

GSK988TD简易调试

广州数控设备有限公司

系统简介

GSK988MA/GS	K988TD
控制方式	GSKLink总线
控制轴数	单通道6个进给轴;双通道12个进给轴;
控制主轴数	单通道最大3个主轴;双通道最大6个主轴
快移速度	100m/min (0.1μm单位)
I/O单元	带扩展I/O单元和模拟量输出
伺服驱动	支持GS-L,GR-L驱动单元,对式编码器的电机
PLC	PLC在线编辑,实时监控
编程向导	支持,后台编辑
远程监控	具备网络接口,支持远程监控和文件传输
手轮试切/回退	支持
按键形式	独立式按键或面膜按键

Command the Future_

总线连接

系统简易调试方法1

系统参数配置

根据当前机床的配 置信息选择一套相 应的参数,这样机 床基本功能即可调 试完成。

在当前的操作权限等级2级情况下,按系统面板《系统》键找到《参数》一》《配置》进入设置页面

系统简易调试方法2

设定系统总控制轴数

根据 当前 机床 的配 置信 息选 择相 应的 功能

设定各进给 轴的轴名类 型及轴属性

按系统面板《设置》键找到《CNC设置》->《系统调试》->《进给轴主轴设置》 进入设置页面

从站号设定

对应系统参数 3717,主轴从 站号

对应系统参数3050/3051, NO.3050为I/O单元个数, NO.3051为I/O单元从站号

对应驱动器参数P156驱动端 对应系统参数1023 从站号 系统端从站号 MDI 复位 系统 -> GSKLink -> 通信 主站号 从站号 从站型号 接线顺序 GS2050Link 3 GS2050L 2 GS2050Link 3 GS2050Link 2 5 GS2050L **5**_/ GS2050L 5 100 IOR44T I0-1 6 系统参数 1023:设定进给伺服从站的逻辑 ID号(0~99;0表示没有该从站) ₫ ₺ 18:07:12 00 I/0单元 通信

按系统面板《系统》键找到《GSKLink》->《通信》进入通讯设置页面

从站号设定正常的界面

MDI 复位	Ž					
系统 -> GSKL	ink -> 通信					
	主站号	从站号	从站型号	接线顺序		
X	1	1	GS2050Link	3		
Υ	2	2	GS2050L	1		
Z	3	3	GS2050Link	4		
Α	4	4	GS2050Link	2		
С	5	5	GS2050L	5		
В	0					
S	5	5	GS2050L	5		
IO-1	100	100	IOR44T	6		
G₩	0					
系统参数 1023:设定进给伺服从站的逻辑 ID号(0~99;0表示没有该从站)						
□ □ □ 18:07:12 00						
▲ 伺	服 1/0单元	通信				

按系统面板《系统》键找到《GSKLink》->《通信》->《系统设置》进入设置页面

总线相关参数

相关参数 位 型号 参数号 参数意义 备注 系统GSKLink通信功能是否 #0 9000 有效 0: 无效 1: 有效 各轴的逻辑ID号 设置的轴号与各轴驱动单元设置值相对应 1023 系统控制的I/O数量 3050 3051 **GSK988** CNC 系统控制I/O单元1~4的逻辑 3052 系列参数 ID号 3053 3054 设置为-4~-1时表示该主轴为模拟主轴。 各主轴的放大器号 设置为1~99时为总线主轴,设置值必须 3717 与对应的主轴驱动单元一致。 与CNC参数1023的各轴逻辑ID号相对应 GSKLink 通信伺服从机号 PA156 GS/GR系 主轴为3017 伺服 列 控制方式选择: 21为总线方 PA4 式 I/O 参数由系统设定 IOL 单元

Command the Future_

IO单元参数设定

按系统面板《系统》键找到《GSKLink》->《I/O单元》->《I/O参数》进入设置页面

MDI	复位			
系统 -> G	SKLink -> I/0单元 -> I	/0参数 ->]	I/0单元1	
	输入端口设置		输出端口设	2置
端口	映射地址	端口	映射地址	断环默认状态 🖆
DI01	X0100.0	D001	Y0100.0	0
DI02	X0100.1	D002	Y0100.1	0
D103	X0100.2	D003	Y0100.2	0
DI04	X0100.3	D004	Y0100.3	0
D105	X0100.4	D005	Y0100.4	0
D106	X0100.5	D006	Y0100.5	0
D107	X0100.6	D007	Y0100.6	0
D108	X0100.7	D008	Y0100.7	0
D109	X0101.0	D009	Y0101.0	0
DI 10	X0101.1	DO10	Y0101.1	0
DI11	X0101.2	D011	Y0101.2	0
DI12	X0101.3	D012	Y0101.3	0 -
DI13	X0101.4	D013	Y0101.4	0
DI14	X0101.5	D014	Y0101.5	0
DI 15	X0101.6	D015	Y0101.6	0
DI 16	X0101.7	D016	Y0101.7	0
DI 17	X0102.0	A001		0
				助 14-59-05

齿轮比设定

编码器线数自动读取不需要设定

MDI 复位					MDI	复位			报警(1/1):ALARM 850	
设置 -> CNC设置	量 -> 系统调试 8.电子齿轮比设置	ř	说明	计算	设置 -> (NC设置 -> 8.电	系统调试 子齿轮比设置	·	说明	计算
1.选择控制轴	○ Y轴	○ 2軸	选择控制轴	保存		果输出选择 最参数PA29/			计算结果输出。 结果输出到伺服齿轮比参数PA29/PA 30中。	保存
2.计算结果输出	○ C轴 	○ P軸				柔性齿轮比[MR1/DMR2			
○ 伺服参数F	PA29/PA30 i轮比DMR1/DMR2				编码器	以下数据: 一转脉冲数	131072			
3.请输入以下数 编码器一转脉						8 齿轮数	1			
导程 丝杠端齿轮数	8		丝杆螺距		指令倍	乘比(CMR) 乘比(DMR)	1			
电机端齿轮数 指令倍乘比(11		速箱的比值, 则为 1: 1		4.计算结				安计算则计算出当前齿轮比 事按保存即可直接保存到信	
10 4 HV M		<u></u>	■ 5 18:56:33 00	返回	伺服齿	轮比 二	2048 :	125	区动器 	返回
系统设	置 系统时间 系统 IP	机床软面 高速高 设置	精 刚性攻丝 系统调试		Δ	系统设置系	统时间 系统 IP	机床软面 高速板 设		

按系统面板《设置》键找到《CNC设置》->《系统调试》->《电子齿轮比设置》->《进入调试》->选择设置齿轮比轴及输入正确的螺距->《计算》->《保存》

手动按键设定

D01~D05为X/Y/Z/4TH/C轴手动按键设定

按系统面板《系统》键找到《梯形图》一〉《PLC数据》一〉《D设置》进入设置页面

轴方向设置

各轴移动方向取反

各轴手动轴移方向

各轴手脉轴移方向

系统参数1811#2

梯形图K参数 K8.0~K8.4

系统参数7102#0

- 1、系统参数设定: NO.1815#5设为1,选择绝对式编码器。 NO.1815#4设为0,选择机械位置与实际位置不一致
- 2、各轴拖板移动至安全位置点
- 3、重新上电,清除系统除500号之外的其他报警
- 4、切换到回零方式,逐个轴手动按键按一次
- 5、各轴参考点指示灯亮,回零完成

正方向边界由参数#1320设定

负方向边界由参数#1321设定

#1300的Bit7设定为0时,在超程后产生报警;

#1300的Bit7设定为1时,在超程前产生报警。

主轴CS轮廓控制

按系统面板《设置》键找到《CNC设置》一》《系统调试》一》《CS轴轮廓控制轴功能》一》《进入调试》进入设置页面,主轴类型设置为总线CS轴,对应的进控制轴设为C,系统设置参数有:1006.0设为1,1006.1设为0;1022设为0;3700.0设为1;K16.5=1;DT3设置CS切换时间。

MDI 2	夏位									
设置 -> Ch	IC设置 -	-> 系统调证	t ,							
	5.	CS轮廓控制	抽功能		ř			说明		选择
1.各主轴力	是否使用	Cs轮廓控制	引功能:			设定	ZS1是否使	用CS轮廓打	空制功能	
S1是否使	用CS轮	郭控制功能	(3701#7)							
○不使	用	◉ 使用								
S2是否使	用CS轮点	郭控制功能	(3701#7)							
● 不使	用	○ 使用								
2. 选择控	制轴									
○ X軸		○ Y轴		○酒						
○ A轴		● C神		○ B神						
3.设定C轴	的旋转车	由类型(100	6#1#0)							
● 旋转轴	由 A型	○ 旋转轴	由B型	○ 直线轴						
4.设定C轴	4.设定C轴的旋转轴的循环显示功能是否有效(1008#0 ☑								1 00 17 00	返回
1								■ 5 2	1:03:47 00	
<u>▲</u> 著	统设置	系统时间	系统IP	机床软面 板	高速设	高精 置	刚性攻丝	系统调试		

主轴CS轮廓控制

C轴和主轴从机设为一致5

主轴CS轮廓控制基本参数

参数号	参数定义
1010	如果无C轴,则系统先增加一个轴,修改为参数需要重新上电
8130	
1020	轴名: C轴设为67
1022	轴属性,可设为0,如C轴需要特殊的插补,则根据需要设置为XYZ的平行轴
1023	设定伺服轴号,同相对应的主轴轴号#3717设定为一致
1004#6	将旋转轴的最新指令增量设为10倍,(即如果系统是ISC 当量的,此参数设为1后C轴的当量则为0.001) 参数设为1后,计算旋转轴齿轮比时的最小当量需要×10,这样可提高C轴的速度。
1006#0 1006#1	将C轴设为旋转轴:00: 直线轴 01: 旋转轴(A型) 11: 旋转轴(B型)
1008#0	设定旋转轴的循环显示功能是否有效 0: 无效 1: 有效
1008#1	设定绝对指令时轴的旋转方向 0: 距目标较近的旋转方向 1: 指令值符号指定的方向
1008#2	相对坐标为 0: 不按每一转的移动量循环 1: 按每一转的移动量循环
1260	旋转轴的一转移动量,如果系统是ISC(0.0001)则设为3600000,如果是ISB(0.001)则设为360000
1811#2	各轴脉冲输出方向选择 0: 不取反 1: 取反
3701#7	CS轴轮廓控制有效,设为1

多主轴设置

将3710号参数设为2

第二主轴为模拟主轴

第二主轴设为-1~-4 注: -1~-2为IO单元 主轴1接口输出模拟 电压; -3~-4为主轴2 接口输出

第二主轴为总线主轴

A轴和主轴2从机设为 一致

按系统面板《系统》键找到《GSKLink》->《通信》->《系统设置》进入设置页面

第二/三主轴相关参数

	参数号	参数定义	备注
系统参数	3710	CNC控制主轴数	修改为2,如果还有第二主轴则设为3,修改此参数后系统必须重新上电
	3717	各主轴放大器号	设为1~99为总线主轴,-1~-4为模拟主轴
	3723	主轴编码器号	设0为总线反馈,1~~2为编码器接口CN21/CN22 接口反馈
	3705#4	输出SF代码	多主轴必须设为1
PLC参数	K16.0 K16.1	第二,三主轴有效	多主轴必须设为1
	K16.5		设为1
	K16.6	速度切换有、无效	
	K16.7		

多主轴由P来指令

使用M3S—Pn指定主轴转速,

系统设置参数有: 3702.1=0; 3703.3=1

3781设定P的n值。

如3781中S1设为1,S2设为2,

M3 S100 P1 第一主轴正转100转

M3 S150 P2 第二主轴正转150转

刚性攻丝

- 1、plc参数K10.4设定为1。带动力头的机床,5200#7必须设定为1。
- 2、先按照前面的调试步骤,把CS轴和动力头的速度/位置切换调试正常,执行M14/M15,M16/M17,M18/M19,电子齿轮比设定正确
- 3、第一主轴刚性攻牙先执行M24,第二主轴刚性攻牙先执行M25,第三主轴攻牙为M26
- 4、攻牙程序示例: G99 (M24/M25/M26) M29 S300 G84 W-20 F2 (G88 U-20 F2) G80

低周波振荡切削 (断屑)

G165指令格式	x V:
G165 P1~5	开启振荡切削功能(P指定模式)
G1	
G165 P0	关闭振荡切削功能。
相关参数	
1001 VFF *	* * * * *
[输入类型]	参数输入
[数据类型]	位路径型
#7 VFF	
0: 无效。	
1:有效。	
8888 LFV调 	5 系数
[数据类型]	实数路径型
[数据单位]	无
[数据范围]	0∼5 00
默认100	

手轮试切/回退功能

在自动运行中使用手轮,使程序正向移动或反向移动。通过实际上使机械动作的同时加以执行,即可简单检测程序的错误等。把参数HWV (No.6401#0)设定为"1"时,手控手轮试切(手轮回退)功能有效,需重新上电。

相关参数: 1401#1 LRP 定位(G00)为 0: 非直线插补型定位。1: 直线插补型定位。

6400# 0 RPO 手控手轮回退功能中,将快速移动时的进给速度0: 钳制在相当于倍率10%上。1: 钳制在相当于倍率100%

6400#1 FWD 在手控手轮回退功能中,程序的执行: 0: 在正向移动和反向移动中都可以进行。1: 只在正向移动中可

以进行,禁止在反向移动中进行。

6400#5 RVN是否在手控手轮回退功能,禁止被组化设定的M代码以外的M代码的: 0:不予禁止。1:予以禁止。

6402#0 HWMR 手轮试切与回退中,通过操作面板快速倍率按键选择手轮倍率: 0: 无效 1:有效

6402#4 G0LP 手轮试切与回退中,G0的最低速度限制采: 0: 内部速度 1: #1421参数F0速度

6402#5 MWR 手轮回退功能中,基于反向移动中的等待M代码的等待中的手轮操作: 0: 禁止反转。1: 可以反转。

6402#6#7 G0T2 G0T 手轮试切与回退中,G0的加减速时间参数采用#1620 参数设置值: 00:1倍; 01:2倍; 10:3倍

; 11:4倍

刀具寿命功能功能

刀具分为若干组,每组指定相应的刀具寿命(使用时间或使用次数),一把刀具每使用一次,使用的时间或次数就累计起来,当刀具到达寿命时,

按事先确定的顺序,选择同一组的下一把刀。要使用刀具寿命管理,请将参数TLF(No.8132#0)设定为"1"。由6813号参数可以定义总的组数,

存储的组号和每组的刀号用6800号参数的第0位和第1位(GS1和GS2)设定

GS2	GS1	组数	刀具数量
0	0	1~最大组数(No.6813)的 1/8	1~16
0	1	1~最大组数(No.6813)的 1/4	1~8
1	0	1~最大组数(No.6813)的 1/2	1~4
1	1	1~最大组数(No.6813)	1~2

刀具寿命功能功能

刀具寿命计时/计数

通过参数LTM (No.6800#2)的设定,即可作为时间或次数来登录刀具寿命值。

1.按使用时间(分钟)指定刀具寿命

加工程序在T□□99(□□=刀具组号)和T□□88之间,记时由参数FCO(No.6805#0)0:1 秒钟间隔1:0.1 秒钟间隔控制,可通过倍率进行变更。对于单程序段停止、进给保持、快速移动、暂停、机械锁住以及互锁等所需的时间不予计数。刀具的寿命最多能指定4300分钟。

1.按使用次数指定刀具寿命

每一加工过程计数一次,从加工程序启动开始到NC由M02或M30指令复位结束为一个加工过程。一次加工过程,计数器加1。即使在一个加工过程中同组刀具被指定了多次,计数器也只增加1。但是,可通过刀具寿命计数再开M代码(参数(No.6811))再次计数。

当遇到主程序中的M99后,之后指令的T代码也将再次计数1。刀具的寿命最多可设定65535次。在加工程序中,T代码按下列格式指令刀具组。

指令格式

T□□99; 开始使用□□组的刀具。

T□□88; 结束□□组的刀具寿命管理,取消正在使用的刀偏。

M02 (M30); 加工程序结束;

IO单元

IOR系列IO单元有三款,IOR-04T或IOR-44T和IOR-21F

型号	信号输入	信号输出	模拟量输出	输入有效电平	输出有效电平
IOR-04T	48点	32点		高电平	低电平
IOR-44T	48点	32点	4路	高电平	低电平
IOR-21F	24点	16点	2路	高电平	高电平

Command the Future_

IOR-T的外观图

+24V与0V为电源输出,供外部信号使用

为了保证IO单元的最佳工作性能,请确保IO单元与输出端口的继电器共用一个24V

+24VCOM不需要连接

IOR-F的外观图

IOR-F的IO单元,在分线器端的VCOM端子,必须要连接+24V,否则无输出

分线器47,48,49,50脚对应为VCOM

模拟电压

3:

IO单元侧

第1主轴接口

第1	主轴接口	(9针)

第2主轴接口(9针)

管脚	信号	说明
1	GND	信号地
2	SVC1	第一路模拟输出
4	GND	信号地
5	SVC2	第二路模拟输出

■ 第2主轴接口

管脚	信号	说明	
1	GND	信号地	
2	SVC3	第三路模拟输出	
4	GND	信号地	
5	SVC4	第四模拟输出	

U盘功能

U盘与CNC双向传输

- 1、按《切换》光标在系统目录和U盘目录之间进行切换
 - 2、按 型 光标键,选中目标,按 型 光标键可展开所有的子文件
 - 3、通过 6 光标键, 选中需要复制的目标,按 3 键选中目标(反复按 3 键 ,则为选择/取消间切换)
 - 4、按 软键, 再按 软键, 再按 软键, 将选中的程序复制到本地目录 或 U 盘目录中

把U盘插入系统U盘接口,按《系统》键,按《文件管理》软键,进入文件

管理页面

U盘功能

传输梯形图

按《本地目录》软键,进入本地目录界面

按《U盘目录》软键,进入U盘地目录界面

按 方向键, 选择要复制的梯形图 按 软键, 当前选中的梯形图复制到本地目录或 U 盘目录

MDI 复位		
系统-> 梯形图 -> 程序目录 -> 本地目录		
程序名	长度(字节)	修改时间
11111.LD2	129,564	2013-12-26,15:13:21
22222.LD2	129,560	2014-02-13,10:05:20
230.LD2	130,382	2013-12-26,14:20:04
4789 - 1 D2	129,307	2013-12-26,14:31:40
F9.4.LD2	129,788	2014-09-07,08:05:35
STDPLC(TA_TB).LD2	123,662	2014-01-20,15:30:37
STDPLC(独立式按键).LD2	128,058	2014-02-08,08:43:37
STDPLC-TEST.LD2	130,352	2014-07-23,11:59:51
STDPLC-TMB.LD2	129,560	2014-05-29,16:15:48
STDPLC.LD2	129,307	2014-02-27,14:56:45
STDPLC_TEST(支持988TA-H).LD2	130,465	2014-02-13,15:59:46
测试 10响应梯图 .LD2	47,166	2013-12-06,08:28:26
		₫ 🕏 5:45:58
^ 本地目录 □ □盘目录 □	打开 执行程序	停止程序 輸出 >

在2级操作权限下,把U盘插入系统U盘接口并识别后,按《系统》->《梯形图》->《程序目录》,进入目录界面