

JCZEŃ:	
ІміĘ:	
Nazwisko:	

DIAGNOZA MATURALNA:

INFORMATYKA

POZIOM: ROZSZERZONY

DATA: 6 czerwca 2025 r. GODZINA ROZPOCZĘCIA: 7:30 CZAS TRWANIA: 150 minut

LICZBA PUNKTÓW DO UZYSKANIA: 30

ZADANIE 1. PROSTOKĄTNA LICZBA BINARNA

Rozważmy tablicę o \boldsymbol{w} wierszach i \boldsymbol{k} kolumnach oraz dodatnią liczbę całkowitą \boldsymbol{n} , której zapis w postaci binarnej ma co najwyżej \boldsymbol{w} * \boldsymbol{k} cyfr. Tę liczbę zapisujemy w systemie binarnym i wpisujemy otrzymane cyfry w kolejnych komórkach tablicy, począwszy od lewego górnego rogu.

Cyfry zapisu binarnego najpierw wprowadzamy do pierwszego wiersza, następnie – do drugiego, potem – do trzeciego wiersza itd. Jeśli w pewnej komórce zakończymy wprowadzanie ostatniej cyfry zapisu binarnego, to od następnej komórki zaczynamy wprowadzać ponownie cyfry zapisu binarnego tej samej liczby, zaczynając od pierwszej cyfry. Szukamy cyfry znajdującej się w prawym dolnym rogu tablicy.

Przykład. 1.

Weźmy w = 5, k = 3, n = 19.

Przedstawiamy liczbę n = 19 w zapisie binarnym: 10011. Wprowadzamy cyfry zapisu binarnego liczby n do tablicy 5 x 3. Zaczynamy od lewego górnego rogu i wpisujemy kolejne cyfry, aż osiągniemy koniec tablicy.

1	0	0
1	1	1
0	0	1
1	1	0
0	1	1

Cyfrą w prawym dolnym rogu jest 1.

ZADANIE 1.1. (0–1)

Wprowadź cyfry zapisu binarnego liczby n = 179 do tablicy o wymiarach w = 4 i k = 5 według powyższej metody.

Miejsce na obliczenia (brudnopis):	

ZADANIE 1.2. (0–4)

Dana jest dodatnia liczba całkowita n. Cyfry zapisu binarnego liczby n wprowadzono w sposób przedstawiony na początku zadania do tablicy o wymiarach $w \times k$. W pseudokodzie lub języku programowania zapisz algorytm, który wyznaczy cyfrę zapisu binarnego liczby n znajdującą się w prawym dolnym rogu tabeli o wymiarach $w \times k$.

Uwaga: W zapisie algorytmu możesz wykorzystać tylko operacje arytmetyczne (dodawanie, odejmowanie, mnożenie, dzielenie, dzielenie całkowite, reszta z dzielenia), porównywanie liczb, odwoływanie się do pojedynczego elementu tablicy za pomocą jego indeksu, instrukcje sterujące, przypisania do zmiennych lub samodzielnie napisane funkcje, wykorzystujące powyższe operacje. **Zabronione** jest używanie funkcji wbudowanych oraz operatorów innych niż wymienione.

Specyfikacja		
Dane:		
Wynik:	w k n	 dodatnia liczba całkowita, liczba wierszy tablicy dodatnia liczba całkowita, liczba kolumn tablicy dodatnia liczba całkowita
vvyriik.	X	 cyfra w zapisie binarnym liczby n, która stoi w dolnym prawym rogu tablicy
Algorytm:		
	•••••	
	•••••	
	•••••	••••••
	•••••	
	•••••	

ZADANIE 2. TEST

Oceń prawdziwość podanych zdań. Zaznacz ${f P}$, jeśli zdanie jest prawdziwe, albo ${f F}$ – jeśli jest fałszywe.

W każdym zadaniu punkt uzyskasz tylko za komplet poprawnych odpowiedzi.

ZADANIE 2.1. (0–1)

Dany jest algorytm:

$$s \leftarrow 0$$

dla $i = 1, 2, ..., n$
dla $j = i, i + 1, ..., n$
 $s \leftarrow s + 1$

Złożoność obliczeniowa powyższego algorytmu oceniona liczbą wykonań instrukcji $s \leftarrow s + 1$, w zależności od dodatniej liczby całkowitej n, jest

1	liniowa	Р	F
2	kwadratowa	Р	F
3	n log n	Р	F
4	nie większa niż sześcienna	Р	F

ZADANIE 2.2. (0–1)

Po dodaniu liczb 1324 oraz 31114 zapisanych w systemie czwórkowym otrzymamy:

1	11110112	Р	F
2	3628	Р	F
3	F3 ₁₆	Р	F
4	33034	Р	F

ZADANIE 2.3. (0–1)

W bazie danych istnieje tabela *mandaty(numer, id_osoby, punkty)* zawierająca następujące dane:

numer	ld_osoby	punkty
1	1	5
2	1	14
3	2	20
4	3	21
5	2	1
6	1	2

1	Wynikiem zapytania:	Р	F
	SELECT id_osoby, sum(punkty) FROM mandaty GROUP BY id_osoby HAVING sum(punkty) > 5		
	jest zestawienie: 1 14 2 20 3 21		
2	Wynikiem zapytania:	Р	F
	SELECT id_osoby, sum(punkty) FROM mandaty GROUP BY id_osoby		
	jest zestawienie: 1 21 2 21 3 21		
3	Wynikiem zapytania:	Р	F
	SELECT numer + punkty FROM mandaty		
	jest 86		
4	Wynikiem zapytania:	Р	F
	SELECT count(punkty) FROM mandaty WHERE punkty = 21		
	jest 1		

ZADANIE 3. LICZBA PI

Pewien matematyk jest zafascynowany liczbą $\pi \approx 3,14159265...$ do tego stopnia, że zapisał jej rozwinięcie dziesiętne z dokładnością do 10 000 cyfr po przecinku. Wszystkie cyfry po przecinku zapisał w pliku tekstowym pi.txt.

Plik pi.txt zawiera 10 000 wierszy, każdy wiersz zawiera jedną cyfrę. W pierwszych 10 wierszach pliku zapisano zatem cyfry:

Matematyk zastanawia się, jakiego rodzaju regularności można zaobserwować w zebranych danych.

Napisz **program(y)**, który(-e) da(-dzą) odpowiedzi do poniższych zadań. Odpowiedzi do zadań zapisz w pliku wyniki3.txt, a każdą z nich poprzedź numerem odpowiedniego zadania.

Plik pi_przyklad.txt zawiera 100 pierwszych wierszy pliku pi.txt. Odpowiedzi dla danych z tego pliku są podane pod treściami zadań.

ZADANIE 3.1. (0–2)

Fragmentem 2-cyfrowym nazywamy dwie następujące po sobie cyfry w pliku pi.txt. Wszystkich fragmentów 2-cyfrowych zapisanych w tym pliku jest 9 999. Ostatni rozpoczyna się w wierszu nr 9 999.

Przykładowe fragmenty 2-cyfrowe podano w poniższej tabeli.

i	Fragment 2-cyfrowy złożony z cyfr na pozycjach i, i+1
1	14
2	41
3	15
9	35

Znajdź liczbę wszystkich fragmentów *2-cyfrowych*, które są zapisami dziesiętnymi liczb o wartościach **większych** od 90.

Dla danych zapisanych w pliku pi przyklad. txt poprawna odpowiedź to 13.

ZADANIE 3.2. (0-3)

Wszystkich możliwych różnych fragmentów *2-cyfrowych* jest dokładnie 100. Są nimi fragmenty 00, 01, 02, ..., 99. Można sprawdzić, że np. *2-cyfrowy* fragment równy 27 występuje w pliku pi.txt dokładnie 101 razy.

Znajdź fragmenty 2-cyfrowe, których liczba wystąpień w pliku pi.txt jest najmniejsza, oraz fragmenty 2-cyfrowe, których liczba wystąpień w pliku pi.txt jest największa. W wyniku podaj znalezione fragmenty 2-cyfrowe oraz liczby ich wystąpień.

W przypadku, gdy więcej niż jeden fragment występuje tyle samo razy, wypisz ten o mniejszej wartości liczbowej.

Dla danych w pliku $pi_przyklad.txt$ poprawna odpowiedź to 00 0 62 4

(minimalna liczba wystąpień: fragment 00, liczba wystąpień 0; maksymalna liczba wystąpień: fragment 62, liczba wystąpień 4)

--> Informacja do zadań 3.3. i 3.4. <--

Skończony co najmniej 4-elementowy ciąg liczb (a_1 , a_2 , ..., a_n) jest rosnąco-malejący, jeśli można podzielić go na dwa ciągi, z których pierwszy jest rosnący, a drugi – malejący, tzn. jeśli istnieje takie $k \in \{2, 3, ..., n-2\}$, że $a_1 < a_2 < ... < a_k$ oraz $a_{k+1} > a_{k+2} > ... > a_n$.

Przykład:

Ciąg (2, 5, 7, 9, 8, 3, 1) jest *rosnąco-malejący*, bo można go podzielić na dwa ciągi: rosnący (2, 5, 7) i malejący (9, 8, 3, 1) lub – odpowiednio – (2, 5, 7, 9) i (8, 3, 1). Ciąg (5, 9, 9, 4,1) także jest *rosnąco-malejący*.

Przykłady ciągów, które nie są *rosnąco-malejące*, to: (2, 5, 8, 4, 3, 4, 5), (1, 2, 3, 4), (5, 5, 3, 2, 1).

ZADANIE 3.3. (0–3)

Podaj, ile jest wszystkich *rosnąco-malejących* ciągów złożonych z dokładnie sześciu kolejnych cyfr zapisanych w pliku pi.txt.

Dla pliku pi_przyklad.txt poprawna odpowiedź to 3. (w pliku pi_przyklad.txt są trzy ciągi *rosnąco-malejące* złożone z dokładnie sześciu cyfr: 028841, 089986, 899862)

ZADANIE 3.4.(0-2)

Znajdź najdłuższy ciąg kolejnych cyfr z pliku pi.txt, który jest *rosnąco-malejący*, oraz pozycję, na której on się rozpoczyna. W pliku pi.txt jest tylko jeden taki ciąg o największej długości.

Wynik zapisz w dwóch wierszach: w pierwszym wierszu zapisz pozycję, od której zaczyna się znaleziony ciąg, a w drugim wypisz znaleziony ciąg. Cyfry ciągu zapisz jedną po drugiej, bez znaku odstępu.

Dla danych w pliku pi przyklad. txt poprawna odpowiedź to

77 0899862

(najdłuższy ciąg *rosnąco-malejący* w pliku pi_przyklad.txt to ciąg 0899862 o długości 7 rozpoczynający się w 77 wierszu pliku).

Do oceny oddajesz:

- plik tekstowy wyniki3.txt, zawierający odpowiedzi do poszczególnych zadań (odpowiedź do każdego zadania powinna być poprzedzona jego numerem)
- plik(i) zawierający(-e) kody źródłowe Twojego(-ich) programu(-ów) o nazwie(-ach) odpowiednio:

zadanie 3.1
zadanie 3.2
zadanie 3.3
zadanie 3.4

ZADANIE 4. TEST OBIEKTOWOŚCI (0-1)

Oceń prawdziwość podanych zdań. Zaznacz **P**, jeśli zdanie jest prawdziwe, albo **F** – jeśli jest fałszywe.

1	Klasa jest konkretną instancją obiektu utworzoną w pamięci komputera	Р	F
2	Metoda to funkcja zdefiniowana wewnątrz klasy	Р	F
3	Modyfikacja jednego obiektu nie wpływa na inne obiekty tej samej klasy	Р	F
4	Ukrywanie danych przed bezpośrednim dostępem z zewnątrz jest złą praktyką programistyczną	Р	F

ZADANIE 5. SZACHY

Uwaga: do rozwiązania zadań 5.1. – 5.3. nie jest potrzebna znajomość reguł gry w szachy.

W pliku szachy. txt znajduje się zapis partii szachów, jaką w 2020 roku rozegrali polski arcymistrz Jan Krzysztof Duda oraz mistrz świata Magnus Carlssen. Zapis partii składa się z opisów 125 plansz przedstawiających stany gry (położenie bierek na szachownicy) po kolejnych posunięciach każdego z graczy. Opis każdej planszy składa się z:

- 8 wierszy tekstu po 8 znaków w każdym wierszu
- kolejne znaki w wierszach oznaczają:
 - znak '.' puste pole
 - wielkie litery białe bierki (czyli białe figury i pionki)
 - małe litery czarne bierki

– oznaczenia bierek to:

K/k - król, W/w - wieża, S/s - skoczek,

H/h – hetman, G/g – goniec, P/p – pionek.

Dla zachowania czytelności, po każdym opisie następuje pojedynczy pusty wiersz. W dalszej części, zamiast "opis planszy", będziemy pisać krótko "plansza".

Przykłady: (na lewo stan gry, na prawo graficzna reprezentacja obrazująca ów stan gry)

wsghkgsw	-	-	A	W	حف	٨		-
pppppppp	-			₩				
P					Δ			
PPPP.PPP				<u>A</u>			<u>A</u>	2
WSGHKGSW	I	9	<u>ê</u>	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	*	<u>ê</u>	4	Ï
wsghkgsw								
pp.ppppp		2	<u>e</u>	₩				
p	1	•		•	1	1	*	4
			4					
		ш		ш				
P					<u>A</u>			
• • • • • • •								
PPPP.PPP	8	2	8	<u>A</u>		<u>A</u>	<u>A</u>	8
WSGHKGSW	I	9	Ê	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	*	<u>\$</u>	2	Ï

Napisz **program(-y)**, który(-e) znajdzie(-dą) odpowiedzi do poniższych zadań. Do Twojej dyspozycji jest plik szachy_przyklad.txt, który zawiera 9 plansz zapisanych w podanym wyżej formacie. Odpowiedzi dla pliku szachy_przyklad.txt podano w treści poszczególnych zadań. Pamiętaj, że Twój(-e) program(-y) musi(-szą) działać dla 125 plansz.

ZADANIE 5.1.(0-3)

Podaj, na ilu planszach znajduje się przynajmniej jedna pusta kolumna, czyli taka, na polach której nie stoi żadna bierka. Podaj także największą liczbę pustych kolumn na jednej z tych plansz.

Odpowiedź dla pliku szachy_przyklad.txt:

(7 plansz z pustymi kolumnami, największa liczba pustych kolumn na planszy – 5).

Do oceny oddajesz:

 plik zadanie5_1.txt zawierający odpowiedź do zadania (dwie liczby oddzielone
spacją – liczba plansz z pustymi kolumnami oraz największa liczba pustych kolumn
na planszy)
• plik(-i) z komputerową realizacją zadania (kodem programu) o nazwie (nazwach):

ZADANIE 5.2. (0-3)

Rozstrzygnij, ile razy w trakcie gry (inaczej: na ilu planszach zapisanych w pliku szachy.txt) nastąpiła sytuacja, w której jest równowaga – jest <u>tyle samo</u> i <u>takich samych</u> czarnych bierek, ile białych. Podaj liczbę takich plansz, a także najmniejszą liczbę bierek (łącznie białych i czarnych) na planszy w stanie równowagi.

Przykład:

A:	B:
.k	.p
• • • • • • •	• • • • • • • • • • • • • • • • • • • •
s	s
S	S
K	K

Plansza A jest w równowadze, a plansza B nie jest w równowadze (czarne i białe nie mają takich samych bierek).

Odpowiedź dla pliku szachy_przyklad.txt:

64

(6 plansz w równowadze, 4 – najmniejsza liczba bierek na planszy w stanie równowagi)

Do oceny oddajesz:

- plik zadanie5_2.txt zawierający odpowiedź do zadania (dwie liczby oddzielone spacją liczba plansz w stanie równowagi oraz najmniejsza liczba bierek na planszy w stanie równowagi)
- plik(-i) z komputerową realizacją zadania (kodem programu) o nazwie (nazwach)

.....

ZADANIE 5.3. (0-4)

Wieża szachuje króla przeciwnego gracza, jeśli znajduje się w tym samym wierszu lub w tej samej kolumnie co król i pomiędzy nimi nie ma żadnej innej bierki.

Oblicz i podaj, na ilu planszach biała wieża szachuje czarnego króla oraz na ilu planszach czarna wieża szachuje białego króla.

Odpowiedź dla pliku szachy_przyklad.txt:

(2 razy biała wieża szachuje czarnego króla, 0 razy czarna wieża szachuje białego króla).

Do oceny oddajesz:

- plik zadanie5_3.txt zawierający odpowiedź do zadania (dwie liczby oddzielone spacją liczba plansz, na których biała wieża szachuje czarnego króla, i liczba plansz, na których czarna wieża szachuje białego króla)
- plik(-i) z komputerową realizacją zadania (kodem programu) o nazwie (nazwach)

.....

Zadanie 6. Największy wspólny dzielnik – NWD (0-1)

Algorytm opisany w Księdze VII *Elementów* Euklidesa pozwala szybko obliczyć największy wspólny dzielnik dwóch liczb naturalnych a i b-nwd (a, b), z których co najmniej jedna jestwiększa od 0.

Oto rekurencyjny sposób obliczania nwd(a, b):

$$nwd(a,b) = \begin{cases} a & \text{dla } b = 0\\ nwd(b, a \mod b) & \text{dla } b \ge 1 \end{cases}$$

gdzie: mod - operator dzielenia modulo; wynikiem jego działania jest**reszta**z dzielenia <math>a przez b, na przykład 19 mod 7 = 5.

Przykład:

$$nwd(16,12) = nwd(12, 4) = nwd(4,0) = 4$$

funkcja <i>nwd</i> jest wywoływana w tym przypadku 3 razy: Podaj liczbę wywołań funkcji dla a=56 i <i>b</i> =72 oraz dla a=72 i b=56	