TITULACIÓN: GIM

DPT. CCIA

2018-19

Ejercicios de Matemática Discreta

HOJA 2

2.1. Recorridos de grados por aristas /arcos: EULER

Ejercicio1: Para los grafos G_5 y G_6 si es posible, escribe:

a) Un tour. b) Un tour euleriano. c) Un camino euleriano. d) Explica si son grafos eulerianos.

Ejercicio2

- a) Comprueba si los grafos G y H son conexos.
- b) Explica, según a), si son eulerianos.

Ejercicio 3 (enero 2016) Sea un grafo G = (V,E)

- a) Para $v \in V_i$ ¿qué significa $\Gamma^2(v)$?
- b) Para $G_5 = (V_5, E_5)$, calcula de forma razonada $\Gamma^2(x)$, $x \in V_5$.
- c) Si R es la matriz de accesibilidad de un grafo. ¿Qué significa $R(v_i)$, $v_i \in V_i$?
- d) Para G_5 calcula de forma razonada R(x), $x \in V_5$ a partir de los valores de los conjuntos $\Gamma^p(x)$.
- e) Explica qué es un subgrafo conexo de un grafo y cómo se denominan. Busca todos los que tenga G₅
- f) Explica cuándo un grafo no dirigido es euleriano y cuándo tiene un camino euleriano.
- g) Los resultados eulerianos que has definido en el apartado anterior ¿son válidos para todo GND? Según tu respuesta comprueba dichos conceptos para los grafos G₁, G₂, G₅, G₆

h) Al aplicar el algoritmo de Fleury en un GND en el que se está calculando un camino euleriano se llega a un vértice x, y se debe decidir la arista que debe pasar a formar parte de dicho camino ¿Puedes elegir cualquiera de las dos aristas propuestas? Explica.

Ejercicio 4 Which of the grafs in Figure have an Euler tour? Of those that do not, which have an Euler trail?

Ejercicio 5. Para los grafos del ejercicio 4 que tengan un TE o CE aplica el algoritmo de Fleury para obtenerlos