Языки описания алгоритмов

Формальный язык для описания алгоритмов был первоначально ориентирован на задачи оптимизации программ для ЭВМ, а в последствии оказался удобным и для оптимизации микропрограмм. Задачи этих классов широко распространены как в области проектирования средств вычислительной техники, так и при построении систем автоматического управления, связи и многих других.

Логические схемы алгоритмов

Реализация алгоритма есть последовательное выполнение команд ЭВМ, каждая из которых в свою очередь является последовательностью элементарных действий-микрокоманд, выполняемых за один машинный такт.

Функцию задания алгоритма русский математик Алексей Андреевич Ляпунов предложил записывать определенным способом, а именно в виде конечной строки, состоящей из символов элементарных действий A_i , где i изменяется от 1 до n (n – целое положительное число), логических функций α_p (p =1,m) и специальных символов начала и конца стрелок с индексом, где индекс также целое положительное число.

Символы $A_1,A_2,...,A_n$ он предложил называть операторами, а символы $\alpha_1,\alpha_2,...$ логическими условиями. Логическое условие (ЛУ) - это такая функция, которая может принимать лишь два значения — 0 или 1. Оказалось, что с помощью введенных понятий возможно формально описать любой алгоритм, используя терминологию логики. Действительно, допустим символ α_1 (x_1 = x_2) означает, что α_1 =1, если равенство истинно и α_1 =0 в противном случае.

Рассмотрим некоторый алгоритм как определенную последовательность операторов.

$$U = A_1 \alpha_1 \uparrow^1 A_2 \alpha_2 \uparrow^2 A_3 \alpha_3 \uparrow^3 \dots \downarrow^2 A_{10} \alpha_{10} \uparrow^3 \dots A_k$$

Будем считать, что ЛУ, за исключением α_2 , равны единице. Тогда выражение можно переписать в виде

$$U = A_1 A_2 \alpha_2 \uparrow^2 A_3 \dots \downarrow^2 A_{10} \dots A_k$$

так как действия стрелок трактуются следующим образом: после выполнения оператора A_1 проверяется его ЛУ α_1 ; если α_1 =1, то выполняется следующий оператор, т.е. A_2 , а если α_1 =0, то необходимо в строке отыскать конец стрелки \downarrow^1 и выполнить стоящее справа от неё элементарное выражение. Так как все ЛУ, кроме α_2 , равны 1, то это и позволяет нам перейти от первого выражения ко второму.

Определение. Логической схемой алгоритма (ЛСА) будем называть конечную строку, состоящую из символов операторов $A_1, A_2, ..., A_n$, логических условий со стрелками $\alpha_1^{\uparrow 1}, \alpha_2^{\uparrow 2}, ... \alpha_m^{\uparrow m}$ и концов стрелок $\downarrow^1, \downarrow^2, ... \downarrow^m$ такую, что для каждого начала стрелки с индексом і найдётся один и только один конец стрелки с тем же индексом.

Из этого определения следует, что несколько начал стрелок могут иметь одинаковые индексы, но все они привязаны к единственному концу стрелки с этим индексом.

Каждый отдельный оператор или логическое условие назовём "элементарным выражением", а фрагмент строки из элементарных выражений со стрелками, где для каждого индекса і имеется не более одного начала стрелки и одного конца с индексом і – "выражением".

Из ранее приведённых рассуждений вполне понятно, что в любой ЛСА порядок выполнения операторов определяется состоянием всех ЛУ. Будем для определённости считать, что ЛУ могут изменять своё состояние, но только во время выполнения некоторого оператора.

Таким образом, описание алгоритма в общем виде в терминах ЛСА может быть представлено:

$$U = U(A_1,...,A_n; p_1,...,p_m)$$

здесь A_i (i = 0, n) - множество операторов,

 p_{j} ($j=(1,\kappa)$) - множество логических переменных, входящих в функции $\alpha_{t}(p_{1},p_{2},\ldots,p_{m}).$

Всевозможные наборы состояний логических переменных $p_1, ..., p_m$ обозначим

$$\Delta_1$$
, Δ_2 ,..., Δ_m , Δ_{m+1} , ...

Тогда процесс реализации ЛСА для этой произвольной последовательности наборов определяется следующим образом:

- 1. Выбираем начальный набор независимых логических переменных Δ_1 .
- 2. Анализируем самое левое элементарное выражение ЛСА: если это ЛУ, то может быть два продолжения: при $p_i = 1$ переходим к анализу следующего элементарного выражения, а при $p_i = 0$ переходим к анализу элементарного выражения, стоящего справа от конца стрелки с индексом і. При выполнении оператора совершается переход от набора Δ_1 к Δ_s , где s индекс выполняемого оператора.

Строка операторов, полученная в результате описанных действий, является значением ЛСА для заданной выше последовательности наборов.

Пример. Дана ЛСА $U = A_0 p_2 \uparrow^1 p_3 \uparrow^2 \downarrow^1 A_2 A_3 \downarrow^2 A_4 A_5 A_K$ Рассмотрим процесс реализации ЛСА при всевозможных наборах ЛУ.

$$\begin{split} &\Delta_1 = p_2 p_3 & U_1 = A_0 A_2 A_3 A_4 A_5 A_K; \\ &\Delta_2 = p_2! p_3 & U_2 = A_0 A_4 A_5 A_K; \\ &\Delta_3 = ! p_2 p_3 & U_3 = A_0 A_2 A_3 A_4 A_5 A_K = U_1; \\ &\Delta_4 = ! p_2! p_3 & U_4 = A_0 A_2 A_3 A_4 A_5 A_K = U_1. \end{split}$$

Матричные схемы алгоритмов

Ещё одним формальным языком для описания алгоритмов является система, представленная на языке матрицы, в которой элементы есть логические функции, связывающие операторы между собой. При этом запись зависимости порядка выполнения операторов оказывается более простой и наглядной.

где A_0, A_k — операторы начальной и конечной установки алгоритма,

 A_i $(i=\overline{1,n})$ — операторы реализации алгоритма,

 $\alpha_{ij} \ \ (i=\overline{0,n};j=\overline{1,\kappa})$ — логические функции связи между операторами, каждая из которых может принимать три значения:

- 1) $\alpha_{ij} = 0$, что означает отсутствие связи между операторами A_i и A_j ;
- 2) $\alpha_{ij} = 1$, что означает непосредственное следование оператора A_{ij} за оператором A_{ij} ;
- 3) α_{ij} при некоторых наборах ЛУ равна 0, а при других 1.

Определение. Матричной схемой алгоритма (MCA) будем называть квадратную матрицу, в которой строки соответствуют операторам A_0 , A_1 , ..., A_n , столбцы – операторам A_1 , A_2 , ..., A_k , а элементы – логические функции связи между операторами алгоритма.

Пример

Граф-схемы алгоритмов

Иногда с целью большей наглядности, особенно в случае простых алгоритмов, удобно представлять их с помощью языка графов. Такое формальное описание было предложено российским математиком Львом Аркадьевичем Калужниным.

Определение

Граф-схема алгоритма (ГСА) есть конечный связный ориентированный граф G, удовлетворяющий следующим условиям:

- В графе G имеется два отмеченных узла входной, из которого выходит не более одной стрелки, и выходной, не имеющий ни одной выходящей стрелки.
- Из каждого узла, отличного от входного и выходного, исходит либо одна стрелка (γ-узел), либо две стрелки (β-узел). Стрелки β-узла помечены – одна плюсом, другая минусом или одна 0, другая 1.
- 3. Имеется два конечных множества функциональных элементов множество преобразователей информации $Q = \{A_1, A_2, ..., A_n\}$ и множество распознавателей $\mathscr{P} = \{p_1, p_2, ..., p_m\}$.
- 4. Каждому γ -узлу однозначно сопоставлен преобразователь $A_i \in Q$, а каждому β -узлу распознаватель $\alpha_l(p_1, p_2,...) \in \mathcal{P}$. В зависимости от алгоритма преобразователи и распознаватели могут повторяться в графе G

Эквивалентные преобразования схем алгоритмов

Преобразования $\Gamma CA \to J CA$, $J CA \to \Gamma CA$, $J CA \to M CA$ и $\Gamma CA \to M CA$ интуитивно понятны и не требуют комментариев. Преобразование $M CA \to \Gamma CA$ осуществляется через J CA. Рассмотрим преобразование $M CA \to J CA$, которое широко применяется при объединении алгоритмов.

1) По строкам MCA записываем систему формул перехода S_1 :

$$A_{0} \xrightarrow{n} \alpha_{0j} A_{j}$$

$$A_{1} \xrightarrow{n} \alpha_{1j} A_{j}$$

$$\vdots$$

$$A_{n} \xrightarrow{n} \alpha_{nj} A_{j}$$

Логическая функция α_{ij} является «приведенной» по переменной, если она представлена в виде

$$lpha_{ij} = p_s lpha_{ij}' \vee \overline{p_s} lpha_{ij}''$$
 где p_s – логическая переменная, $lpha_{ij}', lpha_{ij}''$ - логические функции не содержащие переменной p_s и её отрицания

- 2) Приводим систему формул перехода по всем переменным p_s , т. е. выносим за скобки p_s и их отрицание, получая скобочную систему формул перехода S_2 .
 - 3) Переходим к схемной системе формул перехода S₃ за 3 операции:
 - 1. Опустить все скобки в формуле (если они имеются).
 - 2. Заменить символ логического ИЛИ на «*».
 - 3. Заменить связанные пары переменных p_i и $\overline{p_i}$ (или $\overline{p_i}$ и p_i) на пары $p_i \uparrow^s$ и \downarrow^s (или $\overline{p_i} \uparrow^s$ и \downarrow^s).

Схемные формулы перехода состоят из «блоков», разделенных « * », с помощью которых будет построена ЛСА.

4) Проводим эквивалентные преобразования системы схемных формул перехода с целью устранения повторяющихся операторов A_j и минимизации количества логических переменных p_s , получая системы схемных формул перехода S_3 ', S_3 '' и т. д.

При этом используем следующие правила тождественных преобразований схемных формул перехода:

I.
$$1. (A_{i} \neg N) = (A_{i} \neg 1 \uparrow^{i} N \downarrow^{i}).$$

$$2. (A_{i} \neg N) = (A_{i} \neg \downarrow^{i} N 1 \uparrow^{i}).$$
II.
$$1. (A_{i} \neg R_{i1} \downarrow^{s_{1}} N * R_{i2} \downarrow^{s_{2}} N * w) =$$

$$= (A_{i} \neg R_{i1} \downarrow^{i} \downarrow^{s_{1}} \downarrow^{s_{2}} N * R_{i2} \omega \uparrow^{i} * w) =$$

$$= (A_{i} \neg R_{i1} \omega \uparrow^{i} * R_{i2} \downarrow^{i} \downarrow^{s_{1}} \downarrow^{s_{2}} N * w).$$

$$2. (A_{i1} \neg p_{1} p_{1} \uparrow^{i} p_{2} A_{m} * \downarrow^{i} p_{3} A_{i}) =$$

$$= (A_{i_{1}} \neg p_{1} p_{i} \uparrow^{i} p_{3} A_{i} * \downarrow^{i} A_{m}).$$

III.
$$\begin{cases} A_{i1} \neg w_{i1} * \downarrow^{s1} N \\ \vdots \\ A_{im} \neg w_{is} * R \downarrow^{s2} N \end{cases} = \begin{cases} A_{i1} \neg w_{i1} \\ \vdots \\ A_{im} \neg w_{is} * \downarrow^{s1} \downarrow^{s2} N \end{cases}$$

$$IV. \qquad (A_{i} \neg P_{1} p_{r} \uparrow^{r} P_{2} N_{s} * \downarrow^{r} P_{3} N_{i} * w) =$$

 $= (A_i \neg P_1 p_r \uparrow^r P_2 N_k * \downarrow^r p_r \uparrow^s N_q * \downarrow^s P_3 N_l w),$

Здесь N_q – любая произвольно выбранная подформула.

V.
$$(A_i \neg Rp \uparrow^i N * \downarrow^i \downarrow^s \lambda * w) =$$

$$= (A_i \neg R \downarrow^i \downarrow^s p \uparrow^i N * w),$$

Здесь 1 - пустая подформула.

VI. Концы стрелок, стоящие рядом, можно использовать в любом порядке $\downarrow^i \downarrow^i = \downarrow^i \downarrow^i$

VII. Пару стрелок \uparrow^i, \downarrow^i входящих в формулы (подформулу), можно переименовать, если новые символы не совпадут с уже использованными ранее.

где N_t — подформулы, R_t — остаток выражения, не вошедший в подформулу, w — выражение, не вошедшее ни в одну подформулу и в остаток R_t

5) Строим ЛСА по минимизированной системе схемных формул перехода.

Вначале в строке выбирается оператор A_0 . К нему справа приписывается начальное выражение из его схемной формулы.

Если при этом последним символом является оператор A_i , то справа к нему приписывают начальное выражение его схемной формулы. Но если последний символ — $\omega \uparrow^s$ (тождественно равная нулю логическая функция), то проверяют наличие ещё не выписанных начальных выражений из любой формулы перехода, и в случае их присутствия — выписывают одно из них.

Ещё одной особенностью является ситуация, когда оператор A_{κ} появляется раньше, чем окончена строка ЛСА. Хотя теоретически в этом никакой некорректности нет, всё же удобнее иметь ЛСА, в которой A_0 стоит в начале строки, а A_{κ} – в конце. Поэтому, когда A_{κ} из полученной системы S3 выписывают раньше, чем желательно, приходится принудительно переносить его в предполагаемый конец строки ЛСА с помощью введения дополнительной функции $\omega \uparrow^i$, где i – неиспользованный в S3 номер стрелки.

Пример. Составить граф-схему алгоритма, выводящего номер третьего элемента массива, большего 5, или 0, если его нет. Провести эквивалентное преобразование ГСА в ЛСА, затем ЛСА в МСА и МСА в ЛСА. Массив состоит из 10 целых чисел. Начальный оператор A_0 — ввод массива и инициализация переменных, конечный оператор A_{κ} — вывод результата на экран.

ГСА

 A_0 : Ввод массива, i=1, c=0

 $A_1: c++$ $A_2: i++$ $A_3: i=0$ $A_{\kappa}: Вывод i$

 $p_1: M[i] > 5$?

 $p_2: c>2?$ $p_3: i>10?$

ЛСА

$$U = A_0 \downarrow^3 p_1 \uparrow^1 p_2 \uparrow^2 \omega \uparrow^4 \downarrow^2 A_1 \downarrow^1 A_2 p_3 \uparrow^3 A_3 \downarrow^4 A_{\kappa}$$

MCA

	A_1	A_2	A_3	A_{κ}
A_0	$p_1!p_2$!p ₁	-	p_1p_2
A_1	-	1	-	-
A_2	$!p_3p_1!p_2$!p ₃ !p ₁	p_3	$!p_3p_1p_2$
A_3	-	-	-	1

Система формул перехода S₁

$$A_0 \rightarrow p_1! p_2 A_1 \ V \ ! p_1 A_2 \ V \ p_1 p_2 A_{\scriptscriptstyle K}$$

$$A_1 \rightarrow A_2$$

$$A_2 \to !p_3p_1!p_2A_1 \; V \; !p_3!p_1A_2 \; V \; p_3A_3 \; V \; \; !p_3p_1p_2A_{\scriptscriptstyle K}$$

$$A_3 \rightarrow \hat{A}_{\kappa}$$

Скобочная система формул перехода S_2

$$A_0 \to p_1(p_2A_{\kappa} \ V \ !p_2A_1) \ V \ !p_1A_2$$

$$A_1 \rightarrow A_2$$

$$A_2 \rightarrow p_3 A_3 V !p_3(p_1(p_2A_K V !p_2A_1) V !p_1A_2)$$

$$A_3 \rightarrow A_K$$

Схемная система формул перехода S_3

$$A_0 \rightarrow p_1 \uparrow^1 p_2 \uparrow^2 A_{\kappa} * \downarrow^2 A_1 * \downarrow^1 A_2$$

$$A_1 \rightarrow A_2$$

$$A_2 \rightarrow p_3 \uparrow^3 A_3 * \downarrow^3 p_1 \uparrow^1 p_2 \uparrow^2 A_{\kappa} * \downarrow^2 A_1 * \downarrow^1 A_2$$

$$A_3 \rightarrow A_{\kappa}$$

Преобразованная схемная система формул перехода S_3 '

$$\begin{array}{l} A_0 \rightarrow \downarrow^3 p_1 \uparrow^1 p_2 \uparrow^2 A_{\scriptscriptstyle K} * \downarrow^2 A_1 \\ A_1 \rightarrow \downarrow^1 A_2 \\ A_2 \rightarrow p_3 \uparrow^3 A_3 \\ A_3 \rightarrow A_{\scriptscriptstyle K} \end{array}$$

Минимизированная схемная система формул перехода S_3 "

$$A_0 \rightarrow \downarrow^3 p_1 \uparrow^1 p_2 \uparrow^2 \omega \uparrow^4 * \downarrow^2 A_1$$

$$A_1 \rightarrow \downarrow^1 A_2$$

$$A_2 \rightarrow p_3 \uparrow^3 A_3$$

$$A_3 \rightarrow \downarrow^4 A_K$$

ЛСА, построенная по минимизированной схемной системе формул перехода $U = A_0 \downarrow^3 p_1 \uparrow^1 p_2 \uparrow^2 \omega \uparrow^4 \downarrow^2 A_1 \downarrow^1 A_2 p_3 \uparrow^3 A_3 \downarrow^4 A_{\kappa}$

Построенная ЛСА совпадает с исходной. Преобразование выполнено верно.

Задача. Составить граф-схему алгоритма, выводящего номер предпоследнего элемента массива, большего 5, или 0, если его нет. Провести эквивалентное преобразование ГСА в ЛСА, затем ЛСА в МСА и МСА в ЛСА. Массив состоит из 10 целых чисел. Начальный оператор A_0 — ввод массива и инициализация переменных, конечный оператор A_{κ} — вывод результата на экран.

Объединение 2-х алгоритмов

Задача. Автомат должен выполнять два алгоритма U_1 и U_2 . Если логическое условие ${\bf r}$ истинно, то выполняется U_1 , иначе - U_2 .

Получить минимизированный объединенный алгоритм U_{00} , в котором отсутствуют повторяющиеся операторы.

Алгоритм решения.

- 1. Составить граф-схему и логическую схему каждого алгоритма.
- 2. Оценить эффективность минимизации объединенного алгоритма по количеству общих (одинаковых) операторов и логических переменных исходных алгоритмов. Если это количество меньше 2, то минимизация неэффективна, $U_{06} = \mathbf{r}^{\uparrow 1} U_1 \omega^{\uparrow 2} \downarrow^1 U_2 \downarrow^2$, иначе перейти к п. 3.
- 3. Составить объединенную MCA, в которой операторы не повторяются. Если исходный оператор присутствует в обоих MCA, то проставляем **r** при переходе к оператору из 1-го алгоритма и !**r** при переходе к оператору из 2-го алгоритма.
 - 4. Составить систему формул перехода, провести ее минимизацию и упрощение.
- 5. По минимизированной системе схемных формул перехода составить объединенную ЛСА.
- 6. Проверить выполнение каждого алгоритма в объединенной ЛСА, подставляя соответствующее значение ${\bf r}$.

Пример. U_1 – вывести максимум массива из 10 элементов. U_2 – вывести номер первого элемента массива, равного 4.

1)

Алгоритм U_1

A₀

A₁₁

(p₁) 0

(p₂) A₃

(p₂) 0

(A₄)

(A_K)

 A_0 : Ввод массива, i=1 p_{11} : M[i]>max? A_{11} : max=M[1] p_2 : i>10?

 A_{21} : max=M[i]

 $A_3 : i++$

 A_4 : prn=max A_K : print(prn)

 $U_1 = A_0 A_{11} \downarrow^2 p_{11} \uparrow^{11} A_{21} \downarrow^{11} A_3 p_2 \uparrow^2 A_4 A_K$

Алгоритм U_2

 A_0 : Ввод массива, i=1 p_{12} : M[i]=4? A_{12} : prn=0 p_2 : i>10?

 A_{22} : prn=i A_3 : i++

 $A_{\scriptscriptstyle K} \,:\, print(prn)$

$$U_2 = A_0 A_{12} \downarrow^2 p_{12} \uparrow^{12} A_{22} \omega \uparrow^3 \downarrow^{12} A_3 p_2 \uparrow^2 \downarrow^3 A_{\kappa}$$

- 2) Общие операторы и логические переменные $-A_0$, A_3 , p_2 , A_κ . Минимизация должна быть эффективна.
- 3) На базе ГС или ЛС исходных алгоритмов строим объединенную МСА, в заголовках строк и столбцов которой операторы обоих алгоритмов. Переходы между операторами одного алгоритма соответствуют ЛСА или ГСА этого алгоритма. При переходе от общего оператора к оператору определенного алгоритма вставляется соответствующее логическое условие г или !r.

Объединенная МСА

	A ₁₁	A ₁₂	A ₂₁	A ₂₂	A_3	A ₄	A_{κ}
A_0	r	!r					
A_{11}			p ₁₁		!p ₁₁		
A_{12}				p ₁₂	!p ₁₂		
A_{21}					1		
A_{22}							1
A_3			r !p ₂ p ₁₁	!r !p ₂ p ₁₂	r !p ₂ !p ₁₁ V !r !p ₂ !p ₁₂	r p ₂	!r p ₂
A_4					_		1

4) По объединенной МСА строим системы скобочных и схемных формул перехода и затем строим объединенную ЛСА.

Скобочная система формул перехода S₂

$$\begin{split} &A_0 \to r A_{11} \; V \; ! r A_{12} \\ &A_{11} \to p_{11} \; A_{21} \; V \; ! p_{11} A_3 \\ &A_{12} \to p_{12} \; A_{22} \; V \; ! p_{12} A_3 \\ &A_{21} \to A_3 \\ &A_{22} \to A_\kappa \\ &A_3 \to p_2 \left(r A_4 \; V \; ! r A_\kappa \right) \; V \; ! p_2 \left(\; r \; \left(p_{11} A_{21} V ! p_{11} A_3 \right) \; V \; ! r \; \left(p_{12} A_{22} \; V \; ! p_{12} A_3 \right) \; \right) \\ &A_4 \to A_\kappa \end{split}$$

Схемная система формул перехода S₃

$$\begin{array}{l} A_{0} \to r^{\uparrow 4} A_{11} * \downarrow^{4} A_{12} \\ A_{11} \to p_{11}^{\uparrow 11} A_{21} * \downarrow^{11} A_{3} \\ A_{12} \to p_{12}^{\uparrow 12} A_{22} * \downarrow^{12} A_{3} \\ A_{21} \to A_{3} \\ A_{22} \to A_{\kappa} \\ A_{3} \to p_{2}^{\uparrow 2} r^{\uparrow 5} A_{4} * \downarrow^{5} A_{\kappa} * \downarrow^{2} r^{\uparrow 6} p_{11}^{\uparrow 11} A_{21} * \downarrow^{11} A_{3} * \downarrow^{6} p_{12}^{\uparrow 12} A_{22} * \downarrow^{12} A_{3} \\ A_{4} \to A_{\kappa} \end{array}$$

Преобразованная схемная система формул перехода S₃'

$$A_{0} \rightarrow r^{\uparrow 4}A_{11} * \downarrow^{4}A_{12}$$

$$A_{11} \rightarrow \downarrow^{2} r^{\uparrow 6}p_{11}^{\uparrow 7}A_{21}$$

$$A_{12} \rightarrow \downarrow^{6}p_{12}^{\uparrow 7}A_{22}$$

$$A_{21} \rightarrow \downarrow^{7}A_{3}$$

$$A_{22} \rightarrow \omega^{\uparrow 5}$$

$$\begin{array}{c} A_3 \rightarrow p_2 \uparrow^2 r \uparrow^5 A_4 \\ A_4 \rightarrow \downarrow^5 A_\kappa \end{array}$$

5) Объединенная ЛСА

$$U_{06} = A_0 r^{4} A_{11}^{2} r^{6} p_{11}^{7} A_{21}^{7} A_{3} p_{2}^{2} r^{5} A_{4} \omega^{5}^{4} A_{12}^{6} p_{12}^{7} A_{22}^{5} A_{\kappa}$$

6) Проверка:

r=1
$$U_1 = A_0 A_{11} \downarrow^2 p_{11} \uparrow^7 A_{21} \downarrow^7 A_3 p_2 \uparrow^2 A_4 A_{\kappa}$$

r=0 $U_2 = A_0 A_{12} \downarrow^6 p_{12} \uparrow^7 A_{22} \omega \uparrow^5 \downarrow^7 A_3 p_2 \uparrow^6 \downarrow^5 A_{\kappa}$

При подстановке соответствующих значений ${\bf r}$ оба алгоритма выполняются, следовательно объединенная ЛСА составлена правильно.

В объединенной ЛСА 14 элементарных выражений, а в необъединенной – 16. Минимизация эффективна.

Объединить 2 алгоритма работы с массивом из 10 элементов:

 U_1 – вывести сумму элементов массива;

 U_2 – вывести номер первого элемента массива, большего 5. Первый оператор A_0 – инициализация массива и переменных. Последний оператор A_{κ} – вывод искомого значения на экран.

Объединение 3-х и более алгоритмов

Задача. Автомат должен выполнять три алгоритма U_1 , U_2 и U_3 в зависимости от значений набора логических условий r_1 , r_2 .

Получить минимизированный объединенный алгоритм U_{00} , в котором отсутствуют повторяющиеся операторы.

Алгоритм решения.

- 1. Составить граф-схему и логическую схему каждого алгоритма.
- 2. Оценить эффективность минимизации объединенного алгоритма по количеству общих (одинаковых) операторов и логических переменных исходных алгоритмов. Если это количество меньше 2, то минимизация неэффективна, $U_{\text{of}} = \mathbf{r}_1 \bar{\uparrow} \mathbf{r}_2 \uparrow^2 U_1 \omega \uparrow^3$ $\downarrow^1 U_2 \omega \uparrow^3 \downarrow^2 U_3 \downarrow^3$, иначе перейти к п. 3.
 - 3. Составить матричную схему каждого алгоритма.
 - 4. Построить объединенную МСА, каждый элемент которой

$$\hat{\alpha}_{jq} = \bigvee_{i=1}^{l} \alpha_{jq}^{i} \beta_{j}^{i}$$

где α_{jq}^i – логический элемент матрицы МСА \mathcal{U}_i , где q – номер строки, а j – номер столбца в \mathcal{U}_i ;

 eta_i^i — определяющая функция оператора A_j из ЛСА \mathcal{U}_i ;

Определяющие функции вычисляются по формуле:

$$\beta_j^i = R_i \vee \frac{R_1}{0} \vee \frac{R_2}{0} \vee ... \vee \frac{R_2}{0}$$

Здесь $\mathbf{R}_{\mathbf{i}}$ - определяющие конъюнкции для всех объединяемых MCA.

Оператор A_i входит только в ЛСА U_i , поэтому есть выбор R/0, который позволяет минимизировать систему формул перехода и объединенную ЛСА.

Практика объединения алгоритмов показывает, что МСА с наибольшим числом совпадающих элементов желательно приписывать определяющие конъюнкции с соседним кодированием.

Совпадающие элементы:

- элементы, состоящие из одинаковых логических функций;
- элементы строки оператора A_i , если он отсутствует в другой MCA.
- 4.1. Построить неориентированный граф, вершины которого помечены обозначениями алгоритмов, а ребра - числом совпадающих элементов.
- 4.2. Закодировать определяющие конъюнкции алгоритмов набором логических переменных r_1r_2 , используя соседнее кодирование для пар MCA с наибольшим числом совпадающих элементов.
- 4.3. Построить набор определяющих функций для каждого оператора каждого алгоритма.
 - 4.4. Построить объединенную МСА.
 - 5. Составить систему формул перехода, провести ее минимизацию и упрощение.
 - 6. По системе схемных формул перехода составить объединенную ЛСА.
- 7. Проверить выполнение каждого алгоритма в объединенной ЛСА, подставляя соответствующие значения r_1 , r_2 . Если алгоритм имеет большое количество элементарных выражений и безусловных переходов, то проверку рекомендуется проводить по объединенной ГСА.

Пример. U_1 – вывести максимум массива из 10 элементов.

 U_2 – вывести минимум массива из 10 элементов.

 U_3 – вывести номер первого элемента массива, равного 4.

1)

$$U_1 = A_0 A_{11} \downarrow^2 p_{11} \uparrow^{11} A_{21} \downarrow^{11} A_3 p_2 \uparrow^2 A_{41} A_{\kappa}$$

 $U_2 = A_0 A_{12} \downarrow^2 p_{12} \uparrow^{12} A_{22} \downarrow^{12} A_3 p_2 \uparrow^2 A_{42} A_{\kappa}$
 $U_3 = A_0 A_{13} \downarrow^2 p_{13} \uparrow^{13} A_{23} \omega \uparrow^3 \downarrow^{13} A_3 p_2 \uparrow^2 \downarrow^3 A_{\kappa}$

2) Общие операторы и логические переменные $-A_0$, A_3 , p_2 , A_κ . Минимизация должна быть эффективна.

3)				
			U_1		
	A ₁₁	A ₂₁	A ₃	A ₄₁	A_{κ}
A_0	1				
111		p 11	!p ₁₁		
A ₂₁			1		
\mathbf{A}_3		!p2p11	!p ₂ !p ₁₁	p ₂	
					1

	U_2										
	A_{12}	A ₂₂	A ₃	A_{42}	A_{κ}						
A_0	1										
A ₁₂		p ₁₂	!p ₁₂								
A ₂₂			1								
A ₃		!p ₂ p ₁₂	!p ₂ !p ₁₂	p_2							
A ₄₂					1						

	U_3								
	A_{13}	A_{23}	A_3	A_{κ}					
A_0	1								
A ₁₃		p 13	!p ₁₃						
A ₂₃				1					
A_3		!p ₂ p ₁₃	!p ₂ !p ₁₃	p_2					

- 4) Определяющие конъюнкции и функции
- 4.1) Граф с числами совпадающих элементов

$$U_1$$
- U_2 : строки A_{11} + A_{21} + A_{12} + A_{22} + A_{41} + A_{42} = 2+1+2+1+1+1 = 8.

$$U_1$$
- U_3 : строки A_{11} + A_{21} + A_{41} + A_{13} + A_{23} = 2+1+1+2+1 = 7.

$$U_2$$
- U_3 : строки A_{12} + A_{22} + A_{42} + A_{13} + A_{23} = 2+1+1+2+1 = 7.

Для большей минимизации введена пустая МСА U_{θ} , число совпадающих с ней элементов равно числу элементов всей матрицы.

4.2) Определяющие конъюнкции

Наибольшее число совпадающих элементов у пар матриц U_1 - U_2 , U_1 - U_{θ} , U_2 - U_{θ} . Закодируем определяющие конъюнкции для U_1 , U_2 , U_{θ} соседними кодами:

$$R_1 = r_1 r_2$$
, $R_2 = r_1! r_2$, $R_{\theta} = ! r_1 r_2$, $R_3 = ! r_1! r_2$.

4.3) Определяющие функции

Определяющие функции операторов A_0 и A_3 первого алгоритма (присутствуют во всех алгоритмах кроме пустого):

$$\beta_0^1 = \beta_3^1 = R_1 \vee \frac{R_\phi}{0} = r_1 r_2 \vee \frac{!r_1 r_2}{0} = \frac{r_1}{1} r_2.$$

Определяющие функции остальных операторов первого алгоритма (присутствуют только в нем):

$$\beta_{11}^1 = \beta_{21}^1 = \beta_{41}^1 = R_1 \vee \frac{R_2}{0} \vee \frac{R_3}{0} \vee \frac{R_{\phi}}{0} = r_1 r_2 \vee \frac{r_1! r_2}{0} \vee \frac{! r_1! r_2}{0} \vee \frac{! r_1 r_2}{0} = 1$$

Аналогично для остальных алгоритмов:

$$\beta_0^2 = \beta_3^2 = R_2 \vee \frac{R_\phi}{0} = r_1! r_2 \vee \frac{!r_1 r_2}{0} = r_1! r_2 ;$$

$$\beta_0^3 = \beta_3^3 = R_3 \vee \frac{R_\phi}{0} = !r_1! r_2 \vee \frac{!r_1 r_2}{0} = !r_1 \frac{!r_2}{1} ;$$

$$\beta_{12}^2 = \beta_{22}^2 = \beta_{42}^2 = \beta_{13}^3 = \beta_{23}^3 = 1 .$$

4.4) Объединенная недоопределенная МСА

	A ₁₁	A ₁₂	A ₁₃	A_{21}	A ₂₂	A ₂₃	A_3	A ₄₁	A ₄₂	A_{κ}
A_0	$(r_1/1)r_2$	$r_1!r_2$	$!r_1(!r_2/1)$							
A_{11}				p ₁₁			!p ₁₁			
A_{12}					p ₁₂		!p ₁₂			
A_{13}						p ₁₃	!p ₁₃			
A_{21}							1			
A_{22}							1			
A_{23}										1
A ₃				$\frac{1}{(r_1/1)r_2}$!p2p12r1!r2	$ p_2p_{13} $ $ r_1(!r_2/1) $	$\begin{array}{c} !p_2!p_{11}(r_1/1)r_2v \\ !p_2!p_{12}r_1!r_2 \ v \\ !p_2!p_{13}!r_1(!r_2/1) \end{array}$	$p_2(r_1/1)r_2$	$p_2r_1!r_2$	$p_2!r_1$ (! r_2 /1)
A_{41}	·									1
A_{42}										1

Доопределяем МСА, сокращая число и сохраняя полноту логических условий.

	A ₁₁	A ₁₂	A_{13}	A ₂₁	A ₂₂	A_{23}	A_3	A_{41}	A ₄₂	A_{κ}
A_0	r_1r_2	$r_1!r_2$!r1							
A_{11}				p 11			!p ₁₁			
A_{12}					p ₁₂		!p ₁₂			
A_{13}						p 13	!p ₁₃			
A_{21}							1			
A_{22}							1			
A_{23}										1
A ₃				!p ₂ p ₁₁ r ₁ r ₂	!p2p12r1!r2	!p ₂ p ₁₃ !r ₁	$p_{2}!p_{11}r_{1}r_{2}v$ $p_{2}!p_{12}r_{1}!r_{2}v$ $p_{2}!p_{13}!r_{1}$	p ₂ r ₁ r ₂	$p_2r_1!r_2$	p ₂ !r ₁
A_{41}										1
A_{42}										1

5) Скобочная система формул перехода \mathbf{S}_2

$$A_0 \to r_1 r_2 A_{11} \ V \ r_1 ! r_2 A_{12} \ V \ ! r_1 A_{13} \to r_1 (r_2 A_{11} \ V \ ! r_2 A_{12}) \ V \ ! r_1 A_{13}$$

$$A_{11} \rightarrow p_{11}A_{21} \ V \ !p_{11}A_{3}$$

$$A_{12} \rightarrow p_{12}A_{22} \ V \ !p_{12}A_3$$

$$A_{13} \rightarrow p_{13}A_{23} \text{ V } !p_{13}A_{3}$$

$$A_{21} \rightarrow A_3$$

$$A_{22} \rightarrow A_3$$

$$A_{23} \rightarrow A_{\kappa}$$

 $\begin{array}{l} A_3 \to !p_2r_1r_2(p_{11}A_{21} \ V \ !p_{11}A_3) \ V \ !p_2r_1!r_2(p_{12}A_{22} \ V \ !p_{12}A_3) \ V \ !p_2!r_1(p_{13}A_{23} \ V \ !p_{13}A_3) \ V \\ p_2(r_1(r_2A_{41} \ V \ !r_2A_{42}) \ V \ !r_1A_\kappa) \to p_2(r_1(r_2A_{41} \ V \ !r_2A_{42}) \ V \ !r_1A_\kappa) \ V \ !p_2(r_1(r_2(p_{11}A_{21} \ V \ !p_{11}A_3) \ V \ !r_2(p_{12}A_{22} \ V \ !p_{12}A_3)) \ V \ !r_1(p_{13}A_{23} \ V \ !p_{13}A_3)) \\ A_{41} \to A_\kappa \\ A_{42} \to A_\kappa \end{array}$

Схемная система формул перехода S₃

$$\begin{array}{c} A_{0} \to r_{1} ^{\uparrow 1} r_{2} ^{\uparrow 2} A_{11} \ * \ \downarrow ^{2} A_{12} \ * \ \downarrow ^{1} A_{13} \\ A_{11} \to p_{11} ^{\uparrow 11} A_{21} \ * \ \downarrow ^{11} A_{3} \\ A_{12} \to p_{12} ^{\uparrow 12} A_{22} \ * \ \downarrow ^{12} A_{3} \\ A_{13} \to p_{13} ^{\uparrow 13} A_{23} \ * \ \downarrow ^{13} A_{3} \\ A_{21} \to A_{3} \\ A_{22} \to A_{3} \\ A_{23} \to A_{\kappa} \\ A_{3} \to p_{2} ^{\uparrow 3} r_{1} ^{\uparrow 4} r_{2} ^{\uparrow 5} A_{41} \ * \ \downarrow ^{5} A_{42} \ * \ \downarrow ^{4} A_{\kappa} \ * \ \downarrow ^{3} r_{1} ^{\uparrow 6} r_{2} ^{\uparrow 7} p_{11} ^{\uparrow 11} A_{21} \ * \ \downarrow ^{11} A_{3} \ * \ \downarrow ^{7} p_{12} ^{\uparrow 12} A_{22} \ * \\ \downarrow ^{12} A_{3} \ * \ \downarrow ^{6} p_{13} ^{\uparrow 13} A_{23} \ * \ \downarrow ^{13} A_{3} \\ A_{41} \to A_{\kappa} \\ A_{42} \to A_{\kappa} \end{array}$$

Преобразованная схемная система формул перехода S₃'

$$A_{0} \to r_{1}^{\uparrow 1} r_{2}^{\uparrow 2} A_{11} * \downarrow^{2} A_{12} * \downarrow^{1} A_{13}$$

$$A_{11} \to \downarrow^{8} p_{11}^{\uparrow 9} A_{21}$$

$$A_{12} \to \downarrow^{7} p_{12}^{\uparrow 9} A_{22}$$

$$A_{13} \to \downarrow^{6} p_{13}^{\uparrow 9} A_{23}$$

$$A_{21} \to \omega \uparrow^{9}$$

$$A_{22} \to \downarrow^{9} A_{3}$$

$$A_{23} \to \omega \uparrow^{10}$$

$$A_{3} \to p_{2}^{\uparrow 3} r_{1}^{\uparrow 10} r_{2}^{\uparrow 5} A_{41} * \downarrow^{5} A_{42} * \downarrow^{3} r_{1}^{\uparrow 6} r_{2}^{\uparrow 7} \omega \uparrow^{8}$$

$$A_{41} \to \omega \uparrow^{10}$$

$$A_{42} \to \downarrow^{10} A_{K}$$

6) Объединенная ЛСА

$$U_{06} = A_0 r_1 \uparrow^1 r_2 \uparrow^2 A_{11} \downarrow^8 p_{11} \uparrow^9 A_{21} \omega \uparrow^9 \downarrow^2 A_{12} \downarrow^7 p_{12} \uparrow^9 A_{22} \downarrow^9 A_3 p_2 \uparrow^3 r_1 \uparrow^{10} r_2 \uparrow^5 A_{41} \omega \uparrow^{10} \downarrow^1 A_{13} \downarrow^6 p_{13} \uparrow^9 A_{23} \omega \uparrow^{10} \downarrow^3 r_1 \uparrow^6 r_2 \uparrow^7 \omega \uparrow^8 \downarrow^5 A_{42} \downarrow^{10} A_{\kappa}$$

7) Проверка:

$$\begin{array}{ll} r_1 \!\!=\!\! 1, \, r_2 \!\!=\!\! 1 & U_1 = A_0 A_{11} \!\!\! \downarrow^3 \!\!\! p_{11} \!\!\! \uparrow^9 \!\!\! A_{21} \!\!\! \downarrow^9 \!\!\! A_3 p_2 \!\!\! \uparrow^3 \!\!\! A_{41} A_\kappa \\ r_1 \!\!\!=\!\! 1, \, r_2 \!\!\!=\!\! 0 & U_2 = A_0 A_{12} \!\!\! \downarrow^3 \!\!\! p_{12} \!\!\! \uparrow^9 \!\!\! A_{22} \!\!\! \downarrow^9 \!\!\! A_3 p_2 \!\!\! \uparrow^3 \!\!\! A_{42} A_\kappa \\ r_1 \!\!\!=\!\! 0, \, r_2 \!\!\!=\!\! 0 & U_3 = A_0 A_{13} \!\!\! \downarrow^3 \!\!\! p_{13} \!\!\! \uparrow^9 \!\!\! A_{23} \omega \!\!\! \uparrow^{10} \!\!\! \downarrow^9 \!\!\! A_3 p_2 \!\!\! \uparrow^3 \!\!\! \downarrow^{10} \!\!\! A_\kappa \end{array}$$

При подстановке соответствующих значений ${\bf r}$ все 3 алгоритма выполняются правильно, следовательно объединенная ЛСА составлена верно.

В объединенной ЛСА 21 элементарное выражение, а в необъединенной – 25. Минимизация эффективна.

Задача для подготовки.

Объединить 3 алгоритма:

 U_1 – вывести максимум массива из 10 элементов.

 U_2 – вывести номер первого элемента массива, большего 5.

 U_3 – упорядочить массив в порядке возрастания и вывести последний элемент.

Первый оператор A_0 — инициализация массива и переменных.

Последний оператор A_{κ} – вывод искомого значения на экран.