MATH146 - 2025-01-27

GEORGE MCNINCH

Contents

1.	Polynomials over a field and the division algorithm	1
1.1.	. Some general notions for commutative rings	1
1.2.	. The degree of a polynomial	2
1.3.	. The division algorithm	2
1.4.	. Ideals of the polynomial ring $F[T]$	3
1.5.	. Integral domains and principal ideal domains (PIDs)	4
1.6.	. Prime elements in a PID	4
2.	Irreducible polynomials over a field	5
2.1.	. Some criteria for irreducibility	5

1. Polynomials over a field and the division algorithm

1.1. Some general notions for commutative rings.

Definition 1.1.1. If R is a commutative ring with 1 and if $u \in R$ we say that u is a unit - or that u is invertible - provided that there is $v \in R$ with uv = 1; then $v = u^{-1}$.

We write R^{\times} for the units in R.

A commutative ring R is a *field* provided that every non-zero element is invertible. Thus R is a field if $R^{\times} = R \setminus \{0\}$.

Proposition 1.1.2. If R is a commutative, then R^{\times} is an abelian group (with operation the multiplication in R).

For any commutative ring R and elements $a, b \in R$ we say that a divides b – written $a \mid b$ – if $\exists x \in R$ with ax = b.

Proposition 1.1.3. For $a, b \in R$ we have $a \mid b$ if and only if $b \in \langle a \rangle$.

Recall that we introduced the principal ideal $\langle a \rangle = aR$ for any commutative ring R and any $a \in R$. In fact, given $a_1, \dots, a_n \in R$ we can consider the ideal

$$\langle a_1, \cdots, a_n \rangle = \sum_{i=1}^n a_i R$$

defined as

$$\langle a_1, \cdots, a_n \rangle = \left\{ \sum_{i=1}^n r_i a_i | r_i \in R \right\}.$$

It is straightforward to check that $\langle a_1, \dots, a_n \rangle$ is indeed an ideal of R.

Date: 2025-01-26 14:26:05 EST (george@valhalla).

1.2. The degree of a polynomial. Let F be a field and consider the ring of polynomials F[T].

Definition 1.2.1. The degree of a polynomial $f = f(T) \in F[T]$ is define to be $\deg(f) = -\infty$ if f = 0, and otherwise $\deg(f) = n$ where

$$f = \sum_{i=0}^{n} a_i T^i$$
 with each $a_i \in F$ and $a_n \neq 0$.

We have some easy and familiar properties of the degree function:

Proposition 1.2.2. Let $f, g \in F[T]$.

- (a) $\deg(fg) = \deg(f) + \deg(g)$.
- (b) $\deg(f+g) \leq \max\{\deg(f), \deg(g)\}\$ and equality holds if $\deg(f) \neq \deg(g)$.
- (c) $f \in F[T]^{\times}$ if and only if $\deg(f) = 0$. In particular, $F[T]^{\times} = F^{\times}$.

1.3. The division algorithm.

Theorem 1.3.1. Let F be a field, and let $f, g \in F[T]$ with $0 \neq g$. Then there are polynomials $q, r \in F[T]$ for which

$$f = qg + r$$

and $\deg r < \deg g$.

Proof. First note that we may suppose f to be non-zero. Indeed, if f=0, we just take q=r=0. Clearly f=qg+r, and $\deg(r)=-\infty<\deg(g)$ since g is non-zero.

We now proceed by induction on $deg(f) \ge 0$.

For the base case in which $\deg(f) = 0$, we note that f = c is a constant polynomial; here $c \in F^{\times}$.

If $\deg(g) = 0$ as well, then $g = d \in F^{\times}$ and then c = (c/d)d + 0 so we may take q = c/d and r = 0. Now $\deg(r) = -\infty < \deg(g)$ as required.

If deg(g) > 0, we simply take q = 0 and r = f: we then have $f = 0 \cdot g + f$ and deg(f) = 0 < deg(g) as required.

We have now confirmed the Theorem holds when deg(f) = 0.

Proceeding with the induction, we now suppose n > 0 and that the Theorem holds whenever f has degree < n. We must prove the Theorem holds when f has degree n.

Since f has degree n, we may write $f = a_n T^n + f_0$ where $a_n \in F^{\times}$ and $f_0 \in F[T]$ has $\deg(f_0) < n$.

Let us write $g = \deg(g)$; we may write $g = b_m T^m + g_0$ where $b_m \in F^{\times}$ and $g_0 \in F[T]$ has $\deg(g_0) < m$.

If n < m we take q = 0 and r = f to find that f = qq + r and $\deg(r) < \deg(q)$.

Finally, if $m \leq n$ we set

$$f_1 = f - (a_n/b_m)T^{n-m}g = a_nT^n + f_0 - \left(\frac{a_n}{b_m}b_mT^n + \frac{a_n}{b_m}T^{n-m}g_0\right) = f_0 - \frac{a_n}{b_m}T^{n-m}g_0.$$

We have $\deg(f_0) < n$ by assumption, and $\deg\left(\frac{a_n}{b_m}T^{n-m}g_0\right) < n$ by the Proposition together with the fact that $\deg(g_0) < m$.

Thus $\deg(f_1) < n$. Now we apply the induction hypothesis to write

$$f_1 = q_1 g + r_1$$
 with $\deg(r_1) < \deg(g)$.

Finally, we have

$$f = f_1 + (a_n/b_m)T^{n-m}g = q_1g + r_1 + (a_n/b_m)T^{n-m}g = (q_1 + (a_n/b_m)T^{n-m})g + r_1$$

so we have indeed written f = qg + r in the required form.

Corollary 1.3.2. Let F be a field and let $f \in F[T]$. For $a \in F$, there is a polynomial $q \in F[T]$ for which

$$f = q(T - a) + f(a).$$

Corollary 1.3.3. For $f \in F[T]$ an element $a \in F$ is a **root** of thea polynomial f if and only if $T - a \mid f$ in F[T].

1.4. Ideals of the polynomial ring F[T].

Corollary 1.4.1. Let F be a field and let I be an ideal of the ring F[T]. Then I is a principal ideal; i.e. there is $g \in I$ for which

$$I = \langle g \rangle = g \cdot F[T].$$

Proof. If $I = \{0\}^{-1}$ the results is immediate. Thus we may suppose $I \neq 0$.

COnsider the set $\{\deg(g)|0\neq g\in I\}$. This is a non-empty set of natural numbers, hence it contains a minimal element by the **well-ordering principle**.

Choose $g \in I$ such that $\deg(g)$ is this minimal degree; we claim that $I = \langle g \rangle$.

Clearly $\langle g \rangle \subseteq I$. To complete the proof, it remains to establish the inclusion $I \subseteq \langle g \rangle$. Let $f \in I$ and use the **Division Algorithm** to write f = qg + r for $q, r \in F[T]$ with $\deg r < \deg g$. Observe that $f - qg \in I$ so that $r \in I$. Since $\deg r < \deg g$ conclude that r = 0. This shows

that $f = qg \in \langle g \rangle$ as required, completing the proof.

Let F be a field, F[T] be the ring of polynomials with coefficients in F, let $f, g \in F[T]$ be polynomials which are not both 0.

Definition 1.4.2. The greatest common divisor gcd(f, g) of the pair f, g is a monic polynomial d such that

- (a) $d \mid f$ and $d \mid g$,
- (b) if $e \in F[T]$ satisfies $e \mid f$ and $e \mid g$, then $e \mid d$.

Remark 1.4.3. If d, d' are two gcds of f, g then $d \mid d'$ and $d' \mid d$. In particular, $\deg(d) = \deg(d')$ and $d' = \alpha d$ for some $\alpha \in F^{\times}$. It is then clear that there is no more than one monic polynomial satisfying i. and ii.

Proposition 1.4.4. Let $f, g \in F[T]$ not both 0^2 .

(a) $\langle f, g \rangle$ is an ideal. According to the previous corollary, there is a monic polynomial $d \in F[T]$ with

$$\langle d \rangle = \langle f, g \rangle.$$

Then $d = \gcd(f, g)$

(b) In particular, $d = \gcd(f, g)$ may be written in the form d = uf + vg for $u, v \in F[T]$.

 $^{^{1}}$ We will write simply 0 for the ideal $\{0\}$.

²Note that f, g are not both 0 if and only if the ideal $\langle f, g \rangle$ is not 0.

Proof. For a., write $I = \langle f, g \rangle = \langle d \rangle$. Since $f, g \in I$, the definition of $\langle d \rangle$ shows that $d \mid f$ and $d \mid g$.

Now suppose that $e \in F[T]$ and that $e \mid f$ and $e \mid g$. Then $f, g \in \langle e \rangle$ which shows that $\langle f, g \rangle \subseteq \langle e \rangle$.

But this implies that $\langle d \rangle \subset \langle e \rangle$ so that $e \mid d$ as required. Thus we see that d is indeed equal to $\gcd(f,g)$.

Since $d \in \langle d \rangle = \langle f, g \rangle$, assertion b. follows from the definition of $\langle f, g \rangle$.

1.5. Integral domains and principal ideal domains (PIDs). Let R be a commutative ring. The non-zero element $a \in R$ is said to be a 0-divisor provided that there is $0 \neq b \in R$ with ab = 0.

Example 1.5.1. Let n be a composite positive integer, so that n = ij for integers i, j > 0. Consider the elements $[i] = i + n\mathbf{Z}, [j] = j + n\mathbf{Z}$ in the quotient ring $\mathbf{Z}/n\mathbf{Z}$.

Then [i] and [j] are both non-zero since 0 < i, j < n so that $n \mid / i$ and $n \mid / j$. But $[i] \cdot [j] = [n] = 0$ so that [i] and [j] are 0-divisors of the ring $\mathbb{Z}/n\mathbb{Z}$.

Definition 1.5.2. A commutative ring R is said to be an **integral domain** provided that it has no zero-divisors.

Example 1.5.3. (a) Any field is an integral domain.

- (b) The ring \mathbf{Z} of integers is an integral domain.
- (c) If R is an integral domain, the polynomial ring R[T] is an integral domain.
- (d) Any subring of an integral domain is an integral domain. For example, the ring $\mathbf{Z}[i] = \{a + bi \mid a, b \in \mathbf{Z}\}$ of gaussian integers is an integral domain.
- (e) $\mathbf{Z}/n\mathbf{Z}$ is not an integral domain whenever n is composite.

Lemma 1.5.4. Let R be an integral domain and let $a, b, c \in R$ with $c \neq 0$. If ac = bc then a = b.

Proof. The equation ac = bc implies that ac - bc = 0 so that (a - b)c = 0 by the distributive property. Since R has no zero divisors and since $c \neq 0$ by assumption, conclude that a - b = 0 i.e. that a = b.

Definition 1.5.5. An integral domain R is said to be a **principal ideal domain** (abbreviated PID) provided that every ideal I of R has the form

$$I = \langle a \rangle$$
 for some $a \in R$;

i.e. provided that every ideal of R is principal.

Example 1.5.6. (a) The ring \mathbf{Z} of integers is a PID.

- (b) For any field F, the ring F[T] of polynomials is a PID this follows from the Corollary to the divison algorithm, above.
- (c) The rings $\mathbf{Z}[i]$ and $\mathbf{Z}[\sqrt{2}]$ are PIDs to see this one can argue that these rings are Euclidean domains and then one proves that any Euclidean domain is a PID.

1.6. Prime elements in a PID. Let R be a PID.

For $a_1, \dots, a_n \in R$ write $\langle a_1, \dots, a_n \rangle = Ra_1 + \dots + Ra_n$ for the ideal generated by the a_i , as before.

Our results about gcd in the polynomial ring actually hold in the generality of the PID R. We quickly give the statements:

Definition 1.6.1. Let $a, b \in R$ such that $\langle a, b \rangle \neq 0$. A gcd of a and b is an element $d \in R$ such that

- (i) $d \mid a$ and $d \mid b$ ("d is a common divisor of a and b")
- (ii) if $e \mid a$ and $e \mid b$ then $e \mid d$. ("any common divisor of a and b divides d)")

Lemma 1.6.2. If d and d' are gcds of a and b then d' = ud for a unit $u \in R^{\times}$.

Proof. Using the definition of gcd we see that $d \mid d'$ and $d' \mid d$. Thus d' = dv and d = d'u for $u, v \in R$.

This shows that d' = dv = d'uv. Using cancellation, find that 1 = uv so that $u, v \in R^{\times}$. \square

Remark 1.6.3. This definition of course covers the cases when $R = \mathbf{Z}$ and when R = F[T]. The main thing to point out is that when $R = \mathbf{Z}$, there is a unique **positive** gcd for any pair $a, b \in \mathbf{Z}$ and when R = F[T] there is a unique **monic** gcd for any pair $f, g \in F[T]$.

For a general PID there need not be a natural choice of gcd, so for $x, y \in R$ we can only speak of gcd(x, y) up to multiplication by a unit of R.

Proposition 1.6.4. Let R be a PID and let $x, y \in R$ with $\langle x, y \rangle \neq 0$.

(a) Since R is a PID, we may write find $d \in R$ with

$$\langle d \rangle = \langle x, y \rangle.$$

Then $d = \gcd(x, y)$.

(b) In particular, $d = \gcd(x, y)$ may be written in the form d = ux + vv for $u, v \in R$.

To prove Proposition 1.6.4 proceed as in the proof of Proposition 1.4.4. Let R be a PID.

Definition 1.6.5. A non-zero element $p \in R$ is said to be **irreducible** provided that $p \notin R^{\times}$ and whenever p = xy for $x, y \in R$ then either $x \in R^{\times}$ or $y \in R^{\times}$.

Remark 1.6.6. Assume that $p, a \in R$ with p irreducible. Then either gcd(p, a) = 1 or gcd(p, a) = p.

Proposition 1.6.7. $p \in R$ is irreducible if and only if (\clubsuit) : whenever $a, b \in R$ and $p \mid ab$ then either $p \mid a$ or $p \mid b$.

Proof. (\Rightarrow): Assume that p is irreducible, suppose that $a, b \in R$ and that $p \mid ab$. We must show that $p \mid a$ or $p \mid b$.

For this, we may as well suppose that $p \mid a$; we must then prove that $p \mid b$. Since $p \mid a$, we see that gcd(a, p) = 1 by the Remark above. Then ua + vp = 1 for elements $u, v \in R$.

Now we see that

$$b = 1 \cdot b = (ua + vp) \cdot b = uab + vpb.$$

Since $p \mid ab$ we see that $p \mid uab + vpb$ which proves that $p \mid b$, as required.

(⇐): Assume that condition (♣) holds for p. We must show that p is irreducible. For this, assume p = xy for $x, y \in R$; we must show that either $x \in R^{\times}$ or $y \in R^{\times}$.

Since p = xy, in particular $p \mid xy$ and we may apply (\clubsuit) to conclude without loss of generality that $p \mid x$.

Write x = pa. We now see that p = xy = pay; by cancellation, find that 1 = ay so that $y \in R^{\times}$. We conclude that p is irreducible, as required.

2. Irreducible polynomials over a field

2.1. Some criteria for irreducibility.

Proposition 2.1.1. Let F be a field and let $f \in F[T]$ be a polynomial with $\deg(f) \leq 3$. If f has no root in F then f is irreducible.