GE23131-Programming Using C-2024

Attempts allowed: 2

This quiz has been configured so that students may only attempt it using the Safe Exam Browser.

Time limit: 2 hours

Grading method: Highest grade

Your attempts

Attempt 1		
Status	Finished	
Started	Monday, 23 December 2024, 5:33 PM	
Completed	Monday, 9 December 2024, 9:22 PM	
Duration	13 days 20 hours	
Review		

The Safe Exam Browser keys could not be validated. Check that you're using Safe Exam Browser with the correct configuration file.

GE23131-Programming Using C-2024

Status	Finished
Started	Monday, 23 December 2024, 5:33 PM
Completed	Monday, 9 December 2024, 9:22 PM
Duration	13 days 20 hours

Question 1

Correct

Marked out of 5.00

Flag question

Sunny and Johnny like to pool their money and go to the ice cream parlor. Johnny never buys the same flavor that Sunny does. The only other rule they have is that they spend all of their money.

Given a list of prices for the flavors of ice cream, select the two that will cost all of the money they have.

For example, they have m = 6 to spend and there are flavors costing cost = [1, 2, 3, 4, 5, 6]. The two flavors costing 1 and 5 meet

Function Description

Complete the code in the editor below. It should return an array containing the indices of the prices of the two flavors they buy.

It has the following:

- · m: an integer denoting the amount of money they have to spend
- cost: an integer array denoting the cost of each flavor of ice cream

Input Format

The first line contains an integer, t, denoting the number of trips to the ice cream parlor. The next t sets of lines each describe a visit. Each trip is described as follows:

- 1. The integer **m**, the amount of money they have pooled.
- 2. The integer n, the number of flavors offered at the time.
- 3. **n** space-separated integers denoting the cost of each flavor: **cost[cost[1]**, **cost[2]**, . . . , **cost[n]**.

Note: The index within the cost array represents the flavor of the ice cream purchased.

Constraints

- · 1≤t≤50
- $2 \le m \le 10^4$ $2 \le n \le 10^4$
- $1 \leq cost[i] \leq 10^4, "i\hat{l}[1, n]$
- There will always be a unique solution.

Output Format

For each test case, print two spaceseparated integers denoting the indices of the two flavors purchased, in ascending order.

Sample Input

- 2
- 4

5

- 14532
 - 4
 - 4

trips to the parlor:

4 dollars. Of the five flavors available that day, flavors 1 and 4 have a total cost of 1+3=4.
2. The second time, they pool together

The first time, they pool together m =

2. The second time, they pool together m = 4 dollars. TOf the four flavors available that day, flavors 1 and 2 have a total cost of 2+2=4.

Answer: (penalty regime: 0 %)

1 #include <stdio.h>

2 v int main(){

3	<pre>int t,m,n,c=0;</pre>
4	scanf("%d",&t);
5 ₹	for(int i=0;i <t;i++){< td=""></t;i++){<>
6	c=0;
7	scanf("%d\n%d",&m,&n)
8	<pre>int arr[n];</pre>
9 🔻	for(int j=0;j <n;j++){< td=""></n;j++){<>
10	scanf("%d",&arr[j
11	}
12 ▼	for(int a=0;a <n-1;a++< td=""></n-1;a++<>
13 ▼	for(int b=a+1;b <n< td=""></n<>
14 ▼	if(arr[a]+arr
15	printf("%
16	c=1;break
17	}
18	}if(c==1) break;
19	}
20	}
21	
22	return 0;
23	}

```
1
    1>
 2 •
 3
 4
    :);
 5 v <t; i++){
 6
    \\n%d",&m,&n);
 7
 8
    1];
 9 = 0; j < n; j + +)
    [("%d",&arr[j]);
10
11
12 = 0; a < n-1; a++)
13 \cdot nt b=a+1;b<n;b++){
14 √ f(arr[a]+arr[b]==m){
        printf("%d %d\n",a+1,b+1);
15
16
        c=1;break;
17
    :==1) break;
18
19
20
21
22
23
24
25
```

	Input	Expected	Got
~	2 4 5 1 4 5 3 2 4 4 2 2 4 3	1 4 1 2	1 4 🗸

Passed all tests! <

Numeros the Artist had two lists that were permutations of one another. He was very proud. Unfortunately, while transporting them from one exhibition to another, some numbers were lost out of the first list. Can you find the missing numbers?

As an example, the array with some numbers missing, *arr* = [7, 2, 5, 3, 5, 3]. The original array of numbers *brr* = [7, 2, 5, 4, 6, 3, 5, 3]. The numbers missing are [4, 6].

Notes

- If a number occurs multiple times in the lists, you must ensure that the frequency of that number in both lists is the same. If that is not the case, then it is also a missing number.
- You have to print all the missing numbers in ascending order.
- Print each missing number once,
 even if it is missing multiple times.
- The difference between maximum and minimum number in the second list is less than or equal to *100*.

Complete the code in the editor below. It should return an array of missing numbers.

It has the following:

Complete the code in the editor below. It should return an array of missing numbers.

It has the following:

- · arr: the array with missing numbers
- · brr: the original array of numbers

Input Format

There will be four lines of input:

n - the size of the first list, *arr*

The next line contains *n* space-separated integers *arr[i]*

m - the size of the second list, *brr*

The next line contains **m** space-separated integers **brr[i]**

Constraints

- $1 \le n, m \le 2 \times 10^5$
 - n≤m
- $1 \le brr[i] \le 2 \times 10^4$
- $X_{max} X_{min} < 101$

Output Format

Output the missing numbers in ascending

10 203 204 205 206 207 208 203 204 205 206 13 203 204 204 205 206 207 205 208 203 206 205 206 204 Sample Output 204 205 206 **Explanation** 204 is present in both arrays. Its frequency in arr is 2, while its frequency in brr is 3. Similarly, 205 and 206 occur twice in arr, but three times in brr. The rest of the numbers have the same frequencies in both lists. Answer: (penalty regime: 0 %) #include <stdio.h> 2 v int main(){ int n, m, c, c1=0, co;3 4 scanf("%d" &n).

order.

Sample Input

```
1
    #include <stdio.h>
 2 •
    int main(){
 3
         int n, m, c, c1=0, co;
 4
         scanf("%d",&n);
 5
         int arr[n];
 6 ▼
         for(int a=0;a<n;a++){</pre>
              scanf("%d",&arr[a]);
 7
 8
         }
 9
         scanf("%d",&m);
10
         int brr[m],ans[m];
         for(int b=0;b<m;b++){</pre>
11 ▼
              scanf("%d",&brr[b]);
12
13
         }
         for(int j=0;j<m;j++)</pre>
14
15 •
          {
16
              c=0;
17 •
              for(int i=0;i<n;i++){
                   if(arr[i]==brr[j]
18 •
19
                        c=1;
                        arr[i]=-1;
20
21
                        break;
22
                   }
23
24 ▼
              if(c==0){
25
                   ans[c1]=brr[j];
26
                   c1++;
27
              }
28
         for(int a=0;a<c1;a++){</pre>
29 •
30
              co=0;
31 🔻
              for(int b=0;b<c1;b++)
                   if(ans[b]<ans[a])</pre>
32
33
                   co++;
34
              }
35
              int temp=ans[a];
              ans[a]=ans[co];
36
              ans[co]=temp;
37
38
         for(int i=0;i<c1;i++)</pre>
39
         printf("%d ",ans[i]);
40
41
          return 0;
42
    }
```

```
nclude <stdio.h>
 1
 2 *
    t main(){
 3
      int n, m, c, c1=0, co;
      scanf("%d",&n);
 4
 5
      int arr[n];
 6 ▼
      for(int a=0;a<n;a++){</pre>
           scanf("%d",&arr[a]);
 7
 8
      }
      scanf("%d",&m);
 9
10
      int brr[m],ans[m];
      for(int b=0;b<m;b++){</pre>
11 •
           scanf("%d",&brr[b]);
12
13
      }
      for(int j=0;j<m;j++)</pre>
14
15 •
      {
16
           c=0;
           for(int i=0;i<n;i++){
17 •
                if(arr[i]==brr[j]){
18 •
19
                     c=1;
                     arr[i]=-1;
20
21
                     break;
22
                }
23
           if(c==0){
24 •
25
                ans[c1]=brr[j];
26
                c1++;
27
           }
28
      for(int a=0;a<c1;a++){</pre>
29 •
30
           co=0;
31 ▼
           for(int b=0;b<c1;b++){
                if(ans[b]<ans[a])</pre>
32
33
                co++;
34
           }
           int temp=ans[a];
35
           ans[a]=ans[co];
36
           ans[co]=temp;
37
38
      for(int i=0;i<c1;i++)</pre>
39
      printf("%d ",ans[i]);
40
41
      return 0;
42
```

	Inpu	ıt						
~	10 203 13	204	205	206	207	208	203	204
		204	204	205	206	207	205	208
Passed all tests! ✓								

Question **3**Correct

Marked out of 5.00

Flag question

Watson gives Sherlock an array of integers. His challenge is to find an element of the array such that the sum of all elements to the left is equal to the sum of all elements to the right. For instance, given the array arr = [5, 6, 8, 11], 8 is between two subarrays that sum to 11. If your starting array is [1], that element satisfies the rule as left and right sum to 0.

You will be given arrays of integers and must determine whether there is an element that meets the criterion.

Complete the code in the editor below. It

an element meeting the criterion or NO otherwise.

It has the following:

· arr: an array of integers

Input Format

The first line contains T, the number of test cases.

The next **T** pairs of lines each represent a test case.

- The first line contains *n*, the number of elements in the array *arr*.
- The second line contains *n* spaceseparated integers *arr[i]* where *0* ≤ *i* < *n*.

Constraints

- . 1≤T≤10
 - $1 \le n \le 10^5$
- $1 \le arr[i] \le 2 \times 10^4$ $0 \le i \le n$

Output Format

For each test case print YES if there exists an element in the array, such that the sum of the elements on its left is equal to the

Sample Output 0

NO YES

Explanation 0

For the first test case, no such index exists.

For the second test case, arr[0] + arr[1] = arr[3], therefore index 2 satisfies the given conditions.

Sample Input 1

11411

3

5

4

2000

4

0020

Sample Output 1

YES YES

Answer	: (penalty regime: 0 %)
1	<pre>#include <stdio.h></stdio.h></pre>
2 ▼	<pre>int main(){</pre>
3	<pre>int t,n,Is,rs,m;</pre>
4	<pre>scanf("%d",&t);</pre>
5 ▼	for(int i=0;i <t;i++){< td=""></t;i++){<>
6	Is=O;
7	rs=0;
8	scanf("%d",&n);
9	<pre>int arr[n];</pre>
10	<pre>for(int j=0; j<n;j++)< pre=""></n;j++)<></pre>
11	scanf("%d",&arr[j
12	m=n/2;
13 🔻	if(arr[m]==0){
14	for(m=0;arr[m]==0 &&
15	}
16	<pre>for(int j=0;j<=m;j++)</pre>
17	<pre>Is=Is+arr[j];</pre>
18	<pre>for(int j=m;j<n;j++)< pre=""></n;j++)<></pre>
19	rs=rs+arr[j];
20	printf("%s\n",(Is==rs)?"Y
21	}
22	return 0;
23	}

	Input	Expected	Got	
~	3	YES	YES	~
	5	YES	YES	
	1 1 4 1 1	YES	YES	
	4			
	2 0 0 0			
	4			
	0 0 2 0			
~	2	NO	NO	~
	3	YES	YES	
	1 2 3			

```
anf("%d",&n);
 8
   t arr[n];
 9
   r(int j=0; j<n;j++)
10
      scanf("%d",&arr[j]);
11
12
13 * [m] == 0){
   r(m=0;arr[m]==0 && m<n;m++);
14
15
   t j=0;j<=m;j++)
16
17
   arr[j];
18
   t j=m;j<n;j++)
19
   arr[j];
20
   ("%s\n",(Is==rs)?"YES":"NO");
21
22
    0;
23
```

	Input	Expected	Got
~	3 5 1 1 4 1 1 4 2 0 0 0 4 0 0 2 0	YES YES YES	YES YES YES
~	2 3 1 2 3 4 1 2 3 3	NO YES	NO YES

Passed all tests! <