

IIC 2433 Minería de Datos

https://github.com/marcelomendoza/IIC2433

- BACKPROPAGATION -

El perceptrón multicapa (Multi-Layer Perceptron)

Forward propagation

$$\mathbf{x} = \mathbf{x}^{(0)} \xrightarrow{\mathbf{w}^{(1)}} \mathbf{s}^{(1)} \xrightarrow{\theta} \mathbf{x}^{(1)} \xrightarrow{\mathbf{w}^{(2)}} \mathbf{s}^{(2)} \xrightarrow{\theta} \mathbf{x}^{(2)} \cdots \xrightarrow{\mathbf{w}^{(L)}} \mathbf{s}^{(L)} \xrightarrow{\theta} \mathbf{x}^{(L)} = h(\mathbf{x}).$$

Forward propagation

$$\mathbf{x}^{(0)} \leftarrow \mathbf{x}$$

_{2:} for
$$\ell = 1$$
 to L do

$$\mathbf{s}^{(\ell)} \leftarrow (\mathbf{W}^{(\ell)})^{\mathrm{T}} \mathbf{x}^{(\ell-1)}$$

$$\mathbf{x}^{(\ell)} \leftarrow \begin{bmatrix} 1 \\ \theta(\mathbf{s}^{(\ell)}) \end{bmatrix}$$

5: end for

6:
$$h(\mathbf{x}) = \mathbf{x}^{(L)}$$

Objetivo supervisado:

$$E_{\rm in}(h) = E_{\rm in}(W) = \frac{1}{N} \sum_{n=1}^{N} (h(\mathbf{x}_n) - y_n)^2$$

Dado que $\theta = \tanh$, $E_{\rm in}$ es diferenciable usando GD sobre

$$W = \{W^{(1)}, W^{(2)}, \dots, W^{(L)}\}$$

Parámetros del modelo

Feed-Forward

$$\mathbf{x} = \mathbf{x}^{(0)} \xrightarrow{\mathbf{w}^{(1)}} \mathbf{s}^{(1)} \xrightarrow{\theta} \mathbf{x}^{(1)} \xrightarrow{\mathbf{w}^{(2)}} \mathbf{s}^{(2)} \xrightarrow{\theta} \mathbf{x}^{(2)} \cdots \xrightarrow{\mathbf{w}^{(L)}} \mathbf{s}^{(L)} \xrightarrow{\theta} \mathbf{x}^{(L)} = h(\mathbf{x}).$$

Nodo a nodo:

Feed-Forward

$$\mathbf{x} = \mathbf{x}^{(0)} \xrightarrow{\mathbf{w}^{(1)}} \mathbf{s}^{(1)} \xrightarrow{\theta} \mathbf{x}^{(1)} \xrightarrow{\mathbf{w}^{(2)}} \mathbf{s}^{(2)} \xrightarrow{\theta} \mathbf{x}^{(2)} \cdots \xrightarrow{\mathbf{w}^{(L)}} \mathbf{s}^{(L)} \xrightarrow{\theta} \mathbf{x}^{(L)} = h(\mathbf{x}).$$

$$\mathbf{s}^{(\ell)} \leftarrow (\mathbf{W}^{(\ell)})^{\mathrm{T}} \mathbf{x}^{(\ell-1)}$$

Minimizar:
$$E_{\rm in}(h)=E_{\rm in}({\rm W})=rac{1}{N}\sum_{n=1}^N(h({\bf x}_n)-y_n)^2$$

Podemos usar la idea de gradiente descendente:

$$W(t+1) = W(t) - \eta \nabla E_{in}(W(t))$$

Dado que:

$$E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} e(h(\mathbf{x}_n), y_n)$$

$$\frac{\partial E_{\rm in}(\mathbf{w})}{\partial \mathbf{W}^{(\ell)}} = \frac{1}{N} \sum_{n=1}^{N} \frac{\partial \mathbf{e}_n}{\partial \mathbf{W}^{(\ell)}}$$

Necesitamos:

$$\frac{\partial e(\mathbf{x})}{\partial W^{(\ell)}}$$

Vamos a usar la **regla de la cadena** para expresar las derivadas parciales de la capa $(\ell-1)$ en función de las derivadas parciales de la capa ℓ .

Vamos a usar la **regla de la cadena** para expresar las derivadas parciales de la capa $(\ell-1)$ en función de las derivadas parciales de la capa ℓ .

Tenemos:
$$\mathbf{s}^{(\ell)} = (W^{(\ell)})^T \mathbf{x}^{(\ell-1)}$$

 $\mathbf{x}^{(\ell-1)} \qquad \qquad \mathbf{x}^{(\ell)} \qquad \qquad \mathbf{$

Definimos la sensibilidad de la capa ℓ :

$$oldsymbol{\delta}^{(\ell)} = rac{\partial \mathsf{e}}{\partial \mathbf{s}^{(\ell)}}$$

Vamos a usar la **regla de la cadena** para expresar las derivadas parciales de la capa $(\ell-1)$ en función de las derivadas parciales de la capa ℓ .

Tenemos:
$$\mathbf{s}^{(\ell)} = (W^{(\ell)})^{\mathrm{T}} \mathbf{x}^{(\ell-1)}$$

Definimos la sensibilidad de la capa ℓ :

$$oldsymbol{\delta}^{(\ell)} = rac{\partial \mathsf{e}}{\partial \mathbf{s}^{(\ell)}}$$

Aplicando la regla de la cadena:

$$\frac{\partial \mathbf{e}}{\partial \mathbf{W}^{(\ell)}} = \frac{\partial \mathbf{s}^{(\ell)}}{\partial \mathbf{W}^{(\ell)}} \cdot \left(\frac{\partial \mathbf{e}}{\partial \mathbf{s}^{(\ell)}}\right)^{\mathrm{T}}$$

$$= \mathbf{x}^{(\ell-1)} (\boldsymbol{\delta}^{(\ell)})^{\mathrm{T}}$$
- UC - M. Mendoza - ?

Miremos esto:
$$\frac{\partial \mathbf{e}}{\partial \mathbf{W}^{(\ell)}} = \frac{\partial \mathbf{s}^{(\ell)}}{\partial \mathbf{W}^{(\ell)}} \cdot \left(\frac{\partial \mathbf{e}}{\partial \mathbf{s}^{(\ell)}}\right)^{\mathrm{T}}$$
$$= \mathbf{x}^{(\ell-1)} (\boldsymbol{\delta}^{(\ell)})^{\mathrm{T}}$$

a nivel de un enlace.

Miremos esto:

$$\frac{\partial \mathsf{e}}{\partial \mathrm{W}^{(\ell)}} \, = \, \frac{\partial \mathbf{s}^{(\ell)}}{\partial \mathrm{W}^{(\ell)}} \cdot \left(\frac{\partial \mathsf{e}}{\partial \mathbf{s}^{(\ell)}} \right)^{\mathrm{T}}$$

a nivel de un enlace.

$$= \mathbf{x}^{(\ell-1)} (\boldsymbol{\delta}^{(\ell)})^{\mathrm{T}}$$

Tenemos:

$$\frac{\partial \mathbf{e}}{\partial w_{ij}^{(\ell)}} = \frac{\partial \mathbf{s}_{j}^{(\ell)}}{\partial w_{ij}^{(\ell)}} \cdot \frac{\partial \mathbf{e}}{\partial \mathbf{s}_{j}^{(\ell)}}$$

y sabemos que:
$$\mathbf{s}_j^{(\ell)} = \sum_{\alpha=0}^{d^{(\ell-1)}} w_{\alpha j}^{(\ell)} \mathbf{x}_{\alpha}^{(\ell-1)}$$

Miremos esto:

$$\frac{\partial \mathsf{e}}{\partial \mathbf{W}^{(\ell)}} \, = \, \frac{\partial \mathbf{s}^{(\ell)}}{\partial \mathbf{W}^{(\ell)}} \cdot \left(\frac{\partial \mathsf{e}}{\partial \mathbf{s}^{(\ell)}} \right)^{\mathrm{T}}$$

a nivel de un enlace.

$$= \mathbf{x}^{(\ell-1)} (\boldsymbol{\delta}^{(\ell)})^{\mathrm{T}}$$

Tenemos:

$$\frac{\partial \mathbf{e}}{\partial w_{ij}^{(\ell)}} = \frac{\partial \mathbf{s}_{j}^{(\ell)}}{\partial w_{ij}^{(\ell)}} \cdot \frac{\partial \mathbf{e}}{\partial \mathbf{s}_{j}^{(\ell)}}$$

y sabemos que:
$$\mathbf{s}_j^{(\ell)} = \sum_{\alpha=0}^{d^{(\ell-1)}} w_{\alpha j}^{(\ell)} \mathbf{x}_{\alpha}^{(\ell-1)}$$

por lo que al derivar con respecto a $w_{ij}^{(\ell)}$, queda: $\mathbf{x}_i^{(\ell-1)} \cdot \boldsymbol{\delta}_i^{(\ell)}$

$$\mathbf{x}_i^{(\ell-1)} \cdot \boldsymbol{\delta}_j^{(\ell)}$$

Miremos esto:

$$\frac{\partial \mathsf{e}}{\partial \mathbf{W}^{(\ell)}} \, = \, \frac{\partial \mathbf{s}^{(\ell)}}{\partial \mathbf{W}^{(\ell)}} \cdot \left(\frac{\partial \mathsf{e}}{\partial \mathbf{s}^{(\ell)}} \right)^{\mathrm{T}}$$

a nivel de un enlace.

$$= \mathbf{x}^{(\ell-1)} (\boldsymbol{\delta}^{(\ell)})^{\mathrm{T}}$$

Tenemos:

$$\frac{\partial \mathbf{e}}{\partial w_{ij}^{(\ell)}} = \frac{\partial \mathbf{s}_{j}^{(\ell)}}{\partial w_{ij}^{(\ell)}} \cdot \frac{\partial \mathbf{e}}{\partial \mathbf{s}_{j}^{(\ell)}}$$

y sabemos que:
$$\mathbf{s}_j^{(\ell)} = \sum_{\alpha=0}^{d^{(\ell-1)}} w_{\alpha j}^{(\ell)} \mathbf{x}_{\alpha}^{(\ell-1)}$$

por lo que al derivar con respecto a $w_{ij}^{(\ell)}$, queda:

Luego, haciendo lo mismo para cada parámetro, encontramos que:

$$\mathbf{x}_i^{(\ell-1)} \cdot oldsymbol{\delta}_j^{(\ell)}$$

$$\frac{\partial \mathbf{s}^{(\ell)}}{\partial W^{(\ell)}} = \mathbf{x}^{(\ell-1)} \quad \checkmark$$

Ahora trabajaremos con:

$$oldsymbol{\delta}_{j}^{(\ell)} = rac{\partial \mathsf{e}}{\partial \mathbf{s}_{j}^{(\ell)}}$$

Ahora trabajaremos con: $oldsymbol{\delta}_{j}^{(\ell)} = rac{\partial \mathbf{e}}{\partial \mathbf{s}_{j}^{(\ell)}}$

Aplicamos regla de la cadena:

$$\frac{\partial \mathsf{e}}{\partial \mathbf{s}_{j}^{(\ell)}} = \frac{\partial \mathsf{e}}{\partial \mathbf{x}_{j}^{(\ell)}} \cdot \frac{\partial \mathbf{x}_{j}^{(\ell)}}{\partial \mathbf{s}_{j}^{(\ell)}}$$

Ahora trabajaremos con: $\boldsymbol{\delta}_{j}^{(i)}$

$$\boldsymbol{\delta}_{j}^{(\ell)} = \frac{\partial \mathsf{e}}{\partial \mathbf{s}_{j}^{(\ell)}}$$

Aplicamos regla de la cadena:

$$\frac{\partial \mathsf{e}}{\partial \mathbf{s}_{j}^{(\ell)}} = \frac{\partial \mathsf{e}}{\partial \mathbf{x}_{j}^{(\ell)}} \cdot \frac{\partial \mathbf{x}_{j}^{(\ell)}}{\partial \mathbf{s}_{j}^{(\ell)}}$$

$$= rac{\partial \mathsf{e}}{\partial \mathbf{x}_{j}^{(\ell)}} \cdot rac{ heta'}{lack} \left(\mathbf{s}_{j}^{(\ell)}
ight)$$

Derivada de la función de activación

Ahora trabajaremos con:

$$oldsymbol{\delta}_{j}^{(\ell)} = rac{\partial \mathsf{e}}{\partial \mathbf{s}_{j}^{(\ell)}}$$

Aplicamos regla de la cadena:

$$\frac{\partial \mathsf{e}}{\partial \mathbf{s}_{j}^{(\ell)}} = \frac{\partial \mathsf{e}}{\partial \mathbf{x}_{j}^{(\ell)}} \cdot \frac{\partial \mathbf{x}_{j}^{(\ell)}}{\partial \mathbf{s}_{j}^{(\ell)}}$$

$$= rac{\partial \mathsf{e}}{\partial \mathbf{x}_{j}^{(\ell)}} \cdot egin{array}{c} heta' \left(\mathbf{s}_{j}^{(\ell)}
ight) \end{array}$$

Derivada de la función de activación

Ahora veamos que ocurre en:

$$rac{\partial \mathsf{e}}{\partial \mathbf{x}_j^{(\ell)}}$$

Hay una multiplexión

Dado que una componente de $\mathbf{x}^{(\ell)}$ afecta a todas las componentes de $\mathbf{s}^{(\ell+1)}$, necesitamos sumar estas dependencias:

$$\frac{\partial \mathsf{e}}{\partial \mathbf{x}_{j}^{(\ell)}} = \sum_{k=1}^{d^{(\ell+1)}} \frac{\partial \mathbf{s}_{k}^{(\ell+1)}}{\partial \mathbf{x}_{j}^{(\ell)}} \cdot \frac{\partial \mathsf{e}}{\partial \mathbf{s}_{k}^{(\ell+1)}}$$

 $\mathbf{x}^{(\ell)}$ $\mathbf{W}^{(\ell+1)}$

Dado que una componente de $\mathbf{x}^{(\ell)}$ afecta a todas las componentes de $\mathbf{s}^{(\ell+1)}$, necesitamos sumar estas dependencias:

$$\frac{\partial \mathbf{e}}{\partial \mathbf{x}_{j}^{(\ell)}} = \sum_{k=1}^{d^{(\ell+1)}} \frac{\partial \mathbf{s}_{k}^{(\ell+1)}}{\partial \mathbf{x}_{j}^{(\ell)}} \cdot \frac{\partial \mathbf{e}}{\partial \mathbf{s}_{k}^{(\ell+1)}}$$
 Sabemos que:
$$= \sum_{k=1}^{d^{(\ell+1)}} w_{jk}^{(\ell+1)} \boldsymbol{\delta}_{k}^{(\ell+1)} .$$
 Sabemos que:
$$\frac{\partial \mathbf{s}^{(\ell)}}{\partial \mathbf{w}^{(\ell)}} = \mathbf{x}^{(\ell-1)}$$

Dado que una componente de $\mathbf{x}^{(\ell)}$ afecta a todas las componentes de $\mathbf{s}^{(\ell+1)}$, necesitamos sumar estas dependencias:

$$\frac{\partial \mathbf{e}}{\partial \mathbf{x}_{j}^{(\ell)}} = \sum_{k=1}^{d^{(\ell+1)}} \frac{\partial \mathbf{s}_{k}^{(\ell+1)}}{\partial \mathbf{x}_{j}^{(\ell)}} \cdot \frac{\partial \mathbf{e}}{\partial \mathbf{s}_{k}^{(\ell+1)}}$$

$$= \sum_{k=1}^{d^{(\ell+1)}} w_{jk}^{(\ell+1)} \boldsymbol{\delta}_{k}^{(\ell+1)}.$$

Sabemos que: $a_{\sigma}(\ell)$

$$\frac{\partial \mathbf{s}^{(\ell)}}{\partial \mathbf{W}^{(\ell)}} = \mathbf{x}^{(\ell-1)}$$

Luego:

$$\frac{\partial \mathbf{e}}{\partial \mathbf{s}_{j}^{(\ell)}} = \frac{\partial \mathbf{e}}{\partial \mathbf{x}_{j}^{(\ell)}} \cdot \frac{\partial \mathbf{x}_{j}^{(\ell)}}{\partial \mathbf{s}_{j}^{(\ell)}}$$

$$\boldsymbol{\delta}_{j}^{(\ell)} = \theta'(\mathbf{s}_{j}^{(\ell)}) \sum_{k=1}^{d^{(\ell+1)}} w_{jk}^{(\ell+1)} \boldsymbol{\delta}_{k}^{(\ell+1)}$$

Backpropagation
$$\tanh'(\mathbf{s}^{(\ell)}) = \mathbf{1} - \tanh^2(\mathbf{s}^{(\ell)})$$

$$\boldsymbol{\delta}_j^{(\ell)} = \theta'(\mathbf{s}_j^{(\ell)}) \sum_{k=1}^{d^{(\ell+1)}} w_{jk}^{(\ell+1)} \boldsymbol{\delta}_k^{(\ell+1)}$$

$$\boldsymbol{\delta}^{(1)} \longleftarrow \boldsymbol{\delta}^{(2)} \cdots \longleftarrow \boldsymbol{\delta}^{(L-1)} \longleftarrow \boldsymbol{\delta}^{(L)}$$

$$\boldsymbol{\delta}_j^{(\ell)} = \theta'(\mathbf{s}_j^{(\ell)}) \sum_{k=1}^{d^{(\ell+1)}} w_{jk}^{(\ell+1)} \boldsymbol{\delta}_k^{(\ell+1)}$$

Backpropagation de sensibilidad:

$$\boldsymbol{\delta}^{(1)} \longleftarrow \boldsymbol{\delta}^{(2)} \cdots \longleftarrow \boldsymbol{\delta}^{(L-1)} \longleftarrow \boldsymbol{\delta}^{(L)}$$

Nos falta calcular $oldsymbol{\delta}^{(L)}$.

$$\boldsymbol{\delta}_{j}^{(\ell)} = \theta'(\mathbf{s}_{j}^{(\ell)}) \sum_{k=1}^{d^{(\ell+1)}} w_{jk}^{(\ell+1)} \boldsymbol{\delta}_{k}^{(\ell+1)}$$

Backpropagation de sensibilidad:

$$\boldsymbol{\delta}^{(1)} \longleftarrow \boldsymbol{\delta}^{(2)} \cdots \longleftarrow \boldsymbol{\delta}^{(L-1)} \longleftarrow \boldsymbol{\delta}^{(L)}$$

Nos falta calcular $\boldsymbol{\delta}^{(L)}$.

Sabemos que:
$$e = (\mathbf{x}^{(L)} - y)^2 = (\theta(\mathbf{s}^{(L)}) - y)^2$$

$$\boldsymbol{\delta}_{j}^{(\ell)} = \theta'(\mathbf{s}_{j}^{(\ell)}) \sum_{k=1}^{d^{(\ell+1)}} w_{jk}^{(\ell+1)} \boldsymbol{\delta}_{k}^{(\ell+1)}$$

Backpropagation de sensibilidad:

$$\boldsymbol{\delta}^{(1)} \longleftarrow \boldsymbol{\delta}^{(2)} \cdots \longleftarrow \boldsymbol{\delta}^{(L-1)} \longleftarrow \boldsymbol{\delta}^{(L)}$$

Nos falta calcular $\boldsymbol{\delta}^{(L)}$.

Sabemos que:
$$\mathbf{e} = (\mathbf{x}^{(L)} - y)^2 = (\theta(\mathbf{s}^{(L)}) - y)^2$$

Luego:
$$\boldsymbol{\delta}^{(L)} = \frac{\partial \mathbf{e}}{\partial \mathbf{s}^{(L)}}$$
$$= \frac{\partial}{\partial \mathbf{s}^{(L)}} (\mathbf{x}^{(L)} - y)^2$$

$$\boldsymbol{\delta}_{j}^{(\ell)} = \theta'(\mathbf{s}_{j}^{(\ell)}) \sum_{k=1}^{d^{(\ell+1)}} w_{jk}^{(\ell+1)} \boldsymbol{\delta}_{k}^{(\ell+1)}$$

Backpropagation de sensibilidad:

$$\boldsymbol{\delta}^{(1)} \longleftarrow \boldsymbol{\delta}^{(2)} \cdots \longleftarrow \boldsymbol{\delta}^{(L-1)} \longleftarrow \boldsymbol{\delta}^{(L)}$$

Nos falta calcular $\boldsymbol{\delta}^{(L)}$.

Sabemos que:
$$\mathbf{e} = (\mathbf{x}^{(L)} - y)^2 = (\underline{\theta}(\mathbf{s}^{(L)}) - y)^2$$

Luego:
$$\boldsymbol{\delta}^{(L)} = \frac{\partial \mathbf{e}}{\partial \mathbf{s}^{(L)}}$$
$$= \frac{\partial}{\partial \mathbf{s}^{(L)}} (\mathbf{x}^{(L)} - y)^2$$
$$= 2(\mathbf{x}^{(L)} - y) \frac{\partial \mathbf{x}^{(L)}}{\partial \mathbf{s}^{(L)}}$$
$$= 2(\mathbf{x}^{(L)} - y) \theta'(\mathbf{s}^{(L)}).$$

Esto es 0 si la red acierta

$$\tanh'(\mathbf{s}^{(\ell)}) = \mathbf{1} - \tanh^2(\mathbf{s}^{(\ell)})$$
$$= 1 - (x^{(L)})^2$$

Backpropagation

$$\delta^{(L)} \leftarrow 2(x^{(L)} - y) \cdot \theta'(s^{(L)})$$

_{2:} **for**
$$\ell = L - 1$$
 to 1 **do**

Compute
$$\theta'(\mathbf{s}^{(\ell)}) = \left[1 - \mathbf{x}^{(\ell)} \otimes \mathbf{x}^{(\ell)}\right]_1^{d^{(\ell)}}$$
 $\boldsymbol{\delta}^{(\ell)} \leftarrow \theta'(\mathbf{s}^{(\ell)}) \otimes \left[W^{(\ell+1)} \boldsymbol{\delta}^{(\ell+1)}\right]_1^{d^{(\ell)}}$

$$oldsymbol{\delta}^{(\ell)} \leftarrow heta'(\mathbf{s}^{(\ell)}) \otimes \left[\mathbf{W}^{(\ell+1)} oldsymbol{\delta}^{(\ell+1)}
ight]_1^{d^{(\ell)}}$$

5: end for

Backpropagation nos permite obtener la cadena de sensibilidades:

$$\boldsymbol{\delta}^{(1)} \longleftarrow \boldsymbol{\delta}^{(2)} \cdots \longleftarrow \boldsymbol{\delta}^{(L-1)} \longleftarrow \boldsymbol{\delta}^{(L)}$$

Recordar que:
$$\frac{\partial \mathbf{e}}{\partial \mathbf{W}^{(\ell)}} = \frac{\partial \mathbf{s}^{(\ell)}}{\partial \mathbf{W}^{(\ell)}} \cdot \left(\frac{\partial \mathbf{e}}{\partial \mathbf{s}^{(\ell)}}\right)^{\mathrm{T}}$$

Luego, podemos calcular los gradientes para aplicar GD:

$$= \mathbf{x}^{(\ell-1)}(\boldsymbol{\delta}^{(\ell)})^{\mathrm{T}}$$

Algorithm to Compute $E_{in}(\mathbf{w})$ and $\mathbf{g} = \nabla E_{in}(\mathbf{w})$:

Input: weights $\mathbf{w} = \{\mathbf{W}^{(1)}, \dots, \mathbf{W}^{(L)}\}; \text{ data } \mathcal{D}.$

Output: error $E_{\text{in}}(\mathbf{w})$ and gradient $\mathbf{g} = \{G^{(1)}, \dots, G^{(L)}\}.$

- Initialize: $E_{\rm in} = 0$; for $\ell = 1, ..., L$, $G^{(\ell)} = 0 \cdot W^{(\ell)}$.
- for Each data point \mathbf{x}_n (n = 1, ..., N) do
- Compute $\mathbf{x}^{(\ell)}$ for $\ell = 0, \dots, L$. [forward propagation]
- Compute $\boldsymbol{\delta}^{(\ell)}$ for $\ell = 1, \ldots, L$. [backpropagation]

for
$$\ell = 1, \ldots, L$$
 do

G(
$$\ell$$
) \mathbf{x}_n) = $[\mathbf{x}^{(\ell-1)}(\boldsymbol{\delta}^{(\ell)})^{\mathrm{T}}]$

$$G^{(\ell)} \leftarrow G^{(\ell)} + \frac{1}{N} G^{(\ell)}(\mathbf{x}_n).$$

- end for
- 9: end for

Recordar que:
$$\frac{\partial \mathbf{e}}{\partial W^{(\ell)}} = \frac{\partial \mathbf{s}^{(\ell)}}{\partial W^{(\ell)}} \cdot \left(\frac{\partial \mathbf{e}}{\partial \mathbf{s}^{(\ell)}}\right)^{\mathrm{T}}$$

Luego, podemos calcular los gradientes para aplicar GD:

$$= \mathbf{x}^{(\ell-1)}(\boldsymbol{\delta}^{(\ell)})^{\mathrm{T}}$$

Algorithm to Compute $E_{in}(\mathbf{w})$ and $\mathbf{g} = \nabla E_{in}(\mathbf{w})$:

Input: weights $\mathbf{w} = \{\mathbf{W}^{(1)}, \dots, \mathbf{W}^{(L)}\}; \text{ data } \mathcal{D}.$

Output: error $E_{\text{in}}(\mathbf{w})$ and gradient $\mathbf{g} = \{G^{(1)}, \dots, G^{(L)}\}$.

- Initialize: $E_{\text{in}} = 0$; for $\ell = 1, ..., L$, $G^{(\ell)} = 0 \cdot W^{(\ell)}$.
- for Each data point \mathbf{x}_n (n = 1, ..., N) do
- Compute $\mathbf{x}^{(\ell)}$ for $\ell = 0, \dots, L$. [forward propagation]
- Compute $\boldsymbol{\delta}^{(\ell)}$ for $\ell=1,\ldots,L$. [backpropagation]

for
$$\ell = 1, \ldots, L \operatorname{do}$$

G(
$$\ell$$
) \mathbf{x}_n = $\mathbf{x}^{(\ell-1)}(\boldsymbol{\delta}^{(\ell)})^{\mathrm{T}}$

$$G^{(\ell)} \leftarrow G^{(\ell)} + \frac{1}{N} G^{(\ell)}(\mathbf{x}_n).$$

- end for
- 9: end for

$$E_{\rm in} \leftarrow E_{\rm in} + \frac{1}{N} (\mathbf{x}_n^{(L)} - y_n)^2.$$

GD para redes feed-forward: $W^{(\ell)} = W^{(\ell)} - \eta G^{(\ell)}(\mathbf{x}_n)$.

Las redes neuronales son útiles para trabajar sobre datos raw

En este caso, la red trabaja directamente sobre la imagen. Usa dos operadores (filtro convolucional y pooling) para extraer patches desde la entrada.

Al final, usa capas densas y colapsa a una softmax.

Si la red aprende, debiera existir un gap pequeño entre accuracy de validación y training (idem para pérdida)

- SUPPORT VECTOR MACHINES -

- Los datos pueden ser ruidosos (ruido de medición).
- Nuestros modelos debieran ser robustos a datos ruidosos.

<u>Idea</u>: La robustez al ruido tiene relación con considerar un margen de error para las mediciones.

Una idea análoga a márgenes para datos consiste en trabajar con **hiperplanos gruesos**, <u>agregando un margen al separador</u>.

Para trabajar con un hiperlano grueso, podemos usar el sesgo de una manera ingeniosa.

Hiperplano estrecho

$$\mathbf{x} \in \{1\} \times \mathbb{R}^d; \ \mathbf{w} \in \mathbb{R}^{d+1}$$

$$\mathbf{x} = \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_d \end{bmatrix}; \quad \mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{bmatrix}.$$

$$signal = \mathbf{w}^T \mathbf{x}$$

El sesgo se codifica como una dimensión más

Red neuronal

<u>Hiperplano grueso</u>

$$\mathbf{x} \in \mathbb{R}^d$$
; $b \in \mathbb{R}$, $\mathbf{w} \in \mathbb{R}^d$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix}; \quad \mathbf{w} = \begin{bmatrix} w_1 \\ \vdots \\ w_d \end{bmatrix}.$$

$$signal = \mathbf{w}^{\mathsf{T}}\mathbf{x} + b$$

El sesgo aditivo interviene en el espacio de representación

SVM

Hiperplano grueso

$$\mathbf{x} \in \mathbb{R}^d$$
; $b \in \mathbb{R}$, $\mathbf{w} \in \mathbb{R}^d$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix}; \quad \mathbf{w} = \begin{bmatrix} w_1 \\ \vdots \\ w_d \end{bmatrix}.$$

$$signal = \mathbf{w}^{\mathsf{T}}\mathbf{x} + b$$

$$sesgo$$

