Algèbre III : Anneaux, polynômes et théorie de Galois

8 mars 2016

Table des matières

1	Anr	eaux	2
	1.1	Rappels sur les anneaux commutatifs	2
	1.2	Quotients	7
	1.3		8
		1.3.1 Caractéristique d'un anneau	8
			8
		1.3.3 Le corps des réels	9
		1.3.4 Evaluation interne	9
			10
	1.4	Théorème chinois	10
		•	10
			11
	1.5		13
			15
	1.6	Anneau de polynômes	16
			16
			17
			19
			20
2	Thé	orie de Galois	22
	2.1	Extension de corps $\dots \dots \dots$	22
	2.2		24
	2.3		26
	2.4		28
	2.5		32
${f A}$	20 ı	remiers polynomes cyclotomiques 3	35

Chapitre 1

Anneaux

1.1 Rappels sur les anneaux commutatifs

Définition 1.1. Un anneau commutatif est un groupe abélien (A, +) muni d'une application :

$$A \times A \rightarrow A : (a, b) \rightarrow a.b = ab$$

tel que:

- 1. $\forall a, b, c \in A, (ab)c = a(bc).$
- 2. $\exists 1_A \in A, \forall a \in A, 1_A a = a 1_A = a$.
- 3. $\forall a, b \in A, ab = ba \ (commutativit\acute{e}).$
- 4. $\forall a, b, c \in A, \ a(b+c) = ab + ac. \ (distributivité).$

Exemple. \mathbb{Z} , \mathbb{R} , \mathbb{Q} , \mathbb{C} , $\mathbb{Z}[X]$, $\mathbb{R}[X]$, $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$.

Proposition 1.2. Soit A un anneau commutatif. Alors A[X] est un anneau commutatif.

 $D\'{e}monstration.$

Remarque. (A[X])[Y] = A[X,Y], ie les polynomes à deux variables sont les polynomes construit sur un anneau de polynomes.

Proposition 1.3. Soient A et B deux anneaux commutatifs. Alors $A \times B$ est un anneau commutatif (avec la multiplication composante par composante).

 $D\'{e}monstration.$

Proposition 1.4. Soit $(A_i)_{i\in I}$ une famille d'anneaux commutatifs. Alors $\prod_{i\in I} A_i$ est un anneau commutatif.

Démonstration.

Exemple. $\mathbb{Q}^{\mathbb{N}}$ est un anneau commutatif.

Remarque. 1. 1_A est unique.

- 2. $\forall a \in A, \ 0_A a = 0_A = a 0_A$.
- 3. $-1_A a = -a$.
- 4. $0_A = 1_A \Leftrightarrow A = \{0_A\}.$
- 5. Si on enlève la distributivité à gauche dans la définition, alors on obtient la définition d'un anneau. Exemple : $M_n(\mathbb{R})$, $M_n(\mathbb{C})$, End(G) (G groupe abélien).

Définition 1.5. On définit A^{\times} comme l'ensemble des inversibles de A, c'està-dire que :

$$A^{\times} = \{a \in A \mid \exists b \in A, ab = ba = 1_A\}$$

Remarque. Si(A,.) est un monoïde, alors $(A^{\times},.)$ est un groupe abélien.

Exemple. $\mathbb{Z}^{\times} = \{1, -1\}, \ \mathbb{Q}^{\times} = \mathbb{Q} \setminus \{0\}, \ \mathbb{R}^{\times} = \mathbb{R} \setminus \{0\}, \ \mathbb{R}[X]^{\times} = \mathbb{R}^{\times}, \ \mathbb{Z}[X]^{\times} = \mathbb{Z}^{\times}.$

Définition 1.6. Un corps est un anneau non nul tel que $A^{\times} = A \setminus \{0_A\}$.

Définition 1.7. Un sous-anneau B de A est un sous-groupe (B,+) tel $que\ 1_A \in B$ et $\forall a,b \in B$, $ab \in B$.

Proposition 1.8. Soient B et C deux sous-anneaux de A, alors $B \cap C$ est un sous-anneau de A. La propriété reste vraie pour une intersection quelconque.

$$D\'{e}monstration.$$

Proposition 1.9. Soit B sous-anneau de A, alors B^{\times} sous-anneau de A^{\times} .

$$D\'{e}monstration.$$

Définition 1.10. $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$ est l'ensemble des entiers de Gauss.

Proposition 1.11. $\mathbb{Z}[i]$ est un sous-anneau de \mathbb{C} , dont les élements inversibles sont 1, -1, i, -i.

$$D\'{e}monstration.$$

Proposition 1.12. $\mathbb{Q}[i] = \{a + bi \mid a, b \in \mathbb{Q}\}$ est un sous-corps de \mathbb{C} contenant \mathbb{Q} .

Démonstration.

Définition 1.13. Un morphisme d'anneau f entre deux anneaux A et B est un morphisme de groupe tel que f(ab) = f(a)f(b) et $f(1_A) = 1_B$.

De plus, c'est

- 1. un endormorphisme si A = B.
- 2. un isomorphisme si f est bijectif.
- 3. un automorphisme si f est un isomorphisme et un endormorphisme.
- 4. un morphisme de corps si c'est un morphisme d'anneau entre deux corps.

Remarque. Si $f: A \to B$ est un morphisme d'anneau, alors $f(A^{\times}) \subseteq B^{\times}$, et

$$f^*: (A^{\times}, .) \to (B^{\times}, .)$$
 (1.1)

est un morphisme de groupe.

Proposition 1.14. Il existe un unique morphisme d'anneau entre \mathbb{Q} (resp \mathbb{Z}) et \mathbb{C} .

Démonstration. Si on a un morphisme f, on a par récurrence $\forall n \in \mathbb{Z}, f(n) = n$. D'où, le seule morphisme est $(Id_{\mathbb{C}})_{|\mathbb{Z}}$.

La démonstration est la même pour \mathbb{Q} .

Proposition 1.15. Il existe seulement deux morphismes d'anneaux entre $\mathbb{Q}[i]$ (resp $\mathbb{Z}[i]$) et \mathbb{C} .

$$D\acute{e}monstration.$$

Corollaire 1.16. 1. $Aut_{corps}(\mathbb{Q}) = Aut_{anneau}(\mathbb{Q}) = \{Id\}$

2. $Aut_{anneau}(\mathbb{Z}) = \{Id\}$

Démonstration. En effet, si d'autres automorphismes existeraient, on pourrait étendre l'ensemble d'arrivé en \mathbb{C} , et ils resteraient des morphismes. \square

Questions. Combien il y a d'automorphismes de corps sur \mathbb{C} ? Sur \mathbb{R} ? Ici pour \mathbb{C}

Pour \mathbb{R} , le seul automorphisme continu est l'identité. En effet, comme \mathbb{Q} est dense dans \mathbb{R} , on a une suite d'élément de \mathbb{Q} qui tend vers $x \in \mathbb{R}$. On a alors que f(x) est la limite de la suite $f(x_n)$, où f maintenant est un morphisme de \mathbb{Q} dans \mathbb{R} . Or, le seul morphisme est l'identité, donc f(x) = x à la limite.

Pour \mathbb{C} , les seuls automorphismes sont l'identité et la conjugaison (même raisonnement que pour \mathbb{R} en décomposant l'image de f en partie réelle et partie imaginaire).

Proposition 1.17. Soient A, B, C trois anneaux. Soient $f: A \to B$ et $g: B \to C$ deux morphismes d'anneaux. Alors $g \circ f: A \to C$ est un morphisme d'anneaux.

$D\'emonstration.$	٦

Proposition 1.18. 1. $f: A \to B$ isomorphisme d'anneau $\Rightarrow f^{-1}: B \to A$ isomorphisme d'anneau.

- 2. $Id_A: A \to A: a \to a$ est un isomorphisme d'anneau.
- 3. $(Aut_{anneau}(A), \circ)$ est un groupe.
- 4. Si A est un corps, $Aut_{anneau}(A) = Aut_{corps}(A)$.
- 5. Si $f: A \to B$ est un morphisme d'anneau, alors Im(f) est un sous-anneau de B et $\ker(f)$ est un sous-groupe de A.

 $D\'{e}monstration.$

Définition 1.19. Soit A un anneau. Un idéal de A est un sous-groupe (I, +) de (A, +) tel que $\forall a \in I$, $\forall b \in A$, $ab \in I$.

Exemple. $-\{0_A\}$ et A sont des idéaux de A.

Proposition 1.20. Soit $f: A \to B$ où A et B sont deux anneaux commutatifs. Alors Im(f) est un sous-anneau de B, et ker(f) est un idéal de A. De plus on a:

- 1. $Si\ Im(f)\ est\ un\ id\'eal,\ f\ est\ surjectif.$
- 2. Si Ker(f) est un sous-anneau, $B = \{0_B\}$.

Démonstration. 1. On doit montrer queIm(f)=B. Comme f morphisme, $1 \in Im(f)$, on a donc que Im(f)=B car Im(f) est un idéal. 2.

Proposition 1.21. Les idéaux de \mathbb{Z} sont les $\mathbb{Z}/n\mathbb{Z}$. Les idéaux de \mathbb{Z} sont donc confondus avec les sous-groupes de $(\mathbb{Z}, +)$.

 $D\'{e}monstration.$

Proposition 1.22. Soit I et J deux idéaux d'un anneau commutatifs A tel que $I \subseteq J$. Alors J/I est un idéal de A/I.

 $D\'{e}monstration.$

Définition 1.23 (Idéal principal). Un idéal I est un idéal principal si il est engendré par un seul élément. On note, si $a \in A$ engendre I, I = (a).

Définition 1.24 (Anneau principal). Un anneau A est un anneau principal si tout idéal est principal.

Exemple. 1. $\{0_A\} = (0_A), A = (1_A)$

- 2. $(2)_{\mathbb{Z}} = 2\mathbb{Z} \neq \mathbb{Z}$.
- 3. $(2)_{\mathbb{Q}} = 2\mathbb{Q} = \mathbb{Q}$
- 4. $I = \{2P(X) + XQ(X) \mid P, Q \in \mathbb{Z}[X]\}$ est un idéal de $\mathbb{Z}[X]$ non principal.

Définition 1.25. Soit A un anneau. Soient $a, b \in A$. On dit que a divise b s'il existe $n \in \mathbb{Z}$ tel que b = na.

Proposition 1.26. a divise $b \Leftrightarrow (b) \subseteq (a)$.

$$D\'{e}monstration.$$

Exemple. Soit $n, m \in \mathbb{Z}$. Alors $n | m \Leftrightarrow \mathbb{Z} / m \mathbb{Z} \subseteq \mathbb{Z} / n \mathbb{Z}$.

Proposition 1.27. Soient I, J deux idéaux d'un anneau A. alors

- 1. $I \cap J$ est le plus grand idéal de A contenu dans I et J
- 2. I + J est le plus petit idéal contenant I et J (en particulier, c'est le plus petit sous-groupe contenant I et J).

Nous pouvons généraliser à un nombre quelconque d'idéaux.

$$D\acute{e}monstration.$$

Proposition 1.28. Si $n, m \in \mathbb{Z} \setminus \{0\}$, alors $n\mathbb{Z} \cap m\mathbb{Z} = ppcm(n, m)\mathbb{Z}$ et $n\mathbb{Z} + m\mathbb{Z} = pgcd(n, m)$

$$D\'{e}monstration.$$

Proposition 1.29. Soit I un idéal de A. Alors, $I = A \Leftrightarrow I \cap A^{\times} \neq \emptyset \Leftrightarrow 1_A \in I$.

$$D\'{e}monstration.$$

Proposition 1.30. Les seuls idéaux d'un corps \mathbb{K} sont $(0_{\mathbb{K}})$ où \mathbb{K} .

 $D\'{e}monstration$. Soit I un idéal. S'il est nul, on a fini. Sinon on a un élément non nul $a \in I$. Comme K est un corps, $a^{-1} \in K$, et donc $a^{-1}a = 1 \in I$ car I idéal. Donc I = K.

Corollaire 1.31. Soit \mathbb{K} un corps et L un anneau, et $f: \mathbb{K} \to L$ un morphisme d'anneau. Alors soit L est nul, soit f est injectif.

 $D\acute{e}monstration.$

Exemple. Soient \mathbb{K} un corps et E un espace vectoriel non-nul sur \mathbb{K} . Alors l'application

$$f: \mathbb{K} \to End_{\mathbb{K}}(E): \lambda \to f(\lambda)$$
 (1.2)

où

$$f(\lambda): E \to E: v \to \lambda v$$
 (1.3)

est un morphisme d'anneau injectif.

1.2 Quotients

Proposition 1.32. Soit A un anneau commutatif et soit I un idéal de A. La multiplication induit un sur A induit une structure d'anneau sur (A/I, +) où

$$(a+I)(b+I) = ab+I \tag{1.4}$$

et la projection

$$\pi_I: A \to A/I: a \to a+I \tag{1.5}$$

est un morphisme d'anneau surjectif.

De plus,

1. $\ker(\pi_I) = I$

2.
$$(A/I)^{\times} = \{a + I \in A/I \mid \exists b \in A \text{ tel que } ab^{-1} = I\}$$

 $D\'{e}monstration.$

Exemple. 1. $n \in \mathbb{Z}_0$, $A = \mathbb{Z}$, $I = n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ anneau et

$$(\mathbb{Z}/n\mathbb{Z})^{\times} = \left\{ a + n\mathbb{Z} \mid \exists b \in \mathbb{Z}, ab^{-1} \in n\mathbb{Z} \right\}$$
 (1.6)

$$= \{a + n\mathbb{Z} \mid \exists b, c \in \mathbb{Z} \ tel \ que \ ab + nc = 1_A\}$$
 (1.7)

$$= \{a + n\mathbb{Z} \mid pgcd(a, n) = 1\}$$

$$\tag{1.8}$$

2.
$$(\mathbb{Z}/6\mathbb{Z})^{\times} = \{1 + 6\mathbb{Z} = 6\mathbb{Z}, -1 + 6\mathbb{Z} = 5 + 6\mathbb{Z}\}\$$

Proposition 1.33. Soient A et B deux anneaux commutatifs et soit $f: A \rightarrow B$ un morphisme d'anneau. Soit I un idéal de A.

Alors il existe un morphisme d'anneau

$$\overline{f}: A/I \to B \tag{1.9}$$

v'erifiant

$$\overline{f} \circ \pi_I = f \Leftrightarrow I \subseteq \ker(f) \tag{1.10}$$

Dans ce cas, on a

1.
$$\operatorname{Im}(\overline{f}) = \operatorname{Im}(f)$$

2.
$$\ker(\overline{f}) = \ker(f)/I$$

$$D\'{e}monstration.$$

Corollaire 1.34. Soient A, B deux anneaux et soit $f: A \to B$ un morphisme d'anneaux.

Alors

$$\overline{f}: A/\ker(f) \to \operatorname{Im}(f): a + \ker(f) \to f(a)$$
 (1.11)

est un isomorphisme d'anneaux

$$D\'{e}monstration.$$

1.3 Morphismes fondamentaux

1.3.1 Caractéristique d'un anneau

Proposition 1.35. Soit A un anneau commutatif. Il existe un unique morphisme d'anneau $\mu_A : \mathbb{Z} \to A : n\mathbb{Z}n1_A$ et $\exists c_A \in \mathbb{N}$ tel que $\ker \mu_A = c_A\mathbb{Z}$.

$$D\'{e}monstration.$$

Définition 1.36. c_A est appelé la caractéristique de A.

Exemple. La caractéristique de $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$ vaut 12.

1.3.2 Anneaux de polynomes

Proposition 1.37. Soit $f: A \to B$ un morphisme d'anneaux. Alors

$$\tilde{f}: A[X] \to B[X]: P(X) = \sum_{k=1}^{k} a_k X^k \to \sum_{k=1}^{k} f(a_k) X^k$$
 (1.12)

est un morphisme d'anneaux. De plus, $\tilde{f}_{|A} = f$.

$$D\'{e}monstration.$$

Exemple. 1. La conjugaison complexe étant un automorphisme d'anneaux de \mathbb{C} , la fonction

$$\overline{f}: \mathbb{C}[X] \to \mathbb{C}[X]: \sum_{i=1}^{n} a_i X^i \to \overline{a_i} X^i$$
 (1.13)

est un automorphisme d'anneaux.

2. Soit $n \in \mathbb{Z}$ et soit $\pi_n : \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} : a \to a + mod(n\mathbb{Z})$ le morphisme surjectif de projection.

A lors

$$\tilde{\pi_n}: \mathbb{Z}[X] \to \mathbb{Z}/n\mathbb{Z}[X]$$
(1.14)

$$\sum_{i=1}^{n} a_i X^i \to \sum_{i=1}^{n} (a_i mod(n\mathbb{Z})) X^i$$
(1.15)

est un morphisme d'anneau surjectif.

Par factorisation, on obtient l'isomorphisme d'anneau

$$\mathbb{Z}[X]/n\mathbb{Z}[X] \xrightarrow{\sim} (\mathbb{Z}/n\mathbb{Z})[X] \tag{1.16}$$

1.3.3 Le corps des réels

Proposition 1.38. Soit $C(\mathbb{Q}) = \{(a_n)_{n \in \mathbb{N}} \mid a_n \text{ est une suite de Cauchy}\}$. Alors $C(\mathbb{Q})$ est un sous-anneau de $\mathbb{Q}^{\mathbb{N}}$

$$D\'{e}monstration.$$

Définition 1.39. $C_0(\mathbb{Q}) = \{(a_n)_{n \in \mathbb{N}} | lima_n = 0 \}$

Proposition 1.40. $C_0(\mathbb{Q})$ est un idéal de $\mathbb{Q}^{\mathbb{N}}$.

$$D\'{e}monstration.$$

Définition 1.41. $\mathbb{R}=\mathbb{Q}^{\mathbb{N}}/\mathcal{C}_0(\mathbb{Q})$

1.3.4 Evaluation interne

Proposition 1.42. Soit A un anneau commutatif. Soit $a \in A$. Alors

$$eval_a: A[X] \to A: P(X) \to P(a)$$
 (1.17)

est un morphisme d'anneau surjectif et $(eval_a)_{|A} = Id_A$.

$$D\'{e}monstration.$$

Proposition 1.43. Pour tout $a \in A$,

$$\tau_a: A[X] \to A[X]: P(X) \to P(X-a)$$
(1.18)

est un automorphisme d'anneau avec $(\tau_a)^{-1} = \tau_{-a}$.

$$D\'{e}monstration.$$

Proposition 1.44. Pour tout $a \in A$,

$$eval_a \circ \tau_a = eval_0$$
 (1.19)

$$D\'{e}monstration.$$

Corollaire 1.45. $\ker(eval_a) = \tau_a(\ker(eval_0)) = (X - a)$

$$D\'{e}monstration.$$

Proposition 1.46. Pour tout $a \in A$, l'application

$$A[X]/(X-a) \to A: P(X) \mod(X-a) \to P(a) \tag{1.20}$$

est un isomorphisme d'anneaux.

On a donc $A[X]/(X-a) \xrightarrow{\sim} A$.

$$D\'{e}monstration.$$

1.3.5 Evaluation externe

Proposition 1.47. Soient A et B deux anneaux commutatifs tel que A est un sous-anneau de B. Alors, pour tout $b \in B$, l'application d'évaluation en b

$$eval_b: A[X] \to B: P(X) \to P(b)$$
 (1.21)

est un morphisme d'anneau tel que $(eval_b)_{|A}$ est l'inclusion de A dans B.

De plus, $Im(eval_b) := A[b] := le$ plus petit sous-anneau de B contenant A et b.

$$D\'{e}monstration.$$

1.4 Théorème chinois

1.4.1 Énoncé

Nous souhaitons, pour deux anneaux donnés, et sous certaines conditions, montrer que $A/(I \cap J)$ est isomorphe à $A/I \times A/J$.

Soient I, J deux idéaux de A. Alors, nous pouvons construire

$$f: A \to A/I \times A/J: a \to (a+I, a+J) \tag{1.22}$$

Nous avons $ker(f) = I \cap J$.

On a alors un morphisme injectif

$$\overline{f}: A/(I \cap J) \to A/I \times A/J$$
 (1.23)

induit par f.

Il nous manque donc une condition, la surjectivité, pour avoir un isomorphisme entre ces deux anneaux. On en vient alors au théorème chinois :

Théorème 1.48. Si I + J = A, alors \overline{f} est surjectif, et donc $A/(I \cap J)$ est isomorphe à $A/I \times A/J$.

$$D\acute{e}monstration.$$

On peut généraliser ce théorème à un nombre fini d'idéaux I_1, \ldots, I_n .

On construit comme précédemment f, et on déduit un morphisme injectif \overline{f} . Il suffit de trouver une condition pour que \overline{f} . Nous avons alors le résultat suivant, dit théorème chinois généralisé.

Théorème 1.49. Si pour tout $1 \le k \le n$, on a

$$I_k + \bigcap_{i=1, i \neq k}^n I_i = A \tag{1.24}$$

alors \overline{f} est surjectif, et donc $\prod_{i=1}^n A/I_i$ est isomorphe à $A/\bigcap_{i=1}^n I_i$.

 $D\'{e}monstration.$

1.4.2 Interprétation et applications

Exemple. 1. Soient $A = \mathbb{Z}$, $I = n\mathbb{Z}$, $J = m\mathbb{Z}$. On a $I \cap J = ppcm(n, m)\mathbb{Z}$, et $I + J = pgcd(n, m)\mathbb{Z}$. D'où $I + J = \mathbb{Z} \Leftrightarrow pgcd(n, m) = 1 \Leftrightarrow ppcm(n, m) = nm$.

Donc, si pgcd(n,m) = 1, on a un isomorphisme entre $\mathbb{Z}/nm\mathbb{Z}$ et $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$.

Celui-ci est donné par a $mod(nm\mathbb{Z}) \to (a \ mod(n\mathbb{Z}), a \ mod(m\mathbb{Z})).$

2. Soient K un anneau commutatif non nul, A = K[X], I = (X), J = (X - 1). On a I + J = K[X] et $I \cap J = (X^2 - X)$.

Par le théorème chinois, on a

$$K[X]/(X^2 - X) \xrightarrow{\sim} K[X]/X \times K[X]/(X - 1)$$
 (1.25)

$$P(X) \mod(X^2 - X) \xrightarrow{\sim} (P(X) \mod(X), P(X), \mod(X - 1))$$
 (1.26)

De plus, on a vu que K[X]/X est isomorphe à K grace à eval₀ et K[X]/(X-1) est isomorphe à K grace à eval₁.

On en déduit que $K[X]/(X^2-X)$ est isomorphe à $K\times K$.

Exemple. Soient $A = \mathbb{Z}$ et $n \in \mathbb{Z}$. Posons $n = p_1^{m_1} \cdots p_l^{m_l}$ la décomposition de n en facteurs premiers.

Posons $I_k = p_k^{m_k} \mathbb{Z}$ pour tout $1 \le k \le l$.

On a, pour tout $1 \le j, k \le l, j \ne k$

$$I_k + I_j = \mathbb{Z} \tag{1.27}$$

De plus,

$$ppcm(p_1^{m_1}, \cdots, p_l^{m_l}) = n$$
 (1.28)

et

$$\bigcap_{1 \le k \le l} p_k^{m_k} \mathbb{Z} = n \mathbb{Z} \tag{1.29}$$

On en déduit que

$$\mathbb{Z}/n\mathbb{Z} \xrightarrow{\sim} \prod_{1 \le i \le l} (\mathbb{Z}/p_i^{m_i}\mathbb{Z}) \tag{1.30}$$

et comme corollaire, on obtient

$$(\mathbb{Z}/n\mathbb{Z})^{\times} \xrightarrow{\sim} \prod_{1 \le i \le l} (\mathbb{Z}/p_i^{m_i}\mathbb{Z})^{\times}$$
 (1.31)

vu comme des groupes. On a alors

$$|(\mathbb{Z}/n\mathbb{Z})^{\times}| = |\prod_{1 \le i \le l} (\mathbb{Z}/p_i^{m_i}\mathbb{Z})^{\times}|$$
(1.32)

Définition 1.50. L'indicatrice d'Euler, noté souvent ϕ est la fonction

$$\phi: \mathbb{N} \to \mathbb{N}: n \to |(\mathbb{Z}/n\mathbb{Z})^{\times}| \tag{1.33}$$

L'indicatrice d'Euler donne donc, pour chaque $n \in \mathbb{N}$, le nombre d'élément inversible de $\mathbb{Z}/n\mathbb{Z}$. On obtient directement une première propriété : $\phi(p) = p-1$ où p est premier. En effet $\mathbb{Z}/p\mathbb{Z}$ est un corps, donc tous les éléments non nuls sont inversibles.

Enonçons quelques propriétés de l'indicatrice d'Euler.

Proposition 1.51. 1. Soit p un nombre premier. Alors $\phi(p) = p - 1$.

2. Soit $n, m \ge 1$. Alors, si m et n sont premiers entre eux, $\phi(nm) = \phi(n)\phi(m)$.

- 3. Soit $m \ge 1$ et soit p un nombre premier. Alors $\phi(p^m) = (p-1)p^{m-1}$
- 4. Soient $n \in \mathbb{N}$, et $n = p_1^{m_1} \cdot \cdot \cdot \cdot \cdot p_l^{m_k}$ sa décomposition en facteurs premiers. Alors $\phi(n) = \prod_{1 \leq i \leq l} (p_i 1) p_i^{m_i 1}$
- 5. Soit $n \ge 1$ un entier. Alors $\phi(n) = \sum_{d|n} \phi(d)$.

 $D\'{e}monstration.$

1.5 Arithmétique des anneaux

Définition 1.52 (Anneau intègre). Soit A un anneau commutatif. On dit que A est intègre si

- 1. $A \neq \{0_A\}$
- 2. pour tout $a, b \in A$, $ab = 0 \Rightarrow (a = 0 \text{ ou } b = 0)$.

Exemple. 1. \mathbb{Z} est intègre.

- 2. Un corps est un anneau intègre.
- 3. $\mathbb{Z}/6\mathbb{Z}$ n'est pas intègre (car 2.3 = 6 = 0).
- 4. Soient A, B deux anneaux commutatifs tel que $A \subseteq B$. Si B est intègre, alors A est intègre.
- 5. $\mathbb{Z}[i]$ est intègre.
- 6. Soient A, B deux anneaux commutatifs non nuls. Alors $A \times B$ n'est pas intègre.

Proposition 1.53. Soit A un anneau intègre et soient $P(X), Q(X) \in A[X]$. Alors def(PQ) = deg(P) + deg(Q).

 $D\'{e}monstration.$

Proposition 1.54. Soit A un anneau intègre. Alors A[X] est un anneau intègre.

 $D\'{e}monstration.$

Corollaire 1.55. Soit K un corps. Alors K[X] est un anneau intègre.

 $D\'{e}monstration.$

Proposition 1.56. Soit A un anneau intègre. Alors $(A[X])^{\times} = A^{\times}$.

Démonstration.

Exemple. 1. $(\mathbb{Z}[X])^{\times} = \{\pm 1\}.$

2. Soit K un corps. Alors $(K[X])^{\times} = K^{\times} = \{P(X) \in K[X] \mid deg(P) = 0\}.$

Proposition 1.57. Soit A un anneau intègre.

Alors, pour tout $a, b \in A$

$$(a) = (b) \Leftrightarrow \exists u \in A^{\times} \ a = ub \tag{1.34}$$

 $D\'{e}monstration.$

Exemple. 1. $m\mathbb{Z} = n\mathbb{Z} \Leftrightarrow m = \pm n$

2. Soit K un corps et soient $P, Q \in K[X]$. Alors, (P) = (Q) ssi $\exists u \in K^{\times}, P = uQ$.

Corollaire 1.58. Soit K un corps et soit $P \in K[X]$ tel que $P \neq 0$. Alors (P) a un unique générateur monique.

$$D\acute{e}monstration.$$

Définition 1.59 (Idéal premier). Soit A un anneau commutatif et soit I un idéal de A. On dit que I est un idéal premier si

- 1. $I \neq A$
- 2. pour tout $a, b \in A$, $ab \in I \Rightarrow a \in I$ ou $b \in I$.

Définition 1.60 (Idéal maximal). Soit A un anneau commutatif et soit I un idéal de A. On dit que I est un idéal maximal si

- 1. $I \neq A$
- 2. pour tout idéal J de A, si $I \subseteq J$, alors J = I ou J = A.

Proposition 1.61. Soit A un anneau commutatif. Alors

- 1. (0) idéal premier ssi A intègre.
- 2. (0) idéal maximal ssi A corps.
- 3. $n\mathbb{Z}$ premier dans \mathbb{Z} ssi n = 0 ou $n = \pm p$ où p est premier.
- 4. $n\mathbb{Z}$ maximal dans \mathbb{Z} ssi $n \pm p$ où p premier.

 $D\'{e}monstration.$

Généralisons la proposition précédente.

Proposition 1.62. Soit A un anneau commutatif et soit I un idéal de A. Alors

- 1. I premier ssi A/I principal.
- 2. I maximal ssi A/I corps.

 $D\acute{e}monstration.$

Exemple. 1. $\mathbb{Z}/n\mathbb{Z}$ principal ssi n = 0 ou $n = \pm p$ où p est premier.

2. $\mathbb{Z}/n\mathbb{Z}$ corps ssi $n \pm p$ où p premier. On note alors \mathbb{F}_p à la place de $\mathbb{Z}/p\mathbb{Z}$.

Proposition 1.63. Soit A un anneau commutatif et soit $a \in A$. Alors

- 1. A intègre ssi (X a) idéal premier de A[X].
- 2. A corps ssi (X a) idéal maximal de A[X].

 $D\'{e}monstration.$

Proposition 1.64. Tout idéal maximal est premier.

 $D\acute{e}monstration.$

Théorème 1.65. Tout idéal est contenu dans un idéal maximal.

 $D\acute{e}monstration.$

1.5.1 Irréductibilité

Définition 1.66 (Élément irréductible). Soit $a \in A$. a est dit **irréductible** si pour tout $x, y \in A$

$$a = xy \Rightarrow x \in A^{\times} \text{ ou } y \in A^{\times}.$$
 (1.35)

Exemple. Soit $n \in \mathbb{Z}$, n est irréductible dans \mathbb{Z} ssi $n = \pm p$ où p premier.

Proposition 1.67. a est irréductible dans A ssi pour tout $u \in A^{\times}$, ua est irréductible dans A.

 $D\acute{e}monstration.$

Proposition 1.68. Soit f un isomorphisme d'anneau. a est irréductible ssi f(a) est irréductible.

 $D\'{e}monstration.$

Exemple. On a vu que la conjugaison est un automorphisme d'anneau, donc si z est irréductible, \overline{z} l'est aussi.

Une remarque importante est que l'irréductibilité d'un élément dépend de l'anneau dans lequel nous nous trouvons. On a par exemple 2 irréductible dans \mathbb{Z} mais 2 est réductible dans \mathbb{C} parce que 2 = (1+i)(1-i).

Donnons maintenant quelques équivalences en termes d'idéaux. La définition 1.66 date du XIXè siècle, la suivante, plus couramment utilisée actuellement, date du début du XXè siècle.

Proposition 1.69. a est irréductible

- $\Leftrightarrow a \notin A^{\times}, a \neq 0 \ b|a \Rightarrow b \in A^{\times} \ ou \ \exists u \in A^{\times}, b = ua.$
- \Leftrightarrow $(a) \neq (0), (a) \neq A, (a) \subseteq (b) \Rightarrow (b) = A \ ou \ (a) = (b)$
- \Leftrightarrow $(a) \neq (0)$, (a) maximal parmi les idéaux principaux différents de A.

Démonstration. Chaque équivalence est une réécriture.

Proposition 1.70. Soit K un corps. Alors K[X] est principal.

 $D\'{e}monstration.$

1.6 Anneau de polynômes

1.6.1 Généralités

Proposition 1.71. 1. A intègre \Leftrightarrow (X) idéal premier de A[X]

2. $A \ corps \Leftrightarrow (X) \ id\'{e}al \ maximal \ de \ A[X]$

Démonstration. Si on prend la fonctions surjective $eval_0$, on a un isomorphisme induit entre A et A[X]/(X). Comme (X) est un idéal premier, A[X]/(X) est intègre. Par l'isomorphisme, A est intègre.

Proposition 1.72. Soit K un corps, alors K[X] possède une division euclidienne. Par conséquent, K[X] est principal.

 $D\'{e}monstration.$

Proposition 1.73. Soit K un corps, Pour tout idéal I non nul, il existe un unique $P \in K[X]$ monique tel que I = (P).

Démonstration. Commençons par l'existence.

Comme K est un corps, K[X] est principal, et donc chaque idéal est engendré par un élément. Notons celui-ci $Q(X) = a_n X^n + \ldots + a_1 X + a_0, a_n \neq 0$. On a donc I = (Q). Comme K est un corps, on peut définir a_n^{-1} , et $P(X) = a_n^{-1}Q(X) \in I$. Celui-ci est monique, et on a de plus que (P) = (Q) = I car P et Q sont copremiers.

Supposons maintenant qu'il existe un autre polynôme monique S(X) engendrant I. (A finir).

Proposition 1.74. Soit K un corps, $P \in K[X]$.

- 1. (P) est maximal $\Leftrightarrow P$ est irréductible.
- 2. (P) est premier $\Leftrightarrow P = 0$ ou P irréductible.

 $D\'{e}monstration.$

On a alors comme corollaire:

Corollaire 1.75. 1. P est irréductible $\Leftrightarrow K[X]/(P)$ est un corps.

2. P = 0 ou P est irréductible $\Leftrightarrow K[X]/(P)$ est intègre.

 $D\'{e}monstration.$

Proposition 1.76. Soit K[X] où K est un corps. Soit $P \in K[X]$.

Si P est de degré 1, alors P est irréductible.

De plus, si K est algébriquement clos et P irréductible, alors P est de degré 1.

1.6.2 Irréductibilité dans $\mathbb{Q}[X]$

Définition 1.77. Soit $P \in \mathbb{Q}[X]$. On définit

$$\chi_P: \mathbb{Z} \to \mathbb{Q}[X]/n\mathbb{Z}[X]: n \to n P(X) \operatorname{mod}(n\mathbb{Z}[X])$$
 (1.36)

Proposition 1.78. Soit $P \in \mathbb{Q}[X]$. Alors χ_P est un morphisme de groupe. De plus, $\ker(\chi_P) = \{n \in \mathbb{Z} \mid nP(X) \in \mathbb{Z}[X]\} \neq 0$ est un sous-groupe de \mathbb{Z} .

$$D\'{e}monstration.$$

Définition 1.79. Soit $P \in \mathbb{Q}[X]$. On définit c(P) comme l'unique entier $n \geq 1$ tel que $\ker(\chi_P) = c(P)\mathbb{Z}$.

Corollaire 1.80. Soit $P \in \mathbb{Q}[X]$. Alors

- 1. $c(P) = \min \{ n \ge 1 \mid nP(X) \in \mathbb{Z}[X] \}$
- 2. $(\forall n \geq 1, nP(X) \in \mathbb{Z}[X]) \Leftrightarrow c(P) = 1$. En particulier, $P(X) \in \mathbb{Z}[X] \Leftrightarrow c(P) = 1$.

 $D\'{e}monstration.$

Définition 1.81 (Polynome primitif). Soit $P(X) = \sum_{i=1}^{n} a_i X^i \in \mathbb{Z}[X]$. On dit que P est **primitif** si

- 1. $P(X) \neq 0$
- 2. $(a_0, \dots, a_n) = \mathbb{Z}$ où (a_0, \dots, a_n) est l'idéal engendré par a_0, \dots, a_n .

Proposition 1.82. Soit $P(X) = \sum_{i=1}^{n} a_i X^i \in \mathbb{Z}[X]$. Alors les assertions suivantes sont équivalentes.

- 1. P est primitif.
- 2. P est non nul et pour tout p premier, il existe $0 \le i \le n$ tel que p ne divise pas a_i .
- 3. P est non nul et $pgcd(a_0, \dots, a_n) = 1$.

Exemple. $2X^2 + 3X + 1$ est primitif.

Proposition 1.83. Soit $P(X) \in \mathbb{Z}[X]$. Alors, si P est monique, alors P est primitif.

$$D\'{e}monstration.$$

Lemme 1.84. Soit $P(X) \in \mathbb{Q}[X]$. Si P est monique, alors $c(P)P(X) \in \mathbb{Z}[X]$ et P primitif.

$$D\'{e}monstration.$$

Remarque. Soit $R(X) \in \mathbb{Z}[X]$ non nul. Alors P primitif ssi il existe p premier tel que $R(X) \in \mathbb{F}[X]$ ssi il existe p premier tel que $\overline{R}(X) = 0$ dans $p\mathbb{F}_p[X]$.

Lemme 1.85. Soient $P, Q \in \mathbb{Z}[X]$. Alors, les assertions suivantes sont équivalentes.

- 1. PQ primitif.
- 2. P primitif et Q primitif.

$$D\acute{e}monstration.$$

Lemme 1.86. Soit $P \in \mathbb{Z}[X]$ primitif et soit un entier $m \geq 1$. Alors $c(\frac{1}{m}P) = m$.

$$D\acute{e}monstration.$$

Lemme 1.87 (Gauss). Soient $P, Q \in \mathbb{Q}[X]$ moniques. Alors c(PQ) = c(P)c(Q).

$$D\'{e}monstration.$$

Corollaire 1.88. Soient $P, Q \in \mathbb{Q}[X]$ moniques. Alors, les assertions suivantes sont équivalentes.

1.
$$PQ \in \mathbb{Z}[X]$$

2. $P \in \mathbb{Z}[X]$ et $Q \in \mathbb{Z}[X]$.

 $D\'{e}monstration.$

Corollaire 1.89. Soient $P, Q \in \mathbb{Q}[X]$ non nuls. Alors, les assertions suivantes sont équivantes.

- 1. $PQ \in \mathbb{Z}[X]$
- 2. il existe $P_0, Q_0 \in \mathbb{Z}[X]$ tel que $deg(P_0) = deg(P)$, $deg(Q_0) = deg(Q)$ et $P_0Q_0 = PQ$.

 $D\'{e}monstration.$

Remarque. Soit $P \in \mathbb{Q}[X]$. Si $P \in \mathbb{Z}[X]$ et P réductible dans $\mathbb{Q}[X]$, alors P est réductible dans $\mathbb{Z}[X]$.

1.6.3 Polynômes à coefficients dans $\mathbb{Z}[X]$

Dans cette partie nous allons étudier les propriétés que les polynômes à coefficients dans $\mathbb{Z}[X]$ possèdent dans $\mathbb{Q}[X]$ et dans $\mathbb{Z}[X]$.

Dans la suite, on considère que $P(X) = a_n X^n + \ldots + a_1 X + a_0$ est un polynôme à coefficients dans \mathbb{Z} .

Rappelons d'abord la définition d'irréductibilité dans le cas de $\mathbb{Q}[X]$ et $\mathbb{Z}[X]$.

Prenons P(X) qui n'est pas inversible dans $\mathbb{Q}[X]$ (resp dans $\mathbb{Z}[X]$). Ce polynôme P(X) est irréductible dans $\mathbb{Q}[X]$ (resp $\mathbb{Z}[X]$) si pour toute décomposition de P(X) en deux polynômes Q(X) et R(X) (P = QR), on a $Q(X) \in \mathbb{Q}_0$ ou $R(X) \in \mathbb{Q}_0$ (resp $Q(X) = \pm 1$ ou $R(X) = \pm 1$ car les inversibles de $\mathbb{Z}[X]$ sont 1 et -1).

Prenons P(X) = 2X - 2. On a P(X) qui est irréductible dans $\mathbb{Q}[X]$ mais celui-ci est réductible dans $\mathbb{Z}[X]$ car P(X) = 2(X - 1). On n'a donc pas (P(X)) irréductible dans $\mathbb{Q}[X] \Rightarrow P(X)$ irréductible dans $\mathbb{Z}[X]$.

Nous avons tout de même, sous certaines hypothèses, que l'implication est vraie.

Proposition 1.90. Si $pgcd(a_0, ..., a_n) = \pm 1$, alors:

Si P(X) est irréductible dans $\mathbb{Q}[X]$, alors P(X) est irréductible dans $\mathbb{Z}[X]$.

 $D\'{e}monstration.$

Théorème 1.91 (Critère Eisenstein ¹). Soit p premier tel que :

^{1.} Ferdinand **Gotthold** Max **Eisenstein** : 16 avril 1823 (Berlin) - 11 octobre 1862 (Berlin). Mathématicien allemand d'origine juive. Mort de tuberculose. Élève de Dirichlet à l'université de Berlin.

- 1. p ne divise pas a_n
- 2. $\forall i \in \{0, \ldots, n-1\}, p \ divise \ a_i$.
- 3. p^2 ne divise pas a_0 .

Alors, P(X) est irréductible dans $\mathbb{Q}[X]$.

$$D\acute{e}monstration.$$

Nous avons également un théorème qui permet de déterminer l'irréductibilité d'un polynôme. Celui-ci se sert du corps $\mathbb{Z}/p\mathbb{Z}$ où p est premier.

Théorème 1.92. Si il existe un nombre premier p tel que le polynôme $\overline{P}(X) = \overline{a_n}X^n + \ldots + \overline{a_1}X + \overline{a_0}$ où $\overline{a_i} = a_i \mod(p)$ est irréductible dans $\mathbb{Z}/p\mathbb{Z}[X]$, alors P(X) est irréductible dans $\mathbb{Q}[X]$.

$$D\'{e}monstration.$$

Corollaire 1.93. Grace à ce dernier théorème, on en déduit que $X^{p-1} + \ldots + X + 1$ est irréductible dans Q[X] (et dans $\mathbb{Z}[X]$) quand p est premier. De plus, $X^p - 1 = (X - 1)(X^{p-1} + \cdots + X + 1)$.

$$D\'{e}monstration.$$

1.6.4 Polynômes cyclotomiques

Nous allons maintenant étudier certains polynômes appelés **polynômes** cyclotomiques.

D'abord, rappelons que le polynôme X^n-1 possèdent n racines complexes, appelées racines n-ième de l'unité, et qui sont $e^{\frac{2ki\pi}{n}}$, où k va de 0 à n-1. On peut de la même manière dire que $k\in\mathbb{Z}/n\mathbb{Z}$.

De plus, les racines n-ième de l'unité forment un groupe d'ordre n, qui est l'unique sous-groupe d'ordre n de \mathbb{C} , qui est cyclique, et isomorphe à $\mathbb{Z}/n\mathbb{Z}$.

Si on prend une de ces racines qui est d'ordre d, alors il engendre un unique sous-groupe d'ordre d. Ce d doit diviser n par le théorème de Lagrange. Notons cet unique sous-groupe d'ordre d par S_d .

Nous allons poser une notation pour les racines de l'unité.

Notation. $\zeta_n^k := e^{\frac{2ik\pi}{n}}$

Proposition 1.94. Dans $\mathbb{C}[X]$, on a

$$X^{n} - 1 = \prod_{d|n} \prod_{k \in (\mathbb{Z}/d\mathbb{Z})^{\times}} (X - \zeta_{d}^{k})$$

$$\tag{1.37}$$

 $D\'{e}monstration.$

Définition 1.95 (Polynômes cyclotomiques). Soit $n \geq 1$. On définit le nième polynome cyclotomique, noté $\Phi_n(X)$, par le polynome complexe

$$\Phi_n(X) = \prod_{k \in (\mathbb{Z}/n\mathbb{Z})^{\times}} (X - \zeta_n^k)$$
 (1.38)

Proposition 1.96. Soit p premier. On a $\Phi_p(X) = X^{p-1} + \cdots + X + 1$.

$$D\'{e}monstration.$$

Proposition 1.97. Soit $n \geq 1$. On a $deg(\Phi_n) = \phi(n)$.

$$D\'{e}monstration.$$

Proposition 1.98. Soit $n \ge 1$. On a

$$\Phi_n(X) = \prod_{d|n} \Phi_d(X) \tag{1.39}$$

 $D\'{e}monstration.$

Proposition 1.99. Soit $n \geq 1$. On a $\Phi_n(X) \in \mathbb{Z}[X]$.

$$D\'{e}monstration.$$

Théorème 1.100. Soit $n \geq 1$. Alors $\Phi_n(X)$ est irréductible dans $\mathbb{Q}[X]$.

$$D\'{e}monstration.$$

Proposition 1.101. Soit $n \ge 1$. Alors la décomposition de $X^n - 1$ en facteur irréductible dans $\mathbb{Q}[X]$ est donnée par

$$\Phi_n(X) = \prod_{d|n} \Phi_d(X) \tag{1.40}$$

Chapitre 2

Théorie de Galois

2.1 Extension de corps

Rappelons qu'un **corps** est un anneau commutatif A tel que le seul élément non inversible est 0_A .

Définition 2.1 (Morphisme de corps). Soient K et F deux corps. Un morphisme de corps entre K et F est un morphisme d'anneau.

Proposition 2.2. Tout morphisme de corps est injectif

Définition 2.3 (Extension de corps et sous corps). Soient K et L deux corps. On dit que L est une extension de corps, et K un sous corps de L si $K \subseteq L$ et on note L/K.

Proposition 2.4. Soit une extension de corps L/K. Alors L est un K-espace vectoriel.

Définition 2.5 (Degré d'une extension). Soit L/K une extension de corps. On définit **le degré de l'extension** L/K par la dimension de L en tant que K-espace vectoriel, et on note [L:K].

Définition 2.6 (Extension finie). Soit L/K une extension de corps. On dit que L/K est une extension finie si le degré de L/K ([L:K]) est fini.

Remarque. Soient $K \subseteq L \subseteq M$ trois corps.

A lors:

1. $[L:K] \leq [M:K]$.

2. [M:K] fini $\Rightarrow [L:K]$ fini.

3.
$$[L:K]=1 \Leftrightarrow L=K$$
.

Proposition 2.7 (Multiplicativité des degrés). Soient $K \subseteq L \subseteq M$ trois

Alors
$$[M:L][L:K] = [M:K]$$
.

Proposition 2.8 (Multiplicativité des degrés généralisée). Soient $L_1 \subseteq L_2 \subseteq$ $\cdots \subseteq L_n$.

Alors
$$[L_n: L_1] = \prod_{i=1}^{n-1} [L_{i+1}: L_i].$$

Remarque. Soit $K \subseteq L \subseteq M$.

Alors [L:K] divise [M:K] et [M:L] divise [M:K].

En particulier, si [M:K] est un nombre premier, alors il n'existe pas de corps strictement compris entre K et M.

Exercice 2.1. Il n'y a pas de corps strictement compris entre \mathbb{C} et \mathbb{R} .

Définition 2.9. Soient L/K et M/K deux extensions de corps tel que $L \subseteq E$ et $M \subseteq E$ où E est un corps. Alors on définit :

- 1. $LM = \bigcap_{\substack{F \subseteq E \ corps \\ M \subseteq F \\ L \subseteq F}} F$. C'est la plus grande extension de K contenant Let M.
- 2. $L \cap M$ est la plus grande extension de K contenue dans L et M. De manière générale, on peut étudier une intersection quelconque d'extension.

Exercice 2.2. $Si \ pgcd([L:K],[M:K]) = 1$. $Alors \ L \cap M = K$.

Définition 2.10. Soit L/K une extension de corps. Soit S un sous-ensemble de L (il n'y a pas nécessairement de structures sur S).

On définit K(S) par :

$$K(S) = \bigcap_{\substack{K \subseteq F \subseteq L \ corps}} F \tag{2.1}$$

En particulier, quand $S = \{\alpha_1, \dots, \alpha_n\}$, on note K(S) par $K(\alpha_1, \dots, \alpha_n)$. C'est le plus petit corps contenant le corps K et le sous-ensemble S.

Proposition 2.11. Soit L/K une extension de corps. Soient $\alpha, \beta \in L$. Alors $K(\alpha, \beta) = K(\alpha)K(\beta)$.

 $D\'{e}monstration.$

Soit L/K une extension de corps. Prenons $\alpha \in L$, et construisons le morphisme d'évaluation $eval_{\alpha,K}: K[X] \to L: P(X) \to P(\alpha)$ non nul. On pose $K[\alpha] = Im(eval_{\alpha,K})$.

Comme K est un corps, on a que K[X] est euclidien, donc ses idéaux sont engendrés par un élément.

Comme $eval_{\alpha,K}$ morphisme, on a $\ker(ev_{\alpha,K}) = (P)$ car le noyau de tout morphisme d'anneau est un idéal.

Définition 2.12 (Algébrique / transcendant). Soit L/K et $\alpha \in L$.

On dit que α est algébrique sur K si $\ker(eval_{\alpha,K}) \neq \{0\}$. Sinon, α est dit transcendant.

Proposition 2.13. Soit $\alpha \in L$ algébrique sur K. Alors $K[\alpha]$ est un corps. En particulier, $K(\alpha) = K[\alpha]$.

 $D\'{e}monstration.$

Définition 2.14 (Polynome minimal). Soit $\alpha \in L$ algébrique sur K.

Le polynome minimal de α sur K est l'unique $P_{\alpha,K} \in K[X]$ monique tel que $\ker(eval_{\alpha,K}) = (P_{\alpha,K})$. En particulier, $P_{\alpha,K}$ est irréductible sur K.

Proposition 2.15. Soient L/K une extension de corps, et $\alpha \in L$ algébrique sur K. Soit $n = deg(P_{\alpha,K})$.

Alors $(1, \alpha, \alpha^2, \dots, \alpha^{n-1})$ est une base de $K(\alpha)$ en tant que K espace vectoriel. En particulier, $[K(\alpha) : K] = deg(P_{\alpha,K})$.

 $D\'{e}monstration.$

Corollaire 2.16. Soit L/K une extension de corps, et soit $\alpha \in L$. Alors, les assertions suivantes sont équivalentes.

- 1. $K(\alpha)/K$ est finie.
- 2. α est algébrique sur K.

 $D\'{e}monstration.$

2.2 Extension algébrique

Définition 2.17 (Extension algébrique). Soit L/K est une extension de corps.

On dit que l'extension L/K est **algébrique** si tout élément de L est algébrique sur K.

De manière équivalente, grace à 2.16, $K(\alpha)/K$ est une extension finie pour tout α dans L.

Donnons une sous-classe des extensions algébriques.

Définition 2.18 (Extension séparable). Soit L/K une extension de corps. On dit que L/K est une extention séparable si

- 1. L/K est algébrique.
- 2. pour tout $\alpha \in L$, le polynome minimal de α sur K, $P_{\alpha,K}$, est scindé à racine simple.

Exemple. \mathbb{C}/\mathbb{R} est une extension algébrique.

 $\mathbb{Q}(i)/\mathbb{Q}$ est une extension algébrique.

 \mathbb{R}/\mathbb{Q} n'est pas une extension algébrique.

Proposition 2.19. Soient $K \subseteq L \subseteq M$ trois corps. Les assertions suivantes sont équivalentes.

- 1. M/K est une extension algébrique.
- 2. M/L et L/K sont des extensions algébriques.

 $D\'{e}monstration.$

Proposition 2.20. Soit L/K une extension finie.

Alors L/K est une extension algébrique.

 $D\'{e}monstration.$

Remarque. La réciproque est fausse.

Proposition 2.21. Soit L/K une extension finie.

Alors il existe $n \geq 1$, et $\alpha_1, \ldots, \alpha_n$ algébriques sur K tel que $L = K(\alpha_1, \cdots, \alpha_n)$.

 $D\'{e}monstration.$

Proposition 2.22. Soit L/K une extension de corps. Soit F l'ensemble des éléments de L algébriques sur K.

Alors F est un sous corps de L contenant K.

 $D\'{e}monstration.$

Définition 2.23. On appelle F, défini précédemment, la cloture algébrique de K sur L.

Remarquons qu'a priori la cloture algébrique est dépendante d'une extension de corps. On montrera par après qu'en réalité, si on prend deux clotures algébriques, les théories sur celles-ci sont les mêmes. On pourra donc choisir notre cloture algébrique 'préférée'.

Théorème 2.24. Soit K un corps. Alors il existe un corps algébriquement clos Ω contenant K.

 $D\'{e}monstration.$

Lemme 2.25. Soit L/K une extension de corps. Soient Ω algébriquement clos contenant K, et $\sigma: K \to \Omega$ un plongement de corps.

Soit $\alpha \in L$ algébrique sur K.

Alors il existe un plongement $\tau: K(\alpha) \to \Omega$ tel que $\tau_{|K} = \sigma$.

 $D\acute{e}monstration.$

Théorème 2.26 (Extension des plongements). Soit L/K algébrique. Soient Ω algébriquement clos contenant K et $\sigma: K \to \Omega$ un plongement de corps. Alors il existe $\tau: L \to \Omega$ plongement tel que $\tau_{|K} = \sigma$.

 $D\acute{e}monstration.$

Corollaire 2.27. Soient K corps, Ω_1 et Ω_2 algébriquement clos contenant K

Soit F_1 (resp. F_2) la cloture algébrique de K dans Ω_1 (resp. dans Ω_2). Alors il existe un isomorphisme K-linéaire entre F_1 et F_2 . En d'autres termes, F_1 et F_2 sont isomorphes.

 $D\'{e}monstration.$

On en conclut que si on veut étudier les extensions algébriques de K, il suffit de choisir un corps algébriquement clos Ω contenant K, et d'étudier \overline{K} , la cloture algébrique de K dans Ω . Par la suite, nous dirons que nous prenons une cloture algébrique de K.

2.3 K-plongement

Soit K un corps de caractéristique nulle (voir 1.3.1).

Fixons une cloture algébrique K de K.

Définition 2.28. Soit L/K algébrique. Un K-plongement est un morphisme de corps $\sigma: L \to \overline{K}$ K-linéaire.

Remarquons que nous avons $L\subseteq \overline{K}$ car L algébrique, et \overline{K} contient tous les éléments algébriques sur K.

Un K-plongement de corps $\sigma: L \to \overline{K}$ est un K-plongement ssi σ fixe tous les éléments a de K, ie $\sigma(a) = a$. D'où $\sigma_{|K}: K \to \overline{K}$ est le morphisme d'inclusion de K dans \overline{K} .

Rappelons que si α est algébrique, alors $K(\alpha)$ est un corps contenant K.

Proposition 2.29. Soient $\alpha \in \overline{K}$, $\sigma : K(\alpha) \to \overline{K}$ un K-plongement et $P(X) \in K[X]$.

Alors
$$\sigma(P(\alpha)) = P(\sigma(\alpha))$$

 $D\'{e}monstration.$

En conclusion, l'image d'un polynome de K[X] par un K-plongement de $K(\alpha)$ dans \overline{K} est uniquement déterminé par l'image de α .

Par un même raisonnement, si on prend $\alpha_1, \dots, \alpha_n$ et un K-plongement de $K(\alpha_1, \dots, \alpha_n)$ dans \overline{K} , alors il suffit de connaître les $\sigma(\alpha_i)$ pour $1 \leq i \leq n$.

Prenons maintenant le cas du polynome minimal $P_{\alpha,K}$. On a, par définition, $P_{\alpha,K}(\alpha) = 0$.

On obtient alors la proposition suivante.

Proposition 2.30. Soit $P_{\alpha,K}$ le polynome minimal de α sur K.

Soit $\sigma: K(\alpha) \to \overline{K}$ un K-plongement. Alors $\sigma(\alpha)$ est racine de $P_{\alpha,K}$.

En particulier, si on pose N le nombre de racines de $P_{\alpha,K}$, alors il y a au plus N K-plongements de $K(\alpha)$ dans \overline{K} .

$$D\'{e}monstration.$$

Définition 2.31. Soit L/K algébrique.

On définit l'ensemble $Hom_K(L, \overline{K}) := \{ \sigma : L \to \overline{K}, K\text{-plongement} \}$

Exemple. $|Hom_{\mathbb{Q}}(\mathbb{Q}(\sqrt[3]{2}),\mathbb{Q})| \leq 3$

Proposition 2.32. Soient F/K une extension algébrique, et $\alpha \in \overline{K}$. Soit $\sigma : F \to \overline{K}$ un K-plongement $(\sigma \in Hom_K(F, \overline{K}))$.

Alors l'application:

$$\left\{\tau \in Hom_K(F(\alpha), \overline{K}) \mid \tau_{\mid F} = \sigma\right\} \to \left\{racines \ dans \ \overline{K} \ de \ \sigma(P_{\alpha, F})\right\}$$
 (2.2)
$$\tau \to \tau(\alpha)$$
 (2.3)

est bijective. Nous venons donc de faire le lien entre les plongements et les racines du polynome minimal.

$$D\acute{e}monstration.$$

Exemple. On sait que $Hom_{\mathbb{Q}}(\mathbb{Q}(\sqrt[4]{2}), \overline{\mathbb{Q}})$ comporte au plus 4 éléments distincts. Notons les σ_0 , σ_1 , σ_2 et σ_3 , Nous avons $P_{\sqrt[4]{2},\mathbb{Q}}(X) = X^4 - 2$.

 $P_{\sqrt[4]{2},\mathbb{Q}}(X)$ possèdant 4 racines distinctes, la proposition nous dit alors que nous avons 4 K-plongements de $\mathbb{Q}(\sqrt[4]{2})$ dans $\overline{\mathbb{Q}}$, et ces plongements sont donnés par $\sigma_k : \mathbb{Q}(\sqrt[4]{2}) \to \overline{\mathbb{Q}} : \sqrt[4]{2} \to \zeta_4^k \sqrt[4]{2}$ pour $0 \le k \le 3$.

Proposition 2.33. Rappelons que nous supposons que K est de caractéristique nulle.

Soient F/K une extension algébrique et P(X) irréductible dans F[X]. Alors toutes les racines de P(X) dans \overline{K} sont simples.

$$D\acute{e}monstration.$$

Corollaire 2.34. Soient F/K algébrique et $\alpha \in \overline{K}$. Soit $\sigma \in Hom_K(F, \overline{K})$. Alors $|\{\tau \in Hom_K(F(\alpha), \overline{K}) \mid \tau_{|K} = \sigma\}| = [F(\alpha) : F]$.

$$D\'{e}monstration.$$

Proposition 2.35. Soit L/K une extension finie.

Alors $|Hom_K(L,\overline{K})| = [L:K]$. En d'autres termes, une extension finie est définie par les K-plongements, et le nombre de K-plongements est exactement le degré de l'extension.

$$D\acute{e}monstration.$$

Théorème 2.36 (de l'élément primitif). Soit K un corps de caractéristique nulle. Soit L/K une extension finie. Alors il existe $\alpha \in L$ tel que $L = K(\alpha)$.

$$D\acute{e}monstration.$$

Exercice 2.3. Montrer que $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3})$ et que $\mathbb{Q}(\zeta_3, \zeta_2) = \mathbb{Q}(\zeta_3\zeta_2)$.

Remarque. Le théorème de l'élément primitif 2.36 est aussi valable pour les corps finis.

2.4 Groupe de Galois en caractéristique nulle

Définition 2.37 (Groupe de Galois). Soit L/K une extension finie. On définit le groupe de Galois de l'extension L/K:

$$G(L,K) := Aut_K(L) \tag{2.4}$$

$$= \{ \tau : L \to L \mid \tau \text{ isomorphisme } K \text{-lin\'eaire de corps} \}$$
 (2.5)

 $(G(L,K), \circ)$ est un groupe.

Soit $i:L\to \overline{K}$ le morphisme d'injection de L dans \overline{K} . Alors l'application

$$G(L,K) \to Hom_K(L,\overline{K})$$

 $\sigma \to i \circ \sigma$

est injective. On a donc en particulier que $|G(L,K)| \leq |Hom_K(L,\overline{K})|$. Quels conditions nous faut-il sur les plongements pour obtenir une surjection?

Soit $\tau:L\to \overline{K}$ un K-plongement tel que $\tau(L)\subseteq L$. Comme L/K est de dimension finie, on a par le théorème du rang que $\tau(L)=L$. D'où $\tau\in G(L,K)$.

On identifie donc, grace à cette injection,

$$G(L,K) \simeq \{ \sigma \in Hom_K(L,\overline{K}) \mid \sigma(L) \subseteq L \}$$
 (2.6)

Exemple. Soit $L = K(\alpha)$, $\alpha \in \overline{K}$.

Alors

$$G(K(\alpha), K) = \left\{ \sigma \in Hom_K(K(\alpha), \overline{K}) \mid \sigma(K(\alpha)) \subseteq K(\alpha) \right\}$$
 (2.7)

$$= \left\{ \sigma \in Hom_K(K(\alpha), \overline{K}) \,|\, \sigma(\alpha) \in K(\alpha) \right\} \tag{2.8}$$

$$\simeq Rac(P_{\alpha,K}) \cap K(\alpha)$$
 (2.9)

En particulier, $|G(L,K)| \leq |Hom_K(L,\overline{K})| = [L:K]$. La dernière égalité résultant de 2.35.

Exemple (Exercice). 1. $G(K, K) = \{Id_K\}.$

- 2. $G(\mathbb{Q}(\sqrt{2}), \mathbb{Q}) = \langle \sigma \rangle \simeq \mathbb{Z}/2\mathbb{Z}$ où $\sigma(\sqrt{2}) = -\sqrt{2}$.
- 3. $G(\mathbb{Q}(\sqrt[3]{2}), \mathbb{Q}) = \{Id_{\mathbb{Q}}\}$
- 4. $G(\mathbb{Q}(\sqrt[4]{2}), \mathbb{Q}) \simeq \mathbb{Z}/2\mathbb{Z}$ avec $\sigma(\sqrt[4]{2}) = -\sqrt[4]{2}$
- 5. $G(\mathbb{Q}(\zeta_3, \sqrt[3]{2}), \mathbb{Q}) \simeq S_3$
- 6. $G(\mathbb{Q}(\zeta_4, \sqrt[4]{2}), \mathbb{Q}) \simeq D_4$

Nous en venons à la définition d'extension galoisienne.

Définition 2.38 (Extension finie galoisienne). Soit L/K une extension finie. L/K est (une extension finie) galoisienne si

$$G(L,K) = Hom_K(L,\overline{K})$$
(2.10)

C'est-à-dire que tout isomorphisme K-linéaire sur L est un K-plongement de L dans \overline{K} et inversément.

C'est-à-dire que :

$$L/K$$
 galoisienne $\Leftrightarrow \forall \sigma \in Hom_K(L, \overline{K}), \sigma(L) \subseteq L$ (2.11)

$$\Leftrightarrow Hom_K(L, \overline{K}) = G(L, K) \tag{2.12}$$

$$\Leftrightarrow |G(L,K)| = [L:K] \tag{2.13}$$

l'égalité |G(L,K)| = [L:K] résultant de 2.35.

Proposition 2.39. Prenons maintenant $L = K(\alpha)$ avec $\alpha \in \overline{K}$. Alors, les assertions suivantes sont équivalentes.

- 1. $K(\alpha)$ est galoisienne.
- 2. $Rac(P_{\alpha,K}) \subseteq K(\alpha)$.

 $D\'{e}monstration.$

On peut alors généraliser la proposition précédente. Passons d'abord par une proposition.

Proposition 2.40. Soit L/K une extension finite galoisienne et soit $\alpha \in L$. Notons $P_{\alpha,K}$ le polynome minimal de α sur K.

Alors
$$Rac(P_{\alpha,K}) \subseteq L$$
.

 $D\'{e}monstration.$

Proposition 2.41. Soit L/K une extension finie tel que $L = K(\alpha_1, \dots, \alpha_n)$. Alors, les assertions suivantes sont équivalentes.

- 1. L/K est galoisienne.
- 2. pour tout $1 \leq i \leq n$, $Rac(P_{\alpha_i,K}) \subseteq L$.

 $D\acute{e}monstration.$

Exemple (Exercice). 1. K/K est galoisienne.

- 2. $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ est galoisienne.
- 3. $\mathbb{Q}(\zeta_3, \sqrt[3]{2})/\mathbb{Q}$ galoisienne.
- 4. $\mathbb{Q}(\zeta_4, \sqrt[4]{2})/\mathbb{Q}$ galoisienne.
- 5. $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ n'est pas galoisienne.
- 6. $\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}$ n'est pas galoisienne.

Remarquons que nous avons $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt[4]{2})$ avec $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ et $\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}(\sqrt{2})$ galoisiennes. **Or**, $\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}$ **n'est pas galoisienne**. La propriété d'être galoisienne n'est pas transitive!

Définition 2.42. Soit $P(X) \in K[X]$ tel que $n := deg(P) \ge 1$.

Soit $Rac(P(X)) := \{\alpha_1, \dots, \alpha_n\}$ l'ensemble des racines de P(X) dans \overline{K} .

On appelle $K(\alpha_1, \dots, \alpha_n) = K(Rac(P(X)))$ le corps de décomposition de P(X).

Remarque. Soit
$$P(X) = \prod_{i=1}^d (X - \alpha_i)^{m_i}$$
 et $P_0(X) = \prod_{i=1}^d (X - \alpha_i)$. Alors

P(X) et $P_0(X)$ ont le même corps de décomposition.

Exemple. 1. $\mathbb{Q}(\sqrt{2})$ est le corps de décomposition de $X^2 - 2$.

- 2. $\mathbb{Q}(\sqrt[3]{2}, \zeta_3)$ est le corps de décomposition de $X^3 2$.
- 3. $\mathbb{Q}(\sqrt[4]{2}, \zeta_4)$ est le corps de décomposition de $X^4 2$.
- 4. $\mathbb{Q}(\zeta_n)$ est le corps de décomposition de X^n-1 .

Nous allons maintenant donner une proposition essentielle.

Proposition 2.43. Soit L/K finie. Alors les assertions suivantes sont équivalentes.

- 1. L/K est galoisienne.
- 2. L'est le corps de décomposition d'un polynome de K[X].

$$D\'{e}monstration.$$

Exemple. $\mathbb{Q}(\zeta_n)/\mathbb{Q}$ est galoisienne, et son degré est donné par $\phi(n)$ où ϕ est l'indicatrice d'Euler.

Maintenant, nous allons étudier les sous-groupes de G(L,K). Commençons d'abord par définir des objets grace aux sous-ensembles du groupe de Galois de L/K.

Définition 2.44. Soit L/K une extension de corps. Soit $S \subseteq G(L,K)$ un sous-ensemble fini.

On pose $L^S := \{x \in L \mid \forall \sigma \in S, \sigma(x) = x\}$. L^S comprend tous les éléments fixes par les éléments de S.

Montrons maintenant quelques propriétés.

Proposition 2.45. 1. L^S est un sous-corps de L contenant K.

- 2. $S \subseteq T \Rightarrow L^T \subseteq L^S \ (d\'{e}croissance)$
- 3. $L^S = L^{\langle S \rangle}$ où $\langle S \rangle$ est le sous-groupe engendré par S.

$$D\'{e}monstration.$$

La dernière proposition nous montre qu'il nous suffit d'étudier les sous-groupes de G(L, K) pour déterminer tous les L^S où S est un sous-ensemble de G(L, K).

Donnons alors des propriétés quand S est un sous-groupe. Nous utiliserons la notation H à la place de S pour rester cohérent avec les notations usuelles de la théorie des groupes.

Proposition 2.46. Soient H et H' deux sous-groupes de G(L, K). Alors :

- 1. $L^{HH'} = L^H \cap L^{H'}$
- 2. $L^{H\cap H'} = L^H L^{H'}$

Démonstration.

2.5La correspondance de Galois

Soit L/K une extension finie galoisienne.

Soit $\alpha \in L$.

Soit $\sigma \in G(L, K)$.

Soit $\beta \in Rac(P_{\alpha,K})$, une racine du polynome minimal de α sur K.

Alors on a:

$$P_{\alpha,K}(\beta) = 0 \Rightarrow P_{\alpha,K}(\sigma(\beta)) = 0 \tag{2.14}$$

Donc, le groupe G(L, K) agit sur tous les éléments de $Rac(P_{\alpha,K})$.

C'est-à-dire que l'application $\gamma: G(L,K) \to Rac(P_{\alpha,K})$ est bien définie et est une action de groupe.

Proposition 2.47. L'action γ est transitive, c'est-à-dire que $Rac(P_{\alpha,K}) =$ $\{\sigma(\alpha) \mid \sigma \in G(L,K)\}.$

$$D\acute{e}monstration.$$

On obtient alors

$$P_{\alpha,K}(X) = \prod_{\sigma \in G(L,K)} (X - \sigma(\alpha))$$

$$= \prod_{\sigma \in G(L,K)} (X - \sigma(\alpha))$$
(2.15)

$$= \prod_{\sigma \in Hom_K(L,\overline{K})} (X - \sigma(\alpha)) \tag{2.16}$$

Théorème 2.48. Soit L/K une extension finie galoisienne.

Alors $L^{G(L,K)} = K$.

C'est-à-dire que les seules points fixes par chaque élément du groupe de Galois sont les éléments de K.

$$D\acute{e}monstration.$$

Proposition 2.49. Soit L/K une extension finie. Soit F corps tel que $K \subseteq$ $F \subseteq L$.

Alors on a G(L, F) < G(L, K) (décroissance entre sous-corps de L contenant K et sous-groupe de G(L,K)).

 $D\'{e}monstration.$

Proposition 2.50. Soit L/K une extension galoisienne, et soit F corps tel que $K \subseteq F \subseteq L$.

Alors L/F est une extension galoisienne.

$$D\'{e}monstration.$$

Remarque. F/K n'est pas nécessairement galoisienne si L/K est galoisienne. Un contre-exemple est donné par $\mathbb{Q}(\zeta_4, \sqrt[4]{2})$, $\mathbb{Q}(\sqrt[4]{2})$ et \mathbb{Q} .

Nous avons alors montré que nous pouvons construire une fonction ϕ qui à chaque sous-corps de L contenant K associe un sous-groupe de G(L,K) (2.49) et inversément, on peut construire une fonction ψ qui à chaque sous-groupe de G(L,K), on peut associer un sous-corps de L contenant K (2.45) Formellement, on a :

$$\phi: \{F \mid F \text{ corps et } K \subseteq F \subseteq L\} \to \{H \mid H < G(L, K)\}$$

$$F \to G(L, F)$$

$$\psi: \{H \mid H < G(L, K)\} \to \{F \mid F \text{ corps et } K \subseteq F \subseteq L\}$$

$$H \to L^H$$

Quels sont les liens entre ϕ et ψ ? Cette étude va nous mener à la correspondance de Galois.

Théorème 2.51. L'application décroissante ϕ est bijective et $\psi = \phi^{-1}$. C'est-à-dire $\phi \circ \psi = Id$ et $\psi \circ \phi = Id$.

$$D\'{e}monstration.$$

Nous venons donc de faire un lien entre les corps intermédiaires de L et K tel que L/K est galoisienne, et les sous-groupes du groupe de Galois G(L,K).

Nous avons vu que si nous avons une extension galoisienne L/K et F corps tel que $K \subseteq F \subseteq L$, alors L/F est galoisienne, mais pas nécessairement F/K. Nous sommes prêts à donner une condition nécessaire et suffisante pour que F/K soit galoisienne.

Proposition 2.52. Soit L/K une extension finie galoisienne. Soit F corps tel que $K \subseteq F \subseteq L$.

Alors les assertions suivantes sont équivalentes.

- 1. F/K est galoisienne.
- 2. $G(L,F) \triangleleft G(L,K)$

Dans ce cas, le morphisme de restriction :

$$G(L,K) \to G(F,K)$$
 (2.17)

$$\sigma \to \sigma_{|F}$$
 (2.18)

induit un isomorphisme entre G(L,K)/G(L,F) et G(F,K).

 $D\'{e}monstration.$

Annexe A

20 premiers polynomes cyclotomiques

$$\begin{split} & \Phi_1(X) = X - 1 \\ & \Phi_2(X) = X + 1 \\ & \Phi_3(X) = X^2 + X + 1 \\ & \Phi_4(X) = X^2 + 1 \\ & \Phi_5(X) = X^4 + X^3 + X^2 + X + 1 \\ & \Phi_6(X) = X^2 - X + 1 \\ & \Phi_6(X) = X^6 + X^5 + X^4 + X^3 + X^2 + X + 1 \\ & \Phi_7(X) = X^6 + X^5 + X^4 + X^3 + X^2 + X + 1 \\ & \Phi_8(X) = X^4 + 1 \\ & \Phi_9(X) = X^6 + X^3 + 1 \\ & \Phi_{10}(X) = X^4 - X^3 + X^2 - X + 1 \\ & \Phi_{11}(X) = X^{10} + X^9 + X^8 + X^7 + X^6 \\ & + X^5 + X^4 + X^3 + X^2 + X + 1 \\ & \Phi_{12}(X) = X^4 - X^2 + 1 \\ & \Phi_{13}(X) = X^{12} + X^{11} + X^{10} + X^9 + X^8 + X^7 + X^6 \\ & + X^5 + X^4 + X^3 + X^2 + X + 1 \\ & \Phi_{13}(X) = X^{12} + X^{11} + X^{10} + X^9 + X^8 + X^7 + X^6 \\ & + X^5 + X^4 + X^3 + X^2 + X + 1 \\ & \Phi_{14}(X) = X^6 - X^5 + X^4 - X^3 + X^2 - X + 1 \\ & \Phi_{15}(X) = X^8 - X^7 + X^5 - X^4 + X^3 - X + 1 \\ & \Phi_{16}(X) = X^8 + 1 \end{split} \tag{A.18}$$

$$\Phi_{17}(X) = X^{16} + X^{15} + X^{14} + X^{13} + X^{12} + X^{11}$$
(A.19)

$$+X^{10} + X^9 + X^8 + X^7 + X^6 \tag{A.20}$$

$$+X^{5}+X^{4}+X^{3}+X^{2}+X+1$$
 (A.21)

$$\Phi_{18}(X) = X^6 - X^3 + 1 \tag{A.22}$$

$$\Phi_{19}(X) = X^{18} + X^{17} + X^{16} + X^{15} + X^{14} + X^{13}$$
(A.23)

$$+X^{12} + X^{11} + X^{10} + X^9 + X^8 + X^7 + X^6$$
 (A.24)

$$+X^{5} + X^{4} + X^{3} + X^{2} + X + 1$$
 (A.25)

$$\Phi_{20}(X) = X^8 - X^6 + X^4 - X^2 + 1 \tag{A.26}$$