

CI 2 – SLCI : ÉTUDE DU COMPORTEMENT DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS

Chapitre 3 – Modélisation des Systèmes Linéaires Continus Invariants Modélisation par schémas blocs

Travail Dirigé

D'après ressources de Florestan Mathurin

Modélisation d'une servocommande d'avion

On donne un diagramme des exigences partiel.

L'objectif de ce TD est de vérifier que l'écart statique du système de maintien de l'altitude est nul.

Exigence	Critère	Niveau	Flexibilité
ID 1.1	ID 2 Erreur Statique	0	Aucune

Étude de la servocommande

Modélisation dans l'hypothèse de fluide incompressible

Question 1

Écrire les équations du modèle sous forme symbolique (transformée de Laplace) en considérant que toutes les conditions initiales sont nulles.

On a:

$$-U_{c}(p) = \frac{1}{K_{a}}I(p) + U_{s}(p)$$

$$-Q(p) = SpX(p)$$

$$-U_{S}(p) = K_{C} \cdot X(p)$$

$$-F(p) = \frac{Q(p)}{I(p)} = \frac{K_{d}}{1 + Tp}$$

Question 2

Représenter chacune de ces relations sous forme de schéma bloc partiel.

1

Regrouper les schémas blocs partiels afin de représenter le schéma bloc correspondant au comportement de la servocommande.

Question 4

Calculer les fonctions de transfert suivantes et donner à chaque fois la classe et l'ordre :

- fonction de transfert du vérin non asservi : $A_1(p) = \frac{X(p)}{Q(p)}$;
- fonction de transfert de la chaîne directe : $C(p) = \frac{X(p)}{\varepsilon(p)}$;
- fonction de transfert boucle ouverte du système : $G(p) = \frac{U_s(p)}{\varepsilon(p)}$;
- fonction de transfert en boucle fermée du système : $H(p) = \frac{X(p)}{U_c(p)}$

Fonction de transfert du vérin non asservi :

$$A_1(p) = \frac{X(p)}{Q(p)} = \frac{1}{Sp}$$

 $A_1(p)$ est d'ordre 1 et de classe 1.

Fonction de transfert de la chaîne directe :

$$C(p) = \frac{X(p)}{\varepsilon(p)} = \frac{K_a \cdot K_d}{Sp(1+Tp)}$$

C(p) est d'ordre 2 et de classe 1.

Fonction de transfert boucle ouverte du système :

$$G(p) = \frac{U_s(p)}{\varepsilon(p)} = \frac{K_a \cdot K_d \cdot K_C}{Sp(1+Tp)}$$

G(p) est d'ordre 2 et de classe 1.

Fonction de transfert en boucle fermée du système :

$$H(p) = \frac{X(p)}{U_{c}(p)} = \frac{\frac{K_{a} \cdot K_{d}}{Sp(1+Tp)}}{1 + \frac{K_{a} \cdot K_{d} \cdot K_{C}}{Sp(1+Tp)}} = \frac{K_{a} \cdot K_{d}}{Sp(1+Tp) + K_{a} \cdot K_{d} \cdot K_{C}} = \frac{\frac{K_{a} \cdot K_{d}}{K_{a} \cdot K_{d} \cdot K_{C}}}{\frac{Sp}{K_{a} \cdot K_{d} \cdot K_{C}}} (1+Tp) + 1$$

2

H(p) est d'ordre 2 et de classe 0.

Le système étant régit par sa fonction transfert en boucle fermée, déterminer, dans le domaine temporel, la réponse indicielle du système.

Correction

Question 6

Dans le cas d'un échelon, donner la valeur initiale, la valeur finale et la pente à l'origine de la sortie.

Correction

Question 7

Déterminer l'écart statique.

Dans la configuration, donnée, l'entrée et la sortie du système ne sont pas les mêmes grandeurs physiques. En conséquence, l'écart statique peut être défini par :

$$\varepsilon_{S} = \lim_{t \to +\infty} \varepsilon(t) = \lim_{p \to 0} p \varepsilon(p) = \lim_{p \to 0} p \frac{E(p)}{1 + C(p)}$$

E(p) étant une entrée indicielle, l'entrée est un échelon d'amplitude 1; donc $E(p) = \frac{1}{p}$.

 $\varepsilon_{S} = \lim_{p \to 0} p \frac{1}{p} \frac{1}{1 + \frac{K_{a} \cdot K_{d}}{Sp(1 + Tp)}} = \lim_{p \to 0} \frac{Sp(1 + Tp)}{Sp(1 + Tp) + K_{a} \cdot K_{d}} = 0$

rrection

Question 8

Conclure quant à la validité du cahier des charges dans le cas où le fluide est incompressible.

Correction

Dans le cas où on fait l'hypothèse que le fluide n'est pas compressible, l'écart statique est nul. Le cahier des charges est donc vérifié.

Modélisation dans l'hypothèse du fluide compressible

Dans cette hypothèse, le modèle de connaissance du système est modifié :

- l'équation de débit dans le vérin devient : $q(t) = S \cdot \frac{dx(t)}{dt} + \frac{V}{2B} \frac{d\Delta p(t)}{dt}$ où $\Delta p(t)$ représente la différence de pression entre les 2 chambres du vérin, V est le volume total de fluide dans le vérin (V est constant) et B le coefficient de compressibilité du fluide hydraulique (pour un fluide incompressible $B \to \infty$);
- effort moteur sur le piston : $F_m(t) = S \cdot \Delta p(t)$;
- principal fondamental de la dynamique appliqué sur la tige de vérin : $F_m(t) F_r(t) f \frac{dx(t)}{dt} = m \cdot \frac{d^2x(t)}{dt^2}$ où $F_r(t)$ représente l'effort résistant sur la tige du vérin, effort qui sera considéré comme une perturbation et f représente le frottement visqueux.

Écrire les équation du modèle sous forme symbolique (transformée de Laplace) en considérant que toutes les conditions initiales sont nulles.

On a:

$$-Q(p) = S \cdot pX(p) + \frac{V}{2B}p\Delta P(p);$$

$$-F_m(p) = S \cdot \Delta P(p);$$

$$-F_m(p) - F_r(p) - fpX(p) = m \cdot p^2 X(p).$$

Question 10

Représenter chacune de ces relations sous forme de schéma bloc partiel.

Question 11

Regrouper les schémas-blocs partiels. Afin de représenter le comportement du vérin non asservi (grandeur d'entrée Q(p), grandeur de sortie X(p)). Le schéma bloc contiendra un retour et une perturbation.

CI 2 : SLCI – Travail Dirigé Ch. 3 : Modélisation – P

Calculer la nouvelle fonction de transfert du vérin non asservi : $A_2(p) = \frac{X(p)}{Q(p)}$, en supposant que la perturbation $F_r(t)$ est nulle. Donner à chaque fois la classe et l'ordre de $A_2(p)$.

On a:

$$A_{2}(p) = \frac{X(p)}{Q(p)} = \frac{\frac{2B}{Vp} \cdot S \cdot \frac{1}{mp^{2} + fp}}{1 + \frac{2B}{Vp} \cdot S \cdot \frac{1}{mp^{2} + fp} \cdot Sp} = \frac{2BS}{mVp^{3} + fVp^{2} + 2BS^{2}p}$$

$$A_{2}(p) = \frac{1}{p} \cdot \frac{2BS}{mVp^{2} + fVp + 2BS^{2}}$$

Cette fonction de transfert est d'ordre 3 et de classe 1.

Question 13

Donner la fonction de transfert du système complet dans le cas où Q(p) est non nulle et $F_r(p)$ est nulle.

Correction

Question 14

Quelle est la modification apportée par le modèle du fluide incompressible.

Correction

Question 15

Calculer l'écart statique et conclure quant à la validité du cahier des charges dans le cas où le fluide est considéré comme compressible et que $F_r(p)$ est nulle.

Correction

Question 16

Exprimer X(p) en fonction de $U_C(p)$ et $F_r(p)$.

Correction

 $Le \ cahier \ des \ charges \ est-il \ v\'erifi\'e \ lors que \ les \ deux \ entr\'ees \ sont \ des \ \'echelons \ d'amplitude \ 1 \ ?$

CI 2 : SLCI – Travail Dirigé Ch. 3 : Modélisation – P