Mathematik II für Studierende der Informatik (Analysis und Lineare Algebra)

Steven Köhler

Sommersemester 2012 Aufgaben zur Vorbereitung der Bonusklausur am 02.07.2012

1. Differenziere die folgenden Funktionen:

(i)
$$f(x) = 3x^7 + 2x^6 - 4x^3 + x - 1$$
 (iv) $f(x) = \sqrt{\sin(x^3)} \cdot \ln y$

(ii)
$$f(x) = (x^5 - x^3 + x)^3$$
 (v) $f(x) = 2^{x^{-2} - x + 1}$

(ii)
$$f(x) = (x^5 - x^3 + x)^3$$
 (v) $f(x) = 2^{x^{-2} - x + 1}$ (iii) $f(x) = (2x^2 - 1) \cdot \sqrt[3]{2x^2 + 1}$ (vi) $f(x) = \sin x \cdot \cos x$

2. Differenziere die folgenden Funktionen:

(i)
$$f(x) = \cos\left(\ln\left(\sqrt{3x \cdot \sin x}\right)\right)$$
 (iv) $f(x) = \frac{\tan x}{e^x}$
(ii) $f(x) = e^x \cdot \sqrt{2x} \cdot \cos x$ (v) $f(x) = \cos\left(3x^2\right) \cdot \ln\left(\sqrt{\sin\left(2x^3\right)}\right)$
(iii) $f(x) = (\sin x)^{x^2+1}$ (vi) $f(x) = 2^{2^x}$

(iii)
$$f(x) = (\sin x)^{x^2+1}$$
 (vi) $f(x) = 2^{2^x}$

3. Bestimme die Extrem- und Wendepunkte der Funktion $f(x) = e^x \cdot x^2$.

4. Zeige mithilfe der Definition der Differenzierbarkeit, dass die Funktion f(x) = |2x - 4| and der Stelle $x_0 = 2$ nicht differenzierbar ist.

5. Bestimme mithilfe einer Untersumme die Fläche, die vom Graphen der Funktion $f(x) = -x^3 + 2x^2 + x$, der x-Achse sowie den beiden Geraden x = 0 und x = 1 eingeschlossen wird.

6. Berechne die folgenden Integrale:

(i)
$$\int (23x^4 + x^3 - 2x^2 + 7) dx$$
 (iv) $\int (x^2 + 1) \cdot \sin(2x) dx$
(ii) $\int \frac{1}{\sqrt[5]{x^3}} dx$ (v) $\int x^9 \cdot \ln x dx$
(iii) $\int \cos(4x) dx$ (vi) $\int 2^{\sqrt[3]{7x+5}} dx$

7. Berechne die folgenden Integrale:

$$\begin{array}{lll} \text{(i)} & \int \frac{4x+2}{x^2+x} \; dx & \text{(iv)} & \int 2 \cdot \sin x \cdot \cos x \; dx \\ \text{(ii)} & \int \tan x \; dx & \text{(v)} & \int \frac{5x-7}{x^2-x-6} \; dx \\ \text{(iii)} & \int \frac{\arctan x}{x^2+1} \; dx & \text{(vi)} & \int \frac{42}{2x^2+3} \; dx \end{array}$$

8. Gegeben sei die folgende Reihe: $\sum_{k=0}^{\infty} \left(\frac{1}{-4^k}\right)$.

a) Bestimme die ersten 4 Partialsummen dieser Reihe.

b) Entscheide, ob Konvergenz oder Divergenz vorliegt. Begründe deine Antwort.

c) Im Falle der Konvergenz: Gib den Grenzwert der Reihe an.

9. Entscheide, ob für die folgenden Reihen Konvergenz oder Divergenz vorliegt:

(i)
$$\sum_{k=0}^{\infty} \left(\frac{2}{5^{k+1}}\right)$$
 (iv)
$$\sum_{i=3}^{\infty} \left(\frac{5}{2i}\right)$$
 (ii)
$$\sum_{k=1}^{\infty} \left(\frac{3}{2}\right)^k$$
 (v)
$$\sum_{j=1}^{\infty} \left(\frac{42}{3}j^{-2}\right)$$
 (iii)
$$\sum_{k=1}^{\infty} \left(\frac{(-1)^k}{3}\right)^k$$
 (vi)
$$\sum_{k=1}^{\infty} \left(\frac{(-1)^{k+1}}{k}\right)$$

(iv)
$$\sum_{i=3}^{\infty} \left(\frac{5}{2i}\right)$$

(ii)
$$\sum_{k=1}^{\infty} \left(\frac{3}{2}\right)^k$$

(v)
$$\sum_{i=1}^{\infty} \left(\frac{42}{3} j^{-2} \right)$$

(iii)
$$\sum_{k=1}^{\infty} \left(\frac{(-1)^k}{3} \right)^k$$

(vi)
$$\sum_{k=1}^{\infty} \left(\frac{(-1)^{k+1}}{k} \right)$$

10. a) Entscheide mithilfe der Limes-Version des Wurzel- oder des Quotientenkriteriums, ob die folgenden Reihen konvergieren.

(i)
$$\sum_{i=0}^{\infty} i! \cdot 5^{-i} \cdot i^2$$

(ii)
$$\sum_{i=0}^{\infty} \frac{6^i \cdot i^3}{(i+1)!}$$

(i)
$$\sum_{i=0}^{\infty} i! \cdot 5^{-i} \cdot i^2$$
 (ii) $\sum_{i=0}^{\infty} \frac{6^i \cdot i^3}{(i+1)!}$ (iii) $\sum_{i=0}^{\infty} \left(\frac{23}{42}\right)^i \cdot i^5$

- b) Bestimme diejenigen $x \in \mathbb{R}$, für die die Reihe $\sum_{i=1}^{\infty} 2^i \cdot 5^{-i-1} \cdot i^2 \cdot x^i$ konvergiert:
 - (i) mit der Limes-Version des Quotientenkriteriums;
 - (ii) mit der Limes-Version des Wurzelkriteriums.