Chương 2: Các khái niệm cơ bản về mạng máy tính

Khoa CNTT- ĐHBK Hà Nội

Giảng viên: Ngô Hồng Sơn Bộ môn Truyền thông và Mạng máy tính

- Giới thiệu môn học
- Lược sử Internet
- Khái niệm mạng máy tính
- Một số vấn đề cơ bản: chuyển mạch kênh vs. chuyển mạch gói, hướng liên kết vs. không liên kết...

- Kiến trúc phân tầng
- Mô hình tham chiếu OSI & TCP/IP
- Địa chỉ hóa
- Tên miền và chuyển đổi tên miền

Kiến trúc phân tầng

Ví dụ

Tại sao phải phân tầng?

Phân chia các chức năng trong việc trao đổi thông tin

Các phương tiện truyền thông

Thư? Điện thoại? E-mail?

Việc trao đổi thông tin sẽ diễn ra suôn sẻ nếu tại mỗi tầng, cùng một phương tiện được sử dụng

Ví dụ phân tầng (1)

Phân tầng

Bộ dàn âm thanh

Player Speaker Amplifier

Không phân tầng

Cassette

Tất cả chức năng đều đặt cả trong một khối Khi muốn thay đổi: Nâng cấp toàn bộ

Phân tầng các chức năng hàng không

Tầng: Mỗi tầng có nhiệm vụ cung cấp 1 dịch vụ

- Dựa trên các chức năng của chính tầng đó
- Dựa trên các dịch vụ cung cấp bởi tầng dưới

Vì sao phải phân tầng?

- Đối với các hệ thống phức tạp: nguyên lý "chia để trị"
- Cho phép xác định rõ nhiệm vụ của mỗi bộ phận và quan hệ giữa chúng
- Cho phép dễ dàng bảo trì và nâng cấp hệ thống
 - Thay đổi bên trong một bộ phận không ảnh hưởng đến các bộ phận khác
 - e.g., Nâng cấp từ CD lên DVD player mà không phải thay loa.

Các mô hình tham chiếu

Mô hình OSI Mô hình TCP/IP

OSI - Open System Interconnection: Bao gồm 7 tầng

- Vật lý: Truyền bits "trên đường truyền"
- Liên kết dữ liệu: Truyền dữ liệu giữa các thành phần nối kết trong một mạng
- Mạng: Chọn đường, chuyển tiếp gói tin từ nguồn đến đích
- Giao vận: Xử lý việc truyền-nhận dữ liệu cho các ứng dụng
- Phiên: đồng bộ hóa, check-point, khôi phục quá trình trao đổi
- Trình diễn: cho phép các ứng dụng biểu diễn dữ liệu, e.g., mã hóa, nén, chuyển đổi...
- Ung dụng: Hỗ trợ các ứng dụng trên mạng.

application
presentation
session
transport
network
data link

physical

Mô hình OSI và TCP/IP

Trong mô hình TCP/IP (Internet), chức năng3 tầng trên được phân định vào một tầng duy nhất

Application layer	Application нттр, гтр, sмтр	
Presentation layer		
Session layer		
Transport layer	TCP	UDP
Network layer	IP	
Datalink layer	Network Interface	
Physical layer	Physical	

Mô hình phân tầng của Internet

Ví dụ về quá trình gửi dữ liệu từ nguồn, qua nút trung gian (bộ định tuyến) rồi đến đích

Đóng gói dữ liệu (Encapsulation)

PDU: Protocol Data Unit – Đơn vị dữ liệu giao thức Protocol N+1 Layer (N+1) (N+1) PDU Service interface Protocol N H_N **PDU** (N) Layer (N) Service interface Protocol N-1 addr. Layer (N-1) (N-1)PDU H_N

Họ giao thức TCP/IP và quá trình đóng gói

- Bên gửi
 - Mỗi tầng thêm vào các thông tin điều khiển vào phần đầu gói tin (header) và truyền xuống tầng dưới
- Bên nhận
 - Mỗi tầng xử lý gói tin dựa trên thông tin trong phần đầu, sau đó bỏ phần đầu, lấy phần dữ liệu chuyển lên tầng trên.

SAP: Service Access Point – Điểm truy nhập dịch vụ

Dữ liệu - payload

Dữ liệu - payload

Tóm tắt: ưu điểm của kiến trúc phân tầng

- Chia nhỏ cho phép xác định dễ dàng chức năng mỗi tầng
- Các tầng hoạt động độc lập
 - Tầng trên chỉ quan tâm đến việc sử dụng tầng dưới mà không quan tâm đến các tầng xa hơn
 - Cho phép định nghĩa giao diện chung giữa các tầng
- Khả năng mở rộng
- Mèm deo, linh hoạt với các công nghệ mới
 - Trao đổi giữa các tầng đồng mức
 - Có thể cải tiến hệ thống bằng cách thay thế một công nghệ mới của tầng tương ứng: ISDN→ADSL→FTTH, IPv4→IPv6
- Nếu không phân tầng
 - Khi muốn thay đổi, phải làm toàn bộ...

Các định danh trên Internet

Địa chỉ MAC Địa chỉ IP Số hiệu cổng

Định danh

- Các định danh cho phép xác định một người hay một đối tượng
 - Tên
 - Nguyen Thuc Hai
 - Địa chỉ
 - 1 Dai Co Viet, Hai Ba Trung, Ha Noi
 - Số điện thoại
 - 8680896
 - Email
 - hai--xxx@it.hut.edu.vn

Định danh và cây phân cấp

- Các định danh xác định địa chỉ có tính phân cấp
 - Cho phép quản lý một các logic và hiệu quả một không gian địa chỉ khổng lồ
 - Tính mở rộng
- Ví dụ về tính phân cấp
 - Địa chỉ
 - 1 Dai Co Viet, Hai Ba Trung, Ha Noi
 - Số điện thoại
 - +84-(4) 868-08-96

Định danh trên Internet và quan hệ với các tầng

application

TCP/UDP

IP

IP address, e.g. 203.12.15.165

data link

Physical address / MAC address e.g. 00:11:24:79:8e:82

physical

Địa chỉ dùng trong tầng liên kết dữ liệu

- Địa chỉ vật lý / địa chỉ MAC
 - Sử dụng trong tầng liên kết dữ liệu
 - Cố định trên card mạng NIC (Network Interface Card)
 - Sử dụng để địa chỉ hóa máy tính trong các mạng quảng bá

HEX 00:11:24:79:8e:82

00000000 00010001 00100100 01111001 10001110 10000010

OUI

Gán bới nhà sản xuất

OUI (Organizationally Unique Identifier): Mã nhà sản xuất Mỗi nhà sản xuất có các giá trị OUI riêng Mỗi nhà sản xuất có thể có nhiều OUI

- Địa chỉ IP
- Dùng trong giao thức IP Internet Protocol (tầng mạng)
- Giá trị phụ thuộc từng mạng, mỗi card mạng được gán một địa chỉ IP
- Sử dụng để đinh danh một máy tính trong một mạng IP, ví dụ:
 - 133.113.215.10 (ipv4)
 - 2001:200:0:8803::53 (ipv6)

- Số hiệu cổng
 - Một chỉ số phụ, dùng kèm theo địa chỉ IP
 - Các ứng dụng được dịnh danh bởi một địa chỉ
 IP và một số hiệu cổng
 - Tương tự như số phòng trong một tòa nhà
 - Địa chỉ nhà : Nhà C1, 1 Dai Co Viet, Ha Noi => Địa chỉ
 IP
 - Phòng số 325 => Số hiệu cổng
- E.g. HTTP cổng 80, FTP cổng 20, 21 ...

Ánh xạ địa chỉ

Tên miền Chuyển đổi tên miền nslookup arp

- Domain Name
 (FQDN: Fully Qualified Domain Name)
 - Tên miền là tên của một máy tính hay của một mạng máy tính, sử dụng tên (chữ cái, chữ số)
 - www.keio.ac.jp
 - www.hedspi.hut.edu.vn
 - .hut.edu.vn

Tên và địa chỉ

- Trước khi truyền tin, máy trạm phải được xác định
 - Bởi một địa chỉ IP, hoặc
 - Bởi một tên miền (thuận tiện cho NSD)
- Tên
 - Độ dài thay đổi
 - Dễ nhớ cho con người
 - Không liên quan tới vị trí vật lý của máy
- Địa chỉ
 - Độ dài cố định
 - Dễ cho máy tính để xử lý
 - Liên quan tới vấn đề chọn đường

203.162.7.194

www.hedspi.hut.edu.vn

www.hut.edu.vn

202.47.142.40

Chuyển đổi địa chỉ và ví dụ

Máy tính thích dùng số

• Người thích dùng tên

Cần có chuyển đổi địa chỉ

Máy chủ web 202.47.142.40

Bạn cũng có thế nhập địa chỉ trực tiếp

- Khái niệm
 - Cơ chế cho phép tìm một địa chỉ IP từ một tên miền và ngược lại
- Máy chủ tên miền
 - Một phương thức được sử dụng để chuyển đổi địa chỉ
 - Được sử dụng rộng rãi trên Internet

NSD

Công cụ nslookup

- Nhập tham số www.hedspi.hut.edu.vn
- Chuyển đôi "Tên ⇔ Địa chỉ" được thực hiện
 - lệnh nslookup
 - nslookup www.hedspi.hut.edu.vn

C:\Documents and Settings\hongson>nslookup www.hedspi.hut.edu.vn

Server:

Address: 192.168.1.1

Non-authoritative answer:

Name: www.hedspi.hut.edu.vn

Address: 202.47.142.140

C:\Documents and Settings\hongson>

ARP chuyển đổi địa chỉ vật lý – địa chỉ IP

- Address Resolution Protocol
- Một giao thức để tìm địa chỉ vật lý từ địa chỉ IP

Ví dụ: ARP table (Trên Windows)

C:\Documents and Settings\hongson>arp -a

IP address

Interface: 192.168.1.34 --- 0x2
Internet Address Physical Address Type
192.168.1.1 00-02-cf-75-a1-68 dynamic
192.168.1.33 08-00-1F-B2-A1-A3 dynamic

C:\Documents and Settings\hongson>

MAC address

MAC address

- Kiến trúc phân tầng
 - Tại sao phải phân tầng
 - Mô hình TCP/IP vs. mô hình OSI
 - Encapsulation, PDU. SAP
- Địa chỉ trên Internet
 - Địa chỉ IP, địa chỉ MAC, tên miền, số hiệu cổng
 - Chuyển đổi địa chỉ

- Nguyên lý chung của tầng mạng
- Giao thức IP
 - Chi tiết hơn về địa chỉ IP
 - Xử lý gói tin IP tại tầng mạng
- Giao thức ICMP