Probability and Random Processes

Keivan Mallahi-Karai 28 October 2022

Jacobs University

Announcements

1. Problem Set 4 is due next Wednesday!

Agenda

- 1. Joint distribution of random variables
- 2. Joint probability mass function and marginals
- 3. Random walks

Studying several random variables at the same time

Joint probability mass function of discrete random variables

Definition

For discrete random variables X and Y the joint probability mass function of X and Y is defined by

$$p(x,y) = \mathbb{P}[X = x, Y = y].$$

More generally, for n discrete random variable X_1, X_2, \ldots, X_n , the joint probability mass function of X_1, \ldots, X_n the function defined by

$$p(x_1, x_2, \ldots, x_n) = \mathbb{P}[X_1 = x_1, \ldots, X_n = x_n].$$

Probabit man function of
$$X$$
 $P_X(x) = \mathbb{P}[X=x]$

A random integer N is chosen from the set $\{11, 12, \ldots, 35\}$. Let X denote the right digit of N and Y denote the left digit of N. Find the joint probability mass function of X and Y.

Orlinary pont $\frac{x_1 \cdot \cdot \cdot \cdot x_n}{x_1 \cdot \cdot \cdot \cdot x_n}$	γ ₁
7×10123456789	½i → Piÿ
1 0 1/25 1/25 1/25	P(xi, yj)
2 1/25 1/25	$= \mathbb{P}[X=xi,Y=yi]$
2 1/25 1/25 3 1/25 1/25 0000	N= YX
P(0,1) = P(X=0, Y=1) = P(2,4) = P(X=4, X=1)	Y=2) / 1 0 24) = 25

A random real number T is chosen from the interval [0,1]. Let X_1 and X_2 denote the first and second digit in the binary expansion of T. Find the joint probability mass function of X_1 and X_2 .

Recovering individual probability mass functions

Example

Let X and Y be chosen randomly from the set $\{-1,0,1\}$ such that the joint probability mass function of X and Y is given by

	Y = -1	Y=0	Y = 1	
X = -1	1/10	1/10	1/10	3/10
X = 0	1/10	2/10	1/10	4/10
X = 1	1/10	1/10	1/10	3/10
	3/10	والر	3/10	•

Find the probability mass functions of X and Y.

$$P_{X}(I) = P(X=I) = P(X=I,Y=-I) + P(X=I,Y=0) + P(X=I,Y=I)$$

$$= \frac{1}{10} + \frac{1}{10} = \frac{3}{10}$$

Marginal probability mass functions

Theorem

Let $p(x,y) := p_{X,Y}(x,y)$ denote the probability mass function of discrete random variables X and Y. Then we have

1.
$$\sum_{x,y} p(x,y) = 1$$
.

2.
$$\mathbb{P}[Y=y]=\sum_{x}p(x,y)$$
.

3.
$$\mathbb{P}[X = x] = \sum_{y} p(x, y)$$
.

Recovering individual probability mass functions

Example

Let X and Y be numbers chosen randomly from the set $\{-1,0,1\}$ and Z=XY. Suppose that the joint probability mass function of X and Y is given by

	Y = -1	Y = 0	Y=1
X = -1	1/10	1/10	1/10
X = 0	1/10	2/10	1/10
X=1	1/10	1/10	1/10

Find the probability mass function of Z = XY.

what are The possible values of
$$\frac{2?}{-1, 0, 1}$$

$$P(2=-1) = P(X=1, Y=-1) + P(X=-1, T=1) = P(X=$$

Independence

Definition

Discrete random variables X and Y are called independent if for every x and y we have

we have
$$p_{X,Y}(x,y) = \mathbb{P}\left[X = x, Y = y\right] = \mathbb{P}\left[X = x\right]\mathbb{P}\left[Y = y\right] = p_X(x)p_Y(y).$$

in depelence of events

A, B events integrald
$$P(A \cap B) = P(A) \cdot P(B)$$
 $P(A \cap B) = P(A) \cdot P(B)$
 $P(B) = P(A \cap B) = P(A)$
 $P(B) = P(A \cap B) = P(A)$
 $P(B) = P(A \cap B) = P(A)$

$$\mathbb{P}[X=X|Y=Z] = \mathbb{P}[X=X]$$

Suppose that the joint probability mass function of X and Y is given by

	Y = -1	Y=0	Y = 1	
X = -1	1/10	1/10	1/10	3/10
X = 0	1/10	2/10	1/10	410
X=1	1/10	1/10	1/10	3/6
endent?	3/10	4/10	3/10	

Are X and Y independent?

Suppose X_1 and X_2 denote the random variables from Example 2. Are X_1 and X_2 independent?

Joint probability mass functions of independent random variables

Suppose X and Y are independent random variables with probability mass functions

$$\mathbb{P}[X=1] = \frac{1}{3}, \quad \mathbb{P}[X=2] = \frac{2}{3}$$
 $\mathbb{P}[Y=0] = \frac{1}{4}, \mathbb{P}[Y=1] = \frac{1}{4}, \quad \mathbb{P}[Y=2] = \frac{1}{2}.$

Find the joint probability mass function of X and Y and determine the probability mass function of Z = XY and T = X + Y.

Coupling of random variables

Definition

Let X_1 and X_2 denote two random variables. A *coupling* of X_1 and X_2 is a random variable X with marginals given by X_1 and X_2 .

Describe all couplings of two Bernoulli random variables with p = 1/2.

Transportation polytope

17

Independence of discrete random variables

Definition

Discrete random variables X_1, \ldots, X_n are independent if for all values of

$$X_1, \ldots, X_n$$
 we have $P(X_1 = X_1, \ldots, X_n = X_n)$

$$p(X_1 = X_1, \ldots, X_n = X_n) = p(X_1, \ldots, X_n) = p(X_1, \ldots, X_n)$$

Here $p_{X_1,...,X_n}$ is the joint probability mass function of $X_1,...,X_n$ and p_{X_i} is the marginal density function of X_i , for $1 \le i \le n$.

Sums of independent random variables

Suppose X_1, \ldots, X_n are independent random variables, each with Bernoulli distribution with parameter p. Let

$$S_n = X_1 + \cdots + X_n$$
.

What is the probability mass function of S_n ?

