Homework 2021: SVD analysis & Life Tables

Deadline: 2021-12-09

Name1 and Name2

2021-11-09

- 1 Deliverables
- · 2 Objectives
- 3 Life tables data (ETL)
- · 4 Western countries in 1948
- · 5 Death rates evolution since WW II
- 6 Trends
- 7 Rearrangement
- · 8 Life expectancy
- · 9 PCA and SVD over log-mortality tables
- · 10 Lee-Carter model for US mortality
 - 10.1 US data
 - 10.2 Application of Lee-Carter model to a European Country
 - 10.3 Predictions of life expectancies at different ages
- 11 References

1 Deliverables

- 2021-12-09: a nom1 nom2.Rmd file that can be knitted under rstudio
 - Your file should be knitted without errors and the result should be an html document that can be viewed in a modern browser.
 - The file should contain the code used to generate plots and numerical summaries
 - The file should contain the texts of your comments (either in English or in French)
 - · Comments should be written with care, precision and should be concise
 - File nom1_nom2.Rmd will be uploaded on Moodle
- 2021-12-14: a 20 minutes oral presentation a some material extracted from your first deliverable nom1 nom2.Rmd
 - The presentation consists of a 12 minutes talk and 8 minutes of questions and answers
 - · The presentation is supported by slides
 - Slides generated from Rmarkdown should be favored. You may choose format you prefer (binb, xaringan, slidy, ioslides,...)

2 Objectives

This notebook aims at

- working with **tables** (data.frames, tibbles, data.tables,...) using dplyr or any other query language (as provided for example by data.table)
- visualizing demographic data as provided by Human Mortality Database organization (https://www.mortality.org).
- using PCA and other matrix oriented methods to explore a multivariate datasets (lifetables may be considered as multivariate datasets)

3 Life tables data (ETL)

Life data tables have been downloaded from https://www.mortality.org (https://www.mortality.org). They have been worked our for you and can be downloaded from URL 'https://www.dropbox.com/s/tnci38tqchxwic6/full_life_table.Rds?dl=0 (https://www.dropbox.com/s/tnci38tqchxwic6/full_life_table.Rds?dl=0)', saved in your working directory.

If you install and load package https://cran.r-project.org/web/packages/demography/index.html (https://cran.r-project.org/web/packages/demography/index.html), you will also find life data tables.

We investigate life tables describing countries from Western Europe (France, Great Britain –actually England and Wales–, Italy, the Netherlands, Spain, and Sweden) and the United States.

We load the one-year lifetables for female, male and whole population for the different countries.

Download data from https://www.dropbox.com/s/tnci38tqchxwic6/full_life_table.Rds?dl=0 (https://www.dropbox.com/s/tnci38tqchxwic6/full_life_table.Rds?dl=0) in your *working* directory. Save it as full life table.Rds. Load it in memory using readr::read rds().

```
fpath <- 'full_life_table.Rds' # once you have downloaded the file

if (! file.exists(fpath)){
   cat(glue('{fpath} should be in working directory!'))
} else {
   life_table <- readr::read_rds(fpath)
   glimpse(life_table)
}</pre>
```

Check on http://www.mortality.org (http://www.mortality.org) the meaning of the different columns:

Document Tables de mortalité françaises pour les XIXe et XXe siècles et projections pour le XXIe siècle (https://www.lifetable.de/data/FRA/FRA000018061997CY1.pdf) contains detailed information on the construction of Life Tables for France. Two kinds of Life Tables can be distinguished: *Table du moment* which contain for each calendar year, the mortality risks at different ages for that very year; and *Tables de génération* which contain for a given year of birth, the mortality risks at which an individual born during that year has been exposed.

The life tables investigated in this homework are *Table du moment*. According to the document by Vallin and Meslé, building the life tables required decisions and doctoring.

See (among other things)

- p. 19 Abrupt changes in mortality quotients at some ages for a given calendar year
- · Estimating mortality quotients at great age.

Have a look at Lexis diagram (https://en.wikipedia.org/wiki/Lexis_diagram).

Henceforth, the universal table is named life_table, its schema should be the following.

The life tables you will be working on are called period life tables.

Column Name	Column Type	Meaning		
Year	integer			
Age	integer	Age x		
mx	double	Central death rate at age x : m_x		
qx	double	Probability of dying between the ages of x and age $x+1$ $q_x = \frac{m_x}{1+m_x/2}$		
ax	double	.5 except at age 0		
lx	integer	Number of persons still alive at age x in a fictitious cohort of 100000		
dx	integer	Number of persons deceased between age x and $x+1$ during year in fictitious cohort		

Column Name	Column Type	Meaning
Lx	integer	Number of pearson-years lived from age x to $x+1$, $L_x = \mathcal{C}_x - d_x \times a_x$ in fictitious cohort
Tx	integer	
ex	double	Residual life expectancy at age x
Country	factor	Netherlands/
Gender	factor	Female/Male

See Preston et al. for details and explanations.

4 Western countries in 1948

Plot the <i>mortality quotients</i> of all Countries at all ages for year 1948.
Comment
Plot ratios between mortality quotients in European countries and mortality quotients in the USA in 1948
Comment

5 Death rates evolution since WW II

Plot mortality quotients (column qx) for both genders as a function of	Age	for years	1946,	1956,	 up to
2016 . Use aesthetics to distinguish years.					
Facet by Gender and Country					

- Write a function ratio_mortality_rates with signature function(df, reference_year=1946, target_years=seq(1946, 2016, 10)) that takes as input:
 - a dataframe with the same schema as life_table,
 - a reference year ref_year and
 - a sequence of years target years

and that returns a dataframe with schema:

Column Name	Column Type
Year	integer
Age	integer
qx	double
qx.ref_year	double
Country	factor
Gender	factor

where (Country, Year, Age, Gender) serves as a primary key, qx denotes the mortality quotient at Age for Year and Gender in Country whereas qx_ref_year denotes mortality quotient at Age for argument reference_year in Country for Gender.

\square Draw plots displaying the ratio $q_{x,t}/q_{x,1946}$	for ages $x \in$	$1, \ldots, 90$	and year t for t	$\in 1946, \dots,$, 2016	where $q_{\scriptscriptstyle X,i}$	t is
the mortality quotient at age x during year t .							

Handle both genders and countries Spain , Italy , France , England & Wales , USA , Sweden , Netherlands .

	2. One properly facetted plot is enough.Comment	
6	Trends	
	\square Plot mortality quotients at ages $0, 1, 5$ as a function	of time. Facet by Gender and Country
	Comment	
	Plot mortality quotients at ages 15, 20, 40, 60 as a	function of time. Facet by Gender and Country
	Comment	
7	Rearrangement	
	Country, Gender and Year, with a column for each	taframe called life_table_pivot with primary key Age from 0 up to 110. For each age column, the entry column, for Country, Gender and Year identifying the row.
You	may use functions pivot_wider, pivot_longer from	tidyr:: package.
The	resulting schema should look like:	
Со	olumn Name	Туре
Со	untry	factor
Ge	ender	factor
Yea	ar	integer
0		double
1		double
2		double
3		double
:		:
8	Using life_table_pivot compute life expectancy Life expectancy	
	Write a function that takes as input a vector of morta expectancy corresponding to the vector and the given	ality quotients, as well as an age, and returns the residual life age.
		the same schema as life_table and returns a data frame g a primary key and a column res_lex containing residual
	order to compute residual life expectancies, you may considows. Package ${ t dplyr}$ does not offer a rich API for windo	
	☐ Plot residual life expectancy as a function of Year a	at ages 60 and 65 , facet by <code>Gender</code> and <code>Country</code> .
9	PCA and SVD over log	-mortality tables
	Pick a Country, a Gender, a range of years 1948:20 life_table_pivot. Take <i>logarithms</i> of mortality quadresults of PCA with and without centering and standard Comment the screeplot(s)	otients and perform principal component analysis. Assess the

Comment the correlation circle(s)
Comment the biplot(s)
Choose the combination of centering and scaling you find the most relevant. Motivate your choice
Perform PCA on all countries and genders with the chosen combination of centering and scaling
Combine the screeplots for different countries (for each gender). Comment
10 Lee-Carter model for US mortality
To Lee-Carter moder for 03 mortality
During the last century, in the USA and in western Europe, mortality quotients at all ages have exhibited a general decreasing trend. This decreasing trend has not always been homogeneous across ages.
The Lee-Carter model has been designed to model and forecast the evolution of the log-mortality quotients for the United States during the XXth century.
Let $A_{x,t}$ denote the log mortality quotient at age x during year $t \in T$ for a given population (defined by Gender and Country).
The Lee-Carter model assumes that observed loagrithmic mortality quotients are sampled according to the following model
$A_{x,t} \sim_{\text{independent}} a_x + b_x \kappa_t + \epsilon_{x,t}$
where $(a_x)_x, (b_x)_x$ and $(\kappa_t)_t$ are unknown vectors that satisfy
1Σ
$a_x = \frac{1}{ T } \sum_{t \in T} A_{x,t} \qquad \sum_{t \in T} \kappa_t = 0 \qquad \sum_x b_x^2 = 1$
and $\epsilon_{x,t}$ are i.i.d Gaussian random variables.
10.1 US data
Fit a Lee-Carter model on the American data (for Male and Female data) training on years 1933 up to 1995. Compare the fit provided by the Lee-Carter model with the fit provided by a rank 2 truncated SVD
Compare vectors avec $(a_x)_x$, $(b_x)_x$ and $(\kappa_t)_t$ with appropriate singular vectors.
Use the Lee-Carter model to predict the mortality quotients for years 2000 up to 2015Plot predictions and observations for years 2000, 2005, 2010, 2015
10.2 Application of Lee-Carter model to a European
Country
Fit a Lee-Carter model to a European country Comment
Compare with rank-2 truncated SVD
Use the Lee-Carter model to predict the mortality quotients for years 2000 up to 2015 Plot predictions and
observations for years 2000, 2005, 2010, 2015
10.3 Predictions of life expectancies at different ages
Use Lee-Carter approximation to approximate residual life expectations
Compare with observed residual life expectations

11 References

Life tables and demography

• Human Mortality Database (https://www.mortality.org)

- Tables de mortalité françaises, Jacques Vallin et France Meslé (https://www.lifetable.de/data/FRA/FRA000018061997CY1.pdf)
- [Modeling and Forecasting U.S. Mortality, R.D.Lee and L.R. Carter, JASA 1992]
- [Les dimensions de la mortalité, S. Ledermann, Jean Breas, Population, 1959]
- Murphy, M. (2001). Samuel H. Preston, Patrick Heuveline and Michel Guillot, Demography: Measuring and Modeling Population Processes.

Graphics and reporting

- Interactive web-based data visualization with R, plotly, and shiny (https://plotly-r.com/index.html)
- R for Data Science (https://r4ds.had.co.nz)
- Layered graphics (http://vita.had.co.nz/papers/layered-grammar.pdf)
- Plotly (http://plotly.com/)

Tidyverse

- tidyselect (https://tidyselect.r-lib.org/articles/tidyselect.html)
- dbplyr (https://cran.r-project.org/web/packages/dbplyr/vignettes/dbplyr.html)
- data.table (https://github.com/Rdatatable/data.table)
- DT (https://rstudio.github.io/DT/)

PCA, SVD

- FactoMineR (http://factominer.free.fr/index_fr.html)
- ade4 (http://pbil.univ-lyon1.fr/ade4/accueil.php)
- FactoInvestigate (http://factominer.free.fr/reporting/index_fr.html)
- PCA and Tidyverse (https://cmdlinetips.com/2019/05/how-to-do-pca-in-tidyverse-framework/)
- tidyprcomp (https://broom.tidyverse.org/reference/tidy.prcomp.html)

Demography

R package demography (https://cran.r-project.org/web/packages/demography/demography.pdf)