	456/2 MATHEMATICS PADE	DRINKI 2 TWO	ause pase 1
My_	Solution		Connents
(n. 1	1 (8·31 ² -2·79 ²)		
	$\frac{1}{5.52} \left(8.31 + 2.79 \right) \left(8.31 - 2.79 \right)$	W(W)	
	$\frac{1}{5.52}$ (11.11) (5.52)	M)	MI for Simphificadin
	S:52 =	A	
		04	
(.2	n(a) = 9, n(H) = 20,		
,	n(auH) = 24		Réfect ull
	n(avt) = n(a) + n(t) - n(ant)		of Venn
	24 = 9+20-1(G1H)	M	diegram.
	24 = 29 - n (GnH)	w	
	11(GAH) = 29-24	$ w\rangle$	
	N(anH) = 5	M	
		04	

M-9 11762 2022 456(2 ATAD Dage 3 M Solution Many Comments. $f(x) = \underbrace{X+1}_{,g}(x) = 2x+1$ (1.3 $gf(x) = 2\left(\frac{x+1}{2}\right) + 1$ 懈 B2 B2 Fr9/W=42 9/(1) = x+2f(9) = 9+1 M/ = 5 M 9f(9) = 9+2 MI 9(5) = 2XSHMM $\Im f(9) = \Pi$ g(s) = 11 A1 AT W 4.4 A(5,1) and B(2,5) (9) AB = OB - QA AB = (2) - (5)M $AB = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$ M b) AB = Jx2.+42 MIN MIN for his (-34), or AB 11B) = /(-3)2+42 18 = J9+14 [NB] = J25 [AB] = 5 units 別 04

M.9 UTG 2022 486/2 Dego (3) AFAO Com wents MARKU Solution MO 2x+7y=18 4:5 y=====x+9 Wacher (-2,3) is -== MI from y=MX+C MMMM (=2) $3 = -\frac{2}{5}x - 2. + C$ $3 - \frac{4}{7} = 0$ $3 - \frac{4}{7} = 0$ $21 - \frac{4}{7} = 0$ 0 = 0 0 = 0M Accept 74=-2× +17 : y=-=x+1= Amount hiceased 4-6 = 16 1 X 50000 116.5 X 5000D M = 33 X1 X50000 = 5hr 58,250. M = shi 8,250 MIN MIN for his (8,250) New bus fave is the 50000 + she 8250 Shi 58, 250. Al

M.G UTET 2022 456/2 Dare (4) ATAD Solution Mo Comments Manu VSF=(LSF)3 ((.) OR EF = 2 VEF = 23=8 $\frac{V}{220} = \left(\frac{1}{6}\right)^3$ MI M V=220x8 V = 220X33 M V=1760 cm3 V = 220 X8 M V=1760 cm3 M $((\cdot))$ TOCM Aclept other methods of the Candidates ban M VT2=43+32 v72=16+9 レアニコラ VT= 1 /25 M VT = 50m. M/ M h (5) SiA = 265+62 SA = 2XbX5 + 6Xb SA = 60 +36 M S.A = 96CM2 04

M.9 U762 2022 456/2 (n. 10

	M.4 UTOC 2022 456/2	AFAO	Dage (5)
Mt	Solution	Many	Comments
Q.G	2 84 126 210 3 42 63 105 7 14 21 35 4 2 3 5		MIMI Ward Wee Columns Correct MI of any two
	LCM = 2x3x7x2x3x5 LCM = 1260 HCF = 2-x3x7	A	Columns Greet
	HCF = 42	A	
		04	
GIO	5 /	MI MI MM	She the working on the Squered paper
		of	

M-9 UTEC 2022 456/2 Bage (6 ASHO Comments Solution Many MU 1SF = (LSF)2 (9) Q11. 1728/265 = (LSF)² 27/265 MI MI 64 = (LSF)2 A 8 = LSF MM MM for ms (8) $VSF = (LSF)^3$ VB = (8/1)3 MI VB = 24x512 VB = 12288 Cm3 M 31 105=302XK M R= WS=0.1167 105 = K \mathcal{M} So, t= 105 d2 When d= 60 MIMI t = 105 x 60 x 60 t = 420 hours AT | Acrest 420.12 12

M.9 UTEZ 2022 456/2 dage (7) AFAO questin Solution Manus COMMENT $n(\varepsilon) = 55$ M.12-(9) N(A)= D(M) = BI for each 4 8-X Cowect entry m 16 avenn n(p)=35 diagram 12 12+35+1+4+8-1=55 MI60-X=55 X=60-55 X=5 AT (C) Nouly two CMps) = 16+3+6 M/ = 25 W 5 55 11 AI 12

M.9 UTEC 2012 456/2 ATAO. Page 8 Questin Mans Comment Solution $h(x) = ax^2 - b,$ 413 $h(2) = a(2)^2 - b = 12$ MI MI for egm. 4a-6=12---- (1). MI MI EM EGM. h(3) = 9a - b = 3290-5=32---(11) Equation (ii) - Equation (i) MI for the 9a-b=32 | method. -49-6=12MI 5a=20 AT 19=6=4 a = 4b=4 17 6) h(W=4+2-4 MA MATTER h(b) = 4(b) 2-4 h(b) = 148-4 h(b) = 140 AI (w let y=h(x) y = 4x2-4 J+Y= X2 X = ± \(\frac{10+4}{4} \) B2 $: h^{-1}(x) = \pm \sqrt{\frac{x+y}{4}}$ (d) h-1(60) = + [60ty MI h (bo) = ± J 6p = ± J4 M Relect 1-160=4 AT 6-1 (60) = #4 12

Mig UTOZ 2022 456/2 4310 Comments. Maru M Solution (a) V= 11 r2h $V = \frac{22}{7} \times \left(\frac{12}{2}\right)^2 \times 11$ MI WI V= == X36X11 106/07 V=1244.57Cm AT V=1244.5714 Cm3 Volume of the Card tube $= \pi r^{\perp} h$ $= \frac{22}{7} \times \left(\frac{5}{2}\right)^{2} \times 11$ MI M====X==XII Accept M =216.0714 CM V=216.07CM Volume of the paper is =1244.5714-266.0719 權到 = 1028.5 cm3 村 (b) Volume of one sheet of paper MI = 11X13X0.003 = 4-29cm3 0.429cm3 AT Mirmber of Sheets of Paper in one you = 1028.5 m 0.429 = 2397.4390 ml AI 12

	M-9 (1762 2022 456/2)	AJAD	page (W)
Mo	Solution	Many	Comment
(15	(9) $A = P(1+\frac{1}{100})^{11}$		
	$A = 60000000 \left(1 + \frac{15}{100}\right)^{2}$	W	
	A= 60 000 000 (1.15)2	MI	
	A= 79,350,000/=	AI	
	n) Intrant = 79,350,000-60,000,	000 N	1
	= shs 19,350,000	M	
	(ii) Workst per Installment		
	= 79,350,000	M	
	= shi 9,918,7.50.	A	
	(b) Import tax per Car.	00.1	Aclest 110 x 20 millin
	= 110 X 20000 00D	M	110 A
	= shi 22,000,000.	A	$\frac{22}{100} \text{ millions}$ $9 \times 22 = 198 \text{ millions}$
	$G(ax) = 9 \times 12,000,000.$		9 X 22 = 1 18 Marie
	= shs 198,000,000.	M	
	Tex in d'Mons = 198,000,000	MI	198 = D.DSS William dellar
	=\$ 55,000.	M	
		12	

Mig UTOC 2022 456/2 Dage (11) Manus Com Ments Solution · NO GR.16 (01) (B = 2+ C. BI 间第二章的二章(9十年) BI (证) 届=届+印 AP = - 9+ = (9+5) MI R= 36-42 $AP = \frac{1}{4}(39-9)$ M (b)(i) AD = KAP CT-FA= 5 (39-2) MCy=9+3K9-49. A CTF = (1-K) 9+3K9-10 in co = m cre 00 = 2+M(2) MI 00 = 2+ M2 --- (2)

(na-	M.9 UTH 2022 456/2.	ASKO	page (2)
NO	Solution	T	Comments.
	Equating the Coefficient of the Corresponding vectors		
	(1-K)9+3K6=M9+6.		·
Approximately and the second s	STORE & and & arc Delther Devalled Nov Zero, Companin	9	;
	the loefficient of 9 and C we get	00.1	
	1-K=M 24/3/6=1		
ž	=> K=4 and M=1-4x 23 M=1-43	MI	MI for Govert Substitution
	$M=\frac{2}{3}$		of Ka
*	$1 K = \frac{4}{3} J M = \frac{2}{3}$	MA	i e
	<i>t.</i>	12	
			<i>.</i>
			·

M.G UTR 2022 456/2 4510 Many Comments Solution Mo (b) Required angle = <ADE=0 NLFCB=XnLNKM=X. 15CM B tand = 15 d=tam (15) d=26.5651 d=26.57 ME M **(C)** 15cm 30 Cin MK = 302+152 MK= 11125 MK = 33.5400MI MK=33.54 cm.

ړه	M.9 UTOZ 2022 4561	12 Asto	Peric 15
NO	Soluhon	f '	Comments
	10cm $\frac{35\text{cm}}{33.54\text{cm}}$ K 10cm $\frac{35\text{cm}}{35\text{cm}}$ K $= 100 + 133.54^{2}$ = 1224.93 = 34.9990		
	235CM	M	
	$MK = FKXAS\left(\frac{FKF}{2}\right)$ $33.5Y = 35 Cos\left(\frac{EKF}{2}\right)$ $\frac{33.5}{35} = (0s\left(\frac{EKF}{2}\right)$	MI	Actor natives Actor natives Alternatives Alternatives
	$0.9583 = Cos(EKF)$ $Cos^{-1}(0.9583) = EKF$ $2 \times 16.6045 = EKF$ $33.2091 = EKF$ $EKF = 33.21°$	M A1	MEKF=401/02982 LOCKF=16.6046 LEKF=2X16.6046 233.2096 LEKF=33.210
		12	