Exercise: Functions

Problems for exercise and homework for the "JS Fundamentals" Course @ SoftUni.

Submit your solutions in the SoftUni judge system at: https://judge.softuni.bg/Contests/1262

1. Smallest of Three Numbers

Write a function which receives three integer numbers to print the smallest. Use appropriate name for the function.

Examples

Input	Output
2,	2
5,	
3	
600,	123
342,	
123	
25,	4
21,	
4	

2. Add and Subtract

You will receive three integer numbers.

Write a function **sum()** to get the sum of the first **two** integers and **subtract()** function that subtracts the **third** integer from the result.

Examples

Input	Output
23,	19
23, 6,	
10	
1,	-12
17,	
30	
42,	0
42, 58,	
100	

3. Characters in Range

Write a function that receives **two characters** and prints on a single line all the characters in between them according to the **ASCII** code. Keep in mind that the second character code might be **before** the first one inside the **ASCII table**.

Examples

Input	Output
'a', 'd'	b c
'#', ':'	\$ % & ' () * + , / 0 1 2 3 4 5 6 7 8 9
'C',	\$ % & ' () * + , / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B

4. Odd and Even Sum

You will receive a **single number.** You have to write a function, that returns the **sum** of **all even** and **all odd** digits from that number.

Examples

Input	Output
1000435	Odd sum = 9, Even sum = 4
3495892137259234	Odd sum = 54, Even sum = 22

5. Palindrome Integers

A palindrome is a number which reads the same **backward as forward**, such as 323 or 1001. Write a function which receives an **array of positive integer** and checks if each integer is a palindrome or not.

Examples

Input	Output	Input	Outpu
[123,323,421,121]	false	[32,2,232,1010]	false
	true		true
	false		true
	true		false

Hints

• Read more about palindromes: https://en.wikipedia.org/wiki/Palindrome

6. Password Validator

Write a function that checks if a given password is valid. Password validations are:

- The **length** should be **6 10** characters (inclusive)
- It should consists only of letters and digits
- It should have at least 2 digits

If a password is valid print "Password is valid".

If it is **NOT** valid, for every unfulfilled rule print a message:

- "Password must be between 6 and 10 characters"
- "Password must consist only of letters and digits"
- "Password must have at least 2 digits"

Examples

Input	Output			
'logIn'	Password must be between 6 and 10 characters Password must have at least 2 digits			
'MyPass123'	Password is valid			
'Pa\$s\$s'	Password must consist only of letters and digits Password must have at least 2 digits			

7. NxN Matrix

Write a function that receives a single integer number **n** and prints **nxn** matrix with that number.

Examples

Input	Output						
3	3	3	3				
	3	3	3				
	3	3	3				
7	7	7	7	7	7	7	7
	7	7	7	7	7	7	7
	7	7	7	7	7	7	7
	7	7	7	7	7	7	7
	7	7	7	7	7	7	7
	7	7	7	7	7	7	7
	7	7	7	7	7	7	7
2	2	2					
	2	2					

8. Perfect Number

Write a function that receive a number and return if this number is perfect or NOT.

A perfect number is a **positive** integer that is equal to the **sum** of its **proper positive divisors**. That is the sum of its positive **divisors** excluding the number itself (also known as its **aliquot sum**).

Examples

Input	Output	Comments
6	We have a perfect number!	1 + 2 + 3
28	We have a perfect number!	1 + 2 + 4 + 7 + 14
1236498	It's not so perfect.	

Hint

Equivalently, a perfect number is a number that is **half the sum** of all of its positive divisors (including itself) => 6 is a perfect number, because it is the sum of 1 + 2 + 3 (all of which are divided without residue).

Read about the Perfect number here: https://en.wikipedia.org/wiki/Perfect_number

9. Loading Bar

You will receive a **single number** between **0** and **100** which is divided with 10 without residue (0, 10, 20, 30...).

Your task is to create a function that visualize a **loading bar** depending on that number you have received in the input.

Examples

Input	Output
30	30% [%%]
	Still loading
50	50% [%%%%]
	Still loading
100	100% Complete!
	[%%%%%%%%]

10. Factorial Division

Write a function that receives **two** integer numbers. Calculate **factorial** of each number. Divide the first result by the second and print the division formatted to the **second decimal** point.

Examples

Input	Output
5	60.00
2	

Input	Output
6	360.00
2	

Hints

•	Read more	about factoria	I here: https:/	'/en.wikipedia	.org/wiki/Factorial
---	-----------	----------------	-----------------	----------------	---------------------

• You can use <u>recursion</u>