Quiz 1 - Solutions

(1)
$$f(x) = u(x,y) + i(2+3x-y+x^2-y^2-4xy)$$

Let $v(x,y) = 2+3x-y+x^2-y^2-4xy$.

For f to be analytic, the necessary and sufficient conditions are Counchy-Riemann equations:

$$V_x = -u_y \quad \& \quad V_y = u_x$$

1) $V_x = 3+2x-4y$ and $v_y = -1-2y-4x$.

1) So $u_y = 4y-2x-3$ and hence $u(x,y) = 2y^2-2xy-3y+f(x)$, where $f(x)$ is a function of x .

Then $u_x = -2u_y + f'(x)$, where $f'(x)$ is the derivative of $f'(x)$ with respect to $f'(x) = -1-4x$.

So we need $-2u_y+f'(x) = -1-2y-4x$. Then $f'(x) = -1-4x$ and $f(x) = -x-2x^2+c$ for some $c \in \mathbb{R}$.

Therefore possible $u(x,y)$ are $2y^2-2xy-3y-x-2x^2+c$ for some $c \in \mathbb{R}$.

② C is given by 2(t) = cost + i sint, $t \in [0, \pi]$. Then $\begin{cases} f = \int_0^2 cost + i sint \\ c \end{cases}$ (cost + i sint) $\begin{cases} c + i sint \\ c \end{cases}$ (cost - i sint) $\begin{cases} -sint + i cost \\ c \end{cases}$)

$$= \int_{0}^{\infty} i \left(\omega s^{2}t + \sin^{2}t\right) dt$$

$$=i\int_{0}^{\pi}dt=i\left(t\int_{0}^{\pi}\right)=i\pi.$$