Capstone Project - The Battle of the Neighborhoods (Week 2)

Applied Data Science Capstone by IBM/Coursera

Introduction

Business problem

In this project we will try to find an optimal location that a family of three can move into, based on their preferences and requirements. Specifically, this report will be targeted to stakeholders interested in moving to Minneapolis, Minnesota.

Minneapolis is known as one of the most comfortable cities in the US. It is praised for its parks and theaters; it also reportedly has rather low crime rates. Most importantly, the Minneapolis-St.Paul metropolitan area is home to some 24 Fortune 1000 companies, and it is one of the country's top economies. Some people even like to compare this city to New York.

In our case, a family of three is considering moving to Minneapolis since one of the parents was offered an interesting job opportunity there. They have never been to the state of Minnesota (and Minneapolis in particular), so they decided to consult a specialist on which neighborhood they should pick.

Objective

The objective is to identify a neighborhood in Minneapolis that is most suitable for the given family. This analysis would be relevant and useful for other individuals planning to move to this city.

Problem Statement

The family needs to find a neighborhood that will meet the following criteria:

1) be reasonably close to the earning parent's workplace in Downtown East 2) have a some grocery shops/farmers markets etc 3) have a selection of places to eat out 4) have a green zone in the vicinity 5) have low crime rates 6) offer some form of entertainment and sports facilities (movies, gyms, etc.)

Data analysis will help to find the most suitable neighborhoods that the family will consider for relocation.

Data

We will begin our analysis by identifying the neighborhoods in Minneapolis using information from OpenData (http://opendata.minneapolismn.gov/datasets/minneapolis-neighborhoods/data). We will use geodata to visualize neighborhoods on the map to see which neighborhoods are closer to Downtown East.

Below is the dataframe with the geometry data that will be used to map out neighborhood borders.

As we can see, neighborhoods are not in all caps (as they are in our crime data), so we need to adjust them for consistency In [15]: df_neighb['BDNAME'] = df_neighb['BDNAME'].str.upper()
df_neighb.drop(columns=['BDNUM','TEXT_NBR','NCR_LINK','IMAGE'],axis=1,inplace=True) In [16]: df_neighb.head() Out[16]: BDNAME Shape_STAr Shape_STLe SHAPE_Length SHAPE_Area geometry PHILLIPS WEST 1.088925e+07 14403.885934 0.045801 0.000113 MULTIPOLYGON (((-93.26258 44.96091, -93.26258 ... 0 DOWNTOWN WEST 2.075613e+07 19220.602541 0.063671 0.000220 MULTIPOLYGON (((-93.26011 44.98300, -93.26010 . DOWNTOWN EAST 1.025499e+07 13436.601356 0.045179 0.000109 MULTIPOLYGON (((-93.24499 44.97893, -93.24499 ... VENTURA VILLAGE 1.263526e+07 16988.532717 0.059590 0.000134 MULTIPOLYGON (((-93.24958 44.96630, -93.24951 ... 5 SUMNER - GLENWOOD 5.741860e+06 11065.343364 0.035535 0.000061 MULTIPOLYGON (((-93.28830 44.98904, -93.28830 ...

Below is the map we created, with borders of all Minneapolis neighborhoods.

We also need to extract latitude and longitude values for each neighborhood (to further work with Foursquare API)

The geojson file contained only the geometry, so we needed to first extract centroids

and then from the cetroid points extract the latitude and longitude values:

Our final dataframe that was used to work with the Foursquare API:

We will then examine crime data in each neighborhood (also using data available at OpenData; the most recent information is for 2018: http://opendata.minneapolismn.gov/datasets/police-incidents-2018/data). We will identify the types of crimes that worry the family the most and then visualize the corresponding data on the map:

Data prepared for the map:

```
First we need to create a new dataframe with generalized crime data per neighborhood

In [20]: neigh_crime_counts = neighborhoods_crime['Neighborhood'].value_counts().to_frame()
    crime_per_neighborhood = neigh_crime_counts.reset_index().rename(columns={'index': 'Neighborhood', 'Neighborhood':'Count'})

Out[20]:

Neighborhood Count

DOWNTOWN WEST 568

1 WHITTIER 202

MARCY HOLMES 201

3 JORDAN 173

4 LOWRY HILL EAST 168
```

The map itself:

As we can see, only several neighborhoods have significant crime levels, so, in making the final decision, this factor will only be used together with the list of popular venues.

We will use Matplotlib to visualize crime rates, so let's prepare the dataframe:

Methodology

In this project we will direct our efforts on detecting neighborhoods of Minnesota that have low crime rates, particularly those with low number of crimes that involve individuals (as opposed to businesses/establishments), as well as neighborhoods that offer infrastructure that is appealing to the stakeholder (i.e. the family). The most suitable neighborhoods will have some green zones (parks, trails, playgrounds), grocery shops or farmers' markets, as well as a sufficient number of cafes/restaurants.

In first step we will collect the required data:

- We gathered data on crime rates for each neighborhood, cleaning all unnecessary data from the dataset
- We extracted latitude and longitude values for each neighborhood (to use with foursquare API);

Now

 Using foursquare API we will get location and type (category) of venues in each neighborhood of Minneapolis.

Most common venues for every neighborhood:

Nei	ighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
0 /	ARMATAGE	Pizza Place	Trail	Restaurant	Arts & Crafts Store	Flower Shop	Mexican Restaurant	Pet Store	French Restaurant	Supermarket	Chinese Restaurant
1	AUDUBON PARK	Park	Bakery	Pharmacy	Brewery	Pizza Place	Coffee Shop	Thai Restaurant	Hotel Bar	Organic Grocery	Liquor Store
2	BANCROFT	Park	Food & Drink Shop	Coffee Shop	Pharmacy	BBQ Joint	Mexican Restaurant	Food Truck	South American Restaurant	Chinese Restaurant	Furniture / Home Store
3	BELTRAMI	Brewery	BBQ Joint	Dive Bar	Coffee Shop	Yoga Studio	Park	Cosmetics Shop	Donut Shop	Event Space	Café
4 E	BOTTINEAU	Dive Bar	Coffee Shop	Theme Restaurant	Ice Cream Shop	American Restaurant	Café	Pet Store	Bookstore	Speakeasy	New American Restaurant

Now we can also prepare the data for visualization with Matplotlib

```
Since we cannot display all 253 venue categories on a plot (and keep it visually appealing and easy to
           neighborhoods
[269]: cols_to_remove = set()
        for i in mn_venues:
            if mn_venues[i].mean() < 0.01: #Let's Leave only those venue categories that have at L
                cols_to_remove.add(i)
       for i in cols_to_remove:
            mn_venues.drop(i, axis=1, inplace=True)
[270]: mn_venues.head() #a preview
Out[270]:
                                        Art
                                                 Asian
                                                                                            Chinese
                           American
                                                         Bakery
                                                                    Bar Brewery
                                                                                    Café
                                     Gallery
                                                                                          Restaurant
                          Restaurant
                                             Restaurant
            Neighborhood
              ARMATAGE
                           0.000000 0.000000
                                               0.043478 0.
              AUDUBON
                           0.033333 0.000000
                                               0.000000 0.100000 0.000000 0.066867 0.000000
                                                                                            0.000000 0.
                  PARK
                                               0.000000 0.033333 0.033333 0.000000 0.000000
              BANCROFT
                           0.033333 0.033333
                                                                                            0.033333 0.
              BELTRAMI
                           0.033333 0.033333
                                               0.033333 0.000000 0.000000 0.133333 0.033333
                                                                                            0.000000 0.
             BOTTINEAU
                           0.088887 0.033333
                                               0.000000 0.000000 0.033333 0.033333 0.066667
                                                                                            0.000000 0.
           5 rows × 23 columns
```

The second step in our analysis will be finding the most popular venues in each neighborhood and clustering the neighborhoods based on this information (using KMeans clustering).

Group rows by neighborhood and by taking the mean of category occurence frequency

88]:	icap	olis_groupe	u.nec	su()											
00];	N	leighborhood	АТМ	Accessories Store	Acupuncturist	Adult Boutique	Advertising Agency	African Restaurant	American Restaurant	Antique Shop	Arcade	 Vegetarian / Vegan Restaurant	Video Store	Vietnamese Restaurant	Warehouse Store
	0	ARMATAGE	0.0	0.000000	0.0	0.0	0.0	0.0	0.000000	0.0	0.0	 0.0	0.043478	0.000000	0.0
	1	AUDUBON PARK	0.0	0.000000	0.0	0.0	0.0	0.0	0.033333	0.0	0.0	 0.0	0.033333	0.033333	0.0
	2	BANCROFT	0.0	0.033333	0.0	0.0	0.0	0.0	0.033333	0.0	0.0	 0.0	0.033333	0.000000	0.0
	3	BELTRAMI	0.0	0.000000	0.0	0.0	0.0	0.0	0.033333	0.0	0.0	 0.0	0.000000	0.033333	0.0
	4	BOTTINEAU	0.0	0.000000	0.0	0.0	0.0	0.0	0.066667	0.0	0.0	 0.0	0.000000	0.033333	0.0

Clustered neighborhoods:

	inneapolis_merged.head()														
Out[101]	:	Neighborhood	Latitude	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
	0	PHILLIPS WEST	44.9539	-93.2873	3	Mexican Restaurant	Vietnamese Restaurant	American Restaurant	Performing Arts Venue	Theater	Sandwich Place	Scandinavian Restaurant	Bar	Taco Place	College Arts Building
	1	DOWNTOWN WEST	44.9778	-93.2701	4	Theater	Italian Restaurant	New American Restaurant	Music Venue	Baseball Stadium	Restaurant	Bar	Sushi Restaurant	Pedestrian Plaza	Donut Shop
	2	DOWNTOWN EAST	44.9761	-93.2541	4	Bar	Hotel	Park	Japanese Restaurant	Yoga Studio	Scenic Lookout	Public Art	Non-Profit	Music Venue	Music School
	3	VENTURA VILLAGE	44.9828	-93.2579	2	Coffee Shop	Park	Grocery Store	Pharmacy	Theater	Café	Flower Shop	Bridge	Shopping Mall	Breakfast Spot
	4	SUMNER - GLENWOOD	44.984	-93.2916	4	Brewery	Thrift / Vintage Store	Farmers Market	Food Truck	Deli / Bodega	Business Service	Café	Fish Market	Bar	Clothing Store
									~						

Cluster example:

	Clu	Cluster 0												
[110]: mi	inneap	olis_merged.ld	oc[minneapo	lis_merged[' <mark>Cluste</mark>	r Labels'] == 0, m	inneapolis_merged.o	columns[[0] + list	range(3, minneapo	olis_merged.shape[1]))]]				
out[110]:		Neighborhood	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most C				
	12	HIAWATHA	0	Park	Trail	Scenic Lookout	Pizza Place	History Museum	Brewery	Bus				
	28	MINNEHAHA	0	Park	Trail	Historic Site	Liquor Store	Breakfast Spot	Shoe Store	Seafood Re				
	29	DIAMOND LAKE	0	Food Truck	Pet Store	Gas Station	Dog Run	Park	Grocery Store	Asian Re				
	33	HALE	0	Lake	Farmers Market	Restaurant	Sculpture Garden	Asian Restaurant	Furniture / Home Store	Thrift / Vintag				
	34	KEEWAYDIN	0	Park	Beach	Yoga Studio	Grocery Store	Restaurant	Playground	Mexican Re				
	36	LYNNHURST	0	Italian Restaurant	Park	Sporting Goods Shop	Taco Place	Bike Rental / Bike Share	French Restaurant	Во				
	46	WENONAH	0	Mexican Restaurant	Yoga Studio	Dog Run	Baseball Field	Sandwich Place	Asian Restaurant	Fast Food Re				
	55	EAST HARRIET	0	Playground	Park	Garden	Snack Place	Carpet Store	Beach	С				
	73	KENWOOD	0	Lake	Beach	Park	Trail	Café	Bookstore	American Re				

Map with clusters:

In third and final step we will focus on most promising neighborhoods in each cluster and choose the most suitable neighborhoods by visualizing crime and venue data for the most promising neighborhoods (visualization will help to decide on the final neighborhood recommendations).

Analyzing crime levels in a neighborhood chosen from a cluster:

Crime

```
[250]: kenwood = crime_grouped.loc['KENWOOD']
  kenwood.plot(kind='barh', figsize = (8, 6))
  plt.title('Crime levels in KENWOOD')
  plt.ylabel('Type of Crime''Crime levels')
  plt.xlabel('Crime frequency')
  plt.show()
```


Analyzing popular venues in the same neighborhood:

Results and Discussion

Cluster analysis showed that two (2) out of six (6) formed clusters did not meet the requirements of the stakeholders, so neighborhoods from those clusters were not considered.

Out of other four (4) clusters, a total of five (5) neighborhoods were chosen as suitable options for the stakeholders.

The first cluster (cluster 0) includes relatively quiet neighborhoods with access to green zones. Two neighborhoods (**Kenwood and Keewaydin**) were identified as suitable options. These neighborhoods are generally more family-friendly and have low crime rates. However, they are both farther from Downtown East, which is the neighborhood where one of the parents in the family plans to work. So, the stakeholders will need to consider whether the commute time is acceptable.

The third cluster (cluster 2) also has neighborhoods that are close to parks and have a good selection of restaurants/shops. However, most neighborhoods in this cluster also have relatively high crime rates (because they are closer to downtown), so only one neighborhood was recommended - **Harrison**.

In the fifth cluster (cluster 4), two neighborhoods were identified as suitable (both have access to a park, in addition to various options to eat out); both have sufficiently low crime rates, so both were recommended - **St.Anthony West and Beltrami**.

Conclusion

Purpose of this project was to identify neighborhoods in Minneapolis that the stakeholder family could relocate to. Using data from Foursquare API we identified the most common venue categories in each neighborhood

and were able to cluster Minneapolis neighborhoods using that information. Each cluster was analyzed to identify neighborhoods that suited the family's preferences (if such neighborhoods were present in the cluster). The chosen neighborhoods were compared using data on crime levels and the most popular venues.

The final decision on optimal neighborhood will be made by the stakeholders (i.e. the family) based on specific characteristics of the recommended neighborhoods.