

Gradient Boosting

Is een effectief machine learning algoritme. Het is toe te passen op:

- > Regressie
- Classificatie
- > Ranking

Programma

- > Wat is gradient boosting?
- > Gradient boosting met XGBoost
- > Pre-processing en training tips
- > Hands-on mini competitie
- > Bekendmaking winnaars

Deze lecture is voornamelijk gericht op de intuïtie en de toepassing

Wat is Gradient Boosting?

- > Ensemble algorithm
 - > Baggin
 - > Boosting
 - > Random Forest
- > Een ensemble is een samenvoeging van verschillende learners
 - > Decision Tree
 - Regression Tree

Intuïtie gradient boosting

Gradient boosting

- > Gradient boosting bestaat uit verschillende onderdelen
 - > Weak Learners
 - > Regression Tree
 - Classification Tree
 - > Loss function
 - > Wordt geoptimaliseerd
 - Additive model
 - > Methode waarop de weak learners gecombineerd worden

Regression Tree

- > Verbeteren door meer splits
- > In gradient boosting beperkingen
 - > Weinig splits (vroeger stumps)
 - > Learners blijven weak

Loss function

- > Residuals
 - > Een functie meestal op basis van errors / residuals
- > Veel gebruikte functies zijn
 - > RMSE : square Root of Mean Squared Error
 - > MAE : Mean Absolute Error

Additive model

- > Stapsgewijs toevoegen en verbeteren van model
 - > Bij elke stap wordt gekeken welke tree toegevoegd dient te worden
 - > Minimaliseren van loss function d.m.v. gradient descent op residuals
- > Decision tree wordt toegevoegd aan huidig model
 - > Huidige elementen (trees) van model veranderen niet
 - Model is som van elementen
 - > Toevoeging hoeft niet lineair te zijn
- Gebruikt gradient descent om loss functie te minimaliseren

Additive model

Meer verklaren door extra trees toe te voegen

Gradient Boosting vs. Regression Tree

- > Regression Tree
 - > Aantal splits

- > Gradient Boosting
 - > Aantal trees

Gradient Boosting vs. Random Fores

- > RF berekenen van meerdere trees tegelijkertijd
 - > Voordeel voor distribueren
- > GB berekenen van meerdere trees na elkaar
 - XIeine trees kosten minder tijd
- > Over het algemeen:
 - > GB > RF > Bagging > RT
- > GB meer tuning nodig
 - Kans op overfitting

De XGBoost library

- > eXtreme Gradient Boosting
- > Beschikbaar in C++, Java, Python, R, en Julia
- > Veel documentatie beschikbaar

Basis model

```
import pandas as pd

# Maak train en validatie matrixen aan
dtrain = xgb.DMatrix(data=train_X.values, label=train_y.values, feature_names=train_X.columns)
dvalid = xgb.DMatrix(data=valid_X.values, label=valid_y.values, feature_names=valid_X.columns)

# Stel de verschillende parameters in
param = {'eta': 0.01, 'max_depth': 10, 'silent':1, 'objective': 'reg:linear', 'eval_metric': 'mae'}
num_round = 100

bst = xgb.train(param, dtrain, num_round)

# Maak nieuwe voorspellingen op validatie set
preds = bst.predict(dvalid)
```


XGBoost parameters (1/3)

- > eta staat voor hoeveel elke decision tree bijdraagt aan de uiteindelijke voorspelling [default=0.3]
- > gamma is de minimale toegevoegde waarde van een nieuwe split [default=0]
- > max_depth is de maximale diepte van elke decision tree [default=6]
- > **subsample** is de ratio van random training samples waarop elke decision tree wordt getraind [default=1.0]
- > colsample_bytree en colsample_bylevel geven aan welke ratios van de kolommen worden gebruikt per tree en per level [default=1.0]

XGBoost parameters (2/3)

- > objective is het type loss functie die we minimalizeren, bijv. binary:logistic, multi:softmax, multi:softprob [default=reg:linear]
- > **eval_metric** is de metric waarmee we evalueren hoe goed onze voorspellingen zijn op de validatie data [default according to objective]
- > **seed** staat voor welke random seed we gebruiken [default=0]
- > **num_round** geeft aan hoeveel decision trees we trainen

XGBoost parameters (3/3)

```
# De verschillende parameters
param = {'eta':0.01,
    'max_depth': 10,
    'min_child_weight': 1,
    'gamma': 0,
    'subsample': 1.0,
    'colsample_bytree': 1.0,
    'colsample_bytevel': 1.0,
    'silent': 1,
    'objective': 'reg:linear',
    'eval_metric': 'mae',
    'seed': 42}

# Hoeveel trees we trainen
num_round = 100
```


Overfitting

> Hoge training accuracy, lage validatie accuracy

Drie manieren om overfitting te voorkomen:

- Model complexiteit verminderen met max_depth en gamma
- > Randomness toevoegen met subsample, colsample_bytree en colsample_bylevel
- > De **eta** verminderen en **num_round** verhogen

Cross-validation

	← Total Number of Dataset — ►	
Experiment 1		
Experiment 2		Training
Experiment 3		Training
Erra anima ant 4		Validation
Experiment 4		
Experiment 5		

Cross-validation

	train-mae-mean	train-mae-std	test-mae-mean	test-mae-std		
0	6.256053	0.005370	6.256020	0.021399		
1	6.193581	0.005316	6.193493	0.021403		
2	6.131712	0.005190	6.131599	0.021508		
3	6.070492	0.005191	6.070339	0.021497		

Gradient boosting kan niet alles...

- 'Garbage in, garbage out'
- Data-inzicht en pre-processing zijn net zo belangrijk
- > Tips van Kaggle winnaars

The 'garbage in, garbage out' principle:

Kaggle competities

- > Bouw model op openbare training data
- Maak voorspellingen op semiopenbare validatie data
- > Validatie data score staat op public leaderboard
- > Test data score blijft geheim tot einde competitie

Tip 1: stacken van modellen

Op basis van:

- > Verschillende type modellen
- > Verschillende parameters
- > Verschillende features
- > Verschillende training sets

Tip 2: combineren van voorspellingen

Meest gebruikt:

- > (Un)weighted average
- Majority vote
- > Trainen van nieuw model op de voorspellingen van voorgaande modellen

Tip 3: cross-validation

Als test data en validatie data verschillend verdeeld zijn:

- Train model met hoge score op de validatie data
- > Train model met beste gemiddelde score op crossvalidation over training set
- De combinatie geeft beter resultaat op test data

Tip 4: parameter tuning

Grid search

- Automatisch zoeken naar de beste hyperparameters voor een model
- > Verschillende parameter combinaties worden getest
- > Kan met scikit-learn

Tip 4: parameter tuning

```
import xgboost as xgb
                                                                         xgboost aanpasbare parameters
from sklearn.model selection import GridSearchCV
cv_params = {'eta':[0.2, 0.3, 0.4],
            'n_estimators': [10, 50, 200],
            'max_depth':[3, 6, 9],
            'subsample':[0.5, 0.75, 1.0],
            'colsample_bytree':[0.5, 0.75, 1.0],
             'colsample_bylevel':[0.5, 0.75, 1.0]}
                                                                         xgboost vaste parameters
ind_params = {'seed':42,
             'objective': 'reg:linear',
             'eval_metric':'mae',
             'silent':1}
optimized_GBM = GridSearchCV(xgb.XGBRegressor(**ind_params),
                            cv_params,
                            scoring = 'neg_mean_absolute_error',
                            cv = 5,
                            n_{jobs} = -1)
optimized_GBM.fit(valid_X, valid_y)
                                                                         grid search parameters
optimized_GBM.best_params_
```

Tip 5: feature engineering & selection

Feature engineering

- Toevoegen van nieuwe features
- Xan relaties in kaart brengen die nog niet in de data worden meegenomen

Feature selection

- Verwijderen van onbelangrijke variabelen
- > Kan makkelijk in XGBoost

Tip 5: feature engineering & selection

```
import xgboost as xgb
import pandas as pd

# Maak train en validatie matrixen aan
dtrain = xgb.DMatrix(data=train_X.values, label=train_y.values, feature_names=train_X.columns)
dvalid = xgb.DMatrix(data=valid_X.values, label=valid_y.values, feature_names=valid_X.columns)

# Stel de verschillende parameters in
param = {'eta': 0.01, 'max_depth': 10, 'silent':1, 'objective': 'reg:linear', 'eval_metric': 'mae'}
num_round = 100

bst = xgb.train(param, dtrain, num_round)
```

```
xgb.plot_importance(bst)
```


Speciaal bier competitie

- > Bart houdt van speciaal bier
- > Bart heeft een bier app
- > Bart wilt weten welke (nieuwe) bieren hij wel of niet lekker zal vinden
- > Bart vraagt jullie hulp

Speciaal bier competitie

- Maak een XGBoost model dat voorspelt welke score Bart geeft aan een bier
- > Gebruik één of meerdere modellen
- > Winnaar krijgt een speciaalbier pakket

Info over de bier data (1/3)

> calorien: Totaal aantal calorieën in het bier

> **dichtheid:** De dichtheid van het bier (kg/dm³)

> **gedronken:** Aantal keren dat Bart het bier gedronken heeft

> **is_belgisch:** Of het bier uit België komt (0=nee, 1=ja)

> **is_speciaal:** Of het bier een speciaalbier is (0=nee, 1=ja)

> pct_alcohol: Percentage alcohol in het bier (%)

pct_eiwitten: Percentage eiwitten in het bier (%)

Info over de bier data (2/3)

> pct_gist: Percentage gist in het bier (%)

> pct_hop: Percentage hop in het bier (%)

> **recensie:** Gemiddelde score in de bier app (0.0-10.0)

> **suiker:** Hoeveelheid suiker in het bier (g/100ml)

> water_kw: Score voor de kwaliteit van het water (0.0-2.0)

> **zuur:** Score voor hoe zuur het bier is (0.0-2.0)

beoordeling: Score voor hoe lekker Bart het bier zal vinden (1 t/m 10)

Info over de bier data (3/3)

> Training set: 3898 rijen (60%)

Validatie set: 1299 rijen (20%)

> **Test set:** 1300 rijen (20%)

	calorien	dichtheid	gedronken	is_belgisch	is_speciaal	pct_alcohol	pct_eiwitten	pct_gist	pct_hop	recensie	suiker	water_kw	zuur	beoordeling
0	152.0	0.9935	26.0	1.0	1.0	6.7	10.00	0.98	4.4	6.0	1.20	0.47	0.39	7.0
1	126.0	0.9943	17.0	1.0	1.0	5.8	9.10	1.06	11.1	4.0	4.50	0.46	0.26	6.0
2	26.0	0.9965	13.0	0.0	0.0	6.0	10.00	1.84	10.0	5.7	2.20	0.47	0.04	6.0
3	197.0	0.9980	41.0	1.0	1.0	8.5	9.80	1.48	5.2	2.3	16.20	0.50	0.21	4.0
4	45.0	0.9914	9.0	1.0	1.0	6.7	10.50	0.68	5.4	2.8	3.60	0.40	0.33	7.0
5	140.0	0.9914	44.0	1.0	1.0	6.4	10.70	0.70	2.1	3.5	1.10	0.55	0.29	8.0

Meten van de resultaten

Train, validatie, test

- > Openbare training set
- > Openbare validatie set
- > Test set features beschikbaar
- > Test set labels <u>niet</u> beschikbaar
- > Volgorde van voorspellingen moet hetzelfde blijven

Metric

Mean Absolute Error (MAE):

MAE =
$$\frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j|$$

- Absolute error per voorspelling
- > Elke error telt even zwaar mee

Stuur je voorspellingen (als csv) en team naam naar gijs@pipple.nl!

Hulpmiddelen

Er is een Google Colab notebook beschikbaar

- > Inclusief de data
- > Te downloaden via ...

Deadline voor inzendingen:

> 0m 20:30

