MTH 221

Fundamentals of Machine Learning

Batuhan Bardak

Lecture 10: Decision Tree & Ensemble Learning

Date: 12.12.2023

Plan for today

- Decision Tree
- Bagging
 - o Random Forest
- Boosting
 - AdaBoost

Decision Tree

x_1 Family History	x_2 Resting Blood Pressure	x_3 Cholesterol	y Heart Disease?
Yes	Low	Normal	No
No	Medium	Normal	No
No	Low	Abnormal	Yes
Yes	Medium	Normal	Yes
Yes	High	Abnormal	Yes

Notation

- Feature space, X
- · Label space, Y
- (Unknown) Target function, $c^*: \mathcal{X} \to \mathcal{Y}$
- · Training dataset:

$$\mathcal{D} = \left\{ \left(\boldsymbol{x}^{(1)}, c^* \left(\boldsymbol{x}^{(1)} \right) = \boldsymbol{y}^{(1)} \right), \left(\boldsymbol{x}^{(2)}, \boldsymbol{y}^{(2)} \right) \dots, \left(\boldsymbol{x}^{(N)}, \boldsymbol{y}^{(N)} \right) \right\}$$

Data point:

$$(\mathbf{x}^{(n)}, \mathbf{y}^{(n)}) = (x_1^{(n)}, x_2^{(n)}, \dots, x_D^{(n)}, \mathbf{y}^{(n)})$$

- Classifier, $h: \mathcal{X} \to \mathcal{Y}$
- Goal: find a classifier, h, that best approximates c*

Evaluation

- Loss function, $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$
 - Defines how "bad" predictions, $\hat{y} = h(x)$, are compared to the true labels, $y = c^*(x)$
 - Common choices
 - 1. Squared loss (for regression): $\ell(y, \hat{y}) = (y \hat{y})^2$
 - 2. Binary or 0-1 loss (for classification):

$$\ell(y,\hat{y}) = \mathbb{1}(y \neq \hat{y})$$

· Error rate:

$$err(h, \mathcal{D}) = \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}(y^{(n)} \neq \hat{y}^{(n)})$$

Overview of the Decision Tree algorithm

How to split a tree node

Consider k-class classification, i.e., $y \in \{1, 2, ..., k\}$

Goal: do an axis aligned split such that diversity of labels in leafs are reduced

How to mathematically quantify "diversity"?

Splitting Criteria?

x_1	x_2	у
1	0	0
1	0	0
1	0	1
1	0	1
1	1	1
1	1	1
1	1	1
1	1	1

 Which feature would you split on using training error rate as the splitting criterion?

Training error rate: 2/8

Splitting Criteria

- A splitting criterion is a function that measures how good or useful splitting on a particular feature is for a specified dataset
- Insight: use the feature that optimizes the splitting criterion for our decision stump.
- Potential splitting criteria:
 - Training error rate (minimize)
 - Gini impurity (minimize) → CART algorithm
 - Mutual information (maximize) → ID3 algorithm

Entropy

 Entropy describes the purity or uniformity of a collection of values: the lower the entropy, the more pure

$$H(S) = -\sum_{v \in V(S)} \frac{|S_v|}{|S|} \log_2 \left(\frac{|S_v|}{|S|}\right)$$

where S is a collection of values,

V(S) is the set of unique values in S

 S_v is the collection of elements in S with value v

• If all the elements in *S* are the same, then

$$H(S) = -1 \log_2(1) = 0$$

Entropy

 Entropy describes the purity or uniformity of a collection of values: the lower the entropy, the more pure

$$H(S) = -\sum_{v \in V(S)} \frac{|S_v|}{|S|} \log_2 \left(\frac{|S_v|}{|S|}\right)$$

where S is a collection of values,

V(S) is the set of unique values in S

 S_v is the collection of elements in S with value v

If S is split fifty-fifty between two values, then

$$H(S) = -\frac{1}{2}\log_2\left(\frac{1}{2}\right) - \frac{1}{2}\log_2\left(\frac{1}{2}\right) = -\log_2\left(\frac{1}{2}\right) = 1$$

Entropy

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Entropy(PlayGolf) = Entropy (5,9)

- = Entropy (0.36, 0.64)
- = (0.36 log₂ 0.36) (0.64 log₂ 0.64)
- = 0.94

Mutual Information

 Mutual information describes how much information or clarity a particular feature provides about the label

$$I(x_d, Y) = H(Y) - \sum_{v \in V(x_d)} (f_v) \left(H(Y_{x_d = v}) \right)$$

where x_d is a feature

Y is the collection of all labels

 $V(x_d)$ is the set of unique values of x_d

 f_v is the fraction of inputs where $x_d = v$

 $Y_{x_d=v}$ is the collection of labels where $x_d=v$

Mutual Information Example

x_d	у
1	1
1	1
0	0
0	0

$$I(x_d, Y) = H(Y) - \sum_{v \in V(x_d)} (f_v) \left(H(Y_{x_d = v}) \right)$$
$$= 1 - \frac{1}{2} H(Y_{x_d = 0}) - \frac{1}{2} H(Y_{x_d = 1})$$
$$= 1 - \frac{1}{2}(0) - \frac{1}{2}(0) = 1$$

Mutual Information Example

x_d	y
1	1
0	1
1	0
0	0

$$I(x_d, Y) = H(Y) - \sum_{v \in V(x_d)} (f_v) \left(H(Y_{x_d = v}) \right)$$

$$= 1 - \frac{1}{2} H(Y_{x_d = 0}) - \frac{1}{2} H(Y_{x_d = 1})$$

$$= 1 - \frac{1}{2} (1) - \frac{1}{2} (1) = 0$$

Mutual Information as a Splitting Criteria

x_1	x_2	у
1	0	0
1	0	0
1	0	1
1	0	1
1	1	1
1	1	1
1	1	1
1	1	1

 Which feature would you split on using mutual information as the splitting criterion?

Mutual Information: 0

Mutual Information: $H(Y) - \frac{1}{2}H(Y_{x_2=0}) - \frac{1}{2}H(Y_{x_2=1})$

Mutual Information as a Splitting Criteria

x_1	x_2	У
1	0	0
1	0	0
1	0	1
1	0	1
1	1	1
1	1	1
1	1	1
1	1	1

 Which feature would you split on using mutual information as the splitting criterion?

Mutual Information: 0

Mutual Information:
$$-\frac{2}{8}\log_2\frac{2}{8} - \frac{6}{8}\log_2\frac{6}{8} - \frac{1}{2}(1) - \frac{1}{2}(0) \approx 0.31$$

Pseudocode

```
def predict(x'):
 - walk from root node to a leaf node
   while(true):
     if current node is internal (non-leaf):
           check the associated attribute, x_d
           go down branch according to x_d
     if current node is a leaf node:
           return label stored at that leaf
```

Pseudocode

```
def train(\mathcal{D}):
    store root = tree recurse(\mathcal{D})
def tree recurse(\mathcal{D}'):
    q = new node()
    base case - if (SOME CONDITION):
    recursion - else:
       find best attribute to split on, x_d
       q.split = x_d
       for v in V(x_d), all possible values of x_d:
              \mathcal{D}_v = \left\{ \left( x^{(i)}, y^{(i)} \right) \in \mathcal{D} \mid x_d^{(i)} = v \right\}
               q.children(v) = tree_recurse(\mathcal{D}_v)
    return q
```

Pseudocode

```
def train(\mathcal{D}):
    store root = tree recurse(\mathcal{D})
def tree recurse(\mathcal{D}'):
    q = new node()
    base case – if (\mathcal{D}') is empty OR
       all labels in \mathcal{D}' are the same OR
       all features in \mathcal{D}' are identical OR
       some other stopping criterion):
       q.label = majority vote(\mathcal{D}')
    recursion - else:
    return q
```

Pros & Cons

- · Pros
 - Interpretable
 - Efficient (computational cost and storage)
 - Can be used for classification and regression tasks
 - Compatible with categorical and real-valued features
- Cons
 - Learned greedily: each split only considers the immediate impact on the splitting criterion
 - Not guaranteed to find the smallest (fewest number of splits) tree that achieves a training error rate of 0.
 - Liable to overfit!

Overfitting in Decision Trees

Combatting Overfitting in Decision Trees

- Heuristics:
 - Do not split leaves past a fixed depth, δ
 - Do not split leaves with fewer than c data points
 - $oldsymbol{\cdot}$ Do not split leaves where the maximal information gain is less than $oldsymbol{ au}$
 - Take a majority vote in impure leaves

Combatting Overfitting in Decision Trees

- Pruning:
 - First, learn a decision tree
 - Then, evaluate each split using a "validation" dataset by comparing the validation error rate with and without that split
 - Greedily remove the split that most decreases the validation error rate
 - Stop if no split is removed

Combatting Overfitting in Decision Trees

The Wisdom Of Crowds

- In 1906, Francis Galton asked ~800 people at a farmer's fair to guess the weight of a cow, including "experts"
 - Actual weight: 1198 lbs
 - Mean guess: 1197 lbs
 - Mean guess was more accurate than any single guess, even the experts

Decision Trees

MovielD	Runtime	Genre	Budget	Year	IMDB	Rating	Liked?
1	124	Action	18M	1980	8.7	PG	Υ
2	105	Action	30M	1984	7.8	PG	Υ
3	103	Comedy	6M	1986	7.8	PG-13	N
4	98	Adventure	16M	1987	8.1	PG	Υ
5	128	Comedy	16.4M	1989	8.1	PG	Υ
6	120	Comedy	11M	1992	7.6	R	N
7	120	Drama	14.5M	1996	6.7	PG-13	N
8	136	Action	115M	1999	6.5	PG	Υ
9	90	Action	90M	2001	6.6	PG-13	Y
10	161	Adventure	100M	2002	7.4	PG	N
11	201	Action	94M	2003	8.9	PG-13	Υ
12	94	Comedy	26M	2004	7.2	PG-13	Υ
13	157	Biography	100M	2007	7.8	R	N
14	128	Action	110M	2007	7.1	PG-13	N
15	107	Drama	39M	2009	7.1	PG-13	N
16	158	Drama	61M	2012	7.6	PG-13	Y
17	169	Adventure	165M	2014	8.6	PG-13	Υ
18	100	Biography	9M	2016	6.7	R	N
19	130	Action	180M	2017	7.9	PG-13	Υ
20	141	Action	275M	2019	6.5	PG-13	Υ

Decision Trees

Decision Trees

- Pros
 - Interpretable
 - Efficient (computational cost and storage)
 - Can be used for classification and regression tasks
 - Compatible with categorical and real-valued features
- Cons
 - Learned greedily: each split only considers the immediate impact on the splitting criterion
 - Not guaranteed to find the smallest (fewest number of splits) tree that achieves a training error rate of 0.
 - Prone to overfit
 - High variance
 - Can be addressed via ensembles → random forests

Random Forests

- Combines the prediction of many diverse decision trees to reduce their variability
- If B independent random variables $x^{(1)}, x^{(2)}, ..., x^{(B)}$ all have variance σ^2 , then the variance of $\frac{1}{B} \sum_{b=1}^{B} x^{(b)}$ is $\frac{\sigma^2}{B}$
- Random forests = bagging

+ split-feature randomization

= **b**ootstrap **agg**regat**ing** + split-feature randomization

Aggregating

- How can we combine multiple decision trees, $\{t_1, t_2, ..., t_B\}$, to arrive at a single prediction?
- Regression average the predictions:

$$\bar{t}(x) = \frac{1}{B} \sum_{b=1}^{B} t_b(x)$$

 Classification - plurality (or majority) vote; for binary labels encoded as {-1,+1}:

$$\bar{t}(\mathbf{x}) = \operatorname{sign}\left(\frac{1}{B}\sum_{b=1}^{B} t_b(\mathbf{x})\right)$$

Bootstrapping

- Insight: one way of generating different decision trees is by changing the training data set
- Issue: often, we only have one fixed set of training data
- Idea: resample the data multiple times with replacement

MovieID		Мо	vieID	•••	Moviel
1			1	••••	4
2			1	••••	4
3	•••		1		5
:	:		:	:	:
19		1	14	•••	16
20			19		16
Training	data		Bootstrapped Sample 1		Bootstrap Sample

Bootstrapping

- Idea: resample the data multiple times with replacement
 - Each bootstrapped sample has the same number of data points as the original data set
 - Duplicated points cause different decision trees to focus on different parts of the input space

ovieID		1 1	MovieID		Movi
1			1		4
2			1		4
3			1		5
÷	÷		1	:	:
19			14		16
20			19		16
Training (data		Bootstrapped Sample 1		Bootstra

Split-feature Randomization

- Issue: decision trees trained on bootstrapped samples still behave similarly
- Idea: in addition to sampling the data points (i.e., the rows), also sample the features (i.e., the columns)
- Each time a split is being considered, limit the possible features to a randomly sampled subset

Random Forests

- Input: $\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^{N}, B, \rho$
- For b = 1, 2, ..., B
 - Create a dataset, \mathcal{D}_b , by sampling N points from the original training data \mathcal{D} with replacement
 - Learn a decision tree, t_b , using \mathcal{D}_b and the ID3 algorithm with split-feature randomization, sampling ρ features for each split
- Output: $\bar{t} = f(t_1, ..., t_B)$, the aggregated hypothesis

Recall: Validation Sets

Out-of-bag Error

• For each training point, $x^{(n)}$, there are some decision trees which $x^{(n)}$ was not used to train (roughly B/e trees or 37%)

• Let these be
$$t^{(-n)} = \left\{ t_1^{(-n)}, t_2^{(-n)}, ..., t_{N-n}^{(-n)} \right\}$$

- Compute an aggregated prediction for each $x^{(n)}$ using the trees in $t^{(-n)}$, $\bar{t}^{(-n)}(x^{(n)})$
- · Compute the out-of-bag (OOB) error, e.g., for regression

$$E_{OOB} = \frac{1}{N} \sum_{n=1}^{N} (\bar{t}^{(-n)}(x^{(n)}) - y^{(n)})^{2}$$

Out-of-bag Error

• For each training point, $x^{(n)}$, there are some decision trees which $x^{(n)}$ was not used to train (roughly B/e trees or 37%)

• Let these be
$$t^{(-n)} = \left\{t_1^{(-n)}, t_2^{(-n)}, ..., t_{N-n}^{(-n)}\right\}$$

- Compute an aggregated prediction for each $x^{(n)}$ using the trees in $t^{(-n)}$, $\bar{t}^{(-n)}(x^{(n)})$
- Compute the out-of-bag (OOB) error, e.g., for classification

$$E_{OOB} = \frac{1}{N} \sum_{n=1}^{N} \left[\bar{t}^{(-n)} (\mathbf{x}^{(n)}) \neq y^{(n)} \right]$$

• E_{OOB} can be used for hyperparameter optimization!

Out-of-bag Error

Setting Hyperparameters

Feature Importance

- Some of the interpretability of decision trees gets lost when switching to random forests
- Random forests allow for the computation of "feature importance", a way of ranking features based on how useful they are at predicting the target
- · Initialize each feature's importance to zero
- Each time a feature is chosen to be split on, add the reduction in Gini impurity (weighted by the number of data points in the split) to its importance

Summary of Bagging/Random Forest

- Ensemble methods employ a "wisdom of crowds" philosophy
 - Can reduce the variance of high variance methods
- Random forests = bagging + split-feature randomization
 - Aggregate multiple decision trees together
 - Bootstrapping and split-feature randomization increase diversity in the decision trees
 - Use out-of-bag errors for hyperparameter optimization
 - Use feature importance to identify useful attributes

Decision Tree Pros & Cons

- · Pros
 - Interpretable
 - Efficient (computational cost and storage)
 - Can be used for classification and regression tasks
 - Compatible with categorical and real-valued features
- Cons
 - Learned greedily: each split only considers the immediate impact on the splitting criterion
 - Not guaranteed to find the smallest (fewest number of splits) tree that achieves a training error rate of 0.
 - Prone to overfit
 - High variance
 - Can be addressed via bagging → random forests
 - High bias (especially short trees, i.e., stumps)
 - · Can be addressed via boosting

Boosting

- Another ensemble method (like bagging) that combines the predictions of multiple hypotheses.
- Aims to reduce the bias of a "weak" or highly biased model (can also reduce variance).

AdaBoost

- Intuition: iteratively reweight inputs, giving more weight to inputs that are difficult-to-predict correctly
- Analogy:

 - ... but you're going to be taking it one at a time.
 - After you finish, you get to tell the next person the questions you struggled with.
 - Hopefully, they can cover for you because...
 - ... if "enough" of you get a question right, you'll all receive full credit for that problem

AdaBoost

- Input: $\mathcal{D}(y^{(n)} \in \{-1, +1\}), T$
- Initialize data point weights: $\omega_0^{(1)}, ..., \omega_0^{(N)} = \frac{1}{N}$
- For t = 1, ..., T
 - 1. Train a weak learner, h_t , by minimizing the weighted training error
 - 2. Compute the weighted training error of h_t :

$$\epsilon_t = \sum_{n=1}^N \omega_{t-1}^{(n)} \mathbb{1}\left(y^{(n)} \neq h_t(\mathbf{x}^{(n)})\right)$$

3. Compute the **importance** of h_t :

$$\alpha_t = \frac{1}{2} \log \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

4. Update the data point weights:

$$\omega_{t}^{(n)} = \frac{\omega_{t-1}^{(n)}}{Z_{t}} \times \begin{cases} e^{-\alpha_{t}} \text{ if } h_{t}(\mathbf{x}^{(n)}) = y^{(n)} \\ e^{\alpha_{t}} \text{ if } h_{t}(\mathbf{x}^{(n)}) \neq y^{(n)} \end{cases} = \frac{\omega_{t-1}^{(n)} e^{-\alpha_{t} y^{(n)} h_{t}(\mathbf{x}^{(n)})}}{Z_{t}}$$

Output: an aggregated hypothesis

$$g_T(\mathbf{x}) = \operatorname{sign}(H_T(\mathbf{x}))$$
$$= \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(\mathbf{x})\right)$$

Setting α_t

 α_t determines the contribution of h_t to the final, aggregated hypothesis:

$$g(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(\mathbf{x})\right)$$

Intuition: we want good weak learners to have high importances

$$\alpha_t = \frac{1}{2} \log \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

Updating w^(n)

 Intuition: we want incorrectly classified inputs to receive a higher weight in the next round

$$\omega_t^{(n)} = \frac{\omega_{t-1}^{(n)}}{Z_t} \times \begin{cases} e^{-\alpha_t} & \text{if } h_t(\mathbf{x}^{(n)}) = y^{(n)} \\ e^{\alpha_t} & \text{if } h_t(\mathbf{x}^{(n)}) \neq y^{(n)} \end{cases} = \frac{\omega_{t-1}^{(n)} e^{-\alpha_t y^{(n)} h_t(\mathbf{x}^{(n)})}}{Z_t}$$

• If
$$\epsilon_t < \frac{1}{2}$$
, then $\frac{1-\epsilon_t}{\epsilon_t} > 1$

• If
$$\frac{1-\epsilon_t}{\epsilon_t} > 1$$
, then $\alpha_t = \frac{1}{2}\log\left(\frac{1-\epsilon_t}{\epsilon_t}\right) > 0$

• If
$$\alpha_t > 0$$
, then $e^{-\alpha_t} < 1$ and $e^{\alpha_t} > 1$

Adaboost Example

Adaboost Example

Why AdaBoost?

- If you want to use weak learners ...
- ... and want your final hypothesis to be a weighted combination of weak learners, ...
- ... then Adaboost greedily minimizes the exponential loss:

$$e(h(\mathbf{x}), y) = e^{(-yh(\mathbf{x}))}$$

- Because they're low variance / computational constraints
- 2. Because weak learners are not great on their own

Because the exponential loss upper bounds binary error