

Stavba mostů (Building Bridges)

Časový limit: 3 s Paměťový limit: 128 MB

Z vody v široké řece ční nad hladinu n pilířů o nějakých, potenciálně různých, výškách. Pilíře jsou umístěné v rovné řadě od jednoho břehu ke druhému. Chtěli bychom postavit most, který na nich bude stát. Abychom toho dosáhli, vybereme podmnožinu pilířů a jejich vršky spojíme, tím vzniknou části mostu. Vybraná podmnožina musí obsahovat první a poslední pilíř.

Protože se chceme vyhnout nerovnostem, vybudování části mostu mezi pilíři i a j stojí $(h_i - h_j)^2$, kde h_i je výška pilíře i. Navíc musíme odstranit všechny pilíře, které nejsou součástí mostu, protože blokují říční dopravu. Cena odstranění i-tého pilíře je w_i . Tato cena může být i záporná – zainteresované strany jsou ochotné zaplatit vám, abyste se určitých pilířů zbavili. Všechny výšky h_i i ceny w_i jsou celá čísla.

Jaká je nejmenší možná cena vybudování mostu, který spojuje první a poslední pilíř?

Vstup

První řádek obsahuje počet pilířů n. Druhý řádek obsahuje popořadě výšky h_i , oddělené mezerami. Třetí řádek pak obsahuje ceny w_i za odstranění pilířů, a to ve stejném pořadí.

Výstup

Vypište nejmenší cenu vybudování mostu. Uvědomte si, že může být záporná.

Omezení

- $2 < n < 10^5$
- $0 < h_i < 10^6$
- $0 \le |w_i| \le 10^6$

Podúloha 1 (30 body)

• $n \le 1000$

Podúloha 2 (30 body)

- Optimální řešení zahrnuje nejvýše 2 dodatečné pilíře (tj. první, poslední a maximálně 2 další).
- $|w_i| \le 20$

Podúloha 3 (40 body)

• bez dalších omezení

Příklad

Vstup	Výstup
6	17
3 8 7 1 6 6	
0 -1 9 1 2 0	