Moth 621: Lecture 19 11-18-2020 $X \sim (auchy (0,1)) = \frac{1}{\pi} \frac{1}{\chi^2 + 1}$ $E(x) = \int_{\mathbb{R}} x \frac{1}{H} \frac{1}{x^2 + 1} dx = \infty \quad \text{the expectation}$ $\frac{doesn't \ exist}{doesn't \ exist}$ $M_{\chi}(t) = \int_{\mathbb{R}} e^{tx} \frac{1}{H} \frac{1}{x^2 + 1} dx \quad \text{doesn't exist}$ Ox (+) = for eitx + 1/2+1 dx = ---= e-1+1 $\phi_{x}'(t) = -\frac{t}{1+1} e^{-1+1}, \quad \phi_{x}'(0) = DNE$ het's derive the Cauchy distribution like the physicists found it: $\frac{1}{\sqrt{\frac{1}{2}}} \frac{\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}$ X=9(0) $0=9^{-1}(x)=axctan(x)$ between - T/2 and T/2. $f_X(x) = f_0(g^{-1}(x)) \left| \frac{d}{dx} \left[g^{-1}(x) \right] \right|$ = IT Tarc tan(x) = [- I] X2+1 = (auchy (0,1).

let X1, -, Xn lid N(u, o2) -> Xi-M = Zi~N(0,1) $T_n \sim N(nu, n\sigma^2), \overline{X_n} \sim N(u, \frac{\sigma^2}{n}),$ $S^{2} = \frac{1}{n-1} \sum (x_{i} - \bar{x})^{2} \sim f_{S_{n}}(s^{2}) = ?$ (will come back ---) Sample variance. $\frac{2}{2}$, $\frac{1}{2}$, $\frac{1}{2}$ $\frac{$ $= \frac{n}{\sum_{i=1}^{n} \left(\frac{\chi_{i} - \mu}{\sigma}\right)^{2}} = \frac{\sum_{i=1}^{n} \left(\chi_{i} - \mu\right)^{2}}{\sigma^{2}}$ $(X_i - u)^2 = ((X_i - X) + (X - u))^2$ $= Z(x_i - \overline{x})^2 + Z_2(x_i - \overline{x})(x_i - \overline{x}) + \Sigma(x_i - \overline{u})^2$ $\sum X_i \bar{X} - \bar{X}^2 - X_i u + \bar{X} u$ $= \frac{1}{2} \sum_{\sigma = 1}^{2} \left(\frac{x_{i} - u}{x_{i}} \right)^{2} = \frac{1}{2} \left(\frac{x_{i} - u}{x_{i$ In order for this / U,~ xk, indep of U2~ xk2 "may be" to be => U1 + U2 ~ xk1+k2 Inve, we reed independence of those two terms he we need 52 and x to be independent.

We need Cochran's Theorem to prove this. 艺艺 = 芝丁豆 ~ 外产 on this scalar is called a Consider ZT [10 "quadratic form" = $\frac{2}{2}$ $\sim \chi_1^2$ Consider ZT Too C B. Meetrix rank [Bi] = 1 Zrank [Bi] = n $\overline{Z}^{T}I\overline{Z} = \overline{Z}^{T}(\beta_{1} + \beta_{2} + \cdots + \beta_{n})\overline{Z}$ $= \overline{Z}^{T}\beta_{1}\overline{Z} + \overline{Z}^{T}\beta_{2}\overline{Z} + \cdots + \overline{Z}^{T}\beta_{n}\overline{Z} \sim \chi_{n}^{2}$ Consecture: each of these quadratic forms is independent. Cochran's Theorem: If Bi+Bz+-+BK=I, Ken and the sum of their ranks is nother you have two powerful results: a) zt Bjz ~ Yrank[Bi] and b) zt Biz is indep of zBizz / Yii+iz. Consider \(\(\(\) \($= \sum_{n=1}^{\infty} \frac{1}{2^n} = \sum_$ = 23;2-132 Tn = n-din column vector of all = 大方で T=tree

122= 12至=大长艺丁十十五 (4) let In=TTT , which is an nxh matrix $Z(z; -\bar{z})^2 = \bar{z}^T I \bar{z} - \bar{z}^T (\bar{h} J_n) \bar{z}$ $= \bar{z}^T (I - \bar{h} J_n) \bar{z}$ $\frac{1}{2}\overline{1} = \frac{1}{2}(2i-\overline{2})^2 + n\overline{2}^2$ = $\frac{1}{2}\overline{1}B_1\overline{2} + \frac{1}{2}\overline{1}B_2\overline{2}$ I want to use Cochran's thin on the above expression. So I need to make sure $B_1 + B_2 = \overline{1}$ and Ronk [Bi] + ronk [Bi] = n. B1+B2 = (I- fn Jn) + fn Jn = IV Rank [B2] = rank [th In] = rank [] = 1 Rank [Bi] = Rank [I-h] =? Theorem from 231 Class: If A is Symmetric & idempotent (ie. AA = A) , then rank[A] = tr[A] = sum of A's $(I - \frac{1}{h}J)^{T} = I^{T} - \frac{1}{h}J^{T} = I - \frac{1}{h}J^{V}$ [1-4] (1-4] = 11-4]1-41]+4] $\frac{1}{1} = \frac{2}{n} + \frac{1}{n} = n$ $= \begin{bmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{bmatrix} = 31$ Continued

$$Jn[I-h] = (I-h1)+(I-h1)+...+(I-h1)$$

$$= N-I = rank[B_1]$$

$$= rank$$

 $\frac{X-\mu}{5\pi} \sim N(0,1), \frac{X-\mu}{5\pi} \sim 0$ Not N(0,1)Next Class Since the two conditions of Codasis Thin. godni i-ne What does this have to an with our Well it's the same string: i fished moved this wo Cochasis thim independit brand in 1936 that de composition is exolusive