How means and variances behave for simple combinations of r.v.s

Theorem 1: Some important results we can verify through simulations. Assume *X* and *Y* are random variables (r.v.s), and take μ_X , μ_Y to be their expected values, σ_X , σ_Y to be their standard deviations. Also, assume *a*, *b* are arbitrary constants.

- (i) E(aX + b) = aE(X) + b. (This can also be written, $\mu_{aX+b} = a\mu_X + b$.)
- (ii) $Var(aX + b) = a^2 Var(X)$.
- (iii) E(X + Y) = E(X) + E(Y).

Several corollaries include

- (a) $E(aX \pm bY) = aE(X) \pm bE(Y)$.
- (b) $E(\sum_i X_i) = \sum_i E(X_i)$
- (c) $E(\frac{1}{2}X + \frac{1}{2}Y) = \frac{1}{2}(E(X) + E(Y)).$
- (d) $E\left(\frac{1}{n}\sum_{i}X_{i}\right) = \frac{1}{n}\sum_{i}E(X_{i})$

If, in addition, the variables *X*, *Y* are independent, then

- (iv) $Var(X \pm Y) = Var(X) + Var(Y)$. This can also be written as $\sigma_{X \pm Y} = \sqrt{\sigma_X^2 + \sigma_Y^2}$. Several corollaries include
 - (a) If $X_1, ..., X_n$ are independent r.v.s, then

$$Var(X_1 + \cdots + X_n) = Var(X_1) + \cdots Var(X_n).$$

(b) If $X_1, ..., X_n$ is an i.i.d. random sample from a population with standard deviation σ , then

$$\operatorname{Var}(\sum_{i} X_{i}) = n\sigma^{2}$$
, and $\operatorname{Var}(\frac{1}{n}\sum_{i} X_{i}) = \frac{1}{n}\sigma^{2}$.

Theorem 2 (Central Limit Theorem): Let $X_1, X_2, ..., X_n$ represent an i.i.d. random sample, taken from a population with mean μ and standard deviation σ . Then their sum $S = \sum_i X_i$

- (i) has mean $n\mu$ and standard deviation $\sigma \sqrt{n}$.
- (ii) has an approximate normal distribution as n grows large.
- (iii) has (exactly) a normal distribution, regardless of the size of n, if the original population is normal.

Moreover, if we consider the sample mean

$$\overline{X} = \frac{1}{n} \sum_{i} X_i = \frac{S}{n},$$

these corresponding statements hold: \overline{X}

- (iv) has mean μ and standard deviation σ/\sqrt{n} .
- (v) has an approximate normal distribution as n grows large.
- (vi) has (exactly) a normal distribution, regardless of the size of n, if the original population is normal.