Wireless Communication Systems @CS.NCTU

Lecture 6: Multi-User MIMO (MU-MIMO)

Instructor: Kate Ching-Ju Lin (林靖茹)

Agenda

- Interference Nulling
- Zero-forcing Beamforming (802.11ac)
- Interference Alignment
- Network MIMO

Cross-Link Interference

• Problem:

 Any two nearby links cannot transmit simultaneously on the same frequency

• Solution:

 A transmitter with multiple antennas can <u>actively</u> cancel its interfering signals at nearby receiver(s)

Interference Nulling

Nulling: make
$$(h_1a+h_2\beta)=0$$

 $\Rightarrow a = -(h_2/h_1)\beta$
 $y = hx + (h_1a+h_2\beta)x'$
 $y' = h'x + (h_{1a}a+h_{1b}\beta)x'$
 $y'' = h''x + (h_{2a}a+h_{2b}\beta)x'$

≠ ()

- Signals cancel each other at Alice's receiver
- Signals don't cancel each other at Bob's receiver
 - Because channels are different
 - Bob's receiver can remove Alice's interference via ZF decoding

Agenda

- Interference Nulling
- Zero-forcing Beamforming (802.11ac)
- Interference Alignment
- Network MIMO

802.11ac

Cannot leverage multiplexing gains if clients only have a single antenna

- From 802.11a/b/g, to 802.11n, to 802.11ac

 - But, how about mobile devices? → usually lightweight and small size → limited number of antennas

802.11ac

- 802.11ac adopts multiuser MIMO (MU-MIMO)
 - Involve multiple clients in concurrent transmissions
 - Extract the multiplexing gain
 - Maximal number of clients (streams) = number of antennas at the AP
 - Only support downlink MU-MIMO now

Cross-Stream Interference

- Say the AP send x_1 , x_2 and x_3 to client 1, 2 and 3, respectively
 - If the AP simply uses each antenna to send one stream,
 - Each client receives the combined signal of x_1 , x_2 and x_3
 - x₂ and x₃ are cross-stream interference for client 1

Channel Model

$$\mathbf{h}_1 = [h_{11} \ h_{12} \ h_{13}]^T$$

$$\mathbf{h}_2 = [h_{21} \ h_{22} \ h_{23}]^T$$

$$\mathbf{h}_3 = [h_{31} \ h_{32} \ h_{33}]^T$$

Interference
$$y_1 = h_{11}x_1 + (h_{12}x_2 + h_{13}x_3) + n_1$$

$$y_2 = h_{22}x_2 + (h_{21}x_1 + h_{23}x_3) + n_2$$

$$y_3 = h_{33}x_3 + (h_{31}x_1 + h_{32}x_2) + n_3$$

How to Remove Cross-Stream Interference?

Zero-Forcing Beamforming (ZFBF)

- Also called zero-forcing precoding or null-steering
- Linear precoder that maximizes the output SNR
- The AP uses its antennas to actively cancel the interfering streams at a particular client
 - In the previous example, the AP cancel x₂ and x₃ at client 1 cancel x₁ and x₃ at client 2 cancel x₁ and x₂ at client 3
 - Steer a beam toward to its intended receiver
- How to suppress all the interference using the limited number of antennas?

Zero-Forcing Beamforming (ZFBF)

- Use all the antennas to send every stream
- Each stream *i* is precoded using ZFBF weight vector $w_i = [w_{i1} \ w_{i2} \ ... \ w_{iN}]$
- The precoded signal $w_{ij}x_i$ is sent by the j-th antenna
- The j-th antenna transmit the summation of all the precoded signal $(w_{1i}x_1 + w_{2i}x_2 + ... + w_{Ni}x_N)$

Zero-Forcing Beamforming (ZFBF)

Matrix:
$$\mathbf{y} = \mathbf{H}\mathbf{W}\sqrt{\mathbf{P}}\mathbf{x} + \mathbf{n}$$
 \rightarrow Let \mathbf{W} be the pseudo inverse of \mathbf{H} $\mathbf{W} = \mathbf{H}^\dagger = \mathbf{H}^*(\mathbf{H}\mathbf{H}^*)^{-1}$ Then, $\mathbf{y} = \sqrt{\mathbf{P}}\mathbf{x} + \mathbf{n}'$

SNR of ZFBF

 ZFBF is essentially equivalent to ZF, but just performed by the transmitter

 The achievable SNR is determined by the channel correlation among concurrent clients

MU-MIMO Bit-Rate Selection

Select a proper rate based on SNR_{ZFBF}

MU-MIMO User Selection

Grouping different subsets of clients as concurrent receivers results in different sum-rates

→ Need proper user selection

MU-MIMO User Selection

Grouping different subsets of clients as concurrent receivers results in different sum-rates

→ <u>Need proper user selection</u>

- Exhaustive search:
 - Calculate the sum-rate for each of $\binom{N}{k}$ groups
 - Pick the one with the maximal sum-rate
- Greedy:
 - sequentially add a user producing the maximal rate after projecting on the subspace of the users that have been selected

MU-MIMO Power Allocation

ullet Achievable sum-rate for a set of user $\mathcal S$

$$R = \max_{p_i} \sum_{i \in \mathcal{S}} \log(1 + p_i |\mathbf{h}_i \mathbf{w}_i|^2)$$

subject to

$$\sum_{i \in \mathcal{S}} \|\mathbf{w}_i\|^2 p_i \le P_{\text{max}}$$

Power allocated to user i

MU-MIMO Power Allocation

$$R = \max_{p_i} \sum_{i \in \mathcal{S}} \log(1 + p_i |\mathbf{h}_i \mathbf{w}_i|^2) \quad \text{s.t.} \quad \sum_{i \in \mathcal{S}} ||\mathbf{w}_i||^2 p_i \le P_{\text{max}}$$

Optimal power allocation: Water filling

$$p_i = \left(\frac{\mu}{\|\mathbf{w}_i\|^2} - 1\right)^+,$$

where

$$(x)^+ = \max\{x, 0\}$$

 μ is the water level satisfying $\sum_{i \in \mathcal{S}} (\mu - \|\mathbf{w}_i\|^2)^+ = P$

- [1] Yoo et.al. "On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming," IEEE JSAC, 24(3):528–541, March 2006.
- [2] Huang et.al., "User Selection for Multiuser MIMO Downlink With Zero-Forcing Beamforming," in IEEE TVT, vol. 62, no. 7, pp. 3084-3097, Sept. 2013.

Waterfilling Power Allocation

- Unequal power allocation
- Fairness is a concern

Agenda

- Interference Nulling
- Zero-forcing Beamforming (802.11ac)
- Interference Alignment
- Network MIMO

Interference Alignment Example

interference

x₁ can be decoded if x2 and x' are aligned!

$$y_1 = h_{11}x_1 + h_{12}(x_2 + x')$$
$$y_2 = h_{21}x_1 + h_{21}(x_2 + x')$$

though x₂ and x' cannot be decoded!

Interference Alignment

N-antenna node can only decode N signals

If I_1 and I_2 are aligned,

- → appear as one interferer
- \rightarrow 2-antenna receiver can decode the wanted signal x and the combined interference ($|_1+|_2$)
- \rightarrow No need to decode I₁ and I₂ since the Rx does not care

Rotate Signal

 A multi-antenna transmitter can rotate the received signal

 To rotate received signal y to y' = Ry, the transmitter precodes the transmitted signal by multiplying it with the rotation matrix R

Rotate Signal (2x2 Example)

- Say an interfering transmitter wants to align its signal at the interfered receiver along the direction (u,v)
- The interferer precodes its signal x with a weight vector (w₁, w₂)

Rotate Signal (2x2 Example)

- Find (w_1, w_2) such that
 - $(w_1h_{11}+w_2h_{12}, w_1h_{21}+w_2h_{22})\|(u, v)$

(1)
$$\frac{w_1h_{11} + w_2h_{12}}{w_1h_{21} + w_2h_{22}} = \frac{u}{v}$$
 Alignment

(2)
$$\sqrt{w_1^2 + w_2^2} = 1$$
 Power constraint

$$h_{11}$$
 $(h_{11}+h_{12}, h_{21}+h_{22})$ $y_1=(w_1h_{11}+w_2h_{12})x$ $y_2=(w_1h_{21}+w_2h_{22})x$ (u, v)

Interference Alignment

How to align interfering signals?

- \rightarrow Find the direction of any interference (e.g., I₁)
- \rightarrow All the remaining interferers (e.g., I_1 and I_2) rotate their signals to that direction

Interference Alignment Example

interference

x₁ can be decoded if x2 and x' are aligned!

$$y_1 = h_{11}x_1 + h_{12}(x_2 + x')$$
$$y_2 = h_{21}x_1 + h_{21}(x_2 + x')$$

though x_2 and x' cannot be decoded!

Agenda

- Interference Nulling
- Zero-forcing Beamforming (802.11ac)
- Interference Alignment
- Network MIMO

Network MIMO

- Also known as virtual MIMO, cooperative MIMO, distributed MIMO
- Why we need network MIMO?
 - Maximal number of concurrent packets is limited by the number of antennas per AP
 - It is hard to equip with a large number of antennas in a single AP
- How to build a network MIMO node?

Network MIMO

- Combine multiple APs as a giant virtual AP
- Distributed antennas are connected via backhual wired network
- Process signals by one or multiple backend servers

Open Issues of Network MIMO

- Scalability
- Latency
- Synchronization

Scalability

- Forwarding raw complex signals through the Ethernet requires an extremely large backhual bandwidth
 - Ethernet capacity might now become a bottleneck
- Complexity of precoding/decoding a large scale of streams is fairly high
 - A single server can only support a limited number of concurrent packets
 - Software-based precoding/decoding at the servers is less efficient than hardware-based processing at APs

Latency

- Servers need to collect the received signals from distributed antennas
- The latency between antennas and servers might be longer than symbol duration
 - For example, the symbol duration of 802.11n is only 4 microseconds (us)
- A packet might not be able to be acknowledged immediately after data transmission
 - The MAC protocol might need to be re-designed

Synchronization

- MIMO transmissions require all the antennas to be tightly synchronized
 - Otherwise, a small frequency offset could destroy all the concurrent packets
- Potential Solutions
 - Connect all the APs to an external clock -> scalability would be an issue
 - Each AP learn the frequency offset based on a reference clock and calibrate the offset
 hard to achieve a granularity acceptable for network MIMO