Mini-project group 17 (Computer vision/analysis chessboard)

Adam Hall, Bhargav Panchal, Zhiyang Cheng

Intro

Computer Vision Chessboard

- Help people recognise stronger positions
- People can upload a picture of the chessboard and the program will suggest the best move

Goals and visions

- Calculate a score for the given board state
- Find the best possible move for the given board state

Demo

Board Analysis

• Boardstate analysis based on python chess

• Alpha Beta pruning with reordering based on capturing

• Board evaluation based on quality of pieces on the board

https://www.javatpoint.com/ai-alphabeta-pruning

Computer Vision

- 1. Chess Pieces Classification
- 2. Chess Location Detection

Deep learning

Using YOLO(You Only Look Once) v8 to Train the model

YOLO is based on CNN

Mean layers:

Conv2D layers

Batch Normalization layer

Max Pooling Layers

Data Sets

Raw data set only contain 289 pictures

Data Augmenting

```
hsv_h: 0.015
hsv_s: 0.7
hsv_v: 0.4
degrees: 0.4
translate: 0.1
scale: 0.5
shear: 0.0
perspective: 0.0
flipud: 0.0
fliplr: 0.5
bgr: 0.0
mosaic: 1.0
```

Training Result

F1 Score After 10 epoch

F1 Score After 50 epoch

Chess Pieces Location Detection

Chess Square Detection

- 1. Use Hough Transform to detect lines
- 2. Initialize corner list
- 3. For each pair of detected lines:
 - Calculate and validate intersections as corners
 - Draw corners on image for visualization

Hough Transform

- -Shape Detection Algorithm(Detecting Line)
 - Edge Detection —----> Line Detection
 - Canny Edge Detection

Canny Edge Detection

1. Convert Image to grayscale

Canny Edge Detection

2. Detecting edge based on the gradient intensity

Hough Transform

-Voting Procedure:

Each edge points will vote on the line they belonged

Lines have enough edge points will be consider as a valid line

Noise Points on the Line Detection

Clustering Algorithm

There will only have 81 intersection on the chess board

So I used K-means Clustering

81 Clusters.

True Corners

Assign Chess Pieces on Chessboard

- 1. Sort 81 corners in to a 9 x 9 array
- 2. Iterate through all quadrilateral in 9×9 array to assign the coordination of chess pieces on chessboard.

Point p inside the quadrilateral

Point p outside the quadrilateral

Assign Chess Pieces on Chessboard

What we learned

Creating deep network and the troubles that may occur

• Chess board creation from scratch with efficient results is very difficult

https://www.futurelearn.com/info/courses/train-the-healthcare-trainer/0/steps/97612

What we learned

Increasing the batch size for training will improve the speed of training, but not always.

Utilization Dedicated GPU memory

Shared GPU memory

99% 4.0/4.0 GB

GPU Memory

8.9/19.9 GB 5.0/15.9 GB

ry Driver version:

Driver date:

DirectX version:

Physical location:

PCI bus 1, device 0, function 0

31.0.15.5186

3/12/2024

12 (FL 11.0)

Hardware reserved memory: 48.8 MB