UM-PIM: DRAM-based PIM with Uniform & Shared Memory Space

Yilong Zhao, Mingyu Gao, Fangxin Liu*, Yiwei Hu, Zongwu Wang, Han Lin, Ji Li, He Xian, Hanlin Dong, Tao Yang, Naifeng Jing, Xiaoyao Liang, Li Jiang*

Shanghai Jiao Tong University 2024/7/2

饮水思源•爱国荣校

Background: Process-in-memory and Memory Interleaving

UM-PIM: DRAM-based PIM with Uniform & Shared Memory Space

Evaluation

Background: Process-in-memory and Memory Interleaving

UM-PIM: DRAM-based PIM with Uniform & Shared Memory Space

Evaluation

Background: the "Memory Wall"

According to Computation / Memory

Memory bottleneck becomes severe with the emergence of large models

- Compute bound: Matrix Multiplication
- Memory bound: Element-wise (dropout, masking)
 Reduce (Layer nom, Sum)

Memory increases with Token linearly

Accelerate with DRAM?

Attention on GPT2

Background: the "Memory Wall" in DRAM

Ranks (Banks) share memory interface

Only one Rank (Bank) can be activated at the same time!

Background: the Memory Wall

The INTERFACE BANDWIDTH CONSTRAINT makes a Memory Wall Between CPU and DRAM!

Background: Process in Memory (PIM)

Integrate computing units (PIM units) within DRAM to better utilize internal bandwidth

AxDIMM: in DIMM

UPMEM, AiM: In Bank

Memory Interleaving

To increase CPU bandwidth:

- Adjacent data block stored in different channels
- And Access in Parallel/pipeline

Cache Line (64B)

CPU 0x00 | 0x01 | 0x02 | 0x03 | 0x04 | 0x05 | ...

Memory Interleaving

- To increase CPU bandwidth:
 - Adjacent data block stored in different channels
 - And Access in Parallel/pipeline

Memory Interleaving

To increase CPU bandwidth:

- Adjacent data block stored in different channels
- And Access in Parallel/pipeline

Memory Interleaving with Address Mapping

- According to Switch Overhead
- Map lower-order bits to low-switch-overhead levels, higher-order bits to high-switch-overhead levels

Memory interleaving, virtual memory limit the length of contiguous data block visible to PIM, limit offload granularity

Need 1024 Offloads for the Task!

50us offload 30ns task Offload >> Task In-efficient Offload

PIM's ideal address mapping

PIM prefers contiguous data block: address mapping according to level

Only Need One Offload: Less offload overhead

PIM's ideal address mapping

PIM prefers contiguous data block: address mapping according to level

Measure 1: Isolated Memory Space

Measure 1: Isolated Memory Space

DRAM Devices

Measure 1: Isolated Memory Space

Measure 1: Isolated Memory Space

Measure 1: Isolated Memory Space (Resulting in Data Transfer)

Measure 1: Isolated Memory Space (Resulting in Data Transfer)

Measure 1: Isolated Memory Space (Resulting in Data Transfer)

Measure 1: Isolated Memory Space (Resulting in Data Transfer)

MIT SUTURNI

Measure 1: Isolated Memory Space (Resulting in Data Transfer)

Measure 1: Isolated Memory Space (Resulting in Data Transfer)

Measure 2: Switch off channel & rank interleaving

- Reduce re-layout overhead, but damage CPU bandwidth
- The data re-layout overhead still accounts for 70% of data transfer time

 $|PAddr| = Ch \ll m |Ba \ll n |PAddr| = Ba \ll n$

C0B0	C0B1	C1B0	C1B1
0x00	0x01	0x02	0x03
0x04	0x05	0x06	0x07
80x0	0x09	0x0A	0x0B
0x0C	0x0D	0x0E	0x0F

		C1B0	
0x00	0x01	0x08	0x09
0x02	0x03	0x0A	0x0B
0x04	0x05	0x0C	0x0D
0x06	0x07	0x0E	0x0F

Re-layout with Software			

C0B0	C0B1	C1B0	C1B1				
0x00	0x04	0x08	0x0C				
0x01	0x05	0x09					
0x02	0x06	0x0A	0x0E				
0x03	0x07	0x0B	0x0F				
	The state of the s						

UPMEM Data Transfer
Breakdown

Summary: An Impossible Triangle

Memory spaces with single data layout.

(Naïve)
Uniform Layout
Fine-grained Offload

Isolated Memory Space Software Re-layout MetaPNM,PIM-HBM Isolated Memory Space Switch off Interleaving AxDIMM, UPMEM

Summary: An Impossible Triangle

Memory spaces with single data layout.

(Naïve)
Uniform Layout
Fine-grained Offload

Isolated Memory Space Software Re-layout MetaPNM,PIM-HBM Isolated Memory Space Switch off Interleaving AxDIMM, UPMEM

Summary: An Impossible Triangle

Memory spaces with single data layout.

UM-PIM Motivation

- Wey insight: A <u>Uniform Memory Space</u> with CPU & PIM Pages (Different layout) co-existing in the space
 - No Data Transfer Overhead
 - Satisfy CPU and PIM's data layout

UM-PIM Motivation

- Wey insight: A <u>Uniform Memory Space</u> with CPU & PIM Pages (Different layout) co-existing in the space
 - No Data Transfer Overhead
 - Satisfy CPU and PIM's data layout

UM-PIM Motivation

- Wey insight: A <u>Uniform Memory Space</u>
- Challenges:
 - Co-existence (PIM's contiguous data block, CPU's virtual memory)

UM-PIM Motivation

- Wey insight: A <u>Uniform Memory Space</u>
- Challenges:
 - Co-existence (PIM's contiguous data block, CPU's virtual memory)
 - Two different data layout

UM-PIM Motivation

- Wey insight: A <u>Uniform Memory Space</u>
- Challenges:
 - Co-existence (PIM's contiguous data block, CPU's virtual memory)
 - Two different data layout
 - Accelerate CPU accessing PIM Page

Access in Serial

Cache Line≠Burst

PIM Pages

Background: Process-in-memory and Memory Interleaving

UM-PIM: DRAM-based PIM with Uniform & Shared Memory Space

Evaluation

UM-PIM Overview

- Memory Management: Chunk-based management of PIM Pages ①
- ©C. Accelerate CPU Access PIM Page: HW-SW Co-design ③

 Address Path

Software modifications on CPU side

Hardware modules between MemBus & DRAM interface

©CPU Pages: keep current management strategy

Challenge 1: Co-existence of virtualized CPU Page & contiguous PIM Page

PIM Pages: Chunk-based Management

PIM Pages: Chunk-based Management

Challenge 1: Co-existence of virtualized CPU Page & contiguous PIM Page

Let high-order bits mapped to rows and Allocate a Huge Page (Chunk)

A huge page 0x2..00000~0x3..00000

Switch on interleaving

PIM Pages: Chunk-based Management

Challenge 1: Co-existence of virtualized CPU Page & contiguous PIM Page

Let high-order bits mapped to rows and Allocate a Huge Page (Chunk)

A huge page 0x2..00000~0x3..00000

high-order bits mapped to rows

Offset inside Chunk

PIM Pages: Chunk-based Management

Challenge 1: Co-existence of virtualized CPU Page & contiguous PIM Page

- Let high-order bits mapped to rows and Allocate a Huge Page (Chunk):
 - The Chunk Evenly distributed on every PIMs

A huge page 0x2..00000~0x3..00000

 V
 A7
 2827
 1716
 0

 CVN
 Chunk Offset

 P
 CPN
 Chunk Offset

 HW
 Ro
 Ra Ba Co Ch Co

PIM Pages: Chunk-based Management

Challenge 1: Co-existence of virtualized CPU Page & contiguous PIM Page

- Let high-order bits mapped to rows and Allocate a Huge Page (Chunk):
 - The Chunk Evenly distributed on every PIMs

A huge page 0x2..00000~0x3..00000

256M Chunk = 128 k PIM Page on each PIM

•	47 28	27 1716	0
V	CVN	Chunk Off	set
,	36 28	27	0
Р	CPN	Chunk Off	set
HW	Ro	Ra Ba Co (Ch Co

PIM Pages: Chunk-based Management

Challenge 1: Co-existence of virtualized CPU Page & contiguous PIM Page

- Let high-order bits mapped to rows and Allocate a Huge Page (Chunk):
 - The Chunk Evenly distributed on every PIMs

A huge page 0x2..00000~0x3..00000

256M Chunk = 128 k PIM Page on each PIM

7 28	27		1716		0
CVN		Chur	nk O	ffset	
36 28	27				0
CPN		Chur	nk O	ffset	
Ro	Ra	Ва	Со	Ch	Со
	CVN 36 28 CPN	36 2827 CPN	CVN Chur	CVN Chunk O	CVN Chunk Offset CPN Chunk Offset

B Data Layout

Challenge 2: Different layout of CPU&PIM Pages

Integrate Hardware Modules between DRAM Interface & Memory Bus, on DRAM side

3 Levels:

Channel
Rank
Pevice
Row
Column
Cache Line: Dynamic Address Mapping

2-1 Above Bank: Config Mem Ctrl
Rank
RRCL
RRCL
ROW
Column
Cache Line
DRAM
Hierarchy
Cache Line: Data re-layout
DRAM
Hierarchy

上海交通大学 Shanghai Jiao Tong University

- (Above Bank) Add a Address Alias (TAD 1) in MemCtrl
 - TAD1 have different address mapping from the origin TAD0

DRAM Hierarchy

TAD0 & TAD1 have different address mapping

- (Below Bank) Hardware module on DRAM side
 - RCL: Check whether the Address belongs to PIM Page
 - ATM: If is PIM address, map the address bits to Device Column and Row

(Below Bank) Hardware module on DRAM side

RCL: Check whether the Address belongs to PIM Page

ATM: If is PIM address, map the address bits to Device Column and Row

Address: 0xB0020001

Channel
Rank
Bank

Device
Row
Column

Cache Line

(Below Bank) Hardware module on DRAM side

RCL: Check whether the Address belongs to PIM Page

ATM: If is PIM address, map the address bits to Device Column and Row

Channel
Rank
Bank

Device
Row
Column

Cache Line

(Below Bank) Hardware module on DRAM side

RCL: Check whether the Address belongs to PIM Page

ATM: If is PIM address, map the address bits to Device Column and Row

Channel
Rank
Bank

Device
Row
Column

Cache Line

(Below Bank) Hardware module on DRAM side

RCL: Check whether the Address belongs to PIM Page

ATM: If is PIM address, map the address bits to Device Column and Row

Channel
Rank
Bank

Device
Row
Column

Cache Line

(Below Bank) Hardware module on DRAM side

RCL: Check whether the Address belongs to PIM Page

ATM: If is PIM address, map the address bits to Device Column and Row

Channel
Rank
Bank

Device
Row
Column

Cache Line

DRAM Ranks

Channel

(Inside Cache Line) Cache Line ≠ Burst problem of PIM Page

D: Device

CPU Host

- 上海交通大学 Shanghai Jiao Tong University
- ⑥(Inside Cache Line) Cache Line ≠ Burst problem of PIM Page
- A Hardware module RC for data re-layout inside Cache Line

DRAM Hierarchy

Re-layout cache (RC)

- (Inside Cache Line)
- Read a 64B Cache Line of PIM Page in Device 2

DRAM Hierarchy

One 64B Cache Line

上海交通大学 Shanghai Jiao Tong University

- (Inside Cache Line)
- ® Read a 64B Cache Line of PIM Page in Device 2
 - Cycle 0-7: Read 8 Burst form every device, cache the Bursts in RC

上海交通大学 Shanghai Jiao Tong University

- (Inside Cache Line)
- ® Read a 64B Cache Line of PIM Page in Device 2
 - Cycle 0-7: Read 8 Burst form every device, cache the Bursts in RC

- 上海交通大学 Shanghai Jiao Tong University
- (Inside Cache Line)
- Read a 64B Cache Line of PIM Page in Device 2
 - Cycle 0-7: Read 8 Burst form every device, cache the Bursts in RC

上海交通大学 Shanghai Jiao Tong University

- (Inside Cache Line)
- ® Read a 64B Cache Line of PIM Page in Device 2
 - Cycle 0-7: Read 8 Burst form every device, cache the Bursts in RC
 - Cycle 8: Get the data from Device 2

Require 8 bursts to read one cache line of PIM Page

Challenge 3: Improve CPU bandwidth when accessing PIM page

When CPU iterate over results of PIM units:

```
for de in range (#device):
   for l in range (len):
     access(de, l)
```


When CPU iterate over results of PIM units:

When CPU iterate over results of PIM units:

- Let iteration on devices be the inner loop
 - dw: device address for writing

All-Gather (d)	PIM 0 PIM 1 PIM 2 PIM 3	<pre>for 1 in range(len/64): for br in range(#bank): for dr in range(8): for bw in range(#bank): for dw in range(8): memcpy(dest[bw, dw, (br*8+dr)*s+1],</pre>

Background: Process-in-memory and Memory Interleaving

UM-PIM: DRAM-based PIM with Uniform & Shared Memory Space

Evaluation

Evaluation Methodology

Simulator & Configuration

- CPU: GEM5 + Ramulator2; PIM units: UPMEM DPU @ 500MHz
- DDR4-2400, 8(Channel)x 8(Ranks)

Benchmarks:

- CPU Workloads: from SPEC CPU 2006
 - Ibm, mcf, sjeng, dealll, xalancbmk, gcc
- PIM Workloads (requires CPU & PIM): from PRIM
 - BFS, PR, MLP, UNI, TC, SCAN-RSS/SSA, SEL, HST, NW, WFA, RL

Baseline:

- PIM-Ion: PIM System with Memory interleaving switched on
- PIM-loff: PIM System with Rank & Channel interleaving switched off, (e.g. UPMEM)

Results on CPU Workloads

Because of CPU Page's memory interleaving is switched on

PIM-loff: 22% performance degradation because of memory interleaving switched off

UM-PIM: <0.1% performance loss because CPU page is interleaved.

Results on PIM Workloads

Compared to PIM-loff (Rank & Channel interleaving switched off, UPMEM) UM-PIM has 4.93× reduction on CPU time (including Computing and Data Transfer), resulting in 1.96× speed up on the whole workloads.

NW have intensive inter-PIM communication, therefore, it has the best speedup.

Results on PIM Workloads

For workloads with intensive inter-PIM-units data transfer:
UM-PIM can still benefit from computing using more PIM units
In contrast, time on current PIM systems increases when using more PIM units

Analysis – Enable More PIM Tasks

PIM compilers decide program segment offload to PIM units according to offload overhead & compute speedup. UM-PIM reduce offload overhead because of eliminating data transfer.

UM-PIM can offload 8% more program segments to PIM units, resulting in 1.13x speedup

Discussion

- Extend to different Device number of DRAM:
 - Change number of SB in RC module. E.g. for x4 DRAM, RC circuit have 4 SBs.

- Extend to other DRAM type:
 - HBM and LPDDR do not have Device level in DRAM hierarchy. ATM and RC is not needed. Other APIs and memory management are still effective.

More in the paper

Details of CPU and PIM access PIM pages

Extended DRAM Instruction support for UM-PIM

- Inter-PIM-units Communication APIs
 - Four inter-PIM units communications APIs like NCCL

Conclusion

- Uniform & shared memory space: CPU and PIM pages co-exist in a uniform memory space, and data transfer is eliminated compared to isolated space design
- Fast & Transparent data layout: Dynamic address mapping and data re-layout for two kinds of pages are processed fast and transparently by DRAM-side hardware module
- Compatibility with current CPU systems: no modifications on CPU-side hardware and CPU page's memory management.

