# The Karoubi envelope and the classification of Markov-Dyck shifts

Alfredo Costa, Universidade de Coimbra Benjamin Steinberg, City College of New York



November 21, 2013



#### Outline

1 The Karoubi Envelope

Markov-Dyck shifts: a success story

Conjugacy Invariance

 Our goal is to introduce a syntactic invariant of flow equivalence of shifts.

- Our goal is to introduce a syntactic invariant of flow equivalence of shifts.
- The invariant is a small category constructed from the syntactic semigroup of the shift.

- Our goal is to introduce a syntactic invariant of flow equivalence of shifts.
- The invariant is a small category constructed from the syntactic semigroup of the shift.
- The behavior of this invariant is somewhat orthogonal to classical invariants.

- Our goal is to introduce a syntactic invariant of flow equivalence of shifts.
- The invariant is a small category constructed from the syntactic semigroup of the shift.
- The behavior of this invariant is somewhat orthogonal to classical invariants.
- We will show how it classifies Markov-Dyck shifts up to flow equivalence under mild hypotheses on the graphs.

- Our goal is to introduce a syntactic invariant of flow equivalence of shifts.
- The invariant is a small category constructed from the syntactic semigroup of the shift.
- The behavior of this invariant is somewhat orthogonal to classical invariants
- We will show how it classifies Markov-Dyck shifts up to flow equivalence under mild hypotheses on the graphs.
- I will sketch a simple proof of our main result using results of Nasu.

ullet Let S be a semigroup.

- Let S be a semigroup.
- The Karoubi envelope  $\mathbb{K}(S)$  is the following small category.

- Let S be a semigroup.
- The Karoubi envelope  $\mathbb{K}(S)$  is the following small category.
- $\mathrm{Obj}(\mathbb{K}(S)) = E(S)$  (the idempotents of S).

- Let S be a semigroup.
- The Karoubi envelope  $\mathbb{K}(S)$  is the following small category.
- $\mathrm{Obj}(\mathbb{K}(S)) = E(S)$  (the idempotents of S).
- An arrow  $e \to f$  is a triple (f, s, e) with  $s \in fSe$ . That is, fs = s = se.

- Let S be a semigroup.
- The Karoubi envelope  $\mathbb{K}(S)$  is the following small category.
- $\mathrm{Obj}(\mathbb{K}(S)) = E(S)$  (the idempotents of S).
- An arrow  $e \to f$  is a triple (f, s, e) with  $s \in fSe$ . That is, fs = s = se.
- (f, s, e)(e, s', e') = (f, ss', e')

- Let S be a semigroup.
- The Karoubi envelope  $\mathbb{K}(S)$  is the following small category.
- $\mathrm{Obj}(\mathbb{K}(S)) = E(S)$  (the idempotents of S).
- An arrow  $e \to f$  is a triple (f, s, e) with  $s \in fSe$ . That is, fs = s = se.
- (f, s, e)(e, s', e') = (f, ss', e')
- The identity at e is (e, e, e).

- Let S be a semigroup.
- The Karoubi envelope  $\mathbb{K}(S)$  is the following small category.
- $\mathrm{Obj}(\mathbb{K}(S)) = E(S)$  (the idempotents of S).
- An arrow  $e \to f$  is a triple (f, s, e) with  $s \in fSe$ . That is, fs = s = se.
- (f, s, e)(e, s', e') = (f, ss', e')
- The identity at e is (e, e, e).
- The endomorphism monoid at e is eSe.

- Let S be a semigroup.
- The Karoubi envelope  $\mathbb{K}(S)$  is the following small category.
- $\mathrm{Obj}(\mathbb{K}(S)) = E(S)$  (the idempotents of S).
- An arrow  $e \to f$  is a triple (f, s, e) with  $s \in fSe$ . That is, fs = s = se.
- (f, s, e)(e, s', e') = (f, ss', e')
- The identity at e is (e, e, e).
- The endomorphism monoid at e is eSe.
- $e \cong f$  iff e = ab and f = ba for some  $a, b \in S$  with aba = a, bab = b. (Called  $\mathscr{D}$ -equivalence.)

- Let S be a semigroup.
- The Karoubi envelope  $\mathbb{K}(S)$  is the following small category.
- $\mathrm{Obj}(\mathbb{K}(S)) = E(S)$  (the idempotents of S).
- An arrow  $e \to f$  is a triple (f, s, e) with  $s \in fSe$ . That is, fs = s = se.
- (f, s, e)(e, s', e') = (f, ss', e')
- The identity at e is (e, e, e).
- The endomorphism monoid at e is eSe.
- $e \cong f$  iff e = ab and f = ba for some  $a, b \in S$  with aba = a, bab = b. (Called  $\mathscr{D}$ -equivalence.)
- This is analogous to von Neumann-Murray equivalence of projections.

• A right S-set is a set X with an action  $X \times S \to X$ .

- A right S-set is a set X with an action  $X \times S \to X$ .
- $\mathbb{K}(S)$  is equivalent to the category of S-sets of the form eS, with  $e \in E(S)$ , and S-equivariant maps.

- A right S-set is a set X with an action  $X \times S \to X$ .
- $\mathbb{K}(S)$  is equivalent to the category of S-sets of the form eS, with  $e \in E(S)$ , and S-equivariant maps.
- ullet You should think of eS as a projective indecomposable.

- A right S-set is a set X with an action  $X \times S \to X$ .
- $\mathbb{K}(S)$  is equivalent to the category of S-sets of the form eS, with  $e \in E(S)$ , and S-equivariant maps.
- ullet You should think of eS as a projective indecomposable.
- Hence if  $\mathbb{K}(S)$  is equivalent to  $\mathbb{K}(T)$ , we should think of S and T as Morita equivalent in some sense.

• A semigroup S has local units if E(S)SE(S) = S.

- A semigroup S has local units if E(S)SE(S) = S.
- Equivalently, for all  $s \in S$ , there are  $e, f \in E(S)$  with fs = s = se.

- A semigroup S has local units if E(S)SE(S) = S.
- Equivalently, for all  $s \in S$ , there are  $e, f \in E(S)$  with fs = s = se.
- Every monoid has local units.

- A semigroup S has local units if E(S)SE(S) = S.
- Equivalently, for all  $s \in S$ , there are  $e, f \in E(S)$  with fs = s = se.
- Every monoid has local units.
- If S is any semigroup, then LU(S) = E(S)SE(S) is the largest subsemigroup of S with local units.

- A semigroup S has local units if E(S)SE(S) = S.
- Equivalently, for all  $s \in S$ , there are  $e, f \in E(S)$  with fs = s = se.
- Every monoid has local units.
- If S is any semigroup, then LU(S) = E(S)SE(S) is the largest subsemigroup of S with local units.
- From the construction,  $\mathbb{K}(S) = \mathbb{K}(LU(S))$ .

ullet Let S be a semigroup with local units.

- ullet Let S be a semigroup with local units.
- An S-set X is closed if the natural map  $X \otimes_S S \to X$  given by  $x \otimes s \mapsto xs$  is a bijection.

- Let S be a semigroup with local units.
- An S-set X is closed if the natural map  $X \otimes_S S \to X$  given by  $x \otimes s \mapsto xs$  is a bijection.
- For a monoid S, all unital S-sets are closed.

- Let S be a semigroup with local units.
- An S-set X is closed if the natural map  $X \otimes_S S \to X$  given by  $x \otimes s \mapsto xs$  is a bijection.
- For a monoid S, all unital S-sets are closed.
- Talwar defined semigroups S, T with local units to be Morita equivalent if the category of closed S-sets is equivalent to the category of closed T-sets.

- Let S be a semigroup with local units.
- An S-set X is closed if the natural map  $X \otimes_S S \to X$  given by  $x \otimes s \mapsto xs$  is a bijection.
- For a monoid S, all unital S-sets are closed.
- Talwar defined semigroups S, T with local units to be Morita equivalent if the category of closed S-sets is equivalent to the category of closed T-sets.
- Lawson first explicitly proved S is Morita equivalent to T iff  $\mathbb{K}(S)$  is equivalent to  $\mathbb{K}(T)$ .

- ullet Let S be a semigroup with local units.
- An S-set X is closed if the natural map  $X \otimes_S S \to X$  given by  $x \otimes s \mapsto xs$  is a bijection.
- ullet For a monoid S, all unital S-sets are closed.
- Talwar defined semigroups S, T with local units to be Morita equivalent if the category of closed S-sets is equivalent to the category of closed T-sets.
- Lawson first explicitly proved S is Morita equivalent to T iff  $\mathbb{K}(S)$  is equivalent to  $\mathbb{K}(T)$ .
- If S, T are any semigroups, we say S and T are Morita equivalent up to local units if  $\mathbb{K}(S)$  is equivalent to  $\mathbb{K}(T)$ .

• A semigroup S = LU(S) is Morita equivalent to a monoid M iff there is  $e \in E(S)$  with S = SeS and  $eSe \cong M$ .

- A semigroup S = LU(S) is Morita equivalent to a monoid M iff there is  $e \in E(S)$  with S = SeS and  $eSe \cong M$ .
- In particular, S is Morita equivalent to a group G iff S is completely simple with maximal subgroup G.

- A semigroup S = LU(S) is Morita equivalent to a monoid M iff there is  $e \in E(S)$  with S = SeS and  $eSe \cong M$ .
- In particular, S is Morita equivalent to a group G iff S is completely simple with maximal subgroup G.
- Morita equivalent semigroups with local units have a number of structural properties in common.

- A semigroup S = LU(S) is Morita equivalent to a monoid M iff there is  $e \in E(S)$  with S = SeS and  $eSe \cong M$ .
- In particular, S is Morita equivalent to a group G iff S is completely simple with maximal subgroup G.
- Morita equivalent semigroups with local units have a number of structural properties in common.
- They have isomorphic lattices of ideals.

- A semigroup S = LU(S) is Morita equivalent to a monoid M iff there is  $e \in E(S)$  with S = SeS and  $eSe \cong M$ .
- In particular, S is Morita equivalent to a group G iff S is completely simple with maximal subgroup G.
- Morita equivalent semigroups with local units have a number of structural properties in common.
- They have isomorphic lattices of ideals.
- Their sets of  $\mathscr{D}$ -classes of idempotents are in bijection, and moreover the bijection preserves maximal subgroups.

### Examples

- A semigroup S = LU(S) is Morita equivalent to a monoid M iff there is  $e \in E(S)$  with S = SeS and  $eSe \cong M$ .
- In particular, S is Morita equivalent to a group G iff S is completely simple with maximal subgroup G.
- Morita equivalent semigroups with local units have a number of structural properties in common.
- They have isomorphic lattices of ideals.
- Their sets of 𝒯-classes of idempotents are in bijection, and moreover the bijection preserves maximal subgroups.
- Our syntactic invariants of shifts mostly come from Morita invariant properties of semigroups with local units.

• Let  $\mathscr{X} \subseteq A^{\mathbb{Z}}$  be a subshift.

- Let  $\mathscr{X} \subseteq A^{\mathbb{Z}}$  be a subshift.
- ullet  $L(\mathscr{X})$  denotes the language of blocks (or factors) of  $\mathscr{X}$ .

- Let  $\mathscr{X} \subseteq A^{\mathbb{Z}}$  be a subshift.
- ullet  $L(\mathscr{X})$  denotes the language of blocks (or factors) of  $\mathscr{X}$ .
- It is a nonempty, factorial, prolongable language and all such languages come from shifts.

- Let  $\mathscr{X} \subseteq A^{\mathbb{Z}}$  be a subshift.
- ullet  $L(\mathscr{X})$  denotes the language of blocks (or factors) of  $\mathscr{X}$ .
- It is a nonempty, factorial, prolongable language and all such languages come from shifts.
- Many syntactic invariants of  $\mathscr X$  have been constructed from  $L(\mathscr X)$  via its syntactic semigroup.

ullet A is a finite alphabet.

- A is a finite alphabet.
- $A^+$  (resp.  $A^*$ ) is the free semigroup (monoid) on A.

- A is a finite alphabet.
- $A^+$  (resp.  $A^*$ ) is the free semigroup (monoid) on A.
- ullet The syntactic congruence for  $L\subseteq A^+$  is defined by
  - $x \equiv_L y$  if, for all  $u, v \in A^*$ , we have  $uxv \in L \iff uyv \in L$ .

- A is a finite alphabet.
- $A^+$  (resp.  $A^*$ ) is the free semigroup (monoid) on A.
- The syntactic congruence for  $L \subseteq A^+$  is defined by •  $x \equiv_L y$  if, for all  $u, v \in A^*$ , we have  $uxv \in L \iff uyv \in L$ .
- The quotient semigroup  $S(L) = A^+/\equiv_L$  is called the syntactic semigroup of L.

- A is a finite alphabet.
- $A^+$  (resp.  $A^*$ ) is the free semigroup (monoid) on A.
- The syntactic congruence for  $L \subseteq A^+$  is defined by •  $x \equiv_L y$  if, for all  $u, v \in A^*$ , we have  $uxv \in L \iff uyv \in L$ .
- The quotient semigroup  $S(L) = A^+/\equiv_L$  is called the syntactic semigroup of L.
- For a subshift  $\mathscr{X} \subseteq A^{\mathbb{Z}}$ , we put  $S(\mathscr{X}) = S(L(\mathscr{X}))$  and call it the syntactic semigroup of  $\mathscr{X}$ .

- A is a finite alphabet.
- $A^+$  (resp.  $A^*$ ) is the free semigroup (monoid) on A.
- The syntactic congruence for  $L \subseteq A^+$  is defined by •  $x \equiv_L y$  if, for all  $u, v \in A^*$ , we have  $uxv \in L \iff uyv \in L$ .
- The quotient semigroup  $S(L) = A^+/\equiv_L$  is called the syntactic semigroup of L.
- For a subshift  $\mathscr{X} \subseteq A^{\mathbb{Z}}$ , we put  $S(\mathscr{X}) = S(L(\mathscr{X}))$  and call it the syntactic semigroup of  $\mathscr{X}$ .
- If  $\mathscr{X} \subsetneq A^{\mathbb{Z}}$ , then  $S(\mathscr{X})$  contains a zero element (the class of a non-factor).

- A is a finite alphabet.
- $A^+$  (resp.  $A^*$ ) is the free semigroup (monoid) on A.
- The syntactic congruence for  $L \subseteq A^+$  is defined by •  $x \equiv_L y$  if, for all  $u, v \in A^*$ , we have  $uxv \in L \iff uyv \in L$ .
- The quotient semigroup  $S(L) = A^+/\equiv_L$  is called the syntactic semigroup of L.
- For a subshift  $\mathscr{X} \subseteq A^{\mathbb{Z}}$ , we put  $S(\mathscr{X}) = S(L(\mathscr{X}))$  and call it the syntactic semigroup of  $\mathscr{X}$ .
- If  $\mathscr{X} \subsetneq A^{\mathbb{Z}}$ , then  $S(\mathscr{X})$  contains a zero element (the class of a non-factor).
- Convention: We put  $S(A^{\mathbb{Z}}) = S(A^+) \cup \{0\}.$

 $\bullet \ \mathscr{X} \text{ is sofic iff } S(\mathscr{X}) \text{ is finite}.$ 

- $\mathscr X$  is sofic iff  $S(\mathscr X)$  is finite.
- A sofic shift  $\mathscr X$  is irreducible iff  $S(\mathscr X)$  has a unique minimal non-zero ideal.

- $\mathscr X$  is sofic iff  $S(\mathscr X)$  is finite.
- A sofic shift  $\mathscr X$  is irreducible iff  $S(\mathscr X)$  has a unique minimal non-zero ideal.
- An irreducible sofic shift  $\mathscr X$  is of finite type iff  $eS(\mathscr X)e$  is commutative for all  $e\in E(S(\mathscr X))$ .

- $\mathscr X$  is sofic iff  $S(\mathscr X)$  is finite.
- A sofic shift  $\mathscr X$  is irreducible iff  $S(\mathscr X)$  has a unique minimal non-zero ideal.
- An irreducible sofic shift  $\mathscr X$  is of finite type iff  $eS(\mathscr X)e$  is commutative for all  $e\in E(S(\mathscr X))$ .
- An irreducible sofic shift is of almost finite type iff  $eS(\mathcal{X})e$  has commuting idempotents for all  $e \in E(S(\mathcal{X}))$ .

- $\mathscr X$  is sofic iff  $S(\mathscr X)$  is finite.
- A sofic shift  $\mathscr X$  is irreducible iff  $S(\mathscr X)$  has a unique minimal non-zero ideal.
- An irreducible sofic shift  $\mathscr X$  is of finite type iff  $eS(\mathscr X)e$  is commutative for all  $e\in E(S(\mathscr X))$ .
- An irreducible sofic shift is of almost finite type iff  $eS(\mathcal{X})e$  has commuting idempotents for all  $e \in E(S(\mathcal{X}))$ .
- These last three properties are all Morita invariants up to local units.

 $\bullet \ \, \text{If} \,\, \mathscr{X} \,\, \text{is a shift, we put} \,\, \mathbb{K}(\mathscr{X}) = \mathbb{K}(S(\mathscr{X})) \,\, \text{and call it the} \\ \,\, \text{Karoubi envelope of} \,\, \mathscr{X}.$ 

• If  $\mathscr X$  is a shift, we put  $\mathbb K(\mathscr X)=\mathbb K(S(\mathscr X))$  and call it the Karoubi envelope of  $\mathscr X$ .

### Theorem (Costa/BS)

If  $\mathscr X$  and  $\mathscr Y$  are flow equivalent shifts, then  $\mathbb K(\mathscr X)$  is naturally equivalent to  $\mathbb K(\mathscr Y)$ .

• If  $\mathscr X$  is a shift, we put  $\mathbb K(\mathscr X)=\mathbb K(S(\mathscr X))$  and call it the Karoubi envelope of  $\mathscr X$ .

### Theorem (Costa/BS)

If  $\mathscr X$  and  $\mathscr Y$  are flow equivalent shifts, then  $\mathbb K(\mathscr X)$  is naturally equivalent to  $\mathbb K(\mathscr Y)$ .

ullet In other words, the Morita equivalence class of  $S(\mathscr{X})$  (up to local units) is a flow equivalence invariant of  $\mathscr{X}$ .

• If  $\mathscr X$  is a shift, we put  $\mathbb K(\mathscr X)=\mathbb K(S(\mathscr X))$  and call it the Karoubi envelope of  $\mathscr{X}$ .

#### Theorem (Costa/BS)

If  $\mathscr X$  and  $\mathscr Y$  are flow equivalent shifts, then  $\mathbb K(\mathscr X)$  is naturally equivalent to  $\mathbb{K}(\mathcal{Y})$ .

- In other words, the Morita equivalence class of  $S(\mathscr{X})$  (up to local units) is a flow equivalence invariant of  $\mathscr{X}$ .
- Alfredo will explain in his talk how a number of syntactic invariants of shifts in the literature can be deduced from this result.

#### The good news:

The Karoubi envelope can tell if an irreducible sofic shift is:

#### The good news:

The Karoubi envelope can tell if an irreducible sofic shift is:

finite type

#### The good news:

The Karoubi envelope can tell if an irreducible sofic shift is:

- finite type
- almost finite type

#### The good news:

The Karoubi envelope can tell if an irreducible sofic shift is:

- finite type
- almost finite type

The bad news:

#### The good news:

The Karoubi envelope can tell if an irreducible sofic shift is:

- finite type
- almost finite type

#### The bad news:

• All finite type shifts have equivalent Karoubi envelopes.

#### The good news:

The Karoubi envelope can tell if an irreducible sofic shift is:

- finite type
- almost finite type

#### The bad news:

- All finite type shifts have equivalent Karoubi envelopes.
- All minimal shifts have equivalent Karoubi envelopes.

• Let G = (V, E) be a finite (di)graph.

- Let G = (V, E) be a finite (di)graph.
- ullet Assume G has no sinks and no vertex of in-degree 1.

- Let G = (V, E) be a finite (di)graph.
- ullet Assume G has no sinks and no vertex of in-degree 1.
- ullet  $G^*$  denotes the set of all (directed) paths in G.

- Let G = (V, E) be a finite (di)graph.
- ullet Assume G has no sinks and no vertex of in-degree 1.
- $\bullet$   $G^*$  denotes the set of all (directed) paths in G.
- There is an empty path at each vertex; path composition is right-to-left.

- Let G = (V, E) be a finite (di)graph.
- ullet Assume G has no sinks and no vertex of in-degree 1.
- $\bullet$   $G^*$  denotes the set of all (directed) paths in G.
- There is an empty path at each vertex; path composition is right-to-left.
- Let  $\mathfrak{h} = \ell_2(G^*)$ .

- Let G = (V, E) be a finite (di)graph.
- ullet Assume G has no sinks and no vertex of in-degree 1.
- $\bullet$   $G^*$  denotes the set of all (directed) paths in G.
- There is an empty path at each vertex; path composition is right-to-left.
- Let  $\mathfrak{h} = \ell_2(G^*)$ .
- ullet For each path p, define a partial isometry  $s_p$  on  ${\mathfrak h}$  by

$$s_p(q) = \begin{cases} pq, & \text{if } pq \text{ is a path} \\ 0, & \text{else.} \end{cases}$$

- Let G = (V, E) be a finite (di)graph.
- $\bullet$  Assume G has no sinks and no vertex of in-degree 1.
- $G^*$  denotes the set of all (directed) paths in G.
- There is an empty path at each vertex; path composition is right-to-left.
- Let  $\mathfrak{h} = \ell_2(G^*)$ .
- ullet For each path p, define a partial isometry  $s_p$  on  ${\mathfrak h}$  by

$$s_p(q) = \begin{cases} pq, & \text{if } pq \text{ is a path} \\ 0, & \text{else.} \end{cases}$$

•  $P_G = \langle \{s_e, s_e^* \mid e \in E\} \rangle$  is called the graph inverse semigroup associated to G.

- Let G = (V, E) be a finite (di)graph.
- ullet Assume G has no sinks and no vertex of in-degree 1.
- $G^*$  denotes the set of all (directed) paths in G.
- There is an empty path at each vertex; path composition is right-to-left.
- Let  $\mathfrak{h} = \ell_2(G^*)$ .
- ullet For each path p, define a partial isometry  $s_p$  on  ${\mathfrak h}$  by

$$s_p(q) = \begin{cases} pq, & \text{if } pq \text{ is a path} \\ 0, & \text{else.} \end{cases}$$

- $P_G = \langle \{s_e, s_e^* \mid e \in E\} \rangle$  is called the graph inverse semigroup associated to G.
- ullet Each nonzero element of  $P_G$  can be uniquely written  $s_p s_q^*$ .

### Inverse semigroups

• S is an inverse semigroup if, for all  $s \in S$ , there exists unique  $s^* \in S$  such that  $ss^*s = s$  and  $s^*ss^* = s^*$ .

- S is an inverse semigroup if, for all  $s \in S$ , there exists unique  $s^* \in S$  such that  $ss^*s = s$  and  $s^*ss^* = s^*$ .
- $ss^*, s^*s \in E(S)$  and so S has local units.

- S is an inverse semigroup if, for all  $s \in S$ , there exists unique  $s^* \in S$  such that  $ss^*s = s$  and  $s^*ss^* = s^*$ .
- $ss^*, s^*s \in E(S)$  and so S has local units.
- Inverse semigroups are precisely \*-semigroups of partial isometries of Hilbert spaces.

- S is an inverse semigroup if, for all  $s \in S$ , there exists unique  $s^* \in S$  such that  $ss^*s = s$  and  $s^*ss^* = s^*$ .
- $ss^*, s^*s \in E(S)$  and so S has local units.
- Inverse semigroups are precisely \*-semigroups of partial isometries of Hilbert spaces.
- Graph inverse semigroups were considered first in the 70s by Ash and Hall for graphs without multiple edges.

- S is an inverse semigroup if, for all  $s \in S$ , there exists unique  $s^* \in S$  such that  $ss^*s = s$  and  $s^*ss^* = s^*$ .
- $ss^*, s^*s \in E(S)$  and so S has local units.
- Inverse semigroups are precisely \*-semigroups of partial isometries of Hilbert spaces.
- Graph inverse semigroups were considered first in the 70s by Ash and Hall for graphs without multiple edges.
- ullet The general case was studied by Paterson in connection with graph  $C^*$ -algebras.

- S is an inverse semigroup if, for all  $s \in S$ , there exists unique  $s^* \in S$  such that  $ss^*s = s$  and  $s^*ss^* = s^*$ .
- $ss^*, s^*s \in E(S)$  and so S has local units.
- Inverse semigroups are precisely \*-semigroups of partial isometries of Hilbert spaces.
- Graph inverse semigroups were considered first in the 70s by Ash and Hall for graphs without multiple edges.
- ullet The general case was studied by Paterson in connection with graph  $C^*$ -algebras.
- $P_G$  is an inverse semigroup.

- S is an inverse semigroup if, for all  $s \in S$ , there exists unique  $s^* \in S$  such that  $ss^*s = s$  and  $s^*ss^* = s^*$ .
- $ss^*, s^*s \in E(S)$  and so S has local units.
- Inverse semigroups are precisely \*-semigroups of partial isometries of Hilbert spaces.
- Graph inverse semigroups were considered first in the 70s by Ash and Hall for graphs without multiple edges.
- The general case was studied by Paterson in connection with graph  $C^*$ -algebras.
- $P_G$  is an inverse semigroup.

#### Theorem (BS)

Morita equivalent inverse semigroups have Morita equivalent universal, reduced and tight  $C^*$ -algebras.

• Let 
$$\Sigma_G = E \cup E^*$$
.

- Let  $\Sigma_G = E \cup E^*$ .
- Define  $\pi \colon \Sigma_G^+ \to P_G$  by  $\pi(e) = s_e$ ,  $\pi(e^*) = s_e^*$ .

- Let  $\Sigma_G = E \cup E^*$ .
- Define  $\pi \colon \Sigma_G^+ \to P_G$  by  $\pi(e) = s_e$ ,  $\pi(e^*) = s_e^*$ .
- Then  $L_G = \pi^{-1}(P_G \setminus \{0\})$  is a factorial, prolongable language.

- Let  $\Sigma_G = E \cup E^*$ .
- Define  $\pi \colon \Sigma_G^+ \to P_G$  by  $\pi(e) = s_e$ ,  $\pi(e^*) = s_e^*$ .
- Then  $L_G = \pi^{-1}(P_G \setminus \{0\})$  is a factorial, prolongable language.
- Let  $D_G \subseteq (\Sigma_G)^{\mathbb{Z}}$  be the corresponding subshift.

- Let  $\Sigma_G = E \cup E^*$ .
- Define  $\pi \colon \Sigma_G^+ \to P_G$  by  $\pi(e) = s_e$ ,  $\pi(e^*) = s_e^*$ .
- Then  $L_G = \pi^{-1}(P_G \setminus \{0\})$  is a factorial, prolongable language.
- Let  $D_G \subseteq (\Sigma_G)^{\mathbb{Z}}$  be the corresponding subshift.
- It is called the Markov-Dyck shift associated to G.

- Let  $\Sigma_G = E \cup E^*$ .
- Define  $\pi \colon \Sigma_G^+ \to P_G$  by  $\pi(e) = s_e$ ,  $\pi(e^*) = s_e^*$ .
- Then  $L_G = \pi^{-1}(P_G \setminus \{0\})$  is a factorial, prolongable language.
- Let  $D_G \subseteq (\Sigma_G)^{\mathbb{Z}}$  be the corresponding subshift.
- It is called the Markov-Dyck shift associated to G.
- Markov-Dyck shifts have been studied by Krieger and his collaborators.

- Let  $\Sigma_G = E \cup E^*$ .
- Define  $\pi: \Sigma_G^+ \to P_G$  by  $\pi(e) = s_e$ ,  $\pi(e^*) = s_e^*$ .
- Then  $L_G = \pi^{-1}(P_G \setminus \{0\})$  is a factorial, prolongable language.
- Let  $D_G \subseteq (\Sigma_G)^{\mathbb{Z}}$  be the corresponding subshift.
- It is called the Markov-Dyck shift associated to G.
- Markov-Dyck shifts have been studied by Krieger and his collaborators.
- ullet They have been classified by Krieger up to conjugacy when G is strongly connected.

- Let  $\Sigma_G = E \cup E^*$ .
- Define  $\pi: \Sigma_G^+ \to P_G$  by  $\pi(e) = s_e$ ,  $\pi(e^*) = s_e^*$ .
- Then  $L_G = \pi^{-1}(P_G \setminus \{0\})$  is a factorial, prolongable language.
- Let  $D_G \subseteq (\Sigma_G)^{\mathbb{Z}}$  be the corresponding subshift.
- It is called the Markov-Dyck shift associated to G.
- Markov-Dyck shifts have been studied by Krieger and his collaborators.
- They have been classified by Krieger up to conjugacy when G is strongly connected.
- Dyck shifts were classified by Matsumoto up to flow equivalence.

#### Theorem (Costa/BS)

Let G, H be finite graphs such that  $\deg_{\mathrm{out}}(v) \geq 1$  and  $\deg_{\mathrm{in}}(v) \neq 1$  for all vertices v. Then the following are equivalent.

#### Theorem (Costa/BS)

Let G,H be finite graphs such that  $\deg_{\mathrm{out}}(v) \geq 1$  and  $\deg_{\mathrm{in}}(v) \neq 1$  for all vertices v. Then the following are equivalent.

**1**  $D_G$  and  $D_H$  are conjugate.

#### Theorem (Costa/BS)

Let G,H be finite graphs such that  $\deg_{\mathrm{out}}(v)\geq 1$  and  $\deg_{\mathrm{in}}(v)\neq 1$  for all vertices v. Then the following are equivalent.

- **1**  $D_G$  and  $D_H$  are conjugate.
- ②  $D_G$  and  $D_H$  are flow equivalent.

#### Theorem (Costa/BS)

Let G,H be finite graphs such that  $\deg_{\mathrm{out}}(v)\geq 1$  and  $\deg_{\mathrm{in}}(v)\neq 1$  for all vertices v. Then the following are equivalent.

- lacksquare  $D_G$  and  $D_H$  are conjugate.
- ②  $D_G$  and  $D_H$  are flow equivalent.
- **3** *G* and *H* are isomorphic.

#### Theorem (Costa/BS)

Let G, H be finite graphs such that  $\deg_{\mathrm{out}}(v) \geq 1$  and  $\deg_{\mathrm{in}}(v) \neq 1$  for all vertices v. Then the following are equivalent.

- **1**  $D_G$  and  $D_H$  are conjugate.
- ②  $D_G$  and  $D_H$  are flow equivalent.
- **3** *G* and *H* are isomorphic.
  - An analogous result holds for Markov-Motzkin shifts.

#### Theorem (Costa/BS)

Let G,H be finite graphs such that  $\deg_{\mathrm{out}}(v) \geq 1$  and  $\deg_{\mathrm{in}}(v) \neq 1$  for all vertices v. Then the following are equivalent.

- lacksquare  $D_G$  and  $D_H$  are conjugate.
- ②  $D_G$  and  $D_H$  are flow equivalent.
- **3** *G* and *H* are isomorphic.
  - An analogous result holds for Markov-Motzkin shifts.
  - In this case, sinks are allowed.

• Under our assumptions, we have  $P_G$  is the syntactic semigroup of  $D_G$ . (And the same for H.)

• Under our assumptions, we have  $P_G$  is the syntactic semigroup of  $D_G$ . (And the same for H.)

## Theorem (BS)

 $P_G$  is Morita equivalent to  $P_H$  if and only if G = H.

• Under our assumptions, we have  $P_G$  is the syntactic semigroup of  $D_G$ . (And the same for H.)

### Theorem (BS)

 $P_G$  is Morita equivalent to  $P_H$  if and only if G = H.

• If S is a semigroup with 0, then the object 0 of  $\mathbb{K}(S)$  is the unique object which is both initial and terminal.

• Under our assumptions, we have  $P_G$  is the syntactic semigroup of  $D_G$ . (And the same for H.)

### Theorem (BS)

 $P_G$  is Morita equivalent to  $P_H$  if and only if G = H.

- If S is a semigroup with 0, then the object 0 of  $\mathbb{K}(S)$  is the unique object which is both initial and terminal.
- Let  $\mathbb{K}_0(S)$  be the full subcategory of  $\mathbb{K}(S)$  on the nonzero elements of E(S). (Call it the proper part of  $\mathbb{K}(S)$ .)

• Under our assumptions, we have  $P_G$  is the syntactic semigroup of  $D_G$ . (And the same for H.)

### Theorem (BS)

 $P_G$  is Morita equivalent to  $P_H$  if and only if G=H.

- If S is a semigroup with 0, then the object 0 of  $\mathbb{K}(S)$  is the unique object which is both initial and terminal.
- Let  $\mathbb{K}_0(S)$  be the full subcategory of  $\mathbb{K}(S)$  on the nonzero elements of E(S). (Call it the proper part of  $\mathbb{K}(S)$ .)
- It follows that if S and T have zeroes, then  $\mathbb{K}(S)$  is equivalent to  $\mathbb{K}(T)$  iff their proper parts are equivalent.

• A morphism  $f\colon c\to d$  of a category admitting a section s (so  $fs=1_d$ ) is called a split epimorphism.

- A morphism  $f\colon c\to d$  of a category admitting a section s (so  $fs=1_d$ ) is called a split epimorphism.
- Clearly, split epimorphisms are preserved by all functors.

- A morphism  $f : c \to d$  of a category admitting a section s (so  $fs = 1_d$ ) is called a split epimorphism.
- Clearly, split epimorphisms are preserved by all functors.
- If S is a semigroup with 0, let  $\mathbb{L}(S)$  be the subcategory of  $\mathbb{K}_0(S)$  whose arrows are the split epimorphisms.

- A morphism  $f : c \to d$  of a category admitting a section s (so  $fs = 1_d$ ) is called a split epimorphism.
- Clearly, split epimorphisms are preserved by all functors.
- If S is a semigroup with 0, let  $\mathbb{L}(S)$  be the subcategory of  $\mathbb{K}_0(S)$  whose arrows are the split epimorphisms.
- If  $\mathbb{K}_0(S)$  is equivalent to  $\mathbb{K}_0(T)$ , then  $\mathbb{L}(S)$  is equivalent to  $\mathbb{L}(T)$ .

- A morphism  $f : c \to d$  of a category admitting a section s (so  $fs = 1_d$ ) is called a split epimorphism.
- Clearly, split epimorphisms are preserved by all functors.
- If S is a semigroup with 0, let  $\mathbb{L}(S)$  be the subcategory of  $\mathbb{K}_0(S)$  whose arrows are the split epimorphisms.
- If  $\mathbb{K}_0(S)$  is equivalent to  $\mathbb{K}_0(T)$ , then  $\mathbb{L}(S)$  is equivalent to  $\mathbb{L}(T)$ .
- One easily checks that  $\mathbb{L}(P_G)$  is equivalent to the free category  $G^*$  on G.

- A morphism  $f : c \to d$  of a category admitting a section s (so  $fs = 1_d$ ) is called a split epimorphism.
- Clearly, split epimorphisms are preserved by all functors.
- If S is a semigroup with 0, let  $\mathbb{L}(S)$  be the subcategory of  $\mathbb{K}_0(S)$  whose arrows are the split epimorphisms.
- If  $\mathbb{K}_0(S)$  is equivalent to  $\mathbb{K}_0(T)$ , then  $\mathbb{L}(S)$  is equivalent to  $\mathbb{L}(T)$ .
- One easily checks that  $\mathbb{L}(P_G)$  is equivalent to the free category  $G^*$  on G.
- Two free categories are equivalent iff the graphs are isomorphic.

- A morphism  $f: c \to d$  of a category admitting a section s (so  $fs = 1_d$ ) is called a split epimorphism.
- Clearly, split epimorphisms are preserved by all functors.
- If S is a semigroup with 0, let  $\mathbb{L}(S)$  be the subcategory of  $\mathbb{K}_0(S)$  whose arrows are the split epimorphisms.
- If  $\mathbb{K}_0(S)$  is equivalent to  $\mathbb{K}_0(T)$ , then  $\mathbb{L}(S)$  is equivalent to  $\mathbb{L}(T)$ .
- One easily checks that  $\mathbb{L}(P_G)$  is equivalent to the free category  $G^*$  on G.
- Two free categories are equivalent iff the graphs are isomorphic.
- So  $\mathbb{K}(P_G)$  equivalent to  $\mathbb{K}(P_H)$  implies  $G \cong H$ .

• An automaton  $\mathcal A$  over the alphabet A is a graph with edges labeled by elements of A.

- An automaton  $\mathcal A$  over the alphabet A is a graph with edges labeled by elements of A.
- ullet  $\mathscr{X}_{\mathcal{A}}$  denotes the shift of all labels of bi-infinite paths in  $\mathcal{A}.$

- An automaton  $\mathcal A$  over the alphabet A is a graph with edges labeled by elements of A.
- $\mathscr{X}_{\mathcal{A}}$  denotes the shift of all labels of bi-infinite paths in  $\mathcal{A}$ .
- $\mathscr{X}_{\mathcal{A}}$  is sofic if  $\mathcal{A}$  is finite.

- An automaton  $\mathcal{A}$  over the alphabet A is a graph with edges labeled by elements of A.
- $\mathscr{X}_{\mathcal{A}}$  denotes the shift of all labels of bi-infinite paths in  $\mathcal{A}$ .
- $\mathscr{X}_{\mathcal{A}}$  is sofic if  $\mathcal{A}$  is finite.

#### Example (Even shift)



#### Shifts and automata

- An automaton  $\mathcal{A}$  over the alphabet A is a graph with edges labeled by elements of A.
- $\mathscr{X}_{\mathcal{A}}$  denotes the shift of all labels of bi-infinite paths in  $\mathcal{A}$ .
- $\mathscr{X}_{\mathcal{A}}$  is sofic if  $\mathcal{A}$  is finite.

### Example (Even shift)



•  $\mathcal{A}$  is deterministic if there is at most one edge leaving any vertex with a given label  $a \in A$ .

#### Shifts and automata

- An automaton  $\mathcal A$  over the alphabet A is a graph with edges labeled by elements of A.
- $\mathscr{X}_{\mathcal{A}}$  denotes the shift of all labels of bi-infinite paths in  $\mathcal{A}$ .
- $\mathscr{X}_{\mathcal{A}}$  is sofic if  $\mathcal{A}$  is finite.

### Example (Even shift)



- $\mathcal{A}$  is deterministic if there is at most one edge leaving any vertex with a given label  $a \in A$ .
- The Krieger automaton for a shift is deterministic.

#### Shifts and automata

- An automaton  $\mathcal{A}$  over the alphabet A is a graph with edges labeled by elements of A.
- $\mathscr{X}_{\mathcal{A}}$  denotes the shift of all labels of bi-infinite paths in  $\mathcal{A}$ .
- $\mathscr{X}_{\mathcal{A}}$  is sofic if  $\mathcal{A}$  is finite.

### Example (Even shift)



- $\mathcal{A}$  is deterministic if there is at most one edge leaving any vertex with a given label  $a \in A$ .
- The Krieger automaton for a shift is deterministic.
- The Fischer cover for an irreducible sofic shift is deterministic.

ullet  ${\cal A}$  is a deterministic automaton over  ${\cal A}$  with state set  ${\cal Q}.$ 

- ullet  ${\cal A}$  is a deterministic automaton over  ${\cal A}$  with state set  ${\cal Q}$ .
- For each  $a \in A$ , define a partial map  $f_a : Q \to Q$  by:

- ullet  ${\cal A}$  is a deterministic automaton over  ${\cal A}$  with state set  ${\cal Q}.$
- For each  $a \in A$ , define a partial map  $f_a : Q \to Q$  by:
  - $\bullet \ qf_a = \emptyset \ \text{if there is no edge from} \ q \ \text{labelled} \ a;$

- A is a deterministic automaton over A with state set Q.
- For each  $a \in A$ , define a partial map  $f_a \colon Q \to Q$  by:
  - $qf_a = \emptyset$  if there is no edge from q labelled a;
  - $qf_a = q'$  if there is an edge  $q \xrightarrow{a} q'$ .

- A is a deterministic automaton over A with state set Q.
- For each  $a \in A$ , define a partial map  $f_a \colon Q \to Q$  by:
  - $qf_a = \emptyset$  if there is no edge from q labelled a;
  - $qf_a = q'$  if there is an edge  $q \xrightarrow{a} q'$ .

## Example (Even shift)



Conjugacy Invariance

## Transition semigroups

- A is a deterministic automaton over A with state set Q.
- For each  $a \in A$ , define a partial map  $f_a : Q \to Q$  by:
  - $q f_a = \emptyset$  if there is no edge from q labelled a;
  - $qf_a = q'$  if there is an edge  $q \xrightarrow{a} q'$ .

## Example (Even shift)

$$b = \begin{pmatrix} p & q \\ \end{pmatrix} \text{ and } f_b = \begin{pmatrix} p \\ \end{pmatrix}$$

$$f_a = \begin{pmatrix} p & q \\ q & p \end{pmatrix}$$
 and  $f_b = \begin{pmatrix} p & q \\ p & \emptyset \end{pmatrix}$ 

- A is a deterministic automaton over A with state set Q.
- For each  $a \in A$ , define a partial map  $f_a \colon Q \to Q$  by:
  - $qf_a = \emptyset$  if there is no edge from q labelled a;
  - $qf_a=q'$  if there is an edge  $q\stackrel{a}{\longrightarrow} q'$ .

## Example (Even shift)



• The semigroup  $S(\mathcal{A}) = \langle \{f_a \mid a \in A\} \rangle$  is called the transition semigroup of  $\mathcal{A}$ .

• If  $\mathcal A$  is the Krieger automaton of a shift  $\mathscr X$ , then  $S(\mathcal A)\cong S(\mathscr X).$ 

- If  $\mathcal A$  is the Krieger automaton of a shift  $\mathscr X$ , then  $S(\mathcal A)\cong S(\mathscr X).$
- The analogous statement holds for the Fischer cover of an irreducible sofic shift.

- If  $\mathcal A$  is the Krieger automaton of a shift  $\mathscr X$ , then  $S(\mathcal A)\cong S(\mathscr X).$
- The analogous statement holds for the Fischer cover of an irreducible sofic shift.
- The action of  $S(\mathcal{X})$  on the states of its Krieger (or Fischer) cover gives a functor  $F \colon \mathbb{K}(\mathcal{X}) \to \mathbf{Set}$ .

- If  $\mathcal A$  is the Krieger automaton of a shift  $\mathscr X$ , then  $S(\mathcal A)\cong S(\mathscr X).$
- The analogous statement holds for the Fischer cover of an irreducible sofic shift.
- The action of  $S(\mathcal{X})$  on the states of its Krieger (or Fischer) cover gives a functor  $F \colon \mathbb{K}(\mathcal{X}) \to \mathbf{Set}$ .
- If  $\mathscr X$  is flow equivalent to  $\mathscr Y$ , then this functor is 'remembered' by the equivalence of  $\mathbb K(\mathscr X)$  with  $\mathbb K(\mathscr Y)$  (see Alfredo's talk).

• An automaton  $\mathcal A$  over A is bipartite if there are partitions  $Q=Q_1 \uplus Q_2$  of the states and  $A=A_1 \uplus A_2$  of the alphabet such that:

- An automaton  $\mathcal A$  over A is bipartite if there are partitions  $Q=Q_1 \uplus Q_2$  of the states and  $A=A_1 \uplus A_2$  of the alphabet such that:
  - ullet all edges labeled by  $A_1$  go from  $Q_1$  to  $Q_2$

- An automaton  $\mathcal A$  over A is bipartite if there are partitions  $Q=Q_1 \uplus Q_2$  of the states and  $A=A_1 \uplus A_2$  of the alphabet such that:
  - ullet all edges labeled by  $A_1$  go from  $Q_1$  to  $Q_2$
  - ullet all edges labeled by  $A_2$  go from  $Q_2$  to  $Q_1$ .

- An automaton  $\mathcal A$  over A is bipartite if there are partitions  $Q=Q_1 \uplus Q_2$  of the states and  $A=A_1 \uplus A_2$  of the alphabet such that:
  - all edges labeled by  $A_1$  go from  $Q_1$  to  $Q_2$
  - ullet all edges labeled by  $A_2$  go from  $Q_2$  to  $Q_1$ .
- Let  $A_1$  be the automaton over  $A_1A_2$  with state set  $Q_1$  obtained by turning each path of length 2 from  $Q_1$  to itself into an edge.

- An automaton  $\mathcal A$  over A is bipartite if there are partitions  $Q=Q_1 \uplus Q_2$  of the states and  $A=A_1 \uplus A_2$  of the alphabet such that:
  - ullet all edges labeled by  $A_1$  go from  $Q_1$  to  $Q_2$
  - ullet all edges labeled by  $A_2$  go from  $Q_2$  to  $Q_1$ .
- Let  $A_1$  be the automaton over  $A_1A_2$  with state set  $Q_1$  obtained by turning each path of length 2 from  $Q_1$  to itself into an edge.
- Define  $A_2$  with alphabet  $A_2A_1$  and states  $Q_2$  analogously.

- An automaton  $\mathcal A$  over A is bipartite if there are partitions  $Q=Q_1 \uplus Q_2$  of the states and  $A=A_1 \uplus A_2$  of the alphabet such that:
  - all edges labeled by  $A_1$  go from  $Q_1$  to  $Q_2$
  - ullet all edges labeled by  $A_2$  go from  $Q_2$  to  $Q_1$ .
- Let  $A_1$  be the automaton over  $A_1A_2$  with state set  $Q_1$  obtained by turning each path of length 2 from  $Q_1$  to itself into an edge.
- Define  $A_2$  with alphabet  $A_2A_1$  and states  $Q_2$  analogously.
- We call  $A_1, A_2$  the components of A.

• Write  $\mathcal{A} \sim \mathcal{B}$  if there is a bipartite automaton with components  $\mathcal{A}, \mathcal{B}.$ 

- Write  $\mathcal{A} \sim \mathcal{B}$  if there is a bipartite automaton with components  $\mathcal{A}, \mathcal{B}$ .
- $\bullet$  Let  $\simeq$  be the equivalence relation on automata generated by  $\sim$  .

- Write  $A \sim B$  if there is a bipartite automaton with components A, B.
- $\bullet$  Let  $\simeq$  be the equivalence relation on automata generated by  $\sim$  .

### Theorem (Nasu 1986)

Let  $\mathscr{X}_1, \mathscr{X}_2$  be sofic shifts with Krieger automata  $\mathcal{A}_1, \mathcal{A}_2$ , respectively. Then the following are equivalent.

- Write  $A \sim B$  if there is a bipartite automaton with components A, B.
- $\bullet$  Let  $\simeq$  be the equivalence relation on automata generated by  $\sim$  .

### Theorem (Nasu 1986)

Let  $\mathscr{X}_1, \mathscr{X}_2$  be sofic shifts with Krieger automata  $\mathcal{A}_1, \mathcal{A}_2$ , respectively. Then the following are equivalent.

 $\bullet$   $\mathscr{X}_1$  and  $\mathscr{X}_2$  are conjugate.

- Write  $\mathcal{A} \sim \mathcal{B}$  if there is a bipartite automaton with components  $\mathcal{A}, \mathcal{B}$ .
- Let  $\simeq$  be the equivalence relation on automata generated by  $\sim$ .

## Theorem (Nasu 1986)

Let  $\mathscr{X}_1, \mathscr{X}_2$  be sofic shifts with Krieger automata  $\mathcal{A}_1, \mathcal{A}_2$ , respectively. Then the following are equivalent.

- **1**  $\mathscr{X}_1$  and  $\mathscr{X}_2$  are conjugate.
- ②  $A_1 \simeq A_2$  (via finite bipartite automata).

- Write  $\mathcal{A} \sim \mathcal{B}$  if there is a bipartite automaton with components  $\mathcal{A}, \mathcal{B}$ .
- Let  $\simeq$  be the equivalence relation on automata generated by  $\sim$ .

## Theorem (Nasu 1986)

Let  $\mathcal{X}_1, \mathcal{X}_2$  be sofic shifts with Krieger automata  $\mathcal{A}_1, \mathcal{A}_2$ , respectively. Then the following are equivalent.

- **1**  $\mathscr{X}_1$  and  $\mathscr{X}_2$  are conjugate.
- ②  $A_1 \simeq A_2$  (via finite bipartite automata).
  - Looking at Nasu's paper it seems  $1 \implies 2$  (without the finiteness condition) does not require the sofic hypothesis.

- Write  $\mathcal{A} \sim \mathcal{B}$  if there is a bipartite automaton with components  $\mathcal{A}, \mathcal{B}.$
- Let  $\simeq$  be the equivalence relation on automata generated by  $\sim$ .

## Theorem (Nasu 1986)

Let  $\mathscr{X}_1, \mathscr{X}_2$  be sofic shifts with Krieger automata  $\mathcal{A}_1, \mathcal{A}_2$ , respectively. Then the following are equivalent.

- **1**  $\mathscr{X}_1$  and  $\mathscr{X}_2$  are conjugate.
- ②  $A_1 \simeq A_2$  (via finite bipartite automata).
  - Looking at Nasu's paper it seems  $1 \implies 2$  (without the finiteness condition) does not require the sofic hypothesis.
  - If so, the following is a simpler proof of our main result.

• In light of Nasu's result, proving conjugacy invariance of the Karoubi envelope reduces to the following result.

• In light of Nasu's result, proving conjugacy invariance of the Karoubi envelope reduces to the following result.

### Theorem (Costa/BS)

Let  $\mathcal{A}$  be a bipartite automaton with components  $\mathcal{A}_1, \mathcal{A}_2$ . Let  $S, S_1, S_2$  be the transition semigroups of  $\mathcal{A}, \mathcal{A}_1, \mathcal{A}_2$ , respectively.

• In light of Nasu's result, proving conjugacy invariance of the Karoubi envelope reduces to the following result.

### Theorem (Costa/BS)

Let  $\mathcal{A}$  be a bipartite automaton with components  $\mathcal{A}_1, \mathcal{A}_2$ . Let  $S, S_1, S_2$  be the transition semigroups of  $\mathcal{A}, \mathcal{A}_1, \mathcal{A}_2$ , respectively. Then  $S, S_1, S_2$  are all Morita equivalent up to local units.

• In light of Nasu's result, proving conjugacy invariance of the Karoubi envelope reduces to the following result.

### Theorem (Costa/BS)

Let  $\mathcal{A}$  be a bipartite automaton with components  $\mathcal{A}_1, \mathcal{A}_2$ . Let  $S, S_1, S_2$  be the transition semigroups of  $\mathcal{A}, \mathcal{A}_1, \mathcal{A}_2$ , respectively. Then  $S, S_1, S_2$  are all Morita equivalent up to local units. Moreover, the equivalence is "action-preserving."

• Let  $S \leq T$  be semigroups with local units.

- Let  $S \leq T$  be semigroups with local units.
- $\bullet$  T is an enlargement of S if there is a set of idempotents  $E\subseteq T$  such that:

- $\bullet$  Let  $S \leq T$  be semigroups with local units.
- $\bullet$  T is an enlargement of S if there is a set of idempotents  $E\subseteq T$  such that:
  - TET = T;

- Let  $S \leq T$  be semigroups with local units.
- $\bullet$  T is an enlargement of S if there is a set of idempotents  $E\subseteq T$  such that:
  - TET = T;
  - ETE = S.

- Let  $S \leq T$  be semigroups with local units.
- $\bullet$  T is an enlargement of S if there is a set of idempotents  $E\subseteq T$  such that:
  - TET = T;
  - ETE = S.
- Equivalently, TST = T and STS = S.

- Let S < T be semigroups with local units.
- ullet T is an enlargement of S if there is a set of idempotents  $E \subseteq T$  such that:
  - TET = T:
  - ETE = S.
- Equivalently, TST = T and STS = S.
- ullet In this setup, the bisets ST and TS give the Morita context.

Conjugacy Invariance

## **Enlargements**

- Let  $S \leq T$  be semigroups with local units.
- $\bullet$  T is an enlargement of S if there is a set of idempotents  $E\subseteq T$  such that:
  - TET = T;
  - ETE = S.
- Equivalently, TST = T and STS = S.
- In this setup, the bisets ST and TS give the Morita context.

### Theorem (Lawson)

Two semigroups with local units are Morita equivalent iff they have a common enlargement.

• Let A be a bipartite automata with components  $A_1, A_2$ .

- Let A be a bipartite automata with components  $A_1, A_2$ .
- Let  $S, S_1, S_2$  be the transition semigroups of  $\mathcal{A}, \mathcal{A}_1, \mathcal{A}_2$ , respectively.

- Let A be a bipartite automata with components  $A_1, A_2$ .
- Let  $S, S_1, S_2$  be the transition semigroups of  $A, A_1, A_2$ , respectively.
- One checks that LU(S) is a common enlargement of  $LU(S_1), LU(S_2)$ .

- Let  $\mathcal A$  be a bipartite automata with components  $\mathcal A_1, \mathcal A_2.$
- Let  $S, S_1, S_2$  be the transition semigroups of  $A, A_1, A_2$ , respectively.
- One checks that LU(S) is a common enlargement of  $LU(S_1), LU(S_2)$ .
- This follows easily from the following observations of Béal, Berstel, Eilers and Perrin (stated in the finite case).

- Let A be a bipartite automata with components  $A_1, A_2$ .
- Let  $S, S_1, S_2$  be the transition semigroups of  $A, A_1, A_2$ , respectively.
- One checks that LU(S) is a common enlargement of  $LU(S_1), LU(S_2)$ .
- This follows easily from the following observations of Béal, Berstel, Eilers and Perrin (stated in the finite case).
- $E(S) \setminus \{0\} = (E(S_1) \setminus \{0\}) \uplus (E(S_2) \setminus \{0\});$

- Let A be a bipartite automata with components  $A_1, A_2$ .
- Let  $S, S_1, S_2$  be the transition semigroups of  $A, A_1, A_2$ , respectively.
- One checks that LU(S) is a common enlargement of  $LU(S_1), LU(S_2)$ .
- This follows easily from the following observations of Béal, Berstel, Eilers and Perrin (stated in the finite case).
- $E(S) \setminus \{0\} = (E(S_1) \setminus \{0\}) \uplus (E(S_2) \setminus \{0\});$
- Each idempotent of  $S_1$  is  $\mathscr{D}$ -equivalent to an idempotent of  $S_2$ , and vice versa.

- Let A be a bipartite automata with components  $A_1, A_2$ .
- Let  $S, S_1, S_2$  be the transition semigroups of  $A, A_1, A_2$ , respectively.
- One checks that LU(S) is a common enlargement of  $LU(S_1), LU(S_2)$ .
- This follows easily from the following observations of Béal, Berstel, Eilers and Perrin (stated in the finite case).
- $E(S) \setminus \{0\} = (E(S_1) \setminus \{0\}) \uplus (E(S_2) \setminus \{0\});$
- Each idempotent of  $S_1$  is  $\mathscr{D}$ -equivalent to an idempotent of  $S_2$ , and vice versa.
- The equivalence takes the  $LU(S_1)$ -set  $Q_1 \otimes LU(S_1)$  to the  $LU(S_2)$ -set  $Q_2 \otimes LU(S_2)$ .

#### The end

Thank you for your attention!