LECTURE NO. 2 CALCULUS & ANALYTICAL GEOMETRY BY Dr. Ali Imran

Limit

By limit of function we mean how a function behaves as independent variables as we move toward a certain point.

WHY WE STUDY LIMIT

When we are to find a value at certain point like

$$f(x) = \frac{\sin x}{x} \left(\frac{0}{0}\right), \quad x = 0$$

We cant determine value at x = 0, so we study bhavior of such functions near x = 0.

Thers are two method to study this phenomena

Method 1

$$\lim_{x \to 0} \frac{\sin x}{x} = (\frac{0}{0})$$

x	$f(x) = \frac{\sin x}{x}$	
±2.0	0.454648713	
±1.0	0.841470985	
±0.5	0.95885107	
±0.3	0.973545856	
±0.2	0.993346654	
±0.1	0.998334166	
±0.01	0.999983333	
±0.001	0.999999833	
±0.0001	0.999999998	

When $x \to 0$, then $f(x) \to 1$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Method 2

$$\lim_{x \to 0} \frac{\sin x}{x} = (\frac{0}{0})$$

Applying L-Hopital's rule

$$\lim_{x \to 0} \frac{\frac{d}{dx} \sin x}{\frac{dx}{dx}} = \lim_{x \to 0} \frac{\cos x}{1}$$

$$\lim_{x \to 0} \cos x = \cos 0 = 1$$

Medthod 3

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots$$

$$\lim_{x \to 0} \frac{1}{x} \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots \right)$$

$$\lim_{x \to 0} \left(1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \cdots \right) = 1 - 0 + 0 - \cdots = 1$$

Exercise # 1.1

Ex. 11-24 Use an algebraic simplification to help find the limit, if it exists.

15.
$$\lim_{r \to 1} \frac{r^{2} - r}{2r^{2} + 5r - 7}$$

$$= \lim_{r \to 1} \frac{r(r-1)}{2r^{2} + 7r - 2r - 7}$$

$$= \lim_{r \to 1} \frac{r(r-1)}{r(2r+7) - 1(2r+7)}$$

$$= \lim_{r \to 1} \frac{r(r-1)}{(2r+7)(r-1)}$$

$$= \lim_{r \to 1} \frac{r}{(2r+7)} = \frac{1}{9}$$

$$20. \lim_{h \to 0} \frac{(x+h)^3 - x^3}{h}, \ (\frac{0}{0})$$

$$= \lim_{h \to 0} \frac{x^3 + h^3 + 3xh(x+h) - x^3}{h}$$

$$= \lim_{h \to 0} \frac{h^3 + 3xh(x+h)}{h}$$

$$= \lim_{h \to 0} h(\frac{h^2 + 3x(x+h)}{h})$$

$$= \lim_{h \to 0} (\frac{h^2 + 3x(x+h)}{1})$$

$$= 3x^2$$

One-Sided Limits 1.2	Notation	Intuitive meaning	Graphical interpretation
	$\lim_{x \to a^{-}} f(x) = L$ (left-hand limit)	We can make $f(x)$ as close to L as desired by choosing x sufficiently close to a , and $x < a$.	$y = f(x)$ $f(x) = \int_{x \to a}^{y} L$
	$\lim_{x \to a^{+}} f(x) = L$ (right-hand limit)	We can make $f(x)$ as close to L as desired by choosing x sufficiently close to a , and $x > a$.	y = f(x) $L = f(x)$ $a = x$

$$L.H.L = \lim_{x \to a^{-}} f(x) = L$$
 , $x < a$
 $R.H.L = \lim_{x \to a^{+}} f(x) = L$, $x > a$

$$|x - a| = \begin{cases} -(x - a), & x < a \\ (x - a), & x \ge a \end{cases}$$
$$|x - 4| = \begin{cases} -(x - 4), & x < 4 \\ (x - 4), & x \ge 4 \end{cases}$$

Ex 25-30 Find the limit, if it exists.

(a)
$$\lim_{x \to a^{-}} f(x)$$
 (b) $\lim_{x \to a^{+}} f(x)$ (c) $\lim_{x \to a} f(x)$
25. $f(x) = \frac{|x-4|}{x-4}$

We express above function like

$$f(x) = \frac{|x-4|}{x-4} = \begin{cases} \frac{-(x-4)}{x-4} = -1, & x < 4\\ \frac{(x-4)}{x-4} = 1, & x \ge 4 \end{cases}$$

(a)
$$\lim_{x \to a^{-}} f(x) = \lim_{x \to 4^{-}} f(x) = \lim_{x \to 4} -1 = -1$$

(b) $\lim_{x \to a^{+}} f(x) = \lim_{x \to 4^{+}} f(x) = \lim_{x \to 4} 1 = 1$

(b)
$$\lim_{x \to a^+} f(x) = \lim_{x \to 4^+} f(x) = \lim_{x \to 4} 1 = 1$$

(c) As
$$\lim_{x \to 4^{-}} f(x) \neq \lim_{x \to 4^{+}} f(x)$$

So $\lim_{x\to a} f(x)$ does not exists

26.

$$f(x) = \frac{x+5}{|x+5|}, \qquad a = -5$$

Solve it in 10min

Ex 41-46: Sketch the graph of f and find each limit, if it exists;

41.
$$f(x) = \begin{cases} x^2 - 1, & \text{if } x < 1 \\ 4 - x, & \text{if } x \ge 1 \end{cases}$$

(a)
$$\lim_{x \to a^{-}} f(x) = \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1} x^{2} - 1 = 0$$

(b)
$$\lim_{x \to a^{+}} f(x) = \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1} (4 - x) = 3$$

(c) As $\lim_{x \to 1^{-}} f(x) \neq \lim_{x \to 1^{+}} f(x)$

(c) As
$$\lim_{x \to 1^{-}} f(x) \neq \lim_{x \to 1^{+}} f(x)$$

So $\lim_{x\to 1} f(x)$ does not exists