Chapter 2

Errata

• p. 11, Sec. 2.3, para. 2: error: $h: \Omega \to \mathbb{R}^t$ correction: $h: \Omega \to \mathbb{R}$

• p. 15: error: $\rho = \sqrt{u^2 + v^2}$ correction: $\rho = \sqrt{u^2 + v^2} - 1$

• p. 15: error: $\varrho + 0.4\cos(\varphi)$ correction: $0.25\varrho + 0.4\cos(\varphi)$

Exercise 2.5.

 (\Rightarrow) Let φ_t, ψ_t be flows of **X**, **Y** respectively. The definition of the flow leads to

$$\dot{\varphi}_t(\mathbf{x}) = \mathbf{X}(\varphi_t(\mathbf{x})), \quad \dot{\psi}_t(\mathbf{x}) = \mathbf{Y}(\psi_t(\mathbf{x})).$$
 (0.1)

Suppose a diffeomorphism Φ conjugates the flows, i.e., $\Phi \circ \varphi_t(x) = \psi_t \circ \Phi(x)$. By differentiating both sides of this equation w.r.t. t,

$$[D\mathbf{\Phi}(\varphi_t(\mathbf{x}))] \dot{\varphi}_t(\mathbf{x}) = \dot{\psi}_t \circ \mathbf{\Phi}(\mathbf{x})$$

$$\Leftrightarrow [D\mathbf{\Phi}(\varphi_t(\mathbf{x}))] \mathbf{X}(\varphi_t(\mathbf{x})) = \mathbf{Y}(\psi_t \circ \mathbf{\Phi}(\mathbf{x}))$$
(0.2)

Let t = 0, then we obtain

$$D_x \mathbf{\Phi} \cdot \mathbf{X}(x) = \mathbf{Y}(\mathbf{\Phi}(x)), \tag{0.3}$$

since φ_0, ψ_0 are identity map.

 (\Leftarrow) Consider a diffeomorphism Φ which satisfies Eq. (0.3). Let $y(t) = \Phi \circ \varphi_t(x)$. Then

$$\dot{\boldsymbol{y}}(t) = D\boldsymbol{\Phi}(\varphi_t(\boldsymbol{x}))\mathbf{X}(\varphi_t(\boldsymbol{x})) = \mathbf{Y} \circ \boldsymbol{\Phi} \circ \varphi_t(\boldsymbol{x}) \quad (\because \text{ eq. } (0.3))$$
$$= \mathbf{Y}(\boldsymbol{y}(t)). \tag{0.4}$$

Thus y(t) is a solution of the ODE of vector field Y and of initial condition $\Phi(x)$. That is, $y(t) = \psi_t \circ \Phi(x)$.

Exercise 2.14.

In the (ρ, φ, w) coordinate system, the torus is written as

$$(\varrho, \varphi, w)^{\top} = (0.8 \sin \vartheta, \varphi, 0.8 \cos \vartheta)^{\top}. \tag{0.5}$$

Let S be the solenoid map and $\mathbf{p}_1 = (\varrho_1, \varphi_1, w_1)^{\top}, \mathbf{p}_2 = (\varrho_2, \varphi_2, w_2)^{\top}$. Suppose $\mathbf{S}(\mathbf{p}_1) = \mathbf{S}(\mathbf{p}_2)$. Then $\varphi_1 = \varphi_2$ follows from the second component of this equation. The other components provide $\varrho_1 = \varrho_2, w_1 = w_2$. Therefore the solenoid map is injective. The solenoid map operates as

$$\mathbf{S}(\mathbf{p}) = (0.2\sin\vartheta + 0.4\cos\varphi, 2\varphi, 0.2\cos\vartheta + 0.4\sin\varphi)^{\mathsf{T}}.$$
(0.6)

Then we obtain

$$S(\mathbf{p})_{1}^{2} + S(\mathbf{p})_{3}^{2} = 0.2 + 0.16\sin\theta\cos\varphi + 0.16\cos\theta\sin\varphi \le 0.52 < 0.64 = (\mathbf{p})_{1}^{2} + (\mathbf{p})_{3}^{2}.$$
 (0.7)

Thus the injection is strict.

Exercise 2.16.

Let $J_f := \{I_{f,j}\}_j = \{[a_{f,j}, a_{f,j+1})\}_j$ be a set of intervals associated with a piecewise expanding map f.

Lemma 0.1.

Let f, g be piecewise expanding maps. The phase space of $g \circ f$ can be decomposed into subintervals of the elements of J_f such that $g \circ f$ is monotone and C^2 in each of the subintervals.

Proof.

Let K be a minimal set which satisfies $f(I_{f,j}) \subset \bigcup_{k \in K} I_{g,k}$. Since f is monotone on $I_{f,j}$,

$$f(x) = a_{q,\min K + k'} \tag{0.8}$$

have unique solution in $I_{f,j}$. Let $b_{j,k'}$ $(1 \le k' \le |K| - 1)$ be such solutions. Consider a finite sequence $a_{f,j} = b_{j,0} < b_{j,1} < \cdots < b_{j,|K|} = a_{f,j+1}$ and let $L_{j,p} := [b_{j,p}, b_{j,p+1})$. f,g are monotone C^2 maps on each $L_{j,p}$, so its composition $f \circ g$ is.

Suppose f^n be a piecewise expanding map. The Lemma. 0.1 tells us that the phase space of f^{n+1} can be decomposed into intevals in each of which f^{n+1} is monotone and C^2 . Also,

$$|(f^{(n+1)m})'| \ge c^{n+1} > 1 \tag{0.9}$$

holds. Therefore, f^{n+1} is a piecewise expanding map. The proposition follows by induction.

Exercise 2.19.

$$f_2 \circ \Phi = 1 - 2\sin^2 \frac{\pi x}{2} = \cos \pi x$$

$$\Phi \circ g = \sin \frac{\pi}{2} (1 - 2|x|) = \sin \left(\frac{\pi}{2} - \pi |x|\right) = \cos \pi |x| = \cos \pi x$$

$$\therefore f_2 \circ \Phi = \Phi \circ g \tag{0.10}$$

Exercise 2.21.

$$\mathcal{S}^{-1}(\mathbf{x})_i = x_{i-1} \tag{0.11}$$

Exercise 2.22.

Let ⁻ denotes a periodic part of a dyadic representation.

If a number x has a finite dyadic representation, it give rise to two representations as follows:

$$x = 0.a_1 a_2 a_3 \cdots a_m 1\bar{0}$$

= $0.a_1 a_2 a_3 \cdots a_m 0\bar{1}$. (0.12)

Thus its dyadic representation is not unique.

Suppose that a number x, which admits no finite dyadic representation, have two different dyadic representation:

$$x_a = 0.a_1 a_2 a_3 \cdots$$

$$x_b = 0.b_1 b_2 b_3 \cdots$$

$$(0.13)$$

Let n be minumum i that satisfies $a_i \neq b_i$. We can assume $a_n = 1, b_n = 0$ w.l.o.g. This means $x_a \geq x_b$ and the equality holds iff $a_{n'} = 0, b_{n'} = 1$ ($n' \geq n + 1$). This contradicts our assumption that x admits no finite dyadic representation. Thus such number has a unique dyadic representation.

Therefore, the set of numbers of nonunique dyadic representation coincides with that of finite dyadic representation. The number of finite dyadic representation is rational, since it is a sum of rationals. Thus the set of numbers of nonunique dyadic representation is countable, since it is a subset of \mathbb{Q} .

Exercise 2.23.

Let x_* be a 32 bit (approximated) representation of $x \in [0,1)$. The inteval map act as a unilateral shift in the representation. Hence, the bits are moved to the left in order, during which the leftmost ones are discarded. When the map is applied 32 times, the least significant bit of x_* is discarded at last, then bits of zeros remain. This is apparently the fixed point.

The same applies to the case of 64 bit representation.

Exercise 2.24.