Hypotheses about my data

For my data (and with some data I have yet to collect), I have a few hypotheses.

- 1) I hypothesize that Hg concentrations will vary between sites.
 - To test this in SMB (only 2 sites) I will perform a two-sample t-test between the two sites
 - From this, I can see if there if my data shows whether there's a difference in Hg concentration between the site
 - However, I should also look at the effect size of this difference (i.e. if there is a difference, how different are they)
 - To test this in YP (3 sites) I will perform an ANOVA between the 3 sites
 - O This will tell me whether there is a difference between somewhere between my sites
 - If there is, then I can use a post hoc test to explore the mean differences between pairs of groups
 - From there I should also be looking at the effect size (i.e. what actually is the mean difference between the groups)
 - o Alternatively, I could do a pooled t-test
- 2) I hypothesize that essential fatty acid profiles will vary between sites.
 - I will essentially do the same analysis as Hg but I will examine the two EFAs I'm looking at (EPA and DHA) separately.
 - For SMB. I'll do a t-test between the two sites for both EFAs
 - o Then I'll look at the effect size
 - For YP, I'll do an ANOVA between the sites for both EFAs
 - o If there's a difference, then I'll do a post hoc test to see where what the pairwise differences are
 - Then I'll look at the effect size of the pairwise differences
- 3) If fatty acids and/or Hg concentrations vary between sites, then I predict that there will be a difference in feeding habits and trophic position between the sites.
 - To look at feeding habits and trophic position, I am going to perform a stable isotope analysis of carbon (δ^{13} C) to determine their reliance on terrestrial or aquatic food sources and a stable isotope analysis of nitrogen (δ^{15} N) to indicate the trophic level of different organisms
 - As δ^{15} N increases, this is an indication that trophic level increases, and when δ^{13} C increases, it shows that there's more reliance on terrestrial food sources as opposed to aquatic food sources
 - Hg tends to biomagnify up the food web, so I hypothesize that sites with higher $\delta^{15} N$ will have higher mercury concentration
 - \circ First, I will look at the correlation coefficient between $\delta^{15}N$ and Hg at each site to see if Hg actually increases with $\delta^{15}N$, and if so, how strong this relationship is

- \circ I can also do an ANOVA to compare $\delta^{15}N$ between sites and if I get a significant p-value, then I do a post hoc test to see the site-wise comparisons to determine where the difference is occurring
- \circ $\;$ Then, I can look at means to see if the sites with higher Hg also have higher $\delta^{15} N$
- Furthermore, I may expect to see differences in Hg if the fish rely on different food sources across different sites (i.e. δ^{13} C varies with Hg)
 - \circ To test this I will also look at the correlation coefficient between $\delta^{13}C$ and Hg at each site to see if there's a relationship between $\delta^{13}C$ and Hg, and how strong that relationship is
 - \circ Then, I can look at means to see if the sites with higher/lower Hg also have higher/lower δ^{13} C (depending on the relationship in the correlation)