Санкт-Петербургский государственный университет
Моделирование социально-экономических систем
Лекции
Доцент кафедры математического моделирования
энергетических систем, кандидат физмат. наук Александр Юрьевич Крылатов

Оглавление

1	Балансовая модель производства	2
	1.1 Модель «затрата - выпуск» (англ. input - output)	2
2	Линейное программирование	5
3	Нелинейное программирование))))))	6

Глава 1

Балансовая модель производства

1.1 Модель «затрата - выпуск» (англ. input - output)

Предположим следующее:

- 1) Количество продукции характеризуется одним числом (у каждого экономического объекта).
- 2) Комплектность потребления: для выпуска продукции экономический объект должен получить продукты от других объектов.
- 3) Линейность : для увеличения количества производства в n раз, необходимо увеличить ресурс в n раз.
- 4) Делимость на конечный продукт и на продукт, который будет использоваться в производстве.

Пусть n — количество субъектов (экономических субъектов), x_i — количество производства продукта i,

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix},$$

 x_{ji} — количество продукта j, необходимого для производства i.

$$\begin{cases} x_{1i} = \alpha_{1i}x_i \\ x_{2i} = \alpha_{2i}x_i \\ \dots \\ x_{ni} = \alpha_{ni}x_i \end{cases}$$

$$A = \left[\begin{array}{cccc} \alpha_{11} & \dots & \alpha_{1n} \\ \dots & \dots & \dots \\ \alpha_{n1} & \dots & \alpha_{nn} \end{array} \right]$$

Определение 1.1. A — матрица коэффициентов прямых затрат (матрица технологических коэффициентов).

Матрица A — положительно полуопределённая ($z^T A z \ge 0$, для любых ненулевых векторов z).

 y_i – количество *i*-го продукта на продажу.

$$\sum_{i=1}^{n} \alpha_{ji} x_i + y_i = x_j \qquad \forall j = \bar{1, n};$$

$$Ax + y = x \leftrightarrow y = (E - A)x$$
$$x = (E - A)^{-1}y$$

Для того, чтобы это уравнение имело единственное решение необходимо и достаточно, чтобы $det(E-A) \neq 0.$ $x_j \geq 0$ $\forall j$

3 a me u a n u e 1.1. Далее под обозначением $x \geq 0$ будем понимать покомпонентную неотрицательность вектора x

Определение 1.2. Квадратная матрица A, такая, что $A_{ij} \ge 0 \quad \forall i, j$, называется продуктивной, если существует хотя бы один такой вектор $\bar{x} > 0$, что $(E - A)\bar{x} > 0$.

Теорема 1.1. (О существовании и единственности решение балансовой системы уравнений) Матрица A продуктивна, тогда и только тогда, когда существует, единственно и неотрицательно решение системы (E-A)x=y для любого вектора $y\geq 0$.

Доказательство. Достаточность.

Рассмотрим $\bar{y} > 0$ и $\bar{x} \ge 0$. $(E - A)\bar{x} = \bar{y} > 0$ \rightarrow $\bar{x} > A\bar{x}$ \rightarrow $\bar{x} \ge 0$. $(E - A)\bar{x} > 0$

Лемма 1.1. Если A - npodyктивна, то

$$\lim_{\nu \to \infty} A^{\nu} = 0 \qquad \nu \in N$$

Доказательство. $\bar{x}\stackrel{\mathrm{def}}{>} A\bar{x}\geq 0$. Существует $\lambda:0<\lambda<1$ такая, что

$$\lambda \bar{x} > A\bar{x}$$
.

Домножим обе части на A:

$$\lambda A\bar{x} \ge A^2\bar{x} \ge 0$$

A теперь на λ :

$$\lambda^2 \bar{x} > \lambda A \bar{x} \ge 0$$

Не трудно увидеть, что $\lambda^2 \bar{x} > A^2 \bar{x} \geq 0$. Тогда продолжая этот процесс получим

$$\lambda^{\nu}\bar{x} > A^{\nu}\bar{x} > 0.$$

Так как $\lambda^{\nu} \to 0$ при $\nu \to \infty$, то $A^{\nu} \to 0$ при $\nu \to \infty$.

Лемма 1.2. Если A – продуктивна и существует такой вектор \bar{x} , что выполняется $\bar{x} > A\bar{x}$, то $\bar{x} > 0$.

Доказательство.

$$\bar{x} \geq A\bar{x} \geq A^2\bar{x} \geq \dots \geq A^{\nu}\bar{x}$$

$$\bar{x} \geq A^{\nu}\bar{x} \to 0, \text{ при } \nu \to \infty$$

$$\bar{x} \geq 0$$

Лемма 1.3. Если A – продуктивна, то $det(E-A) \neq 0$.

Доказательство. От противного.

Если A – продуктивна, но det(E - A) = 0.

Пусть существует такой вектор $\hat{x} \neq 0$, и пусть $(E-A)\hat{x} = 0$ $\stackrel{\text{Lemma1.2}}{\Longrightarrow}$ $\hat{x} \geq 0$.

Теперь возьмем вектор $(-\hat{x}), (E-A)(-\hat{x}) = 0$ $\stackrel{\text{Lemmal 1.2}}{\Longrightarrow}$ $(-\hat{x}) \geq 0$. Пришли к противоречию.

Необходимость.

$$(E - A)x = y \quad \forall y \ge 0$$

По Лемме 1.3 $det(E-A) \neq 0$, следовательно решение единственно.

$$(E-A)x \geq 0$$

В силу Леммы $1.2 \ x \ge 0$.

Теорема 1.2.

Глава 2

Линейное программирование

Глава 3

Нелинейное программирование)))))))