Importing libraries

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

Mount google drive to fetch the dataset

```
from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive
```

Read dataset

```
df = pd.read_csv('/content/drive/MyDrive/ProjectStage/Liver/Dataset/All_Combined.csv')
df.sample(5)
```

→		Age	Gender	Total_Bilirubin	Direct_Bilirubin	Alkaline_Phosphotase	Alamine_Aminotransferase	Aspartate_Am
	348	45.0	Male	2.400000	1.100000	168	33	
	1994	53.0	m	4.664552	3.056918	744.1800508	70.07613446	
	944	NaN	NaN	3.210000	0.860000	278.44	61.55	

979	NaN	NaN	0.320000	0.140000	91.18	26.76
1648	27.0	m	3.366542	2.044608	469.9292357	260.6680803

Features in dataset

Finding null values

```
# function to convert n and N to null values
def convert_to_nan(df):

   columns = df.columns
   for col in columns:
     df[col] = df[col].replace({'n': np.nan, 'N': np.nan})
   return df

df = convert_to_nan(df)
```

df.isna().sum()

	0
Age	500
Gender	500
Total_Bilirubin	0
Direct_Bilirubin	0
Alkaline_Phosphotase	22
Alamine_Aminotransferase	5
Aspartate_Aminotransferase	16
Total_Protiens	0
Albumin	0
Albumin_and_Globulin_Ratio	4
Dataset	0

dtype: int64

Removing null values

```
df.drop('Gender', axis=1, inplace=True)
df.drop('Age', axis=1, inplace=True)
df.isna().sum()
```

0
0
0
22
5
16
0
0
4
0

dtype: int64

```
# Convert 'Alkaline_Phosphotase' column to numeric, coercing errors to NaN
df['Alkaline_Phosphotase'] = pd.to_numeric(df['Alkaline_Phosphotase'], errors='coerce')
df['Alamine_Aminotransferase'] = pd.to_numeric(df['Alamine_Aminotransferase'], errors='coerce')
df['Aspartate_Aminotransferase'] = pd.to_numeric(df['Aspartate_Aminotransferase'], errors='coerce')
df['Albumin_and_Globulin_Ratio'] = pd.to_numeric(df['Albumin_and_Globulin_Ratio'], errors='coerce')
df['Total_Protiens'] = pd.to_numeric(df['Total_Protiens'], errors='coerce')

# Now fill NaN values with the mean

df['Alkaline_Phosphotase'] = df['Alkaline_Phosphotase'].fillna(np.mean(df['Alkaline_Phosphotase']))
df['Alamine_Aminotransferase'] = df['Alamine_Aminotransferase'].fillna(np.mean(df['Alamine_Aminotransferase']))
df['Aspartate_Aminotransferase'] = df['Aspartate_Aminotransferase'].fillna(np.mean(df['Aspartate_Aminotransferase']))
df['Albumin_and_Globulin_Ratio'] = df['Albumin_and_Globulin_Ratio'].fillna(np.mean(df['Albumin_and_Globulin_Ratio']))
```

```
df['Total_Protiens'] = df['Total_Protiens'].fillna(np.mean(df['Total_Protiens']))
df['Albumin'] = df['Albumin'].fillna(np.mean(df['Albumin']))

# df.dropna(inplace=True)

df.dtypes
```

0 Total_Bilirubin float64 Direct_Bilirubin float64 **Alkaline Phosphotase** float64 **Alamine_Aminotransferase** float64 **Aspartate_Aminotransferase** float64 **Total Protiens** float64 **Albumin** float64 Albumin_and_Globulin_Ratio float64 **Dataset** int64

dtype: object

df.isna().sum()

	0
Total_Bilirubin	0
Direct_Bilirubin	0
Alkaline_Phosphotase	0

```
Alamine_Aminotransferase 0
Aspartate_Aminotransferase 0
Total_Protiens 0
Albumin 0
Albumin_and_Globulin_Ratio 0
Dataset 0
dtype: int64

df.shape
(2391, 9)
```

Dividing independent and dependent data in X and Y respectively

	lotal_Bilirubin	Direct_Bilirubin	Alkaline_Phosphotase	Alamine_Aminotransferase	Aspartate_Aminotransferas
1774	7.973344	3.036862	546.319440	181.562733	348.85248
342	2.600000	1.200000	410.000000	59.000000	57.00000

352	1.000000	0.300000	208.000000	17.000000	15.00000
1510	2.830050	2.859360	592.660559	216.284220	351.17047
1541	2.655904	1.388051	660.737060	136.504003	359.54097

X.columns

	Dataset
37	0
2170	1
107	0
572	2
480	1
2147	1

dtype: int64

Unique values in target variable (dependent variable)

```
y.unique()
    array([0, 1, 2])
y.isna().sum()
    np.int64(0)
y = y.fillna(0)
y = y.astype(int)
y.dtype
    dtype('int64')
y[:5]
```

	Dataset		
0	0		
1	0		
2	0		
3	0		
4	0		

dtype: int64

 $y=y.map({1:1, 2:0, 0:0})$

	Dataset
0	0
1	0
2	0
3	0
4	0
2386	1
2387	1
2388	1
2389	1
2390	1

2391 rows × 1 columns

dtype: int64

y.value_counts()

count

Dataset1 16680 723

dtvpe: int64

---, ----- .

Finding outlier using scatter plot

sns.scatterplot(data=df)

Finding outlier using heatmap

```
corr_matrix = X.corr()

plt.figure(figsize=(8, 8))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', center=0)
plt.title('Correlation Heatmap')
plt.show()
```


Double-click (or enter) to edit

```
# function for box plot
def printBox(df, col, title):
    sns.boxplot(df[col])
    plt.title(col + title)
```

Finding outlier using box plot

```
printBox(df, 'Alkaline_Phosphotase', 'with outliers')
```

Alkaline_Phosphotasewith outliers Alkaline_Phosphotase

printBox(df, 'Aspartate_Aminotransferase', 'with outliers')

Removing outlier using IQR

```
# Function to remove outliers
def removeOutlier(df, col):
    Q1 = df[col].quantile(0.25)
    Q3 = df[col].quantile(0.75)
    IQR = Q3 - Q1

    lower = Q1 - 1.5 * IQR
    upper = Q3 + 1.5 * IQR

    filtered_col = df[col][(df[col] >= lower) & (df[col] <= upper)]
    # filtered_col = (df[col] >= lower) & (df[col] <= upper)

    return filtered_col

df['Alkaline_Phosphotase'] = removeOutlier(df, 'Alkaline_Phosphotase')

df['Aspartate_Aminotransferase'] = removeOutlier(df, 'Aspartate_Aminotransferase')</pre>
```

```
# df=df.copy()
```

Data without outliers

printBox(df, 'Alkaline_Phosphotase', 'without outliers')

printBox(df, 'Aspartate_Aminotransferase', 'without outliers')

 $A spartate_Aminot ransfer as ewithout\ outliers$

Spliting dataset into training and testing data using train test split

```
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42, test_size = 0.2)
```

Hanlde imbalanced data using SMOTE

```
# y_train.value_counts()[0], y_train.value_counts()[1]
```

```
# # ration = majority / minority
# imbalace_ratio = y_train.value_counts()[1] / y_train.value_counts()[0]
# imbalace_ratio

sns.countplot(x=y_train)
plt.title('Class Distribution Before SMOTE')
plt.show()
```



```
# from imblearn.over_sampling import SMOTE
# smote = SMOTE(random state=42)
# X_train, y_train = smote.fit_resample(X_train, y_train)
y_train.value_counts()
              count
     Dataset
              1347
        1
        0
                565
    dtype: int64
imbalace_ratio = y_train.value_counts()[1] / y_train.value_counts()[0]
imbalace_ratio
    np.float64(2.384070796460177)
y_train.shape
    (1912,)
sns.countplot(x=y train)
plt.title('Class Distribution After SMOTE')
plt.show()
```

Class Distribution After SMOTE

Standardization using standard scaler

```
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

X_train_std = scaler.fit_transform(X_train)

X_test_std = scaler.transform(X_test)
```

Evaluation Metrics, Loss and ROC curve functions

```
# Function to plot ROC curve
def rocCurve(y test, y pred):
 from sklearn.metrics import roc curve, auc
  fpr, tpr, thresholds = roc curve(y test, y pred)
  roc auc = auc(fpr, tpr)
  plt.figure()
  plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc auc)
  plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
  plt.xlim([0.0, 1.0])
  plt.ylim([0.0, 1.05])
  plt.xlabel('False Positive Rate')
  plt.ylabel('True Positive Rate')
  plt.title('Receiver Operating Characteristic (ROC)')
  plt.legend(loc="lower right")
  plt.show()
# Function to plot loss
def plot loss(training loss, validation loss):
   epochs = range(1, len(training loss) + 1)
   plt.plot(epochs, training loss, 'r', label='Training Loss')
   plt.plot(epochs, validation loss, 'b', label='Validation Loss')
   plt.title('Training and validation Loss')
   plt.xlabel('Epochs')
   plt.ylabel('Loss')
   plt.legend()
   plt.show()
# Function for Evaluation Metrics
from sklearn.metrics import accuracy score, precision score, recall score, f1 score
```

```
def calculate metrics(model, X train std, X test std, y train, y test):
  y train pred = model.predict(X train std)
 y train pred labels = (y train pred > 0.5).astype(int)
 training accuracy = accuracy score(y train, y train pred labels)
 training precision = precision score(y train, y train pred labels)
 training recall = recall score(y train, y train pred labels)
 training f1 = f1 score(y train, y train pred labels)
  print(f"Training Accuracy: {training accuracy}")
  print(f"Training Precision: {training precision}")
  print(f"Training Recall: {training recall}")
  print(f"Training F1 Score: {training f1}")
 y pred = model.predict(X test std)
 y pred labels = (y pred > 0.5).astype(int)
  accuracy = accuracy score(y test, y pred labels)
  precision = precision score(y test, y pred labels)
  recall = recall score(y test, y pred labels)
 f1 = f1 score(y test, y pred labels)
  print(f"\nAccuracy: {accuracy}")
  print(f"Precision: {precision}")
  print(f"Recall: {recall}")
  print(f"F1 Score: {f1}")
  return y pred
```

Machine Learning algorithms

KININ

from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors = 5)
knn_history = knn.fit(X_train_std, y_train)

✓ Result

knn_y_pred = calculate_metrics(knn, X_train_std, X_test_std, y_train, y_test)

Training Accuracy: 0.9435146443514645
Training Precision: 0.9538461538461539
Training Recall: 0.9665924276169265
Training F1 Score: 0.9601769911504425

Accuracy: 0.9123173277661796 Precision: 0.926605504587156 Recall: 0.9439252336448598 F1 Score: 0.9351851851851852

rocCurve(y_test, knn_y_pred)

SVM

```
from sklearn.svm import SVC

svm = SVC(kernel='linear')
svm.fit(X_train_std, y_train)

v SVC i ?
SVC(kernel='linear')
```

→ Result

```
svm_y_pred = calculate_metrics(svm, X_train_std, X_test_std, y_train, y_test)
Training Accuracy: 0.9189330543933054
Training Presision: 0.044113263795305
```

Training Recall: 0.9406087602078693
Training F1 Score: 0.942357753811826

Accuracy: 0.9206680584551148 Precision: 0.9353846153846154 Recall: 0.9470404984423676 F1 Score: 0.9411764705882353

rocCurve(y_test, svm_y_pred)

→ Random Forest

```
from sklearn.ensemble import RandomForestClassifier

rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42)
rf_classifier.fit(X_train_std, y_train)

v RandomForestClassifier (?)
RandomForestClassifier(random_state=42)
```

Result

```
rf_y_pred = calculate_metrics(rf_classifier, X_train_std, X_test_std, y_train, y_test)
    Training Accuracy: 1.0
    Training Precision: 1.0
    Training Recall: 1.0
    Training F1 Score: 1.0

    Accuracy: 0.9248434237995825
    Precision: 0.9331306990881459
    Recall: 0.956386292834891
    F1 Score: 0.9446153846153846
rocCurve(y_test, rf_y_pred)
```


Save RF classifier model

```
import joblib

joblib.dump(rf_classifier, 'liver_rf_model.pkl')
    ['liver_rf_model.pkl']
```

Creating and Training ANN model using keras

```
import tensorflow as tf
tf.random.set seed(3)
from tensorflow import keras
tf. version
    '2.18.0'
num_features = X_train_std.shape[1]
print(num features)
    8
ann model = keras.Sequential([
   keras.layers.Dense(10, input_shape=(num_features, ), activation='relu'),
   keras.layers.Dense(20, activation='relu'),
   keras.layers.Dense(40, activation='relu'),
   keras.layers.Dense(80, activation='relu'),
   keras.layers.Dense(1, activation='sigmoid')
])
ann model.compile(optimizer='adam', loss='binary crossentropy', metrics=['accuracy'])
history = ann model.fit(x=X train std, y=y train, validation data=(X test std, y test), epochs=EPOCH)
ann training loss = history.history['loss']
ann validation loss = history.history['val loss']
```

Result

Show hidden output

LI UCII - UU

ann_y_pred = calculate_metrics(ann_model, X_train_std, X_test_std, y_train, y_test)

60/60 — Os 4ms/step
Training Accuracy: 0.9382845188284519
Training Precision: 0.9658832448824868
Training Recall: 0.9458054936896808
Training F1 Score: 0.9557389347336834
15/15 — Os 11ms/step

Accuracy: 0.9018789144050104

Precision: 0.928125

Recall: 0.9252336448598131 F1 Score: 0.9266770670826833

rocCurve(y_test, ann_y_pred)
plot loss(ann training loss, ann validation loss)

Training and validation Loss

Added I2 regularization

from tensorflow import keras

12 model = keras Sequential([

```
keras.layers.Dense(10, input shape=(num features, ), activation='relu', kernel regularizer=keras.regularizers.l2(6
   keras.layers.Dense(20, activation='relu', kernel regularizer=keras.regularizers.l2(0.02)),
   keras.layers.Dense(40, activation='relu', kernel regularizer=keras.regularizers.l2(0.02)),
   keras.layers.Dense(80, activation='relu', kernel regularizer=keras.regularizers.l2(0.02)),
   keras.layers.Dense(1, activation='sigmoid')
])
12 model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
history = 12 model.fit(x=X train std, y=y train, validation split=0.1, epochs=EPOCH)
12 training loss = history.history['loss']
12 validation loss = history.history['val loss']
     Show hidden output
l2_y_pred = calculate_metrics(l2_model, X_train_std, X_test_std, y_train, y_test)
    60/60 ——— 0s 4ms/step
    Training Accuracy: 0.922071129707113
    Training Precision: 0.9450222882615156
    Training Recall: 0.9443207126948775
    Training F1 Score: 0.9446713702190865
                    Os 9ms/step
    15/15 —
    Accuracy: 0.9248434237995825
    Precision: 0.9357798165137615
    Recall: 0.9532710280373832
    rocCurve(y test, l2 y pred)
plot_loss(l2_training_loss, l2_validation_loss)
                    Receiver Operating Characteristic (ROC)
       1.0 -
```


L1,L2 regularization

```
num_features
    8

lll2_model = keras.Sequential([
         keras.layers.Input(shape=(num_features,)),
         keras.layers.Dense(10, activation='relu'),
         keras.layers.Dense(20, activation='relu', kernel_regularizer=keras.regularizers.ll_l2(ll=0.01, l2=0.01)),
         keras.layers.Dense(40, activation='relu', kernel_regularizer=keras.regularizers.ll_l2(ll=0.01, l2=0.01)),
         keras.layers.Dense(80, activation='relu', kernel_regularizer=keras.regularizers.ll_l2(ll=0.01, l2=0.01)),
         keras.layers.Dense(1, activation='sigmoid')

])

lll2_model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
    history = lll2_model.fit(x=X_train_std, y=y_train, validation_split=0.1, epochs=EPOCH)

lll2_training_loss = history.history['loss']

lll2_validation_loss = history.history['val_loss']
```

l1l2_model.input_shape (None, 8)

l1l2_y_pred = calculate_metrics(l1l2_model, X_train_std, X_test_std, y_train, y_test)

Accuracy: 0.9248434237995825 Precision: 0.9411764705882353 Recall: 0.9470404984423676 F1 Score: 0.9440993788819876

rocCurve(y_test, l1l2_y_pred)
plot_loss(l1l2_training_loss, l1l2_validation_loss)

Training and validation Loss


```
num features
     8
num features = X train std.shape[1]
dropout model = keras.Sequential([
    keras.layers.InputLayer(input shape=(num features,)),
    keras.layers.Dense(10, activation='relu'),
    keras.layers.Dropout(0.2),
    keras.layers.Dense(20, activation='relu'),
    keras.layers.Dropout(0.2),
    keras.layers.Dense(40, activation='relu'),
    keras.layers.Dropout(0.2),
    keras.layers.Dense(80, activation='relu'),
    keras.layers.Dropout(0.2),
    keras.layers.Dense(1, activation='sigmoid')
])
dropout model.compile(optimizer='adam', loss='binary crossentropy', metrics=['accuracy'])
history = dropout model.fit(x=X train std, y=y train, validation split=0.1,epochs=EPOCH)
dropout training loss = history.history['loss']
dropout validation loss = history.history['val loss']
     Show hidden output
Result
```

```
dropout y pred = calculate metrics(dropout model, X train std, X test std, y train, y test)
```

60/60 — Os 4ms/step
Training Accuracy: 0.9278242677824268
Training Precision: 0.9314775160599572
Training Recall: 0.9688195991091314
Training F1 Score: 0.9497816593886463
15/15 — Os 9ms/step

Accuracy: 0.9227557411273486 Precision: 0.9251497005988024 Recall: 0.9626168224299065 F1 Score: 0.9435114503816794

rocCurve(y_test, dropout_y_pred)
plot_loss(dropout_training_loss, dropout_validation_loss)

False Positive Rate

Using CNN

X_train_cnn = X_train_std.reshape(X_train_std.shape[0], X_train_std.shape[1], 1)
X_test_cnn = X_test_std.reshape(X_test_std.shape[0], X_test_std.shape[1], 1)

X train cnn shane

```
(1912, 8, 1)
cnnModel = keras.Sequential([
   keras.layers.Conv1D(filters=32, kernel size=3, activation='relu', input shape=(X train cnn.shape[1], 1)),
   keras.layers.MaxPooling1D(pool size=2),
   keras.layers.Conv1D(filters=64, kernel_size=2, activation='relu', padding='same'),
   keras.layers.MaxPooling1D(pool size=2),
   keras.layers.Flatten(),
   keras.layers.Dense(1, activation='sigmoid')
])
cnnModel.compile(optimizer='adam', loss='binary crossentropy', metrics=['accuracy'])
history = cnnModel.fit(X train cnn, y train, epochs=EPOCH, validation split=0.1, validation data=(X test cnn, y test))
cnn training loss = history.history['loss']
cnn validation loss = history.history['val loss']
     Show hidden output
cnn y pred = calculate metrics(cnnModel, X train cnn, X test cnn, y train, y test)
    60/60 — 1s 8ms/step
    Training Accuracy: 0.9278242677824268
    Training Precision: 0.9534883720930233
    Training Recall: 0.9435783221974758
    Training F1 Score: 0.9485074626865672
    15/15 — 0s 15ms/step
    Accuracy: 0.9206680584551148
    Precision: 0.9300911854103343
    Recall: 0.9532710280373832
    F1 Score: 0.9415384615384615
```

Using multiple convolutional layer and pooling layer

```
cnnModel2 = keras.Sequential([
    keras.layers.Conv1D(filters=32, kernel size=3, activation='relu', input shape=(X train cnn.shape[1], 1), padding='
   keras.layers.MaxPooling1D(pool size=2),
   keras.layers.Conv1D(filters=64, kernel size=2, activation='relu', padding='same'),
   keras.layers.MaxPooling1D(pool size=2),
   keras.layers.Conv1D(filters=128, kernel size=2, activation='relu', padding='same'),
   keras.layers.MaxPooling1D(pool size=1),
   keras.layers.Flatten(),
   keras.layers.Dense(1, activation='sigmoid')
])
cnnModel2.compile(optimizer='adam', loss='binary crossentropy', metrics=['accuracy'])
history = cnnModel2.fit(X train cnn, y train, epochs=EPOCH, validation split=0.1, validation data=(X test cnn, y test)
training loss = history.history['loss']
validation loss = history.history['val loss']
    Epoch 1/50
    /usr/local/lib/python3.11/dist-packages/keras/src/layers/convolutional/base conv.py:107: UserWarning: Do not pass
      super(). init (activity regularizer=activity regularizer, **kwargs)
                        4s 34ms/step - accuracy: 0.7834 - loss: 0.4668 - val accuracy: 0.9207 - val loss: 0.219
    60/60 —
```

```
Epoch 2/50
60/60
                          – 2s 4ms/step - accuracy: 0.9219 - loss: 0.2074 - val accuracy: 0.9207 - val loss: 0.2109
Epoch 3/50
                           0s 4ms/step - accuracy: 0.9210 - loss: 0.1960 - val accuracy: 0.9290 - val loss: 0.2036
60/60 -
Epoch 4/50
                          - 0s 4ms/step - accuracy: 0.9222 - loss: 0.1862 - val accuracy: 0.9269 - val loss: 0.1966
60/60 -
Epoch 5/50
60/60 -
                          - 0s 4ms/step - accuracy: 0.9249 - loss: 0.1775 - val accuracy: 0.9290 - val loss: 0.1909
Epoch 6/50
                           0s 4ms/step - accuracy: 0.9255 - loss: 0.1706 - val accuracy: 0.9311 - val loss: 0.1867
60/60 —
Epoch 7/50
60/60 -
                          - 0s 4ms/step - accuracy: 0.9211 - loss: 0.1652 - val accuracy: 0.9248 - val loss: 0.1832
Epoch 8/50
60/60 -
                          - 0s 4ms/step - accuracy: 0.9161 - loss: 0.1610 - val accuracy: 0.9228 - val loss: 0.1812
Epoch 9/50
                          - 0s 4ms/step - accuracy: 0.9170 - loss: 0.1576 - val accuracy: 0.9228 - val_loss: 0.1802
60/60 -
Epoch 10/50
                           Os 4ms/step - accuracy: 0.9166 - loss: 0.1550 - val accuracy: 0.9248 - val loss: 0.1797
60/60 -
Epoch 11/50
                           Os 4ms/step - accuracy: 0.9175 - loss: 0.1527 - val accuracy: 0.9248 - val loss: 0.1791
60/60 -
Epoch 12/50
                          - 0s 4ms/step - accuracy: 0.9173 - loss: 0.1513 - val accuracy: 0.9207 - val loss: 0.1793
60/60 -
Epoch 13/50
                           Os 7ms/step - accuracy: 0.9192 - loss: 0.1499 - val accuracy: 0.9186 - val loss: 0.1797
60/60 -
Epoch 14/50
                           Os 7ms/step - accuracy: 0.9209 - loss: 0.1486 - val accuracy: 0.9186 - val loss: 0.1798
60/60 -
Epoch 15/50
                          - 1s 7ms/step - accuracy: 0.9220 - loss: 0.1477 - val accuracy: 0.9186 - val loss: 0.1804
60/60 -
Epoch 16/50
60/60 -
                          - 1s 6ms/step - accuracy: 0.9248 - loss: 0.1468 - val accuracy: 0.9186 - val loss: 0.1806
Epoch 17/50
                          - 1s 6ms/step - accuracy: 0.9242 - loss: 0.1462 - val accuracy: 0.9165 - val loss: 0.1815
60/60 —
Epoch 18/50
                          - 1s 4ms/step - accuracy: 0.9250 - loss: 0.1454 - val accuracy: 0.9186 - val loss: 0.1814
60/60 -
Epoch 19/50
60/60 -
                          - 0s 4ms/step - accuracy: 0.9221 - loss: 0.1448 - val accuracy: 0.9207 - val loss: 0.1817
Epoch 20/50
                          - 0s 4ms/step - accuracy: 0.9228 - loss: 0.1440 - val accuracy: 0.9165 - val loss: 0.1822
60/60 —
Epoch 21/50
60/60 -
                           Os 4ms/step - accuracy: 0.9210 - loss: 0.1436 - val accuracy: 0.9186 - val loss: 0.1819
```

```
Epoch 22/50
                         — 0s 4ms/step - accuracy: 0.9217 - loss: 0.1431 - val accuracy: 0.9186 - val loss: 0.1822
60/60 —
Epoch 23/50
                         - 0s 4ms/step - accuracy: 0.9242 - loss: 0.1424 - val accuracy: 0.9228 - val loss: 0.1824
60/60 -
Epoch 24/50
                           Os 4ms/step - accuracy: 0.9226 - loss: 0.1418 - val accuracy: 0.9228 - val loss: 0.1822
60/60 -
Epoch 25/50
                         - 0s 4ms/step - accuracy: 0.9226 - loss: 0.1412 - val accuracy: 0.9228 - val_loss: 0.1825
60/60 -
Epoch 26/50
60/60 —
                         - 0s 4ms/step - accuracy: 0.9228 - loss: 0.1408 - val accuracy: 0.9228 - val loss: 0.1834
Epoch 27/50
60/60 -
                          - 0s 4ms/step - accuracy: 0.9249 - loss: 0.1405 - val accuracy: 0.9228 - val loss: 0.1837
Epoch 28/50
60/60 ---
                         - 0s 4ms/step - accuracy: 0.9249 - loss: 0.1401 - val accuracy: 0.9228 - val loss: 0.1838
```

cnn2_y_pred = calculate_metrics(cnnModel2, X_train_std, X_test_std, y_train, y_test)

Accuracy: 0.9311064718162839 Precision: 0.9390243902439024 Recall: 0.9595015576323987 F1 Score: 0.9491525423728814

rocCurve(y_test, cnn2_y_pred)
plot_loss(training_loss, validation_loss)

Plot ROC curve for all the models

```
# plot ROC in single figure
from sklearn.metrics import roc curve, auc
def plot roc curve(y test, y pred prob, model name):
   fpr, tpr, thresholds = roc curve(y test, y pred prob)
   roc auc = auc(fpr, tpr)
   plt.plot(fpr, tpr, lw=2, label=f'{model_name} (AUC = {roc auc:.2f})')
# ML
knn y pred prob = knn.predict proba(X test std)[:, 1]
svm y pred prob = svm.decision function(X test std)
rf y pred prob = rf classifier.predict proba(X test std)[:, 1]
plot roc curve(y test, knn y pred prob, 'KNN')
plot roc curve(y test, svm y pred prob, 'SVM')
plot roc curve(y test, rf y pred prob, 'Random Forest')
plt.plot([0, 1], [0, 1], 'k--', lw=2)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) for ML Models')
plt.legend(loc="lower right")
plt.show()
```



```
# DL
ann_y_pred_prob = ann_model.predict(X_test_std).ravel()
l2_y_pred_prob = l2_model.predict(X_test_std).ravel()
l1l2_y_pred_prob = l1l2_model.predict(X_test_std).ravel()
dropout_y_pred_prob = dropout_model.predict(X_test_std).ravel()
cnn_y_pred_prob = cnnModel.predict(X_test_cnn).ravel()

plot_roc_curve(y_test, ann_y_pred_prob, 'ANN')
plot_roc_curve(y_test, l2_y_pred_prob, 'ANN with L2')
plot_roc_curve(y_test, l1l2_y_pred_prob, 'ANN with L1L2')
plot_roc_curve(y_test, dropout_y_pred_prob, 'ANN with Dropout')
```

```
prot_roc_curve(y_test, cnn_y_pred_prob, twn )
# plt.figure(figsize=(10, 8))
plt.plot([0, 1], [0, 1], 'k--', lw=2)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) for DL Models')
plt.legend(loc="lower right")
plt.show()
    15/15 -
                               - 0s 4ms/step
    15/15 -
                                 0s 3ms/step
    15/15 —
                               - 0s 3ms/step
    15/15 -
                               - 0s 4ms/step
                               - 0s 3ms/step
    15/15 -
               Receiver Operating Characteristic (ROC) for DL Models
        1.0
        0.8
     True Positive Rate
                                             ANN (AUC = 0.98)
                                             ANN with L2 (AUC = 0.97)
```

ANN with L1L2 (AUC = 0.97) ANN with Dropout (AUC = 0.98)

CNN (AUC = 0.98)

0.2

```
0.0 0.2 0.4 0.6 0.8 1.0 False Positive Rate
```

```
epochs = range(1, EPOCH + 1)

plt.plot(epochs, ann_training_loss, label='ANN Training Loss')
plt.plot(epochs, l2_training_loss, label='ANN with L2 Training Loss')
plt.plot(epochs, l1l2_training_loss, label='ANN with L1L2 Training Loss')
plt.plot(epochs, dropout_training_loss, label='ANN with Dropout Training Loss')
plt.plot(epochs, cnn_training_loss, label='CNN Training Loss')

plt.title('Training Loss of All Deep Learning Models')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend(loc='upper right', bbox_to_anchor=(1.25, 1))
plt.grid(True)
plt.show()
```



```
plt.plot(epochs, ann_validation_loss, label='ANN Validation Loss')
plt.plot(epochs, l2_validation_loss, label='ANN with L2 Validation Loss')
plt.plot(epochs, l1l2_validation_loss, label='ANN with L1L2 Validation Loss')
plt.plot(epochs, dropout_validation_loss, label='ANN with Dropout Validation Loss')
plt.plot(epochs, cnn_validation_loss, label='CNN Validation Loss')

plt.title('Training and Validation Loss of All Deep Learning Models')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend(loc='upper right', bbox_to_anchor=(1.25, 1))
plt.grid(True)
plt.show()
```

Training and Validation Loss of All Deep Learning Models

Plot Leraning Curve fot ML models

```
from sklearn.model selection import learning curve
def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,
                        n jobs=None, train sizes=np.linspace(.1, 1.0, 5)):
   plt.figure()
   plt.title(title)
   if ylim is not None:
        plt.ylim(*ylim)
   plt.xlabel("Training examples")
   plt.ylabel("Score")
   train_sizes, train_scores, test_scores = learning_curve(
        estimator, X, y, cv=cv,
        n jobs=n jobs,
       train_sizes=train_sizes)
   train scores mean = np.mean(train scores, axis=1)
   train_scores_std = np.std(train_scores, axis=1)
   test scores_mean = np.mean(test_scores, axis=1)
```


plt.show()

plot_learning_curve(svm, "Learning Curve (SVM)", X_train_std, y_train, cv=5)
plt.show()

plot_learning_curve(rf_classifier, "Learning Curve (Random Forest)", X_train_std, y_train, cv=5)
plt.show()

Start coding or generate with AI.