

Faculty of Information and Communications Technology Bachelor Degree in Information Technology

BIOS4111

Test 2

Operating Systems Trimester: 05

From July 2024 to October 2024

BITOS4111

OPERATING SYSTEMS

MODULE DETAILS

Course Location : Swaziland

Examiner (s) : Mr. Ndumiso E. Khumalo

Contact details (email): ndumisoe.khumalo@qmail.com

Commence Date : Week 8

Submission Date : Week 8

Duration : 2 hours

INSTRUCTIONS:

- 1. This paper has 2 QUESTIONS
- 2. Answer **ALL** questions
- 3. The Total Marks is 50 and this paper contributes 15% to your final mark
- 4. Marks are provided next to each question in square brackets []
- 5. Use the spaces provided in the guestion paper or the provided answer sheet.
- 6. Read each question carefully before attempting.
- 7. Misconduct, cheating, possession of unauthorised materials, improper use of materials, unauthorised removal of materials from examination rooms or ignoring the instructions given by supervisors is STRICTLY PROHIBITED.

This exam paper consists of 2 pages including this cover page

GOODLUCK!!!

Test 2 Faculty of Information and Communications Technology Bachelor Degree in Information Technology

BIOS4111

Operating Systems Trimester: 05

From July 2024 to October 2024

QUESTION 1 – 20 MARKS

ā	Э.	Define the following: i. Logical Address ii. Physical Address iii. Brute Force	[3]
t).	Suppose the base value address is R, and the logical addresses are in the range max, state the range of physical addresses.	0 to [2]
C	: .	Briefly explain the three types of files	[3]
C	d.	Classically, the binding of instructions and data to memory addresses can be don any step along the way. Explain THREE (3) such steps.	e at [6]
e	2.	In operating systems, the general dynamic storage-allocation problem exists, wh concerns how to satisfy a request of size n from a list of free holes. Explain the THREE (3) solutions to this problem.	ich [6]
QUESTION 2 – 30 MARKS			
ā	Э.	Outline the main difference between symmetric encryption and asymmetric encryption	[2]
t	ο.	Operating systems provide access method for files, such as sequential access and direct access. Distinguish between sequential access and direct access.	d [4]
C	2.	To protect a system, we must take security measures at four levels. State one ty of attack at each level.	pe [4]
c	d.	With the aid of a diagram and an example, explain the operation of an MMU	[10]
€	2.	List the components of the following algorithms: i. Encryption Algorithm ii. Authentication Algorithm	[10]
THE END			