APPENDIX

Optimal Control for Remote Patient Monitoring with Multidimensional Health Representations

APPENDIX I

A. Transition Probabilities and Dynamic Programming Equation

We first discuss the transition probabilities and the cost function for our model -

1. At critical health states $h \in \mathcal{H}_C$ —

No action is taken with the the service ceasing operation. A cost of C_c is incurred.

- **2. When** $h \notin \mathcal{H}_C$ and $1 \leq h^{(x)}, h^{(y)} \leq H 1$ —
- (a) Ordinary Monitoring (m=o), no Switching (a=o):

 Does not induce a monitoring change, Starting at state $(o, h^{(x)}, h^{(y)})$, the next state with their respective transition probabilities are:
 - i) $(o, \min\{h^{(x)} + 1, H\}, h^{(y)})$ w.p. $\lambda_{o,x}$
 - ii) $(o, h^{(x)}, \min\{h^{(y)} + 1, H\})$ w.p. $\lambda_{o,y}$
 - iii) $(o, h^{(x)} 1, h^{(y)})$ w.p. $\mu_{o, x} \mathbb{1}_{\{h^{(x)} \neq 0\}} + \mu_{o, y} \mathbb{1}_{\{h^{(y)} = 0\}}$
 - iv) $(o, h^{(x)}, h^{(y)} 1)$ w.p. $\mu_{o,y} \mathbb{1}_{\{h^{(y)} \neq 0\}} + \mu_{o,x} \mathbb{1}_{\{h^{(x)} = 0\}}$ and a cost C_o is incurred. The $\min\{h^{(x)} + 1, H\}$ above is used to account for the boundary case of $h^{(x)} = H$ since H is the highest health state. Similarly, the $\mathbb{1}_{\{h^{(x)} \neq 0\}}$ is used to account for the boundary case of $h^{(x)} = 0$ (see Figure 1).
- (b) Intensive Monitoring (m=i), no Switching (a=o): Does not induce a monitoring change. Starting at state $(o, h^{(x)}, h^{(y)})$, the next state with their respective transition probabilities are:
 - i) $(o, \min\{h^{(x)} + 1, H\}, h^{(y)})$ w.p. $\lambda_{i,x}$
 - ii) $(o, h^{(x)}, \min\{h^{(y)} + 1, H\})$ w.p. $\lambda_{i,y}$
 - iii) $(i,h^{(x)}-1,h^{(y)})$ w.p. $\mu_{i,x}\mathbbm{1}_{\{h^{(x)}\neq 0\}}+\mu_{i,y}\mathbbm{1}_{\{h^{(y)}=0\}}$
 - iv) $(i, h^{(x)}, h^{(y)} 1)$ w.p. $\mu_{i,y} \mathbb{1}_{\{h^{(y)} \neq 0\}} + \mu_{i,x} \mathbb{1}_{\{h^{(x)} = 0\}}$ and a cost C_i is incurred.
- (c) Intensive Monitoring (m=i), with switching (a=o): Induces a switch to ordinary monitoring. The next state, respective transition probabilities, and the cost incurred is same as part (a): ordinary monitoring (m=o) with no switching (a=o).
- (d) Ordinary Monitoring (m=o), with switching (a=i): Induces a switch to intensive monitoring. The next state, respective transition probabilities, and the cost incurred is same as part (b): intensive monitoring (m=i) with no switching (a=i).

Next, we give the dynamic programming equations satisfied by the optimal control $V^*(\cdot,\cdot)$.

1. At critical health states $h \in \mathcal{H}_C$ —

$$V^*(i, h) = V^*(o, h) = C_c.$$

2. When $h \notin \mathcal{H}_C$ and $1 \leq h^{(x)}, h^{(y)} \leq H - 1$ —

$$\begin{split} &V^*(i, \boldsymbol{h}) = V^*(o, \boldsymbol{h}) \\ &= \min \left\{ C_i + \gamma \bigg[\lambda_{i,x} V^* \left(i, \min\{h^{(x)} + 1, H\}, h^{(y)} \right) \right. \\ &+ \lambda_{i,y} V^* \left(i, h^{(x)}, \min\{h^{(y)} + 1, H\} \right) \\ &+ \left(\mu_{i,x} \mathbbm{1}_{\{h^{(x)} \neq 0\}} + \mu_{i,y} \mathbbm{1}_{\{h^{(y)} = 0\}} \right) V^* \left(i, h^{(x)} - 1, h^{(y)} \right) \\ &+ \left(\mu_{i,y} \mathbbm{1}_{\{h^{(y)} \neq 0\}} + \mu_{i,x} \mathbbm{1}_{\{h^{(x)} = 0\}} \right) V^* \left(i, h^{(x)}, h^{(y)} - 1 \right) \bigg], \\ &C_o + \gamma \bigg[\lambda_{o,x} V^* \left(o, \min\{h^{(x)} + 1, H\}, h^{(y)} \right) \\ &+ \lambda_{o,y} V^* \left(o, h^{(x)}, \min\{h^{(y)} + 1, H\} \right) \\ &+ \left(\mu_{o,x} \mathbbm{1}_{\{h^{(x)} \neq 0\}} + \mu_{o,y} \mathbbm{1}_{\{h^{(y)} = 0\}} \right) V^* \left(o, h^{(x)} - 1, h^{(y)} \right) \\ &+ \left(\mu_{o,y} \mathbbm{1}_{\{h^{(y)} \neq 0\}} + \mu_{o,x} \mathbbm{1}_{\{h^{(x)} = 0\}} \right) V^* \left(o, h^{(x)}, h^{(y)} - 1 \right) \bigg] \right\} \end{split}$$

B. Proof for Theorem 1

Proof. We work under the asymptotic condition of $H \uparrow \infty$ for this proof. Recall that the one-dimensional model considered in [8] considered health state h=0 as the critical set and defined the parameters γ, λ_o and λ_i . These are the discount factor, probability of health improving under ordinary monitoring, and health improving under intensive monitoring, respectively. Theorem 1 and 2 from [8] together show that the optimal control is always a threshold policy, i.e., there exists \bar{h} , such that $\pi^*(h)=i$ for $h\leq \bar{h}$ and $\pi^*(h)=o$ for $h>\bar{h}$. Note that the control where the optimal control at all states is ordinary monitoring is a special case of the threshold policy with $\bar{h}=0$.

Now in our two-dimensional model, consider the sets $A^{(k)} = \{ \boldsymbol{h} \mid h^{(x)} + h^{(y)} = k \}$. Then $\mathbb{P}(\boldsymbol{h}_{t+1} \in A^{(k+1)} \mid \boldsymbol{h}_t \in S^{(k)}, m_t = o) = \lambda_{o,x} + \lambda_{o,y}$. Similarly, $\mathbb{P}(\boldsymbol{h}_{t+1} \in A^{(k-1)} \mid \boldsymbol{h}_t \in S^{(k)}, m_t = o) = \mu_{o,x} + \mu_{o,y}$. Similar transitions are defined for intensive monitoring with analogous probabilities.

Now define $\lambda_i' = \lambda_{i,x} + \lambda_{i,y}$ and $\lambda_o' = \lambda_{o,x} + \lambda_{o,y}$. Suppose the set of health sets $A^{(c)} = \{ \boldsymbol{h} \mid h^{(x)} + h^{(y)} = c \}$ is defined as the health set h' = 0. Then sets of health states $A^{(k)}$ are

given by h'=k-c for $k\geq c$. Then our two-dimensional model can be represented using the one-dimensional model with parameters $\gamma,\lambda'_o,\lambda'_i$ and with health states given by h'. Then applying Theorems 1 and 2 from [8] gives us the result that the optimal control in the one-dimensional case can be represented using a threshold. Let that threshold in the one-dimensional case be \bar{h}' , then the optimal control in the two-dimensional case is $\pi_{t,f}$ where $f(h)=h^{(x)}+h^{(y)}-(\bar{h'}+c)$. This completes the proof for Theorem 1.

[8] S. Chandak, I. Thapa, N. Bambos, and D. Scheinker, "Tiered service architecture for remote patient monitoring," arXiv preprint arXiv:2406.18000, 2024