Introduction to Machine Learning Applications

Spring 2021

Lecture-5

Lydia Manikonda

manikl@rpi.edu

Today's agenda

- Homework discussion
 - Questions
 - How to evaluate
- Overview of Machine Learning
- Data and its characteristics
 - Visualizations with Python

Machine Learning

According to Tom Mitchell (1998):

Machine Learning is the study of algorithms that

- improve their performance P
- at some task T
- with experience E

Well-defined learning task: <P, T, E>

Learning to detect objects in images

Object Detection

CAT, DOG, DUCK

Image src: datacamp.com

Learning to classify text documents

Movie Reviews

http://www.rottentomatoes.com

http://www.cs.cornell.edu/people/pabo/movie-review-data/

Negative

most of the problems with the film don't derive from the screenplay, but rather the mediocre performances by most of the actors involved

Postive

insight into the neurotic mindset of all comics -- even those who have reached the absolute top of the game.

Source: datacamp.com

Learning to predict/classify

Classification

CAT

Image src: datacamp.com

Machine Learning

- Supervised learning
- Unsupervised learning
- Bayesian networks
- Hidden markov models
- Reinforcement learning

Object Detection

CAT, DOG, DUCK

src: Kumar et al.

Topics

Text analysis using LDA

Classification

- Given a collection of records or transactions training data:
 - Each record is expressed as a tuple (x, y) where x is the attribute set and y is the class label
 - *x* attribute, independent variable, input
 - y class label, dependent variable, output
- Task:
 - Build a model that maps each attribute set x to the class label y

Classification Model

Tid	Attrib1	Attrib2	Attrib3	Class
1	Yes	Large	125K	No
2	No	Medium	100K	No
3	No	Small	70K	No
4	Yes	Medium	120K	No
5	No	Large	95K	Yes
6	No	Medium	60K	No
7	Yes	Large	220K	No
8	No	Small	85K	Yes
9	No	Medium	75K	No
10	No	Small	90K	Yes

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Set

Clustering

- Main aim is to segment data into meaningful segments or detect patterns
- There is no target (outcome) variable to predict or classify
- Hence, we don't have a model to train using training data like in Classification

Snapshot of data preprocessing

What is data?

Collection of data objects and their attributes

According to Tan et al.,

- An attribute is a property or characteristic of an object
 - Also known as variable, field, characteristic, dimension, or feature
- A collection of attributes describe an object
 - Also known as tuple, record, point, case, sample, etc.

Attributes

Objects

More views of data

- Data may have parts
- The different parts of data may have relationships
- More generally, data may have structure
- Data can be incomplete

Attribute values

- Attribute values are numbers or symbols assigned to an attribute for a particular object
- Distinction between attributes and attribute values
 - Same attribute can be mapped to different attribute values
 - Example: Height can be measured in feet or meters
 - Different attributes can be mapped to the same set of values
 - Example: Attribute values for ID and age are integers
 - But properties of attribute values can be different

Types of Attributes

Nominal

• Examples: ID numbers, zip codes, eye color

Ordinal

• Examples: Rankings (expertise level on a scale of 1-10), grades, height {tall, medium, short}

Interval

Examples: Calendar dates, temperature in Celsius or Fahrenheit

Ratio

• Examples: Temperature in Kelvin, length, time, counts

Discrete and Continuous attributes

Discrete Attribute:

- Has only a finite or countably infinite set of values
- Examples: zip codes, counts, or the set of words in a collection of documents
- Often represented as integer variables.
- Note: binary attributes are a special case of discrete attributes

Continuous Attribute:

- Has real numbers as attribute values
- Examples: temperature, height, or weight.
- Practically, real values can only be measured and represented using a finite number of digits.
- Continuous attributes are typically represented as floating-point variables.

Important characteristics of data

- Dimensionality (number of attributes)
 - High dimensional data brings a number of challenges
- Sparsity
 - Only presence counts
- Resolution
 - Patterns depend on the scale
- Size
 - Type of analysis may depend on size of data

Main steps of data preprocessing

- Aggregation
- Sampling
- Dimensionality Reduction
- Feature subset selection
- Feature creation
- Discretization and Binarization
- Attribute Transformation

Aggregation

- Combining two or more attributes (or objects) into a single attribute (or object)
- Purpose
 - Data reduction
 - Reduce the number of attributes or objects
 - Change of scale
 - Cities aggregated into regions, states, countries, etc.
 - Days aggregated into weeks, months, or years
 - More "stable" data
 - Aggregated data tends to have less variability

Aggregation Example

Date	Value
01/10/2020	10
01/27/2020	2
02/10/2020	4
02/19/2020	13
03/05/2020	19
03/21/2020	11
04/10/2020	15
04/16/2020	19
05/03/2020	8
05/18/2020	10
05/31/2020	7

Aggregate using sum (or any other metric that fits the problem)

Month	Value
January 2020	12
February 2020	17
March 2020	30
April 2020	34
May 2020	25

Sampling

- Sampling is the main technique employed for data reduction.
 - It is often used for both the preliminary investigation of the data and the final data analysis.
- Statisticians often sample because obtaining the entire set of data of interest is too expensive or time consuming.
- Sampling is typically used because processing the entire set of data of interest is too expensive or time consuming.

Sampling

- The key principle for effective sampling is the following:
 - Using a sample will work almost as well as using the entire data set, if the sample is representative
 - A sample is representative if it has approximately the same properties (of interest) as the original set of data

Types of Sampling

- Simple Random Sampling
 - There is an equal probability of selecting any particular item
 - Sampling without replacement
 - As each item is selected, it is removed from the population
 - Sampling with replacement
 - Objects are not removed from the population as they are selected for the sample.
 - In sampling with replacement, the same object can be picked up more than once
- Stratified sampling
 - Split the data into several partitions; then draw random samples from each partition

Sampling Example

Date	Value
01/10/2020	10
01/27/2020	2
02/10/2020	4
02/19/2020	13
03/05/2020	19
03/21/2020	11
04/10/2020	15
04/16/2020	19
05/03/2020	8
05/18/2020	10
05/31/2020	7

Random sampling (n=3)

Date	Value
02/10/2020	4
05/18/2020	10
01/10/2020	10
04/16/2020	19
05/03/2020	8

Stratified Sampling Example

Date	Value
01/10/2020	10
01/27/2020	2
02/10/2020	4
02/19/2020	13
03/05/2020	19
03/21/2020	11
04/10/2020	15
04/16/2020	19
05/03/2020	8
05/18/2020	10
05/31/2020	7

Bin-based sampling

Date	Value
01/10/2020	10
02/19/2020	13
03/21/2020	11
04/16/2020	19
05/03/2020	8

Curse of dimensionality

When dimensionality increases, data becomes increasingly sparse in the space that it occupies

Dimensionality Reduction

• Purpose:

- Avoid curse of dimensionality
- Reduce amount of time and memory required by data mining algorithms
- Allow data to be more easily visualized
- May help to eliminate irrelevant features or reduce noise

Techniques

- Principal Components Analysis (PCA)
- Singular Value Decomposition
- Others: supervised and non-linear techniques

Dimensionality Reduction Example

Feature subset Selection

- Another way to reduce dimensionality of data
- Redundant features
 - Duplicate much or all of the information contained in one or more other attributes
 - Example: purchase price of a product and the amount of sales tax paid
- Irrelevant features
 - Contain no information that is useful for the task at hand
 - Example: students' ID is often irrelevant to the task of predicting students'
 GPA
- Many techniques developed, especially for classification

Feature Creation

- Create new attributes that can capture the important information in a data set much more efficiently than the original attributes
- Three general methodologies:
 - Feature extraction
 - Example: extracting edges from images
 - Feature construction
 - Example: dividing mass by volume to get density
 - Mapping data to new space
 - Example: Fourier and wavelet analysis

Feature Creation Example – SIFT features

Discretization

- Discretization is the process of converting a continuous attribute into an ordinal attribute
 - A potentially infinite number of values are mapped into a small number of categories
 - Discretization is commonly used in classification
 - Many classification algorithms work best if both the independent and dependent variables have only a few values

Discretization Example

Date	Value
01/10/2020	1.354
01/27/2020	1.83
02/10/2020	2.63
02/19/2020	9.242
03/05/2020	6.43
03/21/2020	9.23
04/10/2020	1.32
04/16/2020	1.756
05/03/2020	0.344
05/18/2020	3.33
05/31/2020	5.014

Assuming the range of value is [0,10) continuous

Assume [0,6): label1

[6,10): label2

Date	Value
01/10/2020	Label1
01/27/2020	Label1
02/10/2020	Label1
02/19/2020	Label2
03/05/2020	Label2
03/21/2020	Label2
04/10/2020	Label1
04/16/2020	Label1
05/03/2020	Label1
05/18/2020	Label1
05/31/2020	Label2

Binarization

 Binarization maps a continuous or categorical attribute into one or more binary variables

- Often convert a continuous attribute to a categorical attribute and then convert a categorical attribute to a set of binary attributes
 - Association analysis needs asymmetric binary attributes
 - Examples: eye color and height measured as {low, medium, high}

Binarization Example

Date	Value
01/10/2020	Label1
01/27/2020	Label1
02/10/2020	Label3
02/19/2020	Label2
03/05/2020	Label2
03/21/2020	Label2
04/10/2020	Label1
04/16/2020	Label3
05/03/2020	Label1
05/18/2020	Label3
05/31/2020	Label2

Assuming 0 – {label1, label2}; 1– {label3}

Date	Value
01/10/2020	0
01/27/2020	0
02/10/2020	1
02/19/2020	0
03/05/2020	0
03/21/2020	0
04/10/2020	0
04/16/2020	1
05/03/2020	0
05/18/2020	1
05/31/2020	0

Attribute Transformation

- An attribute transform is a function that maps the entire set of values of a given attribute to a new set of replacement values such that each old value can be identified with one of the new values
 - Simple functions: x^k, log(x), e^x, |x|
 - Normalization
 - Refers to various techniques to adjust to differences among attributes in terms of frequency of occurrence, mean, variance, range
 - Take out unwanted, common signal, e.g., seasonality
 - In statistics, standardization refers to subtracting off the means and dividing by the standard deviation

Attribute Transformation using Normalization

```
Original data = [0.5, 1.0, 0.5]

Computation = [0.5/(0.5+1.0+0.5), 1.0/(0.5+1.0+0.5), 0.5/(0.5+1.0+0.5)]

= [0.5/2.0, 1.0/2.0, 0.5/2.0]
```

Normalized data = [0.25, 0.5, 0.25] – sum of the list is 1.

Data Manipulation and Visualization using Seaborn

- Python library to generate good graphs that provide lot of insights
- Jupyter notebook

- Next lecture focuses on:
 - Handling textual data especially crawling online web content
 - More examples to process data and visualize the data