PROCEDURE :

i) Frielly, start with the static experiment, to find (de) &. Take 4 thermometers and place them aside. Now heat the given conductor to the nequired temperature.

. Place the thermometers side by side from the given

reference points & to c.

· Now wait for half an howr till the steady state is reached.

· Record the temperature of the good at different points

blus the points B & C.

. Hark temperature of first thermometer with the highest temperature which will be used as reference in the second part of the exporument. (T.)

ii) Dynamic experiment to find :- (do) dx.

. First take a small piece of the sample and heat it till it reaches T, +. 10°C (T, - Reference temperature).

· Now wait till it reaches steady state

· Now attach a thermometer to the small sample and let it cool down.

· While sample is cooling down note temp vs time for every 5 minutes.

· After noting down the values make a graph to find fight taking & as reference on graph.

· After finding all required information, substitute them in the formula for 'k'

TABULATION:

i) Static Experiment:

	Distance (cm)	Temperature (°c)
0 \	16.10	110
Reference	21.0	90
B = 15cm	26.5	64
C = 55cm	31.8	52
	36.8	41
	41.9	36
	51.6	31

ii) Dynamic Experiment:

Time (min)	Temperature (°C)
ь	120
5	113
10	89
15	78
lo	10
25	62
30	57
35	51
40	47
45	44
50	41
55 60 65	39 37 36

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

CALCULATIONS:

1532.6

ii) From dynamic emperiment of graph 2 and 3.

Area under graph $3 = {}_{B} \int \left(\frac{d\theta}{dt}\right) dx$ $\Rightarrow {}_{B} \int \left(\frac{d\theta}{dt}\right) dx = 65 \text{ sq. units (approx)}$ $\therefore K = {}_{B} S \int \left(\frac{d\theta}{dt}\right) dx = \frac{{}_{B} S \times \text{Area shaded Wm'k'}}{\left(\frac{d\theta}{dx}\right) B}$ $K = \frac{d\theta}{dx} S = \frac{{}_{B} S \times \text{Area shaded Wm'k'}}{\left(\frac{d\theta}{dx}\right) B} = \frac{{}_{B} S \times \text{Area shaded Wm'k'}}{\left(\frac{d\theta}{dx}\right) B}$

RESULT !

Thermal conductivity of conductor is 134614.38 Hm-1/K-1