IN THE CLAIMS

1. (currently amended)A compound of formula 1

wherein

 \mathbb{R}^1

(i) is -C₁₋₁₀-alkyl, straight-chain or branched-chain, optionally monoor polysubstituted by -OH, -SH, NH₂, NHC₁₋₆-alkyl, N(C₁₋₆-alkyl)₂₇-NHC₆₋₁₄-aryl, N(C₁₋₆-alkyl)₂₇-NHC₆₋₁₄-aryl, N(C₁₋₆-alkyl)(C₆₋₁₄-aryl), NO₂, CN, F, Cl, Br, I, O-C₁₋₆-alkyl, O-C₆₋₁₄-aryl, SO₂C₁₋₆-alkyl, SO₂C₁₋₆-alkyl, SO₂C₆₋₁₄-aryl, OSO₂C₁₋₆-alkyl, OSO₂C₆₋₁₄-aryl, COOH, (CO)C₁₋₅-alkyl, COO C₁₋₅-alkyl, OSO₂C₆₋₁₄-aryl, COOH, or tricyclic saturated or mono- or polyunsaturated carbocycles with 3-I4 ring members or/and by mono , bi- or tricyclic saturated or mono- or polyunsaturated heterocycles with 5-15 ring members and 1-6 heteroatoms, which are preferably N, O and S,

wherein the C₆₋₁₄-aryl groups and the carbocyclic and heterocyclic substituents in turn are substituted one or more times by -NO₂ and may optionally be substituted one or more times by -C₁₋₆-alkyl,

-OH, -NH2, -NHC1-6-alkyl, -N(C1-6-alkyl)2, -NO2, -CN, -F, -Cl, -Br, -I, -O-C1-6-alkyl, -NH2, -NH2, -NHC1-6-alkyl, -NH2, -NH2, -NHC1-6-alkyl, -NH2, -NH2, -NH2, -NHC1-6-alkyl, -NH2, -NH2,

S-C₁₋₆-alkyl, -SO₃H, -SO₂C₁₋₆-alkyl, -OSO₂C₁₋₆-alkyl, -COOH, -(CO)C₁₋₅-alkyl, -COO-C₁₋₅-alkyl or/and -O(CO)C₁₋₅-alkyl, and wherein the alkyl groups on the carbocyclic and heterocyclic substituents in turn may optionally be substituted one or more times by -OH, -SH, -NH₂, -F, -Cl, -Br, -I, -SO₃H or/and -COOH, or

(ii)is—C₂₋₁₀-alkenyl, mono—or polyunsaturated, straight chain-or branched chain, optionally mono—or polysubstituted by—OH,—SH,—NH2,—NHC₁₋₆-alkyl,—N(C₁₋₆-alkyl)₂,—NHC₆₋₁₄-aryl,—N(C₆₋₁₄-aryl)₂,—N(C₁₋₆-alkyl)(C₆₋₁₄-aryl),—NO₂,—CN,—F,—Cl,—Br,—I,—O—C₁₋₆-alkyl,—O—C₆₋₁₄-aryl,—S—C₁₋₆-alkyl,—S—C₆₋₁₄-aryl,—S—O₂H,—SO₂C₁₋₆-alkyl,—SO₂C₆₋₁₄-aryl,—COOH,—(CO)C₁₋₅-alkyl,—COOH,—COOC₁₋₅-alkyl,—O(CO)C₁₋₅-alkyl,—by mono—, bi—or tricyclic saturated or mono—or polyunsaturated carbocycles with 3-14 ring members or/and by mono—, bi—or tricyclic saturated or mono—or polyunsaturated heterocycles with 5-15 ring members and 1-6 heteroatoms, which are preferably N, O and S,

wherein the $C_{6.14}$ aryl groups and the carbocyclic and heterocyclic substituents in turn may optionally be substituted one or more times by $C_{1.6}$ alkyl, $-OH_1$, $-NH_2$, -N

and wherein the alkyl groups on the carbocyclic and heterocylic substituents in turn may optionally be substituted one or more times by OH, SH, NH₂, F, Cl, Br, I, SO₂H or/and COOH,

R² is hydrogen or -C₁₋₃-alkyl,

 R^3 , R^4 and R^5 R4 and R5 are hydrogen or a hydroxyl group, wherein at least one of these substituents must be a hydroxyl group,

R⁶ and R⁷ may be identical or different and are hydrogen, -C₁₋₆-alkyl, -OH, -SH, -NH₂, -NHC₁₋₆-alkyl, -N(C₁₋₆-alkyl)₂, -NO₂, -CN, -SO₃H, -SO₃-C₁₋₆-alkyl, -COOH, -COO-C₁₋₆-alkyl, -O(CO)-C₁₋₅-alkyl, -F, -Cl, -Br, -I, -O-C₁₋₆-alkyl, -S-C₁₋₆-alkyl, -phenyl or -pyridyl, wherein the phenyl or pyridyl substituents in turn may optionally be substituted one or more times by -C₁₋₃-alkyl, -OH, -SH, -NH₂, -NHC₁₋₃-alkyl, -N(C₁₋₃-alkyl)₂, -NO₂, -CN, -SO₃H, -SO₃C₁₋₃-alkyl, -COOH, -COOC₁₋₃-alkyl, -F, -Cl, -Br, -I, -O-C₁₋₃-alkyl, -S-C₁₋₃-alkyl, or/and -O(CO)C₁₋₃-alkyl, and wherein the alkyl substituents in turn may optionally be substituted one or more times by -OH, -SH, -NH₂, -F, -Cl, -Br, -I, -SO₃H, -SO₃C₁₋₃-alkyl, -COOH, -COOC₁₋₃-alkyl, -O-C₁₋₃-alkyl, -S-C₁₋₃-alkyl, or/and -O(CO)-C₁₋₃-alkyl, -COOH, -COOC₁₋₃-alkyl, -O-C₁₋₃-alkyl, -S-C₁₋₃-alkyl, or/and -O(CO)-C₁₋₃-alkyl,

or salts of the compounds of formula 1.

- 2. (previously presented) A compound as claimed in claim 1 having at least one asymmetric carbon atom in the D form, the L form and D,L mixtures, and in the case of a plurality of asymmetric carbon atoms also the diastereomeric forms.
- 3. (previously presented) A compound as claimed in claim 1 wherein R² is hydrogen or a methyl group.
- 4. (previously presented) A compound as claimed in claim 1, wherein $R^3 = -H$, $R^4 = H$ and $R^5 = -OH$.
- (previously presented) A compound as claimed in claim 1, wherein at least one of R⁶ and R⁷ is a halogen atom.
- 6. (currently amended) A compound according to claim 1 selected from the group consisting of:

N (3,5 dichlere 1 exepyridin 4-yl)-[1 (4 fluorobenzyl) 7 hydroxyindol 3-yl]glyoxylamide;
25543188.1

N-(3,5-dichloro-1-oxopyridin-4-yl)-[1-(4-chlorobenzyl)-7hydroxyindol-3-yl]glyoxylamide;

N-(3,5-diehloro-1-exopyridin 4-yl) [1-(2-ehlorobenzyl)-7hydroxyindol-3 yl]glyoxylamide;

N-(3,5 dichloro 1 oxopyridin 4 yl) [1-(2,4-dichlorobenzyl) hydroxyindol-3 yllglyoxylamide;

N (1-exopyridin 4-yi) [1 (4-fluorobenzyl) 7-hydroxyindol-3yl]glyoxylamide;

N (3,5 dichloro 1-exepyridin 4-yl)-[1 (4-fluorobenzyl) 4hydroxyindol-3 yl]glyoxylamide;

N-(3,5-dichloro-1-oxopyridin-4-yl)-[7-hydroxy-1-(3-nitrobenzyl)indol-3-yl]glyoxylamide;

N-(3,5-dichloro-1-oxopyridin-4-yl)-[7-hydroxy-1-(2-nitrobenzyl)indol-3-yl]glyoxylamide;

N (3,5 dichloro 1 oxopyridin 4 yl) [1-(2,6 difluorobenzyl) 7hydroxyindol 3-yl]glyoxylamide;

N (3,5 dichloro 1 exepyridin 4 yl) (7-hydroxy 1-isobutylindel 3yl)glyoxylamide:

N (3,5-dichloro 1 окоругіdin-1 yl) (1-cyclopropyl-methyl 7hydroxyindol-3-yl)glyoxylamide;

N (3,5 dichloro 1 exepyridin 4 yl)-[7-hydroxy-1 (4-hydroxybenzyl) indol-3 yllglyoxylamide;

N-(3,5-dichloro-1-oxopyridin-4-yl) N-methyl [1-(4-fluorobenzyl)-7-hydroxyindol-3-yl]glyoxylamide;

N (3,5 dichloro-1 exepyridin 4 yl) (1 (4 fluorobenzyl) 6-hydroxyindol 3-yl]glyoxylamide;

N-(1-oxopyridin-4-yl)-[1-(2-chlorobenzyl)-6 hydroxyindol-3-yl]glyoxylamide;

and physiologically tolerated salts thereof.

- 7. (canceled)
- 8. (currently amended) A process for comprising preparing a compound of claim 1 by 1, comprising converting N-(pyridine-4-yl)-indol-3-ylglyoxylamides of formula 2

into the analogous N-(1-oxopyridin-4-yl)-indol-3-ylglyoxylamides of formula 1 by treatment with an oxidizing agent, and forming the compound by eliminating a protective group.

FULBRIGHT JAWORSKI

- 9. (currently amended) The A process as claimed in claim 8, said oxidizing agent is selected from the group consisting of a peracid and a peracetic acid.
- 10. (currently amended) A method of treating disorders in which inhibition of phosphodiesterase 4 is therapeutically beneficial comprising administering to a patient in need thereof a therapeutically effective amount of a compound according to of claim 1 to treat the disorder.
- 11. (currently amended) A method of treating disorders associated with the effect of eosinophils comprising administering a therapeutically effective amount of a compound according to of claim 1 to a patient in need thereof to treat the disorder.
- 12. (currently amended) A method of treating disorders associated with the effect of neutrophils comprising administering a therapeutically effective amount of a compound according to of claim 1 to a patient in need thereof to treat the disorder.
- 13. (currently amended) A method of treating a hyperproliferative disorder comprising administering a therapeutically effective amount of a compound according to of claim 1 to a patient in need thereof to treat the hyperproliferative disorder.
- 14. (currently amended) A drug product comprising a compound of claim 1 and a at least one conventional physiologically tolerated carrier, diluent and excipient.
- 15. (currently amended) A process for producing a drug product comprising admixing a compound of claim 1 with a at least one conventional pharmaceutical carrier, diluent or excipient to form the drug product.

- 16. (currently amended) A pharmaceutical composition comprising a at least one compound according to claim 1 and at least one additional active pharmaceutical agent.
- 17. (previously presented) The process as claimed in claim 8, wherein said oxidizing agent is m-chloroperbenzoic acid.