SEMAINE DU 05/12 AU 09/12

1 Cours

Applications (révision)

Nombres réels

Approximations d'un réel Ensembles de nombres : $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q} \subset \mathbb{R}$. Partie entière. Approximations décimales. Densité dans \mathbb{R} . Caractérisation séquentielle de la densité. \mathbb{D} , \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ sont denses dans \mathbb{R} .

Relation d'ordre sur \mathbb{R} Majorant, minorant, maximum, minimum, borne supérieure borne inférieure d'une partie de \mathbb{R} . Théorème de la borne supérieure. Caractérisation séquentielle de la borne inférieure et de la borne supérieure. Droite réelle achevée $\overline{\mathbb{R}}$. Borne supérieure et inférieure dans $\overline{\mathbb{R}}$. Applications à valeurs dans \mathbb{R} : majorant, minorant, maximum, minimum, borne supérieure, borne inférieure.

Intervalles de \mathbb{R} Définition : une partie I de \mathbb{R} est un intervalle si $\forall (x,y,t) \in I^2 \times \mathbb{R}, x \leq t \leq y \implies t \in I$. Les intervalles de \mathbb{R} sont les parties de la forme $[a,b], [a,b[,]a,b[,]a,b[,]a,+\infty[,]a,+\infty[,]-\infty,b[,]-\infty,b[,]-\infty,+\infty[$.

2 Méthodes à maîtriser

- ightharpoonup Déterminer le maximum/minimum M d'une partie A:
 - \diamond M est un majorant/minorant de \mathcal{A} ;
 - $\diamond M \in \mathcal{A}$.
- ightharpoonup Déterminer la borne supérieure/inférieure M d'une partie A:
 - \diamond M est un majorant/minorant de \mathcal{A} ;
 - ♦ puis au choix :
 - tout majorant/minorant de A est minoré/majoré par M;
 - il existe une suite d'éléments de \mathcal{A} convergeant vers M (si \mathcal{A} est une partie de \mathbb{R} muni de la relation d'ordre usuelle);
 - pour tout $\varepsilon > 0$, il existe $a \in \mathcal{A}$ tel que $a > M \varepsilon/a < M + \varepsilon$ (si \mathcal{A} est une partie de \mathbb{R} muni de la relation d'ordre usuelle).
- ► Caractérisation de la partie entière :

$$n = \lfloor x \rfloor \iff x - 1 < n \leqslant x \iff n \leqslant x < n + 1$$

3 Questions de cours

- \blacktriangleright Montrer que $\mathbb Q$ est dense dans $\mathbb R$ en utilisant la caractérisation séquentielle de la densité.
- ▶ Soit \mathcal{A} une partie non vide de \mathbb{R} et $M \in \mathbb{R}$. Montrer que $M = \sup \mathcal{A}$ si et seulement si
 - \diamond M est un majorant de \mathcal{A} ;
 - \diamond pour tout $\varepsilon \in \mathbb{R}_+^*$, il existe $\mathfrak{a} \in \mathcal{A}$ tel que $M \varepsilon < \mathfrak{a}$.
- ▶ Soit \mathcal{A} une partie non vide de \mathbb{R} et $\mathfrak{m} \in \mathbb{R}$. Montrer que $\mathfrak{m} = \inf \mathcal{A}$ si et seulement si
 - \diamond m est un minorant de \mathcal{A} ;
 - \diamond pour tout $\epsilon \in \mathbb{R}_+^*$, il existe $a \in \mathcal{A}$ tel que $a < m + \epsilon$.
- ▶ Soit $f : \mathbb{R} \to \mathbb{R}$ une application bornée. On pose $g(x) = \inf_{y \geqslant x} f(y)$ et $h(x) = \sup_{y \geqslant x} f(y)$ pour tout $x \in \mathbb{R}$. Déterminer le sens de variation de g et h.
- ▶ Soit $f:[0,1] \mapsto [0,1]$ une application croissante. Montrer que f admet un point fixe en considérant la borne supérieure de $A = \{x \in [0,1], f(x) \ge x\}$.