Definite Integrals with u-substitution:
If
$$u = g(x)$$
, then $\int_{a}^{b} f(g(x)) \cdot g'(x) dx \to \int_{u(a)}^{u(b)} f(u) du$.

Example: Using the substitution $u = \frac{2x}{3}$, $\int_{0}^{\frac{\pi}{2}} \cos\left(\frac{2x}{3}\right) dx =$

$$u = \frac{2x}{3} \qquad u(0) = 0$$

$$du = \frac{2}{3}dx \qquad u\left(\frac{\pi}{2}\right) = \frac{\pi}{3}$$

$$\frac{3}{2}\int_{0}^{\frac{\pi}{2}}\cos\left(\frac{2x}{3}\right) \cdot \frac{2}{3}dx$$

$$\frac{3}{2}\int_{u(0)}^{u\left(\frac{\pi}{2}\right)}\cos(u)du$$

$$\frac{3}{2}\int_{u(0)}^{\frac{\pi}{2}}\cos(u)du$$

$$\frac{3}{2}\int_{0}^{\frac{\pi}{3}}\cos(u)du$$

$$\frac{3}{2}\int_{0}^{\frac{\pi}{3}}\cos(u)du$$

- 1. Using the substitution $u = x^2 + 1$, $\int_{1}^{1} x(x^2 + 1)^3 dx =$
- 2. Using the substitution $u = x^3 + 8$, $\int_{0}^{4} x^2 (x^3 + 8)^2 dx =$
- 3. Using the substitution $u = x^3 + 1$, $\int_{0}^{2} 2x^2 \sqrt{x^3 + 1} dx =$
- 4. Using the substitution $u = 1 x^2$, $\int_0^1 x \sqrt{1 x^2} dx = 1$
- 5. Using the substitution u = 2x + 1, $\int_{0}^{\pi} \frac{1}{\sqrt{2x+1}} dx =$
- 6. Using the substitution $u = 1 + 2x^2$, $\int_{0}^{2} \frac{x}{\sqrt{1 + 2x^2}} dx =$
- 7. Using the substitution $u = 1 + \sqrt{x}$, $\int_{1}^{9} \frac{1}{\sqrt{x} (1 + \sqrt{x})^{2}} dx =$
- 8. Using the substitution $u = 4 + x^2$, $\int_{0}^{2} x \sqrt[3]{4 + x^2} dx =$

$\int_{-1}^{1} x (x^2 + 1)^3 dx =$	$\int_{-2}^{4} x^2 \left(x^3 + 8 \right)^2 dx =$	$\int_{1}^{2} 2x^2 \sqrt{x^3 + 1} dx =$	$\int_{0}^{1} x\sqrt{1-x^2} dx =$
$u = x^2 + 1 u\left(-1\right) = 2$	$u = x^3 + 8 u\left(-2\right) = 0$	$u = x^3 + 1 \qquad u(1) = 2$	$u = 1 - x^2 \qquad u(0) = 1$
$du = 2xdx \qquad u(1) = 2$	$du = 3x^2 dx \qquad u(4) = 72$	$du = 3x^2 dx u(2) = 9$	du = -2xdx u(1) = 0
$\int_{-1}^{1} x \left(x^2 + 1\right)^3 dx$	$\int_{-2}^{4} x^2 \left(x^3 + 8 \right)^2 dx$	$\int_{1}^{2} 2x^2 \sqrt{x^3 + 1} dx$	$\int_{0}^{1} x\sqrt{1-x^2} dx$
$\frac{1}{2}\int_{-1}^{1}\left(x^2+1\right)^3\cdot 2xdx$	$\frac{1}{3} \int_{-2}^{4} \left(x^3 + 8\right)^2 3x^2 dx$	$\frac{2}{3}\int_{1}^{2}\sqrt{x^3+1}\cdot 3x^2dx$	$-\frac{1}{2}\int_{0}^{1}\sqrt{1-x^{2}}\left(-2x\right)dx$
$\frac{1}{2}\int_{u(-1)}^{u(1)}u^3du$	$\frac{1}{3} \int_{u(-2)}^{u(4)} u^2 du$ $\frac{1}{3} \int_{0}^{72} u^2 du$	$\frac{2}{3}\int_{u(1)}^{u(2)}\sqrt{u}du$	$-\frac{1}{2}\int_{u(0)}^{u(1)}\sqrt{u}du$
$\frac{1}{2}\int_{2}^{2}u^{3}du$	3 0	$\frac{2}{3}\int_{2}^{9}\sqrt{u}du$	$-\frac{1}{2}\int_{1}^{0}\sqrt{u}du$
$\int_0^4 \frac{1}{\sqrt{2x+1}} dx =$	$\int_{0}^{2} \frac{x}{\sqrt{1+2x^2}} dx =$	$\int_{1}^{9} \frac{1}{\sqrt{x} \left(1 + \sqrt{x}\right)^2} dx =$	$\int_{0}^{2} x \sqrt[3]{4 + x^{2}} dx =$
u = 2x+1 u(0) = 1 $du = 2dx u(4) = 9$	$u = 1 + 2x^{2} u(0) = 1$ $du = 4xdx u(2) = 9$	$u = 1 + \sqrt{x} \qquad u(1) = 2$	$u = 4 + x^{2} u(0) = 4$ $du = 2xdx u(2) = 8$
$\int_{0}^{4} \frac{1}{\sqrt{2x+1}} dx$	$\int_{0}^{2} \frac{x}{\sqrt{1+2x^2}} dx$	$du = \frac{1}{2\sqrt{x}}dx u(9) = 4$	$\int_{0}^{2} x \sqrt[3]{4 + x^2} dx$
$\frac{1}{2} \int_{0}^{4} \frac{1}{\sqrt{2x+1}} \cdot 2dx$	$\frac{1}{4} \int_{0}^{2} \frac{1}{\sqrt{1+2x^{2}}} 4x dx$	$\int_{1}^{2} \frac{1}{\sqrt{x} \left(1 + \sqrt{x}\right)^{2}} dx$	$\frac{1}{2} \int_{0}^{2} \sqrt[3]{4 + x^{2}} \cdot 2x dx$
$\frac{1}{2} \int_{u(0)}^{u(4)} \frac{1}{\sqrt{u}} du$	$\frac{1}{4} \int_{u(0)}^{u(2)} \frac{1}{\sqrt{u}} du$	$2\int_{1}^{1} \frac{1}{(1+\sqrt{x})^{2}} \cdot \frac{1}{2\sqrt{x}} dx$ $2\int_{u(1)}^{u(9)} \frac{1}{u^{2}} du$	$\frac{1}{2} \int_{u(0)}^{u(2)} \sqrt[3]{u} du$
$\frac{1}{2}\int_{1}^{9}\frac{1}{\sqrt{u}}du$	$\frac{1}{4}\int_{1}^{9}\frac{1}{\sqrt{u}}du$	$2\int_{u(1)}^{3} u^{2} du$ $2\int_{2}^{4} \frac{1}{u^{2}} du$	$\frac{1}{2}\int_{4}^{8}\sqrt[3]{u}du$