Practical 12

Table below gives the hypothetical data on consumption expenditure and income perform the following test of heteroscedasticity and write your conclusion

- (a) GQ test
- (b) BPG test (c) Whites test
- (d) KB test

Use C=4 for GQ test

Y	X
55	80
65	100
70	85
80	110
79	120
84	115
98	130
95	140
90	125
75	90
74	105
110	160
113	150
125	165
108	145
115	180
140	225
120	200
145	240
130	185
152	220
144	210
175	245
180	260
135	190
140	205
178	265
191	270
137	230
189	250

 ${\bf Workout}$

First of all we have to put our data in R

Goldfed Quandt Test

```
df<-data.frame(y,rep(1,30),x)
df <-df[order(df$x),]
df1<-as.matrix(df[1:13,])
df2<-as.matrix(df[18:30,])</pre>
```

Now we need to calculate RSS for both the model , so let us first calculate coefficients then RSS

```
#For first subset
x1<-df1[,c(2,3)]
y1<-df1[,1]
beta1<-solve(t(x1)%*%x1)%*%t(x1)%*%y1
print(beta1)
##
                     [,1]
## rep.1..30. 3.4094293
               0.6967742
## x
#for second subset
x2 < -df2[,c(2,3)]
y2<-df2[,1]
beta2<-solve(t(x2)\\\*\\\x2)\\\*\\\t(x2)\\\\*\\\y2
print(beta2)
##
                       [,1]
## rep.1..30. -28.0271687
                 0.7941373
Now RSS is given by
RSS1<-t(y1-x1%*%beta1)%*%(y1-x1%*%beta1)
RSS2 < -t(y2-x2\%*\%beta2)\%*\%(y2-x2\%*\%beta2)
print(RSS1)
             [,1]
## [1,] 377.1663
```

```
print(RSS2)
##
          [,1]
## [1,] 1536.8
Now let us calculate F statistic
degree_of_freedom<-length(y1)-length(beta1)</pre>
Fcal<-(RSS2/degree_of_freedom)/(RSS1/degree_of_freedom)
print(Fcal)
##
            [,1]
## [1,] 4.074595
F tabulated can be calculated by at 5%
Ftab < -qf(0.95, 11, 11)
print(Ftab)
## [1] 2.81793
THE BREUSCH-PAGAN-GODFREY (BPG) TEST
First of all we need to calculate error terms by gitting linear refression model, and then estimate the \sigma^2 by
MLE
1<-cbind(rep(1,30),x )</pre>
beta<-solve(t(1)%*%1)%*%t(1)%*%y
sigma_2<-(t(y-1%*\%beta)%*\%(y-1%*\%beta))/30
u<-(y-1%*\%beta)
print(sigma_2)
##
            [,1]
## [1,] 78.70511
print(u)
                  [,1]
##
         -5.31307205
##
    [1,]
   [2,] -8.06876320
##
##
   [3,]
          6.49800516
##
   [4,]
          0.55339122
##
   [5,] -6.82445435
##
   [6,]
          1.36446843
   [7,]
          5.79770007
##
##
    [8,] -3.58014551
   [9,]
##
           0.98662286
```

[10,]

8.30908238

[11,] -2.25768599

```
## [12,] -1.33583666
## [13,]
          8.04200892
## [14,] 10.47524055
## [15,]
           6.23093171
## [16,] -9.09152781
## [17,] -12.79183290
## [18,] -16.84721896
## [19,] -17.35860127
## [20,]
           2.71954940
## [21,]
           2.39708989
## [22,]
           0.77493546
## [23,]
           9.45247594
## [24,]
           4.88570758
## [25,]
           4.53062661
## [26,]
         -0.03614175
## [27,]
          -0.30321521
## [28,]
           9.50786200
## [29,] -18.98075569
## [30,] 20.26355316
Constructing p_i
p<-(u^2)/as.numeric(sigma_2)
beta_p<-solve(t(1)%*%1)%*%t(1)%*%p
print(beta_p)
##
             [,1]
     -0.74261366
## x 0.01006322
Now calclating ESS (Explained sum of square)
ESS \leftarrow t((1\%\%beta_p)-mean(p))\%\%((1\%\%beta_p)-mean(p))
phi<-ESS/2
print(phi)
            [,1]
## [1,] 5.214011
```

White's General Heteroscedasticity Test

We have already residual from previous, now we will regress $u_i = \alpha + \alpha_1 x + \alpha_2 x^2$

```
m<-cbind(1,1[,2]^2)
alpha<-solve(t(m)%*%m)%*%t(m)%*%u
print(alpha)</pre>
```

```
## [,1]
## 14.0265375597
## x -0.1807263960
## 0.0005167469
```

```
SSR<-(t(u-m%*%alpha)%*%(u-m%*%alpha))
SST<-(t(u-mean(u))%*%(u-mean(u)))
R_2<-1-(SSR/SST)
chi_2calc<-30*R_2
print(chi_2calc)</pre>
## [,1]
## [1,] 0.8443091
```

Koenker-Bassett (KB) test

We have to regree u_i^2 by y^2

```
u<-u^2
c<-y^2
summary(lm(u~c))
```

```
##
## Call:
## lm(formula = u ~ c)
##
## Residuals:
##
      Min
                1Q Median
                               ЗQ
                                      Max
## -141.19 -66.34 -28.20
                            26.41 269.90
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 16.369395 37.690480
                                     0.434
                                             0.6674
## c
               0.003943
                          0.002034
                                     1.938
                                             0.0628 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 107.6 on 28 degrees of freedom
## Multiple R-squared: 0.1183, Adjusted R-squared: 0.08677
## F-statistic: 3.755 on 1 and 28 DF, p-value: 0.06279
```

Conclusion

(a)GQ test

We will F calculated is greater than F tabulated so we will reject the hypothesis of homoscedasticity and conclude tha variance of error term are not same

(b)BPG test

from the chi-square table we find that for 1 df the 5 percent critical chi-square value is 3.8414 and the 1 percent critical χ^2 value is 6.6349. Thus, the observed chi-square value of 5.2140 is significant at the 5 percent but not the 1 percent level of significance

(c) Whites test

We got 0.8443091 and tabulated value at 1% is given by 0.0201007 hwnce we reject the null hypothesis at 1% significance level

(d)KB test

From the summary of lm we can conclude that we can reject null hypothesis by 0.1 significance