Компьютерная графика: Дополнительные главы Лекция 3: Post-processing effects

Н.Д. Смирнова

Санкт-Петербургский Государственный Политехнический Университет

18.02.2011

Зачем

обработка финальной картинки кадра

¹DirectX Samples Post-process. Microsoft Corp.

Идея

Задача	Простые Эффекты	Сложные Эффекты
	000	00
	000	00
	00	000
		0000

Важно

- post process эффекты **не "вмешиваются"** в рендеринг сцены
- нюансы full-screen quad rendering'a pos(0,0):(4,4); uv(0,0):(1,1)
 - сдвинуть квад влево на пол-пикселя
 - сдвинуть текстуру влево на пол-текселя (?????)

²Windows DirectX Graphics. "Directly Mapping Texels to Pixels (Direct3D 9)". Microsoft Corp.

Типы

пиксель-в-пиксель

• много пикселей-в-пиксель (фильтрация)

Задача

Сложные Эффекты
00
00
00
0000
0000

Grayscale(Monochrome)

 $Color(R,G,B) \Rightarrow Luminance(L) (CIE XYZ)$

- NTSC, PAL Y = 0.299R + 0.587G + 0.114B
- sRGB Y = 0.2125R + 0.7154G + 0.0721B (DX Sample)

Grayscale(Monochrome)

В идеале необходима еще гамма-коррекция

- $\textit{C}_{\textit{gamma}} = \textit{C}_{\textit{linear}}^{1/\gamma}, \gamma = 2.2$ (в реальности функция сложнее)
- преобразование RGB в XYZ проводится в линейном пространстве
- ullet тогда для $RGB \in [0,1]$
- $r = R^{2.2}, g = G^{2.2}, b = B^{2.2}$
- $Y = (0.2125r + 0.7154g + 0.0721b)^{1/2.2 3}$

³http://cgm.computergraphics.ru/node/2203

Задача

Сложные Эффекты
00
00
00
00000
0000
00000

Sepia (Monochrome)

Имитация старых фотографий $Color(R,G,B) \Rightarrow Luminance(L)$

Whitacker ⁴

$$R' = 0.393 \cdot R + 0.769 \cdot G + 0.189 \cdot B$$

$$G' = 0.349 \cdot R + 0.686 \cdot G + 0.168 \cdot B$$

$$B' = 0.272 \cdot R + 0.534 \cdot G + 0.131 \cdot B$$

⁴http://rbwhitaker.wikidot.com/post-processing-effects

Sepia (Monochrome)

NVidia post-sepia

```
float3 Grayscale = float3(0.3,0.59,0.11);
float3 Stain = float3(0.2,0.05,0);
float3 Paper = float3(1,0.9,0.5);
float Desat = 0.5;
float Toned = 1.0f;
float3 Color = Paper*tex2D(Sampler,IN.UV).xyz;
float gray = dot(Grayscale,Color);
float3 muted = lerp(Color,gray.xxx,Desat);
float3 sepia = lerp(Stain,Paper,gray);
float3 out = lerp(muted,sepia,Toned);
```

⁵developer.download.nvidia.com/shaderlibrary/webpages/hlsl_shaders.html

Задача

```
Простые Эффекты

000

000

000
```

Сложные Эффекты
00
00
00
00000
0000
00000
00000

Яркость (brightness)

- яркость характеристика визуального восприятия отраженного (излученного) от поверхности света ⁶
 - честно $RGB \Rightarrow HSB \Rightarrow HSB' \Rightarrow R'G'B'$
 - просто $R'G'B' = RGB + Value_{brightness}$ ⁷

⁶http://en.wikipedia.org/wiki/Brightness

⁷http://pippin.gimp.org/image processing/chap point.html

Контрастность

- контрастность отношения самой светлой и самой темной чати изображения
 - существует множество способов вычисления контраста
 - просто $R'G'B' = (RGB 0.5) * Value_{contrast} + 0.5^9$

⁸http://en.wikipedia.org/wiki/Contrast_(vision)

Задача

Простые Эффекты○○○
○○
○○
○○
○○
○○

Сложные Эффекты
00
00
00
00000
0000
00000

Яркость + Контрастность

- комбинация двух простых формул дает
- $R'G'B' = (RGB 0.5) * Value_{contrast} + 0.5 + Value_{brightness}$ 10

⁹http://pippin.gimp.org/image processing/chap point.html

 $^{^{10}} http://pippin.gimp.org/image_processing/chap_point.html$

Gaussian blur

•
$$G(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2}2\sigma^2} \Rightarrow G(x,y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2+y^2}{2}2\sigma^2}$$
 11

- фильтр \leftarrow сэмплированная, нормализованная функция
- последовательно применяют 2 одномерных фильтра

Sharpening 1D

ı	200	180	160	140	120	200	200	200	100	100	100	100
Δ	-20	-20	-20	-20	80	0	0	-100	0	0	0	
Δ2		0	0	0	100	-80	0	-100	100	0	0	

200	180	160	140	20	280 (255)	200	300 (255)	0	100	100	100
-----	-----	-----	-----	----	--------------	-----	--------------	---	-----	-----	-----

фильтр -1 3 -1 12

¹¹http://en.wikipedia.org/wiki/Gaussian filter

 $^{^{12} \}rm http://azzlsoft.com/2011/02/21/phone-vision-13-sharpening-filters$

Sharpening 2D

0	-1	0			
-1	5	-1			
0	-1	0			
sharp(x,y)					

-1	-1	-1
-1	9	-1
-1	-1	-1

Задача

Простые Эффекты
000
000
000
000
000

Kawase's blur

- дает результат похожий на Gauss blur, только дешевле
- необходимо несколько итераций для хорошего результата

¹³Kawase. Presentation: Frame Buffer Postprocessing Effects in DOUBLE-S.T.E.A.L (Wreckless). GDC2003

Bloom (вариант)

- down-scale + threshold value (brightness)
- blur filter
- add to base picture

down-scale = 16; blur = kawase

Задача

Простые Эффекты000
000
000
0000
000

Сложные Эффекты

00
00
00
00
00
00
00
00
00
00

Motion blur

- real-time должен быть 60fps
- телевидению хватает 24fps
- motion blur добавляет очень много информации

Motion blur (примитивный)

¹⁴http://www.ixbt.com/video/light-model-motionblur.html

 Задача
 Простые Эффекты
 Сложные Эффекты

 000
 00

 000
 00

 000
 00

 000
 00

 000
 00

 000
 00

 000
 00

 000
 00

 000
 00

 000
 00

 000
 00

 000
 00

 000
 00

 000
 00

 000
 00

 000
 00

Motion blur (full-screen)

Движется камера

¹⁵http://http.developer.nvidia.com/GPUGems3/gpugems3_ch27.html

Motion blur (per-object)

Двигаются отдельные предметы

- скорости рассчитываются в vertex shader
- в pixel shader уже интерполированные скорости
- далее опять velocity map

Маскирование объектов

- пример: гоночная машина в рейсинге
- рендерить маску в отдельную текстуру
- или в alpha канал

16

Задача

 при сглаживании использовать эту информацию

Простые Эффекты

Сложные Эффекты ○○ ○○ ●○○

Heat Distortion

- класс эффектов, моделирующих искажения изображения:
 - марево в пустыне, горячий воздух над асфальтом
 - выход горячего газа из трубы,
 - стеклянные объекты

¹⁷http://idj20.blogspot.com/

¹⁸http://howisthisglass.blogspot.com/2010 08 01 archive.html

Heat Distortion

- full screen
- heat volumes (затухание на границах)
- анимированные или 3D distortion текстуры
- refraction for glass (воздух:стекло=1.33)

19

¹⁹Sebastien St-Laurent.Shaders for Game Programmers and Artists.

Задача

Простые Эффекты
000
000
000
000
000
000

Сложные Эффекты

00

00

00

000

•0000

Depth of Field

Depth of Field (Scheme)

Фильтрация

- использование мип-мапов
- выбор из набора префильтрованных текстур
- фильтрация с переменным радиусом ядра

 Задача
 Простые Эффекты
 Сложные Эффекты

 000
 00

 000
 00

 000
 00

 000
 00

 000
 00

 000
 00

 000
 00

 000
 00

 000
 00

 000
 00

 000
 00

 000
 00

 000
 00

 000
 00

Depth of Field (Проблемы мип-мапов)

- артефакты при увеличение мипмапа (magnification filtering problem)
- спасаются техникой "дрожание"(jittering)

Depth of Field (Проблемы)

- проблема разрыва по Z (z-discontinuity)
- перетекание цвет (color-bleeding)

Задача

Простые Эффекты
000
000
0000
000
000

Сложные Эффекты

00

00

000

0000

•000

Focus Blur

Lens Blur

Задача	Простые Эффекты	Сложные Эффекты
	000	00
	000	00
	00	000
	000	00000 0000

TO BE CONTINUED...