

UNIVERSIDADE FEDERAL DA FRONTEIRA SUL CAMPUS CHAPECÓ BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

JUNIOR VITOR RAMISCH

TAREFA DA SEMANA:

EXPLICAR A TABELA RELATIVA AO SOMADOR E SUBTRATOR PARALELO DE 4 BITS

> CHAPECÓ 2018

1 TABELA SOMADOR E SUBTRATOR PARALELO DE 4 BITS

De acordo com a tabela da figura 1 quando os valores das entradas sel₁ e sel₂ estão desligados os circuito desempenha a operação de soma, adicionando o valor de A em B sem valor de transporte (carry in).

Na operação subsequente a operação é a mesma (valor de A é adicionado à B), no entanto como o valor de sel₁ está ligado e de acordo com o circuito essa variável representa o valor de transporte, o valor de saída S será A + B (operação aritmética) adicionado a um, (valor relativo ao carry in da variável Sel₁).

O cálculo relativo à linha três da tabela da figura 1 baseia-se na soma do valor A com o valor resultante da negação de todos os bits do valor de B, isso é consequência do valor 1 que a variável sel₂ assume nessa operação. A saída dessa operação é o valor de A subtraído do valor de B menos um, pois o valor de B foi apenas "negado" e não convertido para complemento de dois.

A operação seguinte se caracteriza pela soma do valor de A com o complemento de dois do valor de B, o que define a subtração no sistema binário de numeração. O complemento de dois do valor de B se dá pelo fato de que nessa operação o valor da variável sel₂ se encontra ligado, o que inverte os bits do valor de B, e por que o valor de sel₁, que no caso é um, está sendo somado com o valor de B. A saída S dessa operação é o valor de A subtraído do valor de B.

Figura 1: Tabela do circuito somador e subtrator paralelo de 4 bits.

sel ₂	sel ₁	operação	descrição	
0	0	S = A + B + 0	adiciona $A \in B (S = A + B)$	
0	1	S = A + B + 1	adiciona A e B incrementado $(S = A + B + 1)$	
1	0	$S = A + \overline{B} + 0$	subtrai B decrementado de A $(S = A - B - 1)$	
1	1	$S = A + \overline{B} + 1$	subtrai B de A (S = A - B)	

Fonte: print screen do material disponibilizado pelo professor.