

Communities and Random Networks

Network Science '22: Assignment 4

Prof. Dr Claudio J. Tessone, Dr Carlo Campajola

Blockchain & Distributed Ledger Technologies Group

Objectives

- 1. Explore the community structure of real networks
- 2. Explore the emergence of giant components in random networks
- 3. Gain intuition on the small world property of real networks

Ao_{4.1} Community detection

Ao_{4.1} Community detection

Task: For the given networks find the communities using (a) the greedy modularity maximization by Clauset Newman and Moore and (b) the Girvan-Newman algorithm. Assign to each community a color and draw the resulting graph.

Task: Randomise each network and compare the number of communities obtained before and after randomisation.

Ao_{4.1} Hints

- Clauset et al. algorithm is available as nx.greedy_modularity_communities()
- Girvan-Newman algorithm is available as nx.girvan_newman()
 - Calculate the modularity of all the partition returned by Girvan-Newman algorithm, and draw the graph which corresponding to the largest modularity.
 - Modularity is available as nx.modularity()

Ao_{4.1} Datasets provided

Datasets provided:

- + Zachary Karate Club: Nodes represent members of the club and Edges represent a tie between two members [1]
- + Dolphin social network: Nodes represent dolphins and Edges represent frequent associations observed among a group of 62 individuals [2]
- + Jazz collaboration network: Nodes represent jazz musicians and Edges represent collaborations in bands that performed between 1912 and 1940 [3]

Ao_{4.1} Datasets provided

- [1] W. W. Zachary, An information flow model for conflict and fission in small groups, Journal of Anthropological Research, 33 (1977), pp. 452–473
- [2] D. Lusseau et al., "The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations." Behavioral Ecology and Sociobiology 54(4), 396-405 (2003)
- [3] P. Gleiser and L. Danon, "Community Structure in Jazz." Advances in Complex Systems 6(4), 565-573 (2003).

Ao4.2 Random Graphs

Ao4.2 Erdos-Renyi random networks

Task: Generate three Erdos-Renyi networks with N=500 nodes and average degree (a) $\langle k \rangle = 0.3$, (b) $\langle k \rangle = 1$ and (c) $\langle k \rangle = 2.5$. Visualize these networks.

Task: Generate ER graphs with N=200 nodes for different edge creation probabilities $p \in [0,1]$ and:

- 1. Plot the average fraction of nodes in the largest connected component $\langle N_G/N \rangle$ as a function of p and mark with a vertical line the critical probability $p_c=1/N$
- 2. Plot the average clustering $\langle C \rangle$ as a function of p and give an interpretation of the result

Ao_{4.2} Hints

- Use the nx.spring_layout() for better visualization of the networks
- + To plot the average $\langle N_G/N \rangle$ you need to average your results by generating many (~ 100) graphs for each value of p
- ullet Use logarithmic spacing for the values of p
- In ER graphs for each node the probability that two of its neighbors are connected is the same probability that any other two nodes will be connected and it is equal to p

Ao4.3 Small-world with high clustering

Task: Generate many WS small-world networks with N=150 nodes and fixed number of neighbors for each node $2\kappa=12$. As a function of the rewiring probability p, using both linear and logarithmic scale for the p-axis:

1. Plot the average clustering $\langle C(p) \rangle / \langle C(0) \rangle$ and check if it correctly reproduces the analytical result

$$\langle C(p) \rangle \approx \frac{3}{2} \frac{(\kappa - 1)}{2\kappa - 1} (1 - p)^3$$
 (1)

2. Plot the average shortest-path length D(p)/D(0)

Ao4.3 Hints

- + nx.watts_strogatz_graph generates a WS network
- + nx.average_shortest_path_length(g) computes D(p)

Prof. Dr Claudio J. Tessone, Dr Carlo Campajola

Blockchain & Distributed Ledger Technologies Group

tessone@ifi.uzh.ch

☑ http://www.blockchain.uzh.ch