2	$ m Author^{\dagger}$					
3	Department of Accountancy and Finance					
4	Otago Business School, University of Otago					
5	Dunedin 9054, New Zealand					
6	EMAIL@otago.ac.nz					
7	Pakorn Aschakulporn					
8	Department of Accountancy and Finance					
9	Otago Business School, University of Otago					
10	Dunedin 9054, New Zealand					
	pakorn.aschakulporn@otago.ac.nz					
11	ракотп.азспакигротп вотадо.ас.п2					
12	Jin E. Zhang					
13	Department of Accountancy and Finance					
14	Otago Business School, University of Otago					
15	Dunedin 9054, New Zealand					
16	jin.zhang@otago.ac.nz					
	J.I.I.J.I.a.I.S & e e a Se e a Geral e i I.					
17	First Version: 1 January 2020					
	·					
18	This Version: 3 August 2022					
19	Keywords: <keywords></keywords>					
	· ·					
20	JEL Classification Code: <jelcode></jelcode>					

1

^{*} ACKNOWLEDGEMENTS † Corresponding author. Tel: +64 XX XXX XXXX.

22 Abstract

23 ABSTRACT

24 Keywords: <Keywords>

 $_{25}$ JEL Classification Code: <JELCode>

1 Introduction

27 The code used to generate this document is attached with in the pdf. It was compiled using

28 MiKTeX and "biber" was used to deal with the references.

- 29 First Paragraph
- First paragraph's sentences
- 1. What we're doing
- 2. Why it's important
- 3. Critique previous research
- 4. What we do to compete
- 35 Literature Review
- 36 Critique Key Papers
- 37 Our Contribution
- The remainder of this paper is organized as follows.
- Section 2
- Section 3
- Section 4
- Section 5
- 43 Appendix

⁴⁴ 2 Methodology

$_{\scriptscriptstyle 45}$ 2.1 References

The original/built-in way:

```
\textcite{10.1002/fut.22280}
  Aschakulporn and Zhang (2022)
  \text{citeauthoryear}\{10.1007/\text{s}11147-022-09187-x}\}
   Aschakulporn and Zhang (2022a)
   \citeauthoryear{10.1002/fut.22280}
51
  Aschakulporn and Zhang (2022b)
  \citeauthorsyear{10.1002/fut.22280}
  Aschakulporn and Zhang's (2022b)
   \parencite{10.1002/fut.22280}
  (Aschakulporn and Zhang, 2022b)
   \citeauthor{10.1002/fut.22280}
  Aschakulporn and Zhang
  \citeyear{10.1002/fut.22280}
  2022b
   \citeauthoryear{10.1080/14697680601173444,10.1111/acfi.12660,10.1002/fut.22280}
  Zhang and Xiang (2008), Aschakulporn and Zhang (2021), and Aschakulporn and Zhang (2022b)
```

- 63 \textcite{10.1080/14697680601173444,10.1111/acfi.12660,10.1002/fut.22280}
- ⁶⁴ Zhang and Xiang (2008); Aschakulporn and Zhang (2021); Aschakulporn and Zhang
- (2022)

66 **2.2** Math

Numbered equation

$$c = S_t e^{-\delta \tau} N(d_1) - K e^{-r\tau} N(d_2)$$

$$\tag{1}$$

Referencing to a numbered equation: Equation (1).

Not numbered

$$\Delta = \frac{\partial c_t}{S_t} = e^{-\delta \tau} N\left(d_1\right)$$

Align equations

$$d_1 = \frac{\ln\left(\frac{S_t}{K}\right) + \left(r - \delta + \frac{1}{2}\sigma^2\right)\tau}{\sigma\sqrt{\tau}} \tag{2}$$

$$d_2 = \frac{\ln\left(\frac{S_t}{K}\right) + \left(r - \delta - \frac{1}{2}\sigma^2\right)\tau}{\sigma\sqrt{\tau}} \tag{3}$$

Aligned without numbers

$$n(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

$$N(x) = \int_{-\infty}^{x} n(y)dy$$

 $v - \infty$

Aligned with and without numbers

$$d_2 = d_1 - \sigma \sqrt{\tau}$$

$$\frac{\partial d_1}{\partial S_t} = \frac{\partial d_2}{\partial S_t}$$
(4)

Inline maths
$$N(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy$$
 vs $N(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy$

82 Some bracket stuff

$$\{[\ln(\frac{S_t}{K})]^2\} \text{ vs } \left\{\left[\ln\left(\frac{S_t}{K}\right)\right]^2\right\}$$

3 Data

78

85

[Insert Table I about here.]

[Insert Figure 1 about here.]

[Insert Figure 2 about here.]

88 4 Results

5 Conclusion

References

Aschakulporn, Pakorn, and Jin E. Zhang, 2021, New Zealand whole milk powder options,
 Accounting and Finance 61(S1), 2201–2246.

- Aschakulporn, Pakorn, and Jin E. Zhang, 2022a, Bakshi, Kapadia, and Madan (2003) risk-
- neutral moment estimators: A Gram-Charlier density approach, Review of Derivatives
- 95 Research, Forthcoming.
- Aschakulporn, Pakorn, and Jin E. Zhang, 2022b, Bakshi, Kapadia, and Madan (2003)
- risk-neutral moment estimators: An affine jump-diffusion approach, Journal of Futures
- 98 Markets 42(3), 365–388.
- Zhang, Jin E., and Yi Xiang, 2008, The implied volatility smirk, Quantitative Finance
 8(3), 263–284.

101 Appendix

- 102 A APPENDIX A
- B APPENDIX B

104

 $\langle \text{TITLE} \rangle$

Tables

Table I: Descriptive Statistics.

Details

Variable	Mean	Std. Dev.	Max	Min
Variable 1	1	0	1	1
Variable 2	2	0	2	2
Variable 3	3	0	3	3

Figures

Figure 1: Figure A.

Details

Figure 2: Figure B.

Details