Protezione e Integrità dei Dati nel Cloud

Parte V

Indice

1 Encryption 2

Capitolo 1

Encryption

Il server potrebbe essere **honest-but-curious**, non dovrebbe avere accesso alle risorse; voglio garantire confidenzialità anche rispetto a lui.

Un modo per ottenerla è utilizzare l'*encyption*: si aggiunge un livello di protezione attorno ai dati sensibili che li rende non leggibili a chi non è autorizzato.

Di base voglio avere una criptazione dei dati; il problema è il **bilanciamento tra protezione e funzionalità**, ovvero sulle *query* che è possibile fare sui dati.

Approcci per accesso a diversi livelli di granularità

• Keyword-based searching: passo un token già criptato che viene usato per fare ricerca sui dati criptati (voglio trovare dove c'è una certa parola/espressione booleana)

• Crittografia omomorfica: crittografia che supporta le operazioni direttamente sul cifrato

• Encryption Schemas: ogni colonna può essere cifrata con un diverso schema crittografico (random, add homomorphic, deterministic, order preserving, ...)

• Onion Encryption: cifro i dati con diversi livelli a cipolla, ognuno dei quali supporta l'esecuzione di una specifica query SQL; l'idea è che scopro il dato solo quando mi serve

random encryption
homomorphic encryption
plaintext value

• Indicizzazione: associo degli indici ai metadati Nella seconda tabella:

Accounts

Account	Customer	Balance
Acc1	Alice	100
Acc2	Alice	200
Acc3	Bob	300
Acc4	Chris	200
Acc5	Donna	400
Acc6	Elvis	200

Accounts^k

Counter	Etuple	$ \mathbf{I}_A $	I_C	\mathbf{I}_{B}
1	x4Z3tfX2ShOSM	π	α	μ
2	mNHg1oC010p8w	σ	α	κ
3	WslaCvfyF1Dxw	ξ	β	η
4	JpO8eLTVgwV1E	ρ	γ	K
5	qctG6XnFNDTQc	ς	δ	θ
6	4QbqCeq3hxZHkIU	ι	ε	κ

nella seconda colonna c'è la tupla criptata; nelle ultime tre ci sono gli attributi; si possono avere diversi tipi di indicizzazione:

- **Direct** (1:1)

- + riesco a fare query precise
- soggetto ad attacchi di frequenza

Patients SSN Doctor Illness 123...89 Angel 234...91 Angel 345...12 Bell 456...23 Clark 567...34 Dan 232...11 Ellis

	Patients"				
Tid	Etuple	I_S	I_N	I_{I}	I_{D}
1	x4Z3tfX2ShOSM	π	K	Cζ	δ
2	mNHg1oC010p8w	σ	ω	Cζ	δ
3	WslaCvfyF1Dxw	ξ	λ	α	ν
4	JpO8eLTVgwV1E	ρ	υ	β	γ
5	qctG6XnFNDTQc	ı	μ	CC	σ
6	kotG8XnFNDTaW	χ	0	β	Ψ

- **Bucket** (n:1) → indicizzazione con collisione; ho diversi valori che sono **mappati allo stesso indice**
 - + non ho più attacchi di frequenze
 - + supporta query di uguaglianza (se un valore è uguale ad un altro)
 - i risultati avranno delle tuple spurie
 - è ancora possibile fare qualche leakage In questo caso sono comunque

Patients					
SSN	Name	Illness	Doctor		
12389	Alice	Asthma	Angel		
23491	Bob	Asthma	Angel		
34512	Carol	Asthma	Bell		
45623	David	Bronchitis	Clark		
56734	Eva	Gastritis	Dan		
23211	Eva	Stroke	Ellis		

	Patients*				
Tid	Etuple	I_{S}	I_N	$I_{\rm I}$	$ _{\mathbb{D}}$
1	x4Z3tfX2ShOSM	π	K	α	δ
2	mNHg1oC010p8w	$\overline{\omega}$	ω	α	δ
3	WslaCvfyF1Dxw	υS	λ	α	V
4	JpO8eLTVgwV1E	ρ	υ	β	γ
5	qctG6XnFNDTQc	l	μ	α	0
6	kotG8XnFNDTaW	χ	0	β	Ψ

esposto perché asma ha 3 occorrenze, dunque sarà per forza associata ad α

- **Flattened** $(1:n) \to$ ciascun indice deve avere lo stesso numero di occorrenze; significa che i valori che hanno più occorrenze sono associati ad indici diversi
 - + rimuovo la possibilità di fare attacchi di inferenze
 - sono esposto ad osservazioni dinamiche (magari certi dati sono sempre cercati assieme)

Patients					
SSN	Name	Illness	Doctor		
12389	Alice	Asthma	Angel		
23491	Bob	Asthma	Angel		
34512	Carol	Asthma	Bell		
45623	David	Bronchitis	Clark		
56734	Eva	Gastritis	Dan		
23211	Eva	Stroke	Ellis		

	Patients ^k				
Tid	Etuple	I_{S}	I_N	I_{I}	$I_{\mathbb{D}}$
1	x4Z3tfX2ShOSM	π	K	α	δ
2	mNHg1oC010p8w	$\overline{\omega}$	ω	α	δ
3	WslaCvfyF1Dxw	ξ	λ	α	V
4	JpO8eLTVgwV1E	ρ	υ	β	γ
5	qctG6XnFNDTQc	1	μ	α	σ
6	kotG8XnFNDTaW	χ	0	β	Ψ

- Partition-based:

- \circ si partiziona il dominio di un attributo
- \circ a ciascuna partizione si assegna un'etichetta
- \circ il valore in chiaro viene sostituito dall'etichetta

Supporta query dove le condizioni sono espressioni booleane del tipo:

- Attribute op Value
- Attribute op Attribute

$$\mathrm{dove}\ \mathtt{op} = \{=,<,>,\leq,\geq\}$$