Cyber Security Lession 20

In the previous lession...

Understanding Identity and Access Management

(Chapter 3)

Introduction

Exploring Authentication Management

Managing Accounts

Comparing Authentication Services

Comparing Access Control Schemes

Comparing Access Control Schemes

- You grant access using one of several different access control schemes (sometimes referred to as access control models):
 - ✓ Role-based access control
 - Rule-based access control
 - Discretionary access control (DAC)
 - ✓ Mandatory access control (MAC)
 - ✓ Attribute-based access control (ABAC)

Comparing Access Control Schemes

Mandatory access control (MAC)

A system owner is responsible for managing access

Discretionary access control (DAC)

An individual has control over objects they own

Rule-based access control (RBAC)

A user gains access based on their role in the organization

Attribute-based access control (ABAC)

A user gains access based on specific criteria

Mandatory Access Control (MAC)

Top Secret Secret Confidential Public Privilege Levels

Mandatory Access Control (MAC)

Discretionary Access Control (DAC)

Discretionary Access Control example

- Filesystem Permissions
 - ✓ Write
 - ✓ Read
 - ✓ Read & execute
 - ✓ Modify
 - ✓ Full control

Role-Based Access Control (RBAC)

Role-Based Access Control Example

Role	Server Privileges	Project Privileges
Administrators	All	All
Executives	None	All
Project Managers	None	All on assigned projects No access on unassigned projects
Team Members	None	Access for assigned tasks Limited views within scope of their assigned tasks No views outside the scope of their assigned tasks

Attribute Based Access Control (ABAC)

ABAC Example

User or group membership

IP location

Device

Lession 20

Exploring Network Technologies and Tools

(Chapter 4)

Introduction

- Reviewing Basic Networking Concepts
- Basic Networking Protocols

Understanding Basic Network Devices

- Implementing Network Designs
- Routing and Switching

Open Systems Interconnection (OSI) model

- The OSI reference model conceptually divides different networking requirements into seven separate layers;
- It's primarily theoretical and rarely used in day-to-day maintenance, some of the knowledge often slips away;
- The layers from Layer 1 to Layer 7 are Physical, Data Link, Network, Transport, Session, Presentation, and Application.
- You may have heard about a "Layer 8 error" - this is another way of saying "user error" and users interact with applications;
- A user on the mythical Layer 8 interacts with applications, which are on Layer 7.

Layer Number	Layer Name	Mnemonic	Mnemonic
1	Physical	Please	Processing
2	Data Link	Do	Data
3	Network	Not	Need
4	Transport	Throw	То
5	Session	Sausage	Seem
6	Presentation	Pizza	People
7	Application	Away	All

Layer Number	Layer Name	Devices	Protocols
1	Physical	Cables, hubs	Ethernet, cabling protocols
2	Data Link	Switches	MAC, ARP, VLANs
3	Network	Router, Layer 3 switch	IPv4, IPv6, IPsec, ICMP
4	Transport		TCP, UDP
5	Session		
6	Presentation		
7	Application	Proxy servers, web application firewalls, next-generation firewalls, UTM security appliances, and web security gateways	DNS, FTP, FTPS, SFTP, TFTP, HTTP, HTTPS, IMAP4, LDAP, POP3, SFTP, SMTP, SNMP, SSH, and TFTP

TCP/IP model

- TCP/IP stands for Transmission Control Protocol/ Internet Protocol. TCP/IP Stack is specifically designed as a model to offer highly reliable and end-to-end byte stream over an unreliable internetwork;
- TCP/IP Model helps you to determine how a specific computer should be connected to the internet and how data should be transmitted between them;
- It helps you to create a virtual network when multiple computer networks are connected together
- The purpose of TCP/IP model is to allow communication over large distances;
- Support for a flexible TCP/IP architecture;
- Adding more system to a network is easy;
- In TCP IP protocols suite, the network remains intact until the source, and destination machines were functioning properly;
- TCP is a connection-oriented protocol;
- TCP offers reliability and ensures that data which arrives out of sequence should put back into order;
- TCP allows you to implement flow control, so sender never overpowers a receiver with data;
- The functionality of the TCP IP model is divided into four layers, and each includes specific protocols.

- TCP/IP is a layered server architecture system in which each layer is defined according to a specific function to perform and all these four TCP IP layers work collaboratively to transmit the data from one layer to another:
 - ✓ Application Layer;
 - ✓ Transport Layer;
 - ✓ Internet Layer;
 - Network Interface.

OSI vs TCP/IP

- OSI has 7 layers, whereas TCP/IP has 4 layers;
- The OSI Model is a logical and conceptual model that defines network communication used by systems open to interconnection and communication with other systems. On the other hand, TCP/IP helps you to determine how a specific computer should be connected to the internet and how you can be transmitted between them;
- OSI header is 5 bytes, whereas TCP/IP header size is 20 bytes;
- OSI refers to Open Systems Interconnection, whereas TCP/IP refers to Transmission Control Protocol;
- OSI follows a vertical approach, whereas TCP/IP follows a horizontal approach;
- OSI model, the transport layer, is only connection-oriented, whereas the TCP/IP model is both connection-oriented and connectionless;
- OSI model is developed by ISO (International Standard Organization), whereas TCP Model is Developed by ARPANET (Advanced Research Project Agency Network);
- OSI model helps you to standardize router, switch, motherboard, and other hardware, whereas TCP/IP helps you to establish a connection between different types of computers.

How UDP works

Layer 1: Physical (OSI)

- The Physical layer is associated with the physical hardware;
- It includes specifications for cable types, such as 1000BaseT, connectors, and hubs;
- Computing devices such as computers, servers, routers, and switches transmit data onto the transmission medium in a bitstream;
- This bitstream is formatted according to specifications at higher-level OSI layers.

Unshielded Twisted Pair

- Copper wire cabling carrying electrical signals;
- Four balanced wire pairs;
- Twisted at different rates and balanced to reduce interference;
- Signal attenuation limits maximum distance to 100 m.

Shielded Twisted Pair

- Screening or shielding as extra protection against interference
 - Used for 10G Ethernet+ in datacenters for higher reliability
 - Used when cabling is near external interference sources (fluorescent lighting, power lines, motors, and generators)
- Screened cable has one thin outer foil shield around all pairs (ScTP, F/UTP, FTP);
- Fully shielded cabling has a braided outer screen and foil-shielded pairs (S/FTP and F/FTP);
- Shield elements in cable, connector, and patch panels must be bonded.

Cat Standards

Cat	Max. Transfer Rate	Max. Distance	Network Application
5	100 Mbps	100 m (328 ft)	100BASE-TX (Fast Ethernet)
5e	1 Gbps	100 m (328 ft)	1000BASE-T (Gigabit Ethernet)
C	1 Gbps	100 m (328 ft)	1000BASE-T (Gigabit Ethernet)
6	10 Gbps	55 m (180 ft)	10GBASE-T (10 Gigabit Ethernet)
6A	10 Gbps	100 m (328 ft)	10GBASE-T (10 Gigabit Ethernet)

Copper Cabling Connectors

Copper Cabling Installation Tools

- Patch cords are crimped to RJ-45 connectors;
- Structured cable is terminated to insulation displacement connect (IDC) blocks in wall ports and patch panels;
- Punchdown tool
 - ✓ Terminate to IDCs;
- Cable stripper
- ✓ Remove insulation;
- Crimper
 - Add RJ-45 connector.

Copper Cabling Test Tools

- Validate and test cable installation;
- Cable tester
 - ✓ Verify termination;
- Toner probe
 - ✓ Trace a cable;
- Loopback plug
 - ✓ Test NIC or switch port.

Network Taps

- Capture network traffic;
- Passive test access point (TAP);
- Active TAP;
- Mirror port.

Copper Cabling Installation Considerations

- Installation to plenum spaces
 - ✓ Building/fire safety regulations;
 - ✓ Plenum rated cable;
- Installation as outside plant (OSP)
 - Aerial, conduit, and direct burial;
 - Protection against weathering.

Optical Cabling

- Fiber optic cable types
 - ✓ Single-mode fiber (SMF);
 - ✓ Multi-mode fiber (MMF);
- Connector types
 - ✓ Lucent connector (LC);
 - ✓ Subscriber connector (SC);
 - ✓ Fiber optic connector (FC)
 - ✓ Straight tip (ST);
 - Multi-fiber terminating push-in (MTP);
 - ✓ Multi-fiber push-on (MPO).

Coaxial Cabling

- Construction of 5 parts;
- Uses F-type connector.

Access Points

- IEEE 802.11 / Wi-Fi;
- Infrastructure mode WLAN
 - Access point interconnects wireless clients (stations);
 - ✓ Infrastructure Basic Service Set (BSS);
 - Basic Service Set Identifier (BSSID)
 - MAC address of AP radio;
- Can bridge with wired network via a switch;

802.11a and the 5 GHz Frequency Band

- 2.4 GHz
 - Better propagation, but fewer channels and greater interference risk;
- 5 GHz
 - Shorter range, but less congested;
- IEEE 802.11a (54 Mbps)
 - 23 x non-overlapping 20 MHz channels;
 - Dynamic Frequency Selection (DFS) and regulatory impacts.

802.11b/g and the 2.4 GHz Frequency Band

- IEEE 802.11b (11 Mbps)
 - √ 14 x 5 MHz channels;
 - ✓ Wi-Fi still needs 20 MHz channel bandwidth;
 - Channels require careful configuration to avoid overlap;
- IEEE 802.11g (54 Mbps)
 - √ 802.11b compatibility mode.

802.11n

- Dual band radios
 - √ 5 GHz or 2.4 GHz;
- 40 MHz channel bonding;
- Multiple input multiple output (MIMO)

	ι	J-N	III-	U-NII-2							
20 MHz	36	40 44 48		48	52	56	60 64				
40 MHz	3	8	4	6	5	4	62				
80 MHz		4	2		58						
160 MHz				5	0						

U-NII-2 Extended											U-NII-3						
100 104 108 112			116	120	124 128		132 136		140	149	153	157	16				
10)2	110		118 126			26	1.	34	-4	15	159					
	106 122									-		1	55				
	114																

19 153 157 16

- Use of multiple antennas to improve reliability and bandwidth;
- √ 72 Mbps per stream;
- Wi-Fi 4.

Wi-Fi 5 and Wi-Fi 6

	ι	J-N	III-	1	U-NII-2				U-NII-2 Extended									U-NII-3					
20 MHz	36	40	44	48	52	56	60	64	100 1	04 1	108	112	116	120	124	128	132	136	140	149	153	157 16	
40 MHz	3	88	4	16	5	4	6	2	102	2	11	0	-11	18	12	26	13	14	1.1	15	153	159	
80 MHz		4	12			5	8			106			122		22					15		5	
160 MHz				5	0				114					4									

- Wi-Fi 5 (802.11ac)
- ✓ 5 GHz only;
- ✓ Tri-band radios;
- ✓ 80 and 160 MHz channel bonding;
- Multiuser MIMO
 - ✓ Connect stations simultaneously;
- Wi-Fi 6 (802.11ax)
 - 2.4 GHz or 5 GHz (plus new 6 GHz band);
- ✓ Downlink and uplink MU-MIMO;
- Orthogonal frequency division multiple access (OFDMA).

Wireless LAN Installation Considerations

- Network name or Service Set Identifier (SSID);
- Frequency band use
 - ✓ Same SSID or different SSID per band
 - Operation mode (legacy standards support)
- Channel usage
 - ✓ Non-overlapping;
 - ✓ Channel width/bonding.

Wi-Fi Analyzers

- Software installed to mobile device
 - Reports configuration of nearby wireless networks;
 - ✓ Signal strength on each channel;
- Signal strength
 - ✓ Decibels-milliwatt (dBm);
 - Negative values with closer to zero better performance;
 - ✓ Logarithmic scale
 - 3 dBm difference represents halving or doubling;
- Signal-to-noise ratio (SNR).

Long Range Fixed Wireless

- Wireless bridges configured using microwave antennas
 - ✓ Line of sight;
 - ✓ High gain;
- Licensed spectrum use
 - ✓ Legal right to remove interference sources;
- Unlicensed spectrum
 - ✓ Shared use of frequency band;
 - Regulatory requirements on power;
 - Transmit power, gain, and Effective Isotropic Radiated Power (EIRP).

Bluetooth, RFID, and NFC

- Bluetooth
 - Connectivity for wireless peripherals;
- Radio Frequency ID (RFI)
 - ✓ Wireless asset tags;
 - ✓ Inventory control;
- Nearfield Communications (NFC)
 - ✓ Contactless payments.

Cellular Radio Internet Connections

- 3G
 - ✓ Global System for Mobile Communication (GSM) providers
 - Subscriber Identity Module (SIM) card;
 - ✓ Code Division Multiple Access (CDMA) providers;
- 4G
 - Long Term Evolution (LTE) converged standard using SIM cards;
- 5G
 - Connection through array of massive MIMO antennas;
 - Roaming and fixed access.

Layer 2: Data Link (OSI)

- The Data Link layer is responsible for ensuring that data is transmitted to specific devices on the network;
- It formats the data into frames and adds a header that includes media access control (MAC) addresses for the source and destination devices and the Address Resolution Protocol (ARP) resolves IP addresses to MAC addresses;
- The Data Link layer is responsible for ensuring that data is transmitted to specific devices on the network;
- It formats the data into frames and adds a header that includes media access control (MAC) addresses for the source and destination devices;
- It adds frame check sequence data to the frame to detect errors, but it doesn't support error correction;
- The Data Link layer simply discards frames with detected errors;
- Flow control functions are also available on this layer;
- Traditional switches (Layer 2 switches) operate on this layer;
- Computer network interface cards have a MAC assigned, and switches map the computer MAC addresses to physical ports on the switch;
- Systems use the Address Resolution Protocol (ARP) to resolve IPv4 addresses to MAC addresses;
- VLANs are defined on this layer;
- Layer 2 attacks attempt to exploit vulnerabilities in MAC addressing and ARP;
- Main Layer 2 attacks are Address Resolution Protocol (ARP) poisoning, media access control (MAC) flooding, and MAC cloning.

Layer 3: Network (OSI)

- The Network layer uses logical addressing in the form of IP addresses at this layer;
- This includes both IPv4 addresses and IPv6 addresses;
- Packets identify where the traffic originated (the source IP address) and where it is going (the destination IP address);
- Other protocols that operate on this layer are IPsec and ICMP;
- Routers and Layer 3 switches operate on this layer.

Layer 2: Internet Layer (TCP/IP)

- It is also known as a network layer (TCP/IP);
- The main work of this layer is to send the packets from any network, and any computer still they reach the destination irrespective of the route they take;
- Offers the functional and procedural method for transferring variable length data sequences from one node to another with the help of various networks;
- Message delivery at the network layer does not give any guaranteed to be reliable network layer protocol;
- Layer-management protocols that belong to the network layer are:
 - ✓ Routing protocols;
 - ✓ Multicast group management;
 - ✓ Network-layer address assignment.

Layer 4: Transport (OSI)

- The Transport layer is responsible for transporting data between systems, commonly referred to as end-to-end connections;
- Transmission Control Protocol (TCP) and User
 Datagram Protocol (UDP) operate on this layer;
- TCP provides reliability with error control, flow control, and segmentation of data.

Layer 3: Transport Layer (TCP/IP)

- Builds on the network layer in order to provide data transport from a process on a source system machine to a process on a destination system;
- It is hosted using single or multiple networks, and also maintains the quality of service functions;
- It determines how much data should be sent where and at what rate;
- This layer builds on the message which are received from the application layer;
- It helps ensure that data units are delivered error-free and in sequence;
- Helps you to control the reliability of a link through flow control, error control, and segmentation or de-segmentation;
- Offers an acknowledgment of the successful data transmission and sends the next data in case no errors occurred. TCP is the best-known example of the transport layer;
- Divides the message received from the session layer into segments and numbers them to make a sequence;
- Transport layer makes sure that the message is delivered to the correct process on the destination machine;
- It also makes sure that the entire message arrives without any error else it should be retransmitted.

Protocols and Ports

- Transport layer
 - ✓ Identify each application protocol;
 - ✓ Track sessions;
- Protocol ports
 - ✓ Server port;
 - ✓ Client port.

Transmission Control Protocol

Screenshot courtesy of Wireshark

- Connection-oriented transport protocol
 - Establish connection
 - Assign each packet sequence number
 - Allow the receiver to acknowledge (ACK)
 - Allow the receiver to send a negative acknowledgement (NACK)
 - Allow the graceful termination of a session
- TCP-based application protocols
 - HyperText Transfer Protocol Secure (HTTPS)
 - ✓ Secure Shell (SSH)

User Datagram Protocol

- Connectionless, unreliable delivery;
- Smaller header;
- UDP-based application protocols
 - ✓ Dynamic Host Configuration Protocol (DHCP);
 - Trivial File Transfer Protocol (TFTP);

Screenshot courtesy of Wireshark.

Well-known Ports

Networking	DNS UDP/53 TCP/53	DHCP UDP/67 UDP/68	NBT UDP/TCP 137-139	SNMP UDP/161 UDP/162	LDAP TCP/389
Remote	SSH TCP/22	Telnet TCP/23	RDP TCP/3389		
File transfer	FTP TCP/20 TCP/21	HTTP TCP/80	HTTPS TCP/443	SMB TCP/445	
Email	SMTP TCP/25	POP3 TCP/110	IMAP TCP/143		

TCP/IP

Related Attacks

- Some of the common attacks used against the protocols or the protocols help protect against:
 - Sniffing attack. Attackers often use a protocol analyzer to capture data sent over a network. After capturing the data, attackers can easily read it within the protocol analyzer if it was sent in cleartext.
 - ✓ **DoS** and **DDoS**. A denial-of-service (DoS) attack is a service attack from a single source that attempts to disrupt the services provided by another system. A distributed DoS (DDoS) attack includes multiple computers attacking a single target.
 - Poisoning attack. Many protocols store data in cache for temporary access. Poisoning attacks attempt to corrupt the cache with different data.

Layer 5: Session

- The Session layer is responsible for establishing, maintaining, and terminating sessions between systems;
- In this context, a session refers to an extended connection between two systems, sometimes referred to as dialogues or conversations;
- If you log on to a webpage, the Session layer establishes a connection with the web server and keeps it open while you're interacting with the webpages;
- When you close the pages, the Session layer terminates the session;
- If you're like many users, you probably have more than one application open at a time and each of these is a different session, and the Session layer manages them separately.

Layer 6: Presentation

- The Presentation layer is responsible for formatting the data needed by the end-user applications.
- American Standard Code for Information Interchange (ASCII) and Extended Binary Coded Decimal Interchange Code (EBCDIC) are two standards that define codes used to display characters on this layer.

Layer 7: Application

- The Application layer is responsible for displaying information to the end user in a readable format;
- Application layer protocols typically use this layer to determine if sufficient network resources
 are available for an application to operate on the network.

This layer doesn't refer to end-user applications directly, but many end-user applications use protocols defined at this layer, examples include:

- A web browser interacts with DNS services to identify the IP address of a website name;
- Hypertext Transfer Protocol (HTTP) and HTTP Secure (HTTPS) transmit webpages over the Internet.

Many advanced devices are application-aware and operate on all of the layers up to the Application layer, examples include

- Proxy servers;
- Web application firewalls;
- Next-generation firewalls (NGFWs);
- Unified threat management (UTM) security appliances;
- Web security gateways.

- Some of the protocols that operate on this layer are:
 - ✓ HTTP and HTTPS;
 - ✓ Secure Shell (SSH);
 - ✓ Domain Name System (DNS);
 - ✓ Post Office Protocol 3 (POP3);
 - ✓ Simple Mail Transfer Protocol (SMTP);
 - ✓ File Transfer Protocol (FTP) and FTP Secure (FTPS);
 - ✓ Secure FTP (SFTP) and Trivial FTP (TFTP);
 - ✓ Internet Message Access Protocol 4 (IMAP4);
 - Simple Network Management Protocol (SNMP);
 - Lightweight Directory Access Protocol (LDAP) and LDAP Secure (LDAPS).

Layer 4: Application Layer (TCP/IP)

- Interacts with an application program, which is the highest level of OSI model;
- Is the OSI layer, which is closest to the end-user. It means the OSI application layer allows users to interact with other software application;
- Application layer interacts with software applications to implement a communicating component;
- The interpretation of data by the application program is always outside the scope of the OSI model;
- Helps you to identify communication partners, determining resource availability, and synchronizing communication;
- Allows users to log on to a remote host;
- Provides various e-mail services;
- Offers distributed database sources and access for global information about various objects and services.

