

Дисциплина «Вычислительная математика»

2024-2025 у.г.

Наполнение курса

Объем курса

- 8 лекционных и 16 практических занятий
- > Темы лекционных занятий
- 1. Введение в дисциплину. Погрешности.
- 2. Интерполяция
- 3. Численные методы решения уравнений
- 4. Численные методы интегрирования
- 5. Численные методы СЛАУ
- 6. Численные методы решения обыкновенных дифференциальных уравнений (ОДУ)
- 7. Численные методы оптимизации
- 8. Завершение курса, подготовка к зачёту.

> Текущий контроль

- 1. Контрольная работа №1
- 2. Контрольная работа №2
- 3. Коллоквиум

Промежуточный контроль

Зачёт

Тематика курса

Курс предназначен для изучения теории численных методов решения типовых математических задач и их применения на практике.

В результате курса реализуются следующие компетенции:

- 1. Получение первоначальных навыков при решении задач численными методами.
- 2. Изучение ключевых задач и разделов применения численных методов.
- 3. Применение численных методов в ключевых разделах вычислительной математики.
- 4. Умение решать математические задачи численными методами

Лекция 1. Введение в дисциплину. Погрешности.

Часть 1. Что такое вычислительная математика?

Определение

- ▶ Вычислительная математика это область математики, которая фокусируется на разработке, анализе и применении численных методов и алгоритмов для решения математических задач с использованием компьютеров.
- ▶ Основная цель вычислительной математики нахождение приближенных решений математических задач, а также интерпретирование математических задач для решения на компьютерах с приемлемой точностью.
- Учисленные методы это специализированные разработанные подходы и техники для нахождения приближённых решений математических задач.
- Алгоритмы это пошаговые инструкции для выполнения поставленных задач.

Применение вычислительной математики

Наука:

Гидродинамика;

Термодинамика;

Квантовая механика и др.

Инженерия:

Проектирования конструкций;

Анализ напряжений;

Деформаций;

Задачи аэродинамики и робототехники и др.

Применение вычислительной математики

Финансы:

Оценка денежных ресурсов;

Управление рисками;

Моделирование финансовых рынков

Ставятся цели:

Прогнозирования;

Определения модели поведения данных от сопутствующих факторов

Применение вычислительной математики

Информационные технологии

Для задач:

машинного обучения;

компьютерной графики;

моделирования данных и т.д

Метод градиентного спуска - метод нахождения локального минимума для функции $f(x,y)=x^2+y^2$

Часть 2. Погрешности

Определение

- ▶ Погрешность это отклонение результата измерения или вычисления от истинного значения величины.
- ightharpoonup Абсолютная погрешность (Δ , дельта) измеряет отклонение приближённого значения \bar{x} от точного значения х. Она определяется как модуль разности между точным и приближённым значениями:

$$\Delta = |x - \bar{x}|$$

> Относительная погрешность (δ, дельта малое), показывает, насколько велика абсолютная погрешность по отношению к точному значению:

$$\delta = \frac{|x - \bar{x}|}{|x|} \approx \frac{|x - \bar{x}|}{|\bar{x}|}.$$

Относительная погрешность часто выражается в процентах: $\delta_{\%}$ = $\delta \cdot 100\%$.

Пример

 \blacktriangleright Определить погрешности числа x =100, если \bar{x} = 98.5

Абсолютная погрешность: $\Delta = |x - \bar{x}| = |100.0-98.5| = 1.5$.

Относительная погрешность:
$$\delta = \frac{|x - \bar{x}|}{|x|} = \frac{|100.0 - 98.5|}{|100.0|} = \frac{1.5}{100.0} = 0.015$$
.

Или в процентах: $\delta_{\%} = 0.015 \cdot 100\% = 1.5\%$.

Применение погрешностей

Область применения	Пример задачи	Абсолютная погрешность	Относительная погрешность
Наука и исследования	Измерение физических или химических величин, таких как длина, масса, время	В химическом анализе точная оценка количества реагента может быть критично для реакции	В физике относительная погрешность измерения скорости света имеет значение для подтверждения теорий
Инженерия и строительство	Контроль размеров деталей, прочность материалов	Контроль допусков на размеры деталей	Сравнение точности различных методов измерений
Медицина	Диагностические измерения, такие как уровень глюкозы, артериальное давление	Измерения, где конкретное значение имеет непосредственное значение для здоровья пациента (уровень глюкозы)	Сравнение результатов различных анализов для назначения лечения и постановки диагноза
Финансы	Прогнозирование доходов, оценка финансовых рисков	Оценка конкретного отклонения (доходы или расходы) в денежных единицах	Сравнение точности различных финансовых моделей и прогнозов 13

Погрешность функции одной переменной

ightharpoonup Теорема. Пусть f(x) — дифференцируемая функция, тогда абсолютная погрешность функции Δf при погрешности аргумента Δx может быть приближённо оценена как:

$$\Delta f \approx |f'(x)| \cdot \Delta x$$

ightharpoonup Доказательство. Используя разложение функции f(x) в окрестности точки x с использованием формулы Тейлора:

$$f(x + \Delta x) \approx f(x) + f'(x) \cdot \Delta x$$

абсолютная погрешность функции определяется как:

$$\Delta f = |f(x + \Delta x) - f(x)| \approx |f'(x)| \cdot \Delta x.$$

Погрешность функции одной переменной

ightharpoonup Теорема. Пусть f(x) — дифференцируемая функция одной переменной x. Если Δx — абсолютная погрешность аргумента x, то относительную погрешность значения функции δf можно оценить через абсолютную погрешность аргумента Δx следующим образом:

$$\delta f pprox \left| \frac{f'(x) \cdot \Delta x}{f(x)} \right|.$$

ightharpoonup Доказательство. Используя разложение функции f(x) в окрестности точки x с использованием формулы Тейлора:

$$f(x + \Delta x) \approx f(x) + f'(x) \cdot \Delta x$$

Погрешность функции одной переменной

Относительная погрешность функции определяется как:

$$\delta f = \left| \frac{f(x + \Delta x) - f(x)}{f(x)} \right|$$

Подставим разложение:

$$\delta f \approx \left| f \frac{(x) + f'(x) \cdot \Delta x - f(x)}{f(x)} \right| = \left| \frac{f'(x) \cdot \Delta x}{f(x)} \right|$$

Таким образом, относительная погрешность функции пропорциональна модулю абсолютной погрешности аргумента.

Погрешность п-мерной функции

ightharpoonup Теорема. Если $f(x_1, x_2, ..., x_n)$ — дифференцируемая функция нескольких переменных, то абсолютная погрешность значения функции $\Delta f(x_1, x_2, ..., x_n)$ приближённо равна сумме модулей частных производных функции по каждому аргументу, умноженных на абсолютные погрешности соответствующих аргументов:

$$\Delta f(x_1, x_2, ..., x_n) \approx \sum_{i=1}^n \left| \frac{\partial f}{\partial x_i} \right| \Delta x_i.$$

ightharpoonup Доказательство. Рассмотрим разложение функции f в окрестности точки $(x_1, x_2, ..., x_n)$ с использованием формулы Тейлора:

$$f(x_1 + \Delta x_1, x_2 + \Delta x_2, \dots, x_n + \Delta x_n) \approx f(x_1, x_2, \dots, x_n) + \sum_{i=1}^n \frac{\partial f}{\partial x_i} \Delta x_i$$

Погрешность n-мерной функции

Абсолютная погрешность функции определяется как:

$$\Delta f = | f(x_1 + \Delta x_1, x_2 + \Delta x_2, ..., x_n + \Delta x_n) - f(x_1, x_2, ..., x_n) |$$

С учётом малости Δx_i , получаем:

$$\Delta f \approx \left| \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \Delta x_i \right|.$$

Применяя неравенство треугольника для модулей, итоговый результат преобразований, следующий:

$$\Delta f \approx \sum_{i=1}^{n} \left| \frac{\partial f}{\partial x_i} \right| \Delta x_i.$$

Погрешность n-мерной функции

ightharpoonup Теорема. Пусть $f(x_1, x_2, ..., x_n)$ — дифференцируемая функция нескольких переменных. Если Δx_i — абсолютная погрешность аргументов x_i , то относительную погрешность значения функции δf можно оценить через абсолютные погрешности аргументов Δx_i следующим образом:

$$\delta f \approx \sum_{i=1}^{n} \left| \frac{\partial f}{\partial x_i} \cdot \frac{1}{f(x_1, x_2, \dots, x_n)} \right| \Delta x_i.$$

ightharpoonup Доказательство. Рассмотрим разложение функции f в окрестности точки $(x_1, x_2, ..., x_n)$ с использованием формулы Тейлора:

$$f(x_1 + \Delta x_1, x_2 + \Delta x_2, \dots, x_n + \Delta x_n) \approx f(x_1, x_2, \dots, x_n) + \sum_{i=1}^n \frac{\partial f}{\partial x_i} \Delta x_i$$

Погрешность п-мерной функции

Относительная погрешность функции определяется как:

$$\delta f = \left| \frac{f(x_1 + \Delta x_1, x_2 + \Delta x_2, \dots, x_n + \Delta x_n) - f(x_1, x_2, \dots, x_n)}{f(x_1, x_2, \dots, x_n)} \right|$$

Подставим разложение:

$$\delta f \approx \left| \frac{f(x_1, x_2, \dots, x_n) + \sum_{i=1}^n \frac{\partial f}{\partial x_i} \Delta x_i - f(x_1, x_2, \dots, x_n)}{f(x_1, x_2, \dots, x_n)} \right|$$

$$\delta f \approx \left| \frac{\sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \Delta x_i}{f(x_1, x_2, \dots, x_n)} \right| = \sum_{i=1}^{n} \left| \frac{\partial f}{\partial x_i} \cdot \frac{1}{f(x_1, x_2, \dots, x_n)} \right| \Delta x_i$$

Погрешность простейших функций двух переменных

Погрешность суммы:

$$f = a_1 + a_2, \frac{\partial f}{\partial a_1} = \frac{\partial f}{\partial a_2} = 1, \Delta f = \Delta a_1 + \Delta a_2,$$
$$\delta f = \frac{\Delta a_1 + \Delta a_2}{|a_1 + a_2|}$$

Погрешность разности:

$$f = a_1 - a_2, \frac{\partial f}{\partial a_1} = 1, \frac{\partial f}{\partial a_2} = -1, \Delta f = \Delta a_1 + \Delta a_2,$$
$$\delta f = \frac{\Delta a_1 + \Delta a_2}{|a_1 - a_2|}$$

При $a_1 \approx a_2$ качество измерений разности ухудшается.

Замечание: Абсолютная погрешность суммы и разности п приближенных величин равна сумме их абсолютных погрешностей.

Погрешность простейших функций двух переменных

Погрешность произведения:

$$f = a_{1} \cdot a_{2}; \ \frac{\partial f}{\partial a_{1}} = a_{2}; \frac{\partial f}{\partial a_{2}} = a_{1},$$

$$\Delta f = |a_{2}| \cdot \Delta a_{1} + |a_{1}| \cdot \Delta a_{1};$$

$$\delta f = \frac{\Delta f}{|a_{1} \cdot a_{2}|} = \frac{\Delta a_{1}}{|a_{1}|} + \frac{\Delta a_{2}}{|a_{2}|} = \delta a_{1} + \delta a_{2}$$

То есть предпочтительней сначала найти относительную погрешность, а затем искать абсолютную:

$$\Delta f = |a_1 \cdot a_2|$$

Погрешность простейших функций двух переменных

• Относительная погрешность степени есть произведение модуля ПОКазателя на относительную погрешность основания степени:

$$f = a^{\vartheta}$$
; $\delta f = |\vartheta| \cdot \delta a$

• Относительная погрешность произведения n сомножителей приближенных величин равна сумме относительных погрешностей сомножителей:

$$f = a_1 \cdot a_2 \cdot \cdots \cdot a_n$$
; $\delta f = \sum_{i=1}^n a_i$.

Погрешность простейших функций (двух переменных

Погрешность частного:

$$f = \frac{a_1}{a_2}$$
; $\frac{\partial f}{\partial a_1} = \frac{1}{a_2}$; $\frac{\partial f}{\partial a_2} = -\frac{a_1}{a_2^2}$,

$$\Delta f = \frac{\Delta a_1}{|a_2|} + \left| \frac{a_1}{a_2^2} \right| \cdot \Delta a_2; \ \delta f = \frac{\Delta f}{|f|} = \frac{\Delta a_1}{|a_1|} + \frac{\Delta a_2}{|a_2|} = \delta a_1 + \delta a_2.$$

Пример

Рассмотрим функцию двух переменных $f(x,y)=x^2$ Погрешности аргументов Δx =0.1 и Δy =0.2. Необходимо вычислить погрешности значения функции f(x,y), если x =1, y=2.

Вычислим частные производные функции: $\frac{\partial f}{\partial x} = 2x$; $\frac{\partial f}{\partial y} = 2y$.

Абсолютная погрешность функции:

$$\Delta f \approx |2x| \Delta x + |2y| \Delta y = |2 \cdot 1| \cdot 0.1 + |2 \cdot 2| \cdot 0.2 = 0.2 + 0.8 = 1.0$$

Относительная погрешность функции:

$$\delta f \approx \frac{\Delta f}{f(x,y)} = \frac{|2x| \Delta x + |2y| \Delta y}{x^2 + y^2} = \frac{1}{1+4} = \frac{1}{5} = 0.2.$$

В процентном отношении $\delta f_{\%} = \delta f \cdot 100\% = 0.2 \cdot 100\% = 20\%$.

Определение

Количество верных знаков — это число первых значащих цифр в приближённом значении, которые совпадают с соответствующими цифрами точного значения.

Алгоритм поиска количества верных знаков:

- 1) Исследование неравенства $\Delta x \leq 0.5 \cdot 10^l$ по поиску минимального значения l, при котором выполнялось бы данное неравенство.
- 2) Поиск количества верных знаков k: m-k+1=l , где m величина старшего разряда.

Проверка верных значащих цифр приближенного числа

Приближенное число а = 27,3864 имеет, согласно определению, 6 значащих цифр. Абсолютная погрешность этого числа составляет 0,004.

Решение:

 $\frac{1}{2} \cdot 10^1 = 5 > 0,004$ 1 разряд: цифра 2 – верная. Половина единицы ее разряда:

 $\frac{1}{2}$ ·10° = 0,5 > 0,004 2 разряд: цифра 7 – верная. Половина единицы ее разряда:

3 разряд: цифра 3 – верная. Половина единицы ее разряда: $\frac{1}{2}$ · 10⁻¹ = 0,05 > 0,004

 $\frac{1}{3}$: $10^{-2} = 0,005 > 0,004$ 4 разряд: цифра 8 – верная. Половина единицы ее разряда: 5 разряд: цифра 6 – верной не является. $\frac{1}{2} \cdot 10^{-3} = 0,0005 < 0,004$

Половина единицы ее разряда:

6 разряд: цифра 4 – верной не является.

Ответ: приближенное число а = 27,3864 имеет только 4 верные значащие цифры.

Источники погрешностей

При использовании численных методов и моделирования выделяют несколько основных источников погрешностей:

- Погрешности моделирования;
- Погрешности округления;
- Погрешности метода;
- Погрешности вычислений.

Неустранимые погрешности - возникают из-за ограничений измерительных приборов, методов или условий измерения.

Устранимые погрешности - погрешность, которая может быть уменьшена или устранена при определённых условиях.

Погрешности моделирования

Обусловлены различиями между реальной системой и её математической моделью.

Причины появления:

- Упрощения: Игнорирование факторов, которые могут оказывать значительное влияние на систему;
- Предположения: Применение нереалистичных или упрощённых предположений при формировании модели;
- Пропущенные факторы: Исключение важных переменных или взаимодействий, которые могут существенно повлиять на результаты.

29

конечной точностью в вычислительных системах.

Причины появления:

- Ограниченную разрядность: Компьютеры имеют ограниченное количество бит для представления чисел, что приводит к округлению чисел с плавающей точкой;
- Ограниченную точность: Ограничение количества значащих цифр в представлении чисел.

Погрешности метода

РЕНИЯ ЗАЛАЧ

Возникают при применении численных методов для решения задач.

Причины появления:

- Аппроксимацию: Использование приближённых алгоритмов, таких как метод конечных разностей;
- Ограничения методов: Некоторые методы могут не обеспечивать точные результаты для всех типов задач или при определённых условиях.

Погрешности вычислений

Связаны с накоплением ошибок при выполнении арифметических операций на компьютере.

Причины появления:

- Ошибки накопления: Многократные арифметические операции могут привести к накоплению ошибок округления;
- Арифметические ошибки: Ошибки при выполнении операций сложения, вычитания, умножения и деления.

Анализ погрешностей

Анализ погрешностей – это процесс оценки, описания и управления ошибками, которые возникают в процессе измерений, вычислений и моделирования.

Основные этапы анализа погрешностей:

- 1. Идентификация источников погрешностей.
- 2. Классификация погрешностей.
- 3. Оценка величины погрешностей.
- 4. Влияние погрешностей на результаты.
- 5. Минимизация погрешностей.

Минимизация погрешностей

- Улучшение точности измерительных приборов;
- использование более точных численных методов и алгоритмов;
- применение методов фильтрации и сглаживания данных;
- повышение точности представления чисел в вычислительных системах.

Резюме

- Рассмотрена область применения вычислительной математики.
- Рассмотрены основные термины, теоремы и доказательства раздела дисциплины «Погрешности».