Exercice 1 - Une condition nécessaire et suffisante d'orthogonalité

Soit E un espace vectoriel euclidien et x, y deux éléments de E. Montrer que x et y sont orthogonaux si et seulement si $||x + \lambda y|| \ge ||x||$ pour tout $\lambda \in \mathbb{R}$.

Exercice 2 - Relations usuelles sur les orthogonaux

Soit E un espace préhilbertien, et A et B deux parties de E. Démontrer les relations suivantes :

- 1. $A \subset B \implies B^{\perp} \subset A^{\perp}$.
- 2. $(A \cup B)^{\perp} = A^{\perp} \cap B^{\perp}$.
- 3. $A^{\perp} = \text{vect}(A)^{\perp}$;
- 4. $\operatorname{vect}(A) \subset A^{\perp \perp}$.
- 5. On suppose de plus que E est de dimension finie. Démontrer que $\operatorname{vect}(A) = A^{\perp \perp}$.

EXERCICE 3 - Pas de supplémentaire orthogonal!

On considère $E=C([0,1],\mathbb{R})$ muni du produit scalaire $(f,g)=\int_0^1 f(t)g(t)dt$. Soit $F=\{f\in E,\ f(0)=0\}$. Montrer que $F^\perp=\{0\}$. En déduire que F n'admet pas de supplémentaire orthogonal.

Exercice 4 - Un produit scalaire sur $\mathbb{R}_n[X]$ et une base orthonormale associée

Soit $n \in \mathbb{N}$ et $a \in \mathbb{R}$. Démontrer que l'application $\langle \cdot, \cdot \rangle$ définie sur $\mathbb{R}_n[X]^2$ par

$$(P,Q) \mapsto \sum_{k=0}^{n} \frac{P^{(k)}(a)Q^{(k)}(a)}{(k!)^2}$$

définit un produit scalaire sur $\mathbb{R}_n[X]$. Sans calculs, déterminer une base orthonormée pour ce produit scalaire.

Exercice 5 - Projecteurs orthogonaux

Soit E un espace vectoriel euclidien, et p un projecteur de E. Montrer que p est un projecteur orthogonal si et seulement si pour tout x de E, on a $||p(x)|| \le ||x||$.

Exercice 6 - Distance à un sous-espace?

Calculer
$$\inf_{a,b\in\mathbb{R}} \int_0^{2\pi} (t - a\cos(t) - b\sin(t))^2 dt$$
.

Exercice 7 - Polynômes de Laguerre

On pose, pour tout entier naturel n et pour tout réel x,

$$h_n(x) = x^n e^{-x}$$
 et $L_n(x) = \frac{e^x}{n!} h_n^{(n)}(x)$.

- 1. Calculer explicitement L_0, L_1, L_2
- 2. Montrer que, pour tout entier n, L_n est une fonction polynômiale. Préciser son degré et son coefficient dominant.
- 3. Pour tous $P, Q \in \mathbb{R}[X]$, on pose

$$\varphi(P,Q) = \int_0^{+\infty} P(x)Q(x)e^{-x}dx.$$

Démontrer que φ est bien définie.

- 4. Démontrer que φ est un produit scalaire sur $\mathbb{R}[X]$.
- 5. Calculer, pour tout $n \in \mathbb{N}$, $\varphi(L_0, X^n)$.
- 6. (a) Montrer que, pour tout $k \in \{0, ..., n\}$, il existe $Q_k \in \mathbb{R}[X]$ tel que, pour tout $x \in \mathbb{R}$, on a $h_n^{(k)}(x) = x^{n-k}e^{-x}Q_k(x).$
 - (b) Établir que:

$$\forall n \in \mathbb{N}, \ \forall P \in \mathbb{R}[X], \ \forall p \in \{0, \dots, n\}, \ \varphi(L_n, P) = \frac{(-1)^p}{n!} \int_0^{+\infty} h_n^{(n-p)}(x) P^{(p)}(x) dx.$$

7. En déduire que $(L_n)_{n\in\mathbb{N}}$ est une famille orthonormée de $(\mathbb{R}[X],\varphi)$.

Cette feuille d'exercices a été conçue à l'aide du site https://www.bibmath.net