Teorema di Weierstrass

Alessio Serraino

March 6, 2016

<u>Teorema:</u> (di Weierstrass) Sia $f: [a,b] \to \mathbb{R}$, continua. Allora f ammette massimo e minimo in [a,b], ovvero $\exists x_m, x_M \in [a,b] : \forall x \in [a,b] f(x_m) \leq f(x_M)$

Dimostrazione: (Dimostreremo solo l'esistenza del punto di massimo, il caso dei minimi si dimostra in modo analogo)

Siano $E_1 \subseteq \mathbb{R}, E_2 \subseteq \mathbb{R}$ Non vuoti. Per la proprietà dell'estremo superiore ciascuno ammette estremo superiore in \mathbb{R} , così come la loro unione (che sicuramente non è un insime vuoto), ed in particolare: sup $(E_1 \cup E_2) = \max (\sup E_1, \sup E_2)$, inolre è sempre valida almeno una delle seguenti:

$$\sup (E_1 \cup E_2) = \sup (E_1)$$

$$\sup (E_1 \cup E_2) = \sup (E_2)$$

In seguito sarà comondo indicare con $\sup f$ l'estremo superiore dell'insieme dei valori assunti da f nell'intervallo [h,k].

Sia inolre $\Lambda = \sup_{[a,b]} f$.

Costruiamo le sequenze $\{a_n\},\{b_n\},\{c_n\}$ come segue:

$$a_0 = a, b_0 = b$$

$$c_n = \frac{a_n + b_n}{2}$$

$$se \sup_{[a_n,c_n]} f = \Lambda$$

$$a_{n+1} = c_n$$

$$b_{n+1} = b_n$$

$$altrimenti$$

$$a_{n+1} = a_n$$

$$b_{n+1} = c_n$$

Per quanto osservato all'inizio della dimostrazione sarà sempre vero che $\Lambda =$ $\sup f$, oppure $\sup f$. L'idea chiave della dimostrazione è costruire le sequenze $[c_n,b_n]$ $\{a_n\},\{b_n\}$ in modo che l'estremo superiore dei valori della funzione sia sempre

il maggiore, che è sempre pari all'estremo superiore dei valori della funzione in [a,b]. Il procedimento va iterato infinite volte, ottenendo così le sequenze $\{a_n\},\{b_n\}$, che godono delle seguenti proprietà, vere $\forall n$

- 1. $\{a_n\}$ è crescente, $\{b_n\}$ è decrescente. È sufficiente guardare come sono state costruite $(a_n \leq c_n \leq b_n \ \forall n)$
- 2. $a_n \leq b_n$, il che implica che $\{a_n\}$, $\{b_n\}$ sono limitate
- 3. $b_n a_n = \frac{b-a}{2^n}$, perchè dopo ogni iterazione la lunghezza dell'intervallo si
- 4. $\sup f = \Lambda$, perchè ogni volta si sceglie l'intervallo con questa proprietà.

Per il teorema di monotonia $a_n \to a \in [a, b], b_n \to b \in [a, b]$ quando $n \to +\infty$. Ma $a_n - b_n \to 0$, quindi, per i teoremi sull'algebra dei limiti b = a = l.

Distinguiamo ora due casi: $\Lambda \in \mathbb{R}$, ovvero Λ non è infinito.

Considero $\Lambda - \frac{1}{n} < \Lambda$, quindi non è un minorante dell'insieme dei valori di

f in $[a_n, b_n]$, ovvero $\exists t_n \in [a_n, b_n] : \Lambda - \frac{1}{n} < f(t_n) \le \Lambda$. Quando $n \to +\infty$ $\Lambda - \frac{1}{n} \to 0$, $\Lambda \to \Lambda$, quindi per il teorema del confronto anche la successione $f(t_n) \xrightarrow{n} \Lambda$

Inoltre $t_n \in [a_n, b_n] \iff a_n \le t_n \le b_n$, quindi quando $n \to +\infty$ per il teorema del confronto $t_n \to l$.

Ma f è continua per ipotesi, quindi $\lim_{n\to+\infty}f\left(t_{n}\right)=f(l)$, ma per quanto affermato in precendenza $\lim_{n\to+\infty} f(t_n) = \Lambda$, quindi $f(l) = \Lambda$. Ovvero abbiamo trovato un punto $l \in [a, b]$ per il quale f assume il suo valore massimo, che è esattamente ciò che volevamo dimostrare.

Nel secondo caso invece $\Lambda = +\infty$. A Non può essere un infinito negativo in quanto è estremo superiore

Allora per ogni n si verifica che: $\exists t_n \in [a_n, b_n] : f(t_n) > n$.

Ragioniamo come nel caso precedente, quando $n \to +\infty$, per il teorema del confronto la successione $f(t_n) \to +\infty$.

Inoltre $t_n\in [a_n,b_n]\iff a_n\le t_n\le b_n$, quindi quando $n\to +\infty$ per il teorema del confronto $t_n\to l$.

Ma f è continua per ipotesi, quindi $\lim_{n\to+\infty} f(t_n) = f(l)$, ma per quanto affermato in precendenza $\lim_{n\to+\infty} f(t_n) = +\infty$, quindi $f(l) = +\infty$, che è ovviamente assurdo, perchè per ipotesi f è una funzione a valori reali. Quindi questo secondo caso non può verificarsi.