Работа 3.2.8

Релаксационные колебания

Андрей Киркича, Б01-202, МФТИ

В работе используются: стабилитрон СГ-2 (газонаполненный диод) на монтажной панели, магазин ёмкостей, магазин сопротивлений, источник питания, амперметр, вольтметр, осциллограф.

1. Теоретические сведения

(а) Вольт-амперная характеристика стабилитрона с последовательно включенным резистором.

(b) Схема релаксационного генератора.

Период колебаний:

$$T = RC \ln \frac{U - V_2}{U - V_1},\tag{1}$$

Критическое сопротивление:

$$R_{\rm p} = \frac{U - V_2}{I_2}.\tag{2}$$

(с) Осциллограмма релаксационных колебаний.

(d) Схема установки для изучения характеристик стабилитрона.

2. Результаты измерений

Характеристика стабилитрона

Добавочное сопротивление r=5,1 кОм было подпаяно между ножкой лампы и соответствующей клеммой, для того чтобы предохранять стабилитрон от перегорания. Это сопротивление оставалось включённым при всех измерениях. Вольтамперная характеристика стабилитрона с резистором r при возрастании и убывании напряжения представлена в таблице ниже. При этом, для более точного определения потенциалов зажигания и гашения, показания приборов были сняты пятикратно.

V, B	I, MA	V, B	I, MA		
Увеличение	напряжения	Понижение напряжения			
$87,5 \pm 0,5$	$2,94 \pm 0,05$	$148, 5 \pm 0, 5$	$14,60 \pm 0,05$		
$92,6 \pm 0,5$	$3,93 \pm 0,05$	$136,7 \pm 0,5$	$12,40 \pm 0,05$		
$100, 0 \pm 0, 5$	$5,30 \pm 0,05$	$123, 5 \pm 0, 5$	$9,90 \pm 0,05$		
$110, 2 \pm 0, 5$	$7,14 \pm 0,05$	$108,7 \pm 0,5$	$6,90 \pm 0,05$		
$120,0 \pm 0,5$	$9,23 \pm 0,05$	$95, 3 \pm 0, 5$	$4,60 \pm 0,05$		
$130, 2 \pm 0, 5$	$11, 10 \pm 0, 05$	$84,5 \pm 0,5$	$2,50 \pm 0,05$		
$143,0 \pm 0,5$	$13,50 \pm 0,05$	$81,6 \pm 0,5$	$0,00 \pm 0,05$		
$158,0 \pm 0,5$	$16,40 \pm 0,05$	-	-		

Таблица 1: Вольт-амперная характеристика стабилитрона.

По полученным данным был построен график. В качестве напряжений зажигания и гашения были взяты средние значения всех измеренний данных величин.

Осциллограммы релаксационных колебаний

Для проведения эксперимента было выставлено напряжение $U=(117,3\pm0,5){\rm B}.$ После подбора частоты развёртки, при которой на экране видна картина пилообразных колебаний, было рассчитано критическое сопротивление по формуле (2): $R_{\rm kp}=(140\pm3)~{\rm kOm}.$ Далее была проведена серия измерений для снятия показаний для зависимости T(C). Напряжение при этом было выставлено (118, 0±0, 3)B, а сопротивление – $R=560~{\rm kOm}.$ Результаты измерений приведены в таблице ниже.

C , н Φ	50	40	30	20	15	10	5
T, MC	26,0	21,0	15,5	10,0	7,2	4,6	2,9

Таблица 2: Зависимость периода от электроёмкости.

Ниже приведена зависимость T(C). Помимо этого, по формуле (1) были рассчитаные теоретические значения периода и также отмечены на графике.

Как видно из графика, коэффициенты наклона сильно отличаются, из чего следует, что динамический потенциал отличается от статического. Таким образом, динамический потенциал гашения лампы составил (42 ± 6) В.

3. Заключение

Из вольт-амперной характеристики стабилитрона можем сделать вывод, что стабилитрон работает, и может стабилизировать напряжение. В пределах применения теоретической модели наблюдается прямопропорциональная зависимость периода от ёмкости.

Литература

- 1. Hикулин М.Г., Попов П.В., Нозик А.А., и др. Лабораторный практикум по общей физике: учеб. пособие. В трёх томах Т. II. Электричество и магнетизм. 2-е издание М.: МФТИ, 2019.
- 2. Cuвухин Д.В. Общий курс физики. Т.III. Электричество. Москва: Физматлит, 2015. §134.