Institute for Analysis and Scientific Computing

Lothar Nannen, Conrad Gößnitzer, Michael Innerberger

Numerik von Differentialgleichungen - Kreuzlübung 11

Date: 17.6.2020 June 10, 2020

Exercise 51:

Show that the symplectic Euler methods have convergence order 1. Moreover, construct an example which shows that they do not have higher convergence order.

Exercise 52:

Consider the Hamiltonian $H(p,q) = \frac{1}{2}p^2 + \frac{1}{2}q^2$. Show that the symplectic Euler

$$\begin{pmatrix} p_{\ell+1} \\ q_{\ell+1} \end{pmatrix} = \begin{pmatrix} p_{\ell} \\ q_{\ell} \end{pmatrix} + h \begin{pmatrix} -\nabla_q H(p_{\ell+1}, q_{\ell}) \\ \nabla_p H(p_{\ell+1}, q_{\ell}) \end{pmatrix}$$
(1)

does not, in general, preserve the energy H(p,q), i.e., show that there exist p_0, q_0 , such that $H(p_\ell, q_\ell) \neq H(p_0, q_0)$ for the iterates p_ℓ, q_ℓ of the symplectic Euler method.

Furthermore, consider the perturbed Hamiltonian

$$H_h(p,q) := \frac{1}{2} \begin{pmatrix} p \\ q \end{pmatrix}^\top \begin{pmatrix} 1 & -h/2 \\ -h/2 & 1 \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix}. \tag{2}$$

Show that for all p, q with $|p|, |q| \le R \in \mathbb{R}$ there holds $||H(p, q) - H_h(p, q)|| = \mathcal{O}(h)$ and that the symplectic Euler method preserves H_h , i.e., show that $H_h(p_\ell, q_\ell) = H_h(p_0, q_0)$.

Exercise 53:

Let Ψ^h be the discrete flow of the explicit Euler method. Which well-known methods are obtained by $(\Psi^{h/2})^* \circ \Psi^{h/2}$ and $\Psi^{h/2} \circ (\Psi^{h/2})^*$? What convergence order do these methods have?

Exercise 54:

Consider an arbitrary m-stage Runge-Kutta method with Butcher tableau $\frac{c \mid A}{\mid b^{\top}}$ and discrete

flow Ψ^h . Provide the Butcher tableaux of

- a) the corresponding adjoint method with adjoint flow $(\Psi^h)^*$ and
- **b)** the reversible method $(\Psi^{h/2})^* \circ \Psi^{h/2}$.

Exercise 55:

Let $f \in C^1(\mathbb{R}^{2d}, \mathbb{R}^{2d})$ be the right-hand side of the autonomous system

$$\begin{pmatrix} p' \\ q' \end{pmatrix} = f(\begin{pmatrix} p \\ q \end{pmatrix}). \tag{3}$$

Furthermore, let the mapping R be defined by

$$R(\begin{pmatrix} p \\ q \end{pmatrix}) = \begin{pmatrix} -p \\ q \end{pmatrix}. \tag{4}$$

Moreover, suppose that there holds that

$$R \circ f = -f \circ R. \tag{5}$$

a) Show that, for the continuous flow Φ^t of (3), there holds that

$$R \circ \Phi^t = \Phi^{-t} \circ R$$
.

b) Show that, for the discrete flow Ψ^h of a Runge-Kutta method applied to (3), there holds that

$$R \circ \Psi^h = \Psi^{-h} \circ R.$$

c) Let M be a symmetric, positive definite matrix, U a two times continuously differentiable function and H a Hamiltonian with

$$H(p,q) := \frac{1}{2} p^{\top} M^{-1} p + U(q).$$
 (6)

Show that the function f of the corresponding Hamiltonian system satisfies (5).