

How's the t test work? The central limit theorem.	
In words: The number of $standard\ errors\ that\ the\ sample\ mean\ is\ away\ from\ the\ true\ mean\ has\ a\ t\ distribution.$	
2.4	
In words: The number of standard errors that the sample mean is away from the true mean has a t distribution. • with $n-2$ degrees of freedom. • "standard error" = s/\sqrt{n} = SD of the sample mean	
2.4	

In words:

The number of standard errors that the sample mean is away from the $true\ mean\ has\ a\ t$ distribution.

- ullet ... with n-2 degrees of freedom.
- "standard error" = s/\sqrt{n} = SD of the sample mean

For instance, the probability that the sample mean is within 2 standard errors of the true mean is approximately

2 . 4

2 . 5

$$\int_{-2}^2 \frac{\Gamma\big(\frac{n-1}{2}\big)}{\sqrt{(n-2)\pi}\Gamma\big(\frac{n-2}{2}\big)} \bigg(1+\frac{x^2}{n-2}\bigg)^{-\frac{n-1}{2}} dx.$$

For instance, the probability that the sample mean is within 2 standard errors of the true mean is approximately

$$\int_{-2}^2 \frac{\Gamma\big(\frac{n-1}{2}\big)}{\sqrt{(n-2)\pi}\Gamma\big(\frac{n-2}{2}\big)} \bigg(1+\frac{x^2}{n-2}\bigg)^{-\frac{n-1}{2}} dx.$$

Intuition 1. Simulate a dataset of 20 random draws from a Normal distribution with mean 0, and do a t test of the hypothesis that $\mu=0$.	
Intuition 1. Simulate a dataset of 20 random draws from a Normal distribution with mean 0, and do a t test of the hypothesis that $\mu=0$. 2. Do that 1,000 times, and make a histogram of the resulting p -values. What proportion are less than 0.05?	
Intuition 1. Simulate a dataset of 20 random draws from a Normal distribution with mean 0, and do a t test of the hypothesis that $\mu=0$. 2. Do that 1,000 times, and make a histogram of the resulting p -values. What proportion are less than 0.05? 3. Change mean of the simulated values to 1, and do the same.	

Confidence intervals	
A 95% confidence interval for an estimate is constructed so that no matter what the true values, 95% of the the confidence intervals you construct will overlap the truth.	
A 95% confidence interval for an estimate is constructed so that no matter what the true values, 95% of the the confidence intervals you construct will overlap the truth. In other words, if we collect 100 independent samples from a population with true mean μ , and 95% construct confidence intervals for the mean from each, then about 95 of these should overlap μ .	
3.2	

Check this.

if we collect 100 independent samples from a population with true mean μ , and construct 95% confidence intervals from each, then about 95 of these should overlap μ .

Let's take independent samples of size n=20 from a Normal distribution with $\mu=0.$ Example:

```
n <- 20; mu <- 0
t.test(rnorm(n, mean=mu))$conf.int
## [1] -0.4019083 0.5862080
## attr(,"conf.level")
## [1] 0.95
```

3 . 5

3 . 8

What's that 95% mean?

Suppose we survey 100 random UO students and find that 10 had been to a party recently and so get a 95% confidence interval of 4%-16% for the percentage of UO students who have been to a party recently.

What's that 95% mean? Suppose we survey 100 random UO students and find that 10 had been to a party recently and so get a 95% confidence interval of 4%-16% for the percentage of UO students who have been to a party recently. There is a 95% chance that the true proportion of UO students who have been to a party recently is between 4% and 16%.	
What's that 95% mean? Suppose we survey 100 random UO students and find that 10 had been to a party recently and so get a 95% confidence interval of 4%-16% for the percentage of UO students who have been to a party recently. There is a 95% chance that the true proportion of UO students who have been to a party recently is between 4% and 16%. Not so good: the true proportion is a fixed number, so it doesn't make sense to talk about a probability here.	
Power analysis	

Statistical power is how good our statistics can find things out.	
42	
Statistical power is how good our statistics can find things out. Formally: the probability of identifying a true effect.	
Statistical power is how good our statistics can find things out. Formally: the probability of identifying a true effect. Example: Suppose two snail species' speeds differ by 3cm/h. What's the chance our experiment will identify the difference?	

A prospective study

Suppose that we're going to do a survey of room prices of an AirBnB competitor. How do our power and accuracy depend on sample size? Supposing that prices roughly match AirBnB's: mean $\mu=\$120$ and SD $\sigma=\$98$, estimate:

- 1. The size of the difference between the mean price of a random sample of size n and the (true) mean price.
- 2. The probability that a sample of size n rooms has a sample mean within \$10 of the (true) mean price.

4 . 3

4.4

Group exercise

Answer those questions *empirically*: by taking random samples from the price column of the airbnb data, make two plots:

- 1. Expected difference between the mean price of a random sample of n Portland AirBnB rooms and the (true) mean price of *all* rooms, as a function of n.
- 2. Probability that a sample of size n of Portland AirBnB rooms has a sample mean within \$10 of the (true) mean price of *all* rooms, as a function of n.

In class: part 1

```
true_mean <- mean(airbnb$price, na.rm=TRUE)
# do it once
n <- 20
sample_mean <- mean(sample(airbnb$price, n))
# do it a lot of times
nvals <- 10 * 18:100
nreps <- 100
sample_means <- matrix(NA, nrow=nreps, ncol=length(nvals))
for (n in 1:length(nvals)) {
    n <- nvals[j]
    sample_means[,j] <- replicate(nreps, mean(sample(airbnb$price, n), na.rm=TRUE))
}

## Error: object 'j' not found

plot(nvals, colMeans(abs(sample_means - true_mean)),
    main="distance from the true mean, by sample size",
    xlab="sample size",
    ylab="mean absolute error",
    pch=20)

## Warning in min(x): no non-missing arguments to min; returning Inf
## Warning in max(x): no non-missing arguments to max; returning -Inf
## Error in plot.window(...): need finite 'ylim' values</pre>
```

