CHAPTER 13

Erosion of the Size-Density Relation

In Chapter 12 it appeared that slopes **more** negative than -2/3 were the result of including cities in the analysis. In this chapter we examine the reverse condition: slopes **less** negative than -2/3, slopes tending toward zero (which is to say tending toward no slope or relation at all).

At the conclusion of the article in which we presented the results of the last chapter, we added the findings shown in the next table, comparing our latest slopes with the earliest ones for which we could obtain data. We were attempting to see if other countries might have experienced the kind of "erosion" of a -2/3 size-density slope which we saw earlier in England (Chapter 7).

Nation/	Yrn	b	р		
Belgium					
1816	9	-0.27	.035		
1961	9	-0.13	<.001		
France					
1872	90	-0.14	<.001		
1962	90	-0.29	<.001		
Italy					
1861	13	-0.14	.087		
1961	19	0.32	<.001		
Netherl	ands				
1849	11	-0.12	.067		
1960	11	-0.09	.009		
Portugal					
1878	19	-0.64	.832		
1960	18	-0.44	.002		
Spain					
1833	48	-0.68	.931		
1960	50	-0.42	.002		

It is evident that in every case the earlier slope is closer to -2/3. The earlier slopes for Italy,

Netherlands, Portugal and Spain, in fact, conform to the hypothesis by the p > .05 criterion. Even in the case of France, the p-value improved from .00000005 to .00008, suggesting that, if we had still earlier data, *départements* which were intended to be uniformly small still might have shown some conformity to the size-density law.

We developed a tentative explanation for the tendency of slopes to erode toward zero. If **boundaries remain fixed** while the population experiences redistribution, then any relation which once existed will, obviously erode; you can't change the independent variable while holding the dependent variable constant and expect the original relation to persist.

More particularly, suppose we have a set of territorial divisions which do fit the size-density law. Now fix the boundaries of the territorial divisions once and for all. This could happen through historical inertia (e.g., England) or technological change (e.g., the automobile and U.S. counties). Under normal processes of population growth high-density places will tend to become even more dense. This is the law of proportionate effect: nothing succeeds like success, the rich get richer, big population centers draw more people than small ones (gravity model). Ordinarily such growth would lead to further subdivision (down to some technologically/economically minimal size), but here no further subdivision occurs. The result is erosion of the slope.

This is easily simulated An initial group of 20 data points, scattered around a regression line (exact-fit points were computed, then a random number was added or subtracted from the vertical coordinate).

Next we move data points to the right. The arrow points have the same vertical coordinates as the original data points (no change in area), but the horizontal coordinates have been increased. The amount of increase is **proportional to the original value**, plus a positive or negative random number. The new data points resulting from the rightward moves are shown in green.

Finally, we compute a new regression line for the generated points. The slope has eroded has clearly eroded toward zero.

As originally put forward, the erosion hypothesis was only suggested, along with the data in Table 13-1 confirming that earlier slopes tended to be more negative. In 1982, with the help of my wife Karen, [2] I conducted a direct test of the erosion hypothesis.

The question was: Does the slope become less negative as population becomes more concentrated?

We needed area and population data for stable sets of territorial divisions over significant periods of time. Ideally, stability would mean no change whatever in the boundaries of divisions throughout the period of study. We found such data^[3] for

```
Austria (9 Bundesländer: 1910-1961)
Belgium (9 Provinces: 1816-1961)
England and Wales (54 Counties: 1801-1961)
France (90 Départements: 1872-1962)
```

Netherlands (11 Provinces: 1830-1960) Switzerland (24 Cantons: 1850-1960) United States (48 States: 1900-1970)

We also included studies^[4] of three nations where the number of changes in territorial divisions was small relative to the number of divisions

```
Italy (14 Regioni: 1861-1911; 15: 1921-1951)
Portugal (19 Distritos: 1878-1920; 20: 1930-1960)
Spain (48 Provincías: 1838-1897; 50: 1900-1960)
```

We computed size-density slopes for each of the years indicated in the accompanying table:

.

NATION/	yr S.D.	Slope	NATION	/yr <mark>S.D.</mark>	Slope	
AUSTRIA			NETHER	NETHERLANDS		
1910	1.593	-0.633	1830	0.521	-0.123	
1923	1.562	-0.630	1840	0.510	-0.125	
1934	1.537	-0.648	1849	0.491	-0.122	
1951	1.422	-0.709	1859	0.487	-0.129	
1961	1.411	-0.724	1869	0.490	-0.134	
			1879	0.511	-0.128	
BELGIUM			1889	0.551	-0.123	
1816	0.393	-0.272	1899	0.577	-0.123	
1831	0.469	-0.219	1909	0.597	-0.124	
1846	0.611	-0.099	1920	0.620	-0.131	
1856	0.599	-0.094	1930	0.660	-0.115	

1866	0.611	-0.084	1940	0.679	-0.114
1876	0.653	-0.083	1950	0.687	-0.109
1880	0.658	-0.083	1960	0.815	-0.098
1890	0.681	-0.077			
1900	0.710	-0.078	PORTUG <i>A</i>	۸L	
1910	0.731	-0.084	1878	0.795	-0.644
1920	0.739	-0.094	1890	0.780	-0.638
1930	0.763	-0.104	1900	0.784	-0.634
1947	0.787	-0.121	1911	0.776	-0.631
1961	0.803	-0.133	1920	0.783	-0.620
			1930	0.830	-0.604
ENGLAND	& WALES		1940	0.837	-0.600
1801	0.144	-0.604	1950	0.855	-0.585
1811	0.149	-0.560	1960	0.898	-0.548
1821	0.151	-0.534			
1831	0.157	-0.475	SPAIN		
1841	0.164	-0.436	1833	0.533	-0.676
1851	0.173	-0.392	1850	0.559	-0.671
1861	0.187	-0.337	1857	0.564	-0.659
1871	0.198	-0.299	1877	0.583	-0.624
1881	0.216	-0.261	1887	0.589	-0.614
1891	0.230	-0.245	1897	0.610	-0.594
1901	0.231	-0.249	1900	0.608	-0.606
1911	0.231	-0.244	1910	0.618	-0.596
1911	0.249	-0.234	1910	0.647	-0.548
1921	0.253	-0.229	1930	0.682	-0.507
1951	0.258	-0.243	1940	0.711	-0.478
1951	0.251				-0.419
1901	0.251	-0.288	1960	0.815	-0.419
FRANCE			SWITZEF	SI VND	
1872	0.609	-0.426	1850	0.763	-0.615
1881	0.634	-0.423	1870	0.703	-0.610
1891	0.649	-0.423	1880	0.732	-0.639
1991	0.692	-0.418	1888	0.778	-0.586
1901	0.092	-0.367	1900	0.843	-0.525
1911	0.755	-0.348	1910		-0.554
1921	0.755	-0.346		0.855 0.857	-0.514
1931	0.794	-0.320	1920 1930		-0.492
				0.860	
1954	0.838	-0.308	1941	0.847	-0.487
1962	0.848	-0.292	1950	0.864	-0.470
TTALV			1960	0.917	-0.413
ITALY	0 540	-0.142	UNITED	CTATEC	
1861	0.540		UNITED	STATES	0 477
1871	0.520	-0.177	1900	1.607	-0.477
1881	0.518	-0.159	1910	1.474	-0.526
1901	0.526	-0.125	1920	1.454	-0.531
1911	0.543	-0.101	1930	1.470	-0.518
1921	0.593	-0.042	1940	1.438	-0.526
1931	0.579	-0.043	1950	1.422	-0.533
1936	0.577	-0.039	1960	1.393	-0.541
1951	0.573	0.005	1970	1.403	-0.539

There are a variety of concentration measures which might have been computed^[5] We chose the standard

deviation of log D (referred to in the table as S.D.). It seems to have escaped the attention of most authors^[6] that any measure of concentration can in the end be shown to be based upon this mundane statistic. A standard deviation of zero indicates no concentration (even densities), with increasing values indicating increasing concentration. The standard deviation suffers from the fact that we cannot appropriately compare it across sets with different numbers of divisions. But it is perfectly suitable for our purposes.

Figs. 13-1 through 13-10 show historical values for slopes and standard deviations. To the left of each historical graphs is a scatter diagram showing the relation between the two. The size-density slopes are shown in green; the standard deviations (concentration measures) are shown in red. It will be obvious that the two are strongly related (increasing concentration leading to erosion of the slope). A following statistical table summarizes the results of our analysis.

FIG. 13-1. AUSTRIA (see commentary below)

FIG. 13-2. BELGIUM

FIG. 13-3. ENGLAND & WALES

FIG. 13-4. FRANCE

FIG. 13-5. ITALY

FIG. 13-6. NETHERLANDS

FIG. 13-7. PORTUGAL

FIG. 13-8. SPAIN

7 of 10 07/13/2013 02:58 PM

FIG. 13-9. SWITZERLAND

FIG. 13-10. UNITED STATES

The following table summarizes several statistics which confirm what the visual presentation has already shown.

Nation	r ²	p{r ² =0}	rho	p{ρ=0}	tau	p{t=0}
Austria	. 97	.0024	.90	.0719	.80	.0500
Belgium	.50	.0040	.09	.7423	.03	. 8695
England & Wales	.86	.0001	.94	.0003	.87	.0001
France	.99	.0001	.99	.0030	.96	.0001
Italy	.83	.0007	.82	.0209	.61	.0218
Netherlands	.74	.0001	.71	.0110	.55	.0062
Portugal	.96	.0001	.75	.0339	.61	.0218
Spain	. 97	.0001	.99	.0010	.97	.0001
Switzerland	.88	.0001	.92	.0037	.82	.0005
United States	. 98	.0001	.92	.0146	.82	.0044

The first is a test of significance, against the null hypothesis, for the linear correlation coefficient^[7]. In

Chap 13 - Erosion of the Size-Density Relation

http://www.edstephan.org/Book/chap13/13.html

some cases, e.g. Belgium, the relation is clearly not linear. Nothing in our erosion hypothesis suggests that it should be; we only expect a monotonic increase of the one with the other, i.e., an ordinal relation.

For this reason two additional test statistics are provided, Spearman's rho, and Kendall's tau. Hays and Winkler^[8] review the advantages and disadvantages of each as an alternative to r-square, concluding

...each index supplies information of importance about the general monotone relation that may exist between variables, quite irrespective of the true value of the correlation coefficient.... For moderately large samples, ... tau seems to provide a better test of the hypothesis of no association....

Austria, Fig. 13-1, interestingly, shows support for the hypothesis but in the reverse historical order expected. Over time the population has become less concentrated, and the size-density slope has become steadily more negative, even passing the theoretically expected - 2/3 value. A similar pattern shows up in the United States, Fig. 13-10: here the decreasing concentration reflects increased settlement in large states such as California. This may be more a problem of the level of measurement of area and density, i.e., the state vs. the county.

The historical charts for the other nations show remarkable conformity to the notion that size-density tends to erode toward zero over time. The chart for France, incidentally, projected back another century, would produce a slope slightly more negative than -1/2, supporting our earlier conjecture that — even when a deliberate effort is made to produce uniformly size divisions — the size-density relation tends to surface.

Next Chapter

NOTES:

- [1] B. R. Mitchell, European Historical Statistics, New York: Columbia University, 1975.
- [2] The study was published as G. Edward Stephan and Karen H. Stephan, "Population Redistribution and changes in the Size- Density Slope", *Demography*, 21:35:40, 1984
- [3] The data for Austria, Belgium, France, Netherlands and Switzerland came from Mitchell, *Op. Cit.*; England and Wales data were from B. R. Mitchell and H. C. Jones, *Second Abstract of British Historical Statistics*, Cambridge: Cambridge University Press, 1971; United States data was from the census.
- [4] Mitchell, Op. Cit.
- [5] I have reviewed a number of these measures and shown that each can be given a probability interpretation: G. Edward Stephan, "Measures of Population Distribution: A Probability Interpretation", Western Sociological Review, 7:3-10, 1976.
- [6] except notably Maurice G. Kendall and Alan Stuart, *The Advanced Theory of Statistics* (3 vols.; 2nd ed.), New York: Hafner, 1963.
- [7] (this will be in the methodological appendix)
- [8] William L. Hays and Robert L. Winkler, *Statistics: Probability, Inference and Decision*, 849, New York: Holt, Rinehart and Winston, Inc., 1971.