Zadanie 1. Rzucamy pięcioma uczciwymi kośćmi do gry. Suma liczb wyrzuconych oczek na wszystkich pięciu kościach wyniosła 10. Jakie jest prawdopodobieństwo, że było to pięć dwójek?

- (A) $\frac{1}{80}$
- (B) $\frac{1}{100}$
- (C) $\frac{1}{121}$
- (D) $\frac{1}{126}$
- (E) $\frac{1}{144}$

Zadanie 2. Jeśli wiemy, że:

$$Pr(A) = 0.7$$

$$Pr(B) = 0.5$$

$$Pr(C) = 0.4$$

$$\Pr(C|A \cap B) = 0$$

to największa możliwa wartość prawdopodobieństwa warunkowego $\Pr(C|A \cup B)$ wynosi:

- $(A) \qquad \frac{1}{2}$
- (B) $\frac{1}{3}$
- (C) $\frac{3}{5}$
- (D) $\frac{3}{7}$
- (E) $\frac{4}{7}$

Zadanie 3. Zmienne losowe U oraz V są niezależne i mają identyczny rozkład jednostajny na przedziale (0,1]. Zmienne losowe X, Y określone jako:

$$X = \cos(2 \cdot \pi \cdot U) \cdot f(V),$$

$$Y = \sin(2 \cdot \pi \cdot U) \cdot f(V),$$

mają łączny rozkład normalny o zerowych wartościach oczekiwanych, jednostkowych wariancjach i zerowej kowariancji, jeśli funkcja f, określona na przedziale (0,1], dana jest wzorem:

A)
$$f(x) = \sqrt{-2 \cdot \ln x}$$

(B)
$$f(x) = -\ln(2x)$$

(C)
$$f(x) = \sqrt{-\ln x}$$

(D)
$$f(x) = -\ln x$$

(E)
$$f(x) = -2 \cdot \ln x$$

Zadanie 4. Zmienna losowa *X* m rozkład wykładniczy o wartości oczekiwanej równej 0.5. Niezależna od niej zmienna losowa *Y* ma rozkład wykładniczy o wartości oczekiwanej równej 2.

Warunkowa wartość oczekiwana:

$$E(X|X+Y=5)$$

wynosi:

- (A) 0.5
- (B) 0.66
- (C) 0.83
- (D) 1
- (E) 1.33

Zadanie 5. Wiemy, że zmienna losowa X ma rozkład normalny o nieznanej wartości oczekiwanej μ i wariancji równej 4. Na podstawie cztero-elementowej próbki estymujemy kwadrat wartości oczekiwanej μ^2 . Zaobserwowaliśmy $(x_1, x_2, x_3, x_4) = (2, 3.5, 3, 7)$.

Różnica między wynikiem estymacji przeprowadzonej metodą największej wiarygodności, a wartością estymatora nieobciążonego o minimalnej wariancji wynosi:

- (A) 0.25
- (B) 0.5
- (C) 1
- (D) 1.25
- (E) 2

Zadanie 6. Niech (X_1, X_2, X_3, X_4) , będzie 4-elementową próbką prostą z rozkładu normalnego $N(\mu, \sigma^2)$ o nieznanej wartości oczekiwanej μ i nieznanej wariancji σ^2 . Testujemy hipotezę:

 $H_0: \sigma^2 = \sigma_0^2$ przeciw alternatywie:

$$H_1: \sigma^2 > \sigma_0^2,$$

za pomocą statystyki:
$$\frac{\sum_{i=1}^{4} (X_i - \overline{X})^2}{\sigma_0^2}$$

gdzie:
$$\overline{X} = \sum_{i=1}^{4} X_i$$
,

przyjmując poziom istotności $\alpha = 0.05$.

Zaobserwowaliśmy (1, -1.2, 3, 0.7).

Jaka jest minimalna możliwa wartość σ_0^2 , skoro wiadomo iż test wykazał, że nie mamy podstaw do odrzucenia hipotezy H_0 ?

(wybierz najbliższą spośród poniżej zamieszczonych odpowiedzi przybliżonych)

- (A) 1.09
- (B) 1.13
- (C) 1.16
- (D) 1.21
- (E) 1.28

Zadanie 7. Rozważmy prosty model regresji liniowej bez wyrazu wolnego:

$$Y_i = \theta \cdot x_i + \varepsilon_i, \quad i = 1, 2, \dots, n,$$

gdzie (Y_i, x_i) to obserwacje par (losowa zmienna zależna, nielosowa zmienna niezależna), θ jest nieznanym parametrem, a $(\varepsilon_1, \varepsilon_1, \dots, \varepsilon_n)$ są nawzajem niezależnymi zmiennymi losowymi o identycznym rozkładzie normalnym z zerową wartością oczekiwaną i znaną wariancją σ^2 .

Rozważmy jednostajnie najmocniejszy test hipotezy:

$$H_0: \theta = 0$$

przeciw alternatywie:

$$H_1: \theta > 0$$

na poziomie istotności $\alpha = 0.05$.

Przyjmijmy oznaczenia:

$$\overline{Y} = \frac{1}{n} \cdot \sum_{i=1}^{n} Y_i$$
, $\overline{x} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$, oraz:

 $u_{1-\alpha}$ dla kwantyla rzędu $1-\alpha$ z standardowego rozkładu normalnego, $t_{n,1-\alpha}$ dla kwantyla rzędu $1-\alpha$ z rozkładu t-studenta o n stopniach swobody.

Test ten prowadzi do odrzucenia H_0 wtedy i tylko wtedy, gdy:

(A)
$$\sum_{i=1}^{n} Y_i \cdot x_i > u_{0.95} \cdot \sigma \cdot \sqrt{n}$$

(B)
$$\sum_{i=1}^{n} Y_{i} \cdot x_{i} > u_{0.95} \cdot \sigma \cdot \sqrt{\sum_{i=1}^{n} x_{i}^{2}}$$

(C)
$$\sum_{i=1}^{n} (Y_i - \overline{Y}) \cdot (x_i - \overline{x}) > u_{0.95} \cdot \sigma \cdot \sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

(D)
$$R\sqrt{\frac{n-1}{1-R^2}} > t_{n-1, 0.95}, \quad \text{gdzie} \quad R = \frac{\sum_{i=1}^{n} Y_i \cdot x_i}{\sqrt{\sum_{i=1}^{n} Y_i^2 \cdot \sum_{i=1}^{n} x_i^2}}$$

(E)
$$R\sqrt{\frac{n-2}{1-R^2}} > t_{n-2,0.95}$$
, gdzie $R = \frac{\sum_{i=1}^{n} (Y_i - \overline{Y}) \cdot (x_i - \overline{x})}{\sqrt{\sum_{i=1}^{n} (Y_i - \overline{Y})^2 \cdot \sum_{i=1}^{n} (x_i - \overline{x})^2}}$

Zadanie 8. Niech X_1, X_2, \ldots, X_n będzie losową próbką prostą z rozkładu jednostajnego na przedziale $(0, \theta)$. W celu przetestowania hipotezy:

 $H_0: \theta = 1$

przeciw alternatywie:

 $H_1: \theta > 1$

wykorzystujemy test następującej postaci:

odrzucamy H_0 , jeśli wartość statystyki: $\max\{X_1,\,X_2,\ldots,\,X_n\}$ przekroczy stałą c.

Niech n_0 będzie najmniejszą liczebnością próbki taką, przy której test na poziomie istotności $\alpha=0.20$ ma w punkcie $\theta=\sqrt[3]{2}$ moc przekraczającą 0.95. n_0 wynosi:

- (A) 32
- (B) 20
- (C) 16
- (D) 13
- (E) 12

Zadanie 9. Swego czasu zaobserwowano realizację x_1, x_2, \ldots, x_{20} prostej próby losowej z rozkładu normalnego o nieznanej wartości oczekiwanej i wariancji. W celu testowania hipotezy $\mu = 0$ chcielibyśmy dziś wykorzystać te dane. Niestety, część danych zaginęła, i dziś dysponujemy jedynie:

• obserwacjami: x_1, x_2, \ldots, x_{10}

• oraz dodatkowo wcześniej obliczoną średnią: $\bar{x}_{20} = \frac{1}{20} \cdot \sum_{i=1}^{20} x_i$.

Pięciu statystyków zaproponowało pięć różnych rozwiązań, każde z nich uwzględniające w ten lub ów sposób dodatkową informację o średniej \bar{x}_{20} .

Każdy ze statystyków twierdzi, że podana przez niego statystyka testowa jest realizacją (przy założeniu iż $\mu=0$) zmiennej losowej o rozkładzie t-studenta z podaną liczbą stopni swobody. Który ma rację?

Podane odpowiedzi wykorzystują oznaczenia:

$$\overline{x}_{10} = \frac{1}{10} \cdot \sum_{i=1}^{10} x_i \; ; \qquad S_{10} = \sqrt{\frac{1}{9} \cdot \sum_{i=1}^{10} (x_i - \overline{x}_{10})^2} \; ; \qquad S_{20} = \sqrt{\frac{1}{9} \cdot \sum_{i=1}^{10} (x_i - \overline{x}_{20})^2}$$

(A)
$$\sqrt{10} \cdot \frac{\overline{x}_{20}}{S_{10}}$$
 pochodzi (o ile $\mu = 0$) z rozkładu t_9

(B)
$$\sqrt{20} \cdot \frac{\overline{x}_{20}}{S_{20}}$$
 pochodzi (o ile $\mu = 0$) z rozkładu t_{19}

(C)
$$\sqrt{20} \cdot \frac{\overline{x}_{20}}{S_{10}}$$
 pochodzi (o ile $\mu = 0$) z rozkładu t_9

(D)
$$\sqrt{20} \cdot \frac{\overline{x}_{20}}{S_{20}}$$
 pochodzi (o ile $\mu = 0$) z rozkładu t_9

(E)
$$\sqrt{10} \cdot \frac{\overline{x}_{20}}{S_{20}}$$
 pochodzi (o ile $\mu = 0$) z rozkładu t_9

Zadanie 10. Niech X będzie jedno-elementową próbką z rozkładu równomiernego na przedziale $(\theta-0.5, \theta+0.5)$ z nieznanym położeniem środka przedziału θ . Wiemy tylko, że θ jest liczbą rzeczywistą. Za pomocą estymatora |X| estymujemy wartość bezwzględną $|\theta|$ parametru θ . Rozważamy obciążenie naszego estymatora: $E_{\theta}(|X|) - |\theta|$.

Spośród różnych stwierdzeń na temat tego obciążenia wybierz stwierdzenie prawdziwe.

- (A) estymator jest nieobciążony dla wszystkich możliwych wartości θ
- (B) maksymalne obciążenie estymatora wynosi 0.5
- (C) maksymalne obciążenie estymatora wynosi 0.25
- (D) maksymalne obciążenie estymatora wynosi 0.125
- (E) największe obciążenie jest wtedy, gdy $\theta = 0.5$ lub $\theta = -0.5$

Egzamin dla Aktuariuszy z 3 października 1998 r.

Prawdopodobieństwo i statystyka

${\bf Arkusz\ odpowiedzi}^*$

Imię i nazwisko :	KLUCZ ODPOWIEDZI
Desel	

Zadanie nr	Odpowiedź	Punktacja⁴
1	D	
2	A	
3	Е	
4	В	
5	С	
6	В	
7	В	
8	D	
9	С	
10	С	

^{*} Oceniane są wylącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypelnia Komisja Egzaminacyjna.