

Cardiovascular Disease Risk Prediction via Social Media

Al Zadid Sultan Bin Habib, Md Asif Bin Syed, Md Tanvirul Islam, Donald A. Adjeroh

West Virginia University, Morgantown, WV 26506, USA

Email: {ah00069, ms00110, mi00018}@mix.wvu.edu, donald.adjeroh@mail.wvu.edu

Introduction

- The research underscores Cardiovascular Disease (CVD) risks via emotions expressed on social media, especially in the Appalachian region of the US.
- ➤ How psychological traits and social media data contribute to understanding CVD risk factors.
- Centers on using Twitter to monitor public discussions about CVD and employing NLP for sentiment analysis.
- ➤ Hybrid CNN-LSTM approach for predicting CVD risk and mentions of using ML algorithms.
- Focuses on creating an NLP dictionary for CVD using relevant keywords.
- Describes the data collection process, including state selection and using CDC datasets for demographics.
- ➤ Highlights Twitter data's potential for aiding public health practitioners in predicting CVD.

Goals

- Develop a novel CVD-related keyword dictionary through sentiment analysis of Twitter data and employ ML models to predict CVD risk.
- Establish the relationship between psychological characteristics and risks of CVDs.
- > Develop and evaluate a predictive model.

Novelty

- > NLP-based research is still less explored
- ➤ New Dictionary for CVD Risk prediction
- > Twitter dataset vs CDC dataset comparison

Acknowledgement

➤ Work supported in part by grants from the US National Science Foundation (Award #1920920, #2125872)

Key References

- ➤ Eichstaedt, J.C., et al.: Psychological language on twitter predicts county-level heart disease mortality. Psychological science 26(2), 159–169 (2015)
- Sinnenberg, L., et al.: Twitter as a potential data source for cardiovascular disease research. JAMA cardiology 1(9), 1032–1036 (2016)

Developed Dictionary

- > Psychological Keywords
- Clinical Keywords
- ➤ anesthesia, angiogram, cardiologist, echocardiogram, heart attack, heart failure, hypertension, chest pain, stress, smoking, cholesterol and alcohol use

Fig. 1: Generated Word Cloud for the Tweets.

Selected States

Fig. 2: Selected States to Collect Tweets.

Overall Workflow

Fig. 3: Overall Workflow for Proposed Framework.

Class Distribution and Architecture

Fig. 4: Twitter Data Class Distribution.

Fig. 5: CNN-LSTM Hybrid Architecture.

Results Analysis

Table 1. Performance Evaluation for the Twitter Based Dataset.

Model	Test Accuracy	Precision	Recall	F1	MCC	CK
CNN-LSTM	77.51%	0.75	0.68	0.72	0.53	0.53
BNB	74.55%	0.84	0.48	0.61	0.48	0.44
SVM	88.75%	0.87	0.86	0.86	0.77	0.77
LR	87.82%	0.85	0.86	0.85	0.75	0.75
CatBoost	76.67%	0.73	0.71	0.72	0.53	0.53

Table 2. Performance Evaluation for the CDC Dataset.

Model	Test Accuracy	Precision	Recall	F1	MCC	CK
CNN- LSTM	57.64%	0.63	0.36	0.45	0.17	0.15
BNB	57.93%	0.67	0.31	0.42	0.19	0.16
SVM	57.55%	0.61	0.41	0.49	0.16	0.15
LR	58.03%	0.62	0.39	0.48	0.17	0.16
CatBoost	57.42%	0.61	0.42	0.50	0.16	0.15

Fig. 6: Test Accuracy for SVM and LR.

Fig. 7: Actual CVD Patients Ratio vs Predicted Persons with CVD Ratio.

CONCLUSIONS

This research used sentiment analysis and ML to predict CVD risk from tweets in 18 US states, with SVM achieving the highest accuracy of 88.75%. Twitter data outperformed demographic information, highlighting its potential for CVD risk prediction.