Fundamentals of Computer Science

Course syllabus

This course introduces computer science through three of its major fields: hardware systems (physical components, digital logic, and computer architecture), theory and algorithms (Boolean algebra, binary arithmetic, and theory of computation), and software systems (languages, compilers, computer graphics, operating systems, and computer networks.) Programming assignments are used as means to introduce and reinforce fundamental computing concepts, as well as computer programming skills that are useful beyond this course. The course provides elements now essential to understand and effectively interact with the information technology infrastructure of today's world.

Session	TITLE	Topics	ACTIVITIES	OPTIONAL ACTIVITIES/TOPICS
1	Course Introduction	 Course review General aspects Class style and policies Learning material review. Introduction to CS Problem solving in CS 	 Evaluation of preliminary knowledge in Computer Science and Programming Administrative tasks Reading: "What is CS" by Eric Suh. 	 Icebreaker Group discussion: Learning expectations from the course
Lab	Interaction with programming environment	 Python through examples Creation of simple programs Instruction(s) for data output 	 Testing the programming environment. "Hello world" Add two numbers. "The Avatar" (Making figures with characters) 	 Instruction(s) for data input Use of variables Free hands-on activity
2	Introduction to computer programming	 Instructions for data output and data input. Variables and lists Operators and hierarchy Boolean expressions Characters and strings Conditional and iterative statements Random number generation Libraries User defined functions 	 Question prompt "What is your name?" "What is your age?" "The Writer" (madlib) Geometric figures generated by loops (diagonals, back diagonals, triangles, rectangles, perimeters) "The Fortune Teller" 	 "99 bottles of root beer" "12 days of Christmas" "Rock, paper, scissors." Common algorithms: Fibonacci, factorial, largest number, average Flowcharts
Lab	Binary numbers	 Introduction to ASCII code Introduction to binary numbers Programming converters between binary and decimal numbers. 	 Conversions between binary and decimal numbers Encoded messages: Exercise on ASCII and 	➤ Hexadecimal ←→ Binary

Session	TITLE	Topics	ACTIVITIES	OPTIONAL ACTIVITIES/TOPICS
			binary numbers ➤ Bitmapped characters (decimal to binary exercises) Programming exercises: ➤ Binary ←→decimal converter. ➤ Bitmapped characters decoders.	
3	Data representation	 Representation of numbers Representation of symbols and strings Representation of images Representation of audio 	 Demonstration of image quality according to amount of bits per pixel. Demonstration of analog signals vs. digital ones. Demonstration of audio quality according to amount of bits per sample. 	 Demonstration of analog audio: vinyl recording. Demonstration of digital recording: audacity samples. Binary representation of decimal numbers with fractional part. (Fixed point vs. floating point.)
Lab	Data manipulation	Experiments to modify media files to observe impact on quality.	 Bitmapped-image viewer Image editor to modify bits per pixel. Audio editor to modify sampling rate and bits per sample. 	 Reading: The Greatest Mystery in Modern Science, by Chazelle
4	Fundamental ideas • Boolean algebra	 Fundamental ideas in CS Boolean algebra Truth tables Binary system: place value system, operations, conversions Digital circuits Binary circuits to perform arithmetic operations 	 Examples of fundamental ideas. Boolean algebra symbols and examples. Relationship between Boolean algebra and binary system. Logic gates Binary arithmetical and circuits for addition 	Reading: The Rope and Pulley Wonder, by Dewney.

SESSION	TITLE	Topics	ACTIVITIES	OPTIONAL ACTIVITIES/TOPICS
Lab	Digital circuits simulation I	Introduction to MMLogic (digital circuit simulator)	Simulation exercises: > MMLogic experiments > Testing logic gates > Verifying Boolean laws > Implementing binary adders	
5	Boolean algebra and logic circuits II	 Combinational logic Circuits and truth tables Circuits for arithmetic. 	 Logic gates and multiplexors Binary arithmetic: half adder, full adder, 3-bit adder. Fundamentals of ALU design 	 Subtraction and two's complement Video on integrated circuit making.
Lab	Digital circuits simulation II	Binary circuits to perform arithmetic operations	➤ MMLogic experiments	
General Review (Sunday session)	Movie analysis	Computational elements in Disney's "Tron"	CGI, operating systems, CPU, bugs, virus, antivirus, software, simulation, etc.	
6	Computer architecture	 Computer parts review Computer architecture fundamentals von Neumann model: Stored program concept, data-driven machine, etc. 	 CARDIAC (educational computer model) Assembly language exercises. 	
Lab	Computer architecture	Implementing CARDIAC virtual machine Making assembly programs for CARDIAC virtual machine	 Absolute value Integer division Sign function Add first N naturals 	
7	Numeric-intensive computing I	Common seriesNumerical approximation by Taylor series	 Exercises on numerical series Approximation of irrational numbers 	

Session	TITLE	Topics	ACTIVITIES	OPTIONAL ACTIVITIES/TOPICS
Lab		Implementation of numerical approximation through iterative structures	 Harmonic series Zeno's dichotomy Approximation of PI, e, etc 	
8	Advanced topics I	Library research and readings	 WWW: WATCH by Sawyer (Chapter 1) The Rope-And-Pulley Wonder by Dewney. The Turing Omnibus by Dewney Computer Organization by Feynman Why programs fail by Zeller Computer Networks by Kurose Computer Architecture by Hennesy Intelligent machines by Alan Turing The Pattern on the Stone by Hillis Great Ideas in Computer Science by Biermann A.I. for Games by Fenge 	 How to Program by Computer by Dromey The Tinkertoy Computer by Dewney. The Best of Byte Program Design with Pseudocode by Bailey A Hitchhiker Guide to Virtual Reality by McMenemy The Advent of the Algorithm by Berlinsky Creative Evolutionary Systems by Bentley Nine Algorithms that Changed the Future by MacCormick Fundamentals of Natural Computing by Nunes The Limits of Computing by Walker Why Programs Fail by Zeller
Lab	Computer generated imagery (CGI)	Computer graphicsMemory and CGICGI evolution	Movie analysis: Computer generated Imagery (CGI) in Pixar's short films	 Raster vs. vector graphics. Mathematics of 2D images 3D transformations Raytracing
9	Numeric-intensive computing II (Graphics)	 Graphic mode, Coordinate systems, Plotting formulas	 Plotting linear and quadratic equations Parametric curves Image display 	
10	Advanced topics II	 Turtle geometry Recursion Recursive definitions Fractal geometry Introduction to formal grammars 	 Exercises with the Logo programming language. Picture generation through formal grammars 	 Classic geometric exercises solved with turtle geometry Implementing recursive functions in Logo Generating fractal shapes through recursion (Snowkfake, Sierpinski, etc.) Generating grammar-based skylines ("Manhattan skylines")
General Review (Sunday session)	Advanced topics III	 Elements of formal grammars Elements of graph theory	 From formal grammars to computer languages Graph theory apply to maze solving 	

Session	TITLE	Topics	ACTIVITIES	OPTIONAL ACTIVITIES/TOPICS
		Cryptography	> Caesar's cipher	
11	Theoretical Computer Science	 Automata Cellular automata Pseudo-random number generation 	 Abstract notion of graphs, automata and finite state machine Conway's Game of Life 	
Lab	Final project (introduction and prototyping)	 Discussion of final projects Brainstorming Initial planning Integration of programming elements required Research topic 	 General requirements Decision-based game: adventure Virtual pet Computer electronics and microcontrollers Mobile computing applications Games involving simulation or random numbers. 	 Arduino controlled mobile-robot(C-Language) Game on MIT App Inventor for Android (visual language)
12	Theory of computation	 Computability Turing machine Formal definition of algorithm Algorithm complexity Operating systems and networking 	 Simple computers equivalent to Turing machines Machine language and compilers Halting problem. Examples on complexity. 	> Examples on complexity.
Lab	Final project development (Hands-on sessions)	Implementing project major features Documenting project	> Feedback	
13	Final project development (Hands-on sessions)	Implementing project details Create project context	 Preparation of: presentation, webpage, report, etc. 	> Project review
14	Final project conclusion	Oral report		
15	Course conclusion	Course review.	Final assessment of student's progress	>

Notes: Each entry provides a general description on the main topic to be studied and activities to be performed. **Topics** indicate specific points to be discussed during the session. In general, **session** refers to in-classroom meetings during the morning. **Labs** are activities to be held in a computer laboratory, and are aimed at promoting student-paced learning and opportunities for individual feedback. Evening session will give students additional time to complete lab work, and also promote analysis of topics presented during the day. Development of personal endeavors will be encouraged during this time.