IN THE CLAIMS

Please amend the claims as follows:

- 1. (Currently Amended) A method for forming a film on a substrate comprising:
 activating a gas precursor to deposit a material on the substrate by irradiating the gas
 precursor-with electromagnetic energy at a frequency tuned to an absorption frequency of the gas
 precursor including controlling the irradiation with the electromagnetic energy to activate the gas
 to a energy level such that, if the gas is a reactant precursor to form the material, the gas does not
 decompose prior to a reaction that forms the material or, if the gas is not a reactant precursor to
 form the material, the gas decomposes into one or more reactant molecular gas precursors that
 enter into a reaction with another substance that forms the material.
- 2. (Currently Amended) The method of claim 1, wherein the method further includes adjusting a source for the electromagnetic energy to provide the electromagnetic energy at a select frequency tuned to a specific absorption frequency of the gas precursor.
- 3. (Original) The method of claim 2, wherein adjusting a source for the electromagnetic energy includes switching laser light from an output of one laser in a laser array to an output of another laser in the laser array.
- 4. (Original) The method of claim 2, wherein adjusting a source for the electromagnetic energy includes switching laser light from an output of one diode laser in a diode laser array to an output of another diode laser in the diode laser array.
- 5. (Original) The method of claim 2, wherein adjusting a source for the electromagnetic energy includes tuning a tunable laser to the select frequency.
- 6. (Currently Amended) The method of claim 1, wherein the method further includes controlling a location at which the electromagnetic energy interacts with the gas precursor.

- (Currently Amended) The method of claim 6, wherein controlling a location at which the 7. electromagnetic energy interacts with the gas precursor includes rastering the electromagnetic energy across a portion of a surface of the substrate.
- 8. (Currently Amended) The method of claim 1, wherein activating a gas precursor includes breaking specific bonds in the gas precursor.
- 9. (Currently Amended) The method of claim 1, wherein activating a gas precursor includes decomposing the gas precursor into two of more chemical vapors.
- 10. (Currently Amended) The method of claim 1, wherein the method further includes controlling environmental parameters and a location at which the electromagnetic energy irradiates the gas precursor such that activating the gas precursor occurs at a distance from the substrate that is within a mean free path of the activated gas precursor.
- (Original) The method of claim 1, wherein the method is performed as a part of a 11. chemical vapor deposition process.
- 12. (Original) The method of claim 1, wherein the method is performed as a part of an atomic layer deposition process.
- 13. (Currently Amended) A method for forming a film on a substrate comprising: selecting an absorption frequency of a molecule of a gas reactant; setting a select frequency for a laser source correlated to the absorption frequency; illuminating the gas reactant using the laser source to deposit a material on the substrate; and

controlling the illumination using the laser source to activate the gas to a energy level such that, if the gas is a reactant precursor to form a material on the substrate, the gas does not decompose prior to a reaction that forms the material or, if the gas is not a reactant precursor to form the material, the gas decomposes into one or more reactant molecular gas precursors that

enter into a reaction with another substance that forms the material.

14. (Original) The method of claim 13, wherein setting a select frequency for a laser source

includes selecting a laser in a laser array to provide the laser source having the select frequency.

(Original) The method of claim 13, wherein setting a select frequency for a laser source 15.

includes selecting a diode laser in a diode laser array to provide the laser source having the select

frequency.

(Original) The method of claim 13, wherein setting a select frequency for a laser source 16.

includes tuning a tunable laser to the select frequency.

17. (Currently Amended) The method of claim 13, wherein the method further includes

controlling a location at which radiation from the laser source illuminates the gas reactant.

(Currently Amended) The method of claim 17, wherein controlling a location at which 18.

radiation from the laser source illuminates the gas reactant includes rastering the laser beam

across a portion of a surface of the substrate.

19. (Currently Amended) The method of claim 13, wherein the method further includes

regulating environmental parameters and a location at which the laser source illuminates the gas

reactant to activate the gas reactant at a distance from the substrate that is within a mean free

path of the activated gas reactant.

20. (Currently Amended) A method for forming a film on a substrate comprising:

measuring absorption frequencies of one or more molecules of a gas flow;

selecting an absorption frequency at which to activate a gas precursor in the gas flow;

triggering a laser of a laser array, the triggered laser having a frequency corresponding to

the selected absorption frequency; and

exposing the gas flow to a laser beam from the triggered laser to deposit a material on the

substrate; and

controlling the laser beam to activate the gas to a energy level such that, if the gas is a reactant precursor to form a material on the substrate, the gas does not decompose prior to a reaction that forms the material or, if the gas is not a reactant precursor to form the material, the gas decomposes into one or more reactant molecular gas precursors that enter into a reaction with another substance that forms the material.

- 21. (Original) The method of claim 20, wherein triggering a laser of a laser array includes activating a diode laser in a diode laser array.
- 22. (Original) The method of claim 20, wherein triggering a laser of a laser array includes tuning a tunable laser to the select frequency.
- (Original) The method of claim 20, wherein the method further includes controlling a 23. location at which the gas flow is exposed to the laser beam.
- (Currently Amended) The method of claim 23, wherein controlling a location at which 24. the gas precursor flow is exposed to the laser beam includes rastering the laser beam across a portion of a surface of the substrate.
- 25. (Currently Amended) The method of claim 20, wherein the method further includes managing environmental parameters and a location at which the laser beam from the triggered laser illuminates the gas flow to activate the gas precursor at a distance from the substrate that is within a mean free path of the activated gas precursor.
- 26. (Withdrawn – Currently Amended) A method for forming an electronic device comprising:

providing a substrate;

forming circuits on the substrate, wherein forming the circuits includes depositing a material by irradiating a gas precursor with electromagnetic energy at a frequency tuned to an

absorption frequency of the gas precursor to activate the gas precursor including controlling the irradiation with the electromagnetic energy to activate the gas to a energy level such that, if the gas is a reactant precursor to form the material, the gas does not decompose prior to a reaction that forms the material or, if the gas is not a reactant precursor to form the material, the gas decomposes into one or more reactant molecular gas precursors that enter into a reaction with another substance that forms the material.

- 27. (Withdrawn – Currently Amended) The method of claim 26, wherein the method further includes adjusting a source for the electromagnetic energy to provide the electromagnetic energy at a select frequency tuned to a specific absorption frequency of the gas precursor.
- 28. (Withdrawn) The method of claim 27, wherein adjusting a source for the electromagnetic energy includes switching laser light from an output of one laser in a laser array to an output of another laser in the laser array.
- (Withdrawn) The method of claim 27, wherein adjusting a source for the electromagnetic 29. energy includes switching laser light from an output of one diode laser in a diode laser array to an output of another diode laser in the diode laser array.
- 30. (Withdrawn) The method of claim 27, wherein adjusting a source for the electromagnetic energy includes tuning a tunable laser to the select frequency.
- (Withdrawn Currently Amended) The method of claim 26, wherein the method further 31. includes controlling a location at which the electromagnetic energy interacts with the gas precursor.
- (Withdrawn Currently Amended) The method of claim 31, wherein controlling a 32. location at which the electromagnetic energy interacts with the gas precursor includes rastering the electromagnetic energy across a portion of a surface of the substrate.

Title: LASER ASSISTED MATERIAL DEPOSITION

(Withdrawn - Currently Amended) The method of claim 26, wherein activating a gas 33. precursor includes breaking specific bonds in the gas precursor.

- (Withdrawn Currently Amended) The method of claim 26, wherein activating a gas 34. precursor includes decomposing the gas precursor into two of more chemical vapors.
- (Withdrawn Currently Amended) The method of claim 26, wherein the method further 35. includes managing environmental parameters and a location at which the electromagnetic energy irradiates the gas precursor such that activating the gas precursor occurs at a distance from the substrate that is within a mean free path of the activated gas precursor.
- (Withdrawn) The method of claim 26, wherein the method is performed as a part of a 36. chemical vapor deposition process.
- (Withdrawn) The method of claim 26, wherein the method is performed as a part of an 37. atomic layer deposition process.
- (Withdrawn) The method of claim 26, wherein the method further includes forming the 38. electronic device as an integrated circuit.
- (Withdrawn) The method of claim 26, wherein the method further includes forming the 39. electronic device as a memory device.
- (Withdrawn Currently Amended) A method for forming an electronic system 40. comprising:

providing a processor;

coupling a processor to a memory, wherein at least one of the processor or the memory are formed by a method including depositing a material by illuminating a gas reactant with a laser beam having a frequency targeted to an absorption frequency of the gas reactant to activate the gas precursor and by controlling the illumination with the laser beam to activate the gas to a

energy level such that, if the gas is a reactant precursor to form the material on a substrate, the gas does not decompose prior to a reaction that forms the material or, if the gas is not a reactant precursor to form the material, the gas decomposes into one or more reactant molecular gas precursors that enter into a reaction with another substance that forms the material.

- 41. (Withdrawn Currently Amended) The method of claim 40, wherein the method further includes adjusting the laser beam to a select frequency tuned to a target absorption frequency of the gas precursor.
- 42. (Withdrawn) The method of claim 41, wherein adjusting the laser beam to a select frequency includes switching the laser beam from an output of one laser in a laser array to an output of another laser in the laser array.
- 43. (Withdrawn) The method of claim 41, wherein adjusting the laser beam to a select frequency includes switching the laser beam from an output of one diode laser in a diode laser array to an output of another diode laser in the diode laser array.
- 44. (Withdrawn) The method of claim 41, wherein adjusting the laser beam to a select frequency includes tuning a tunable laser to the select frequency.
- 45. (Withdrawn Currently Amended) The method of claim 40, wherein the method further includes controlling a location at which the laser beam interacts with the gas precursor.
- 46. (Withdrawn Currently Amended) The method of claim 45, wherein controlling a location at which the laser beam interacts with the gas reactant includes rastering the laser beam across a portion of a surface of the substrate.
- 47. (Withdrawn Currently Amended) The method of claim 40, wherein activating a gas reactant includes breaking specific bonds in the gas precursor.

AMENDMENT AND RESPONSE UNDER 37 CFR § 1.111

Serial Number: 10/683,806 Filing Date: October 10, 2003

Title: LASER ASSISTED MATERIAL DEPOSITION

Page 10 Dkt: 303.865US1

48. (Withdrawn – Currently Amended) The method of claim 40, wherein activating a gas

reactant includes decomposing the gas reactant into two of more chemical vapors.

49. (Withdrawn – Currently Amended) The method of claim 40, wherein the method further

includes controlling environmental parameters and a location at which the laser beam illuminates

the gas reactant such that activating the gas reactant occurs at a distance from the substrate that is

within a mean free path of the activated gas precursor.

50. (Withdrawn) The method of claim 40, wherein the method is performed as a part of a

chemical vapor deposition process.

51. (Withdrawn) The method of claim 40, wherein the method is performed as a part of an

atomic layer deposition process.

52.-78. (Cancelled)

79. (New) A method for forming a film on a substrate comprising:

activating a gas precursor to deposit a material on the substrate by irradiating the gas

precursor with electromagnetic energy at a frequency tuned to an absorption frequency of the gas

precursor, the electromagnetic energy sourced from a diode laser of a diode laser array, the diode

laser array having at least one diode laser with a center frequency different from that of another

diode laser of the laser array.

80. (New) The method of claim 79, wherein the method includes limiting the activation of

the gas precursor to within a mean free path of the gas precursor from the substrate.

81. (New) The method of claim 79, wherein the method includes limiting the activation of

the gas precursor to above the substrate and within ten mean free paths of the gas precursor from

the substrate.

Serial Number: 10/683,806 Filing Date: October 10, 2003

Title: LASER ASSISTED MATERIAL DEPOSITION

82. (New) The method of claim 79, wherein the method includes activating a second gas precursor with electromagnetic energy having a second center frequency tuned to an absorption frequency of the second gas precursor, the electromagnetic energy having a second center frequency sourced from a second diode laser of the diode laser array.

- 83. (New) The method of claim 82, wherein activating the gas precursor and activating the second gas precursor are performed in a common stage of processing.
- 84. (New) The method of claim 82, wherein activating the gas precursor and activating the second gas precursor are performed in different stages of processing.
- 85. (New) The method of claim 79, wherein the method includes controlling an amount of energy to activate the gas.
- 86. (New) The method of claim 79, wherein the method includes physically measuring the absorption frequency of the gas precursor before activating the gas precursor.
- 87. (New) The method of claim 79, wherein the method includes forming the material in an integrated circuit on the substrate.
- 88. (New) The method of claim 79, wherein the method includes forming the material in a transistor on the substrate.
- 89. (New) The method of claim 79, wherein the method includes forming the material in a memory on the substrate.
- 90. (New) The method of claim 79, wherein the method includes forming the material in an integrated circuit on the substrate and coupling the integrated circuit to a controller.

Serial Number: 10/683,806

Filing Date: October 10, 2003
Title: LASER ASSISTED MATERIAL DEPOSITION

Dkt: 303.865US1

(New) The method of claim 79, wherein coupling the integrated circuit to a controller 91. includes coupling the integrated circuit to a processor.