Modelagem da especificação 7

Caio Victor: 20170021332, Claudio Brito: 20170023696, Gabriel Patrício: 20170170889

14, August 2020

1 Descrição do Problema: Projeto de cadeia de suprimento

Uma empresa de cimento possui nfábricas e deve atender a m cidades (regiões metropolitanas). A capacidade anual e o custo de produção de cada fábrica i são conhecidos e dados por CAPi e Ci. Cada cidade j possui um valor Dj de demanda anual estimada. Até Dj toneladas podem ser vendidas a cidade j ao preço de P reais/ton. O transporte das fábricas até as cidades pode ser feito de duas formas. Da primeira forma, caminhões transportam diretamente da fábrica i para a cidade j ao custo de CC reais/ton/km. Da segunda forma, pode-se usar centros de distribuição intermediários, havendo K desses centros. O transporte da fábrica i até o centro k é feito por ferrovia e custa CF reais/ton/km, o transporte do centro k até a cidade j é feito por caminhão e custa CC reais/ton/km. Entretanto, para usar o centro de distribuição k, deve-se pagar uma taxa fixa anual de Fk reais. Deve-se determinar o quanto cada fábrica deveproduzir e quanto deve ser transportado para cada cidade de forma a maximizar o lucro da empresa no ano.

2 Legenda

- n = Número de fábricas
- m = Número de cidades
- k = Número de centros de distribuição
- P = Preço de que vale cada tonelada a ser vendida (em reais/tol)
- CC = Custo pelo trajeto por caminhão (em reais/ton/km)
- CF = Custo pelo trajeto por ferrovia (em reais/ton/km)
- CM_i = Capacidade máxima da fábrica i, \forall i \in n
- CR_i = Capacidade real usada da fábrica i, \forall i \in n
- CMAX = Soma das capacidades máximas de todas as fábricas
- FC_i = Custo de produção, por tonelada, da fábrica i, \forall i \in n
- DM_j = Demanda máxima de uma cidade j, \forall j \in m
- DR_j = Quantidade de tonelada real que vai para cidade j, \forall j \in m
- DMAX = Soma das demandas máximas de todas as cidades
- CCo_l = Custo pelo uso do centro 1, \forall 1 \in k
- CFl_l = Centro 1 vai ser usado ou não? \forall 1 \in k

- DT_{xy} = Distância da rota em km entre x e y, \forall x \forall y \in n \cup m \cup k
- N = {Conjunto de todas as fábricas(de 0 a n-1)}
- M = {Conjunto de todas as cidades(de 0 a m-1)}
- K = {Conjunto de todos os centros de distribuição(de 0 a k-1)}
- T_{xy} = Quantidade de tonelada que passa pela rota x e $y, \forall \ x \ \forall \ y \in N \cup M \cup K$

3 Constantes

Constantes dadas pelo arquivo que vai ser lido:

- n
- m
- k
- P
- CC
- CF
- CM
- CMAX
- FC
- DM
- DMAX
- CCo
- DT

4 Variáveis

Variáveis que serão moldadas pelo solver:

- CR
- DR
- CFl
- T

5 Função objetivo

```
\begin{aligned} & \text{MAX Z} = \\ & + (P * \sum_{j=1}^{m} DR_j) \ (1) \\ & - (\sum_{i=1}^{n} FC_i * CR_i) \ (2) \\ & - (CC * \sum_{i=1}^{n} \sum_{j=1}^{m} T_{ij} * DT_{ij}) \ (3) \\ & - (CC * \sum_{l=1}^{k} \sum_{j=1}^{m} T_{lj} * DT_{lj}) \ (4) \\ & - (CF * \sum_{i=1}^{n} \sum_{l=1}^{k} T_{il} * DT_{il}) \ (5) \\ & - (\sum_{l=1}^{k} CCo_l * CFl_l) \ (6) \end{aligned}
```

- (1) = Soma do dinheiro ganho da venda de toneladas de todas as cidades
- (2) = Soma dos custos de produção (por tonelada) de cada fábrica
- (3) = Soma dos custos pelo uso (por toneladas por kilometro) das rotas entre fábrica -> cidade
- (4) = Soma dos custos pelo uso (por toneladas por kilometro) das rotas entre centro -> cidade
- (5) = Soma dos custos pelo uso (por toneladas por kilometro) das rotas entre fábrica -> centro
- (6) = Soma dos custos pelo uso (ou não) dos centros de distribuição

6 Restrições

- 1. \forall fábrica i: $0 \le CR_i \le CM_i$
- 2. \forall cidade j: $0 \le DR_i \le DM_i$
- 3. \forall par de locação x e y: $0 \le T_{xy} \le DM_y$ ou CM_x
- 4. \forall centro 1: $0 < CFl_l < 1$
- 5. Para toda fábrica i: $\sum_{j=1}^{m} T_{ij} + \sum_{l=1}^{k} T_{il} = CR_i$. Soma de todas as toneladas que saem da fábrica é igual a capacidade usada da fábrica.
- 6. Para toda cidade j: $\sum_{i=1}^{n} T_{ij} + \sum_{l=1}^{k} T_{lj} = DR_{j}$. Soma de todas as toneladas que entram na cidade é igual a demanda que a cidade recebe.
- 7. Para todo centro l: $\sum_{i=1}^{n} T_{il} \sum_{j=1}^{m} T_{lj} = 0$. Soma de todas as toneladas que entram no centro é igual a soma de todas as toneladas que saem.
- 8. Para todo centro l: $\sum_{i=1}^{n} T_{il} \leq CMAX * CFl_l$. Só é permitido mandar toneladas para o centro de distribuição se ativar a flag. Caso ativada o limite máximo será a soma de todas as capacidades máximas.
- 9. Para todo centro l: $\sum_{j=1}^{m} T_{jl} \leq DMAX * CFl_l$. Só é permitido receber toneladas do centro de distribuição se ativar a flag. Caso ativada o limite máximo será a soma de todas as demandas máximas.

7 Código

Nosso programa foi feito em python usando o pacote Python-MIP. Para instalar:

"pip install mip"

Feito isso, só é preciso compilar.

8 Vídeo

O nosso ficou muito grande para ser enviado via Sigaa, porém ele se encontra aqui: https://drive.google.com/file/d/11q8veCpXZTDPabxuxP_fWkt51Lvquc_I/view
Caso não seja possível ter acesso ao vídeo, por favor nos contate.