МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ «МИСиС»

Институт ИТАСУ

Группа: МПИ-20-4-2

ОТЧЕТ

по лабораторной работе №3 по курсу «Нейронные сети»

Выполнил: Хабибулин М.И.

группа МПИ-20-4-2 Проверил: Курочкин И.И.

Инструментарий:

Язык программирования python 3.7

Библиотеки: matplotlib, numpy, random, pandas.

Реализация:

В ходе работы был реализован метод кластерного анализа K-means, а также алгоритм обучения самоорганизующейся карты Кохонена (SOM).

Реализована нейронная сеть с обучением без учителя. Карта SOM создается с помощью нескольких этапов:

- 1. Инициализация начальных весов случайным образом;
- 2. Обучение без учителя. Осуществляется путем последовательной коррекции векторов (векторами являются нейроны). На каждом шаге обучения из исходного набора данным случайно выбирается один из векторов, а затем производится поиск наиболее похожего на него вектора коэффициентов нейронов. Затем выбирается нейрон-победитель, расстояния до которого наименьшее. После этого корректируются веса нейрона-победителя и рядом стоящих нейронов в заданном радиусе.

Расстояние подсчитывалось двумя методами:

1. Евклидово расстояние рассчитывается по формуле

$$d(p,q) = \sqrt{(p_1-q_1)^2 + (p_2-q_2)^2 + \dots + (p_n-q_n)^2} = \sqrt{\sum_{k=1}^n (p_k-q_k)^2}.$$

 Γ де p, q – некоторые точки.

2. Расстояние Хэмминга рассчитывается по формуле

$$d_{ij}=\sum_{k=1}^p|x_{ik}-x_{jk}|.$$

Метрики оценки качества кластеризации:

True positive (TP)	False positive (FP)
False negative (FN)	True negative (TN)

1. Ассигасу рассчитывается по формуле

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

2. Folkes and Mallows Index рассчитывается по формуле

$$FM = \sqrt{\frac{TP}{TP + TN} \cdot \frac{TP}{TP + FP}}$$

3. F-мера сбалансированная рассчитывается по формуле

$$F = 2 \frac{Precision \times Recall}{Precision + Recall}$$

Где

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

4. F-мера с приоритетом точности рассчитывается по формуле

$$F = \left(eta^2 + 1
ight) rac{Precision imes Recall}{eta^2 Precision + Recall}$$

$$\Gamma$$
де $\beta^2 = \frac{1}{2}$.

5. F-мера с приоритетом полноты, где $\beta^2 = 2$.

Результат работы:

Пример 1.

3 линейно разделимых класса, находящихся далеко друг от друга

Параметры: k=3 som_size=10 dimension = 2 learning_rate=0.05 cooperation=5

epoch = 2000

До кластеризации

После кластеризации

Слева - кластеризация K-means, справа - кластеризация SOM

1

Сравнительная таблица 1.

Метрика	K-means	Метод SOM
Rand Index	1.0	1.0
F1-measure	1.0	1.0
Fowlkes-Mallows Index	1.0	1.0

Пример 2.

30 линейно разделимых класса, находящихся далеко друг от друга

Параметры: k=30 som_size=20 dimension = 2 learning_rate=0.05 cooperation=6 epoch = 20000

До кластеризации

После кластеризации

Слева - кластеризация K-теапs, справа - кластеризация SOM

Сравнительная таблица 2.

epublin renbium ruoningu 2.		
Метрика	K-means	Метод SOM
Rand Index	1.0	1.0
F1-measure	1.0	1.0
Fowlkes-Mallows Index	1.0	1.0

Пример 3.

4 линейно разделимых класса, находящихся близко друг к другу

Параметры:

k=4

som_size=20 dimension = 2 learning_rate=0.1 cooperation=8 epoch = 8000

До кластеризации

После кластеризации

Слева - кластеризация K-теапs, справа - кластеризация SOM

Сравнительная таблица 3.

Метрика	K-means	Метод SOM
Rand Index	0.831966893105333	1.0
F1-measure	0.7106256659551798	1.0
Fowlkes-Mallows Index	0.7172020757222693	1.0

Пример 4.

4 линейно неразделимых класса, средняя площадь пересечения классов 10-20%

Параметры: k=4 som_size=15 dimension = 2 learning_rate=0.1 cooperation=5 epoch = 5000

До кластеризации

После кластеризации

Слева - кластеризация K-means, справа - кластеризация SOM

Сравнительная таблица 4.

Метрика	K-means	Метод SOM
Rand Index	0.8704550145228112	0.8474702118769916
F1-measure	0.740702489747801	0.6985004875654233
Fowlkes-Mallows Index	0.7407025017054031	0.6985531913370527

Пример 5.10 линейно неразделимых класса, средняя площадь пересечения классов 50-70%

Параметры: k=20 som_size=25 dimension = 2 learning_rate=0.1 cooperation=8 epoch = 15000

До кластеризации

После кластеризации

Слева - кластеризация K-теапs, справа - кластеризация SOM

Сравнительная таблица 5.

	- P	•
Метрика	K-means	Метод SOM
Rand Index	0.9338668349192536	0.9499912098549216
F1-measure	0.35920836238573944	0.5211566528471501
Fowlkes-Mallows Index	0.3593038790920374	0.5214684174673907

Пример 6.

2 эталонных датасета с различным количеством признаков, но не менее 7

K-means – евклидова метрика

Wine Data Set – 3 класса, 13 признаков

Rand Index: 85.23%

Fowlkes-Mallows Index: 90.17%

Homogentity score: 84.53%

Пример 7.

Breast cancer dataset – 2 класса, 31 признак

Rand Index: 99.29%

Fowlkes-Mallows score: 99.67%

Homogentity score: 98.16%