

SRM Institute of Science and Technology College of Engineering and Technology School of Computing

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2021-22 (Even)

Test: CLA-T2
Course Code & Title: 18CSC204J Design and Analysis of Algorithms
Year & Sem: II Year / IV Sem
Date: 27-05-2022
Duration: 100 min
Max. Marks: 50

Course Articulation Matrix:

Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	-	-	-	-	-	-	-	-	-
CO2	-	3	2	-	-	-	-	-	-	-	-	-
CO3	-	3	3	-	-	-	-	-	-	-	-	-
CO4	3	2	3	-	-	-	-	-	-	-	-	-
CO5	2	3	-	-	-	-	-	-	-	-	-	-
CO6	-	2	3	-	-	-	-	-	-	-	-	-

	Part - A (10 x 1 = 10 Marks)					
Inst	tructions: Answer all					
Q. N	Question	Marks	BL	СО	PO	PI Code
1	In divide-and-conquer, to solve a problem recursively by applying three steps at each level of the recursion are	1	1	CO2	PO2	2.1.1
	b. Divide, Conquer and Combinec. Divide, Collect and Conquerd. Divide, Combination and Conquer					
2	Find the Maximum Subarray Sum for the following array elements in array A A= { -15, -3, -1, -2, -4, -8, -9} a15 b1 c42 d43	1	3	CO2	PO2	2.4.1
3	The time complexities of binary search is given as a. Best Case: Θ(n), Average Case: Θ(nlogn) and Worst Case: Θ(n logn) b. Best Case: Θ(nlogn), Average Case: Θ(n) and Worst Case: Θ(nlogn) c. Best Case: Θ(1), Average Case: Θ(logn) and Worst Case: Θ(logn)	1	4	CO2	PO3	3.1.1

a. Counting based sort b. Partition-exchange sort c. Comparison-exchange sort d. Grouping based sort 5 A subset S of the plane is called convex if and only if a. For any pair of points p,q in S, the line segments pq is partially contained in S b. For any pair of points p,q in S, the line segments pq is contained outside S c. For any pair of points p,q in S, the line segments pq is not contained in S d. For any pair of points p,q in S, the line segments pq is completely contained in S 6 In greedy method, requires a minimum or maximum result. a. Average Time Problem b. Optimization Problem c. Performance Problem d. Sorting	1			l l	
4 Quick Sort is also called as a. Counting based sort b. Partition-exchange sort c. Comparison-exchange sort d. Grouping based sort 5 A subset S of the plane is called convex if and only if a. For any pair of points p,q in S, the line segments pq is partially contained in S b. For any pair of points p,q in S, the line segments pq is contained outside S c. For any pair of points p,q in S, the line segments pq is not contained in S d. For any pair of points p,q in S, the line segments pq is completely contained in S 6 In greedy method, requires a minimum or maximum result. a. Average Time Problem b. Optimization Problem c. Performance Problem d. Sorting					
a. Counting based sort b. Partition-exchange sort c. Comparison-exchange sort d. Grouping based sort 5 A subset S of the plane is called convex if and only if a. For any pair of points p,q in S, the line segments pq is partially contained in S b. For any pair of points p,q in S, the line segments pq is contained outside S c. For any pair of points p,q in S, the line segments pq is not contained in S d. For any pair of points p,q in S, the line segments pq is completely contained in S 6 In greedy method, requires a minimum		1			
b. Partition-exchange sort c. Comparison-exchange sort d. Grouping based sort 5 A subset S of the plane is called convex if and only if a. For any pair of points p,q in S, the line segments pq is partially contained in S b. For any pair of points p,q in S, the line segments pq is contained outside S c. For any pair of points p,q in S, the line segments pq is not contained in S d. For any pair of points p,q in S, the line segments pq is completely contained in S 6 In greedy method, requires a minimum or maximum result. a. Average Time Problem b. Optimization Problem c. Performance Problem d. Sorting		4	1 4	CO2 PO2	2.1.1
c. Comparison-exchange sort d. Grouping based sort 5 A subset S of the plane is called convex if and only if a. For any pair of points p,q in S, the line segments pq is partially contained in S b. For any pair of points p,q in S, the line segments pq is contained outside S c. For any pair of points p,q in S, the line segments pq is not contained in S d. For any pair of points p,q in S, the line segments pq is completely contained in S 6 In greedy method, requires a minimum or maximum result. a. Average Time Problem b. Optimization Problem c. Performance Problem d. Sorting					
d. Grouping based sort 5 A subset S of the plane is called convex if and only if a. For any pair of points p,q in S, the line segments pq is partially contained in S b. For any pair of points p,q in S, the line segments pq is contained outside S c. For any pair of points p,q in S, the line segments pq is not contained in S d. For any pair of points p,q in S, the line segments pq is completely contained in S 6 In greedy method, requires a minimum or maximum result. a. Average Time Problem b. Optimization Problem c. Performance Problem d. Sorting					
5 A subset S of the plane is called convex if and only if a. For any pair of points p,q in S, the line segments pq is partially contained in S b. For any pair of points p,q in S, the line segments pq is contained outside S c. For any pair of points p,q in S, the line segments pq is not contained in S d. For any pair of points p,q in S, the line segments pq is completely contained in S 6 In greedy method, requires a minimum or maximum result. a. Average Time Problem b. Optimization Problem c. Performance Problem d. Sorting					
a. For any pair of points p,q in S, the line segments pq is partially contained in S b. For any pair of points p,q in S, the line segments pq is contained outside S c. For any pair of points p,q in S, the line segments pq is not contained in S d. For any pair of points p,q in S, the line segments pq is completely contained in S 6 In greedy method, requires a minimum or maximum result. a. Average Time Problem b. Optimization Problem c. Performance Problem d. Sorting					
is partially contained in S b. For any pair of points p,q in S, the line segments pq is contained outside S c. For any pair of points p,q in S, the line segments pq is not contained in S d. For any pair of points p,q in S, the line segments pq is completely contained in S 6 In greedy method, requires a minimum or maximum result. a. Average Time Problem b. Optimization Problem c. Performance Problem d. Sorting	d convex if and only if 1	5	1 4	CO2 PO2	2.1.1
b. For any pair of points p,q in S, the line segments pq is contained outside S c. For any pair of points p,q in S, the line segments pq is not contained in S d. For any pair of points p,q in S, the line segments pq is completely contained in S 6 In greedy method, requires a minimum or maximum result. a. Average Time Problem b. Optimization Problem c. Performance Problem d. Sorting	in S, the line segments pq				
is contained outside S c. For any pair of points p,q in S, the line segments pq is not contained in S d. For any pair of points p,q in S, the line segments pq is completely contained in S 6 In greedy method, requires a minimum or maximum result. a. Average Time Problem b. Optimization Problem c. Performance Problem d. Sorting					
c. For any pair of points p,q in S, the line segments pq is not contained in S d. For any pair of points p,q in S, the line segments pq is completely contained in S 6 In greedy method, requires a minimum or maximum result. a. Average Time Problem b. Optimization Problem c. Performance Problem d. Sorting	in S, the line segments pq				
is not contained in S d. For any pair of points p,q in S, the line segments pq is completely contained in S 6 In greedy method, requires a minimum or maximum result. a. Average Time Problem b. Optimization Problem c. Performance Problem d. Sorting					
d. For any pair of points p,q in S, the line segments pq is completely contained in S 6 In greedy method, requires a minimum 1 4 CO3 PO2 3.1. or maximum result. a. Average Time Problem b. Optimization Problem c. Performance Problem d. Sorting	in S, the line segments pq				
is completely contained in S 6 In greedy method, requires a minimum					
6 In greedy method, requires a minimum 1 4 CO3 PO2 3.1. or maximum result. a. Average Time Problem b. Optimization Problem c. Performance Problem d. Sorting	in S, the line segments pq				
or maximum result. a. Average Time Problem b. Optimization Problem c. Performance Problem d. Sorting					
or maximum result. a. Average Time Problem b. Optimization Problem c. Performance Problem d. Sorting	requires a minimum 1	6	1 4	CO3 PO2	3.1.1
a. Average Time Problem b. Optimization Problem c. Performance Problem d. Sorting	requires a minimum		1 7		3.1.1
b. Optimization Problem c. Performance Problem d. Sorting					
c. Performance Problem d. Sorting					
d. Sorting					
7 Which of the following satisfies prefix code property? 1 3 CO3 PO2 2.1.					
	s prefix code property?	7	1 3	CO3 PO2	2.1.2
//1 mark may be awarded if no corrections done in a/b/c/d	corrections done in a/b/c/d				
a. {0,1,10,01}					
b. {0,01,11,111}					
c. {01,00,010,000}					
d. {11,10,110,1111}					
8 In 0/1 Knapsack, the items are can be solved by 1 4 CO3 PO3 3.1.	can be solved by 1	8	1 4	CO3 PO3	3.1.6
a. Indivisible & greedy Approach	oach				
b. Indivisible & Dynamic Approach	oroach				
c. Divisible & greedy Approach	c h				
d. Divisible & Dynamic Approach	·				
9 Traverse left subtree, Visit the root and Traverse right 1 2 CO3 PO2 2.1.	oach	9	1 2	CO3 PO2	2.1.1
subtree is					
a. Inorder Traversal		1			

	b. Preorder Traversal					
	c. Postorder Traversal					
	d. Open Traversal					
10	Find the length of the longest common subsequence of the	1	3	CO3	PO2	2.1.2
	given two strings, S1= Phones & S2=Stone					
	a. 4					
	b. 3					
	c. 2					
	d. 1					
	Part – B					
Inst	(4 x 10 Marks = 40 Marks) ructions: Answer any 4 Questions)				
11	Illustrate the Maximum Subarray Sum problem for the	10	4	CO2	PO2	2.4.1
	following array elements 8, 4, -1, 9, 6, -2, -3, 10, 2 using					
	Divide and Conquer Method.					
	L= 20 R=13 (== 33	MAXEL,R,	3=33			
	8 4 -1 9 6 -2 -3 1	0 2				
	1 2 3 4 5 4 8	9 L= 6				
	L=12 R=9 V= 20	R=12 C=13				
	8 4 -1 9 6 -2 -3	10 2				
	VC-18 07 100	KIN 1=-3	7			
	R=9 R=-2 C=8 C=4	R= 12.				
	8 4 -19 6 -2 -	3 10 2	ا لـ			
	0/ MM -1/ Ka 0/ Kin	7/	- 10 - 1R=2			
			E C = IBV			
	1=8 1=4 1=-1 1=9 1=5 1=-15 1= 15	2=-3	[2]			
			L=02			
	MAXIMUM SUBARRAY SUM = 33.	R=10 C=10	R=02 C=09			
	CROSS SUM CALCULATION :-		2			
		32 - 1-100- 50-				
	RSS = Max Cu] = 4 RSS = Max Ca)	SS = Max [-2] = LSS+RSS = = 6-2 = 4				
	NEXT UPPER LEYEL	84-19 6-	2 -3 102			
	LSS = Max E10, 10-3) LSS = MAX E4, H+8] LSS = MAX E4, H+8]	1.65.	, R=12 (=? MAX[-3,-3-2 -3-2+6]=1			
	FOR TOP LEVEL C= 135+ K33 = 172-1 (C= 12+8 = 20	RSS:	MOX [10, 1015]			
	20+13=33 L=20,R=13=X=? RSS=MAX[9,9-1,9-1+4, C=155+RSS= RSS=MAX[6,6-2,6-2-3	,9-1+4+8) [C= 3,6-2-3+10,6-2	-3+10+2]=[3]			
				l	, · · · · · · · ·	
12	Consider any two square matrices A and B and compute	10	3	CO2	PO2	2.3.2
	matrix multiplication using Strassen's matrix multiplication method. Compare its time complexity					
	analysis with brute force method.					

Basic Matrix Multiplication

Suppose we want to multiply two matrices of size $N \times N$: for example $A \times B = C$.

$$\left|\begin{array}{cc} C_{11} & C_{12} \\ C_{21} & C_{22} \end{array}\right| = \left|\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array}\right| \left|\begin{array}{cc} B_{11} & B_{12} \\ B_{21} & B_{22} \end{array}\right|$$

$$C_{11} = a_{11}b_{11} + a_{12}b_{21}$$

$$C_{12} = a_{11}b_{12} + a_{12}b_{22}$$

$$C_{21} = a_{21}b_{11} + a_{22}b_{21}$$

$$C_{22} = a_{21}b_{12} + a_{22}b_{22}$$

2x2 matrix multiplication can be accomplished in 8 multiplication. $(2^{\log_2 8} = 2^3)$

Strassens's Matrix Multiplication

$$\left|\begin{array}{cc} C_{11} & C_{12} \\ C_{21} & C_{22} \end{array}\right| = \left|\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array}\right| \left|\begin{array}{cc} B_{11} & B_{12} \\ B_{21} & B_{22} \end{array}\right|$$

$$\begin{array}{ll} P_1 = (A_{11} + A_{22})(B_{11} + B_{22}) & C_{11} = P_1 + P_4 - P_5 + P_7 \\ P_2 = (A_{21} + A_{22}) * B_{11} & C_{12} = P_3 + P_5 \\ P_3 = A_{11} * (B_{12} - B_{22}) & C_{21} = P_2 + P_4 \\ P_4 = A_{22} * (B_{21} - B_{11}) & C_{22} = P_1 + P_3 - P_2 + P_6 \\ P_5 = (A_{11} + A_{12}) * B_{22} & \end{array}$$

$$P_5 = (A_{11} + A_{12}) * B_{22}$$

$$P_6 = (A_{21} - A_{11}) * (B_{11} + B_{12})$$

 $P_7 = (A_{12} - A_{22}) * (B_{21} + B_{22})$

Time Analysis

$$T(1) = 1$$
 (assume $N = 2^k$)

$$T(N) = 7T(N/2)$$

 $T(N) = 7^{k}T(N/2^{k}) = 7^{k}$

$$T(N) = 7^{\log N} = N^{\log 7} = N^{2.81}$$

10

Demonstrate Multiplication of a sequence of n matrices A1, A2,...,An, Find the optimal parenthesization of the n matrices that have minimal number of multiplication using dynamic programming with an example where $n \ge 3$

CO₃ PO₃ 3.2.1

Here n=4...but students may have it from 3 also

Step 2.1: Calculation for m[12]
* formula: m[i,i] = min fm[i,K]+ m[K+1,5]+R-1 R-93
K lies between i and texthan; so it takes only one value here at m[12] [K=1] m[12] = min{m[1,1]+m[2,2]+Po Pi Pa} > A
K can take 1 but not 2 since ket is less than 2. from table mF1, 17 2 mF2, 23 = 0>0
Po Pi Pa > Ai · A2 · A3 · A4 5×4 4×6 6×2 2×7 Po Pi Pi Pa Pa Pa B B B Pu
00 Po Po Po Po > 5× 4×6=120 → ®
Apply O & Q in A
m [1,2] = min { 0+0+120}
MEI,2] = 120 FILL IN TABLE NOW M&R
1200 Obtained when K=1 SO Scoot could be filled as I in T[1,2]

14		10	4	CO3	PO2	2.4.1
	Explain in detail about greedy knapsack problem. Find an					
	optimal solution to the knapsack instances where in n and					
	m are the number of items and capacity of the knapsack.					
	n=7, m=15,					
	(P1, P2, P3, P4, P5, P6, P7) = (10,5,15,7,6,18,3) and					
	(W1, W2, W3, W4, W5, W6, W7) = (2,3,5,7,1,4,1)					

14 0=	G REEDY = 15	KNAPSACK	1 - 1	
chi	2 3	4 5 6	1	
P 1	0 5 15	7 6 18	3	
ω	3 5	7 1 4	1	
Plw !	5 1.67 3	1 6 4:5	3	
Comstr	aints: 1. 30	ciwi Should no	t exceed 15 ie Exivie15 of be calculated	Calculate:
Fully			Partially Loaded	Constraint B: - x1P, +3P2+x3B3+x4P4+x5P5+x6P6+x7P
, and	Thursday - 1, 1	Jul Reticus ,	neans then it I. loaded items weight	$\sum x_i p_i = x 0 + \frac{2}{3}x_5 + x _5 + 0x_7 + 1x_6$
Fully Part Not Loa		obj w	Remaining Sack wt.	$+ 1 \times 18 + 1 \times 3$ $= [0 + 3.33 + 15 + 6 + 18 + 3]$
25 = 1	6	5	15-1=4	
21:1	5	1 2	14-2-18	. £x; P; = 55.33
X6 = 1	4.5	6 4	12-4 = 08	
x3 = 1	3	3 5	8-5 = 3	
α 4 = 1	3	7 1	3-1=2	
x2 = 2/3	1.6	1 2 3	only 2 kg can be loaded 2/w	
1			- ie 2/3 will be considered	
	: from about		2-2=0	
2xiwi = xi	(ロ, +xzwz + x) (コ+ミx3 + 1	3W3 + X4W4+ X	1x1 + 1xt + 1x1 2m2 +x9m9 + x4m4	
= 21	+2+5+1+4	+1 = 15	I Sacre Capacity 15.	

Huffman coding to compress the data effectively and also compute optimal cost.	15	{a/5, b/5, c/12, d/13, e/16, f /45} be the letters and its frequency distribution in a text file. Compute a suitable Huffman coding to compress the data effectively and also	10	4	CO3	PO2	2.2.1
--	----	---	----	---	-----	-----	-------

^{*}Program Indicators are available separately for Computer Science and Engineering in AICTE examination reforms policy.

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

Approved by the Audit Professor/Course Coordinator