IN THE CLAIMS:

Claims 1, 13, 14, 32 through 39, 48, 60 through 63 and 65 have been amended herein.

Claims 47 and 64 have been canceled. New claims 66 and 67 have been added. Please note that all claims currently pending and under consideration in the above-referenced application are shown below. Please enter these claims as amended. This listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims:

1. (Currently amended) A conjugated polymer comprising the formula:

$$G = \begin{bmatrix} R_1 & R_2 & R_3 & R_4 & R_6 & R_8 & R_8$$

wherein:

 R_1 and R_2 are identical or different and are each H, a straight or branched alkyl, alkoxyl, ester groups or cyclic crown ether groups having from 1 to about 22 carbon atoms;

A, B, E and F are identical or different and are each H, SiR'R" or NR'R" (wherein-NR'R", at least one of A, B, E and F is NR'R"); NR'R", and R' and R" are independently selected from the group consisting of hydrogen, unbranched or branched alkyl or alkoxyl groups having 1 to about 12 carbon atoms, and (C3 to C10) cycloalkyl groups;

C and D are identical or different and are each H (but are not-both H), O, S, CO, COO, CRR', NR', SiR'R", wherein R' and R" are as defined above;

R₃ and R₄ are identical or different and are independently selected from linear, branched

or cyclical saturated or unsaturated aliphatic moieties that contain at least one heteroatom;

 R_{5} , R_{6} , R_{7} and R_{8} are identical or different and are independently selected from linear, branched or cyclical saturated or unsaturated aliphatic moieties that contain at least one heteroatom and that contain at least one aromatic group, substituted or unsubstituted aromatic moiety:

G is hydrogen, halogen, boronic acid, boronate radical or an aryl moiety;

a and b are independently selected and each is a number from 0 to about 100, wherein if a is 0. b is a number from 1 to about 100 and if b is 0, a is a number from 1 to about 100:

x and y are independently selected and each is a number $\frac{1}{100}$ number $\frac{1}{100}$ to about 100, but x and y cannot both be 0; and

n is a number from 1 to about 1000.

- (Previously presented) The conjugated polymer according to claim 1, wherein the conjugated polymer is a homopolymer.
- (Previously presented) The conjugated polymer according to claim 1, wherein the conjugated polymer is a random copolymer.
- (Previously presented) The conjugated polymer according to claim 1, wherein the conjugated polymer is an alternated copolymer.
- (Previously presented) The conjugated polymer according to claim 1, wherein R₁ and R₂ are H or straight or branched alkyl groups having from 1 to about 12 carbon atoms.
- (Previously presented) The conjugated polymer according to claim 1, wherein R₁ and R₂ are alkoxyl groups with from 1 to about 12 carbon atoms.
- (Previously presented) The conjugated polymer according to claim 1, wherein R' and R" are alkyl or alkoxyl groups having from 1 to 4 carbon atoms.

- (Previously presented) The conjugated polymer according to claim 1, wherein A,
 B, E and F are independently selected from hydrogen or NR'R" (but not all are hydrogen).
- 9. (Previously presented) The conjugated polymer according to claim 1, wherein R₃ and R₄ are linear or branched aliphatic chains having at least one of from 1 to 4 carbon atoms containing at least one heteroatom and at least one aromatic group.
- (Previously presented) The conjugated polymer according to claim 1, wherein R₃ and R₄ are alkoxyl groups having from 2 to about 12 carbon atoms.
- 11. (Previously presented) The conjugated polymer according to claim 1, wherein R₅, R₇ and R₈ are linear or branched aliphatic chains having from 1 to about 8 carbon atoms containing at least one heteroatom.
- 12. (Previously presented) The conjugated polymer according to claim 1, wherein R_5 , R_6 , R_7 and R_8 are alkoxyl groups having from 2 to about 12 carbon atoms.
- (Currently amended) The conjugated polymer according to claim 1, wherein x and y are each a number between 1 between 0 and 20, but cannot both be 0.
- 14. (Currently amended) The conjugated polymer according to claim 13, wherein x and y are each a number between 1 and 10, but cannot both be 0.
- 15. (Previously presented) The conjugated polymer according to claim 1, wherein a and b are each a number between 0 and 10, but cannot both be 0.
- (Previously presented) The conjugated polymer according to claim 1, wherein n is a number between 1 and about 50
 - 17. (Previously presented) The conjugated polymer according to claim 1, wherein G

is an arvl moiety containing halogen, boronic acid or boronate radical.

- (Previously presented) The conjugated polymer according to claim 1, wherein G
 is hydrogen or an unsubstituted or substituted aryl moiety which does not contain halogen,
 boronic acid or boronate radical.
- 19. (Previously presented) The conjugated polymer according to claim 1, wherein a linkage between fluorene and phenylene in the conjugated polymer is on the 1 and 4 positions.
- (Previously presented) The conjugated polymer according to claim 1, wherein the conjugated polymer comprises a backbone comprising extended phenylene units.
- 21. (Previously presented) The conjugated polymer according to claim 1, wherein the conjugated polymer comprises a backbone comprising extended fluorene units.

Claims 22-31 (Canceled)

32. (Currently amended) A method of forming a conjugated cationic polymer having a desired solubility in a given solvent, comprising:

providing a conjugated eationic polymer comprising the formula:

$$G = \begin{bmatrix} R_1 & R_2 & R_3 & R_4 & R_6 & R_8 & R_8$$

wherein:

R₁ and R₂ are identical or different and are each H, a straight or branched alkyl, alkoxyl, ester groups or evelic crown ether groups having from 1 to about 22 carbon atoms;

A, B, E and F are identical or different and are each H, SiR'R" or NR'R" (wherein-NR'R", at least one of A, B, E and F is NR'R"); NR'R", and R' and R" are independently selected from the group consisting of hydrogen, unbranched or branched alkyl or alkoxyl groups having 1 to about 12 carbon atoms, and (C3 to C10) cycloalkyl groups;

C and D are identical or different and are each H (but are not both H), O, S, CO, COO, CRR', NR', SiR'R", wherein R' and R" are as defined above;

R₃ and R₄ are identical or different and are independently selected from linear, branched or cyclical saturated or unsaturated aliphatic moieties that contain at least one heteroatom;

 R_5 , R_6 , R_7 and R_8 are identical or different and are independently selected from linear, branched or cyclical saturated or unsaturated aliphatic moieties that contain at least one heteroatom and that contain at least one aromatic group, substituted or unsubstituted aromatic moiety;

G is hydrogen, halogen, boronic acid, boronate radical or an aryl moiety;

a and b are independently selected and each is a number from 0 to about 100, wherein if a is 0, b is a number from 1 to about 100 and if b is 0, a is a number from 1 to about 100;

x and y are also independent independently selected and each is a number $\frac{1}{100}$ to about 100, but cannot both be 0; and

n is a number from 1 to about 1000; and quaternizing terminal amino groups of to form the a conjugated cationic polymer.

- (Currently amended) The method according to claim 32, wherein quaternizing terminal amino groups of the to form a conjugated cationic polymer comprises quaternizing between about 30% and about 80% of the terminal amino groups.
- (Currently amended) The method according to claim 32, wherein quaternizing terminal amino groups of the to form a conjugated cationic polymer comprises treating the

conjugated eationic polymer with an alkyl halide.

- (Currently amended) The method according to claim 34, wherein treating the conjugated eationie-polymer with an alkyl halide comprises treating the terminal amino groups with bromoethane.
- (Currently amended) The method according to claim 35, wherein treating the terminal amino groups with bromoethane comprises stirring the conjugated eationie-polymer with bromoethane in dimethyl sulfoxide (DMSO) and tetrahydrofuran (THF).
- 37. (Currently amended) The method according to claim 36, wherein stirring the conjugated eationie-polymer with bromoethane in DMSO and THF eomprising comprises using a ratio of DMSO:THF of about 1:4, and wherein stirring the conjugated eationie-polymer with bromoethane in DMSO and THF comprises stirring the conjugated eationie-polymer at about 50°C for about 5 days.
- (Currently amended) The method according to claim 35, wherein treating the terminal amino groups with bromoethane comprises stirring the conjugated eationie-polymer with bromoethane in tetrafurohydran.
- 39. (Currently amended) The method according to claim 38, wherein stirring the conjugated eationie-polymer with bromoethane in tetrafurohydran comprises stirring the conjugated eationie-polymer at about room temperature for about 24 hours.
 - 40. (Currently amended) The method according to claim 36, further comprising: evaporating the DMSO and THF; precipitating the quaternized conjugated cationic polymer; washing the quaternized conjugated cationic polymer; and drying the quaternized conjugated cationic polymer.

- (Original) The method according to claim 40, wherein precipitating the quaternized conjugated polymer comprises adding acctone to the quaternized conjugated polymer followed by centrifugation.
- 42. (Original) The method according to claim 40, wherein washing the quaternized conjugated cationic polymer comprises washing the quaternized conjugated cationic polymer with at least one of chloroform and acctone.

Claims 43-47 (Canceled)

- 48. (Currently amended) The conjugated polymer according to elaim 47 claim 1, wherein at least one of R', R" and R" is hydrogen.
- 49. (Previously presented) The conjugated polymer according to claim 48, wherein at least one of A, B, E and F is ammonium.
- 50. (Previously presented) The conjugated polymer according to claim 49, wherein the ammonium is quaternized from at least one amino substituent of the conjugated polymer.
- (Previously presented) The conjugated polymer according to claim 49, wherein at least one of A, B, E and F is ammonium in at least one of the repeating units.
- (Previously presented) The conjugated polymer according to claim 51, wherein at least two of A, B, E and F are ammonium in at least one of the repeating units.
- 53. (Previously presented) The conjugated polymer according to claim 50, wherein between about 30% and about 60% of terminal amino substituents in the conjugated polymer are quaternized to ammonium.

Serial No. 10/532,649

Claims 54-59 (Canceled)

60. (Currently amended) The method according to claim 32, wherein providing a conjugated eatienie-polymer comprises:

providing monomer precursors of the conjugated eationic-polymer, the monomer precursors comprising the terminal amino groups;

quaternizing the terminal amino groups of the monomer precursors; and synthesizing the conjugated eationic-polymer from the quaternized monomer precursors.

- 61. (Currently amended) The method according to claim 60, wherein synthesizing the conjugated eationie-polymer from the quaternized monomer precursors comprises synthesizing the conjugated eationie-polymer by the Suzuki coupling reaction.
- 62. (Currently amended) The method according to claim 60, further comprising determining the desired a solubility of the conjugated eationic-polymer and calculating the amount of monomer precursors required to increase the solubility of the form a conjugated eationic-polymer having the desired solubility.
- 63. (Currently amended) The method according to claim 60, further comprising determining the desired a solubility of the conjugated eationic-polymer and quaternizing the terminal amino groups to a degree sufficient to result in-render the conjugated cationic polymer having the desired solubility soluble in water.
 - 64. (Canceled).
- 65. (Currently amended) The method according to claim 32, wherein quaternizing terminal amino groups of the conjugated eationic-polymer comprises quaternizing the terminal amino groups to an extent necessary to increase the provide solubility of the conjugated cationic polymer to the desired solubility in at least one of dimethyl sulfoxide, methanol, and water.

66. (New) A conjugated polymer comprising the formula:

$$G = \begin{bmatrix} R_1 & R_2 & R_3 & R_4 & R_6 & R_7 & R_8 & R_8$$

wherein:

R₁ and R₂ are identical or different and are each H, a straight or branched alkyl group, alkoxyl groups, ester groups or cyclic crown ether groups having from 1 to about 22 carbon atoms:

A, B, E and F are identical or different and are each H, SiR'R'' or NR'R'', at least one of A, B, E and F is NR'R'', and R' and R'' are independently selected from the group consisting of hydrogen, unbranched or branched alkyl or alkoxyl groups having 1 to about 12 carbon atoms, and (C3 to C10) cycloalkyl groups:

R₃ and R₄ are identical or different and are independently selected from linear, branched or exclical saturated or unsaturated aliphatic moieties that contain at least one heteroatom;

 R_5 , R_6 , R_7 and R_8 are identical or different and are independently selected from linear, branched or cyclical saturated or unsaturated aliphatic moieties that contain at least one heteroatom and that contain at least one aromatic group, substituted or unsubstituted aromatic moiety;

 R_9 and R_{10} are different and are each H, C—R₅—E or D—R₆—F, and at least one of R_9 and R_{10} comprises a cationic functional group;

C and D are identical or different and are each O, S, CO, COO, CRR', NR', SiR'R",

wherein R' and R" are as defined above:

G is hydrogen, halogen, boronic acid, boronate radical or an aryl moiety;

a and b are independently selected and each is a number from 0 to about 100, wherein if a is 0, b is a number from 1 to about 100 and if b is 0, a is a number from 1 to about 100;

x and y are independently selected and each is a number from 0 to about 100, but cannot both be 0; and

n is a number from 1 to about 1000.

67. (New) A conjugated polymer comprising the formula:

$$G = \begin{bmatrix} R_1 & R_2 & R_5 & R_7 \\ R_5 & R_7 & R_7 \\ R_7 & R_8 & R_8 \\ R_8 & R_8 & R_8 \\ R_9 & R_9 & R_8 \\ R_9 & R_9 & R_9 \\ R_9 & R_9 & R_9$$

wherein:

 R_1 and R_2 are identical or different and are each H, a straight or branched alkyl group, alkoxyl groups, ester groups or cyclic crown ether groups having from 1 to about 22 carbon atoms:

A, B, E and F are identical or different and are each H, SiR'R" or NR'R", wherein at least one of A, B, E and F is NR'R";

R' and R" are independently selected from the group consisting of hydrogen, unbranched or branched alkyl or alkoxyl groups having 1 to about 12 carbon atoms, and (C3 to C10) cycloalkyl groups;

C and D are identical or different and are each S, CO, COO, CRR', NR', or SiR'R", wherein R' and R" are as defined above:

R₃ and R₄ are identical or different and are independently selected from linear, branched

or cyclical saturated or unsaturated aliphatic moieties that contain at least one heteroatom;

 R_5 , R_6 , R_7 and R_8 are identical or different and are independently selected from linear, branched or cyclical saturated or unsaturated aliphatic moieties that contain at least one heteroatom and that contain at least one aromatic group, substituted or unsubstituted aromatic moiety:

G is hydrogen, halogen, boronic acid, boronate radical or an aryl moiety;

a and b are independently selected and each is a number from 0 to about 100, wherein if a is 0, b is a number from 1 to about 100 and if b is 0, a is a number from 1 to about 100;

x and y are independently selected and each is a number from 0 to about 100, but cannot both be 0; and

n is a number from 1 to about 1000.