EXRC.1: Obtenha o subespaço de \mathbb{R}^3 , formado por todos os vetores que são combinações lineares dos elementos do conjunto S, = $\{\vec{a}_1, \vec{a}_2\} = \{(1,1,1), (1,-3,-1)\}$.

EXRC.2:

a) Mostre que S== (1,1,1), (1,-3,-1)/ e Mostre que 31-111, são bases distintas para o $S_2 = \frac{1}{2}(2,0,1)$, (0,2,1), são bases distintas para o mesmo subespaço.

- b) Averigue se $(2,-1,1) \in L(S_1)$. O que pode concluir acerca de $S_8 = f(1,1,1), (1,-3,-1), (2,-1,1)$ e $S_9 = \{(2,0,1),(0,2,1),(2,-1,1)\}$?
- $\mathbf{E} \times \mathbf{A} \subset \mathbf{3}$. Seja o conjunto de vetores do espaço linear \mathbb{R}^3 , $T = \{(2,-1,6),(0,2,-1)\}$; considere os vetores $\vec{u} = (-4, -4, -9)$ e $\vec{v} = (10, 7, 25)$.
 - a) Mostre, recorrendo à noção de combinação linear, que apenas um dos vetores \vec{u} e \vec{v} pertence ao subespaço gerado por T.
 - b) Calcule o subespaço gerado por T e confirme o resultado encontrado na alínea anterior.
 - c) Justifique que T é um conjunto linearmente independente.
 - d) Obtenha uma base para o espaço linear \mathbb{R}^3 que seja uma extensão de T.
- **EXPL.** 4: Seja o conjunto de vetores $S = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 = x_2 + 2x_3 \land x_4 = 2x_2 x_3\}$ do espaço linear \mathbb{R}^4 .
 - a) Mostre que S é um subespaço de R⁴.
 - b) Identifique uma base, U, para S e indique a dimensão do subespaço.
 - c) Obtenha uma base ordenada V para o espaço linear R⁴ que seja uma extensão de U.
 - d) Exprima o vetor $(1,-1,2,-3) \in \mathbb{R}^4$ como combinação linear dos elementos da base ordenada V.

- **Exac.** 5: Considere o subespaço $M = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 x_2 + x_3 x_4 = 0\}$ do espaço euclidiano \mathbb{R}^4 .
 - a) Determine uma base ortogonal, U, para o subespaço M que inclua o vetor $\vec{u}_1 = (1,0,0,1) \in M$.
 - b) Obtenha uma base ortonormal para M.
 - c) Construa, a partir da base U, uma base ortogonal, V, e uma base ortonormal, W, para o espaço \mathbb{R}^4 .
 - d) Calcule as coordenadas do vetor $\vec{a}=(1,1,-2,2)$ em relação às bases ordenadas V e W.
- **EXRC 6:** Seja $U = \{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\}$ um conjunto de vetores do espaço linear \mathbb{R}^4 , tal que $\vec{u}_1 = (1,1,0,0), \ \vec{u}_2 = (2,1,1,0), \ \vec{u}_3 = (0,0,1,1) \ e \ \vec{u}_4 = (1,1,-1,-1)$. Considere, ainda, o subespaço de \mathbb{R}^4 :

$$F = \{(x, y, z, w) \in \mathbb{R}^4 : 2x + z - w = 0 \land 2y - z + w = 0\}$$

- a) Verifique que o conjunto U é linearmente dependente. Justifique.
- b) Calcule o subespaço $L(\mathbf{U})$ gerado por \mathbf{U} e conclua em relação à sua dimensão.
- c) Determine uma base ortogonal, V, para o subespaço L(U) que contenha o maior número possível de elementos de U.
- d) Obtenha $L(\mathbf{U}) \cap \mathbf{F}$ e indique, para este subespaço, uma base e a dimensão.