beamer

Matematični izrazi in uporaba paketa

Matematičnih nalog ni treba reševati!

Fakulteta za matematiko in fiziko

Kratek pregled

Paket beamer

Paketa amsmath in amsfonts

Matematika, 1. del

Stolpci in slike

Paket beamer in tabele

Matematika, 2. del

Paket beamer

Za prosojnice je značilna uporaba okolja frame, s katerim definiramo posamezno prosojnico,

Za prosojnice je značilna uporaba okolja frame, s katerim definiramo posamezno prosojnico, postopno odkrivanje prosojnic,

Za prosojnice je značilna uporaba okolja frame, s katerim definiramo posamezno prosojnico, postopno odkrivanje prosojnic, ter nekateri drugi ukazi, ki jih najdemo v paketu beamer.

Za prosojnice je značilna uporaba okolja frame, s katerim definiramo posamezno prosojnico, postopno odkrivanje prosojnic, ter nekateri drugi ukazi, ki jih najdemo v paketu beamer.

Primer

Verjetno ste že opazili, da za naslovno prosojnico niste uporabili ukaza maketitle, ampak ukaz titlepage.

Poudarjeni bloki

Opomba

Okolja za poudarjene bloke so block, exampleblock in alertblock.

Pozor

Začetek poudarjenega bloka (ukaz begin) vedno sprejme dva parametra: okolje in naslov bloka. Drugi parameter (za naslov) je lahko prazen.

Izrek

Praštevil je neskončno mnogo.

Dokaz.

Denimo, da je praštevil končno mnogo.

• Naj bo *p* največje praštevilo.

Izrek

Praštevil je neskončno mnogo.

Dokaz.

Denimo, da je praštevil končno mnogo.

- Naj bo p največje praštevilo.
- Naj bo q produkt števil 1, 2, ..., p.

Izrek

Praštevil je neskončno mnogo.

Dokaz.

Denimo, da je praštevil končno mnogo.

- Naj bo p največje praštevilo.
- Naj bo q produkt števil 1, 2, ..., p.
- ullet Število q+1 ni deljivo z nobenim praštevilom, torej je q+1 praštevilo.

Izrek

Praštevil je neskončno mnogo.

Dokaz.

Denimo, da je praštevil končno mnogo.

- Naj bo *p* največje praštevilo.
- Naj bo q produkt števil 1, 2, ..., p.
- Število q+1 ni deljivo z nobenim praštevilom, torej je q+1 praštevilo.
- To je protislovje, saj je q+1>p.

Paketa amsmath in amsfonts

Matrike

Izračunajte determinanto

$$\begin{vmatrix} -1 & 4 & 4 & -2 \\ 1 & 4 & 5 & -1 \\ 1 & 4 & -2 & 2 \\ 3 & 8 & 4 & 3 \end{vmatrix}$$

V pomoč naj vam bo Overleaf dokumentacija o matrikah:

▶ Matrices

6

Okolje align in align*

Dokaži *binomsko formulo*: za vsaki realni števili *a* in *b* in za vsako naravno število *n* velja

$$(a+b)^n=\dots$$

$$=\sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k}$$

Okolje align in align*

Dokaži *binomsko formulo*: za vsaki realni števili *a* in *b* in za vsako naravno število *n* velja

$$(a+b)^n = (a+b)(a+b)\dots(a+b)$$

$$=\sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k}$$

Okolje align in align*

Dokaži *binomsko formulo*: za vsaki realni števili *a* in *b* in za vsako naravno število *n* velja

$$(a+b)^{n} = (a+b)(a+b)\dots(a+b)$$

$$= a^{n} + na^{n-1}b + \dots + \binom{n}{k}a^{n-k}b^{k} + \dots + nab^{n-1} + b^{n}$$

$$= \sum_{k=0}^{n} \binom{n}{k}a^{n-k}b^{k}$$

7

Še ena uporaba okolja align*

Nariši grafe funkcij:

$$y = x^2 - 3|x| + 2$$
 $y = 3\sin(\pi + x) - 2$
 $y = \log_2(x - 2) + 3$ $y = 2\sqrt{x^2 + 15} + 6$
 $y = 2^{x-3} + 1$ $y = \cos(x - 3) + \sin^2(x + 1)$

Okolje multline

Poišči vse rešitve enačbe

$$(1+x+x^2) \cdot (1+x+x^2+x^3+\ldots+x^9+x^{10}) =$$

= $(1+x+x^2+x^3+x^4+x^5+x^6)^2$.

Okolje cases

Dana je funkcija

$$f(x,y) = \begin{cases} \frac{3x^2y - y^3}{x^2 + y^2}; & (x,y) \neq (0,0), \\ a; & (x,y) = (0,0) \end{cases}$$

- Določi a, tako da izračunaš limito $\lim_{(x,y)\to(0,0)} f(x)$.
- Izračunaj parcialna odvoda $f_x(x, y)$ in $f_y(x, y)$.

Matematika, 1. del

Analiza, logika, množice

Logika in množice

1. Poišči preneksno obliko formule

$$\exists x : P(x) \land \forall x : Q(x) \Rightarrow \forall x : R(x).$$

- 2. Definiramo množici A = [2,5] in $B = \{0,1,2,3,4...\}$. V ravnino nariši:
 - 2.1 $A \cap B \times \emptyset$
 - 2.2 $(A \cup B) \times \mathbb{R}$
- 3. Dokaži:
 - $(A \Rightarrow B) \sim (\neg B \Rightarrow \neg A)$
 - $\neg (A \lor B) \sim \neg A \land \neg B$

Analiza

- 1. Pokaži, da je funkcija $x\mapsto \sqrt{x}$ enakomerno zvezna na $[0,\infty)$.
- 2. Katero krivuljo določa sledeč parametričen zapis?

$$x(t) = a \cos t$$
, $y(t) = b \sin t$, $t \in [0, 2\pi]$

- 3. Pokaži, da ima $f(x) = 3x + \sin(2x)$ inverzno funkcijo in izračunaj $f^{(-1)}(3\Pi)$.
- 4. Izračunaj integral ?? $\int \frac{2+\sqrt{x}+1}{(x+1)^2-\sqrt{x+1}} \, dx$
- 5. Naj bo g zvezna funkcija. Ali posplošeni integral $\int_0^1 \frac{g(x)}{x^2}$ konvergira ali divergira? Utemelji.

Kompleksna števila

- 1. Naj bo z kompleksno število, $z \neq 1$ in |z| = 1. Dokaži, da je število $i \frac{z+1}{z-1}$ realno.
- 2. Poenostavi izraz:

$$\frac{\frac{3+i}{2-2i} + \frac{7i}{1-i}}{1+\frac{i-1}{4} - \frac{5}{2-3i}}$$

Stolpci in slike

• Dani sta premica p in točka T.

- Dani sta premica p in točka T.
- Nariši lok k s središčem v T.

- Dani sta premica p in točka T.
- Nariši lok k s središčem v T.
- Premico p seče v točkah A in B.

- Dani sta premica p in točka T.
- Nariši lok k s središčem v T.
- Premico p seče v točkah A in B.
- Nariši lok m s središčem v A.

- Dani sta premica p in točka T.
- Nariši lok k s središčem v T.
- Premico p seče v točkah A in B.
- Nariši lok m s središčem v A.
- Nariši lok n s središčem v B in z enakim polmerom.

- Dani sta premica p in točka T.
- Nariši lok k s središčem v T.
- Premico p seče v točkah A in B.
- Nariši lok m s središčem v A.
- Nariši lok n s središčem v B in z enakim polmerom.
- Loka se sečeta v točki C.

- Dani sta premica p in točka T.
- Nariši lok k s središčem v T.
- Premico p seče v točkah A in B.
- Nariši lok *m* s središčem v *A*.
- Nariši lok n s središčem v B in z enakim polmerom.
- Loka se sečeta v točki C.
- Premica skozi točki T in C je pravokotna na p.

• Dani sta premica p in točka T.

T.

- Dani sta premica p in točka T.
- Nariši lok k s središčem v T.

- Dani sta premica p in točka T.
- Nariši lok k s središčem v T.
- Premico p seče v točkah A in B.

- Dani sta premica p in točka T.
- Nariši lok k s središčem v T.
- Premico p seče v točkah A in B.
- Nariši lok *m* s središčem v *A*.

- Dani sta premica p in točka T.
- Nariši lok k s središčem v T.
- Premico p seče v točkah A in B.
- Nariši lok m s središčem v A.
- Nariši lok n s središčem v B in z enakim polmerom.

- Dani sta premica p in točka T.
- Nariši lok k s središčem v T.
- Premico p seče v točkah A in B.
- Nariši lok m s središčem v A.
- Nariši lok n s središčem v B in z enakim polmerom.
- Loka se sečeta v točki C.

- Dani sta premica p in točka T.
- Nariši lok k s središčem v T.
- Premico *p* seče v točkah *A* in *B*.
- Nariši lok m s središčem v A.
- Nariši lok n s središčem v B in z enakim polmerom.
- Loka se sečeta v točki C.
- Premica skozi točki T in C je pravokotna na p.

Graf funkcije s TikZ

Paket beamer in tabele

Oznaka	Α	В	C	D
Χ	1	2	3	4
Υ	3	4	5	6

Oznaka	А	В	C	D
Χ	1	2	3	4
Υ	3	4	5	6
Z	5	6	7	8

Oznaka	
Χ	
Υ	
Z	

Oznaka	А	
Χ	1	
Υ	3	
Z	5	

Oznaka	Α	В	
X	1	2	
Υ	3	4	
Z	5	6	

Oznaka	Α	В	C	
X	1	2	3	
Υ	3	4	5	
Z	5	6	7	

Oznaka	А	В	C	D
Χ	1	2	3	4
Υ	3	4	5	6
Z	5	6	7	8

Matematika, 2. del

Zaporedja, algebra, grupe

Zaporedja, vrste in limite

- 1. Naj bo $\sum_{n=1}^{\infty} a_n$ absolutno konvergentna vrsta in $a_n \neq -1$. Dokaži, da je tudi vrsta $\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$ absolutno konvergentna.
- 2. Izračunaj limito

$$\lim_{x\longrightarrow\infty}(\sin\!\sqrt{x+1}-\sin\!\sqrt{x})$$

Za dani zaporedji preveri, ali sta konvergentni.

$$a_n = \underbrace{\sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}}}_{n \text{ korenov}} \qquad b_n = \underbrace{\sin(\sin(\dots(\sin 1)\dots))}_{n \text{ sinusov}}$$

Algebra

1. Vektorja $\vec{c} = \vec{a} + 2\vec{b}$ in $\vec{d} = \vec{a} - \vec{b}$ sta pravokotna in imata dolžino 1. Določi kot med vektorjema \vec{a} in \vec{b} .

2. Izračunaj
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 5 & 2 & 6 & 3 & 1 \end{pmatrix}^{1} - 2000$$

Velika determinanta

Izračunaj naslednjo determinanto $2n \times 2n$, ki ima na neoznačenih mestih ničle. ??

Grupe

Naj bo

$$G = \{ z \in \mathbb{C}; z = 2^k (\cos(m\pi\sqrt{2}) + i\sin(m\pi\sqrt{2})), k, m \in \mathbb{Z} \}$$

$$H = \{ (x, y) \in \mathbb{R}^2; x, y \in \mathbb{Z} \}$$

- 1. Pokaži, da je G podgrupa v grupi $(\mathbb{C}\setminus\{0\},\cdot)$ neničelnih kompleksnih števil za običajno množenje.
- 2. Pokaži, da je H podgrupa v aditivni grupi $(\mathbb{R}^2,+)$ ravninskih vektorjev za običajno seštevanje po komponentah.
- 3. Pokaži, da je preslikava f:H o G, podana s pravilom

$$(x,y)\mapsto 2^{x}(\cos(y\pi\sqrt{2})+i\sin(y\pi\sqrt{2}))$$

izomorfizem grup G in H.