# Lecture 7: Preliminaries III. Optimization



School of Mathematical Sciences, Xiamen University

#### 1. Basic definitions

• The effective domain of  $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$  is defined as

$$dom(f) := \{ \mathbf{x} \mid f(\mathbf{x}) < +\infty \}.$$

- A function  $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$  is called *proper* if there exists at least one  $\mathbf{x} \in \mathbb{R}^n$  such that  $f(\mathbf{x}) < +\infty$ , meaning that  $dom(f) \neq \emptyset$ .
- The epigraph of  $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$  is defined by

$$epi(f) = \{(\mathbf{x}, y) : f(\mathbf{x}) \le y, \mathbf{x} \in \mathbb{R}^n, y \in \mathbb{R}\}.$$





• A function  $f: \mathbb{R}^n \mapsto \mathbb{R} \cup \{+\infty\}$  is called *closed* if epi(f) is closed.

# 2. Solutions of $\min_{\mathbf{x}} f(\mathbf{x})$

- $\mathbf{x}_{\star}$  is a *local minimizer* of f if there is a neighborhood  $\mathcal{N}$  of  $\mathbf{x}_{\star}$  such that  $f(\mathbf{x}) \geq f(\mathbf{x}_{\star})$  for all  $\mathbf{x} \in \mathcal{N}$ .
- $\mathbf{x}_{\star}$  is a *strict local minimizer* if it is a local minimizer on some neighborhood  $\mathcal{N}$  and in addition  $f(\mathbf{x}) > f(\mathbf{x}_{\star})$  for all  $\mathbf{x} \in \mathcal{N}$  with  $\mathbf{x} \neq \mathbf{x}_{\star}$ .
- $\mathbf{x}_{\star}$  is an *isolated local minimizer* if there is a neighborhood  $\mathcal{N}$  of  $\mathbf{x}_{\star}$  such that  $f(\mathbf{x}) \geq f(\mathbf{x}_{\star})$  for all  $\mathbf{x} \in \mathcal{N}$  and in addition,  $\mathcal{N}$  contains no local minimizers other than  $\mathbf{x}_{\star}$ .

Strict local minimizers are not always isolated: for example,

$$f(x) = x^4 \cos(1/x) + 2x^4$$
,  $f(0) = 0$ .

All isolated local minimizers are strict.

•  $\mathbf{x}_{\star}$  is a global minimizer of f if  $f(\mathbf{x}) \geq f(\mathbf{x}_{\star})$  for all  $\mathbf{x} \in \mathbb{R}^n$ .

DAMC Lecture 7 Spring 2022 3 / 28



4 / 28

### 3. Convexity

• A set  $\Omega \subseteq \mathbb{R}^n$  is called *convex* if it has the property that

$$\forall \mathbf{x}, \mathbf{y} \in \Omega \Rightarrow (1 - \alpha)\mathbf{x} + \alpha\mathbf{y} \in \Omega \quad \forall \alpha \in [0, 1].$$

We usually deal with closed convex sets.

• For a convex set  $\Omega \subseteq \mathbb{R}^n$  we define the indicator function  $I_{\Omega}$  as follows

$$I_{\Omega}(\mathbf{x}) = \begin{cases} 0 & \text{if } \mathbf{x} \in \Omega \\ +\infty & \text{otherwise.} \end{cases}$$

The constrained optimization problem

$$\min_{\mathbf{x} \in \Omega} f(\mathbf{x})$$

can be restated equivalently as follows:

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) + \mathrm{I}_{\Omega}(\mathbf{x}).$$

• A convex function  $f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$  has the following defining property: dom(f) is convex, and  $\forall \mathbf{x}, \mathbf{y} \in dom(f), \forall \alpha \in [0, 1],$ 

$$f((1-\alpha)\mathbf{x} + \alpha\mathbf{y}) \leq (1-\alpha)f(\mathbf{x}) + \alpha f(\mathbf{y}).$$

### Theorem 1 (First-order convexity condition)

Differentiable f is convex if and only if dom(f) is convex and

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}), \quad \forall \ \mathbf{x}, \mathbf{y} \in \text{dom}(f).$$

# Theorem 2 (Second-order convexity conditions)

Assume f is twice continuously differentiable. Then f is convex if and only if dom(f) is convex and

$$\nabla^2 f(\mathbf{x}) \succeq \mathbf{0}, \quad \forall \ \mathbf{x} \in \text{dom}(f)$$

that is,  $\nabla^2 f(\mathbf{x})$  is positive semidefinite.

DAMC Lecture 7 Spring 2022 6 / 28

- Important properties for convex objective functions:
  - $\star$  Any local minimizer is also a global minimizer (see Theorem 12).
  - ★ The set of global minimizers is a convex set. (easy to prove)
- If there exists a value  $\gamma > 0$  such that

$$f((1-\alpha)\mathbf{x} + \alpha\mathbf{y}) \leq (1-\alpha)f(\mathbf{x}) + \alpha f(\mathbf{y}) - \frac{\gamma}{2}\alpha(1-\alpha)\|\mathbf{x} - \mathbf{y}\|^2$$

for all  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$  and  $\alpha \in [0, 1]$ , we say that f is strongly convex with modulus of convexity  $\gamma$ .

• For differentiable f: Equivalent definition of strongly convex with modulus of convexity  $\gamma$ 

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{\gamma}{2} ||\mathbf{y} - \mathbf{x}||^2.$$

### 4. Subgradient and subdifferential

• Definition: A vector  $\mathbf{v} \in \mathbb{R}^n$  is a *subgradient* of f at a point  $\mathbf{x}$  if for all  $\mathbf{d} \in \mathbb{R}^n$ , it holds

$$f(\mathbf{x} + \mathbf{d}) \ge f(\mathbf{x}) + \mathbf{v}^{\top} \mathbf{d}.$$

The *subdifferential*, denoted  $\partial f(\mathbf{x})$ , is the set of all subgradients of f at  $\mathbf{x}$ . (see FOMO for concrete examples)

Lemma 3 (Monotonicity of subdifferentials of convex functions)

$$\forall \ convex \ f, \ if \ \mathbf{a} \in \partial f(\mathbf{x}) \ and \ \mathbf{b} \in \partial f(\mathbf{y}), \ we \ have \ (\mathbf{a} - \mathbf{b})^{\top}(\mathbf{x} - \mathbf{y}) \geq 0.$$

*Proof.* By the definition of subgradient, we have

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \mathbf{a}^{\top}(\mathbf{y} - \mathbf{x})$$
 and  $f(\mathbf{x}) \ge f(\mathbf{y}) + \mathbf{b}^{\top}(\mathbf{x} - \mathbf{y})$ .

Adding these two inequalities yields the statement.

DAMC Lecture 7 Spring 2022 8 / 28

# Theorem 4 (Fermat's lemma: generalization in convex functions)

Let  $f: \mathbb{R}^n \mapsto \mathbb{R} \cup \{+\infty\}$  be a proper convex function. Then the point  $\mathbf{x}_{\star}$  is a minimizer of  $f(\mathbf{x})$  if and only if

$$\mathbf{0} \in \partial f(\mathbf{x}_{\star}).$$

*Proof.* " $\Leftarrow$ ": Suppose that  $\mathbf{0} \in \partial f(\mathbf{x}_{\star})$ . We have

$$f(\mathbf{x}_{\star} + \mathbf{d}) \ge f(\mathbf{x}_{\star}) \quad \forall \ \mathbf{d} \in \mathbb{R}^n,$$

which implies that  $\mathbf{x}_{\star}$  is a minimizer of f. " $\Rightarrow$ ": by definition.

### Theorem 5

Let  $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$  be proper convex, and let  $\mathbf{x} \in \operatorname{int}(\operatorname{dom}(f))$ .

- If f is differentiable at  $\mathbf{x}$ , then  $\partial f(\mathbf{x}) = {\nabla f(\mathbf{x})}.$
- If  $\partial f(\mathbf{x})$  is a singleton (a set containing a single vector), then f is differentiable at  $\mathbf{x}$  with gradient equal to the unique subgradient.

DAMC Lecture 7 Spring 2022 9 / 28

### 5. Taylor's theorem

• Taylor's theorem shows how smooth functions can be locally approximated by low-order (e.g., linear or quadratic) functions.

定理 12.3.1(Taylor 公式) 设 f(x,y) 在点  $(x_0,y_0)$  的邻域  $U=O((x_0,y_0),r)$  上具有 k+1 阶连续偏导数,那么对于 U 内每一点  $(x_0+\Delta x,y_0+\Delta y)$  都成立

$$f(x_0 + \Delta x, y_0 + \Delta y)$$

$$= f(x_0, y_0) + \left(\Delta x \frac{\partial}{\partial x} + \Delta y \frac{\partial}{\partial y}\right) f(x_0, y_0)$$

$$+ \frac{1}{2!} \left(\Delta x \frac{\partial}{\partial x} + \Delta y \frac{\partial}{\partial y}\right)^2 f(x_0, y_0) + \cdots$$

$$+ \frac{1}{k!} \left(\Delta x \frac{\partial}{\partial x} + \Delta y \frac{\partial}{\partial y}\right)^k f(x_0, y_0) + R_k,$$
其中  $R_k = \frac{1}{(k+1)!} \left(\Delta x \frac{\partial}{\partial x} + \Delta y \frac{\partial}{\partial y}\right)^{k+1} f(x_0 + \theta \Delta x, y_0 + \theta \Delta y) (0 < \theta < 1)$ 
称为 Lagrange 余项.

DAMC Lecture 7 Spring 2022 10 / 28

### Theorem 6 (Taylor's theorem)

Given a continuously differentiable function  $f : \mathbb{R}^n \to \mathbb{R}$ , and given  $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n$ , we have that

$$f(\mathbf{x} + \mathbf{p}) = f(\mathbf{x}) + \int_0^1 \nabla f(\mathbf{x} + t\mathbf{p})^{\top} \mathbf{p} dt,$$

$$f(\mathbf{x} + \mathbf{p}) = f(\mathbf{x}) + \nabla f(\mathbf{x} + \xi \mathbf{p})^{\mathsf{T}} \mathbf{p}, \text{ for some } \xi \in (0, 1).$$

If f is twice continuously differentiable, we have

$$\nabla f(\mathbf{x} + \mathbf{p}) = \nabla f(\mathbf{x}) + \int_0^1 \nabla^2 f(\mathbf{x} + t\mathbf{p}) \mathbf{p} dt,$$

$$f(\mathbf{x} + \mathbf{p}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathsf{T}} \mathbf{p} + \frac{1}{2} \mathbf{p}^{\mathsf{T}} \nabla^2 f(\mathbf{x} + \xi \mathbf{p}) \mathbf{p},$$

for some  $\xi \in (0,1)$ .

DAMC Lecture 7 Spring 2022 11 / 28

• If  $f: \mathbb{R}^n \to \mathbb{R}$  is differentiable and convex, then

$$\partial f(\mathbf{x}) = \{\nabla f(\mathbf{x})\}\$$

and

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x})$$

for all  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ .

• Lipschitz continuously differentiable with constant L:

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\| \le L\|\mathbf{x} - \mathbf{y}\|, \text{ for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^n.$$

If f is Lipschitz continuously differentiable with constant L, then by Taylor's theorem, we have

$$f(\mathbf{y}) - f(\mathbf{x}) - \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) \le \frac{L}{2} ||\mathbf{y} - \mathbf{x}||^2$$

for all  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ .

• For differentiable f: Equivalent definition of strongly convex with modulus of convexity  $\gamma$ 

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{\gamma}{2} ||\mathbf{y} - \mathbf{x}||^2.$$

### Lemma 7

Suppose f is strongly convex with modulus of convexity  $\gamma$  and  $\nabla f$  is uniformly Lipschitz continuous with constant L. We have  $\forall \mathbf{x}, \mathbf{y}$  that

$$\frac{\gamma}{2} \|\mathbf{y} - \mathbf{x}\|^2 \le f(\mathbf{y}) - f(\mathbf{x}) - \nabla f(\mathbf{x})^\top (\mathbf{y} - \mathbf{x}) \le \frac{L}{2} \|\mathbf{y} - \mathbf{x}\|^2.$$

- Condition number  $\kappa := L/\gamma$ . (e.g., strictly convex, quadratic f)
- ullet When f is twice continuously differentiable, the inequalities in Lemma 7 is equivalent to

$$\gamma \mathbf{I} \preceq \nabla^2 f(\mathbf{x}) \preceq L \mathbf{I}$$
, for all  $\mathbf{x}$ .

DAMC Lecture 7 Spring 2022 13 / 28

#### Theorem 8

Let f be differentiable and strongly convex with modulus of convexity  $\gamma > 0$ . Then the minimizer  $\mathbf{x}_{\star}$  of f exists and is unique.

*Proof.* (i) Compactness of level set: Show that for any point  $\mathbf{x}^0$ , the level set

$$\{\mathbf{x} \mid f(\mathbf{x}) \le f(\mathbf{x}^0)\}$$

is closed and bounded, and hence compact.

- (ii) Existence: Since f is continuous, it attains its minimum on the compact level set, which is also the solution of  $\min_{\mathbf{x}} f(\mathbf{x})$ .
- (iii) Uniqueness: Suppose for contradiction that the minimizer is not unique, so that we have two points  $\mathbf{x}^1_{\star}$  and  $\mathbf{x}^2_{\star}$  that minimize f. By using the strongly convex property, we can prove

$$f\left(\frac{\mathbf{x}_{\star}^{1} + \mathbf{x}_{\star}^{2}}{2}\right) < f(\mathbf{x}_{\star}^{1}) = f(\mathbf{x}_{\star}^{2}).$$

This is a contradiction.

DAMC Lecture 7 Spring 2022 14 / 28

### 6. Optimality conditions for smooth functions

# Theorem 9 (First-order necessary condition)

If  $\mathbf{x}_{\star}$  is a local minimizer of f and f is continuously differentiable in an open neighborhood of  $\mathbf{x}_{\star}$ , then  $\nabla f(\mathbf{x}_{\star}) = \mathbf{0}$ .

*Proof.* Suppose for contradiction that  $\nabla f(\mathbf{x}_{\star}) \neq \mathbf{0}$ . Define the vector  $\mathbf{p} = -\nabla f(\mathbf{x}_{\star})$  and note that  $\mathbf{p}^{\top} \nabla f(\mathbf{x}_{\star}) = -\|\nabla f(\mathbf{x}_{\star})\|^2 < 0$ . Because  $\nabla f$  is continuous near  $\mathbf{x}_{\star}$ , there is a scalar T > 0 such that

$$\mathbf{p}^{\top} \nabla f(\mathbf{x}_{\star} + t\mathbf{p}) < 0$$
, for all  $t \in [0, T]$ .

For any  $s \in (0,T]$ , we have by Taylor's theorem that

$$f(\mathbf{x}_{\star} + s\mathbf{p}) = f(\mathbf{x}_{\star}) + s\mathbf{p}^{\top}\nabla f(\mathbf{x}_{\star} + \xi s\mathbf{p})$$
 for some  $\xi \in (0, 1)$ .

Therefore,  $f(\mathbf{x}_{\star} + s\mathbf{p}) < f(\mathbf{x}_{\star})$  for all  $s \in (0, T]$ . We have found a direction leading away from  $\mathbf{x}_{\star}$  along which f decreases, so  $\mathbf{x}_{\star}$  is not a local minimizer, and we have a contradiction.

DAMC Lecture 7 Spring 2022 15 / 28

# Theorem 10 (Second-order necessary conditions)

If  $\mathbf{x}_{\star}$  is a local minimizer of f and  $\nabla^2 f$  is continuous in an open neighborhood of  $\mathbf{x}_{\star}$ , then  $\nabla f(\mathbf{x}_{\star}) = \mathbf{0}$  and  $\nabla^2 f(\mathbf{x}_{\star})$  is positive semidefinite.

**Proof.** We know from Theorem 9 that  $\nabla f(\mathbf{x}_{\star}) = \mathbf{0}$ . Assume that  $\nabla^2 f(\mathbf{x}_{\star})$  is not positive semidefinite. Then we can choose a vector  $\mathbf{p}$  such that  $\mathbf{p}^{\top} \nabla^2 f(\mathbf{x}_{\star}) \mathbf{p} < 0$ , and because  $\nabla^2 f$  is continuous near  $\mathbf{x}_{\star}$ , there is a scalar T > 0 such that

$$\mathbf{p}^{\top} \nabla^2 f(\mathbf{x}_{\star} + t\mathbf{p}) \mathbf{p} < 0, \quad \text{for all} \quad t \in [0, T].$$

By doing a Taylor series expansion around  $\mathbf{x}_{\star}$ , we have for all  $s \in (0, T]$  and some  $\xi \in (0, 1)$  that

$$f(\mathbf{x}_{\star} + s\mathbf{p}) = f(\mathbf{x}_{\star}) + s\mathbf{p}^{\top}\nabla f(\mathbf{x}_{\star}) + \frac{1}{2}s^{2}\mathbf{p}^{\top}\nabla^{2}f(\mathbf{x}_{\star} + \xi s\mathbf{p})\mathbf{p} < f(\mathbf{x}_{\star}).$$

As in Theorem 9, we have found a direction from  $\mathbf{x}_{\star}$  along which f is decreasing, and so again,  $\mathbf{x}_{\star}$  is not a local minimizer.

DAMC Lecture 7 Spring 2022 16 / 28

# Theorem 11 (Second-order sufficient conditions)

Suppose that  $\nabla^2 f$  is continuous in an open neighborhood of  $\mathbf{x}_{\star}$  and that  $\nabla f(\mathbf{x}_{\star}) = \mathbf{0}$  and  $\nabla^2 f(\mathbf{x}_{\star})$  is positive definite. Then  $\mathbf{x}_{\star}$  is a strict local minimizer of f.

**Proof.** Because the Hessian  $\nabla^2 f$  is continuous and positive definite at  $\mathbf{x}_{\star}$ , we can choose a radius r > 0 so that  $\nabla^2 f(\mathbf{x})$  remains positive definite for all  $\mathbf{x}$  in the open ball  $\mathcal{B} = \{\mathbf{z} \mid ||\mathbf{z} - \mathbf{x}_{\star}|| < r\}$ . Taking any nonzero vector  $\mathbf{p}$  with  $||\mathbf{p}|| < r$ , we have  $\mathbf{x}_{\star} + \mathbf{p} \in \mathcal{B}$  and

$$f(\mathbf{x}_{\star} + \mathbf{p}) = f(\mathbf{x}_{\star}) + \mathbf{p}^{\top} \nabla f(\mathbf{x}_{\star}) + \frac{1}{2} \mathbf{p}^{\top} \nabla^{2} f(\mathbf{x}_{\star} + \xi \mathbf{p}) \mathbf{p}$$
$$= f(\mathbf{x}_{\star}) + \frac{1}{2} \mathbf{p}^{\top} \nabla^{2} f(\mathbf{x}_{\star} + \xi \mathbf{p}) \mathbf{p},$$

for some  $\xi \in (0,1)$ . Since  $\mathbf{x}_{\star} + \xi \mathbf{p} \in \mathcal{B}$ , we have  $\mathbf{p}^{\top} \nabla^{2} f(\mathbf{x}_{\star} + \xi \mathbf{p}) \mathbf{p} > 0$ , and therefore  $f(\mathbf{x}_{\star} + \mathbf{p}) > f(\mathbf{x}_{\star})$ , giving the result.

DAMC Lecture 7 Spring 2022 17 / 28

• A point **x** is called a *stationary point* if

$$\nabla f(\mathbf{x}) = \mathbf{0}.$$

ullet A stationary point  ${\bf x}$  is called a *saddle point* if there exist  ${\bf u}$  and  ${\bf v}$  such that

$$f(\mathbf{x} + \alpha \mathbf{u}) < f(\mathbf{x})$$
 and  $f(\mathbf{x} + \alpha \mathbf{v}) > f(\mathbf{x})$ 

for all sufficiently small  $\alpha > 0$ .

- Stationary points are not necessarily local minimizers. Stationary points can be *local maximizers* or *saddle points*.
- If  $\nabla f(\mathbf{x}) = \mathbf{0}$ , and  $\nabla^2 f(\mathbf{x})$  has both strictly positive and strictly negative eigenvalues, then  $\mathbf{x}$  is a saddle point.
- If  $\nabla^2 f(\mathbf{x})$  is positive semidefinite or negative semidefinite, then  $\nabla^2 f(\mathbf{x})$  alone is insufficient to classify  $\mathbf{x}$ .

DAMC Lecture 7 Spring 2022 18 / 28

### Theorem 12

- (i)  $\forall$  convex f, any local minimizer  $\mathbf{x}_{\star}$  is a global minimizer of f.
- (ii) If f is convex and differentiable, then any stationary point  $\mathbf{x}_{\star}$  is a global minimizer of f.

*Proof.* (i) Suppose that  $\mathbf{x}_{\star}$  is a local but not a global minimizer. Then we can find a point  $\mathbf{z} \in \mathbb{R}^n$  with  $f(\mathbf{z}) < f(\mathbf{x}_{\star})$ . Consider the line segment that joins  $\mathbf{x}_{\star}$  to  $\mathbf{z}$ , that is,

$$\mathbf{x} = \lambda \mathbf{z} + (1 - \lambda) \mathbf{x}_{\star}$$
, for some  $\lambda \in (0, 1]$ .

By the convexity property for f, we have

$$f(\mathbf{x}) \le \lambda f(\mathbf{z}) + (1 - \lambda)f(\mathbf{x}_{\star}) < f(\mathbf{x}_{\star}).$$

Any neighborhood  $\mathcal{N}$  of  $\mathbf{x}_{\star}$  contains a piece of the line segment, so there will always be points  $\mathbf{x} \in \mathcal{N}$  at which the last inequality is satisfied. Hence,  $\mathbf{x}_{\star}$  is not a local minimizer.

DAMC Lecture 7 Spring 2022 19 / 28

(ii) Suppose that  $\mathbf{x}_{\star}$  is not a global minimizer and choose  $\mathbf{z}$  as above. Then, from convexity, we have

$$\nabla f(\mathbf{x}_{\star})^{\top}(\mathbf{z} - \mathbf{x}_{\star}) = \frac{\mathrm{d}}{\mathrm{d}\lambda} f(\mathbf{x}_{\star} + \lambda(\mathbf{z} - \mathbf{x}_{\star}))|_{\lambda=0}$$

$$= \lim_{\lambda \to 0^{+}} \frac{f(\mathbf{x}_{\star} + \lambda(\mathbf{z} - \mathbf{x}_{\star})) - f(\mathbf{x}_{\star})}{\lambda}$$

$$\leq \lim_{\lambda \to 0^{+}} \frac{\lambda f(\mathbf{z}) + (1 - \lambda) f(\mathbf{x}_{\star}) - f(\mathbf{x}_{\star})}{\lambda}$$

$$= f(\mathbf{z}) - f(\mathbf{x}_{\star}) < 0.$$

Therefore,  $\nabla f(\mathbf{x}_{\star}) \neq \mathbf{0}$ , and so  $\mathbf{x}_{\star}$  is not a stationary point.

- *Remark*: Theorems 9-12 provide the foundations for unconstrained optimization algorithms.
- Numerical algorithms try to seek a point where  $\nabla f$  vanishes.

DAMC Lecture 7 Spring 2022 20 / 28

# 7. Karush–Kuhn–Tucker conditions 知乎 🏖

## Theorem 13 (KKT conditions)

Consider the minimization problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \quad s.t. \quad g_i(\mathbf{x}) \le 0, \quad i = 1: m,$$

where  $f: \mathbb{R}^n \to \mathbb{R}$  and all  $g_i: \mathbb{R}^n \to \mathbb{R}$  are convex functions.

ullet Let  $\mathbf{x}_{\star}$  be an optimal solution and assume Slater's condition

$$\exists \mathbf{x} \in \mathbb{R}^n$$
, s.t.  $g_i(\mathbf{x}) < 0$ ,  $i = 1: m$ ,

hold. Then there exist  $\lambda_1, \dots, \lambda_m \geq 0$  satisfying

$$\mathbf{0} \in \partial f(\mathbf{x}_{\star}) + \sum_{i=1}^{m} \lambda_{i} \partial g_{i}(\mathbf{x}_{\star}), \quad \lambda_{i} g_{i}(\mathbf{x}_{\star}) = 0, \quad i = 1 : m.$$

• If  $\mathbf{x}_{\star}$  satisfies the above conditions, called KKT conditions, then it is an optimal solution of the optimization problem.



### 8. Moreau envelope and proximal operator

• For a closed proper convex function  $h : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$  and a positive scalar  $\lambda$ , the *Moreau envelope* of  $(\lambda, h)$  is

$$M_{\lambda,h}(\mathbf{x}) := \inf_{\mathbf{u}} \left\{ h(\mathbf{u}) + \frac{1}{2\lambda} \|\mathbf{u} - \mathbf{x}\|^2 \right\}$$
$$= \frac{1}{\lambda} \inf_{\mathbf{u}} \left\{ \lambda h(\mathbf{u}) + \frac{1}{2} \|\mathbf{u} - \mathbf{x}\|^2 \right\}.$$

• For a closed proper convex function  $f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ , the proximal operator of f is

$$\operatorname{prox}_f(\mathbf{x}) := \underset{\mathbf{u}}{\operatorname{argmin}} \left\{ f(\mathbf{u}) + \frac{1}{2} \|\mathbf{u} - \mathbf{x}\|^2 \right\}.$$

From the optimality condition (see Theorem 4), we have

$$\mathbf{0} \in \partial f(\operatorname{prox}_f(\mathbf{x})) + (\operatorname{prox}_f(\mathbf{x}) - \mathbf{x}).$$

• For a closed proper convex function  $f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ , the point  $\mathbf{x}_{\star}$  is a minimizer of f if and only if

$$\mathbf{x}_{\star} = \operatorname{prox}_{f}(\mathbf{x}_{\star}).$$

• For a closed proper convex function  $h : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$  and a positive scalar  $\lambda$ , the Moreau envelope

$$M_{\lambda,h}(\mathbf{x}) = h(\operatorname{prox}_{\lambda h}(\mathbf{x})) + \frac{1}{2\lambda} \|\operatorname{prox}_{\lambda h}(\mathbf{x}) - \mathbf{x}\|^2,$$

can be viewed as a kind of smoothing or regularization of the function h. We have for all  $\mathbf{x} \in \mathbb{R}^n$ ,

$$-\infty < M_{\lambda,h}(\mathbf{x}) < +\infty$$

even when  $h(\mathbf{x}) = +\infty$  for some  $\mathbf{x} \in \mathbb{R}^n$ . Moreover,  $M_{\lambda,h}(\mathbf{x})$  is convex and differentiable everywhere with gradient

$$\nabla M_{\lambda,h}(\mathbf{x}) = \frac{1}{\lambda} (\mathbf{x} - \text{prox}_{\lambda h}(\mathbf{x})).$$

Therefore,  $\mathbf{x}_{\star}$  is a minimizer of  $h \Leftrightarrow \mathbf{x}_{\star}$  is a minimizer of  $\mathbf{M}_{\lambda,h}(\mathbf{x})$ .

DAMC Lecture 7 Spring 2022 24 / 28

• Example: h(x) = |x| and  $H_{\lambda}(x) := M_{\lambda,h}(x)$ .



# Lemma 14 (Nonexpansivity of proximal operator)

For a closed proper convex function  $f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ , we have for all  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ .

$$\|\operatorname{prox}_f(\mathbf{x}) - \operatorname{prox}_f(\mathbf{y})\| \le \|\mathbf{x} - \mathbf{y}\|.$$

*Proof.* From the optimality conditions at two points  $\mathbf{x}$  and  $\mathbf{y}$ , we have

$$\mathbf{x} - \mathrm{prox}_f(\mathbf{x}) \in \partial f(\mathrm{prox}_f(\mathbf{x})) \ \ \mathrm{and} \ \ \mathbf{y} - \mathrm{prox}_f(\mathbf{y}) \in \partial f(\mathrm{prox}_f(\mathbf{y})).$$

By applying monotonicity (see Lemma 3), we have

$$((\mathbf{x} - \operatorname{prox}_f(\mathbf{x})) - (\mathbf{y} - \operatorname{prox}_f(\mathbf{y})))^{\top} (\operatorname{prox}_f(\mathbf{x}) - \operatorname{prox}_f(\mathbf{y})) \ge 0.$$

Rearranging this and applying the Cauchy–Schwartz inequality yields

$$\begin{aligned} \| \mathrm{prox}_f(\mathbf{x}) - \mathrm{prox}_f(\mathbf{y}) \|^2 &\leq (\mathbf{x} - \mathbf{y})^\top (\mathrm{prox}_f(\mathbf{x}) - \mathrm{prox}_f(\mathbf{y})) \\ &\leq \|\mathbf{x} - \mathbf{y}\| \| \mathrm{prox}_f(\mathbf{x}) - \mathrm{prox}_f(\mathbf{y}) \|. \quad \Box \end{aligned}$$

DAMC Lecture 7 Spring 2022 26 / 28

• Examples of several proximal operators

(1) 
$$f(\mathbf{x}) = 0$$
: 
$$\operatorname{prox}_{f}(\mathbf{x}) = \mathbf{x}.$$

(2) 
$$f(\mathbf{x}) = \lambda \|\mathbf{x}\|_1$$
 with  $\lambda > 0$ :
$$\left[\operatorname{prox}_{\lambda \|\cdot\|_1}(\mathbf{x})\right]_i = \underset{u \in \mathbb{R}}{\operatorname{argmin}} \left\{ \lambda |u| + \frac{1}{2}(u - x_i)^2 \right\}$$

$$= \begin{cases} x_i - \lambda & \text{if } x_i > \lambda, \\ 0 & \text{if } x_i \in [-\lambda, \lambda], \\ x_i + \lambda & \text{if } x_i < -\lambda, \end{cases}$$

which is known as soft-thresholding.

(3)  $f(\mathbf{x}) = \lambda ||\mathbf{x}||_0$ : the number of nonzero components, non-convex

$$\left[ \operatorname{prox}_{\lambda \| \cdot \|_0}(\mathbf{x}) \right]_i = \begin{cases} x_i & \text{if } |x_i| > \sqrt{2\lambda}, \\ \{0, x_i\} & \text{if } |x_i| = \sqrt{2\lambda}, \\ 0 & \text{if } |x_i| < \sqrt{2\lambda}, \end{cases}$$

which is known as hard thresholding.

(4)  $f(\mathbf{x}) = I_{\Omega}(\mathbf{x})$ :

$$\mathrm{prox}_{I_{\Omega}}(\mathbf{x}) = \operatorname*{argmin}_{\mathbf{u}} \left\{ I_{\Omega}(\mathbf{u}) + \frac{1}{2} \|\mathbf{u} - \mathbf{x}\|^2 \right\} = \operatorname*{argmin}_{\mathbf{u} \in \Omega} \|\mathbf{u} - \mathbf{x}\|,$$

which is simply the projection of  $\mathbf{x}$  onto the set  $\Omega$ .

DAMC Lecture 7 Spring 2022 28 / 28