William Stallings Arquitetura e Organização de Computadores 8ª Edição

Capítulo 5 Memória interna

Os textos nestas caixas foram adicionados pelo Prof. Joubert

Tipos de memória de semicondutor

Tipo de memória	Categoria	Apagamento	Mecanismo de escrita	Volatilidade	
Memória de acesso aleatório (RAM)	Memória de leitura-escrita	Eletricamente, em nível de byte	Eletricamente	Volátil	
Memória somente de leitura (ROM)			Máscaras		
ROM programável (PROM, do inglês programmable ROM)	Memória somente de leitura	Não é possível			
PROM apagável (EPROM, do inglês erasable PROM)		Luz UV, nível de chip		Não volátil	
PROM eletricamente apagável (EEPROM, do inglês electrically erasable PROM)	Memória principalmente de leitura	Eletricamente, nível de byte	Eletricamente		
Memória flash		Eletricamente, nível de bloco			

Memória de semicondutor

- RAM :
 - Nome incorreto, pois toda memória de semicondutor tem acesso aleatório.
 - -Leitura/escrita.
 - -Volátil.
 - -Armazenamento temporário.
 - -Estática ou dinâmica.

Operação da célula de memória

RAM dinâmica

- Bits armazenados com carga em capacitores.
- As cargas vazam.
- Precisa de renovação mesmo se alimentada.
- Construção mais simples.
- Menor por bit.
- Mais barata.
- Precisa de circuitos de refresh.
- Mais lenta.
- Memória principal.
- Dispositivo basicamente analógico.
 - Nível de carga determina o valor.

Estrutura da RAM dinâmica

Operação da DRAM

- Linha de endereço ativa quando bit é lido ou escrito.
 - Chave de transistor fechada (corrente flui).
- Escrita:
 - Voltagem na linha de bit.
 - Alta para 1 baixa para 0.
 - Depois sinaliza linha de endereço.
 - Transfere carga ao capacitor.
- Leitura:
 - Linha de endereço selecionada.
 - Transistor liga.
 - Carga do capacitor alimentada por linha de bit para amplificador comparar.
 - Compara com valor de referência para determinar 0 ou 1.
 - Carga do capacitor deve ser restaurada.

RAM estática

- Bits armazenados como chaves ligado/desligado.
- Sem carga para vazar.
- Não precisa de refresh quando alimentada.
- Construção mais complexa.
- Maior por bit.
- Mais cara.
- Não precisa de circuitos de refresh.
- Mais rápida.
- Cache.
- Digital.
 - —Usa flip-flops.

Estrutura da RAM estática

Figure 3-22. (a) NOR latch in state 0. (b) NOR latch in state 1. (c) Truth table for NOR.

Assim se projeta desde registradores até memórias de grande capacidade de armazenamento

SRAM *versus* **DRAM**

- Ambas voláteis.
 - -É preciso energia para preservar os dados.
- Célula dinâmica:
 - -Mais simples de construir, menor.
 - -Mais densa.
 - —Mais barata.
 - -- Precisa de refresh.
 - Maiores unidades de memória.
- Estática:
 - —Mais rápida.
 - —Cache.

Read Only Memory (ROM)

- Armazenamento permanente.
 - –Não volátil.
- Microprogramação (veja mais adiante).
- Sub-rotinas de biblioteca.
- Programas do sistema (BIOS).
- Tabelas de função.

Tipos de ROM

- Gravada durante a fabricação:
 - Muito cara para pequenas quantidades.
- Programável (uma vez):
 - PROM.
 - Precisa de equipamento especial para programar.
- Lida "na maioria das vezes":
 - Erasable Programmable (EPROM).
 - Apagada por UV.
 - Electrically Erasable (EEPROM):
 - Leva muito mais tempo para escrever que para ler.
 - Memória flash:
 - Apaga memória inteira eletricamente.

Organização em detalhes

- Um chip de 16 Mbits pode ser organizado como 1M de palavras de 16 bits.
- Um chip de 16 Mbits pode ser organizado como um array de 2048 x 2048 x 4 bits.
 - Reduz número de pinos de endereço.
 - Multiplexa endereço de linha e endereço de coluna.
 - -11 pinos para endereçar ($2^{11}=2048$).
 - Aumentar um pino dobra o intervalo de valores,
 de modo que a capacidade multiplica por 4.

Refreshing

- Circuito de refresh incluído no chip.
- Desabilita chip.
- Conta por linhas.
- Lê e escreve de volta.
- Leva tempo.
- Atrasa o desempenho aparente.

DRAM típica de 16 Mb (4M x 4)

Empacotamento

Organização do módulo de 256 KB

Organização do módulo de 1 MB

Memória intercalada

- Coleção de chips de DRAM.
- Agrupada em banco de memória.
- Bancos atendem a solicitações de leitura ou escrita independentemente.
- K bancos podem atender a k solicitações simultaneamente.

Correção de erro

- Falha permanente.
 - —Defeito permanente.
- Erro não permanente:
 - -Aleatório, não destrutivo.
 - -Sem dano permanente à memória.
- Detectado usando código de correção de erro de Hamming.

Função do código de correção de erro

Hamming Error Correcting Code

Figure 5.8 Hamming Error

		Single-Erro	r Correction	Single-Error Correction/				
				Double-Error Detection				
	Data Bits	Check Bits	% Increase	Check Bits	% Increase			
or.	8	4	50	5	62.5			
	16	5	31.25	6	37.5			
	32	6	18.75	7	21.875			
	64	7	10.94	8	12.5			
	128	8	6.25	9	7.03			
	256	9	3.52	10	3.91			

Bit Position	12	11	10	9	8	7	6	5	4	3	2	1
Position Number	1100	1011	1010	1001	1000	0111	0110	0101	0100	0011	0010	0001
Data Bit	D8	D7	D6	D5		D4	D3	D2		D1		
Check Bit					C8				C4		C2	C1

Figure 5.9 Layout of Data Bits and Check Bits

Organização avançada da DRAM

- DRAM básica igual desde primeiros chips de RAM.
- DRAM avançada.
 - -Também contém pequena SRAM.
 - —SRAM mantém última linha lida (compare com cache!).
- Cache DRAM:
 - —Maior componente da SRAM.
 - Usa como cache ou buffer serial.

DRAM síncrona (SDRAM)

- Acesso sincronizado com clock externo.
- Endereço é apresentado à RAM.
- RAM encontra dados (CPU espera na DRAM convencional).
- Como a SDRAM move dados em tempo com o clock do sistema, CPU sabe quando os dados estarão prontos.
- CPU n\u00e3o precisa esperar, e pode fazer alguma outra coisa.
- Modo de rajada permite que SDRAM defina fluxo de dados e o dispare em bloco.
- DDR-SDRAM envia dados duas vezes por ciclo de clock (transição de subida e descida).

SDRAM

RAMBUS

- Adotada pela Intel para Pentium & Itanium.
- Concorrente principal da SDRAM.
- Pacote vertical todos os pinos em um lado.
- Troca de dados por 28 fios < cm.
- Barramento endereça até 320 chips RDRAM a 1,6Gbps.
- Protocolo de bloco assíncrono:
 - Tempo de acesso de 480ns.
 - -Então, 1,6 Gbps.

Estrutura da RAMBUS

DDR - SDRAM

- SDRAM só pode enviar dados uma vez por ciclo de clock.
- Double-data-rate SDRAM pode enviar dados duas vezes por ciclo de clock.
 - -Transição de subida e transição de descida.

Cache DRAM

- Mitsubishi.
- Integra pequena cache SRAM (16 kb) no chip de DRAM genérico.
- Usada como cache verdadeira.
 - linhas de 64 bits.
 - Efetiva para acesso aleatório comum.
- Para admitir acesso serial de bloco de dados.
 - Por exemplo, ao renovar tela de mapa de bits.
 - CDRAM pode previamente buscar os dados da DRAM no buffer de SRAM.
 - Acessos subsequentes unicamente à SRAM.

Leitura

- The RAM Guide
- RDRAM