

Roteiro

- □ Álgebra Relacional
 - Operações da teoria dos conjuntos
 - Operações para banco de dados relacionais
- SQL (Structured Query Language)
 - □ Comandos **DDL** (**D**ata **D**efinition **L**anguage)
 - □ Comandos **DML** (**D**ata **M**anipulation **L**anguage)

Roteiro

- 3
- Operações da Teoria dos Conjuntos
 - União (UNION), Interseção (INTERSECTION),
 Diferença de Conjunto (SET DIFFERENCE),
 Produto Cartesiano (CROSS PRODUCT).
- Operações para Banco de Dados Relacionais
 - Seleção (SELECT), Projeção (PROJECT),
 Renomear (RENAME), Funções de Agregração e
 Agrupamento

Introdução

Conjunto de operações para manipular dados

- Solicitações básicas para recuperação
 - Resultado → Nova relação (resultante de uma ou mais relações)
 - Especificada em termos de variáveis.
 - Sequência de operações da Álgebra Relacional → Expressão da Álgebra Relacional.

Teoria dos Conjuntos

- Operações
 - □ União (UNION)
 - □ Interseção (INTERSECTION)
 - □ Diferença entre Conjuntos (SET DIFFERENCE)
 - Produto Cartesiano (CROSS PRODUCT)

Teoria dos Conjuntos

União

Tuplas que estão em R ou S ou ambos

Representação: ∪

□ Ex. Cliente ∪ Gerente

Teoria dos Conjuntos

□ Interseção

Tuplas que estão tanto R quanto em S

Representação: ∩

■ Ex. Cliente ∩ Gerente

Teoria dos Conjuntos

□ Diferença entre Conjuntos

Tuplas que estão em R, mas não estão em S

Representação: -

□ Ex. Cliente - Gerente

Teoria dos Conjuntos

9

□ Produto Cartesiano

Combinar tuplas de uma relação de forma combinatória

Representação: X

■ Ex. **R** x **A**, sendo
$$R(A_1, A_2,...,A_n)$$
 e $S(B_1, B_2,...,B_n)$
• $Q(A_1, A_2,...,A_n,B_1, B_2,...,B_n)$

Exemplo de Operações da Teoria dos Conjuntos

10

Professor

Nome	Sobrenome	
Armando	Siqueira	
Carla	Silva	
Karina	Souza	
Marcus	Oliveira	
Ruth	Vieira	
Gustavo	Santos	

Aluno

Nome	Sobrenome	
Danièlle	Oliveira	
Gustavo	Santos	
Andréa	Pinheiro	
Antônio	Moreira	
Rita	Gonçalves	
Carla	Silva	

Aluno ∪ Professor

Nome	Sobrenome
Danièlle	Oliveira
Gustavo	Santos
Andréa	Pinheiro
Antônio	Moreira
Rita	Gonçalves
Carla	Silva
Armando	Siqueira
Karina	Souza
Marcus	Oliveira
Ruth	Vieira

Exemplo de Operações da Teoria dos Conjuntos

Professor

Nome	Sobrenome
Armando	Siqueira
Carla	Silva
Karina	Souza
Marcus	Oliveira
Ruth	Vieira
Gustavo	Santos

Aluno

Sobrenome	
Oliveira	
Santos	
Pinheiro	
Moreira	
Gonçalves	
Silva	

Aluno ∩ Professor

Nome	Sobrenome	
Carla	Silva	
Gustavo	Santos	

Exemplo de Operações da Teoria dos Conjuntos

Professor

Sobrenome
Siqueira
Silva
Souza
Oliveira
Vieira
Santos

Aluno

Nome	Sobrenome	
Danièlle	Oliveira	
Gustavo	Santos	
Andréa	Pinheiro	
Antônio	Moreira	
Rita	Gonçalves	
Carla	Silva	

Aluno – Professor

Nome	Sobrenome	
Danièlle	Oliveira	
Andréa	Pinheiro	
Antônio	Moreira	
Rita	Gonçalves	

Professor - Aluno

Nome	Sobrenome
Armando	Siqueira
Ruth	Vieira
Karina	Souza
Marcus	Oliveira

Exemplo de Operações da Teoria dos Conjuntos

13

□ Produto Cartesiano

NomesEmp

Nome	Sobrenome	CPF
Armando	Siqueira	334455
Karina	Souza	112233
Marcus	Oliveira	771166
Ruth	Vieira	559933

Dependente

Nome_Dep	Sexo_Dep	CPF_Emp
Renata	F	334455
Ricardo	М	771166

Dependentes_Emp

Nome	Sobrenome	CPF	Nome_Dep	Sexo_Dep	CPF_Emp
Armando	Siqueira	334455	Renata	F	334455
Armando	Siqueira	334455	Ricardo	М	771166
Karina	Souza	112233	Renata	F	334455
Karina	Souza	112233	Ricardo	М	771166
Marcus	Oliveira	771166	Renata	F	334455
Marcus	Oliveira	771166	Ricardo	М	771166
Ruth	Vieira	559933	Renata	F	334455
Ruth	Vieira	559933	Ricardo	М	771166

Operação Selecionar (SELECT)

15

Selecionar o conjunto de tuplas de uma relação que satisfaça uma condição de seleção

Representação: σ (Sigma)

σ <condição de seleção> (R)

Exs. $\sigma_{\text{Num_Depto}=4}$ (Empregado) $\sigma_{\text{Salario} > 3000}$ (Empregado)

□ Operadores: $\{=, <, \leq, >, \geq, \neq\}$

Banco de Dados Relacionais

14

Operações

- Seleção
- **□** Projeção
- Renomear
- □ Join
 - Junção Cruzada (Produto Cartesiano)
 - Outer Join (Junção Externa)
 - Left Outer Join (Junção Externa à Esquerda)
 - Right Outer Join (Junção Externa à Direita)
 - Full Outer Join (Junção Externa Completa)
- **□** Funções de Agregação e Agrupamento

Operação Selecionar (SELECT)

16

Cláusulas

- □ Operadores booleanos: E (AND), OU (OR) e NÃO (NOT)
- □ Relembrando...
 - □ (cond1 E cond2) = V se ambas forem V
 - □ (cond1 OU cond2) = V se cond1 = V ou cond2 = V ou ambas forem V
 - (cond NÃO) = V se cond = F
 - EX. σ (Num_Depto=4 E Salário>1500) OU (Num_Depto=5 E Salário>3000) (Empregado)

Operação Selecionar (SELECT)

17

- Características
 - É unitário → Aplicado à uma única relação.
 - □ Grau da relação resultante = Grau(R)
 - Número de tuplas ≤ R
 - Operação Comutativa

$$\sigma_{\text{}} (\sigma_{\text{}} (R)) = \sigma_{\text{}} (\sigma_{\text{}} (R))$$

Operação Projetar (PROJECT)

18

Seleccionar determinadas colunas de uma relação

Representação: π (Pi)

 π { lista de atributos >

■ Exs. $\pi_{Sexo, Salario}$ (Empregado) $\pi_{Nome, Salario}$ ($\sigma_{Num Depto=5}$ (Empregado))

Operação Projetar (PROJECT)

19

- Características
 - É unitário → Aplicado à uma única relação.
 - □ Grau da relação resultante = lista de atributos
 - Número de tuplas ≤ R
 - Operação não-comutativa

Operação Renomear (RENAME)

20

Atribuir um novo nome à relação, aos atributos ou ambos

Representação: p (Rô)

 $\rho_{S(B1, B2, ..., Bn)}(R)$ ou $\rho_{S}(R)$ ou $\rho_{(B1, B2, ..., Bn)}(R)$

Ex. $\pi_{conta.saldo}$ ($\sigma_{conta.saldo} < \sigma_{d.saldo}$ (Conta x ρ_{d} (Conta)))

Junção Cruzada (Produto Cartesiano)

21

Combinar tuplas de uma relação de forma combinatória

Representação: X

□ Ex.

NomesEmp $\leftarrow \pi_{\text{Nome,Sobrenome,CPF}}$ (Empregado) Dependentes_Emp \leftarrow NomesEmp x Dependente

Operação de Junção (JOIN)

23

Combinar tuplas relacionadas de duas relações em uma única tupla, satisfazendo uma condição de junção.

Representação: |x|

 $R \mid x \mid {}_{< condição de junção>} S$

□ Ex.

 ${\tt Dependentes_Atuais} \leftarrow {\tt NomesEmp} \ | \ {\color{red} \textbf{X}} | \ _{\tt CPF_Emp=CPF} \ {\tt Dependente}$

Junção Cruzada (Produto Cartesiano)

22

NomesEmp

Nome	Sobrenome	CPF	
Armando	Siqueira	334455	
Karina	Souza	112233	
Marcus	Oliveira	771166	
Ruth	Vieira	559933	

Dependente

Nome_Dep	Sexo_Dep	CPF_Emp	
Renata	F	334455	
Ricardo	М	771166	

Dependentes_Emp

Nome	Sobrenome	CPF	Nome_Dep	Sexo_Dep	CPF_Emp
Armando	Siqueira	334455	Renata	F	334455
Armando	Siqueira	334455	Ricardo	М	771166
Karina	Souza	112233	Renata	F	334455
Karina	Souza	112233	Ricardo	М	771166
Marcus	Oliveira	771166	Renata	F	334455
Marcus	Oliveira	771166	Ricardo	М	771166
Ruth	Vieira	559933	Renata	F	334455
Ruth	Vieira	559933	Ricardo	М	771166

Operação de Junção (JOIN)

24

Dependentes_Emp

Nome	Sobrenome	CPF	Nome_Dep	Sexo_Dep	CPF_Emp
Armando	Siqueira	334455	Renata	F	334455
Armando	Siqueira	334455	Ricardo	М	771166
Karina	Souza	112233	Renata	F	334455
Karina	Souza	112233	Ricardo	М	771166
Marcus	Oliveira	771166	Renata	F	334455
Marcus	Oliveira	771166	Ricardo	М	771166
Ruth	Vieira	559933	Renata	F	334455
Ruth	Vieira	559933	Ricardo	М	771166

Dependentes_Atuais

Nome	Sobrenome	CPF	Nome_Dep	Sexo_Dep	CPF_Emp
Armando	Siqueira	334455	Renata	F	334455
Marcus	Oliveira	771166	Ricardo	М	771166

Operação de Junção (JOIN)

25

- □ São **eliminadas** as seguintes tuplas:
 - □ Que **não** satisfazem à condição de junção;
 - □ Com valor **NULO** (**NULL**) no atributo de junção.

Junção Externa à Esquerda (LEFT OUTER JOIN)

27

Manter todas as tuplas na primeira ou na relação mais à esquerda.

Representação: ☐ X | **↓**

R X | < condição de junção > S

Junção Externa (Outer Join)

26

Junção de S e R

- Manter no resultado todas as tuplas de S, ou de R, ou de ambas, caso possuam ou não tuplas que combinem na outra relação.
 - Ex. Nas relações DEPARTAMENTO e EMPREGADO, mostrar...
 - Empregados sem Departamento ou
 - Departamentos sem Empregados ou
 - Empregados sem Departamento e Departamento sem Empregados.

Junção Externa à Direita (RIGHT OUTER JOIN)

28

Manter todas as tuplas na segunda ou na relação mais à direita.

Representação: | X _

R | X = <condição de junção> S

□ Ex.

 ${\sf Empregado_Depto} \leftarrow {\sf Empregado} \, | \, \textbf{x} \underline{\qquad}_{\sf Emp_Depto=Depto} \, {\sf Departamento}$

Junção Externa Completa (FULL OUTER JOIN)

29

Manter todas as tuplas em ambas as relações.

Representação: ☐ X ☐ ↓

R ☐ X ☐ < condição de junção > S

□ Ex.

Depto_Empregado ← Empregado □ × □ Emp_Depto=Depto Departamento

Exercício 04

3

□ Exercício sobre Álgebra Relacional

Funções de Agregação e Agrupamento

30

- Soma (SUM)
- Média (AVERAGE)
- Máximo (MAXIMUN)
- Mínimo (MINIMUN)
- Contagem de Tuplas (COUNT)

Representação: 3 (F Script)

Ex. Num_Dept 3 COUNT cpf, AVERAGE Salario (Empregado)