Welcome to Adaptive Array Signal Processing (5SSC0)

by Ruud van Sloun (lecturer), Iris Huijben (instructor), Julian Merkofer (instructor), and Vincent van de Schaft (instructor).

• Main content:

• Main content:

- ▶ Part 1A: Adaptive Signal Processing (Single channel, FIR)
- ► Part 1B: Array Signal Processing (ASP) (including DOA)
- ► Part 1C: Adaptive Array Signal Processing (AASP)
- Part 2A: Compressive sensing: theory
- Part 2B: Compressive sensing: state of the art

- Main content:
 - Part 1A: Adaptive Signal Processing (Single channel, FIR)
 - ► Part 1B: Array Signal Processing (ASP) (including DOA)
 - Part 1C: Adaptive Array Signal Processing (AASP)
 - Part 2A: Compressive sensing: theory
 - ► Part 2B: Compressive sensing: state of the art
- Assignments and oral exam:
 - 1. Groups of 2 students each

- Main content:
 - Part 1A: Adaptive Signal Processing (Single channel, FIR)
 - Part 1B: Array Signal Processing (ASP) (including DOA)
 - ▶ Part 1C: Adaptive Array Signal Processing (AASP)
 - Part 2A: Compressive sensing: theory
 - Part 2B: Compressive sensing: state of the art
- Assignments and oral exam:
 - 1. Groups of 2 students each
 - 2. Assignments 1A, 1B and 1C, 2: Fill in predefined documents

- Main content:
 - Part 1A: Adaptive Signal Processing (Single channel, FIR)
 - ► Part 1B: Array Signal Processing (ASP) (including DOA)
 - Part 1C: Adaptive Array Signal Processing (AASP)
 - Part 2A: Compressive sensing: theory
 - Part 2B: Compressive sensing: state of the art
- Assignments and oral exam:
 - 1. Groups of 2 students each
 - 2. Assignments 1A, 1B and 1C, 2: Fill in predefined documents
 - 3. All reports to be finalized during course

• Main content:

- Part 1A: Adaptive Signal Processing (Single channel, FIR)
- ► Part 1B: Array Signal Processing (ASP) (including DOA)
- Part 1C: Adaptive Array Signal Processing (AASP)
- ► Part 2A: Compressive sensing: theory
- Part 2B: Compressive sensing: state of the art

Assignments and oral exam:

- 1. Groups of 2 students each
- 2. Assignments 1A, 1B and 1C, 2: Fill in predefined documents
- 3. All reports to be finalized during course
- 4. Oral exam: During exam week of Q3

• Main content:

- Part 1A: Adaptive Signal Processing (Single channel, FIR)
- Part 1B: Array Signal Processing (ASP) (including DOA)
- Part 1C: Adaptive Array Signal Processing (AASP)
- Part 2A: Compressive sensing: theory
- Part 2B: Compressive sensing: state of the art

Assignments and oral exam:

- 1. Groups of 2 students each
- 2. Assignments 1A, 1B and 1C, 2: Fill in predefined documents
- 3. All reports to be finalized during course
- 4. Oral exam: During exam week of Q3 To pass 5SSC0 \Rightarrow ORAL > 5

1. Book:

Dimitris G. Manolakis, Vinay K. Ingle and Stephen M. Kogon, "Statistical and Adaptive Array Signal Processing: Spectral estimation, signal modeling, adaptive filtering and array processing"

- Optimum linear filters (Chapter 6)
- Adaptive filters (Chapter 10)
- Array processing (Chapter 11)

2. Book:

Duarte and Eldar, "Structured Compressed Sensing: From Theory to Applications", from Sec. I to II-C (https://arxiv.org/pdf/1106.6224.pdf)

1. Book:

Dimitris G. Manolakis, Vinay K. Ingle and Stephen M. Kogon, "Statistical and Adaptive Array Signal Processing: Spectral estimation, signal modeling, adaptive filtering and array processing"

- Optimum linear filters (Chapter 6)
- Adaptive filters (Chapter 10)
- Array processing (Chapter 11)

2. Book:

Duarte and Eldar, "Structured Compressed Sensing: From Theory to Applications", from Sec. I to II-C (https://arxiv.org/pdf/1106.6224.pdf)

These slides

1. Book:

Dimitris G. Manolakis, Vinay K. Ingle and Stephen M. Kogon, "Statistical and Adaptive Array Signal Processing: Spectral estimation, signal modeling, adaptive filtering and array processing"

- Optimum linear filters (Chapter 6)
- Adaptive filters (Chapter 10)
- Array processing (Chapter 11)

2. Book:

Duarte and Eldar, "Structured Compressed Sensing: From Theory to Applications", from Sec. I to II-C (https://arxiv.org/pdf/1106.6224.pdf)

- 3. These slides
- 4. Documents: Study guide/ Course organization.

1. Book:

Dimitris G. Manolakis, Vinay K. Ingle and Stephen M. Kogon, "Statistical and Adaptive Array Signal Processing: Spectral estimation, signal modeling, adaptive filtering and array processing"

- Optimum linear filters (Chapter 6)
- Adaptive filters (Chapter 10)
- Array processing (Chapter 11)

2. Book:

Duarte and Eldar, "Structured Compressed Sensing: From Theory to Applications", from Sec. I to II-C (https://arxiv.org/pdf/1106.6224.pdf)

- 3. These slides
- 4. Documents: Study guide/ Course organization.
- 5. Necessary Matlab code

1. Book:

Dimitris G. Manolakis, Vinay K. Ingle and Stephen M. Kogon, "Statistical and Adaptive Array Signal Processing: Spectral estimation, signal modeling, adaptive filtering and array processing"

- Optimum linear filters (Chapter 6)
- Adaptive filters (Chapter 10)
- Array processing (Chapter 11)

2. Book:

Duarte and Eldar, "Structured Compressed Sensing: From Theory to Applications", from Sec. I to II-C (https://arxiv.org/pdf/1106.6224.pdf)

- 3. These slides
- 4. Documents: Study guide/ Course organization.
- 5. Necessary Matlab code

All relevant material (except book) available via Canvas (Modules):

1. Book:

Dimitris G. Manolakis, Vinay K. Ingle and Stephen M. Kogon, "Statistical and Adaptive Array Signal Processing: Spectral estimation, signal modeling, adaptive filtering and array processing"

- Optimum linear filters (Chapter 6)
- Adaptive filters (Chapter 10)
- Array processing (Chapter 11)

2. Book:

Duarte and Eldar, "Structured Compressed Sensing: From Theory to Applications", from Sec. I to II-C (https://arxiv.org/pdf/1106.6224.pdf)

- 3. These slides
- 4. Documents: Study guide/ Course organization.
- 5. Necessary Matlab code

All relevant material (except book) available via Canvas (Modules):

Deadlines and credits

Code	Deadline / Date	Credits
1A	February 20, 09:00	10
1B	March 6, 09:00	10
1C	March 20, 09:00	10
2	April 10, 09:00	20
Oral	tbd (April 10-21)	50
Total		100

Deadlines and credits

Code	Deadline / Date	Credits
1A	February 20, 09:00	10
1B	March 6, 09:00	10
1C	March 20, 09:00	10
2	April 10, 09:00	20
Oral	tbd (April 10-21)	50
Total		100

To pass 5SSC0 \Rightarrow ORAL ≥ 5

Adaptive Signal Processing (Part IA)

Content part I

Focus on single channel adaptive algorithms using $\underline{\mathit{FIR}}$ structures

Content part I

Focus on single channel adaptive algorithms using FIR structures

- Applications
- Minimum Mean Squared Error (MMSE)
- Constrained MMSE
- Least Squares (LS)
- Steepest Descent Algorithm (SGD)
- ► LMS variants: (Complex) (N)LMS, Constrained LMS
- ► Newton algorithm
- Recursive Least Squares (RLS)
- Frequency Domain Adaptive Filter (FDAF)
- Summary

Applications: Equalization

Applications: Equalization

Signal correction/ Inverse modelling: $w \to h^{-1} \Rightarrow r \to s$

Applications: Signal prediction

Applications: Signal prediction

Signal prediction: Predict x[k] from $x[k-\Delta]$

Notes:

► Signals *x* and *e* correlated

Notes:

- ► Signals *x* and *e* correlated
- ▶ "Noise" *n* not correlated with other signals

Notes:

- ► Signals *x* and *e* correlated
- ▶ "Noise" *n* not correlated with other signals
- Pragmatic choices:
 - All signals in average zero
 - ► Filter w: FIR

Notes:

- Signals x and e correlated
- "Noise" n not correlated with other signals
- Pragmatic choices:
 - All signals in average zero
 - ► Filter w: FIR
- Calculation of weight of filter w:
 - ▶ Use quadratic cost function: $J = f(r^2)$
 - First fixed weights (MMSE, LS), then adaptive

General Minimum Mean Squared Error (MMSE) model:

General Minimum Mean Squared Error (MMSE) model:

Goal:

Given N samples $\underline{x}[k] = (x[k], x[k-1], \cdots, x[k-N+1])^t$ calculate coefficients $\underline{\text{fixed}}$ filter $\underline{w} = (w_0, w_1, \cdots, w_{N-1})^t$ such that Mean Squared Error (MSE) $J = E\{r^2[k]\} = E\{(e[k] - \hat{e}[k])^2\}$ is minimized.

General Minimum Mean Squared Error (MMSE) model:

Goal:

Given N samples $\underline{x}[k] = (x[k], x[k-1], \dots, x[k-N+1])^t$ calculate coefficients $\underline{\text{fixed}}$ filter $\underline{w} = (w_0, w_1, \dots, w_{N-1})^t$ such that Mean Squared Error (MSE) $J = E\{r^2[k]\} = E\{(e[k] - \hat{e}[k])^2\}$ is minimized.

MMSE Optimization problem:

Given FIR samples
$$x[k-i]$$
 for $i=0,1,\cdots N-1$
$$\underline{\mathbf{w}}_o = \arg\min_{\underline{\mathbf{w}}} \left(E\left\{r^2[k]\right\} \right)$$

$$J = E\{(e[k] - \underline{w}^t \cdot \underline{x}[k]) \cdot (e[k] - \underline{x}^t[k] \cdot \underline{w})\}$$

=
$$E\{e^2[k]\} - \underline{w}^t E\{\underline{x}[k]e[k]\} - E\{e[k]\underline{x}^t[k]\}\underline{w} + \underline{w}^t E\{\underline{x}[k]\underline{x}^t[k]\}\underline{w}$$

$$J = E\{(e[k] - \underline{w}^t \cdot \underline{x}[k]) \cdot (e[k] - \underline{x}^t[k] \cdot \underline{w})\}$$

=
$$E\{e^2[k]\} - \underline{w}^t E\{\underline{x}[k]e[k]\} - E\{e[k]\underline{x}^t[k]\}\underline{w} + \underline{w}^t E\{\underline{x}[k]\underline{x}^t[k]\}\underline{w}$$

$$\Rightarrow \boxed{J = E\{e^2[k]\} - \underline{w}^t \underline{r}_{ex} - \underline{r}_{ex}^t \underline{w} + \underline{w}^t R_x \underline{w}}$$

$$J = E\{(e[k] - \underline{w}^t \cdot \underline{x}[k]) \cdot (e[k] - \underline{x}^t[k] \cdot \underline{w})\}$$

=
$$E\{e^2[k]\} - \underline{w}^t E\{\underline{x}[k]e[k]\} - E\{e[k]\underline{x}^t[k]\}\underline{w} + \underline{w}^t E\{\underline{x}[k]\underline{x}^t[k]\}\underline{w}$$

$$\Rightarrow \boxed{J = E\{e^2[k]\} - \underline{\mathbf{w}}^t \underline{\mathbf{r}}_{ex} - \underline{\mathbf{r}}_{ex}^t \underline{\mathbf{w}} + \underline{\mathbf{w}}^t \mathbf{R}_{x} \underline{\mathbf{w}}}$$

with cross correlation $\rho_{ex}[\tau] = E\{e[k]x[k-\tau]:$

$$\underline{\mathbf{r}}_{\mathsf{ex}} = E\{e[k]\underline{\mathbf{x}}[k]\} = (\rho_{\mathsf{ex}}[0], \rho_{\mathsf{ex}}[1], \cdots, \rho_{\mathsf{ex}}[N-1])^t$$

$$J = E\{(e[k] - \underline{w}^t \cdot \underline{x}[k]) \cdot (e[k] - \underline{x}^t[k] \cdot \underline{w})\}$$

=
$$E\{e^2[k]\} - \underline{w}^t E\{\underline{x}[k]e[k]\} - E\{e[k]\underline{x}^t[k]\}\underline{w} + \underline{w}^t E\{\underline{x}[k]\underline{x}^t[k]\}\underline{w}$$

$$\Rightarrow \boxed{J = E\{e^2[k]\} - \underline{w}^t \underline{r}_{ex} - \underline{r}_{ex}^t \underline{w} + \underline{w}^t R_x \underline{w}}$$

with cross correlation $\rho_{\text{ex}}[\tau] = E\{e[k]x[k-\tau]:$

$$\underline{\mathbf{r}}_{\mathsf{ex}} = E\{e[k]\underline{\mathbf{x}}[k]\} = (\rho_{\mathsf{ex}}[0], \rho_{\mathsf{ex}}[1], \cdots, \rho_{\mathsf{ex}}[N-1])^t$$

and autocorrelation: $\rho_x[\tau] = E\{x[k]x[k-\tau]\} = rho_x[-\tau]$

$$\mathsf{R}_{\mathsf{x}} = E\{\underline{\mathsf{x}}[k]\underline{\mathsf{x}}^{\mathsf{t}}[k]\} = \begin{pmatrix} \rho_{\mathsf{x}}[0] & \rho_{\mathsf{x}}[1] & \cdots & \rho_{\mathsf{x}}[N-1] \\ \rho_{\mathsf{x}}[1] & \rho_{\mathsf{x}}[0] & \cdots & \rho_{\mathsf{x}}[N-2] \\ \vdots & \vdots & \vdots & \vdots \\ \rho_{\mathsf{x}}[N-1] & \rho_{\mathsf{x}}[N-2] & \cdots & \rho_{\mathsf{x}}[0] \end{pmatrix}$$

$$J = E\{e^{2}[k]\} - \underline{\mathbf{w}}^{t}\underline{\mathbf{r}}_{ex} - \underline{\mathbf{r}}_{ex}^{t}\underline{\mathbf{w}} + \underline{\mathbf{w}}^{t}\mathbf{R}_{x}\underline{\mathbf{w}}$$

$$J = E\{e^{2}[k]\} - \underline{w}^{t}\underline{r}_{ex} - \underline{r}_{ex}^{t}\underline{w} + \underline{w}^{t}R_{x}\underline{w}$$

$$\Rightarrow$$
 Optimum: $\underline{\nabla} = \frac{dJ}{dw} = -2(\underline{r}_{ex} - R_x \underline{w}) = \underline{0}$

$$J = E\{e^{2}[k]\} - \underline{\mathbf{w}}^{t}\underline{\mathbf{r}}_{ex} - \underline{\mathbf{r}}_{ex}^{t}\underline{\mathbf{w}} + \underline{\mathbf{w}}^{t}\mathbf{R}_{x}\underline{\mathbf{w}}$$

$$\Rightarrow$$
 Optimum: $\underline{\nabla} = \frac{dJ}{dw} = -2(\underline{r}_{ex} - R_x \underline{w}) = \underline{0}$

$$\Rightarrow$$
 Normal Equations $R_x \cdot \underline{w} = \underline{r}_{ex}$

$$R_x \cdot \underline{w} = \underline{r}_{ex}$$

$$J = E\{e^{2}[k]\} - \underline{\mathbf{w}}^{t}\underline{\mathbf{r}}_{ex} - \underline{\mathbf{r}}_{ex}^{t}\underline{\mathbf{w}} + \underline{\mathbf{w}}^{t}\mathbf{R}_{x}\underline{\mathbf{w}}$$

$$\Rightarrow$$
 Optimum: $\underline{\nabla} = \frac{dJ}{dw} = -2(\underline{r}_{ex} - R_x \underline{w}) = \underline{0}$

 \Rightarrow **Normal Equations** $R_x \cdot \underline{w} = \underline{r}_{ex}$

$$R_x \cdot \underline{w} = \underline{r}_{ex}$$

$$\Rightarrow$$
 Wiener filter $\underline{\mathbf{w}}_o = \mathbf{R}_x^{-1} \cdot \underline{\mathbf{r}}_{ex}$

$$J = E\{e^{2}[k]\} - \underline{\mathbf{w}}^{t}\underline{\mathbf{r}}_{ex} - \underline{\mathbf{r}}_{ex}^{t}\underline{\mathbf{w}} + \underline{\mathbf{w}}^{t}\mathsf{R}_{x}\underline{\mathbf{w}}$$

$$\Rightarrow$$
 Optimum: $\underline{\nabla} = \frac{dJ}{dw} = -2(\underline{r}_{ex} - R_x \underline{w}) = \underline{0}$

 \Rightarrow Normal Equations $R_x \cdot \underline{w} = \underline{r}_{ex}$

$$R_x \cdot \underline{w} = \underline{r}_{ex}$$

$$\Rightarrow$$
 Wiener filter $\underline{\mathbf{w}}_o = \mathbf{R}_x^{-1} \cdot \underline{\mathbf{r}}_{ex}$

General expression:
$$J = J_{min} + (\underline{w} - \underline{w}_o)^t \cdot R_x \cdot (\underline{w} - \underline{w}_o)$$

$$J = E\{e^{2}[k]\} - \underline{\mathbf{w}}^{t}\underline{\mathbf{r}}_{ex} - \underline{\mathbf{r}}_{ex}^{t}\underline{\mathbf{w}} + \underline{\mathbf{w}}^{t}\mathbf{R}_{x}\underline{\mathbf{w}}$$

$$\Rightarrow$$
 Optimum: $\underline{\nabla} = \frac{dJ}{dw} = -2(\underline{r}_{ex} - R_x \underline{w}) = \underline{0}$

 \Rightarrow **Normal Equations** $R_x \cdot \underline{w} = \underline{r}_{ex}$

$$R_x \cdot \underline{w} = \underline{r}_{ex}$$

$$\Rightarrow$$
 Wiener filter $\underline{\mathbf{w}}_o = \mathsf{R}_x^{-1} \cdot \underline{\mathbf{r}}_{\mathsf{ex}}$

General expression:
$$J = J_{min} + (\underline{w} - \underline{w}_o)^t \cdot R_x \cdot (\underline{w} - \underline{w}_o)$$

$$J_{\min} = J_{\underline{\mathbf{w}} = \underline{\mathbf{w}}_o} = E\{r^2[k]\} = E\{r[k] \cdot e[k]\} = E\{e^2[k]\} - \underline{\mathbf{r}}_{ex}^t \mathbf{R}_x^{-1} \underline{\mathbf{r}}_{ex}$$

$$J = E\{e^{2}[k]\} - \underline{\mathbf{w}}^{t}\underline{\mathbf{r}}_{ex} - \underline{\mathbf{r}}_{ex}^{t}\underline{\mathbf{w}} + \underline{\mathbf{w}}^{t}\mathbf{R}_{x}\underline{\mathbf{w}}$$

$$\Rightarrow$$
 Optimum: $\underline{\nabla} = \frac{dJ}{dw} = -2(\underline{r}_{ex} - R_x \underline{w}) = \underline{0}$

 \Rightarrow Normal Equations $R_x \cdot w = r_{ex}$

$$R_x \cdot \underline{w} = \underline{r}_{ex}$$

$$\Rightarrow$$
 Wiener filter $\underline{\mathbf{w}}_o = \mathsf{R}_x^{-1} \cdot \underline{\mathbf{r}}_{\mathsf{ex}}$

General expression:
$$J = J_{min} + (\underline{w} - \underline{w}_o)^t \cdot R_x \cdot (\underline{w} - \underline{w}_o)$$

$$J_{min} = J_{\underline{\mathbf{w}} = \underline{\mathbf{w}}_o} = E\{r^2[k]\} = E\{r[k] \cdot e[k]\} = E\{e^2[k]\} - \underline{\mathbf{r}}_{ex}^t \mathbf{R}_x^{-1} \underline{\mathbf{r}}_{ex}$$

From general expression $\Rightarrow J$ quadratic in w thus w_o really minimum

Contour plots
$$J = J_{min} + (\underline{w} - \underline{w}_o)^t \cdot R_x \cdot (\underline{w} - \underline{w}_o)$$

Contour plots
$$J = J_{min} + (\underline{w} - \underline{w}_o)^t \cdot R_x \cdot (\underline{w} - \underline{w}_o)$$

Two MMSE variants

Two MMSE variants

Complex MMSE:

Setup with complex signals and weights

Similar result as before:

$$\underline{\mathbf{w}}_o = \mathsf{R}_x^{-1} \cdot \underline{\mathbf{r}}_{\mathsf{e}^* x}$$

with $\underline{\mathbf{r}}_{e^*x} = E\{e^*[k]\underline{\mathbf{x}}[k]\}$ and $\mathbf{R}_x = E\{\underline{\mathbf{x}}[k] \cdot \underline{\mathbf{x}}^h[k]\}$ (h=hermetian)

Two MMSE variants

Complex MMSE:

Setup with complex signals and weights

Similar result as before:

$$\underline{\mathbf{w}}_{o} = \mathsf{R}_{x}^{-1} \cdot \underline{\mathbf{r}}_{\mathsf{e}^{*}x}$$

with $\underline{\mathbf{r}}_{e^*x} = E\{e^*[k]\underline{\mathbf{x}}[k]\}$ and $\mathbf{R}_x = E\{\underline{\mathbf{x}}[k] \cdot \underline{\mathbf{x}}^h[k]\}$ (h=hermetian)

Constrained MMSE:

Setup with set of constraints on weights

$$x[k] \longrightarrow \boxed{\underline{\mathbf{w}}} \stackrel{\hat{e}[k]}{\longrightarrow} r[k]$$

Example:
$$\sum_{i=0}^{N-1} w_i = 1$$

$$x[k] \xrightarrow{\underline{\mathbf{w}}} \stackrel{e[k]}{\overset{e[k]}{\longleftarrow}} r[k]$$

$$x[k] \xrightarrow{e[k]} \underbrace{\underline{w}}_{-} \underbrace{\hat{e}[k]}_{+} \underbrace{r[k]}$$

$$x[k] \longrightarrow \underbrace{\underline{\mathbf{w}}}_{-} \underbrace{\hat{e}[k]}_{-} \underbrace{\downarrow}_{r[k]}$$

Some notes on solving $C^t \cdot \underline{f} = \underline{w}$

Some notes on solving $C^t \cdot \underline{f} = \underline{w}$

 $M \times 1$ constraint vector : $\underline{\mathbf{f}} = (f_1, f_2, \cdots, f_M)^t$

 $N \times M$ constraint matrix : $C = (\underline{c}_1, \underline{c}_2, \cdots, \underline{c}_M)^t$

Note: M independent constraints \Rightarrow C full rank

Some notes on solving $C^t \cdot \underline{f} = \underline{w}$

 $M \times 1$ constraint vector : $\underline{\mathbf{f}} = (f_1, f_2, \cdots, f_M)^t$

 $N \times M$ constraint matrix : $C = (\underline{c}_1, \underline{c}_2, \cdots, \underline{c}_M)^t$

Note: M independent constraints \Rightarrow C full rank

Solutions of $C^t \cdot \underline{w} = \underline{f}$

Solutions of
$$C^t \cdot \underline{w} = \underline{f}$$

ightharpoonup Case N=M:

$$\Rightarrow \underline{\mathbf{w}}^c = (\mathbf{C}^t)^{-1} \cdot \underline{\mathbf{f}}$$

 \Rightarrow No degrees of freedom left for MMSE

Solutions of
$$C^t \cdot \underline{w} = \underline{f}$$

ightharpoonup Case N=M:

$$\Rightarrow \underline{\mathbf{w}}^c = (\mathbf{C}^t)^{-1} \cdot \underline{\mathbf{f}}$$

- ⇒ No degrees of freedom left for MMSE
- ightharpoonup Case N > M:
 - \Rightarrow Possible solution $\underline{w}^c = (C^t)^{\dagger} \cdot \underline{f}$ Appendix: Generalized inverse $(C^t)^{\dagger} = C \cdot (C^t \cdot C)^{-1}$
 - \Rightarrow N M degrees of freedom left over for MMSE

Solutions of
$$C^t \cdot \underline{w} = \underline{f}$$

ightharpoonup Case N=M:

$$\Rightarrow \underline{\mathbf{w}}^c = (\mathbf{C}^t)^{-1} \cdot \underline{\mathbf{f}}$$

- ⇒ No degrees of freedom left for MMSE
- ightharpoonup Case N > M:
 - \Rightarrow Possible solution $\underline{\mathbf{w}}^c = (\mathsf{C}^t)^\dagger \cdot \underline{\mathbf{f}}$ Appendix: Generalized inverse $(\mathsf{C}^t)^\dagger = \mathsf{C} \cdot (\mathsf{C}^t \cdot \mathsf{C})^{-1}$
 - \Rightarrow N M degrees of freedom left over for MMSE
- ► Case *N* < *M*:
 - ⇒ Conflicting solutions
 - ⇒ Choose e.g. minimum norm solution

We can't reach $\underline{\mathbf{w}}_o$, but we can do better than $\underline{\mathbf{w}}^c$:

We can't reach $\underline{\mathbf{w}}_o$, but we can do better than $\underline{\mathbf{w}}^c$:

Contour plot J

We can't reach $\underline{\mathbf{w}}_{o}$, but we can do better than $\underline{\mathbf{w}}^{c}$:

We can't reach $\underline{\mathbf{w}}_{o}$, but we can do better than $\underline{\mathbf{w}}^{c}$:

We can't reach $\underline{\mathbf{w}}_{o}$, but we can do better than $\underline{\mathbf{w}}^{c}$:

Use N-M degrees of freedom to improve result: $\underline{\mathbf{w}}^c \Rightarrow \underline{\mathbf{w}}^c_o$

Use Lagrange multipliers

Use Lagrange multipliers

Performance index:

$$J^{c} = E\{r^{2}\} + \underline{\lambda}^{t}(C^{t}\underline{w} - \underline{f})$$

=
$$E\{e^{2}\} - \underline{w}^{t}\underline{r}_{ex} - \underline{r}_{ex}^{t}\underline{w} + \underline{w}^{t}R_{x}\underline{w} + \underline{\lambda}^{t}(C^{t}\underline{w} - \underline{f})$$

Use Lagrange multipliers

Performance index:

$$J^{c} = E\{r^{2}\} + \underline{\lambda}^{t}(C^{t}\underline{w} - \underline{f})$$

= $E\{e^{2}\} - \underline{w}^{t}\underline{r}_{ex} - \underline{r}_{ex}^{t}\underline{w} + \underline{w}^{t}R_{x}\underline{w} + \underline{\lambda}^{t}(C^{t}\underline{w} - \underline{f})$

Gradient vector:

$$\begin{split} \frac{\mathrm{d}J^c}{\mathrm{d}\underline{w}} &= -2\underline{\mathbf{r}}_{\mathrm{ex}} + 2\mathbf{R}_{\mathrm{x}}\underline{w} + \mathbf{C}\underline{\lambda} \\ \frac{\mathrm{d}J^c}{\mathrm{dw}} &= \underline{0} \ \Rightarrow \ \underline{w}_o^c = \mathbf{R}_{\mathrm{x}}^{-1}\underline{\mathbf{r}}_{\mathrm{ex}} - \frac{1}{2}\mathbf{R}_{\mathrm{x}}^{-1}\mathbf{C}\underline{\lambda} \end{split}$$

Use Lagrange multipliers

Performance index:

$$J^{c} = E\{r^{2}\} + \underline{\lambda}^{t}(C^{t}\underline{w} - \underline{f})$$

= $E\{e^{2}\} - \underline{w}^{t}\underline{r}_{ex} - \underline{r}_{ex}^{t}\underline{w} + \underline{w}^{t}R_{x}\underline{w} + \underline{\lambda}^{t}(C^{t}\underline{w} - \underline{f})$

Gradient vector:

$$\frac{dJ^{c}}{d\underline{w}} = -2\underline{r}_{ex} + 2R_{x}\underline{w} + C\underline{\lambda}$$

$$\frac{dJ^{c}}{dw} = \underline{0} \implies \underline{w}_{o}^{c} = R_{x}^{-1}\underline{r}_{ex} - \frac{1}{2}R_{x}^{-1}C\underline{\lambda}$$

Furthermore in optimum: $C^t\underline{w}_o^c = \underline{f}$

Use Lagrange multipliers

Performance index:

$$J^{c} = E\{r^{2}\} + \underline{\lambda}^{t}(C^{t}\underline{w} - \underline{f})$$

= $E\{e^{2}\} - \underline{w}^{t}\underline{r}_{ex} - \underline{r}_{ex}^{t}\underline{w} + \underline{w}^{t}R_{x}\underline{w} + \underline{\lambda}^{t}(C^{t}\underline{w} - \underline{f})$

Gradient vector:

$$\frac{dJ^{c}}{d\underline{w}} = -2\underline{r}_{ex} + 2R_{x}\underline{w} + C\underline{\lambda}$$

$$\frac{dJ^{c}}{dw} = \underline{0} \implies \underline{w}_{o}^{c} = R_{x}^{-1}\underline{r}_{ex} - \frac{1}{2}R_{x}^{-1}C\underline{\lambda}$$

Furthermore in optimum: $C^t \underline{w}_o^c = \underline{f}$

Combine last two equations:

$$\Rightarrow \quad \underline{\lambda} = 2(\mathsf{C}^t\mathsf{R}_{\mathsf{x}}^{-1}\mathsf{C})^{-1}(\mathsf{C}^t\mathsf{R}_{\mathsf{x}}^{-1}\underline{\mathsf{r}}_{\mathsf{ex}} - \underline{\mathsf{f}})$$

$$\Rightarrow \quad \underline{\underline{\mathbf{w}}_{o}^{c}} = \underline{\mathbf{w}}_{o} + \mathbf{R}_{x}^{-1} \mathbf{C} (\mathbf{C}^{t} \mathbf{R}_{x}^{-1} \mathbf{C})^{-1} (\underline{\mathbf{f}} - \mathbf{C}^{t} \underline{\mathbf{w}}_{o})$$

with

$$\underline{\mathbf{w}}_o = \mathsf{R}_{\mathsf{x}}^{-1} \underline{\mathbf{r}}_{\mathsf{e}\mathsf{x}}$$

$$\Rightarrow \quad \boxed{\underline{\mathbf{w}}_{o}^{c} = \underline{\mathbf{w}}_{o} + \mathsf{R}_{x}^{-1}\mathsf{C}(\mathsf{C}^{t}\mathsf{R}_{x}^{-1}\mathsf{C})^{-1}(\underline{\mathbf{f}} - \mathsf{C}^{t}\underline{\mathbf{w}}_{o})}$$

with

$$\underline{\mathbf{w}}_{o} = \mathbf{R}_{x}^{-1} \underline{\mathbf{r}}_{ex}$$

Similar result:

$$\underline{\mathbf{w}_{o}^{c}} = \mathbf{R}_{x}^{-1} \mathbf{C} (\mathbf{C}^{t} \mathbf{R}_{x}^{-1} \mathbf{C})^{-1} \underline{\mathbf{f}}$$

$$\Rightarrow \quad \underline{\underline{w}_o^c} = \underline{\underline{w}}_o + R_x^{-1} C (C^t R_x^{-1} C)^{-1} (\underline{\underline{f}} - C^t \underline{\underline{w}}_o)$$

with

$$\underline{\mathbf{w}}_o = \mathbf{R}_x^{-1} \underline{\mathbf{r}}_{ex}$$

Similar result:

$$\underline{\mathbf{w}_{o}^{c}} = \mathbf{R}_{x}^{-1} \mathbf{C} (\mathbf{C}^{t} \mathbf{R}_{x}^{-1} \mathbf{C})^{-1} \underline{\mathbf{f}}$$

Check:
$$C^t \underline{w}_o^c = C^t \underline{w}_o + (C^t R_x^{-1} C)(C^t R_x^{-1} C)^{-1} (\underline{f} - C^t \underline{w}_o) = \underline{f}$$

Least Squares (LS)

Least Squares (LS)

Different quadratic cost functions:

▶ Mean Square Error (MSE):

$$J_{mse} = E\{r^2[k]\} = E\{(e[k] - \underline{\mathbf{w}}^t \underline{\mathbf{x}}[k])^2\}$$

 \Rightarrow Minimum MSE (MMSE) = Wiener

Least Squares (LS)

Different quadratic cost functions:

Mean Square Error (MSE):

$$J_{mse} = E\{r^2[k]\} = E\{(e[k] - \underline{\mathbf{w}}^t \underline{\mathbf{x}}[k])^2\}$$

- \Rightarrow Minimum MSE (MMSE) = Wiener
- ▶ Least Square (LS): If statistical information is not available

 \Rightarrow

Use criterion based on data (thus without $E\{\cdot\}$)

LS

Collect $L (\geq 1)$ data vectors $\underline{\mathbf{x}}[k-i]$ (each of length N)

LS

Collect $L (\geq 1)$ data vectors $\underline{\mathbf{x}}[k-i]$ (each of length N)

Available data (for $i = 0, 1, \dots, L - 1$):

Collect $L (\geq 1)$ data vectors $\underline{\mathbf{x}}[k-i]$ (each of length N)

Available data (for $i = 0, 1, \dots, L-1$):

ullet Input signal samples/vectors $\underline{\mathbf{x}}[k-i]$

$$\underline{\mathbf{x}}^{t}[k-i] = (\mathbf{x}[k-i], \mathbf{x}[k-i-1], \cdots, \mathbf{x}[k-i-N+1])^{t}$$

- Reference signal samples: e[k-i]
- Residual signal samples: $r[k-i] = e[k-i] \underline{x}^t[k-i] \cdot \underline{w}$

LS

Notation:

$$X[k] = \begin{pmatrix} \frac{\mathbf{x}^{t}[k]}{\mathbf{x}^{t}[k-1]} \\ \vdots \\ \mathbf{x}^{t}[k-L+1] \end{pmatrix} \qquad \underline{\mathbf{w}} = \begin{pmatrix} w_{0} \\ w_{1} \\ \vdots \\ w_{N-1} \end{pmatrix}$$

$$\underline{\mathbf{e}}[k] = \begin{pmatrix} e[k] \\ e[k-1] \\ \vdots \\ e[k-L+1] \end{pmatrix} \qquad \underline{\mathbf{r}}[k] = \begin{pmatrix} r[k] \\ r[k-1] \\ \vdots \\ r[k-L+1] \end{pmatrix}$$

Notation:

$$X[k] = \begin{pmatrix} \frac{\mathbf{x}^{t}[k]}{\mathbf{x}^{t}[k-1]} \\ \vdots \\ \mathbf{x}^{t}[k-L+1] \end{pmatrix} \qquad \underline{w} = \begin{pmatrix} w_{0} \\ w_{1} \\ \vdots \\ w_{N-1} \end{pmatrix}$$

$$\underline{\mathbf{e}}[k] = \begin{pmatrix} e[k] \\ e[k-1] \\ \vdots \\ e[k-L+1] \end{pmatrix} \qquad \underline{\mathbf{r}}[k] = \begin{pmatrix} r[k] \\ r[k-1] \\ \vdots \\ r[k-L+1] \end{pmatrix}$$

Simplified notation (skip time indices):

$$r = e - X \cdot w$$

LS problem formulation:

$$\underline{\mathbf{w}}_{ls,o} = \arg\min_{\underline{\mathbf{w}}} |\underline{\mathbf{e}} - \mathbf{X} \cdot \underline{\mathbf{w}}|^2$$

$$J_{ls} = \sum_{i=0}^{L-1} r^2 [k-i] = \underline{\mathbf{r}}^t \cdot \underline{\mathbf{r}} = (\underline{\mathbf{e}}^t - \underline{\mathbf{w}}^t \mathbf{X}^t) \cdot (\underline{\mathbf{e}} - \mathbf{X}\underline{\mathbf{w}})$$

$$J_{ls} = \sum_{i=0}^{L-1} r^2 [k-i] = \underline{r}^t \cdot \underline{r} = (\underline{e}^t - \underline{w}^t X^t) \cdot (\underline{e} - X\underline{w})$$
$$= \underline{e}^t \underline{e} + \underline{w}^t X^t X \underline{w} - \underline{w}^t X^t \underline{e} - \underline{e}^t X \underline{w}$$

$$J_{ls} = \sum_{i=0}^{L-1} r^2 [k-i] = \underline{r}^t \cdot \underline{r} = (\underline{e}^t - \underline{w}^t X^t) \cdot (\underline{e} - X\underline{w})$$
$$= \underline{e}^t \underline{e} + \underline{w}^t X^t X \underline{w} - \underline{w}^t X^t \underline{e} - \underline{e}^t X \underline{w}$$

Minimum by setting gradient equal to zero:

$$\frac{\mathrm{d}J_{ls}}{\mathrm{d}w} = \underline{\nabla}_{ls} = -2(X^t\underline{e} - X^tX \cdot \underline{w}) = \underline{0}$$

$$J_{ls} = \sum_{i=0}^{L-1} r^2 [k-i] = \underline{r}^t \cdot \underline{r} = (\underline{e}^t - \underline{w}^t X^t) \cdot (\underline{e} - X\underline{w})$$
$$= \underline{e}^t \underline{e} + \underline{w}^t X^t X \underline{w} - \underline{w}^t X^t \underline{e} - \underline{e}^t X \underline{w}$$

Minimum by setting gradient equal to zero:

$$\frac{\mathsf{d}J_{ls}}{\mathsf{d}\underline{w}} = \underline{\nabla}_{ls} = -2(\mathsf{X}^t\underline{\mathrm{e}} - \mathsf{X}^t\mathsf{X} \cdot \underline{w}) = \underline{0}$$

With $\overline{R} = X^t X$ and $\underline{\overline{r}} = X^t \underline{e}$

$$J_{ls} = \sum_{i=0}^{L-1} r^2 [k-i] = \underline{r}^t \cdot \underline{r} = (\underline{e}^t - \underline{w}^t X^t) \cdot (\underline{e} - X\underline{w})$$
$$= \underline{e}^t \underline{e} + \underline{w}^t X^t X \underline{w} - \underline{w}^t X^t \underline{e} - \underline{e}^t X \underline{w}$$

Minimum by setting gradient equal to zero:

$$\frac{\mathsf{d}J_{ls}}{\mathsf{d}\mathsf{w}} = \underline{\nabla}_{ls} = -2(\mathsf{X}^t\underline{\mathsf{e}} - \mathsf{X}^t\mathsf{X} \cdot \underline{\mathsf{w}}) = \underline{\mathsf{0}}$$

With $\overline{R} = X^t X$ and $\overline{r} = X^t e$

 \Rightarrow Normal Equations $|\overline{R}_x \cdot w = \overline{r}_{ex}|$

$$\overline{\mathsf{R}}_{\mathsf{x}} \cdot \underline{\mathsf{w}} = \underline{\bar{\mathsf{r}}}_{\mathsf{ex}}$$

$$\Rightarrow$$
 Wiener filter

$$\boxed{\underline{\mathbf{w}}_{\mathit{Is},o} = \overline{\mathbf{R}}_{x}^{-1} \cdot \underline{\overline{\mathbf{r}}}_{\mathsf{ex}}}$$

LS: Correspondence with MMSE

Use time-averaging (ergodicity):

$$\hat{R}_{x} = \frac{1}{L} \sum_{i=0}^{L-1} \underline{x}[k-i] \cdot \underline{x}^{t}[k-i] = \frac{1}{L} X^{t} \cdot X = \frac{1}{L} \overline{R}_{x}$$

$$\hat{\underline{r}}_{ex} = \frac{1}{L} \sum_{i=0}^{L-1} \underline{x}[k-i] \cdot e[k-i] = \frac{1}{L} X^{t} \cdot \underline{e} = \frac{1}{L} \overline{\underline{r}}_{ex}$$

LS: Correspondence with MMSE

Use time-averaging (ergodicity):

$$\hat{R}_{x} = \frac{1}{L} \sum_{i=0}^{L-1} \underline{x}[k-i] \cdot \underline{x}^{t}[k-i] = \frac{1}{L} X^{t} \cdot X = \frac{1}{L} \overline{R}_{x}$$

$$\hat{\underline{r}}_{ex} = \frac{1}{L} \sum_{i=0}^{L-1} \underline{x}[k-i] \cdot e[k-i] = \frac{1}{L} X^{t} \cdot \underline{e} = \frac{1}{L} \overline{\underline{r}}_{ex}$$

with \hat{R}_x estimate of R_x and $\underline{\hat{r}}_{ex}$ estimate of \underline{r}_{ex}

$$\Rightarrow \quad \underline{\hat{\mathbf{w}}}_{mmse} = \left(\frac{1}{L}\overline{\mathbf{R}}_{x}\right)^{-1} \cdot \left(\frac{1}{L}\overline{\mathbf{r}}_{ex}\right) = \overline{\mathbf{R}}_{x}^{-1} \cdot \overline{\mathbf{r}}_{ex} = \underline{\mathbf{w}}_{ls}$$

LS: Correspondence with MMSE

Use time-averaging (ergodicity):

$$\hat{R}_{x} = \frac{1}{L} \sum_{i=0}^{L-1} \underline{x}[k-i] \cdot \underline{x}^{t}[k-i] = \frac{1}{L} X^{t} \cdot X = \frac{1}{L} \overline{R}_{x}$$

$$\hat{\underline{r}}_{ex} = \frac{1}{L} \sum_{i=0}^{L-1} \underline{x}[k-i] \cdot e[k-i] = \frac{1}{L} X^{t} \cdot \underline{e} = \frac{1}{L} \overline{\underline{r}}_{ex}$$

with \hat{R}_x estimate of R_x and \hat{r}_{ex} estimate of \underline{r}_{ex}

$$\Rightarrow \quad \underline{\hat{\mathbf{w}}}_{mmse} = \left(\frac{1}{L}\overline{\mathbf{R}}_{x}\right)^{-1} \cdot \left(\frac{1}{L}\underline{\bar{\mathbf{r}}}_{ex}\right) = \overline{\mathbf{R}}_{x}^{-1} \cdot \underline{\bar{\mathbf{r}}}_{ex} = \underline{\mathbf{w}}_{ls}$$

Finally note that for ergodic processes:

$$\lim_{L\to\infty}\frac{1}{L}\overline{\mathsf{R}}_{\scriptscriptstyle X}=\mathsf{R}_{\scriptscriptstyle X}\;;\;\lim_{L\to\infty}\frac{1}{L}\underline{\bar{\mathsf{r}}}_{\scriptscriptstyle \mathsf{ex}}=\underline{\mathsf{r}}_{\scriptscriptstyle \mathsf{ex}}\;;\;\lim_{L\to\infty}\underline{\mathsf{w}}_{\mathit{ls}}=\underline{\mathsf{w}}_{\mathit{mmse}}$$

Steepest gradient descent (SGD)

Problem: Optimal Wiener involves R_x^{-1}

Steepest gradient descent (SGD)

Problem: Optimal Wiener involves R_x^{-1}

To avoid this inversion, estimate optimum iteratively

Steepest gradient descent (SGD)

Problem: Optimal Wiener involves R_x^{-1}

To avoid this inversion, estimate optimum iteratively

Goal: Decrease *J* each new iteration

SGD

SGD

SGD principle: Update in negative gradient direction

 $\Leftrightarrow \underline{\mathbf{w}} \doteq \underline{\mathbf{w}} - \alpha \bigtriangledown$ with adaptation constant $\alpha \geq \mathbf{0}$

SGD principle: Update in negative gradient direction

 $\Leftrightarrow \underline{\mathbf{w}} \doteq \underline{\mathbf{w}} - \alpha \bigtriangledown$ with adaptation constant $\alpha \geq \mathbf{0}$

With
$$\underline{\nabla} = -2(\underline{\mathbf{r}}_{\mathsf{ex}} - \mathsf{R}_{\mathsf{x}}\underline{\mathbf{w}}[k])$$

SGD principle: Update in negative gradient direction

 $\Leftrightarrow \underline{\mathbf{w}} \doteq \underline{\mathbf{w}} - \alpha \bigtriangledown$ with adaptation constant $\alpha \geq \mathbf{0}$

With
$$\underline{\nabla} = -2(\underline{\mathbf{r}}_{ex} - \mathbf{R}_x \underline{\mathbf{w}}[k]) \Rightarrow \mathbf{SGD}$$
 algorithm:

$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha(\underline{\mathbf{r}}_{\mathsf{ex}} - \mathsf{R}_{\mathsf{x}}\underline{\mathbf{w}}[k])$$

SGD principle: Update in negative gradient direction

 $\Leftrightarrow \underline{\mathbf{w}} \doteq \underline{\mathbf{w}} - \alpha_{\boxed{\bigtriangledown}} \text{ with adaptation constant } \alpha \geq \mathbf{0}$

With $\underline{\nabla} = -2(\underline{\mathbf{r}}_{\mathsf{ex}} - \mathsf{R}_{\mathsf{x}}\underline{\mathsf{w}}[k]) \Rightarrow \mathsf{SGD}$ algorithm:

$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha(\underline{\mathbf{r}}_{\mathsf{ex}} - \mathsf{R}_{\mathsf{x}}\underline{\mathbf{w}}[k])$$

Notes: 1) No matrix inversion needed! 2) Usually $\underline{w}[0] = \underline{0}$

SGD converges to Wiener solution:

$$\lim_{k\to\infty}\underline{\mathbf{w}}[k]\simeq\mathsf{R}_x^{-1}\cdot\underline{\mathbf{r}}_{\mathsf{ex}}$$

SGD converges to Wiener solution:

$$\lim_{k\to\infty}\underline{\mathbf{w}}[k]\simeq\mathsf{R}_{\mathsf{x}}^{-1}\cdot\underline{\mathsf{r}}_{\mathsf{ex}}$$

'Proof':

For $k \to \infty$ we have:

$$\underline{\mathbf{w}}[k+1] \simeq \underline{\mathbf{w}}[k] \simeq \underline{\mathbf{w}}[\infty]$$

SGD converges to Wiener solution:

$$\lim_{k\to\infty}\underline{\mathbf{w}}[k]\simeq\mathsf{R}_x^{-1}\cdot\underline{\mathbf{r}}_{\mathsf{ex}}$$

'Proof':

For $k \to \infty$ we have:

$$\begin{split} \underline{\mathbf{w}}[k+1] &\simeq \underline{\mathbf{w}}[k] \simeq \underline{\mathbf{w}}[\infty] \\ \mathsf{SGD} &\Rightarrow \underline{\mathbf{w}}[\infty] \simeq \underline{\mathbf{w}}[\infty] + 2\alpha(\underline{\mathbf{r}}_{\mathsf{ex}} - \mathsf{R}_{x}\underline{\mathbf{w}}[\infty]) \end{split}$$

SGD converges to Wiener solution:

$$\lim_{k\to\infty}\underline{\mathbf{w}}[k]\simeq\mathsf{R}_x^{-1}\cdot\underline{\mathbf{r}}_{\mathsf{ex}}$$

'Proof':

For $k \to \infty$ we have:

$$\begin{split} \underline{\mathbf{w}}[k+1] &\simeq \underline{\mathbf{w}}[k] \simeq \underline{\mathbf{w}}[\infty] \\ \mathsf{SGD} &\Rightarrow \underline{\mathbf{w}}[\infty] \simeq \underline{\mathbf{w}}[\infty] + 2\alpha(\underline{\mathbf{r}}_{\mathsf{ex}} - \mathsf{R}_{\mathsf{x}}\underline{\mathbf{w}}[\infty]) \\ &\Rightarrow \underline{\mathbf{w}}[\infty] \simeq \mathsf{R}_{\mathsf{x}}^{-1} \cdot \underline{\mathbf{r}}_{\mathsf{ex}} \end{split}$$

SGD converges to Wiener solution:

$$\lim_{k\to\infty}\underline{\mathbf{w}}[k]\simeq\mathsf{R}_{\mathsf{x}}^{-1}\cdot\underline{\mathsf{r}}_{\mathsf{ex}}$$

'Proof':

For $k \to \infty$ we have:

$$\begin{split} \underline{\mathbf{w}}[k+1] &\simeq \underline{\mathbf{w}}[k] \simeq \underline{\mathbf{w}}[\infty] \\ \mathsf{SGD} &\Rightarrow \underline{\mathbf{w}}[\infty] \simeq \underline{\mathbf{w}}[\infty] + 2\alpha(\underline{\mathbf{r}}_{\mathsf{ex}} - \mathsf{R}_{\mathsf{x}}\underline{\mathbf{w}}[\infty]) \\ &\Rightarrow \underline{\mathbf{w}}[\infty] \simeq \mathsf{R}_{\mathsf{x}}^{-1} \cdot \underline{\mathbf{r}}_{\mathsf{ex}} \end{split}$$

For exact proof we need stability analysis

$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha(\underline{\mathbf{r}}_{\mathsf{ex}} - \mathsf{R}_{\mathsf{x}}\underline{\mathbf{w}}[k])$$

$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha(\underline{\mathbf{r}}_{\mathsf{ex}} - \mathbf{R}_{\mathsf{x}}\underline{\mathbf{w}}[k])$$

$$\underline{\mathbf{w}}[k+1] - \underline{\mathbf{w}}_{\mathsf{o}} = (\mathbf{I} - 2\alpha\mathbf{R}_{\mathsf{x}}) \cdot \underline{\mathbf{w}}[k] - \underline{\mathbf{w}}_{\mathsf{o}} + 2\alpha\underline{\mathbf{r}}_{\mathsf{ex}}$$

$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha(\underline{\mathbf{r}}_{\mathsf{ex}} - \mathbf{R}_{x}\underline{\mathbf{w}}[k])
\underline{\mathbf{w}}[k+1] - \underline{\mathbf{w}}_{o} = (\mathbf{I} - 2\alpha\mathbf{R}_{x}) \cdot \underline{\mathbf{w}}[k] - \underline{\mathbf{w}}_{o} + 2\alpha\underline{\mathbf{r}}_{\mathsf{ex}}
\Rightarrow \underline{\mathbf{d}}[k+1] = (\mathbf{I} - 2\alpha\mathbf{R}_{x}) \cdot \underline{\mathbf{d}}[k]$$

Define difference weight vector: $\underline{\mathbf{d}}[k] = \underline{\mathbf{w}}[k] - \underline{\mathbf{w}}_o$

$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha(\underline{\mathbf{r}}_{\mathsf{ex}} - \mathsf{R}_{\mathsf{x}}\underline{\mathbf{w}}[k])
\underline{\mathbf{w}}[k+1] - \underline{\mathbf{w}}_{o} = (\mathsf{I} - 2\alpha\mathsf{R}_{\mathsf{x}}) \cdot \underline{\mathbf{w}}[k] - \underline{\mathbf{w}}_{o} + 2\alpha\underline{\mathbf{r}}_{\mathsf{ex}}
\Rightarrow \underline{\mathbf{d}}[k+1] = (\mathsf{I} - 2\alpha\mathsf{R}_{\mathsf{x}}) \cdot \underline{\mathbf{d}}[k]$$

Recursion:

$$\underline{\mathbf{d}}[k] = (\mathsf{I} - 2\alpha \mathsf{R}_x) \cdot \underline{\mathbf{d}}[k-1] = \dots = (\mathsf{I} - 2\alpha \mathsf{R}_x)^k \cdot \underline{\mathbf{d}}[0]$$

Define difference weight vector: $\underline{\mathbf{d}}[k] = \underline{\mathbf{w}}[k] - \underline{\mathbf{w}}_o$

$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha(\underline{\mathbf{r}}_{\mathsf{ex}} - \mathsf{R}_{\mathsf{x}}\underline{\mathbf{w}}[k])
\underline{\mathbf{w}}[k+1] - \underline{\mathbf{w}}_{o} = (\mathsf{I} - 2\alpha\mathsf{R}_{\mathsf{x}}) \cdot \underline{\mathbf{w}}[k] - \underline{\mathbf{w}}_{o} + 2\alpha\underline{\mathbf{r}}_{\mathsf{ex}}
\Rightarrow \underline{\mathbf{d}}[k+1] = (\mathsf{I} - 2\alpha\mathsf{R}_{\mathsf{x}}) \cdot \underline{\mathbf{d}}[k]$$

Recursion:

$$\underline{\mathbf{d}}[k] = (\mathsf{I} - 2\alpha \mathsf{R}_{\mathsf{x}}) \cdot \underline{\mathbf{d}}[k-1] = \dots = (\mathsf{I} - 2\alpha \mathsf{R}_{\mathsf{x}})^k \cdot \underline{\mathbf{d}}[0]$$

Stable iff:
$$\lim_{k\to\infty} (I - 2\alpha R_x)^k = 0$$

Define difference weight vector: $\underline{\mathbf{d}}[k] = \underline{\mathbf{w}}[k] - \underline{\mathbf{w}}_o$

$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha(\underline{\mathbf{r}}_{\mathsf{ex}} - \mathsf{R}_{\mathsf{x}}\underline{\mathbf{w}}[k])
\underline{\mathbf{w}}[k+1] - \underline{\mathbf{w}}_{o} = (\mathsf{I} - 2\alpha\mathsf{R}_{\mathsf{x}}) \cdot \underline{\mathbf{w}}[k] - \underline{\mathbf{w}}_{o} + 2\alpha\underline{\mathbf{r}}_{\mathsf{ex}}
\Rightarrow \underline{\mathbf{d}}[k+1] = (\mathsf{I} - 2\alpha\mathsf{R}_{\mathsf{x}}) \cdot \underline{\mathbf{d}}[k]$$

Recursion:

$$\underline{\mathbf{d}}[k] = (\mathsf{I} - 2\alpha \mathsf{R}_x) \cdot \underline{\mathbf{d}}[k-1] = \dots = (\mathsf{I} - 2\alpha \mathsf{R}_x)^k \cdot \underline{\mathbf{d}}[0]$$

Stable iff:
$$\lim_{k \to \infty} (I - 2\alpha R_x)^k = 0$$

<u>Note:</u>

When stable $\Rightarrow \underline{d}[\infty] = \underline{0} \Rightarrow \underline{w}[\infty] \simeq \text{Wiener}$

How do weights converge:

How do weights converge:

Use eigenvalue decomposition (see Appendix):

<u>How</u> do weights converge:

Use eigenvalue decomposition (see Appendix):

With
$$Q^h \cdot Q = Q \cdot Q^h = I$$
 and $R_x = Q \Lambda Q^h$

How do weights converge:

Use eigenvalue decomposition (see Appendix):

With
$$Q^h \cdot Q = Q \cdot Q^h = I$$
 and $R_x = Q\Lambda Q^h$

$$\Rightarrow (I - 2\alpha R_x)^k = (QQ^h - 2\alpha Q\Lambda Q^h)^k$$
$$= Q(I - 2\alpha \Lambda)^k Q^h$$

<u>How</u> do weights converge:

Use eigenvalue decomposition (see Appendix):

With
$$Q^h \cdot Q = Q \cdot Q^h = I$$
 and $R_x = Q\Lambda Q^h$

$$\Rightarrow (I - 2\alpha R_x)^k = (QQ^h - 2\alpha Q \Lambda Q^h)^k$$
$$= Q(I - 2\alpha \Lambda)^k Q^h$$

Change of variables: $\underline{D}[k] = Q^h \cdot \underline{d}[k]$

How do weights converge:

Use eigenvalue decomposition (see Appendix):

With
$$Q^h \cdot Q = Q \cdot Q^h = I$$
 and $R_x = Q\Lambda Q^h$

$$\Rightarrow (I - 2\alpha R_x)^k = (QQ^h - 2\alpha Q\Lambda Q^h)^k$$
$$= Q(I - 2\alpha \Lambda)^k Q^h$$

Change of variables: $\underline{D}[k] = Q^h \cdot \underline{d}[k]$

$$\underline{\mathbf{d}}[k] = (\mathsf{I} - 2\alpha \mathsf{R}_x)^k \underline{\mathbf{d}}[0] \quad \Rightarrow \quad \underline{\mathsf{D}}[k] = (\mathsf{I} - 2\alpha \mathsf{\Lambda})^k \underline{\mathsf{D}}[0]$$

<u>How</u> do weights converge:

Use eigenvalue decomposition (see Appendix):

With
$$Q^h \cdot Q = Q \cdot Q^h = I$$
 and $R_x = Q\Lambda Q^h$

$$\Rightarrow (I - 2\alpha R_x)^k = (QQ^h - 2\alpha Q\Lambda Q^h)^k$$
$$= Q(I - 2\alpha \Lambda)^k Q^h$$

Change of variables: $\underline{D}[k] = Q^h \cdot \underline{d}[k]$

$$\underline{\mathbf{d}}[k] = (\mathbf{I} - 2\alpha \mathbf{R}_{\mathsf{x}})^{k} \underline{\mathbf{d}}[\mathbf{0}] \quad \Rightarrow \quad \underline{\mathbf{D}}[k] = (\mathbf{I} - 2\alpha \Lambda)^{k} \underline{\mathbf{D}}[\mathbf{0}]$$

Recursion stable iff:
$$\lim_{k \to \infty} (I - 2\alpha \Lambda)^k = 0$$

Recursion stable iff:
$$\lim_{k\to\infty} (\mathbf{I} - 2\alpha\Lambda)^k = 0$$

Recursion stable iff:
$$\lim_{k\to\infty}(\mathbf{I}-2\alpha\Lambda)^k=0$$

Both matrices I and $\boldsymbol{\Lambda}$ diagonal

Recursion stable iff:
$$\lim_{k\to\infty} (1-2\alpha\Lambda)^k = 0$$

Both matrices I and Λ diagonal \Rightarrow Stable iff:

$$|1 - 2\alpha \lambda_i| < 1 \quad \Leftrightarrow \quad 0 < \alpha < \frac{1}{\lambda_i} \quad \text{for } i = 0, 1, \dots, N - 1$$

Recursion stable iff:
$$\lim_{k\to\infty} (\mathbf{I} - 2\alpha\Lambda)^k = \mathbf{0}$$

Both matrices I and Λ diagonal \Rightarrow Stable iff:

$$|1 - 2\alpha\lambda_i| < 1 \quad \Leftrightarrow \quad 0 < \alpha < \frac{1}{\lambda_i} \quad \text{for } i = 0, 1, \dots, N - 1$$

Thus SGD algorithm stable iff: $0 < \alpha < \frac{1}{\lambda_{max}}$

$$0$$

Recursion stable iff:
$$\lim_{k\to\infty} (\mathbf{I} - 2\alpha\Lambda)^k = 0$$

Both matrices I and Λ diagonal \Rightarrow Stable iff:

$$|1 - 2\alpha\lambda_i| < 1 \quad \Leftrightarrow \quad 0 < \alpha < \frac{1}{\lambda_i} \quad \text{for } i = 0, 1, \dots, N - 1$$

Thus SGD algorithm stable iff: $0 < \alpha < \frac{1}{\lambda_{max}}$

$$0$$

For adaptation constant α in this region:

$$\lim_{k \to \infty} \underline{\mathbf{w}}[k] = \underline{\mathbf{w}}_o = \mathbf{R}_x^{-1} \cdot \underline{\mathbf{r}}_{\mathsf{e}x}$$

Recursion stable iff:
$$\lim_{k\to\infty} (\mathbf{I} - 2\alpha\Lambda)^k = 0$$

Both matrices I and Λ diagonal \Rightarrow Stable iff:

$$|1 - 2\alpha\lambda_i| < 1 \quad \Leftrightarrow \quad 0 < \alpha < \frac{1}{\lambda_i} \quad \text{for } i = 0, 1, \dots, N - 1$$

Thus SGD algorithm stable iff: $0 < \alpha < \frac{1}{\lambda_{max}}$

$$0$$

For adaptation constant α in this region:

$$\lim_{k \to \infty} \underline{\mathbf{w}}[k] = \underline{\mathbf{w}}_o = \mathbf{R}_{\mathsf{x}}^{-1} \cdot \underline{\mathbf{r}}_{\mathsf{e}\mathsf{x}}$$

$$J_{\underline{\mathbf{w}}=\underline{\mathbf{w}}_o} = E\{r^2[k]\} = J_{min} = E\{e^2\} - \underline{\mathbf{r}}_{ex}^t \mathbf{R}_x^{-1} \underline{\mathbf{r}}_{ex}$$

$$e^{-k/\tau_i} \cdot (\underline{D}[0])_i \approx (1 - 2\alpha\lambda_i)^k \cdot (\underline{D}[0])_i \Rightarrow$$

$$e^{-k/\tau_i} \cdot (\underline{D}[0])_i \approx (1 - 2\alpha\lambda_i)^k \cdot (\underline{D}[0])_i \Rightarrow$$

Average behavior:
$$\tau_{av,i} = \frac{-1}{\ln(1 - 2\alpha\lambda_i)}$$

$$e^{-k/\tau_i} \cdot (\underline{D}[0])_i \approx (1 - 2\alpha\lambda_i)^k \cdot (\underline{D}[0])_i \Rightarrow$$

Average behavior:
$$\tau_{\mathsf{av},i} = \frac{-1}{\ln(1 - 2\alpha\lambda_i)} \Rightarrow \text{For small } \alpha \quad \left| \tau_{\mathsf{av},i} \approx \frac{1}{2\alpha\lambda_i} \right|$$

$$au_{\mathsf{av},i} pprox rac{1}{2lpha\lambda_i}$$

$$e^{-k/\tau_i} \cdot (\underline{D}[0])_i \approx (1 - 2\alpha\lambda_i)^k \cdot (\underline{D}[0])_i \Rightarrow$$

Average behavior:
$$\tau_{av,i} = \frac{-1}{\ln(1 - 2\alpha\lambda_i)}$$
 \Rightarrow For small α $\tau_{av,i} \approx \frac{1}{2\alpha\lambda_i}$

$$au_{\mathsf{av},i} pprox rac{1}{2lpha\lambda_i}$$

Note:

Overall time constant depends on eigenvalue spread $\Gamma_{x} = \lambda_{max}/\lambda_{min}$. Thus, the larger Γ_{x} the longer it takes for adaptation.

$$e^{-k/\tau_i} \cdot (\underline{D}[0])_i \approx (1 - 2\alpha\lambda_i)^k \cdot (\underline{D}[0])_i \Rightarrow$$

Average behavior:
$$\tau_{\mathsf{av},i} = \frac{-1}{\ln(1 - 2\alpha\lambda_i)} \Rightarrow \text{For small } \alpha \quad \boxed{\tau_{\mathsf{av},i} \approx \frac{1}{2\alpha\lambda_i}}$$

$$au_{\mathsf{av},i} pprox rac{1}{2lpha\lambda_i}$$

Note:

Overall time constant depends on eigenvalue spread $\Gamma_{x} = \lambda_{max}/\lambda_{min}$. Thus, the larger Γ_{x} the longer it takes for adaptation.

Q: What happens for white noise?

Example with
$$\Gamma_{\scriptscriptstyle X} = \lambda_{\it max}/\lambda_{\it min} = 3$$

Example with
$$\Gamma_{x} = \lambda_{max}/\lambda_{min} = 3$$

Learning curve in contour plot J

Convergence SGD

Example with
$$\Gamma_x = \lambda_{max}/\lambda_{min} = 3$$

Learning curve in contour plot J

Learning curves for different α

Motivation: SGD not practical. Gradient assumes **known** R_x and \underline{r}_{ex}

Motivation: SGD not practical. Gradient assumes known R_{\varkappa} and \underline{r}_{ex}

LMS principle: Use instantaneous estimate of gradient:

$$\hat{\underline{\nabla}}[k] = -2 \left(e[k]\underline{x}[k] - \underline{x}[k]\underline{x}^{t}[k]\underline{w}[k] \right)
= -2\underline{x}[k] \left(e[k] - \underline{x}^{t}[k]\underline{w}[k] \right) = -2\underline{x}[k]r[k]$$

Motivation: SGD not practical. Gradient assumes **known** R_x and \underline{r}_{ex}

LMS principle: Use instantaneous estimate of gradient:

$$\hat{\underline{\nabla}}[k] = -2 \left(e[k]\underline{x}[k] - \underline{x}[k]\underline{x}^{t}[k]\underline{w}[k] \right)
= -2\underline{x}[k] \left(e[k] - \underline{x}^{t}[k]\underline{w}[k] \right) = -2\underline{x}[k]r[k]$$

With $\underline{w} \doteq \underline{w} - \hat{\underline{\nabla}} \Rightarrow \mathsf{LMS}$ algorithm (Widrow, 1975):

$$k=0$$
 : $\underline{w}[0] = \underline{0}$ (usually)
 $k>0$: $\hat{e}[k] = \underline{w}^t[k] \cdot \underline{x}[k]$
 $r[k] = e[k] - \hat{e}[k]$
 $\underline{w}[k+1] = \underline{w}[k] + 2\alpha\underline{x}[k]r[k]$

Motivation: SGD not practical. Gradient assumes **known** R_x and \underline{r}_{ex}

LMS principle: Use instantaneous estimate of gradient:

$$\hat{\underline{\nabla}}[k] = -2 \left(e[k]\underline{x}[k] - \underline{x}[k]\underline{x}^{t}[k]\underline{w}[k] \right)
= -2\underline{x}[k] \left(e[k] - \underline{x}^{t}[k]\underline{w}[k] \right) = -2\underline{x}[k]r[k]$$

With $\underline{w} \doteq \underline{w} - \hat{\underline{\nabla}} \Rightarrow \mathsf{LMS}$ algorithm (Widrow, 1975):

$$k=0$$
 : $\underline{w}[0] = \underline{0}$ (usually)
 $k>0$: $\hat{e}[k] = \underline{w}^t[k] \cdot \underline{x}[k]$
 $r[k] = e[k] - \hat{e}[k]$
 $\underline{w}[k+1] = \underline{w}[k] + 2\alpha\underline{x}[k]r[k]$

Note: $\underline{\mathbf{w}}^t[k] \cdot \underline{\mathbf{x}}[k]$ is "convolution" and $\underline{\mathbf{x}}[k]r[k]$ "correlation"

Realization scheme LMS algorithm:

Realization scheme LMS algorithm:

Realization scheme LMS algorithm:

Simplified realization scheme LMS algorithm:

Simplified realization scheme LMS algorithm:

Notes:

- \triangleright Simple, robust algorithm, complexity O(2N)
- LMS tries to "decorrelate" signals x and r
- ▶ In contrast to SGD: Weights fluctuate around optimal values

▶ **NLMS:** LMS with normalization by $\sigma_x^2 = E\{x^2[k]\}$:

$$|\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + \frac{2\alpha}{\sigma_{\mathbf{x}}^2} \underline{\mathbf{x}}[k] r[k]$$

▶ **NLMS**: LMS with normalization by $\sigma_x^2 = E\{x^2[k]\}$:

$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + \frac{2\alpha}{\sigma_x^2} \underline{\mathbf{x}}[k]r[k]$$

In practice $\hat{\sigma}_x^2[k] \Rightarrow$ time-varying step size. E.g.:

- $\hat{\sigma}_x^2[k] = \beta \hat{\sigma}_x^2[k-1] + (1-\beta) \frac{\mathbf{x}^t[k]\mathbf{x}[k]}{N} \text{ with } 0 < \beta < 1$
- $\hat{\sigma}_{\mathbf{x}}^2[k] = \frac{\mathbf{x}^t[k]\mathbf{x}[k]}{N} + \epsilon$ with ϵ some small constant

▶ **NLMS**: LMS with normalization by $\sigma_x^2 = E\{x^2[k]\}$:

$$\underline{\underline{w}[k+1]} = \underline{\underline{w}}[k] + \frac{2\alpha}{\sigma_x^2} \underline{x}[k]r[k]$$

In practice $\hat{\sigma}_{x}^{2}[k] \Rightarrow$ time-varying step size. E.g.:

- $\hat{\sigma}_x^2[k] = \beta \hat{\sigma}_x^2[k-1] + (1-\beta) \frac{\mathbf{x}^t[k]\mathbf{x}[k]}{N} \text{ with } 0 < \beta < 1$
- $\hat{\sigma}_{x}^{2}[k]=rac{\mathbf{x}^{t}[k]\mathbf{x}[k]}{N}+\epsilon$ with ϵ some small constant
- Complex LMS: LMS for complex signals and weights:

$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha \underline{\mathbf{x}}[k]r^*[k]$$

Convergence gradient based algorithms relies on coloration input:

$$\underline{\nabla} = -2\left(\underline{\mathbf{r}}_{\mathsf{ex}} - \mathsf{R}_{\mathsf{x}}\underline{\mathsf{w}}[k]\right)$$

Convergence gradient based algorithms relies on coloration input:

$$\underline{\nabla} = -2\left(\underline{\mathbf{r}}_{ex} - \mathbf{R}_{x}\underline{\mathbf{w}}[k]\right)$$

Solution Newton: $\underline{w}[k+1] = \underline{w}[k] - \alpha R_x^{-1} \underline{\nabla} \Rightarrow$

$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha \mathbf{R}_{\mathsf{x}}^{-1} \cdot (\underline{\mathbf{r}}_{\mathsf{ex}} - \mathbf{R}_{\mathsf{x}}\underline{\mathbf{w}}[k])$$

Convergence gradient based algorithms relies on coloration input:

$$\underline{\nabla} = -2\left(\underline{\mathbf{r}}_{ex} - \mathbf{R}_{x}\underline{\mathbf{w}}[k]\right)$$

Solution Newton: $\underline{w}[k+1] = \underline{w}[k] - \alpha R_x^{-1} \underline{\nabla} \Rightarrow$

$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha \mathbf{R}_{\mathsf{x}}^{-1} \cdot (\underline{\mathbf{r}}_{\mathsf{ex}} - \mathbf{R}_{\mathsf{x}}\underline{\mathbf{w}}[k])$$

Convergence Newton:

$$\underline{\mathbf{d}}[k+1] = \left(\mathbf{I} - 2\alpha \mathbf{R}_{\mathbf{x}}^{-1} \mathbf{R}_{\mathbf{x}}\right) \underline{\mathbf{d}}[k] = (1-2\alpha)\underline{\mathbf{d}}[k] \quad \Rightarrow \quad \text{Convergence } 0 < \alpha < 1$$

Convergence gradient based algorithms relies on coloration input:

$$\underline{\nabla} = -2\left(\underline{\mathbf{r}}_{ex} - \mathbf{R}_{x}\underline{\mathbf{w}}[k]\right)$$

Solution Newton: $\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] - \alpha \mathbf{R}_{\mathbf{x}}^{-1} \underline{\nabla} \Rightarrow$

$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha \mathbf{R}_{\mathsf{x}}^{-1} \cdot (\underline{\mathbf{r}}_{\mathsf{ex}} - \mathbf{R}_{\mathsf{x}}\underline{\mathbf{w}}[k])$$

Convergence Newton:

$$\underline{\mathbf{d}}[k+1] = \left(\mathbf{I} - 2\alpha \mathbf{R}_{\mathbf{x}}^{-1} \mathbf{R}_{\mathbf{x}}\right) \underline{\mathbf{d}}[k] = (1-2\alpha)\underline{\mathbf{d}}[k] \quad \Rightarrow \quad \text{Convergence } 0 < \alpha < 1$$

Notes:

 $ightharpoonup R_x^{-1}$ causes whitening of input process

Convergence gradient based algorithms relies on coloration input:

$$\underline{\nabla} = -2\left(\underline{\mathbf{r}}_{\mathsf{ex}} - \mathsf{R}_{\mathsf{x}}\underline{\mathsf{w}}[k]\right)$$

Solution Newton: $\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] - \alpha \mathbf{R}_{\mathbf{x}}^{-1} \underline{\nabla} \Rightarrow$

$$\underline{\underline{w}}[k+1] = \underline{\underline{w}}[k] + 2\alpha R_{x}^{-1} \cdot (\underline{\underline{r}}_{ex} - R_{x}\underline{\underline{w}}[k])$$

Convergence Newton:

$$\underline{\mathbf{d}}[k+1] = \left(\mathbf{I} - 2\alpha \mathbf{R}_{\mathbf{x}}^{-1} \mathbf{R}_{\mathbf{x}}\right) \underline{\mathbf{d}}[k] = (1-2\alpha)\underline{\mathbf{d}}[k] \quad \Rightarrow \quad \text{Convergence } 0 < \alpha < 1$$

Notes:

- $ightharpoonup R_x^{-1}$ causes whitening of input process
- ► All weights have same convergence (in contrast to LMS, SGD)

Convergence gradient based algorithms relies on coloration input:

$$\underline{\nabla} = -2\left(\underline{\mathbf{r}}_{ex} - \mathbf{R}_{x}\underline{\mathbf{w}}[k]\right)$$

Solution Newton: $\underline{w}[k+1] = \underline{w}[k] - \alpha R_x^{-1} \underline{\nabla} \Rightarrow$

$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha \mathbf{R}_{\mathsf{x}}^{-1} \cdot (\underline{\mathbf{r}}_{\mathsf{ex}} - \mathbf{R}_{\mathsf{x}}\underline{\mathbf{w}}[k])$$

Convergence Newton:

$$\underline{\mathbf{d}}[k+1] = \left(\mathbf{I} - 2\alpha \mathbf{R}_{\mathbf{x}}^{-1} \mathbf{R}_{\mathbf{x}}\right) \underline{\mathbf{d}}[k] = (1-2\alpha)\underline{\mathbf{d}}[k] \quad \Rightarrow \quad \text{Convergence } 0 < \alpha < 1$$

Notes:

- $ightharpoonup R_x^{-1}$ causes whitening of input process
- ▶ All weights have same convergence (in contrast to LMS, SGD)
- Newton ≡ SGD with white noise input!

Learning curves in contour plot: Newton vs. SGD

Newton: another view

Replace
$$\underline{\nabla}$$
 by $\hat{\underline{\nabla}}_{LMS} = \underline{\mathbf{x}}[k]r[k] \Rightarrow \underline{\mathsf{LMS}}/\mathsf{Newton}$:

$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha \mathbf{R}_{\mathsf{x}}^{-1} \underline{\mathbf{x}}[k] r[k]$$

Newton: another view

Replace $\underline{\nabla}$ by $\hat{\underline{\nabla}}_{LMS} = \underline{\mathbf{x}}[k]r[k] \Rightarrow \underline{\mathsf{LMS}}/\mathsf{Newton}$:

$$\underline{\underline{w}[k+1]} = \underline{\underline{w}}[k] + 2\alpha R_{\underline{x}}^{-1} \underline{\underline{x}}[k] r[k]$$

Newton: Practical problem

Autocorrelation matrix R_x :

Newton: Practical problem

Autocorrelation matrix R_x :

- ► (In general) not known in advance
- May change during time (non-stationary process)
- ► Inversion is expensive (many MIPS)

Newton: Practical problem

Autocorrelation matrix R_x :

- ► (In general) not known in advance
- ► May change during time (non-stationary process)
- ► Inversion is expensive (many MIPS)
- ⇒ Complexity Newton algorithm huge
- \Rightarrow Need for efficient solution with estimate of R_x
- \Rightarrow Different algorithms, e.g. RLS, FDAF, etc.

For data block length L fixed, Least Squares problem becomes:

$$\min_{\underline{w}[k]} |\underline{\mathbf{e}}[k] - \mathbf{X}[k] \cdot \underline{\mathbf{w}}[k]|^2 \quad \Rightarrow \quad \underline{\mathbf{w}}_{LS}[k] = \left(\mathbf{X}^t[k]\mathbf{X}[k]\right)^{-1} \left(\mathbf{X}^t[k]\underline{\mathbf{e}}[k]\right)$$

For data block length *L* fixed, Least Squares problem becomes:

$$\min_{\underline{w}[k]} |\underline{e}[k] - X[k] \cdot \underline{w}[k]|^2 \quad \Rightarrow \quad \underline{w}_{LS}[k] = (X^t[k]X[k])^{-1} (X^t[k]\underline{e}[k])$$

RLS: Find efficient recursive solution for LS problem from $k \to k+1$

For data block length L fixed, Least Squares problem becomes:

$$\min_{\underline{w}[k]} |\underline{e}[k] - X[k] \cdot \underline{w}[k]|^2 \quad \Rightarrow \quad \underline{w}_{LS}[k] = (X^t[k]X[k])^{-1} (X^t[k]\underline{e}[k])$$

RLS: Find efficient recursive solution for LS problem from $k \to k+1$

Use exponential sliding window: Scale down data by factor γ

Forgetting factor : $0 < \gamma < 1$

'Memory' :
$$\frac{1}{1-\gamma}$$

For data block length *L* fixed, Least Squares problem becomes:

$$\min_{\underline{w}[k]} |\underline{e}[k] - X[k] \cdot \underline{w}[k]|^2 \quad \Rightarrow \quad \underline{w}_{LS}[k] = \left(X^t[k]X[k]\right)^{-1} \left(X^t[k]\underline{e}[k]\right)$$

RLS: Find efficient recursive solution for LS problem from $k \to k+1$

Use exponential sliding window: Scale down data by factor γ

Initialization: $\underline{\overline{r}}_{ex}[0] = \underline{0}$; $\overline{R}_x^{-1}[0] = \delta^{-1}I$ with δ small

Initialization: $\underline{\overline{r}}_{ex}[0] = \underline{0}$; $\overline{R}_x^{-1}[0] = \delta^{-1}I$ with δ small

For $k \ge 0$:

Initialization:
$$\underline{\bar{r}}_{\rm ex}[0] = \underline{0}$$
; $\overline{R}_{\rm x}^{-1}[0] = \delta^{-1}{\rm I}$ with δ small

For k > 0:

$$\overline{\mathsf{R}}_{x}^{-1}[k+1] = \gamma^{-2} \left(\overline{\mathsf{R}}_{x}^{-1}[k] - \underline{\mathsf{g}}[k+1] \cdot \underline{\mathsf{x}}^{t}[k+1] \overline{\mathsf{R}}_{x}^{-1}[k] \right)$$

$$\begin{split} & \text{Initialization: } \underline{\overline{r}}_{\text{ex}}[0] = \underline{0} \; \; ; \; \overline{\mathbb{R}}_{x}^{-1}[0] = \delta^{-1} \mathbf{I} \; \text{with } \delta \; \text{small} \\ & \text{For } k \geq \!\!\!\! \underline{\mathbf{g}}[k+1] \; = \; \frac{\overline{\mathbb{R}}_{x}^{-1}[k]\underline{\mathbf{x}}[k+1]}{\gamma^{2} + \underline{\mathbf{x}}^{t}[k+1]\overline{\mathbb{R}}_{x}^{-1}[k]\underline{\mathbf{x}}[k+1]} \\ & \overline{\mathbb{R}}_{x}^{-1}[k+1] \; = \; \gamma^{-2} \left(\overline{\mathbb{R}}_{x}^{-1}[k] - \underline{\mathbf{g}}[k+1] \cdot \underline{\mathbf{x}}^{t}[k+1]\overline{\mathbb{R}}_{x}^{-1}[k] \right) \end{split}$$

Initialization:
$$\underline{\overline{r}}_{\text{ex}}[0] = \underline{0}$$
; $\overline{R}_{x}^{-1}[0] = \delta^{-1}I$ with δ small For $k \geq \underline{g}[k+1] = \frac{\overline{R}_{x}^{-1}[k]\underline{x}[k+1]}{\gamma^{2} + \underline{x}^{t}[k+1]\overline{R}_{x}^{-1}[k]\underline{x}[k+1]}$
$$\overline{R}_{x}^{-1}[k+1] = \gamma^{-2}\left(\overline{R}_{x}^{-1}[k] - \underline{g}[k+1] \cdot \underline{x}^{t}[k+1]\overline{R}_{x}^{-1}[k]\right)$$

$$\underline{\overline{r}}_{\text{ex}}[k+1] = \gamma^{2}\underline{\overline{r}}_{\text{ex}}[k] + \underline{x}[k+1] \cdot e[k+1]$$

Initialization:
$$\underline{\bar{r}}_{\text{ex}}[0] = \underline{0}$$
; $\overline{R}_x^{-1}[0] = \delta^{-1}I$ with δ small For $k \ge \underline{g}[k+1] = \frac{\overline{R}_x^{-1}[k]\underline{x}[k+1]}{\gamma^2 + \underline{x}^t[k+1]\overline{R}_x^{-1}[k]\underline{x}[k+1]}$
$$\overline{R}_x^{-1}[k+1] = \gamma^{-2}\left(\overline{R}_x^{-1}[k] - \underline{g}[k+1] \cdot \underline{x}^t[k+1]\overline{R}_x^{-1}[k]\right)$$

$$\underline{\bar{r}}_{\text{ex}}[k+1] = \gamma^2\underline{\bar{r}}_{\text{ex}}[k] + \underline{x}[k+1] \cdot e[k+1]$$

$$\underline{w}[k+1] = \overline{R}_x^{-1}[k+1] \cdot \underline{r}_{\text{ex}}[k+1]$$

$$ightharpoonup \underline{w}[\infty] o \underline{w}_o$$

Initialization:
$$\underline{\underline{r}}_{\text{ex}}[0] = \underline{0}$$
; $\overline{R}_{x}^{-1}[0] = \delta^{-1}I$ with δ small For $k \ge \underline{\underline{g}}[k+1] = \frac{\overline{R}_{x}^{-1}[k]\underline{\underline{x}}[k+1]}{\gamma^{2} + \underline{\underline{x}}^{t}[k+1]\overline{\overline{R}_{x}^{-1}}[k]\underline{\underline{x}}[k+1]}$
$$\overline{R}_{x}^{-1}[k+1] = \gamma^{-2}\left(\overline{R}_{x}^{-1}[k] - \underline{\underline{g}}[k+1] \cdot \underline{\underline{x}}^{t}[k+1]\overline{\overline{R}_{x}^{-1}}[k]\right)$$

$$\underline{\underline{r}}_{\text{ex}}[k+1] = \gamma^{2}\underline{\underline{r}}_{\text{ex}}[k] + \underline{\underline{x}}[k+1] \cdot \underline{e}[k+1]$$

$$\underline{\underline{w}}[k+1] = \overline{R}_{x}^{-1}[k+1] \cdot \underline{\underline{r}}_{\text{ex}}[k+1]$$

- $ightharpoonup \underline{w}[\infty] o \underline{w}_o$
- ▶ Complexity $O(N^2)$ per time update

Initialization:
$$\underline{r}_{ex}[0] = \underline{0}$$
; $\overline{R}_{x}^{-1}[0] = \delta^{-1}I$ with δ small For $k \ge \underline{g}[k+1] = \frac{\overline{R}_{x}^{-1}[k]\underline{x}[k+1]}{\gamma^{2} + \underline{x}^{t}[k+1]\overline{R}_{x}^{-1}[k]\underline{x}[k+1]}$
$$\overline{R}_{x}^{-1}[k+1] = \gamma^{-2}\left(\overline{R}_{x}^{-1}[k] - \underline{g}[k+1] \cdot \underline{x}^{t}[k+1]\overline{R}_{x}^{-1}[k]\right)$$

$$\underline{r}_{ex}[k+1] = \gamma^{2}\underline{r}_{ex}[k] + \underline{x}[k+1] \cdot e[k+1]$$

$$\underline{w}[k+1] = \overline{R}_{x}^{-1}[k+1] \cdot \underline{r}_{ex}[k+1]$$

- ightharpoonup $\underline{w}[\infty] \to \underline{w}_o$
- ▶ Complexity $O(N^2)$ per time update
- ▶ Window length increases when time increases!

Initialization:
$$\underline{\overline{r}}_{ex}[0] = \underline{0}$$
; $\overline{R}_{x}^{-1}[0] = \delta^{-1}I$ with δ small For $k \ge \underline{g}[k+1] = \frac{\overline{R}_{x}^{-1}[k]\underline{x}[k+1]}{\gamma^{2} + \underline{x}^{t}[k+1]\overline{R}_{x}^{-1}[k]\underline{x}[k+1]}$
$$\overline{R}_{x}^{-1}[k+1] = \gamma^{-2}\left(\overline{R}_{x}^{-1}[k] - \underline{g}[k+1] \cdot \underline{x}^{t}[k+1]\overline{R}_{x}^{-1}[k]\right)$$

$$\underline{\underline{r}}_{ex}[k+1] = \gamma^{2}\underline{\underline{r}}_{ex}[k] + \underline{x}[k+1] \cdot e[k+1]$$

$$\underline{\underline{w}}[k+1] = \overline{R}_{x}^{-1}[k+1] \cdot \underline{\underline{r}}_{ex}[k+1]$$

- ightharpoonup $\underline{\mathsf{w}}[\infty] \to \underline{\mathsf{w}}_o$
- ightharpoonup Complexity $O(N^2)$ per time update
- ▶ Window length increases when time increases!
- Exhibits unstable roundoff error accumulation

Initialization:
$$\underline{\overline{r}}_{\mathrm{ex}}[0] = \underline{0} \; ; \; \overline{\mathbb{R}}_{x}^{-1}[0] = \delta^{-1} \mathbf{I} \; \text{with} \; \delta \; \text{small}$$
 For $k \geq \underline{\mathbf{g}}[k+1] = \frac{\overline{\mathbb{R}}_{x}^{-1}[k]\underline{\mathbf{x}}[k+1]}{\gamma^{2} + \underline{\mathbf{x}}^{t}[k+1]\overline{\mathbb{R}}_{x}^{-1}[k]\underline{\mathbf{x}}[k+1]}$
$$\overline{\mathbb{R}}_{x}^{-1}[k+1] = \gamma^{-2} \left(\overline{\mathbb{R}}_{x}^{-1}[k] - \underline{\mathbf{g}}[k+1] \cdot \underline{\mathbf{x}}^{t}[k+1]\overline{\mathbb{R}}_{x}^{-1}[k] \right)$$

$$\underline{\overline{r}}_{\mathrm{ex}}[k+1] = \gamma^{2}\underline{\overline{r}}_{\mathrm{ex}}[k] + \underline{\mathbf{x}}[k+1] \cdot e[k+1]$$

$$\underline{\mathbf{w}}[k+1] = \overline{\mathbb{R}}_{x}^{-1}[k+1] \cdot \underline{\mathbf{r}}_{\mathrm{ex}}[k+1]$$

- ightharpoonup $\underline{\mathsf{w}}[\infty] \to \underline{\mathsf{w}}_o$
- ▶ Complexity $O(N^2)$ per time update
- ▶ Window length increases when time increases!
- Exhibits unstable roundoff error accumulation
- ▶ RLS is basis for many practical algorithms

Initialization:
$$\underline{\overline{r}}_{ex}[0] = \underline{0} \; ; \; \overline{\mathbb{R}}_{x}^{-1}[0] = \delta^{-1} \mathbf{I} \; \text{with} \; \delta \; \text{small}$$

$$For \; k \geq \underline{\mathbf{g}}[k+1] \; = \; \frac{\overline{\mathbb{R}}_{x}^{-1}[k]\underline{\mathbf{x}}[k+1]}{\gamma^{2} + \underline{\mathbf{x}}^{t}[k+1]\overline{\mathbb{R}}_{x}^{-1}[k]\underline{\mathbf{x}}[k+1]}$$

$$\overline{\mathbb{R}}_{x}^{-1}[k+1] \; = \; \gamma^{-2} \left(\overline{\mathbb{R}}_{x}^{-1}[k] - \underline{\mathbf{g}}[k+1] \cdot \underline{\mathbf{x}}^{t}[k+1]\overline{\mathbb{R}}_{x}^{-1}[k]\right)$$

$$\underline{\underline{r}}_{ex}[k+1] \; = \; \gamma^{2}\underline{\underline{r}}_{ex}[k] + \underline{\mathbf{x}}[k+1] \cdot \underline{\mathbf{e}}[k+1]$$

$$\underline{\mathbf{w}}[k+1] \; = \; \overline{\mathbb{R}}_{x}^{-1}[k+1] \cdot \underline{\underline{r}}_{ex}[k+1]$$

- ightharpoonup $\underline{\mathsf{w}}[\infty] \to \underline{\mathsf{w}}_o$
- ▶ Complexity $O(N^2)$ per time update
- ▶ Window length increases when time increases!
- Exhibits unstable roundoff error accumulation
- RLS is basis for many practical algorithms
- Decorrelation takes place in algorithm

Frequency Domain Adaptive Filter (FDAF)

FDAF: Alternative for LMS/Newton and RLS

Frequency Domain Adaptive Filter (FDAF)

FDAF: Alternative for LMS/Newton and RLS

First step of derivation: Translate LMS to frequency domain

Frequency Domain Adaptive Filter (FDAF)

FDAF: Alternative for LMS/Newton and RLS

First step of derivation: Translate LMS to frequency domain

LMS weight update:

Filter output:

$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha \underline{\mathbf{x}}[k]r[k]$$

$$\hat{e}[k] = \underline{\mathsf{x}}^t[k] \cdot \underline{\mathsf{w}}[k]$$

Transform vectors to frequency domain:

Transform vectors to frequency domain:

$$F \cdot \underline{x}[k] = \underline{X}[k] = (X_0[k], X_1[k], \dots, X_{N-1}[k])^t$$

$$F^{-1} \cdot \underline{w}[k] = \underline{W}[k] = (W_0[k], W_1[k], \dots, W_{N-1}[k])^t$$

with DFT matrix F, which has properties: $F = F^t$ and $F^{-1} = \frac{1}{N}F^*$

Transform vectors to frequency domain:

$$F \cdot \underline{x}[k] = \underline{X}[k] = (X_0[k], X_1[k], \dots, X_{N-1}[k])^t$$

$$F^{-1} \cdot \underline{w}[k] = \underline{W}[k] = (W_0[k], W_1[k], \dots, W_{N-1}[k])^t$$

with DFT matrix F, which has properties: $F = F^t$ and $F^{-1} = \frac{1}{N}F^*$

Apply filter operation in frequency domain:

$$\hat{\mathbf{e}}[k] = \sum_{i=0}^{N-1} x[k-i] \cdot w_i[k] = \underline{\mathbf{x}}^t \cdot \underline{\mathbf{w}}[k]$$

Transform vectors to frequency domain:

$$F \cdot \underline{x}[k] = \underline{X}[k] = (X_0[k], X_1[k], \dots, X_{N-1}[k])^t$$

$$F^{-1} \cdot \underline{w}[k] = \underline{W}[k] = (W_0[k], W_1[k], \dots, W_{N-1}[k])^t$$

with DFT matrix F, which has properties: $F = F^t$ and $F^{-1} = \frac{1}{N}F^*$

Apply filter operation in frequency domain:

$$\hat{\mathbf{e}}[k] = \sum_{i=0}^{N-1} x[k-i] \cdot w_i[k] = \underline{\mathbf{x}}^t \cdot \underline{\mathbf{w}}[k]
= \underline{\mathbf{x}}^t[k](\mathbf{F} \cdot \mathbf{F}^{-1})\underline{\mathbf{w}}[k] = (\mathbf{F}\underline{\mathbf{x}}[k])^t \cdot (\mathbf{F}^{-1}\underline{\mathbf{w}}[k])$$

Transform vectors to frequency domain:

$$\begin{aligned} \mathbf{F} \cdot \underline{\mathbf{x}}[k] &= \underline{\mathbf{X}}[k] &= (X_0[k], X_1[k], \cdots, X_{N-1}[k])^t \\ \mathbf{F}^{-1} \cdot \underline{\mathbf{w}}[k] &= \underline{\mathbf{W}}[k] &= (W_0[k], W_1[k], \cdots, W_{N-1}[k])^t \end{aligned}$$

with DFT matrix F, which has properties: $F = F^t$ and $F^{-1} = \frac{1}{N}F^*$

Apply filter operation in frequency domain:

$$\hat{\mathbf{e}}[k] = \sum_{i=0}^{N-1} x[k-i] \cdot w_i[k] = \underline{\mathbf{x}}^t \cdot \underline{\mathbf{w}}[k]
= \underline{\mathbf{x}}^t[k](\mathbf{F} \cdot \mathbf{F}^{-1})\underline{\mathbf{w}}[k] = (\mathbf{F}\underline{\mathbf{x}}[k])^t \cdot (\mathbf{F}^{-1}\underline{\mathbf{w}}[k])
= \underline{\mathbf{X}}^t[k] \cdot \underline{\mathbf{W}}[k] = \sum_{l=0}^{N-1} X_l[k] W_l[k]$$

Notes:

▶ Inverse DFT in definition of weights $W_I[k]$

- ▶ Inverse DFT in definition of weights $W_I[k]$
- ▶ Use DFT symmetry to reduce complexity

- ▶ Inverse DFT in definition of weights $W_I[k]$
- Use DFT symmetry to reduce complexity
- ► For large *N*: Frequency bins "uncorrelated"

$$\mathsf{F}^{-1} \cdot \underline{\mathsf{w}}[k+1] = \mathsf{F}^{-1} \cdot \underline{\mathsf{w}}[k] + 2\alpha \mathsf{F}^{-1} \cdot \underline{\mathsf{x}}[k]r[k]$$

$$F^{-1} \cdot \underline{w}[k+1] = F^{-1} \cdot \underline{w}[k] + 2\alpha F^{-1} \cdot \underline{x}[k]r[k]$$

$$\Leftrightarrow \underline{W}[k+1] = \underline{W}[k] + \frac{2\alpha}{N}\underline{X}^*[k]r[k]$$

$$F^{-1} \cdot \underline{w}[k+1] = F^{-1} \cdot \underline{w}[k] + 2\alpha F^{-1} \cdot \underline{x}[k]r[k]$$

$$\Leftrightarrow \underline{W}[k+1] = \underline{W}[k] + \frac{2\alpha}{N}\underline{X}^*[k]r[k]$$

$$\begin{aligned} \mathsf{F}^{-1} \cdot \underline{\mathsf{w}}[k+1] &= \mathsf{F}^{-1} \cdot \underline{\mathsf{w}}[k] + 2\alpha \mathsf{F}^{-1} \cdot \underline{\mathsf{x}}[k]r[k] \\ \Leftrightarrow &\underline{\mathsf{W}}[k+1] &= &\underline{\mathsf{W}}[k] + \frac{2\alpha}{N}\underline{\mathsf{X}}^*[k]r[k] \end{aligned}$$

Transform LMS to frequency domain (multiply update algorithm by F^{-1})

$$F^{-1} \cdot \underline{w}[k+1] = F^{-1} \cdot \underline{w}[k] + 2\alpha F^{-1} \cdot \underline{x}[k]r[k]$$

$$\Leftrightarrow \underline{W}[k+1] = \underline{W}[k] + \frac{2\alpha}{N}\underline{X}^*[k]r[k]$$

$$X_{l}^{*}[k] \longrightarrow X_{l}^{*}[k] \longrightarrow X_{l}^{*}[k] \longrightarrow W_{l}[k+1] \longrightarrow W_{l}[k]$$

$$\downarrow A_{l} \longrightarrow A_{l}$$

Improve convergence by Power normalization:

$$P_{l} = \frac{1}{N} E\{|X_{l}[k]|^{2}\}$$

Transform LMS to frequency domain (multiply update algorithm by F^{-1})

$$F^{-1} \cdot \underline{w}[k+1] = F^{-1} \cdot \underline{w}[k] + 2\alpha F^{-1} \cdot \underline{x}[k]r[k]$$

$$\Leftrightarrow \underline{W}[k+1] = \underline{W}[k] + \frac{2\alpha}{N}\underline{X}^*[k]r[k]$$

Improve convergence by Power normalization:

$$P_{l} = \frac{1}{N} E\{|X_{l}[k]|^{2}\}$$

Transform LMS to frequency domain (multiply update algorithm by F^{-1})

$$F^{-1} \cdot \underline{w}[k+1] = F^{-1} \cdot \underline{w}[k] + 2\alpha F^{-1} \cdot \underline{x}[k]r[k]$$

$$\Leftrightarrow \underline{W}[k+1] = \underline{W}[k] + \frac{2\alpha}{N}\underline{X}^*[k]r[k]$$

Improve convergence by Power normalization:

$$P_I = \frac{1}{N} E\{|X_I[k]|^2\}$$
 e.g.: $\hat{P}_I[k+1] = \beta \hat{P}_I[k] + (1-\beta) \frac{|X_I[k]|^2}{N}$

FDAF algorithm:
$$\underline{W}[k+1] = \underline{W}[k] + 2\alpha P^{-1}\underline{X}^*[k]r[k]$$

with $P = \text{diag}\{\underline{P}\}$ and $(\underline{P})_I = P_I = \frac{1}{N}E\{|X_I[k]|^2\}$

FDAF algorithm:
$$\underline{W}[k+1] = \underline{W}[k] + 2\alpha P^{-1}\underline{X}^*[k]r[k]$$

with $P = \text{diag}\{\underline{P}\}$ and $(\underline{P})_I = P_I = \frac{1}{N}E\{|X_I[k]|^2\}$

With
$$\underline{D} = F^{-1}\underline{d} = F^{-1}(\underline{w} - \underline{w}_o) = \underline{W} - \underline{W}_o$$
 FDAF becomes:

With
$$\underline{D}=F^{-1}\underline{d}=F^{-1}(\underline{w}-\underline{w}_o)=\underline{W}-\underline{W}_o$$
 FDAF becomes:

$$\underline{\mathbf{D}}[k+1] = \left(\mathbf{I} - \frac{2\alpha}{N} \mathbf{P}^{-1} \underline{\mathbf{X}}^*[k] \underline{\mathbf{X}}^t[k]\right) \underline{\mathbf{D}}[k] + \frac{2\alpha}{N} \mathbf{P}^{-1} \underline{\mathbf{X}}^*[k] r_{\min}[k]$$

With
$$\underline{D} = F^{-1}\underline{d} = F^{-1}(\underline{w} - \underline{w}_o) = \underline{W} - \underline{W}_o$$
 FDAF becomes:

$$\underline{\mathbf{D}}[k+1] = \left(\mathbf{I} - \frac{2\alpha}{N} \mathbf{P}^{-1} \underline{\mathbf{X}}^*[k] \underline{\mathbf{X}}^t[k]\right) \underline{\mathbf{D}}[k] + \frac{2\alpha}{N} \mathbf{P}^{-1} \underline{\mathbf{X}}^*[k] r_{\min}[k]$$

Different bins 'uncorrelated'
$$\Rightarrow \frac{E\{X^*[k]X^t[k]\}}{N} \approx P$$

With
$$\underline{D}=F^{-1}\underline{d}=F^{-1}(\underline{w}-\underline{w}_o)=\underline{W}-\underline{W}_o$$
 FDAF becomes:

$$\underline{\mathbf{D}}[k+1] = \left(\mathbf{I} - \frac{2\alpha}{N} \mathbf{P}^{-1} \underline{\mathbf{X}}^*[k] \underline{\mathbf{X}}^t[k]\right) \underline{\mathbf{D}}[k] + \frac{2\alpha}{N} \mathbf{P}^{-1} \underline{\mathbf{X}}^*[k] r_{\min}[k]$$

Different bins 'uncorrelated'
$$\Rightarrow \frac{E\{\underline{X}^*[k]\underline{X}^t[k]\}}{N} \approx \mathsf{P}$$

$$\Rightarrow E\{\underline{\mathsf{D}}[k+1]\} \approx (1-2\alpha) \cdot E\{\underline{\mathsf{D}}[k]\} \Rightarrow \lim_{k \to \infty} E\{\underline{\mathsf{D}}[k]\} = \underline{\mathsf{0}}$$

Average behavior FDAF:

With
$$\underline{D} = F^{-1}\underline{d} = F^{-1}(\underline{w} - \underline{w}_o) = \underline{W} - \underline{W}_o$$
 FDAF becomes:

$$\underline{\mathbf{D}}[k+1] = \left(\mathbf{I} - \frac{2\alpha}{N} \mathbf{P}^{-1} \underline{\mathbf{X}}^*[k] \underline{\mathbf{X}}^t[k]\right) \underline{\mathbf{D}}[k] + \frac{2\alpha}{N} \mathbf{P}^{-1} \underline{\mathbf{X}}^*[k] r_{\min}[k]$$

Different bins 'uncorrelated' $\Rightarrow \frac{E\{\underline{X}^*[k]\underline{X}^t[k]\}}{N} \approx P$

$$\Rightarrow E\{\underline{\mathsf{D}}[k+1]\} \approx (1-2\alpha) \cdot E\{\underline{\mathsf{D}}[k]\} \Rightarrow \lim_{k \to \infty} E\{\underline{\mathsf{D}}[k]\} = \underline{\mathsf{0}}$$

FDAF converges to Wiener solution: $\lim_{k\to\infty} E\{\underline{\mathbf{W}}[k]\} = \underline{\mathbf{W}}_o = \mathbf{F}^{-1}\underline{\mathbf{w}}_o$

FDAF

Average behavior FDAF:

With
$$\underline{D} = F^{-1}\underline{d} = F^{-1}(\underline{w} - \underline{w}_o) = \underline{W} - \underline{W}_o$$
 FDAF becomes:

$$\underline{\mathbf{D}}[k+1] = \left(\mathbf{I} - \frac{2\alpha}{N} \mathbf{P}^{-1} \underline{\mathbf{X}}^*[k] \underline{\mathbf{X}}^t[k]\right) \underline{\mathbf{D}}[k] + \frac{2\alpha}{N} \mathbf{P}^{-1} \underline{\mathbf{X}}^*[k] r_{\min}[k]$$

Different bins 'uncorrelated' $\Rightarrow \frac{E\{X^*[k]X^t[k]\}}{N} \approx P$

$$\Rightarrow E\{\underline{\mathsf{D}}[k+1]\} \approx (1-2\alpha) \cdot E\{\underline{\mathsf{D}}[k]\} \Rightarrow \lim_{k \to \infty} E\{\underline{\mathsf{D}}[k]\} = \underline{\mathsf{0}}$$

FDAF converges to Wiener solution:
$$\lim_{k\to\infty} E\{\underline{W}[k]\} = \underline{W}_o = F^{-1}\underline{w}_o$$

Notes:

▶ DFT (FFT) is fixed transform: Easy but not exact $\left(\frac{E\{X^*[k]X^t[k]\}}{N}\approx P\right)$

FDAF

Average behavior FDAF:

With
$$\underline{D} = F^{-1}\underline{d} = F^{-1}(\underline{w} - \underline{w}_o) = \underline{W} - \underline{W}_o$$
 FDAF becomes:

$$\underline{\mathbf{D}}[k+1] = \left(\mathbf{I} - \frac{2\alpha}{N} \mathbf{P}^{-1} \underline{\mathbf{X}}^*[k] \underline{\mathbf{X}}^t[k]\right) \underline{\mathbf{D}}[k] + \frac{2\alpha}{N} \mathbf{P}^{-1} \underline{\mathbf{X}}^*[k] r_{\min}[k]$$

Different bins 'uncorrelated' $\Rightarrow \frac{E\{X^*[k]X^t[k]\}}{N} \approx P$

$$\Rightarrow E\{\underline{\mathsf{D}}[k+1]\} \approx (1-2\alpha) \cdot E\{\underline{\mathsf{D}}[k]\} \Rightarrow \lim_{k \to \infty} E\{\underline{\mathsf{D}}[k]\} = \underline{\mathsf{0}}$$

FDAF converges to Wiener solution:
$$\lim_{k\to\infty} E\{\underline{W}[k]\} = \underline{W}_o = F^{-1}\underline{w}_o$$

Notes:

- ▶ DFT (FFT) is fixed transform: Easy but not exact $\left(\frac{E\{X^*[k]X^t[k]\}}{N}\approx P\right)$
- ► FDAF equivalent to NLMS with white noise input

	MMSE	LS
Auto correlation	$R_x = E\{\underline{x}[k] \cdot \underline{x}^t[k]\}$	$\overline{R}_{x} = X^t \cdot X$
Cross correlation	$\underline{\mathbf{r}}_{ex} = E\{e[k] \cdot \underline{\mathbf{x}}[k]\}$	$\underline{\bar{\mathbf{r}}}_{ex} = X^t \cdot \underline{e}$
Error J	$E\{r^2[k]\}$	$\sum_{i=0}^{L-1} r^2 [k-i]$
Criterion	$\min_{\underline{w}} \{ E\{r^2[k]\} \}$	$\min_{\underline{w}} \underline{e} - X \cdot \underline{w} ^2$
Opt. solution \underline{w}_o	$R_x^{-1} \cdot \underline{r}_{ex}$	$\overline{R}_{x}^{-1} \cdot \overline{r}_{ex}$
Min. error J _{min}	$E\{e^2\} - \underline{\mathbf{r}}_{ex}^t \mathbf{R}_x^{-1} \underline{\mathbf{r}}_{ex}$	$\underline{\mathbf{e}}^t\underline{\mathbf{e}} - \overline{\mathbf{r}}_{ex}^t\overline{R}_{x}^{-1}\overline{\mathbf{r}}_{ex}$

Set of constraints:
$$C^t \cdot \underline{w} = \underline{f}$$

Solution for
$$N \ge M$$
: $\underline{\mathbf{w}}^c = \mathsf{C}(\mathsf{C}^t\mathsf{C})^{-1}\underline{\mathbf{f}}$

Solution for N > M with MMSE:

$$\underline{\mathbf{w}}_{o}^{c} = \underline{\mathbf{w}}_{o} + \mathbf{R}_{x}^{-1} \mathbf{C} (\mathbf{C}^{t} \mathbf{R}_{x}^{-1} \mathbf{C})^{-1} (\underline{\mathbf{f}} - \mathbf{C}^{t} \underline{\mathbf{w}}_{o})$$

Similar result:

$$\underline{\mathbf{w}}_{o}^{c} = \mathbf{R}_{x}^{-1} \mathbf{C} (\mathbf{C}^{t} \mathbf{R}_{x}^{-1} \mathbf{C})^{-1} \underline{\mathbf{f}}$$

Simple adaptive algorithms (no decorrelation):

SGD :
$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha(\underline{\mathbf{r}}_{\mathsf{ex}} - \mathsf{R}_{\mathsf{x}}\underline{\mathbf{w}}[k])$$

(complex)(N)LMS :
$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + \frac{2\alpha}{\hat{\sigma}_x^2}\underline{\mathbf{x}}[k]r^*[k]$$

Constrained LMS:
$$C^t \cdot \underline{w} = \underline{f}$$

$$\underline{\mathbf{w}}[k+1] = \tilde{\mathsf{P}} \cdot \{\underline{\mathbf{w}}[k] + 2\alpha \underline{\mathbf{x}}[k]r[k]\} + \mathsf{C}\left(\mathsf{C}^t \cdot \mathsf{C}\right)^{-1}\underline{\mathsf{f}}$$

with

$$\tilde{\mathsf{P}} = \mathsf{I} - \mathsf{C} \left(\mathsf{C}^t \cdot \mathsf{C}\right)^{-1} \mathsf{C}^t$$
 and $\underline{\mathsf{w}}[\mathsf{0}] = \mathsf{C} \left(\mathsf{C}^t \cdot \mathsf{C}\right)^{-1} \underline{\mathsf{f}}$

Algorithms with improved convergence:

LMS/Newton :
$$\underline{w}[k+1] = \underline{w}[k] + 2\alpha R_x^{-1} \underline{x}[k]r[k]$$

Newton : $\underline{w}[k+1] = \underline{w}[k] + 2\alpha R_x^{-1} \cdot (\underline{r}_{ex} - R_x \underline{w}[k])$
RLS : $\underline{g}[k+1] = \frac{\overline{R}_x^{-1}[k]\underline{x}[k+1]}{\gamma^2 + \underline{x}^t[k+1]\overline{R}_x^{-1}[k]\underline{x}[k+1]}$
 $\overline{R}_x^{-1}[k+1] = \gamma^{-2} \left(\overline{R}_x^{-1}[k] - \underline{g}[k+1] \cdot \underline{x}^t[k+1]\overline{R}_x^{-1}[k]\right)$
 $\underline{r}_{ex}[k+1] = \gamma^2 \underline{r}_{ex}[k] + \underline{x}^t[k+1] \cdot e[k+1]$
 $\underline{w}[k+1] = \overline{R}_x^{-1}[k+1] \cdot \underline{r}_{ex}[k+1]$

Array Signal Processing (Part IB)

Introduction

Introduction

Beamforming: Spatio temporal filtering to either direct of block the radiation or reception of signals in specified directions

Introduction

Beamforming: Spatio temporal filtering to either direct of block the radiation or reception of signals in specified directions

Result Beamforming = **Spatial filtering:** Separate signals with possible overlapping frequencies but from different directions

Different scenario's (content first part):

- Bandwidth source
- Array geometry
- Far field vs. near field
- Direction Of Arrival (DOA)
- Discrete-time signal representation
- Array signal model
- ► ASP unit
- ► Spatial/ temporal filtering
- Broadband signals

Analytical representation: $s(t) = A(t) \mathrm{e}^{\mathrm{j}(\omega_o t + \phi(t))}$

Analytical representation: $s(t) = A(t)e^{j(\omega_o t + \phi(t))}$

Narrowband: A(t) and $\phi(t)$ vary slower than $e^{\int \omega_0 t}$

Narrowband:
$$| au| \ll 1/B$$

$$A(t- au)pprox A(t)=1$$
 (usually) \Rightarrow $\phi(t- au)pprox \phi(t)=0$ (usually)

$$\phi(t- au)pprox\phi(t)=$$
 0 (usually)

Analytical representation: $s(t) = A(t)e^{j(\omega_o t + \phi(t))}$

Narrowband: A(t) and $\phi(t)$ vary slower than $e^{J\omega_0 t}$

$$S(\omega)$$

$$\omega_0$$

$$\omega$$

Narrowband:
$$|\tau| \ll 1/B$$

$$A(t- au)pprox A(t)=1$$
 (usually) \Rightarrow

$$\phi(t- au)pprox\phi(t)=0$$
 (usually)

$$\Rightarrow s(t-\tau) = A(t-\tau) e^{j\omega_0(t-\tau)} e^{j\omega_0(t-\tau)} \approx e^{-j\omega_o\tau} \cdot s(t)$$

Analytical representation: $s(t) = A(t)e^{J(\omega_o t + \phi(t))}$

Narrowband: A(t) and $\phi(t)$ vary slower than $e^{\int \omega_0 t}$

$$S(\omega)$$

$$\omega_0$$

$$\omega$$

Narrowband: $|\tau| \ll 1/B$

$$A(t- au)pprox A(t)=1$$
 (usually) \Rightarrow $\phi(t- au)pprox \phi(t)=0$ (usually)

$$\phi(t- au)pprox\phi(t)=$$
 0 (usually)

$$\Rightarrow s(t-\tau) = A(t-\tau)e^{j\phi(t-\tau)}e^{j\omega_0(t-\tau)} \approx e^{-j\omega_o\tau} \cdot s(t)$$

Thus for narrowband: Time delay \equiv phase shift

In this course mainly narrowband

Scenario: Array geometry

$$\underline{p} = (p_x, p_y, p_z)^t
p_x = ||\underline{p}|| \sin(\theta_{az}) \cos(\theta_{el})
p_y = ||\underline{p}|| \sin(\theta_{el})
p_z = ||\underline{p}|| \cos(\theta_{az}) \cos(\theta_{el})$$

Scenario: Array geometry

Array can be uniform, nonuniform, linear, circular, · · ·

In this course mainly: ULA

Array aperture: Volume (1D length) that collects incoming signal

Array aperture: Volume (1D length) that collects incoming signal

Near field: Propagation for single frequency source

$$s(t, \underline{p}) = \frac{A}{||\underline{p}||^2} e^{j\omega(t - \frac{||\underline{p}||}{c})}$$
 with $\omega = 2\pi f$ and $f = \frac{c}{\lambda}$

 $\lambda = {\sf wavelength}, \ c = {\sf speed} \ {\sf in medium} \ (pprox 334 \ [{\sf m/sec}] \ {\sf for sound in air})$

⇒ Amplitude decays proportional to distance from source

In this course mainly far field:

$$s(t, \underline{p}_i) = Ae^{j\omega(t-\tau_i)} = Ae^{j\omega(t-\frac{\underline{v}^t\cdot\underline{p}_i}{c})} = Ae^{j(\omega t-\underline{k}^t\cdot\underline{p}_i)}$$

with direction vector $\underline{\mathbf{v}}$, wave number vector $\underline{\mathbf{k}} = \frac{\omega}{c} \cdot \underline{\mathbf{v}}$

In this course mainly far field:

$$s(t,\underline{\mathbf{p}}_{i}) = Ae^{\mathbf{j}\omega(t-\tau_{i})} = Ae^{\mathbf{j}\omega(t-\frac{\mathbf{v}^{t}\cdot\mathbf{p}_{i}}{c})} = Ae^{\mathbf{j}(\omega t - \underline{\mathbf{k}}^{t}\cdot\underline{\mathbf{p}}_{i})}$$

with direction vector $\underline{\mathbf{v}}$, wave number vector $\underline{\mathbf{k}} = \frac{\omega}{c} \cdot \underline{\mathbf{v}}$

- \checkmark $s(t, \underline{p}_i)$ describes propagation as function of both time and space
- ✓ Information is preserved while propagating

In this course mainly far field:

$$s(t,\underline{\mathbf{p}}_i) = A e^{\mathbf{j}\omega(t-\tau_i)} = A e^{\mathbf{j}\omega(t-\frac{\mathbf{v}^t\cdot\underline{\mathbf{p}}_i}{c})} = A e^{\mathbf{j}(\omega t - \underline{\mathbf{k}}^t\cdot\underline{\mathbf{p}}_i)}$$

with direction vector $\underline{\textbf{v}},$ wave number vector $\underline{\textbf{k}} = \frac{\omega}{\textbf{c}} \cdot \underline{\textbf{v}}$

- $\sqrt{s(t, \underline{p}_i)}$ describes propagation as function of both time and space
- ✓ Information is preserved while propagating
- \Rightarrow Reconstruction band limited signal over all space and time by either:
 - ► Temporally sampling at given location in space
 - Spatially sampling at given instant of time
 - Combination

In this course mainly far field:

$$s(t,\underline{\mathbf{p}}_{i}) = Ae^{\mathbf{j}\omega(t-\tau_{i})} = Ae^{\mathbf{j}\omega(t-\frac{\mathbf{v}^{t}\cdot\underline{\mathbf{p}}_{i}}{c})} = Ae^{\mathbf{j}(\omega t - \underline{\mathbf{k}}^{t}\cdot\underline{\mathbf{p}}_{i})}$$

with direction vector $\underline{\textbf{v}},$ wave number vector $\underline{\textbf{k}} = \frac{\omega}{\textbf{c}} \cdot \underline{\textbf{v}}$

- $\sqrt{s(t, \underline{p}_i)}$ describes propagation as function of both time and space
- ✓ Information is preserved while propagating
- \Rightarrow Reconstruction band limited signal over all space and time by either:
 - ► Temporally sampling at given location in space
 - Spatially sampling at given instant of time
 - Combination

Spatially sampling:

Basis for all aperture and sensor array processing techniques

At position
$$\underline{\mathbf{p}}_i$$
: $s(t-\tau_i)=s(t)\mathrm{e}^{-\mathrm{j}\omega\tau_i}$ with delay $\tau_i=\frac{\mathrm{v}^t\cdot\underline{\mathbf{p}}_i}{c}$ and $\underline{\mathbf{v}}$ is direction vector $\omega=2\pi f$, $f=\frac{c}{\lambda}$, $\lambda=$ wavelength, $c=$ speed in medium

Scenario: Direction Of Arrival (DOA)

Location is 3D quantity. In practice often 2D

Scenario: Direction Of Arrival (DOA)

Location is 3D quantity. In practice often 2D

Example: Narrow band, far field 2D DOA for ULA:

$$Y_{\tilde{x}_i(t)}$$
 DEMOD LPF A/D $x_i[k]$

- \checkmark Analog sensor signal at sensor i: $\tilde{x}_i(t)$
- ✓ Ideal demodulation and LPF results in baseband signal: $\hat{x}_i(t)$
- ✓ After A/D (complex valued) discrete-time signal: $x_i[k]$
- ✓ Analog signal at p, for narrow band, far field case:

$$\hat{x}_i(t) = s(t - au_i) = s(t) \mathrm{e}^{-\mathrm{j}\omega au_i}$$
 with $au_i = \frac{\mathrm{v}^t \cdot \mathrm{p}_i}{c}$

$$Y_{i}(t)$$
 DEMOD LPF $\hat{x}_{i}(t)$ A/D $X_{i}[k]$

- ✓ Analog sensor signal at sensor i: $\tilde{x}_i(t)$
- ✓ Ideal demodulation and LPF results in baseband signal: $\hat{x}_i(t)$
- ✓ After A/D (complex valued) discrete-time signal: $x_i[k]$
- ✓ Analog signal at \underline{p}_i for narrow band, far field case:

$$\hat{x}_i(t) = s(t - \tau_i) = s(t)e^{-j\omega\tau_i}$$
 with $\tau_i = \frac{\underline{v}^t \cdot \underline{p}_i}{c}$

✓ Discrete-time signal at p_i for ULA-case:

$$s[k]e^{-j\omega\tau_i} = s[k] \cdot e^{-j2\pi(i-1)\frac{d\sin(\theta)}{\lambda}} = s[k] \cdot a_i(\theta) \text{ with } a_i(\theta) = e^{-j2\pi(i-1)\frac{d\sin(\theta)}{\lambda}}$$

$$\bigvee \tilde{x}_i(t) \xrightarrow{\text{DEMOD}} \xrightarrow{\hat{x}_i(t)} \xrightarrow{x_i[k]} \xrightarrow{x_i[k]}$$

- ✓ Analog sensor signal at sensor i: $\tilde{x}_i(t)$
- \checkmark Ideal demodulation and LPF results in baseband signal: $\hat{x}_i(t)$
- ✓ After A/D (complex valued) discrete-time signal: $x_i[k]$
- ✓ Analog signal at \underline{p}_i for narrow band, far field case:

$$\hat{x}_i(t) = s(t - \tau_i) = s(t)e^{-j\omega\tau_i}$$
 with $\tau_i = \frac{\underline{v}^t \cdot \underline{p}_i}{c}$

✓ Discrete-time signal at p_i for ULA-case:

$$s[k]e^{-j\omega\tau_i} = s[k] \cdot e^{-j2\pi(i-1)\frac{d\sin(\theta)}{\lambda}} = s[k] \cdot a_i(\theta) \text{ with } a_i(\theta) = e^{-j2\pi(i-1)\frac{d\sin(\theta)}{\lambda}}$$

Note: In fact $a_i(\theta)$ also depends on ω

```
Array sensor vector : \underline{\mathbf{x}}[k] = (x_1[k], x_2[k], \cdots x_J[k])^t
```

Noise vector : $\underline{\mathbf{n}}[k] = (n_1[k], n_2[k], \cdots n_J[k])^t$

Steering vector : $\underline{\mathbf{a}}[k] = (a_1(\theta), a_2(\theta), \cdots a_J(\theta))^t$

with $a_i(\theta) = e^{-j\omega\tau_i(\theta)}$

Array sensor vector : $\underline{\mathbf{x}}[k] = (x_1[k], x_2[k], \cdots x_J[k])^t$

Noise vector : $\underline{\mathbf{n}}[k] = (n_1[k], n_2[k], \cdots n_J[k])^t$

Steering vector : $\underline{\mathbf{a}}[k] = (a_1(\theta), a_2(\theta), \cdots a_J(\theta))^t$

with $a_i(\theta) = e^{-j\omega\tau_i(\theta)}$

Case: Noise observation, P sources, J sensors

Array sensor vector : $\underline{\mathbf{x}}[k] = (x_1[k], x_2[k], \cdots x_J[k])^t$

Noise vector : $\underline{\mathbf{n}}[k] = (n_1[k], n_2[k], \cdots n_J[k])^t$

Steering vector : $\underline{\mathbf{a}}[k] = (a_1(\theta), a_2(\theta), \cdots a_J(\theta))^t$

with $a_i(\theta) = e^{-j\omega\tau_i(\theta)}$

Case: Noise observation, P sources, J sensors

$$x_i[k] = \sum_{p=1}^{P} a_i(\theta_p) s_p[k] + n_i[k]$$

Array sensor vector : $\underline{\mathbf{x}}[k] = (x_1[k], x_2[k], \cdots x_J[k])^t$

Noise vector : $\underline{\mathbf{n}}[k] = (n_1[k], n_2[k], \cdots n_J[k])^t$

Steering vector : $\underline{\mathbf{a}}[k] = (a_1(\theta), a_2(\theta), \cdots a_J(\theta))^t$

with $a_i(\theta) = e^{-j\omega\tau_i(\theta)}$

Case: Noise observation, *P* sources, *J* sensors

$$x_i[k] = \sum_{p=1}^{P} a_i(\theta_p) s_p[k] + n_i[k] \quad \Leftrightarrow \quad \boxed{\underline{\mathbf{x}[k]} = \mathbf{A} \cdot \underline{\mathbf{s}[k]} + \underline{\mathbf{n}[k]}}$$

Array sensor vector : $\underline{\mathbf{x}}[k] = (x_1[k], x_2[k], \cdots x_J[k])^t$

Noise vector : $\underline{\mathbf{n}}[k] = (n_1[k], n_2[k], \dots n_J[k])^t$

Steering vector : $\underline{\mathbf{a}}[k] = (a_1(\theta), a_2(\theta), \cdots a_J(\theta))^t$

with $a_i(\theta) = e^{-j\omega\tau_i(\theta)}$

Case: Noise observation, P sources, J sensors

$$x_i[k] = \sum_{p=1}^{P} a_i(\theta_p) s_p[k] + n_i[k] \quad \Leftrightarrow \quad \boxed{\underline{\mathbf{x}[k]} = \mathbf{A} \cdot \underline{\mathbf{s}[k]} + \underline{\mathbf{n}[k]}}$$

 $J \times P$ steering matrix $A = (\underline{a}(\theta_1), \underline{a}(\theta_2), \cdots, \underline{a}(\theta_P))$

 $P \times 1$ signal vector $\underline{s}[k] = (s_1[k], s_2[k], \cdots, s_P[k])^t$

Scenario: Array signal model

Array sensor vector : $\underline{\mathbf{x}}[k] = (x_1[k], x_2[k], \cdots x_J[k])^t$ Noise vector : $\underline{\mathbf{n}}[k] = (n_1[k], n_2[k], \cdots n_J[k])^t$ Steering vector : $\underline{\mathbf{a}}[k] = (a_1(\theta), a_2(\theta), \cdots a_J(\theta))^t$

with $a_i(\theta) = e^{-j\omega \tau_i(\theta)}$

Case: Noise observation, *P* sources, *J* sensors

$$x_i[k] = \sum_{p=1}^{P} a_i(\theta_p) s_p[k] + n_i[k] \quad \Leftrightarrow \quad \boxed{\underline{\mathbf{x}}[k] = \mathbf{A} \cdot \underline{\mathbf{s}}[k] + \underline{\mathbf{n}}[k]}$$

 $J \times P$ steering matrix $A = (\underline{a}(\theta_1), \underline{a}(\theta_2), \cdots, \underline{a}(\theta_P))$ $P \times 1$ signal vector $\underline{s}[k] = (s_1[k], s_2[k], \cdots, s_P[k])^t$

Covariance structure: $R_x = E\{\underline{x} \cdot \underline{x}^h\} = AR_sA^h + R_n$

with $R_s = E\{\underline{s} \cdot \underline{s}^h\}$ and $R_n = E\{\underline{n} \cdot \underline{n}^h\} = \sigma_n^2 I$

Scenario: ASP unit

Case: Single complex weight for each sensor

Scenario: ASP unit

Case: Single complex weight for each sensor

Case: FIR filter for each sensor

 $\underline{\mathbf{w}}_{i}$: FIR filter with N weights

$$y[k] = \sum_{i=1}^{J} w_i^* x_i[k] = \underline{w}^h \cdot \underline{x}[k]$$

$$\underline{x}[k] = (x_1[k], \dots, x_J[k])t$$

$$\underline{w} = (w_1, \dots, w_J)^t$$

$$y[k] = \sum_{i=1}^{J} \underline{w}_{i}^{h} \cdot \underline{x}_{i}[k] = \underline{w}^{h} \cdot \underline{x}[k]$$

$$\underline{x}[k] = (\underline{x}_{1}[k], \dots, \underline{x}_{J}[k])t$$

$$\underline{w} = (\underline{w}_{1}, \dots, \underline{w}_{J})^{t}$$

$$\underline{w}_{i} = (w_{i,1}, \dots, w_{i,N})^{t}$$

Scenario: Spatial/ temporal filtering

Scenario: Spatial/ temporal filtering

Note: FIR filtering effect both temporal and spatial response

Scenario: Broadband signals

Main properties

Assumptions:

Assumptions:

- ► Single source $s(t) = e^{j\omega t}$
- Frequency relations: $\omega=2\pi f=2\pi\frac{c}{\lambda}$, with wavenumber λ and speed of propagation $c~(\approx 343~[\text{m/sec}])$
- ▶ Direction Of Arrival (DOA): θ
- Far field, thus plane wavefront
- ULA with distance d [m] between sensors
- ▶ J omnidirectional sensors \Rightarrow array aperture $= J \cdot d$ [m]

Assumptions:

- ► Single source $s(t) = e^{j\omega t}$
- Frequency relations: $\omega=2\pi f=2\pi\frac{c}{\lambda}$, with wavenumber λ and speed of propagation $c~(\approx 343~[\text{m/sec}])$
- ▶ Direction Of Arrival (DOA): θ
- Far field, thus plane wavefront
- ULA with distance d [m] between sensors
- ▶ J omnidirectional sensors \Rightarrow array aperture $= J \cdot d$ [m]
- ▶ Model: $\underline{x}[k] = \underline{a}(\theta) \cdot s[k]$ (No noise, no interference)
- ASP unit: Single complex weight fw_i or each sensor

$$\Rightarrow y[k] = \sum_{i=1} w_i^* x_i[k] = \underline{w}^h \cdot \underline{x}[k] = \underline{w}^h \cdot \underline{a}(\theta) \cdot s[k]$$

with
$$(\underline{a}(\theta))_i = e^{-j2\pi(i-1)\frac{d\sin(\theta)}{\lambda}}$$

Array response : $r(\theta) = \underline{\mathbf{w}}^h \cdot \underline{\mathbf{a}}(\theta)$

Other names: Angular response or directivity pattern

Array response : $r(\theta) = \underline{\mathbf{w}}^h \cdot \underline{\mathbf{a}}(\theta)$

Other names: Angular response or directivity pattern

Beampattern: $B(\theta) = \frac{1}{J^2} |r(\theta)|^2 = \frac{1}{J^2} |\underline{\mathbf{w}}^h \cdot \underline{\mathbf{a}}(\theta)|^2$

 $\underline{\mathsf{Array response}} : r(\theta) = \underline{\mathsf{w}}^h \cdot \underline{\mathsf{a}}(\theta)$

Other names: Angular response or directivity pattern

Beampattern:
$$B(\theta) = \frac{1}{J^2} |r(\theta)|^2 = \frac{1}{J^2} |\underline{\mathbf{w}}^h \cdot \underline{\mathbf{a}}(\theta)|^2$$

<u>Notes:</u>

- Array response: Response to unit-amplitude plane wave front from direction θ
- ▶ Non ideal sensor characteristics can be incorporated
- ▶ Weights effect both temporal and spatial response
- ightharpoonup Vector space interpretation: Angle between \underline{w} and \underline{a}
- To evaluate beampattern: Choose all weight equal to one, thus $\underline{\mathbf{w}} = (1, 1, \dots, 1)^t$

$$B(\theta) = \frac{1}{J^2} |\underline{1}^t \cdot \underline{a}(\theta)|^2$$

$$B(\theta) = \frac{1}{J^2} |\underline{1}^t \cdot \underline{a}(\theta)|^2 = \frac{1}{J^2} \left| \sum_{i=1}^J e^{-j2\pi(i-1)\frac{d}{\lambda}\sin(\theta)} \right|^2$$

$$B(\theta) = \frac{1}{J^2} |\underline{1}^t \cdot \underline{a}(\theta)|^2 = \frac{1}{J^2} \left| \sum_{i=1}^J e^{-j2\pi(i-1)\frac{d}{\lambda}\sin(\theta)} \right|^2$$
$$= \frac{1}{J^2} \left| \frac{1 - e^{-jJ2\pi\frac{d}{\lambda}\sin(\theta)}}{1 - e^{-j2\pi\frac{d}{\lambda}\sin(\theta)}} \right|^2$$

$$B(\theta) = \frac{1}{J^2} |\underline{1}^t \cdot \underline{a}(\theta)|^2 = \frac{1}{J^2} \left| \sum_{i=1}^J e^{-j2\pi(i-1)\frac{d}{\lambda}\sin(\theta)} \right|^2$$
$$= \frac{1}{J^2} \left| \frac{1 - e^{-jJ2\pi\frac{d}{\lambda}\sin(\theta)}}{1 - e^{-j2\pi\frac{d}{\lambda}\sin(\theta)}} \right|^2 = \left| \frac{1}{J^2} \left| \frac{\sin(J\pi\frac{d}{\lambda}\sin(\theta))}{\sin(\pi\frac{d}{\lambda}\sin(\theta))} \right|^2 \right|$$

$$B(\theta) = \frac{1}{J^2} |\underline{1}^t \cdot \underline{\mathbf{a}}(\theta)|^2 = \frac{1}{J^2} \left| \sum_{i=1}^J e^{-\mathbf{j}2\pi(i-1)\frac{d}{\lambda}\sin(\theta)} \right|^2$$
$$= \frac{1}{J^2} \left| \frac{1 - e^{-\mathbf{j}J2\pi\frac{d}{\lambda}\sin(\theta)}}{1 - e^{-\mathbf{j}2\pi\frac{d}{\lambda}\sin(\theta)}} \right|^2 = \frac{1}{J^2} \left| \frac{\sin(J\pi\frac{d}{\lambda}\sin(\theta))}{\sin(\pi\frac{d}{\lambda}\sin(\theta))} \right|^2$$

Main parameters:

- ightharpoonup DOA θ
- ▶ Ratio $\frac{d}{\lambda}$ (everything scales with wavelength)
- ▶ Number of sensors *J*
- ► Element spacing *d*
- ▶ Array aperture $L = J \cdot d$

ULA Beampattern: Example
$$J=2, \frac{d}{\lambda}=\frac{1}{2}$$

Linear plot:

Polar plot:

ULA Beampattern: Example $J=2, \frac{d}{\lambda}=\frac{1}{2}$

Linear plot:

Polar plot:

ULA Beampattern: Example $J=2, \frac{d}{\lambda}=\frac{1}{2}$

Linear plot:

Polar plot:

Some preliminary conclusions:

- Ambiguity between 'front' (line of sight) and 'back': $B(\theta) = B(\pi \theta)$
- ► Zeroes if numerator of $B(\theta) = 0 \Rightarrow \theta = \arcsin(i \cdot \frac{1}{J} \cdot \frac{\lambda}{d})$
- ► For $\frac{d}{\lambda} = \frac{1}{2} \Rightarrow$ Zeroes at $\theta = \pm \frac{\pi}{2}$ and mainlobe (3dB) beamwidth: 60°

ULA Beampattern: J=2, variable $\frac{d}{\lambda}$

Polar plot: 2 sensors; d/\(= 0.25 \)

Polar plot: 2 sensors; $d\lambda = 1$

ULA Beampattern: Variable # sensors J

$$L=J\cdot d$$
 with $J\uparrow$ and fixed $rac{d}{\lambda}=rac{1}{2}$

Polar plot: 2 sensors; dA = 0.5120
150
0.5
0
180
21

ULA Beampattern: dB scale, variable L, $\frac{d}{\lambda} = \frac{1}{2}$

Aperture size $L = J \cdot d$

Note for assignment: Usually maximum at 0 [dB]

ULA Beampattern: dB scale, variable d, fixed L

ULA Beampattern: Frequency dependency

Example:
$$d = \frac{\lambda_{min}}{2} = \frac{c}{2 \cdot f_{max}} \approx 3.5 \text{[cm]}$$

ULA Far field: J=5, d=0.035, f=0 to 5000 Hz

With $u = \frac{d \sin(\theta)}{\lambda} \Rightarrow \text{ULA beampattern becomes}$:

$$B(\mathbf{u}) = \frac{1}{J^2} |\underline{\mathbf{w}}^h \cdot \underline{\mathbf{a}}(\mathbf{u})|^2 = \frac{1}{J^2} |\sum_{p=0}^{J-1} w_p^* e^{-\mathbf{j}2\pi p \mathbf{u}}|^2$$

With $u = \frac{d \sin(\theta)}{\lambda} \Rightarrow \text{ULA beampattern becomes:}$

$$B(\mathbf{u}) = \frac{1}{J^2} |\underline{\mathbf{w}}^h \cdot \underline{\mathbf{a}}(\mathbf{u})|^2 = \frac{1}{J^2} |\sum_{p=0}^{J-1} w_p^* e^{-\mathbf{j}2\pi p \mathbf{u}}|^2$$

Note: Since unambiguous angles $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$, to avoid aliasing

$$-\frac{1}{2} \le u \le \frac{1}{2} \quad \Leftrightarrow \quad d \le \frac{\lambda}{2}$$

With $u = \frac{d \sin(\theta)}{\lambda} \Rightarrow \text{ULA beampattern becomes:}$

$$B(\mathbf{u}) = \frac{1}{J^2} |\underline{\mathbf{w}}^h \cdot \underline{\mathbf{a}}(\mathbf{u})|^2 = \frac{1}{J^2} |\sum_{p=0}^{J-1} w_p^* \mathrm{e}^{-\mathrm{j} 2\pi p \mathbf{u}}|^2$$

Note: Since unambiguous angles $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$, to avoid aliasing

$$-\frac{1}{2} \le \mathbf{u} \le \frac{1}{2} \quad \Leftrightarrow \quad d \le \frac{\lambda}{2}$$

Zero padded DFT: With $N \geq J$

$$B_{l} = \frac{1}{J^{2}} \left| \sum_{p=0}^{J-1} w_{p}^{*} e^{-j\frac{2\pi}{N}pl} \right|^{2}$$

with
$$I = N \cdot u = N \cdot \frac{d \sin(\theta)}{\lambda}$$

Compute corresponding angle via: $\theta = \arcsin\left(\frac{I}{N} \cdot \frac{\lambda}{d}\right)$

Data dependent beamforming

Data dependent beamforming

Conventional approaches:

- Beam steering
- Tapering
- Null steering
- Array response design

Purpose:

Compensate propagation path length differences of direct path from source to each sensor resulting is properly aligned direct path signals at the output

Purpose:

Compensate propagation path length differences of direct path from source to each sensor resulting is properly aligned direct path signals at the output

Design procedure:

Design weights such that delays in between sensor elements are compensated \Rightarrow Beampattern rotates

Purpose:

Compensate propagation path length differences of direct path from source to each sensor resulting is properly aligned direct path signals at the output

Design procedure:

Design weights such that delays in between sensor elements are compensated \Rightarrow Beampattern rotates

Other name: Delay and Sum Beamformer (DSB)

Desired source signal s(t), of single frequency $f_d = \frac{c}{\lambda}$, at DOA θ_0 : $\Rightarrow x_i[k] = s[k] \cdot a_i(\theta_0) = s[k] \cdot \mathrm{e}^{-\mathrm{j} 2\pi f_d \tau_i}$

Desired source signal s(t), of single frequency $f_d = \frac{c}{\lambda}$, at DOA θ_0 : $\Rightarrow x_i[k] = s[k] \cdot a_i(\theta_0) = s[k] \cdot e^{-j2\pi f_d \tau_i}$

ULA delay at sensor i:

$$au_i = (i-1) \cdot rac{d\sin(heta_0)}{c} \Rightarrow$$

$$x_i[k] = s[k] \cdot e^{-j2\pi(i-1)\frac{d\sin(\theta_0)}{\lambda}}$$

Desired source signal s(t), of single frequency $f_d = \frac{c}{\lambda}$, at DOA θ_0 : $\Rightarrow x_i[k] = s[k] \cdot a_i(\theta_0) = s[k] \cdot e^{-j2\pi f_d \tau_i}$

ULA delay at sensor i:

$$au_i = (i-1) \cdot \frac{d \sin(\theta_0)}{c} \Rightarrow$$

$$x_i[k] = s[k] \cdot e^{-j2\pi(i-1)\frac{d\sin(\theta_0)}{\lambda}}$$

In order to properly align desired source (DOA = θ_0) at output:

$$w_i^* = e^{+j2\pi(i-1)\frac{d\sin(\theta_0)}{\lambda}} \Rightarrow y[k] = J \cdot s[k]$$

Resulting beampattern shifted/ rotated over θ_0 :

$$B(\theta) = \frac{1}{J^2} |\underline{\mathbf{w}}^h \cdot \underline{\mathbf{a}}(\theta)|^2 = \frac{1}{J^2} \left| \sum_{i=1}^J e^{-\mathbf{j}2\pi f_d(i-1)\frac{d}{c}(\sin(\theta) - \sin(\theta_0))} \right|^2$$

Resulting beampattern shifted/ rotated over θ_0 :

$$B(\theta) = \frac{1}{J^2} |\underline{\mathbf{w}}^h \cdot \underline{\mathbf{a}}(\theta)|^2 = \frac{1}{J^2} \left| \sum_{i=1}^J e^{-\mathbf{j}2\pi f_d(i-1)\frac{d}{c}(\sin(\theta) - \sin(\theta_0))} \right|^2$$

Electronic vs mechanical beamsteering

Electronic vs mechanical beamsteering

Electronic vs mechanical beamsteering

Electronic beamsteering

Ambiguity between DOA's θ_0 and $\pi - \theta_0$

Mechanical beamsteering

Electronic vs mechanical beamsteering

Mechanical beamsteering

Ambiguity between DOA's θ_0 and $\pi + \theta_0$

Another view to beamsteering for spatially white noise

Another view to beamsteering for spatially white noise

$$y[k] = \underline{\mathbf{w}}^h \cdot \underline{\mathbf{x}}[k] = \underline{\mathbf{w}}^h \cdot (\underline{\mathbf{a}}(\theta)s[k] + \underline{\mathbf{n}}[k])$$
$$= \underline{\mathbf{w}}^h \cdot \underline{\mathbf{a}}(\theta)s[k] + \underline{\mathbf{w}}^h \cdot \underline{\mathbf{n}}[k] = y_s[k] + y_n[k]$$

Another view to beamsteering for spatially white noise

$$y[k] = \underline{w}^h \cdot \underline{x}[k] = \underline{w}^h \cdot (\underline{a}(\theta)s[k] + \underline{n}[k])$$

$$= \underline{w}^h \cdot \underline{a}(\theta)s[k] + \underline{w}^h \cdot \underline{n}[k] = y_s[k] + y_n[k]$$

$$\Rightarrow P_y = \sigma_s^2 \cdot \underline{w}^h \left(\underline{a}(\theta) \cdot \underline{a}^h(\theta)\right) \underline{w} + \sigma_n^2 \cdot \underline{w}^h \underline{w} = P_s + P_n$$

Another view to beamsteering for spatially white noise

$$y[k] = \underline{\mathbf{w}}^h \cdot \underline{\mathbf{x}}[k] = \underline{\mathbf{w}}^h \cdot (\underline{\mathbf{a}}(\theta)s[k] + \underline{\mathbf{n}}[k])$$
$$= \underline{\mathbf{w}}^h \cdot \underline{\mathbf{a}}(\theta)s[k] + \underline{\mathbf{w}}^h \cdot \underline{\mathbf{n}}[k] = y_s[k] + y_n[k]$$

$$\Rightarrow P_y = \sigma_s^2 \cdot \underline{\mathbf{w}}^h \left(\underline{\mathbf{a}}(\theta) \cdot \underline{\mathbf{a}}^h(\theta) \right) \underline{\mathbf{w}} + \sigma_n^2 \cdot \underline{\mathbf{w}}^h \underline{\mathbf{w}} = P_s + P_n$$

Define in- and output SNR as: $SNR_{in} = \frac{\sigma_s^2}{\sigma_n^2}$ $SNR_o = \frac{P_s}{P_n}$

Another view to beamsteering for spatially white noise

$$y[k] = \underline{\mathbf{w}}^h \cdot \underline{\mathbf{x}}[k] = \underline{\mathbf{w}}^h \cdot (\underline{\mathbf{a}}(\theta)s[k] + \underline{\mathbf{n}}[k])$$
$$= \underline{\mathbf{w}}^h \cdot \underline{\mathbf{a}}(\theta)s[k] + \underline{\mathbf{w}}^h \cdot \underline{\mathbf{n}}[k] = y_s[k] + y_n[k]$$

$$\Rightarrow P_y = \sigma_s^2 \cdot \underline{w}^h \left(\underline{a}(\theta) \cdot \underline{a}^h(\theta) \right) \underline{w} + \sigma_n^2 \cdot \underline{w}^h \underline{w} = P_s + P_n$$

Define in- and output SNR as: $SNR_{in} = \frac{\sigma_s^2}{\sigma_n^2}$ $SNR_o = \frac{P_s}{P_n}$

$$\Rightarrow \mathsf{SNR}_o = \frac{\underline{w}^h \left(\underline{a}(\theta) \cdot \underline{a}^h(\theta) \right) \underline{w}}{\underline{w}^h \underline{w}} \cdot \frac{\sigma_s^2}{\sigma_n^2} = G(\theta) \cdot \mathsf{SNR}_{in}$$

Another view to beamsteering for spatially white noise

$$y[k] = \underline{w}^h \cdot \underline{x}[k] = \underline{w}^h \cdot (\underline{a}(\theta)s[k] + \underline{n}[k])$$

= $\underline{w}^h \cdot \underline{a}(\theta)s[k] + \underline{w}^h \cdot \underline{n}[k] = y_s[k] + y_n[k]$

$$\Rightarrow P_y = \sigma_s^2 \cdot \underline{\mathbf{w}}^h \left(\underline{\mathbf{a}}(\theta) \cdot \underline{\mathbf{a}}^h(\theta) \right) \underline{\mathbf{w}} + \sigma_n^2 \cdot \underline{\mathbf{w}}^h \underline{\mathbf{w}} = P_s + P_n$$

Define in- and output SNR as: $SNR_{in} = \frac{\sigma_s^2}{\sigma_n^2}$ $SNR_o = \frac{P_s}{P_n}$

$$\Rightarrow \mathsf{SNR}_o = \frac{\underline{\mathsf{w}}^h \left(\underline{\mathsf{a}}(\theta) \cdot \underline{\mathsf{a}}^h(\theta) \right) \underline{\mathsf{w}}}{\underline{\mathsf{w}}^h \underline{\mathsf{w}}} \cdot \frac{\sigma_s^2}{\sigma_n^2} = G(\theta) \cdot \mathsf{SNR}_{in}$$

Thus SNR_o maximized by choosing $\underline{\mathbf{w}} = \beta \cdot \underline{\mathbf{a}}(\theta)$, with β some constant

Another view to beamsteering for spatially white noise

$$y[k] = \underline{\mathbf{w}}^h \cdot \underline{\mathbf{x}}[k] = \underline{\mathbf{w}}^h \cdot (\underline{\mathbf{a}}(\theta)s[k] + \underline{\mathbf{n}}[k])$$
$$= \underline{\mathbf{w}}^h \cdot \underline{\mathbf{a}}(\theta)s[k] + \underline{\mathbf{w}}^h \cdot \underline{\mathbf{n}}[k] = y_s[k] + y_n[k]$$

$$\Rightarrow P_y = \sigma_s^2 \cdot \underline{\mathbf{w}}^h \left(\underline{\mathbf{a}}(\theta) \cdot \underline{\mathbf{a}}^h(\theta) \right) \underline{\mathbf{w}} + \sigma_n^2 \cdot \underline{\mathbf{w}}^h \underline{\mathbf{w}} = P_s + P_n$$

Define in- and output SNR as: $SNR_{in} = \frac{\sigma_s^2}{\sigma_n^2}$ $SNR_o = \frac{P_s}{P_n}$

$$\Rightarrow \ \mathsf{SNR}_o = \frac{\underline{\mathbf{w}}^h \left(\underline{\mathbf{a}}(\theta) \cdot \underline{\mathbf{a}}^h(\theta) \right) \underline{\mathbf{w}}}{\underline{\mathbf{w}}^h \underline{\mathbf{w}}} \cdot \frac{\sigma_s^2}{\sigma_n^2} = G(\theta) \cdot \mathsf{SNR}_{in}$$

Thus SNR_o maximized by choosing $\underline{\mathbf{w}} = \beta \cdot \underline{\mathbf{a}}(\theta)$, with β some constant

Conclusion:

Spatial filter that maximizes DOA \equiv Matched filter (= max SNR_o)

Notes on beamsteering (delay and sum beamforming (DSB):

- Source location (or DOA) required
- Position sensors must be known
- DSB aligns only direct path
- Difference between electronic vs mechanical beamsteering
- ► In sense of max SNR_o, spatial matched filter optimum for spatially white noise

Steering delay $\tau = \frac{d \sin(\theta)}{c}$; Sample rate $f_s = \frac{1}{T_s} \Rightarrow$

Steering delay $\tau = \frac{d \sin(\theta)}{c}$; Sample rate $f_s = \frac{1}{T_s} \Rightarrow$ Steering possible for values $\tau = \alpha \cdot T_s$ with $|\alpha| = 0, 1, \cdots$

Steering delay $\tau = \frac{d \sin(\theta)}{c}$; Sample rate $f_s = \frac{1}{T_s} \Rightarrow$

Steering possible for values $\tau = \alpha \cdot T_s$ with $|\alpha| = 0, 1, \cdots$

Possible steering to: $\theta_s = \arcsin\left(\frac{c \cdot \alpha \cdot T_s}{d}\right)$ with $|\alpha| = 0, 1, \cdots$

Steering delay $\tau = \frac{d \sin(\theta)}{c}$; Sample rate $f_s = \frac{1}{T_s} \Rightarrow$

Steering possible for values $\tau = \alpha \cdot T_s$ with $|\alpha| = 0, 1, \cdots$

Possible steering to: $\theta_s = \arcsin\left(\frac{c \cdot \alpha \cdot T_s}{d}\right)$ with $|\alpha| = 0, 1, \cdots$

Example:

$$d=rac{\lambda}{2},\ \lambda=rac{c}{f_0}\ ext{and}\ f_s=2\gamma f_0\Rightarrow heta_s=rcsin\left(rac{lpha}{\gamma}
ight)\Leftrightarrow |lpha|\leq \gamma$$

Steering delay $\tau = \frac{d \sin(\theta)}{c}$; Sample rate $f_s = \frac{1}{T_s} \Rightarrow$

Steering possible for values $\tau = \alpha \cdot T_s$ with $|\alpha| = 0, 1, \cdots$

Possible steering to: $\theta_s = \arcsin\left(\frac{c \cdot \alpha \cdot T_s}{d}\right)$ with $|\alpha| = 0, 1, \cdots$

Example:

$$d=rac{\lambda}{2},\ \lambda=rac{c}{f_0}\ ext{and}\ f_s=2\gamma f_0\Rightarrow heta_s=rcsin\left(rac{lpha}{\gamma}
ight)\Leftrightarrow |lpha|\leq \gamma$$

Conclusion: Beam can only be steered to $1+2\lfloor\gamma\rfloor$ different angles!

Steering delay $\tau = \frac{d \sin(\theta)}{c}$; Sample rate $f_s = \frac{1}{T_s} \Rightarrow$

Steering possible for values $\tau = \alpha \cdot T_s$ with $|\alpha| = 0, 1, \cdots$

Possible steering to: $\theta_s = \arcsin\left(\frac{c \cdot \alpha \cdot T_s}{d}\right)$ with $|\alpha| = 0, 1, \cdots$

Example:

$$d=rac{\lambda}{2}$$
, $\lambda=rac{c}{f_0}$ and $f_s=2\gamma f_0\Rightarrow heta_s=\arcsin\left(rac{lpha}{\gamma}
ight)\Leftrightarrow |lpha|\leq \gamma$

Conclusion: Beam can only be steered to $1+2\lfloor\gamma\rfloor$ different angles!

Example:

$$f_s=4\cdot f_0\Rightarrow$$
 Beam can be steered to 0°, $\pm 30^{o}$, $\pm 90^{o}$

Steering delay $\tau = \frac{d \sin(\theta)}{c}$; Sample rate $f_s = \frac{1}{T_s} \Rightarrow$

Steering possible for values $\tau = \alpha \cdot T_s$ with $|\alpha| = 0, 1, \cdots$

Possible steering to: $\theta_s = \arcsin\left(\frac{c \cdot \alpha \cdot T_s}{d}\right)$ with $|\alpha| = 0, 1, \cdots$

Example:

$$d=rac{\lambda}{2}$$
, $\lambda=rac{c}{f_0}$ and $f_s=2\gamma f_0\Rightarrow heta_s=\arcsin\left(rac{lpha}{\gamma}
ight)\Leftrightarrow |lpha|\leq \gamma$

Conclusion: Beam can only be steered to $1+2\lfloor\gamma\rfloor$ different angles!

Example:

$$\overline{f_s = 4 \cdot f_0} \Rightarrow \text{Beam can be steered to } 0^{\circ}, \pm 30^{\circ}, \pm 90^{\circ}$$

If more directions needed: Use interpolation and/or fractional delays

Beam steering: Tapering

Goal:

Control shape of response i.e. to form beam. Thus window (weighted) sensor signals to compromise between resolution (main lobe width) and leakage (side lobe level) $\Rightarrow \underline{w}_t = \underline{t} \odot \underline{w}$ with \underline{t} taper window and \odot element by element multiplication

Beam steering: Tapering

Goal:

Control shape of response i.e. to form beam. Thus window (weighted) sensor signals to compromise between resolution (main lobe width) and leakage (side lobe level) $\Rightarrow \underline{w}_t = \underline{t} \odot \underline{w}$ with \underline{t} taper window and \odot element by element multiplication

Beam steering: Tapering

Goal:

Control shape of response i.e. to form beam. Thus window (weighted) sensor signals to compromise between resolution (main lobe width) and leakage (side lobe level) $\Rightarrow \underline{w}_t = \underline{t} \odot \underline{w}$ with \underline{t} taper window and \odot element by element multiplication

Notes:

- ► Taper weights used to shape beampattern
- Filters approximate delays (linear phase over frequency band of interest)

<u>Goal:</u> Calculate J weights to meet M constraints, e.g. to amplify the desired, and to attenuate the undesired sources

with

<u>Goal:</u> Calculate J weights to meet M constraints, e.g. to amplify the desired, and to attenuate the undesired sources

With $J \times 1$ weight vector $\underline{\mathbf{w}} = (w_1, \dots, w_J)^t$ set up M constraints:

$$\underline{\mathbf{a}}^{h}(\omega_{1}, \theta_{1}) \cdot \underline{\mathbf{w}} = r_{d}(\omega_{1}, \theta_{1})
\vdots \qquad \Leftrightarrow \qquad \boxed{\mathbf{A}^{h} \cdot \underline{\mathbf{w}} = \underline{\mathbf{r}}_{d}}
\underline{\mathbf{a}}^{h}(\omega_{M}, \theta_{M}) \cdot \underline{\mathbf{w}} = r_{d}(\omega_{M}, \theta_{M})
\mathbf{A} \equiv \mathbf{A}(\omega, \theta) = (\underline{\mathbf{a}}(\omega_{1}, \theta_{1}), \cdots, \underline{\mathbf{a}}(\omega_{M}, \theta_{M}))
\mathbf{r}_{d} \equiv \mathbf{r}_{d}(\omega, \theta) = (r_{d}(\omega_{1}, \theta_{1}), \cdots, r_{d}(\omega_{M}, \theta_{M}))^{h}$$

<u>Goal:</u> Calculate J weights to meet M constraints, e.g. to amplify the desired, and to attenuate the undesired sources

With $J \times 1$ weight vector $\underline{\mathbf{w}} = (w_1, \dots, w_J)^t$ set up M constraints:

$$\underline{\underline{a}}^{h}(\omega_{1}, \theta_{1}) \cdot \underline{\underline{w}} = r_{d}(\omega_{1}, \theta_{1})$$

$$\vdots \qquad \Leftrightarrow \qquad \boxed{\underline{A}^{h} \cdot \underline{\underline{w}} = \underline{r}_{d}}$$

$$\underline{\underline{a}}^{h}(\omega_{M}, \theta_{M}) \cdot \underline{\underline{w}} = r_{d}(\omega_{M}, \theta_{M})$$

with $A \equiv A(\omega, \theta) = (\underline{a}(\omega_1, \theta_1), \cdots, \underline{a}(\omega_M, \theta_M))$ $r_d \equiv r_d(\omega, \theta) = (r_d(\omega_1, \theta_1), \cdots, r_d(\omega_M, \theta_M))^h$

<u>Case:</u> M < J (Less constraints then weights)

$$\underline{\mathbf{w}} = (\mathbf{A}^h)^{\dagger} \cdot \underline{\mathbf{r}}_d = \mathbf{A} \cdot \left(\mathbf{A}^h \cdot \mathbf{A}\right)^{-1} \cdot \underline{\mathbf{r}}_d$$

Example: Null signal at 90° with 2 sensor ULA at distance half wavelength. Thus: J=2, M=1, $\theta_u=\pi/2$, $r(\theta_u)=0$, $d/\lambda=1/2$

Example: Null signal at 90° with 2 sensor ULA at distance half wavelength. Thus: J=2, M=1, $\theta_u=\pi/2$, $r(\theta_u)=0$, $d/\lambda=1/2$

$$\mathsf{A}^h = \left(1,\mathsf{e}^{\mathsf{j}\pi\sin(\pi/2)}
ight) = (1,-1) \quad ext{ and } \quad \underline{\mathsf{r}}_d = (0)$$

Example: Null signal at 90° with 2 sensor ULA at distance half wavelength. Thus: J=2, M=1, $\theta_u=\pi/2$, $r(\theta_u)=0$, $d/\lambda=1/2$

$$\mathsf{A}^h = \left(1, \mathsf{e}^{\mathsf{j}\pi\sin(\pi/2)}\right) = (1, -1) \quad \text{and} \quad \underline{\mathsf{r}}_d = (0)$$

$$\Rightarrow \ \underline{\mathsf{w}} = \mathsf{A} \cdot \left(\mathsf{A}^h \cdot \mathsf{A}\right)^{-1} \cdot \underline{\mathsf{r}}_d = \dots = \left(egin{array}{c} 0 \\ 0 \end{array} \right)$$

Example: Null signal at 90° with 2 sensor ULA at distance half wavelength. Thus: J=2, M=1, $\theta_u=\pi/2$, $r(\theta_u)=0$, $d/\lambda=1/2$

$$A^{h} = \left(1, e^{j\pi \sin(\pi/2)}\right) = (1, -1) \quad \text{and} \quad \underline{r}_{d} = (0)$$

$$\Rightarrow \underline{w} = A \cdot \left(A^{h} \cdot A\right)^{-1} \cdot \underline{r}_{d} = \dots = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Indeed nulls at $90^0 \cdots$ however also all others!

Example: Null signal at 90° with 2 sensor ULA at distance half wavelength. Thus: J=2, M=1, $\theta_u=\pi/2$, $r(\theta_u)=0$, $d/\lambda=1/2$

$$A^h = \left(1, e^{j\pi \sin(\pi/2)}\right) = (1, -1)$$
 and $\underline{\mathbf{r}}_d = (0)$

$$\Rightarrow \underline{\mathbf{w}} = \mathbf{A} \cdot \left(\mathbf{A}^h \cdot \mathbf{A} \right)^{-1} \cdot \underline{\mathbf{r}}_d = \cdots = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Indeed nulls at $90^0 \cdots$ however also all others!

Note: For this solution we obtain a "line through origin"

$$A^h \cdot \underline{w} = \underline{r}_d \Leftrightarrow (1,-1) \cdot \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = 0 \Rightarrow w_1 = w_2$$

Since J=2 and M=1: One degree of freedom left! This can be used e.g. to overcome the solution $w_1=w_2=0$

Example: Two (complex) plane waves. One desired at 0° , other undesired at 30° , ULA with 3 sensors at distance half wavelength $\Rightarrow J=3, \ M=2, \theta_d=0, \ \theta_u=\pi/6, \ r(\theta_d)=1, \ r(\theta_u)=0, \ d/\lambda=1/2$

Example: Two (complex) plane waves. One desired at 0° , other undesired at 30° , ULA with 3 sensors at distance half wavelength $\Rightarrow J=3, \ M=2, \theta_d=0, \ \theta_u=\pi/6, \ r(\theta_d)=1, \ r(\theta_u)=0, \ d/\lambda=1/2 \Rightarrow$

$$A^{h} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & e^{j\pi \sin(\pi/6)} & e^{j2\pi \sin(\pi/6)} \end{pmatrix}; \underline{r}_{d} = (1,0)^{t} \Rightarrow \underline{w} = \frac{1}{8} \begin{pmatrix} 3-j \\ 2 \\ 3+j \end{pmatrix}$$

Null-steering

Example: Two (complex) plane waves. One desired at 0° , other undesired at 30° , ULA with 3 sensors at distance half wavelength $\Rightarrow J=3$, M=2, $\theta_d=0$, $\theta_u=\pi/6$, $r(\theta_d)=1$, $r(\theta_u)=0$, $d/\lambda=1/2$ \Rightarrow

$$A^{h} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & e^{j\pi \sin(\pi/6)} & e^{j2\pi \sin(\pi/6)} \end{pmatrix}; \underline{r}_{d} = (1,0)^{t} \Rightarrow \underline{w} = \frac{1}{8} \begin{pmatrix} 3-j \\ 2 \\ 3+j \end{pmatrix}$$

Null steering used to cancel plane waves arriving from known directions

Null steering used to cancel plane waves arriving from known directions

Required knowledge:

DOA of desired/undesired signals, position of sensors

Null steering used to cancel plane waves arriving from known directions

Required knowledge:

DOA of desired/undesired signals, position of sensors

Performance:

SNR not maximized, but nulls can be put in DOA's of interferences

Null steering used to cancel plane waves arriving from known directions

Required knowledge:

DOA of desired/undesired signals, position of sensors

Performance:

SNR not maximized, but nulls can be put in DOA's of interferences

Properties:

- Result not robust to frequency jammer
- ▶ J weights can set maximum J predefined conditions
- Needs much a priori information
- ightharpoonup M < J: Add extra constraints (e.g. minimize output power)
- Use FIR filters for broadband

Procedure: $\underline{\mathbf{w}} = \arg\min_{\underline{\mathbf{w}}} \{E\}$

Procedure:
$$\underline{\mathbf{w}} = \arg\min_{\underline{\mathbf{w}}} \{E\}$$

with error $E = |\mathbf{A}^h \cdot \underline{\mathbf{w}} - \underline{\mathbf{r}}_d|^2 = (\underline{\mathbf{w}}^h \cdot \mathbf{A} - \underline{\mathbf{r}}_d^h) \cdot (\mathbf{A}^h \cdot \underline{\mathbf{w}} - \underline{\mathbf{r}}_d)$
 $= \underline{\mathbf{w}}^h \mathbf{A} \mathbf{A}^h \underline{\mathbf{w}} - \underline{\mathbf{w}}^h \mathbf{A} \underline{\mathbf{r}}_d - \underline{\mathbf{r}}_d^h \mathbf{A}^h \underline{\mathbf{w}} - \underline{\mathbf{r}}_d^h \underline{\mathbf{r}}_d$

Procedure:
$$\underline{\mathbf{w}} = \arg\min_{\underline{\mathbf{w}}} \{E\}$$
with error $E = |\mathbf{A}^h \cdot \underline{\mathbf{w}} - \underline{\mathbf{r}}_d|^2 = (\underline{\mathbf{w}}^h \cdot \mathbf{A} - \underline{\mathbf{r}}_d^h) \cdot (\mathbf{A}^h \cdot \underline{\mathbf{w}} - \underline{\mathbf{r}}_d)$

$$= \underline{\mathbf{w}}^h \mathbf{A} \mathbf{A}^h \underline{\mathbf{w}} - \underline{\mathbf{w}}^h \mathbf{A} \underline{\mathbf{r}}_d - \underline{\mathbf{r}}_d^h \mathbf{A}^h \underline{\mathbf{w}} - \underline{\mathbf{r}}_d^h \underline{\mathbf{r}}_d$$

$$\frac{dE}{d\underline{\mathbf{w}}} = \underline{\mathbf{0}} \quad \Rightarrow \quad \underline{\underline{\mathbf{w}}} = (\mathbf{A} \cdot \mathbf{A}^h)^{-1} \cdot \mathbf{A} \cdot \underline{\mathbf{r}}_d$$

Procedure:
$$\underline{w} = \arg\min_{\underline{w}} \{E\}$$
with error $E = |A^h \cdot \underline{w} - \underline{r}_d|^2 = (\underline{w}^h \cdot A - \underline{r}_d^h) \cdot (A^h \cdot \underline{w} - \underline{r}_d)$

$$= \underline{w}^h A A^h \underline{w} - \underline{w}^h A \underline{r}_d - \underline{r}_d^h A^h \underline{w} - \underline{r}_d^h \underline{r}_d$$

$$\frac{dE}{d\underline{w}} = \underline{0} \implies \underline{\underline{w}} = (A \cdot A^h)^{-1} \cdot A \cdot \underline{r}_d$$

Example: $B(\theta) = 1$ at $\theta = \pi/2$ and < -25 [dB] outside this area

Beamforming: overview

Data independent (conventional approach): (Part IB)

- ► Beamsteering (DSB, phased array)
- Tapering
- ► Null steering/ Array response design

Beamforming: overview

Data independent (conventional approach): (Part IB)

- Beamsteering (DSB, phased array)
- Tapering
- ► Null steering/ Array response design

Data dependent (statistical optimum): (Part IC)

- Minimum Sidelobe Canceller
- Wiener
- Maximum SNR
- Linear Constraint Minimum Variance
- Generalized Sidelobe Canceller

Summary part II

Far field, narrowband source, direction vector $\underline{\mathbf{v}}$, at position $\underline{\mathbf{p}}_i$:

$$s[k] \mathrm{e}^{-\mathrm{j}\omega au_i}$$
 with $au_i = rac{\mathrm{v}^t \cdot \mathrm{p}_i}{c}$, $\omega = 2\pi f$, $f = rac{c}{\lambda}$

For ULA-case at sensor i: $s[k] \cdot a_i(\theta)$ with $a_i(\theta) = e^{-j2\pi(i-1)\frac{d\sin(\theta)}{\lambda}}$

Array response/ Angular response/ Directivity pattern:

$$r(\theta) = \underline{\mathbf{w}}^h \cdot \underline{\mathbf{a}}(\theta)$$

Beampattern: $B(\theta) = \frac{1}{I^2} |r(\theta)|^2$

For ULA with inter element distance d and $\underline{w} = \underline{1}$:

$$B(\theta) = \frac{1}{J^2} |\underline{1}^t \cdot \underline{a}(\theta)|^2 = \frac{1}{J^2} \left| \frac{1 - e^{-jJ2\pi \frac{d}{\lambda} \sin(\theta)}}{1 - e^{-j2\pi \frac{d}{\lambda} \sin(\theta)}} \right|^2$$

Summary part II

Beamsteering (shifted/ rotated over θ_0):

$$B(\theta) = \frac{1}{J^2} |\underline{\mathbf{w}}^h \cdot \underline{\mathbf{a}}(\theta)|^2 = \frac{1}{J^2} \left| \sum_{i=1}^J \mathrm{e}^{-\mathrm{j} 2\pi f_d(i-1) \frac{d}{c} (\sin(\theta) - \sin(\theta_0))} \right|^2$$

Constrained beamforming:

With $J \times 1$ weight vector $\underline{\mathbf{w}} = (w_1, \dots, w_J)^t$ set up M constraints:

$$\underline{\mathbf{a}}^{h}(\omega_{1}, \theta_{1}) \cdot \underline{\mathbf{w}} = r_{d}(\omega_{1}, \theta_{1})$$

$$\vdots \qquad \Leftrightarrow \boxed{\mathbf{A}^{h} \cdot \underline{\mathbf{w}} = \underline{\mathbf{r}}_{d}}$$

$$\mathbf{a}^{h}(\omega_{M}, \theta_{M}) \cdot \mathbf{w} = r_{d}(\omega_{M}, \theta_{M})$$

Null steering
$$(M < J)$$
: $\underline{\mathbf{w}} = (\mathbf{A}^h)^{\dagger} \cdot \underline{\mathbf{r}}_d = \mathbf{A} \cdot (\mathbf{A}^h \cdot \mathbf{A})^{-1} \cdot \underline{\mathbf{r}}_d$

Array response design $(M > J)$: $\underline{\mathbf{w}} = (\mathbf{A} \cdot \mathbf{A}^h)^{-1} \cdot \mathbf{A} \cdot \underline{\mathbf{r}}_d$

DOA + Optimum and Adaptive Array Signal Processing

(Part IC)

DOA estimation

Goal:

Estimate Direction Of Arrival (DOA) of sources (and interferences) from noisy observations, in order to locate and/or track these sources

DOA estimation

Goal:

Estimate Direction Of Arrival (DOA) of sources (and interferences) from noisy observations, in order to locate and/or track these sources

Main techniques based on:

- 1. Maximizing power of steered beamformer
- 2. High-resolution spectral estimation concepts
- 3. Employing time-difference of arrival (not in this course)

1. Maximizing power of steered beamformer:

E.g. noisy observation, one source, J sensors:

$$\underline{\mathbf{x}}[k] = \underline{\mathbf{a}}(\theta_p) \cdot \mathbf{s}[k] + \underline{\mathbf{n}}[k] \quad \Rightarrow \quad \mathbf{R}_{\mathbf{x}} = \sigma_{\mathbf{s}}^2 \underline{\mathbf{a}}(\theta_p) \underline{\mathbf{a}}^h(\theta_p) + \sigma_{\mathbf{n}}^2 \mathbf{I}$$

$$y[k] = \underline{\mathbf{w}}^h \cdot \underline{\mathbf{x}}[k] \quad \Rightarrow \quad P_{\mathbf{y}} = E\{|y[k]|^2\} = \underline{\mathbf{w}}^h \cdot \mathbf{R}_{\mathbf{x}} \cdot \underline{\mathbf{w}}$$

1. Maximizing power of steered beamformer:

E.g. noisy observation, one source, J sensors:

$$\underline{\mathbf{x}}[k] = \underline{\mathbf{a}}(\theta_p) \cdot s[k] + \underline{\mathbf{n}}[k] \quad \Rightarrow \quad \mathbf{R}_{\mathbf{x}} = \sigma_s^2 \underline{\mathbf{a}}(\theta_p) \underline{\mathbf{a}}^h(\theta_p) + \sigma_n^2 \mathbf{I}$$

$$y[k] = \underline{\mathbf{w}}^h \cdot \underline{\mathbf{x}}[k] \quad \Rightarrow \quad P_y = E\{|y[k]|^2\} = \underline{\mathbf{w}}^h \cdot \mathbf{R}_{\mathbf{x}} \cdot \underline{\mathbf{w}}$$

Spatial spectrum:
$$P(\theta) = \frac{P_y(\theta)}{||\mathbf{w}||^2}$$

1. Maximizing power of steered beamformer:

E.g. noisy observation, one source, J sensors:

$$\underline{\mathbf{x}}[k] = \underline{\mathbf{a}}(\theta_p) \cdot \mathbf{s}[k] + \underline{\mathbf{n}}[k] \quad \Rightarrow \quad \mathbf{R}_{\mathbf{x}} = \sigma_{\mathbf{s}}^2 \underline{\mathbf{a}}(\theta_p) \underline{\mathbf{a}}^h(\theta_p) + \sigma_{\mathbf{n}}^2 \mathbf{I}$$

$$y[k] = \underline{\mathbf{w}}^h \cdot \underline{\mathbf{x}}[k] \quad \Rightarrow \quad P_{\mathbf{y}} = E\{|y[k]|^2\} = \underline{\mathbf{w}}^h \cdot \mathbf{R}_{\mathbf{x}} \cdot \underline{\mathbf{w}}$$

Spatial spectrum:
$$P(\theta) = \frac{P_y(\theta)}{||\underline{w}||^2}$$

Beamsteering: $Max.\{P_s/P_n\} \Leftrightarrow \underline{w} \equiv \underline{a}(\theta)$

1. Maximizing power of steered beamformer:

E.g. noisy observation, one source, J sensors:

$$\underline{\mathbf{x}}[k] = \underline{\mathbf{a}}(\theta_p) \cdot \mathbf{s}[k] + \underline{\mathbf{n}}[k] \quad \Rightarrow \quad \mathbf{R}_{\mathbf{x}} = \sigma_{\mathbf{s}}^2 \underline{\mathbf{a}}(\theta_p) \underline{\mathbf{a}}^h(\theta_p) + \sigma_{\mathbf{n}}^2 \mathbf{I}$$

$$y[k] = \underline{\mathbf{w}}^h \cdot \underline{\mathbf{x}}[k] \quad \Rightarrow \quad P_{\mathbf{y}} = E\{|y[k]|^2\} = \underline{\mathbf{w}}^h \cdot \mathbf{R}_{\mathbf{x}} \cdot \underline{\mathbf{w}}$$

Spatial spectrum:
$$P(\theta) = \frac{P_y(\theta)}{||\underline{w}||^2}$$

Beamsteering: $Max.\{P_s/P_n\} \Leftrightarrow \underline{\mathbf{w}} \equiv \underline{\mathbf{a}}(\theta)$

$$P(\theta) = \frac{\underline{\mathbf{a}}^h(\theta) \mathbf{R}_{\mathsf{X}} \underline{\mathbf{a}}(\theta)}{J}$$

1. Maximizing power of steered beamformer:

E.g. noisy observation, one source, J sensors:

$$\underline{\mathbf{x}}[k] = \underline{\mathbf{a}}(\theta_p) \cdot \mathbf{s}[k] + \underline{\mathbf{n}}[k] \quad \Rightarrow \quad \mathbf{R}_{\mathbf{x}} = \sigma_{\mathbf{s}}^2 \underline{\mathbf{a}}(\theta_p) \underline{\mathbf{a}}^h(\theta_p) + \sigma_{\mathbf{n}}^2 \mathbf{I}$$

$$y[k] = \underline{\mathbf{w}}^h \cdot \underline{\mathbf{x}}[k] \quad \Rightarrow \quad P_y = E\{|y[k]|^2\} = \underline{\mathbf{w}}^h \cdot \mathbf{R}_{\mathbf{x}} \cdot \underline{\mathbf{w}}$$

Spatial spectrum:
$$P(\theta) = \frac{P_y(\theta)}{||\underline{w}||^2}$$

Beamsteering: $Max.\{P_s/P_n\} \Leftrightarrow \underline{\mathbf{w}} \equiv \underline{\mathbf{a}}(\theta)$

$$P(\theta) = \frac{\underline{\mathbf{a}}^h(\theta) \mathsf{R}_{\mathsf{x}} \underline{\mathbf{a}}(\theta)}{J}$$

Thus peak in $P(\theta)$ is DOA location p!

1. Maximizing power of steered beamformer:

E.g. noisy observation, one source, J sensors:

$$\underline{\mathbf{x}}[k] = \underline{\mathbf{a}}(\theta_p) \cdot \mathbf{s}[k] + \underline{\mathbf{n}}[k] \quad \Rightarrow \quad \mathbf{R}_{\mathbf{x}} = \sigma_{\mathbf{s}}^2 \underline{\mathbf{a}}(\theta_p) \underline{\mathbf{a}}^h(\theta_p) + \sigma_{\mathbf{n}}^2 \mathbf{I}$$

$$y[k] = \underline{\mathbf{w}}^h \cdot \underline{\mathbf{x}}[k] \quad \Rightarrow \quad P_y = E\{|y[k]|^2\} = \underline{\mathbf{w}}^h \cdot \mathbf{R}_{\mathbf{x}} \cdot \underline{\mathbf{w}}$$

Spatial spectrum:
$$P(\theta) = \frac{P_y(\theta)}{||\underline{w}||^2}$$

Beamsteering: $Max.\{P_s/P_n\} \Leftrightarrow \underline{\mathbf{w}} \equiv \underline{\mathbf{a}}(\theta)$

$$P(\theta) = \frac{\underline{\mathbf{a}}^h(\theta) \mathbf{R}_{\mathsf{x}} \underline{\mathbf{a}}(\theta)}{J}$$

Thus peak in $P(\theta)$ is DOA location p!

Note: In practice estimate
$$\hat{R}_x = \frac{1}{T} \sum_{k=1}^{T} \underline{x}[k] \cdot \underline{x}^h[k]$$

Example: ULA

 $d/\lambda = 0.5$; P = 4 sources (at -20,0,40 and 70 degrees); J = 8 sensors

High-resolution DOA technique based on signal subspace (see Appendix) method:

Spectral MUSIC = MUltiple Signal Classification

High-resolution DOA technique based on signal subspace (see Appendix) method:

Spectral MUSIC = MUltiple Signal Classification

Signal model: J sensors, P sources, P < J

$$x_i = \sum_{p=1}^{P} a_i(\theta_p) \cdot s_p[k] + n_i[k] \text{ for } i = 1, \dots, J \quad \Leftrightarrow \quad \underline{x}[k] = A \cdot \underline{s}[k] + \underline{n}[k]$$

High-resolution DOA technique based on signal subspace (see Appendix) method:

Spectral MUSIC = MUltiple Signal Classification

Signal model: J sensors, P sources, P < J

$$x_i = \sum_{p=1}^P a_i(\theta_p) \cdot s_p[k] + n_i[k] \text{ for } i = 1, \dots, J \quad \Leftrightarrow \quad \underline{x}[k] = A \cdot \underline{s}[k] + \underline{n}[k]$$

Covariance structure:

$$\mathsf{R}_{\mathsf{x}} = E\{\underline{\mathsf{x}} \cdot \underline{\mathsf{x}}^h\} = \mathsf{A}\mathsf{R}_{\mathsf{s}}\mathsf{A} + \mathsf{R}_{\mathsf{n}}$$
 with
$$\mathsf{R}_{\mathsf{s}} = E\{\underline{\mathsf{s}} \cdot \underline{\mathsf{s}}^h\} = \mathsf{diag}\{\sigma_{\mathsf{s}_1}^2, \cdots, \sigma_{\mathsf{s}_P}^2\} \quad \text{and} \quad \mathsf{R}_{\mathsf{n}} = \sigma_{\mathsf{n}}^2\mathsf{I}$$

Recall from appendix:

$$\begin{split} \mathsf{R}_{x} &= \mathsf{U}_{x} \mathsf{\Lambda}_{x} \mathsf{U}_{x}^{h} = \mathsf{U}_{s} \mathsf{\Lambda}_{s,n} \mathsf{U}_{s}^{h} + \mathsf{U}_{n} \mathsf{\Lambda}_{n} \mathsf{U}_{x}^{n} \\ \mathsf{U}_{x} &= \left(\underline{\mathsf{u}}_{1}, \cdots, \underline{\mathsf{u}}_{J} \right) \; ; \; \mathsf{\Lambda}_{x} = \mathsf{diag} \{ \lambda_{x_{1}}, \cdots, \lambda_{x_{J}} \} \end{split}$$

Recall from appendix:

$$\begin{aligned} \mathsf{R}_{x} &= \mathsf{U}_{x} \mathsf{\Lambda}_{x} \mathsf{U}_{x}^{h} = \mathsf{U}_{s} \mathsf{\Lambda}_{s,n} \mathsf{U}_{s}^{h} + \mathsf{U}_{n} \mathsf{\Lambda}_{n} \mathsf{U}_{x}^{n} \\ \mathsf{U}_{x} &= (\underline{\mathsf{u}}_{1}, \cdots, \underline{\mathsf{u}}_{J}) \; ; \; \mathsf{\Lambda}_{x} = \mathsf{diag} \{ \lambda_{x_{1}}, \cdots, \lambda_{x_{J}} \} \end{aligned}$$

Signal subspace:

$$\mathsf{U}_s = (\underline{\mathsf{u}}_1, \cdots, \underline{\mathsf{u}}_P)$$
; $\mathsf{\Lambda}_{s,n} = \mathsf{diag}\{\lambda_{s_1} + \sigma_n^2, \cdots, \lambda_{s_P} + \sigma_n^2\}$

Recall from appendix:

$$\begin{split} \mathsf{R}_{x} &= \mathsf{U}_{x} \mathsf{\Lambda}_{x} \mathsf{U}_{x}^{h} = \mathsf{U}_{s} \mathsf{\Lambda}_{s,n} \mathsf{U}_{s}^{h} + \mathsf{U}_{n} \mathsf{\Lambda}_{n} \mathsf{U}_{x}^{n} \\ \mathsf{U}_{x} &= (\underline{\mathsf{u}}_{1}, \cdots, \underline{\mathsf{u}}_{J}) \; ; \; \mathsf{\Lambda}_{x} = \mathsf{diag} \{ \lambda_{x_{1}}, \cdots, \lambda_{x_{J}} \} \end{split}$$

Signal subspace:

$$\mathsf{U}_s = (\underline{\mathsf{u}}_1, \cdots, \underline{\mathsf{u}}_P) \; ; \; \mathsf{\Lambda}_{s,n} = \mathsf{diag}\{\lambda_{s_1} + \sigma_n^2, \cdots, \lambda_{s_P} + \sigma_n^2\}$$

Noise subspace:

$$U_n = (\underline{u}_{P+1}, \cdots, \underline{u}_J)$$
; $\Lambda_n = \text{diag}\{\sigma_n^2, \cdots, \sigma_n^2\}$

Recall from appendix:

$$\begin{split} \mathsf{R}_{x} &= \mathsf{U}_{x} \mathsf{\Lambda}_{x} \mathsf{U}_{x}^{h} = \mathsf{U}_{s} \mathsf{\Lambda}_{s,n} \mathsf{U}_{s}^{h} + \mathsf{U}_{n} \mathsf{\Lambda}_{n} \mathsf{U}_{x}^{n} \\ \mathsf{U}_{x} &= \left(\underline{\mathsf{u}}_{1}, \cdots, \underline{\mathsf{u}}_{J}\right) \; ; \; \mathsf{\Lambda}_{x} = \mathsf{diag} \{\lambda_{x_{1}}, \cdots, \lambda_{x_{J}}\} \end{split}$$

Signal subspace:

$$U_s = (\underline{u}_1, \cdots, \underline{u}_P)$$
; $\Lambda_{s,n} = \text{diag}\{\lambda_{s_1} + \sigma_n^2, \cdots, \lambda_{s_P} + \sigma_n^2\}$

Noise subspace:

$$U_n = (\underline{u}_{P+1}, \cdots, \underline{u}_J)$$
; $\Lambda_n = \text{diag}\{\sigma_n^2, \cdots, \sigma_n^2\}$

Properties:

$$U_s \perp U_n \Leftrightarrow U_s^h \cdot U_n = 0 \Leftrightarrow U_n^h \cdot U_s = 0$$

$$R_x = U_s \Lambda_{s,n} U_s^h + U_n \Lambda_n U_n^h$$

$$R_x = AR_s A^h + \sigma_n^2 I$$

$$\begin{array}{lcl} \mathsf{R}_{\scriptscriptstyle X} & = & \mathsf{U}_{\scriptscriptstyle S} \mathsf{\Lambda}_{\scriptscriptstyle S,n} \mathsf{U}_{\scriptscriptstyle S}^h + \mathsf{U}_{\scriptscriptstyle n} \mathsf{\Lambda}_{\scriptscriptstyle n} \mathsf{U}_{\scriptscriptstyle n}^h & \Rightarrow & \mathsf{R}_{\scriptscriptstyle X} \mathsf{U}_{\scriptscriptstyle n} = \sigma_{\scriptscriptstyle n}^2 \mathsf{U}_{\scriptscriptstyle n} \\ \mathsf{R}_{\scriptscriptstyle X} & = & \mathsf{A} \mathsf{R}_{\scriptscriptstyle S} \mathsf{A}^h + \sigma_{\scriptscriptstyle n}^2 \mathsf{I} \end{array}$$

$$R_{x} = U_{s}\Lambda_{s,n}U_{s}^{h} + U_{n}\Lambda_{n}U_{n}^{h} \Rightarrow R_{x}U_{n} = \sigma_{n}^{2}U_{n}$$

$$R_{x} = AR_{s}A^{h} + \sigma_{n}^{2}I \Rightarrow R_{x}U_{n} = AR_{s}A^{h}U_{n} + \sigma_{n}^{2}U_{n}$$

$$R_{x} = U_{s}\Lambda_{s,n}U_{s}^{h} + U_{n}\Lambda_{n}U_{n}^{h} \Rightarrow R_{x}U_{n} = \sigma_{n}^{2}U_{n}$$

$$R_{x} = AR_{s}A^{h} + \sigma_{n}^{2}I \Rightarrow R_{x}U_{n} = AR_{s}A^{h}U_{n} + \sigma_{n}^{2}U_{n}$$

$$\Rightarrow AR_{s}A^{h}U_{n} = 0.$$

$$\begin{array}{rcl} \mathsf{R}_{\mathsf{X}} &=& \mathsf{U}_{\mathsf{s}} \mathsf{\Lambda}_{\mathsf{s},n} \mathsf{U}_{\mathsf{s}}^h + \mathsf{U}_{n} \mathsf{\Lambda}_{n} \mathsf{U}_{n}^h & \Rightarrow & \mathsf{R}_{\mathsf{X}} \mathsf{U}_{n} = \sigma_{n}^2 \mathsf{U}_{n} \\ \mathsf{R}_{\mathsf{X}} &=& \mathsf{A} \mathsf{R}_{\mathsf{s}} \mathsf{A}^h + \sigma_{n}^2 \mathsf{I} & \Rightarrow & \mathsf{R}_{\mathsf{X}} \mathsf{U}_{n} = \mathsf{A} \mathsf{R}_{\mathsf{s}} \mathsf{A}^h \mathsf{U}_{n} + \sigma_{n}^2 \mathsf{U}_{n} \\ \Rightarrow & \mathsf{A} \mathsf{R}_{\mathsf{s}} \mathsf{A}^h \mathsf{U}_{n} = 0. & \mathsf{Together with AR}_{\mathsf{s}} \text{ full rank} \\ & \Rightarrow & \mathsf{A}^h \mathsf{U}_{n} = 0 & \Leftrightarrow & \mathsf{U}_{n}^h \mathsf{A} = 0 \end{array}$$

How obtain DOA's from this?

$$\begin{array}{rcl} \mathsf{R}_x &=& \mathsf{U}_s \mathsf{\Lambda}_{s,n} \mathsf{U}_s^h + \mathsf{U}_n \mathsf{\Lambda}_n \mathsf{U}_n^h & \Rightarrow & \mathsf{R}_x \mathsf{U}_n = \sigma_n^2 \mathsf{U}_n \\ \mathsf{R}_x &=& \mathsf{A} \mathsf{R}_s \mathsf{A}^h + \sigma_n^2 \mathsf{I} & \Rightarrow & \mathsf{R}_x \mathsf{U}_n = \mathsf{A} \mathsf{R}_s \mathsf{A}^h \mathsf{U}_n + \sigma_n^2 \mathsf{U}_n \\ \Rightarrow \mathsf{A} \mathsf{R}_s \mathsf{A}^h \mathsf{U}_n = 0. & \mathsf{Together with AR}_s \text{ full rank} \\ & \Rightarrow & \mathsf{A}^h \mathsf{U}_n = 0 & \Leftrightarrow & \mathsf{U}_n^h \mathsf{A} = 0 \end{array}$$

Result: Obtain desired DOA's by solving θ from:

$$\underline{\mathbf{u}}_{i}^{h} \cdot \underline{\mathbf{a}}(\theta_{p}) = 0 \quad \text{for} \quad \underline{\mathbf{u}}_{i} \in \mathsf{U}_{n} = \{u_{P+1}, \cdots, \underline{\mathbf{u}}_{J}\}
\underline{\mathbf{a}}(\theta_{p}) \in \mathsf{A} = \{\underline{\mathbf{a}}(\theta_{1}), \cdots, \underline{\mathbf{a}}(\theta_{P})\}$$

Use this result in "Spectral MUSIC" cost function:

$$C_{SM}(\theta) = \sum_{\underline{u}_i \in U_n} \left| \underline{u}_i^h \underline{a}(\theta) \right|^2 = \underline{a}^h(\theta) \left(\sum_{\underline{u}_i \in U_n} \underline{u}_i \underline{u}_i^h \right) \underline{a}(\theta)$$

Use this result in "Spectral MUSIC" cost function:

$$C_{SM}(\theta) = \sum_{\underline{u}_i \in U_n} \left| \underline{u}_i^h \underline{a}(\theta) \right|^2 = \underline{a}^h(\theta) \left(\sum_{\underline{u}_i \in U_n} \underline{u}_i \underline{u}_i^h \right) \underline{a}(\theta)$$
$$= \underline{a}^h(\theta) \left(U_n U_n^h \right) \underline{a}(\theta) = \underline{a}^h(\theta) \left(P_n \right) \underline{a}(\theta)$$

Use this result in "Spectral MUSIC" cost function:

$$C_{SM}(\theta) = \sum_{\underline{u}_i \in U_n} \left| \underline{u}_i^h \underline{a}(\theta) \right|^2 = \underline{a}^h(\theta) \left(\sum_{\underline{u}_i \in U_n} \underline{u}_i \underline{u}_i^h \right) \underline{a}(\theta)$$
$$= \underline{a}^h(\theta) \left(U_n U_n^h \right) \underline{a}(\theta) = \underline{a}^h(\theta) \left(P_n \right) \underline{a}(\theta)$$

with projection matrix $P_n = U_n U_n^h$

Use this result in "Spectral MUSIC" cost function:

$$C_{SM}(\theta) = \sum_{\underline{u}_i \in U_n} \left| \underline{u}_i^h \underline{a}(\theta) \right|^2 = \underline{a}^h(\theta) \left(\sum_{\underline{u}_i \in U_n} \underline{u}_i \underline{u}_i^h \right) \underline{a}(\theta)$$
$$= \underline{a}^h(\theta) \left(U_n U_n^h \right) \underline{a}(\theta) = \underline{a}^h(\theta) \left(P_n \right) \underline{a}(\theta)$$

with projection matrix $P_n = U_n U_n^h$

 $P_{n\underline{a}}(\theta)$ is projection of $\underline{a}(\theta)$ on noise subspace U_n .

Use this result in "Spectral MUSIC" cost function:

$$C_{SM}(\theta) = \sum_{\underline{u}_i \in U_n} \left| \underline{u}_i^h \underline{a}(\theta) \right|^2 = \underline{a}^h(\theta) \left(\sum_{\underline{u}_i \in U_n} \underline{u}_i \underline{u}_i^h \right) \underline{a}(\theta)$$
$$= \underline{a}^h(\theta) \left(U_n U_n^h \right) \underline{a}(\theta) = \underline{a}^h(\theta) \left(P_n \right) \underline{a}(\theta)$$

with projection matrix $P_n = U_n U_n^h$

 $P_{n\underline{a}}(\theta)$ is projection of $\underline{a}(\theta)$ on noise subspace U_n .

Conclusion: C_{SM} is innerproduct of $\underline{\mathbf{a}}(\theta)$ and projection of $\underline{\mathbf{a}}(\theta)$ on U_n

 $C_{SM}=0$ only true for DOA's θ_p with $p=1,\cdots,P$

Define pseudo-spectrum:

$$P_{SM}(\theta) = \frac{||\underline{a}(\theta)||^2}{C_{SM}} = \frac{||\underline{a}(\theta)||^2}{\underline{a}^h(\theta)U_nU_n^h\underline{a}(\theta)} = \frac{J}{\underline{a}^h(\theta)P_n\underline{a}(\theta)}$$

Define pseudo-spectrum:

$$P_{SM}(\theta) = \frac{||\underline{\mathbf{a}}(\theta)||^2}{C_{SM}} = \frac{||\underline{\mathbf{a}}(\theta)||^2}{\underline{\mathbf{a}}^h(\theta) \mathbf{U}_n \mathbf{U}_n^h \underline{\mathbf{a}}(\theta)} = \frac{J}{\underline{\mathbf{a}}^h(\theta) \mathbf{P}_n \underline{\mathbf{a}}(\theta)}$$

Notes:

- ▶ Minimizing $C_{SM}(\theta)$ \Leftrightarrow Maximizing $P_{SM}(\theta)$
- Sharp peaks (high resolution) in vicinity of source DOA's θ_p , $p=1,\cdots,P$
- ▶ In practice: $\hat{R}_x \Rightarrow \hat{U}_s$ not completely orthogonal to \hat{U}_n
- $ightharpoonup P_{SM}$ averages J-P pseudo spectra of individual noise vectors
- 'Pseudo' in name since no info about real power

Spectral-MUSIC algorithm

Spectral-MUSIC algorithm

1. Compute/ estimate R_x

Spectral-MUSIC algorithm

- 1. Compute/ estimate R_x
- 2. Compute EVD of R_x and split signal- noise subspace:

$$R_x = U_x \Lambda_x U_x^h = U_s \Lambda_{s,n} U_s^h + U_n \Lambda_n U_n^h$$

Spectral-MUSIC algorithm

- 1. Compute/ estimate R_x
- 2. Compute EVD of R_x and split signal- noise subspace:

$$R_x = U_x \Lambda_x U_x^h = U_s \Lambda_{s,n} U_s^h + U_n \Lambda_n U_n^h$$

3. Compute projection matrix: $P_n = U_n U_n^h$

Spectral-MUSIC algorithm

- 1. Compute/ estimate R_x
- 2. Compute EVD of R_x and split signal- noise subspace:

$$R_x = U_x \Lambda_x U_x^h = U_s \Lambda_{s,n} U_s^h + U_n \Lambda_n U_n^h$$

- 3. Compute projection matrix: $P_n = U_n U_n^h$
- 4. Evaluate pseudo spectrum:

$$P_{SM}(\theta) = \frac{J}{\underline{\mathbf{a}}^h(\theta) P_n \underline{\mathbf{a}}(\theta)}$$

Spectral-MUSIC algorithm

- 1. Compute/ estimate R_x
- 2. Compute EVD of R_x and split signal- noise subspace:

$$R_x = U_x \Lambda_x U_x^h = U_s \Lambda_{s,n} U_s^h + U_n \Lambda_n U_n^h$$

- 3. Compute projection matrix: $P_n = U_n U_n^h$
- 4. Evaluate pseudo spectrum:

$$P_{SM}(\theta) = \frac{J}{\underline{\mathbf{a}}^h(\theta) P_n \underline{\mathbf{a}}(\theta)}$$

5. Source DOA's θ_p for $p=1,\cdots,P$: Locate P sharpest peaks in $P_{SM}(\theta)$

Example: ULA

 $d/\lambda = 0.5$; P = 4 sources (at -20,0,40 and 70 degrees); J = 8 sensors

Note: This example exploits J - P = 4 noise sources

Necessary knowledge: R_x and \underline{r}_{e^*x} (both from measurements)

$$\underline{\underline{w}}_{mse} = \underset{r}{\operatorname{argmin}}_{\underline{w}}\{J\}$$

$$J = E\{|r|^2\}$$

$$\Rightarrow \underline{\underline{w}}_{mse} = R_x^{-1}\underline{\underline{r}}_{e^*x} \text{ and } J_{min} = E\{|e|^2\} - \underline{\underline{r}}_{e^*x}^h R_x^{-1}\underline{\underline{r}}_{e^*x}$$

$$\text{with } R_x = E\{\underline{\underline{x}} \cdot \underline{\underline{x}}^h\} \quad \underline{\underline{r}}_{e^*x} = E\{\underline{\underline{x}} \cdot e^*\}$$

Necessary knowledge: R_x and \underline{r}_{e^*x} (both from measurements)

Example: ULA, 1 source, narrowband, farfield $\rightarrow \underline{x} = \underline{a} \cdot s + \underline{n}$ and e = s

$$\underline{\underline{w}}_{mse} = \underset{\underline{w}}{\operatorname{arg min}}_{\underline{w}} \{J\}$$

$$J = E\{|r|^2\}$$

$$\Rightarrow \underline{\underline{w}}_{mse} = R_x^{-1} \underline{\underline{r}}_{e^*x} \text{ and } J_{min} = E\{|e|^2\} - \underline{\underline{r}}_{e^*x}^h R_x^{-1} \underline{\underline{r}}_{e^*x}$$

$$\text{with } R_x = E\{\underline{\underline{x}} \cdot \underline{\underline{x}}^h\} \quad \underline{\underline{r}}_{e^*x} = E\{\underline{\underline{x}} \cdot e^*\}$$

Necessary knowledge: R_x and \underline{r}_{e^*x} (both from measurements)

Example: ULA, 1 source, narrowband, farfield $\rightarrow \underline{x} = \underline{a} \cdot s + \underline{n}$ and e = s $R_x = \left(\underline{a} \cdot \underline{a}^h\right) \cdot \sigma_s^2 + \sigma_n^2 \cdot I \quad \text{and} \quad \underline{r}_{e^*x} = \underline{a} \cdot \sigma_s^2$

$$\underline{\underline{w}}_{mse} = \underset{r}{\operatorname{argmin}}_{\underline{\underline{w}}} \{J\}$$

$$J = E\{|r|^2\}$$

$$\Rightarrow \underline{\underline{w}}_{mse} = R_x^{-1}\underline{\underline{r}}_{e^*x} \text{ and } J_{min} = E\{|e|^2\} - \underline{\underline{r}}_{e^*x}^h R_x^{-1}\underline{\underline{r}}_{e^*x}$$

$$\text{with } R_x = E\{\underline{\underline{x}} \cdot \underline{\underline{x}}^h\} \quad \underline{\underline{r}}_{e^*x} = E\{\underline{\underline{x}} \cdot e^*\}$$

Necessary knowledge: R_x and \underline{r}_{e^*x} (both from measurements)

Example: ULA, 1 source, narrowband, farfield $\rightarrow \underline{x} = \underline{a} \cdot s + \underline{n}$ and e = s $R_x = \left(\underline{a} \cdot \underline{a}^h\right) \cdot \sigma_s^2 + \sigma_n^2 \cdot I \quad \text{and} \quad \underline{r}_{e^*x} = \underline{a} \cdot \sigma_s^2$

$$\Rightarrow \underline{\mathbf{w}}_{mse} = \beta \cdot \underline{\mathbf{a}} \text{ and } J_{min} = \beta \cdot \sigma_n^2 \text{ with } \beta = \frac{(\sigma_s^2/\sigma_n^2)}{1 + J \cdot (\sigma_s^2/\sigma_n^2)}$$

Thus for ULA, one source, narrowband, farfield:

- $\underline{\mathbf{w}}_{\mathit{mse}} = \beta \cdot \underline{\mathbf{a}}$, which is equivalent to matched filter result, which maximizes SNR
- ► $J_{min} \approx \frac{1}{J} \cdot \sigma_n^2 \Rightarrow$ SNR impoved approx. by factor J

Thus for ULA, one source, narrowband, farfield:

- $\underline{\mathbf{w}}_{\mathit{mse}} = \beta \cdot \underline{\mathbf{a}}$, which is equivalent to matched filter result, which maximizes SNR
- ▶ $J_{min} \approx \frac{1}{J} \cdot \sigma_n^2 \Rightarrow$ SNR impoved approx. by factor J

Conclusion MMSE

- + Simple
- + Direction of desired signal may be unknown
 - Must generate reference signal

Use auxillary channel to cancel interference in main channel

Use auxillary channel to cancel interference in main channel

Main assumption MSC: Interference assumed to be present in both main and auxillary channels. Desired signal strongly present in main channel, but **below noise level** in auxillary channels

Use auxillary channel to cancel interference in main channel

Main assumption MSC: Interference assumed to be present in both main and auxillary channels. Desired signal strongly present in main channel, but **below noise level** in auxillary channels

$$\Rightarrow \boxed{\underline{\mathbf{w}}_{opt} = \mathbf{R}_{\mathbf{x}}^{-1} \cdot \underline{\mathbf{r}}_{\mathbf{x}\mathbf{y}_{d}^{*}}} \text{ and } \boxed{P_{out} = \sigma_{y_{d}}^{2} - \underline{\mathbf{r}}_{\mathbf{x}\mathbf{y}_{d}}^{h} \mathbf{R}_{\mathbf{x}}^{-1} \underline{\mathbf{r}}_{\mathbf{x}\mathbf{y}_{d}}}$$

Use auxillary channel to cancel interference in main channel

Main assumption MSC: Interference assumed to be present in both main and auxillary channels. Desired signal strongly present in main channel, but **below noise level** in auxillary channels

$$\Rightarrow \boxed{\underline{\mathbf{w}}_{opt} = \mathbf{R}_{\mathbf{x}}^{-1} \cdot \underline{\mathbf{r}}_{\mathbf{x}y_d^*}} \text{ and } \boxed{P_{out} = \sigma_{y_d}^2 - \underline{\mathbf{r}}_{\mathbf{x}y_d}^h \mathbf{R}_{\mathbf{x}}^{-1} \underline{\mathbf{r}}_{\mathbf{x}y_d}}$$

<u>Conclusion MSC:</u> Simple, but requires desired signal below noise level in auxillay channels, otherwise ...

Linear Constrained Minimum Variance (Frost)

Previous methods may be unsatisfactory e.g. if desired signal is of unknown strength or is always present \rightarrow

- ► MSC: Signal cancelling
- ► Max SINR: Needs signal and noise covariance estimate
- ▶ MMSE: Lack of knowledge reference signal

Linear Constrained Minimum Variance (Frost)

Previous methods may be unsatisfactory e.g. if desired signal is of unknown strength or is always present \rightarrow

- ► MSC: Signal cancelling
- ► Max SINR: Needs signal and noise covariance estimate
- ▶ MMSE: Lack of knowledge reference signal

Design philosophy LCMV:

Design weight vector by minimizing average output power subject to M constraints that filter response remains constant at some specific frequencies of interest

Average output power:

$$P_{y} = E\{|y|^{2}\} = \underline{w}^{h} \cdot E\{\underline{xx}^{h}\} \cdot \underline{w} = \underline{w}^{h} \cdot R_{x} \cdot \underline{w}$$

Average output power:

$$P_{y} = E\{|y|^{2}\} = \underline{w}^{h} \cdot E\{\underline{xx}^{h}\} \cdot \underline{w} = \underline{w}^{h} \cdot R_{x} \cdot \underline{w}$$

M < J linear independent constraints:

 $C^h \underline{w} = \underline{r}_d$ with $J \times M$ constraint matrix C

Average output power:

$$P_{y} = E\{|y|^{2}\} = \underline{w}^{h} \cdot E\{\underline{xx}^{h}\} \cdot \underline{w} = \underline{w}^{h} \cdot R_{x} \cdot \underline{w}$$

M < J linear independent constraints:

 $C^h \underline{w} = \underline{r}_d$ with $J \times M$ constraint matrix C

Error criterion:

$$\min_{\underline{w}} \{ P_y \} = \min_{\underline{w}} \{ \underline{w}^h \cdot R_x \cdot \underline{w} \} \text{ subject to } C^h \cdot \underline{w} = \underline{r}_d$$

Average output power:

$$P_{y} = E\{|y|^{2}\} = \underline{w}^{h} \cdot E\{\underline{xx}^{h}\} \cdot \underline{w} = \underline{w}^{h} \cdot R_{x} \cdot \underline{w}$$

M < J linear independent constraints:

 $C^h \underline{w} = \underline{r}_d$ with $J \times M$ constraint matrix C

Error criterion:

$$\min_{\underline{w}} \{ P_y \} = \min_{\underline{w}} \{ \underline{w}^h \cdot R_x \cdot \underline{w} \} \text{ subject to } C^h \cdot \underline{w} = \underline{r}_d$$

Solution via Lagrange multipliers:

$$J = \underline{\mathbf{w}}^h \cdot \mathbf{R}_{\mathsf{x}} \cdot \underline{\mathbf{w}} + \underline{\lambda} \left(\mathbf{C}^h \underline{\mathbf{w}} - \underline{\mathbf{r}}_d \right)$$

Average output power:

$$P_{y} = E\{|y|^{2}\} = \underline{w}^{h} \cdot E\{\underline{x}\underline{x}^{h}\} \cdot \underline{w} = \underline{w}^{h} \cdot R_{x} \cdot \underline{w}$$

M < J linear independent constraints:

 $C^h \underline{w} = \underline{r}_d$ with $J \times M$ constraint matrix C

Error criterion:

$$\min_{\underline{w}} \{ P_y \} = \min_{\underline{w}} \{ \underline{w}^h \cdot R_x \cdot \underline{w} \} \text{ subject to } C^h \cdot \underline{w} = \underline{r}_d$$

Solution via Lagrange multipliers:

$$J = \underline{\mathbf{w}}^h \cdot \mathbf{R}_{\mathsf{x}} \cdot \underline{\mathbf{w}} + \underline{\lambda} \left(\mathbf{C}^h \underline{\mathbf{w}} - \underline{\mathbf{r}}_d \right)$$

Solution similar to results in part I:

$$\underline{\mathbf{w}} = \mathbf{R}_{x}^{-1} \mathbf{C} \left(\mathbf{C}^{h} \mathbf{R}_{x}^{-1} \mathbf{C} \right)^{-1} \underline{\mathbf{r}}_{d}$$
 and
$$P_{y} = \underline{\mathbf{r}}_{d}^{h} \left(\mathbf{C}^{h} \mathbf{R}_{x}^{-1} \mathbf{C} \right)^{-1} \underline{\mathbf{r}}_{d}$$

Conclusions LCMV:

Conclusions LCMV:

+ High resolution

Conclusions LCMV:

- + High resolution
- + LCMV controls spectral leakage, in contrast to conventional (e.g. null-steering) methods

Conclusions LCMV:

- + High resolution
- + LCMV controls spectral leakage, in contrast to conventional (e.g. null-steering) methods
- + If there are interferences present, LCMV tends to null them out

Conclusions LCMV:

- + High resolution
- + LCMV controls spectral leakage, in contrast to conventional (e.g. null-steering) methods
- + If there are interferences present, LCMV tends to null them out
 - Sensitive due to inverse correlation matrix

MVDR:

$$\min_{\underline{w}}\{P_y\} = \min_{\underline{w}}\{E\{|y|^2\} \text{ subject to } \underline{w}^h \cdot \underline{a} = 1$$

MVDR:

$$\begin{split} \min_{\underline{w}} \{P_y\} &= \min_{\underline{w}} \{E\{|y|^2\} \text{ subject to } \underline{w}^h \cdot \underline{a} = 1 \\ \\ \Rightarrow \boxed{\underline{w} = \frac{R^{-1}\underline{a}}{a^hR^{-1}a}} \text{ and } \boxed{P_y = \frac{1}{a^hR^{-1}a}} \end{split}$$

MVDR:

$$\min_{\underline{\underline{w}}} \{ P_y \} = \min_{\underline{\underline{w}}} \{ E\{|y|^2 \} \text{ subject to } \underline{\underline{w}}^h \cdot \underline{\underline{a}} = 1$$

$$\Rightarrow \boxed{\underline{\mathbf{w}} = \frac{\mathsf{R}^{-1}\underline{\mathbf{a}}}{\underline{\mathbf{a}}^h\mathsf{R}^{-1}\underline{\mathbf{a}}}} \text{ and } \boxed{P_y = \frac{1}{\underline{\mathbf{a}}^h\mathsf{R}^{-1}\underline{\mathbf{a}}}}$$

Notes MVDR (=Capon):

- ▶ MVDR is special case of LCMV with $r_d = 1$ and C = \underline{a}
- ► MVDR is max SNR if $R = \sigma_s^2 \underline{aa}^h + R_n$

MVDR:

$$\min_{\underline{\underline{w}}} \{ P_y \} = \min_{\underline{\underline{w}}} \{ E\{|y|^2 \} \text{ subject to } \underline{\underline{w}}^h \cdot \underline{\underline{a}} = 1$$

$$\Rightarrow \boxed{\underline{\mathbf{w}} = \frac{\mathsf{R}^{-1}\underline{\mathbf{a}}}{\underline{\mathbf{a}}^h\mathsf{R}^{-1}\underline{\mathbf{a}}}} \text{ and } \boxed{P_y = \frac{1}{\underline{\mathbf{a}}^h\mathsf{R}^{-1}\underline{\mathbf{a}}}}$$

Notes MVDR (=Capon):

- ▶ MVDR is special case of LCMV with $r_d = 1$ and C = \underline{a}
- ► MVDR is max SNR if $R = \sigma_s^2 \underline{aa}^h + R_n$

Conclusions MVDR/ LCMV:

- + Flexible and general constraints possible
 - Computation constraint weight vector not trivial
 - As signal extractor: sensitive to errors in DOA
 - Problems with correlated signals

<u>GSC</u>: Alternative formulation of LCMV, illustrates relationship between MSC and LCMV. Mechanism to change constrained minimization problem in unconstrained one

<u>GSC</u>: Alternative formulation of LCMV, illustrates relationship between MSC and LCMV. Mechanism to change constrained minimization problem in unconstrained one

With M independent constraints and J (< M) weights \Rightarrow $C^h\underline{w} = \underline{r}_d$

<u>GSC</u>: Alternative formulation of LCMV, illustrates relationship between MSC and LCMV. Mechanism to change constrained minimization problem in unconstrained one

With M independent constraints and J (< M) weights \Rightarrow $C^h \underline{w} = \underline{r}_d$

Construct full rank $J \times J$ matrix B = (C|T)B has J independent columns; Rank $J \times M$ matrix C is M and Rank $J \times (J - M)$ matrix T is J - M

<u>GSC</u>: Alternative formulation of LCMV, illustrates relationship between MSC and LCMV. Mechanism to change constrained minimization problem in unconstrained one

With M independent constraints and J (< M) weights \Rightarrow $C^h \underline{w} = \underline{r}_d$

Construct full rank $J \times J$ matrix B = (C|T)B has J independent columns; Rank $J \times M$ matrix C is M and Rank $J \times (J - M)$ matrix T is J - M

Any $\underline{\mathbf{w}} \in J$ dimensional space spanned by columns B:

 $\underline{\mathbf{w}} = \mathbf{C} \cdot \underline{\mathbf{v}} - \mathbf{T} \cdot \underline{\mathbf{w}}_a$ with $\mathbf{C} \cdot \underline{\mathbf{v}} = \underline{\mathbf{w}}_c$ weights belong to constraint Constraint $\Rightarrow \mathbf{C}^h \underline{\mathbf{w}} = \mathbf{C}^h \mathbf{C} \underline{\mathbf{v}} - \mathbf{C}^h \mathbf{T} \underline{\mathbf{w}}_a = \underline{\mathbf{r}}_d$

<u>GSC</u>: Alternative formulation of LCMV, illustrates relationship between MSC and LCMV. Mechanism to change constrained minimization problem in unconstrained one

With M independent constraints and J (< M) weights \Rightarrow $C^h\underline{w} = \underline{r}_d$

Construct full rank $J \times J$ matrix B = (C|T)B has J independent columns; Rank $J \times M$ matrix C is M and Rank $J \times (J - M)$ matrix T is J - M

Any $\underline{\mathbf{w}} \in J$ dimensional space spanned by columns B:

$$\underline{w} = C \cdot \underline{v} - T \cdot \underline{w}_a$$
 with $C \cdot \underline{v} = \underline{w}_c$ weights belong to constraint
$$\text{Constraint} \quad \Rightarrow \quad C^h \underline{w} = C^h C \underline{v} - C^h T \underline{w}_a = \underline{r}_d$$
 Construct T such that $C^h T = 0 \Rightarrow \underline{v} = \left(C^h C\right)^{-1} \underline{r}_d$

<u>GSC</u>: Alternative formulation of LCMV, illustrates relationship between MSC and LCMV. Mechanism to change constrained minimization problem in unconstrained one

With M independent constraints and J (< M) weights \Rightarrow $C^h \underline{w} = \underline{r}_d$

Construct full rank $J \times J$ matrix B = (C|T)B has J independent columns; Rank $J \times M$ matrix C is M and Rank $J \times (J - M)$ matrix T is J - M

Any $\underline{\mathbf{w}} \in J$ dimensional space spanned by columns B:

$$\underline{w} = C \cdot \underline{v} - T \cdot \underline{w}_a$$
 with $C \cdot \underline{v} = \underline{w}_c$ weights belong to constraint
$$Constraint \Rightarrow C^h \underline{w} = C^h C \underline{v} - C^h T \underline{w}_a = \underline{r}_d$$

$$Construct \ T \ \text{such that} \ C^h T = 0 \Rightarrow \underline{v} = \left(C^h C\right)^{-1} \underline{r}_d$$

$$\underline{\mathbf{w}}_{c} = \mathbf{C} \cdot \underline{\mathbf{v}} = \begin{bmatrix} \mathbf{C} \cdot \left(\mathbf{C}^{h} \mathbf{C} \right)^{-1} \mathbf{r}_{\underline{d}} \\ \mathbf{C}^{h} \mathbf{C} \end{bmatrix} + \mathbf{C}^{h} \mathbf{C$$

Possible solutions for $\underline{\mathbf{w}}_a$:

With $\underline{\mathbf{w}} = \underline{\mathbf{w}}_c - \mathbf{T} \cdot \underline{\mathbf{w}}_a$ we can write constrained optimization:

$$\min_{\underline{w}} \{ P_y \} = \min_{\underline{w}} \{ \underline{w}^h R \underline{w} \} \text{ s.t. } C^h \cdot \underline{w} = \underline{r}_d$$

Possible solutions for $\underline{\mathbf{w}}_a$:

With $\underline{\mathbf{w}} = \underline{\mathbf{w}}_c - \mathbf{T} \cdot \underline{\mathbf{w}}_a$ we can write constrained optimization:

$$\min_{\underline{w}} \{ P_y \} = \min_{\underline{w}} \{ \underline{w}^h R \underline{w} \} \text{ s.t. } C^h \cdot \underline{w} = \underline{r}_d$$

to following unconstrained optimization:

$$\min_{\underline{w}_{a}}\left\{\left(\underline{w}_{c}-\mathsf{T}\underline{w}_{a}\right)^{h}\mathsf{R}\left(\underline{w}_{c}-\mathsf{T}\underline{w}_{a}\right)\right\}$$

Possible solutions for $\underline{\mathbf{w}}_a$:

With $\underline{\mathbf{w}} = \underline{\mathbf{w}}_c - \mathbf{T} \cdot \underline{\mathbf{w}}_a$ we can write constrained optimization:

$$\min_{\underline{w}} \{ P_y \} = \min_{\underline{w}} \{ \underline{w}^h R \underline{w} \} \text{ s.t. } C^h \cdot \underline{w} = \underline{r}_d$$

to following unconstrained optimization:

$$\min_{\underline{w}_{a}} \left\{ (\underline{w}_{c} - T\underline{w}_{a})^{h} R (\underline{w}_{c} - T\underline{w}_{a}) \right\}$$

$$\frac{d}{d\underline{w}_{a}} = \underline{0} \quad \Rightarrow \quad -2T^{h} R\underline{w}_{c} + 2T^{h} RT\underline{w}_{a} = \underline{0} \quad \Rightarrow$$

$$\underline{w}_{a} = (T^{h}RT)^{-1} T^{h} R\underline{w}_{c}$$

Note: Blocking matrix can be constructed by any orthogonalization procedure (e.g. Gramm- Schmidt or QR- decomposition)

Example: $\underline{\mathbf{r}_d}=1$ in steering direction θ_0

Example: $\underline{\mathbf{r}_d} = 1$ in steering direction θ_0

$$C = \underline{\mathbf{a}}(\omega_0, \theta_0) = (1, e^{-\mathbf{j}\phi_0}, e^{-\mathbf{j}2\phi_0}, \cdots, e^{-\mathbf{j}(J-1)\phi_0})^t$$

with
$$\phi_0 = \omega_0 \frac{d \sin(\theta_0)}{c}$$

Example: $\underline{\mathbf{r}_d} = 1$ in steering direction θ_0

$$C = \underline{\mathbf{a}}(\omega_0, \theta_0) = (1, \mathbf{e}^{-\mathbf{j}\phi_0}, \mathbf{e}^{-\mathbf{j}2\phi_0}, \cdots, \mathbf{e}^{-\mathbf{j}(J-1)\phi_0})^t$$

with
$$\phi_0 = \omega_0 \frac{d \sin(\theta_0)}{c} \Rightarrow$$

$$\underline{\mathbf{w}}_{c} = \mathsf{C} \left(\mathsf{C}^{h} \mathsf{C} \right)^{-1} \underline{\mathbf{r}}_{d} = \underline{\mathbf{a}} \left(\underline{\mathbf{a}}^{h} \underline{\mathbf{a}} \right)^{-1} (1) = \frac{1}{J} \underline{\mathbf{a}} (\omega_{0}, \theta_{0})$$

Example: $\underline{\mathbf{r}_d} = 1$ in steering direction θ_0

$$C = \underline{\mathbf{a}}(\omega_0, \theta_0) = (1, e^{-\mathbf{j}\phi_0}, e^{-\mathbf{j}2\phi_0}, \cdots, e^{-\mathbf{j}(J-1)\phi_0})^t$$

with $\phi_0 = \omega_0 \frac{d \sin(\theta_0)}{c} \Rightarrow$

$$\underline{\mathbf{w}}_{c} = \mathsf{C} \left(\mathsf{C}^{h} \mathsf{C} \right)^{-1} \underline{\mathbf{r}}_{d} = \underline{\mathbf{a}} \left(\underline{\mathbf{a}}^{h} \underline{\mathbf{a}} \right)^{-1} (1) = \frac{1}{J} \underline{\mathbf{a}} (\omega_{0}, \theta_{0})$$

Beampattern of this fixed filter part:

$$|r(\omega,\theta)| = |\underline{\mathbf{w}}_{c}^{h} \cdot \underline{\mathbf{a}}(\omega,\theta)| = \left| \frac{1}{J} \sum_{i=1}^{J} e^{\mathbf{j}(i-1)\frac{d}{c}(\omega_{0}\sin(\theta_{0}) - \omega\sin(\theta))} \right|$$

$$C = \underline{a}(\omega_0, \theta_0) = (1, e^{-j\phi_0}, e^{-j2\phi_0}, \cdots, e^{-j(J-1)\phi_0})^t$$

with $\phi_0 = \omega_0 \frac{d \sin(\theta_0)}{c} \Rightarrow$

$$\underline{\mathbf{w}}_{c} = \mathsf{C} \left(\mathsf{C}^{h} \mathsf{C} \right)^{-1} \underline{\mathbf{r}}_{d} = \underline{\mathbf{a}} \left(\underline{\mathbf{a}}^{h} \underline{\mathbf{a}} \right)^{-1} (1) = \frac{1}{J} \underline{\mathbf{a}} (\omega_{0}, \theta_{0})$$

Beampattern of this fixed filter part:

$$|r(\omega,\theta)| = |\underline{\mathbf{w}}_{c}^{h} \cdot \underline{\mathbf{a}}(\omega,\theta)| = \left| \frac{1}{J} \sum_{i=1}^{J} e^{\mathbf{j}(i-1)\frac{d}{c}(\omega_{0}\sin(\theta_{0}) - \omega\sin(\theta))} \right|$$

For $\omega = \omega_0 = 2\pi f_0 = 2\pi \frac{c}{\lambda_0}$ beampattern becomes:

$$|r(\omega_0, \theta)| = \frac{1}{J} \frac{\sin\left(J\pi \frac{d}{\lambda_0}\left[\sin(\theta_0) - \sin(\theta)\right]\right)}{\sin\left(\pi \frac{d}{\lambda_0}\left[\sin(\theta_0) - \sin(\theta)\right]\right)}$$

Furthermore construction of blocking matrix:

$$C^{h}T = 0 \Rightarrow \underline{a}^{h}T = 0$$
 with $J \times (J - 1)$ matrix T

Furthermore construction of blocking matrix:

$$C^{h}T = 0 \Rightarrow \underline{a}^{h}T = 0$$
 with $J \times (J - 1)$ matrix T

E.g.
$$T = \begin{pmatrix} -1 & -1 & \cdots & -1 \\ e^{-j\phi_0} & 0 \cdots & 0 \\ 0 & e^{-j2 \cdot \phi_0} & \cdots & 0 \\ 0 & 0 & \cdots & e^{-j(J-1) \cdot \phi_0} \end{pmatrix}$$

Furthermore construction of blocking matrix:

$$C^{h}T = 0 \Rightarrow \underline{a}^{h}T = 0$$
 with $J \times (J - 1)$ matrix T

E.g.
$$\mathsf{T} = \left(\begin{array}{cccc} -1 & -1 & \cdots & -1 \\ \mathsf{e}^{-\mathsf{j}\phi_0} & 0 \cdots & 0 \\ 0 & \mathsf{e}^{-\mathsf{j}2 \cdot \phi_0} & \cdots & 0 \\ 0 & 0 & \cdots & \mathsf{e}^{-\mathsf{j}(J-1) \cdot \phi_0} \end{array} \right)$$

Thus for m^{th} column (with $m=1,2,\cdots,J-1$)

$$\underline{\mathbf{t}}_{\textit{m}} = \left(-1, 0, \cdots, 0, \mathrm{e}^{-\mathrm{j}\textit{m}\phi_0}, 0, \cdots, 0\right)^t$$

with beampattern $|r_m| = |\underline{\mathsf{t}}_m^h \cdot \underline{\mathsf{a}}(\omega_0, \theta)|$

Furthermore construction of blocking matrix:

$$C^{h}T = 0 \Rightarrow \underline{a}^{h}T = 0$$
 with $J \times (J - 1)$ matrix T

E.g.
$$T = \begin{pmatrix} -1 & -1 & \cdots & -1 \\ e^{-j\phi_0} & 0 \cdots & 0 \\ 0 & e^{-j2\cdot\phi_0} & \cdots & 0 \\ 0 & 0 & \cdots & e^{-j(J-1)\cdot\phi_0} \end{pmatrix}$$

Thus for m^{th} column (with $m = 1, 2, \dots, J-1$)

$$\underline{\mathbf{t}}_{\textit{m}} = \left(-1, 0, \cdots, 0, \mathrm{e}^{-\mathrm{j}\textit{m}\phi_0}, 0, \cdots, 0\right)^t$$

with beampattern $|r_m| = |\underline{t}_m^h \cdot \underline{a}(\omega_0, \theta)| \Rightarrow \text{for } d/\lambda = 1/2$:

$$r_m(\omega,\theta)| = 2 \left| \sin \left(\frac{1}{2} m \pi \left[\sin(\theta_0) - \sin(\theta) \right] \right) \right|$$

Furthermore construction of blocking matrix:

$$C^{h}T = 0 \Rightarrow \underline{a}^{h}T = 0$$
 with $J \times (J - 1)$ matrix T

E.g.
$$\mathsf{T} = \left(\begin{array}{cccc} -1 & -1 & \cdots & -1 \\ \mathrm{e}^{-\mathrm{j}\phi_0} & 0 \cdots & 0 \\ 0 & \mathrm{e}^{-\mathrm{j}2\cdot\phi_0} & \cdots & 0 \\ 0 & 0 & \cdots & \mathrm{e}^{-\mathrm{j}(J-1)\cdot\phi_0} \end{array} \right)$$

Thus for m^{th} column (with $m = 1, 2, \dots, J-1$)

$$\underline{\mathbf{t}}_{m} = \left(-1, 0, \cdots, 0, e^{-\mathbf{j}m\phi_{0}}, 0, \cdots, 0\right)^{t}$$

with beampattern $|r_m| = |\underline{t}_m^h \cdot \underline{a}(\omega_0, \theta)| \Rightarrow \text{for } d/\lambda = 1/2$:

$$r_m(\omega,\theta)| = 2 \left| \sin \left(\frac{1}{2} m \pi \left[\sin(\theta_0) - \sin(\theta) \right] \right) \right|$$

(= amplitude response of m^{th} column blocking matrix)

Adaptive Array Signal Processing

Why adaptive?

In most previous results knowledge of SOS needed. These statistics are usually unknown and/or time-varying With ergodic assumption \rightarrow SOS can be estimated from available data samples \rightarrow adaptive solutions!

Adaptive Array Signal Processing

Why adaptive?

In most previous results knowledge of SOS needed. These statistics are usually unknown and/or time-varying With ergodic assumption \rightarrow SOS can be estimated from available data samples \rightarrow adaptive solutions!

General adaptive array structure:

Wiener:
$$\underline{\mathbf{w}}_{opt} = arg \min_{\underline{\mathbf{w}}} \left\{ E\{|y|^2\} \right\}$$

 $\Rightarrow \underline{\mathbf{w}}_{opt} = \mathbf{R}_x^{-1} \cdot \underline{\mathbf{r}}_{xx_d^*}$

Adaptive Array Signal Processing

Why adaptive?

In most previous results knowledge of SOS needed. These statistics are usually unknown and/or time-varying With ergodic assumption \rightarrow SOS can be estimated from available data samples \rightarrow adaptive solutions!

General adaptive array structure:

LMS update rule :
$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha \underline{\mathbf{x}}[k]y^*[k]$$

Final value : $\lim_{k \to \infty} E\{\underline{\mathbf{w}}[k]\} = \underline{\mathbf{w}}_{opt}$

Adaptive MMSE (Wiener)

Adaptive MMSE (Wiener)

LMS update rule : $\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha \underline{\mathbf{x}}[k]r^*[k]$

Adaptive MSC

Adaptive MSC

LMS update rule : $\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha\underline{\mathbf{x}}[k]r^*[k]$

Adaptive GSC

$$\underline{\mathbf{w}}_{c} = \mathbf{C} \cdot \left(\mathbf{C}^{h}\mathbf{C}\right)^{-1} \underline{\mathbf{r}}_{d}$$

$$\mathbf{C}^{h}\mathbf{T} = \mathbf{0}$$

$$\underline{\mathbf{u}} = \mathbf{T} \cdot \underline{\mathbf{x}}$$

Adaptive GSC

$$\underline{\mathbf{w}}_{c} = \mathbf{C} \cdot \left(\mathbf{C}^{h}\mathbf{C}\right)^{-1} \underline{\mathbf{r}}_{d}$$

$$\mathbf{C}^{h}\mathbf{T} = \mathbf{0}$$

$$\underline{\mathbf{u}} = \mathbf{T} \cdot \underline{\mathbf{x}}$$

Optimal Wiener : $\underline{\mathbf{w}}_{opt} = arg \min_{\mathbf{w}} \left\{ E\{|r|^2\} \right\} = R_u^{-1} \cdot \underline{\mathbf{r}}_{ue^*}$

LMS update rule : $\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha\underline{\mathbf{u}}[k]y^*[k]$

Appendix AASP

Content appendix

- ► Eigenvalue problem
- Generalized inverse
- Projection matrix
- Matrix inversion lemma
- Signal subspace techniques

<u>Procedure:</u> With eigenvalues λ_i and eigenvectors $\underline{\mathbf{q}}_i$:

$$\mathsf{R} \cdot \underline{\mathsf{q}}_i = \lambda_i \cdot \underline{\mathsf{q}}_i \ \Rightarrow \ (\mathsf{R} - \lambda_i \mathsf{I}) \cdot \underline{\mathsf{q}}_i = \underline{\mathsf{0}} \ \text{for} \ i = \mathsf{0}, \mathsf{1}, \cdots, \mathsf{N} - \mathsf{1}$$

<u>Procedure:</u> With eigenvalues λ_i and eigenvectors $\underline{\mathbf{q}}_i$:

$$\begin{split} \mathsf{R} \cdot \underline{\mathsf{q}}_i &= \lambda_i \cdot \underline{\mathsf{q}}_i \quad \Rightarrow \quad (\mathsf{R} - \lambda_i \mathsf{I}) \cdot \underline{\mathsf{q}}_i = \underline{\mathsf{0}} \; \; \text{for} \; i = 0, 1, \cdots, N-1 \end{split}$$
 With $\mathsf{Q} = (\underline{\mathsf{q}}_0, \cdots, \underline{\mathsf{q}}_{N-1}) \; \text{and} \; \Lambda = \mathit{diag}\{\lambda_0, \cdots, \lambda_{N-1}\}$
$$\mathsf{R} \cdot \mathsf{Q} = \mathsf{Q} \cdot \Lambda \quad \Rightarrow \quad \mathsf{R} = \mathsf{Q} \Lambda \mathsf{Q}^{-1} \end{split}$$

<u>Procedure:</u> With eigenvalues λ_i and eigenvectors \underline{q}_i :

$$\begin{split} \mathsf{R} \cdot \underline{\mathsf{q}}_i &= \lambda_i \cdot \underline{\mathsf{q}}_i \ \Rightarrow \ (\mathsf{R} - \lambda_i \mathsf{I}) \cdot \underline{\mathsf{q}}_i = \underline{\mathsf{0}} \ \text{for} \ i = \mathsf{0}, \mathsf{1}, \cdots, \mathsf{N} - \mathsf{1} \end{split}$$
 With $\mathsf{Q} = (\underline{\mathsf{q}}_0, \cdots, \underline{\mathsf{q}}_{\mathsf{N}-1})$ and $\mathsf{\Lambda} = \mathit{diag}\{\lambda_0, \cdots, \lambda_{\mathsf{N}-1}\}$
$$\mathsf{R} \cdot \mathsf{Q} = \mathsf{Q} \cdot \mathsf{\Lambda} \quad \Rightarrow \quad \mathsf{R} = \mathsf{Q} \mathsf{\Lambda} \mathsf{Q}^{-1} \end{split}$$

 $\underline{ \textbf{Property:}} \ \textit{Eigenvectors} \ \underline{\mathtt{q}}_i \ \textit{orthogonal} \Rightarrow$

$$Q^h \cdot Q = Q \cdot Q^h = c \cdot I$$
 with c some constant

<u>Procedure:</u> With eigenvalues λ_i and eigenvectors q_i :

$$R \cdot \underline{q}_i = \lambda_i \cdot \underline{q}_i \implies (R - \lambda_i I) \cdot \underline{q}_i = \underline{0} \text{ for } i = 0, 1, \dots, N - 1$$

With Q =
$$(\underline{q}_0,\cdots,\underline{q}_{N-1})$$
 and $\Lambda=\text{diag}\{\lambda_0,\cdots,\lambda_{N-1}\}$

$$R \cdot Q = Q \cdot \Lambda \quad \Rightarrow \quad R = Q\Lambda Q^{-1}$$

Property: Eigenvectors q_i orthogonal \Rightarrow

$$Q^h \cdot Q = Q \cdot Q^h = c \cdot I$$
 with c some constant

Main result:

Diagonalization:
$$Q^h RQ = \Lambda \Leftrightarrow R = Q\Lambda Q^h$$

Example MA(1):

$$x[k] = i[k] + ai[k-1]$$
 with $E\{i[k]\} = 0$ and $E\{i^2[k]\} = \sigma_i^2 \Rightarrow$

Example MA(1):

$$x[k] = i[k] + ai[k-1]$$
 with $E\{i[k]\} = 0$ and $E\{i^2[k]\} = \sigma_i^2 \Rightarrow \rho[0] = (1+a^2)\sigma_i^2$; $\rho[1] = \rho[-1] = a\sigma_i^2$; $\rho[\tau] = 0$ for $|\tau| \ge 2$

Example MA(1):

$$x[k] = i[k] + ai[k-1]$$
 with $E\{i[k]\} = 0$ and $E\{i^2[k]\} = \sigma_i^2 \Rightarrow$
 $\rho[0] = (1+a^2)\sigma_i^2; \ \rho[1] = \rho[-1] = a\sigma_i^2; \ \rho[\tau] = 0$ for $|\tau| \ge 2$

Eigenvalues problem $\det(R - \lambda I) = 0$ for N = 2 (with $\gamma = \rho[1]/\rho[0]$):

$$\Lambda = \left(\begin{array}{cc} \lambda_0 & 0 \\ 0 & \lambda_1 \end{array} \right) = \left(\begin{array}{cc} 1 + \gamma & 0 \\ 0 & 1 - \gamma \end{array} \right) \; \; ; \; \; \mathsf{Q} = \left(\underline{\mathsf{q}}_0, \underline{\mathsf{q}}_1 \right) = c \cdot \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right)$$

Example MA(1):

$$x[k] = i[k] + ai[k-1]$$
 with $E\{i[k]\} = 0$ and $E\{i^2[k]\} = \sigma_i^2 \Rightarrow \rho[0] = (1+a^2)\sigma_i^2$; $\rho[1] = \rho[-1] = a\sigma_i^2$; $\rho[\tau] = 0$ for $|\tau| \ge 2$

Eigenvalues problem $\det (\mathbf{R} - \lambda \mathbf{I}) = 0$ for $\mathbf{N} = 2$ (with $\gamma = \rho[1]/\rho[0]$):

$$\Lambda = \left(\begin{array}{cc} \lambda_0 & 0 \\ 0 & \lambda_1 \end{array} \right) = \left(\begin{array}{cc} 1 + \gamma & 0 \\ 0 & 1 - \gamma \end{array} \right) \; \; ; \; \; \mathsf{Q} = \left(\underline{\mathsf{q}}_0, \underline{\mathsf{q}}_1 \right) = c \cdot \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right)$$

Notes:

- ▶ Vector $\underline{\mathbf{q}}_0$ orthogonal to $\underline{\mathbf{q}}_1$ since $\underline{\mathbf{q}}_0^t \cdot \underline{\mathbf{q}}_1 = 0$
- For white noise (a = 0): $\Lambda = I$
- For MA(1) with N > 2: R is tri-diagonal

Example: Eigenvalues and psd for white noise, MA(1) and AR(1)

Example: Eigenvalues and psd for white noise, MA(1) and AR(1)

Example: Eigenvalues and psd for white noise, MA(1) and AR(1)

Goal:

For known $M \times N$ matrix A and $M \times 1$ vector \underline{b} , solve linear set of M equations and N unknowns:

$$A\cdot\underline{w}=\underline{b}$$

Goal:

For known $M \times N$ matrix A and $M \times 1$ vector \underline{b} , solve linear set of M equations and N unknowns:

$$A \cdot \underline{w} = \underline{b}$$

General solution for $N \times 1$ vector $\underline{\mathbf{w}}$:

$$\underline{w} = A^{\dagger} \cdot \underline{b}$$

with † the generalized (Moore-Penroose) pseudo inverse, defined as:

Goal:

For known $M \times N$ matrix A and $M \times 1$ vector \underline{b} , solve linear set of M equations and N unknowns:

$$A \cdot \underline{w} = \underline{b}$$

General solution for $N \times 1$ vector $\underline{\mathbf{w}}$:

$$\underline{w} = A^\dagger \cdot \underline{b}$$

with † the generalized (Moore-Penroose) pseudo inverse, defined as:

$$A^{\dagger} = A^{h} (AA^{h})^{-1}$$
 for $M < N$
 $A^{\dagger} = A^{-1}$ for $M = N$
 $A^{\dagger} = (A^{h}A)^{-1}A^{h}$ for $M > N$

Case M < N: $\underline{w} = A^{\dagger} \cdot \underline{b} \Rightarrow$ Multiple solutions

Case M < N: $\underline{w} = A^{\dagger} \cdot \underline{b} \Rightarrow$ Multiple solutions

Example M = 1, N = 2:

$$w_1 + w_2 = 2 \Rightarrow A \cdot \underline{w} = \underline{b} \Leftrightarrow (1,1) \cdot \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = (2)$$

Case M < N: $\underline{w} = A^{\dagger} \cdot \underline{b} \Rightarrow$ Multiple solutions

Example M = 1, N = 2:

$$w_1 + w_2 = 2 \implies A \cdot \underline{w} = \underline{b} \iff (1,1) \cdot \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = (2)$$

$$\underline{w} = A^{\dagger} \cdot \underline{b} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Case M < N: $\underline{w} = A^{\dagger} \cdot \underline{b} \Rightarrow$ Multiple solutions

Example M = 1, N = 2:

$$w_1 + w_2 = 2 \Rightarrow A \cdot \underline{w} = \underline{b} \Leftrightarrow (1,1) \cdot \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = (2)$$

$$\underline{\mathbf{w}} = \mathsf{A}^\dagger \cdot \underline{\mathsf{b}} = \left(\begin{array}{c} 1 \\ 1 \end{array} \right)$$

Case M < N: $\underline{w} = A^{\dagger} \cdot \underline{b} \Rightarrow$ Multiple solutions

Example M = 1, N = 2:

$$w_1 + w_2 = 2 \Rightarrow A \cdot \underline{w} = \underline{b} \Leftrightarrow (1,1) \cdot \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = (2)$$

$$\underline{\mathbf{w}} = \mathsf{A}^\dagger \cdot \underline{\mathsf{b}} = \left(\begin{array}{c} 1 \\ 1 \end{array} \right)$$

Conclusion:

† results in solution with smallest Euclidian norm ("minimum distance to the origin (0,0)")

Case M = N: $\underline{w} = A^{-1} \cdot \underline{b}$ (A must be invertable)

Case M = N: $\underline{\mathbf{w}} = \mathbf{A}^{-1} \cdot \underline{\mathbf{b}}$ (A must be invertable)

Example M = 2, N = 2:

$$\left(\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array}\right) \cdot \left(\begin{array}{c} w_1 \\ w_2 \end{array}\right) = \left(\begin{array}{c} 0 \\ 2 \end{array}\right) \quad \Rightarrow \quad \left(\begin{array}{c} w_1 \\ w_2 \end{array}\right) = \left(\begin{array}{c} 1 \\ 1 \end{array}\right)$$

Case M = N: $\underline{\mathbf{w}} = \mathbf{A}^{-1} \cdot \underline{\mathbf{b}}$ (A must be invertable)

Example M = 2, N = 2:

$$\left(\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array}\right) \cdot \left(\begin{array}{c} w_1 \\ w_2 \end{array}\right) = \left(\begin{array}{c} 0 \\ 2 \end{array}\right) \quad \Rightarrow \quad \left(\begin{array}{c} w_1 \\ w_2 \end{array}\right) = \left(\begin{array}{c} 1 \\ 1 \end{array}\right)$$

Case M = N: $\underline{\mathbf{w}} = \mathbf{A}^{-1} \cdot \underline{\mathbf{b}}$ (A must be invertable)

Example M = 2, N = 2:

$$\left(\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array}\right) \cdot \left(\begin{array}{c} w_1 \\ w_2 \end{array}\right) = \left(\begin{array}{c} 0 \\ 2 \end{array}\right) \quad \Rightarrow \quad \left(\begin{array}{c} w_1 \\ w_2 \end{array}\right) = \left(\begin{array}{c} 1 \\ 1 \end{array}\right)$$

Conclusion: † results in unique solution

Case M > N: Overdetermined set of equations

Case M > N: Overdetermined set of equations

Min. norm solution: $\underline{\mathbf{w}} = \arg\min_{\underline{\mathbf{w}}} ||\mathbf{A}\underline{\mathbf{w}} - \underline{\mathbf{b}}||^2$

Case M > N: Overdetermined set of equations

Min. norm solution: $\underline{\mathbf{w}} = \arg\min_{\underline{\mathbf{w}}} ||\mathbf{A}\underline{\mathbf{w}} - \underline{\mathbf{b}}||^2$ $J = ||\mathbf{A}\underline{\mathbf{w}} - \underline{\mathbf{b}}||^2 = \underline{\mathbf{w}}^h \mathbf{A}^h \mathbf{A}\underline{\mathbf{w}} - \underline{\mathbf{w}}^h \mathbf{A}^h \underline{\mathbf{b}} - \underline{\mathbf{b}}^h \mathbf{A}\underline{\mathbf{w}} + \underline{\mathbf{b}}^h \underline{\mathbf{b}}$

Case M > N: Overdetermined set of equations

Min. norm solution:
$$\underline{w} = \arg\min_{\underline{w}} ||A\underline{w} - \underline{b}||^2$$

$$J = ||A\underline{w} - \underline{b}||^2 = \underline{w}^h A^h A\underline{w} - \underline{w}^h A^h \underline{b} - \underline{b}^h A\underline{w} + \underline{b}^h \underline{b}$$

$$\Rightarrow \frac{dJ}{dw} = 0 \Rightarrow \underline{w} = (A^h A)^{-1} A^h \cdot \underline{b} = A^\dagger \cdot \underline{b}$$

Case M > N: Overdetermined set of equations

Min. norm solution:
$$\underline{\mathbf{w}} = \arg\min_{\underline{\mathbf{w}}} ||\mathbf{A}\underline{\mathbf{w}} - \underline{\mathbf{b}}||^2$$

$$J = ||\mathbf{A}\underline{\mathbf{w}} - \underline{\mathbf{b}}||^2 = \underline{\mathbf{w}}^h \mathbf{A}^h \mathbf{A}\underline{\mathbf{w}} - \underline{\mathbf{w}}^h \mathbf{A}^h \underline{\mathbf{b}} - \underline{\mathbf{b}}^h \mathbf{A}\underline{\mathbf{w}} + \underline{\mathbf{b}}^h \underline{\mathbf{b}}$$

$$\Rightarrow \frac{\mathrm{d}J}{\mathrm{d}\underline{\mathbf{w}}} = 0 \quad \Rightarrow \quad \underline{\mathbf{w}} = \left(\mathbf{A}^h \mathbf{A}\right)^{-1} \mathbf{A}^h \cdot \underline{\mathbf{b}} = \mathbf{A}^\dagger \cdot \underline{\mathbf{b}}$$
Example $M = 3$, $N = 2$:

$$\begin{pmatrix} 1 & -1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix} \quad \Rightarrow \quad \underline{\mathbf{w}} = \mathbf{A}^{\dagger} \cdot \underline{\mathbf{b}} = \begin{pmatrix} \frac{4}{3} \\ 1 \end{pmatrix}$$

Case M > N: Overdetermined set of equations

Min. norm solution:
$$\underline{w} = \arg\min_{\underline{w}} ||A\underline{w} - \underline{b}||^2$$

$$J = ||A\underline{w} - \underline{b}||^2 = \underline{w}^h A^h A\underline{w} - \underline{w}^h A^h \underline{b} - \underline{b}^h A\underline{w} + \underline{b}^h \underline{b}$$

$$\Rightarrow \frac{dJ}{d\underline{w}} = 0 \Rightarrow \underline{w} = \left(A^h A\right)^{-1} A^h \cdot \underline{b} = A^{\dagger} \cdot \underline{b}$$

Example M = 3, N = 2:

$$\left(\begin{array}{cc} 1 & -1 \\ 1 & 1 \\ 1 & 0 \end{array}\right) \cdot \left(\begin{array}{c} w_1 \\ w_2 \end{array}\right) = \left(\begin{array}{c} 0 \\ 2 \\ 2 \end{array}\right) \quad \Rightarrow \quad \underline{w} = \mathsf{A}^\dagger \cdot \underline{\mathsf{b}} = \left(\begin{array}{c} \frac{4}{3} \\ 1 \end{array}\right)$$

Case M > N: Overdetermined set of equations

Min. norm solution:
$$\underline{\mathbf{w}} = \arg\min_{\mathbf{w}} ||\mathbf{A}\underline{\mathbf{w}} - \underline{\mathbf{b}}||^2$$

$$J = ||A\underline{w} - \underline{b}||^2 = \underline{w}^h A^h A \underline{w} - \underline{w}^h A^h \underline{b} - \underline{b}^h A \underline{w} + \underline{b}^h \underline{b}$$

$$\Rightarrow \frac{dJ}{dw} = 0 \Rightarrow \underline{w} = (A^h A)^{-1} A^h \cdot \underline{b} = A^{\dagger} \cdot \underline{b}$$

Example M = 3, N = 2:

$$\left(\begin{array}{cc} 1 & -1 \\ 1 & 1 \\ 1 & 0 \end{array}\right) \cdot \left(\begin{array}{c} w_1 \\ w_2 \end{array}\right) = \left(\begin{array}{c} 0 \\ 2 \\ 2 \end{array}\right) \quad \Rightarrow \quad \underline{w} = \mathsf{A}^\dagger \cdot \underline{\mathsf{b}} = \left(\begin{array}{c} \frac{4}{3} \\ 1 \end{array}\right)$$

Projection matrix

Square matrix P is **Projection** matrix if: $P^2 = P$

Projection matrix

Square matrix P is **Projection** matrix if: $P^2 = P$

Orthogonal projection matrix: $P^h = P$ and $P^2 = P$

Projection matrix

Square matrix P is **Projection** matrix if: $P^2 = P$

Orthogonal projection matrix: $P^h = P$ and $P^2 = P$

General: $N \times M$ matrix V, with linearly independent columns

Projection $(N \times 1)$ b onto M-dim subspace spanned by columns V:

$$\hat{\underline{b}} = \mathsf{P}_V \cdot \underline{b} \ \ \mathsf{and} \ \ \underline{b}^\perp = (\mathsf{I} - \mathsf{P}_V) \cdot \underline{b}$$

with projection matrix :
$$P_V = V (V^h V)^{-1} V^h$$

Projection matrix

Square matrix P is **Projection** matrix if: $P^2 = P$

Orthogonal projection matrix: $P^h = P$ and $P^2 = P$

General: $N \times M$ matrix V, with linearly independent columns

Projection $(N \times 1)$ b onto M-dim subspace spanned by columns V:

$$\underline{\hat{b}} = \mathsf{P}_V \cdot \underline{b} \quad \mathsf{and} \quad \underline{b}^\perp = (\mathsf{I} - \mathsf{P}_V) \cdot \underline{b}$$

with projection matrix :
$$\left| \mathsf{P}_V = \mathsf{V} \left(\mathsf{V}^h \mathsf{V} \right)^{-1} \mathsf{V}^h \right|$$

Simple example: $\underline{\mathbf{b}} = \alpha \cdot \underline{\mathbf{a}}$

$$\begin{split} & \underline{\hat{b}}^h \cdot \underline{b}^\perp = 0 \ \Rightarrow \ \alpha = (\underline{a}^h \underline{a})^{-1} \underline{a}^h \cdot \underline{b} \\ & \Rightarrow \ \underline{\hat{b}} = P_a \cdot \underline{b} \ \text{ and } \ \underline{b}^\perp = (I - P_a) \cdot \underline{b} \\ & \text{with } P_a = \underline{a} (\underline{a}^h \underline{a})^{-1} \underline{a}^h \end{split}$$

Matrix inversion lemma

Matrix dimensions: A: $N \times N$; B: $N \times M$; C: $M \times M$; D: $M \times N$

$$(A + BCD)^{-1} = A^{-1} - A^{-1}B (DA^{-1}B + C^{-1})^{-1}DA^{-1}$$

Matrix inversion lemma

Matrix dimensions: A: $N \times N$; B: $N \times M$; C: $M \times M$; D: $M \times N$

$$(A + BCD)^{-1} = A^{-1} - A^{-1}B (DA^{-1}B + C^{-1})^{-1}DA^{-1}$$

Simple example: (scalar case)

$$(a+x\cdot y)^{-1} = \frac{1}{a+x\cdot y} = \dots = a^{-1} - \frac{a^{-1}xya^{-1}}{1+ya^{-1}x}$$

Matrix inversion lemma

Matrix dimensions: A: $N \times N$; B: $N \times M$; C: $M \times M$; D: $M \times N$

$$(A + BCD)^{-1} = A^{-1} - A^{-1}B (DA^{-1}B + C^{-1})^{-1}DA^{-1}$$

Simple example: (scalar case)

$$(a+x\cdot y)^{-1}=\frac{1}{a+x\cdot y}=\cdots=a^{-1}-\frac{a^{-1}xya^{-1}}{1+ya^{-1}x}$$

Special case: (RLS-like)

$$\mathsf{B}=\underline{\mathsf{x}}\text{: }\textit{N}\times 1\text{; }\mathsf{C}=1\text{: }1\times 1\text{ and }\mathsf{D}=\underline{\mathsf{x}}^{\textit{h}}$$

$$\left(A + \underline{x}\underline{x}^h\right)^{-1} = A^{-1} - \frac{A^{-1}\underline{x}\underline{x}^hA^{-1}}{1 + \underline{x}^hA^{-1}\underline{x}}$$

Goal: Determine spectral peaks in noisy measurements

Goal: Determine spectral peaks in noisy measurements

Signal model: *J* sensors, *P* sources (P < J). For $i = 1, \dots, J$:

$$x_i = \sum_{p=1}^{P} a_i(\theta_p) \cdot s_p[k] + n_i[k] \Leftrightarrow \underline{x}[k] = A \cdot \underline{s}[k] + \underline{n}[k]$$

Goal: Determine spectral peaks in noisy measurements

Signal model: *J* sensors, *P* sources (P < J). For $i = 1, \dots, J$:

$$x_i = \sum_{p=1}^P a_i(\theta_p) \cdot s_p[k] + n_i[k] \quad \Leftrightarrow \quad \underline{x}[k] = A \cdot \underline{s}[k] + \underline{n}[k]$$

Covariance structure:

$$\mathsf{R}_{\mathsf{x}} = E\{\underline{\mathsf{x}} \cdot \underline{\mathsf{x}}^h\} = \mathsf{AR}_{\mathsf{s}} \mathsf{A}^h + \mathsf{R}_{\mathsf{n}}$$

with
$$\mathsf{R}_s=E\{\underline{s}\underline{s}^h\}=\mathsf{diag}\{\sigma_{s_1}^2,\cdots,\sigma_{s_P}^2\}$$
 ; $\mathsf{R}_n=\sigma_n^2\mathsf{I}$

and
$$J \times P$$
 steering matrix $A = (\underline{a}(\theta_1), \dots, \underline{a}(\theta_P))$

What about rank of these matrices?

What about rank of these matrices?

$$\mathsf{Rank}\{\mathsf{A}\} = P; \ \mathsf{Rank}\{\mathsf{R}_{\mathfrak{s}}\} = P \Rightarrow \mathsf{Rank}\{\mathsf{AR}_{\mathfrak{s}}\mathsf{A}^h\} = P$$

What about rank of these matrices?

$$Rank{A} = P$$
; $Rank{R_s} = P \Rightarrow Rank{AR_sA^h} = P$

Furthermore since $Rank\{R_n\} = J \Rightarrow Rank\{R_x\} = J$

What about rank of these matrices?

$$\mathsf{Rank}\{\mathsf{A}\} = P; \; \mathsf{Rank}\{\mathsf{R}_{\mathfrak{s}}\} = P \Rightarrow \mathsf{Rank}\{\mathsf{AR}_{\mathfrak{s}}\mathsf{A}^h\} = P$$

Furthermore since $Rank\{R_n\} = J \Rightarrow Rank\{R_x\} = J$

Eigenvalue decomposition source signal part:

$$\left(\mathsf{AR}_{\mathsf{s}}\mathsf{A}^{h}\right)\cdot\underline{\mathsf{u}}_{i}=\lambda_{\mathsf{s}_{i}}\cdot\underline{\mathsf{u}}_{i}\quad i=1,\cdots,J$$

What about rank of these matrices?

$$\mathsf{Rank}\{\mathsf{A}\} = P; \; \mathsf{Rank}\{\mathsf{R}_{\mathfrak{s}}\} = P \Rightarrow \mathsf{Rank}\{\mathsf{AR}_{\mathfrak{s}}\mathsf{A}^h\} = P$$

Furthermore since $Rank\{R_n\} = J \Rightarrow Rank\{R_x\} = J$

Eigenvalue decomposition source signal part:

$$\left(\mathsf{AR}_{\mathsf{s}}\mathsf{A}^{h}\right)\cdot\underline{\mathsf{u}}_{i}=\lambda_{\mathsf{s}_{i}}\cdot\underline{\mathsf{u}}_{i}\quad i=1,\cdots,J$$

Since
$$\operatorname{Rank}\{\operatorname{AR}_{s}\operatorname{A}^{h}\}=P\Rightarrow\lambda_{s_{P+1}}=\cdots=\lambda_{s_{J}}=0$$

What about rank of these matrices?

$$\mathsf{Rank}\{\mathsf{A}\} = P; \ \mathsf{Rank}\{\mathsf{R}_s\} = P \Rightarrow \mathsf{Rank}\{\mathsf{AR}_s\mathsf{A}^h\} = P$$

Furthermore since $Rank\{R_n\} = J \Rightarrow Rank\{R_x\} = J$

Eigenvalue decomposition source signal part:

$$\left(\mathsf{AR}_{\mathsf{s}}\mathsf{A}^{h}\right)\cdot\underline{\mathsf{u}}_{i}=\lambda_{\mathsf{s}_{i}}\cdot\underline{\mathsf{u}}_{i}\quad i=1,\cdots,J$$

Since
$$Rank{AR_sA^h} = P \Rightarrow \lambda_{s_{P+1}} = \cdots = \lambda_{s_J} = 0$$

Order eigenvalues: $\lambda_{s_1} \geq \cdots \geq \lambda_{s_P} > 0$

What about rank of these matrices?

$$Rank{A} = P; Rank{R_s} = P \Rightarrow Rank{AR_sA^h} = P$$

Furthermore since $Rank\{R_n\} = J \Rightarrow Rank\{R_x\} = J$

Eigenvalue decomposition source signal part:

$$\left(\mathsf{AR}_{\mathsf{s}}\mathsf{A}^{h}\right)\cdot\underline{\mathsf{u}}_{i}=\lambda_{\mathsf{s}_{i}}\cdot\underline{\mathsf{u}}_{i}\quad i=1,\cdots,J$$

Since Rank
$$\{AR_sA^h\}=P\Rightarrow \lambda_{s_{P+1}}=\cdots=\lambda_{s_J}=0$$

Order eigenvalues: $\lambda_{s_1} \geq \cdots \geq \lambda_{s_P} > 0$

$$\Rightarrow \left(\mathsf{AR}_{s}\mathsf{A}^{h}\right)\cdot\mathsf{U}_{s}=\mathsf{U}_{s}\cdot\mathsf{\Lambda}_{s}$$

with
$$U_s = (\underline{u}_1, \cdots, \underline{u}_P)$$
; $\Lambda_s = \text{diag}\{\lambda_{s_1}, \cdots, \lambda_{s_P}\}$

Eigenvalue decomposition input signal (use \underline{u}_i for $i=1,\cdots,J$):

$$\mathsf{R}_{\mathsf{x}} \cdot \underline{\mathsf{u}}_{i} = \left(\mathsf{A} \mathsf{R}_{\mathsf{s}} \mathsf{A}^{h}\right) \cdot \underline{\mathsf{u}}_{i} + \sigma_{n}^{2} \mathsf{I} \cdot \underline{\mathsf{u}}_{i} = \left(\lambda_{\mathsf{s}_{i}} + \sigma_{n}^{2}\right) \cdot \underline{\mathsf{u}}_{i}$$

Eigenvalue decomposition input signal (use \underline{u}_i for $i=1,\cdots,J$):

$$R_{x} \cdot \underline{\mathbf{u}}_{i} = \left(AR_{s}A^{h}\right) \cdot \underline{\mathbf{u}}_{i} + \sigma_{n}^{2}I \cdot \underline{\mathbf{u}}_{i} = \left(\lambda_{s_{i}} + \sigma_{n}^{2}\right) \cdot \underline{\mathbf{u}}_{i}$$

Thus eigenvalues can be divided into two groups:

$$\lambda_{\mathsf{x}_i} = \left\{ \begin{array}{ll} \lambda_{\mathsf{s}_i} + \sigma_n^2 & \text{for } i = 1, \cdots, P \\ \sigma_n^2 & \text{for } i = P + 1, \cdots, J \end{array} \right.$$

Eigenvalue decomposition input signal (use \underline{u}_i for $i=1,\cdots,J$):

$$R_{x} \cdot \underline{\mathbf{u}}_{i} = \left(AR_{s}A^{h}\right) \cdot \underline{\mathbf{u}}_{i} + \sigma_{n}^{2}\mathbf{I} \cdot \underline{\mathbf{u}}_{i} = \left(\lambda_{s_{i}} + \sigma_{n}^{2}\right) \cdot \underline{\mathbf{u}}_{i}$$

Thus eigenvalues can be divided into two groups:

$$\lambda_{x_i} = \left\{ \begin{array}{ll} \lambda_{s_i} + \sigma_n^2 & \text{for } i = 1, \cdots, P \\ \sigma_n^2 & \text{for } i = P + 1, \cdots, J \end{array} \right.$$

With $U_x = (\underline{u}_1, \dots, \underline{u}_J)$ and $\Lambda_x = \text{diag}\{\lambda_{x_1}, \dots, \lambda_{x_J}\}$ we can write:

$$R_{x} = U_{x}\Lambda_{x}U_{x}^{h} = \sum_{i=1}^{J} \lambda_{x_{i}}\underline{u}_{i}\underline{u}_{i}^{h} = \sum_{i=1}^{P} (\lambda_{s_{i}} + \sigma_{n}^{2})\underline{u}_{i}\underline{u}_{i}^{h} + \sum_{i=P+1}^{J} \sigma_{n}^{2}\underline{u}_{i}\underline{u}_{i}^{h}$$
$$= U_{s}\Lambda_{s,n}U_{s}^{h} + U_{n}\Lambda_{n}U_{n}^{h}$$

Signal subspace : $U_s = (\underline{u}_1, \cdots, \underline{u}_P)$

 $\Lambda_{s,n} = \text{diag}\{\lambda_{s_1} + \sigma_n^2, \cdots, \lambda_{s_P} + \sigma_n^2\}$

Noise subspace : $U_n = (\underline{u}_{P+1}, \cdots, \underline{u}_J)$

 $\Lambda_n = \mathsf{diag}\{\sigma_n^2, \cdots, \sigma_n^2\}$

Signal subspace :
$$U_s = (\underline{u}_1, \dots, \underline{u}_P)$$

$$\Lambda_{s,n} = \mathsf{diag}\{\lambda_{s_1} + \sigma_n^2, \cdots, \lambda_{s_P} + \sigma_n^2\}$$

Noise subspace :
$$U_n = (\underline{u}_{P+1}, \dots, \underline{u}_J)$$

$$\Lambda_n = \operatorname{diag}\{\sigma_n^2, \cdots, \sigma_n^2\}$$

Since
$$U_x = (\underline{u}_1, \dots, \underline{u}_J) = (U_s, U_n)$$

and all eigenvectors orthogonal $\underline{u}_i \perp \underline{u}_j$

$$\Rightarrow \quad \boxed{ \mathsf{U}_s \perp \mathsf{U}_n \quad \Leftrightarrow \quad \mathsf{U}_s^h \cdot \mathsf{U}_n = 0 \Leftrightarrow \quad \mathsf{U}_n^h \cdot \mathsf{U}_s = 0 }$$

Signal subspace :
$$U_s = (\underline{u}_1, \dots, \underline{u}_P)$$

$$\Lambda_{s,n} = \mathsf{diag}\{\lambda_{s_1} + \sigma_n^2, \cdots, \lambda_{s_P} + \sigma_n^2\}$$

Noise subspace :
$$U_n = (\underline{u}_{P+1}, \dots, \underline{u}_J)$$

$$\Lambda_n = \operatorname{diag}\{\sigma_n^2, \cdots, \sigma_n^2\}$$

Since
$$U_x = (\underline{u}_1, \dots, \underline{u}_J) = (U_s, U_n)$$

and all eigenvectors orthogonal $\underline{u}_i \perp \underline{u}_j$

$$\Rightarrow \quad \left| \mathsf{U}_s \perp \mathsf{U}_n \quad \Leftrightarrow \quad \mathsf{U}_s^h \cdot \mathsf{U}_n = 0 \Leftrightarrow \quad \mathsf{U}_n^h \cdot \mathsf{U}_s = 0 \right|$$

Conclusion:

Any vector from signal subspace is orthogonal to noise subspace

End Appendix