Homework 6

- 1. Divide the following polynomials with remainder.
 - (a) Divide $x^7 x^3 + 1$ by $x^4 + x + 2$.

 - (b) Divide $X^8 1$ by x + 1. (c) Divide $x^3 + 2x^2 3x + 1$ by $x^2 + x 1$.
- 2. Find the minimal polynomials of the following matrices.

(a)
$$\begin{pmatrix} 5 & -1 \\ 1 & 0 \end{pmatrix}$$

(b) $\begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix}$
(c) $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

- **3.** For every pair of non-constant polynomials p, q where q divides p, show how to find a matrix A whose characteristic polynomial is p and whose minimal polynomial is q.
- 4. What's wrong with the following "proof" of the Cayley Hamilton theorem: Let A be an $n \times n$ matrix. Then $p_A(A) = \det(A - A) = \det(0) = 0$. Where does the "proof" fail? Read the direct algebraic proof of the Cayley Hamilton theorem that appears in the wikipedia article about the theorem.
- **5.** We say that B is a square root of A if $B^2 = A$. Over the field \mathbb{C} , show that the identity matrix has infinitely many square roots. Explain why each such root is diagonalizable.