

2022: DIGITAL VISIONS

Towards Fair-Al: A Study on Popularity Bias in News Recommendations

ONLINE STUDY

START: 27th of October, 2020 END: 9th of November, 2020 **USE-CASE:** Related News Articles

Significant Key Events:

E1: Vienna Terror Attack (November 2nd)

E2: Death of Sean Connery and COVID-19 Lockdown Announcement in Austria (October 31st)

CONCLUSIONS

C1: The probability of recommendations to be seen is the highest for desktop devices

probability of **C2**: clicking the The recommendations (once they are seen) is the **highest** for **mobile** devices

C3: The reading behavior of subscribed users is less prone to popularity bias when compared to anonymous users

Personalized, content-based recommendations lead to a more balanced distribution of news articles' readership popularity, especially for anonymous users

C5: Significant key events cause for notable fluctuations of the recommender performance (Vienna Terror Attack)

C6: Personalisation can contribute to fair Al principles but we need more sophisticated measures to measure fairness!

EXPERIMENTS

Objective 1: Comparing the performance of news recommendations for different user interface types

the ratio between the number of times the user actually UI section) and the number of recommendations that were generated for a user.

Recommendation-Seen-Ratio (RSR) is defined as Click-Through-Rate (CTR) is measured by the ratio between number saw recommendations (i.e., scrolled to the respective recommendations and the number of seen recommendations.

%	Desktop	Mobile	Tablet
RSR	26.88	17.55	26.71
CTR	10.53	13.40	11.37

Objective 2: Mitigating popularity bias by introducing personalized, content-based news recommendations

Skewness measures the asymmetry of a probability distribution. A high value depicts a right-tailed distribution, i.e., indicates biased news consumption wrt. popularity.

Kurtosis measures the "tailedness" of a distribution. Higher values indicate a higher tendency for popularity bias.

A large gap exists between anonymous users and subscribers at the beginning of the study. Only mostpopular recommendations were shown to the users at that time. A considerably lower difference between the user groups is achieved at the end of the study, which leads to more fairness for unpopular articles.

DATA STATISTICS

Interface Types: Desktop, Mobile and Tablet

User Groups: Anonymous and logged-in Subscribers

Measure	User Group	Desktop	Mobile	Tablet	Sum
No. of (users) / sessions	Anonymous	205,703	925,000	52,209	1,182,912
	Subscribers	(8,650) 14,136	(5,758) 7,712	(1,502) 1,873	(15,910) 23,721
	Sum	219,839	932,712	54,082	1,206,633
No. of distinct news articles	Anonymous	14,002	6,631	3,552	17,028
	Subscribers	2,977	1,904	1,353	3,238
	Sum	14,378	6,711	3,645	17,372
No. of reads	Anonymous	474,855	1,802,197	94,399	2,371,451
	Subscribers	168,035	110,268	17,113	295,416
	Sum	642,890	1,912,465	111,532	2,666,887

Dr. Dominik Kowald, Dr. Emanuel Lacić (Fair-Al Lab)

Institute of Interactive Systems and Data Science & Know-Center GmbH

