Def. Let X be honempty set

A function $f: \mathbb{N} \to X$ is reformed to a sequence in XIf $f(x) = X_n \in X$, we say X_n is the with item of the sequence $\frac{N_0 + n + 1}{n}$ on (X_1, X_2, \dots)

In place of IN, we can index the sequence by any set { p, p+1, p+2,...} for some pt &

Pef. A Sequence (Xn) in R or C 15 Said to Converge to X in R or C if

A sequence that does not converge is sail to diverge. Example. $\chi_n = h$

Let 270, by the Archinedean property of R, let NEIN such that Tile.

Then $\forall n \in \mathbb{N}, n > N$, $h < \frac{1}{N} \Rightarrow |\chi_{n-0}| = h < \frac{1}{N} < \epsilon_{D}$

Notation: $\lim_{N \to \infty} X_n = 0$ or $X_n \to 0$

Example. $x_n = C - D^n$

Cuniqueness of limits) Hint for proof: triangle inequality. Thus. Let $x_n \subseteq \mathbb{R}$ (or \mathbb{C}) be a sequence. If x_n converges to x and x_n converges to y then x=y.

Proof. Let $\varepsilon > 0$, since χ_n conseques to χ_n obtain N_{ε}' such that if $n > N_{\varepsilon}'$ then $|\chi_n - \chi| < \frac{\varepsilon}{\varepsilon}$. (1)

Similarly, since χ_n conseques to χ_n obtain N_{ε}^2 such that if $n > N_{\varepsilon}^2$ then $|\chi_n - \chi| < \frac{\varepsilon}{\varepsilon}$. (2)

So if $n > \max(N_{\varepsilon}', N_{\varepsilon}^2)$ then both (1), (2) holds

By triangle inequality, $|\chi - \chi| \leq |\chi_n - \chi| + |\chi_n - \chi| < \frac{\varepsilon}{\varepsilon} + \frac{\varepsilon}{\varepsilon} = \varepsilon$ (3)

If $\chi = \chi$, we're done If $\chi_n \neq \chi_n$, choose $\xi = \frac{|\chi_n \chi_n|}{\varepsilon}$ Then equality from (3) says that $|\chi - \chi_n| \leq |\chi_n - \chi_n| = |\zeta| > \varepsilon$ contradiction Ω

Common limits

Thm. Let ZE C and KEIN then

i) if |2| <| then lim Zh = 0

ii) if |2|>| then Zh does not conerge

iii) lim = 0

i) fet $d = \inf \{ |Z|^n, n \in \mathbb{N} \}$. Then $d \ge 0$ Want to show d = 0.

Suppose for contradiction that $d \ge 0$ We many also assume $\xi \ne 0$, then $\frac{2}{|\xi|} > d$ ($|y||\xi| < 1$) Since α is the infimum, $\frac{d}{|\xi|}$ is not a loner bound for $(\xi^n)_{n=1}^\infty$.

So there exists nEINT s.t. $\frac{d}{|z|} > |z|^n \Rightarrow d > |z|^{n+1}$ But d is the infimum of such number, contradiction Then d = 0.

By definition of infimum:

Using lef \leq Griven ≤ 70 , $\exists N_{\epsilon}$ such that $|z|^{N_{\epsilon}} < \epsilon$, if $n \geqslant N_{\epsilon}$ of $|z^{n} - 0| = |z^{n}|$ $|z^{n}| = |z|^{n} = |z|^{n-N_{\epsilon}} |z|^{N_{\epsilon}} < 1 \cdot \epsilon = \epsilon$ So $(\exists n) \rightarrow 0$ \Box

ii) Exercise

(ii) Exercise (Archinedeen Prop.)

Limit properties

Thm. Let (2n), (wm) be sequences of complex numbers such that $\lim_{N\to\infty} 2n = 2$ and $\lim_{N\to\infty} W_M = W$

Then (i) lim (Zn + Wn) = Z+W

(11) lim Zn W = Zw

([ii) lim CZu=CZ, YCE (

(iv) if w to then lim En = 2 w

Remark: It's Possible that the sum of two sequences converges, whole neither of the sequences converge e.g. $\Xi_n = (-1)^n$, $W_n = (-1)^{n+1}$

Proof. i) Let $\xi \neq 0$, obtain N_{ξ}' , N_{ξ}^2 such that if $n \neq N_{\xi}'$ (Similarly for $n \neq N_{\xi}^2$) then $|\xi_n - \xi| < \frac{\xi}{\xi}$. The triangle inequality says that $|\xi_n + \psi_n - (\xi + \psi_n)| = |(\xi_n - \xi) + (\psi_n - \psi_n)| \leq \xi$.

So Cim Zatwa = Z+W A

ii) Let $\varepsilon > 0$, obtain N_{ε}' (Similarly for N_{ε}^2) Such that if $n \ge N_{\varepsilon}'$ then $\left| \frac{1}{2n-\varepsilon} \right| < \varepsilon \quad \frac{1}{2bz}$ $\left| W_n - w \right| < \varepsilon \quad \frac{1}{2b}$ By Lemma: Let $(X_n) \to X$, then X_n is bounded. i.e. $\exists b: |X_n| < b$, $\forall n \in \mathbb{N}$

We know (Zn/cb,, | Wnk bz, & neit

Then $|z_n w_n - z_w| = |z_n(w_n - w) + w(z_n - z)|$ $\leq |z_n||w_n - w| + |w||z_n - z|$ $\leq |z_n||w_n - w| + |z_n - z|$ $\leq |z_n| + |z_n| + |z_n|z_n - z$

