CptS 528 Advanced Cyber Security Fall 2025

Team: Ye_MLAdversary

Project Deliverable 2-1

Use Case Diagram

Use Case Name

Use Case Name	Train Baseline Model
Actors	User
Preconditions	CIFAR-10 dataset available and ready to
	be trained
Goal	Train a baseline classifier for the dataset
Scenario	 Load CIFAR-10 dataset
	2. Initialize model
	3. Train the model for N epochs
	4. Save the weights
Exception	- Memory error
	- Dataset mismatch

Use Case Name	Generate Adversarial Example
Actors	Adversary, Classifier Model
Preconditions	Baseline model available and test set are
	ready
Goal	Create adversarial inputs that cause
	misclassification
Scenario	1. Select attack and parameters
	2. Compute gradients
	3. Run inference on adversarial set
	4. Record attack success rate
Exception	- Gradient disabled
	- Incompatible attack settings

Use Case Name	Apply Defense
Actors	Defense Mechanism
Preconditions	Adversarial examples available
Goal	Improve efficiency to chosen attacks
Scenario	1. Choose defense
	2. If training: mix clean batches
	with adversarial batches and
	retrain
	3. If preprocessing: apply transform
	at inference
	4. Evaluate the accuracy under
	same attack settings
Exception	- Defense overly degrades clean
	accuracy
	- Training time takes too long

Use Case Name	Evaluate Results
Actors	User, Classifier model
Preconditions	Baseline, attacked, and defended
	models/outputs available
Goal	Compare clean/adversarial/defended
	perforrmance
Scenario	1. Run standardized evaluation on
	clean test set
	2. Aggregate metrics
	3. Produce plots/tables and store
	seeds/configs
Exception	- Non-reproducible runs due to
_	missing seeds
	- Corrupted logs

UML Diagram

Quality Plan

Security Goals

- Confidentiality
 - Prevent unauthorized access to training data and adversarial examples
 - o Ensure that only legitimate users can view experiment logs and results
 - Restrict dataset and model access to authenticated users
 - Encrypt logs and outputs
- Integrity
 - Ensure that adversarial perturbations and defenses are correctly implemented without corrupt the data
 - o Guarantee that evaluation metrics reflect actual model performance

without tampering

- Use checksums for dataset integrity, seed management for reproducibility
- Enforce immutability in model weights after training checkpoints
- Availability
 - Ensure the trained model remains usable even under adversarial conditions
 - o guarantee that evaluation and defense mechanisms can run reliably without causing denial-of-service due to excessive computation
 - optimize attacks and defenses to run within bounded resources
 - support fallback to baseline evaluation if defenses fail

Security Metrics

- Confidentiality
 - Percentage of experiment files or model weights access by unauthorized users
 - Target: 0%. > 0% indicates a confidentiality breach
- Integrity
 - Percentage of evaluation runs where outputs deviate due to corrupted datasets or logs
 - Targets: 0%. >0% indicates dataset corruption or log tampering that compromises evaluation integrity
 - Percentage of adversarial samples that exceed defined perturbation limits
 - Targets: 0%. >0% indicates the adversarial generation process is violating security constraints and producing invalid examples
- Availability
 - Percentage of evaluation jobs that fail to complete due to resource exhaustion
 - Target: <15% failed jobs. >15% indicates the system is too resource-intensive under adversarial conditions and fails to maintain availability
 - Average runtime overhead introduced by defenses relative to baseline inference
 - Target: <2 times the baseline runtime. >2x indicates defenses degrade system availability by imposing excessive computational cost