Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC2343 – Arquitectura de Computadores

Comunicación de CPU y Memoria con I/O: Comunicación e Interacción

Profesor: Hans Löbel

Todos los dispositivos que no sean CPU o memoria, y se comuniquen con ellos, son llamados dispositivos de I/O

Dispositivos de I/O se comunican de manera distinta al resto de los elementos de un computador

Al no existir señales de control explícitas para los dispositivos de I/O, debemos definir qué tipo de comunicación se llevará a cabo entre CPU, memoria y estos:

- 1. Comunicación de comandos: CPU -> I/O
- 2. Comunicación de estado: I/O -> CPU
- 3. Transferencia de datos: Memoria <-> I/O

¿Cómo podemos hacer que un programa se comunique con un dispositivo de I/O?

Un programa puede comunicarse con un dispositivo de I/O mediante dos formas: i) memory mapped I/O

Un programa puede comunicarse con un dispositivo de I/O mediante dos formas: i) memory mapped I/O o ii) port I/O

Interacción entre CPU, memoria y dispositivos puede llevarse a situaciones reales

Usaremos como analogía a un curso haciendo una guía de ejercicios:

- Alumnos (I/O) hacen guía de ejercicios, si alguien termina, el profesor quiere guardar la respuesta.
- Profesor (CPU) está corrigiendo pruebas.
- Pizarrón o proyector (Memoria), donde se pueden ver los ejercicios y anotar las respuestas.
- Comandos: instrucciones de parte del profesor.
- Estado: alumnos trabajando, con dudas.
- Datos: preguntas y respuestas guía, dudas alumnos, respuestas profesor.
- Supuestos: alumnos no hablan entre ellos, se entregan varias guías durante la clase

Revisaremos tres modelos de interacción ente alumnos y profesor

Sin proyector ni pizarrón ni copias de las guías, alumnos tímidos:
 Polling

¿Necesitamos nuevo HW para el esquema de polling? (sin contar Address Decoder e I/O Flag)

Revisaremos tres modelos de interacción ente alumnos y profesor

- Sin proyector ni pizarrón ni copias de las guías, alumnos tímidos:
 Polling
- 2. Sin proyector ni pizarrón ni copias de las guías, alumnos preguntones y participativos:

Interrupción

¿Cómo podemos implementar el esquema de interrupción?

Agregamos posibilidad de que los dispositivos interrumpan a la CPU mediante una señal directa de solicitud de interrupción (IRQ)

Dispositivo es atendido mediante una Interrupt Service Routine (ISR)

Revisemos qué pasa cuando se genera una solicitud de interrupción

- 1. Dispositivo solicita interrumpir, enviando señal IRQ
- 2. CPU termina de ejecutar la instrucción actual y guarda *condition* codes en el stack
- 3. CPU revisa si el *flag* de interrupciones está activo (IF = 1). En caso contrario, saltar al paso 11.
- 4. CPU deshabilita atención de más interrupciones (IF=0)
- 5. CPU llama a la ISR asociada al dispositivo
- 6. ISR respalda estado actual de la CPU
- 7. ISR es ejecutada
- 8. ISR restaura estado de la CPU
- 9. ISR retorna
- 10. CPU habilita la atención de interrupciones (IF=1)
- 11. CPU recupera condition codes desde el stack

Al usar varios dispositivos, es necesario incorporar un controlador de interrupciones y una tabla de vectores de interrupción

Al usar varios dispositivos, es necesario incorporar un controlador de interrupciones y una tabla de vectores de interrupción

En general, un controlador de interrupciones tendrá al menos los siguientes componentes:

- Registro de comandos y estado
- Registro de interrupciones en espera de atención
- Registro de interrupciones en atención
- Registro de enmascaramiento de interrupciones
- Circuito para manejar prioridades de interrupciones

¿Cómo cambian con esto los pasos para atender una interrupción?

La arquitectura x86 de 16 bits tiene 2 controladores de interrupciones llamados PIC, los cuales se conectan en cascada

A cada señal de IRQ se le asocia un dispositivo específico y una posición en la tabla de vectores de interrupción

IRQ	Dispositivo	Vector de interrupción
IRQ0	Timer del sistema	08
IRQ1	Puerto PS/2: Teclado	09
IRQ2	Conectada al PIC esclavo	0A
IRQ3	Puerto serial 0B	
IRQ4	Puerto serial	0C
IRQ5	Puerto paralelo	0D
IRQ6	Floppy disk	$0\mathrm{E}$
IRQ7	Puerto paralelo	0F
IRQ8	Real time clock (RTC)	70
IRQ9-11	No tienen asociación estándar, libre uso.	71-73
IRQ12	Puerto PS/2: Mouse	74
IRQ13	Coprocesador matemático	75
IRQ14	Controlador de disco 1	76
IRQ15	Controlador de disco 2	77

Además de interrupciones de hardware, existen las excepciones y las interrupciones de software (traps)

Dirección del vector	Tipo	Función asociada
00-01	Excepción	Exception handlers
02	Excepción	Usada para errores críticos del sistema, no enmascara
03-07	Excepción	Exception handlers
08	IRQ0	Timer del sistema
09	IRQ1	Puerto PS/2: Teclado
0A	IRQ2	Conectada al PIC esclavo
0B	IRQ3	Puerto serial
0C	IRQ4	Puerto serial
0D	IRQ5	Puerto paralelo
$0\mathrm{E}$	IRQ6	Floppy disk
0F	IRQ7	Puerto paralelo
10	Int. de Software	Funciones de video
11-6F	Int. de Software	Funciones varias
70	IRQ8	Real time clock (RTC)
71 - 73	IRQ9-11	No tienen asociación estándar, libre uso
74	IRQ12	Puerto PS/2: Mouse
75	IRQ13	Coprocesador matemático
76	IRQ14	Controlador de disco 1
77	IRQ15	Controlador de disco 2
78-FF	Int. de Software	Funciones varias

Revisaremos tres modelos de interacción ente alumnos y profesor

- Sin proyector ni pizarrón ni copias de las guías, alumnos tímidos.
 Polling
- Sin proyector ni pizarrón ni copias de las guías, alumnos preguntones y participativos.
 Interrupción
- Pizarra interactiva, alumnos preguntones:
 Interrupción con acceso directo a memoria

Hasta el momento, todos los datos deben pasar por la CPU para llegar a la memoria o a un dispositivo de I/O (Programmed I/O o PIO)

Para permitir que los I/O tengan acceso directo a memoria se utiliza un controlador DMA

Para permitir que los I/O tengan acceso directo a memoria se utiliza un controlador DMA

En general, un controlador de DMA tendrá al menos los siguientes componentes:

- Registro de comandos y estado
- Registros de dirección de origen y destino
- Registro contador de palabras
- Buffer de almacenamiento temporal
- Unidad de control

Arquitectura de un computador con memory mapped I/O, interrupciones y DMA

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC2343 – Arquitectura de Computadores

Comunicación de CPU y Memoria con I/O: Comunicación e Interacción

Profesor: Hans Löbel