Directed Graph

Prepared by Maksuda Rabeya

9.2 DIRECTED GRAPHS

A directed graph G or digraph (or simply graph) consists of two things:

- A set V whose elements are called vertices, nodes, or points.
- (ii) A set E of ordered pairs (u, v) of vertices called arcs or directed edges or simply edges.

We will write G(V, E) when we want to emphasize the two parts of G. We will also write V(G) and E(G) to denote, respectively, the set of vertices and the set of edges of a graph G. (If it is not explicitly stated, the context usually determines whether or not a graph G is a directed graph.)

Suppose e = (u, v) is a directed edge in a digraph G. Then the following terminology is used:

- (a) e begins at u and ends at v.
- (b) u is the origin or initial point of e, and v is the destination or terminal point of e.
- (c) v is a successor of u.
- (d) u is adjacent to v, and v is adjacent from u.

If u = v, then e is called a *loop*.

The set of all successors of a vertex u is important; it is denoted and formally defined by

$$\operatorname{succ}(u) = \{v \in V | \text{ there exists an edge } (u, v) \in E\}$$

It is called the successor list or adjacency list of u.

EXAMPLE 9.1

(a) Consider the directed graph G pictured in Fig. 9-1(a). It consists of four vertices, A, B, C, D, that is, $V(G) = \{A, B, C, D\}$ and the seven following edges:

$$E(G) = \{e_1, e_2, \dots, e_7\} = \{(A, D), (B, A), (B, A), (D, B), (B, C), (D, C), (B, B)\}$$

The edges e_2 and e_3 are said to be *parallel* since they both begin at B and end at A. The edge e_7 is a *loop* since it begins and ends at B.

Fig. 9-1

(b) Suppose three boys, A, B, C, are throwing a ball to each other such that A always throws the ball to B, but B and C are just as likely to throw the ball to A as they are to each other. This dynamic system is pictured in Fig. 9-1(b) where edges are labeled with the respective probabilities, that is, A throws the ball to B with probability 1, B throws the ball to A and C each with probability 1/2, and C throws the ball to A and B each with probability 1/2.

Subgraphs

Let G = G(V, E) be a directed graph, and let V' be a subset of the set V of vertices of G. Suppose E' is a subset of E such that the endpoints of the edges in E' belong to V'. Then H(V', E') is a directed graph, and it is called a *subgraph* of G. In particular, if E' contains all the edges in E whose endpoints belong to V', then H(V', E') is called the subgraph of G generated or determined by V'. For example, for the graph G = G(V, E) in Fig. 9-1(a), H(V', E') is the subgraph of G determine by the vertex set V' where

$$V' = \{B, C, D\}$$
 and $E' = \{e_4, e_5, e_6, e_7\} = \{(D, B), (B, C), (D, C), (B, B)\}$

Degrees

Suppose G is a directed graph. The *outdegree* of a vertex v of G, written outdeg(v), is the number of edges beginning at v, and the *indegree* of v, written indeg(v), is the number of edges ending at v. Since each edge begins and ends at a vertex we immediately obtain the following theorem.

Theorem 9.1: The sum of the outdegrees of the vertices of a digraph G equals the sum of the indegrees of the vertices, which equals the number of edges in G.

A vertex v with zero indegree is called a source, and a vertex v with zero outdegree is called a sink.

EXAMPLE 9.2 Consider the graph G in Fig. 9-1(a). We have:

$$\begin{aligned} & \text{outdeg}\,(A) = 1, & \text{outdeg}\,(B) = 4, & \text{outdeg}\,(C) = 0, & \text{outdeg}\,(D) = 2, \\ & \text{indeg}\,(A) = 2, & \text{indeg}\,(B) = 2, & \text{indeg}\,(C) = 2, & \text{indeg}\,(D) = 1. \end{aligned}$$

As expected, the sum of the outdegrees equals the sum of the indegrees, which equals the number 7 of edges. The vertex C is a sink since no edge begins at C. The graph has no sources.

Paths

Let G be a directed graph. The concepts of path, simple path, trail, and cycle carry over from nondirected graphs to the directed graph G except that the directions of the edges must agree with the direction of the path. Specifically:

(i) A (directed) path P in G is an alternating sequence of vertices and directed edges, say,

$$P = (v_0, e_1, v_1, e_2, v_2, \dots, e_n, v_n)$$

such that each edge e_i begins at v_{i-1} and ends at v_i . If there is no ambiguity, we denote P by its sequence of vertices or its sequence of edges.

- (ii) The length of the path P is n, its number of edges.
- (iii) A simple path is a path with distinct vertices. A trail is a path with distinct edges.
- (iv) A closed path has the same first and last vertices.
- (v) A spanning path contains all the vertices of G.
- (vi) A cycle (or circuit) is a closed path with distinct vertices (except the first and last).
- (vii) A semipath is the same as a path except the edge e_i may begin at v_{i-1} or v_i and end at the other vertex. Semitrails and semisimple paths are analogously defined.

A vertex v is reachable from a vertex u if there is a path from u to v. If v is reachable from u, then (by eliminating redundant edges) there must be a simple path from u to v.

EXAMPLE 9.6 Let G be the directed graph in Fig. 9-4(a) with vertices v_1 , v_2 , v_3 , v_4 . Then the adjacency matrix A of G appears in Fig. 9-4(b). Note that the number of 1's in A is equal to the number (eight) of edges.

Fig. 9-4

Consider the powers A, A^2 , A^3 ,... of the adjacency matrix $A = [a_{ij}]$ of a graph G. Let

$$a_K(i, j)$$
 = the ij entry in the matrix A^K

Note that $a_1(i, j) = a_{ij}$ gives the number of paths of length 1 from vertex v_i to vertex v_j . One can show that $a_2(i, j)$ gives the number of paths of length 2 from v_i to v_j . In fact, we prove in Problem 9.17 the following general result.

EXAMPLE 9.7 Consider again the graph G and its adjacency matrix A appearing in Fig. 9-4. The powers A^2 , A^3 , and A^4 of A follow:

$$A^{2} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 2 & 0 & 1 & 2 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 2 \end{bmatrix}, \quad A^{3} = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 3 & 0 & 2 & 3 \\ 2 & 0 & 1 & 2 \\ 2 & 0 & 2 & 1 \end{bmatrix}, \quad A^{4} = \begin{bmatrix} 2 & 0 & 2 & 1 \\ 5 & 0 & 3 & 5 \\ 3 & 0 & 2 & 3 \\ 3 & 0 & 1 & 4 \end{bmatrix}$$

Observe that $a_2(4, 1) = 1$, so there is a path of length 2 from v_4 to v_1 . Also, $a_3(2, 3) = 2$, so there are two paths of length 3 from v_2 to v_3 ; and $a_4(2, 4) = 5$, so there are five paths of length 4 from v_2 to v_4 .

Remark: Let A be the adjacency matrix of a graph G, and let B_r be the matrix defined by:

$$B_r = A + A^2 + A^3 + \dots + A^r$$

Then the ij entry of the matrix B_r gives the number of paths of length r or less from vertex v_i to vertex v_j .

Path Matrix

Let G = G(V, E) be a simple directed graph with m vertices v_1, v_2, \ldots, v_m . The path matrix or reachability matrix of G is the m-square matrix $P = [p_{ij}]$ defined as follows:

$$p_{ij} = \begin{cases} 1 & \text{if there is a path from to } v_i \text{ to } v_j \\ 0 & \text{otherwise} \end{cases}$$

(The path matrix P may be viewed as the transitive closure of the relation E on V.)

EXAMPLE 9.8 Consider the graph G and its adjacency matrix A appearing in Fig. 9-4. Here G has m=4 vertices. Adding the matrix A and matrices A^2 , A^3 , A^4 in Example 9.7, we obtain the following matrix B_4 and also path (reachability) matrix P by replacing the nonzero entries in B_4 by 1:

$$B_4 = \begin{bmatrix} 4 & 0 & 3 & 4 \\ 11 & 0 & 7 & 11 \\ 7 & 0 & 4 & 7 \\ 7 & 0 & 4 & 7 \end{bmatrix} \quad \text{and} \quad P = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$

Examining the matrix B_4 or P, we see zero entries; hence G is not strongly connected. In particular, we see that the vertex v_2 is not reachable from any of the other vertices.

Breadth first search

Depth first search

