M 431: Assignment 7

Nathan Stouffer

Page 74 — Problem 15

Problem. If G is any group, $N \subseteq G$ and $\varphi: G \longrightarrow G'$ a homomorphism of G onto G', prove that the image, $\varphi(N)$, of N is a normal subgroup of G'.

Proof. We already know that the image $\varphi(N)$ is a subgroup of G' since the image of a subgroup under a homomorphism is a subgroup. So we only need to show that $\varphi(N)$ is normal in G'. Fix $\overline{g} \in G'$ and $\overline{n} \in \varphi(N) \subset G'$. Since φ is onto, we can pick $g \in G$ and $n \in N$ such that $\varphi(g) = \overline{g}$ and $\varphi(n) = \overline{n}$.

Now consider $\varphi(g^{-1})\varphi(n)\varphi(g)\in G'$. On the one hand, $\varphi(g^{-1})\varphi(n)\varphi(g)=\varphi(g)^{-1}\varphi(n)\varphi(g)=\overline{g}^{-1}\overline{ng}$. But also $\varphi(g^{-1})\varphi(n)\varphi(g)=\varphi(g^{-1}ng)=\varphi(n_1)\in\varphi(N)$ since φ is a homomorphism. Then our chain of equalities show that $\overline{g}^{-1}\overline{ng}\in\varphi(N)$. Since $\overline{g},\overline{n}$ were selected arbitrarily from G' and $\varphi(N)$ respectively, we just showed that $\overline{g}^{-1}\varphi(N)\overline{g}\subset\varphi(N)$. Which is to say that $\varphi(N)$ is a normal subgroup of G'.

Page 74 — Problem 16

Problem. If $N \subseteq G$ and $M \subseteq G$ and $MN = \{mn \mid m \in M, n \in \mathbb{N}\}$, prove that MN is a subgroup of G and that $MN \subseteq G$.

Proof. First let's show that MN is a subgroup of G. We will use the aesthetic definition. We know $MN \neq \emptyset$ because $e \in M, N$ so $ee = e \in MN$. Now for arbitrary $x, y \in MN$ we show that $xy^{-1} \in MN$. Let $x = mn \in MN$ and $y = \bar{m}\bar{n} \in MN$. Then $xy^{-1} = (mn)(\bar{m}\bar{n})^{-1} = mn\bar{n}^{-1}\bar{m}^{-1}$. Taking $n_1^{-1} = n\bar{n}^{-1}$, we get $mn\bar{n}^{-1}\bar{m}^{-1} = mn_1^{-1}m^{-1}n_1n_1^{-1}$ Then since M is normal in G we know $n_1^{-1}m^{-1}n_1 = m_1 \in M$ so we have $xy = mm_1n_1^{-1} = m_2n_2 \in MN$ where $m_2 = mm_1$ and $n_2 = n_1^{-1}$. Thus $MN \leq G$.

We now prove that MN is normal in G. We must show that $g^{-1}MNg \subset MN$. Fix any $g \in G$ and $mn \in MN$. Then $g^{-1}mng = g^{-1}mgg^{-1}ng$ but M,N are each normal so let $m_1 = g^{-1}mg \in M$ and $n_1 = g^{-1}ng \in N$ and we have $g^{-1}mng = m_1n_1 \in MN$. Since we selected the values arbitrarily, $g^{-1}MNg \subset MN$ and $MN \leq G$.

Page 83 — Problem 3

Problem. If G is a group and $N \leq G$, show that if \overline{M} is a subgroup of G/N and $M = \{a \in G \mid Na \in \overline{M}\}$, then M is a subgroup of G and $N \subset M$.

Proof. First let's show that $M \leq G$. Let's use the aesthetic definition again; we know the identity element $e \in M$ since Ne = N the identity element of G/N. Since \overline{M} is a subgroup of G/N, we know $N \in \overline{M}$. Now fix any $x, y \in M$ and we want to show $xy^{-1} \in M$. But $xy^{-1} \in M$ if $Nxy^{-1} \in \overline{M}$. Since $x, y \in M$ we know $Nx, Ny \in \overline{M}$. But \overline{M} is a subgroup of G/N so the aesthetic condition holds in \overline{M} : $(Nx)(Ny)^{-1} \in \overline{M}$. We know $(Ny)^{-1} = Ny^{-1}$ so $(Nx)(Ny)^{-1} = NxNy^{-1}$. Then by the operation defined in the subgroup $\overline{M} \leq G/N$, we have $NxNy^{-1} = Nxy^{-1} \in \overline{M}$ the exact condition we wanted to show.

Now we show that $N \subset M$. Pick any $x \in N$ and consider the right coset Nx. Since $x \in N$, we know Nx = N. We already worked out that $N \in \overline{M}$. So $Nx \in \overline{M}$ which means $x \in M$. Therefore $N \subset M$.

Page 83 — Problem 4

Problem. If \overline{M} in the previous problem is normal in G/N, show that the M defined is normal in G.

Proof. Since $\overline{M} \unlhd G/N$ we know that $(Ng)^{-1}\overline{M}(Ng) \subset \overline{M}$ for arbitary $g \in G$. That is to say, for any $Nm \in \overline{M}$ (where $m \in M$) there exists some $Nm' \in \overline{M}$ (where $m' \in M$) such that $Ng^{-1}NmNg = Nm'$. Then using properties of the subgroup $\overline{M} \subseteq G/N$, the LHS can be rearranged to say that $Ng^{-1}mg = Nm' \in \overline{M}$. Since $Ng^{-1}mg \in \overline{M}$, we must have $g^{-1}mg \in M$. But then g was arbitary in G and G and G arbitary in G and G and G arbitary in G arbitary in G and G arbitary in G and G arbitary in G arbitary in G arbitary in G arbitary in G and G arbitary in G arbi

Page 87 — Problem 3

Problem. Let G be the group of nonzero real numbers under multiplication and let $N = \{1, -1\}$. Prove that $G/N \cong$ positive real numbers under multiplication.

Proof. First let's explore the group G/N and show that the concept of G mod N even makes sense. We must have $N \subseteq G$, although since $G = \mathbb{R} \setminus \{0\}$ with multiplication is abelian we only need to show that $N \subseteq G$. The identity $1 \in G$ is a member of N. We inherit associativity since $N \subseteq G$. As far as inverses go, the only element not equal to 1 is -1, which is its own inverse. The only remaining property to prove is closure: $1*-1 = -1 \in N$ (the remaining combinations are shown by abelian or inverse properties). So $N \subseteq G$ and since G is abelian, $N \subseteq G$. Because of this, it makes sense to contemplate G/N.

Consider the group $G/N=\{Nx\mid x\in G\}$ where $Nx=\{nx\mid n\in N\}=\{x,-x\}$. Thus $G/N=\{\{x,-x\}\mid x\in \mathbb{R}\setminus\{0\}\}$. Let's now consider the function $\varphi:G/N\longrightarrow \mathbb{R}^+$ defined by $\varphi(Nx)=\varphi(\{x,-x\})=|x|\in \mathbb{R}^+$. The function φ is well defined since |x|=|-x|>0 and |x|>0 when $x\neq 0$, so |x| is in the co-domain and choosing x or -x results in the same output.

We now prove that φ is a homomorphism and a bijection, thus an isomorphism. For any $Nx, Ny \in G/N$, we have $\varphi(Nx)\varphi(Ny) = \varphi(\{x, -x\})\varphi(\{y, -y\}) = |x||y| = |xy|$. Also we have $\varphi(NxNy) = \varphi(Nxy) = |xy|$ by the group operation in G/N. So $\varphi(NxNy) = \varphi(Nx)\varphi(Ny)$ and φ is a homomorphism. Now we show that φ is 1-1. Pick $Nx, Ny \in G/N$ such that $\varphi(Nx) = \varphi(Ny) \implies |x| = |y|$ which means y = x or y = -x. Consider $Nx = \{x, -x\}$. If y = x, then certainly Nx = Ny and if y = -x then $Ny = N(-x) = \{-x, x\} = Nx$ so we have Nx = Ny in either case. Thus φ is an injection. What about a surjection? This is quite easy, for $x \in \mathbb{R}^+$ choose $Nx \in G/N$. Then $\varphi(Nx) = |x| = x$ since x > 0. Thus φ is a homomorphism and a bijection so φ is an isomorphism.

Since there is an isomorphism from G/N onto \mathbb{R}^+ (both with *), the two groups are isomorphic.

Page 88 — Problem 6

Problem. If G is a group and $N \subseteq G$, show that if $a \in G$ has finite order o(a), then Na in G/N has finite order m where $m \mid o(a)$.

Proof. We begin with a general lemma: if H is a finite, cyclic subgroup of G and $\sigma: G \longrightarrow K$ is a homomorphism then $\sigma(H)$ is a finite, cyclic subgroup of K. Here is the proof. We already know that the image of a subgroup under a homomorphism is a subgroup so we only need show the finite and cyclic properties. $\sigma(H)$ is finite since σ is a function and H (the set of inputs) is finite. Further, a group is cyclic if there exists some element x such that any member of the group y can be written as $y = x^j$ for some integer y. We know this to be true for y. Let y is y in the y induction for the proof) so y in the y induction for the proof) so y in the y is a finite, cyclic subgroup of y in the y is a finite, cyclic subgroup of y. The image of any element of y is a finite, cyclic subgroup of y is a finite, cyclic subgroup of y. The image of any element of y is a finite, cyclic subgroup of y in the y in the y in the y is a finite, cyclic subgroup of y. The image of any element of y is a finite, cyclic subgroup of y is a finite, cyclic subgroup of y. The image of any element of y is a finite, cyclic subgroup of y is a finite, cyclic subgroup of y is a finite, cyclic subgroup of y. The image of any element of y is a finite, cyclic subgroup of y is a finite, cyclic subgroup of y.

Now let's return to the problem at hand. Fix $a \in G$ such that o(a) is finite and let o(a) = n. Then let $A = \{e, a, a^2, ..., a^{n-1}\}$ a finite, cyclic subgroup of G. Let φ be the natural homomorphism from G onto G/N and $\psi = \varphi \mid_A$, the restriction of φ to A. Since ψ is a restriction of a homomorphism to G/N, the map $\psi: A \longrightarrow G/N$ is a homomorphism. Thus $\ker \psi = \{x \in A \mid \psi(x) = N \in G/N\}$ is a subgroup of A (it is also normal but we do not need this). Since $\ker \psi \leq A$, Lagrange's theorem tells us that $|\ker \psi| \mid |A|$. Let $k = |\ker \psi|$ then we must have $k \mid n$.

Let's now apply the lemma, so $\psi(A)$ is a finite, cyclic subgroup of G/N. Let $|\psi(A)| = m \le n$ and $\psi(A) = \{N, Na, Na^2, ..., Na^{m-1}\}$. Note that the right cosets listed in $\psi(A)$ are all mutually disjoint since $\psi(A)$ is of order m. For any $0 \le j < m$, pick any $Na^j \in \psi(A)$. Its pre-image $\psi^{-1}(Na^j) = \{x \in A \mid \psi(x) = Na^j\} = (\ker \psi)a^j$ by Lemma 2.5.4 from the text. Also note that the set of pre-images is mutually disjoint because $0 \le j < m$ and the elements listed in $\psi(A)$ are mutually disjoint.

We can also deduce that $|\ker\psi|=|(\ker\psi)a^j|$ since the map $R_{a^j}:\ker\psi\longrightarrow(\ker\psi)a^j$ defined by right multiplying by a^j is a bijection between the two sets (it has an inverse). Then since $|\ker\psi|=k$ we have $|(\ker\psi)a^j|=k$ for all $0\leq j< m$. Note that $A=\cup_{j=0}^{m-1}\psi^{-1}(Na^j)$ and the pre-images are mutually disjoint (this is important in the chain of equalities below). Taking the cardinality of both sides, we must have

$$|A| = n = \left| \bigcup_{j=0}^{m-1} \psi^{-1}(Na^j) \right| = \bigcup_{j=0}^{m-1} \left| \psi^{-1}(Na^j) \right| = \bigcup_{j=0}^{m-1} \left| (\ker \psi)a^j \right| = \bigcup_{j=0}^{m-1} k = m * k$$

Thus o(a) = n = m * k where $k \in \mathbb{N} \subset \mathbb{Z}$ which is equivalent to saying that $m \mid o(a)$, as desired!