

Московский Физико-Технический Институт (национальный исследовательский университет)

Отчет по эксперименту

Изучение плазмы в газовом разряде

Работа №3.5.1; дата: 02.12.22

Семестр: 3

1. Аннотация

Цель работы:

Изучение вольт-амперной характеристики тлеющего разряда; изучение свойств плазмы методом зондовых характеристик.

Схема установки:

Рис. 1: Схема установки

Схема установки для исследования плазмы газового разряда в неоне представлена на рисунке. Стеклянная газоразрядная трубка имеет холодный (не нагреваемый) полый катод, три анода и геттерный узел – стеклянный баллон, на внутреннюю поверхность которого напылена газопоглощающая плёнка (геттер). Трубка наполнена изотопом неона 22 Ne при давлении 2 мм рт. ст. Катод и один из анодов (I или II) с помощью переключателя П1 подключаются через балластный резистор R_6 (~ 500 кОм) к регулируемому высоковольтному источнику питания (ВИП) с выходным напряжением до нескольких киловольт.

При подключении к ВИП анода-I между ним и катодом возникает газовый разряд. Ток разряда измеряется миллиамперметром A_1 , а падение напряжения на разрядной трубке — вольтметром V_1 , подключённым к трубке через высокоомный (несколько десятков МОм) делитель напряжения с коэффициентом $(R_1 + R_2)/R_2$.

При подключении к ВИП анода-II разряд возникает в пространстве между катодом и анодом-II, где находится двойной зонд, используемый для диагностики плазмы положительного столба. Зонды изготовлены из молибденовой проволоки диаметром d и имеют длину l. Они подключены к источнику питания через потенциометр R. Переключатель П2 позволяет изменять полярность напряжения на зондах. Величина напряжения на зондах изменяется с помощью дискретного переключателя «V» выходного напряжения источника питания и потенциометра R, а измеряется вольтметром V_2 . Для измерения зондового тока используется микроамперметр A_2 . Анод-III в нашей работе не используется.

В работе используются:

Стеклянная газоразрядная трубка, наполненная неоном; высоковольтный источник питания; источник питания постоянного тока; делитель напряжения; потенциометр; амперметры; вольтметры; переключатели.

2. Теоретические сведения

Плазма

В ионизированном газе поле ионов «экранируется» электронами. Для поля ${\bf E}$ и плотности ρ электрического заряда

div
$$\mathbf{E} = 4\pi\rho$$
,

а с учётом сферической симметрии и $\mathbf{E} = -\text{grad } \varphi$:

$$\frac{d^2\varphi}{dr^2} + \frac{2}{r}\frac{d\varphi}{dr} = -4\pi\rho. \tag{1}$$

Плотности заряда электронов и ионов (которые мы считаем бесконечно тяжёлыми и поэтому неподвижными)

$$\rho_e = -ne \cdot \exp\left(\frac{e\varphi}{kT_e}\right),$$

$$\rho_i = ne.$$
(2)

Тогда из (1) в предположении $\frac{e\varphi}{kT_e}\ll 1$ получим

$$\varphi = \frac{Ze}{r}e^{-r/r_D},\tag{3}$$

где $r_D = \sqrt{\frac{kT_e}{4\pi ne^2}}$ – paduyc Дебая. Среднее число ионов в сфере такого радиус

$$N_D = n \frac{4}{3} \pi r_D^2. (4)$$

Теперь выделим параллелепипед с плотностью n электронов, сместим их на x. Возникнут поверхностные заряды $\sigma = nex$, поле от которых будет придавать электронам ускорение:

$$\frac{d^2x}{dt^2} = -\frac{eE}{m} = -\frac{4\pi ne^2}{m}x.$$

Рис. 2: Перемещение параллелепипеда

Отсюда получаем плазменную (ленгмюровскую) частоту колебаний электронов:

$$\omega_p = \sqrt{\frac{4\pi n e^2}{m}}. ag{5}$$

Одиночный зонд

При внесении в плазму уединённого проводника — $30n\partial a$ — с потенциалом, изначально равным потенциалу точки плазмы, в которую его помещают, на него поступают токи электроннов и ионов:

$$I_{e0} = \frac{n\langle v_e \rangle}{4} eS,$$

$$I_{i0} = \frac{n\langle v_i \rangle}{4} eS,$$
(6)

где $\langle v_e \rangle$ и $\langle v_i \rangle$ – средние скорости электронов и ионов, S – площадь зонда, n – плотность электронов и ионов. Скорости электронов много больше скорости ионов, поэтому $I_{i0} \ll I_{e0}$. Зонд будет заряжаться до некоторого равновестного напряжения $-U_f$ – *плавающего потенциала*.

В равновесии ионный ток мало меняется, а электронный имеет вид

$$I_e = I_0 \exp\left(-\frac{eU_f}{kT_e}\right).$$

Будем подавать потенциал U_3 на зонд и снимать значение зондового тока I_3 . Максимальное значение тока I_{eh} – электронный ток насыщения, а минимальное I_{ih} – ионный ток насыщения. Значение из эмпирической формулы Бомона:

$$I_{iH} = 0.4 ne S \sqrt{\frac{2kT_e}{m_i}}. (7)$$

Рис. 3: ВАХ зонда

Двойной зонд – система из двух одинаковых зондов, расположенных на небольшом расстоянии друг от друга, между которыми создаётся разность потенциалов, меньшая U_f . Рассчитаем ток между ними вблизи I=0. При небольших разностях потенциалов ионные токи на оба зонда близки к току насыщения и компенсируют друг друга, а значит величина результирующего тока полностью связана с разностью электронных токов. Пусть потенциалы на зондах

$$U_1 = -U_f + \Delta U_1,$$

$$U_2 = -U_f + \Delta U_2.$$

Между зондами $U = U_2 - U_1 = \Delta U_2 - \Delta U_1$. Через первый электрод

$$I_1 = I_{iH} + I_{e1} = I_{iH} - \frac{1}{4} neS\langle v_e \rangle \exp\left(-\frac{eU_f}{kT_e}\right) \exp\left(\frac{e\Delta U_1}{kT_e}\right) = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_1}{kT_e}\right)\right). \tag{8}$$

Аналогично через второй получим

$$I_2 = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_2}{kT_e}\right) \right) \tag{9}$$

Из (7) и (8) с учётом последовательного соединение зондов ($I_1 = -I_2 = I$):

$$\Delta U_1 = \frac{kT_e}{e} \ln \left(1 - \frac{I}{I_{iH}} \right)$$

$$\Delta U_2 = \frac{kT_e}{e} \ln \left(1 + \frac{I}{I_{iii}} \right)$$

Тогда итоговые формулы для разности потенциалов и тока

$$U = \frac{kT_e}{e} \ln \frac{1 - I/I_{iH}}{1 + I/I_{iH}}, I = I_{iH} th \frac{eU}{2kT_e}.$$
 (10)

Реальная зависимость выглядит несколько иначе и описывается формулой

Рис. 4: Реальная ВАХ двойного зонда

Из этой формулы можно найти формулу для T_e : для U=0 мы найдём $I_{i\mathrm{H}}$, продифференцируем в точке U=0 и с учётом th $\alpha \approx \alpha$ при малых α и $A\to 0$ получим:

$$kT_e = \frac{1}{2} \frac{eI_{iH}}{\frac{dI}{dU}|_{U=0}}.$$
(12)

3. Ход работы

Измеряем напряжение зажигания в лампе: $U_{\text{заж}} = 25.7 \pm 0.2 \text{ B}.$

С помощью вольтметра V_1 и амперметра A_1 снимаем ВАХ разряда $U_1=f(I_p)$ для тока в диапазоне $0.5 \div 5$ мА.

U_1 , B	23.9	24.15	24.35	24.4	24.81	25.40	26.20	27.71	30.92	34.19	35.09
I_p , MA	4.60	4.04	3.56	3.12	2.80	2.36	2.00	1.56	1.20	0.80	0.52

Табл. 1: Зависимость $U_1 = f(I_p)$

Построим график:

Рис. 5: ВАХ газового разряда

По наклону определим максимальное сопротивление заряда (с учётом того, что вольтметр подключен через делитель напряжения с коэффициентом 10): $R_{max} = (8.5 \pm 0.2) \cdot 10^4$ Ом.

С помощью вольтмертра V_2 и амперметра A_2 снимем ВАХ двойного зонда $I_2=f(U_2)$ при фиксированного токе разряда I_p в трубке в диапазоне $-25 \div 25$ В, процессе измерений меняя полярность зонда при нулевом токе. Измерения проведём для $I_p=5$ мА, $I_p=3$ мА и $I_p=1.5$ мА.

Результаты измерений представим на графиках с отцентрованными $\left(I_0 = \frac{1}{2} \sum I\right)$:

Рис. 6: ВАХ двойного зонда при $I=5.0~{\rm mA}$

Рис. 7: ВАХ двойного зонда при I = 3.0 мА

Рис. 8: ВАХ двойного зонда при $I=1.5\ {\rm mA}$

$I_p =$	$I_p = 5.0 \text{ MA}$			$I_p = 3.0 \text{ MA}$			$I_p = 1.5 \text{ мA}$		
U_2 , B	I_2 , мк A		U_2 , B	I_2 , мк A		U_2 , B	I_2 , MKA		
25.01	126.20		25.13	66.86		25.15	33.67		
22.11	122.84		22.23	65.03		22.09	32.50		
19.23	119.52		19.14	62.97		19.06	31.36		
16.04	114.79		16.23	60.95		16.09	30.18		
13.02	108.13		13.12	57.65		13.13	28.78		
10.00	97.96		10.21	52.78		10.18	26.37		
8.04	86.26		8.04	46.57		7.98	23.24		
6.01	71.00		5.98	37.85		5.99	19.09		
4.12	53.02		4.14	27.46		4.03	13.50		
2.10	28.54		2.04	12.96		2.13	6.61		
0.54	7.63		0.48	0.085		0.52	0.04		
-24.99	-139.73		-24.98	-77.00		-25.11	-40.02		
-22.03	-136.27		-22.09	-74.82		-23.02	-39.05		
-19.02	-132.46		-19.17	-72.64		-18.96	-37.15		
-16.12	-128.01		-16.17	-70.34		-16.12	-35.90		
-13.00	-120.47		-13.25	-67.17		-13.09	-34.20		
-10.13	-109.59		-10.05	-61.57		-10.04	-31.49		
-8.06	-98.48		-8.16	-55.87		-8.03	-28.49		
-6.12	-83.83		-5.98	-46.69		-6.26	-24.73		
-4.02	-64.11		-4.11	-36.10		-4.04	-18.30		
-2.02	-40.20		-2.05	-21.73		-2.05	-11.05		
-0.54	-20.79		-0.57	-10.27		-0.47	-4.56		

Табл. 2: Зависимость $I_2 = f(U_2)$

Приближая кривые формулой $I = A \operatorname{th}(BU) + CU$, найдём токи насыщения $I_{i \text{H}}$ и температуры электронов T_e .

Считая концентрации ионов и электронов равными, найдём их, пользуясь формулой (7). Рассчитаем плазменную частоты ω_p по формуле (5) и радиус Дебая r_D , оценим среднее число ионов в дебаевской сфера N_D по формуле (4) и степень ионизации α , приняв $P\approx 1$ мбар, и занесём все результаты в таблицу.

	I_p , мА	$T_e, 10^4 \text{ K}$	$n_e, 10^{15} \text{ m}^{-3}$	$\omega_p,10^4~{ m pag/c}$	$r_D, 10^{-5} \text{ cm}$	N_D	$\alpha, 10^{-7}$
	5.0	41 ± 4	58 ± 6	144 ± 10	49 ± 3	30	24
	3.0	42 ± 4	33 ± 4	107 ± 9	66 ± 5	40	13
ĺ	1.5	41 ± 6	16 ± 2	75 ± 8	94 ± 10	57	7

Табл. 3: Финальные значения

4. Выводы

В ходе работы была исследована вольт-амперная характеристика двойного зонда, были построены графики. Были найдены плазменные частоты, радиус Дебая, число электронов в дебаевской сфере и степень ионизации. По порядку найденные величины сходятся с табличными.