3

4 5

taps.

CLAIMS

I claim:

1	1. A welding power source capable of
2	recaiving a range of input voltages, comprising:
3	an input rectifier configured to receive an ac
4	input and providing a first dc signal;
5	a dc voltage stage configured to receive the
6	first dc signal and providing a second dc signal;
7	an inverter configured to receive the second do
8	signal and providing a second ac signal and
9	configured to receive at least one control input;
10	an output transformer configured to receive the
11	second ac signal and providing a third ac signal
12	having a current suitable for welding;
13	an output circuit configured to receive the
14	third ac signal and providing a welding signal;
15	a controller configured to provide at least one
16	control signal to the inverter; and
17	an auxiliary power controller configured to
18	recaive a range of input voltages and providing a
19	control power signal to the controller.
1	2. The apparatus of claim 1, wherein the
2	auxiliary power controller is capable of providing the
3	control power signal at a preselected control signal
4	voltage, regardless of the magnitude of the ac input
5	signal.
1	3. The apparatus of claim 2, further
2	including an auxiliary transformer with a plurality of
2,	Theractical and advirtable framer aren a binighter of

1 4. The apparatus of claim 1, wherein the dc voltage stage includes a boost circuit.

primary taps, wherein the auxiliary power controller is

in electrical communication with the plurality of primary

1

2

3

4

5

6

7

8

9

10

11

1

2

4

1		E. The	: 6	apparatus	of	claim	1,	wherein	the
2	inverter	includes	a	pulse wi	dth	modula	ator	•	

- 1 6. The apparatus of claim 1, wherein the range of input voltages is 230 volts to 575 volts.
- 1 7. The apparatus of claim 1 wherein the output circuit includes a rectifier.
- 1 E. The apparatus of claim 1 wherein the 2 output circuit includes a cycloconverter.
 - 9. A method of providing a welding current from a range of input voltages, comprising: rectifying an ac input and providing a first dc signal;

converting the dc signal to a second ac signal;
transforming the second ac signal into a third
ac signal having a current suitable for welding; and
receiving the ac input and providing an
auxiliary power signal source at a preselected
control power signal voltage, regardless of the
magnitude of the ac input signal.

- 1.0. The method of claim 9, wherein the step of converting the dc signal includes the steps of converting the dc signal to a second dc signal and inverting the second dc signal to provide the second ac signal.
- 1 11. The method of claim 9 further including the step of providing control signals to an inverter.
- 1 12. The method of claim 9, wherein the step of 2 providing the auxiliary power signal includes the step of 3 transforming the ac input signal.

1	13. The method of claim 10, wherein the step
2	of converting the first dc signal to a second dc signal
3	includes boosting the voltage of the first dc signal.
1	14. The method of claim 10, wherein the step
2	of inverting includes the step of pulse width modulating.
1	15. The method of claim 10 further including
2	the step of rectifying the third ac signal.
1	16. The method of claim 10 further includes
2	the step of cycloconverting the third ac signal.
1	17. A welding power source for providing a
2	welding current from a range of input voltages,
3	comprising:
4	rectifier means for receiving an ac input and
5	providing a first dc signal;
6	converting means for converting the dc signal
7	to a second ac signal;
8	transforming means for transforming the second
9	ac signal into a third ac signal having a current
10	suitable for welding;
11	output means for providing a welding current;
12	and
13	auxiliary power means for receiving the ac
14	input and providing an auxiliary power signal at a
15	preselected control power signal voltage, regardless
16	of the magnitude of the ac input signal.

- 1 18. The apparatus of claim 17, wherein the 2 means for converting includes means for converting the dc 3 signal to a second dc signal and means for inverting the 4 second dc signal to provide the second ac signal.
- 1 19. The apparatus of claim 17 further including means for providing control signals to an inverter.

2

1		20. The apparatus of claim 17, wherein the
2	means for	providing the auxiliary power signal includes
3	means for	transforming the ac input signal into the
4	auxiliary	power signal.

- 1 21. The apparatus of claim 17, wherein the 2 means for converting the dc signal to a second dc signal 3 includes means for boosting the voltage.
- 1 22. The apparatus of claim 17, wherein the means for inverting includes means for pulse width modulating.
- 1 23. The apparatus of claim 17, wherein the output means includes means for rectifying the third ac signal.
 - 24. The apparatus of claim 17, wherein the output means includes means for cycloconverting the third ac signal.