Modeling Chemical Reactions

Intern: Shaun Tan *(me)*

Supervisors:

Chieu Hai Leong, Chong Yihui, Alvin Liew

About me

- NUS, year 2 Computer Science student
- Came from Diploma of Applied Chemistry
- Started internship with only introductory knowledge in neural networks
- Interested in doing <u>SWE</u> and/or <u>ML</u>

Objective

Predicting <u>activation energy</u> from the reaction's <u>molecules</u> (ie. reactants & products)

Objective

- **Activation energy**
- Rate of reaction
- Yield %

Reaction properties

- Multiple molecules
- Has reactants & products

- Water solubility
- **Toxicity**

Molecular properties

1 molecule only

<u>Objective</u>

Can we <u>train on **molecular**-properties</u>, then <u>finetune on **reaction**-properties?</u>

Reason: there's a lot more molecular datasets than reaction datasets

Can a model for that's good at predicting molecular-property be **adapted** to predict reaction properties?

- Water solubility
- Toxicity

Molecular properties

• 1 molecule only

Context: Graph Neural Networks (GNN)

Like how <u>CNN</u> aggregate adjacent <u>pixels</u> in an <u>image</u> (ie. convolving)

GNN aggregate adjacent nodes & edges in a graph (ie. message-passing)

Context: GNN for molecules

Molecules can modelled as graphs

<u>Using SOTA architectures</u>

(best)

 We used <u>GeoGNN (aka GEM)</u>, a State-Of-The-Art (SOTA) architecture for predicting molecular-properties

Table 1 Overall performance for regression tasks and classification tasks Regression (lower is better)							
Dataset	ESOL	FreeSolv	Lipo	QM7	QM8	QM9	
No. molecules	1,128	642	4,200	6,830	21,786	133,885	
No. prediction tasks	1	1	1	1	12	12	
D-MPNN ⁴³	1.050(0.008)	2.082(0.082)	a0.683 _(0.016)	103.5(8.6)	0.0190(0.0001)	0.00814(0.00001)	
AttentiveFP ⁴⁴	a0.877 _(0.029)	^a 2.073 _(0.183)	0.721(0.001)	a72.0 _(2.7)	a0.0179 _(0.0001)	a0.00812 _(0.00001)	
N-Gram _{RF} ⁴⁵	1.074 _(0.107)	2.688(0.085)	0.812(0.028)	92.8(4.0)	0.0236(0.0006)	0.01037(0.00016)	
N-Gram _{XGB} ⁴⁵	1.083 _(0.082)	5.061 _(0.744)	2.072(0.030)	81.9(1.9)	0.0215(0.0005)	0.00964(0.00031)	
PretrainGNN ¹¹	1.100(0.006)	2.764(0.002)	0.739(0.003)	113.2(0.6)	0.0200(0.0001)	0.00922(0.00004)	
GROVER _{base} ⁴	0.983(0.090)	2.176(0.052)	0.817 _(0.008)	94.5(3.8)	0.0218(0.0004)	0.00984(0.00055)	
GROVER _{large} ⁴	0.895(0.017)	2.272(0.051)	0.823(0.010)	92.0(0.9)	0.0224 _(0.0003)	0.00986(0.00025)	
GEM	0.798(0.029)	1.877 _(0.094)	0.660(0.008)	58.9 _(0.8)	0.0171(0.0001)	0.00746(0.00001)	

Using SOTA architectures

They proposed using 2 graphs to represent a molecule

GeoGNN architecture

GeoGNN architecture

Adapting GeoGNN for reactions

Results

Performance

Performance

Debugging: Checking model's capacity

- Intentionally try to overfit (ie. converges to ~0 loss)
 smaller dataset sizes (eg. 5, 10, 16k out of the 19k dataset)
- If <u>can</u> overfit = model has the capacity to represent the dataset
- If <u>cannot</u> overfit = model is not powerful enough
 (or I coded something wrongly)

Debugging: Checking model's capacity

Thus: model seems to have the capacity to represent the dataset

Tweaking the architecture

Next steps

Next steps: Tweaking combing/pooling

Next steps: Pretraining on molecular-properties

Pretrain on molecular-property datasets
then finetune on activation-energy reaction datasets
to see if the pretraining helps

Challenges I faced

Challenges I faced

- Recoded GeoGNN's architecture in PyTorch + DGL:
 - becuz their original code used a lesser-known library paddlepaddle
 - and their code was very messy, w/o documentations both of which made it hard to modify/adapt

o recoded to gain experience in working with GNN / PyTorch

Challenges I faced

- Learnt PyTorch and DGL libraries
- To keep code clean, coded with type hintings, docstrings, PyTorch-Lightning

```
class SortGraphNorm(torch.nn.Module):
    Applies graph normalization, where each node features is divided by
    sqrt(num of nodes) for each graph in batched graph created by `dgl.batch`.
    This is a PyTorch + DGL equivalent of GeoGNN's `GraphNorm`:
    https://github.com/PaddlePaddle/PaddleHelix/blob/e93c3e9/pahelix/networks/gnn
    ....
    def forward(self, batched_graph: DGLGraph, node_feats: Tensor) -> Tensor:
        Args:
           batched graph (DGLGraph): Batched (or unbatched) DGL graph created by
            node feats (Tensor): The input node features.
        Returns:
            Tensor: The node features that's been normalized via dividing by sqrt(
        batch num of nodes = batched graph.batch num nodes()
        assert isinstance(batch_num_of_nodes, Tensor)
```

```
class GeoGNNLightningModule(ABC, pl.LightningModule):
   def training step(self, batch: GeoGNNBatch, batch idx: int) -> Tensor:
       atom bond batch graph, bond angle batch graph, labels = batch
       pred = self.forward(atom bond batch graph, bond angle batch graph)
       self. train step values.append((pred, labels))
       loss = self.loss_fn(pred, labels)
       # Log raw unstandardized MSE loss to the progress bar and logger.
       self.log("train_raw_std_mse_loss", loss, on_step=False, on_epoch=True,
       return loss
   def predict_step(self, batch: GeoGNNBatch | tuple[DGLGraph, DGLGraph], batc
       atom bond batch graph, bond angle batch graph, * = batch
       pred = self.forward(atom bond batch graph, bond angle batch graph)
       pred = self.scaler.inverse_transform(pred)
       return pred
   def validation_step(self, batch: GeoGNNBatch, batch_idx: int) -> Tensor:
       atom_bond_batch_graph, bond_angle_batch_graph, labels = batch
```

Challenges I faced

 The model GeoGNN coded wasn't what they mentioned in the paper

What they **SAID** they did:

What they **ACTUALLY** did:

