

## Universidade Federal de Roraima – UFRR Departamento de Ciência da Computação – DCC DCC 302 – Estrutura de Dados I Prof. Filipe Dwan Pereira



| NOME: | DATA: / | / |
|-------|---------|---|
|       |         |   |

# TRABALHO 02 - Ordenação e Busca

### INTRODUÇÃO

**Ordenação** é o ato de se colocar os elementos de uma sequência de informações, ou dados, em uma relação de ordem predefinida. O termo técnico em inglês para ordenação é *sorting*, cuja tradução literal é "classificação".

Dado uma seqüencia de n dados:

 $<a_1,a_2,...,a_n>$  O problema de ordenação é uma permutação dessa seqüencia:  $<a_{'1},a_{'2},...,a_{'n}>$  tal que:  $a_{'1}\le a_{'2}\le ... \le a_{'n}$  para alguma relação de ordem.

Algumas ordens são facilmente definidas. Por exemplo, a ordem numérica, ou a ordem alfabética—crescentes ou decrescentes. Contudo, existem ordens, especialmente de dados compostos, que podem ser não triviais de se estabelecer.

Um algoritmo que ordena um conjunto, geralmente representada num vetor, é chamado de algoritmo de ordenação. **Algoritmo de ordenação** em ciência da computação é um algoritmo que coloca os elementos de uma dada sequência em uma certa ordem—em outras palavras, efetua sua ordenação completa ou parcial. As ordens mais usadas são a numérica e a lexicográfica. Existem várias razões para se ordenar uma sequência. Uma delas é a possibilidade se acessar seus dados de modo mais eficiente.

Entre os mais importantes, podemos citar *bubble sort* (ou ordenação por flutuação), *insertion sort* (ou ordenação por inserção), *merge sort*(ou ordenação por mistura) e o *quicksort*. Existem diversos outros, que o aluno pode com dedicação pesquisar por si. Para estudo no entanto nos concentraremos nos principais.

Além disso, a ordenação é importante para a busca, por exemplo, no caso da busca binária, onde a lista deve estar ordenada para que a busca seja realizada com sucesso.

#### **OBJETIVO**

- 1) **(2 pontos)** Fazer uma pesquisa aprofundada com. Definição, algoritmo, vantagens e desvantagens, referencias bibliográficas dos seguintes algoritmos de ordenação:
  - Selection Sort;
  - Insertion Sort;
  - Bubble Sort;
  - · Heap Sort;
  - Radix Sort;
  - Quick Sort;
  - Merge Sort;
  - Busca Sequencial e Busca Binária;
- 2) **(3 pontos)** Cada dupla irá fazer uma apresentação de um dos algoritmos supracitados. Destaca-se que a nota é individual, neste quesito;
- 3) **(5 pontos)** Implemente um sistema em C que gere 4 sequencias numéricas aleatórias (não ordenadas), uma de 100 números, outra com 1000, outra de 10.000 números e

outra de 100.000 números. O programa deve gerar esses números e armazena-los em um arquivo .txt (cada sequencia em um arquivo diferente).

Este arquivo gerado deve ser lido pelo próprio programa e ordenado pelos algoritmos antes citados.

Implemente os algoritmos de forma a receber este arquivo contendo os números, ordenando-os e salvando-os novamente em 4 arquivos diferentes (ordenados) .txt.

Implemente uma linha em cada que mostre a velocidade de processamento de cada algoritmo ao final da ordenação. A velocidade na verdade será mensurada de três formas (observar as tabelas no final deste arquivo):

- 1. Contagem do número de trocas na ordenação;
- 2. Contagem do número de comparações na ordenação;
- 3. Contagem em milissegundos e em segundos do tempo de execução de cada algoritmo.

O objetivo é comparar o desempenho dos algoritmos de ordenação.

Por fim, crie um módulo no qual será possível **buscar** por um valor na lista ordenada, neste caso usando **busca binária** e na lista aleatória usando **busca sequencial**.

Obs.: não será necessário a contagem do número de comparações/trocas do Radix Sort.

### **METODOLOGIA**

- O trabalho deve ser feito em dupla;
- Procure primeiro entender o problema, tente quebrá-lo em partes menores;
- Faça testes da geração dos números aleatórios. São 3 arquivos que deverão ser lidos pelo programa um com cem números, outro com 10mil números e outro com 100mil números..
- Depois de conseguir gerar os arquivos, implemente os algoritmos de ordenação e faça com que os mesmos recebam o conteúdo dos arquivos, ordene-os e guarde-os novamente em arquivos ordenados.
- Quando necessário utilize as TADs de estrutura de dados para armazenar os números no processo de ordenação, ou leitura pelo algoritmo.

#### **FUNCIONAMENTO**

Inicialmente deverá ser elaborado um MENU, semelhante ao da figura (você pode implementar sua forma) para gerar e ler os arquivos. **Crie uma função de busca depois que o arquivo estiver ordenado**.

```
■ "D:\Acauan\UFRR\SEMESTRE 2014.2\DCC302 - Estrutura de dados NAULAS\TRABALHO 01\TRABAL
=== PROJETO ORDENACAO ===
1 - Gerar arquivo
2 - Ordenar arquivo
0 - Sair
Opcao: 1
-- Gerar arquivo --
Tamanho do arquivo: 10000
Arquivo de 10000 numeros gerado com sucesso!!

Process returned 0 (0x0) execution time: 0.640 s
Press any key to continue.
```

A cada arquivo lido mostrar as descrições do arquivo como Tamanho do Arquivo, tempo de execução do algoritmo e se o arquivo foi gerado com sucesso.

```
"D'Acauan\UFFR\SEMESTRE 2014.2\DCC302 - Estrutura de dados NAULAS\TRABALHO
=== PROJETO ORDENACAO ===
1 - Gerar arquivo
2 - Ordenar arquivo
0 - Sair
Opcao: 2
-- Ordenando arquivo --
Ler arquivo:
ALGORITMO: Selection Sort
Tamanho: 10000
Tempo: x.xxx s
Arquivo Ordenado: ok
ALGORITMO: Bubble Sort
Tamanho: 10000
Tempo: x.xxx s
Arquivo Ordenado: ok
ALGORITMO: Quick Sort
Tamanho: 10000
Tempo: x.xxx s
Arquivo Ordenado: ok
ALGORITMO: Ouick Sort
Tamanho: 10000
Tempo: x.xxx s
Arquivo Ordenado: ok
```

Estas imagens são meramente para referencia, vocês podem implementar do seu jeito, tanto que faça o solicitado.

### **ENTREGA**

- Deverão ser entregues:
  - o Pesquisa sobre os algoritmos de ordenação
  - Programa que gera arquivos e ordena utilizando algoritmos conhecidos e faz comparação de tempo entre os algoritmos.
- Valorizam-se trabalhos que implementarem comandos e/ou recursos adicionais;
- Data de Apresentações: 10/02/2025 em diante.
- Data de Entrega do programa e da parte escrita: 20/02/2025
- Observe que haverá uma prova sobre este assunto, portanto, é importante aprender o conteúdo muito bem. Essa prova será realizada no dia 26/02/2025

| Quantidade de Comparações |       |         |            |               |  |
|---------------------------|-------|---------|------------|---------------|--|
|                           | 100   | 1.000   | 10.000     | 100.000       |  |
| BubbleSort                | 4.950 | 499.500 | 49.995.000 | 4.999.950.000 |  |
| QuickSort                 | 997   | 12.852  | 181.203    | 2.114.943     |  |
| MergeSort                 | 558   | 8.744   | 123.685    | 1.566.749     |  |

| Quantidade de Movimentos |       |         |            |               |  |  |
|--------------------------|-------|---------|------------|---------------|--|--|
|                          | 100   | 1.000   | 10.000     | 100.000       |  |  |
| BubbleSort               | 2.628 | 242.827 | 25.160.491 | 2.499.136.980 |  |  |
| QuickSort                | 570   | 8.136   | 103.575    | 1.310.586     |  |  |
| MergeSort                | 1376  | 19968   | 272640     | 3385984       |  |  |

| Tempo de execução (s) |         |        |        |          |  |
|-----------------------|---------|--------|--------|----------|--|
|                       | 100     | 1.000  | 10.000 | 100.000  |  |
| BubbleSort            | 0,00007 | 0,0081 | 0,8587 | 114,8400 |  |
| QuickSort             | 0,00003 | 0,0004 | 0,0049 | 0,0844   |  |
| MergeSort             | 0,00015 | 0,0016 | 0,0194 | 0,2316   |  |

Imagem de Exemplo mostrando as informações que devem ser obtidas ao rodar os algoritmos de ordenação

#### Datas de Apresentação dos grupos

- 1. Selection Sort;
  - Ian e Vinícius Medeiros 10-02-2025
  - Andreza e Jonathan 12-02-2025
- 2. Insertion Sort;
  - Fábio Aurélio 10-02-2025
  - José Carvalho e Lucas Matheus 12-02-2025
- 3. Bubble Sort;
  - Fabrício e Igor Padilha 10-02-2025
  - Mateus Henrique e Rafael Silva 12-02-2025
- 4. Heap Sort;
  - Wesley e Luciano 17-02-2025
  - Guilherme Caetano e Yves 19-02-2025
- 5. Radix Sort;
  - Alefe e Anderson Silva 17-02-2025
  - Yan e Lucas Gabriel 19-02-2025
- 6. Quick Sort:
  - Mateus Rebouças e Mateus Garcia 17-02-2025
  - Ranier e Lucas Henrique 19-02-2025
- 7. Merge Sort;
  - Glisbel 17-02-2025
  - Vinícius e Jasmin 19-02-2025

- 8. Busca Sequencial e Busca Binária;
  - Leonardo e Arthur 12-02-2025