Air Pollution Prediction based on multicollinearity

03/06/2022

Overview

Problem Definition

Challenges

Proposed Model

Evaluation Results

Conclusion

Problem Definition

Air pollution predictors

Challenges

Challenges

Proposed Model

Model Prediction and Evaluation
Model Prediction and Evaluation

Evaluation Results

Air pollution predictors

Challenges

Proposed Model

Evaluation Results

Conclusion

Problem Definition

Air pollution predictors

Problem Definition

Air pollution predictors

Challenges

Proposed Model

Evaluation Results

Conclusion

Predict air pollution composition in atmosphere in the future.

Use predictors cure!

- Use predictors such as Temperature, Humidity, Sensor data.
- Response variables are carbon monoxide, benzene, notrous oxide

Linear Regression vs Rigid Regrssion

Problem Definition

Air pollution predictors

Challenges

Proposed Model

Evaluation Results

Conclusion

Linear Regression

- Linear regression presents relationship as a straight line.
- Show correlation between two variables (one predictor for response variable/variables).
- Response should be continuous and independent variable(s) (predictor variables) can be continuous or discrete.

Rigid Linear Regression

- Use to implement multicollinearity of predictor variables which are highly correlated each other objects in the whole dataset.
- Add penalty values to reduce the loss or error of linear regression cause by bias and/or variance of the variables.

Challenges

Challenges

Proposed Model

Evaluation Results

Conclusion

Challenges

Challenges

Problem Definition

Challenges

Challenges

Proposed Model

Evaluation Results

Conclusion

multicollinearity

Focus on correlation between predictors.

Reasons for multicollinearity in predictors.

- Inaccurate use of different types of variables.
- Poor selection of questions or null hypothesis.
- Variable repetition.
- A dependent variable selection.
- High correlation.
- Use of dummy variables.

Figure 1: Framework of Model

Challenges

Problem Definition

Challenges

Challenges

Proposed Model

Evaluation Results

Conclusion

Fixing multicollinearity

- Obtain more data.
- Utilize a ridge regression.
- Utilize a partial squares regression
- Removing a variable.
- Do nothing.

Challenges

Proposed Model

Model Prediction and Evaluation

Model Prediction and Evaluation

Evaluation Results

Conclusion

Proposed Model

Challenges

Proposed Model

Model Prediction and Evaluation

Model Prediction and Evaluation

Evaluation Results

Conclusion

Framework of Proposed Model:

Figure 2: Framework of Model

Preprocessing and Model training

Problem Definition

Challenges

Proposed Model

Model Prediction and Evaluation

Model Prediction and Evaluation

Evaluation Results

Conclusion

Bias and Variance

Figure 3: Bias and VAriance

Reasons for multicollinearity in predictors.

- Remove Duplicates.
- Remove unwanted columns.
- Scale for data consistency.
- Remove Outliers.

Preprocessing and Model training

Problem Definition

Challenges

Proposed Model

Model Prediction and Evaluation
Model Prediction and Evaluation

Evaluation Results

Figure 4: Response data distribution and Outlier Detection.

Model Prediction and Evaluation

Problem Definition

Challenges

Proposed Model

Model Prediction and Evaluation

Model Prediction and Evaluation

Evaluation Results

Conclusion

Relationships between predictors and response variables over time.

Model Prediction and Evaluation

Problem Definition

Challenges

Proposed Model

Model Prediction and Evaluation

Model Prediction and Evaluation

Evaluation Results

Conclusion

Determination of coefficient.

	CM	Benzene	NO
Bias	0.38	3.379	12916.6
Variance	0.001	0.009	30.591
CD Training	0.82	0.95	0.68
CD Testing	0.83	0.94	0.66

CD: Coefficient Determination

CM: Carbon Monoxide

NO: Nitrous Oxide

Figure 6: performance Evaluation

Challenges

Proposed Model

Evaluation Results

Conclusion

Evaluation Results

Evaluation

Problem Definition

Challenges

Proposed Model

Evaluation Results

Figure 7: Histogram of three test feature predictions

Challenges

Proposed Model

Evaluation Results

Conclusion

Conclusion

Problem Definition

Challenges

Proposed Model

Evaluation Results

Conclusion

- Problem Definition: we propose prediction model to predict air pollution components which are specified as carbon monoxide, benzene and nitrous oxide.

 Algorithm Consequently, we use rigid linear regression instead general linear regression method.
- Strategies: We uses multiple predictors such as temperature, absolute and relative humidity and five sensor data. We identify that these predictors are correlated among each other. Therefore, we reveals the need of handling multicollinearity. We clearly show the performance efficiency of proposed models using determination of coefficient, bias and variance scores for each models.
- Recommendations: Evaluate how well these prediction models behave on adding more noisy data. How to affect prediction accuracy by noisy data. Increase the amount of predictors to predict air pollution

Questions?

Problem Definition				
Challenger				
Challenges				
Proposed Model				
Evaluation Results				
Conclusion				

Contact Information

Associate Professor Gang Li School of Information Technology Deakin University, Australia

GANGLI@TULIP.ORG.AU

TEAM FOR UNIVERSAL LEARNING AND INTELLIGENT PROCESSING