Linguagens Formais e Autômatos

P. Blauth Menezes

blauth@inf.ufrgs.br

Departamento de Informática Teórica Instituto de Informática / UFRGS

Linguagens Formais e Autômatos

P. Blauth Menezes

- 1 Introdução e Conceitos Básicos
- 2 Linguagens e Gramáticas
- 3 Linguagens Regulares
- 4 Propriedades das Linguagens Regulares
- 5 Autômato Finito com Saída
- **6** Linguagens Livres do Contexto
- 7 Propriedades e Reconhecimento das Linguagens Livres do Contexto
- 8 Linguagens Recursivamente Enumeráveis e Sensíveis ao Contexto
- 9 Hierarquia de Classes e Linguagens e Conclusões

9 - Hierarquia de Classes de Linguagens e Conclusões

- 9.1 Hierarquia de Chomsky
- 9.2 Conclusões
- 9.3 Leitura Complementar: Gramática de Grafos

9 - Hierarquia de Classes de Linguagens e Conclusões

9 Hierarquia de Classes de Linguagens e Conclusões

9.1 Hierarquia de Chomsky

- ◆ Constituída pelas classes & inclusões próprias
 - Regulares ou Tipo 3
 - Livres do Contexto ou Tipo 2
 - Sensíveis ao Contexto ou Tipo 1
 - Recursivamente Enumeráveis ou Tipo 0

Linguagens Recursivamente Enumeráveis ou Tipo 0 Linguagens Sensíveis ao Contexto ou Tipo 1 **Linguagens Livres do Contexto ou Tipo 2** Linguagens Regulares ou Tipo 3

 Noam Chomsky definiu estas classes como (potenciais) modelos para linguagens naturais

◆ Linguagens de programação

 nem sempre são tratadas adequadamente na Hierarquia de Chomsky

Existem linguagens que não são livres do contexto para as quais

- poder dos formalismos sensíveis ao contexto é excessivo
- inadequados principalmente no que se refere à complexidade

Conhecimento das linguagens sensíveis ao contexto

- relativamente limitado
- dificulta o seu tratamento

◆ Exemplos de problemas que não Livres do Contexto

- múltiplas ocorrências de um mesmo trecho de programa
 - como a declaração de um identificador e suas referências de uso
 - * análogo a { wcw | w é palavra de {a, b}* }
- alguns casos de validação de expressões com variáveis de tipos diferentes
- associação de um significado (semântica) de um trecho de programa
 - * análise de um conjunto de informações (dependentes de contextos)
 - como identificadores, ambientes, tipos de dados, localização, seqüências de operações, etc

Para algumas linguagens de programação

- Classe das Linguagens Livres do Contexto é excessiva
- Classe das Linguagens Regulares, insuficiente

Linguagem Livre do Contexto Determinística

- pode ser denotada por um Autômato com Pilha Determinístico
- é possível implementar (facilmente) um reconhecedor com tempo de processamento proporcional a 2n
 - * n é o tamanho da entrada
 - muito mais eficiente que o melhor algoritmo conhecido para as linguagens livres do contexto

- De qualquer forma, o estudo das Linguagens Livres do Contexto tem sido de especial interesse
 - permitem uma representação simples da sintaxe
 - adequada para estruturação formal e para análise computacional
- ◆ Entretanto, o estudo das Linguagens Livres do Contexto tem mostrado problemas não-solucionáveis
 - determinar se uma gramática é ambígua
 - existem duas ou mais árvores de derivação distintas para uma mesma palavra
 - não existe um algoritmo que verifique a igualdade de duas linguagens
 - * dificulta otimização e teste de processadores de linguagens

- Portanto, dependendo da linguagem e dos objetivos do trabalho
 - estudos específicos
 - * eventualmente fora da Hierarquia de Chomsky
 - * são recomendados ou necessários
 - exemplo apresentado

Classe de Linguagens Recursivas

9 - Hierarquia de Classes de Linguagens e Conclusões

- 9.1 Hierarquia de Chomsky
- 9.2 Conclusões
- 9.3 Leitura Complementar: Gramática de Grafos

9.2 Conclusões

- Linguagens Formais oferecem meios para modelar e desenvolver ferramentas que
 - especificam linguagens
 - processos de análise
 - propriedades
 - limitações algorítmicas

◆ Alguns problemas possuem questões em aberto

- tradução de linguagens, com ênfase nas naturais
- explosão de estados dos autômatos finitos
 - desenvolvimento de soluções (possivelmente) complexas
 - * exige um número excessivo de estados
 - * importante tema de pesquisa
- tratamento de linguagens n-dimensionais, ênfase bi/tridimensionais
 - * imagens
 - * animações
 - * sistemas biológicos: simulação do desenvolvimento de sistemas vivos), tanto no plano, quanto no espaço
 - * sistemas concorrentes (eventualmente distribuídos e/ou comunicantes): especificação formal e prova de propriedades

Limitação do trabalho desenvolvido

- formalismos desenvolvidos não são adequados para o
 - * tratamento de problemas complexos
- não possuem construções composicionais em suas definições
 - * sem qualquer estruturação modular ou hierárquica
- Algumas construções composicionais foram exploradas
 - união, intersecção, complemento, etc
 - limitadas em termos de expressividade

Construções composicionais mais ricas: inspiradas em Teoria das Categorias

- constituem uma álgebra sobre os formalismos
 - * com operações expressivas
- desenvolvimento de soluções complexas de forma simples
 - * em grande parte dos casos, corretas por construção
- abordagem: transcende o objetivo da disciplina
 - * importante linha de pesquisa
 - * para quem deseja dar continuidade aos estudos

9 - Hierarquia de Classes de Linguagens e Conclusões

- 9.1 Hierarquia de Chomsky
- 9.2 Conclusões
- 9.3 Leitura Complementar: Gramática de Grafos

9.3 Leitura Complementar: Gramática de Grafos

- ◆ Uma abordagem às linguagens n-dimensionais
- Idéia básica das gramáticas de grafos
 - análoga à das Gramáticas de Chomsky
- Gramática de Grafos
 - regras de produção: pares, mas de grafos
 - derivação: substituição de um subgrafo de acordo com uma regra de produção

Gramáticas de grafos

- caso particular das gramáticas categoriais
- nenhum conceito de Teoria das Categorias é formalmente introduzido

Gramáticas categoriais podem ser definidas sobre

- palavras
- grafos
- conjuntos parcialmente ordenados
- redes
- autômatos
- máquinas
- linguagens de programação
- ..., desde que sejam satisfeitas determinadas condições
- ◆ Adicionalmente, as derivações são generalizadas

Exp: Gramática de Grafos: PacMan

Jogo PacMan (simplificado)

- tabuleiro
- PacMan
- conjunto de fantasmas
- conjunto de maçãs

"Palavra" da linguagem

- nodos pretos
 - * lugares do tabuleiro
- arestas
 - * caminhos possíveis entre dois lugares
- PacMan, fantasmas e maçãs
 - * nodos com simbologia própria
 - * arcos denotam o posicionamento no tabuleiro
- nodo branco
 - * maçã já comida
 - * fase em que se encontra o jogo (no caso, segunda fase)

Regras de produção

Grafo resultante da aplicação da regra move

Comparativamente com as gramáticas de Chomsky

- em geral, não distinguem entre variáveis e terminais
 - * todos os símbolos (grafos) são tratados como terminais
- possui símbolo inicial (grafo inicial)
- linguagem gerada
 - * conjunto de grafos que podem ser gerados
 - * via derivações
 - * a partir do grafo inicial

Exercício: Jogo da Velha

- jogadas alternadas de dois jogadores
- condição de parada quando um dos jogadores completa uma linha de três casas (horizontal, vertical ou oblíqua)

◆ Exercício: Jogo de Damas

- jogador com as pedras brancas inicia o jogo
- Dica
 - na definição da regra "comer uma pedra", lembre-se de que o movimento é sempre em "linha reta"
 - * não pode fazer uma "curva" de 90° no tabuleiro

Linguagens Formais e Autômatos

P. Blauth Menezes

- 1 Introdução e Conceitos Básicos
- 2 Linguagens e Gramáticas
- 3 Linguagens Regulares
- 4 Propriedades das Linguagens Regulares
- 5 Autômato Finito com Saída
- 6 Linguagens Livres do Contexto
- 7 Propriedades e Reconhecimento das Linguagens Livres do Contexto
- 8 Linguagens Recursivamente Enumeráveis e Sensíveis ao Contexto
- 9 Hierarquia de Classes e Linguagens e Conclusões

Linguagens Formais e Autômatos

P. Blauth Menezes

blauth@inf.ufrgs.br

Departamento de Informática Teórica Instituto de Informática / UFRGS

