总结

黄飞虎

2021.1.6

学习情况

看了李宏毅的视频,完成了实验五

论文情况

A Joint Model of Intent Determination and Slot Filling for Spoken Language Understanding

下载链接: https://www.ijcai.org/Proceedings/16/Papers/425.pdf

本文的工作

在SLU中的两个主要任务是意图识别(Intent determination,即文本分类)和槽填充(slot filling,即文本标记)。本文提出了一个同时解决两个问题的joint model。

本文在两个数据集上进行了实验,在两个数据集上,两个任务都达到了state-of-art的效果。

作者认为联合模式值得一试,原因有二。首先,在SLU系统中,这两个任务通常都是必需的。其次,将一个任务的信息应用到另一个任务中,相互促进,共同预测。

本文采用GRU来学习序列的每个time step的语义表达,一方面这些语义表达会用预测slot的标签,另一方面这些也会进行意图的分类。本文提出的joint model在两个数据集上,在ID和SF任务上都达到了 state-of-the-art的效果。

模型结构

- 1.Embeddedings:本文采用词窗口作为RNN的输入,命名实体是SLU的一种重要特性。为了利用这些特性,原文赋予每个命名实体一个置于[0,1]的一个embedding,维度和词向量一样,并在训练过程中进行微调,上下文命名实体窗口的定义类似于词窗口。
- 2.Recurrent Hidden Layers:本文使用双向GRU来获得文本的表征。
- 3.Taske Special Layers: 双向隐层状态被两个任务所共用。一方面,h在每个时序捕捉到的特征可以直接用来预测插槽的标签Label,另一方面,我们用max-pooling层来得到整个句子的表示.
- 4. Training:即目标函数的定义

实验

数据集: ATIS dataset (ATIS是SLU领域中使用最广的数据集。)和CQUD dataset (CQUD是百度知道搜集到的问题,是中文社区最受欢迎的Question Understanding Dataset.)

评价指标:将准确性作为ID任务的评估指标。ATIS中的一些语句有多个意图标签。在之前的研究中,如果预测到任何ground truth标签,就把一个话语算作一个正确的分类。

实验结果

与之前的模型对比

实验结果展示如下,第二列是每个方法使用的特征,其中,W,N和S分别代表单词、命名实体和语义特征,在CQUD数据集中,W代表每一个中文字特征表示。

Model	Features	ATIS		CQUD	
		Intent	Slot	Intent	Slot
SVM [Raymond and Riccardi, 2007]	W		89.76		81.32
CRF [Mesnil <i>et al.</i> , 2015]	W	_	92.94		83.40
CRF [Mesnil <i>et al.</i> , 2015]	W+N	_	95.16	_	_
RNN [Mesnil <i>et al.</i> , 2015]	W		95.06		85.63
RNN [Mesnil <i>et al.</i> , 2015]	W+N		96.24		
R-CRF [Yao et al., 2014]	W				85.88
R-CRF [Yao et al., 2014]	W+N		96.46		_
Boosting [Tur et al., 2010]	W	95.50		93.54	
Sentence simplification [Tur et al., 2011]	W+S	96.98	95.00	94.46	
RecNN [Guo et al., 2014]	W+S	95.40	93.22		
RecNN+Viterbi [Guo et al., 2014]	W+S	95.40	93.96	_	_
Our model	W	98.10	95.49	96.05	87.12
Our model	W+N	98.32	96.89		

联合模型与分开模型比较

Model	ATIS		CQUD	
	Intent	Slot	Intent	Slot
ID only	97.53	_	95.34	_
SF only		95.14		85.78
Pipeline	97.53	95.41	95.34	86.96
Joint (equal)	98.10	95.49	96.05	87.12
Joint (ID oriented)	98.10	95.49	96.35	86.63
Joint (SF oriented)	97.87	95.61	95.93	87.23

总结

介绍了用于联合意图确定和空位填充的递归神经网络,这是语音理解中的两个主要任务。 双向GRU用于学习两个任务共享的序列表示。 通过共享表示的最大池化来获取全局表示,以预测意图标签。 时隙的标签由共享表示预测,并在序列级别进一步推断。 通过统一的损失函数和共享表示,学习了两个任务的相关性,从而促进了彼此的相互促进。

Thank you