Grafici delle funzioni elementari $f:\mathbb{R} \to \mathbb{R}$ più comuni.

Funzione costante y = f(x) = c, con c parametro reale assegnato $dom(f) = \mathbb{R}$, $im(f) = \{c\}$.

Retta obliqua y = f(x) = ax + b, con a > 0 e b parametri reali assegnati $\operatorname{dom}(f) = \mathbb{R}$, $\operatorname{im}(f) = \mathbb{R}$.

Retta obliqua y = f(x) = ax + b, con a < 0 e b parametri reali assegnati $\operatorname{dom}(f) = \mathbb{R}$, $\operatorname{im}(f) = \mathbb{R}$.

 $y = f(x) = \frac{1}{x}$ $dom(f) = \mathbb{R} \setminus \{0\}, im(f) = \mathbb{R} \setminus \{0\}$

Funzione quadratica (parabola con vertice nell'origine)

$$y = f(x) = x^2$$

 $dom(f) = \mathbb{R}, im(f) = [0, +\infty).$

Radice quadrata

$$y = f(x) = \sqrt{x}$$
$$dom(f) = [0, +\infty), im(f) = [0, +\infty).$$

Funzione cubica

$$y = f(x) = x^3$$

 $dom(f) = \mathbb{R}, im(f) = \mathbb{R}.$

Radice cubica

y =
$$f(x) = \sqrt[3]{x} = x^{1/3}$$

dom $(f) = \mathbb{R}$, im $(f) = \mathbb{R}$.

Potenza con esponente intero pari $y=f(x)=x^n,$ con n pari $\mathrm{d}om(f)=\mathbb{R},$ $\mathrm{i}m(f)=[0,+\infty).$ Legenda: $\underline{\quad}x^2$, $\underline{\quad}x^4$, $\underline{\quad}x^6$,

Potenza con esponente intero dispari $y=f(x)=x^n, \text{ con } n \text{ dispari } \\ \mathrm{d}om(f)=\mathbb{R}, \text{ } \mathrm{i}m(f)=\mathbb{R} \\ \mathrm{Legenda:} \ _x^3 \ , \ _x^5 \ , \ _x^7 \ .$

Potenza con esponente reale positivo $y=f(x)=x^{\alpha},$ con $\alpha>0$ dom $(f)=[0,+\infty),$ im $(f)=[0,+\infty).$ Legenda: $=x^{\sqrt{3}},=x^{\sqrt{2}},=x^{1/\sqrt{2}},$ $=x^{1/\sqrt{3}}.$

 $\begin{array}{l} \text{Potenza con esponente reale negativo} \\ y = f(x) = x^{\alpha}, \text{ con } \alpha < 0 \\ \mathrm{d}om(f) = (0, +\infty), \text{ i}m(f) = (0, +\infty). \\ \mathrm{Legenda:} \ _x^{-\sqrt{3}}, \ _x^{-\sqrt{2}}, \ _x^{-1/\sqrt{2}}, \\ _x^{-1/\sqrt{3}}. \end{array}$

Funzione esponenziale con base e = 2.7181... $u = f(x) = e^x = \exp(x)$

$$y = f(x) = e^x = \exp(x)$$
$$dom(f) = \mathbb{R}, im(f) = (0, +\infty)$$

Funzione logaritmo con base e=2.7181.... $y=f(x)=\log_e x=\log x$

$$y = f(x) = \log_e x = \log x$$

 $dom(f) = (0, +\infty), im(f) = \mathbb{R}$

Funzione esponenziale con base a > 0 $y = f(x) = a^x$

$$dom(f) = \mathbb{R}, im(f) = (0, +\infty)$$

Legenda:
$$a = 2 > 1$$
, $a = 1/2 < 1$.

Funzione logaritmo con base $a > 0, a \neq 1$ $y = f(x) = \log_a x$

$$dom(f) = (0, +\infty), im(f) = \mathbb{R}$$

Legenda:
$$a = 2 > 1, a = 1/2 < 1.$$

Funzione seno

$$f(x) = \sin(x) = \sin x$$
$$dom(f) = \mathbb{R}, im(f) = [-1, 1]$$

Funzione arcseno

$$\begin{array}{l} f(x) = \arcsin(x) \\ \mathrm{d}om(f) = [-1,1], \ \mathrm{i}m(f) = \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \end{array}$$

Funzione coseno

$$f(x) = \cos(x) = \cos x$$
$$dom(f) = \mathbb{R}, im(f) = [-1, 1]$$

Funzione arccoseno

$$f(x) = \arccos(x)$$

$$dom(f) = [-1, 1], im(f) = [0, \pi]$$

Funzione tangente
$$f(x)=\tan(x)=\tan x$$

$$\mathrm{d}om(f)=\mathbb{R}\setminus\left\{\tfrac{\pi}{2}+k\pi,\ k\in\mathbb{Z}\right\},\ \mathrm{i}m(f)=\mathbb{R}$$

Funzione arctangente
$$\begin{split} f(x) &= \arctan(x) \\ \mathrm{d}om(f) &= \mathbb{R}, \, \mathrm{i}m(f) = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \end{split}$$

