Low Light Space Object Tracking

Tanzeel Ahmad

Roshitha Makula

Jeevan Tubinakere Govindaraju

Introduction

Problem Event Cameras Solution

Tracking
Fast-Paced
Low-Light
Space Objects

Captures
Low latency
High-Dynamic Range
scenarios

Hybrid Approach convolutional backbone temporal attention network

Why Event Camera?

•Standard Camera Outputs the frame at fixed rate giving redundant information

•Event cameras respond to pixel level brightness changes with microsecond latency

Approach

Data Driven Feature
Tracking for Event
Cameras.
Paper

Extending

- AI Generated Synthetic Data
- Synthetic Surface and Pose Creation,
- Handling Diverse Objects and Lightning,
- Leveraging on the models feature tracking feature and trained weights.

Flowchart

Results (Default Data)

Fig: Boxes Rotation

Fig: Shapes Transition

Result (Synthetic Data)

- •Varied shapes and moving objects in space with challenging lightening condition.
- •(Actual Images taken and rendered through AI generator)

Challenges

- Generalization Issues
 - Model was pre-trained on a specific set of data. New data requires re-training or fine-tuning.
- Pipeline Issues
 - More robust synthetic pipeline required with ground truth, surface and pose handling.

Note: Event cameras are robust, but generalization requires additional data and training.

Conclusion & Future Work

Successfully setup and ran eventtracking model on default data.

Created and setup a synthetic data handling pipeline.

Tested the model with new data and suggested future works.

Thank You