$N^{\underline{o}}$ de ordem:	

Mestrado Integrado em Engenharia Informática e Computação Arquitetura e Organização de Computadores Teste 2

1º ano 2019-01-18 Duração 1:45 Sem consulta

Nome:	

Atenção: Este teste tem 13 questões em 8 páginas, num total de 200 pontos.

Parte I — Questões de Escolha Múltipla

Cada questão tem uma resposta certa. Respostas erradas não descontam. As respostas às questões de escolha múltipla devem ser assinaladas com \times na grelha seguinte.

Apenas as respostas indicadas na grelha são consideradas para efeitos de avaliação.

					Que	stão				
Opção	1	2	3	4	5	6	7	8	9	10
A	×				×		×			
В		×	×							
С								×		
D				×		×			×	×

Pontos: / 100

[10] 1. Assumindo que os valores iniciais dos registos R0 e R1 são respetivamente 0x45450000 e 0x0000ABAB, qual é o valor do registo R2 após a execução do seguinte fragmento de código:

ror R2, R1, #4 orr R2, R2, R0

A. 0xF5450ABA B. 0xABAB4545 C. 0xB5450ABA D. 0xB0000ABA

[10] 2. Considerar que as flags estão a zero e se executa o seguinte fragmento de código assembly.

Para que valores de R1 e R2 é que o salto condicional é tomado?

A.
$$R1 = -17 e R1 = 16$$

B. Nenhuma das restantes opções está correta

C.
$$R1 = -5 e R2 = -3$$

D.
$$R1 = 8 e R2 = 16$$

[10] 3. Assuma as seguintes condições iniciais:

$$RO = OxACACO101$$
 $R1 = OxOOOOAOAO$ $R2 =$

$$R2 = 0x101$$
 $R3 = 0x00000A0A0$

Qual é o valor do registo R3 após a execução do seguinte fragmento de código:

A. OxACACA1A1 B. OxOOOOOOA1 C. OxA1A1A1A1 D. OxOxOOOOAOA1

[10] 4. Assuma que a saída Read data 2 do banco de registos é sempre 0. Que instrução ARMv8 não é afetada por esta anomalia?

A. STUR B. ADD C. CBZ D. LDUR

- [10] 5. Relativamente a sub-rotinas, qual das seguintes afirmações é falsa?
 - A. Sub-rotinas terminais devem preservar o valor de LR antes de invocarem outras sub-rotinas.
 - B. Uma sub-rotina do tipo função devolve um valor como resultado.
 - C. Uma sub-rotina do tipo procedimento não devolve resultados.
 - D. Na invocação de uma sub-rotina o endereço da instrução seguinte é guardado no registo LR.
- [10] 6. Um programa de cálculo científico gasta 80% do seu tempo de execução em operações numéricas. Este tempo está repartido da seguinte forma:

 \bullet operações aritméticas: $40\,\%$

• operações trigonométricas: 60 %

Um novo método de cálculo das funções trigonométricas reduzirá o respetivo tempo de execução em $4\times$. Qual dos valores indicados se aproxima mais da melhoria de desempenho (speedup) global que esta medida produzirá?

A. 1,82 B. 2,40 C. 2,62 **D. 1,56**

[10] 7. Uma memória cache com 64 B/bloco contém 32 KiB de dados. Quantos blocos tem esta memória?

A. 512 B. 2048 C. 256 D. 1024

[10] 8. Que instrução ARMv8 poderá ser executada se MemtoReg=0, Reg2Loc=1 e ALUSrc=1?

A. ORR B. CBZ C. STUR D. LDUR

- [10] 9. Um dado programa foi compilado com um novo compilador. Numa tarefa, a nova versão é $20\,\%$ mais rápida (no mesmo computador). O aumento de desempenho pode dever-se a:
 - A. redução da frequência e do CPI médio
 - B. redução do período e do número de instruções executadas
 - C. aumento da frequência e do CPI médio
 - D. redução do número de instruções executadas e/ou do CPI médio

[10] 10. Que instrução ARMv8 tem o código 0xCB0201E8?

A. ADD X15,X8,X2 B. SUB X2,X15,X8 C. SUB X15,X2,X8 D. SUB X8,X15,X2

Fim da parte I

2018/19

2018/19

Nome: ______ $N^{\underline{o}}$ de estudante: _____

Parte II — Questões de Resposta Aberta

Atenção: Responder diretamente no enunciado. Justificar todas as respostas.

- 11. O programa abaixo procura um determinado elemento EP numa sequência L1num recorrendo para isso à sub-rotina pesquisa.
- [20] (a) Completar o programa.

```
ΕP
                     DCD -3
            L1num
                     DCD 11, -1, 23, -3, -3
            Tam
                     DCD 5
            ldr
                     R12, =L1num
                     R11, =Tam
            ldr
                     R10, =EP
            ldr
            mov
                      <u>RO</u>, R12
                     R1, [R11]
             ldr
                                     ; carrega tamanho da sequência
                     R2, [R10]
            ldr
                                     ; carrega elemento a pesquisar
                     pesquisa
              bl
                                     ; invoca sub-rotina
             END
                                     ; termina programa
                     R6, __#0__
pesquisa
            mov
                                     ; inicializa posição
pciclo
                     R5, [R0]
            ldr
                     R2, R5
             cmp
            bne
                      prox
                                     ; se não é igual
                     terminarE
            b
                     R1, R1, #1
prox
            subs
                     terminarNE
            beq
                     RO, RO, <u>#4</u>
             add
                     R6, R6, #1
             add
                     pciclo
             b
                     RO, R6
terminarE
            mov
                     fim
            b
                     RO, #-1
terminarNE
            mov
fim
                     PC, <u>LR</u>
                                     ; fim da sub-rotina
            mov
```

[10] (b) Indique qual é o valor do registo R0 no final da execução do programa. O que significa esse valor?

No final do programa o registo R0 terá o valor 3. Esse valor é a posição da primeira ocorrência do valor -3 na sequência.

12. Considere o CPU ARMv8 simplificado, apresentado na folha anexa, e que o valor em cada registo X_i é i+2. A latência de componentes usados no CPU é a seguinte (componentes não indicados têm latência nula):

I-Mem	Add	Mux	ALU	Regs	D-Mem	Control	ALU control	
400	100	30	130	220	350	80	40	(ps)

(a) Indique o valor dos seguintes sinais de entrada/saída de componentes e sinais de controlo para a execução da instrução CBZ X1, fim:

Read register 2 =
$$\underline{1}$$
; Write register = $\underline{1}$; Write data de D-Mem = $\underline{3}$
ALUSrc = $\underline{0}$; PCSrc = $\underline{0}$; MemtoReg = \underline{x}

(continua)

[10] (b) Determine o caminho crítico da instrução STUR X7, [X2, #-4] e a respetiva latência.

A instrução STUR X7, [X2, #-4] guarda o conteúdo do registo X7 no endereço de memória dado por X2-4.

A unidade de controlo do CPU recebe o código da instrução ao fim de 400 ps. A sua latência (80 ps) determina que os sinais de controlo ficam disponíveis aos 480 ps. Para esta instrução há a considerar três caminhos constituídos por componentes importantes para a sua execução.

- Atualização de PC: O cálculo do endereço da próxima instrução utiliza Add e Mux (controlado por PCSrc). A entrada 0 de Mux fica disponível aos 100 ps, mas PCSrc (igual a 0 para esta instrução) só fica pronto aos 480 ps. Logo, o novo valor de PC fica disponível ao fim de 480+30=510 ps.
- Cálculo do endereço de acesso à memória: Este caminho inclui a ALU, pelo que deve verificar-se ao fim de quanto tempo estão disponíveis as suas três entradas:
 - entrada superior (endereço base): Read data 1 fica disponível aos 400+220=620 ps;
 - entrada inferior (valor imediato): a entrada 1 de Mux controlado por ALUSrc está pronta aos 400 ps mas ALUSrc=1 só surge aos 480 ps, pelo que a entrada inferior de ALU fica pronta em 480+30=510 ps;
 - entrada proveniente de ALU control: como ALUOp está disponível aos 480 ps então a saída de ALU control fica disponível aos 480+40=520 ps.

Conclui-se desta análise que a entrada mais demorada da ALU é Read data 1, pelo que ALU result é obtido do caminho a que pertencem I-Mem \rightarrow Regs \rightarrow ALU e o tempo que demora a ser calculado é $400+220+130=750\,\mathrm{ps}$. Deste caminho resulta uma latência superior à do caminho que implementa a atualização de PC.

• Obtenção do valor a escrever em memória: O valor a escrever é obtido da saída Read data 2, demorando mais 220 ps que a saída de Mux controlado por Reg2Loc. Como este ocorre aos 480 ps então Read register 2 fica pronto aos 480+30=510 ps e Read data 2 surge aos 510+220=730 ps. Esta latência é inferior à de ALU result.

Da análise apresentada conclui-se que o caminho crítico para a instrução STUR é $\hbox{I-Mem} \to \hbox{Regs} \to \hbox{ALU} \to \hbox{D-Mem}$

e o valor da latência é $400\,\mathrm{ps} + 220\,\mathrm{ps} + 130\,\mathrm{ps} + 350\,\mathrm{ps} = 1100\,\mathrm{ps}$

[10] (c) Determine a partir de que valor da latência da unidade de controlo o sinal Write data de D-Mem pertence ao caminho crítico da instrução STUR.

Para que o sinal Write data de D-Mem pertença ao caminho crítico da instrução STUR é necessário que demore mais a ser obtido do que o endereço. Este surge ao fim de 400+220+130=750 ps.

Portanto, Read register 2 deve surgir depois de 750-220=530 ps.

Logo, $400 + t_{control} + 30 > 530$, pelo que $t_{control} > 100 \,\mathrm{ps}.$

$N^{\underline{o}}$ de ordem:	

Arquitetura e Organização de Computador	nização de Computadores	de	Organização	e C	Arquitetura
---	-------------------------	----	-------------	-----	-------------

2018/19

Nome:	$ m N^{o}$ de estudante:

- 13. Um CPU com endereços de 24 bits está equipado com uma memória *cache* de dados do tipo *write-through*. Etiqueta e índice têm, respetivamente, 14 e 6 bits de comprimento.
- [10] (a) Determinar o número de blocos e o número de bytes por bloco desta memória cache.

Como o índice tem 6 bits, a memória cache tem 2^6 =64 blocos. Como ficam 24-14-6=4 bits para o deslocamento, cada bloco tem 2^4 =16 bytes por bloco.

[15] (b) Considerar a seguinte situação. São realizadas sucessivamente leituras (de uma palavra) das seguintes posições de memória:

0x3B7C94, 0x3B6C90, 0x3B6C98, 0x3B6C94

Quantos blocos são transferidos de memória principal para memória *cache* por causa dos três últimos acessos?

A primeira leitura (endereço 0x3B7C94) afeta o bloco 9 (001001₂):

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	00111011011111							00	01	00)1			10	00)							
				e	t	iq	ue	eta	а_						íı	nd	i	ce		(le	sl	

Seja hit ou miss, a etiqueta do bloco 9 é 001110110111111_2 após a execução do acesso. A segunda leitura (endereço 0x3B6C90) afeta o mesmo bloco (9):

00111011011011	001001	0000
00111011011 <mark>0</mark> 11	001001	0000

Como a etiqueta é diferente daquela que está em cache, trata-se de uma falta (miss) e é lido um bloco de memória principal. A etiqueta em memória cache é, agora, 00111011011011_0 112.

Os dois endereços seguintes levam sempre a hit, já que correspondem a partes do mesmo bloco (etiqueta e índices iguais aos do 2° acesso).

00111011011011	001001	1000
00111011011011	001001	0100

Logo, não existem mais acessos a memória principal: os últimos três acessos provocam a leitura de 1 bloco da memória principal.

[10] (c) A memória *cache* é usada num sistema em que a penalidade de faltas é de 80 ciclos. Qual deve ser o valor máximo da taxa de faltas desta *cache* para que o número médio de ciclos de protelamento *no acesso a dados* não exceda 10?

O número de ciclos de protelamento (por operação de acesso a dados) C_p é dado pela número médio de acessos a dados que resultam em falta vezes a penalidade p_f (a dividir pelo número de acessos a dados N_d .

$$C_p = \frac{(N_d \times m_d) \times p_f}{N_d} = m_d \times p_f$$

Das condições do enunciado tem-se:

$$m_d \times 80 \le 10$$
 \Rightarrow $m_d \le \frac{10}{80} = 0.125$

Portanto, $m_d \leq 12.5 \%$.