GUJARAT TECHNOLOGICAL UNIVERSITY

Diploma Engineering-SEMESTER - 1 (NEW) EXAMINATION - Summer-2023

Subject Code: 4300001 Date: 21-08-2023

Subject Name: Mathematics

Time: 2:30 PM TO 5:00 PM **Total Marks: 70**

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Use of programmable and communication aids are strictly prohibited.
- 5. Use of non-programmable scientific calculator is permitted.
- 6. English version is authentic.

Q.1 Fill in the blanks using appropriate choice from the given options. યોગ્ય વિકલ્પ પસંદ કરી ખાલીજગ્યા પરો

$$\begin{vmatrix} 1 & \begin{vmatrix} 2 & -3 \\ 5 & 4 \end{vmatrix} = \underline{\qquad}.$$

$$\begin{vmatrix} 2 & -3 \\ 5 & 4 \end{vmatrix} = \underline{\qquad}$$

$$\begin{vmatrix} x + 3 & 4 \\ x - 2 & 5 \end{vmatrix} = 13$$
, then $=$ _____.

ર
$$\begin{vmatrix} x+3 & 4 \\ x-2 & 5 \end{vmatrix} = 13$$
 કોય તો , $x =$ _____.

3 If
$$f(x) = \log x$$
, then $f(x) - f(y) =$ _____.

$$a.f(x+y)$$

$$a.f(x + y)$$
 b. $f(x - y)$ c. $f(xy)$

d.
$$f\left(\frac{x}{y}\right)$$

3 જો
$$f(x) = \log x$$
 કોય તો $f(x) - f(y) =$ ______.

$$\forall x. f(x+y)$$

અ.
$$f(x+y)$$
 બ. $f(x-y)$ ક. . $f(xy)$

S.
$$f\left(\frac{x}{y}\right)$$

4 If
$$(x) = x^2 - 5x + 7$$
, then $f(3) =$ _____.

૪ જો
$$f(x) = x^2 - 5x + 7$$
, કોય તો $f(3) =$ _____.

5
$$\sin 135^{\circ} =$$
_____.

a.
$$\frac{1}{\sqrt{2}}$$
 b. $\sqrt{2}$

$$c. - \frac{1}{\sqrt{2}}$$

d. $-\sqrt{2}$

$$\mathbf{q} = 135^{\circ} = 135^{\circ}$$

અ.
$$\frac{1}{\sqrt{2}}$$

$$5. -\frac{1}{\sqrt{2}}$$

S. $-\sqrt{2}$

6
$$\frac{6\pi}{5}$$
 Radian = _____.

a. 210° b. 225°

d. 216°

5.216°

7
$$\sin 2\theta =$$

a.
$$2 \sin \theta$$

a.
$$2 \sin \theta$$
 b. $2 \sin \theta \cos \theta$ c. $\sin^2 \theta - \cos^2 \theta$ d. $\cos^2 \theta - \sin^2 \theta$

9
$$\sin 2\theta =$$
 ______.

અ.
$$2\sin\theta$$

અ.
$$2\sin\theta$$
 બ. $2\sin\theta\cos\theta$ કે. $\sin^2\theta-\cos^2\theta$ 5. $\cos^2\theta-\sin^2\theta$

$$8 \quad \left| 3\bar{\iota} + 4\bar{\jmath} + 12\bar{k} \right| = \underline{\hspace{1cm}}.$$

a.
$$\sqrt{50}$$

b.12

d. 15

6
$$|3\bar{t} + 4\bar{j} + 12\bar{k}| =$$
_____.

અ.
$$\sqrt{50}$$
 બ. 12

ક. 13

S. 15

a.
$$\left(\frac{3}{5}, \frac{4}{5}\right)$$

b.
$$\left(\frac{1}{2}, \frac{1}{2}\right)$$

b.
$$\left(\frac{1}{2}, \frac{1}{2}\right)$$
 c. $\left(\frac{1}{2}, \frac{1}{\sqrt{2}}\right)$

d. $\left(\frac{\sqrt{3}}{2}, \frac{1}{\sqrt{2}}\right)$

$$\omega. \left(\frac{3}{5}, \frac{4}{5}\right)$$

$$\omega. \left(\frac{1}{2}, \frac{1}{2}\right)$$

$$5. \left(\frac{1}{2}, \frac{1}{\sqrt{2}}\right)$$

$$Q.\left(\frac{1}{2},\frac{1}{2}\right)$$

$$\S.\left(\frac{1}{2},\frac{1}{\sqrt{2}}\right)$$

 $S.\left(\frac{\sqrt{3}}{2},\frac{1}{\sqrt{2}}\right)$

10 Center of circle
$$x^2 + y^2 - 3x + 3y + 10 = 0$$
 is _____.
a. $\left(\frac{3}{2}, -\frac{3}{2}\right)$ b. $\left(-\frac{3}{2}, \frac{3}{2}\right)$ c. $\left(\frac{1}{2}, -\frac{1}{2}\right)$ d. $\left(-\frac{1}{2}, \frac{1}{2}\right)$

a.
$$\left(\frac{3}{2}, -\frac{3}{2}\right)$$

b.
$$\left(-\frac{3}{2}, \frac{3}{2}\right)$$

c.
$$\left(\frac{1}{2}, -\frac{1}{2}\right)$$

90
$$\operatorname{Qd}(0, x^2 + y^2 - 3x + 3y + 10 = 0) = 0$$
 $\operatorname{Sol}(0, x^2 + y^2 - 3x + 3y + 10 = 0) = 0$

અ.
$$\left(\frac{3}{2}, -\frac{3}{2}\right)$$

$$\Theta \cdot \left(-\frac{3}{2}, \frac{3}{2}\right)$$

$$5.\left(\frac{1}{2},-\frac{1}{2}\right)$$

$$\mathsf{S.}\left(-\frac{1}{2},\frac{1}{2}\right)$$

11 Slope of line
$$2x + 3y + 7 = 0$$
 is _____.

a.
$$-\frac{3}{2}$$
 b. $-\frac{2}{3}$ c. $\frac{3}{2}$

b.
$$-\frac{2}{3}$$

c.
$$\frac{3}{2}$$

d.
$$\frac{2}{3}$$

૧૧ રેખા
$$2x + 3y + 7 = 0$$
 નો ઢાળ _____.
 અ. $-\frac{3}{2}$ બ. $-\frac{2}{3}$ ક. $\frac{3}{2}$

અ.
$$-\frac{3}{2}$$

$$\omega_{1} - \frac{2}{3}$$

$$\frac{3}{2}$$

$$5.\frac{2}{3}$$

$$\lim_{n\to\infty}\frac{\tan m\theta}{\sin n\theta}=\underline{\hspace{1cm}}.$$

a.
$$\frac{n}{m}$$

c.
$$\frac{m}{n}$$

d.None of these

$$\lim_{n\to\infty}\frac{\tan m\theta}{\sin n\theta} = \underline{\hspace{1cm}}.$$

અ.
$$\frac{n}{m}$$

պ. 1

$$\delta \cdot \frac{m}{n}$$

ડ. એક પણ નહીં

13
$$\lim_{x\to 0} \frac{5^{x}-1}{x} =$$
_____.

a.
$$\log_5 e$$

b.
$$\log_e 5$$

d.1

93
$$\lim_{x\to 0} \frac{5^x-1}{x} = \underline{\hspace{1cm}}$$
.

5. 1

$$\lim_{x \to 1} \frac{x^2 + x + 1}{x + 1} = \underline{\qquad}.$$

$$c.\frac{2}{3}$$

$$d.\frac{3}{2}$$

98
$$\lim_{x\to 1} \frac{x^2+x+1}{x+1} = \underline{\hspace{1cm}}$$
.

$$5.\frac{2}{3}$$

$$5.\frac{3}{2}$$

Q.2 (a) Attempt any two (કોઇપણ બે ના જવાબ આપો.)

06

1. If
$$\begin{vmatrix} x-1 & 2 & 1 \\ x & 1 & x+1 \\ 1 & 1 & 0 \end{vmatrix} = 4$$
, find 'x'.

૧. જો
$$\begin{vmatrix} x-1 & 2 & 1 \\ x & 1 & x+1 \\ 1 & 1 & 0 \end{vmatrix} = 4$$
, હોય તો 'x' નું મૂલ્ય શોધો.

2. If
$$\frac{4 \log 5 \times \log x}{\log 25} = \log 1024$$
, find'x'.

ર. જો
$$\frac{4 \log 5 \times \log x}{\log 25} = \log 1024$$
, હોય તો 'x'નું મૂલ્ય શોધો.

3. Prove that
$$\frac{\sin(\pi+\theta)}{\sin(2\pi-\theta)} + \frac{\tan(\frac{\pi}{2}+\theta)}{\cot(\pi-\theta)} + \frac{\cos(2\pi+\theta)}{\sin(\frac{\pi}{2}+\theta)} = 3.$$

3. સાબિત કરો :
$$\frac{\sin(\pi+\theta)}{\sin(2\pi-\theta)} + \frac{\tan(\frac{\pi}{2}+\theta)}{\cot(\pi-\theta)} + \frac{\cos(2\pi+\theta)}{\sin(\frac{\pi}{2}+\theta)} = 3.$$

1. If
$$\log\left(\frac{x+y}{3}\right) = \frac{1}{2} (\log x + \log y)$$
, then prove that $x^2 + y^2 = 7xy$.

૧. જો
$$\log\left(\frac{x+y}{3}\right) = \frac{1}{2} (\log x + \log y)$$
, તો સાબિત કરો કે $x^2 + y^2 = 7xy$.

2. If
$$a^x = b^y = c^z$$
, then prove that $\log_a bc = x\left(\frac{1}{y} + \frac{1}{z}\right)$.

ર. જો
$$a^x = b^y = c^z$$
, હોય તો સાબિત કરો કે $\log_a bc = x\left(\frac{1}{y} + \frac{1}{z}\right)$.

3. If
$$f(x) = e^x$$
, then prove that $(i)f(x + y) = f(x) \cdot f(y)$

$$(ii)f(x-y) = \frac{f(x)}{f(y)}$$

3. જો $f(x) = e^x$, હોય તો સાબિત કરો કે $(i)f(x+y) = f(x) \cdot f(y)$

$$(ii)f(x-y) = \frac{f(x)}{f(y)}$$

Q.3 (a) Attempt any two (કોઇપણ બે ના જવાબ આપો.)

06

- 1. Prove that $2 \sin \left(A + \frac{\pi}{3}\right) = \sin A + \sqrt{3} \cos A$.
- ૧. સાબિત કરો : $2\sin\left(A + \frac{\pi}{3}\right) = \sin A + \sqrt{3}\cos A$.
- 2. Show that $\frac{\cos 3A + 2\cos 5A + \cos 7A}{\sin 3A + 2\sin 5A + \sin 7A} = \cot 5A.$
- $\text{2.} \quad \text{Ella} \frac{\cos 3A + 2\cos 5A + \cos 7A}{\sin 3A + 2\sin 5A + \sin 7A} = \cot 5A.$
- 3. Find radius and Centre of circle $4x^2 + 4y^2 + 8x 12y 3 = 0$.
- 3. વર્તુળ $4x^2 + 4y^2 + 8x 12y 3 = 0$ માટે ત્રિજ્યા અને કેન્દ્ર શોધો.
- (b) Attempt any two (કોઇપણ બે ના જવાબ આપો.)

08

- 1. For $\triangle ABC$, Prove that $\tan A + \tan B + \tan C = \tan A \cdot \tan B \cdot \tan C$.
- ૧. $\triangle ABC$, માટે સાબિત કરો કે $\tan A + \tan B + \tan C = \tan A \cdot \tan B \cdot \tan C$.
- 2. Draw the Graph of $y = \sin x$, $0 \le x \le \pi$.
- ર. $y = \sin x$, $0 \le x \le \pi$. નો આવેખ દોરો.
- 3. Show that the angle between the vectors i + 2j and i + j + 3k is $\sin^{-1} \sqrt{\frac{46}{55}}$.
- 3. સાબિત કરો કે સદિશો i+2j અને i+j+3k વચ્ચે રચાતો ખૂણો $\sin^{-1}\sqrt{\frac{46}{55}}$ છે.

Q.4 (a) Attempt any two (કોઇપણ બે ના જવાબ આપો.)

06

- 1. If $\bar{a}=(3,-1,-4)$, $\bar{b}=(-2,4,-3)$ and $\bar{c}=(-1,2,-1)$ then find $\left|3\bar{a}-2\bar{b}+4\bar{c}\right|$
- ૧. જો $\bar{a}=(3,-1,-4)$, $\bar{b}=(-2,4,-3)$ અને $\bar{c}=(-1,2,-1)$ હોય તો $|3\bar{a}-2\bar{b}+4\bar{c}|$ શોધો.
- 2. If $\bar{a} = (p, 2, 1)$ and $\bar{b} = (2, p, -4)$ perpendicular to each other then find 'p'.
- ર. જો સિંદશો $\bar{a} = (p, 2, 1)$ અને $\bar{b} = (2, p, -4)$ પરસ્પર લંબ હોય તો 'p' નું મૂલ્ય શોધો.
- 3. Find the line equation passing through (1,5) and (3,-2).
- 3. બિંદુઓ (1,5) અને (3, -2) માથી પસાર થતી રેખાનું સમીકરણ શોધો.
- (b) Attempt any two (કોઇપણ બે ના જવાબ આપો.)

- A particle moves from the point $\bar{\iota} + 3\bar{k} 2\bar{\iota}$ to the point $4\bar{k} + 3\bar{\iota} \bar{\iota}$ under the 1. effect of constant forces $5\bar{\iota} - 3\bar{k}$, $2\bar{\iota} + \bar{k}$ and $4\bar{\iota} - 2\bar{\iota}$ then find the total work done.
- એક કણ પર અયળ બળો $5\bar{\iota}-3\bar{k}$, $2\bar{\iota}+\bar{k}$ અને $4\bar{\jmath}-2\bar{\iota}$ લાગે છે અને તેનું ٩. બિંદુ $\bar{\iota} + 3\bar{k} - 2\bar{\jmath}$ થી બિંદુ $4\bar{k} + 3\bar{\jmath} - \bar{\iota}$ સુધી સ્થાનાંતર થાય છે તો થયેલ કાર્ય શોધો. Evaluate : $(10\bar{\iota} + 2\bar{\jmath} + 3\bar{k}) \cdot [(\bar{\iota} + 2\bar{k} - 2\bar{\jmath}) \times (3\bar{\iota} - 2\bar{\jmath} - 2\bar{k})]$.
- 2.
- કિંમત શોધો. : $(10\bar{\iota} + 2\bar{\jmath} + 3\bar{k}) \cdot [(\bar{\iota} + 2\bar{k} 2\bar{\jmath}) \times (3\bar{\iota} 2\bar{\jmath} 2\bar{k})]$ ₹.
- Evaluate: $\lim_{x\to(-1)} \frac{2x^3+5x^2+4x+1}{3x^3+5x^2+x-1}$ 3.
- કિંમત શોધો : $\lim_{x\to(-1)} \frac{2x^3+5x^2+4x+1}{3x^3+5x^2+x-1}$ З.
- Attempt any two (કોઇપણ બે ના જવાબ આપો.) **Q.5** (a)
 - Evaluate: $\lim_{n\to\infty} \frac{4n^3 7n^2 + 5n 1}{8n^3 + 7n^2 4n + 1}$ 1.
 - કિંમત શોધો : $\lim_{n\to\infty} \frac{4n^3 7n^2 + 5n 1}{8n^3 + 7n^2 4n + 1}$ ٩.
 - 2. Evaluate: $\lim_{x\to 0} \frac{3\sin x - \sin 3x}{x^3}$
 - કિંમત શોધો : $\lim_{x\to 0} \frac{3\sin x \sin 3x}{x^3}$ ₹.
 - Evaluate: $\lim_{x\to 0} \frac{5^x-3^x}{x}$ 3.
 - કિંમત શોધો $\lim_{r\to 0} \frac{5^x-3^x}{r}$ З.
 - Attempt any two (કોઇપણ બે ના જવાબ આપો.) **(b)**
 - 1. Find the equation of circle having Centre (4,3) and passing through the point (3,4).
 - (4,3) કેન્દ્ર વાળા અને (3,4) માથી પસાર થતાં વર્તુળ નું સમીકરણ મેળવો. ٩.
 - 2. Find the equation of normal and tangent for the circle $2x^2 + 2y^2 + 3x - 4y + 1 = 0$ at the point (-1,2)
 - વર્તુળ $2x^2 + 2y^2 + 3x 4y + 1 = 0$ ના બિંદુ (-1,2) પાસે ના સ્પર્શક અને અભિલંબના સમીકરણ મેળવો.
 - Find the equation of perpendicular bisector of the line segment joining the point 3. A(4,5) and B(-2,0).
 - બિંદુઓ A(4,5) અને B(-2,0) ને જોડતા રેખાખંડના લંબદ્વિભાજકનું સમીકરણ 3. મેળવો.

06