Customer Segmentation

Github repo:

https://github.com/Trent-Kindvall/Cust omer-Segmentation

Problem

- In marketing finding and being able to target different customer segments is an important optimisation
- Especially with digital marketing you can target very niche populations and influence the click through rate and conversion rate

Problem

 This can be difficult because there is no way to check the accuracy. Which makes it a great candidate for an unsupervised model like K-means clustering

Data

	Gender	Age	Annual_Income	Spending_Score
count	200.000000	200.000000	200.000000	200.000000
mean	0.440000	38.850000	60.560000	50.200000
std	0.497633	13.969007	26.264721	25.823522
min	0.000000	18.000000	15.000000	1.000000
25%	0.000000	28.750000	41.500000	34.750000
50%	0.000000	36.000000	61.500000	50.000000
75%	1.000000	49.000000	78.000000	73.000000
max	1.000000	70.000000	137.000000	99.000000

Exploratory Data Analysis

Exploratory Data Analysis

Exploratory Data Analysis

2D Example

Evaluation (Interia)

Evaluation (Silhouette Coefficient)

ai: the average distance from all data points in the same cluster

bi: the average distance from all data points in the closest cluster

$$\frac{bi-ai}{max(ai,bi)}$$

Evaluation (Silhouette Coefficient)

Final Model

The best model I created was a K-means cluster with 6 centroids.

The .45 silhouette coefficient is a good