SPEECH COMMAND MODEL

February 5, 2021

• OVERVIEW:

Speech recognition is the process of converting human sound signals into words or instructions. It is based on speech. It is an important research direction of speech signal processing and a branch of pattern recognition. Speech recognition applications include voice user interfaces such as voice dialing (e.g. "call home"), call routing (e.g. "I would like to make a collect call"), domestic appliance control, search key words (e.g. find a podcast where particular words were spoken), simple data entry (e.g., entering a credit card number). In similar way Speech voice recognition model is based on concepts of Convolution, LSTM, Attention and recognise pretrained voice with accuracy of 99.6%.

• DATA:

- 1: Set 16KHz as sampling rate.
- 2: Record 80 utterances of each command.
- 3: Save samples of each command in different folders.
- * Speech/forward.
- * Speech/back.
- * Speech/left.
- * Speech/right.
- * Speech/stop.

• Model Summary

Layer (type)	Output Shape	Param #	Connected to
Input (InputLayer)	[(None, 49, 39, 1)]	0	=======================================
Conv1 (Conv2D)	(None, 49, 39, 10)	60	Input[0][0]
BN1 (BatchNormalization)	(None, 49, 39, 10)	40	Conv1[0][0]
Conv2 (Conv2D)	(None, 49, 39, 1)	51	BN1[0][0]
BN2 (BatchNormalization)	(None, 49, 39, 1)	4	Conv2[0][0]
Squeeze (Reshape)	(None, 49, 39)	0	BN2[0][0]
LSTM_Sequences (LSTM)	(None, 49, 64)	26624	Squeeze[0][0]
FinalSequence (Lambda)	(None, 64)	0	LSTM_Sequences[0][0]
UnitImportance (Dense)	(None, 64)	4160	FinalSequence[0][0]
AttentionScores (Dot)	(None, 49)	0	UnitImportance[0][0] LSTM_Sequences[0][0]
AttentionSoftmax (Softmax)	(None, 49)	0	AttentionScores[0][0]
AttentionVector (Dot)	(None, 64)	0	AttentionSoftmax[0][0] LSTM_Sequences[0][0]
FC (Dense)	(None, 32)	2080	AttentionVector[0][0]
Output (Dense)	(None, 5)	165	FC[0][0]

 \bullet The model is successfully built and has achieved the highest accuracy of 99.6%

• RUN:

The Code is written using Google Colab:

- 1. Open ColabNotebook.ipynb and change Runtime to GPU.
- 2. Upload Speech-Recognition/Speech to Colab.
- 3. Change data-dir in all cells to point to Speech-Recognition/speech.
- 4. Run the cells in the same order in Notebook Test.

• TEST:

- 1: Locate the folder where you save your model.h5 file.
- 2: Start speaking when you see mike in the bottom right pane of the task bar or see red blinking dot in the title bar.

• Language Used:

PYTHON

• Libraries and Packages Used:

KAPRE, SCIKIT LEARN, SOUND FILE, TENSORFLOW.