An implementation of FHE with small ciphertext and key size through a modification of Gentry

Alan R. Hahn

Technische Universität Kaiserslautern

Jan 2020

Small Principal Ideal Problem (SPIP)

Given a principal ideal $\mathfrak a$ in two element representation, compute a "small" generator of the ideal.

Small Principal Ideal Problem (SPIP)

Given a principal ideal $\mathfrak a$ in two element representation, compute a "small" generator of the ideal.

- $N^{O(N)} \cdot \sqrt{\min(A,R)} \cdot |\Delta|^{O(1)}$
- $\exp(O(N \log N) \cdot \sqrt{\log(\Delta) \cdot \log\log(\Delta)})$

Definitions and Notation

For
$$g(x) = \sum_{i=0}^{t} g_i x^i \in \mathbb{Q}[x]$$
, define

$$||g(x)||_2 = \sqrt{\sum_{i=0}^t g_i^2}$$
 and $||g(x)||_{\infty} = \max_{i=0,\dots,t} |g_i|$.

Definitions and Notation

For $g(x) = \sum_{i=0}^{t} g_i x^i \in \mathbb{Q}[x]$, define

$$||g(x)||_2 = \sqrt{\sum_{i=0}^t g_i^2}$$
 and $||g(x)||_{\infty} = \max_{i=0,...,t} |g_i|$.

For r > 0, define

$$B_{2,N}(r) = \left\{ \sum_{i=0}^{N-1} a_i x^i : \sum_{i=0}^{N-1} a_i^2 \le r^2 \right\},$$

$$B_{\infty,N}(r) = \left\{ \sum_{i=0}^{N-1} a_i x^i : -r \le a_i \le r \right\},$$

$$B_{\infty,N}^+(r) = \left\{ \sum_{i=0}^{N-1} a_i x^i : 0 \le a_i \le r \right\}.$$

Definitions and Notation

For $g(x) = \sum_{i=0}^t g_i x^i \in \mathbb{Q}[x]$, define

$$||g(x)||_2 = \sqrt{\sum_{i=0}^t g_i^2}$$
 and $||g(x)||_{\infty} = \max_{i=0,...,t} |g_i|$.

For r > 0, define

$$B_{2,N}(r) = \left\{ \sum_{i=0}^{N-1} a_i x^i : \sum_{i=0}^{N-1} a_i^2 \le r^2 \right\},$$

$$B_{\infty,N}(r) = \left\{ \sum_{i=0}^{N-1} a_i x^i : -r \le a_i \le r \right\},$$

$$B_{\infty,N}^+(r) = \left\{ \sum_{i=0}^{N-1} a_i x^i : 0 \le a_i \le r \right\}.$$

Note $B_{2,N}(r) \subset B_{\infty,N}(r) \subset B_{2,N}(\sqrt{N} \cdot r)$.

Definitions and Notation (Continued)

Denote by $a \leftarrow b$ the assignment of the value of b to the value of a.

Denote by a $\leftarrow_R A$, for a set A, the selection of a from A using a uniform distribution.

For $m \in \mathbb{Z}_{Odd}$, reductions modulo m result in a value in the range [-(m-1)/2,(m-1)/2].

Definitions and Notation (Continued)

Denote by $a \leftarrow b$ the assignment of the value of b to the value of a.

Denote by a $\leftarrow_R A$, for a set A, the selection of a from A using a uniform distribution.

For $m \in \mathbb{Z}_{Odd}$, reductions modulo m result in a value in the range [-(m-1)/2,(m-1)/2].

Facts about Ideals in Number Fields

Let $K = \mathbb{Q}(\theta)$, with $F(\theta) = 0$ for some monic irreducible $F \in \mathbb{Z}[x]$ of degree N. Consider $\mathbb{Z}[\theta] \subset \mathcal{O}_K$; the scheme works with ideals of $\mathbb{Z}[\theta]$ coprime to $[\mathcal{O}_K : \mathbb{Z}[\theta]]$. Such ideals can be generated by two elements.

Facts about Ideals in Number Fields (Continued)

Let $K = \mathbb{Q}(\theta)$, with $F(\theta) = 0$ for some monic irreducible $F \in \mathbb{Z}[x]$ of degree N. Consider $\mathbb{Z}[\theta] \subset \mathcal{O}_K$; the scheme works with ideals of $\mathbb{Z}[\theta]$ coprime to $[\mathcal{O}_K : \mathbb{Z}[\theta]]$. Such ideals can be generated by two elements. Indeed, for a rational prime p,

$$F(x) = \prod_{i=1}^t F_i(x)^{e_i} \pmod{p},$$

so that for ideals lying above a rational prime p, p not dividing $[\mathcal{O}_K : \mathbb{Z}[\theta]]$, the prime ideals dividing $p\mathbb{Z}[\theta]$ are given by

$$\mathfrak{p}_i = \langle p, F_i(\theta) \rangle.$$

For $F_i(x)$ of degree 1, reduction modulo \mathfrak{p}_i produces a homomorphism

$$\iota_{\mathfrak{p}_i}: \mathbb{Z}[\theta] \to \mathbb{F}_{\boldsymbol{p}},$$

and $\mathfrak{p}_i = \langle p, \theta - \alpha \rangle$, where α is a root of F(x) modulo p.

Given $\chi = \sum_{i=0}^{N-1} c_i \theta^i$, $\iota_{\mathfrak{p}_i}$ then corresponds to evaluation of $\chi(\theta)$ in α modulo p.

Somewhat Homomorphic Scheme : Parameters N, η, μ

KeyGen():

- Set plaintext space $\mathcal{P} = \{0,1\}$
- Choose monic, irreducible $F(x) \in \mathbb{Z}[x]$ of degree N
- Repeat until p prime:
 - $S(x) \leftarrow_R B_{\infty,N}(\eta/2)$
 - $-G(x) \leftarrow 1 + 2 \cdot S(x)$
 - $p \leftarrow resultant(G(x), F(x))$
- $D(x) \leftarrow \gcd(G(x), F(x)) \text{ over } \mathbb{F}_p[x]$
- Denote by $\alpha \in \mathbb{F}_p$ the unique root of D(x)
- Apply XGCD-algorithm over $\mathbb{Q}[x]$ to obtain $Z(x) = \sum_{i=0}^{N-1} z_i x^i \in \mathbb{Z}[x]$ such that $Z(x) \cdot G(x) = p \pmod{F(x)}$
- $-B \leftarrow z_0 \pmod{2p}$

The public key $PK = (p, \alpha)$, the private key SK = (p, B)

Encrypt(M, PK) :

- Parse PK as (p, α)
- If $M \notin \{0,1\}$, abort
- $R(x) \leftarrow_R B_{\infty,N}(\mu/2)$
- $-C(x) \leftarrow M + 2 \cdot R(x)$
- $-c \leftarrow C(\alpha) \pmod{p}$
- Output *c*
- Add(c₁, c₂, PK):
 - Parse PK as (p, α)
 - $-c_3 \leftarrow (c_1 + c_2) \pmod{p}$
 - Output c3

- Decrypt(c, SK):
 - Parse SK as (p, B)
 - $M \leftarrow (c |c \cdot B/p]) \pmod{2}$
 - Output M

- Mult(c₁, c₂, PK):
 - Parse PK as (p, α)
 - $-c_3 \leftarrow (c_1 \cdot c_2) \pmod{p}$
 - Output c₃

Recall decryption of $c = C(\alpha)$ requires $C(x) = M + 2 \cdot R(x) \in B_{\infty,N}(r_{Dec})$.

Recall decryption of $c = C(\alpha)$ requires $C(x) = M + 2 \cdot R(x) \in B_{\infty,N}(r_{Dec})$. Let c_1 , c_2 and $C_1(x) = M_1 + N_1(x)$, $C_2(x) = M_2 + N_2(x)$ denote two ciphertexts and their corresponding polynomials, with $C_i(x) \in B_{\infty,N}(r_i)$.

Recall decryption of $c = C(\alpha)$ requires $C(x) = M + 2 \cdot R(x) \in B_{\infty,N}(r_{Dec})$. Let c_1 , c_2 and $C_1(x) = M_1 + N_1(x)$, $C_2(x) = M_2 + N_2(x)$ denote two ciphertexts and their corresponding polynomials, with $C_i(x) \in B_{\infty,N}(r_i)$.

Then for the addition and multiplication of $C_i(x)$

$$C_3(x) = M_3 + N_3(x) = (M_1 + N_1(x)) + (M_2 + N_2(x)),$$

 $C_4(x) = M_4 + N_4(x) = (M_1 + N_1(x)) \cdot (M_2 + N_2(x)),$

$$C_3(x) \in B_{\infty,N}(r_1 + r_2), \ C_4(x) \in B_{\infty,N}(\delta_\infty \cdot r_1 \cdot r_2)$$

$$(||g(x) \cdot h(x)||_\infty \le \delta_\infty \cdot ||g(x)||_\infty \cdot ||h(x)||_\infty).$$

Recall decryption of $c = C(\alpha)$ requires $C(x) = M + 2 \cdot R(x) \in B_{\infty,N}(r_{Dec})$.

Let c_1 , c_2 and $C_1(x) = M_1 + N_1(x)$, $C_2(x) = M_2 + N_2(x)$ denote two ciphertexts and their corresponding polynomials, with $C_i(x) \in B_{\infty,N}(r_i)$.

Then for the addition and multiplication of $C_i(x)$

$$C_3(x) = M_3 + N_3(x) = (M_1 + N_1(x)) + (M_2 + N_2(x)),$$

$$C_4(x) = M_4 + N_4(x) = (M_1 + N_1(x)) \cdot (M_2 + N_2(x)),$$

$$C_3(x) \in B_{\infty,N}(r_1 + r_2), \ C_4(x) \in B_{\infty,N}(\delta_\infty \cdot r_1 \cdot r_2) \ (||g(x) \cdot h(x)||_\infty \le \delta_\infty \cdot ||g(x)||_\infty \cdot ||h(x)||_\infty).$$

Thus after executing a circuit of multiplicative depth d for an initial $C(x) \in B_{\infty,N}(\mu)$, we get the corresponding polynomial $C'(x) \in B_{\infty,N}(r)$ with

$$r \approx (\delta_{\infty} \cdot \mu)^{2^d}$$
.

Then
$$r \approx (\delta_{\infty} \cdot \mu)^{2^d} \leq r_{Dec} \Rightarrow$$

$$d \log 2 \leq \log \log r_{Dec} - \log \log(\delta_{\infty} \cdot \mu).$$