

June 2009 6669 Further Pure Mathematics FP3 (new) Mark Scheme

Question Number	Scheme	Marks
Q1	$\frac{7}{\cosh x} - \frac{\sinh x}{\cosh x} = 5 \implies \frac{14}{e^x + e^{-x}} - \frac{(e^x - e^{-x})}{e^x + e^{-x}} = 5$	M1
	$\therefore 14 - (e^x - e^{-x}) = 5(e^x + e^{-x}) \implies 6e^x - 14 + 4e^{-x} = 0$	A1
	$\therefore 3e^{2x} - 7e^x + 2 = 0 \implies (3e^x - 1)(e^x - 2) = 0$	M1
	$\therefore e^x = \frac{1}{3} \text{ or } 2$	A1
	$x = \ln(\frac{1}{3}) \text{ or } \ln 2$	B1ft [5]
Alternative (i)	Write $7 - \sinh x = 5\cosh x$, then use exponential substitution $7 - \frac{1}{2}(e^x - e^{-x}) = \frac{5}{2}(e^x + e^{-x})$	M1
	Then proceed as method above.	
Alternative (ii)	$(7\operatorname{sech} x - 5)^2 = \tanh^2 x = 1 - \operatorname{sech}^2 x$	M1
	$50 \operatorname{sech}^2 x - 70 \operatorname{sech} x + 24 = 0$	A1
	$2(5\operatorname{sech} x - 3)(5\operatorname{sech} x - 4) = 0$	M1
	$\operatorname{sech} x = \frac{3}{5} \text{ or } \operatorname{sech} x = \frac{4}{5}$	A1
	$x = \ln(\frac{1}{3}) \text{ or } \ln 2$	B1ft
Q2 (a)	$\mathbf{b} \times \mathbf{c} = 0\mathbf{i} + 5\mathbf{j} + 5\mathbf{k}$	M1 A1 A1 (3)
(b)	$\mathbf{a}.(\mathbf{b}\times\mathbf{c})=0+5=5$	M1 A1 ft (2)
(c)	Area of triangle $OBC = \frac{1}{2} 5\mathbf{j} + 5\mathbf{k} = \frac{5}{2} \sqrt{2}$	M1 A1 (2)
(d)	Volume of tetrahedron = $\frac{1}{6} \times 5 = \frac{5}{6}$	B1 ft (1)

Ques	stion nber	Scheme	Mark	< S
Q3	(a)	$\begin{vmatrix} 6-\lambda & 1 & -1 \\ 0 & 7-\lambda & 0 \\ 3 & -1 & 2-\lambda \end{vmatrix} = 0 : (6-\lambda)(7-\lambda)(2-\lambda) + 3(7-\lambda) = 0$	M1	
		$(7 - \lambda) = 0$ verifies $\lambda = 7$ is an eigenvalue (can be seen anywhere) $\therefore (7 - \lambda) \left\{ 12 - 8\lambda + \lambda^2 + 3 \right\} = 0 \therefore (7 - \lambda) \left\{ \lambda^2 - 8\lambda + 15 \right\} = 0$	M1 A1	
		$\therefore (7 - \lambda)(\lambda - 5)(\lambda - 3) = 0 \text{ and } 3 \text{ and } 5 \text{ are the other two eigenvalues}$	M1 A1	(5)
	(b)	$ \operatorname{Set} \begin{pmatrix} 6 & 1 & -1 \\ 0 & 7 & 0 \\ 3 & -1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 7 \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ or } \begin{pmatrix} -1 & 1 & -1 \\ 0 & 0 & 0 \\ 3 & -1 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} $	M1	
		Solve $-x + y - z = 0$ and $3x - y - 5z = 0$ to obtain $x = 3z$ or $y = 4z$ and a second equation which can contain 3 variables	M1 A1	
		Obtain eigenvector as $3\mathbf{i} + 4\mathbf{j} + \mathbf{k}$ (or multiple)	A1	(4) [9]

Question	Scheme	Mark	 (S
Number Q4 (a)			
	$\frac{dy}{dx} = \frac{1}{2} x^{-\frac{1}{2}} \times \frac{1}{\sqrt{1 + (\sqrt{x})^2}}$	B1, M1	
	$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{1}{2}x^{-\frac{1}{2}}}{\sqrt{1+x}} \left(= \frac{1}{2\sqrt{x(1+x)}} \right)$	A1	(3)
(b)	$\therefore \int_{\frac{1}{4}}^{4} \frac{1}{\sqrt{x(x+1)}} dx = \left[2 \operatorname{ar} \sinh \sqrt{x} \right]_{\frac{1}{4}}^{4}$	M1	
	$= \left[2\operatorname{ar} \sinh 2 - 2\operatorname{ar} \sinh(\frac{1}{2}) \right]$	M1	
	$= \left[2\ln(2+\sqrt{5})\right] - \left[2\ln(\frac{1}{2}+\sqrt{\frac{5}{4}})\right]$	M1	
	$2\ln\frac{(2+\sqrt{5})}{(\frac{1}{2}+\sqrt{(\frac{5}{4})})} = 2\ln\frac{2(2+\sqrt{5})}{(1+\sqrt{5})} = 2\ln\frac{2(\sqrt{5}+2)(\sqrt{5}-1)}{(\sqrt{5}+1)(\sqrt{5}-1)} = 2\ln\frac{(3+\sqrt{5})}{2}$	M1	
	$= \ln \frac{(3+\sqrt{5})(3+\sqrt{5})}{4} = \ln \frac{14+6\sqrt{5}}{4} = \ln \left(\frac{7}{2} + \frac{3\sqrt{5}}{2}\right)$	A1 A1	(6) [9]
Alternative (i) for part (a)	Use $sinhy = \sqrt{x}$ and state $cosh y \frac{dy}{dx} = \frac{1}{2} x^{-\frac{1}{2}}$	B1	
	$\therefore \frac{dy}{dx} = \frac{\frac{1}{2}x^{-\frac{1}{2}}}{\sqrt{1+\sinh^2 y}} = \frac{\frac{1}{2}x^{-\frac{1}{2}}}{\sqrt{\left(1+\left(\sqrt{x}\right)^2\right)}}$	M1	
	$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{1}{2}x^{-\frac{1}{2}}}{\sqrt{1+x}} \left(= \frac{1}{2\sqrt{x(1+x)}} \right)$	A1	(3)
Alternative (i) for part (b)	Use $x = \tan^2 \theta$, $\frac{dx}{d\theta} = 2 \tan \theta \sec^2 \theta$ to give $2 \int \sec \theta d\theta = [2 \ln(\sec \theta + \tan \theta)]$	M1	
	= $\left[2\ln(\sec\theta + \tan\theta)\right]_{\tan\theta = \frac{1}{2}}^{\tan\theta = \frac{1}{2}}$ i.e. use of limits	M1	
	then proceed as before from line 3 of scheme		
Alternative (ii) for part (b)	Use $\int \frac{1}{\sqrt{[(x+\frac{1}{2})^2 - \frac{1}{4}]}} dx = \operatorname{arcosh} \frac{x+\frac{1}{2}}{\frac{1}{2}}$	M1	
	$= \left[\operatorname{arcosh} 9 - \operatorname{arcosh} \left(\frac{3}{2} \right) \right]$	M1	
	$= \left[\ln(9 + \sqrt{80})\right] - \left[\ln(\frac{3}{2} + \frac{1}{2}\sqrt{5})\right]$	M1	
	$= \ln \frac{(9+\sqrt{80})}{(\frac{3}{2}+\frac{1}{2}\sqrt{5})} = \ln \frac{2(9+\sqrt{80})(3-\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})},$	M1	
	$= \ln \frac{2(9+4\sqrt{5})(3-\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})} = \ln \left(\frac{7}{2} + \frac{3\sqrt{5}}{2}\right)$	A1 A1	(6)
			[9]

arks
(2)
ft
(5)
(4) [11]
(5)

Question Number	Scheme	Marks
Q6 (a)	$\frac{x^2}{a^2} - \frac{(mx+c)^2}{b^2} = 1 \text{and so} b^2 x^2 - a^2 (mx+c)^2 = a^2 b^2$	M1
	$\therefore (b^2 - a^2 m^2) x^2 - 2a^2 m c x - a^2 (c^2 + b^2) = 0$ Or $(a^2 m^2 - b^2) x^2 + 2a^2 m c x + a^2 (c^2 + b^2) = 0$ **	A1 (2)
(b)	$(2a^2mc)^2 = 4(a^2m^2 - b^2) \times a^2(c^2 + b^2)$	M1
	$4a^{4}m^{2}c^{2} = -4a^{2}(b^{2}c^{2} + b^{4} - a^{2}m^{2}c^{2} - a^{2}m^{2}b^{2})$ $c^{2} = a^{2}m^{2} - b^{2} \text{or} a^{2}m^{2} = b^{2} + c^{2}$ **	A1 (2)
(c)	Substitute (1, 4) into $y = mx + c$ to give $4 = m + c$ and	
	Substitute $a = 5$ and $b = 4$ into $c^2 = a^2m^2 - b^2$ to give $c^2 = 25m^2 - 16$	B1
	Solve simultaneous equations to eliminate m or $c: (4-m)^2 = 25m^2 - 16$	M1
	To obtain $24m^2 + 8m - 32 = 0$ Solve to obtain $8(3m+4)(m-1) = 0$ $m =$ or	A1 M1
	$m = 1 \text{ or } -\frac{4}{3}$	A1
	Substitute to get $c = 3$ or $\frac{16}{3}$	M1
	Lines are $y = x+3$ and $3y+4x=16$	A1 (7)
		(7) [11]

Question Number	Scheme	Marks
Q7 (a)	If the lines meet, $-1+3\lambda = -4+3\mu$ and $2+4\lambda = 2\mu$	M1
	Solve to give $\lambda = 0$ ($\mu = 1$ but this need not be seen).	M1 A1
	Also $1 - \lambda = \alpha$ and so $\alpha = 1$.	B1 (4)
(b)	$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 3 & 4 \\ 0 & 3 & 2 \end{vmatrix} = -6\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}$ is perpendicular to both lines and hence to the plane	M1 A1
	The plane has equation r.n=a.n , which is $-6x + 2y - 3z = -14$,	M1
	i.e. $-6x + 2y - 3z + 14 = 0$.	A1 o.a.e. (4)
OR (b)	Alternative scheme	
	Use $(1, -1, 2)$ and $(\alpha, -4, 0)$ in equation $ax+by+cz+d=0$	M1
	And third point so three equations, and attempt to solve	M1
	Obtain $6x - 2y + 3z =$	A1
	(6x - 2y + 3z) - 14 = 0	A1 o.a.e. (4)
(c)	$(\mathbf{a}_1 - \mathbf{a}_2) = \mathbf{i} - 3\mathbf{j} - 2\mathbf{k}$	M1
	Use formula $\frac{(\mathbf{a_1} - \mathbf{a_2}) \cdot \mathbf{n}}{ \mathbf{n} } = \frac{(\mathbf{i} - 3\mathbf{j} - 2\mathbf{k}) \cdot (-6\mathbf{i} + 2\mathbf{j} - 3\mathbf{k})}{\sqrt{(36 + 4 + 9)}} = \left(\frac{-6}{7}\right)$	M1
	Distance is $\frac{6}{7}$	A1 (3)
		[11]

Question Number	Scheme	Marks
Q8 (a)	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = -3\sin\theta, \ \frac{\mathrm{d}y}{\mathrm{d}\theta} = 5\cos\theta$	B1
	so $S = 2\pi \int 5\sin\theta \sqrt{(-3\sin\theta)^2 + (5\cos\theta)^2} d\theta$	M1
	$\therefore S = 2\pi \int 5\sin\theta \sqrt{9 - 9\cos^2\theta + 25\cos^2\theta} d\theta$	M1
	Let $c = \cos \theta$, $\frac{dc}{d\theta} = -\sin \theta$, limits 0 and $\frac{\pi}{2}$ become 1 and 0	M1
	So $S = k\pi \int_{0}^{\alpha} \sqrt{16c^2 + 9} dc$, where $k = 10$, and α is 1	A1, A1 (6)
(b)	Let $c = \frac{3}{4} \sinh u$. Then $\frac{dc}{du} = \frac{3}{4} \cosh u$	M1
	$\int So S = k\pi \int_{3}^{?} \sqrt{9 \sinh^{2} u + 9} \frac{3}{4} \cosh u du$	A1
	$= k\pi \int_{7}^{7} \frac{9}{4} \cosh^{2} u du = k\pi \int_{7}^{7} \frac{9}{8} (\cosh 2u + 1) du$	M1
	$= k\pi \left[\frac{9}{16} \sinh 2u + \frac{9}{8}u \right]_0^d$	A1
	$=\frac{45\pi}{4} \left[\frac{20}{9} + \ln 3 \right]$ i.e. $\frac{117}{9}$	B1
		(5)
		[11]