Reinforcement Learning HW1 By Madhur Tandon (2016053)

1) Comparison between Constant Step Size and Sample Averages

Analysis:

Constant Step Size gives more weight to recent rewards and thus easily adapts and surpasses the method using Sample Averages

2) Mysterious Spikes

Optimistic Initial Values encourage exploration in the initial phase as every action when explored is disappointing in some sense.

as
$$Q(n) = Q(n-1) + alpha*(R(n) - Q(n-1))$$

Since Q(n-1) is large (because optimistic initial value), Q(n) decreases.

Thus, the agent chooses the action with max Q(n) which is essentially the action which hasn't been tried before.

After K turns, all possible K actions would have been chosen (on an average). Thus, in the (K+1)th turn, the action which gives the maximum reward will be chosen by the agent.

On an average, this action is the optimal action i.e. the one that gives $max(q^*)$ thereby resulting in a spike.

Non-stationary case:

The Mysterious Spike disappears and Optimistic Initial Value method performs equally (if not better) to Epsilon Greedy. This is because on the (K+1)th turn, the optimal action aka the one that gives $max(q^*)$ has changed since q^* has changed itself.

3) Making constant step size independent of Q(0)

= x oud on " on-1 + x	((1-3n-1) - @
on for NZO with	4 00 = 0
	al n rund sad (1)
Also, On = On-1 + 3n (Rn-On-	-ı) — ©
	जाक !! अंको क मार्च अवले
on = on-1 + & (Ru-ou-)	1) 10 10
is surely to 5m my the	Collin with straph har it is
substituting on from (A)	cheminals the earlier of
84 = 84-1 + x (Ru-84-1	2
δn-1 + α(1-0n	MA A HOUND OU A AMA
Put N=1	(yes on everyen)
$\therefore \theta_1 = \theta_0 + \alpha(R_1 - \theta_0)$	Thus, as (1841) takes,
$\overline{\delta_0} + \alpha (1 - \overline{\delta_0})$	
From (A), we know that Do	= 0
: 01=00+ x(R1-00)	
0+ × (1-0)	
01 = 00 + x(R1-00)	
X	
01 = 0/2 + R1-0/2	
: 01 = R1	
Now, fince 01=R1	
:. Or does not depend	on do
=) or does not have	
	bios (since 02 depends on 01)
In a similal way,	
on does not hove	initial bios