ML Assignment -2

Team members:

- Kesava Datta
- Sam Dheeraj
- Lakshmi Shivani
- Kritika Reddy

Task 1

Inductive Bias

The assumptions guiding model selection from the hypothesis space.

Hypothesis Space

The set of all possible models a learning algorithm can consider.

Classification

Used for predicting discrete labels using models like Logistic Regression and Decision Trees.

Regression

Used for predicting continuous values using models like Random Forest and LSTM.

Reference:

- Kumari, S., & Singh, S. K. (2023). Machine learning-based time series models for effective CO2 emission prediction in India. *Environmental Science and Pollution Research*, 30(55), 116601-116616.
- Baxter, J. (2000). A model of inductive bias learning. Journal of artificial intelligence research, 12, 149-198.
- Loh, W. Y. (2011). Classification and regression trees. Wiley interdisciplinary reviews: data mining and knowledge discovery, 1(1), 14-23.

Problem Statement:

Now a days, Co2 emission is increasing rapidly due to increase of population. For the predicting the Co2 emission using machine learning models of different types of vehicles.

Input Features:

- Engine Size: 2.0L
- Cylinders: 4
- Vehicle Class: Compact

Random Forest Prediction:

- 100 trees predict CO2 emissions:
- Tree 1: 180 g/km
- Tree 2: 190 g/km
- Tree 3: 185 g/km
- ...
- Tree 100: 195 g/km

Final Prediction:

- Average of all predictions:188g/km
- Predicted CO2 emissions: 188 g/km

Task 2

Using KDE in Data Visualization

Result:

Class Probabilities: Class 0 (-): 0.1627 Class 1 (+): 0.8373

Predicted Class: (+)

Task 3

Not Play Tennis

- Load Dataset

M One-Hot Encode Data

Prepare Data for Model

Train Model

Make Predictions

Evaluate Model

End

Calculate Priors

Determine the occurrence frequency of each class in the dataset

Calculate Likelihood

Compute the probability of features given each class

Calculate Posteriors

Combine priors and likelihoods to find posteriors

Make Prediction

Select the class with the highest posterior probability

