CS2323 Computer Architecture HW-1

Shreyas Jayant Havaldar CS18BTECH11042

This document is generated by LATEX

August 20, 2019

1 Total Energy = Leakage Energy + Dynamic Energy (a)L1 Cache:

 $LeakagePower_1 = 0.2W$

 $LeakageEnergy_1 = LeakagePower_1 \times TimeTaken = 0.2W \times 1000ns = 200nJ$

Dynamic Access Energy for Each Access $(DEPA_1) = 0.217$ nJ $No.ofAccesses(N_1) = HitRate_1 \times TotalAccesses_1 = 0.95 \times 10^6$

 $DynamicEnergy_1 = DEPA_1 \times N_1 = 0.217 \times 0.95 \times 10^6 = 206,150nJ$

$$TotalEnergy_1 = 200nJ + 206, 150nJ = 206, 350nJ$$

$$\frac{DynamicEnergy_1 \times 100}{TotalEnergy_1} = \frac{206, 150nJ \times 100}{206, 350nJ} = 99.903 \%$$
(Ans)

(b)L2 Cache:

 $TotalAccesses_2 = (1 - HitRate_1) \times TotalAccesses_1 = 0.05 \times 10^6 = 5 \times 10^4 \\ No.ofAccesses(N_2) = HitRate_2 \times TotalAccesses_2 = 1 \times 5 \times 10^4 = 5 \times 10^4 \\ LeakagePower_2 = 6.9W$

 $LeakageEnergy_2 = LeakagePower_2 \times TimeTaken = 6.9W \times 1000ns = 6900nJ$

Dynamic Access Energy for Each Access $(DEPA_2) = 1.47$ nJ

$$DynamicEnergy_2 = DEPA_2 \times N_2 = 1.47 \times 5 \times 10^4 = 73,500nJ$$

$$TotalEnergy_2 = 6900nJ + 73,500nJ = 80,400nJ$$

$$\frac{DynamicEnergy_2 \times 100}{TotalEnergy_2} = \frac{73,500nJ \times 100}{80,400nJ} = \mathbf{91.4179} \%$$
(Ans)

- 2 On increasing associativity, only the conflict misses can be resolved but the compulsory and capacity misses still persist and constitute the majority of the misses. Therefore the decrease in the miss rate on increasing associativity is marginal.
- 3 Total Address Space Bits = 8. $OffsetBits = \log_2 4 = 2$ $SetBits = \log_2 8 = 3$ TagBits = 8 2 3 = 3(a)

Cache 1				
Sequence	Tag	Set	$\operatorname{Hit/Miss}$	
0	0	0	Miss	
63	1	7	Miss	
1	0	0	Hit	
62	1	7	Hit	
2	0	0	Hit	
61	1	7	Hit	
3	0	0	Hit	
60	1	7	Hit	
4	0	1	Miss	
59	1	6	Miss	
5	0	1	Hit	
58	1	6	Hit	
6	0	1	Hit	
57	1	6	Hit	
7	0	1	Hit	
56	1	6	Hit	
8	0	2	Miss	
55	1	5	Miss	
9	0	2	Hit	
54	1	5	Hit	
10	0	2	Hit	
53	1	5	Hit	
11	0	2	Hit	
52	1	5	Hit	

Hit Ratio =
$$\frac{18}{24} = 0.75$$

Cache 2

Sequence	Tag	Set	$\operatorname{Hit/Miss}$
0	0	0	Miss
63	7	7	Miss
1	1	0	Miss
62	6	7	Miss
2	2	0	Miss
61	5	7	Miss
3	3	0	Miss
60	4	7	Miss
4	4	0	Miss
59	3	7	Miss
5	5	0	Miss
58	2	7	Miss
6	6	0	Miss
57	1	7	Miss
7	7	0	Miss
56	0	7	Miss
8	0	1	Miss
55	7	6	Miss
9	1	1	Miss
54	6	6	Miss
10	2	1	Miss
53	5	6	Miss
11	3	1	Miss
52	4	6	Miss

Hit Ratio
$$=\frac{0}{24}=0$$

(b)

Cache 1					
Sequence	Tag	Set	$\operatorname{Hit/Miss}$		
0	0	0	Miss		
64	2	0	Miss		
128	4	0	Miss		
192	6	0	Miss		
1	0	0	Miss		
65	2	0	Miss		
129	4	0	Miss		
193	6	0	Miss		
11	0	2	Miss		
75	2	2	Miss		
139	4	2	Miss		
203	6	2	Miss		
9	0	2	Miss		
137	4	2	Miss		
201	6	2	Miss		
73	2	2	Miss		

Hit Ratio =
$$\frac{0}{16} = \mathbf{0}$$

α	- 1-	_	0
Ca	cn	e	2

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
Bequeite	Tag	Det	, , , , , , , , , , , , , , , , , , ,		
0	0	0	Miss		
64	0	0	Hit		
128	0	0	Hit		
192	0	0	Hit		
1	1	0	Miss		
65	1	0	Hit		
129	1	0	Hit		
193	1	0	Hit		
11	3	1	Miss		
75	3	1	Hit		
139	3	1	Hit		
203	3	1	Hit		
9	1	1	Miss		
137	1	1	Hit		
201	1	1	Hit		
73	1	1	Hit		

Hit Ratio =
$$\frac{12}{16} = 0.75$$

4 Given:

Total Instructions = 10^6

$$I_A = 0.3 \times 10^6, CPI_{A_1} = 2, CPI_{A_2} = 2$$

$$I_B = 0.2 \times 10^6, CPI_{B_1} = 2, CPI_{B_2} = 1$$

$$I_C = 0.35 \times 10^6, CPI_{C_1} = 4, CPI_{C_2} = 2$$

$$I_D = 0.15 \times 10^6, CPI_{D_1} = 4, CPI_{D_2} = 3$$

Clock Rate of Processor 1 = 2.2 GHz and Clock Rate of Processor 2 = 1.6 GHz

$$Cycles_{total} = \sum (Instructions \times CPI)$$

For Processor 1:
$$Cycles_1 = (I_A \times CPI_{A_1}) + (I_B \times CPI_{B_1}) + (I_C \times CPI_{C_1}) + (I_D \times CPI_{D_1})$$

For Processor 2: $Cycles_2 = (I_A \times CPI_{A_2}) + (I_B \times CPI_{B_2}) + (I_C \times CPI_{C_2}) + (I_D \times CPI_{D_2})$

$$Cycle_1 = ((0.3 \times 2) + (0.2 \times 2) + (0.35 \times 4) + (0.15 \times 4)) \times 10^6 = 3 \times 10^6 cycles$$

$$Cycle_2 = ((0.3 \times 2) + (0.2 \times 1) + (0.35 \times 2) + (0.15 \times 3)) \times 10^6 = 1.95 \times 10^6 cycles$$

$$t_1 = \frac{Cycles_1}{ClockRate_1} = \frac{3 \times 10^6}{2.2 \times 10^9} = 1.3636 \times 10^{-3}s$$
 (Ans)

$$t_2 = \frac{Cycles_2}{ClockRate_2} = \frac{1.95 \times 10^6}{1.6 \times 10^9} = 1.21875 \times 10^{-3}s$$
 (Ans)

- ∴ Processor 2 is faster for this program.
- 5 Initial State: 0 0 0 0 0 0 Rightmost Bit is exclusive bit.

6 Let m_1 and w_1 be the L2 Cache misses and ways respectively for Application 1. Let m_2 and w_2 be the L2 Cache misses and ways respectively for Application 2.

Given that linear interpolation applies, the misses and ways can be related as follows:

Application 1:
$$m_1 = 4000 - (\frac{(4000 - 3600)}{4} \times (w_1 - 2)) = 4200 - 100w_1$$

Application 2:
$$m_2 = 2040 - (\frac{(2040 - 1600)}{4} \times (w_2 - 2)) = 2260 - 110w_2$$

Given that L2 Cache has total 8 ways. Let Application 1 use x ways and Application 2 use (8-x) ways. As an application needs at least 2 ways; $x \ge 2$ and $(8-x) \ge 2$.

$$\therefore 8 - x \ge 2 \implies x \le 6 \implies 2 \le x \le 6$$

$$m_1 = 4200 - 100x$$
 $m_2 = 2260 - 110(8 - x)$

To minimize $m_1 + m_2$:

$$\implies Minimize: 4200 - 100x + 2260 - 110(8 - x) \implies 5580 + 10x$$

As linear relation with positive slope of total misses with x, minimize x $\therefore x = 2$ and 8 - x = 6

: Application 1: 2 ways and Application 2: 6 ways

7 (a) Let transaction rate be $T_P = 44/min$, $T_Q = 77/min$, $T_R = 91/min$

Time Taken for i^{th} Transaction = $\frac{600}{T}$

Total Transactions = 600 + 600 + 600 = 1800

$$Avg(Transactions/min) = \frac{TotalTransactions}{TotalTime} = \frac{1800}{\frac{600}{T_P} + \frac{600}{T_Q} + \frac{600}{T_R}}$$

$$Avg(Transactions/min) = \frac{3}{\frac{1}{T_P} + \frac{1}{T_Q} + \frac{1}{T_R}} \equiv HM(Transactions/min)$$

$$\implies Avg(Transactions/min) = \frac{3}{\frac{1}{44} + \frac{1}{77} + \frac{1}{91}} = \mathbf{64.23529}(Transactions/min)$$
 (Ans)

... We will use **Harmonic Mean** to get the average.

(b) Given:

$$I_1 = 70, C_1 = 45$$

$$I_2 = 80, C_2 = 35$$

$$I_3 = 90, C_3 = 40$$

$$I_{total} = 240, C_{total} = 120$$

Note: Calculating Mean for Instructions per Cycle(IPC)

Weighted AM:

$$W_1 = 45/120, W_2 = 35/120, W_3 = 40/120$$

$$WAM = \sum W_i \frac{I_i}{C_i} = \left(\frac{45}{120} \times \frac{70}{45}\right) + \left(\frac{35}{120} \times \frac{80}{35}\right) + \left(\frac{40}{120} \times \frac{90}{40}\right) = \frac{70 + 80 + 90}{120} = 2$$
 (Ans)

Weighted HM:

$$W_1 = 70/240, W_2 = 80/240, W_3 = 90/240$$

$$WHM = \frac{1}{\sum \frac{W_i}{\frac{I_i}{C_i}}} = \frac{1}{(\frac{\frac{70}{240}}{\frac{70}{45}}) + (\frac{\frac{80}{240}}{\frac{80}{25}}) + (\frac{\frac{90}{240}}{\frac{90}{40}})} = \frac{1}{\frac{45}{240} + \frac{35}{240} + \frac{40}{240}} = \frac{240}{45 + 35 + 40} = 2$$
 (Ans)

 \therefore Answer is **2** using both WAM and WHM.

8 Let time taken by System 1 be t_1 and System 0 be t_0 . Given:

$$t_{init}^1 = t_{init}^0 \text{ and } t_{vision}^1 = \frac{t_{vision}^0}{7} \text{ and } t_{signal}^1 = \frac{t_{signal}^0}{12}$$

 $t_{init} = 0.29t \text{ and } t_{vision} = 0.39t \text{ and } t_{signal} = (1 - 0.29 - 0.39) = 0.32t$

$$\therefore Speedup = \frac{Exec.TimeBefore}{Exec.TimeAfter} = \frac{t_0}{t_1} = \frac{t_0}{0.29t_0 + \frac{0.39t_0}{7} + \frac{0.32t_0}{12}} = \frac{1050}{391} = \mathbf{2.6854} \quad \text{(Ans)}$$

9 Given:

$$0.8 \le Voltage(V) \le 1.2$$

 $f_0 = 3GHz \text{ and } V_0 = 1V$
 $P_{total}^0 = 150W$
 $P_{leakage}^0 = 40W$
 $P_{dynamic}^0 = 150 - 40 = 110W$
 $t_0 = 40s$

$$Frequency(f) \propto V : f = 3 \times 10^9 V$$

(i)
$$t \propto \frac{1}{f} \implies t = \frac{t_0 \times f_0}{f} \implies t = \frac{40 \times 3 \times 10^9}{3 \times 10^9 V}$$

$$\implies t = \frac{40}{V}$$
 Given $V_{max} = 1.2V$
$$t_{min} = \frac{40}{1.2} = 33\frac{1}{3}s$$
 (Ans)
$$\boxed{\text{at V} = 1.2V, f = 3.6\text{GHz}}$$

(ii) We Know: $P_{total} = P_{dynamic} + P_{leakage}$

Dynamic Power:

$$P_{dynamic} \propto V^2 f \implies P_{dynamic} \propto V^3 \implies P_{dynamic} = \frac{P_{dynamic}^0 \times V^3}{V_0^3}$$

$$\implies P_{dynamic} = \frac{110 \times V^3}{1}$$

Leakage Power:

$$P_{leakage} \propto V \implies P_{leakage} = \frac{P_{leakage}^0 \times V}{V_0}$$

$$\implies P_{leakage} = \frac{40 \times V}{1}$$

Overall Power:

Given
$$V_{min} = 0.8V$$

$$P_{total} = 110 \times V^{3} + 40 \times V$$

$$P_{total_{min}} = 110 \times 0.8^{3} + 40 \times 0.8 = 88.32W$$
(Ans)
$$at V = 0.8V, f = 2.4GHz$$

(iii) We Know: $E_{total} = P_{total} \times t$ and $t \propto \frac{1}{V}$

$$E_{total} = (110 \times V^3 + 40 \times V) \times \frac{t_0}{V}$$

$$\Longrightarrow E_{total} = (110 \times V^2 + 40) \times t_0$$

$$\text{Given } V_{min} = 0.8V$$

$$E_{total_{min}} = (110 \times 0.8^2 + 40) \times 40 = 4416J \tag{Ans}$$

at
$$V = 0.8V$$
, $f = 2.4GHz$

- 10 Access Sequence: P, Q, R, S, P, Q, R, S, P, Q, R, S
 - (a)
 - (a) LRU Policy:
 - P: Miss
 - Q: Miss
 - R: Miss
 - S: Miss
 - P: Miss
 - Q: Miss
 - R: Miss
 - S: Miss
 - P: Miss
 - Q: Miss
 - R: Miss
 - S: Miss

 $Total\ Misses = 12$

(b) MRU Policy:

- P: Miss
- Q: Miss
- R: Miss
- S: Miss
- P: Hit
- Q: Hit
- R: Miss
- S: Hit
- P: Hit
- Q: Miss
- R: Hit
- S: Hit

$\begin{array}{l} {\rm Total~Misses} = 6 \\ {\rm (b)} \end{array}$

Access Element	Access Outcome	L1 Cache State	Victim Cache State
		MRULRU	
P	Miss	Р	-
Q	Miss	Q, P	-
R	Miss	R, Q, P	-
S	Miss	S, R, Q	P
P	Hit	P, S, R	Q
Q	Hit	Q, P, S	R
R	Hit	R, Q, P	S
S	Hit	S, R, Q	Р
Р	Hit	P, S, R	Q
Q	Hit	Q, P, S	R
R	Hit	R, Q, P	S
S	Hit	S, R, Q	Р

 $\overline{ ext{Total Misses}} = 4$

11 Given:

$$CPI_{base} = 3$$

 $MissPenalty_1 = 60ns$

Loads = 20%

Stores = 10%

ClockFrequency = 2GHz

$$MissPenalty_{global} = 60 \times 10^{-9} \times 2 \times 10^{9} = 120 Cycles$$

Case 1:

Given:

No. of Levels = 1

I - Cache Miss Rate = 1%

D - Cache Miss Rate = 3%

CPI increase due to I - Cache Miss = Miss Rate \times MissPenalty_{global}

 $= 1\% \times 120 = 1.2$

CPI increase due to D - Cache Miss = Miss Rate \times $MissPenalty_{global}$ \times (Load+Stores) %

 $=3\% \times 120 \times 30\% = 1.08$

$$CPI_{new} = CPI_{base} + CPI_{total-increase} = 3 + 1.2 + 1.08 = 5.28$$
 (Ans)

Case 2:

Given:

No. of Levels = 2

L1:

I - Cache Miss Rate = 1%

D - Cache Miss Rate = 3%

L2:

L1 miss and L2 hit:

Access Time = 6ns

$$MissPenalty_{local} = 6 \times 10^{-9} \times 2 \times 10^{9} = 12 Cycles$$

CPI increase due to I - L1 - Cache Miss = Miss Rate $\times MissPenalty_{local}$

$$= 1\% \times 12 = 0.12$$

CPI increase due to D - L1 - Cache Miss = Miss Rate $\times MissPenalty_{local} \times$ (Load+Stores) % = $3\% \times 12 \times 30\% = 0.108$

L1 miss and L2 miss:

L2 Cache Local Miss Rate = 4%

L2 Cache Global Miss Rate = L1-D miss rate \times L2 Cache Local Miss Rate = $3\% \times 4\% = 0.12\%$ CPI increase due to D - L2 - Cache Miss = Miss Rate $\times MissPenalty_{global} \times$ (Load+Stores) % = $0.12\% \times 120 \times 30\% = 0.0432$

$$CPI_{new} = CPI_{base} + CPI_{total-increase} = 3 + 0.12 + 0.108 + 0.0432 = 3.2712$$
 (Ans)