

#### 小伙伴计划暑期学习营——零基础Python入门

第五讲:数据处理入门

张智帅 电子系

清华大学学生学业与发展指导中心 2019-2020学年夏季学期

### 第五讲-数据处理入门-目录

#### ■安装必备库

□ 科学计算: NumPy

■数据处理: pandas

□数据可视化: matplotlib



Python数据科学生态系统

### 数据处理基本步骤







Machine Learning with Scikit-Learn







1.读取数据

表格、时间序列.....)

(结构化数据:矩阵、







2.数据预处理



3.数据分析

# → matpletlib

4.数据可视化



#### 配环境

□ 安装必备库NumPy、pandas、matplotlib

```
import numpy as np

ModuleNotFoundError
in
----> 1 import numpy as np

ModuleNotFoundError: No module named 'numpy'
```



```
[2] ▷ M4 # 导入必备库,若没有则pip install 〈库名〉 import numpy as np import pandas as pd import matplotlib.pyplot as plt
```



□ 终端输入: pip install numpy, pip install pandas, pip install matplotlib

### 第五讲-数据处理入门-目录

- □安装必备库
- 科学计算: NumPy
  - ndarray

■ 数据处理: pandas

数据可视化: matplotlib pandas Scikit-image Scikit-image Scily Scily NumPy Python SymPy IP[y]: IPython Python python

Python数据科学生态系统



- □ Numerical Python,科学计算的基础包
- ▶ 快速、高效的**高维数组对象ndarray**

2D array

1D array

7 2 9 10

shape: (4,)

2D array

5.2 3.0 4.5

9.1 0.1 0.3

axis 1

shape: (2, 3)

shape: (4, 3, 2)

3D array

> 从序列创建数组

■ a = np.array(1) # 0维数组(标量)
b = np.array([1, 2]) # 1维数组(向量)
c = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]) # 2维数组(矩阵)
d = np.array([[[1, 2, 3], [4, 5, 6]], [[4, 5, 6], [1, 2, 3]]]) # 3维数组(张量)
# 多维数组需要用嵌套的列表创建

# NumPy-ndarray

> 随机数组

```
a = np.random.rand(10)# 均匀随机数
b = np.random.randn(2,10)# 正态分布的随机数
c = np.random.randint(0,100,10)# 随机整数
```

> 数组索引

```
c = np.random.randint(0,100,[4,3])# 二维随机整数 print(c) print("\n",c[3]) # 默认按照行索引 print("\n",c[:,2]) # 按照列索引
```

> 数组属性与函数

```
print(data_array.ndim) #维度数
print(data_array.shape) #形状(尺寸)
print(data_array.dtype) #元素数据类型
```

```
print(arr.sum()) # 求和
print(arr.max()) # 最大值
print(arr.min()) # 最小值

print(arr.mean()) # 平均值
print(arr.std()) # 标准差
print(arr.var()) # 方差
```

# NumPy-矢量运算

□ 相同尺寸:逐元素运算

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} + - \times \div \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} = ?$$

- □ 不同尺寸:
- ▶ 标量×向量:向量的数乘

$$10 \times (0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6) = (0 \ 10 \ 20 \ 30 \ 40 \ 50 \ 60)$$

▶ (4×3)矩阵 + (1×3)向量?

$$\begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{pmatrix} + \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} = ?$$

# NumPy-数组广播

□ 这能运行吗?

$$\begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{pmatrix} + \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} = ?$$

$$egin{pmatrix} 0 & 0 & 0 \ 1 & 1 & 1 \ 2 & 2 & 2 \ 3 & 3 & 3 \end{pmatrix} + egin{pmatrix} 1 \ 2 \ 3 \ 4 \end{pmatrix} = ?$$



广播维必须为1,广播维之外的维度相同

沿着1轴广播

# NumPy-线性代数运算

□ 矩阵乘法

```
\begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{pmatrix} = \begin{pmatrix} 70 & 80 & 90 \\ 158 & 184 & 210 \end{pmatrix}
```

□ 转置

```
arr1 = np.arange(1,9).reshape(2,4)
          arr2 = np.arange(1,13).reshape(4,3)
           print(arr1)
          print(arr2)
          arr1.dot(arr2) # 矩阵乘法
      [[1 2 3 4]
       [10 11 12]]
      array([[ 70, 80, 90],
             [158, 184, 210]])
```

### 第五讲-数据处理入门-目录

- □安装必备库
- □ 科学计算: NumPy
- □ 数据处理: pandas
  - Series



Python数据科学生态系统

#### **Pandas**

- □ Panel data或Python data analysis,基于NumPy,是数据分析的基础包
- > 源自金融数据应用,支持时间序列分析&非时间序列分析
- 快速、便捷地处理结构化数据(索引、数据对齐)
- > 灵活处理缺失数据







虚假的熊猫

#### Pandas基本数据结构

□ Series: 序列型数据结构(一维); 索引+值

□ DataFrame:表格型数据结构(二维或高维);行/列+值

Series 1 Series 2 Series 3 DataFrame

|   | Mango |    |   | Apple |   |   | Banana |   |   | Mango | Apple | Banana |
|---|-------|----|---|-------|---|---|--------|---|---|-------|-------|--------|
| 0 | 4     |    | 0 | 5     |   | 0 | 2      |   | 0 | 4     | 5     | 2      |
| 1 | 5     |    | 1 | 4     |   | 1 | 3      |   | 1 | 5     | 4     | 3      |
| 2 | 6     | +  | 2 | 3     | + | 2 | 5      | = | 2 | 6     | 3     | 5      |
| 3 | 3     |    | 3 | 0     |   | 3 | 2      |   | 3 | 3     | 0     | 2      |
| 4 | 1     |    | 4 | 2     |   | 4 | 7      |   | 4 | 1     | 2     | 7      |
|   |       | 索引 |   | 值     | Ī |   |        |   |   |       |       |        |

▶ 官方文档:

https://pandas.pydata.org/pandas-docs/stable/reference/series.html https://pandas.pydata.org/pandas-docs/stable/reference/frame.html

### Pandas基本数据结构

- 构造DataFrame的办法有很多
- ➤ 常用:直接传入一个由等长列表或NumPy数组组成的字典

```
# 从"等长列表组成的字典"构造DataFrame
  df = pd.DataFrame(
          "Subject": ["军训", "思修", "史纲", "马原", "毛概", "体育1", "体育2"],
          "Score": [65, 80, 75, 83, 77, 100, 98],
          "Credit":[3, 3, 3, 4, 4, 1, 1],
          "Year": [2018, 2018, 2019, 2019, 2020, 2019, 2020]
      }
  df
Subject Score Credit Year
 军训
           3 2018
 思修
      80 3 2018
 史纲
      75 3 2019
 马原 83 4 2019
 手概 77 4 2020
 体育1
      100 1 2019
 体育2
      98
          1 2020
```

### Pandas基本操作

- □ Series和DataFrame的基本操作: 花式索引与切片、增删查改、排序......
- 操作对象:索引、列名、单元格

|   | Subject | Score |
|---|---------|-------|
| 0 | 军训      | 65    |
| 1 | 思修      | 80    |
| 2 | 史纲      | 75    |
| 3 | 马原      | 83    |
| 4 | 毛概      | 77    |
| 5 | 体育1     | 100   |
| 6 | 体育2     | 98    |
|   |         |       |



|   | Subject | Score | credit |
|---|---------|-------|--------|
| 0 | 军训      | 65    | 3      |
| 1 | 思修      | 80    | 3      |
| 2 | 线性代数    | 75    | 3      |
| 4 | 毛概      | 77    | 4      |
| 5 | 体育1     | 100   | 1      |
| 6 | 体育2     | 98    | 1      |

- ➤ 作业1: 10 Minutes to pandas
- **> 根据需要,现用现查**

### Pandas函数应用与映射

- ▶ 分类求平均分、最高分? 分组与聚合
- ▶ 批量转换求GPA? 应用自定义函数

|     | subject  | year | score | credits | property |
|-----|----------|------|-------|---------|----------|
| 9   | 机械制图D7   | 2018 | 90.0  | 5       | 限选       |
| 1   | 程序设计基础C9 | 2019 | 81.0  | 1       | 任选       |
| 2   | 电工电子技术C4 | 2017 | 77.0  | 1       | 必修       |
| 3   | 大学物理C3   | 2018 | 59.0  | 5       | 任选       |
| 4   | 程序设计基础A8 | 2017 | 93.0  | 5       | 限选       |
|     |          |      |       |         |          |
| 96  | 大学物理D7   | 2017 | 99.0  | 4       | 任选       |
| 97  | 电工电子技术B9 | 2018 | 73.0  | 1       | 限选       |
| 98  | 微积分A8    | 2018 | 67.0  | 4       | 必修       |
| 99  | 电工电子技术B5 | 2019 | 80.0  | 5       | 限选       |
| 100 | 大学物理A9   | 2018 | 81.0  | 2       | 必修       |
|     |          |      |       |         |          |
| 101 | rows × 5 | col  | .umns |         |          |



|                      | subject  | year | score | credits | property | grade | GPA |
|----------------------|----------|------|-------|---------|----------|-------|-----|
| 29                   | 电工电子技术D7 | 2018 | 100.0 | 1       | 限选       | A+    | 4.0 |
| 51                   | 体育C9     | 2017 | 100.0 | 3       | 必修       | Α+    | 4.0 |
| 57                   | 线性代数C8   | 2020 | 100.0 | 1       | 限选       | Α+    | 4.0 |
| 96                   | 大学物理D7   | 2017 | 99.0  | 4       | 任选       | А     | 4.0 |
| 46                   | 电工电子技术A8 | 2019 | 99.0  | 3       | 必修       | А     | 4.0 |
|                      |          |      |       |         |          |       |     |
| 10                   | 程序设计基础C1 | 2018 | 55.0  | 3       | 任选       | F     | 0.0 |
| 5                    | 线性代数B9   | 2020 | 0.0   | 5       | 任选       | F     | 0.0 |
| 31                   | 机械制图A7   | 2019 | 0.0   | 5       | 限选       | F     | 0.0 |
| 76                   | 微积分D3    | 2019 | 0.0   | 1       | 限选       | F     | 0.0 |
| 91                   | 微积分D3    | 2020 | 0.0   | 5       | 限选       | F     | 0.0 |
|                      |          |      |       |         |          |       |     |
| 101 rows × 7 columns |          |      |       |         |          |       |     |

- Pandas数据分析教程——超好用的Groupby用法详解: https://www.jianshu.com/p/b50941b6d229
- Pandas数据分析三板斧——map、apply、applymap详解: https://www.jianshu.com/p/e76861ed1815

### 第五讲-数据处理入门-目录

□安装必备库

□ 科学计算: NumPy

■数据处理: pandas

□ 数据可视化: matplotlib



Python数据科学生态系统

### 数据可视化基础

- □ 一图抵千言, A picture is worth a thousand words.
- > 可视化的作用:真实、准确地展示数据;揭示数据的关系、规律
- 故事: 南丁格尔玫瑰图



### 数据可视化常用工具

- Python: matplotlib, Seaborn, plotline
- R: ggplot2
- 软件或在线工具: Excel, Power BI, Echart, Tableau



[张杰@Python数据可视化之美.专业图表绘制指南]

# Matplotlib绘图

#### □ 基本操作: 从序列画图

```
# 直接从列表画图

x = [1,2,3,4,5,6,7]

y = [65, 80, 75, 83, 77, 100, 98]

plt.plot(x,y)

plt.show()
```



```
# 从NumPy画图

x = np.arange(0,7)

y = np.array([65, 80, 75, 83, 77, 100, 98])

plt.plot(x,y)

plt.show()
```



□ 完善细节: 调整线条、坐标轴、图框, 添加标注

# Matplotlib图像构成



# Matplotlib图像构成

□ 常用设置:

▶ 线条: 颜色、标记、线型......

▶ 图框:刻度、标签、图例、网格、注释......

| ID | 函数                     | 核心参数说明                                          | 功能              |
|----|------------------------|-------------------------------------------------|-----------------|
| 1  | figure()               | figsize (图表尺寸)、dpi (分辨率)                        | 设置图表的大小与分辨率     |
| 2  | title()                | str(图名)、fontdict(文本格式,包括字体大小、类型等)               | 设置标题            |
| 3  | xlabel() ylabel()      | xlabel(X轴名)或 ylabel(Y轴名)                        | 设置 X 轴和 Y 轴的标题  |
| 4  | axis(), xlim(), ylim() | xmin、xmax 或 ymin、ymax                           | 设置 X 轴和 Y 轴的范围  |
| 5  | xticks()、yticks()      | ticks (刻度数值)、labels (刻度名称)、fontdict             | 设置 X 轴和 Y 轴刻度   |
|    | .10                    | b(有无网格线)、 $which$ (主/次网格线)、 $axis$ ( $X$ 轴和 $Y$ | 设置 X 轴和 Y 轴的主要和 |
| 6  | grid()                 | 轴网格线)、color、linestyle、linewidth、alpha(透明度)      | 次要网格线           |
| 7  | legend()               | loc (位置)、edgecolor、facecolor、fontsize           | 控制图例显示          |

#### ▶ 根据需要,现用现查

# Matplotlib图像种类

#### □ 根据需求,确定图像的形式



### 时间序列绘制举例

#### □ Pandas整理数据→Matplotlib绘图

|           | 股票A        | 股票B        |
|-----------|------------|------------|
| date      |            |            |
| 2012-1-1  | 76.985291  | 40.301222  |
| 2012-2-1  | 71.506866  | 33.981832  |
| 2012-3-1  | 57.410031  | 51.475666  |
| 2012-4-1  | 56.485801  | 41.560597  |
| 2012-5-1  | 39.225449  | 27.668570  |
|           |            |            |
| 2021-10-1 | 141.698789 | 199.537386 |
| 2021-11-1 | 149.804607 | 215.963365 |
| 2021-12-1 | 143.574939 | 223.464030 |
| 2022-1-1  | 117.443904 | 196.151518 |
| 2022-2-1  | 144.976472 | 217.230120 |
| 122 ro    | vs × 2 c   | columns    |







# 南丁格尔图绘制举例

#### □ Pandas整理数据→Matplotlib绘图

|   | Subject | Grade |
|---|---------|-------|
| 9 | 军训      | 65    |
| 1 | 思修      | 80    |
| 2 | 史纲      | 75    |
| 3 | 马原      | 83    |
| 4 | 毛概      | 77    |
| 5 | 体育1     | 100   |
| 6 | 体育2     | 98    |





## 数据可视化应用举例



#### 课后练习

- □ 1. (基本要求)阅读并实现:十分钟入门 Pandas <a href="https://www.pypandas.cn/docs/getting\_started/10min.html">https://www.pypandas.cn/docs/getting\_started/10min.html</a>
- □ 2. (基本要求) 用matplotlib画—幅图像,鼓励使用自己的数据

# 反馈问卷





