Polynomial Divisibility Check

Is the polynomial $x^{100} - 3x^{50} + 2$ divisible by the polynomial

- a) x + 2;
- b) x + 1;
- c) $x^2 3x + 2$;
- d) x 1?

To determine whether the polynomial $f(x) = x^{100} - 3x^{50} + 2$ is divisible by the given polynomials, we will use the Remainder Theorem. According to this theorem, a polynomial f(x) is divisible by x - r if and only if f(r) = 0.

a) x + 2

To check if f(x) is divisible by x + 2, we will evaluate f(-2):

$$f(-2) = (-2)^{100} - 3(-2)^{50} + 2$$

Calculating each term:

- $(-2)^{100} = 2^{100}$
- $(-2)^{50} = 2^{50}$

Thus,

$$f(-2) = 2^{100} - 3 \cdot 2^{50} + 2$$

Since f(-2) is not equal to zero, f(x) is not divisible by x + 2.

b) x + 1

To check if f(x) is divisible by x + 1, we evaluate f(-1):

$$f(-1) = (-1)^{100} - 3(-1)^{50} + 2$$

Calculating each term:

- $(-1)^{100} = 1$
- $(-1)^{50} = 1$

Thus,

$$f(-1) = 1 - 3 \cdot 1 + 2 = 1 - 3 + 2 = 0$$

Since f(-1) = 0, f(x) is divisible by x + 1.

c)
$$x^2 - 3x + 2$$

The polynomial $x^2 - 3x + 2$ can be factored as follows:

$$x^2 - 3x + 2 = (x - 1)(x - 2)$$

To determine if $f(x) = x^{100} - 3x^{50} + 2$ is divisible by $x^2 - 3x + 2$, we need to check if f(x) is equal to zero at the roots of $x^2 - 3x + 2$, which are x = 1 and x = 2.

Step 1: Evaluate at x = 1

We already calculated f(1):

$$f(1) = 1^{100} - 3 \cdot 1^{50} + 2 = 1 - 3 + 2 = 0$$

Since f(1) = 0, f(x) is divisible by x - 1.

Step 2: Evaluate at x = 2

Next, we will evaluate f(2):

$$f(2) = 2^{100} - 3 \cdot 2^{50} + 2$$

Calculating each term:

- 2^{100} is a very large number. - 2^{50} is also a large number, but significantly smaller than 2^{100} .

Now, let's break it down:

- 1. Calculate 2^{100} : This is 1267650600228229401496703205376.
- 2. Calculate $3 \cdot 2^{50}$: $2^{50} = 1125899906842624$. Therefore, $3 \cdot 2^{50} = 3 \cdot 1125899906842624 = 3377699720527872$.

Now we can substitute these values into f(2):

$$f(2) = 1267650600228229401496703205376 - 3377699720527872 + 2$$

This simplifies to:

$$f(2) = 1267650600224852901578117607498$$
 (which is not 0)

Conclusion for Part c:

Since $f(2) \neq 0$, we conclude that f(x) is **not divisible** by $x^2 - 3x + 2$.

d)
$$x - 1$$

As calculated above, since f(1) = 0, f(x) is divisible by x - 1.

Summary of Results:

- a) x + 2: Not divisible
- b) x + 1: Divisible
- c) $x^2 3x + 2$: Not divisible
- d) x 1: Divisible