Review Assignment 1

Nalet Meinen Machine Learning

October 8, 2019

1 Probability theory review

Solve each of the following problems and show all the steps of your working.

1. Show that the covariance matrix is always symmetric and positive semidefinite.

The $(i;j)^{th}$ element of the covariance matrix Σ is given by

$$\Sigma_{ij} = E[(X_i - \mu_i)(X_j - \mu_j)] = E[(X_j - \mu_j)(X_i - \mu_i)] = \Sigma_{ji}$$

so that the covariance matrix is symmetric.

For an arbitrary vector u,

$$u^{\mathsf{T}} \Sigma u = u^{\mathsf{T}} E[(X - \mu)(X - \mu)^{\mathsf{T}}] u = E[(u^{\mathsf{T}}(X - \mu)(X - \mu)^{\mathsf{T}}) u]$$

= $E[((X - \mu)^{\mathsf{T}} u)^{\mathsf{T}}(X - \mu)^{\mathsf{T}} u] = E[((X - \mu)^{\mathsf{T}} u)^{2}] \ge 0$

so that the covariance matrix is positive semi-definite.

2. $X \in \mathbb{R}^n$ and $Y \in \mathbb{R}^m$ are independent random variables. Their expectations and covariances are E[X] = 0, $\operatorname{cov}[X] = I$, $E[Y] = \mu$ and $\operatorname{cov}[Y] = \sigma I$, where I is the identity matrix of the appropriate size and s is a scalar. What is the expectation and covariance of the random variable z = AX + Y, where $A \in \mathbb{R}^{m \times n}$?

The expectation of Z can be obtained from the definition by applying the linearity of expectation,

$$E[Z] = E[AX + Y] = AE[x] + E[Y] = 0 + \mu = \mu$$

The covariance of Z is $\text{Cov}[Z] = E[ZZ^{\dagger}] - E[Z]E[Z]^{\dagger} = E[ZZ^{\dagger}] - \mu\mu^{\dagger}$. Substituting the definition of Z, we get the expression below.

$$\begin{split} E[ZZ^{\intercal}] &= E[(AX + Y)(AX + Y)^{\intercal}] = \\ &= E[AXX^{\intercal}A^{\intercal} + YX^{\intercal}A^{\intercal} + AXY^{\intercal} + YY^{\intercal}] = \\ &= AE[XX^{\intercal}]A^{\intercal} + E[YX^{\intercal}]A^{\intercal} + AE[XY^{\intercal}] + E[YY^{\intercal}] \end{split}$$

Here we can substitute $E[XX^{\dagger}] = I$ and $E[YY^{\dagger}] = \sigma I + \mu \mu^{\dagger}$. Because X and Y are independent, $E[XY^{\dagger}] = E[X]E[Y^{\dagger}] = 0$, similarly $E[YX^{\dagger}] = 0$. We get $E[ZZ^{\dagger}] = AA^{\dagger} + \sigma I + \mu \mu^{\dagger}$, therefore $Cov[Z] = AA^{\dagger} + \sigma I$.

3. Thomas and Viktor are friends. It is Friday night and Thomas does not have a phone. Viktor knows that there is a 2/3 probability that Thomas goes to the party to downtown. There are 5 pubs in downtown and there is an equal probability of Thomas going to any of them if he goes to the party. Viktor already looked for Thomas in 4 of the bars. What is the probability of Viktor ending Thomas in the last bar?

The sample space is

$$S = f\{\text{home, pub 1, pub 2, pub 3, pub 4, pub 5}\}$$

and the probability of the events are P(home) = 1 = 3 and $P(\text{pub } i) = \frac{2}{15}$. We need to compute P(pub 5|not in pub 1...4). Using the Bayes rule,

$$P(\text{pub 5}|\text{not in pub 1...4}) = \frac{P(\text{pub 5} \cap \text{not in pub 1...4})}{P(\text{not in pub 1...4})} = \frac{\frac{2}{15}}{\frac{7}{15}} = \frac{2}{7}$$

4. Derive the mean for the Beta Distribution, which is defined as

$$Beta(x|a,b) = \frac{1}{B(a,b)}a^{-1}(1-x)b^{-1}$$
(1)

where B(a, b), G(a) are Beta and Gamma functions respectively:

$$B(a,b) \triangleq \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} \tag{2}$$

and

$$\Gamma(x) \triangleq \int_0^\infty u^{x-1} e^{-u} du \tag{3}$$

Hint: Use integration by parts.

5. Let $A\in\mathbb{R}^{n\times n}$ be a positive definite square matrix, $b\in\mathbb{R}^n$, and c be a scalar. Prove that

$$\int_{x \in \mathbb{R}^n} e^{-\frac{1}{2}x^{\mathsf{T}}Ax - x^{\mathsf{T}}b - c} dx = \frac{(2\pi)^{n/2}|A|^{-1/2}}{e^{c - \frac{1}{2}b^{\mathsf{T}}A^{-1}b}}$$

Hint: Use the fact that the integral of the Gaussian probability density function of a random variable with mean μ and covariance Σ is 1.

6. From the definition of conditional probability of multiple random variables, show that

$$f(x_1, x_2, \dots x_n) = f(x_1) \prod_{i=2}^n f(x_i | x_1, \dots x_{i-1})$$

where $x_1, \ldots x_n$ are random variables and f is a probability density function of its arguments.

a

n=2

a