Artificial Intelligence

Lecture 10: Support Vector Machines

Credit: Ansaf Salleb-Aouissi, and "Artificial Intelligence: A Modern Approach", Stuart Russell and Peter Norvig, and "The Elements of Statistical Learning", Trevor Hastie, Robert Tibshirani, and Jerome Friedman, and "Machine Learning", Tom Mitchell.

Support Vector Machines (SVMs)

- Refer to a supervised learning algorithm that builds mainly on three ideas:
 - large margin classification
 - regularization (for data not linearly separable)
 - feature transformation and kernels (to go beyond linear classifiers)
- classification performance is often very good
- Given:
 - training set $\{(x_1, y_1), ..., (x_n, y_n)\}$
 - $\mathbf{x}_i \in \mathbb{R}^d$: input
 - $y_i \in \{-1, +1\}$: output (label)

Outline

• Linear SVMs

• Data Not Linearly Separable/Regularization

Non-Linearly SVMs/Kernels

用kernel trick 从高维线性分类后非线性 映射回低维

Linear SVMs

Linear Models

•
$$\mathbf{w} = (w_1, \dots, w_d), \mathbf{x} = (x_1, \dots, x_d) \text{ and } b = -\theta$$

$$y = sign(\langle \mathbf{w}, \mathbf{x} \rangle + b)$$

• the decision boundary is the hyperplane

$$f(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle + b = 0$$

• decision rule: assign x to class 1 iff $f(x) \ge 0$

Multiple Solutions

Which decision boundary to choose?

Optimal Margin Classifier

find classifier with the maximum margin

- the minimum distance between a data point to the decision boundary is maximized
- intuitively, the safest and most robust
- called linear support vector machines
- support vectors: datapoints the margin pushes up against

Mathematical Specification

- decision boundary: $\langle w, x \rangle + b = 0$
- plus-plane: hyperplane touching some positive examples, parallel to the decision boundary

$$<$$
w, **x** $>+b=c$ for some constant c

• minus-plane: hyperplane touching some negative examples, taking the form below since decision boundary is half way between plus and minus planes:

$$<$$
w, **x** $>$ + b =- c

Mathematical Specification

- divide both sides by c, the planes remain the same
- rename \mathbf{w}/c as \mathbf{w} and b/c as b, we have
 - decision boundary: $\langle w, x \rangle + b = 0$
 - plus-plane: < w, x> + b = 1
 - minus-plane: <w, x>+b=-1
- w is perpendicular to the 3 planes, because for any two points u and v on the decision boundary, we have

$$<$$
w, **u-v** $>$ =0

What is Margin?

• a point x⁻ on minus plane and x⁺ on plus plane closest to x⁻ the line from x^- to x^+ perpendicular to 3 planes, so

$$\mathbf{x}^+ - \mathbf{x}^- = \lambda \mathbf{w}$$
 for some $\lambda \in \mathbb{R}$

- by <**w**, **x**⁺>+*b*=1 and <**w**, **x**⁻>+*b*=-1, we have $\lambda = \frac{2}{\|\mathbf{w}\|_2^2}$ the distance: $M := \|\mathbf{x}^+ \mathbf{x}^-\|_2 = \|\lambda\mathbf{w}\|_2 = \frac{2}{\|\mathbf{w}\|_2}$

Optimal Margin Classifier

- training set $\{(x_1, y_1), ..., (x_n, y_n)\}$
- find **w** and *b* to

$$\max \frac{2}{\|\mathbf{w}\|_2} \quad \text{s.t. } \langle \mathbf{w}, \mathbf{x}_i \rangle + b \begin{cases} \geq 1, & \text{if } y_i = 1 \\ \leq -1, & \text{if } y_i = -1. \end{cases}$$
 $(i = 1, \dots, n)$

The Primal Optimization Problem

equivalent constrained optimization problem: find w, b to

$$\min_{\mathbf{w}} \frac{\|\mathbf{w}\|_2^2}{2} \quad \text{subject to } y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \geq 1, \ \forall i$$

- one constraint for each data point
- a quadratic programming (QP) problem
 - there are commercial softwares for solving it
- however, we will study the dual optimization problem
 - allow SVM to work efficiently with high dimensional data
 - which are necessary when dealing with data sets that are not linearly separable

Lagrangian

• The Lagrangian of the primal problem is

$$\mathcal{L}(\mathbf{w}, b, \alpha) = \frac{\|\mathbf{w}\|_2^2}{2} - \sum_{i=1}^n \alpha_i (y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - 1)$$

- where $\alpha = (\alpha_1, ..., \alpha_n) \ge 0$ are the Lagrangian multipliers
- strong duality: if data linearly separable, e.g, there is a w and b satisfying all constraints, then

$$\max_{\alpha:\alpha_i\geq 0} \min_{\mathbf{w},b} \mathcal{L}(\mathbf{w},b,\alpha) = \min_{\mathbf{w},b} \max_{\alpha:\alpha_i\geq 0} \mathcal{L}(\mathbf{w},b,\alpha)$$

the min and max operators are swapped!

The Dual Optimization Problem

• for a given α , define $\mathcal{L}_d(\alpha) = \min_{\mathbf{w},b} \mathcal{L}(\mathbf{w},b,\alpha)$

• the dual optimization problem:

$$\max_{\alpha:\alpha_i\geq 0} \mathcal{L}_d(\alpha) = \max_{\alpha:\alpha_i\geq 0} \min_{\mathbf{w},b} \mathcal{L}(\mathbf{w},b,\alpha)$$

• for fixed α , first solve $\min_{\mathbf{w},b} \mathcal{L}(\mathbf{w},b,\alpha)$:

$$\begin{cases} \frac{\partial \mathcal{L}}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i = 0 \\ \frac{\partial \mathcal{L}}{\partial b} = -\sum_{i=1}^{n} \alpha_i y_i = 0 \end{cases} \implies \begin{cases} \mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i \\ \sum_{i=1}^{n} \alpha_i y_i = 0 \end{cases}$$

The Dual Optimization Problem

• plug optimal w and constraint for fixed α to Lagrangian, we get dual problem in terms of dual variables

$$\max_{\alpha} W(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$

$$\text{s.t. } \alpha_i \ge 0, \sum_{i=1}^n \alpha_i y_i = 0$$

- quadratic programming problem
- can be solved numerically by any general purpose optimization packages,
 e.g., MATLAB optimization toolbox
- finds **global optimal** (convex)

Support Vectors

- KKT complementarity condition: $\alpha_i [y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) 1] = 0$
- patterns for which $y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) > 1$ $\alpha_i = 0$ (inactive constraints): \mathbf{x}_i irrelevant
- patterns that have $\alpha_i > 0$ (active constraints) $y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) = 1$: lie either on margins
- solutions are **determined** by examples on the margin (**support vectors**): if all other training points are removed and training was repeated, the **same** hyperplane is found

How to Find b?

• if we solve the QP problem on page 14, we get optimal value for α^* and w

$$\mathbf{w}(\alpha^*) = \sum_{i \in S} \alpha_i^* y_i \mathbf{x}_i$$

- where $S = \{i : \alpha_i^* > 0, i = 1, \dots, n\}$ is the set of support vectors.
- how about optimal value for b?
- use again the KKT complementarity condition:
- any support vector $(\mathbf{x}_s, \mathbf{y}_s)$ satisfies $y_s(\langle \mathbf{w}(\alpha^*), \mathbf{x}_s \rangle + b(\alpha^*)) = 1$
- from which we know

$$b(\alpha^*) = \frac{1}{|S|} \sum_{s \in S} \left(\frac{1}{y_s} - \sum_{i \in S} \alpha_i^* y_i \langle \mathbf{x}_i, \mathbf{x}_s \rangle \right)$$

Prediction

- new instance x in which class?
- answer:

$$sign(\langle \mathbf{w}(\alpha^*), \mathbf{x} \rangle + b(\alpha^*))$$

• recall that $\mathbf{w}(\alpha) = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$, then

$$\operatorname{sign}(\langle \mathbf{w}(\alpha^*), \mathbf{x} \rangle + b(\alpha^*)) = \operatorname{sign}\left(\sum_{i \in S} \alpha_i^* y_i \langle \mathbf{x}_i, \mathbf{x} \rangle + b(\alpha^*)\right)$$

Data Not Linearly Separable/Regularization

When Data Not Linearly Separable

• if data **linearly separable**, find a plane that separates the two class with 0 error

 $\min_{\mathbf{w}} \frac{\|\mathbf{w}\|_2^2}{2} \quad \text{s.t. } y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \ge 1, \ \forall i$

- if data **not linearly separable**, try to find a plane separating two classes with **minimal** errors
- introduce positive slack variables ξ_i , the summation of which is an upper bound on the number of training errors

$$y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \ge 1 - \xi_i \quad \xi_i \ge 0 \ \forall i$$

• penalize $\sum_{i} \xi_{i}$ in the objective function

$$\min_{\mathbf{w}, \xi_i \ge 0} \frac{1}{2} \|\mathbf{w}\|_2^2 + C \sum_{i=1}^n \xi_i \quad \text{s.t. } y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \ge 1 - \xi_i$$

• the larger the constant *C*, the more we want to minimize error, the more complex the **decision boundary**

Lagrangian

• Lagrangian: with dual variables $\alpha_i \geq 0, \mu_i \geq 0$

$$\mathcal{L}(\mathbf{w}, b, \xi, \alpha, r) = \frac{\|\mathbf{w}\|_{2}^{2}}{2} + C \sum_{i=1}^{n} \xi_{i} - \sum_{i=1}^{n} \alpha_{i} \left(y_{i} \left(\langle \mathbf{w}, \mathbf{x}_{i} \rangle + b \right) - 1 + \xi_{i} \right) - \sum_{i=1}^{n} \mu_{i} \xi_{i}$$

• Solving the dual: $\min_{\mathbf{w},b,\xi} \mathcal{L}(\mathbf{w},b,\xi,\alpha,\mu)$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = 0 \implies \mathbf{w} = \sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}$$

$$\frac{\partial \mathcal{L}}{\partial b} = 0 \implies \sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\frac{\partial \mathcal{L}}{\partial \xi_{i}} = 0 \implies C - \alpha_{i} - \mu_{i} = 0$$

Dual Problem

• Dual: still a QP problem:
$$\max_{\alpha} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$

s.t.
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
 and $0 \le \alpha_i \le C$, $\forall i$

KKT condition

$$\begin{cases} \alpha_i \ge 0, \mu_i \ge 0 \\ \xi_i \ge 0, \mu_i \xi_i = 0, \\ y_i f(\mathbf{x}_i) - 1 + \xi_i \ge 0, \\ \alpha_i (y_i f(\mathbf{x}_i) - 1 + \xi_i) = 0. \end{cases}$$

- $\forall (\mathbf{x}_i, y_i), \text{ either } \alpha_i = 0 \text{ or } y_i f(\mathbf{x}_i) = 1 \xi_i$
- $ightharpoonup \alpha_i = 0 \Rightarrow (\mathbf{x}_i, y_i)$ has no influence on f
- $\sim \alpha_i > 0 \Rightarrow y_i f(\mathbf{x}_i) = 1 \xi_i$ support vector
- $ightharpoonup \alpha_i < C \Rightarrow \mu_i > 0$ and $\xi_i = 0$ (lie on margin)
- $ightharpoonup \alpha_i = C \Rightarrow \mu_i = 0$. moreover, if $\xi_i \leq 1$, (\mathbf{x}_i, y_i) lie within margin, otherwise misclassified

the prediction model only depend on support vectors!

Non-Linearly SVMs/Kernels

Nonlinear Decision Boundary & Feature Transformation

Complex in low dimensions

Simple in higher dimensions

- mapping from the input space \mathbb{R}^d (attributes) to a feature space \mathcal{H} (features) ψ : $\mathbb{R}^d \to \mathcal{H}$, $\mathbf{x} \to \psi(\mathbf{x})$
- transform the data with the mapping

$$(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_n, y_n) \longrightarrow (\psi(\mathbf{x}_1), y_1), \ldots, (\psi(\mathbf{x}_n), y_n)$$

- we have linear decision boundary on feature space
- in general, the **higher** the dimension the feature space, the more likely data becomes **linearly separable**

Example

data

$$(x_1,y_1;y):(-1,-1;-1),(-1,1;+1),(1,-1;+1),(1,1;-1)$$

- the data set is not linearly separable
- however, if we transform the data using $(x_1, x_2; y) \rightarrow (x_1, x_2, (x_1x_2); y)$

$$(-1, -1, 1; -1), (-1, 1, -1; +1)(+1, -1, -1; +1), (1, 1, 1; -1)$$

• linearly separable: $x_1x_2 > 0 \Rightarrow -1, x_1x_2 \leq 0 \Rightarrow +1$

Apply SVM After Feature Transformation

Dual Problem on Features:

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j \langle \psi(\mathbf{x}_i), \psi(\mathbf{x}_j) \rangle$$

s.t.
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
 and $0 \le \alpha_i \le C$, $\forall i$

 $\langle \mathbf{x}_i, \mathbf{x}_j \rangle$ replaced by $\langle \psi(\mathbf{x}_i), \psi(\mathbf{x}_j) \rangle$!

Kernel Trick

- Define $k(\mathbf{x}_i, \mathbf{x}_j) = \langle \psi(\mathbf{x}_i), \psi(\mathbf{x}_j) \rangle$ called **kernel function**
- Rewrite the problem as

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j k(\mathbf{x}_i, \mathbf{x}_j)$$

s.t.
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
 and $0 \le \alpha_i \le C$, $\forall i$

- kernel trick
 - no need to explicitly calculate ψ
 - dot product $\langle \psi(\mathbf{x}_i), \psi(\mathbf{x}_j) \rangle$ realized by the kernel function $k(\mathbf{x}_i, \mathbf{x}_j)$
 - *k* is cheaper to calculate
 - allow one to use very high dimensional feature space

Common Kernels

- linear kernel: $k(\mathbf{x}, \tilde{\mathbf{x}}) = \langle \mathbf{x}, \tilde{\mathbf{x}} \rangle$, identity mapping
- polynomial kernel: $k(\mathbf{x}, \tilde{\mathbf{x}}) = \langle \mathbf{x}, \tilde{\mathbf{x}} \rangle^m$, corresponding to feature transformation

$$\psi(\mathbf{x}) = (x_1 x_1, x_1 x_2, \dots, x_1 x_n, \dots, x_n x_1, x_n x_2, \dots, x_n x_n)$$

- inhomogeneous polynomial: $k(\mathbf{x}, \tilde{\mathbf{x}}) = (\langle \mathbf{x}, \tilde{\mathbf{x}} \rangle + 1)^m$
- Gaussian kernel: $k(\mathbf{x}, \tilde{\mathbf{x}}) = \exp\left(-\|\mathbf{x} \tilde{\mathbf{x}}\|_2^2/(2\sigma^2)\right)$
 - radial basis function (RBF) network
 - corresponding to an infinite-dimensional feature space

Any algorithm that depends only on dot products can use the kernel trick!

Kernels

- Intuitively, $k(\mathbf{x}, \tilde{\mathbf{x}})$ represents our notion of **similarity** between data \mathbf{x} and $\tilde{\mathbf{x}}$ and this is from our prior knowledge
- $k(\mathbf{x}, \tilde{\mathbf{x}})$ needs to satisfy a technical condition (Mercer condition) in order for ψ to exist
- Mercer condition for k to be a kernel function
 - there is a Hilbert space \mathcal{F} for which k defines a **dot product**
 - the above is true if k is a **positive semidefinite function**: K is positive semi-definite for any $D = \{x_1, x_2, \dots, x_n\}$

$$\mathbf{K} = \begin{bmatrix} k(\mathbf{x}_1, \mathbf{x}_1) & \cdots & k(\mathbf{x}_1, \mathbf{x}_j) & \cdots & k(\mathbf{x}_1, \mathbf{x}_n) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ k(\mathbf{x}_i, \mathbf{x}_1) & \cdots & k(\mathbf{x}_i, \mathbf{x}_j) & \cdots & k(\mathbf{x}_i, \mathbf{x}_n) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ k(\mathbf{x}_n, \mathbf{x}_1) & \cdots & k(\mathbf{x}_n, \mathbf{x}_j) & \cdots & k(\mathbf{x}_n, \mathbf{x}_n) \end{bmatrix}$$

Classification with SVM

- choose nonlinear transformation $\psi: \mathbb{R}^d \to \mathcal{H}$ $\mathbf{x} \to \psi(\mathbf{x})$ (implicitly via $k(\mathbf{x}, \tilde{\mathbf{x}}) = \langle \psi(\mathbf{x}), \psi(\tilde{\mathbf{x}}) \rangle$)
- solve the dual optimization problem on features, get α^*
- calculate $\mathbf{w}(\alpha^*)$ and $b(\alpha^*)$ from α^*
- classify future examples as follows

$$\operatorname{sign}\left(\sum_{i=1}^{n} \alpha_{i}^{*} y_{i} k(\mathbf{x}_{i}, \mathbf{x}) + b(\alpha^{*})\right)$$

To be continued