### Actuarial Computation and Simulation

Week 6: Risk-Sensitive RL Foundations (Distributional RL)

Aprida Siska Lestia

September 22, 2025

### Motivation: Why Distributional RL?

- ▶ RL klasik mempelajari **rataan** nilai aksi:  $Q^{\pi}(s, a) = \mathbb{E}[Z^{\pi}(s, a)].$
- ▶ Banyak domain (finance/insurance) memiliki *tail risk* yang penting.
- ▶ Distributional RL mempelajari distribusi return  $Z^{\pi}(s,a)$ , bukan hanya mean.
- Manfaat: melihat spread, asymmetry, dan informasi kuantil untuk pengambilan keputusan.

### From Mean to Full Distribution

## Risk-neutral (mean-based):

$$Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{t\geq 0} \gamma^t R_{t+1}\right]$$

#### Distributional view:

$$Z^{\pi}(s,a) \in \mathcal{P}(\mathbb{R}),$$

dimana  $\mathcal{P}(\mathbb{R})$  adalah himpunan distribusi di  $\mathbb{R}$ .

$$Q^{\pi}(s,a) = \mathbb{E}[Z^{\pi}(s,a)]$$

Dengan  $Z^{\pi}$  bisa menentukan mean, median, maupun quantiles.



### Evolusi RL → DRL

### Peta Deep RL (DRL)

| Jalur                 | Algoritma                | Representasi dengan NN                                                                                    | Karakteristik                                                    |
|-----------------------|--------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Value-Based DRL       | DQN, Double DQN, QR-DQN  | Q-Network (NN aproksimasi $Q$ )                                                                           | Action space diskrit, fokus value                                |
| Policy-Based DRL      | PG, REINFORCE, PPO, TRPO | Policy Network (NN aproksimasi<br>distribusi aksi)                                                        | Cocok untuk aksi kontinu, optimasi <i>policy</i> secara langsung |
| Hybrid (Actor–Critic) | A2C, A3C, DDPG, TD3, SAC | $\begin{array}{ll} \textit{Actor} \; NN \; (policy) \; + \; \textit{Critic} \; NN \\ (value) \end{array}$ | Lebih stabil, bisa untuk diskrit & kontinu                       |

### Review Singkat: Q-learning → Deep Q-network (DQN)

#### Motivasi DQN

- ▶ Q-learning (tabel):  $Q(s, a) \leftarrow Q(s, a) + \alpha[r + \gamma \max_{a'} Q(s', a') - Q(s, a)]$
- Tidak skala untuk state space besar/continuum.
- ▶ **DQN**: aproksimasi  $Q_{\theta}(s, a)$  dengan neural network, memakai *replay buffer* dan *target network*.

#### Target & Loss DQN

$$y = r + \gamma \max_{a'} Q_{\theta^-}(s', a'),$$

$$\mathcal{L}(\theta) = (y - Q_{\theta}(s, a))^{2}$$

#### Ringkasan implementasi

- ► Input: vektor fitur state s.
- Output:  $[Q(s, a_1), \dots, Q(s, a_K)]$  (satu skalar per aksi).
- Pemilihan aksi:  $\epsilon$ -greedy terhadap arg max<sub>a</sub> Q(s, a).
- Stabilitas: target network (parameter θ<sup>-</sup>), replay buffer, gradient clipping.

# Dari DQN (Mean) ke Quantile Regression Deep Q-Network atau QR-DQN (Distribusi)

#### DQN (risk-neutral)

- Belajar **nilai harapan** return:  $Q^{\pi}(s, a) = \mathbb{E}[Z^{\pi}(s, a)].$
- Output per-aksi: **skalar** Q(s, a).
- Keputusan: maksimalkan mean value.

### QR-DQN (distributional)

- Belajar **distribusi** return  $Z^{\pi}(s, a)$  via *quantile regression*.
- Output per-aksi: **vektor kuantil**  $\hat{z}_a = \{\hat{q}_{a,\tau_i}\}_{i=1}^N$  untuk  $0 < \tau_1 < \cdots < \tau_N < 1$ .
- Keputusan: bisa berdasarkan mean/median/%kuantil (mis. 50th/75th).

#### Inti Perbedaan

DQN meminimalkan MSE terhadap mean; QR-DQN meminimalkan quantile (pinball) loss terhadap barisan kuantil  $\Rightarrow$  informasi tail lebih kaya.



### QR-DQN: Target Kuantil & Loss vs DQN

Pemilihan aksi untuk target (gaya Double-DQN):

$$a^* = \arg\max_{a'} rac{1}{N} \sum_{i=1}^N \hat{q}_{a', au_i}^{\mathsf{online}}(s'), \qquad y_j = r + \gamma \, \hat{q}_{a^*, au_j}^{\mathsf{tgt}}(s')$$

Pinball / Quantile Loss (umum, versi non-Huber):

$$\rho_{\tau}(u) = u(\tau - \mathbf{1}\{u < 0\}), \qquad \mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \rho_{\tau_{i}}(y_{j} - \hat{q}_{a,\tau_{i}}(s))$$

#### Intuisi:

- DQN ⇒ cocok bila mean cukup merepresentasikan risiko.
- ▶ QR-DQN ⇒ belajar bentuk distribusi (spread, skew, tail).
- Dapat membuat kebijakan risk-aware (contoh: pilih aksi memaksimalkan median/75th).

**Catatan praktis**: target network, replay buffer, gradient clipping; *N* kuantil (mis. 32–101).



### QR-DQN: Core Idea (Main Content)

- ▶ Representasi distribusi return dengan N quantiles tetap:  $0 < \tau_1 < \cdots < \tau_N < 1$ . Umum dipakai grid tengah  $\tau_i = \frac{i 0.5}{N}, \ i = 1, \dots, N$ .
- ▶ Untuk setiap aksi a, jaringan mengeluarkan **vektor kuantil**  $\hat{Z}_a = \{\hat{q}_{a,\tau_i}\}_{i=1}^N$  (approximated quantile function).
- ▶ **Tujuan**: mendekati kuantil sejati  $q_{a,\tau_i}$  dari  $Z^{\pi}(s,a)$  sehingga bentuk distribusi (spread, skew, tail) ikut terpelajari.
- Catatan praktis:
  - Monotonicity (hindari quantile crossing) diupayakan dengan arsitektur/regularisasi yang baik; secara empiris crossing kecil tidak fatal.
  - ► Trade-off N: lebih besar ⇒ distribusi lebih halus, biaya komputasi meningkat. Praktik: N ∈ [32, 101].



### QR Loss (Pinball / Quantile Regression Loss)

Untuk residu  $u = y - \hat{y}$ , **pinball loss**:

$$\rho_{\tau}(u) = u \cdot (\tau - \mathbf{1}\{u < 0\}).$$

Dalam praktik sering dipakai **Huberized quantile loss** (lebih stabil untuk outlier kecil); ide dasarnya mengganti bagian linear di sekitar u=0 dengan kuadratik halus (parameter ambang  $\kappa$ ).

Training target (Bellman) untuk kuantil aksi terpilih (gaya Double-DQN):

$$a^* = \arg\max_{a'} rac{1}{N} \sum_{i=1}^N \hat{q}_{a', au_i}^{\mathsf{online}}(s_{t+1}), \qquad y_j = r_{t+1} + \gamma \, \hat{q}_{a^*, au_j}^{\mathsf{tgt}}(s_{t+1}).$$

Loss total (per transisi):

$$\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \rho_{\tau_i} (y_j - \hat{q}_{a_t, \tau_i}(s_t)) \quad \text{(dapat dihemat dengan subsampling indeks } j).$$

Catatan: mekanisme seperti DQN (replay & target network), tetapi optimisasi dilakukan pada **prediksi kuantil** alih-alih satu nilai mean.



### QR-DQN: Arsitektur dan Hiperparameter

#### Arsitektur:

- ▶ Backbone (MLP/CNN sesuai state), **output shape**:  $|A| \times N$  (setiap aksi memiliki N kuantil).
- ▶ Contoh: N = 51, hidden 2–3 layer, aktivasi ReLU.

#### Hiperparameter contoh:

- ▶ Optimizer Adam, learning rate  $10^{-3}$ ;  $\gamma = 0.99$ ; batch 64–128.
- ▶ Target update: hard tiap 1–5k langkah *atau* soft update ( $au_{
  m polyak} pprox 0.005$ ).
- ▶ Replay buffer  $\approx 10^5$ ; eksplorasi  $\epsilon$ -greedy seperti DQN; gradient clipping.

#### Output keputusan (risk-neutral vs risk-aware):

- Mean-based:  $\frac{1}{N} \sum_{i=1}^{N} \hat{q}_{a,\tau_i}$  (setara memaksimalkan ekspektasi).
- Quantile-based: pilih aksi yang memaksimalkan kuantil tertentu (mis. median/75th) untuk kebijakan lebih konservatif (relevan di insurance/finance).

### QR-DQN: Training Loop (Pseudocode)

- 1. Inisialisasi *online* & target networks (output  $|A| \times N$  kuantil).
- 2. Untuk setiap episode / langkah:
  - 2.1 Pilih aksi  $a_t$  dengan  $\epsilon$ -greedy berdasar **mean** kuantil atau kuantil terpilih (mis. median/75th).
  - 2.2 Dapatkan  $(s_t, a_t, r_{t+1}, s_{t+1}, done)$ ; simpan ke replay.
  - 2.3 Ambil minibatch; untuk tiap transisi hitung target kuantil:

$$a^* = \arg\max_{a'} \frac{1}{N} \sum_{i} \hat{q}_{a',\tau_i}^{\text{online}}(s_{t+1}),$$

$$y_j = \begin{cases} r_{t+1}, & \text{jika done} = 1, \\ r_{t+1} + \gamma \, \hat{q}_{a^*,\tau_i}^{\text{tgt}}(s_{t+1}), & \text{lainnya}. \end{cases}$$

- 2.4 Hitung **Huberized quantile loss** antar pasangan  $(\tau_i, y_j)$ ; untuk efisiensi boleh *subsample* indeks j.
- 2.5 **Backprop** ke online net; sinkronisasi target: hard tiap K langkah atau soft  $(\theta^- \leftarrow (1-\tau)\theta^- + \tau\theta)$ .
- 2.6 **Terminal handling**: jika done= 1, gunakan  $y_j = r_{t+1}$  (tanpa bootstrapping)
- 3. Evaluasi: bandingkan kebijakan **mean** vs **kuantil** (median/75th).



### Practical Notes & Pitfalls

- ▶ **Stabilitas**: gradient clipping, target network, replay buffer memadai.
- ▶ **Eksplorasi**: jadwal  $\epsilon$  (mis.  $1.0 \rightarrow 0.05$  secara linier selama  $10^5$  langkah).
- ▶ Target update: hard setiap 1–5k langkah atau soft (Polyak  $\tau \approx 0.005$ ).
- ▶ Biaya N: N besar  $\Rightarrow$  distribusi lebih halus, komputasi naik; praktik  $N \in [32, 101]$ . Pertimbangkan *subsample* indeks j pada loss.
- ► Finansial/claim: normalisasi/standardisasi reward; reward clipping jika perlu; definisikan episode & reward dengan jelas.
- ▶ **Terminal handling**: untuk done= 1, set  $y_j = r_{t+1}$  (tanpa bootstrapping).
- Debugging: mulai dari baseline DQN (mean), lalu ganti head menjadi kuantil.
- ▶ **Logging** (disarankan): pinball loss; mean vs median return; spread kuantil (IQR); performa kebijakan risk-neutral vs risk-aware.



### Lab / Practice (QR-DQN on Claims or Stocks)

### Dataset (pilih salah satu):

- Simulated insurance claims: Pareto / Lognormal (heavytail).
- Stock data: sintetis meanreverting (default di notebook). (Opsional: ganti dengan OHLC Yahoo Finance.)

#### Langkah:

- 1. Bentuk MDP sederhana: state, aksi (mis. retensi /alokasi diskret), reward (episode return).
- 2. Implementasikan **QR-DQN** dengan  $N \in [32, 101]$  kuantil.
- 3. Visualisasikan distribusi prediksi per-aksi (quantile curves / fan chart).
- 4. Bandingkan aksi terpilih saat memakai mean vs median/75th.

### Class Discussion (Week 6) Mean vs Quantile

Tujuan: memahami dampak target pembelajaran pada keputusan.

- ▶ Bandingkan strategi/aksi yang dipilih berdasarkan:
  - 1. Expected return (mean) dari kuantil yang dipelajari.
  - 2. Selected quantile (median dan/atau 75th percentile).
- Tunjukkan contoh state yang menghasilkan keputusan berbeda.
- Sajikan grafik: distribusi/kuantil vs aksi terpilih.

**Catatan notebook:** sel visualisasi sudah tersedia untuk *predicted* quantile functions per action serta perbandingan kebijakan mean vs median/75th. (Opsional: tambah fan chart jika ingin.)

### Arahan Diskusi & Integrasi ke Manuskrip

### Pertanyaan untuk didiskusikan:

- Kapan kebijakan mean dan median/75th memilih aksi yang berbeda? Apa ciri distribusi (skew/tail) pada state tersebut?
- Bagaimana risiko ekor tercermin pada kuantil tinggi (75th/90th)? Implikasi untuk konteks insurance/finance?
- ▶ Sensitivitas keputusan terhadap **jumlah kuantil** N dan **jadwal**  $\epsilon$ ?
- Apakah spread kuantil (mis. IQR) berkorelasi dengan performa/kerugian?

### Catatan untuk manuskrip (ringkas hasil diskusi):

- ▶ Pendahuluan: motivasi heavy-tail & perlunya distributional RL.
- ▶ Preliminary/Results: contoh state nyata saat mean ≠ quantile, plus grafik.
- Metodologi: rasional memilih tujuan median/kuantil (risk-aware) alih-alih mean.



### Distributional RL (Mention Only)

- **C51** (Bellemare et al., 2017)
  - ightarrow Categorical distribution dengan 51 atom tetap; project + KL loss.
- IQN (Dabney et al., 2018)
- $\rightarrow$  Implicit Quantile Network: sampling kuantil kontinu; menggeneralisasi QR-DQN.
- **FQF** (Yang et al., 2019)
- $\rightarrow$  Fully Parameterized Quantile Function: learned quantile fractions (adaptif).

### References & Datasets

- ▶ Bellemare, Dabney, Munos (2017). A Distributional Perspective on Reinforcement Learning.
- ▶ Dabney et al. (2018). Distributional RL with Quantile Regression.
- ▶ Yang, Zhang, Lu (2019). FQF: Fully Parameterized Quantile Function for DRL.
- Simulated insurance claims: Pareto / Lognormal generators.
- Stock data: Yahoo Finance API.