Нормални подгрупи. Факторгрупи. Теорема за хомоморфизмите на групи.

Нека G е група, а $H \leq G$ е нейна подгрупа. Казваме, че H е нормална nodepyna на G, ако е изпълнено xH = Hx, за $\forall x \in G$. Означаваме $H \leq G$ (или $H \lhd G$, ако имаме строго включване на H в G).

Ако $H=\{e\}$, то $xH=\{x\}$ и $Hx=\{x\}$, т.е. xH=Hx за $\forall x\in G$ и $\{e\}\unlhd G$. Ако H=G, то xG=G и Gx=G за $\forall x\in G$ и следователно $G\lhd G$.

Някои нетривиални примеи: Ако G е абелева група и H е произволна нейна подгрупа, то $h \le G$. Наистина, за $\forall x \in G$ и $\forall h \in H$ имаме, че xh = hx и следователно xH = Hx, защото просто двете множества съвпадат поелементно. Нека сега $G = GL_n(F)$, а $H = SL_n(F)$. Както видяхме преди $H \le G$ и за $\forall x \in G$ имаме, че $xH = \{g \in G \mid \det g = \det x\} = Hx$. Следователно $SL_n(F) \le GL_n(F)$.

Ако |G:H|=1, то H=G и $H \leq G$.

Твърдение 1. Ако G е група, $H \leq G$ е нейна подгрупа u |G: H| = 2, то $H \leq G$.

Доказателство. Левите съседни класове на G по H са два: H и $G\backslash H$, т.е. елементите на G, които са извън H. Десните съседни класове на G по H са също два: H и $G\backslash H$. Оттук следва, че xH=Hx за $\forall x\in G$ и $H\lhd G$.

Твърдение 2. Нека G е група, а $H \leq G$ е нейна подгрупа. Необходимо и достатъчно условие H да е нормална подгрупа на G е за $\forall h \in H$ и $\forall g \in G$ елементът $g^{-1}hg$ да принадлежи на H. (Елементът $g^{-1}hg$ се нарича спрегнат на елемента h с елемента g.)

Доказателство. Необходимост: нека $H \subseteq G$. Тогава за произволен елемент $g \in G$ е изпълнено gH = Hg. Сега за проиволен елемент $h \in H$ имаме, че $hg \in Hg = gH$, което означава, че $hg = gh_1$ за някакъв елемент $h_1 \in H$. Умножавама последното равенство отляво с g^{-1} и получаваме, че $g^{-1}hg = h_1 \in H$. Следователно $g^{-1}hg \in H$ за произволни елементи $g \in G$ и $h \in H$.

Достатъчност: нека $g^{-1}hg \in H$ за проиволни елементи $g \in G, h \in H$. Това означава, че $g^{-1}hg = h_1$ за някакъв елемент $h_1 \in H$, а също и че $(g^{-1})^{-1}hg^{-1} = ghg^{-1} \in H$, т.е. $ghg^{-1} = h_2$ за някакъв елемент $h_2 \in H$. За проиволен елемент $u \in gH$ имаме, че u = gh за $h \in H$, което ни дава, че $u = h_2g$, откъдето следва, че $u \in Hg$. Така получихме включването $gH \subseteq Hg$. За проиволен елемент $v \in Hg$ имаме, че v = hg за елемент $h \in H$, което ни дава $v = gh_1$, откъдето следва, че $v \in gH$ и получихме включването $gH \supseteq Hg$. По този начин видяхме, че всъщност gH = Hg за проиволно $g \in G$, което означава, че $H \subseteq G$.

Свойство на нормалните подгрупи:

Сечението на фамилия нормални подгрупи на G също е нормална подгрупа на G.

Доказателство: Ще докажем свойството при $H_1 \unlhd G$ и $H_2 \unlhd G$. Оттам то ще следва и за произволен брой нормални подгрупи според принципа на математическата индукция. Нека $H = H_1 \cap H_2$. За произволен елемент $h \in H$ и произволен елемент $g \in G$ имаме, че $g^{-1}hg \in H_1$ и $g^{-1}hg \in H_2$, защото H_1 и H_2 са нормални подгрупи на G и $h \in H_1 \cap H_2$. Но тогава $g^{-1}hg \in H_1 \cap H_2 = H$, което означава, че $H \unlhd G$.

Нека G е група, а $H \leq G$ е нейна нормална подгрупа. Нека $G/H = \{xH \mid x \in G\}$ е множеството на всички съседни класове на G по H. В G/H дефинираме бинарна операция \cdot чрез $aH \cdot bH = (ab)H$ за $\forall a,b \in G$.

Ще проверим, че това е коректно дефинирана операция. Нека $a_1 \in aH \Rightarrow a_1H = aH$ и $b_1 \in bH \Rightarrow b_1H = bH$. Трябва да проверим дали $(ab)H = (a_1b_1)H$. Имаме, че $a_1 = ah_1$ за елемент $h_1 \in H$ и $b_1 = bh_2$ за елемент $h_2 \in H$. Тогава имаме, че $(ab)^{-1}a_1b_1 = (ab)^{-1}ah_1bh_2 = b^{-1}a^{-1}ah_1bh_2 = \underbrace{(b^{-1}h_1b)}_{\in H}\underbrace{(h_2)}_{\in H} \in H$. И така $(ab)^{-1}a_1b_1 \in H$, откъдето

следва, че $(a_1b_1)H = (ab)H$, т.е. операцията · е коректно въведена.

Относно така въведената операция \cdot множеството G/Hе група. Наистина, трите аксиоми са изпълнени, защото

- 1. (aHbH)cH = (ab)HcH = [(ab)c]H = [a(bc)]H = aH(bc)H = aH(bHcH) за произволни елементи $a,b,c \in G$.
- 2. Съществува единичен елемент, а именно това е елементът eH = H, защото е изпълнено, че eHaH = (ea)H = aH и aHeH = (ae)H = aH за $\forall a \in G$.
- 3. За всеки елемент $aH \in G/H$ съществува обратен, а именно $a^{-1}H \in H/G$, защото е изпълнено $aHa^{-1}H = (aa^{-1})H = H$ и $a^{-1}HaH = (a^{-1}a)H = H$.

И така, групата G/H се нарича факторгрупа на G по H.

Ако G е абелева група, то G/H също е абелева, защото за $\forall a,b \in G$ имаме, че aHbH=(ab)H=(ba)H=bHaH.

Ако групата G е от краен ред $|G| < \infty$, то редът |G/H| на факторгрупата на G по нормалната подгрупа $H \unlhd G$ е равен на броя на различните съседни класове на G по H (т.к. по дефиниция това са нейните елементи), което всъщност е индексът на H в G, т.е. |G:H|. Така от теоремата на Лагранж получаваме, че $|G/H| = \frac{|G|}{|H|}$ или в частност |G/H| дели |G| за произволна нормална подгрупа на G.

Тривиалните примери за факторгрупа са при H=G, когато единствният съседен клас на G по H е G и G/H е единичната група, както и при $H=\{e\}$, когато съседните класове са $x\{e\}=\{x\}$ и $G/H=\{\{x\}\mid x\in G\}\cong G$.

Следващата важна теорема, която ще докажем, изисква да си припомним, че ако G и G' са групи съответно относно операции \cdot и *, то изображението

$$\varphi: G \longrightarrow G'$$

се нарича хомоморфизъм на групи, ако е в сила $\varphi(a \cdot b) = \varphi(a) * \varphi(b)$ за $\forall a,b \in G$. Ако в допълнение φ е биективно, то то е изморфизъм на групи, а групите G и G' са изоморфии, което записваме като $G \cong G'$. Дефинираме множеството

$$\operatorname{Im} \varphi = \{ g' \in G \mid g' = \varphi(g) \text{ за някой елемент } g \in G \},$$

наречено *образ* на хомоморфизма φ , както и множеството

$$\operatorname{Ker} \varphi = \{g \in G \mid \varphi(g) = e'\},\$$

наречено $s\partial po$ на хомоморфизма φ . Директно се проверява, че $\operatorname{Im} \varphi \leq G'$, а $\operatorname{Ker} \varphi \leq G$. Ще покажем проверката само за ядрото на φ . Нека

 $x,y\in {\rm Ker}\, \varphi.$ Тогава $\varphi(x\cdot y)=\varphi(x)*\varphi(y)=e'*e'=e',$ откъдето следва, че $x\cdot y\in {\rm Ker}\, \varphi$, т.е. ${\rm Ker}\, \varphi$ е затворено относно груповата операция \cdot в G. Освен това $\varphi(x^{-1})=(\varphi(x))^{-1}=(e')^{-1}=e',$ откъдето следва, че $x^{-1}\in {\rm Ker}\, \varphi,$ т.е. ${\rm Ker}\, \varphi$ е затворено относно обръщането на елементи. По този начин ${\rm Ker}\, \varphi\subseteq G$. Нека сега за произволни $x\in {\rm Ker}\, \varphi$ и $g\in G$ разгледаме елемента $g^{-1}xg$. Имаме, че $\varphi(g^{-1}xg)=\varphi(g^{-1})*\varphi(x)*\varphi(g)=(\varphi(g))^{-1}*e'*\varphi(g)=(\varphi(g))^{-1}*\varphi(g)=e',$ откъдето следва, че $g^{-1}xg\in {\rm Ker}\, \varphi$, т.е. ${\rm Ker}\, \varphi$ съдържа всички спрегнати елементи на произволен свой елемент и така ${\rm Ker}\, \varphi\subseteq G$.

Твърдение 3. Нека G е група, $H \subseteq G$ е нормална подгрупа u

$$\pi: G \longrightarrow G/H$$

е изображение, дефинирано с $\pi(g) = gH$ за $\forall g \in G$. Тогава π е хомоморфизъм на групи с $\operatorname{Im} \pi = G/H^1$ и $\operatorname{Ker} \pi = H$.

Доказателство. За произволни $x,y \in G$ имаме, че $\pi(xy) = (xy)H = xHyH = \pi(x)\pi(y)$, откъдето получаваме, че π е хомоморфизъм на групи.

Всеки елемент $gH \in G/H$ за $g \in G$ е съседен клас и от свойството, че $g \in gH$ следва, че $gH = \pi(g)$, което означава, че всеки елемент на G/H е образ на елемент от G, т.е. $\operatorname{Im} \pi = G/H$.

Елемент $g \in G$ принадлежи на $\ker \pi \Leftrightarrow$ образът на g под действието на π е единичният елемент на $g/H \Leftrightarrow gH = H$, което означава, че $g \in H$. По този начин видяхме, че $\ker \pi = H$, с което твърдението е доказано.

Вече сме готови да докажем основния резултат в тази глава, а именно

Теоремата за хомоморфизмите². $Hека\ G\ u\ G'\ ca\ групи\ u\ изображението$

$$\varphi: G \longrightarrow G'$$

e хомоморфизъм на групи. Тогава $\operatorname{Ker} \varphi \unlhd G$ и $G/\operatorname{Ker} \varphi \cong \operatorname{Im} \varphi$.

 $^{^{1}}$ Това всъщност означава, че π е сюрективен хомоморвизъм на групи, или още епиморфизъм на групи. Всъщност така въведеното изображение π е често срещано и е познато като естествен хомоморфизъм (епиморфизъм) на G върху G/H.

²Ивестна още и като теорема за епиморфизмите.

Доказателство. Да означим $H=\mathrm{Ker}\,\varphi$. Вече видяхме, че $H\unlhd G$ и че $\mathrm{Im}\,\varphi\leq G'$. Твърдим, че групите G/H и $\mathrm{Im}\,\varphi$ са изоморфии. Разглеждаме изображението

$$f: G/H \longrightarrow \operatorname{Im} \varphi,$$

дефинирано с $f(gH) = \varphi(g)$.

Първо трябва да проверим коректността на изображението f. Нека взмемем елемент $g_1 \in gH$. Тогава $g_1H = gH$ и трябва да докажем, че $\varphi(g_1) = \varphi(g)$. Десйствително, $g_1 = gh$ за някой елемент $h \in H$ и тогава $\varphi(g_1) = \varphi(gh) = \varphi(g)\varphi(h) = \varphi(g)e' = \varphi(g)$.

За всеки два елемента $xH, yH \in G/H$, където $x, y \in G$ имаме, че $f(xHyH) = f((xy)H) = \varphi(xy) = \varphi(x)\varphi(y) = f(xH)f(yH)$, което доказва, че изображението f е хомоморфизъм на групи.

Всеки елемент от $\operatorname{Im} \varphi$ има вида $\varphi(g)$ за някой елемент $g \in G$ и $\varphi(g) = f(gH)$, т.е. е образ на съседен клас $gH \in G/H$ и следователно f е епиморфизъм. Нека $x,y \in G$ са такива, че $xH \neq yH$. Да допуснем, че f(xH) = f(yH). Това ни дава, че $\varphi(x) = \varphi(y)$ и оттук получаваме, че $\varphi(x^{-1}y) = \varphi(x^{-1})\varphi(y) = (\varphi(x))^{-1}\varphi(x) = e'$. Това онзачава, че $x^{-1}y \in \operatorname{Ker} \varphi = H$, откъдето следва противоречието yH = xH. Следователно остава да е вярно $f(xH) \neq f(xH)$ и f е ендоморфизъм. И така, доказахме, че f е изоморфизъм на групи, а $G/H \cong \operatorname{Im} \varphi$.

Пример:

За $G = GL_n(F)$ и $H = SL_n(F)$ да се докаже, че $GL_n(F)/SL_n(F) \cong F^*$. Търсим изображение

$$\varphi: GL_n \longrightarrow F^*,$$

такова че: φ е хомоморфизъм; $\operatorname{Im} \varphi = F^*$; $\ker \varphi = SL_n(F)$ и ще приложим теоремата за хомоморфизмите. От тези условия се досещаме да използваме изображението $\varphi(A) = \det A$ за $\forall A \in GL_n(F)$. Тогава $\varphi(AB) = \det(AB) = \det A \det B = \varphi(A)\varphi(B)$ за $\forall A, B \in GL_n(F)$, което означава, че φ е хомоморфизъм на групи. Нека $\lambda \in F^*$, т.е. $\lambda \in F$ и $\lambda \neq 0$. Разглежда-

ме матрицата
$$A=\begin{pmatrix} \lambda & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \ddots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix} \in GL_n(F).$$
 Тогава $\det A=\lambda$, кое-

то означава, че $\lambda = \varphi(A)$ и оттук следва, че $\operatorname{Im} \varphi = F^*$. Нека $A \in GL_n(F)$.

Тогава $A \in \operatorname{Ker} \varphi \Leftrightarrow \varphi(A) = 1 \Leftrightarrow \det A = 1 \Leftrightarrow A \in SL_n(F)$ и това означава, че $\operatorname{Ker} \varphi = SL_n(F)$. Сега, прилагайки теоремата за хомоморфизмите, достигаме до искания резултат $GL_n(F)/SL_n \cong F^*$.