3^η Εργαστηριακή Άσκηση

Μηχανές καταστάσεων στη Verilog

Εξέταση Άσκησης: 26/4/2023 Παράδοση αναφοράς: 30/4/2023

Στόχος της άσκησης είναι η εξοικείωση με την περιγραφή μηχανών καταστάσεων στη γλώσσα Verilog.

Ζητούμενο 1: Vending Machine

Στο εργαστήριο VLSI τοποθετείται μια αυτόματη μηχανή καφέ για να ενισχύει με καφεΐνη τος φοιτητές του μαθήματος έναντι συμβολικού αντιτίμου 10 cents για κάθε δόση εσπρέσο. Η μηχανή μπορεί να φτιάχνει ένα μονό εσπρέσο κάθε φορά. Ο αυτόματος πωλητής δέχεται μόνο κέρματα των 5 cents και 10 cents ή πληρωμή με NFC (χρεώνει απευθείας 10 cents). Ο αυτόματος πωλητής δεν δίνει ρέστα και η καφετιέρα ξεκινάει την παρασκευή του καφέ μόλις συλλέξει αντίτιμο μεγαλύτερο ίσο του απαιτούμενου. Ο αυτόματος πωλητής δέχεται εισαγωγή χρημάτων μόνο όταν υπάρχει αρκετό νερό (WATER > 1) και υπάρχουν επαρκείς κόκκοι καφέ (BEANS!=0). Θεωρείστε ότι κατα την εισαγωγή χρημάτων δεν μπορεί να τελειώσει το νερό ή ο καφές.

Οι είσοδοι του αυτόματου πωλητή είναι ως εξής:

C5: γίνεται 1 όταν ο χρήστης ρίξει ένα κέρμα 5 cents 0 αλλιώς.

C10: γίνεται 1 όταν ο χρήστης ρίξει ένα κέρμα 10 cents 0 αλλιώς.

NFC: γίνεται 0 όταν ο χρήστης πληρώσει με NFC 1 αλλιώς.

WATER: επίπεδο στάθμης νερού που παίρνει ακέραιες τιμές στο [0, 30]

BEANS: επίπεδο διαθέσιμων κόκκων καφέ. BEANS=0 όταν δεν υπάρχουν διαθέσιμοι κόκκοι καφέ 1 αλλιώς.

Η έξοδοι της μηχανής είναι:

COFFEE: 1 για την παραγωγή καφέ, 0 σε κάθε άλλη περίπτωση. Το COFFEE πρέπει να είναι παλμός με πλάτος ίσο με την περίοδο ενός ρολογιού

ERROR: 0 όταν δεν υπάρχει αρκετό νερό ή δεν υπάρχουν κόκκοι καφέ. Το ERROR είναι 1 σε κάθε άλλη περίπτωση.

Ζητούμενο 1.1: Σχεδιάστε το state machine του αυτόματου πωλητή (vmcoffee).

Ζητούμενο 1.2: Υλοποιήστε το κύκλωμα του vmcoffee καθώς κι ένα testbench για τον έλεγχο της λειτουργίας του.

Ζητούμενο 2: Digital Lock

Σε αυτήν την άσκηση θα φτιάξετε μια 4-bit, 4-ψηφία κλειδαριά με συνδυασμό (dlock) όπως αυτή που χρησιμοποιείται σε διάφορες πόρτες ασφαλείας. Οι είσοδοι της κλειδαριάς είναι:

i) ένα πληκτρολόγιο SW16[3:0] 16 πλήκτρων το οποίο δηλώνει ποιο πλήκτρο πατήθηκε. (Ο εκθέτης δηλώνει την αντιστοιχία χαρακτήρα-πλήκτρου)

6 °	*1	A ²	9 ³
\mathbf{D}^4	C ⁵	B ⁶	8 ⁷
3 ⁸	4 ⁹	5 ¹⁰	7 ¹¹
0 ¹²	1 ¹³	2 ¹⁴	# ¹⁵

Πληκτρολόγιο

- ii) ένα κουμπί Reset (SW1) θετικής λογικής που χρησιμοποιείται για κλειδώσει την κλειδαριά
- iii) ένα κουμπί Enter (SW2) το οποίο χρησιμοποιείται για να σταλεί ένας χαρακτήρας
- iv) ένας διακόπτης Open (SW3) που δηλώνει αν η πόρτα είναι ανοιχτή
- v) ένας διακόπτης εργοστασιακών ρυθμίσεων (rstn) που επαναφέρει τον κωδικό στην τιμή 9999.

Οι έξοδοι της κλειδαριάς είναι:

- i) ένα σήμα lock (θετικός παλμός με πλάτος ένα κύκλο ρολογιού) το οποίο κλειδώνει ή ξεκλειδώνει την πόρτα.
- ii) ένα σήμα Error το οποίο δηλώνει εσφαλμένη εισαγωγή κωδικού και το μήνυμα ERROR εμφανίζεται στην οθόνη
- iii) ένας counter που δηλώνει πόσα ψηφία έχει εισάγει ο χρήστης (κάθε φορά που εισάγει κάποιον κωδικό).

Ένας χρήστης μπορεί λειτουργεί την κλειδαριά ως εξής:

Όταν η πόρτα είναι κλειστή:

- 1. Πατάει το πρώτο πλήκτρο στο πληκτρολόγιο και μετά πατάει Enter
- 2. Επαναλαμβάνει το πρώτο βήμα για τα υπόλοιπα ψηφία.
- 3. Αν ο κωδικός που εισήγαγε είναι σωστός η πόρτα ανοίγει.
- 4. Αν ο κωδικός είναι λάθος η κλειδαριά εμφανίζει ERROR μέχρις ότου πατηθεί ABBC

Όταν η πόρτα είναι ανοιχτή:

- 1. Ο χρήστης μπορεί να πατήσει #*#enter για μεταβεί σε κατάσταση αλλαγής κωδικού.
- 2. Στην συνέχεια εισάγει τα νέα ψηφία πατώντας κουμπιά στο πληκτρολόγιο και μετά enter.
- 3. Επαναλαμβάνει το προηγούμενο βήμα έως ότου συμπληρωθεί ο κωδικός.
 - a. Προσοχή, αν ο χρήστης εισάγει έναν μη δεκαδικό αριθμό η κλειδαριά

εμφανίζει ERROR και η αλλαγή κωδικού ακυρώνεται. Το error παραμένει μέχρις ότου πατηθεί ABBC

- 4. Η πόρτα κλειδώνει αν η πόρτα είναι κλειστή και ο χρήστης πατήσει Reset
- 5. Αν η πόρτα κλειδώσει στη διάρκεια εισαγωγής νέου κωδικού τότε αυτή ακυρώνεται.

Η λειτουργία ξεκινάει με κλειδωμένη την πόρτα. Αν πατηθούν περισσότερα του ενός πλήκτρα πριν το Enter τότε οδηγείται η κλειδαριά στην κατάσταση ERROR. Αν πατηθούν διαδοχικά Enter κάθε επόμενο αγνοείται. Ένα πλήκτρο που πατήθηκε παραμένει η τιμή του στο SW16 μέχρις ότου να πατηθεί κάποιο άλλο.

Ζητούμενο 2.1 Υλοποιήστε ένα κύκλωμα σύγκρισης (lockcomp) που συγκρίνει έναν 16-bit αριθμό εισόδου με έναν αποθηκευμένο αριθμό 16-bit. Το lockcomp πρέπει να υποστηρίζει και λειτουργίες preset και reset για τον αποθηκευμένο αριθμό. Φτιάξτε ένα testbench για τον έλεγχο της λειτουργίας του.

Ζητούμενο 2.2 Σχεδιάστε το state machine της κλειδαριάς (dlock).

Ζητούμενο 2.3 Υλοποιήστε το κύκλωμα του dlock καθώς κι ένα testbench για τον έλεγχο της λειτουργίας του.