Обработка данных:

Размеры тел

	$a_{\scriptscriptstyle \mathrm{K}}$	a	b	c	$h_{\scriptscriptstyle m II}$	$r_{ m ilde{u}}$	$h_{\scriptscriptstyle \mathcal{A}}$	$r_{\scriptscriptstyle \mathcal{I}}$
значение, см	9.2	9.9	4.9	14.9	9.6	4.3	1.6	6.15
ε	0.0005	0.0005	0.001	0.0003	0.0005	0.0012	0.0031	0.0008

Таблица 1: Размеры исследуемых тел и их погрешности

Абсолютная погрешность измерения размеров линейкой составляет 0.005 см.

Периоды колебаний

 $\sigma_{\text{полн}}$, с

								_		_											
$T \qquad \qquad T_{1z}$		T	$T_{1\mathrm{x}}$		$T_{1\mathrm{y}}$		$T_{1\mathrm{d}}$		T_{1e}		T_{1p}		T_{1m}		T_{2x}		T_{2y}		T_{2z}		
$T_{\rm c}$	cp, c 3.053 3.058		3.0	.061 3.0		06	3.064		3.063 3.0)64	3.8		4.102		3.2	55				
$\sigma_{ ext{c.i.}}$	случ, с 0.01 0.004		04	0.0	0.00		07	0.0	008	3 0.00		0.0	0.007 0.0		0.00		0.01)1		
$\sigma_{\text{\tiny IIO}}$	$\sigma_{\text{полн}}, c = 0.13$		13	0.	0.13 0.		13	0.13		0.	13 0.1		13	0.13		0.133		0.13		0.13	
$\varepsilon_{\text{полн}}$		0.0	$427 \mid 0.0425$		425	0.04	$0425 \mid 0.0$		426	26 0.0		0.0425		0.0425		0.0349		0.0318		0.04	$\overline{401}$
	T	7	T_{2d}		T	T_{2e}		$T_{\rm 2m}$ T		2p '		$T_{\rm p} \mid T$		T_{3x}		\overline{J}_{3y} T		T_{4x} T		4y	
	$T_{\rm cp}$, c 3.492		92	3.358		3.878		3.446		2.5	557	3.506		4.506		3.266		3.2	247	
	$\sigma_{\rm chym}$		уч. с 0.009 0.		0.0)11	0.017		0.008		0.0	007	0.3	98 0.4		53 0.4		57 0.3		666	

Таблица 2: Средние значения периодов колебаний $(T_{\rm cp})$ и их погрешности

0.13

0.0509

0.419

0.1195

0.472

0.1046

0.475

0.1455

0.388

0.1196

0.13

0.0378

Систематическая погрешность для всех измерений одинакова и складывается из погрешности секундомера и скорости реакции экспериментатора, которая определяется с помощью измерения временного промежутка между двумя нажатиями на кнопку. В моем случае скорость реакции составляет 0.13 с, а погрешность секундомера - 0.001 с, следовательно ей можно пренебречь и принять систематическую погрешность равной 0.13 с.

Проверка соотношений периодов

0.13

0.0373

0.13

0.0389

0.131

0.0338

• Параллелепипед

$$\begin{split} \frac{a^2T_{2\mathrm{x}}^2+b^2T_{2\mathrm{y}}^2+c^2T_{2\mathrm{z}}^2}{a^2+b^2+c^2} &= T_{2\mathrm{d}}^2, \quad \frac{a^2T_{2\mathrm{x}}^2+b^2T_{2\mathrm{y}}^2+c^2T_{2\mathrm{z}}^2}{a^2+b^2+c^2} = (12.125\pm0.6219)c^2, \quad T_{2\mathrm{d}}^2 &= (12.194\pm0.26)c^2 \\ \frac{b^2T_{2\mathrm{y}}^2+c^2T_{2\mathrm{z}}^2}{c^2+b^2} &= T_{2\mathrm{e}}^2, \quad \frac{b^2T_{2\mathrm{y}}^2+c^2T_{2\mathrm{z}}^2}{c^2+b^2} &= (11.203\pm0.7708)c^2, \quad T_{2\mathrm{e}}^2 &= (11.276\pm0.26)c^2 \\ \frac{a^2T_{2\mathrm{x}}^2+c^2T_{2\mathrm{z}}^2}{c^2+a^2} &= T_{2\mathrm{p}}^2, \quad \frac{a^2T_{2\mathrm{x}}^2+c^2T_{2\mathrm{z}}^2}{c^2+a^2} &= (11.773\pm0.6637)c^2, \quad T_{2\mathrm{p}}^2 &= (11.875\pm0.26)c^2 \\ \frac{b^2T_{2\mathrm{y}}^2+a^2T_{2\mathrm{x}}^2}{a^2+b^2} &= T_{2\mathrm{m}}^2, \quad \frac{b^2T_{2\mathrm{y}}^2+a^2T_{2\mathrm{x}}^2}{a^2+b^2} &= (14.91\pm0.8386)c^2, \quad T_{2\mathrm{m}}^2 &= (15.039\pm0.262)c^2 \end{split}$$

Куб

В справедливости соотношения: $T_{1z} = T_{1x} = T_{1y} = T_{1d} = T_{1e} = T_{1p} = T_{1m}$ можно убедиться, исходя из таблицы 2.

$$\begin{split} \frac{T_{1\mathrm{x}}^2 + T_{1\mathrm{y}}^2 + T_{1\mathrm{z}}^2}{3} &= T_{1\mathrm{d}}^2, \quad \frac{T_{1\mathrm{x}}^2 + T_{1\mathrm{y}}^2 + T_{1\mathrm{z}}^2}{3} = (9.347 \pm 0.4587)c^2, \quad T_{1\mathrm{d}}^2 = (9.364 \pm 0.26)c^2 \\ \frac{T_{1\mathrm{y}}^2 + T_{1\mathrm{z}}^2}{2} &= T_{1\mathrm{e}}^2, \quad \frac{T_{1\mathrm{y}}^2 + T_{1\mathrm{z}}^2}{2} = (9.982 \pm 0.562)c^2, \quad T_{1\mathrm{e}}^2 = (9.388 \pm 0.26)c^2 \\ \frac{T_{1\mathrm{x}}^2 + T_{1\mathrm{z}}^2}{2} &= T_{1\mathrm{p}}^2, \quad \frac{T_{1\mathrm{x}}^2 + T_{1\mathrm{z}}^2}{2} = (9.973 \pm 0.5617)c^2, \quad T_{1\mathrm{p}}^2 = (9.382 \pm 0.26)c^2 \\ \frac{T_{1\mathrm{y}}^2 + T_{1\mathrm{x}}^2}{2} &= T_{1\mathrm{m}}^2, \quad \frac{T_{1\mathrm{y}}^2 + T_{1\mathrm{x}}^2}{2} = (11.905 \pm 0.5625)c^2, \quad T_{1\mathrm{m}}^2 = (9.388 \pm 0.26)c^2 \end{split}$$

• Цилиндр

$$\frac{T_{3\mathrm{y}}^2}{T_{3\mathrm{x}}^2} = 1 + \frac{h_{\mathrm{II}}^2}{3r_{\mathrm{II}}^2}, \quad \frac{T_{3\mathrm{y}}^2}{T_{3\mathrm{x}}^2} = (1.652 \pm 0.525), \quad 1 + \frac{h_{\mathrm{II}}^2}{3r_{\mathrm{II}}^2} = (2.661 \pm 0.0042)$$

• Диск

$$\frac{T_{4\mathrm{y}}^2}{T_{4\mathrm{x}}^2} = 1 + \frac{h_{\mathrm{\pi}}^2}{3r_{\mathrm{\pi}}^2}, \quad \frac{T_{4\mathrm{y}}^2}{T_{4\mathrm{x}}^2} = (0.988 \pm 0.3721), \quad 1 + \frac{h_{\mathrm{\pi}}^2}{3r_{\mathrm{\pi}}^2} = (1.023 \pm 0.0001)$$

Эллипсоиды инерции

Поскольку мы не знаем сами моменты инерции, но знаем их соотношения и пропорциональность квадратам периодов, построим эллипсоиды в произвольном масштабе.

• Параллелепипед

$$A = \frac{1}{\sqrt{T_{\rm 2x}^2 + T_{\rm p}^2}} = 0.356, \qquad B = \frac{1}{\sqrt{T_{\rm 2y}^2 + T_{\rm p}^2}} = 0.312, \qquad C = \frac{1}{\sqrt{T_{\rm 2z}^2 + T_{\rm p}^2}} = 0.496$$