Step 系列: scRNA-seq 基本分析

2024-02-20

LiChuang Huang

@ 立效研究院

${\bf Contents}$

1	摘要				1
	1.1				1
	1.2	解决的	问题 (技	术性的)	1
2	适配	性			1
3	方法				1
1	分壯	(老婦科	事用/		1
4		(首次信字法法			1
	4.1	久衣が 4.1.1		· · · · · · · · · · · · · · · · · · ·	
		4.1.2		urat v5	2
		4.1.3		ırat-wrappers	2
		4.1.4		$\mathrm{mat} ext{-wrappers}$	2
		4.1.5		llChat	3
		4.1.6		SA	3
		4.1.7	- 1 1 1	·	
	4.2				3
	1.2	又水工	. r r · · ·		•
5	示例	分析			4
	5.1	数据准	备 (从 G	EO 的单细胞数据库开始分析)	4
		5.1.1	快速获取	文示例数据	4
		5.1.2	一些补充	它说明 (上述快速获取数据方式的实用价值)	4
	5.2	分析流	程		6
		5.2.1	单细胞数	收据的质控、聚类、Marker 鉴定、细胞注释等	6
			5.2.1.1	Job-seurat 从 Seurat 开始	6
			5.2.1.2	Step1 数据质控	6
			5.2.1.3	Step2 根据上一步 QC 作图过滤数据并标准化	7
			5.2.1.4	Step3 完成降围、聚类和 Marker 筛选	9
			5.2.1.5	Step4 使用 SingleR 注释细胞类	10
			5.2.1.6	Step5 计算各细胞类的 Marker 基因 (差异分析)	11
			5.2.1.7	Step6 使用 SCSA 注释细胞类	12
		5.2.2	拟时分机	斤	13
			5.2.2.1	As-job-monocle 对选定的细胞进行拟时分析	13
			5.2.2.2	Step1 构建拟时轨迹	15
			5.2.2.3	Step2 选择拟时起点	17
			5.2.2.4	Step3 拟时分析基础上的差异分析和基因表达模块	19
			5.2.2.5	(进阶) 根据拟时分析结果重新划分细胞群体	21
		5.2.3	细胞通讯	Fl	22
			5.2.3.1	As-job-cellchat 对选定的细胞进行细胞通讯分析	22
			5.2.3.2	Step1 构建通讯网络以及可视化	23

	5.2.3.3 Step2 进一步分析通路通讯、受体配体通讯和可视化	26
	5.2.3.4 (进阶) 获取特定细胞的通讯数据	27
5.3	完整示例代码	29
Refere	ence	30
List	of Figures	
1	Quality Control	7
2	Ranking of principle components	9
3	UMAP Clustering	10
4	SCSA Cell type annotation	13
5	Trajectories	16
6	Principal points	17
7	Deomo subset of cells visualization	18
8	SUB pseudotime	19
9	SUB gene module heatmap	20
10	Sub the regroup by hclust	21
11	The cell mapped from monocle	22
12	Overall communication count	24
13	Communication bubble	27
14	Ligand receptor of Macro communicate with Test 1	28
List	of Tables	
1	All Markers	11
2	SUB graph test results	20
3	Lp net	25
4	Pathway net	25
5	Macrophage data	27
6	Ligand recentor data of Macro communicate with Test 1	28

1 摘要

1.1 目的

一般化 scRNA-seq 的分析流程,从基本的数据处理,到细胞注释,再到拟时分析、通讯分析等。数据处理的中心在于 'Seurat',以它为衔接点,从各个分析工具中将数据转换来去,延续彼此的分析。

1.2 解决的问题 (技术性的)

不同的 R 包或其他工具之间的数据转换和衔接。

2 适配性

大多数涉及的程序都是 R; 但是, 其中的 SCSA 的程序接口可能得在 Linux 下才能成功运行。

3 方法

以下是我在这个工作流中涉及的方法和程序:

Mainly used method:

- R package CellChat used for cell communication analysis¹.
- GEO https://www.ncbi.nlm.nih.gov/geo/ used for expression dataset aquisition.
- R package Monocle3 used for cell pseudotime analysis^{2,3}.
- The R package Seurat used for scRNA-seq processing; SCSA (python) used for cell type annotation⁴⁻⁶.
- Other R packages (eg., dplyr and ggplot2) used for statistic analysis or data visualization.

4 安装(首次使用)

4.1 安装依赖

4.1.1 一些额外可能需要的系统依赖工具

如果你是 Ubuntu 发行版,据我的经验,安装 devtools, BiocManager 等工具之前,估计需要先安装以下:

```
## Libraries for installing 'usethis' and 'devtools'.

sudo apt install -y libssl-dev libcurl4-openssl-dev libblas-dev

sudo apt install -y liblapack-dev libgfortran-11-dev gfortran libharfbuzz-dev libfribidi-dev

## Libraries for installing 'BiocManager' and its some packages.

sudo apt install -y libnetcdf-dev libopenbabel-dev libeigen3-dev

## Libraries For installing other graphic packages.

sudo apt install -y libfontconfig1-dev librsvg2-dev libmagick++-dev
```

4.1.2 安装 Seurat v5

```
if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")
if (!requireNamespace("remotes", quietly = TRUE))
    install.packages("remotes")
install.packages(c("sva"))
BiocManager::install(c('SparseArray', 'fastDummies', 'RcppHNSW', 'RSpectra'))
remotes::install_github("satijalab/seurat", "seurat5")
```

4.1.3 安装 seurat-wrappers

```
R input
remotes::install_github('satijalab/seurat-wrappers')
```

4.1.4 安装 monocle3

4.1.5 安装 CellChat

```
R input

BiocManager::install(c('NMF', 'circlize', 'ComplexHeatmap', 'BiocNeighbors'))

remotes::install_github("sqjin/CellChat")
```

4.1.6 安装 SCSA

以下代码是在 bash 中运行的。确保你的 git 和 pip3 可用。

```
Bash input

git clone https://github.com/bioinfo-ibms-pumc/SCSA.git ~/SCSA
pip3 install numpy scipy openpyxl

# pandas 版本太高会报错
pip3 install pandas==1.5.3
```

4.1.7 其它程序

以下可能是其它需要安装的程序:

```
R input

install.packages("reticulate")

reticulate::install_miniconda()

reticulate::py_install(packages = 'umap-learn')
```

你可能还想要安装:

```
R input

BiocManager::install(c("SingleR"))

BiocManager::install(c("celldex"))
```

4.2 安装主体

```
Bash input
git clone https://github.com/shaman-yellow/utils.tool.git ~/utils.tool
```

utils.tool 是标准的 R 包结构形式,这意味着,即使你不用 git 获取它,单纯用:

• remotes::install_github("shaman-yellow/utils.tool")

也能成功获取并直接安装完成。但是,这包里面大多数的方法都没有导出 (export) 到用户层次 (这是因为,这个包的改动情形太多了,我一直在创建新的方法或者调整旧的方法), 你即使 library(utils.tool) 加载了它,也会出现使用不了许多方法的情况。万无一失的做法是:

```
R input

if (!requireNamespace("devtools", quietly = TRUE))
    install.packages("devtools")

# 前提当然是,你已经 git 获取了这个包了
    devtools::load_all("~/utils.tool")
```

5 示例分析

5.1 数据准备 (从 GEO 的单细胞数据库开始分析)

10X Genomics (其他格式也行,但我遇到过的几乎都是 10X 的,所以其他格式的没机会调试)的文件。 这里为了方便起见,我从 GEO 下载一批数据实时以代码示例。

5.1.1 快速获取示例数据

运行以下代码获取数据:

```
R input

geo <- job_geo("GSE171306")
geo <- step1(geo)
geo <- step2(geo)
untar("./GSE171306/GSE171306_RAW.tar", exdir = "./GSE171306")
prepare_10x("./GSE171306/", "ccRCC1", single = F)
# 创建 job_seurat 对象:
sr <- job_seurat("./GSE171306/GSM5222644_ccRCC1_barcodes")</pre>
```

5.1.2 一些补充说明 (上述快速获取数据方式的实用价值)

job_geo 是另外一个可以用于高效获取、整理 GEO 数据集的 step 系列工作流 (以后介绍) ,简而言之,它的作用在于帮我们极速整理好数据还有元数据 (整合大量数据集的时候很有用!)。例如,我们可以通过以下方式查看这批 GEO 数据的样品信息和数据前处理:

```
R input
geo$guess
```

1 GSM5222644 ccRCC1, Right clear cell renal cell carcinoma Homogenate Right clear cell renal cell car ## 2 GSM5222645 ccRCC2, Left clear cell renal cell carcinoma Homogenate Left clear cell renal cell car

```
geo$prods
##
       Preliminary sequencing results (bcl files) were converted
       to FASTQ files with Cell Ranger V3.1
##
##
##
       R1 end, at the beginning of 16bp is CellBarcode sequence,
##
       then 10bp is UMI sequence, R2 end, we can truncate 151bp to
       98bp
##
##
##
       The CellRanger (10X Genomics) secondary analysis pipeline
##
       was used to generate a digital gene expression matrix
##
##
       Normalization and additional analysis by Seurat R package
##
##
       Genome_build: GRCh38 for human data
##
       Supplementary_files_format_and_content: CellRanger output
##
##
       files (the barcode, gene, expression matrix file of each
##
       sample)
```

确认解压得到了些什么文件:

```
R input
list.files("./GSE171306/")
```

```
## [1] "GSE171306_RAW.tar" "GSM5222644_ccRCC1_barcodes" "GSM5222645_ccRCC2_barcodes" "GSM5222645_ccRCC2_barcodes" "GSM5222645_ccRCC2_features.tsv.gz"
```

GEO 中的单细胞数据 (Supplementary file) 的存储形式不统一 (很随意), ——整理起来用于输入很繁琐。 prepare_10x 是我写的一个将同一样本的三个文件 (barcodes.tsv, matrix.mtx, features.tsv) 存放于一个目录中的高效办法。

```
# 如果有三个文件:
prepare_10x("./GSE171306/", "ccRCC1", single = F)
# 如果只有一个 Matrix 文件:
prepare_10x("./GSE171306/", "ccRCC1", single = T)
```

5.2 分析流程

- 5.2.1 单细胞数据的质控、聚类、Marker 鉴定、细胞注释等
- 5.2.1.1 Job-seurat 从 Seurat 开始

在 5.1.1 中, 已经运行过:

```
R input

sr <- job_seurat("./GSE171306/GSM5222644_ccRCC1_barcodes")
```

如你不想用 Step 系列的风格来分析, 更想用 Seurat 的原生代码, 那么你可以:

```
R input

seurat <- object(sr)

# 这样, `seurat` 就是你需要的数据对象。

# 你可以参考: <https://satijalab.org/seurat/articles/pbmc3k_tutorial.html>

# 不借助 Step 的默认设定,而开展自主分析。
```

5.2.1.2 Step1 数据质控

只需要运行:

```
R input

# 这一步不需要输入参数
sr <- step1(sr)
```

R input

获取运行的结果 sr@plots\$step1\$p.qc

Figure 1: Quality Control

Fig. 1, 你可能会觉得 x 轴坐标太长了,如果在此前 (创建对象的时候) 输入类似:

• job_seurat("./GSE171306/", project = "Demo data") 就可以避免。

5.2.1.3 Step2 根据上一步 QC 作图过滤数据并标准化

这里的参数相当重要。

```
R input
sr <- step2(sr, 0, 7500, 35)
```

可以确认默认的参数:

```
R input
not(sr)
step2
```

job_seurat:

x, min.features, max.features, max.percent.mt = 5, nfeatures = 2000, use = "nFeature_RNA"

-- Methods parameters ------

输入的三个参数对应以下:

- min.features
- max.features
- max.percent.mt

官网对 percent.mt 做了一些解释:

- The number of unique genes detected in each cell.
 - Low-quality cells or empty droplets will often have very few genes
 - Cell doublets or multiplets may exhibit an aberrantly high gene count
- Similarly, the total number of molecules detected within a cell (correlates strongly with unique genes)
 - The percentage of reads that map to the mitochondrial genome
 - Low-quality / dying cells often exhibit extensive mitochondrial contamination
- We calculate mitochondrial QC metrics with the PercentageFeatureSet() function, which calculates the percentage of counts originating from a set of features
 - We use the set of all genes starting with MT- as a set of mitochondrial genes

总而言之,这一步需要根据 Fig. 1 中的小提琴图选择合适的参数。

最后,这一步可以得到4个Figure:

```
R input
sr@plots$step2$p.pca_pcComponents
sr@plots$step2$p.pca_1v2
sr@plots$step2$p.pca_heatmap
sr@plots$step2$p.pca_rank
```

这里不展开。其中,下一步的主要依据的是 sr@plots\$step2\$p.pca_rank, 即 Fig. 2

Figure 2: Ranking of principle components

5.2.1.4 Step3 完成降围、聚类和 Marker 筛选

```
R input

sr <- step3(sr, 1:15, 1.2)
```

可以确认默认的参数:

R input
step3

job_seurat:

x, dims, resolution, force = F

##

参数 dim 需要根据 Fig. ?? 判定。resolution 需要根据细胞数判定。这两个参数会传递到:

 $\bullet \quad {\bf Seurat::Find Neighbors}$

-- Methods parameters ----

 $\bullet \quad Seurat:: Find Clusters \\$

官方有一段解释:

The FindClusters() function implements this procedure, and contains a resolution parameter that sets the 'granularity' of the downstream clustering, with increased values leading to a greater number of clusters. We find that setting this parameter between 0.4-1.2 typically returns good results for single-cell datasets of around 3K cells. Optimal resolution often increases for larger datasets.

运行后将可以得到:

Figure 3: UMAP Clustering

5.2.1.5 Step4 使用 SingleR 注释细胞类

(我现在都不用 SingleR 注释了,因为我发现它时常把其他组织的细胞注释到目标组织上,比如,注释肾组织注释得到肝脏细胞; 默认使用的参考数据是: celldex::HumanPrimaryCellAtlasData, 同样的,可以输入step4 查看默认参数。)

如果要运行这一步(挺耗时的,并需要确保你安装了SingleR和celldex,详情见4.1.7):

```
R input

sr <- step4(sr, "SingleR")
```

跳过这一步:

```
R input

sr <- step4(sr, "")
```

如果你运行了这一步, 你可以得到 (我没有运行, 所以不展示了):

```
R input

sr@plots$step4$p.score_SingleR

sr@plots$step4$p.map_SingleR

sr@tables$step4$anno_SingleR
```

5.2.1.6 Step5 计算各细胞类的 Marker 基因 (差异分析)

唯一需要输入的参数是线程数 (不知道是否是 Seurat 程序有问题,我好像基本都是单线程的,即使设置了这个参数):

```
R input

## 设置成 NULL, 单线程

sr <- step5(sr, 5)
```

这样, 你就能得到:

```
R input

sr@tables$step5$all_markers
sr@tables$step5$all_markers_no_filter
```

Table 1: All Markers

rownames	p_val	avg_lo	pct.1	pct.2	p_val_adj	cluster	gene
GZMK	0	4.2402	0.982	0.112	0	0	GZMK
CD27	0	3.2768	0.747	0.094	0	0	CD27
CD8B	0	3.1693	0.747	0.099	0	0	CD8B
DUSP4	0	3.0453	0.774	0.144	0	0	DUSP4
CD8A	0	2.7603	0.816	0.158	0	0	CD8A
GZMA	1.1171	2.2365	0.989	0.344	2.1412	0	GZMA
CCL5	6.7488	2.2809	0.996	0.393	1.2935	0	CCL5
CD3D	1.8166	1.9909	0.96	0.3	3.4820	0	CD3D
TRAC	4.5242	2.0246	0.918	0.258	8.6716	0	TRAC

rownames	p_val	avg_lo	pct.1	pct.2	p_val_adj	cluster	gene
APOBEC3G	7.8727	2.3392	0.904	0.345	1.5089	0	APOBEC3G
TRBC2	1.3387	2.1611	0.886	0.305	2.5659	0	TRBC2
ITM2A	6.6648	2.3921	0.844	0.307	1.2774	0	ITM2A
RPL28	4.5358	1.0709	1	1	8.6938	0	RPL28
CST7	9.2732	1.6915	0.965	0.343	1.7773	0	CST7
CD3E	3.8141	1.8107	0.914	0.294	7.3104	0	CD3E
			•••				

5.2.1.7 Step6 使用 SCSA 注释细胞类

SCSA 是 Python 编写的命令行工具。step6 已经调用以及数据的转换集成了,只需要运行如下,就能简便地得到结果:

```
R input

# 这个样本的组织来源是 Kidney

sr <- step6(sr, "Kidney")
```

注: 如果你的 SCSA 存放在其它位置,那么你可能需要额外输入 cmd 和 db 参数,例如:

```
# 以下只是示例,不需要运行

sr <- step6(sr, "Kidney", cmd = "python3 /<your_path>/SCSA/SCSA.py", db = "/<your_path>/SCSA/whole_v
```

现在你可以获取经 SCSA 注释过的 UMAP 图了。

```
R input sr@plots$step6$p.map_scsa
```


Figure 4: SCSA Cell type annotation

你还可以查看 SCSA 的注释表格。

```
R input
sr@tables$step6$scsa_res
```

这里,你也可以选择使用 vis ,根据其它注释来绘制 UMAP 图。

```
R input

# 绘制 SCSA 注释结果,同 `sr@plots$step6$p.map_scsa` 的图

vis(sr, "scsa_cell")

# 同 `sr@plots$step3$p.umap`

vis(sr, "seurat_clusters")
```

5.2.2 拟时分析

5.2.2.1 As-job-monocle 对选定的细胞进行拟时分析

将 seurat 对象转化为 monocle (version 3) 对象,并继承聚类的结果 (而不是重新开始分析,毕竟 monocle 有自己的分析体系) 。

这里提供了两种选择(第二种是第一种的封装,形式更固定,但也更简洁,所以更推荐)

```
# getsub 会将参数传递到: SeuratObject:::subset.Seurat
# 这里匹配了两类细胞: B 细胞和近端小管细胞
sr.sub <- getsub(sr, cells = grep("B cell|Proximal", sr@object@meta.data[[ "scsa_cell" ]]))
# 将 step 设置成 2, 这样就能重新进行 step3 计算了
sr.sub@step <- 2L
# 重新进行 step3 是因为,我们选择了一个小类的细胞群体,为了拟时分析能够
# 更加细致的划分这个群体的
sr_sub <- step3(x, dims = 1:15, resolution = 1.2)
# 转化到 monocle 时,以重新聚类
mn_sub <- asjob_monocle(sr_sub, "seurat_clusters")
# `asjob_monocle` 不像表面看起来那么简单,我参考了:
# <http://htmlpreview.github.io/?https://github.com/satijalab/seurat-wrappers/blob/master/docs/monoc
# <https://github.com/cole-trapnell-lab/monocle3/issues/438>
# 中的介绍和一些后续分析的 Bug 的解决办法。
# 你可以通过输入 `selectMethod("asjob_monocle", "job_seurat")` 查看细节
```

选择想要研究的细胞群,重新聚类成更小的群体 (可能是亚型,或者细胞不同阶段),然后传递到 Monocle 中拟时分析,这是一种实用且能泛用的策略,因此我将它封装成了更加简洁的形式,以便随时调用:

```
R input

# 这和上面的代码块的效果是一样的
mn_sub <- do_monocle(sr, "B cell|Proximal")
```

你可以直接输入 do_monocle 来查看它的默认参数。

-- Methods parameters ----

如果你对'面向对象编程'和'参数化多态'不熟悉,你可能会感到惊讶,因为它列出了两个参数列表。这是因为 Step 系列大部分用的都是方法 (Method) ,面向对象设计的。这里,第一个参数列表是我们实际使用的;而第二个,只有当我们输入的参数 ref (也就是第二个参数) 是 job_kat 对象时,它才会被触发,并且

在随后会调用一个截然不同的函数来后续处理。如果你感兴趣,可以:

```
# 这会展示我们这里实际调用的函数
selectMethod("do_monocle", c("job_seurat", "character"))
# 这会调用截然不同不同的函数
selectMethod("do_monocle", c("job_seurat", "job_kat"))
```

job_kat 是 copyKAT R 包的 step 封装,是用来专门鉴定癌细胞的。上面第二种设计是,对鉴定完毕的癌细胞进行拟时分析,也相当实用。我们之后介绍。

言归正状, mn_sub 是我们取得的 monocle 对象的 Step 形式的封装。如果你对 monocle 的代码体系更加熟悉, 那么你可以直接提取 mn_sub 中存储的 monocle 对象:

```
R input
object(mn_sub)
```

5.2.2.2 Step1 构建拟时轨迹

```
R input
mn_sub <- step1(mn_sub)
```

现在, 你可以得到:

```
R input

mn_sub@plots\step1\p.traj\seurat_clusters

mn_sub@plots\step1\p.prin
```


Figure 5: Trajectories

Figure 6: Principal points

Fig. 6 更有实用价值,因为它可以帮助我们选择拟时起点。

5.2.2.3 Step2 选择拟时起点

在 Fig. 6 的帮助下, 我们为每一个聚类团选择一个起点。为了便于演示, 这里的起点是随意选择的:

```
R input

mn_sub <- step2(mn_sub, c("Y_12", "Y_50", "Y_72", "Y_36", "Y_78"))
```

实际分析中,可以根据细胞种类来选择起点,例如,在癌细胞数据集的分析中,选择非癌细胞作为拟时起点。在 Fig. 6 中没有显示细胞类型,这里,我们可以借助转化成 monocle 之前的 seurat 对象的 job 来检视:

```
# 如果你是用 `do_monocle` 转化的,那么就能这样提取到它:
mn_sub$sr_sub
# 上述写法等同于: `mn_sub@params$sr_sub`
# 可以用 `vis` 来可视化它
p.sr_sub <- vis(mn_sub$sr_sub, "scsa_cell")
p.sr_sub
```


Figure 7: Deomo subset of cells visualization

在更复杂的分析中,或许得借助更多的因素来判定拟时起点。例如样本的来源,细胞位置 (空间转录组),或者 Marker 表达量的高低。这里不再赘述。

言归正状,运行完 step2 后,将得到:

R input
mn_sub@plots\$step2\$p.pseu

Figure 8: SUB pseudotime

5.2.2.4 Step3 拟时分析基础上的差异分析和基因表达模块

```
R input
mn_sub <- step3(mn_sub)
```

这会得到:

```
mn_sub@plots$step3$gene_module_heatdata$graph_test.sig
mn_sub@tables$step3$graph_test
mn_sub@tables$step3$gene_module$graph_test.sig
```


Figure 9: SUB gene module heatmap

Table 2: SUB graph test results

rownames	status	p_value	$morans_tes$	$morans_I$	q _value
AL627309.1	ОК	0.71713641	-0.5743556	-0.0028796	0.74052249
AL627309.3	OK	0.56865824	-0.1729591	-0.0007942	0.64807206
AL669831.2	OK	0.56600105	-0.1662021	-0.0009540	0.64710506
AL669831.5	OK	0.00012749	3.65720355	0.01709405	0.00022429
FAM87B	OK	0.66025318	-0.4131542	-0.0021470	0.69573809
LINC00115	OK	0.84067430	-0.9972330	-0.0050549	0.84805084
FAM41C	OK	0.26836391	0.61776869	0.00261844	0.34797022
AL645608.1	OK	0.55654189	-0.1422073	-0.0008524	0.64609095
SAMD11	OK	2.26008037	4.58590871	0.02126656	4.33505225

rownames	status	p_value	morans_tes	morans_I	q_value
NOC2L	ОК	0.01774149	2.10280310	0.00974723	0.02671787
KLHL17	OK	0.02881144	1.89855590	0.00866824	0.04248129
PLEKHN1	OK	0.00017895	3.56931611	0.01662486	0.00031221
PERM1	OK	0.00020134	3.53831261	0.01622553	0.00035024
AL645608.8	OK	0	42.5620756	0.20314781	0
HES4	OK	0	114.647755	0.54828135	0

5.2.2.5 (进阶) 根据拟时分析结果重新划分细胞群体

方法 asjob_seurat 较为复杂,这里试着解释:

- 首先, 它无疑会将数据对象 job_monocle 转换回 job_seurat。
- 在转换过程中, 会根据拟时分析结果以及你的参数, 重新划归细胞聚类。
- 重新聚类主要取决于 mn@plots\$step3\$gene_module_heatdata\$graph_test.sig (即, Fig. 9) 热图上方聚类树。

例如,下述代码,我根据 Fig. 9,将细胞重分为 4 个聚类:

```
R input
sr_sub_regroup <- asjob_seurat(mn_sub, 4, rename = "Test")
p.sr_sub_regroup <- vis(sr_sub_regroup, "regroup.hclust")</pre>
```


Figure 10: Sub the regroup by hclust

这种分析方式在肿瘤细胞或其它细胞的亚型分析上有一定参考价值,且可以泛用。

更进一步的是,我们可以将重新聚类完的 sr_sub_regroup 映射回到最初的 job_seurat 对象中,也就是 sr 对象:

```
# 这行代码会将 `sr` 对象中的 'scsa_cell` 注释,根据 `sr_sub_regroup`
# 中的 'regroup.hclust' 注释重新改写,然后命名为 'cell_mapped'
# 你也能通过额外加入参数 `name = 'cell_mapped'`,如此,改成其它名称。
sr <- map(sr, sr_sub_regroup, "scsa_cell", "regroup.hclust")
```

可以确认我们得到了什么:

```
R input

# 其实, `vis` 方法可以通过加入参数 `palette` 自定义颜色。

# 它将参数传递到 `Seurat::DimPlot` 中。
p.sr_mapped <- vis(sr, "cell_mapped")
p.sr_mapped
```


Figure 11: The cell mapped from monocle

5.2.3 细胞通讯

5.2.3.1 As-job-cellchat 对选定的细胞进行细胞通讯分析

为了展示整个分析的延续性,我们继续从 sr (job_seurat 对象) 往下分析,也就是 Fig. 11 所示的细胞的来源数据。注意,细胞通讯也是相对耗时的,太多的细胞数会非常占用内存。这里,我们取一部分的子集来演示(实际分析,我们也可以取子集,因为我们其实可能并不需要对所有的细胞都通讯分析):

```
R input

sr_cc_sub <- getsub(sr,
    cells = grep("Macro|Test", sr@object@meta.data[[ "cell_mapped" ]])
)</pre>
```

现在,我们可以把它转化为 job_cellchat 对象了。

```
R input

cc <- asjob_cellchat(sr_cc_sub, "cell_mapped")
```

同样的, 你也可以通过提取 cc@object 或者 object(cc) 以 CellChat 原来的代码开始分析。

5.2.3.2 Step1 构建通讯网络以及可视化

```
R input

# 这可能需要运行较长时间

cc <- step1(cc)
```

请注意,细胞通讯计算需要选定合适的参考数据集,我这里的方法设计默认是人类的,所以不需要指定任何参数。如果你是小鼠的数据集(CellChat 好像只支持人类和小鼠的),那么需要再输入 db 和 ppi 参数。例如:

```
R input

# 以下示例不需要运行

cc <- step1(cc, db = CellChat::CellChatDB.mouse, ppi = CellChat::PPI.mouse)
```

另外需要注意的是,CellChat 的 UMAP 聚类是以 Python 的包实现的。CellChat 内部调用 Python 包的形式并不太高明,可能会和你的设定发生冲突。因为我出现过这样的情况,所以我默认指定的是 python = "/usr/bin/python3"。你可以指定成你的 Python 所在路径,或者设置成 NULL。一旦指定,以下会被执行:

- base::Sys.setenv(RETICULATE_PYTHON = python)
- reticulate::py_config()

请确保你安装了 reticulate (见 4.1.7)。

运行完成后, 你将可以得到 (Figure):

```
# 这是 CellChat 所用参考数据集的展示
cc@plots$step1$p.showdb
# 通讯的 'Count' 统计
cc@plots$step1$p.aggre_count
# 通讯的 'Weight' 统计
cc@plots$step1$p.aggre_weight
cc@plots$step1$p.commSep
```

这里只展示了'Count'统计

Figure 12: Overall communication count

其实,比起 Fig. 12 ,下一步的热图更适合展示整体通讯,因为包含更多的信息。

你还能得到 Tables:

R input

以下两个表格其实是通讯分析的主要内容

cc@tables\$step1\$lp_net

cc@tables\$step1\$pathway_net

Table 3: Lp net

source	target	ligand	receptor	prob	pval	intera7	intera8	pathwa	annota
Macrop	Macrop	TGFB1	$TGFbR1_R2$	0.0048	0	TGFB1	TGFB1	TGFb	Secret
Test_1	Macrop	TGFB1	$TGFbR1_R2$	0.0048	0	TGFB1	TGFB1	TGFb	Secret
Test_2	Macrop	TGFB1	${\tt TGFbR1_R2}$	0.0061	0	TGFB1	TGFB1	TGFb	Secret
Test_4	Macrop	TGFB1	${\tt TGFbR1_R2}$	0.0012	0	TGFB1	TGFB1	TGFb	Secret
Macrop	Test_2	TGFB1	${\tt TGFbR1_R2}$	0.0048	0	TGFB1	TGFB1	TGFb	Secret
Test_1	Test_2	TGFB1	${\tt TGFbR1_R2}$	0.0048	0	TGFB1	TGFB1	TGFb	Secret
Test_2	Test_2	TGFB1	${\tt TGFbR1_R2}$	0.0061	0	TGFB1	TGFB1	TGFb	Secret
Test_4	Test_2	TGFB1	${\tt TGFbR1_R2}$	0.0012	0	TGFB1	TGFB1	TGFb	Secret
Test_3	Macrop	GDF15	TGFBR2	0.0053	0	GDF15	GDF15	GDF	Secret
Test_3	Test_2	GDF15	TGFBR2	0.0053	0	GDF15	GDF15	GDF	Secret
Test_3	Test_4	GDF15	TGFBR2	0.0053	0	GDF15	GDF15	GDF	Secret
Test_3	Test_3	TGFA	EGFR	0.0040	0	$TGFA_EGFR$	TGFA	EGF	Secret
Test_1	Test_3	AREG	EGFR	0.0063	0	$AREG_EGFR$	AREG	EGF	Secret
Test_2	Test_3	AREG	EGFR	0.0040	0	$AREG_EGFR$	AREG	EGF	Secret
Macrop	${\rm Test}_3$	HBEGF	EGFR	0.0159	0	HBEGF	HBEGF	EGF	Secret

Table 4: Pathway net

source	target	pathway_name	prob	pval
Macrophage	Macrophage	ANNEXIN	0.0142752959860733	0
Macrophage	Macrophage	CADM	0.00134474271905693	0
Macrophage	Macrophage	CCL	0.197165266984973	0
Macrophage	Macrophage	CD45	0.0511750497900894	0
Macrophage	Macrophage	CD99	0.00134474271905693	0
Macrophage	Macrophage	COMPLEMENT	0.179867247416985	0
Macrophage	Macrophage	CXCL	0.0315784487714539	0
Macrophage	Macrophage	GALECTIN	0.0510613013929917	0
Macrophage	Macrophage	GAS	0.0371625768894343	0
Macrophage	Macrophage	ICAM	0.133417588216607	0
Macrophage	Macrophage	ITGB2	0.115608598396661	0

source	target	pathway_name	prob	pval
Macrophage	Macrophage	MHC-I	0.00134474271905693	0
Macrophage	Macrophage	MHC-II	1.12708370370619	0
Macrophage	Macrophage	PECAM1	0.0119738702725686	0
Macrophage	Macrophage	SEMA4	0.00734078826527416	0

5.2.3.3 Step2 进一步分析通路通讯、受体配体通讯和可视化

默认的,如果你不指定 pathway 参数,step2 会绘制所有的 pathway 通讯如果通路很多,会比较耗时且占用内存 (全部存储在 cc 中) 更建议根据 cc@tables\$step1\$lp_net 或 cc@tables\$step1\$pathway_net 筛选后再运行这里数据集不算大,直接运行以示例:

```
R input

cc <- step2(cc)

# 你可以通过输入 'object(cc)@netP$pathways' 中的一个或多个 'pathway' 来运行

# 例如:

# cc <- step2(cc, head(object(cc)@netP$pathways, 6))
```

cc@plots\$step2\$cell_comm_heatmap 是一个 'list' 存储了大量其它的 figure, 以下示例提取 'ALL'

```
R input

cc@plots$step2$cell_comm_heatmap$ALL

cc@plots$step2$lr_comm_bubble
```


Figure 13: Communication bubble

cc@plots\$step2 中还有更多的 figure, 不一一展示了。

5.2.3.4 (进阶) 获取特定细胞的通讯数据

这里提供了一个快速获取数据的途径:通过正则匹配,在 cc@tables\$step1\$pathway_net 或者 cc@tables\$step1\$lp_net 中获取特定细胞的数据。

```
R input

cc_macro <- select_pathway(cc, "Macro")

# 或者

# cc_macro <- select_pathway(cc, "Macrophage", get = "lps")
```

Table 5: Macrophage data

source	target	pathway_name	prob	pval
Macrophage	Macrophage	ANNEXIN	0.0142752959860733	0
Macrophage	Macrophage	CADM	0.00134474271905693	0
Macrophage	Macrophage	CCL	0.197165266984973	0
Macrophage	Macrophage	CD45	0.0511750497900894	0

source	target	pathway_name	prob	pval
Macrophage	Macrophage	CD99	0.00134474271905693	0
Macrophage	Macrophage	COMPLEMENT	0.179867247416985	0
Macrophage	Macrophage	CXCL	0.0315784487714539	0
Macrophage	Macrophage	GALECTIN	0.0510613013929917	0
Macrophage	Macrophage	GAS	0.0371625768894343	0
Macrophage	Macrophage	ICAM	0.133417588216607	0
Macrophage	Macrophage	ITGB2	0.115608598396661	0
Macrophage	Macrophage	MHC-I	0.00134474271905693	0
Macrophage	Macrophage	MHC-II	1.12708370370619	0
Macrophage	Macrophage	PECAM1	0.0119738702725686	0
Macrophage	Macrophage	SEMA4	0.00734078826527416	0

还有一种更便捷的方式,用以获取两种细胞之间的通讯数据 (lps, 受体、配体通讯),并予以可视化:

Figure 14: Ligand receptor of Macro communicate with Test 1

Table 6: Ligand receptor data of Macro communicate with Test 1

source	target	ligand	receptor	prob	pval	intera7	intera8	pathwa	annota
Test_1	Macrop	TGFB1	TGFbR1_R2	0.0048	0	TGFB1	TGFB1	TGFb	Secret
$Test_1$	Macrop	CCL5	CCR1	0.0678	0	CCL5_CCR1	CCL5	CCL	Secret
Macrop	Test_1	CXCL12	CXCR4	0.0771	0	CXCL12	CXCL12	CXCL	Secret
Macrop	Test_1	CXCL16	CXCR6	0.0082	0	CXCL16	CXCL16	CXCL	Secret
$Test_1$	Macrop	IL16	CD4	0.0082	0	$IL16_CD4$	IL16	IL16	Secret
Macrop	Test_1	TNF	TNFRSF1B	0.0121	0	TNF_TN	TNF	TNF	Secret
Test_1	Macrop	ANXA1	FPR1	0.0305	0	ANXA1	ANXA1	ANNEXIN	Secret

source	target	ligand	receptor	prob	pval	intera7	intera8	pathwa	annota
Macrop	Test_1	LGALS9	PTPRC	0.0449	0	LGALS9	LGALS9	GALECTIN	Secret
Macrop	Test_1	LGALS9	CD44	0.0297	0	LGALS9	LGALS9	GALECTIN	Secret
Macrop	Test_1	ALCAM	CD6	0.0006	0	$ALCAM_CD6$	ALCAM	ALCAM	Cell-C
Test_1	Macrop	PTPRC	MRC1	0.0923	0	PTPRC	PTPRC	CD45	Cell-C
Test_1	Macrop	CD6	ALCAM	0.0006	0	$CD6_ALCAM$	CD6	CD6	Cell-C
Test_1	Macrop	CD99	PILRA	0.0108	0	CD99_P	CD99	CD99	Cell-C
Macrop	Test_1	ICAM1	ITGAL	0.0435	0	ICAM1	ICAM1	ICAM	Cell-C
Macrop	Test_1	ICAM1	ITGAL	0.0175	0	ICAM1	ICAM1	ICAM	Cell-C
		•••		•••					•••

5.3 完整示例代码

以下代码块不包括上述说明内容中的'进阶'以及分支、还有提取和展示数据部分代码:

```
# 获取数据
geo <- job_geo("GSE171306")</pre>
geo <- step1(geo)
geo <- step2(geo)
untar("./GSE171306/GSE171306_RAW.tar", exdir = "./GSE171306")
prepare_10x("./GSE171306/", "ccRCC1", single = F)
sr <- job_seurat("./GSE171306/GSM5222644_ccRCC1_barcodes")</pre>
sr <- step1(sr)</pre>
sr \leftarrow step2(sr, 0, 7500, 35)
sr <- step3(sr, 1:15, 1.2)</pre>
sr <- step4(sr, "")</pre>
sr \leftarrow step5(sr, 5)
sr <- step6(sr, "Kidney")</pre>
mn_sub <- do_monocle(sr, "B cell|Proximal")</pre>
mn_sub <- step1(mn_sub)</pre>
mn_sub <- step2(mn_sub, c("Y_12", "Y_50", "Y_72", "Y_36", "Y_78"))</pre>
mn_sub <- step3(mn_sub)</pre>
sr_cc_sub <- getsub(sr,</pre>
  cells = grep("Macro|Test", sr@object@meta.data[[ "cell_mapped" ]])
cc <- asjob_cellchat(sr_cc_sub, "cell_mapped")</pre>
cc <- step1(cc)
cc <- step2(cc)
```

Reference

- 1. Jin, S. et al. Inference and analysis of cell-cell communication using cellchat. Nature Communications 12, (2021).
- 2. Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nature Methods 14, (2017).
- 3. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nature Biotechnology 32, (2014).
- 4. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, (2021).
- 5. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, (2019).

6. Cao, Y., Wang, X. & Peng, G. SCSA: A cell type annotation tool for single-cell rna-seq data. Frontiers in genetics 11, (2020).