

Honeypot Deployment & Analysis with T-Pot

This capstone explores honeypot deployment using T-Pot for cybersecurity threat detection.

M by Mauricio Spadoni

What Is a Honeypot?

Definition

Decoy system designed to attract and analyze attacker behavior.

Purpose

Detect, delay, and study cyber attacks deeply.

Types

- Low-interaction (e.g., Cowrie)
- High-interaction

Introduction to T-Pot

All-in-One Platform

From Deutsche Telekom, integrates multiple honeypots and analytics.

Core Components

Combines sensors with ELK stack: Elastic, Logstash, Kibana.

Use Case

Detect threats and analyze malicious traffic patterns.

Architecture of T-Pot

Container-Based

Utilizes Docker to isolate honeypot components efficiently.

Key Components

- Cowrie
- Dionaea
- Spiderfoot
- Attack Map

Network Ports

- 22 (SSH)
- 23 (Telnet)
- 80/443 (HTTP/S traps)

Deployment Process

Wolotte seas

Setup Server

Deployed Debian server on DigitalOcean cloud platform.

Install T-Pot

Installed with Hive for enhanced alert and case management.

Migrate Components

Upgraded from Cowrie-only to full T-Pot multi-honeypot setup.

Troubleshoot

Resolved Docker and network configuration challenges.

Cloud Setup

Debian server on DigitalOcean

Requirements

- Debian 11, 4+ cores, 16
 GB RAM, 256 GB SSD
- Internet and root access

Tools

Docker, Hive for case management

Challenges

Networking and Docker troubleshooting

```
C:\Users\Mauricio>ssh-keygen
Generating public/private ed25519 key pair.
Enter file in which to save the key (C:\Users\Mauricio/.ssh/id_ed25519):
Created directory 'C:\\Users\\Mauricio/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Passphrases do not match. Try again.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in C:\Users\Mauricio/.ssh/id_ed25519
Your public key has been saved in C:\Users\Mauricio/.ssh/id_ed25519.pub
The key fingerprint is:
SHA256:4Z7yF0V5Sf7Sub7IqpqomVKEWnHKN2eDuFdYjKAT2ck mauricio@DESKTOP-TESB9A9
The key's randomart image is:
+--[ED25519 256]--+
1.+.0 0
l.oE o o
00 = + . . .
 ..* = =. + + .
 .o o = .S o +
  0. = .0.
.+.. 0.0...0.+.
+----[SHA256]----+
C:\Users\Mauricio>explorer .
C:\Users\Mauricio>ssh 161.35.137.206
```

Setting up SSH Key and adding user access to WebUI

```
    maudy@debian-s-4vcpu-8gb × + ∨

 Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
root@debian-s-4vcpu-8qb-nyc3-01:~# env bash -c "$(curl -sL https://qithub.com/telekom-security/tpotce/raw/master/install
This script should not be run as root. Please run it as a regular user.
root@debian-s-4vcpu-8gb-nyc3-01:~# adduser maudy
Adding user 'maudy' ...
Adding new group 'maudy' (1000) ...
Adding new user 'maudy' (1000) with group 'maudy (1000)' ...
Creating home directory '/home/maudy' ...
Copying files from '/etc/skel' ...
New password:
Retype new password:
passwd: password updated successfully
Changing the user information for maudy
Enter the new value, or press ENTER for the default Full Name []:
         Room Number []:
         Work Phone []
        Home Phone []:
         Other []:
Is the information correct? [Y/n]
Adding new user 'maudy' to supplemental / extra groups 'users' ...
Adding user 'maudy' to group 'users' ...
root@debian-s-4vcpu-8gb-nyc3-01:~# sumaudy
 -bash: sumaudy: command not found
root@debian-s-4vcpu-8gb-nyc3-01:~# su maudy maudy@debian-s-4vcpu-8gb-nyc3-01:/root$ env bash -c "$(curl -sL https://github.com/telekom-security/tpotce/raw/master/in
```

```
ok: [127.0.0.1]
changed: [127.0.0.1]
127.0.0.1
                   : ok=36 changed=21 unreachable=0
                                                         skipped=1
                                              failed=0
                                                                  rescued=0
### Playbook was successful.
### Choose your T-Pot type:
### (H)ive - T-Pot Standard / HIVE installation.
          Includes also everything you need for a distributed setup with sensors.
###
### (S)ensor - T-Pot Sensor installation.
          Optimized for a distributed installation, without WebUI, Elasticsearch and Kibana.
###
### (L)LM
         - T-Pot LLM installation.
          Uses LLM based honeypots Beelzebub & Galah.
###
          Requires Ollama (recommended) or ChatGPT subscription.
###
### M(i)ni - T-Pot Mini installation.
          Run 30+ honeypots with just a couple of honeypot daemons.
###
### (M)obile - T-Pot Mobile installation.
          Includes everything to run T-Pot Mobile (available separately).
###
### (T)arpit - T-Pot Tarpit installation.
          Feed data endlessly to attackers, bots and scanners.
###
          Also runs a Denial of Service Honeypot (ddospot).
###
### Install Type? (h/s/l/i/m/t) i
```

 Installing Hive T-Pot after initially installing Mini due to ability to access Elastic Search, Kibana, and other Dashboard Metrics.

سے مار دار	ND.	^					
tcp	0	0 0.0.0.0:5355	0.0.0.0:*	LISTEN	996	17569	471/systemd-resolv
tcp6	0	0 :::64295	:::*	LISTEN	0	35518	6768/sshd: /usr/sb
i tcp6	Θ	0 ::1:25	:::*	LISTEN	Θ	19371	1900/exim4
tcp6	0	0 :::5355	:::*	LISTEN	996	17577	471/systemd-resolv
e udp	0	0 127.0.0.54:53	0.0.0.0:*		996	17582	471/systemd-resolv
e udp	0	0 127.0.0.53:53	0.0.0.0:*		996	17580	471/systemd-resolv
e udp	0	0 0.0.0.0:5355	0.0.0.0:*		996	17568	471/systemd-resolv
e udp6 e	Θ	0 :::5355	:::*		996	17576	471/systemd-resolv
		reboot and re-connect	• • • •				
maudy@de	eblan-s-	4vcpu-8gb-nyc3-01: ~\$ su	do reboot				
Broadcas	st messag	ge from root@debian-s-4	vcpu-8gb-nyc3-01 on pt	s/1 (Fri 2025-05-	02 04:37:1	3 UTC):	
The syst	tem will	reboot now!					
		4vcpu-8gb-nyc3-01: ~\$ Co 61.35.137.206 closed.	nnection to 161.35.137	.206 closed by re	mote host.		
C:\Users	s\Mauric	io>					

☐ Rebooting Server after installation

Honeypot Overview & Attack Volume

• Total Attacks Logged: 151,000+

Top Honeypots by Volume:

• **Cowrie**: 70,000+ attacks

• Honeytrap: 37,000+ attacks

Dionaea: 20,000+ attacks

Multiple attack vectors captured across SSH, Telnet, and other protocols

- Top Source Countries: USA 46%, Netherlands 12%, China 9%
- Frequent Destination Ports: 5060(non encrypted signaling traffic), 445 Server Message Blocking to share files and printers over TCP/IP, 22 SSH to connect to device and issue commands
- **Common Username Tags**: Root(2911), ubuntu(514), Administrator(514), 345gs5662d34(242), sa(207)
- Top Password Tags: 123456(1063), 123(246), 3245gs5662d34(242)

Elasticvue – T-Pot Cluster Insights

- Lightweight web GUI to explore
 Elasticsearch data from T-Pot
- View cluster health, node status, and storage usage
- Browse and query honeypot logs (Cowrie, Dionaea, Honeytrap, etc.)
- Inspect attack data: source IPs, ports, protocols, credentials, malware
- Filter logs by time, honeypot type, geolocation, ASN, and more
- Useful for quick threat analysis and data validation without Kibana

T-Pot Attack Map Overview

- Real-Time Visualization of global honeypot attacks
- Displays attacker geolocation based on source IPs
- Shows target ports, protocols, and affected honeypot sensors
- Highlights top attacking countries and IP addresses
- Visual clustering of attacks by intensity and region
- Useful for identifying trends, hotspots, and threat origins

SpiderFoot Overview

- Automated OSINT (Open Source Intelligence)
 Tool for threat intelligence gathering
- Monitors various data sources like IPs, domains, ASN, WHOIS, and social media
- Comprehensive Scans for vulnerabilities, leaks, and footprints of a target
- Provides detailed reports on attack surface and security risks
- Supports multiple data sources: Shodan, DNS, WHOIS, Pastebin, and more
- Customizable with modules to suit specific intelligence needs
- Visualization of findings through graphs and maps for easy analysis
- Used for profiling threat actors, identifying exposed assets, and proactive defense

Analytics with T-Pot (ELK Stack)

Kibana

Visualizes logs via interactive dashboards.

Elasticsearch

Indexes and stores honeypot event data efficiently.

Attack Map

Real-time global visualization of attack sources.

Spiderfoot

Automates Open Source Intelligence (OSINT) collection.

What I Learned

Linux CLI

Enhanced proficiency in the command line environment.

Log Analysis

Used SIEM principles for attack pattern detection.

Docker Orchestration

Managed containerized honeypot components effectively.

Troubleshooting

Diagnosed and fixed deployment and network issues.

Key Findings

Common Attack Ports

Targeted ports: 22, 23, 80, 443, 445.

Attack Types

- Brute force attempts
- Default credential use
- Network scanning activities

Traffic Sources

Attacks originated from diverse global IP addresses.

Future Improvements

Enhance Integration

Leverage Splunk or Security Onion platforms for deeper analysis.

Automate Alerts

Use TheHive and Cortex for real-time alerting.

Expand OSINT

Integrate Spiderfoot with Maltego for rich intelligence.

Use Threat Feeds

Incorporate MISP and OTX for updated threat intel.

Conclusion

Summary

Successfully deployed T-Pot and analyzed honeypot data.

Learning Outcome

Hands-on experience in cyber defense and threat analysis.

Next Steps

Build advanced operational security and OSINT skills.

