

Contents

1	Matrix	: Algebra
	1.1	Notations and Matrices
	1.2	Diagonal Matrix
	1.3	Transpose
	1.4	Upper and Lower Triangular Matrix
	1.5	Symmetric Matrix
	1.6	Identity Matrix
	1.7	Idempodent Matrix
	1.8	Trace
	1.9	General Notations
	1.10	Matrix Multiplication
	1.11	Other Multiplications
	1.12	2×2 Determinant
	1.13	n×n Determinant
	1.14	Invertible Matrix
	1.15	Adjugate Matrix
	1.16	Singular Matrix
	1.17	Bilinear and Quadratic Forms
	1.18	Definiteness
	1.19	Centring Matrix
	1.20	Orthogonal Vector
	1.21	Norm or Length

	1.22	Orthonormal Vectors	7
	1.23	Orthogonal Matrix	7
	1.24	Elementary Operations	7
2	Linear	Algebra	8
	2.1	Linear Independence	8
	2.2	Gram-Schmidt Process	9
	2.3	Linearly Independent Rows/Columns	9
	2.4	Matrix Rank	9
	2.5	Matrix Factorization and Canonical Forms	0
3	Genera	dised Inverses and Linear Equations	2
	3.1	Recall	2
	3.2	Full Row Rank	2
	3.3	Full Column Rank	3
	3.4	Square Matrix with no Full Rank	3
	3.5	Generalized Inverse	4
	3.6	Finding Generalised Inverses	4
	3.7	Using Generalized Inverse to Solve Linear Equations	5
	3.8	Eigenvalues	6
	3.9	Eigenvectors	6
	3.10	Spectral Decomposition	8
	3.11	Singular Value Decomposition	8

1 Matrix Algebra

1.1 Notations and Matrices

If \boldsymbol{A} is an $n \times p$ matrix, it can be presented as:

- \mathbf{A} : $n \times p$
- $\mathbf{A} = \{a_{ij}\}$ where $i \leq n$ and $j \leq p$

Row and column vector representation of A:

- row vector as column vector: $a_{(i)}$
- column vector: a_j

1.2 Diagonal Matrix

- \mathbf{D} : $n \times n$ where $d_{ij} = 0$ when $i \neq j$
- $\mathbf{D} = diag(d_i)$
- $D = \{d_{ii}\}$
- if \boldsymbol{A} conforms with \boldsymbol{D} , then

$$\mathbf{D}\mathbf{A} = \{d_i a_{ij}\}$$

1.3 Transpose

- if $\mathbf{A} = \{a_{ij}\}$, then $\mathbf{A'} = \{a_{ji}\}$
- \mathbf{A} : $n \times p$ and $\mathbf{A'}$: $p \times n$
- $\bullet \ (AB)' = B'A'$

1.4 Upper and Lower Triangular Matrix

- $\mathbf{A}: n \times n$ where $a_{ij} = 0$ for i > j (upper)
- $\mathbf{A} : n \times n$ where $a_{ij} = 0$ for i < j (lower)

1.5 Symmetric Matrix

- $S: n \times n \text{ where } \{s_{ij}\} = \{s_{ji}\}$
- ullet $S=S^{'}$
- ullet if $m{A}$ and $m{B}$ are both symmetric, then $m{(AB)}'=m{A'B}'=m{BA}$
- \bullet for any matrix $\boldsymbol{S},\,\boldsymbol{S'S}$ and $\boldsymbol{SS'}$ are symmetric matrices

1.6 Identity Matrix

- $I: n \times n$
- I = diag(1)

1.7 Idempodent Matrix

- A: $n \times n$
- $A^2 = A$

1.8 Trace

• if $A: n \times n$, then

$$tr(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}, \ tr(\mathbf{A}\mathbf{A}') = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{2}$$

- tr(AB) = tr(BA) if **B** is also a square matrix
- $tr(\mathbf{A} + \mathbf{B}) = tr(\mathbf{A}) + tr(\mathbf{B})$
- $tr(c\mathbf{A}) = c \cdot tr(\mathbf{A})$
- $tr(\mathbf{AB'}) = tr(\mathbf{A'B}) = tr(\mathbf{B'A}) = tr(\mathbf{BA'}) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}b_{ij}$

1.9 General Notations

- $\bullet \ \boldsymbol{A} + \boldsymbol{B} = \{a_{ij} + b_{ij}\}$
- $cA = \{c \cdot a_{ij}\}$

1.10 Matrix Multiplication

Given \mathbf{A} : $n \times p$ and \mathbf{B} : $r \times c$

$$egin{aligned} oldsymbol{C} &= oldsymbol{A} oldsymbol{B} &= oldsymbol{A} oldsymbol{b}_1 \ oldsymbol{b}_1 &= oldsymbol{A} oldsymbol{b}_1 \ oldsymbol{A} oldsymbol{b}_2 &\dots oldsymbol{A} oldsymbol{b}_c \ oldsymbol{c}_{ij} &= \sum_{k=1}^n a_{ik} b_{kj} \end{aligned}$$

1.11 Other Multiplications

- Kronecker product (direct): $m{A} \otimes m{B}$
- \bullet Cross product: $\textbf{\textit{A}} \times \textbf{\textit{B}}$
- \bullet Dot product: $\boldsymbol{A}\cdot\boldsymbol{B}$

$1.12 \quad 2 \times 2$ Determinant

- \boldsymbol{A} : 2×2
- $det(\mathbf{A}) = |\mathbf{A}| = a_{11}a_{22} a_{12}a_{21}$
- given x, y: 2×1 and A: 2×2 and that y = Ax, A is said to transform coordinates in an x-space to coordinates in a y-space
- if $a_{11} > a_{21} > 0$ and $a_{22} > a_{12} > 0$, then the unit square in an $\boldsymbol{x}-space(x,\ y \ge 0)$ gets transformed into a **parallelogram**
- area of the parallelogram is equal to |A| > 0

- geometrically, the determinant is the factor by which the area is scaled in the linear transformation described by the matrix
- when A < 0, the sign indicates a directional shift

1.13 Cofactor Matrix

- $\boldsymbol{A}: n \times n$
- $C = (-1)^{i+j} |M_{(ij)}|$, where the $M : (n-1) \times (n-1)$ is obtained from A by deleting row i and column j

1.14 n×n Determinant

- \boldsymbol{A} : $n \times n$
- for n > 2, we use the recursive formula

$$|\mathbf{A}| = \sum_{i=1}^{n} a_{ij} (-1)^{i+j} |\mathbf{M}_{(ij)}|$$

to determine |A| for any arbitrary $i \leq n$

- ullet $|oldsymbol{A}|=|oldsymbol{A}'|$
- |AB| = |BA| = |A||B| iff $B: n \times n$
- $|A^{-1}||A| = 1$
- the addition of a multiple of one row (or column) of A to another row (or column) leaves the determinant unchanged (forming an upper triangular or lower triangular matrix)
- swapping columns/rows changes sign of determinant
- multiplying a row/column with a constant increases the determinant by that same factor
- if ${m A}$ is orthogonal, then $|{m A}|^2=|{m A}||{m A}'|=|{m A}{m A}'|=1$ such that $|{m A}|\pm 1$

1.15 Invertible Matrix

• given $A: n \times n$, if there exists $(B: n \times n)$ such that

$$AB = BA = I$$

then $B = A^{-1}$ is said to be the **inverse** of A

• for any set of linear equations, if the inverse exists, then:

$$Ax = b$$

$$A^{-1}Ax = b$$

$$x = A^{-1}b$$

•
$$(BA)^{-1} = B^{-1}A^{-1}$$

•
$$(A^{-1})' = (A')^{-1}$$

• suppose we can find a sequence of elementary operator matrices $E_{(i)}$, $i \leq K$, such that

$$E_{(K)}E_{(K-1)} \dots E_{(2)}E_{(1)}A = I$$

then, by definition,

$$E_{(K)}E_{(K-1)} \dots E_{(2)}E_{(1)} = A^{-1}$$

• A^{-1} exists iff $A \neq 0$ (non-singular)

1.16 Adjugate Matrix

• $\boldsymbol{A}: n \times n$

•
$$adj(\mathbf{A}) = \mathbf{C}'$$

$$\bullet \ A^{-1} = \frac{1}{|A|}C'$$

1.17 Singular Matrix

• consider \mathbf{A} : $n \times n$

• if det(A) = 0, then A is said to be singular and not invertible

1.18 Bilinear and Quadratic Forms

• given a symmetric matrix $A: n \times n$, $x: n \times 1$, and $y: n \times 1$:

$$\mathbf{x'}\mathbf{A}\mathbf{y} = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i a_{ij} y_j$$

is a bilinear form

• if x = y and A is symmetric, then it is the quadratic form

1.19 Definiteness

• A: $n \times n$ is positive definite if x'Ax > 0 for any $x \neq 0$

• A: $n \times n$ is positive semi-definite if $x'Ax \ge 0$ for at least one x = 0

• A: $n \times n$ is negative definite if x'Ax < 0 for any $x \neq 0$

• A: $n \times n$ is negative semi-definite if $x'Ax \leq 0$ for at least one x = 0

• A: $n \times n$ is indefinite if it is not positive semi-definite or negative semi-definite

1.20 Centring Matrix

• define **1** as a vector of 1s and $J = \{1_{ij}\}$

• define \boldsymbol{x} : $n \times 1$

• $(I - \frac{1}{n}J)$ is the centring matrix

• Properties: symmetric, positive semi-definite, singular, idempodent

1.21 Orthogonal Vector

• given x: $n \times 1$ and y: $n \times 1$, x and y are orthogonal vectors if x'y = y'x = 0

1.22 Norm or Length

• norm or length of x is given by

$$||x|| = \sqrt{x^{'}x}$$

• unit vector, $u = \frac{x}{||x||}$, has norm/length of 1 and is said to be **normalised**

1.23 Orthonormal Vectors

• if x and y are orthogonal and normalised, they are an **orthonormal pair of vectors**. If the columns of the matrix P are an orthonormal set of vectors, then P'P = I. Similarly, if the rows form an orthonormal set then PP' = I

1.24 Orthogonal Matrix

- if A: $n \times n$ and the rows and columns are mutually orthonormal, A is an **orthogonal** matrix
- $\bullet \ \ A'A = AA' = I$
- $A' = A^{-1}$
- $|A| = \pm 1$

1.25 Elementary Operations

- \bullet elementary operators are matrices obtained from making one alteration to I
- consider $P_{(ij;\lambda)}$, identical to I, except that $p_{ij} = \lambda$ when $i \neq j$
- adds multiple, λ , of *i*-th column to the one of *j*-th column
- ullet consider $m{E}_{(ij)}$, identical to $m{I}$, except that the i-th column/row and j-th column/row are swapped

- swaps i-th column/row with j-th column/row
- consider $R_{(i;\lambda)}$, identical to I, except that the i-th diagonal element is λ
- multiplies the *i*-th row/column by λ
- $|P_{(ij;\lambda)}| = 1$
- $|E_{(ij)}| = -1$
- $|\mathbf{R}_{(i;\lambda)}| = \lambda$

2 Linear Algebra

2.1 Linear Independence

- consider $X: m \times n$ (a vector of vectors) and $a: n \times 1$ (a vector of constants)
- $X = [x_1 \ x_2 \ ... \ x_n]$
- $Xa = \sum_{i=1}^n a_i x_i = 0$
- a = 0 is the trivial solution
- if a = 0 is the only solution, then the vectors x_i are linearly independent
- if at least one $a_i \neq 0$, then the vectors x_i are linearly dependent
- rearranging $\sum_{i=1}^{n} a_i x_i = 0$:

$$x_n = -\frac{a_1}{a_n}x_1 - \dots - \frac{a_{n-1}}{a_n}x_{n-1}$$

such that $a_n \neq 0$ (at least one coefficient being non-zero)

- \bullet repeat process until r linearly independent vectors have been found
- X can be partitioned as:

$$\boldsymbol{X} = [\boldsymbol{X}_1 \ \boldsymbol{X}_2]$$

where X_1 : $m \times (n-r)$ is a matrix holding (n-r) linearly dependent vectors and X_2 : $m \times r$ is a matrix holding r linearly independent

• for some matrix B: $r \times (n-r)$, we can write:

$$X_1 = X_2 B$$

2.2 Gram-Schmidt Process

2.3 Linearly Independent Rows/Columns

- consider $X: m \times n$ (a vector of vectors) and $a: n \times 1$ (a vector of constants)
- suppose also that:

$$\boldsymbol{x}_n = a_1 \boldsymbol{x}_1 + \dots + a_{n-1} \boldsymbol{x}_{n-1}$$

ullet it is possible to add multiples of the other columns to any one chosen column of $oldsymbol{X}$ in such a way that this column vector becomes $oldsymbol{0}$ such that:

$$X^* = [0 \ x_2 \ ... \ x_n]$$

- if columns of X are linearly dependent, then |X| = 0
- $|X| = |X^*| = 0$. This means:
 - X^{-1} does not exist (invertible and singular)
 - the linear equation $\boldsymbol{X}\boldsymbol{a}=\boldsymbol{b}$ does not have a valid solution \boldsymbol{a}
 - there is some $a \neq 0$ such that Xa = 0
 - for square matrics, either there is a non-trivial solution to Xa=0 or a solution to $Xa=b \neq 0$

2.4 Matrix Rank

• consider $X: m \times n$

- rank of X, rank(X), is the number of linearly independent rows/columns
- $rank(X) \leq min(m, n)$
- X is of full row rank if rank(X) = m and full column rank if X = n
- if a square matrix is of full row rank, then it is also of full column rank (and vice versa), and
 X is said to be of full rank. This implies that:
 - $-X^{-1}$ does exist (invertible)
 - $-|\mathbf{X}| \neq 0$ (non-singular)
 - the linear equation $\boldsymbol{Xa}=\boldsymbol{b}\neq \mathbf{0}$ has a valid solution \boldsymbol{a}
 - -Xa = 0 for a = 0
- one can find the rank(X) by finding X^* , the row echelon form of X, using elementary operations
- rank(X) = the number of non-zero rows of X^*

2.5 Matrix Factorization and Canonical Forms

- consider $A: p \times q$
- let $rank(\mathbf{A}) = r$, and suppose that the rows and columns have been ordered such the first r columns and rows of \mathbf{A} are linearly independent
- A can be partitioned as follows:

$$oldsymbol{A} = egin{bmatrix} oldsymbol{X}: r imes r & oldsymbol{Y}: r imes (q-r) \ oldsymbol{Z}: (p-r) imes r & oldsymbol{W}: (p-r) imes (q-r) \end{bmatrix}$$

where $rank(\mathbf{X}) = r$ (full rank)

ullet the factorized form of $oldsymbol{A}$ is:

$$A = \begin{bmatrix} I \\ F \end{bmatrix} \begin{bmatrix} X & XH \end{bmatrix}$$

***where

- A can be transformed by elementary operations into a matrix consisting only of 0's, except that the first r diagonal elements are 1's.
- using the relevant elemtary operations, we can get:

$$egin{aligned} m{PAQ} = egin{bmatrix} m{I}: r imes r & \mathbf{0} \ m{0} & m{0} \end{bmatrix} = m{C} \end{aligned}$$

- ullet C is the equivalent canoncical form of A
- if two matrices reduce to the same canonical form, then they are said to be equivalent
- since P and Q are invertible, then:

$$A = P^{-1}CQ^{-1}$$

• if **A** is not singular, then:

$$C = I, \ A = P^{-1}Q^{-1}$$
$$A = BB'$$

where $B = P^{-1}$

• if **A** is symmetric, it is possible to find a **P** such that:

$$PAP' = C$$

3 Generalised Inverses and Linear Equations

3.1 Recall

When a column of a matrix in row echelon form contains a pivot, it is called a **basic column**. When it does not contain a pivot, we say that it is a **non-basic column**.

3.2 Full Row Rank

- consider $A: m \times n$ of full row rank
- $rank(\mathbf{A}) = m$
- since we have m linear equations, so we will aim to solve for m elements of x, by arbitrarily setting (n-m) elements to 0.
- A can be partitioned as follows:

$$oldsymbol{A} = egin{bmatrix} oldsymbol{S} : m imes m & oldsymbol{T} : m imes (n-m) \end{bmatrix}$$

where S consists of basic columns and T consists of non-basic columns. We can simplify the linear equation:

$$egin{aligned} m{A}m{x} &= m{b} \ m{igg[S \quad Tigg]} m{igg[x_S \ x_Tigg]} &= m{b} \ m{igg[S \quad Tigg]} m{igg[x_S \ m{0}igg]} &= m{b} \ m{S}m{x}_S + m{T} \cdot m{0} &= m{b} \ m{x}_S &= m{S}^{-1}m{b} \end{aligned}$$

• adding back the 0s:

$$egin{aligned} oldsymbol{x} &= egin{aligned} oldsymbol{S^{-1}} \ oldsymbol{0} \end{bmatrix} egin{bmatrix} b_1 \ dots \ b_n \end{bmatrix} \end{aligned}$$

3.3 Full Column Rank

- consider $A: m \times n$ of full column rank
- $rank(\mathbf{A}) = n$
- since we have more linear equations, m, than variables, n, to solve, there will be no general solution unless some redundancy exists
- ullet we could find a "closest" approximation to a solution in a least squares sense, by finding the vector $oldsymbol{x}$ that minimizes:

$$(\boldsymbol{b}-\boldsymbol{A}\boldsymbol{x})^{'}(\boldsymbol{b}-\boldsymbol{A}\boldsymbol{x})$$

• differentiating with respect to x, we get:

$$2A'(b-Ax)=0$$

$$x=(A'A)^{-1}A'b$$

• A'A has full rank

3.4 Square Matrix with no Full Rank

- consider $A: m \times m$ of full column rank
- $rank(\mathbf{A}) < m$
- a solution to Ax = b for $b \neq 0$ if rank(A) = m

- when $rank(\mathbf{A}) < m$, a solution will only exist if the linear relationships between the rows of \mathbf{A} are mirrored by equivalent relationships between the elements of \mathbf{b}
- if $rank([A \ b]) = rank(A)$, then the aforementioned mirrored relationship is present (non-zero solution exists)

3.5 Generalized Inverse

- consider $A: m \times n$
- if AGA = A, then AGA is a generalised inverse of A, A^-
- additionally, it is possible that GAG = G
- \bullet if the two above simultanuously hold, then G is the **reflexive generalized inverse** of A
- ullet the three above hold and if AG and GA are symmetric, then G is the Moore-Penrose inverse of A

3.6 Finding Generalised Inverses

- consider $A: m \times n$
- A can be reduced to:

$$A^* = egin{bmatrix} m{D} : r imes r & \mathbf{0} \ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

- $A^* = PAQ = C$ (canonical form of A)
- the above makes:

$$egin{aligned} oldsymbol{G} &= oldsymbol{Q} egin{bmatrix} oldsymbol{D} : r imes r & X \ Y & Z \end{bmatrix} oldsymbol{P} \end{aligned}$$

the generalized inverse of A where G, Y Z are matrices of arbitrary sizes

• consider

$$egin{aligned} oldsymbol{A} = oldsymbol{Q} egin{bmatrix} oldsymbol{D} : r imes r & oldsymbol{X} \ oldsymbol{Y} & oldsymbol{Z} \end{bmatrix} oldsymbol{P} \end{aligned}$$

where D is a non-singular submatrix of A

• if $Z = YD^{-1}X$, then:

$$G = egin{bmatrix} D^{-1}: r imes r & 0 \ 0 & 0 \end{bmatrix}$$

is the generalized inverse of \boldsymbol{A}

3.7 Using Generalized Inverse to Solve Linear Equations

- consider Ax = 0
- \bullet if A is not singular, then there exist a single unique solution
- the generalised solution can be expressed as:

$$x = (GA - I)z$$

for a conformable \boldsymbol{z}

- if $rank(\mathbf{A}) < n$, then this solution, in general, will be non-trivial
- for any arbitrary conformable matrix G, we have:

$$(AG)Ax = (AG)b$$

and if G is a generalised inverse of A, then this becomes:

$$x = Gb$$

• since x = (GA - I)z is a solution to Ax = 0 for any arbitrary vector z, and G is a

generalised inverse of A, then:

$$Gb + (GA - I)z$$

is also a solution

• solution is unique iff GA = I

3.8 Eigenvalues

- used to find vectors such that, for some matrix multiplication, the vector changes in such a way that it still lies on the same line
- consider A: $n \times n$ and a conformable $x \neq 0$ such that:

$$Ax = \lambda x$$

$$(\boldsymbol{A} - \lambda \boldsymbol{I})\boldsymbol{x} = \boldsymbol{0}$$

- if a vector x and scalar λ satisfies this equation, then we refer to them respectively as an eigenvector and corresponding eigenvalue of A
- the scaling of x is arbitrary, since if the above is true, then $A(kx) = \lambda(kx)$
- a non-trivial solution will only exist if $(A \lambda I)$ is singular and yielding the **characteristic** equation:

$$|\boldsymbol{A} - \lambda \boldsymbol{I}| = 0$$

• it defines an *n*-th order polynomial in λ

•

3.9 Eigenvectors

• for each of the n eigenvalues of \mathbf{A} , $\lambda = \{\lambda_1, \lambda_2, \dots, \lambda_n\}$ (set is not unique), there are corresponding eigenvectors $\mathbf{U} = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ (set is unique)

• by constructing U: $n \times n$ having the eigenvectors as columns, we have that:

$$AU = A[u_1 ... u_n] = \lambda \circ U = UD$$

where $\mathbf{D} = diag(\lambda_i)$

• if U is non-singular, then:

$$U^{-1}AU = D, \ A = UDU^{-1}$$

• in general:

$$A^k x = \lambda^k x$$

for some constant k

- \bullet if A is non-singular, all the eigenvalues will be non-zero
- ullet we can then say that the pair $(\lambda^{-1},\ m{x})$ is an **eigenvalue-eigenvector pair** for $m{A}^{-1}$
- $\boldsymbol{A}^k = \boldsymbol{U}\boldsymbol{D}^k\boldsymbol{U^{-1}}$ and $\boldsymbol{D}^k = diag(\lambda_i^k)$
- $tr(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i$
- $|\boldsymbol{A}| = \prod_{i=1}^{n} \lambda_i$
- $rank(\mathbf{A})$ = number of non-zero eigenvalues
- $\lambda = 0$ can be an eigenvalue of \mathbf{A} , but this implies that $|\mathbf{A}| = 0$
- for symmetric matrices, all eigenvalues are real
- suppose we have two pairs $\{\lambda_1, u_1\}$ and $\{\lambda_2, u_2\}$ of a symmetric matrix A such that $\lambda_1 \neq \lambda_2$. Then:

$$\lambda_1 \boldsymbol{u}_2 \boldsymbol{u}_2 = \lambda_2 \boldsymbol{u}_2 \boldsymbol{u}_2$$

 \bullet this means that

$$u_2u_2=0$$

 u_2 and u_1 are orthogonal vectors

- symmetric matrices with unique eigenvalues have orthogonal eigenvectors
- use Gram-Schmidt process to prove that, even with repeated values of eigenvalues, orthogonal sets of eigenvectors can be found when A is symmetric
- \bullet if A is symmetric, then:

$$-\boldsymbol{U}'\boldsymbol{U} = \boldsymbol{I}$$

$$- \boldsymbol{U'} = \boldsymbol{U^{-1}}$$

$$- A = UDU' = UDU^{-1}$$

3.10 Spectral Decomposition

- consider symmetric \mathbf{A} : $n \times n$
- spectral decomposition of A can be written as:

$$oldsymbol{A} = oldsymbol{U} oldsymbol{U}' \ = \sum_{i=1}^n \lambda_i oldsymbol{u}_i' oldsymbol{u}_i$$

• spectral decomposition expresses A as a sum of n rank-1 matrices

3.11 Singular Value Decomposition

- consider X: $n \times p$ and $rank(X) \le p < n$
- \bullet X can be expressed in the form:

$$\boldsymbol{X} = \boldsymbol{U}^* \boldsymbol{D}^* \boldsymbol{V}'$$

where U^* : $n \times n$, V: $p \times p$ are orthogonal matrices and:

$$\mathbf{D}^* = \begin{bmatrix} \mathbf{D} : k \times k & \mathbf{0} : k \times (p-k) \\ \mathbf{0} : (n-k) \times k & \mathbf{0} : (n-k) \times (p-k) \end{bmatrix}$$

where $\mathbf{D} = diag(d_i) = diag(\sqrt{\lambda_i})$

• this is the **full version** of the SVD since it can also be written as the compact SVD:

$$X = UDV'$$

where U consists of the first p columns of U^*

• since U: $n \times p$, its columns are mutually orthonormal. That is:

$$U'U = I, UU' \neq I$$

- U is the eigenvectors of XX', since $XX'U = UD^2$
- V is the eigenvectors of X'X, since $X'XV = VD^2$
- ullet D contains the singular values of X on the diagonal
- ullet D^2 contains the eigenvalues of XX' and X'X on the diagonal
- positive quantities $\{\lambda_1, \ \lambda_2, \ \dots, \ \lambda_n\}$ are the non-zero eigenvalues of $\boldsymbol{X'X}$ and the non-zero eigenvalues of $\boldsymbol{XX'}$
- \bullet columns of U and V are called the **left and right singular vectors** of X respectively
- D is a diagonal matrix containing the singular values on the diagonal, ordered in deacreasing order
- without loss of generality, the singular values are always positive
- eigenvectors are defined in an arbitrary directional sense: if x is an eigenvector of A, then so is -x. One needs to check that the directions of the eigenvectors in U and in V are consistently defined