Responsible Machine Learning* Lecture 1: Interpretable Machine Learning Models

Patrick Hall

The George Washington University

May 19, 2020

^{*}This material is shared under a CC By 4.0 license which allows for editing and redistribution, even for commercial purposes. However, any derivative work should attribute the author.

Contents

Class Overview

Introduction

Penalized GLM

Monotonic GBM

A Burgeoning Ecosystem

Grading and Policy

- Grading:
 - $\frac{1}{3}$ Participation
 - $\frac{1}{3}$ Project GitHub or Kaggle kernel
 - $\frac{1}{3}$ Public Kaggle leaderboard score
- Project:
 - Kaggle competition using techniques from class
 - Individual or group (no more than 4 members)
 - Select team members ASAP
- Syllabus
- Webex office hours: Thurs. 5-6 pm or by appointment
- Class resources: https://jphall663.github.io/GWU_rml/

Overview

- Class 1: Interpretable Models
- Class 2: Post-hoc Explanations
- Class 3: Fairness
- Class 4: Security
- Class 5: Model Debugging
- Class 6: Best Practices

[†]A Responsible Machine Learning Workflow

Notation

Spaces

- Input features come from the set \mathcal{X} contained in a P-dimensional input space, $\mathcal{X} \subset \mathbb{R}^P$. An arbitrary, potentially unobserved, or future instance of \mathcal{X} is denoted \mathbf{x} , $\mathbf{x} \in \mathcal{X}$.
- Labels corresponding to instances of ${\mathcal X}$ come from the set ${\mathcal Y}$.
- Learned output responses come from the set $\hat{\mathcal{Y}}$.

Notation

Datasets

- The input dataset X is composed of observed instances of the set \mathcal{X} with a corresponding dataset of labels Y, observed instances of the set \mathcal{Y} .
- Each *i*-th observation of **X** is denoted as $\mathbf{x}^{(i)} = [x_0^{(i)}, x_1^{(i)}, \dots, x_{P-1}^{(i)}]$, with corresponding *i*-th labels in **Y**, $\mathbf{y}^{(i)}$, and corresponding predictions in $\mathbf{\hat{Y}}$, $\mathbf{\hat{y}}^{(i)}$.
- X and Y consist of N tuples of observations: $[(x^{(0)}, y^{(0)}), (x^{(1)}, y^{(1)}), \dots, (x^{(N-1)}, y^{(N-1)})].$
- Each j-th input column vector of **X** is denoted as $X_j = [x_j^{(0)}, x_j^{(1)}, \dots, x_j^{(N-1)}]^T$.

Notation

Models

- A type of machine learning model g, selected from a hypothesis set \mathcal{H} , is trained to represent an unknown signal-generating function f observed as X with labels Y using a training algorithm \mathcal{A} : $X, Y \xrightarrow{\mathcal{A}} g$, such that $g \approx f$.
- g generates learned output responses on the input dataset $g(\mathbf{X}) = \hat{\mathbf{Y}}$, and on the general input space $g(\mathcal{X}) = \hat{\mathcal{Y}}$.
- ullet The model to be explained, tested for discrimination, or debugged is denoted as g.

Background

We will frequently refer to following terms and definitions today:

- Pearson correlation
 - Measurement of the linear relationship between two input X_j ; values between -1 and +1, including 0.
- Shapley value
- Partial dependence and individual conditional expectation (ICE)
- Gradient boosting machine (GBM)

Shapley Value

Shapley explanations, including TreeSHAP and even certain implementations of LIME, are a class of additive, locally accurate feature contribution measures with long-standing theoretical support (Lundberg and Lee, 2017).

For some observation $x \in \mathcal{X}$, Shapley explanations take the form:

$$\phi_{j} = \sum_{S \subseteq \mathcal{P} \setminus \{j\}} \frac{|S|!(\mathcal{P} - |S| - 1)!}{\mathcal{P}!} \underbrace{(S \cup \{j\}) - g_{x}(S)]}_{g \text{ "without" } x_{j}}$$
(1)

weighted average over all subsets in ${\bf X}$

$$g(\mathbf{x}) = \phi_0 + \sum_{j=0}^{j=\mathcal{P}-1} \phi_j \mathbf{z}_j$$
 (2)

Partial Dependence and ICE

- Following Friedman, Hastie, and Tibshirani, 2001, a single feature $X_j \in \mathbf{X}$ and its complement set $\mathbf{X}_{(-j)} \in \mathbf{X}$ (where $X_j \cup \mathbf{X}_{(-j)} = \mathbf{X}$) is considered. PD (X_j, g) for a given feature X_j is estimated as the average output of the learned function $g(\mathbf{X})$ when all the components of X_j are set to a constant $x \in \mathcal{X}$ and $\mathbf{X}_{(-j)}$ is left unchanged.
- ICE (x_j, \mathbf{x}, g) for a given instance \mathbf{x} and feature x_j is estimated as the output of $g(\mathbf{x})$ when x_j is set to a constant $x \in \mathcal{X}$ and all other features $\mathbf{x} \in \mathbf{X}_{(-j)}$ are left untouched. Partial dependence and ICE curves are usually plotted over some set of constants $x \in \mathcal{X}$ (Goldstein et al., 2015).

Gradient Boosting Machine

$$g^{\mathsf{GBM}}(\mathsf{x}) = \sum_{b=0}^{B-1} T_b(\mathsf{x};\Theta) \tag{3}$$

A GBM is a sequential combination of decision trees, T_b , where T_0 is trained to predict y, but all subsequent T are trained to reduce the errors of T_{b-1} .

Anatomy of Elastic Net Regression: L1 and L2 Penalty

Same basic functional form as more traditional linear models, e.g. ...

$$g^{\text{GLM}}(\mathbf{x}) = \beta_0 + \beta_1 x_0 + \beta_2 x_1 + \dots + \beta_P x_{P-1}$$
 (4)

... but more robust to correlation, wide data, and outliers.

Anatomy of Elastic Net Regression: L1 and L2 Penalty

Iteratively reweighted least squares (IRLS) method with ridge (L_2) and LASSO (L_1) penalty terms:

$$\widetilde{\beta} = \min_{\beta} \left\{ \underbrace{\sum_{i=0}^{N-1} (y_i - \beta_0 - \sum_{j=1}^{P-1} x_{ij} \beta_j)^2}_{1} + \underbrace{\lambda}_{2} \underbrace{\sum_{j=1}^{P-1} (\underbrace{\alpha}_{3} \underbrace{\beta_j^2}_{4} + (1 - \underbrace{\alpha}_{3}) \underbrace{|\beta_j|}_{5}) \right\}$$

$$(5)$$

- 1: Least square minimization
- 2: Controls magnitude of penalties
- 3: Tunes balane between L1 and L2
- 4: L_2 /Ridge penalty term
- 5: L₁/LASSO penalty term

Graphical Illustration of Shrinkage/Regularization Method:

Monotonic GBM (Gill et al., 2020)

MGBMs constrain typical GBM training to consider only tree splits that obey user-defined positive and negative monotone constraints, with respect to each input feature, X_j , and a target feature, \mathbf{y} , independently. An MGBM remains an additive combination of B trees trained by gradient boosting, T_b , and each tree learns a set of splitting rules that respect monotone constraints, Θ_b^{mono} . A trained MGBM model, g^{MGBM} , takes the form:

$$g^{\mathsf{MGBM}}(\mathbf{x}) = \sum_{b=0}^{B-1} T_b(\mathbf{x}; \Theta_b^{\mathsf{mono}})$$
 (6)

Monotone Constraints for GBM (Gill et al., 2020)

- 1. For the first and highest split in T_b involving X_j , any $\theta_{b,j,0}$ resulting in $T(x_j;\theta_{b,j,0})=\{w_{b,j,0,L},w_{b,j,0,R}\}$ where $w_{b,j,0,L}>w_{b,j,0,R}$, is not considered.
- 2. For any subsequent left child node involving X_j , any $\theta_{b,j,k\geq 1}$ resulting in $T(x_j;\theta_{b,j,k\geq 1})=\{w_{b,j,k\geq 1,L},w_{b,j,k\geq 1,R}\}$ where $w_{b,j,k\geq 1,L}>w_{b,j,k\geq 1,R}$, is not considered.
- 3. Moreover, for any subsequent left child node involving X_j , $T(x_j; \theta_{b,j,k\geq 1}) = \{w_{b,j,k\geq 1,L}, w_{b,j,k\geq 1,R}\}$, $\{w_{b,j,k\geq 1,L}, w_{b,j,k\geq 1,R}\}$ are bound by the associated $\theta_{b,j,k-1}$ set of node weights, $\{w_{b,j,k-1,L}, w_{b,j,k\geq 1,R}\}$, such that $\{w_{b,j,k\geq 1,L}, w_{b,j,k\geq 1,R}\}$ $<\frac{w_{b,j,k-1,L}+w_{b,j,k-1,R}}{2}$.
- 4. (1) and (2) are also applied to all right child nodes, except that for right child nodes $w_{b,j,k,L} \leq w_{b,j,k,R}$ and $\{w_{b,j,k\geq 1,L}, w_{b,j,k\geq 1,R}\} \geq \frac{w_{b,j,k-1,L}+w_{b,j,k-1,R}}{2}$.

Note that $g^{\text{MGBM}}(\mathbf{x})$ is an addition of each full T_b prediction, with the application of a monotonic logit or softmax link function for classification problems. Moreover, each tree's root node corresponds to some constant node weight that by definition obeys monotonicity constraints, $T(x_j^{\alpha};\theta_{b,0})=T(x_j^{\beta};\theta_{b,0})=w_{b,0}$.

Partial Dependence and ICE:

A Burgeoning Ecosystem of Interpretable Machine Learning Models

- Generalized additive model (GAM) (Friedman, Hastie, and Tibshirani, 2001)
- GA2M/Explainable boosting machine (EBM) (Lou et al., 2013)
- Explainable Neural Network (XNN) (Vaughan et al., 2018)
- Rudin group:
 - This looks like that deep learning (Chen et al., 2019)
 - Scalable Bayesian rule list (Yang, Rudin, and Seltzer, 2017)
 - Optimal sparse decision tree (Hu, Rudin, and Seltzer, 2019)
 - Supersparse linear integer models (Ustun and Rudin, 2016)
 - and more ...
- RuleFit (Friedman and Popescu, 2008)

References

- Chen, Chaofan et al. (2019). "This Looks Like That: Deep Learning for Interpretable Image Recognition." In: Proceedings of Neural Information Processing Systems (NeurIPS). URL: https://arxiv.org/pdf/1806.10574.pdf.
- Friedman, Jerome, Trevor Hastie, and Robert Tibshirani (2001). **The Elements of Statistical Learning**. URL: https://web.stanford.edu/~hastie/ElemStatLearn/printings/ESLII_print12.pdf. New York: Springer.
- Friedman, Jerome H., Bogdan E. Popescu, et al. (2008). "Predictive Learning Via Rule Ensembles." In: *The Annals of Applied Statistics* 2.3. URL:
- https://projecteuclid.org/download/pdfview_1/euclid.aoas/1223908046, pp. 916-954.

 Gill, Navdeep et al. (2020). "A Responsible Machine Learning Workflow with Focus on Interpretable Models, Post-hoc Explanation, and Discrimination Testing." In: *Information* 11.3. URL:
 - https://www.mdpi.com/2078-2489/11/3/137, p. 137.
- Goldstein, Alex et al. (2015). "Peeking Inside the Black Box: Visualizing Statistical Learning with Plots of Individual Conditional Expectation." In: Journal of Computational and Graphical Statistics 24.1. URL: https://arxiv.org/pdf/1309.6392.pdf.
- Hu, Xiyang, Cynthia Rudin, and Margo Seltzer (2019). "Optimal Sparse Decision Trees." In: arXiv preprint arXiv:1904.12847. URL: https://arxiv.org/pdf/1904.12847.pdf.

References

- Lou, Yin et al. (2013). "Accurate Intelligible Models with Pairwise Interactions." In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. URL:
 - http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.352.7682&rep=rep1&type=pdf. ACM, pp. 623-631.
- Lundberg, Scott M. and Su-In Lee (2017). "A Unified Approach to Interpreting Model Predictions." In: Advances in Neural Information Processing Systems 30. Ed. by I. Guyon et al. URL:
 - http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf. Curran Associates, Inc., pp. 4765-4774.
- Ustun, Berk and Cynthia Rudin (2016). "Supersparse Linear Integer Models for Optimized Medical Scoring Systems." In: Machine Learning 102.3. URL:
 - https://users.cs.duke.edu/~cynthia/docs/UstunTrRuAAAI13.pdf, pp. 349-391.
- Vaughan, Joel et al. (2018). "Explainable Neural Networks Based on Additive Index Models." In: arXiv preprint arXiv:1806.01933. URL: https://arxiv.org/pdf/1806.01933.pdf.
- Yang, Hongyu, Cynthia Rudin, and Margo Seltzer (2017). "Scalable Bayesian Rule Lists." In: Proceedings of the 34th International Conference on Machine Learning (ICML). URL: https://arxiv.org/pdf/1602.08610.pdf.