Министерство образования и науки Российской Федерации ФГБОУ ВПО Московский государственный технологический университет «СТАНКИН»

Кафедра «Электротехника, электроника и автоматика» Дисциплина «Электротехника»

Отчёт по лабораторной работе № 3	
«Трехфазные цепи с идеальными источниками напря	яжений»

Вариант - 2

Выполнил: студент группы ИДБ-17-11 Антонов А.Б.

Проверил: преподаватель Сорокин В.О.

Оценка: _____ Дата: _____

Москва 2018г.

Исследование идеального трёхфазного источника

Схема виртуального эксперимента для исследования основных параметров идеального трехфазного источника напряжений:

Рис. 1

Основные параметры идеального источника напряжений

Число фаз	Тип соединения	Циклическая	Частота рад/с		Период
m=3	«Y»	частота			c
		$f = 50 \Gamma$ ц			
	Действующие значения	$U_{\phi} = U$	$C_{,B}$	L	$U_{\pi} = U_{AB, B}$
Напряжения		222,017 384,545		384,545	
	Амплитудные	Фаза А	Фаза В		Фаза С
	значения	$U_{\mathit{mA},\mathrm{B}}$	U_{mB}	, B	$U_{mC,B}$
		313.806	313.83	50	313.972
Начальные фазы		Ψ_A	Ψ_B		Ψ_C
		0°	120.7	10	240°

Вывод: амплитудные значения фаз равны друг другу, все напряжения фаз имеют одинаковую частоту. Начальные фазы отличаются на 2pi/3.

График временных зависимостей фазных напряжений источника:

Для начальных фаз:

Исследование симметричного режима работы трёхфазной цепи с идеальным источником напряжений

Схема виртуального эксперимента для исследования симметричного режима работы трехфазной цепи с идеальным источником напряжений:

Рис. 2 Токи и напряжения в трехфазной цепи при симметричном режиме

Вид				Напряжения на фазах						
соединения	Линейные				Фазные			Потребитель		
Y - Y	Ia	Ib	Ic	In	Ia	Ib	Ic	Ua	Ub	Uc
	A	A	A	A	A	A	A	В	В	В
Идеальная	2.391	2.391	2.391	0,052p	2.391	2.391	2.391	222,017	220,017	220,017
нейтраль										
Обрыв	2.391	2.391	2.391	0	2.391	2.391	2.391	222,017	222,017	222,017
нейтрали										

Вывод: показания токов и напряжений при идеальной нейтрали не отличаются от показаний токов и напряжений при обрыве нейтрали. Также, показания линейных токов равны показаниям фазных токов, где в свою очередь токи фаз равны друг другу. Также показания напряжений на равны, включая напряжение источника.

Обрыв нейтрали:

Исследование несимметричного режима работы трёхфазной цепи с идеальным источником напряжений

Схема виртуального эксперимента для исследования несимметричного режима работы трехфазной цепи с идеальным источником напряжений:

Рис. 3

Токи и напряжения в трехфазной цепи при несимметричном режиме и идеальном источнике напряжений

Вид	Токи							Напряжения на фазах			
соединения	Линейные				Фазные			Потребитель			
Y - Y	Ia	Ia Ib Ic In Ia Ib Ic				Ua	Ub	Uc			
	A	A	A	A	A	A	A	В	В	В	
Идеальная	6.661	4.441	2.22	3.845	2.391	2.391	2.391	222,017	222,017	222,017	
нейтраль											
Обрыв	5.087	4.622	2.794	0	2.391	2.391	2.391	169.571	231.082	279.363	
нейтрали											

Вывод: по сравнению с симметричным режимом, значения линейных токов при идеальной нейтрали отличаются от значений линейных токов при обрыве нейтрали. То же самое можно сказать и про значения напряжений на фазах потребителей. Значения же фазных токов и напряжения на источнике совпадают.

Обрыв нейтрали:

Исследование линейного трёхфазного источника напряжений конечной мощности

Схема виртуального эксперимента для исследования основных характеристик линейного трехфазного источника напряжений конечной мощности:

Вольтамперная характеристика линейного трехфазного источника конечной мошности

Относительное	· · · · · · · · ·	Токи		Напряжения			
сопротивление фазы потребит. $R^*\%$	Ia	Ib	Ic	U0	Uф=Uc	Uл=Ubc	
K /0	A	A	A	В	В	В	
0	100.417	100.417	100.417	222,017	1.004m	1,739m	
1	70.604	70.604	70.603	222,017	70.603	122.289	
2	54.025	54.025	54.025	222,017	108.5	187.048	
50	4.269	4.269	4.269	222,017	213.442	369.693	
100	2.177	2.177	2.177	222,017	217.654	376.987	
	0	0	0	222	222	∞	

Вывод: при увеличении относительного сопротивления фазы потребителя, показания токов уменьшаются, в то время как показания напряжений U_{Φ} и U_{Π} увеличиваются. Напряжение же U_0 остаётся постоянным. Напряжение U_{Π} больше напряжения U_{Φ} в 1,7 раз. Токи остаются равны друг другу при каждом изменении относительного сопротивления фазы потребителя.

1%

50%

График вольтамперной характеристики линейного трехфазного источника конечной мощности $I \varphi = \varphi(U \varphi)$

Исследование несимметричных режимов работы трёхфазной цепи с источником конечной мощности

Схема виртуального эксперимента для исследования несимметричных режимов работы трехфазной цепи с источником конечной мощности:

Рис. 6
Токи и напряжения в трехфазной цепи с источником конечной мощности при несимметричном режиме:

Вид	Токи				Напря	Напряжения на фазах			
соединения					жения				
					на				
Y - Y					фазах				
		Фазные	;	Нейтраль	Γ	Потребитель			Источни
								ник	K
	Ia	Ib	Ic	In	Ua	Ub	Uc	U0	Uф
	A	A	A	A	В	В	В	В	В
Идеальная	18.445	10.083	6.935	10.424	184.446	201.649	208.050	222.017	208.050
нейтраль									
«Некачественная»	17.224	10.221	7.325	7.903	172.237	204.426	219.735	222.017	207.581
нейтраль									

- **Выво**д: 1.В ходе эксперимента, проведенного для цепи с источником конечной мощности, было выяснено, что значения токов и напряжений при RN=0 отличаются от значений токов и напряжений при RN=2.
- 2.В отличии от цепей с идеальным источником напряжения, в цепях, использовавшихся в последнем эксперименте, показания фазных токов не равны друг другу.
- 3. Параметры источника конечной мощности, а именно, сопротивления резисторов влияют на напряжения и токи так, что чем больше сопротивление, тем меньше значения токов, и в то же время выше показания напряжений фаз потребителя.
- 4. «Перекос фаз» явление, возникающее при несимметричном режиме многофазной цепи, при котором амплитуды фазных напряжений и токов не равны между собой. Причина неравенство нагрузки по фазам. В данном случае, не равны сопротивления резисторов при каждой фазе.

Идеальная нейтраль:

Графическое представление перекоса фаз:

