

Big Data Processing with MapReduce/Spark Programming Models

Hong-Linh Truong
Department of Computer Science
<u>linh.truong@aalto.fi</u>, <u>https://rdsea.github.io</u>

Learning objectives

- Be familiar with big data processing models using multiple nodes/clusters
- Understand MapReduce/Spark programming models for big data processing
- Able to perform practical programming features with MapReduce/Spark
- Able to design and apply MapReduce/Spark data processing with Hadoop and other frameworks

Big data at large-scale: the big picture in this course

Elastic Cloud Infrastructures

(VMs, dockers, Kubernetes, OpenStack elastic resource management tools, storage)

Today lecture: analytics with cluster systems

Our first focus: big data analytics for data at rest

Recall: Data at rest

At rest

- distributed file systems/object storages
 - in big data we have a lot of files with different data formats
- data in a set of databases
- Multiple types of big data analytics with high concurrent/parallel data writes/reads
- Dealing with different data access/analytics frequencies:
 - organize data into hot, warm and cold data

ETL and Analytics with Hadoop/HDFS

- Data Ingestion:
 - HDFS Client/Hadoop Streaming
 - Spark Streaming
 - Kafka Connect
 - Apache Nifi

- HDFS as storage for databases
 - Accumulo, Druid, etc.
- Computing/Data Processing Framework
 - Apache Spark
 - Hadoop MapReduce
 - Apache Tez

DataFrame/Table view of data

Example taxi records: named columns

1	1.34	1	N	238	236	2		0.0	0.5	0.0	0.0	0.3
1	1.34	1	N	238	236	2	10.0	0.0	0.5	0.0	0.0	0.3
1	0.32	1	N	238	238	2	4.0	0.0	0.5	0.0	0.0	0.3
1	0.32	1	N	238	238	2	4.0	0.0	0.5	0.0	0.0	0.3
1	1.85	1	N	236	238	2	10.0	0.0	0.5	0.0	0.0	0.3
1	1.85	1	N	236	238	2	10.0	0.0	0.5	0.0	0.0	0.3
1	1.65	1	N	68	237	2	12.5	0.0	0.5	0.0	0.0	0.3
1	1.65	1	N	68	237	2	12.5	0.0	0.5	0.0	0.0	0.3
1	1.07	1	N	170	68	2	9.0	0.0	0.5	0.0	0.0	0.3
1	1.07	1	N	170	68	2	9.0	0.0	0.5	0.0	0.0	0.3
1	1.3	1	N	107	170	2	7.5	0.0	0.5	0.0	0.0	0.3
1	1.3	1	N	107	170	2	7.5	0.0	0.5	0.0	0.0	0.3
1	1.85	1	N	113	137	2	10.0	0.0	0.5	0.0	0.0	0.3
1	1.85	1	N	113	137	2	10.0	0.0	0.5	0.0	0.0	0.3
1	0.62	1	N	231	231	2	4.5	0.0	0.5	0.0	0.0	0.3
1	0.62	1	N	231	231	2	4.5	0.0	0.5	0.0	0.0	0.3
1	0.0	1	N	264	264	2	0.0	0.0	0.0	0.0	0.0	0.0
1	0.29	1	N	162	162	2	4.0	0.0	0.5	0.0	0.0	0.3
1	0.29	1	N	162	162	2	4.0	0.0	0.5	0.0	0.0	0.3
1	1.34	1	N I	239	151	2	7.0	0.5	0.5	0.0	0.0	0.3

- Very common we analyze big data files based on this view
- Streaming data can be also represented as unbounded tables


```
inputFile =args.input_file
## hadoop inputFile="hdfs://"

df =spark.read.csv(inputFile,header=True,inferSchema=True)
#df.show()
print("Number of trips", df.count())
#number of passenger count per vendor and total amount of money
passenser_exprs = {"passenger count":"sum","total_amount":"sum"}
df2 = df.groupBy('VendorID').agg(passenser_exprs)
# Where do you want to write the output
df2.repartition(1).write.csv(args output_dic,header=True)
```

What we need when we develop analysis programs for big data

Result

Big data processing techniques in our focus for data at rest

Programming models

- MapReduce/Spark
- Workflows

Studied frameworks

- Apache Hadoop/Spark, Dask
- Apache Airflow

Not in our focus:

- Bulk synchronous parallel (BSP)
- HPC MPI (Message Passing Interface)

MapReduce Programming Model

MapReduce programming model

- MapReduce is a programming model from Google
 - Various implementations/frameworks support MapReduce
 - Apache Hadoop (https://hadoop.apache.org)
- Support batch data processing for very large datasets
- Suitable for batch jobs in big data, e.g.,
 - Web search, document processing, ecommerce information
 - Extract, transform, data wrangling, and data cleansing

Common needs

Thinking if we have data that can be represented as record=(key,value)

- o e.g., key="aalto", value="1000" (1000 likes in linkedin)
- potentially millions of records, with millions of keys

Operations

- data analytics like summarization/aggregation/filtering
 - **■** *count, min, max, average, etc.*
- ojoining data from big data set
- ocollecting data and shuffling the data to the right tasks

Map & Reduce

- Map: map data into (key, value)
 - Receives <key,value>
 - Outputs <key,value> new set of <key,value>
- Reduce: compute results from the same key
 - Receives <key, Iterable[value]>
 - Outputs <key,value>

Example of a real data

Look at the network monitoring data

PROVINCECODE, DEVICEID, IFINDEX, FRAME, SLOT, PORT, ONUINDEX, ONUID, TIME, SPEEDIN, SPEEDOUT XXN, 10XXXXXX023, 26XXXXXX8, 1, 2, 7, 39, 100XXXXXXX2310207039, 01/08/2019 00:04:07, 148163, 49018 XXN, 10XXXXXX023, 26XXXXXX8, 1, 2, 7, 38, 100XXXXXXX2310207038, 01/08/2019 00:04:07, 1658, 1362 XXN, 10XXXXXXX023, 26XXXXXX8, 1, 2, 7, 9, 100XXXXXXX2310207009, 01/08/2019 00:04:07, 6693, 5185

Sample: https://version.aalto.fi/gitlab/bigdataplatforms/cs-e4640/-/tree/master/data/onudata

Understand the MapReduce programming model

Key ideas of MapReduce

- A kind of divide-and-conquer paradigm
- Data can be divided by "Map" operators
 - data processing tasks extract "intermediate results"
- Intermediate results can be aggregated through "Reduce" operators
 - data processing tasks produce a result from "intermediate results"
- We can glue "Map" and "Reduce" operators into a multi-stage data flow model
- Other possible operators:
 - Combiner: performs "Reduce" at local nodes
 - o Partitioner: decides key/value for Reduce

Key ideas of MapReduce

Key points for the developers

 should write only the main "logic": Map and Reduce operators

The runtime framework will

- handle data movement and input/output management for Map/Reduce tasks
- parallelizing tasks in multiple nodes

MapReduce concept in the original paper

Figures source: Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing on large clusters. Commun. ACM 51, 1 (January 2008), 107-113. DOI=10.1145/1327452.1327492 http://doi.acm.org/10.1145/1327452.1327492

```
map(String key, String value):

// key: document name

// value: document contents
for each word w in value:

EmitIntermediate(w, "1");

reduce(String key, Iterator values):

// key: a word

// values: a list of counts
int result = 0;
for each v in values:

result += ParseInt(v);
Emit(AsString(result));
```


User

Program

(1) fork

Key point: parallelize workers to process a lot of input files and produce a lot of output files

Tasks and their dependencies

- A task (Map or Reduce) is stateless
 - executed as an individual process
- Acyclic graph of tasks as a workflow
 - can be executed using a batch job scheduler
 - o files as the exchange medium among tasks

Hadoop MapReduce

- Hadoop supports the MapReduce programming model
 - Use cluster nodes for data processing tasks
 - Access data in HDFS files and partitions in different nodes
 - Hadoop runtime automatically creates parallel tasks
 - YARN is used to run jobs of MapReduce applications
- Data management (HDFS) and data processing (MapReduce) are aligned nicely
 - \circ Run in the same nodes \Rightarrow data locality optimization

Map/Reduce tasks and data/node partitions

A Map task can handle a data partition in the same node

- e.g., a Map task handles a HDFS data block ⇒ local data optimization: no data movement - local processing
- Results from a Map task are intermediate ⇒ to where a task will store them?
- what if a Map task fails?

Reduce Task

 \circ to deal with data produced from different Map tasks \Rightarrow where to run the Reduce tasks?


```
Examples - Map
                                                                  Output
                                          Input
public static class SpeedInMapper 🚄 💮
    extends Mapper<Object, Text, LongWritable , AverageWritable>[
 private LongWritable id =new LongWritable();
 private AverageWritable averagecount = new AverageWritable();
 public void map(Object key, Text value, Context putput)
     throws IOException, InterruptedException {
     String valueString = value.toString();
                                                               Parse the data to
     String[] record = valueString.split(",");
     id.set(Long.parseLong(record[7]));
                                                               get ONUID and
     averagecount.setAverage(Float.parseFloat(record[9]));
                                                               SPEEDIN
     averagecount.setCount(1);
     output.write(id,averagecount);
                                          Map (ONUID, (SPEEDIN, count))
```


Example - Reduce Input

Output

```
public static class SpeedInAverageReducer
    extends Reducer LongWritable, AverageWritable, LongWritable, FloatWritable> {
 private FloatWritable new result = new FloatWritable();
 public void reduce(LongWritable key, Iterable<AverageWritable> values,
                   Context context
                   ) throws IOException, InterruptedException {
   float avg = 0;
   int count = 0:
   for (AverageWritable val : values) {
                                                     Simple way to
       float current avg =val.getAverage();
       int current count =val.getCount();
                                                     determine the
       avg = avg + (current avg*current count);
       count = count + current count;
                                                     average as
                                                     "Reduce" operator
  new result.set(avg/count);
  context.write(key, new_result);
                                                           Reduce (ONUID, AVG)
```


Driver: connect Map and Reduce operators

```
public static void main(String[] args) throws Exception {
   Configuration conf = new Configuration();
   Job job = Job.getInstance(conf, "simpleonuaverage");
   job.setJarByClass(SimpleAverage.class);
   job.setMapperClass(SpeedInMapper.class);
   job.setCombinerClass(SpeedInAverageCombiner.class);
   job.setReducerClass(SpeedInAverageReducer.class);
   job.setMapOutputKeyClass(LongWritable.class);
   job.setMapOutputValueClass(AverageWritable.class);
   job.setOutputKeyClass(LongWritable.class);
   job.setOutputValueClass(FloatWritable.class);
   FileInputFormat.addInputPath(job, new Path(args[0]));
   FileOutputFormat.setOutputPath(job, new Path(args[1]));
   System.exit(job.waitForCompletion(true) ? 0 : 1);
}
```


Example with Python using MRJob

```
class ONUSpeedinAverage(MRJob):
    def mapper(self, _, entry):
        provincecode, deviceid, ifindex, frame, slot, port, onuindex, onuid, timestamp, speedin, speedout= entry.split(",")
        #average speed is speedin with count = 1
        vield (onuid, (float(speedin),1))
  ## recalculate the new speedin average through an array of speedin average values
    def recalculate avg(self, onuid, speedin avg values):
        current speedin total = 0
        new avg count = 0
        for speedin avg, avg count in speedin avg values:
            current speedin total = current speedin total +(speedin avg*avg count)
            new avg count = new avg count + avg count
        new speedin avg = current speedin total/new avg count
        return (onuid, (new speedin avg, new avg count))
    def combiner(self, onuid, speedin avg values):
        yield self. recalculate avg(onuid, speedin avg values)
    def reducer(self, onuid, speedin avg values):
        onuid. (speedin avg. avg count) = self. recalculate avg(onuid, speedin avg values)
        vield (onuid, speedin avg)
if name == ' main ':
    ONUSpeedinAverage.run()
```

Note: see code examples in our GIT

Scheduling and monitoring

■ A MapReduce program runs ⇒ MapReduce Job

 includes many tasks (Map and Reduce processes + others)

JobTracker

 monitors the whole job (all tasks of a MapReduce program)

TaskTracker

- performs a task of the MapReduce applications
- informs JobTracker about the state of the tasks

Figure source:

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

Monitoring MapReduce Jobs

Application application_1570429323498_0008

								Application	n Metric
		Total	Number o	f AM Con	tainers Preempted: 0				
		Reso	urce Preer	mpted from	m Current Attempt: <m< td=""><td>nemory:0, vCor</td><td>es:0></td><td></td><td></td></m<>	nemory:0, vCor	es:0>		
		Number of Non-AM Contai							
			Agg	gregate Re	esource Allocation: 50	39065 MB-sec	onds, 973 vcore	-seconds	
		Aggr	egate Pree	empted Re	esource Allocation: 0 N	MB-seconds, 0	vcore-seconds	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Show 20 ▼ entries								Search:	
Attempt ID *	Started \$	Node \$	Logs	0	Nodes blacklisted by	y the app	0	Nodes blacklisted by the system	
appattempt_1570429323498_0008_000001		http://cluster-bdp-w- 3.c.bigmultidatstore.internal:8042	Logs	0			0		

Connecting MapReduce applications

Build complex MapReduce pipelines

Using big data storage/database as data exchange
We can use workflows to coordinate different MapReduce apps

Problems with MapReduce

- Strict Map & Reduce tasks connection ⇒ limitation
- Need more flexible in processing big data workloads
 - batch data flows and streaming data flows
- Programming diversity support
 - software engineering productivity

Apache Spark

https://spark.apache.org/

Apache Spark

- Cluster-based high-level computing framework
- "unified engine" for different types of big data processing
 - SQL/structured data processing
 - Machine learning
 - Graph processing
 - Streaming processing
- It is a powerful computing framework and system ⇒ an important service that a big data platform should support
 - o public cloud: Google DataProc, Azure HDInsight, Amazon EMR
 - o data lake systems: e.g., Hudi and Delta Lake

Apache Spark

Can be run a top

- Hadoop (using HDFS and YARN)
- Mesos cluster
 - http://mesos.apache.org/
- Kubernetes
- Standalone machines

Figure source: http://spark.apache.org/

Computing resources Execution model in a in a cluster node cluster system Worker Node **Driver** manages Executor Cache operations and tasks in nodes Task Task Driver Program SparkContext Cluster Manager Worker Node Executor Cache Common concepts: Driver, Task Task Nodes, Tasks Workload styles: OLAP/batch Figure source: jobs with a lot of data http://spark.apache.org/docs/latest/cluster-overview.html

Key features

- Input data is distributed in different nodes for processing
 - \circ Support partitions for data processing: a node keeps one or n partitions, a partition resides only in a node \Rightarrow for computing
- Key operations: transformations and actions on data
- Leverage parallel computing concepts to run multiple tasks
 - Operation -> task executed by executor
 - Parallel tasks, task pipeline, DAG of processing stages
- Persistent data in memory/disk for operations

Transformation operations

- Transformation:
 - Instructions about how to transform a data in a form to another form □ it will not change the original data (immutability)
- Only tell what to do: to build a DAG (direct acyclic graph): a lineage of what to do
- lazy approach ⇒ real transformation will be done at action operators

Narrow transformation, no data shuffle

Wide transformation, cross data partitions, requires a shuffle

Action operations

- Compute the results for a set of transformations
 - Examples: count or average
- Actions: view, collect, write, calculation

Lazy approach: an action triggers execution of transformation operations ⇒ enable various types of optimization

Spark program: programming elements

SparkSession

- Act as a program driver to manage the execution of tasks
- SparkContext: manages connection to cluster, manage internal services

Data APIs

- Low-level Resilient Distributed Dataset (RDD)
- High-level DataFrames/DataSets
- Load and hold distributed data
- Transformation and action functions
- ML, graph and streaming functions and pipelines

Spark application management: high-level view

Submission/Request

- submit the Spark application for running
- resource is provided for running the Driver

Launch

- the Driver requests resources for executors (through SparkContext)
- establish executors across worker nodes

Execution

the Driver starts to execute code and move data

Finish/Completion:

finish, release executors

Spark program logic: typical steps

Load data and distribute data

- data is immutable after created
- o data partition in Spark: a partition is allocated in a node
- Perform transformations and actions operations
 - transformations: build plans for transforming data models
 - o actions: perform computation on data

Resilient distributed dataset (RDD)

Low-level data structure

- collection of data elements partitioned across nodes in the cluster
- o with data sharing, parallel operations, fault-tolerant features

Create RDD

 created by loading data from files (text, sequence file) including local file systems, HDFS, Cassandra, HBase, Amazon S3, etc.

Persist RDD

in memory or to files

RDD transformations and actions

Transformations

- map
- filter
- sample
- intersection
- groupByKey

Actions

- reduce()
- collect()
- count()
- saveAs...File()

Example with RDD

```
VendorID,tpep_pickup_datetime,tpep_dropoff_datetime,passenger_count,trip_distance,RatecodelD,store_and_fwd_fl ag,PULocationID,DOLocationID,payment_type,fare_amount,extra,mta_tax,tip_amount,tolls_amount,improvement_sur charge,total_amount 2,11/04/2084 12:32:24 PM,11/04/2084 12:47:41 PM,1,1.34,1,N,238,236,2,10,0,0.5,0,0,0.3,10.8 2,11/04/2084 12:32:24 PM,11/04/2084 12:47:41 PM,1,1.34,1,N,238,236,2,10,0,0.5,0,0,0.3,10.8 2,11/04/2084 12:25:53 PM,11/04/2084 12:29:00 PM,1,0.32,1,N,238,238,2,4,0,0.5,0,0,0.3,4.8
```

as a text file

```
conf = SparkConf().setAppName("cse4640-rddshow").setMaster(args.master)
sc = SparkContext(conf=conf)
##modify the input data
rdd=sc.textFile(args.input_file)
## if there is a header we can filter it otherwise comment two lines
csvheader = rdd.first()
rdd = rdd.filter(lambda csventry: csventry != csvheader)
## using map to parse csv text entry
rdd=rdd.map(lambda csventry: csventry.split(","))
rdd.repartition(1)
rdd.saveAsTextFile(args.output_dir)
```


Shared variables

A function is executed a remote and various tasks running in parallel

 how do tasks share variables? common patterns in parallel computing: broadcast and global counter

Variables used in parallel operations

- variables are copied among parallel tasks
- shared among tasks or between tasks and the driver

Types of variables

- o broadcast variables: cache a value in all nodes
- accumulators: a global counter shared across processes

Examples

```
sc = SparkContext(conf=conf)
bVar = sc.broadcast([5,10])
print("The value of the broadcast",bVar.value,sep=" ")
counter = sc.accumulator(0)
sc.parallelize([1, 2, 3, 4]).foreach(lambda x: counter.add(bVar.value[0]))
print("The value of the counter is ",counter.value,sep=" ")
```

Use cases:

- Broadcast variables: lookup tables
- Accumulators: monitoring/checkpoint counters

Spark SQL and DataFrames

High-level APIs

 design with common programming patterns in data analysis, multi-language support

SparkSQL: enable dealing with structured data

SQL query execution, Hive, JDBC/ODBC

DataFrame

- distributed data organized into named columns, similar to a table in relational database
- Pandas and Spark DataFrames have similar design concepts

DataFrame

```
inputFile =args.input_file
df =spark.read.csv(inputFile,header=True,inferSchema=True)
print("Number of partition",df.rdd.getNumPartitions())
df.show()
```

PROVINCECODE	DEVICEID	IFINDEX F	RAMEIS	LOT	PORT ON	UINDEX	ONUID	TIME	SPEEDIN	SPEEDOUT
YN 1	3023	528	1	2	7	39 10	07039 01/08/2019	00:04:07	148163	49018
YN 1	3023	528	1	2	7	38 10	07038 01/08/2019	00:04:07	1658	1362
YN 1	3023	528	1	2	7	9 10	07009 01/08/2019	00:04:07	6693	518
YN 1	3023	528	1	2	7	8 10	07008 01/08/2019	00:04:07	640	54
YN 1	3023	528	1	2	7	11 10	07011 01/08/2019	00:04:07	118	11
YN 1	3023	528	1	2	7	10 10	07010 01/08/2019	00:04:07	28514	1249
YN 1	3023	528	1	2	7	13 10	07013 01/08/2019	00:04:07	868699	2340
YN 1	3023	528	1	2	7	15 10	07015 01/08/2019	00:04:07	1822	112
YN 1	3023	528	1	2	7	17 10	07017 01/08/2019	00:04:07	998069	11734
YN 1	3023	528	1	2	7	16 10	07016 01/08/2019	00:04:07	22402	180
YN 1	3023	528	1	2	7	19 10	07019 01/08/2019	00:04:07	640	79
YN 1	3023	760	1	1	10	49 10	10049 01/08/2019	00:04:07	662	49
YN 1	3023	760	1	1	10	48 10	10048 01/08/2019	00:04:07	2158	75
YN 1	3023	528	1	2	7	21 10	07021 01/08/2019	00:04:07	0	
YN 1	3023	760	1	1	10	51 10	10051 01/08/2019	00:04:07	2600890	5415
YN 1	3023	528	1	2	7	20 10	07020 01/08/2019	00:04:07	330	18

Create DataFrame

DataFrames can be created from a Hive table, from Spark data sources, or another DataFrame

Load and save

- From Hive, JSON, CSV
- HDFS, local file, etc.

and more ...

Formats and Sources supported by DataFrames

Figure source:

https://databricks.com/blog/2015/02/17/introducing-dataframe s-in-spark-for-large-scale-data-science.html

DataFrame Transformations & Actions

- Several transformations can be done
 - Think transformation for relational database or matrix
- Select
 - df.select
- Filter
 - df.filter
- Groupby
 - *df.groupBy*
- Handle missing data
 - Drop duplicate rows, drop rows with NA/null data
 - Fill NA/null data

Actions

 Return values calculated from DataFrame

Examples

- reduce, max, min, sum, variance and stdev
- ⇒ Distributed and parallel processing but it is done by the framework

Example of a Spark

```
#!/usr/bin/env python2
#encoding: UTF-8
# CS-E4640
import csv
import sys
from datetime import datetime
from pyspark.sql import SparkSession
import numpy as np
from pyspark.sql import functions as F
import argparse
                                                                   Session/Driver
parser = argparse.ArgumentParser()
parser.add argument('--input file', help='input data file')
parser.add argument('--output dir',help='output dir')
args = parser.parse args()
##define a context
spark = SparkSession.builder.appName("cse4640-onu").getOrCreate()
#NOTE: using hdfs:///.... for HDFS file or file:///
inputFile =args.input file
                                                                  Read data
df =spark.read.csv(inputFile,header=True,inferSchema=True)
#df.show()
print("Number of records", df.count())
exprs = {"SPEEDIN": "avg"}
                                                                      Apply operations
df2 = df.groupBy('ONUID').agg(exprs)
df2.repartition(1).write.csv(args.output file,header=True)
```


Spark application runtime view

Tasks:

 a unit of work executed in an executor: e.g., set of transformations for a data partition

Stage

- a set of tasks executed in many nodes for computing the same operation
- move to a new stage: through shuffle operations

Job

 runtime view of an action operation (produce a result), includes many stages

Data Distribution

One task works on a partition at a time

⇒ Parallelism and performance are strongly dependent on number of partitions, tasks, CPU cores

Data Distribution: Load balance

Imbalance more data shuffle

 It is important to have well-balanced data distribution across nodes

Detection:

 look at runtime execution time to see problems or check your data

Examples of solution:

- o repartition
- broadcast
- change group keys

Pipelining, Shuffle and DAG

- Operations work in a pipeline without moving data across nodes
 - o e.g., map->filter, select->filter
- Shuffle persistent
 - shuffle needs move data across nodes
 - source tasks save shuffle files into local disks for data shuffle, then the target tasks will read data from source nodes
 - Save time, recovery, fault tolerance

Monitoring Spark: Executors and tasks

Executors and tasks

Other important support of Spark

- MLlib Machine learning
 - Distributed and parallel machine learning algorithms with big data and clusters
- Streaming: data processing in near-realtime
 - Related to our topic: stream data processing
- Graph Processing: Spark GraphX
 - Parallel computation for graphs
- Many third-party frameworks, e.g.,
 - SparkOCR (<u>https://www.johnsnowlabs.com/spark-ocr/</u>),
 SparkNLP (<u>https://nlp.johnsnowlabs.com/</u>)

Summary

• Facts:

- MapReduce and Spark are important frameworks
- A user/developer needs to learn to develop MapReduce/Spark applications
- A platform operator/provider offer services for managing resources, processing and monitoring

Thoughts:

- Think about the success of Apache Spark: rich ecosystems!
- Think if you combine data, different distributed programming supports for your big data platform

Thanks!

Hong-Linh Truong
Department of Computer Science

rdsea.github.io

