

For ML Techniques

Karthik Thiagarajan

Agenda

NumPy

- Vectors
- Matrices
- NumPy arrays
- Sampling from Distributions

SciPy

- Unconstrained optimisation
- Constrained optimisation

Matplotlib

- Plotting simple curves
- Bar plots, histograms, scatter plots
- Contour plots, 3D plots

Process

Sequence

- (1) NumPy
- (2) Matplotlib
- (3) NumPy
- (4) Matplotlib
- (5) NumPy
- (6) Matplotlib, SciPy

Type of Session

- Code with instructor
- Code demo + QA

Colabs and Slides

- http://tiny.cc/mlt_workshop
- We will go from (1) to (6)
- Open colab and copy it to your drive
- Slides will be uploaded tonight

NumPy, Matplotlib, SciPy

Linear Algebra • Created in 2005 Vectors • Open source NumPy • Matrices • Current version: 1.23.0 Visualising • Created in 2003 Matplotlib • data • Open source • models • Current version: 3.6.2 • Created in 2001 SciPy • Open source **Optimisation** • Current version: 1.9.3

NumPy - still relevant?

Source:

Stack Overflow Developer Survey

NumPy - still relevant?

Most Popular Technologies

~35,000 responses

Source:

Stack Overflow Developer Survey

NumPy - still relevant?

Most Popular Technologies

~5,000 responses

Source:

<u>Stack Overflow Developer Survey</u>

$$\mathbf{x} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

sample

example

practical

$$\mathbf{x} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

sample

feature-vector

example

practical

abstract

sample

feature-vector

data-point

example

practical

abstract

geometric

algebraic

np.array([3, 4])

sample

feature-vector

data-point

array

example

practical

abstract

 ${\tt geometric}$

algebraic

computational

Vector | NumPy Array

 $1 \quad \boxed{2} \quad \boxed{3}$

 $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$

*

2

 1
 2
 3

 *
 2
 2

 2
 2
 2

 1
 2
 3

 *
 2
 2

 2
 2
 2

 $\begin{array}{|c|c|c|c|c|} 2 & 4 & 6 \end{array}$

- Conceptual explanation
- Not exactly what happens in NumPy

 $\begin{array}{|c|c|c|c|c|} 2 & 4 & 6 \end{array}$

$$x + y$$

$$x + y$$

$$\mathbf{x} \odot \mathbf{y}$$

$$\mathbf{x}^T\mathbf{y}$$
 or $\mathbf{x}\cdot\mathbf{y}$

$$a \cdot \mathbf{x} + b \cdot \mathbf{1}$$

$$a * x + b$$

0

np.zeros(d)

1

np.ones(d)

$$||\mathbf{x}||_p$$

np.linalg.norm(x, p)

np.linspace(0, 1, 3)

np.linspace(0, 1, 3)

np.linspace(0, 1, 4)

$$oxed{0} \ 0.25 \ 0.5 \ 0.75 \ 1$$

np.linspace(0, 1, 3)

np.linspace(0, 1, 4)

np.linspace(0, 1, 5)

np.linspace(0, 1, 3)

np.linspace(0, 1, 4)

np.linspace(0, 1, 5)

np.linspace(0, 1, 6)

Plotting in Matplotlib

Subplots

plt.subplot(2, 2, 1)	plt.subplot(2, 2, 2)
plt.subplot(2, 2, 3)	plt.subplot(2, 2, 4)

Math → NumPy (Matrices) $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$ $\mathbf{A} + \mathbf{B}$ A + B $\mathbf{I} \in \mathbb{R}^{d imes d}$ A * B $\mathbf{A} \odot \mathbf{B}$ A @ B ABA.T \mathbf{A}^T np.eye(d) np.diag(a_1,...,a_d) $diag(a_1, \dots, a_d)$ np.zeros((m, n)) 0 np.ones((m, n))

n-Dimensional Arrays

```
\begin{array}{|c|c|c|c|c|}\hline 1 & 2 & 3 \\ \hline \end{array}
```

```
shape = (3, )
ndim = 1
row
```

n-Dimensional Arrays

1	2	3
---	---	---

1	2	3
4	5	6

```
shape = (3, )
ndim = 1
row
```

n-Dimensional Arrays

1	2	3
4	5	6

shape =
$$(2, 3)$$

ndim = 2
row x col

shape =
$$(2, 2, 3)$$

ndim = 3
depth X row x col

n-Dimensional Arrays

1	2	3
4	5	6

shape =
$$(2, 3)$$

ndim = 2
row x col

shape =
$$(2, 2, 3)$$

ndim = 3
depth X row x col

ndim	shape	Object

ndim	shape	Object
1	100	Feature-vector

ndim	shape	Object
1	100	Feature-vector
2	10 x 10	Grayscale image

ndim	shape	Object
1	100	Feature-vector
2	10 x 10	Grayscale image
3	3 x 10 x 10	RGB image

ndim	shape	Object
1	100	Feature-vector
2	10 x 10	Grayscale image
3	3 x 10 x 10	RGB image
4	50 x 3 x 10 x 10	50 RGB images

ndim	shape	Object
1	100	Feature-vector
2	10 x 10	Grayscale image
3	3 x 10 x 10	RGB image
4	50 x 3 x 10 x 10	50 RGB images
5	100 x 50 x 3 x 10 x 10	100 videos 50 frames each Each frame is a 10 x 10 RGB image

Reshape

(6,)

default

1	2	3
4	5	6

(2, 3)

(2, 3)

Reshape

Reshape: Use Case

Reshape: Use Case

Reshape: Use Case

Matrix-vector Addition: Row vector

1	2	3
4	5	6

+ $\begin{vmatrix} 1 & 2 & 3 \end{vmatrix}$

 $= \begin{array}{|c|c|c|c|} \hline 2 & 4 & 6 \\ \hline 5 & 7 & 9 \\ \hline \end{array}$

Matrix-vector Addition: Column vector

1	2	3
4	5	6

?

Matrix-vector Addition: Column vector

1	2	3	+		1	
4	5	6			2	
				2	3	4

Matrix-vector Addition: Use Case

Axis

Axis

np.meshgrid([0, 1, 2, 3], [0, 1, 2, 3])[0]

0	1	2	3
0	1	2	3
0	1	2	3
0	1	2	3

<pre>np.meshgrid([</pre>	Ο,	1,	2,	3],
Γ	Θ,	1,	2,	3])[1]

0	0	0	0
1	1	1	1
2	2	2	2
3	3	3	3

Math and NumPy

NumPy is math done using Python

References

- Logos for <u>NumPy</u>, <u>SciPy</u> and <u>Matplotlib</u> from official pages
- NumPy doc on <u>Broadcasting</u>
- SciPy doc on minimize API
- <u>Code</u> for 3D plotting
- The slides were prepared using https://www.mathcha.io/