www. tremepaders.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2007 question paper

9702 PHYSICS

9702/04

Paper 4 (A2 Structures Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

		J	GCE A/AS LEVEL – May/June 2007	9702	04	
1	(a)	(reg	gion of space) where a <u>mass</u> experiences a force		B1	[1]
	(b)	(i) potential energy = $(-)GMm / x$ $\Delta E_P = GMm/2R - GMm/3R$ = $GMm/6R$			C1 M1 A0	[2]
		(ii)	$E_{\rm K} = \frac{1}{2}m (7600^2 - 7320^2)$ = $(2.09 \times 10^6)m$		M1 A0	[1]
	(c)	(i)	$2.09 \times 10^6 = (6.67 \times 10^{-11} \text{ M})/(6 \times 3.4 \times 10^6)$ $M = 6.39 \times 10^{23} \text{ kg}$		C1 A1	[2]
		(ii)	e.g. no energy dissipated due to friction with atmosphere/a rocket is outside atmosphere not influenced by another planet etc.	<u>air</u>	B1	[1]
2	(a) (on melting,) bonds between molecules are broken/weakened or molecules further apart/are able to slide over one another kinetic energy unchanged so no temperature change potential energy increased/changed so energy required				B1 B1 B1	[3]
	(b)	thermal energy/heat required to convert unit mass of solid to liquid with no change in temperature/ at its normal boiling point			M1 A1	[2]
	(c)	(i)	thermal energy lost by water = $0.16 \times 4.2 \times 100$ = 67.2 kJ $67.2 = 0.205 \times L$ $L = 328 \text{ kJ kg}^{-1}$		C1 C1 A1	[3]
		(ii)	more energy (than calculated) melts ice so, (calculated) \boldsymbol{L} is lower than the accepted value		M1 A1	[2]
3	(a)		d strength = potential gradient rect sign OR directions discussed		M1 A1	[2]
	(b)	area is 21.2 cm ² ± 0.4 cm ² (if outside ± 0.4 cm ² but within ± 0.8 cm ² , allow 1 mark) 1.0 cm ² represents $(1.0 \times 10^{-2} \times 2.5 \times 10^{3} =) 25 \text{ V}$ potential difference = 530 V $\frac{1}{2}mv^{2} = qV$ $\frac{1}{2} \times 9.1 \times 10^{-31} \times v^{2} = 1.6 \times 10^{-19} \times 530$ $v = 1.37 \times 10^{7} \text{ ms}^{-1}$			C2	
					C1 A1	[4]
	(c)				C1 A1	[2]
	(d)	(i)	<i>d</i> = 0		B1	[1]
		(ii)	acceleration decreases then increases some quantitative analysis (e.g. minimum at 4.0 cm) (any suggestion that acceleration becomes zero or that the deceleration scores 0/2)	ere is a	B1 B1	[2]

Mark Scheme

Syllabus

Paper

Page 2

	Page 3		Mark Scheme	Syllabus	Paper	
			GCE A/AS LEVEL – May/June 2007		04	
4	N _S /	$N_{P} =$	Atput = $9/\sqrt{2}$ or peak input = $230\sqrt{2}$ $V_{\rm S}/V_{\rm P}$ $3 \rightarrow 140$ turns		C1 C1 A1	[3]
	(b) (i)		diodes correctly positioned regardless of output polaring correct output polarity (all 'point to left')	ty	M1 A1	[2]
	(ii)	capa	acitor shown in parallel with R		B1	[1]
	(c) (i)	time	t_1 to time t_2		B1	[1]
	(ii)		ch: same peak values le reduced and reasonable shape		M1 A1	[2]
5	(a) (i)	pack	ket/discrete quantity/quantum (of energy) of e.m. radiat	ion	B1	[1]
	(ii)	or E	er $E = (6.63 \times 10^{-34} \times 3 \times 10^{8})/(350 \times 10^{-9})$ $E = (6.63 \times 10^{-34} \times 8.57 \times 10^{14})$ $E = (6.63 \times 10^{-19})$		M1 A0	[1]
	(iii)	0.5			B1	[1]
	(b) (i)	to ca	rgy of photon ause emission of electron <u>from surface</u> er with zero k.e <i>or</i> photon energy is minimum		M1 A1	[2]
	(ii)	corre	ect conversion eV \rightarrow J or J \rightarrow eV seen once ton energy must be greater than work function nm wavelength and potassium metal		B1 C1 A1	[3]
6	of a	a nucl	ty of decay eus per unit time mark for $A = \lambda N$, with symbols explained)		M1 A1	[2]
	(b) (i)		$ln2/(28 \times 365 \times 24 \times 3600)$ $85 \times 10^{-10} \text{ s}^{-1}$		C1 A1	[2]
	(ii)	N = = 8.7 mas	$(-)\lambda N$ $(6.4 \times 10^9)/(7.85 \times 10^{-10})$ 15×10^{18} $48 = (8.15 \times 10^{18} \times 90)/(6.02 \times 10^{23})$ (e.c.f. for value of N) 49×10^{-3} g	V)	C1 C1 C1 A1	[4]
	(iii)	volu	me = $(1.22 \times 10^{-3}/2.54 =) 4.8 \times 10^{-4} \text{ cm}^3$		A1	[1]
	or	dust c	ery small volume of Strontium-90 has high activity an be highly radioactive g in dust presents health hazard		B1 B1	[2]

	Page 4	Mark Scheme	Syllabus	Pape	r		
		GCE A/AS LEVEL – May/June 2007	9702	04			
7	(a) (i)	oscillations are damped/amplitude decreases as magnet moves, flux is cut by coil e.m.f./current is induced in the coil causing energy loss in load OR force on magnet energy is derived from oscillations of magnet		B1 B1 B1 B1			
		OR force opposes motion of magnet		B1	[5]		
	(ii)	T = 0.60 s $\omega_0 \ (= 2\pi/T) = 10.5 \text{ rad s}^{-1}$		C1 A1	[2]		
		tch: sinusoidal wave with period unchanged or slightly sn ne initial displacement, less damping	naller	M1 A1	[2]		
	(c) (i)	sketch: general shape – peaked curve peak at ω_0 and amplitude never zero		M1 A1	[2]		
	(ii)	resonance		B1	[1]		
	(iii)	useful: e.g. child on swing, microwave oven heating avoid: e.g. vibrating panels, vibrating bridges (for credit, stated example must be put in context)		B1 B1	[2]		
Section B							
8	(a) e.g	infinite (voltage) gain infinite input impedance zero output impedance infinite bandwidth infinite slew rate (any three, 1 each)		В3	[3]		
	(b) (i)	negative (feedback)		B1	[1]		
	(ii)	1 gain (= 5.8/0.069) = 84		B1	[1]		
	(ii)	2 gain = 1 + 120/ X 84 = 1 + 120/ X X = 1.45 k Ω		C1 A1	[2]		
	(iii)		ases	B1	[1]		

	Page 5		Mark Scheme	Syllabus	Paper	
			GCE A/AS LEVEL – May/June 2007	9702	04	
9	(a)	different giving 'sl	eam directed through body onto detector (plate) tissues absorb/attenuate beam by different amounts hadow' image of structures er detail e.g. comment re sharpness or contrast		B1 B1 B1 B1	[4]
	(b)	CT scan these bu series of so that 3 image ca	age is flat OR 2-dimensional (1) takes many images of a slice at different angles (1) fill up an image of a slice through the body (1) fimages of slices is made (1) fill mage can be built up (1) fan then be rotated (1) for each point, max 5		B5	[5]
10	(a)	graph dr	values of 2, 5, 10, 15 and 4 (–1 each error) rawn as a series of steps recurring at correct times		B2 M1 A1	[4]
	(b)		more frequently number of bits		B1 B1	[2]
11	(a)	both amp	or and oscillator identified plifiers identified correctly d parallel-to serial converter identified		B1 B1 B1	[3]
	(b)	monitors switches	er at cellular exchange s signal strength s call from one base station to another ain maximum signal strength		B1 B1 B1 B1	[4]