Hardware-Assisted Malware Analysis

Marcus Botacin¹, André Grégio³, Paulo Lício de Geus²

¹Msc. Computer Science Institute of Computing - UNICAMP marcus@lasca.ic.unicamp.br

²Advisor Institute of Computing - UNICAMP paulo@lasca.ic.unicamp.br

³Co-Advisor Federal University of Paraná (UFPR) gregio@inf.ufpr.br

CTD - SBSEG

Topics

- Introduction
 - The Problem
 - The Solution
 - The Challenges
- 2 Hardware-Assisted Solutions
 - The Benefits
 - A Summary
- My Proposal
 - Background
 - Developments
- 4 Conclusions
 - Remarks
 - Future Work
 - Publications

The Problem **Topics**

Introduction

•00000000

- Introduction
 - The Problem
 - The Solution
 - The Challenges
- - The Benefits
 - A Summary
- - Background
 - Developments
- - Remarks
 - Future Work
 - Publications

O●○○○○○○
The Problem

Figure: Washington Post: https://tinyurl.com/ljo7ekm

Figure: BBC: https://tinyurl.com/mfogjhe

The Solution **Topics**

Introduction

00000000

- Introduction
 - The Problem
 - The Solution
 - The Challenges
 - - The Benefits
 - A Summary
 - - Background
 - Developments
- - Remarks
 - Future Work
 - Publications

The Solution

Figure: Imperva: https://tinyurl.com/zkbsnl2

Researchers Reverse Engineer Latest CryptoBit Ransomware to **Decrypt Files**

By GoldSparrow in Computer Security

User Rating: ***** (1 votes, average: 5.00 out of 5)

Figure: Enigma: https://tinyurl.com/kydgwve

The Challenges **Topics**

Introduction

000000000

- Introduction
 - The Problem
 - The Solution
 - The Challenges
- - The Benefits
 - A Summary
- - Background
 - Developments
- - Remarks
 - Future Work
 - Publications

The Challenges.

PetrWrap Crypto Ransomware Blocks Security Researchers From Reverse Engineering Code Samples

JP Buntinx March 16, 2017 News, Security

Figure: Themerkle: https://tinyurl.com/kasuxcr

MAY 13, 2017 @ 04:01 AM 95,046 ®

The Little Black I

How One Simple Trick Just Put Out That Huge Ransomware Fire

Figure: Forbes: https://tinyurl.com/l7ecrex

000000000

Table: Anti-Analysis: Tricks summary. Malware samples may employ multiple techniques to evade distinct analysis procedures.

Technique	Description	Reason	Implementation	
Anti	Check if running	Blocks reverse	Eingorprinting	
Debug	inside a debugger	engineering attempts	Fingerprinting	
Anti	Check if running	Analysts use VMs	Execution	
VM	inside a VM	for scalability	Side-effect	
Anti	Fool disassemblers	AV signatures may	Undecidable	
Disassembly	to generate wrong opcodes	be based on opcodes	Constructions	

000000000 The Challenges

Figure: Commercial solution armored with anti-debug technique.

00000000

Figure: Real malware impersonating a secure solution which cannot run under an hypervisor.

The Benefits Topics

Introduction

- Introduction
 - The Problem
 - The Solution
 - The Challenges
- Pardware-Assisted Solutions
 - The Benefits
 - A Summary
- My Proposal
 - Background
 - Developments
- 4 Conclusions
 - Remarks
 - Future Work
 - Publications

Transparency

The Benefits

- Higher privileged.
- No non-privileged side-effects.
- **1** Identical Basic Instruction Semantics.
- **1** Transparent Exception Handling.
- Identical Measurement of Time.

A Summary **Topics**

Introduction

- - The Problem
 - The Solution
 - The Challenges
 - Mardware-Assisted Solutions
 - The Benefits
 - A Summary
- - Background
 - Developments
- - Remarks
 - Future Work
 - Publications

A Summary

A Survey

Introduction

Table: Hardware features.

Technique	PROS	CONS	Gaps
HVM	Ring -1	Hypervisor	High
		development	overhead
SMM	Ring -2	BIOS	High
		development	implementation cost
AMT	Ring -3	Chipset	No malware
		code change	analysis solution
HPCs	Lightweight	Context-limited	No malware
		information	analysis solution
GPU	Easy to program	No register	No introspection
		data	procedures
TSX	Commit-based	Store only	Overcome the
		few KB	KB barrier
SGX	Isolates goodware	Also isolates	No enclave
		malware	inspection
SOCs	Tamper-proof	Passive	Raise alarms
		components	ivaise didillis

My Proposal

Conclusions

Background **Topics**

Introduction

- - The Problem
 - The Solution
 - The Challenges
 - - The Benefits
 - A Summary
 - My Proposal
 - Background
 - Developments
 - - Remarks
 - Future Work
 - Publications

Branch Monitors

Figure: Branch Stack.

My Proposal

Developments **Topics**

Introduction

- - The Problem
 - The Solution
 - The Challenges
- - The Benefits
 - A Summary
- My Proposal
 - Background
 - Developments
- - Remarks
 - Future Work
 - Publications

Proposed Framework

Figure: Proposed framework architecture.

Could I develop a performance-counter-based malware analyzer?

Could I develop a performance-counter-based malware analyzer?

Is CG reconstruction possible?

Table: ASLR - Library placement after two consecutive reboots.

Library	NTDLL	KERNEL32	KERNELBASE
Address 1	0xBAF80000	0×B9610000	0×B8190000
Address 2	0×987B0000	0×98670000	0x958C0000

Introduction

Developments

Introduction Developments

Could I develop a performance-counter-based malware analyzer?

Is CG reconstruction possible?

Table: Function Offsets from ntdll.dll library.

Function	Offset
NtCreateProcess	0×3691
NtCreateProcessEx	0x30B0
NtCreateProfile	0×36A1
NtCreateResourceManager	0×36C1
NtCreateSemaphore	0x36D1
NtCreateSymbolicLinkObject	0×36E1
NtCreateThread	0×30C0
NtCreateThreadEx	0×36F1

Could I develop a performance-counter-based malware analyzer?

Is CG reconstruction possible? CreateThread 0x30C0 NTDLL.DLL 0x3691 CreateProcess 0x3FF20000 0x3FAF0000 KERNEL32.DLL 0x3CEA0000 KERNELBASE.DLL

Could I develop a performance-counter-based malware analyzer?

Could I retrieve all executed functions?

Could I retrieve all executed functions?

Is the final solution transparent?

Developments

Could I develop a Debugger?

Could I develop a Debugger?

```
Integration
                  ubuntu@ubuntu-VirtualBox: ~
          (qdb) target remote 192.168.1.106:5000
          Remote debugging using 192.168.1.106:5000
          0x0007f712 in ?? ()
          (gdb) info registers
                          0x1
         eax
                          0x2
         ecx
         edx
                          0x3
         ebx
                          0x4
                                    4
                      Figure: GDB integration.
```


Exploit Analysis

Table: Excerpt of the branch window of the ROP payload.

FROM	TO	
	0x7c346c0a	
0x7c346c0b	0x7c37a140	
0x7c37a141	—	

Exploit Analysis

Listing 1: Static disassembly of the MSVCR71.dll library.

```
7c346c08: f2 0f 58 c3 addsd
                                %mm3,%xmm0
7c346c0c: 66 0f 13 44 24 04 movlpd %xmm0,0x4(%esp)
```

Listing 2: Dynamic disassembly of the MSVC71.dll executed code.

```
0 \times 1000 (size=1) pop
                                rax
0 \times 1001 (size=1) ret
```

Remarks **Topics**

Introduction

- - The Problem
 - The Solution
 - The Challenges
 - - The Benefits
 - A Summary
 - - Background
 - Developments
 - Conclusions
 - Remarks
 - Future Work
 - Publications

Lessons learned

- Transparency is essential.
- Hardware-assisted approaches may fulfill transparency requirements.
- There are open problems on hardware monitoring.
- Security, performance, and development efforts as trade-offs (really?).
- Performance monitors as lightweight alternatives.

Future Work **Topics**

Introduction

- - The Problem
 - The Solution
 - The Challenges
 - - The Benefits
 - A Summary
 - - Background
 - Developments
 - Conclusions
 - Remarks
 - Future Work
 - Publications

My Proposal

And now?

- Multi-core monitor.
- Linux Monitor.
- Malware clustering.

Publications **Topics**

Introduction

- - The Problem
 - The Solution
 - The Challenges
 - - The Benefits
 - A Summary
 - - Background
 - Developments
 - Conclusions
 - Remarks
 - Future Work
 - Publications

Publications

- Who watches the watchmen: A security-focused review on current state-of-the-art techniques, tools and methods for systems and binary analysis on modern platforms—ACM Computing Surveys (A1).
- Enhancing Branch Monitoring for Security Purposes: From Control Flow Integrity to Malware Analysis and Debugging—ACM Transactions on Privacy and Security (A2).
- The other guys: automated analysis of marginalized malware—Journal of Computer Virology and Hacking techniques (B1).

Publications

Figure: Solution's Availability. Solution is public on github. https://github.com/marcusbotacin/BranchMonitoringProject

My Proposal

Conclusions 0000000

Questions?

Introduction

Publications

Contact

marcus@lasca.ic.unicamp.br mfbotacin@inf.ufpr.br