	Congratulations! You passed!	
	Grade received 100% Latest Submission Grade 100% To pass 80% or higher	
	Go to next item	
1	Insertion sort is an example of divide and conquer?	1/1 point
-		1/1 point
	True False	
	That's correct. Insertion sort processes each element in relation to its surrounding elements until the data is eventually sorted.	
2.	Given an array of 6 numbers [6,8,19,48,9,90] and applying insertion sort , how many swaps must occur before the array is sorted?	1/1 point
	O 6	
	O 4	
	2	
	Correct That's correct. The array is mostly ordered so only have to swap 9 twice, first with 48, then with 19.	
3.	What time complexity is required to do a linear search?	1/1 point
	O 0(1)	
	((log (n))	
	○ (n)	
	Correct That's correct. A linear search requires that you do a search of every item. So it will take n (the number of items) time to search.	
_		
4.	Why do we need Big-O notation to evaluate our programs?	1/1 point
	Because sorting is complicated, and we need a complicated metric.	
	Because measuring time is relative to a person's computer, so a relative metric is required.	

	Because sorting requires that things are moved around to save space.	
	Correct That's correct. A relative metric is required to measure time.	
5.	What is parallelization?	1/1 point
	O It is about writing your code in one go.	
	O It is about calling functions repetitively until they have achieved a base case.	
	It is about running code at the same time in threads or on separate computers.	
	Correct That's correct. You have successfully identified a brief definition of parallelization.	
6.	Why would you decide to use recursion?	1/1 point
	It lends itself well to a divide and conquer approach.	
	O It looks cool and makes your code seem more intelligent.	
	Recursion reduces the pressure on the compiler by making less stack calls.	
	Correct That's correct. Recursion works well with the divide and conquer approach.	
7.	Why does Memoization work well with dynamic programming?	1/1 point
	It requires less compiling because it stores previous results, reducing the load on the CPU.	
	Because it takes a lot of memory to run some programs and memoization allows you to store data in smaller sizes.	
	O It takes up less space in the hard drive.	
	Correct That's correct. Dynamic programming utilizes memoization because it stores the results of computations, meaning the computations don't have to be repeated.	
8.	How are the principles of dynamic programming and greedy algorithms at odds with one another?	1/1 point
	Because dynamic programming will react with more agility to a program, while the greedy approach will be slower and more self-centered.	
	The principle of dynamic programming is to exhaustively compute the best solution, while a greedy approach will favor take the immediate best option.	

	The greedy algorithm will use up CPU by monopolizing resources.	
	Correct That's correct. With dynamic programming, you can find the most best solution, whereas greedy	
	algorithms have a specific process.	
9.	Why is a binary search conducted in O(log n) time?	1,
	Regardless of the size of the input, at every step the number of calculations is halved.	
	Because as it searches it sorts the elements.	
	It is not, it is conducted in O(n).	
	 Correct That's correct. Log n means that it is not instantaneous access but it rapidly reduces the lookup space. 	
10.	if number < 2 number	1,
	else fibonacci(number - 1) + fibonacci(number - 2) end end	
	In the Fibonacci pseudocode above how many recursive instances can be seen?	
	O 0	
	12	
	 Correct That's correct. The algorithm is being called on the last, and second to last number on the series. 	