Sécurité des systèmes et des réseaux

Emmanuel CONCHON (emmanuel.conchon@univ-jfc.fr)

Plan du cours

- > Introduction générale à la sécurité informatique
 - Définitions et objectifs
 - Mécanismes d'intrusions/d'attaques
 - Les services de sécurité
 - Mécanismes de défense
- La cryptologie
 - Chiffrement symétrique
 - Chiffrement asymétrique
 - La signature électronique
- Sécurité des réseaux
 - Sécurité des mails
 - Firewall et architectures de sécurité
 - Transport Level Security (TLS)

Bibliographie

- « Cryptographie et sécurité des systèmes et des réseaux », Touradj Abrahimi, Franck Leprévost, Bertrand Warusfel, 2006
- « Cryptography and Network Security Principles and Practice, 5th Edition », William Stallings
 - Des figures du cours sont tirées de cet ouvrage
- « Les réseaux », Andrew Tanenbaum
 - Chapitre 8
- « Les systèmes d'exploitation », Andrew Tanenbaum
 - Chapitre 9

2

Introduction générale

« Connais ton ennemi et **connais-toi toi-même**; eussiez vous cent guerres à soutenir, cent fois vous serez victorieux. Si tu ignores ton ennemi et que tu te connais toi-même, tes chances de perdre et de gagner seront égales. Si tu ignores à la fois ton ennemi et toi-même, tu ne compteras tes combats que par tes défaites. »

Sun Tzu « L'Art de la Guerre »

« Se faire battre est excusable, se faire surprendre est impardonnable ! »

Napoléon

Introduction générale - Définition et objectif

Définition Wikipédia

- La sécurité informatique est l'ensemble des moyens techniques, organisationnels, juridiques et humains nécessaires et mis en place pour conserver, rétablir, et garantir la sécurité des systèmes informatiques
- Elle est intrinsèquement liée à la sécurité de l'information et des systèmes d'information
- L'objectif est de minimiser la vulnérabilité d'un système informatique
 - Un système informatique connecté ne peut pas être complètement sûr!
- Elle permet de se protéger contre des menaces intentionnelles ou des menaces accidentelles

5

Introduction générale – Définitions et vocabulaire

Virus

- Bout de programme qui lorsqu'il s'exécute s'auto réplique et se greffe sur un autre programme pour en modifier le comportement
 - Peut évoluer en cheval de Troie

Vers

• Comme le virus, le ver est un programme malveillant qui se diffuse à travers le réseau, mais à la différence du virus, il fonctionne de manière autonome et ne se réplique pas sur la machine

Spyware

- Logiciel qui s'installe dans le but de collecter et de transmettre des données sur le réseau à l'insu de l'utilisateur du système compromis
 - Ex: Keylogger

Introduction générale – Définitions et vocabulaire

Vulnérabilité

 Faiblesse ou faille introduite de manière intentionnelle ou accidentelle durant la spécification, la conception, le développement ou le déploiement d'un système (matériel ou logiciel)

Attaque

 Action malveillante visant à exploiter une vulnérabilité d'un système et qui viole un ou plusieurs besoins en sécurité

Intrusion

• Faute externe résultant de l'exploitation réussie d'une vulnérabilité

Menace

· Violation potentielle d'une propriété de sécurité

Risque

Menace + vulnérabilité

-

Introduction générale - Définitions et vocabulaire

Bombe logique

- Bout de programme qui reste en sommeil jusqu'à ce que des conditions particulières surviennent pour causer des dommages
 - Les virus, chevaux de Troie et vers contiennent des bombes logiques

Porte dérobée

- Fonctionnalité permettant de contourner un mécanisme de sécurité à l'insu de l'utilisateur
- Il peut s'agir soit d'une vulnérabilité du système qui peut être intentionnelle ou accidentelle
 - Elles peuvent par exemple être aménagée à l'origine dans un but de test et de maintenance

Cheval de Troie

 Programme effectuant des actions néfastes sous l'apparence d'un programme autorisé

Introduction générale – Définitions et vocabulaire

> Spam

- Message non sollicité obtenu par une utilisation abusive d'une boite mail
 - Le premier spam date de 1978 et a été envoyé par Gary Thuek à destination de tous les utilisateurs d'ARPANET (600 personnes)

Sniffing

 Accès illégales à des données sur un canal de communication ou sur un support vulnérable pour obtenir des informations sensibles

Spoofing

• Usurpation d'identité pour obtenir des informations ou des accès

Déni de service (DDS et dDDS)

- Attaque d'un serveur ayant pour but de l'empêcher de rendre son service
 - En général on surcharge le serveur de requêtes
- Le dDDS est un déni de service distribué s'appuyant sur plusieurs centaines de terminaux zombis pour générer les requêtes

Attack Sophistication vs. Intruder Technical Knowledge "stealth"/advanced scanning adaptive, high-impact, targeted attacks on erage Intruder Knowledge widespread attacks using NNTP to distribute attack supply-chain increase in coordinated cyber-physical widespread attacks on increase in targeted DNS infrastructure DDoS attacks phishing & vishing executable code attacks (against widespread attacks on anti-forensic techniques client-side software home users targeted GUI intruder web applications distributed attack tools hijacking sessions increase in wide-scale Internet social engineering attack techniques to analyze code for vulnerabilities without source code Windows-based remote controllable Trojans (Back Orifice) **Software Engineering Institute** Carnegie Mellon

Introduction générale – Les sources de risque

V.S

Danger élevé mais risque d'occurrence faible

Danger modéré mais risque d'occurrence très fort

Introduction générale – Les sources de risque

Introduction générale - CID

- La sécurité informatique repose sur trois piliers (triade CID)
 - La confidentialité
 - Des données informatiques
 - Des données à caractère personnel
 - L'intégrité
 - Des données
 - Des systèmes
 - La disponibilité
- > On peut également leur adjoindre
 - Authenticité/Authentification
 - Traçabilité (Accounting en anglais)
 - Inclue la non-répudiation des données

1

Introduction générale - Confidentialité

- > La confidentialité consiste à garder secret le contenu d'une information
 - Il faut empêcher sa lecture et sa divulgation à toute entité non autorisée
- Il faut donc mettre en place des mécanismes pour rendre cette information inintelligible par des tiers non autorisés
 - Lors de la conservation
 - Lors de la sauvegarde
 - Lors du transfert
- La confidentialité recouvre aussi la nécessité de laisser à un usager le contrôle sur ses informations personnelles
 - Accès, modification, masquage, suppression

1.4

Introduction générale - Intégrité

- L'intégrité des données doit être assurée par tous les moyens contre
 - · Les modifications accidentelles
 - · Les modifications volontaires
- L'objectif est d'assurer que des informations sauvegardées ou transmises sont bien conformes aux données d'origine
- Nécessite la mise en place de contrôle d'accès pour la modification des données
 - Seules ont le droit de modifier les données, les personnes explicitment autorisées à le faire

Introduction générale - Disponibilité

- Les données doivent être accessibles de manière fiable par toutes les entités autorisées
- La disponibilité consiste à mettre en œuvre les moyens matériels nécessaires pour assurer
 - · La bonne conservation des données
 - Le bon fonctionnement du système
- Concrètement cela peut consister à mettre en œuvre un système de redondance des services pour palier à l'indisponibilité d'un service particulier
 - Ex: Les Content Delivery Network

Introduction générale - Authenticité

- L'objectif est d'assurer qu'une entité est bien ce qu'elle prétend être
 - Pour garantir la qualité de l'information qu'elle fournie
 - Pour s'assurer qu'elle a le droit d'effectuer certaines actions
- Dans le cas d'une transmission l'authenticité devra assurer que l'information reçue est bien celle qui avait été envoyée
- L'authenticité d'une personne (ou identification) va permettre de limiter les accès aux seules ressources nécessaires
 - La preuve de l'identité donne des droits qui ne permettent normalement pas un accès total à toute l'information
- L'authentification permet de vérifier
 - · L'origine d'une information
 - L'identité d'une personne

Introduction générale - Traçabilité

- Chaque action sur l'information doit pouvoir être tracée de manière à permettre de détecter une faille à posteriori
- La traçabilité est indispensable pour disposer de preuves lors d'une intrusion ou pour prouver la modification de données
- Permet d'assurer la non répudiation de certaines actions qui ont pu être effectuées sur le système
 - Une personne ne doit pas pouvoir nier avoir reçu une information par exemple

17

Introduction générale – Démarche à avoir

- Démarche générale
 - Identification et évaluation des risques
 - Etablissement d'une politique de sécurité
 - Mise en place de la solution de sécurité, des contre mesures
 - Inclue la formation et la sensibilisation des usagers
 - Auditer/évaluer la solution mise en place
- > Cette démarche doit être répétée périodiquement!
 - En particulier la phase d'audit
 - Une solution de sécurité n'a qu'une durée de vie limitée et doit être réactualisée
 - Virus
 - Failles dans les logiciels
 - Utilisateurs

.

Introduction générale - Quelques procédures

- Définition du domaine à protéger
 - Tout n'est pas critique, il ne faut protéger que le nécessaire
- Définition de l'architecture de sécurité
 - Equipements
 - Paramètres de sécurité et mécanismes de prévention et de détection
- Prévoir les failles
 - plan de continuité d'activité et plan de reprise d'activité
- Elaboration de chartes à destination des utilisateurs
 - Sensibilisation aux risques, faire adhérer à la politique globale
- Gérer l'évolution des RH (départ, arrivé de nouveaux éléments) et du système
 - Définition d'un organigramme précis avec les responsabilité de chacun
- Définition de méthodes de développement sûres, de mise à jours des failles

Introduction générale – Le facteur humain

- Le facteur humain demeure toujours l'élément le plus important d'une politique de sécurité
 - La plupart des vulnérabilités viennent des utilisateurs
 - non respect des procédures
 - incompréhension de l'intérêt d'une procédure
 - surcharge induite par des procédures sur l'activité
 - Un système n'est fiable que si tout le monde joue le jeu
 - On ne donne pas son mot de passe à un collègue
 - On ne le laisse pas sur un post-it

21

Les attaques passives

- L'objectif est d'obtenir des informations sur une transmission d'informations
 - N'altère pas le message ou la communication
- Regroupe deux grands types d'attaque
 - L'écoute clandestine (eavesdropping)
 - · Capture et analyse de trafic
- Très difficile à détecter

L'architecture de sécurité OSI

- Définit par l'ITU-T dans sa recommandation X.800
- Son objectif est de fournir une approche systématique pour évaluer et choisir des moyens de sécurité adaptés à des communications distribuées
- Elle s'intéresse à trois aspects de la sécurité réseau
 - Les attaques
 - Passives
 - Actives
 - · Les mécanismes de sécurité
 - Détection
 - Prévention
 - récupération
 - Les services de sécurité
 - Amélioration de la sécurité
 - Mise en échec des attaques

Les attaques actives

- A contrario, les attaques actives vont impliquer une altération de la communication
 - Usurpation d'identité (Masquerade ou spoofing)
 - Une personne se fait passer pour une autre en créant des données contenant de fausses informations
 - ★ Peut être assimilé à de la contrefaçon
 - Ex: ARP Spoofing, IP Spoofing...
 - Rejeu
 - Des traces préalablement capturées sont rejouées dans un but frauduleux
 - ★ Obtenir un accès normalement interdit, obtenir des réponses pour déterminer un mot de passe (cf WEP)
 - * Incrémenter des revenus, ...
 - L'altération de messages
 - Modification des paquets d'une communication pour ajouter/supprimer/modifier l'information qu'il transporte

Les attaques actives

- Le déni de service
 - Envoie d'un très grand nombre d'informations (requêtes ou données) pour rendre le service inopérant
 - Relativement simples à mettre en œuvre (Ex: LOIC)

But des attaques

- > Pour synthétiser, les attaques ont 4 objectifs principaux
 - L'interruption: qui vise la disponibilité des informations
 - L'interception: qui vise la confidentialité des informations
 - La modification: qui vise l'intégrité des informations
 - La fabrication: qui vise l'authenticité des informations

Prévention des attaques

- Les attaques passives sont difficiles à détecter mais simples à prévenir
 - Il faut donc mettre en place des mécanismes pour les prévenir
 - Ex: Cryptage de l'information et/ou du médium de communication
 - Cryptographie quantique pour détecter l'écoute

- > Les attaques actives sont simples à détecter mais difficiles à arrêter
 - Il faut donc mettre l'accent sur la détection et sur la récupération
 - Bien entendu on ne néglige pas la prévention !
 - Ex: Firewall, Systèmes de détection d'intrusion, signatures, antivirus, sauvegardes...

25

Les mécanismes de sécurité

- Les mécanismes de sécurité désignent les moyens de défense pour
 - Détecter une attaque
 - Prévenir une attaque
 - Récupérer d'une attaque
- Un mécanisme de sécurité ne remplie jamais toutes les fonctions précédentes
- Quelques mécanismes
 - L'authentification
 - Mécanisme central qui est souvent utilisé par d'autres mécanismes (ex confidentialité)
 - Authentifier un acteur peut se faire à l'aide de trois aspects

- Dans les domaines de communications on s'emploie surtout à identifier l'émetteur d'un message
 - ★ Pour identifier le destinataire il faut mettre en place une double authentification

Les mécanismes de sécurité

- Le chiffrement des données (encypherment)
 - Algorithmes à base de clés permettant de transformer les données
 - Le niveau de sécurité est dépendant de la sécurité des clés
- La signature des données
 - Données ajoutées aux informations transmises pour assurer l'authenticité du message
- Le contrôle d'accès
 - Au système (vérification des droits)
 - Au moyen de communication (VPN ou tunnels)
- Le contrôle du routage
 - Sécurisation des chemins empruntés et des mécanismes d'interconnexion
- Le bourrage de trafic
 - Des données sont ajoutées pour assurer la confidentialité en particulier au niveau du volume de trafic

Les mécanismes de sécurité

- La notarisation
 - Utilisation de tiers de confiance pour assurer certains services de sécurité
 - ★ Horodatage
 - **★** Certification
 - * Distribution de clés
 - ★.
- La protection physique
 - Attention aux supports papiers...

29

Retour sur la chaine de confiance

- La confiance dans la sécurité d'un SI va être directement liée à la confiance que l'on a dans les systèmes qui le composent
 - Min(niveau de confiance des systèmes)
 - Les mécanismes de sécurités établissent la confiance
 - Dans le cas de systèmes répartis, le niveau de confiance va également considérer le canal de communication comme un système particulier
- La chaine de confiance repose sur un principe simple
 - Les amis surs de mes amis surs sont surs
- Pbm: qu'est-ce qu'un ami sur ?
 - Les organismes de certifications permettent de répondre à ce problème
 - Etablissement de graphes de confiance
 - Plus il y a d'échanges surs plus la confiance grandie
 - Il faut néanmoins toujours avoir la possibilité de révoguer la confiance accordée

Les services de sécurité

- Les services de sécurité définis dans X.800 s'appuient sur les mécanismes précédents
- > Ils sont au nombre de 5 et se rapprochent de la triade CID
 - Authentification
 - Contrôle d'accès
 - Confidentialité des données
 - Intégrité des données
 - Non répudiation des données

Relations entre services et mécanismes de sécurité

Mechanism

	Medianism							
Service	Enciph- erment	Digital signature	Access control	Data integrity	Authenti- cation exchange	Traffic padding	Routing control	Notari- zation
Peer entity authentication	Y	Y			Y			
Data origin authentication	Y	Y						
Access control			Y					
Confidentiality	Y						Y	
Traffic flow confidentiality	Y					Y	Y	
Data integrity	Y	Y		Y				
Nonrepudiation		Y		Y				Y
Availability				Y	Y			

Un model pour la sécurité réseau

33

Un model pour la sécurité des accès réseaux

Opponent

- -human (e.g., hacker)
 -software
- (e.g., virus, worm)

Internal security controls

Information System

Le principe du moindre privilège

- > Tout ce qui n'est pas explicitement autorisé est interdit
- > Il ne faut autoriser que ce qui est utile et justifié par les taches de l'utilisateur
 - Attention néanmoins à ne pas tomber dans l'excès
 - Une règle trop restrictive a tendance à être contournée
 - L'ergonomie doit être préservée
 - Il ne faut pas demander un mot de passe tous les clicks
- > Exemple souvent utilisé par les responsables réseaux:
 - On bloque tous les ports de communications sauf ceux expressément autorisés
 - SMTP, POP, HTTP...

35 36

La défense en profondeur

 Consiste à utiliser plusieurs techniques de sécurités parfois redondante pour arrêter/ralentir l'attaquant

- Exemple
 - Un antivirus sur le serveur de mail et un autre sur chaque poste client
 - Un pare-feu à l'entrée du réseau et au niveau de chaque serveur

- 1