

unipd.codehex16@gmail.com

Piano di Qualifica

Data 03/01/2024

Versione 0.2.0

Sommario

Piano di qualifica

Ruoli

Matteo Bazzan Redattore

Luca Ribon Verficatore

Francesco Fragonas

Gabriele Magnelli

Filippo Sabbadin Redattore

Luca Rossi

Yi Hao Zhuo Verificatore

Registro delle Versioni

Versione	Data	Autore	Cambiamenti	Verificatore
0.2.0	05/02/2025	Matteo Bazzan	Aggiunta metriche di qualità	Luca Ribon
0.1.0	08/01/2024	Filippo Sabbadin	Prima stesura	Yi Hao Zhuo

Indice

1.	Introduzione e scopo	1
	1.1. Scopo del documento	
	1.2. Glossario	
	1.3. Versioni e maturità	
	1.4. Riferimenti	
	1.4.1. Riferimenti normativi	
	1.4.2. Riferimenti informativi	
2.	Metriche di qualità	3
	2.1. Qualità di processo	
	2.1.1. Fornitura	
	2.1.2. Sviluppo	
	2.1.3. Documentazione	
	2.1.4. Verifica	4
	2.1.5. Gestione della qualità	5
	2.2. Qualità del prodotto	
	2.2.1. Funzionalità	5
	2.2.2. Affidabilità	6
	2.2.3. Usabilità	7
	2.2.4. Efficienza	8
	2.2.5. Manutenibilità	8
	2.2.6. Sicurezza	9
3.	Metodologie di testing	10
	3.1. Tipologie di test	10
	3.1.1. Test di Unità	10
	3.1.2. Test di Integrazione	11
	3.1.3. Test di Sistema	11
	3.1.4. Test di Accettazione	12

Lista di immagini

Lista di tabelle

Tabella 1	Valori per misurare la qualità della fornitura	3
Tabella 2	Valori per misurare la qualità dello sviluppo	4
Tabella 3	Valori per misurare la qualità della documentazione	4
Tabella 4	Valori per misurare la qualità del processo di verifica	5
Tabella 5	Valori per misurare la qualità del prodotto in termini di funzionalità	5
Tabella 6	Valori per misurare la qualità del prodotto in termini di affidabilità .	7
Tabella 7	Valori per misurare la qualità del prodotto in termini di usabilità	7
Tabella 8	Valori per misurare la qualità del prodotto in termini di efficienza	8
Tabella 9	Valori per misurare la qualità del prodotto in termini di manutenibilità	9
Tabella 10	Valori per misurare la qualità del prodotto in termini di sicurezza	9
Tabella 11	Tipologie di test	0
Tabella 12	Esempi di unit test	1
Tabella 13	Esempi di test di integrazione	1
Tabella 14	Esempi di test di sistema	2
Tabella 15	Esempi di test di accettazione	2

Lista di equazioni

Equazione (1)	. 4
Equazione (2)	. 6

1. Introduzione e scopo

1.1. Scopo del documento

In questo documento vengono dichiarate tutte le metriche che il gruppo <u>CodeHex16</u>* userà per misurare la <u>qualità</u>* del prodotto e dei processi usati per la realizzazione del progetto.

1.2. Glossario

Per facilitare la comprensione di questo documento, viene fornito un glossario che chiarisce il significato dei termini specifici utilizzati nel contesto del progetto. Ogni termine di glossario è contrassegnato con un asterisco «*» in apice e collegato direttamente alla pagina web del glossario, permettendo così di accedere immediatamente alla definizione completa del termine.

Le definizioni sono disponibili nel documento Glossario.pdf e nella seguente pagina web: https://codehex16.github.io/glossario.html

1.3. Versioni e maturità

Data la natura evolutiva del documento, questa versione potrebbe non rappresentare la versione finale. Il documento continuerà a subire modifiche per garantire una maggiore correttezza e chiarezza nel testo per facilitare la comprensione e lettura.

1.4. Riferimenti

1.4.1. Riferimenti normativi

Capitolato C7 - <u>LLM</u>* : <u>Assistente Virtuale</u>*

https://www.math.unipd.it/~tullio/IS-1/2024/Progetto/C7.pdf

Norme di Progetto*

1.4.2. Riferimenti informativi

Slide T08 - Qualità di processo

https://codehex16.github.io/resources/slides/T8.pdf

• Slide T09 - Verifica e validazione: introduzione

https://codehex16.github.io/resources/slides/T9.pdf

- Verifica e validazione:
 - ► ISO/IEC 9126:2001 SWE Product Quality;
 - ► ISO/IEC 14598:1999 SW Product Evaluation;
 - ► ISO/IEC 25000:2005 SQuaRE: Systems and software Quality;
 - ► ISO/IEC 25010:2011 Quality model;
 - ► ISO/IEC 25020:2019 Quality measurement framework;
 - ► ISO/IEC 25030:2007 Quality requirements;
 - ISO/IEC 25040:2011 Quality evaluation;
 - ► ISO 9000:2015 (fondamenti e glossario);
 - ► ISO 9001:2015 (sistema qualità requisiti);
 - ISO/IEC/IEEE 90003:2018 (versione applicata ai prodotti SW)
 - ► ISO 9004:2018 (qualità organizzativa autovalutazione)
 - ISO/IEC 33020:2019.

2. Metriche di qualità

2.1. Qualità di processo

2.1.1. Fornitura

Per il processo di fornitura vengono indicate tutte le scelte operative fatte in fase di sviluppo. L'acronimo usato prima dei nomi è MPC*: Minimum Predictive Capability. Questa metrica viene usata in Machine Learning per misurare la capacità di un modello di generare previsioni precise. Nel nostro caso, l'MPC è il valore minimo da raggiungere per essere considerato accettabile.

- **CC Completion Cost**: costo finale raggiunto alla fine del progetto. Idealmente non deve superare quello stimato durante le fasi iniziali.
- **EC Estimated Cost**: costo stimato calcolando le ore necessarie per lo sviluppo del progetto.

Metrica	Nome	Valore accettabile	Valore ottimo
MPC-CC	Completion Cost	≤105% EC	≤100% EC

Tabella 1: Valori per misurare la qualità della fornitura

2.1.2. Sviluppo

- **RS Requirements Stability Index**: indice di stabilità dei requisiti. Indica la percentuale di requisiti che sono stati modificati rispetto al totale dei requisiti. Un valore alto indica che i requisiti sono stabili e non soggetti a modifiche frequenti.
- **TD Technical Debt Ratio**: rapporto tra il tempo necessario per risolvere i problemi tecnici e il tempo necessario per sviluppare nuove funzionalità. Un valore basso indica che il codice è ben strutturato e non presenta problemi tecnici.

Metrica	Nome	Valore accettabile	Valore ottimo
MPC-RS	Requirements Stability Index	≥80%	100%
MPC-TD	Technical Debt Ratio	≤15%	≤5%

Tabella 2: Valori per misurare la qualità dello sviluppo

2.1.3. Documentazione

• IG - Indice di Gulpease

Indica la complessità nella lettura di una frase o documento. Considera come variabili il numero di parole, di frasi e di lettere.

Formula dell'indice di Gulpease:

$$89 + \frac{(300* \text{numero di frasi}) - (10* \text{numero di lettere})}{\text{numero di parole}} \tag{1}$$

· CO - Correttezza ortografica

Indica il numero di errori ortografici presenti nella documentazione.

Metrica	Nome	Valore accettabile	Valore ottimo
MPC-IG	Indice di Gulpease	≥40	≥60
MPC-CO	Correttezza ortografica	0	0

Tabella 3: Valori per misurare la qualità della documentazione

2.1.4. Verifica

Code coverage

Quantità di codice eseguito durante un test.

Viene utilizzato per valutare la qualità dei test e garantire che il codice sia stato adeguatamente testato. Un alto livello indica che il codice è stato eseguito in molti contesti e scenari diversi con diverse parti di codice.

In altre parole, indica quanto codice è stato sottoposto ai test.

Test superati in percentuale

Indica la proporzione di test automatizzati o manuali che sono stati eseguiti con successo rispetto al totale dei test previsti. Viene espressa come una percentuale e serve a misurare quanto dell'applicazione in fase di sviluppo è stato verificato con successo tramite i test. Una percentuale alta di test superati indica che il sistema è stabile e che la maggior parte delle funzionalità funzionano come previsto.

In altre parole, indica quanti test sono stati superati.

Metrica	Nome	Valore accettabile	Valore ottimo
MPC0000	Code coverage	≥90%	100%
MPC0000	Test superati in percentuale	100%	100%

Tabella 4: Valori per misurare la qualità del processo di verifica

2.1.5. Gestione della qualità

2.2. Qualità del prodotto

2.2.1. Funzionalità

- MPD-RO Copertura requisiti obbligatori: indica la percentuale di requisiti obbligatori coperti dal prodotto. Un valore del 100% indica che tutti i requisiti obbligatori sono stati implementati.
- MPD-OP Copertura requisiti opzionali: indica la percentuale di requisiti opzionali coperti dal prodotto. Un valore del 100% indica che tutti i requisiti opzionali sono stati implementati.

Metrica	Nome	Valore accettabile	Valore ottimo
MPD-RO	Copertura requisiti obbligatori	100%	100%
MPD-OP	Copertura requisiti opzionali	≥50%	100%

Tabella 5: Valori per misurare la qualità del prodotto in termini di funzionalità

2.2.2. Affidabilità

- MPD-CC Code coverage: indica la percentuale di codice coperto dai test. Un valore alto indica che il codice è stato testato in modo approfondito e che è meno probabile che contenga errori.
- MPD-BC <u>Branch</u>* coverage: sottoinsieme di code coverage, indica la percentuale di rami delle condizioni che sono stati eseguiti durante i test. Un valore alto indica che il codice è stato testato in modo approfondito e che è meno probabile che contenga errori.
- MPD-SC Statement coverage: sottoinsieme di code coverage, indica la percentuale di istruzioni che sono state eseguite durante i test. Un valore alto indica che il codice è stato testato in modo approfondito e che è meno probabile che contenga errori. Viene calcolato con la seguente formula:

$$\frac{\text{numero di istruzioni eseguite}}{\text{numero di istruzioni totali nel codice}}*100 \tag{2}$$

- MPD-FT Failure Tolerance: indica la capacità del prodotto di mantenere un livello di prestazioni accettabile anche in caso di guasti o malfunzionamenti. Un valore alto indica che il prodotto è in grado di gestire i guasti senza compromettere le funzionalità principali.
- MPD-FF Failure Frequency: indica la frequenza con cui si verificano guasti o malfunzionamenti nel prodotto. Un valore basso indica che il prodotto è affidabile e presenta pochi problemi.
- MPD-MTBF Mean Time Between Failures: indica il tempo medio tra un guasto e il successivo. Un valore alto indica che il prodotto è affidabile e presenta pochi guasti.
- MPD-DS Disponibilità sistema: indica la percentuale di tempo in cui il sistema è
 operativo. Un valore alto indica che il sistema è affidabile e che è disponibile per
 l'utente.

Metrica	Nome	Valore accettabile	Valore ottimo
MPD-CC	Code coverage	≥80%	100%
MPD-BC	Branch coverage	≥50%	≥80%
MPD-SC	Statement coverage	≥60%	≥80%
MPD-FT	Failure Tolerance	100%	100%
MPD-FF	Failure Frequency	0	0
MPD-MTBF	Mean Time Between Failures	≥48h	≥72h
MPD-DS	Disponibilità sistema	≥90%	≥99.9%

Tabella 6: Valori per misurare la qualità del prodotto in termini di affidabilità

2.2.3. Usabilità

- MPD-TA Tempo di apprendimento: indica il tempo necessario per un utente base per apprendere come utilizzare il prodotto. Un valore basso indica che il prodotto è facile da usare e richiede poco tempo per essere appreso. Viene calcolato con sessioni di test con utenti.
- **MPD-EUA Errori utente/azione**: indica il numero di errori commessi dagli utenti durante l'utilizzo del prodotto. Un valore basso indica che il prodotto è intuitivo e facile da usare. Viene calcolato tramite log delle interazioni.
- MPD-TSR Task* success rate: indica la percentuale di task completati con successo dagli utenti. Un valore alto indica che il prodotto è facile da usare e che gli utenti riescono a completare le azioni richieste. Viene calcolato con sessioni di test con utenti.

Metrica	Nome	Valore accettabile	Valore ottimo
MPD-TA	Tempo di apprendimento	≤15 min (utente base)	≤5 min
MPD-EUA	Errori utente/azione	≤0.5 errori/azione	0
MPD-TSR	Task success rate	≥75%	100%

Tabella 7: Valori per misurare la qualità del prodotto in termini di usabilità

2.2.4. Efficienza

- MPD-TRA Tempo risposta API*: tempo di risposta delle API per il 90% delle richieste. Un valore basso indica che il sistema risponde velocemente alle richieste degli utenti.
- **MPD-MP Memoria processo**: indica l'utilizzo della memoria da parte del sistema. Un valore basso indica che il sistema utilizza in modo efficiente le risorse disponibili.
- **MPD-CE Consumo energetico**: indica il consumo energetico del sistema. Un valore basso indica che il sistema consuma poca energia.

Metrica	Nome	Valore accettabile	Valore ottimo
MPD-TRA	Tempo risposta API	≤500 ms	≤200 ms
MPD-MP	Memoria processo	≤512 MB	≤256 MB
MPD-CE	Consumo energetico	≤2% batteria/min	≤1% batteria/min

Tabella 8: Valori per misurare la qualità del prodotto in termini di efficienza

2.2.5. Manutenibilità

- MPD-CCL Complessità ciclomatica: misura la complessità del codice. Un valore basso indica che il codice è semplice e facile da mantenere.
- **MPD-DT Debito Tecnico**: indica la percentuale di debito tecnico rispetto al codice totale. Un valore basso indica che il codice è ben strutturato e non presenta problemi tecnici.
- MPD-CSD Code Smell density: indica il numero di «code smells» (cattive pratiche di codifica) per 100 righe di codice. Un valore basso indica che il codice è ben strutturato e non presenta problemi tecnici.
- **MPD-TFB Tempo fix bug**: tempo medio per risolvere un bug critico. Un valore basso indica che il team è in grado di risolvere i bug in modo rapido ed efficiente.

Metrica	Nome	Valore accettabile	Valore ottimo
MPD-CCL	Complessità ciclomatica	≤15 per modulo	≤10
MPD-DT	Debito Tecnico	≤15%	≤5%
MPD-CSD	Code Smell density	≤5 smell/100 righe	0 smell
MPD-TFB	Tempo fix bug	≤4 ore (critico)	≤2 ore

Tabella 9: Valori per misurare la qualità del prodotto in termini di manutenibilità

2.2.6. Sicurezza

- MPD-AF Tasso di autenticazione fallita: percentuale di tentativi di autenticazione falliti. Un valore basso indica che il sistema è sicuro e che è difficile per gli utenti non autorizzati accedere al sistema.
- MPD-CRD Crittografia dati: livello di crittografia dei dati sensibili. Un valore alto indica che i dati sono protetti e che è difficile per gli utenti non autorizzati accedere ai dati sensibili.

Metrica	Nome	Valore accettabile	Valore ottimo
MPD-AF	Tasso di autenticazione fallita	≤5%	≤1%
MPD-CRD	Crittografia dati	100% dati sensibili	100% dati sensibili

Tabella 10: Valori per misurare la qualità del prodotto in termini di sicurezza

3. Metodologie di testing

3.1. Tipologie di test

Per garantire la qualità del prodotto, il team CodeHex16 ha deciso di verificare il prodotto attraverso diverse tipologie di test.

Tipo di test	Scopo	Strumenti
Test di Unità	Verificare il corretto funzionamento delle singole componenti	pytest, vitest
Test di Integrazione	Validare l'interazione tra moduli e servizi	Postman
Test di Sistema	Verificare il comportamento end-to-end rispetto ai requisiti funzionali	Playwright
Test di Accettazione	Validare il sistema con il #gloss[committente]/utente finale	Checklist manuali

Tabella 11: Tipologie di test

Ad ogni test è stato attribuito un codice univoco per identificarlo strutturato nel seguente modo: [TIP0]-XXX, dove XXX è un numero progressivo.

• Test di Unità: TU-XXX

Test di Integrazione: TI-XXXTest di Sistema: TS-XXX

Test di Accettazione: TA-XXX

Per ogni test viene specificato lo **stato** di completamento, che può essere:

- Superato
- Pianificato
- Fallito
- · Non implementato

3.1.1. Test di Unità

I test di unità sono utilizzati per verificare il corretto funzionamento delle singole componenti del software. Vengono scritti dai programmatori e sono eseguiti in modo automatico. Gli strumenti utilizzati per i test di unità sono pytest e vitest.

Esempi applicati al progetto:

Codice	Descrizione	Stato
TU-001	Verifica del parsing delle credenziali durante il login	Superato
TU-002	Test generazione risposta LLM con input validi/ invalidi	Non implementato
TU-003	Controllo formati logo supportati (PNG, JPG, SVG)	Superato

Tabella 12: Esempi di unit test

3.1.2. Test di Integrazione

I test di integrazione sono utilizzati per validare l'interazione tra moduli e servizi. Vengono scritti dai programmatori e sono eseguiti in modo automatico. Lo strumento utilizzato per i test di integrazione è Postman.

Esempi applicati al progetto:

Codice	Descrizione	Stato
TI-001	Integrazione modulo autenticazione con database utenti	Superato
TI-002	Comunicazione tra frontend e API di generazione risposte LLM	Superato
TI-003	Verifica sincronizzazione impostazioni tema (dark/ light mode) su più dispositivi	Non Implementato

Tabella 13: Esempi di test di integrazione

3.1.3. Test di Sistema

I test di sistema sono utilizzati per verificare il comportamento end-to-end del sistema rispetto ai requisiti funzionali. Vengono scritti dagli analisti e sono eseguiti in modo automatico. Lo strumento utilizzato per i test di sistema è Playwright.

Esempi applicati al progetto:

Codice	Descrizione	Stato
TS-001	Test completo flusso cliente: Login → Richiesta prodotto → Valutazione risposta	Non Implementato
TS-002	Test gestione fornitori: Aggiunta #gloss[account] → Configurazione #gloss[chatbot] → Caricamento documenti	Superato
TS-003	Test tolleranza ai fallimenti: Simulazione downtime sistema durante l'invio messaggi	Pianificato

Tabella 14: Esempi di test di sistema

3.1.4. Test di Accettazione

I test di accettazione sono utilizzati per validare il sistema con il committente o l'utente finale. Vengono scritti dagli analisti e sono eseguiti in modo manuale. Gli strumenti utilizzati per i test di accettazione sono checklist manuali.

Esempi applicati al progetto:

Codice	Descrizione	Stato
TA-001	Verifica personalizzazione interfaccia	Non Implementato
TA-002	Validazione accuratezza risposte LLM	Non Implementato
TA-003	Test flusso cliente: Registrazione → Richiesta prodotto → Valutazione risposta	Non Implementato

Tabella 15: Esempi di test di accettazione