Međuispit

23. studenog 2016.

Ime i Prezime: docx

NaN Matični broj:

Napomena: Svaki zadatak potrebno je rješavati na posebnom listu, a listove numerirati i posložiti. Potpisani list sa zadacima potrebno je obavezno vratiti. Zadaci koji neće biti riješeni uredno i pregledno neće se uzeti u obzir kod ocjenjivanja.

1. zadatak (4 boda)

Zadan je sustav opisan diferencijalnom jednadžbom:

$$\frac{d^{2}y(t)}{dt^{2}} + 2\frac{dy(t)}{dt} + 3y(t) = 2\frac{d^{2}u(t)}{dt^{2}} + 3\frac{du(t)}{dt} + u(t)$$

Potrebno je:

- a) (2 boda) Nacrtati blokovsku shemu sustava za određivanje odziva na jediničnu skokovitu pobudu, uz korištenje osnovnih blokova (integrator, sumator, množenje s konstantom, step funkcija);
- b) (2 boda) Opisati sustav u prostoru stanja uz izbor izlaza iz integratora na blokovskoj shemi kao varijabli stanja.

/ 2. zadatak (4 boda)

Pasivnu mrežu prema slici 2 potrebno je prikazati bond grafom, ako je ulazni naponski signal u_u , a na izlaz (u_i) $nije\ priključeno\ nikakvo\ trošilo.\ Označite na bondu izlazni napon <math>u_i$ i postavite crtice kauzalnosti.

7

Slika 1: Pasivna mreža.

√3. zadatak (9 bodova)

Zadan je rotacijski sustav s dvije mase i dvije elastične osovine prema slici 3, kod kojeg su koeficijemi elastičnosti osovina $c_{f1}=c_{f2}=105~\mathrm{Nm/rad}$, koeficijenti prigušenja osovina $D_1=D_2=500~\mathrm{Nms/rad}$, momenti inercije $J_1=J_2=25~\mathrm{kgm^2}$, polumjeri diskova $r_1=r_2=0.5~\mathrm{m}$.

 $J_1 = J_2 = 25$ kgm⁻, politinjen diskova $r_1 = r_2 = 0.5$ m.

Potrebno je odrediti **prijenosnu funkciju** $G(s) = \frac{\omega_2(s)}{\omega_u(s)}$. Pritom brojke uvrstite tek na kraju, nakon što ste dobili analitički oblik funkcije!

Slika 2: Rotacijski sustav.

4. zadatak (13 bodova)

Zadan je sustav protoka tekućine prema slici 1. Tlak P_u predstavlja nadtlak prema atmosferskom tlaku, gubici u ulaznoj cijevi su zanemarivi, brzina tekućine u spremnicima zanemariva je u odnosu na brzinu tekućine u cijevima Sva strujanja su laminarna, a kontrakcija mlaza je zanemariva.

Prvi spremnik je krnja piramida s kvadratičnim bazama, čije su stranice $a_1=1$ m i $a_2=2$ m te ukupna visina $H_{u2}=6$ m. Drugi spremnik je krnji stožac s promjerima baza $D_1=2$ m i $D_2=4$ m te ukupne visine $H_{u1} = 10 \text{ m}$

Radna točka određena je ulaznim veličinama tlaka i otvora ventila $P_{u0}=10$ bar i $x_0=5$ ϵm

Uz konstantu ventila $K_v=1.5~\mathrm{m^3/(cm\cdot min\cdot \sqrt{bar})}$ te poprečni presjek svih cijevi $A_c=250~\mathrm{cm^2}$, potrebno je:

- a) (6 bodova) Nacrtati nelinearnu blokovsku shemu sustava (za Matlab Simulink) u kojoj će biti omogućeno protjecanje tekućine u cijevi između spremnika u oba smjera.
- b) (2 boda) Odrediti iznose volumnih protoka $Q_{u0},\,Q_{10},\,Q_{120}$ i $Q_{20},$ te visina tekućine H_{10} i H_{20} u radnoj točki.
- c) (5 bodova) Odrediti linearizirani model sustava u radnoj točki. Opisati sustav u prostoru stanja uz izbor visina tekućina h_1 i h_2 kao varijabli stanja, protoka q_2 i visine h_1 kao izlaznih veličina sustava, te otvora ventila x i ulaznog tlaka p_{u} kao ulaznih veličina sustava.

Slika 3: Sustav protoka tekućine.