Homework 2

Question 1. [30 marks] Solve the following exercises, from Weeks 2 and 3(a) of the notes:

- Exercise 2.3.4
- Exercise 2.4.19
- Exercise 1.5.5

In the following two exercises, you are asked to show that a proof system is *sound* but *incomplete*. This time we will be working with formulas that involve the logical connectives \rightarrow , \vee and \neg .

The axioms of this new system K are the following:

(A1)
$$(\phi \to (\psi \to \phi))$$

(A2)
$$((\phi \to (\psi \to \chi)) \to ((\phi \to \psi) \to (\phi \to \chi)))$$

(K3)
$$\phi \to (\phi \lor \psi)$$

(K4)
$$\phi \to (\psi \lor \phi)$$

(K5)
$$(\phi \to \chi) \to ((\psi \to \chi) \to (\phi \lor \psi) \to \chi))$$

(K6)
$$\neg \phi \rightarrow (\phi \rightarrow \psi)$$

The only deduction rule of this system is still MP.

Let Γ be a set of formulas. A **formal proof in** K of formula ϕ , from Γ is a finite sequence:

$$(\phi_1,\ldots,\phi_n)$$

of formulas such that $\phi_n = \phi$ and for each $i \leq n$, one of the following holds:

- $\phi_i \in \Gamma$;
- Or ϕ_i is an instance of (A1),(A2),(K3)-(K6);
- Or ϕ_i can be deduced from an instance of (MP) for some j, k < i.

If there is a formal proof in K of ϕ from Γ , we write $\Gamma \vdash_K \phi$. If $\Gamma = \emptyset$ we write $\vdash_K \phi$ and call ϕ a **theorem of** K.

Question 2. [30 marks] Prove the soundness theorem for this proof system (i.e. prove that if $\Gamma \vdash \phi$ then $\Gamma \vDash_K \phi$). [You don't need to show that (A1) and (A2) are instances of tautologies again.]

Question 3. [40 marks] We will use a method based on invariants to show that K is not complete. For a minute, we will change our semantics, and allow the logical connectives as functions from $\{F, M, T\}$ (to some power) to $\{F, M, T\}$ with the following "truth tables":

x	$f_{\neg}(x)$
F	T
M	M
T	F

x	y	$f_{\wedge}(x,y)$
F	F	F
F	M	F
F	T	F
M	F	F
M	M	M
M	T	M
T	F	F
T	M	M
T	T	T

y	$f_{\vee}(x,y)$
F	F
M	M
T	T
F	M
M	M
T	T
F	T
M	T
T	T
	$\begin{array}{c} F \\ M \\ T \\ F \\ M \\ T \\ T \\ F \\ M \end{array}$

x	y	$f_{\rightarrow}(x,y)$
F	F	T
F	M	T
F	T	T
M	F	M
M	M	T
M	T	T
T	F	F
T	M	M
T	T	T

You can intuitively think of M as "Maybe". For this new semantics, we will consider assignments $\mathsf{Var} \to \{F, M, T\}$. Given an assignment $\mathcal{A} : \mathsf{Var} \to \{F, M, T\}$ and a formula ϕ we define $\mathsf{val}_{\mathcal{A}}(\phi)$ as in Definition 2.2.2. We write $\mathcal{A} \models \phi$ if $\mathsf{val}_{\mathcal{A}}(\phi) = T$

Definition. We say that ϕ is a *strong tautology* if for all assignments $\mathcal{A}: \mathsf{Var} \to \{F, M, T\}$ we have that $\mathcal{A} \vDash \phi$.

- (1) Show that axioms (A1),(A2), (K3)-(K6) are strong tautologies.
- (2) Prove that if ϕ and $\phi \to \psi$ are strong tautologies, then so is ψ .
- (3) Prove that $A \vee \neg A$ is not a strong tautology.
- (4) Deduce that the proof system K is not complete.

[*Hint.* You must find a formula ϕ such that $\vDash \phi$ but $\nvdash_K \phi$ (i.e. it is not the case that $\vdash_K \phi$).]