Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра прикладной математики

РГЗ по курсу «ТВиМС»

Часть II

Факультет: ПМИ **Группа:** ПМ-63

Студент: Шепрут И.И.

Вариант: 22

Преподаватели: Постовалов С.Н.

Веретельникова И.В.

1. Задание №1 (1.18)

1.1. Условие

В следующей таблице представлены результаты измерений CO_2 в граммах на литр в партии газированных напитков.

Требуется проверить гипотезу о согласии полученной выборки с нормальным распределением.

T									
7.30	7.00	7.20	6.50	7.00	7.00	7.20	7.20	6.80	6.80
6.40	6.80	6.80	6.60	6.90	7.20	6.60	7.30	7.00	6.80
6.70	6.70	6.40	6.80	7.00	6.40	6.80	6.80	7.20	7.20
6.90	7.10	7.40	7.00	7.20	6.80	7.00	7.40	6.60	7.00
6.30	6.60	7.20	6.60	7.20	6.20	7.00	7.20	6.60	6.80
6.50	7.00	6.80	7.00	7.00	6.40	7.20	7.40	7.10	7.00
7.10	7.10	6.90	7.10	6.80	7.40	7.00	6.80	6.60	6.80

1.2. Решение

Данная гипотеза является сложной. Оценки параметров будем находить с помощью ${\rm OM}\Pi,$ а проверять гипотезу при помощи критерия типа Колмогорова (поскольку случайная величина непрерывна).

1.2.1. Нахождение параметров при помощи ОМП

Плотность нормального распределения:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 (1)

Функция максимального правдоподобия:

$$L(X_n, \theta) = \prod_{i=1}^n f(X_i, \theta)$$
 (2)

Оценки необходимых параметров находятся из системы уравнений, подставляя (1) и (2):

$$\frac{\partial \ln L(X_n, \theta)}{\partial \theta_i} = 0, \quad i = 1, \dots, r$$

Где $r = 2, \, \theta_1 = \mu, \, \theta_2 = \sigma.$

Оценки, полученные при помощи ISW:

$$\hat{\mu} \approx 6.9071, \ \hat{\sigma} \approx 0.2866 \tag{3}$$

1.2.2. Проверка гипотезы при помощи критерия типа Колмогорова

Зададим уровень значимости $\alpha = 0.05$.

Статистика этого критерия имеет вид:

$$S_K = \frac{6nD_n + 1}{6\sqrt{n}}$$

$$D_n = \max\{D_n^+, D_n^-\}$$

$$D_n^+ = \max_{1 \le i \le n} \{ i/n - F(X_{(i)}, \theta) \}$$

$$D_n^- = \max_{1 \le i \le n} \{ F(X_{(i)}, \theta) - {}^{(i-1)}/n \}$$

При помощи ISW и полученных оценок (3) получаем $S_K \approx 1.2031$, а по таблице получаем $S_{0.05} = 1.3581$, и т. к. $S_K < S_{0.05}$, то гипотеза о согласии распределения выборки с нормальным распределением не отвергается.

Таким образом, количество углекислого газа в газированных напитках подчиняется нормальному распределению.

2. Задание №2 (2.15)

2.1. Условие

Рудник за отчетный период выдавал руду из трех экслпуатационных блоков (A1, A2, A3). Горно-геологические условия разработки во всех блоках примерно одинаковы. Идентична организация, технология и механизация работ в блоках. Из каждой вагонетки бралась товарная проба. По данным опробования и химических анализов каждой пробы определено среднее содержание металла в рудах каждой вагонетки. Статистические данны приведены в таблице.

Проверить гипотезу о независимости содержания металла в вагонетке от эксплуатационного блока.

Выдано за отчетный период	соде	Всего			
выдано за отчетный период	1-3%	3-5%	5-7%	7-9%	Deero
Из блока А1	180	80	60	20	340
Из блока А2	90	140	80	20	330
Из блока АЗ	60	140	80	50	330
Общая численность	330	360	220	90	1000

2.2. Решение

Зададим уровень значимости $\alpha = 0.05$.

Для проверки гипотезы независимости воспользуемся критерием χ^2 Пирсона. Данные уже группированы. Статистика для этого критерия вычисляется по формуле:

$$X_n^2 = n \sum_{i,j} \left[\frac{\nu_{ij}^2}{\nu_{i\bullet} \nu_{\bullet j}} \right] - n \tag{4}$$

Получаем $X_n^2 \approx 113.6138$. Число степеней свободы: (s-1)(k-1) = (3-1)(4-1) = 6, по таблице получаем $S_{0.05} = 12.6$. Поскольку $X_n^2 > S_{0.05}$, то **гипотеза о независимости содержания металла в вагонетке от эксплуатационного блока отвергается.**

Таким образом, содержание металла в вагонетке зависит от номера эксплуатационного блока.

3. Задание №3 (3.20)

3.1. Условие

В таблице приведены данные о распределении свинца в пробах, отобранных на двух соседних горизонтах рудника.

Проверить гипотезу об однородности распределения свинца на разных уровнях рудника.

Содержание свинца	0.0-0.1	0.1-0.2	0.2-0.3	0.3-0.4	0.4-0.5	0.5-0.6	0.6-0.7	0.7-0.8	0.8-0.9
270 м.	1	4	8	18	6	7	5	14	2
305 м.	0	4	10	10	12	12	5	13	6
Содержание свинца	0.9-1.0	1.0-1.1	1.1-1.2	1.2-1.3	1.3-1.4	1.4-1.5	1.5-1.6	1.6-1.7	1.7-1.8
270 м.	6	11	9	4	4	2	2	2	1
305 м.	7	7	4	3	1	5	2	0	0
Содержание свинца	1.8-1.9	1.9-2.0	2.0-2.1	2.1-2.2	2.2-2.3	2.3-2.4	2.4-2.5	2.5-2.6	2.6-2.7
270 м.	1	4	2	1	0	0	2	1	2
305 м.	3	1	0	0	0	2	2	2	0
Содержание свинца	2.7-2.8	2.8-2.9	2.9-3.0	3.0-3.1	3.1-3.2	3.2-3.3	3.3-3.4	3.4-3.5	3.5-3.6
270 м.	2	3	1	0	1	1	1	1	2
305 м.	0	1	1	0	0	1	0	0	0

3.2. Решение

Для проверки гипотезы независимости воспользуемся критерием χ^2 Пирсона. Статистика для этого критерия высчитывается по формуле (4).

Но для начала перегруппируем данные:

Содержание свинца	0.0-0.4	0.4-0.8	0.8-1.2	1.2-1.6	1.6-2.0	2.0-2.4	2.4-2.8	2.8-3.2	3.2-3.6
270 м.	31	32	28	12	8	3	7	5	5
305 м.	24	42	24	11	4	2	4	2	1

Зададим уровень значимости $\alpha = 0.05$.

Получаем $X_n^2 \approx 7.75507$. Число степеней свободы: (s-1)(k-1)=(2-1)(9-1)=8, по таблице получаем $S_{0.05}=15.5$. Поскольку $X_n^2 < S_{0.05}$, то гипотеза о однородности распределений свинца на разных уровнях рудника не отвергается.

Таким образом, на разных уровнях содержание свинца одинаково распределено.