Tutorial 2: Exercises for Block I

Exercise 2: Maximum Density

Consider a probability density $p_x(x)$ defined over a continuous variable x, and suppose that we make a nonlinear change of variable using x=g(y), so that the density transforms according to

$$p_y(y) = p_x(g(y))|g'(y)|$$
 (1)

- i) By differentiating 1, show that the location \hat{y} of the maximum of the density in y is not in general related to the location \hat{x} of the maximum of the density over x by the simple functional relation $\hat{x}=g(\hat{y})$ as a consequence of the Jacobian factor. This shows that the maximum of a probability density (in contrast to a simple function) is dependent on the choice of variable.
- ii) Verify that, in the case of a linear transformation, the location of the maximum transforms in the same way as the variable itself.

i) Normal functions:

Take
$$f(x)$$
:

Change to new variable y using $x = g(y)$. e.g. $g(a) = a - a$

by $f(y) = f(g(y))$

Say flat has a mode (maximum) at $f(x)$, s.t. $f'(x) = 0$

by What is the mode $f(x)$ af $f'(y) = 0$
 $f'(g(y)) = 0$

assuming $g'(y) \neq 0$
 $f'(g(y)) = 0$
 $f'(g(y)) = 0$
 $f'(g(y)) = 0$

Density: • Consider $p_X(x)$ with mode x', change of variables x = g(y)Ly $p_Y(y) = p_X(g(y)) \cdot |g'(y)|$ • Perform denivative w.r.t. $y \Rightarrow \text{?t}$ must be 0 for y'. $\frac{dp_Y(y)}{dy} = \frac{dp_X(g(y))}{dy} \cdot |g'(y)| + p_X(g(y)) \cdot \frac{d|g'(y)|}{dy}$ $= \frac{dp_X(g(y))}{dy} \cdot \frac{dg(y)}{dy} \cdot \frac{dg(y)}{dy}$

Li But we also know $\int '(x) = 0$ Li) $\hat{x} = g(\hat{y})$

$$=\frac{d_{9}\times\left(g(y)\right)}{d_{9}(y)}\cdot\frac{d_{9}(y)}{d_{y}}\cdot\left|g'(y)\right|+1$$

Listince
$$\frac{d\rho_{x}(x)}{dx}\Big|_{x=\hat{x}} = 0$$
, if we chose $\hat{x} = g(\hat{y})$, then $\frac{d\rho_{x}(g(y))}{dg(y)}\Big|_{y=\hat{y}} = 0$.

Is What about se cond term? - Down't go away!

look of this: if
$$g(y) = a \cdot y + b$$
, then $|g'(y)| = |a|$ and thus
$$\frac{d|g'(y)|}{dy} = 0 \implies \hat{x} = g(\hat{y}) \sqrt{b}$$

(۱۵ (۱۱

$$\frac{\text{Example:}}{\text{Let } \rho_{x}(x) = \partial x, \quad x \in [0,1]:}$$

Ly
$$p_{y|y} = \partial \sin(y) \cdot |\cos(y)|$$
, $y \in [0, \frac{\pi}{2}]$

= 2.5.
$$\pi(4)$$
 o cas $\pi(4)$
= $\pi(4+\beta)$ = $\pi(4+\beta)$ = $\pi(4)$ cas $\pi(4)$ + $\pi(4)$ cas $\pi(4)$

Exercise 7: Maximum likelihood estimates

Verify by setting the derivatives of the log likelihood

$$\ln p(\mathbf{x}|\mu, \sigma^2) = -\frac{1}{2\sigma^2} \sum_{n} (x_n - \mu)^2 - \frac{N}{2} \ln \sigma^2 - \frac{N}{2} \ln(2\pi)$$

the derivatives of the log likelihood
$$\ln p(\mathbf{x}|\mu,\sigma^2) = -\frac{1}{2\sigma^2} \sum (x_n - \mu)^2 - \frac{N}{2} \ln \sigma^2 - \frac{N}{2} \ln(2\pi)$$

$$\int \rho(\mathbf{x}|\mu,\sigma^2) = \int \frac{1}{\sqrt{\lambda_1 x_2}} e^{-\frac{(\mathbf{x} \cdot \mathbf{x}_1)^2}{2\sigma^2}} e^{-\frac{(\mathbf{x} \cdot \mathbf{x}_2)^2}{2\sigma^2}} e^{-\frac{(\mathbf{x} \cdot \mathbf{x}_1)^2}{2\sigma^2}} e^{-\frac{(\mathbf{x} \cdot \mathbf{x}_2)^2}{2\sigma^2}} e^{$$

with respect to μ and σ^2 equal to zero:

i)
$$\mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n$$
 (see [1] 1.55)

ii)
$$\sigma_{ML}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{ML})^2$$
 (see [1] 1.56)

ii) $\sigma_{ML}^{2} = \frac{1}{N} \sum_{n=1}^{N} (u_{n} - \mu_{ML})^{2}$ (see [1] 1.56) $\frac{\partial \ln \left(\rho |X| \mu_{n} \sigma^{2} \right)}{\partial \mu} = -\frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2}} \underbrace{\sum \left(x_{n} - \mu \right) \cdot (1)}_{=0}$ $= \frac{1}{\sigma^{2$

Exercise 8: True variance

Suppose that the variance of a Gaussian is estimated using $\sigma_{ML}^2=\frac{1}{N}\sum_{n=1}^N(x_n-\mu_{ML})^2$ (see [1] 1.56) but with the maximum likelihood estimate μ_{ML} replaced with the true value μ of the mean. Show that this estimator has the property that its expectation is given by the true variance

$$E_{txn} = \frac{1}{N} \sum_{n=1}^{N} \left[\left(x_n - \mu \right)^2 \right]$$

$$= \frac{1}{N} \sum_{n=1}^{N} \left[\left(x_n^2 + \sigma^2 \right) - 2 x_n \mu + \mu^2 \right]$$

$$= \sigma^2$$

$$= \sigma^2$$

$$= \sigma^2$$

$$= \sigma^2$$

$$= \sigma^2$$

$$= \sigma^2$$

$$= \sigma^2 + \sigma^2$$

$$= \mu^2 + \sigma^2$$

Bonus: What if we use
$$A_{ML}$$
?

Let $\frac{1}{N} \sum_{n=1}^{\infty} (x_n - M_{ML})^2 J = 000 = \frac{N-1}{N} O^2$

Exercise 10: Misclassification bound

Consider two nonnegative numbers a and b, and show that, if $a \le b$, then $a \le \sqrt{ab}$. Use this result to show that, if the decision regions of a two-class classification problem with classes $\mathcal{C}_1, \mathcal{C}_2$ are chosen to minimize the probability of misclassification, this probability will satisfy

Providence of
$$\{p(x,c_1)p(x,c_2)\}^{1/2}dx$$

3) Start with $a \le b$. Since V is monotonic,

 $(a) = \sqrt{a} \le \sqrt{b}$
 $(a) = \sqrt{a}$
 $(a) = \sqrt{a}$

$$+S \{ P(Y=-1|x) \circ P(Y=-1|x) \}^{M_{2}} \circ A | p_{=n} \cdot P(x) dx$$

$$= S \{ P(Y=-1|x) \circ P(Y=-1|x) \}^{M_{2}} (A | p_{=n} + A | p_{=-n}) P(x) dx$$

$$= S \{ P(Y=-1|x) \circ P(Y=-1|x) \}^{M_{2}} (A | p_{=n} + A | p_{=-n}) P(x) dx$$

$$= S \{ P(Y=-1|x) \circ P(Y=-1|x) \circ P(Y=-1|x) \}^{M_{2}} dx$$

$$= S \{ P(Y=-1|x) \circ P(Y=-1|x) \}^{M_{2}} dx$$

Exercise 15: Decision boundary

Consider the following decision rule for a two-category one-dimensional problem: Decide C_1 if $x > \theta$; otherwise decide C_2 .

i) Show that the probability of error for this rule is given by

$$P(error) = P(C_1) \int_{-\infty}^{\theta} p(x|C_1) dx + P(C_2) \int_{\theta}^{\infty} p(x|C_2) dx$$

ii) By differentiating, show that a necessary condition to minimize P(error) is that θ satisfy

$$p(\theta|\mathcal{C}_1)P(\mathcal{C}_1) = p(\theta|\mathcal{C}_2)P(\mathcal{C}_2)$$
(6)

- iii) Does equation 8 define θ uniquely?
- iv) Give an example where a value of θ satisfying the equation actually maximizes the probability

of error.

i)
$$P(error(x)) = \begin{cases} P(C_0 | x), & \text{if we dearde } C_1 \\ P(C_1 | x), & \text{if we decide } C_0 \end{cases}$$

$$P(error) = \int_{-\infty}^{\infty} P(error|x) p(x) dx$$

$$= \int_{-\infty}^{\infty} P(C_{n}|x) p(x) dx$$

$$+ \int_{0}^{\infty} P(C_{n}|x) p(x) dx$$

$$+ \int_{0}^{\infty} P(C_{n}|x) p(x) dx$$

$$= P(C_{n}) \int_{0}^{\infty} p(x|C_{n}) dx$$

$$+ P(C_{n}) \int_{0}^{\infty} p(x|C_{n}) dx$$

$$+ P(C_{n}) \int_{0}^{\infty} p(x|C_{n}) dx$$

$$\frac{dp(error)}{dB} = P(C_1) \cdot p(\theta|C_1) - p(C_2) \cdot p(\theta|C_2) \stackrel{!}{=} 0$$

\Leftrightarrow $P(C_1) p(O(C_1) = P(C_2) \cdot p(O(C_2))$

(ii) No, can be true over a range of O.

iv) If $p(x|C_1) - N(1,1)$ and $p(x|C_2) \sim N(-1,1)$ and $P(C_1) = P(C_2) = 1/2$ then, although $\theta = 0$ satisfies the cond.

p(error) has a maximum at O.