

621 Avenue Centrale 38400 Saint-Martin-d'Hères Téléphone 04 57 42 21 42 Fatima.belounis@univ-grenoble-alpes.fr https://shs.univ-grenoble-alpes.fr/

Théorie des graphes

Théorie des graphes
HABIB Mohamed, LANNUZEL Tristan, TACHET Dorian THOMAS Etienne
Enseignants responsables: TREMBLAY Nicolas et ACHARD Sophie
Année 2020/2021

Sommaire

- Données
- 2. Graphs Génératifs
- Mesure des centralités
- Partition et détection de communauté
- 5. Questionnement
 - 5.1. Noeuds clés, hub et centralité
 - 5.2. Organisation des communautés
 - 5.3. Modèle génératif
- 6. Conclusion

Données

- Basé sur le jeu de donné : https://ec.europa.eu/eurostat/web/transport/data/database (avia_par)
- Aéroports européens et leur lignes intérieures.
- Nombre de passagers à bord sur l'année 2019.

- Traitement

- Suppression des aéroports non EU et somme des lignes aller-retour pour avoir un graphe non-orienté.
- Pondération des liens par le nombre de passagers à bord.
- Intégration de tous les pays d'europe en un seul graphe. (génération et intégration des csv).
- Nombre de noeuds (aéroports) : 454 Nombre de liens (lignes internes) : 2320

Erdös Renyi, Watts Strogatz, Barabasi

Graphe génératif \ propriétés	Petit monde	Densité faible	Clustering élevé	Hétérogénéité
Erdös Renyi (p=1)	[] nx.average_shortest_path_length(gERDO) 2.875436395639447	[] nx.density(gERDO) 0.02256128988340092	nx.average_clustering(gERDO) 0.021867636355982104	
Watts Strogatz (k=11,p=>0.4)	[] nx.average_shortest_path_length(gWATTS) 2.933249700965662	[] nx.density(gWATTS) 0.02207505518763797	nx.average_clustering(gWATTS) 0.0606680526867104	
Barabasi	[] nx.average_shortest_path_length(gBAR) 1.6850738278984698	[] nx.density(gBAR) 0.31492617210153007	nx.average_clustering(gBAR) 0.412921164796288	
Réseau d'aéroports européens	[] nx.average_shortest_path_length(g) 2.7209499081016424	[] nx.density(g) 0.02256128988340092	nx.average_clustering(g) 0.3842427922991571	

Théorie des graphes HABIB Mohamed, LANNUZEL Tristan, TACHET Dorian, THOMAS Etienne

Mesures de centralité

```
Centralité des degrès :

['NL_EHAM', 'ES_LEBL', 'FR_LFPG', 'DK_EKCH', 'ES_LEMD', 'BE_EBBR', 'IE_EIDW', 'IT_LIRF', ...

Betweenness_centrality :

['DK_EKCH', 'FR_LFPG', 'NL_EHAM', 'TR_LTAC', 'SE_ESSA', 'IT_LIRF', 'ES_LEBL', 'FI_EFHK', ...

Closeness_centrality :

['NL_EHAM', 'ES_LEBL', 'FR_LFPG', 'DK_EKCH', 'AT_LOWW', 'ES_LEMD', 'BE_EBBR', 'IE_EIDW', ...

Eigen_Vector centrality :

['NL_EHAM', 'ES_LEBL', 'FR_LFPG', 'BE_EBBR', 'DK_EKCH', 'ES_LEMD', 'IE_EIDW', 'CH_LSZH', ...
```

FR LFPG: Paris Charles de Gaule DK EKCH: Copenhague

Théorie des graphes HABIB Mohamed, LANNUZEL Tristan, TACHET Dorian, THOMAS Etienne

Partition et détection de communauté

Graphe aéroports :	Erdös Renyi correspondant :	Watts-Strogatz correspondant :	Barabasi correspondant :
Modularité : 0.2499254979191439 Nombre de partitions : 9	Modularité : 0.280196566587396 Nombre de partitions : 10	Modularité: 0.35368840846901745 Nombre de partitions: 11	Modularité: 0.02362984849292758 Nombre de partitions: 7

- Modularité ne semble pas significative sur les partitions proposées
 - Les partitions ont elles un sens ?

Noeud clés, hubs et centralité → Organisation des communautés → Modèle Génératif

Théorie des graphes

Noeuds clés, hubs et centralité

- Quels sont les noeuds clés de notre graphe ?
 - Amsterdam, Barcelone, Paris CDG, Copenhague
- Y a t-il des noeuds permettant de séparer les graphes en sous graphs distincts?
 - Suppression Amsterdam
- Quelles mesures de centralité sont les plus importantes ?
 - o centralité de degré : l'aéroport le plus important selon le degrés
 - "betweenness centrality": l'aéroport étant le plus souvent dans les plus court chemin

Noeud clefs, hubs et centralité → Organisation des communautés → Modèle Génératif

Théorie des graphes

Les communautés sont-elles organisés géographiquement?

#####GROUP	113#####	#####GROUP3	0#####
TR LTAC	TR LTAF	FI EFHK	FI EFIV
TR LTAJ	TR LTAT	FI EFJO	FI EFJY
TR LTBH	R LTBR	FI EFKE	FI EFKI
TR LTBU	TR LTCA	FI EFKK	FI EFKS
TR LTCB	TR LTCC	FI EFKT	FI EFKU
TR LTCD	TR LTCE	FI EFLP	FI EFMA
TR LTCF	TR LTCG	FI EFOU	FI EFPO
TR LTCI	TR LTCJ	FI EFRO	FI EFVA
TR LTCK	TR LTCO	_	-
TR LTCP	TR LTCR	#####GROUP5	9#####
TR LTCS	TR LTCT	SE ESSA	SE ESMO
TR LTCV	TR LTCW	SE ESMT	SE ESNK
TR LTDA	TR_LTFD	SE ESNN	SE ESNO
TR_LTFH		SE ESNO	SE ESNS
######GROUP	ээнинии	SE ESGJ	SE ESSQ
FR LFPG	DK EKRK	SE ESDB	SE ESDF
	FR FMEE	SE ESMK	SE ESNU
FR FMCZ FR LFBZ	FR LFKB	SE ESNZ	SE ESOK
FR LFBZ FR LFKJ	FR LFLC	SE ESPA	SE ESPC
		SE ESSD	SE ESSV
FR LFRB	FR LFRN	SE ESTA	_
FR TFFF	FR TFFR	_	
LV EVRS	TR LTBL		
UK_EG13	UK_EGBN		

ES LEBL (Barcelone)	ES GCRR
ES LEAM	ES LEBB
ES LEIB	ES LEMD
ES LEST	ES LEVC
FR_LFBD (Bordeaux)	FR LFLL
FR_LFML (Marseille)	<pre>IT_LIMF(Turin)</pre>
IT LIPZ	IT LIRQ
RO_LRBS (Bucarest)	PL EPMO
ES GCFV	ES GCXO
UK EG90	CZ_LKAA (Prague)
DE ED90	DE_ETOC(Stutgart
ES LEAS	ES LECO
ES LEGR	ES LEJR
ES LEMH	ES LEPP
ES LESO	ES LEVX
	FR LF90
ES LEXJ	TS BTTA
ES LEXJ FR LFLY	IO DIIII
	ES_GCLA

- 100 louvains
- Seuil à 95%
- Groupement important entre les pays et zones géographiques proches
- Beaucoup d'aéroports se retrouvent tout de même seuls dans leurs communautés

Noeud clefs, hubs et centralité → Organisation des communautés → Modèle Génératif

Théorie des graphes

Notre graphe peut-il être généré via un modèle génératif?

- Y-a-t'il un modèle génératif de graphe qui ressemble à notre graphe ?
 - Densité et plus court chemin par un Erdös Renyi.
 - b. Hétérogénéité et clustering par un Barabasi
 - c. Pas de modèle génératif "parfait"

Conclusion

- Difficulté du traitement des données
- Propriétés classiques réseaux "naturels" validées
- Compréhension des mesures appliquées sur un graphe
- Etude à étendre sur un graphe représentant le réseau aérien mondial
- Pour savoir la centralité la plus pertinente, il aurait été intéressant de comparer les aéroports détachés du graphe.

621 Avenue Centrale 38400 Saint-Martin-d'Hères Téléphone 04 57 42 21 42 Fatima.belounis@univ-grenoble-alpes.fr https://shs.univ-grenoble-alpes.fr/

Théorie des graphes

Théorie des graphes
HABIB Mohamed, LANNUZEL Tristan, TACHET Dorian THOMAS Etienne
Enseignants responsables: TREMBLAY Nicolas et ACHARD Sophie
Année 2020/2021