Problem 1 (13.6.6). Prove that for n odd, n > 1, $\Phi_{2n}(x) = \Phi_n(-x)$.

Proof. Begin with $\Phi_n(-x)$. Then we have that

$$\Phi_n(-x) = \prod_{1 \le d < n \mid (d,n) = 1} (-x - \zeta_n^d)$$

If we pull out the negatives we get

$$\Phi_n(-x) = (-1)^{\varphi(n)} \prod_{1 \le d < n \mid (d,n) = 1} (x - \zeta_n^{d+n/2})$$

Since $\varphi(m)$ is even for $m \geq 3$ we can safely remove it. Then we change the base of ζ_n to get

$$\Phi_n(-x) = (-1)^{\varphi(n)} \prod_{1 \le d < n \mid (d,n) = 1} (x - \zeta_{2n}^{2d+n})$$

All of the 2d+n are greater than or equal to 1 and less than 2n. Moreover as n is odd, greater than 1, and $\gcd(d,n)=1$ we have that $\gcd(2d,n)=1$. Since $\deg \Phi_{2n}(x)=\varphi(2n)=\varphi(n)$ and there are $\varphi(n)$ factors in the above product we must have all of the factors for $\Phi_{2n}(x)$.

Therefore

$$\Phi_n(-x) = \Phi_{2n}(x)$$

for n odd and n > 1.

Problem 2 (13.6.9). Suppose A is an $n \times n$ matrix over $\mathbb C$ for which $A^k = I$ for some integer $k \ge 1$. Show that A can be diagonalized. Show that the matrix $A = \begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix}$ where α is an element of a field of characteristic p satisfies $A^p = I$ and cannot be diagonalized if $\alpha \ne 0$.

Problem 3 (13.6.10). Let φ denote the Frobenius map $x \mapsto x^p$ on the finite field \mathbb{F}_{p^n} . Prove that φ gives an isomorphism of \mathbb{F}_{p^n} to itself. Prove that φ^n is the identity map and that no lower power of φ is the identity.

Problem 4 (13.6.13). This exercise outlines a proof of Wedderburn's Theorem that a finite division ring D is a field.

- (a) Let Z denote the center of D. Prove that Z is a field containing \mathbb{F}_p for some prime p. If $Z = \mathbb{F}_q$ prove that D has order q^n for some integer n. [D is a vector space over Z].
- (b) The nonzero elements D^{\times} of D form a multiplicative group. For any $x \in D^{\times}$ show that the nonzero elements of D which commute with x form a division ring which contains Z. Show that this division ring is of order q^m for some integer m and that m < n if x is not an element of Z.

(c) Show that the class equation for the group D^{\times} is

$$q^{n} - 1 = (q - 1) + \sum_{i=1}^{r} \frac{q^{n} - 1}{|C_{D} \times (x_{i})|}$$

where x_1, x_2, \ldots, x_r are representatives of the distinct conjugacy classes in D^{\times} not contained in the center of D^{\times} . Conclude from (b) that for each i, $|C_{D^{\times}}(x_i)| = q^{m_i} - 1$ for some $m_i < n$.

- (d) Prove that since $\frac{q^n-1}{q^{m_i}-1}$ is an integer (namely, the index $|D^{\times}:C_{D^{\times}}(x_i)|$) then m_i divides n. Conclude that $\Phi_n(x)$ divides $(x^n-1)/(x^{m_i}-1)$ and hence that the integer $\Phi_n(q)$ divides $(q^n-1)/(q^{m_i}-1)$ for $i=1,2,\ldots,r$.
- (e) Prove that (c) and (d)e imply that $\Phi(q) = \prod_{\zeta \text{ primitive}} (q \zeta)$ divides q 1. Prove that $|q \zeta| > q 1$ (complex absolute value) for any root of unity $\zeta \neq 1$ [note that 1 is the closest point on the unit circle in \mathbb{C}] to the point q on the real line]. Conclude that n = 1, i.e., that D = Z is a field.

 \square

Problem 5 (14.1.4). Prove that $\mathbb{Q}[\sqrt{2}]$ and $\mathbb{Q}[\sqrt{3}]$ are not isomorphic.

Proof.

Problem 6 (14.2.4). Let p be a prime. Determine the elements of the Galois group of $x^p - 2$.

Proof.

Problem 7 (14.2.5). Prove that the Galois group of $x^p - 2$ for p a prime is isomorphic to the group of matrices $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$ where $a, b \in \mathbb{F}_p, a \neq 0$.

Proof.

Problem 8 (14.2.14). Show that $\mathbb{Q}(\sqrt{2+\sqrt{2}})$ is a cyclic quartic field, i.e., is a Galois extension of degree 4 with cyclic Galois group.

 \square