

Rendering Computational Light Transport

Ioannis Gkioulekas Jiatian Sun Carnegie Mellon University

SEE BELOW THE SKIN

Target Imaging Modalities

Problem:

Many existing physical modern imaging camera systems don't have corresponding simulation tools:

Structured Light

Digital Michelangelo Project

[Gupta et al. 2013]

Light Transport Probing System

Scene under white Illumination [O'Toole et al. 2012]

Global Illumination Component [O'Toole et al. 2012]

[O'Toole et al. 2015]

Epipolar Imaging

Epipolar Imaging

Non-epipolar Imaging [O'Toole et al. 2015]

Rendering Capabilities

 Structured Light & Coded Cameras Efficient rendering by importance sampling sensor and projector planes

• Light Transport Probing

Epipolar Imaging

Bidirectional path tracing with importance sampling based on epipolar constraints

 Extensible plugin system for implementing arbitrary probing patterns

Rendering Examples

Perspective and Orthographic Projectors

Perspective projector Orthographic projector

Coded Perspective & Orthographic Cameras

Coded orthographic Coded perspective camera camera

Light Transport Probing

Remove global illumination using epipolar probing

Capture light from certain depths using disparity probing

= 35

stereo disparity stereo disparity = 39

Renderer Publicly Available

https://github.com/ cmu-ci-lab/mitsuba clt

Applications

• Direct and Global Illumination Separation

White illumination Direct-only rendering

Epipolar probing

Direct and global components using high-frequency illumination

• Light Curtain

White illumination

Probing with stereo disparity = 16

Probing with stereo disparity = 23

Seeing Through Fog

Sensor Light Source

White illumination Direct-only rendering

References • Gupta et al., "A Practical Approach to 3D Scanning in the Presence of Interreflections, Subsurface Scattering

- and Defocus," IJCV 2013. • Nayar et al., "Fast separation of direct and global components of a scene using high frequency illumination,"
- O'Toole et al., "Primal-dual coding to probe light transport," SIGGRAPH 2012.
- O'Toole et al., "3d shape and indirect appearance by structured light transport," CVPR 2014.
- O'Toole et al., "Homogeneous codes for energy-efficient illumination and imaging," SIGGRAPH 2015.