Datum: 30.12.2022	~	
číslo úlohy: 7	M ěř ení odpor ů pomocí p ř evodník ů R/U	Vaněček Adam

Zadání:

Změřte sadu rezistorů a normálů pomocí převodníku R/U

Schéma zapojení:

Velké odpory:

Malé odpory:

Použité přístroje:

Název	Označení	Parametry	Ev. Číslo
Zdroj	U	33V/2A	LE2 1030
Referenční zdroj	U _r	1V a 10V	-
Operační zesilovač	OZ		LE 2382
Tranzistor	T	KD 501 NPN	-
Odporový normál (malé R)	Rn	1 Ω	LE 2209
Odporová dekáda (velké R)	Rn	11111110 Ω	LE2 5056
Měřený odpor	Rx	0,1Ω	LE1 1935
Měřený odpor	Rx	0,01Ω	LE1 1933
Měřený odpor	Rx	0,001Ω	LE1 1934
Měřený odpor	Rx	0,0001Ω	LE1 1932
Měřený odpor	Rx	390 – 100k Ω	-
Číslicový voltmetr	ČV	Keysight U3401A	LE5094

Teorie:

&1.1 Odvoď te vztah pro Rx

$$Ix = -In$$

$$\frac{U2}{Rx} = -\frac{Ur}{Rn}$$

$$Rx = -\frac{Rn}{Ur} * U2$$

&1.2 Vytvořte převodník R/U dle následujících požadavků

K dispozici máte zdroj referenčního napětí MAC01 - 10V OZ MAA 741CN napájený ze symetrického zdroje $\pm 15V$

 $4^{\frac{1}{2}}$ místný číslicový voltmetr s rozlišitelností 0.01mV Jaký odpor Rn zvolíte, aby zobrazený údaj na ČV byl:

- 1) $\vee \Omega (1 \ V \cong 1 \ \Omega) \Rightarrow RN = 10 \ \Omega$
- 2) $\vee k\Omega (1 V \cong 1 k\Omega) \Rightarrow RN = 10 k\Omega$
- 3) v M Ω (1 V \cong 1 M Ω) \Rightarrow RN = 10 M Ω

&1.3 Pro jednotlivé odpory Rn určete rozsah převodníku R/U a doplňte tabulku

Převod	Rn	Rmin	Rmax
1 V ≅ 1 Ω	10Ω	0,01mΩ	13Ω
$1 \text{ V} \cong 1 \text{ k}\Omega$	10kΩ	0,01Ω	13kΩ
$1 \text{ V} \cong 1 \text{ M}\Omega$	10ΜΩ	10Ω	13ΜΩ

&1.4 Jaký proud by musel být schopen dodat zdroj referenčního napětí a OZ převodníku v případě, že chceme, aby zobrazený údaj byl přímo v **Ω**? Je to možné?

1A – Ur ani Oz takový proud nedokáže dodat.

&2.1 Odvoď te vztah pro výpočet Rx

$$\frac{Ur}{Rn} = \frac{U2}{Rx}$$

$$Rx = \frac{Rn}{Ur} * U2$$

&2.2 Určete velikost odporu RN tak, aby údaj zobrazený na ČV byl přímo v Ω při UR = 1 V

$$Rx = \frac{Rn}{Ur} * U2 \rightarrow Rn = \frac{Ur*Rx}{U2} = \frac{1*1}{1} = 1\Omega$$

Pro zvolený odpor Rn určete rozsah převodníku R/U

Rmin = 0.01m Ω

Rmax = $12,4\Omega$

Postup:

Velké odpory:

- 1)Odvodili jsme si vztah pro Rx
- 2)Zvolili jsme si vhodné Rn pro měřené odpory (při změně Rn nesmí být Rn = 0Ω)
- 3) Změřili jsme jednotlivé opory pomocí multimetru
- 4)Změřili jsme jednotlivé odpory pomocí převodníku

Malé odpory:

- 1)Odvodili jsme si vztah pro Rx
- 2) Určili jsme si velikost odporového normálu (Rn)
- 3) Měření probíhalo 4 svorkově a pro zjištění jaká chyba nastane 2 svorkově.

Tabulka naměřených hodnot:

Velké odpory:

Převod	R _N (kΩ)	R _x (kΩ) zadané	R_X (k Ω) multimetrem	R_X (k Ω) převodníkem	∂R (%)	Stav
1V=1kΩ	10	0,39	0,386	0,386	-1,03	OK
		0,82	0,819	0,819	-0,12	OK
		4,7	4,68	4,67	-0,64	OK
		10	10	10	0,00	OK
1V=10kΩ	100	27	27,5	27,6	2,22	OK
		39	39,5	39,7	1,79	OK
		82	82,4	82	0	OK
		100	100,5	100	0	OK

Tolerance 5%

Malé odpory:

R _N (Ω)	R _χ (Ω)	Rx (mΩ) 4 svorky	Rx (mΩ) 2 svorky	
1	0,1	100,5	104,15	
	0,01	10	10,24	
	0,001	1	1,73	
	0,0001	0,09	1,76	

Příklad výpočtu:

$$\partial R = \frac{Rxnamerene - Rxzadane}{Rxzadane} * 100 = \frac{0,386 - 0,390}{0,390} * 100 = -1,03\%$$

Záv**ě**r:

Měřením velkých odporů proběhlo bez problémů. Všechny odpory odpovídají toleranci. U malých odporů jsme měřili 4 svorkově a 2 svorkově. 2 svorkové zapojení je výrazně nepřesnější.