Diagrammatic Categories in Representation Theory

Victor Zhang

Diagrams

Motivation from Representation theory

Talk Overview

A monoidal category is a category with an associative multiplication \otimes for objects and morphisms, and a unit object 1, such that the multiplication works well with composition.

Let \mathcal{C} be a monoidal category.

$$f: a \to b \otimes c$$

$$g: b \otimes c \to a \otimes c$$

$$g$$

$$f: a \to b \otimes c$$

$$g: b \otimes c \to a \otimes c$$

$$\downarrow g$$

$$f: a \to b \otimes c$$

$$h: x \to y$$

$$b \qquad c \qquad y$$

$$f \qquad h$$

$$f: a \to b \otimes c$$

$$h: x \to y$$

$$b \qquad c \qquad y$$

$$f \qquad h$$

$$f: a \to b \otimes c$$

$$h: x \to y$$

$$f \qquad b \qquad c \qquad y$$

$$f \qquad h \qquad = \qquad f \otimes h$$

$$\textit{f}_1: \textit{a} \rightarrow \mathbb{1}$$

Interchange Law

$$\begin{array}{c|c}
b & d \\
\hline
f & g
\end{array} =
\begin{array}{c|c}
b & d \\
\hline
f & g
\end{array} =
\begin{array}{c|c}
f & g
\end{array}$$

Isotopy

\mathbb{Z} -linear Monoidal Category

Diagrammatic Soergel Bimodules

A \mathbb{Z} -linear monoidal category \mathcal{H} with:

Generating object I.

Generating morphisms

and local relations...

Diagrammatic Soergel Bimodules

Diagrammatic Soergel Bimodules

Soergel Bimodules

Theorem (Elias-Williamson, 2013)

The diagrammatic category $Kar^{\oplus}(\mathcal{H})$ and the category of Soergel Bimodules \mathbb{S} Bim over S_2 are equivalent as graded \mathbb{C} -linear monoidal categories.

Generalisations

Applications