

BLANK PAGE

Indian Standard

SPECIFICATION FOR PISTON RINGS FOR IC ENGINES PART VII DOUBLE BEVELLED SLOTTED OIL CONTROL RINGS

FROM 50 UP TO 200 mm NOMINAL DIAMETER

G-RINGS

- 1. Scope Specifies the dimensions, tolerances, tangential loads and other details of G-rings (double bevelled slotted oil control rings) from 50 up to 200 mm nominal diameter for internal combustion engines.
- 2. Dimensions and Tolerances Shall be as given in Table 1 read along with Fig. 1.

All dimensions in millimetres.

FIG. 1 DOUBLE BEVELLED SLOTTED OIL CONTROL RING (G-RING)

- 2.1 Arrangement of Slots Shall be according to Fig. 2.
- 3. Designation Shall include:
 - a) Type of ring;
 - b) Nominal diameter, d_1 ;
 - c) Axial width, h_1 ;
 - d) Number of this standard;
 - e) Material symbol;
 - f) Manufacturing process;
 - g) Whether inside edges chamfered (KI); and
 - h) Type of coating.

Example:

A double bevelled slotted oil control ring (G-ring) of nominal diameter $d_1=90$ mm, axial width $h_1=4$ mm with inside edges chamfered (KI) and coated with tin on all sides (SN), shall be designated as:

G-Ring 90 X 4 IS: 8422 (Part VII) KI SN

Adopted 20 June 1977

August 1978, ISI

Gr 3

TABLE 1 DIMENSIONS AND TANGENTIAL LOADS OF G-RINGS

(Clause 2, Fig. 1 and 2)

(All dimensions in millimetres)

Nom Dia	In- Radial side Wall Dia Thickness		Wall		Axial Width of Ring		of Ring		Cham- fering of Inside Edges	Rad- ius	Lang for Show Cold	· <i>h</i> , vn in	Lan for Shov Coli	· h ₁ vn in	Depth of Groove	No. of Slots	Wide Slot for Show Cold	s c ₁ h ₁ vn in	ti Ford in Ng for Show	gen- ial ce F _t * ±20% r h ₁ wn in umn														
d ₁	d ₂	a ₁	Tol	1	2	s ₁	KI r ₃	1	2	1	2	aı		1	2	1	2																	
50 52 53	45·8 47·6 48·5	2·1 2·2 2·25											0·6±0·1	6			9 9·8 10·2	9·7 10·6 11																
54 55 56 58	49·4 50·4 51·3 53·1	2·3 2·3 2·35 2·45	+0.10		4·5 ^{-0·010} -0·022	0.15 + 0.25				0.8+0.10						10.6 10.2 9.7 10.4	11 10·5																	
60 62 63 64	54·9 56·8 57·7 58·6	2 55 2 6 2 65 2 7	-0.20 with a maxi- mum varia-			0·20 ^{+0·25}					0.8	0·8±0·1				11·2 11·2 11·5 11·9	l 13·7																	
65 66 67	59·5 60·4 61·4	2·75 2·8 2·8	tion of 0·15 in a ring					0.5	5 0.7 ^{+0.10} -0.05	10 05 0.9 ^{+0.10} -0.05	0·25±0·07	0·25±0·07 ———————————————————————————————————				12 3 12 7 12 3	14·6 15·1 14·7																	
68 70 72 74	62·3 64·1 65·9 67·8	2·85 2·95 3·05 3·1	·	4 ^{-0.010} -0.022										8	1±0·1	1·2±0·1	12·7 12·6 13·3 13·3	15.9																
75 76 78	68 7 69 6 71 4	3·15 3·2 3·3			5-0.010	0·25 ^{+0·25}							1+0·1				13·7 14·1 14·8	16·4 16·8 17·8																
80 82 84	73·3 75·1 76·9	3·35 3·45 3·55	+0·10 -0·25 with a maxi- mum varia-	-0·25 with a maxi- mum	-0·25 with a maxi- mum	0·25 with a maxi- mum	-0·25 with a maxi- mum	-0·25 with a maxi- mum	-0·25 with a maxi- mum	0·25 with a maxi- mum	0·25 with a maxi- mum	+0·10 -0·25	+0·10 -0·25	+0·10 -0·25	+0·10 -0·25	+0·10 −0·25	+0·10 -0·25	+0·10 -0·25	+0·10 -0·25	+0·10 -0·25		-0.022	-0.022				-0.05						14·8 15·6 16·4	18.8
85 86 88	77·8 78·8 80·6	3·6 3·6 3·7																																16·8 16·3 17·2
90 92 94	82 4 84 2 86 1	3·8 3·9 3·95													0·3±0·15										17 17·8 17·8	20·5 21·4 21·5								
95 96 98	87 87 9 89 7	4 4·05 4·15	tion of 0.18 in a ring			0.30 + 0.30							1·2±0·1	-			18·1 18·5 19·3	21·9 22·4 23·4																
100 102 104	91·6 93·4 95·4	4·2 4·3 4·3	ııııy	5-0·010 5-0·022	6-0·010 -0·022			-	0·9 ^{+0·10} -0·05	1.1 +0.10		0·3±0·07			1·2±0·1	1·4±0·1	19·3 24·3 23·2	23·4 28·7 27·5																

_																			
	105 106 108	96 1 97 99	4·45 4·5 4·5															25·7 26·2 25·1	30·4 31 29·7
	110 112 114	100·8 102·6 104·6	4·6 4·7 4·7											1·2±0·1				26 26·9 25·9	30·8 31·9 30·6
	115 116 118	105·4 106·4 108·2	4 8 4 8 4 9		5 ^{-0.010} -0.022	6 ^{-0.} 010 -0.022	0.30 0	0·3±0·15		0·9 ^{+0·10} -0·05	1·1 ^{+0·10} -0·05		0·3±0·07			1·2±0·1	1·4±0·1	26·1 25·5 26·4	30·8 30·2 31·3
-	120 122 124	110 112 114	5 5 5									0·25±0·07			10			27·3 26·3 25·3	32·3 31·1 30
1	125 126 128	114·6 115·6 117·6	5·2 5·2 5·2											1·4±0·1				28·5 28 27	33·8 33·2 32·1
	130 132 134	119·2 121·2 123·2	5·4 5·4 5·4	+0·10 -0·25														35·4 34·1 32·9	40·6 39·2 37·9
	135 136 138	124 125 127	5.5 5.5 5.5	with a maxi- mum varia-			0.40 + 0.30	0·4±0·15	0.5									33·2 32·6 31·5	38·2 37·6 36·3
,	140 142 144	128·6 130·6 132·6	5·7 5·7 5·7	tion of 0·18 in a ring										1·6±0·1				34·6 33·4 32·4	39·8 38·5 37·3
	145 146 148	133·2 134·2 136·2	5.9 5.9 5.9		0.040					1.1+0.10		0.3+0.07	0·35±0·07					36 35·4 34·3	41·5 40·8 39·6
	150 152 154	138 140 142	6 6		6-0.010 -0.022	7 ^{-0.013} -0.028		0.4±0.15		-0.05	-0.05	00700			12	1·4±0·1	1·6±0·1	35·3 34·2 33·2	40·7 39·5 38·3
	155 156 158	142·6 143·6 145·6	6·2 6·2 6·2															35 4 34 9 33 8	40.2
	160 162 164	147·2 149·2 151·2	6·4 6·4 6·4				0.50 + 0.30											36·8 35·7 34·7	42·4 41·2 40
	165 166 168	152 153 155	6.5 6.5 6.5				U							1·8±0·1				36·1 35·6 34·6	41 6 41 1 39 9
	170 172 174	156·6 158·6 160·6	6·7 6·7 6·7															36.4	43·2 42 40·9

ω

(Continued)

TABLE 1 DIMENSIONS AND TANGENTIAL LOADS OF G-RINGS - Contd

(All dimensions in millimetres)

Nom In- Dia side Dia			al Wall kness			Closed Gap	Cham- fering of Inside Edges	Rad- ius	Land h ₄ for h ₁ Shown in Column		Land h₅ for h₁ Shown in Column		in Groove		Width of Slots c ₁ for h ₁ Shown in Column		Forcin N ₂ fo Show	igen- ial ce F _t * ±20% or h ₁ wn in
	d ₂	<i>a</i> ₁	a_1 Tol 1 2 s_1 KI	KI	l	1	2	1	2	84		1	2	1	2			
175 176 178	161 2 162 2 164 2	6·9 6·9 6·9				10.00	0·6±0·2	0.5	5 1·3 ^{+0·10} -0·05	$ \begin{array}{c c} +0.10 \\ -0.05 \end{array} $ $ \begin{array}{c c} 1.6 +0.15 \\ -0.10 \end{array} $ $ \begin{array}{c c} 0.35 \pm 0.07 \end{array} $							43 3 42 7 41 6	50·6 49·9 48·6
180 182 184	165·8 167·8 169·8	7·1 7·1 7·1	+0·15 -0·30)	8-0·013 8-0·028											43.6	52·3 50·9 49·6	
185 186 188	170·6 171·6 173·6	7.2	with a maxi- mum varia- tion of 0.23 in a ring								0·35±0·07	0·5 ±0·1	2±0·15	12	1·6±0·1	1·8±0·1	43.5	51·4 50·8 49·4
190 192 194	175·2 177·2 179·2	7.4		0 023													45·5 44·4 43·3	53 51·7 50·4
195 196 198 200	180 181 183 184-6	7.5 7.5 7.5 7.7															44.2	52·2 51·6 50·3 53·8

Note — Tangential force F_t values in col 1 and 2 correspond to the values of axial width h_1 shown in col 1 and 2.

^{*}Tangential load values are applicable for material A1 only [see IS: 5791 - 1977 Technical supply conditions for piston rings for IC engines (first revision)]. For other materials load factors given in IS: 5791 - 1977 shall be used.

- 4. General Requirements Shall be as given in IS: 5791-1977.
- **5. Marking** The rings which are to be fitted in a particular direction shall be marked with the word 'TOP' on the top sides of the rings. For other markings reference should be made to IS: 5791-1977.
- **5.1** *ISI Certification Marking* Details available with the Indian Standards Institution.

EXPLANATORY NOTE

This standard is one of the series of Indian Standards on piston ring dimensions, tangential force, etc. IS: 5791-1977 is a necessary adjunct to this standard which gives details of materials, surface finish, gap types and sizes, surface coatings, manufacturing processes, etc.

In the preparation of this standard due consideration has been given to the prevalent sizes in the industry. It is recommended that for new designs, only the sizes given in this standard be used.

In the preparation of this standard assistance has been derived from DIN 70948 'Piston rings for automotive engineering, G-rings, double bevelled slotted oil control rings from 50 up to 200 mm nominal diameter', issued by DIN Deutsches Institut für Normung.