Problem Set 4: Matching the U.S. income distribution by GMM

Alejandro Parraguez

January 31, 2017

(a)

We plot the histogram implied by the moments in the .txt file:

(b)

The GMM estimates for the Lognormal distribution are $\hat{\mu} \approx 3.94$ and $\hat{\sigma} \approx 1.02$ and we obtain the following histogram:

(c)

The GMM estimates for the Gamma distribution are $\hat{\alpha} \approx 1.42$ and $\hat{\beta} \approx 44.97$ and we obtain the following histogram:

(d)

We plot both distribution over the US income histogram. To compare these distributions we calculate the criterion functions using both parameter vectors

and compare the two values. We obtain

$$e\left(x|\hat{\theta}_{LN}\right)^T We\left(x|\hat{\theta}_{LN}\right) \approx 0.03$$

$$e\left(x|\hat{\theta}_{GA}\right)^{T}We\left(x|\hat{\theta}_{GA}\right)\approx0.007$$

Hence we conclude the Gamma distribution fits the data best.

(e)

We repeat the estimation of the Gamma distribution from part (c) with the two-step estimator for the optimal weighting matrix $\hat{\mathbf{W}}_{twostep}$. We find $\hat{\alpha}_{twostep} \approx 5.60$ and $\hat{\beta}_{twostep} \approx 4.54$. We can see the estimates change considerably compared to the previous one. To compare the goodness of fit we can calculate the criterion function using both estimates:

$$e\left(x|\hat{\theta}_{GA}\right)^{T}We\left(x|\hat{\theta}_{GA}\right)\approx0.007$$

$$e\left(x|\hat{\theta}_{twostep}\right)^T We\left(x|\hat{\theta}_{twostep}\right) \approx 6.4 \cdot 10^{-12}$$

These functions would imply the two step estimator has a better fit. However, we can also plot both distributions and clearly see the two step estimator does not have the best fit.

