BIOSENSOR

Patent Number:

JP60173457

Publication date:

1985-09-06

Inventor(s):

KAWAGURI MARIKO; others: 02

Applicant(s)::

MATSUSHITA DENKI SANGYO KK

Requested Patent:

☐ JP601<u>73457</u>

Application Number: JP19840030542 19840220

Priority Number(s):

IPC Classification:

G01N27/46; G01N27/30

EC Classification:

Equivalents:

JP1744232C, JP4030543B

Abstract

PURPOSE:To obtain a biosensor which can measure easily and quickly the specific component in a blood with high accuracy by providing a measuring electrode and counter electrode on an insulating substrate, coating the substrate with a prescribed reactive layer and porous filter layer and depositing an

anticoagulant on one of the coating layers.

CONSTITUTION:Platinum is embedded to an insulating (PVC) substrate 10 to provide a measuring electrode 11 and a counter electrode 12. A nonwoven nylon fabric 13 is installed to cover the electrode system. The fabric 13 carries glucose oxidase 14 as oxidation reduction enzyme and potassium ferricyanide 15 as an oxidation type dye to be conjugated to the oxidation reduction enzyme in a dry state after said fabric is impregnated into the soln, thereof. A filter layer 16 consisting of porous polycarbonate is installed onto the fabric 13. An anticoagulant (NaCl) is deposited on the layer 16. A blood is dropped to such sensor and the potential of the measuring electrode 11 is swept (0-0.5V) on the basis of the electrode 12, then the oxidation current is measured, by which the concn. of the glucose in the blood is detected. The specific component in the blood is thus easily and quickly measured with good accuracy.

Data supplied from the esp@cenet database - 12

12000,00

⑩日本国特許庁(JP)

① 特許出願公開

⑫ 公 開 特 許 公 報 (A) 昭60 - 173457

⑤Int Cl.⁴

識別記号

庁内整理番号

匈公開 昭和60年(1985)9月6日

G 01 N 27/46 27/30 A - 7363 - 2G E - 7363 - 2G

未請求 発明の数 1 (全5頁) 審査請求

49発明の名称

バイオセンサ

願 昭59-30542 ②特

願 昭59(1984)2月20日 ②出

明 者 72発

耍 泂

真 理 子 史

門真市大字門真1006番地 松下電器産業株式会社内

者 明 72発 明 者 @発

海 南 飯

朗 志 孝

門真市大字門真1006番地 松下電器產業株式会社内

門真市大字門真1006番地 松下電器產業株式会社内

①出 願 人 松下電器産業株式会社

門真市大字門真1006番地

70代 理

敏男 弁理士 中尾

外1名

1、発明の名称:

バイオセンサ

- 2、特許請求の範囲
 - (1) 絶縁性の基板上に、少なくとも測定極と対極 からなる電極系を設け、との電極系を酸化還元 酵素および酸化還元酵素と共役する酸化型色素 を含有する反応層および多孔性の沪過層で被覆 するとともに、前記反応層および沪過層の少な くとも一方に抗血凝固剤を担持させたバイオセ
 - (2) 測定極が白金である特許請求の範囲第1項記 載のバイオセンサ。
 - (3) 対極か白金又は銀塩化銀である特許請求の範 囲第1項記載のバイオセンサ。
 - (4) 反応層および沪過層が親水性を有する多孔体 膜である特許請求の範囲第1項記載のバイオセ ンサ。
 - (5) 酸化還元酵素色素および抗凝血剤多孔体膜に 乾燥状態で保持されている特許請求の範囲第4

項記載のバイオセンサ。

- (6) 電極系が測定極,対極及び参照極の3電極で 構成され、いずれの電極も白金である特許請求 の範囲第1項記載のバイオセンサ。
- 3、発明の詳細な説明

産業上の利用分野

本発明は、血液中の特定成分を迅速、かつ容易 に定量することのできるバイオセンサに関するも のである。

従来例の構成とその問題点

近年、酵素の有する特異的触媒作用を利用した 種々のバイオセンサが開発され、特に臨床検査分 野への応用が試みられている。検査項目及び検体 数が増加している現在、迅速に精度よく測定でき るバイオセンサが望まれている。

グルコースセンサに例をとると、糖尿病の増加 が激しい今日、血液中の血糖値を測定し管理する には、以前のように血液を遠心分離し血漿にして 測定するのでは非常に時間がかかるため、全血で 測定できるセンサが要求されている。簡易型とし ては、尿検査の時に使用されている検査紙と同様に、スティック状の支持体に糖(グルコース)にのみ反応する酵素および酵素反応時又は酵素反応の生成物により変化する色素を含有する担体を設置したものがある。との担体に血液を添加し、一定時間後の色素の変化を目又は光により測定する方式であるが、血液中の色素による妨害が大きく精度は低い。

かし、血液の浸透および反応に時間がかかるため、 サンプルの乾燥を防ぐ防水層 4 が必要となったり、 反応を速めるために高温でインキュベートする必 要があり、装置および担体が複雑化するという問 顕がある。

発明の目的

本発明は、上記の問題点を克服し、血液中の特 定成分を簡易に、迅速かつ精度よく測定できるバ イオセンサを得ることを目的とする。

発明の構成

本発明のバイオセンサは、絶縁性の基板上に少なくとも測定極と対極からなる電極系を有し、前記電極系を少なくとも酸化還元酵素および酸化還元酵素と共役する酸化型色素を含有してなる反応し、及応強と浮環層の47なくとも一方に抗血凝固剂を担待層と多孔性を有する沪過層で被覆したことを特徴とする。

本発明のバイオセンサを用いることにより、血 液中の特定成分の測定を簡易に、精度よく測定す ることができる。

実施例の説明

本発明のバイオセンサの1つとして、グルコースセンサを例に説明する。第3図にグルコースセンサの一実施例の模式図を示す。塩化ビニル樹脂からなる絶縁性の基板10に白金を埋め込み、測定極11と対極12とする。前記電極系を覆うよ

りに、ナイロン不織布13を設置する。このナイロン不織布13は、酸化還元酵素としてグルコースオキシダーゼ14と酸化還元酵素と共役する酸化型色素としてフェリシアン化カリウム15を、溶解含浸後乾燥状態で担持している。このナイロン不織布13の上部に、多孔性(孔径1μm)のポリカーボネートからなる沪過層16を設置する。

度が検知できる。得られた電流値は、グルコースの標準液で測定したところ、 8 O O m g/d ℓ までグルコースの濃度とよい直線性を示した。酵素と酸化型色素からなる反応層かよび沪過層は、測定毎に交換したが、標準液かよび血液のサンブル両方において再現性は良好であった。又、血液の添加量を 2 O μ ℓ ~ 1 4 O μ ℓ まで変化させたが、酸化型色素及び酵素量が充分なため、添加量に関係なく一定の値を示した。

戸過層16として、ポリカーボネートの多孔体を用いることにより、血液中の血球や粘性の物質があらかしめ戸過でき、電極の汚れを少なくするとができた。戸過層がないと、長期間使用しているうちに電極上に血球が付着し、得られる単位に血球が付着し、の変があったが、電層により電極を水洗だで、ボリカーボネートの多孔体を界面活性剤で処理するとにより親水性をもたせることができる。アロ話性剤として例えばポリエチレングリコールア

さらに、沪過層に抗凝血剤であるフッ化ナトリウム溶液を含浸後乾燥して担持させたところ、血液がわずか1 O砂で沪過できた。血液は粘性が高いため沪過に時間がかかりすぎると凝血が始まり沪過層を通過できなくなるという問題があった。抗凝血剤を用いることにより沪過がすみやかになり、常に安定に測定でき、測定の迅速化にも大きな効果があった。

測定極および対極に白金を用いて2電極系で測定する場合は、対極の面積を測定極のよりより十分大きくした方が、対極の分極が少なくなり、良好な応答が得られる。又、対極を銀塩化銀にすると、電位は安定する。

第4図のように、塩化ビニル樹脂からなる基板 10に白金を埋め込み、側定極11,対極12、 および参照極17からなる3電極で電極系を構成

した。参照極を用いた3電極とすることにより、 2電極に比較して、応答再現性が向上した。また、 上記に述べた様に対極面積を大きくする必要もな くなり小型化できた。又、白金を基板上にスパッ タ法や蒸着法により白金層を形成して電極系とす ることも可能である。

酸化型色素及び酵素よりなる反応層は、試料液をすみやかに吸収し酵素反応をおこなわせることができるように、親水性の多孔体膜であることが望ましい。たとえば、ろ紙やパルプの不織布・セラミックやガラスの多孔体などを用いると、試料液が均一にすばやく浸透し再現性も良好であった。さらに、ナイロン不織布において、前記の界面活性剤で処理したものは、処理しなかったものより試料液の浸透がすみやかであり、測定の迅速化に効果があった。

酵素と酸化型色素を細かく粉砕混合後、加圧した成形体を反応層とすると、血液の液体成分によりすみやかに溶け均一に混合するため、反応の迅速化に大きく貢献した。また、酸化型色素と酵素

を加圧成形する際、結着剤として、SiO₂ などを 少量混合すると、成形体の強度が増すので取り扱 いが簡易となる。結着剤としては、酵素反応及び 電極反応に無関係で親水性のものが適している。

酸化型色素および酵素は、なるべく血液の液体 成分に速く溶ける状態におくことが望ましい。そ こで、酸化型色素の溶液をナイロン不繊布に含 後、熱風乾燥すると、真空乾燥したものより非常 に細かい結晶となり、液体にとけやすくなった。 又、酸化型色素の溶液を浸漬したナイロン不 で、酸化型色素の溶液を浸漬したナイロン で、酸化型色素の溶液を浸漬したナイロン で、大変化型色素の溶液を浸漬したナイロン で、大変化型色素の溶液を浸漬したナイロン で、大変化型色素の溶液を浸漬したナイロン で、大変に対する溶解度の がい結晶を担持するととができた。酵素は熱など に弱いため、含浸後真空乾燥を行なった。

そこで、第5図の構成からなるセンサを試みた。 電極系は第4図と同様で、その上にポリカーボネート多孔体膜からなる沪過磨16、次にグルコースオキシターゼ14を担持したナイロン不織布18、その上部にフェリシアン化カリウム15を含浸後エタノールに浸漬し乾燥して担持したナイロン不 織布19を設置する。なお、ポリカーボネート多 孔体膜 およびナイロン不織布は、あらかじめ前記 の界面活性剤で処理し、抗凝血剤であるフッ化ナ トリウムを含浸後乾燥して担持した。

しかし、反応層の上部に沪過層を設置すると、 先に血液中の固体成分が沪過できるので、反応層 において血球などによる妨害がないため、スムー

ンサなど、酸化還元酵素の関与する系に用いるととができる。又、酵素は固定化した状態で担持することにより長期保存においても安定に活性を維持することができる。

発明の効果

本発明のセンサによれば、直接血液を含浸させて 数量の特定成分を簡易に、しかも迅速に精度よく 測定することができる。また、 沪過層により、 電極を長期間安定に保持できる。 さらに、 抗凝血 剤を担持することにより、 血液を凝血させること なくすみやかに沪過させ、 反応時間を短縮することができる。

4、図面の簡単な説明

第1図及び第2図は従来のグルコースセンサの 構成を示す図、第3図、第4図及び第5図は本発 明の実施例であるグルコースセンサの模式図であ る。

10……基板、11……測定極、12……対極、 13……多孔体(反応層)、14……酵素、15 ……色素、16……沪過層、17……参照極。 ズに反応が進むという利点があり、高精度であった。

戸過層としては、不織布、化学機維、紙(戸紙), ガラスの多孔体などが考えられる。血球を戸過す るためには孔径が2~3 μm 以下であることが必 要である。血球戸過が可能な均一な孔径のメンプ ランフィルターやカラスの多孔体が適している。

色素としては、上記に用いたフェリシアン化カリウムが安定に反応するので適しているが、Pーベンゾキノンを使えば、反応速度が早いので高速化に適している。又、2・6ージクロロフェノール_ルィンドフェノール、メチレンブルー、フェナジンメトサルフェート、βーナフトキノン4ースルホン酸カリウムなども使用できる。

抗凝血剤としては、フッ化ナトリウムが安定で取扱いも簡易なため適しているが、ヘパリンやクエン酸ナトリウム、エチレンジアミン四酢酸も血液戸過を迅速におこなわせるのに有用であった。

第 2 図

第 3 図

绑 4 図

第 5 凶

