L'indicateur RocketRSI

Une présentation de l'article "RocketRSI - A Solid Propellant For Your Rocket Science Trading" par John F. Ehlers

Présenté par Manuel Bolduc

dans le cadre du cours GES816

Sommaire de la présentation

- Contexte de l'article
 - Présentation de l'auteur
 - L'indicateur RSI
- Points Clés de la méthode Rocket RSI.
- Implémentation python de RocketRSI
- Application de la méthode RocketRSI sur le cours de l'action RY
- Comparaison entre la méthode RocketRSI et le RSI

Quelques mots sur l'auteur de l'article

John F Ehlers

- Auteur de plusieurs livres sur des stratégies d'investissement, dont Rocket Science for Traders: Digital Signal Processing Applications
- Nous avons notamment parlé en classe d'une de ses stratégies d'investissement, le Zero-Lag EMA

But de l'article: la méthode RocketRSI

La méthode RocketRSI est conçue afin de rendre l'utilisation de l'indicateur RSI plus flexible et plus facile à interpréter statistiquement

L'indicateur RSI (Indice de force relative)

2024-02

2024-03

RSI = 100*(1 - 1/(1+ H/B))

Indicateur RSI sur le cours de l'indice RY

H: moyenne des fermetures montantes des n derniers jours

B: moyenne des fermetures baissières des n derniers jours

RSI < 30: l'action est survendue

RSI > 70: l'action est surachetée

2024-06

2024-07

2024-08

2024-09

2024-10

2024-05

2024-04

Points clés de la méthode RocketRSI

- Simplifier le calcul de l'indicateur RSI afin qu'il oscille entre -1 et +1 plutôt que 0 et 100
- Ajouter une étape de lissage de données avant le calcul de l'indicateur RSI pour avoir un signal plus clair - utilisation du SuperSmoother
- Application d'une transformée de Fisher aux données afin de dégager des signaux statistiques clairs

Transformée de Fisher. Tirée de Wikipedia

Implémentation de la méthode RocketRSI en Python

```
def SuperSmootherFilter(prices, smoothlength = 8):
                                                                             def myrsi(prices, period=10):
                                                                                  prices = np.arrav(prices)
    Filt = np.zeros like(prices)
                                                                                  myrsi = np.zeros like(prices)
    al = np.exp(-np.sqrt(2)*np.pi/smoothlength)
                                                                                 deltas = np.diff(prices)
    b1 = 2*a1*np.cos(np.sgrt(2)*np.pi/smoothlength)
                                                                                  prices up = deltas*(np.sign(deltas) + 1)/2
    c2 = b1
                                                                                  prices down = -deltas*(1 - np.sign(deltas))/2
    c3 = -a1*a1
    c1 = 1 - c2 - c3
                                                                                  for i in range(len(prices)):
    for i in range(len(prices)):
                                                                                     if i < period - 1:</pre>
        if 1 < 3:
            Filt[i] = prices[i]
                                                                                         myrsi[i] = np.nan
                                                                                     else:
        else:
                                                                                         CU = np.sum(prices up[i - period+1:i+1])
            Filt[i] = c1*(prices[i] + prices[i-1])/2
                                                                                         CD = np.sum(prices down[i - period+1:i+1])
            Filt[i] += c2*Filt[i-1] + c3*Filt[i-2]
                                                                                         myrsi[i] = (CU - CD)/(CU + CD)
    return Filt
                                                                                  return myrsi
```

Le SuperSmootherFilter, pour lisser les données d'entrées

L'équation adapté de RSI pour que l'indicateur oscille entre -1 et 1

Implémentation de la méthode RocketRSI en Python (suite)

```
prices = np.array(daily_ry['Close'])
mom_prices = momentum(prices)
smooth_prices = SuperSmootherFilter(mom_prices)
myrsi_prices = myrsi(smooth_prices)

for i in range(len(myrsi_prices)):
    if myrsi_prices[i] > 0.999:
        myrsi_prices[i] = 0.999

if myrsi_prices[i] < -0.999:
    myrsi_prices[i] = -0.999

rocketrsi = 1/2*np.log((1+myrsi_prices))/(1-myrsi_prices))</pre>
```

```
def momentum(prices, period = 10):
    prices = np.array(prices)
    momentum = np.zeros_like(prices)

for i in range(len(prices)):
    if i < period - 1:
        momentum[i] = 0.

    else:
        momentum[i] = prices[i] - prices[i - period]

return momentum</pre>
```


L'algorithme pour calculer le RocketRSI, avec les fonctions définies auparavant

La fonction de momentum utilisée dans le calcul du RocketRSI

Résultats sur le cours de l'action RY (banque royale du

Comparaison des signaux générés par le RSI (en haut) et le RocketRSI (en bas)

Bibliographie

"Fisher Transformation." *Wikipedia*, 2 June 2024. *Wikipedia*, https://en.wikipedia.org/w/index.php?title=Fisher_transformation&oldid=1226838743. Consulté le 14 Octobre

Ehlers, John F. Rocket Science for Traders: Digital Signal Processing Applications. Wiley, 2001.

Ehlers, John F. "RocketRSI - A Solid Propellant For Your Rocket Science Trading." *Stocks & Commodities*, vol. 36, no. 05, 2018, pp. 8–12.

Miresco, Edmond. Notes de Cours - GES816. École de Technologie Supérieure.

NOTE: le code présenté dans la présentation est disponible au lien suivant: https://github.com/bolducmanuel/adaptivemovingaverage/blob/main/RocketRSI.ipynb