Data Cleaning

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
```

In [2]: df = pd.read_csv(r"C:\Users\user\Downloads\19_nuclear_explosions.csv")
 df

Out[2]:

	WEAPON SOURCE COUNTRY	WEAPON DEPLOYMENT LOCATION	Data.Source	Location.Cordinates.Latitude	Location.Cordinates.Lo
0	USA	Alamogordo	DOE	32.54	
1	USA	Hiroshima	DOE	34.23	
2	USA	Nagasaki	DOE	32.45	
3	USA	Bikini	DOE	11.35	
4	USA	Bikini	DOE	11.35	
2041	CHINA	Lop Nor	HFS	41.69	
2042	INDIA	Pokhran	HFS	27.07	
2043	INDIA	Pokhran	NRD	27.07	
2044	PAKIST	Chagai	HFS	28.90	
2045	PAKIST	Kharan	HFS	28.49	

2046 rows × 16 columns

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2046 entries, 0 to 2045
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	WEAPON SOURCE COUNTRY	2046 non-null	object
1	WEAPON DEPLOYMENT LOCATION	2046 non-null	object
2	Data.Source	2046 non-null	object
3	Location.Cordinates.Latitude	2046 non-null	float64
4	Location.Cordinates.Longitude	2046 non-null	float64
5	Data.Magnitude.Body	2046 non-null	float64
6	Data.Magnitude.Surface	2046 non-null	float64
7	Location.Cordinates.Depth	2046 non-null	float64
8	Data.Yeild.Lower	2046 non-null	float64
9	Data.Yeild.Upper	2046 non-null	float64
10	Data.Purpose	2046 non-null	object
11	Data.Name	2046 non-null	object
12	Data.Type	2046 non-null	object
13	Date.Day	2046 non-null	int64
14	Date.Month	2046 non-null	int64
15	Date.Year	2046 non-null	int64
d+vn	as: float64(7) int64(3) object	+(6)	

dtypes: float64(7), int64(3), object(6)

memory usage: 255.9+ KB

In [4]: # t display summerize the data df.describe()

Out[4]:

	Location.Cordinates.Latitude	Location.Cordinates.Longitude	Data.Magnitude.Body	Data.Mag
count	2046.000000	2046.000000	2046.000000	_
mean	35.462429	-36.015037	2.145406	
std	23.352702	100.829355	2.625453	
min	-49.500000	-169.320000	0.000000	
25%	37.000000	-116.051500	0.000000	
50%	37.100000	-116.000000	0.000000	
75%	49.870000	78.000000	5.100000	
max	75.100000	179.220000	7.400000	
1				•

```
In [5]: # to display columes
        df.columns
Out[5]: Index(['WEAPON SOURCE COUNTRY', 'WEAPON DEPLOYMENT LOCATION', 'Data.Source',
                'Location.Cordinates.Latitude', 'Location.Cordinates.Longitude',
                'Data.Magnitude.Body', 'Data.Magnitude.Surface',
                'Location.Cordinates.Depth', 'Data.Yeild.Lower', 'Data.Yeild.Upper',
                'Data.Purpose', 'Data.Name', 'Data.Type', 'Date.Day', 'Date.Month',
                'Date.Year'],
              dtype='object')
In [6]: df.isna().sum()
Out[6]: WEAPON SOURCE COUNTRY
                                          0
                                          0
        WEAPON DEPLOYMENT LOCATION
        Data.Source
                                          0
        Location.Cordinates.Latitude
                                          0
        Location.Cordinates.Longitude
                                          0
        Data.Magnitude.Body
        Data.Magnitude.Surface
                                          0
        Location.Cordinates.Depth
                                          0
        Data.Yeild.Lower
                                          0
        Data.Yeild.Upper
                                          0
        Data.Purpose
                                          0
        Data.Name
                                          0
        Data.Type
        Date.Day
                                          0
        Date.Month
                                          0
                                          0
        Date.Year
        dtype: int64
```

EDA and visualization

In [7]: sns.pairplot(df)

Out[7]: <seaborn.axisgrid.PairGrid at 0x1d57b3fc790>


```
In [8]: # to display distribution graph for price column
sns.distplot(df['Data.Yeild.Upper'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[8]: <AxesSubplot:xlabel='Data.Yeild.Upper', ylabel='Density'>

In [10]: # correlation map to find relationship sns.heatmap(df1.corr())

Out[10]: <AxesSubplot:>

In [43]: # to split dataset into training data and test data
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)

```
In [44]: #Linear Regression
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(x_train,y_train)
```

Out[44]: LinearRegression()

```
In [45]: # intercept is value of c
print(lr.intercept_)
```

6862.825310131727

```
In [46]: # co-efficient value of m
coeff = pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[46]:

	Co-efficient
Location.Cordinates.Latitude	- 1.780656
Location.Cordinates.Longitude	0.501516
Data.Magnitude.Body	-12.380438
Data.Magnitude.Surface	-30.438619
Location.Cordinates.Depth	-1.397919
Data.Yeild.Upper	0.646023
Date.Day	1.461566
Date.Month	-3.268807
Date.Year	-3.427763

Out[47]: <matplotlib.collections.PathCollection at 0x1d50d604be0>


```
In [40]: #Accuracy of linear regression
print(lr.score(x_test,y_test))
```

-5.580090827428987

Elastic

Evaluation Model

-0.041580491242562134

model saving

```
In [32]: import pickle # pickle is used to model saving
In [33]: filename ="nuclear_explosions prediction"
    pickle.dump(lr,open(filename,'wb'))
In [48]: df.head(10)
```

Out[48]:

ody	Data.Magnitude.Surface	Location.Cordinates.Depth	Data.Yeild.Lower	Data.Yeild.Upper	Data.Pur
0.0	0.0	-0.10	21.0	21.0	
0.0	0.0	-0.10	21.0	21.0	
0.0	0.0	-0.60	15.0	15.0	Cc
0.0	0.0	-0.60	21.0	21.0	Сс
0.0	0.0	-0.20	21.0	21.0	
0.0	0.0	0.03	21.0	21.0	
0.0	0.0	-0.08	37.0	37.0	
0.0	0.0	-0.08	49.0	49.0	
0.0	0.0	-0.08	18.0	18.0	
0.0	0.0	0.00	22.0	22.0	
0.0	0.0	-0.35	1.0	1.0	
4					•

In [49]: df.tail(10)

Out[49]:

ody	Data.Magnitude.Surface	Location.Cordinates.Depth	Data.Yeild.Lower	Data.Yeild.Upper	Data.Pur
0.0	0.0	0.0	0.0	60.0	
0.0	0.0	0.0	0.0	40.0	
0.0	0.0	0.0	0.0	30.0	
0.0	0.0	0.0	0.0	120.0	
6.3	0.0	0.0	30.0	120.0	
5.3	0.0	0.0	3.0	12.0	
5.3	0.0	0.0	0.0	20.0	
0.0	0.0	0.0	0.0	1.0	
0.0	0.0	0.0	0.0	35.0	
5.0	0.0	0.0	0.0	18.0	
4					•