The Design of LAC

Xianhui Lu, Yamin Liu, Dingding Jia Haiyang Xue, Jingnan He, Zhenfei Zhang

Overview of LAC

Overview of LAC

Main Features of LAC

$$pk = (\mathbf{a}, \mathbf{b} = \mathbf{a}\mathbf{s} + \mathbf{e}), sk = \mathbf{s}$$

$$\mathbf{a} \in Z_q[X]/X^n + 1,$$

$$q = 251(257), n = 512/1024, \mathbf{e}, \mathbf{s} \in \psi_1 \text{ or } \psi_{1/2}$$

$$\psi_1 : \Pr[x=0] = \frac{1}{2}, \Pr[x=-1] = \frac{1}{4}, \Pr[x=1] = \frac{1}{4}; \psi_{1/2} : \Pr[x=0] = \frac{3}{4}, \Pr[x=-1] = \frac{1}{8}, \Pr[x=1] = \frac{1}{8}$$

$$\mathbf{r} \leftarrow \text{bch_enc}(\mathbf{m})$$

 $\mathbf{c}_1 = \mathbf{s}'\mathbf{a} + \mathbf{e}', \mathbf{c}_2 = \mathbf{s}'\mathbf{b} + \tilde{\mathbf{e}} + \mathbf{r} \cdot q / 2$

small modulus q & large-block error correction code

Design Rationale of LAC: q<2^8

Target Param	Security	Error Rate	Size	Performance
n	$n \log q$	2 /-	As small as possible	As small as possible
q	<u>σ</u>	$\sigma^2 \sqrt{2n}$ $< \frac{q}{4}$	As small as possible	NTT q=c*n+1
σ	9	4	As small as possible	Gaussian Centre Binomial {-1,0,1}

Selection of q=251: largest prime<2^8

NewHope: n=1024,
$$\sigma = \sqrt{8}$$
, $q = 12289$

Kyber: n=256*3,
$$\sigma$$
=2, q = 7681

LAC: n=512,
$$\sigma$$
=1/ $\sqrt{2}$, $q = 251$

Security and Error Rate of q=251

q	n	σ	Classical Security	Quantum security	Error rate (single bit)
12289	1024	sqrt(8)	282	256	2^(-54)
12289	1024	1	218	198	negligible
12289	1024	1/sqrt(2)	201	182	negligible
251	512	1/sqrt(2)	148	134	2^(-13.2)
251	1024	1/sqrt(2)	321	292	2^(-7.35)

Decrease Error Rate with BCH

Categories	Parameters	Error correction
LAC-128	n=512,q=251 \psi_{1}	BCH(511,256,35) 2^-13.2->2^-128
LAC-192	n=1024,q=251 \psi_{1/2}	BCH(511,384,15) 2^-25->2^-143
LAC-256	n=1024,q=251 \psi_{1}	BCH(1023,512,115) 2^-7.35->2^-109

Multiplication without NTT

30 times speed up: 150 microseconds to 5 microseconds

Security Categories

	q	n	σ	Classical Security	Quantum security	claimed security
LAC-128	251	512	\psi_{1}	147	133	1,2
LAC-192	251	1024	\psi_{1/2}	286	259	3,4
LAC-256	251	1024	\psi_{1}	320	290	5

Performance (AVX2)

Intel Core-i7-4770S (Haswell) @ 3.10GHz, memory 7.6GB.					
	performance (μs/cpu cycles)			Size	
	KeyGen	Enc	Dec	PK	Ciphertext
LAC128 CPA	12.56 38957	17.21 53357	8.79 27259	544	1024(768)
LAC128 CCA	12.53 38847	19.66 60952	24.13 74812	544	1024(768)
LAC192 CPA	37.02 114753	37.98 117749	17.52 54313	1056	1536(1280)
LAC192 CCA	36.92 114461	42.61 132087	73.89 229054	1056	1536(1280)
LACSES CDA	25.38	44.28	43.03	1056	2048(1536)

LAC128 CPA	12.56 38957	17.21 53357	8.79 272 59	544	1024(768)
LAC128 CCA	12.53 38847	19.66 60952	24.13 74812	544	1024(768)
LAC192 CPA	37.02 114753	37.98 117749	17.52 54313	1056	1536(1280
LAC192 CCA	36.92 114461	42.61 132087	73.89 229054	1056	1536(1280
LAC256 CPA	25.38 78678	44.28 137258	43.03 133379	1056	2048(1536
LAC256 CCA	25.23 78214	51.77 160489	94.56 293128	1056	2048(1536)

Comments(1): Subfield Attack

$$x^{n} + 1 = (x^{n/2} + 91x^{n/4} - 1)(x^{n/2} - 91x^{n/4} - 1) \mod 251$$

$$g = x^{n/2} + 91x^{n/4} - 1$$

$$\mathbf{A} = [\mathbf{a} \mod \mathbf{g} \mid \mathbf{1} \mid 11 * \mathbf{b} \mod \mathbf{g}],$$

 $z = (11 * s \mod g, 11 * e \mod g, -1)$

find z from lattice Az=0 by using BKZ?

Comments(1): Subfield Attack

Comments(2): Worst case hardness

$$\psi_1 : \Pr[x = 0] = \frac{1}{2}, \Pr[x = -1] = \frac{1}{4}, \Pr[x = 1] = \frac{1}{4}, \sigma_1 = 1/\sqrt{2}$$

$$\psi_{1/2}$$
: $\Pr[x=0] = \frac{3}{4}, \Pr[x=-1] = \frac{1}{8}, \Pr[x=1] = \frac{1}{8}, \sigma_2 = 1/2$

Regev Reduction:
$$\alpha q \approx \sqrt{n}, \sigma = \frac{\alpha q}{\sqrt{2\pi}} \approx 9$$

MP2013 Reduction:
$$e \leftarrow \{0,1\}, m = n(1 + \Omega(1/\log n))$$

Daniele Micciancio, Chris Peikert: Hardness of SIS and LWE with Small Parameters. CRYPTO (1) 2013: 21-39.

Comments(2): Worst case hardness

Broader perspective. As a byproduct of the proof of Theorem 1.1, we obtain several results that shed new light on the hardness of LWE. Most notably, our modulus reduction result in Section 3 is actually far more general, and can be used to show a "modulus expansion/dimension reduction" tradeoff. Namely, it shows a reduction from LWE in dimension n and modulus p to LWE in dimension n/k and modulus p^k (see Corollary 3.4). Combined with our modulus reduction, this has the following interesting consequence: the hardness of n-dimensional LWE with modulus q is a function of the quantity $n \log_2 q$. In other words, varying n and q individually while keeping $n \log_2 q$ fixed essentially preserves the hardness of LWE.

```
q=251,n=512, sigma=1/sqrt(2):
primal attack:
classical cost= 148
quantum cost= 135
dual attack:
classical cost= 147
quantum cost= 133
```

```
q=251*251, n=256, sigma= 1/sqrt(2) * 251:
primal attack:
classical cost= 156
quantum cost= 141
dual attack:
classical cost= 154
quantum cost= 139
```

Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, Damien Stehlé: Classical hardness of learning with errors. STOC 2013: 575-584

Comments(3): CCA security

Main Idea: Find enough ciphertexts with Hamming weights of (r,e_1) of 1024+310, to cause decryption failure probability about 2^{-50.51}. Recover s as in https://eprint.iacr.org/2016/085.pdf.

Difficulty1: Any changes of the error-reconciliation vector will be rejected by the re-encryption process in the decryption algorithm.

Difficulty2: (r,e_1) are generated by the hash function, can not be set as special vectors used in https://eprint.iacr.org/2016/085.pdf.

Comments(4): error correction code

BCH, Goppa,.....

Martin Tomlinson: One significant advantage is that you can benefit from the extensive research in the last decade that has been applied to the McEliece system to avoid side channel information leakage in the syndrome calculation, Berlekamp-Massey and root finding algorithms.

Thanks