USN					

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU)

V Semester B. E. Examinations March / April-2023

Computer Science and Engineering

FINITE AUTOMATA FORMAL LANGUAGES

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

PART-A

1.9	Find them language corresponds to the right linear grammar with the					
	productions $\{S \to aA bC b, B \to aC bA a, A \to aS bB, C \to aB bS\}.$					
1.10						
	with the productions					
	$\{S \rightarrow ABCS ABC, AB \rightarrow BA, AC \rightarrow CA, BC \rightarrow CB, BA \rightarrow AB, CA \rightarrow AC,$					
	$CB \rightarrow BC, A \rightarrow a, B \rightarrow b, C \rightarrow c\}$					
1.11	7 7 7					
	List A List B					
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
	1 1 010					
	2 0 10					
	3 10 101					
	4 01 100					
	5 100 0	02				

PART-B

2 a b	 Define regular expression formally. For the following languages over Σ{a,b}, find the corresponding regular expression. i) Every string in the language contains minimum 3 a's. ii) Every string in the language contains atleast one pair of aa or bb. Prove that for every ∈-NFA there exists an equivalent DFA accepting the same language. Find the equivalent DFA for the ∈-NFA given in Fig.2b. For the DFA shown in Fig.2c, use the minimization algorithm to find a minimum state DFA recognizing the same language. 	04
	Fig.2c	04
3 a	State and prove the pumping lemma for regular languages. Apply this	
Ja	lemma to show the language $L = \{\{xy x, y \in \{a, b\}^*\} \}$ where Y is either x or x^R is not regular.	08

	b	Let M_1, M_2 and M_3 are the <i>DFA's</i> shown in Fig.3b recognizes languages L_1, L_2 and L_3 respectively. Draw <i>DFAs</i> recognizing the languages $L_1 \cup L_2$ and $L_2 \cap L_3$.	
		- 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	
		141/2. 1 1/2.	0.4
	С	Fig.3b Describe the decision algorithm to answer the following questions: i) Given a regular expression <i>γ</i> and a <i>DFA M</i> , are the corresponding languages are same?	04
		ii) Given two ∈-NFAs, do they accepts the same language?	04
		OR	
4	а	Give context free grammar which generates the following languages: i) $L_1 = \{a^i b^j c^k i = j + k, i, j, k \ge 1\}$	
	b	ii) $L_2 = \{a^i b^j c^k i = j \text{ or } j = k, i, j, k \ge 1\}$ Define eNF grammar. List out the steps to be followed while converting the <i>CFG</i> into <i>GNF</i> form. For the <i>CFG</i> with the productions listed below, find the equivalent grammar in <i>GNF</i> which generated the same language.	04
	С	$S \to AB AC, A \to aAb bAa a, B \to bbA aaB AB, C \to abCa aDb, D \to bD aC.$ Describe the language generated by the left linear grammar with the	08
		productions $S \to Sb \mid Aa \mid \in A \to Aa \mid Bb \mid b, B \to Sb$. Find an equivalent right linear grammar to the given left Linear grammar.	04
5		Define DDA and the language of DDA Construct DDA which accents the	
3	a b	Define <i>PDA</i> and the language of <i>PDA</i> . Construct <i>PDA</i> which accepts the following language <i>L</i> . You may accept either by final state or by empty stack. $L = \{WW^R W \in \{a, b\}^*\}$. Show by using <i>IDs</i> the string <i>abba</i> is accepted. What are the steps to be followed while finding an equivalent <i>PDA</i> by	08
	S	empty stack for the given CFG . Find the equivalent PDA to the CFG with productions $S \to aSb bSa abS Sab baS Sba \epsilon$. Show that the string $abaabb$ is generated by the given CFG and it is also accepted by the equivalent PDA .	08
		OR	
6	a	State and prove the pumping lemma for context free languages. Apply this lemma to show $L = \{ww we\{a, b\}^*\}$ is not CFL.	06
	b	Let $L_1 = \{a^i b^j c^k i < j\}$ and $L_2 = \{a^i b^j c^k i < k\}$. Show that L_1 and L_2 are	
	c	context free languages but $L_3=L_1\cap L_2$ is not context free. Decide in each case whether the given language is a <i>CFL</i> , and prove your answer.	04
		i) $L_1 = \{a^i b^j a^j b^i i.j \ge 0\}$ ii) $L_2 = \{XcX Xe\{a, b\}^*\}$	06

7	a	Define Turing Machine and the language acceptance by Turing Machine. Design Turing Machine which accepts $L = \{a^n b^{2n} n > 0\}$. Using instantaneous descriptions show that the string $aabbbb$ is accepted by the constructed Turing Machine.	08
	b c	Design Turing Machine to perform the string concatenation operation $f(x,y) = xy$ where $x, y \in \{a,b\}^*$. Use instantaneous description to show the operation on $X = aba$ and $Y = bba$. Show that if the language is recursive then it is recursively enumerable also.	05
		also.	03
0		Construct Linear Description Assessed to construct the leavest	
8	a b	Construct Linear Bounded Automata to accept the language $L = \{wcw^R we\{a, b\}^*\}$. Using instantaneous descriptions show that the string $w = abbcbba$ is accepted. Define unrestricted grammar. Find the unrestricted grammar to generate the language $L = \{a^n \times b^n n \ge 0, x = ne\{a, b\}^*\}$. Give the	06
		derivation for the string $w = aabbbb$.	06
	С	Write a note on Chomsky hierarchy.	04