PROCESSING IN MEMORY

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Overview

- □ Upcoming deadlines
 - April 14th and 19th: student paper presentations
 - Prepare for exactly 17m talk followed by 3m Q&A

Presenters	Date
Ryan (Meltdown)	April 12
Anthony (Spectre Is Here To Stay) Hunter (Bingo Spatial Prefetcher) Jacob (Foreshadow)	April 14
Nate (RRAM-based Convolutional Block) Bhavani (Sneak Path Compensation) Tanmay (Path Confidence Prefetching)	April 19

Overview

- Expected presentation components
 - Problem description (20 points)
 - Key idea/goal (20 points)
 - Details of the work/implementation (20 points)
 - Summary of results (20 points)
 - Your thoughts (weaknesses & strengths) (20 points)

Grading: submit your grades for all presentations.

Overview

- □ This lecture
 - Trends in data processing
 - Trends in technology
 - Intelligent RAM
 - The Raw microprocessor
 - Processing on DIMM

Trends in Data Processing

- $\scriptstyle\square$ The electricity used by U.S. data centers increases at an annual rate of 7%
- Since 2009, 41% more data is created each year

[J. E. Short et al., 2011]²

- 1. DOE, "Potential for data center efficiency improvement", 2015
- 2. J. E. Short et al., "How much information? 2010 report on enterprise server information", 2011

Energy and Power Trends

Power consumption is increasing significantly

The Cost of Data Movement

 Data movement is the primary contributor to energy dissipation in nanometer ICs.

Computational Models

■ Von Neumann machine

Past Attempts

Intelligent RAM (IRAM)

- A non Von Neumann model
 - Unifying processing and memory into a single chip

[Micro'97]

Intelligent RAM (IRAM)

- Merging a microprocessor and DRAM on the same chip
 - Performance
 - \blacksquare reduce latency by $5\sim10$
 - Increase bandwidth by 50~100
 - Energy efficiency
 - \blacksquare Save at $2\sim4$
 - Cost
 - Remove off-chip memory and reduce board area
- IRAM is limited by amount of memory on Chip
- Potential of network computer
- Change the nature of semiconductor industry

The RAW Processor

 A scalable 32 bit fabric for general purpose and embedded computing

[Micro'04]

The RAW Processor

tmp0 = (seed*3+2)/2

It requires complex code generation

```
tmp1 = seed*v1+2
tmp2 = seed*v2 + 2
tmp3 = (seed*6+2)/3
v2 = (tmp1 - tmp3)*5
v1 = (tmp1 + tmp2)*3
v0 = tmp0 - v1
v3 = tmp3 - v2
                                                         seed.0=seed
                                     pval1=seed.0*3.0 v1.2=v1
                                                                         pval5=seed.0*6.0
                                                            pval3=seed.o*v2.4
                                                                         pval4=pval5+2.0
                                                 tmp1.3=pval2+2.0
                                     tmp0.1=pval0/2.0
                                                             tmp2.5=pval3+2 tmp3.6=pval4/3.0
                                    tmp0=tmp0.
                                                                               tmp3=tmp3.6
                                                            pval6=tmp1.3-tmp2.5
                                                    v1.8=pval7*3.0
                                              v0.9=tmp0.1-v1.8
                                                         v1=v1.8
                                                                      v3.10=tmp3.6-v2.7
```


[Micro'04]

The RAW Processor

□ 16 Tiles; 2048 KB SRAM On-chip

Current and Future

Power and Bandwidth Challenges to Scaling

- □ Transistor density doubles every two years
 - Power efficiency does not scale proportionally
 - 80% of transistors can be simultaneously active at 22nm
 - 50% projected at 8nm[†]
 - Number of pins grows by 16% / year‡

Ternary Content Addressable Memory

□ A TCAM permits storing and searching with wildcards

Wildcards in stored key

192.	168.	0.	X	
192.	168.	1.	X	
192.	168.	2.	Х	
†	↑	†	↑	
192.	168.	1.	16	
-				

Wildcards in search key

Example Application: Image Histogram

Goal: compute pixel value distribution in a digital image

[Phoenix benchmark suite]

Data Intensive Computing

- Data intensive applications are increasingly important
 - Energy and bandwidth hungry
 - Ubiquitous
 - Data mining
 - Machine learning
 - Web search
 - Database management
 - Video and image processing

Possible solution: associative computing with CAMs

Example Application: Image Histogram

□ RAM-based: scan

For 6816 × 5112 pixels

- \sim 100 MB reads
- $\sim 10^8$ additions

CAM-based: search

For the same image

- \square 256 \times 3 searches
- □ 256 x 3 reads

Where in the System Does CAM Belong?

On the processor die On the memory bus On the PCI-E bus **Processor Processor Processor CAM Bridge DRAM** PCI-E **CAM DRAM DRAM CAM** not modular + modular + modular + acceptable latency high latency + low latency limited capacity + acceptable capacity + high capacity [MICRO'11]

TCAM DIMM [MICRO'11]

Associative Computing Paradigm

- Broadens the use of CAMs to a more general programming framework
- Data organized by key-value pairs
 - □ Linked list, array, stack, queue
 - Matrix, tree, graph

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \longrightarrow$$

Key (row, col)	Value		
(0,0)	а		
(0,1)	b		
(1,0)	С		
(1,1)	d		

AC-DIMM

AC-DIMM combines associative lookup and processing in

Programming Model

Program accesses AC-DIMM via a user-level library

Programming Model

Program accesses AC-DIMM via a user-level library

Programming Model

Program accesses AC-DIMM via a user-level library

System Performance

AC-DIMM outperforms the previous TCAM-DIMM when the search key is short (<32 bits)

System Performance

AC-DIMM caters to a broader range of applications

System Energy

- Dynamic energy saved by eliminating data movement
- Leakage energy saved by reducing execution time