Derivative Rules

f(x)	f'(x)	
u(x)v(x)	u'v + uv'	
$\underline{u(x)}$	$\underline{u'v - uv'}$	
v(x)	v^2	
u(v(x))	u'(v(x))v'(x)	
x^n	nx^{n-1}	
$\ln \left(u\left(x\right) \right)$	u'(x)	
	u(x)	
$\sin\left(ax\right)$	$a\cos(ax)$	
$\cos\left(ax\right)$	$-a\sin(ax)$	
$\tan\left(ax\right)$	$a \sec^2(ax)$	
$\cot\left(ax\right)$	$-a\csc^2(ax)$	
$\sec\left(ax\right)$	$a \sec(ax) \tan(ax)$	
$\csc\left(ax\right)$	$-a\csc(ax)\cot(ax)$	

Trigonometric Identities

$$1 = \sin^{2}(x) + \cos^{2}(x)$$

$$\sin(2x) = 2\sin(x)\cos(x)$$

$$\cos(2x) = \cos^{2}(x) - \sin^{2}(x)$$

$$\sin^{2}(x) = \frac{1 - \cos(2x)}{2}$$

$$\cos^{2}(x) = \frac{1 + \cos(2x)}{2}$$

Partial Fraction Decomposition

Given the LHS in the denominator, substitute the RHS.

$$(ax+b)^k \to \frac{A_1}{ax+b} + \dots + \frac{A_k}{(ax+b)^k}$$
$$(ax^2 + bx + c)^k \to$$
$$\frac{A_1x + B_1}{ax^2 + bx + c} + \dots + \frac{A_kx + B_k}{(ax^2 + bx + c)^k}$$

Integration Techniques

$$\int u \, dv = uv - \int v \, du$$

$$\int f(g(x)) \frac{dg(x)}{dx} \, dx = \int f(u) \, du$$
where $u = g(x)$.

Trigonometric Substitutions

Form	Substitution
	$x = \frac{a}{b}\sin(\theta)$ $x = \frac{a}{b}\tan(\theta)$ $x = \frac{a}{b}\sec(\theta)$

L'Hôpital's Rule

If
$$\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = 0$$
 or $\pm\infty$, then
$$\lim_{x\to x_0} \frac{f(x)}{g(x)} = \lim_{x\to x_0} \frac{f'(x)}{g'(x)}.$$

f(x) continuous at c iff $\lim_{x\to c} f(x) = f(c)$. Alternating Series Test f(x) is continuous on I:(a, b) if it is Given $a_i=(-1)^i b_i$ and $b_i>0$. continuous for all $x \in I$.

continuous for all $x \in I$, but only right Ratio Test continuous at a and left continuous at b. Given $\rho = \lim_{i \to \infty} \left| \frac{a_{i+1}}{a_i} \right|$:

Intermediate Value Theorem

If f(x) is continuous on I : [a, b] and $f(a) \le c \le f(b)$, then $\exists x \in I : f(x) = c$.

Differentiability

f(x) is differentiable at $x = x_0$ iff

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
 exists. This defines the derivative
$$f(x + b) - f(x)$$

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
 Differentiability implies continuity.

Mean Value Theorem

If f(x) is continuous and differentiable on I : [a, b], then

$$\exists c \in I : f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Definite Integrals

$$A = \int_{a}^{b} f(x) \, \mathrm{d}x$$

Fundamental Theorem of Calculus

$$\int_{a}^{b} \frac{\mathrm{d}}{\mathrm{d}x} F(x) \, \mathrm{d}x = F(b) - F(a)$$
$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{x} f(t) \, \mathrm{d}t = f(x)$$

Taylor Polynomials

$$f(x)\approx p_n(x)=\sum_{k=0}^n\frac{f^{(k)}(x_0)}{k!}\left(x-x_0\right)^k$$

Taylor Series

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

Maclaurin Series: $x_0 = 0$.

Common Maclaurin Series

Function	Series Term	Conv.
e^x	$\frac{x^n}{n!}$	all x
$\sin\left(x\right)$	$ (-1)^{n \frac{x^{n}}{n!} \frac{x^{2n+1}}{(2n+1)!}} $ $ (-1)^{n \frac{x^{2n}}{(2n)!}} $	all x
$\cos\left(x\right)$	$(-1)^{n} \frac{x^{2n}}{(2n)!}$	all x
$\frac{1}{1-x}$	x^n	(-1, 1)
$\frac{1}{1+x^2}$	$ (-1)^n x^{2n} $ $ (-1)^{n+1} \frac{x^n}{n} $	(-1, 1)
$\frac{\ln\left(1+x\right)}{}$	$\left(-1\right)^{n+1} \frac{x^n}{n}$	[-1, 1]

Power Series: $\sum_{n=0}^{\infty} c_n (x - x_0)^n$

Series Tests

For a series of the form $\sum_{i=1}^{n} a_i$:

If $b_{i+1} \leqslant b_i \& \lim_{i\to\infty} b_i = 0$, then f(x) is continuous on I:[a,b] if it is convergent, else inconclusive.

Given
$$\rho = \lim_{i \to \infty} \left| \frac{a_{i+1}}{a_i} \right|$$
:
 $\rho < 1$: convergent
 $\rho > 1$: divergent
 $\rho = 1$: inconclusive

Multivariable Functions

$$f: \mathbb{R}^n \to \mathbb{R}$$

Level Curves

$$L_{c}\left(f\right)=\left\{ \left(x,\,y\right):f\left(x,\,y\right)=c\right\}$$

If $f(x, y) \to L$ as $(x, y) \to (x_0, y_0)$, then $\lim_{(x, y) \to (x_0, y_0)} = L$ along any smooth curve.

The limit does not exist if L changes along different smooth curves.

Partial Derivatives: w.r.t one variable, others held constant.

Gradient: $\nabla = \langle \partial_{x_1}, \ \partial_{x_2}, \ \dots, \ \partial_{x_n} \rangle$

Multivariable Chain Rule

$$\begin{array}{lll} \text{For} & f &=& f(\boldsymbol{x}(t_1, \text{ ..., } t_n)) \text{ with } \boldsymbol{x} &=& \\ \left[x_1 \text{ ... } x_m\right] & & \\ & & \frac{\partial f}{\partial t_i} = \boldsymbol{\nabla} f \cdot \partial_{t_i} \boldsymbol{x}. \end{array}$$

Directional Derivatives

$$\nabla_{\boldsymbol{u}} f = \nabla f \cdot \boldsymbol{u}$$

where u is a unit vector and the slope is given by $\|\nabla_{\boldsymbol{u}}f\|$. If $\nabla_{\boldsymbol{u}}f=0$, \boldsymbol{u} is tangent to the level curve at x_0 .

$$\max_{\|\boldsymbol{u}\|=1} \boldsymbol{\nabla}_{\boldsymbol{u}} f = \boldsymbol{\nabla} f$$

If $\nabla f \neq 0$, ∇f is a normal vector to the level curve at x_0 .

Critical Points

 (x_0, y_0) is a critical point if $\nabla f(x_0, y_0) =$ **0** or if $\nabla f(x_0, y_0)$ is undefined.

Classification of Critical Points

$$D = f_{xx}f_{yy} - \left(f_{xy}\right)^2$$

D > 0 and $f_{xx} < 0$: local maxima

D>0 and $f_{xx}>0$: local minima

D < 0: saddle point

D=0: inconclusive

Double Integrals

The volume of the solid enclosed between the surface z = f(x, y) and the region Ω is defined by

$$V = \iint\limits_{\Omega} f(x, y) \, \mathrm{d}A.$$

If Ω is a region bounded by $a \leq x \leq b$ and $c \leq y \leq d$, then

$$\begin{split} \iint\limits_{\Omega} f(x,\,y) \,\mathrm{d}A &= \int_{c}^{d} \int_{a}^{b} f(x,\,y) \,\mathrm{d}x \,\mathrm{d}y \\ &= \int_{a}^{b} \int_{c}^{d} f(x,\,y) \,\mathrm{d}y \,\mathrm{d}x \end{split}$$

Type I Regions

$$\iint_{\Omega} f(x, y) \, dA = \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) \, dy \, dx$$

Bounded left & right by:

$$x = a$$
 and $x = b$

Bounded below & above by:

$$y=g_1(x) \text{ and } y=g_2(x)$$
 where $g_1(x) \leq g_2(x)$ for $a \leq x \leq b$:

Type II Regions

$$\iint\limits_{\Omega} f(x,\,y)\,\mathrm{d}A = \int_{c}^{d} \int_{h_{1}(x)}^{h_{2}(x)} f(x,\,y)\,\mathrm{d}x\,\mathrm{d}y \text{ from a fixed point, that point is } \mathbf{Stable:} \text{ if both tend toward FP}$$

Bounded left & right by:

$$x = h_1(y)$$
 and $x = h_2(y)$

Bounded below & above by:

$$y = c$$
 and $y = d$

where $h_1(y) \le h_2(y)$ for $c \le y \le d$. To integrate, solve the inner integrals

Vector Valued Functions

$$\mathbf{r}: \mathbb{R} \to \mathbb{R}^n$$

The **domain** of $\mathbf{r}(t)$ is the intersection of the domains of its components.

The **orientation** of $\mathbf{r}(t)$ is the direction

Limits, derivatives and integrals are all component-wise. Each component has its own constant of integration.

Parametric Lines

$$\mathbf{l}(t) = \mathbf{P}_0 + t\mathbf{v}$$

parallel to \boldsymbol{v} .

Tangent Lines

If $\mathbf{r}(t)$ is differentiable at t_0 and $\mathbf{r}'(t_0) \neq$

$$\mathbf{l}(t) = \mathbf{r}(t_0) + t\mathbf{r}'(t_0).$$

Curves of Intersection

Choose one of the variables as the parameter, and express the remaining variables in terms of that parameter.

Arc Length

$$S = \int_a^b \|\mathbf{r}'(t)\| \, \mathrm{d}t$$

Ordinary Differential Equations

Order: highest derivative in DE. $\iint f(x, y) dA = \int_{a}^{b} \int_{a/(x)}^{g_2(x)} f(x, y) dy dx$ Order: inglest derivative in DE.

Autonomous **DE:** does not depend explicitly on the independent variable explicitly on the independent variable.

Qualitative Analysis

$$\frac{\mathrm{d}y}{\mathrm{d}t} = f(y)$$

A fixed point is the value of y for which **Homogeneous Solution** f(y) = 0.

Stability of Fixed Points

Given a positive/negative perturbation Stable: if both tend toward FP Unstable: if both tend away from FP Semi-Stable: if one tends toward FP, and another tends away from FP

Directly Integrable ODEs

For
$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x)$$
:
$$y(x) = \int f(x) \, \mathrm{d}x.$$

Separable ODEs

For
$$\frac{\mathrm{d}y}{\mathrm{d}x} = p(x)q(y)$$
:
$$\int \frac{1}{q(y)} \frac{\mathrm{d}y}{\mathrm{d}x} \, \mathrm{d}x = \int p(x) \, \mathrm{d}x \,.$$

Linear ODEs

of motion along the curve as the value of For $\frac{\mathrm{d}y}{\mathrm{d}x}+p(x)y=q(x)$, use the *integrating* the parameter increases. factor: $I(x)=e^{\int p(x)\mathrm{d}x}$, so that

$$y(x) = \frac{1}{I(x)} \int I(x)q(x) dx.$$

Exact ODEs

 $P(x, y) + Q(x, y) \frac{dy}{dx} = 0$ has the solution The sum of voltages around a loop equals $\Psi(x, y) = c$ iff it is exact, namely, when 0. where $\mathbf{l}(t)$ passes through P_0 , and is $P_y = Q_x$, where $P = \Psi_x$ and $Q = \Psi_y$. parallel to v.

$$\Psi(x, y) = \int P(x, y) dx + f(y)$$

$$\Psi(x, y) = \int Q(x, y) \, \mathrm{d}y + g(x)$$

and f(y) and g(x) can be determined by solving these equations simultaneously.

Second-Order ODEs

$$a_2(x)y'' + a_1(x)y' + a_0(x)y = F(x)$$

Initial Values

$$y(x_0) = y_0 \quad y'(x_0) = y_1$$

Boundary Values

$$y(x_0) = y_0 \quad y(x_1) = y_1$$

Reduction of Order

$$y_2(x) = v(x) y_1(x)$$

v(x) can be determined by substituting y_2 into the ODE, using w(x) = v'(x).

General Solution

$$y(x) = y_H(x) + y_P(x) \label{eq:y_hat}$$

$$y_H(x) = e^{\lambda x}$$

Real Distinct Roots

$$y_H(x) = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$$

Real Repeated Roots

$$y_H(x) = c_1 e^{\lambda x} + c_2 t e^{\lambda x}$$

Complex Conjugate Roots

Given
$$\lambda = \alpha \pm \beta i$$
:

$$y_H(x) = e^{\alpha x} (c_1 \cos(\beta x) + c_2 \sin(\beta x))$$

Particular Solution

See table below. Substitute y_P into the nonhomogeneous ODE, and solve the undetermined coefficients.

Spring and Mass Systems

$$my'' + \gamma y' + ky = f(t)$$

Newton's Law: F = my''Spring force: $F_s = -ky$

Damping force: $F_d = -\gamma y'$

 $m: \max$ k: spring constant

 γ : damping f(t): external force

Electrical Circuits

$$v(t) - iR - L\frac{\mathrm{d}i}{\mathrm{d}t} - \frac{q}{C} = 0$$
$$L\frac{\mathrm{d}^2q}{\mathrm{d}t^2} + R\frac{\mathrm{d}q}{\mathrm{d}t} + \frac{1}{C}q = v(t)$$

where $i = \frac{\mathrm{d}q}{\mathrm{d}t}$

Voltage drop across various elements:

$$v_R = iR$$

$$v_C = \frac{q}{C}$$

$$v_L = L\frac{\mathrm{d}i}{\mathrm{d}t}$$

R: resistance

C: capacitance

L: inductance v(t): voltage supply