Also published as:

US4477819 (A1)

OPTICAL RECORDING MEDIUM

Patent number:

JP58220794

Publication date:

1983-12-22

Inventor:

MAIKERU HEINO RII; AARA ONTON; HARORUDO

UIIDAA

Applicant:

IBM

Classification:

- international:

B41M5/26; G11B7/24; G11C13/04

- european:

Application number: JP19830068503 19830420 Priority number(s): US19820388319 19820614

Abstract not available for JP58220794
Abstract of corresponding document: **US4477819**

An optical recording medium comprising adjacent thin layers of two different materials, which, upon marking with an energy beam, form a marked area comprising an alloy or mixture of the two materials. The optical properties of the marked area has contrast sufficiently different from the optical properties of the unmarked area so that the marked area can be reliably sensed. One of the first of the thin layers comprises a metal and the other of the thin layers comprises a metal or a semiconductor. The metals are taken from the group comprising Al, Au, Pb and Sn and the semiconductors are chosen from the group comprising Ge and Si.

Data supplied from the esp@cenet database - Worldwide

BEST AVAILABLE COPY

THIS PAGE BLANK (USPTO)

(9) 日本国特許庁 (JP)

①特許出願公開

⑩公開特許公報(A)

昭58-220794

MInt. Cl.3

. .

識別記号

庁内整理番号 6906—2H 砂公開 昭和58年(1983)12月22日

B 41 M 5/26 G 11 B 7/24 G 11 C 13/04

6906—2H 7247—5D 7341—5B

発明の数 1 · 審査請求 有

(全 4 頁)

90光学記録媒体

②特 願 昭58-68503

②出 願 昭58(1983)4月20日

優先権主張 ◎1982年6月14日③米国(US)

3388319

⑫発 明 者 マイケル・ヘイノ・リー

アメリカ合衆国カリフオルニア 州サンノゼ・シーウツド・ウエ イ715番地

20発明者 アーラ・オントン

アメリカ合衆国カリフオルニア

州サラトガ・アロハ・アベニユ -14690番地

⑩発 明 者 ハロルド・ウイーダー

アメリカ合衆国カリフオルニア 州サラトガ・ノールウツド・ド ライブ20175番地

⑪出 願 人 インターナショナル・ビジネス

・マシーンズ・コーポレーショ ン きょ

アメリカ合衆国10504ニューヨ ーク州アーモンク

個代 理 人 弁理士 岡田次生 外1名

明 細 書

1.発明の名称 光学記録媒体

2. 特許請求の範囲

少なくとも2つの物質の隣接した層を有し、エネルギー・ビームを用いて記録が行なわれる時に未記録領域の光学的特性とは異なつた光学的特性を有する記録領域を形成する光学記録媒体であつて、上記少なくとも2つの物質の1つが、第1の金属であり、上記少なくとも2つの物質の他の1つが、第2の金属又はゲルマニウムである光学記録媒体。

3.発明の詳細な説明

〔技術分野〕

本発明は光学記録媒体、特に集束されたレーザ ・ビームに露光する事によつて情報を記憶できる 記憶媒体に関する。

〔背景技術〕

記録レーザの回折限界スポット・サイズに近い 寸法の領域の物質を除去する事によつて記録を行 なう光学記録媒体は、公知である。この媒体は一 般に書込領域と未書込領域との間に高いコントラ ストが得られるが、ある場合には、スポットの周 辺部のへりの影響により信号対雑音比が制限され る。これはへりが読取ビームをいくらか散乱する からである。さらに、Te及びTe 合金に基づい たそれらの媒体は腐食され易い。

他にも数多くの光学記録媒体及びそれらの媒体 に記録を行なう手段が知られているが、情報の長 寿命記録を達成した媒体は、所望のレベルよりも 高い、即ち、Te 基合金を用いて得られるよりも 高いレーザ・パワー・レベルを必要としている。

〔発明の開示〕

従つて、本発明の目的は、許容可能なパワー・レベルのレーザ・ビームに応答して情報を記憶する事ができ、また、長期間の記憶を行なうのに充分な寿命を有する光学記憶媒体を提供する事であ

٠, ٠

る。

本発明によれば、少なくとも2つの物質の隣接した薄層から成る光学記録媒体が与えられる。この媒体は、エネルギー・ピームを用いて記録される時、末露光構造の光学特性とは異なる光学特性を有する記録領域を吸熱的に形成する。この層状物質は、金属より成る第1の群及び金属と半導体とより成る第2の群から選択される。

好ましくは金属はAB、Au、Pb及びSnより成る群から選択され、半導体は、Ge及びSiより成る群から選択される。吸熱反応的に形成される 記録領域は、それらの物質の混合物あるいは合金より成る。

ここに開示した物質は、許容できるレーザ・パワー・レベルを用いて高い記録密度で情報を記録 する事ができ且つ長期間の記憶目的に適した寿命 特性を有する光学記録媒体を形成する。

[発明を実施するための最良の形態]

本発明の新規な光学記録媒体は、少なくとも2

所的加熱を生じさせる。

第4図に示すビームB1のようなエネルギー・ビームは、記録スポット19を形成するために媒体の表面11に照射する事が好ましい。しかしながら、基板12がエネルギー・ビーム中の放射に対して透明であれば、基板12を経てビームを照射する事によつて、記録スポット19を形成してもよい。この場合、層14及び層16を構成する物質は交換されるであろう。

記録時に起きる変化の正確な性質は完全 には 理解されていない。というのは、加熱は 2 0 ナノ 秒程度の時間内に起きるからである。第 4 図は、ビーム B 1 による加熱による層 1 4 及び 1 6 の局所的融解及び小さな矢印で示すような界面を横切る成分物質の混合に伴なつて記録時に生じると信じられている事を示している。第 5 図及び第 6 図は、記録後の被記録領域 1 9 及び未記録領域 1 1 を示す。

走査電子顕微鏡(SEM)を用いた記録領域の 研究によれば、平坦なパツクグラウンド上に平坦 つの物質の隣接した薄層から成り、エネルギー・ ピームを用いて記録を行なう時に、元の物質の光 学的特性とは異なつた光学的特性を有する記録領 域を吸熱的に形成する。

第1図に示す本発明の実施例において、媒体10は、媒体の用いられる用途に応じて、透明の事も不透明の事もある基板12を有する。基板12上には、第1の物質の層14が付着される。この第1の物質は金属が好ましい。第1の物質層14上には、第2の物質の層16が付着される。第2の物質は金属又は半導体が好ましい。媒体の寿命中に環境因子に露出される事による層14及び16の腐食を防止するために媒体10上に表面保護層18が付着される。

情報は、適当なパワー・レベルのエネルギー・ ピームを媒体 10 に照射する事によつて記録される。エネルギー・ピームは、層 16及びより少ない程度において層 14で吸収され、層 14及び 16から成る物質の光学的特性に変化を生じさせるに充分な大きさの層 14及び 16の隣接領域の局

な記録スポットのある事が示されており、記録スポットの内側から外側への組成の顕著な変化は存在しない。光学的特性の変化は、層14及び16を構成する2つの物質の混合もしくは合金化又はそれらの層の相互拡散の結果生じるものと信じられている。

第2図を参照すると、媒体20の構造は第1図の実施例と非常によく似ており、基板22は、記録媒体に適した何らかの基板物質から構成されている。層24は基板上に付着され、好ましくは金属である。層26は、層24上に付着され、好ましくは半導体である。この場合、半導体層26が表面保護層としても作用するので、別個の表面保護層は不要である。適当な半導体物質は、シリコン又はゲルマニウムから選択できる。

第3図に示す実施例は、適当な基板32、好ましくは金属から成る第1の記録層34、好ましくは金属もしくは半導体から成る第2の記録層36、及び厚い表面保護層38より構成される媒体30の構造を示している。この場合、表面保護層38

は数千オングストロームの厚さを有する事があり、ポリメチルメタクリレート(PMMA)又は、他の適当なポリマー物質から形成してもよい。この実施例で表面保護層38は、その表面40が記録層34、36と同じ焦点面内にない程度に充分な厚さを有する。この構成は、媒体30の表面40上の少量のホコリその他の汚染物が記録又は再生動作に悪影響を与えないという利点を有する。

良好な媒体は、PMMA基板上に付着された200オングストロームの厚さのA8層、その上に付着された230オングストロームの厚さのGe 層、及びSIO2表面保護層から構成される。この媒体は、10ナノ秒のパルス幅を用いて、5800オングストロームの波長の色素レーザで、スポットが配録された。レーザ・パワーの必要量を最適化する試みは行なわれなかったが、テストによれば必要なパワー・レベルは「標準的なSIO2被であれたTe光学記録媒体に関して要求されるものよりも大きくはなかった。SEMで調査した時、配録されたスポットは、平坦なパックグラウンド

録スポットの形成のための書込エネルギーは、GeーAB媒体の場合よりも2倍大きかつた。また、コントラストも、テストされた他の媒体よりも低かつた。しかしSEMによれば膜面においてセグメント化効果が見られ、各セグメントは、完全に書込まれるか又は全く書込まれないかのいずれかであつた。この媒体はある応用には不適当であると考えられるが、ディジタル形式の記録に用いる事が可能であろう。

最低のレーザ・パワーしか必要としない媒体は、PMMA基板上に300オングストロームの厚さのIn層を付着させ、230オングストロームの厚さのGe層及びSiO2の表面保護層で被覆したものである。この物質の組み合せの融点に基けば、必要なレーザ・パワーは最低となるであろうが、この事はまだ実際のテストにより確認されていない。

Au 及びSI からいくつかの膜が製作されたが、 膜の成分の厚さに関して最適化は達成されなかつ た。この媒体が適当な記録媒体ではないという理 と共に平坦な記録スポットを示した。 コントラストは、 信頼性のある読取りを行なう事ができるの に充分な高さであつた。

同様な媒体が、PMMA基板上に200分ングストロームの厚さのAB層を付着して製造された。AB層上には、350オングストロームの厚さのSi層が付着され、MgOの表面保護層が被覆される。1000オングストロームの厚さのMgOに関する普込みエネルギーは、Ge-ABに関するものよりも少し高かつた。また、コントラストもより低かつたが、コントラストはMgO層の厚さと共に変化する可能性がある。SEMによれば、少しドーム状に隆起したスポットが観察されたが、物質は除去されておらず、またスポット内の反射率はスポット外よりも高かつた。

また、PMMA基板上に300オングストロームの厚さのPb層が付着された媒体が製作された。Pb層の上には320オングストロームの厚さのSn層が付着され、さらに1000オングストロームの厚さのSiO₂表面保護層が形成された。記

由は原理的には存在しないが、価格及び他の系の 有望な特性により、この媒体は研究を続行しなか つた。

4.図面の簡単な説明

第1図は、本発明の一実施例の光学記録媒体の 側面図

第2図は、他の実施例の側面図、

第3図は、別の実施例の側面図、

第4図は、光学記録媒体の記録過程を示す部分 断面側面図、

第5図は、記録媒体の記録領域を示す部分断面 側面図。

第6図は第5図の記録領域を示す記録媒体の平面図である。

10、20、30……記録媒体、12、22、 52……基板、14、24、54……第1の物質 の層、16、26、36……第2の物質の層、1 8……表面保護層、58……厚い表面保護層、B 1、B2……ビーム。

