I. Bài tập trắc nghiệm Tích phân Euler

Câu 1: Kết quả của tích phân $\int_{0}^{+\infty} x^5 e^{-x^4} dx$ là:

$$\mathbf{A.} \, \frac{\sqrt{\pi}}{8}$$

B.
$$\frac{\pi}{2}$$

C.
$$\frac{\sqrt{\pi}}{6}$$

D.
$$\frac{\pi}{6}$$

Câu 2: Kết quả của tích phân $\int_{2}^{\frac{\pi}{2}} \sin^6 x \cos^4 x dx$ là:

A.
$$\frac{7\pi}{512}$$

A.
$$\frac{7\pi}{512}$$
 B. $\frac{\sqrt{2}\pi}{512}$ **C.** $\frac{\pi}{512}$

C.
$$\frac{\pi}{512}$$

D.
$$\frac{3\pi}{512}$$

Câu 3: Biết $\int_{0}^{+\infty} x^{6} 3^{-x^{4}} dx = \frac{a\sqrt{\pi}}{b(\ln 3)^{7/2}}$, chọn khẳng định đúng:

A.
$$a - b = -1$$

B.
$$a + b = 10$$
 C. $a > b$

$$\mathbf{C}. a > b$$

D.
$$a. b < 100$$

Câu 4: Biểu diễn tích phân $\int_{0}^{+\infty} \frac{x^2}{(1+x^4)^4} dx$ theo hàm Gamma:

A.
$$\frac{\Gamma\left(\frac{3}{4}\right).\Gamma\left(\frac{13}{4}\right)}{6.\Gamma(4)}$$

C.
$$\frac{\Gamma\left(\frac{3}{4}\right).\Gamma\left(\frac{13}{4}\right)}{4.\Gamma(4)}$$

$$\mathbf{B.} \frac{\Gamma\left(\frac{3}{4}\right).\Gamma\left(\frac{1}{4}\right)}{4.\Gamma(4)}$$

$$\mathbf{D.} \frac{\Gamma\left(\frac{3}{4}\right).\Gamma\left(\frac{5}{4}\right)}{4.\Gamma(4)}$$

Câu 5: Tính tích phân $\int_{\frac{30}{1-x^{30}}}^{1} \frac{1}{x^{30}} dx$

A.
$$\frac{\pi}{30\sin\left(\frac{\pi}{20}\right)}$$

$$\mathbf{B.} \frac{\pi}{30\sin\left(\frac{\pi}{30}\right)}$$

C.
$$\frac{\pi}{\sin\left(\frac{\pi}{30}\right)}$$

1

A.
$$\frac{\pi}{30\sin\left(\frac{\pi}{20}\right)}$$
 B. $\frac{\pi}{30\sin\left(\frac{\pi}{30}\right)}$ C. $\frac{\pi}{\sin\left(\frac{\pi}{30}\right)}$ D. $\frac{\pi}{50\sin\left(\frac{\pi}{30}\right)}$

Câu 6: Tính tích phân $\int_{0}^{+\infty} \frac{x^4}{(x^3+1)^2} dx$

A.
$$\frac{4\sqrt{3}\pi}{27}$$
 B. $\frac{4\sqrt{2}\pi}{27}$ **C.** $\frac{2\sqrt{2}\pi}{27}$

B.
$$\frac{4\sqrt{2}\pi}{27}$$

C.
$$\frac{2\sqrt{2}\pi}{27}$$

D.
$$\frac{2\sqrt{3}\pi}{27}$$

Câu 7: Tính tích phân $\int_{0}^{1} \left(\ln \frac{1}{x} \right)^{10} dx$

A. 11!

B. 10!

C. 12!

D. 9!

Câu 8: Tính tích phân $\int_{0}^{1} x^{5} (\ln x)^{10} dx$

A.
$$\frac{10!}{5^{11}}$$

B.
$$\frac{10!}{6^{11}}$$

C.
$$\frac{11!}{5^{11}}$$

D.
$$\frac{11!}{6^{11}}$$

Câu 9: Biểu diễn tích phân $\int_{-\infty}^{0} e^{2x} \sqrt[3]{1-e^{3x}} dx$ theo hàm Gamma:

A.
$$\frac{\Gamma\left(\frac{2}{3}\right).\Gamma\left(\frac{4}{3}\right)}{2.\Gamma(2)}$$

C.
$$\frac{\Gamma\left(\frac{2}{3}\right).\Gamma\left(\frac{1}{3}\right)}{9.\Gamma(2)}$$

B.
$$\frac{\Gamma\left(\frac{2}{3}\right).\Gamma\left(\frac{1}{3}\right)}{3.\Gamma(2)}$$

$$\mathbf{D.} \frac{\Gamma\left(\frac{2}{3}\right).\Gamma\left(\frac{4}{3}\right)}{3.\Gamma(2)}$$

Câu 10: Tính tích phân $\int_{0}^{\frac{\pi}{2}} \sqrt{\sin^{7} x \cos^{5} x} dx$

A.
$$\frac{5\pi}{128\sqrt{2}}$$
 B. $\frac{3\pi}{256\sqrt{2}}$ **C.** $\frac{\pi}{256\sqrt{2}}$

B.
$$\frac{3\pi}{256\sqrt{2}}$$

C.
$$\frac{\pi}{256\sqrt{2}}$$

D.
$$\frac{7\pi}{256\sqrt{2}}$$

II. Bài tập trắc nghiệm Tích phân đường

1. Tích phân đường loại I:

Câu 11: Tính tích phân $\int_{r}^{r} (x+y)ds$ với L là đoạn thẳng nối điểm O(0;0) và A(4;3)

A.
$$\frac{35}{2}$$

B.
$$\frac{35}{4}$$
 C. $\frac{35}{3}$

C.
$$\frac{35}{3}$$

D.
$$\frac{35}{6}$$

Câu 12: Tính $\int_{T} (x+y)ds \text{ với } L \text{ là nửa đường tròn } \begin{cases} x=2+2\cos t \\ y=2\sin t \\ 0 < t < \pi \end{cases}$

A.
$$4 + 8\pi$$

B.
$$8 + 4\pi$$

C.
$$4\pi$$

D.
$$2 + 4\pi$$

Câu 13: Tìm $m \, \text{để} \int_{C} (mx - y) ds = -18 \, \text{với } C: y = \sqrt{9 - x^2}$

A.
$$m = 1$$

B.
$$m = 2$$

C.
$$m = 3$$

D.
$$m = 4$$

Câu 14: Với *C* là đường tròn $x^2 + y^2 = 2x$, tính $\int_C (x - y) ds$

 $\mathbf{A}. \pi$

$$\mathbf{B}. 2\pi$$

$$\mathbf{C}$$
. 3π

D.
$$6\pi$$

Câu 15: Tính $\int_{C} (x+y)ds$ với cung $C: r^2 = \cos 2\varphi, \frac{-\pi}{4} \le \varphi \le \frac{\pi}{4}$

$$\mathbf{A.}\sqrt{5}$$

B.
$$\sqrt{6}$$

C.
$$\sqrt{10}$$

D.
$$\sqrt{2}$$

Câu 16: Với C là đường cong $x^{2/3} + y^{2/3} = 1$ trong góc phần tư thứ nhất nối A(1,0) và B(0,1), tính $\int_{C} (y^2 + 1) ds$

3

A.
$$\frac{15}{8}$$

B.
$$\frac{15}{9}$$
 C. $\frac{15}{7}$

C.
$$\frac{15}{7}$$

D.
$$\frac{15}{4}$$

Câu 17: Tính $\int_C y ds$ với C là đường $x = y^2$ đi từ O(0,0) đến A(1,1)

A.
$$\frac{1}{3}(5\sqrt{5}-1)$$

A.
$$\frac{1}{3}(5\sqrt{5}-1)$$
 B. $\frac{1}{12}(5\sqrt{5}-1)$ **C.** $\frac{1}{6}(5\sqrt{5}-1)$ **D.** $\frac{1}{2}(5\sqrt{5}-1)$

C.
$$\frac{1}{6}(5\sqrt{5}-1)$$

D.
$$\frac{1}{2}(5\sqrt{5}-1)$$

Câu 18: Tính $\int xyds$ với L là chu tuyến của hình chữ nhật ABCD với A(0,0); B(4,0), C(4,2), D(0,2)**B.** 25 **C.** 24 **A.** 20 **D.** 18 **Câu 19:** Tính $\oint xyds$ với C là biên của miền $|x| + |y| \le 1$ **A.** 1 **C.** 2 **D.** 0 **Câu 20:** Tính $\int_{L} \sqrt{x^2 + y^2} ds$ với $L: x^2 + y^2 = 2x$ **C.** 4 **A.** 8 **B.** 6 **D.** 10 2. Tích phân đường loại II: **Câu 21:** Tính $\int (x-3y)dx + 2ydy$ với \widehat{AB} là cung $y = 1 - x^2$, A(1,0), B(-1,0)**A.** 0 **D.** 6 **Câu 22:** Tính $\int_{0.5}^{1.5} 5y^4 dx - 4x^3 dy$ với *ABC* là đường gấp khúc đi qua các điểm A(0,1); B(1,0); C(0,-1)**B.** 3 **C.** 5 **D.** 4 **A.** 2 **Câu 23:** Tìm m để $\int_C (x+xy)dx + m.x^2dy = \frac{-10}{3}$ với C là cung bé trên đường tròn $x^2 + y^2 = 4 \text{ di từ } A(-2,0) \text{ dến } B(0,2)$ **C.** 0 **B.** 3/2 **D.** 1/3 Câu 24: Tính $\oint_{L} (xy + e^x \sin x + x + y) dx + (-xy + e^{-y} - x + \sin y) dy$ với L là đường $x^2 + y^2 = 2x$ theo chiều dương. **C.** -2π $\mathbf{A.} - 3\pi$ **B.** 3π **D.** 4π

Câu 25: Tính $\oint 2x dx - \left[x^2 + 2y + e^{y^2+1} + \sin(y^2) \right] dy$ với L là chu tuyến của tam giác ABC có A(-1,0), B(0,2), C(2,0) chiều cùng chiều kim đồng hồ.

A. 1

B. 2

D. 6

Câu 26: Tính $\int (xy + e^x)dx + (y^{10} - x^2)dy$ với \widehat{AB} là cung $y = \sqrt{1 - x^2}$ đi từ điểm A(-1,0) đến B(1,0)

A. $\frac{e^2-1}{2e}$ **B.** $\frac{e^2-1}{e}$ **C.** $\frac{e^2-2}{2e}$

 $\mathbf{D} \cdot \frac{e^2}{2}$

Câu 27: Tính $\int_{C} (2e^x + y^2) dx + (x^4 + e^y) dy$ với $C: y = \sqrt[4]{1 - x^2}$ đi từ A(-1,0) đến B(1,0)

A. $\frac{\pi}{2} - \frac{2}{a} + 2e$ **B.** $\frac{\pi}{2} - \frac{3}{a} - e$ **C.** $\frac{\pi}{2} - \frac{3}{a}$ **D.** $\frac{\pi}{2} - \frac{3}{a} + 3e$

Câu 28: Tính tích phân $\int_{0.211}^{(3,0)} (x^4 + 4xy^3) dx + (6x^2y^2 - 5y^4) dy$

A. 61

B. 62

D. 64

Câu 29: Tìm m để tích phân $\int_{T} e^{x^2+y} \left[2xy^2 dx + (y^2 + m.y) dy \right] = e \text{ với } L \text{ là đường}$ $x = 1 - y^2$ đi từ A(1,0) đến B(0,1)

A. 1

B. 2

C. 3

D. 4

Câu 30: Tính tích phân $\int \frac{-y + 2xy - x^2 + 1}{(y - x^2 - 1)^2} dx + \frac{x - x^2 - 1}{(y - x^2 - 1)^2} dy$ với L: y = 2x + 2đi từ A(0,2) đến B(2,6)

A. 4

B. 3

D. 1

Câu 31: Tìm a, b để tích phân $\int_{1}^{2} e^{x} \left[\left(2x + ay^{2} + 1 \right) dx + \left(bx + 2y \right) dy \right]$ không phụ thuộc vào đường đi

$$A. \begin{cases} a = 1 \\ b = 0 \end{cases}$$

A.
$$\begin{cases} a = 1 \\ b = 0 \end{cases}$$
 B. $\begin{cases} a = 0 \\ b = 1 \end{cases}$ **C.** $\begin{cases} a = 0 \\ b = 0 \end{cases}$ **D.** $\begin{cases} a = 1 \\ b = 1 \end{cases}$

$$\mathbf{C.} \begin{cases} a = 0 \\ b = 0 \end{cases}$$

D.
$$\begin{cases} a = 1 \\ b = 1 \end{cases}$$

Câu 32: Tìm hằng số a, b để biểu thức $[y^2 + axy + y \sin(xy)]dx + [x^2 + bxy + y \sin(xy)]dx$ $x\sin(xy)]dy$ là vi phần toàn phần của một hàm số u(x,y) nào đó

A.
$$\begin{cases} a = 1 \\ b = 1 \end{cases}$$

B.
$$\begin{cases} a = 2 \\ b = 2 \end{cases}$$
 C. $\begin{cases} a = 2 \\ b = 1 \end{cases}$ **D.** $\begin{cases} a = 1 \\ b = 2 \end{cases}$

$$\mathbf{C} \cdot \begin{cases} a = 2 \\ b = 1 \end{cases}$$

D.
$$\begin{cases} a = 1 \\ b = 2 \end{cases}$$

Câu 33: Tính $\int_{r}^{\infty} \frac{xe^{x^2+y^2}dx + ye^{x^2+y^2}dy}{(x-1)^2 + y^2}$ với $L: y = \sqrt{2x-x^2}$ đi từ O(0,0) đến A(2,0)

A.
$$\frac{e^3-1}{2}$$

B.
$$\frac{e^4-1}{2}$$

A.
$$\frac{e^3-1}{2}$$
 B. $\frac{e^4-1}{2}$ **C.** $\frac{e^2-1}{2}$

D.
$$\frac{e-1}{2}$$

Câu 34: Cho tích phân $I = \oint_C \frac{(2x-5y)dx + (5x+2y)dy}{x^2 + y^2}$ với C là biên của hình

phẳng $D: x^2 + y^2 \le 9$, theo chiều dương, bạn A lập luận "Ta đặt $P = \frac{2x - 5y}{x^2 + y^2}$ và

 $Q = \frac{5x + 2y}{x^2 + y^2}$, $Q_x^{'} - P_y^{'} = 0$, C là đường cong kín, chiều dương, giới hạn miền D nên

I = 0". Hỏi bạn A làm vậy có đúng không? Nếu sai, thì sửa lại đáp án chính xác

B. Sai,
$$I = 10\pi$$

C. Sai,
$$I = \pi$$

D. Sai,
$$I = 5\pi$$

Câu 35: Tìm m để tích phân $\int (x-3y)dx + 2ydy = 4 \text{ với } AB: y = m - x^2 \text{ và hai}$ điểm A(1,0), B(-1,0)

A. 1

C. 2

Câu 36: Tính $\int_C y dx + z dy + x dz$ với $C: x = \cos t$, $y = \sin t$, z = 2t, $0 \le t \le 2\pi$ theo chiều tăng của t

 $\mathbf{A}. 2\pi$

 $\mathbf{B}. \ \pi$

 $\mathbf{C} \cdot -\pi$

D. 3π

Câu 37: Tính tích phân $\int_{(1,2,3)}^{(4,5,6)} e^{y} dx + xe^{y} dy + (z+1)e^{z} dz$

A.
$$4e^5 + 6e^6 - e^2 - 3e^3$$

$$\mathbf{C.}4e^4 + 6e^6 - 2e^2 - 3e^3$$

B.
$$4e^4 + 6e^6 - e^2 - 3e^3$$

D.
$$4e^5 + 6e^6 - 2e^2 - 3e^3$$

Câu 38: Tìm hàm thế vị của biểu thức $(x^4 + 4xy^3)dx + (6x^2y^2 - 5y^4)dy$

A.
$$\frac{1}{5}x^2 + 2x^2y^3 - y^5$$

C.
$$\frac{2}{5}x^2 + x^2y^3 - y^5$$

B.
$$\frac{2}{5}x^2 + 2x^2y^3 - y^5$$

$$\mathbf{D.} \, \frac{1}{5} x^2 + x^2 y^3 - y^5$$

Câu 39: Tính $\int_L (2xy-5)dx + (2x+3y)dy$ với L là biên của miền D xác định bởi các đường $y=x^2, y=0, x=1$, chiều dương

A.
$$\frac{1}{3}$$

B.
$$\frac{1}{4}$$

C.
$$\frac{1}{5}$$

D.
$$\frac{1}{6}$$

Câu 40: Tính $\int_{C} \left(3x^2y^2 + \frac{2}{4x^2 + 1}\right) dx + \left(3x^3y + \frac{2}{y^3 + 4}\right) dy$ với *C* là đường cong

 $y = \sqrt{1 - x^4}$ đi từ A(1,0) đến B(-1,0).

A.
$$\frac{4}{7}$$
 – arctan 2

C.
$$\frac{4}{7}$$
 – 3 arctan 2

B.
$$\frac{4}{7}$$
 – 2 arctan 2

D.
$$\frac{4}{7}$$
 + 2 arctan 2

3. Ứng dụng của tích phân đường

Câu 41: Tính diện tích của miền D giới hạn bởi L: $\begin{cases} x = 2(t - \sin t) \\ y = 2(1 - \cos t) \end{cases}$ với trục Ox biết rằng t đi từ 2π đến 0

A.
$$13\pi$$
 (đvdt)

B.
$$12\pi$$
 (đvdt)

$$\mathbf{C.}\,11\pi\,(\mathrm{d}\mathrm{v}\mathrm{d}\mathrm{t})$$

D.
$$10\pi$$
 (đvdt)

Câu 42: Tính công của lực $\vec{F} = (x + 2y)\vec{i} + (3x + 4y)\vec{j}$ làm dịch chuyển một chất điểm từ A(1,3) đến B(2,4) dọc theo đoạn thẳng AB. (đvc: đơn vị công)

Câu 43: Tính khối lượng của đường cong vật chất L có phương trình $\begin{cases} x = \cos t \\ y = \sin t \\ 0 \le t \le \pi/2 \end{cases}$ biết hàm mật độ là p(x,y) = y

- **A.** 1 (đvkl)
- **B.** 2 (đvkl)
- **C.** 3 (đvkl)
- **D.** 5 (đvkl)

Câu 44: Tính công làm dịch chuyển một chất điểm từ A(0,1) đến B(1,0) của lực $\vec{F} = [8x^3 - 2y \ln(1 + x^2y^2)]\vec{i} + [5y^4 - 2x \ln(1 + x^2y^2)]\vec{j}$

- **A.** 1 (đvc)
- **B.** 2 (đvc)
- **C.** 5 (đvc)
- **D.** 4 (đvc)

Câu 45: Tính khối lượng của đường cong vật chất L có phương trình $x^2 + y^2 = 1$ biết hàm mật độ là $p(x,y) = x^2$

- **A.** 3π (đvkl)
- **B.** 4π (đvkl)
- $\mathbf{C.}\,2\pi\,(\mathrm{d}\mathrm{vkl})$
- $\mathbf{D}.\pi$ (đvkl)

III. Bài tập trắc nghiệm Tích phân mặt

1. Tích phân mặt loại I:

Câu 46: Tính $\iint_S xydS$ với S là mặt $z = \sqrt{x^2 + y^2}$, $z \le 1$, $x \ge 0$

A. 0

C. 1

D. 3

Câu 47: Tính $\iint_{S} x^{2} dS$ với S là biên của miền giới hạn bởi mặt $z = \sqrt{x^{2} + y^{2}}$, z = 1

A. $\frac{\pi(2+\sqrt{2})}{4}$ **B.** $\frac{\pi(2+\sqrt{3})}{4}$ **C.** $\frac{\pi(1+\sqrt{2})}{4}$ **D.** $\frac{\pi(1+\sqrt{3})}{4}$

Câu 48: Tìm m để $\iint_{S} (x+y+mz)dS = \frac{5\sqrt{6}}{3}$ với S là mặt 2x + 4y + 2z = 4 và điều kiện $x \ge 0, y \ge 0, z \ge 0$

A. m = 0

B. m = 1

C. m = -1

D. m = 2

Câu 49: Tính $\iint_S xyzdS$ với S là mặt x - 2y + 3z - 4 = 0 giới hạn trong mặt trụ có phương trình $2x^2 + 3y^2 = 6$

A. 1

B. 0

C. 2

D. 3

Câu 50: Biết $\iint_S x dS = \left(\frac{a\sqrt{5}}{12} + \frac{1}{b}\right) \pi$ biết S là phần mặt paraboloid $x = y^2 + z^2$ thỏa mãn x ≤ 1. Kết luận nào sau đây là chính xác?

A. a + b < 70

B. a - b > 0

C. a, b < 70

D. a/b > 1

Câu 51: Tính $\iint_S \sqrt{1+x^2+y^2} dS$ với S là phần mặt $2z=x^2+y^2, 0 \le x, y \le 1$. Chọn đáp án gần với kết quả của tích phân nhất.

A. 2

B. 3

C. 4

D. 0

Câu 52: Biết $\iint dS = \frac{4}{15}(33 - a\sqrt{3} - b\sqrt{2})$ với *S* là mặt $z = \frac{2}{3}(x^{3/2} + y^{3/2})$ với điều kiện $0 \le x \le 2$, $0 \le y \le 1$. Tìm khẳng định đúng?

A. a < b

B. a + b = 10 **C.** a - b = 5 **D.** a. b = 10

Câu 53: Tính $\iint_S zy^2 dS$ với S là phần mặt nón $z = \sqrt{x^2 + y^2}$ nằm giữa hai mặt z = 1va z = 2

A. $\frac{31\sqrt{2}\pi}{2}$ **B.** $\frac{31\sqrt{2}\pi}{10}$ **C.** $\frac{31\sqrt{2}\pi}{4}$ **D.** $\frac{31\sqrt{2}\pi}{5}$

Câu 54: Tính $\iint_S yx^2 dS$ với S là phần mặt nón $y = \sqrt{x^2 + z^2}$, $1 \le y \le 2$

A. $\frac{32\sqrt{2}\pi}{5}$ **B.** $\frac{31\sqrt{2}\pi}{5}$ **C.** $\frac{33\sqrt{2}\pi}{5}$

Câu 55: Tính $\iint_S x dS$ với S là mặt trụ $x^2 + y^2 = 4$ nằm giữa hai mặt z = 0 và z = 6

A. 0

B. 1

C. 2

D. 3

2. Tích phân mặt loại II:

Câu 56: Tính $\iint_S (1-x-z)dzdx$ với S là mặt trên của mặt $x+y+z=1, x\geq 0, y\geq 0$ $0, z \geq 0$

A. $\frac{1}{5}$

B. $\frac{2}{3}$ **C.** $\frac{1}{6}$

D. $\frac{4}{3}$

Câu 57: Tính $I = \iint_{S} (x^2 + y^2 + z^2) dx dy$ với S là mặt nửa cầu $x^2 + y^2 + z^2 = 1$ phía trên Oxy, mặt S hướng lên trên.

 $\mathbf{A}. \pi$

 $B_{\bullet} - \pi$

 \mathbf{C} , 2π

D. 3π

Câu 58: Cho $I = \iint_S y dz dx + z^2 dx dy$, S là phía ngoài mặt $x^2 + y^2 + z^2 = 1$ với điều kiện $x \ge 0, y \ge 0, z \ge 0$. Chọn đáp án gần nhất với kết quả của I

D. 3

Câu 59: Tính $I = \iint_S x dz dx + z^2 dx dy$ với S là phía ngoài mặt $z = x^2 + y^2$ với điều kiện $0 \le z \le 2, y \ge 0$

A. $\frac{-4\pi}{5}$

B. $\frac{-7\pi}{3}$ **C.** $\frac{-5\pi}{3}$

D. $\frac{-4\pi}{2}$

Câu 60: Tính $\iint_{S} xz^{2} dy dz + 4yx^{2} dz dx + 9zy^{2} dx dy$ với mặt $S: 4x^{2} + 9y^{2} + z^{2} = 1$, hướng ra ngoài.

A. $\frac{4\pi}{15}$

B. $\frac{2\pi}{15}$ C. $\frac{2\pi}{12}$

D. $\frac{2\pi}{10}$

Câu 61: Biết $I = \iint_{S} 2xydydz + (x+y^2)dzdx + (4x+y^2)dxdy = \frac{a}{b}$ với mặt S là biên của miền $V: x+y+z \le 1, x \ge 0, y \ge 0, z \ge 0$ hướng ra ngoài. Tìm khẳng định đúng

B. a. b = 7

C. a + b = 7

Câu 62: Tính $I = \iint_S (xy^2 + 2z^3) dydz + (z^3 + 2y) dzdx + x^2 z dxdy$ với S là nửa mặt cầu $x^2 + y^2 + z^2 = 1, z \ge 0$ hướng ra ngoài mặt cầu.

A. $\frac{8\pi}{5}$

B. $\frac{8\pi}{2}$

C. $\frac{6\pi}{7}$

D. $\frac{8\pi}{7}$

Câu 63: Tính $I = \iint_S (x^3 + 2yz) dydz + (3x^2y + y) dzdx + (6y^2z + xy) dxdy$ với S là mặt

 $z = x^2 + y^2$ với $z \le 1$, hướng xuống dưới.

A. 1

B. 0

C. 2

D. 8

Câu 64: Tính $\iint_{S} \frac{1}{\sqrt{1+x^2+y^2}} (-xdydz - ydzdx + dxdy)$ với S là mặt $2z = x^2 + y^2$,

 $z \le 2$ theo chiều âm của trục Ox

A. $\frac{(2+10\sqrt{5})\pi}{2}$

C. $\frac{(-2+10\sqrt{5})\pi}{3}$

B. $\frac{(2+\sqrt{5})\pi}{3}$

D. $\frac{(-2+\sqrt{5})\pi}{2}$

Câu 65: Biết $\iint_S x dy dz + z dx dy = \frac{a}{b} \pi \text{ với } S \text{ là phần trên của mặt nón có phương}$ trình $z = -\sqrt{x^2 + y^2}$, $-1 \le z \le 0$ khi nhìn từ chiều dương trục Oz. Tính 2a + b

A. 1

 $\mathbf{C}.0$

Câu 66: Tính $\oint x^2 y^3 dx + dy + z dz$ dọc theo đường tròn $C: x^2 + y^2 = 1, z = 0$ chiều dương giới hạn mặt cầu $z = \sqrt{1 - x^2 - y^2}$

A. $\frac{\pi}{6}$

 $\mathbf{B.} \frac{-\pi}{4} \qquad \qquad \mathbf{C.} \frac{\pi}{7}$

D. $\frac{-\pi}{\circ}$

Câu 67: Tính tích phân $I = \iint_S \frac{1}{\sqrt{1+4x^2+4y^2}} (-2xdydz - 2ydzdx + dxdy) với S là$ mặt có phương trình $z = x^2 + y^2$, $0 \le z \le 4$ theo chiều $z \ge 0$

A. $\frac{(17\sqrt{17}-1)\pi}{7}$

C. $\frac{(17\sqrt{16}-1)\pi}{6}$

B. $\frac{(17\sqrt{17}-1)\pi}{6}$

D. $\frac{(17\sqrt{17}+1)\pi}{6}$

Câu 68: Tính tích phân $I = \iint_{S} (6z^3 - 9y) dy dz + (3x - 2z^3) dz dx + (3y - 3x) dx dy$ với S là mặt $x^2+3y^2+z^4=1, z\geq 0$, hướng lên trên.

A. 2

D. 1

Câu 69: Tính $\iint_{S} (2x+xy)dydz + (y+2xz)dzdx + (1+6z+z^2)dxdy \text{ với S là mặt nằm}$ trong của nửa cầu $z = -\sqrt{16 - (x^2 + y^2 + z^2)}$

A. $(80 - 190\sqrt{2})\pi$

C. $(80 - 193\sqrt{2})\pi$

B. $(80 - 192\sqrt{2})\pi$

D. $(80 - 194\sqrt{2})\pi$

Câu 70: Tính $\iint_{\mathcal{E}} xydydz + yzdzdx + zxdxdy$ biết S là mặt ngoài của tứ diện OABC với O(0,0,0), A(1,0,0), B(0,1,0), C(0,0,1)

A.
$$\frac{1}{7}$$

B.
$$\frac{1}{8}$$

C.
$$\frac{1}{9}$$

D.
$$\frac{1}{10}$$

Câu 71: Biết $\iint 2x^2 dydz + y^2 dzdx - z^2 dxdy = a\pi + b$, S là mặt ngoài của miền giới

hạn bởi $y = 0, y = \sqrt{1 - z^2}, x = 0, x = 2$ chọn khẳng định đúng

A.
$$a + 3b = 12$$

$$\mathbf{C.} - a + 3b = 0$$

B.
$$3a + 6b = 16$$

D.
$$a + b = 4$$

Câu 72: Biết $I = \iint_{S} (x+z)dydz + (y+x)dzdx + (z+y)dxdy = \frac{a}{b}\pi$ với S là mặt trong của parabol $z=x^2+y^2$ nằm dưới mặt x+z=2 . Tính a-b

3. Ứng dụng của tích phân mặt:

Câu 73: Tính diện tích mặt $S: z = 2 + \sqrt{x^2 + y^2}$, $z \le 3$

A.
$$\sqrt{7}\pi$$
 (đvdt)

B.
$$\sqrt{3}\pi$$
 (đvdt)

B.
$$\sqrt{3}\pi$$
 (đvdt) **C.** $\sqrt{2}\pi$ (đvdt) **D.** $\sqrt{5}\pi$ (đvdt)

D.
$$\sqrt{5}\pi$$
 (đvdt)

Câu 74: Tính diện tích mặt cong S với S là phần mặt nón $y = \sqrt{x^2 + z^2}$ với điều kiện $1 \le y \le 2, z \ge 0$

A.
$$\frac{3\sqrt{2}\pi}{2}$$
 (đvdt) **B.** $\frac{3\sqrt{3}\pi}{2}$ (đvdt) **C.** $\frac{\sqrt{3}\pi}{2}$ (đvdt) **D.** $\frac{\sqrt{3}\pi}{3}$ (đvdt)

B.
$$\frac{3\sqrt{3}\pi}{2}$$
 (đvdt)

C.
$$\frac{\sqrt{3}\pi}{2}$$
 (đvdt)

D.
$$\frac{\sqrt{3}\pi}{3}$$
 (đvdt)

Câu 75: Tính diện tích mặt paraboloid $z = 4x - x^2 - y^2$ nằm phía trên mặt 0xy là $\frac{(a\sqrt{17-1})\pi}{b}$, tính a+b

Câu 76: Tính diện tích phần mặt paraboloid $x = y^2 + z^2$ thỏa mãn $x \le 1$

A.
$$\frac{\pi}{6}(5\sqrt{5}-1)$$
 B. $\frac{\pi\sqrt{6}}{2}$

B.
$$\frac{\pi\sqrt{6}}{2}$$

C.
$$\frac{\pi}{6}(3\sqrt{6}-1)$$
 D. $\frac{\pi}{6}(\sqrt{6}-1)$

D.
$$\frac{\pi}{6}(\sqrt{6}-1)$$

Câu 77: Tính diện tích mặt $S: z = \sqrt{x^2 + y^2}$, $z \le 3$

A.
$$9\pi\sqrt{2}$$

B.
$$8\pi\sqrt{5}$$

C.
$$9\pi\sqrt{8}$$

D.
$$7\pi\sqrt{3}$$

IV. Bài tập trắc nghiệm Lý thuyết trường

1. Trường vô hướng:

Câu 78: Tính đạo hàm theo hướng $\vec{l}=(1,2,-2)$ của $u=e^x(y^2+z)-2xyz^3$ tại A(0,1,2)

A.
$$\frac{-11}{4}$$

B.
$$\frac{-11}{3}$$
 C. $\frac{-15}{4}$ **D.** $\frac{-15}{2}$

C.
$$\frac{-15}{4}$$

D.
$$\frac{-15}{2}$$

Câu 79: Cho $u(x,y,z) = x^3 + 3yx^2 + 2yz^2$. Tính $\frac{\partial u}{\partial \vec{n}}(A)$ với \vec{n} là vecto pháp tuyến hướng ra ngoài của mặt cầu $x^2+y^2+z^2=3, z\leq 0$ tại điểm A(1,1,-1)

A.
$$-6\sqrt{3}$$

B.
$$-6\sqrt{2}$$

$$C_{\bullet} - 2\sqrt{3}$$

D.
$$-2\sqrt{6}$$

Câu 80: Biết nhiệt độ tại điểm (x, y, z) trong không gian được cho bởi hàm

$$T(x, y, z) = \frac{80}{1 + x^2 + 2y^2 + 3z^2}$$

ở đó T có đơn vị là °C và x, y, z là mét. Theo hướng nào thì nhiệt độ tăng nhanh nhất tại điểm A(1,1,-2)

$$\mathbf{A.}\left(\frac{5}{8}; \frac{5}{4}; \frac{15}{4}\right)$$

$$C.\left(\frac{-5}{8}; \frac{-5}{4}; \frac{15}{4}\right)$$

B.
$$\left(\frac{5}{8}; \frac{15}{4}; \frac{15}{4}\right)$$

D.
$$\left(\frac{5}{8}; \frac{-5}{4}; \frac{15}{4}\right)$$

Câu 81: Tính góc giữa hai vecto gradz (đơn vị: radian) của các trường vô hướng sau $z_1 = \sqrt{x^2 + y^2}$, $z_2 = x - 3y + \sqrt{3xy}$ tại M(3,4) (Chọn đáp án gần đúng nhất)

A. 2

B. 1

D. 4

Câu 82: Cho $u(x, y, z) = \ln(1 + x^2 + e^{y-z})$, O(0,0,0), A(1, -2,2). Tính $\frac{\partial u}{\partial \vec{l}}(O)$ theo hướng \overrightarrow{OA}

A.
$$\frac{-2}{5}$$

B.
$$\frac{-2}{3}$$

C.
$$\frac{-1}{3}$$

D.
$$\frac{-1}{5}$$

Câu 83: Theo hướng nào thì sự biến thiên của hàm $u = x \sin z - y \cos z$ tại gốc tọa độ là lớn nhất

A.
$$\vec{l} = (0,1,0)$$

B.
$$\vec{l} = (0, -1, 0)$$
 C. $\vec{l} = (0, -2, 0)$ **D.** $\vec{l} = (0, -3, 0)$

$$\mathbf{C.}\ \vec{l}=(0,-2,0)$$

D.
$$\vec{l} = (0, -3, 0)$$

Câu 84: Cho điểm A(2, -1,0), B(1,1,3). Tính đạo hàm của hàm $u = x^3 + 3y^2 + 3$ $e^z + xyz^2$ tại điểm A theo hướng \overrightarrow{AB}

A.
$$\frac{\sqrt{14}}{3}$$

B.
$$\frac{\sqrt{14}}{2}$$

C.
$$\frac{-3\sqrt{14}}{2}$$

B.
$$\frac{\sqrt{14}}{2}$$
 C. $\frac{-3\sqrt{14}}{2}$ **D.** $\frac{-2\sqrt{14}}{3}$

Câu 85: Tính góc giữa $\overrightarrow{grad}u$, $u = \frac{x}{x^2 + v^2 + z^2}$ tại điểm A(1,2,2) và B(-3,1,0)

A.
$$\arccos\left(\frac{-8}{9}\right)$$
 B. $\arccos\left(\frac{-1}{9}\right)$ **C.** $\arccos\left(\frac{1}{9}\right)$ **D.** $\arccos\left(\frac{-7}{9}\right)$

B.
$$\arccos\left(\frac{-1}{9}\right)$$

C.
$$\arcsin\left(\frac{1}{9}\right)$$

D.
$$\arccos\left(\frac{-7}{9}\right)$$

2.Trường Vecto:

Câu 86: Cho $\vec{F} = x^2yz\vec{i} + 3xy^2z\vec{j} + mxyz^2\vec{k}$ với m là tham số thực. Tìm m để \vec{F} là trường ống.

A.
$$m = 4$$

B.
$$m = -4$$

C.
$$m = 5$$

D.
$$m = -5$$

Câu 87: Xác định những điểm không phải điểm xoáy trong trường vecto

$$\vec{F} = (z^2 + 2xy)\vec{i} + (3x^2 - 2yz)\vec{j} - z^2\vec{k}$$

$$\mathbf{B}.(0,0,1)$$

Câu 88: Biết $\vec{F} = e^{x^2 + y^2 + z^2} [(2x^2yz + yz)\vec{i} + (2y^2xz + xz)\vec{j} + (2z^2yx + xy)\vec{k}]$ là trường thể. Tìm hàm thế vị.

A.
$$u = e^{x^2 + y^2 + z^2} xyz + C$$

C.
$$u = e^{x+y^2+z^2}xy + C$$

B.
$$u = e^{x^2 + y^2 + z^2} xy + C$$

D.
$$u = e^{y^2 + z^2} xyz + C$$

Câu 89: Biết $\vec{F} = (3x^2 - 3y^2z)\vec{i} + (\arctan z - 6xyz)\vec{j} + (\frac{y}{1+z^2} + 3xy^2)\vec{k}$ là trường thế, tìm hàm thế vị.

A.
$$u = x + y \arctan z + 3xy^2z + C$$

C.
$$u = y \arctan z + 3xy^2z + C$$

B.
$$u = 3x + y \arctan z + 3xy^2z + C$$

D.
$$u = x^3 + y \arctan z + 3xy^2 z + C$$

Câu 90: Biết $\vec{F} = (3x^2 + yz)\vec{i} + (6y^2 + xz)\vec{j} + (z^2 + xy + e^z)\vec{k}$ là trường thế, tìm hàm thế vi

A.
$$u = x^3 + 2y^3 + \frac{z^3}{3} + e^z + xyz + C$$
 C. $u = x^3 + 2y^3 + \frac{z^3}{3} + e^z + xy + C$

C.
$$u = x^3 + 2y^3 + \frac{z^3}{3} + e^z + xy + C$$

B.
$$u = x^3 + 3y^3 + \frac{z^3}{3} + e^z + xyz + C$$

D.
$$u = x^3 + 2y^3 + \frac{z^3}{3} + e^{xz} + xyz + C$$

Câu 91: Tính thông lượng của $\vec{F} = x\vec{i} + (y^3 + 2z)\vec{j} + (3x^2z - x)\vec{k}$ qua mặt cầu $S: x^2 + y^2 + z^2 = 1$ hướng ra ngoài.

A.
$$\frac{54\pi}{15}$$

B.
$$\frac{57\pi}{15}$$
 C. $\frac{47\pi}{15}$

C.
$$\frac{47\pi}{15}$$

D.
$$\frac{44\pi}{15}$$

Câu 92: Tính thông lượng của $\vec{F} = xy^2\vec{\imath} - ze^x\vec{\jmath} + (x^2z + \sin y)\vec{k}$ qua S là mặt $z = x^2 + y^2$, $z \le 4$, hướng ra ngoài. (Chọn kết quả gần đúng nhất)

$$A. -17$$

$$C. -10$$

Câu 93: Tính thông lượng của $\vec{F} = (x^2 - 2y + z)\vec{i} - (z^2 + 2xy)\vec{j} + x\vec{k}$ qua phía trên mặt nón $z = 1 + \sqrt{x^2 + y^2}$ cắt bởi hai mặt phẳng z = 2, z = 5

Câu 94: Tính thông lượng của trường vecto $\vec{F} = 2x^2\vec{i} + y^2\vec{j} - z^2\vec{k}$ qua S là mặt ngoài của miền giới hạn bởi y = 0, $y = \sqrt{1 - z^2}$, x = 0, x = 2

A.
$$4\pi + \frac{8}{3}$$

C.
$$\pi + \frac{8}{3}$$

D.
$$4\pi + \frac{8}{5}$$

Câu 95: Tính thông lượng của trường vecto $\vec{F} = x^3 \vec{\imath} + y^2 \vec{\jmath} + \frac{z^2}{2} \vec{k}$ qua *S* là biên ngoài của miền $V: |x - y| \le 1, |y - z| \le 1, |z + x| \le 1$

A. 5

B. 4

 \mathbf{C} , 0

D. 3

Câu 96: Cho trường vô hướng u = xy + yz + xz. Tính lưu số của trường vecto $\overrightarrow{grad}u$ dọc theo đoạn thẳng nối từ A(-1,-1,-1) đến B(2,4,1)

A. 11

B. 12

C. 16

D. 14

Câu 97: Tính lưu số của $\vec{F} = x^2 y^3 \vec{\imath} + \vec{j} + z \vec{k}$ dọc theo đường tròn có phương trình

 $C: x^2 + y^2 = 1, z = 0$ giới hạn mặt cầu $z = \sqrt{1 - x^2 - y^2}$

A.
$$\frac{-\pi}{6}$$

B.
$$\frac{-\pi}{8}$$
 C. $\frac{-\pi}{7}$

C.
$$\frac{-\pi}{7}$$

D.
$$\frac{-\pi}{9}$$

Câu 98: Tính lưu số của $\vec{F} = (ye^{xy} + 3y + z)\vec{i} + (xe^{xy} + y - 5z)\vec{j} + (1 + 2x)\vec{k}$ dọc theo đường cong L là giao của mặt $x^2 + y^2 + z^2 = 4$ và mặt x - y + z = 0 hướng ngược chiều kim đồng hồ nếu nhìn từ chiều dương trục Oz.

A.
$$3\sqrt{3}\pi$$

B.
$$6\sqrt{3}\pi$$

C.
$$4\sqrt{3}\pi$$

D.
$$\sqrt{3}\pi$$

Câu 99: Tính lưu số của $\vec{F} = (y^2 + z^2)\vec{i} + (x^2 + z^2)\vec{j} + (x^2 + y^2)\vec{k}$ dọc theo đường cong C trong đó C là giao của mặt cầu $x^2 + y^2 + z^2 = 4$ và mặt nón có phương trình $z = -\sqrt{x^2 + (y-1)^2}$ với hướng cùng chiều kim đồng hồ khi nhìn từ gốc O.

Câu 100: Tính thông lượng của $\vec{F} = (6z - 2y^3)\vec{i} + (2x - 3z)\vec{j} + (2y^3 - 4x)\vec{k}$ qua mặt cong $S: 2x^2 + y^4 + 3z^2 = 1, z \ge 0$ hướng lên trên.

A. 3

B. 0

C. 2

D. 1