INSTITUTO TECNOLÓGICO DE BUENOS AIRES

22.12 - Electrónica III

Trabajo Práctico $N^{\circ}3$

Grupo 4

Bertachini, Germán	58750
Dieguez, Manuel	56273
Galdeman, Agustín	59827
LAGUINGUE, Juan Martín	57430

Profesores:
DEWALD, Kevin
WUNDES, Pablo

Presentado el 14 de Noviembre de 2019

Índice

Ejercicio 2 Introducción				
Implementación				
Asignación de estados				
Mapas de Karnaugh				
Circuito resultante				
Simulación				
Experimental				

Ejercicio 1

Ejercicio 2

Introducción

En esta sección desarrollaremos el diseño de una máquina de estados de Mealy capaz de reconocer la secuencia 1-1-0-1, enviada de forma serial y una vez reconocida la secuencia, obtendremos una salida de encendido. Mientras que, en el caso contrario tendremos una salida apagada.

La misma consiste en 4 estados, un default que va a ser el estado donde siempre va a volver en caso de error y 3 estados de transición. El estado default va a ser el estado inicial de la misma.

A continuación podemos observar el diagrama de la misma:

Figura 1: Diagrama de estados

En donde Z es la salida, W es la entrada y las flechas indican hacia donde se realiza la transición así como bajo qué valor de la entrada sucede la misma. De la figura 1 podemos obtener la siguiente tabla de estados:

Estado Actual	Estado siguiente		Salida		
Estado Actual	W = 0	W = 1	W = 0	W = 1	
Default	Default	A	0	0	
A	Default	В	0	0	
В	С	Default	0	0	
С	Default	Default	0	0	

Tabla 1: Tabla de estados

Implementación

Para implementar una máquina de Mealy utilizamos el siguiente circuito secuencial genérico:

Figura 2: Circuito genérico

Asignación de estados

Por último, se realiza la asignación de los estados dando lugar a la siguiente tabla:

	signado del estado actual Estado siguiente Sa		Estado siguiente		alida	
Estado Actual	24.24	W = 0	W = 1	·		
	y_2y_1	Y_2Y_1	Y_2Y_1	W = 0	W = 1	
Default	00	00	01	0	0	
A	01	00	10	0	0	
В	10	11	00	0	0	
C	11	00	00	0	1	

Tabla 2: Tabla de estados asignados

Mapas de Karnaugh

A partir de la tabla 2 se obtienen los siguientes mapas de Karnaugh:

Circuito resultante

Para la realización del circuito utilizamos los Flip-Flop D debido a que poseen una relación directa con las variables de estado y_i y Y_i . Donde las variables $y_i = Q_i$, pero cabe mencionar que esto es equivalente para todos los distintos tipos de Flip-Flop y

 $Y_i=D_i$ que es exclusivo del mismo. Finalmente, a partir de los mapas de Karnaugh anteriormente mostrados, surge el siguiente circuito:

Figura 3: Circuito genérico

Simulación

Luego, se generó la correspondiente simulación en Verilog, el cual nos brinda el comportamiento ideal del mismo. Esto dio lugar al siguiente resultado:

Figura 4: Circuito genérico

Experimental

Finalmente, se realizó la implementación en PBC de lo obtenido en las anteriores subsecciones dando a lugar los siguientes resultandos:

Figura 5: Lo visualizado en el osciloscopio

Figura 6: Lo obtenido explicado

Cabe mencionar que las imágenes fueron editadas para tener un mejor entendimiento y realizar una mejor exposición sobre las mismas. Ademas, todas las mediciones fueron obtenidas por medio del analog discovery.

Ejercicio 3