Decision trees

Victor Kitov

v.v.kitov@yandex.ru

Table of Contents

- Definition of decision tree
- Splitting rules
- Splitting rule selection
- Prediction assignment to leaves
- 5 Termination criterion

Example of decision tree

Definition of decision tree

- Prediction is performed by tree T:
 - directed graph
 - without loops
 - with single root node

Definition of decision tree

- for each internal node t a check-function $Q_t(x)$ is associated
- for each edge $r_t(1), ... r_t(K_t)$ a set of values of check-function $Q_t(x)$ is associated: $S_t(1), ... S_t(K_t)$ such that:
 - $\bigcup_k S_t(k) = range[Q_t]$
 - $S_t(i) \cap S_t(j) = \emptyset \ \forall i \neq j$

Prediction process

- a set of nodes is divided into:
 - internal nodes int(T), each having ≥ 2 child nodes
 - terminal nodes terminal(T), which do not have child nodes but have associated prediction values.

Prediction process

- a set of nodes is divided into:
 - internal nodes int(T), each having ≥ 2 child nodes
 - terminal nodes terminal(T), which do not have child nodes but have associated prediction values.
- Prediction process for tree T:
 - t = root(T)
 - while t is not a leaf node:
 - calculate $Q_t(x)$
 - determine j such that $Q_t(x) \in S_t(j)$
 - ullet follow edge $r_t(j)$ to j-th child node: $t= ilde t_j$
 - return prediction, associated with leaf t.

Specification of decision tree

- To define a decision tree one needs to specify:
 - the check-function: $Q_t(x)$
 - the splitting criterion: K_t and $S_t(1), ... S_t(K_t)$
 - the termination criteria (when node is defined as a terminal node)
 - the predicted value for each leaf node.

Table of Contents

- Definition of decision tree
- Splitting rules
- Splitting rule selection
- 4 Prediction assignment to leaves
- 5 Termination criterion

- $Q_t(x) = x^{i(t)}$, where $S_t(j) = v_j$, where $v_1, ... v_K$ are unique values of feature $x^{i(t)}$.
- $S_t(1) = \{x^{i(t)} \le h_t\}, S_t(2) = \{x^{i(t)} > h_t\}$
- $S_t(j) = \{h_j < x^{i(t)} \le h_{j+1}\}$ for set of partitioning thresholds $h_1, h_2, ..., h_{K_t+1}$.
- $S_t(1) = \{x : \langle x, v \rangle \leq 0\}, \quad S_t(2) = \{x : \langle x, v \rangle > 0\}$
- $S_t(1) = \{x : ||x|| \le h\}, \quad S_t(2) = \{x : ||x|| > h\}$
- etc.

Most famous decision tree algorithms

- CART (classification and regression trees)
 - implemented in scikit-learn
- C4.5

CART version of splitting rule

• single feature value is considered:

$$Q_t(x) = x^{i(t)}$$

binary splits:

$$K_t = 2$$

split based on threshold h_t:

$$S_1 = \{x^{i(t)} \le h_t\}, S_2 = \{x^{i(t)} > h_t\}$$

- $h(t) \in \{x_1^{i(t)}, x_2^{i(t)}, ...x_N^{i(t)}\}$
 - applicable only for real, ordinal and binary features
 - discrete unordered features:

CART version of splitting rule

• single feature value is considered:

$$Q_t(x) = x^{i(t)}$$

binary splits:

$$K_t = 2$$

split based on threshold h_t:

$$S_1 = \{x^{i(t)} \le h_t\}, S_2 = \{x^{i(t)} > h_t\}$$

- $h(t) \in \{x_1^{i(t)}, x_2^{i(t)}, ...x_N^{i(t)}\}$
 - applicable only for real, ordinal and binary features
 - discrete unordered features:may use one-hot encoding.

Analysis of CART splitting rule

- Advantages:
 - simplicity
 - estimation efficiency
 - interpretability
- Drawbacks:
 - many nodes may be needed to describe boundaries not parallel to axes:

Piecewise constant predictions of decision trees

Sample dataset

Example: Regression tree

Example: Regression tree

Table of Contents

- Definition of decision tree
- Splitting rules
- Splitting rule selection
- Prediction assignment to leaves
- 5 Termination criterion

Impurity functions

- Impurity function measures uncertainty in y for objects falling inside node t.
- Regression:
 - let objects falling inside nodet be $I = \{i_1, ... i_K\}$. We may define

$$\phi(t) = \frac{1}{K} \sum_{i \in I} (y_i - \mu)^2$$
$$\phi(t) = \frac{1}{K} \sum_{i \in I} |y_i - \mu|$$

where
$$\mu = \frac{1}{K} \sum_{i \in I} y_i$$
.

Classification impurity functions

- For classification: let $p_1, ...p_C$ be class probabilities for objects in node t.
- Then impurity function $\phi(t) = \phi(p_1, p_2, ... p_C)$ should satisfy:
 - ϕ is defined for $p_j \geq 0$ and $\sum_i p_j = 1$.
 - ϕ attains maximum for $p_j = 1/C$, k = 1, 2, ... C.
 - ϕ attains minimum when $\exists j: p_i = 1, p_i = 0 \ \forall i \neq j$.
 - ϕ is symmetric function of $p_1, p_2, ... p_C$.

Typical classification impurity functions

Gini criterion

• interpretation: probability to make mistake when predicting class randomly with class probabilities $[p(\omega_1|t),...p(\omega_C|t)]$:

$$I(t) = \sum_i
ho(\omega_i|t)(1-
ho(\omega_i|t)) = 1-\sum_i [
ho(\omega_i|t)]^2$$

Entropy

interpretation: measure of uncertainty of random variable

$$I(t) = -\sum_i p(\omega_i|t) \ln p(\omega_i|t)$$

Classification error

 interpretation: frequency of errors when classifying with the most common class

$$I(t) = 1 - \max_{i} p(\omega_i|t)$$

Typical classification impurity functions

Impurity functions for binary classification with class probabilities $p = p(\omega_1|t)$ and $1 - p = p(\omega_2|t)$.

Splitting criterion selection

• Define $\Delta I(t)$ - is the quality of the split¹ of node t into child nodes $t_1, ... t_R$.

$$\Delta I(t) = I(t) - \sum_{i=1}^{R} I(t_i) \frac{N(t_i)}{N(t)}$$

• CART optimization (regression, classification): select feature i_t and threshold h_t , which maximize $\Delta I(t)$:

$$i_t$$
, $h_t = \arg \max_{k,h} \Delta I(t)$

• CART decision making: from node t follow: $\begin{cases} \text{left child } t_1, & \text{if } x^{i_t} \leq h_t \\ \text{right child } t_2, & \text{if } x^{i_t} > h_t \end{cases}$

If I(t) is entropy, then $\Delta I(t)$ is called information gain.

Table of Contents

- Definition of decision tree
- 2 Splitting rules
- 3 Splitting rule selection
- 4 Prediction assignment to leaves
- **5** Termination criterion

Prediction assignment to leaves

- Regression:
 - mean (optimal for MSE loss)
 - median (optimal for MAE loss)
- Classification
 - most common class (optimal for constant misclassification cost)

Table of Contents

- Definition of decision tree
- 2 Splitting rules
- Splitting rule selection
- Prediction assignment to leaves
- 5 Termination criterion

Termination criterion

- Bias-variance tradeoff:
 - very large complex trees -> overfitting
 - very short simple trees -> underfitting
- Approaches to stopping:
 - rule-based
 - based on pruning (not considered here)

Rule-base termination criteria

- Rule-based: a criterion is compared with a threshold.
- Variants of criterion:
 - depth of tree
 - number of objects in a node
 - minimal number of objects in one of the child nodes
 - impurity of classes
 - change of impurity of classes after the split

Analysis of rule-based termination

Advantages:

- simplicity
- interpretability

Disadvantages:

- specification of threshold is needed
- impurity change is suboptimal: further splits may become better than current one
 - example:

Tree feature importances

- Tree feature importances (clf.feature_importances_ in sklearn).
 - Consider feature f
 - Let T(f) be the set of all nodes, relying on feature f when making split.
 - efficiency of split at node t: $\Delta I(t) = I(t) \sum_{c \in childen(t)} \frac{n_c}{n_t} I(c)$
 - feature importance of $f: \sum_{t \in T(f)} n_t \Delta I(t)$
- Alternative: difference in decision tree prediction quality for
 - original validation set
 - 2 validation set with j-th feature randomly shuffled

Analysis of decision trees

• Advantages:

- simplicity of algorithm
- interpretability of model
- implicit feature selection
- good for features of different nature:
 - naturally handles both discrete and real features
 - prediction is invariant to monotone transformations of features for $Q_t(x) = x^{i(t)}$

Disadvantages:

- not very high accuracy:
 - high overfitting of tree structure up to top
 - non-parallel to axes class separating boundary may lead to many nodes in the tree for $Q_t(x)=x^{i(t)}$
 - one step ahead lookup strategy for split selection may be insufficient (XOR example)
- not online slight modification of the training set will require full tree reconstruction