Big models

Google Neural Machine Translation

Our goal

Develop a universal machine translation model (i.e. one model for all languages and domains)

"Perhaps the way [of translation] is to descend, from each language, down to the common base of human communication -- the real but as yet **undiscovered universal language** -- and then re-emerge by whatever particular route is convenient."

Warren Weaver (1949)

Exploring Massively Multilingual, Massive Neural Machine Translation

Motivation 1: Improve translation quality for all language pairs

Motivation 2: Expand language coverage

In the world, there are...

7,000+
Total languages

2,000+

African languages

700+

Native Am. languages¹

GX

But Translate only supports...

103

Total languages

11

African languages

0

Native Am. languages

Motivation 3: Neural network scaling and the new understanding of generalization

Training Data Set Size (Log-scale)

Motivation 3: Neural network scaling and the new understanding of generalization

Training Data Set Size (Log-scale)

Motivation 4: This is a compelling test bed for ML research

Massive multilinguality requires advances in:

- Multi-task learning
- Meta-learning
- Continual learning

To achieve massive multilinguality, we need massive scale, requires advances in:

- Model capacity
- Trainability and optimization
- Efficiency improvements

Progress and Future

Transformer

Transfomer Encoder

- Powerful
 - Cores to many SOTA results.
- Simple
 - Easy to express in linear algebra.
 - Reproduced many many times.
- Originally proposed in the <u>paper</u>

Mixture of Experts (MoE)

- Sparsely gated
 - Cost-effective inference
- Embarrassingly parallelizable
 - Nice to accelerators
- Originally proposed in this <u>paper</u>

Mixture-of-Experts Transformer

Position-wise Mixture-of-Experts Layer

 x_s is the input token

$$egin{aligned} \mathcal{G}_{s,E} &= ext{GATE}(x_s) \ ext{FFN}_e(x_s) &= wo_e \cdot ext{ReLU}(wi_e \cdot x_s) \ y_s &= \sum_{e=1}^E \mathcal{G}_{s,e} \cdot ext{FFN}_e(x_s) \end{aligned}$$

E feed-forward networks $FFN_1 \dots FFN_E$

 $\mathcal{G}_{s,E}$ is computed by a gating network. y_s , is the weighted average

Algorithm details

- Gate function written in linear algebra
 - Easy to express in a sequential program
- Experts load balancing during training
 - Auxiliary loss helps
- Uniform routing during warming up phase
- Random second expert dispatch
- Flat beam search for inference

M4 ΔBLEU

MoE(128E, 36L)

MoE(128E, 12L)

T(96L)

Baselines

(6)

39.0

36.7

36.9

30.8

8.2

5.9

6.1

37B

12.5B 2.3B

100×0.4B

Google

Quality vs. Cost

