ALGEBRA Y ALGEBRA LINEAL 520142 Listado 16 (Espacios Vectoriales)

- 1. Determine cuáles de los siguientes conjuntos son espacios vectoriales con las operaciones usuales de adición y producto por escalar. (En práctica b), c) y f))
 - a) $V = \{A \in M_n(\mathbb{R}) : A \text{ es diagonal}\},$
- d) $V = \{(x, y, z) \in \mathbb{R}^3 : x = y = z\},\$
- b) $V = \{A \in M_2(\mathbb{R}) : A + A^t = 0\},\$
- e) $V = \{(x, y, z) \in \mathbb{R}^3 : \exists t \in \mathbb{R}, x = t + 1, y = 2t, z = t 1\},\$
- c) V =
 - $\{A \in M_2(\mathbb{R}) : \exists a, b \in \mathbb{R}, A = \begin{pmatrix} 1 & a \\ b & 1 \end{pmatrix}\}, \qquad f) \ V = \{(x, y, z) \in \mathbb{R}^3 : x \ge 0, \ y \ge 0, \ z \ge 0\}.$
- 2. Sea \mathbb{R}^+ con las operaciones de suma y producto por escalar definidas por: $\forall x, y \in \mathbb{R}^+, x \triangle y = xy; \alpha * x = x^{\alpha}, \alpha \in \mathbb{R}.$ ¿Es $(\mathbb{R}^+, \triangle, *)$ espacio vectorial real?.
- 3. Sea $V := \{ f \in C^2(0,1) : \forall x \in (0,1), 3f''(x) 2f'(x) + f(x) = 0 \}$. Demuestre que V, provisto de la suma de funciones y multiplicación por escalar usual, es un espacio vectorial real.
- 4. Determine si el subconjunto W es o no subespacio vectorial del conjunto V. (En práctica e) y h))
 - a) $V = \mathbb{R}^3$, $W = \{(x, y, z) : z = 0\}$.
- e) $V = M_2(\mathbb{R}), W = \{A : A A^t = I\}.$
- b) $V = \mathbb{R}^3$, $W = \{(x, y, z) : x^2 + y^2 + z^2 \le 1\}$. $f) V = M_n(\mathbb{R})$,
 - $W = \{A : A \text{ es triangular superior}\}.$
- c) $V = \mathbb{R}^2$, $W = \{(x, y) : y = \frac{1}{2}x\}$.
- q) $V = M_n(\mathbb{R}), W = \{A : A \text{ es simétrica}\}.$
- d) $V = M_2(\mathbb{R}),$
- $\begin{array}{ll} v = M_2(\mathbb{R}), & h) \ V = P_3(\mathbb{R}), \ W = \{p : p(0) = 0\}. \\ W = \{A : \exists a, b, c \in \mathbb{R}, A = \begin{pmatrix} a & b \\ -b & c \end{pmatrix}\}. & i) \ V = P_n(\mathbb{R}), \ W = \{p : p(0) = 1\}. \end{array}$
- 5. Sea $W := \{A \in M_n(\mathbb{R}) : tr(A) := \sum_{i=1}^n a_{ii} = 0\}$. Demuestre que W es un subespacio vectorial de $V = M_n(\mathbb{R}).$ (En práctica)
- 6. Sean $\vec{a}, \vec{b} \in \mathbb{R}^3$ tales que $\vec{a} \times \vec{b} \neq \vec{0}$ y sea el conjunto $S = \{\vec{x} \in \mathbb{R}^3 : \vec{x} \cdot \vec{a} = \vec{x} \cdot \vec{b} = 0\}.$ (En práctica)
 - a) Demuestre que S es un subespacio vectorial de \mathbb{R}^3 .
 - b) Pruebe que $S = \{\vec{x} = \alpha(\vec{a} \times \vec{b}) : \alpha \in \mathbb{R}\}.$
- 7. Sean $\vec{a}, \vec{b} \in \mathbb{R}^3$ tales que $\vec{a} \times \vec{b} \neq \vec{0}$ y considere el conjunto $S = \{\vec{x} \in \mathbb{R}^3 : \vec{x} \cdot (\vec{a} \times \vec{b}) = 0\}.$
 - a) Demuestre que S es un subespacio vectorial de \mathbb{R}^3 .
 - b) Pruebe que $S = \{\vec{x} = \alpha \vec{a} + \beta \vec{b} : \alpha, \beta \in \mathbb{R}\}.$

8. Considere el K-espacio vectorial $M_n(\mathbb{K})$. Probar que el subconjunto

$$U = \{ A \in M_n(\mathbb{K}) : A = \theta \lor A \text{ es invertible } \}$$

no es subespacio vectorial (Indicación: U no es cerrado para la suma, construir contraejemplo).

9. Sea $V = M_2(\mathbb{R})$ y considere

(En práctica)

$$W_1 = \{A : \exists a, b, c, \in \mathbb{R}, A = \begin{pmatrix} 0 & a \\ b & c \end{pmatrix} \}, \quad W_2 = \{A : \exists a, b \in \mathbb{R}, A = \begin{pmatrix} a & b \\ b & -a \end{pmatrix} \}.$$

- a) Demuestre que W_1 y W_2 son subespacios vectoriales de V.
- b) Describa el conjunto $W = W_1 \cap W_2$ y demuestre que es un subespacio.
- 10. Sea $\vec{r} \in \mathbb{R}^3$, $\vec{r} \neq \theta$, y sea L la recta que pasa por θ en la dirección \vec{r} . Demuestre que para todo $\vec{x} \in \mathbb{R}^3$ existe un subespacio \mathcal{S} de \mathbb{R}^3 , no trivial, que contiene a \vec{x} y al subespacio L. Definir \mathcal{S} y representar gráficamente la situación, vea que \mathcal{S} es un plano. Si \vec{n} es un vector normal a \mathcal{S} y $U = \{ t\vec{n} \in \mathbb{R}^3 : t \in \mathbb{R} \}$, entonces \mathcal{E} $\mathcal{S} + U = \mathcal{S} \oplus U$?.
- 11. Considere los siguientes subconjuntos de $\mathcal{P}_3(\mathbb{R})$, el espacio vectorial real de polinomios de grado menor o igual que 3. (En práctica)

$$U = \{ p \in \mathcal{P}_3(\mathbb{R}) : p(5) = 0 \}, \qquad W = \{ p \in \mathcal{P}_3(\mathbb{R}) : \exists a, b \in \mathbb{R}, \forall x \in \mathbb{R}, p(x) = ax^3 + bx \},$$

$$V = \{ p \in U : p'(5) = 0 \}, \qquad Z = \{ p \in \mathcal{P}_3(\mathbb{R}) : \forall x \in \mathbb{R}, p(x) = p(-x) \}.$$

- a) Demuestre que son subespacios vectoriales. Además, en cada caso escriba al menos un vector no nulo y represéntelo gráficamente.
- b) Decida si $U \cup V$ es subespacio vectorial.
- c) Determine $V \cap W$ y V + W. $\lambda U + W = U \oplus W$? ó $\lambda V + W = V \oplus W$?
- 12. Expresar, si es posible, el elemento indicado como combinación lineal de la familia dada en el espacio vectorial V sobre \mathbb{R} :
 - a) (1,-1,2); $\{(0,-1,1),(2,1,-2),(0,2,0)\}$; $V=\mathbb{R}^3$.
 - b) $x^2 + x 1$; $\{1, x 1, (x 1)^2\}$; $V = \mathcal{P}_2(\mathbb{R})$.
 - c) 1: $\{1, x^2 1, x^3 + 1\}$; $V = \mathcal{P}_3(\mathbb{R})$.
 - d) i-1; $\{2-2i, 1+i, -1\}$; $V=\mathbb{C}$.
- 13. Considere el espacio vectorial real V de polinomios de grado ≤ 5 definidos sobre [-1,1].
 - a) Encuentre un sistema de generadores para

$$S = \{ p \in V : (\forall x \in [-1, 1]) \mid p(x) = p(-x) \}.$$

b) Encuentre un sistema de generadores para

(En práctica b))

$$W := \left\{ p \in V : \int_{-1}^{1} x p(x) \ dx = 0 \right\}.$$

c) Demuestre que $V=U\oplus W$, donde $U:=\{p\in V:\ (\exists \alpha\in\mathbb{R})\ (\forall x\in[-1,1])\ p(x)=\alpha x\}.$

2

- d) Encuentre un sistema de generadores para S + U y S + W.
- 14. Demostrar que el conjunto $\mathcal{F} = \{f : \mathbb{R} \longrightarrow \mathbb{R} \mid f \text{ es función}\}\$, es un espacio vectorial real con las operaciones usuales de suma y producto por escalar de funciones de \mathcal{F} .
 - a) ¿Cuáles de los siguientes subconjuntos son subespacios vectoriales de \mathcal{F} ?.
 - 1) $W = \{ f \in \mathcal{F} : \forall x \in \mathbb{R}, f(-x) = f(x) \}.$ 4) $W = \{ f \in \mathcal{F} : f \text{ es una función inyectiva} \}.$ 2) $W = \{ f \in \mathcal{F} : \forall x \in \mathbb{R}, f(-x) = -f(x) \}.$ 5) $W = \{ f \in \mathcal{F} : f \text{ es una función derivable} \}.$

 - 3) $W = \{ f \in \mathcal{F} : f \text{ es una función continua} \}.$
 - b) ¿Cuáles de los siguientes conjuntos de funciones de \mathcal{F} son linealmente independientes?.
- $\{2, x+2, x^2\};$ b) $\{1, x+1\};$ c) $\{\operatorname{sen}^2(x), \cos^2(x), \cos(2x)\}.$
- 15. Decidir la independencia lineal del subconjunto A del espacio vectorial V, si: (En práctica)

V	A	
\mathbb{R}^3	$\{ (3, 6, 1), (2, 1, 1), (-1, 0, -1) \}$	
$\mathcal{P}_2(\mathbb{R})$	$\{ x^2 + x + 1, x - 1, (x - 1)^2 \}$	
$M_2(\mathbb{R})$	$\left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array}\right), \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right) \right\}$	

- 16. Encontrar un conjunto l.d. de tres vectores de \mathbb{R}^3 tal que cualquier subconjunto de dos vectores (En práctica) sea l.i..
- 17. Demostrar que si $\{v_1,\ldots,v_n\}$ es l.i. en un $\mathbb K$ espacio vectorial V, entonces también lo será:

$$\{v_1-v_2,v_2-v_3,\ldots,v_{n-1}-v_n,v_n\}$$

- 18. Sea $A=\{\ p_0,\,p_1,\,\ldots,\,p_m\ \}\subseteq\mathcal{P}_m(\mathbb{R})$ tal que cada vector de A se anula en x=1, es decir: $p_j(1) = 0$ para todo $j = 0, 1, \dots, m$. Demuestre que entonces A es l.d. en $\mathcal{P}_m(\mathbb{R})$. (EP)
- 19. Un subconjunto $A \subseteq B$ de un K-espacio vectorial V se dice **l.i. maximal en** B, si:
 - (i) A es l.i.,

- (ii) $\forall v \in B A : A \cup \{v\} \text{ es l.d.}$
- a) Sea $V = \mathcal{P}_2(\mathbb{R})$. Inspírese en el Lema de Dependencia Lineal para determinar un subconjunto l.i. maximal en:

$$B = \{ x^2 + 2x + 3, -3x^2 - x - 3, -2x^2 + x, 6x^2 + 3x + 10 \}$$

b) Idem al problema anterior, con $V = \mathcal{M}_2(\mathbb{R})$ y

(En práctica))

$$B = \left\{ \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\}$$

c) Análogamente, si $V=\mathbb{R}^4$, determinar un subconjunto l.i. Maximal en:

$$B = \{ (1,0,2,1), (2,1,3,4), (1,1,1,3), (0,1,-1,0) \}$$

20. Sean $S_1 = \{p_1(x), p_2(x), p_3(x)\}$ y $S_2 = \{q_1(x), q_2(x), q_3(x)\}$ con (En práctica) $p_1(x) = 1 + 2x + 5x^2 + 3x^3 + 2x^4,$ $q_1(x) = 2 + x + 4x^2 - 3x^3 + 4x^4,$ $p_2(x) = 3 + x + 5x^2 - 6x^3 + 6x^4,$ $q_2(x) = 3 + x + 3x^2 - 2x^3 + 2x^4,$ $q_3(x) = 1 + x + 3x^2 + 2x^4,$ $q_3(x) = 9 + 2x + 3x^2 - 3x^3 - 2x^4.$

- a) Defina los subespacios W_1 y W_2 generados por S_1 y S_2 respectivamente.
- b) Encuentre una base de los subespacios $W_1 + W_2$ y $W_1 \cap W_2$.
- 21. Dados los conjuntos:

$$S_{1} = \left\{ \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix}, \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 3 & -2 \end{pmatrix} \right\} \quad \mathbf{y}$$

$$S_{2} = \left\{ \begin{pmatrix} -2 & 1 \\ 3 & -2 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 4 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \right\}.$$

- a) Muestre que los espacios $\langle S_1 \rangle$, $\langle S_2 \rangle$, generados por S_1 y S_2 son iguales.
- b) Encuentre una base para $S = \langle S_1 \rangle = \langle S_2 \rangle$.
- 22. Encuentre una base de los siguientes subespacios: $(a, b \ y \ c \ \text{son Ctes. en } \mathbb{R})$ (En práctica 22c))
 - a) $\{p \in \mathcal{P}_3(\mathbb{R}) | p \text{ es par}\},$

- d) $\{A \in M_3(\mathbb{R}) | A \text{ es simétrica} \},$
- b) $\{(x, y, z) \in \mathbb{R}^3 | ax = by = cz\},\$
- c) $\{(x, y, z) \in \mathbb{R}^3 | ax + by + cz = 0\},\$
- e) $\{A \in M_3(\mathbb{R}) | A \text{ es antisimétrica} \}.$
- 23. Encuentre una base y determine la dimensión de los siguientes subespacios:

(En práctica c) y f))

a)
$$W = \{ (x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 : x_1 = 3x_2 \land x_3 = 7x_4 \},$$
 c) $W = \{ p \in \mathcal{P}_3(\mathbb{R}) : \int_{-1}^1 t p'(t) dt = 0 \},$ d) $W = \{ A \in \mathcal{M}_2(\mathbb{R}) : A = A^t \},$

b)
$$W = \left\{ \begin{pmatrix} a & b & b \\ 0 & a & c \\ 0 & c & a \end{pmatrix} : a, b, c \in \mathbb{R} \right\},$$
 $e)$ $W = \left\{ A \in \mathcal{M}_2(\mathbb{C}) : A = \bar{A}^t \right\} (\mathbb{K} = \mathbb{R}),$ $f)$ $W = \left\{ A \in \mathcal{M}_2(\mathbb{C}) : A = \bar{A}^t \right\} (\mathbb{K} = \mathbb{C}).$

- 24. Sea $V = \mathbb{R}^4$ y sus subespacios $F = \langle \{\vec{a}, \vec{b}, \vec{c}\} \rangle$ y $G = \langle \{\vec{d}, \vec{e}\} \rangle$, donde $\vec{a} = (1, 2, 3, 4), \vec{b} = (2, 2, 2, 6), \vec{c} = (0, 2, 4, 4), \vec{d} = (1, 0, -1, 2)$ y $\vec{e} = (2, 3, 0, 1)$. Determinar las dimensiones de F, G, $F \cap G$ y F + G y dar una base para cada uno de estos subespacios.
- 25. Muestre que el conjunto β es base del espacio vectorial V y encontrar el vector coordenada $[w]_{\beta}$, si: (En práctica)

V	β	w
\mathbb{R}^3	$\{ (1, 1, 0), (2, 0, 3), (-1, 1, 0) \}$	(2, 2, 3)
$\mathcal{P}_3(\mathbb{R})$	$\{ (t-1)^3, (t-1)^2, (t-1), 1 \}$	$t^2 + t + 1$
$M_2(\mathbb{R})$	$\left\{ \left(\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 1 \end{array}\right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array}\right) \right\}$	$ \left(\begin{array}{cc} 1 & -1 \\ 1 & 0 \end{array}\right) $