Differentiation by the Chain Rule - Classwork

Suppose you were asked to take the derivatives of the following. Do so.

- a) $f(x) = (x^2 + 3x)^2$
- b) $f(x) = (x^2 + 3x)^3$
- c. $f(x) = (x^2 + 3x)^6$
- d) $f(x) = \sqrt{x^2 + 3x}$

a) causes no problem. b) is also not a problem but multiplying it out so you can take the derivative is a bit of a pain. You are capable of doing c) but clearly do not wish to. But d) can't be done with the knowledge you have.

We now introduce a method of taking derivatives of more complicated expressions. It is called the **chain rule**. If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of u, then v = f(g(x)) is a differentable function of x and $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{du}{dx}$ or equivalently, $\frac{d}{dx} [f(g(x))] = f'(g(x)) \cdot g'(x)$

Example 1) If $f(x) = (2x+5)^2$, find f'(x) without and with the chain rule. Show they are equivalent. a) without chain rule b) with chain rule

Example 2) If $f(x) = (2x+5)^3$, find f'(x) without and with the chain rule. Show they are equivalent. a) without chain rule b) with chain rule

- Example 3) If $f(x) = (2x+5)^{10}$, find f'(x)
- Example 4) If $f(x) = \sqrt{2x+5}$, find f'(x)
- Example 5) Find y' if $y = \frac{1}{4r-3}$
- Example 6) Find y' if $y = (3x^2 2x + 1)^3$

MasterMathMentor.com - 42 -Stu Schwartz

Differentiation by the Chain Rule - Homework

Find the derivatives of the following:

1.
$$y = (3x-8)^4$$

2.
$$y = (3x^2 + 2)^5$$

3.
$$y = 4(x^2 + x - 1)^{10}$$

4.
$$y = -5(4-9x)^{\frac{3}{2}}$$

5.
$$y = \frac{1}{3x - 2}$$

6.
$$y = \frac{-1}{\left(x^2 - 5x - 6\right)^2}$$

7.
$$y = \left(\frac{2}{2-x}\right)^2$$

8.
$$y = \frac{4x}{(x+1)^2}$$

9.
$$y = \frac{-3}{\left(x^3 - x^2 + 3\right)^3}$$

10.
$$y = x^3 (5x - 1)^4$$

11.
$$y = \sqrt{1-t}$$

12.
$$y = \sqrt[3]{3x^3 - 4x + 2}$$

13.
$$y = \frac{2}{\sqrt{2x+3}}$$

14.
$$y = \frac{-1}{\sqrt{r+1}}$$

15.
$$y = \sqrt{\frac{3x}{2x-3}}$$

Find the derivatives of the following:

7)
$$y = (7 - 4x^2)^{\frac{2}{3}}$$

8)
$$y = -5\sqrt{x^2 - 4x + 1}$$

9)
$$y = \frac{-2}{\sqrt[4]{6x-1}}$$

More difficult problems: We now have 3 basic rules. Power rule, product rule, and quotient rule. Note that the chain rule is not a basic rule of differentiation. The chain rule is always in effect. Even when you find the derivative of y = 7x, your answer is 7 times the derivative of x which is 7(1) = 7.

Find the derivatives of the following:

10)
$$y = x^2(2x-3)^4$$

11)
$$y = x\sqrt{4-x^2}$$

12)
$$y = \left(\frac{2x-1}{2x+1}\right)^5$$

13)
$$y = \frac{x}{\sqrt{x^2 - x^2}}$$

14)
$$y = \sqrt{\frac{x}{4x-1}}$$

15)
$$y = \sqrt[3]{4x - \sqrt{2x+1}}$$

Given that f(2) = -3, f'(2) = 6, g(2) = 3, g'(2) = -2, f'(3) = 4, find the derivatives of the following at x = 2.

16)
$$f(x) \cdot g(x)$$
 17) $\frac{f(x)}{g(x)}$

17)
$$\frac{f(x)}{g(x)}$$

18)
$$\left[f(x) \right]^3$$

19)
$$f(g(x))$$

Master Math Mentor.comStu Schwartz

16.
$$y = \sqrt{x}(1 - 2x)^2$$

17.
$$y = \sqrt[3]{\frac{2t}{t^2 - 4}}$$

18.
$$y = (x^2 + 2x - 6)^2 (1 - x^3)^2$$

For each of the following, find the equation of the tangent line at the indicated point. Verify by calculator.

19.
$$y = \sqrt{x^2 + 2x + 8}$$
 at $(2,4)$ 20. $y = \sqrt[5]{3x^3 + 4x}$ at $(2,2)$ 21. $y = \sqrt[5]{\frac{3x - 1}{2x + 1}}$ at $(-1,2)$

20.
$$y = \sqrt[5]{3x^3 + 4x}$$
 at $(2, 2)$

21.
$$y = \sqrt{\frac{3x-1}{2x+1}}$$
 at $(-1,2)$

Given the following information, find the value of the derivative of the functions at x = 3. Be careful, not all the information is needed to calculate these. Answers are next to the problem.

х	f(x)	g(x)	f(x)	g'(x)
3	1	8	-3	-5
6	3	-2	4	5
8	-1	3	π	4
1	2	-6	5	0

22.
$$f(x) + g(x)$$
 (Ans: -8)

23.
$$f(x)g(x)$$
 (Ans: -29)

24.
$$\frac{f(x)}{g(x)}$$
 (Ans: $\frac{-19}{64}$)

25.
$$\frac{g(x)}{f(x)}$$
 (Ans: 19)

26.
$$(f(x))^2$$
 (Ans: -6)

27.
$$\frac{1}{g(x)}$$
 (Ans: $\frac{5}{64}$)

28.
$$\sqrt{f(x)}$$
 (Ans: $\frac{-3}{2}$)

28.
$$\sqrt{f(x)}$$
 (Ans: $\frac{-3}{2}$) 29. $\sqrt{f(x) + g(x)}$ (Ans: $\frac{-4}{3}$) 30 $f^{3}(x)g(x)$ (Ans: -77)

30
$$f^3(x)g(x)$$
 (Ans: -77

- 45 -