

AON6908A

30V Dual Asymmetric N-Channel MOSFET

General Description

Top View

The AON6908A is designed to provide a high efficiency synchronous buck power stage with optimal layout and board space utilization. It includes two specialized MOSFETs in a dual Power DFN5x6 package. The Q1 "High Side" MOSFET is desgined to minimze switching losses. The Q2 "Low Side" MOSFET is an SRFETTM that features low $R_{\rm DS(ON)}$ to reduce conduction losses as well as an integrated Schottky diode with low $Q_{\rm RR}$ and $V_{\rm f}$ to reduce switching losses. The AON6908A is well suited for use in compact DC/DC converter applications.

Product Summary

 $\begin{array}{cccc} & & \underline{Q1} & \underline{Q2} \\ V_{DS} & & 30V & 30V \\ I_{D} \ (at \ V_{GS} = 10V) & 46A & 80A \\ R_{DS(ON)} \ (at \ V_{GS} = 10V) & <8.9 m\Omega & <3.6 m\Omega \\ R_{DS(ON)} \ (at \ V_{GS} = 4.5V) & <12.5 m\Omega & <4.5 m\Omega \end{array}$

100% UIS Tested 100% Rg Tested

DFN5X6 Bottom View

	D 4:	T 0500 I	41 1 4 1
Absolute Maximum	Naumus	1 1-23 C UIIIC33	Other Wise Hoteu

Parameter		Symbol	Max Q1	Max Q2	Units
Drain-Source Voltage		V_{DS}	30		V
Gate-Source Voltage		V_{GS}	±20	±12	V
Continuous Drain	T _C =25℃		46	80	
Current ^G	T _C =100℃	I _D	28	62	Α
Pulsed Drain Current	Ċ	I _{DM}	100	200	
Continuous Drain	T _A =25℃		11.5	17	A
Current	T _A =70℃	DSM	9	13.5	A
Avalanche Current C	•	I _{AS} , I _{AR}	27	40	А
Avalanche Energy L=	:0.1mH ^C	E _{AS} , E _{AR}	36	80	mJ
V _{DS} Spike	100ns	V _{SPIKE}	36	36	V
	T _C =25℃		31	78	W
Power Dissipation ^B	T _C =100℃	$-P_{D}$	12	31	VV
	T _A =25℃	Б	1.9	2.1	W
Power Dissipation A	T _A =70℃	P _{DSM}	1.2	1.3	VV
Junction and Storage Temperature Range		T _J , T _{STG}	-55 t	o 150	C

Thermal Characteristics							
Parameter		Symbol	Typ Q1	Typ Q2	Max Q1	Max Q2	Units
Maximum Junction-to-Ambient ^A	t ≤ 10s	$R_{\theta JA}$	29	24	35	29	C/W
Maximum Junction-to-Ambient AD	Steady-State	Т⊕ЈА	56	50	67	60	℃/W
Maximum Junction-to-Case	Steady-State	$R_{\theta JC}$	3.3	1.2	4	1.6	℃/W

Q1 Electrical Characteristics (T_J=25℃ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC P	PARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D=250\mu A, V_{GS}=0V$	30			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =30V, V _{GS} =0V			1 5	μΑ
1	Gate-Body leakage current	T _J =55℃ V _{DS} =0V, V _{GS} = ±20V			100	nA
I _{GSS}	Gate Threshold Voltage	$V_{DS} = V_{GS} I_{D} = 250 \mu A$	1.3	1.8	2.4	V
V _{GS(th)}	On state drain current	$V_{\text{DS}} - V_{\text{GS}} \cdot V_{\text{DS}} = 5V$	100	1.0	2.4	A
I _{D(ON)}	On state drain current	V _{GS} =10V, V _{DS} =3V V _{GS} =10V, I _D =11.5A	100	7.4	8.9	A
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =10V, I _D =11.5A T _{.l} =125℃		11.1	13.4	mΩ
20(014)		V _{GS} =4.5V, I _D =11.5A		10	12.5	mΩ
g _{FS}	Forward Transconductance	V _{DS} =5V, I _D =11.5A		50		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.7	1	V
I _S	Maximum Body-Diode Continuous Current				34	Α
DYNAMIC	PARAMETERS					
C _{iss}	Input Capacitance		680	850	1110	pF
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =15V, f=1MHz	260	380	540	pF
C _{rss}	Reverse Transfer Capacitance		18	30	51	pF
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz	0.7	1.4	2.1	Ω
SWITCHI	NG PARAMETERS					
Q _g (10V)	Total Gate Charge		10	12.5	15	nC
Q _g (4.5V)	Total Gate Charge	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4.6	5.7	6.9	nC
Q_{gs}	Gate Source Charge	V _{GS} =10V, V _{DS} =15V, I _D =11.5A	1.6	2	2.4	nC
Q_{gd}	Gate Drain Charge		1.5	2.6	3.6	nC
t _{D(on)}	Turn-On DelayTime			5		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_L =0.75 Ω ,		9.5		ns
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$		18.5		ns
t _f	Turn-Off Fall Time]		4		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =11.5A, dI/dt=500A/μs	8	10.5	13	ns
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =11.5A, dI/dt=500A/μs	13	17.2	21	nC

A. The value of $R_{\theta JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The Power dissipation P_{DSM} is based on $R_{\theta JA}$ and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design.

- D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to case $R_{\theta JC}$ and case to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using <300μs pulses, duty cycle 0.5% max.
- F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}$ =150°C. The SOA curve provides a single pulse ratin g.
- G. The maximum current rating is limited by package.
- H. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with TA=25℃.

COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

Rev 0 : Sep 2010 www.aosmd.com Page 2 of 11

B. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C. Ratings are based on low frequency and duty cycles to keep initial T_J =25°C.

Q1-CHANNEL: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Fig 1: On-Region Characteristics (Note E)

Figure 2: Transfer Characteristics (Note E)

Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Figure 4: On-Resistance vs. Junction Temperature (Note E)

Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

Figure 6: Body-Diode Characteristics (Note E)

Q1-CHANNEL: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

Q1-CHANNEL: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 12: Single Pulse Avalanche capability (Note C)

Figure 13: Power De-rating (Note F)

Figure 14: Current De-rating (Note F)

Figure 15: Single Pulse Power Rating Junction-to-Ambient (Note H)

Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)

Q2 Electrical Characteristics (T_J=25℃ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC F	PARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =10mA, V _{GS} =0V	30			V
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} =30V, V_{GS} =0V			0.5	mA
·DSS	2010 Gate Voltage Brain Garron	T _J =5	5℃		100	111/ (
I_{GSS}	Gate-Body leakage current	$V_{DS}=0V$, $V_{GS}=\pm 12V$			100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250\mu A$	1	1.5	2	V
I _{D(ON)}	On state drain current	V_{GS} =10V, V_{DS} =5V	200			Α
		V _{GS} =10V, I _D =20A		2.9	3.6	mΩ
R _{DS(ON)}	Static Drain-Source On-Resistance	T _J =12	5℃	4.3	5.2	11122
		V_{GS} =4.5V, I_D =20A		3.3	4.5	mΩ
g _{FS}	Forward Transconductance	V_{DS} =5V, I_{D} =20A		115		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.4	0.7	V
I _S	Maximum Body-Diode Continuous Current ^G				80	Α
DYNAMIC	PARAMETERS					
C _{iss}	Input Capacitance		3500	4380	5260	pF
Coss	Output Capacitance	V_{GS} =0V, V_{DS} =15V, f=1MHz	340	490	640	pF
C _{rss}	Reverse Transfer Capacitance		160	280	400	pF
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz	0.3	0.7	1.1	Ω
SWITCHI	NG PARAMETERS					
Q _g (4.5V)	Total Gate Charge		24	31	38	nC
Q_{gs}	Gate Source Charge	V_{GS} =10V, V_{DS} =15V, I_{D} =20A		11		nC
Q_{gd}	Gate Drain Charge			9		nC
t _{D(on)}	Turn-On DelayTime			10		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_L =0.75	Ω,	6		ns
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$		50		ns
t _f	Turn-Off Fall Time			7		ns
t _{rr}	Body Diode Reverse Recovery Time	I_F =20A, dI/dt=500A/ μ s	9	12	15	ns
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =20A, dI/dt=500A/μs	17	22	27	nC

A. The value of $R_{\theta JA}$ is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The Power dissipation P_{DSM} is based on R $_{\theta JA}$ and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design.

COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

Rev 0 : Sep 2010 www.aosmd.com Page 6 of 11

B. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C. Ratings are based on low frequency and duty cycles to keep initial T_J =25°C.

D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to case $R_{\theta JC}$ and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using $<300\mu s$ pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T_{JIMAX)}=150°C. The SOA curve provides a single pulse ratin g.

G. These tests are performed with the device mounted on 1 in FR-4 board with 2oz. Copper, in a still air environment with T_A =25 $ilde{t}$ C.

Q2-CHANNEL: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 2: Transfer Characteristics (Note E)

Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Figure 4: On-Resistance vs. Junction Temperature (Note E)

Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

Figure 6: Body-Diode Characteristics (Note E)

100

10

0.00001

0.0001

0.001

Q2-CHANNEL: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

0.1

1

0.01

Q2-CHANNEL: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Pulse Width (s)
Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)

200

3

2.5

2

1.5 **ഗ**

0.5

0

4

3.5

3

2.5

1

0.5

0

1000

Softness Factor vs. di/dt

2 **"** 1.5

30

Q2-CHANNEL: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

10 **(A)** (12 9) 10 9 Q_n (nC) 125°C 15 25°C 10 6 125°C 5 5 3 125 25°C 0 0 0 0 0 200 400 600 800 1000 200 400 600 800 di/dt (A/μs) di/dt (A/μs) Figure 20: Diode Reverse Recovery Charge and Peak Figure 21: Diode Reverse Recovery Time and

Current vs. di/dt

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

