

LEARNINGFUZE

Data Science Bootcamp

#1 rated Coding and Data Science Program in all of Orange County,
Los Angeles, and the Inland Empire.

Prep Course Introduction - Statistics

Statistics

Statistics is the discipline that is concerned with the collection, organization, analysis, interpretation, and presentation of data.

Source: https://en.wikipedia.org/wiki/Statistics

Statistics is a science of collecting and analyzing data taken from a sample population

Statistics

Statistics

Descriptive

Inferential

Measures of Central Tendency

Measures of Dispersion

Population vs Sample

Population

Population is the broader group of people to whom you intend to generalize the results

Sample

Sample is the specific group that you collect data from. To be a truly random sample, every subject in your target population must have an equal chance of being selected in your sample.

Population vs Sample

Population

Sample

Statistics

Descriptive statistics

Population vs Sample

N = Total population

n = Total sample from population

Simple Random Stratified Probability Systematic Cluster **Statistics** Sampling Snowball Convenience Non Probability Judgement Quota

Population vs Sample

Sample A subset from a larger data set.

Population The larger data set or idea of a data set.

N (n) The size of the population (sample).

Random sampling Drawing elements into a sample at random.

Simple random sample The sample that results from random sampling without stratifying the population.

Sampling with replacement and without replacement

Statisticians and Data Scientists

A sample to a statistician means a collection of data points.

Data scientists will use the term sample for a single data point.

Statisticians and Data Scientists

Statistician, predictor variables are used in a model to predict a response or dependent variable.

For a data scientist, features are used to predict a target.

Data Data is usually a number, for a unit of observation and has a context

Type of data

Types of variable

Date and time

Quantitative variables Qualitative variables

Quantitative Variable

Types of Quantitative variable

Continuous variables

Discrete variables

Qualitative Variable

Types of Qualitative variable

Ordinal variables

Nominal variables

Fundamental Ideas

Estimates of Location Variance

Uncertainty
Probability

Centrality Measures/ Descriptive statistics

 Central tendency measures, which capture the center around which the data is distributed.

 Variation or variability measures, which describe the data spread, i.e. how far the measurements lie from the center.

Estimates of Location

Mean: The sum of all values divided by the number of values. Synonyms average

Median: The value such that one-half of the data lies above and below. Synonyms 50th percentile

Mode: The most frequent value

Outlier: A data value that is very different from most of the data. Synonyms extreme value

Central tendency measures

Mean

Arithmetic mean

Weighted mean

Geometric mean

Median

Mode

Mean

Average

 μ = Mean of population

x = Mean of sample

$$\bar{x} = \frac{(\Sigma x)^{n}}{n}$$

Mean

Let's write a function to calculate the mean of a given dataset

1, 2, 4, 5, 5, 7, 8, 9

Weighted Mean

 μ = Mean of population

x = Mean of sample

$$=rac{\sum_{i=1}^{n}w_{i}X_{i}}{\sum_{i=1}^{n}w_{i}}$$

Weighted Mean

Let's write a function to calculator mean of a given dataset

Weighted Values		Student 1			Students 2		
HW	15%	H	IW	78	HW	100	
Quiz	15%	C	uiz	70	Quiz	97	
Mid term	35%	IV	lid term	89	Mid term	76	
Final	35%	F	inal	94	Final	79	

Geometric Mean

 μ = Mean of population

x = Mean of sample

$$=\sqrt[n]{x_1x_2\cdots x_n}$$

Geometric Mean

Let's write a function to calculator geometric mean of a given data

1, 2, 4, 5, 5, 7, 8, 9

Median

Write a function to find the centre point (50% percentile) of the data

1, 2, 4, **5**, 5, 8, 9

1, 2, 4, **5**, **5**, 7, 8,9

Mode

Write a function to find the most frequent number in the data

1, 2, 4, **5, 5,** 8, 8, 9

Estimates of Location

Mean: The sum of all values divided by the number of values. Synonyms average

Weighted mean: The sum of all values times a weight divided by the sum of the weights. Synonyms weighted average

Geometric mean is calculated by multiplying all numbers and then taking the nth root of that number (where n=number of numbers).

Trimmed mean: The average of all values after dropping a fixed number of extreme values. Synonyms truncated mean

Variability measures

Variance

Standard Deviation

Coefficient Variation

Variance

Spread of data around the mean

 σ^2 = Variance of population

Variance =
$$\frac{\sum (x - \bar{x})^2}{n-1}$$

 S^2 = Variance of sample

Standard deviation

Square root of variance

$$SD = \sqrt{\frac{\sum(x-\bar{x})^2}{n-1}}$$

 σ = Standard deviation of population

s = Standard deviation of sample

Variance

Numbers1 = 3, 4, 4.5, 3.5 Numbers2 = 4.828, 6.437, 7.242, 5.632

Coefficient of variation

Compare two datasets which operate on different scales i.e miles and kilometers

Coefficient of variation = Standard deviation / Mean

Miles = 3, 4, 4.5, 3.5 Kms = 4.828, 6.437, 7.242, 5.632

Covariance

Covariance if two values are moving in the same direction

Age	Internet use
18	125
25	120
40	100
50	70

$$cov_{x,y} = rac{\sum (x_i - ar{x})(y_i - ar{y})}{N-1}$$

 $cov_{x,y}$ = covariance between variable a and y

 x_i = data value of x

 y_i = data value of y

 \bar{x} = mean of x

 \bar{y} = mean of y

N = number of data values