CLAIMS

1. (currently amended) A pharmaceutical composition comprising a solid amorphous dispersion of a cholesteryl ester transfer protein inhibitor and a concentration-enhancing polymer selected from the group consisting of hydroxypropyl methyl cellulose acetate succinate, hydroxypropyl methyl cellulose succinate, hydroxypropyl cellulose acetate succinate, hydroxyethyl methyl cellulose succinate, hydroxyethyl cellulose acetate succinate, hydroxypropyl methyl cellulose phthalate, hydroxyethyl methyl cellulose acetate succinate, hydroxyethyl methyl cellulose acetate phthalate, carboxyethyl cellulose, carboxymethyl cellulose, cellulose acetate phthalate, methyl cellulose acetate phthalate, ethyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate, hydroxypropyl methyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate succinate, hydroxypropyl methyl cellulose acetate succinate phthalate, hydroxypropyl methyl cellulose succinate phthalate, cellulose propionate phthalate, hydroxypropyl cellulose butyrate phthalate, cellulose acetate trimellitate, methyl cellulose acetate trimellitate, ethyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate, hydroxypropyl methyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate succinate, cellulose propionate trimellitate, cellulose butyrate trimellitate, cellulose acetate terephthalate, cellulose acetate isophthalate, cellulose acetate pyridinedicarboxylate, salicylic acid cellulose acetate, hydroxypropyl salicylic acid cellulose acetate, ethylbenzoic acid cellulose acetate, hydroxypropyl ethylbenzoic acid cellulose acetate, ethyl phthalic acid cellulose acetate, ethyl nicotinic acid cellulose acetate, and ethyl picolinic acid cellulose acetate;

wherein said dispersion has a single glass transition temperature and said cholesteryl ester transfer protein inhibitor has the structure of Formula IV

Formula IV

and pharmaceutically acceptable salts, enantiomers, or stereoisomers of said compounds;

wherein R_{IV-1} is hydrogen, Y_{IV}, W_{IV}-X_{IV} or W_{IV}-Y_{IV}; wherein W_{IV} is a carbonyl, thiocarbonyl, sulfinyl or sulfonyl; X_{IV} is -O-Y_{IV}, -S-Y_{IV}, -N(H)-Y_{IV} or -N-(Y_{IV})₂;

wherein Y_{IV} for each occurrence is independently Z_{IV} or a fully saturated, partially unsaturated or fully unsaturated one to ten membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or di-substituted with oxo, said optionally mono-substituted with Z_{IV} .

wherein Z_{IV} is a partially saturated, fully saturated or fully unsaturated three to eight membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said Z_{IV} substituent is optionally mono-, di- or tri-substituted independently with halo, (C_2-C_6) alkenyl, (C_1-C_6) alkyl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_6) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl substituent is optionally mono-, di- or tri-substituted independently with halo, hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6)

 C_6)alkylamino, said (C_1 - C_6)alkyl substituent is also optionally substituted with from one to nine fluorines;

 $R_{\text{IV-2}}$ is a partially saturated, fully saturated or fully unsaturated one to six membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen wherein said carbon atoms are optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with oxo, said carbon is optionally mono-substituted with hydroxy, said sulfur is optionally mono- or di-substituted with oxo, said nitrogen is optionally mono- or di-substituted with oxo; or said $R_{\text{IV-2}}$ is a partially saturated, fully saturated or fully unsaturated three to seven membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and nitrogen, wherein said $R_{\text{IV-2}}$ ring is optionally attached through (C_1-C_4) alkyl;

wherein said $R_{\text{IV-2}}$ ring is optionally mono-, di- or tri-substituted independently with halo, (C_2-C_6) alkenyl, (C_1-C_6) alkyl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl substituent is optionally mono-, di- or tri-substituted independently with halo, hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, oxo or (C_1-C_6) alkyloxycarbonyl;

with the proviso that R_{IV-2} is not methyl;

R_{IV-3} is hydrogen or Q_{IV};

wherein Q_{IV} is a fully saturated, partially unsaturated or fully unsaturated one to six membered straight or branched carbon chain wherein the carbons other than the connecting carbon, may optionally be replaced with one heteroatom selected from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono- substituted with oxo, said sulfur is optionally mono- or disubstituted with oxo, said nitrogen is optionally mono- or disubstituted with oxo, and said carbon chain is optionally mono-substituted with V_{IV};

wherein V_{IV} is a partially saturated, fully saturated or fully unsaturated three to eight membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said V_{IV} substituent is optionally mono-, di-, tri-, or tetra-substituted independently with halo, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, hydroxy, (C₁-C₆)alkoxy, (C₁- C_4)alkylthio, amino, nitro, cyano, oxo, carboxamoyl, mono-N- or di-N,N-(C_1 - C_6) alkylcarboxamoyl, carboxy, (C₁-C₆)alkyloxycarbonyl, mono-N- or di-N,N-(C₁-C₆)alkylamino wherein said (C₁-C₆)alkyl or (C₂-C₆)alkenyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, (C₁-C₆)alkoxy, (C₁-C₄)alkylthio, amino, nitro, cyano, oxo, carboxy, (C₁-C₆)alkyloxycarbonyl, mono-N- or di-N,N-(C₁- C_6)alkylamino, said (C_1 - C_6)alkyl or (C_2 - C_6)alkenyl substituents are also optionally substituted with from one to nine fluorines;

 R_{V-4} is Q_{V-1} or V_{V-1} :

wherein Q_{IV-1} a fully saturated, partially unsaturated or fully unsaturated one to six membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one heteroatom selected from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or disubstituted with oxo, said nitrogen is optionally mono- or di-substituted with oxo, and said carbon chain is optionally mono-substituted with

<u>V</u>IV-1;

wherein V_{IV-1} is a partially saturated, fully saturated or fully unsaturated three to six membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and nitrogen;

wherein said V_{IV-1} substituent is optionally mono-, di-, tri-, or tetra-substituted independently with halo, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, amino, nitro, cyano, (C₁-C₆)alkyloxycarbonyl, mono-N- or di-N,N-(C₁-C₆)alkylamino wherein said (C₁-C₆)alkyl substituent is optionally mono-substituted with oxo, said (C₁-C₆)alkyl substituent is also optionally substituted with from one to nine fluorines;

wherein either R_{IV-3} must contain V_{IV} or R_{IV-4} must contain V_{IV-1}; R_{IV-5}, R_{IV-6}, R_{IV-7} and R_{IV-8} are each independently hydrogen, a bond, nitro or halo wherein said bond is substituted with T_{IV} or a partially saturated, fully saturated or fully unsaturated (C₁-C₁₂) straight or branched carbon chain wherein carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen wherein said carbon atoms are optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or disubstituted with oxo, said nitrogen is optionally mono- or di-substituted with oxo, and said carbon is optionally mono-substituted with T_{IV};

wherein T_{IV} is a partially saturated, fully saturated or fully unsaturated three to eight membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or, a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said T_{IV} substituent is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_6) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino, said (C_1-C_6) alkyl substituent is also optionally substituted with from one to nine fluorines; and

wherein R_{IV-5} and R_{IV-6}, or R_{IV-6} and R_{IV-7}, and/or R_{IV-7} and R_{IV-8} may also be taken together and can form at least one four to eight membered ring that is partially saturated or fully unsaturated optionally having one to three heteroatoms independently selected from nitrogen, sulfur and oxygen;

wherein said ring or rings formed by $R_{\text{IV-5}}$ and $R_{\text{IV-6}}$, or $R_{\text{IV-6}}$ and $R_{\text{IV-7}}$, and/or $R_{\text{IV-7}}$ and $R_{\text{IV-8}}$ are optionally mono-, di- or tri-substituted independently with halo, (C_1-C_6) alkyl, (C_1-C_4) alkylsulfonyl, (C_2-C_6) alkenyl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino, said (C_1-C_6) alkyl substituent is also optionally substituted with from one to nine fluorines; with the proviso that when $R_{\text{IV-2}}$ is carboxyl or (C_1-C_4) alkylcarboxyl, then $R_{\text{IV-1}}$ is not hydrogen.

2. (currently amended) A pharmaceutical composition comprising a solid amorphous dispersion of a cholesteryl ester transfer protein (CETP) inhibitor and a concentration-enhancing polymer, said cholesteryl ester transfer protein inhibitor having a solubility in aqueous solution, in the absence of said concentration-enhancing polymer, of less than 10 μ g/ml at any pH of from 1 to 8, said concentration-enhancing polymer selected from the group consisting of hydroxypropyl methyl cellulose acetate.

hydroxypropyl methyl cellulose, hydroxypropyl cellulose, methyl cellulose, hydroxyethyl methyl cellulose, hydroxyethyl cellulose acetate, hydroxyethyl ethyl cellulose, hydroxypropyl methyl cellulose acetate succinate, hydroxypropyl methyl cellulose succinate, hydroxypropyl cellulose acetate succinate, hydroxyethyl methyl cellulose succinate, hydroxyethyl cellulose acetate succinate, hydroxypropyl methyl cellulose phthalate, hydroxyethyl methyl cellulose acetate succinate, hydroxyethyl methyl cellulose acetate phthalate, carboxyethyl cellulose, carboxymethyl cellulose, cellulose acetate phthalate, methyl cellulose acetate phthalate, ethyl cellulose acetate phthalate. hydroxypropyl cellulose acetate phthalate, hydroxypropyl methyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate succinate, hydroxypropyl methyl cellulose acetate succinate phthalate, hydroxypropyl methyl cellulose succinate phthalate, cellulose propionate phthalate, hydroxypropyl cellulose butyrate phthalate, cellulose acetate trimellitate, methyl cellulose acetate trimellitate, ethyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate, hydroxypropyl methyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate succinate, cellulose propionate trimellitate, cellulose butyrate trimellitate, cellulose acetate terephthalate, cellulose acetate isophthalate, cellulose acetate pyridinedicarboxylate, salicylic acid cellulose acetate, hydroxypropyl salicylic acid cellulose acetate, ethylbenzoic acid cellulose acetate, hydroxypropyl ethylbenzoic acid cellulose acetate, ethyl phthalic acid cellulose acetate, ethyl nicotinic acid cellulose acetate, and ethyl picolinic acid cellulose acetate;

wherein said dispersion has a single glass transition temperature and said cholesteryl ester transfer protein inhibitor has the structure of Formula IV

Formula IV

and pharmaceutically acceptable salts, enantiomers, or stereoisomers of said compounds;

wherein R_{IV-1} is hydrogen, Y_{IV} , W_{IV} - X_{IV} or W_{IV} - Y_{IV} ; wherein W_{IV} is a carbonyl, thiocarbonyl, sulfinyl or sulfonyl;

 X_{IV} is $-O-Y_{IV}$, $-S-Y_{IV}$, $-N(H)-Y_{IV}$ or $-N-(Y_{IV})_2$;

wherein Y_{IV} for each occurrence is independently Z_{IV} or a fully saturated, partially unsaturated or fully unsaturated one to ten membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or di-substituted with oxo, said nitrogen is optionally mono-, or di-substituted with oxo, and said carbon chain is optionally mono-substituted with Z_{IV} ;

wherein Z_{IV} is a partially saturated, fully saturated or fully unsaturated three to eight membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said Z_{IV} substituent is optionally mono-, di- or tri-substituted independently with halo, $(C_2\text{-}C_6)$ alkenyl, $(C_1\text{-}C_6)$ alkyl, hydroxy, $(C_1\text{-}C_6)$ alkoxy, $(C_1\text{-}C_6)$ alkylthio, amino, nitro, cyano, oxo, carboxy, $(C_1\text{-}C_6)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1\text{-}C_6)$ alkylamino wherein said $(C_1\text{-}C_6)$ alkyl substituent is optionally mono-, di- or tri-substituted independently with halo, hydroxy, $(C_1\text{-}C_6)$ alkoxy, $(C_1\text{-}C_4)$ alkylthio, amino, nitro, cyano, oxo, carboxy, $(C_1\text{-}C_6)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1\text{-}C_6)$ alkylamino, said $(C_1\text{-}C_6)$ alkyl substituent is also optionally substituted with from one to nine fluorines;

R_{IV-2} is a partially saturated, fully saturated or fully unsaturated one to six membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen wherein said carbon atoms are optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with oxo, said carbon is optionally mono- substituted with hydroxy, said sulfur is optionally mono- or di-substituted with oxo, said nitrogen is optionally mono- or di-substituted with oxo; or said R_{IV-2} is a partially saturated, fully saturated or fully unsaturated three to

seven membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and nitrogen, wherein said $R_{\text{IV-2}}$ ring is optionally attached through (C_1-C_4) alkyl;

wherein said $R_{\text{IV-2}}$ ring is optionally mono-, di- or tri-substituted independently with halo, $(C_2\text{-}C_6)$ alkenyl, $(C_1\text{-}C_6)$ alkyl, hydroxy, $(C_1\text{-}C_6)$ alkoxy, $(C_1\text{-}C_4)$ alkylthio, amino, nitro, cyano, oxo, carboxy, $(C_1\text{-}C_6)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1\text{-}C_6)$ alkylamino wherein said $(C_1\text{-}C_6)$ alkyl substituent is optionally mono-, di- or tri-substituted independently with halo, hydroxy, $(C_1\text{-}C_6)$ alkoxy, $(C_1\text{-}C_4)$ alkylthio, oxo or $(C_1\text{-}C_6)$ alkyloxycarbonyl;

with the proviso that R_{IV-2} is not methyl;

R_{IV-3} is hydrogen or Q_{IV};

wherein Q_{IV} is a fully saturated, partially unsaturated or fully unsaturated one to six membered straight or branched carbon chain wherein the carbons other than the connecting carbon, may optionally be replaced with one heteroatom selected from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono- substituted with oxo, said sulfur is optionally mono- or disubstituted with oxo, and said carbon chain is optionally mono-substituted with V_{IV} ;

wherein V_{IV} is a partially saturated, fully saturated or fully unsaturated three to eight membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said V_{IV} substituent is optionally mono-, di-, tri-, or tetra-substituted independently with halo, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_6) alkylthio, amino, nitro, cyano, oxo, carboxamoyl, mono-N- or di-N,N- (C_1-C_6) alkylcarboxamoyl, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl or (C_2-C_6) alkenyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino, said (C_1-C_6) alkyl or (C_2-C_6) alkenyl substituents are also optionally substituted with from one to nine fluorines;

 R_{IV-4} is Q_{IV-1} or V_{IV-1} ;

wherein $Q_{\text{IV-1}}$ a fully saturated, partially unsaturated or fully unsaturated one to six membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one heteroatom selected from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono- or disubstituted with oxo, said sulfur is optionally mono- or disubstituted with oxo, and said carbon chain is optionally mono-substituted with $V_{\text{IV-1}}$.

wherein V_{IV-1} is a partially saturated, fully saturated or fully unsaturated three to six membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and nitrogen;

wherein said V_{1V-1} substituent is optionally mono-, di-, tri-, or tetra-substituted independently with halo, (C_1-C_6) alkyl, (C_1-C_6) alkoxy, amino, nitro, cyano, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyloxycarbonyl mono-substituted with oxo, said (C_1-C_6) alkyl substituent is also optionally substituted with from one to nine fluorines;

wherein either R_{IV-3} must contain V_{IV} or R_{IV-4} must contain V_{IV-1} ; R_{IV-5} , R_{IV-6} , R_{IV-7} and R_{IV-8} are each independently hydrogen, a bond, nitro or halo wherein said bond is substituted with T_{IV} or a partially saturated, fully saturated or fully unsaturated (C_1 - C_{12}) straight or branched carbon chain wherein carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen wherein said carbon atoms are optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or disubstituted with oxo, said nitrogen is optionally mono- or disubstituted with oxo, and said carbon is optionally mono-substituted with T_{IV} .

wherein T_{IV} is a partially saturated, fully saturated or fully unsaturated three to eight membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or, a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said T_{IV} substituent is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_6) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-

N,N- $(C_1$ - C_6)alkylamino wherein said $(C_1$ - C_6)alkyl substituent is optionally mono-, di- or trisubstituted independently with hydroxy, $(C_1$ - C_6)alkoxy, $(C_1$ - C_4)alkylthio, amino, nitro, cyano, oxo, carboxy, $(C_1$ - C_6)alkyloxycarbonyl, mono-N- or di-N,N- $(C_1$ - C_6)alkylamino, said $(C_1$ - C_6)alkyl substituent is also optionally substituted with from one to nine fluorines; and

wherein R_{IV-5} and R_{IV-6} , or R_{IV-6} and R_{IV-7} , and/or R_{IV-7} and R_{IV-8} may also be taken together and can form at least one four to eight membered ring that is partially saturated or fully unsaturated optionally having one to three heteroatoms independently selected from nitrogen, sulfur and oxygen;

wherein said ring or rings formed by $R_{\text{IV-5}}$ and $R_{\text{IV-6}}$, or $R_{\text{IV-6}}$ and $R_{\text{IV-7}}$, and/or $R_{\text{IV-7}}$ and $R_{\text{IV-8}}$ are optionally mono-, di- or tri-substituted independently with halo, $(C_1\text{-}C_6)$ alkyl, $(C_1\text{-}C_4)$ alkylsulfonyl, $(C_2\text{-}C_6)$ alkenyl, hydroxy, $(C_1\text{-}C_6)$ alkoxy, $(C_1\text{-}C_4)$ alkylthio, amino, nitro, cyano, oxo, carboxy, $(C_1\text{-}C_6)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1\text{-}C_6)$ alkylamino wherein said $(C_1\text{-}C_6)$ alkyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, $(C_1\text{-}C_6)$ alkoxy, $(C_1\text{-}C_4)$ alkylthio, amino, nitro, cyano, oxo, carboxy, $(C_1\text{-}C_6)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1\text{-}C_6)$ alkylamino, said $(C_1\text{-}C_6)$ alkyl substituent is also optionally substituted with from one to nine fluorines; with the proviso that when $R_{\text{IV-2}}$ is carboxyl or $(C_1\text{-}C_4)$ alkylcarboxyl, then $R_{\text{IV-1}}$ is not hydrogen; and

wherein said composition provides a maximum concentration of the CETP inhibitor in a use environment that is at least about ten-fold the maximum concentration provided by a control composition comprising an equivalent amount of the CETP inhibitor and free from said polymer.

3. (currently amended) A pharmaceutical composition comprising a solid amorphous dispersion of a cholesteryl ester transfer protein inhibitor and a concentration-enhancing polymer, said composition providing a maximum concentration of said cholesteryl ester transfer protein inhibitor in a use environment that is at least 10-fold the maximum concentration provided by a control composition comprising an equivalent amount of said cholesteryl ester transfer protein inhibitor and free from said concentration-enhancing polymer, said concentration-enhancing polymer selected from the group consisting of hydroxypropyl methyl cellulose acetate, hydroxypropyl methyl cellulose, hydroxypropyl cellulose, methyl cellulose, hydroxypropyl methyl cellulose acetate succinate, hydroxypropyl methyl cellulose succinate, hydroxypropyl cellulose acetate succinate, hydroxypropyl methyl cellulose succinate, hydroxypropyl cellulose acetate succinate, hydroxypropyl methyl cellulose succinate, hydroxypropyl cellulose succinate, hydroxypthyl methyl cellulose succinate, hydroxypthyl

cellulose acetate succinate, hydroxypropyl methyl cellulose phthalate, hydroxyethyl methyl cellulose acetate succinate, hydroxyethyl methyl cellulose acetate phthalate, carboxyethyl cellulose, carboxymethyl cellulose, cellulose acetate phthalate, methyl cellulose acetate phthalate, ethyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate, hydroxypropyl methyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate succinate, hydroxypropyl methyl cellulose acetate succinate phthalate, hydroxypropyl methyl cellulose succinate phthalate, cellulose propionate phthalate, hydroxypropyl cellulose butyrate phthalate, cellulose acetate trimellitate, methyl cellulose acetate trimellitate, ethyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate, hydroxypropyl methyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate succinate, cellulose propionate trimellitate, cellulose butyrate trimellitate, cellulose acetate terephthalate, cellulose acetate isophthalate, cellulose acetate pyridinedicarboxylate, salicylic acid cellulose acetate, hydroxypropyl salicylic acid cellulose acetate, ethylbenzoic acid cellulose acetate, hydroxypropyl ethylbenzoic acid cellulose acetate, ethyl phthalic acid cellulose acetate, ethyl nicotinic acid cellulose acetate, and ethyl picolinic acid cellulose acetate;

wherein said dispersion has a single glass transition temperature and said cholesteryl ester transfer protein inhibitor has the structure of Formula IV

Formula IV

and pharmaceutically acceptable salts, enantiomers, or stereoisomers of said compounds;

wherein R_{IV-1} is hydrogen, Y_{IV}, W_{IV}-X_{IV} or W_{IV}-Y_{IV}; wherein W_{IV} is a carbonyl, thiocarbonyl, sulfinyl or sulfonyl; X_{IV} is -O-Y_{IV}, -S-Y_{IV}, -N(H)-Y_{IV} or -N-(Y_{IV})₂; wherein Y_{IV} for each occurrence is independently Z_{IV} or a fully saturated, partially unsaturated or fully unsaturated one to ten membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said nitrogen is optionally mono-, or di-substituted with oxo, and said carbon chain is optionally mono-substituted with Z_{IV};

wherein Z_{IV} is a partially saturated, fully saturated or fully unsaturated three to eight membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said Z_{IV} substituent is optionally mono-, di- or tri-substituted independently with halo, (C_2-C_6) alkenyl, (C_1-C_6) alkyl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_6) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl substituent is optionally mono-, di- or tri-substituted independently with halo, hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino, said (C_1-C_6) alkyl substituent is also optionally substituted with from one to nine fluorines;

R_{IV-2} is a partially saturated, fully saturated or fully unsaturated one to six membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen wherein said carbon atoms are optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with oxo, said carbon is optionally mono-substituted with hydroxy, said sulfur is optionally mono- or di-substituted with oxo, said nitrogen is optionally mono- or di-substituted with oxo; or said R_{IV-2} is a partially saturated, fully saturated or fully unsaturated three to seven membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and nitrogen, wherein said R_{IV-2} ring is optionally attached through (C₁-C₄)alkyl;

wherein said R_{1V-2} ring is optionally mono-, di- or tri-substituted independently with halo, (C_2-C_6) alkenyl, (C_1-C_6) alkyl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino,

nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl substituent is optionally mono-, di- or trisubstituted independently with halo, hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, oxo or (C_1-C_6) alkyloxycarbonyl;

with the proviso that R_{IV-2} is not methyl;

R_{IV-3} is hydrogen or Q_{IV};

wherein Q_{IV} is a fully saturated, partially unsaturated or fully unsaturated one to six membered straight or branched carbon chain wherein the carbons other than the connecting carbon, may optionally be replaced with one heteroatom selected from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or disubstituted with oxo, said nitrogen is optionally mono- or disubstituted with oxo, and said carbon chain is optionally mono-substituted with V_{IV};

wherein V_{IV} is a partially saturated, fully saturated or fully unsaturated three to eight membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said V_{IV} substituent is optionally mono-, di-, tri-, or tetra-substituted independently with halo, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_6) alkylthio, amino, nitro, cyano, oxo, carboxamoyl, mono-N- or di-N,N- (C_1-C_6) alkylcarboxamoyl, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl or (C_2-C_6) alkenyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino, said (C_1-C_6) alkyl or (C_2-C_6) alkenyl substituents are also optionally substituted with from one to nine fluorines;

R_{IV-4} is Q_{IV-1} or $V_{I\dot{V}-1}$;

wherein Q_{IV-1} a fully saturated, partially unsaturated or fully unsaturated one to six membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one heteroatom selected from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono- or di-

substituted with oxo, said nitrogen is optionally mono- or di-substituted with oxo, and said carbon chain is optionally mono-substituted with $\underline{V}_{\text{IV-1}}$.

wherein V_{IV-1} is a partially saturated, fully saturated or fully unsaturated three to six membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and nitrogen;

wherein said $V_{\text{IV-1}}$ substituent is optionally mono-, di-, tri-, or tetra-substituted independently with halo, $(C_1\text{-}C_6)$ alkyl, $(C_1\text{-}C_6)$ alkoxy, amino, nitro, cyano, $(C_1\text{-}C_6)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1\text{-}C_6)$ alkylamino wherein said $(C_1\text{-}C_6)$ alkyl substituent is optionally mono-substituted with oxo, said $(C_1\text{-}C_6)$ alkyl substituent is also optionally substituted with from one to nine fluorines;

wherein either R_{IV-3} must contain V_{IV} or R_{IV-4} must contain V_{IV-1} ; R_{IV-5} , R_{IV-6} , R_{IV-7} and R_{IV-8} are each independently hydrogen, a bond, nitro or halo wherein said bond is substituted with T_{IV} or a partially saturated, fully saturated or fully unsaturated (C_1 - C_{12}) straight or branched carbon chain wherein carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen wherein said carbon atoms are optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or disubstituted with oxo, said nitrogen is optionally mono- or disubstituted with oxo, and said carbon is optionally mono-substituted with T_{IV} .

wherein T_{IV} is a partially saturated, fully saturated or fully unsaturated three to eight membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or, a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said T_{IV} substituent is optionally mono-, di- or tri-substituted independently with halo, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, hydroxy, (C₁-C₆)alkoxy, (C₁-C₄)alkylthio, amino, nitro, cyano, oxo, carboxy, (C₁-C₆)alkyloxycarbonyl, mono-N- or di-N,N-(C₁-C₆)alkylamino wherein said (C₁-C₆)alkyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, (C₁-C₆)alkoxy, (C₁-C₄)alkylthio, amino, nitro, cyano, oxo, carboxy, (C₁-C₆)alkyloxycarbonyl, mono-N- or di-N,N-(C₁-C₆)alkylamino, said (C₁-C₆)alkyl substituent is also optionally substituted with from one to nine fluorines; and wherein R_{IV-5} and R_{IV-6}, or R_{IV-6} and R_{IV-7}, and/or R_{IV-7} and R_{IV-8} may also be taken together and can form at least one four to eight membered ring that is partially saturated

or fully unsaturated optionally having one to three heteroatoms independently selected from nitrogen, sulfur and oxygen;

wherein said ring or rings formed by $R_{\text{IV-5}}$ and $R_{\text{IV-6}}$, or $R_{\text{IV-6}}$ and $R_{\text{IV-7}}$, and/or $R_{\text{IV-7}}$ and $R_{\text{IV-8}}$ are optionally mono-, di- or tri-substituted independently with halo, $(C_1\text{-}C_6)$ alkyl, $(C_1\text{-}C_4)$ alkylsulfonyl, $(C_2\text{-}C_6)$ alkenyl, hydroxy, $(C_1\text{-}C_6)$ alkoxy, $(C_1\text{-}C_4)$ alkylthio, amino, nitro, cyano, oxo, carboxy, $(C_1\text{-}C_6)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1\text{-}C_6)$ alkylamino wherein said $(C_1\text{-}C_6)$ alkyl substituent is optionally mono-, di- or trisubstituted independently with hydroxy, $(C_1\text{-}C_6)$ alkoxy, $(C_1\text{-}C_4)$ alkylthio, amino, nitro, cyano, oxo, carboxy, $(C_1\text{-}C_6)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1\text{-}C_6)$ alkylamino, said $(C_1\text{-}C_6)$ alkyl substituent is also optionally substituted with from one to nine fluorines; with the proviso that when $R_{\text{IV-2}}$ is carboxyl or $(C_1\text{-}C_4)$ alkylcarboxyl, then $R_{\text{IV-1}}$ is not hydrogen.

4. (currently amended) A pharmaceutical composition comprising a solid amorphous dispersion of a cholesteryl ester transfer protein inhibitor and a polymer, said composition providing a relative bioavailability that is at least 4 relative to a control composition comprising an equivalent amount of said cholesteryl ester transfer protein inhibitor and free from said polymer, said polymer selected from the group consisting of hydroxypropyl methyl cellulose acetate, hydroxypropyl methyl cellulose, hydroxypropyl cellulose, methyl cellulose, hydroxyethyl methyl cellulose, hydroxyethyl cellulose acetate, hydroxyethyl ethyl cellulose, hydroxypropyl methyl cellulose acetate succinate, hydroxypropyl methyl cellulose succinate, hydroxypropyl cellulose acetate succinate, hydroxyethyl methyl cellulose succinate, hydroxyethyl cellulose acetate succinate, hydroxypropyl methyl cellulose phthalate, hydroxyethyl methyl cellulose acetate succinate, hydroxyethyl methyl cellulose acetate phthalate, carboxyethyl cellulose, carboxymethyl cellulose, cellulose acetate phthalate, methyl cellulose acetate phthalate, ethyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate, hydroxypropyl methyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate succinate, hydroxypropyl methyl cellulose acetate succinate phthalate, hydroxypropyl methyl cellulose succinate phthalate, cellulose propionate phthalate, hydroxypropyl cellulose butyrate phthalate, cellulose acetate trimellitate, methyl cellulose acetate trimellitate, ethyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate, hydroxypropyl methyl cellulose acetate trimellitate, hydroxypropyl cellulose

acetate trimellitate succinate, cellulose propionate trimellitate, cellulose butyrate trimellitate, cellulose acetate terephthalate, cellulose acetate isophthalate, cellulose acetate pyridinedicarboxylate, salicylic acid cellulose acetate, hydroxypropyl salicylic acid cellulose acetate, ethylbenzoic acid cellulose acetate, hydroxypropyl ethylbenzoic acid cellulose acetate, ethyl phthalic acid cellulose acetate, ethyl nicotinic acid cellulose acetate, and ethyl picolinic acid cellulose acetate;

wherein said dispersion has a single glass transition temperature and said cholesteryl ester transfer protein inhibitor has the structure of Formula IV

$$R_{IV-3}$$
 R_{IV-5} N OR_{IV-4} R_{IV-7} R_{IV-8} R_{IV-1}

Formula IV

and pharmaceutically acceptable salts, enantiomers, or stereoisomers of said compounds;

wherein R_{IV-1} is hydrogen, Y_{IV} , W_{IV} - X_{IV} or W_{IV} - Y_{IV} ; wherein W_{IV} is a carbonyl, thiocarbonyl, sulfinyl or sulfonyl;

 X_{IV} is -O-Y_{IV}, -S-Y_{IV}, -N(H)-Y_{IV} or -N-(Y_{IV})₂;

wherein Y_{IV} for each occurrence is independently Z_{IV} or a fully saturated, partially unsaturated or fully unsaturated one to ten membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or di-substituted with oxo, said nitrogen is optionally mono-, or di-substituted with oxo, and said carbon chain is optionally mono-substituted with Z_{IV} ;

wherein Z_{IV} is a partially saturated, fully saturated or fully unsaturated three to eight membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said Z_{IV} substituent is optionally mono-, di- or tri-substituted independently with halo, (C_2-C_6) alkenyl, (C_1-C_6) alkyl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_6) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl substituent is optionally mono-, di- or tri-substituted independently with halo, hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino, said (C_1-C_6) alkyl substituent is also optionally substituted with from one to nine fluorines;

 $R_{\text{IV-2}}$ is a partially saturated, fully saturated or fully unsaturated one to six membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen wherein said carbon atoms are optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with oxo, said carbon is optionally mono-substituted with hydroxy, said sulfur is optionally mono- or di-substituted with oxo; or said $R_{\text{IV-2}}$ is a partially saturated, fully saturated or fully unsaturated three to seven membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and nitrogen, wherein said $R_{\text{IV-2}}$ ring is optionally attached through (C_1-C_4) alkyl;

wherein said $R_{\text{IV-2}}$ ring is optionally mono-, di- or tri-substituted independently with halo, (C_2-C_6) alkenyl, (C_1-C_6) alkyl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl substituent is optionally mono-, di- or tri-substituted independently with halo, hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, oxo or (C_1-C_6) alkyloxycarbonyl;

with the proviso that R_{IV-2} is not methyl;

 R_{IV-3} is hydrogen or Q_{IV} ;

wherein Q_{IV} is a fully saturated, partially unsaturated or fully unsaturated one to six membered straight or branched carbon chain wherein the carbons other than the connecting carbon, may optionally be replaced with one heteroatom selected from

oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono- substituted with oxo, said sulfur is optionally mono- or disubstituted with oxo, said nitrogen is optionally mono- or disubstituted with oxo, and said carbon chain is optionally mono-substituted with V_{IV} ;

wherein V_{IV} is a partially saturated, fully saturated or fully unsaturated three to eight membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said V_{IV} substituent is optionally mono-, di-, tri-, or tetra-substituted independently with halo, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_6) alkylthio, amino, nitro, cyano, oxo, carboxamoyl, mono-N- or di-N,N- (C_1-C_6) alkylcarboxamoyl, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl or (C_2-C_6) alkenyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino, said (C_1-C_6) alkyl or (C_2-C_6) alkenyl substituents are also optionally substituted with from one to nine fluorines;

 R_{IV-4} is Q_{IV-1} or V_{IV-1} ;

wherein Q_{IV-1} a fully saturated, partially unsaturated or fully unsaturated one to six membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one heteroatom selected from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono- substituted with oxo, said sulfur is optionally mono- or disubstituted with oxo, said nitrogen is optionally mono- or disubstituted with oxo, and said carbon chain is optionally mono-substituted with

<u>V_{IV-1}:</u>

wherein V_{IV-1} is a partially saturated, fully saturated or fully unsaturated three to six membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and nitrogen;

wherein said V_{1V-1} substituent is optionally mono-, di-, tri-, or tetra-substituted independently with halo, (C_1-C_6) alkyl, (C_1-C_6) alkyl, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl

substituent is optionally mono-substituted with oxo, said (C₁-C₆)alkyl substituent is also optionally substituted with from one to nine fluorines;

wherein either R_{IV-3} must contain V_{IV} or R_{IV-4} must contain V_{IV-1}; R_{IV-5}, R_{IV-6}, R_{IV-7} and R_{IV-8} are each independently hydrogen, a bond, nitro or halo wherein said bond is substituted with T_{IV} or a partially saturated, fully saturated or fully unsaturated (C₁-C₁₂) straight or branched carbon chain wherein carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen wherein said carbon atoms are optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or disubstituted with oxo, said nitrogen is optionally mono- or disubstituted with oxo, and said carbon is optionally mono-substituted with T_{IV};

wherein T_{IV} is a partially saturated, fully saturated or fully unsaturated three to eight membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or, a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said T_{IV} substituent is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_6) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino, said (C_1-C_6) alkyl substituent is also optionally substituted with from one to nine fluorines; and

wherein R_{IV-5} and R_{IV-6} , or R_{IV-6} and R_{IV-7} , and/or R_{IV-7} and R_{IV-8} may also be taken together and can form at least one four to eight membered ring that is partially saturated or fully unsaturated optionally having one to three heteroatoms independently selected from nitrogen, sulfur and oxygen;

wherein said ring or rings formed by R_{IV-5} and R_{IV-6} , or R_{IV-6} and R_{IV-7} , and/or R_{IV-7} and R_{IV-8} are optionally mono-, di- or tri-substituted independently with halo, (C_1-C_6) alkyl, (C_1-C_4) alkylsulfonyl, (C_2-C_6) alkenyl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro,

cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino, said (C_1-C_6) alkyl substituent is also optionally substituted with from one to nine fluorines; with the proviso that when R_{IV-2} is carboxyl or (C_1-C_4) alkylcarboxyl, then R_{IV-1} is not hydrogen.

- 5. (original) The composition of any one of claims 1-4 wherein a major portion of said cholesteryl ester transfer protein inhibitor is amorphous.
- 6. (original) The composition of any one of claims 1-4 wherein said cholesteryl ester transfer protein inhibitor is substantially amorphous.
- 7. (original) The composition of any one of claims 1-4 wherein said cholesteryl ester transfer protein inhibitor is almost completely amorphous.
- 8. (original) The composition of any one of claims 1-4 wherein said dispersion is substantially homogeneous.
 - 9. (canceled)
- 10. (original) The composition of any one of claims 1-4 wherein said solid amorphous dispersion is mixed with additional concentration-enhancing polymer.
 - 11-16 (canceled)
 - 17. (canceled)
- 18. (original) The composition of any one of claims 1-4 wherein said cholesteryl ester transfer protein inhibitor is selected from the group consisting of
- [2S,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)methoxycarbonyl-amino]-2-isopropyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid isopropyl ester,
- [2S,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6-chloro-2-cyclopropyl-3,4-dihydro-2H-quinoline-1-carboxylic acid isopropyl ester.
- [2S,4S] 2-cyclopropyl-4-[(3,5-dichloro-benzyl)-methoxycarbonyl-amino]-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid isopropyl ester,

- [2S,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-cyclopropyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid tert-butyl ester,
- [2R,4R] 4-[(3,5-bis-trifluoromethyl-benzyl)methoxycarbonyl-amino]-2-cyclopropyl-6-trifluoromethyl-3,4-dihydro-2Hquinaline-1-carboxylic acid isopropyl ester;
- [2S,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-cyclopropyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid isopropyl ester,
- [2S,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-cyclobutyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid isopropyl ester,
- [2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-ethyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid isopropyl ester,
- [2S,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-methoxymethyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid isopropyl ester,
- [2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-ethyl-6trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid 2-hydroxy-ethyl ester,
- [2S,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-cyclopropyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester,
- [2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-ethyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester,
- [2S,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-cyclopropyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid propyl ester, and
- [2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-ethyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid propyl ester.
 - 19-34. (canceled)
- 35. (original) The composition of any one of claims 1-4 wherein said cholesteryl ester transfer protein inhibitor has a solubility in aqueous solution in the absence of said concentration-enhancing polymer of less than 10 μg/ml at any pH of from 1 to 8.
- 36. (original) The composition of claim 35 wherein said cholesteryl ester transfer protein inhibitor has an aqueous solubility of less than 2 µg/ml.
- 37. (original) The composition of claim 2 wherein said cholesteryl ester transfer protein inhibitor has an aqueous solubility of less than 2 µg/ml.

- 38. (original) The composition of claim 36 wherein said solubility is less than 0.5 $\mu g/mL$.
- 39. (original) The composition of claim 37 wherein said solubility is less than 0.5 ug/mL.
- 40. (original) The composition of any one of claims 1-4 wherein said cholesteryl ester transfer protein inhibitor has a dose-to-aqueous-solubility ratio of at least 1,000 ml.
- 41. (original) The composition of claim 40 wherein said dose-to-aqueous solubility ratio is at least 5,000 ml.
- 42. (original) The composition of claim 41 wherein said dose-to-aqueous solubility ratio is at least 10,000 ml.
- 43. (original) The composition of any one of claims 1-4 wherein said cholesteryl ester transfer protein inhibitor has a Clog P of greater than 4.
- 44. (original) The composition of claim 43 wherein said Clog P of said cholesteryl ester transfer protein inhibitor is greater than 5.
- 45. (original) The composition of claim 44 wherein said Clog P of said cholesteryl ester transfer protein inhibitor is greater than 5.5.
- 46. (original) The composition of any one of claims 1-4 wherein said concentration-enhancing polymer comprises a blend of polymers.
- 47. (original) The composition of any one of claims 1-4 wherein said concentration-enhancing polymer has at least one hydrophobic portion and at least one hydrophilic portion.
- 48. (original) The composition of any one of claims 1-4 wherein said concentration-enhancing polymer is an ionizable polymer.

- 49. (original) The composition of any one of claims 1-4 wherein said concentration-enhancing polymer is selected from the group consisting of ionizable cellulosic polymers, nonionizable cellulosic polymers, and vinyl polymers and copolymers having substituents selected from the group consisting of hydroxyl, alkylacyloxy, and cyclicamido.
- 50. (previously presented) The composition of any one of claims 2-4 wherein said concentration-enhancing polymer is a cellulosic polymer.
- 51. (original) The composition of claim 50 wherein said concentrationenhancing polymer is selected from the group consisting of hydroxypropyl methyl cellulose acetate, hydroxypropyl methyl cellulose, hydroxypropyl cellulose, methyl cellulose, hydroxyethyl methyl cellulose, hydroxyethyl cellulose acetate, and hydroxyethyl ethyl cellulose.
- 52. (original) The composition of claim 50 wherein said concentrationenhancing polymer is selected from the group consisting of hydroxypropyl methyl cellulose acetate succinate, hydroxypropyl methyl cellulose succinate, hydroxypropyl cellulose acetate succinate, hydroxyethyl methyl cellulose succinate, hydroxyethyl cellulose acetate succinate, hydroxypropyl methyl cellulose phthalate, hydroxyethyl methyl cellulose acetate succinate, hydroxyethyl methyl cellulose acetate phthalate, carboxyethyl cellulose, carboxymethyl cellulose, cellulose acetate phthalate, methyl cellulose acetate phthalate, ethyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate, hydroxypropyl methyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate succinate, hydroxypropyl methyl cellulose acetate succinate phthalate, hydroxypropyl methyl cellulose succinate phthalate, cellulose propionate phthalate, hydroxypropyl cellulose butyrate phthalate, cellulose acetate trimellitate, methyl cellulose acetate trimellitate, ethyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate, hydroxypropyl methyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate succinate, cellulose propionate trimellitate, cellulose butyrate trimellitate, cellulose acetate terephthalate, cellulose acetate isophthalate, cellulose acetate pyridinedicarboxylate, salicylic acid cellulose acetate, hydroxypropyl salicylic acid cellulose acetate, ethylbenzoic acid cellulose acetate, hydroxypropyl ethylbenzoic acid cellulose acetate, ethyl phthalic acid cellulose acetate, ethyl nicotinic acid cellulose acetate, and ethyl picolinic acid cellulose acetate.

26

- 53. (original) The composition of claim 50 wherein said concentration-enhancing polymer is selected from the group consisting of cellulose acetate phthalate, methyl cellulose acetate phthalate, ethyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate, hydroxypropyl methyl cellulose acetate phthalate, hydroxypropyl methyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate succinate, cellulose propionate phthalate, hydroxypropyl cellulose butyrate phthalate, cellulose acetate trimellitate, methyl cellulose acetate trimellitate, ethyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate, hydroxypropyl methyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate succinate, cellulose propionate trimellitate, cellulose butyrate trimellitate, cellulose acetate terephthalate, cellulose acetate isophthalate, cellulose acetate pyridinedicarboxylate, salicylic acid cellulose acetate, hydroxypropyl salicylic acid cellulose acetate, ethyl phthalic acid cellulose acetate, ethyl nicotinic acid cellulose acetate, and ethyl picolinic acid cellulose acetate.
- 54. (original) The composition of claim 50 wherein said concentration-enhancing polymer is selected from the group consisting of hydroxypropyl methyl cellulose acetate succinate, cellulose acetate phthalate, hydroxypropyl methyl cellulose phthalate, methyl cellulose acetate phthalate, cellulose acetate trimellitate, hydroxypropyl cellulose acetate phthalate, cellulose acetate terephthalate and cellulose acetate isophthalate.
- 55. (original) The composition of claim 54 wherein said concentrationenhancing polymer is selected from the group consisting of hydroxypropyl methyl cellulose acetate succinate, hydroxypropyl methyl cellulose phthalate, cellulose acetate phthalate, and cellulose acetate trimellitate.
- 56. (previously presented) The composition of any one of claims 1 and 4 wherein said concentration-enhancing polymer is present in an amount sufficient to permit said composition to provide a maximum concentration of said cholesteryl ester transfer protein inhibitor in a use environment that is at least 10-fold that of a control composition comprising an equivalent quantity of said cholesteryl ester transfer protein inhibitor and free from said concentration-enhancing polymer.

27

- 57. (original) The composition of claim 56 wherein said maximum concentration of said cholesteryl ester transfer protein inhibitor in said use environment is at least 50-fold that of said control composition.
- 58. (original) The composition of claim 57 wherein said maximum concentration of said cholesteryl ester transfer protein inhibitor in said use environment is at least 200-fold that of said control composition.
- 59. (original) The composition of claim 58 wherein said maximum concentration of said cholesteryl ester transfer protein inhibitor in said use environment is at least 1,000-fold that of said control composition.
- 60. (original) The composition of claim 3 wherein said maximum concentration of said cholesteryl ester transfer protein inhibitor in said use environment is at least 50-fold that of said control composition.
- 61. (original) The composition of claim 60 wherein said maximum concentration of said cholesteryl ester transfer protein inhibitor in said use environment is at least 200-fold that of said control composition.
- 62. (original) The composition of claim 61 wherein said maximum concentration of said cholesteryl ester transfer protein inhibitor in said use environment is at least 1,000-fold that of said control composition.
- 63. (original) The composition of any one of claims 1-4 wherein said composition provides in a use environment an area under the concentration versus time curve for any period of at least 90 minutes between the time of introduction into the use environment and about 270 minutes following introduction to the use environment that is at least about 5-fold that of a control composition comprising an equivalent quantity of said cholesteryl ester transfer protein inhibitor and free from said concentration-enhancing polymer.
- 64. (original) The composition of claim 63 wherein said composition provides in a use environment an area under the concentration versus time curve for any period of at least 90 minutes between the time of introduction into the use environment

and about 270 minutes following introduction to the use environment that is at least 25-fold that of said control composition.

- 65. (original) The composition of claim 64 wherein said composition provides in said use environment an area under the concentration versus time curve for any period of at least 90 minutes between the time of introduction into the use environment and about 270 minutes following introduction to the use environment that is at least 100-fold that of said control composition.
- 66. (original) The composition of claim 65 wherein said composition provides in said use environment an area under the concentration versus time curve for any period of at least 90 minutes between the time of introduction into the use environment and about 270 minutes following introduction to the use environment that is at least about 250-fold that of said control composition.
- 67. (original) The composition of any one of claims 1-3 wherein said composition provides a relative bioavailability that is at least 4 relative to a control composition comprising an equivalent quantity of said cholesteryl ester transfer protein inhibitor and free from said concentration-enhancing polymer.
- 68. (original) The composition of claim 67 wherein said relative bioavailability is at least 6 relative to said control composition.
- 69. (original) The composition of claim 68 wherein said relative bioavailability is at least 10 relative to said control composition.
- 70. (original) The composition of claim 69 wherein said relative bioavailability is at least 20 relative to said control composition.
- 71. (original) The composition of claim 4 wherein said relative bioavailability is at least 6 relative to said control composition.
- 72. (original) The composition of claim 4 wherein said relative bioavailability is at least 10 relative to said control composition.

- 73. (original) The composition of claim 4 wherein said relative bioavailability is at least 20 relative to said control composition.
- 74. (original) The composition of claim 3 wherein said use environment is *in vitro*.
- 75. (original) The composition of claim 3 wherein said use environment is *in vivo*.
- 76. (original) The composition of claim 75 wherein said use environment is the gastrointestinal tract of an animal.
- 77. (original) The composition of claim 76 wherein said animal is a human.
- 78. (original) The composition of claim 56 wherein said use environment is *in vitro*.
- 79. (original). The composition of claim 56 wherein said use environment is *in vivo*.
- 80. (original) The composition of claim 79 wherein said use environment is the gastrointestinal tract of an animal.
- 81. (original) The composition of claim 80 wherein said animal is a human.
- 82. (original) The composition of claim 63 wherein said use environment is *in vitro*.
- 83. (original) The composition of claim 63 wherein said use environment is *in vivo*.
- 84. (original) The composition of claim 83 wherein said use environment is the gastrointentinal tract of an animal.

- 85. (original) The composition of claim 84 wherein said animal is a human.
- 86. (original) The composition of any one of claims 1-4 wherein said composition is formed by solvent processing.
- 87. (original) The composition of claim 86 wherein said solvent processing is spray-drying.
- 88. (original) A method for treating atherosclerosis, peripheral vascular disease, dyslipidemia, hyperbetalipoproteinemia, hypoalphalipoproteinemia, hypercholesterolemia, hypertriglyceridemia, familial-hypercholesterolemia, cardiovascular disorders, angina, ischemia, cardiac ischemia, stroke, myocardial infarction, reperfusion injury, angioplastic restenosis, hypertension, vascular complications of diabetes, obesity or endotoxemia in a mammal (including a human being either male or female) by administering to a mammal in need of such treatment an atherosclerosis, peripheral vascular disease, dyslipidemia, hyperbetalipoproteinemia, hypoalphalipoproteinemia, hypercholesterolemia, hypertriglyceridemia, familial-hypercholesterolemia, cardiovascular disorders, angina, ischemia, cardiac ischemia, stroke, myocardial infarction, reperfusion injury, angioplastic restenosis, hypertension, vascular complications of diabetes, obesity or endotoxemia treating amount of a composition of any one of claims 1-4.
- 89. (previously presented) A method as recited in claim 88 wherein atherosclerosis is treated.
- 90. (previously presented) A method as recited in claim 88 wherein peripheral vascular disease is treated.
- 91. (previously presented) A method as recited in claim 88 wherein dyslipidemia is treated.
- 92. (previously presented) A method as recited in claim 88 wherein hyperbetalipoproteinemia is treated.

- 93. (previously presented) A method as recited in claim 88 wherein hypoalphalipoproteinemia is treated.
- 94. (previously presented) A method as recited in claim 88 wherein hypercholesterolemia is treated.
- 95. (previously presented) A method as recited in claim 88 wherein hypertriglyceridemia is treated.
- 96. (previously presented) A method as recited in claim 88 wherein cardiovascular disorders are treated.
- 97. (previously presented) A pharmaceutical composition comprising a solid amorphous dispersion of a cholesteryl ester transfer protein inhibitor of formula IV as defined in claim 1 and a concentration-enhancing polymer selected from the group consisting of hydroxypropyl methyl cellulose acetate succinate, hydroxypropyl methyl cellulose succinate, hydroxypropyl cellulose acetate succinate, hydroxyethyl methyl cellulose succinate, hydroxyethyl cellulose acetate succinate, hydroxypropyl methyl cellulose phthalate, hydroxyethyl methyl cellulose acetate succinate, hydroxyethyl methyl cellulose acetate phthalate, carboxyethyl cellulose, carboxymethyl cellulose, cellulose acetate phthalate, methyl cellulose acetate phthalate, ethyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate, hydroxypropyl methyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate succinate, hydroxypropyl methyl cellulose acetate succinate phthalate, hydroxypropyl methyl cellulose succinate phthalate, cellulose propionate phthalate, hydroxypropyl cellulose butyrate phthalate, cellulose acetate trimellitate, methyl cellulose acetate trimellitate, ethyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate, hydroxypropyl methyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate succinate, cellulose propionate trimellitate, cellulose butyrate trimellitate, cellulose acetate terephthalate, cellulose acetate isophthalate, cellulose acetate pyridinedicarboxylate, salicylic acid cellulose acetate, hydroxypropyl salicylic acid cellulose acetate, ethylbenzoic acid cellulose acetate, hydroxypropyl ethylbenzoic acid cellulose acetate, ethyl phthalic acid cellulose acetate, ethyl nicotinic acid cellulose acetate, and ethyl picolinic acid cellulose acetate:

wherein said composition provides a maximum concentration of the CETP inhibitor in a use environment that is at least about ten-fold the maximum concentration

provided by a control composition comprising an equivalent amount of the CETP inhibitor and free from said polymer.

98. (previously presented) A pharmaceutical composition comprising a solid amorphous dispersion of a cholesteryl ester transfer protein inhibitor of formula IV as defined in claim 1 and a concentration-enhancing polymer selected from the group consisting of hydroxypropyl methyl cellulose acetate succinate, hydroxypropyl methyl cellulose succinate, hydroxypropyl cellulose acetate succinate, hydroxyethyl methyl cellulose succinate, hydroxyethyl cellulose acetate succinate, hydroxypropyl methyl cellulose phthalate, hydroxyethyl methyl cellulose acetate succinate, hydroxyethyl methyl cellulose acetate phthalate, carboxyethyl cellulose, carboxymethyl cellulose, cellulose acetate phthalate, methyl cellulose acetate phthalate, ethyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate, hydroxypropyl methyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate succinate, hydroxypropyl methyl cellulose acetate succinate phthalate, hydroxypropyl methyl cellulose succinate phthalate, cellulose propionate phthalate, hydroxypropyl cellulose butyrate phthalate, cellulose acetate trimellitate, methyl cellulose acetate trimellitate, ethyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate, hydroxypropyl methyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate succinate, cellulose propionate trimellitate, cellulose butyrate trimellitate, cellulose acetate terephthalate, cellulose acetate isophthalate, cellulose acetate pyridinedicarboxylate, salicylic acid cellulose acetate, hydroxypropyl salicylic acid cellulose acetate, ethylbenzoic acid cellulose acetate, hydroxypropyl ethylbenzoic acid cellulose acetate, ethyl phthalic acid cellulose acetate, ethyl nicotinic acid cellulose acetate, and ethyl picolinic acid cellulose acetate; and

wherein said CETP inhibitor can exist within said solid amorphous dispersion as a pure phase, as a solid solution of CETP inhibitor homogeneously distributed throughout the polymer, or any combination of states that are intermediate.

99. (previously presented) A composition as defined in claim 98, which provides a maximum concentration of the CETP inhibitor in a use environment that is at least about ten-fold the maximum concentration provided by a control composition comprising an equivalent amount of the CETP inhibitor and free from said polymer.

100. (new) A composition as defined in any one of claims 1-4, wherein said compound is [2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-ethyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester.