Issues in the Semantics of Programming Languages

Lecture 9

Objectives

By the end of this lecture you should be able to:

- Onstruct three-address code.
- Onstruct SDDs/SDTs for declarations.
- **3** Construct SDDs/SDTs for type conversion.
- **4** Construct SDDs/SDTs for overloaded operators.
- **5** Infer the type of an expression.

Outline

- Three-Address Code
- 2 Types and Declarations
- 3 Type Checking

Outline

- Three-Address Code
- 2 Types and Declarations
- Type Checking

 A source program is often translated into an intermediate three-address code.

- A sequence of instructions.
- Each instruction is
 - a (conditional or unconditional) jump;
- las exactly two operators, one of them are
- Each instruction has at most three addresses.
- An address is either (i) a name (identifier), a constant, or a compiler-generated temporary.

 A source program is often translated into an intermediate three-address code.

- A sequence of instructions.
- Each instruction is
 - a (conditional or unconditional) jump:
 - has exactly one operator; or
 - has exactly two operators, one of them an assignment.
- Each instruction has at most three addresses.
- An address is either (i) a name (identifier), a constant, or a compiler-generated temporary.

 A source program is often translated into an intermediate three-address code.

- A sequence of instructions.
- Each instruction is
 - a (conditional or unconditional) jump:
 - has exactly one operator; or
 - has exactly two operators, one of them an assignment
- Each instruction has at most three addresses.
- An address is either (i) a name (identifier), a constant, or a compiler-generated temporary.

 A source program is often translated into an intermediate three-address code.

- A sequence of instructions.
- Each instruction is
 - ① a (conditional or unconditional) jump;
 - 2 has exactly one operator; or
 - 3 has exactly two operators, one of them an assignment.
- Each instruction has at most three addresses.
- An address is either (i) a name (identifier), a constant, or a compiler-generated temporary.

 A source program is often translated into an intermediate three-address code.

- A sequence of instructions.
- Each instruction is
 - a (conditional or unconditional) jump;
 - 2 has exactly one operator; or
 - 3 has exactly two operators, one of them an assignment.
- Each instruction has at most three addresses
- An address is either (i) a name (identifier), a constant, or a compiler-generated temporary.

 A source program is often translated into an intermediate three-address code.

- A sequence of instructions.
- Each instruction is
 - 1 a (conditional or unconditional) jump;
 - has exactly one operator; or
 - 3 has exactly two operators, one of them an assignment
- Each instruction has at most three addresses.
- An address is either (i) a name (identifier), a constant, or a compiler-generated temporary.

 A source program is often translated into an intermediate three-address code.

- A sequence of instructions.
- Each instruction is
 - 1 a (conditional or unconditional) jump;
 - has exactly one operator; or
 - 6 has exactly two operators, one of them an assignment.
- Each instruction has at most three addresses
- An address is either (i) a name (identifier), a constant, or a compiler-generated temporary.

 A source program is often translated into an intermediate three-address code.

- A sequence of instructions.
- Each instruction is
 - 1 a (conditional or unconditional) jump;
 - 2 has exactly one operator; or
 - Shas exactly two operators, one of them an assignment.
- Each instruction has at most three addresses.
- An address is either (i) a name (identifier), a constant, or a compiler-generated temporary.

 A source program is often translated into an intermediate three-address code.

- A sequence of instructions.
- Each instruction is
 - 1 a (conditional or unconditional) jump;
 - has exactly one operator; or
 - 3 has exactly two operators, one of them an assignment.
- Each instruction has at most three addresses.
- An address is either (i) a name (identifier), a constant, or a compiler-generated temporary.

Simple Arithmetic Expression

Example

An expression DAG for a + a * (b-c) + (b-c) * d

© Aho et al. (2007)

While Loop

Example

Three-Address Code

Source Code	100:	t1 = i + 1
	101:	i = t1
do i = i + 1;	102:	t2 = i * 8
while(a[i] < v)	103:	t3 = a[t2]
	104:	t4 = t3 < v
	105:	if t4 goto 100

Outline

- Three-Address Code
- 2 Types and Declarations
- Type Checking

- Data types are classes of data.
- Each with a set of meaningful operations.
- Since such classes are typically infinite, types are represented by type expressions.
- Each expression is either a basic type or is formed by applying a type constructor to a type expression.

- Data types are classes of data.
- Each with a set of meaningful operations.
- Since such classes are typically infinite, types are represented by type expressions.
- Each expression is either a basic type or is formed by applying a type constructor to a type expression.

- Data types are classes of data.
- Each with a set of meaningful operations.
- Since such classes are typically infinite, types are represented by type expressions.
- Each expression is either a basic type or is formed by applying a type constructor to a type expression.

- Data types are classes of data.
- Each with a set of meaningful operations.
- Since such classes are typically infinite, types are represented by type expressions.
- Each expression is either a basic type or is formed by applying a type constructor to a type expression.

- A basic type (e.g. int, float, char, void)
- 2 A type name (e.g data Bit = 0 | I)
- A type variable
- **4 record** $\{e1 \ id_1, e_2 \ id_2, \dots, e_n \ id_n\}$
- **⑤** *e* [num]
- $\mathbf{6} \quad e_1 \longrightarrow e_2$
- $0 e_1 \times e_2$

- A basic type (e.g. int, float, char, void)
- 2 A type name (e.g data Bit = $0 \mid I$)
- A type variable
- **4 record** $\{e1 \ id_1, e_2 \ id_2, \dots, e_n \ id_n\}$
- **⑤** *e* [num]
- $\mathbf{6} \quad e_1 \longrightarrow e_2$
- $\mathbf{0}$ $e_1 \times e_2$

- A basic type (e.g. int, float, char, void)
- 2 A type name (e.g data Bit = $0 \mid I$)
- 3 A type variable
- **4 record** $\{e1 \ id_1, e_2 \ id_2, \dots, e_n \ id_n\}$
- $\mathbf{6} \ e_1 \longrightarrow e_2$
- $0 e_1 \times e_2$

- A basic type (e.g. int, float, char, void)
- 2 A type name (e.g data Bit = $0 \mid I$)
- 3 A type variable
- **4 record** $\{e1 \ id_1, e_2 \ id_2, \dots, e_n \ id_n\}$
- **6** *e* [*num*]
- $\mathbf{0} \ e_1 \longrightarrow e_2$
- $0 e_1 \times e_2$

- A basic type (e.g. int, float, char, void)
- 2 A type name (e.g data Bit = $0 \mid I$)
- 3 A type variable
- **4 record** $\{e1 \ id_1, e_2 \ id_2, \dots, e_n \ id_n\}$
- **6** *e* [*num*]
- $\mathbf{0} \ e_1 \longrightarrow e_2$
- $0 e_1 \times e_2$

- A basic type (e.g. int, float, char, void)
- 2 A type name (e.g data Bit = $0 \mid I$)
- 3 A type variable
- **4 record** $\{e1 \ id_1, e_2 \ id_2, \dots, e_n \ id_n\}$
- **6** *e* [num]
- $\mathbf{0}$ $e_1 \times e_2$

- A basic type (e.g. int, float, char, void)
- 2 A type name (e.g data Bit = $0 \mid I$)
- 3 A type variable
- **4 record** $\{e1 \ id_1, e_2 \ id_2, \dots, e_n \ id_n\}$
- **6** *e* [*num*]
- $\mathbf{0} \ e_1 \longrightarrow e_2$
- $\mathbf{0}$ $e_1 \times e_2$

Declarations

Example (Java-like Declarations)

```
\begin{array}{ccc} D & \longrightarrow & T \ \mathbf{id}; D \mid \varepsilon \\ T & \longrightarrow & BC \mid \mathbf{record} \mid D \mid S \\ B & \longrightarrow & \mathbf{int} \mid \mathbf{float} \\ C & \longrightarrow & [\mathbf{num}]C \mid \varepsilon \end{array}
```

Type Width

- The number of storage units (typically, bytes) may be determined at compile-time for static data structures.
- In such cases, it is possible to determine, from the type expression of a data structure, the number of these storage units.
- This number is referred to as the type width.
- We assume that type width is an integral number of storage units.
- We also assume that said storage units are allocated contiguously.

SDD for Basic and Array Types

Example

```
T \longrightarrow BC \qquad C.t = B.type; C.w = B.width \\ T.type = C.type; T.width = C.width \\ B \longrightarrow \text{int} \qquad B.type = integer; B.width = 4 \\ B \longrightarrow \text{float} \qquad B.type = float; B.width = 8 \\ C \longrightarrow [\text{num}]C_1 \qquad C_1.t = C.t; C_1.w = C.w \\ C.type = array(\text{num.value}, C_1.type) \\ C.width = \text{num.value} \times C_1.width \\ C \longrightarrow \varepsilon \qquad C.type = C.t; C.width = C.w
```

Simple Array Expression

Example

Annotated parse tree for int [2] [3]

Semantics

Memory Allocation to Variables

- Physical memory allocation to variables is done at run-time by the OS.
- At compile-time, only relative addresses are assigned.
- Relative addresses are managed by maintaining a variable offset which carries the address of the next variable to be created relative to a virtual address space.

Memory Allocation to Variables

- Physical memory allocation to variables is done at run-time by the OS.
- At compile-time, only relative addresses are assigned.
- Relative addresses are managed by maintaining a variable offset which carries the address of the next variable to be created relative to a virtual address space.

Memory Allocation to Variables

- Physical memory allocation to variables is done at run-time by the OS.
- At compile-time, only relative addresses are assigned.
- Relative addresses are managed by maintaining a variable offset which carries the address of the next variable to be created relative to a virtual address space.

Assigning Relative Addresses

Example (SDT)

```
\begin{array}{cccc} P & \longrightarrow & \{\textit{offset} = 0\} \ D \\ D & \longrightarrow & T \ \textbf{id}; & & \{\textit{top.put}(\textbf{id}.\textit{lexeme}, T.\textit{type}, \textit{offset}) \\ & & \textit{offset} = \textit{offset} + T.\textit{width}\} \\ & \longrightarrow & D_1 \end{array}
```

Records

- Record types are implemented by objects of the form record(t), where t is a symbol table.
- Said symbol table contains entries for each field of the record object.
- An entry contains the name, type, and relative address of a field.

Records

- Record types are implemented by objects of the form record(t), where t is a symbol table.
- Said symbol table contains entries for each field of the record object.
- An entry contains the name, type, and relative address of a field.

Records

- Record types are implemented by objects of the form record(t), where t is a symbol table.
- Said symbol table contains entries for each field of the record object.
- An entry contains the name, type, and relative address of a field.

Record SDT

Example

```
T \longrightarrow \mathbf{record} \{ & \{ \mathit{Env.push}(top); top = \mathbf{new} \ \mathit{Table}() \\ & \mathit{Stack.push}(o\mathit{ffset}); \mathit{offset} = 0 \} \\ & D \} & \{ \mathit{T.type} = \mathit{record}(top); \mathit{T.width} = \mathit{offset} \\ & \mathit{top} = \mathit{Env.pop}(); \mathit{offset} = \mathit{Stack.pop}() \} \\ \end{cases}
```

Outline

- Three-Address Code
- Types and Declarations
- Type Checking

- Type checking consists in two steps:
 - Assigning a type expression to each program component.
 - 2 Checking that these type expressions observe a number of logical rules constituting the type system of the language.
- If the target code carries the type of an expression along with its value, type checking can be done at run-time.
- An implementation of a language is strongly-typed if type-checking could be done at compile-time.

- Type checking consists in two steps:
 - **1** Assigning a type expression to each program component.
 - 2 Checking that these type expressions observe a number of logical rules constituting the type system of the language.
- If the target code carries the type of an expression along with its value, type checking can be done at run-time.
- An implementation of a language is strongly-typed if type-checking could be done at compile-time.

- Type checking consists in two steps:
 - **1** Assigning a type expression to each program component.
 - 2 Checking that these type expressions observe a number of logical rules constituting the type system of the language.
- If the target code carries the type of an expression along with its value, type checking can be done at run-time.
- An implementation of a language is strongly-typed if type-checking could be done at compile-time.

- Type checking consists in two steps:
 - **1** Assigning a type expression to each program component.
 - 2 Checking that these type expressions observe a number of logical rules constituting the type system of the language.
- If the target code carries the type of an expression along with its value, type checking can be done at run-time.
- An implementation of a language is strongly-typed if type-checking could be done at compile-time.

- Type checking consists in two steps:
 - **1** Assigning a type expression to each program component.
 - 2 Checking that these type expressions observe a number of logical rules constituting the type system of the language.
- If the target code carries the type of an expression along with its value, type checking can be done at run-time.
- An implementation of a language is strongly-typed if type-checking could be done at compile-time.

- Type checking can be done by either synthesis or inference.
- A rule for type synthesis builds up the type of an expression from the type of its sub-expressions.
 - This requires that identifiers have declared their types before use.

Example

if f has type $s \longrightarrow t$ and x has type s, then f(x) has type t.

• A rule for type inference infers the type of an expression from the way it is used.

Example (α and β are type variables

- Type checking can be done by either synthesis or inference.
- A rule for type synthesis builds up the type of an expression from the type of its sub-expressions.
 - This requires that identifiers have declared their types before use.

Example

if f has type $s \longrightarrow t$ and x has type s, then f(x) has type t

• A rule for type inference infers the type of an expression from the way it is used.

xample (lpha and eta are type variable:

- Type checking can be done by either synthesis or inference.
- A rule for type synthesis builds up the type of an expression from the type of its sub-expressions.
 - This requires that identifiers have declared their types before use.

Example

if f has type $s \longrightarrow t$ and x has type s, then f(x) has type t

• A rule for type inference infers the type of an expression from the way it is used.

- Type checking can be done by either synthesis or inference.
- A rule for type synthesis builds up the type of an expression from the type of its sub-expressions.
 - This requires that identifiers have declared their types before use.

Example

if f has type $s \longrightarrow t$ and x has type s, then f(x) has type t.

• A rule for type inference infers the type of an expression from the way it is used.

- Type checking can be done by either synthesis or inference.
- A rule for type synthesis builds up the type of an expression from the type of its sub-expressions.
 - This requires that identifiers have declared their types before use.

Example

if f has type $s \longrightarrow t$ and x has type s, then f(x) has type t.

• A rule for type inference infers the type of an expression from the way it is used.

Example (lpha and eta are type variables)

- Type checking can be done by either synthesis or inference.
- A rule for type synthesis builds up the type of an expression from the type of its sub-expressions.
 - This requires that identifiers have declared their types before use.

Example

if f has type $s \longrightarrow t$ and x has type s, then f(x) has type t.

• A rule for type inference infers the type of an expression from the way it is used.

Example (α and β are type variables)

- Some programming languages allow changing the type of an expression.
- Valid changes are governed by rules of the type system.
- Conversions done implicitly by the compiler are referred to as coercions.
- Conversions explicitly forced by the user are referred to as casts.
- Coercions typically take place by converting from a type to a *wider* type; such conversions are information-preserving.
- Casts can also convert from a type to a *narrower* type; such conversions may compromise precision.

- Some programming languages allow changing the type of an expression.
- Valid changes are governed by rules of the type system.
- Conversions done implicitly by the compiler are referred to as coercions.
- Conversions explicitly forced by the user are referred to as casts.
- Coercions typically take place by converting from a type to a *wider* type; such conversions are information-preserving.
- Casts can also convert from a type to a *narrower* type; such conversions may compromise precision.

- Some programming languages allow changing the type of an expression.
- Valid changes are governed by rules of the type system.
- Conversions done implicitly by the compiler are referred to as coercions.
- Conversions explicitly forced by the user are referred to as casts.
- Coercions typically take place by converting from a type to a wider type; such conversions are information-preserving.
- Casts can also convert from a type to a *narrower* type; such conversions may compromise precision.

- Some programming languages allow changing the type of an expression.
- Valid changes are governed by rules of the type system.
- Conversions done implicitly by the compiler are referred to as coercions.
- Conversions explicitly forced by the user are referred to as casts.
- Coercions typically take place by converting from a type to a *wider* type; such conversions are information-preserving.
- Casts can also convert from a type to a *narrower* type; such conversions may compromise precision.

- Some programming languages allow changing the type of an expression.
- Valid changes are governed by rules of the type system.
- Conversions done implicitly by the compiler are referred to as coercions.
- Conversions explicitly forced by the user are referred to as casts.
- Coercions typically take place by converting from a type to a *wider* type; such conversions are information-preserving.
- Casts can also convert from a type to a *narrower* type; such conversions may compromise precision.

- Some programming languages allow changing the type of an expression.
- Valid changes are governed by rules of the type system.
- Conversions done implicitly by the compiler are referred to as coercions.
- Conversions explicitly forced by the user are referred to as casts.
- Coercions typically take place by converting from a type to a wider type; such conversions are information-preserving.
- Casts can also convert from a type to a *narrower* type; such conversions may compromise precision.

Java Conversion Rules

Coercion

- Coercion uses two important functions.
 - ① $max(t_1, t_2)$ returns the least-upper bound of t_1 and t_2 in the widening hierarchy.
 - ② widen(a, t, w) returns an address resulting from widening address a from type t to type w. If t = w, a is returned, else a new address is generated.

Coercion

- Coercion uses two important functions.
 - $max(t_1, t_2)$ returns the least-upper bound of t_1 and t_2 in the widening hierarchy.
 - 2 widen(a, t, w) returns an address resulting from widening address a from type t to type w. If t = w, a is returned, else a new address is generated.

Pseudo-Code for Widening

```
Addr\ widen(Addr\ a,\ Type\ t,\ Type\ w)
       if (t=w) return a:
      else if (t = integer \text{ and } w = float) {
              temp = \mathbf{new} \ Temp():
              gen(temp'=''(float)'a):
              return temp;
      else error;
               © Aho et al. (2007)
```

Addition

Example

$$E \longrightarrow E_1 + E_2$$
 {E.type = max(E₁.type, E₂.type)
 $a_1 = widen(E_1.addr, E_1.type, E.type)$
 $a_2 = widen(E_2.addr, E_2.type, E.type)$
 $E.addr = \mathbf{new} \ temp()$
 $gen(E.addr' = a_1' + a_2)$

Overloaded Functions and Operators

- Type conversion, together with appropriate rules, may be used to accommodate function and operator overloading.
- The following rule resolves overloading when the type of an expression is determined by the types of operands.

```
if f can have type s_i \longrightarrow t_i, for 1 \le i \le n, where s_i \ne s_j for i \ne j
and x is of type s_k, for some 1 \le k \le n
then f(x) is of type t_k
```

Overloaded Functions and Operators

- Type conversion, together with appropriate rules, may be used to accommodate function and operator overloading.
- The following rule resolves overloading when the type of an expression is determined by the types of operands.

```
if f can have type s_i \longrightarrow t_i, for 1 \le i \le n, where s_i \ne s_j for i \ne j and x is of type s_k, for some 1 \le k \le n then f(x) is of type t_k
```

Overloaded Functions and Operators

- Type conversion, together with appropriate rules, may be used to accommodate function and operator overloading.
- The following rule resolves overloading when the type of an expression is determined by the types of operands.

if f can have type $s_i \longrightarrow t_i$, for $1 \le i \le n$, where $s_i \ne s_j$ for $i \ne j$ and x is of type s_k , for some $1 \le k \le n$ then f(x) is of type t_k

- A function is polymorphic if it can be executed with arguments of different types.
- Note that this is not the same as overloading.
- Polymorphic functions often have type variables in their type expressions.
- The presence of such functions complicate type checking.

- A function is polymorphic if it can be executed with arguments of different types.
- Note that this is not the same as overloading.
- Polymorphic functions often have type variables in their type expressions.
- The presence of such functions complicate type checking

- A function is polymorphic if it can be executed with arguments of different types.
- Note that this is not the same as overloading.
- Polymorphic functions often have type variables in their type expressions.
- The presence of such functions complicate type checking.

- A function is **polymorphic** if it can be executed with arguments of different types.
- Note that this is not the same as overloading.
- Polymorphic functions often have type variables in their type expressions.
- The presence of such functions complicate type checking.

ML Lists

Example

```
fun length(x) = if null(x) then 0 else length(tl(x)) + 1
```

What is the type of length?

- For function definitions id1(id2) = E.

 - 2 Let $id2:\alpha$.
 - \bigcirc Infer a type for E.
 - 4 Bind α and β accordingly.
- For function calls E1(E2).
 - Infer a type for $E1 \longrightarrow t$, for example
 - Infer a type for E2—s', for example
 - ① Unify s and s'—suppose the result is μ
 - ① If $\mu = fail$, then signal an error, else the inferred type of E1(E2) is $\mu(t)$.

- For function definitions id1(id2) = E.
 - **1** Let $id1: \alpha \longrightarrow \beta$.
 - **2** Let $id2:\alpha$.
 - \bigcirc Infer a type for E.
 - 4 Bind α and β accordingly.
- For function calls E1(E2).
 - Infer a type for $E1 \longrightarrow t$, for example
 - \bigcirc Infer a type for E2-s', for example
 - ① Unify s and s'—suppose the result is μ
 - ① If $\mu = fail$, then signal an error, else the inferred type of E1(E2) is $\mu(t)$.

- For function definitions id1(id2) = E.
 - **1** Let $id1: \alpha \longrightarrow \beta$.
 - **2** Let $id2 : \alpha$.
 - \bigcirc Infer a type for E.
 - 4 Bind α and β accordingly.
- For function calls E1(E2).
 - Infer a type for $E1 \longrightarrow t$, for example.
 - Infer a type for E2—s', for example
 - Only s and s'—suppose the result is μ
 - ① If $\mu = fail$, then signal an error, else the inferred type of E1(E2) is $\mu(t)$.

- For function definitions id1(id2) = E.
 - **1** Let $id1: \alpha \longrightarrow \beta$.
 - **2** Let $id2 : \alpha$.
 - \bigcirc Infer a type for E.
 - **4** Bind α and β accordingly.
- For function calls E1(E2).
 - Infer a type for $E1 \longrightarrow t$, for example.
 - ② Infer a type for E2—s', for example
 - ① Unify s and s'—suppose the result is μ
 - ① If $\mu = fail$, then signal an error, else the inferred type of E1(E2) is $\mu(t)$.

- For function definitions id1(id2) = E.

 - **2** Let $id2 : \alpha$.
 - \bigcirc Infer a type for E.
 - **4** Bind α and β accordingly.
- For function calls E1(E2).
 - **1** Infer a type for $E1 \longrightarrow t$, for example,
 - \bigcirc Infer a type for E2-s', for example.
 - ① Unify s and s'—suppose the result is μ
 - ① If $\mu = fail$, then signal an error, else the inferred type of E1(E2) is $\mu(t)$.

- For function definitions id1(id2) = E.
 - **1** Let $id1: \alpha \longrightarrow \beta$.
 - **2** Let $id2: \alpha$.
 - \bigcirc Infer a type for E.
 - **4** Bind α and β accordingly.
- For function calls E1(E2).
 - ① Infer a type for E1— $s \longrightarrow t$, for example.
 - 2 Infer a type for E2—s', for example
 - 3 Unify s and s'—suppose the result is μ
 - **4** If $\mu = fail$, then signal an error, else the inferred type of E1(E2) is $\mu(t)$.

- For function definitions id1(id2) = E.
 - **1** Let $id1: \alpha \longrightarrow \beta$.
 - **2** Let $id2 : \alpha$.
 - **1** Infer a type for *E*.
 - **4** Bind α and β accordingly.
- For function calls E1(E2).
 - **1** Infer a type for E1— $s \longrightarrow t$, for example.
 - 2 Infer a type for E2-s', for example
 - 3 Unify s and s'—suppose the result is μ
 - ① If $\mu = fail$, then signal an error, else the inferred type of E1(E2) is $\mu(t)$.

- For function definitions id1(id2) = E.
 - **1** Let $id1: \alpha \longrightarrow \beta$.
 - **2** Let $id2: \alpha$.
 - **1** Infer a type for *E*.
 - **4** Bind α and β accordingly.
- For function calls E1(E2).
 - **1** Infer a type for E1— $s \longrightarrow t$, for example.
 - 2 Infer a type for E2-s', for example.
 - **1** Unify s and s'—suppose the result is μ
 - (4) If $\mu = fail$, then signal an error, else the inferred type of E1(E2) is $\mu(t)$.

- For function definitions id1(id2) = E.
 - **1** Let $id1: \alpha \longrightarrow \beta$.
 - **2** Let $id2: \alpha$.
 - \bullet Infer a type for E.
 - **4** Bind α and β accordingly.
- For function calls E1(E2).
 - **1** Infer a type for E1— $s \longrightarrow t$, for example.
 - 2 Infer a type for E2-s', for example.
 - **3** Unify s and s'—suppose the result is μ .
 - **4** If $\mu = fail$, then signal an error, else the inferred type of E1(E2) is $\mu(t)$.

- For function definitions id1(id2) = E.
 - **1** Let $id1: \alpha \longrightarrow \beta$.
 - **2** Let $id2: \alpha$.
 - **1** Infer a type for *E*.
 - **4** Bind α and β accordingly.
- For function calls E1(E2).
 - **1** Infer a type for E1— $s \longrightarrow t$, for example.
 - 2 Infer a type for E2-s', for example.
 - **3** Unify s and s'—suppose the result is μ .
 - If $\mu = fail$, then signal an error, else the inferred type of E1(E2) is $\mu(t)$.

ML Lists, Again

LINE	EXPRESSION	;	TYPE	UNIFY
1)	length	;	$\beta o \gamma$	
2)	x	:	β	
3)	if	:	$boolean \times \alpha_i \times \alpha_i \rightarrow \alpha_i$	
4)	null	:	$list(\alpha_n) \rightarrow boolean$	
5)	null(x)	:	boolean	$list(\alpha_n) = \beta$
6)	Ó	:	integer	$\alpha_i = integer$
7)	+	:	$integer \times integer \rightarrow integer$	50
8)	tl	:	$list(\alpha_t) \rightarrow list(\alpha_t)$	
9)	tl(x)	:	$list(\alpha_t)$	$list(\alpha_t) = list(\alpha_n)$
10)	length(tl(x))	:	γ	$\gamma = integer$
11)	1	:	integer	9
12)	length(tl(x)) + 1	:	integer	
13)	if (···)	:	integer	

© Aho et al. (2007)

