

數學B4 隨堂卷

3-2 機率的運算

____科_____年____班_____號 姓名:

一、單選題(每題10分,共50分)

($\frac{C}{C}$) 1. 同時投擲兩枚均勻的硬幣一次,出現兩正面的機率為 $(A)\frac{1}{2}$ $(B)\frac{1}{3}$ $(C)\frac{1}{4}$ $(D)\frac{3}{4}$ \circ

解析:

樣本空間 $S = \{(\mathbb{E}, \mathbb{E}), (\mathbb{E}, \mathbb{E}), (\mathbb{D}, \mathbb{E}), (\mathbb{D}, \mathbb{E})\}$,故n(S) = 4

又出現兩正面的事件 $A = \{(\mathbb{E}, \mathbb{E})\}$,得n(A) = 1,故所求機率 $P(A) = \frac{n(A)}{n(S)} = \frac{1}{4}$

(A) 2. 同時擲兩顆公正的骰子,出現點數和大於10的機率為 (A) $\frac{1}{12}$ (B) $\frac{1}{6}$ (C) $\frac{1}{2}$ (D) $\frac{1}{3}$ 。

解析:

設樣本空間為S,點數和大於10的事件為A,則 $n(S) = 6 \times 6 = 36$

$$A = \{(5,6),(6,5),(6,6)\}$$
, $\exists In(A) = 3$, $\exists In(A) = \frac{n(A)}{n(S)} = \frac{3}{36} = \frac{1}{12}$

(B) 3. 設 $A \cdot B$ 為兩事件,P(A) = 0.6,P(B) = 0.4, $P(A \cap B) = 0.2$,則 $P(A \cup B) = (A)1$ (B) 0.8 (C) 0.6 (D) 1.2 。

解析:

 $\boxplus P(A \cup B) = P(A) + P(B) - P(A \cap B)$

得 $P(A \cup B) = 0.6 + 0.4 - 0.2 = 0.8$

($\frac{C}{C}$) 4. 投擲兩顆公正的骰子,在出現點數和為9的條件下,兩顆骰子中有一顆出現點數3的 機率為 $\frac{1}{3}$ (B) $\frac{2}{5}$ (C) $\frac{1}{2}$ (D) $\frac{1}{4}$ 。

解析:

點數和為9的事件 $A = \{(3,6), (4,5), (5,4), (6,3)\}$, n(A) = 4

點數和為9且出現點數3的事件 $A \cap B = \{(3,6),(6,3)\}$, $n(A \cap B) = 2$

故所求 =
$$\frac{n(A \cap B)}{n(A)}$$
 = $\frac{2}{4}$ = $\frac{1}{2}$

(D) 5. 小花、小毛投籃的命中率分別為 $\frac{1}{3}$ 、 $\frac{3}{5}$ 。今兩人同時對籃框各投一球,且兩人投籃 互不影響,則兩人皆命中的機率為 (A) $\frac{2}{15}$ (B) $\frac{3}{8}$ (C) $\frac{14}{15}$ (D) $\frac{1}{5}$ 。

解析:

因為兩人投籃互不影響,所以兩人皆命中的機率為 $\frac{1}{3} \times \frac{3}{5} = \frac{1}{5}$

二、填充題(每格10分,共50分)

1. 擲一顆公正的骰子,出現點數小於4的機率為 $\frac{1}{2}$ 。

解析:

樣本空間 $S = \{1,2,3,4,5,6\}$,則 n(S) = 6

點數小於4的事件 $A = \{1,2,3\}$,則n(A) = 3

世
$$P(A) = \frac{n(A)}{n(S)} = \frac{3}{6} = \frac{1}{2}$$

2. 對任意事件 A 發生的機率 P(A) 其值的範圍為 $0 \le P(A) \le 1$ 。

解析:

機率非負數,每一個事件發生的機率必在0與1之間

故
$$0 \le P(A) \le 1$$

3. 某班學生第二次段考中,有30%的學生國文及格,16%的學生英文及格,且有5%的學生兩科都及格,若任選一位學生,則其國文及格或英文及格的機率為 41% 。

解析:

設A、B分別表示國文及格與英文及格的事件

$$\exists I P(A) = 30\% , P(B) = 16\% , P(A \cap B) = 5\%$$

故所求機率為
$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = 30\% + 16\% - 5\% = 41\%$$

4. 設 $A \cdot B$ 為二事件,若 $P(A) = \frac{1}{2}$, $P(A \cap B) = \frac{1}{3}$,則 $P(B|A) = \frac{2}{3}$ 。

解析:

$$\boxplus P(B|A) = \frac{P(A \cap B)}{P(A)}$$

$$(|B|A) = \frac{\frac{1}{3}}{\frac{1}{2}} = \frac{2}{3}$$

5. 已知 $A \cdot B$ 兩事件獨立,若 $P(A) = \frac{1}{4}$, $P(B) = \frac{4}{7}$,則 $P(A \cap B) = \frac{1}{7}$ 。

解析:

因為兩事件獨立

所以
$$P(A \cap B) = P(A) \times P(B) = \frac{1}{4} \times \frac{4}{7} = \frac{1}{7}$$