

Pacing Profiles in World Championship 2000m Rowing: Explored through k-Shape Clustering

Dani Chu, Ryan Sheehan, Dr. Jack Davis, and Dr. Ming Chang-Tsai

Outline

- World Championship 2000m Rowing Data
- k-Shape Clustering
- Factors associated with Pacing Profiles
- Limitations and Future Work

Data

www.worldrowing.com:

- Olympics
- Paralympics
- World Championships
- World Cups

- Continental
- Under 23
- Junior
- Continental

Data: www.worldrowing.com

Media Start List Race Data Results

Data: www.worldrowing.com

- 1. Scrape PDF files from World Championships
- 2. For each race, extract data from the 3 PDFs
- 3. Join the race data from the 3 PDFs
- 4. Combine all races into one file
- 5. Make code and data available on github!

 github.com/danichusfu/rowing pacing profiles

Goals!

- Identify the pacing profiles being used by each boat in World Championship 2000m Rowing
- Identify which race factors are associated with exhibiting a pacing profile

Identification of Pacing Profiles

- Cluster boats based on their average speed at each 50m split
- Problems:
 - Magnitudes of average speed depend on factors such as boat size, weight class, age group and gender
 - Longitudinal data

Raw Speed Curves

Normalized Speed Curves

k-Shape Clustering

- Iterative process to minimize distance for an observation to a cluster centroid
- Uses Shape-based distance (SBD) (Paparrizos and Gravano 2016) as an alternative to Dynamic Time Warping (DTW)
- SBD is computationally more efficient than DTW
 - O(m log(m)) to O(m²)
- Small sacrifice in accuracy in experimental settings

Cluster Centroids

Pacing Profiles

Boat Sizes

Modelling Pacing Profiles

- Response variable is the identified pacing profile
- Modelled as a function of race factors
- Using multinomial logistic regression
 - Even profile is the baseline
 - Report the relative risk ratio for a one-unit increase in the variable

Model Results

	Positive	Reverse J-Shaped	U-Shaped
Intercept	0.90	0.77	1.41
Size: Doubles	0.48	0.38	0.68
Size: Quads	0.13	0.14	0.16
Size: Eights	0.04	0.08	0.04
Heat or Final: Heat	1.81	1.04	0.54
Race Placement: 2nd Place	0.86	1.02	1.21
Race Placement: 3rd Place	1.08	1.33	1.50
Race Placement: 4th Place	1.36	1.60	1.60
Race Placement: 5th Place	1.76	1.93	1.24
Race Placement: 6th Place	3.16	3.16	1.21
Discipline: Sweep	1.81	1.20	1.97
Gender: Women	1.88	1.68	1.66
Weight Class: Open	1.43	1.52	1.28

Boat Sizes and Heat/Final

Boat Sizes, Heat/Final and Placement

Limitations

- Observational Data
- Interaction terms are not fit in the model
- Cannot choose a "optimal" profile to help coaches and athletes
- Only uses World Championship Races

Conclusions

- Can identify pacing profiles with k-Shape Clustering
- Interesting preliminary results for which race factors affect pacing profiles
- Available data: github.com/danichusfu/rowing pacing profiles
- I'd love your feedback and thoughts!

THANKS!

Any Questions?

Dani Chu

dani_chu@sfu.ca

@chuurveg

danichusfu.github.io

Ryan Sheehan

ryan_sheehan@sfu.ca

Dr. Jack Davis

jack_davis@sfu.ca

@jack_davis_sfu

sfu.ca/~jackd/

Dr. Ming Chang-Tsai

mtsai@csipacific.ca

@ming_chang_tsai

References

- [1] Chris R. Abbiss and Paul B. Laursen. Describing and understanding pacing strategies during athletic competition. Sports medicine (Auck-land, N.Z.), 38:239–52, 03 2008.
- [2] Stephen W. Garland. An analysis of the pacing strategy adopted byelite competitors in 2000 m rowing.British Journal of Sports Medicine,39(1):39–42, 2005.
- [3] Thomas Muehlbauer and Thomas Melges. Pacing patterns in competitive rowing adopted in different race categories. The Journal of Strength & Conditioning Research, 25, 2011.
- [4] Thomas Muehlbauer, Christian Schindler, and Alexander Widmer. Pac-ing pattern and performance during the 2008 olympic rowing regatta. European Journal of Sport Science, 10(5):291–296, 2010.
- [5] John Paparrizos and Luis Gravano. k-shape: Efficient and accurate clus-tering of time series.SIGMOD Rec., 45(1):69–76, June 2016.
- [6] Alexis Sarda-Espinosa.dtwclust: Time Series Clustering Along withOptimizations for the Dynamic Time Warping Distance, 2018. R pack-age version 5.5.0

