Protein Graph Database

Borna Bešić, Dilmurat Yusuf

Bioinformatics Group

Albert-Ludwigs-Universität, Freiburg

May 13, 2019

Overview

- Introduction
- 2 Methodology
- Results
- 4 Next steps

Protein network

Cypher

```
CREATE (emp:Employee {name: "Amy Peters", date_of_birth: "1984-03-01", employee_ID: 1})
CREATE (com:Company)
CREATE (cty:City)
CREATE (com)-[:HAS_CEO {start_date: "2008-01-20"}]->(emp)
CREATE (com)-[:LOCATED_IN]->(cty)
```


- Pros:
 - Outperforming RDBMS for associative data
 - No redundancy
 - Easier to implement a design change

- Cons:
 - Not standard; new query language (Cypher)
 - Harder to do summing queries and max queries efficiently

Intuitive and concise query

Figure: Have CT, Jensen LJ. Are graph databases ready for bioinformatics?

Speed

	Neighbor network	Best-scoring path	Shortest path
PostgreSQL	206.31 s	1147.74 s	976.22 s
Neo4j	5.68 s ^a	1.17 s	$0.40 \mathrm{s}$
Speedup	36×	981×	2441×

Figure: Have CT, Jensen LJ. Are graph databases ready for bioinformatics?

What do we want?

- A graph database of protein association
 - Intutive graph model
 - Queries: concise, intuitive and efficient
 - Dynamic web user interface

- Integration of different types of information
 - Protein association
 - Pathway, class
 - Disease, drug, compound

Overview

- Introduction
- 2 Methodology
- Results
- 4 Next steps

Sources of data

STRING

- proteins
- protein protein associations

KEGG PATHWAY

- pathways
 - classes
 - compounds
 - drugs
 - diseases

STRING

- Database of known and predicted protein-protein interactions
- 7 score channels → combined score
 - Experiments
 - 2 Database
 - Textmining
 - Co-expression
 - Neighbourhood
 - Fusion
 - Co-occurence
- One of best in overall performance for recovery of disease gene sets (Huang et al., Systematic Evaluation of Molecular Networks for Discovery of Disease Genes, Cell Systems)
- Full database dumps available for download: 512.8 GB (compressed)

STRING Schema

KEGG PATHWAY Flat file

```
ENTRY
            hsa00010
                                        Pathway
NAME
            Glycolysis / Gluconeogenesis - Homo sapiens (human)
DESCRIPTION Glycolysis is the process of converting glucose into pyruyate...
CLASS
            Metabolism; Carbohydrate metabolism
PATHWAY MAP hsa00010 Glycolysis / Gluconeogenesis
MODULE
            hsa M00001 Glycolysis (Embden-Meyerhof pathway), glucose => pyruvate [PATH:hsa00010]
            hsa M00002 Glycolysis, core module involving three-carbon compounds [PATH:hsa00010]
            hsa M00003 Gluconeogenesis, oxaloacetate => fructose-6P [PATH:hsa00010]
            hsa M00307 Pyruvate oxidation, pyruvate => acetyl-CoA [PATH:hsa00010]
            H00069 Glycogen storage disease
            H00071 Hereditary fructose intolerance
            H00072 Pyruvate dehydrogenase complex deficiency
            D00123 Cyanamide (JP17)
            D00131 Disulfiram (JP17/USP/INN)
            D07257 Lonidamine (INN)
            D08970 Piragliatin (USAN)
DBLINKS
            BSID: 82926
            GO: 0006096 0006094
ORGANISM
            Homo sapiens (human) [GN:hsa]
GENE
            3101 HK3; hexokinase 3 [KO:K00844] [EC:2.7.1.1]
            3098 HK1; hexokinase 1 [KO:K00844] [EC:2.7.1.1]
            3099 HK2; hexokinase 2 [KO:K00844] [EC:2.7.1.1]
            80201 HKDC1; hexokinase domain containing 1 [KO:K00844] [EC:2.7.1.1]
            2645 GCK; glucokinase [KO:K12407] [EC:2.7.1.2]
COMPOUND
            C00022 Pyruvate
            C00024 Acetyl-CoA
            C00031 D-Glucose
            C00033 Acetate
REFERENCE
            (map 1)
            Nishizuka Y (ed).
  AUTHORS
            [Metabolic Maps] (In Japanese)
  TITLE
  JOURNAL
            Tokyo Kagaku Dojin (1980)
REFERENCE
            (map 1)
            Nishizuka Y. Seyama Y. Ikai A. Ishimura Y. Kawaguchi A (eds).
  AUTHORS
  TITLE
            [Cellular Functions and Metabolic Maps] (In Japanese)
            Tokyo Kagaku Dojin (1997)
  JOURNAL
REFERENCE
  AUTHORS
            Michal G.
  TITLE
            Biochemical Pathways
```

Wilev (1999)

Protein Graph DB Scheme

Workflow

Overview

- Introduction
- 2 Methodology
- Results
- 4 Next steps

Protein Graph DB in numbers

• Species: Homo sapiens (human) & Mus musculus (house mouse)

Nodes

Protein: 43 125Pathway: 646Drug: 3 731Disease: 969

• Compound: 3 465

Class: 49

Relationships

ASSOCIATION: 11 983 549

• IN: 76 715

Protein Graph DB in numbers

Protein subgraph (example)

<id><id>< 58895 description: FBJ murine osteosarcoma viral oncogene homolog B; FosB interacts with Jun proteins enhancing their DNA binding activity</td> external Id: 9606.ENSP00000245919 Id: 1843783 name: FOSB species Id: 9606

Query: Central proteins

 $T_i = |\{j : j \in \mathcal{N}(i), s_{ij} \geqslant \mathsf{threshold}\}|$

Cypher

```
WITH ["SFPI1", "FOSB", "MLXIPL", ...] AS protein_names,
9606 AS species_id,
700 AS threshold

MATCH (p1:Protein {species_id: species_id})-[a:ASSOCIATION]-(p2:Protein)
WHERE p1.name IN protein_names AND p2.name IN protein_names AND p1.id <> p2.id
AND a.combined >= threshold
RETURN p1.name AS name, SUM(SIZE((p1)-[a]-(p2))) AS degree
ORDER BY degree DESC
```

name	degree
JUN	25
FOS	19
CREB1	14

Query: Common pathways

- Common pathways given a protein list

Cypher

```
WITH ["SFPI1", "FOSB", "MLXIPL", ...] AS protein_names,
9606 AS species_id
MATCH (protein:Protein {species_id: species_id})-[element:IN]->(pathway:Pathway)
WHERE protein.name IN protein_names
RETURN DISTINCT pathway.name AS pathway, COUNT(element) AS n_proteins
ORDER BY n_proteins DESC
```

pathway	n_proteins
Transcriptional misregulation in cancer	14
Human T-cell leukemia virus 1 infection	12
Pathways in cancer	12

Query: Common diseases

- Common diseases implicated by associated pathways given a protein list

Cypher

```
WITH ["SFPI1", "FOSB", "MLXIPL", ...] AS protein_names,
9606 AS species_id
MATCH (protein:Protein {species_id: species_id})-[:IN]->(pathway:Pathway)<-[:IN]-(disease:Disease)
WHERE protein.name IN protein_names
WITH disease, pathway, COUNT(protein) AS n_proteins
RETURN disease.name AS disease, COUNT(pathway) AS n_pathways, n_proteins
ORDER BY n_proteins DESC
```

disease	n_pathways	n_proteins
Pituitary adenomas	1	14
Hairy-cell leukemia	1	14
Acute myeloid leukemia (AML)	1	14

Query: Module detection

Cypher

```
CALL algo.louvain.stream("Protein", "ASSOCIATION", {})
YIELD nodeId, community
RETURN COLLECT(nodeId) AS protein_ids, community
ORDER BY community
```

protein_ids	community
[29451,29452,29453,]	0
[29815,29899,30082,]	1
[29858]	2

Web server (live demo)

Overview

- Introduction
- 2 Methodology
- Results
- 4 Next steps

Next steps

- Extend the database
 - Protein protein actions
 - KEGG DRUG
 - KEGG DISEASE
 - KEGG COMPOUND

- Include other species
- Production-level web server
- Explore the possibility of a graph-native machine learning system

Thank you:)

https://backofenlab.github.io/protein-graph-database/ https://github.com/BackofenLab/protein-graph-database

Special thanks to Prof. Rolf Backofen and Stefan Jankowski