Unveiling the Kondo cloud: unitary RG study of the Kondo model

ANIRBAN MUKHERJEE ¹, ABHIRUP MUKHERJEE ¹, N. S. VIDHYADHIRAJA ², A. TARAPHDER ³ SIDDHARTHA LAL ¹

¹DEPARTMENT OF PHYSICAL SCIENCES, IISER KOLKATA

²Theoretical Sciences Unit, JNCASR

³DEPARTMENT OF PHYSICS, IIT KHARAGPUR

JANUARY 27, 2022

$$\mathcal{H} = \sum_{k\sigma} \epsilon_k \hat{\mathbf{n}}_{k\sigma} + J \vec{S}_d \cdot \vec{s}, \quad \vec{s} \equiv \sum_{kk',\alpha,\beta} \vec{\sigma}_{\alpha\beta} c_{k\alpha}^{\dagger} c_{k'\beta}$$

■ Kondo coupling *J* renormalises to infinity

- Kondo coupling J renormalises to infinity
- \blacksquare χ constant at low temperatures, C_{V} linear

- Kondo coupling *J* renormalises to infinity
- \blacksquare χ constant at low temperatures, C_v linear
- low energy phase of metal is local Fermi liquid

- Kondo coupling J renormalises to infinity
- \blacksquare χ constant at low temperatures, C_V linear
- low energy phase of metal is local Fermi liquid
- thermal quantities functions of single scale T/T_K