

ESTRUCTURA DE LA CLASE

INTRODUCCIÓN

Presentación del tema de la clase Introducción a la segmentación

MECANISMOS DE SEGMENTACIÓN

Segmentación supervisada Segmentación no supervisada Casos de uso

REDES CONVOLUCIONALES

Autoencoders Modelos

PÉRDIDA

Significado y usos

Funciones de pérdida para clasificación Funciones de pérdida para regresión Detención por pérdida

CODIFICACIÓN DE LA INFORMACIÓN

Imágenes y vídeo Música y sonido Texto Olores y sabores

ACTIVIDAD PRÁCTICA

RemoveBG
Uso de modelos por API

CONCLUSIONES

Recapitulación de los puntos clave de la clase

PROBLEMAS DE SEGMENTACIÓN

SEGMENTACIÓN SUPERVISADA

ÁRBOLES

2 años VPN = .113.223 50.000 0,5 3 años VPN = .75.667 0,3 4 años 0,2 VPN = .269 -200.000 Flujo de Caja 2 0,6 VPN = 99.460 0,6 VPN = 199.101 Flujo de Caja 3 2 años VPN = 49.662 0,4 VPN = 174.326 0,3 VPN = 298.877

CLUSTERS

DNNS

SEGMENTACIÓN NO SUPERVISADA

PCA

CLUSTERS

AUTOENCODERS

CASOS DE USO

AGRUPAR

Encontrar grupos con características similares

SEPARAR

Separa elementos distintos, para trabajarlos por separado

DETECTAR IMPOSTORES

Encuentra elementos fraudulentos

AUTOENCODERS

No buscan clasificar o predecir. Buscan es dada una entrada generar la misma salida

Al "aprender" a generar sus entradas, el modelo "aprende" las características

Se compone un codificador y un decodificador

MODELOS AUTOENCODERS

UNET

Creado para la segmentación de imágenes en medicina, su potente arquitectura se extendió a casos de uso como modelos de difusión

ENET

Segmentación de imágenes en tiempo real con baja latencia y alta precisión

SAM

Lanzado por Meta en abril de 2023, es el modelo más potente y usado por la comunidad. Puede segmentar prácticamente lo que sea en tiempos muy cortos

Segment Anything

Meta Al Computer Vision Research

segment-anything.com

FUNCIONES DE PÉRDIDA

Cuantifica el error entre los valores obtenidos y los deseados

Permite determinar qué tan bien ha o está entrenando un modelo

El objetivo de todo modelo es minimizar el valor de la función de pérdida

PÉRDIDA EN CLASIFICACIÓN

CLASIFICACIÓN BINARIA

La función de entropía cruzada binary_crossentropy, bisagra hinge (en SVMs)

CLASIFICACIÓN MULTICLASE Y MULTIETIQUETA

La función de entropía cruzada categórica categorical_crossentropy

Si no se quiere usar entropía cruzada, se puede ir, aunque no se recomienda, por el error medio absoluto mae, o por el cuadrático medio rms

PÉRDIDA EN REGRESIÓN

EN LA MAYORÍA DE CASOS

El error cuadrático medio mse es el más popular porque es sensible a valores atípicos

SI LOS VALORES SON MUY VARIABLES

La sensibilidad afecta a la función, entonces o se usa error absoluto medio mae, error cuadrático medio logarítmico msle

También existen la función huber (MSE + MAE) y de divergencia probabilística kld

DETENCIÓN POR PÉRDIDA

CODIFICACIÓN DE IMÁGENES

0	1	2	3	4	5			
10	11	12	13	14	15			
20	21	22	23	24	25			
30	31	32	33	34	35			
40	41	42	43	44	45			
50	51	52	53	54	55			

CODIFICACIÓN DE SONIDO

CODIFICACIÓN DE TEXTO

CODIFICACIÓN DE OLORES Y SABORES

CAS	Scale Feature	Vector Feature	Merge Feature
108-68-9	HO -	HO	HO
1240841-77-3	ОН ОН	D SH OH	DE OH
607-91-0	S. D.	L° T	
106-33-2	~~~~å.~	~~~~	~~~~ů.~
219691-94-8	ba. of	· CT° ~ · · · · · · · · · · · · · · · · · ·	

CONCLUSIONES

SEGMENTACIÓN

La segmentación permite separar o agrupar un conjunto de elementos con características definidas

FUNCIONES DE PÉRDIDA

El fin de todo modelo es minimizar la función de pérdida. Usamos binary_crossentropy y categorical_crossentropy en clasificación y, mse y mae en regresión

CODIFICACIÓN

Los embeddings permiten entrenar modelos que por naturaleza solo aceptan números, con prácticamente cualquier elemento de la realidad