第7章 有限冲激响应 (FIR) 数字滤波器的设计

主要介绍FIR数字滤波器的线性相位特 性和设计方法

- § 7.0 引言
- § 7.1 FIR数字滤波器的线性相位特性
- § 7.2 <u>窗函数设计法</u>
- §7.5 IIR数字滤波器与FIR数字滤波器比较 本童小结

§ 7.0 引言

▲ IIR数字滤波器:

- 1、优点在于可以利用AF设计的现成成果,较简单、方便
- 2、但 它一般不具有线性相位 3、 H(z)为有理分式

♠ FIR数字滤波器:

- 1、容易获得严格的线性相位, (同时可以有任意的幅度特性)
- 2、单位脉冲响应h(n)有限长,滤波器一定是稳定的(全零点型)
- 3、总是可实现的(任何非因果有限长序列,经延时可成因果性)
- 4、进行滤波时,可用FFT高效运算
- 5、幅度特性较差,滤波器的H(z)阶次较高。

♠ FIR数字滤波器的设计方法有:

- 1、直接近似法-----窗函数法
- 2、频率抽样法;
- 3、等波纹逼近法

若FIR滤波器的单位冲激响应为N点有限长序列

$$h(n)$$
 $n = 0,1,\dots, N-1$

它的系统函数可以表示为:

$$H(z) = \sum_{n=1}^{N-1} h(n)z^{-n}$$

- ♠ FIR数字滤波器的设计任务:
- (1)要选择有限长度的h(n),使得频率响应 $H(e^{j\omega})$ 满足滤波 器技术指标要求;
- (2)保证系统函数 H(z) 具有线性相位。

一、FIR滤波器的线性相位特性

1、线性相位

对于长度为N的实序列h(n)所表示的FIR数字滤波器,频率响应:

$$H(e^{i\omega}) = \sum_{n=0}^{N-1} h(n)e^{-j\omega n} = H_g(\omega)e^{j\theta(\omega)} = \pm \left|H(e^{i\omega})\right|e^{j\theta(\omega)}$$

$$H_g(\omega)$$
 — 幅度特性 $H_g(\omega) = \pm \left| H(e^{j\omega}) \right|$ $\theta(\omega)$ 相位特性 $\frac{d\theta(\omega)}{d\omega}$ 群延时

由于滤波器 $|H(e^{j\omega})|$ 和 $\theta(\omega)$ 都是 ω 的函数,

当输入信号的不同频率分量通过滤波器时, 所产生的相位延迟也不同,从而有可能产生<mark>相位</mark> 失真。

确保输出信号不产生相位失真的唯一方法是, 使不同输入频率分量的信号通过滤波器时都有相同 的时间延迟,即

$$\tau = -\frac{d\theta(\omega)}{d\omega} =$$
常数

这样,要求滤波器具有线性相位。

2、具有线性相位的充分必要条件

第一类线性相位

$$h(n) = h(N - n - 1) \implies \theta(\omega) = -\tau \omega$$

第二类线性相位

$$h(n) = -h(N-n-1) \Rightarrow \theta(\omega) = \theta_0 - \tau \omega$$

$$\frac{\mathrm{d}\theta(\omega)}{\mathrm{d}\omega} = -\tau$$
 群延时都为常数

证明: 按照第一类线性相位的条件

将
$$h(n) = h(N-n-1)$$
代入 $H(z) = \sum_{n=0}^{N-1} h(n)z^{-n}$
得: $H(z) = \sum_{n=0}^{N-1} h(N-n-1)z^{-n}$ 令 $m = N-n-1$

$$H(z) = \sum_{m=0}^{N-1} h(m)z^{-(N-m-1)} = z^{-(N-1)} \sum_{m=0}^{N-1} h(m)z^{m} = z^{-(N-1)} H(z^{-1})$$
如果 $H(z) = \frac{1}{2}[H(z) + H(z)] = \frac{1}{2}[H(z) + z^{-(N-1)}H(z^{-1})]$

$$= \frac{1}{2} \sum_{n=0}^{N-1} h(n) \left[z^{-n} + z^{-(N-1)}z^{n} \right]$$

$$= \frac{1}{2} \sum_{n=0}^{N-1} h(n) \left[z^{-(N-1)} \cdot z^{-(N-1)}z^{n} \right]$$

$$= \frac{1}{2} \sum_{n=0}^{N-1} h(n) \cdot z^{-\frac{(N-1)}{2}} \left[z^{\frac{(N-1)}{2}} z^{-n} + z^{-\frac{(N-1)}{2}} z^{n} \right]$$

$$= z^{-\frac{(N-1)}{2}} \sum_{n=0}^{N-1} h(n) \cdot \frac{1}{2} \left[z^{\frac{(N-1)}{2} - n} + z^{-\frac{(N-1)}{2} - n} \right]$$

$$\Leftrightarrow H(z) = z^{-\frac{(N-1)}{2}} \sum_{n=0}^{N-1} h(n) \left[\frac{1}{2} \left(z^{\frac{(N-1)}{2} - n} + z^{-\frac{(N-1)}{2} - n} \right) \right]$$

将 $z=e^{j\omega}$ 代入上式,得到其频率响应为:

$$H(e^{j\omega}) = e^{-j(\frac{N-1}{2})\omega} \sum_{n=0}^{N-1} h(n) \cos\left[\left(n - \frac{N-1}{2}\right)\omega\right] = H_g(\omega)e^{j\theta(\omega)}$$

等性:
$$H_g(\omega) = \sum_{n=0}^{N-1} h(n) \cos \left[\left(n - \frac{N-1}{2} \right) \omega \right]$$

$$\theta(\omega) = -\frac{1}{2}(N-1)\omega = -\tau\omega$$

 $\tau = \frac{1}{2}(N-1)$

滤波器有 $\tau = \frac{1}{2}(N-1)$ 个采样间隔的延时

按照第二类线性相位的条件同样可以证明:

$$H(z) = z^{-(\frac{N-1}{2})} \sum_{n=0}^{N-1} h(n) \left[\frac{1}{2} \left(z^{-n + \frac{N-1}{2}} - z^{\frac{n-N-1}{2}} \right) \right]$$

将 $z=e^{j\omega}$ 代入上式,得到其频率响应为:

$$H(e^{j\omega}) = e^{-j(\frac{N-1}{2})\omega - j\frac{\pi}{2}} \sum_{n=0}^{N-1} h(n) \sin\left[\left(n - \frac{N-1}{2}\right)\omega\right] = H_g(\omega)e^{j\theta(\omega)}$$
 順度特性:

群延时: $\tau = (N-1)/2$, 称为90°移相器 证毕。

二、幅度特性 $H_g(\omega)$ 的特点 (根据N分以下几种情况)

(1)、h(n) 偶对称 h(n) = h(N-n-1)

N为奇数

幅度特性:
$$H_g(\omega) = \sum_{n=0}^{N-1} h(n) \cos \left[\left(n - \frac{N-1}{2} \right) \omega \right]$$

由于h(n)对(N-1)/2偶对称, 余弦项也对(N-1)/2偶对称, 以(N-1)/2为中心,把两两相等的项进行合并,由于N是奇数,故余下 中间项n=(N-1)/2。这样幅度函数表示为

$$H_{g}(\omega) = h(\frac{N-1}{2}) + \sum_{n=0}^{M-1} 2h(n)\cos[\omega(n-\frac{N-1}{2})]$$

$$H_{g}(\omega) = h(\tau) + \sum_{n=0}^{M-1} 2h(n)\cos[\omega(n-\tau)]$$

$$M = \left\lceil \frac{N-1}{2} \right\rceil$$
 是不大于 $\frac{N-1}{2}$ 的整数

:N为奇数; $:\cos[\omega(n-\tau)]$ 关于0, π , 2π 三点偶对称

 $\therefore H_{\mathfrak{g}}(\omega)$ 对 $\omega = 0, \pi, 2\pi$ 也是偶对称的, 可以实现设计任何关于 $\omega = 0, \pi, 2\pi$ 偶对称 频率特性的滤波器。

(低通、高通、带通、带阻)的滤波器。

N为偶数

$$H_g(\omega) = \sum_{n=0}^{N/2-1} 2h(n)\cos\left[\omega\left(n - \frac{N-1}{2}\right)\right]$$
 $H_g(\omega)$ 对 $\omega = \pi$ 是奇对称的

$$\cos\left(\omega\left(n - \frac{N-1}{2}\right)\right) = \cos\left(\pi\left(n - \frac{N}{2}\right) + \frac{\pi}{2}\right)$$
$$= -\sin\left(\pi\left(n - \frac{N-1}{2}\right)\right) = 0$$

因此 $H_{g}(\pi)=0$,这种情况不能用于设计 ω = π时, $H_{\sigma}(ω) \neq 0$ 的滤波器,如高通、 带阻滤波器。

三、FIR线性相位的零点分布特点

1, 一般情况: 四个零点为一组

所以,若 z_1 是H(z) 的零点,则 $1/z_1$ 也是H(z)的零点。

♠ : h(n) 实序列 有:

$$h(n) = h^*(n)$$

‡ ‡ $H(z_1) = 0$ 则 $H^{\dagger}(z_1^*) = 0 = H(z_1^*)$

所以,若 z_1 是H(z) 的零点,则 z_1 *也是H(z)的零点。

◆ 对线性相位FIR滤波器,有:

所以,若 z_1 是H(z) 的零点,则 $1/z_1$ *也是H(z)的零点。

一般情况下,对于线性相位的FIR滤波器零点分布的特点 是: 互为倒数的共轭对,确定其中一个,另外三个零点 也就确定。

4个零点 (镜像、共轭):
$$z_1$$
 $\frac{1}{z_1}$ z_1^* $\frac{1}{z_1}$

冼柽颙

若1+i 是具有线性相位FIR滤波器的一个零点,则下列选项中(D)不为其零点。

$$z_1$$
 (D) 不为其零点。
 \rightarrow Re[z] A. 1-i $C.\frac{1}{2}(1+i)$

$$B.\frac{1}{2}(1-i)$$
 D. $1-\frac{1}{2}i$

图7.2 线性相位FIR数字滤波器零点分布图

四、 FIR滤波器的线性相位网络结构

 $h(n) = \pm h(N - n - 1)$ 则该系统具有线性相位

设
$$N$$
为偶数,则有 $\frac{N}{2}$ -1

$$H(z) = \sum_{n=0}^{N-1} h(n)z^{-n} = \sum_{n=0}^{2^{-1}} h(n)z^{-n} + \sum_{n=\frac{N}{2}}^{N-1} h(n)z^{-n}$$

令m=N-n-1,则有:

$$H(z) = \sum_{n=0}^{N/2-1} h(n)z^{-n} + \sum_{m=0}^{N/2-1} h(N-m-1)z^{-(N-m-1)}$$

$$\therefore H(z) = \sum_{n=0}^{N/2-1} h(n) \left[z^{-n} \pm z^{-(N-n-1)} \right]$$

N为奇数时,则将中间项 $h(\frac{N-1}{2})$ 单独列出,

$$H(z) = \sum_{n=0}^{\frac{N-1}{2}-1} h(n) \left[z^{-n} \pm z^{-(N-n-1)} \right] + h(\frac{N-1}{2}) z^{-\frac{N-1}{2}}$$

对于FIR直接型结构, $H(z) = \sum_{n=0}^{N-1} h(n)z^{-n}$ 图中需要N个乘法器!

对于线性相位的FIR滤波器

$$H(z) = \sum_{\substack{n=0 \ \frac{N-1}{2}}}^{\frac{N}{2}-1} h(n) \left[z^{-n} \pm z^{-(N-n-1)} \right]$$
 N为偶数

$$H(z) = \sum_{n=0}^{\frac{N-1}{2}-1} h(n) \left[z^{-n} \pm z^{-(N-n-1)} \right] + h(\frac{N-1}{2}) z^{\frac{N-1}{2}}$$
 N为奇数

N为偶数时,仅需要N/2次乘法,N为奇数时需要(N+1)/2个乘法器,节约近一半。

图7.3 N为偶数时线性相位网络结构图

(取"+"第一类线性相位,取"-"第二类线性相位)

图7.2 N为奇数时线性相位网络结构图

(取"+"第一类线性相位,取"-"第二类线性相位)

例. 已知FIR滤波器的系统函数为

$$H(z) = \frac{1}{10} (1 + 0.9z^{-1} + 2.1z^{-2} + 0.9z^{-3} + z^{-4})$$

试画出该滤波器的线性相位结构图。

解:
$$H(z) = \sum_{n=0}^{N-1} h(n)z^{-n} = 0.1 + 0.09z^{-1} + 0.21z^{-2} + 0.09z^{-3} + 0.1z^{-4}$$

$$\therefore N = 5, h(n) = h(N - n - 1)$$

:: 第一类线性相位

第二十一次作业

第七章:

7.1 (试画出他们的线性相位型网络结构图); 7.2

补充题:

填空题:

已知FIR滤波器 $H(z) = 1 + 2z^{-1} + 3z^{-2} + az^{-3} + z^{-4}$ 具有线性相位,则a=____,其相位特性为 $\theta(\omega)$ = 。

§ 7.2 窗函数设计法

窗函数设计法,它的优点是设计思路简单,性能只 要能满足常用选频滤波器的要求即可。窗函数设计法的基 本思路是:

其中的窗函数在很大程度上决定了FIR滤波器的性能指标, 因此称作"窗函数设计法"。

一、窗函数设计法原理

设理想滤波器的频率响应: $H_d(e^{j\omega})$

寻找一个频率响应函数:

$$H\left(e^{j\omega}\right) = \sum_{n=0}^{N-1} h(n)e^{-j\omega n}$$
 _____ 去逼近 $\to H_d(e^{j\omega})$

逼近方法有三种:

窗函数设计法 (时域逼近)

频率采样法 (频域逼近)

最优化设计 (等波纹逼近)

理想滤波器:

设希望逼近理想滤波器频率响应函数为 $H_{s}(e^{j\omega})$

 $h_d(n)$ 是与其对应的单位脉冲响应:

$$H_d(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h_d(n) e^{-j\omega n}$$

$$h_d(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\omega}) e^{j\omega n} d\omega$$
 如,线性相位理想低通滤波器:
$$H_d(e^{j\omega}) = \begin{cases} e^{-j\omega \tau} & |\omega| \leq \omega_c \\ 0 & \omega_c < |\omega| \leq \pi \end{cases}$$

$$-2\pi & -\omega_c & 0 & \omega_c & 2\pi \end{cases}$$

设计思想

如果由已知的 $H_d(e^{j\omega})$ 求出 $h_d(n)$,经过z变换可得到理想滤波 器的系统 函数H_d(z)。

$$h_{d}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_{d}(e^{j\omega}) e^{j\omega n} d\omega$$

$$= \frac{1}{2\pi} \int_{-\omega_{c}}^{\omega_{c}} e^{j\omega n} d\omega = \frac{\sin(\omega_{c}n)}{\pi n} \qquad n \in (-\infty, +\infty)$$

$$\stackrel{\text{def}}{=} \tau \neq 0.$$

若 $\tau \neq 0$,

$$\frac{1}{n} \tau \neq 0,$$

$$h_d(n) = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{j\omega(n-\tau)} d\omega = \frac{\sin[\omega_c(n-\tau)]}{\pi(n-\tau)} \quad n \in (-\infty, +\infty)$$

这里 $h_d(n)$ 是无限长序列,它不满足FIR滤波器的要求:

有限长,实序列,因果,线性相位。

①**对称截短** $h_a(n)$ 使其成为对称有限长序列:

$$h_d(-\frac{M}{2}), h_d(-\frac{M}{2}+1)....h_d(0).....h_d(\frac{M}{2}-1), h_d(\frac{M}{2})$$

$$h(n) = h_d(n - \frac{M}{2})$$

$$= \frac{\sin[\omega_c(n - M/2)]}{\pi(n - M/2)} \qquad n = 0,1,....M$$

$$h(n) = h_d(n - M/2)$$

$$0.15$$

$$0.15$$

$$0.16$$

$$0.05$$

$$0.17$$

$$0.05$$

③ 截短移位后的序列具有线性相位

h(n)是以M/2为对称的有限长序列,令N=M+1,则h(n)以(N-1)/2为对 称的有限长序列,h(n)=h(N-1-n),由FIR滤波器的线性相位特性可知 h(n)的线性相位函数: $\theta(\omega) = -\left(\frac{N-1}{2}\right)\omega = -\frac{M}{2}\omega$

$$h_d(n) = \frac{1}{2\pi} \int_{-\alpha_e}^{\omega_e} e^{-j\pi\omega} e^{j\omega n} d\omega = \frac{\sin[\omega_e(n-\tau)]}{\pi(n-\tau)} = \frac{\sin[\omega_e(n-M/2)]}{\pi(n-M/2)}$$

$$h(n) = h_d(n) R_N(n)$$

$$N = M + 1$$

即可设计出因果的具有线性相位的低通滤波器

$$\begin{split} H_d(e^{j\omega}) &= H_{dg}(\omega)e^{-j\omega\tau} \\ & \text{理想低通滤波器的幅度特性和相位特性为} \\ H_{dg}(\omega) &= \begin{cases} 1 & |\omega| \leq \omega_c \\ 0 & \omega_c < |\omega| \leq \pi \end{cases}, \quad \varphi(\omega) = -\tau\omega \\ & \therefore \quad H(e^{j\omega}) = H_d(e^{j\omega}) * W_R(e^{j\omega}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\theta}) W_R(e^{j(\omega-\theta)}) d\theta \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} H_{dg}(\theta) e^{-j\theta\tau} W_{Rg}(\omega-\theta) e^{-j(\omega-\theta)\tau} d\theta \\ &= e^{-j\omega\tau} \frac{1}{2\pi} \int_{-\pi}^{\pi} H_{dg}(\theta) W_{Rg}(\omega-\theta) d\theta \\ &= H_g(\omega) e^{-j\omega\tau} \end{split}$$

由于加了矩形窗函数(截断), 将对理想特性产生以下3点影响:
① 频带边界形成过渡区,宽度近似为 4π (取决于窗的主瓣宽度)
② 过渡区两边产生肩峰和余振 (取决于窗的主瓣和旁瓣)
③ 通带起伏,最大约8.95%, 最小约 4.86%, 阻带最小衰减约—21dB; 这样,用有限长序列 h(n) 代替无限长的 h_d(n), 表现在频域就是通常所说的Gibbs 效应(截断效应)。
Gibbs效应:由于加窗截断引起了通带和阻带内的波动,使阻带的衰减性变差,引入过渡带。
可见,加窗后偏离了理想幅频特性 H_{ds}(a)

增加N: 可缩小主瓣宽度,使过渡区变窄;却不能改变旁瓣振幅,矩形窗最大肩峰总是8.95%,所以并不能有效减少Gibbs效应。

所以,为减少带内波动以及加大阻带的衰减只能从窗函数上找解决的办法

为此,寻找窗函数来减少Gibbs效应:

①尽量窄的主瓣宽度(将能量尽可能地集中在主瓣内)

②力求尽量低矮的旁瓣高度(在 ω 趋近于 π 时,能量迅速趋于零)

4C 7.2 国的双江北北	表 7.2	窗函数性能表
---------------	-------	--------

农 /.2 國图效性能表。					
窗函数。 主	-h- bask 2-i+ balan EV rifer rifer	旁瓣峰值幅度。	旁瓣下降速率。	最小阻带衰减。	
	土牌以改区免疫。	(分贝)。	(dB/倍頻程)。	(分贝)。	
矩形窗。	$4\pi/N = 1 \times 4\pi/N$.	-13 -	-6 ↔	-21-	
三角窗。	$8\pi/N = 2 \times 4\pi/N$.	-25 o	-12 -	-25-	
汉宁窗。	$8\pi/N = 2 \times 4\pi/N$.	-31 -	-18.	-44.	
海明窗。	$8\pi/N = 2 \times 4\pi/N$.	-41 0	-6 ↔	-53₽	
5莱克曼。	$12\pi/N = 3 \times 4\pi/N$.	-57 ∘	-18.	-74.	
	矩形窗。 三角窗。 汉宁窗。 海明窗。	商函数。 主則过渡区宽度。 矩形窗。 $4\pi/N = 1 \times 4\pi/N$ 。 三角窗。 $8\pi/N = 2 \times 4\pi/N$ 。 汲宁窗。 $8\pi/N = 2 \times 4\pi/N$ 。 海明窗。 $8\pi/N = 2 \times 4\pi/N$ 。	商函数。 主脚过渡区宽度。	商函数。 主脚过渡区宽度。	

四、窗函数法设计步骤

- 1.根据对过渡带及阻带衰减的指标要求,选择窗函数的类型,并估计窗口长度*N*。
- 2.构造希望逼近的频率响应函数 $H_d(e^{j\omega})$
- 3.计算h_d(n)

$$h_{\rm d}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_{\rm d}(e^{j\omega}) e^{j\omega n} d\omega$$

4.加窗得到设计结果: $h(n)=h_d(n)w(n)$ 。

$$H_{dlp}(e^{j\omega}) = \begin{cases} e^{-j\omega\tau} & |\omega| \leq \omega_c \\ 0 & \omega_c < |\omega| \leq \pi \end{cases} \qquad \begin{array}{c} |H(e^{j\omega})| \\ -\pi & -\omega_c & \omega_c & \pi \end{cases}$$

$$H_{dllp}(e^{j\omega}) = \begin{cases} e^{-j\omega\tau} & \omega_c \leq |\omega| \leq \pi \\ 0 & 0 \leq |\omega| \leq \pi \end{cases} \qquad \begin{array}{c} |H(e^{j\omega})| \\ -\pi & -\omega_c & \omega_c & \pi \end{cases}$$

$$H_{dllp}(e^{j\omega}) = \begin{cases} e^{-j\omega\tau} & \omega_{cl} \leq |\omega| \leq \omega_{ch} \\ 0 & 0 \leq |\omega| < \omega_{ch} \end{cases}$$

$$H_{dllp}(e^{j\omega}) = \begin{cases} e^{-j\omega\tau} & \omega_{cl} \leq |\omega| \leq \omega_{ch} \\ 0 & 0 \leq |\omega| < \omega_{ch} < |\omega| \leq \pi \end{cases}$$

$$H_{dllp}(e^{j\omega}) = \begin{cases} e^{-j\omega\tau} & \omega_{cl} \leq |\omega| \leq \omega_{ch} \\ 0 & 0 \leq |\omega| < \omega_{ch} < |\omega| \leq \pi \end{cases}$$

$$H_{dllp}(e^{j\omega}) = \begin{cases} e^{-j\omega\tau} & \omega_{cl} \leq |\omega| \leq \omega_{ch} \\ 0 & \omega_{cl} < |\omega| < \omega_{ch} < |\omega| \leq \pi \end{cases}$$

- 1. 确定滤波器长度N, 选择窗函数的类型。
 - 根据过渡带带宽计算,并选择窗函数类型。

过渡带带宽 $\Delta \omega = \left| \omega_s - \omega_p \right|$ 特设计滤波器的过渡带带宽 $B_s \approx$ 窗函数主瓣宽度 $\left(\frac{A}{N} \right)$

 $\therefore h_d(n)$ 加窗的宽度: $B_t = \frac{A}{N} \le \Delta \omega$, $N \ge \frac{A}{\Delta \omega}$

其中的A与窗的类型有关,例如,矩形窗的A=4π, 哈明窗的A=8π等,参数B_t的近似和精确取值参考表7.2

● 根据H_d(e^{jω}) 的相位特性来决定:

线性相位的斜率 τ 决定, $\tau = \frac{N-1}{2}$

表7.21 6种窗函数的基本参数							
旁瓣峰值 α,	过渡带宽度 B,		阻带最小衰减 α,				
/dB	近似值	精确值	/dB				
-13	$4\pi/N$	1.8π/N	-21				
-25	8π/N	6. 1π/N	-25				
-31	8π/N	6. 2π/N	-44				
-41	8π/N	6.6π/N	-53				
-57	12π/N	11π/N	-74				
-57		10π/N	-80				
	旁瓣峰値 α _n /dB -13 -25 -31 -41 -57	旁瞬峰値 a。 过渡帯 /dB 近似値 -13 4π/N -25 8π/N -31 8π/N -41 8π/N -57 12π/N	労廃峰値 a_c 対波帯覧度 B_c /dB 逆似値 精确値 -13 $4\pi/N$ $1.8\pi/N$ -25 $8\pi/N$ $6.1\pi/N$ -31 $8\pi/N$ $6.2\pi/N$ -41 $8\pi/N$ $6.6\pi/N$ -57 $12\pi/N$ $11\pi/N$				

2.确定
$$H_d(e^{j\omega})$$
 以低通为例:
$$H_{dlp}(e^{j\omega}) = \begin{cases} e^{-j\omega\tau} & |\omega| \leq \omega_c \\ 0 & \omega_c < |\omega| \leq \pi \end{cases}$$
 3.计算 $h_c(n)$

3.计算h_d(n)

$$\begin{split} H_{d}(e^{j\omega}) &= H_{dg}(\omega)e^{-j\omega\tau} = H_{dg}(\omega)e^{-j\omega(N-1)/2} \\ H_{dg}(\omega) &= \begin{cases} 1 & |\omega| \leq \omega_{c} \\ 0 & \omega_{c} < |\omega| \leq \pi \end{cases} \\ \omega_{c} &= \frac{\omega_{p} + \omega_{s}}{2} \quad (如果\omega_{c} + 知) \\ h_{d}(n) &= \mathrm{IDTFT} \left[H_{d}(e^{j\omega}) \right] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_{d}(e^{j\omega})e^{j\omega n} d\omega \end{split}$$

$$h_d(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\omega}) e^{j\omega n} d\omega$$
$$= \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{-j\omega \tau} e^{j\omega n} d\omega$$
$$= \frac{\sin[\omega_c(n-\tau)]}{\pi(n-\tau)}$$

4.求所设计滤波器的单位取样响应 h(n)

$$h(n) = h_d(n) \cdot \omega(n)$$
如果要求线性相位,则要求 $h(n)$ 关于 $rac{N-1}{2}$ 奇对称或偶对称

5.考察H(e^{ja}) 的指标

$$H(e^{j\boldsymbol{\omega}}) = \sum_{n=0}^{N-1} h(n)e^{-j\boldsymbol{\omega}n}$$

6.审核技术指标是否已经满足要求。如不满足,则重新 选取较大的N进行3、4计算:如果满足有余,则选 取较小的N进行3、4项计算。

【例7-1】用窗函数法设计一线性相位FIR数字低通滤波器, 并满足如下模拟滤波器技术指标:

$$\Omega_p = 30\pi \, rad / s$$
 ,衰减不大于 $-3dB$, $\Omega_s = 46\pi rad / s$,衰减不小于 $-40dB$

对模拟信号进行采样的周期7=0.01s,计算滤波器的群延迟时间

解: (1)确定数字滤波器技术指标

$$\omega_p = \Omega_p T = 30\pi \times 0.01 = 0.3\pi (rad) \qquad \alpha_p = -3dB$$

$$\omega_s = \Omega_s T = 46\pi \times 0.01 = 0.46\pi (rad) \qquad \alpha_s = -40dB$$

(2) 理想数字滤波器频率响应为

$$H_{d}(e^{j\boldsymbol{\omega}}) = \begin{cases} e^{-j\boldsymbol{\omega}\tau} & |\boldsymbol{\omega}| \le 0.3\pi \\ 0 & 0.3\pi < |\boldsymbol{\omega}| \le \pi \end{cases}$$

$$h_d(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\omega}) e^{j\omega n} d\omega$$

$$= \frac{1}{2\pi} \int_{-0.3\pi}^{0.3\pi} e^{-j\omega \tau} e^{j\omega n} d\omega$$

$$= \frac{\sin\left[0.3\pi(n-\tau)\right]}{\pi(n-\tau)}$$

(3) 根据阻带指标选择窗函数,查表可知,汉宁窗, 海明窗和布莱克曼窗都满足阻带40dB的衰减,

选择汉宁窗,表达式为 $W_{Hn}(n)$,则设计的滤波器为:

$$h(n) = h_d(n)w_{Hn}(n)$$

 $n = 0, 1, 2,N - 1$

(4) 确定滤波器长度N,一般由线性相位的斜率 τ 决定 若 τ 未知,N可由过渡带确定,N确定后 τ 也就确定了 若 τ 已知,N可由 $\tau = (N-1)/2$ 计算。

此题滤波器过渡区宽度要求: $\Delta \omega = 0.46\pi - 0.3\pi = 0.16\pi$

特设计滤波器过渡带宽度
$$B_t = \frac{A}{N} = \frac{8\pi}{N}$$

$$B_t \le \Delta\omega, \quad \frac{8\pi}{N} \le 0.16\pi \quad N \ge \frac{8}{0.16} = 50$$

选
$$N = 51$$
 $\tau = \frac{N-1}{2} = 25$, $\tau = 25T = 25 \times 0.01 = 0.25s$

(5) 确定最终的滤波器设计结果

$$h(n) = h_d(n)w(n)$$

$$= \frac{\sin[0.3\pi(n-25)]}{\pi(n-25)} \left[0.5 - 0.5\cos(\frac{2\pi n}{50})\right] \quad 0 \le n \le 50$$

【例7-2】: 用矩形窗、汉宁窗和布莱克曼窗设计FIR低通 滤波器,设N=11, ω_c =0.2 π rad

解: (1) 用理想低通滤波器作为逼近滤波器,有:

$$H_{d}(e^{j\omega}) = \begin{cases} e^{-j\omega\tau} & |\omega| \leq \omega_{c} \\ 0 & \omega_{c} < |\omega| \leq \pi \end{cases}$$

(2) 求 $H_d(e^{j\omega})$ 的傅立叶反变换

$$\begin{split} h_d(n) &= \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\omega}) e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-j\omega \tau} e^{j\omega n} d\omega \\ &= \frac{\sin(\omega_c(n-\tau))}{\pi(n-\tau)}, \\ \tau &= \frac{1}{2}(N-1) = 5 \end{split}$$

$$h_d(n) = \frac{\sin(0.2\pi(n-5))}{\pi(n-5)} \quad (n \in [-\infty,\infty])$$
 用矩形窗设计:

$$h(n) = h_d(n)R_N(n), 0 \le n \le N - 1$$

用汉宁窗设计:

$$h(n) = h_d(n)\omega_{Hn}(n), 0 \le n \le N - 1$$

$$\omega_{Hn}(n) = 0.5(1 - \cos\frac{2\pi n}{10})R_{11}(n)$$

用布莱克曼窗设计

$$h(n) = h_{d}(n)\omega_{RI}(n)$$

$$\omega_{Bl}(n) = (0.42 - 0.5\cos\frac{2\pi n}{10} + 0.08\cos\frac{2\pi n}{10})R_{11}(n)$$

再求 h(n) 的频率响应 $H(e^{j\omega})$, 其幅度特性如图所示:

【例7.3】 利用窗函数法设计线性相位的FIR高通数字滤波器,

要求通带截止频率 $\omega_s = \pi/2 rad$,阻带截止频率 $\omega_s = \pi/4 rad$,通 带最大衰减 $\alpha_p = 1dB$,阻带最小衰减 $\alpha_s = 40dB$ 。

(1) 构造高通理想逼近滤波器 $H_d(e^{j\omega})$

$$H_d(e^{j\omega}) = \begin{cases} e^{-j\omega\tau} & \omega_c \le |\omega| \le \pi \\ 0 & 0 \le |\omega| < \omega_c \end{cases}$$

$$\overrightarrow{x}$$
 $+ \tau = \frac{N-1}{2}$, $\omega_c = \frac{\omega_p + \omega_s}{2} = \frac{3\pi}{8}$

(2) 求出
$$h_d(n)$$

$$h_d(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\omega}) e^{j\omega n} d\omega$$

$$= \frac{1}{2} \left[\int_{-\pi}^{-\omega_c} e^{-j\omega \tau} e^{j\omega n} d\omega + \int_{\omega_c}^{\pi} e^{-j\omega \tau} e^{j\omega n} d\omega \right]$$

$$= \frac{1}{2\pi} \left[\int_{-\pi}^{-\omega_c} e^{j\omega(n-\tau)} d\omega + \int_{\omega_c}^{\pi} e^{j\omega(n-\tau)} d\omega \right]$$

$$= \frac{1}{2\pi(n-\tau)} \left[e^{j\omega(n-\tau)} \Big|_{-\pi}^{-\omega_c} + e^{j\omega(n-\tau)} \Big|_{\omega_c}^{\pi} \right]$$

$$= \frac{1}{2\pi(n-\tau)} \left[e^{-j\omega_c(n-\tau)} - e^{-j\pi(n-\tau)} + e^{j\pi(n-\tau)} - e^{j\omega_c(n-\tau)} \right]$$

$$= \frac{\sin(\pi(n-\tau))}{\pi(n-\tau)} - \frac{\sin(\omega_c(n-\tau))}{\pi(n-\tau)}$$
当 $n = \tau$ 时, $\frac{\sin[\pi(n-\tau)]}{\pi(n-\tau)} = 1$,其余n值, $\frac{\sin[\pi(n-\tau)]}{\pi(n-\tau)} = 0$
 $\therefore h_d(n) = \delta(n-\tau) - \frac{\sin[\omega_c(n-\tau)]}{\pi(n-\tau)}$

(3) 选择窗函数

已知阻带最小衰减 $\alpha_{\rm s}=40dB$ 由表7.2可知汉宁窗和海明窗都可满足 要求,本例选择汉宁窗。

(4) 计算窗的长度。

由过渡带宽度: $B_t \le \Delta \omega = \omega_p - \omega_s = \frac{\pi}{\Lambda}$ 汉宁窗的过渡带宽为:

$$B_t = 8\pi/N \, (\mbox{\gtrsim}7.2)$$

 $\therefore B_{t} = 8\pi/N \le \frac{\pi}{4}, \quad N \ge 32$,对高通滤波器N必须取奇数,N=33

由汉宁窗公式有: $\omega_{Hn}(n) = \frac{1}{2} [1 - \cos(\frac{n\pi}{12})] R_{33}$

(5) 求h(n)

将
$$\tau = \frac{N-1}{2} = 16$$
 代入,得:

将
$$\tau = \frac{16}{2} = 16$$
 代入,得:
$$h_d(n) = \delta(n-16) - \frac{\sin[3\pi(n-16)/8]}{\pi(n-16)}$$
其中 $\delta(n-16)$ 对应全通滤波器,

其中δ(n-16)对应全通滤波器

 $\frac{\sin[3\pi(n-16)/8]}{\pi(n-16)}$ 对应的是截止频率为 $\omega_c=\frac{3\pi}{8}$ 的理想低通滤波器的

单位脉冲响应,二者之差就是理想高通滤波器的单位脉冲响应。

$$h(n) = h_d(n)\omega_{Hn}(n)$$

$$= \left\{ \delta(n-16) - \frac{\sin[3\pi(n-16)/8]}{\pi(n-16)} \right\} \left[\frac{1}{2} - \frac{1}{2}\cos(\frac{n\pi}{16}) \right] R_{33}$$

(3) 选择窗函数

已知阻带最小衰减 $\alpha_c = 40 dB$ 由表7.2可知汉宁窗和海明窗都可满足 要求,本例选择汉宁窗。

(4) 计算窗的长度。

由过渡带宽度: $B_t \leq \Delta \omega = \omega_p - \omega_s = \frac{\pi}{4}$

汉宁窗的过渡带宽为: $B_t = 8\pi/N$

 $\therefore B_{_{t}} = 8\pi/N \le \frac{\pi}{_{A}}, \quad N \ge 32$, 对高通滤波器N必须取奇数, N=33

由汉宁窗公式有: $\omega_{Hn}(n) = \frac{1}{2} [1 - \cos(\frac{n\pi}{12})] R_{33}$

§ 7.3 频率抽样设计法

一、基本思想方法

ullet 窗函数法-----从时域开始去设计 代替 有限长 h(n) 无限长 $h_d(n)$

◆ 频率抽样法---直接从频域去设计

对 $H_{d}(e^{j\omega})$ 等间隔采样 H(k)

重要的是插值函数 利用插值公式 == H(z) 和 $H(e^{i\omega})$

二、频率抽样设计法思路

1.设待设计的滤波器的传输函数 用 $H_d(e^{j\omega})$ 表示,对它在ω=0~2π 之间等间隔采样N点,得到 $H_d(k)$ 。

 $H_d(k) = H_d(e^{j\omega})\Big|_{\omega = \frac{2\pi}{N}k}, k = 0,1,...N-1$

2.由N个H_d(k)唯一确定有限长的h(n)

 $h(n) = IDFT[H_d(k)]$ n = 0,1,...N-1

$$H(z) = \frac{1 - z^{-N}}{N} \sum_{k=0}^{N-1} \frac{H_d(k)}{1 - e^{j\frac{2\pi}{N}k} z^{-1}} = \sum_{k=0}^{N-1} H_d(k)\Phi(z)$$

$$H(e^{j\omega}) = \sum_{k=0}^{N-1} H_d(k) \Phi(\omega - \frac{2\pi}{N}k)$$

其中
$$\Phi(\omega) = \frac{1}{N} \frac{\sin(N\omega/2)}{\sin(\omega/2)} e^{-j\omega(\frac{N-1}{2})}$$

三、频率抽样设计法特点:

直接从频域出发,对理想频响取样,以此来确定 $H_d(k)$ 值,这样可以使设计所得的系统函数H(z)去逼近理想的系统函数 $H_d(z)$ 。至少在取样点的频率上,两者可以具有相同的频响。但截止频率只能为 π/N 的整数倍,不能自由取值

§ 7.5 滤波器设计小结

滤波器的选择主要取决于滤波时的侧重面以及信号 和噪声的特点。

IIR滤波器:良好的通带和阻带幅频特性,准确的边缘频率,滤波器阶数较低,实时性和经济性较好。但一般不具有线性相位频率特性,存在稳定性问题。

FIR滤波器:理想的线性相位特性和稳定性,运算误差引起的输出信号噪声功率较小。此外,FIR滤波器可以采用FFT算法实现,在相同阶数的条件下,运算速度可以大大提高。但阶数较高,计算量和成本较高。

IIR与FIR滤波器的比较 IIR 滤 波 器 FIR 滤波器 **阶数比较高,成本大。** 较简单、经济(由于递归结构,相同 技术指标下,可以较少阶数实现) 总体结构 非递归结构 性能特点 h(n)无限长,做不到线性相位 h(n)有限长,可以实现严格的线性相位 即使在有限精度的运算中, 也都是稳定的 稳定性 在有限精度的运算中,有可能不稳定 不能用FFT计算 运算速度 可以用FFT,加快速度 窗函数法较简单 着眼于瞬态特性时:脉冲响应不变法 、阶跃响应不变法 频率抽样法 (适用窄带) 设计方法 都有最优化 设计课题 一般用双线性变换法 结合着应用频率变换法 等波纹逼近法 灵活多样,可适应各种幅度、 相位特性要求。 设计范围 规格化的低通、高通、带通、带阻 设计工具 可用模拟滤波器设计,计算工具要求低 一般需借助计算机

第七章小结

- 一、FIR滤波器的线性相位概念
- 二、FIR滤波器的线性相位的条件和特点
- 三、窗函数法设计FIR滤波器(高通,低通)

第二十二次作业

• 第七章: 7.3; 7.4