Noncommutative Spaces

Lecture Course, Summer Semester 2025

Koen van den Dungen* July 8, 2025

^{*}Notes by Melvin Weiß

Contents

1	Introduction	3
2	C^st -Algebras	3

1 Introduction

TODO: Motivation

2 C^* -Algebras

Definition 1. A Banach algebra is a (not necessarily unital or commutative) \mathbb{C} -algebra A together with a norm $\|.\|: A \to \mathbb{R}$ such that:

- ||.|| is submultiplicative: $||ab|| \le ||a|| \, ||b||$ for all $a, b \in A$.
- $(A, \|.\|)$ is a Banach space: A complete normed vector space.

Remark 1.1. The multiplication on a Banach algebra A is continuous: As for all $a, b \in A$ we have $||ab|| \le ||a|| ||b||$, the linear map $a \cdot (-) \colon A \to A$ is a bounded operator, hence continuous.

Remark 1.2. We can usually assume A to be *unital* (i.e. there is some $1 \in A$ with $1 \cdot a = a \cdot 1 = a$ for all $a \in A$), otherwise replacing it by the *unitization* \tilde{A} of A, given by:

$$\tilde{A} := A \oplus \mathbb{C}$$

with the multiplication

$$(a, \lambda) \cdot (b, \mu) := (ab + \lambda B + \mu A, \lambda \mu)$$

and the norm

$$||(a,\lambda)|| := ||a|| + |\lambda|.$$

This is in fact a unital Banach algebra: The unit is given by (0,1), as witnessed by

$$(0,1)\cdot(a,\lambda)=(a,\lambda)=(a,\lambda)\cdot(0,1)$$

for $(a, \lambda) \in \tilde{A}$. \tilde{A} is a Banach space as \mathbb{C} is one and the sum of Banach spaces is again a Banach space. Submultiplicativity follows from

$$\begin{split} \|(a,\lambda)\cdot(b,\mu)\| &= \|ab + \lambda b + \mu a\| + |\lambda\mu| \\ &\leqslant \|ab\| + \|\lambda b\| + \|\mu a\| + |\lambda\mu| \\ &\leqslant \|a\| \, \|b\| + |\lambda| \, \|b\| + |\mu| \, \|a\| + |\lambda| |\mu| \\ &= \|(a,\lambda)\| \, \|(b,\mu)\| \, . \end{split}$$

Confirming the algebra structure is a straightforward check. Maybe: Remark on adjunction

Example 2. 1. Let V be a Banach space. Then

$$\mathcal{B}(V) := \{T \colon V \to V \mid T \text{ bounded linear}\}\$$

with norm $||T|| := \sup_{v \in V} \frac{||Tv||}{||v||}$ and composition as multiplication is a unital Banach algebra.

2. Let X be a topological space. We can define

$$C_b(X) := \left\{ f : X \to \mathbb{C} \mid f \text{ continuous, } \sup_{x \in X} |f(x)| < \infty \right\}$$

and

$$\mathcal{C}_0(X) := \left\{ f \in \mathcal{C}_b(X) \mid \forall \varepsilon > 0 \exists K \subseteq X \text{ compact}, \ f^{-1}((-\varepsilon, \varepsilon)) \subseteq K \right\}$$

with pointwise multiplication and $||f|| := \sup_{x \in X} |f(x)|$. Both of these form Banach algebras. C_b is always unital with unit const₁, whereas C_0 is unital if and only if X is compact.

Definition 3. A (twosided) ideal $J \subseteq A$ is a subspace $J \subseteq A$ with $AJ \subseteq J$ and $JA \subseteq J$. This is equivalent to J being a twosided ideal of A viewed as an ordinary (non-unital) ring.

Lemma 4. If $J \subseteq A$ is a closed ideal, the quotient ring A/J equipped with the norm

$$||a+J|| := \inf_{j \in J} ||a+j||$$

is again a Banach algebra.

Proof. Quotients of algebras under two sided ideals are again algebras, hence so is A/J. Further, the underlying normed vector space of A/J agrees with the quotient A/J of underlying normed vector spaces, hence is the quotient of a Banach space by a closed subspace and as such again a Banach space.

Example 5. For a Banach algebra $A, A \subseteq \tilde{A}$ is a two sided ideal. *Proof.* The map $p: \tilde{A} \to \mathbb{C}, (a, \lambda) \mapsto \lambda$ is a ring homomorphism, hence the kernel $\ker p = A$ is a twosided ideal. Further, p is continuous and $\{0\} \subseteq \mathbb{C}$ is closed, hence so is A.

Definition 6. For a unital Banach algebra A and an element $a \in A$, we define the spectrum

$$(a) := \{ \lambda \in \mathbb{C} \mid (\lambda - a) \notin A^{\times} \},$$

where A^{\times} is the group of units of A. We further define the spectral radius

$$r(a) \coloneqq \sup_{\lambda \in (a)} |\lambda|.$$