

Data Mining for NLP

2- Representation

These slides will be available on Arche

Lectures Outline

- 1. Basics of Textual Data Exploration
- 2. Data Representation
- 3. Unsupervised approaches

Labs Outline

- 1. Describe Statistically Large Scale Corpora
- 2. Classifiers to Explore Data
- 3. Language Models and Clustering

Today Lecture Outline

- Representing Words in Vectors
- Representing Documents in Vectors

Representation Techniques

- → Hand-Crafted Feature-Based Representation
- → Count-Based Representation
- → Prediction-Based Representation

Data Representation

Framework

We assume:

- A token is the basic unit of discrete data, defined to be an item from a vocabulary indexed by 1, ..., V.
- A document is a sequence of N words denoted by d = (w1,w2, ...,wN), where wn is the Nth word in the sequence.
- A corpus is a collection of M documents denoted by D = (d1, d2, ..., dM)

Framework

We assume:

- A token is the basic unit of discrete data, defined to be an item from a vocabulary indexed by 1, ..., V.
- A document is a sequence of N words denoted by d = (w1,w2, ...,wN), where wn is the Nth word in the sequence.
- A corpus is a collection of M documents denoted by D = (d1, d2, ..., dM)

In this lecture, a token will be a word

What is a word?

There are many ways to define a word based on what aspect of language we consider (typography, syntax, semantics...)

Definition (Semantic):

Words are **the smallest linguistic expressions** that are **conventionally** associated with a **non-compositional meaning** and can be articulated in isolation to convey semantic content.*

Objective

Given a vocabulary w1,..,wV and a corpus D, our goal is to associate each word with a representation?

What do we want from this representation?

- Identify a word (bijection)
- Capture the similarities of words (based on morphology, syntax, semantics,...)
- Help us solve downstream tasks

NB: Vector-based representations of text are called *embedding*

1-Hot Encoding

Traditional way to represent words as atomic symbols with a unique integer associated with each word:

```
{1=movie, 2=hotel, 3=apple, 4=movies, 5=art}
```

Equivalent to represent words as 1-hot vectors:

```
movie = [1, 0, 0, 0, 0]
hotel = [0, 1, 0, 0, 0]
...
art = [0, 0, 0, 0, 1]
```


1-Hot Encoding

Most basic representation of any textual unit in NLP. Always start with it.

Implicit assumption: word vectors are an orthonormal basis

- orthogonal
- normalized

Problem 1: Not very informative

→ Weird to consider "movie" and "movies" as independent entities or to consider all words equidistant:

| house - home | = | house - car|

Problem 2: Polysemy

→ Should the Mouse of a computer get the same vector a the mouse animal?

Hand-Crafted Feature Representation

Example of potential features:

- Morphology: prefix, suffix, stem...
- Grammar: part of speech, gender, number,...
- Shape: capitalization, digit, hyphen

Those features can be defined based on relations to other words

- Synonyms of...
- Hypernyms of...
- Antonyms of...

Hand-Crafted Feature Representation

Example of potential features:

- Morphology: prefix, suffix, stem...
- Grammar: part of speech, gender, number,...
- Shape: capitalization, digit, hyphen

Those features can be defined based on relations to other words

- Synonyms of...
- Hypernyms of...
- Antonyms of...

We present one popular hand-crafted semantically based representation of words ⇒ the WordNet

WordNet

Definition: a (word) sense is a discrete representation of one aspect of the meaning of a word

WordNet is a large lexical database of word senses for English and other languages

WordNet

- Word types are grouped into (cognitive) synonym sets: synsets S09293800={Earth,earth,world,globe}
- Polysemous words: assigned to different synsets
 S14867162 ={earth,ground}
- Contains glosses for synsets:
 the 3rd planet from the sun; the planet we live on
- Noun/verb synsets: organized in hierarchy, capturing IS-A relation apple IS-A fruit

WordNet

X is a hyponym of Y if X is an instance of Y: cat is a hyponym of animal

X is a hypernym of Y if Y is an instance of X: animal is a hypernym of cat

X and Y are co-hyponyms if they have the same hypernym: cat and dog are co-hyponyms

X is a meronym of Y if X is a part of Y:

wheel is a meronym of car

X is a holonym of Y if Y is a part of X: car is a holonym of wheel

Hand-Crafted Representations: Limits

- Requires a lot of human annotations
- Subjectivity of the annotators
- Does not adapt to new words (languages are not stationary!):
 Mocktail, Guac, Fave, Biohacking were added to the Merriam-Webster Dictionary in 2018
- → It does not scale easily to new languages, new concepts, new words...

How to Infer "Good" Representations with Data?

Distributional Hypothesis

You shall know a word by the company it keeps" Firth (1957)

Idea: Model the *context* of a word to build **its vectorial** representation

He handed her a glass of bardiwac.

- He handed her a glass of bardiwac.
- Beef dishes are made to complement the bardiwacs.

- He handed her a glass of bardiwac.
- Beef dishes are made to complement the bardiwacs.
- Nigel staggered to his feet, face flushed from too much bardiwac.

- He handed her a glass of bardiwac.
- Beef dishes are made to complement the bardiwacs.
- Nigel staggered to his feet, face flushed from too much bardiwac.
- Malbec, one of the lesser-known bardiwac grapes, responds well to Australia's sunshine.

- He handed her a glass of bardiwac.
- Beef dishes are made to complement the bardiwacs.
- Nigel staggered to his feet, face flushed from too much bardiwac.
- Malbec, one of the lesser-known bardiwac grapes, responds well to Australia's sunshine.
- I dined off bread and cheese and this excellent bardiwac

- He handed her a glass of bardiwac.
- Beef dishes are made to complement the bardiwacs.
- Nigel staggered to his feet, face flushed from too much bardiwac.
- Malbec, one of the lesser-known bardiwac grapes, responds well to Australia's sunshine.
- I dined off bread and cheese and this excellent bardiwac
- The drinks were delicious: blood-red bardiwac as well as light, sweet Rhenish.

- He handed her a glass of bardiwac.
- Beef dishes are made to complement the bardiwacs.
- Nigel staggered to his feet, face flushed from too much bardiwac.
- Malbec, one of the lesser-known bardiwac grapes, responds well to Australia's sunshine.
- I dined off bread and cheese and this excellent bardiwac
- The drinks were delicious: blood-red bardiwac as well as light, sweet Rhenish.
- → bardiwac is a heavy red alcoholic beverage made from grapes

Distributional word representation in a nutshell

- 1. Define what is the context of a word
- 1. Count how many times each target word occurs in this context
- Build vectors out of (a function of) these context occurrence counts

$$x_w = f(w, Context(w))$$

How to define "the context" of a word?

It can be defined as

- The surrounding words (left and right words)
- All the other words of the sentence/the paragraph
- All the words after preprocessing and filtering-out some words

How to Model the Context to get

$$x_w = f(w, Context(w))$$

Approach 1: Count-Based

- Measure frequency of words in the context for each word in the vocabulary
- 2. Define vector representations based on those frequency

How to Model the Context to get

$$x_w = f(w, Context(w))$$

Approach 1: Count-Based

- Measure frequency of words in the context for each word in the vocabulary
- 2. Define vector representations based on those frequency

Approach 2: Prediction Based

Counting the Occurences of the words in the context of dog

The dog barked in the park.

The owner of the dog put him on the leash since he barked.

```
barked ++
park +
owner +
leash +
co-occurence # dog
```


Co-Occurrence Matrix

_	leash	walk	run	owner	pet	barked
dog	3	5	2	5	3	2
cat	0	3	3	2	3	0
lion	0	3	2	0	1	0
light	0	0	0	0	0	0
bark	1	0	0	2	1	0
car	0	0	1	3	0	0

Define vector representation based on the Co-Occurrence

	leash	walk	run	owner	pet	barked	the
dog	3	5	2	5	3	2	8
lion	0	3	2	0	1	0	6
light	0	0	0	0	0	0	5
bark	1	0	0	2	1	0	0
car	0	0	1	3	0	0	3

Naïve Approach: Take the row of the co-occurrence matrix

Define vector representation based on the Co-Occurrence

	leash	walk	run	owner	pet	barked	the
dog	3	5	2	5	3	2	8
lion	0	3	2	0	1	0	6
light	0	0	0	0	0	0	5
bark	1	0	0	2	1	0	0
car	0	0	1	3	0	0	3

Limits:

- Representations depends on the size of the corpus
- Frequent words impacts a lot the representations
- Representations very sensitive to change in very infrequent words

Solution: Pointwise Mutual Information (PMI)

Idea: Instead of absolute co-occurrence statistics, use probability (relative) of co-occurrences

$$PMI(w_1, w_2) = log \frac{P(w_1, w_2)}{P(w_1)P(w_2)}$$

Solution: Pointwise Mutual Information (PMI)

Idea: Instead of absolute co-occurrence statistics, use probability (relative) of co-occurrences

$$PMI(w_1, w_2) = log \frac{P(w_1, w_2)}{P(w_1)P(w_2)}$$

Intuition

 The more dependent dog and cat the closer P(dog, cat) is from P(dog)P(cat) the smaller the PMI

Solution: Pointwise Mutual Information (PMI)

Idea: Instead of absolute co-occurrence statistics, use probability (relative) of co-occurrences

$$PMI(w_1, w_2) = log \frac{P(w_1, w_2)}{P(w_1)P(w_2)}$$

Intuition

 The more dependent dog and cat the closer P(dog, cat) is from P(dog)P(cat) the smaller the PMI

$$PMI(w_1, w_2) = log \frac{\frac{1}{n_{pairs}} \#\{(w_1, w_2)\}}{\frac{1}{n_{word}} \#\{w_1\} \frac{1}{n_{word}} \#\{w_2\})}$$

Pointwise Mutual Information (PMI)

	leash	walk	run	owner	pet	barked	the
dog	2.75	2.24	3.16	2.24	2.75	3.16	1.77
lion	0	2.75	3.16	0	3.85	0	2.06
car	0	0	3.85	2.75	0	0	2.75

Word embedding vectors are the row of the PMI matrix

- We take usually take the Positive PMI (assigned to 0 when negative) + Smooth unobserve pairs (Laplace smoothing: add 1)
- Does not depend on size of the corpus (the PMI is normalized)
- Much less sensitive to change in frequent words (log)

Pointwise Mutual Information (PMI)

Limits:

- Very large matrix O(V^2)! Very large word vectors
- Hard to use large vectors in practice (i.e. 1M word vocabulary)
- Cannot compare word vectors estimated on 2 different corpora unless they have exactly the same vocabulary!

Idea: Build vectors with predefined size based on the PMI matrix

Dimensionality Reduction Technique

Prediction-Based Model

Idea:

- Learn directly dense word vectors
- Using the distributional hypothesis
- Implicitly, by parameterizing words as dense vectors
- and learning to predict context using this parametrization

Many word embedding methods use these ideas successfully

We present the **word2vec skip-gram** model (one of the most popular)

For each Sentence

- 1. Sample a target word
- 2. Predict **context words** defined as words in a fixed window from the target word

my dog is barking and chasing its tail

For each Sentence

- 1. Sample a target word
- Predict context words defined as words in a fixed window from the target word

Given $d \in \mathbb{N}$, let $\mathbf{W} \in \mathbb{R}^{(V,d)}$ and $\mathbf{C} \in \mathbb{R}^{(V,d)}$ two word representations (or word *embedding*) matrices. For each sequence $(w_1, ..., w_T)$:

- Pick a *focus* word w, associated to the vector $\mathbf{w} \in \mathbb{R}^d$ (\mathbf{w} is the row associated to w in \mathbf{W})
- Pick a *context* word c, associated to the vector $\mathbf{c} \in \mathbb{R}^d$ (\mathbf{c} is the row associated to c in \mathbf{C})
- Maximize $\max_{\mathbf{W} \in \mathbb{R}^{(V,d)}, \mathbf{C} \in \mathbb{R}^{(V,d)}} log p(c|w)$ (maximum likelihood estimator)

my dog is barking and chasing its tail

- 1. How to define $\log p(c|w)$
- 2. How to optimize $\log p(c|w)$?

- 1. How to define $\log p(c|w)$
- 2. How to optimize $\log p(c|w)$?

Intuition

- This is a classification problem
- The labels we want to predict are the context words
- Classification with a very large number of labels (V~100K)

Ideas:

- → Softmax
- → Simplify the softmax with Negative Sampling for Efficiency

Softmax of dot-products context vs. words vectors:

$$p(c|w) = \frac{e^{\mathbf{w.c}}}{\sum_{\mathbf{v}} e^{\mathbf{w.v}}}$$

We compute the log-likelihood, our objective function, as:

$$log p(c|w) = \mathbf{w.c} - log \sum_{\mathbf{v}} e^{\mathbf{w.v}}$$

Limits: O(V) to compute the loss (at every iteration)

→ Negative Sampling

Idea: Instead of computing the probability objective over the entire vocabulary (all the *V-1* negative context words)

ightharpoonup We sample $\it K$ words that are not in the context of w $\it v \in N_K$ $\it (K << V)$

Idea: Instead of computing the probability objective over the entire vocabulary (all the *V-1* negative context words)

ightharpoonup We sample K words that are not in the context of $v \in N_K$ (K << V)

New objective function:

$$\sigma(\mathbf{w}, \mathbf{c}) + \frac{1}{K} \sum_{v \in N_K} \log \sigma(-\mathbf{w}, \mathbf{v}) \text{ with } \sigma(\mathbf{x}, \mathbf{y}) = \frac{1}{1 + e^{-\mathbf{x} \cdot \mathbf{y}}}$$

Idea: Instead of computing the probability objective over the entire vocabulary (all the *V-1* negative context words)

ightharpoonup We sample K words that are not in the context of w $v \in N_K$ (K<<V)

New objective function:

$$\sigma(\mathbf{w}, \mathbf{c}) + \frac{1}{K} \sum_{\mathbf{v} \in N_K} \log \sigma(-\mathbf{w}, \mathbf{v}) \text{ with } \sigma(\mathbf{x}, \mathbf{y}) = \frac{1}{1 + e^{-\mathbf{x} \cdot \mathbf{y}}}$$

Complexity?

Idea: Instead of computing the probability objective over the entire vocabulary (all the *V-1* negative context words)

ightharpoonup We sample $\it K$ words that are not in the context of w $\it v \in N_K$ $\it (K << V)$

New objective function:

$$\sigma(\mathbf{w}, \mathbf{c}) + \frac{1}{K} \sum_{v \in N_K} \log \sigma(-\mathbf{w}, \mathbf{v}) \text{ with } \sigma(\mathbf{x}, \mathbf{y}) = \frac{1}{1 + e^{-\mathbf{x} \cdot \mathbf{y}}}$$

→ O(K) to compute with K independent of V

Algorithm 1 Skip-Gram Word2vec Training

Given a corpus C, made of a set of unique tokens V. Hyperparameters: number of negative samples K, a window size l, dimension of word vectors d, learning rate (α_t)

```
Initalize Randomly: \mathbf{W} \in \mathbb{R}^{(v,a)} and \mathbf{C} \in \mathbb{R}^{(v,a)}
for step t in 0..T do
     ### Step 1: Sampling
     Sample s = (w_1, ..., w_n) \in C # a sequence in your corpus (e.g. sentence)
     Sample a pair (i, j) \in [1, ..., n] with |i - j| \le l
     we note w = w_i, c = w_i represented by vectors w in W and c in C
     Sample N_K = \{v_1, ..., v_K\} \subset V represented by \{\mathbf{v}_1, ..., \mathbf{v}_K\} in C # Negative samples
     ### Step 2: Compute loss
     l(\mathbf{W}, \mathbf{C}) = -\sigma(\mathbf{w}, \mathbf{c}) - \frac{1}{K} \sum_{v \in N_K} \log \sigma(-\mathbf{w}, \mathbf{v})
     ### Step 3: Parameter update with SGD
     \mathbf{W}_t = \mathbf{W}_{t-1} - \alpha_t \cdot \nabla l(\mathbf{W}_{t-1}, \mathbf{C}_{t-1})
     \mathbf{C}_t = \mathbf{C}_{t-1} - \alpha_t \cdot \nabla l(\mathbf{W}_{t-1}, \mathbf{C}_{t-1})
```

end


```
Algorithm 1 Skip-Gram Word2vec Training
Given a corpus C, made of a set of unique tokens V. Hyperparameters: number of negative
samples K, a window size l, dimension of word vectors d, learning rate (\alpha_t)
Initalize Randomly: \mathbf{W} \in \mathbb{R}^{(V,d)} and \mathbf{C} \in \mathbb{R}^{(V,d)}
     ### Step 1: Sampling
     Sample s = (w_1, ..., w_n) \in C # a sequence in your corpus (e.g. sentence)
     Sample a pair (i, j) \in [1, ..., n] with |i - j| \le l
     we note w=w_i, c=w_j represented by vectors {\bf w} in {\bf W} and {\bf c} in {\bf C}
     Sample N_K = \{v_1, ..., v_K\} \subset V represented by \{\mathbf{v}_1, ..., \mathbf{v}_K\} in C # Negative samples
     ### Step 2: Compute loss
     l(\mathbf{W}, \mathbf{C}) = -\sigma(\mathbf{w}, \mathbf{c}) - \frac{1}{K} \sum_{v \in N_K} \log \sigma(-\mathbf{w}, \mathbf{v})
     ### Step 3: Parameter update with SGD
     \mathbf{W}_t = \mathbf{W}_{t-1} - \alpha_t \cdot \nabla l(\mathbf{W}_{t-1}, \mathbf{C}_{t-1})
     \mathbf{C}_t = \mathbf{C}_{t-1} - \alpha_t \cdot \nabla l(\mathbf{W}_{t-1}, \mathbf{C}_{t-1})
```


Algorithm 1 Skip-Gram Word2vec Training

Given a corpus C, made of a set of unique tokens V. Hyperparameters: number of negative samples K, a window size l, dimension of word vectors d, learning rate (α_t)

Initalize Randomly: $\mathbf{W} \in \mathbb{R}^{(V,d)}$ and $\mathbf{C} \in \mathbb{R}^{(V,d)}$

```
for sten t in 0 T do
```

```
### Step 1: Sampling
Sample s = (w_1, ..., w_n) \in C # a sequence in your corpus (e.g. sentence)
Sample a pair (i, j) \in [1, ..., n] with |i - j| \le l
we note w=w_i, c=w_i represented by vectors {\bf w} in {\bf W} and {\bf c} in {\bf C}
Sample N_K = \{v_1, ..., v_K\} \subset V represented by \{\mathbf{v}_1, ..., \mathbf{v}_K\} in C # Negative samples
```

Step 2: Compute loss

$$l(\mathbf{W}, \mathbf{C}) = -\sigma(\mathbf{w}, \mathbf{c}) - \frac{1}{K} \sum_{v \in N_K} \log \sigma(\mathbf{-w}, \mathbf{v})$$

Step 3: Parameter update with SGD

$$\mathbf{W}_{t} = \mathbf{\hat{W}}_{t-1} - \alpha_{t}.\nabla l(\mathbf{\hat{W}}_{t-1}, \mathbf{C}_{t-1})$$

$$\mathbf{C}_t = \mathbf{C}_{t-1} - \alpha_t \cdot \nabla l(\mathbf{W}_{t-1}, \mathbf{C}_{t-1})$$

Algorithm 1 Skip-Gram Word2vec Training

Given a corpus C, made of a set of unique tokens V. Hyperparameters: number of negative samples K, a window size l, dimension of word vectors d, learning rate (α_t)

Initalize Randomly: $\mathbf{W} \in \mathbb{R}^{(V,d)}$ and $\mathbf{C} \in \mathbb{R}^{(V,d)}$

for step t in 0..T do

Step 1: Sampling

Sample $s = (w_1, ..., w_n) \in C$ # a sequence in your corpus (e.g. sentence)

Sample a pair $(i, j) \in [1, ..., n]$ with $|i - j| \le l$

we note $w=w_i, c=w_j$ represented by vectors **w** in **W** and **c** in **C**

Sample $N_K = \{v_1, ..., v_K\} \subset V$ represented by $\{\mathbf{v}_1, ..., \mathbf{v}_K\}$ in \mathbf{C} # Negative samples

Step 2: Compute loss

$$l(\mathbf{W}, \mathbf{C}) = -\sigma(\mathbf{w}, \mathbf{c}) - \frac{1}{K} \sum_{v \in N_K} \log \sigma(-\mathbf{w}, \mathbf{v})$$

Step 3: Parameter update with SGD

$$\mathbf{W}_t = \mathbf{W}_{t-1} - \alpha_t . \nabla l(\mathbf{W}_{t-1}, \mathbf{C}_{t-1})$$

$$\mathbf{C}_t = \mathbf{C}_{t-1} - \alpha_t \cdot \nabla l(\mathbf{W}_{t-1}, \mathbf{C}_{t-1})$$

end

Algorithm 1 Skip-Gram Word2vec Training

Given a corpus C, made of a set of unique tokens V. Hyperparameters: number of negative samples K, a window size l, dimension of word vectors d, learning rate (α_t)

```
Initalize Randomly: \mathbf{W} \in \mathbb{R}^{(V,d)} and \mathbf{C} \in \mathbb{R}^{(V,d)}
```

```
for step t in 0..T do
```

```
### Step 1: Sampling
```

Sample $s = (w_1, ..., w_n) \in C$ # a sequence in your corpus (e.g. sentence)

Sample a pair $(i, j) \in [1, ..., n]$ with $|i - j| \le l$

we note $w = w_i$, $c = w_i$ represented by vectors **w** in **W** and **c** in **C**

Sample $N_K = \{v_1, ..., v_K\} \subset V$ represented by $\{\mathbf{v}_1, ..., \mathbf{v}_K\}$ in **C** # Negative samples

Step 2: Compute loss

$$l(\mathbf{W}, \mathbf{C}) = -\sigma(\mathbf{w}, \mathbf{c}) - \frac{1}{K} \sum_{\mathbf{v} \in N_K} \log \sigma(\mathbf{w}, \mathbf{v})$$

Step 3: Parameter update with SGD

$$\mathbf{W}_{t} = \mathbf{W}_{t-1} - \alpha_{t}.\nabla l(\mathbf{W}_{t-1}, \mathbf{C}_{t-1})$$

$$\mathbf{C}_{t} = \mathbf{C}_{t-1} - \alpha_{t}.\nabla l(\mathbf{W}_{t-1}, \mathbf{C}_{t-1})$$

$$\mathbf{C}_t = \mathbf{C}_{t-1} - \alpha_t \cdot \nabla l(\mathbf{W}_{t-1}, \mathbf{C}_{t-1})$$

Loop over the dataset E times (number of epochs)

Complexity: O(d*K*T)

- → No Memory bottleneck
- → Scale to Billion-tokens datasets

```
Given a corpus C, made of a set of unique tokens V. Hyperparameters: number of negative samples K, a window size l, dimension of word vectors d, learning rate (\alpha_t)
```

Initalize Randomly: $\mathbf{W} \in \mathbb{R}^{(V,d)}$ and $\mathbf{C} \in \mathbb{R}^{(V,d)}$ for step t in 0..T do

Algorithm 1 Skip-Gram Word2vec Training

```
### Step 1: Sampling Sample s=(w_1,..,w_n)\in C # a sequence in your corpus (e.g. sentence) Sample a pair (i,j)\in [1,..,n] with |i-j|\leq l we note w=w_i, c=w_j represented by vectors {\bf w} in {\bf W} and {\bf c} in {\bf C}
```

Sample $N_K = \{v_1, ..., v_K\} \subset V$ represented by $\{\mathbf{v}_1, ..., \mathbf{v}_K\}$ in \mathbf{C} # Negative samples

Step 2: Compute loss

$$l(\mathbf{W}, \mathbf{C}) = -\sigma(\mathbf{w}, \mathbf{c}) - \frac{1}{K} \sum_{v \in N_K} \log \sigma(\mathbf{-w}, \mathbf{v})$$

Step 3: Parameter update with SGD

$$\mathbf{W}_t = \mathbf{W}_{t-1} - \alpha_t . \nabla l(\mathbf{W}_{t-1}, \mathbf{C}_{t-1})$$

$$\mathbf{C}_t = \mathbf{C}_{t-1} - \alpha_t . \nabla l(\mathbf{W}_{t-1}, \mathbf{C}_{t-1})$$

end

Word2Vec Skip-Gram Model & the PMI

(Levy & Goldberg 2014) showed that

- Estimating the embedding matrix with Skip-Gram and Negative Sampling (SGNS)...
- ...is equivalent to computing the shifted-PMI matrix

Word2Vec

- Still very popular in practice
- Works very well with Deep Learning architecture (e.g. LSTM models) to model specific tasks (e.g. NER)
- Recently "beaten" by contextualized approaches (BERT)

Extensions

- Lots of variant of the Skip-Gram exists (CBOW, Glove...)
- Multilingual setting: build shared representations across languages (fastext)

Limits

- Doesn't model morphology
- Fixed Vocabulary: What if we add new tokens in the vocabulary?
- Polysemy: Each token has a unique representation (e.g. cherry)

Evaluation of Word Embeddings

How to evaluate the quality of word embeddings?

Extrinsic Evaluation

 Use them in a task-specific model and measure the performance on your task (cf. lecture 5 & 6)

Intrinsic Evaluation

→ Idea: "similar" words should have similar vectors

What do we mean by "similar" words?

- Morphologically similar: e.g. computer, computers
- Syntactically similar: e.g. determiners
- Semantically similar: e.g. animal, cat

How to evaluate the quality of word embeddings?

Qualitative Evaluation

- Visualize word embedding space
- Case by case: look at nearest neighbors of given words

How to evaluate the quality of word embeddings?

Qualitative Evaluation

- Visualize word embedding space
- Case by case: look at nearest neighbors of given words

Quantitative Evaluation

Is Word embedding similarity related with human judgment?

How to evaluate the quality of word embeddings?

Qualitative Evaluation

- Visualize word embedding space
- Case by case: look at nearest neighbors of given words

Quantitative Evaluation

Is Word embedding similarity related with human judgment?

Visualization

Word Vectors are high dimensions (usually ~100)

- → Project the word embedding vectors using PCA or T-SNE
- → Visualize in 2D or 3D
- → Analyse the clusters

Figure: Visualize skip-gram trained on Wikipedia (1B tokens) (fastext.cc) vectors with PCA

How to measure similarity in the word embedding space?

Cosine Similarity

$$sim(w_1, w_2) = cos(x_{w_1}, x_{w_2}) = \frac{x_{w_1}^T x_{w_2}}{||x_{w_1}|| ||x_{w_2}||}$$

L2 Distance

$$sim(w_1, w_2) = L2(x_{w_1}, x_{w_2}) = ||x_{w_1} - x_{w_2}||$$

Nearest-Neighbor with the cosine similarity (skip-gram trained on Wikipedia (1B tokens))

moon	score	
mars	0.615	
moons	0.611	
lunar	0.602	
sun	0.602	
venus	0.583	

0.663	
0.657	
0.632	
0.627	
0.624	

blue	score		
red	0.704		
yellow	0.677		
purple	0.676		
green	0.655		
pink	0.612		

We can compare the similarity between words in the embedding space with human judgment

- 1. Collect Human Judgment (or download dataset e.g. WordSim353) on a list of pairs of words
- 2. Compute similarity of the word vectors of those pairs
- 3. Measure correlation between both

Word 1 Word 2		Word2vec Cosine Similarity	Human Judgment	
tiger	tiger	1.0	10	
dollar	buck	0.3065	9.22	
dollar	profit	0.3420	7.38	
smart	stupid	0.4128	5.81	

Application of Word Embeddings

- Downstream NLP tasks to get insights from the data
- Word Sense Induction
- Semantic analysis (semantic shift in time, across communities...)

To Be Seen in Lab

- Data representation
- Corpus exploration through classifiers