(1) レーザ変位計によるはりのたわみ測定

1 実験目的

精密情報機器や機械要素等の設計において重要となるはりたわみについて,レーザ式変位センサを用いて, 両端支持ばりのたわみを計測することによって理解する.

2 はりたわみの理論

両端支持ばりのたわみに関する模式図を図1に示す.

図1 両端支持ばりの模式図

スパン l の両端支持ばり AB が,左支点 A から a,右支点 B から b の距離にある点 C に,集中荷重 W を受ける場合の最大たわみ y_{max} は,

$$y_{max} = \frac{Wb(l^2 - b^2)^{3/2}}{9\sqrt{3}EIl} \tag{1}$$

である.ただし,最大たわみを生ずる位置 x_1 は次のようになる.

$$x_1 = \sqrt{\frac{a(a+2b)}{3}} = \sqrt{\frac{l^2 - b^2}{3}} \tag{2}$$

また,荷重点 $\mathrm{C}(x=a)$ のたわみ y_c および中央のたわみ $(y)_{x=1/2}$ は,それぞれ

$$y_c = \frac{Wa^2b^2}{3EIl} \tag{3}$$

$$(y)_{x=1/2} = \frac{Wb(3l^2 - 4b^2)}{48EIl} \tag{4}$$

である. なお集中荷重 W がスパンの中央に位置する場合は,

$$a = b = \frac{1}{2} \tag{5}$$

であるから,

$$x_1 = \frac{1}{2} \tag{6}$$

となり,最大たわみ y_{max} が求まる.

$$y_{max} = \frac{Wl^3}{48EIl} \tag{7}$$

3 実験装置

1. はり構造の力学実験装置(青色のアングルで組まれた装置)

はり

支点

おもり(0.500kg:4 個,0.200kg:3 個,0.100kg:1 個,合計 2.700kg)

おもり支持金具(0.224kg)

2. CMOS レーザアプリセンサ

アンプユニット IL-1000

センサヘッド IL-065

電源ユニット KZ-U3

- 3. マイクロメータ (最小目盛: 0.001mm, 測定範囲 0-25mm)
- 4. マイクロメータ (最小目盛: 0.001mm, 測定範囲 25-50mm)

4 実験準備

- 1. CMOS レーザアプリセンサの電源ユニット KZ-U3 の電源コードをテーブルタップに接続して,電源投入後 30 分以上放置する.センサヘッド IL-065 [基準距離:65mm , 測定距離:55-105mm] からレーザ光(赤色半導体レーザ,可視光,波長 665nm)が照射される.なお,レーザ光は直接入らないように注意すること.
- 2. アンプユニット IL-1000 測定値表示部には , センサヘッドとはり間の距離が小数点以下 3 桁まで表示される (単位 mm). 表示が安定しない場合は , センサヘッドのフィルタガラスが汚れている可能性があるため , 柔らかい布で拭きとる .