Representações Computacionais 5189-32

Rodrigo Calvo rcalvo@uem.br

Departamento de Informática – DIN Universidade Estadual de Maringá – UEM

1° semestre de 2016

Introdução

- Geralmente medimos o tamanho de um grafo G = (V, A) em termos do número de vértices |V| e do número de arestas |A|
 - Dentro da notação assintótica, o termo V representará |V|, e o termo A, representará |A|

- Um grafo *G* = (*V*, *A*) é:
 - Esparso se |A| é muito menor que |V|²
 - Denso se |A| está próximo de |V|²

Representação de grafos

- Existe duas maneiras de representar um grafo G = (V, A) em termos do número de vértices |V| e do número de arestas |A|
 - Matriz de adjacências
 - Lista de adjacências

• A matriz de adjacência de um grafo G = (V, A) contendo |V| vértices é uma matriz $|V| \times |V|$ de bits, onde A[i, j] é 1 (ou verdadeiro) se e somente se existe um arco do vértice i para o vértice j.

 Para grafos ponderados, A[i, j] contém o rótulo ou peso associado com a aresta e, neste caso, a matriz não é de bits.

 Se não existir uma aresta de i para j então é necessário utilizar um valor que não possa ser usado como rótulo ou peso.

• Supondo que os vértices são numerados 1, 2, ..., |V|, a representação consiste em uma matriz $|V| \times |V| = (a_{ij})$

$$a_{ij} = \begin{cases} 1, & \text{se } (i,j) \in A \\ 0, & \text{caso contrário} \end{cases}$$

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	0 1 1 0 1	0

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	0 1 1 0 1	0

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0 1 0 1 0	1	0

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	0 0 1 0 0

Qual e quantidade de memória requerida?

- Qual e quantidade de memória requerida? $|V|^2$
 - A quantidade de memória independe de A

- Qual e quantidade de memória requerida? $|V|^2$
 - A quantidade de memória independe de A
- Em um grafo não direcionado, a matriz é igual a sua transposta, desta forma é possível usar apenas os elementos abaixo (ou acima) da diagonal principal

- Qual e quantidade de memória requerida? |V|²
 - A quantidade de memória independe de A
- Em um grafo não direcionado, a matriz é igual a sua transposta, desta forma e possível usar apenas os elementos abaixo (ou acima) da diagonal principal
- Vantagens
 - Simplicidade
 - Permite consultar se uma aresta faz parte do grafo em tempo constante
- Desvantagens
 - Memória: a matriz necessita de $\Omega(|V|^2)$ de espaço
 - Ler ou examinar a matriz tem complexidade de tempo $O(|V|^2)$
- Adequada para grafos densos → |A| é próximo de |V|²

- A representação de lista de adjacências consiste de um arranjo Adj de
 |V| listas, uma para cada vértice
- Para cada u ∈ V, a lista de adjacências Adj[u] contém (ponteiros para)
 todos os vértices v tal que (u, v) ∈ E
- Atributos para algoritmos em pseudo-código
 - G.V conjunto de vértices
 - G.E conjunto de arestas
 - G.Adj arranjo com as listas de adjacências

Qual é a soma dos comprimentos de todas as listas de adjacências?

- Qual é a soma dos comprimentos de todas as listas de adjacências?
 - Se G e um grafo direcionado, a soma é |A|

- Qual é a soma dos comprimentos de todas as listas de adjacências?
 - Se G e um grafo direcionado, a soma é |A|
 - Se G e um grafo não direcionado, a soma é 2 | A |

- Qual é a soma dos comprimentos de todas as listas de adjacências?
 - Se G e um grafo direcionado, a soma é |A|
 - Se G e um grafo não direcionado, a soma é 2 | A |
- Qual é a quantidade de memória requerida?

- Qual é a soma dos comprimentos de todas as listas de adjacências?
 - Se G e um grafo direcionado, a soma é |A|
 - Se G e um grafo não direcionado, a soma é 2 | A |
- Qual é a quantidade de memória requerida? $\Theta(V + A)$

- Qual é a soma dos comprimentos de todas as listas de adjacências?
 - Se G e um grafo direcionado, a soma é |A|
 - Se G e um grafo não direcionado, a soma é 2 | A |
- Qual é a quantidade de memória requerida? $\Theta(V + A)$
- Vantagens
 - Flexível, é possível adaptar a representação para variantes de grafos;
 - A quantidade de memória e assintoticamente ótima.
- Desvantagem
 - Não existe nenhum modo rápido para determinar se uma dada aresta (u, v) esta presente no grafo.
- Adequada para grafos esparsos $\rightarrow |A|$ é muito menor que $|V|^2$

Atributos

- Muitos algoritmos que operam em grafos precisam manter atributos para vértices e/ou arestas
- Em alguns exemplos de código, indicaremos os atributos como
 - v.d, atributo d do vértice v
 - (u, v).f, atributo f da aresta (u, v)
- Como estes atributos podem ser implementados?
 - Depende da linguagem de programação, algoritmo, etc
 - Os atributos podem ser armazenados diretamente na lista ou matriz de adjacências
 - Se os vértices são enumerados de 1, ..., |V| os atributos podem ser representados em arranjos, tais como d[1, ..., |V|]
 - Atributos de vértices podem ficar nos registros que representam os vértices
 - Atributos de arestas podem ficar nos registros que representam as arestas

[22.1-1] Dada uma representação de lista de adjacências de um grafo orientado, qual o tempo necessário para computar o grau de saída de todo o vértice?

[22.1-1] Dada uma representação de lista de adjacências de um grafo orientado, qual o tempo necessário para computar o grau de saída de todo o vértice?

 Antes de fazer a análise do tempo de execução e necessário, escrever o pseudo-código do algoritmo

```
computa-graus-de-saida(G)
1 for u in G.V
2   u.grau-de-saida = 0
3 for u in G.V
4   for v in G.Adj[u]
5   u.grau-de-saida += 1
```

```
computa-graus-de-saida(G)
1 for u in G.V
2   u.grau-de-saida = 0
3 for u in G.V
4   for v in G.Adj[u]
5   u.grau-de-saida += 1
```

Análise do tempo de execução

- Os laços das linhas 1 e 3 demoram $\Theta(V)$
- O laço da linha 4 (sem contar a linha 5) demora $\Theta(V)$
- A cada interação do laço da linha 4, a linha 5 é executada |G.Adj[u]| vezes, como o laço da linha 4 é executado uma vez para cada vértice, temos que a linha 5 é executada: $\sum |G.Adj[u]| = |A|$

• Ou seja, o tempo de execução da linha 5 é $\Theta(A)$

• Portanto, o tempo de execução do procedimento computa-graus-saida é $\Theta(V + A)$

```
computa-graus-de-entrada(G)
1 for u in G.V
2   u.grau-de-entrada = 0
3 for u in G.V
4   for v in G.Adj[u]
5   v.grau-de-entrada += 1
```

Análise do tempo de execução

• Mesmo do procedimento computa-graus-saida

Bibliografia

 Thomas H. Cormen et al. Introduction to Algorithms. 3rd edition. Capítulo 22.1.

 Nivio Ziviani. Projeto de Algoritmos com Implementações em Pascal e C. 3a Edição Revista e Ampliada, Cengage Learning, 2010. Capítulo 7. Seção 7.2.1