1. The area of the shaded portion of the figure shown below is most nearly:

- O A. 18
- O B. 39
- o C. 117
- O D. 133

- 2. The indefinite integral of $x^3 x + 1$ is:
 - O A. $3x^2 1 + C$
 - O B. $\frac{x^4}{3} \frac{x^2}{2} + 1 + C$
 - \circ C. $\frac{x^4}{3} \frac{x^2}{2} + 1$
 - O D. $\frac{x^4}{4} \frac{x^2}{2} + x + C$

3. The roots of
$$F = \frac{x^3 + 6x^2 + 11x + 6}{x + 1}$$
 are most nearly:

O A.
$$-1, -2, -3$$

O B. $2, -3$

4. The equation of a sphere with its center at
$$(0, 1, -2)$$
 and a radius of 9 is:

O A.
$$x^2 + (y-1)^2 + (z+2)^2 = 81$$

O B.
$$x^2 + (y+1)^2 + (z-2)^2 = 81$$

O B.
$$x^2 + (y+1)^2 + (z-2)^2 = 81$$

O C. $(x+1)^2 + (y+1)^2 + (z+2)^2 = 81$

O D.
$$(x+1)^2 + (y+1)^2 + (z+2)^2 = 9$$

5. The term
$$\frac{(1-i)^2}{(1+i)^2}$$
, where $i = \sqrt{-1}$, is most nearly:

O B.
$$-1+i$$

O D.
$$1+i$$

- 6. Which of the following is a unit vector perpendicular to the plane determined by the vectors $\mathbf{A} = 2\mathbf{i} + 4\mathbf{j}$ and $\mathbf{B} = \mathbf{i} + \mathbf{j} \mathbf{k}$?
 - \circ A. -2i + j k
 - $\circ B. \qquad \frac{1}{\sqrt{5}}(\mathbf{i}+2\mathbf{j})$
 - $\circ C. \qquad \frac{1}{\sqrt{6}}(-2\mathbf{i}+\mathbf{j}-\mathbf{k})$
 - $\circ D. \qquad \frac{1}{\sqrt{6}}(-2\mathbf{i}-\mathbf{j}-\mathbf{k})$

7. The following data have been collected:

Test	Average Score
1	85
2	87
3	95
4	90
5	85
6	88
7	90
8	90
9	91

Which of the following statements is true?

- O A. The median and the mode are equal.
- O B. The mean and the median are equal.
- O C. The mean and the mode are equal.
- O D. The mean is larger than both the mode and the median.

- 10. The only point of inflection on the curve representing the equation $y = x^3 + x^2 3$ is at:
 - O A. $x = -\frac{2}{3}$ O B. $x = -\frac{1}{3}$

 - \circ C. x = 0
 - \circ D. $x = \frac{1}{3}$

11. A spreadsheet display shows the following values in Column A:

	A	В
1	-2	
2	-1	
3	0	
4	1	
5	2	

Cell B1 contains the formula \$A1^3 + A\$1^2 - 3. The formula in Cell B1 is copied down in Column B with automatic cell referencing. The formula in Cell B5 will be:

- $A1^3 + A5^2 3$ O A.
- $A5^3 + B$1^2 3$ OB.
- $$A5^3 + A$1^2 3$ O C.
- OD. $A5^3 + A5^2 - 3$