Mixture of Block Attention (MoBA): A Smarter Way to Handle Long Texts

The Problem: Why Do Al Models Struggle with Long Texts?

The Solution: What Is MoBA?

Mixture of Block Attention (MoBA) is a new approach that makes attention faster and more efficient. It applies the principles of Mixture of Experts (MoE) to attention, meaning the model focuses only on the most important parts of the text instead of processing everything equally.

Figure 1: Illustration of mixture of block attention (MoBA). (a) A running example of MoBA; (b) Integration of MoBA into Flash Attention.

How Does MoBA Work?

- Breaks the text into blocks instead of looking at every token individually.
- 2 Uses a trainable gating system to decide which blocks are most relevant.
- **3** Allows flexible attention, meaning it can still focus on distant but important information.
- 4 Maintains standard Transformer properties, so it works with existing Al models.

Benchmark	Llama-8B-1M-MoBA	Llama-8B-1M-Full
AGIEval [0-shot]	0.5144	0.5146
BBH [3-shot]	0.6573	0.6589
CEval [5-shot]	0.6273	0.6165
GSM8K [5-shot]	0.7278	0.7142
HellaSWAG [0-shot]	0.8262	0.8279
Loogle [0-shot]	0.4209	0.4016
Competition Math [0-shot]	0.4254	0.4324
MBPP [3-shot]	0.5380	0.5320
MBPP Sanitized [0-shot]	0.6926	0.6615
MMLU [0-shot]	0.4903	0.4904
MMLU Pro [5-shot][CoT]	0.4295	0.4328
OpenAI HumanEval [0-shot][pass@1]	0.6951	0.7012
SimpleQA [0-shot]	0.0465	0.0492
TriviaQA [0-shot]	0.5673	0.5667
LongBench @32K [0-shot]	0.4828	0.4821
RULER @128K [0-shot]	0.7818	0.7849

Table 2: Performance comparison between MoBA and full Attention across different evaluation benchmarks.

Figure 7: Performance of LLama-8B-1M-MoBA on the Needle in the Haystack benchmark (upto 1M context length).

COUNTY OF THE PROOF OF THE PRO

The Importance of Hypothesis Validation

Hypothesis validation is fundamental in **scientific discovery**, **decision-making**, **and information acquisition**. Whether in **biology**, **economics**, **or policymaking**, researchers rely on testing hypotheses to guide their conclusions. Traditionally, this process involves:

- Designing experiments
- Collecting data
- Analyzing results

However, Large Language Models (LLMs) have dramatically increased the number of generated hypotheses. While these Al-driven insights offer potential breakthroughs, their plausibility varies widely, making manual validation impractical. Automating this process is essential to ensure only scientifically rigorous hypotheses guide future research.

POPPER: Al-Driven Hypothesis Validation

POPPER is an **agentic framework** that automates hypothesis validation using rigorous statistical principles and **LLM-based agents**. Inspired by **Karl Popper's principle of falsification**, it actively **tries to disprove** hypotheses rather than prove them.

How Does POPPER Work?

POPPER employs two specialized **Al-driven agents**:

- 1. **Experiment Design Agent** Formulates falsification experiments.
- 2. Experiment Execution Agent Conducts experiments and analyzes results.

> POPPER's Process

Performance in Six Scientific Domains

- Type-I error rates below 0.10 across all datasets.
- **3.17x improvement** in validation power compared to existing methods.
- 10x faster validation than human researchers.

Case Study: Biological Hypothesis Testing

In a study on Interleukin-2 (IL-2) and immune response:

- POPPER's testing mechanism outperformed Fisher's combined test.
- Achieved expert-level accuracy in hypothesis validation.
- Reduced validation time by 10-fold, proving its efficiency.

Expert Validation

Evaluated by 9 PhD-level computational biologists & biostatisticians, POPPER:

- Matched human performance.
- **Dramatically reduced** the time needed for hypothesis validation.