PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS PRIMER SEMESTRE DE 2017

Profesor: Gabriela Fernández - Ayudante: Rubén Soza - Constanza Barriga

Cálculo II - MAT1620 Ayudantía 3

23 de Marzo de 2017

1. Determine si las siguientes series son convergentes o no.

a)
$$\sum_{n=1}^{\infty} \frac{1}{(n+1)\sqrt{n} + n\sqrt{n+1}}$$
 b) $\sum_{n=1}^{\infty} (\sqrt[n]{2} - 1)$ c) $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^2 e^{-n}$ d) $\sum_{n=1}^{\infty} \frac{n+5}{\sqrt[3]{n^7 + n^2}}$ e) $\sum_{n=1}^{\infty} \frac{2^n n!}{(n+2)!}$ f) $\sum_{n=1}^{\infty} (-1)^n \frac{2n}{4n+1}$ g) $\sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}$ h) $\sum_{n=1}^{\infty} \sin\left(\frac{1}{n}\right)$ i) $\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n^{\frac{3}{4}}}$ j) $\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}$ k) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\ln(n)}{n}$ l) $\sum_{n=1}^{\infty} \frac{\sin\left(\frac{n\pi}{2}\right)}{n!}$

2. Encuentre los valores de $p \in \mathbb{R}$ que hacen que la siguiente serie converja:

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\ln^p(n)}{n}$$

3. Determine el radio e intervalo de convergencia de las siguientes series de potencia:

a)
$$\sum_{n=0}^{\infty} \frac{(x-1)^n}{n^{2017}9^n}$$
 b) $\sum_{n=1}^{\infty} \frac{(2x-1)^n}{n2^n}$ c) $\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n+1}$ d) $\sum_{n=0}^{\infty} \frac{n(x-4)^n}{n^3+1}$ e) $\sum_{n=0}^{\infty} n!(2x-1)^n$ f) $\sum_{n=0}^{\infty} \frac{n}{b^n}(x-a)^n$, $b>0$

- 4. Sea k un entero positivo. Encuentre el radio de convergencia de la siguiente serie $\sum_{n=0}^{\infty} \frac{(n!)^k}{(kn)!} x^n$.
- 5. Pruebe que si $\lim_{n\to\infty} \sqrt[n]{|c_n|} = c \neq 0$ entonces el radio de convergencia de la serie de potencias $\sum c_n x^n$ es $R = \frac{1}{c}$.
- 6. Obtenga un valor aproximado de la suma de la serie $\sum \frac{1}{n^3}$ usando lasuma de los primeros 10 términos. Estime el error originado en esta aproximación. ¿Cuántos términos se requieren para asegurar que la suma no difiere en más de 0.0005?

1