Lab 09

Timing and Shift Registers Description

In this lab, you will learn about hardware timing, use a shift register with accumulator, and analyze the accuracy of a digital stopwatch.

Procedure

Part A - Adder/Subtractor Timing

• Download O9A-handout, full_adder.vhd, half_adder.vhd, lab09a.vhd, and lab09a.xdc from Canvas and complete this module, following along with the instructor.

Part B - Array Multiplier Timing

• Download O9B-handout, full_adder.vhd, half_adder.vhd, adder_9.vhd, part_prod_gen.vhd, lab09b.vhd, and lab09b.xdc from Canvas and complete this module, following along with the instructor.

Part C - Two-High-Bit Challenge x16

Download 09C-handout, full_comparator.vhd, half_comparator.vhd,
comparator_6.vhd, half_adder.vhd, and lab09c.vhd from Canvas and complete this module, following along with the instructor.

Part D - Digital Stopwatch Accuracy

 Download 09D-handout, d_counter.vhd, display_controller.vhd, lab09d.vhd, and lab09d.xdc from Canvas and complete this module, following along with the instructor.

Deliverables

Lab Report

- Submit an **informal report** including the following:
 - Parts A and B
 - A screenshot of the run results for the first failed timing run and the last successful timing run.
 - Part C
 - A screenshot of the Elaborated Design schematic
 - · Screenshots of simulation results
 - Part D
 - A screenshot of the Elaborated Design schematics for d_counter.vhd and the whole stopwatch
 - Also a screenshot of the part that changes with the improved stopwatch
 - Screenshots of simulation results for d_counter.vhd
 - A screenshot of the FPGA resource utilization for the stopwatch
 - A picture of the FPGA development board for each trial (standard and improved)
 - Answers to handout questions

Outcomes

- Practice working with VHDL.
- Practice using Vivado for hardware simulation.
- Practice using Vivado for hardware synthesis and implementation.
- Practice programming and testing a hardware description on an FPGA development board.
- Understand VHDL components, instantiation, and structural connections.
- Understand elements of timing analysis including clock constraints and critical paths.
- Understand shift registers and accumulators.
- Understand delay flip-flops.
- Understand digital counters.