CZ2003 Tutorial 6 (2022/23, Semester 1)

Solid Objects

- 1. Define the three-dimensional solid object displayed in Figure Q1
 - (i) by functions x(u,v,w), y(u,v,w), z(u,v,w), $u \in [0,1]$, $v \in [0,1]$
 - (ii) by functions $f(x,y,z) \ge 0$

Display the two solid objects and attach screenshots of ShapeExplorer.

Figure Q1

2. A curve displayed in Figure Q2 (left) is defined in polar coordinates r and α by the function $r=1.2\sin(2\alpha-0.5\pi)$, $\alpha\in[0,2\pi]$. Propose parametric functions x(u,v), y(u,v), $u,v\in[0,1]$ defining the 2D solid shape located in the XY Cartesian coordinates system as it is displayed in Figure Q2 (right). **Display the shape and attach a screenshot of ShapeExplorer.**

3. Define parametrically with functions x(u, v, w), y(u, v, w), z(u, v, w), $u, v, w \in [0, 1]$ the solid object displayed in Figure Q3. The object is created by rotational sweeping **counterclockwise** by $5\pi/4$ about axis Y of the sinusoidal curve followed by translational sweeping by +1.5 units parallel to axis Y. **Display the shape and attach a screenshot of ShapeExplorer.**

Figure O3

- 4. The solid object displayed in Figure Q4 (front and back views) is constructed from a 3-sided pyramid with height 1 and a cylinder which has the height 2, the outer radius 0.5, and the inner radius 0.25.
 - (i) Define the pyramid and the cylinder by functions $f(x, y, z) \ge 0$.
 - (ii) Based on the definition obtained in part (i), define the final solid object.

Display the shape and attach a screenshot of ShapeExplorer.

Figure Q4