Math 323 - Review 1 Answers - Spring 25

Note: Recall that parametrizations are not unique.

1.) (a.) orthogonal (b.) neither (c.) parallel

2.)
$$23x + 4y + 7z = 70$$

3.)
$$(2, -1, 5)$$

4.)
$$\ell_1$$
: parallel to ℓ_0
 ℓ_2 : skew to ℓ_0

$$\ell_3$$
: intersects ℓ_0

5.)
$$2x - 4y - 5z = 1$$

6.)
$$x = 3 + 7t$$
, $y = 1 + 11t$, $z = -t$

7.)
$$x = -2 + 3t$$
, $y = 1 - 4t$, $z = -10 - 2t$

8.)
$$\mathbf{r}'(t) = \langle e^{t\sin(3t)}[\sin(3t) + 3t\cos(3t)], \frac{3t+10}{(3t^2+2)^{3/2}}, \frac{3t\sec^3(\sqrt{1+t^2})\tan(\sqrt{1+t^2})}{\sqrt{1+t^2}} \rangle$$

9.)
$$x = 5 - 16t$$
, $y = 2 - 14t$, $z = 4 + 5t$

10.)
$$\mathbf{r}(t) = \langle \frac{1}{3}t^3 + 1, e^t + 2, 3 - \cos(t) \rangle$$

11.)
$$< e^t - \ln(e^t + 1), \tan^{-1}(e^t), \frac{1}{2} \ln \left| \frac{e^t - 1}{e^t + 1} \right| > + \mathbf{C}$$

(b.)
$$\sqrt{37} - \sqrt{10} + \ln(\frac{\sqrt{37} - 1}{2\sqrt{10} - 2})$$
 (= $\sqrt{37} - \sqrt{10} + \ln(\frac{2\sqrt{10} + 2}{\sqrt{37} + 1})$)

13.) (a.) Show. (b.)
$$ln(3) - \frac{1}{2}$$

14.) (a.)
$$\frac{5\sqrt{3}}{g}$$
 km (b.) $\frac{3.75}{g}$ km

15.)
$$(5, 15, 2)$$
 and $(19, 133, 12)$

16.)
$$<\frac{\sqrt{3}}{2}, \frac{\sqrt{2}}{4}, \frac{\sqrt{2}}{4}> \text{ or } <\frac{\sqrt{3}}{2}, -\frac{\sqrt{2}}{4}, -\frac{\sqrt{2}}{4}>$$

17.)
$$(-64, 16, -4)$$
 and $(\frac{125}{8}, \frac{25}{4}, \frac{5}{2})$

18.)
$$\sqrt{14} - 3$$
 units

19.)
$$x = 2 + t$$
, $y = -3 + 4t$, $z = -1 + 3t$