

تمرین کامپیوتری شمارهی ۳:

یک پردازنده با مشخصات زیر در نظر بگیرید:

- پردازنده ۱۶ رجیستر ۳۲ بیتی همهمنظوره به نامهای R15 تا R15 دارد.
- پردازنده چهار پرچم Z, N, V و C دارد. این پرچمها در نتیجهی اجرای دستورات تغییر می کنند.
 - پردازنده فضای آدرسدهی حافظه 4GW (هر کلمه ۳۲ بیتی است) را پشتیبانی می کند.
- پردازنده (برخلاف پردازندهی MIPS) فقط آدرسدهی کلمه را پشتیبانی می کند (آدرسهای حافظه یکی یکی اضافه میشوند).
 - تمام دستورات این پردازنده ۳۲ بیتی هستند.
 - پردازنده دارای سه نوع دستور است:
 - o دستورات پردازش داده (Data Processing Instructions)

31	30	29 24	23	22 20	19	16	15 12	11 0
	С	000000	Ι	opc	Rn		Rd	Op2

(Data Transfer Instructions) دستورات انتقال داده

3	31 3	30	29 21	20	19	16	15	12	11		0
Γ	C		010000000	L	Rb			Rd		Offset	

o دستورات پرش (Branch Instructions)

31 30	29 27	26	25	0
С	101	L	Offset	

• همانطور که در قالب دستورات این پردازنده مشخص است، تمام دستورات دارای یک فیلد به نام C هستند. این فیلد شرط اجرای دستور را طبق جدول زیر مشخص می کند. برای مثال اگر یک دستور پردازش داده داشته باشیم که فیلد C آن برابر C باشد. این دستور پردازش داده در صورتی انجام می شود که پرچم C برابر C باشد.

С	Name	Description
00	EQ(equal)	Z set
01	GT(greater than)	Z clear, and either N set and V set, or N clear and V clear
10	LT(less than)	N set and V clear, or N clear and V set
11	AL	always

• در دستورات پردازش داده، فیلد opc طبق جدول زیر نوع دستور پردازش داده را مشخص می کند:

Орс	Inst.	Description	
000	ADD	Rd = Rn + Op2	
001	SUB	Rd = Rn – Op2	
010	RSB	Rd = Rn – Op2	
011	AND	Rd = Rn AND Op2	
100	NOT	Rd = -Op2(2's complement)	
101	TST	Set condition codes on Rn AND Op2	
110	CMP	Set condition codes on Rn – Op2	
111	MOV	Rd = Op2	

• در دستورات پردازش داده، فیلد I (بیت ۲۳ دستور) طبق جدول زیر نوع Op2 را مشخص می کند:

1	Op2				
	11	4	3	0	
0				Rm]
	11			0	
		Immediate Data	ı]

• در دستورات انتقال داده و پرش، فیلد L طبق جدول زیر عمل می کند:

Inst. Type	L	Inst.	Description
Branch	0 B Jump to offset+PC		Jump to offset+PC
	1	B and Link	Jump to offset+PC, R15=return address
Data	0	Load	Rd=Mem[Rb+offset]
Transfer	1	Store	Mem[Rb+offset]=Rd

• اجرای دستورات پردازش داده طبق جدول زیر بر روی پرچمهای پردازنده تاثیر میگذارد:

Flag	Instructions
Z(zero)	All
C(carry)	ADD, SUB, RSB,CMP
N(negative)	All
V(overflow)	ADD, SUB, RSB,CMP

این پردازنده را به صورت Multi-Cycel طراحی کنید (این کار را در میانترم دوم انجام دادهاید) و با زبان توصیف سختافزاری وریلاگ آن را توصیف کنید. برای تست طراحی خود از برنامهی زیر استفاده کنید.

برنامهای بنویسید که کوچکترین عنصر یک آرایهی ۱۰ عنصری با آدرس شروع ۱۰۰۰ را پیدا کند و مقدار کوچکترین عنصر و اندیس آن را به ترتیب در خانههای ۲۰۰۰ و ۲۰۰۴ حافظه بنویسد.

روش ارزیابی:

- پیاده سازی پردازنده صد (۱۰۰) نمره دارد:
- o ۲۵ نمره طراحی مسیر داده و واحد کنترل (تصویر مسیر داده و واحد کنترل باید آپلود شود)
 - o ۲۵ نمره روش کدینگ (**مسیر داده به صورت ساختاری و واحد کنترل به روش هافمن**)
- ۰ تمره برای صحت طراحی با دادههای آزمون دانشجو (اسکرین شات از شکل موج خروجی شبیهسازی باید آپلود شود)
 - ۰ ۲۰ نمره صحت طراحی با دادههای آزمون توسط دستیاران آموزشی

تمرین کامپیوتری شمارهی ۴:

پردازنده MIPS را در نظر بگیرید. فرض کنید این پردازنده دستورات زیر را پشتیبانی می کند.

Arithmetic/Logical Instructions: add, addi, sub, slt, slti, and, or

Memory Reference Instruction: lw, sw

Control Flow Instructions: j, jal, jr, beq

در تمرین کامپیوتری شماره ی ۲، مسیر داده و واحد کنترل این پردازنده را به صورت Single Cycle طراحی کردهاید. برای تمرین کامپیوتری شماره ی ۴، این پردازنده را به صورت بایپلاین طراحی کنید. طرح شما باید مخاطره ی دادهای را به صورت سختافزاری تشخیص دهد و برطرف کند. نیازی نیست که طرح شما برطرف کردن مخاطره ی کنترلی را به صورت سختافزاری انجام دهد. برای برطرف کردن مخاطره ی کنترلی، در صورت نیاز در برنامه ی نوشته شده از دستور (ROP (add RO, RO, RO) استفاده کنید. برای تست طراحی خود از برنامه ی زیر استفاده کنید.

برنامهای بنویسید که کوچکترین عنصر یک آرایهی ۲۰ عنصری با آدرس شروع ۱۰۰۰ را پیدا کند و مقدار کوچکترین عنصر و اندیس آن را به ترتیب در خانههای ۲۰۰۴ و ۲۰۰۴ حافظه بنویسد.

روش ارزیابی:

- پیاده سازی پردازندهی MIPS صد (۱۰۰) نمره دارد:
- o ۲۵ نمره طراحی مسیر داده و واحد کنترل (تصویر مسیر داده و واحد کنترل باید آپلود شود)
 - ۰ ۲۵ نمره روش کدینگ (**مسیر داده به صورت ساختاری و واحد کنترل به روش ترکیبی**)
- ۳۰ نمره برای صحت طراحی با دادههای آزمون دانشجو (اسکرین شات از شکل موج خروجی شبیهسازی باید آیلود شود)
 - ۰ ۲۰ نمره صحت طراحی با دادههای آزمون توسط دستیاران آموزشی