Page 2

- V. Claims 63, 96-107, and 120-122, drawn to recombinant RSV with heterologous RSV genes, classified in class 424, subclass 199.1.
- Claims 63, 108-115, and 120-122, drawn to recombinant RSV with a VI. nucleotide modification to a cis-acting regulatory sequence, classified in class 435, subclass 235.1.
- VII. Claims 63, 116-118, and 120-122, drawn to recombinant RSV with a Ply gene, classified in class 424, subclass 199.1.
- VIII. Claims 63 and 119-122, drawn to recombinant RSV encoding a non-RSV molecule, classified in class 424, subclass 199.1.
- IX. Claims 63 and 120-131, drawn to a vaccine and a method of stimulating the immune system, classified in class 424, subclass 199.1.
- X. Claims 133-138, drawn to isolated RSV polynucleotides and expression vectors, classified in class 514, subclass 44 or class 435.
- XI. Claims 133 and 139-145, drawn to RSV polynucleotides wherein expression of a selected gene is reduced or ablated, classified in class 514, subclass 44.
- XII. Claims 133 and 146, drawn to RSV polynucleotides wherein the position of one or more genes is altered relative to an RSV promotor. classified in class 514, subclass 44.
- XIII. Claims 133 and 147-150, drawn to RSV polynucleotides with modifications modulating a change in phenotype or with attenuating mutations, classified in class 514, subclass 44.
- Claims 133 and 151-155, drawn to RSV polynucleotides with heterologous RSV genes, classified in class 514, subclass 44.
- XV. Claims 133 and 156-159, drawn to isolated RSV polynucleotides with a nucleotide modification to a cis-acting regulatory sequence, classified in class 514, subclass 44.
- Claims 133 and 160, drawn to isolated RSV polynucleotides with a PIV gene, classified in class 514, subclass 44.
- XVII. Claims 133 and 161, drawn to isolated RSV polynucleotides encoding a non-RSV molecule, classified in class 514, subclass 44.

Please amend claims 63, 70, 71, 73, 74, 88, 122, 129, 132, 133, 139, 140, 141, and 147 as follows.

Brian R. Murphy, et al.	
Application No.: 09/444,067	7
Page 3	

B1

63. (Amended) An isolated infectious recombinant respiratory syncytial virus (RSV) comprising a RSV genome or antigenome, a major nucleocapsid (N) protein, a nucleocapsid phosphoprotein (P), a large polymerase protein (L), and a RNA polymerase elongation factor, wherein a modification is introduced within the genome or antigenome comprising a partial or complete gene deletion[, a change in gene position, or one or more nucleotide change(s) that modulate expression of a selected gene].

Ba

- 70. (Amended) [The recombinant RSV of claim 63, wherein expression of a selected RSV gene is reduced or ablated by introduction of one or more translation termination codons] An isolated infectious recombinant respiratory syncytial virus (RSV) comprising a RSV genome or antigenome, a major nucleocapsid (N) protein, a nucleocapsid phosphoprotein (P), a large polymerase protein (L), and a RNA polymerase elongation factor, wherein a modification is introduced within the genome or antigenome comprising one or more nucleotide change(s) that modulate expression of a selected gene.
- 71. (Amended) The recombinant RSV of claim 70, wherein expression of a selected RSV gene is reduced or ablated by introduction of <u>one or</u> multiple translation termination [codons] codon(s).

B2 3

- 73. (Amended) The recombinant RSV of claim [63] 70, wherein expression of a selected RSV gene is reduced or ablated by introduction of a frame shift mutation in the gene.
- 74. (Amended) The recombinant RSV of claim [63] <u>70</u>, wherein expression of a selected RSV gene is modulated by introduction, modification or ablation of a translational start site within the gene.
- 88. (Amended) The recombinant RSV of claim 63, wherein said modification within the genome or antigenome comprising a partial or complete gene deletion[, a change in gene position, or one or more nucleotide change(s) that modulate expression of a selected gene] specifies a change in phenotype for the resultant recombinant virus selected from a change in growth characteristics in culture, small plaque size, attenuation

Brian R. Murphy, et Application No.: 09/444,067

Page 4

in vivo, temperature-sensitivity, cold-adaptation, host range restriction, change in antigen expression, or a change in immunogenicity.

122. (Amended)\The recombinant RSV of claim 63, formulated in a dose of [103 to 106] 10^3 to 10^6 PFU of attenuated virus.

(Amended) The vaccine of claim 128, formulated in a dose of [103 to 129. 1061 10³ to 10⁶ PFU of the attenuated RSW

1 4

> 1 2

> 3

4

6

1 2

3

1

2 3

132. (Amended) An expression vector comprising an isolated polynucleotide molecule encoding a respiratory syncytial virus (RSV) genome or antigenome modified by a partial or complete gene deletion[, a change in gene position, or one or more nucleotide change(s) that modulate expression of a selected gene].

133. (Amended) An isolated polynucleotide molecule comprising a respiratory syncytial virus (RSV) genome or antigenome which is modified by a partial or complete gene deletion[, a change in gene position, or one or more nucleotide change(s) that modulate expression of a selected gene].

(Amended) [The] An isolated polynucleotide molecule [of claim 133, 139. wherein expression of a selected RSV gene is reduced or ablated by introduction of one or more translation termination codons comprising a recombinant respiratory syncytial virus (RSV) genome or antigenome having a modification introduced within the genome or antigenome comprising one or more nucleotide change(s) that modulate expression of a selected gene.

- 140. (Amended) The isolated polynucleotide molecule of claim [133] 139, wherein expression of a selected RSV gene is reduced or ablated by introduction of one or more translation termination codons or by introduction of a frame shift mutation in the gene.
- (Amended) The isolated polynucleotide molecule of claim [133] 139, 141. wherein expression of a selected RSV gene is modulated by introduction, modification or ablation of a translational start site within the gene.