b). if there is optimal 6=0, then: $y: (\vec{w}^{T}\vec{\pi}; +\theta) \ge 1$, $\forall (\vec{\pi}; , y;) \in D$ Therefore: $y(\vec{w}^{T}\vec{\pi} + \theta) \ge 1 \ge 0$, $\forall (\vec{\pi}, y) \in D$, y = 1 $y(\vec{w}^{T}\vec{\pi} + \theta) \le -1 < 0$, $\forall (\vec{\pi}, y) \in D$, y = -1Which satisfy the condition of linear separable.

- C) With 6>0, if 1-6>0, we can easily know the data set is linear separable by using same method as b.). If 6>1, we cannot make sure it is linear separable. If the minimal 6>1, the data set is not linear separable.
- d). The optimal solution is $\vec{W}=0$, $\Theta=0$, S=0. The issue with this formula is that it is not a hyperplane with this optimal solution.
- e). (Seems the greation should be $\vec{\tau}_1^T = [11...1]$, $\vec{\tau}_2^T = [-1\cdot1...-1]$ Since $\vec{\tau}_1$ is n-dimensional vector)

 The data set is separable since there are only two samples. Hence the optimal S = 0, and \vec{w} , $\vec{\theta}$ follow the constraints: $\vec{w}_1 + \vec{w}_2 + + \vec{w}_1 + \vec{\theta} \ge 1$ Therefore $\vec{w}_1 + \vec{w}_2 + \cdots + \vec{w}_n + \vec{\theta} \ge 1$

Therefore $w_1+w_2+...+w_n = |+|\theta|$ Thus, optimal solution would be $(\tilde{w}, \theta, \delta)$ with $\delta = 0$, $w_1+w_2+...+w_n = |+|\theta|$