(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 3 July 2003 (03.07,2003)

PCT

(10) International Publication Number WO 03/053960 A2

- (51) International Patent Classification⁷: C07D 413/12, Λ61K 31/47, Λ61P 43/00
- (21) International Application Number: PCT/GB02/05518
- (22) International Filing Date: 5 December 2002 (05.12.2002)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

0129099.8

5 December 2001 (05.12.2001) GI

- (71) Applicant (for all designated States except MG, US): AS-TRAZENECA AB [SE/SE]; Sodentalje, S-151 85 (SE).
- (71) Applicant (for MG only): ASTRAZENECA UK LIM-ITED [GB/GB]; 15 Stanhope Gate, London, Greater London W1K 1LN (GB).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): HENNEQUIN, Laurent, Francois, Andre [FR/GB]; Alderley Park, Macclesfield, Cheshire SK10 4TG (GB). GIBSON, Keith, Hopkinson [GB/GB]; Alderley Park, Macclesfield, Cheshire SK10 4TG (GB). FOOTE, Kevin, Michael [GB/GB]; Alderley Park, Macclesfield, Cheshire SK10 4TG (GB).

- (74) Agent: ASTRAZENECA; Global Intellectual Property, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG (GB).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: CHEMICAL COMPOUNDS

(57) Abstract: The invention concerns quinoline derivatives of Formula (I) wherein each of Z, m, R¹, n and R³, X, Y and W have any of the meanings defined hereinbefore in the description; processes for their preparation, pharmaceutical compositions containing them and their use in the manufacture of a medicament for use as an anti-proliferative agent in the containment and/or treatment of solid tumour disease.

30

CHEMICAL COMPOUNDS

The invention concerns certain novel quinoline derivatives, or pharmaceuticallyacceptable salts thereof, which possess anti-tumour activity and are accordingly useful in

5 methods of treatment of the human or animal body. The invention also concerns processes for
the manufacture of said quinoline derivatives, to pharmaceutical compositions containing
them and to their use in therapeutic methods, for example in the manufacture of medicaments
for use in the prevention or treatment of solid tumour disease in a warm-blooded animal such
as man.

Cancer is a disease in which cells grow and divide in an uncontrolled fashion. This uncontrolled growth arises from abnormalities in signal transduction pathways that are used by normal cells to regulate cell growth and division in response to various signalling molecules. Normal cells do not proliferate unless stimulated to do so by specific signal molecules located outside the cell derived from nearby cells or tissues. Growth factors bind to the cell membrane via specific receptors which have intrinsic enzyme activity. These receptors relay the growth signal to the cell nucleus via a series of signalling proteins. In cancer, a number of defects in signal pathways are apparent. For example, cancer cells may produce their own growth factors which bind to their cognate receptors, resulting in an autocrine loop, or receptors may be mutated or overexpressed leading to an increased,

Oncogenes are cancer related genes which often encode abnormal versions of signal pathway components, such as receptor tyrosine kinases, serine-threonine kinases, or downstream signaling molecules such as the ras genes, which code for closely related small guanine nucleotide binding proteins which hydrolyse bound guanosine triphosphate (GTP) to guanosine diphosphate (GDP). Ras proteins are active in promoting cell growth and transformation when they are bound to GTP and inactive when they are bound to GDP. Transforming mutants of p21ras are defective in their GTPase activity and hence remain in the active GTP bound state. The ras oncogene is known to play an integral role in certain cancers, and has been found to contribute to the formation of over 20% of all cases of human cancer.

When activated by ligand, cell surface receptors which are coupled to the mitogenic response, such as growth factor receptors, initiate a chain of reactions which leads to the activation of guanine nucleotide exchange activity on ras. When in its active GTP-bound state,

- 2 -

a number of proteins interact directly with ras at the plasma membrane resulting in signal transmission through several distinct pathways. The best characterised effector protein is the product of the raf proto-oncogene. The interaction of raf and ras is a key regulatory step in the control of cell proliferation. Ras-mediated activation of the raf serine-threonine kinase in turn activates the dual-specificity MEK (MEK1 and MEK2), which is the immediate upstream activator of mitogen activated protein kinase (MAPKs known as extracellular signal regulated protein kinases or ERK1 and ERK2). To date, no substrates of MEK other than MAPK have been identified, though recent reports indicate that MEK may also be activated by other upstream signal proteins such as MEKK1 and Cot/Tpl-2. Activated MAPK translocates and accumulates in the nucleus, where it can phosphorylate and activate transcription factors such as Elk-1 and Sap1a, leading to the enhanced expression of genes such as that for c-fos.

The ras-dependent raf-MEK-MAPK cascade is one of the key signalling pathways responsible for transmitting and amplifying mitogenic signals from cell surface to the nucleus resulting in changes in gene expression and cell fate. This ubiquitous pathway appears essential for normal cell proliferation and constitutive activation of this pathway is sufficient to induce cellular transformation. Transforming mutants of p21ras are constitutively active, resulting in raf, MEK and MAPK activity and cell transformation. Inhibition of MEK activity using either antisense raf, a dominant negative MEK mutant or the selective inhibitor PD098059 have been shown to block the growth and morphological transformation of

The mechanism of activation of raf, MEK and MAPK is through phosphorylation on specific serine, threonine or tyrosine residues. Activated raf and other kinases phosphorylate MEK1 on S218 and S222 and MEK2 on S222 and S226. This results in MEK activation and subsequent phosphorylation and activation of ERK1 on T190 and Y192 and ERK2 on T183 and Y185 by the dual specificity MEKs. Whilst MEK can be activated by a number of protein kinases, and active MAPKs phosphorylate and activate a number of substrate proteins including transcription factors and other protein kinases, MEKs appear specific and sole activators of MAPKs and could act as a focal point for cross-cascade regulation. MEK1 and MEK2 isoforms show unusual specificity and also contain a proline-rich insert between catalytic subdomains IX and X which is not present in any of the other known MEK family members. These differences between MEK and other protein kinases, together with the known role of MEK (MEK 1, MEK 2) and, more recently MEK 5, in proliferative signalling

suggest that it may be possible to discover and employ selective MEK inhibitors as therapeutic agents for use in proliferative disease.

It is stated in International Patent Application WO 98/43960 that a range of 3-cyanoquinoline derivatives are useful in the treatment of cancer. Certain of the compounds are stated to be inhibitors of EGF receptor tyrosine kinase, others are stated to be inhibitors of the mitogen-activated protein kinase (MAPK) pathway and others are stated to be inhibitors of growth factors such as vascular endothelial growth factor (VEGF).

It is stated in International Patent Application WO 00/68201 that a range of 3-cyanoquinoline derivatives are also useful in the treatment of cancer. Certain of the 10 compounds are stated to be inhibitors of MEK, a MAPK kinase.

It is also stated in International Patent Application WO 00/18761 that a range of 3-cyanoquinoline derivatives are also useful in the treatment of cancer. Certain of the compounds are stated to be inhibitors of MEK, a MAPK kinase.

According to one aspect of the invention there is provided a quinoline derivative of the 15 Formula I

Ι

wherein

Z is an O, S, SO, SO₂, $N(R^2)$ or $C(R^2)_2$ group, wherein each R^2 group, which may be the same or different, is hydrogen or (1-6C)alkyl;

X, Y and W together with the carbon atoms (in the phenyl ring) to which X and Y are attached form a 5 membered heterocyclic ring containing 1 nitrogen atom and 1 oxygen atom; m is 0, 1, 2, 3 or 4;

each R¹ group, which may be the same or different, is selected from halogeno, 25 trifluoromethyl, cyano, isocyano, nitro, hydroxy, mercapto, amino, formyl, carboxy, carbamoyl, (1-6C)alkyl, (2-8C)alkenyl, (2-8C)alkynyl, (1-6C)alkoxy, (2-6C)alkenyloxy, (2-6C)alkynyloxy, (1-6C)alkylthio, (1-6C)alkylsulphinyl, (1-6C)alkylsulphonyl, (1-6C)alkylamino, di-[(1-6C)alkyl]amino, (1-6C)alkoxycarbonyl, N-(1-6C)alkylcarbamoyl, N-(1-6C)alkyl]carbamoyl, (2-6C)alkanoyl, (2-6C)alkanoyloxy, (2-6C)alkanoylamino, N-(1-6C)alkyl-(2-6C)alkanoylamino, N-(1-6C)alkyl-(2-6C)alkanoylamino, N-(1-6C)alkyl-(2-6C)alkyl

5 (3-6C)alkenoylamino, (3-6C)alkynoylamino, N-(1-6C)alkyl-(3-6C)alkynoylamino, N-(1-6C)alkylsulphamoyl, N,N-di-[(1-6C)alkyl]sulphamoyl, (1-6C)alkanesulphonylamino and N-(1-6C)alkyl-(1-6C)alkanesulphonylamino, or from a group of the formula:

$$O^{1}-X^{1}-$$

wherein X¹ is a direct bond or is selected from O, S, SO, SO₂, N(R⁴), CO, CH(OR⁴),

10 CON(R⁴), N(R⁴)CO, SO₂N(R⁴), N(R⁴)SO₂, OC(R⁴)₂, SC(R⁴)₂ and N(R⁴)C(R⁴)₂, wherein R⁴ is hydrogen or (1-6C)alkyl, and Q¹ is aryl, aryl-(1-6C)alkyl, (3-7C)cycloalkyl, (3-7C)cycloalkyl-(1-6C)alkyl, (3-7C)cycloalkenyl-(1-6C)alkyl, heteroaryl, heteroaryl-(1-6C)alkyl, heterocyclyl or heterocyclyl-(1-6C)alkyl, or (R¹)_m is (1-3C)alkylenedioxy,

and wherein adjacent carbon atoms in any (2-6C)alkylene chain within a R¹ substituent

15 are optionally separated by the insertion into the chain of a group selected from O, S, SO, SO₂,

N(R⁵), CO, CH(OR⁵), CON(R⁵), N(R⁵)CO, SO₂N(R⁵), N(R⁵)SO₂, CH=CH and C≡C wherein

R⁵ is hydrogen or (1-6C)alkyl or, when the inserted group is N(R⁵), R⁵ may also be

(2-6C)alkanoyl,

and wherein any CH₂=CH- or HC≡C- group within a R¹ substituent optionally bears at

20 the terminal CH₂= or HC≡ position a substituent selected from halogeno, carboxy, carbamoyl,

(1-6C)alkoxycarbonyl, N-(1-6C)alkylcarbamoyl, N-N-di-[(1-6C)alkyl]carbamoyl,

amino-(1-6C)alkyl, (1-6C)alkylamino-(1-6C)alkyl and di-[(1-6C)alkyl]amino-(1-6C)alkyl or

from a group of the formula:

$$Q^2-X^2-$$

wherein X² is a direct bond or is selected from CO and N(R⁶)CO, wherein R⁶ is hydrogen or (1-6C)alkyl, and Q² is aryl, aryl-(1-6C)alkyl, heteroaryl, heteroaryl-(1-6C)alkyl, heterocyclyl or heterocyclyl-(1-6C)alkyl,

and wherein any CH₂ or CH₃ group within a R¹ substituent optionally bears on each said CH₂ or CH₃ group one or more halogeno or (1-6C)alkyl substituents or a substituent selected from hydroxy, cyano, amino, carboxy, carbamoyl, (1-6C)alkoxy, (1-6C)alkylthio, (1-6C)alkylsulphinyl, (1-6C)alkylsulphonyl, (1-6C)alkylamino, di-[(1-6C)alkyl]amino, (1-6C)alkoxycarbonyl, N-(1-6C)alkylcarbamoyl, N,N-di-[(1-6C)alkyl]carbamoyl,

5

(2-6C)alkanoyl, (2-6C)alkanoyloxy, (2-6C)alkanoylamino, \underline{N} -(1-6C)alkyl-(2-6C)alkanoylamino, \underline{N} -(1-6C)alkylsulphamoyl, \underline{N} -di-[(1-6C)alkyl]sulphamoyl, (1-6C)alkanesulphonylamino and \underline{N} -(1-6C)alkyl-(1-6C)alkanesulphonylamino, or from a group of the formula:

 $-X^{3}-O^{3}$

wherein X³ is a direct bond or is selected from O, S, SO, SO₂, N(R⁷), CO, CH(OR⁷), CON(R⁷), N(R⁷)CO, SO₂N(R⁷), N(R⁷)SO₂, C(R⁷)₂O, C(R⁷)₂O, C(R⁷)₂S and N(R⁷)C(R⁷)₂, wherein R⁷ is hydrogen or (1-6C)alkyl, and Q³ is aryl, aryl-(1-6C)alkyl, (3-7C)cycloalkyl, (3-7C)cycloalkyl-(1-6C)alkyl, (3-7C)cycloalkenyl-(1-6C)alkyl, heteroaryl, heteroaryl-10 (1-6C)alkyl, heterocyclyl or heterocyclyl-(1-6C)alkyl,

and wherein any aryl, heteroaryl or heterocyclyl group within a substituent on R¹ optionally bears 1, 2 or 3 substituents, which may be the same or different, selected from halogeno, trifluoromethyl, cyano, nitro, hydroxy, amino, carboxy, carbamoyl, (1-6C)alkyl, (2-8C)alkenyl, (2-8C)alkynyl, (1-6C)alkoxy, (2-6C)alkenyloxy, (2-6C)alkynyloxy,

15 (1-6C)alkylthio, (1-6C)alkylsulphinyl, (1-6C)alkylsulphonyl, (1-6C)alkylamino, di-[(1-6C)alkyl]amino, (1-6C)alkoxycarbonyl, N-(1-6C)alkylcarbamoyl, N-(1-6C)alkyl]carbamoyl, (2-6C)alkanoyl, (2-6C)alkanoyloxy, (2-6C)alkanoylamino, N-(1-6C)alkyl-(2-6C)alkanoylamino, N-(1-6C)alkylsulphamoyl, N-N-di-[(1-6C)alkyl]sulphamoyl, (1-6C)alkyl-locolalkylsulphamoyl, (1-6C)alkyl-

20 (1-6C)alkanesulphonylamino, or from a group of the formula:

wherein X⁴ is a direct bond or is selected from O and N(R⁹), wherein R⁹ is hydrogen or (1-6C)alkyl, and R⁸ is halogeno-(1-6C)alkyl, hydroxy-(1-6C)alkyl, (1-6C)alkoxy-(1-6C)alkyl, cyano-(1-6C)alkyl, amino-(1-6C)alkyl, (1-6C)alkylamino-(1-6C)alkyl, di-[(1-6C)alkyl]amino-(1-6C)alkyl, (2-6C)alkanoylamino-(1-6C)alkyl or (1-6C)alkoxycarbonylamino-(1-6C)alkyl, or from a group of the formula:

$$-X^5-Q^4$$

wherein X⁵ is a direct bond or is selected from O, N(R¹⁰) and CO, wherein R¹⁰ is hydrogen or (1-6C)alkyl, and Q⁴ is aryl, aryl-(1-6C)alkyl, heteroaryl, heteroaryl-(1-6C)alkyl, heterocyclyl or heterocyclyl-(1-6C)alkyl which optionally bears 1 or 2 substituents, which may be the same or different, selected from halogeno, (1-6C)alkyl, (2-8C)alkenyl, (2-8C)alkynyl and (1-6C)alkoxy,

and wherein any heterocyclyl group within a substituent on R¹ optionally bears 1 or 2 oxo or thioxo substituents;

n is 0, 1, 2 or 3; and

R³ is halogeno, trifluoromethyl, cyano, nitro, hydroxy, formyl, amino, carboxy,

5 carbamoyl, (1-6C)alkyl, (2-8C)alkenyl, (2-8C)alkynyl, (1-6C)alkoxy, (2-6C)alkenyloxy,

(2-6C)alkynyloxy, (1-6C)alkylthio, (1-6C)alkylsulphinyl, (1-6C)alkylsulphonyl,

(1-6C)alkylamino, di-[(1-6C)alkyl]amino, (1-6C)alkoxycarbonyl, N-(1-6C)alkylcarbamoyl,

N-di-[(1-6C)alkyl]carbamoyl, (2-6C)alkanoyl, (2-6C)alkanoyloxy, (2-6C)alkanoylamino,

N-(1-6C)alkyl-(2-6C)alkanoylamino, (3-6C)alkenoylamino, N-(1-6C)alkyl-

10 (3-6C)alkenoylamino, (3-6C)alkynoylamino, N-(1-6C)alkyl-(3-6C)alkynoylamino, N-(1-6C)alkylsulphamoyl, N,N-di-[(1-6C)alkyl]sulphamoyl, (1-6C)alkanesulphonylamino and N-(1-6C)alkyl-(1-6C)alkanesulphonylamino, or from a group of the formula:

$$-X^{6}-R^{11}$$

wherein X⁶ is a direct bond or is selected from O and N(R¹²), wherein R¹² is hydrogen or

15 (1-6C)alkyl, and R¹¹ is halogeno-(1-6C)alkyl, hydroxy-(1-6C)alkyl, (1-6C)alkyl, (1-6C)alkyl, cyano-(1-6C)alkyl, amino-(1-6C)alkyl, (1-6C)alkylamino-(1-6C)alkyl or

di-[(1-6C)alkyl]amino-(1-6C)alkyl, or from a group of the formula:

$$-X^{7}-Q^{5}$$

wherein X⁷ is a direct bond or is selected from O, S, SO, SO₂, N(R¹³), CO, CH(OR¹³),

20 CON(R¹³), N(R¹³)CO, SO₂N(R¹³), N(R¹³)SO₂, C(R¹³)₂O, C(R¹³)₂S and N(R¹³)C(R¹³)₂,

wherein R¹³ is hydrogen or (1-6C)alkyl, and Q⁵ is aryl, aryl-(1-6C)alkyl, heteroaryl,

heteroaryl-(1-6C)alkyl, heterocyclyl or heterocyclyl-(1-6C)alkyl which optionally bears 1 or 2

substituents, which may be the same or different, selected from halogeno, (1-6C)alkyl,

(2-8C)alkenyl, (2-8C)alkynyl and (1-6C)alkoxy, and any heterocyclyl group within Q⁵

optionally bears 1 or 2 oxo or thioxo substituents,

or a pharmaceutically-acceptable salt thereof.

In this specification the generic term "alkyl" includes both straight-chain and branched-chain alkyl groups such as propyl, isopropyl and tert-butyl, and also (3-7C)cycloalkyl groups such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl. However references to individual alkyl groups such as "propyl" are specific for the straight-chain version only, references to individual branched-chain alkyl groups such as "isopropyl" are specific for the branched-chain version only and references to individual

-7-

cycloalkyl groups such as "cyclopentyl" are specific for that 5-membered ring only. An analogous convention applies to other generic terms, for example (1-6C)alkoxy includes methoxy, ethoxy, cyclopropyloxy and cyclopentyloxy, (1-6C)alkylamino includes methylamino, ethylamino, cyclobutylamino and cyclohexylamino, and di-[(1-6Calkyl]amino includes dimethylamino, diethylamino, N-cyclobutyl-N-methylamino and N-cyclohexyl-N-ethylamino.

It is to be understood that, insofar as certain of the compounds of Formula I defined above may exist in optically active or racemic forms by virtue of one or more asymmetric carbon atoms, the invention includes in its definition any such optically active or racemic form which possesses the above-mentioned activity. The synthesis of optically active forms may be carried out by standard techniques of organic chemistry well known in the art, for example by synthesis from optically active starting materials or by resolution of a racemic form. Similarly, the above-mentioned activity may be evaluated using the standard laboratory techniques referred to hereinafter.

Suitable values for the generic radicals referred to above include those set out below.

A suitable value for any one of the 'Q' groups (Q¹ to Q⁵) when it is aryl or for the aryl group within a 'Q' group is, for example, phenyl or naphthyl, preferably phenyl.

15

A suitable value for any one of the 'Q' groups (Q¹ or Q³) when it is

(3-7C)cycloalkyl or for the (3-7C)cycloalkyl group within a 'Q' group is, for example,

cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or bicyclo[2.2.1]heptyl and a suitable value for any one of the 'Q' groups (Q¹ or Q³) when it is (3-7C)cycloalkenyl or for the (3-7C)cycloalkenyl group within a 'Q' group is, for example, cyclobutenyl, cyclopentenyl, cyclohexenyl or cycloheptenyl.

A suitable value for any one of the 'Q' groups (Q¹ to Q⁵) when it is heteroaryl or for the heteroaryl group within a 'Q' group is, for example, an aromatic 5- or 6-membered monocyclic ring or a 9- or 10-membered bicyclic ring with up to five ring heteroatoms selected from oxygen, nitrogen and sulphur, for example furyl, pyrrolyl, thienyl, oxazolyl, isoxazolyl, imidazolyl, pyrazolyl, thiazolyl, isothiazolyl, oxadiazolyl, thiadiazolyl, triazolyl, tetrazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, 1,3,5-triazenyl, benzofuranyl, indolyl, benzothienyl, benzoxazolyl, benzimidazolyl, benzothiazolyl, indazolyl, benzofurazanyl, quinolyl, isoquinolyl, quinazolinyl, quinoxalinyl, cinnolinyl or naphthyridinyl.

A suitable value for any one of the 'Q' groups (Q¹ to Q⁵) when it is heterocyclyl or for the heterocyclyl group within a 'Q' group is, for example, a non-aromatic saturated or partially saturated 3 to 10 membered monocyclic or bicyclic ring with up to five heteroatoms selected from oxygen, nitrogen and sulphur, for example oxiranyl, oxetanyl, tetrahydrofuranyl, tetrahydropyranyl, oxepanyl, tetrahydrothienyl, 1,1-dioxotetrahydrothienyl, tetrahydrothiopyranyl, 1,1-dioxotetrahydrothiopyranyl, pyrrolinyl, pyrrolinyl, morpholinyl, tetrahydro-1,4-thiazinyl, 1,1-dioxotetrahydro-1,4-thiazinyl, piperidinyl, homopiperidinyl, piperazinyl, dihydropyridinyl, tetrahydropyridinyl, dihydropyrimidinyl or tetrahydropyrimidinyl, preferably tetrahydrofuranyl, tetrahydropyranyl, pyrrolidinyl, morpholinyl, 1,1-dioxotetrahydro-4H-1,4-thiazinyl, piperidinyl or piperazinyl. A suitable value for such a group which bears 1 or 2 oxo or thioxo substituents is, for example, 2-oxopyrrolidinyl, 2-thioxopyrrolidinyl, 2-oxoimidazolidinyl, 2-thioxoimidazolidinyl, 2-coxopiperidinyl, 2,5-dioxopyrrolidinyl, 2,5-dioxopyrrolidinyl, 2,5-dioxopyrrolidinyl, 2,6-dioxopiperidinyl.

A suitable value for a 'Q' group when it is heteroaryl-(1-6C)alkyl is, for example, heteroarylmethyl, 2-heteroarylethyl and 3-heteroarylpropyl. The invention comprises corresponding suitable values for 'Q' groups when, for example, rather than a heteroaryl-(1-6C)alkyl group, an aryl-(1-6C)alkyl, (3-7C)cycloalkyl-(1-6C)alkyl, (3-7C)cycloalkenyl-(1-6C)alkyl or heterocyclyl-(1-6C)alkyl group is present.

Suitable groups for the bicyclic fused ring system formed by the phenyl ring together with X, Y and W include, for example, benzoxazolyl and benzoisoxazolyl.

In structural Formula I there is a hydrogen atom at the 2-position on the quinoline ring. It is to be understood thereby that the R¹ substituents may only be located at the 5-, 6-, 7- or 8-positions on the quinoline ring *i.e.* that the 2-position remains unsubstituted. It is further to be understood that the R³ group that may be present on the 9 membered bicyclic fused ring system, formed by the phenyl ring together with W. Y and Y. within structural F. ... 1. Y

system, formed by the phenyl ring together with W, X and Y, within structural Formula I may be located on the phenyl ring or on the 5 membered heterocyclic ring, formed by X, Y and W together with the carbon atoms (in the phenyl ring) to which X and Y are attached.

Suitable values for any of the 'R' groups (R^1 to R^{13}) or for various groups within an R^1 or R^3 substituent include:-

30 for halogeno

fluoro, chloro, bromo and iodo;

for (1-6C)alkyl:

methyl, ethyl, propyl, isopropyl and tert-butyl;

for (2-8C)alkenyl:

vinyl, isopropenyl, allyl and but-2-enyl:

		for (2-8C)alkynyl:	ethynyl, 2-propynyl and but-2-ynyl;
		for (1-6C)alkoxy:	methoxy, ethoxy, propoxy, isopropoxy and butoxy;
		for (2-6C)alkenyloxy:	vinyloxy and allyloxy;
		for (2-6C)alkynyloxy:	ethynyloxy and 2-propynyloxy;
	5	for (1-6C)alkylthio:	methylthio, ethylthio and propylthio;
		for (1-6C)alkylsulphinyl:	methylsulphinyl and ethylsulphinyl;
		for (1-6C)alkylsulphonyl:	methylsulphonyl and ethylsulphonyl;
		for (1-6C)alkylamino:	methylamino, ethylamino, propylamino,
			isopropylamino and butylamino;
	10	for di-[(1-6C)alkyl]amino:	dimethylamino, diethylamino, N-ethyl-
			N-methylamino and diisopropylamino;
		for (1-6C)alkoxycarbonyl:	methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl
			and tert-butoxycarbonyl;
		for N-(1-6C)alkylcarbamoyl:	N-methylcarbamoyl, N-ethylcarbamoyl and
	15		<u>N</u> -propylcarbamoyl;
		for N,N-di-[(1-6C)alkyl]carbamoyl:	$\underline{N},\underline{N}$ -dimethylcarbamoyl, \underline{N} -ethyl-
.•			\underline{N} -methylcarbamoyl and $\underline{N},\underline{N}$ -diethylcarbamoyl;
		for (2-6C)alkanoyl:	acetyl and propionyl;
		for (2-6C)alkanoyloxy:	acetoxy and propionyloxy;
	20	for (2-6C)alkanoylamino:	acetamido and propionamido;
		for N-(1-6C)alkyl-(2-6C)alkanoylamino	\underline{N} -methylacetamido and \underline{N} -methylpropionamido;
		for <u>N</u> -(1-6C)alkylsulphamoyl:	\underline{N} -methylsulphamoyl and \underline{N} -ethylsulphamoyl;
		for <u>N,N</u> -di-[(1-6C)alkyl]sulphamoyl:	<u>N,N</u> -dimethylsulphamoyl;
·		for (1-6C)alkanesulphonylamino:	methanesulphonylamino and ethanesulphonylamino;
•	25	for N-(1-6C)alkyl-(1-6C)alkanesulphony	lamino: <u>N</u> -methylmethanesulphonylamino and
			\underline{N} -methylethanesulphonylamino;
		for (3-6C)alkenoylamino:	acrylamido, methacrylamido and crotonamido;
		for N-(1-6C)alkyl-(3-6C)alkenoylamino:	\underline{N} -methylacrylamido and \underline{N} -methylcrotonamido;
		for (3-6C)alkynoylamino:	propiolamido;
	30	for N-(1-6C)alkyl-(3-6C)alkynoylamino:	$\underline{\mathbf{N}}$ -methylpropiolamido;
		for amino-(1-6C)alkyl:	aminomethyl, 2-aminoethyl, 1-aminoethyl and
			3-aminopropyl;

WO 03/053960 PCT/GB02/05518

- 10 -

for (1-6C)alkylamino-(1-6C)alkyl: methylaminomethyl, ethylaminomethyl,

1-methylaminoethyl, 2-methylaminoethyl,

2-ethylaminoethyl and 3-methylaminopropyl;

for di-[(1-6C)alkyl]amino-(1-6C)alkyl: dimethylaminomethyl, diethylaminomethyl,

1-dimethylaminoethyl, 2-dimethylaminoethyl and

3-dimethylaminopropyl;

for halogeno-(1-6C)alkyl: chloromethyl, 2-chloroethyl, 1-chloroethyl and

3-chloropropyl;

for hydroxy-(1-6C)alkyl: hydroxymethyl, 2-hydroxyethyl, 1-hydroxyethyl and

10 3-hydroxypropyl;

5

for (1-6C)alkoxy-(1-6C)alkyl: methoxymethyl, ethoxymethyl, 1-methoxyethyl.

2-methoxyethyl, 2-ethoxyethyl and

3-methoxypropyl;

for cyano-(1-6C)alkyl: cyanomethyl, 2-cyanoethyl, 1-cyanoethyl and

15 3-cyanopropyl;

for (2-6C)alkanoylamino-(1-6C)alkyl: acetamidomethyl, propionamidomethyl and

2-acetamidoethyl; and

for (1-6C)alkoxycarbonylamino-(1-6C)alkyl:

methoxycarbonylaminomethyl,

20 ethoxycarbonylaminomethyl,

tert-butoxycarbonylaminomethyl and

2-methoxycarbonylaminoethyl.

A suitable value for (R¹)_m when it is a (1-3C)alkylenedioxy group is, for example, methylenedioxy or ethylenedioxy and the oxygen atoms thereof occupy adjacent ring positions.

When, as defined hereinbefore, an R¹ group forms a group of the formula Q¹-X¹- and, for example, X¹ is a OC(R⁴)₂ linking group, it is the carbon atom, not the oxygen atom, of the OC(R⁴)₂ linking group which is attached to the quinoline ring and the oxygen atom is attached to the Q¹ group. Similarly, when, for example a CH₃ group within a R¹ substituent bears a group of the formula -X³-Q³ and, for example, X³ is a C(R⁷)₂O linking group, it is the carbon atom, not the oxygen atom, of the C(R⁷)₂O linking group which is attached to the CH₃ group

and the oxygen atom is linked to the Q^3 group. A similar convention applies to the attachment of the groups of the formulae Q^2 - X^2 - and - X^7 - Q^5 .

- 11 -

As defined hereinbefore, adjacent carbon atoms in any (2-6C)alkylene chain within a R¹ substituent may be optionally separated by the insertion into the chain of a group such as O, CON(R⁵) or C≡C. For example, insertion of a C≡C group into the ethylene chain within a 2-morpholinoethoxy group gives rise to a 4-morpholinobut-2-ynyloxy group and, for example, insertion of a CONH group into the ethylene chain within a 3-methoxypropoxy group gives rise to, for example, a 2-(2-methoxyacetamido)ethoxy group.

When, as defined hereinbefore, any CH₂=CH- or HC≡C- group within a R¹ substituent optionally bears at the terminal CH₂= or HC≡ position a substituent such as a group of the formula Q²-X²- wherein X² is, for example, NHCO and Q² is a heterocyclyl-(1-6C)alkyl group, suitable R¹ substituents so formed include, for example, N-[heterocyclyl-(1-6C)alkyl]carbamoylvinyl groups such as N-(2-pyrrolidin-1-ylethyl)carbamoylvinyl or N-[heterocyclyl-(1-6C)alkyl]carbamoylethynyl groups such as N-(2-pyrrolidin-1-ylethyl)carbamoylethynyl.

When, as defined hereinbefore, any CH_2 or CH_3 group within a R^1 substituent optionally bears on each said CH_2 or CH_3 group one or more halogeno or (1-6C)alkyl substituents, there are suitably 1 or 2 halogeno or (1-6C)alkyl substituents present on each said CH_2 group and there are suitably 1, 2 or 3 such substituents present on each said CH_3 group.

When, as defined hereinbefore, any CH₂ or CH₃ group within a R¹ substituent optionally bears on each said CH₂ or CH₃ group a substituent as defined hereinbefore, suitable R¹ substituents so formed include, for example, hydroxy-substituted heterocyclyl-(1-6C)alkoxy groups such as 2-hydroxy-3-piperidinopropoxy and 2-hydroxy-3-morpholinopropoxy, hydroxy-substituted amino-(2-6C)alkoxy groups such as 3-amino-2-hydroxy-3-methylaminopropoxy, hydroxy-substituted di-[(1-6C)alkyl]amino-(2-6C)alkoxy groups such as 3-dimethylamino-2-hydroxypropoxy, hydroxy-substituted heterocyclyl-(1-6C)alkylamino groups such as 2-hydroxy-3-piperidinopropylamino and 2-hydroxy-3-morpholinopropylamino, hydroxy-substituted amino-(2-6C)alkylamino groups such as 3-amino-2-hydroxypropylamino, hydroxy-substituted (1-6C)alkylamino-(2-6C)alkylamino groups such as 2-hydroxy-3-methylaminopropylamino, hydroxy-substituted di-[(1-6C)alkylamino-(2-6C)alkylamino groups such as 3-dimethylamino-(2-6C)alkylamino groups such as 3-dimethylamino-

2-hydroxypropylamino, hydroxy-substituted (1-6C)alkoxy groups such as 2-hydroxyethoxy, (1-6C)alkoxy-substituted (1-6C)alkoxy groups such as 2-methoxyethoxy and 3-ethoxypropoxy, (1-6C)alkylsulphonyl-substituted (1-6C)alkoxy groups such as 2-methylsulphonylethoxy and heterocyclyl-substituted (1-6C)alkylamino-(1-6C)alkyl groups such as 2-morpholinoethylaminomethyl, 2-piperazin-1-ylethylaminomethyl and 3-morpholinopropylaminomethyl.

A suitable pharmaceutically-acceptable salt of a compound of the Formula I is, for example, an acid-addition salt of a compound of the Formula I, for example an acid-addition salt with an inorganic or organic acid such as hydrochloric, hydrobromic, sulphuric,

10 trifluoroacetic, citric or maleic acid; or, for example, a salt of a compound of the Formula I which is sufficiently acidic, for example an alkali or alkaline earth metal salt such as a calcium or magnesium salt, or an ammonium salt, or a salt with an organic base such as methylamine, dimethylamine, trimethylamine, piperidine, morpholine or tris-(2-hydroxyethyl)amine.

Particular novel compounds of the invention include, for example, quinoline derivatives of the Formula I, or pharmaceutically-acceptable salts thereof, wherein, unless otherwise stated, each of Z, m, R¹, n, R³, X, Y and W, together with the phenyl ring to which X and Y are attached, have any of the meanings defined hereinbefore or in paragraphs (a) to (p) hereinafter:-

- 20 (a) Z is O, S, SO, SO₂, CH₂ or NH;
 - (b) Z is O;
 - (c) Z is NH;

30

- (d) m is 1 or 2, and each R¹ group, which may be the same or different, is selected from halogeno, trifluoromethyl, hydroxy, amino, carbamoyl, (1-6C)alkyl, (2-8C)alkenyl,
- 25 (2-8C)alkynyl, (1-6C)alkoxy, (1-6C)alkylamino, di-[(1-6C)alkyl]amino, N-(1-6C)alkylcarbamoyl, N,N-di-[(1-6C)alkyl]carbamoyl, (2-6C)alkanoylamino, N-(1-6C)alkyl-(2-6C)alkanoylamino, (3-6C)alkenoylamino, N-(1-6C)alkyl-(3-6C)alkynoylamino, or from a group of the formula:

 $O^{1}-X^{1}-$

wherein X¹ is a direct bond or is selected from O, N(R⁴), CON(R⁴), N(R⁴)CO and OC(R⁴)₂ wherein R⁴ is hydrogen or (1-6C)alkyl, and Q¹ is aryl, aryl-(1-6C)alkyl, cycloalkyl-(1-6C)alkyl, heteroaryl-(1-6C)alkyl, heterocyclyl or heterocyclyl-(1-6C)alkyl,

and wherein adjacent carbon atoms in any (2-6C)alkylene chain within a R¹ substituent

5 are optionally separated by the insertion into the chain of a group selected from O, N(R⁵),

CON(R⁵), N(R⁵)CO, CH=CH and C≡C wherein R⁵ is hydrogen or (1-6C)alkyl, or, when the inserted group is N(R⁵), R⁵ may also be (2-6C)alkanoyl,

and wherein any CH₂=CH- or HC \equiv C- group within a R¹ substituent optionally bears at the terminal CH₂= or HC \equiv position a substituent selected from carbamoyl,

10 N-(1-6C)alkylcarbamoyl, N,N-di-[(1-6C)alkyl]carbamoyl, amino-(1-6C)alkyl, (1-6C)alkylamino-(1-6C)alkyl and di-[(1-6C)alkyl]amino-(1-6C)alkyl or from a group of the formula:

$$Q^2 - X^2 -$$

wherein X^2 is a direct bond or is CO or $N(R^6)$ CO, wherein R^6 is hydrogen or (1-6C)alkyl, and Q^2 is heteroaryl, heteroaryl-(1-6C)alkyl, heterocyclyl or heterocyclyl-(1-6C)alkyl,

and wherein any CH₂ or CH₃ group within a R¹ substituent optionally bears on each said CH₂ or CH₃ group one or more halogeno groups or a substituent selected from hydroxy, amino, (1-6C)alkoxy, (1-6C)alkylsulphonyl, (1-6C)alkylamino, di-[(1-6C)alkyl]amino, (2-6C)alkanoyloxy, (2-6C)alkanoylamino and N-(1-6C)alkyl-(2-6C)alkanoylamino, or from a group of the formula:

$$-X^3-Q^3$$

wherein X^3 is a direct bond or is selected from O, $N(R^6)$, $CON(R^7)$, $N(R^7)CO$ and $C(R^7)_2O$, wherein R^7 is hydrogen or (1-6C)alkyl, and Q^3 is heteroaryl, heteroaryl-(1-6C)alkyl, heterocyclyl or heterocyclyl-(1-6C)alkyl,

and wherein any aryl, heteroaryl or heterocyclyl group within a substituent on R^1 optionally bears 1, 2 or 3 substituents, which may be the same or different, selected from halogeno, trifluoromethyl, hydroxy, amino, carbamoyl, (1-6C)alkyl, (1-6C)alkoxy, N-(1-6C)alkylcarbamoyl and N-(1-6C)alkylcarbamoyl, or optionally bears 1 substituent selected from a group of the formula:

$$-X^4-R^3$$

25

wherein X⁴ is a direct bond or is selected from O and N(R⁹), wherein R⁹ is hydrogen or (1-6C)alkyl, and R⁸ is hydroxy-(1-6C)alkyl, (1-6C)alkoxy-(1-6C)alkyl, cyano-(1-6C)alkyl,

amino-(1-6C)alkyl, (1-6C)alkylamino-(1-6C)alkyl, di-[(1-6C)alkyl]amino-(1-6C)alkyl, (2-6C)alkanoylamino-(1-6C)alkyl or (1-6C)alkoxycarbonylamino-(1-6C)alkyl, and from a group of the formula:

$$-X^{5}-O^{4}$$

wherein X⁵ is a direct bond or is selected from O, N(R¹⁰) and CO, wherein R¹⁰ is hydrogen or (1-6C)alkyl, and Q⁴ is heterocyclyl or heterocyclyl-(1-6C)alkyl which optionally bears 1 or 2 substituents, which may be the same or different, selected from halogeno, (1-6C)alkyl and (1-6C)alkoxy,

and wherein any heterocyclyl group within a substituent on R¹ optionally bears 1 or 2 oxo substituents;

- (e) m is 1 or 2, and each R¹ group, which may be the same or different, is selected from fluoro, chloro, trifluoromethyl, hydroxy, amino, carbamoyl, methyl, ethyl, propyl, butyl, vinyl, ethynyl, methoxy, ethoxy, propoxy, isopropoxy, butoxy, methylamino, ethylamino, propylamino, dimethylamino, diethylamino, dipropylamino, N-methylcarbamoyl,
- 15 <u>N,N</u>-dimethylcarbamoyl, acetamido, propionamido, acrylamido and propiolamido, or from a group of the formula:

$$Q^{1}-X^{1}-$$

wherein X^1 is a direct bond or is selected from O, NH, CONH, NHCO and OCH₂ and Q^1 is phenyl, benzyl, cyclopropylmethyl, 2-thienyl, 1-imidazolyl, 1,2,3-triazol-1-yl,

- 20 1,2,4-triazol-1-yl, 2-, 3- or 4-pyridyl, 2-imidazol-1-ylethyl, 3-imidazol-1-ylpropyl,
 - 2-(1,2,3-triazolyl)ethyl, 3-(1,2,3-triazolyl)propyl, 2-(1,2,4-triazolyl)ethyl,
 - 3-(1,2,4-triazolyl)propyl, 2-, 3- or 4-pyridylmethyl, 2-(2-, 3- or 4-pyridyl)ethyl.
 - 3-(2-, 3- or 4-pyridyl)propyl, tetrahydrofuran-3-yl, 3- or 4-tetrahydropyranyl,
 - 1-, 2- or 3-pyrrolidinyl, morpholino, 1,1-dioxotetrahydro-4H-1,4-thiazin-4-yl, piperidino.
- piperidin-3-yl, piperidin-4-yl, 1-, 3- or 4-homopiperidinyl, piperazin-1-yl, homopiperazin-1-yl, 1-, 2- or 3-pyrrolidinylmethyl, morpholinomethyl, piperidinomethyl,
 - 3- or 4-piperidinylmethyl, 1-, 3- or 4-homopiperidinylmethyl, 2-pyrrolidin-1-ylethyl,
 - 3-pyrrolidin-2-ylpropyl, pyrrolidin-2-ylmethyl, 2-pyrrolidin-2-ylethyl, 3-pyrrolidin-1-ylpropyl,
 - 4-pyrrolidin-1-ylbutyl, 2-morpholinoethyl, 3-morpholinopropyl, 4-morpholinobutyl,
- 2-(1,1-dioxotetrahydro-4<u>H</u>-1,4-thiazin-4-yl)ethyl, 3-(1,1-dioxotetrahydro-4<u>H</u>-1,4-thiazin-4-yl)propyl, 2-piperidinoethyl, 3-piperidinopropyl, 4-piperidinobutyl, 2-piperidin-3-ylethyl, 3-piperidin-4-ylpropyl,

2-homopiperidin-1-ylethyl, 3-homopiperidin-1-ylpropyl, 2-piperazin-1-ylethyl, 3-piperazin-1-ylpropyl, 4-piperazin-1-ylbutyl, 2-homopiperazin-1-ylethyl or 3-homopiperazin-1-ylpropyl,

and wherein adjacent carbon atoms in any (2-6C)alkylene chain within a R¹ substituent

5 are optionally separated by the insertion into the chain of a group selected from O, NH,

CONH, NHCO, CH=CH and C≡C,

and wherein any CH₂=CH- or HC≡C- group within a R¹ substituent optionally bears at the terminal CH₂= or HC≡ position a substituent selected from carbamoyl, N-methylcarbamoyl, N-ethylcarbamoyl, N-propylcarbamoyl, N-dimethylcarbamoyl, aminomethyl, 2-aminoethyl, 3-aminopropyl, 4-aminobutyl, methylaminomethyl, 2-methylaminoethyl, 3-methylaminopropyl, 4-methylaminobutyl, dimethylaminomethyl, 2-dimethylaminoethyl, 3-dimethylaminopropyl or 4-dimethylaminobutyl, or from a group of the formula:

$$O^2 - X^2 -$$

wherein X² is a direct bond or is CO, NHCO or N(Me)CO and Q² is pyridyl, pyridylmethyl,
2-pyridylethyl, pyrrolidin-1-yl, pyrrolidin-2-yl, morpholino, piperidino, piperidin-3-yl,
piperidin-4-yl, piperazin-1-yl, pyrrolidin-1-ylmethyl, 2-pyrrolidin-1-ylethyl,
3-pyrrolidin-1-ylpropyl, 4-pyrrolidin-1-ylbutyl, pyrrolidin-2-ylmethyl, 2-pyrrolidin-2-ylethyl,
3-pyrrolidin-2-ylpropyl, morpholinomethyl, 2-morpholinoethyl, 3-morpholinopropyl,
4-morpholinobutyl, piperidin-3-ylmethyl, 2-piperidin-3-ylethyl, piperidin-4-ylmethyl,
2-piperidin-4-ylethyl, piperazin-1-ylmethyl, 2-piperazin-1-ylethyl, 3-piperazin-1-ylpropyl or
4-piperazin-1-ylbutyl,

and wherein any CH₂ or CH₃ group within a R¹ substituent optionally bears on each

said CH₂ or CH₃ group one or more fluoro or chloro groups or a substituent selected from
hydroxy, amino, methoxy, methylsulphonyl, methylamino, dimethylamino, diisopropylamino,
N-ethyl-N-methylamino, N-isopropyl-N-methylamino, N-methyl-N-propylamino, acetoxy,
acetamido and N-methylacetamido or from a group of the formula:

$$-X^3-Q^3$$

wherein X³ is a direct bond or is selected from O, NH, CONH, NHCO and CH₂O and Q³ is pyridyl, pyridylmethyl, pyrrolidin-1-yl, pyrrolidin-2-yl, morpholino, piperidin-3-yl, piperidin-4-yl, piperazin-1-yl, 2-pyrrolidin-1-ylethyl, 3-pyrrolidin-1-ylpropyl, pyrrolidin-

2-ylmethyl, 2-pyrrolidin-2-ylethyl, 3-pyrrolidin-2-ylpropyl, 2-morpholinoethyl, 3-morpholinopropyl, 2-piperidinoethyl, 3-piperidinopropyl, piperidin-3-ylmethyl, 2-piperidin-3-ylethyl, piperidin-4-ylmethyl, 2-piperidin-4-ylethyl, 2-piperazin-1-ylpropyl,

and wherein any aryl, heteroaryl or heterocyclyl group within a substituent on R¹ optionally bears 1, 2 or 3 substituents, which may be the same or different, selected from fluoro, chloro, trifluoromethyl, hydroxy, acetyl, carbamoyl, methyl, ethyl, methoxy, N-methylcarbamoyl and N,N-dimethylcarbamoyl, or optionally bears 1 substituent selected from a group of the formula:

 $-X^4-R^8$

wherein X⁴ is a direct bond or is selected from O and NH and R⁸ is 2-hydroxyethyl, 3-hydroxypropyl, 2-methoxyethyl, 3-methoxypropyl, cyanomethyl, aminomethyl, 2-aminoethyl, 3-aminopropyl, methylaminomethyl, 2-methylaminoethyl, 3-methylaminopropyl, 2-ethylaminoethyl, 3-ethylaminopropyl, dimethylaminomethyl, 2-dimethylaminoethyl, 3-dimethylaminopropyl, acetamidomethyl, methoxycarbonylaminomethyl, ethoxycarbonylaminomethyl or tert-butoxycarbonylaminomethyl, and from a group of the formula:

$$-X^{5}-Q^{4}$$

wherein X⁵ is a direct bond or is selected from O, NH and CO and Q⁴ is

20 pyrrolidin-1-ylmethyl, 2-pyrrolidin-1-ylethyl, 3-pyrrolidin-1-ylpropyl, morpholinomethyl,

2-morpholinoethyl, 3-morpholinopropyl, piperidinomethyl, 2-piperidinoethyl,

3-piperidinopropyl, piperazin-1-ylmethyl, 2-piperazin-1-ylethyl or 3-piperazin-1-ylpropyl,

each of which optionally bears 1 or 2 substituents, which may be the same or different,

selected from fluoro, chloro, methyl and methoxy,

and wherein any heterocyclyl group within a substituent on R¹ optionally bears 1 or 2 oxo substituents;

(f) m is 1 and the R¹ group is located at the 6- or 7-position or m is 2 and each R¹ group, which may be the same or different, is located at the 5- and 7-positions or at the 6- and 7-positions and R¹ is selected from hydroxy, amino, methyl, ethyl, propyl, butyl, vinyl,
 30 ethynyl, methoxy, ethoxy, propoxy, isopropoxy, butoxy, methylamino, ethylamino, dimethylamino, diethylamino, acetamido, propionamido, cyclopentyloxy, cyclohexyloxy, phenoxy, benzyloxy, tetrahydrofuran-3-yloxy, tetrahydropyran-3-yloxy,

tetrahydropyran-4-yloxy, cyclopropylmethoxy, 2-imidazol-1-ylethoxy, 3-imidazol-1-ylpropoxy, 2-(1,2,3-triazol-1-yl)ethoxy, 3-(1,2,3-triazol-1-yl)propoxy, 2-(1,2,4-triazol-1-yl)ethoxy, 3-(1,2,4-triazol-1-yl)propoxy, pyrid-2-ylmethoxy, pyrid-3-ylmethoxy, 2-pyrid-2-ylethoxy, 2-pyrid-3-ylethoxy,

- 5 2-pyrid-4-ylethoxy, 3-pyrid-2-ylpropoxy, 3-pyrid-3-ylpropoxy, 3-pyrid-4-ylpropoxy, pyrrolidin-1-yl, morpholino, piperidino, piperazin-1-yl, 2-pyrrolidin-1-ylethoxy, 3-pyrrolidin-1-ylpropoxy, 4-pyrrolidin-1-ylbutoxy, pyrrolidin-3-yloxy, pyrrolidin-2-ylmethoxy, 2-pyrrolidin-2-ylethoxy, 3-pyrrolidin-2-ylpropoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 4-morpholinobutoxy, 2-(1,1-dioxotetrahydro-
- 4H-1,4-thiazin-4-yl)ethoxy, 3-(1,1-dioxotetrahydro-4H-1,4-thiazin-4-yl)propoxy, 2-piperidinoethoxy, 3-piperidinopropoxy, 4-piperidinobutoxy, piperidin-3-yloxy, piperidin-4-yloxy, piperidin-3-ylmethoxy, piperidin-4-ylmethoxy, 2-piperidin-3-ylethoxy, 3-piperidin-3-ylpropoxy, 2-piperidin-4-ylethoxy, 3-piperidin-4-ylpropoxy, 2-homopiperidin-1-ylethoxy, 3-homopiperidin-1-ylpropoxy, 2-piperazin-1-ylethoxy,
- 3-piperazin-1-ylpropoxy, 4-piperazin-1-ylbutoxy, 2-homopiperazin-1-ylethoxy, 3-homopiperazin-1-ylpropoxy, 2-pyrrolidin-1-ylethylamino, 3-pyrrolidin-1-ylpropylamino, 4-pyrrolidin-1-ylbutylamino, pyrrolidin-3-ylamino, pyrrolidin-2-ylmethylamino, 2-pyrrolidin-2-ylethylamino, 3-pyrrolidin-2-ylpropylamino, 2-morpholinoethylamino, 3-morpholinopropylamino, 4-morpholinobutylamino, 2-(1,1-dioxotetrahydro-4<u>H</u>-1,4-thiazin-
- 4-yl)ethylamino, 3-(1,1-dioxotetrahydro-4H-1,4-thiazin-4-yl)propylamino,
 2-piperidinoethylamino, 3-piperidinopropylamino, 4-piperidinobutylamino,
 piperidin-3-ylamino, piperidin-4-ylamino, piperidin-3-ylmethylamino,
 2-piperidin-3-ylethylamino, piperidin-4-ylmethylamino, 2-piperidin-4-ylethylamino,
 2-homopiperidin-1-ylethylamino, 3-homopiperidin-1-ylpropylamino,
- 25 2-piperazin-1-ylethylamino, 3-piperazin-1-ylpropylamino, 4-piperazin-1-ylbutylamino, 2-homopiperazin-1-ylethylamino or 3-homopiperazin-1-ylpropylamino,

and wherein adjacent carbon atoms in any (2-6C)alkylene chain within a R^1 substituent are optionally separated by the insertion into the chain of a group selected from O, NH, CH=CH and C=C,

and when R^1 is a vinyl or ethynyl group, the R^1 substituent optionally bears at the terminal CH_2 = or HC= position a substituent selected from \underline{N} -(2-dimethylaminoethyl)carbamoyl, \underline{N} -(3-dimethylaminopropyl)carbamoyl,

methylaminomethyl, 2-methylaminoethyl, 3-methylaminopropyl, 4-methylaminobutyl, dimethylaminomethyl, 2-dimethylaminoethyl, 3-dimethylaminopropyl and 4-dimethylaminobutyl, or from a group of the formula:

$$O^2 - X^2 -$$

- 5 wherein X² is a direct bond or is NHCO or N(Me)CO and Q² is imidazolylmethyl, 2-imidazolylethyl, 3-imidazolylpropyl, pyridylmethyl, 2-pyridylethyl, 3-pyridylpropyl, pyrrolidin-1-ylmethyl, 2-pyrrolidin-1-ylethyl, 3-pyrrolidin-1-ylpropyl, 4-pyrrolidin-1-ylbutyl, pyrrolidin-2-ylmethyl, 2-pyrrolidin-2-ylethyl, 3-pyrrolidin-2-ylpropyl, morpholinomethyl, 2-morpholinoethyl, 3-morpholinopropyl, 4-morpholinobutyl, piperidinomethyl,
- 2-piperidinoethyl, 3-piperidinopropyl, 4-piperidinobutyl, piperidin-3-ylmethyl,
 2-piperidin-3-ylethyl, piperidin-4-ylmethyl, 2-piperidin-4-ylethyl, piperazin-1-ylmethyl,
 2-piperazin-1-ylethyl, 3-piperazin-1-ylpropyl or 4-piperazin-1-ylbutyl,

and wherein any CH₂ or CH₃ group within a R¹ substituent optionally bears on each said CH₂ or CH₃ group one or more fluoro or chloro groups or a substituent selected from hydroxy, amino, methoxy, methylsulphonyl, methylamino, dimethylamino, diisopropylamino, N-ethyl-N-methylamino, N-isopropyl-N-methylamino, N-methyl-N-propylamino, acetoxy, acetamido and N-methylacetamido,

and wherein any phenyl, imidazolyl, triazolyl, pyridyl or heterocyclyl group within a substituent on R¹ optionally bears 1 or 2 substituents, which may be the same or different, selected from fluoro, chloro, trifluoromethyl, hydroxy, amino, carbamoyl, methyl, ethyl, N-methylcarbamoyl, N,N-dimethylcarbamoyl and methoxy, and a pyrrolidin-2-yl, piperidin-3-yl, piperidin-4-yl, piperazin-1-yl or homopiperazin-1-yl group within a R¹ substituent is optionally N-substituted with acetyl, 2-methoxyethyl, 3-methoxypropyl, cyanomethyl, 2-aminoethyl, 3-aminopropyl, 2-methylaminoethyl, 3-methylaminopropyl,

- 25 2-dimethylaminoethyl, 3-dimethylaminopropyl, 2-pyrrolidin-1-ylethyl, 3-pyrrolidin-1-ylpropyl, 2-morpholinoethyl, 3-morpholinopropyl, 2-piperidinoethyl, 3-piperidinopropyl, 2-piperazin-1-ylethyl or 3-piperazin-1-ylpropyl, the last 8 of which substituents each optionally bears 1 or 2 substituents, which may be the same or different, selected from fluoro, chloro, methyl and methoxy,
- and wherein any heterocyclyl group within a substituent on R¹ optionally bears 1 or 2 oxo substituents;

WO 03/053960 PCT/GB02/05518

- (g) m is 1 and the R¹ group is located at the 6- or 7-position and is selected from hydroxy, amino, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, isopropoxy, butoxy, methylamino, ethylamino, dimethylamino, diethylamino, acetamido, propionamido, benzyloxy, 2-imidazol-1-ylethoxy, 2-(1,2,3-triazol-1-yl)ethoxy, 2-(1,2,4-triazol-1-yl)ethoxy,
- 5 2-pyrrolidin-1-ylethoxy, 3-pyrrolidin-1-ylpropoxy, 4-pyrrolidin-1-ylbutoxy, pyrrolidin-3-yloxy, pyrrolidin-2-ylmethoxy, 2-pyrrolidin-2-ylethoxy, 3-pyrrolidin-2-ylpropoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 4-morpholinobutoxy, 2-(1,1-dioxotetrahydro-4<u>H</u>-1,4-thiazin-4-yl)ethoxy, 3-(1,1-dioxotetrahydro-4<u>H</u>-1,4-thiazin-4-yl)propoxy, 2-piperidinoethoxy, 3-piperidinopropoxy, 4-piperidinobutoxy,
- piperidin-3-yloxy, piperidin-4-yloxy, piperidin-3-ylmethoxy, 2-piperidin-3-ylethoxy, piperidin-4-ylmethoxy, 2-piperidin-4-ylethoxy, 2-homopiperidin-1-ylethoxy, 3-homopiperidin-1-ylpropoxy, 2-piperazin-1-ylethoxy, 3-piperazin-1-ylpropoxy, 2-homopiperazin-1-ylethoxy or 3-homopiperazin-1-ylpropoxy,

and wherein adjacent carbon atoms in any (2-6C)alkylene chain within a R¹ substituent

15 are optionally separated by the insertion into the chain of a group selected from O, NH,

CH=CH and C≡C,

and wherein any CH₂ or CH₃ group within a R¹ substituent optionally bears on each said CH₂ or CH₃ group one or more chloro groups or a substituent selected from hydroxy, amino, methoxy, methylsulphonyl, methylamino, dimethylamino, diisopropylamino,

20 N-ethyl-N-methylamino, N-isopropyl-N-methylamino and acetoxy,

and wherein any phenyl or heterocyclyl group within a substituent on R¹ optionally bears 1 or 2 substituents, which may be the same or different, selected from fluoro, chloro, trifluoromethyl, hydroxy, amino, methyl, ethyl and methoxy,

and wherein any heterocyclyl group within a substituent on R¹ optionally bears 1 or 2 oxo substituents;

- (h) $n ext{ is } 0$;
- (i) m is 1 or 2, and each R¹ group, which may be the same or different, is selected from halogeno, trifluoromethyl, hydroxy, amino, carbamoyl, (1-6C)alkyl, (2-8C)alkenyl, (2-8C)alkynyl, (1-6C)alkoxy, (2-6C)alkenyloxy, (2-6C)alkynyloxy, (1-6C)alkylamino,
- 30 di-[(1-6C)alkyl]amino, N-(1-6C)alkylcarbamoyl, N,N-di-[(1-6C)alkyl]carbamoyl, (2-6C)alkanoylamino, N-(1-6C)alkyl-(2-6C)alkanoylamino, (3-6C)alkenoylamino,

 \underline{N} -(1-6C)alkyl-(3-6C)alkenoylamino, (3-6C)alkynoylamino and \underline{N} -(1-6C)alkyl-(3-6C)alkynoylamino, or from a group of the formula:

$$0^{1}-X^{1}-$$

wherein X¹ is a direct bond or is selected from O, N(R⁴), CON(R⁴), N(R⁴)CO and OC(R⁴)₂
wherein R⁴ is hydrogen or (1-6C)alkyl, and Q¹ is aryl, aryl-(1-6C)alkyl, cycloalkyl(1-6C)alkyl, heteroaryl, heteroaryl-(1-6C)alkyl, heterocyclyl or heterocyclyl-(1-6C)alkyl,

and wherein adjacent carbon atoms in any (2-6C)alkylene chain within a R^1 substituent are optionally separated by the insertion into the chain of a group selected from O, N(R^5), CON(R^5), N(R^5)CO, CH=CH and C=C wherein R^5 is hydrogen or (1-6C)alkyl, or, when the inserted group is N(R^5), R^5 may also be (2-6C)alkanoyl,

and wherein any CH₂=CH- or HC≡C- group within a R¹ substituent optionally bears at the terminal CH₂= or HC≡ position a substituent selected from carbamoyl, N-(1-6C)alkylcarbamoyl, N.N-di-[(1-6C)alkyl]carbamoyl, amino-(1-6C)alkyl, (1-6C)alkylamino-(1-6C)alkyl and di-[(1-6C)alkyl]amino-(1-6C)alkyl or from a group of the formula:

$$Q^2 - X^2 -$$

wherein X^2 is a direct bond or is CO or $N(R^6)$ CO, wherein R^6 is hydrogen or (1-6C)alkyl, and Q^2 is heteroaryl, heteroaryl-(1-6C)alkyl, heterocyclyl or heterocyclyl-(1-6C)alkyl,

and wherein any CH₂ or CH₃ group within a R¹ substituent optionally bears on each
said CH₂ or CH₃ group one or more halogeno groups or a substituent selected from hydroxy,
amino, (1-6C)alkoxy, (1-6C)alkylsulphonyl, (1-6C)alkylamino, di-[(1-6C)alkyl]amino,
(2-6C)alkanoyloxy, (2-6C)alkanoylamino and N-(1-6C)alkyl-(2-6C)alkanoylamino, or from a
group of the formula:

$$-X^3-Q^3$$

wherein X³ is a direct bond or is selected from O, N(R⁶), CON(R⁷), N(R⁷)CO and C(R⁷)₂O, wherein R⁷ is hydrogen or (1-6C)alkyl, and Q³ is heteroaryl, heteroaryl-(1-6C)alkyl, heterocyclyl or heterocyclyl-(1-6C)alkyl,

and wherein any aryl, heteroaryl or heterocyclyl group within a substituent on R¹ optionally bears 1, 2 or 3 substituents, which may be the same or different, selected from halogeno, trifluoromethyl, hydroxy, amino, carbamoyl, (1-6C)alkyl, (2-8C)alkenyl, (2-8C)alkynyl, (1-6C)alkoxy, (1-6C)alkylsulphonyl, N-(1-6C)alkylcarbamoyl,

 $\underline{N,N}$ -di-[(1-6C)alkyl]carbamoyl and (2-6C)alkanoyl, or optionally bears 1 substituent selected from a group of the formula:

$$-X^{4}-R^{8}$$

wherein X⁴ is a direct bond or is selected from O and N(R⁹), wherein R⁹ is hydrogen or (1-6C)alkyl, and R⁸ is hydroxy-(1-6C)alkyl, (1-6C)alkoxy-(1-6C)alkyl, cyano-(1-6C)alkyl, amino-(1-6C)alkyl, (1-6C)alkyl, di-[(1-6C)alkyl]amino-(1-6C)alkyl, (2-6C)alkanoylamino-(1-6C)alkyl or (1-6C)alkoxycarbonylamino-(1-6C)alkyl, and from a group of the formula:

$$-X^5-Q^4$$

wherein X⁵ is a direct bond or is selected from O, N(R¹⁰) and CO, wherein R¹⁰ is hydrogen or (1-6C)alkyl, and Q⁴ is heterocyclyl or heterocyclyl-(1-6C)alkyl which optionally bears 1 or 2 substituents, which may be the same or different, selected from halogeno, (1-6C)alkyl and (1-6C)alkoxy,

and wherein any heterocyclyl group within a substituent on R¹ optionally bears 1 or 2 oxo substituents;

- (j) m is 1 or 2, and each R¹ group, which may be the same or different, is selected from fluoro, chloro, trifluoromethyl, hydroxy, amino, carbamoyl, methyl, ethyl, propyl, butyl, vinyl, allyl, but-3-enyl, pent-4-enyl, hex-5-enyl, ethynyl, 2-propynyl, but-3-ynyl, pent-4-ynyl, hex-5-ynyl, methoxy, ethoxy, propoxy, isopropoxy, butoxy, allyloxy, but-3-enyloxy,
- 20 pent-4-enyloxy, hex-5-enyloxy, ethynyloxy, 2-propynyloxy, but-3-ynyloxy, pent-4-ynyloxy, hex-5-ynyloxy, methylamino, ethylamino, propylamino, dimethylamino, diethylamino, dipropylamino, N-methylcarbamoyl, N,N-dimethylcarbamoyl, acetamido, propionamido, acrylamido and propiolamido, or from a group of the formula:

$$Q^1-X^1-$$

- wherein X¹ is a direct bond or is selected from O, NH, CONH, NHCO and OCH₂ and Q¹ is phenyl, benzyl, cyclopropylmethyl, 2-thienyl, 1-imidazolyl, 1,2,3-triazol-1-yl, 1,2,4-triazol-1-yl, 2-, 3- or 4-pyridyl, 2-imidazol-1-ylethyl, 3-imidazol-1-ylpropyl, 2-(1,2,3-triazolyl)ethyl, 3-(1,2,3-triazolyl)propyl, 2-(1,2,4-triazolyl)ethyl, 3-(1,2,4-triazolyl)propyl, 2-, 3- or 4-pyridylmethyl, 2-(2-, 3- or 4-pyridyl)ethyl,
- 30 3-(2-, 3- or 4-pyridyl)propyl, tetrahydrofuran-3-yl, 3- or 4-tetrahydropyranyl,
 1-, 2- or 3-pyrrolidinyl, morpholino, 1,1-dioxotetrahydro-4<u>H</u>-1,4-thiazin-4-yl, piperidino,
 piperidin-3-yl, piperidin-4-yl, 1-, 3- or 4-homopiperidinyl, piperazin-1-yl, homopiperazin-1-yl,

- 1-, 2- or 3-pyrrolidinylmethyl, morpholinomethyl, piperidinomethyl,
- 3- or 4-piperidinylmethyl, 1-, 3- or 4-homopiperidinylmethyl, 2-pyrrolidin-1-ylethyl,
- 3-pyrrolidin-2-ylpropyl, pyrrolidin-2-ylmethyl, 2-pyrrolidin-2-ylethyl, 3-pyrrolidin-1-ylpropyl,
- 4-pyrrolidin-1-ylbutyl, 2-morpholinoethyl, 3-morpholinopropyl, 4-morpholinobutyl,
- 5 2-(1,1-dioxotetrahydro-4H-1,4-thiazin-4-yl)ethyl, 3-(1,1-dioxotetrahydro-4H-1,4-thiazin-
 - 4-yl)propyl, 2-piperidinoethyl, 3-piperidinopropyl, 4-piperidinobutyl, 2-piperidin-3-ylethyl,
 - 3-piperidin-3-ylpropyl, 2-piperidin-4-ylethyl, 3-piperidin-4-ylpropyl,
 - 2-homopiperidin-1-ylethyl, 3-homopiperidin-1-ylpropyl, 2-piperazin-1-ylethyl,
 - 3-piperazin-1-ylpropyl, 4-piperazin-1-ylbutyl, 2-homopiperazin-1-ylethyl or
- 10 3-homopiperazin-1-ylpropyl,

and wherein adjacent carbon atoms in any (2-6C)alkylene chain within a R^1 substituent are optionally separated by the insertion into the chain of a group selected from O, NH, N(Me), CONH, NHCO, CH=CH and C=C,

and wherein any CH₂=CH- or HC≡C- group within a R¹ substituent optionally bears at

the terminal CH₂= or HC≡ position a substituent selected from carbamoyl,

N-methylcarbamoyl, N-ethylcarbamoyl, N-propylcarbamoyl,

minomethyl, 2-aminoethyl, 3-aminopropyl, 4-aminobutyl, methylaminomethyl,

2-methylaminoethyl, 3-methylaminopropyl, 4-methylaminobutyl, dimethylaminomethyl,

2-dimethylaminoethyl, 3-dimethylaminopropyl or 4-dimethylaminobutyl, or from a group of

the formula:

$$O^2 - X^2 -$$

wherein X^2 is a direct bond or is CO, NHCO or N(Me)CO and Q^2 is pyridyl, pyridylmethyl, 2-pyridylethyl, pyrrolidin-1-yl, pyrrolidin-2-yl, morpholino, piperidino, piperidin-3-yl, piperidin-4-yl, piperazin-1-yl, pyrrolidin-1-ylmethyl, 2-pyrrolidin-1-ylethyl,

- 3-pyrrolidin-1-ylpropyl, 4-pyrrolidin-1-ylbutyl, pyrrolidin-2-ylmethyl, 2-pyrrolidin-2-ylethyl,
 3-pyrrolidin-2-ylpropyl, morpholinomethyl, 2-morpholinoethyl, 3-morpholinopropyl,
 4-morpholinobutyl, piperidinomethyl, 2-piperidinoethyl, 3-piperidinopropyl,
 4-piperidinobutyl, piperidin-3-ylmethyl, 2-piperidin-3-ylethyl, piperidin-4-ylmethyl,
 2-piperidin-4-ylethyl, piperazin-1-ylmethyl, 2-piperazin-1-ylethyl, 3-piperazin-1-ylpropyl or
 4-piperazin-1-ylbutyl,
 - and wherein any CH_2 or CH_3 group within a R^1 substituent optionally bears on each said CH_2 or CH_3 group one or more fluoro or chloro groups or a substituent selected from

25

hydroxy, amino, methoxy, methylsulphonyl, methylamino, dimethylamino, diisopropylamino, \underline{N} -ethyl- \underline{N} -methylamino, \underline{N} -isopropyl- \underline{N} -methylamino, \underline{N} -methylamino, acetoxy, acetamido and \underline{N} -methylacetamido or from a group of the formula :

$$-X^{3}-O^{3}$$

5 wherein X³ is a direct bond or is selected from O, NH, CONH, NHCO and CH₂O and Q³ is pyridyl, pyridylmethyl, pyrrolidin-1-yl, pyrrolidin-2-yl, morpholino, piperidino, piperidin-3-yl, piperidin-4-yl, piperazin-1-yl, 2-pyrrolidin-1-ylethyl, 3-pyrrolidin-1-ylpropyl, pyrrolidin-2-ylmethyl, 2-pyrrolidin-2-ylethyl, 3-pyrrolidin-2-ylpropyl, 2-morpholinoethyl, 3-morpholinopropyl, 2-piperidinoethyl, 3-piperidinopropyl, piperidin-3-ylmethyl, 2-piperidin-1-ylethyl, piperidin-4-ylmethyl, 2-piperidin-4-ylethyl, 2-piperazin-1-ylethyl or 3-piperazin-1-ylpropyl,

and wherein any aryl, heteroaryl or heterocyclyl group within a substituent on R¹ optionally bears 1, 2 or 3 substituents, which may be the same or different, selected from fluoro, chloro, trifluoromethyl, hydroxy, amino, carbamoyl, methyl, ethyl, allyl, 2-propynyl, methoxy, methylsulphonyl, N-methylcarbamoyl, N-dimethylcarbamoyl and acetyl, or optionally bears 1 substituent selected from a group of the formula:

$$-X^{4}-R^{8}$$

wherein X⁴ is a direct bond or is selected from O and NH and R⁸ is 2-hydroxyethyl, 3-hydroxypropyl, 2-methoxyethyl, 3-methoxypropyl, cyanomethyl, aminomethyl, 2-aminoethyl, 3-aminopropyl, methylaminomethyl, 2-methylaminoethyl, 3-methylaminopropyl, 2-ethylaminoethyl, 3-ethylaminopropyl, dimethylaminomethyl, 2-dimethylaminoethyl, 3-dimethylaminopropyl, acetamidomethyl, methoxycarbonylaminomethyl, ethoxycarbonylaminomethyl or tert-butoxycarbonylaminomethyl, and from a group of the formula:

wherein X⁵ is a direct bond or is selected from O, NH and CO and Q⁴ is pyrrolidin-1-ylmethyl, 2-pyrrolidin-1-ylethyl, 3-pyrrolidin-1-ylpropyl, morpholinomethyl, 2-morpholinoethyl, 3-morpholinopropyl, piperidinomethyl, 2-piperidinoethyl, 3-piperidinopropyl, piperazin-1-ylmethyl, 2-piperazin-1-ylethyl or 3-piperazin-1-ylpropyl, each of which optionally bears 1 or 2 substituents, which may be the same or different, selected from fluoro, chloro, methyl and methoxy.

 $-X^{5}-Q^{4}$

WO 03/053960

and wherein any heterocyclyl group within a substituent on R¹ optionally bears 1 or 2 oxo substituents;

- (k) m is 1 and the R¹ group is located at the 5-, 6- or 7-position or m is 2 and each R¹ group, which may be the same or different, is located at the 5- and 7-positions or at the 6- and 7-positions and R¹ is selected from hydroxy, amino, methyl, ethyl, propyl, butyl, vinyl, ethynyl, methoxy, ethoxy, propoxy, isopropoxy, butoxy, pentyloxy, but-3-enyloxy, pent-4-enyloxy, hex-5-enyloxy, but-3-ynyloxy, pent-4-ynyloxy, hex-5-ynyloxy, methylamino, ethylamino, dimethylamino, diethylamino, acetamido, propionamido, pyrrolidin-1-yl, piperidino, cyclopentyloxy, cyclohexyloxy, phenoxy, benzyloxy, tetrahydrofuran-3-yloxy,
- tetrahydropyran-3-yloxy, tetrahydropyran-4-yloxy, cyclopropylmethoxy,
 2-imidazol-1-ylethoxy, 3-imidazol-1-ylpropoxy, 2-(1,2,3-triazol-1-yl)ethoxy,
 3-(1,2,3-triazol-1-yl)propoxy, 2-(1,2,4-triazol-1-yl)ethoxy, 3-(1,2,4-triazol-1-yl)propoxy,
 pyrid-2-ylmethoxy, pyrid-3-ylmethoxy, pyrid-4-ylmethoxy, 2-pyrid-2-ylethoxy,
 2-pyrid-3-ylethoxy, 2-pyrid-4-ylethoxy, 3-pyrid-2-ylpropoxy,
- 3-pyrid-4-ylpropoxy, pyrrolidin-1-yl, morpholino, piperidino, piperazin-1-yl,
 2-pyrrolidin-1-ylethoxy, 3-pyrrolidin-1-ylpropoxy, 4-pyrrolidin-1-ylbutoxy,
 pyrrolidin-3-yloxy, pyrrolidin-2-ylmethoxy, 2-pyrrolidin-2-ylethoxy,
 3-pyrrolidin-2-ylpropoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 4-morpholinobutoxy,
 2-(1,1-dioxotetrahydro-4H-1,4-thiazin-4-yl)ethoxy, 3-(1,1-dioxotetrahydro-
- 4H-1,4-thiazin-4-yl)propoxy, 2-piperidinoethoxy, 3-piperidinopropoxy, 4-piperidinobutoxy, piperidin-3-yloxy, piperidin-4-yloxy, piperidin-3-ylmethoxy, piperidin-4-ylmethoxy, 2-piperidin-3-ylethoxy, 3-piperidin-3-ylpropoxy, 2-piperidin-4-ylpropoxy, 2-homopiperidin-1-ylethoxy, 3-homopiperidin-1-ylpropoxy, 2-piperazin-1-ylethoxy, 3-piperazin-1-ylpropoxy, 4-piperazin-1-ylbutoxy,
- 25 2-homopiperazin-1-ylethoxy, 3-homopiperazin-1-ylpropoxy, 2-pyrrolidin-1-ylethylamino, 3-pyrrolidin-1-ylpropylamino, 4-pyrrolidin-1-ylbutylamino, pyrrolidin-3-ylamino, pyrrolidin-2-ylmethylamino, 2-pyrrolidin-2-ylethylamino, 3-pyrrolidin-2-ylpropylamino, 2-morpholinoethylamino, 3-morpholinopropylamino, 4-morpholinobutylamino, 2-(1,1-dioxotetrahydro-4<u>H</u>-1,4-thiazin-4-yl)ethylamino, 3-(1,1-dioxotetrahydro-
- 30 4H-1,4-thiazin-4-yl)propylamino, 2-piperidinoethylamino, 3-piperidinopropylamino, 4-piperidinobutylamino, piperidin-3-ylamino, piperidin-4-ylamino, piperidin-3-ylmethylamino, 2-piperidin-3-ylethylamino, piperidin-4-ylmethylamino,

5

- 2-piperidin-4-ylethylamino, 2-homopiperidin-1-ylethylamino,
- 3-homopiperidin-1-ylpropylamino, 2-piperazin-1-ylethylamino, 3-piperazin-1-ylpropylamino,
- 4-piperazin-1-ylbutylamino, 2-homopiperazin-1-ylethylamino or
- 3-homopiperazin-1-ylpropylamino,

and wherein adjacent carbon atoms in any (2-6C) alkylene chain within a R^1 substituent are optionally separated by the insertion into the chain of a group selected from O, NH, N(Me), CH=CH and C=C,

and when R^1 is a vinyl or ethynyl group, the R^1 substituent optionally bears at the terminal CH_2 = or HC= position a substituent selected from

10 N-(2-dimethylaminoethyl)carbamoyl, N-(3-dimethylaminopropyl)carbamoyl, methylaminomethyl, 2-methylaminoethyl, 3-methylaminopropyl, 4-methylaminobutyl, dimethylaminomethyl, 2-dimethylaminoethyl, 3-dimethylaminopropyl and 4-dimethylaminobutyl, or from a group of the formula:

$$O^2 - X^2 -$$

wherein X² is a direct bond or is NHCO or N(Me)CO and Q² is imidazolylmethyl, 2-imidazolylethyl, 3-imidazolylpropyl, pyridylmethyl, 2-pyridylethyl, 3-pyridylpropyl, pyrrolidin-1-ylmethyl, 2-pyrrolidin-1-ylethyl, 3-pyrrolidin-1-ylpropyl, 4-pyrrolidin-1-ylbutyl, pyrrolidin-2-ylmethyl, 2-pyrrolidin-2-ylethyl, 3-pyrrolidin-2-ylpropyl, morpholinomethyl, 2-morpholinoethyl, 3-morpholinopropyl, 4-morpholinobutyl, piperidinomethyl,

2-piperidinoethyl, 3-piperidinopropyl, 4-piperidinobutyl, piperidin-3-ylmethyl,
 2-piperidin-3-ylethyl, piperidin-4-ylmethyl, 2-piperidin-4-ylethyl, piperazin-1-ylmethyl,
 2-piperazin-1-ylethyl, 3-piperazin-1-ylpropyl or 4-piperazin-1-ylbutyl,

and wherein any CH₂ or CH₃ group within a R¹ substituent optionally bears on each said CH₂ or CH₃ group one or more fluoro or chloro groups or a substituent selected from hydroxy, amino, methoxy, methylsulphonyl, methylamino, dimethylamino, diisopropylamino, N-ethyl-N-methylamino, N-isopropyl-N-methylamino, N-methyl-N-propylamino, acetoxy, acetamido and N-methylacetamido,

and wherein any phenyl, imidazolyl, triazolyl, pyridyl or heterocyclyl group within a substituent on R¹ optionally bears 1 or 2 substituents, which may be the same or different, selected from fluoro, chloro, trifluoromethyl, hydroxy, amino, carbamoyl, methyl, ethyl, N-methylcarbamoyl, N,N-dimethylcarbamoyl and methoxy, and a pyrrolidin-2-yl, piperidin-3-yl, piperidin-4-yl, piperazin-1-yl or homopiperazin-1-yl group within a R¹

WO 03/053960 PCT/GB02/05518

substituent is optionally N-substituted with allyl, 2-propynyl, methylsulphonyl, acetyl, 2-methoxyethyl, 3-methoxypropyl, cyanomethyl, 2-aminoethyl, 3-aminopropyl, 2-methylaminoethyl, 3-methylaminopropyl, 2-dimethylaminoethyl, 3-dimethylaminopropyl,

- 2-pyrrolidin-1-ylethyl, 3-pyrrolidin-1-ylpropyl, 2-morpholinoethyl, 3-morpholinopropyl, 2-piperidinoethyl, 3-piperidinopropyl, 2-piperazin-1-ylethyl or 3-piperazin-1-ylpropyl, the last
- 8 of which substituents each optionally bears 1 or 2 substituents, which may be the same or different, selected from fluoro, chloro, methyl and methoxy, and wherein any heterocyclyl group within a substituent on R¹ optionally bears 1 or 2 oxo substituents;
- 10 (m) X, Y and W together with the carbon atoms (in the phenyl ring) to which X and Y are attached form benzoxazolyl;
 - (n) X, Y and W together with the carbon atoms (in the phenyl ring) to which X and Y are attached form benzoxazolyl in which X is nitrogen, W is the group -CH- and Y is oxygen;
- (o) n is 1 or 2 and is located at the 4-, 5- or 6-position of the benzoxazolyl and is selected from fluoro, chloro, bromo, iodo, trifluoromethyl, cyano, hydroxyl, methyl, ethyl, vinyl, allyl, ethynyl, methoxy and ethoxy; and
 - (p) n is 1 and is located at the 4-, 5- or 6-position of the benzoxazolyl and is selected from chloro, bromo and cyano.

Further particular novel compounds for use according to the invention include, for example, quinoline derivatives of the Formula I, or pharmaceutically-acceptable salts thereof, wherein, unless otherwise stated, each of Z, m, R¹, n and R³ has any of the meanings defined hereinbefore provided that:-

- (A) R¹ substituents may only be located at the 5-, 6- and/or 7-positions on the quinoline ring *i.e.* the 2- and 8-positions remain unsubstituted; or
- 25 (B) R¹ substituents may only be located at the 6- and/or 7-positions on the quinoline ring *i.e.* the 2-, 5- and 8-positions remain unsubstituted

A particular compound of the invention is a quinoline derivative of the Formula I wherein:

Z is O or NH;

m is 1 and the R¹ group is located at the 5-, 6- or 7-position or m is 2 and each R¹ group, which may be the same or different, is located at the 5- and 7-positions or at the 6- and 7-positions and R¹ is selected from hydroxy, amino, methyl, ethyl, propyl, butyl, methoxy,

ethoxy, propoxy, isopropoxy, butoxy, pent-4-ynyloxy, hex-5-ynyloxy, methylamino, ethylamino, dimethylamino, diethylamino, acetamido, propionamido, 2-imidazol-1-ylethoxy, 2-(1,2,4-triazol-1-yl)ethoxy, tetrahydrofuran-3-yloxy, tetrahydropyran-4-yloxy, 2-pyrrolidin-1-ylethoxy, 3-pyrrolidin-1-ylpropoxy, 4-pyrrolidin-1-ylbutoxy,

- 5 pyrrolidin-3-yloxy, pyrrolidin-2-ylmethoxy, 2-pyrrolidin-2-ylethoxy, 3-pyrrolidin-2-ylpropoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 4-morpholinobutoxy, 2-(1,1-dioxotetrahydro-4<u>H</u>-1,4-thiazin-4-yl)ethoxy, 3-(1,1-dioxotetrahydro-4<u>H</u>-1,4-thiazin-4-yl)propoxy, 2-piperidinoethoxy, 3-piperidinopropoxy, 4-piperidinobutoxy, piperidin-3-yloxy, piperidin-4-yloxy, piperidin-3-ylmethoxy, piperidin-4-ylmethoxy,
- 2-piperidin-3-ylethoxy, 3-piperidin-3-ylpropoxy, 2-piperidin-4-ylethoxy, 3-piperidin-4-ylpropoxy, 2-homopiperidin-1-ylethoxy, 3-homopiperidin-1-ylpropoxy, 2-piperazin-1-ylethoxy, 3-piperazin-1-ylpropoxy, 4-piperazin-1-ylbutoxy, 2-homopiperazin-1-ylethoxy and 3-homopiperazin-1-ylpropoxy,

and wherein adjacent carbon atoms in any (2-6C)alkylene chain within a R¹ substituent

15 are optionally separated by the insertion into the chain of a group selected from O, NH,

N(Me), CH=CH and C≡C,

and wherein any CH₂ or CH₃ group within a R¹ substituent optionally bears on each said CH₂ or CH₃ group one or more chloro groups or a substituent selected from hydroxy, amino, methoxy, methylsulphonyl, methylamino, dimethylamino, diethylamino,

- 20 N-ethyl-N-methylamino, N-isopropyl-N-methylamino, N-methyl-N-propylamino and acetoxy; and wherein any heteroaryl or heterocyclyl group within a substituent on R¹ optionally bears 1 or 2 substituents, which may be the same or different, selected from fluoro, chloro, trifluoromethyl, hydroxy, amino, carbamoyl, methyl, ethyl, methoxy, N-methylcarbamoyl and N,N-dimethylcarbamoyl and a pyrrolidin-2-yl, piperidin-3-yl, piperidin-4-yl, piperazin-1-yl or
- 25 homopiperazin-1-yl group within a R¹ substituent is optionally N-substituted with allyl, methylsulphonyl, acetyl, 2-methoxyethyl, 3-methoxypropyl, cyanomethyl, 2-aminoethyl, 3-aminopropyl, 2-methylaminoethyl, 3-methylaminopropyl, 2-dimethylaminoethyl, 3-dimethylaminopropyl, 2-pyrrolidin-1-ylethyl, 3-pyrrolidin-1-ylpropyl, 2-morpholinoethyl, 3-morpholinopropyl, 2-piperidinoethyl, 3-piperidinopropyl, 2-piperazin-1-ylethyl or
- 30 3-piperazin-1-ylpropyl, the last 8 of which substituents each optionally bears 1 or 2 substituents, which may be the same or different, selected from fluoro, chloro, methyl and methoxy,

and wherein any heterocyclyl group within a substituent on R¹ optionally bears 1 or 2 oxo substituents;

n is 0, 1 or 2;

X, Y and W together with the carbon atoms (in the phenyl ring) to which X and Y are
 attached form benzoxazolyl; and R³ is as hereinbefore defined;
 or a pharmaceutically-acceptable acid-addition salt thereof.

A further particular compound of the invention is a quinoline derivative of the Formula I wherein:

Z is O or NH;

- m is 2 and the first R¹ group is located at the 6-position and is selected from hydroxy, methoxy, ethoxy and propoxy, and the second R¹ group is located at the 7-position and is selected from 2-hydroxyethoxy, 3-hydroxypropoxy, 4-hydroxybutoxy, 2-methoxyethoxy, 3-methoxypropoxy, 4-methoxybutoxy, 2-(2-hydroxyethoxy)ethoxy,
 - 2-(2-methoxyethoxy)ethoxy, 2-dimethylaminoethoxy, 3-dimethylaminopropoxy,
- 15 4-dimethylaminobutoxy, 2-diethylaminoethoxy, 3-diethylaminopropoxy,
 - 4-diethylaminobutoxy, 2-diisopropylaminoethoxy, 3-diisopropylaminopropoxy,
 - 4-diisopropylaminobutoxy, 2-(N-isopropyl-N-methylamino)ethoxy,
 - 3-(N-isopropyl-N-methylamino)propoxy, 4-(N-isopropyl-N-methylamino)butoxy,
 - 2-(N-allylamino)ethoxy, 3-(N-allylamino)propoxy, 2-(N-allyl-N-methylamino)ethoxy,
- 20 3-(N-allyl-N-methylamino)propoxy, 2-(N-prop-2-ynylamino)ethoxy,
 - 3-(N-prop-2-ynylamino)propoxy, 2-(N-methyl-N-prop-2-ynylamino)ethoxy,
 - 3-(N-methyl-N-prop-2-ynylamino)propoxy, 2-pyrrolidin-1-ylethoxy,
 - 3-pyrrolidin-1-ylpropoxy, 4-pyrrolidin-1-ylbutoxy, pyrrolidin-3-yloxy,
 - N-methylpyrrolidin-3-yloxy, pyrrolidin-2-ylmethoxy, 2-pyrrolidin-2-ylethoxy,
- 25 3-pyrrolidin-2-ylpropoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 4-morpholinobutoxy, 2-(1,1-dioxotetrahydro-4<u>H</u>-1,4-thiazin-4-yl)ethoxy, 3-(1,1-dioxotetrahydro-4<u>H</u>-1,4-thiazin-4-yl)propoxy, 2-piperidinoethoxy, 3-piperidinopropoxy, 4-piperidinobutoxy, piperidin-3-yloxy, <u>N</u>-methylpiperidin-3-yloxy, <u>N</u>-methylpiperidin-4-yloxy, piperidin-4-yloxy, piperidin-4-ylmethoxy, N-methylpiperidin-3-ylmethoxy, piperidin-4-ylmethoxy,
- 30 <u>N</u>-methylpiperidin-4-ylmethoxy, 2-piperidin-3-ylethoxy, 2-(<u>N</u>-methylpiperidin-3-yl)ethoxy, 3-piperidin-3-ylpropoxy, 3-(<u>N</u>-methylpiperidin-3-yl)propoxy, 2-piperidin-4-ylethoxy, 2-(<u>N</u>-methylpiperidin-4-yl)ethoxy, 3-piperidin-4-ylpropoxy,

- 3-(N-methylpiperidin-4-yl)propoxy, 2-(4-methylpiperazin-1-yl)ethoxy,
- 3-(4-methylpiperazin-1-yl)propoxy, 4-(4-methylpiperazin-1-yl)butoxy,
- 2-(4-allylpiperazin-1-yl)ethoxy, 3-(4-allylpiperazin-1-yl)propoxy,
- 4-(4-allylpiperazin-1-yl)butoxy, 2-(4-methylsulphonylpiperazin-1-yl)ethoxy,
- 5 3-(4-methylsulphonylpiperazin-1-yl)propoxy, 4-(4-methylsulphonylpiperazin-1-yl)butoxy,
 - 2-(4-acetylpiperazin-1-yl)ethoxy, 3-(4-acetylpiperazin-1-yl)propoxy,
 - 4-(4-acetylpiperazin-1-yl)butoxy, 2-(4-cyanomethylpiperazin-1-yl)ethoxy,
 - 3-(4-cyanomethylpiperazin-1-yl)propoxy, 4-(4-cyanomethylpiperazin-1-yl)butoxy,
 - 2-[2-(4-methylpiperazin-1-yl)ethoxy]ethoxy, 2-chloroethoxy, 3-chloropropoxy,
- 10 2-methylsulphonylethoxy and 3-methylsulphonylpropoxy,

and wherein any CH₂ group within the second R¹ group that is attached to two carbon atoms optionally bears a hydroxy group or acetoxy group on said CH₂ group,

and wherein any heterocyclyl group within the second R¹ group optionally bears 1 or 2 substituents selected from fluoro, hydroxy, methyl and oxo; and

n is 0, 1 or 2;

X, Y and W together with the carbon atoms (in the phenyl ring) to which X and Y are attached form benzoxazolyl; and R³ is as hereinbefore defined; or a pharmaceutically-acceptable acid-addition salt thereof.

A further particular compound of the invention is a quinoline derivative of the 20 Formula I wherein:

Z is O or NH;

m is 2 and the first R¹ group is a 6-methoxy group and the second R¹ group is located at the 7-position and is selected from 2-dimethylaminoethoxy, 3-dimethylaminopropoxy, 4-dimethylaminobutoxy, 2-diethylaminoethoxy, 3-diethylaminopropoxy,

- 25 4-diethylaminobutoxy, 2-diisopropylaminoethoxy, 3-diisopropylaminopropoxy,
 - 4-diisopropylaminobutoxy, 2-(N-isopropyl-N-methylamino)ethoxy,
 - 3-(N-isopropyl-N-methylamino)propoxy, 4-(N-isopropyl-N-methylamino)butoxy,
 - 2-(N-isobutyl-N-methylamino)ethoxy, 3-(N-isobutyl-N-methylamino)propoxy,
 - 4-(N-isobutyl-N-methylamino)butoxy, 2-(N-allyl-N-methylamino)ethoxy,
- 30 3-(N-allyl-N-methylamino)propoxy, 2-(N-prop-2-ynylamino)ethoxy,
 - 3-(N-prop-2-ynylamino)propoxy, 2-(N-methyl-N-prop-2-ynylamino)ethoxy,
 - 3-(N-methyl-N-prop-2-ynylamino)propoxy, 2-pyrrolidin-1-ylethoxy,

- 3-pyrrolidin-1-ylpropoxy, 4-pyrrolidin-1-ylbutoxy, pyrrolidin-3-yloxy,
- N-methylpyrrolidin-3-yloxy, pyrrolidin-2-ylmethoxy, 2-pyrrolidin-2-ylethoxy,
- 3-pyrrolidin-2-ylpropoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 4-morpholinobutoxy,
- 2-(1,1-dioxotetrahydro-4H-1,4-thiazin-4-yl)ethoxy, 3-(1,1-dioxotetrahydro-
- 5 4<u>H</u>-1,4-thiazin-4-yl)propoxy, 2-piperidinoethoxy, 3-piperidinopropoxy, 4-piperidinobutoxy, piperidin-3-yloxy, <u>N</u>-methylpiperidin-3-yloxy, piperidin-4-yloxy, <u>N</u>-methylpiperidin-4-yloxy, piperidin-3-ylmethoxy, <u>N</u>-methylpiperidin-3-ylmethoxy,
 - N-cyanomethylpiperidin-3-ylmethoxy, piperidin-4-ylmethoxy,
 - <u>N</u>-methylpiperidin-4-ylmethoxy, <u>N</u>-cyanomethylpiperidin-4-ylmethoxy,
- 10 2-piperidin-3-ylethoxy, 2-(N-methylpiperidin-3-yl)ethoxy, 3-piperidin-3-ylpropoxy,
 - 3-(N-methylpiperidin-3-yl)propoxy, 2-piperidin-4-ylethoxy,
 - 2-(N-methylpiperidin-4-yl)ethoxy, 3-piperidin-4-ylpropoxy,
 - 3-(N-methylpiperidin-4-yl)propoxy, 2-homopiperidin-1-ylethoxy,
 - 3-homopiperidin-1-ylpropoxy, 4-homopiperidin-1-ylbutoxy, 2-piperazin-1-ylethoxy,
- 15 2-(4-methylpiperazin-1-yl)ethoxy, 3-piperazin-1-ylpropoxy,
 - 3-(4-methylpiperazin-1-yl)propoxy, 4-piperazin-1-ylbutoxy,
 - 4-(4-methylpiperazin-1-yl)butoxy, 2-(4-allylpiperazin-1-yl)ethoxy,
 - 3-(4-allylpiperazin-1-yl)propoxy, 4-(4-allylpiperazin-1-yl)butoxy,
 - 2-(4-methylsulphonylpiperazin-1-yl)ethoxy, 3-(4-methylsulphonylpiperazin-1-yl)propoxy,
- 20 4-(4-methylsulphonylpiperazin-1-yl)butoxy, 2-(4-acetylpiperazin-1-yl)ethoxy,
 - 3-(4-acetylpiperazin-1-yl)propoxy, 4-(4-acetylpiperazin-1-yl)butoxy,
 - 2-(4-cyanomethylpiperazin-1-yl)ethoxy, 3-(4-cyanomethylpiperazin-1-yl)propoxy,
 - 4-(4-cyanomethylpiperazin-1-yl)butoxy, 2-(2-piperazin-1-ylethoxy)ethoxy,
 - 2-[2-(4-methylpiperazin-1-yl)ethoxy]ethoxy, 2-chloroethoxy, 3-chloropropoxy,
- 25 2-methylsulphonylethoxy, 3-methylsulphonylpropoxy, 2-tetrahydropyran-4-ylethoxy,
 - 3-tetrahydropyran-4-ylpropoxy, 2-pyrrol-1-ylethoxy, 3-pyrrol-1-ylpropoxy,
 - 2-(2-pyridyloxy)ethoxy, 3-(2-pyridyloxy)propoxy, 2-(3-pyridyloxy)ethoxy,
 - 3-(3-pyridyloxy)propoxy, 2-(4-pyridyloxy)ethoxy, 3-(4-pyridyloxy)propoxy,
 - 2-pyridylmethoxy, 3-pyridylmethoxy and 4-pyridylmethoxy,
- and wherein any CH₂ group within the second R¹ group that is attached to two carbon atoms optionally bears a hydroxy group on said CH₂ group,

and wherein any heteroaryl group within the second R¹ group optionally bears 1 or 2 substituents selected from chloro, cyano, hydroxy and methyl, and any heterocyclyl group within the second R¹ group optionally bears 1 or 2 substituents selected from fluoro, hydroxy, methyl and oxo; and

5 n is 0, 1 or 2;

X, Y and W together with the carbon atoms (in the phenyl ring) to which X and Y are attached form benzoxazolyl; and R³ is as hereinbefore defined;

or a pharmaceutically-acceptable acid-addition salt thereof.

A further particular compound of the invention is a quinoline derivative of the 10 Formula I wherein:

Z is NH;

m is 2 and the first R¹ group is a 6-methoxy group and the second R¹ group is located at the 7-position and is selected from 2-pyrrolidin-1-ylethoxy, 3-pyrrolidin-1-ylpropoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 2-(1,1-dioxotetrahydro-4<u>H</u>-1,4-thiazin-

- 4-yl)ethoxy, 3-(1,1-dioxotetrahydro-4<u>H</u>-1,4-thiazin-4-yl)propoxy, 2-piperidinoethoxy, 3-piperidinopropoxy, piperidin-3-ylmethoxy, <u>N</u>-methylpiperidin-3-ylmethoxy, piperidin-4-ylmethoxy, <u>N</u>-methylpiperidin-4-ylmethoxy, 2-piperidin-3-ylethoxy,
 - 2-(N-methylpiperidin-3-yl)ethoxy, 3-piperidin-3-ylpropoxy, 3-(N-methylpiperidin-
 - 3-yl)propoxy, 2-piperidin-4-ylethoxy, 2-(N-methylpiperidin-4-yl)ethoxy,
- 20 3-piperidin-4-ylpropoxy, 3-(N-methylpiperidin-4-yl)propoxy,
 - 2-(4-methylpiperazin-1-yl)ethoxy, 3-(4-methylpiperazin-1-yl)propoxy,
 - 3-(4-allylpiperazin-1-yl)propoxy, 3-(4-methylsulphonylpiperazin-1-yl)propoxy,
 - 3-(4-acetylpiperazin-1-yl)propoxy, 2-(4-cyanomethylpiperazin-1-yl)ethoxy,
 - 3-(4-cyanomethylpiperazin-1-yl)propoxy, 2-[2-(4-methylpiperazin-1-yl)ethoxylethoxy,
- 25 3-chloropropoxy, 2-methylsulphonylethoxy, 3-methylsulphonylpropoxy,
 - 2-(4-pyridyloxy)ethoxy, 3-pyridylmethoxy and 2-cyanopyrid-4-ylmethoxy; and n is 0, 1 or 2;
 - X, Y and W together with the carbon atoms (in the phenyl ring) to which X and Y are attached form benzoxazolyl; and R³ is as hereinbefore defined;
- 30 or a pharmaceutically-acceptable acid-addition salt thereof.

A particular compound of the invention is a quinoline derivative of the Formula I wherein :

Z is O or NH;

m is 1 and the R¹ group is located at the 6- or 7-position or m is 2 and each R¹ group, which may be the same or different, is located at the 5- and 7-positions or at the 6- and 7-positions and R¹ is selected from hydroxy, amino, methyl, ethyl, propyl, butyl, methoxy, 5 ethoxy, propoxy, isopropoxy, butoxy, methylamino, ethylamino, dimethylamino, diethylamino, acetamido, propionamido, 2-imidazol-1-ylethoxy, 2-(1,2,4-triazol-1-yl)ethoxy, tetrahydrofuran-3-yloxy, tetrahydropyran-4-yloxy, 2-pyrrolidin-1-ylethoxy, 3-pyrrolidin-1-ylpropoxy, 4-pyrrolidin-1-ylbutoxy, pyrrolidin-3-yloxy, pyrrolidin-2-ylmethoxy, 2-pyrrolidin-2-ylethoxy, 3-pyrrolidin-2-ylpropoxy, 10 2-morpholinoethoxy, 3-morpholinopropoxy, 4-morpholinobutoxy, 2-(1,1-dioxotetrahydro-4H-1,4-thiazin-4-yl)ethoxy, 3-(1,1-dioxotetrahydro-4H-1,4-thiazin-4-yl)propoxy, 2-piperidinoethoxy, 3-piperidinopropoxy, 4-piperidinobutoxy, piperidin-3-yloxy, piperidin-4-yloxy, piperidin-3-ylmethoxy, piperidin-4-ylmethoxy, 2-piperidin-3-ylethoxy, 3-piperidin-3-ylpropoxy, 2-piperidin-4-ylethoxy, 3-piperidin-4-ylpropoxy, 2-homopiperidin-15 1-ylethoxy, 3-homopiperidin-1-ylpropoxy, 2-piperazin-1-ylethoxy, 3-piperazin-1-ylpropoxy, 4-piperazin-1-ylbutoxy, 2-homopiperazin-1-ylethoxy and 3-homopiperazin-1-ylpropoxy, and wherein adjacent carbon atoms in any (2-6C)alkylene chain within a R¹ substituent are optionally separated by the insertion into the chain of a group selected from O. NH. CH=CH and C≡C,

and wherein any CH₂ or CH₃ group within a R¹ substituent optionally bears on each said CH₂ or CH₃ group one or more chloro groups or a substituent selected from hydroxy, amino, methoxy, methylsulphonyl, methylamino, dimethylamino, diethylamino, N-ethyl-N-methylamino, N-isopropyl-N-methylamino, N-methyl-N-propylamino and acetoxy; and wherein any heteroaryl or heterocyclyl group within a substituent on R¹ optionally

- bears 1 or 2 substituents, which may be the same or different, selected from fluoro, chloro, trifluoromethyl, hydroxy, amino, carbamoyl, methyl, ethyl, methoxy, <u>N</u>-methylcarbamoyl and <u>N,N</u>-dimethylcarbamoyl and a pyrrolidin-2-yl, piperidin-3-yl, piperidin-4-yl, piperazin-1-yl or homopiperazin-1-yl group within a R¹ substituent is optionally <u>N</u>-substituted with acetyl, 2-methoxyethyl, 3-methoxypropyl, cyanomethyl, 2-aminoethyl,
- 3-aminopropyl, 2-methylaminoethyl, 3-methylaminopropyl, 2-dimethylaminoethyl,
 3-dimethylaminopropyl, 2-pyrrolidin-1-ylethyl, 3-pyrrolidin-1-ylpropyl, 2-morpholinoethyl,
 3-morpholinopropyl, 2-piperidinoethyl, 3-piperidinopropyl, 2-piperazin-1-ylethyl or

3-piperazin-1-ylpropyl, the last 8 of which substituents each optionally bears 1 or 2 substituents, which may be the same or different, selected from fluoro, chloro, methyl and methoxy,

and wherein any heterocyclyl group within a substituent on R¹ optionally bears 1 or 2 oxo substituents; and

n is 0, 1 or 2;

X, Y and W together with the carbon atoms (in the phenyl ring) to which X and Y are attached form benzoxazolyl; and R³ is as hereinbefore defined;

or a pharmaceutically-acceptable acid-addition salt thereof.

10 A further particular compound of the invention is a quinoline derivative of the Formula I wherein:

Z is O or NH;

m is 2 and the first R¹ group is located at the 6-position and is selected from hydroxy, methoxy, ethoxy and propoxy, and the second R¹ group is located at the 7-position and is selected from 2-dimethylaminoethoxy, 3-dimethylaminopropoxy, 4-dimethylaminobutoxy,

- 2-diethylaminoethoxy, 3-diethylaminopropoxy, 4-diethylaminobutoxy,
- 2-diisopropylaminoethoxy, 3-diisopropylaminopropoxy, 4-diisopropylaminobutoxy,
- 2-(N-isopropyl-N-methylamino)ethoxy, 3-(N-isopropyl-N-methylamino)propoxy,
- 4-(N-isopropyl-N-methylamino)butoxy, 2-pyrrolidin-1-ylethoxy, 3-pyrrolidin-1-ylpropoxy,
- 20 4-pyrrolidin-1-ylbutoxy, pyrrolidin-3-yloxy, <u>N</u>-methylpyrrolidin-3-yloxy, pyrrolidin-2-ylmethoxy, 2-pyrrolidin-2-ylethoxy, 3-pyrrolidin-2-ylpropoxy,
 - 2-morpholinoethoxy, 3-morpholinopropoxy, 4-morpholinobutoxy,
 - $2-(1,1-dioxotetrahydro-4\underline{H}-1,4-thiazin-4-yl)$ ethoxy, $3-(1,1-dioxotetrahydro-4\underline{H}-1,4-thiazin-1,4$
 - 4-yl)propoxy, 2-piperidinoethoxy, 3-piperidinopropoxy, 4-piperidinobutoxy,
- 25 piperidin-3-yloxy, <u>N</u>-methylpiperidin-3-yloxy, piperidin-4-yloxy, <u>N</u>-methylpiperidin-4-yloxy, piperidin-4-ylmethoxy, <u>N</u>-methylpiperidin-3-ylmethoxy, piperidin-4-ylmethoxy,
 - N-methylpiperidin-4-ylmethoxy, 2-piperidin-3-ylethoxy, 2-(N-methylpiperidin-3-yl)ethoxy,
 - 3-piperidin-3-ylpropoxy, 3-(N-methylpiperidin-3-yl)propoxy, 2-piperidin-4-ylethoxy,
 - 2-(N-methylpiperidin-4-yl)ethoxy, 3-piperidin-4-ylpropoxy,
- 30 3-(N-methylpiperidin-4-yl)propoxy, 2-(4-methylpiperazin-1-yl)ethoxy,
 - 3-(4-methylpiperazin-1-yl)propoxy, 4-(4-methylpiperazin-1-yl)butoxy,
 - 2-(4-cyanomethylpiperazin-1-yl)ethoxy, 3-(4-cyanomethylpiperazin-1-yl)propoxy,

- 4-(4-cyanomethylpiperazin-1-yl)butoxy, 2-[2-(4-methylpiperazin-1-yl)ethoxy]ethoxy,
- 2-chloroethoxy, 3-chloropropoxy, 2-methylsulphonylethoxy and 3-methylsulphonylpropoxy,

and wherein any CH₂ group within the second R¹ group that is attached to two carbon atoms optionally bears a hydroxy group or acetoxy group on said CH₂ group,

and wherein any heterocyclyl group within the second R¹ group optionally bears 1 or 2 oxo substituents; and

n is 0, 1 or 2;

5

10

X, Y and W together with the carbon atoms (in the phenyl ring) to which X and Y are attached form benzoxazolyl; and R³ is as hereinbefore defined;

or a pharmaceutically-acceptable acid-addition salt thereof.

A further particular compound of the invention is a quinoline derivative of the Formula I wherein:

Z is O or NH;

m is 2 and the first R¹ group is a 6-methoxy group and the second R¹ group is located at the 7-position and is selected from 2-dimethylaminoethoxy, 3-dimethylaminopropoxy,

- 4-dimethylaminobutoxy, 2-diethylaminoethoxy, 3-diethylaminopropoxy,
- $\hbox{$4$-diethylaminobutoxy, 2-diisopropylaminoethoxy, 3-diisopropylaminopropoxy,}$
- 4-diisopropylaminobutoxy, 2-(N-isopropyl-N-methylamino)ethoxy,
- 3-(N-isopropyl-N-methylamino)propoxy, 4-(N-isopropyl-N-methylamino)butoxy,
- 20 2-(N-isobutyl-N-methylamino)ethoxy, 3-(N-isobutyl-N-methylamino)propoxy,
 - 4-(N-isobutyl-N-methylamino)butoxy, 2-(N-allyl-N-methylamino)ethoxy,
 - 3-(N-allyl-N-methylamino)propoxy, 4-(N-allyl-N-methylamino)butoxy,
 - $\hbox{$2$-pyrrolidin-1-ylethoxy, 3-pyrrolidin-1-ylpropoxy, 4-pyrrolidin-1-ylbutoxy,}\\$
 - pyrrolidin-3-yloxy, N-methylpyrrolidin-3-yloxy, pyrrolidin-2-ylmethoxy,
- 25 2-pyrrolidin-2-ylethoxy, 3-pyrrolidin-2-ylpropoxy, 2-morpholinoethoxy,
 - 3-morpholinopropoxy, 4-morpholinobutoxy, 2-(1,1-dioxotetrahydro-4H-1,4-thiazin-
 - 4-yl)ethoxy, 3-(1,1-dioxotetrahydro-4H-1,4-thiazin-4-yl)propoxy, 2-piperidinoethoxy,
 - 3-piperidin
opropoxy, 4-piperidinobutoxy, piperidin-3-yloxy, $\underline{\mathbf{N}}$ -methyl
piperidin-3-yloxy,
 - $piperidin-4-yloxy, \underline{N}-methylpiperidin-4-yloxy, piperidin-3-ylmethoxy,\\$
- 30 <u>N</u>-methylpiperidin-3-ylmethoxy, <u>N</u>-cyanomethylpiperidin-3-ylmethoxy, piperidin-4-ylmethoxy, <u>N</u>-methylpiperidin-4-ylmethoxy, <u>N</u>-cyanomethylpiperidin-4-ylmethoxy, 2-piperidin-3-ylethoxy, 2-(N-methylpiperidin-3-yl)ethoxy,

- 3-piperidin-3-ylpropoxy, 3-(N-methylpiperidin-3-yl)propoxy, 2-piperidin-4-ylethoxy,
- 2-(N-methylpiperidin-4-yl)ethoxy, 3-piperidin-4-ylpropoxy, 3-(N-methylpiperidin-
- 4-yl)propoxy, 2-homopiperidin-1-ylethoxy, 3-homopiperidin-1-ylpropoxy,
- 4-homopiperidin-1-ylbutoxy, 2-piperazin-1-ylethoxy, 2-(4-methylpiperazin-1-yl)ethoxy,
- 5 3-piperazin-1-ylpropoxy, 3-(4-methylpiperazin-1-yl)propoxy, 4-piperazin-1-ylbutoxy,
 - 4-(4-methylpiperazin-1-yl)butoxy, 2-(4-cyanomethylpiperazin-1-yl)ethoxy,
 - 3-(4-cyanomethylpiperazin-1-yl)propoxy, 4-(4-cyanomethylpiperazin-1-yl)butoxy,
 - 2-(2-piperazin-1-ylethoxy)ethoxy, 2-[2-(4-methylpiperazin-1-yl)ethoxy]ethoxy,
 - 2-chloroethoxy, 3-chloropropoxy, 2-methylsulphonylethoxy, 3-methylsulphonylpropoxy,
- 10 2-tetrahydropyran-4-ylethoxy, 3-tetrahydropyran-4-ylpropoxy, 2-pyrrol-1-ylethoxy,
 - 3-pyrrol-1-ylpropoxy, 2-(2-pyridyloxy)ethoxy, 3-(2-pyridyloxy)propoxy,
 - 2-(3-pyridyloxy)ethoxy, 3-(3-pyridyloxy)propoxy, 2-(4-pyridyloxy)ethoxy,
 - 3-(4-pyridyloxy)propoxy, 2-pyridylmethoxy, 3-pyridylmethoxy and 4-pyridylmethoxy,

and wherein any CH₂ group within the second R¹ group that is attached to two carbon atoms optionally bears a hydroxy group on said CH₂ group,

and wherein any heteroaryl group within the second R¹ group optionally bears 1 or 2 substituents selected from chloro, cyano, hydroxy and methyl, and any heterocyclyl group within the second R¹ group optionally bears 1 or 2 substituents selected from hydroxy, methyl and oxo; and

20 n is 0, 1 or 2;

X, Y and W together with the carbon atoms (in the phenyl ring) to which X and Y are attached form benzoxazolyl; and R^3 is as hereinbefore defined;

or a pharmaceutically-acceptable acid-addition salt thereof.

A further particular compound of the invention is a quinoline derivative of the 25 Formula I wherein:

Z is NH;

m is 2 and the first R¹ group is a 6-methoxy group and the second R¹ group is located at the 7-position and is selected from 2-pyrrolidin-1-ylethoxy, 3-pyrrolidin-1-ylpropoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 2-(1,1-dioxotetrahydro-4<u>H</u>-1,4-thiazin-

30 4-yl)ethoxy, 3-(1,1-dioxotetrahydro-4<u>H</u>-1,4-thiazin-4-yl)propoxy, 2-piperidinoethoxy, 3-piperidinopropoxy, piperidin-3-ylmethoxy, <u>N</u>-methylpiperidin-3-ylmethoxy, piperidin-4-ylmethoxy, N-methylpiperidin-4-ylmethoxy, 2-piperidin-3-ylethoxy,

- 2-(N-methylpiperidin-3-yl)ethoxy, 3-piperidin-3-ylpropoxy, 3-(N-methylpiperidin-
- 3-yl)propoxy, 2-piperidin-4-ylethoxy, 2-(N-methylpiperidin-4-yl)ethoxy,
- 3-piperidin-4-ylpropoxy, 3-(N-methylpiperidin-4-yl)propoxy,
- 2-(4-methylpiperazin-1-yl)ethoxy, 3-(4-methylpiperazin-1-yl)propoxy,
- 5 2-(4-cyanomethylpiperazin-1-yl)ethoxy, 3-(4-cyanomethylpiperazin-1-yl)propoxy,
 - 2-[2-(4-methylpiperazin-1-yl)ethoxy]ethoxy, 3-chloropropoxy, 2-methylsulphonylethoxy,
 - 3-methylsulphonylpropoxy, 2-(4-pyridyloxy)ethoxy, 3-pyridylmethoxy and
 - 2-cyanopyrid-4-ylmethoxy; and

n is 0, 1 or 2;

10 X, Y and W together with the carbon atoms (in the phenyl ring) to which X and Y are attached form benzoxazolyl; and R³ is as hereinbefore defined;

or a pharmaceutically-acceptable acid-addition salt thereof.

A further particular compound of the invention is a quinoline derivative of the Formula I wherein:

15 Z is NH;

m is 1 and the R¹ group is located at the 6- or 7-position or m is 2 and each R¹ group, which may be the same or different, is located at the 5- and 7-positions or at the 6- and 7-positions and R¹ is selected from hydroxy, amino, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, isopropoxy, butoxy, methylamino, ethylamino, dimethylamino,

- diethylamino, acetamido, propionamido, 2-imidazol-1-ylethoxy, 2-(1,2,4-triazol-1-yl)ethoxy, tetrahydrofuran-3-yloxy, tetrahydropyran-4-yloxy, 2-pyrrolidin-1-ylethoxy,
 - 3-pyrrolidin-1-ylpropoxy, 4-pyrrolidin-1-ylbutoxy, pyrrolidin-3-yloxy,
 - pyrrolidin-2-ylmethoxy, 2-pyrrolidin-2-ylethoxy, 3-pyrrolidin-2-ylpropoxy,
 - 2-morpholinoethoxy, 3-morpholinopropoxy, 4-morpholinobutoxy, 2-(1,1-dioxotetrahydro-
- 25 $4\underline{H}$ -1,4-thiazin-4-yl)ethoxy, 3-(1,1-dioxotetrahydro- $4\underline{H}$ -1,4-thiazin-4-yl)propoxy,
 - 2-piperidinoethoxy, 3-piperidinopropoxy, 4-piperidinobutoxy, piperidin-3-yloxy,
 - piperidin-4-yloxy, piperidin-3-ylmethoxy, piperidin-4-ylmethoxy, 2-piperidin-3-ylethoxy,
 - 3-piperidin-3-ylpropoxy, 2-piperidin-4-ylethoxy, 3-piperidin-4-ylpropoxy, 2-homopiperidin-
 - 1-ylethoxy, 3-homopiperidin-1-ylpropoxy, 2-piperazin-1-ylethoxy, 3-piperazin-1-ylpropoxy,
- 30 4-piperazin-1-ylbutoxy, 2-homopiperazin-1-ylethoxy and 3-homopiperazin-1-ylpropoxy,

and wherein adjacent carbon atoms in any (2-6C)alkylene chain within a R^1 substituent are optionally separated by the insertion into the chain of a group selected from O, NH, CH=CH and C=C,

and wherein any CH₂ or CH₃ group within a R¹ substituent optionally bears on each

5 said CH₂ or CH₃ group one or more chloro groups or a substituent selected from hydroxy,
amino, methoxy, methylsulphonyl, methylamino, dimethylamino, diethylamino,
N-ethyl-N-methylamino, N-isopropyl-N-methylamino, N-methyl-N-propylamino and acetoxy;
and wherein any heteroaryl or heterocyclyl group within a substituent on R¹ optionally
bears 1 or 2 substituents, which may be the same or different, selected from fluoro, chloro,
trifluoromethyl, hydroxy, amino, carbamoyl, methyl, ethyl, methoxy, N-methylcarbamoyl and
N,N-dimethylcarbamoyl and a pyrrolidin-2-yl, piperidin-3-yl, piperidin-4-yl, piperazin-1-yl or
homopiperazin-1-yl group within a R¹ substituent is optionally N-substituted with
acetyl, 2-methoxyethyl, 3-methoxypropyl, cyanomethyl, 2-aminoethyl,
3-aminopropyl, 2-methylaminoethyl, 3-methylaminopropyl, 2-dimethylaminoethyl,
3-morpholinopropyl, 2-pyrrolidin-1-ylethyl, 3-pyrrolidin-1-ylpropyl, 2-morpholinoethyl,
3-morpholinopropyl, 2-piperidinoethyl, 3-piperidinopropyl, 2-piperazin-1-ylethyl or
3-piperazin-1-ylpropyl, the last 8 of which substituents each optionally bears 1 or 2
substituents, which may be the same or different, selected from fluoro, chloro, methyl and

and wherein any heterocyclyl group within a substituent on R¹ optionally bears 1 or 2 oxo substituents; and

n is 0 or 1 and the R³ group, if present, is located at the 4-, 5- and/or 6-positions of the benzoxazolyl group and is selected from fluoro, chloro, bromo, iodo, trifluoromethyl, cyano, hydroxy, methyl, ethyl, vinyl, allyl, ethynyl, methoxy and ethoxy;

X, Y and W together with the phenyl ring to which X and Y are attached form benzoxazolyl where X is nitrogen, Y is oxygen and W is the group -CH-, or a pharmaceutically-acceptable acid-addition salt thereof.

A further particular compound of the invention is a quinoline derivative of the Formula I wherein:

30 Z is NH;

methoxy,

20

25

m is 2 and the first R¹ group is a 6-methoxy group and the second R¹ group is located at the 7-position and is 3-(4-methylpiperazin-1-yl)propoxy,

n is 0;

X, Y and W together with the phenyl ring to which X and Y are attached form benzoxazolyl;

or a pharmaceutically-acceptable acid-addition salt thereof.

A further particular compound of the invention is a quinoline derivative of the Formula I wherein:

Z is NH;

m is 2 and the first R^1 group is a 6-methoxy group and the second R^1 group is located at the 7-position and is methoxy,

10 n is 0;

X, Y and W together with the phenyl ring to which X and Y are attached form benzoxazolyl where X is nitrogen, Y is oxygen and W is the group -CH-;

or a pharmaceutically-acceptable acid-addition salt thereof.

A further particular compound of the invention is a quinoline derivative of the 15 Formula I wherein:

m is 2 and the first R¹ group is located at the 5-position and is selected from tetrahydrofuran-3-yloxy, tetrahydropyran-4-yloxy, tetrahydrothien-3-yloxy,

- 1,1-dioxotetrahydrothien-3-yloxy, tetrahydrothiopyran-4-yloxy,
- 1,1-dioxotetrahydrothiopyran-4-yloxy, N-methylazetidin-3-yloxy, N-ethylazetidin-3-yloxy,
- 20 N-isopropylazetidin-3-yloxy, pyrrolidin-3-yloxy, N-methylpyrrolidin-3-yloxy, pyrrolidin-2-ylmethoxy, 3-piperidinyloxy, N-methylpiperidin-3-yloxy, 4-piperidinyloxy, N-methylpiperidin-4-yloxy, N-methylpiperidin-4-yloxy, N-acetylpiperidin-4-yloxy, N-methylsulphonylpiperidin-4-yloxy, N-(2-methoxyethyl)piperidin-4-yloxy, piperidin-3-ylmethoxy,
- 25 <u>N</u>-methylpiperidin-3-ylmethoxy, piperidin-4-ylmethoxy, <u>N</u>-methylpiperidin-4-ylmethoxy, cyclobutyloxy, cyclopentyloxy and cyclohexyloxy,

and the second R¹ is located at the 7-position and is selected from hydroxy, methoxy, ethoxy, propoxy, isopropoxy, isobutoxy, 2-fluoroethoxy, 2,2,2-trifluoroethoxy, benzyloxy, 2-pyrrolidin-1-ylethoxy, 3-pyrrolidin-1-ylpropoxy, 2-morpholinoethoxy,

30 3-morpholinopropoxy, 2-(1,1-dioxotetrahydro-4<u>H</u>-1,4-thiazin-4-yl)ethoxy, 3-(1,1-dioxotetrahydro-4<u>H</u>-1,4-thiazin-4-yl)propoxy, 2-piperidinoethoxy, 3-piperidinopropoxy, 2-piperidin-4-ylethoxy, 2-(N-methylpiperidin-4-yl)ethoxy,

- 2-homopiperidin-1-ylethoxy, 3-homopiperidin-1-ylpropoxy, 2-piperazin-1-ylethoxy,
- 3-piperazin-1-ylpropoxy, 2-(4-methylpiperazin-1-yl)ethoxy,
- 3-(4-methylpiperazin-1-yl)propoxy, 3-(4-cyanomethylpiperazin-1-yl)propoxy,
- 2-[(2S)-2-carbamoylpyrrolidin-1-yl]ethoxy, 2-[(2S)-2-(N-methylcarbamoyl)pyrrolidin-1-
- 5 yl]ethoxy, 2-[(2S)-2-(N,N-dimethylcarbamoyl)pyrrolidin-1-yl]ethoxy,
 - 2-tetrahydropyran-4-ylethoxy, 2-hydroxyethoxy, 3-hydroxypropoxy, 2-methoxyethoxy,
 - 3-methoxypropoxy, 2-methylsulphonylethoxy, 3-methylsulphonylpropoxy,
 - 2-(2-methoxyethoxy) ethoxy, piperidin-4-ylmethoxy, N-methylpiperidin-4-ylmethoxy,
 - 2-(4-pyridyloxy)ethoxy, 2-pyridylmethoxy, 3-pyridylmethoxy, 4-pyridylmethoxy and
- 10 3-cyanopyrid-4-ylmethoxy;

and wherein any CH_2 group within a R^1 substituent that is attached to two carbon atoms optionally bears a hydroxy group on said CH_2 group, and wherein any heterocyclyl group within a R^1 substituent optionally bears 1 or 2 oxo substituents,

and wherein any CH₂ group within a R¹ substituent that is attached to two carbon atoms optionally bears a hydroxy group on said CH₂ group;

n is 0, 1 or 2;

X, Y and W together with the carbon atoms (in the phenyl ring) to which X and Y are attached form benzoxazolyl; and R³ is as hereinbefore defined;

or a pharmaceutically-acceptable acid-addition salt thereof.

A further particular compound of the invention is a quinoline derivative of the Formula I wherein:

m is 2 and the first R¹ group is located at the 5-position and is selected from tetrahydropyran-4-yloxy, N-methylpyrrolidin-3-yloxy, 4-piperidinyloxy,

 \underline{N} -methylpiperidin-4-yloxy, piperidin-4-ylmethoxy and \underline{N} -methylpiperidin-4-ylmethoxy,

- and the second R¹ is located at the 7-position and is selected from methoxy, benzyloxy, 2-pyrrolidin-1-ylethoxy, 3-pyrrolidin-1-ylpropoxy, 2-piperidinoethoxy, 3-piperidinopropoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 2-(4-methylpiperazin-1-yl)ethoxy, 3-(4-methylpiperazin-1-yl)propoxy and 3-methylsulphonylpropoxy;
 - n is 0, 1 or 2;
- X, Y and W together with the carbon atoms (in the phenyl ring) to which X and Y are attached form benzoxazolyl; and R³ is as hereinbefore defined:
 - or a pharmaceutically-acceptable acid-addition salt.

A particular compound of the invention is, for example, a quinoline derivative of the Formula I selected from:-

4-(1,3-benzoxazol-7ylamino)-6-methoxy-7-[3-(4-methylpiperazin-1-yl)propoxy]quinoline-3-carbonitrile;

5 4-(1,3-benzoxazol-7-ylamino)-6,7-dimethoxyquinoline-3-carbonitrile; or a pharmaceutically-acceptable acid-addition salt thereof.

A further particular compound of the invention is, for example, a quinoline derivative of Formula I selected from:-

 $\hbox{$4$-(1,3$-benzoxazol-4-ylamino)-6-methoxy-7-[3$-($4$-methylpiperazin-$1$-inches and 4-($1,3$-benzoxazol-4-ylamino)$-6-methoxy-7-[3$-(4-methylpiperazin-1-inches and 4-($1,3$-benzoxazol-4-ylamino)$-$6$-methoxy-$7$-[3$-(4-methylpiperazin-1-inches and 4-($1,3$-benzoxazol-4-ylamino)$-$6$-methoxy-$7$-[3$-(4-methylpiperazin-1-inches and 4-($1,3$-benzoxazol-4-ylamino)$-$6$-methoxy-$7$-[3$-(4-methylpiperazin-1-inches and 4-(4-methylpiperazin-1-inches and 4-inches and$

10 yl)propoxy]quinoline-3-carbonitrile; and

4-(1,3-benzoxazol-4-ylamino)-6,7-dimethoxyquinoline-3-carbonitrile; or a pharmaceutically-acceptable acid-addition salt thereof.

A quinoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, may be prepared by any process known to be applicable to the preparation of chemicallyrelated compounds. Such processes, when used to prepare a quinoline derivative of the Formula I are provided as a further feature of the invention and are illustrated by the following representative process variants in which, unless otherwise stated, m, R¹, Z, n and R³ and X, Y and W, together with the carbon atoms (in the phenyl ring) to which X and Y are attached, have any of the meanings defined hereinbefore. Necessary starting materials may be obtained by standard procedures of organic chemistry. The preparation of such starting materials is described in conjunction with the following representative process variants and within the accompanying Examples. Alternatively necessary starting materials are obtainable by analogous procedures to those illustrated which are within the ordinary skill of an organic chemist.

25 For the production of those compounds of the Formula I wherein Z is an O, S or N(R²), the reaction of a quinoline of the Formula II

II

PCT/GB02/05518

wherein L is a displaceable group and m and R¹ have any of the meanings defined hereinbefore except that any functional group is protected if necessary, with a compound of the Formula III

- 41 -

5 wherein Z is O, S, or N(R²) and n, R³ and R² and X, Y and W, together with the carbon atoms (in the phenyl ring) to which X and Y are attached, have any of the meanings defined hereinbefore except that any functional group is protected if necessary, whereafter any protecting group that is present is removed by conventional means.

The reaction may conveniently be carried out in the presence of a suitable acid or in

the presence of a suitable base. A suitable acid is, for example, an inorganic acid such as, for
example, hydrogen chloride or hydrogen bromide. A suitable base is, for example, an organic
amine base such as, for example, pyridine, 2,6-lutidine, collidine, 4-dimethylaminopyridine,
triethylamine, morpholine, N-methylmorpholine or diazabicyclo[5.4.0]undec-7-ene, or, for
example, an alkali or alkaline earth metal carbonate or hydroxide, for example sodium

carbonate, potassium carbonate, calcium carbonate, sodium hydroxide or potassium
hydroxide, or, for example, an alkali metal amide, for example sodium hexamethyldisilazane,
or, for example, an alkali metal hydride, for example sodium hydride.

A suitable displaceable group L is, for example, a halogeno, alkoxy, aryloxy or sulphonyloxy group, for example a chloro, bromo, methoxy, phenoxy, pentafluorophenoxy, methanesulphonyloxy or toluene-4-sulphonyloxy group. The reaction is conveniently carried out in the presence of a suitable inert solvent or diluent, for example an alcohol or ester such as methanol, ethanol, isopropanol, n-propanol, 2-methoxyethanol or ethyl acetate, a halogenated solvent such as methylene chloride, chloroform or carbon tetrachloride, an ether such as tetrahydrofuran or 1,4-dioxan, an aromatic solvent such as toluene, or a dipolar aprotic solvent such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidin-2-one or dimethylsulphoxide. The reaction is conveniently carried out at a temperature in the range, for example, 0 to 250°C, preferably in the range 0 to 120°C.

Typically, the quinoline of the Formula II may be reacted with a compound of the Formula III in the presence of an aprotic solvent such as <u>N,N</u>-dimethylformamide,

- 42 -

conveniently in the presence of a base, for example potassium carbonate or sodium hexamethyldisilazane, and at a temperature in the range, for example, 0 to 150°C, preferably in the range, for example, 0 to 70°C.

The quinoline derivative of the Formula I may be obtained from this process in the

form of the free base or alternatively it may be obtained in the form of a salt with the acid of
the formula H-L wherein L has the meaning defined hereinbefore. When it is desired to
obtain the free base from the salt, the salt may be treated with a suitable base, for example, an
organic amine base such as, for example, pyridine, 2,6-lutidine, collidine,
4-dimethylaminopyridine, triethylamine, morpholine, N-methylmorpholine or
diazabicyclo[5.4.0]undec-7-ene, or, for example, an alkali or alkaline earth metal carbonate or
hydroxide, for example sodium carbonate, potassium carbonate, calcium carbonate, sodium
hydroxide or potassium hydroxide.

Protecting groups may in general be chosen from any of the groups described in the literature or known to the skilled chemist as appropriate for the protection of the group in question and may be introduced by conventional methods. Protecting groups may be removed by any convenient method as described in the literature or known to the skilled chemist as appropriate for the removal of the protecting group in question, such methods being chosen so as to effect removal of the protecting group with minimum disturbance of groups elsewhere in the molecule.

Specific examples of protecting groups are given below for the sake of convenience, in which "lower", as in, for example, lower alkyl, signifies that the group to which it is applied preferably has 1-4 carbon atoms. It will be understood that these examples are not exhaustive. Where specific examples of methods for the removal of protecting groups are given below these are similarly not exhaustive. The use of protecting groups and methods of deprotection not specifically mentioned are, of course, within the scope of the invention.

A carboxy protecting group may be the residue of an ester-forming aliphatic or arylaliphatic alcohol or of an ester-forming silanol (the said alcohol or silanol preferably containing 1-20 carbon atoms). Examples of carboxy protecting groups include straight or branched chain (1-12C)alkyl groups (for example isopropyl, and text-butyl); lower alkoxylower alkyl groups (for example methoxymethyl, ethoxymethyl and isobutoxymethyl); lower acyloxy-lower alkyl groups, (for example acetoxymethyl, propionyloxymethyl, butyryloxymethyl and pivaloyloxymethyl); lower alkoxycarbonyloxy-lower alkyl groups (for

example 1-methoxycarbonyloxyethyl and 1-ethoxycarbonyloxyethyl); aryl-lower alkyl groups (for example benzyl, 4-methoxybenzyl, 2-nitrobenzyl, 4-nitrobenzyl, benzhydryl and phthalidyl); tri(lower alkyl)silyl groups (for example trimethylsilyl and tert-butyldimethylsilyl); tri(lower alkyl)silyl-lower alkyl groups (for example 5 trimethylsilylethyl); and (2-6C)alkenyl groups (for example allyl). Methods particularly appropriate for the removal of carboxyl protecting groups include for example acid-, base-, metal- or enzymically-catalysed cleavage.

Examples of hydroxy protecting groups include lower alkyl groups (for example textbutyl), lower alkenyl groups (for example allyl); lower alkanoyl groups (for example acetyl); 10 lower alkoxycarbonyl groups (for example tert-butoxycarbonyl); lower alkenyloxycarbonyl groups (for example allyloxycarbonyl); aryl-lower alkoxycarbonyl groups (for example benzyloxycarbonyl, 4-methoxybenzyloxycarbonyl, 2-nitrobenzyloxycarbonyl and 4-nitrobenzyloxycarbonyl); tri(lower alkyl)silyl (for example trimethylsilyl and tert-butyldimethylsilyl) and aryl-lower alkyl (for example benzyl) groups.

15

Examples of amino protecting groups include formyl, aryl-lower alkyl groups (for example benzyl and substituted benzyl, 4-methoxybenzyl, 2-nitrobenzyl and 2,4-dimethoxybenzyl, and triphenylmethyl); di-4-anisylmethyl and furylmethyl groups; lower alkoxycarbonyl (for example tert-butoxycarbonyl); lower alkenyloxycarbonyl (for example allyloxycarbonyl); aryl-lower alkoxycarbonyl groups (for example benzyloxycarbonyl, 20 4-methoxybenzyloxycarbonyl, 2-nitrobenzyloxycarbonyl and 4-nitrobenzyloxycarbonyl); trialkylsilyl (for example trimethylsilyl and tert-butyldimethylsilyl); alkylidene (for example methylidene) and benzylidene and substituted benzylidene groups.

Methods appropriate for removal of hydroxy and amino protecting groups include, for example, acid-, base-, metal- or enzymically-catalysed hydrolysis for groups such as 25 2-nitrobenzyloxycarbonyl, hydrogenation for groups such as benzyl and photolytically for groups such as 2-nitrobenzyloxycarbonyl.

The reader is referred to Advanced Organic Chemistry, 4th Edition, by J. March, published by John Wiley & Sons 1992, for general guidance on reaction conditions and reagents and to Protective Groups in Organic Synthesis, 2nd Edition, by T. Green et al., also 30 published by John Wiley & Son, for general guidance on protecting groups.

TV

Quinoline starting materials of the Formula II may be obtained by conventional procedures such as those disclosed in International Patent Applications WO 98/43960 and WO 00/68201. For example, a 1,4-dihydroquinolin-4-one of Formula IV

5 wherein m and R¹ have any of the meanings defined hereinbefore except that any functional group is protected if necessary, may be reacted with a halogenating agent such as thionyl chloride, phosphoryl chloride or a mixture of carbon tetrachloride and triphenylphosphine whereafter any protecting group that is present is removed by conventional means.

The 4-chloroquinoline so obtained may be converted, if required, into a

4-pentafluorophenoxyquinoline by reaction with pentafluorophenol in the presence of a suitable base such as potassium carbonate and in the presence of a suitable solvent such as N,N-dimethylformamide.

1,3-benzoxazolylamino starting materials (Formula III, for example when Z is NH) may be obtained by conventional procedures as illustrated in the Examples. Corresponding starting materials of Formula III may be obtained by conventional procedures.

(b) For the production of those compounds of the Formula I wherein at least one R¹ group is a group of the formula

$$Q^{1}-X^{1}-$$

wherein Q¹ is an aryl-(1-6C)alkyl, (3-7C)cycloalkyl-(1-6C)alkyl, (3-7C)cycloalkenyl-'
20 (1-6C)alkyl, heteroaryl-(1-6C)alkyl or heterocyclyl-(1-6C)alkyl group or an optionally substituted alkyl group and X¹ is an oxygen atom, the coupling, conveniently in the presence of a suitable dehydrating agent, of a quinoline of the Formula V

$$(R^1)_m$$
 $(R^1)_m$
 $(R^1$

wherein m, R¹, Z, n and R³ and X, Y and W, together with the carbon atoms (in the phenyl ring) to which X and Y are attached, have any of the meanings defined hereinbefore except that any functional group is protected if necessary, with an appropriate alcohol, whereafter any protecting group that is present is removed by conventional means.

A suitable dehydrating agent is, for example, a carbodiimide reagent such as dicyclohexylcarbodiimide or 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide or a mixture of an azo compound such as diethyl or di-tert-butyl azodicarboxylate and a phosphine such as triphenylphosphine. The reaction is conveniently carried out in the presence of a suitable inert solvent or diluent, for example a halogenated solvent such as methylene chloride, chloroform or carbon tetrachloride and at a temperature in the range, for example, 10 to 150°C, preferably at or near ambient temperature.

The reaction is conveniently carried out in the presence of a suitable inert solvent or diluent, for example a halogenated solvent such as methylene chloride, chloroform or carbon tetrachloride and at a temperature in the range, for example, 10 to 150°C, preferably at or near ambient temperature.

(c) For the production of those compounds of the Formula I wherein R¹ is an amino-substituted (1-6C)alkoxy group (such as 2-homopiperidin-1-ylethoxy or 3-dimethylaminopropoxy), the reaction of a compound of the Formula I wherein R¹ is a halogeno-substituted (1-6C)alkoxy group with a heterocyclyl compound or an appropriate amine.

The reaction is conveniently carried out in the presence of a suitable inert diluent or carrier as defined hereinbefore and at a temperature in the range 10 to 150°C, preferably at or near ambient temperature.

WO 03/053960

(d) For the production of those compounds of the Formula I wherein R¹ is a hydroxy group, the cleavage of a quinoline derivative of the Formula I wherein R¹ is a (1-6C)alkoxy or arylmethoxy group.

The cleavage reaction may conveniently be carried out by any of the many procedures

known for such a transformation. The cleavage reaction of a compound of the Formula I

wherein R¹ is a (1-6C)alkoxy group may be carried out, for example, by treatment of the

quinoline derivative with an alkali metal (1-6C)alkylsulphide such as sodium ethanethiolate

or, for example, by treatment with an alkali metal diarylphosphide such as lithium

diphenylphosphide. Alternatively the cleavage reaction may conveniently be carried out, for

example, by treatment of the quinoline derivative with a boron or aluminium trihalide such as

boron tribromide. The cleavage reaction of a compound of the Formula I wherein R¹ is a

arylmethoxy group may be carried out, for example, by hydrogenation of the quinoline

derivative in the presence of a suitable metallic catalyst such as palladium or by reaction with

an organic or inorganic acid, for example trifluoroacetic acid. Such reactions are preferably

carried out in the presence of a suitable inert solvent or diluent as defined hereinbefore and at

a temperature in the range, for example, 10 to 150°C, preferably at or near ambient

temperature.

(e) For the production of those compounds of the Formula I wherein an R¹ group contains a primary or secondary amino group, the cleavage of the corresponding compound of the
 20 Formula I wherein the R¹ group contains a protected primary or secondary amino group.

Suitable protecting groups for an amino group are, for example, any of the protecting groups disclosed hereinbefore for an amino group. Suitable methods for the cleavage of such amino protecting groups are also disclosed hereinbefore. In particular, a suitable protecting group is a lower alkoxycarbonyl group such as a <u>tert</u>-butoxycarbonyl group which may be cleaved under conventional reaction conditions such as under acid-catalysed hydrolysis, for example in the presence of trifluoroacetic acid.

(f) For the production of those compounds of the Formula I wherein an R¹ group contains a (1-6C)alkoxy or substituted (1-6C)alkoxy group or a (1-6C)alkylamino or substituted (1-6C)alkylamino group, the alkylation, conveniently in the presence of a suitable base as defined hereinbefore, of a quinoline derivative of the formula I wherein the R¹ group contains a hydroxy group or a primary or secondary amino group as appropriate.

A suitable alkylating agent is, for example, any agent known in the art for the

alkylation of hydroxy to alkoxy or substituted alkoxy, or for the alkylation of amino to alkylamino or substituted alkylamino, for example an alkyl or substituted alkyl halide; for example a (1-6C)alkyl chloride, bromide or iodide or a substituted (1-6C)alkyl chloride, bromide or iodide, conveniently in the presence of a suitable base as defined hereinbefore, in a suitable inert solvent or diluent as defined hereinbefore and at a temperature in the range, for example, 10 to 140°C, conveniently at or near ambient temperature.

Conveniently for the production of those compounds of the Formula I wherein R¹ contains a (1-6C)alkylamino or substituted (1-6C)alkylamino group, a reductive amination reaction may be employed. For example, for the production of those compounds of the

Formula I wherein R¹ contains a N-methyl group, the corresponding compound containing a N-H group may be reacted with formaldehyde in the presence of a suitable reducing agent. A suitable reducing agent is, for example, a hydride reducing agent, for example an alkali metal aluminium hydride such as lithium aluminium hydride or, preferably, an alkali metal borohydride such as sodium borohydride, sodium cyanoborohydride, sodium

triethylborohydride, sodium trimethoxyborohydride and sodium triacetoxyborohydride. The reaction is conveniently performed in a suitable inert solvent or diluent, for example tetrahydrofuran and diethyl ether for the more powerful reducing agents such as lithium aluminium hydride, and, for example, methylene chloride or a protic solvent such as methanol and ethanol for the less powerful reducing agents such as sodium triacetoxyborohydride and sodium cyanoborohydride. The reaction is performed at a temperature in the range, for example, 10 to 80°C, conveniently at or near ambient temperature.

(g) For the production of those compounds of the Formula I wherein R¹ is an amino-hydroxy-disubstituted (1-6C)alkoxy group (such as 2-hydroxy-3-pyrrolidin-1-ylpropoxy or 3-[N-allyl-N-methylamino]-2-hydroxypropoxy), the reaction of a compound of the Formula I wherein the R¹ group contains an epoxy-substituted (1-6C)alkoxy group with a heterocyclyl compound or an appropriate amine.

The reaction is conveniently carried out in the presence of a suitable inert diluent or carrier as defined hereinbefore and at a temperature in the range 10 to 150°C, preferably at or near ambient temperature.

30 (h) For the production of those compounds of the Formula I wherein an R¹ group contains a hydroxy group, the cleavage of the corresponding compound of the Formula I wherein the R¹ group contains a protected hydroxy group.

Suitable protecting groups for a hydroxy group are, for example, any of the protecting groups disclosed hereinbefore. Suitable methods for the cleavage of such hydroxy protecting groups are also disclosed hereinbefore. In particular, a suitable protecting group is a lower alkanoyl group such as an acetyl group which may be cleaved under conventional reaction conditions such as under base-catalysed conditions, for example in the presence of ammonia.

(i) For the production of those compounds of the Formula I wherein Z is a SO or SO₂ group, the oxidation of a compound of Formula I wherein Z is a S group.

Conventional oxidation reagents and reaction conditions for such partial or complete oxidation of a sulphur atom are well known to the organic chemist.

10 (j) For the production of those compounds of the Formula I wherein an R¹ group contains a (1-6C)alkoxy or substituted (1-6C)alkoxy group or a (1-6C)alkylamino or substituted (1-6C)alkylamino group, the reaction, conveniently in the presence of a suitable base as defined hereinbefore, of a quinoline derivative of the Formula VI

wherein L is a displaceable group as defined hereinbefore and Z, n, and R³ and X, Y and W, together with the carbon atoms (in the phenyl ring) to which X and Y are attached, have any of the meanings defined hereinbefore except that any functional group is protected if necessary, with an alcohol or amine as appropriate.

The reaction is conveniently carried out in the presence of a suitable inert diluent or carrier as defined hereinbefore and at a temperature in the range 10 to 150°C, preferably at or near 50°C.

When a pharmaceutically-acceptable salt of a quinoline derivative of the Formula I is required, for example an acid-addition salt, it may be obtained by, for example, reaction of said quinoline derivative with a suitable acid using a conventional procedure.

Biological Assays

The following assays can be used to measure the effects of the compounds as inhibitors of the MAPK pathway.

Assay to detect MEK inhibition

To evaluate inhibitors of the MAPK pathway a coupled assay was carried out which measures phosphorylation of serine/threonine residues present in the substrate in the presence or absence of inhibitor. Recombinant glutathione S-transferase fusion protein containing human p45MEK1 (GST-MEK) was activated by c-raf (Sf9 insect cell lysate from triple baculoviral infection with c-raf/ras/lck) and used for the assay. Active GST-MEK was first used to activate a recombinant glutathione S-transferase fusion protein containing p44MAP kinase (GST-MAPK) in the presence of ATP and Mg²⁺ for 60min at room temperature in the presence or absence of potential inhibitors. The activated GST-MAPK was then incubated with myelin basic protein (MBP) as substrate for 10min at room temperature in the presence of ATP, Mg²⁺ and ³³P-ATP. The reaction was stopped by addition of 20% v/v phosphoric acid. Incorporation of ³³P into the myelin basic protein was determined by capture of the substrate on a filter mat, washing and counting using scintillation methods. The extent of inhibition was determined by comparison with untreated controls.

The final assay solution contained 10mM Tris, pH 7.5, 0.05mM EGTA, 8.33 μ M [γ^{33} P]ATP, 8.33mM Mg(OAc)₂, 0.5mM sodium orthovanadate, 0.05%w/v BSA, 6.5ng 20 GST-MEK, 1 μ g GST-MAPK and 16.5 μ g MBP in a reaction volume of 60 μ l.

Compounds tested had IC₅₀ results typically less than 0.5 µM.

In vitro MAP kinase assay

To determine whether compounds were inhibiting GST-MEK or GST-MAPK, a direct assay of MAPK activity was employed. GST-MAPK was activated by a constitutively active GST-MEK fusion protein containing two point mutations (S217E, S221E) and used for the assay in the presence and absence of potential inhibitors. The activated GST-MAPK was incubated with substrate (MBP) for 60min at room temperature in the presence of ATP, Mg²⁺ and ³³P-ATP. The reaction was stopped by addition of 20% v/v phosphoric acid. Incorporation of ³³P into the myelin basic protein was determined by capture of the substrate on a filter mat, washing and counting using scintillation methods.

The final assay solution contained 12mM Tris, pH 7.5, 0.06mM EGTA, 30μ M [γ^{33} P]ATP, 10mM Mg(OAc)₂, 0.6mM sodium orthovanadate, 0.06%w/v BSA, 28ng GST-MAPK and 16.5 μ g MBP in a reaction volume of 60μ l.

Compounds of Formula I showed activity in this screen.

5 Cell proliferation assays

25

Cells were seeded into multi-well plates at 20 000 - 40 000 cells/ml in growth medium containing 5% FCS and incubated overnight at 37°C. The compounds were prepared in fresh medium at an appropriate concentration and added to the wells containing the cells. These were then incubated for a further 72 hours. Cells were then either removed from the wells by incubating with trypsin/EDTA and counted using a Coulter counter, or treated with XTT/PMS in PBSA and optical densities read at 450nm. Compounds of Formula I had IC₅₀ results typically less than 30μM.

According to a further aspect of the invention there is provided a pharmaceutical composition which comprises a quinoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, as defined hereinbefore in association with a pharmaceutically-acceptable diluent or carrier.

The compositions of the invention may be in a form suitable for oral use (for example as tablets, lozenges, hard or soft capsules, aqueous or oily suspensions, emulsions, dispersible powders or granules, syrups or elixirs), for topical use (for example as creams, ointments, gels, or aqueous or oily solutions or suspensions), for administration by inhalation (for example as a finely divided powder or a liquid aerosol), for administration by insufflation (for example as a finely divided powder) or for parenteral administration (for example as a sterile aqueous or oily solution for intravenous, subcutaneous, intramuscular or intramuscular dosing or as a suppository for rectal dosing).

The compositions of the invention may be obtained by conventional procedures using conventional pharmaceutical excipients, well known in the art. Thus, compositions intended for oral use may contain, for example, one or more colouring, sweetening, flavouring and/or preservative agents.

The amount of active ingredient that is combined with one or more excipients to

30 produce a single dosage form will necessarily vary depending upon the host treated and the
particular route of administration. For example, a formulation intended for oral
administration to humans will generally contain, for example, from 0.5 mg to 0.5 g of active

- 51 -

agent (more suitably from 0.5 to 100 mg, for example from 1 to 30 mg) compounded with an appropriate and convenient amount of excipients which may vary from about 5 to about 98 percent by weight of the total composition.

The size of the dose for therapeutic or prophylactic purposes of a compound of the 5 Formula I will naturally vary according to the nature and severity of the conditions, the age and sex of the animal or patient and the route of administration, according to well known principles of medicine.

In using a compound of the Formula I for therapeutic or prophylactic purposes it will generally be administered so that a daily dose in the range, for example, 0.1 mg/kg to 75 mg/kg body weight is received, given if required in divided doses. In general lower doses will be administered when a parenteral route is employed. Thus, for example, for intravenous administration, a dose in the range, for example, 0.1 mg/kg to 30 mg/kg body weight will generally be used. Similarly, for administration by inhalation, a dose in the range, for example, 0.05 mg/kg to 25 mg/kg body weight will be used. Oral administration is however preferred, particularly in tablet form. Typically, unit dosage forms will contain about 0.5 mg to 0.5 g of a compound of this invention.

According to a further aspect of the invention there is provided a quinoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, as defined hereinbefore for use in a method of treatment of the human or animal body by therapy.

We have found that the quinoline derivatives of the present invention possess potent anti-tumour activity which it is believed is obtained by way of inhibition of one or more of the MEK enzymes that are involved in the MAPK pathway.

Particularly, the quinoline derivatives of the present invention are of value as antiproliferative agents in the containment and/or treatment of solid tumour disease. Particularly,

25 the compounds of the present invention are expected to be useful in the prevention or
treatment of those tumours which are sensitive to inhibition of one or more of MEK enzymes
that are involved in the MAPK pathway. Further, the compounds of the present invention are
expected to be useful in the prevention or treatment of those tumours which are mediated
alone or in part by inhibition of the MEK enzymes i.e the compounds may be used to produce

30 a MEK inhibitory effect in a warm-blooded animal in need of such treatment. Specifically,
the compounds of the present invention are expected to be useful in the prevention or
treatment of solid tumour disease.

- 52 -

Thus according to this aspect of the invention there is provided a quinoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, as defined hereinbefore for use as an anti-proliferative agent in the containment and/or treatment of solid tumour disease.

According to a further feature of this aspect of the invention there is provided the use of a quinoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, as defined hereinbefore in the manufacture of a medicament for use as an anti-proliferative agent in the containment and/or treatment of solid tumour disease.

According to a further feature of this aspect of the invention there is provided a method for producing an anti-proliferative effect by the containment and/or treatment of solid tumour disease in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a quinoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, as defined hereinbefore.

According to a further aspect of the invention there is provided the use of a quinoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, as defined

15 hereinbefore in the manufacture of a medicament for use in the prevention or treatment of solid tumour disease in a warm-blooded animal such as man.

1

According to a further feature of this aspect of the invention there is provided a method for the prevention or treatment of solid tumour disease in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a quinoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, as defined hereinbefore.

According to a further aspect of the invention there is provided the use of a quinoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, as defined hereinbefore in the manufacture of a medicament for use in the prevention or treatment of those tumours which are sensitive to inhibition of MEK enzymes that are involved in the MAPK kinase pathway.

According to a further feature of this aspect of the invention there is provided a method for the prevention or treatment of those tumours which are sensitive to inhibition of MEK enzymes that are involved in the MAPK kinase pathway which comprises administering to said animal an effective amount of a quinoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, as defined hereinbefore.

- 53 -

According to a further aspect of the invention there is provided the use of a quinoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, as defined hereinbefore in the manufacture of a medicament for use in providing a MEK enzyme inhibitory effect.

According to a further feature of this aspect of the invention there is provided a method for providing a MEK inhibitory effect which comprises administering to said animal an effective amount of a quinoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, as defined hereinbefore.

5

The anti-proliferative treatment defined hereinbefore may be applied as a sole therapy or may involve, in addition to the quinoline derivative of the invention, conventional surgery or radiotherapy or chemotherapy. Such chemotherapy may include one or more of the following categories of anti-tumour agents:-

The anti-cancer treatment defined hereinbefore may be applied as a sole therapy or may involve, in addition to the compound of the invention, conventional surgery or radiotherapy or chemotherapy. Such chemotherapy may include one or more of the following categories of anti-tumour agents:-

- (i) other antiproliferative/antineoplastic drugs and combinations thereof, as used in medical oncology, such as alkylating agents (for example cis-platin, carboplatin, cyclophosphamide, nitrogen mustard, melphalan, chlorambucil, busulphan and nitrosoureas);
 20 antimetabolites (for example antifolates such as fluoropyrimidines like 5-fluorouracil and tegafur, raltitrexed, methotrexate, cytosine arabinoside and hydroxyurea; antitumour antibiotics (for example anthracyclines like adriamycin, bleomycin, doxorubicin, daunomycin, epirubicin, idarubicin, mitomycin-C, dactinomycin and mithramycin); antimitotic agents (for example vinca alkaloids like vincristine, vinblastine, vindesine and vinorelbine and taxoids
 25 like taxol and taxotere); and topoisomerase inhibitors (for example epipodophyllotoxins like etoposide and teniposide, amsacrine, topotecan and camptothecin);
- (ii) cytostatic agents such as antioestrogens (for example tamoxifen, toremifene, raloxifene, droloxifene and iodoxyfene), antiandrogens (for example bicalutamide, flutamide, nilutamide and cyproterone acetate), LHRH antagonists or LHRH agonists (for example goserelin, leuprorelin and buserelin), progestogens (for example megestrol acetate), aromatase inhibitors (for example as anastrozole, letrozole, vorazole and exemestane) and inhibitors of 5 α-reductase such as finasteride;

(iii) agents which inhibit cancer cell invasion (for example metalloproteinase inhibitors like marimastat and inhibitors of urokinase plasminogen activator receptor function);

- 54 -

- (iv) inhibitors of growth factor function, for example such inhibitors include growth factor antibodies, growth factor receptor antibodies (for example the anti-erbb2 antibody
- 5 trastuzumab [Herceptin™] and the anti-erbb1 antibody cetuximab [C225]), farnesyl transferase inhibitors, tyrosine kinase inhibitors and serine/threonine kinase inhibitors, for example inhibitors of the epidermal growth factor family (for example EGFR family tyrosine kinase inhibitors such as N-(3-chloro-4-fluorophenyl)-7-methoxy-6-(3-morpholinopropoxy)quinazolin-4-amine (gefitinib, AZD1839), N-(3-ethynylphenyl)-6,7-
- bis(2-methoxyethoxy)quinazolin-4-amine (erlotinib, OSI-774) and 6-acrylamido-N-(3-chloro-4-fluorophenyl)-7-(3-morpholinopropoxy)quinazolin-4-amine (CI 1033)), for example inhibitors of the platelet-derived growth factor family and for example inhibitors of the hepatocyte growth factor family;
- (v) antiangiogenic agents such as those which inhibit the effects of vascular endothelial growth factor, (for example the anti-vascular endothelial cell growth factor antibody bevacizumab [AvastinTM], compounds such as those disclosed in International Patent Applications WO 97/22596, WO 97/30035, WO 97/32856 and WO 98/13354) and compounds that work by other mechanisms (for example linomide, inhibitors of integrin αvβ3 function and angiostatin);
- 20 (vi) vascular damaging agents such as Combretastatin A4 and compounds disclosed in International Patent Applications WO 99/02166, WO00/40529, WO 00/41669, WO01/92224, WO02/04434 and WO02/08213;
 - (vii) antisense therapies, for example those which are directed to the targets listed above, such as ISIS 2503, an anti-ras antisense;
- 25 (viii) gene therapy approaches, including for example approaches to replace aberrant genes such as aberrant p53 or aberrant BRCA1 or BRCA2, GDEPT (gene-directed enzyme pro-drug therapy) approaches such as those using cytosine deaminase, thymidine kinase or a bacterial nitroreductase enzyme and approaches to increase patient tolerance to chemotherapy or radiotherapy such as multi-drug resistance gene therapy; and
- 30 (ix) immunotherapy approaches, including for example ex-vivo and in-vivo approaches to increase the immunogenicity of patient tumour cells, such as transfection with cytokines such as interleukin 2, interleukin 4 or granulocyte-macrophage colony stimulating factor,

WO 03/053960 PCT/GB02/05518

approaches to decrease T-cell anergy, approaches using transfected immune cells such as cytokine-transfected dendritic cells, approaches using cytokine-transfected tumour cell lines and approaches using anti-idiotypic antibodies.

Such conjoint treatment may be achieved by way of the simultaneous, sequential or separate dosing of the individual components of the treatment. Such combination products employ the compounds of this invention within the dosage range described hereinbefore and the other pharmaceutically-active agent within its approved dosage range.

According to this aspect of the invention there is provided a pharmaceutical product comprising a quinoline derivative of the formula I as defined hereinbefore and an additional anti-tumour agent as defined hereinbefore for the conjoint treatment of cancer.

Although the compounds of the Formula I are primarily of value as therapeutic agents for use in warm-blooded animals (including man), they are also useful whenever it is required to inhibit the effects of MEK enzymes. Thus, they are useful as pharmacological standards for use in the development of new biological tests and in the search for new pharmacological agents.

The invention will now be illustrated in the following Examples in which, generally:

- (i) operations were carried out at ambient temperature, *i.e.* in the range 17 to 25°C and under an atmosphere of an inert gas such as argon unless otherwise stated;
- (ii) evaporations were carried out by rotary evaporation in vacuo and work-up
 procedures were carried out after removal of residual solids by filtration;
- (iii) column chromatography (by the flash procedure) and medium pressure liquid chromatography (MPLC) were performed on Merck Kieselgel silica (Art. 9385) or Merck Lichroprep RP-18 (Art. 9303) reversed-phase silica obtained from E. Merck, Darmstadt, Germany or high pressure liquid chromatography (HPLC) was performed on C18 reverse phase silica, for example on a Dynamax C-18 60Å preparative reversed-phase column;
 - (iv) yields, where present, are not necessarily the maximum attainable;
- (v) in general, the end-products of the Formula I have satisfactory microanalyses and their structures were confirmed by nuclear magnetic resonance (NMR) and/or mass spectral techniques; fast-atom bombardment (FAB) mass spectral data were obtained using a Platform spectrometer and, where appropriate, either positive ion data or negative ion data were collected; NMR chemical shift values were measured on the delta scale [proton magnetic resonance spectra were determined using a Jeol JNM EX 400 spectrometer operating at a field

WO 03/053960 PCT/GB02/05518

strength of 400MHz, Varian Gemini 2000 spectrometer operating at a field strength of 300MHz or a Bruker AM300 spectrometer operating at a field strength of 300MHz]; the following abbreviations have been used: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad;

(vi) intermediates were not generally fully characterised and purity was assessed by thin layer chromatographic, HPLC, infra-red (IR) and/or NMR analysis;

(vii) melting points are uncorrected and were determined using a Mettler SP62
 automatic melting point apparatus or an oil-bath apparatus; melting points for the
 end-products of the Formula I were determined after crystallisation from a conventional
 organic solvent such as ethanol, methanol, acetone, ether or hexane, alone or in admixture;

(viii) the following abbreviations have been used:-

DMF

N,N-dimethylformamide

THF

tetrahydrofuran

DMSO

dimethylsulphoxide

15 Example 1

5

4-(1,3-benzoxazol-4-ylamino)-6-methoxy-7-[3-(4-methylpiperazin-1-yl)propoxy]quinoline-3-carbonitrile.

4-chloro-6-methoxy-7-[3-(4-methylpiperazin-1-yl)propoxy]quinoline-3-carbonitrile (300mg, 0.80mmol) and 4-amino-1,3-benzoxazole (128mg, 0.95mmol) in DMF (6ml) were cooled, under an atmosphere of nitrogen, in an ice-water bath then sodium hydride (70mg of a 60%)

dispersion in oil, 1.75mmol) added portionwise. The mixture was allowed to warm to room temperature, stirred for 3hr. and then left to stand overnight before quenching with water and extracting with methylene chloride (4X). The combined extracts were dried over magnesium sulfate and evaporated. The residue was purified initially by column chromatography on silica

using increasingly polar mixtures of methylene chloride and a 7M solution of ammonia in methanol as eluent, then by prep. HPLC ('Hichrom' RPB silica column, water/acetonitrile/TFA eluent) to give the title compound (50mg, 13%) as a yellow solid;

NMR Spectrum: (CDCl₃) 2.12 (quintet, 2H), 2.29 (s, 3H), 2.40-2.70 (m, 10H), 3.67 (s, 3H),

4.26 (t, 2H), 6.83 (d, 1H), 7.03 (s, 1H), 7.32 (m, 3H), 7.42 (s, 1H), 8.10 (s, 1H), 8.70 (s, 1H);

30 Mass Spectrum: M+H⁺ 473.

4-amino-1,3-benzoxazole was prepared as described in Katritzky, Alan R.; Musgrave, Richard P.; Rachwal, Bogumila; Zaklika, Chris, *Heterocycles*, 1995, 41(2), 345-52.

WO 03/053960

The 4-chloro-6-methoxy-7-[3-(4-methylpiperazin-1-yl)propoxy]quinoline-3-carbonitrile used as starting material was prepared as follows:

Diisopropylazodicarboxylate (12.1ml, 61.5mmol) in dichloromethane (50ml) was added dropwise over 30 minutes to a solution of 4-chloro-7-hydroxy-6-methoxyquinoline-3-

5 carbonitrile (12.0g, 51.2mmol), triphenylphosphine (16.1g, 61.3mmol) and 3-(4-methylpiperazin-1-yl)propan-1-ol (9.7g, 61.4mmol) in dichloromethane (200ml) cooled to 5
 C. The mixture was allowed to warm to room temperature and stirred for 1 hour.
 Diisopropylazodicarboxylate (1.2ml, 6.2mmol) and triphenylphosphine (1.6g, 6.2mmol) were

added and the mixture stirred at room temperature for a further 1 hour. The mixture was

- poured into water (500ml) and the organic layer separated. The organic layer was washed with brine (250ml), dried over magnesium sulfate and evaporated *in vacuo* to leave a brown oil. The crude product was purified by flash chromatography eluting over a gradient of 2.5 5% methanol (containing 7M ammonia) in dichloromethane to give the product as a pale yellow solid (14.5g, 76%). NMR Spectrum: (DMSOd₆) 1.95 (quin, 2H), 2.13 (s, 3H), 2.24-
- 15 2.5 (m, 10H), 4.0 (s, 3H), 4.25 (t, 2H), 7.43 (s, 1H), 7.51 (s, 1H), 8.95 (s, 1H); Mass Spectrum: M+H⁺ 375/377.
 - 3-(4-methylpiperazin-1-yl)propan-1-ol used in this preparation was prepared as described in WO 0047212.
- 4-chloro-7-hydroxy-6-methoxyquinoline-3-carbonitrile was prepared as described in WO 20 0068201.

Example 2

- 4-(1,3-benzoxazol-7-ylamino)-6-methoxy-7-[3-(4-methylpiperazin-1-yl)propoxy]quinoline-3-carbonitrile.
- 4-chloro-6-methoxy-7-[3-(4-methylpiperazin-1-yl)propoxy]quinoline-3-carbonitrile, prepared
- 25 as described in example 1, (400mg, 1.07mmol) and 7-amino-1,3-benzoxazole (157mg,
 - 1.17mmol) in DMF (5ml) were cooled, under an atmosphere of nitrogen, in an ice-water bath then treated dropwise with sodium hexamethyldisilazide (2.2ml of a 1.0M solution in THF,
 - 2.20mmol). The resultant mixture was allowed to warm to room temperature and stirred 2hr.
 - before quenching with water and extracting with methylene chloride(4X). The combined
- 30 extracts were washed with saturated brine, dried over magnesium sulfate and evaporated. The residue was purified by column chromatography on silica using increasingly polar mixtures of methylene chloride and a 7M solution of ammonia in methanol as eluent. There was thus

5

obtained the title compound (409mg, 81%); NMR Spectrum: (CDCl₃) 2.10 (quintet, 2H), 2.29 (s, 3H), 2.35-2.64 (m, 10H), 3.54 (s, 3H), 4.25 (t, 2H), 6.84 (s, 1H), 6.98 (s, 1H), 7.06 (d, 1H), 7.34 (t, 1H), 7.41 (s, 1H), 7.63 (d, 1H), 8.04 (s, 1H), 8.68 (s, 1H); Mass Spectrum: M+H⁺ 473.

7-amino-1,3-benzoxazole was prepared in the following way: 7-Nitrobenzoxazole (500mg, 3.05mmol) and 10% palladium on carbon (50mg) in ethanol (12ml) were stirred under an atmosphere of hydrogen (balloon), at room temperature, for 16hr. then the mixture filtered through Celite. The filtrate was evaporated in vacuo to give 7-amino-1,3-benzoxazole (390mg, 96%) as a dark brown solid; NMR Spectrum: (CDCl₃) 4,00 (s(br), 10 2H), 6.72 (d, 1H), 7.15 (t, 1H), 7.21 (d, 1H), 8.02 (s, 1H); Mass Spectrum: M+H⁺ 176 (+MeCN).

The 7-nitrobenzoxazole used as starting material was prepared as follows:-2-Hydroxy-3-nitroaniline (1.24g, 8.05mmol), trimethylorthoformate (1.2ml, 11.0mmol) and ptoluenesulfonic acid (50mg) were heated at 100° for 1hr. then a further 1.0ml 15 trimethylorthoformate added and heating continued for a further 1hr. The resulting mixture was purified by column chromatography on silica using iso-hexane:ethyl acetate (3:2) as eluent. There was thus obtained 7-nitrobenzoxazole (1.0g, 76%) as a pale orange solid; NMR Spectrum: (CDCl₃) 7.56 (t, 1H), 8.16 (d, 1H), 8.28 (d, 1H), 8.31 (s, 1H). 2-Hydroxy-3-nitroaniline was prepared as described in Gorelik, M. V.; Shteiman, V. Ya.; 20 Shner, V. F.; Romanskii, I. A.; Kuznetsova, M. G., Russ. J. Org. Chem., 1997, 33(3), 348-352.

Example 3

4-(1,3-benzoxazol-4-ylamino)-6,7-dimethoxyquinoline-3-carbonitrile

4-[(2-amino-3-hydroxyphenyl)amino]-3-cyano-6,7-dimethoxyquinoline (340mg, 1.01mmol) 25 and para toluenesulfonic acid (30mg) in trimethyl orthoformate (5ml) were stirred and heated at 100° for 1 hr. The excess trimethyl orthoformate was evaporated in vacuo and the residue purified by column chromatography on silica using increasingly polar mixtures of methanol in dichloromethane as eluent to give an approx. 1:1 mixture of the title compound and 3cyano-4-(4-hydroxy-1H-benzimidazol-1-yl)-6,7-dimethoxyquinoline as a yellow foam. These 30 were separated by column chromatography on alumina (neutral) using 5% methanol in dichloromethane as eluent to give the title compound (206mg, 59%) as a pale yellow foam;

- NMR Spectrum: (CDCl₃) 3.69 (s, 3H), 4.05 (s, 3H), 6.85 (d, 1H), 7.05 (s, 1H), 7.30 (t, 1H), 7.34 (d, 1H), 7.41 (s, 2H), 8.10 (s, 1H), 8.70 (s, 1H); Mass Spectrum: M+H⁺347. The 4-[(2-amino-3-hydroxyphenyl)amino]-3-cyano-6,7-dimethoxyquinoline used as starting material was prepared as follows:-
- 5 2-Amino-3-nitrophenol (2.0g, 13.0mmol), di-tert-butyldicarbonate (3.1g, 14.2mmol) and 4-dimethylaminopyridine (50mg) in THF (15ml) were stirred at room temperature for 3hr. The solvent was then evaporated and the residue purified by column chromatography on silica using 10% ethyl acetate in iso-hexane as eluent to give tert-butyl (2-hydroxy-6-nitrophenyl)carbamate (1.65g, 50%) as a yellow, crystalline solid; NMR Spectrum: (CDCl₃)
- 10 1.58 (s, 9H), 6.20 (s(br), 2H), 6.68 (t, 1H), 7.38 (d, 1H), 8.03 (d, 1H).

 Tert-butyl (2-hydroxy-6-nitrophenyl)carbamate (1.4g, 5.51mmol) and 10% palladium on carbon (150mg) in ethanol (25ml) were stirred under an atmosphere of hydrogen, at room temperature, for 6hr then the mixture filtered through Celite. The filtrate was concentrated in vacuo then triturated with iso-hexane to give tert-butyl (2-amino-6-hydroxyphenyl)carbamate
- 15 (1.03g, 84%) as a pale brown crystalline solid; <u>NMR Spectrum</u>: (CDCl₃) 1.52 (s, 9H), 3.58 (s(br), 2H), 6.19 (s(br), 1H), 6.34 (d, 1H), 6.48 (d, 1H), 6.92 (t, 1H).
 - Tert-butyl (2-amino-6-hydroxyphenyl)carbamate (800mg, 3.57mmol) and 4-chloro-3-cyano-6,7-dimethoxyquinoline (880mg, 3.54mmol) in 1-propanol (40ml) were heated under reflux for 8hr then cooled to room temperature to give tert-butyl {2-[(3-cyano-6,7-
- dimethoxyquinolin-4-yl)amino]-6-hydroxyphenyl}carbamate (hydrochloride salt) (1.16g) as a yellow solid. This was then partitioned between ethyl acetate and saturated aqueous sodium bicarbonate solution, the organic solution separated, washed with saturated brine, dried over magnesium sulphate and evaporated to a yellow solid. This was then purified by column chromatography on silica using ethyl acetate as eluent to give tert-butyl {2-[(3-cyano-6,7-
- 25 dimethoxyquinolin-4-yl)amino]-6-hydroxyphenyl}carbamate (free base) (725mg) as a colourless solid; NMR Spectrum 1.28 (s, 9H), 3.80 (s, 3H), 3.92 (s, 3H), 6.65 (d, 1H), 6.76 (d, 1H), 7.02 (t, 1H), 7.27 (s, 1H), 7.45 (s, 1H), 8.30 (s(br), 1H), 8.38 (s, 1H), 8.80 (s(br), 1H), 9.60 (s(br), 1H).
- Trifluoroacetic acid (10ml) was added in one go, at room temperature, to a stirred mixture of tert-butyl {2-[(3-cyano-6,7-dimethoxyquinolin-4-yl)amino]-6-hydroxyphenyl}carbamate (1.0g, 2.29mmol) and water (1.0ml). The resulting yellow solution was stirred for 30min then evaporated in vacuo. The residue was treated with saturated aqueous sodium bicarbonate

solution to give 4-[(2-amino-3-hydroxyphenyl)amino]-3-cyano-6,7-dimethoxyquinoline (725mg, 94%) as a pale yellow solid; Mass Spectrum: M+H⁺337.

Example 4

4-(1,3-benzoxazol-7-ylamino)-6,7-dimethoxyquinoline-3-carbonitrile

- 4-chloro-3-cyano-6,7-dimethoxyquinoline (300mg, 1.21mmol) and 7-amino-1,3-benzoxazole (178mg, 1.33mmol) in DMF (4ml) were cooled in an ice-water bath then treated dropwise, under an atmosphere of nitrogen, with sodium hexamethyldisilazide (1.0M in THF, 2.5ml). The resulting solution was stirred at ice temperature for a further 1 hr. before quenching in dilute aqueous ammonium chloride and extracting with dichloromethane. The extract was
 washed with saturated brine, dried over magnesium sulphate and evaporated to an orange oil. Purified by column chromatography on silica using increasing concentrations of methanol in dichloromethane as eluent to give the title compound (216mg, 52%) as a pale brown crystalline solid; NMR Spectrum: (DMSOd₆) 3.94 (s, 3H), 3.98 (s, 3H), 7.38 (s, 1H), 7.40 (d, 1H), 7.46 (t, 1H), 7.70 (d, 1H), 7.83 (s, 1H), 8.48 (s, 1H), 8.70 (s, 1H), 9.88 (s(br), 1H); Mass
- 15 <u>Spectrum</u>: M+H⁺347.
 - The 7-amino-1,3-benzoxazole used as starting material was prepared as follows:2-Amino-6-nitrophenol (1.24g, 8.05mmol) and para toluenesulfonic acid (50mg) in trimethyl orthoformate (2ml) were tirred and heated at 100° for 2hr. The resulting solution was cooled to room temperature then purified by column chromatography on silica using 40% ethyl
- 20 acetate in iso-hexane as eluent. Thus was obtained 7-nitro-1,3-benzoxazole (1.0g, 76%) as a pale orange, crystalline solid; NMR Spectrum: (CDCl₃) 7.56 (t, 1H), 8.16 (d, 1H), 8.27 (d, 1H), 8.31 (s, 1H).
 - 7-Nitro-1,3-benzoxazole (500mg, 3.05mmol) and 10% palladium on carbon (50mg) in ethanol (12ml) were stirred under an atmosphere of hydrogen, at room temperature, for 6hr then the
- 25 mixture filtered through Celite. The filtrate was concentrated in vacuo to give 7-amino-1,3-benzoxazole (390mg, 96%) as a dark brown solid; NMR Spectrum: (CDCl₃) 4.00 (s(br), 2H), 6.71 (d, 1H), 7.13-7.22 (m, 2H), 8.03 (s, 1H).

Example 5

Pharmaceutical composition

30 The following illustrates a representative pharmaceutical dosage form of the invention as defined herein (the active ingredient being termed "Compound X"), for therapeutic or prophylactic use in humans:

	Tablet I	mg/tablet
	Compound X	100
	Lactose Ph.Eur	182.75
5	Croscarmellose sodium	12.0
	Maize starch paste (5% w/v paste)	2.25
	Magnesium stearate	3.0

The above formulation may be obtained by conventional procedures well known in the pharmaceutical art. The tablet may be enteric coated by conventional means, for example to provide a coating of cellulose acetate phthalate.

I

CLAIMS

1. A quinoline derivative of the Formula I

5

wherein

Z is an O, S, SO, SO₂, N(R²) or C(R²)₂ group, wherein each R² group, which may be the same or different, is hydrogen or (1-6C)alkyl;

X, Y and W together with the carbon atoms (in the phenyl ring) to which X and Y are attached form a 5 membered heterocyclic ring containing 1 nitrogen atom and 1 oxygen atom; m is 0, 1, 2, 3 or 4;

each R¹ group, which may be the same or different, is selected from halogeno, trifluoromethyl, cyano, isocyano, nitro, hydroxy, mercapto, amino, formyl, carboxy, carbamoyl, (1-6C)alkyl, (2-8C)alkenyl, (2-8C)alkynyl, (1-6C)alkoxy, (2-6C)alkenyloxy,

- 15 (2-6C)alkynyloxy, (1-6C)alkylthio, (1-6C)alkylsulphinyl, (1-6C)alkylsulphonyl, (1-6C)alkylamino, di-[(1-6C)alkyl]amino, (1-6C)alkoxycarbonyl, N-(1-6C)alkylcarbamoyl, N-(1-6C)alkyl]carbamoyl, (2-6C)alkanoyl, (2-6C)alkanoyloxy, (2-6C)alkanoylamino, N-(1-6C)alkyl-(2-6C)alkanoylamino, (3-6C)alkenoylamino, N-(1-6C)alkyl-(3-6C)alkynoylamino, N-(1-6C)alkyl-(3-6C)alkynoylamino,
- 20 N-(1-6C)alkylsulphamoyl, N,N-di-[(1-6C)alkyl]sulphamoyl, (1-6C)alkanesulphonylamino and N-(1-6C)alkyl-(1-6C)alkanesulphonylamino, or from a group of the formula:

$$Q^{1}-X^{1}-$$

wherein X¹ is a direct bond or is selected from O, S, SO, SO₂, N(R⁴), CO, CH(OR⁴), CON(R⁴), N(R⁴)CO, SO₂N(R⁴), N(R⁴)SO₂, OC(R⁴)₂, SC(R⁴)₂ and N(R⁴)C(R⁴)₂, wherein R⁴ is hydrogen or (1-6C)alkyl, and Q¹ is aryl, aryl-(1-6C)alkyl, (3-7C)cycloalkyl, (3-7C)cycloalkyl-

(1-6C)alkyl, (3-7C)cycloalkenyl, (3-7C)cycloalkenyl-(1-6C)alkyl, heteroaryl, heteroaryl-(1-6C)alkyl, heterocyclyl or heterocyclyl-(1-6C)alkyl, or $(R^1)_m$ is (1-3C)alkylenedioxy,

and wherein adjacent carbon atoms in any (2-6C)alkylene chain within a R¹ substituent are optionally separated by the insertion into the chain of a group selected from O, S, SO, SO₂, N(R⁵), CO, CH(OR⁵), CON(R⁵), N(R⁵)CO, SO₂N(R⁵), N(R⁵)SO₂, CH=CH and C≡C wherein R⁵ is hydrogen or (1-6C)alkyl or, when the inserted group is N(R⁵), R⁵ may also be (2-6C)alkanoyl,

and wherein any CH₂=CH- or HC≡C- group within a R¹ substituent optionally bears at the terminal CH₂= or HC≡ position a substituent selected from halogeno, carboxy, carbamoyl, 10 (1-6C)alkoxycarbonyl, N-(1-6C)alkylcarbamoyl, N-di-[(1-6C)alkyl]carbamoyl, amino-(1-6C)alkyl, (1-6C)alkylamino-(1-6C)alkyl and di-[(1-6C)alkyl]amino-(1-6C)alkyl or from a group of the formula:

$$Q^2-X^2-$$

wherein X² is a direct bond or is selected from CO and N(R⁶)CO, wherein R⁶ is hydrogen or 15 (1-6C)alkyl, and Q² is aryl, aryl-(1-6C)alkyl, heteroaryl, heteroaryl-(1-6C)alkyl, heterocyclyl or heterocyclyl-(1-6C)alkyl,

and wherein any CH₂ or CH₃ group within a R¹ substituent optionally bears on each said CH₂ or CH₃ group one or more halogeno or (1-6C)alkyl substituents or a substituent selected from hydroxy, cyano, amino, carboxy, carbamoyl, (1-6C)alkoxy, (1-6C)alkylthio, (1-6C)alkylsulphinyl, (1-6C)alkylsulphonyl, (1-6C)alkylamino, di-[(1-6C)alkyl]amino, (1-6C)alkoxycarbonyl, N-(1-6C)alkylcarbamoyl, N-di-[(1-6C)alkyl]carbamoyl, (2-6C)alkanoyl, (2-6C)alkanoyloxy, (2-6C)alkanoylamino, N-(1-6C)alkylsulphamoyl, N-di-[(1-6C)alkyl]sulphamoyl, (1-6C)alkanosulphonylamino and N-(1-6C)alkyl-(1-6C)alkanosulphonylamino, or from a group of the formula:

$$-X^3-Q^3$$

wherein X³ is a direct bond or is selected from O, S, SO, SO₂, N(R⁷), CO, CH(OR⁷), CON(R⁷), N(R⁷)CO, SO₂N(R⁷), N(R⁷)SO₂, C(R⁷)₂O, C(R⁷)₂S and N(R⁷)C(R⁷)₂, wherein R⁷ is hydrogen or (1-6C)alkyl, and Q³ is aryl, aryl-(1-6C)alkyl, (3-7C)cycloalkyl, (3-7C)cycloalkyl-(1-6C)alkyl, (3-7C)cycloalkenyl, (3-7C)cycloalkenyl-(1-6C)alkyl, heteroaryl, heteroaryl-(1-6C)alkyl, heterocyclyl or heterocyclyl-(1-6C)alkyl,

and wherein any aryl, heteroaryl or heterocyclyl group within a substituent on R¹ optionally bears 1, 2 or 3 substituents, which may be the same or different, selected from halogeno, trifluoromethyl, cyano, nitro, hydroxy, amino, carboxy, carbamoyl, (1-6C)alkyl, (2-8C)alkenyl, (2-8C)alkynyl, (1-6C)alkoxy, (2-6C)alkenyloxy, (2-6C)alkynyloxy,

5 (1-6C)alkylthio, (1-6C)alkylsulphinyl, (1-6C)alkylsulphonyl, (1-6C)alkylamino, di-[(1-6C)alkyl]amino, (1-6C)alkoxycarbonyl, N-(1-6C)alkylcarbamoyl, N-(1-6C)alkyl]carbamoyl, (2-6C)alkanoyl, (2-6C)alkanoyloxy, (2-6C)alkanoylamino, N-(1-6C)alkyl-(2-6C)alkanoylamino, N-(1-6C)alkylsulphamoyl,

 $\underline{N},\underline{N}$ -di-[(1-6C)alkyl]sulphamoyl, (1-6C)alkanesulphonylamino and \underline{N} -(1-6C)alkyl-

10 (1-6C)alkanesulphonylamino, or from a group of the formula:

$$-X^{4}-R^{8}$$

wherein X⁴ is a direct bond or is selected from O and N(R⁹), wherein R⁹ is hydrogen or (1-6C)alkyl, and R⁸ is halogeno-(1-6C)alkyl, hydroxy-(1-6C)alkyl, (1-6C)alkyl, (1-6C)alkyl, cyano-(1-6C)alkyl, amino-(1-6C)alkyl, (1-6C)alkylamino-(1-6C)alkyl, di-[(1-6C)alkyl]amino-(1-6C)alkyl, (2-6C)alkanoylamino-(1-6C)alkyl or (1-6C)alkoxycarbonylamino-(1-6C)alkyl, or from a group of the formula:

$$-X^{5}-Q^{4}$$

wherein X⁵ is a direct bond or is selected from O, N(R¹⁰) and CO, wherein R¹⁰ is hydrogen or (1-6C)alkyl, and Q⁴ is aryl, aryl-(1-6C)alkyl, heteroaryl, heteroaryl-(1-6C)alkyl, heterocyclyl or heterocyclyl-(1-6C)alkyl which optionally bears 1 or 2 substituents, which may be the same or different, selected from halogeno, (1-6C)alkyl, (2-8C)alkenyl, (2-8C)alkynyl and (1-6C)alkoxy,

and wherein any heterocyclyl group within a substituent on R¹ optionally bears 1 or 2 oxo or thioxo substituents;

25 **n** is 0, 1, 2 or 3; and

R³ is halogeno, trifluoromethyl, cyano, nitro, hydroxy, formyl, amino, carboxy, carbamoyl, (1-6C)alkyl, (2-8C)alkenyl, (2-8C)alkynyl, (1-6C)alkoxy, (2-6C)alkenyloxy, (2-6C)alkynyloxy, (1-6C)alkylthio, (1-6C)alkylsulphinyl, (1-6C)alkylsulphonyl, (1-6C)alkylamino, di-[(1-6C)alkyl]amino, (1-6C)alkoxycarbonyl, N-(1-6C)alkylcarbamoyl, N-di-[(1-6C)alkyl]carbamoyl, (2-6C)alkanoyl, (2-6C)alkanoyloxy, (2-6C)alkanoylamino, N-(1-6C)alkyl-(2-6C)alkanoylamino, N-(1-6C)alkyl-(2-6C)alkyl-(3-6C)alkyl-(3-6C)alkynoylamino, N-(1-6C)alkyl-(3-6C)alkynoylamino, N-(1-6C)alkyl-(3-6C)alkynoylamino, N-(1-6C)alkyl-(3-6C)alkynoylamino, N-(1-6C)alkyl-(3-6C)alkynoylamino,

30

 \underline{N} -(1-6C)alkylsulphamoyl, \underline{N} -di-[(1-6C)alkyl]sulphamoyl, (1-6C)alkanesulphonylamino and \underline{N} -(1-6C)alkyl-(1-6C)alkanesulphonylamino, or from a group of the formula :

$$-X^{6}-R^{11}$$

wherein X⁶ is a direct bond or is selected from O and N(R¹²), wherein R¹² is hydrogen or

5 (1-6C)alkyl, and R¹¹ is halogeno-(1-6C)alkyl, hydroxy-(1-6C)alkyl, (1-6C)alkoxy-(1-6C)alkyl,
cyano-(1-6C)alkyl, amino-(1-6C)alkyl, (1-6C)alkylamino-(1-6C)alkyl or
di-[(1-6C)alkyl]amino-(1-6C)alkyl, or from a group of the formula:

$$-X^{7}-Q^{5}$$

wherein X⁷ is a direct bond or is selected from O, S, SO, SO₂, N(R¹³), CO, CH(OR¹³),

10 CON(R¹³), N(R¹³)CO, SO₂N(R¹³), N(R¹³)SO₂, C(R¹³)₂O, C(R¹³)₂S and N(R¹³)C(R¹³)₂,

wherein R¹³ is hydrogen or (1-6C)alkyl, and Q⁵ is aryl, aryl-(1-6C)alkyl, heteroaryl,

heteroaryl-(1-6C)alkyl, heterocyclyl or heterocyclyl-(1-6C)alkyl which optionally bears 1 or 2

substituents, which may be the same or different, selected from halogeno, (1-6C)alkyl,

(2-8C)alkenyl, (2-8C)alkynyl and (1-6C)alkoxy, and any heterocyclyl group within Q⁵

optionally bears 1 or 2 oxo or thioxo substituents,

or a pharmaceutically-acceptable salt thereof.

A quinoline derivative of the Formula I as claimed in claim 1 wherein m is 1 or 2 and each R¹ group, which may be the same or different, is selected from halogeno, trifluoromethyl, hydroxy, amino, carbamoyl, (1-6C)alkyl, (2-8C)alkenyl, (2-8C)alkynyl, (1-6C)alkoxy, (1-6C)alkylamino, di-[(1-6C)alkyl]amino, N-(1-6C)alkylcarbamoyl, NN-di-[(1-6C)alkyl]carbamoyl, (2-6C)alkanoylamino, N-(1-6C)alkyl-(2-6C)alkanoylamino, (3-6C)alkenoylamino, N-(1-6C)alkyl-(3-6C)alkynoylamino, or from a group of the formula :

$$Q^{1}-X^{1}-$$

wherein X¹ is a direct bond or is selected from O, N(R⁴), CON(R⁴), N(R⁴)CO and OC(R⁴)₂ wherein R⁴ is hydrogen or (1-6C)alkyl, and Q¹ is aryl, aryl-(1-6C)alkyl, cycloalkyl-(1-6C)alkyl, heteroaryl-(1-6C)alkyl, heterocyclyl or heterocyclyl-(1-6C)alkyl, and wherein adjacent carbon atoms in any (2-6C)alkylene chain within a R¹ substituent are optionally separated by the insertion into the chain of a group selected from O, N(R⁵),

CON(\mathbb{R}^5), N(\mathbb{R}^5)CO, CH=CH and C=C wherein \mathbb{R}^5 is hydrogen or (1-6C)alkyl, or, when the inserted group is N(\mathbb{R}^5), \mathbb{R}^5 may also be (2-6C)alkanoyl,

and wherein any CH_2 =CH- or HC=C- group within a R^1 substituent optionally bears at the terminal CH_2 = or HC= position a substituent selected from carbamoyl,

5 N-(1-6C)alkylcarbamoyl, N,N-di-[(1-6C)alkyl]carbamoyl, amino-(1-6C)alkyl, (1-6C)alkylamino-(1-6C)alkyl and di-[(1-6C)alkyl]amino-(1-6C)alkyl or from a group of the formula:

$$O^2 - X^2 -$$

wherein X^2 is a direct bond or is CO or $N(R^6)$ CO, wherein R^6 is hydrogen or (1-6C)alkyl, and Q^2 is heteroaryl, heteroaryl-(1-6C)alkyl, heterocyclyl or heterocyclyl-(1-6C)alkyl,

and wherein any CH₂ or CH₃ group within a R¹ substituent optionally bears on each said CH₂ or CH₃ group one or more halogeno groups or a substituent selected from hydroxy, amino, (1-6C)alkoxy, (1-6C)alkylsulphonyl, (1-6C)alkylamino, di-[(1-6C)alkyl]amino, (2-6C)alkanoyloxy, (2-6C)alkanoylamino and N-(1-6C)alkyl-(2-6C)alkanoylamino, or from a group of the formula:

$$-X^3-Q^3$$

wherein X^3 is a direct bond or is selected from O, $N(R^6)$, $CON(R^7)$, $N(R^7)CO$ and $C(R^7)_2O$, wherein R^7 is hydrogen or (1-6C)alkyl, and Q^3 is heteroaryl, heteroaryl-(1-6C)alkyl, heterocyclyl or heterocyclyl-(1-6C)alkyl,

and wherein any aryl, heteroaryl or heterocyclyl group within a substituent on \mathbb{R}^1 optionally bears 1, 2 or 3 substituents, which may be the same or different, selected from halogeno, trifluoromethyl, hydroxy, amino, carbamoyl, (1-6C)alkyl, (1-6C)alkoxy, \underline{N} -(1-6C)alkylcarbamoyl and \underline{N} , \underline{N} -di-[(1-6C)alkyl]carbamoyl, or optionally bears 1 substituent selected from a group of the formula:

$$-X^4-R^8$$

20

25

wherein X⁴ is a direct bond or is selected from O and N(R⁹), wherein R⁹ is hydrogen or (1-6C)alkyl, and R⁸ is hydroxy-(1-6C)alkyl, (1-6C)alkoxy-(1-6C)alkyl, cyano-(1-6C)alkyl, amino-(1-6C)alkyl, (1-6C)alkylamino-(1-6C)alkyl, di-[(1-6C)alkyl]amino-(1-6C)alkyl, (2-6C)alkanoylamino-(1-6C)alkyl or (1-6C)alkoxycarbonylamino-(1-6C)alkyl, and from a group of the formula:

$$-X^{5}-O^{4}$$

WO 03/053960

10

wherein X⁵ is a direct bond or is selected from O, N(R¹⁰) and CO, wherein R¹⁰ is hydrogen or (1-6C)alkyl, and Q⁴ is heterocyclyl or heterocyclyl-(1-6C)alkyl which optionally bears 1 or 2 substituents, which may be the same or different, selected from halogeno, (1-6C)alkyl and (1-6C)alkoxy,

- and wherein any heterocyclyl group within a substituent on R¹ optionally bears 1 or 2 oxo substituents.
 - 3. The use of a quinoline derivative of the Formula I as claimed in claim 1 wherein R¹ substituents may only be located at the 5-, 6- and/or 7-positions on the quinoline ring.

4. A quinoline derivative of the Formula I as claimed in claim 1 wherein: Z is O or NH;

m is 1 and the R¹ group is located at the 6- or 7-position or m is 2 and each R¹ group, which may be the same or different, is located at the 5- and 7-positions or at the 6- and

- 7-positions and R¹ is selected from hydroxy, amino, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, isopropoxy, butoxy, methylamino, ethylamino, dimethylamino, diethylamino, acetamido, propionamido, 2-imidazol-1-ylethoxy, 2-(1,2,4-triazol-1-yl)ethoxy, tetrahydrofuran-3-yloxy, tetrahydropyran-4-yloxy, 2-pyrrolidin-1-ylethoxy, 3-pyrrolidin-1-ylpropoxy, 4-pyrrolidin-1-ylbutoxy, pyrrolidin-3-yloxy,
- 20 pyrrolidin-2-ylmethoxy, 2-pyrrolidin-2-ylethoxy, 3-pyrrolidin-2-ylpropoxy,
 2-morpholinoethoxy, 3-morpholinopropoxy, 4-morpholinobutoxy, 2-(1,1-dioxotetrahydro-4H-1,4-thiazin-4-yl)ethoxy, 3-(1,1-dioxotetrahydro-4H-1,4-thiazin-4-yl)propoxy,
 2-piperidinoethoxy, 3-piperidinopropoxy, 4-piperidinobutoxy, piperidin-3-yloxy,
 piperidin-4-yloxy, piperidin-3-ylmethoxy, piperidin-4-ylmethoxy, 2-piperidin-3-ylethoxy,
- 25 3-piperidin-3-ylpropoxy, 2-piperidin-4-ylethoxy, 3-piperidin-4-ylpropoxy, 2-homopiperidin-1-ylethoxy, 3-homopiperidin-1-ylpropoxy, 4-piperazin-1-ylbutoxy, 2-homopiperazin-1-ylethoxy and 3-homopiperazin-1-ylpropoxy,

and wherein adjacent carbon atoms in any (2-6C)alkylene chain within a R¹ substituent are optionally separated by the insertion into the chain of a group selected from O, NH,

30 CH=CH and C≡C,

5

and wherein any CH₂ or CH₃ group within a R¹ substituent optionally bears on each said CH₂ or CH₃ group one or more chloro groups or a substituent selected from hydroxy, amino, methoxy, methylsulphonyl, methylamino, dimethylamino, diethylamino, N-ethyl-N-methylamino, N-isopropyl-N-methylamino, N-methyl-N-propylamino and acetoxy;

and wherein any heteroaryl or heterocyclyl group within a substituent on R^1 optionally bears 1 or 2 substituents, which may be the same or different, selected from fluoro, chloro, trifluoromethyl, hydroxy, amino, carbamoyl, methyl, ethyl, methoxy, \underline{N} -methylcarbamoyl and $\underline{N},\underline{N}$ -dimethylcarbamoyl and a pyrrolidin-2-yl, piperidin-3-yl, piperidin-4-yl, piperazin-1-yl or homopiperazin-1-yl group within a R^1 substituent is optionally N-substituted with acetyl

2-methoxyethyl, 3-methoxypropyl, cyanomethyl, 2-aminoethyl,
 3-aminopropyl, 2-methylaminoethyl, 3-methylaminopropyl, 2-dimethylaminoethyl,
 3-dimethylaminopropyl, 2-pyrrolidin-1-ylethyl, 3-pyrrolidin-1-ylpropyl, 2-morpholinoethyl,
 3-morpholinopropyl, 2-piperidinoethyl, 3-piperidinopropyl, 2-piperazin-1-ylethyl or
 3-piperazin-1-ylpropyl, the last 8 of which substituents each optionally bears 1 or 2
 substituents, which may be the same or different, selected from fluoro, chloro, methyl and

and wherein any heterocyclyl group within a substituent on R¹ optionally bears 1 or 2 oxo substituents; and

n is 0, 1 or 2;

20 X, Y and W together with the carbon atoms (in the phenyl ring) to which X and Y are attached form benzoxazolyl;
or a pharmaceutically-acceptable acid-addition salt thereof.

5. A quinoline derivative of the Formula I as claimed in claim 1 wherein:

25 Z is NH;

methoxy,

m is 1 and the R¹ group is located at the 6- or 7-position or m is 2 and each R¹ group, which may be the same or different, is located at the 5- and 7-positions or at the 6- and 7-positions and R¹ is selected from hydroxy, amino, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, isopropoxy, butoxy, methylamino, ethylamino, dimethylamino, diethylamino, acetamido, propionamido, 2-imidazol-1-ylethoxy, 2-(1,2,4-triazol-1-yl)ethoxy, tetrahydrofuran-3-yloxy, tetrahydropyran-4-yloxy, 2-pyrrolidin-1-ylethoxy, 3-pyrrolidin-1-ylpropoxy, 4-pyrrolidin-1-ylbutoxy, pyrrolidin-3-yloxy,

pyrrolidin-2-ylmethoxy, 2-pyrrolidin-2-ylethoxy, 3-pyrrolidin-2-ylpropoxy,
2-morpholinoethoxy, 3-morpholinopropoxy, 4-morpholinobutoxy, 2-(1,1-dioxotetrahydro-4H-1,4-thiazin-4-yl)ethoxy, 3-(1,1-dioxotetrahydro-4H-1,4-thiazin-4-yl)propoxy,
2-piperidinoethoxy, 3-piperidinopropoxy, 4-piperidinobutoxy, piperidin-3-yloxy,
5 piperidin-4-yloxy, piperidin-3-ylmethoxy, piperidin-4-ylmethoxy, 2-piperidin-3-ylethoxy,
3-piperidin-3-ylpropoxy, 2-piperidin-4-ylethoxy, 3-piperidin-4-ylpropoxy, 2-homopiperidin-1-ylethoxy, 3-homopiperidin-1-ylpropoxy, 4-piperazin-1-ylbutoxy, 2-homopiperazin-1-ylethoxy and 3-homopiperazin-1-ylpropoxy,
and wherein adjacent carbon atoms in any (2-6C)alkylene chain within a R¹ substituent are
optionally separated by the insertion into the chain of a group selected from O, NH, CH=CH and C≡C,

and wherein any CH₂ or CH₃ group within a R¹ substituent optionally bears on each said CH₂ or CH₃ group one or more chloro groups or a substituent selected from hydroxy, amino, methoxy, methylsulphonyl, methylamino, dimethylamino, diethylamino,

M-ethyl-N-methylamino, N-isopropyl-N-methylamino, N-methyl-N-propylamino and acetoxy; and wherein any heteroaryl or heterocyclyl group within a substituent on R¹ optionally bears 1 or 2 substituents, which may be the same or different, selected from fluoro, chloro, trifluoromethyl, hydroxy, amino, carbamoyl, methyl, ethyl, methoxy, N-methylcarbamoyl and N,N-dimethylcarbamoyl and a pyrrolidin-2-yl, piperidin-3-yl, piperidin-4-yl, piperazin-1-yl or homopiperazin-1-yl group within a R¹ substituent is optionally N-substituted with acetyl, 2-methoxyethyl, 3-methoxypropyl, cyanomethyl, 2-aminoethyl, 3-aminopropyl, 2-methylaminoethyl, 3-methylaminopropyl, 2-dimethylaminoethyl, 3-dimethylaminopropyl, 2-pyrrolidin-1-ylethyl, 3-pyrrolidin-1-ylpropyl, 2-morpholinoethyl, 3-morpholinopropyl, 2-piperidinoethyl, 3-piperidinopropyl, 2-piperazin-1-ylethyl or
3-piperazin-1-ylpropyl, the last 8 of which substituents each optionally bears 1 or 2 substituents, which may be the same or different, selected from fluoro, chloro, methyl and

and wherein any heterocyclyl group within a substituent on R¹ optionally bears 1 or 2 oxo substituents:

n is 0, 1 or 2; and

methoxy,

30

X, Y and W together with the phenyl ring to which X and Y are attached form benzoxazolyl, where X is nitrogen, Y is oxygen and W is the group -CH-,

or a pharmaceutically-acceptable acid-addition salt thereof.

- A quinoline derivative of the Formula I as claimed in claim 1 wherein:
 Z is NH;
- m is 2 and the first R¹ group is a 6-methoxy group and the second R¹ group is located at the 7-position and is selected from methoxy or 3-(4-methylpiperazin-1-yl)propoxy, n is 0;

X, Y and W together with the phenyl ring to which X and Y are attached form benzoxazolyl where X is nitrogen, Y is oxygen and W is the group -CH-, or a pharmaceutically-acceptable acid-addition salt thereof.

- 7. A process for the preparation of a quinoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, according to claim 1 which comprises:-
- (a) for the production of those compounds of the Formula I wherein Z is an O, S or N(R²) group, the reaction of a quinoline of the Formula II

IT

wherein L is a displaceable group and m and R¹ have any of the meanings defined in claim 1 except that any functional group is protected if necessary, with a compound of the Formula III

X-W

20

wherein Z is O, S, or N(R²) and n, R³ and R² and X, Y and W, together with the carbon atoms (in the phenyl ring) to which X and Y are attached, have any of the meanings defined in claim 1 except that any functional group is protected if necessary, whereafter any protecting group that is present is removed by conventional means; and

25 (b) for the production of those compounds of the Formula I wherein an R¹ group contains a (1-6C)alkoxy or substituted (1-6C)alkoxy group or a (1-6C)alkylamino or substituted (1-6C)alkylamino group, the reaction of a quinoline derivative of the Formula VI

)

wherein L is a displaceable group and Z, n, and R³ and X, Y and W, together with the carbon atoms (in the phenyl ring) to which X and Y are attached, have any of the meanings defined in claim 1 except that any functional group is protected if necessary, with an alcohol or amine as appropriate;

and when a pharmaceutically-acceptable salt of a quinoline derivative of the Formula I is required, it may be obtained by reaction of said quinoline derivative with a suitable acid using a conventional procedure.

- 10 8. A pharmaceutical composition which comprises a quinoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, according to any one of claims 1 to 6 in association with a pharmaceutically-acceptable diluent or carrier.
- 9. A quinoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof,
 15 according to any one of claims 1 to 6 for use in a method of treatment of the human or animal body by therapy.
- The use of a quinoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, according to any one of claims 1 to 6 in the manufacture of a medicament for use
 as an anti-proliferative agent in the containment and/or treatment of solid tumour disease.
- 11. A method for producing an anti-proliferative effect by the containment and/or treatment of solid tumour disease in a warm-blooded animal in need of such treatment which comprises administering to said animal an effective amount of a quinoline derivative of the
 25 Formula I, or a pharmaceutically-acceptable salt thereof, according to any one of claims 1 to 6.