

강필성 고려대학교 산업경영공학부 pilsung_kang@korea.ac.kr

AGENDA

OT	Multiple Linear Regression
02	Evaluating Regression Models

R Exercise

• Regression Example: Predict the selling price of Toyota Corolla

Dependent variable (target)

Independent variables (attributes, features)

Variable	Description
Price	Offer Price in EUROs
Age_08_04	Age in months as in August 2004
KM	Accumulated Kilometers on odometer
Fuel_Type	Fuel Type (Petrol, Diesel, CNG)
HP	Horse Power
Met_Color	Metallic Color? (Yes=1, No=0)
Automatic	Automatic ((Yes=1, No=0)
CC	Cylinder Volume in cubic centimeters
Doors	Number of doors
Quarterly_Tax	Quarterly road tax in EUROs
Weight	Weight in Kilograms

Goal

✓ Fit a linear relationship between a quantitative dependent variable Y and a set of predictors $X_1, X_2, ..., X_p$.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 \cdots + \beta_d x_d + \epsilon$$
 unexplained unexplained

$$\hat{y} = \hat{\beta_0} + \hat{\beta_1} x_1 + \hat{\beta_2} x_2 + \dots + \hat{\beta_d} x_d$$

coefficients

• Explanatory vs. Predictive

Explanatory Regression

- Explain relationship between predictors (explanatory variables) and target.
- Familiar use of regression in data analysis.
- Model Goal: Fit the data well and understand the contribution of explanatory variables to the model.
- "goodness-of-fit": R², residual analysis, p-values.

$$Y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \varepsilon$$

Predictive Regression

- Predict target values in other data where we have predictor values, but not target values.
- Classic data mining context
- Model Goal: Optimize predictive accuracy
- Train model on training data
- Assess performance on validation (hold-out) data
- Explaining role of predictors is not primary purpose (but useful)

$$(Y) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \varepsilon$$

• Type of Regression

• Linear Regression

✓ Assume that the relationship between the input variable and the target variable is always linear.

$$\hat{y} = \hat{\beta_0} + \hat{\beta_1} x_1 + \hat{\beta_2} x_2 + \dots + \hat{\beta_d} x_d$$

• Which line is optimal?

- Estimating the coefficients
 - ✓ Ordinary least square (OLS): Minimize the squared difference between the actual target value and the estimated value by the regression model

• Estimating the coefficients

√ Ordinary least square (OLS)

$$ullet$$
 Actual target: $y=eta_0+eta_1x_1+eta_2x_2\cdots+eta_dx_d+\epsilon$

$$ullet$$
 Predicted target: $\hat{y}=\hat{eta_0}+\hat{eta_1}x_1+\hat{eta_2}x_2\cdots+\hat{eta_d}x_d$

Goal: minimize the difference between the actual and predicted target.

$$\min \frac{1}{2} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$= \frac{1}{2}(y_i - \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} \cdots + \hat{\beta}_d x_{id})^2$$

- Estimating the coefficients
 - √ Ordinary least square (OLS)

• Ordinary least square: Matrix solution

$$\mathbf{X}: n \times (d+1) \ matrix, \ \mathbf{y}: n \times 1 \ vector$$

$$\hat{\boldsymbol{\beta}}: (d+1) \times 1 \ vector$$

Ordinary least square: Matrix solution

$$\mathbf{X}: n \times (d+1) \ matrix, \ \mathbf{y}: n \times 1 \ vector$$

$$\hat{\boldsymbol{\beta}}: (d+1) \times 1 \ vector$$

$$\min E(\mathbf{X}) = \frac{1}{2} \left(\mathbf{y} - \mathbf{X} \hat{\boldsymbol{\beta}} \right)^T \left(\mathbf{y} - \mathbf{X} \hat{\boldsymbol{\beta}} \right)$$

$$\Rightarrow \frac{\partial E(\mathbf{X})}{\partial \hat{\boldsymbol{\beta}}} = -\mathbf{X}^T \left(\mathbf{y} - \mathbf{X} \hat{\boldsymbol{\beta}} \right) = 0$$

$$\Rightarrow \mathbf{X}^T \mathbf{y} + \mathbf{X}^T \mathbf{X} \hat{\boldsymbol{\beta}} = 0$$

$$\hat{oldsymbol{eta}} = \left(\mathbf{X}^T\mathbf{X}
ight)^{-1}\mathbf{X}^T\mathbf{y}$$
 —— Unique and explicit solution exists!

Ordinary least square: Matrix solution

$$\hat{oldsymbol{eta}} = \left(\mathbf{X}^T\mathbf{X}
ight)^{-1}\mathbf{X}^T\mathbf{y}$$

Closed form solution for the regression coefficient

- Ordinary least square
 - \checkmark Finds the best estimates β when the following conditions are satisfied:
 - The noise ε follows a normal distribution.
 - The linear relationship is correct.
 - The cases are independent of each other.
 - The variability in Y values for a given set of predictors is the same regardless of the values of the predictors (<u>homoskedasticity</u>).

Model checking

$$y = 2x + \varepsilon$$
, $\varepsilon \sim Gamma(2,1)$

Regression model

• Residual plots

- Goodness of fit
 - √ Sum-of-Squares Decomposition

$$\sum_{\substack{j=1 \\ \text{(total sum of squares)} \\ \text{about mean}}}^n \left(y_j - \overline{y} \right)^2 = \sum_{\substack{j=1 \\ \text{(regression} \\ \text{sum of squares)}}}^n \left(\hat{y}_j - \overline{y} \right)^2 + \sum_{\substack{j=1 \\ \text{(residual (error)} \\ \text{sum of squares)}}}^n \hat{\mathcal{E}}_j^2 \right).$$

- Goodness-of-fit: (Adjusted) R²
 - √ Graphical interpretation

Computationally:

R-squared =
$$1 - \frac{SS_{error}}{SS_{total}}$$

Conceptually:

Force x and y to be independent, calculate the squared error.

Allow for a relationship between x and y, does this reduce your **error?**

• Goodness-of-fit: (Adjusted) R²

$$R^{2} = 1 - \frac{\sum_{j=1}^{n} \hat{\varepsilon}_{j}^{2}}{\sum_{j=1}^{n} (y_{j} - \bar{y})^{2}} = \frac{\sum_{j=1}^{n} (\hat{y}_{j} - \bar{y})^{2}}{\sum_{j=1}^{n} (y_{j} - \bar{y})^{2}} \qquad R^{2} = 1 - \frac{SSE}{SST} = \frac{SSR}{SST}$$

- \checkmark Gives the proportion of the total variation in the y_i 's explained by the predictor variables
- $\checkmark 0 \le R^2 \le I$
- \checkmark R² = I \rightarrow The fitted equation passes through all the data points
- \checkmark R² = 0 → There is <u>no linear relationship</u> between the predictor variables and the target variable

- Goodness-of-fit: (Adjusted) R²
 - √ The proportionate reduction of total variation associated with the use of the predictor variable Z.

- R² of your model is very high
 - I did a good job! (No!)
 - This dataset has a strong linear relationship between the X and y
 - Because everyone can have the same solution

- Goodness-of-fit: (Adjusted) R²
 - √ Adjusted R²

$$R_{adj}^{2} = 1 - \left[\frac{n-1}{n - (p+1)} \right] \frac{SSE}{SST} \le 1 - \frac{SSE}{SST} = R^{2}$$

- \checkmark R² increases monotonically when a (possibly not significant) new variable is added
- √ Adjusted R² fix this problem
- \checkmark If an insignificant variable is added, the adjusted R² does not increase
- Model verification
 - ✓ Check whether the model satisfies the following assumptions
 - Residuals are independent
 - Residuals have zero mean and a constant variance

• Example: predict the selling price of Toyota corolla

Υ					—)	(—				7
Price	Age_08_04	KM	Fuel_Type	HP	Met_Color	Automatic	СС	Doors	Quarterly_Tax	Weight
13500	23	46986	Diesel	90	1	0	2000	3	210	1165
13750	23	72937	Diesel	90	1	0	2000	3	210	1165
13950	24	41711	Diesel	90	1	0	2000	3	210	1165
14950	26	48000	Diesel	90	0	0	2000	3	210	1165
13750	30	38500	Diesel	90	0	0	2000	3	210	1170
12950	32	61000	Diesel	90	0	0	2000	3	210	1170
16900	27	94612	Diesel	90	1	0	2000	3	210	1245
18600	30	75889	Diesel	90	1	0	2000	3	210	1245
21500	27	19700	Petrol	192	0	0	1800	3	100	1185
12950	23	71138	Diesel	69	0	0	1900	3	185	1105
20950	25	31461	Petrol	192	0	0	1800	3	100	1185
19950	22	43610	Petrol	192	0	0	1800	3	100	1185
19600	25	32189	Petrol	192	0	0	1800	3	100	1185
21500	31	23000	Petrol	192	1	0	1800	3	100	1185
22500	32	34131	Petrol	192	1	0	1800	3	100	1185
22000	28	18739	Petrol	192	0	0	1800	3	100	1185
22750	30	34000	Petrol	192	1	0	1800	3	100	1185
17950	24	21716	Petrol	110	1	0	1600	3	85	1105
16750	24	25563	Petrol	110	0	0	1600	3	19	1065

Data preprocessing

✓ Create dummy variables for fuel types

	Fuel_type = Disel	Fuel_type = Petrol	Fuel_type = CNG
Diesel	1	0	0
Petrol	0	1	0
CNG	0	0	1

Data partitioning

√ 60% training data / 40% validation data

ld	Model	Price	Age_08_04	Mfg_Month	Mfg_Year	KM	Fuel_Type_Di	Fuel_Type_Pe
Id	Wiodei	11100	Age_00_04	wiig_wiontii	wiig_ i cai	IXIVI	esel	trol
1	RRA 2/3-Doors	13500	23	10	2002	46986	1	0
4	RRA 2/3-Doors	14950	26	7	2002	48000	1	0
5	SOL 2/3-Doors	13750	30	3	2002	38500	1	0
6	SOL 2/3-Doors	12950	32	1	2002	61000	1	0
9	/VT I 2/3-Doors	21500	27	6	2002	19700	0	1
10	RRA 2/3-Doors	12950	23	10	2002	71138	1	0
12	BNS 2/3-Doors	19950	22	11	2002	43610	0	1
17	ORT 2/3-Doors	22750	30	3	2002	34000	0	1

Fitted linear regression model

· ·		· ·	•	
Input variables	Coefficient	Std. Error	p-value	SS
Constant term	-3608.418457	1458.62072 <mark>8</mark>	0.0137	97276410000
Age_08_04	-123.8319168	3.367589	0	8033339000
KM	-0.017482	0.00175105	0	251574500
Fuel_Type_Diesel	210.9862518	474.997833	0.6571036	6212673
Fuel_Type_Petrol	2522.066895	463.6594238	0.00000008	4594.9375
HP	20.71352959	4.67398977	0.00001152	330138600
Met_Color	-50.48505402	97.85591125	0.60614568	596053.75
Automatic	178.1519013	212.052856	0.40124047	19223190
cc	0.01385481	0.09319961	0.88188446	1272449
Doors	20.02487946	51.0899086	0.69526076	39265060
Quarterly_Tax	16.7742424	2.09381151	0	160667200
Weight	15.41666317	1.40446579	0	214696000

Significance Probability

- Interpret the result
 - √ Regression coefficient
 - Beta value for the corresponding predictor variable
 - The amount of change when the predictor variable increases by I
 - If it is positive/negative, then the predictor variable and the target variable are positively/negatively correlated

Input variables	Coefficient	Std. Error	p-value	SS
Constant term	-3608.418457	1458.620728	0.0137	97276410000
Age_08_04	-123.8319168	3.367589	0	8033339000
KM	-0.017482	0.00175105	0	251574500
Fuel_Type_Diesel	210.9862518	474.9978333	0.6571036	6212673
Fuel_Type_Petrol	2522.066895	463.6594238	0.00000008	4594.9375
HP	20.71352959	4.67398977	0.00001152	330138600
Met_Color	-50.48505402	97.85591125	0.60614568	596053.75
Automatic	178.1519013	212.0528565	0.40124047	19223190
cc	0.01385481	0.09319961	0.88188446	1272449
Doors	20.02487946	51.0899086	0.69526076	39265060
Quarterly_Tax	16.7742424	2.09381151	0	160667200
Weight	15.41666317	1.40446579	0	214696000

Interpret the result

- ✓ p-value
 - Indicate whether the regression coefficient is statistically significant or not
 - A predictor variable is important for modeling when its p-value is close to 0
 - Can be used to select significant variables (e.g., use the variables with p-value less than 0.05)

Input variables	Coefficient	Std. Error	p-value	SS
Constant term	-3608.418457	1458.620728	0.0137	97276410000
Age_08_04	-123.8319168	3.367589	0	8033339000
KM	-0.017482	0.00175105	0	251574500
Fuel_Type_Diesel	210.9862518	474.9978333	0.6571036	6212673
Fuel_Type_Petrol	2522.066895	463.6594238	0.00000008	4594.9375
HP	20.71352959	4.67398977	0.00001152	330138600
Met_Color	-50.48505402	97.85591125	0.60614568	596053.75
Automatic	178.1519013	212.0528565	0.40124047	19223190
cc	0.01385481	0.09319961	0.88188446	1272449
Doors	20.02487946	51.0899086	0.69526076	39265060
Quarterly_Tax	16.7742424	2.09381151	0	160667200
Weight	15.41666317	1.40446579	0	214696000

