COMP5121 Data Mining and Data Warehousing Applications

Week 3: Data Preprocessing

Dr. Fengmei Jin

- Email: fengmei.jin@polyu.edu.hk
- Office: PQ747 (+852 3400 3327)
- Consultation Hours: 2:30-4:30pm every Thursday

Outline

- Data Cleaning
- □ Data Integration
- □ Data Reduction
- □ Data Transformation
- □ Summary

Why Preprocess the Data? Data Quality!

- □ Data quality depends on the intended use of data.
- Multidimensional views of data quality:
 - **Accuracy**: data must correctly reflect the real-world scenario without errors or noise.
 - Completeness: all required data fields should be present and valid.
 - Consistency: data should follow the same rules and format across all records.
 - **Timeliness**: data should be up-to-date.
 - Believability: data should be credible and from trusted sources.
 - Interpretability: data should be clear and understandable.

What is your date of birth?

Allergy

Common Sources of Low Data Quality

- □ Data Collection Issues
 - Human errors or misreporting during manual data entry
 - Lack of validation during input
- Data Duplications
 - Multiple entries of same information
 - Redundant record keeping
 - Merged datasets without deduplication
- □ Format Inconsistencies
 - Different input formats (MM/DD/YY vs. DD/MM/YY)
 - Varying units of measurement
 - Inconsistent naming conventions

Major Tasks of Data Preprocessing

messy clean

- □ Data Cleaning
 - To fill in missing data, smooth noisy data, identify or remove outliers, and resolve inconsistencies
- □ Data Integration (e.g., Bill Gates, William Gates, B. Gates, ...)
 - To merge multiple databases into a coherent data store
- □ Data Reduction (efficiency of mining process)
 - To obtain a reduced representation of the data with similar results
- □ Data Transformation
 - To normalize data for similarity-based mining (e.g., age vs salary)

	A 1	A2	A3	 A126	
T1					
T2 T3					
T4					
 T2000					5

incomplete, missing, noisy, inconsistent, intentional, ...

DATA CLEANING

Data Cleaning

Data in the real world is Dirty!

- □ Lots of potentially incorrect data due to faulty collection, human or computer errors, transmission errors, etc.
 - Inaccurate: containing noise, errors, or outliers
 - ☐ e.g., Salary = "-10" error
 - **Incomplete**: lacking attribute values or attributes of interest
 - ☐ e.g., Occupation = " " missing values
 - Inconsistent: containing discrepancies in attribute values
 - ☐ Age = "20", but Birthday = "01/01/1970"
 - ☐ Used to rate via "1, 2, 3", now rating via "A, B, C"
 - ☐ Discrepancy between duplicate records: "Bill Gates" vs "B. GATES"
 - Intentional: e.g., setting 01/01/1970 as everyone's birthday

(1) How to Handle Inaccurate (Noisy) Data?

- □ Noise: random error or variance in a measured variable
- □ Data Smoothing discretization
 - Binning
 - ☐ First sort data and partition into bins
 - □ Then one can smooth by bin means / median / boundaries, etc.
 - Regression: smooth by fitting data into regression functions
 - Clustering: to detect and remove outliers

(2) How to Handle Incomplete (Missing) Data?

- □ **Ignore the tuple**: could have been useful to the task
- ☐ Fill in the missing value manually: costly and infeasible
- ☐ Fill in it automatically with:
 - Global constant: "unknown", infinity, or a new class label
 - The attribute's mean/median/mode: suitable for symmetric data
 - That for all samples belonging to the same class: smarter
 - □ a tuple with missing income → customers with the same credit risk
 - The most probable value through inference-based such as Bayesian formula or decision tree induction

Data Cleaning as a Process

- ☐ Detection Steps:
 - **Metadata Analysis**: any knowledge you may already have regarding properties of the data "data about data"
 - □ e.g., type, domain, range, central tendency, dependency, distribution
 - DB Structure Validation
 - □ A single field in a DB schema may store multiple pieces of information, e.g., address = "78 Staff House Rd, Brisbane, QLD 4072"
 - Data Migration: mixed formats like "Male", "M", "1", "MALE"
 - Rule Checking: unique / consecutive / null rules in DB
 - **Domain Knowledge**: e.g., postal code, spell-checking, rule/relationship discovery to detect violators

entity identification, redundancy, correlation, duplication, ...

DATA INTEGRATION

Data Integration

To merge data from multiple sources into a single unified view

- Schema Integration redundancy
 - □ Integrate metadata (e.g., "user-ID" in *DB1* and "user-#" in *DB2*)
- Entity Matching duplication
 - ☐ Identify different representations of the same real-world entities (e.g., "Bill Gates" and "William Gates")

Conflict Resolution

□ Inconsistent values from multiple sources for the same entity, potentially caused by different representations or scales (e.g., "mile" for British units vs. "meter" for metric)

Handling Redundancy in Data Integration

- Redundancy occurs often when data integration.
 - Simple: Same information with different names across DBs
 - Complicated: One attribute may be derived from another attribute or set of attributes, e.g., "birthday" → "age"

Correlation Analysis: to measure *how* strongly one attribute implies the other, based on available data

- Nominal data: χ^2 (chi-square) test
- Numeric data: correlation coefficient and covariance → how one attribute's values vary from those of another.

Correlation Analysis for Nominal Data

- \square χ^2 (chi-square) Test for two nominal attributes A and B
 - **Input**: all data tuples about A and B, A with c distinct values $\{a_1, a_2, ..., a_c\}$. B with C distinct values: $\{b_1, b_2, ..., b_n\}$.
 - $\{a_1, a_2, \dots, a_c\}$, B with r distinct values: $\{b_1, b_2, \dots, b_r\}$. Let (A_i, B_j) represents a joint event: $A = a_i, B = b_j$. $x^2 = \sum_{i=1}^c \sum_{j=1}^r \frac{(o_{ij} - e_{ij})^2}{e_{ij}}$
 - \square o_{ij} is the observed frequency of (A_i, B_j) ; e_{ij} is the expected frequency.
 - \square *n* is # data tuples in total; $count(A = a_i)$ is # tuples with value a_i for *A*.
 - Range: $\chi^2 \ge 0$

- $e_{ij} = \frac{count(A = a_i) \times count(B = b_j)}{n}$
- \square Higher $\chi^2 \rightarrow$ more likely A and B are correlated
- \square Lower $\chi^2 \rightarrow$ higher independence between A and B

Note: correlation does not imply causality.

- Coffee Consumption and Programmer Productivity in a company are correlated.
- · Both are causally linked to the third variable: work hours

Example: Calculation of χ^2 Chi-Square

$$\chi^{2} = \sum_{i=1}^{c} \sum_{j=1}^{r} \frac{(o_{ij} - e_{ij})^{2}}{e_{ij}}$$

☐ The expected frequency of *play_chess* and *like_science_fiction*

$$=\frac{450\times300}{1500}=90$$

	Play chess (Ob. vs Ep.)	Not play chess (Ob. vs Ep.)	Sum (row)
Like science fiction	250 (90)	200 (360)	450
Not like science fiction	50 (210)	1000 (840)	1050
Sum (col.)	300	1200	1500

→ like_science_fiction and play_chess are correlated in this group.

Correlation Analysis for Numeric Data

☐ Correlation Coefficient between two variables A and B based on a set of n tuples $\{(a_1, b_1), (a_2, b_2), ..., (a_n, b_n)\}$

$$r_{A,B} = \frac{\sum_{i=1}^{n} (a_i - \bar{A})(b_i - \bar{B})}{n\sigma_A \sigma_B} = \frac{\sum_{i=1}^{n} (a_i b_i) - n\bar{A}\bar{B}}{n\sigma_A \sigma_B}$$
• \bar{A} and \bar{B} are their respective mean values deviations of \bar{A} and \bar{B}

- $\sum (a_i b_i)$ is the sum of AB cross-product

- \square Range: $-1 \le r_{A,B} \le 1$
 - If $r_{A,B} > 0$, positively correlated (i.e., A increase as B).
 - \square Higher $r_{A,B}$ means stronger correlation. \rightarrow A or B might be removed.
 - If $r_{A.B} = 0$, no linear correlation.
 - If $r_{A,B} < 0$, negatively correlated.

Visualizing Changes of Correlation Coefficient

☐ Correlation coefficient value range: [–1, 1]

Covariance Analysis for Numeric Data

☐ Covariance: how much two attributes change together

$$Cov(A, B) = E((A - \bar{A})(B - \bar{B})) = \frac{\sum_{i=1}^{n} (a_i - \bar{A})(b_i - \bar{B})}{n}$$

$$E(A) = \bar{A} = \frac{\sum_{i=1}^{n} a_i}{n}$$

$$r_{A,B} = \frac{Cov(A, B)}{\sigma_A \sigma_B}$$

- ☐ If they tend to change together, i.e., if A is larger than \bar{A} , then B is likely to be larger than $\bar{B} \rightarrow Cov(A,B) > 0$
- □ Differently, if an attribute tends to be above its mean yet the other attribute is below its mean $\rightarrow Cov(A, B) < 0$
- \square If they are independent $\rightarrow Cov(A, B) = 0$
- ← But the converse is not true!
- Cov(A, B) = 0 suggests **no linear relationship.**

Example: Calculation of Covariance

- □ Suppose two stocks A and B have the following values in one week: (2,5), (3,8), (5,10), (4,11), (6,16)
- ☐ Q: If the stocks are affected by some trends, will their prices rise or fall together?
- □ Covariance:

$$Cov(A, B) = E((A - \bar{A})(B - \bar{B})) = \frac{\sum_{i=1}^{n} (a_i - \bar{A})(b_i - \bar{B})}{n}$$

- $\bar{A} = (2+3+5+4+6)/5 = 20/5 = 4$
- $\bar{B} = (5+8+10+11+16)/5 = 50/5 = 10$
- Cov(A, B) = (10 + 2 + 0 + 0 + 12)/5 = 4.8 > 0
- \square Thus, A and B change together due to the positive covariance.

dimensionality reduction, numerosity reduction, data compression

DATA REDUCTION

Data Reduction

- ☐ To obtain a reduced representation of the data set
 - much smaller in volume, but almost the same analytical results
- □ Why?
 - Handle large-scale datasets, reduce complexity, minimize storage costs, speed up analysis, focus on most relevant info, ...
- ☐ Strategies for Data Reduction
 - Dimensionality reduction: reduce # variables under consideration
 - Numerosity reduction: replace the original data volume by alternative, smaller forms of data representations
 - Data compression: lossless or lossy

(1) Dimensionality Reduction

- Curse of dimensionality
 - As dimensionality increases, data becomes increasingly sparse.
 - Density and distance → less meaningful
 - The possible combinations of subspaces will grow exponentially.
- ☐ To reduce # random variables under consideration by obtaining a set of principal variables
 - Avoid the curse of dimensionality
 - Help eliminate irrelevant features and reduce noise
 - Reduce time and space required in data mining
 - Allow easier visualization

Dimensionality Reduction Techniques

- □ Feature extraction: To transform original data to a new lowerdimensional space
- Feature selection: To find a subset of the original variables
- Feature aggregation: To combine related variables
- □ Some typical methods
 - Principal Component Analysis: 100 stock prices → 3 market factors
 - Attribute subset selection
 - Attribute creation / construction: height and weight → area

Principal Component Analysis (PCA)

- ☐ A statistical procedure via orthogonal transformation
 - Original: a set of observations of possibly correlated variables
 - Projected: a set of values of linearly uncorrelated variables, called principal components (PC)

Principal Component Analysis (Method)

- \square Input: N data vectors from d-dimensions
- \square Output: Find $k \le d$ orthogonal vectors that best represent data
 - Normalization: each attribute should fall within comparable range
 - Transformation: compute orthonormal (unit) vectors, so that each input vector is a linear combination of these vectors
 - Sorting: vectors are sorted by decreasing "importance" or strength
 - Reduction: keep top-k strongest components and discard those weak components with lower variance
 - ☐ Use the strongest PCs to reconstruct a good approximation of the original data and distinguish data points from one another
- Works for numeric data only!

Attribute Subset Selection

- ☐ To keep a 'good' subset of original features
 - Redundant attributes
 - ☐ duplicate information from other attributes
 - □ e.g., product price vs. the amount of tax paid
 - Irrelevant attributes
 - □ no impact on the target task
 - e.g., student ID vs. predicting GPA, telephone number vs. credit risk

Attribute Subset Selection by Heuristic Search

- An exhaustive search is expensive and impossible.
 - There are 2^d possible attribute combinations of d attributes.
- ☐ Typical heuristic (greedy) attribute selection methods:
 - Forward selection: 1) an empty set of attribute initially, 2) select the best of the remaining attributes at each iteration
 - Backward elimination: 2) full set of attributes; 2) at each step, remove the worst one remaining in the set
 - Decision tree induction
 - □ each non-leaf node → a test on an attribute
 - □ each branch → an outcome of the test
 - □ each leaf node → a class prediction

Attribute Subset Selection by Heuristic Search

Forward selection	Backward elimination	Decision tree induction
Initial attribute set: $\{A_1, A_2, A_3, A_4, A_5, A_6\}$	Initial attribute set: $\{A_1, A_2, A_3, A_4, A_5, A_6\}$	Initial attribute set: $\{A_1, A_2, A_3, A_4, A_5, A_6\}$
Initial reduced set: {} $\Rightarrow \{A_1\}$ $\Rightarrow \{A_1, A_4\}$ \Rightarrow Reduced attribute set: $\{A_1, A_4, A_6\}$	=> $\{A_1, A_3, A_4, A_5, A_6\}$ => $\{A_1, A_4, A_5, A_6\}$ => Reduced attribute set: $\{A_1, A_4, A_6\}$	$A_{4}?$ $A_{1}?$ $A_{6}?$ Y $Class 1$ $Class 2$ $Class 1$ $Class 2$ $A_{1}?$ $A_{6}?$ $Class 2$ $Class 2$

(2) Numerosity Reduction

☐ Reduce data volume by choosing alternative, smaller forms of data representation

Parametric methods

Assume the data fits mathematical model, estimate model parameters, store only the parameters, and discard the data (except possible *outliers*)

■ Non-parametric methods

- Do not assume data shape or models
- e.g., histograms, clustering, sampling, ...

Numerosity Reduction – Parametric

- □ Regression analysis
 - A collective name for techniques for the modeling and analysis of numeric data
 - Parameters are estimated by minimizing differences between prediction and actual values so as to give a 'best fit' of the data.

Other practical applications:

- Prediction: What will happen next?
- Inference: Understanding relationships
- Hypothesis testing: Testing assumptions
- Causal modeling: Understanding cause/effect

Linear and Multiple Regression

- □ Linear regression: Y = wX + b
 - Model the data to best fit a straight line
 - Often uses the least-square method to fit it
 - The regression coefficients, w and b, specify the line estimated by using the data at hand
 - Using the least squares criterion to the data

$$Y = b_0 + b_1 X_1 + b_2 X_2$$

Allow Y to be modeled as a linear function of multi-dim feature vector

Histogram Analysis

- □ To approximate data distributions
 - divide data into disjoint buckets (or bins) and store the average (or sum) for each

Sales data:

1, 1, 5, 5, 5, 5, 5, 8, 8, 10, 10, 10, 10, 12, 14, 14, 14, 15, 15, 15, 15, 15, 15, 18, 18, 18, 18, 18, 18, 18, 18, 18, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 25, 25, 25, 25, 25, 28, 28, 30, 30, 30.

□ Partitioning rules

- Equal-width: equal bucket range
- Equal-frequency: equal # items per bin

Clustering

- ☐ Partition data set into clusters based on similarity
- ☐ Store cluster representations (e.g., centroid) only

Objects within a cluster are similar and dissimilar

to objects in other clusters.

Numerosity Reduction by Sampling

 \square To obtain a small sample s to represent the whole data set N

☐ **Key**: sample a **representative** subset of the data

Simple random sampling:

- Equal probability of selecting each object
- Sampling with / without replacement: a selected object is / is not removed
- Poor performance in skewed data

Adaptive sampling (stratified sampling)

- Partition the data and draw samples from each cluster
- Sampling probability is proportional to each strata size

(3) Data Compression

- To obtain a reduced or "compressed" representation of the original data.
 - Lossless: if the original data can be reconstructed from the compressed data without any information loss
 - □ e.g., string compression
 - Lossy: only an approximation of the original data can be reconstructed
 - □ e.g., audio/video compression

normalization, discretization, ...

DATA TRANSFORMATION

Data Transformation

□ To map the entire set of data → a new set of replacement values s.t. each old value can be identified with new values

☐ Strategies:

- Normalization: scaled to fall within a smaller range, e.g., [0,1]
- **Discretization**: concept hierarchy climbing (also for *reduction*)
- **Smoothing**: remove noise from data (also for *cleaning*)
- Aggregation: summarization in data cube (also for reduction)
- Attribute construction: existing attributes → new attributes, e.g., amount and unit price → total cost (also for reduction)

Min-Max Normalization

□ Range: $[minA, maxA] \rightarrow [new_minA, new_maxA]$

$$v' = \frac{v - \min A}{\max A - \min A} \times (\text{new}_{\max} A - \text{new}_{\min} A) + \text{new}_{\min} A$$

- □ For example, normalize range: [\$12,000, \$98,000] → [0.0, 1.0]
 - Then, \$73,600 is mapped to: $\frac{73,600-12,000}{98,000-12,000} \times (1.0-0) + 0 = 0.716$

Z-score Normalization

 \square Rely on μ (mean) and σ (standard deviation)

$$v' = \frac{v - \mu_A}{\sigma_A}$$

Z-score: The distance between the raw score and the population mean in the unit of the standard deviation.

- \square For example, let $\mu = 54,000$, $\sigma = 16,000$.
 - Then, \$73,600 is mapped to: $\frac{73,600-54,000}{16,000} = 1.225$.

Normalization by Decimal Scaling

- Find the scaling factor j as the smallest integer s.t. $\max(|v'|) < 1$ for all normalized v': $v' = \frac{v}{10^j}$
- \square Bounded range within [-1,1]
- \square For example, given a data set with the range of [-986, 917]:
 - = j = 3 because the max absolute value is 986
 - New Range: [-0.986, 0.917]

Discretization

- ☐ Three types of attributes
 - **Nominal**: values from an unordered set, e.g., color, marital status
 - Ordinal: values from an ordered set, e.g., drink size, profession
 - **Numeric**: real numbers, e.g., age, height, weight
- ☐ To divide the range of a continuous attribute into distinct intervals
 - → Interval labels can then be used to replace actual data values
 - → Reduce data size

Simple Discretization: Binning

- ☐ Equal-width (distance) partitioning
 - Divides the range into N intervals of equal size: uniform partition
 - The width of intervals: W = (B-A)/N, where A and B are the lowest and highest values of the attribute.
 - ☐ The most straightforward, but outliers may dominate presentation.
 - □ Skewed data is not handled well.
- ☐ Equal-depth (frequency) partitioning
 - Divides the range into N intervals, each containing approximately same number of samples
 - Good data scaling

Example: Binning Methods

- ☐ Sorted data for price (in dollars)
 - **4**, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34

Equal-width partition (width=10):

- Bin 1: 4, 8, 9 Range: [4,14)
- Bin 2: 15, 21, 21 Range: [14,24)
- Bin 3: 24, 25, 26, 28, 29, 34

Range: [24, 34]

*Skewed data leads to unbalanced bins.

Equal-frequency partition:

- Bin 1: 4, 8, 9, 15
- Bin 2: 21, 21, 24, 25
- Bin 3: 26, 28, 29, 34

Smoothing by bin boundaries:

- Bin 1: 4, 4, 4, 15
- Bin 2: 21, 21, 25, 25
- Bin 3: 26, 26, 26, 34

*Each value is replaced by its nearest bin boundary.

Smoothing by bin means:

- Bin 1: 9, 9, 9, 9
- Bin 2: 23, 23, 23, 23
- Bin 3: 29, 29, 29, 29

Discretization Without Supervision: Binning vs. Clustering

Discretization by Classification & Correlation Analysis

- ☐ Classification (e.g., decision tree analysis)
 - Supervised: use class information (e.g., disease vs. symptoms)
 - Top-down, recursive split: using entropy to determine split point (data values for partitioning a range)
- \square Correlation analysis (e.g., ChiMerge, a χ^2 -based method)
 - Supervised
 - Bottom-up merge: find the best neighboring intervals (with similar distributions w.r.t. the target variable, i.e., lowest difference in χ^2 values of two adjacent intervals) to merge

Concept Hierarchy

- ☐ To organizes concepts (i.e., attribute values) hierarchically
 - Formation: Recursively reduce the data by collecting and replacing low level concepts (e.g., numeric values for age) by higher level concepts (e.g., youth, adult, or senior)

A concept hierarchy for the attribute *price*, where an interval (X...Y] denotes the range from X (exclusive) to Y (inclusive).

Automatic Concept Hierarchy Generation

- □ Some hierarchies can be automatically generated based on # distinct values per attribute in the data set.
 - The attribute with the most distinct values is placed at the lowest level of the hierarchy.
- □ Exceptions: e.g., weekday, month, quarter, year

Summary

- □ Data quality based on the intended use of the data: accuracy, completeness, consistency, timeliness, believability, interpretability
- □ Data cleaning: to fill in missing values, smooth out noise, identify outliers, and correct inconsistencies
- □ Data integration: to combine multi-source data as a coherent data store (duplication, redundancy, conflicts)
- □ Data reduction: to obtain a reduced representation of the data while minimizing the loss of information content
- □ Data transformation: to convert the data into appropriate forms
- □ Data discretization: to transform continuous data to interval or labels

Email: fengmei.jin@polyu.edu.hk

Office: PQ747

THANK YOU!

