cover, and Quality Assessment (QA) data in compressed Hierarchical Data Format-Earth Observing System (HDF-EOS) format along with corresponding metadata. MOD10A1 consists of 1200 km by 1200 km tiles of 500 m resolution data gridded in a sinusoidal map projection. The MODIS snow cover data is based on a snow mapping algorithm that employs a Normalized Difference Snow Index (NDSI) and other criteria tests. (See http://nsidc.org/data/mod10a1v5.html).

For our purposes, we download 26 daily tile files covering all of the Alaska region (Figure 1).

MODIS Land Sinusoidal Mapping Grid

Figure 1. 26 tiles files are downloaded from NSIDC.

The 26 tiles are h06v03, h07v03, h08v03, h09v02, h09v03, h10v02, h10v03, h11v02, h11v03, h12v01, h12v02, h13v01, h13v02, h14v01, h20v01, h21v01, h22v01, h23v01, h23v02, h24v02, h26v02, h26v03, h27v03, h28v03, h29v03.

Each tile file includes four scientific fields such as snow_cover, fractional_snow_cover, Snow_albedo, and snow_cover_spatial_quality to indicate the attributes of the pixels in the tile. The the snow_cover, snow_fraction, snow_albedo, and snow_spatial_QA fields are defined in Tables 1 to 4, respectively.

Table 1. Local attributes for the Snow_Cover field of tile data

Value	Description
0=missing data	data missing
1=no decision	no decision
11=night	Darkness, terminator, or polar night
25=no snow	Snow-free land
37=lake	Lake or inland water
39=ocean	Open water
50=cloud	Cloud obscured
100=lake ice	Snow-covered lake ice
200=snow	Snow-covered land
254=detector saturated	Detector saturated
255=fill	Fill

Table 2. Attributes for Fractional_Snow_Cover Field of tile data

Value	Description
0-100=fractional snow	In percent
200=missing data	Missing data
211=night	Darkness, terminator, or polar night
225=land	Snow-free land
237=lake	Lake or inland water
239=ocean	Open water
250=cloud	Cloud obscured
254=detector saturated	Detector saturated
255=fill	Fill

Table 3. Attributes for the snow-albedo field of tile data

Value	Description
0-100=snow albedo	In percent
101=no decision	no decision
111=night	Darkness, terminator, or polar night
125=no snow	Snow-free land
137=lake	Lake or inland water
139=ocean	Open water
150=cloud	Cloud obscured
250=missing	Missing data
251=self-shadowing	Self-shadowing
252=landmask mismatch	Landmask mismatch
253=BRDF_failure	Bidirectional reflectance distribution
	function failure
254=non-production-mask	Non-production-mask

Table 4. Attributes for the Snow_Spatial_QA field

Value	Description
0	Good quality
1	Other quality
252	Antarctic mask
253	Land mask
254	Ocean mask
255	Fill

Daily tile files are mosaicked and re-projected using the MRT tool into the Alaska Albers Projection (NAD83), and converted into four single band GeoTIFF files. For example, the four TIFF files for 2009/02/28 are: 2009-059.Snow_Albedo_Daily_Tile.tif, 2009_059.Fractional_Snow_Cover.tif, 2009_059.Snow_Cover_Daily_Tile.tif, and 2009_059.Snow_Spatial_QA.tif.

Snow metrics algorithm

Calculation of snow metrics for a snow year (Aug 1 to July 31) is divided into two stages: processing data to reduce cloud pixels and deriving the snow metrics. Figure 2 shows the scheme of the algorithm. Data processing includes spatial, temporal, snow-cycle filtering methods to reduce the cloudy days. Snow metrics processing produces snow metrics. Finally, the algorithm outputs the snow metrics as well as the modified snow cover.

Daily data are composed of four TIFF format files. The value of a pixel in the cover file is defined in Table 1.

Figure 2. Flowchart for data processing and metrics calculation.

a) Spatial filtering cloud pixels and stacking one-snow-year data

Each day of cover file is processed with the spatial filtering cloud pixels algorithm. Check each cloud pixel, if ¾ of its orthogonal neighbor pixels are snow, then re-classify the cloud pixel as snow pixel; if ¾ of them are no-snow, re-classify the cloud pixel as no-snow pixel.

All daily files that are available for the snow year (Aug 1 to Jul 31) are stacked, resulting in four stacked files - one for each of the scientific data sets (cover, albedo, quality, and fraction). For example, 2009 snow year has four stacked files, which are: 2009_snow_cover, 2009_frac, 2009_albed, and 2009_quali.

Within a snow year, there are few days of missing data. We do not interpolate the missing days when deriving snow metrics. For example, 2009 snow year has 351 days. Days from 2009-275 to 2009-287 are missing. Appendix A lists days with data for the 2009 snow year. Note that data of a snow year are processed from August 1 of the first year to July 31 of next year, but that the metrics days are reported as day of year, starting with Jan 1 of the first year. That is, we report the first and last snow cover days, and the first and last days for the longest consecutive snow cover period in terms of the number of days from Jan 1 of first year to July 31 of the following year. So, the range of the metrics days is from 213 to 577 (578 in leap year).

b). Temporal filtering to reduce the cloud pixels

Each pixel is described by its cover, fraction, quality, and albedo vectors. A temporal filter is applied for each pixel using the following steps. For example, Figure 3 presents the raw data for the cover time series at pixel (sample 3249 and line 3435) for snow-year 2009. Please notice that the total days for available satellite data for this snow-year (from August 1 to next year July 31) are 351 days.

Figure 3. Raw cover time series at pixel (sample 3249 and line 3435). Value 200 is snow, 50 is cloud, 25 is no-snow, and 0 is no-data.

The temporal filtering method includes following steps. First, we determine what the pixel is (ocean, land, or lake/inland water) by counting the number of the types information in the cover time-series produced in step b. If more than 10 points in the cover time-series are ocean, the pixel is classified as ocean, if more than 10 points are lake/inland water the pixel is classified as lake/inland water, otherwise it is classified as land. Second, we check the snow flag in the cover time-series to determine if the pixel is snow covered or not. Then, we check each cloud day in the cover time-series produced in step b. If one day before and after the cloud day are snow, the cloud day is reclassified as a no-snow day.

Figure 4 shows the temporal filtered time series for the same time series that was shown in Figure 3.

Figure 4. Temporal filtered time series.

c). Snow cycle filtering

We define a snow year (or cycle) as having three segments: snow accumulation, snow cover, and snow melt. During the snow accumulation segment, cloud days that occur before a no-snow day can be assumed to be no-snow days. During the snow cover segment, cloud days that are bound by snow days are assumed to represent snow days. Cloud days that occur after a no-snow day in the snow melt segment are assumed to be no-snow days. Therefore, we apply different cloud reclassifying methods to each of the different segments of the snow year. We first use a method to estimate the snow cycle of the *cover* time-series and then apply different cloud filtering methods to each segment of the time series.

• Segment1 is defined as the first day of snow calendar year (August 1st) to the estimated start of consecutive snow season (SOCSS) day;

- Segment 2 is defined as the estimated SOCSS day to the estimated end of consecutive snow season(EOCSS) day, and
- Segment 3 is defined as the estimated EOCSS day to the last day of the snow calendar year (July 31st).

In order to estimate the SOCSS day, candidate SOCSS days and their related location indexes in the time series are found by identifying snow pixel points whose fractions are equal to or greater than 50% and whose albedos are equal to or greater than 30%.

The estimated SOCSS day is evaluated by forward checking candidate SOCSS days - starting from the first candidate SOCSS day with the smallest location index in the time series. If the estimated SOCSS day and following days meet the consecutive snow period requirements (the following days must not be classified as no-snow/lake/ocean and the number of these kinds of days (num_threshold) must be greater than 14 days) then this is the estimated SOCSS day. Otherwise, we continue to evaluate the next SOCSS day in the remaining candidate SOCSS days until we find a SOCSS day that meets the requirement for the consecutive snow season. If none of the candidate SOCSS days meet the requirement, then Dec 31st of the first year is picked as the estimated SOCSS day.

For example, consider a cover time series (Table 5) with fractional snow cover of all snow days greater than 50% and albedo values of all snow days greater than 30%. In this table, we present that s—snow, n—no snow, f—fill, c—cloud, t—night, l—lake, o—ocean, m—missing data.

Table 5. Example for estimating the first day of consecutive snow season.

0	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1 3	1 4	1 5	1 6	1 7	1 8	1 9	2 0	2	2 2	2 3	2 4	2 5	2 6	2 7	2 8
n	n	f	S	c	n	S	S	S	t	t	t	t	С	С	f	t	S	S	С	С	c	f	c	S	n	n	n	n
						X																						

By using above method, we determine that day 6 is the first day of the consecutive snow season because the day 6 is the first of more than 14 consecutive days that are not classified as no-snow/lake/ocean days (in Table 5 it is actually the first of 19 consecutive days).

A similar method is used to determine the EOCSS day, except backward checking is used to determine the EOCSS day from the candidate EOCSS days.

After determining the SOCSS day and the EOCSS day, the time series is divided into three segments:

Segment 1: first day (first_idx) to SOCSS day - 1

Segment 2: SOCSS day to EOCSS day

Segment 3: OCSS day + 1 to the last day (last_idx)

These segments are then filtered to reduce cloud days using the following steps. During filtering, we treat the missing, night, or fill days as cloud days. So, it appears that there are only three kinds of days in the cover time series: snow, no-snow, and cloud days.

Backward filtering segment 3

Beginning with the last day, if day *i* is a snow day and the preceding consecutive days (i-1,i-2,..., i-n) are cloud days, then we re-classify the preceding consecutive days (i-1,i-2,..., i-n) as snow days. Table 6 illustrates how the hypothetical time series are processed by the backward process for segment 3. The second row represents a hypothetical segment 3 (end of season), and the third row is the result produced by backward filtering of segment 3. The letters used are the same as those in Table 5 and changes are shown in red.

Table 6. Segment 3 and the result of backward filtering.

0	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1 3	1 4	1 5	1	1 7	1 8	1 9	2 0	2	2 2	2 3	2 4	2 5	2	2 7	2 8
n	n	n	n	S	c	n	С	c	c	f	f	f	С	c	c	n	S	c	c	s	S	c	c	f	S	t	t	c
n	n	n	n	S	С	n	c	С	c	f	f	f	c	c	c	n	S	S	S	S	S	S	S	S	S	t	t	c

The result of backward filtering segment 3 for the time series shown in Figure 4 is presented in Figure 5. Because backward filtering did not change anything in this case, the plot shown in Figure 5 is identical to that in Figure 4.

Figure 5. Backward filtering of segment 3.

Backward filtering segment 2

Beginning with the last day of segment 2, if day *i* is snow and the preceding consecutive days (i-1,i-2,...,i-n) are cloud, then we reclassify the preceding consecutive days (i-1,i-2,...,i-n) as snow. Figure 6 shows the result of backward filtering segment 2 for the same time series that is presented in Figure 5.

Index of Day

Cover Time Series with Backward Filtered Segment 2

Figure 6. Backward filtering segment 2.

Backward filtering segment 1

Beginning with the last day of segment 1, if day i is no-snow and the preceding days (i-1, i-2,..., i-n) are cloud, then we reclassify the preceding consecutive days (i-1,i-2,...,i-n) as no-snow days. Figure 7 presents the results of backward filtering segment 1.

Figure 7. Backward filtering segment 1.

Forward filtering segment 1

Beginning with the first day of segment 1, if day i is snow and the following consecutive days (i+1,i+2,...,i+n) are cloud, then we reclassify the following consecutive days (i+1,i+2,...,i+n) as snow. An example is shown in Table 7. The second row represents a hypothetical segment 1 timeseries. The third row is the result of forward filtering of the second row. The reclassification of clouds is indicated by red-colored characters. The result of forward filtering segment 1 is shown in Figure 8. Because forward filtering did not change anything in this case, the plot shown in Figure 8 is identical to that in Figure 7.

Table 7. Example of forward filtering segment 1.

0	1	2	3	4	5	6	7	8	9	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2
										0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8
n	n	n	n	S	c	n	c	c	c	f	f	f	c	c	c	n	S	c	c	S	S	c	c	f	S	t	t	c
n	n	n	n	S	S	n	c	c	c	f	f	f	c	c	c	n	S	S	S	S	s	S	S	f	S	t	t	c

Figure 8. Forward filtering segment 1.

Forward filtering the Segment 2

Beginning with the first day of segment 2, if day i is snow and the following consecutive days (i+1,i+2,...,i+n) are cloud, then we reclassify the following consecutive days (i+1,i+2,...,i+n) as snow. Figure 9 displays the result of forward filtering segment 2. In this case, forward filtering did not change anything so the plot shown in Figure 9 is identical to that in Figure 8.

Figure 9. Forward filtering segment 2.

Forward filtering segment 3

Beginning with the first day of segment 3, if day i is no-snow and the following consecutive days (i+1,i+2,...,i+n) are cloud, then we re-classify the following consecutive days (i+1,i+2,...,i+n) as no-snow. Figure 10 illustrates the result of forward filtering segment 3.

After cloud filtering the snow cycle there are still some cloud days left in the time series. There is no reasonable way to get rid of these remaining cloud days in the time series because they primarily occur in the transition period between segment 1 and segment 2 and/or segment 2 and segment 3.

Figure 10. Forward filtering segment 3.

d) Check and re-classify the glacier pixels

The final step for snow cycle filtering is determining if the time series represents a glacier pixel. If the time series does not have any no-snow, lake, or ocean classifications, we consider the time series to represent a glacier pixel. For the time series of a glacier pixel, we reclassify all days the as snow days. The time-series shown in Figures 2 - 10 is not for a glacier pixel, so the results of filtering this time series are not shown.

e) Calculation of snow metrics

After finishing the spatial, temporal, and snow-cycle filtering, the time-series is ready for calculating snow metrics (Figure 1, Step e).

Finding the first snow day (FSD) and the last snow day (LSD):

Obtain the index for the first snow day and index for the last snow day in the cover time-series (refers to the first column in Appendix A). We do not consider the cloudy days before the first snow day and after the last snow day as possible snow days. That means that FSD and LSD days are the same as MODIS snow_cover_field. Then locate these indices in the band name array (refers to the second column in Appendix A) to obtain the first_snow day (FSD) and the last_snow day (LSD), and calculate the day range between the first and last snow day. For example, for the time series shown in the Figure 10, we determine that the first snow cover day index = 86, and the last snow cover index = 238. By locating the indices in the band name array, we get that

first_snow_day=312, last_snow_cover day=464. The range from the first and last snow cover day is 153 days.

<u>Finding the first day of the consecutive snow season (FCSS) and the last day of the consecutive snow season (LCSS):</u>

Within the range of FSD and LSD, we identify the "first day for looking (FLD) for continuous snow season (CSS) segments", which is the first snow day with fraction equal to or greater than 50% and with albedo equal to or more than 30% and the "last day for looking (LLD) for CSS segments", which is the last snow day (with the same fraction/albedo qualifications). Then, we start to look for CSS segments within the range of FLD - LLD. The CSS is defined as having 14 or more consecutive days that must be "snow" or "cloud", and no more than 2 consecutive days of no-snow days. The CSS segments may include a number of cloudy days in the beginning or/and at the end of a segment. So, the first day of the CSS segment (FCD) and the last day of the CSS segment (LCD) may need to be adjusted. If the FCD is a cloud day, then we look forwards for the first snow day of the CSS segment and pick the middle day as the FCD. In a similar way, if the LCD is a cloud day, then we look backwards for the last snow day of the CSS segment, and pick the middle day as the LCD (Figure 11). Figure 12 also gives an example of how the FCD and LCD are determined.

The Day 1 is the both FSD and the FLD, and the day39 is the LSD and the day 36 is the LLD. Because day 39 has snow fraction of 38% which is less than 50%, and day 36 has snow fraction of 87% and albedo 56%, day 36 is LLD.

The continuous snow season segment is initially identified as to be from the day 3 to the day 31. Because the first snow day of the continuous snow season (FCD) is the day 6, we adjust the first day of the CSS segment to the day 4. The last day of the CSS segment is the day 31, and the last snow day of the CSS segment do is the day 28, we change the last day of the un-broken segment (LCD) to the day 30.

Figure 11. Determination of CSS segment by adjusting cloudy days

Figure 12. Extending the length of the continuous snow season segment to the middle day of cloud days. The vertical red line shows the modified date selected as the last day of the CSS segment.

After determining if there are one or more CSS segments, we count the number of CSS segments, and pick up the longest CSS segment to get the first day of the longest CSS, the last day of longest CSS, and other metrics. For the time series shown in Figure 11, the longest CSS segment is from index 155 (day of first year 381 or Jan. 16, 2010) to index 238 (day of second year 464 or Apr. 9, 2010). The FCSS day is Jan. 16, 2010, and the LCSS day is Apr. 9, 2010.

Results

The outputs of the algorithm include snow-metrics, snow-fraction, and snow-cover data files.

- o Snow-metrics data file defines 12 snow metrics as following:
 - 01-first_snow_day, first day of the full snow season (FSS start day)
 - 02-last_snow_day, last day of the full snow season (FSS end day)
 - 03-fss_range, last_snow_day-first_snow_day +1
 - 04-longest_css_first_day, first day of the longest CSS segment (CSS start day)
 - 05-longest_css_last_day, last day of the longest CSS segment (CSS end day)
 - 06-longest_css_day_range, longest_css_last_day-longest_css_first_day +1
 - 07-snow_days, the number of snow days
 - 08-no_snow_days, the number of no snow days
 - 09-css_segment_num, the number of CSS segments
 - 10-mflag, pixel type (ocean, land, or lake/inland water) and type of snow (no snow, broken snow, or continuous snow)
 - 11-cloud_days, number of cloud days
 - 12-tot_css_days, total number of all days within CSS segments

Note:

Days reported as metrics are counted as day of year beginning on Jan.1 of the year that precedes the name of the snow year. For example, the days reported in the snow metrics of the snow-year of 2010 are counted from Jan.1, 2009.

The mflag values and their descriptions are defined in Table 5.

Table 5. Values and their description for mflag

	Ocean (1)	Land (2)	Lake (3)
No-snow (10)	11	12	13
Broken-snow (20)	21	22	23
Css-snow (30)	31	32	33

- The snow-cover file includes after cloud filtering snow cover data. It is a multi-band ENVI image file. Each band corresponds to a day in a snow-year. The value for a day in a pixel is one of classification flags defined previously.
- o The snow-fraction data file recorded cloud fraction of the smoothed time series. It is a multi-band ENVI image file. Each band corresponds to a day in a snow-year, and the value for a day in a pixel fraction of snow cover from 0 to 100.

Reference

- 1. http://nsidc.org/data/docs/daac/modis_v5/mod10a1_modis_terra_snow_daily_global_500m_grid.gd.html
- 2. Bradley Reed, Michael Budde, Page Spencer and Amy Miller, 2006. Satellite-Derived Measures of Landscape Processes DRAFT Monitoring Protocol for the Southwest Alaska Network.
- 3. Keshav Prasad Paudel and Peter Andersen, 2011. Monitoring snow cover variability in an agropastoral area in the Trans Himalayan region of Nepal using MODIS data with improved cloud removal methodology, Remote Sensing of Environment, 115, 1234-1246.
- 4. Dorothy Hall, George Riggs and Vincent Salomonson, 2006 (updated daily). MODIS/Terra Snow Cover Daily L3 Global 500m Grid V005, [1 August 2009 to 31 July, 2010]. Boulder, Colorado USA: National Snow and Ice Data Center. Digital media.

Appendix A. Days of 2009 snow year

Index	vea	er-days of the year	days from the Jan. 1 of 2009
0	2009-213	213	<i>y y</i>
1	2009-214	214	
2	2009-215	215	
3	2009-216	216	
4	2009-217	217	
5	2009-218	218	
6	2009-219	219	
7	2009-220	220	
8	2009-221	221	
9	2009-222	222	
10	2009-223	223	
11	2009-224	224	
12	2009-224	225	
13	2009-225	226	
13 14	2009-227	227	
14 15	2009-227	228	
15 16	2009-228	228 229	
10 17	2009-229	230	
18	2009-231	230 231	
10 19	2009-231	231	
	2009-232	232 233	
20		233 234	
21 22	2009-234	234 235	
	2009-235		
23	2009-236	236	
24	2009-237	237	
25	2009-238	238	
26	2009-239	239	
27	2009-240	240	
28	2009-241	241 242	
29	2009-242	242 243	
30	2009-243		
31	2009-244	244	
32	2009-245	245	
33	2009-246	246	
34	2009-247	247	
35	2009-248	248	
36	2009-249	249	
37	2009-250	250 251	
38	2009-251	251 252	
39	2009-252	252	
40	2009-253	253	
41	2009-254	254	
42	2009-255	255	
43	2009-256	256 257	
44	2009-257	257	
45	2009-258	258	
46	2009-259	259	
47	2009-260	260	
48	2009-261	261	

49	2009-262	262
50	2009-263	263
51	2009-264	264
52	2009-265	265
53	2009-266	266
54	2009-267	267
<i>55</i>	2009-268	268
56	2009-269	269
57	2009-270	270
58	2009-271	271
59	2009-272	272
60	2009-273	273
61	2009-274	274
62	2009-288	288
63	2009-289	289
64	2009-290	290
65	2009-291	291
66	2009-292	292
67	2009-293	293
68	2009-294	294
69	2009-295	295
70	2009-296	296
70 71	2009-290	297
72	2009-297	298
73	2009-299	299
74 75	2009-300	300
<i>75</i>	2009-301	301
76	2009-302	302
77	2009-303	303
<i>78</i>	2009-304	304
<i>79</i>	2009-305	305
80	2009-306	306
81	2009-307	307
82	2009-308	308
83	2009-309	309
84	2009-310	310
85	2009-311	311
86	2009-312	312
87	2009-313	313
88	2009-314	314
89	2009-315	315
90	2009-316	316
91	2009-317	317
92	2009-317	318
93	2009-319	319
94	2009-320	320
95	2009-321	321
96	2009-322	322
97	2009-323	323
98	2009-324	324
99	2009-325	325
100	2009-326	326

101	2009-327	327
102	2009-328	328
103	2009-329	329
104	2009-330	330
105	2009-331	331
106	2009-332	332
107	2009-333	333
108	2009-334	334
109	2009-335	335
110	2009-336	336
111	2009-337	337
112	2009-338	338
113	2009-339	339
114	2009-340	340
115	2009-341	341
116	2009-341	342
117	2009-343	343
118	2009-344	344
119	2009-345	345
120	2009-346	346
121	2009-347	347
122	2009-348	348
	2009-349	349
123		
124	2009-350	350
125	2009-351	351
126	2009-352	352
127	2009-353	353
128	2009-354	354
129	2009-355	355
130	2009-356	356
131	2009-357	357
132	2009-358	358
133	2009-359	359
134	2009-360	360
135	2009-361	361
136	2009-362	362
137	2009-363	363
138	2009-364	364
139	2009-365	365
140	2010-001	366
141	2010-002	367
142	2010-003	368
143	2010-003	369
144	2010-005	370
145	2010-006	371
146	2010-007	372
147	2010-008	373
148	2010-009	374
149	2010-010	375
150	2010-011	376
151	2010-012	377
152	2010-012	<i>377</i>
134	2010-013	3/0

153	2010-014	379
154	2010-015	380
155	2010-016	381
156	2010-017	382
157	2010-018	383
158	2010-019	384
159	2010-019	385
160	2010-021	386
161	2010-022	387
162	2010-023	388
163	2010-024	389
164	2010-025	390
165	2010-026	391
166	2010-027	392
167	2010-028	393
168	2010-029	394
169	2010-030	395
170	2010-031	396
171	2010-032	397
172	2010-033	<i>398</i>
173	2010-034	399
174	2010-035	400
175	2010-036	401
176	2010-037	402
177	2010-038	403
178	2010-039	404
179	2010-040	405
180	2010-041	406
181	2010-041	407
182	2010-042	408
183	2010-043	409
183 184	2010-044	410
185	2010-046	411
186	2010-047	412
187	2010-048	413
188	2010-049	414
189	2010-050	415
190	2010-051	416
191	2010-052	417
192	2010-053	418
193	2010-054	419
194	2010-055	420
195	2010-056	421
196	2010-057	422
197	2010-058	423
198	2010-059	424
199	2010-060	425
200	2010-061	426
201	2010-062	427
202	2010-063	428
203	2010-064	429
204	2010-065	430

205	2010-066	431
206	2010-067	432
207	2010-068	433
208	2010-069	434
209	2010-070	435
210	2010-071	436
211	2010-072	437
212	2010-073	438
213	2010-074	439
214	2010-075	440
215	2010-076	441
216	2010-077	442
217	2010-078	443
218	2010-079	444
219	2010-080	445
220	2010-081	446
221	2010-082	447
222	2010-083	448
223	2010-084	449
224	2010-085	450
225	2010-086	451
226	2010-087	452
227	2010-088	453
228	2010-089	454
229	2010-090	455
230	2010-091	456
231	2010-092	457
232	2010-093	458
233	2010-094	459
234	2010-095	
		460
235	2010-096	461
236	2010-097	462
237	2010-098	463
238	2010-099	464
239	2010-100	465
<i>240</i>	2010-101	466
241	2010-102	467
242	2010-103	468
243	2010-104	469
244	2010-105	470
245	2010-106	471
246	2010-107	472
247	2010-108	473
248	2010-109	474
249	2010-110	475
250		476
	2010-111	
251	2010-112	477
252	2010-113	478
253	2010-114	479
254	2010-115	480
255	2010-116	481
256	2010-117	482

257	2010-118	483
258	2010-119	484
259	2010-120	485
260	2010-121	486
261	2010-121	487
262	2010-123	488
263	2010-124	489
264	2010-125	490
265	2010-126	491
266	2010-127	492
267	2010-128	493
268	2010-129	494
269	2010-130	495
270	2010-131	496
271	2010-132	497
272	2010-133	498
273	2010-134	499
274	2010-135	500
275	2010-136	501
276	2010-137	502
277	2010-138	503
278	2010-139	504
279	2010-140	505
280	2010-141	506
281	2010-142	507
282	2010-143	508
283	2010-144	509
284	2010-144	510
285	2010-146	511
286	2010-140	512
287	2010-147	513
	2010-148 2010-149	513 514
288		
289	2010-150	515
290	2010-151	516
291	2010-152	517
292	2010-153	518
293	2010-154	519
294	2010-155	520
295	2010-156	521
296	2010-157	522
297	2010-158	523
298	2010-159	524
299	2010-160	525
<i>300</i>	2010-161	526
301	2010-162	527
302	2010-163	528
303	2010-164	529
304	2010-165	530
305	2010-166	531
306	2010-167	532
307	2010-168	533
308	2010-169	534

309	2010-170	535
310	2010-171	536
311	2010-172	537
312	2010-173	538
313	2010-174	539
314	2010-175	540
315	2010-176	541
316	2010-177	542
317	2010-178	543
318	2010-179	544
319	2010-180	545
320	2010-181	546
321	2010-181	548
322	2010-183	549
323	2010-184	550
323 324	2010-185	551
324 325		552
	2010-187	553 553
326	2010-188	
327	2010-189	554
328	2010-190	555
329	2010-191	556
330	2010-192	557
331	2010-193	558
332	2010-194	559
333	2010-195	560
334	2010-196	561
335	2010-197	562
336	2010-198	563
337	2010-199	564
338	2010-200	565
339	2010-201	566
340	2010-202	567
341	2010-203	568
342	2010-204	569
343	2010-205	570
344	2010-206	571
345	2010-207	572
346	2010-208	573
347	2010-209	574
348	2010-210	575
349	2010-211	576
350	2010-211	577
550	2010-212	311