Apuntes de clase Introducción a elementos finitos

Docente: MSc. Ing. Camacho Alumno: ClaudioVZ

27 de agosto de 2016

Índice general

Prefacio		
1.	Introducción al método de elementos finitos	7
2.	Métodos directos	9
	2.1. Energía de deformación	. 9
	2.1.1. Energía de deformación interna por carga axial	
	2.1.2. Energía de deformación interna por torsión	
	2.1.3. Energía de deformación interna por flexión	
	2.1.4. Energía de deformación interna por cortante debido a flexión	
	2.1.5. Energía de deformación interna total	
	2.2. Teorema de Castigliano	
	2.2.1. Ejemplo	
	2.3. Matriz de rigidez	
	2.3.1. Elemento unidimensional	
	2.3.4. Elemento bidimensional	. 19
3.	Funciones de interpolación	23
•	3.1. Introducción	
	3.2. Requerimientos de convergencia de las funciones de interpolación	
	3.3. Funciones de interpolación de una variable	
	3.4. Funciones de interpolación de dos variables	
	3.5. Coordenadas generalizadas	
	3.6. Isotropia geométrica	
	3.7. Coordenadas naturales	
	3.8. Polinomios de Lagrange	
	3.8.1. Elementos unidimensionales	
	3.8.2. Elementos bidimensionales cuadrangulares	
	3.8.3. Elementos bidimensionales triangulares	
	3.9. Polinomios de Hermite	. 29
4.	Integración numérica	31
	4.1. Cuadratura de Gauss	
	4.2. Método de Newton-Cotes	
	4.2.1. Método de Newton-Cotes con límites generalizados	
	(2. Firmal)	. 32
	4.3. Ejempios	. 52
5.	Introducción al cálculo de variaciones	37
	5.1. Cálculo de variaciones	. 37
	5.2. Definición de funcional	. 37
	5.3. Funcional genérico	. 38
	5.4. Ecuación de Euler-Lagrange	. 38
	5.5. El problema de la braquistácrona	40

ÍNDICE GENERAL

	5.5.1. Solución 1	
	5.5.2. Solución 2	43
6.	létodos variacionales	45
	1. Método de Rayleigh-Ritz	45
	2. Fórmulas recurrentes	
	6.2.1. Integración por partes	46
	6.2.2. Teorema de Gauss	46
	3. Ejemplos	46
	4. Método de Galerkin	
	5. Ejemplo	54
7.	létodo de balance de energía	57
	1. Introducción	57
	2. Elemento armadura	57
	3. Elemento viga a flexión	
	4. Elemento pórtico	62

Prefacio

Este texto se basa principalmente en mis apuntes, las palabras en verde son indicaciones, fueron agregadas algunas ecuaciones y otras no se transcribieron.

La numeración de ecuaciones es distinta al pizarrón, debido a que algunas ecuaciones se repetían o no era necesario enumerar, falta agregar los gráficos en formato vectorial y revisar el texto.

6 ÍNDICE GENERAL

Capítulo 1

Introducción al método de elementos finitos

Como trabaja el método

- 1. Discretización del continuo con elementos simples
- 2. Conocer las propiedades del material
- 3. Eligiendo las funciones de interpolación o funciones de forma, funciones de aproximación, funciones test
- 4. Establecer la matriz de rigidez de cada elemento
- 5. Armar la matriz de rigidez del conjunto
- 6. Solucionar el sistema lineal
- 7. Efectuar operaciones adicionales

Capítulo 2

Métodos directos

2.1. Energía de deformación

2.1.1. Energía de deformación interna por carga axial

$$U_i = \int \frac{N^2}{2EA} \, dx \tag{2.1}$$

2.1.2. Energía de deformación interna por torsión

$$U_i = \int \frac{M_t^2}{2GI_p} dx \tag{2.2}$$

2.1.3. Energía de deformación interna por flexión

$$U_i = \int \frac{M^2}{2EI} \, dx \tag{2.3}$$

2.1.4. Energía de deformación interna por cortante debido a flexión

$$U_i = \int k \frac{V^2}{2GA} \, dx \tag{2.4}$$

2.1.5. Energía de deformación interna total

Por el principio de superposición

$$U_{i} = \int \frac{1}{2} \varepsilon_{x}^{\mathrm{T}} \sigma \, dx = \int \frac{N^{2}}{2EA} \, dx + \int \frac{M_{t}^{2}}{2GI_{p}} \, dx + \int \frac{M^{2}}{2EI} \, dx + \int k \frac{V^{2}}{2GA} \, dx$$
 (2.5)

2.2. Teorema de Castigliano

Primer teorema de Castigliano

$$\frac{\partial U_i}{\partial \delta_i} = P_i \tag{2.6}$$

Segundo teorema de Castigliano

$$\frac{\partial U_i}{\partial P_i} = \delta_i \tag{2.7}$$

Principio del trabajo mínimo

$$\frac{\partial U_i}{\partial P_i} = 0$$

2.2.1. Ejemplo

Calcular las reacciones en la viga, $E,\,I$ y A son constantes

Energía de deformación

$$U_i = \int \frac{M^2}{2EI} \, dx$$

Suponiendo el sentido de las reacciones

Diagrama de momentos

$$M = -M_A + V_A x - \frac{q}{2} x^2$$

Derivando la energía interna respecto a las cargas

$$\frac{\partial U_i}{\partial V_A} = \frac{\partial}{\partial V_A} \int_0^L \frac{M^2}{2EI} dx = \frac{1}{EI} \int_0^L M \frac{\partial M}{\partial V_A} dx$$
$$\frac{\partial U_i}{\partial M_A} = \frac{\partial}{\partial M_A} \int_0^L \frac{M^2}{2EI} dx = \frac{1}{EI} \int_0^L M \frac{\partial M}{\partial M_A} dx$$

Derivando el momento respecto a las cargas

$$\frac{\partial M}{\partial V_A} = x$$

$$\frac{\partial M}{\partial M_A} = -1$$

Reemplazando

$$\frac{1}{EI} \int_0^L \left(-M_A + V_A x - \frac{q}{2} x^2 \right) x \, dx = \delta_A$$
$$\frac{1}{EI} \int_0^L -M_A + V_A x - \frac{q}{2} x^2 \, dx = \theta_A$$

Los desplazamientos son cero en A

$$\frac{1}{EI} \int_0^L \left(-M_A + V_A x - \frac{q}{2} x^2 \right) x \, dx = 0$$

$$\frac{1}{EI} \int_0^L -M_A + V_A x - \frac{q}{2} x^2 \, dx = 0$$

Integrando

$$\frac{1}{EI} \left(-\frac{M_A}{2} L^2 + \frac{V_A}{3} L^3 - \frac{q}{8} L^4 \right) = 0$$
$$\frac{1}{EI} \left(-M_A L + \frac{V_A}{2} L^2 - \frac{q}{6} L^3 \right) = 0$$

Formando el sistema de ecuaciones

$$-\frac{M_A}{2}L^2 + \frac{V_A}{3}L^3 = \frac{q}{8}L^4$$
$$-M_A L + \frac{V_A}{2}L^2 = \frac{q}{6}L^3$$

Resolviendo

$$V_A = \frac{q}{2}L$$

$$M_A = \frac{q}{12}L^2$$

Por simetría las reacciones son iguales

$$V_A = \frac{q}{2}L \qquad V_B = \frac{q}{2}L$$

$$M_A = \frac{q}{12}L^2 \qquad M_B = \frac{q}{12}L^2$$

2.3. Matriz de rigidez

2.3.1. Elemento unidimensional

Carga axial

Nodo (i)

Energía de deformación

$$\int_0^L \frac{N^2}{2EA} \, dx$$

Normal en el nodo (i)

$$N = -N_{ix}$$

Desplazamiento en el nodo (i)

$$\frac{\partial U_i}{\partial N_{ix}} = \int_0^L \frac{N}{EA} \bigg(\frac{\partial N}{\partial N_{ix}} \bigg) \, dx = \delta_{ix}$$

Derivando la normal respecto a la carga

$$\frac{\partial N}{\partial N_{ix}} = -1$$

Reemplazando

$$\int_0^L -\frac{N_{ix}}{EA} \left(-1\right) dx = \delta_{ix}$$

Integrando

$$\frac{N_{ix}L}{EA} = \delta_{ix}$$

Despejando ${\cal N}_{ix}$

$$N_{ix} = \frac{EA}{L}\delta_{ix} \tag{2.8}$$

Por equilibrio

$$N_{jx} = -N_{ix}$$

Reemplazando

$$N_{jx} = -\frac{EA}{L}\delta_{ix} \tag{2.9}$$

 $\operatorname{Nodo}\left(j\right)$

Energía de deformación

$$\int_0^L \frac{N^2}{2EA} \, dx$$

Normal en el nodo (j)

$$N = N_{jx}$$

Desplazamiento en el nodo (j)

$$\frac{\partial U_i}{\partial N_{jx}} = \int_0^L \frac{N}{EA} \bigg(\frac{\partial N}{\partial N_{jx}} \bigg) \, dx = \delta_{jx}$$

Derivando la normal respecto a la carga

$$\frac{\partial N}{\partial N_{ix}} = 1$$

Reemplazando

$$\int_0^L \frac{N_{jx}}{EA} (1) \, dx = \delta_{jx}$$

Integrando

$$\frac{N_{jx}L}{EA} = \delta_{jx}$$

Despejando N_{jx}

$$N_{jx} = \frac{EA}{L} \delta_{jx} \tag{2.10}$$

Por equilibrio

$$N_{ix} = -N_{ix}$$

Reemplazando

$$N_{ix} = -\frac{EA}{L}\delta_{jx} \tag{2.11}$$

Flexión

Nodo (i)

Energía de deformación

$$\int_0^L \frac{M^2}{2EA} \, dx$$

Momento en el nodo (i)

$$M = -M_{iz} + V_{iu}x$$

Desplazamiento en el nodo (i)

$$\begin{split} \frac{\partial U_i}{\partial V_{iy}} &= \int_0^L \frac{M}{EI} \bigg(\frac{\partial M}{\partial V_{iy}} \bigg) \, dx = \delta_{iy} \\ \frac{\partial U_i}{\partial M_{iz}} &= \int_0^L \frac{M}{EI} \bigg(\frac{\partial M}{\partial M_{iz}} \bigg) \, dx = \theta_{iz} \end{split}$$

Derivando el momento respecto a las cargas

$$\frac{\partial M}{\partial V_{iy}} = x$$
$$\frac{\partial M}{\partial M_{iz}} = -1$$

Reemplazando

$$\int_0^L \frac{-M_{iz} + V_{iy}x}{EI}(x) dx = \delta_{iy}$$
$$\int_0^L \frac{-M_{iz} + V_{iy}x}{EI}(-1) dx = \theta_{iz}$$

Integrando

$$\frac{1}{EI} \left(-\frac{L^2}{2} M_{iz} + \frac{L^3}{3} V_{iy} \right) = \delta_{iy}$$
$$\frac{1}{EI} \left(L M_{iz} - \frac{L^2}{2} V_{iy} \right) = \theta_{iz}$$

Resolviendo

$$V_{iy} = \frac{12EI}{L^3}\delta_{iy} + \frac{6EI}{L^2}\theta_{iz}$$
 (2.12)

$$M_{iz} = \frac{6EI}{L^2}\delta_{iy} + \frac{4EI}{L}\theta_{iz} \tag{2.13}$$

Por equilibrio

$$V_{jy} = -V_{iy}$$

Reemplazando

$$V_{jy} = -\frac{12EI}{L^3} \delta_{iy} - \frac{6EI}{L^2} \theta_{iz}$$
 (2.14)

Momento en el nodo (j) cuando x=L

$$M_{jz} = -M_{iz} + V_{iy}L$$

Reemplazando

$$M_{jz} = \frac{6EI}{L^2} \delta_{iy} + \frac{2EI}{L} \theta_{iz} \tag{2.15}$$

Nodo (j)

Energía de deformación

$$\int_0^L \frac{M^2}{2EA} \, dx$$

Momento en el nodo (j)

$$M = -M_{jz} - V_{jy}x$$

Desplazamiento en el nodo (j)

$$\begin{split} \frac{\partial U_i}{\partial V_{jy}} &= \int_0^L \frac{M}{EI} \bigg(\frac{\partial M}{\partial V_{jy}} \bigg) \, dx = \delta_{jy} \\ \frac{\partial U_i}{\partial M_{jz}} &= \int_0^L \frac{M}{EI} \bigg(\frac{\partial M}{\partial M_{jz}} \bigg) \, dx = \theta_{jz} \end{split}$$

Derivando el momento respecto a las cargas

$$\frac{\partial M}{\partial V_{jy}} = -x$$

$$\frac{\partial M}{\partial M_{jz}} = -1$$

Reemplazando

$$\int_0^L \frac{-M_{jz} - V_{jy}x}{EI} (-x) dx = \delta_{jy}$$
$$\int_0^L \frac{-M_{jz} - V_{jy}x}{EI} (-1) dx = \theta_{jz}$$

Integrando

$$\frac{1}{EI} \left(\frac{L^2}{2} M_{jz} + \frac{L^3}{3} V_{jy} \right) = \delta_{jy}$$
$$\frac{1}{EI} \left(L M_{jz} + \frac{L^2}{2} V_{jy} \right) = \theta_{jz}$$

Resolviendo

$$V_{jy} = \frac{12EI}{L^3}\delta_{jy} - \frac{6EI}{L^2}\theta_{jz} \tag{2.16}$$

$$M_{jz} = -\frac{6EI}{L^2}\delta_{jy} + \frac{4EI}{L}\theta_{jz} \tag{2.17}$$

Por equilibrio

$$V_{iy} = -V_{jy}$$

Reemplazando

$$V_{iy} = -\frac{12EI}{L^3}\delta_{jy} + \frac{6EI}{L^2}\theta_{jz}$$
 (2.18)

Momento en el nodo $\widehat{\text{\ \ }}$ cuando x=L

$$M_{iz} = -M_{iz} - V_{iy}L$$

Reemplazando

$$M_{iz} = -\frac{6EI}{L^2}\delta_{jy} + \frac{2EI}{L}\theta_{jz} \tag{2.19}$$

Superponiendo los diagramas de esfuerzos

$$\begin{split} N_{ix} &= & \frac{EA}{L} \delta_{ix} & -\frac{EA}{L} \delta_{jx} \\ V_{iy} &= & \frac{12EI}{L^3} \delta_{iy} + \frac{6EI}{L^2} \theta_{iz} & -\frac{12EI}{L^3} \delta_{jy} + \frac{6EI}{L^2} \theta_{jz} \\ M_{iz} &= & \frac{6EI}{L^2} \delta_{iy} + \frac{4EI}{L} \theta_{iz} & -\frac{6EI}{L^2} \delta_{jy} + \frac{2EI}{L} \theta_{jz} \\ N_{jx} &= -\frac{EA}{L} \delta_{ix} & +\frac{EA}{L} \delta_{jx} \\ V_{jy} &= & -\frac{12EI}{L^3} \delta_{iy} - \frac{6EI}{L^2} \theta_{iz} & +\frac{12EI}{L^3} \delta_{jy} - \frac{6EI}{L^2} \theta_{jz} \\ M_{jz} &= & \frac{6EI}{L^2} \delta_{iy} + \frac{2EI}{L} \theta_{iz} & -\frac{6EI}{L^2} \delta_{jy} + \frac{4EI}{L} \theta_{jz} \end{split}$$

En forma matricial

$$\begin{bmatrix} N_{ix} \\ V_{iy} \\ M_{iz} \\ N_{jx} \\ V_{jy} \\ M_{jz} \end{bmatrix} = \begin{bmatrix} \frac{EA}{L} & 0 & 0 & -\frac{EA}{L} & 0 & 0 \\ 0 & \frac{12EI}{L^3} & \frac{6EI}{L^2} & 0 & -\frac{12EI}{L^3} & \frac{6EI}{L^2} \\ 0 & \frac{6EI}{L^2} & \frac{4EI}{L} & 0 & -\frac{6EI}{L^2} & \frac{2EI}{L} \\ -\frac{EA}{L} & 0 & 0 & \frac{EA}{L} & 0 & 0 \\ 0 & -\frac{12EI}{L^3} & -\frac{6EI}{L^2} & 0 & \frac{12EI}{L^3} & -\frac{6EI}{L^2} \\ 0 & \frac{6EI}{L^2} & \frac{2EI}{L} & 0 & -\frac{6EI}{L^2} & \frac{4EI}{L} \end{bmatrix} \begin{bmatrix} \delta_{ix} \\ \delta_{iy} \\ \theta_{iz} \\ \delta_{jx} \\ \delta_{jy} \\ \theta_{jz} \end{bmatrix}$$

$$(2.20)$$

Independiente de cuales sean los sentidos y direcciones asumidas de las reacciones, el resultado es igual.

2.3.2. Ley generalizada de Hooke en 3D

Tensor de tensiones

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_{xx} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_{yy} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_{zz} \end{bmatrix}$$
(2.21)

Tensiones en función de las deformaciones

$$\sigma_{xx} = \frac{E}{(1 - 2\nu)(1 + \nu)} [(1 - \nu)\varepsilon_{xx} + \nu \varepsilon_{yy} + \nu \varepsilon_{zz}]$$

$$\sigma_{yy} = \frac{E}{(1 - 2\nu)(1 + \nu)} [\nu \varepsilon_{xx} + (1 - \nu)\varepsilon_{yy} + \nu \varepsilon_{zz}]$$

$$\sigma_{zz} = \frac{E}{(1 - 2\nu)(1 + \nu)} [\nu \varepsilon_{xx} + \nu \varepsilon_{yy} + (1 - \nu)\varepsilon_{zz}]$$

$$\tau_{xy} = G\gamma_{xy}$$

$$\tau_{yz} = G\gamma_{yz}$$

$$\tau_{zx} = G\gamma_{zx}$$

En forma matricial

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \tau_{xy} \\ \tau_{yz} \\ \tau_{zx} \end{bmatrix} = \begin{bmatrix} \frac{E(1-\nu)}{(1-2\nu)(1+\nu)} & \frac{E\nu}{(1-2\nu)(1+\nu)} & \frac{E\nu}{(1-2\nu)(1+\nu)} & 0 & 0 & 0 \\ \frac{E\nu}{(1-2\nu)(1+\nu)} & \frac{E(1-\nu)}{(1-2\nu)(1+\nu)} & \frac{E\nu}{(1-2\nu)(1+\nu)} & 0 & 0 & 0 \\ \frac{E\nu}{(1-2\nu)(1+\nu)} & \frac{E\nu}{(1-2\nu)(1+\nu)} & \frac{E(1-\nu)}{(1-2\nu)(1+\nu)} & 0 & 0 & 0 \\ \frac{E\nu}{(1-2\nu)(1+\nu)} & \frac{E\nu}{(1-2\nu)(1+\nu)} & \frac{E(1-\nu)}{(1-2\nu)(1+\nu)} & 0 & 0 & 0 \\ 0 & 0 & 0 & G & 0 & 0 \\ 0 & 0 & 0 & 0 & G & 0 \\ 0 & 0 & 0 & 0 & G & 0 \end{bmatrix} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \gamma_{xy} \\ \gamma_{yz} \\ \gamma_{zx} \end{bmatrix}$$

$$(2.22)$$

2.3. MATRIZ DE RIGIDEZ

Tensor de deformaciones

$$\boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_{xx} & \gamma_{xy} & \gamma_{xz} \\ \gamma_{yx} & \varepsilon_{yy} & \gamma_{yz} \\ \gamma_{zx} & \gamma_{zy} & \varepsilon_{zz} \end{bmatrix}$$
(2.23)

Deformación en función de las tensiones

$$\varepsilon_{xx} = \frac{1}{E} \left[\sigma_{xx} - \nu \left(\sigma_{yy} + \sigma_{zz} \right) \right]$$

$$\varepsilon_{yy} = \frac{1}{E} \left[\sigma_{yy} - \nu \left(\sigma_{xx} + \sigma_{zz} \right) \right]$$

$$\varepsilon_{zz} = \frac{1}{E} \left[\sigma_{zz} - \nu \left(\sigma_{xx} + \sigma_{yy} \right) \right]$$

$$\gamma_{xy} = \frac{\tau_{xy}}{G}$$

$$\gamma_{yz} = \frac{\tau_{yz}}{G}$$

$$\gamma_{zx} = \frac{\tau_{zx}}{G}$$

En forma matricial

$$\begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \gamma_{xy} \\ \gamma_{yz} \\ \gamma_{zx} \end{bmatrix} = \begin{bmatrix} \frac{1}{E} & -\frac{\nu}{E} & -\frac{\nu}{E} & 0 & 0 & 0 \\ -\frac{\nu}{E} & \frac{1}{E} & -\frac{\nu}{E} & 0 & 0 & 0 \\ -\frac{\nu}{E} & -\frac{\nu}{E} & \frac{1}{E} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{G} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{G} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{G} \end{bmatrix} \begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \tau_{xy} \\ \tau_{yz} \\ \tau_{zx} \end{bmatrix}$$

$$(2.24)$$

2.3.3. Ley generalizada de Hooke en 2D

Tensión plana

Tensor de tensiones

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_{xx} & \tau_{xy} & 0\\ \tau_{yx} & \sigma_{yy} & 0\\ 0 & 0 & 0 \end{bmatrix} \tag{2.25}$$

Tensiones en función de las deformaciones

$$\sigma_{xx} = \frac{E}{1 - \nu^2} (\varepsilon_{xx} + \nu \,\varepsilon_{yy})$$
$$\sigma_{yy} = \frac{E}{1 - \nu^2} (\varepsilon_{yy} + \nu \,\varepsilon_{zz})$$
$$\tau_{xy} = G \,\gamma_{xy}$$

En forma matricial

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \tau_{xy} \end{bmatrix} = \begin{bmatrix} \frac{E}{1-\nu^2} & \frac{E\nu}{1-\nu^2} & 0 \\ \frac{E\nu}{1-\nu^2} & \frac{E}{1-\nu^2} & 0 \\ 0 & 0 & G \end{bmatrix} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \gamma_{xy} \end{bmatrix}$$
(2.26)

Tensor de deformaciones

$$\boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_{xx} & \gamma_{xy} & 0\\ \gamma_{yx} & \varepsilon_{yy} & 0\\ 0 & 0 & \varepsilon_{zz} \end{bmatrix}$$
 (2.27)

Deformación en función de las tensiones

$$\varepsilon_{xx} = \frac{1}{E} (\sigma_{xx} - \nu \, \sigma_{yy})$$

$$\varepsilon_{yy} = \frac{1}{E} (-\nu \, \sigma_{xx} + \sigma_{yy})$$

$$\varepsilon_{zz} = -\frac{\nu}{E} (\sigma_{xx} + \sigma_{yy})$$

$$\gamma_{xy} = \frac{\tau_{xy}}{G}$$

En forma matricial

$$\begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \gamma_{xy} \end{bmatrix} = \begin{bmatrix} \frac{1}{E} & -\frac{\nu}{E} & 0 \\ -\frac{\nu}{E} & \frac{1}{E} & 0 \\ -\frac{\nu}{E} & -\frac{\nu}{E} & 0 \\ 0 & 0 & \frac{1}{G} \end{bmatrix} \begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \tau_{xy} \end{bmatrix}$$
(2.28)

Deformación plana

Tensor de deformaciones

$$\boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_{xx} & \gamma_{xy} & 0\\ \gamma_{yx} & \varepsilon_{yy} & 0\\ 0 & 0 & 0 \end{bmatrix} \tag{2.29}$$

Deformación en función de las tensiones

$$\varepsilon_{xx} = \frac{1}{E} (\sigma_{xx} - \nu \, \sigma_{yy})$$

$$\varepsilon_{yy} = \frac{1}{E} (-\nu \, \sigma_{xx} + \sigma_{yy})$$

$$\varepsilon_{zz} = -\frac{\nu}{E} (\sigma_{xx} + \sigma_{yy})$$

$$\gamma_{xy} = \frac{\tau_{xy}}{C}$$

En forma matricial

$$\begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \gamma_{xy} \end{bmatrix} = \begin{bmatrix} \frac{1}{E} & -\frac{\nu}{E} & 0 \\ -\frac{\nu}{E} & \frac{1}{E} & 0 \\ -\frac{\nu}{E} & -\frac{\nu}{E} & 0 \\ 0 & 0 & \frac{1}{G} \end{bmatrix} \begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \tau_{xy} \end{bmatrix}$$
(2.30)

Tensor de tensiones

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_{xx} & \tau_{xy} & 0\\ \tau_{yx} & \sigma_{yy} & 0\\ 0 & 0 & \sigma_{zz} \end{bmatrix}$$
 (2.31)

Tensiones en función de las deformaciones

$$\sigma_{xx} = \frac{E}{(1 - 2\nu)(1 + \nu)} [(1 - \nu)\varepsilon_{xx} + \nu \varepsilon_{yy}]$$

$$\sigma_{yy} = \frac{E}{(1 - 2\nu)(1 + \nu)} [\nu \varepsilon_{xx} + (1 - \nu)\varepsilon_{yy}]$$

$$\sigma_{zz} = \frac{E}{(1 - 2\nu)(1 + \nu)} [\nu \varepsilon_{xx} + \nu \varepsilon_{yy}]$$

$$\tau_{xy} = G \gamma_{xy}$$

En forma matricial

$$\begin{bmatrix}
\sigma_{xx} \\
\sigma_{yy} \\
\sigma_{zz} \\
\tau_{xy}
\end{bmatrix} = \begin{bmatrix}
\frac{E(1-\nu)}{(1-2\nu)(1+\nu)} & \frac{E\nu}{(1-2\nu)(1+\nu)} & 0 \\
\frac{E\nu}{(1-2\nu)(1+\nu)} & \frac{E(1-\nu)}{(1-2\nu)(1+\nu)} & 0 \\
\frac{E\nu}{(1-2\nu)(1+\nu)} & \frac{E(1-\nu)}{(1-2\nu)(1+\nu)} & 0 \\
0 & 0 & G
\end{bmatrix} \begin{bmatrix}
\varepsilon_{xx} \\
\varepsilon_{yy} \\
\gamma_{xy}
\end{bmatrix}$$
(2.32)

Deformaciones unitarias

$$\varepsilon_{xx} = \frac{\partial u}{\partial x}$$

$$\varepsilon_{yy} = \frac{\partial v}{\partial y}$$
(2.33)

$$\varepsilon_{yy} = \frac{\partial v}{\partial u} \tag{2.34}$$

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \tag{2.35}$$

Espesor para ser considerado como placa delgada

$$t \leqslant \frac{L_{\min}}{10} \tag{2.36}$$

Elemento bidimensional 2.3.4.

Campo de desplazamientos

$$\phi = \begin{bmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \\ u_3 \\ v_3 \end{bmatrix} \tag{2.37}$$

Funciones de aproximación

$$u_{(x,y)} = \alpha_1 + \alpha_2 x + \alpha_3 y \tag{2.38}$$

$$v_{(x,y)} = \alpha_4 + \alpha_5 x + \alpha_6 y \tag{2.39}$$

Reemplazando coordenadas nodales

$$u_1 = \alpha_1 + \alpha_2 x_1 + \alpha_3 y_1$$

$$u_2 = \alpha_1 + \alpha_2 x_2 + \alpha_3 y_2$$

$$u_3 = \alpha_1 + \alpha_2 x_3 + \alpha_3 y_3$$

$$v_1 = \alpha_4 + \alpha_5 x_1 + \alpha_6 y_1$$

$$v_2 = \alpha_4 + \alpha_5 x_2 + \alpha_6 y_2$$

$$v_3 = \alpha_4 + \alpha_5 x_4 + \alpha_6 y_3$$

Para α_1

$$\alpha_{1} = \frac{\begin{vmatrix} u_{1} & x_{1} & y_{1} \\ u_{2} & x_{2} & y_{2} \\ u_{3} & x_{3} & y_{3} \end{vmatrix}}{\begin{vmatrix} 1 & x_{1} & y_{1} \\ 1 & x_{2} & y_{2} \\ 1 & x_{3} & y_{3} \end{vmatrix}} = \frac{(y_{3}x_{2} - y_{2}x_{3})u_{1} + (y_{1}x_{3} - y_{3}x_{1})u_{2} + (y_{1}x_{2} - y_{2}x_{1})u_{3}}{2A}$$

Realizando un cambio de variable

$$a_1 = y_3 x_2 - y_2 x_3 \tag{2.40}$$

$$a_2 = y_1 x_3 - y_3 x_1 (2.41)$$

$$a_3 = y_1 x_2 - y_2 x_1 \tag{2.42}$$

Reemplazando

$$\alpha_1 = \frac{1}{2A} (a_1 u_1 + a_2 u_2 + a_3 u_3) \tag{2.43}$$

Para α_2

$$\alpha_{2} = \frac{\begin{vmatrix} 1 & u_{1} & y_{1} \\ 1 & u_{2} & y_{2} \\ 1 & u_{3} & y_{3} \end{vmatrix}}{\begin{vmatrix} 1 & x_{1} & y_{1} \\ 1 & x_{2} & y_{2} \\ 1 & x_{3} & y_{3} \end{vmatrix}} = \frac{(y_{2} - y_{3})u_{1} + (y_{3} - y_{1})u_{2} + (y_{1} - y_{2})u_{3}}{2A}$$

Realizando un cambio de variable

$$b_1 = y_2 - y_3 (2.44)$$

$$b_2 = y_3 - y_1 \tag{2.45}$$

$$b_3 = y_1 - y_2 (2.46)$$

Reemplazando

$$\alpha_2 = \frac{1}{2A} (b_1 u_1 + b_2 u_2 + b_3 u_3) \tag{2.47}$$

Para α_3

$$\alpha_{3} = \frac{\begin{vmatrix} 1 & x_{1} & u_{1} \\ 1 & x_{2} & u_{2} \\ 1 & x_{3} & u_{3} \end{vmatrix}}{\begin{vmatrix} 1 & x_{1} & y_{1} \\ 1 & x_{2} & y_{2} \\ 1 & x_{3} & y_{3} \end{vmatrix}} = \frac{(x_{3} - x_{2})u_{1} + (x_{1} - x_{3})u_{2} + (x_{2} - x_{1})u_{3}}{2A}$$

Realizando un cambio de variable

$$c_1 = x_3 - x_2 \tag{2.48}$$

$$c_2 = x_1 - x_3 \tag{2.49}$$

$$c_3 = x_2 - x_1 \tag{2.50}$$

Reemplazando

$$\alpha_3 = \frac{1}{2A} (c_1 u_1 + c_2 u_2 + c_3 u_3) \tag{2.51}$$

Para v las soluciones son iguales

$$\alpha_4 = \frac{1}{2A} \left(a_1 v_1 + a_2 v_2 + a_3 v_3 \right) \tag{2.52}$$

$$\alpha_5 = \frac{1}{2A} (b_1 v_1 + b_2 v_2 + b_3 v_3) \tag{2.53}$$

$$\alpha_6 = \frac{1}{2A} \left(c_1 v_1 + c_2 v_2 + c_3 v_3 \right) \tag{2.54}$$

Funciones de aproximación del campo de desplazamientos

$$u = \frac{1}{2A} \left[\left(a_1 u_1 + a_2 u_2 + a_3 u_3 \right) + \left(b_1 u_1 + b_2 u_2 + b_3 u_3 \right) x + \left(c_1 u_1 + c_2 u_2 + c_3 u_3 \right) y \right]$$
 (2.55)

$$v = \frac{1}{2A} \left[\left(a_1 v_1 + a_2 v_2 + a_3 v_3 \right) + \left(b_1 v_1 + b_2 v_2 + b_3 v_3 \right) x + \left(c_1 v_1 + c_2 v_2 + c_3 v_3 \right) y \right]$$
 (2.56)

Deformaciones

$$\frac{\partial u}{\partial x} = \frac{1}{2A} (b_1 u_1 + b_2 u_2 + b_3 u_3)
\frac{\partial v}{\partial y} = \frac{1}{2A} (c_1 v_1 + c_2 v_2 + c_3 v_3)
\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = \frac{1}{2A} (c_1 u_1 + c_2 u_2 + c_3 u_3 + b_1 v_1 + b_2 v_2 + b_3 v_3)$$

En forma matricial

$$\begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{bmatrix} = \frac{1}{2A} \begin{bmatrix} b_1 & 0 & b_2 & 0 & b_3 & 0 \\ 0 & c_1 & 0 & c_2 & 0 & c_3 \\ c_1 & b_1 & c_2 & b_2 & c_3 & b_3 \end{bmatrix} \begin{bmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \\ u_3 \\ v_3 \end{bmatrix}$$
(2.57)

Reemplazando en la ecuación de tensión plana

ecuación de tensión plana
$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \tau_{xy} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix} \frac{1}{2A} \begin{bmatrix} b_1 & 0 & b_2 & 0 & b_3 & 0 \\ 0 & c_1 & 0 & c_2 & 0 & c_3 \\ c_1 & b_1 & c_2 & b_2 & c_3 & b_3 \end{bmatrix} \begin{bmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \\ u_3 \\ v_3 \end{bmatrix}$$

En forma compacta

$$\sigma = C B d$$

Capítulo 3

Funciones de interpolación

3.1. Introducción

Son llamadas funciones de interpolación, funciones de forma, funciones de aproximación, funciones test

Polinomio de primer orden

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x_2 - x_1) \tag{3.1}$$

Reordenando a la forma estándar

$$y = \frac{x - x_2}{x_1 - x_2} y_1 + \frac{x - x_1}{x_2 - x_1} y_2 \tag{3.2}$$

Puede escribirse como

$$y = N_1 y_1 + N_2 y_2 (3.3)$$

3.2. Requerimientos de convergencia de las funciones de interpolación

Si el campo variable es continuo en las interfaces del elemento, se dice que tiene continuidad C^0 , si adicionalmente las primeras derivadas son continuas se tiene continuidad C^1 , si las derivadas segundas son también continuas, se tiene continuidad C^2 y así sucesivamente.

Para asegurar la convergencia a la solución, tomando en cuenta el tamaño de los elementos, las funciones de interpolación deben cumplir los siguientes requerimientos:

Compatibilidad En las interfaces del elemento se debe tener continuidad C^r

Completitud Dentro del elemento se debe tener continuidad C^{r+1}

3.3. Funciones de interpolación de una variable

Polinomio

$$P_n(x) = \sum_{i=0}^{T_n^{(1)}} \alpha_i x^i \tag{3.4}$$

Número de términos

$$T_n^{(1)} = n + 1$$

3.4. Funciones de interpolación de dos variables

Polinomio

$$P_n(x,y) = \sum_{k=1}^{T_n^{(2)}} \alpha_k x^i y^j \quad i+j \le n$$
 (3.5)

Número de términos

$$T_n^{(2)} = \frac{(n+1)(n+2)}{2}$$

Las funciones de forma pueden obtenerse del triángulo de Pascal (Gallagher)

3.5. Coordenadas generalizadas

Son polinomios que representan el comportamiento del campo variable, según el numero de incógnitas nodales tendrá el orden correspondiente y el mismo número de coeficientes α_i las cuales son las incógnitas del polinomio y reciben el nombre de coordenadas generalizadas.

$$\phi(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 \tag{3.6}$$

3.6. Isotropia geométrica

Las funciones de interpolación deben satisfacer los requerimientos de compatibilidad y completitud:

- 1. Para asegurar la continuidad del campo variable
- 2. Convergencia a la solución correcta

Las funciones de interpolación deben poseer la propiedad de isotropia geométrica, isotropia espacial o invarianza es decir, dichas funciones son invariables bajo una transformación de un sistema de coordenadas a otro.

Existen dos guías para construir funciones de interpolación de manera que cumplan con la propiedad de isotropia geométrica:

1. Polinomios de orden \boldsymbol{n} que son completos tienen isotropia geométrica

Ejemplo

$$\phi(x) = \alpha_0 + \alpha_1 x + \alpha_2 y + \alpha_3 x^2 + \alpha_4 x y + \alpha_5 y^2 + \alpha_6 x^3 + \alpha_7 x^2 y + \alpha_8 x y^2 + \alpha_9 y^3$$
(3.7)

2. Polinomios de orden n que son incompletos pero contienen términos apropiados para conservar simetría tienen isotropia geométrica

Ejemplo

$$\phi(x) = \alpha_0 + \alpha_1 x + \alpha_2 y + \alpha_3 x^2 + \alpha_4 x y + \alpha_5 y^2 + \alpha_6 x^3 + \alpha_7 y^3$$
(3.8)

Ejemplo

$$\phi(x) = \alpha_0 + \alpha_1 x + \alpha_2 y + \alpha_3 x^2 + \alpha_4 xy + \alpha_5 y^2 + \alpha_6 x^2 y + \alpha_7 xy^2$$
(3.9)

3.7. Coordenadas naturales

Un sistema local de coordenadas que depende de la geometría del elemento para su definición y cuyo rango de coordenadas está entre [-1,1] o [0,1], es conocido como un sistema natural de coordenadas.

Para designar las coordenadas naturales se usan (r, s) o (ξ, η) .

3.8. Polinomios de Lagrange

$$\ell_k(x) = \prod_{\substack{m=0\\m\neq k}}^n \frac{x - x_m}{x_k - x_m} = \frac{(x - x_0)(x - x_1)(x - x_2)\cdots(x - x_{k-1})(x - x_{k+1})\cdots(x - x_n)}{(x_k - x_0)(x_k - x_1)(x_k - x_2)\cdots(x_k - x_{k-1})(x_k - x_{k+1})\cdots(x_k - x_n)}$$
(3.10)

3.8.1. Elementos unidimensionales

Dos nodos

Coordenadas nodales

$$(1) = r_1 = -1$$
 $(2) = r_2 = 1$

Polinomios

$$N_1 = \frac{r - r_2}{r_1 - r_2} = \frac{r - 1}{-1 - 1} = -\frac{1}{2}(r - 1)$$
(3.11)

$$N_2 = \frac{r - r_1}{r_2 - r_1} = \frac{r - (-1)}{1 - (-1)} = \frac{1}{2}(r + 1)$$
(3.12)

Tres nodos

Coordenadas nodales

① =
$$r_1 = -1$$
 ② = $r_2 = 0$
③ = $r_3 = 1$

Polinomios

$$N_{1} = \frac{r - r_{2}}{r_{1} - r_{2}} \cdot \frac{r - r_{3}}{r_{1} - r_{3}} = \frac{r - 0}{-1 - 0} \cdot \frac{r - 1}{-1 - 1} = \frac{1}{2}r(r - 1)$$

$$N_{2} = \frac{r - r_{1}}{r_{2} - r_{1}} \cdot \frac{r - r_{3}}{r_{2} - r_{3}} = \frac{r - (-1)}{0 - (-1)} \cdot \frac{r - 1}{0 - 1} = -(r^{2} - 1)$$
(3.13)

$$N_2 = \frac{r - r_1}{r_2 - r_1} \cdot \frac{r - r_3}{r_2 - r_3} = \frac{r - (-1)}{0 - (-1)} \cdot \frac{r - 1}{0 - 1} = -(r^2 - 1)$$
(3.14)

$$N_3 = \frac{r - r_2}{r_3 - r_2} \cdot \frac{r - r_1}{r_3 - r_1} = \frac{r - 0}{1 - 0} \cdot \frac{r - (-1)}{1 - (-1)} = \frac{1}{2}r(r + 1)$$
(3.15)

Cuatro nodos

Coordenadas nodales

① =
$$r_1 = -1$$
 ② = $r_2 = -\frac{1}{3}$
③ = $r_3 = \frac{1}{3}$ ④ = $r_4 = 1$

Polinomios

$$N_{1} = \frac{r - r_{2}}{r_{1} - r_{2}} \cdot \frac{r - r_{3}}{r_{1} - r_{3}} \cdot \frac{r - r_{4}}{r_{1} - r_{4}}$$

$$N_{2} = \frac{r - r_{1}}{r_{2} - r_{1}} \cdot \frac{r - r_{3}}{r_{2} - r_{3}} \cdot \frac{r - r_{4}}{r_{2} - r_{4}}$$

$$N_{3} = \frac{r - r_{2}}{r_{3} - r_{2}} \cdot \frac{r - r_{1}}{r_{3} - r_{1}} \cdot \frac{r - r_{4}}{r_{3} - r_{4}}$$

$$N_{4} = \frac{r - r_{3}}{r_{4} - r_{3}} \cdot \frac{r - r_{2}}{r_{4} - r_{2}} \cdot \frac{r - r_{1}}{r_{4} - r_{1}}$$

$$(3.16)$$

$$(3.17)$$

$$N_4 = \frac{r - r_3}{r_4 - r_3} \cdot \frac{r - r_2}{r_4 - r_2} \cdot \frac{r - r_1}{r_4 - r_1} \tag{3.19}$$

3.8.2. Elementos bidimensionales cuadrangulares

Cuatro nodos

Coordenadas nodales

Polinomios

$$N_1 = \frac{r - r_2}{r_1 - r_2} \cdot \frac{s - s_4}{s_1 - s_4} \tag{3.20}$$

$$N_{1} = \frac{r - r_{2}}{r_{1} - r_{2}} \cdot \frac{s - s_{4}}{s_{1} - s_{4}}$$

$$N_{2} = \frac{r - r_{1}}{r_{2} - r_{1}} \cdot \frac{s - s_{3}}{s_{2} - s_{3}}$$

$$N_{3} = \frac{r - r_{4}}{r_{3} - r_{4}} \cdot \frac{s - s_{2}}{s_{3} - s_{2}}$$

$$(3.20)$$

$$(3.21)$$

$$N_3 = \frac{r - r_4}{r_3 - r_4} \cdot \frac{s - s_2}{s_3 - s_2} \tag{3.22}$$

$$N_4 = \frac{r - r_3}{r_4 - r_3} \cdot \frac{s - s_1}{s_4 - s_1} \tag{3.23}$$

3.8.3. Elementos bidimensionales triangulares

Polinomio de Lagrange

$$T_I(r) = \ell_{I-1,I}(r) = \prod_{\substack{i=1\\I \neq i}}^{I} \frac{r - r_i}{r_I - r_i} \quad I \neq 1 \quad I = 1$$
 (3.24)

Multiplicación de tres polinomios de Lagrange

$$N_i(r, s, t) = T_I(r)T_J(s)T_K(t)$$
 (3.25)

Tres nodos

Nodo (1), I = 2, J = 1, K = 1

$$N_1(r, s, t) = T_2(r)T_1(s)T_1(t)$$

Polinomios para cada coordenada

$$T_2(r) = \frac{r - r_1}{r_2 - r_1} = \frac{r - 0}{1 - 0} = r$$
 $T_1(s) = 1$
 $T_1(t) = 1$

Reemplazando

$$N_1(r, s, t) = r \cdot 1 \cdot 1 = r \tag{3.26}$$

Nodo (2), I = 1, J = 2, K = 1

$$N_2(r, s, t) = T_1(r)T_2(s)T_1(t)$$

Polinomios para cada coordenada

$$T_1(r) = 1$$

 $T_2(s) = \frac{s - s_1}{s_2 - s_1} = \frac{s - 0}{1 - 0} = s$
 $T_1(t) = 1$

Reemplazando

$$N_2(r, s, t) = 1 \cdot s \cdot 1 = s \tag{3.27}$$

Nodo ③, I = 1, J = 1, K = 2

$$N_3(r, s, t) = T_1(r)T_1(s)T_2(t)$$

Polinomios para cada coordenada

$$T_1(r) = 1$$

 $T_1(s) = 1$
 $T_2(t) = \frac{t - t_1}{t_2 - t_1} = \frac{t - 0}{1 - 0} = t$

Reemplazando

$$N_3(r, s, t) = 1 \cdot 1 \cdot t = t \tag{3.28}$$

3.9. Polinomios de Hermite

Los polinomios de Hermite $H^n(x)$ son de orden 2n+1 Para n=1

$$H^1(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3$$

Capítulo 4

Integración numérica

$$\int_{-1}^{+1} f(r) dr \approx \sum_{i=1}^{n} w_i f(r_i) + R \tag{4.1}$$

Donde w_i es un factor de ponderación o peso y r_i son puntos de muestreo.

4.1. Cuadratura de Gauss

Polinomio a integrar es de orden 2n-1

4.2. Método de Newton-Cotes

Los puntos de muestreo deben ser constantes.

4.2.1. Método de Newton-Cotes con límites generalizados

$$\int_{a}^{b} f(r) dr \approx \sum_{i=1}^{n} w_{i} f(r_{i}) + R \tag{4.2}$$

Polinomio de aproximación

$$\int_{a}^{b} P(r)r^{k} dr = 0 \quad \text{para} \quad k = 0, 1, 2, \dots, n - 1$$
(4.3)

Pesos

$$w_i = \int_a^b \ell_i(r) dr \quad \text{para} \quad k = 1, 2, 3, \dots, n$$
 (4.4)

Puntos de muestreo con límites generalizados

$$r_i' = \frac{a+b}{2} + \frac{b-a}{2}r_i \tag{4.5}$$

Pesos con límites generalizados

$$w_i' = \frac{b-a}{2}w_i \tag{4.6}$$

4.3. Ejemplos

1. Mediante la cuadratura de Gauss hallar r_i y w_i cuando n=1 Polinomio a integrar

$$2n - 1 = 2(1) - 1 = 1$$

Polinomio de aproximación

$$f(r) = a_0 + a_1 r$$

Cuando n=1 la fórmula se transforma en

$$\int_{-1}^{+1} f(r) \, dr = w_1 f(r_1)$$

Reemplazando

$$\int_{-1}^{+1} a_0 + a_1 r \, dr = w_1 \big(a_0 + a_1 r_1 \big)$$

Integrando

$$2a_0 = w_1(a_0 + a_1r_1)$$

Factorizando constantes e igualando a cero

$$a_0(2-w_1) - a_1r_1w_1 = 0$$

Las constantes no son cero

$$2 - w_1 = 0$$
$$r_1 w_1 = 0$$

Resolviendo

$$r_1 = 0$$
$$w_1 = 2$$

2. Mediante la cuadratura de Gauss hallar r_i y w_i cuando n=2 Polinomio a integrar

$$2n-1=2(2)-1=3$$

Polinomio de aproximación

$$f(r) = a_0 + a_1 r + a_2 r^2$$

Cuando n=2 la fórmula se transforma en

$$\int_{-1}^{+1} f(r) dr = w_1 f(r_1) + w_2 f(r_2)$$

4.3. EJEMPLOS 33

Reemplazando

$$\int_{-1}^{+1} a_0 + a_1 r + a_2 r^2 dr = w_1 \left(a_0 + a_1 r + a_2 r_1^2 \right) + w_2 \left(a_0 + a_1 r + a_2 r_2^2 \right)$$

Integrando

$$2a_0 + \frac{2}{3}a_1 = w_1(a_0 + a_1r + a_2r_1^2) + w_2(a_0 + a_1r + a_2r_2^2)$$

Factorizando constantes e igualando a cero

$$a_0(w_1 + w_2 - 2) + a_1(w_1r_1 + w_2r_2) + a_2(w_1r_1^2 + w_2r_2^2) = 0$$

Las constantes no son cero

$$w_1 + w_2 = 2$$

$$w_1 r_1 + w_2 r_2 = 0$$

$$w_1 r_1^2 + w_2 r_2^2 = 0$$

Resolviendo

$$r_1 = -\sqrt{\frac{1}{3}}$$

$$r_2 = \sqrt{\frac{1}{3}}$$

$$w_1 = 1$$

$$w_2 = 1$$

- 3. Mediante la cuadratura de Gauss hallar r_i y w_i cuando n=3
- 4. Mediante el método de Newtin-Cotes hallar r_i y w_i cuando n=2 Número de términos

$$k = 2 - 1 = 1$$

Calculando r_i

$$\int_{-1}^{+1} P(r) r^{0} dr = 0$$

$$\int_{-1}^{+1} P(r) r^{1} dr = 0$$

El polinomio es

$$P(r) = (r - r_1)(r - r_2)$$

Reemplazando

$$\int_{-1}^{+1} (r - r_1) (r - r_2) dr = 0$$
$$\int_{-1}^{+1} (r - r_1) (r - r_2) r dr = 0$$

Integrando

$$\left(\frac{1}{3}r^3 - \frac{r_1 + r_2}{2}r^2 + r_1r_2r\right)\Big|_{-1}^{+1} = 2\left(r_1r_2 + \frac{1}{3}\right)$$
$$\left(\frac{1}{4}r^4 - \frac{r_1 + r_2}{3}r^3 + \frac{r_1r_2}{2}r^2\right)\Big|_{-1}^{+1} = -\frac{2}{3}\left(r_1 + r_2\right)$$

Formando el sistema de ecuaciones

$$r_1 r_2 = -\frac{1}{3}$$
$$r_1 + r_2 = 0$$

Resolviendo

$$r_1 = -\sqrt{\frac{1}{3}}$$
$$r_2 = \sqrt{\frac{1}{3}}$$

Calculando w_i

$$w_1 = \int_{-1}^{+1} \frac{r - r_2}{r_1 - r_2} dr$$
$$w_2 = \int_{-1}^{+1} \frac{r - r_1}{r_2 - r_1} dr$$

Reemplazando e integrando

$$w_1 = \int_{-1}^{+1} \frac{r - \sqrt{\frac{1}{3}}}{-\sqrt{\frac{1}{3}} - \sqrt{\frac{1}{3}}} dr = \left(-\frac{\sqrt{3}}{4}r^2 + \frac{1}{2}r \right) \Big|_{-1}^{+1} = 1$$

$$w_2 = \int_{-1}^{+1} \frac{r + \sqrt{\frac{1}{3}}}{\sqrt{\frac{1}{3}} + \sqrt{\frac{1}{3}}} dr = \left(\frac{\sqrt{3}}{4}r^2 + \frac{1}{2}r \right) \Big|_{-1}^{+1} = 1$$

5. Aplicando integración numérica hallar la integral de

$$I = \int_0^3 2^r - r \, dr$$

Usando dos puntos

4.3. EJEMPLOS 35

$$I = w_1' f(r_1') + w_2' f(r_2')$$

Puntos de muestreo

$$r_1' = \frac{a+b}{2} + \frac{b-a}{2}r_1 = \frac{0+3}{2} + \frac{3-0}{2}(1) = 3$$
$$r_2' = \frac{a+b}{2} + \frac{b-a}{2}r_2 = \frac{0+3}{2} + \frac{3-0}{2}(1) = 3$$

Pesos

$$w_1' = \frac{b-a}{2}w_1 = \frac{3-0}{2}\left(-\sqrt{\frac{1}{3}}\right) = -0.57735$$
$$w_2' = \frac{b-a}{2}w_2 = \frac{3-0}{2}\left(\sqrt{\frac{1}{3}}\right) = 0.57735$$

Reemplazando

$$I = 3\left(2^{-0.57735} + 0.57735\right) + 3\left(2^{0.57735} - 0.57735\right) = 6.48690$$

Capítulo 5

Introducción al cálculo de variaciones

5.1. Cálculo de variaciones

Se ocupa de la determinación de extremos (donde podrían existir máximo y/o mínimos) de funcionales.

Ejemplo de funcional es el principio de la energía potencial mínima para sistemas conservativos, de todos los campos de desplazamientos cinemáticamente admisibles, aquellos que corresponden a condiciones de equilibrio extremiza la energía potencial total. Si la condición es un mínimo el equilibrio es estable.

5.2. Definición de funcional

Funcional es una aplicación de un espacio de funciones sobre el conjunto de los números reales. De otra manera como un funcional asocia a una función de cierta clase con un número real.

$$J[f] \Rightarrow \mathbb{R} \tag{5.1}$$

El diferencial de curva es

$$ds = \sqrt{dx^2 + dy^2} \tag{5.2}$$

Reescribiendo la ecuación anterior

$$ds = \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx \tag{5.3}$$

Usando la notación de Lagrange

$$ds = \sqrt{1 + \left(y'\right)^2} \, dx \tag{5.4}$$

Funcional

$$S[y] = \int_{x_1}^{x_2} \sqrt{1 + (y')^2} \, dx \tag{5.5}$$

5.3. Funcional genérico

$$J[y] = \int_{x_1}^{x_2} f[y, y', y'', \dots, x] dx$$
 (5.6)

Para el ejemplo anterior

$$J[y] = \int_{x_1}^{x_2} f[y'] dx \tag{5.7}$$

No aparece la variable dependiente y y la variable independiente x es implícita.

5.4. Ecuación de Euler-Lagrange

La curva \hat{y} que se aproxima a la curva solución y es

$$\hat{y}_{(x)} = y_{(x)} + \epsilon \,\eta_{(x)} \tag{5.8}$$

Una condición importante es que $\eta_{(x)}$ pase por los puntos A y B, además

$$\eta_{(x_1)} = 0 \quad \eta_{(x_2)} = 0$$

La variación en los puntos extremos de las curvas es cero. Reemplazando en la definición de funcional

$$J[\hat{y}_{(x)}] = \int_{x_1}^{x_2} f[\hat{y}, \hat{y}', x] dx$$
 (5.9)

Reemplazando \hat{y} y \hat{y}'

$$J[\hat{y}_{(x)}] = \int_{x_1}^{x_2} f[y_{(x)} + \epsilon \, \eta_{(x)}, y'_{(x)} + \epsilon \, \eta'_{(x)}, x] \, dx$$

Integrando

$$J[\hat{y}_{(x)}] = F[Y_{(x_2)} - Y_{(x_1)} + \epsilon (\mu_{(x_2)} - \mu_{(x_1)}), y_{(x_2)} - y_{(x_1)} + \epsilon (\eta_{(x_2)} - \eta_{(x_1)}), x] dx$$

Reemplazando

$$J[\hat{y}_{(x)}] = F[Y_{(x_2)} - Y_{(x_1)} + \epsilon (\mu_{(x_2)} - \mu_{(x_1)}), y_{(x_2)} - y_{(x_1)} + \epsilon (0 - 0), x] dx$$

Simplificando

$$J[\hat{y}_{(x)}] = F[Y_{(x_2)} - Y_{(x_1)} + \epsilon(\mu_{(x_2)} - \mu_{(x_1)}), y_{(x_2)} - y_{(x_1)}, x] dx$$
(5.10)

Si $\epsilon = 0$

$$\hat{y}_{(x)} = y_{(x)}$$

Renombrando el funcional

$$\phi_{(\epsilon)} = J[\hat{y}_{(x)}] \tag{5.11}$$

Lo anterior equivale a

$$\phi_{(\epsilon)} = \int_{x_1}^{x_2} f[\hat{y}_{(x)}, \hat{y}'_{(x)}, x] dx$$

Minimizando

$$\frac{d\phi_{(\epsilon)}}{d\epsilon} = 0 \tag{5.12}$$

Derivando usando la regla de la cadena

$$\frac{d\phi_{(\epsilon)}}{d\epsilon} = \int_{x_{-}}^{x_{2}} \frac{\partial f}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial \epsilon} + \frac{\partial f}{\partial \hat{y}'} \frac{\partial \hat{y}'}{\partial \epsilon} dx = 0$$
 (5.13)

Derivando \hat{y} y \hat{y}'

$$\begin{split} \frac{\partial \hat{y}_{(x)}}{\partial \epsilon} &= \frac{\partial}{\partial \epsilon} \big(y_{(x)} + \epsilon \, \eta_{(x)} \big) = \eta_{(x)} \\ \frac{\partial \hat{y}'_{(x)}}{\partial \epsilon} &= \frac{\partial}{\partial \epsilon} \big(y'_{(x)} + \epsilon \, \eta'_{(x)} \big) = \eta'_{(x)} \end{split}$$

Reemplazando

$$\frac{d\phi_{(\epsilon)}}{d\epsilon} = \int_{x_{\epsilon}}^{x_{2}} \frac{\partial f}{\partial \hat{y}} \eta_{(x)} + \frac{\partial f}{\partial \hat{y}'} \eta'_{(x)} dx = 0$$
 (5.14)

Integrando por partes

$$\int_{x_1}^{x_2} \frac{\partial f}{\partial \hat{y}'} \eta'_{(x)} \, dx$$

Usando la fórmula

$$u = \frac{\partial f}{\partial \hat{y}'} \qquad dv = \eta'_{(x)} dx$$
$$du = \frac{d}{dx} \left(\frac{\partial f}{\partial \hat{y}'}\right) dx \quad v = \eta_{(x)}$$

Reemplazando

$$\int_{x_1}^{x_2} \frac{\partial f}{\partial \hat{y}} \eta'_{(x)} dx = \left(\frac{\partial f}{\partial \hat{y}} \eta_{(x)} \right) \Big|_{x_1}^{x_2} - \int_{x_1}^{x_2} \frac{d}{dx} \left(\frac{\partial f}{\partial \hat{y}'} \right) \eta_{(x)} dx \tag{5.15}$$

Reemplazando 5.15 en 5.14

$$\int_{x_1}^{x_2} \frac{\partial f}{\partial \hat{y}} \eta_{(x)} - \frac{d}{dx} \left(\frac{\partial f}{\partial \hat{y}'} \right) \eta_{(x)} dx = 0$$
 (5.16)

Factorizando

$$\int_{x_1}^{x_2} \eta_{(x)} \left[\frac{\partial f}{\partial \hat{y}} - \frac{d}{dx} \left(\frac{\partial f}{\partial \hat{y}'} \right) \right] dx = 0$$

Lo anterior equivale a

$$\int_{x_1}^{x_2} \eta_{(x)} \left[\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) \right] dx = 0$$
 (5.17)

Ecuación de Euler-Lagrange

$$\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0 \tag{5.18}$$

sujeto a

$$J[y] = \int_{x_1}^{x_2} f[y_{(x)}, y'_{(x)}, x] dx$$
 (5.19)

5.5. El problema de la braquistócrona

La palabra proviene de brachistos-chronos (el más corto-tiempo)

La energía es constante

$$E_p + E_c = k \tag{5.20}$$

Igualando energías en los puntos O y P

$$mgy + 0 = 0 + \frac{1}{2}mv^2$$

Igualando a cero

$$\frac{1}{2}mv^2 - mgy = 0 (5.21)$$

Despejando v

$$v = \sqrt{2gy} \tag{5.22}$$

La velocidad es

$$v = \frac{ds}{dt} \tag{5.23}$$

El diferencial de arco es

$$ds = \sqrt{1 + \left(y'\right)^2} \, dx \tag{5.24}$$

Reemplazando en la velocidad

$$v = \frac{\sqrt{1 + \left(y'\right)^2} \, dx}{dt}$$

Despejando dt y reemplazando valores

$$dt = \frac{\sqrt{1 + \left(y'\right)^2}}{\sqrt{2gy}} dx \tag{5.25}$$

Después de integrar queda el funcional de tiempo

$$T[y] = \int_0^{x_1} \frac{\sqrt{1 + (y')^2}}{\sqrt{2gy}} dx \tag{5.26}$$

La expresión dentro el signo integral puede escribirse como

$$F[y, y'] = \frac{\sqrt{1 + (y')^2}}{\sqrt{2gy}}$$
 (5.27)

5.5.1. Solución 1

La variable x es implícita

$$T[y] = \int_0^{x_1} F[y, y'] dx$$

Cambiando a la notación de Leibniz

$$T[y] = \int_{0}^{x_1} F\left[y, \frac{dy}{dx}\right] dx$$

Cambiando la variable independiente, cambiando límites de integración, usando la inversa de la inversa de $\frac{dy}{dx}$, multiplicando y dividiendo por dy

$$T[x] = \int_0^{y_1} F\left[y, \left(\frac{dx}{dy}\right)^{-1}\right] \frac{dx}{dy} \, dy$$

Reordenando y cambiando a la notación de Lagrange

$$T[x] = \int_0^{y_1} x' F[y, (x')^{-1}] dy$$

Usando la notación estándar

$$T[x] = \int_0^{y_1} \bar{F}[x', y] \, dy$$

La ecuación de Euler-Lagrange se transforma en

$$\frac{\partial \bar{F}}{\partial x} - \frac{d}{dx} \left(\frac{\partial \bar{F}}{\partial x'} \right) = 0$$

El nuevo lagrangiano (de mecánica clásica) será

$$\bar{F}[x',y] = x' F[y,(x')^{-1}] = x' \frac{\sqrt{1+(x')^{-2}}}{\sqrt{2gy}} = \frac{\sqrt{1+(x')^2}}{\sqrt{2gy}}$$

Reemplazando valores

$$0 - \frac{d}{dx} \left(\frac{x'}{\sqrt{2gy}\sqrt{1 + (x')^2}} \right) = 0$$

Integrando

$$\frac{x'}{\sqrt{2gy}\sqrt{1+\left(x'\right)^2}} = C_1$$

Elevando al cuadrado

$$\frac{\left(x'\right)^2}{2gy\left[1+\left(x'\right)^2\right]} = C_1$$

Usando un cambio de variable

$$x' = \tan \alpha$$

Reemplazando

$$\frac{\tan^2 \alpha}{2gy(1+\tan^2 \alpha)} = C_1$$

Simplificando

$$\frac{\sin^2 \alpha}{2gy} = C_1$$

Despejando y

$$y = \frac{\sin^2 \alpha}{2gC_1}$$

Diferencial de y

$$dy = \frac{\sin \alpha \cos \alpha}{gC_1} \, d\alpha$$

Reemplazando en x'

$$dx = \tan \alpha \, dy$$

$$dx = \tan \alpha \, \frac{\sin \alpha \cos \alpha}{qC_1} \, d\alpha$$

Simplificando

$$dx = \frac{\sin^2 \alpha}{gC_1} \, d\alpha$$

Integrando

$$x = \frac{1}{gC_1} \left(\frac{\alpha}{2} - \frac{\sin 2\alpha}{4} \right) + C_2 = \frac{1}{2gC_1} \left(\alpha - \frac{\sin 2\alpha}{2} \right) + C_2$$

Si x = 0 entonces $C_2 = 0$

$$x = \frac{1}{2gC_1} \left(\alpha - \frac{\sin 2\alpha}{2} \right)$$

Usando un cambio de variable

$$x = k \left(\alpha - \frac{\sin 2\alpha}{2} \right)$$
$$y = k \sin^2 \alpha$$

Usando el cambio de variable $\theta = 2\alpha$

$$x = k \left(\frac{\theta - \sin \theta}{2}\right) = \frac{k}{2} (\theta - \sin \theta) = k (\theta - \sin \theta)$$
$$y = k \sin^2 \left(\frac{\theta}{2}\right) = k \left(\frac{1 - \cos \theta}{2}\right) = \frac{k}{2} (1 - \cos \theta) = k (1 - \cos \theta)$$

5.5.2. Solución 2

Usando la identidad de Beltrami, porque $F_x = 0$

$$F - y' \frac{\partial F}{\partial y'} = C \tag{5.28}$$

Reemplazando

$$\frac{\sqrt{1 + (y')^2}}{\sqrt{2gy}} - y' \frac{y'}{\sqrt{2gy}\sqrt{1 + (y')^2}} = C$$

Simplificando

$$\frac{1}{\sqrt{2gy}\sqrt{1+\left(y'\right)^2}} = C$$

Elevando al cuadrado y reordenando

$$\left[1 + \left(y'\right)^2\right]y = \frac{1}{2gC}$$

Realizando un cambio de variable

$$\left[1 + \left(y'\right)^2\right]y = k$$

Capítulo 6

Métodos variacionales

6.1. Método de Rayleigh-Ritz

$$\pi(\phi) = \int_{x_1}^{x_2} f[\phi, \phi', \phi'', \dots, x] dx$$
 (6.1)

 $\phi(x)$ es la función de desplazamiento que se debe determinar de manera que minimice el funcional $\pi(\phi)$, pero además debe satisfacer las condiciones de borde. Para este fin se debe ensayar una serie convergente de aproximaciones $\phi_0, \phi_1, \phi_2, \dots, \phi_n$, hacia la solución del problema de la siguiente forma

$$\phi_n(x) = \alpha_0 g_0(x) + \alpha_1 g_1(x) + \ldots + \alpha_n g_n(x)$$
(6.2)

Todos los valore de α_i son constantes indeterminadas y las funciones $g_i(x)$ son funciones que satisfacen las condiciones de borde del problema.

Para verificar la convergencia de la solución se utiliza la teoría de mínimos cuadrados de la siguiente forma

$$\lim_{n \to \infty} \int_{x_1}^{x_2} \left(\phi - \phi_n\right)^2 dx \tag{6.3}$$

La ecuación 6.2 puede escribirse como

$$\phi_n(x) = \phi_{n-1}(x) + \alpha_n g_n(x) \tag{6.4}$$

Reemplazando 6.4 en 6.1

$$\pi(\phi_n) = \int_{x_1}^{x_2} f[\phi, \phi', \phi'', \dots, x] dx$$
 (6.5)

Diferencial de la función

$$d\pi(\phi_n) = 0 \tag{6.6}$$

Mínimo de la función

$$\frac{\partial \pi(\phi_n)}{\partial \alpha_i} = 0 \tag{6.7}$$

6.2. Fórmulas recurrentes

6.2.1. Integración por partes

Diferencial de un producto

$$d(uv) = duv + u\,dv$$

Integrando

$$uv = \int v \, du + \int u \, dv$$

Despejando

$$\int u \, dv = uv - \int v \, du \tag{6.8}$$

6.2.2. Teorema de Gauss

$$\int_{\Omega} \frac{\partial \phi}{\partial x_i} d\Omega = \int_{\Gamma} \phi \, n_i \, d\Gamma \tag{6.9}$$

Donde ϕ es una función escalar, x_i es un punto y n_i la normal.

Si $\phi = ab$

Para un volumen

$$\iiint\limits_{V} a \frac{\partial b}{\partial x_{i}} dV = \int\limits_{A} ab \, n_{i} \, dA - \iiint\limits_{V} b \frac{\partial a}{\partial x_{i}} \, dV \tag{6.10}$$

Para una superficie

$$\iint_{A} a \frac{\partial b}{\partial x_{i}} dA = \int_{L} ab \, n_{i} \, dx - \iint_{A} b \frac{\partial a}{\partial x_{i}} \, dA \tag{6.11}$$

Para una línea

$$\int_{x_1}^{x_2} a \frac{\partial b}{\partial x_i} dx = (ab) \Big|_{x_1}^{x_2} - \int_{x_1}^{x_2} b \frac{\partial a}{\partial x_i} dx$$

$$(6.12)$$

6.3. Ejemplos

1. Aplicando el método de integración por partes hallar

$$\int x^2 \sin x \, dx$$

Identificando variables en la fórmula

$$u = x^2$$
 $dv = \sin x \, dx$
 $du = 2x \, dx$ $v = -\cos x$

Reemplazando

6.3. EJEMPLOS 47

$$\int x^2 \sin x \, dx = -x^2 \cos x + 2 \int x \cos x \, dx$$

Volviendo a integrar por partes e identificando variables en la fórmula

$$u = x$$
 $dv = \cos x dx$
 $du = dx$ $v = \sin x$

Reemplazando

$$\int x^2 \sin x \, dx = -x^2 \cos x + 2x \sin x - 2 \int \sin x \, dx$$

Integrando

$$\int x^2 \sin x \, dx = -x^2 \cos x + 2x \sin x + 2 \cos x + c$$

2. Aplicando el método de integración por partes hallar

$$\int w \frac{dv}{dx} \, dx$$

Identificando variables en la fórmula

$$r = w$$
 $dt = \frac{dv}{dx} dx$
 $dr = \frac{dw}{dx} dx$ $t = v$

Reemplazando

$$\int w \frac{dv}{dx} \, dx = wv - \int v \frac{dw}{dx} \, dx + c$$

3. Aplicando el método de integración por partes hallar

$$\int w \frac{d^2u}{dx^2} \, dx$$

Identificando variables en la fórmula

$$r = w dt = \frac{d^2u}{dx^2} dx$$
$$dr = \frac{dw}{dx} dx t = \frac{du}{dx}$$

Reemplazando

$$\int w \frac{d^2u}{dx^2} dx = w \frac{du}{dx} - \int \frac{du}{dx} \frac{dw}{dx} dx + c$$

4. Aplicando el método de integración por partes hallar

$$\int v \frac{d^4w}{dx^4} \, dx$$

Identificando variables en la fórmula

$$r = v$$

$$dt = \frac{d^4 w}{dx^4} dx$$
$$dr = \frac{dv}{dx} dx \quad t = \frac{d^3 w}{dx^3}$$

Reemplazando

$$\int v \frac{d^4 w}{dx^4} dx = v \frac{d^3 w}{dx^3} - \int \frac{d^3 w}{dx^3} \frac{dv}{dx} dx$$

Volviendo a integrar por partes e identificando variables en la fórmula

$$r = \frac{dv}{dx} \qquad dt = \frac{d^3w}{dx^3} dx$$
$$dr = \frac{d^2v}{dx^2} dx \quad t = \frac{d^2w}{dx^2}$$

Reemplazando

$$\int v \frac{d^4w}{dx^4} dx = v \frac{d^3w}{dx^3} - \left(\frac{dv}{dx} \frac{d^2w}{dx^2} - \int \frac{d^2w}{dx^2} \frac{d^2v}{dx^2} dx\right)$$

Simplificando

$$\int v \frac{d^4 w}{dx^4} \, dx = v \frac{d^3 w}{dx^3} - \frac{dv}{dx} \frac{d^2 w}{dx^2} + \int \frac{d^2 w}{dx^2} \frac{d^2 v}{dx^2} \, dx + c$$

5. Resolver la estructura con E, A constantes por el método de Ritz

Funcional de energía interna de deformación

$$\pi = \iiint\limits_{V} \frac{1}{2} \, \varepsilon^{\mathrm{T}} \sigma \, dV - \iiint\limits_{V} u^{\mathrm{T}} f_{V} \, dV - \iint\limits_{\Omega} u^{\mathrm{T}} f_{\Omega} \, d\Omega - \sum_{i=1}^{n} u_{i} P_{i}$$

Deformación de la barra

$$\delta = \frac{NL}{EA}$$

6.3. EJEMPLOS 49

Despejando N

$$N = \frac{EA}{L}\delta$$

Energía deformación

$$U_i = \frac{1}{2}N\delta$$

Reemplazando N en U_i

$$U_i = \frac{1}{2} \frac{EA}{L} \delta^2$$

La deformación unitaria es

$$\varepsilon_x = \frac{\delta}{L}$$

Despejando δ

$$\delta = L \,\varepsilon_x$$

Reemplazando δ en U_i

$$U_i = \frac{1}{2} EAL \,\varepsilon_x^2$$

Reordenando

$$U_i = \frac{1}{2} E \,\varepsilon_x^2 V$$

Para condiciones variables

$$U_i = \int \frac{1}{2} E \,\varepsilon_x^2 \,dV$$

La energía interna es igual al trabajo externo

$$\int \frac{1}{2} E \, \varepsilon_x^2 \, dV = -Nu_1 + Nu_2$$

Funcional de energía

$$\pi = \int \frac{1}{2} E \,\varepsilon_x^2 \,dV - N(u_2 - u_1)$$

Reescribiendo dV

$$\pi = \int_0^L \frac{1}{2} E \,\varepsilon_x^2 \iint_A dA \, dx - N(u_2 - u_1)$$

El área es constante

$$\pi = \int_0^L \frac{1}{2} EA \,\varepsilon_x^2 \, dx - N(u_2 - u_1)$$

Campo de desplazamientos

$$u \approx \phi(x) = \alpha_0 g_0(x) + \alpha_1 g_1(x) + \ldots + \alpha_n g_n(x)$$

Para este ejemplo

$$\phi(x) = \alpha_0 g_0(x) + \alpha_1 g_1(x)$$

Funciones test o trial

$$g_0(x) = x^0$$
 $g_1(x) = x^1$

Reemplazando

$$u = \alpha_0 + \alpha_1 x$$

Reemplazando u(0) = 0

$$\alpha_0 + \alpha_1(0) = 0$$

Simplificando

$$\alpha_0 = 0$$

La aproximación del campo de desplazamientos será

$$u = \alpha_1 x$$

La deformación unitaria es

$$\varepsilon_x = \frac{\partial u}{\partial x} = \alpha_1$$

La normal es

$$N_1 = N$$
 $0 \leqslant x \leqslant L$

El subíndice se refiere al elemento 1, se discretizo la barra en un elemento. Reemplazando en el funcional

$$\pi = \int_0^L \frac{1}{2} EA \,\varepsilon_x^2 \, dx - N(u_2 - u_1)$$
$$= \int_0^L \frac{1}{2} EA \,\varepsilon_x^2 \, dx - N(u_2 - 0)$$
$$= \frac{1}{2} EA \,\alpha_1^2 \int_0^L dx - N(\alpha_1 L)$$

Integrando

$$\pi = \frac{1}{2} EAL \alpha_1^2 - NL \alpha_1$$

Minimizando el funcional

6.3. EJEMPLOS 51

$$\frac{d\pi}{d\alpha_1} = EAL\,\alpha_1 - NL = 0$$

Despejando α_1

$$\alpha_1 = \frac{N}{EA}$$

Reemplazando en u

$$u = \frac{N}{EA}x$$

6. Resolver la estructura con $E,\,A$ constantes por el método de Ritz

Campo de desplazamientos

$$\phi(x) = \alpha_0 g_0(x) + \alpha_1 g_1(x) + \alpha_2 g_2(x)^2$$

Funciones test o trial

$$g_0(x) = x^0 \quad g_1(x) = x^1$$
$$g_2(x) = x^2$$

Reemplazando

$$u = \alpha_0 + \alpha_1 x + \alpha_2 x^2$$

Reemplazando u(0) = 0 y u(2) = 0

$$\alpha_0 + \alpha_1(0) + \alpha_2(0)^2 = 0$$

 $\alpha_0 + \alpha_1(2) + \alpha_2(2)^2 = 0$

Simplificando

$$\alpha_0 = 0$$
$$\alpha_1 + 2\alpha_2 = 0$$

Las ecuaciones anteriores pueden escribirse como

$$\alpha_0 = 0$$
$$\alpha_1 = -2 \,\alpha_2$$

La aproximación del campo de desplazamientos será

$$u = -2\alpha_2 x + \alpha_2 x^2$$

La deformación unitaria es

$$\varepsilon_x = \frac{\partial u}{\partial x} = -2\,\alpha_2 + 2\,\alpha_2 x$$

La normal es

$$N_1 = N$$
 $0 \le x \le 1$
 $N_2 = N - 2$ $1 \le x \le 2$

Se discretizo la barra en dos elementos.

Desplazamientos en los nodos

$$u_1 = 0$$

 $u_2 = -2 \alpha_2 + \alpha_2 = -\alpha_2$
 $u_3 = 0$

Reemplazando en el funcional

$$\pi = \int_{0}^{1} \frac{1}{2} EA \varepsilon_{x}^{2} dx - N(u_{2} - u_{1}) + \int_{1}^{2} \frac{1}{2} EA \varepsilon_{x}^{2} dx - (N - 2)(u_{3} - u_{2})$$

$$= \int_{0}^{1} \frac{1}{2} EA \varepsilon_{x}^{2} dx - N(u_{2} - 0) + \int_{1}^{2} \frac{1}{2} EA \varepsilon_{x}^{2} dx - (N - 2)(0 - u_{2})$$

$$= \int_{0}^{1} \frac{1}{2} EA(-2\alpha_{2} + 2\alpha_{2}x)^{2} dx - N(-\alpha_{2}) + \int_{1}^{2} \frac{1}{2} EA(-2\alpha_{2} + 2\alpha_{2}x)^{2} dx - (N - 2)(\alpha_{2})$$

$$= 2 EA \alpha_{2}^{2} \int_{0}^{2} 1 - 2x + x^{2} dx + 2\alpha_{2}$$

Integrando

$$\pi = \frac{4}{3} EA \alpha_2^2 + 2 \alpha_2$$

Minimizando el funcional

$$\frac{d\pi}{d\alpha_2} = \frac{8}{3} EA \alpha_2 + 2 = 0$$

Despejando α_2

$$\alpha_2 = -\frac{3}{4 \, EA}$$

Reemplazando en u

$$u = \frac{3}{2EA}x - \frac{3}{4EA}x^2$$

6.4. Método de Galerkin

Puede ser planteado en la forma débil (integrales)

$$\iiint_{V} \frac{1}{2} \varepsilon^{\mathrm{T}} \sigma dV - \iiint_{V} u^{\mathrm{T}} f_{V} dV - \iint_{\Omega} u^{\mathrm{T}} f_{\Omega} d\Omega - \sum_{i=1}^{n} u_{i} P_{i}$$

$$(6.13)$$

o en la forma fuerte (derivadas)

$$Lu = P (6.14)$$

L es un operador diferencial lineal, por ejemplo

$$\frac{d}{dx}\left(EA\frac{du}{dx}\right) = q$$

el operador diferencial será

$$L = \frac{d}{dx} \left(EA \frac{d}{dx} \right) \tag{6.15}$$

El campo de desplazamientos u, es aproximado con \tilde{u}

$$u \approx \tilde{u} = \sum_{i=1}^{n} Q_i G_i \tag{6.16}$$

Funciones de peso

$$w_i = \sum_{i=1}^n \phi_i G_i \tag{6.17}$$

La función residual (la función error se usa en probabilidad y estadística) es

$$R = L\tilde{u} - P \tag{6.18}$$

Para minimizar el error introducido se multiplica la función residual por otra función de ponderación o peso

$$\int_{V} w_i \left(L\tilde{u} - P \right) dV = 0 \tag{6.19}$$

Reemplazando en la forma débil

$$\iiint\limits_{V} \frac{1}{2} \, \varepsilon_{(\phi)}^{\mathrm{T}} \, \sigma \, dV - \iiint\limits_{V} \phi^{\mathrm{T}} f_{V} \, dV - \iint\limits_{\Omega} \phi^{\mathrm{T}} f_{\Omega} \, d\Omega - \sum_{i=1}^{n} \phi_{i} P_{i}$$

Reemplazando en la forma fuerte

$$\int\limits_{V} \phi \left(L\tilde{u} - P \right) dV = 0$$

6.5. Ejemplo

1. Resolver la estructura con E, A, I constantes por el método de Galerkin

Campo de desplazamientos

$$v \approx \phi = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3$$

Funciones de ponderación

$$w = \phi$$

Ecuación diferencial de la viga

$$EI\frac{d^4v}{dx^4} - q(x) = 0$$

Aplicando Galerkin

$$\int_{0}^{L} \phi EI \frac{d^{4}v}{dx^{4}} dx - \int_{0}^{L} \phi q(x) dx = 0$$

Usando el teorema de Gauss

$$\int_{0}^{L} \phi EI \frac{d^{4}v}{dx^{4}} dx - \int_{0}^{L} \phi q(x) dx = \left(\phi EI \frac{d^{3}v}{dx^{3}} - \frac{d\phi}{dx} EI \frac{d^{2}v}{dx^{2}} \right) \Big|_{0}^{L} + \int_{0}^{L} \frac{d^{2}\phi}{dx^{2}} EI \frac{d^{2}v}{dx^{2}} dx - \int_{0}^{L} \phi q(x) dx = 0$$

Cortante y momento

$$V = EI \frac{d^3v}{dx^3}$$
$$M = EI \frac{d^2v}{dx^2}$$

6.5. EJEMPLO 55

Reemplazando

$$\left(\phi \, V - \frac{d\phi}{dx} \, M \right) \bigg|_0^L + EI \int_0^L \frac{d^2\phi}{dx^2} \frac{d^2v}{dx^2} \, dx - \int_0^L \phi \, q(x) \, dx = 0$$

Reemplazando límites

$$\left(\phi(L)\,V(L) - \frac{d\phi(L)}{dx}\,M(L)\right) - \left(\phi(0)\,V(0) - \frac{d\phi(0)}{dx}\,M(0)\right) + EI\int_0^L \frac{d^2\phi}{dx^2}\frac{d^2v}{dx^2}\,dx - \int_0^L \phi\,q(x)\,dx = 0$$

Las condiciones de contorno son

$$v(0) = 0$$
 $v(L) = 0$
 $\theta(0) = 0$ $\theta(L) = 0$

Capítulo 7

Método de balance de energía

7.1. Introducción

Funcional de energía total de deformación

$$\iiint_{V} \frac{1}{2} \varepsilon^{\mathrm{T}} \sigma \, dV - \iiint_{V} u^{\mathrm{T}} f_{V} \, dV - \iint_{\Omega} u^{\mathrm{T}} f_{\Omega} \, d\Omega - \sum_{i=1}^{n} u_{i} P_{i}$$
 (7.1)

Principio de los trabajos virtuales

$$\iiint_{V} \varepsilon^{\mathrm{T}} \sigma \, dV - \iiint_{V} u^{\mathrm{T}} f_{V} \, dV - \iint_{\Omega} u^{\mathrm{T}} f_{\Omega} \, d\Omega - \sum_{i=1}^{n} u_{i} P_{i} = 0$$
 (7.2)

7.2. Elemento armadura

Barra con A, E constantes

Se usara un polinomio de primer grado para aproximar el campo de desplazamientos

$$u(x) = \alpha_0 + \alpha_1 x \tag{7.3}$$

en forma matricial

$$u(x) = \begin{bmatrix} 1 & x \end{bmatrix} \begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix} \tag{7.4}$$

Reemplazando valores

$$u_1(0) = \alpha_0$$

$$u_2(L) = \alpha_0 + \alpha_1 L$$

en forma matricial

$$\begin{bmatrix} u_1(0) \\ u_2(L) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & L \end{bmatrix} \begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix}$$

Multiplicando por la inversa (hallando loa valores de α_0 y α_1)

$$\begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -\frac{1}{L} & \frac{1}{L} \end{bmatrix} \begin{bmatrix} u_1(0) \\ u_2(L) \end{bmatrix}$$

Reemplazando en 7.4

$$u(x) = \begin{bmatrix} 1 & x \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -\frac{1}{L} & \frac{1}{L} \end{bmatrix} \begin{bmatrix} u_1(0) \\ u_2(L) \end{bmatrix}$$

Multiplicando

$$u(x) = \begin{bmatrix} 1 - \frac{1}{L}x & \frac{1}{L}x \end{bmatrix} \begin{bmatrix} u_1(0) \\ u_2(L) \end{bmatrix}$$

En forma compacta

$$\boldsymbol{u} = \boldsymbol{N} \, u_i \tag{7.5}$$

 \boldsymbol{N} es la matriz de funciones de interpolación

$$\mathbf{N} = \begin{bmatrix} N_1 & N_2 \end{bmatrix} = \begin{bmatrix} 1 - \frac{1}{L}x & \frac{1}{L}x \end{bmatrix}$$

Deformación

$$\varepsilon_x = \frac{du}{dx}$$

reemplazando el campo de desplazamientos

$$\varepsilon_x = \frac{d\mathbf{N}}{dx} u_i$$

En forma compacta

$$\varepsilon = B u_i \tag{7.6}$$

 \boldsymbol{B} es la matriz de ???

$$\boldsymbol{B} = \begin{bmatrix} B_1 & B_2 \end{bmatrix} = \begin{bmatrix} -\frac{1}{L} & \frac{1}{L} \end{bmatrix}$$

De la ecuación 7.1

$$U_i = \int_{V} \frac{1}{2} \, \varepsilon^{\mathrm{T}} \, \sigma \, dV$$

De la ley de Hooke

$$U_i = \int\limits_V \frac{1}{2} \, \varepsilon^{\mathrm{T}} E \, \varepsilon \, dV$$

Reemplazando la ecuación 7.6

$$U_{i} = \int_{V} \frac{1}{2} (B u_{i})^{\mathrm{T}} E (B u_{i}) dV$$

Traspuesta de un producto

$$U_i = \int\limits_V \frac{1}{2} u_i^{\mathrm{T}} B^{\mathrm{T}} E B u_i dV$$

dV es igual a dx dA

$$U_i = \int\limits_V \frac{1}{2} u_i^{\mathrm{T}} B^{\mathrm{T}} E B u_i dx dA$$

Reordenando

$$U_i = \int\limits_L \frac{1}{2} \, u_i^{\mathrm{T}} B^{\mathrm{T}} \, E \, B \, u_i \, dx \int\limits_A dA$$

El área y modulo de elasticidad son constantes

$$U_i = \int_{\mathbf{I}} \frac{1}{2} u_i^{\mathrm{T}} B^{\mathrm{T}} E A B u_i dx$$

Las constantes salen de la integral

$$U_i = \frac{1}{2} u_i^{\mathrm{T}} \int_I B^{\mathrm{T}} EAB \, dx \, u_i$$

La matriz de rigidez de un elemento es

$$K_e = \int_I B^{\mathrm{T}} E A B \, dx \tag{7.7}$$

Reemplazando B

$$K_e = \int_0^L \begin{bmatrix} -\frac{1}{L} \\ \frac{1}{L} \end{bmatrix} EA \begin{bmatrix} -\frac{1}{L} & \frac{1}{L} \end{bmatrix} dx$$

Multiplicando, integrando y factorizando

$$K_e = \frac{EA}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \tag{7.8}$$

7.3. Elemento viga a flexión

Viga con E, I constantes

Se usara un polinomio de tercer grado para que la curvatura sea lineal

$$v(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3 \tag{7.9}$$

en forma matricial

$$v(x) = \begin{bmatrix} 1 & x & x^2 & x^3 \end{bmatrix} \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix}$$
 (7.10)

Aproximación de desplazamientos angulares

$$v'(x) = \alpha_1 + 2\alpha_2 x + 3\alpha_3 x^2$$

Reemplazando valores

$$v_1(0) = \alpha_0$$

$$v_1'(0) = \alpha_1$$

$$v_2(L) = \alpha_0 + \alpha_1 L + \alpha_2 L^2 + \alpha_3 L^3$$

$$v_2'(L) = \alpha_1 + 2\alpha_2 L + 3\alpha_3 L^2$$

en forma matricial

$$\begin{bmatrix} v_1(0) \\ v'_1(0) \\ v_2(L) \\ v'_2(L) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & L & L^2 & L^3 \\ 0 & 1 & 2L & 3L^2 \end{bmatrix} \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix}$$

Multiplicando por la inversa

$$\begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -\frac{3}{L^2} & -\frac{2}{L} & \frac{3}{L^2} & -\frac{1}{L} \\ \frac{2}{L^3} & \frac{1}{L^2} & -\frac{2}{L^3} & \frac{1}{L^2} \end{bmatrix} \begin{bmatrix} v_1(0) \\ v_1'(0) \\ v_2(L) \\ v_2'(L) \end{bmatrix}$$

Reemplazando en 7.10

$$v(x) = \begin{bmatrix} 1 & x & x^2 & x^3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -\frac{3}{L^2} & -\frac{2}{L} & \frac{3}{L^2} & -\frac{1}{L} \\ \frac{2}{L^3} & \frac{1}{L^2} & -\frac{2}{L^3} & \frac{1}{L^2} \end{bmatrix} \begin{bmatrix} v_1(0) \\ v_1'(0) \\ v_2(L) \\ v_2'(L) \end{bmatrix}$$

Multiplicando

$$v(x) = \left[1 - \frac{3}{L^2}x^2 + \frac{2}{L^3}x^3 \quad x - \frac{2}{L}x^2 + \frac{1}{L^2}x^3 \quad \frac{3}{L^2}x^2 - \frac{2}{L^3}x^3 \quad -\frac{1}{L}x^2 + \frac{1}{L^2}x^3\right] \begin{bmatrix} v_1(0) \\ v_1'(0) \\ v_2(L) \\ v_2'(L) \end{bmatrix}$$

En forma compacta

$$\boldsymbol{v} = \boldsymbol{N} \, v_i \tag{7.11}$$

 ${m N}$ es la matriz de funciones de interpolación

$$\mathbf{N} = \begin{bmatrix} N_1 & N_2 & N_3 & N_4 \end{bmatrix} = \begin{bmatrix} 1 - \frac{3}{L^2}x^2 + \frac{2}{L^3}x^3 & x - \frac{2}{L}x^2 + \frac{1}{L^2}x^3 & \frac{3}{L^2}x^2 - \frac{2}{L^3}x^3 & -\frac{1}{L}x^2 + \frac{1}{L^2}x^3 \end{bmatrix}$$

Deformación

$$\varepsilon_x = -\kappa \, y = -\frac{d^2 v}{dx^2} \, y$$

reemplazando el campo de desplazamientos

$$\varepsilon_x = -\frac{d^2 \mathbf{N}}{dx^2} v_i \, y$$

En forma compacta

$$\boldsymbol{\varepsilon} = -\boldsymbol{B} \, v_i \, y \tag{7.12}$$

 \boldsymbol{B} es la matriz de ???

$$\boldsymbol{B} = \begin{bmatrix} B_1 & B_2 & B_3 & B_4 \end{bmatrix} = \begin{bmatrix} -\frac{6}{L^2} + \frac{12}{L^3}x & -\frac{4}{L} + \frac{6}{L^2}x & \frac{6}{L^2} - \frac{12}{L^3}x & -\frac{2}{L} + \frac{6}{L^2}x \end{bmatrix}$$

De la ecuación 7.1

$$U_i = \int\limits_V \frac{1}{2} \, \varepsilon^{\mathrm{T}} \, \sigma \, dV$$

De la lev de Hooke

$$U_i = \int\limits_V \frac{1}{2} \, \varepsilon^{\mathrm{T}} E \, \varepsilon \, dV$$

Reemplazando la ecuación 7.12

$$U_{i} = \int_{V} \frac{1}{2} (-B v_{i} y)^{\mathrm{T}} E (-B v_{i} y) dV$$

Traspuesta de un producto

$$U_{i} = \int_{V} \frac{1}{2} v_{i}^{\mathrm{T}} B^{\mathrm{T}} E B v_{i} y^{2} dV$$

dV es igual a dx dA

$$U_{i} = \int_{V} \frac{1}{2} v_{i}^{\mathrm{T}} B^{\mathrm{T}} E B v_{i} y^{2} dx dA$$

Reordenando

$$U_i = \int\limits_L \frac{1}{2} v_i^{\mathrm{T}} B^{\mathrm{T}} E B v_i dx \int\limits_A y^2 dA$$

La inercia y modulo de elasticidad son constantes

$$U_i = \int\limits_{L} \frac{1}{2} \, v_i^{\mathrm{T}} B^{\mathrm{T}} \, EIB \, v_i \, dx$$

Las constantes salen de la integral

$$U_i = \frac{1}{2} \, v_i^{\mathrm{T}} \int\limits_{\mathbf{r}} B^{\mathrm{T}} \, EIB \, dx \, v_i$$

La matriz de rigidez de un elemento es

$$K_e = \int_{\mathcal{L}} B^{\mathrm{T}} E I B \, dx \tag{7.13}$$

Reemplazando B

$$K_e = \int_0^L \begin{bmatrix} -\frac{6}{L^2} + \frac{12}{L^3}x \\ -\frac{4}{L} + \frac{6}{L^2}x \\ \frac{6}{L^2} - \frac{12}{L^3}x \\ -\frac{2}{L} + \frac{6}{L^2}x \end{bmatrix} EI\left[-\frac{6}{L^2} + \frac{12}{L^3}x - \frac{4}{L} + \frac{6}{L^2}x - \frac{6}{L^2} - \frac{12}{L^3}x - \frac{2}{L} + \frac{6}{L^2}x \right] dx$$

Multiplicando, integrando y factorizando

$$K_e = \frac{EI}{L^3} \begin{bmatrix} 12 & 6L & -12 & 6L \\ 6L & 4L^2 & -6L & 2L^2 \\ -12 & -6L & 12 & -6L \\ 6L & 2L^2 & -6L & 4L^2 \end{bmatrix}$$
(7.14)

Vector de carga

$$\int_{L} v^{\mathrm{T}} f_L dx \tag{7.15}$$

Es equivalente a

$$\int_0^L \left(N \, v_i\right)^\mathrm{T} q \, dx = \int_0^L v_i^\mathrm{T} N^\mathrm{T} \, q \, dx = v_i^\mathrm{T} \int_0^L N^\mathrm{T} \, q \, dx$$

Reordenando a la forma estándar

$$v_i^{\mathrm{T}} \int_0^L q N^{\mathrm{T}} dx = v_i^{\mathrm{T}} F$$

Reemplazando las funciones de forma e integrando

$$F = \int_0^L q \begin{bmatrix} 1 - \frac{3}{L^2} x^2 + \frac{2}{L^3} x^3 \\ x - \frac{2}{L} x^2 + \frac{1}{L^2} x^3 \\ \frac{3}{L^2} x^2 - \frac{2}{L^3} x^3 \\ -\frac{1}{L} x^2 + \frac{1}{L^2} x^3 \end{bmatrix} dx = q \begin{bmatrix} \frac{L}{2} \\ \frac{L^2}{12} \\ \frac{L}{2} \\ -\frac{L^2}{12} \end{bmatrix}$$

7.4. Elemento pórtico

Por el principio de superposición

$$K_{e} = \begin{bmatrix} \frac{EA}{L} & 0 & 0 & -\frac{EA}{L} & 0 & 0\\ 0 & \frac{12EI}{L^{3}} & \frac{6EI}{L^{2}} & 0 & -\frac{12EI}{L^{3}} & \frac{6EI}{L^{2}}\\ 0 & \frac{6EI}{L^{2}} & \frac{4EI}{L} & 0 & -\frac{6EI}{L^{2}} & \frac{2EI}{L}\\ -\frac{EA}{L} & 0 & 0 & \frac{EA}{L} & 0 & 0\\ 0 & -\frac{12EI}{L^{3}} & -\frac{6EI}{L^{2}} & 0 & \frac{12EI}{L^{3}} & -\frac{6EI}{L^{2}}\\ 0 & \frac{6EI}{L^{2}} & \frac{2EI}{L} & 0 & -\frac{6EI}{L^{2}} & \frac{4EI}{L} \end{bmatrix}$$
 (7.16)