امتحان شهادة البكالوريا دورة: 2013

المادة :العلوم الفيزيائية الشعبة: علوم تجريبية

العلامة		(150 - 1 10 7 1 10 1 11		
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)		
_		K (ك) نقاط) (4)		
	0.5	-1 رسم الدارة الكهربائية:		
	0.5	$\mathbb{E} \uparrow \uparrow \downarrow $		
	0.5	$\frac{dq}{dt} + \frac{1}{RC}q = \frac{E}{R} (a.6)$		
	0.25	$q(t)=A\cdot e^{at}+B$ عبارة الثوابت: $q(t)=A\cdot e^{at}+B$ ولدينا:		
	0.25	(1) ومنه $A=-B$ ومنه $q(0)-A+B-0$		
	0.5	$A \cdot e^{lpha \cdot t} (rac{1}{RC} + lpha) - rac{B}{RC} = rac{E}{R}$ بتعويض الحل في المعادلة التفاضلية نجد:		
04		$\cdot lpha = \; rac{1}{RC} \; $ ومنه $B = CE$ ومنه $B = CE$		
	0.5	$q(au)$ = 0 ,63 q_{max} = 0 ,63 $ imes$ 4 ,8 $ imes$ 10 4 = 3 ,0 $ imes$ 10 4 C $:$ $ au$ قيمة $ imes$ 1 $ imes$ 4		
		$ au = 39 \; ext{ms}$		
	0.5	$C = \frac{\tau}{R} = 39 \times 10^{-\ell} F = 39 \mu F$		
	0.5	$\cdot E \simeq 12V$: ومنه: $q_{max} = cE$: E قيمة $-$ ب		
	0.5	$E_C(200 ms) = \frac{q^2}{2C} = 2,9 \times 10^{-3} J \implies$		
		(ك نقاط)		
	0.25	ا – أ – طبيعة الحركة: المرحلة الأولى: $vac=0,16s$ فالحركة مستقيمة متسارعة.		
		$a_{G,i} = \frac{\Delta v}{\Delta t} = \frac{2-\theta}{d-\theta} = \theta \cdot \delta \cdot m \cdot s^{-\lambda}$ تسان عها:		
	0.25	$\Delta t + v$		
04	0.5	$a_{G2}=rac{\Delta v}{\Delta t}=0$ المرحلة الثانية: $v=ctc~[16~s~,~24~s~]$ الحركة مستقيمة منتظمة. تسارعها		
	0.25	$AC=d=d_1+d_2=64+64=128\ m$ بطريقة المساحات $AC=d=d_1+d_2=64+64=128$		
	0.5	اً - نص القانون الثاني لنيوين. $y^{m{\wedge}}$		
		$\vec{F}_{y} = \vec{F}_{y}$		
	0.5	X No. 2		
	0.5	\overrightarrow{A} \overrightarrow{P} \overrightarrow{P} B $F = 5.77 N : a_{GI}$ $F = \frac{m \cdot a_{GI}}{\cos 30^{\circ}}$		
	0.5	<i>y</i> , ↑		
	0.5	و منه: $f = 5$ N و منه: $f = F \cdot \cos 30^{\circ}$		
	0.5	$X \longrightarrow X$		
		$B \qquad \overrightarrow{P} \qquad C$		
	0.25	د الما أصبح الجزء خفّن نشأت مقاومة أبدتها الجملة لتغير		
		$v=cte$ ومنه: $f=F\coslpha$ ومنه:		

تابع الإجابة النموذجية لمادة: العلوم الفيزيائية الشعبة: علوم تجريبية امتحان البكالوريا دورة: 2013

العلامة		به الموضوع الأول) عناصر الإجابة (الموضوع الأول)					
مجموع	مجزأة		(0.	له (الموصوح الاو	عاصر الإجاب		محاور موضوع
	3×0.25 0.5 3×0.25 3×0.25	(24) (24) $Z=2$ ، $Z=2$ ، $Z=3$ ، $Z=3$.					
04	0.5		:ومنه $E_{\!_{i\!\!t\!b}}$ و	$=F_{\mathbf{e}}({}_{2}^{4}X)-(F_{\mathbf{e}}({}_{1}^{2}X))$	ىمررة: (<i>(⁴H)</i>)+F ₄	22MeV / nucleon ج ماب الطاقة الد 3 _{lih} = 17,61 MeV	
	0.75	ماقة أ 1H	2p + 3p + 3H	^	الطاقوية:	110	
	0.5	(4) قاط) $CH_{3}COOH(\ell)+H_{2}O(\ell)=CH_{3}COO(2q)+H_{3}O^{-}(2q)$ -1 المعادلة: -2 -2 -2 -2 -2 -2 -2 -2					
	0.5	ع. ا	c,V	بوقرة	0	0	
			c _a V - x	بوفرة	X	х	
04		، ع.ن	c_aV x_f	بو فر ة	Xf	X _f	
04	0.5	$\boldsymbol{\sigma} = (\lambda_{H_{9}O^{-}} \cdot \left\lceil H_{3}O^{+} \right\rceil - \lambda_{CH_{9}COO^{-}} \cdot \left\lceil CH_{9}COO^{-} \right\rceil)$					
	0.25	$\left[\text{H}_{3}\text{O}^{-}(aq) \right] = 0.4 \times 10^{-3} \text{ mol} \cdot \text{F}^{-1} \cdot \left[\text{H}_{3}\text{O}^{-} = \frac{\sigma}{\left(\lambda_{\text{H}_{3}\text{O}^{+}} + \lambda_{\text{CH}_{3}\text{COO}}\right)} \right] $ نابا					
	0.5					$g[H_3O^-] = 3.4$ = 3	
	0.5	$K_{c} = \frac{\left[\Pi_{3}O^{+}\right]_{c}\left[\text{CII}_{3}\text{COO}\right]_{c}}{\text{CH}_{3}\text{COOH} _{c}} - 1.65 \times 10^{-5}$					
	0.75		$V_{\rm be}=20$	ا ومنه $ m V_b$	ئصف التكافؤ: 10 mL -		
	0.5				$Va = \frac{c_k \cdot V_{be}}{c_n}$	عند التكافؤ: 4 mL =	

تابع الإجابة النموذجية لمادة: العلوم الفيزيائية الشعبة: علوم تجريبية امتحان البكالوريا دورة: 2013

العلامة		عناصر الإجابة (الموضوع الأول)		
مجموع	مجزأة	(محاور موضوع	
04	2×0.25 0.25 0.75 0.25 0.5 0.5 2×0.25	(hiā) الماون لمعرفة التكافؤ . (biā) (4) (biā) (7) (ciā) (biā) (ciā) (biā) (
	0.25	6 رسم البيان كيفيا.		

تابع الإجابة النموذجية لمادة: العلوم الفيزيائية الشعبة: علوم تجريبية امتحان البكالوريا دورة: 2013

العلامة		عناصر الإجابة (الموضوع الثاني)		
مجموع	مجزأة	عاصر الإجابة (الموصوع الناني)		
	0.50	التمرين الأول: (04 نقاط) 1 - دور التسخين المرتد تكثيف البخار المتصاعد ومنع ضياعه فيعود إلى الأرلينة. - ان افق من الكريسة المرتد المتصاعد ومنع ضياعه فيعود إلى الأرلينة.		
	0.25	 إضافة حمض الكبريت المركز هو تسريع التفاعل. غصل المواد 		
	0.50	$CH_3COOH + C_4H_9OH = CH_3COOC_4H_9 + H_2O - 1 - 3$		
	0.75	$ au_{\scriptscriptstyle f} < 1$: نلاحظ أن $ au_{\scriptscriptstyle f} = rac{X_{\scriptscriptstyle f}}{X_{ m max}} = rac{0.6}{1} = 0.6$ ب		
04		المتأكد عمليا من تحول الأسترة غير تام نضيف قطرات من كاشف ملون.		
04		ج- سرعة التفاعل.		
		$v(t_1) = \frac{\Delta n_E}{\Delta t} = 0,0080 mol \cdot min^{-1}$		
	4×0.25	$v(t_2) = 0.0035 mol \cdot min^{-1}$		
		$v(t_3) = 0.0020 mol \cdot min^{-1}$		
		نلاحظ أن السرعة تتناقص فالتحول بطئ.		
		$r = \tau_f \times 100 = 60\%$ د- المردود:		
	0.50	يمكن تحسينه بنزع الماء الناتج من التحول وذلك لجعل التحول يتطور في اتجاه الأسترة.		
		ه— صنف الكحول المستعمل: ثانوي		
	0.50	2 – الصيغة الجزيئية نصف المفصلة للكحول: CH_3 – $CHOH$ – CH_2CH_3 بوتانول		
		التمرين الثاني: (04 نقاط)		
	0.25	1- القيمتان هما العدد الكتلي و يمثلان عدد النويات (النيوكليونات) في كل نظير.		
	0.25	الرمز: 36 17 17		
04	4×0.25	$E_t = (Z \cdot m_p + (A - Z) \cdot m_n - m(\frac{36}{17}C1)) \cdot c^2 = 307,54125 MeV$ - طاقة الربط: -2		
	4×0.25	$^{36}_{17}Cl ightarrow ^{36}_{18}Ar + ^{A}_{Z}X$ عادلة التفكك: $^{-3}_{18}Cl ightarrow ^{36}_{17}Cl ightarrow ^{36}_{18}Ar + ^{0}_{-1}e$ ومنه: نمط التفكك: $^{-3}_{18}Cl ightarrow ^{36}_{18}Ar + ^{0}_{-1}e$		
	6×0.25	$t = \frac{-t_{1/2}}{\ln 2} \cdot \ln(\frac{N}{N_0}) = \frac{-301 \times 10^3}{\ln 2} \cdot \ln(\frac{38}{100}) = 420 \times 10^3 \text{ ans } : -4$		
	0.5	$u_{B} \uparrow$ (L, r) (L, r) (E أفاط) $u_{R} + u_{R} = E$ (L, r) (الرسم: $u_{R} + u_{R} = E$ ومنه: $u_{R} + u_{R} = E$ أي: $u_{R} + \frac{du_{R}}{dt} + \frac{(R+r)}{L}u_{R} = \frac{R}{L}E$ أي: $u_{R} + \frac{du_{R}}{dt} + (I + \frac{r}{R})u_{R} = E$		
04	0.75	$ \frac{du_R}{dt} + \frac{(R+r)}{L} u_R = \frac{R}{L} E : \frac{du_R}{dt} + (1+\frac{r}{R}) u_R = E $		
	4×0.25	$\tau = \frac{L}{R+r}$ ومنه: $u_R = A(1-e^{-\frac{\pi}{t}})$ -3		
	0.5	$[\tau] = \frac{[U][T]}{[I]} \cdot \frac{[I]}{[U]} = [T] \equiv s$: التحليل البعدي -4		
	0.5	$ au_{R}(au)=0$,63 $u_{R}(au)=0$ ، فإن $u_{R}(au)=0$ فين المنته:		
	0.75	$E = \frac{u_{Rmax} \cdot (R+r)}{R} = 4.8 \text{ V}$ 9 $L = \tau (R+r) = 18 \times 10^{-3} \text{ H} : L$ قيمة 5		

تابع الإجابة النموذجية لمادة: العلوم الفيزيائية الشعبة: علوم تجريبية امتحان البكالوريا دورة: 2013

العلامة		(25th = 15 th) 5.1 km 15-	
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)	
		(العام) (العام	
	3×0.25	أو لاً: $1-$ المعادلات الزمنية: $mg=ma$ ومنه: $g=\frac{dv}{dt}$ إذن: $v=g\cdot t$ (مع تمثيل الغوى)	
		$(2)\cdots x = \frac{1}{2}gt^2 : 3$ $v = \frac{dz}{dt} = gt : 3$	
	0.25	$v = \sqrt{2gz} = 171, 4 \text{ m} \cdot s^{-1}$ ومنه: $z = \frac{v^2}{2g}$ (2) بالتعویض فی $r = \frac{v}{g}$: (1) من	
	0.5	$kg \cdot m^{-1}$: وحدته: $k = \frac{[F]}{[v]^2} = \frac{[M] \cdot [L]}{[T]^2} \cdot \frac{[T]^2}{[L]} = \frac{[M]}{[L]}$ ومنه: $k = \frac{f}{v^2}$ ومنه: $k = \frac{f}{v^2}$	
04	0.5	$H= ho Vg=rac{\pi ho D^3g}{6}=1$ رفعة أريخميدس: $N= ho Vg=rac{\pi ho D^3g}{6}=1$	
	0.25	$P=mg=127,4 imes10^{-8}N:$ قوة الثقل: $P=mg=127,4 imes10^{-8}N$	
	0.25	المقارنة: P/H قوة الثقل أكبر بكثير من دافعة أرخمينس. يمكن إهمال 1 ا،	
	0.5	و منه: $\frac{dv}{dt} = A - Bv^2$ أي $\frac{dv}{dt} = A - Bv^2$ (مع تمثيل القوى) $\frac{dv}{dt} = g - \frac{k}{m}v^2$ (مع تمثيل القوى)	
	0.25	$v_{lim} = \sqrt{\frac{A}{B}}$ تكون: $\frac{dv}{dt} = \theta$ عند النظام الدائم: $v_{lim} = \sqrt{\frac{A}{B}}$	
	0.5	$k = \frac{mg}{v_{lim}^2} = 2.0 \times 10^{-4} kg / m$ 9 $v_{lim} = 25 m / s$ \Rightarrow	
	0.25	د- المقارنة: السرعة الأولى أكبر بكثير لأننا أهملنا قوة الإحتكاك مع الهواء.	
04	0.5 0.5 0.75 0.5 0.5 0.75	(المنافر التخطيطي والمنافر و	
		$ au_{i} < 1$: يمكن استعمال : $ au_{i} < 1$ المراجعة ا	
		ملاحظة: يمكن قبول القياسات القريبة حدا مما سبق.	