DM 4 Année 2020-2021

Corrigé du devoir à rendre le 16/11/2020

Exercice 1:

1. La fonction \ln_a est dérivable sur \mathbb{R}^{+*} car la fonction \ln l'est et que $\ln(a) \neq 0$.

Pour tout
$$x \in \mathbb{R}^{+*}$$
, on a $\ln'_a(x) = \frac{1}{\ln(a)} \frac{1}{x}$.

Ainsi, si a > 1 alors \ln_a est de dérivée positive sur l'intervalle \mathbb{R}^{+*} donc croissante et si a < 1 alors \ln_a est de dérivée négative sur l'intervalle \mathbb{R}^{+*} donc décroissante.

2. Soit $(x,y) \in (\mathbb{R}^{+\star})^2$ et $n \in \mathbb{N}$, on a

$$\ln_{a}(xy) = \frac{\ln(xy)}{\ln(a)} = \frac{\ln(x) + \ln(y)}{\ln(a)} = \ln_{a}(x) + \ln_{a}(y)$$

$$\ln_{a}\left(\frac{1}{x}\right) = \frac{\ln(1/x)}{\ln(a)} = \frac{-\ln(x)}{\ln(a)} = -\ln_{a}(x)$$

$$\ln_{a}\left(\frac{x}{y}\right) = \frac{1}{\ln(a)}\ln\left(\frac{x}{y}\right) = \frac{1}{\ln(a)}(\ln x - \ln y) = \ln_{a}(x) - \ln_{a}(y)$$

$$\ln_{a}(x^{n}) = \frac{\ln(x^{n})}{\ln(a)} = \frac{n\ln(x)}{\ln(a)} = n\ln_{a}(x)$$

$$\ln_{a}(a^{n}) = n\ln_{a}(a) = n$$

3. Si a>1 alors la fonction \ln_a est de dérivée strictement positive sur l'intervalle \mathbb{R}^{+*} donc établit une bijection de \mathbb{R}^{+*} dans $\ln_a\left(\mathbb{R}^{+*}\right)$. Comme $\ln(a)>0$ et comme

$$\lim_{x \to -\infty} \ln = -\infty \quad \text{et} \quad \lim_{x \to +\infty} \ln = +\infty,$$

on a

$$\lim_{x \to -\infty} \ln_a = -\infty \quad \text{et} \quad \lim_{x \to +\infty} \ln_a = +\infty,$$

donc \ln_a établit une bijection de $\mathbb{R}^{+\star}$ dans \mathbb{R}

Si a < 1 alors la fonction \ln_a est de dérivée strictement négative sur l'intervalle \mathbb{R}^{+*} donc établit une bijection de \mathbb{R}^{+*} dans $\ln_a(\mathbb{R}^{+*})$. Comme $\ln(a) < 0$, on a

$$\lim_{x \to -\infty} \ln_a = +\infty \quad \text{et} \quad \lim_{x \to +\infty} \ln_a = -\infty,$$

donc \ln_a établit une bijection de $\mathbb{R}^{+\star}$ dans \mathbb{R}

4. Par définition, \exp_a établit une bijection de \mathbb{R} dans $\mathbb{R}^{+\star}$ Soit $(x,y) \in \mathbb{R} \times \mathbb{R}^{+\star}$, on a

$$y = \exp_a(x) \Leftrightarrow \ln_a(y) = x \Leftrightarrow \frac{\ln(y)}{\ln(a)} = x \Leftrightarrow \ln(y) = x \ln(a) \Leftrightarrow y = \exp(x \ln(a)) = a^x$$

Ainsi, on a

$$exp_a: \mathbb{R} \to \mathbb{R}^{+\star}, \ x \mapsto a^x$$

Exercice 2:

1. Soit $(x, y) \in \mathbb{R}^2$ et $(*) = \operatorname{ch}(x)\operatorname{sh}(y) + \operatorname{sh}(x)\operatorname{ch}(y)$. On a

$$(*) = \frac{(e^{x} + e^{-x})(e^{y} - e^{-y})}{4} + \frac{(e^{x} - e^{-x})(e^{y} + e^{-y})}{4}$$

$$= \frac{e^{x+y} + e^{-x+y} - e^{x-y} + e^{-x-y} + e^{x+y} - e^{-x+y} + e^{x-y} - e^{-x-y}}{4}$$

$$= \boxed{\operatorname{sh}(x+y)}$$

2. Soit $(x,y) \in \mathbb{R}^2$. On a

$$\sum_{k=0}^{n} \operatorname{sh}(kx+y) = \sum_{k=0}^{n} \frac{\left(e^{kx+y} - e^{-kx-y}\right)}{2} = \frac{e^{y}}{2} \sum_{k=0}^{n} e^{kx} - \frac{e^{-y}}{2} \sum_{k=0}^{n} e^{-kx}$$

Si
$$x \neq 0$$
, alors $e^x \neq 1$ et $e^{-x} \neq 1$ donc $\sum_{k=0}^n e^{kx} = \frac{1 - e^{(n+1)x}}{1 - e^x}$ et $\sum_{k=0}^n e^{-kx} = \frac{1 - e^{-(n+1)x}}{1 - e^{-x}}$ puis

$$\sum_{k=0}^{n} \operatorname{sh}(kx+y) = \frac{e^{y}}{2} \frac{1 - e^{(n+1)x}}{1 - e^{x}} - \frac{e^{-y}}{2} \frac{1 - e^{-(n+1)x}}{1 - e^{-x}}$$

$$= \frac{e^{y}}{2} \frac{e^{(n+1)x/2} \left(e^{-(n+1)x/2} - e^{(n+1)x/2}\right)}{e^{x/2} \left(e^{-x/2} - e^{x/2}\right)}$$

$$- \frac{e^{-y}}{2} \frac{e^{-(n+1)x/2} \left(e^{(n+1)x/2} - e^{-(n+1)x/2}\right)}{e^{-x/2} \left(e^{x/2} - e^{-x/2}\right)}$$

$$= \frac{e^{y} e^{nx/2}}{2} \frac{\operatorname{sh}((n+1)x/2)}{\operatorname{sh}(x/2)} - \frac{e^{-y} e^{-nx/2}}{2} \frac{\operatorname{sh}((n+1)x/2)}{\operatorname{sh}(x/2)}$$

Ainsi, si $x \neq 0$, alors

$$\sum_{k=0}^{n} \operatorname{sh}(kx+y) = \operatorname{sh}(y+nx/2) \frac{\operatorname{sh}((n+1)x/2)}{\operatorname{sh}(x/2)}.$$

et si x=0, alors

$$\sum_{k=0}^{n} \operatorname{sh}(kx+y) = (n+1)\operatorname{sh}(y)$$

On a

$$\sum_{k=0}^{n} \binom{n}{k} \operatorname{sh}(kx+y) = \sum_{k=0}^{n} \binom{n}{k} \frac{\left(e^{kx+y} - e^{-kx-y}\right)}{2}$$
$$= \frac{e^{y}}{2} (1 + e^{x})^{n} - \frac{e^{-y}}{2} (1 + e^{-x})^{n}$$
$$= \frac{e^{y}}{2} e^{nx/2} 2^{n} \operatorname{ch}^{n}(x/2) - \frac{e^{-y}}{2} e^{-nx/2} 2^{n} \operatorname{ch}^{n}(x/2)$$

Donc

$$\sum_{k=0}^{n} {n \choose k} \operatorname{sh}(kx+y) = 2^{n} \operatorname{sh}(y + nx/2) \operatorname{ch}^{n}(x/2)$$

Exercice 3:

Soit $f: x \mapsto \arccos(\operatorname{th} x) + 2\arctan(e^x)$.

1. Pour tout $x \in \mathbb{R}$, th $x \in]-1,1[$ et la fonction arccos est définie sur [-1,1] donc la fonction $x \mapsto \arccos(\operatorname{th} x)$ est définie sur \mathbb{R} .

Les fonctions $x \mapsto e^x$ et $x \mapsto \arctan x$ sont définies sur \mathbb{R} donc la fonction $x \mapsto 2\arctan(e^x)$ est définie sur \mathbb{R} .

Par suite, la fonction f est définie sur \mathbb{R} .

2. La fonction the est dérivable sur \mathbb{R} et à valeurs dans]-1,1[et la fonction arccos est dérivable sur [-1,1] donc la fonction $x\mapsto \arccos(\operatorname{th} x)$ est dérivable sur \mathbb{R} . Les fonctions $x\mapsto e^x$ et $x\mapsto \arctan x$ sont dérivables sur \mathbb{R} donc la fonction $x\mapsto 2\arctan(e^x)$ est dérivable sur \mathbb{R} .

Par suite, la fonction f est dérivable sur \mathbb{R}

3. Pour tout $x \in \mathbb{R}$, on a

$$f'(x) = (1 - th^2 x) \frac{-1}{\sqrt{1 - th^2 x}} + \frac{2e^x}{1 + e^2 x} = \sqrt{1 - th^2 x} + \frac{2e^x}{1 + e^{2x}}$$
$$= -\sqrt{\frac{1}{ch^2 x}} + \frac{2e^x}{1 + e^{2x}}$$

Comme $chx \ge 0$, on en déduit que

$$f'(x) = -\frac{1}{\operatorname{ch}x} + \frac{2e^x}{1 + e^{2x}} = -\frac{2}{e^x + e^{-x}} + \frac{2e^x}{1 + e^{2x}} = 0$$

Comme \mathbb{R} est un intervalle, on en déduit que la fonction f est constante. Or,

$$f(0) = \arccos(0) + 2\arctan(1) = \frac{\pi}{2} + 2\frac{\pi}{4} = \pi$$

Le graphe de f est donc la droite d'équation $y = \pi$.