

Teoria dos Grafos

Professora: Eliza Gomes

E-mail: eliza.gomes@unb.br

- É uma área de conhecimento voltada ao estudo/análise das estruturas matemáticas chamadas grafos;
- Pode ser definido como um conjunto de objetos chamados vértices e um conjunto de arestas que unem pares desses objetos;
- A maneira mais comum de representar um grafo é por meio de um diagrama:
 - Vértices são representados por pontos;
 - Arestas são representados por segmentos de retas ou de curvas.

- Grafo com 5 vértices {*v*₁, *v*₂, *v*₃, *v*₄, *v*₅};
- Grafo com 7 arestas:
 - <u>Três paralelas</u>: mais de uma aresta conecta o mesmo par de vértices;
 - <u>Duas loops</u>: uma aresta conecta um vértice a si próprio.

Exemplos de Grafos

• Usados para representar mapas

Exemplos de Grafos

• Usados para representar árvore genealógica

Exemplos de Grafos

• Usados para representar diagramas de moléculas (química)

- A maneira como as arestas dos grafos são desenhadas não é importante;
- É irrelevantes se as linhas são desenhadas como retas ou curvas, compridas ou curtas, grossas ou finas;
- O importante são os vértices dos grafo e o número de arestas entre cada par de vértices.

- A maneira como as arestas dos grafos são desenhadas não é importante;
- É irrelevantes se as linhas são desenhadas como retas ou curvas, compridas ou curtas, grossas ou finas;
- O importante são os vértices dos grafo e o número de arestas entre cada par de vértices.

- Grafos planos ou planares: sem interseções entre arestas;
- **Grafos direcionados**: cada aresta, geralmente referenciada como arco, tem uma direção associada a ela;
- Grafos não direcionados: cada aresta pode ser abordada como bidirecional;
- Grafos finitos: lida com números finitos de arestas e vértices;
- Grafos infinitos: pode ter infinitos vértices e arestas;
- Grafos rotulados: rótulos para vértices e arestas (exceto para identificação);
- Grafos não rotulados: sem rótulos, apenas para identificação dos vértices.

- Grafos planos ou planares: sem interseções entre arestas;
- **Grafos direcionados**: cada aresta, geralmente referenciada como arco, tem uma direção associada a ela;
- Grafos não direcionados: cada aresta pode ser abordada como bidirecional;
- Grafos finitos: lida com números finitos de arestas e vértices;
- Grafos infinitos: pode ter infinitos vértices e arestas;
- Grafos rotulados: rótulos para vértices e arestas (exceto para identificação);
- Grafos não rotulados: sem rótulos, apenas para identificação.

Exemplo: Problema da rede de fio e postes

• Considere uma rede de fios e postes telefônicos em que os vértices $\{p_1, p_2, p_3, p_4, p_5, p_6\}$ representam 6 postes telefônicos que estão unidos por fios, representados pelas arestas $\{f_1, f_2, f_3, f_4, f_5, f_6\}$;

Exemplo: Problema da rede de fio e postes

• <u>Problema 1</u>: estudar a vulnerabilidade dessa rede a um acidente, e o objetivo do estudo é identificar as linhas e postes que devam permanecer ativos para evitar uma queda total da rede.

Exemplo: Problema da rede de fio e postes

• <u>Problema 2</u>: encontrar o menor conjunto de arestas (fios) necessárias para conectar os seis vértices (postes).

Exemplo: Problema do caixeiro-viajante

 Suponha que a área de atuação de um vendedor de produtos industriais (identificado como caixeiro-viajante) inclua várias cidades, com rodovias conectando certos pares dessas cidades;

- O serviço exige que ele visite cada cidade pessoalmente;
- É possível ele planejar uma viagem de carro que lhe permita, ao sair de uma cidade, visitar cada uma das cidades exatamente uma vez, voltando à cidade de partida?

Exemplo: Problema do caixeiro-viajante

Exemplo: Problema de interceptação de arestas

- Considere 3 casas {C₁, C₂, C₃} e considere o problema de instalação do fornecimento de eletricidade {E}, gás {G} e água {A} para cada uma delas;
- Uma aresta une dois vértices apenas se um dos vértices representa uma casa e o outro, uma das três fontes (água, eletricidade ou gás);
- É possível fazer essa instalação sem que as linhas de fornecimento se interceptem?

- Uma companhia tem filiais em cada uma das cidades $\{C_1, C_2, ..., C_6\}$.
- O valor da passagem aérea de um voo direto entre as cidades C_i e C_j é dado pela posição (i,j) na matriz a seguir.
- A presença do símbolo ∞ em uma posição da matriz indica a inexistência de voo direto entre as cidades representadas pela linha e pela coluna em que tal símbolo se encontra.

$$\begin{pmatrix}
0 & 50 & \infty & 40 & 25 & 10 \\
50 & 0 & 15 & 20 & \infty & 25 \\
\infty & 15 & 0 & 10 & 20 & \infty \\
40 & 20 & 10 & 0 & 10 & 25 \\
25 & \infty & 20 & 10 & 0 & 55 \\
10 & 25 & \infty & 25 & 55 & 0
\end{pmatrix}$$

- Entre as cidades C_2 e C_5 não existe voo direto;
- A posição (4,2) da matriz preenchida com o valor 20 representa que a tarifa de voo da cidade C_4 à cidade C_2 é de \$20, e de C_5 a C_6 , de \$55;
- Note que a diagonal principal da matriz é formada por elementos iguais a zero.

$$\begin{pmatrix}
0 & 50 & \infty & 40 & 25 & 10 \\
50 & 0 & 15 & 20 & \infty & 25 \\
\infty & 15 & 0 & 10 & 20 & \infty \\
40 & 20 & 10 & 0 & 10 & 25 \\
25 & \infty & 20 & 10 & 0 & 55 \\
10 & 25 & \infty & 25 & 55 & 0
\end{pmatrix}$$

 A companhia está interessada no cálculo de uma tabela das tarifas mais baratas entre pares de cidades (mesmo que exista um voo direto entre duas cidades, este pode não ser a rota mais barata).

$$\begin{pmatrix}
0 & 50 & \infty & 40 & 25 & 10 \\
50 & 0 & 15 & 20 & \infty & 25 \\
\infty & 15 & 0 & 10 & 20 & \infty \\
40 & 20 & 10 & 0 & 10 & 25 \\
25 & \infty & 20 & 10 & 0 & 55 \\
10 & 25 & \infty & 25 & 55 & 0
\end{pmatrix}$$

- Essa situação pode ser representada por um **grafo ponderado**, ou seja, um grafo com **pesos** associados às arestas que, no caso, representam as tarifas associadas aos voos diretos, como informados na matriz;
- O problema pode, então, ser resolvido usando o algoritmo de Dijkstra.

Conceitos Iniciais

Definições

- Arestas de um grafo podem ser:
 - <u>Dirigidas</u>: uma aresta (u,v) é dita dirigida de u para v se o par (u,v) for ordenado, com u precedendo v. Por existir apenas uma direção elas são consideradas <u>assimétricas</u>;
 - <u>Não dirigidas</u>: uma aresta $\{u,v\}$ é dita não dirigida se o par $\{u,v\}$ não for ordenado. Por não existir direção elas são consideradas <u>simétricas</u>;
- Grafos podem ser:
 - <u>Dirigidos ou Dígrafos</u>: todas as arestas são dirigidas;
 - <u>Não dirigidos</u>: todas as arestas são não-dirigidas;
 - <u>Misto</u>: tem arestas dirigidas e não-dirigidas.
- Vértices finais da aresta: dois vértices conectados por uma aresta;
- <u>Vértices adjacentes</u>: dois <u>vértices</u> são ditos <u>adjacentes</u> se forem pontos finais da mesma aresta;
- <u>Arestas incidentes</u>: uma aresta é dita <u>incidente</u> a um vértice se o vértice é um dos pontos finais da aresta;

Definições

- Grau de um vértice: é a quantidade de arestas que se conectam a ele. Denotado por: deg(v);
 - <u>Grau de entrada de um vértice</u>: são os números de arestas incidentes **em** *v*, em um grafo dirigido. Denotado por: indeg(v);
 - <u>Grau de saída de um vértice</u>: são os números de arestas incidentes **de** *v*, em um grafo dirigido. Denotado por: outdeg(v);
- <u>Arestas paralelas ou múltiplas</u>: duas arestas não dirigidas tenham os mesmos pontos finais e duas arestas dirigidas tenham a mesma origem e o mesmo destino;
- <u>Laço (loop)</u>: aresta que conecta um vértice consigo mesmo;
- Grafos simples: grafos que não têm arestas paralelas ou laços;
- Grafos planares: quando nenhum par de arestas se cruza;

Exemplo grafo não dirigido: Lista de arestas

Seja o grafo
$$G = (V,E)$$
 tal que
$$V = \{a, b, c, d, e, f, g, h, i, j\}$$

$$E = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}, e_{11}, e_{12}\}$$
 sendo os **vértices-extremidade** das arestas:

$e_1 \leftrightarrow (a,b)$	$e_2 \leftrightarrow (b,c)$	$e_3 \leftrightarrow (c,c)$	$e_4 \leftrightarrow (c,e)$	$e_5 \leftrightarrow (d, f)$	$e_6 \leftrightarrow (d, f)$
$e_7 \leftrightarrow (c,d)$	$e_8 \leftrightarrow (c, f)$	$e_9 \leftrightarrow (e,f)$	$e_{10} \leftrightarrow (g,h)$	$e_{11} \leftrightarrow (h, h)$	$e_{12} \leftrightarrow (h, i)$

Exemplo grafo não dirigido: Grafos

Exemplo grafo não dirigido: Matriz adjacência

	а	Ь	С	d	е	f	g	h	i	j
а	0	1	0	0	0	0	0	0	0	0
b	1	0	1	0	0	0	0	0	0	0
С	0	1	1	1	1	1	0	0	0	0
d	0	0	1	0	0	2	0	0	0	0
е	0	0	_	0	0	1	0	0	0	0
f	0	0	_	2	1	0	0	0	0	0
9	0	0	0	0	0	0	0	1	0	0
h	0	0	0	0	0	0	1	1	1	0
j	0	0	0	0	0	0	0	0	0	0
i	0	0	0	0	0	0	0	1	0	0

Exemplo grafo dirigido: Lista de arestas

Seja o grafo
$$G = (V,E)$$
 tal que
$$V = \{a, b, c, d, e, f, g, h, i, j\}$$

$$E = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}, e_{11}, e_{12}\}$$
 sendo os vértices-extremidade das arestas:

$e_1 \rightarrow (a, b)$	$e_2 \rightarrow (b,c)$	$e_3 \rightarrow (c,c)$	$e_4 \rightarrow (c,e)$	$e_5 \rightarrow (d, f)$	$e_6 \rightarrow (d, f)$
$e_7 \rightarrow (c,d)$	$e_8 \rightarrow (c,f)$	$e_9 \rightarrow (e, f)$	$e_{10} \rightarrow (g,h)$	$e_{11} \rightarrow (h,h)$	$e_{12} \rightarrow (h, i)$

Exemplo grafo não dirigido: Grafos

Exemplo grafo dirigido: Matriz adjacência

	а	b	С	d	е	f	g	h	i	j
а	0	0	0	0	0	0	0	0	0	0
b	1	0	0	0	0	0	0	0	0	0
С	0	1	1	0	0	0	0	0	0	0
d	0	0	1	0	0	0	0	0	0	0
е	0	0	1	0	0	0	0	0	0	0
f	0	0	1	2	1	0	0	0	0	0
g	0	0	0	0	0	0	0	0	0	0
h	0	0	0	0	0	0	1	1	0	0
j	0	0	0	0	0	0	0	0	0	0
i	0	0	0	0	0	0	0	1	0	0

Matriz adjacência

Grafo não dirigido

	а	Ь	С	Ъ	е	f	g	h	i	j
а	0	_	0	0	0	0	0	0	0	0
b	1	0	~	0	0	0	0	0	0	0
С	0	~	~	1	1	1	0	0	0	0
d	0	0	~	0	0	2	0	0	0	0
е	0	0	~	0	0	1	0	0	0	0
f	0	0	_	2	1	0	0	0	0	0
9	0	0	0	0	0	0	0	1	0	0
h	0	0	0	0	0	0	1	1	1	0
j	0	0	0	0	0	0	0	0	0	0
i	0	0	0	0	0	0	0	1	0	0

Grafo dirigido

	а	Ь	C	d	е	f	g	h	i	j
а	0	0	0	0	0	0	0	0	0	0
b	1	0	0	0	0	0	0	0	0	0
С	0	1	~	0	0	0	0	0	0	0
d	0	0	1	0	0	0	0	0	0	0
е	0	0	1	0	0	0	0	0	0	0
f	0	0	1	2	1	0	0	0	0	0
g	0	0	0	0	0	0	0	0	0	0
h	0	0	0	0	0	0	1	1	0	0
j	0	0	0	0	0	0	0	0	0	0
i	0	0	0	0	0	0	0	1	0	0

Características dos grafos

- Não simples;
- Planar;
- Arestas paralelas: e₅; e₆
- <u>Laços</u>: e₃; e₁₁
- <u>Vértice adjacente</u>: {ab}; {b,c}; {c,d}; {c,e}; {d,f}; {e,f}; {g,h}; {h,i}
- Aresta incidente: $a = \{e_1\}$; $b = \{e_1, e_2\}$; $c = \{e_3, e_7, e_4, e_8\}$; $d = \{e_5, e_7, e_6\}$; $e = \{e_4, e_9\}$; $f = \{e_5, e_6, e_8, e_9\}$; $g = \{e_{10}\}$; $h = \{e_{10}, e_{11}, e_{12}\}$; $i = \{e_{12}\}$

Características dos grafos

- Não dirigido;
- Grau dos vértices:

$$deg(a) = 1;$$
 $deg(b) = 2;$ $deg(c) = 5;$ $deg(d) = 3;$ $deg(e) = 2;$ $deg(f) = 4;$ $deg(g) = 1;$ $deg(h) = 3;$ $deg(i) = 1;$ $deg(j) = 0.$

- Dirigido;
- Grau dos vértices:

$$\begin{array}{ll} indeg(a)=0;\ outdeg(a)=1; & indeg(b)=1;\ outdeg(b)=1; \\ indeg(c)=2;\ outdeg(c)=4; & indeg(d)=1;\ outdeg(d)=2; \\ indeg(e)=1;\ outdeg(e)=1; & indeg(f)=4;\ outdeg(f)=0; \\ indeg(g)=0;\ outdeg(g)=1; & indeg(h)=2;\ outdeg(h)=2; \\ indeg(i)=1;\ outdeg(i)=0; & indeg(j)=0;\ outdeg(j)=0; \end{array}$$