When is the fiscal multiplier large?

- · Lots of theory + empirical work. Two workhorse models:
- 1. Representative agent (RA) models
 - response of monetary policy is key
 - · large when at ZLB

[Eggertsson 2004; Christiano-Eichenbaum-Rebelo 2011]

- 2. Two agent (TA) models
 - · aggregate MPC is key
 - large when deficit financed, effects not persistent

[Galí-López-Salido-Vallés 2007; Coenen et al 2012; Farhi-Werning 2017]

When is the fiscal multiplier large?

Lots of theory + empirical work. Two workhorse models:

1. Representative agent (RA) models

- response of monetary policy is key
- · large when at ZLB

[Eggertsson 2004; Christiano-Eichenbaum-Rebelo 2011]

2. Two agent (TA) models

- aggregate MPC is key
- large when deficit financed, effects not persistent
 [Galí-López-Salido-Vallés 2007; Coenen et al 2012; Farhi-Werning 2017]

New: Heterogeneous-agents (HA) models

- \rightarrow **iMPCs** are key, can be used for calibration
- ightarrow large and persistent Y effect when deficit financed

Our goal: compare fiscal multiplier in three types of models

- 1. **Benchmark model,** allows for RA, TA, HA
 - · without capital & neutral monetary policy
 - multiplier = function of iMPCs and deficits only
 - = 1 if zero deficits or flat iMPCs (RA)
 - > 1 if deficit-financed and realistic iMPCs (HA, TA?)

Our goal: compare fiscal multiplier in three types of models

- 1. Benchmark model, allows for RA, TA, HA
 - · without capital & neutral monetary policy
 - multiplier = function of iMPCs and deficits only
 - = 1 if zero deficits or flat iMPCs (RA)
 - > 1 if deficit-financed and realistic iMPCs (HA, TA?)
- 2. **Quantitative model** with capital & Taylor rule
 - · large & persistent Y effects, despite these extra elements
 - iMPCs still crucial for Y response

Our goal: compare fiscal multiplier in three types of models

- 1. Benchmark model, allows for RA, TA, HA
 - · without capital & neutral monetary policy
 - multiplier = function of iMPCs and deficits only
 - = 1 if zero deficits or flat iMPCs (RA)
 - > 1 if deficit-financed and realistic iMPCs (HA, TA?)
- 2. **Quantitative model** with capital & Taylor rule
 - · large & persistent Y effects, despite these extra elements
 - iMPCs still crucial for Y response
- 3. Role of iMPCs for the GE effects of other shocks

Outline

- 1 The intertemporal Keynesian Cross
- 2 iMPCs in models vs. data
- Fiscal policy in the benchmark model
- 4 Fiscal policy in the quantitative model
- **5** Takeaways

The intertemporal Keynesian Cross

- GE, discrete time $t = 0 \dots \infty$, no aggregate risk
- Mass 1 of households:
 - \cdot idiosyncratic shocks to skills e_{it} , various market structures
 - real pre-tax income $y_{it} \equiv W_t/P_t e_{it} n_{it}$
 - after tax income $z_{it} \equiv y_{it} T_t(y_{it}) \equiv au_t y_{it}^{1-\lambda}$ [Bénabou, HSV]

- GE, discrete time $t = 0 \dots \infty$, no aggregate risk
- Mass 1 of households:
 - \cdot idiosyncratic shocks to skills e_{it} , various market structures
 - real pre-tax income $y_{it} \equiv W_t/P_t e_{it} n_{it}$
 - after tax income $z_{it} \equiv y_{it} T_t(y_{it}) \equiv au_t y_{it}^{1-\lambda}$ [Bénabou, HSV]
- Government sets:
 - tax revenues $T_t = \int (y_{it} z_{it}) di$
 - government spending G_t
 - "neutral" monetary policy: fixed real rate = r

- GE, discrete time $t = 0 \dots \infty$, no aggregate risk
- Mass 1 of households:
 - idiosyncratic shocks to skills e_{it} , various market structures
 - real pre-tax income $y_{it} \equiv W_t/P_t e_{it} n_{it}$
 - after tax income $z_{it} \equiv y_{it} T_t(y_{it}) \equiv au_t y_{it}^{1-\lambda}$ [Bénabou, HSV]
- Government sets:
 - tax revenues $T_t = \int (y_{it} z_{it}) di$
 - government spending G_t
 - "neutral" monetary policy: fixed real rate = r
- Supply side:
 - linear production function $Y_t = N_t$
 - flexible prices \Rightarrow $P_t = W_t$
 - sticky w $\Rightarrow \pi_{t}^{w} = \kappa^{w} \int N_{t}(v'(n_{it}) \frac{\epsilon 1}{\epsilon} \frac{\partial z_{it}}{\partial n_{it}} u'(c_{it}) di) + \beta \pi_{t+1}^{w}$

- GE, discrete time $t = 0 \dots \infty$, no aggregate risk
- · Mass 1 of households:
 - idiosyncratic shocks to skills e_{it} , various market structures
 - real pre-tax income $y_{it} \equiv W_t/P_t e_{it} n_{it}$ $n_{it} = N_t$
 - $m{\cdot}$ after tax income $z_{it} \equiv y_{it} T_t(y_{it}) \equiv au_t y_{it}^{1-\lambda}$ [Behabou, HSV]
- · Government sets:
 - tax revenues $T_t = \int (y_{it} z_{it}) di$

rationing

- government spending G_t
- "neutral" monetary policy: fixed real rate = r
- Supply side:
 - linear production function $Y_t = N_t$
 - flexible prices \Rightarrow $P_t = W_t$
 - sticky w $\Rightarrow \pi_t^{\mathsf{w}} = \kappa^{\mathsf{w}} \int \mathsf{N}_{\mathsf{t}}(\mathsf{v}'(\mathsf{n}_{i\mathsf{t}}) \frac{\epsilon 1}{\epsilon} \frac{\partial \mathsf{z}_{i\mathsf{t}}}{\partial \mathsf{n}_{i\mathsf{t}}} \mathsf{u}'(\mathsf{c}_{i\mathsf{t}}) \, \mathsf{d}i) + \beta \pi_{\mathsf{t}+1}^{\mathsf{w}}$

- GE, discrete time $t = 0 \dots \infty$, no aggregate risk
- Mass 1 of households:
 - idiosyncratic shocks to skills e_{it} , various market structures
 - real pre-tax income $y_{it} \equiv W_t/P_t e_{it} n_{it}$ $n_{it} = N_t$
 - after tax income $z_{it} \equiv y_{it} T_t(y_{it}) \equiv au_t y_{it}^{1-\lambda}$ [Behabou, HSV]
- · Government sets:
 - tax revenues $T_t = \int (y_{it} z_{it}) di$

rationing

- government spending G_t
- "neutral" monetary policy: fixed real rate = r
- Supply side:

- relax later
- linear production function $Y_t = N_t \leftarrow$
- flexible prices \Rightarrow $P_t = W_t \leftarrow$
- sticky w $\Rightarrow \pi_t^w = \kappa^w \int N_t(v'(n_{it}) \frac{\epsilon 1}{\epsilon} \frac{\partial z_{it}}{\partial n_{it}} u'(c_{it}) di) + \beta \pi_{t+1}^w$

Asset market assumptions

Household *i* solves

$$\max \mathbb{E}\left[\sum \beta^{t}\left\{u\left(c_{it}\right)-v\left(n_{it}\right)\right\}\right]$$

- RA: no risk in e (or complete markets)
- TA: share μ of agents with $c_{it} = z_{it}$
- HA-std: one asset model

$$c_{it} + a_{it} = (1+r) a_{it-1} + z_{it}$$
$$a_{it} \ge 0$$

- HA-iMPC: simplified two asset model
 - illiquid account $a^{illiq} =$ fixed no. of bonds (+ capital)
 - **liquid** account a_{it} = all **remaining** bonds + ra^{illiq}

- · Equilibrium defined as usual
- Given $\{a_{io}\}$ and r, aggregate consumption function is

$$C_{t}=\int c_{it}di=\mathcal{C}_{t}\left(\left\{ Z_{s}
ight\}
ight)$$

with $Z_t \equiv$ aggregate after-tax labor income

$$Z_t \equiv \int z_{it} di = Y_t - T_t$$

 $oldsymbol{\cdot}$ C summarizes the heterogeneity and market structure

Intertemporal MPCs

• Goods market clearing \leftrightarrow

$$Y_t = G_t + C_t (\{Y_s - T_s\})$$

• Impulse response to shock $\{dG_t, dT_t\}$

$$dY_{t} = dG_{t} + \sum_{s=0}^{\infty} \underbrace{\frac{\partial C_{t}}{\partial Z_{s}}}_{\equiv M_{t,s}} \cdot (dY_{s} - dT_{s})$$
 (1)

- \rightarrow Response $\{dY_t\}$ entirely characterized by $\{M_{t,s}\}$!
 - partial equilibrium derivatives, "intertemporal MPCs"
 - how much of income change at date s is spent at date t

•
$$\sum_{t=0}^{\infty} (1+r)^{s-t} M_{t,s} = 1$$

The intertemporal Keynesian cross

- Stack objects: $\mathbf{M}=\{M_{t,s}\}=\left\{\frac{\partial \mathcal{C}_t}{\partial Z_s}\right\}$, $d\mathbf{Y}=\{dY_t\}$, etc
- Rewrite equation (1) as

$$d\mathbf{Y} = d\mathbf{G} - \mathbf{M}d\mathbf{T} + \mathbf{M}d\mathbf{Y}$$

- This is an intertemporal Keynesian cross
 - · entire complexity of model is in M
 - with M from data, could get dY without model!

The intertemporal Keynesian cross

- Stack objects: $\mathbf{M}=\{M_{t,s}\}=\left\{rac{\partial \mathcal{C}_t}{\partial \mathcal{Z}_s}
 ight\}$, $d\mathbf{Y}=\{dY_t\}$, etc
- Rewrite equation (1) as

$$d\mathbf{Y} = d\mathbf{G} - \mathbf{M}d\mathbf{T} + \mathbf{M}d\mathbf{Y}$$

- This is an intertemporal Keynesian cross
 - · entire complexity of model is in M
 - with **M** from data, could get dY without model!
- When unique, solution is

$$d\mathbf{Y} = \mathcal{M} \cdot (d\mathbf{G} - \mathbf{M}d\mathbf{T})$$

where \mathcal{M} is (essentially) $(I - \mathbf{M})^{-1}$

Benchmark model takeaway

- Government chooses $d\mathbf{G}$ and $d\mathbf{T}$ such that $\sum_{t=0}^{\infty} \frac{G_t T_t}{(1+r)^t} = \mathbf{0}$
- dY is solution to intertemporal Keynesian cross

$$d\mathbf{Y} = d\mathbf{G} - \mathbf{M}d\mathbf{T} + \mathbf{M}d\mathbf{Y}$$

• iMPCs $\mathbf{M} = \{M_{t,s}\}$ capture model response of aggregate consumption to changes in after-tax income

Benchmark model takeaway

- Government chooses $d\mathbf{G}$ and $d\mathbf{T}$ such that $\sum_{t=0}^{\infty} \frac{G_t T_t}{(1+r)^t} = \mathbf{0}$
- dY is solution to intertemporal Keynesian cross

$$d\mathbf{Y} = d\mathbf{G} - \mathbf{M}d\mathbf{T} + \mathbf{M}d\mathbf{Y}$$

- iMPCs $\mathbf{M} = \{M_{t,s}\}$ capture model response of aggregate consumption to changes in after-tax income
- RA, TA, HA differ in their **M** matrices

Benchmark model takeaway

- Government chooses $d\mathbf{G}$ and $d\mathbf{T}$ such that $\sum_{t=0}^{\infty} \frac{G_t T_t}{(1+r)^t} = \mathbf{0}$
- dY is solution to intertemporal Keynesian cross

$$d\mathbf{Y} = d\mathbf{G} - \mathbf{M}d\mathbf{T} + \mathbf{M}d\mathbf{Y}$$

- **iMPCs M** = $\{M_{t,s}\}$ capture model response of aggregate consumption to changes in after-tax income
- · RA, TA, HA differ in their M matrices
- · Next:
 - look at M's in data and compare with RA, TA, HA
 - implications for dY

iMPCs in models vs. data

Measuring aggregate iMPCs using individual iMPCs

Object of interest: (aggregate) iMPCs

$$M_{t,s} = \frac{\partial \mathcal{C}_t}{\partial Z_s}$$

where $C_t = \int c_{it} di$ and $Z_s = \int z_{is} di$

- Direct evidence on M_{t.s} is hard to come by for general s
- More work on column s = o (unanticipated income shock)
 - · Can write

$$M_{t,o} = \int \underbrace{\frac{Z_{io}}{Z_{o}}}_{\text{income weight individual iMPC}} \cdot \underbrace{\frac{\partial C_{it}}{\partial Z_{io}}}_{\text{individual iMPC}} di$$

→ aggregate iMPCs are weighted individual iMPCs

Obtain date-o iMPCs from cross-sectional microdata

- Two sources of evidence on $\frac{\partial c_{it}}{\partial z_{jo}}$:
- 1. Fagereng Holm Natvik (2018) measure in Norwegian data

$$c_{it} = \alpha_i + \tau_t + \sum_{k=0}^{5} \gamma_k \text{lottery}_{i,t-k} + \theta x_{it} + \epsilon_{it}$$

- Weighting by income in year of lottery receipt $\Rightarrow M_{t,o}$
- 2. Italian survey data (SHIW 2016) on $\frac{\partial c_{io}}{\partial z_{io}}$
 - Construct lower bound for impulse using distribution of MPCs + stationarity assumption

iMPCs in the data

• Annual $M_{o,o}$ consistent with evidence from other sources

Compare iMPCs across models

- RA
- TA: share of hand-to-mouth calibrated to match $M_{0,0}$
- HA-std: one-asset HA, standard calibration
- HA-iMPC: two-asset HA calibrated to match iMPCs

iMPCs across models

What about non-date-o iMPCs?

- Existing evidence useful for response to date-o income shocks, $\{M_{t,o}\}$
- · What about respones to future shocks?
- \rightarrow use calibrated **HA-iMPC** model to fill in the blanks!

Response of HA-iMPC to other income shocks

Fiscal policy in the benchmark model

Fiscal policy in the benchmark model

Recall intertemporal Keynesian cross:

$$d\mathbf{Y} = d\mathbf{G} - \mathbf{M} \cdot d\mathbf{T} + \mathbf{M} \cdot d\mathbf{Y}$$

- dY entirely determined by iMPCs M and fiscal policy (dG, dT)
- · Next: Characterize role of iMPCs for
 - 1. balanced budget policies, $d\mathbf{G} = d\mathbf{T}$
 - 2. deficit-financed policies

The balanced-budget unit multiplier

• With balanced budget, $d\mathbf{G} = d\mathbf{T} \Rightarrow$ multiplier of 1:

$$d\mathbf{Y} = d\mathbf{G}$$

- Similar reasoning already in Haavelmo (1945)
- Generalizes Woodford's RA results
 - heterogeneity irrelevant for balanced budget fiscal policy
 - similar to Werning (2015)'s result for monetary policy
- Proof: $d\mathbf{Y} = d\mathbf{G}$ is unique solution to

$$d\mathbf{Y} = (I - \mathbf{M}) \cdot d\mathbf{G} + \mathbf{M} \cdot d\mathbf{Y}$$

Deficit-financed fiscal policy

• With deficit financing $d\mathbf{G} \neq d\mathbf{T}$ we have

$$d\mathbf{Y} = d\mathbf{G} + \underbrace{\mathcal{M} \cdot \mathbf{M} \cdot (d\mathbf{G} - d\mathbf{T})}_{d\mathbf{C}}$$

Consumption $d\mathbf{C}$ depends on **primary deficits** $d\mathbf{G}-d\mathbf{T}$

Deficit-financed fiscal policy

• With deficit financing $d\mathbf{G} \neq d\mathbf{T}$ we have

$$d\mathbf{Y} = d\mathbf{G} + \underbrace{\mathcal{M} \cdot \mathbf{M} \cdot (d\mathbf{G} - d\mathbf{T})}_{d\mathbf{C}}$$

Consumption $d\mathbf{C}$ depends on **primary deficits** $d\mathbf{G} - d\mathbf{T}$

Example: TA model with deficit financing

$$d\mathbf{Y} = d\mathbf{G} + \frac{\mu}{1-\mu} \left(d\mathbf{G} - d\mathbf{T} \right)$$

- · consumption dC depends only on current deficits
- initial multiplier can be large $\in \left[1, \frac{1}{1-\mu}\right] \dots$
- but cumulative multiplier is = 1!

$$\frac{\sum (1+r)^{-t}dY_t}{\sum (1+r)^{-t}dG_t}=1$$

Simulate model responses for more general shocks

- Parametrize: $dG_t = \rho_G dG_{t-1}$ and $dB_t = \rho_B (dB_{t-1} + dG_t)$
 - vary degree of deficit-financing ho_{B}

Simulate model responses for more general shocks

- Parametrize: $dG_t = \rho_G dG_{t-1}$ and $dB_t = \rho_B (dB_{t-1} + dG_t)$
 - vary degree of deficit-financing ρ_B

Fiscal policy in the quantitative model

Adding new elements to the HA-iMPC model ...

· Government:

- gov spending shock, $dG_t = \rho_G dG_{t-1}$
- fiscal rule, $dB_t = \rho_B (dB_{t-1} + dG_t)$
- Taylor rule, $i_t = r_{ss} + \phi \pi_t$, $\phi > 1$

Supply side:

- Cobb-Douglas production, $Y_t = K_t^{\alpha} N_t^{1-\alpha}$
- · K_t subject to quadratic capital adjustment costs
- sticky prices à la Calvo, $\pi_t = \kappa^p m c_t + \frac{1}{1+r_t} \pi_{t+1}$

Two reasons for lower multipliers:

monetary policy & crowding-out of investment

Sizeable output response to deficit-financed G

Calibration: $\rho_G = 0.7$, $\kappa^W = \kappa^p = 0.1$, $\phi = 1.5$; vary ρ_B in $dB_t = \rho_B (dB_{t-1} + dG_t)$

Equilibrium effect from Y important for both C and I

Calibration:
$$\rho_{\rm G}=$$
 0.7, $\rho_{\rm B}=$ 0.7, $\kappa^{\rm W}=\kappa^{\rm p}=$ 0.1, $\phi=$ 1.5

Calibration:
$$\rho_{\rm G}=$$
 0.7, $\kappa^{\rm W}=\kappa^{\rm p}=$ 0.1, $\rho_{\rm B}=$ 0.5, $\phi=$ 1.5

Summary: HA-iMPC & TA have large on-impact multipliers

On-impact multipliers $\frac{dY_0}{dG_0}$

Fiscal rule	Model	RA	HA-std	TA	HA-illiq
bal. budget	benchmark	1.0	1.0	1.0	1.0
	quantitative	0.6	0.7	0.6	0.7
deficit-financed	benchmark	1.0	1.0	1.8	2.5
	quantitative	0.6	0.6	1.3	1.6

Calibration:
$$\rho_{\rm G}=$$
 0.7, $\kappa^{\rm W}=\kappa^{\rm p}=$ 0.1, $\rho_{\rm B}=$ 0.5, $\phi=$ 1.5

... but only HA-iMPC has large **cumulative** multipliers

Cumulative multipliers
$$\frac{\sum_{t}(1+r)^{-t}dY_{t}}{\sum_{t}(1+r)^{-t}dG_{t}}$$

Fiscal rule	Model	RA	HA-std	TA	HA-illiq
bal. budget	benchmark	1.0	1.0	1.0	1.0
	quantitative	0.5	0.5	0.5	0.6
deficit-financed	benchmark	1.0	1.1	1.0	2.6
	quantitative	0.2	0.4	0.8	1.4