Отчет по лабораторной работе № 1

Дисциплина: операционные системы

Казазаев Даниил Михайлович

Содержание

1	Цель работы	4
2	Задание	5
3	Задание домашней работы	6
4	Выполнение лабораторной работы. 4.1 Настройка операционной системы	
5	Вывод	18

Список иллюстраций

4.1	Получение прав суперпользоваеля	7
4.2	Обновление пакетов	7
4.3	Установка автоматических обновлений	8
4.4	Установка автоматических обновлений	8
4.5	Установка таймера для автоматических обновлений	8
4.6	Переход в директорию и открытие конфига в текстовом редакторе	8
4.7	Изменение настрое системы безопасности	9
4.8	Команда для перезапуска системы	9
4.9	Получение прав суперпользователя и установка средства разработки	9
4.10	Установленные средства разработки	9
4.11	Установка пакета DKMS	10
4.12	Установленный пакет DKMS	10
4.13	Подключение образа диска дополнительной гостевой ОС	10
4.14	Подтверждение автоматического запуска	11
4.15	Подмонтирование диска	11
4.16	Установка драйверов	11
4.17	Драйвера установлены	12
4.18	Меняю пароль	12
4.19	Установка и проверка имени хоста	12
4.20	Страница pandoc crossref на GitHub	13
4.21	Caйт pandoc	13
4.22	Скачиваю pandoc c GitHub	14
4.23	Разархивирование файлов pandoc	14
4.24	Разархивирование файлов pandoc crossref	14
4.25	Перемещение файлов	15
4.26	Установка TexLive	15
4.27	Установленная чатсь TexLive	15
4.28	Доустановка и проверка файлов TexLive	15
4.29	Доустановка и проверка файлов TexLive	16
4.30	Выполнение команды dmesg	16
4.31	Анализ	17
4.32	Версия Linux	17
4.33	Поиск частоты процессора и информации о самом процессоре	17
4.34	Поиск информации о гипервизоре	17

1 Цель работы

Приобретение практических навыков установки операционной системы на виртуальную машину, натройка минимально необходимых для дальнейшей работы сервисов.

2 Задание

- 1. Настройка ОП.
- 2. Установка необходимого ПО.

3 Задание домашней работы

- 1. В окне треминала проанализировать последовательность загрузки операционной системы с помощью команды dmesg.
- 2. Получить необходимую информацию с помощью команды "'dmesg | grep -i «»

4 Выполнение лабораторной работы.

4.1 Настройка операционной системы

После запуска виртуальной машины, открываю терминал и пишу команду sudo -i, чтобы получить права суперпользователя. (рис. 4.1)

```
[dmkazazaev@fedora ~]$ sudo -i
[sudo] пароль для dmkazazaev:
```

Рис. 4.1: Получение прав суперпользоваеля

Обновляю пакеты командой dnf -y update.(рис. 4.2)

```
[root@fedora ~]# dnf -y update
Последняя проверка окончания срока действия метаданных: 0:08:24 назад, Пн 19 фев
2024 21:23:16.
Зависимости разрешены.
Нет действий для выполнения.
Выполнено!
```

Рис. 4.2: Обновление пакетов

Обновление не поторебовалось.

Устанавливаю программное обеспечение для автоматических обнавлений (рис. 4.3)

Рис. 4.3: Установка автоматических обновлений

```
Продолжить? [д/H]: д
Загрузка пакетов:
dnf-automatic-4.18.2-1.fc38.noarch.rpm
                                             535 kB/s | 46 kB
                                                                  00:00
                                              51 kB/s | 46 kB
Общий размер
                                                                  00:00
Проверка транзакции
Проверка транзакции успешно завершена.
Идет проверка транзакции
Тест транзакции проведен успешно.
Выполнение транзакции
 Подготовка : dnf-automatic-4.18.2-1.fc38.noarch
 Запуск скриптлета: dnf-automatic-4.18.2-1.fc38.noarch
 Проверка : dnf-automatic-4.18.2-1.fc38.noarch
 dnf-automatic-4.18.2-1.fc38.noarch
```

Рис. 4.4: Установка автоматических обновлений

Запускаю таймер для автоматических обновлений. (рис. 4.5)

```
[root@fedora ~]# systemctl enable --now dnf-automatic.timer
Created symlink /etc/systemd/system/timers.target.wants/dnf-automatic.timer → /u
sr/lib/systemd/system/dnf-automatic.timer.
```

Рис. 4.5: Установка таймера для автоматических обновлений

Так как в этом курсе мы не будет проходить систему безопасности SELINUX, отключаю ее. Для этого прехожу в дерикторию с конфигом системы безопасности и открываю его.(рис. 4.6)

```
[root@fedora ~]# cd ~/../etc/selinux/
[root@fedora selinux]# xdg-open config
```

Рис. 4.6: Переход в директорию и открытие конфига в текстовом редакторе

Меняю значение SELINUX=enforcing на SELINUX=permissive.(рис. 4.7)

SELINUX=permissive

Рис. 4.7: Изменение настрое системы безопасности

Перезапускаю систему.(рис. 4.8)

```
[root@fedora selinux]# reboot
```

Рис. 4.8: Команда для перезапуска системы

После перезапуска системы снова получаю права суперпользователя и устанавливаю средства разработки командой "dnf -y group install «Development Tools».(рис. 4.9)

```
⊕ dmkazazaev@fedora:~—tmux Q ≡ ×

[dmkazazaev@fedora ~]$ sudo -i
[sudo] пароль для dmkazazaev:
[root@fedora ~]# dnf -y group install "Development Tools"
```

Рис. 4.9: Получение прав суперпользователя и установка средства разработки

```
∄
                                                                 Q
                         dmkazazaev@fedora:~ — tmux
libserf-1.3.10-3.fc38.x86_64
libxcrypt-devel-4.4.36-1.fc38.x86_64
libzstd-devel-1.5.5-1.fc38.x86_64
llvm15-libs-15.0.7-4.fc38.x86_64
m4-1.4.19-5.fc38.x86_64
make-1:4.4.1-1.fc38.x86_64
openssl-devel-1:3.0.9-2.fc38.x86_64
patch-2.7.6-19.fc38.x86_64
patchutils-0.4.2-9.fc38.x86_64
subversion-1.14.3-1.fc38.x86_64
subversion-libs-1.14.3-1.fc38.x86_64
systemtap-5.0~pre16958465gca71442b-1.fc38.x86_64
systemtap-client-5.0~pre16958465gca71442b-1.fc38.x86_64
systemtap-devel-5.0~pre16958465gca71442b-1.fc38.x86_64
systemtap-runtime-5.0~pre16958465gca71442b-1.fc38.x86_64
tbb-2020.3-16.fc38.x86_64
utf8proc-2.7.0-4.fc38.x86_64
xapian-core-libs-1.4.23-1.fc38.x86_64
xz-devel-5.4.1-1.fc38.x86_64
zlib-devel-1.2.13-3.fc38.x86_64
```

Рис. 4.10: Установленные средства разработки

Устанавливаю пакет DKMS командой dnf -y install dkms.(рис. 4.11)

```
[root@fedora ~]# dnf -y install dkms
```

Рис. 4.11: Установка пакета DKMS

```
Q
 \oplus
                             dmkazazaev@fedora:~ — tmux
                                                                            \equiv
Проверка транзакции
Проверка транзакции успешно завершена.
Идет проверка транзакции
Тест транзакции проведен успешно.
Выполнение транзакции
 Подготовка
                                                                                 1/1
                   : openssl-1:3.0.9-2.fc38.x86_64
                                                                                 1/3
  Установка
                : kernel-devel-matched-6.7.4-100.fc38.x86_64
: dkms-3.0.12-1.fc38.noarch
  Установка
 Установка
  Запуск скриптлета: dkms-3.0.12-1.fc38.noarch
 reated symlink /etc/systemd/system/multi-user.target.wants/dkms.service \rightarrow
 ib/systemd/system/dkms.service.
                   : dkms-3.0.12-1.fc38.noarch
                    : kernel-devel-matched-6.7.4-100.fc38.x86_64
  Проверка
  Проверка
                   : openssl-1:3.0.9-2.fc38.x86_64
                                                                                 3/3
 dkms-3.0.12-1.fc38.noarch
                                     kernel-devel-matched-6.7.4-100.fc38.x86_64
 openssl-1:3.0.9-2.fc38.x86_64
```

Рис. 4.12: Установленный пакет DKMS

В интерфейсе виртуальной машины подключаю образ диска дополнительной гостевой ОС.(рис. 4.13)

Рис. 4.13: Подключение образа диска дополнительной гостевой ОС

Подтверждаю автоматический запуск приложения на диске. (рис. 4.14)

Рис. 4.14: Подтверждение автоматического запуска

Подмонтирую диск командой mount /dev/sr0 /media.(рис. 4.15)

```
[root@fedora ~]# sudo mount /dev/sr0 /media/
mount: /media: no medium found on /dev/sr0.
dmesg(1) may have more information after failed mount system call.
```

Рис. 4.15: Подмонтирование диска

Устанавливаю драйвера.(рис. 4.16)

```
[root@fedora ~]# /media/VBoxLinuxAdditions.run
Verifying archive integrity... 100% MD5 checksums are OK. All good.
Uncompressing VirtualBox 7.0.14 Guest Additions for Linux 100%
VirtualBox Guest Additions installer
Removing installed version 7.0.14 of VirtualBox Guest Additions...
Copying additional installer modules ...
Installing additional modules ..
VirtualBox Guest Additions: Starting.
VirtualBox Guest Additions: Setting up modules
VirtualBox Guest Additions: Building the VirtualBox Guest Additions kernel
modules. This may take a while.
VirtualBox Guest Additions: To build modules for other installed kernels, run
VirtualBox Guest Additions: /sbin/rcvboxadd quicksetup <version>
VirtualBox Guest Additions: or
                              /sbin/rcvboxadd quicksetup all
VirtualBox Guest Additions:
VirtualBox Guest Additions: Building the modules for kernel
6.7.4-100.fc38.x86_64.
```

Рис. 4.16: Установка драйверов

```
VirtualBox Guest Additions: Starting.
VirtualBox Guest Additions: Setting up modules
VirtualBox Guest Additions: Building the VirtualBox Guest Additions kernel
modules. This may take a while.
VirtualBox Guest Additions: To build modules for other installed kernels, run
VirtualBox Guest Additions:
                              /sbin/rcvboxadd quicksetup <version>
VirtualBox Guest Additions: or
VirtualBox Guest Additions: /sbin/rcvboxadd quicksetup all
VirtualBox Guest Additions: Building the modules for kernel
6.7.4-100.fc38.x86 64.
grep: warning: stray \ before /
grep: warning: stray \ before /
grep: warning: stray \ before /
ValueError: File context for /opt/VBoxGuestAdditions-7.0.14/other/mount.vboxsf a
lready defined
VirtualBox Guest Additions: Running kernel modules will not be replaced until
the system is restarted or 'rcvboxadd reload' triggered
VirtualBox Guest Additions: reloading kernel modules and services
VirtualBox Guest Additions: cannot reload kernel modules: one or more module(s)
VirtualBox Guest Additions: kernel modules and services were not reloaded
The log file /var/log/vboxadd-setup.log may contain further information.
```

Рис. 4.17: Драйвера установлены

Так как имя пользователя уже соответсвует тому, имени пользователя в дисплейном классе, меняю только пароль для пользователя. (рис. 4.18)

```
[root@fedora ~]# passwd dmkazazaev
Изменение пароля пользователя dmkazazaev.
новый пароль:
```

Рис. 4.18: Меняю пароль

Устанавливаю имя хоста командой hostnamectl set-hostname dmkazazaev и проверяю изменилось ли имя(рис. 4.19)

```
[root@fedora ~]# hostnamectl set-hostname dmkazazaev
[root@fedora ~]# hostname
dmkazazaev
```

Рис. 4.19: Установка и проверка имени хоста

Захожу на страницу pandoc crossref, чтобы узнать, какакая версия pandoc совместима и скачать архив с ПО.(рис. 4.20)

Рис. 4.20: Страница pandoc crossref на GitHub

Перехожу на официальный сайт pandoc, чтобы скачать средство pandoc.(рис. 4.21)

Рис. 4.21: Сайт pandoc

Перехожу на GitHub, где скачиваю архив pandoc-3.1.11.1-linux-amd64.tar.gz.(рис. 4.22)

Рис. 4.22: Скачиваю pandoc c GitHub

Разархивирую файл pandoc.(рис. 4.23)

```
[root@fedora ~]# cd ~/../home/dmkazazaev/Загрузки/
[root@fedora Загрузки]# tar -xvf pandoc-3.1.11.1-linux-amd64.tar.gz
pandoc-3.1.11.1/
pandoc-3.1.11.1/share/
pandoc-3.1.11.1/share/man/
pandoc-3.1.11.1/share/man/man1/
pandoc-3.1.11.1/share/man/man1/pandoc.1.gz
pandoc-3.1.11.1/share/man/man1/pandoc-lua.1.gz
pandoc-3.1.11.1/share/man/man1/pandoc-server.1.gz
pandoc-3.1.11.1/bin/
pandoc-3.1.11.1/bin/pandoc-lua
pandoc-3.1.11.1/bin/pandoc-server
pandoc-3.1.11.1/bin/pandoc
```

Рис. 4.23: Разархивирование файлов pandoc

Разархивирую файлы pandoc crossref.(рис. 4.24)

```
[root@fedora Загрузки]# tar -xvf pandoc-crossref-Linux.tar.xz
```

Рис. 4.24: Разархивирование файлов pandoc crossref

Дальше перемещаю разархивированные файлы в нужную дерикторию.(рис. 4.25)

```
.

[root@fedora Загрузки]# mv pandoc-3.1.11.1 ~/../usr/local/bin/

[root@fedora Загрузки]# mv pandoc-crossref ~/../usr/local/bin/

[root@fedora Загрузки]# mv pandoc-crossref ~/../usr/local/bin/

pandoc-crossref.1 pandoc-crossref-Linux.tar.xz

[root@fedora Загрузки]# mv pandoc-crossref.1 ~/../usr/local/bin/
```

Рис. 4.25: Перемещение файлов

Устанавливаю первую часть файлов TexLive(рис. 4.26)

```
[root@fedora ~]# dnf -y instal texlive-scheme-full
[0] 0:sudo*
```

Рис. 4.26: Установка TexLive

```
texlive-zlmtt-10:svn64076-65.fc38.noarch
texlive-zootaxa-bst-10:svn50619-65.fc38.noarch
texlive-zref-10:svn62977-65.fc38.noarch
texlive-zref-check-10:svn63845-65.fc38.noarch
texlive-zref-clever-10:svn63428-65.fc38.noarch
texlive-zref-vario-10:svn63874-65.fc38.noarch
texlive-zwgetfdate-10:svn15878.0-65.fc38.noarch
texlive-zwpagelayout-10:svn63074-65.fc38.noarch
texlive-zx-calculus-10:svn60838-65.fc38.noarch
texlive-zxjafbfont-10:svn28539.0.2-65.fc38.noarch
texlive-zxjafont-10:svn62864-65.fc38.noarch
texlive-zxjatype-10:svn53500-65.fc38.noarch
texlive-zztex-10:svn55862-65.fc38.noarch
tk-1:8.6.12-4.fc38.x86_64
tre-0.8.0-39.20140228gitc2f5d13.fc38.x86_64
tre-common-0.8.0-39.20140228gitc2f5d13.fc38.noarch
urw-base35-fonts-legacy-20200910-16.fc38.noarch
webkit2gtk4.0-2.42.5-1.fc38.x86_64
xpdf-libs-1:4.04-8.fc38.x86_64
zziplib-0.13.72-3.fc38.x86_64
ыполнено!
```

Рис. 4.27: Установленная чатсь TexLive

Доустанавливаю оставшиеся файлы TexLive и проверяю, установились ли некоторые файлы. (рис. 4.28)

Рис. 4.28: Доустановка и проверка файлов TexLive

```
texlive-zxjafont-doc-10:svn62864-65.fc38.noarch
 texlive-zxjatype-doc-10:svn53500-65.fc38.noarch
 vim-filesystem-2:9.1.076-2.fc38.noarch
[root@fedora ~]# lualatex
his is LuaHBTeX, Version 1.15.0 (TeX Live 2022/CVE-2023-32700 patched)
restricted system commands enabled.
*^[[B^[[B^[[B^[[A^[[A^[[A^[
[1]+ Остановлен lualatex
root@fedora ~]# pdflatex
his is pdfTeX, Version 3.141592653-2.6-1.40.24 (TeX Live 2022/CVE-2023-32700 pa
ched) (preloaded format=pdflatex)
restricted \write18 enabled.
[2]+ Остановлен
                  pdflatex
[root@fedora ~]# xelatex
his is XeTeX, Version 3.141592653-2.6-0.999994 (TeX Live 2022/CVE-2023-32700 pa
ched) (preloaded format=xelatex)
restricted \write18 enabled.
    Остановлен xelatex
```

Рис. 4.29: Доустановка и проверка файлов TexLive

4.2 Выполнение домашней работы.

Прописываю необходимую команду, чтобы начать анализ порядка запуска операционной системы.(рис. 4.30)

Рис. 4.30: Выполнение команды dmesg

Анализирую порядок запуска операционной системы. (рис. 4.31)

```
421502] RSP: 0018:ffffffff87403e70 EFLAGS: 00000242
2892.421503] RAX: 000000000000000 RBX: 0000000000000 RCX: fffffffffffff
2892.421504] RDX: 400000000000000 RSI: 00000000000086 RDI: 0000000002e25544
2892.421505] RBP: ffffffff87410900 R08: 000000000000001 R09: 000000000000000
2892.421506] R10: 000000000000000 R11: 000000008ea4398a R12: 000000000000000
2892.421506] R13: 000000000000000 R14: ffffffff87410900 R15: 000000000094150
2892.421508] default_idle+0x9/0x20
2892.421510] default_idle_call+0x2c/0xe0
              do_idle+0x226/0x270
2892.421514] ? do_idle+0x7/0x270
              cpu_startup_entry+0x2a/0x30
2892.421516] rest_init+0xd0/0xd0
              arch_call_rest_init+0xe/0x30
2892.421529] start_kernel+0x709/0xa90
2892.421531 x86_64_start_reservations+0x18/0x30 2892.421533] x86_64_start_kernel+0x96/0xa0
              secondary_startup_64_no_verify+0x18f/0x19b
2892.421538] </TASK>
2892.421538] ---[ end trace 0000000000000000 ]---
2894.466741] e1000: enp0s3 NIC Link is Up 1000 Mbps Full Duplex, Flow Control:
```

Рис. 4.31: Анализ

Далее ищу версию ядра Linux командой dmesg | grep -i «Linux version»(рис. 4.32)

```
[root@fedora ~]# dmesg | grep -i "Linux version"
[    0.000000] Linux version 6.7.4-100.fc38.x86_64 (mockbuild@68dbdffd8a2b461999
1006cfcbec2871) (gcc (GCC) 13.2.1 20231011 (Red Hat 13.2.1-4), GNU ld version 2.
39-16.fc38) #1 SMP PREEMPT_DYNAMIC Mon Feb 5 22:19:06 UTC 2024
```

Рис. 4.32: Версия Linux

Ищу информацию о частоте процессора и о самом процессоре командами dmesg |grep -i «CPUO», правда первая команда не сработала.(рис. 4.33)

```
[root@fedora ~]# dmesg | grep -i "Detected Mhz processor"
[root@fedora ~]# dmesg | grep -i "CPUO"
[    0.183946] smpboot: CPUO: Intel(R) Core(TM) i5-9600KF CPU @ 3.70GHz (family: 0x6, model: 0x9e, stepping: 0xd)
```

Рис. 4.33: Поиск частоты процессора и информации о самом процессоре

Ищу гипервизор командой dmesg |grep -i «Hypervisor detected».(рис. 4.34)

```
[root@fedora ~]# dmesg | grep -i "Hypervisor detected"
[ 0.000000] Hypervisor detected: KVM
```

Рис. 4.34: Поиск информации о гипервизоре

5 Вывод

В результате выполнения данной лабораторной работы я приобрёл практические навыки установки операционной системы на виртуальную машину, натройки минимально необходимых для дальнейшей работы сервисов.