Textausgabe mit cout (C++-Standardausgabe)

Wenn Sie cout zum Ausgeben von Daten oder ein zum Einlesen verwenden möchten, müssen Sie die Headerdatei <iostream> und den Befehl zum Festlegen des Namensraums using namespace std; einbinden.

Beispiele:

```
#include <iostream>
using namespace std;
int main(int argc, char **argv)
{
int i;
float f;
i=1;
f=2.0;
cout << "Hello World" <<endl;
cout << "i hat den Wert" << i << endl << "f hat den Wert" << endl;
}
// endl sorgt für einen Zeilenumbruch</pre>
```

Leider können wir noch nicht erklären, welche Bedeutung die Schreibweise bei ein und cout hat. 1

Ausgabeformatierung

Sie können die Ausgabe von Zahlen mit cout durch Manipulatoren (Steueranweisungen) formatieren.

Achtung! Die Headerdatei iomanip muss eingebunden werden!

#include <iomanip>

1. Allgemeine Manipulatoren

- setfill(<Zeichen in Hochkommas>) setzt das Füllzeichen (dauerhaft)
- setw(int n) setzt die Feldbreite für die nächste Operation auf n Spalten
- left / right linksbündige / rechtsbündige Ausgabe
- internal bei Zahlen: Vorzeichen links-, Wert rechtsbündig

2. Manipulatoren für Ganzzahlen

- dec dezimale Darstellung (Standard)
- hex hexadezimale Darstellung
- oct oktale Darstellung
- showpos / noshowpos + bei positiven Zahlen ausgeben / unterdrücken
- uppercase / nouppercase Groß- /Kleinbuchstaben (Standard) bei Hex-Ausgabe

Beispiele:

UC / MG / 19.09.2017 Seite 1 von 3

¹ Für Experten: cin und cout sind Stream-Objekte. Bei « und » handelt es sich um überladene Operatoren, also im Prinzip um Methoden.

Technikerschule der Landeshauptstadt München

Programmieren mit C++ - cout und cin

Variablendefinition	Ausgabebefehl	Ausgabe:
int n = 4;	cout << n;	4
	cout << showpos << n;	+4
	cout << setw(3) << n;	4
	cout << left << setw(3) << n;	4
	<pre>cout << setfill('0') << setw(3) << n;</pre>	004
int $n = -4;$	cout << n;	-4
	cout << setw(3) << n;	-4
	cout << left << setw(3) << n;	-4
int n = 27	cout << dec << n;	27
	cout << oct << n;	33
	cout << hex << n;	1b
	cout << hex << showbase << n;	0x1b

3. Manipulatoren für float- und double-Zahlen

- fixed Darstellung als Festpunktzahl
- scientific Darstellung mit 10er Exponent
- showpoint Ausgabe aller Ziffern entsprechend der eingestellten Genauigkeit
- noshowpoint Unterdrückung abschließender Nullen und (wenn möglich) des Punktes
- setprecision(<n>) Genauigkeit auf n Stellen setzen

Beispiele:

Variablendefinition	Ausgabebefehl	Ausgabe:
float $f = 4;$	cout << f;	4
	cout << showpos << f;	+4
	cout << showpoint << f;	4.00000
	<pre>cout << setprecision(8) << f;</pre>	4.000000
	cout << setprecision(8) << showpos << g;	+4.0000000
float g=-8.67;	cout << g ;	-8.67
	cout << showpos<< g;	-8.67
	cout << showpoint<< g;	-8.67000
	cout << setprecision(8) << showpos << g;	-8.6700001
float g= 234.34;	<pre>cout << setprecision(3)<< scientific << g;</pre>	+2.343e+002
	<pre>cout << setprecision(3)<< fixed << g;</pre>	+234.340

UC / MG / 19.09.2017 Seite 2 von 3

Programmieren mit C++ - cout und cin

In der Voreinstellung erfolgt die Ausgabe als Dezimalbruch, gerundet auf 6 Stellen insgesamt mit Unterdrückung nachfolgender Nullen und ohne Punkt bei ganzzahligen Werten.

Reichen die 6 Stellen nicht aus, wird auf exponentielle Darstellung umgeschaltet. Sobald das Format auf **fixed** oder **scientific** umgestellt wurde, bezieht sich die Genauigkeit auf die Nachkommastellen.

Einlesen mit cin

Mit Hilfe von ein können Sie Eingaben von der Tastatur in Variablen einlesen.

Syntax:

```
cin >> variable1 >> variable2;
```

Stößt ein Programm auf eine cin-Zeile, wartet es auf eine Tastatureingabe. Passt die Eingabe nicht zu den nach den »-Zeichen angegebenen Variablen kommen sinnlose Variablenwerte heraus.

Werden mehrere Werte eingelesen, müssen diese durch Leerzeichen getrennt werden. Benutzerfreundlicher ist es, für jede Variable, die eingelesen wird, eine eigene cin-Anweisung zu verwenden.

Beispielcode:

Wir benutzen cin zunächst zum Einlesen von Zahlen. Später werden Sie dafür eine bessere, aber kompliziertere Lösung kennenlernen.

Für cin gibt es auch einen eigenen Manipulator:

• setbase (<n>) setzt die Zahlenbasis auf n=8, 10 oder 16.

UC / MG / 19.09.2017 Seite 3 von 3