仕様書番号 LD-12401

作成日 2000年 4月5日

情報システム事業本部 パソコン事業部 第 2 技術部 殿

《新規》

納入仕樣書

 品名
 TFT-LCDモジュール

 型名
 LQ150X1DH50

【受領印欄】	

※この仕様書は、付属書等を含めて<u>全21頁</u>で構成されております。 当仕様書について異議があれば発注時点までにお申し出ください。

> シャープ株式会社 TFT液晶事業本部

TFT第2事業部 第2開発技術部

部長	副参事	係 長	副主任	担当
智				

改訂記録表

機種名:LQ150X1DH50

仕様書番号	改訂年月日	改訂		内容		備考	Š
		表示	ページ				
LD-12401	2000.4.05	_	_	-	初 [回扌	是上
					173 1		
(4)							
•	,						٠
·							
• • • • • • • • • • • • • • • • • • • •							
							• • • •
,							 .
-							
			-,				
	,			•			
				,			
				<u></u>			
					 -		
					ļ		
Å					L		
	;				l		
							
					 -		
					 	. 	

1. 適用範囲

本仕様書は、カラーTFT-LCDモジュール LQ150X1DH50に適用します。

本仕様書は、弊社の著作権にかかわる内容も含まれていますので、取り扱いには充分にご注意頂くと共に、本仕様書の内容を弊社に無断で複製しないようお願い申し上げます。

本製品は、〇A機器に使用されることを目的に開発・製造されたものです。

本製品を運送機器(航空機、列車、自動車等)・防災防犯装置・各種安全装置などの機能・精度等において高い信頼性・安全性が必要とされる用途に使用される場合は、これらのシステム・機器全体の信頼性及び安全性維持のためにフェールセーフ設計や冗長設計の措置を講じる等、システム・機器全体の安全設計にご配慮頂いたうえで本製品をご使用下さい。

本製品を、航空宇宙機器、幹線通信機器、原子力制御機器、生命維持にかかわる医療機器などの極めて高い信頼性・安全性が必要とされる用途への使用は意図しておりませんので、これらの用途には使用にならないで下さい。

本仕様書に記載される本製品の使用条件や使用上の注意事項等を逸脱して使用されること等に起因する損害に関して、弊社は一切その責任を負いません。

本製品につきご不明な点がありましたら、事前に弊社販売窓口までご連絡頂きますようお願い致します。

2. 概要

本モジュールは、アモルファス・シリコン薄膜トランジスタ(TFT: \underline{T} hin \underline{F} ilm \underline{T} ransistor) を 用いたカラー表示可能なアクティブ・マトリックス透過型液晶ディスプレイモジュールです。

カラーTFT-LCDパネル、ドライバーIC、コントロール回路、電源回路及びバックライトユニット等により構成され、36ビット(RGB:各6ビット×2画素)のデータ信号、4種のタイミング信号、+5Vの直流電源及びバックライト用電源を供給することにより、1024 × RGB × 768 ドットのパネル上に 262,144色の図形、文字の表示が可能です。

最適視角方向は6時です。

VESA準拠の75Hzモードに対応しています。

3. 機械的仕様

項目	位 様	単位
画面サイズ	38 (15 型) 対角	cm
駆動表示領域	304.1(H) × 228.1(V)	mm
絵 素 構 成	1024×768	絵素
	(1絵素=R+G+Bドット)	
絵素ピッチ	0.297(H) × 0.297(V)	mm
絵 素 配 列	R, G, B縦ストライプ	
表示モード	ノーマリーホワイト	
外 形 寸 法 *1	340(W) × 264(H) × 15.0(D)	mm
質 量	Max. 1350	g
表面処理	アンチグレアハードコート:2H	
	(ヘイズ値:28)	

*1 但し、バックライトケーブルを除きます。 厚さ(D)は突起部を除く。 図1に外形寸法図を示します。

4. 入力端子名称および機能

4-1 TFT液晶パネル駆動部

CN1 使用コネクタ: FX8-60S-SV (ヒロセ) 適合コネクタ: FX8-60P-SV (ヒロセ)

	~~	(日14/9: 118-00P-5V (日1七);	
番号	<u> 信号名</u>	世	板件
1	GND	LGND	
2	RBO	RED 偶数絵素データ信号 (LSB)	
3	RB1	RED 偶数絵案データ信号	
4_	RB2	RED 偶数絵素データ信号	
5	RB3	RED 偶数絵素データ信号	
66	RB4	RED 偶数絵素データ信号	
7	RB5	RED 偶数絵素データ信号 (MSB)	
8	GND	GND (GND)	
9	: <u>GBO</u>	GREEN 偶数絵素データ信号 (LSB)	
10	- GB1	GREEN 偶数絵素データ信号	
1.1	GB2	GREEN 偶数絵素データ信号	
1 2	GB3	GREEN 偶数絵素データ信号	
1 3	GB4	GREEN 偶数絵素データ信号	
1 4	GB5		<u></u> -
		GREEN 偶数絵素データ信号 (MSB)	
1.5	GND	GND	
1.6	BBO	BLUE 偶数絵素データ信号 (LSB)	
17	BB1	BLUE 偶数絵素データ信号	
18	BB2	BLUE 偶数絵素データ信号	
1 9	BB3	BLUE 偶数絵素データ信号	
20			
	BB4	BLUE 偶数絵素データ信号	
21	BB5	BLUE 偶数絵素データ信号 (MSB)	
2.2	GND	GND	
2.3	RAO	RED 奇数絵素データ信号 (LSB)	
2 4	RA1	RED 奇数絵素データ信号	
2 5	RA2	RED 奇数絵素データ信号	
2.6	RA3	RED 奇数絵素データ信号	
2.7	RA4	RED 奇数絵素データ信号	
2.8	RA5	RED 奇数絵素データ信号 (MSB)	
2 9	GND	GND	
3.0	GAO	GREEN 奇数絵素データ信号 (LSB)	
3 1	GA1	GREEN 奇数絵素データ信号	
3.2			
	GA2	GREEN 奇数絵素データ信号	
3.3	GA3 .	GREEN 奇数絵素データ信号	
3 4	GA4	GREEN 奇数絵素データ信号	
3.5	GA5	GREEN 奇数絵素データ信号 (MSB)	
3 6	GND	GND	
3 7	BAO	BLUE 奇数絵素データ信号 (LSB)	
3 8		BLUE 奇数絵素データ信号	
	BA1		
3 9	BA2	BLUE 奇数絵素データ信号	
40	BA3	BLUE 奇数絵素データ信号	
4 1	BA4	BLUE 奇数絵素データ信号	
4.2	BA5	BLUE 奇数絵素データ信号 (MSB)	
4 3	GND	GND	
44	GND	T GRD	
4.5	GND	GND	
4.6	Vsync	垂直同期信号	
47	Hsync	水平同期信号	
4.8	ENAB	データイネーブル信号 (表示位置信号)	[注1]
4 9	Reserve	「GNDに接続して下さい	
7 7		<u>,</u>	
50.	GND	GND	
51	CKB	<u> 偶数データ サンプリングクロック</u>	
52	CKA	奇数データ、ENAB、Hsync サンプリングクロック	
5 3	GND	GND	
5 4	Reserve	GNDに接続して下さい	
- 2 4 -			
5 5	CKPOL	サンプリングモード設定端子	[注2]
5 6	MODE	表示位置設定切替え信号	[注1]
57	Vcc	+5V電源	
5.8	Vcc	+ 5 V 電源	
5 9	Vcc	+ 5 V 電源	
60			
<u> </u>	Vcc	+ 5 ∨ 電源	

【注1】モード端子が "Low" 固定の場合、画面表示位置はVsync, ENAB信号で規定されます。そのうち水平表示位置はENAB信号の立ち上がりで規定されていますが、ENAB信号が"Low"の時はモジュール内で設定された表示位置で規定されます。ENAB信号は"High" 固定では使用しないで下さい。

水平表示位置及び垂直表示位置は7-1-2,7-1-3に記述されています。

モード端子が "High" 固定または "Open" の場合、画面表示位置はENAB信号のみで規定されます。

※シールドケースはモジュール内 GND に接続されています

【注2】サンプリングモード端子が "Low" の場合、クロックの立ち上がりでサンプリングします。 "High"の場合、クロックの立ち下がりでサンプリングします。

4-2 バックライト部

CN2, CN4

使用コネクタ:BHSR-02VS-1

(日本圧着端子)

適合コネクタ : SMO2B-BHSS-1-TB

(日本圧着端子)

	<u> </u>		
端子No.	記号	I/0	機能
1	V _{HIGH} -1	I	ランプ入力端子(高圧側1)
2	V _{HIGH} -2		ランプ入力端子(高圧側2)

CN3, CN5

使用コネクタ:BHR-02VS-1

(日本圧着端子)

適合コネクタ : SM02(4.0)B-BHS-1TB (日本圧着端子)

			10 110 (日本江海地丁)
端子No.	記号	I/0	機能
1	V _{Low-1}	I	ランプ入力端子(低圧側1)
2	V _{Low} -2	1	ランプ入力端子(低圧側2)

5. 絶対最大定格

1. 184

5-1 モジュール

項	目	記	号	条	件	定	格	值	単位	備考
保存温度		T stg		-	_	-25	~	+ 60	°C	【注1】
動作温度()	周囲)	Тора		_	_	0	~	+ 50	°C	

【注1】湿度:95%RH Max. (Ta≤40°C) 静電気に注意すること。 最大湿球温度39°C以下。(Ta>40°C) 但し、結露させないこと。

5-2 TFT液晶パネル駆動部

項目	記号	条件		単位	備考
入力電圧	VI	Ta=25°C	- 0.3 ~ +5.5	V	【注1】
5 V電源電圧	Vcc	Ta=25°C	0~+6	V	

[注1] CKA, CKB, RAO~RA5, GAO~GA5, BAO~BA5, RBO~RB5, GBO~GB5, BBO~BB5, Hsync, Vsync, ENAB, MODE, CKPOL

6. 電気的特性

6-1 TFT液晶パネル駆動部

Ta=25°C

7= -	10000	3E 393 DP		·			Ta=25℃
項目		記号	最小	標準	最大	単位	備考
+ 5 V	入力電圧	Vcc	4.5	5.0	5.5	V	【注1】
電源	消費電流	Icc		360	530	mA	[注2]
許容入力!	ノッフ°ル電圧	VRP	_		100	m V,,,	K11. 4 1
入力Low電	注:	VIL	GND	_	0.6	V	【注3】
入力High	電圧※	VIH	2.6		Vcc	V	【注3】
入力リーク電	流(Low)	IIL		_	10	μА	V ₁ =GND【注3】
					400	μА	V,=GND【注4】
入力リーク電	流(High)	I _{IH}	-	_	10	μА	V_=Vcc【注3】
					600	μА	V _j =Vcc【注4】

※入力信号は、低EMI・低消費電力化のため、3.3Vロジックの使用を推奨いたします。

【注1】

t 4 ≥ 1 s

瞬時電圧降下

- 1) V2≦Vcc<V1の時 td≦10ms
- 2) Vcc<V2の時 瞬時電圧降下条件は、入力電圧シーケンス に準ずるものとします。

【 注2 】消費電流標準値:縦16階調グレースケール表示, Vcc=+5.0V時。

Vcc= +5.0V クロック周波数=32.5MHz 水平周期(TH)=20.7μS

> 階調はGS(4n):nは0から15の自然数 RGB各階調は第8章参照

- 【注3】CKA, CKB, RAO~RA5, GAO~GA5, BAO~BA5, RBO~RB5, GBO~GB5, BBO~BB5, Hsync, Vsync, ENAB
- 【注4】MODE,CKPOL
 - ・MODE端子の入力回路を下図に示します。
 - ・CKPOL端子の入力回路を下図に示します。

6-2 バックライト部

バックライトは、エッジライト方式で CCFT (Cold Cathode Fluorescent Tube) を4本使用して います。

下記の仕様は蛍光灯1本 についてのものです。

CCFT型名:FL-26314(C9)-LQ150 (TOA ELEVAM製)

項目	記号	最 少	標準	最 大	単 位	備考
定格管電流	ΙL	3.5	6.0	6.5	MArms	【注1】
管電圧	Vι		630		Vrms	Ta=25°C
消費電力	PL.		3.8	_	W	【注2】
点灯可能周波数	Fι	20	60	70	KHz	【注3】
点灯開始電圧	Vs	— .		800	Vrms	Ta=25℃【注4】
. *** . {				1420	Vrms	Ta=0°C【注4】
寿命	Τι	50000	-	****	Hour	【注5】

【注1】 点灯可能な管電流範囲を示します。

定格管電流は下図の回路でVIAW側に高周波用電流計を接続し測定を行います。

ただし、起動時に点灯開始電圧を満足し、且つ定常点灯時に必要な電圧を維持する事。

・点灯周波数 : 20 ~ 70 kHz |

・周囲温度

: 0 ~ 50°C

- 【注2】 蛍光灯 1 本当たりの計算による参考値(1, \times V,)。 尚、インバータの損失を含まない値とします。
- 【注3】バックライト用インバータとモジュールの水平走査周波数(水平同期信号周波数)との 間に干渉を生じ、表示上にビート状の横縞が流れることがあります。これを避けるため に、インバータの設計に際しては横縞が生じないように発振周波数を十分ご検討いただ き、可能な限りバックライト用インバータをモジュールから離して使用するか、モジュ ールとインバータの間を電磁的に遮蔽するなどして使用して下さい。
- 【注4】点灯開始電圧は、ランプ単体での数値を記載します。 インバータ開放出力電圧は、少なくとも1秒以上持続できる設計として下さい。それ以 下の場合はランプが点灯しない場合があります。
- 【注5】Ta=25℃にてⅠ₁=6.0±0.5 mArmsで連続点灯した時、下記項目のいずれかが該当した 時点を寿命とします。
 - ①輝度が初期値の 50%になった時。
 - ②最低温度動作での点灯開始電圧が 1420 Vrmsになった時
- 【注】インバータ電源の特性はバックライトの点灯性能や寿命などに大きな影響を与えます。 インバータ電源を手配される場合は、バックライトとインバータ電源の不整合によるフリッ カ・不点灯・チラツキ等のバックライトの点灯不良が発生しないように、確認頂くようお願 い致します。確認に際しましては、出来るだけ実機に近い条件で実施することをお薦めしま

また、インバータ電源は、過電圧/過電流検知回路、放電波形検知回路等の安全保護回路の あるものをご利用下さい。検知回路につきましては、1灯毎の制御ができるものをご利用下 さい。片側がオープンになった時、他方の1灯に過電流が流れる可能性あります。

7. 入力信号のタイミング特性

7-1 H - V モード (MODE = "Low") 図 2 に入力信号タイミング波形を示します。

7-1-1 タイミング特性

		記号	最小	標準	最大	単位	備考
クロック信号A	周波数	1/Tc .	25	32.5	40	MHz	
クロック信号B	ハイ時間	Tch	9		,	ns	
	口一時間	Tcl	9		- ,	ns	
17 ⁴⁷ 78 . \$	デューティー	Tch/Tcl	0.67	1.00	1.50		
*:: *	比						
_	位相差	Tcp	-4	0	+4	ns	
データ信号	セットアップ。時間	Tds	5	_	_	ns	
	ホールド時間	Tdh	5		_	ns	
水平	周期	TH	16.6	20.7	-	ms	
同期信号			528	672	860	clock	
	パルス幅	THp	2	68		clock	
水平データ開タ	台位置	THbp				clock	【注1】
水平同期信号	ラークロック位相差	THs	5		Tc-10	ns	
垂直	周期	TV		16.7	_	ms	【 注2 】
同期信号			773	806	990	line	
	パルス幅	TVp	1	.6		line	
垂直データ開始	垂直データ開始位置		35	35	35	line	
	ラークロック位相差	TVh	1	_	TH-THp	clock	

【注1】 水平データ開始位置はイネーブル信号によってのみ規定されます。

【注2】 周波数が遅くなりますと、フリッカ等表示品位の低下を招く場合があります。

7-1-2 水平表示位置

イネーブル信号 (ENAB) がアクティブの時

水平表示位置は、イネーブル信号の立ち上がりで規定されます。

73(1,32(3))	項目	記号	最少	標準	最 大	単位	備考
イネーブル信号	セットアップ。時間	Tes	5		Tc-10	ns	
1, , , , , ,	パルス幅	Tep	10	512	512	clock	
水平同期信号·	ーイネーブル信号位相差	THe	THp+1	148	TH-512	clock	

7-1-3 垂直表示位置

・ 王直太小四日 垂直表示位置は、図 2 に示す通り、垂直同期信号(Vsync)の立ち下がりから35ライン目のデータから表示されます(固定)。 7-2. ENABモード (MODE = "High" or "Open") 図 3 に入力信号タイミング波形を示します。

7-2-1. タイミング特性

ング特性					
	記号	最小	標準	最大	単位_
	1/Tc	25	32.5	40	MHz
	Tch	9			ns
	Tcl	9	·	_	ns
		0.67	1.00	1.50	
		-4	0	+4	ns
		5		_	ns
			_		ns
		5		Tc-10	ns
			20.7	_	μs
7八十 (日)刊				860	clock
パルフ博	THo			512	clock
				990	line
垂直プランキング幅	-	2	38	222	line
	国 周波数 ハイ時間 ロー時間 デューティ 位相差 セットアッフ [°] 時間 キールト [*] 時間 セットアッフ [°] 時間 水平周期 パルス幅 垂直期	同波数 1/Tc 1	記号 最小	周田 記号 最小 標準 月波数 1/Tc 25 32.5 32.5 ハイ時間 Tch 9 - ロー時間 Tcl 9 - デューティー比 Tch/Tcl 0.67 1.00 位相差 Tcp -4 0 セットアップ・時間 Tds 5 - エールト・時間 Tdh 5 - セットアップ・時間 Tdh 5 - エットアップ・時間 Tdh 5 - エットアップ・時間 TH 16.6 20.7 528 672 パルス幅 THp 10 512 垂直周期 TV 770 806	周日 記号 最小 標準 最大 周波数 1/Tc 25 32.5 40 ハイ時間 Tch 9

【 注 】イネーブル信号のTVが長くなりますと、フリッカ等表示品位の低下を招く場合があります。

7-3. 入力信号と画面表示

各色表示用のデータ信号 2 画素 6 ビット入力にて、各色 6 4 階調を表示し、合計 3 6 ビットのデータの組み合わせにより 262, 144色の表示が可能です。

図2-① 入力信号タイミング(H-V mode、CK 立ち上がりサンプリング時)

図2-② 入力信号タイミング(H-V mode、CK 立ち下がりサンプリング時)

8. 入力信号と表示基本色および各色の輝度階調

Ĭ	色	データ信号																		
	輝度階調	GrayScale	RAO	RA1	. RA2	RA3		RA5			GA2	GAR	GAA	GA5	BAO	ВА	BA2	BA3	RA4	BA5
	冲及阳	grayacare	RBO	RB1	RB2	RB3	RB4		GBO	GB1	GB2	GB3	GB4	GB5	BBO	BB1	BB2	BB3		BB5
	黒		0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	青		0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
基	緑		0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	. 0	0	0
本	シアン		0	0	0	0	0	0	1	1	1	<u> </u>	 1	1	1	1	1	1	1	1
色	赤		1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	マゼンタ		1.	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	黄		1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	自		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	黒	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
	仓	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٦
赤	暗	GS2	0	1	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
0	បិ	\rightarrow				<u> </u>						l_						↓		
階	Û	\downarrow			1	را			\						Ψ					
調	明	GS61	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	û	GS62	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	赤	GS63	1	1	11	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	黒	GS0	0	0	0	0	0	0	0	0.	0	0	0	0	0	0	0	0	0.	0
	Û	GS1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
緑	暗	GS2	0	0 ·	0	0	0	0	0	11	0	0	0	0	0	0	0	0	0	0
0	仓	↓ ·										<u> </u>				··		<u> </u>		
階	Φ	→										<u> </u>						<u> </u>		
調	明	GS61	0	0	0	0	0	0	1	0	1	1	1	1	0	0	0	0		-0_
	Û	GS62	0	0	0	0	0	0	0	1	1	11	1	11	0	0	0	0	0	0
	緑	GS63	0	0	0	0	0	0	1	1	11	1	11	1	0	0	0	0	0	0
	黒	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	仓	GS1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
青	暗	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
の	Û, .	ψ	V			4								<u> </u>						
階	Û	Ψ										<u> </u>	•					<u> </u>		
調	明	GS61	0	0	0	0	· 0	0	0	0	0	0	0	0	1	0	1	1	1	
***************************************	Û	GS62	0	0	0	0	0	0	0	0	0	0	0	0.	0	1	1	1	1	1
	青	GS63	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	11

0:Lowレベル電圧 1:Highレベル電圧

各色表示用のデータ信号6ビット入力にて、各色64階調を表示し、合計18ビットのデータの組み合わせにより262,144色の表示が可能です。

9. 光学的特性

T = 25°C, V = +5V

項目		: 記号	条件	最小	標準	最大	単位	備考
視角範囲		θ11	CR≧5	20	35	_	度	【注1,4】
1九円単四	辛巴	θ 12		50	60		度	
	水平	θ 21, θ 22		50	. 60	_	度	
			.C R ≧ 10	10	25		度	【注1,4】
	半 區 .	θ 12	010=10	30	50	_	度	
	水平	θ 21, θ 22		. 45	50		度	
コントラ	!	C R	<i>θ</i> =0°	150	_			【注2,4】
コントラ	УРШ .		最良視角	_	300	_		
応答速度	立上り	Tr	$\theta = 0^{\circ}$	-	10	25	ms	【注3,4】
心合处及	立下り	τd		_	35	50	ms	
表示面白	_L	x		0.283	0.313	0.343		【注4】
		у		0.299	0.329	0.359		
力 4 丰 帝 塚 度		YL		150	200	_	cd/m²	I_=6.0mArms [注4]
白色表面輝度 輝度分布		δW			_	1.35		【注5】

※ランプ定格点灯後30分後に測定します。また光学的特性測定は、下図4の測定方法を用いて暗室 あるいはこれと同等な状態にて行います。

図 4 光学的特性測定方法

【注1】視角範囲の定義

【注2】コントラスト比の定義

次式にて定義します。

コントラスト比(CR) = <u>白色表示の画面中央輝度</u> 黒色表示の画面中央輝度

【注3】応答速度の定義

下図に示すように白及び黒状態となる信号を入力し、その時の受光器出力の時間変化にて定義します。

【注4】画面中央部で測定します。

【注5】輝度分布の定義

右図に示す5点(A~E)の測定値で、次の計算式にて定義します。

$$\delta w = \frac{A \sim E の 最大輝度値}{A \sim E の 最小輝度値}$$

10. モジュールの取り扱い

- a) ケーブルを入力コネクタに挿入あるいは入力コネクタから抜く時は、必ずモジュールに入力 する電源を OFF にしてから行って下さい。
- b) 取り付け穴を同一平面で固定し、モジュールに"ソリ"や"ネジレ"等のストレスが加わらないようにして下さい。
- c) パネル表面の偏光板は傷つき易いので、取り扱いには十分注意して下さい。
- d) 水滴等が長時間付着すると変色やシミの原因になりますので、すぐに拭き取って下さい。
- e) パネル表面が汚れた場合は、脱脂綿あるいは柔らかい布等で拭き取って下さい。
- f) ガラス微細配線部品を使用しておりますので、落としたり固いものに当てたり、強い衝撃 を加えると、ワレ,カケや内部断線の原困になりますので、取り扱いには十分注意して下さい。
- g) CMOS LSIを使用していますので、取り扱い時の静電気に十分注意し、人体アースなどの配慮をして下さい。
- h) モジュール取り付け部4個所のグランディングは、EMIや外来ノイズの影響が最小となる 様に考慮願います。
- i) モジュール裏面には、回路基板がありますので、設計組立時、及び取り扱い時にストレス が加わらないようにして下さい。ストレスが加わると回路部品が破損する恐れがあります。
- j) その他、通常電子部品に対する注意事項は遵守して下さい。
- k) モジュール裏面に常時一定の圧力がかかると表示むら、表示不良などの原因となりますので 裏面を圧迫するような構造にはしないでください。

11. 出荷形態

- a) カートン積み上げ段数: 最大5段
- b)最大収納台数: 5台
- c) カートンサイズ: 410mm(W)×500mm(D)×240mm(H)
- d) 総質量(5 台収納時): 8950g

図5に包装形態図を示します。

12. 信頼性項目

No.	試 験 項 目	試 験 内 容
.1	高温保存	周囲温度 60℃ の雰囲気中に 240H放置
2	低温保存	周囲温度 -25℃ の雰囲気中に 240H 放置
3	高温高湿動作"	周囲温度 40℃、湿度 95% RHの雰囲気中で 240H 動作 (ただし結露がないこと)
4	`高温動作	周囲温度 50℃ の雰囲気中で 240H 動作 (このときパネル温度は 60℃ MAX)
5	低温動作	周囲温度 0℃ の雰囲気中で 240H 動作
6	振動	周波数範囲:10~57Hz/片振幅:0.075mm :58~500Hz/加速度,9.8m/s ¹ 掃引の割合:11分間 試験時間:3 H(X, Y, Z方向 1 H)
7	衝撃	最高加速度:490m/s ¹ パルス:11ms,正弦波 方向:±X,±Y,±Z 回数:1回/1方向

【評価方法】標準状態において出荷検査基準書の検査条件の下、実用上支障となる変化がない事と します。

13. その他

1. ロットNo.ラベル表示

モシ、ユール裏面に、SHARP・製品型名(LQ150X1DH50)製造番号・MADE IN JAPANの表示を行う。

- 2. モジュールのボリュームは、出荷時に最適に調整されていますので、調整値を変更しないで下さい。調整値を変更されますと、本仕様を満足しない場合があります。
- 3. 故障の原因となりますので、決してモジュールを分解しないで下さい。
- 4. 長時間の固定パターン表示での使用は、残像現象が起こる場合がありますのでご注意ください。
- 5. 本仕様書に疑義が生じた場合は、双方の打合せにより解決するものとする。

保管温湿度環境条件範囲,

温度 0~40℃

相対湿度 95%以下

(注)・保管温湿度環境の平均値としては、下記条件を参考に管理願います。

夏場20~35℃ 85%以下

冬場 5~15℃ 85%以下

40℃ 95%mの環境下で保管される時間が、累計で240時間以内に管理願います。

直射日光

製品に直射日光が直接当たらないように包装状態か暗室で保管願います。

雰囲気

腐食性ガスや揮発溶剤の発生の危険性がある場所では保管しないで下さい。 結露防止に対するお願い

- ・結露を避けるため包装箱は直接床に置かず、必ずパレットか台の上に保管願います。 またパレット下側の通風を良くするために、一定方向に正しく並べて下さい。
- ・保管倉庫の壁から離して保管願います。
- ・倉庫内の通風を良くするよう注意頂き換気装置などの設置を御配慮下さい。
- ・自然環境下以上の急激な温度変化がなきよう管理願います。

保管期間

上記保管条件にて1年以内の保管として下さい。

図1:外形寸法図(LQ150X1DH50)

液晶モジュール

学フー

①機種名

②生産日付(2装日)

③モジュール数量

6分1内品番

