Отчёт по лабораторной работе №7

Дискретное логарифмирование

Исмит Шаманта НФИмд-01-22

Содержание

1	Цель работы	4
2	Теоретические сведения 2.1 р-алгоритм Поллрада	5 5
3	Выполнение работы 3.1 Реализация алгоритма на языке Python	
4	Выводы	12
Сп	исок литературы	13

List of Figures

3.1 Работа алгоритма	1.	I
----------------------	----	---

1 Цель работы

Изучение задачи дискретного логарифмирования.

2 Теоретические сведения

Пусть в некоторой конечной мультипликативной абелевой группе $\ G$ задано уравнение

$$g^x = a$$

Решение задачи дискретного логарифмирования состоит в нахождении некоторого целого неотрицательного числа x, удовлетворяющего уравнению. Если оно разрешимо, у него должно быть хотя бы одно натуральное решение, не превышающее порядок группы. Это сразу даёт грубую оценку сложности алгоритма поиска решений сверху — алгоритм полного перебора нашёл бы решение за число шагов не выше порядка данной группы.

Чаще всего рассматривается случай, когда группа является циклической, порождённой элементом *g*. В этом случае уравнение всегда имеет решение. В случае же произвольной группы вопрос о разрешимости задачи дискретного логарифмирования, то есть вопрос о существовании решений уравнения, требует отдельного рассмотрения.

2.1 р-алгоритм Поллрада

• Вход. Простое число p, число a порядка r по модулю p, целое число bб 1 < b < p; отображение f, обладающее сжимающими свойствами и сохраняющее вычислимость логарифма.

- Выход. показатель x, для которого $a^x = b(modp)$, если такой показатель существует.
- 1. Выбрать произвольные целые числа u,v и положить $c=a^ub^v(modp),d=c$
- 2. Выполнять $c=f(c)\pmod{p}$, $d=f(f(d))\pmod{p}$, вычисляя при этом логарифмы для c и d как линейные функции от d0 по модулю d0 получения равенства d0 d1 с d2 с d3 с d4 как линейные функции от d5 по модулю d6 получения равенства d6 с d6 с d7 с d8 с d9 с
- 3. Приняв логарифмы для c и d, вычислить логарифмx решением сравнения по модулю r. Результат x или РЕШЕНИЯ НЕТ.

3 Выполнение работы

3.1 Реализация алгоритма на языке Python

```
def ext_euclid(a, b):
    Extended Euclidean Algorithm
    :param a:
    :param b:
    :return:
    11 11 11
    if b == 0:
        return a, 1, 0
    else:
        d, xx, yy = ext_euclid(b, a % b)
        x = yy
        y = xx - (a // b) * yy
        return d, x, y
def inverse(a, n):
    11 11 11
    Inverse of a in mod n
    :param a:
```

```
:param n:
    :return:
    11 11 11
    return ext_euclid(a, n)[1]
def xab(x, a, b, xxx_todo_changeme):
    11 11 11
    Pollard Step
    :param x:
    :param a:
    :param b:
    :return:
    11 11 11
    (G, H, P, Q) = xxx\_todo\_changeme
    sub = x \% 3 \# Subsets
    if sub == 0:
        x = x*xxx_todo_changeme[0] % xxx_todo_changeme[2]
        a = (a+1) \% Q
    if sub == 1:
        x = x * xxx_todo_changeme[1] % xxx_todo_changeme[2]
        b = (b + 1) \% xxx_todo_changeme[2]
    if sub == 2:
        x = x*x \% xxx_todo_changeme[2]
        a = a*2 % xxx_todo_changeme[3]
        b = b*2 % xxx_todo_changeme[3]
```

```
def pollard(G, H, P):
    # P: prime
    # H:
    # G: generator
    Q = int((P - 1) // 2) \# sub group
    x = G*H
    a = 1
    b = 1
    X = x
    A = a
    B = b
    # Do not use range() here. It makes the algorithm amazingly slow.
    for i in range(1, P):
        # Who needs pass-by reference when you have Python!!! ;)
        # Hedgehog
        x, a, b = xab(x, a, b, (G, H, P, Q))
        # Rabbit
```

return x, a, b

X, A, B = xab(X, A, B, (G, H, P, Q))

```
X, A, B = xab(X, A, B, (G, H, P, Q))
        if x == X:
            break
    nom = a-A
    denom = B-b
    # print nom, denom
    # It is necessary to compute the inverse to properly compute the fraction mod
    res = (inverse(denom, Q) * nom) % Q
    # так никто не делает но все же...
    if verify(G, H, P, res):
        return res
    return res + Q
def verify(g, h, p, x):
    11 11 11
    Verifies a given set of g, h, p and x
    :param g: Generator
    :param h:
    :param p: Prime
    :param x: Computed X
    :return:
```

```
return pow(g, x, p) == h

args = [
    (10, 64, 107),
]

for arg in args:
    res = pollard(*arg)
    print(arg, ': ', res)
    print("Validates: ", verify(arg[0], arg[1], arg[2], res))
    print()
```

3.2 Контрольный пример

Figure 3.1: Работа алгоритма

4 Выводы

Изучили задачу дискретного логарифмирования.

Список литературы

- 1. Дискретное логарифмирование)
- 2. Доступно о криптографии на эллиптических кривых