Folha Prática 3

1. Seja $M=(S,\Sigma,\delta,s_1,\{s_3,s_4\})$ um AFND, com $S=\{s_1,s_2,s_3,s_4\},\Sigma=\{\mathtt{a},\mathtt{b}\}$ e função de transição δ definida de $S \times \{a, b\}$ em 2^S por:

$$\begin{array}{lll} \delta(s_1, \mathsf{b}) = \{s_2, s_3, s_1\} & \delta(s_1, \mathsf{a}) = \{s_1, s_2\} & \delta(s_2, \mathsf{a}) = \{\} \\ \delta(s_3, \mathsf{a}) = \{s_3\} & \delta(s_3, \mathsf{b}) = \{\} & \delta(s_4, \mathsf{a}) = \{s_1, s_3\} & \delta(s_4, \mathsf{b}) = \{s_4\} \end{array}$$

$$\delta(s_1, \mathbf{a}) = \{s_1, s_2\}$$

 $\delta(s_2, \mathbf{b}) = \{\}$

$$\delta(s_2, \mathbf{a}) = \{ \}$$

 $\delta(s_4, \mathbf{a}) = \{ s_1, s_2 \}$

$$\delta(s_2, \mathbf{b}) = \{s_4\}$$
$$\delta(s_4, \mathbf{b}) = \{s_4\}$$

- a) Represente o diagrama de transição do autómato M.
- b) Justifique que as palavras de Σ^* que terminam em b pertencem a $\mathcal{L}(M)$. Dê exemplo de palavras de $\mathcal{L}(M)$ que não terminam em b. Dê exemplo de palavras de Σ^* que não pertencem a $\mathcal{L}(M)$.
- c) Por aplicação do método de conversão de um AFND num AFD equivalente, determine o diagrama de transição de um AFD M' equivalente a M. Os estados de M' devem ser designados por subconjuntos de S e, em vez de seguir a construção genérica (que teria $2^{|S|} = 2^4 = 16$ estados), crie apenas os **estados** acessíveis do estado inicial de M', ou seja, os acessíveis de $\{s_1\}$.
- d) Descreva informalmente a linguagem reconhecida pelos autómatos M e M'. Justifique sucintamente a resposta, através da análise do diagrama de transição de M'.
- **2.** Recorde que a linguagem $\mathcal{L}(A)$ que é aceite (ou reconhecida) por um autómato finito A de alfabeto Σ é o conjunto das palavras de Σ^* que podem levar o autómato A do estado inicial a algum estado final sendo totalmente consumidas. Determine $\mathcal{L}(A)$ para os autómatos finitos representados pelos diagramas de transição seguintes, com $\Sigma = \{a, b\}$.

Nota: Nenhum dos diagramas de transição de 2. pode representar um AFD (segundo a definição dada). Todos podem representar AFNDs- ε e apenas **2c**) e **2d**) podem representar um AFND. Para a questão, entenda todos como AFNDs- ε .

- 3. Por aplicação do método de construção baseado em subconjuntos, determine um AFD equivalente para cada um dos autómatos representados e 2.
- 4. Apresente o diagrama de transição de um AFND que reconheça a linguagem de alfabeto {0, 1} indicada em cada alínea. Deve tirar partido do não determinismo.
- a) $\{0,1\}^*\{00\}$
- **c)** {0,11,101}*{00} **d)** {01,00}*{0,1}
 - e) $\{0\}\{1\}^*\{00\} \cup \{00\}^*$

b) {01}*{00}

- **f)** $\{\varepsilon, 0, 1001, 111, 010, 10111\}$

5. Prove que se L é uma linguagem **finita** de alfabeto Σ então L pode ser reconhecida por um AFND com no máximo $2 + \sum_{x \in L, |x| > 1} (|x| - 1)$ estados.

Por exemplo, $\{\varepsilon, 0, 111, 1011\}$ pode ser reconhecida por um AFND com 7 estados, $\{\varepsilon, 0, 1\}$ por um AFND com 2 estados, e $\{\varepsilon\}$ por um AFND com um estado.

6. Seja $A = (S, \Sigma, \delta, s_0, F)$ o AFND- ε representado abaixo, com $\Sigma = \{a, b\}$.

- a) Indique o valor de $\delta(s_0, \varepsilon)$, $\delta(s_5, a)$, $Fecho_{\varepsilon}(s_3)$ e $Fecho_{\varepsilon}(s_1)$.
- **b)** Dê exemplo de $x, y \in \Sigma^*$ tais que $x \in \mathcal{L}(A)$ e $y \notin \mathcal{L}(A)$. Explique.
- c) Desenhe o diagrama de transição do AFD que resulta de A por aplicação do método de conversão. Indique apenas estados acessíveis do *estado inicial do AFD* e use *conjuntos* para designar os estados.
- **d)** Que significado têm tais conjuntos no método de conversão? Quantos estados tem o AFD se se indicar os estados não acessíveis do seu estado inicial? Por que razão esses estados não são relevantes?