Bias, Efficiency, and the Gauss Markov Theorem

Ben Gilbert

9/1/2021

Bias, Efficiency, and the Gauss Markov Theorem

- This is a program to illustrate bias and inefficiency when Gauss Markov assumptions fail
 - Bias: deviation of expected value of sample parameter estimate from "true" population parameter
 - Efficiency: the variance of the sample parameter estimate should be as small as possible
 - Consistency: distribution of sample parameter estimate should converge to population value as sample size grows
- Gauss-Markov: OLS (Ordinary Least Squares) is Best (lowest variance) Linear Unbiased Estimator (BLUE) IF:
 - 1. true model linear in parameters and residuals:

$$y_t = \beta_0 + \beta_1 * x_{1t} + \beta_2 * x_{2t} + e_t$$

- 2. X variables (right hand side) are not constants or perfectly correlated with each other
- 3. Residuals "e" have constant variance
- (not more noisy for some X's than others, homoskedasticity vs. heteroskedasticy)
- 4. Residuals "e" are uncorrelated with each other
- (no peer effects, no serial correlation)
- 5. All X variables are uncorrelated with the residual e
- (observed X is not picking up some unobserved or uncontrolled factor)
- In each case we will run the linear regression

$$y_t = \beta_0 + \beta_1 * x_{1t} + \beta_2 * x_{2t} + e_t$$

on the data, but the "true" model or "data generating process" is different

Define directory and load packages

Load (and install if necessary) any packages that we want to use. If we want to define a working directory for this session, we can.

```
setwd("C:/Users/bgilbert_a/Dropbox/Econometrics/TimeSeriesCourse/Fall2021")
# install.packages("MASS")
require(MASS)
# install.packages("car")
require(car)
```

Violate Assumption 1: True model is not linear in parameters

- Set the seed for replicability.
- Generate the true model

```
set.seed(826)
# Covariance matrix of x1, x2, and e
Sig \leftarrow matrix(c(4,1,0,1,2,0,0,0,1),3,3)
          # Notice e does not covary with x1 or x2 (assumption 5)
##
        [,1] [,2] [,3]
## [1,]
           4
                1
## [2,]
           1
                 2
                      0
## [3,]
           0
                 0
                      1
          # also x1 and x2 can covary, but not perfectly (assumption 2)
# Mean of x1, x2, and e
moo \leftarrow c(10,3,0)
# generate data
Xe <- mvrnorm(n=1000,mu=moo,Sigma=Sig)</pre>
# give the variables names
colnames(Xe)<-c("x1","x2","e")</pre>
# store as a data frame
Xe <- as.data.frame(Xe)</pre>
head(Xe)
##
                       x2
            x1
## 1 9.815559 2.8349325 1.0499626
## 2 8.443130 2.1208185 0.7884180
## 3 9.618013 3.3454521 -0.8777746
## 4 6.371419 1.7631024 0.6244005
## 5 10.091449 0.6709607 0.2481989
## 6 5.828882 1.1333412 0.4228365
  • Investigate the data.
       - plot empirical distribution of each variable
hist(Xe$x1, breaks = 100, cex.main = 0.9)
```

Histogram of Xe\$x1

hist(Xe\$x2, breaks = 100, cex.main = 0.9)

Histogram of Xe\$x2

hist(Xe\$e, breaks = 100, cex.main = 0.9)

Histogram of Xe\$e

Sample correlations and covariances (notice difference from "truth") cov(Xe)

```
## x1 x2 e

## x1 4.02081193 0.87289399 -0.09254668

## x2 0.87289399 2.00633796 0.01490771

## e -0.09254668 0.01490771 1.00873015

cor(Xe)
```

x1 x2 e ## x1 1.00000000 0.30732832 -0.04595327 ## x2 0.30732832 1.00000000 0.01047904 ## e -0.04595327 0.01047904 1.00000000

scatterplotMatrix(Xe)

- Generate the true model for outcome y

```
y <- \exp(10 - 6*Xe$x1 + 5*Xe$x2 + Xe$e) # \log(y) is linear in parameters and # residual, but y is not. plot(Xe$x1,y)
```


plot(Xe\$x1,log(y))

plot(Xe\$x2,y)

plot(Xe\$x2,log(y))

• Run the linear regression when the true model is linear vs not linear.

```
summary(lm(y~x1+x2,data=Xe))
```

Call:

```
##
  lm(formula = y \sim x1 + x2, data = Xe)
##
## Residuals:
##
      Min
              1Q Median
                            3Q
                                  Max
##
    -3802 -1104
                   -264
                           495 296312
##
##
   Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                 4009.1
                            1519.8
                                     2.638 0.008470 **
## (Intercept)
## x1
                                    -3.553 0.000399 ***
                 -557.4
                             156.9
                  609.8
                             222.1
                                     2.746 0.006148 **
## x2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9462 on 997 degrees of freedom
## Multiple R-squared: 0.01545,
                                    Adjusted R-squared:
## F-statistic: 7.822 on 2 and 997 DF, p-value: 0.000426
summary(lm(log(y)~x1+x2,data=Xe))
```

10

```
## lm(formula = log(y) \sim x1 + x2, data = Xe)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                       Max
## -3.3647 -0.6814 -0.0060 0.6925
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.19399
                          0.16125
                                     63.22
                                             <2e-16 ***
## x1
              -6.02720
                           0.01665 -362.07
                                             <2e-16 ***
## x2
               5.01926
                           0.02357 212.99
                                             <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.004 on 997 degrees of freedom
## Multiple R-squared: 0.9931, Adjusted R-squared: 0.993
## F-statistic: 7.126e+04 on 2 and 997 DF, p-value: < 2.2e-16
```

Violate Assumption 2: Right hand side variables are constants or are perfectly correlated

- NOTE: The intercept is a constant, but no other variables can be constant
 - otherwise perfectly correlated with the intercept
- Set the seed for replicability.
- Generate the true model

```
set.seed(826)
# Covariance matrix of x1 and e
Sig \leftarrow matrix(c(4,0,0,1),2,2)
         # Notice e does not covary with x1 (assumption 5)
##
        [,1] [,2]
## [1,]
           4
## [2,]
# We will make x2 an exact multiple of x1 (violate assumption 2)
# Mean of x1 and e
moo <- c(10,0)
# generate data
Xe <- mvrnorm(n=1000,mu=moo,Sigma=Sig)</pre>
# generate x2 as arbitrary multiple of x1
x2 < -7*Xe[,1]
Xe <- as.data.frame(cbind(Xe[,1],x2,Xe[,2]))</pre>
# give the variables names
colnames(Xe)<-c("x1","x2","e")</pre>
head(Xe)
##
                      x2
           x1
## 1 10.22234
               71.55639 -0.06505297
## 2 11.68949 81.82641 -0.17189937
## 3 10.21010 71.47071 0.36952559
## 4 13.64180 95.49257 0.19523319
## 5 10.76801 75.37608 -1.73650622
## 6 14.34835 100.43846 -0.10192330
```

- Investigate sample correlations and covariances
 - notice difference from "truth"

```
cov(Xe)
```

```
##
                          x2
## x1 3.93549450 27.5484615 0.07180935
## x2 27.54846153 192.8392307 0.50266547
## e 0.07180935 0.5026655 1.06201033
cor(Xe)
```

```
##
## x1 1.00000000 1.00000000 0.03512505
## x2 1.00000000 1.00000000 0.03512505
## e 0.03512505 0.03512505 1.00000000
```

scatterplotMatrix(Xe)

• Generate the true y (outcome)

```
y \leftarrow 10 - 6*Xe$x1 + 5*Xe$x2 + Xe$e # y is linear in parameters (assumption 1)
plot(Xe$x1,y)
```


plot(Xe\$x2,y) # Should be a tight fit!

• Run the linear regression

```
summary(lm(y~x1+x2,data=Xe)) # Why an intercept of 10 and coefficient of 29?
```

```
##
## lm(formula = y \sim x1 + x2, data = Xe)
##
## Residuals:
       Min
                1Q Median
                                       Max
## -3.4532 -0.7331 -0.0450 0.7074 3.4402
##
## Coefficients: (1 not defined because of singularities)
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.82550
                           0.16904
                                     58.12
                                             <2e-16 ***
## x1
               29.01825
                           0.01643 1765.79
                                             <2e-16 ***
## x2
                                                 NA
                     NA
                                NA
                                        NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.03 on 998 degrees of freedom
## Multiple R-squared: 0.9997, Adjusted R-squared: 0.9997
## F-statistic: 3.118e+06 on 1 and 998 DF, p-value: < 2.2e-16
                             # -6 + 5*7 = 29
                             # some stats packages will not produce output
```

```
# NOTE: regressing on an intercept ONLY estimates the mean of y - intercept can
# be constant.
mean(y)
## [1] 302.725
summary(lm(y~1))
##
## Call:
## lm(formula = y ~ 1)
##
## Residuals:
##
      Min
               1Q Median
                             3Q
                                       Max
## -160.99 -39.38 -0.12 35.42 190.88
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 302.725
                           1.821
                                   166.3 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 57.58 on 999 degrees of freedom
  • But what if another regressor is also constant?
set.seed(826)
# Covariance matrix of x1, x2, and e
Sig \leftarrow matrix(c(4,0,0,0,0,0,0,0,1),3,3)
Sig # Notice e does not covary with x1 or x2 (assumption 5)
##
        [,1] [,2] [,3]
## [1,]
               0
          4
## [2,]
          0
                0
## [3,]
        # But x2 also has no variance (violate assumption 2)
# Mean of x1, x2, and e
moo < -c(10,3,0)
# generate data
Xe <- mvrnorm(n=1000,mu=moo,Sigma=Sig)</pre>
# give the variables names
colnames(Xe)<-c("x1", "x2", "e")
Xe <- as.data.frame(Xe)</pre>
head(Xe)
          x1 x2
## 1 9.777659 3 0.06505297
## 2 8.310513 3 0.17189937
## 3 9.789899 3 -0.36952559
## 4 6.358205 3 -0.19523319
## 5 9.231989 3 1.73650622
## 6 5.651648 3 0.10192330
# Sample correlations and covariances (notice difference from "truth")
cov(Xe)
```

```
## x1 x2 e
## x1 3.93549450 0 0.07180935
## x2 0.00000000 0 0.00000000
## e 0.07180935 0 1.06201033

cor(Xe)

## Warning in cor(Xe): the standard deviation is zero

## x1 x2 e
## x1 1.00000000 NA 0.03512505
## x2 NA 1 NA
## e 0.03512505 NA 1.00000000
scatterplotMatrix(Xe)
```

Warning in smoother(x[subs], y[subs], col = smoother.argscol[i], log.x = ## FALSE, : could not fit negative part of the spread


```
# generate the true y (outcome) 
y <- 10 - 6*Xe$x1 + 5*Xe$x2 + Xe$e # y is linear in parameters (assumption 1) 
plot(Xe$x1,y)
```


plot(Xe\$x2,y) # Should be a tight fit!


```
# run the linear regression
summary(lm(y~x1+x2,data=Xe)) # Why an intercept of 25 and coefficient of -6?
##
```

```
##
## Call:
## lm(formula = y ~ x1 + x2, data = Xe)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
  -3.4402 -0.7074 0.0450
                           0.7331
                                   3.4532
##
## Coefficients: (1 not defined because of singularities)
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 24.80957
                           0.16603
                                     149.4
                                             <2e-16 ***
                                    -364.0
                                             <2e-16 ***
               -5.98175
                           0.01643
## x1
## x2
                     NA
                                NA
                                        NA
                                                 NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.03 on 998 degrees of freedom
## Multiple R-squared: 0.9925, Adjusted R-squared: 0.9925
## F-statistic: 1.325e+05 on 1 and 998 DF, p-value: < 2.2e-16
                             # 10 + 5*3
                             # some stats packages will not even produce output
```

Violate Assumption 3: Residuals "e" do not have constant variance

- Residuals are "heteroskedastic" (different variance)
 - Variance changes at different places in the population
 - For different values of X or different time periods t
- Set the seed and generate the true model

```
set.seed(826)
# Covariance matrix of x1, x2
Sig \leftarrow matrix(c(4,1,1,2),2,2)
Sig
##
         [,1] [,2]
## [1,]
            4
## [2,]
            1
# Mean of x1, x2
moo < - c(10,3)
# generate data
Xe <- mvrnorm(n=1000,mu=moo,Sigma=Sig)</pre>
# generate homoskedastic residuals
eps = rnorm(n=1000,mean=0,sd=sqrt(1))
# generate heteroskedastic residuals
sigma2 = (eps^2)*(Xe[,1]^2+Xe[,2]^2)
eps2 = rnorm(n=1000,mean=0,sd=sqrt(sigma2))
Xe1 = as.data.frame(cbind(Xe,eps))
colnames(Xe1)<-c("x1", "x2", "e1")
Xe2 = as.data.frame(cbind(Xe,eps2))
\texttt{colnames}(\texttt{Xe2}) \boldsymbol{<-} \texttt{c}(\texttt{"x1","x2","e2"})
```

- Investigate sample correlations and covariances
 - notice difference from "truth"

scatterplotMatrix(Xe1)

scatterplotMatrix(Xe2)

• Generate the true y (outcome)

```
y1 <- 10 - 6*Xe1$x1 + 5*Xe1$x2 + Xe1$e1
y2 <- 10 - 6*Xe2$x1 + 5*Xe2$x2 + Xe2$e2
```

• Notice there are not necessarily obvious differences in the plot

plot(Xe1\$x1,y1)

plot(Xe2\$x1,y2)

- Run the linear regression
 - notice the difference in residual standard error, coefficient std. error, Rsquared.

```
summary(lm(y1~x1+x2,data=Xe1))
```

```
##
## Call:
## lm(formula = y1 ~ x1 + x2, data = Xe1)
##
##
  Residuals:
##
                1Q Median
                                3Q
                                        Max
##
   -3.3647 -0.6814 -0.0060
                            0.6925
                                    3.0024
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
##
   (Intercept) 9.82512
                           0.16589
                                      59.23
                                              <2e-16 ***
## x1
               -5.99439
                           0.01719 -348.62
                                              <2e-16 ***
## x2
                5.03285
                           0.02317
                                    217.23
                                              <2e-16 ***
##
                     '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 1.004 on 997 degrees of freedom
## Multiple R-squared: 0.9925, Adjusted R-squared: 0.9925
## F-statistic: 6.596e+04 on 2 and 997 DF, p-value: < 2.2e-16
summary(lm(y2~x1+x2,data=Xe2))
```

```
##
## Call:
## lm(formula = y2 \sim x1 + x2, data = Xe2)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -64.361 -4.232
                  0.309
                            3.882 47.679
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.3175
                          1.8010
                                    5.729 1.34e-08 ***
               -6.1093
                           0.1867 -32.726 < 2e-16 ***
## x1
## x2
                5.1291
                           0.2515 20.391 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 10.9 on 997 degrees of freedom
## Multiple R-squared: 0.5383, Adjusted R-squared: 0.5374
## F-statistic: 581.2 on 2 and 997 DF, p-value: < 2.2e-16
```

Violate Assumption 4: Residuals "e" are serially correlated (autocorrelated)

• Set the seed and generate the true model

```
set.seed(826)
# Covariance matrix of x1, x2
Sig \leftarrow matrix(c(4,1,1,2),2,2)
Sig
##
        [,1] [,2]
## [1,]
           4
## [2,]
           1
# Mean of x1, x2
moo <- c(10,3)
# generate data
Xe <- mvrnorm(n=1000,mu=moo,Sigma=Sig)</pre>
# generate independent residuals
eps = rnorm(n=1000,mean=0,sd=sqrt(1))
# generate serially correlated residuals
eps2 \leftarrow arima.sim(model=list(ar=c(0.8)),n=1000,sd=1)
Xe1 = as.data.frame(cbind(Xe,eps))
colnames(Xe1)<-c("x1","x2","e1")
Xe2 = as.data.frame(cbind(Xe,eps2))
colnames(Xe2)<-c("x1","x2","e2")</pre>
```

• Investigate sample correlations and covariances — notice difference from "truth"

```
scatterplotMatrix(Xe1)
```


scatterplotMatrix(Xe2)

• Generate the true y (outcome)

```
y1 <- 10 - 6*Xe1$x1 + 5*Xe1$x2 + Xe1$e1
y2 <- 10 - 6*Xe2$x1 + 5*Xe2$x2 + Xe2$e2
```

• Note that there are not necessarily obvious differences in the plot

```
plot(Xe1$x1,y1)
```


plot(Xe2\$x1,y2)

- Run the linear regression
 - notice the difference in residual standard error, coefficient std. error, Rsquared.

```
summary(lm(y1~x1+x2,data=Xe1))
```

```
##
## Call:
## lm(formula = y1 \sim x1 + x2, data = Xe1)
##
##
  Residuals:
##
                1Q Median
                                 3Q
                                        Max
   -3.3647 -0.6814 -0.0060
##
                            0.6925
                                    3.0024
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
##
  (Intercept) 9.82512
                           0.16589
                                      59.23
                                              <2e-16 ***
## x1
               -5.99439
                           0.01719 -348.62
                                              <2e-16 ***
## x2
                5.03285
                           0.02317
                                     217.23
                                              <2e-16 ***
##
                     '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 1.004 on 997 degrees of freedom
## Multiple R-squared: 0.9925, Adjusted R-squared: 0.9925
## F-statistic: 6.596e+04 on 2 and 997 DF, p-value: < 2.2e-16
summary(lm(y2~x1+x2,data=Xe2))
```

```
##
## Call:
## lm(formula = y2 \sim x1 + x2, data = Xe2)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -6.1938 -1.2369 0.0212 1.1345 4.9921
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.83236
                          0.27727
                                    35.46
                                            <2e-16 ***
              -5.98476
                          0.02874 -208.24
                                            <2e-16 ***
## x1
## x2
               4.93465
                          0.03872 127.43
                                            <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.678 on 997 degrees of freedom
## Multiple R-squared: 0.9791, Adjusted R-squared: 0.9791
## F-statistic: 2.339e+04 on 2 and 997 DF, p-value: < 2.2e-16
```

Violate Assumption 5: Residuals "e" are correlated with X variables

- Some X variables are **endogenous**
- Many flavors of this

```
set.seed(826)
# Covariance matrix of x1, x2, and e
n <- 3
A <- matrix(runif(n^2)*2-1, ncol=n)
Sig <- t(A) %*% A
Sig # Notice e covaries with x1 and x2</pre>
```

5a. Residuals (unobservable) covary with X's (observable)

```
##
               [,1]
                          [,2]
                                     [,3]
## [1,] 1.1012487 -0.4083661 0.5785058
## [2,] -0.4083661 1.4481911 0.6653081
## [3,] 0.5785058 0.6653081 1.0935305
# also x1 and x2 can covary, but not perfectly (assumption 2)
# Mean of x1, x2, and e
moo <- c(10,3,0)
# generate data
Xe1 <- mvrnorm(n=1000,mu=moo,Sigma=Sig)</pre>
# give the variables names
colnames(Xe1)<-c("x1","x2","e1")</pre>
# store as a data frame
Xe1 <- as.data.frame(Xe1)</pre>
head(Xe1)
```

```
## x1 x2 e1
## 1 7.733325 3.255037 -1.6600797
```

```
## 2 10.031196 4.345290 0.6720729
## 3 10.853379 3.439955 0.6454713
## 4 10.285622 3.138029 0.7302525
## 5 11.973566 3.084988 1.9555648
## 6 9.263035 5.055792 0.2941055
```

• Investigate patterns in the data

```
# plot empirical distribution of each:
hist(Xe1$x1, breaks = 100, cex.main = 0.9)
```

Histogram of Xe1\$x1

hist(Xe1\$x2, breaks = 100, cex.main = 0.9)

Histogram of Xe1\$x2

hist(Xe1\$e1, breaks = 100, cex.main = 0.9)

Histogram of Xe1\$e1

Sample correlations and covariances (notice difference from "truth") cov(Xe1)

x1 1.1261792 -0.4863156 0.5318302 ## x2 -0.4863156 1.5560936 0.7052121 ## e1 0.5318302 0.7052121 1.0883354

cor(Xe1)

x1 x2 e1 ## x1 1.0000000 -0.3673640 0.4803833 ## x2 -0.3673640 1.0000000 0.5419017 ## e1 0.4803833 0.5419017 1.0000000

scatterplotMatrix(Xe1)

• Generate the true y (outcome)

 $y1 \leftarrow 10 - 6*Xe1$x1 + 5*Xe1$x2 + Xe1$e1$

- No obvious problems in the plot of X's against y

plot(Xe1\$x1,y1)

plot(Xe1\$x2,y1)

- Run the linear regression
 - notice the difference in sample coefficients from true values.

summary(lm(y1~x1+x2,data=Xe1))

```
##
## Call:
## lm(formula = y1 \sim x1 + x2, data = Xe1)
##
##
  Residuals:
##
                  1Q
                       Median
   -1.54018 -0.29630 -0.01474 0.28478
##
                                        1.25077
##
## Coefficients:
##
               Estimate Std. Error
                                    t value Pr(>|t|)
## (Intercept) 0.20152
                           0.15636
                                       1.289
                                                0.198
## x1
               -5.22785
                           0.01391 -375.858
                                               <2e-16 ***
## x2
                5.69451
                           0.01183
                                    481.250
                                               <2e-16 ***
##
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 0.4339 on 997 degrees of freedom
## Multiple R-squared: 0.9983, Adjusted R-squared: 0.9983
## F-statistic: 2.923e+05 on 2 and 997 DF, p-value: < 2.2e-16
```

```
set.seed(826)
# Covariance matrix of x1, x2, and e
Sig \leftarrow matrix(c(4,1,0,1,2,0,0,0,1),3,3)
          # Notice e does not covary with x1 or x2 (assumption 5)
5b. An observable variable (that is correlated with included variables) was omitted
        [,1] [,2] [,3]
##
## [1,]
                1
## [2,]
                 2
                      0
           1
## [3,]
           0
                0
                      1
# also x1 and x2 can covary, but not perfectly (assumption 2)
# Mean of x1, x2, and e
moo \leftarrow c(10,3,0)
# generate data
Xe <- mvrnorm(n=1000,mu=moo,Sigma=Sig)</pre>
# give the variables names
colnames(Xe)<-c("x1","x2","e")</pre>
# store as a data frame
Xe <- as.data.frame(Xe)</pre>
   • Generate the true y (outcome)
y2 \leftarrow 10 - 6*Xe$x1 + 5*Xe$x2 + Xe$e
   • Run the linear regression with an omitted variable
summary(lm(y2~x1+x2,data=Xe))
##
## Call:
## lm(formula = y2 ~ x1 + x2, data = Xe)
##
## Residuals:
                1Q Median
##
       Min
                                 ЗQ
                                         Max
## -3.3647 -0.6814 -0.0060 0.6925 3.0024
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.19399
                            0.16125 63.22 <2e-16 ***
## x1
               -6.02720
                            0.01665 -362.07
                                               <2e-16 ***
## x2
                5.01926
                            0.02357 212.99
                                             <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.004 on 997 degrees of freedom
## Multiple R-squared: 0.9931, Adjusted R-squared: 0.993
## F-statistic: 7.126e+04 on 2 and 997 DF, p-value: < 2.2e-16
summary(lm(y2~x1,data=Xe))
##
## Call:
```

lm(formula = y2 ~ x1, data = Xe)

```
##
## Residuals:
##
       Min
                  1Q
                     Median
                                    30
## -23.8197 -4.4152 -0.2228
                                        22.8015
                                4.5777
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 14.327
                             1.091
                                     13.13
                                             <2e-16 ***
                             0.108 -45.73
## x1
                 -4.938
                                             <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 6.843 on 998 degrees of freedom
## Multiple R-squared: 0.677, Adjusted R-squared: 0.6766
## F-statistic: 2091 on 1 and 998 DF, p-value: < 2.2e-16
summary(lm(y2~x2,data=Xe))
##
## Call:
## lm(formula = y2 ~ x2, data = Xe)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -33.793 -7.934 -0.057
                             7.530 41.335
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -41.7047
                            0.8497 -49.083
                                             <2e-16 ***
## x2
                 2.3970
                            0.2580
                                     9.291
                                             <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 11.55 on 998 degrees of freedom
## Multiple R-squared: 0.07961,
                                    Adjusted R-squared: 0.07869
## F-statistic: 86.32 on 1 and 998 DF, p-value: < 2.2e-16
set.seed(826)
# generate an autocorrelated residual
eps \leftarrow arima.sim(model=list(ar=c(0.8)),n=999,sd=1)
# generate an autocorrelated outcome that has "eps" as its residual
y1 <- list()
y10 \leftarrow rnorm(n=1,mean=10,sd=1)
y1[[1]] <- y10
for(i in 2:1000) {
  y1[[i]] \leftarrow 10 + 0.4*y1[[i-1]] + eps[i]
y1 <- unlist(y1)
arima(y1, order=c(1,0,0))
```

5c. y is autocorrelated, may or may not have serial correlation/autocorrelation in the residual.

```
##
## Call:
## arima(x = y1, order = c(1, 0, 0))
##
## Coefficients:
## ar1 intercept
## 0.9146 16.3248
## s.e. 0.0132 0.3819
##
## sigma^2 estimated as 1.086: log likelihood = -1459.74, aic = 2925.48
```