Package 'bfpwr'

May 31, 2024

Version 0.1

Date 2024-05-31
Author Samuel Pawel [aut, cre] (https://orcid.org/0000-0003-2779-320X)
Maintainer Samuel Pawel <samuel.pawel@uzh.ch></samuel.pawel@uzh.ch>
Title Power and Sample Size Calculations for Bayes Factor Analysis
Description Provides functionality for performing power and sample size calculations for Bayes factor analysis.
License GPL-3
Encoding UTF-8
Suggests roxygen2, tinytest
NeedsCompilation no
RoxygenNote 7.3.1
<pre>URL https://github.com/SamCH93/bfpwr</pre>
BugReports https://github.com/SamCH93/bfpwr/issues
Contents
bf01 jzsbf01 nbf01 pbf01 plot.power.bftest powerbf01 print.power.bftest 1
Index

bf01

bf01	Bayes factor under normality

Description

This function computes the Bayes factor that quantifies the evidence that the data (in the form of an asymptoically normally distributed parameter estimate with standard error) provide for a point null hypothesis with a normal prior assigned to the parameter under the alternative.

Usage

```
bf01(estimate, se, null = 0, pm, psd, log = FALSE)
```

Arguments

estimate	Parameter estimate
se	Standard error of the parameter estimate
null	Parameter value under the point null hypothesis. Defaults to 0
pm	Mean of the normal prior assigned to the parameter under the alternative
psd	Standard deviation of the normal prior assigned to the parameter under the alternative. Set to 0 to obtain a point prior at the prior mean
log	Logical indicating whether natural logarithm of the Bayes factor should be returned. Defaults to FALSE

Value

Bayes factor in favor of the null hypothesis over the alternative (BF > 1 indicates evidence for the null hypothesis, whereas BF < 1 indicates evidence for the alternative)

Author(s)

Samuel Pawel

```
bf01(estimate = 0.2, se = 0.05, null = 0, pm = 0, psd = 2)
```

jzsbf01

jzsbf01

Jeffreys-Zellner-Siow (JZS) Bayes factor

Description

This function computes the Jeffreys-Zellner-Siow Bayes factor that quantifies the evidence that the data provide for the null hypothesis that the standardized mean difference is zero vs. that the alternative that it is non-zero.

The data are summarized by t-statistics and sample sizes. The following types of t-tests are accepted:

- Two-sample t-test where the SMD represents the standardized mean difference between two group means (assuming equal variances in both groups) - One-sample t-test where the SMD represents the standardized mean difference to the null value - Paired t-test where the SMD represents the standardized mean difference score

The JZS Bayes factor is implemented as equation (1) in Rouder et al. (2014). Integration is performed numerically with stats::integrate

Usage

```
jzsbf01(
    t,
    n,
    n1 = n,
    n2 = n,
    r = 1/sqrt(2),
    type = c("two.sample", "one.sample", "paired"),
    log = FALSE,
    ...
)
```

Arguments

t	t-statistic
n	Sample size (per group)
n1	Sample size in group 1 (only required for two-sample t -test with unequal group sizes)
n2	Sample size in group 2 (only required for two-sample t -test with unequal group sizes)
r	Scale parameter of the Cauchy prior. Defaults to 1/sqrt(2)
type	Type of t -test associated with t -statistic. Can be '"two.sample"', '"one.sample"', '"paired"'. Defaults to '"two.sample"
log	Logical indicating whether natural logarithm of the Bayes factor should be returned. Defaults to \ensuremath{FALSE}
	Additional arguments passed to stats::integrate

4 nbf01

Value

Bayes factor in favor of the null hypothesis over the alternative (BF > 1 indicates evidence for the null hypothesis, whereas BF < 1 indicates evidence for the alternative)

Author(s)

Samuel Pawel

References

Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., Iverson, G. (2014). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16(2):225-237. doi:10.3758/PBR.16.2.225

Examples

```
## values from Table 1 in Rouder et al. (2019)
jzsbf01(t = 3.20, n = 100, r = 1, type = "one.sample")
jzsbf01(t = 0.69, n = 100, r = 1, type = "one.sample")

## examples from p. 232 in Rouder et al. (2019)
jzsbf01(t = c(2.24, 2.03), n = 80, r = 1, type = "one.sample")
```

nbf01

Sample size determination for Bayes factor analysis

Description

This function computes the required sample size to obtain a Bayes factor (bf01) less or greater than a threshold k with a specified target power.

Usage

```
nbf01(
    k,
    power,
    sd,
    null = 0,
    pm,
    psd,
    dpm = pm,
    dpsd = psd,
    nrange = c(1, 10^5),
    lower.tail = TRUE,
    integer = TRUE,
    analytical = TRUE,
    ...
)
```

nbf01 5

Arguments

k	Bayes factor threshold
power	Target power
sd	Standard deviation of one unit
null	Parameter value under the point null hypothesis. Defaults to 0
pm	Mean of the normal prior assigned to the parameter under the alternative in the analysis
psd	Standard deviation of the normal prior assigned to the parameter under the alternative in the analysis. Set to 0 to obtain a point prior at the prior mean
dpm	Mean of the normal design prior assigned to the parameter. Defaults to the same value as specified for the analysis prior pm
dpsd	Standard deviation of the normal design prior assigned to the parameter. Set to 0 to obtain a point prior at the prior mean. Defaults to the same value as specified for the analysis prior psd
nrange	Sample size search range. Defaults to c(1, 10 ⁵)
lower.tail	Logical indicating whether $Pr(BF \le k)$ (TRUE) or $Pr(BF > k)$ (FALSE) is the probability of interest. Defaults to TRUE
integer	Logical indicating whether only integer valued sample sizes should be returned. If TRUE the required sample size is rounded to the next larger integer. Defaults to TRUE
analytical	Logical indicating whether analytical (if available) or numerical method should be used. Defaults to TRUE
	Other arguments passed to stats::uniroot

Value

The required sample size to achieve the specified power

Author(s)

Samuel Pawel

See Also

```
pbf01, powerbf01
```

```
## point alternative (analytical and numerical solution available) nbf01(k = 1/10, power = 0.9, sd = 1, null = 0, pm = 0.5, psd = 0, analytical = c(TRUE, FALSE), integer = FALSE)
```

6 pbf01

Cumulative distribution function of the Bayes factor under normality

Description

This function computes the probability of obtaining a Bayes (bf01) smaller (or larger) than a threshold k with a specified sample size.

Usage

```
pbf01(k, n, sd, null = 0, pm, psd, dpm = pm, dpsd = psd, lower.tail = TRUE)
```

Arguments

k	Bayes factor threshold
n	Sample size
sd	Standard deviation of one unit
null	Parameter value under the point null hypothesis. Defaults to 0
pm	Mean of the normal prior assigned to the parameter under the alternative in the analysis
psd	Standard deviation of the normal prior assigned to the parameter under the alternative in the analysis. Set to 0 to obtain a point prior at the prior mean
dpm	Mean of the normal design prior assigned to the parameter. Defaults to the same value as the analysis prior pm
dpsd	Standard deviation of the normal design prior assigned to the parameter. Defaults to the same value as the analysis prior psd
lower.tail	Logical indicating whether $Pr(BF \le k)$ (TRUE) or $Pr(BF > k)$ (FALSE) should be computed. Defaults to TRUE

Value

The probability that the Bayes factor is less or greater (depending on the specified lower.tail) than the specified threshold k

Author(s)

Samuel Pawel

See Also

nbf01, powerbf01

plot.power.bftest 7

Examples

plot.power.bftest

Plot method for class "power.bftest"

Description

Plot method for class "power.bftest"

Usage

```
## S3 method for class 'power.bftest' plot(x, nlim = c(1, 500), plot = TRUE, nullplot = TRUE, ...)
```

Arguments

X	Object of class "power.bftest"
nlim	Range of samples sizes over which the power should be computed. Defaults to $c(1, 500)$
plot	Logical indicating whether data should be plotted. If FALSE only the data used for plotting are returned.
nullplot	Logcal indicating whether a second plot with the power in favor of the null (using a Bayes factor threshold of 1/k) should be created. Defaults to TRUE
	Other arguments (for consistency with the generic)

Value

Plots power curves (if specified) and invisibly returns a list of data frames containing the data underlying the power curves

Author(s)

Samuel Pawel

8 powerbf01

See Also

powerbf01

Examples

```
ssd1 \leftarrow powerbf01(k = 1/6, power = 0.95, pm = 0, psd = 1/sqrt(2), dpm = 0.5, dpsd = 0) plot(ssd1, nlim = c(1, 8000)) power1 <- powerbf01(k = 1/2, n = 120, pm = 0, psd = 1/sqrt(2), dpm = 0.5, dpsd = 0) plot(power1, nlim = c(1, 1000))
```

powerbf01

Power and sample size calculations for Bayes factor under normality

Description

Compute probability that Bayes factor under normality is smaller than a specified threshold (the power), or determine sample size to obtain a target power

Usage

```
powerbf01(
    n = NULL,
    power = NULL,
    k = 1/10,
    sd = 1,
    null = 0,
    pm,
    psd,
    dpm = pm,
    dpsd = psd,
    nrange = c(1, 10^5),
    type = c("two.sample", "one.sample", "paired")
)
```

Arguments

n	Sample size. Has to be NULL if power is specified. Defaults to NULL
power	Target power. Has to be NULL if n is specified. Defaults to NULL
k	Bayes factor threshold. Defaults to 1/10, Jeffreys' threshold for 'strong evidence' against the null hypothesis
sd	Standard deviation of one observation (for type = "two.sample" or type = "one.sample") or of one difference within a pair of observations (type = "paired"). Is assumed to be known
null	Mean difference under the point null hypothesis. Defaults to 0

powerbf01

pm	Mean of the normal prior assigned to the mean difference under the alternative in the analysis
psd	Standard deviation of the normal prior assigned to the mean difference under the alternative in the analysis. Set to \emptyset to obtain a point prior at the prior mean
dpm	Mean of the normal design prior assigned to the mean difference. Defaults to the same value as the analysis prior pm
dpsd	Standard deviation of the normal design prior assigned to the mean difference. Defaults to the same value as the analysis prior psd
nrange	Sample size search range (only taken into account when n is NULL). Defaults to $c(1,10^{\circ}5)$
type	The type of test. One of "two.sample", "one.sample", "paired". Defaults to "two.sample"

Value

Object of class "power.bftest", a list of the arguments (including the computed one) augmented with method and note elements

Note

An error message will be displayed in case that the specified target power is not achievable under the specified analysis and design priors.

Author(s)

Samuel Pawel

See Also

```
plot.power.bftest, nbf01, pbf01
```

```
## determine power
powerbf01(n = 100, pm = 0, psd = 1, dpm = 0.5, dpsd = 0)
## determine sample size
powerbf01(power = 0.99, pm = 0, psd = 1, dpm = 0.5, dpsd = 0)
```

10 print.power.bftest

print.power.bftest

Print method for class "power.bftest"

Description

Print method for class "power.bftest"

Usage

```
## S3 method for class 'power.bftest'
print(x, digits = getOption("digits"), ...)
```

Arguments

```
x Object of class "power.bftest"digits Number of digits for formatting of numbers... Other arguments (for consistency with the generic)
```

Value

Prints text summary in the console and invisibly returns the "power.bftest" object

Note

Function adapted from stats:::print.power.htest written by Peter Dalgaard

Author(s)

Samuel Pawel

See Also

powerbf01

```
powerbf01(power = 0.95, pm = 0, psd = 1, dpm = 0.5, dpsd = 0)
powerbf01(power = 0.95, pm = 0, psd = 1, dpm = 0.5, dpsd = 0, type = "one.sample")
powerbf01(power = 0.95, pm = 0, psd = 1, dpm = 0.5, dpsd = 0, type = "paired")
powerbf01(power = 0.95, pm = 1, psd = 0, dpm = 0.8, dpsd = 0, type = "paired")
```

Index

```
bf01, 2, 4, 6

jzsbf01, 3

nbf01, 4, 6, 9

pbf01, 5, 6, 9

plot.power.bftest, 7, 9

powerbf01, 5, 6, 8, 8, 10

print.power.bftest, 10
```