2019/10/05

NFLS lcy

中文题目名称	送你一道小水题	送你一道中水题	送你一道大水题
英文题目名称	small	medium	large
源程序文件名	small.cpp	medium.cpp	large.cpp
输入文件名	small.in	medium.in	large.in
输出文件名	small.out	medium.out	large.out
每个测试点时限	1 秒	1 秒	2.5 秒
内存限制	256 MB	256 MB	256 MB

- 1. 可能不同人对题目难度有不同的见解;
- 2. 建议开 02 (鉴于出题人是在有 02 的情况下设定时限的);
- 3. 希望大家在提交目录中只保留自己的源程序,不保留可执行文件,样例文件或者其他文件.

Problem A. 送你一道小水题(small)

输入文件: small.in 输出文件: small.out 时间限制: 1 second

内存限制: 256 megabytes

题目描述

1cy 有一个 1 到 n 的排列, $1,2,3,\ldots,n$. 现在他想把这些数的位置改变一下,以得到一个新的排列 p_n . 可是,他不希望一个位置上前后两个数的差较大,因此,他规定对于每一个 i ($1 \le i \le n$),满足 $|p_i - i| \le 1$. 与此同时,他不希望新的排列与原来的完全相同,也就是,存在 i ($1 \le i \le n$) 使得 $p_i \ne i$. 现在,他想知道,有多少个排列 p_n 满足条件. 现在,他请你帮助他(只需要输出模 19491001 的结果).

输入格式

输入数据仅一行,包含一个正整数 n.

输出格式

输出文件仅一行,包含一个整数,代表排列 p 的个数模 19491001 的结果.

样例

small.in	small.out
4	4
6	12
19491001	0
20000000	15907472

样例解释

样例 1 中, 只有 4 个满足条件的排列 p: {1,2,4,3}, {1,3,2,4}, {2,1,3,4}, {2,1,4,3}.

数据范围与约定

对于 20% 的数据,满足 $n \leq 10$;

对于 40% 的数据,满足 $n \leq 20$;

对于 70% 的数据,满足 $n \leq 2 \times 10^7$;

对于 100% 的数据,满足 $n \leq 10^{18}$.

Problem B. 送你一道中水题(medium)

输入文件: medium.in 输出文件: medium.out 时间限制: 1 second

内存限制: 256 megabytes

题目描述

1cy 最近在研究一种游戏, 他取名叫"打假人". 至于他为什么要研究这样的游戏, 并取这样的名字, 相信各位选手心里清楚.

游戏大概是这样的,有n个假人,每个假人有一个血量 h_i . 1cy 事先知道每个假人的血量. 现在 1cy 要开始"打",每一轮"打",他可以选择一个还没倒的假人,将他的残留血量减少 1. 一个假人残留血量为 0 时就会倒下. 现在 1cy 要打倒m个假人,而且要让打的轮数越少越好.

1cy 兴奋地把这个游戏展示给他最想向别人展示的 1qs 看. 1qs 当然觉得这个游戏太简单了. 他想提升点难度. 一开始将这些假人全部打乱,现在 1cy 只知道血量,但是不知道这些血量到底对应着谁. 1cy 在打的过程中只能看到每个假人有没有倒,不知道他们还剩余多少血量,不过他能记住每个假人被打了多少下. 现在 1cy 想设计一个策略,使得无论这些假人被排成了什么顺序,都能保证"打"至多x 轮至少 m 个假人倒下. 1cy 可以根据这一轮这个假人有没有被"打"倒作出下一步的决策.

现在 1cy 想让这个 x 越小越好. 他想知道 x 的最小值, 当然他还是要请求你的帮助.

输入格式

本题每个测试点含有多组测试数据.

第一行一个正整数 T 表示一共有多少组测试数据.

接下来是 T 组测试数据. 每组测试数据:

- 第一行是两个正整数 n 和 m, 它们之间由空格隔开.
- 第二行是 n 个正整数 h_1, h_2, \ldots, h_n , 它们之间由空格隔开.

输出格式

对于每组测试数据,输出一行,包含一个整数表示答案 x 的最小值.

样例

medium.in	medium.out	
3	55	
2 1	80	
50 55	96	
2 1		
40 100		
4 2		
8 50 61 72		
见下发目录中 examples/medium2.in	见下发目录中 examples/medium2.ans	
见下发目录中 examples/medium3.in	见下发目录中 examples/medium3.ans	

样例解释

第一个样例中,第一组测试数据,1cy任选一个假人打55下一定能打倒一个假人.第二组测试数据,1cy 先选一个假人打40下,如果打不倒,那么换一个再打40下肯定能打倒另外那个假人.第二组测试数据中,每个假人先各打8下,保证能打倒一个假人,然后再任选一个打64下,肯定能打倒另一个假人.

数据范围与约定

对于 20% 的数据, 保证 m = 1;

另外存在 10% 的数据,保证 $n \le 20$;

另外存在 10% 的数据, 保证 n = 24;

另外存在 30% 的数据, 保证 n = 500;

对于 100% 的数据, 保证 $T \le 5$, $1 \le m \le n \le 2 \times 10^3$, $1 \le h_i \le 10^6$.

Problem C. 送你一道大水题(large)

输入文件: large.in 输出文件: large.out 时间限制: 2.5 seconds 内存限制: 256 megabytes

题目描述

1cv 又双叒叕想到了一个问题.

他现在有一个 $1 \sim n$ 的排列 p_n .

定义这个排列的一段区间 $p_l, p_{l+1}, \ldots, p_r$ 是好的当且仅当对 $p_l, p_{l+1}, \ldots, p_r$ 排序之后,得到的序列可以写作 $i, i+1, \ldots, i+(r-l)$ 的形式.

现在 1cy 想知道一共有多少个好的区间. 但是他依然不会. 于是他去请教 wzy.

wzy 瞄了一眼, 就说: "我还可以做多组询问,每组询问一个区间内有多少个好区间 (也就是, 给定 x, y, 求有多少对 l, r, 满足 $x \le l \le r \le y$ 且 $p_l, p_{l+1}, \ldots, p_r$ 是好的)."

1cy 又双叒叕不会了, 他又双叒叕请教您的帮助.

输入格式

第一行一个正整数 n,表示序列的大小.

第二行 n 个由空格隔开的正整数,表示 p_1, p_2, \ldots, p_n .

第三行一个正整数 q, 表示询问的个数.

接下来q行,每行两个之间由空格隔开的正整数,分别为x,y.

输出格式

输出 q 行. 第 i 行表示第 i 个询问的答案.

样例

large.in	large.out	
见下发目录中 examples/large1.in	见下发目录中 examples/large1.ans	
见下发目录中 examples/large2.in	见下发目录中 examples/large2.ans	

数据范围与约定

对于 10% 的数据, 保证对于所有的 $1 \le i \le n$, 满足 $p_i = i$;

另外存在 10% 的数据, 保证恰好存在 2 个 i 满足 $1 \le i \le n, p_i \ne i$;

另外存在 10% 的数据,保证 $n = q = 10^3$;

另外存在 10% 的数据,保证 $n = q = 10^4$;

另外存在 20% 的数据,保证 $n = q = 3.5 \times 10^4$;

另外存在 20% 的数据, 保证 $n = q = 10^5$;

对于 100% 的数据, 保证 $1 \le n, q \le 5 \times 10^5$.