Restanță la algebră, an I, sem. I, matematică 9.06.2017

Numele şi prenumele Grupa **Problema 1.** Fie permutarea $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 3 & 4 & 5 & 7 & 9 & 2 & 8 & 6 & 1 & 11 & 10 \end{pmatrix} \in S_{11}.$ (1) Descompuneți σ în produs de cicli disjuncți. (5 p.)(2) Descompuneți σ în produs de transpoziții. (5 p.)(3) Calculați $\operatorname{sgn}(\sigma)$ și $\operatorname{ord}(\sigma)$. (5 p.)(4) Există permutări de ordin 35 în S_{11} ? (5 p.)(5) Rezolvați ecuația $\tau^{2011} = \sigma$ în S_{11} . (5 p.)**Problema 2.** Se consideră grupul (aditiv) $G = \mathbb{Z}/9\mathbb{Z} \times \mathbb{Z}/18\mathbb{Z}$. (1) Aflaţi ordinele elementelor $(\widehat{4}, \overline{3})$, respectiv $(\widehat{3}, \overline{5})$. (5 pct.) (2) Este adevărat că $(\widehat{4}, \overline{3}) \in \langle (\widehat{3}, \overline{5}) \rangle$? Dar că $(\widehat{3}, \overline{5}) \in \langle (\widehat{4}, \overline{3}) \rangle$? Justificați. (5 pct.) (3) Formează $\{(\widehat{4},\overline{3}),(\widehat{3},\overline{5})\}$ un sistem de generatori pentru G? Justificați. (5 pct.) (4) Este G grup ciclic? Justificați. (5 pct.) (5) Este $G/\langle (\widehat{4},\overline{3}) \rangle$ grup ciclic? Justificați. (10 pct.) **Problema 3.** Fie idealul $I = (X^3 + \widehat{2}X + \widehat{1})$ al inelului de polinoame $R = (\mathbb{Z}/3\mathbb{Z})[X]$. (1) Este R/I inel integru? Dar corp? Justificați.

(1) Este
$$R/I$$
 inel integru? Dar corp? Justificați. (5 p.)

(2) Câte elemente are inelul factor
$$R/I$$
? Justificați. (5 p.)

- (3) Arătați că în inelul factor R/I clasa lui $X^3 + \hat{1}$ este element inversabil și aflați inversul (5 pct.)
- (4) Fie idealul $J = (X^3 + \widehat{2}X + \widehat{2})$. Arătați că $I \neq J$, dar inelele factor R/I și R/J sunt izomorfe. (5 pct.)

Problema 4. Fie polinomul $P \in \mathbb{C}[X], P = X^3 - X^2 + 6X - 1$, ale cărui rădăcini complexe sunt $\alpha_1, \alpha_2, \alpha_3$.

(1) Calculați
$$\alpha_1^5 + \alpha_2^5 + \alpha_3^5$$
. (5 **pct.**)

- (2) Este adevărat că $\alpha_1^n + \alpha_2^n + \alpha_3^n \in \mathbb{Z}$ oricare ar fi $n \in \mathbb{N}$? (10 pct.)
- (3) Determinați un polinom ale cărui rădăcini să fie $2\alpha_1 + 3$, $2\alpha_2 + 3$, $2\alpha_3 + 3$. (5 pct.)

¹Toate subiectele sunt obligatorii. Se acordă 5 puncte din oficiu. Timp de lucru 3 ore. Succes!