Proposition 1 (Inégalité de Bienaymé-Tchecbychev)

Soit *X* une variable aléatoire admettant un moment d'ordre 2.

- **1.** Pour $\lambda \ge 0$, on a: $\mathbb{P}(|X \mathbb{E}[X]| \ge \lambda) \le \frac{\operatorname{Var}(X)}{\lambda^2}$.
- **2.** Pour $\epsilon \ge 0$, on a: $\mathbb{P}(|X \mathbb{E}[X]| \ge \epsilon \cdot \sigma_X) \le \frac{1}{\epsilon^2}$.

Exercice 1 (Convergence pour la loi binomiale)

Pour $B_1,...,B_n$ variables aléatoires : \blacktriangleright mutuellement indépendantes

▶ toutes de Bernoulli $\mathcal{B}(p)$.

on s'intéresse à la convergence de la moyenne empirique : $\overline{X_n} = \frac{1}{n} \cdot \sum_{k=1}^n B_k \xrightarrow{n \to \infty} p$.

1. Rappeler la loi de la somme : $\sum_{k=1}^{n} B_k$.

En déduire l'espérance et la variance de $\overline{X_n}$.

2. Conclure que $\overline{X_n}$ est bien un estimateur de p et qu'il est $\,\blacktriangleright\,\,$ sans biais,

convergent.

3. Interpréter l'animation du script convergenceBino.sce Quels paramètres peut-on faire varier? Pour quelles différences observées?

Exercice 2 (Loi de Gumbel)

Pour $X \hookrightarrow \mathcal{E}(1)$, on dit que la variable $G = \ln(X)$ suit la loi de Gumbel.

1. Justifier que la fonction de répartition de G est donnée par : $F_G: x \mapsto F_X(e^x) = 1 - \exp(-e^x)$.

2. En déduire qu'une densité de *G* est donnée par : $x \mapsto e^x \cdot \exp(-e^x) = \exp(x - e^x)$.

3. En partant de la commande grand (---, "exp",1), simuler un échantillon de *G*. Confronter l'histogramme obtenu à la densité théorique trouvée.

Exercice 3 (Estimation d'une intégrale)

On s'intéresse à l'intégrale : $I = \int_{0}^{+\infty} \ln(t) \cdot e^{-t} dt$.

1. Justifier: $I = \mathbb{E}[\ln(X)]$ pour $X \hookrightarrow \mathcal{E}(1)$.

On va approximer l'intégrale I par un estimateur de moyenne empirique.

- **2.** En partant de la commande grand (---, "exp", 1), simuler un échantillon de ln(X).
- 3. Obtenir empiriquement l'écart-type de l'échantillon. (commande: sigma = stdev(---)).

On souhaite tester l'hypothèse (H_0) : « $I = -\gamma$ », où $\gamma = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k} - \ln(n)$.

On pose: $\Gamma_n = \frac{1}{n} \cdot \sum_{k=1}^n \ln(X_k)$, pour un échantillon X_1, \dots, X_n de loi $\mathcal{E}(1)$. Notons: $\sigma = \text{Var}(\ln(X))$, pour $X \hookrightarrow \mathcal{E}(1)$.

- **4.** Dans cette question, on suppose que (H_0) est vraie. En utilisant l'inégalité de Bienaymé-Tchebychev **2.**, montrer : $\mathbb{P}(|\Gamma_n - \gamma| \ge \sqrt{20} \cdot \sigma) \le 5\%$.
- 5. Le résultat de la simulation
 - permet-il de **réfuter l'hypothèse** (H_0) au niveau de confiance [95%/5%],
 - ou **au contraire** la **corrobore**-t-il au niveau de confiance [95%/5%]?
- **6.** Combien vaut : $e^{\pi} \pi$?