

L/ APPUI TECHNIQUE

Notions sur le béton armé

SOMMAIRE

1. Généralités	page	03
2.Le béton	page	05
3. L'acier	page	05
4. Les liaisons acier-béton	page	10
5.La représentation des armatures	page	16
6.Les plans de ferraillage	page	19
7.Les bordereaux d'aciers	page	20

APPUIS TECHNIQUES

1. Généralités

Définition:

Le Béton Armé (BA) est un matériau hétérogène constitué :

- De béton.
- D'armatures en acier.

Chacun des matériaux le constituant apporte ses bonnes caractéristiques mécaniques pour compenser les mauvaises de l'autre. Le BA est donc une ASSOCIATION du béton et de l'acier.

Les caractéristiques du béton et de l'acier :

BÉTON	CONTRAINTES	ACIER
Le béton résiste bien en compression 25 à 45 MPa à 28 jours	Résistance à la COMPRESSION	L'acier résiste bien en compression ronds, lisses : 240 MPa HA : 400 à 500 MPa
Le béton résiste mal en traction : 2 à 3 MPa à 28 jours	Résistance à la TRACTION	L'acier résiste bien en traction : ronds, lisses : 240 MPa HA : 400 à 500 MPa
Le béton ne s'allonge pas 1/10 ^e de mm/m au plus avant de fissurer capacité faible / acier	Capacité d'ALLONGEMENT	L'acier s'étire fortement avant rupture : ronds, lisses : 250 mm/m HA : 140 mm/m
Le béton se dilate sous l'effet de la chaleur : ≅ 0,012 mm/m/°C identique à l'acier	Coefficient de DILATATION	L'acier se dilate sous l'effet de la chaleur : ≅ 0,012 mm/m/°C identique au béton
Le béton se met facilement en place, c'est un matériau plastique qui : se moule facilement enrobe les aciers	Facteurs favorisant l'ADHÉRENCE	L'acier permet l'adhérence du béton : les ronds ne sont pas lisses les HA sont à créneaux ou verrous à leurs surfaces
Le béton est protecteur : il n'est pas détérioré par l'eau il protège les aciers de la rouille	Action de l'air, de l'eau,… DURABILITÉ	L'acier est protégé par le béton : il s'oxyde très facilement il se forme avec le béton une ferrite de chaux protectrice
Le béton est plus économique	Pour un même effort supporté en compression LE PRIX	L'acier est plus onéreux que le béton

EN RÉSUMÉ:

PROPRIÉTÉS	BÉTON	ACIER	BÉTON ARMÉ
Résistance à la compression	bonne	bonne*	bonne
Résistance à la traction	nulle	excellente	bonne
Élasticité	bonne	excellente	bonne
Résistance à la corrosion	bonne	médiocre	bonne
Résistance au feu	excellente	mauvaise	bonne
Isolation phonique et thermique	bonne	mauvaise	bonne
Facilité de mise en œuvre	bonne	bonne	bonne
Prix	faible	élevé	intéressant

^{*} moyennant certaines dispositions.

Dans le béton armé, le béton et l'acier sont complémentaires :

- L'acier reprend les efforts de traction et de cisaillement.
- Le béton reprend les efforts de compression et protège l'acier.

OÙ UTILISE-T-ON LE BÉTON ARMÉ?

Une construction comporte des éléments de structures porteurs :

Horizontaux :

<u>Exemple</u>: Les **planchers** avec surcharges qui peuvent être, eux-mêmes, supportés par des **poutres**, voire des **consoles** (balcon).

Verticaux :

Exemple : Les **poteaux** et les **murs** qui reçoivent poutres et planchers.

Ces ouvrages doivent :

Résister au charges et surcharges qu'ils transportent jusqu'au sol de fondation.

Assurer, d'une manière durable, la sécurité des habitants en utilisant les propriétés du béton et de l'acier.

2. Le béton

La qualité minimale requise pour le BA est que le béton de gravillon soit dosé à 350 kg/m3 de CEM II 32,5 ou C 16/20 pour le béton prêt à l'emploi.

3. L'acier

a. Généralités :

Les différents types d'acier :

* L'acier doux Fe E 220 ⇒ Ronds lisses.

*Acier mi-dur Fe E 340.

* Acier dur Fe E 400 ⇒ HA (Haute Adhérence).

Fe E 500 ⇒ HLE (Haute Limite Élasticité).

b. La contrainte : O

La limite d'élasticité nominale d'un matériau correspond, après de très nombreux essais, à la contrainte maximale (charge sur une section standard) que l'on peut lui appliquer sans qu'il ne garde de séquelles de ses déformations successives.

Dans ce cas le matériau est donc resté élastique, il s'est déformé puis à repris sa forme d'origine après cessation de la contrainte qui lui était appliquée.

Par sécurité, les matériaux seront toujours utilisés en deçà de cette limite, sans dépasser la contrainte admissible qui sera obtenue par minoration plus ou moins importante, selon les cas, de la contrainte élastique nominale.

c. Les aciers utilisés en bâtiment avec le béton :

Nous distinguons, en raison de leurs caractéristiques et suivant leurs utilisations :

- Les ronds lisses.
- Les aciers à haute adhérence
 Fils H.A.
 Treillis Soudés

Nota : Les barres à Haute Adhérence sont livrées en barres droites de 6 à 18 mètres ;

- Les fils à haute adhérence sont livrés en couronnes ou en barres ;
- Les treillis soudés sont livrés en rouleaux ou en panneaux ;
- ◆ La barre est caractérisée par sont Ø nominal. C'est le Ø du rond lisse ayant le même poids au ml que la barre considérée.

Les ronds lisses notés : Ø

Forme de leur surface : aucune aspérité, c'est pourquoi ces aciers sont appelés ronds lisses.

Les aciers haute adhérence notés : HA

Forme de leur surface : elle présente des aspérités ou relie tels que verrous, créneaux, nervures, etc., afin d'améliorer l'adhérence acier-béton.

Exemples de H.A.

Ø	Nombre de barres									Masse
mm	1	2	3	4	5	6	7	8	g	(kg/m)
6	0,28	0,57	0,85	1,13	1,41	1,69	1,98	2,26	2,54	0,222
8	0,50	1,00	1,50	2,01	2,51	3,01	3,51	4,02	4,52	0,395
10	0,79	1,57	2,35	3,14	3,92	4,71	5,45	6,28	7,07	0,617
12	1,13	2,26	3,39	4,52	5,65	6,78	7,92	9,04	10,18	0,888
14	1,54	3,08	4,62	6,16	7,70	9,24	10,78	12,32	13,85	1,210
16	2,01	4,02	6,03	8,04	10,05	12,10	14,07	16,13	18,15	1,580
20	3,14	6,28	9,42	12,57	15,71	18,85	21,99	25,13	28,27	2,466
25	4,91	9,82	14,73	19,63	24,54	29,45	34,36	39,27	44,18	3,850
32	8,04	16,08	24,13	32,17	40,21	48,25	56,30	64,34	72,38	6,313
40	12,57	25,13	37,70	50,27	62,83	75,40	87,96	100,53	113,10	9,864

Section pour n barres en cm².

Nota : les barres de Ø 14 ne sont pas couramment utilisées

d. Les treillis soudés notés : TS

Les fils ou les barres sont soudées mécaniquement pour former des mailles carrées ou rectangulaires.

Il existe 2 types detreillis soudés :

Largeur unique 2,40 m (désignation ADETS, 09-2000)

- ◆ Le TSL construit avec des fils ou des barres lisses.
- Le TSHA construit avec des barres à Haute Adhérence.

EXTRAITS DE LA DOCUMENTATION TECHNIQUE ADETS

Association technique pour le Développement de l'Emploi du Treillis Soudé (Paris).

Produits standardisés sur stock (caractéristiques nominales) :

Tableau 6. Caractéristiques dimensionnelles des treillis soudés (produits standard sur stock ADETS).

Exemples de mise en œuvre :

Cette gamme a pour objectif d'être réglementaire et donc de satisfaire aux exigences du BAEL 91 et des règles antisismiques en vigueur. Tout dimensionnement de section de treillis soudé doit être établi par un Bureau d'Etudes compétent.

UTILISATION	PRODUITS				
Dallage à usage d'habitation	PAFR PAFV ST 10 RAFC - RAFR				
Voile	PAF V ST 10				
Plancher poutrelles hourdis	ST 10				
(Tables de compression)	PAFC/PAFR RAFC/RAFR				
Dalle béton armé	Tous panneaux de structure (ST)				
Réservoir type station d'épuration	ST 65 C ST 60				
Autres applications	Tous treillis de structure (ST)				

Sismique Facilité de transport, gain de recouvrement

Zone sismique Selon l'entraxe des poutrelles

Selon l'épaisseur de la dalle

Selon l'épaisseur des parois D et d supérieurs à 8 mm (Art. A. 4.5.3. du BAEL 91)

UTILISATION DES ACIERS DANS LE BÂTIMENT:

Tableau des caractéristiques des aciers de bâtiment (NF A 35.022)

Aciers	Désignation	Limite d'élasticité fe (MPa)	Utilisations		
Ronds	Fe E 215	215	real frame in the frame in the frame		
lisses	Fe E 235	235	anneaux de levage de	pièces préfabriquées.	
Aciers H.A.	Fe E 400	400	Tous travaux	emploi très fréquent	
	Fe E 500	500	en Béton Armé	emploi moins fréquent	
Treillis soudés	T.S.L. (Lisses)	500	Emplois courants pour : - radiers		
	T.S.H.A. (à haute adhérence)	500	voilesplanchersdallages		

Diamètres nominaux exprimés en millimètres :

	3	3,5	4	4,5	5	5,5	6	7	8	9	10	12	14	16	20	25	32	40
Ronds lisses et barres H.A.							•		•		•	•	•	•	•	•	•	•
Fils tréfilés H.A.	•		•		•		•		•		•	•						
Treillis soudés	•	•	•	•	•	•	•	•	•	•	•	•						

4. Les liaisons acier-béton

4. 1 L'adhérence :

Dans une pièce B.A., on suppose que les armatures sont solidaires du béton, qu'elles ne peuvent pas glisser dans la "gaine" de béton qui les enrobe.

L'adhérence est l'action des forces de liaison qui s'opposent au glissement.

L'adhérence est d'autant plus grande que :

- → Le béton est compact.
- → Les barres sont rugueuses (HA, barres rouillées,...).
- La résistance du béton à la traction est élevée.

4. 2 L'enrobage :

Nous avons vu plus tôt que, contrairement au béton, l'acier avait une certaine fragilité à la corrosion et à la chaleur.

Le béton doit protéger les aciers, donc les enrober.

Cet enrobage dépend :

- → Du Ø nominal des armatures.
- → Du Ø des plus gros granulats du béton Cg.
- → De la situation géographique de l'ouvrage à construire.
- → De la réglementation incendie.

Exemple : Barres d'acier dans un ouvrage en béton armé.

Valeurs minimales des enrobages :

A) : ≥Ø de la barre.

≥ Cg + 25%.

 \geq 2 cm \Rightarrow à l'air pur (en dehors des villes).

≥ 3 cm ⇒ en atmosphère urbaine.

De 4 à 6 cm \Rightarrow en atmosphère marine.

Nous admettrons, dans le cadre de nos études et sauf avis contraire, dans la majorité des cas un enrobage de : **3 cm** et éventuellement 2 cm par rapport au fils de cadres...

 \bigcirc : $\geq \emptyset$ de la barre

≥ 1,5 Cg

 (\mathbf{C}) : $\geq \emptyset$ de la barre

≥ Cg

4. 3L'ancrage:

Les aciers travaillant en traction doivent être ancrés sur les appuis pour remplir leurs missions.

Le recouvrement de 2 barres d'acier permet d'obtenir la continuité des aciers :

Nous utiliserons des valeurs forfaitaires d'ancrage et de recouvrement :

Pour les barres H.A. (S 400): 40 fois le \varnothing (les plus courantes).

Pour les ronds lisses : 50 fois leØ.

Pour les barres H.A. (S 500): 50 fois le \varnothing .

Pour le Treillis Soudés :

Fils porteurs : 3 soudures. Fils de répartition et anti-fissuration : 2 soudures.

NOTA: pour tous nos calculs avec H.A., nous nous en tiendrons à : 40 fois le Ø.

Sur les appuis, si nous n'avons pas 40 fois le \emptyset et c'est souvent le cas, nous devons faire un ancrage par crochets pour éviter le glissement de l'acier dans la gaine béton.

La longueur de coupe des façonnages courants est donnée en tenant compte des ancrages par courbure normalisés.

Cadre	∀ B	Étrier	∀	Épingle	∀
Acier doux	2 (A + B) + 19 Ø	Acier doux	2A + 19 Ø	Acier doux	A + 18 ⊘
на	2 (A + B) + 20,5 Ø	НА	2A + 24,5 Ø	НА	A + 22 ∅
_ ا	RN RN	EN	EN	CN	CN
<	A + 34 Ø	*	A + 36 Ø	~	A + 33 Ø
/ F	RN	EN		CN	
*	A A + 17 Ø)	A + 18 Ø	\	A A + 16,5 ∅

Pour les armatures principales :

Pour les armatures transversales :

A? La portée + 2 longueurs d'appui - 2 fois 0,03 (enrobage) A = hauteur - 2 fois 0,03 B = largeur - 2 fois 0,03

Autres systèmes d'ancrage :

Les boîtes d'attentes :

Ces dispositifs permettent de réaliser la jonction mécanique entre deux voiles ou un voile et un plancher par exemple, les deux éléments liés étant réalisés successivement.

La boîte d'attente sera placée et fixée dans le coffrage du premier élément réalisé. Les futures armatures en attentes, pliées, sont isolées lors du coulage par une protection (métallique, mousse plastique, profilé plastique ou encore bois) à retirer après décoffrage.

Boîtes d'attente

Formes courantes des aciers en

Dimensions standard des boîtes d'attentes STABOX

				d		Ø aciers en fonction de E					
Туре	MO	Modèle		(mm)	(mm) f		150	200	240	300	
C	4	58	75	35	45	-	8, 10	6, 8, 10	6,	8	
	60	s	90	50	60	_	8	, 10	6, 8	-	
8	90	s	120	80	90		10, 1	2	-	-	
e 16		120			120						
Oir DAGEN	DS	160			160	10),12				
		190			190		,				
Voir modèle		230			230						
	60	D	90	50	60	-	-	-	6,	8	
Acres .	90) D	120	80	90	-	8	, 10	6,	8	
	12	0 D	150	110	120	-	8, 10	6, 8, 10	6, 8		
		DX		ble sys à 2 rail:		-	8, 10, 12	6, 8, 10, 12	6,	8	
в	16	0 D	190	150	160	6, 8, 10, 12					
	19	190 D		180	190	8,		•			
	23	230 D		220	230	10, 12					

Raccordement d'armatures par vissage :

A la jonction de deux éléments en BA réalisés en deux phases, on peut raccorder des armatures par vissage à l'aide de manchons (NF A 35-020-1).

Les manchons utilisés assurent la transmission totale de l'effort repris par l'armature.

→ Système COUPLER BOX

5. La représentation des armatures

→ Dessin en plan :

◆ Coupe transversale sur une poutre :

→ Panneaux TS en plan :

Le trait renforcé désigne la direction des fils porteurs.

<u>Armatures répétitives :</u>

Les armatures transversales des poutres :

On représente la première file pour chaque série d'espacements différents :

Les armatures de dalles et les semelles armées de barres :

On ne représente qu'une seule armature courante puis :

- ◆ Les cotes par rapport aux rives.
- ◆ Le nombre d'espacements répétés.

Idem pour la répétition des panneaux TS (ne sont représentés que les 2 premiers éléments) :

Exemples d'armatures répétitives :

Pour obtenir une lecture plus claire des plans de ferraillage, les armatures

6. Les plans de ferraillage

L'opération de façonnage a pour objet de donner à chaque barre d'armatures la forme prescrite par les plans de ferraillage dans des bordereaux d'aciers.

Extrait d'un plan de ferraillage (ou plan d'armatures) :

7. Les bordereaux d'aciers

Extrait d'un bordereau d'aciers (ou plan de façonnage) :

N°		ers	Façonnage	Lg	Nb	Lg	Poids	Poids
- 1	Ø	HA	i açomaye	-9	140	totale	/ ml	total
			POUTRE N°14					
1		16	3740 + 34 Ø	4,28	3	12,84	1,578	20,262
2		12	2600	2,60	2	5,20	0,887	4,612
3		12	3700	3,70	3	11,10	0,887	9,846
4	8		360 + 19 Ø	1,29	24	30,96	0,394	12,198
5	6		210 360 + 19 Ø	0,83	24	19,92	0,222	4,422
								51,340
				I	igature	es + 5°	%	2,567
						Poids	s total :	53,907

Calcul du ratio d'armatures au m³ de béton pour cette poutre :

→ Cube de béton : 3,80 x 0,26 x 0,40 = 0,395 m3

→ Ratio (acier/béton) = 53,907 / 0,395 = **136,473 kg/m³**

Ratio = 136 kg/m^3

Rappels sur la contrainte

Définition:

C'est la force qui s'exerce sur une section ramenée à l'unité de surface.

Notion de pression:

$$1 \text{ Kgf} = 10 \text{N} = 1 \text{ DN}$$

Kgf = Kilogramme force

N = Newton

DN = Déca Newton

Donc:

1 Tonne =
$$1000 \text{ Kg} = 10000 \text{ N} = 1000 \text{ DN}$$

(1) (1)	Newton	Kgf	DN
N	1	0,1	0,1
Kgf	10	1	1
Tonne	10 000	1 000	1 000

Ce qu'il faut comprendre :

Une unité de pression c'est le résultat d'une force sur une surface.

Exemple:
$$F = 10 \text{ T}$$

Surface = 1 m²

Pression = Force / Surface

P = F/S

 $P = 10 T / 1 m^2$

 $P = 10\ 000\ Kg / 10\ 000\ cm^2$

 $P = 1 \text{ Kg} / \text{cm}^2$

Ce qu'il faut retenir :

1 bar = 1 Kg/cm² 1 MP (Mega pascal) = 1 000 000 Pascal = 10 Kg/CM² = 1 N/mm² 1 KN/m² = 100 Kg/m² = 100 daN/m²

(1) (1)	Bar	MP
Bar	1	0,1
Pascal	100 000	1 000 000
Kg/cm²	1	10
MP	10	1

Questionnaire

1)	De quels éléments est constitué le béton armé ?
2)	Que représente l'association de ces éléments ? Donnez 3 exemples.
3)	Que peut-on dire sur la complémentarité de ces éléments ?
4)	Pour une construction, où utilise-t-on le béton armé des éléments de structures ?
7)	Tour une construction, ou utilise tour le beton unité des élements de structures :
5)	Quel est le dosage minimal de ciment pour 1 m3 de béton armé ?

6)	Quels sont les différents types d'acier existants ?
7)	Expliquez la signification des chiffres et des lettres composant la désignation normalisée de l'acier suivant : Fe E 220.
8)	Quels aciers sont utilisés dans le bâtiment avec le béton armé ?
9)	Dans quels types de travaux ?

10)	Quelles actions entrent en compte dans les liaisons acier-béton ?
	L'extrait du bordereau d'aciers d'un poteau 20 x 20 x 300 cm, donne un poids total de 14,856 kg. Que pouvez-vous en déduire ?
	Calculer la surface de fondation nécessaire pour supporter un poteau si la contrainte du sol est de 2 bars et l'effort vertical est de 10 000 daN.

CRÉDITS

> ŒUVRE COLLECTIVE DE L'AFPA

Sous le pilotage de la Direction de l'ingénierie

> EQUIPE DE CONCEPTION

Valérie DELIERRE (Ingénieur de formation)
Alain BARREAU (Formateur)
Philippe CORSAUT (Médiatiseur)

> DATE DE MISE A JOUR 21/02/2018

AFPA

Reproduction interdite

Article L 122-4 du code de la propriété intellectuelle. « Toute représentation ou reproduction intégrale ou partielle faite sans le consentement de l'auteur ou de ses ayants droit ou ayants cause est illicite. Il en est de même pour la traduction, l'adaptation ou la reproduction par un art ou un procédé quelconques ».