

Instituto de Geociências e Engenharias Faculdade de Computação e Engenharia Elétrica Campus Marabá

Disciplina: Comunicações Ópticas Professor(es): Cindy Stella Fernandes

Lista de Exercícios V (Fontes e Detectores Ópticos)

- 1) Como se dá o processo de criação do fóton no diodo LED?
- 2) Os tempos de vida das recombinações radiativas e não-radiativas dos portadores minoritários na região ativa de um diodo LED são 60 ns e 100 ns, respectivamente. Determine o tempo de vida total das recombinações dos portadores ($\tau = \frac{\tau_r \tau_{nr}}{\tau_r + \tau_{nr}}$) e a potência interna gerada no interior do dispositivo ($\eta_{int} = \frac{\tau}{\tau_r}$; $P_{int} = \eta_{int} \frac{hci}{e\lambda}$), quando o comprimento de onda de emissão de pico é 0,87 μm em uma corrente de 40 mA. (Dados: $h = 6,626 \times 10^{-34}$ e $e = 1,602 \times 10^{-19}$)
- 3) Um LED planar é fabricado com Arseneto de Gálio, cujo índice de refração é igual a 3,6. Calcule a potência óptica emitida (P_e ; $\frac{P_{\rm int}Fn^2}{4n_s^2}$) no ar como uma porcentagem da potência óptica interna para o dispositivo, quando o fator de transmissão na interface cristal-ar é igual a 0,68. Quando a potência óptica gerada internamente for 50% da potência elétrica fornecida, determine a eficiência da potência externa ($\eta_{ep} = \frac{P_e}{D} \times 100$).
- 4) Como se dá o processo de criação e amplificação dos fótons no diodo LASER?
- 5) Calcule a relação entre a taxa de emissão estimulada e a taxa de emissão espontânea ($\frac{Stimulated\ emission\ rate}{Spon\ tan\ eous\ emission\ rate} = \frac{1}{\exp(hf/KT)-1}$) para uma lâmpada incandescente operando a uma temperatura de $1000\ K$. Pode-se supor que o comprimento de onda médio de operação é de $0.5\ \mu m$. (Dados: $K=1,381\times 10^{-23}$)

- 6) Um laser de rubi contem um cristal de comprimento 4~cm, com um índice de refração de 1,78. O comprimento de onda de emissão de pico para o dispositivo é $0,55~\mu m$. Determine o número de modos longitudinais ($q = \frac{2nL}{\lambda}$) e sua frequência de separação ($\delta f = \frac{c}{2nL}$).
- 7) Como se dá o processo de conversão de luz em corrente elétrica no fotodiodo PIN?
- 8) Um fotodiodo PIN tem uma região intrínseca com um comprimento de $20 \, \mu m$ e um diâmetro de $500 \, \mu m$, com uma velocidade de deriva dos elétrons de $10^5 \, ms^{-1}$. Quando a permissividade do material for $10.5 \times 10^{-13} \, Fcm^{-1}$, calcule: (a) o tempo de deriva dos portadores através da região de depleção $(t_{drift} = \frac{w}{v_d})$; (b) a capacitância na junção do fotodiodo $(C_j = \frac{\varepsilon_s A}{w})$.
- 9) Como se dá processo de "avalanche" no fotodiodo APD?
- 10) A eficiência quântica de um fotodiodo APD é de 80 % para a detecção de radiação a um comprimento de onda de $0.9~\mu m$. Quando a potência óptica incidente é $0.5~\mu W$, a corrente de saída do dispositivo (após o ganho de "avalanche") é $11~\mu A$. Determine o fator de multiplicação do fotodiodo ($R = \frac{\eta e \lambda}{hc}$; $I_p = P_o R$; $M = \frac{I}{I_p}$) nessas condições.