

VI. Országos Magyar Matematikaolimpia XXXIII. EMMV

országos szakasz, Nagybánya, 2024. február 26-29.

XI. osztály – I. forduló

1. feladat. Az $(a_n)_{n\in\mathbb{N}}$ sorozatot a következőképpen értelmezzük:

$$a_0 = a_1 = 1$$
 és $17^{a_{n+2}} = 15^{a_{n+1}} + 8^{a_n}, \forall n \in \mathbb{N}.$

- a) Igazold, hogy az $(a_n)_{n\in\mathbb{N}}$ sorozat konvergens!
- b) Számítsd ki az $(a_n)_{n\in\mathbb{N}}$ sorozat határértékét!
- **2. feladat.** Ha $A \in \mathcal{M}_2(\mathbb{R})$ igazold, hogy

$$\det (A^2 + A + I_2) = \left(\frac{1}{2} + \operatorname{tr} A\right)^2 + \left(\frac{1}{2} - \det A\right)^2 + \operatorname{tr} A \cdot \det A + \frac{1}{2},$$

ahol tr A az A mátrix főátlóján lévő elemeinek összege (az A mátrix nyoma).

- **3. feladat.** Az $(x_n)_{n\geq 1}$ sorozatot az $x_{n+1}=x_n^2-(2a-1)\cdot x_n+a^2$ rekurziós összefüggéssel értelmezzük, ahol $a\in\mathbb{R}, a>1$ és $x_1\in\mathbb{R}$.
- a) Ha $x_1 = a + 1$, igazold, hogy az

$$y_n = \left(\sum_{k=1}^n \frac{1}{x_k - a + 1}\right)^{x_{n+1} - a}, \quad \forall n \ge 1$$

általános tagú sorozat konvergens és számítsd ki a határértékét!

b) Ha $x_1 \in (a-1, a)$, igazold, hogy a

$$z_n = (x_n - a + 1)^n, \quad \forall n \ge 1$$

általános tagú sorozat konvergens és számítsd ki a határértékét!

- **4. feladat.** Tekintjük az $A, B \in \mathcal{M}_3(\mathbb{R})$ mátrixokat. Jelölje tr M az M mátrix főátlóján lévő elemek összegét (az M mátrix nyomát).
- a) Ha $B \neq O_3$, igazold, hogy az $f: \mathcal{M}_3(\mathbb{R}) \to \mathbb{R}$, $f(X) = \operatorname{tr}(B \cdot X)$ függvény szürjektív!
- b) Ha $\operatorname{tr}(A \cdot X) = 0$, minden $X \in \mathcal{M}_3(\mathbb{R})$ esetén, akkor mutasd ki, hogy $A = O_3!$