

Detection of ADHD based on Eye Movements during Natural Viewing

Shuwen Deng¹, Paul Prasse¹, David R. Reich¹, Sabine Dziemian², Maja Stegenwallner-Schütz^{1,3}, Daniel Krakowczyk¹, Silvia Makowski¹, Nicolas Langer², Tobias Scheffer¹ and Lena A. Jäger^{1,4}

¹Department of Computer Science, University of Potsdam; ²Department of Psychology, University of Zurich; ³Department of Inclusive Education, University of Potsdam; ⁴Department of Computational Linguistics, University of Zurich

Motivation

- Attention-deficit/hyperactivity disorder (ADHD) is a prevalent (about 5-13% of age cohort) neurodevelopmental disorder.
- Diagnosis: Clinical assessment by specialists.
- > time-consuming & expensive.
- SWAN rating scale: Commonly used screening tool based on self- and informant reports.
 - > potentially biased & arbitrary cut-off value.
- Viewing behavior provides non-invasive and rich indices of brain function, attention and cognition.

Idea: Develop a fully automatic ADHD screening tool based on eye movements.

- Our model improves upon state-of-the-art performance for ADHD classification based on eye gaze on a video stimulus.
- The differences in eye gaze between individuals with and without ADHD are most pronounced in a less engaging video.
- We demonstrate the advantages of pre-training the model on a related task, which bears the potential to alleviate the data scarcity problem in eye-tracking research.

Problem Setting

Goal: Find a model that maps tuple of eye-tracking data and video input to the target label.

End-to-End Deep Sequence Model

- Integrates a video clip with the corresponding gaze sequence.
- Pre-trained on SWAN score regression.
 - Use additional data obtained from individuals diagnosed with other neurodevelopmental disorders.
 - Promote the model to detect ADHD-related patterns in eye movements.

- Healthy Brain Network (HBN) Dataset [1]:
 - Eye tracking data (60/120Hz).
 - Stimuli: different types of videos with varying degrees of the excitement of content or educational content.
 - Labels: clinical assessments of a broad range of diseases (ADHD, Autism spectrum disorder, etc.).
 - Age of participants: 6-21 years.

Number of individuals in the data

Video	ADHD classif.	SWAN pred.
Fun with Fractals		276
The Present	159 (111 A, 48 C)	444
Despicable Me	159 (111 A, 48 C) 315 (187 A, 128 C)	656
Diary of a Wimpy Kid	340 (202 A, 138 C)	736
Total	384 (232 A, 152 C)	862

Experiments

Results

- **Evaluation:**
 - 5-fold cross-validation, tested on unseen individuals.
 - Metric: AUC ± standard error.

Video Method	Fun with Fractals	The Present	Despicable Me	Diary of a
				Wimpy Kid
CNN@Scratch	$0.583 \pm 0.026*$	$0.553 \pm 0.017^*$	$0.55 \pm 0.01*$	0.486 ± 0.01
CNN@Pre-tr.	$0.646\pm0.025^*$	$0.554\pm0.016^*$	$0.544 \pm 0.01*$	0.503 ± 0.01
Galgani et al.	0.33 ± 0.022	0.526 ± 0.017	$0.523 \pm 0.012*$	0.515 ± 0.01
Tseng et al.	$0.608 \pm 0.023*$	0.418 ± 0.015	$0.561 \pm 0.011^*$	0.465 ± 0.01

- Our model outperforms baselines.
- Models' performance differs in relation to the content of the video.

Feature Importance

All the input channels add valuable information.

Impact of Video Characteristics on

Model Performance

of content

CNN@Pre-tr.

We quantify the video's degree of excitement of content using content-related features.

Eye movements of individuals with ADHD display more distinctive information for the video with low levels of excitement of content.

 0.646 ± 0.025

Middle

Middle

 $|0.554 \pm 0.016|0.544 \pm 0.01$

High

 0.503 ± 0.01