Графи. Основні означення та властивості. Спеціальні класи простих графів. Способи подання графів. Шляхи та цикли. Зв'язність.

Графи. Основні означення та властивості.

Термін "граф" уперше ввів угорський математик Д. Кеніг у 1936., хоча перші задачі теорії графів пов'язані з іменем Л.Ейлера (XVIII ст.).

Родоначальником теорії графів вважається Леонард Ейлер. У 1736 році в одному зі своїх листів він формулює і пропонує рішення завдання про сім Кенігсберзьких мостів, що стала згодом однією з класичних задач теорії графів.

Поштовх до розвитку, теорія графів отримала на перетині XIX і XX століть, коли різко зросла кількість робіт в сфері топології та комбінаторики, з якими її пов'язують тісні узи спорідненості. Графи стали використовуватися при побудові схем електричних кіл і молекулярних схем. Як окрема математична дисципліна теорія графів була вперше представлена в роботі угорського математика Кеніга в 30-ті роки XX століття.

Простим графом називають пару (G = V, E), де V – не порожня скінченна множина елементів, називаних вершинами, E – множина невпорядкованих пар різних елементів з V.

Елементи з множини E (невпорядковані пари різних вершин) називають ребрами.

Говорять, що ребро $\{u, v\}$ з'єднує вершини. Оскільки E – множина, то в простому графі пару вершин може з'єднувати не більше ніж одне ребро.

Іноді виникає поняття мультиграфа, коли дві вершини можуть бути з'єднані більше ніж одним ребром. Ребро мультиграфа — це пара (V, E), де V — скінченна не порожня множина вершин, а E — сім'я невпорядкованих пар різних елементів з множини V. Термін "сім'я" застосовано замість "множина", бо елементи в E (ребра) можуть повторюватись. Kpamhi (або napanenbhi) — це ребра, що з'єднують одну й ту саму пару вершин.

Подальше узагальнення полягає в тому, що крім окрім кратних ребер розглядають ще й петлі, тобто ребра, які з'єднують вершину саму із собою. Псевдографом називають пару (V,E), де V – скінченна непорожня множина вершин, а E – сім'я невпорядкованих пар не обов'язково різних вершин.

Розглянуті три типи графів називають неорієнтованими. Псевдограф — це найзагальніший тип неорієнтованого графа, бо він може містити петлі й кратні ребра. *Мультиграф* — це неорієнтований граф, який може містити кратні ребра, але не може містити петель. Простий граф — це неорієнтований граф без кратних ребер і без петель.

Орієнтований граф (V, E), де V – скінченна непорожня множина вершин, а E – множна впорядкованих пар елементів множини V. Елементи множини E в орієнтованому графі називають дугами (чи орієнтованими ребрами). Дугу (v, v) називають петлею.

Орієнтованим мультиграфом називають пару (V, E), де V — скінченна непорожня множина вершин, а Е— сім'я впорядкованих пар елементів множини. Отже, елементи (дуги) в разі орієнтованого мультиграфа можуть повторюватись; такі дуги називають кратними. Зауважимо, що кратні дуги з'єднують одну пару вершин і однаково напрямлені.

Надалі, ми будемо використовувати термін "граф" для опису довільних графів - орієнтованих і неорієнтованих, із петлями та кратними ребрами чи без них. Термін "неорієнтований граф" або "псевдограф" – для довільного неорієнтованого графа, який може мати кратні ребра й петлі. Означення різних типів графів зведено в таблиці.

Дві вершини и та у в неорієнтованому графі G називають суміжними, якщо існує

ребро $e = \{u, v\}$, тобто $e = \{u, v\} \in E$. Якщо $e = \{u, v\}$ – ребро, то вершини и та v називають його кінцями. Два ребра називають суміжними, якщо вони мають спільний кінець. Вершину v та ребро е називають інцидентними, якщо вершина v – кінець ребра е. Суміжність — це зв'язок між однорідними елементами графа, а інцидентність — зв'язок між його різнорідними елементами.

Степінь вершини в неорієнтованому графі — це кількість ребер, інцидентних цій вершині, причому петлю враховують двічі. Степінь вершини упозначають deg(v). Якщо deg(v) = 0, то вершину V називають ізольованою: якщо deg(v) = 1 — висячою, або кінцевою.

Типи графів	Ребра	Кратні ребра дозволені?	Петлі дозволені?
Простий граф	Неорієнтовані	Hi	Hi
Мультиграф	Неорієнтовані	Так	Hi
Псевдограф	Неорієнтовані	Так	Так
Орієнтований граф	Орієнтовані(дуги)	Hi	Так
Орієнтований мультиграф	Орієнтовані(дуги)	Так	Так

Теорема 1. Нехай G = (V, E) – неорієнтований граф з т ребрами. Тоді

 $\sum_{v \in V} deg(v) = 2$ т. Зазначимо, що це твердження стосується будь-якого неорієнтованого графа, зокрема, з петлями й кратними ребрами.

Доведення. Кожне ребро додає по одиниці до степенів двох вершин, або двійку до степеня однієї вершини у випадку петлі. З цього випливає, що сума степенів вершин удвічі більша від кількості ребер. Теорему доведено.

Зазначимо, що цю теорему називають "теоремою про рукостискання", бо аналогічно, як ребро має два кінці, так і під час рукостискання задіяні дві руки. З цієї теореми випливає, що сума степенів усіх вершин неорієнтованого графа - парне число. Цей простий факт має багато наслідків, один із яких сформульовано в наведеній нижче теоремі.

Теорема 2. Неорієнтований граф має парну кількість вершин непарного степеня. *Доведення.* Позначимо V_1 як множину вершин непарного степеня, як V_2 , — парного, а Як — кількість ребер графа. Тоді $2m = \sum_{v \in V} deg(v) = \sum_{v \in V_1} deg(v) + \sum_{v \in V_2} deg(v)$. Оскільки deg(v) — парне для $u \in v$, то другий доданок у правій частині рівності парний. Більше того, сума двох доданків справа - парна, бо дорівнює 2m. і тому перший доданок $\sum_{v \in V_1} deg(v)$ -також парний. Він являє собою суму, у якій всі доданки - непарні числа. Отже, кількість цих доданків має бути парною. Звідси випливає, що кількість вершин непарним степенем - парна. Теорему доведено.

Тепер розглянемо орієнтований мультиграф G=(V, E). Якщо $(u, v) \in E$, то вершину u називають *початковою* (*ініціальною*), а вершину v—*кінцевою* (*термінальною*) вершиною дуги e=(u,v). Петля має початок і кінець в одній **і** тій самій вершині. Вершини орієнтованого графа називають *суміжними*, якщо одна з них - початкова, а інша - кінцева для якоїсь дуги. Дуги називають *суміжними*, якщо вони мають спільну вершину. Вершину и називають *інцидентною* дузі e, якщо e0 и початкова чи кінцева вершина **цієї** дуги.

В орієнтованому мультиграфі *напівственем входу* вершини ν називають кількість дуг, для яких вершина ν кінцева; позначають $deg^{-}(v)$. *Напівственем виходу* вершини V називають кількість дуг. Для яких вершина ν початкова; позначають $deg^{+}(v)$.

Спеціальні класи простих графів

Розглянемо деякі спеціальні класи простих графів, які часто використовують як

приклади й широко застосовувані.

Повний граф з n вершинами (позначають як K_n) – це граф, у якого будь-яку пару вершин з'єднано точно одним ребром. Кількість ребер у графі K_n дорівнює $(C_2^n) = n (n-1)/2$.

Граф називають порожнім. якщо $E=\emptyset$, тобто такий граф не має ребер. Порожній граф з п вершинами позначають як O_{π} .

Граф C = (V, E) називають дводольним, якщо множину його вершин V можна розбити на дві підмножини V і K, що не перетинаються ($V_1 \cup V_2 = V, V_1 \cap V_2 = \emptyset$), так, що кожне ребро з'єднує вершину з V_1 і вершину з V_2 .

Іноді дводольний граф позначають як $G=(V_1\cup V_2,E)$. Дводольний граф називають повним дводольним графом, якщо кожну вершинуV з'єднано ребром із кожною вершиною V_1 . Повний дводольний граф позначають як $K_{m,n}$, де $m=|V_1|$, $n=|V_2|$, | Граф $K_{1,n}$ називають зіркою. Граф $K_{m,n}$ має m+n вершин та n*m ребер.

Циклом C_n , $n \ge 3$, називають граф із множиною вершин $V = \{v_1, v_2, \dots, v_n\}$ ребер $E = \{\{v_1, v_2, \}, \{v_2, v_3\}, \dots, \{v_{n-1}, v_n\}, \{v_n, v_1\}\}.$

Колесом W_n називають граф, який одержують із циклу C_n додаванням іще однієї вершини, яку з'єднують з усіма пвершинами в C_n новими ребрами.

Граф, вершини якого відповідають усім 2^n бітовим рядкам довжиною n, називають n-вимірним кубом і позначають Q^n . Дві вершини в Q_n з'єднано ребром тоді й лише тоді, коли відповідні бітові рядки відрізняються точно в одному біті.

Граф Q_n+1 можна отримати з двох графів Q_n з'єднавши ребрами їхні однаково позначені вершини. Після цього до бітових рядків у вершинах одного з графів Q_n зліва дописують 0, другого – дописують 1.

Способи подання графів

Матриця суміжності

Перший спосіб передбачає задання матриці суміжності, яка для графа з п вершинами представляється двовимірним масивом пхп. Якщо матриця суміжності представляє неорієнтований незважений граф, а при наявності суміжності вершин і та ј відповідні елементи матриці дорівнюють 1, тобто $a_{ij}=a_{ji}=1$, а при відсутності ребра між вершинами і та ј — 0, тобто $a_{ij}=a_{ji}=0$. Які висновки можна зробити, проаналізувавши матрицю суміжності, зображену на рисунку?

$1 \rightarrow 2 \rightarrow 4$
$2 \rightarrow 1 \rightarrow 5 \rightarrow 3 \rightarrow 4$
$3 \rightarrow 2 \rightarrow 4 \rightarrow 5$
$4 \rightarrow 1 \rightarrow 3 \rightarrow 2$
$5 \rightarrow 3 \rightarrow 2$

	1	2	3	4	5
1	0	1	0	1	0
2	1	0	1	1	1
3	0	1	0	1	1
4	1	1	1	0	0
5	0	1	1	0	0

По-перше, для неорієнтованого графа вона ϵ симетричною. По-друге, значення діагональних елементів дорівнюють нулю, оскільки у першому графі відсутні петлі.

Якою ж буде матриця суміжності для інших графів? Для всіх видів графів матриці суміжності матимуть аналогічний вигляд окрім трьох випадків. Два випадки, являють собою варіанти коли граф має петлі і коли він є зваженим. Розглянемо випадок коли граф має петлі.

$1 \rightarrow 2 \rightarrow 4$
$2 \rightarrow 1 \rightarrow 5 \rightarrow 3 \rightarrow 4$
$3 \rightarrow 2 \rightarrow 4 \rightarrow 5$
$4 \rightarrow 1 \rightarrow 3 \rightarrow 2$
$5 \rightarrow 3 \rightarrow 2 \rightarrow 5$

	1	2	3	4	5
1	0	1	0	1	0
2	1	0	1	1	1
3	0	1	0	1	1
4	1	1	1	0	0
5	0	1	1	0	1

Як видно з рисунка, у вершині п'ять ϵ петля, яка виходить з неї і повертається назад знову ж в неї. Коли подивитися на матрицю, видно, що в головній діагоналі в координаті 5;5 стоїть одиниця а не нуль (червоним кольором).

У випадку коли граф ϵ напрямленим, ситуація дещо інша.

1	→2	→4
2	→3-	→ 4
3	→ 5	
4	→3	
5	→2	

	1	2	3	4	5
1	0	1	0	1	0
2	0	0	1	1	0
3	0	0	0	0	1
4	0	0	1	0	0
5	0	1	0	0	0

Як видно з рисунка, в цьому випадку ставиться 1 тільки тоді коли граф напрямлений в дану вершину. Якщо ж вектор навпаки в нього входить, то в цьому випадку ставиться 0. І останній випадок, це коли граф ε зваженим.

$1 \rightarrow 2_9 \rightarrow 4_5$
$2 \to 1_9 \to 5_4 \to 3_1 \to 4_3$
$3\rightarrow 2_1\rightarrow 4_3\rightarrow 5_{10}$
$4 \rightarrow 1_5 \rightarrow 3_3 \rightarrow 2_3$
$5 \rightarrow 3_{10} \rightarrow 2_4$

ı						
l		1	2	3	4	5
	1	0	9	0	5	0
	2	9	0	1	3	4
	3	0	1	0	3	10
	4	5	3	3	0	0
	5	0	4	10	0	0

Матриця інцидентності

Матрицею інцидентності графа G, яка відповідає заданій нумерації вершин і ребер, називають булеву n*m матрицю із елементами m_{ij} (i=1,...n; j=1,...m), де $m_{ij}=1$, якщо вершина V та ребро E інцидентні, 0 у протилежному випадку.

Для графа, зображеного на рисунку матриця інцидентності має вигляд:

	e ₁	e ₂	e ₃	e ₄	e ₅
V ₁	1	1	1	0	0
V ₂	1	0	0	1	0
V ₃	0	1	0	0	1
V ₄	0	0	1	1	1

Отже, для простого графа в матриці інцидентності в кожному стовпці точно дві одиниці, і немає однакових стовпців. Матрицю інцидентності можна використовувати й для подання мультиграфа. Тоді з'являться однакові стовпці (вони відповідають кратним ребрам). Для подання псевдографа петлю e_i у вершині v_i зображають значенням $m_{ii}=2$ (у цьому разі

матриця інцидентності, очевидно, не булева).

За допомогою матриці інцидентності можна подавати й орієнтовані графи. Для таких графів вона також не булева. Нехай G - (V, E) - орієнтований граф із множиною вершин $V = (v_1 v_2, v_n)$ і множиною дуг $E = (e_1, e_2, e_m)$.

З алгоритмічної точки зору матриця інцидентності не ε добрим вибором для комп'ютерних застосувань. По-перше. вона вимагає пхт комірок пам'яті, більшість із яких зайнята нулями. По-друге, незручний доступ до інформації. Щоб отримати відповідь на елементарні запитання (наприклад чи існує дуга (v_i, v_j) до яких вершин ведуть дуги з v_i), у найгіршому випадку потрібно перебрати всі стовпці матриці, тобто виконати m кроків.

Списком ребер

Економнішим щодо пам'яті, особливо якщо (кількість ребер) значно менша ніж n^2 (n-кількість вершин), ε метод подання графа списком пар, які відповідають його ребрам (або дугам). Пара [u, v] відповіда ε ребру $\{u, v\}$, якщо граф неорієнтований, і дузі (u, v), якщо граф орієнтований. Для графів, зображених на рисунку:

списки пар подані відповідно:

V_1	V_2
V_1	V_3
V_1	V_4
V_2	V_4
V_3	V_4

V_1	V_2
V_2	V_2
V_2	V_3
V_2	V_2
V_3	V_4
V_{4}	V_1

Очевидно, що обсяг пам'яті в разі використання цього способу подання дорівнює 2m - це найекономніший щодо пам'яті спосіб. Недолік — велика (порядку m) кількість кроків для знаходження множини вершин до яких ідуть ребра або дуги із заданої вершини. Ситуацію можна значно поліпшити, упорядкувавши множину пар лексикографічно та застосувавши двійковий пошук.

Списком суміжності

Орієнтований граф (без кратних дуг, але, можливо, з петлями) можна подати указавши скінченну непорожню множину вершин V і відповідність Γ , котра вказує, як зв'язані між собою вершини. Відповідність Γ - багатозначне відображення множини V у V, а граф у такому разі позначають парою G=(V, Γ). У літературі часто означають (орієнтований) граф саме в таких поняттях.

Для графів, зображених на рисунку:

Відповідності задані таблицями:

ν	$\Gamma(v)$
	(суміжні з <i>v</i> вершини)
v_1	<i>v</i> ₂ , <i>v</i> ₃ , <i>v</i> ₄
v_2	<i>v</i> ₁ , <i>v</i> ₄
v_3	v_1, v_4
v_4	<i>v</i> ₁ , <i>v</i> ₂ , <i>v</i> ₃

v	Γ(ν)
	(термінальні вершини)
v_1	v_2
v_2	v_2, v_3
v_3	v_2, v_4
v_4	v_1

Розглянемо спосіб комп'ютерного подання графа списками суміжності. Для цього використовують масив Adj із n=|V| списків - по одному на кожну вершину. Для кожної вершини ε V список Adj[u] містить у довільному порядку (вказівники на) всі вершини множини $\Gamma(u)$. Для орієнтованого графа сума довжин усіх списків суміжних вершин дорівнює загальній кількості дуг: дузі (u, v) відповідає елемент v зі списку Adj v0. Породжує елемент у списку суміжних вершин як для вершини v1.

Шляхи та цикли. Зв'язність

Шляхом довжиною r із вершини и в вершину v в неорієнтованому графі називають послідовність ребер $e_1 = \{x_{0,}x_1\}, e_2 = \{x_{1,}x_2\}, ..., e_r = \{x_{r-1},x_r\},$ де $x_0 = u,x_r = v,$ r натуральне число. Отже, шлях довжиною r має гребер, причому ребро враховують стільки разів, скільки воно входить y шлях. Вершини ита v називають крайніми, а решту вершин шляху - внутрішніми.

Циклом у неорієнтованому графі називають шлях, який з'єднує вершину саму із собою, тобто $\mathbf{u} = \mathbf{v}$.

У простому графі шлях можна задати послідовністю вершин, через які він проходить: $x_0, x_1, x_2, \ldots, x_{r-1}, x_r$.

Шлях або цикл називають простим, якщо він не містить повторюваних ребер. Говорять, що шлях із крайніми вершинами и та v з'єднує ці вершини. Шлях, що з'єднує вершини и та v, позначають як $\langle u, v \rangle$ та називають $\langle u, v \rangle$ -шляхом.

Для орієнтованого графа вводять поняття орієнтованого шляху (або просто шляху) з вершини и у вершину v. Це скінченна послідовність дуг $e_1 = (x_0, x_1), e_2 = (x_1, x_2), ..., e_r = (x_{r-1}, x_r),$ де $x_0 = u, x_r = v.$ Вершини и та v називають, як і в неорієнтованому графі, крайніми, а решту вершин шляху — внутрішніми. Довжиною шляху називають кількість дуг, з яких він складається. Орієнтованим циклом називають орієнтований

шлях, який з'єднує вершину саму із собою, тобто u = v. Орієнтований шлях або цикл називають простим, якщо він не містить повторюваних дуг.

Характеристики зв'язності простого графа

Розглянемо неорієнтовані графи K_n та C_n . Обидва ці графи зв'язні, проте інтуїтивно зрозуміло, що для n>3 граф K_n "сильніше зв'язаний", ніж граф C_n . Розглянемо два поняття, які характеризують міру зв'язності простого графа.

Числом вершинної зв'язності (або просто числом зв'язності) к(G) простого графа G називають найменшу кількість вершин, вилучення яких дає незв'язний або одновершинний граф. Зазначимо, що вершину вилучають разом з інцидентними їй ребрами.

Наприклад, $\kappa(G)$, $\kappa(K_n)=n-1$, $\kappa(C_n)=2$. Граф G, зображений на рисунку, зв'язний, але його зв'язність можна порушити вилученням вершинии. Отже, $\kappa(G)=1$. Якщо ж спробувати порушити зв'язність цього графа вилученням ребер (а не вершин), то потрібно вилучити не менше ніж три ребра.

Нехай G — простий граф з n>1 вершинами. Числом реберної зв'язності $\lambda(G)$ графа G називають найменшу кількість ребер, вилучення яких дає незв'язний граф. Число реберної зв'язності одновершинного графа вважають таким, що дорівнює 0. Для графа G, зображеного на рис. 4, $\lambda(G)=3$.

Вершину и простого графа G називають тонкою з'єднання, якщо граф G в разі її вилучення матиме більше компонент, ніж даний граф G Зокрема, якщо G — зв'язний граф і u — точка з'єднання, то G без вершини u — незв'язний. Нагадаємо, що вершину u при цьому вилучають разом із інцидентними їй ребрами. Ребро графа G називають мостом, якщо його вилучення збільшує кількість компонент. Отже, точки з'єднання й мости — це свого роду «вузькі місця» простого графа.

Характеристики зв'язності простого графа

Розглянемо неорієнтовані графи K_n та C_n . Обидва ці графи зв'язні, проте інтуїтивно зрозуміло, що для n > 3 граф K_n «сильніше зв'язаний», ніж граф C_n . Розглянемо два поняття, які характеризують міру зв'язності простого графа.

Наприклад, $\kappa(G)$, $\kappa(K_n) = n-1$, $\kappa(C_n) = 2$. Граф G, зображений на рис. 1, зв'язний, але його зв'язність можна порушити вилученням вершиниu. Отже, $\kappa(G) = 1$. Якщо ж спробувати порушити зв'язність цього графа вилученням ребер (а не вершин), то потрібно вилучити не менше ніж три ребра.

Puc. 1

Нехай G- простий граф з n>1вершинами. *Числом реберної зв'язності \lambda(G)* графа G називають найменшу кількість ребер, вилучення яких дає незв'язний граф. Число реберної зв'язності одновершинного графа вважають таким, що дорівнює 0. Для графа G, зображеного на рис. 4, $\lambda(G)=3$.

Вершину u простого графа G називають *тонкою з'єднання*, якщо граф Gв разі її вилучення матиме більше компонент, ніж даний граф G Зокрема, якщо G - зв'язний граф і u - точка з'єднання, то G без вершини u - незв'язний. Нагадаємо, що вершину u при цьому вилучають разом із інцидентними їй ребрами. Ребро графа G називають *мостом*, якщо його вилучення збільшує кількість компонент. Отже, точки з'єднання й мости — це свого роду «вузькі місця» простого графа.

Критерій дводольності графа

 \mathcal{A} . Кеніг сформулював критерій дводольності простого графа в термінах довжин простих циклів: для того, щоб граф G був дводольним, необхідно й достатньо, щоб він не містив простих циклів із непарною довжиною.