主题模型

- 1. 给定语料库 $\mathbb{D}=\{\mathcal{D}_1,\mathcal{D}_2,\cdots,\mathcal{D}_N\}$,其中包含 N 篇文档 。 所有的单词来自于词汇表 $\mathbb{V}=\{\mathrm{word}_1,\mathrm{word}_2,\cdots,\mathrm{word}_V\}$,其中 V 表示词汇表的大小。
- 2. BOW: Bag of Words: 词在文档中不考虑顺序,这称作词袋模型。

—、Unigram Model

- 1. 假设有一个骰子,骰子有V个面,每个面对应于词典中的一个单词。 Unigram Model 是这样生成文档的:
 - 。 每次抛一次骰子, 抛出的面就对应于产生一个单词
 - \circ 如果一篇文档有 n 个单词,则独立的抛掷 n 次骰子就产生着 n 个单词。
- 2. 令骰子的投掷出各个面的概率为:

$$ec{\Theta} = (heta_1, heta_2, \cdots, heta_V)^T \ \sum_{v=1}^V heta_v = 1$$

即 $P(\operatorname{word}_v) = \theta_v$ 。 $\vec{\Theta}$ 就是待求的参数。

3. 假设文档包含 n 个单词,这些单词依次为: $\{ \text{word}_{w_1}, \text{word}_{w_2}, \cdots, \text{word}_{w_n} \}$,其中 $w_i \in \{1, 2, \cdots, V\}$,用 (w_1, w_2, \cdots, w_n) 代表文档。 则生成这篇文档的概率为:

$$p(w_1,w_2,\cdots,w_n;ec{\Theta}) = p(w_1;ec{\Theta}) \prod_{i=2}^n p(w_i\mid w_1,w_2,\cdots,w_{i-1};ec{\Theta})$$

在 $p(w_i \mid w_1, w_2, \cdots, w_{i-1}; \vec{\Theta})$ 中, $w_1, w_2, \cdots, w_{i-1}$ 是 w_i 的上下文。

由于采取的是词袋模型,没有考虑上下文,所以有:

$$p(w_i \mid w_1, w_2, \cdots, w_{i-1}; ec{\Theta}) = p(w_i; ec{\Theta})$$

于是有:

$$p(w_1,w_2,\cdots,w_n;ec{\Theta}) = \prod_{i=1}^n p(w_i;ec{\Theta})$$

- 如果考虑了上下文(即抛弃词袋模型),则各种单词的组合会导致爆炸性的复杂度增长。
- 。 由于是词袋模型,因此 $p(w_1,w_2,\cdots,w_n;\vec{\Theta})$ 并不构成一个概率分布。 $p(w_1,w_2,\cdots,w_n;\vec{\Theta})$ 仅仅是生成该文档的一种非归一化概率。
- 4. 假设单词 $\{\operatorname{word}_{w_1}, \operatorname{word}_{w_2}, \cdots, \operatorname{word}_{w_n}\}$ 中,有 \tilde{n}_1 个 word_1 ,有 \tilde{n}_2 个 word_2 ,…有 \tilde{n}_V 个 word_V ,其 中 $\tilde{n}_1 + \tilde{n}_2 + \cdots + \tilde{n}_V = n$,则:

$$p(w_1, w_2, \cdots, w_n; ec{\Theta}) = \prod_{i=1}^n p(w_i; ec{\Theta}) = \prod_{v=1}^V P(\operatorname{word}_v)^{ ilde{n}_v} = \prod_{v=1}^V heta_v^{ ilde{n}_v}$$

5. 参数估计: 就是估计骰子的投掷出各个面的概率 $\vec{\Theta} = (\theta_1, \theta_2, \cdots, \theta_V)^T$

1.1 最大似然估计

1. 假设数据集 $\mathbb D$ 包含 N 篇文档 $\mathbb D=\{\mathcal D_1,\mathcal D_2,\cdots,\mathcal D_N\}$ 。

对文档 \mathcal{D}_i ,假设其单词依次为 $\{\operatorname{word}_{w_1^i},\operatorname{word}_{w_2^i},\cdots,\operatorname{word}_{w_{n_i}^i}\}$,用 $(w_1^i,w_2^i,\cdots,w_{n_i}^i)$ 来表示。其中:

- $\circ \ \ v = w^i_j$ 表示文档 \mathcal{D}_i 的第 j 个单词为单词 word_v 。
- \circ n_i 表示文档 \mathcal{D}_i 一共有 n_i 个单词。
- 2. 由于每篇文档都是独立的且不考虑文档的顺序和单词的顺序,则数据集发生的概率

$$L=p(\mathbb{D})=p(w_1^1,\cdots,w_{n_1}^1,\cdots,w_1^N,\cdots,w_{n_N}^N;ec{\Theta})=\prod_{i=1}^N\prod_{j=1}^{n_i}p(w_j^i;ec{\Theta})$$

假设单词 $\{\operatorname{word}_{w_1^1}, \operatorname{word}_{w_2^1}, \cdots, \operatorname{word}_{w_{n_1}^1}, \cdots, \operatorname{word}_{w_1^N}, \operatorname{word}_{w_2^N}, \cdots, \operatorname{word}_{w_{n_N}^N}\}$ 中,有 \tilde{n}_1 个 word_1 ,有 \tilde{n}_2 个 word_2 ,…有 \tilde{n}_V 个 word_V 。 其中 $\tilde{n}_1 + \tilde{n}_2 + \cdots + \tilde{n}_V = n$, n 为所有文档的所有单词的数量。则有:

$$L = \prod_{i=1}^N \prod_{j=1}^{n_i} p(w^i_j; ec{\Theta}) = \prod_{v=1}^V P(ext{word}_v)^{ ilde{n}_v} = \prod_{v=1}^V heta_v^{ ilde{n}_v}$$

3. 使用最大似然估计法,也就是最大化对数的 L:

$$LL = \log L = \log \prod_{v=1}^V heta_v^{ ilde{n}_v} = \sum_{v=1}^V ilde{n}_v \log heta_v$$

于是求解:

$$rg \max_{ec{\Theta}} \sum_{v=1}^V ilde{n}_v \log heta_v \ s.\,t. \quad \sum_{v=1}^V heta_v = 1; \quad heta_1, heta_2, \cdots, heta_V \geq 0$$

用拉格朗日乘子法求解,其解为:

$$\hat{ heta}_v = rac{ ilde{n}_v}{n}, v = 1, 2, \cdots, V$$

其物理意义为:单词 word $_v$ 出现的概率 θ_v 等于它在数据集 $\mathcal D$ 中出现的频率(它出现的次数 $\tilde n_v$ 除以文档所有单词数 n)。

1.2 最大后验估计

1. 根据贝叶斯学派的观点, 参数 $\vec{\Theta}$ 也是一个随机变量而不再是一个常量,它服从某个概率分布 $p(\vec{\Theta})$, 这个分布称作参数 $\vec{\Theta}$ 的先验分布。

此时:

$$egin{aligned} p(\mathbb{D}) &= p(w_1^1,\cdots,w_{n_1}^1,\cdots,w_1^N,\cdots,w_{n_N}^N) = \int p(w_1^1,\cdots,w_{n_1}^1,\cdots,w_1^N,\cdots,w_{n_N}^N,ec{\Theta}) dec{\Theta} \ &= \int p(w_1^1,\cdots,w_{n_1}^1,\cdots,w_{n_1}^N,\cdots,w_{n_N}^N\midec{\Theta}) p(ec{\Theta}) dec{\Theta} \end{aligned}$$

根据前面的推导有: $p(w_1^1,\cdots,w_{n_1}^1,\cdots,w_1^N,\cdots,w_{n_N}^N\mid \vec{\Theta})=\prod_{v=1}^V heta^{\tilde{n}_v}$,则有:

$$p(\mathbb{D})=p(w_1^1,\cdots,w_{n_1}^1,\cdots,w_1^N,\cdots,w_{n_N}^N)=\int\prod_{v=1}^V heta^{ ilde{n}_v}p(ec{\Theta})dec{\Theta}$$

2. 此处先验分布 $p(\vec{\Theta})$ 有多种选择。

注意到数据集条件概率 $p(w_1^1,\cdots,w_{n_1}^1,\cdots,w_1^N,\cdots,w_{n_N}^N\mid\vec{\Theta})$ 刚好是多项式分布的形式,于是选择先验分布为多项式分布的共轭分布,即狄利克雷分布:

$$ec{\Theta} \sim Dir(ec{lpha}): p(ec{\Theta}; ec{lpha}) = rac{1}{B(ec{lpha})} \prod_{v=1}^V heta_v^{lpha_v-1}$$

其中:

- $\vec{\alpha} = (\alpha_1, \alpha_2, \cdots, \alpha_V)^T$ 为参数向量
- o $B(\vec{\alpha})$ 为 Beta 函数:

$$B(ec{lpha}) = rac{\prod_{v=1}^{V} \Gamma(lpha_v)}{\Gamma(\sum_{v=1}^{V} lpha_v)}$$

。 显然根据定义有:

$$\int p(ec{\Theta};ec{lpha})dec{\Theta} = \int rac{1}{B(ec{lpha})} \prod_{v=1}^V heta_v^{lpha_v-1} dec{\Theta} = 1 \longrightarrow \int \prod_{v=1}^V heta_v^{lpha_v-1} dec{\Theta} = B(ec{lpha})$$

3. 令 $\vec{\mathbf{n}}=(\tilde{n}_1,\tilde{n}_2,\cdots,\tilde{n}_V)^T$ 为词频向量,其每个元素代表了对应的单词在数据集 $\mathbb D$ 中出现的次数。 此时有:

$$egin{aligned} p(\mathbb{D}) &= p(w_1^1, \cdots, w_{n_1}^1, \cdots, w_1^N, \cdots, w_{n_N}^N) = \int \prod_{v=1}^V heta_v^{ ilde{n}_v} p(ec{\Theta}) dec{\Theta} \ &= \int \prod_{v=1}^V heta_v^{ ilde{n}_v} rac{1}{B(ec{lpha})} \prod_{v=1}^V heta_v^{lpha_v-1} dec{\Theta} \ &= rac{1}{B(ec{lpha})} \int \prod_{v=1}^V heta_v^{ ilde{n}_v+lpha_v-1} dec{\Theta} \ &= rac{B(ec{lpha} + ilde{\mathbf{n}})}{B(ec{lpha})} \end{aligned}$$

因此 $p(\mathbb{D})$ 仅由 $\vec{\alpha}$ 决定,记作: $p(\mathbb{D}) = \frac{B(\vec{\alpha} + \vec{\hat{\mathbf{n}}})}{B(\vec{\alpha})}$

4. 后验概率:

$$\begin{split} p(\vec{\Theta} \mid w_1^1, \cdots, w_{n_1}^1, \cdots, w_1^N, \cdots, w_{n_N}^N; \vec{\alpha}) &= \frac{p(w_1^1, \cdots, w_{n_1}^1, \cdots, w_1^N, \cdots, w_{n_N}^N \mid \vec{\Theta}) p(\vec{\Theta})}{p(w_1^1, \cdots, w_{n_1}^1, \cdots, w_1^N, \cdots, w_{n_N}^N; \vec{\alpha})} \\ &= \prod_{v=1}^V \theta_v^{\tilde{n}_v} \frac{1}{B(\vec{\alpha})} \prod_{v=1}^V \theta_v^{\alpha_v - 1} \frac{B(\vec{\alpha})}{B(\vec{\alpha} + \vec{\tilde{\mathbf{n}}})} \\ &= \frac{1}{B(\vec{\alpha} + \vec{\tilde{\mathbf{n}}})} \prod_{v=1}^V \theta_v^{\tilde{n}_v + \alpha_v - 1} \end{split}$$

可见后验概率服从狄利克雷分布 $Dir(ec{lpha}+ec{ ilde{\mathbf{n}}})$ 。

5. 因为这时候的参数 $\vec{\Theta}$ 是一个随机变量,而不再是一个固定的数值,因此需要通过对后验概率 $p(\vec{\Theta}\mid\mathbb{D};\vec{\alpha})$ 最大化或者期望来求得。

这里使用期望值 $\mathbb{E}(\vec{\Theta} \mid \mathbb{D}; \vec{\alpha})$ 来做参数估计。

由于后验分布 $p(\vec{O} \mid \mathbb{D}; \vec{\alpha})$ 服从狄利克雷分布 $Dir(\vec{\alpha} + \vec{\tilde{\mathbf{n}}})$,则有期望:

$$\mathbb{E}(ec{\Theta} \mid \mathbb{D}; ec{lpha}) = \left(rac{ ilde{n}_1 + lpha_1}{\sum_{v=1}^V (ilde{n}_v + lpha_v)}, rac{ ilde{n}_2 + lpha_2}{\sum_{v=1}^V (ilde{n}_v + lpha_v)}, \cdots, rac{ ilde{n}_V + lpha_V}{\sum_{v=1}^V (ilde{n}_v + lpha_v)}
ight)$$

即参数 θ_v 的估计值为:

$$\hat{ heta}_v = rac{ ilde{n}_v + lpha_v}{\sum_{v=1}^V (ilde{n}_v + lpha_v)}$$

考虑到 α_v 在狄利克雷分布中的物理意义为:事件的先验的伪计数。因此该估计式物理意义为:估计值是对应事件计数 (伪计数+真实计数)在整体计数中的比例。

1.3 文档生成

- 1. Unigram Model 生成文档的步骤为:
 - 。 根据参数为 $\vec{\alpha}$ 的狄利克雷分布 $p(\vec{\Theta}; \vec{\alpha}) \sim Dir(\vec{\alpha})$ 随机采样一个词汇分布 $\tilde{\vec{\Theta}} = (\tilde{\theta}_1, \tilde{\theta}_2, \cdots, \tilde{\theta}_V)^T$ 。 所谓随机采样一个词汇分布,即:根据狄里克雷分布生成一个随机向量。选择时要求: \$\$

$$\sum_{v=1}^{V} ilde{ heta}_v = 1 \ ilde{ heta}_v \geq 0, \quad v = 1, 2, \cdots, V$$

- \circ 根据词汇分布 $\overset{\tilde{\circ}}{\Theta}$:
 - 根据该分布从词汇表中独立重复采样 n 次,获取 n 个单词。则这些单词就组成一篇文档。
 - 重复 N 次,即得到 N 篇文档组成的文档集合。

所有文档共享同一个词汇分布 Θ , 而不是每个文档各自采样一个词汇分布。

二、pLSA Model

1. Unigram Model 模型过于简单。事实上人们写一篇文章往往需要先确定要写哪几个主题。

如:写一篇计算机方面的文章,最容易想到的词汇是:内存、CPU、编程、算法等等。之所以能马上想到这些词,是因为这些词在对应的主题下出现的概率相对较高。

因此可以很自然的想到:一篇文章通常由多个主题构成,而每个主题大概可以用与该主题相关的频率最高的一些词来描述。

上述直观的想法由 Hoffman 在 1999 年的 probabilistic Latent Semantic Analysis:pLSA 模型中首先进行了明确的数学化。

- 2. 主题 topic: 表示一个概念。具体表示为一系列相关的词,以及它们在该概念下出现的概率。
 - 与某个主题相关性比较强的词,在该主题下出现概率较高
 - 。 与某个主题相关性比较弱的词, 在该主题下出现概率较低
- 3. 主题示例:给定一组词:证明,推导,对象,酒庄,内存,下列三个主题可以表示为:
 - 数学主题: (0.45, 0.35, 0.2, 0, 0)

○ 计算机主题: (0.2, 0.15, 0.45, 0, 0.2)

○ 红酒主题: (0,0,0.2,0.8,0)

	证明	推导	对象	酒庄	内存
数学	0.45	0.35	0.2	0	0
计算机	0.2	0.15	0.45	0	0.2
红酒	0	0	0.2	0.8	0

2.1 文档生成

- 1. 假设话题集合 $\mathbb T$ 有 T 个话题,分别为 $\mathbb T=\{\mathrm{topic}_1,\mathrm{topic}_2,\cdots,\mathrm{topic}_T\}$ 。
 - pLSA 模型的文档生成规则:
 - 首先以概率 $p(\mathcal{D}_i)$ 选中第 i 篇文档。
 - 然后在文档 \mathcal{D}_i 中,以概率 $p(\text{topic}_t \mid \mathcal{D}_i)$ 选中第 t 个话题 topic_t 。
 - 然后在话题 $topic_t$ 中,以概率 $p(word_v \mid topic_t)$ 选中第 v 个单词 $word_v$ 。
 - 重复执行 挑选话题--> 挑选单词 n 次,则得到一篇包含 n 个单词 $\{ word_{w_1}, word_{w_2}, \cdots, word_{w_n} \}$ 的 文档。

其中: $1 \leq w_1, \dots, w_n \leq V$; $v = w_j$ 表示文档的第j个单词为 word_v 。

2. 重复执行上述文档生成规则 N 次,即得到 N 篇文档组成的文档集合 $\mathbb D$ 。

2.2 模型原理

1. 令

$$egin{aligned} arphi_{i,t} &= p(ext{topic}_t \mid \mathcal{D}_i), i = 1, 2, \cdots, N; t = 1, 2, \cdots, T \ heta_{t,v} &= p(ext{word}_v \mid ext{topic}_t), v = 1, 2, \cdots, V; t = 1, 2, \cdots, T \end{aligned}$$

- $\circ \varphi_{i,t}$ 表示: 选中第 i 篇文档 \mathcal{D}_i 的条件下, 选中第 t 个话题 $topic_t$ 的概率
- 。 $\theta_{t,v}$ 表示: 选中第 t 个话题 $topic_t$ 的条件下,选中第 v 个单词 $word_v$ 的概率

待求的是参数 Φ 和 Θ :

$$\Phi = \{\varphi_{i,t}\} = \begin{bmatrix} \varphi_{1,1} & \varphi_{1,2} & \cdots & \varphi_{1,T} \\ \varphi_{2,1} & \varphi_{2,2} & \cdots & \varphi_{2,T} \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_{N,1} & \varphi_{N,2} & \cdots & \varphi_{N,T} \end{bmatrix} \quad \Theta = \{\theta_{t,v}\} = \begin{bmatrix} \theta_{1,1} & \theta_{1,2} & \cdots & \theta_{1,V} \\ \theta_{2,1} & \theta_{2,2} & \cdots & \theta_{2,V} \\ \vdots & \vdots & \ddots & \vdots \\ \theta_{T,1} & \theta_{T,2} & \cdots & \theta_{T,V} \end{bmatrix}$$

2. 根据概率的定义,有约束条件:

$$egin{aligned} \sum_{t=1}^T arphi_{i,t} = 1, & i = 1,2,\cdots,N; \ & \sum_{v=1}^V heta_{t,v} = 1, & t = 1,2,\cdots,T; \ & arphi_{i,t} \geq 0, & heta_{t,v} \geq 0, & i = 1,2,\cdots,N; & t = 1,2,\cdots,T; & v = 1,2,\cdots,V \end{aligned}$$

3. 根据 pLSA 概率图模型 (由盘式记法得到) , 结合成对马尔可夫性有:

$$p(\text{word}_v, \mathcal{D}_i \mid \text{topic}_t) = p(\text{word}_v \mid \text{topic}_t) p(\mathcal{D}_i \mid \text{topic}_t)$$

即: 文档和单词关于主题条件独立。

4. 对于给定文档 \mathcal{D}_i 中的单词 word_v , 有:

$$egin{aligned} p(\mathcal{D}_i, \mathrm{word}_v) &= \sum_{t=1}^T p(\mathcal{D}_i, \mathrm{word}_v, \mathrm{topic}_t) \ &= \sum_{t=1}^T p(\mathcal{D}_i, \mathrm{word}_v \mid \mathrm{topic}_t) p(\mathrm{topic}_t) \ &= \sum_{t=1}^T p(\mathcal{D}_i \mid \mathrm{topic}_t) p(\mathrm{word}_v \mid \mathrm{topic}_t) p(\mathrm{topic}_t) \ &= \sum_{t=1}^T p(\mathcal{D}_i, \mathrm{topic}_t) p(\mathrm{word}_v \mid \mathrm{topic}_t) \ &= \sum_{t=1}^T p(\mathrm{topic}_t \mid \mathcal{D}_i) p(\mathcal{D}_i) p(\mathrm{word}_v \mid \mathrm{topic}_t) \ &= p(\mathcal{D}_i) \sum_{t=1}^T p(\mathrm{topic}_t \mid \mathcal{D}_i) p(\mathrm{word}_v \mid \mathrm{topic}_t) \ \end{aligned}$$

根据该等式,可以得到:

$$p(\operatorname{word}_v \mid \mathcal{D}_i) = \sum_{t=1}^T p(\operatorname{topic}_t \mid \mathcal{D}_i) p(\operatorname{word}_v \mid \operatorname{topic}_t)$$

即:给定文档 \mathcal{D}_i 的条件下,某个的单词 word,出现的概率可以分成三步:

- \circ 首先得到给定的文档 \mathcal{D}_i 的条件下, 获取某个话题 $topic_i$ 的概率
- 。 再得到该话题 topic_t 生成该单词 word_v 的概率
- 。 对所有的话题累加 $\sum_{t=1}^T$ 即得到给定的单词 word_v 在给定文档 \mathcal{D}_i 中出现的概率 5. 对于给定文档 \mathcal{D}_i 中主题 topic_t 生成的单词 word_v ,有:

$$egin{aligned} p(\mathcal{D}_i, \operatorname{topic}_t, \operatorname{word}_v) &= p(\mathcal{D}_i) p(\operatorname{word}_v, \operatorname{topic}_t \mid \mathcal{D}_i) \ &= p(\mathcal{D}_i) p(\operatorname{word}_v \mid \operatorname{topic}_t, \mathcal{D}_i) p(\operatorname{topic}_t \mid \mathcal{D}_i) \ &= p(\mathcal{D}_i) p(\operatorname{topic}_t \mid \mathcal{D}_i) rac{p(\operatorname{word}_v, \mathcal{D}_i \mid \operatorname{topic}_t)}{p(\mathcal{D}_i \mid \operatorname{topic}_t)} \ &= p(\mathcal{D}_i) p(\operatorname{topic}_t \mid \mathcal{D}_i) p(\operatorname{word}_v \mid \operatorname{topic}_t) \end{aligned}$$

则已知文档 \mathcal{D}_i 中出现了单词 word_v 的条件下,该单词由主题 topic_t 生成的概率为:

$$egin{aligned} p(\operatorname{topic}_t \mid \mathcal{D}_i, \operatorname{word}_v) &= rac{p(\mathcal{D}_i, \operatorname{word}_v, \operatorname{topic}_t)}{p(\mathcal{D}_i, \operatorname{word}_v)} \ &= rac{p(\mathcal{D}_i) p(\operatorname{topic}_t \mid \mathcal{D}_i) p(\operatorname{word}_v \mid \operatorname{topic}_t)}{p(\mathcal{D}_i) \sum_{t'=1}^T p(\operatorname{topic}_{t'} \mid \mathcal{D}_i) p(\operatorname{word}_v \mid \operatorname{topic}_{t'})} \ &= rac{p(\operatorname{topic}_t \mid \mathcal{D}_i) p(\operatorname{word}_v \mid \operatorname{topic}_t)}{\sum_{t'=1}^T p(\operatorname{topic}_{t'} \mid \mathcal{D}_i) p(\operatorname{word}_v \mid \operatorname{topic}_{t'})} \end{aligned}$$

- 。 其物理意义为: 给定文档 \mathcal{D}_i 的条件下,单词 word_v 由主题 topic_t 生成的概率占单词 word_v 出现的概率的比例。
- 。 若话题 $topic_{10}$ 仅仅与单词 $word_1$ 相关,而且文档 \mathcal{D}_3 中刚好出现了单词 $word_1$,则说明文档 \mathcal{D}_3 由话题 $topic_{10}$ 组成的概率很高。

2.3 参数求解

- 1. pLSA 模型由两种参数求解方法:
 - 。 矩阵分解
 - o EM 算法

2.3.1 矩阵分解

1. 根据前面的推导,有: $p(\operatorname{word}_v \mid \mathcal{D}_i) = \sum_{t=1}^T p(\operatorname{topic}_t \mid \mathcal{D}_i) p(\operatorname{word}_v \mid \operatorname{topic}_t)$ 。 其中文档 \mathcal{D}_i 和单词 word_v 是观测到的,主题 topic_t 是未观测到的、未知的。

令
$$p_{i,v}^{\mathcal{D}} = p(\operatorname{word}_v \mid \mathcal{D}_i)$$
,根据:

$$arphi_{i,t} = p(ext{topic}_t \mid \mathcal{D}_i), \quad heta_{t,v} = p(ext{word}_v \mid ext{topic}_t)$$

则有:

$$p_{i,v}^{\mathcal{D}} = \sum_{t=1}^{T} arphi_{i,t} heta_{t,v}$$

2. 今:

$$\mathbf{P}^{\mathcal{D}} = egin{bmatrix} p_{1,1}^{\mathcal{D}} & p_{1,2}^{\mathcal{D}} & \cdots & p_{1,V}^{\mathcal{D}} \ p_{2,1}^{\mathcal{D}} & p_{2,2}^{\mathcal{D}} & \cdots & p_{2,V}^{\mathcal{D}} \ dots & dots & \ddots & dots \ p_{N,1}^{\mathcal{D}} & p_{N,2}^{\mathcal{D}} & \cdots & p_{N,V}^{\mathcal{D}} \ \end{pmatrix}$$

则有:

$$\mathbf{P}^{\mathcal{D}} = \Phi \mathbf{\Theta}$$

由于 $\mathbf{P}^{\mathcal{D}}$ 是观测的、已知的,所以 pLSA 对应着矩阵分解。其中要求:

$$egin{aligned} \sum_{v=1}^V p_{i,v}^{\mathcal{D}} &= 1, & i = 1, 2, \cdots, N \ \sum_{t=1}^T arphi_{i,t} &= 1, & i = 1, 2, \cdots, N; \ \sum_{v=1}^V heta_{t,v} &= 1, & t = 1, 2, \cdots, T; \end{aligned}$$

$$p_{i,v}^{\mathcal{D}} \geq 0, \quad arphi_{i,t} \geq 0, \quad heta_{t,v} \geq 0, \quad i=1,2,\cdots,N; \quad t=1,2,\cdots,T; \quad v=1,2,\cdots,V$$

2.3.2 EM 算法

- 1. 在文档 \mathcal{D}_i 中,因为采用词袋模型,所以单词的生成是独立的。假设文档 \mathcal{D}_i 中包含单词 $\{\mathrm{word}_{w_1^i},\cdots,\mathrm{word}_{w_{n_i}^i}\}$,其中:
 - \circ n_i 表示文档 \mathcal{D}_i 的单词总数。
 - 。 $v=w_i^i$ 表示文档 \mathcal{D}_i 的第 j 个单词为 word_v 。

则有:

$$p(\operatorname{word}_{w_1^i}, \cdots, \operatorname{word}_{w_{n_i}^i} \mid \mathcal{D}_i) = \prod_{j=1}^{n_i} p(\operatorname{word}_{w_j^i} \mid \mathcal{D}_i)$$

2. 根据前面的推导,有: $p(\operatorname{word}_v \mid \mathcal{D}_i) = \sum_{t=1}^T p(\operatorname{topic}_t \mid \mathcal{D}_i) p(\operatorname{word}_v \mid \operatorname{topic}_t)$ 。则:

$$p(\operatorname{word}_{w_1^i}, \cdots, \operatorname{word}_{w_{n_i}^i} \mid \mathcal{D}_i) = \prod_{i=1}^{n_i} \sum_{t=1}^T p(\operatorname{topic}_t \mid \mathcal{D}_i) p(\operatorname{word}_{w_j^i} \mid \operatorname{topic}_t)$$

则有:

$$p(\operatorname{word}_{w_1^i}, \cdots, \operatorname{word}_{w_{n_i}^i}, \mathcal{D}_i) = p(\mathcal{D}_i) \prod_{j=1}^{n_i} \sum_{t=1}^T p(\operatorname{topic}_t \mid \mathcal{D}_i) p(\operatorname{word}_{w_j^i} \mid \operatorname{topic}_t)$$

3. 假设文档 \mathcal{D}_i 的单词 $\{\operatorname{word}_{w_1^i},\cdots,\operatorname{word}_{w_{n_i}^i}\}$ 中,单词 word_v 有 c(i,v) 个, $v=1,2,\cdots,V$ 。 则有:

$$p(\operatorname{word}_{w_1^i}, \cdots, \operatorname{word}_{w_{n_i}^i}, \mathcal{D}_i) = p(\mathcal{D}_i) \prod_{v=1}^V \left[\sum_{t=1}^T p(\operatorname{topic}_t \mid \mathcal{D}_i) p(\operatorname{word}_v \mid \operatorname{topic}_t)
ight]^{c(i,v)}$$

c(i,v) 的物理意义为: 即文档 \mathcal{D}_i 中单词 word, 的数量。

4. 考虑观测变量 $X_i=(\mathrm{word}_{w_1^i},\cdots,\mathrm{word}_{w_{n_i}^i},\mathcal{D}_i)$,它表示第 i 篇文档 \mathcal{D}_i 以及该文档中的 n_i 个单词。则有:

$$p(X_i) = p(\mathcal{D}_i) \prod_{v=1}^V \left[\sum_{t=1}^T p(\operatorname{topic}_t \mid \mathcal{D}_i) p(\operatorname{word}_v \mid \operatorname{topic}_t)
ight]^{c(i,v)}$$

由于文档之间是相互独立的,因此有:

$$egin{aligned} p(X_1, X_2, \cdots, X_N) &= \prod_{i=1}^N p(X_i) \ &= \prod_{i=1}^N \prod_{v=1}^V p(\mathcal{D}_i) \prod_{v=1}^V \left[\sum_{t=1}^T p(ext{topic}_t \mid \mathcal{D}_i) p(ext{word}_v \mid ext{topic}_t)
ight]^{c(i,v)} \ &= \prod_{i=1}^N \prod_{v=1}^V p(\mathcal{D}_i) \left[\sum_{t=1}^T arphi_{i,t} heta_{t,v}
ight]^{c(i,v)} \end{aligned}$$

要使得观测结果发生,则应该最大化 $p(X_1,X_2,\cdots,X_N)$ 。但是这里面包含了待求参数的乘积,其最大化难于求解,因此使用 EM 算法求解。

- 5. 考虑完全变量 $Y_i = (\operatorname{word}_{w_1^i}, \cdots, \operatorname{word}_{w_{n_i}^i}, \operatorname{topic}_{z_1^i}, \cdots, \operatorname{topic}_{z_{n_i}^i}, \mathcal{D}_i)$,其中 $\{\operatorname{topic}_{z_1^i}, \cdots, \operatorname{topic}_{z_{n_i}^i}\}$ 为文 档中 \mathcal{D}_i 中每个单词对应的话题。
 - 由于采用词袋模型, 所以生成单词是相互独立的, 因此有:

$$egin{aligned} p(Y_i) &= p(\mathcal{D}_i) p(\operatorname{word}_{w_1^i}, \cdots, \operatorname{word}_{w_{n_i}^i}, \operatorname{topic}_{z_1^i}, \cdots, \operatorname{topic}_{z_{n_i}^i} \mid \mathcal{D}_i) \ &= p(\mathcal{D}_i) \prod_{i=1}^{n_i} p(\operatorname{word}_{w_j^i}, \operatorname{topic}_{z_j^i} \mid \mathcal{D}_i) \end{aligned}$$

o 根据 $p(\mathcal{D}_i, \operatorname{word}_v, \operatorname{topic}_t) = p(\mathcal{D}_i)p(\operatorname{topic}_t \mid \mathcal{D}_i)p(\operatorname{word}_v \mid \operatorname{topic}_t)$ 有: $p(\operatorname{word}_v, \operatorname{topic}_t \mid \mathcal{D}_i) = p(\operatorname{topic}_t \mid \mathcal{D}_i)p(\operatorname{word}_v \mid \operatorname{topic}_t)$

于是:

$$p(Y_i) = p(\mathcal{D}_i) \prod_{j=1}^{n_i} p(\operatorname{topic}_{z^i_j} \mid \mathcal{D}_i) p(\operatorname{word}_{w^i_j} \mid \operatorname{topic}_{z^i_j})$$

。 由于文档之间是相互独立的, 因此有:

$$p(Y_1,Y_2,\cdots,Y_N) = \prod_{i=1}^N p(Y_i) = \prod_{i=1}^N p(\mathcal{D}_i) \prod_{j=1}^{n_i} p(\operatorname{topic}_{z^i_j} \mid \mathcal{D}_i) p(\operatorname{word}_{w^i_j} \mid \operatorname{topic}_{z^i_j})$$

6. 假设在所有文档 $\{\mathcal{D}_1,\mathcal{D}_2,\cdots,\mathcal{D}_N\}$ 中,单词 word_v 不论出现在哪个文档的哪个位置,都是由同一个话题 topic_t 产生的。

则有:

$$egin{aligned} p(\mathcal{D}_i) \prod_{j=1}^{n_i} p(ext{topic}_{z^i_j} \mid \mathcal{D}_i) p(ext{word}_{w^i_j} \mid ext{topic}_{z^i_j}) \ &= p(\mathcal{D}_i) \prod_{v=1}^{V} \left[p(ext{topic}_t \mid \mathcal{D}_i) p(ext{word}_v \mid ext{topic}_t)
ight]^{c(i,v)} \end{aligned}$$

则有:

$$p(Y_1, Y_2, \cdots, Y_N) = \prod_{i=1}^N p(\mathcal{D}_i) \prod_{v=1}^V \left[p(\operatorname{topic}_t \mid \mathcal{D}_i) p(\operatorname{word}_v \mid \operatorname{topic}_t)
ight]^{c(i,v)}$$

则完全数据的对数似然函数为:

$$LL = \log p(Y_1, Y_2, \cdots, Y_N) = \sum_{i=1}^N p(\mathcal{D}_i) + \sum_{i=1}^N \sum_{v=1}^V \left[c(i, v) (\log p(\operatorname{topic}_t \mid \mathcal{D}_i) + \log p(\operatorname{word}_v \mid \operatorname{topic}_t)
ight]$$

7. E 步: 求取 Q 函数,为 LL 关于后验概率 $p(\operatorname{topic}_t \mid \mathcal{D}_i, \operatorname{word}_v)$ 的期望。

根据前面的推导,有:

$$p(ext{topic}_t \mid \mathcal{D}_i, ext{word}_v) = rac{p(ext{topic}_t \mid \mathcal{D}_i)p(ext{word}_v \mid ext{topic}_t)}{\sum_{t'=1}^T p(ext{topic}_{t'} \mid \mathcal{D}_i)p(ext{word}_v \mid ext{topic}_{t'})} = rac{ ilde{arphi}_{i,t} ilde{ heta}_{t,v}}{\sum_{t'=1}^T ilde{arphi}_{i,t'} ilde{ heta}_{t',v}}$$

其中 $\tilde{\varphi}_{i,t}$, $\tilde{\theta}_{t,v}$ 均为上一轮迭代的结果, 为已知量。

则有:

$$egin{aligned} Q &= \mathbb{E}[LL]_{p(ext{topic}_t | \mathcal{D}_i, ext{word}_v)} \ &= \sum_{i=1}^N p(\mathcal{D}_i) + \mathbb{E}[\sum_{i=1}^N \sum_{v=1}^V \left[c(i,v) (\log p(ext{topic}_t \mid \mathcal{D}_i) + \log p(ext{word}_v \mid ext{topic}_t)
ight]]_{p(ext{topic}_t \mid \mathcal{D}_i, ext{word}_v)} \ &= \sum_{i=1}^N p(\mathcal{D}_i) + \sum_{i=1}^N \sum_{v=1}^V c(i,v) \sum_{t=1}^T p(ext{topic}_t \mid \mathcal{D}_i, ext{word}_v)) (\log p(ext{topic}_t \mid \mathcal{D}_i) + \log p(ext{word}_v \mid ext{topic}_t) \ &= \sum_{i=1}^N p(\mathcal{D}_i) + \sum_{i=1}^N \sum_{v=1}^V c(i,v) \sum_{t=1}^T rac{ ilde{arphi}_{i,t} ilde{ heta}_{t,v}}{\sum_{t'=1}^T ilde{arphi}_{i,t'} ilde{ heta}_{t',v}} (\log arphi_{i,t} + \log heta_{t,v}) \end{aligned}$$

8. M 步: 最大化 Q 函数, 同时考虑约束条件:

$$egin{aligned} \sum_{t=1}^T arphi_{i,t} &= 1, i = 1, 2, \cdots, N; \ &\sum_{v=1}^V heta_{t,v} &= 1, t = 1, 2, \cdots, T; \ &arphi_{i,t} \geq 0, \quad heta_{t,v} \geq 0, \quad i = 1, 2, \cdots, N; \quad t = 1, 2, \cdots, T; \quad v = 1, 2, \cdots, V \end{aligned}$$

对每个参数进行求导并使之等于0,联立方程求解得到:

$$egin{aligned} arphi_{i,t} &= rac{\sum_{v=1}^{V} c(i,v) p(\operatorname{topic}_t \mid \mathcal{D}_i, \operatorname{word}_v)}{n_i}, \quad t=1,2\cdots,T; i=1,2,\cdots,N \ heta_{t,v} &= rac{\sum_{i=1}^{N} c(i,v) p(\operatorname{topic}_t \mid \mathcal{D}_i, \operatorname{word}_v)}{\sum_{v'=1}^{V} \sum_{i=1}^{N} c(i,v') p(\operatorname{topic}_t \mid \mathcal{D}_i, \operatorname{word}_{v'})}, \quad t=1,2,\cdots,T; v=1,2,\cdots,V \end{aligned}$$

其物理意义为:

- 。 文档-主题概率 $\varphi_{i,t}$: 它等于文档 \mathcal{D}_i 中,所有单词对应于主题 topic_t 的后验概率的加权和。权重为每个单词出现的频率。
- 。 主题-单词概率 $\theta_{t,v}$: 它等于单词 word_v 在所有文档的主题 topic_t 上的后验概率加权和(权重为它出现的词频),占所有单词在所有文档的主题 topic_t 上的后验概率加权和(权重为每个单词出现的词频)的比例。
- 9. pLSA 的 EM 算法:
 - \circ 输入: 文档集合 \mathbb{D} , 话题集合 \mathbb{T} , 字典集合 \mathbb{V}
 - 输出: 参数 $\Phi = \{\varphi_{i,t}\}$ 和 $\Theta = \{\theta_{t,v}\}$, 其中:

$$egin{aligned} \sum_{t=1}^T arphi_{i,t} &= 1, i = 1, 2, \cdots, N; \ &\sum_{v=1}^V heta_{t,v} &= 1, t = 1, 2, \cdots, T; \ &arphi_{i,t} \geq 0, \quad heta_{t,v} \geq 0, \quad i = 1, 2, \cdots, N; \quad t = 1, 2, \cdots, T; \quad v = 1, 2, \cdots, V \end{aligned}$$

- 。 算法步骤:
 - 初始化: 令 m=0 , 为 $\varphi_{i,t}^{< m>}$ 和 $\theta_{t,v}^{< m>}$ 赋初值, $i=1,2,\cdots,N; v=1,2,\cdots,V; t=1,2,\cdots,T \, .$
 - 迭代, 迭代收敛条件为参数变化很小或者 Q 函数的变化很小。迭代步骤如下:

- E 步: 计算 Q 函数。
 - 先计算后验概率:

$$p(ext{topic}_t \mid \mathcal{D}_i, ext{word}_v)^{< m>} = rac{arphi_{i,t}^{< m>} heta_{t,v}^{< m>}}{\sum_{t'=1}^T arphi_{i,t'}^{< m>} heta_{t',v}^{< m>}}$$

■ 再计算 Q 函数:

$$Q = \sum_{i=1}^N p(\mathcal{D}_i) + \sum_{i=1}^N \sum_{v=1}^V c(i,v) \sum_{t=1}^T p(\operatorname{topic}_t \mid \mathcal{D}_i, \operatorname{word}_v)^{< m >} (\log \varphi_{i,t} + \log \theta_{t,v})$$

■ M步: 计算 Q 函数的极大值,得到参数的下一轮迭代结果:

$$egin{aligned} arphi_{i,t}^{< m+1>} &= rac{\sum_{v=1}^{V} c(i,v) p(\operatorname{topic}_t \mid \mathcal{D}_i, \operatorname{word}_v)^{< m>}}{n_i}, \quad t=1,2\cdots,T; i=1,2,\cdots,N \ \ heta_{t,v}^{< m+1>} &= rac{\sum_{i=1}^{N} c(i,v) p(\operatorname{topic}_t \mid \mathcal{D}_i, \operatorname{word}_v)^{< m>}}{\sum_{i=1}^{N} \sum_{v=1}^{V} c(i,v) p(\operatorname{topic}_t \mid \mathcal{D}_i, \operatorname{word}_v)^{< m>}}, \quad t=1,2,\cdots,T; v=1,2,\cdots,V \end{aligned}$$

■ 重复上面两步直到收敛

三、LDA Model

- 1. 在 pLSA 模型中, 参数 Φ , Θ 是常数。而在 LDA 模型中, 假设 Φ , Θ 也是随机变量:
 - 。 参数 $\vec{\varphi}^i=(\varphi_{i,1},\varphi_{i,2},\cdots,\varphi_{i,T})$ 为文档 \mathcal{D}_i 的主题分布(离散型的),其中 $i=1,2,\cdots,N$ 。该分布 也是一个随机变量,服从分布 $p(\vec{\varphi}^i)$ (连续型的)。
 - 。 参数 $\vec{\theta}^t=(\theta_{t,1},\theta_{t,2},\cdots,\theta_{t,V})$ 为主题 $topic_t$ 的单词分布(离散型的),其中 $t=1,2,\cdots,T$ 。该分布也是一个随机变量,服从分布 $p(\vec{\theta}^t)$ (连续型的)。

事实上, LDA 模型是 pLSA 模型的贝叶斯版本。

2. 例:

在 pLSA 模型中,给定一篇文档,假设:

- 。 主题分布为 $\{$ 教育: 0.5, 经济: 0.3, 交通: 0.2 $\}$, 它就是 $p(\operatorname{topic}_t \mid \mathcal{D}_i)$ 。
- 主题 教育 下的主题词分布为 $\{ 大 \neq : 0.5, 2\pi : 0.2, \mathbb{R}^2 : 0.3 \}$, 它就是 $p(\text{word}_{\eta} \mid \text{topic}_{t})$ 。

在 LDA 中:

- 给定一篇文档, 主题分布 $p(\text{topic}_t \mid \mathcal{D}_i)$ 不再固定。
 - 可能为 {教育: 0.5, 经济: 0.3, 交通: 0.2} , 也可能为 {教育: 0.3, 经济: 0.5, 交通: 0.2} , 也可能为 {教育: 0.1, 经济: 0.8, 交通: 0.1} 。
 - 但是它并不是没有规律的,而是服从一个分布 $p(ec{arphi})$ 。

即: 主题分布取某种分布的概率可能较大, 取另一些分布的概率可能较小。

- 主题 教育下的主题词分布也不再固定。
 - 可能为 {大学:0.5,老师:0.2,课程:0.3}, 也可能为 {大学:0.8,老师:0.1,课程:0.1}。
 - 但是它并不是没有规律,而是服从一个分布 $p(\vec{\theta})$ 。

即: 主题词分布取某种分布的概率可能较大, 取另一些分布的概率可能较小。

3.1 文档生成

- 1. LDA 模型的文档生成规则:
 - 。 以概率 $p(\mathcal{D}_i)$ 选中第 i 篇文档。
 - 。 根据参数为 $\vec{\alpha}$ 的狄利克雷分布随机采样,生成文档 \mathcal{D}_i 的一个话题分布 $\vec{arphi}_i=(arphi_{i,1},arphi_{i,2},\cdots,arphi_{i,T})$
 - 。 根据参数为 $\vec{\eta}$ 的狄利克雷分布随机采样,对每个话题 $topic_t$ 生成一个单词分布 $\vec{\theta}_t = (\theta_{t,1}, \theta_{t,2}, \cdots, \theta_{t,V})$
 - 在文档 \mathcal{D}_i 中,根据话题分布 $p(\text{topic}_t \mid \mathcal{D}_i) = \varphi_{i,t}$ 来随机挑选一个话题。
 - \circ 在话题 topic_t 中,根据单词分布 $p(\mathrm{word}_v \mid \mathrm{topic}_t) = \theta_{t,v}$ 来随机挑选一个单词。
 - \circ 重复执行 挑选话题--> 挑选单词 n 次,则得到一篇包含 n 个单词 $\{\operatorname{word}_{w_1}, \operatorname{word}_{w_2}, \cdots, \operatorname{word}_{w_n}\}$ 的 文档。

其中: $1 \leq w_1, \cdots, w_n \leq V$; $v = w_j$ 表示文档的第j个单词为 word_v 。

- 2. 重复执行上述文档生成规则 N 次,即得到 N 篇文档组成的文档集合 $\mathbb D$ 。
- 3. 由于两次随机采样,导致 LDA 模型的解会呈现一定程度的随机性。
 - 所谓随机性,就是: 当多次运行 LDA 算法,获得解可能会各不相同
 - 当采样的样本越稀疏,则采样的方差越大,则 LDA 的解的方差越大。
 - 文档数量越少,则文档的话题分布的采样越稀疏
 - 文档中的单词越少,则话题的单词分布的采样越稀疏

3.2 模型原理

- 1. 由于使用词袋模型, LDA 生成文档的过程可以分解为两个过程:
 - \circ $\vec{\alpha} \to \vec{arphi}_i \to \{ ext{topic}_{z_1^i}, ext{topic}_{z_2^i}, \cdots, ext{topic}_{z_{n_i^i}}\}$: 该过程表示,在生成第 i 篇文档 \mathcal{D}_i 的时候,先从 文档-主题 分布 \vec{arphi}_i 中生成 n_i 个主题。

其中:

- $t=z_j^i$ 表示文档 \mathcal{D}_i 的第 j 个单词由主题 topic_t 生成。
- n_i 表示文档 \mathcal{D}_i 一共有 n_i 个单词。
- \circ $\vec{\eta} \to \vec{\theta}_t \to \{ \operatorname{word}_{w_1^t}, \operatorname{word}_{w_2^t}, \cdots, \operatorname{word}_{w_{n_t}^t} \}$: 该过程表示,在已知主题为 topic_t 的条件下,从 主题-单词 分布 $\vec{\theta}_t$ 生成 n_t 个单词。

其中:

- $\blacksquare \ v = w_j^t$ 表示由主题 topic_t 生成的的第 j 个单词为 word_v 。
- n_t 为由 topic, 生成的单词的数量。

3.2.1 主题生成过程

- 1. 主题生成过程用于生成第 i 篇文档 \mathcal{D}_i 中每个位置的单词对应的主题。
 - \circ $\vec{\alpha} \rightarrow \vec{\varphi}_i$: 对应一个狄里克雷分布
 - $\circ \ ec{arphi}_i o \{ {
 m topic}_{z^i_1}, {
 m topic}_{z^i_2}, \cdots, {
 m topic}_{z^i_{n_i}} \}$: 对应一个多项式分布
 - o 该过程整体对应一个 狄里克雷-多项式 共轭结构:

$$egin{aligned} p(\operatorname{topic}_{z_1^i},\operatorname{topic}_{z_2^i},\cdots,\operatorname{topic}_{z_{n_i}^i};ec{lpha}) &= \int p(\operatorname{topic}_{z_1^i},\operatorname{topic}_{z_2^i},\cdots,\operatorname{topic}_{z_{n_i}^i}\midec{arphi}_i)p(ec{arphi}_i;ec{lpha})dec{arphi}_i \ &= \int \left[\prod_{j=1}^{n_i} p(\operatorname{topic}_{z_j^i}\midec{arphi}_i)
ight]\left[Dir(ec{arphi}_i;ec{lpha})
ight]dec{arphi}_i \end{aligned}$$

2. 合并文档 \mathcal{D}_i 中的同一个主题。设 $n_z(i,t)$ 表示文档 \mathcal{D}_i 中,主题 topic_t 出现的次数。则有:

$$\prod_{j=1}^{n_i} p(\operatorname{topic}_{z^i_j} \mid ec{arphi}_i) = \prod_{t=1}^T arphi_{i,t}^{n_z(i,t)}$$

则有:

$$\begin{split} &p(\operatorname{topic}_{z_1^i},\operatorname{topic}_{z_2^i},\cdots,\operatorname{topic}_{z_{n_i}^i};\vec{\alpha}) = \\ &= \int \left[\prod_{j=1}^{n_i} p(\operatorname{topic}_{z_j^i} \mid \vec{\varphi}_i) \right] \left[Dir(\vec{\varphi}_i;\vec{\alpha}) \right] d\vec{\varphi}_i \\ &= \int \left[\prod_{t=1}^T \varphi_{i,t}^{n_z(i,t)} \right] \left[\frac{1}{B(\vec{\alpha})} \prod_{t=1}^T \varphi_{i,t}^{\alpha_t-1} \right] d\vec{\varphi}_i \\ &= \frac{1}{B(\vec{\alpha})} \int \prod_{t=1}^T \varphi_{i,t}^{n_z(i,t)} + \alpha_t - 1} d\vec{\varphi}_i \\ &= \frac{B(\vec{\mathbf{n}}_z(i) + \vec{\alpha})}{B(\vec{\alpha})} \end{split}$$

其中 $\vec{\mathbf{n}}_z(i)=(n_z(i,1),n_z(i,2),\cdots,n_z(i,T))$ 表示文档 \mathcal{D}_i 中,各主题出现的次数。

3. 由于语料库中 N 篇文档的主题生成相互独立,则得到整个语料库的主题生成概率:

$$egin{aligned} &p(\operatorname{topic}_{z_1^1},\operatorname{topic}_{z_2^1},\cdots,\operatorname{topic}_{z_{n_1}^1},\cdots,\operatorname{topic}_{z_{n_i}^N};ec{lpha}) \ &= \prod_{i=1}^N p(\operatorname{topic}_{z_1^i},\operatorname{topic}_{z_2^i},\cdots,\operatorname{topic}_{z_{n_i}^i};ec{lpha}) = \prod_{i=1}^N rac{B(ec{\mathbf{n}}_z(i) + ec{lpha})}{B(ec{lpha})} \end{aligned}$$

3.2.2 单词生成过程

- 1. 单词生成过程用于生成所有文档 □ 的所有主题的单词。
 - \circ $\vec{\eta}
 ightarrow \vec{ heta}_t$: 对应一个狄里克雷分布
 - 。 $ec{ heta}_t o \{ \mathrm{word}_{w_t^t}, \mathrm{word}_{w_n^t}, \cdots, \mathrm{word}_{w_{n_t}^t} \}$: 对应一个多项式分布

$$egin{aligned} p(\operatorname{word}_{w_1^t}, \operatorname{word}_{w_2^t}, \cdots, \operatorname{word}_{w_{n_t}^t} \mid \operatorname{topic}_t; ec{\eta}) \ &= \int p(\operatorname{word}_{w_1^t}, \operatorname{word}_{w_2^t}, \cdots, \operatorname{word}_{w_{n_t}^t} \mid ec{ heta}_t, \operatorname{topic}_t) p(ec{ heta}_t \mid \operatorname{topic}_t; ec{\eta}) dec{ heta}_t \ &= \int \prod_{i=1}^{n_t} p(\operatorname{word}_{w_i^t} \mid ec{ heta}_t, \operatorname{topic}_t) Dir(ec{ heta}_t; ec{\eta}) dec{ heta}_t \end{aligned}$$

2. 合并主题 ${
m topic}_t$ 生成的同一个单词。设 $n_v(t,v)$ 表示中主题 ${
m topic}_t$ 生成的单词中, ${
m word}_v$ 出现的次数。则有:

$$\prod_{i=1}^{n_t} p(\operatorname{word}_{w_i^t} \mid ec{ heta}_t, \operatorname{topic}_t) = \prod_{v=1}^V heta_{t,v}^{n_t(t,v)}$$

则有:

$$egin{aligned} p(\operatorname{word}_{w_1^t}, \operatorname{word}_{w_2^t}, \cdots, \operatorname{word}_{w_{n_t}^t} \mid \operatorname{topic}_t; ec{\eta}) \ &= \int \prod_{v=1}^V heta_{t,v}^{n_t(t,v)} \left[rac{1}{B(ec{\eta})} \prod_{v=1}^V heta_{t,v}^{\eta_v-1}
ight] dec{ heta}_t = rac{B(ec{\mathbf{n}}_v(t) + ec{\eta})}{B(ec{\eta})} \end{aligned}$$

其中 $\vec{\mathbf{n}}_v(t) = (n_v(t,1), n_v(t,2), \cdots, n_v(t,V))$ 表示由主题 $topic_t$ 生成的单词的词频。

3. 考虑数据集 D 中的所有主题,则有:

$$egin{aligned} p(\operatorname{word}_{w_1^1}, \cdots, \operatorname{word}_{w_{n_1}^1}, \cdots, \operatorname{word}_{w_1^T}, \cdots, \operatorname{word}_{w_{n_T}^T} \mid \operatorname{topic}_1, \cdots, \operatorname{topic}_T; ec{\eta}) \ &= \prod_{t=1}^T p(\operatorname{word}_{w_1^t}, \operatorname{word}_{w_2^t}, \cdots, \operatorname{word}_{w_{n_t}^t} \mid \operatorname{topic}_t; ec{\eta}) \ &= \prod_{t=1}^T rac{B(ec{\mathbf{n}}_v(t) + ec{\eta})}{B(ec{\eta})} \end{aligned}$$

3.2.3 联合概率

1. 根据 $p(\operatorname{topic}_{z_1^1}, \operatorname{topic}_{z_2^1}, \cdots, \operatorname{topic}_{z_{n_1}^1}, \cdots, \operatorname{topic}_{z_1^N}, \cdots, \operatorname{topic}_{z_{n_N}^N}; \vec{\alpha})$ 以及 $p(\operatorname{word}_{w_1^1}, \cdots, \operatorname{word}_{w_{n_1}^1}, \cdots, \operatorname{word}_{w_1^T}, \cdots, \operatorname{word}_{w_{n_T}^T} \mid \operatorname{topic}_1, \cdots, \operatorname{topic}_T; \vec{\eta}) , \ \, \text{可以得到数据集} \, \mathbb{D} \,$ 的联合 概率分布为:

$$egin{aligned} p(\operatorname{word}_{w_1^1},\cdots,\operatorname{word}_{w_{n_1}^1},\cdots,\operatorname{word}_{w_1^T},\cdots,\operatorname{word}_{w_{n_T}^T},\operatorname{topic}_1,\cdots,\operatorname{topic}_T;ec{lpha},ec{\eta}) \ &= p(\operatorname{word}_{w_1^1},\cdots,\operatorname{word}_{w_{n_1}^1},\cdots,\operatorname{word}_{w_{n_T}^T}\mid\operatorname{topic}_1,\cdots,\operatorname{topic}_T;ec{\eta}) imes p(\operatorname{topic}_1,\cdots,\operatorname{topic}_T) \ &= \prod_{t=1}^T rac{B(ec{\mathbf{n}}_v(t)+ec{\eta})}{B(ec{\eta})} imes \prod_{i=1}^N rac{B(ec{\mathbf{n}}_z(i)+ec{lpha})}{B(ec{lpha})} \ &= \prod_{i=1}^N \prod_{t=1}^T rac{B(ec{\mathbf{n}}_z(i)+ec{lpha})}{B(ec{lpha})} rac{B(ec{\mathbf{n}}_v(t)+ec{\eta})}{B(ec{\eta})} \end{aligned}$$

其中:

- \circ $\vec{\mathbf{n}}_z(i)=(n_z(i,1),n_z(i,2),\cdots,n_z(i,T))$ 表示文档 \mathcal{D}_i 中,各主题出现的次数。
- $\circ \vec{\mathbf{n}}_v(t) = (n_v(t,1), n_v(t,2), \cdots, n_v(t,V))$ 表示主题 $topic_t$ 生成的单词中,各单词出现的次数。

3.2.4 后验概率

1. 若已知文档 \mathcal{D}_i 中的主题 $\{ ext{topic}_{z_1^i}, ext{topic}_{z_2^i}, \cdots, ext{topic}_{z_{n_i}^i}\}$,则有:

$$egin{aligned} p(ec{arphi}_i \mid ext{topic}_{z_1^i}, ext{topic}_{z_2^i}, \cdots, ext{topic}_{z_{n_i}^i}) &= rac{p(ec{arphi}_i, ext{topic}_{z_1^i}, ext{topic}_{z_2^i}, \cdots, ext{topic}_{z_{n_i}^i})}{p(ext{topic}_{z_1^i}, ext{topic}_{z_2^i}, \cdots, ext{topic}_{z_{n_i}^i} \mid ec{arphi}_i) p(ec{arphi}_i)} \ &= rac{p(ext{topic}_{z_1^i}, ext{topic}_{z_2^i}, \cdots, ext{topic}_{z_{n_i}^i} \mid ec{arphi}_i) p(ec{arphi}_i)}{p(ext{topic}_{z_1^i}, ext{topic}_{z_2^i}, \cdots, ext{topic}_{z_{n_i}^i})} \ &= rac{\left[\prod_{t=1}^T arphi_{i,t}^{n_z(i,t)}
ight] \left[rac{1}{B(ec{oldsymbol{lpha}})} \prod_{t=1}^T arphi_{i,t}^{lpha_t-1}
ight]}{\frac{B(ec{oldsymbol{lpha}}_i)}{B(ec{oldsymbol{lpha}})}} \ &= rac{\prod_{t=1}^T arphi_{i,t}^{n_z(i,t)+lpha_t-1}}{B(ec{oldsymbol{lpha}}_i(i)+ec{lpha})} \end{aligned}$$

则有: $p(\vec{\varphi}_i \mid \mathrm{topic}_{z_1^i}, \mathrm{topic}_{z_2^i}, \cdots, \mathrm{topic}_{z_{n_i}^i}) = Dir(\vec{\varphi}_i; \vec{\mathbf{n}}_z(i) + \vec{\alpha})$ 。 这说明参数 $\vec{\varphi}_i$ 的后验分布也是狄里克雷分布。

2. 若已知主题 topic_t 及其生成的单词 $\{\operatorname{word}_{w_1^t}, \cdots, \operatorname{word}_{w_{n_t}^t}\}$ 则有:

$$\begin{split} p(\vec{\theta}_t \mid \text{topic}_t, \text{word}_{w_1^t}, \cdots, \text{word}_{w_{n_t}^t}) &= \frac{p(\vec{\theta}_t, \text{word}_{w_1^t}, \cdots, \text{word}_{w_{n_t}^t} \mid \text{topic}_t)}{p(\text{word}_{w_1^t}, \cdots, \text{word}_{w_{n_t}^t} \mid \text{topic}_t)} \\ &= \frac{p(\text{word}_{w_1^t}, \cdots, \text{word}_{w_{n_t}^t} \mid \text{topic}_t, \vec{\theta}_t) p(\vec{\theta}_t \mid \text{topic}_t)}{p(\text{word}_{w_1^t}, \cdots, \text{word}_{w_{n_t}^t} \mid \text{topic}_t)} \\ &= \frac{\left[\prod_{v=1}^V \theta_{t,v}^{n_v(t,v)}\right] \left[\frac{1}{B(\vec{\eta})} \prod_{v=1}^V \theta_{t,v}^{\eta_v-1}\right]}{\frac{B(\vec{\eta} + \vec{\mathbf{n}}_v(t))}{B(\vec{\eta})}} \\ &= \frac{\prod_{v=1}^V \theta_{t,v}^{n_v(t,v) + \eta_v - 1}}{B(\vec{\eta} + \vec{\mathbf{n}}_v(t))} \end{split}$$

则有: $p(\vec{\theta}_t \mid \mathrm{topic}_t, \mathrm{word}_{w_1^t}, \cdots, \mathrm{word}_{w_{n_t}^t}) = Dir(\vec{\theta}_t; \vec{\mathbf{n}}_v(t) + \vec{\eta})$ 。 这说明参数 $\vec{\theta}_t$ 的后验分布也是狄里克雷分布。

3.3 模型求解

1. LDA 的求解有两种办法: 变分推断法、吉布斯采样法。

3.3.1 吉布斯采样

1. 对于数据集 \mathbb{D} ,其所有的单词 $\{\operatorname{word}_{w_1^1},\cdots,\operatorname{word}_{w_{n_1}^1},\cdots,\operatorname{word}_{w_1^N},\cdots,\operatorname{word}_{w_{n_N}^N}\}$ 是观测的已知数据,记作 \mathbf{WORD} 。

这些单词对应的主题 $\{ \text{topic}_{z_{n_1}^1}, \cdots, \text{topic}_{z_{n_1}^N}, \cdots, \text{topic}_{z_{n_N}^N} \}$ 是未观测数据,记作 **TOPIC**。需要求解的分布是:

$$p(\mathbf{WORD} \mid \mathbf{TOPIC})$$

其中:

- 。 $v=w_{j}^{i}$ 表示文档 \mathcal{D}_{i} 的第j个单词为 word_{v} 。
- 。 $t=z_j^i$ 表示文档 \mathcal{D}_i 的第 j 个单词由主题 topic_t 生成。
- 2. 定义 $\mathbf{TOPIC}_{\neg(i,j)}$ 为:去掉 \mathcal{D}_i 的第 j 个单词背后的那个生成主题(注:只是对其词频减一):

$$\begin{aligned} \mathbf{TOPIC}_{\neg(i,j)} = \{ \mathrm{topic}_{z_1^1}, \cdots, \mathrm{topic}_{z_{n_1}^1} \cdots, \mathrm{topic}_{z_1^i}, \cdots, \mathrm{topic}_{z_{j-1}^i}, \mathrm{topic}_{z_{j+1}^i}, \cdots, \mathrm{topic}_{z_{n_i}^i} \\ , \cdots, \mathrm{topic}_{z_1^N}, \cdots, \mathrm{topic}_{z_{n_N}^N} \} \end{aligned}$$

定义 $\mathbf{WORD}_{\neg(i,j)}$ 为: 去掉 \mathcal{D}_i 的第 j 个单词:

$$\mathbf{WORD}_{\neg(i,j)} = \{ \mathrm{word}_{w_1^1}, \cdots, \mathrm{word}_{w_{n_1}^1} \cdots, \mathrm{word}_{w_1^i} \cdots, \mathrm{word}_{w_{j-1}^i}, \mathrm{word}_{w_{j+1}^i}, \cdots, \mathrm{word}_{w_{n_i}^i} \\ , \cdots, \mathrm{word}_{w_1^N}, \cdots, \mathrm{word}_{w_{n_N}^N} \}$$

3. 根据吉布斯采样的要求,需要得到条件分布:

$$p(\operatorname{topic}_{z_i^i} \mid \mathbf{TOPIC}_{\lnot(i,j)}, \mathbf{WORD})$$

根据条件概率有:

$$p(ext{topic}_{z_j^i} \mid \mathbf{TOPIC}_{\lnot(i,j)}, \mathbf{WORD}) = rac{p(ext{topic}_{z_j^i}, ext{word}_{w_j^i} \mid \mathbf{TOPIC}_{\lnot(i,j)}, \mathbf{WORD}_{\lnot(i,j)})}{p(ext{word}_{w_j^i})}$$

则有:

$$p(\operatorname{topic}_{z^i_j} \mid \mathbf{TOPIC}_{\neg(i,j)}, \mathbf{WORD}) \propto p(\operatorname{topic}_{z^i_j}, \operatorname{word}_{w^i_j} \mid \mathbf{TOPIC}_{\neg(i,j)}, \mathbf{WORD}_{\neg(i,j)})$$

- 4. 对于文档 \mathcal{D}_i 的第 j 个位置,单词 $\mathrm{word}_{w^i_j}$ 和对应的主题 $\mathrm{topic}_{z^i_j}$ 仅仅涉及到如下的两个"狄里克雷-多项式"共轭结构
 - \circ 文档 \mathcal{D}_i 的主题分布: $\vec{\alpha} \to \vec{\varphi}_i$
 - \circ 已知主题为 topic_t 的情况下,单词的分布: $ec{\eta}
 ightarrow ec{ heta}_t$

对于这两个共轭结构, 去掉文档 \mathcal{D}_i 的第 i 个位置的主题和单词时:

- 。 先验分布 (狄里克雷分布): 保持不变。
- 。 文档 \mathcal{D}_i 的主题分布:主题 $\mathrm{topic}_{z_i^i}$ 频数减少一次,但是该分布仍然是多项式分布。

其它 N-1 个文档的主题分布完全不受影响。因此有:

$$p(\mathbf{TOPIC}_{\lnot(i,j)}; ec{lpha}) = \prod_{i=1}^N rac{B(ec{\mathbf{n}}_z'(i) + ec{lpha})}{B(ec{lpha})}$$

。 对于所有文档集合 $\mathbb D$,主题 ${
m topic}_{z^i_j}$ 的单词分布:单词 ${
m word}_{w^i_j}$ 频数减少一次,但是该分布仍然是多项式分布。

其它T-1个主题的单词分布完全不受影响。因此有:

$$p(\mathbf{WORD}_{\neg(i,j)} \mid \mathbf{TOPIC}_{\neg(i,j)}; \vec{\eta}) = \prod_{t=1}^T \frac{B(\vec{\mathbf{n}}_v'(t) + \vec{\eta})}{B(\vec{\eta})}$$

。 根据主题分布和单词分布有:

$$p(\mathbf{TOPIC}_{\neg(i,j)}, \mathbf{WORD}_{\neg(i,j)}; \vec{\alpha}, \vec{\eta}) = \prod_{i=1}^{N} \prod_{t=1}^{T} \frac{B(\vec{\mathbf{n}}_z'(i) + \vec{\alpha})}{B(\vec{\alpha})} \frac{B(\vec{\mathbf{n}}_v'(t) + \vec{\eta})}{B(\vec{\eta})}$$

其中:

■ $\vec{\mathbf{n}}_z'(i) = (n_z'(i,1), n_z'(i,2), \cdots, n_z'(i,T))$ 表示去掉文档 \mathcal{D}_i 的第 j 个位置的单词和主题之后,第 i 篇文档中,各主题出现的次数。

■ $\vec{\mathbf{n}}_v'(t) = (n_v'(t,1), n_v'(t,2), \cdots, n_v'(t,V))$ 表示去掉文档 \mathcal{D}_i 的第 j 个位置的单词和主题之后,数据集 \mathbb{D} 中,由主题 $topic_t$ 生成的单词中,各单词出现的次数。

5. 考虑
$$p(\operatorname{topic}_{z^i_i}, \operatorname{word}_{w^i_i} \mid \mathbf{TOPIC}_{\neg(i,j)}, \mathbf{WORD}_{\neg(i,j)})$$
。记 $t=z^i_j, v=w^i_j$,则有:

$$p(\operatorname{topic}_{t}, \operatorname{word}_{v} \mid \mathbf{TOPIC}_{\neg(i,j)}, \mathbf{WORD}_{\neg(i,j)})$$

$$= \int p(\operatorname{topic}_{t}, \operatorname{word}_{v}, \vec{\varphi}_{i}, \vec{\theta}_{t} \mid \mathbf{TOPIC}_{\neg(i,j)}, \mathbf{WORD}_{\neg(i,j)}) d\vec{\varphi}_{i} d\vec{\theta}_{t}$$

$$= \int p(\operatorname{topic}_{t}, \vec{\varphi}_{i} \mid \mathbf{TOPIC}_{\neg(i,j)}, \mathbf{WORD}_{\neg(i,j)})$$

$$\times p(\operatorname{word}_{v}, \vec{\theta}_{t} \mid \mathbf{TOPIC}_{\neg(i,j)}, \mathbf{WORD}_{\neg(i,j)}) d\vec{\varphi}_{i} d\vec{\theta}_{t}$$

$$= \int p(\operatorname{topic}_{t} \mid \vec{\varphi}_{i}) \times p(\vec{\varphi}_{i} \mid \mathbf{TOPIC}_{\neg(i,j)}, \mathbf{WORD}_{\neg(i,j)})$$

$$\times p(\operatorname{word}_{v} \mid \vec{\theta}_{t}) \times p(\vec{\theta}_{t} \mid \mathbf{TOPIC}_{\neg(i,j)}, \mathbf{WORD}_{\neg(i,j)}) d\vec{\varphi}_{i} d\vec{\theta}_{t}$$

$$= \int \varphi_{i,t} Dir(\vec{\varphi}_{i}; \vec{\mathbf{n}}'_{z}(i) + \vec{\alpha}) \times \theta_{t,v} Dir(\vec{\theta}_{t}; \vec{\mathbf{n}}'_{v}(t) + \vec{\eta}) d\vec{\varphi}_{i} d\vec{\theta}_{t}$$

$$= \int \varphi_{i,t} Dir(\vec{\varphi}_{i}; \vec{\mathbf{n}}'_{z}(i) + \vec{\alpha}) d\vec{\varphi}_{i} \times \int \theta_{t,v} Dir(\vec{\theta}_{t}; \vec{\mathbf{n}}'_{v}(t) + \vec{\eta}) d\vec{\theta}_{t}$$

$$= \mathbb{E}[\varphi_{i,t}]_{Dir} \times \mathbb{E}[\theta_{t,v}]_{Dir}$$

根据狄里克雷分布的性质有:

$$\mathbb{E}[arphi_{i,t}]_{Dir} = rac{n_z'(i,t) + lpha_t}{\sum_{t'=1}^T \left[n_z'(i,t') + lpha_{t'}
ight]} \ \mathbb{E}[heta_{t,v}]_{Dir} = rac{n_v'(t,v) + \eta_v}{\sum_{v'=1}^V \left[n_v'(t,v') + \eta_{v'}
ight]}$$

则有:

$$p(ext{topic}_t, ext{word}_v \mid \mathbf{TOPIC}_{\lnot(i,j)}, \mathbf{WORD}_{\lnot(i,j)}) \ = rac{n_z'(i,t) + lpha_t}{\sum_{t'=1}^T \left[n_z'(i,t') + lpha_{t'}
ight]} imes rac{n_v'(t,v) + \eta_v}{\sum_{v'=1}^V \left[n_v'(t,v') + \eta_{v'}
ight]}$$

其中: $t=z^i_j$ 为文档 \mathcal{D}_i 的第 j 个位置的单词背后的主题在主题表的编号; $v=w^i_j$ 为文档 \mathcal{D}_i 的第 j 个位置的单词在词汇表中的编号。

6. 根据上面的推导,得到吉布斯采样的公式:

$$p(ext{topic}_{z_j^i} \mid \mathbf{TOPIC}_{\lnot(i,j)}, \mathbf{WORD}) \propto rac{n_z'(i,z_j^i) + lpha_{z_j^i}}{\sum_{t'=1}^T \left[n_z'(i,t') + lpha_{t'}
ight]} imes rac{n_v'(z_j^i,w_j^i) + \eta_{w_j^i}}{\sum_{v'=1}^V \left[n_v'(z_j^i,v') + \eta_{v'}
ight]}$$

- 。 第一项刻画了: 文档 \mathcal{D}_i 中,第 j 个位置的单词背后的主题占该文档所有主题的比例(经过 $\vec{\alpha}$ 先验频数 调整)。
- 。 第二项刻画了:在数据集 $\mathbb D$ 中,主题 ${
 m topic}_{z_i^i}$ 中,单词 ${
 m word}_{w_i^i}$ 出现的比例(经过 $ec{\eta}$ 先验频数调整)。
- 。 它整体刻画了: 文档 \mathcal{D}_i 中第 j 个位置的单词为 $\operatorname{word}_{w_i^i}$,且由主题 $\operatorname{topic}_{z_i^i}$ 生成的可能性。

3.3.2 模型训练

1. 定义文档-主题计数矩阵 T 为:

$$\mathbf{T} = egin{bmatrix} n_z(1,1) & n_z(1,2) & \cdots & n_z(1,T) \ n_z(2,1) & n_z(2,2) & \cdots & n_z(2,T) \ dots & dots & \ddots & dots \ n_z(N,1) & n_z(N,2) & \cdots & n_z(N,T) \end{bmatrix}$$

其中第 i 行代表文档 \mathcal{D}_i 的主题计数。

定义主题-单词计数矩阵 W 为:

$$\mathbf{W} = egin{bmatrix} n_v(1,1) & n_v(1,2) & \cdots & n_v(1,V) \ n_v(2,1) & n_v(2,2) & \cdots & n_v(2,V) \ dots & dots & \ddots & dots \ n_v(T,1) & n_v(T,2) & \cdots & n_v(T,V) \end{bmatrix}$$

其中第t行代表 主题 $topic_t$ 的单词计数

- 2. LDA 训练的吉布斯采样算法
 - 输入:
 - 单词词典 ♡
 - 超参数 α, η
 - 主题数量 T
 - 语料库 🏻
 - 输出:
 - 文档-主题分布 🗗 的估计量
 - 主题-单词分布 $\vec{\theta}_t$ 的估计量

因为这两个参数都是随机变量,因此使用它们的期望来作为一个合适的估计

- 。 算法步骤:
 - 设置全局变量:
 - $n_{i,t}^z$ 表示文档 \mathcal{D}_i 中,主题 topic_t 的计数。它就是 $n_z(i,t)$,也就是 \mathbf{T} 的第 i 行第 t 列。
 - $n_{t,v}^v$ 表示主题 $topic_t$ 中,单词 $word_v$ 的计数。它就是 $n_v(t,v)$,也就是 $\mathbf W$ 的第 t 行第 v 列。
 - n_i^z 表示各文档 \mathcal{D}_i 中,主题的总计数。它也等于该文档的单词总数,也就是文档长度,也就是 \mathbf{T} 的第 i 行求和。
 - n_t^v 表示单主题 $topic_t$ 中,单词的总计数。它也就是 \mathbf{W} 的第 t 行求和。
 - 随机初始化:
 - 对全局变量初始化为 0。
 - 遍历文档: $i \in \{1, 2, \dots, N\}$
 - 对文档 \mathcal{D}_i 中的每一个位置 $j=1,2,\cdots,n_i$, 其中 n_i 为文档 \mathcal{D}_i 的长度:
 - 随机初始化每个位置的单词对应的主题: $\mathrm{topic}_{z^i_j} o z^i_j = t \sim Mult(rac{1}{T})$
 - 增加"文档-主题"计数: $n_{i,t}^z + = 1$
 - 增加"文档-主题"总数: $n_i^z + = 1$
 - $lacksymbol{\blacksquare}$ 增加"主题-单词"计数: $n_{t\,v}^v+=1$, 其中 $v=w_i^i$
 - 増加"主题-单词"总数: n_t^v+=1
 - 迭代下面的步骤,直到马尔科夫链收敛:

- 遍历文档: $i \in \{1, 2, \dots, N\}$
 - 对文档 i 中的每一个位置 $j=1,2,\cdots,n_i$, 其中 n_i 为文档 \mathcal{D}_i 的长度:
 - 删除该位置的主题计数,设 $t=z_i^i$:

$$n_{i,t}^z - = 1 \ n_i^z - = 1 \ n_{t,v}^v - = 1 \ n_t^v - = 1$$

■ 根据下面的公式,重新采样得到该单词的新主题 $topic_{z^i}$:

$$egin{aligned} p(ext{topic}_{z^i_j} \mid \mathbf{TOPIC}_{\lnot(i,j)}, \mathbf{WORD}) &\propto rac{n'_z(i, z^i_j) + lpha_{z^i_j}}{\sum_{t'=1}^T \left[n'_z(i, t') + lpha_{t'}
ight]} \ & imes rac{n'_v(z^i_j, w^i_j) + \eta_{w^i_j}}{\sum_{v'=1}^V \left[n'_v(z^i_j, v') + \eta_{v'}
ight]} \end{aligned}$$

■ 记新的主题在主题表中的编号为 \tilde{t} ,则增加该单词的新的主题计数:

$$n^{z}_{i, ilde{t}} + = 1 \ n^{z}_{i} + = 1 \ n^{v}_{ ilde{t},v} + = 1 \ n^{v}_{ ilde{t}} + = 1$$

■ 如果马尔科夫链收敛,则根据下列公式生成 文档-主题分布 Φ 的估计,以及 主题-单词 分布 Θ 的估计:

$$egin{aligned} \hat{arphi}_{i,t} &= \mathbb{E}[arphi_{i,t}]_{Dir} = rac{n_z'(i,t) + lpha_t}{\sum_{t'=1}^T \left[n_z'(i,t') + lpha_{t'}
ight]} \ \hat{ heta}_{t,v} &= \mathbb{E}[heta_{t,v}]_{Dir} = rac{n_v'(t,v) + \eta_v}{\sum_{v'=1}^V \left[n_v'(t,v') + \eta_{v'}
ight]} \end{aligned}$$

3.3.3 模型推断

1. 一旦得到 \mathbb{L} DA 模型,则对于新的文档 \mathcal{D}_{new} ,其推断过程与训练过程完全类似。

推断过程中,需要让吉布斯采样公式中的主题-单词计数矩阵 ${f W}$ 稳定不变。所以采样过程只需要更新该文档的 文档-主题分布 $\vec{\varphi}_{new}$ 。

- 2. LDA 推断算法
 - 输入:
 - 单词词典 ♡
 - 超参数 \(\vec{\alpha}\)
 - 已有 LDA 模型的主题-单词计数矩阵 W
 - 新的文档 \mathcal{D}_{new}
 - \circ 输出: 文档-主题分布 $\vec{\varphi}_{new}$ 的估计量
 - 。 算法步骤:

- 设置全局变量:
 - $n_{i,t}^z$ 表示文档 \mathcal{D}_i 中,主题 topic_t 的计数。它就是 $n_z(i,t)$,也就是 \mathbf{T} 的第 i 行第 t 列。
 - n_i^z 表示文档 \mathcal{D}_i 中各主题的总数。它也等于该文档的单词总数,也就是文档长度,也就是 \mathbf{T} 的第 i 行求和。
- 随机初始化:
 - 对全局变量初始化为 0
 - 遍历文档: i ∈ {1,2,···,N}
 - 对文档 \mathcal{D}_i 中的每一个位置 $j=1,2,\cdots,n_i$, 其中 n_i 为文档 \mathcal{D}_i 的长度:
 - 随机初始化位置 j 处单词对应的主题: $z_i^i = t \sim Mult(\frac{1}{K})$
 - 增加 文档-主题 计数: $n_{i,t}^z + = 1$
 - 增加 文档-主题 总数: $n_i^z + = 1$
- 迭代下面的步骤,直到马尔科夫链收敛:
 - 遍历文档: $i \in \{1, 2, \dots, N\}$
 - 对文档 \mathcal{D}_i 中的每一个位置 $j=1,2,\cdots,n_i$, 其中 n_i 为文档 \mathcal{D}_i 的长度:
 - 删除位置 *j* 处单词对应的主题 topic, 的计数:

$$n_{i,t}^z-=1 \ n_i^z-=1$$

■ 根据下面的公式,重新采样得到位置 j 处单词的新主题 $\mathrm{topic}_{z_j^i}$:

$$egin{aligned} p(ext{topic}_{z^i_j} \mid \mathbf{TOPIC}_{\lnot(i,j)}, \mathbf{WORD}) &\propto rac{n'_z(i, z^i_j) + lpha_{z^i_j}}{\sum_{t'=1}^T \left[n'_z(i, t') + lpha_{t'}
ight]} \ & imes rac{n'_v(z^i_j, w^i_j) + \eta_{w^i_j}}{\sum_{v'=1}^V \left[n'_v(z^i_j, v') + \eta_{v'}
ight]} \end{aligned}$$

■ 记新的主题在主题表中的编号为 \tilde{t} ,则增加该单词的新的主题计数:

$$n^z_{i, ilde{t}} + = 1 \ n^z_i + = 1$$

■ 如果马尔科夫链收敛,则根据下列公式生成 文档-主题分布 Φ 的估计

$$\hat{arphi}_{i,t} = \mathbb{E}[arphi_{i,t}]_{Dir} = rac{n_z'(i,t) + lpha_t}{\sum_{t'=1}^T \left[n_z'(i,t') + lpha_{t'}
ight]}$$

四、模型讨论

- 1. LSA 的主要缺点:
 - 。 缺乏可解释性。主题的成分可能是随机的。
 - 。 需要大量的文档和单词才能获取较好的结果。

4.1 过拟合

1. pLSA 容易陷入过拟合。

在 pLSA 中, 认为:

- \circ 文档-主题分布 $\vec{\varphi}_i$, $i=1,2,\cdots,N$ 不是随机变量,而是我们不知道的常量
- 主题-单词分布 $\vec{\theta}_t, t=1,2,\cdots,T$ 也不是随机变量,也是我们不知道的常量

pLSA 通过拟合训练数据集来求解这些参数,这意味着这些参数只能表征当前的训练集的文档的特征。

对于测试集的文档, pLSA 认为它也符合训练集的文档特征。事实上这就是一种过拟合, 尤其是当训练集的文档数量太少时, 非常容易陷入过拟合。

2. 以人口抽样问题为类比。 pLSA 的思想认为: 人口的男女比例是一个常数。

给出一个人口集合, pLSA 先统计男女比例 (假如训练集是从医院获取的)。假如结果为 2:1, 则 pLSA 会断言: 所有的人口比例都是 2:1。

于是训练集越小, pLSA 越容易陷入过拟合, 离真实结果也就越远。

- 3. LDA 会给 $\vec{\varphi}_i$, $\vec{\theta}_t$ 加入一些先验性的知识。
 - 。 当数据量较小, 先验性的知识会占据主导地位
 - 。 当数据量较大,真实数据占据主导地位
- 4. 以人口抽样为类比。 LDA 会首先假设男女比例为 1000:1000 。 然后再统计人口集合中男女的人数,最终得到的结果。

假设人口集合中男女的人数分别为 200:100 ,则最终 LDA 得到男女比例为 1200:1100 。

虽然该结果离真实的结果可能有偏差,但是它比 pLSA 的结果要更好。

5. 当数据量足够大的时候, pLSA 跟 LDA 的结果相差无几。

这是因为当数据量足够大时,真实数据的信息会淹没掉先验知识。

4.2 模型比较

1.下面一张图形比较了 Mixture of Unigram , pLSA 与 LDA 的区别。

假设有词汇表共有3个单词,主题表共有3个主题。

。 最外的三角形为单词三角形。

内部每个点(如 p_2)表示一个概率分布,表示产生 word1, word2, word3 这三个词的概率的大小。

- 。 靠内的三角形为主题三角形。
 - 内部每个点表示一个概率分布,表示产生 topic1,topic2,topic3 这三个主题的概率的大小。
- 2. Mixture of Unigram 模型:该模型中,只有一个主题,所以随机在三个主题中选择一个。

假设选择 topic1 , 于是根据 topic1 到外边三角形的各边的距离来随机生成单词。

于是主题三角形的三个顶点的任意一点即代表了 Mixture of Unigram 模型。

3. pLSA 模型: 主题三角形内任意一些点 (如带叉的点所示) 就是一个 pLSA 模型。

产生文档的过程:

- 。 然后根据该主题到单词三角形的各边的距离来选择一个单词。
- 重复执行 选择主题-选择单词 的过程,即可得到一篇文档。
- 4. LDA 模型: 就是一个 LDA 模型。
 - o 主题三角形内,每一条曲线表示了 topic 分布的分布,即 topic 分布取某些值的概率较大,取另外一 些值的概率较小。它刻画了 LDA 模型选择主题的过程。
 - o 单词三角形内,每一条曲线表示了word分布的分布。它刻画了LDA模型选择单词的过程。