Bachelor of Engineering in Mechanical Engineering Examination, 2018 (1st Year, 1st Semester)

MATHEMATICS - I

Use a separate Answer Script for each Group (Symbols/ Notations have their usual meanings)

Group - A (50 marks)

Answer any five questions

- 1.(a) If $y = e^{m \sin^{-1} x}$ then show that $(1-x^2)y_{n+2} (2n+1)xy_{n+1} (n^2 + m^2)y_n = 0$. Hence find y_n at x = 0.
 - (b) State Roll's theorem. Examine the applicability of Rolle's theorem in [-1, 1] for the function f(x) = |x|.

(4+2)+4

- 2.(a) State and prove Cauchy's Mean Value theorem.
 - (b) Use Lagrange Mean Value Theorem to prove that when x > 0,

$$0<\frac{1}{x}\log\frac{e^x-1}{x}<1.$$

(2+4)+4

- 3.(a) Expand $(\sin^{-1} x)^2$ in series by Maclaurin's theorem.
 - (b) If α and β be the roots of $ax^2 + bx + c = 0$ then evaluate

$$Lt_{x\to\alpha}\frac{1-\cos(\alpha x^2+bx+c)}{(x-\alpha)^2}.$$

(c) Show that the minimum value of $\frac{(2x-1)(x-8)}{x^2-5x+4}$ is greater than its maximum value.

4+2+4

- 4 (a) Find the radius of curvature at the point (x,y) on the curve $x^{2/3} + y^{2/3} = a^{2/3}$.
 - (b) Find the asymptotes of the curve $y^3 x^2y + 2y^2 + 4y + 1 = 0$.
 - (c) Find the range of values of x for which the curve $y = x^4 16x^3 + 42x^2 + 12x + 1$ is concave or convex with respect to x-axis and identify the points of inflexion, if any.

3+3+4

5(a) Show that the function
$$f(x,y) = \begin{cases} \frac{x^3 + y^3}{x - y} & \text{when } x \neq y \\ 0, & \text{when } x = y \end{cases}$$

is not continuous at (0,0) but the partial derivatives f_x and f_y exist at (0,0).

(b) If u = f(x, y) be a homogeneous function in two independent variables x, y of degree n, then show that

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = nu$$

5+5

6(a) Consider the function f defined by

$$f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} & when \ x^2 + y^2 \neq 0 \\ 0, & when \ x^2 + y^2 = 0 \end{cases}$$
Show that $f_{xy} \neq f_{yx}$ at $(0,0)$.

(b) If $u = \log(x^3 + y^3 + z^3 - 3xyz)$ then show that

$$\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = -\frac{9}{(x+y+z)^2}$$

5+5

7(a) Find the volume of the greatest rectangular parallelopiped inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

(b) Test the convergence of the series
$$\sum u_n$$
 where $u_n = \frac{3.6.9....3n}{7.10.13....(3n+4)}x^n$, $x > 0$.

5+5

BACHELOR OF ENGINEERING IN MECHANICAL ENGINEERING **EXAMINATION, 2018**

(1st Year, 1st Semester)

Mathematics-I

Full Marks: 100 Time: Three hours

(50 marks for each Group)

(Symbols and notations have their usual meanings)

Use a separate Answer-Script for each Group

	GROUP-B (50 Marks) Answer Q. No. 8 and any three from the rest.	EC.
8. 9.	Evaluate $\int_0^{\pi/2} \sin^4 x \ dx$. a) Use first mean value theorem to show that	5
	$\frac{\pi}{6} \le \int_0^{\frac{1}{2}} \frac{dx}{\sqrt{(1-x^2)(1-\theta^2 x^2)}} \le \frac{\pi}{6} \frac{1}{\sqrt{1-\frac{\theta^2}{4}}}, \theta^2 < 1.$	7
	b) Evaluate $\iiint \frac{dxdydz}{\sqrt{1-x^2-y^2}}$, the field of integration being the positive octant of the	
	sphere $x^2 + y^2 + z^2 = 1$.	8
10.	a) Evaluate $\iint_D \{2a^2 - 2a(x+y) - (x^2 + y^2)\} dxdy$, where the region D bound by the circle $x^2 + y^2 + 2a(x+y) = 2a^2$.	ea 8
	b) Find the volume of the solid obtained by revolving one arch of the cycloid $x = a(\theta - \sin \theta)$, $y = a(1 - \cos \theta)$ about x-axis.	7
11.	a) State and proved fundamental theorem of integral calculus.	8
	b) Using a double integral, prove that $B(a, b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$; $a, b > 0$.	7
12.	Examine the convergence of the following improper integrals:	
	a) $\int_{3}^{\infty} \frac{1}{\sqrt{x(x-1)(x-2)}} b) \int_{2}^{\infty} \frac{dx}{\log x}$ c) $\int_{0}^{1} \frac{\cos \frac{1}{x}}{\sqrt{x}} dx$	15
13.	a) A function f defined by $f(x,y) = \begin{cases} -\frac{1}{x^2} & \text{if } 0 < y < x < 1 \\ \frac{1}{y^2} & \text{if } 0 < x < y < 1 \\ 0 & \text{elsewhere} \end{cases}$	

1 Find $\int_0^1 \left\{ \int_0^1 f(x,y) \, dy \right\} dx$, $\int_0^1 \left\{ \int_0^1 f(x,y) \, dx \right\} dy$. Does the integral of $\iint_R f(x,y) dx dy$ exists over R=[0, 1; 0, 1]? 7

Justify your answer. b) Calculate the value of $\int_0^1 \frac{x}{x+1} dx$ using (i) Trapezoidal rule, (ii) Simpson's $\frac{1}{3}$ rule by taking six intervals.

8