CAPSTONE PROJECT

POWER SYSTEM FAULT DETECTION AND CLASSIFICATION

Presented By:

- 1. Student Name: Rohan Lotan Ahire
- 2. College Name: DR.B.V.HIRAY COLLEGE OF MANAGEMENT AND RESEARCH CENTRE
- 3. Department: AIML

OUTLINE

- Problem Statement (Should not include solution)
- Proposed System/Solution
- System Development Approach (Technology Used)
- Algorithm & Deployment
- Result (Output Image)
- Conclusion
- Future Scope
- References

PROBLEM STATEMENT

Design a machine learning model to detect and classify different types of faults in a power distribution system. Using electrical measurement data (e.g., voltage and current phasors), the model should be able to distinguish between normal operating conditions and various fault conditions (such as line-to-ground, line-toline, or three-phase faults). The objective is to enable rapid and accurate fault identification, which is crucial for maintaining power grid stability and reliability.

PROPOSED SOLUTION

- Rapid identification and classification of electrical faults (such as line-to-ground, line-to-line, and three-phase faults) in power distribution systems is essential to prevent blackouts, reduce damage, and ensure grid stability. Manual or rule-based systems are often slow or inaccurate.
- The solution will consist of the following components:
- Data Collection:
 - Download dataset from kraggle on power system faults,
 - Upload it to IBM Cloud Object Storage (Lite Tier).
 - Utilize real-time data sources, such as weather conditions, events, and holidays, to enhance prediction accuracy.
- Data Preprocessing:
 - Create a Wotson Studio Project.
 - Clean and normalize the dataset.
- Model Building:
- Use supervised ML classification algorithms:
 - Random Forest.
 - Support Vector Machine (SVM)
- Evaluation:
 - To evaluate the accuracy and effectiveness of the machine learning model trained to classify faults (e.g., LG, LL, LLG, 3-phase) based on voltage and current phasor data using IBM Cloud.

SYSTEM APPROACH

The "System Approach" section outlines the overall strategy and methodology for developing and implementing the rental bike prediction system. Here's a suggested structure for this section:

- System requirements:
 - IBM Cloud (mandatory)
 - IBM Watson studio for model development and deployment
 - IBM cloud object storage for dataset handling

ALGORITHM & DEPLOYMENT

- In the Algorithm section, describe the machine learning algorithm chosen for predicting bike counts. Here's an example structure for this section:
- Algorithm Selection:
- Random Forest Classifier
- Data Input:
- Voltage, current, and phasor measurements from the dataset
- Training Process:
- Supervised learning using labeled fault types
- Prediction Process:
- Model deployed on IBM Watson Studio with API endpoint for real-time predictions.

CONCLUSION

- This approach not only enables rapid fault identification but also supports automated decision-making in real-time, reducing system downtime and improving the resilience of the power grid. With the integration of advanced feature engineering, robust classification algorithms, and real-time deployment capabilities, such a system plays a crucial role in the modernization of smart grids and energy management systems.
- In essence, machine learning empowers utility companies to move from reactive to **predictive maintenance**, ensuring safer, smarter, and more sustainable power distribution networks.

FUTURE SCOPE

- 1. Integration with Smart Grids
 - Seamless integration with IoT-based smart grids for real-time monitoring and control.
 - Use of edge computing for local fault detection, reducing latency and dependency on centralized systems.
- 2. Advanced Deep Learning Models
 - Implementing Recurrent Neural Networks (RNNs), LSTMs, or Transformers to capture temporal dependencies in time-series data.
 - Using Graph Neural Networks (GNNs) to model the power grid topology and improve fault localization.
- 3. Transfer Learning & Domain Adaptation
 - Applying transfer learning to adapt models across different substations or networks with minimal retraining.
 - Facilitating model generalization across varied environmental and grid conditions.
- 4. Explainable AI (XAI)
 - Enhancing model interpretability and transparency for utility operators.
 - Providing visual explanations for fault classifications to support human-in-the-loop systems.
- 5. Self-Healing Networks
 - Integration with automated protection and control systems to isolate and correct faults without human intervention.
 - Moving toward self-healing grid architectures that can reconfigure themselves dynamically.
- 6. Cybersecurity-Aware Fault Detection
 - Combining fault detection with anomaly detection systems to identify and differentiate between physical faults and cyberattacks on grid infrastructure.
- 7. Big Data Analytics and Cloud Integration
 - Using cloud platforms for large-scale data storage and model training.
 - Employing real-time analytics to process high-frequency phasor measurement unit (PMU) data.

REFERENCES

- 1. IBM Watson Studio
- Description: An integrated environment to build, train, and deploy AI and ML models using popular frameworks like TensorFlow, PyTorch, and Scikit-learn.
- Relevance: You can upload your power system measurement data, preprocess it, and experiment with various ML algorithms for fault classification.
- Try Hands-on: Use Watson Studio's AutoAl to automate feature engineering and model selection on your dataset.
- 2. IBM Cloud Pak for Data
- Description: A data and AI platform that simplifies the collection, organization, and analysis of data with built-in AI tools.
- Relevance: Great for managing large power system datasets and creating scalable ML pipelines.
- Use case: You can build predictive maintenance workflows or fault detection pipelines with real-time data streaming.
- 3. IBM AI Engineering Professional Certificate (Coursera)
- What it offers: End-to-end Al engineering, including data handling, modeling, and deployment on IBM Cloud.
- Relevance: The course contains practical labs on classification problems, which can be directly related to classifying fault types from electrical data.
- 4. IBM Tutorials on Time Series Analysis and Anomaly Detection
- Details: Since fault detection often involves time-series sensor data, IBM tutorials on time series forecasting and anomaly detection are invaluable.
- Use cases: Detect deviations (faults) from normal operating conditions using ML models.

IBM CERTIFICATIONS

Credly certificate(getting started with AI)

In recognition of the commitment to achieve professional excellence

Rohan Ahire

Has successfully satisfied the requirements for:

Getting Started with Artificial Intelligence

Issued on: Jul 16, 2025 Issued by: IBM SkillsBuild

Verify: https://www.credly.com/badges/f6b17fda-dcdc-44d5-8953-e8424c128fa4

IBM CERTIFICATIONS

Credly certificate(Journey to Cloud)

In recognition of the commitment to achieve professional excellence

Rohan Ahire

Has successfully satisfied the requirements for:

Journey to Cloud: Envisioning Your Solution

Issued on: Jul 17, 2025 Issued by: IBM SkillsBuild

Verify: https://www.credly.com/badges/ca118b7e-1658-4c68-8b80-cb75039b72ee

IBM CERTIFICATIONS

Credly certificate(RAG Lab)

IBM SkillsBuild

Completion Certificate

This certificate is presented to

Rohan Ahire

for the completion of

Lab: Retrieval Augmented Generation with LangChain

(ALM-COURSE_3824998)

According to the Adobe Learning Manager system of record

Completion date: 23 Jul 2025 (GMT)

Learning hours: 20 mins

THANK YOU

