Axisymmetrische toroidale Konfigurationen

Wolfgang Suttrop, Max-Planck-Institut für Plasmaphysik, Garching

Inhalt

Toroidale Konfiguration schliesst \vec{B} -Feld innerhalb des Plasmas

- \Rightarrow keine Strömung \vec{B} auf die Wand (End-Verluste)
 - Koordinaten im Torus
 - Poloidale und toroidale Flüsse
 - Axi-symmetrische Konfigurationen
 - Grad-Shafranov(-Schlüter)-Gleichung
 - Der Tokamak
 - Tokamak-Beispiel: "ASDEX Upgrade"

Koordinatensystem

 \equiv Zylinderkoordinaten mit *z*-Achse = Torusachse

$$B_{ heta}, j_{ heta}
ightarrow B_{p}, j_{p}$$
 (poloidale Größen) $B_{z}, j_{z}
ightarrow B_{\phi}, j_{\phi}$ (toroidale Größen)

Aspektverhältnis

 $A \equiv R/r = \text{großer Radius} / \text{kleiner Radius}.$

 $\varepsilon \equiv 1/A$ (inverses Aspektverhältnis)

Grenzfall $A \to \infty$ ($\varepsilon \to 0$): Keine Krümmung, lineare Plasmasäule

Torusdrift (Teilchenbild)

Grad-*B* und Krümmungsdrift

(s. Teil I, Plasmaphysik):

$$\vec{v}_d = \frac{mv_{\parallel}^2 + mv_{\perp}^2/2}{q} \quad \frac{\vec{B} \times \nabla B}{B^3}$$

 \rightarrow Ladungstrennung, vertikales \vec{E} -Feld.

 $E \times B$ -Drift:

$$v_{\rm ExB} = \frac{\vec{E} \times \vec{B}}{B^2}$$

Schneller radialer Teilchenverlust

$$\Delta t \sim r/v_d \sim (r L_B) \omega_c / v_{\rm th}^2 \sim \frac{r^2 \omega_c}{\epsilon v_{\rm th}^2}$$

Lösung: Zusätzliches poloidales Magnetfeld

Teilchenbild:

Poloidales Feld führt Gyrozentrum abwechselnd auf beide Seiten des Äquators

⇒ Torusdrift abwechselnd radial einwärts und auswärts

Torusdrift wird kompensiert

Beachte: Magnetischer Spiegel

$$B \propto 1/R$$

→ Teilchen können gefangen sein

Poloidalfeld im MHD-Bild

Kraftgleichgewicht: $\nabla p = j_{\perp} \times B$

 ∇p konstant auf Flußflächen.

Betrachte zwei Punkte auf einer Flußfläche: $R_1 < R_2$:

- Toroidalfeld $B_{\phi}(R_1) > B_{\phi}(R_2)$.
- \Rightarrow Poloidale Stromdichte: $j_p(R_2) > j_p(R_1)$.
- Ohne weiteres ist diese Stromdichte nicht quellfrei!
- Quellfreiheit wird hergestellt durch zusätzlichen toroidalen Strom $j_{\phi,PS}$ ("Pfirsch-Schlüter-Strom"):

$$\nabla_{\Phi} \cdot \nabla j_{\Phi, PS} + \nabla_p \cdot \nabla j_p = 0$$

(Gesamter toroidaler Strom $I_{\phi} = \int_{A} \vec{j}_{\phi} dA$ kann null oder endlich sein, jedoch kann die Stromdichte j_{ϕ} nicht überall null sein)

Der Sicherheitsfaktor

Def. Sicherheitsfaktor:

$$q = \frac{\text{Zahl toroidale Umläufe}}{\text{Zahl poloidale Umläufe}}$$

... einer Feldlinie.

Zylindrische Näherung (screw pinch):

$$q = \frac{r}{R} \frac{B_{\phi}}{B_{p}}$$

Stabilität: q > 1 (normalerweise)

Magnetischer Fluß, elektrischer Stromfluß

Maxwell: $\nabla \cdot \vec{B} = 0$,

Keine Ladungsquellen: $\nabla \cdot \vec{j} = 0$

$$\int_{F_1} \vec{B} \, d\vec{A} + \int_{F_2} \vec{B} \, d\vec{A} = \int_{F_1 + F_2} \vec{B} \, d\vec{A}$$

$$= \int_{V} \nabla \cdot \vec{B} \, dV = 0$$
Gauss'scher Satz

 \Rightarrow Flüsse $\psi \equiv \int_F \vec{B} \, d\vec{A}, \quad I \equiv \int_F \vec{j} \, d\vec{A}$ hängen nur von <u>Umrandung</u> der durchströmten Fläche ab.

Poloidaler und toroidaler Fluß

Magnetische Flächen im Torus: 2 Möglichkeiten der Umrandung

Poloidaler Fluß durch Fläche mit

- poloidaler Normalen A_p
- toroidal umlaufender Umrandung K_t

Toroidaler Fluß durch Fläche mit

- toroidaler Normalen A_t
- poloidal umlaufender Umrandung K_p

Magnetische Flächen werden durch p, ψ_p und ψ_t charakterisiert. \rightarrow "Flußflächengrößen" Wählen im Folgenden poloidale Flüsse (ψ_p, I_p) .

Poloidales Magnetfeld \leftrightarrow pol. magnetischer Fluß

Flußdifferenz, benachbarte Flächen:

$$\psi_p(R, z + \Delta z) = \psi_p(R, z) - 2\pi R B_R \Delta z$$

$$\psi_p(R + \Delta R, z) = \psi_p(R, z) + 2\pi R B_z \Delta R$$

 \rightarrow Poloidalfeld-Komponenten:

$$B_R = -\frac{1}{2\pi R} \frac{\partial \psi_p}{\partial z}, \quad B_z = \frac{1}{2\pi R} \frac{\partial \psi_p}{\partial R}$$

Toroidale Stromdichte

Ampére'sche Gesetz $\vec{j} = \nabla \times \vec{B}/\mu_0$ in Zylinderkoordinaten (R, ϕ, z) :

$$j_R = \frac{1}{\mu_0} \left(\frac{\partial B_z}{R \partial \phi} - \frac{\partial B_{\phi}}{\partial z} \right), \quad j_{\phi} = \frac{1}{\mu_0} \left(\frac{\partial B_R}{\partial z} - \frac{\partial B_z}{\partial R} \right), \quad j_z = \frac{1}{\mu_0} \left(\frac{\partial (RB_{\phi})}{R \partial R} - \frac{\partial B_R}{R \partial \phi} \right),$$

Toroidale Stromdichte:

$$j_{\phi} = -rac{1}{2\pi\mu_0}\left[rac{1}{R}rac{\partial^2\psi_p}{\partial z^2} + rac{\partial}{\partial R}\left(rac{1}{R}rac{\partial\psi_p}{\partial R}
ight)
ight] \equiv -rac{1}{2\pi\mu_0}rac{1}{R}\Delta^*\psi_p$$

 Δ^* : "Elliptischer Differentialoperator"

Vakuum-Toroidalfeld

Einschränkende Annahme: **Axialsymmetrie** $(\partial/\partial\phi = 0)$

$$j_{z} = \frac{1}{\mu_{0}} \left(\frac{\partial (RB_{\phi})}{R \partial R} - \underbrace{\frac{\partial B_{R}}{R \partial \phi}}_{=0} \right) = \frac{1}{\mu_{0}} \frac{1}{R} \frac{\partial (RB_{\phi})}{\partial R} \underbrace{=0}_{\text{Vakuum}}$$

Vakuum ($j_z = 0$): $RB_{\phi} = \text{const.}$

$$B_{\phi} \propto R^{-1}$$

(unabhängig von der Form der felderzeugenden Spulen)

Toroidalfeld \leftrightarrow poloidaler elektrischer Strom

Poloidaler Stromfluß I_p (durch Fläche A_p , berandet durch K_t):

$$I_p = \int \vec{j} dA_p = \int \vec{j}_p dA_p = \frac{1}{\mu_0} \int (\nabla \times B_{\phi}) dA_p = \frac{1}{\mu_0} \oint_{K_t} B_{\phi} dK_t = 2\pi \frac{RB_{\phi}}{\mu_0}$$

(Stokes'scher Satz $\int \nabla \times \vec{B} \, dA = \oint_K \vec{B} \, dK$)

 I_p Flußflächengröße $\to RB_{\phi}$ Flußflächengröße.

Radiale Kraftbilanz

$$(\nabla p)_R = (\vec{j} \times \vec{B})_R$$
, Zylinderkoordinaten: $\frac{\partial p}{\partial R} = j_{\phi} B_z - j_z B_{\phi}$

Einsetzen aller bisherigen Gleichungen \rightarrow durch poloidalen Fluß ψ_p ausdrücken:

$$\frac{\partial p}{\partial \psi_p} \frac{\partial \psi_p}{\partial R} = -\frac{1}{4\pi^2 \mu_0} \frac{1}{R^2} \Delta^* \psi_p \frac{\partial \psi_p}{\partial R} - \frac{1}{\mu_0} \frac{1}{R^2} \frac{\partial (RB_{\phi})}{\partial R} RB_{\phi}$$

Da $RB_{\phi} = I_p \mu_0/(2\pi)$:

$$\frac{\partial (RB_{\phi})}{\partial R} = \frac{\mu_0}{2\pi} \frac{\partial (I_p)}{\partial R} = \frac{\mu_0}{2\pi} \frac{\partial I_p}{\partial \psi_p} \frac{\partial \psi_p}{\partial R}$$

Einsetzen und Dividieren durch $\partial \psi_p / \partial R$, $' \equiv \partial / \partial \psi_p$

 \rightarrow Grad-Shafranov (-Schlüter) Gleichung:

$$\Delta^* \psi_p = -4\pi^2 \mu_0 R^2 p' - \mu_0^2 I_p I_p'$$

Nichtlineare DGL in ψ_p !

Zur Lösung spezifiziere $p(\psi_p)$ und $I_pI'_p(\psi_p)$ sowie Randbedingungen.

Analytische Lösungen der GSS-Gleichung

$$\Delta^* \psi_p = 2\pi \mu_0 R j_{\phi} = \left[\frac{\partial^2 \psi_p}{\partial z^2} + R \frac{\partial}{\partial R} \left(\frac{1}{R} \frac{\partial \psi_p}{\partial R} \right) \right] = -\mu_0^2 I_p I_p' - 4\pi^2 \mu_0 R^2 p' \equiv C_1 + R^2 C_2$$

 $(C_1, C_2 \text{ konstant})$

Allgemeine Lösung:

$$\psi_{p} = \frac{C_{1}}{2}z^{2} + \frac{C_{2}}{8}R^{4} + \underbrace{C_{3} + C_{4}R^{2} + C_{5}(R^{4} - 4R^{2}z^{2}) + \dots}_{\text{L\"osungen homogene Gl.}}$$

(Beweis durch Einsetzen)

Lösungen der homogenen Gleichung (Vakuum) erfüllen Randbedingungen für ψ_p (Fluß aufgrund äußerer Magnetfeldspulen)

 \rightarrow Plasmalage, Plasmaform!

Vertikalfeld

$$B_z = \frac{1}{2\pi R} \frac{\partial \psi_p}{\partial R}$$
, homogenes Vertialfeld: $\psi_p \propto R^2$

Kein Vakuumfeld

Kleines (positives) Vertikalfeld Großes (positives) Vertikalfeld

Der Tokamak

Tokamak =

toroidalnaja kamera (toroidale Kammer)

magnitnaja katushka (magnetische Spulen)

Tamm, Sakharov (1952)

- torusförmiges axisymmetrisches Plasma
- Toroidalfeld durch poloidale Spulen
- Vertikalfeld durch toroidale Spulen
- Zentraler Solenoid ("OH-Trafo"):
 - $\rightarrow \partial \psi_p/\partial t$
 - → toroidale Ringspannung
 - \rightarrow toroidaler Plasmastrom j_{ϕ}
 - → Kraftgleichgewicht
 - → Ohm'sche Heizung

Axial-Symmetrisches Divertor EXperiment (ASDEX) Upgrade

Max-Planck-Institut für Plasmaphysik (Garching)

ASDEX Upgrade, Plasmagefäß (innen)

Max-Planck-Institut für Plasmaphysik (Garching)

ASDEX Upgrade, Plasma

Max-Planck-Institut für Plasmaphysik (Garching)

ASDEX Upgrade, Daten

Großer Plasmaradius	R	1.65	m
Kleiner Plasmaradius	а	0.5	m
tor. Plasmastrom	I_{Φ}	≤ 1.6	MA
Toroidalfeld	B_{ϕ}	≤ 3.2	T
Basis-Vakuumdruck	p	$\leq 1 \times 10^{-7}$	mbar
Plasmaheizleistung:			
Neutralstrahlinjektion	$P_{ m NBI}$	≤ 20	MW
Ionenzyklotronheizung	$P_{\rm ICRH}$	≤ 8	MW
ElektronenzyklHz.	$P_{ m ECRH}$	≤ 4	MW

Zeitspuren Plasma-"Entladung"

Start der Plasma-Entladung

Zusammenfassung: Axisymmetrische toroidale Konfigurationen

- Toroidales Plasma vermeidet Endverluste (cf. magn. Spiegel)
- "Natürliches" Koordinatensystem: Zylinderkoo., z|| Torusachse.
- Magnetischer- und Stromfluß durch poloidal oder toroidal umrandete Flächen. Wähle normalerweise poloidale Flüsse ψ_p , I_p
- Radiale Komponente von $\nabla p = \vec{j} \times \vec{B}$ führt zur Grad-Shafranov(-Schlüter)-Gleichung: Differentialgleichung für ψ_p vs. $p'(\psi_p)$, $I_p I'_p(\psi_p)$
- Addieren von Vakuumlösungen (homogene GSS-Gl.) erlaubt Erfüllen von Randbedingungen (durch externe Spulen erzeugte Flüsse)
- Der Tokamak ist eine axisymmetrische toroidale Konfiguration:
 - Starkes toroidales Führungsfeld durch äußere Spulen
 - Toroidaler Plasmastrom, induziert durch Stromänderung in OH-"Transformator".
 - "Ohm'sche" Plasmaheizung durch (Ringspannung × Plasmastrom)
 - + Zusatzheizung
 - Vertikalfeld: Radiale Lagekontrolle