Relación 5b de problemas

- 1. Sea X_1, \ldots, X_n una muestra de una v.a. exponencial con parámetro θ . Se desea contrastar, al nivel de significación $\alpha = 0.01, H_0: \theta = 5$ frente a $H_1: \theta = \theta_1$ (siendo $\theta_1 > 5$ un valor prefijado).
 - a) Obtener la región crítica del test UMP.
 - b) Calcular la probabilidad de error de tipo II en este test.
 - c) Supongamos que para una determinada muestra, se obtiene $\sum_{i=1}^{5} x_i = 5$. ¿Qué decisión habría que adoptar si se utiliza el test construido en (a)?
- 2. En una piscifactoría se desea contrastar la hipótesis nula de que el porcentaje de peces adultos que miden menos de 20 cm es como máximo del 10 %. Para ello, se toma una muestra de 6 peces y se rechaza H_0 si se encuentra más de uno con longitud inferior a 20 cm.
 - a) ¿Cuál es el nivel de significación de este contraste?
 - b) Calcula la potencia del contraste si en realidad hay un $20\,\%$ de peces que miden menos de $20~\mathrm{cm}$.
- 3. Se dispone de una muestra de v.a.i.i.d. de una población normal con desviación típica conocida $\sigma=2$. Se desea contrastar la hipótesis nula $H_0: \mu=5$ frente a $H_1: \mu=6$ con una probabilidad de error de tipo I igual a 0.05 y una probabilidad de error de tipo II igual a 0.363. Si se utiliza el contraste uniformemente más potente que da el lema de Neyman-Pearson, ¿cuál es el tamaño muestral necesario?
- **4.** Sea X_1, \ldots, X_{16} una muestra de tamaño 16 de una población normal de esperanza μ y varianza $\sigma^2 = 1$. Se desea contrastar $H_0: \mu = 0$ frente a $H_1: \mu \neq 0$.
 - a) Calcula la región crítica del contraste de razón de verosimilitudes de nivel $\alpha = 0.05$. ¿Qué decisión se toma a nivel $\alpha = 0.05$ si con 16 datos se ha obtenido una media muestral $\bar{x} = 1$?
 - b) Para el contraste anterior, ¿cuál es el valor de la función de potencia evaluada en $\mu = 0.75$?
- 5. Consideramos una muestra X_1, \ldots, X_n de v.a.i.i.d. de una población con función de densidad $f(x;\theta) = \theta(1-x)^{\theta-1}$, para $0 \le x \le 1$ y $\theta > 0$. Se desea contrastar $H_0: \theta = 2$ frente a $H_1: \theta \ne 2$. Si n = 60 y $\prod_{i=1}^{60} (1-x_i) = 0.0003$, ¿cuál es la decisión que hay que adoptar si se utiliza el comportamiento asintótico del contraste de razón de verosimilitudes?
- 6. Se desea contrastar la hipótesis nula de que una muestra aleatoria simple de tamaño n procede de una distribución uniforme en el intervalo [0,1] frente a la hipótesis alternativa de que procede de una distribución con función de densidad f(x) = 2x, si $0 \le x \le 1$.
 - a) Si n = 1, es decir, se dispone de una única observación, calcula la región crítica del contraste uniformemente más potente de nivel 0.05.
 - b) ¿Cuál es la probabilidad de error de tipo II de este contraste?
 - c) Si n = 12 y $\sum_{i=1}^{12} \log x_i = -4.5$, ¿qué decisión hay que tomar de acuerdo con el contraste uniformemente más potente de nivel $\alpha = 0.05$?
- 7. Sean X_1, \ldots, X_n v.a.i.i.d. de una población con función de densidad $f(x; \theta) = e^{-(x-\theta)}$, si $x \ge \theta$ (y 0 en caso contrario). Escribe la región crítica del contraste de razón de verosimilitudes de nivel α para contrastar $H_0: \theta \le \theta_0$ frente a $H_1: \theta > \theta_0$.

- 8. Sea X_1, \ldots, X_n una m.a.s. de una distribución F_{θ} tal que $F_{\theta}(x) = F(x-\theta)$, donde F es continua, estrictamente creciente y F(0) = 1/2 (es decir, F tiene mediana 0 y θ es la mediana de F_{θ}). Queremos contrastar $H_0: \theta \leq 0$ frente a $H_0: \theta > 0$. Para ello utilizamos el contraste definido por la región crítica $R = \{T_n > c\}$, donde $T_n = \#\{i: X_i > 0\}$ es el número de observaciones positivas en la muestra.
 - a) ¿Cuál es la distribución de T_n ? ¿Cuánto valen, en función de θ , $\mathbb{E}(T_n)$ y $\mathbb{V}(T_n)$?
 - b) Determina cuánto debe valer el valor crítico c para que el contraste tenga nivel de significación α aproximadamente.
 - c) Supongamos que la muestra es de tamaño n=36 y procede de una distribución normal de media θ y varianza 1. Calcula la función de potencia del contraste anterior si $\alpha=0.05$.
- 9. A partir de una única observación X con distribución exponencial de parámetro θ se quiere contrastar la hipótesis nula H_0 : $\theta = 1$ frente a la alternativa H_1 : $\theta = 2$.
 - (a) Escribe la región crítica del contraste uniformemente más potente de tamaño $\alpha = 0.2$.
 - (b) ¿Cuál es la probabilidad de error de tipo II del contraste?
 - (c) Una vez observado el valor de X resultó x=0.1. ¿Cuál es el p-valor del contraste correspondiente a este valor?

Observación: La densidad de una exponencial de parámetro $\theta > 0$ es $f(x) = \theta e^{-\theta x}$ si $x \ge 0$.

10. Una v.a. positiva tiene la siguiente función de densidad:

$$f(x;\theta) = \frac{\theta}{(\theta+x)^2}, \quad x > 0, \quad \theta > 0.$$

Consideramos el contraste de hipótesis $H_0: \theta = 2$ frente a $H_1: \theta = 3$. Supongamos que sólo tenemos una observación x en la muestra (de tamaño n = 1). Dar la expresión explícita de la región de rechazo (región crítica) del test uniformemente más potente de nivel $\alpha = 0.05$.