模型评估与优化

汪小圈

2025 - 03 - 17

内容安排

- 为什么需要评估模型?
- 评估指标
 - 分类模型评估指标
 - 回归模型评估指标
- 交叉验证
- 超参数调优
- 模型优化策略
- 正则化方法

为什么需要评估模型?

• 避免过拟合与欠拟合

- 模型可能在训练数据上表现很好,但在未见过的数据上表现很差(过拟合)
- 模型可能无法捕捉到数据中的基本模式 (欠拟合)

• 选择最佳模型

- 需要比较不同模型或模型配置的性能
- 选择在验证数据上表现最佳的模型

• 了解模型性能

- 了解模型在不同情况下的表现
- 发现模型的优势和局限性

• 指导模型改进

- 评估结果可以帮助识别模型的弱点
- 指导进一步的模型优化

分类模型评估指标(1)

• 准确率 (Accuracy)

- 分类正确的样本数占总样本数的比例
- 适用于类别分布均衡的数据集
- Accuracy = 正确分类的样本数 总样本数

• 精确率 (Precision)

- 预测为正例的样本中,真正例的比例
- 关注模型预测正例的准确性
- Precision = $\frac{TP}{TP+FP}$
 - TP (True Positive): 真正例
 - FP (False Positive): 假正例

分类模型评估指标(2)

- 召回率 (Recall)
 - 所有实际正例中,被模型正确预测为正例的比例
 - 关注模型发现所有正例的能力
 - Recall = $\frac{TP}{TP+FN}$
 - FN (False Negative): 假负例
- F1 分数 (F1-Score)
 - 精确率和召回率的调和平均值
 - 综合考虑精确率和召回率
 - F1-Score = $2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$

分类模型评估指标(3)

• AUC-ROC 曲线

- ROC 曲线:不同阈值下,真正例率 (TPR) 与假正例率 (FPR) 的关系曲线
- AUC (Area Under Curve): ROC 曲线下的面积
- AUC 值越大,模型性能越好
- 适用于评估二分类模型的排序能力
- TPR (True Positive Rate): $\frac{TP}{TP+FN}$, 等于召回率
- FPR (False Positive Rate): $\frac{\dot{F}P}{FP+TN}$

分类模型评估:混淆矩阵

- 混淆矩阵 (Confusion Matrix)
 - 总结分类模型预测结果的表格
 - 直观展示模型在每个类别上的预测情况
 - 可用于计算精确率、召回率、F1 分数等指标

	预测为正例	预测为负例
实际正例	TP	FN
实际负例	FP	TN

回归模型评估指标(1)

- 均方误差 (Mean Squared Error, MSE)
 - 预测值与真实值之差的平方的平均值
 - 对误差进行平方,放大误差较大的样本的影响
 - MSE 越小,模型性能越好
 - MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i \hat{y}_i)^2$
- 均绝对误差 (Mean Absolute Error, MAE)
 - 预测值与真实值之差的绝对值的平均值
 - 避免正负误差相互抵消
 - 对异常值不敏感
 - MAE = $\frac{1}{n} \sum_{i=1}^{n} |y_i \hat{y}_i|$

回归模型评估指标(2)

- 均方根误差 (Root Mean Squared Error, RMSE)
 - 均方误差的平方根
 - 与原始数据量纲一致, 更易于解释
 - RMSE = $\sqrt{\text{MSE}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i \hat{y}_i)^2}$
- R 平方 (R-squared)
 - 模型解释的方差比例
 - 取值范围为 [0,1], 值越大, 模型拟合程度越好
 - $R^2 = 1$ 表示模型完美拟合数据
 - $R^2 = 0$ 表示模型性能与使用均值作为预测值相当
 - $R^2=1-\frac{SS_{res}}{SS_{tot}}=1-\frac{\sum_{i=1}^n(y_i-\hat{y}_i)^2}{\sum_{i=1}^n(y_i-\bar{y}_i)^2}$

交叉验证 (1)

目的

- 更可靠地评估模型的泛化能力
- 避免模型在特定数据集划分上的偶然性

• 基本思想

- 将数据集分成若干份
- 轮流使用其中一份作为验证集, 其余作为训练集
- 多次训练和评估,取平均性能作为最终评估结果

交叉验证 (2)

- 常用方法
 - k 折交叉验证 (k-Fold Cross-Validation)
 - 将数据集分成 k 份
 - 每次使用 1 份作为验证集, 其余 k-1 份作为训练集
 - 重复 k 次,取平均性能
 - 常用 k 值: 5 或 10
 - 留一交叉验证 (Leave-One-Out Cross-Validation, LOOCV)
 - k 折交叉验证的特殊情况, k 等于样本总数
 - 每次只使用一个样本作为验证集
 - 计算成本高,适用于小数据集
 - 分层 k 折交叉验证 (Stratified k-Fold Cross-Validation)
 - 保证每个 fold 中各类别样本比例与原始数据集相同
 - 适用于类别不平衡的数据集

超参数调优 (1)

• 超参数 (Hyperparameters)

- 模型训练前需要手动设置的参数
- 例如: 学习率、正则化系数、决策树的最大深度等
- 不同于模型参数,超参数不是通过训练优化的

目的

- 找到最佳的超参数组合
- 使模型在验证集上获得最佳性能

超参数调优 (2)

• 常用方法

- 网格搜索 (Grid Search)
 - 预先定义超参数的候选值
 - 穷举所有可能的超参数组合
 - 评估每种组合的性能,选择最佳组合
 - 优点:全面;缺点:计算成本高
- 随机搜索 (Random Search)
 - 在预定义的超参数空间中随机采样
 - 通常比网格搜索更高效
 - 适用于超参数空间较大的情况
- 贝叶斯优化 (Bayesian Optimization)
 - 建立超参数与模型性能之间的概率模型
 - 根据该模型智能选择下一组超参数进行评估
 - 更高效地找到最佳超参数组合

模型优化策略(1)

• 特征工程 (Feature Engineering)

- 特征转换
 - 标准化、归一化、对数变换等
 - 使特征更符合模型假设
 - 对类别特征进行编码(独热编码、标签编码等)
- 特征组合
 - 将多个特征进行组合, 生成新的交叉特征
 - 捕捉特征之间的交互关系
 - 例如: 年龄与收入的乘积
- 特征选择
 - 选择最相关的特征子集
 - 去除冗余或不相关的特征
 - 降低模型复杂度,提高泛化能力

模型优化策略 (2)

- 模型选择 (Model Selection)
 - 模型比较
 - 尝试不同的机器学习模型(线性模型、树模型、神经网络等)
 - 在同一数据集上评估不同模型的性能
 - 选择性能最佳的模型
 - 模型融合
 - 将多个不同模型的预测结果进行融合
 - 获得更好的预测性能
 - 例如: stacking、blending 等集成方法

模型优化策略(3)

• 集成学习 (Ensemble Learning)

- Bagging
 - 通过 bootstrap 采样创建多个训练集
 - 在每个训练集上训练一个基学习器
 - 将多个基学习器的预测结果平均或投票
 - 例如: 随机森林 (Random Forest)
- Boosting
 - 迭代训练基学习器,每个基学习器纠正前一个的错误
 - 将多个基学习器加权组合
 - 例如: 梯度提升树 (GBDT)、XGBoost、LightGBM
- 数据增强 (Data Augmentation)
 - 通过对训练数据进行变换,增加训练数据的多样性
 - 提高模型的泛化能力
 - 例如: 图像旋转、平移、缩放; 文本同义词替换; 音频添加噪声等

正则化方法(1)

• L1 正则化 (Lasso Regularization)

- 添加模型权重的 L1 范数惩罚项
- 使权重稀疏化,有助于特征选择
- 可以将一部分权重压缩为 0
- $\text{Loss}_{regularized} = \text{Loss}_{original} + \lambda \sum_i |w_i|$

• L2 正则化 (Ridge Regularization)

- 添加模型权重的 L2 范数惩罚项
- 减小模型权重, 使模型更平滑
- 权重趋向于变小, 但不会变为 0
- Loss_{regularized} = Loss_{original} + $\lambda \sum_{i} w_{i}^{2}$

正则化方法(2)

• Elastic Net

- 结合 L1 和 L2 正则化的方法
- 既可以进行特征选择,又可以减小模型权重
- Loss_{regularized} = Loss_{original} + $\lambda_1 \sum_i |w_i| + \lambda_2 \sum_i w_i^2$

Dropout

- 在训练过程中随机将一部分神经元的输出置为 0
- 强制网络学习更鲁棒的特征表示
- 减少神经元之间的共适应性
- 常用于深度神经网络

正则化方法(3)

• Early Stopping (提前终止)

- 监控验证集上的性能指标
- 当验证集性能不再提升或开始下降时,停止训练
- 简单易用,无需额外计算
- 有效防止过拟合

• Batch Normalization (批量归一化)

- 对神经网络每一层的输入进行归一化
- 加速模型训练,提高训练稳定性
- 减轻内部协变量偏移问题
- 具有一定的正则化效果

• 模型剪枝 (Pruning)

- 决策树剪枝: 剪去不必要的节点
- 神经网络剪枝: 移除不重要的连接或神经元
- 减小模型复杂度,提高模型效率

总结

- 模型评估是机器学习流程中至关重要的一步
 - 了解模型性能
 - 选择最佳模型
 - 指导模型改进
- 不同的任务需要选择不同的评估指标
 - 分类任务:准确率、精确率、召回率、F1 分数、AUC 等
 - 回归任务: MSE、MAE、RMSE、R² 等
- 交叉验证和超参数调优可以提高模型的泛化能力
- 模型优化是一个迭代过程,需要尝试不同的策略
 - 特征工程
 - 模型选择
 - 集成学习
 - 正则化方法

