Marny $(X,Y) \sim N(0,1)$, gdrie X,Y sa niezalezne

Rozuaramy znuemną (D, Θ) i obliceamy jej gystość.

Wiemy, że $f(x,y) = \frac{1}{2\pi} e^{-\frac{(x^2+y^2)}{2}}$ oroz $d = x^2 + y^2$ Wiadomo również, że $tan\Theta = \frac{y}{x} \Rightarrow y = x tan\Theta$, stąd $0 = x^2 + x^2 tan\Theta = D d = x^2 (1 + tan^2\Theta)$ $1 + tan^2\Theta = 1 + \frac{\sin^2\Theta}{\cos^2\Theta} = \frac{\cos^2\Theta}{\cos^2\Theta} = \frac{1}{\cos^2\Theta}$ $d = x^2 (1 + tan^2\Theta) \Rightarrow x^2 = d\cos^2\Theta \Rightarrow x = \pm dd \cos\Theta$ $y = x tan\Theta = \pm dd \cos\Theta$, $y = \pm dd \sin\Theta$.

Czyli $x = \pm dd \cos\Theta$, $y = \pm dd \sin\Theta$.

Themiast rerewaziać wszystkie przypadki zanważny, sie $gn(\frac{3x}{3d}) = sgn(\frac{3x}{3\theta}) \wedge sgn(\frac{3x}{3d}) = -sgn(\frac{3x}{3\theta})$

$$|\gamma| = \begin{vmatrix} \frac{\partial x}{\partial d} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial d} & \frac{\partial y}{\partial \theta} \end{vmatrix} = \begin{vmatrix} \pm \frac{\cos \theta}{2 t a} & \mp \sqrt{d} \sin \theta \\ \pm \frac{1}{2 t a} & \sin \theta \end{vmatrix} = \frac{1}{2} (\cos^2 \theta + \sin^2 \theta) = \frac{1}{2}$$

Skoro $y, X \in (-\infty, \infty)$ to $d \in [0, \infty)$, $\theta \in [0, 29]$

$$\int \int \frac{1}{2\pi} e^{-\frac{(x^2+y^2)}{2}} dy dx = \frac{1}{2\pi} \int \int e^{-\frac{y^2}{2}} \frac{1}{2} d\theta dd, \text{ whem } f(d,\theta) = \frac{1}{2\pi} e^{-\frac{y^2}{2}} \frac{1}{2}$$

$$|R|R$$

b) D,
$$\theta$$
 so mercolarine, zodem $f(d,\theta) = f_{1}(0) f_{2}(\theta)$.

 $f_{1}(d) = \int_{0}^{2\pi} \frac{1}{4\pi} e^{-\frac{d}{2}} d\theta = \int_{0}^{2\pi} e^{-\frac{d}{2}} \left[\theta\right]_{0}^{2\pi} = \int_{0}^{2\pi} e^{-\frac{d}{2}} d\theta$
 $f_{2}(\theta) = \int_{0}^{2\pi} \frac{1}{4\pi} e^{-\frac{d}{2}} d\theta = \int_{0}^{2\pi} e^{$

()
$$f_1(d) = \frac{1}{2}e^{-d/2}$$
 - vorlited untitodining de $n = \frac{1}{2}$