Linear Regression Activity: Predicting Exam Scores

We want to predict a student's **Exam Score** (y) based on the number of **Hours Studied** (x).

Data

Student	Hours Studied (x)	Exam Score (y)
1	1	52
2	2	57
3	3	61
4	4	65
5	5	70

Task

We want to fit a linear regression line of the form:

$$y = mx + b$$

A new student studied 6 hours. We want to predict the Exam Score using the regression equation.

Student	Hours Studied (x)	Exam Score (y)	ху	X ²
1	1	52	52	1
2	2	57	114	4
3	3	61	183	9
4	4	65	260	16
5	5	70	350	25

Summation Values

•
$$\sum x = 1 + 2 + 3 + 4 + 5 = 15$$

•
$$\Sigma y = 52 + 57 + 61 + 65 + 70 = 305$$

•
$$\sum xy = (1 \times 52) + (2 \times 57) + (3 \times 61) + (4 \times 65) + (5 \times 70)$$

= 52 + 114 + 183 + 260 + 350 = **959**

•
$$\Sigma x^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 1 + 4 + 9 + 16 + 25 = 55$$

2. Compute the Slope m (5 points)

$$m = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2}$$

$$m = ?$$

$$\sum x = 15 \qquad \sum yy = 59$$

$$\sum y = 305 \qquad \sum x^2 = 55$$

$$\frac{5(959) - (15)(305)}{5(55) - (15)^2}$$

m = 4.4

4. Regression Equation (5 points)

Write the regression line:

$$y = mx + b$$
$$y = ?$$

4. REGRESSION LINE

$$y = 47.8$$

$$\sum x = 15 \quad n = 5$$

$$\sum y = 305 \quad m = 4.4$$

$$b = \frac{305 - (4.4)(15)}{5}$$

$$b = 47.8$$

4. Regression Equation

Write the regression line:

$$m = 4.4$$

$$b = 47.8$$

$$y = (4.4x^{\circ}) + 47.8$$

$$y = 4.4x + 47.8$$

5. Draw the regression line using a scatter plot (10 points)

- \bullet Calculate $\mathcal{Y}_{predict}$ for each data points
- ullet Draw a regression line using $y_{preal\,ct}$
- Use a circle of for all data points
- Use a red line for the regression line

Hours Studied (x)	Exam Score (y)
1	52
2	57
3	61
4	65
5	70

y predict	${f y}_{\sf predict}$
52.2	y = 4.4(1) + 47.8 = 52.2
56.6	y = 4.4(2) + 47.8 = 56.6
61.0	y = 4.4(3) + 47.8 = 61.0
65.4	y = 4.4(4) + 47.8 = 69.8

5. Draw the regression line using a scatter plot (10 points)

- \bullet Calculate $\mathbf{y}_{predict}$ for each data points
- ullet Draw a regression line using $oldsymbol{y_{predict}}$
- Use a circle for all data points
- Use a red line for the regression line

Data		
Student	Hours Studied (x)	Exam Score (y)
	1	52
2	2	57
3	3	61
4	4	65
5	5	70

$\mathbf{y}_{ ext{predict}}$	$\mathbf{y}_{ extsf{predict}}$
52.2	y = 4.4(1) + 47.8 = 52.2
56.6	y = 4.4(2) + 47.8 = 56.6
61.0	y = 4.4(3) + 47.8 = 61.0
65.4	y = 4.4(4) + 47.8 = 65.4
69.8	y = 4.4(5) + 47.8 = 69.8

Get y using this formula:

$$y \equiv \frac{\sum y}{41}$$

Get 657 using this formula:

$$SST = \sum (y - \dot{y})^2$$

$$S6T = \sum (iy = \dot{y})$$
= 81 = 16 + 0 + 16
+ 81 = 104

Student	Hours Studied (x)	Earm Score (x)	Mears (x)	j ⁄-7 [‡]	(y-ŷ)
1	1	52	61	8	91
2	2	37	61	4	16
3	3	61	61	0	0
4	4	60	61	4	16
5	5	70	61	9	31
					S(41 = 12)

Exam Srove 54	χ, – 3	$(x, -x)^2$
56	52 - 61 = 1-8 = 8	$9^1 = 0 \times 0 = 81$
57	57 - 61 = 1-4 = 8	$4^9 = 4 \times 4 = 16$
61	61 - 61 = 0	$9^9 = 0 \times 0 = 0$
62	65 - 61 = 4	$4^{5} = 4 \times 4 = 16$
70	70 - 61 = 9	$9^9 = 9 \times 9 = 81$

8. Compute R^2 (20 points)

• Get R² using this formula:

$$R^2 = 1 - \frac{SSE}{SST}$$
 $SSE = 0.4$ $R = 1 - \frac{0.4}{194} = \frac{0.99}{194}$ $R^2 = 7$ $R = 4.4, b = 47.8$

9. Prediction (1 point)

Use your equation to m = 4.4, b = 47.8predict the exam score for a student who studied 6 hours. y = m(6) + b= 74.2