

UNIDADES Y MAGNITUDES FÍSICAS.

Conversión de unidades y análisis dimensional

www.tecsup.edu.pe

Logros de la sesión

Al finalizar la sesión, los estudiantes estarán en la capacidad de desarrollar conversión de unidades y evaluar sistemas de ecuaciones dimensionales.

Introducción

- ✓ La física es una ciencia fáctica, ciencia experimental, se sustenta en observaciones experimentales y mediciones cuantitativas para elaborar leyes fundamentales y así describir y predecir el comportamiento de los fenómenos naturales.
- ✓ Las leyes fundamentales de la física se expresan en lenguaje matemático, la matemática es el puente entre la teoría y el experimento.

Se representan a través de un numero, una dirección y su unidad de medida. (Ej. Velocidad – Aceleración – Fuerza)

DERIVADAS

Son aquellas que se pueden expresar en término de las magnitudes fundamentales mediante relaciones matemáticas.

(Ej. Velocidad – Energía – Fuerza - Potencia)

Sistema Internacional de Unidades - SI

El sistema internacional de unidades fija las magnitudes fundamentales, sus unidades, y un conjunto de prefijos.

Cantidad	Nombre de la unidad	Símbolo	
	Unidades básicas del SI		
longitud	metro	m	
masa	kilogramo	kg	
tiempo	segundo	S	
corriente eléctrica	ampere	Α	
temperatura termodinámica	kelvin	K	
cantidad de sustancia	mol	mol	
intensidad lumínica	candela	cd	

Sistema Internacional de Unidades - SI

Entre las magnitudes derivadas tenemos:

Cantidad Física (Magnitud)	Fórmula
Área	A
Volumen	V
Velocidad media	$v_m = \Delta x / \Delta t$
Aceleración media	$a_m = \Delta v / \Delta t$
Fuerza	F = m.a
Trabajo	$W = F \cdot d$
Potencia	$P = W / \Delta t$
Presión	p = F / A
Velocidad angular media	$\omega_{M} = \Delta \theta / \Delta t$
Aceleración angular media	$\alpha_M = \Delta\omega / \Delta t$
Cantidad de movimiento	$p = m \cdot v$
Carga eléctrica	$q = I \cdot \Delta t$
Diferencia de potencial eléctrico	$\Delta V = W / q$
Resistencia eléctrica	$R = \Delta V / I$

Cantidades derivadas adimensionales

Magnitud	Unidad	Símbolo
Ángulo plano	radián	rad
Ángulo sólido	esterodarián	sr

Radián: es la medida de un ángulo plano central, comprendido entre dos radios, que abarcan un arco de longitud igual al radio con el que ha sido trazado

Prefijos para potencias de 10

Potencia de 10	Prefijo	Abreviatura
10^{-24}	yocto-	у
10^{-21}	zepto-	z
10^{-18}	atto-	a
10^{-15}	femto-	f
10^{-12}	pico-	p
10^{-9}	nano-	n
10^{-6}	micro-	μ
10^{-3}	mili-	m
10^{-2}	centi-	c
10^{3}	kilo-	k
10^{6}	mega-	M
10^9	giga-	G
1012	tera-	T
10^{15}	peta-	P
10 ¹⁸	exa-	E
10 ¹⁸ 10 ²¹ 10 ²⁴	zetta-	Z
10^{24}	yotta-	Y

Longitud

1 nanómetro = 1 nm = 10⁻⁹ m (unas cuantas veces el tamaño del átomo más grande)

- 1 micrómetro = 1 μm = 10⁻⁶ m (tamaño de algunas bacterias y células vivas)
- 1 milímetro = 1 mm = 10⁻³ m (diámetro del punto de un bolígrafo)
- 1 centímetro = 1 cm = 10⁻² m (diámetro del dedo meñique)
- 1 kilómetro = 1 km = 10³ m (un paseo de 10 minutos caminando)

Masa

- 1 microgramo = 1 μ g = 10⁻⁶ g = 10⁻⁹ kg (masa de una partícula pequeña de polvo)
- 1 miligramo = 1 mg = 10^{-3} g = 10^{-6} kg (masa de un grano de sal)
- 1 gramo = 1 g = 10^{-3} kg (masa de un clip de papeles)

Tiempo

- 1 nanosegundo = 1 ns = 10^{-9} s (tiempo en que la luz recorre 0.3 m)
- 1 microsegundo = 1 μs = 10⁻⁶ s (tiempo en que la estación espacial recorre 8 mm)
- 1 milisegundo = 1 ms = 10^{-3} s (tiempo en que el sonido viaja 0.35 m)

Encuentra los errores:

Especificaciones:

Motor: 124 cc, monocilíndrico

Diámetro y carrera del cilindro: 57 x 48.8 mm.

Potencia Máxima: 6.29Kw

Velocidad Máxima: 85 km/hr

Longitud total: 1.945 mm.

Ancho total: 71 cm. Altura total: 1.12 m.

Alzada sobre tierra: 17 cm

distancia entre ejes: 1.27 m.

Peso Neto: 103 Kg.

Capacidad del tanque: 11 litros

Convertir: 1228,0 km/h a m/s

Ejemplo 3

Convertir: $0,525 la cm^3$.

Convertir: 8,24 J a cal.

Ejemplo 5

Convertir: 2,54 W a cal/s.

Una pirámide tiene una altura de 481 ft y su base cubre un área de 13,0 acres. Calcule el volumen de esta pirámide en metros cúbicos $(1 \text{ acre} = 43 560 \text{ ft}^2)$

Dimensión

Toda magnitud medida o calculada tiene asociada una dimensión y las unidades en que se expresan estas magnitudes no afectan las dimensiones de las mismas.

Por ejemplo un volumen sigue siendo un volumen así se exprese en m³ o en litros

Toda ecuación debe ser dimensionalmente compatible, esto es, las dimensiones a ambos lados deben ser las mismas.

Son representaciones de las ecuaciones físicas, donde las magnitudes se expresan en términos de sus dimensiones, independientemente de su valor y las unidades que intervengan.

- ✓ Las expresiones dimensionales se expresan entre corchetes [].
- ✓ La expresión dimensional de las magnitudes físicas son:

```
[Longitud]=L,

[masa]=M,

[Tiempo] =T,

[Temperatura] =\theta,

[Cantidad de Sustancia]=N,

[Intensidad de corriente]= J,

[Intensidad Luminosa]= I
```

La expresión dimensional de una magnitud física "X" puede ser expresada en forma general:

$$[X] = k L^a M^b T^c I^d \theta^e J^f N^g$$

Análisis Dimensional

El análisis dimensional es un procedimiento útil ya que permite:

- ✓ Verificar la validez de una ecuación física específica
- ✓ Deducir la forma de una ley física a partir de datos experimentales.

Cantidad	Área	Volumen	Rapidez	Aceleración
Dimensiones	L^2	L^3	L/T	L/T^2
Unidades del SI	m^2	m^3	m/s	m/s^2
Sistema usual estadounidense	ft^2	ft^3	ft/s	ft/s^2

Expresiones dimensionales de algunas magnitudes derivadas

Cantidad Física (Magnitud)	Fórmula	Expresión Dimensional
Área	A	L^2
Volumen	V	L^3
Velocidad media	$v_m = \Delta x / \Delta t$	LT^{-i}
Aceleración media	$a_m = \Delta v / \Delta t$	LT^{-2}
Fuerza	F = m.a	MLT^{-2}
Trabajo	$W = F \cdot d$	ML^2T^{-2}
Potencia	$P = W / \Delta t$	ML^2T^{-3}
Presión	p = F / A	$ML^{-1}T^{-2}$
Velocidad angular media	$\omega_{M} = \Delta \theta / \Delta t$	T^{-i}
Aceleración angular media	$\alpha_{M} = \Delta \omega / \Delta t$	T^{-2}
Cantidad de movimiento	$p = m \cdot v$	MLT^{-t}
Carga eléctrica	$q = I \cdot \Delta t$	IT
Diferencia de potencial eléctrico	$\Delta V = W / q$	$I^{-l}ML^2T^{-3}$
Resistencia eléctrica	$R = \Delta V / I$	$I^{-2}ML^2T^{-3}$

Principio de Homogeneidad

Si

$$A + B = C - D$$

Entonces

$$[A] = [B] = [C] = [D]$$

Adimensional

$$[-8] = *$$

$$[e^{-(xy)}] = * \Rightarrow [-xy)] = *$$

$$[sen(\omega t)] = * \Rightarrow [\omega t] = *$$

$$[log(x + 8t)] = * \Rightarrow [x + 8t] = *$$

Propiedades de la Ecuación Dimensional

- $\checkmark L \pm L = L$
- ✓ Si a es un numero o constante [a] = *, lo cual expresa que a no tiene dimensiones.
- ✓ Si F(y) es una función trigonométrica entonces [F(y)] = *y además [y] = *
- ✓ Si a es una constante numérica, entonces $[a^x] = *$ y además [x] = *.
- \checkmark G=A+BC^x \Longrightarrow [G]=[A]+[B][C]^x

La siguiente fórmula es dimensionalmente correcta y homogénea: E = AW² + BV² + CP. Donde:

E = energía,

W = velocidad angular,

V = velocidad lineal,

P = presión.

Calcular:[BC/A]

Ejemplo 9

En la siguiente expresión determinar las unidades de "K" en el SI, si la ecuación es dimensionalmente correcta y homogénea $K = \frac{(mV^2)}{R}$. Donde, m: masa, V: velocidad,

R: radio de curvatura

En un experimento de laboratorio se obtuvo la siguiente ecuación empírica $y = mx \pm b$. Se sabe que: m = 2,5 y b = 1,5 representan dos magnitudes físicas; además "y" tiene unidades de fuerza y que "x" tiene unidades de longitud. Si la ecuación empírica es dimensionalmente correcta y homogénea, determina las dimensiones de "b" y "m" y que magnitudes representan.

Aplicaciones a la ingeniería.

Mediante el software CAD de AutoCAD, inventor y Soliwork es posible mejorar la calidad de sus productos y acortar el proceso de desarrollo y diseño de productos. Dichas herramientas le permiten varios escenarios posibles y optimizar los diseños realizados.