Estadística Inferencial

Capítulo VIII - Ejercicio 50

Aaric Llerena Medina

Para comparar la duración promedio (en meses) μ_1 y μ_2 de dos marcas de baterías B1 y B2 se escogen dos muestras aleatorias independientes de tamaños respectivos $n_1 = 32$ y $n_2 = 36$. Si la media muestral de B1 es mayor que la media muestral de B2 en más de 2 meses, se acepta que $\mu_1 > \mu_2$. En caso contrario se acepta que $\mu_1 = \mu_2$. Calcular la probabilidad de aceptar que $\mu_1 > \mu_2$ cuando realmente $\mu_1 = \mu_2$. Suponga que las varianzas de las duraciones de B1 y B2 son respectivamente $\sigma_1^2 = 16$ y $\sigma_2^2 = 9$.

Solución:

La regla de decisión es:

• Si $\bar{X}_1 - \bar{X}_2 > 2$, se acepta que $\mu_1 > \mu_2$. • En caso contrario, se acepta que $\mu_1 = \mu_2$.

Además, se sabe que las varianzas de las duraciones de B1 y B2 son $\sigma_1^2 = 16$ y $\sigma_2^2 = 9$, por lo que la diferencia de medias muestrales $\bar{X}_1 - \bar{X}_2$ sigue una distribución normal con:

- Media: $\mu_{\bar{X}_1 \bar{X}_2} = \mu_1 \mu_2$.
- Varianza: $\sigma_{\bar{X}_1 \bar{X}_2}^2 = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} = \frac{16}{32} + \frac{9}{36} = 0.5 + 0.25 = 0.75.$
- Desviación estándar: $\sigma_{\bar{X}_1 \bar{X}_2} = \sqrt{0.75} \approx 0.866$.

Se desea calcular la probabilidad de aceptar que $\mu_1 > \mu_2$ cuando realmente $\mu_1 = \mu_2$, por lo que la media de la diferencia de medias muestrales es: $\mu_{\bar{X}_1 - \bar{X}_2} = \mu_1 - \mu_2 = 0$.

Se busca calcular la probabilidad de que $\bar{X}_1 - \bar{X}_2 > 2$, por lo que estandarizando:

$$Z = \frac{2 - 0}{0.866} = \frac{2}{0.866} \approx 2.31$$

Por lo tanto:

$$P(\bar{X}_1 - \bar{X}_2 > 2) = P(Z > 2.31)$$

Usando la tabla de la distribución normal estándar:

$$P(Z > 2.31) = 1 - P(Z \le 2.31) \approx 1 - 0.9896 = 0.0104$$

Por lo tanto, la probabilidad de aceptar que $\mu_1 > \mu_2$ cuando realmente $\mu_1 = \mu_2$ es aproximadamente 0.0104.