MATH592 Introduction to Algebraic Topology

Pingbang Hu

January 24, 2022

${\bf Abstract}$

This course will use [HPM02] as the main text, but the order may differ here and there. Enjoy this fun course!

Contents

1 Foundation of Algebraic Topology 1						
	1.1	Homotopy	1			
	1.2	Homotopy Equivalence	5			
	1.3	CW Complexes	9			
	1.4	Operations on CW Complexes	13			
		1.4.1 Products	13			
		1.4.2 Wedge Sum	14			
		1.4.3 Quotients	14			
	1.5	Category Theory	15			
		1.5.1 Functor	17			
	1.6	Free Groups	19			
		1.6.1 Constructing the Free Groups F_S	21			
2	The	e Fundamental Group π_1	22			
Lecture 1: Homotopies of Maps 05 Jan. 10:00						
1 Foundation of Algebraic Topology						
1.1 Homotopy						

Definition 1.1 (Homotopy). Let X, Y be topological spaces. Let f, $g: X \to Y$ continuous maps. Then a *homotopy* from f to g is a 1-parameter family of maps that continuously deforms f to g, i.e., it's a continuous function $F: X \times I \to Y$, where I = [0, 1], such that

$$F(x,0) = f(x), \quad F(x,1) = g(x).$$

We often write $F_t(x)$ for F(x,t).

If a homotopy exists between f and g, we say they are homotopic and write

$$f \simeq q$$
.

If f is homotopic to a constant map, we call it *nullhomotopic*.

Figure 1: The continuous deforming from f to g described by F_t

Remark. Later, we'll not state that a map is continuous explicitly since we almost always assume this in this context.

Example. We first see some examples.

1. Any two maps (continuous) with specification

$$f, g: X \to \mathbb{R}^n$$

are homotopic by considering

$$F_t(x) = (1 - t)f(x) + tg(x).$$

We call it the straight line homotopy.

2. Let S^1 denotes the unit circle in \mathbb{R}^2 , and D^2 denotes the unit disk in \mathbb{R}^2 . Then the inclusion $f \colon S^1 \hookrightarrow D^2$ is nullhomotopic by considering

$$F_t(x) = (1-t)f(x)(+t\cdot 0).$$

Figure 2: The illustration of $F_t(x)$

We see that there is a homotopy from f(x) to 0 (the zero map which maps everything to 0), and since 0 is a constant map, hence it's actually a nullhomotopy.

3. The maps

$$S^1 \rightarrow S^1$$
 and $S^1 \rightarrow S^1$
 $\Theta \mapsto S^1$ $\Theta \mapsto -\Theta$

are **not** homotopy.

Remark. It will essentially **flip** the orientation, hence we can't deform one to another continuously.

Exercise. We first see some exercises.

1. A subset $S \subseteq \mathbb{R}^n$ is star-shaped if

$$\exists x_0 \in S \text{ s.t. } \forall x \in S,$$

the line from x_0 to x lies in S.

Figure 3: Star-shaped illustration

Show that id: $S \to S$ is nullhomotopic.

Answer. Consider

$$F_t(x) := (1 - t)x + tx_0,$$

which essentially just concentrates all points x to x_0 .

2. Suppose

$$X \xrightarrow{f_1} Y \xrightarrow{g_1} Z$$
.

where

$$f_0 \underset{\overline{F_t}}{\sim} f_1, \quad g_0 \underset{\overline{G_t}}{\sim} g_1.$$

Show

$$g_0 \circ f_0 \simeq g_1 \circ f_1$$
.

Answer. Consider $I \times X \to Z$. Then

$$\begin{array}{ccccc} X \times I & \to & Y \times I & \to & Z \\ (x,t) & \mapsto & (F_t(x),t) & \mapsto & G_t(F_t(x)). \end{array}$$

Remark. Noting that if one wants to be precise, you need to check the continuity of this construction.

3. How could you show 2 maps are **not** homotopic?

Answer.

Lecture 2: Homotopy Equivalence

07 Jan. 10:00

As previously seen. Two maps $f, g: X \to Y$ is homotopy if there exists a map

$$F_t(x) \colon X \times I \to Y$$

with the properties

- 1. Continuous
- 2. $F_0(x) = f(x)$
- 3. $F_1(x) = g(x)$

Remark. The continuity of F_t is an even stronger condition for the continuity of F_t for a fixed t.

We now introduce another concept.

Definition 1.2 (Homotopy relative). Given two spaces X, Y, and let $B \subseteq X$. Then a homotopy $F_t(x) \colon X \to Y$ is called *homotopy relative* B (denotes relB) if $F_t(b)$ is independent of t for all b.

Example. Let X = [0,1] and $B = \{0,1\}$. Then the homotopy of paths from $[0,1] \to X$ is rel $\{0,1\}$.

1.2 Homotopy Equivalence

With this, we can introduce the concept of homotopy equivalence.

Definition 1.3 (Homotopy Equivalence). A map $f: X \to Y$ is a homotopy equivalence if $\exists g: Y \to X$ such that

$$f \circ g \simeq \mathrm{id}_Y, \quad g \circ f \simeq \mathrm{id}_X.$$

We say that X, Y are homotopy equivalent, and g is called homotopy inverse of f.

Figure 4: Homotopy Equivalence

If X, Y are called *homotopy equivalent*, then we say that they have the same *homotopy type*.

Notation. We denote a closed n-disk as D^n .

Example. D^n is homotopy equivalent to a point.

We see that $f \circ g = \mathrm{id}_*$ and

$$g \circ f = \text{constant map at } \underbrace{0}_{g(*)},$$

which is homotopic to id_{D^n} by straight-line homotopy $F_t(x) = tx$.

Note. We say that a space is contractible if H is homotopy equivalent to a point.

Before doing exercises, we introduce two new concepts.

Definition 1.4 (Retraction). Given $B \subseteq X$, a retraction from X to B is a map $f: X \to X$ (or $X \to B$) such that $\forall b \in B$ f(b) = b, namely $r|_B = \mathrm{id}_B$. Or one can see this from

$$B \xrightarrow[roi]{i} X \xrightarrow[roi]{r} B$$

where r is a retraction if and only if $r \circ i = \mathrm{id}_B$, where i is an inclusion identity. If r exists, B is a retract of X.

Definition 1.5 (Deformation retraction). Given X and $B \subseteq X$, a (strong) deformation retraction $F_t \colon X \to X$ onto B is a homotopy relB from the id $_X$ to a retraction from X to B. i.e.,

$$F_0(x) = x \quad \forall x \in X$$

$$F_1(x) \in B \quad \forall x \in X$$

$$F_t(b) = b \quad \forall t \ \forall b \in B.$$

Exercise. We now see some problems.

1. Let $X \simeq Y$. Show X is path-connected if and only if Y is.

Answer. Suppose X is path-connected. Then we see that given two points x_1 and x_2 in X, there exists a path $\gamma(t)$ with

$$\gamma \colon [0,1] \to X$$
, $\gamma(0) = x_1$, $\gamma(1) = x_2$.

Since $X \simeq Y$, then there exists a pair of f and g such that $f: X \to Y$ and $g: Y \to X$ with

$$f \circ g \simeq \operatorname{id}_Y, \quad g \circ f \simeq \operatorname{id}_X.$$

(Notice the abuse of notation)

For any two y_1 and $y_2 \in Y$, we want to construct a path $\gamma'(t)$ such that

$$\gamma': [0,1] \to Y, \quad \gamma'(0) = y_1, \quad \gamma'(1) = y_2.$$

Firstly, we let $g(y_1) =: x_1$ and $g(y_2) =: x_2$. From the argument above, we know there exists such a γ starting at $x_1 = g(y_1)$ ending at $x_2 = g(y_2)$. Now, consider $f(\gamma(t)) = (f \circ \gamma)(t)$ such that

$$f \circ \gamma \colon I \to Y$$
, $f \circ \gamma(0) = y'_1$, $f \circ \gamma(1) = y'_2$,

we immediately see that y'_1 and y'_2 is path connected. Now, we claim that y_1 and y'_1 are path connected in Y, hence so are y_2 and y'_2 . To see this, note that

$$f \circ g \simeq \mathrm{id}_Y$$

which means that there exists $F\colon Y\times I\to Y$ such that

$$\begin{cases}
F(y_1,0) = f \circ g(y_1) = f(x_1) = f(\gamma(0)) = (f \circ \gamma)(0) = y_1' \\
F(y_1,1) = \mathrm{id}_Y(y_1) = y_1.
\end{cases}$$

Since F is continuous in I, we see that there must exist a path connects y_1 and y'_1 . The same argument applies to y_2 and y'_2 . Now, we see that the path

$$y_1 \rightarrow y_1' \rightarrow y_2' \rightarrow y_2$$

is a path in Y for any two y_1 and y_2 , which shows Y is path-connected.

Figure 5: Demonstration of the proof

Challenge: One can further show that the connectedness is also preserved by any homotopy equivalence.

2. Show that if there exists deformation retraction from X to $B \subseteq X$, then $X \simeq B$.

Lecture 3: Deformation Retraction

10 Jan. 10:00

As previously seen. A deformation retraction is a homotopy of maps $rel B X \to X$ from id_X to a retraction from X to B. Then B is a deformation retract.

Example. We can also show

1. S^1 is a deformation retraction of $D^2 \setminus \{0\}$. Indeed, since

$$F_t(x) = t \cdot \frac{x}{\|x\|} + (1-t)x.$$

Figure 6: The deformation retraction of $D^{2\setminus\{0\}}$ is just to enlarge that hold and push all the interior of D^2 to the boundary, which is S^1

2. \mathbb{R}^n deformation retracts to 0. Indeed, since

$$F_t(x) = (1-t)x.$$

This implies that $\mathbb{R}^n \simeq *$, hence we see that

- dimension
- compactness
- etc.

are <u>not</u> homotopy invariants.

3. S^1 is a deformation retract of a cylinder and a Möbius band.

For a cylinder, consider $X \times I \to X$. Define homotopy on a closed rectangle, then verify it induces map on quotient.

For a Möbius band, we define a homotopy on a closed rectangle, then verify that it respect the equivalence relation.

Finally, we use the universal property of quotient topology to argue that we get a homotopy on Möbius band.

Upshot: Möbius band $\simeq S^1 \simeq$ cylinder, hence the orientability is <u>not</u> homotopy invariant.

Figure 7: The deformation retraction for Cylinder and Möbius band

Lecture 4: Cell Complex (CW Complex)

12 Jan. 10:00

As previously seen. We saw that

- homotopy equivalence
- homotopy invariants
 - path-connectedness
- not invariant
 - dimension
 - orientability
 - compactness

1.3 CW Complexes

Example. Let's start with a few examples.

- 1. Constructing spheres:
 - S^1 (up to homeomorphism)

- \bullet S^2
 - glue boundary of 2-disk to a point
 - glue 2 disks onto a circle

Figure 8: Left: Glue a 2-disk to a point along its boundary. Right: Glue 2 disks to S^1 .

The gluing instruction to construct S^2 in the right-hand side can be demonstrated as follows.

 $\bullet \ T = S^1 \times S^1$

view as gluing instructions

vertex +2 edges +2-disks.

Specifically, we have

Formally, we have the following definition.

Notation. Let D^n denotes a closed n-disk (or n-ball)

$$D^n \simeq \{x \in \mathbb{R}^n \colon \|x\| \le 1\} \,.$$

And let S^n denotes an n-sphere

$$S^n \simeq \{x \in \mathbb{R}^{n+1} \colon ||x|| = 1\}.$$

Lastly, we call a point as a θ -cell, and the interior of D^n int (D^n) for $n \geq 1$ as a n-cell.

Definition 1.6 (CW Complex). A CW Complex is a topological space constructed inductively as

- 1. X^0 (the <u>0-skeleton</u>) is a set of discrete points.
- 2. We inductively construct the <u>n-skeleton</u> X^n from X^{n-1} by attaching n-cells e^n_{α} , where α is the index.

The gluing instructions glued by an <u>attaching map</u> is that $\forall \alpha, \exists$ continuous map φ_{α}

$$\varphi_{\alpha} \colon \partial D_{\alpha}^n \to X^{n-1},$$

then

$$X^n = \left(X^{n-1} \coprod_{\alpha} D^n_{\alpha}\right) / x \sim \varphi_{\alpha}(x)$$

with identification $x \sim \varphi_{\alpha}(x)$ for all $x \in \partial D_{\alpha}^{n}$ with quotient topology.

3.

$$X = \bigcup_{n=0} X^n,$$

and let \overline{w} denotes weak topology. Then

$$u \subseteq X$$
 is open $\iff \forall n \ u \cap X^n$ is open.

If all cells have dimension less than N and a $\exists N$ -cell, then $X = X^N$ and we call it N-dim CW complex.

Remark. We write $X^{(n)}$ for *n*-skeleton if we need to distinguish from the Cartesian product.

Example. Let's look at some examples.

- 1. 0-dim CW complex is a discrete space.
- 2. 1-dim CW complex is a graph.
- 3. A CW complex X is <u>finite</u> if it has finitely many cells.

Definition 1.7 (CW subcomplex). A CW subcomplex $A \subseteq X$ is a closed subset equal to a union of cells

$$e_{\alpha}^{n} = \operatorname{int}\left(D_{\alpha}^{n}\right).$$

Remark. This inherits a CW complex structure.

Exercise. Given the following gluing instruction:

Check the images of attaching maps.

identify Torus, Klein bottle, Cylinder, Möbius band, 2-sphere, $\mathbb{R}P$.

Answer. We see that

- 1. Torus 2. Cylinder 3. 2-sphere
- 4. Klein bottle 5. Möbius band 6. $\mathbb{R}P$

Notation. We call the real projection space as $\mathbb{R}P$, and we also have so-called complex projection space, denote as $\mathbb{C}P$.

Lecture 5: Operation on Spaces

14 Jan. 10:00

1.4 Operations on CW Complexes

1.4.1 Products

We can consider the product of two CW complexes given by a CW complex structure. Namely, given X and Y two CW complexes, we can take two cells e^n_α from X and e^m_β from Y and form the product space $e^n_\alpha \times e^m_\beta$, which is homeomorphic to an n+m-cell. We then take these products as the cells for $X \times Y$.

Specifically, given X, Y are CW complexes, then $X \times Y$ has a cell structure

$$\left\{e^m_\alpha\times e^n_\alpha\colon e^m_\alpha\text{ is a m-cell on X}, e^n_\alpha\text{ is a n-cell on Y}\right\}.$$

Remark. The product topology may not agree with the weak topology on the $X \times Y$. However, they do agree if X or Y is locally compact $\underline{\text{or}}$ if X and Y both have at most countably many cells.

Note. Notice that if the product is wild enough, then the product topology may not agree with the weak topology.

1.4.2 Wedge Sum

Given X, Y are CW complexes, and $x_0 \in X^0$, $y_0 \in Y^0$ (only points). Then we define

$$X\vee Y=X\coprod Y$$

with quotient topology.

Remark. $X \vee Y$ is a CW complex.

1.4.3 Quotients

Let X be a CW complex, and $A \subseteq X$ subcomplex (closed union of cells), then

is a quotient space collapse A to one point and inherits a CW complex structure.

Remark. X / A is a CW complex.

0-skeleton

$$(X^0 - A^0) \prod *$$

where * is a point for A. Each cell of X-A is attached to $\left(X/A\right)^n$ by attaching map

$$S^n \xrightarrow{\phi_\alpha} X^n \xrightarrow{\text{quotient}} X^n / A^n$$

Example. Here is some interesting examples.

1. We can take the sphere and squish the equator down to form a wedge of two spheres.

2. We can take the torus and squish down a ring around the hole.

Figure 9: We see that X / A is homotopy equivalent to a 2-sphere wedged with a 1-sphere via extending the red point into a line, and then sliding the left point to the line along the 2-sphere towards the other point, forming a circle.

Lecture 6: A Foray into Category Theory

19 Jan. 10:00

1.5 Category Theory

We start with a definition.

Definition 1.8 (Object, Morphism). A category \mathscr{C} is 3 pieces of data

- A class of objects $\mathrm{Ob}(\mathscr{C})$
- $\forall X, Y \in \text{Ob}(\mathscr{C})$ a class of morphisms or <u>arrows</u>, $\text{Hom}_{\mathscr{C}}(X, Y)$.
- $\forall X, Y, Z \in \text{Ob}(\mathscr{C})$, there exists a composition law

$$\operatorname{Hom}(X,Y) \times \operatorname{Hom}(Y,Z) \to \operatorname{Hom}(X,Z)$$

 $(f,g) \mapsto g \circ f$

and 2 axioms

- Associativity. $(f \circ g) \circ h = f \circ (g \circ h)$ for all morphisms f, g, h where composites are defined.
- Identity. $\forall X \in \mathrm{Ob}(\mathscr{C}) \ \exists \mathrm{id}_X \in \mathrm{Hom}_{\mathscr{C}}(X,X)$ such that

$$f \circ \mathrm{id}_X = f, \quad \mathrm{id}_X \circ g = g$$

for all f, g where this makes sense.

Let's see some examples.

Example. We introduce some common category.

	$\mathrm{Ob}(\mathcal{C})$	$ \operatorname{Mor}(\mathcal{C}) $
set	Sets X	All maps of sets
$\underline{\text{fset}}$	Finite sets	All maps
Gp	Groups	Group Homomorphisms
$\frac{\mathrm{Gp}}{\mathrm{Ab}}$	Abelian groups	Group Homomorphisms
k-vect	Vector spaces over k	k-linear maps
Rng	Rings	Ring Homomorphisms
$\overline{\text{Top}}$	Topological spaces	Continuous maps
$\overline{\text{Haus}}$	Hausdorff Spaces	Continuous maps
hTop	Topological spaces	Homotopy classes of continuous maps
$\overline{\text{Top}^*}$	Based topological spaces ¹	Based maps ²

Remark. Any diagram plus composition law.

$$\operatorname{id}_A \stackrel{r}{\subset} A \longrightarrow B \supset \operatorname{id}_B$$
.

Definition 1.9 (monic, epic). A morphism $f: M \to N$ is *monic* if

$$\forall g_1, g_2 \ f \circ g_1 = f \circ g_2 \implies g_1 = g_2.$$

$$A \xrightarrow{g_1} M \xrightarrow{f} N$$

Dually, f is epic if

$$\forall g_1, g_2 \ g_1 \circ f = g_2 \circ f \implies g_1 = g_2.$$

$$M \xrightarrow{f} N \xrightarrow{g_1} B$$

Lemma 1.1. In <u>set, Ab, Top, Gp,</u> a map is monic if and only if f is injective, and epic if and only if f is surjective.

Proof. In set, we prove that f is monic if and only if f is injective. Suppose $f \circ g_1 = f \circ g_2$ and f is injective, then for any a,

$$f(g_1(a)) = f(g_2(a)) \implies g_1(a) = g_2(a),$$

hence $g_1 = g_2$.

$$f \colon X \to Y, \quad f(x_0) = y_0$$

is continuous.

¹Topological spaces with a distinguished base point $x_0 \in X$

²Continuous maps that presence base point $f:(x,x_0)\to (y,y_0)$ such that

Now we prove another direction, with contrapositive. Namely, we assume that f is <u>not</u> injective and show that f is not monic. Suppose f(a) = f(b) and $a \neq b$, we want to show such g_i exists. This is easy by considering

$$g_1: * \mapsto a, \quad g_2: * \mapsto b.$$

1.5.1 Functor

After introducing the category, we then see the most important concept we'll use, a *functor*. Again, we start with the definition.

Definition 1.10 (Functor). Given \mathscr{C}, \mathscr{D} be two categories. A ($\underline{\text{covariant}}$) functor

$$F:\mathscr{C}\to\mathscr{D}$$

is

1. a map on objects

$$F \colon \mathrm{Ob}(\mathscr{C}) \to \mathrm{Ob}(\mathscr{D})$$

 $X \mapsto F(X).$

2. maps of morphisms

$$\operatorname{Hom}_{\mathscr{C}}(X,Y) \to \operatorname{Hom}_{\mathscr{D}}(F(X),F(Y))$$

 $[f\colon X \to Y] \mapsto [F(f)\colon F(X) \to F(Y)]$

such that

- $F(\mathrm{id}_X) = \mathrm{id}_{F(x)}$
- $F(f \circ g) = F(f) \circ F(g)$

Lecture 7: Functors

21 Jan. 10:00

As previously seen. Assume that we initially have a commutative diagram in $\mathscr C$ as

$$X \xrightarrow{f} Y \downarrow_{g \circ f} \downarrow_{Z}^{g}$$

After applying F, we'll have

$$F(X) \xrightarrow{F(f)} F(Y)$$

$$F(g \circ f) = F(g) \circ F(f) \qquad \downarrow F(g)$$

$$F(Z)$$

which is a commutative diagram in \mathcal{D} .

We can also have a so-called <u>contravariant</u> functor.

Definition 1.11 (Contravariant functor). Given \mathscr{C}, \mathscr{D} be two categories. A <u>contravariant functor</u>

$$F:\mathscr{C}\to\mathscr{D}$$

is

1. a map on objects

$$F \colon \mathrm{Ob}(\mathscr{C}) \to \mathrm{Ob}(\mathscr{D})$$

 $X \mapsto F(X).$

2. maps of morphisms

$$\operatorname{Hom}_{\mathscr{C}}(X,Y) \to \operatorname{Hom}_{\mathscr{D}}(F(Y),F(X))$$

 $[f\colon X \to Y] \mapsto [F(f)\colon F(Y) \to F(X)]$

such that

- $F(\mathrm{id}_X) = \mathrm{id}_{F(x)}$
- $F(f \circ g) = F(g) \circ F(f)$

Then, we see that in this case, when we apply a contravariant functor F, the diagram becomes

$$F(X) \xleftarrow{F(f)} F(Y)$$

$$F(g \circ f) = F(f) \circ F(g)$$

$$F(Z)$$

which is a commutative diagram in \mathcal{D} .

Example. Let see some examples.

1. Identity functor.

$$I \colon \mathscr{C} \to \mathscr{C}$$
.

2. Forgetful functors.

•

$$\begin{split} F \colon \underline{\mathrm{Gp}} &\to \underline{\mathrm{set}} \\ \overline{G} &\mapsto G^3 \\ [f \colon G \to H] &\mapsto [f \colon G \to H] \end{split}$$

•

$$F : \underline{\text{Top}} \to \underline{\text{set}}$$

$$X \mapsto X^4$$

$$[f \colon X \to Y] \mapsto [f \colon X \to Y]$$

 $^{{}^{3}}G$ is now just the underlying set of the group G.

3. Free functors.

$$\underbrace{\text{set}} \to \underbrace{k\text{-vect}}_{s \mapsto \text{"free"}} k\text{-vector space on } s$$

i.e., vector space with basis s

 $[f: A \to B] \mapsto [\text{unique } k\text{-linear map extending } f]$

4.

$$\frac{k - \text{vect}}{V \mapsto V^* = \text{Hom}_k(V, k)}$$

If we are working in a basis, then we have

$$A \mapsto A^T$$
.

Specifically, we care about two functors.

1.

$$\frac{\operatorname{Top}^*}{(X, x_0)} \to \frac{\operatorname{Gp}}{\Pi_1(X, x_0)}$$

where Π_1 is so-called fundamental group.

2.

$$\frac{\text{Top} \to \underline{\text{Ab}}}{X \mapsto \text{Hp}(X)}$$

where Hp is so-called p^{th} homology.

Let see the formal definition.

1.6 Free Groups

Definition 1.12 (Free group). Given a set S, the *free group* is a group F_S on S with a map $S \to F_S$ satisfying the universal property.

If G is any group, $f \colon S \to G$ is any map of sets, f extends uniquely to group homomorphism $\overline{f} \colon F_S \to G$.

$$S \longrightarrow F_S$$

$$\downarrow \exists ! \overline{f} : \text{gp hom}$$

$$G$$

 $^{^4}X$ is now just the underlying set of the topological space X.

Note. This defines a natural bijection

$$\operatorname{Hom}_{\underline{\operatorname{set}}}(S, \mathscr{U}(G)) \cong \operatorname{Hom}_{\operatorname{Gp}}(F_S, G),$$

where $\mathscr{U}(G)$ is the forgetful functor from the category of groups to the category of sets. This is the statement that the free functor and the forgetful functor are adjoint; specifically that the free functor is the left adjoint (appears on the left in the Hom's above).

Definition 1.13 (Adjoints functor). A <u>free</u> and <u>forgetful</u> functors are *adjoints*.

Remark. Whenever we state a universal property for an object (plus a map), an object (plus a map) may or may not exist. If such object exists, then it defines the object **uniquely up to unique isomorphism**, so we can use the universal property as the *definition* of the object (plus a map).

Lemma 1.2. Universal property defines F_S (plus a map $S \to F(S)$) uniquely up to unique isomorphism.

Proof. Fix S. Suppose

$$S \to F_S$$
, $S \to \widetilde{F}_S$

both satisfy the unique property. By universal property, there exist maps such that

$$S \longrightarrow \widetilde{F}_{S} \qquad S \longrightarrow F_{S}$$

$$\downarrow_{\exists ! \varphi} \qquad \downarrow_{\exists ! \psi}$$

$$F_{S} \qquad \widetilde{F}_{S}$$

We'll show φ and ψ are inverses (and the unique isomorphism making above commute). Since we must have the following two commutative graphs.

Hence, we see that

where the identity makes these outer triangles commute, then by the uniqueness in universal property, we must have

$$\varphi \circ \psi = \mathrm{id}_{F_S}, \qquad \psi \circ \varphi = \mathrm{id}_{\widetilde{F}_S},$$

so φ and ψ are inverses (thus group isomorphism).

Lecture 8: The Fundamental Group π_1

24 Jan. 10:00

Example. In category \underline{Ab} free Abelian group on a set S is

$$\bigoplus_{S} \mathbb{Z}$$

In category of fields, no such thing as ${\it free}$ field on ${\it S}$.

1.6.1 Constructing the Free Groups F_S

Proposition 1.1. The free group defined via the universal property before exists.

Proof. We'll just give a construction below. First, we see the definition.

Definition 1.14. Fix a set S, and we define a <u>word</u> as a finite sequence (possibly \emptyset) in the formal symbols

$$\{s, s^{-1} \mid s \in S\}$$
.

Then we see that elements in F_S are equivalence classes of words with the equivalence relation being

• delete ss^{-1} or $s^{-1}s$. i.e.,

$$vs^{-1}sw \sim vw$$

 $vss^{-1}w \sim vw$

for every word $v, w, s \in S$,

with the group operation being concatenation.

Example. Given words ab^{-1} , bba, their product is

$$ab^{-1} \cdot bba = ab^{-1}bba = aba.$$

Exercise. There are something we can check.

- $1. \ \,$ This product is well-defined on equivalence classes.
- 2. Every equivalence class of words has a unique reduced form, namely the representation.
- 3. Check that F_S satisfies the universal property with respect to the map

$$S \to F_S, \quad s \mapsto s.$$

2 The Fundamental Group π_1

We start with the definition.

Definition 2.1 (Path). A path in a space X is a continuous map

$$\gamma\colon I\to X$$

where I = [0, 1].

Definition 2.2 (Homotopy path). A homotopy of paths γ_0 , γ_1 is a homotopy from γ_0 to γ_1 rel $\{0,1\}$.

Example. Fix $x_1, x_0 \in X$, then \exists homotopy of paths is an equivalence relation on paths from x_0 to x_1 (i.e., γ with $\gamma(0) = x_0, \gamma(1) = x_1$).

Definition 2.3 (Path composition). For paths α, β in X with $\alpha(1) = \beta(0)$, the *composition*^a $\alpha \cdot \beta$ is

$$(\alpha \cdot \beta)(t) := \begin{cases} \alpha(2t), & \text{if } t \in \left[0, \frac{1}{2}\right] \\ \beta(2t - 1), & \text{if } t \in \left[\frac{1}{2}, 1\right]. \end{cases}$$

 $[^]a$ Also named product, concatenation.

Remark. By the pasting lemma, this is continuous, hence $\alpha \cdot \beta$ is actually a path from $\alpha(0)$ to $\beta(1)$.

Definition 2.4 (Reparameterization). Let $\gamma: I \to X$ be a path, then a reparameterization of γ is a path

$$\gamma' \colon I \xrightarrow{\varphi} I \xrightarrow{\gamma} X$$

where φ is <u>continuous</u> and

$$\varphi(0)=0, \quad \varphi(1)=1.$$

Exercise. A path γ is homotopic rel $\{0,1\}$ to all of its reparameterizations.

HW

Exercise. Fix $x_1, x_1 \in X$. Then <u>Homotopy of paths</u> (relative $\{0, 1\}$) is an equivalence relation on paths from x_0 to x_1 .

Definition 2.5 (Fundamental Group). Let X denotes the space and let $x_0 \in X$ be the base point. The fundamental group of X based at x_0 , denoted by $\pi_1(X, x_0)$, is a group such that

• Elements: Homotopy classes rel $\{0,1\}$ of paths $[\gamma]$ where γ is a **loop** with $\gamma(0) = \gamma(1) = x_0^a$

- Operation: Composition of paths.
- Identity: Constant loop γ based at x_0 such that

$$\gamma \colon I \to X, \quad t \mapsto x_0$$

 \bullet Inverses: The inverse $[\gamma]^{-1}$ of $[\gamma]$ is represented by the loop $\overline{\gamma}$ such that

$$\overline{\gamma}(t) = \gamma(1-t).$$

^aWe say γ is **based** at x_0 .

Proof. We need to prove that the above define a group.

-HV

Theorem 2.1. If X is path-connected, then

$$\forall x_0, x_1 \in X \quad \pi_1(X, x_0) \cong \pi_1(X, x_1).$$

Remark. We often write $\pi_1(X)$ up to isomorphism.

Proof.

Exercise. Composition of paths is well-defined on homotopy classes $rel\{0,1\}$.

Exercise. If X is a contractible space, then X is path connected and $\pi_1(X)$ is trivial.

Appendix

References

[HPM02] A. Hatcher, Cambridge University Press, and Cornell University. Department of Mathematics. *Algebraic Topology*. Algebraic Topology. Cambridge University Press, 2002. ISBN: 9780521795401. URL: https://books.google.com/books?id=BjKs86kosqgC.