Page I of 7

1633

RAW SEQUENCE LISTING
PATENT APPLICATION: US/09/556,246

Input Set : A:\Rih26cip.app

DATE: 01/23/2001 TIME: 13:09:18

/

RECEIVED

FEB 01 2001

TECH CENTER 1600/2900

ENTERED

```
Output Set: N:\CRF3\01232001\1556246.raw
       3 <110> APPLICANT: Gregory D. Jay
       5 <120> TITLE OF INVENTION: tribonectins
       7 <130> FILE REFERENCE: 21486-026cip
C--> 9 <140> CURRENT APPLICATION NUMBER: US/09/556,246
     10 <141> CURRENT FILING DATE: 2000-04-24
      12 <150> PRIOR APPLICATION NUMBER: USSN 09/298/970
      13 <151> PRIOR FILING DATE: 1999-04-23
      15 <160> NUMBER OF SEQ ID NOS: 34
      17 <170> SOFTWARE: PatentIn Ver. 2.0
      19 <210> SEQ ID NO: 1
      20 <211> LENGTH: 1404
      21 <212> TYPE: PRT
      22 <213> ORGANISM: Homo sapiens
      24 <400> SEQUENCE: 1
      25 Met Ala Trp Lys Thr Leu Pro Ile Tyr Leu Leu Leu Leu Leu Ser Val 10 \ 15
      28 Phe Val Ile Gln Gln Val Ser Ser Gln Asp Leu Ser Ser Cys Ala Gly 29 \phantom{\bigg|}20\phantom{\bigg|}20\phantom{\bigg|}25\phantom{\bigg|}30\phantom{\bigg|}
      31 Arg Cys Gly Glu Gly Tyr Ser Arg Asp Ala Thr Cys Asn Cys Asp Tyr 32 \phantom{+}35\phantom{+}40\phantom{+}45\phantom{+}
      34 Asn Cys Gln His Tyr Met Glu Cys Cys Pro Asp Phe Lys Arg Val Cys 35 \phantom{000}50\phantom{000} 50 \phantom{000}60\phantom{000}
      37 Thr Ala Glu Leu Ser Cys Lys Gly Arg Cys Phe Glu Ser Phe Glu Arg 38 65 70 75 80
     40 Gly Arg Glu Cys Asp Cys Asp Ala Gln Cys Lys Tyr Asp Lys Cys 41. 85 90 95
     43 Cys Pro Asp Tyr Glu Ser Phe Cys Ala Glu Val His Asn Pro Thr Ser
44 100 105 110
     46 Pro Pro Ser Ser Lys Lys Ala Pro Pro Pro Ser Gly Ala Ser Gln Thr 47 115 120 125
     49 Ile Lys Ser Thr Thr Lys Arg Ser Pro Lys Pro Pro Asn Lys Lys 50 130 135 140
     52 Thr Lys Lys Val Ile Glu Ser Glu Glu Ile Thr Glu Glu His Ser Val 53 145 \phantom{\bigg|}150\phantom{\bigg|}150\phantom{\bigg|}155\phantom{\bigg|}155\phantom{\bigg|}
     58 Ser Thr Ile Trp Lys Ile Lys Ser Ser Lys Asn Ser Ala Ala Asn Arg 59 180 180 185
     61 Glu Leu Gln Lys Lys Leu Lys Val Lys Asp Asp Lys Lys Asp Arg Thr 62 \phantom{\bigg|}200\phantom{\bigg|}
     64 Lys Lys Lys Pro Thr Pro Lys Pro Pro Val Val Asp Glu Ala Gly Ser 65 210 215 220
     67 Gly Leu Asp Asp Gly Asp Phe Lys Val Thr Thr Pro Asp Thr Ser Thr 68 225 \phantom{\bigg|}230\phantom{\bigg|}235\phantom{\bigg|}235\phantom{\bigg|}235\phantom{\bigg|}
     70 Thr Gln Ris Asn Lys Val Ser Thr Ser Pro Lys Ile Thr Thr Ala Lys 71 245 250 255
```

73 Pro Ile Asn Pro Arg Pro Ser Leu Pro Pro Asn Ser Asp Thr Ser Lys

RAW SEQUENCE LISTING DATE: 01/23/2001 PATENT APPLICATION: US/09/556,246 TIME: 13:09:18

Input Set : A:\Rih26cip.app

Output Set: N:\CRF3\01232001\1556246.raw

265 76 Glu Thr Ser Leu Thr Val Asn Lys Glu Thr Thr Val Glu Thr Lys Glu 77 275 280 285 79 Thr Thr Thr Asn Lys Gln Thr Ser Thr Asp Gly Lys Glu Lys Thr 80 290 295 300 82 Thr Ser Ala Lys Glu Thr Gln Ser 11e Glu Lys Thr Ser Ala Lys Asp 83 305 310 315 320 85 Leu Ala Pro Thr Ser Lys Val Leu Ala Lys Pro Thr Pro Lys Ala Glu 325 330 88 Thr Thr Thr Lys Gly Pro Ala Leu Thr Thr Pro Lys Glu Pro Thr Pro 89 $$ 340 $$ 345 $$ 350 91 Thr Thr Pro Lys Glu Pro Ala Ser Thr Thr Pro Lys Glu Pro Thr Pro 92 355 360 94 Thr Thr Tle Lys Ser Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr 95 370 375 380 97 Thr Thr Lys Ser Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr 98 385 390 395 100 Thr Lys Glu Pro Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr 405 410 103 Thr Lys Glu Pro Ala Pro Thr Thr Thr Lys Ser Ala Pro Thr Thr Pro 104 420425430 106 Lys Glu Pro Ala Pro Thr Thr Pro Lys Lys Pro Ala Pro Thr Thr Pro 107 435 440 445 109 Lys Glu Pro Ala Pro Thr Thr Pro Lys Glu Pro Thr Pro Thr Pro 455 112 Lys Glu Pro Ala Pro Thr Thr Lys Glu Pro Ala Pro Thr Thr Pro Lys 113 465 470 470 475 480 115 Glu Pro Ala Pro Thr Ala Pro Lys Lys Pro Ala Pro Thr Thr Pro Lys 485 490 118 Glu Pro Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Thr Lys 119 500 505 510 121 Glu Pro Ser Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Thr Lys 122 515515520525 124 Ser Ala Pro Thr Thr Lys Glu Pro Ala Pro Thr Thr Lys Ser 125 530 535 540 127 Ala Pro Thr Thr Pro Lys Glu Pro Ser Pro Thr Thr Thr Lys Glu Pro 128 545 550 550 555 560 130 Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Pro Lys Lys Pro 131 565 570 570 133 Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Pro Lys Glu Pro 134 580 585 590 136 Ala Pro Thr Thr Lys Lys Pro Ala Pro Thr Ala Pro Lys Glu Pro 137 595 600 605 139 Ala Pro Thr Thr Pro Lys Glu Thr Ala Pro Thr Thr Pro Lys Lys Leu 140 610 615 620 142 Thr Pro Thr Thr Pro Glu Lys Leu Ala Pro Thr Thr Pro Glu Lys Pro 143 625 630 635 640 145 Ala Pro Thr Thr Pro Glu Glu Leu Ala Pro Thr Thr Pro Glu Glu Pro 645 650

RECEIVED

FEB 01 2001

TECH CENTER 1600/2900

DATE: 01/23/2001 TIME: 13:09:18 RAW SEQUENCE LISTING PATENT APPLICATION: US/09/556,246

Input Set : A:\Rih26cip.app
Output Set: N:\CRF3\01232001\1556246.raw

148 149	Thr	Pro	Thr	Thr 660	Pro	Glu	Glu	Pro	Ala 665	Pro	Thr	Thr	Pro	Lys 670	Ala	Ala
	Ala	Pro	Asn	Thr	Pro	Lys	Glu	Pro		Pro	Thr	Thr	Pro		Glu	Pro
152			675					680					685			
	Ala	Pro	Thr	Thr	Pro	Lvs	Glu	Pro	Ala	Pro	Thr	Thr	Pro	Lys	Glu	Thr
155		690				2	695					700		-		
157	Ala		Thr	Th.r	Pro	LVS		Thr	Ala	Pro	Thr	Thr	Leu	Lys	Glu	Pro
	705					710	7				715			•		720
		Pro	Thr	Th.r	pro		Lvs	Pro	Ala	Pro		Glu	Leu	Ala	Pro	Thr
161	1114				725	2,0	2,0			730	3-				735	
	Thr	Thr	Lvs	Glu		Th r	Ser	Thr	Thr		Asp	LVS	Pro	Ala		Thr
164	1111		D 10	740			501		745		E	1-		750		
166	whr	Pro	LVQ	Gly	Thr	Ala	Pro	Thr		Pro	LVS	Glu	Pro		Pro	Thr
167	1111	110	755	0.1	1			760					765			
	Thr	Dro		Glu	Pro	Δla	Pro		Thr	Pro	Lvs	Glv		Ala	Pro	Thr
170	1111	770	<u> </u>	O L u			775				-1	780				
	Thr		T.tre	Glu	Pro	Δla		Thr	Thr	Pro	EVS		Pro	Ala	Pro	Lvs
	785	ыса	цуз	Oiu	110	790	110	* ***			795	2,0				800
		Lan	λla	Pro	Thr		Thr	Lys	Glv	Pro		Ser	Thr	Thr	Ser	
176	G.L.u	anc (i	mu	110	805				0.4.7	810					815	
170	Evic	Dro	λla	Pro		Thr	Pro	Tare	Glu		Ala	Pro	Thr	Thr		Lvs
1.79	цуз	FIU	ALG	820	1111.	1.11.1	110	LIJS	825		, , , , , ,			830		,
	Cla	Bro	λΊа	Pro	Thr	Thr	Pro	Lvs		Pro	Ala	Pro	ጥhr		Pro	Glu
182	G1. u	11.0	835	F.1 O	1111	1111.	1.1.0	840	D _j u	110	11.2.04		845			
	Thr	Dro		Pro	Thr	Thr	Ser		Val	Ser	Thr	Pro		Thr	Thr	LVS
1.85	1111	850	FLO	FIU	1111.	1111	855	OLU	• 1.2 1.	001	1111	860			2	2,0
107	Clu		The	Thr	Tla	Hic		Ser	Pro	Agn	Glu		Thr	Pro	Glu	Len
	865	FIO	THT	.1 111.	1. 1. C	870	шуз	SCI.	1 1.0	тор	875	O C.L		0	0.1	880
		λla	Clu	Pro	Thr		Luc	Δla	T.e.u	Glu		Ser	Pro	LVS	Glu	
191	Ser	ALG	Gru	FIU	885	1.10	117.5	rs.i.u	LCu	890	11211	00.	1.1.0	2,0	895	
103	chy	Val	Dro	Thr		LMC	Thr	Pro	Ala		Thr	LVS	Pro	Gln		Thr
194	GLY	YUL	FLO	900	1.11.1	137 5			905			137.0	1.0	910		
	Thr	Thr	λlа	Lys	Δen	Lvc	ጥh r	Thr		Ara	Asn	T.eu	Ara		Thr	Pro
197	.1. 11.1.	1 111.	915	ыјз	225	шуз	1111	920	OLU	212.5	1106	20	925			
	Gl n	Thr		Thr	λla	Ala	Pro		Met	Th r	Lvs	Gln		Ala	Thr	Thr
200	GLu	930	111.1.	1 112.	Z1.LU	111 C	935	121.0			270	940			4	
200	Thr		Tue	Thr	Thr	alu		LWG	Tle	Thr	Ala		Thr	Thr	Gln	Val
	945	GLu	Lij 3	THE	1111	950	501	n, o	110	1111	955				0	960
		Sar	mh r	Thr	Thr		Asn	Thr	Thr	Pro		LVS	Tle	Thr	Thr	
206	1111	Jer	3. 13.L	1113.	965	O I II	пор	2.11.4		970		237 13	1.10		975	
	Tvc	Thr	nh r	Thr		Δla	Pro	LMC	Va I		Thr	Thr	LVS	LVS		Tle
209	гуз	J. 111,L	,1 111.	980	neu	Ald	110	Liy is	985		111.1	1 1111.	,	990		
	Th r	Thr	mb e	Glu	Tle	Met	Δen	LMS		Glu	Glu	Thr	Ala		Pro	Lvs
211	1111	TILL	995	OLU	13.0			1000		J_ u	J.L.14		1005	,		-1-2
	Acc	7 rc		Thr	Acn	Ser			Thr	Thr	Pro			Gln	Lvs	Pro
214		L010	A.I.a	1.11.1	กอน		1015	,-1,-CI	7.11.1	1111		1020	. 1.0	5.1.11	, 5	
			Ala	Pro	1.77			Thr	Ser	Thr			Pro	Lvs	Thr	Met
	1025		лта	-10		1030		1111	001	1111	1035	2,5		2,5		1.040
			Val	Arg			T.ve	Thr	Thr			Pro	Ara	Lvs		
220	r.1. O	ar a	vul	arg	27.3		د ړ د	1 (12	2, 11,6		****	0		55,5		~

RAW SEQUENCE LISTING DATE: 01/23/2001
PATENT APPLICATION: US/09/556,246 TIME: 13:09:18

Input Set : A:\Rih26cip.app

Output Set: N:\CRF3\01232001\1556246.raw

1045 223 Ser Thr Met Pro Glu Leu Asn Pro Thr Ser Arg Ile Ala Glu Ala Met 224 1060 1065 1070 226 Leu Gln Thr Thr Thr Arg Pro Asn Gln Thr Pro Asn Ser Lys Leu Val 227 1075 1080 1085 229 Glu Val Asn Pro Lys Ser Glu Asp Ala Gly Gly Ala Glu Gly Glu Thr 230 1090 1095 1100 232 Pro His Met Leu Leu Arg Pro His Val Phe Met Pro Glu Val Thr Pro 233 1105 1110 1115 1120 235 Asp Met Asp Tyr Leu Pro Arg Val Pro Asn Gln Gly Ile Ile Ile Asn 236 1125 1130 1135 238 Pro Met Leu Ser Asp Glu Thr Asn 11e Cys Asn Gly Lys Pro Val Asp 239 1140 1145 1150 241 Gly Leu Thr Thr Leu Arg Asn Gly Thr Leu Val Ala Phe Arg Gly His 242 $\,$ 1155 $\,$ 1160 $\,$ 1165 244 Tyr Phe Trp Met Leu Ser Pro Phe Ser Pro Pro Ser Pro Ala Arg Arg 245 1170 1175 1180 247 lle Thr Glu Val Trp Gly Ile Pro Ser Pro Ile Asp Thr Val Phe Thr 248 1185 1190 1195 250 Arg Cys Asn Cys Glu Gly Lys Thr Phe Phe Phe Lys Asp Ser Gln Tyr 251. 1205 1210 1215 253 Trp Arg Phe Thr Asn Asp Ile Lys Asp Ala Gly Tyr Pro Lys Pro Ile 254 1220 1225 1230 256 Phe Lys Gly Phe Gly Gly Leu Thr Gly Gln Ile Val Ala Ala Leu Ser 257 1235 1240 1245 259 Thr Ala Lys Tyr Lys Asn Trp Pro Glu Ser Val Tyr Phe Phe Lys Arg 260 1250 1255 1260 262 Gly Gly Ser Ile Gln Gln Tyr Ile Tyr Lys Gln Glu Pro Val Gln Lys 263 1265 1270 1275 1280 265 Cys Pro Gly Arg Arg Pro Ala Leu Asn Tyr Pro Val Tyr Gly Glu Met 266 1285 1290 1295 268 Thr Gln Val Arg Arg Arg Phe Glu Arg Ala Ile Gly Pro Ser Gln 269 1300 1305 1310 271 Thr His Thr Ile Arg Ile Gln Tyr Ser Pro Ala Arg Leu Ala Tyr Gln 272 1315 1320 1325 274 Asp Lys Gly Val Leu His Asn Glu Val Lys Val Ser Ile Leu Trp Arg 275 1330 1335 1340 277 Gly Leu Pro Asn Val Val Thr Ser Ala Ile Ser Leu Pro Asn Ile Arg 278 1345 1350 1355 280 Lys Pro Asp Gly Tyr Asp Tyr Tyr Ala Phe Ser Lys Asp Gln Tyr Tyr 281 1365 1370 1375 283 Asm Ile Asp Val Pro Ser Arg Thr Ala Arg Ala Ile Thr Thr Arg Ser 284 1380 1385 286 Gly Gln Thr Leu Ser Lys Val Trp Tyr Asn Cys Pro 287 1395 1400 290 <210> SEQ ID NO: 2 291 <211> LENGTH: 5041 292 <212> TYPE: DNA 293 <213> ORGANISM: Homo sapiens

HECEIVED

FEB 0 I 2001

TECH CENTER 1600/2900

RAW SEQUENCE LISTING

PATENT APPLICATION: US/09/556,246

DATE: 01/23/2001 TIME: 13:09:18

Input Set : A:\Rih26cip.app

Output Set: N:\CRF3\01232001\1556246.raw

```
295 <400> SEQUENCE: 2
296 gcggccgcga ctattcggta cctgaaaaca acgatggcat ggaaaacact tcccatttac 60
297 ctqttqttqc tqctqtctqt tttcqtqatt cagcaagttt catctcaaga tttatcaagc 120
298 tgtgcaggga gatgtgggga agggtattet agagatgcca cctgcaactg tgattataac 180
299 tytcaacact acatygagty ctyccctgat ttcaagagag tctgcactyc ggagctttcc 240
300 tgtaaaggcc gctgctttga gtccttcgag agagggaggg agtgtgactg cgacgcccaa 300
301 tgtaagaagt atgacaagtg ctgtcccgat tatgagagtt tctgtgcaga agtgcataat 360
302 occacateac caccatette aaagaaagea cetecacett caggageate teaaaceate 420
303 aaatcaacaa ccaaacqttc acccaaacca ccaaacaaga agaagactaa gaaagttata 480
304 gaatcagagg aaataacaga agaacattot gtttctgaaa atcaagagto etcetcetce 540
305 tecteetett cetettette ticaacaatt tggaaaatca agtettecaa aaatteaget 600
306 gctaatagag aattacagaa gaaactcaaa gtaaaagata acaagaagaa cagaactaaa 660
307 aaqaaaccta cccccaaacc accagttgta gatgaagctg gaagtggatt ggacaatggt 720
308 gacttcaagg tcacaactcc tgacacgtct accacccaac acaataaagt cagcacatct 780
309 cccaagatca caacagcaaa accaataaat cccagaccca gtcttccacc taattctgat 840
310 acatctaaag agacgtcttt gacagtgaat aaagagacaa cagttgaaac taaagaaact 900
311 actacaacaa ataaacaqac ttcaactqat qqaaaaqaqa agactacttc cgctaaagag 960
312 acacaaagta tagagaaaac atctgctaaa gatttagcac ccacatctaa agtgetggct 1020
313 aaacctacac ccaaagetga aactacaacc aaaggccctg ctctcaccac tcccaaggag 1080
314 cocacqueca coacteecaa qgaqeetgea tetaccacae ecaaagagee cacacetace 1140
315 accatcaagt etgeacceae cacceccaag gageetgeac ecaccaccae caagtetgea 1200
316 occaecacte occaegagee typicacceace accaecaagg ageotycace caecactece 1260
317 aaggageetg caeceaecae caecaaggag eetgeaecea eeaecaacaa gtetgeaece 1320
318 accactecca aggagectge acceaecace eccaagaage etgeeccaac taceeccaag 1380
319 gagootgoac coaccactee caaggageet acacceacca eteccaagga geotgoacce 1440
320 accaccaagg ageotycacc caccacteec aaagageetg cacccactge coccaagaag 1,500
321 octgocccaa ctaccoccaa ggageetgca cocaccacto ccaaggagee tgcacccace 1560
322 accaccaagg ageotteace caccactece aaggageetg cacceaccac caccaagtet 1620
323 geacceacca etaccaagga geetgeacce accactacca agtetgeacc caccactece 1680
324 aaggageett cacceaceae caccaaggag eetgeaceea ceaeteecaa ggageetgea 1740
325 occaedado ceaagaago tycoccaact acceedaag ageetycaec caccaetece 1800
326 aaggaacetg caeccaecae caecaagaag cetgeaceca eegeteecaa agageetgee 1860
327 ccaactaccc ccaaggagae tgeacceacc acccccaaga ageteacgec caccaccccc 1920
328 gagaageteg cacceaceae ceetgagaag ceegeaceea ceacecetga ggagetegea 1980
329 cccaccacco etgaggagee cacacccace acceetgagg ageetgetee caccacteee 2040
330 aaggeagegg etceeaacac ecetaaggag eetgeteeaa etaeceetaa ggageetget 2100
331 ccaactacce ctaaggagee tgetecaact accectaagg agactgetee aactaccect 2160
332 aaagggactg ctccaactac cctcaaggaa cctgcaccca ctactcccaa gaagcctgcc 2220
333 cocaaggage ttgeacceae caccaccaag gageecacat ceaccaccte tgacaageee 2280
334 getecaacta eccetaaggg gaetgetera aetaceeeta aggageetge tecaactace 2340
335 cctaaggage etgetecaae taccectaag gggactgete caactaccet caaggaacet 2400
336 gcacccacta ctcccaagaa gcctgccccc aaggagetty cacccaccac caccaagggg 2460
337 cecacateca ceacetetga caageetget ecaaetacae etaaggagae tgeteeaaet 2520
338 acccccaagg agectgeace cactaccece aagaageetg etecaaetae teetgagaca 2580
339 octoetecaa coactteaga ggtotetaet ceaactacca ceaaggagee taccactate 2640
340 cacaaaagcc ctgatgaatc aactcctgag ctttctgcag aacccacacc aaaagctctt 2700
341 gaaaacagto ccaaggaaco tggtgtacot acaactaaga otootgcago gactaaacot 2760
342 gaaatgacta caacagctaa agacaagaca acagaaagag acttacgtac tacacctgaa 2820
343 actacaacty etgeaectaa gatgacaaaa gagacagcaa etacaacaga aaaaactace 2880
```


Please Note:

Use of n and/or Xaa have been detected in the Sequence Listing. Please review the Sequence Listing to ensure that a corresponding explanation is presented in the <220> to <223> fields of each sequence which presents at least one n or Xaa.

VERIFICATION SUMMARY

PATENT APPLICATION: US/09/556,246

DATE: 01/23/2001 TIME: 13:09:20

Input Set : A:\Rih26cip.app

Output Set: N:\CRF3\01232001\1556246.raw

L:9 M:270 C: Current Application Number differs, Replaced Current Application Number L:412 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:4