Trójpunktowe Zginanie Belek Drukowanych 3D ze Zbrojeniem Miedzianym

Bartosz Kruszyński

1. Cel doświadczenia:

Celem doświadczenia było sprawdzenie, czy zbrojenie miedziane i jego ilość wpływa znacząco na właściwości wytrzymałościowe wydrukowanej w technologii FDM próbki.

2. Procedura wykonania doświadczenia:

2. Przyłożenie siły wstępnej

3. Zniszczenie próbki

3. Po próbie wytrzymałościowej:

4. Przekrój próbek:

Rysunek 1 Oznaczenie od lewej _5, _3, _1, _k, _4, gdzie "_" jest numerem porządkowym

5. Parametry i pomiary:

Typ maszyny wytrzymałościowej								ZWICK Z/100	
Temperatura								21,4°C	
Materiał								PLA	
Wzór wypełnienia								Gyroidalny 20%	
Rozstaw podpór								80 mm	
Oznaczenie próby	F _{max}		F _{max} /m _r		dL przy F _{max}	Masa m _r			
	Jednostkowa	Średnia	Jednostkowa	Średnia	ut pizy i max	Jednostkowa	Średnia		
	N	N	m/s^2	m/s^3	mm	g	bez zbrojenia	ze zbrojeniem	
01	482,9		65,26		5,734	7,400		9,6	
11	472,2	483,4	45,41	46,78	5,378	10,40	10,3		
21	492,3		47,33		5,615	10,40			
31	485,6		47,61		5,529	10,20			
03	633,2		72,78		6,599	8,700			
13	655,9	661,9	38,14	38,71	5,256	17,20	17,1	15	
23	672,1		39,08		5,024	17,20			
33	657,5		38,90		4,978	16,90			
04	604,0		67,87		5,521	8,900			
14	668,5	683,2	32,93	31,88	5,822	20,30	21,4	18,3	
24	685,4		28,92		5,491	23,70			
34	695,8		34,27		5,287	20,30			
05	717,0		74,68		5,662	9,600			
15	783,0	808,7	33,04	35,73	5,186	23,70	22,6	19,375	
25	822,7		40,13		5,081	20,50			
35	820,5		34,62		5,112	23,70			
0k	572,7		70,62		4,668	8,110			
1k	665,6	655,2	29,58	29,51	4,647	22,50	22,2	18,6775	
2k	634,0		28,82		4,395	22,00			
3k	665,8		30,13		5,257	22,10			

6. Wykresy próby trójpunktowego zginania:

7. Wnioski:

Im większa liczba otworów tym większa wytrzymałość. Odstępstwem od tej reguły jest próbka _4 i _k. Prawdopodobnie wynika to z ułożenie otworów pionowo, w jednej linii, zgodnej z kierunkiem działania siły gnącej, wg mnie powoduje to kumulacje naprężeń.

Można zauważyć, że zbrojenie zwiększa wytrzymałość próbki tylko w niewielkim stopniu (max 11,6-12,6%), a procent rośnie wraz ze wzrostem ilości otworów.

Jeżeli wziąć pod uwagę stosunek siły do masy otrzymujemy zależność malejącą wraz ze wzrostem liczby otworów (z wyjątkiem próbek _5).

Jeżeli zależy nam na tym by konstrukcja przeniosła większe obciążenie należy stosować zbrojenie, jednak kiedy chcemy mieć lekką konstrukcje nie należy stosować zbrojenia.

Porównanie z poprzednim badaniem:

1Siła maksymalna i stosunek siły maksymalnej dla masy własnej dla próbki gyrodialnej o wypełnieniu 20%

F _{max}	F _{max} /m _r		
361,59	61,18		

Nawet wytrzymałość próbek bez wzmocnienia miedzianego jest znacząco większa niż próbek bez żadnych otworów (nawet do 50% siły maksymalnej i do 18% stosunku siły maksymalne do masy).

Biorąc pod uwagę, że próbki z otworami miały więcej obrysów niż te bez otworów można wysnuć wniosek, że to nie wypełnienie jest istotne, a liczba i umiejscowienie obrysów.