Chapter 9

Advanced Spectral Theory

10/22:

- Let $p(z) = \sum_{i=0}^{n} a_i z^i$ be a polynomial. Let A be an $n \times n$ matrix. We let $p(A) = \sum_{i=0}^{n} a_i A^i$.
- Theorem: If A is an $n \times n$ and $p(\lambda) = \det(A \lambda I)$, then p(A) = 0.
 - We know that $p(\lambda) = a(z \lambda_1) \cdots (z \lambda_n)$ where $\lambda_1, \dots, \lambda_n$ are the eigenvalues.
 - Thus $p(A) = a(A \lambda_1 I) \cdots (A \lambda_n I)$.
 - If you are in \mathbb{R}^n and have this property, you can factorize your matrix.
 - Thus, $p(A)\mathbf{x} = \mathbf{0}$ since \mathbf{x} can be decomposed into a linear combination of eigenvectors of A, which will be taken to 0 one by one by the terms of p(A).
- $\sigma(B) = \{\text{eigenvalues of } B\}$ is known as the **spectrum** of B.
- If p is an arbitrary polynomial and A is $n \times n$, then μ is an eigenvalue of p(A) if and only if $\mu = p(\lambda)$ where λ is an eigenvalue of A. In essence, $\sigma(p(A)) = p(\sigma(A))$.
- Chapter 9 will not be on the exam. We don't have to know the generalization to infinite dimensional spaces.

10/25:

- If A is an $n \times n$ square matrix and $p(\lambda) = \det(A \lambda I)$, then p(A) = 0.
 - Proof: WLOG, let A be an upper triangular matrix with diagonal entries equal to the eigenvalues.
 - Think of $p(z) = (-1)^n (z \lambda_1) \cdots (z \lambda_n)$.
 - Thus, $p(A) = (-1)^n (A \lambda_1 I) \cdots (A \lambda_n I)$.
 - WTS: $p(A)\mathbf{x} = 0$ for all $\mathbf{x} \in V$.
 - Let $E_k = \operatorname{span}(e_1, \ldots, e_k)$ be the span of the first k eigenvectors of A, where e_1, \ldots, e_n is a standard basis in \mathbb{C}^n .
 - A triangular implies $AE_k \subset E_k$. Thus, $(A \lambda I)E_k \subset E_k$, so E_k is invariant under $A \lambda I$ for all λ .
 - If we apply $A \lambda_k I$ to a vector in E_k , we are left with a vector in E_{k-1} .
 - Thus, if we apply $\prod_{k=1}^{n} (A \lambda_k I) = p(A)$ to any vector in $E_n = V$, we will kill it piece by piece down to zero.
- Let A be a square $n \times n$ matrix. Then p an arbitrary polynomial implies $\sigma(p(A)) = p(\sigma(A))$. (Any eigenvalue μ of p(A) is $\mu = p(\lambda)$, where λ is an eigenvalue of A.)
 - Shows that polynomials of operators commute.
 - Proof: Let λ be an eigenvalue of A. We want to show that $p(\lambda)$ is an eigenvalue of p(A). This is obvious since $A\mathbf{x} = \lambda \mathbf{x}$ for some \mathbf{x} , so $A^k \mathbf{x} = \lambda^k \mathbf{x}$, so in particular, $p(A)\mathbf{x} = p(\lambda)\mathbf{x}$.

- On the other hand, if μ is an eigenvalue of p(A), we want to show that there exists $\lambda \in \sigma(A)$ such that $\mu = p(\lambda)$.
- Consider $q(z) = p(z) \mu$. Then $q(A) = p(A) \mu I$. Since μ is an eigenvalue of p(A), q(A) is not invertible.
- Thus, $q(z) = (-1)^n (z z_1) \cdots (z z_n)$ and $q(A) = (-1)^k (A z_1 I) \cdots (A z_k I)$.
- But q(A) is not invertible, so one of the $A z_k I$ is not invertible. Take z_k such that $A z_k I$ is not invertible. Then $z_k \in \sigma(A)$. It follows that $q(z_k) = p(z_k) \mu = \sigma$.
- If A is $n \times n$, $\lambda_1, \ldots, \lambda_n$ are its eigenvalues, p is a polynomial, then p(A) is invertible if and only if $p(\lambda_k) \neq 0$ for each $k = 1, \ldots, n$.
 - This is an immediate corollary to the previous result.
- We now build up to the **generalized eigenspace**, which is related to some "geometric" properties of the algebraic multiplicity of an eigenvalue.
- If $A:V\to V$ is a linear operator and $E\subset V$ is a subspace, E is A-invariant if $AE\subset E$.
- Facts:
 - If E is A-invariant, E is A^k -invariant.
 - Thus, E is p(A)-invariant.
- Consider the restriction map $A|_E$.
- A has a block-diagonalized matrix where each block corresponds to the generalized eigenvectors of a generalized eigenvalue of A.
 - Let E_1, \ldots, E_r be a basis of invariant subspaces.
 - Let $A_k = A|_{E_k}$. Then the A_k 's act independently of each other.
- Generalized eigenvector (of A): A vector \mathbf{v} corresponding to an eigenvalue λ if there exists $k \geq 1$ such that $(A \lambda I)^k \mathbf{v} = \mathbf{0}$.
- Generalized eigenspace: The set E_{λ} of all of the generalized eigenvectors of λ . Given by

$$E_k = \bigcup_{k>1} \ker(A - \lambda I)^k$$

- $-E_{\lambda}$ is a linear subspace of V.
- **Degree** (of λ): The smallest number k such that increasing k any more does not add further vectors to the generalized eigenspace. Denoted by $d(\lambda)$.
 - Symbolically, $d(\lambda)$ is the smallest number such that

$$E_{\lambda} = \bigcup_{k=1}^{d(\lambda)} \ker(A - \lambda I)^{k}$$

• Start working through the first 25 problems of Rudin (his metric spaces problems).