TUTORIAL-1

- 1. The single-line diagram of a three-phase system is shown in Fig. 1. Using the common base $S_b = 50$ MVA, draw the impedance diagram in per unit including the load impedance. The three-phase load at bus 4 absorbs 60 MVA at 0.75 power factor (lagging), and lines 1, 2, and 3 have the reactance of 40Ω , 32Ω , and 30Ω , respectively.
 - A. Find out the Per-unit reactance of the generators and transformers.
 - B. Find out the impedance buses for lines 1, 2, and 3.
 - C. Find out the per-unit reactance of lines 1, 2, and 3.
 - D. Find out the per-unit load impedance for bus 4.

Device	S _n	U _{(L-L)n}	X _n
Generator G ₁ :	48 MVA	20 kV	20%
Generator G ₂ :	25 MVA	13.8 kV	15%
Transformer T1:	50 MVA	20/110 kV	8%
Transformer T2:	30 MVA	13.8/110 kV	6%
Transformer T3:	50 MVA	11/110 kV	10%

- 2. Consider a load that is connected to a transmission line defined by the following parameters:
 - A. The lightning load of 20 KW at unity power factor,
 - B. Induction motor load 100 KW at power factor 0.707 lagging,
 - C. Synchronous motor load of 50 KW at power factor 0.9 leading.

Calculate the total KW and KVA delivered by the generator and power factor at which it works.