Advanced: Relative Induction

- Break circularity with induction
 - Guess $a \ge 0$
 - $Init \models a \ge 0 \land c \ge 0$,
 - Relative Induction: $a \ge 0 \land c \ge 0 \models c' \ge 0$
 - $Init = a \ge 0 \land c \ge 0 \land b \ge 0$
 - Induction: $a \ge 0 \land c \ge 0 \land b \ge 0 \models a' \ge 0 \land c' \ge 0 \land b' \ge 0$
- The last inductive proof is a complete proof
 - But obtaining the inductive invariant by first guessing $a \ge 0$, then finding $c \ge 0$ could be easier

```
a = 0; b = 0; c = 0
while * do:
assert a \ge 0
a' = a + b
b' = b + c
c' = c + 1 + a
```