Human Perception and Capabilities

Lecture 3-4

Lab 1 comments

- My observations: most people used Excel
 - Jupyter/matplotlib/seaborn encouraged options
- Many possibilities for what to plot

Studying the Human

- HCI: **Human** Computer Interaction
- Early HCI work took findings/approaches from Psychology to apply to interactions with computers
 - Perception
 - Cognition
 - Motor function
- Used to guide system development
- Continue to measure, refine, experiment

Time Scale of Human Action

- Social Band
- Rational Band
- Cognitive Band
- Biological Band
 - Less relevant for most HCI research/practice you will be part of

Scale (sec)	Time Units	System	World (theory)
10 ⁷	Months		200141
10 ⁶	Weeks		SOCIAL BAND
10 ⁵	Days		BAND
10 ⁴	Hours	Task	5.5.0
10 ³	10 min	Task	RATIONAL BAND
10 ²	Minutes	Task	5, 1175
10 ¹	10 sec	Unit task	00011111/5
10 ⁰	1 sec	Operations	COGNITIVE BAND
10 ⁻¹	100 ms	Deliberate act	5, 1175
10 ⁻²	10 ms	Neural circuit	DIOLOGICAL
10 ⁻³	1 ms	Neuron	BIOLOGICAL BAND
10 ⁻⁴	100 μs	Organelle	

Cognitive Band

- 100 milliseconds to 10 seconds
 - Pointing devices, selection techniques, text entry, gestural input
 - Times based on reaction times and biomechanical properties
- Consider how users perform multitouch rotation gestures
 - Does the angle of rotation impact performance?
 - Do users pivot from the thumb or rotate multiple touchpoints?
 - Does the starting angle impact performance?

For reference: https://dl.acm.org/citation.cfm?id=2481423

Rational Band

- Occupy minutes or hours
 - Tasks, like web site use, user search strategies, OS navigation
 - Users must experience an interface and make decisions about their next actions
- Consider an evaluation of user search behavior
 - How often do users "branch" their search results?
 - How many "branches" do users generate during a typical search?
 - Why do users establish a new "branch"

For reference: https://dl.acm.org/citation.cfm?id=2124322

Social Band

- Days, weeks, months
 - Activities such as as workplace habits, social networking, online dating, privacy
 - Require development of social bonds or establishing norms/ standards
- Consider a study on how people develop relationships in online dating
 - Interviews with members of the community
 - Participation/observation in active forums
- Qualitative methods dominate
 - Although often opportunity for mixed methods studies/data analytics too
 - For Reference: https://theblog.okcupid.com

For reference: https://dl.acm.org/citation.cfm?id=2702417

Model of Human Computer Interaction

FIGURE 2.2

Human factors view of the human operator in a work environment.

(After Kantowitz and Sorkin, 1983, p. 4)

Human Senses

Vision

- Light passes through the lens
- The lens focuses light into an image projected onto the retina
- The retina converts visible light into neurological signals
- The centre of the retina, the fovea, processes details

Properties of Vision

- Frequency of visible light
- Intensity
 - Eye light sensitivity varies by wavelength
- Fixations and Saccades
 - Fixations processes detail while the eyes are still
 - Saccades are rapids movements (30-120 ms) of the eyes to a new position
- Understanding human eye motion is important to understand how content is viewed
- Scanpath
 - In eye tracking studies, a sequence of fixations & saccades

Eye-Tracking

Hearing

- Sounds are perceived from cyclic fluctuation of pressure
 - Typically in air
- Loudness
 - Subjective perception of sound pressure level
- Pitch
 - Subjective perception of frequency
- Timbre
 - Harmonic structure to be described as richness or brightness
- Envelope
 - Changes in the subjective properties over time

Touch

- Touch / haptic
 - Through vibration, air, and ultrasound
 - For reference: https://dl.acm.org/citation.cfm?id=2663280
- Temperature
 - For reference: https://dl.acm.org/citation.cfm?id=1979316
- Pain
 - We try to avoid this in HCI
- Proprioception
 - The ability to sense the position of your body and limbs

Smell

- Olfaction
 - The ability to perceive odours
- HCI has explored scent through scent "cubes"
 - fans that disperse scent, and pressurized delivery systems
- Olfoto: tagging photos with smells vs text
 - For reference:

https://dl.acm.org/doi/abs/10.1145/1124772.1124869

Taste

- Yes, really!
 - Chemical reception of sweet, salty, umami, bitter, and sour
- TastyFloats
 - Levitate food onto user's tongue
 - For reference: https://dl.acm.org/citation.cfm?id=3134123
- Summary of multi-sense interactions
 - For reference: https://dl.acm.org/citation.cfm?id=3134123

Figure 1. Examples of levitated food morsels: a, b) Acoustic levitation of droplets of wine; c) Wine and blue cheese; d) Bread, lettuce, meat and bread; e) and a raspberry grain.

Human Responses

Limbs

- Input for systems is primarily achieved by moving the limbs in 3D space
 - Think of typing, using a mouse, using a trackpad
 - We use our limbs to generate a signal that is interpreted as input

Voice

 Speech recognition has come a long way, but we still face challenges of segmentation, recovery from errors, and information throughput

Eyes

- Selection based in Gaze is a common approach in VR, and becoming more common in less instrumented environments as well
 - For example, consider common phone unlocking techniques
- Most info probably also coming in through vision, so eyes doing double tasks

Human Brain

- Connects the sensors and responders
- Different processes/capabilities
 - Perception
 - Cognition
 - Memory

Perception

- First stage of processing in the brain
 - Associations and meanings take shape
- Just Noticeable Difference
 - Below what threshold can humans no longer perceive difference?

For reference: https://dlnext.acm.org/doi/abs/10.1145/2556288.2557033

Perception and Ambiguity

- Illusions work when our perception fills the gaps in ambiguous stimuli
 - Ponzo lines demonstrate how our depth perception changes how we look at the two black lines
- There are illusions that can trick our visual, aural, and haptic senses

Cognition

- Human process of conscious intellectual activity
 - Thinking, reasoning, deciding

Memory

- Ability to store, retain, and recall information
- Short term memory capacity 7 \pm 2
 - Has often been used to guide UI design, eg number menu items
 - Might be misunderstanding the original intent
 - Shorter menus probably still good though!

Human Performance

Human Performance

- Speed Accuracy Tradeoff tasks completed faster are more error prone
 - People often prioritise speed or accuracy differently based on context
- Most of early HCI measured this, but still important and studied today
- E.g. performance with various input devices
 - But also augment overall human performance, e.g. find answers to questions with visualisation tool vs looking at raw numbers

Reaction Time

- Different sensory modalities have different reaction times
 - 150ms audio
 - 200ms visual
 - 300ms smell
 - 700ms pain
- Visual search is another example of reaction which includes more complex cognition that simply responding to stimuli

Skilled Behaviour

- In most tasks beyond simple responses, human performance can increase with practice
 - Like playing darts and playing chess
- Playing darts requires training of your sensor/ motor skill
- Playing chess requires training of your mental skill
- Some tasks require both

Attention

- When task performance degrades with performed simultaneously with another, we can say that task requires attention
 - Consider walking and talking
 - Consider reading and talking
 - Driving and talking?

Attention

- Divided attention is concentrating/performing more than one task at a time
 - Typically this will degrade performance, which is not an option in safety critical contexts like driving
- Focused attention is attending to one task to the exclusion of all others
 - The ability to ignore external events not always possible or feasible
 - In a noisy room, you might be able to have a conversation but are likely to be distracted at times.
- Sensory modalities are often thought of as channels, but in practice it is not so simple

Human Error

- Error is a discrete event in a task where the outcome is incorrect or deviates from the desired outcome
- In practice, this kind of coarse measure of error provides a limited understanding
 - Consider the Key Stroke dataset
 - "error" in this sense isn't even reported in this dataset, although it's simple to calculate
- We are often trying to measure something more complicated than % of errors