Feuille d'exercices : Séquence 3

S Exercice 1.

Soient u = (2,0,1) et v = (3,1,-1). Déterminer $u \wedge v$, $v \wedge u$ et $(u+v) \wedge (u-v)$.

Correction:

$$u \wedge v = \begin{pmatrix} -1 \\ 5 \\ 2 \end{pmatrix}, \quad v \wedge u = \begin{pmatrix} 1 \\ -5 \\ -2 \end{pmatrix}, \quad (u+v) \wedge (u-v) = \begin{pmatrix} 2 \\ -10 \\ -4 \end{pmatrix}.$$

Exercice 2.

Montrer que les vecteurs i, j, k de la base canonique de \mathbb{R}^3 vérifient

$$i \wedge j = k$$
, $j \wedge k = i$ et $k \wedge i = j$.

Exercice 3.

Soit (i, j, k) la base canonique de \mathbb{R}^3 . On considère u = i, v = i + j et w = j. Calculer $(u \wedge v) \wedge w$, puis $u \wedge (v \wedge w)$.

Que peut-on conclure? Le produit vectoriel est-il associatif?

Correction:

$$(u \wedge v) \wedge w = -i, \quad u \wedge (v \wedge w) = -j.$$

S Exercice 4.

Soient u = (4, -1, 2), v = (1, 5, -3) et w = (2, 0, -4). Calculer et comparer :

1) $u \wedge v$ et $v \wedge u$,

- **3)** $u \wedge (2v)$, $(2u) \wedge v$, et $2(u \wedge v)$,
- **2)** $u \wedge (v + w)$ et $u \wedge v + u \wedge w$,
- **4)** $(u \wedge v) \wedge w$ et $u \wedge (v \wedge w)$.

Correction:

1)
$$u \wedge v \begin{pmatrix} -7\\14\\21 \end{pmatrix}$$
, $v \wedge u = \begin{pmatrix} 7\\-14\\-21 \end{pmatrix}$.

2)
$$u \wedge (v+w) \begin{pmatrix} -3\\34\\23 \end{pmatrix}, \quad u \wedge w = \begin{pmatrix} 4\\20\\2 \end{pmatrix}.$$

3)
$$u \wedge (2v) = \begin{pmatrix} -14 \\ 28 \\ 42 \end{pmatrix}, \quad (2u) \wedge v = \begin{pmatrix} -14 \\ 28 \\ 42 \end{pmatrix}.$$

4)
$$(u \wedge v) \wedge w = \begin{pmatrix} -56 \\ 14 \\ -28 \end{pmatrix}$$
, $u \wedge (v \wedge w) \begin{pmatrix} 14 \\ 0 \\ -28 \end{pmatrix}$.

Exercice 5.

Déterminer un vecteur unitaire perpendiculaire au plan contenant u = (1, 1, 0) et v = (0, -1, 2).

Correction:

$$\left(\frac{2}{3}, -\frac{2}{3}, -\frac{1}{3}\right)$$
 ou $\left(-\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right)$.

Exercice 6.

Soient u, v, w deux vecteurs de \mathbb{R}^3 On définit le **produit mixte** des vecteurs u, v, w par le scalaire

$$[u,v,w]=u\cdot (v\wedge w).$$

- 1) Montrer que [u, w, v] = -[u, v, w].
- **2)** Montrer que [u, u, w] = [u, v, u] = 0.
- 3) Soit $\lambda \in \mathbb{R}$. Montrer que $[\lambda u, v, w] = [u, \lambda v, w] = \lambda [u, v, w]$.
- 4) Montrer que [u, v, w] = 0 si et seulement si les trois vecteurs sont coplanaires, c'est-à-dire qu'il existe des réels α, β, γ non tous nuls tels que $\alpha u + \beta v + \gamma w = 0$.
- 5) Montrer que |[u, v, w]| est le volume du parallélepipede construit sur les vecteurs u, v et w.

Exercice 7.

Une particule de charge q et de masse m est soumise à un champ magnétique constant $\overrightarrow{B} = (0,0,B)$. Elle subit alors la force de Lorentz $\overrightarrow{F} = q \overrightarrow{v} \wedge \overrightarrow{B}$, et son mouvement est décrit par l'équation $m \overrightarrow{d} = \overrightarrow{F}$ (ici \overrightarrow{v} désigne la vitesse de la particule, et $\overrightarrow{d} = \frac{d\overrightarrow{v}}{dt}$ son accélération). Écrire en fonction des coordonnées (v_x, v_y, v_z) de \overrightarrow{v} les équations correspondantes.