

1 .		
and who	2 = dy V2 + + dn Vn.	
St	Moltiplying by M gives: Mz = of Mon + - + xx Hvy	
	1000 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	•
	Hence (xinh, xinh) are the coordinates of Mx in the orthonormal	
onis (The The official and the official and	(
DOORS (A 1)	$a = \langle x, Hx \rangle = \sum_{i=1}^{n} d_i \times d_i \lambda_i$	_
	2	d
And the	= AZ Ni > Oxo 21 A	
	-6-1 - (2) 30 mil (-1)	
	M is positive semidefinite.	
	William Wa.	•
	c) Let M be a symmetric positive somidefinite matrix.	•
	By the special theorem we know that	
	$M = P\left(\frac{\lambda_1}{(0)}, \frac{(0)}{\lambda_1}\right)^{pT}$ for some orthogonal	
	(o)) for some orthogonal	
		0
,	matrix P, where he >>> >> In one the eigenvalues	0
	of M. (We can assume that In. In one ordered	
	in that way, otherwise it suffices to permute the	
	colomus of ?)	-
		1
	From (b) use know that $\lambda_1 - \lambda_n \geq 0$. Since	1
	M is diagonalisable, we know also that	-
	r = rank(H) = # il / i + 0	4
	We get that / 12 1/2 1/2 1/2 20	1
	the state of the s	
		100

Hence $H = P \begin{pmatrix} \lambda_1 & (0) \\ (0) & 0 \end{pmatrix} P^T$.

Define $B = \begin{pmatrix} \lambda_1 & (0) \\ (0) & \lambda_1 \end{pmatrix} \in \mathbb{R}^{n \times r}$ we get M=PBBTDT = PB (PB) = AAT where A=PBERAXT. Problem 6.4. For all xER", 2TAx = (2TAx) = 2TATx. Hence $x^TAx = x^T(\frac{A+A^T}{2})x = x^TMx$. (*)

M is symmetric. Since xTAx 70 for all x, we got that M is positive. semi-definite. By Mobbine 6.2, there exists BER "xrank(H) such that det z E Reu (A). From (x) we get zTM z = 0 so 2TBBT2=0 home BT2=0, BBT2=0 so M2=0. 0 = Mn = (Ax + AT2), U gives that ATx=0: x + Ke(AT) We got that Ker(A) C Ker(AT). The inclusion Ker(AT) CRO(A) follows by applying the result to AT which recifies xTAx 70 for all xER"

```
In [25]:
          %matplotlib inline
          import matplotlib.pyplot as plot
          import csv
          import numpy as np
          plot.rc('font',family='serif')
          plot.rc('xtick',labelsize=14)
         # The database contains the results of all tennis games
In [26]:
          # in the pro men (ATP, from 2000 to end 2019) and women (WTA, from 2007 to en
          # This codes reads the data
          # Select the category: 'wta' for women, 'atp' for men
          tour = 'wta'
          # a setting to read the CSV files
          if tour == 'atp':
              i loser = 30
              i winner = -2
          else:
              i_loser = 21
              i winner = -2
          N=0
                               # Total number of players (will be incremented when read
          player_ID = dict() # Given a 'name', player_ID[name] gives the ID of the pl
                           # Given an 'id', player name[id] gives the name of the p
          player name=[]
          # This reads the CSV file to construct N, player ID and player name
          with open(tour+'.csv') as csvfile:
              reader = csv.reader(csvfile, delimiter=',')
              next(reader)
              for row in reader:
                  loser = row[i_loser].rstrip().replace(',','')
                  winner = row[i_winner].rstrip().replace(',',')
                  for player in [winner,loser]:
                      if not player in player ID:
                          player ID[player]=N
                          player name.append(player)
                          N += 1
          # Matrix of the game records: R[i,j] will contain the number of time i beat j
          R=np.zeros(shape=(N,N))
          # This constructs R
          with open(tour+'.csv') as csvfile:
              reader = csv.reader(csvfile, delimiter=',')
              next(reader)
              for row in reader:
                  # each row corresponds to a game
                  loser = player ID[row[i loser].rstrip().replace(',','')] # ID of th
                  winner = player_ID[row[i_winner].rstrip().replace(',','')] # ID of th
                  R[winner,loser] += 1 # count +1 victory for the winner
```

```
wins = np.sum(R,axis=1) # total number of victories
In [27]:
          losses = np.sum(R,axis=0) # total number of losses
          N games = wins + losses # total number of games
         # naive ranking: rank players by percentage of victories
In [28]:
          ratio = wins/N_games
          naive_ranking = ratio.argsort()[::-1]
          naive_scores = np.sort(ratio)[::-1]
          # Function that plots rankings
In [29]:
          def plot_ranking(ranking,scores,n):
              y=-np.array(range(n))
              plot.figure(figsize=(12,n/2),frameon=False)
              plot.barh(y,100*scores[:n],color='aquamarine', height=0.9, edgecolor = 'b
              for i in range(n):
                  plot.text(0.0922,y[i]-0.35,player_name[ranking[i]],fontsize=22)
              t=plot.yticks([],[])
              l=plot.ylim(-n+0.4,0.6)
              ax = plot.gca()
              ax.xaxis.tick top()
              #plot.savefig("ranking.pdf",bbox inches='tight',transparent=True)
         # Plot the 'naive' (ie in terms of percentage of victories) ranking of the to
In [30]:
          plot ranking(naive ranking, naive scores, 20)
```


(a) Compute the transition matrix P as in the notes, then construct the matrix

$$M = \alpha P + \frac{1 - \alpha}{N} J$$

where J is the all-one matrix, and $\alpha = 0.99$.

```
In [7]: D = np.diag(1/N_games)
P = (R + np.diag(wins))@ D

alpha = 0.99
M = alpha*P + (1-alpha)*np.ones(shape=(N,N))/N
```

(b) Compute the stationary distribution of the Markov chain of transition matrix M.

```
In [8]: | x = np.ones(N)/N
         # Perron Frobenius Theorem guarantees that this converges:
         while np.sum(np.square(x-P@x)) > 10**-20:
             x = P @ x
         # (Optional) Since there can be rounding effects, I check that the sum of coe
         # x is equal to 1:
         print(np.sum(x))
```

0.99999999999999

(c) Use the stationary distribution to rank the players, and plot the ranking of the best 20

```
players.
        ranking = x.argsort()[::-1]
In [9]:
        scores = np.sort(x)[::-1]
        plot_ranking(ranking, scores, 20)
In [10]:
                  1
                           2
                                     3
                                               4
                                                         5
                                                                  6
         Williams S.
         Sharapova M.
         Wozniacki C.
         Azarenka V.
         Radwanska A.
         Williams V.
         Kvitova P.
         Henin J.
         Halep S.
         Jankovic J.
         Kerber A.
         Kuznetsova S.
         Ivanovic A.
         Stosur S.
         Li N.
         Pliskova Ka.
         Clijsters K.
         Cibulkova D.
         Zvonareva V.
         Dementieva E.
```

- **(d)** Open-ended question. For this question, no particular answer is awaited. Investigate the data (and maybe the wikipedia pages of the players, even though you do not need to know their careers by heart!), do some plots, other rankings, to find possible explanations to the following observations (for the women rankings):
 - How would you explain that Henin, who is N1 in term of percentage of victories is way behind in page-rankings?
 - ullet Recompute the ranking, but now with lpha=0.9. How do you explain that Wozniacki is now ranked before Sharapova?

Henin dominated tennis from 2000 to 2009: since we have only access to the game after 2007, only a small fraction of her games are in the dataset. There is therefore few edges pointing to her, compared to the other players. But still, she is a good player so she has a great percentage of victories.

```
id_Henin = player_ID['Henin J.']
  print(f'Henin has a total of {int(N_games[id_Henin])} games in the dataset')
  print(f'While the top 10 has')
  for j in range(10):
    i = ranking[j]
    print(f'{j+1}. {player_name[i]}: {int(N_games[i])} games.')

Henin has a total of 130 games in the dataset
  While the top 10 has
    Nilliams S.: 573 games.
    Sharapova M.: 523 games.
    Sharapova M.: 523 games.
    Nozniacki C.: 833 games.
```

Azarenka V.: 599 games.
 Radwanska A.: 731 games.
 Williams V.: 523 games.
 Kvitova P.: 595 games.
 Henin J.: 130 games.
 Halep S.: 531 games.
 Jankovic J.: 672 games.

```
D = np.diag(1/N games)
In [13]:
         P = (R + np.diag(wins))@D
         alpha = 0.9 # New value for alpha
         P = alpha*P + (1-alpha)*np.ones(shape=(N,N))/N
         x = np.ones(N)/N
         # Perron Frobenius Theorem quarantees that this converges:
         while np.sum(np.square(x-P@x)) > 10**-20:
             x = P @ x
         # (Optional) Since there can be rounding effects, I check that the sum of coe
         # x is equal to 1:
         print(np.sum(x))
         ranking = x.argsort()[::-1]
         scores = np.sort(x)[::-1]
         plot ranking(ranking, scores, 10)
         1.0000000000000322
         0.0
                    0.5
                                                               2.5
                               1.0
                                          1.5
                                                    2.0
                                                                          3.0
            Williams S.
            Wozniacki C.
            Sharapova M.
            Azarenka V.
            Radwanska A.
            Williams V.
            Jankovic J.
            Kvitova P.
            Kerber A.
            Halep S.
```

Wozniacki is indeed now ranked before Sharapova. We see (from what we printed above) that Wozniacki played a total of 833 games (with 586 victories), while Sharapova has only 518 games in the databaset (with 400 victories).

Increasing α increases the probability of doing a 'jump' to an uniformly chosen player. This uniformly chosen player is unlikely to be Wozniacki or Sharapova. However, since Wozniacki has more victories that Sharapova, it is more likely to then jump from this player to Wozniacki than to Sharapova.

```
In [14]: for j in range(5):
    i = ranking[j]
    print(f'{j+1}. {player_name[i]}: {int(wins[i])} victories.')
```

```
1. Williams S.: 486 victories.
2. Wozniacki C.: 586 victories.
3. Sharapova M.: 404 victories.
4. Azarenka V.: 429 victories.
5. Radwanska A.: 501 victories.
```

(e) Open-ended question. In fact, both CSV files contain the score (the number of sets won by each of the players) of each game. Propose a method based on PageRank, but with another transition matrix P, that takes the scores into account, in order to obtain more 'accurate' rankings and implement it. There is no particular method expected. Your are only suppose to propose something 'coherent' (for instance winning games by a large margin should improve rankings...)

```
In [19]:
         # This code opens the game database
          # it loops over all the games
          # for each game it extracts the 'id' of the winner/loser
          # and the number of sets won by each player
         R=np.zeros(shape=(N,N))
         with open(tour+'.csv') as csvfile:
              reader = csv.reader(csvfile, delimiter=',')
              next(reader)
              for row in reader:
                  # each row corresponds to a game
                  loser = player_ID[row[i_loser].rstrip().replace(',','')] # ID of th
                  winner = player_ID[row[i_winner].rstrip().replace(',','')] # ID of th
                  # check if the number of sets for each player is available
                  if row[i loser+1] != '' and row[i winner+1] != '':
                      loser_sets = int(float(row[i_loser+1]))
                      winner_sets = int(float(row[i_winner+1]))
                      if winner sets == 0:
                          # For some games (where one of the players retired because of
                          # The number of sets is 0. In that case we say that the winne
                          winner sets = 2
                          loser sets = 0
                  else:
                      # if the number of sets are not available, we say that the winner
                      loser sets = 0
                      winner_sets = 2
                  # Do something with loser sets, winner sets
                  # Proposed method: a victory with a difference of 'x' sets
                  # has a weight proportional to 'x'
                  R[winner,loser] += winner_sets - loser_sets
```

```
# Then, we compute the total number of 'victory/loss weight'
In [23]:
         # for each player (note that since a big victory count twice, this does not
         # correspond to the number of victories/losses anymore).
         wins = np.sum(R,axis=1) # total number of victories
         losses = np.sum(R,axis=0) # total number of losses
         N games = wins + losses # total number of games
In [24]:
         D = np.diag(1/N_games)
         P = (R + np.diag(wins))@D
         alpha = 0.99 # New value for alpha
         P = alpha*P + (1-alpha)*np.ones(shape=(N,N))/N
         x = np.ones(N)/N
         # Perron Frobenius Theorem guarantees that this converges:
         while np.sum(np.square(x-P@x)) > 10**-20:
             x = P @ x
         # (Optional) Since there can be rounding effects, I check that the sum of coe
         # x is equal to 1:
         print(np.sum(x))
         ranking = x.argsort()[::-1]
         scores = np.sort(x)[::-1]
         plot_ranking(ranking, scores, 10)
         1.0000000000000424
         0
                   1
                            2
                                      3
                                                                    6
                                                                              7
          Williams S.
          Sharapova M.
          Wozniacki C.
          Azarenka V.
          Radwanska A.
          Henin J.
          Williams V.
          Kvitova P.
          Jankovic J.
          Halep S.
```

In []: