Using Reviews to Predict Ratings of Women's Clothing Items

Marisa Mitchell
Springboard Capstone Project 2

The Problem

- E-commerce Clothing and Fashion companies often have customers rate their satisfaction with items they purchase
- Ratings influence future customers' decisions
- Ratings can help companies make decisions about:
 - Items to discontinue
 - Items to add additional choices (e.g. color, fabric)
 - Improvements to make

The Problem

- Women's E-Commerce Clothing Reviews Dataset from Kaggle
 (https://www.kaggle.com/nicapotato/womens-ecommerce-clothing-reviews)
- 10 variables
- 23,486 reviews

Missing Data

Data Cleaning Steps

- Merged Title and Review text into one featuretitle_review
- Binned ratinging into three groups:
 - High-ratings of 4 and 5
 - Medium- Ratings of 3
 - Low-ratings of 1 and 2

Distribution of ratings prior to binning

Less ratings in the lower values and increasing to the most 5 point ratings

Distribution of ratings after the data was binned

High ratings were much more frequent than the medium or low ratings

Distribution of recommended indicator

Majority of reviewers said they would recommend the item

Distribution of items by department

Tops were the most frequent item reviewed

Trend items were least reviewed

Distribution of Items by Class Name

Distribution of iratings prior to binning for each class type

Distribution of reviews were comparable across all class types

Boxplot showing distribution of ratings by age of reviewer

Violin plot showing distribution of ratings by age of

reviewer

Word cloud of all words in the title_review variable

Word cloud of all words in the title_review variable for reviews that were low or high

Low Ratings High Ratings

Text Preprocessing

Feature Engineering

Labels= Features = Pre-Processed title_review text Binned Rating Type Train Test Train Features **Test Features** Labels Labels Bag of Bag of TF-IDF TF-IDF Words Words Train Test Train Test **Features Features** Features Features

Machine Learning Algorithms Used for Review Classification

Model Evaluation Performance Metrics

Bag of Words

Model	Accuracy Before Tuning	Accuracy After Tuning
KNN	0.77	
Logistic Regression	0.83	0.83
Linear SVM	0.80	
Decision Tree	0.74	
Random Forest	0.79	
Gradient Boosting	0.80	

TF-IDF

Model	Accuracy Before Tuning	Accuracy After Tuning
KNN	0.79	
Logistic Regression	0.83	0.83
Linear SVM	0.83	0.83
Decision Tree	0.74	
Random Forest	0.79	
Gradient Boosting	0.81	

Hyperparameter Tuning

- Tuned the top three models using GridsearchCV
- Logistic regression models were tuned on
 - Penalty- | 1, | 2
 - o C-.001, .01, 1, 10, 100
- Linear SVM model was tuned on
 - Class_weight-balanced, none
 - o C-.001, .01, 1, 10, 100, 1000

Confusion Matrix for Top 3 Models

Logistic Regression Bag of Words

Logistic Regression TF-IDF

Linear SVM TF-IDF

	high	low	med	
high	5019	78	168	
low	188	361	147	
med	400	189	243	

	high	low	med
high	5102	57	106
low	250	325	121
med	475	175	182

	high	low	med
high	5028	72	165
low	174	371	151
med	410	191	231

Classification Reports for Top 3 Models

Logistic Regression Bag of Words

	precision	recall	f1-score	support
high	0.90	0.95	0.92	5265
low	0.57	0.52	0.55	696
med	0.44	0.29	0.35	832
micro avg	0.83	0.83	0.83	6793
macro avg	0.64	0.59	0.61	6793
weighted avg	0.81	0.83	0.81	6793

Linear SVM TF-IDF

		precision	recall	f1-score	support
ł	nigh	0.90	0.95	0.92	5265
	low	0.59	0.53	0.56	696
	med	0.42	0.28	0.34	832
micro	avg	0.83	0.83	0.83	6793
macro	avg	0.63	0.59	0.61	6793
weighted	avg	0.81	0.83	0.81	6793

Logistic Regression TF-IDF

		precision	recall	f1-score	support
1	nigh	0.88	0.97	0.92	5265
	low	0.58	0.47	0.52	696
	med	0.44	0.22	0.29	832
micro	avg	0.83	0.83	0.83	6793
macro	avg	0.63	0.55	0.58	6793
veighted	avg	0.79	0.83	0.80	6793

Feature Weights of Logistic Regression TF-IDF

y=hig	y=high top features y=low top features		y=med top features		
Weight?	Feature	Weight?	Feature	Weight?	Feature
+9.568	perfect	+7.922	horrible	+4.831	however
+8.000	compliment	+5.922	disappointed	+4.255	meh
+6.783	comfortable	+5.737	poor	+3.992	ok
+6.771	great	+5.463	awful	+3.732	oversize
+6.307	happy	+4.970	disappointment	+3.196	seem
+6.022	love	+4.897	disappointing	+3.161	not
+5.178	glad	+4.501	ill	+3.007	excited
+5.161	perfectly	+4.337	unflattering	192 mg	ore positive
275 r	nore positive	179 n	nore positive	174 more negative	
204 n	nore negative	186 n	nore negative	-3.199	love
-5.047	not	-4.396	nice	-3.226	comfy
-5.162	disappointment	-4.436	gorgeous	-3.258	glad
-5.233	return	-4.530	lovely	-3.268	happy
-5.727	horrible	-4.713	beautiful	-3.402	versatile
-5.791	cheap	-5.330	soft	-3.506	flattering
-5.798	bad	-5.600	happy	-3.775	boot
-6.392	meh	-5.754	compliment	-3.898	classic
-6.490	unflattering	-6.133	love	-4.031	perfectly
-6.626	disappointing	-6.288	great	-4.097	great
-7.153	awful	-6.302	perfect	-4.430	comfortable
-8.851	poor	-6.718	comfortable	-5.887	compliment
-9.224	disappointed	-7.899	little	-7.891	perfect

Conclusions

- Logistic Regression using TF-IDF features is recommended
- High ratings are associated with being comfortable, getting compliments, and customers being glad and happy while not being associated with returns, being cheap, unflattering, or poor
- Medium ratings are associated with being oversized and ok while not being associated with words like love comfy, glad, happy, and flattering
- Low ratings are associated with disappointment, unflattering, poor, and horrible while not being associated with being nice, gorgeous, beautiful, soft, complement, and comfortable

Next Steps

- Examine feature weights for each clothing category
- Examine feature weights individual clothing ID's
- Apply oversampling or undersampling techniques to deal with the unbalanced ratings
- Include other dataset features in addition to the text features