Wydział	Imię i nazwisko		Rok	Grupa	Zespół
WI	1. Dominik Marek		l II	8	4
	2. Maciej Nowakow	/ski			_
PRACOWNIA	Temat:				Nr ćwiczenia
FIZYCZNA	<u>Dioda półprzewodnikowa</u> 123				
WFiIS AGH					

1.Cel ćwiczenia.

Poznanie własności warstwowych złącz półprzewodnikowych typu p-n. Wyznaczenie charakterystyk stałoprądowych dla różnych typów diod i ich interpretacja.

2.0pis stanowiska.

Układ pomiarowy składał się z następujących elementów:

- Zasilacz stabilizowany
- Woltomierz cyfrowy
- Amperomierz
- Płyta ćwiczeniowa, w której skład wchodzą:
 - -przełącznik polaryzacji
 - przełącznik diod
 - potencjometr

Rys 1. Schemat płyty ćwiczeniowej

3.Przebieg doświadczenia.

Po zapoznaniu się z układem doświadczalnym i połączeniu płyty ćwiczeniowej z zasilaczem, amperomierzem i woltomierzem, przystąpiliśmy do zbierania pomiarów. Najpierw zmierzyliśmy wartości napięcia dla diody germanowej, dla kolejnych wartości natężenia prądu w kierunku przewodzenia. Następnie po zmianie polaryzacji na zaporową mierzyliśmy wartości napięcia przy zadanym natężeniu. Powyższe kroki zostały wykonane dla poszczególnych diod.

4. Wstęp teoretyczny.

4.1 Domieszkowanie półprzewodników.

Nośnikami prądu w półprzewodnikach są ujemne elektrony i dodatnio naładowane kwazicząstki zwane dziurami. Prawie wszystkie zastosowania półprzewodników wymagają zastosowania domieszek, modyfikujących własności elektronowe materiału wyjściowego. Donorem nazywamy atom domieszki, która "dostarcza" do półprzewodnika dodatkowe elektrony. Domieszki akceptorowe to z kolei atomy mające jeden elektron walencyjny mniej (np. bor w krzemie). Koncentracja elektronów jest bliska koncentracji atomów donorowych. Elektrony te nazywamy nośnikami większościowymi, natomiast dziury mniejszościowymi.

2.2 Złącze p-n.

Złącze p-n wyobrazić sobie można jako połączenie półprzewodnika typu n i typu p. Wytwarza się w nich dwa metalowe kontakty, umożliwiające przepływ prądu przez złącze. Element elektroniczny wykorzystujący pojedyncze złącze nazywamy diodą półprzewodnikową. Właściwością złącza jest nieliniowa charakterystyka prądowo napięciowa I(U). Złącze łatwo przewodzi w kierunku przewodzenia i trudno – w kierunku zaporowym. W przypadku napięcia przyłożonego tak, że (+) znajduje się po stronie p, a (–) po stronie n, powstanie pole elektryczne popychające większościowe dziury z obszaru p w prawo, a analogiczne większościowe elektrony w kierunku przeciwnym. To kierunek przewodzenia, z dużą wartością prądu. Gdy napięcie przyłożymy przeciwnie, wtedy przez powierzchnię złącza mogą płynąć tylko nośniki mniejszościowe, których jest bardzo mało. W konsekwencji, płynący prąd będzie znikomo mały. Prostownicze własności diody mogą być wykorzystane do przekształcenia prądu przemiennego na stały.

Rysunek 1. Mikroskopowy obraz złącza p-n

Równaniem opisującym związek pomiędzy napięciem U na diodzie p-n a płynącym prze nią prądem jest równanie Shockleya:

$$I = I_S \cdot exp\left(\frac{eu}{mk_bT}\right)$$

gdzie:

Is – prąd nasycenia złącza,

e – ładunek elementarny,

kb − stała Boltzmana,

T-temperatura,

m – współczynnik idealności złącza,

Po obustronnym zlogarytmowaniu otrzymujemy:

$$\ln(I) = \ln(I_s) + \frac{eU}{mk_BT}$$

Zatem logarytm natężenia jest opisany zależnością liniową:

$$ln(I) = aU + b$$

Gdzie:

$$u = \frac{e}{mk_bT}$$

$$b = ln(I_s)$$

Współczynnik nieidealności diody m:

$$m = \frac{1}{a \cdot U_T}$$

gdzie:

a – wartość współczynnika nachylenia prostej zależności ln(I) od U

 U_T – napięcie termiczne (dla $T = 300 \text{K } U_T = 26 \text{ mV})$

- Współczynnik stabilizacji Z:

$$Z = \frac{r}{R}$$

gdzie:

r – oporność dynamiczna

R – oporność statyczna

5.1 Opracowanie wyników.

I[mA]	Napięcie diody				
	Ge	Si	LED	Zenera	
0,1	0,058	0,340	2,150	0,664	
0,2	0,076	0,364	2,186	0,685	
0,3	0,088	0,378	2,209	0,697	
0,5	0,104	0,396	2,243	0,713	
0,7	0,115	0,409	2,269	0,722	
1,0	0,127	0,424	2,301	0,732	
2,0	0,154	0,455	2,379	0,751	
3,0	0,173	0,475	2,440	0,762	
5,0	0,191	0,502	2,537	0,777	
7,0	0,209	0,521	2,611	0,786	
10,0	0,228	0,542	2,706	0,798	

Tabela 1. Charakterystyka prądowo napięciowa dla polaryzacji w kierunku przewodzenia.

Dio	da Ge	Inne diody		Zenera		
U[v]	I[uA]	U[v]	Si	LED	I[mA]	U[V]
			I[uA]	I[uA]		
-0,02	-7,75	-0,1	-0,02	0	-0,1	-1,39
-0,04	-10,76	-0,2	-0,03	-0,01	-0,2	-1,54
-0,06	-12,46	-0,3	-0,05	-0,02	-0,3	-1,63
-0,08	-13,26	-0,5	-0,07	-0,04	-0,5	-1,77
-0,10	-13,94	-0,7	-0,10	-0,06	-0,7	-1,82
-0,20	-14,42	-1,0	-0,13	-0,09	-1,0	-1,88
-0,30	-14,49	-1,5	-0,19	-0,14	-1,5	-2,03
-0,50	-14,61	-2,0	-0,24	-0,20	-2,0	-2,11
-0,70	-14,86	-3,0	-0,35	-0,30	-3,0	-2,23
-1,00	-14,85	-4,0	-0,45	-0,40	-4,0	-2,31
-1,50	-15,03	-5,0	-0,56	-0,50	-5,0	-2,39
-2,0	-15,20	-6,0	-0,66	-0,60	-6,0	-2,46
-3,0	-15,51	-7,0	-0,77	-0,70	-7,0	-2,51
-4,0	-15,83	-8,0	-0,87	-0,80	-8,0	-2,56
-5,0	-16,16	-9,0	-0,98	-0,90	-9,0	-2,60
-6,0	-16,56	-10,0	-1,09	-1,00	-10,0	-2,63

Tabela 2. Charakterystyka prądowo napięciowa w przypadku polaryzacji w kierunku zaporowym

5.2 Wyznaczenie wartości współczynnika idealności dla diod krzemowej i germanowej.

Wykresy wartości ln(I) [mA] w zależności od napięcia U[V] dla diod krzemowych.

Wyliczyć wartości współczynnika idealności można ze wzoru:

$$m = \frac{1}{a \cdot U_T}$$

Gdzie a zostało wyznaczone przy pomocy funkcji reglinp w arkuszu kalkulacyjnym programu Excel, a za U_T przyjęto wartość 26 mV

Dioda	a[1/V]	a(u)[1/V]	m
Ge	26,75	0,89	1,44
Si	22,58	0,72	1,70

Tabela wartości współczynnika idealności dla diod krzemowej i germanowej.

5.3 Przesunięcie charakterystyk diody krzemowej względem germanowej

W następnym kroku liczymy różnicę USi –UGe.

Wyliczona z jako średnia różnic dla każdego badanego natężenia i wynosiła 0,298V. Różnica przerw energetycznych E_{Si}-E_{Ge} wynosi:

1,11eV - 0,67eV = 0,44eV

Wyliczone różnice są do wartości różne, a powinny być takie same. Wynika z to prawdopodobnie z niedokładności pomiarowej i czynników zewnętrznych takich jak na przykład temperatura.

5.4 Przesunięcie charakterystyk diody świecącej względem krzemowej

Różnica napięć była wyliczana analogicznie jak w kroku 5.3 i wynosiła 1,930V.

Na podstawie tej wartości oraz wartości E_{Si} oraz wyliczonej różnicy napięć można obliczyć Eg(LED) Eg(LED)=1,11eV+1,93eV=3,04eV.

Wartość ta mieści się w zakresie spektrum widzialnego, które zawiera się w przedziale (1,65eV; 3,1eV) i oznacza, że kolor diody był niebieski.

5.5 Materiał diody Zenera

Najpierw różnica napięć zostałała wyliczona względem diody krzemowej dla natężenia I=10mA U_{Zenera}-U_{Si}=0,798V-0,542V=0,256V

E_g(Si)=1,11eV

E_g(Zenera)=1,11eV+0,256eV=1,366eV

Jest to wartość będąca najbliżej wartości tabelarycznej fosforku indu wynoszącej 1,35eV, co może oznaczać, że to z niego została wykonana dioda.

6.Opracowanie wyników dla kierunku zaporowego

6.1 Napięcie stabilizowane Uz diody Zenera

Wartość tego napięcia dla diod małej i średniej mocy ustalamy umownie dla natężenia prądu zaporowego diody $I_z = 5$ mA.

Dla powyższego natężenia napięcie stabilizowane wynosi Uz = 2,39 V

6.2 Współczynnik stabilizacji Z Diody Zenera

Najpierw policzymy oporności dynamiczne r i statyczne R. Dla oporności dynamicznej r bierzemy pod uwagę przedział 5 mA ± 3 mA.

$$r = \frac{\Delta U}{\Delta I} = \frac{0.45V}{6mA} = 75\Omega$$

$$R = \frac{U_Z}{I_Z} = \frac{2,39V}{5mA} = 478\Omega$$

$$Z = \frac{r}{R} = \frac{75\Omega}{478\Omega} = 0.16$$