TD 6 – Vapnik-Chervonenkis Dimension

Mathematics of data

04/12/24

Exercise 1. Let S be a set of classifiers $\mathbb{R}^d \to \{0,1\}$. For any $k \geq 1$, denote

$$C(S,k) := \sup_{x_1,\dots,x_k \in \mathbb{R}} \operatorname{Card}\{(f(x_1),\dots,f(x_k)) : f \in S\}.$$

We say that S is a Vapnik-Chervonenkis (VC) class if $V(S) := \sup\{k \geq 1 : C(S,k) = 2^k\} < +\infty$. If this is the case, V(S) is called the Vapnik-Chervonenkis dimension of S.

1. Let S be a finite set. Is S a VC class? Upper bound its VC dimension.

For any collection of measurable subsets of \mathcal{X} , define the model

$$S_{\mathcal{A}} = \{ \mathbf{1}_A : A \in \mathcal{A} \}.$$

For each case below, say whether $S_{\mathcal{A}}$ is a VC class. If this is the case, determine its VC dimension.

- 2. $\mathcal{X} = \mathbb{R}$ and \mathcal{A} is the set of half-lines of the form $(-\infty, a]$ with $a \in \mathbb{R}$.
- 3. $\mathcal{X} = \mathbb{R}$ and \mathcal{A} is the set of half-lines of \mathbb{R} .
- 4. $\mathcal{X} = \mathbb{R}$ and \mathcal{A} is the set of intervals of \mathbb{R} .
- 5. $\mathcal{X} = \mathbb{R}^d$ and $\mathcal{A} = \{(-\infty, a_1] \times \cdots \times (-\infty, a_d] : a_1, \dots, a_d \in \mathbb{R}\}.$
- 6. $\mathcal{X} = \mathbb{R}^d$ and $\mathcal{A} = \{ [a_1, b_1] \times \cdots \times [a_d, b_d] : a_1, \dots, a_d, b_1, \dots, b_d \in \mathbb{R} \}.$
- 7. $\mathcal{X} = \mathbb{R}^d$ and \mathcal{A} is the set of convex subsets of \mathbb{R}^d .

Solutions

Exercise 1.

- 1. $C(S, k) \leq \operatorname{Card} S$ for any k, so $V(S) \leq \log_2(\operatorname{Card} S)$.
- 2. $C(S_A, k) = k + 1$, so $V(S_A) = 1$.
- 3. $C(S_A, k) = 2k$, so $V(S_A) = 2$.
- 4. $C(S_A, k) = 1 + k(k+1)/2$, so $V(S_A) = 2$.
- 5. For $i=1,\ldots,d$, denote $e_i=(0,\ldots,1,\ldots,0)$ with 1 at coordinate i. Then, any combination of labels can be assigned to (e_1,\ldots,e_d) by an element of $S_{\mathcal{A}}$. Indeed, if we want to assign 1 to e_i for $i\in I$ for some subset $I\subset\{1,\ldots,d\}$, it suffices to set $a_i=1$ if $i\in I$ and $a_i=0$ otherwise. Therefore, $V(S_{\mathcal{A}})\geq d$. Now let $x_1,\ldots,x_n\in\mathbb{R}^d$ such that $n\geq d+1$. There exists at least one index $1\leq j\leq n$ such that

for all
$$i = 1, \dots, d$$
, $(x_j)_i \le \max_{k \ne j} (x_k)_i$.

Then, no element of S_A can assign 0 to x_j and 1 to all the other points x_k , $k \neq j$. This proves that $V(S_A) = d$.

6. With the notations above, any combination of labels can be assigned to $(e_1, \ldots, e_d, -e_1, \ldots, -e_d)$. Indeed, if we want to assign 1 to e_i for $i \in I \subset \{1, \ldots, d\}$ and to $-e_j$ for $j \in J \subset \{1, \ldots, d\}$, it suffices to set $a_j = -1$ if $j \in J$ and 0 otherwise, and $b_i = 1$ if $i \in I$ and 0 otherwise. Thereforer, $V(S_A) \geq 2d$. Now if $x_1, \ldots, x_n \in \mathbb{R}^d$ with $n \geq 2d + 1$, there exists at least one index $1 \leq j \leq n$ such that

for all
$$i = 1, \dots, d$$
, $(x_j)_i \le \max_{k \ne j} (x_k)_i$

and

for all
$$i = 1, \ldots, d$$
, $(x_j)_i \ge \min_{k \ne j} (x_k)_i$.

Then, no element of S_A can assign 0 to x_j and 1 to all the other points x_k , $k \neq j$. This proves that $V(S_A) = 2d$.

7. S_A is not a VC class (take distinct x_1, \ldots, x_n on a 2D circle, and choose A to be the convex hull of the points you mant to map to 1.)