Pedestrian Detection

Histograms of Oriented Gradients for Human Detection Navneet Dalal and Bill Triggs CVPR '05

> Pete Barnum March 8, 2006

Challenges

- Wide variety of articulated poses
- Variable appearance/clothing
- Complex backgrounds
- Unconstrined illumination
- Occlusions
- Different Scales

Support Vector Machine Detector

(Papagerogiu & Poggio, 1998)

Slides from Sminchisescu

Dynamic Pedestrian Detection

Viola, Jones and Snow, ICCV 2003

- Train using AdaBoost, about 45,000 possible features
- Efficient and reliable for distant detections (20x15), 4fps

2d Global Detector

Dalal and Triggs, CVPR 2005

 3-D Histogram of Oriented Gradients (HOG) as descriptors

Importance weight responses

- Linear SVM for runtime efficiency
- Tolerates different poses, clothing, lighting and background
- Currently works for fully visible upright persons

Feature Sets

- Haar wavelets + SVM:
 - Papageorgiou & Poggio (2000)
 - Mohan et al (2001)
 - DePoortere et al (2002)
- Rectangular differential features + adaBoost:
 - Viola & Jones(2001)
- Parts based binary orientation position histogram + adaBoost:
 - Mikolajczk et al (2004)
- Edge templates + nearest neighbor:
 - Gavrila & Philomen (1999)
- Dynamic programming:
 - Felzenszwalb & Huttenlocher (2000),
 - Loffe & Forsyth (1999)
- Orientation histograms:
 - C.F. Freeman et al (1996)
 - Lowe(1999)
- Shape contexts:
 - Belongie et al (2002)
- PCA-SIFT:
 - Ke and Sukthankar (2004)

- Tested with
 - RGB
 - -LAB
 - Grayscale
- Gamma Normalization and Compression
 - Square root
 - Log

-1 1

centered

uncentered

1 -8 0 8 -1

cubic-corrected

-1 0	V	1
	-1	0

diagonal

-1	0	1
-2	0	2
-1	0	1

Sobel

- Histogram of gradient orientations
 - -Orientation -Position

Weighted by magnitude

Radial Bins, Angular Bins

$$L1-norm: v \longrightarrow v/(||v||_1 + \epsilon)$$
 $L1-sqrt: v \longrightarrow \sqrt{v/(||v||_1 + \epsilon)}$

$$L2-norm: v \longrightarrow v/\sqrt{||v||_2^2+\epsilon^2}$$
 $L2-hys: L2-norm, plus clipping at .2 and renomalizing$

