Martin Kleinsteuber: Computer Vision

Kap. 1 – Wissenswertes über Bilder

4. Korrespondenzschätzung für Merkmalspunkte

Korrespondenzschätzung

Problemstellung

- Gegeben sind zwei Bilder $I_1: \Omega_1 \to \mathbb{R}, I_2: \Omega_2 \to \mathbb{R}$ derselben 3D-Szene
- Finde Paare von Bildpunkten $(x^{(i)}, y^{(i)}) \in \Omega_1 \times \Omega_2$, die zu gleichen 3D-Punkten korrespondieren.

Korrespondenzschätzung

Problemstellung

- In dieser Session: Korrespondenzen für Merkmalspunkte in I_1 und I_2
- Habe Merkmalspunkte $\{x_1, \dots x_n\} \subset \Omega_1$ und $\{y_1, \dots y_n\} \subset \Omega_2$
- Finde passende Paare von Merkmalspunkten

Naive Lösung des Problems

Sum of squared differences (SSD)

lacktriangle Betrachte Bildausschnitte V_i um x_i und W_i um y_i in Matrixdarstellung und vergleiche die Intensitäten

Sum of Squared Differences (SSD)

Formelle Beschreibung

- Ein Kriterium: $d(V, W) = ||V W||_F^2$
- Dabei ist $||A||_F^2 = \sum_{kl} A_{kl}^2$ die quadrierte Frobeniusnorm
- Finde zu V_i das W_j mit $j = \arg\min_{k=1,...,n} d(V_i, W_k)$
- Annahme: Wenn W_i zu V_i passt, dann auch umgekehrt

Schwachpunkte der SSD-Methode

Änderungen der Beleuchtung oder Drehungen

Normierung von Intensität und Orientierung benötigt!

Rotationsnormierung

mittels Gradientenrichtung

Rotationsnormierung

mittels Gradientenrichtung

Rotationsnormierung mittels Gradientenrichtung

- Vorverarbeitung:
 - 1. Bestimme Gradienten in allen Merkmalspunkten
 - Rotiere Regionen um Merkmalspunkte so, dass Gradient in eine Richtung zeigt.
 - 3. Extrahiere V, W aus rotierten Regionen

Modellierung von Kontrast und Helligkeit

- Skalierung der Intensitätswerte (Gain) mit α
- Verschiebung der Intensitätswerte (Bias)
 mit β

• Gain-Modell: $W \approx \alpha V$

• Bias-Modell: $W \approx V + \beta \mathbb{1} \mathbb{1}^{\top}$

 $\mathbb{1} = (1, \dots 1)^{\top}$

■ Bias-and-Gain Modell: $W \approx \alpha V + \beta \ \mathbb{1} \mathbb{1}^{\top}$

Skalierung bewirkt Kontraständerung

Verschiebung bewirkt Helligkeitsänderung

Berechnung des Mittelwerts

Mittelwertbildung der Intensität

$$\overline{W} = \frac{1}{N} \left(\mathbb{1} \mathbb{1}^{\top} W \mathbb{1} \mathbb{1}^{\top} \right)$$

$$\approx \frac{1}{N} \left(\mathbb{1} \mathbb{1}^{\top} \left(\alpha V + \beta \mathbb{1} \mathbb{1}^{\top} \right) \mathbb{1} \mathbb{1}^{\top} \right)$$

$$= \alpha \frac{1}{N} \left(\mathbb{1} \mathbb{1}^{\top} V \mathbb{1} \mathbb{1}^{\top} \right) + \beta \mathbb{1} \mathbb{1}^{\top}$$

$$= \alpha \overline{V} + \beta \mathbb{1} \mathbb{1}^{\top}$$

Subtraktion der Mittelwertmatrix

$$W - \overline{W} \approx \alpha V + \beta \mathbb{1} \mathbb{1}^{\top} - (\alpha \overline{V} + \beta \mathbb{1} \mathbb{1}^{\top})$$
$$= \alpha (V - \overline{V})$$

Berechnung der Standardabweichung

Standardabweichung der Intensität

$$\sigma(W) = \sqrt{\frac{1}{N-1}} \|W - \overline{W}\|_F^2$$

$$= \sqrt{\frac{1}{N-1}} \operatorname{tr} \left(\left(W - \overline{W} \right)^\top \left(W - \overline{W} \right) \right)$$

$$\approx \sqrt{\frac{1}{N-1}} \operatorname{tr} \left(\alpha \left(V - \overline{V} \right)^\top \alpha \left(V - \overline{V} \right) \right)$$

$$= \alpha \sigma(V)$$

Kompensation von Bias und Gain

- Normalisierung der Bildsegmente durch
 - Subtraktion des Mittelwertes
 - 2. Division durch Standardabweichung

$$W_n := \frac{1}{\sigma(W)} (W - \overline{W})$$

$$\approx \frac{1}{\alpha \sigma(V)} (\alpha (V - \overline{V}))$$

$$= \frac{1}{\sigma(V)} (V - \overline{V})$$

$$= :V_n$$

Normalized Cross Correlation (NCC) Herleitung aus SSD

SSD von zwei normalisierten Bildsegmenten

$$||V_n - W_n||_F^2 = 2(N-1) - 2\operatorname{tr}(W_n^\top V_n)$$

- Die Normalized Cross Correlation der beiden Bildsegmente ist definiert als $\frac{1}{N-1} \operatorname{tr}(W_n^\top V_n)$
- Es gilt $-1 \le NCC \le 1$
- Zwei normalisierte Bildsegmente sind sich ähnlich, wenn
 - SSD klein (wenig Unterschiede)
 - NCC nahe bei +1 (hohe Korrelation)

Zusammenfassung

Korrespondenzschätzung von Merkmalspunkten

- Finde Merkmale in Bild 1 und Bild 2
- Kompensiere Rotation durch Ausrichten des Gradienten für jeden Merkmalspunkt
- Extrahiere Bildsegment um jeden Merkmalspunkt
- Beleuchtungskompensation durch Normierung der Bildsegmente
- Vergleiche die normalisierten Bildsegmente durch SSD oder NCC