Reto 2 – Análisis y simulación del funcionamiento de una red blockchain

Curso: Blockchain Nivel 3 – Odisea Blockchain (FUNDAE)

Alumno: Luis Romero (MMDV)

Fecha: 28/10/2025

1. Introducción

El presente documento describe el desarrollo de una simulación funcional de una red blockchain utilizando los protocolos de consenso Proof of Work (PoW) y Proof of Stake (PoS). El objetivo fue comparar ambos métodos en términos de tiempo de validación, consumo de recursos y eficiencia, entendiendo cómo garantizan la integridad y seguridad de la red.

2. Diseño y desarrollo

- Lenguaje utilizado: Python 3.11
- Librerías: hashlib, time, random, json
- Archivos generados:
- Reto2_LuisRomero.py (código fuente)
- resultados_reto2_timings.csv (registro de resultados)

Cada bloque contiene índice, hash previo, lista de transacciones, nonce, validador y hash actual.

Se implementan dos mecanismos de consenso:

- Proof of Work (PoW): minado de bloques mediante prueba de trabajo con dificultad ajustable.
- Proof of Stake (PoS): validación por selección ponderada según el stake de los validadores.

El sistema mide el tiempo y número de intentos necesarios para validar bloques y genera un archivo CSV comparativo.

3. Resultados de la simulación

Protocolo	Tiempo total	Promedio bloque	por	Ejemplo Validador	hash	/	Observaciones
Proof of Work (PoW)	6.00 s	1.20 s		00000c81cf8899c18b)	Mayor consumo de recursos, alto número de intentos (hasta 300k).

Proof of Stake 0.05 s 0.01 s Val_Alice Alta eficiencia,

(PoS) validaciones
estables, sin
minería intensiva.

Conclusiones técnicas

- PoW ofrece máxima seguridad a costa de tiempo y energía.
- PoS logra mayor sostenibilidad y velocidad, manteniendo un nivel adecuado de descentralización.
- En escenarios de alta demanda transaccional, PoS es más escalable y económico.
- La validación de la integridad (hashes encadenados) fue OK en ambos sistemas.

4. Capturas de ejecución

Se incluyen las siguientes capturas (pendientes de insertar):

- Ejecución del script en Visual Studio Code con salida en consola.
- Tabla de resultados generada.
- Fragmento del código fuente mostrando el bucle de minería y selección de validador.

5. Conclusiones generales

La simulación demuestra de forma práctica cómo los algoritmos de consenso son el corazón de la tecnología blockchain. Proof of Work y Proof of Stake representan dos visiones distintas: una centrada en la seguridad mediante esfuerzo computacional, y otra basada en la participación económica y la eficiencia. A través de esta experiencia práctica se consolidan los fundamentos de descentralización, inmutabilidad y consenso distribuido.

