New Potential-Based Bounds for Prediction with Expert Advice

Vladimir A. Kobzar¹, joint work with Robert V. Kohn² and Zhilei Wang²

¹NYU Center for Data Science, ²Courant Institute of Mathematical Sciences

Prediction with expert advice

In each $t \in [T]$,

- the *player* determines the mix of N experts to follow - distribution $p_t \in \Delta_N$;
- the adversary allocates losses to them distribution a_t over $[-1,1]^N$; and
- expert losses $q_t \in [-1,1]^N \sim a_t$, player's choice of expert $I_t \sim p_t$, these samples are revealed to both parties.

Preliminaries

- Starting time T < 0, final time t = 0
- Instantaneous regret (vector): $r = q_{I^{1}} q$
- Realized regret at t (vector): $x = \sum_{\tau < t} r_{\tau}$
- Final-time regret (scalar) $R_T(p, a) = \mathbb{E}_{p,a} \max_i x_i$
- Player's objective to minimize, and adversary's objective is to maximize, R_T

Player value function

- Player p is Markovian: depends only on x, t
- Value function: $v_p = \text{expected final-time regret}$ achieved by p if the game starts at realized regret x and time t and the adversary behaves optimally.

$$\begin{cases} v_p(x,0) = \max_i x_i \\ v_p(x,t) = \max_i \mathbb{E}_{a,p} \ v_p(x+r,t+1), t < 0 \text{ (1b)} \end{cases}$$

Intuition

- Value of a strategy is characterized by a dynamic program
- It is a discretization of a PDE, which captures the leading order behavior

References & acknowledgements

http://proceedings.mlr.press/v125/kobzar20a/ kobzar20a.pdf; NSF grant DMS-1311833; Moore-Sloan Data Science Environment at NYU

Upper bound potential

A function w, nondecreasing in x_i , which solves

$$\int w_t + \frac{1}{2} \max_{q \in [-1,1]^N} \langle D^2 w \cdot q, q \rangle \le 0$$
 (2a)

$$\begin{cases} w(x,0) \ge \max_{i} x_{i} \qquad (2b) \\ w(x+c1,t) = w(x,t) + c \qquad (2c) \end{cases}$$

$$w(x+c1,t) = w(x,t) + c \tag{2c}$$

- The associated player $p = \nabla w$
- Leads to an upper bound $v_p \leq w$
- Bounds regret above: $v_p(0,T) = \max_a R_T(a,p)$
- Exponential weights: $w^e(x,t) = \Phi(x) \frac{1}{2}\eta t$ where $\Phi(x) = \frac{1}{n} \log(\sum_i e^{\eta x_i})$ satisfies (2)

Proof of $v_p \leq w$: step 1

Controlling the increase of w

• Due to Δx : (2c) implies $D^2w_1=0$ and by Taylor's thm,

$$\mathbb{E}_{p,a} \ w(x+r,t+1) - w(x,t+1)$$

$$\leq \max_{q \in [-1,1]^N} \frac{1}{2} \langle D^2 w \cdot q, q \rangle \ [\leq \eta/2 \text{ for } w^e]$$

where the choice of $p = \nabla w$ eliminated 1st-order term: $p \cdot q - \nabla w \cdot q = 0$

• Due to Δt :

$$w_t = -\eta/2 \text{ for } w^e$$

• By (2a), $\max_a \mathbb{E}_{p,a} [w(x+r,t+1)] - w(x,t) \le 0$

Proof of $v_p \leq w$: step 2

Show $v_p \leq w$ by induction

- Initialization: $v_p(x,0) \leq w(x,0)$ by (1a) and (2b)
- Hypothesis: $v_p(x+r,t+1) \leq w(x+r,t+1)$

$$w(x,t) \ge \max_{a} \mathbb{E}_{p,a} w(x+r,t+1)$$
 [by step 1]
 $\ge \max_{a} \mathbb{E}_{p,a} v_p(x+r,t+1)$ [by hypothesis]
 $= v_p(x,t)$ [by (1b)]

Exp:
$$w^e(0,T) = \frac{1}{\eta} \log N + \frac{1}{2} \eta |T| = \sqrt{2|T| \log N}$$
 with $\eta = \sqrt{\frac{2 \log N}{|T|}}$

Our contributions

- Potential-based viewpoint extends to adversaries, leading to lower bounds
- Upper and lower regret bounds \equiv super and sub-solutions of certain PDEs
- Guidance for new strategies/improved bounds

Lower bound potential

- Adversary a is Markovian & "balanced" $\mathbb{E}_a q_i = \mathbb{E}_a q_i$
- Value function v_a for this adversary has a DP characterization similar to v_p
- Lower bound potential is also a very similar object—function u which solves

$$\int u_t + \frac{1}{2} \mathbb{E}_a \langle D^2 u \cdot q, q \rangle \ge 0 \tag{3a}$$

$$u(x, \overline{0}) \le \max_{i} x_{i} \tag{3b}$$

$$u(x + c_{1}, t) = u(x, t) + c \tag{3c}$$

• Since a is balanced, the 1st-order term is zero:

$$\mathbb{E}_{p,a}[q_I - \nabla u \cdot q] = \langle p - \nabla u, \mathbb{E}_a q \rangle = 0$$

- We used $\nabla u \cdot 1 = 1$ by (3c) and $p \cdot 1 = 1$
- $u \le v_a$ (modulo error E from higher order terms)
- Lower bound $u(0,T) - E(T) \le v_a(0,T) = \min_p R_T(a,p)$

Heat-based adversary a^h

• Use the sol'n of the heat equation as a potential

$$u_t + \kappa \Delta u = 0; \ u(x,0) = \max_i x$$

• Heat-based adversary $a^h = \text{Unif}(S)$ where

$$S = \begin{cases} \{q \in \{-1, 1\}^N \mid \sum_{i=1}^N q_i = \pm 1\} & \text{for } N \text{ odd} \\ \{q \in \{-1, 1\}^N \mid \sum_{i=1}^N q_i = 0\} & \text{for } N \text{ even} \end{cases}$$

 Best known leading-order prefactor $u(0,T) = \sqrt{-2\kappa T} \mathbb{E}_G \max G_i \text{ where } G \sim N(0,I),$

$$\kappa = \begin{cases} 1 & \text{if } N = 2\\ \frac{1}{2} + \frac{1}{2N} & \text{if } N \text{ is odd}\\ \frac{1}{2} + \frac{1}{2N-2} & \text{otherwise.} \end{cases}$$

Heat-based adversary a^h vs. ML lit

- We provide a nonasymptotic guarantee $E(T) = O(N\sqrt{N} \wedge \sqrt{N\log N} + \sqrt{N}\log |T|)$
- a^h is asymptotically optimal for N=2
- For large |T|, a^h gives a tighter l.b. than the previous state-of-the-art adversary a^s

Figure 1:For an adversary a, $C_N\sqrt{|T|} \leq \min_p R_T(a,p)$, and C_N determined for $|T| = 10^7$

New max potential

- The max potential is the explicit classical sol'n of $u_t + \kappa \max \partial_i^2 u = 0; u(x, 0) = \max x$
- Asymptotically optimal for N=2,3
- For small N and large |T|, max player p^m outperforms Exp

Figure 2:For a player p, $\max_a R_T(a,p) \leq C_N \sqrt{|T|}$, and C_N determined for $|T| = 10^7$.