

Webpage

Code & Data

Predicting Information Pathways Across Online Communities

Yiqiao Jin¹, Yeon-Chang Lee¹, Kartik Sharma¹, Meng Ye², Karan Sikka², Ajay Divakaran², Srijan Kumar¹

¹Georgia Institute of Technology

²SRI International

https://github.com/claws-lab/INPAC

JGUST 6-10

ACM SIGKDD CONFERENCE ON WLEDGE DISCOVERY & DATA MINING

SRI International°

Outline

- Introduction
- Preliminary
- Method
- Evaluation

Introduction

Information Pathways

- Social media users form communities based on their interests, beliefs, ethnicity, and geographical location
- These communities interact with & influence one another
- The underlying pathways on which information propagates remain relatively stable.

CLIPP

- The problem of <u>Community-level</u> <u>Information Pathway Prediction</u>
 (CLIPP) aims at predicting the transmission trajectory of content across online communities.
- Importance
 - Facilitates the distribution of valuable information to a larger audience
 - Prevents the proliferation of harmful information.

Travel guide

Challenges

- Inter-community relationships and influence are unknown
- Information spread is multi-modal
- New content and new communities appear over time.

This Work

- We investigate the dynamics of community-level information flow while jointly addressing the challenges of complex diffusion environment and the continuously evolving information ecosystem.
- We investigate YouTube videos shared on Reddit
 - YouTube videos contain multimodal information, including text (title and descriptions), visual (videos and thumbnail images), and channel information
 - Reddit is characterized by its numerous communities named "subreddits"
 - Each subreddit is dedicated to specific topics or interests
 - Ideal for studying community-level information spread

Preliminary

Preliminary

- A <u>posting</u> of a video means a video link appearing on a subreddit, either as a standalone post or as part of a longer post.
- A <u>posting instance</u> is a 4-tuple $p_{ij} = (v_i, s_j, u_j, t_j)$, where v_i is a video posted by a user u_i in an online community s_i at time t_i .

PROBLEM 1 (Information Pathway Pre-**DICTION**). Given a video v_i , its posting sequence $P_i = \{(v_i, s_j, u_j, t_j)\}_{j=1}^N$ with length N, and a target timestamp $t_{j'}$, our model outputs a ranked list of communities $\{s_k\}$ indicating the most likely communities that v_i will appear at time $t_{j'}$.

Method

The Proposed Framework - INPAC

Our Framework *Information Pathway Across Online Communities* (**INPAC**) consists of static modeling, including video content and community influence modeling, as well as dynamic modeling.

Static Modeling

Title of the Video	Subreddits on Which the Video Appears				
Canadian Trudeau Investigation	Liberate_Canada → conspiracy → TheNewRight → PeoplesPartyofCanada → Canada_First				
Reviews: Super Dragon Ball Heroes Episode 19	promote → AnimeReviews → anime_manga →				
Reviews. Super Dragon Dan Heroes Episode 19	YouTubeAnimeCommunity → Anime_and_Manga				
Warcraft 3 Reforged Cutscene Only	WC3 \rightarrow pcgaming \rightarrow warcraft3 \rightarrow gaming \rightarrow legaladviceofftopic				
Practical Greeting Phrases for Chinese New Year	learnchinese \rightarrow learnmandarin \rightarrow learnmandarinchinese				
According what is (Poolige Instant Freedom)	AnxietyDepression \rightarrow Soulnexus \rightarrow SpiritualAwakening \rightarrow				
Accepting what is. (Realize Instant Freedom)	Meditation \rightarrow spirituality \rightarrow awakened \rightarrow inspiration				
Covid 10 Explained with Data Saignes	Python \rightarrow CoronavirusUS \rightarrow CanadaCoronavirus \rightarrow				
Covid-19 Explained with Data Science	CoronaVirus_2019_nCoV → CoronavirusUK				
Implement RNN-LSTM for Music Genre Classification	learnmachinelearning \rightarrow Python \rightarrow tensorflow \rightarrow musictheory				

- **Challenge** inter-community relationships and influence are unknown
- <u>Insight</u> a video is usually shared (by like-minded users) in topically similar communities, which can be used to infer such relations.

Community Influence Modeling

- Community-level influence exists when two communities share a common group of users.
- Such influence can be inferred through two aspects:
- Sequential Signals The sequence of communities $\{s_1, s_2, ...\}$ in which a video is posted.
- <u>Temporal Signals</u> Users require a certain amount of time to engage in online content. The interval between the appearance of v_i in s_1 and s_2 serves as an indicator of the influence of s_1 on the appearance of v_i in s_2 .

Static Modeling

Community Influence Modeling

We use the propagation sequence of a video to infer the community-tocommunity influence

- We calculate two types of time intervals in users' sharing behaviors
- Δt^{Same} : time intervals between consecutive shares of v_i by the same user
- Δt^{Diff} : time intervals between the first share of v_i by different users

- $\Delta t^{\rm Diff}$ has a unimodal distribution with mean 6.844 and stdev 0.823 on the log scale
- We determine the cutoff time for partitioning sessions using a threshold time $\Delta t^{\rm Thres}$

$$\Delta t^{\text{Thres}} = \mu - c\sigma$$

Then, we construct the edges for the CIGs

Case of Different User

- Directed edge $s_j \rightarrow s_k$ if two shares of some video v_i from different users occur $\leq \Delta t^{\text{Thres}}$
- No edge if $> \Delta t^{\text{Thres}}$

Case of Same User

- Bidirectional edge $s_j \leftrightarrow s_k$ if there exist two shares of some video v_i from the same user.
 - This is due to mutual influence in terms of content sharing.

- We also observe that Δt^{Same} form a bimodal distribution
- A user can post the same content in various venues to enhance its visibility and attract more "likes"
- This should not be viewed as one community influencing another
- Not indicative of natural flow of content from one community to another

Video Content Modeling

Video Content Modeling

$$\tilde{\mathbf{v}}_i = \operatorname{Aggr}(\mathbf{v}_i, \mathbf{c}_{\rho(i)})$$

- \mathbf{v}_i : feature vector for the title and description of a video
- $\mathbf{c}_{
 ho(i)}$: feature vector for the video's channel

Dynamic Modeling

• We leverage temporal graph network (TGN) to derive the representations $\tilde{\mathbf{v}}_i^t$ and $\tilde{\mathbf{s}}_i^t$ at time t

$$\tilde{\mathbf{v}}_i^t = f_{\theta}(\mathbf{h}_i(t), \mathcal{G}^D)$$

$$\tilde{\mathbf{s}}_j^t = f_{\theta}(\mathbf{h}_j(t), \mathcal{G}^D)$$

• $\mathbf{h}_i(t)$ and $\mathbf{h}_j(t)$ are the memory vectors for v_i and s_j , respectively.

Dynamic Modeling

- We leverage temporal graph network (TGN) to derive the representations $\tilde{\mathbf{v}}_i^t$ and $\tilde{\mathbf{s}}_i^t$ at time t
- During prediction, we derive the score be- tween each video v_i and each community s_i at time t

$$\hat{y}_{ij}^t = \text{MLP}(\tilde{\mathbf{v}}_i^t \odot \text{MLP}(\tilde{\mathbf{s}}_j^t))$$

The model is trained using BPR Loss

$$\mathcal{L}_{\mathrm{BPR}} = \sum_{(i,j^+,j^-,t)} -\ln(\mathrm{sigmoid}(\hat{y}_{ij^+}^t - \hat{y}_{ij^-}^t))$$

Dynamic Modeling

Temporal Memory

Evaluation

Results

Performance improvements of up to:

- 13.8% on NDCG@5
- 6.2% on Recall@5
- 18.8% on MRR

INPAC can identify meaningful community influence graphs (CIG) in various scenarios.

Performances on Warm-start Videos

(a) Large Dataset

		oular Commur	Non-Popular Communities							
	NDCG@5	Rec@5	NDCG@10	Rec@10	MRR	NDCG@5	Rec@5	NDCG@10	Rec@10	MRR
MF	0.5216	0.7194	0.6002	0.8469	0.4734	0.1346	0.2205	0.1820	0.3595	0.1513
NGCF	0.5291	0.7307	0.5597	0.8477	0.5246	0.1399	0.2213	0.1845	0.3680	0.1581
LightGCN	0.5468	0.7349	0.5675	0.8505	0.5215	0.1537	0.2426	0.1987	0.3832	0.1691
SVD-GCN	0.5677	0.7572	0.6002	0.8514	0.5379	0.1609	0.2539	0.2065	0.3960	0.1739
TiSASRec	0.5696	0.7593	0.6029	0.8534	0.5354	0.1668	0.2586	0.2078	0.3956	0.1770
TGAT	0.5679	0.7603	0.6130	0.8530	0.5354	0.1684	0.2590	0.2121	0.3969	0.1775
TGN	0.5723	0.7604	$\underline{0.6140}$	0.8569	0.5576	0.1687	0.2596	0.2138	0.3970	0.1818
INPAC	0.6013	0.7816	0.6383	0.8793	0.5822	0.1798	0.2741	0.2263	0.4182	0.1923
Impr	5.1%	2.8%	4.0%	3.0%	4.4%	6.6%	5.6%	5.9 %	5.3%	5.8%

(b) Small Dataset

	(b) Small Dataset											
		oular Commu	Non-Popular Communities									
	NDCG@5	Rec@5	NDCG@10	Rec@10	MRR	NDCG@5	Rec@5	NDCG@10	Rec@10	MRR		
MF	0.3594	0.5211	0.4017	0.6585	0.3356	0.0764	0.1203	0.0991	0.1958	0.0803		
NGCF	0.3641	0.5282	0.4100	0.6620	0.3411	0.0807	0.1250	0.1000	0.1816	0.0887		
LightGCN	0.3789	0.5493	0.4167	0.6796	0.3448	0.0852	0.1321	0.1172	0.2241	0.0967		
SVD-GCN	0.3893	0.5634	0.4235	0.6839	0.3621	0.0947	0.1415	0.1204	0.2311	0.1011		
TiSASRec	0.3907	0.5617	0.4287	0.6840	0.3642	0.0948	0.1439	0.1233	0.2335	0.1061		
TGAT	0.3922	0.5669	0.4276	0.6845	0.3676	0.0953	0.1445	0.1256	0.2321	0.1095		
TGN	0.4037	0.5728	$\underline{0.4324}$	0.6849	0.3753	0.0981	$\underline{0.1462}$	$\underline{0.1302}$	0.2358	0.1156		
INPAC	0.4377	0.6092	0.4613	0.7031	0.4026	0.1115	0.1533	0.1428	0.2524	0.1380		
Impr.	8.4%	6.3%	6.7%	2.7%	7.3%	13.6%	4.8%	9.7%	7.0 %	19.4%		

Performances on Cold-start Videos

(a)	Large	Dataset
(a)	Large	Dataset

		oular Commur	Non-Popular Communities							
	NDCG@5	Rec@5	NDCG@10	Rec@10	MRR	NDCG@5	Rec@5	NDCG@10	Rec@10	MRR
MF	0.5291	0.7361	0.5669	0.8411	0.4824	0.1069	0.1593	0.1390	0.2600	0.1245
NGCF	0.5632	0.7485	0.5862	0.8380	0.5118	0.1371	0.2285	0.1834	0.3732	0.1508
LightGCN	0.5768	0.7534	0.6005	0.8373	0.5247	0.1426	0.2515	0.1942	0.3926	0.1576
SVD-GCN	0.5808	0.7633	0.6033	0.8398	0.5344	0.1484	0.2532	0.1944	0.3972	0.1696
TiSASRec	0.5853	0.7604	0.6023	0.8380	0.5326	0.1516	0.2538	0.1990	0.3973	0.1705
TGAT	0.5896	0.7638	0.6104	0.8435	0.5497	0.1586	0.2549	0.2067	0.4009	0.1760
TGN	$\overline{0.5872}$	0.7636	$0.\overline{6102}$	$0.\overline{8404}$	$\overline{0.5452}$	0.1623	0.2552	$\underline{0.2080}$	0.4019	$\overline{0.1732}$
INPAC	0.6174	0.7855	0.6397	0.8677	0.5776	0.1764	0.2705	0.2205	0.4238	0.1873
Impr.	4.7%	2.8%	4.8%	2.9%	5.1 %	8.6%	6.0%	6.0%	5.5%	6.4%

(b) Small Dataset

		oular Commun	Non-Popular Communities							
	NDCG@5	Rec@5	NDCG@10	Rec@10	MRR	NDCG@5	Rec@5	NDCG@10	Rec@10	MRR
MF	0.3524	0.5785	0.4167	0.8508	0.2922	0.0730	0.1134	0.1077	0.2150	0.0961
NGCF	0.3631	0.5864	0.4332	0.8351	0.3194	0.0816	0.1237	0.1099	0.2320	0.0991
LightGCN	0.3958	0.5890	0.4421	0.8639	0.3221	0.0825	0.1289	0.1107	0.2262	0.0984
SVD-GCN	0.4034	0.6073	0.4515	0.8743	0.3283	0.0800	0.1289	0.1136	0.2268	0.1011
TiSASRec	0.4172	0.6466	0.4682	0.8807	0.3643	0.0849	0.1366	0.1142	0.2320	0.1071
TGAT	0.4244	0.6709	0.4779	0.8814	0.3664	0.0839	0.1392	0.1149	0.2371	0.1073
TGN	0.4273	0.6753	0.4797	0.8831	0.3696	0.0883	0.1443	0.1157	0.2396	0.1094
INPAC	0.4646	0.7155	0.5083	0.9110	0.3847	0.1008	0.1526	0.1272	0.2506	0.1180
Impr.	8.7%	5.9%	5.9%	3.1%	4.1%	14.2%	5.8%	10.0%	4.6%	7.9%

These 4 videos were all propagated in exactly 20 communities

- a. How Wildlife Trade is Linked to Coronavirus / Animal Rights
- b. Black Myth: Wukong Official 13 Minutes Gameplay Trailer
- c. Thought experiment "BRAIN IN A VAT"
- d. Taylor Swift ME!
- Node sizes & colors indicate node degrees
- Edge colors indicate the edge weights
- Observation: CIGs generated from different videos demonstrate diverse connectivities and structures.

Analysis of Community Influence Graphs (CIGs)

(a) How Wildlife Trade is Linked to Coronavirus exhibits weaker connectivity with a total edge weight of 25.

- This CIG exhibit multiple clusters
- The video was initially shared in r/AskScienceDiscussion, a community focused on in-depth scientific discussions, which aligned with the video's original purpose
- Then, it spread to multiple semantically similar communities within a short time OR through the same group of users
- As the video gained popularity, it was shared by distinct users in highly active COVID-19 related communities
- Eventually, the video was shared in 5 topically similar communities related to vegetarianism and animal welfare, such as r/AnimalRights.

Analysis of Community Influence Graphs (CIGs)

(d) Taylor Swift - ME!.

- The video exhibits a single cluster.
- The video first appeared in r/WorshipTaylorSwift, which directly relates to the posted video
- Subsequently, the video propagated to multiple r/ semantically distinct communities at different time periods:
 - r/terracehouse: reality TV show
 - r/NoStupidQuestions: discussion of curious questions

Insights

- 1. Initially, online content tends to be shared within communities that closely match its topic. As the content gains popularity, it gradually spreads to multiple communities with a broader range of topics.
- 2. Content is shared within topically similar communities in a short period, regardless of whether it is shared by the same user or different users.
- 3. Existence of "super spreaders" on online platforms who actively engage in and disseminate content across multiple topically diverse communities.

Ablation Studies

We evaluate 3 variants of INPAC
Each of them applies a separate aggregation scheme
for the video & channel embeddings

- INPAC (Add): Addition
- INPAC (Concat): Concatenation
- INPAC (Mul): Multiplication
- INPAC (Mul) outperforms other variants of INPAC
- The greatest performance improvement is on MRR
- All variants outperform the strongest baseline TGN

Performance with Different Aggregation Schemes

■ INPAC (Concat)

■INPAC (Mul)

■TGN

■INPAC (Add)

Webpage

Code & Data

Predicting Information Pathways Across Online Communities

Yiqiao Jin¹, Yeon-Chang Lee¹, Kartik Sharma¹, Meng Ye², Karan Sikka², Ajay Divakaran², Srijan Kumar¹ ¹Georgia Institute of Technology ²SRI International

https://github.com/claws-lab/INPAC

SRI International

