闘

诚信应考,考试作弊将带来严重后果!

华南理工大学本科生期末考试

《工科数学分析(二)》

2016-2017 学年第二学期期末考试试卷 A 卷

注意事项: 1. 开考前请将密封线内各项信息填写清楚:

- 2. 所有答案请直接答在试卷上;
- 3. 考试形式: 闭卷;
- 4. 本试卷共6大题,满分100分,考试时间120分钟。

题 号	_	=	11	四	五	六	总分
得 分							

得分

- 一、 填空题: 共5题, 每题2分, 共10分.
 - 1. 函数 $f(x,y) = 2x^2 + y^2$ 在点 (1,1) 处沿该点的梯度方向的方向导数为______;

 - 5. 设 f(x) 是周期为 2 的周期函数,它在 (-1,1] 上的表达式 $f(x) = \begin{cases} 2, & -1 < x \le 0, \\ x^3 + 1, & 0 < x \le 1, \end{cases}$ 则 f(x) 的傅里叶 (Fourier) 级数在 x = 0 处收敛于

单选题 (每题只有一个正确选项): 共5题, 每题2分, 共10分.

A. 连续, 偏导数存在

B. 不连续, 偏导数存在

C. 连续, 偏导数不存在

D. 不连续, 偏导数不存在

2、 曲线
$$\begin{cases} x^2 + y^2 + z^2 = 9 \\ x - y + z = 1 \end{cases}$$
 在点 $M(1,2,2)$ 处的切线一定平行于();

- A. Oxy 平面 B. Oyz 平面 C. Ozx 平面 D. 平面 x-y+z=1
- 3、设D是一个有界的平面闭区域,其边界曲线 Γ 分段光滑,则下列积分值**不等于**区域D的面 积的是();

 - A. $\int_{\Gamma} y dx$ B. $\frac{1}{2} \int_{\Gamma} x dy y dx$ C. $\int_{\Gamma} x dy$ D. $\iint_{D} 1 dx dy$
- 4、关于未知函数 y 的微分方程 $(y-\sin x)dx + xdy = 0$ 是 ();
 - A. 可分离变量方程

B. 一阶非齐次线性方程

C. 一阶齐次线性方程

- D. 非线性方程
- 5、 使得级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ 条件收敛的常数 p 的取值范围是().

 - A. $p \le 0$ B. 0 C. <math>0 D. <math>p > 1

- 三、 计算题: 共4题, 每题7分, 共28分.
 - 1. 设函数 u = f(x, y, z) 有连续的偏导数,函数 y = y(x) 和 z = z(x) 分别由方程 $e^{xy} = y$ 和 $e^z = xz$ 确定,计算 $\frac{du}{dx}$.

2. 计算累次积分 $\int_1^2 dx \int_{\sqrt{x}}^x \sin \frac{\pi x}{2y} dy + \int_2^4 dx \int_{\sqrt{x}}^2 \sin \frac{\pi x}{2y} dy$.

3. 计算三重积分 $\iint_{\Omega}z dx dy dz$,其中 Ω 是由上半球面 $x^2+y^2+z^2=R^2,z\geqslant 0,R>0$ 和锥面 $z=\sqrt{x^2+y^2}$ 所围成的闭区域.

4. 计算第二类曲线积分 $\iint_{\Gamma} xy^2 dy - x^2 y dx$,其中 Γ 为椭圆 $\frac{x^2}{4} + y^2 = 1$ 取逆时针方向.

四、 解答题: 共4题, 每题8分, 共32分.

1. 设二阶常系数线性微分方程 $y''+\alpha y'+\beta y=-e^x$ 的一个特解为 $y=(1+x)e^x$,试确定常数 α,β ,并求该方程的通解.

2. 已知螺旋形弹簧一圈的方程为: $x = a\cos t$, $y = a\sin t$, z = bt, $0 \le t \le 2\pi$, 其中a,b为大于零的常数,且弹簧上各点处的线密度等于该点到Oxy平面的距离,求此弹簧的质心坐标.

3. 求上半球面 $x^2 + y^2 + z^2 = a^2$, $z \ge 0$ 被柱面 $x^2 + y^2 = ax$ 截下的部分的面积.

4. 将函数 $f(x) = \arctan x$ 展开为 x 的幂级数.

五、证明题: 共2题, 每题6分, 共12分.

1. 设函数 $f(\xi, \eta)$ 具有连续的二阶偏导数,且满足 $\frac{\partial^2 f}{\partial \xi^2} + \frac{\partial^2 f}{\partial \eta^2} = 0$.

证明: 函数
$$z = f(x^2 - y^2, 2xy)$$
 满足 $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$.

2. 证明: 函数项级数 $\sum_{n=0}^{\infty} (1-x)x^n$ 在区间 (0,1) 上点态收敛,但不一致收敛.

六、应用题: 共1题, 共8分.

求曲线
$$\begin{cases} z = x^2 + y^2 \\ y = \frac{1}{x} \end{cases}$$
 上到 Oxy 平面距离最近的点.