EE315 - Electronics Laboratory

Experiment - 4 Simulation **BJT Small Signal Analysis**

Preliminary Work

- **1.a)** Calculate A_v , A_i , R_{in} , and R_{out} on the circuit given in Figure 1. Assume that C_{Ci} and C_{Co} behave as open circuit for DC signals and as short circuit for AC signals.
- **1.b)** Determine limits of the signal source, v_s , for the transistor to remain in forward-active region.

Figure 1. Common-emitter amplifier

- **2.a)** Calculate A_v , A_i , R_{in} , and R_{out} on the circuit given in Figure **2**. Assume that the coupling capacitors, C_{Ci} and C_{Co} , behave as open circuit for DC signals and as short circuit for AC signals.
- **2.b)** Determine limits of the signal source, v_s , for the transistor to remain in forward-active region. (Hint: AC current on R_L will be added onto the quiescent emitter current.)

Figure 2. Common-collector amplifier (emitter follower)

Procedure

- 1. Build the circuit given in Figure 1 and select BC547B as the transistor model. Set the *value* of the voltage source ν_S to obtain 1 kHz sine wave, with 2 Vp-p amplitude. Select a 4.7 μ F Al electrolytic capacitor model (right-click on the capacitor figure and click on "Select Capacitor"). Note the polarity of the capacitors on the circuit diagram.
- 1.a) Measure the voltage gain, Av.

 $V_{Sp-p} = V_{Op-p} = A_V =$

1.b) Determine the current gain, A_i , by measuring the current through R_S and R_L .

 $I_{Sp-p} = I_{Lp-p} = A_i =$

1.c) Disconnect R_L and measure the input resistance, R_{in}.

 $V_{Sp-p} = I_{Sp-p} = R_{in} =$

1.d) Measure peak-to-peak output voltage while R_L is disconnected. Connect R_L and change its value to obtain half the output voltage measured without any load that will give the R_{out} of the amplifier.

 $V_{Op-p(NoLoad)} = R_{out} =$

1.e) Find the maximum peak v_s amplitudes before the transistor goes into cut-off or saturation. Compare the results with your calculations in the preliminary work.

 $V_{\text{Speak(cut-off)}} = V_{\text{Speak(sat)}} =$

1.f) Connect a **4.7 \muF** capacitor in parallel to **R**_E. Make sure that the polarity of the capacitor matches the DC voltage polarity on **R**_E. Measure the voltage gain, **A**_V, again as described in step **1.a**.

 $V_{Sp-p} = V_{Op-p} = A_V =$

1.g) Draw the small signal model of the common-emitter amplifier with the capacitor in parallel to R_E , and calculate the voltage gain, A_v , based on your model.

İYTE - Department of Electrical and Electronics Engineering

- 2. Build the emitter-follower circuit given in Figure 2. Verify that the voltage source output is set to 1 Vp-p, 1 kHz, and repeat the steps 1.a, 1.b, and 1.c for this circuit
- 2.a) Measure the voltage gain, Av.

$$V_{Sp-p} = V_{Op-p} = A_v =$$

2.b) Determine the current gain, A_i.

$$I_{Sp-p} = I_{Lp-p} = A_i =$$

2.c) Disconnect R_L and measure the input resistance, R_{in} .

$$V_{Sp-p} = I_{Sp-p} = R_{in} =$$

2.d) Increase v_S amplitude to **2.0 Vp-p** and observe v_O waveform. How do you explain the distortion in the v_O waveform?

2.e) Find a way to restore the ν_0 waveform while keeping ν_s amplitude at 2.0 Vp-p, and R_L = 100 Ω . Explain how you can restore the ν_0 waveform.

2.f) Measure the output resistance, R_{out} using the method discribed in step **1.d**. Make sure that the output waveform is not distorted while you measure R_{out} .

$$V_{Op-p(NoLoad)} = R_{out} =$$