Разработать программу для работы с многочленами. Многочлен представлен как одномерный массив размерности n+1, где a[i] - это коэффициенты многочлена вида

$$\sum_{i=0}^{n} a_i x^i.$$

В таблицах приведены результаты при некоторых значениях коэффициентов многочлена.

1. Дан многочлен P(x) степени n. Вычислить значение многочлена в точках $x \in [a,b]$ с шагом h.

N	x	коэффициенты	P(x)	N	x	коэффициенты	P(x)
3	-2	1, 2, -1, 1	-15	4	-2	1, 4, 6, 4, 1	1
3	-1	1, 2, -1, 1	3	4	-1	1, 4, 6, 4, 1	0
3	0	1, 2, -1, 1	1	4	0	1, 4, 6, 4, 1	1
3	1	1, 2, -1, 1	3	4	1	1, 4, 6, 4, 1	16
4	2	1, 2, -1, 1	9	3	2	1, 4, 6, 4, 1	81

2. Дан многочлен P(x) степени n. Вычислить значение P'(x) в точках $x \in [a,b]$ с шагом h.

N	x	коэффициенты	P'(x)	N	x	коэффициенты	P'(x)
3	-2	1, 3, 3, 1	3	4	-2	1, 4, 6, 4, 1	-4
3	-1	1, 3, 3, 1	0	4	-1	1, 4, 6, 4, 1	0
3	0	1, 3, 3, 1	3	4	0	1, 4, 6, 4, 1	4
3	1	1, 3, 3, 1	12	4	1	1, 4, 6, 4, 1	32
4	2	1, 3, 3, 1	27	3	2	1, 4, 6, 4, 1	108

3. Дан многочлен P(x) степени n и действительное число a. Получить многочлен $(x^2-a)P(x)$

a	n	коэф. $P(x)$	коэф. $(x^2-a)P(x)$
-1	3	1, 3, 3, 1	1, 3, 4, 4, 3, 1
-1	4	1, 2, 2, 2, 1	1, 2, 3, 4, 3, 2, 1

4. Дан многочлен P(x) степени n. Получить его производную P'(x)

n	коэф. $P(x)$	коэф. $P'(x)$
3	1, 3, 3, 1	3, 6, 3,
4	1, 4, 6, 4, 1	4, 12, 12, 4,

5. Дан многочлен P(x) степени n и действительное число a. Получить многочлен $(x^2 + 2ax + a^2)P(x)$

a	n	коэф. $P(x)$	коэф. $(x^2 + 2ax + a^2)P(x)$
1	3	1, 3, 3, 1	1, 5, 10, 10, 5, 1
1	4	1, 4, 6, 4, 1	1, 6, 15, 20, 15, 6, 1

6. Дан многочлен P(x) степени n. Получить $\int P(x)dx$

a	n	коэф. $P(x)$	коэф. $\int P(x)dx$
1	3	1, 3, 3, 1	0, 1, 1.5, 1, 0.25
1	4	1, 4, 6, 4, 1	0, 1, 2, 2, 1, 0.2,

7. Дан многочлен P(x) степени n и действительные числа a,b. Найти значение

$$\int_{a}^{b} P(x)dx.$$

a	b	n	коэф. $P(x)$	Результат
0	1	3	1, 3, 3, 1	3.75
1	3	4	1, 4, 6, 4, 1	224.4

8. Дан многочлен P(x) степени n. Получить многочлен P(x) + P'(x), где P'(x) — это производная многочлена P(x).

n	коэф. $P(x)$	коэф. $P(x) + P'(x)$
3	1, 3, 3, 1	4, 9, 6, 1
4	1, 4, 6, 4, 1	5, 16, 18, 8, 1

9. Дан многочлен P(x) степени n. Получить многочлен $P(x) \cdot P'(x)$, где P'(x) -это производная многочлена P(x).

n	коэф. $P(x)$	коэф. $P(x) \cdot P'(x)$
3	1, 3, 3, 1	3, 15, 30, 30, 15, 3
4	1, 4, 6, 4, 1	4, 28, 84, 140, 140, 84, 28, 4

10. Дан многочлен P(x) степени n. Получить его вторую производную $P^{\prime\prime}(x)$.

n	коэф. $P(x)$	коэф. $P''(x)$
3	1, 3, 3, 1	6, 6
4	1, 4, 6, 4, 1	12, 24, 12

11. Даны многочлены P(x) степени n и Q(x) степени m. Получить многочлен $\int P(x) \cdot Q(x) dx.$

n	m	коэф. $P(x)$	коэф.	коэф. $\int P(x) \cdot Q(x) dx$
			Q(x)	
3	2	1, 3, 3, 1	1, 2, 1	0, 1, 2.5, 3.(3), 2.5, 1, 0.1(6)
4	2	1, 4, 6, 4, 1	1, 2, 1	0, 1, 3, 5, 5, 3, 1, 0.14

12. Даны многочлены P(x) степени n и Q(x) степени m. Получить многочлен $(P(x)\cdot Q(x))'.$

(P(x))	$(\cdot) \cdot Q($	(x))'.		
n	m	коэф. $P(x)$	коэф.	коэф. $(P(x)\cdot Q(x))'$
			Q(x)	
3	2	1, 3, 3, 1	1, 2, 1	5, 20, 30, 20, 5
4	2	1, 4, 6, 4, 1	1, 2, 1	6, 30, 60, 60, 30, 6