ZPR dzienne

wykaz tematów i odpowiedzi do kolokwium 2 ZIMA 2015/2016 dr inż. Włodzimierz Dąbrowski feat. "Scroll Master" & Wikipedia

W6

- 1. Macierz RAM i jej zastosowania
 - Czyli Responsibility Assignment Matrix
 - Tabelka w której się bazgroli: kto za co jest odpowiedzialny.
 - Każdy z typków może mieć jakąś z 4 ról, albo i nic:
 - > Responsible osoba odpowiedzialna
 - > Accountable osoba nadzorująca
 - > Consulted konsultant
 - ➤ Informed ktoś poinformowany

2. Metoda EVM

- Czyli Earned Value Method
- Robi się do tego wykres na którym można zobaczyć, czy wszystko idzie z planem i nikt sie nie opierdziela.

Wersja: 0.3

- Wystarczy policzyć ze wzoru te dziwne skróty. Celem tej metody jest kontrola.
- Żeby sobie życie utrudnić są 2 wersje tych skrótów.
- 3. Parametry projektu: BAC, BCWP, BCWS, ACWP, SV, CV, EAC i ich wyznaczanie
 - **PV** (*planned value*, albo **BCWS** *Budgeted Cost of Work Scheduled*) informuje o tym, jaka powinna być wartość zakresu dostarczonego od początku projektu do dnia kontroli.
 - **EV** (earned value, albo **BCWP** Budgeted Cost of Work Performed) informuje o tym, jaka jest wartość zakresu dostarczonego od początku projektu do dnia kontroli, ale liczona w stawkach przyjętych w budżecie projektu.
 - AC (actual cost, albo ACWP Actual Cost of Work Performed) informuje o zużytym faktycznie koszcie projektu od początku do dnia kontroli.
 - SPI (Schedule Performance Index) = EV / PV
 - SV (Schedule Variance) = EV PV
 - CPI (Cost Performance Index) = EV / AC
 - CV (Cost Variance) = EV AC
 - BAC NoSuchElementException?

Literatura: [1] M. Flasiński, *Zarządzanie projektami informatycznymi*, PWN 2006, rozdział 14 [2] Wysocki, . *Efektywne zarządzanie projektami*, wydanie 6, Helion 2013, rozdział 10

W7

- 1. Pojęcie ryzyka w projekcie
 - Jest pojęciem wieloznacznym
 - Coś niepewnego; można przewidzieć (mniej, lub bardziej udanie). Takie P(A) było chyba na MAD'ach.
 - Nie zawsze coś negatywnego, jak w potocznej mowie.
 - Nawet WD żartował, że "Szansa na sukces" = "Szansa na ryzyko"
- 2. Taksonomia ryzyk
 - Taksonomia nauka o zasadach i metodach klasyfikowania, w szczególności o tworzeniu i opisywaniu jednostek systematycznych: taksonów
 - PRAWDOPODOBIEŃSTWO * KOSZT (koszt tj. "dotkliwość" jeśli ujemny np. ITN... Ale może być też coś na plusie ⓒ) i ORDER BY tych wartości zrobić oczywiście. Nie zajmujemy się mało istotnymi przecież.
- 3. Podział i klasyfikacja ryzyk
 - Na które mamy (pośrednio XOR bezpośrednio) wpływ (wewnetrzne?)

- > Np. jaką ocenę z ZPR dostaniemy, albo czy kogoś rozjedziemy na pasach.
- Na które (teoretycznie) nie mamy wpływu
 - Np. pogoda, zestaw wylosowanych pytań na EDUEXAM, awarie, lub polityka innych.
- 4. Cztery metody walki z ryzykiem
 - Redukcja zagrożeń (Np. jechać trasą gdzie nie ma wielu przejść, albo jechać gdy mały ruch)
 - Ograniczenie skutków (Np. jechać 50km/h zamiast 150 km/h. Albo lepszym samochodem przechodzącym testy bezpieczeństwa.)
 - Transfer ryzyka (Np. kupić ubezpieczenie)
 - Podjęcie ryzyka (Np. przyjść na wykład z kb akceptacja konsekwencji i powiedzenie sobie "no trudno")
- 5. Aktywności w ramach zarządzania ryzykiem
 - To cały proces, który wygląda tak:

```
while(true){
    identyfikacja();
    analiza_i_ocena();
    planowanie_akcji_tłumienia();
    śledzenie();
    kontrola();
}
```

- 6. Zarządzanie podwykonawcami
 - sumy statystyczne
 - drzewa decyzyjne
 - symulacje
 - ocena ekspercka

Literatura: [1] *Kompendium wiedzy z zarządzania projektami PMBOK Guide, 5. Edition*; rozdział 11, 12 [2] *Taksonomia ryzyk* (materiał w EDU)

W8

- 1. Pojęcie jakości
 - USA daje się sprzedawać (bez skojarzeń)
 - Japonia bliskie ideału
 - Europa spełniające wymagania
- 2. Jakość oprogramowania wg ISO 9000 i IEEE 610.12
 - **ISO 9000-3** Jakość oprogramowania to ogół cech i własności programu decydujących o jego zdolności do zaspokajania stwierdzonych lub przewidywanych potrzeb użytkownika.
 - IEEE 610.12 Jakość oprogramowania to stopień w jakim oprogramowanie ma pożądaną kombinację cech.
- 3. Aspekty jakości
 - Technologia
 - Czas i koszt
 - Jakość zasobów ludzkich
 - Jakość procesu
- 4. Podstawowe terminy jakości wg ISO 9000 (jakość, system jakości, zarządzanie jakością, polityka jakości, audyt jakości)
- 5. Model FURPS (FURPS+), CUPRIDSMO, ISO
 - ISO (to już chyba redundancja?)
 - CUPRIDSMO NoSuchElementException

at Google at Wykłady at pamięć?

FURPS (akronim/metoda)

- Functionality funkcjonalność w rozumieniu zestawu funkcji uwzględniająca również bezpieczeństwo (ang. security)
- ➤ **U**sability użyteczność jako zestaw wizualnych aspektów oprogramowania
- ➤ Reliability niezawodność, będąca mierzona np. częstością występowania błędów
- ▶ Performance wydajność aplikacji określana również jako czas odpowiedzi lub użycie zasobów
- Supportability nie dająca się łatwo przetłumaczyć "wspieralność" uwzględniająca zdolność aplikacji do instalacji na różnych platformach, łatwość testowania...

Literatura: [1] W.Dąbrowski, K.Subieta, Podstawy inżynierii oprogramowania, PJWSTK 2006, rozdział 11, 12

W9

- 1. Pojęcie i klasyfikacja metodyk
 - METODYKA = METODY + NARZĘDZIA + WIEDZA (gdzie NARZĘDZIA to RAM'y Gantt'y, EV'ały i inne bęcwały – czyli tabelki, wykresy, wzory... WIEDZA to umiejętność stosowania tych narzędzi i metod.... A metody to sposoby działania w poszczególnych sytuacjach – czyli sterczenie w przy zdawaniu raportów, żeby się nie rozgadać, lub wspólny przegląd.)
- 2. Metodyka NASA i jej cechy charakterystyczne
 - Bogate doświadczenie NASA w prowadzeniu projektów informatycznych wytwarzania oprogramowania wysokiej niezawodności od 1975 roku
 - 8 faz:
 - > Definicja wymagań
 - > Analiza wymagań
 - Projekt wstępny
 - Projekt szczegółowy
 - > Implementacja
 - > Testy integracyjne
 - > Testy akceptacyjne
 - Eksploatacja i pielegnacja
 - każda kończy się wytworzeniem produktu i przeglądem
 - Dla każdej fazy opisuje:
 - warunki rozpoczęcia i zakończenia (np. umowa i opis -> przegląd wymagań)
 - kluczowe czynności (np. nadzorowanie przeglądów)
 - produkty (np. dokument wymagań)
 - miary (np. osobo-godziny)
 - narzędzia (np. CASE)
- 3. Metodyka Digital Program Methodology innowacyjność
 - Cechy:
 - wydzielenie etapów kontrolnych
 - > nie-sekwencyjny sposób realizacji
 - wyodrębnienie zarządzania finansami
 - wyodrębnienie prac związanych z zarządzaniem projektem
 - > określenie kryterium odbioru
 - Fazy:

- 4. Specyficzne cechy metodyki MITP/PMM
 - Managing the Implementation of the Total Project Project Management Methods

- 5. PMBoK charakterystyka obszarów zarządzania wg PMBoK,
 - Zarządzanie integralnością projektu
 - Zarządzanie zakresem
 - Zarządzanie czasem
 - Zarządzanie kosztami
 - Zarządzanie jakością
 - Zarządzanie zasobami ludzkimi
 - Zarządzanie komunikacją
 - Zarządzanie ryzykiem
 - Zarządzanie zaopatrzeniem
 - Zarządzanie interesariuszami

- 6. referencyjny cykl życia projektu wg PMBOK
 - Procesy rozpoczęcia procesy, które służą zdefiniowaniu i zatwierdzeniu projektu w organizacji
 - Procesy planowania procesy mają na celu odpowiedzenie na pytanie: jak, w jaki sposób zrealizować zamierzone cele, jakimi środkami, kiedy, w jakiej kolejności
 - Procesy realizacji grupują i koordynują wykorzystanie zasobów i ludzi w projekcie w celu wykonania założonego planu
 - Procesy kontroli monitorują postępy prac w projekcie, badają ewentualne odchylenia, aby w razie konieczności uruchomić odpowiednie działania zapobiegawcze lub korygujące
 - **Procesy zakończenia** przygotowanie formalnej akceptacji produktu finalnego projektu lub jego fazy.
- 7. Charakterystyka metodyki Prince 2
 - $(PRINCE\ 2) = SCRUM^{-1}$
 - Dużo papierów
 - Duży formalizm
 - Łatwo oszacować ryzyka, wiadoma przyszłość i nie da się tak łatwo "błądzić".
 - Wiadomo "na czym się stoi".
- 8. Główne cechy metodyk zwinnych
 - Mały formalizm
 - Mało biurokracji
 - Događanie się z klientem > kontrakty
 - Łatwo odpowiedzieć na zmiany
 - Duża odpowiedzialność zespołu i nieprzewidywalność
 - Brak hierarchii
- 9. Metodyka SCRUM
 - "Scrum nie jest procesem, ani techniką tworzenia produktów, lecz stanowi ramę metodyczną, w obrębie, której można stosować inne procesy i techniki"
 - Mistrz Młyna (ScrumMaster) jest osobą odpowiedzialną za prawidłowe przeprowadzenie Scrum-a, dopilnowanie, aby jego zasady były przestrzegane przez wszystkich biorących udział w procesie wytwórczym
 - Właściciel Produktu reprezentuje osoby zainteresowane projektem i jego rezultatami.
 Tworzy listę wymagań, zwaną Zaległościami Produktowymi (Product Backlog)
 - **Zespół** składa się ze specjalistów mających na celu stworzenie funkcjonalności opartej na Zaległościach Produktowych
 - Spotkanie planujące projekt (opcjonalne)
 - Sprint:
 - a. dowolna ich ilość w procesie wytwórczym
 - b. każdy sprint jest iteracją i trwa 30 dni
 - c. koniec sprintu = przyrost funkcjonalności o najwyższym priorytecie
 - d. składa się z iteracji, czyli codziennego Scrum
 - Spotkanie planujące sprint, cz. 1:
 - o Czas trwania: 4 h
 - Cel: utworzenie Zaległości Sprintu, czyli wybranych elementów z listy Zaległości Produktowych
 - Uczestnicy czynni: ScrumMaster, Właściciel Produktu, Zespół
 - Spotkanie planujące sprint, cz. 2 (początek Sprintu):
 - O Czas trwania: 4 h (bezpośrednio po części 1)
 - Cel: strategia realizacji wybranych Zaległości w przyrost funkcjonalności, przydział zadań
 - Uczestnicy czynni: Zespół
 - Codzienny Scrum:
 - O Czas trwania: 15 minut
 - Cele: Analiza postępów każdego członka zespołu od ostatniego spotkania(co się udało zrobić, zepsuć, z czym się ma problemy i co się będzie robić)
 - o Uczestnicy czynni: Zespół, ScrumMaster

- Spotkanie przeglądu sprintu:
 - o Czas trwania: 4 h
 - o Cel: zaprezentowanie wykonanej funkcjonalności
 - Uczestnicy:
 - Zespół prezentuje funkcjonalność
 - Osoby zainteresowane projektem spostrzeżenia, obserwacje, wymagane zmiany do wprowadzenia, wprowadzenie nowych funkcjonalności
 - ScrumMaster określa miejsce i datę kolejnego przeglądu sprintu
- Retrospektywne spotkanie Sprintu:
 - o Czas trwania: 3 h
 - Cel: analiza przebiegu sprintu, co poszło dobrze a co mogłoby zostać ulepszone w następnym sprincie
 - Uczestnicy:
 - Zespół każdy członek zespołu odpowiada na powyższe pytania
 - ScrumMaster zapisuje odpowiedzi na formularzu podsumowywującym, pomaga w poszukiwaniu lepszych sposobów wykorzystania Scrum

PS: Jako narzędzie często używa się w SCRUM tablicy podzielonej na 3 części: TODO, w trakcie i po fakcie. Przykleja się tam karteczki z zadaniami.