2016-2017 学年第一学期《数值计算方法》期末试卷 (A)

考试对象: 计算机科学与技术专业 2015 级

班级 _	姓名	学号 _	成绩
1. 填空(每	至 2 分,共 32 分)		
(1) 已知真值	直 $x^* = 0.22845\cdots$,则近似值	〔x=0.23有	位有效数字。
(2) 方程 e ^x -	-3=0根的隔离区间为	(区间	长度不超过2); 若用二分法
求方程的根	,则第一次二分后根所在	区间为	,且二分 次后能
使根的误差	不超过 $\frac{1}{2}$ × 10^{-4} 。		
(3) 已知	$f(x) = x^5 + 2x^2 + 4, \text{[I]}$	差 商 f[2°,	2 ¹]=,
$f[2^0,2^1,\cdots,2^n]$	$f[2^5] =, f[2^0, 2^1, \cdots]$	·,2 ⁶]=	•
(4) 插值型才	文积公式是重要的求积分之	近似值的方法:	, 其中梯形公式、辛卜生公
式和柯特斯	公式分别具有次、_	次和	次代数精度。
(5)给出 Mat	lab 中定义下列矩阵的函数	数: 3 行 2 列的	的全 0 矩阵:; 6
阶单位矩阵:	:		
(6) 在 Matla	b 中输入: >>A=[2 3	1; -4 3 2	2; 3 4 3];
	>>norm(A,1))	
	ans=	<u> </u>	
	>>norm(A,	inf)	
	ans=	°	
(7)写出 Ma	tlab 中可求方程根的函数	(任意一个即	「町)
(8) 用欧拉	(Euler) 公式法解初值问	$ \underset{x=0}{\mathbb{E}} \begin{cases} y' = -2xy \\ y _{x=0} = 1 \end{cases},$	取步长 $h = 0.1$, 则 $y_2 =$

2. $(8 \, \%)$ 用牛顿迭代法求 $\sqrt{35}$ 的近似值(结果精确到小数点后四位有效数字).

3. (12分)给定数据表:

х	-1	0	1/2	1
$\overline{f(x)}$	-3	-1/2	0	1

- (1) 构造差商表,并给出f(x)的三次牛顿插值多项式;
- (2) 计算 f(-0.5) 的近似值,并估计其误差。

4. (10 分)对于方程组 $\begin{cases} 3x_1+2x_2+10x_3=15\\ 10x_1-4x_2-x_3=5 \end{cases}$,通过调整参数,建立收敛的雅克 $2x_1+10x_2-4x_3=8$

比迭代法和高斯—赛德尔迭代法,并解释为什么。

5. (10分) 已知实验数据如下,求二次最小二乘法拟多项式。

6. (10 分) 已知 $\int_{-2h}^{2h} f(x)dx \approx A_{-1}f(-h) + A_0f(0) + A_1f(h)$, 其中 - h,0,h 为已知节点,试确定求积系数,使其具有尽可能高的代数精度,并给出所求公式的代数精度。

7. (10 分) 用龙贝格算法计算积分 $I = \int_0^1 \frac{dx}{2x}$, (要求将积分区间二分三次, 即使用 R_1 计算)。

- 8. (8分)设f(x)在[-1,1]上具有二阶连续导数.
 - (1) 写出以 $x_0 = -1, x_1 = 0, x_2 = 1$ 为插值节点 f(x) 的二次插值多项式 $L_2(x)$;
 - (2) 设想要计算积分 $\int_{-1}^{1} f(x)dx$,现以 $L_2(x)$ 代替 f(x) 导出求积公式;