Lecture 3: QR-Factorization

This lecture introduces the Gram-Schmidt orthonormalization process and the associated QR-factorization of matrices. It also outlines some applications of this factorization. This corresponds to section 2.6 of the textbook. In addition, supplementary information on other algorithms used to produce QR-factorizations is given.

1 Gram-Schmidt orthonormalization process

Consider n linearly independent vectors u_1, \ldots, u_n in \mathbb{C}^m . Observe that we necessarily have $m \geq n$. We wish to 'orthonormalize' them, i.e., to create vectors v_1, \ldots, v_n such that

$$(v_1,\ldots,v_k)$$
 is an orthonormal basis for $V_k:=\mathrm{span}[u_1,\ldots,u_k]$ for all $1k\in[1:n]$.

It is always possible to find such vectors, and in fact they are uniquely determined if the additional condition $\langle v_k, u_k \rangle > 0$ is imposed. The step-by-step construction is based on the following scheme.

Suppose that v_1, \ldots, v_{k-1} have been obtained; search in V_k for a vector

$$\widetilde{v}_k = u_k + \sum_{i=1}^{k-1} c_{k,i} v_i$$
 such that $\widetilde{v}_k \perp V_{k-1}$;

the conditions $0 = \langle \widetilde{v}_k, v_i \rangle = \langle u_k, v_i \rangle + c_{k,i}, i \in [1:k-1]$, impose the choice $c_{k,i} = -\langle u_k, v_i \rangle$; now that \widetilde{v}_k is completely determined, normalize it to obtain the vector $v_k = \frac{1}{\|\widetilde{v}_k\|} \widetilde{v}_k$.

For instance, let us write down explicitly all the steps in the orthonormalization process for the vectors

$$\underline{u_1 = [6, 3, 2]^\top}, \quad \underline{u_2 = [6, 6, 1]^\top}, \quad \underline{u_3 = [1, 1, 1]^\top}.$$

- $\widetilde{v}_1 = u_1$, $\|\widetilde{v}_1\| = \sqrt{36 + 3 + 4} = 7$, $v_1 = 1/7 [6, 3, 2]^\top$;
- $\widetilde{v}_2 = u_2 + \alpha v_1$, $0 = \langle \widetilde{v}_2, v_1 \rangle \Rightarrow \alpha = -\langle u_2, v_1 \rangle = -(16 + 18 + 2)/7$, $\underline{\alpha} = -8$, $\widetilde{v}_2 = 1/7 [7 \cdot 6 8 \cdot 6, 7 \cdot 6 8 \cdot 3, 7 \cdot 1 8 \cdot 2]^\top = 1/7 [-6, 18, -9]^\top = 3/7 [-2, 6, -3]^\top$, $\|\widetilde{v}_2\| = 3/7 \sqrt{4 + 36 + 9} = 3$, $v_2 = 1/7 [-2, 6, -3]^\top$;
- $$\begin{split} \bullet \ \, \widetilde{v}_3 &= u_3 + \beta v_2 + \gamma v_1, \quad 0 = \langle \widetilde{v}_3, v_2 \rangle, \\ 0 &= \langle \widetilde{v}_3, v_1 \rangle, \\ \Rightarrow \gamma &= -\langle u_3, v_1 \rangle = -(6+3+2)/7, \quad \frac{\beta = -1/7,}{\gamma = -11/7,} \\ \widetilde{v}_3 &= 1/49 \left[49 + 2 66, 49 6 33, 49 + 3 22 \right]^\top = 1/49 \left[-15, 10, 30 \right]^\top = 5/49 \left[-3, 2, 6 \right]^\top, \\ \|\widetilde{v}_3\| &= 5/49 \sqrt{9 + 4 + 36} = 5/7, \quad \underline{v}_3 = 1/7 \left[-3, 2, 6 \right]^\top. \end{split}$$

2 QR-factorization

Theorem 1. For a nonsingular $A \in \mathcal{M}_n$, there exists a unique pair of unitary matrix $Q \in \mathcal{M}_n$ and upper triangular matrix $R \in \mathcal{M}_n$ with positive diagonal entries such that

$$A = QR$$
.

The QR-factorization can be used for the following tasks:

solving linear systems according to

$$[Ax = b] \iff [Qy = b, \quad y = Rx],$$

since the system y = Rx is easy to solve [backward substitution], and the system Qy = b is even easier to solve [take $y = Q^*b$];

- calculate the (modulus of the) determinant and find the inverse $[|\det A| = \prod_{i=1}^n r_{i,i}, A^{-1} = R^{-1}Q^*]$;
- find the Cholesky factorization of a positive definite matrix $B = A^*A \in \mathcal{M}_n$, $A \in \mathcal{M}_n$ being nonsingular (we will later see why every positive definite matrix can be factored in this way), i.e., find a factorization

$$B = LL^*$$
,

where $L \in \mathcal{M}_n$ is lower triangular with positive diagonal entries $[L = R^*]$;

• find a Schur's factorization of a matrix $A \in \mathcal{M}_n$ via the QR-algorithm defined by

Note that A_k is always unitarily equivalent to A. If all the eigenvalues of A have distinct moduli, then A_k tends to an upper triangular matrix T (which is therefore unitarily equivalent to A, see Exercise 3). The eigenvalues of A are read on the diagonal of T.

In the general case of nonsingular or nonsquare matrices, the QR-factorization reads:

Theorem 2. For $A \in \mathcal{M}_{m \times n}$, $m \geq n$, there exists a matrix $Q \in \mathcal{M}_{m \times n}$ with orthonormal columns and an upper triangular matrix $R \in \mathcal{M}_n$ such that

$$A = QR$$
.

Beware that the QR-factorization of a rectangular matrix A is not always understood with Q rectangular and R square, but sometimes with Q square and R rectangular, as with the MATLAB command qr.

3 Proof of Theorems 1 and 2

Uniqueness: Suppose that $A = Q_1R_1 = Q_2R_2$ where Q_1, Q_2 are unitary and R_1, R_2 are upper triangular with positive diagonal entries. Then

$$M := R_1 R_2^{-1} = Q_1^* Q_2.$$

Since M is a unitary (hence normal) matrix which is also upper triangular, it must be diagonal (see Lemma 4 of Lecture 2). Note also that the diagonal entries of M are positive (because the upper triangular matrices R_1 and R_2^{-1} have positive diagonal entries) and of modulus one (because M is a diagonal unitary matrix). We deduce that M = I, and consequently that

$$R_1 = R_2, \qquad Q_1 = Q_2.$$

Existence: Let us consider a matrix $A \in \mathcal{M}_{m \times n}$ with $m \geq n$, and let $u_1, \ldots, u_n \in \mathbb{C}^m$ denote its columns. We may assume that u_1, \ldots, u_n are linearly independent (otherwise limiting arguments can be used, see Exercise 4). Then the result is just a matrix interpretation of the Gram-Schmidt orthonormalization process of m linearly independent vectors in \mathbb{C}^n . Indeed, the Gram-Schmidt algorithm produces orthonormal vectors $v_1, \ldots, v_n \in \mathbb{C}^m$ such that, for each $j \in [1:n]$,

(1)
$$u_j = \sum_{k=1}^j r_{k,j} v_k = \sum_{k=1}^n r_{k,j} v_k,$$

with $r_{k,j}=0$ for k>j, in other words, $R:=[r_{i,j}]_{i,j=1}^n$ is an $n\times n$ upper triangular matrix. The n equations (1) reduce, in matrix form, to A=QR, where Q is the $m\times n$ matrix whose columns are the orthonormal vectors v_1,\ldots,v_n .

[To explain the other QR-factorization, let us complete v_1, \ldots, v_n with v_{m+1}, \ldots, v_n to form an orthonormal basis (v_1, \ldots, v_m) of \mathbb{C}^m . The analogs of the equations (1), i.e., $u_j = \sum_{k=1}^m r_{k,j} v_k$ with $r_{k,j} = 0$ for k > j, read A = QR, where Q is the $m \times m$ orthogonal matrix with columns v_1, \ldots, v_m and R is an $m \times n$ upper triangular matrix.]

To illustrate the matrix interpretation, observe that the orthonormalization carried out in Section 1 translates into the factorization [identify all the entries]

$$\begin{bmatrix} 6 & 6 & 1 \\ 3 & 6 & 1 \\ 2 & 1 & 1 \end{bmatrix} = \frac{1}{7} \begin{bmatrix} 6 & -2 & -3 \\ 3 & 6 & 2 \\ 2 & -3 & 6 \end{bmatrix} \underbrace{\begin{bmatrix} 7 & 8 & 11/7 \\ 0 & 3 & 1/7 \\ 0 & 0 & 5/7 \end{bmatrix}}_{\mathbf{upper triangular}}.$$

An aside: other QR-factorization algorithms

The Gram–Schmidt algorithm has the disadvantage that small imprecisions in the calculation of inner products accumulate quickly and lead to effective loss of orthogonality. Alternative ways to obtain a QR-factorization are presented below on some examples. They are based on the following idea and exploits the fact that the computed product of unitary matrices gives a unitary matrix with acceptable error.

Multiply the (real) matrix A on the left by some orthogonal matrices Q_i which 'eliminate' some entries below the main 'diagonal', until the result is an upper triangular matrix R, thus

$$Q_k \cdots Q_2 Q_1 A = R$$
 yields $A = QR$, with $Q = Q_1^* Q_2^* \cdots Q_k^*$.

We mainly know two types of unitary transformations, namely rotations and reflexions. Therefore, the two methods we describe are associated with Givens rotations [preferred when A is sparse] and Householder reflections [preferred when A is dense].

Givens rotations

The matrix

corresponds to a rotation along the two-dimensional space $\operatorname{span}[e_i, e_j]$. The rows of the matrix $\Omega^{[i,j]}A$ are the same as the rows of A, except for the i-th and j-th rows, which are linear combinations of the i-th and j-th rows of A. By choosing θ appropriately, we may introduce a zero

at a prescribed position on one of these rows. Consider for example the matrix $A = \begin{bmatrix} 6 & 6 & 1 \\ 3 & 6 & 1 \\ 2 & 1 & 1 \end{bmatrix}$

of the end of Section 1. We pick $\Omega^{[1,2]}$ so that $\Omega^{[1,2]}A = \begin{bmatrix} 6 & 6 & 1 \\ 0 & \times & \times \\ \times & \times & \times \end{bmatrix}$. Then we pick $\Omega^{[1,3]}$ so that

 $\Omega^{[1,3]}\Omega^{[1,2]}A = egin{bmatrix} imes & imes & imes \\ 0 & imes & imes \\ 0 & imes & imes \end{bmatrix}$. Finally, thanks to the leading zeros in the second and third rows,

we can pick $\Omega^{[2,3]}$ so that $\Omega^{[2,3]}\Omega^{[1,3]}\Omega^{[1,2]}A=\begin{bmatrix} \times&\times&\times\\0&\times&\times\\0&0&\times \end{bmatrix}$. The matrix $\left[\Omega^{[2,3]}\Omega^{[1,3]}\Omega^{[1,2]}\right]^*$ is the unitary matrix required in the factorization of A.

Householder reflections

The reflection in the direction of a vector v transforms v into -v while leaving the space v^{\perp} unchanged. It can therefore be expressed through the Hermitian unitary matrix

$$H_v := I - \frac{2}{\|v\|^2} \, vv^*.$$

Consider the matrix $A = \begin{bmatrix} 6 & 6 & 1 \\ 3 & 6 & 1 \\ 2 & 1 & 1 \end{bmatrix}$ once again. We may transform $u_1 = [6,3,2]^{\top}$ into $7e_1 = [6,3,2]^{\top}$

 $[7,0,0]^{\top}$ by way of the reflection in the direction $v_1=u_1-7e_1=[-1,3,2]^{\top}$. The latter is represented by the matrix

$$H_{v_1} = I - \frac{2}{\|v_1\|^2} v_1 v_1^* = I - \frac{1}{7} \begin{bmatrix} 1 & -3 & -2 \\ -3 & 9 & 6 \\ -2 & 6 & 4 \end{bmatrix} = \frac{1}{7} \begin{bmatrix} 6 & 3 & 2 \\ 3 & -2 & -6 \\ 2 & -6 & 3 \end{bmatrix}.$$

Then the matrix $H_{v_1}A$ has the form $\begin{bmatrix} 7 & \times & \times \\ 0 & \times & \times \\ 0 & \times & \times \end{bmatrix}$, where the precise expression for the second column is

$$H_{v_1}u_2 = u_2 - \frac{\langle v_1, u_2 \rangle}{7} v_1 = u_2 - 2v_1 = \begin{bmatrix} 8 \\ 0 \\ -3 \end{bmatrix}.$$

To cut the argument short, we may observe at this point that the multiplication of $H_{v_1}A$ on the left by the permutation matrix $P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ [which can be interpreted as $H_{e_2-e_3}$] exchanges the second and third rows, thus gives an upper triangular matrix. In conclusion, the orthogonal matrix Q has been obtained as

$$(PH_{v_1})^* = H_{v_1}^* P^* = H_{v_1} P = \frac{1}{7} \begin{bmatrix} 6 & 2 & 3 \\ 3 & -6 & -2 \\ 2 & 3 & -6 \end{bmatrix}.$$

4 Exercises

- Ex.1: Prove that a matrix $A \in \mathcal{M}_{m \times n}$, $m \le n$, can be factored as A = LP where $L \in \mathcal{M}_m$ is lower triangular and $P \in \mathcal{M}_{m \times n}$ has orthonormal rows.
- Ex.2: Prove the uniqueness of the Cholesky factorization of a positive definite matrix.
- Ex.3: Exercise 5 p. 117.
- Ex.4: Fill in the details of the following argument: for $A \in \mathcal{M}_{m \times n}$ with $m \geq n$, there exists a sequence of matrices $A_k \in \mathcal{M}_{m \times n}$ with linearly independent columns such that $A_k \to A$ as $k \to \infty$; each A_k can be written as $A_k = Q_k R_k$ where $Q_k \in \mathcal{M}_{m \times n}$ has orthonormal columns and $R_k \in \mathcal{M}_n$ is upper triangular; there exists a subsequence (Q_{k_j}) converging to a matrix $Q \in \mathcal{M}_{m \times n}$ with orthonormal columns, and the sequence (R_{k_j}) converges to an upper triangular matrix $R \in \mathcal{M}_n$; taking the limit when $j \to \infty$ yields A = QR.
- Ex.5: Fill in the numerical details in the section on Givens rotations.